Library, N. W. Bldg.

Reference . This not to be taken in the term.

IONOSPHERIC DATA

ISSUED
DECEMBER 1953

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.

Issued
28 Dec. 1953

IONOSPHERIC DATA

CONTENTS

	Page
Symbols, Terminology, Conventions	2
World-Wide Sources of Ionospheric Data	5
Hourly Ionospheric Data at Washington, D. C.	7, 14, 22, 47
Ionospheric Storminess at Washington, D. C	7. 34
Relative Sunspot Numbers	7. 35
Radio Propagation Quality Figures	8, 36
Observations of the Solar Corona	9. 38
Sudden Ionosphere Disturbances	10, 44
Observations of Solar Flares	10, 45
Indices of Geomegnetic Activity	11. 46
Index of Ionospheric Data Published in 1953 (CRPL-F101 through F112)	11
Tables of Ionospheric Data	14
Graphs of Ionospheric Data	47
Index of Tables and Graphs of Ionospheric Data in CRPI-F112	

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89, "Icnospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in Document No. 626-E referred to above.

a. For all ionospheric characteristics:

Values missing because of A. C. F. L. M. N. Q. S. or T are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted usually as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic. This practice represents a change from that listed in issues previous to CRPL-F78.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fire missing because of R or G (and B when applied to the daytime E region only) are counted as equal to or less than the median foZ, or equal to or less than the lower frequency limit of the recorder.

Values of fEs missing for any other reason, and values of h Es missing for any reason at all are omitted from the median count.

Beginning with data for Hovember 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1. leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zürich sunspot numbers were used in constructing the contour charts:

	1953	1952	1951	1950	1949	1948	1947	1946_	1945
December		33	53	86	108	114	126	85	38
Hovember	16	38	52	87	112	115	124	83	36
October	17	43	52	90	114	116	119	81	23
September	18	46	Sh	91	115	117	121	79	22
August	1.8	49	57	96	111	123	2 6 B	707	20
July	20	51	60	101	108	125	116	73	
June	21	52	63	103	108	129	112	67	
May	22	52	68	102	108	130	109	67	
April	511	52	74	101	109	133	107	62	
March	27	52	78	103	111	133	105	51	
February	29	51	82	103	113	133	90	46	
January	30	53	85	105	112	130	88	42	

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 48 and figures 1 to 96 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Republica Argentina, Ministerio de Marina: Buenos Aires, Argentina Decepcion I.

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics: Watheroo, Western Australia

University of Graz: Graz, Austria

- Meteorological Service of the Belgian Congo and Buanda-Urundi: Leopoldville, Belgian Congo
- Radio Wave Research Laboratories, National Taiwan University, Taipeh, Formosa, China:
 Formosa, China
- Danish National Committee of URSI: Godhavn. Greenland
- Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany: Lindau/Farz, Germany
- The Royal Netherlands Meteorological Institute:
 Do Bilt. Holland
- Icelandic Post and Telegraph Administration: Reykjavik, Iceland
- Norwegian Defence Research Establishment, Kjeller per Lillestrom, Norway: Oslo, Norway Tronso, Norway
- Manila Observatory: Baguio, P. I.
- South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa
- Research Laboratory of Electronics, Chalmers University of Technology, Gothenburg, Sweden:

 Kiruba, Sweden
- Research Institute of National Defence, Stockholm, Sweden: Upsala, Sweden
- Royal Board of Swedish Telegraphs, Radio Department, Stockholm, Sweden: Lulea, Sweden
- Post, Telephone and Telegraph Administration, Berne, Switzerland: Schwarzenburg, Switzerland
- United States Army Signal Corps: Okinawa I. White Sands. New Mexico

Wational Bureau of Standards (Central Radio Propagation Laboratory):
Anchorage, Alaska
Fairbanks, Alaska (Geophysical Institute of the University of Alaska)
Guam I.
Huancayo, Peru (Instituto Geofisico de Huancayo)
Maui, Hawaii
Panama Canal Zone
Puerto Rico, W. I.
San Francisco, California (Stanford University)
Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 49 through 60 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 61 presents ionosphere character figures for Washington, D. C., during November 1953, as determined by the criteria given in the report IRPI-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

RELATIVE SUNSPOT NUMBERS

Table 62 lists the daily provisional Zurich relative sunspot number, R_Z, as communicated by the Swiss Federal Observatory. Publication of the American relative sunspot numbers, R_A, which usually appear monthly in these pages, is temporarily suspended until new arrangements are made for the reduction of the observations made by the Solar Division of the AAVSO.

Tables 63a and 63b give for October 1953 the radio propagation quality figures for the North Atlantic area, CRPL advance and short-term forecasts, a summary geomagnetic activity index and sundry comparisons, specifically as follows:

- (a) radio propagation quality figures, separately for each 6-hour interval of the Greenwich day, viz., 00-06, 06-12, 12-18, 18-24 hours UT (Universal Time or GCT).
- (b) whole-day radio quality indices (beginning October 1952). Each index is a weighted average of the four quarter-day Q-figures, before rounding off, with half weight given to quality grades 5 and 6. This procedure tends to give whole-day indices suitable for comparison with whole-day advance forecasts which designate whenever possible the days when significant disturbance or unusually quiet conditions will occur.
- (c) short-term forecasts, issued by CRPL every six hours (nominally one hour before 00^h, 06^h, 12^h, 18^h UT) and applicable to the period 1 to 13 (especially 1 to 7) hours ahead. Note that new scoring rules have been adopted beginning with October 1952 data.
- (d) advance forecasts, issued semiweekly (CRPL-J reports) and applicable 1 to 3 or 4 days ahead, 4 or 5 to 7 days shead, and 8 to 25 days ahead.

 These forecasts are scored against the whole-day quality indices.
- (a) half-day averages of the geomagnetic K indices measured by the Cheltenham Magnetic Observatory of the U. S. Coast and Geodetic Survey.
- (f) illustration of the comparison of short-term forecasts with Q-figures and also with estimates of radio quality based on CRPL observations only.
- (g) illustration of the outcome of advance forecasts (1 to 3 or 4 days ahead) and, for comparison, the outcome of a type of "blind" forecast. For the latter the frequency for each quality grade, as determined from the distribution of quality grades in the four most recent months of the current season, is partitioned among the grades observed in the current month in proportion to the frequencies observed in the current month.

The radio propagation quality figures are prepared from radio traffic data reported to CRPL by American Telephone and Telegraph Company, Mackay Radio and Telegraph Company, BOA Communications, Inc., Marconi Company, British Admiralty Signal and Radar Establishment, and the following agencies of the U. S. Government:—Coast Guard, Bavy, Army Signal Corps, and State Department. The method of calculation, summarised below, is similar to that described in a 1946 report. IRPL-R31, now out of print. Beginning with recalculated figures for January 1952, only reports of radio transmission on North Atlantic paths closely approximating New Tork-London are included in the estimation of quality. Observations of selected ionospheric characteristics, even though strongly correlated with radio transmission quality, and traffic reports for paths such as New York-Stockholm or New York-Tangier, previously included in the quality-figure determination with low weight, have been left out of the present calculations inasmuch as a sufficient number of homogeneous reports are now available.

The original reports are submitted on various scales and for various time intervals. The observations for each 6-hour interval are averaged on the quality scale of the original reports. These 6-hour indices are then adjusted to the 1 to 9 quality-figure scale by a conversion table prepared by comparing the distribution of these indices for at least four months, usually a year.

with a master distribution determined from analysis of the reports originally made on the 1 to 9 quality-figure scale. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. The 6-hourly quality figures are (subjectively) weighted means of the reports received for that period. These 6-hourly quality figures replace, beginning January 1953, the half-daily quality figures which formerly appeared in this table.

These quality figures are, in effect, a consensus of reported radio propagation conditions in the North Atlantic area. The reasons for low quality are not necessarily known and may not be limited to ionospheric storminess. For instance, low quality may result from improper frequency usage for the path and time of day. Although, wherever it is reported, frequency usage is included in the rating of reports, it must often be an assumption that the reports refer to optimum working frequencies. It is more difficult to eliminate from the indices conditions of low quality because of multipath, interference, etc. These considerations should be taken into account in interpreting research correlations between the Q-figures and soler, auroral, geomagnetic or similar indices.

Note. The North Pacific quality figures, which were published through October 1951, have been temporarily discontinued. Since the establishment of the North Pacific Radio Warning Service at Anchorage, Alaska, a larger number of reports are being received than were previously available in Washington. The preparation of the quality figures will be resumed when sufficient data have been accumulated for determination of conversion tables for these new reports.

OBSERVATIONS OF THE SOLAR CORONA

Tables 64 through 66 give the observations of the solar corona during November 1953, obtained at Glimax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 67 through 69 list the coronal observations obtained at Sacramento Peak, New Mexico, during November 1953, derived by Harvard College Observatory as a part of its performance of a research contract with the Upper Air Research Observatory, Geophysical Research Directorate, Air Force Cambridge Hesearch Center. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 64 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 65 gives similarly the intensities of the first red (6374A) coronal line; and table 66, the intensities of the second red (6702A) coronal line; all observed at Climax in November 1953.

Table 67 gives the intensities of the green (5303A) coronal line; table 5B. the intensities of the first red (6374A) coronal line; and table 69. the latensities of the second red (6702A) coronal line; all observed at Sacramento Peak in November 1953.

The following symbols are used in tables 64 through 69: a, observation of low weight; ~, corona not visible; and X, position angle not included in plate estimates.

SUDDEN IONOSPHERE DISTURBANCES

Table 70a lists the sudden ionosphere disturbances observed at Ft. Belvoir, Virginia, for October 1953. Table 70b shows that no sudden ionosphere disturbances were observed at Ft. Belvoir during the month of November 1953.

OBSERVATIONS OF SOLAR FLARES

Table 7% gives the preliminary record of solar flares reported to the GRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt.

1 1000, McMath-Hulbert, U. S. Naval, Wendelstein, Kanzel and High Altitude

5 Sacramento Peak, New Mexico. The remainder report to Meudon (Paris)

6 Medical are taken from the Paris-URSIgram broadcast, monitored fairly

6 Sacramento by the CRPL. The data on solar flares reported from Sacramento

6 Sacramento Deak, New Mexico, communicated by the High Altitude Observatory at Boulder,

6 Solorado, are provided by Harvard University as the result of work under
6 Sacramento Deak, New Mexico, communicated by the High Altitude Observatory at Boulder,

7 Solorado, are provided by Harvard University as the result of work under
6 Sacramento Deak, New Mexico, communicated by the High Altitude Observatory at Boulder,

7 Solorado, are provided by Harvard University as the result of work under
6 Sacramento Peak, New Mexico. The remainder report to Meudon (Paris)

6 Sacramento Peak, New Mexico.

The table lists for each flare the reporting observatory, date, times of observation, duration (when known), total area toxrected for foreshortening), and heliographic coordinates. For the medium phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 72 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary international character-figures, C; (2) geomagnetic planetary three-hour-range indices, Kp; (3) magnetically selected quiet and disturbed days.

The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of O (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity. The details of the currently used method follow. For each day of a month, its geomagnetic activity is assigned by weighting equally the following three criteria: (1) the sum of the eight Kp's: (2) the greatest Kp; and (3) the sum of the eight Kp's.

Kp is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5+ is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Kp is available from 1937 to date as noted in Flo8.

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles C and selected days. The Chairman of the Committee computes the planetary index. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and sclar flare effects (sfe).

INDEX OF IONOSPHERIC DATA PUBLISHED IN 1953 (CRPL-F 101 THROUGH F112)

The following index of tables and graphs of ionospheric data published in the CRPL-F series in 1953 is divided into two parts. Part I is an index of data observed in 1952 and 1953. Part II is an index of data observed prior to 1952.

In general, both table and graphs for a given station for a given month appear in the same issue.

Indexes of ionospheric data published prior to 1953 are in IRPL-F17, CRPL-F28, -F40, -F52, -F64, -F76, -F88, and F100.

PART I

Index of Tables and Graphs of Ionospheric Data Observed in 1952 and 1953 and Published in 1953 (CRPL-F101 through F112)

	_						7.050																
Station	J	F	M	A	M	J	1952	A	S	0	N	D	J	F	М	A	M	J	1953	A	S	0	N
Adak, Alaska Akita, Japan Anchorage, Alaska Baguio, P.I. Beker Lake, Canada					103	103	103	103	103	102	102 (103 103	102 2 105 3 103 3 104 1 104	106 103 105	107 105 106	108 105 107	108 106 107	110 107 108	108 111 108 109 110	109	110 110 112 111	#111	112	
Baton Rouge, Louisians Bombay, India Brisbane, Australia Buenos Aires, Argentina Calcutta, India			102	102		101	101	101	102	104 103 105	101	102 5 106 106 5 105 5 106	109 107 108	109 109 108	110	110	110	108 110 111			112		
Camberra, Australia Capetown, Union of S.Afric Caasblanca, Morocco Christchurch, New Zealand		103	103	105	106	106	106		102	102	103	106 104 5 105	105	105		107		109	112	112			
Churchill, Canada					101		104	104				104				107		110		111			
Dakar,French Weat Africa De Bilt, Holland Decepcion I. Delhi, India Djibouti,French Somaliland		102		105	1 01	101			110	105	105	103 105 106		108	110			109			112		
Domont, France Fairbanks, Alaska Falkland Is. Formosa, China Fort Chimo, Canada	103	103	103			102	104		101	102	107	102 108 103 104	109	110	106	107	108	108 109 110	110		111	112	
Fribourg, Germany Godhavn, Greeniand Graz, Austria Guem I. Hobart, Tasmania	104					110 106		103			101 101	112 102 102 106	103	104	105	106	107	112 108 108			112		
Huancayo, Peru Ibadan, Nigeria Inverness, Scotland Johannesburg, Union of S.Af Khartoum, Sudan	rica					102 104			106 102	106 102	108 107 103	103 110 107 104 104	108	109	110			109	110		112	112	
Kiruna, Sweden Leopoldville, Belgian, Con Lindm/Harz, Germany Lulea, Sweden Macquarie I.		104	104				109	108	108			103 103		105	106	107	108	109 109 109		111 112	112 112 112		
Madras, India Maui, Hawaii Nairobi, Kenya				101	101	101	101	101	102		101	106		104	105			108			111	112	
Narsarssuak, Greenland Okinawa I.												*102						108		110 110	111	112	
Oslo, Norway Ottawa, Canada Panama Canal Zone Point Barrow, Alaska Poitiers, France	103	103	103	105	106	106	106	107	101	101	102	102 104 102 102	105 103	105 104	106 105	107 107	107 109 107 109	108	111	111	111		
Port Lockroy Prince Rupert, Canada Puerto Rico, W.I. Rerotonga I. Resolute Bay, Canada					101	102			101	102	101	108 104 102 105 105	103 108	105 104 108	107 105 109	106 109			111 109 111	110	111	112	

Station							1952												1953				
	J	F	M	A-	H	ð	dy	Â	5	0	14	D	J	Ĭą.	M	A	M	Ĵ	Jy	Ā	Ś	0	N
Reykjavik, Iceland St.John'e, Nawfoundland Sam Francisco, California Schwarzenburg, Switzerland Sizgapore, British Malaya							102	104	101	102 101	102 101 102	104 104 102 103 107	104 105 103 104 108	105 104 105	106 105 107	108 106	109 107	110 108	111 109 110	110	111	112	
Slough, England Fananarive, Madagascar Firuchy, India Fokyo, Japan Fownsville, Australia				102		106 101	106 101	106	107 102 101	108 104 102	109 105 103	107 110 106 105 106	108 109 106 107	109 107	108	108	110	111					
Promso, Norway Jpsala, Sweden Wakkanai, Japen Mashington, D.C. Watheroo, Western Australis						rus.					101 102	102 102 105 101 104	103 106	104 107 103	105 108 104	106 108 105	107 110 106	107	109	110	110	112	
hite Sands, New Mexico finnipeg, Canada amagawa, Japan											102	102 104 105	103 105 106	105	106	107	109		109 111			. 112	

^{/ (}M3000)F2 column only. See table 33. p. 18, F102.

PART II Index of Tables and Graphs of Ionospheric Data Observed Prior to 1952 and Published in 1953 (CRPL-F101 through F112)

Station						19	51					
	J	F	M	A	M	J	Ĵу	A	S	0	N	D
Godhavn, Greenland Macquarie I. Terre Adelie						104	104	104	104	104 101		104

[#] See erratum 1 in Fll1, p.11.
* See erratum in Fl01, p.12.
" See erratum 2 in Fll1, p.11.

Vashin	gton, D.	C. (38.7	°E, 77.1	OW) Tabl	0 1		Ho	vember 1953
Time	h'F2	loF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
00	(280)	2.4					2.4	3.0
01	(270)	2.6						(3.1)
02	260	(2,8)						3.2
03	250	3.0						3.2
C4	250	2.8						3.3
05	240	2.7					2.4	3.3
06	240	2.4						3.3
07	230	3.6						3.4
08	230	5.2	210	et contact	120	2.0	2.2	3.6
09	246	5.7	210	principal	110	2.4	2.7	3.5
10	2 50	5.8	200	3.7	110	2.6	3.0	3.5
13	250	6.0	200	3.8	100	2.7	2.7	3.4
12	260	6.4	210	3.9	100	2.8	2.7	3.4
13	250	6.7	210	3.9	100	2.8	3.0	3.5
14	250	6.4	220	3.7	100	2.6		3.5
15	2.40	6.2	220	3.0	110	2.4	2.4	3.5
16	230	6.0	220	00-044	120	1.9	2.1	3.5
17	22.0	5.2					2.2	3.5
18	220	71-0					2.2	3.3
19	240	3.2					2+2	3.3
20	(250)	2.7						3.2
21	(270)	2.3						3.2
22	(280)	2.3					2.1	3.0
23	(280)	2.3					1.3	3,0

Time: 75.0 %. Sweep: 1.0 Nc to 25.0 Mc in 15 seconds.

Fairbo	nks, Alas	rs (64.9°	B, 147.	8°V)	<u>3</u>		Ca	tober 1953
Time	h*F2	foF2	h'F1	foFl	h*E	foE	fEs	(M3000)F2
60	(290)	(2.0)					5.2	(2.6)
01	(330)	(2.8)					5.4	
02	(380)	(2.5)					5.2	(2.8)
03	(280)	(2.3)					4.6	(2.7)
G4	(250)	(2.2)					5.5	(2.8)
05	350	2.2					6.0	2.9
0.5	230	2,8			130	1.8	3.7	3.9
07	260	3.3			130	1.9	3.5	3.1
08	250	3.6	220	***	130	1.9	2.0	3.2
69	280	4.2	350	(3.4)	120	2.1	2.2	3.3
10	280	4.4	2:20	(3.6)	120	2.2	2.3	3.1
11	280	4.6	250	(3.5)	120	2.2	2.5	3.2
13	280	4.5	220	(3.6)	1.20	2.3	2.0	3.2
13	260	4.8	220		120	2.3	2.1	3.2
14	260	4.7	230		130	2.1	1.8	3.3
1.5	240	4.5	220	-	140	2.0		3.3
16	230	4.4	-		140	1.8		3.3
1.7	240	3.9						3.3
18	240	3.0					4.4	3.2
19	260	2.3					3.4	3.1
20	200	2.2					5.0	3.0
23.	290	2.4					5.0	3.0
23	290	2.0					5.5	3.0
23	(320)	(2.0)					6.6	(2.8)

25 (320) (2.0) Time: 150.0°W. Sweeg: 1.0 Mc to 25.0 Me in 15 seconds.

				Tabl	6.5			
Onlo,	Norway	(60.0°E,	11.1°E)				Oct	ober 1963
Time	h'F2	foF?	h'Fl	foFl	h *E	foE	fEs	(M3000)F2
00	(280)) 2.0						2.9
01	300	1.8					1.9	2.8
02	285	1.8					2.1	2.8
03	280	1.7					2.4	2.9
01	290	1.7					2.4	2.9
05	270	1.6					1.4	2.9
08	270	2.1					2.8	3.1
07	345	3.2				1.4		3.2
C3	240	>4.0	230		115	1.8	1.8	3.4
0.9	230		325		105	2.1	3.2	3.5
10	210	5.0	215	3.6	105	2.2	3,1	3.4
11	250	5,1	21.0	3.5	105	2.3	3.2	3.4
12	250	5.4	21.0	3.7	105	2.3	3.1	3.5
13	24.6	5.6	215	3.5	105	2.3	5.0	3.4
14	245	5.5	220	3.4	100	2.4	2.9	3.4
1.5	235	5.3	225		105	2,2	2.9	3.4
16	230	5.0	230		110	3.0	3.0	3.4
17	230	4.9		~~ ~~~	110	1.5	1.5	3.3
18	230	4.6						3.2
19	240	4.4						3.3
20	245							3.2
21	250							3.1
SS	(250							3.0
23		2.1						3.0

Time: $15.0^{\circ}E$. Sweep: 0.8 Mo to 14.0 Mo in 8 minutes, automatic operation.

The owner	Norway	/60 70m	30 000)	Table	2			
-								tober 1953
Time	h*F2	foF2	h*Fl	foFl	h*E	foE	i`Es	(M3000)F2
00							4.4	
01	-						4.0	
02	(340)	(2.1)					4.0	(3.0)
03	320	2.1					3.1	3.0
04	295	2.0					2, 8	3.0
0.5	290	2.0					2.8	3.0
0.5	255	2.5				1.2	2.4	3.1
07	245	3.4	240		110	1.4	2.7	3.3
08	245	4.0	235		130	1.7	2.7	3.4
09	245	4.2	230		120	1.9	1.8	3.4
10	245	4.5	230	100 minus	120	2.0	2.1	3,4
11	245	4.8	235	-	120	2.1	2.2	3.4
12	245	4.5	220		115	2.1	2.8	3.4
13	240	4.6	220		110	2.0	2.5	3.4
14	240	4.5	230		120	1.9	2.5	3.4
15	240	4.2	235		120	1.7	2.7	3.4
16	240	4.2			125	1.4	2.7	3.4
17	240	3.6					3.0	3.2
18	246	3.4					3.5	3.2
19	(260)	2.8					3.3	3.2
20							3.8	
21							4.2	
22	-						3.9	any angles
23							4.0	

23 - 4.0
Time: 15.0°E.
Sweep: 0.5 Mc to 25.0 Mc in 6 minutes, automatic operation.

				Table	4			
Anchors	go, Alaa	ra (61.2°	N, 149.	9°4)			0 c	tober 1953
Time	P115	foF2	h'F1	foFl	h1I	foE	flig	(M3000)F2
00	310	2.0					2.8	3.0
01	350	2.4					2.2	2.8
02	380	(2.3)					2.7	(2.8)
03	340	(2.8)					2.8	(2.7)
04	(340)	2.9					3.6	(2.8)
0.5	(320)	2.3					2.7	2.8
05	270	2.4					2.6	3.1
07	240	3.3	220	-	115	1.7	1.5	3.3
08	250	3.9	215	3.2	110	2.0		3.3
09	280	4.4	210	3.4	110	2.3		3.3
10	280	4.7	200	3.5	100	2.4		3.3
11	280	5.0	210	3.6	100	2.5		3.3
12	280	5.2	500	3.5	100	2.5		3.3
13	250	5.0	215	3.5	100	2.5		3.4
14	250	4.8	220	3.5	100	2.4		3.4
15	240	4.9	220		110	2.2		3.4
15	230	4.5	230		110	1.9		3,4
17	220	4.2						3.4
18	220	3.5						3.3
19	235	2.8					1.8	3.2
20	275	2.2					1.5	3.1
21	280	2.1					2.1	3.1
22	280	2.0					2.8	3.1
23	31.0	2.2					3.2	3.0

Time: 150.00 W. Sweep: 1.0 Mc to 25.0 Mc in 15 ecconds.

			Table	6			
Sweden	(59.8°N,	17.6°E)				00	tober 1953
h'F2	foF2	h'F1	foFl	h DE	foE	fEs	(M3000)F2
(300)	2.0					2.3	2.7
315	(2.0)					2.3	2.7
310	2.0					2.7	2.7
\$30	1.9					3.1	(2.8)
.580	1.8					2.6	2.8
300	(1.7)					2.9	2.8
260	2.3				2	2.5	3.0
235	3.5	220			1.5	2.4	3.3
245	4.3	230	(3.1)	120	2.0	2.4	3.4
245	4.6	225	3.3	115	2.2	2.8	3.4
265	5.1	220	3.5	115	2.3	3.3	3.3
255	5.3	220	3.5	110	2.4	2.5	3.3
245	5.3	220	3.5	110	2.4	3.1	3.3
240	5.7	220	3.5	115	2.2	2.5	3.3
240	5.5	225	3.3	115	2.2	2.3	3.3
230	5.2	230	(3.2)	115	2.0	2.3	3.4
230	4.8	235	(2.5)		E	2.3	3.3
230	4.5				E	2.4	3.2
235	4.2					2.9	3.1
235	3.6					2.3	3.1
235	2.7					2.3	3.0
250	2.5					2.9	3.0
270	2.2					2.3	2.9
280	2.1					2.3	8.8
	h*F? (300) 31.5 31.0 290 290 260 235 245 245 245 255 2440 230 230 235 235 235 250 270	h'F2 foF2 (300) 2.0 315 (2.0) 315 (2.0) 310 2.0 290 1.9 290 1.8 300 (1.7) 280 2.3 235 3.5 245 4.6 285 5.1 255 5.3 240 5.7 240 5.5 230 4.8 230 4.8 230 4.5 235 4.2 230 4.8 230 4.5 235 4.2 235 4.2 235 4.2 235 4.2 235 4.2 235 4.2 235 4.2 235 4.2 235 4.2 235 4.2 235 4.2 235 4.2 235 4.2 235 2.3 245 2.3 257 2.2 20 2.2	h*F2 foF2 h*F1 (\$00) 2.0 \$1.5 (2.0) \$3.5 (2.0) \$3.0 2.0 290 1.9 290 1.9 300 (1.7) 260 2.3 235 3.5 220 245 4.6 225 265 5.1 220 245 5.3 220 240 5.7 220 240 5.7 220 240 5.7 220 240 5.5 225 230 4.8 235 230 4.8 235 230 4.8 235 235 4.2 230 240 5.7 220 240 5.7 220 240 5.7 220 240 5.7 220 240 5.7 220 240 5.7 220 240 5.7 220 240 5.7 220 240 5.7 220 240 5.7 220 240 5.7 220 240 5.7 220 240 5.7 220 240 5.7 220 240 5.7 220 240 5.5 225 230 4.8 235 235 4.2 230 235 4.5 2.7 2860 2.5 270 2.2	Sweden (59.8°E, 17.6°E) h°F2 foF2 h°F1 foF1 (300) 2.0 315 (2.0) 315 (2.0) 300 1.9 290 1.8 300 (1.7) 260 2.3 220 — 255 3.5 220 — 255 3.5 220 — 3.5 225 3.5 225 3.3 255 5.1 220 3.5 255 5.3 220 3.5 245 5.3 220 3.5 245 5.3 220 3.5 244 5.7 220 3.5 244 5.7 220 3.5 244 5.7 225 3.3 230 4.2 235 4.2 235 4.8 235 (2.5) 230 4.2 235 4.2 235 4.2 235 4.2 235 4.2 2.5 3.3 230 4.2 2.5 2.2 230 (3.2) 2.5 2.5 2.2 2.5 2.5 <td>h'F2 foF2 h'F1 foF1 h'E (\$00) 2.0 \$15 (2.0) \$315 (2.0) \$30 2.0 290 1.9 290 1.8 300 (1.7) 280 2.3 235 3.5 220 ——— 245 4.6 225 3.3 115 265 5.1 220 3.5 110 245 5.3 220 3.5 110 240 5.7 220 3.5 110 240 5.7 220 3.5 110 240 5.7 220 3.5 115 230 4.8 235 (3.2) 115 230 4.8 235 (3.5) 115 230 4.8 235 (3.5) —— 235 4.2 25 3.3 115 230 5.2 230 (3.2) 115 230 5.2 230 (3.2) 115 230 5.2 230 (3.2) 115 230 4.8 235 (3.5) —— 235 4.2 236 3.5 235 235 3.6 235 270 2.2</td> <td>Sweden (59.8°E, 17.6°E) h'F2 foF2 h'F1 foF1 h'E foE (300) 2.0 3.15 (2.0) 2.0 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.0 2.2 2.2 2.0 2.2 2.2 2.5 2.2 2.0 2.2 2.2 2.5 3.3 11.5 2.2 2.5 2.2 2.5 3.5 11.5 2.3 1.5 2.2 2.5 3.5 11.5 2.3 2.2 2.5 3.5 11.0 2.4 <td< td=""><td>Swedon (59.8°E, 17.6°E) Oc h'F2 foF2 h'F1 foF1 h'E foE fEs (300) 2.0 2.3 31.5 (2.0) 2.3 31.0 2.0 2.7 290 1.9 2.6 300 (1.7) 2.9 260 2.3 —— £ 2.5 235 3.5 220 —— 1.5 2.4 245 4.6 225 3.3 115 2.2 2.8 256 5.1 220 3.5 115 2.2 255 5.3 220 3.5 115 2.3 3.3 2.8 255 5.3 220 3.5 115 2.2 2.8 2.8 255 5.3 220 3.5 115 2.2 2.8 2.8 255 5.3 220 3.5 12 2.0 3.5 12 2.4 2.5 2.4 240 5.7 220 3.5 115 2.2 2.8 2.2 230 4.8 235 (2.5) — E 2.3 230 4.8 235 (2.5) — E 2.3 235 4.2 230 (3.2) 115 2.0 2.3 235 3.6 4.2 229 2.9 235 3.6 2.7 2.3 2.9 235 3.6 2.2 3.0 (3.2) 12 2.0 2.5 235 3.6 2.2 3.0 (3.2) 13 2.0 2.3 235 3.6 3.6 2.3 2.9 235 3.6 3.6 2.3 2.9 235 3.6 3.6 2.3 2.3 235 3.6 3.6 2.3 2.3 235 3.6 3.6 2.3 2.3</td></td<></td>	h'F2 foF2 h'F1 foF1 h'E (\$00) 2.0 \$15 (2.0) \$315 (2.0) \$30 2.0 290 1.9 290 1.8 300 (1.7) 280 2.3 235 3.5 220 ——— 245 4.6 225 3.3 115 265 5.1 220 3.5 110 245 5.3 220 3.5 110 240 5.7 220 3.5 110 240 5.7 220 3.5 110 240 5.7 220 3.5 115 230 4.8 235 (3.2) 115 230 4.8 235 (3.5) 115 230 4.8 235 (3.5) —— 235 4.2 25 3.3 115 230 5.2 230 (3.2) 115 230 5.2 230 (3.2) 115 230 5.2 230 (3.2) 115 230 4.8 235 (3.5) —— 235 4.2 236 3.5 235 235 3.6 235 270 2.2	Sweden (59.8°E, 17.6°E) h'F2 foF2 h'F1 foF1 h'E foE (300) 2.0 3.15 (2.0) 2.0 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.0 2.2 2.2 2.0 2.2 2.2 2.5 2.2 2.0 2.2 2.2 2.5 3.3 11.5 2.2 2.5 2.2 2.5 3.5 11.5 2.3 1.5 2.2 2.5 3.5 11.5 2.3 2.2 2.5 3.5 11.0 2.4 <td< td=""><td>Swedon (59.8°E, 17.6°E) Oc h'F2 foF2 h'F1 foF1 h'E foE fEs (300) 2.0 2.3 31.5 (2.0) 2.3 31.0 2.0 2.7 290 1.9 2.6 300 (1.7) 2.9 260 2.3 —— £ 2.5 235 3.5 220 —— 1.5 2.4 245 4.6 225 3.3 115 2.2 2.8 256 5.1 220 3.5 115 2.2 255 5.3 220 3.5 115 2.3 3.3 2.8 255 5.3 220 3.5 115 2.2 2.8 2.8 255 5.3 220 3.5 115 2.2 2.8 2.8 255 5.3 220 3.5 12 2.0 3.5 12 2.4 2.5 2.4 240 5.7 220 3.5 115 2.2 2.8 2.2 230 4.8 235 (2.5) — E 2.3 230 4.8 235 (2.5) — E 2.3 235 4.2 230 (3.2) 115 2.0 2.3 235 3.6 4.2 229 2.9 235 3.6 2.7 2.3 2.9 235 3.6 2.2 3.0 (3.2) 12 2.0 2.5 235 3.6 2.2 3.0 (3.2) 13 2.0 2.3 235 3.6 3.6 2.3 2.9 235 3.6 3.6 2.3 2.9 235 3.6 3.6 2.3 2.3 235 3.6 3.6 2.3 2.3 235 3.6 3.6 2.3 2.3</td></td<>	Swedon (59.8°E, 17.6°E) Oc h'F2 foF2 h'F1 foF1 h'E foE fEs (300) 2.0 2.3 31.5 (2.0) 2.3 31.0 2.0 2.7 290 1.9 2.6 300 (1.7) 2.9 260 2.3 —— £ 2.5 235 3.5 220 —— 1.5 2.4 245 4.6 225 3.3 115 2.2 2.8 256 5.1 220 3.5 115 2.2 255 5.3 220 3.5 115 2.3 3.3 2.8 255 5.3 220 3.5 115 2.2 2.8 2.8 255 5.3 220 3.5 115 2.2 2.8 2.8 255 5.3 220 3.5 12 2.0 3.5 12 2.4 2.5 2.4 240 5.7 220 3.5 115 2.2 2.8 2.2 230 4.8 235 (2.5) — E 2.3 230 4.8 235 (2.5) — E 2.3 235 4.2 230 (3.2) 115 2.0 2.3 235 3.6 4.2 229 2.9 235 3.6 2.7 2.3 2.9 235 3.6 2.2 3.0 (3.2) 12 2.0 2.5 235 3.6 2.2 3.0 (3.2) 13 2.0 2.3 235 3.6 3.6 2.3 2.9 235 3.6 3.6 2.3 2.9 235 3.6 3.6 2.3 2.3 235 3.6 3.6 2.3 2.3 235 3.6 3.6 2.3 2.3

Time: 15.0° E. Sweep: 1.4 Ma to 17.0 Mc in 8 minutes, automatic operation.

Graz,	Austria	(47.1°N,	15.5°E)	Table	2.7		0с	tober 1953
Time	h*F2	foF2	h'Fl	foFl	h •E	foE	fEs	(M3000)F2
00	295	3.4						
01	300	3.3						
02	290	3.3						
03	270	3.3						
04	270	3.1						
05	230	2.9						
06	240	3.0						
07	200							
80	21.0		500	3.5				
09	210	5.9	200	3.8				
10	230	6.0	200	4.0			3.6	
11	240	6.8	200	4.0			3.6	
12	210	6.3	200	4.0			3.7	
13	230	6.2	500	3.9			3.6	
14	230	6.0	200	3.9				
15	220		215	3.5				
16	210	6.2						
17	200	5.5						
18	220							
19	230	4.5						
20	220							
21	250							
22	280	3.3						
23	280	3.2						

Time: 15.0°E. Sweep: 2.5 Mc to 12.0 Mc in 2 mimutee.

					Tabl	e 9			
White	Sande,	New	Mexico	(32.3°N,	106.5	w)		0c	tober 1953
Time	h t F	2	foF2	h'F1	foFl	h 'E	foE	fEs	(M3000)F2
00	28	0	3.4						3.1
01	28	0	3.4						3.1
02	27	0	3.5						3.1
03	26	0	3.5						3.1
04	26	0	3.4						3.0
05	27	0	3.4						3.0
06	25	0	3.7						3.2
07	24	0	5.2	230	_	120	1.9		3.5
08	25	0	5.8	250	3.8	110	2.4	3.0	3.4
09	26	0	6.0	210	4.1	110	2.6	2.9	3.4
10	28	0	6.0	200	4.3	110	2.8	2.9	3.3
11	28	0	6.2	210	4.2	110	3.0	2.8	3.2
12	29	0	6.8	210	4.3	110	3.1	3.0	3,3
13	28	0	6.7	250	4.2	110	3.1	3.2	3.2
14	29	0	6.7	220	4.2	110	3.0		3.2
15	27	0	5.6	230	4.0	110	2.8	2.3	3.3
16	25	0	6.4	230		110	2.4	2.5	3.4
17	23	0	6.3					2.4	3.5
18	22	0	5.4						3.5
19	23		3.8						3.4
20	26	0	3.0						3.2
21	28		3.1						3.1
22	30		3.3						3.0
23	28	0	3.3						3.0

Time: 105.0°W. Sweep: 1.0 Mg to 25.0 Mg in 15 eeconde.

Maui. H	S) liawal	0.8°N, 15	6.5°W)	Table 1	11		Octo	ber 1953
Time	P. LS	foF2	h'F1	foF1	h · E	foE	fEe	(M3000)F2
00	260	3.5					2,3	3.2
01	240	3.4					2,2	3.5
02	240	3.0					2.2	3.3
03	230	2.4					1.8	3.4
04	260	2.2					1.9	3.2
05	300	2.0					1.5	3.0
06	290	2.4					1.7	2.9
07	250	5.4	240		130	1.9	2.8	3.4
08	270	6.9	230		120	2.5	4.8	3.3
09	290	7.4	220	(4.3)	120	2.8	4.8	3.1
10	310	8.5	210	4.5	120	3.1	5.3	3.0
11	300	9.6	210	4.6	120	3.2	5.2	3.0
12	200	9.9	210	4.6	110	3.3	4.9	3.0
13	300	11.1	210	4.5	110	3.3	5.6	3.0
14	290	11.4	220	4.4	110	3.1	5.3	3.1
15	270	11.6	230	4.3	110	3.0	5.7	3.3
16	250	9.9	240	4.1	120	2.6	4.0	3.4
17	230	8.1	240		(120)	2.1	4.0	3.5
18	220	6.2					4.0	3.5
19	230	4.5					4.0	3.4
50	250	3.6					3.2	3.2
21	290	3.3					3.3	2.9
22	300	3.3					2.8	2.9
23	280	3.3					2.4	3.1

Time: 150.00W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

00 (250) (3.1) (5.1) 01 (250) (3.2) (5.1) 02 (260) (3.1) (3.1) 03 (260) (3.2) (5.1) 04 (280) (3.2) (5.1) 05 (280) (3.3) 06 (280) (3.3) 07 (240) (6.2) (230) (120) (1.9) (3.8) (3.2) 09 (250) (5.7) (210) (3.8) 110 (2.4) (3.8) (3.5) 09 (250) (6.2) (3.6) (4.0) 100 (2.6) (4.2) (3.4) 10 (280) (6.1) 200 (4.1) 110 (2.8) (4.0) (3.3)						Table	<u>8</u>			
00 (250) (3.1) (5.1) 01 (250) (3.2) (5.1) 02 (260) (3.2) (5.1) 03 (260) (3.2) (5.1) 04 (280) (3.3) (5.1) 05 (250) (3.3) 06 (250) (3.6) 07 (240) (6.2) (230) (120) (1.9) (3.8) (2.5) 09 (250) (3.6) (3.6) (3.6) 09 (250) (3.6) (3.6) (3.6) (3.6) (3.2) 09 (250) (3.6) (3.6) (3.6) (3.6) (3.2) 09 (250) (3.6) (3	San Fr	ancieco,	n Francieco	Californ	ia (37.4	°N, 122.	SoA)		0	ctober 1953
01 (250) (3.2) (3.1) 02 (260) (3.1) (3.1) 03 (260) (3.2) (3.1) 04 (250) (3.3) 05 (250) (3.3) 06 (250) (3.6) 07 (240) (5.2) (230) (120) (1.9) (3.8) (3.2) 08 (240) (5.2) (230) (120) (1.9) (3.8) (2.5) 09 (250) (3.6) (3.6) (3.6) (3.6) (3.6) 09 (250) (6.1) (3.6) (1.0) (2.6) (4.2) (3.8) 10 (280) (6.1) (200) (4.1) (110) (2.8) (4.0) (3.3)	Time	h*F2	me h'F2	foF2	h'Fl	foFl	hºE	foE	ſEs	(M3000)F2
12 290 6.4 200 (4.2) 100 (3.1) 4.0 3.2 13 280 6.4 210 (4.1) 100 (3.1) 4.0 3.2 14 280 6.2 220 (4.1) 100 (3.0) 3.7 3.3 15 270 6.0 230 110 2.7 3.4 3.5 16 240 5.8 230 110 (2.2) 2.8 3.5 17 220 5.6 3.1 3.6 18 220 4.4 2.9 2.5 19 (220) 3.4 2.5 20 (240) 2.9 2.4 3.3 21 (250) (2.8) 2.6 (3.1) 22 (250) (3.0) 2.2 2.2 3.2 23 (250) (3.2)	00 01 02 03 04 05 06 07 09 10 11 12 13 14 15 16 17 18	(250) (260) (260) (260) (260) (260) (250) 250 240 240 250 280 280 280 280 280 280 (260) (260) (250) (260) (250) (260) (250) (250)	10 (250 (2	(3.1) (3.2) (3.3) (3.3) (3.3) (3.3) (5.2) 5.7 6.0 6.1 6.4 6.2 6.0 5.6 4.4 2.9 (2.8) (3.0)	230 210 210 200 190 200 210 220 230	(3.6) (4.0) (4.1) (4.1) (4.2) (4.1) (4.1)	(120) 110 100 110 100 100 100 100	(1.9) (2.4) (2.6) (2.8) (3.0) (3.1) (3.1) (3.0) 2.7	2.6 3.4 3.8 3.8 4.2 4.0 5.0 4.0 3.7 4.0 3.7 2.8 3.1 2.5 2.4 2.6 2.6 2.6 2.6 2.6	(3.1) (3.1) (3.1) (3.1) (3.2)

Time: 120.0° W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	10			
Ok inaw	e I. (26.	3°N, 127	.8°E)				00	tober 1953
Time	h'F2	foF2	h'Fl	foFl	h ª E	foE	fEs	(M3000)F2
00	300	3.5						3.0
01	270	3, 6						3.2
02	250	3.5						3.2
03	240	3.4						3.5
04	240	3.2						3.4
05	240	3.0						(3.4)
06	230	3.9				(2.0)		3.5
07	230	6.1	***************************************		120	(2.0)	3.1	3.6
08	240	6.8	220		110	2.7	4.2	3.6
09	260	7.5	220	4.3	110	2.9	4.8	3.3
10	260	8.8	210	4.4	110	3.1	4.7	3.4
11	270	8.8	200	4.4	110	3.2	4.6	3.3
12	280	9.9	200	4.5	110	(3.2)	4.4	3.2
13	280	10.8	200	4.5	110	3.1	4.4	3.3
14	260	11.3	220	4.4	110	3.0	4.7	3.8
15	240	11.0	230	4.2	110	2.9	4.0	3.5
16	240	8.9	230		110	2.4	4.0	3.5
17	230	8.1			110	(1.9)	4.0	3.6
18	210	6.6					3.8	3.6
19	220	5.2					3.2	3.4
50	240	4.2					2.7	3.2
21	260	3.8					3.0	(3.2)
22	270	3.6					1.9	3.0
23	300	3.3						3,0

23 300 3.3 Time: 127.5°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Puerto	Rico, W.	1. (18.5	on, 67.2	W)			00	tober 1953
Time	P1ES	foF2	h1171	foF1	h * E	foB	fBs	(M2000)F2
00	280	3.5						2.9
01	260	3.7						3,1
02	240	3.8						3.3
03	220	3.8						3.5
04	230	3.1						3.3
05	250	2.8						3.1
06	250	2.8						3.1
07	220	5.0	****		120	1.9		3.6
08	240	5.8	230		110	2.5		3.5
09	270	6.3	210	4.3	110	2.8		3.4
10	280	7.1	210	4.4	110	3.1		3.3
11	280	7.8	220	4.4	110	3.2		3, 3
12	280	7.9	220	4.5	110	3.3		3.3
13	280	8.4	220	4.4	110	3.2		3.3
14	260	8.8	220	4.3	110	3.1		3.3
15	250	8.6	220	4.2	110	3.0	4.5	3.4
16	240	7.8	220	-u-may-	110	2.7	4.3	3.5
17	230	7.0	2,20		110	2.1	4.0	3.5
18	220	6.C					3.3	3.5
19	220	4.5					3.1	3,3
20	240	3.9					2.4	3.2
21.	260	3.4					2.8	3.0
22	280	3.5					2,3	3.0
23	270	3.6						3.0

23 270 3.6 Time: 60.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconde.

				Table	13			
Cuam I.	(13.5°N,	144.9	E)				00	tober 1953
Time	h'F2	foF2	h*Fl	foFl	h *E	foE	fEs	(M3000)F2
00	260	6.0						3.2
01	260	5.8						3.3
02	240	5.8						3.4
03	230	5.0						3.5
04	240	3.5						3.5
05	260	3.1						3.4
06	260	3.0						3.3
07	240	5.2	230					3.6
08	(260)	7.4	220		110	2.6	3.4	3.3
09	S80	8.7	210		110	2.9	4.0	3.0
10	310	9.1	210	4.4	110	3.1	4.1	2.6
11	320	8.8	200		110	(3.2)	3.8	2.5
12	330	8.4	200	4.5	110	3.3	4.0	2.5
13	320	8.5	200	4.4	(110)	(3.2)	4.4	2.6
14	300	9.3	220	4.4	110	3.2	4.2	2.8
15	290	20.2	220		110	3.0	4.9	3.0
16	270	10.8	220		110	2.7	4.0	3.2
17	250	10.6	230				3.9	3.3
18	240	10.6					3.5	3.3
19	240	9.9					3.2	3.3
20	230	9.0						3.3
21	220	7.6						3.3
22	250	6.6						3.2
23	260	5.0						3.2

Time: 150.0°F. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Esende	o, Peru	October 1953						
Time	h*F2	foF2	h'Fl	foFl	h *E	foE	fEs	(M3000)F2
00	2/0	6.7						3.0
OI.	260	6.2						3.2
02	250	4.8						3.3
03	250	4.0						3.4
04	250	3.0						3.4
05	240	2.4						3.4
06	240	5.1			130	1.6	3.6	3.4
97	(270)	7.2	220		110	2.4	5.8	3.3
68	290	8.2	21.0	4.2	110	2.9	10.4	3.0
09	320	8.7	200	4.3	110		11.9	2.6
10	350	7.9	200	4.5	110		11.9	2.6
2.3.	350	7.6	200	4,8	110		12.8	2.6
12	350	7.8	200	4.5	110		12.2	2.6
13	240	8.0	190	4.4	110		12.0	2.6
14	330	8.2	200	4.4	110		11.3	2.7
1.6	200	8.6	190	4.2	110		10.2	2.6
15	280	9.0	200		110	-	9.1	2.7
17	250	9.0	240	1011011	110	2.2	5.8	2.8
18	250	9.2						2.9
19	270	8.8						2.9
20	260	8.4						3.0
21	250	8.2						3.0
22	240	8.1						3.0
23	270	7.4						3.0

Time: 78.0°%. 8waeg: 1.0 Mz to 25.0 Ms in 15 esconde.

Lulec.,	Sweden (55.6°N,	22.1°E)	Table 1	17	September 1953		
Timo	h172	foF2	h'T1	foF1	<u>h</u> ! E	foE	fEs	(M3000)F2
00	(340)	2.0					2.8	
02	(340)	(2.0)					2.4	
04 05	(310)	(2.1)						
06 07	250	3.5	240	2.6	120	1.8	2.0	
08	290	4.2	225	3.5	115	2.4	2.4	
10 11	320	4.6	210	3.9	110	2.5	2.7	
12	310	4, 8	210	3.9	110	2.7		
14	300	4.7	550	3.7	110	2.6		
16 17	250	4.3	230	3.3	125	2.2		
18	250	3.8					1.9	
20	270	3.0						
22	305	2.2					2.7	

23 | Timo; 16.0°E. Sweep: 1.5 Mc to 10.0 Mc in 6 minutes, automatic operation.

				Table	14			
Panana	Canal Zo	no (9.4°	h. 79.9°	Y)			00	tober 1953
Time	P:25	foF2	h†Fl	foFl	h 'E	foE	fEs	(M3000)F2
00	250	3.4						3.4
01	240	3.4						3.4
OS	220	2.9						3.5
03	220	2.4					2.2	3.3
04	250	2.2					1.8	3.2
05	270	2.3					3.8	3.0
06	260	3.0					3.6	3.1
07	240	5.4			120	(2.1)	4.2	3.4
80	280	5.6	230	(4.2)	110	2.7	4.0	3.3
09	500	7.8	220	4.4	110	3.0	4.3	3.1
10	300	8.9	2.20.	4.5	110	3.2	4.2	3.1
11	300	9.8	220	4.5	110	5.3	4.8	3.1
12	300	10.4	220	4.5	110	3.4	4.5	3.1
13	280	10.5	220	4.5	110	3.4	4.8	3.2
14	280	10.8	220	4.4	110	3.2	4.7	3.2
15	270	10.4	220	4.3	110	3.0	5.2	3.2
16	260	9.8	220	(4.1)	110	2.7	4.6	3.3
17	240	9.2	230	-	11.0	2.1	4.6	3.4
18	230	7.2					4.2	3.4
19	230	5.3					4.0	3.3
20	220	4.4					2.5	3.4
21,	240	3.5					2.2	3.3
22	270	3.1					2.0	3.0
23	300	3.1						2.9

23 | 300 3.1 Time: 75.0°W. Sweep: 1.0 Me to 25.0 Me in 15 seconds.

				Table 1	6			
Kiruna,	Sweden	(67.8°M,	20.5°E)				Septer	nber 1953
Time	h'F2	foF2	h'F1	foFl	h'E	70E	fEc	(M3000)F2
00	370	(2.5)					4.0	(2.8)
01	340	(2.7)					4.0	(3.0)
02	345	(2.7),					3.1	(3.0)
03	320	(2.2)					3.2	(3.2)
04	275	(2.5)					2.1	(3.2)
05	280	3.0						3.1
06	255	3.6						3.1
07	290	4.0		3.3	130	2.1		3.2
08	310	4.2	245	3.7	120	2.3		3.2
09	330	4.3	230	3.8	115	2.6		3.2
10	340	4.7	210	3.8	110	2.8		3.1
11	31.0	5.0	230	3.9	110	2.9		3.2
12	31.0	4.7	230	3.8	110	2.9		3.2
13	300	4.8	220	3.8	110	2.8		3.2
14	305	4.7	230	3.7	115	2.7		3.2
15	280	4.3	230	3.6	120	2.4		3.2
15	270	4.1	240	3.2	130	2.2		3.2
17	255	4.0				2.0		3.2
18	255	3.9		4000000		all related to	2.1	3.1
19	270	3.9					2.6	3.1
20	280	3.8					3.8	3.0
21	300	3.3					4.0	3.1
22	300	3.4					3.9	2.9
23	340	2 9					4.1	3.0

23 340 2.9 Time: 15.0°E. Sweep: 0.8 Me to 15.0 Me in 30 ecconds.

DeBilt	, Holland	(52.1°)	7, 5.2 ⁰ E)		ole 18		Sept	ember 1953
Time	h*F2	foF2	n'Fl	foFl	h 'E	foE	fEs	(M3000)F2
CO	270	3.0					2.0	3.1
01	< 230	2.7					2.0	5.1
02	275	2.4						3.1
03	< 280	2.2						3.1
04	< 280	2.1					2.0	3.1
0.5	260	2.4				3	2.1	3.3
06	230	3.5	210	2.9	110	1.9		3.5
07	290	4.1	23.0	3.4	105	2.2	2.2	3.4
08	280	4.6	200	3.7	100	2.5		3.4
09	300	4.8	200	3.9	100	2.7		3.4
10	300	5.1	200	4.0	100	2.9	3.0	3.4
11	300	5.2	200	4.1	100	3.0		3.5
12	295	5.3	200	4.1	100	3.0		3.5
13	280	5.1	200	4.1	100	2.9	2.1	5.5
14	275	5.4	200	4.0	100	2.8	2.0	3.6
15	290	5.0	205	3.9	100	2.6	2.2	3.5
16	270	5.1	21.5	3.2	105	2.3	2.5	3.4
17	240	5.4	330		120	1.9	2.4	3.4
18	225	5.9				3	2.1	3.4
19	225	5.5					2.5	3.3
20	220	4.9						3.4
21	220	3.9						3.2
22	245	3.4						3.8
23	270	3.0						3.1

Time: 0.0°.
Sweep: 1.4 No to 11.2 No in 6 minutes.

Graz,	_nstria	(47.1°H,	15.5°E)	Table	19		S	sptember 1953
Time	h°F2	foF2	h 'Fl	foFl	h *E	foE	fEs	(M3000)F2
00	300							
01	300	3.4						
02	300	3.1						
03	300	3.1						
04	300	2.9						
05	270	2.7						
06	250	3.5						
07	260	4.2	220	3.5				
08	250	4.9	200	3.7				
0.9	270	5.4	200	3.9		2.9	3.5	
10	270	5.3	200	4.0		3.1	3.8	
11	280	5.7	200	4.1		3.2	3.4	
12	280	5.2	200	4.2		3.3	3.1	
13	260	5.4	200	4.2		3.3		
14	270	5.2	500	3.9		3.1		
15	250	5.2	200	3.8				
16	230	5.1	220	3.7				
17	240	5.2						
18	240	5.5						
19	250							
20	240	5.1						
21	250							
23	265							
23	290							

Time: 15.0°E. Sweep: 2.5 Me to 12.0 Mg in 2 minutes.

Formos	a, Chine	(25.0°a,	121.5°E	Table	21		Sept	ember 1953
Time	h*F2	foF2	h'Fl	foFl	h*E	foE	fEs	(M3000)F2
00	280	4.2					2.6	2.9
01	280	4.0					2.5	3.0
0.2	240	3.5					2.3	3.1
03	230	3.2					2.2	3.4
04	250	2.6					3.0	2.8
05	280	3.8					2.2	(2.8)
08	340	4.7			-	*Arrapes	2.4	3.4
07	230	6.5	230	-	110	2.2	3.7	3.7
08	240	6.2	220	4.0	105	2.6	4.4	3.4
0.9	270	6.7	270	4.4	100	3.0	4.5	3.4
10	290	7.1	210	4.6		NUMBER OF	4.6	3.2
11	320	8.8	200	4.6			4.7	3.1
12	250	10.3	300	4.6	*******	*****	4.3	3.0
13	330	>11,4	210	4.5			4.3	3.2
14	20,0	10.8	215	4.5		******	3.9	3.2
15	200	10.8	240	4.4	120	(2,1)	4.3	3.3
16	280	>11.5	240	4.0	110	2.7	4.5	3.3
17	260	> 11.2	240	3.7	танрыр	*****	4.2	3.5
18	330	11.3			*****	and the	3.7	3.5
19	210	8.6					3.3	3.6
20	210	5.6					3.2	3.5
20	280	4.7					3.1	3.1
22	280	4.6					3.8	3.0
23	300	4.3					2.4	3.0

Time: 123.0 E. Sweep: 1.1 He to 19.5 He in 15 minutes, mammal operation.

Huancayo, Peru (12.0 S, 75.3°W) Table 23 September 195									
Time	h'F2	foF2	h Fl	foFl	h†E	foE	fEs	(M3000)F2	
00	220	5,8						3.3	
01	230	6.1						3.3	
02	240	4.9						3,2	
03	250	4.4						3.3	
04	270	3.6						3.2	
05	270	2.8						3.3	
06	260	3.7			130	1.3	2.2	3,1	
07	(280)	6.4	230		110	2.3	6.3	3.2	
08	300	7.5	220	4.1	110	2.7	11.2	2.9	
09	340	7.6	200	4.3	100		12.1	2,7	
10	369	7.1	200	4.4	100		13.0	2.5	
11	380	6.8	200	4.4	100		13.0	2,5	
12	380	6.8	190	4.5	100		13.0	2.5	
13	370	7.3	190	4.4	100		12.8	2.6	
14	340	7.5	190	4.4	100		12.0	2,6	
1,5	320	7.8	190	4.3	110	_	10.8	2.6	
16	(290)	8.0	190		110		9.5	2.5	
17	240	8.2	230		110	2.2	5.7	2.8	
18	260	8.5			110			2.9	
19	280	8.2						2.8	
50	270	7.8						3.0	
SJ	240	7.4						3.2	
22	530	7.4						3.3	
23	220	7.3						3.3	

Time: 75.0°W.
Sweep: 1.0 No to 25.0 No in 15 seconds.

					10 20			
Solwar	zənburg,	Switzerl	and (46.	6° F. 7.2	CE)		Sept	omber 1953
Time	h†F2	foF2	h†Fl	foFl	h*E	foE	fEs	(M3000)F2
00	290	3.2						3.2
01	300	3.3						3.2
03	300	3.1						3.2
03	300	3.0						3.2
04	200	2.8						3.3
08	290	2.8						3.3
05	240	2.9						3.6
07	200	3.8			100	2.0		3,7
08	200	4.4	200	3.5	100	2.3		3.8
09	300	4.8	200	3.9	100	2.6		3.6
10	290	8.8	200	4.0	100	2.8		3.6
11	300	5.5	200	4.0	100	3.0		3.6
12	290	5.5	200	4.1	100	3.0		3.6
13	300	5.4	200	4.1	100	3.0		3.5
14	200	8.2	200	4.0	100	3.0		2.5
15	290	5.3	200	4.0	100	2.8		3.8
16	260	5.2	200	3.9	100	2.6		3.6
17	23.0	5.0	mpridage.	-	100	2.3		3,6
18	220	5.2	-					3.5
19	20.0	5.8						3.6
20	23.0	5.6						3.6
21	210	4.9						3.5
22	230	4.0						3.4
23	250	3.5						7.7

23 250 3.5
Time: 15.0°E.
Sweep: 1.0 Ma to 25.0 Ma in 30 seconds.

				Tabl	e 22			
Leopolo	iville, B	elgian C	ongo (4.	3ºS, 15.	zoE)		Septe	mber 1953
Time	h:F2	foF2	h:Fl	foFl	h ºE	foE	fEs	(MS000)F2
00	225	4.8						2.1
01	250	3.6					1.8	1.9
02	260	3.1					2.0	2.1
03	245	2.9					1.9	2.3
04	240	2.5					2.0	2.4
05	240	4.5				-	2.7	2.4
06	250	5.3	235		1.25	2.4	3.5	2.5
07	270	7.0	225	(4.2)	120	2.9	4.0	2.3
08	290	7.8	220	4.4	120	3.2	4.1	2.2
09	300	8.4	210	4.5	115	3.4	4.4	2.1
10	320	9.0	200	4.5	115	3.4	4.6	1.9
11	320	9.4	200	4.5	115	3.5	4.1	2.0
12	320	10.0	200	4.5	115	3.5	3.6	1.9
13	320	9.5	200	4.4	115	3.3	3.9	1.9
14	340	9.6	230	4.4	120	3.0	4.0	1.8
15	325	9.7	250	(4.2)	120	2.7	3,6	1.9
16	280	10.0	250		120	2.1	3.0	2.0
17	260	10.2					3,1	2.0
18	245	10.9					3.0	2.2
19	225	10.4					3.0	2.2
20	210	8,9					2.4	2.5
21	210	7.0						2.4
22	210	6.0						2.2
23	220	5.3						2.1

23 | 220 5.3 Time: 0.0°. Sweep: 1.0 Ms to 15.0 Mc in 7 seconds.

Buenos	Aires,	Argentina	(34.5°S,	58.5°W)		Sopt	ember 1953
Time	h*F2	foF2	h:Fl	foFl	h *E	foE	fEs	(M3000)F2
00	320	3.4						2.7
01	300	3,5						2.8
02	290	3.6						3.0
03	240	3.5						3.3
04	250	2.6						3.2
05	270	2,6						3.0
06	240	3, 9	****		150	1.9		3.3
07	240	5.2	220		130	2.4	2.7	3.4
08	260	5,8	220	3.4	110	2.8	3.2	3.3
09	290	6.0	230	(3.8)	110	2.9	3.6	3.2
10	290	7.2	210	4.3	110	3.1	3.9	3.2
11	200	8.0	200	4.3	100	3.1	4.2	3.1
12	290	10.0	200	4.2	110	3.1	4.0	3.2
13	270	9.5	200	4.2	100	3.1	3.9	3.3
14	260	8.5	200	4.0	110	3.1	3.4	3,3
15	260	8.4	220		110	3.0	3.5	3.3
16	240	7.5	230		History	-	2.7	3.4
1.7	230	7.0	230					3.4
18	220	6.2						3.5
19	230	4.5						3.2
20	260	3.9						2.9
21	270	3.6						2.9
22	300	3.6						2.8
23	330	3.5						2.8

Time: 60.0°W. Sweep: 1.0 Mg to 25.0 Mg in 30 seconds.

Decepe	ion I. (6	3.0°S, 6	Table	25		Sep	tember 1953	
Time	h*F2	foF2	h'F1	foF1	h *E	foE	fEs	(M3000)F2
00	310	3.0						3.0
01	31.0	3.0						3.0
02	31.0	3.0						3.0
03	31.0	2.9						3.0
04	300	3.0						3.0
0.5	300	2.9						3.1
06	240	3.6						3.4
07	220	4.2						3.5
08	220	4.5					2.5	(3.7)
09								
10	220	5.6					2.8	(3.7)
11	220	5.8					3.0	(3.6)
12								
13	220	5.8					2.8	(3.6)
14	220	5.4					3.0	(3.6)
15	220	5.2					2.0	3.6
16	220	5.0					2.0	(3.8)
17	220	4.8						3.6
18	220	4.6						3.5
19	240	4.4						3.4
20	260	4.2						3.2
21	280	3.7						3.2
22	300	3.2						3.1
23	300	3.1						3.0

Time: 60.0°%. Sweep: 1.5 Mo to 16.0 Mo in 15 minutes, manual operation.

Lulea,	Sweden	(65.6°N,	22.1°E)	Table	37		A	ngust 1953
Time	P.ES	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
00 01	300	2.4					2.9	
02	(290)	(2.5)					3.3	
04	(250)	3.0					1.9	
06	255	3.5	210	2.8	115	2.3	2.4	
08	400	4.3	210	3.7	105	2.7	2.2	
10	365	4.5	210	4.0	105	2.8	3.1	
12	360	4.6	205	4.0	105	3.0	2.6	
14	(350)	(4.5)	210	4.0	110	2.8		
16	340	4.4	220	3.6	110	2.6	2.8	
18	285	4.0	240	3.0	120	2.1	2.6	
20	270	3.0					1.8	
22	(270)	(8.8)					2.5	

Time: $15.0^{\circ}R$. Sweep: 1.5 Mc to 10.0 Mc in 6 minutes, automatic operation.

Graz,	Austria	(47.1°E,	15.5°2)	Tabl	e 29		A	ngust 1953
Time	h*F2	foF2	h'Fl	foFl	h *E	foE	fEs	(M3000)F2
00	300	3.5						
01	300	3.2						
02	300	3.0						
03	300	2.9						
04	300	2.9						
05	295	3.2						
06	240	3.8					3.4	
07	280	4.3	220	3.7			4.3	
80	300		200	3.9			4.0	
09	300		500	4.0			4.2	
10	300	5.2	200	4.0			4.8	
11	300	5.1	200	4.2			4.0	
12	300	5.0	190	4.2			3.6	
13	31.0		200	4.3			4.0	
14	300		200	4.1			3.8	
15	300		200	4.0			3.6	
16	305		210	4.0			3.7	
17	290		220	3.8			4.0	
18	280		250	3.4			4.0	
19	250						3.8	
20	240						4.0	
21	245						4.0	
55	250							
23	245	4.1						

Time: 15.0°E.
Sweep: 2.5 Mo to 12.0 Mo in 2 mirmtes.

				Table	26			
Kiruna,	Sweden	(67.8°N,	20.5°E)					ingust 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEe	(M3000)F2
00	275	3.5					3.7	3.1
01	285	3.6					3.8	3.0
02	305	3.4					3.0	3.0
03	285	3.4					2.8	2.8
04	3 05	3.5		2.9	-		2.1	2.9
05	440	3.8	240	3.2	115	2.0		2.8
06	425	4.0	230	3.7	120	2.3		2.8
07	460	4.2	220	3.8	115	2.6		2.7
08	440	4.4	210	3.9	110	2.8		2.9
08	400	4.7	220	4.0	110	2.9		2.9
10	380	4.9	210	4.0	110	3.0		2.9
11	375	4.9	210	4.0	110	3.0		3.0
12	390	4.8	210	4.1	105	3.0		2.8
13	390	4.7	210	4.0	110	3.0		2.9
14	395	4.7	210	4.0	110	3.0		3.0
15	435	4.4	230	3.9	110	2.8		3.0
16	370	4.5	230	3.8	115	2.6		3.0
17	320	4.4	240	3.7	1.20	2.3		3.0
18	300	4.2	250	3.5	130	2.1	2.1	3.0
19	260	4.1			130	2.0	3.2	3.1
20	25 5	4.2					4.3	3.1
21	275	3.9					4.2	3.1
22	(260)	4.0					4.2	3.1
23	280	3.8					4.1	3.1

Time: 15.0°E.
Sweep: 0.8 Mc to 15.0 Mc in 30 seconds.

					ble 28			
Linday	Hars, Ge	rmany (5	1.6°N, 1	0.1°B)				August 1953
Time	h*F2	foF2	h'Fl	foFl	h*E	foE	fEs	(M3000)F2
QO .	260	3.2					2.4	3.1
01:	260	2.9					2.4	3.1
02	265	2.8					2.5	3.0
03	280	2.4					2.5	3.1
04	270	2.4				E	2.8	3.1
05	280	3.0					3.0	3.2
96	280	3.7	230	3.2	120	1.8	3.2	3.3
07	370	4.2	220	3.5	110	2.2	3.4	3.1
08	360	4.3	210	3.8	105	2.5	3.7	3.1
09	365	4.7	205	3.9	100	2.8	4.2	3.1
10	355	4.7	205	4.1	100	2.9	4.3	3.2
11	350	4.7	200	4.2	100	2.9	4.4	3.1
12	350	4.9	200	4.2	100	2.9	4.4	3.2
13	380	4.7	200	4.2	100	3.0	4.3	3.0
14	335	4.9	200	4.2	100	3.0	4.3	8.2
15	350	4.8	205	4.1	100	2.8	4.2	3.2
16	350	4.6	215	3.9	100	2.8	3.6	3.2
17	345	4.6	225	3.7	110	2.5	3.8	3.1
18	305	4.7	225	3,5	115	2.1	3.9	3.2
19	265	5.0	230			D .	3.6	3.2
20	250	5.4					3.5	3.2
21	340	5.2					3.2	3.2
23	240	4.8					2.9	3,3
23	250	3.8					3.1	3.2

Time: 15.0°E. Sweep: 1.0 No ta 16.0 No in 8 minutes.

Formosa, China (25.0°N, 121.5°E) Table 30 August 1953									
TO LING SE	, Unina	(25.0 N,	151.0 E)					August 1953	
Time	h F2	foF2	h'Fl	foFl	h*E	foE	fEs	(M3000)F2	
00	300	3.9					3.4	2.8	
01	280	3.9					3.2	3.0	
02	280	3.7					2.9	(2.9)	
03	260	3.2					3.0	3.1	
04	270	3.2					2.7	3.1	
05	260	3.2					3.2	3.2	
06	240	4.5			-		3.3	3.3	
07	240	5.8	220	3.6	110	2.3	3.8	3.6	
08	280	5.6	220	4.1	105	2.7	5.6	3.2	
09	310	5.6	210	4.3	110	3.0	5.4	3.2	
10	340	5.5	210	4.5			6.2	3.0	
11	400	6.2	220	4.4	-		5.3	2.8	
12	360	7.4	230	4.6			5.6	2.8	
13	360	7.4	220	4.5	120		5.6	2.8	
14	390	7.7	230	4.4			5.7	2.8	
15	360	8.3	240	4.4			5.5	2.9	
16	320	8.8	220	4.1			4.8	3.1	
17	290	9.0	240	3.9		-	4.6	3.2	
18	250	8.6					4.5	3.3	
19	220	8.6					4.3	3.6	
20	240	5.7					4.2	3.2	
21	240	4.6					3.3	3.2	
SS	280	4.1					3.4	2.9	
23	320	3.9					3.4	2.9	

Time: 120.0°E.
Sweep: 1.1 Mc to 19.5 Mc in 15 minutee, manual operation.

Baguio	. P.I. (16.4°N, 1	20.6°E)	Table	31			2.8 2.7 (2.8) 1.6 (3.0) 1.6 (3.1) 1.6 (3.4) 2.0 3.4 2.6 3.4 5.0 3.3			
Time	h'F2	foF2	h'Fl	foFl	h¹Ε	foE	fEs	(M3000)F2			
00	250	3.8						2.8			
01	800	(3.€)					2.7	(2.8)			
02	270	3.3					1.6	3.0			
03	250	(3.2)					1.6	(3.1)			
04	250	(2.7)					1.6	(3.4)			
05	240	2.7					2.0	3.4			
06	240	4.1					2.6	3.4			
07	220	5.5			110	-	5.0	3.3			
08	200	6.1	210		110	2.7	6.0	3.1			
0.9	250	6.8	200	4.1	110	3.1	5.6	2.9			
10	380	7.4	200	4.2	110	3.2	5.6	2.6			
33	330	8.1	200	4.3	110	3.3	5.6	2.8			
12	390	8.4	210	4.3	110	3.4	5.4	2.6			
13	390	8.4	200	4.2	110	3.4	5.4	2.6			
14	290	9.0	500	4.2	110	3.2	5.8	2.7			
15	830	9.1	210	4.1	110	3.0	5.6	2.8			
16	350	9.6	210		110	(2.7)	5.4	2.8			
17	200	(10.2)	220	-		-	5.2	(3.0)			
18	250	(10.4)					5.0	(3.1)			
19	220	8.8					4.6	3.2			
20	220	7.1					4.0	3.1			
20_	250	5.8					3.1	3.0			
33	280	5.1					3,6	2,9			
23	300	4.2					2.2	2.8			

Time: 120.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Tabl	e 33			
Wather	00, W.	Anstralia	(30.3°s,	115.90	2)		A	ugust 1953
Time	h F	foF2	h'Fl	foFl	h⁺E	foE	fEs	(M3000)F2
00	250	3.1						3.0
01	260	3.2					2.0	3. 0
02	250	3.2					2.4	3.0
03	250	3.3					2.4	3.0
04	260	3.3					2.3	3.1
05	250	3.0					2.2	3.2
08	250	2.7					2.1	3.1
07	250	3.6	210			2.7		3.3
80	250	4.8	250	3.4		2.2		3.4
09	280	6.2	240	3.8		2.6		3.4
10	300	5.4	240	4.2		2.9		3.3
11	300	5.6	230	4.2		3.1		3.4
13	290	5.8	220	4.3		3.0		3.3
13	300	5.7	230	4.2		3.1	3.4	3.2
14	300	5.8	220	4.1		3.1	3.4	3.2
15	290	5.8	220	4.0		2.8	3.0	3.3
16	260	5.5	230	3.6		2.5	2.8	3.4
17	250	5.1	230	2.9		2.0		3.3
18	240	4.1				1.4	1.8	3.3
19	240	3.8					2.4	3.3
20	240	3.1					2.0	3.1
21	250	3.1						3.0
22	260							3.0
23	250	3.2					1.8	3.1

Time: 120.0°E.
Swoop: 1.0 Ms to 16.0 Ms in 2 minutee.

				Table 3	15			
Godhavn,	Greezla	nd (69.2	°N, 53.5	(%°				July 1953
Time	h'F2	foF2	h'Fl	foF1	h1E	foE	fBs	(M3000)F2
00	260	(3.4)	240				1.8	3,2
01	260	(3.4)	230			-	1.7	(3.2)
02	(280)	(3.3)	230				37	(3.2)
03		(2.3)	(220)				1.8	(3.3)
04	(400)	(3.3)	(220)	(2.8)		(1.8)	3.4	(3.2)
05	CC+40+40	(3.6)	°(210)	(3.0)	(110)	(1.8)	3.3	(3.3)
06	G-	(3.4)	(200)	(3.2)	110	2.1	2.6	(3.3)
07	G	< 3.5	(200)	(3.4)	100	2.3	3.6	G-
08	40-4400		(200)	(3.4)	100	(2.5)	3.3	
09			(210)	(3.6)	(100)	2.6	3.8	
10	(400)	(4.4)	(210)	(3.8)	100	2.7	3.2	(2.9)
33	(380)	(4.5)	21.0	(3.8)	(100)	(8.8)	3.6	(3.0)
12	(400)	(4.5)	21.0	(3.9)	100	2.8		(2.9)
13	(420)	(4.4)	(210)	(3.9)	100	2.8	6.3	(2.7)
14	350	4.5	(210)	3.8	(100)	2.8	6.2	3.0
15	(400)	(4.3)	210	3.8	100	2.7	8.7	(2.8)
16	(390)	(4.2)	210	(3.7)	100	2.6	5.8	(3.0)
17	(420)	(4.2)	210	(3.6)	100	(2.5)	6.1	(2.8)
18	(380)	(4.1)	550	3.5	100	2.4	4.8	3.0
19	340	(4.0)	220	3.4		(2.2)	5.0	3.2
20		(3.8)	220	-	-		5.4	(3.2)
21		(8.7)	230	-	***		4.8	3.3
22	(270)	(3.5)	230			(1.7)	3.0	3.3
23	260	3.3	230		(130)	(1.6)	1.8	3.3

Nime: 45.0°W. Swsep: 1.0 Me to 25.0 Me in 18 seconds.

Table 32 Johannseburg, Union of S. Africa (25.2°S, 28.1°E) August 1953											
Time	h'F2	foF2	h†Fl	foFl	h *E	foE	fEs	(143000)F2			
00	240	2,8						3.2			
01	250	2.8						3.2			
02	260	2.7						3.1			
03	250	8.8					2.0	5.3			
04	240	2.5					1.7	3.3			
05	260	2.2					3,4	3.1			
06	250	2.5					1.5	3.2			
07	220	4.5			error trade	2.0		3.6			
08	240	5.1	220	3.4	120	2.4		3.6			
09	270	5.5	220	4.0	110	2.7		5.4			
10	290	5.9	220	4.2	110	3.0		3.4			
11	290	8.3	21.0	4.3	110	3.1		2,3			
18	290	6.4	210	4.3	110	3.2		3.3			
13	280	6.5	200	4.2	110	3.1	3.9	3.5			
14	280	8.0	200	4.2	110	3.0	3.2	3.3			
15	260	6.4	200	4.0	110	2.8	3.7	2.4			
16	250	8.2	210	3.6	110	2.5	3.2	3.4			
17	230	5.5	220		120	2.0	2.6	3.4			
18	230	4.9					1.8	3.4			
19	220	3.9						3.4			
20	240	3.1						3.3			
21	240	3.1						3.2			
22	240	3.1						3.2			
23	240	3.0						3.2			

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Table 34 Capetown, Union of 8. Africa (34.205, 18.305) August 1953									
Time	h¹F2	foF2	h'Fl	foFl	h *E	foE	fEs	(M3000)F2	
00	250	2.7						3.1	
01	250	2.6						3.2	
02	260	2.7						3.1	
03	260	2.8						3.1	
04	250	2,8						3,3	
05	240	2.5						3.2	
06	260	2,5						3.1	
07	250	2.9						3.2	
08	230	4.2		mp. vapativit	130	1.9		3.5	
09	250	5.0	230	3.0	120	2.4		3.5	
10	270	5.2	220	3.9	120	2.7		3.4	
11	290	5.4	220	4.0	110	2.9		3.3	
12	300	6.0	210	4.1	110	3.0		3.2	
13	300	6.0	210	4.1	110	3.0		3.2	
14	290	6.4	210	4.0	120	3.0	3.4	3.2	
15	270	6.5	220	4.0	120	2.9	3.4	3.3	
18	260	6.1	220	3.8	120	2.6	3.2	3.4	
17	240	6.0	220	3.1	120	2.2	2.6	3.4	
18	230	5,2					2.5	3.4	
19	220	3.9						3.4	
20	240	2.9						3.3	
21	240	3.0						3.3	
22	240	2.8						3.3	
23	250	2.8						5.2	

Time: 30.0°E.
Sweep: 1.0 Mc to 15.0 Mc in 7 asconds.

Graz.	Anstria	(47.1°N,	15.5°E)	Tabl	e_36			July 1953
Time	h'F2	foF2	h'Fl	foFl	h†E	foE	fEs	(M3000)F2
00	280	3,8						
01	290	3.8						
02	280	3.4						
03	290	3.2						
04	290	3.0						
05	250	3.8						
06	250	4.1	220	3.5			3.5	
07	325		205	3.9			4.1	
80	320		200	3.9			4.5	
09	300		200	4.0			5.0	
10	31.5	5.0	200	4.1			5.0	
11	300		200	4.2			4.8	
12	340	5.2	200	4.3		-	4,9	
13	310	5.1	200	4.2			4.4	
14	330	5.0	200	4.2			3.8	
15	320	5.0	200	4.0			4.0	
16	300	4.9	200	3.9			4.0	
17	310	5.0	200	3.8			4.1	
18	280	5.0	240	3.5			4.0	
19	255	5.0					4.0	
20	240	5.8						
21	230	5.2					4.6	
22	250	4.7						
23	250	4.2						

75 | 200 4.2 Time: 15.0°E. Sweep: 2.5 Mo to 12.0 Mc in 2 minutes.

Table 37

	July 1953											
10.73.20	98 DITE	Union of	South Af		July 1958							
T'_r	h 72	STcl	h'F1	foFl	h 1 E	fol	1Za	(M3000)F2				
-	230	2.6						3.2				
100	250	2.5					3.1	3.1				
0.00	250	2.5						3.1				
90	25 1	2.5						3.3				
D=	30.0	2.4					1.9	3.2				
	2 "	2.3					3.2	3.2				
		2.3					5.0	3.3				
Fig.	22.	2.7			-	1.7		3.5				
	230	5.0	220		120	2.1		3.6				
0	250	5.4	220	3.7	110	2.6		3.5				
2.3	2 1	5.2	83.0	4.C	110	2.6		5.4				
	211	5.0	2.0	4.3	1.1.0	3.0	3.2	3.4				
4		3.6	210	6.2	110	3.1	8.4	3.4				
15	270	3.0	200	4,1	110	3.1	3.7	3.4				
	276	5	20	4.0	130	2.0	3.7	3.4				
15	200		25.0	3.8	110	2.7	3.3	3.4				
2.12	2.0	Ø, :	200	3.2	110	2.4	2.9	3.4				
10	27	5 ^			130	1.9		3.5				
								3.5				
1	800	2.0					1.9	3.4				
	200	3.6					2.0	3.1				
	2 0	2,5						3.2				
		.7,						3.3				
		3.0						3.3				

First 20.00 Error: 1.6 Ma to 15.0 Ma in 7 seconds.

				Tabl	e_39			
Co chara	va, Crocel	on4 (69.	2°5, 55.	3 ⁰ V)				June 1953
11 0	h hill	2012	P123	foFl	h * E	fol	fEs	(M3000)F2
	5	8.0	520		(130)	1.5	1.7	3.3
	981	3.4	230	de unido		(1.4)	1.7	(3.3)
	(2)	(3.4)	(220)		120	menunian.	1.8	(3.3)
0-	(20)	(8.5	(210)	(8.8)	110	(1.6)	3.0	(3.3)
0	1. 10.3	(5.6)	(200)	(3.0)	110	(1.8)	2.8	(3.3)
55	+=0000	(3.7)	(200)	(5.2)	110	(2.0)	4.0	(3.3)
0.6	encone.)	(4.0)	(200)	(3.5)	110	2.3	4.8	
0 '	Appear you	(4.7.)	(200)	(3.5)	100	(2.4)	4.4	(2.7)
	400-0-400	(c. 6)	(210)	(3.6)	100	(2.6)	4.6	
	(571)	(4.B)	200	(3.8)	(100)	(2.7)	4.0	(3.2)
1 1	(0.5.	(4.6)	200	3.9	100	3.8	4.1	(3.0)
11.1	380	(4.6)	200	(4.0)	100	2.9	3.2	(3.0)
12	(530)	(4.3)	200	4.0	(100)	2.3	3.8	3.0
18	(400)	(4.7)	(200)	(4.0)	100	2.9	6.8	(3.0)
3.4/	(360)	(4.7)	(200)	(4.0)	100	2.8	7.9	(3.1)
1.5	(380)	(4.6)	200	3.9	100	2.8	6.4	(3.0)
1.0	(380)	(4.3)	200	3.8	100	2.7	5.1	(3.1)
1.00	380	(4.4)	200	3.7	(100)	2.5	4.8	(3.0)
7.8	640	(4.2)	23.0	3.5	(100)	2.5	4.4	(3.1)
	330	(4.0)	21.0	3.5	(100)	(2.4)	4.1	(3.2)
80	300	(4.0)	210	3.3	*******	(2.3)	4.4	(3.3)
	280	3.9	220	(3.1)	(110)	2.0	2.2	3.3
100	240	5.7	220	-	(130)	(1.8)	2.0	3.4
23	280	5.6	220	*****	Collect	(1.7)	1.9	3.3

Times 45.00%.. Script 1.0 de to 25.0 ke in 18 seconds.

				Cable 4	1			
- 1.50	wir. Ical	nud (64.)	l ^e H. al.	Eoil)				May 1953
Zi.	h -5	folia	h'F1	foFl	h!E	fol	fBa	(M3000)F2
	(000)	(5,5)					4.9	(3,2)
01	(230)	(5.0)					4, 8	(2.8)
73	(500)	(2.3)					4.6	(3.0)
:5	(20)	2.0					4.4	(3.1)
	300	2.0		***	may married	-	4.2	3.1
0.5	20	3.4	220	3.2	100		3.6	3.1
0.5	120	3.8	210	3.4	110	2.1		3.3
07	570	4.0	200	3.5	100	2.3		3.0
0.3	378	0.2	200	3.7	100	2.6		3.1
	290	4.3	200	3.8	160	2.8		3.0
2.0		6.1	200	3.9	100	2.8		2.9
11	400	6,5	200	4.0	100	2.9		2.9
1.5	390	6.5	200	4.0	100	3.0		3.0
1.5	4.00	4.6	210	4.0	100	3.0		3.0
2.4	730	4.5	200	3.9	100	2.9		2.9
15		A. A.	210	3.9	100	2.8		2.9
31	1 000	15	210	3.8	100	2.7		2.9
117		4.5	220	3.7	1.00	2.5	3.0	3.0
	- 0	4.2	220	3.5	110	2.2	4.1	3.0
100	~ 0	4.3	220	3.4	110	2.0	3.9	3.1
	~ ,	0.0					4.1	3.2
7]	.10	3.0					4.9	3.2
70	280	3.7					4.6	3.1
	(100)	(3.6)					5.0	(3.1)

Time: 15. 77. Sweep: 1.0 No to 25.0 No in 18 seconds.

apetou	n, Union	apetown, Union of fric 2°S, 13.3°E)									
Time	P.ES	foFi	hill	foFl	h1E	foE	1Bs	(M3000)F2			
00	250	2,6						3.1			
01	260	2.6						3.1			
02	270	2.6						3.1			
03	250	2.€						3.1			
04	260	2 7						3.2			
05	240	2.6						3.2			
08	240	2.5					2.0	3.2			
07	250	2.0					3.0	3.2			
08	220	3.8	No. of Concession			1.7		3.5			
09	230	4.8	230	2.8	120	2.1		3.6			
10	250	J 7	200	5.6	120	2.5		3.5			
22	250	8.8	28.	7.9	120	2.8		3.4			
12	270	5 6	210	4.0	120	2.9		3.5			
12	280	5.8	21.0	4.0	120	2.9	3.2	3,5			
14	270	6.7	280	4.0	110	2.9	3.2	3.3			
15	270	6.2	220	3.8	120	2.7	3.3	3.3			
1.5	250	6.1	220	3.4	120	2.4		3.4			
17	230	5.4	220	2.6	130	2.0	2.6	3.5			
18	22.	A				1.4	2.3	5.5			
19	220	2.8					2.2	3.4			
20	210	2.3					2.1	3.2			
21	250	2.6					1.6	3.3			
22	240	3.7					_ , ,	3.3			
23	250	2.8						3.3			

Time: 30.0°Z.
Sweep: 1.0 Me to 15.0 Me in 7 saconds.

Tablo	40
 -0	

Godhavn, Greenland (69.2°N, 53.5°W)									
Time	h'E2	foF2	h 31	foFl	h'E	fol	fE ₃	(M3000)F2	
00	250	3.4	240					2.2	
01	260	(3,3)	230		49-57-60			3.2	
02	(270)	(3.3)	230					(3.2)	
03	270	(3.3)	(220)					(3.2)	
04	(260)	(3.4)	230		THE PERSON NAMED IN	(1.3)	2.0	(3.2)	
0.5		(8.5)	(230)	(2.8)	< 120	1.8	2.2	(3.3)	
06		(3.7)	(210)	(3.3)	110	(2.2)	3.9	(3.4)	
07		(4.0)	(220)	3.4	110	2.4	3.9	(2.3)	
03	-	(3.8)	(210)	(3.6)	110	(2.6)	4.2	(0,0)	
09	(380)	(4.4)	(220)	(3.7)	110	2.7	3.0	(3.0)	
10	(360)	(4.6)	220	(3.8)	100	2.8	3.5	(3.0)	
11	(390)	(4.6)	220	(3.8)	100	2.8	0,0	(2.9)	
12	(280)	(4.5)	(220)	(3.9)	(100)	2.9		(2.9)	
13	< 380	(4.5)	210	3.9	< 110	2.9		(3.0)	
14	(380)	(4.5)	(210)	(3,9)	(100)	2.8	5.0	(2.9)	
15	(380)	(4.4)	220	3.8	100	2.7	3.2	(3.0)	
16	400	(4.3)	21.0	3.7	100	2.6	3.6	(2.9)	
17	(360)	(4.2)	210	3.6	100	2.5	3.1	(3.0)	
18	350	(4.2)	220	3.5	(200)	(2.3)	2.7	(3.1)	
19	320	(4.0)	230	(3.3)			4.4	(3.2)	
20	280	(3.6)	230	(3.2)			5.6	3.2	
21	250	(3.8)	240		120	(1.7)	2.0	(3.3)	
22	240	(3.6)	240		< 120	1.7	200	3.3	
23	250	(3.4)	230					(3.2)	

Tine: 45.0%.
Sweep: 1.0 Mc to 25.0 Mc i 18 seconds.

Codhavn	Greszl.	Groszland (69.2°H 53.5°W)								
Time	h F2	foF2	r F7	foFl	n1Z	foE	:Eo	(X3000)F2		
00	270	(2,3)						(3.1)		
01	260	(2.3)						(3.1)		
02	280	(2.8)					2.5	(3.0)		
03	280	(2.8)					3.1	(3.1)		
04	23 1	(2.3)	-				3.9	(3.0)		
0.5	(280)	(2.3)	(00)	44-1-100			4.5	(3.2)		
06	(250)	(3.1)	(230)	***	may married		4.0	(3.2)		
07		(3.2)	(230)		(120)	2.1	4.0	(3.3)		
03	**********	(3.7)	230	3.2	120	2.2	5.8	(3.2)		
09		(4.2)	230	(3.5)	< 120	2.5	3.0	an ellery.		
10	(420)	(4.3)	230	3.6	(120)	(2.6)	3.0	(2.9)		
11	(420)	(4.5)	(220)	5.6	(110)	2.6	3.2	(3.0)		
12	(390)	(4.6)	(220)	3.7	(110)	2.6		(2.7)		
13	(390)	(4.5)	220	(3.7)	(110)	2.7		(2.9)		
14	(370)	(4.4)	220	3.6	110	2.6		(3.0)		
15	(360)	(4.4)	220	3.5	(110)	2.5	2.6	(3.0)		
16	(370)	(4.2)	220	3.5	110	2.4		(2.0)		
17	(350)	(4.2)	230	5. 1	(110)	2.4	3.7	(3.0)		
1.8	31.0	4.0	240	3.3				3.2		
19	280	3.9	50ء	-		-	3.4	3.1		
20	260	(3.6)	(240)				5.0	(3.2)		
21.	260	(3,4)					2.2	(3.1)		
22	260	(3.2)					2.2	(3.1)		
23	250	3.0					3.2	(3.1)		

Time: 45.0 %. Sweep: 1.0 Mg to 26.0 Mg in 18 seconds.

				Tabl	e 43			
Godhavi	, Greenl	and (69.	2 ⁰ N, 53.	5°W)				March 1953
Time	h'F2	foF2	h'F1	foFl	h1E	foE	fBe	(M3000)F2
00	260	(2.5)						(3.0)
01	(270)	(2.5)						(3.1)
02	(290)	(2.5)						(3.0)
03	(280)	(2.4)					2.8	(3.0)
04	(3.0)	(2.5)					3.4	(3.0)
06	(270)	(2.3)					3.5	(3.1)
06	(260)	(2.6)					4.3	(3.1)
07	(270)	(3.0)					4.9	(3.2)
80	(260)	(3.3)	240				5.0	(3,3)
09 :	(320)	(3.7)	(230)	2.9	1.20	2.0	2.8	(3.3)
10	(230)	(4.2)	(230)	(3.2)	120		3.5	(3.2)
11	(520)	(4.2)	220	(3.3)	120	(2.3)	2.8	(3.2)
12	(360)	(4.3)	220	(3.4)	(120)	(2.4)	3.4	(3.0)
13	(360)	(4.3)	(230)	3.4	120	(2.4)	5.2	(3.2)
14	(360)	(4.1)	230	3.3	(120)	2.4		(3.1)
15	410	(4.0)	230	3.3	(120)	(2.2)		(3.0)
1.5	340	(3.7)	230	(3.2)	1.20	2.2		(3.1)
17	260	(3.9)	230	(3.0)			2.0	(3.3)
18	240	(3.6)	250				2.0	(3.2)
19	250	(5.4)					(4.9)	(3.2)
20	(250)	(3.2)						(3.2)
21	< 250	(3.0)					(5.4)	(3.3)
22	240	(2.8)						(3.2)
23	250	(2.5)						(3.1)

Time: 45.0°M.
Sweep: 1.0 Me to 25.0 Mc in 18 seconds.

				Table	45			
Godham	a, Greenla	and (69.	2°H, 53.				Ja	muary 1953
Time	h'F2	foF2	h'Fl	foFl	h1E	foE	fEe	(M3000)F2
00	260	(2.4)					4.0	3.1
01	260	(2.4)					4.0	(3.1)
02	270	(2.4)					4.1	(3.1)
03	320	(2.5)					5.0	(3.0)
04	280	(2.6)					4.2	(3.1)
05	(250)	(2.8)					5.4	(3,2)
06	(240)	(2.8)					4.5	(3.3)
07	(240)	(3.0)					5.5	(3.2)
80	250	(2.9)					3.5	(3.1)
09	260	(3.2)					4.0	(3.0)
10	250	(3.3)					3.9	(3.3)
11	250	(4.2)					5.1	(3.2)
12	230	(4.0)					3.6	(3.3)
13	240	(4.2)					5.6	(3.2)
14	240	(4.0)					5.3	(3.2)
15	230	(3.8)					3.9	(3.4)
16	240	(3.5)					5.5	(3.2)
17	240	(3.6)					3.9	(3.2)
18	240	(3.7)					3.7	(3.2)
19	240	(3.3)					5.2	(3.2)
20	250	(3.2)					5.4	(3.2)
21	240	(3.0)					2.8	(3.2)
22	250	(2.8)					1.3	(5.2)
23	250	(2.6)					3,9	(3.2)

23 | 250 (2.6) Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

Godhavn	, Greenl	end (69.	ខ ⁰ ា, 53.	5°W)			No v	ember 1952
Time	h'#2	foF2	h'Fl	foFl	h I E	foE	fEe	SI(000EK)
00	280	(2.6)					3.3	(3.0)
01	290	(2.5)					3.8	(3.0)
02	(280)	(2.7)					4.1	(3.0)
03	(280)	(2.5)					3.6	(3.0)
04	280	(2.8)					3.1	(3.0)
05	(270)	(2.8)					3.6	(3.0)
06	(250)	(2.8)					4.9	(3.2)
07	(260)	(3.0)					4.4	
08	(260)	(3.5)					4.4	(3.2)
09	250	(3.6)				-	4.4	(3.2)
10	250	(4.0)					4.0	(3.3)
1.1	250	(4.3)					3.8	(3.3)
12	(240)	(4.4)	us filem				5.5	(3.2)
13	230	(4.3)	~~~				5.4	(3.4)
14	240	(4.4)			-		4.0	(5.3)
15	240	(4.1)				***	4.6	(3.2)
15	250	(4.0)					4.4	(3.3)
17	240	(3.6)					5.8	(3.2)
18	250	(3.5)					5.0	(3.2)
19	(260)	(3.5)					4.9	(3.0)
20	250	(3.3)					4.7	(3.1)
21	260	(3.1)					4.4	(3.1)
22	260	(2.9)					4.8	(3.1)
23	250	(2.7)					3.8	(3.1)

Table 47

23 250

Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 19 seconds.

Godhav	n, Greenl	and (59.	2 ⁰ N. 53.	Table	11/4		Febr	uary 1953
Time	h¹F2	foF2	h'Fl	foFl	h ¹ E	fcE	fEs	(143000)F2
00 01 02 03 04 05 06 07 06 09 10 11, 12 13 14 15 16 17 18 19 20 21, 22 22 23	250 270 (270) (280) (270) (270) (260) (250) (250) (250) (250) (250) (230) (230) (230) (240) 240 (240) (240) (250) 250 (240) 240 (240) (240) (240)	(2, 5) (2, 2) (2, 4) (2, 4) (2, 6) (2, 8) (2, 8) (3, 7) (4, 5) (4, 5) (4, 5) (4, 4) (4, 5) (4, 1) (3, 8) (3, 6) (3, 3) (3, 6) (3, 4) (3, 6) (3, 6) (4, 6) (4	(240) (230) 230 220 250	3.0		60-304.5 60-505.9 	3.0 2.6 3.2 3.4 3.9 4.8 4.8 3.0 2.1 4.7 6.2 5.0 5.6 5.0 (5.0)	(3.1) (3.1) (3.1) (3.2) (3.2) (3.2) (3.3) (3.4) (3.4) (3.4) (3.4) (3.4) (3.4) (3.3) (3.4) (3.3) (3.3) (3.3) (3.2) (3.2)

Time: 45.00%. Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

				Table	46			
Godhav	n, Greenl	and (69.	2°N, 53.	5°W)			Doc	cmber 1952
Time	FILS	foF2	h'F1	foF1	h E	foE	TBe	(M3000)}2
00	280	(2.4)					3.8	(3.1)
01	(290)	(2.6)					4.9	(3.1)
02	(280)	(2.6)					3.9	(3.0)
03	280	(2.3)					3.8	(3.0)
04	(280)	(2.5)					3.8	(3.0)
0.5	(260)	(2.8)					4.6	(3.2)
96	(240)	(3.1)					4.8	(3.3)
0?	(240)	(3.0)					4.9	er/Wigs
08	(250)	(3.2)					4.1	(3.2)
09	(250)	(3.6)					4.5	(3.2)
10	(260)	(3.7)					4.5	(3.2)
11	(250)	(4.1)					4.3	(3.2)
12	250	(4.0)					3.6	(3.2)
13	(250)	(4.0)					5.0	(2.2)
14	(250)	(4.0)					4.4	(3.2)
15	(250)	(3.8)					5.0	(3.2)
16	(250)	(3.7)					4.5	(3.2)
17	(260)	(3.4)					4.2	(3.2)
18	240	(3.4)					4.6	(2.2)
19	(250)	(3.3)					5.6	(3.1)
20	(250)	(3.3)					4.9	(3,1)
21	260	(3.0)					4.6	(3.1)
22	(250)	(3.0)					4.2	(3.2)
23	270	(2.7)					1.7	(3.1)

Time: 45.0°W. Sweep: 1.0 Me to 25.0 Me in 18 seconds.

				Table	48			
Godhavz	, Greenl	and (69.	2 ⁰ N, 53.	Poa)				July 1952*
Time	hils	foF2	h'F1	foFl	h1E	fol	fBs	SE(000EM)
00		3.5	260					5.1
01		3.5	260	minus (FF)				3.0
0.5	(220)	(3.8)	260	(2.6)		41.00		(3.0)
03	(340)	(3.6)	250	(2.8)	90/90 to 6			(3.0)
04	G	(3.7)	240	3.0				(2.6)
05	(400)	(3.6)	220	(3.2)	110		3.4	(2.9)
06	week and	(3.7)	(220)	3.4	100	(2.2)	2.0	
07	G	< 3.5	220	3.5			3.5	G-
80				3.7				
09			200	3.8		-	(3.1)	
10	(400)	(4.6)	200	(3,9)	100	2.9		
11.	(420)	(4.7)	210	(4.0)	100	(3.0)	2.5	(2.8)
12	(430)	(4.9)	210	(4.1)	100	3.0		(2.7)
13	(400)	(4.7)	200	(4.1)	100	(3.0)	3.0	(2.8)
14	(400)	(4.7)	(190)	(4.0)	100	2.8	8.0	(2.9)
15	330	(5.0)	200	4.0	100	(2.8)	6.1	(3.0)
16	(410)	(4.8)	200	(3.9)	100	2.7	7.0	(2,9)
17	4.20	(4.5)	21.0	5.8	100	2.6	5.6	(3.0)
18	390	4.5	210	3.6			5.8	2.9
19	400	4.3	220	3.5			8.7	3.9
20		(4.1)	340	3.4			3.9	3.0
21		4.0	240				3.4	3.1
22		3.8	250				3.6	3.1
23		3.7	260				4.7	3.0

23 3.7 260
Time: 45.0°W.
Sweep: 1.0 Ms to 25.0 Mc in 18 seconds.
*Observations made let through 15th only.

Porm adopted June

of Standards E.J.W.

Bureau

Mational

Scaled by:

November 1953

E (E)

Observed at Washington.

(Characherstic)

Central Radio Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C. ONOSPHERIC DATA

Sweep 1.0 Mc ta25.0 Mc In 0.25 min Manual [] Autamatic [3]

50 TABLE

Central Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C. IONOSPHERIC DATA

November, 1953

Day

တ 6 0 2

9

<u>∞</u>

8

2

22 23 24 S 8

27 28 53 8 50

Standards

of.

Bureau

National

(Institution) Mc C E. J. W.

Mc C, E.J.W (2.0)8 (20) 2.8 F 200 (28)A (2.5) (2.4) 2.3 F 3(81) K(1.7) 3 × ابا (2.3) 7 (1.9)E 2, C. (1.0 F (2.5) (81) (6.1) 30.8 23 2.7 2.5 2.5 7.4 2.9 23 2.0 00 90 2 T [28] A 277 (2.1)A (2.2) F (2.4) \$ (2.1)F 1.9 5 (21)P 2.3 F N.Y. 3(61) 2.5F (3.0) K(1.8) & KF1.8) & K(1.7) 3 2.6.F 1.00 (1.9)3 (2.0) P 305 2.4 2.4 3,2 20 33 J. 22 4 3 7 ⋖ 00 (2.5) F 3(1.5) (2.2) (2.1) (2.3) 18F 2.1 ر د د K(24) 8 K(20) 8 3 3.0 7 2.4 2,6 2.2 7. 33 8 2.5 33 2.1 39 2 V (2.7) A(2.C) 3.0 F 237 2.4 F (2.7)S 2.7F. (3.1) 5 (2.2) 30 Calculated by 3.0 F (3.1)5 3.4 3.0 or B 20 8 3.6 2.8 ار دم 2.7 3. 20 2.4 2.2 3. 2.2 30 K 2.6 F 3.63 (3.1) 5 (2.8) P 3.0 E (5.6)3 (3.6) (4.3) 5 305 (3.0,5 2.5 (2.9) 0.0 3.0F 3.5 3.2 3.2 3.2 2.8 3 38 S. 53 3.7 3,2 <u>6</u> 3 3.1 4.2 30 33 (4.7)5 (4.2) P 3.3 F 3.3 A.N. 3(4.6) 3.5 K 42 25 425 (4.0) F (4.0) 3 4.0 5.7 3.3 3.5 0.9 女女 40 43 9 7 4.2 33 *w*, 4.8 3.7 3.6 8 30 4.1 3 4.4 K (5:6) (5.4) (5 2)[£] 6.0 5 45 762 5.2 4.7 5.0 45 4.5 4.6 45 7.0 8.4 5.0 4.5 5.2 ς. ε. 5.5 5.0 6. 5 14 5.2 5.5 S.3 5.7 30 X 4.6 % 6.05 5.4 6.0 33 5.5 0.0 5.3 5.5 6.0 1.9 5.9 67 5.5 6.3 6.7 ف 9 00 V) ڊ و 5.9 5 4.5 57 6.0 6.3 5.6 9 6.0 30 9 7.4 5.7 t Cr 6.0 5 6.0 H 4.7 6.0 9:0 6 6.3 62 ٥ 3 6.7 4.9 6.2 6.7 6.2 4.3 9.9 6.9 6.3 6.4 1.9 99 30 9 رم ۵۰ 8.8 6.5 3 ς, δο 5.7 5.7 7.0 % 6.4 H 6.4 H 48 K 7.0 0.0 5.6 7.0 7.0 4.9 6.7 7.0 6.2 20 9 6.0 6 6.4 89 6.2 00 6.2 7.2 6.4 6.4 9 1.9 6.7 6.7 30 Mean Time 1 6.3 46 K 7.0 0.9 6.2 6.9 7.0 9.9 6.0 6.2 6.9 00 ف ٥٥ 7.0 5.8 6.7 5.9 ۇ ئې 6.3 ورا 7.2 0.0 7.8 6.4 6.7 10 6.9 6.7 9 30 11 00 6.7 49K 75° W 6.05 6 · 6 × 423 4.9 2.0 09 و و 6 و و 4.9 و جا ٥ 4.9 6.5 6.5 6.7 6.3 2.0 6.5 4.9 6.9 ٠-7.0 ? 00 50 3 5.6 30 47K (5:8) 5.7 # (6.0) 3 (6.) 5.5 6.0 2.4 8:4 0 6.7 5.6 4.9 ∞ • 63 5.9 6.2 0.9 2.0 9.9 4.9 6.3 مہ زیا 8 6.4 6.00 2.0 30 5.7 50 S:8 H (6.0) 4.3 K 0 9 5.5 9 5.4 4.9 ان) 4.9 0.9 67 8 4.7 5.4 5.7 5.9 1.9 5.3 5.5 5.7 5.5 6.7 6.2 - 9 9 60 ė 4.9 53 5.00 30 9 4.3 K 50.5 S. 84 0.0 0 5.5 9.0 0 5:7 4.8 و لا-5,2 05 8.8 7.0 9.9 53 \$ 5.7 5 5,3 5.7 27 5.7 50 5.7 رم 9 5.00 5.7 50 30 60 5.7 42K 3(5.5) 5.5 5.4 9.5 45 5.4 5.4 5:5 5.6 5.0 5.4 4.5 5.2 5:0 5.4 5.4 5 9 * 4.4 4.6 46 5.2 9.9 90 5:1 5 5. 5.3 5.7 52 1.5 3 3.5 (3.2)# 3.25 37 F 345 (2.1) (3.5) 3.6 4.5 4.0 40 43 3.5 9 3.6 3.0 3.5 4.5 4.1 4.2 3.4 33 30 3 3.5 20 4.9 4.9 ## w w £.3 30 30 4.1 202 A s 12 6 Th 3(4.6) (1.0 E 2.45 (2.7)5 23.7 (1.9)£ 1 (1.7) 5 (2.6) P (3.1) E (1.7)5 ⟨1.0 E 24 1.9 5 ナオ 30 3.2 22 2.5 3.0 25 2.7 *w*. 33 ンド 3.1 3.1 3 90 29 [2.5] 2.4 F (2.6)E 2.1 F (3.3)5 % 0.0 ⊀ g(L.C) 3.13 [1.6] * K(1.6) \$ <1.0 € 3.55 2.3 F 3.0 5 ۰ ح (1.7)3 27 2.6 r 2,5 0.4 3.2 3.0 2.8 3. 2. 3.2 25 8.8 53 3.6 05 33 3. 2.7 39 2.6F (2.7)E 37 2.3 F 2, 6 K (3.1)3 (3.1)\$ Lat 38.7° N , Long 77.1° W K (2.4) P 2.4 F 2.45 (2.7)F <1.0 E [1.6] F 3.2 5 2.5 3.2 3.0 8 40 3. 2.5 3,7 43 3.2 3 3 3.0 33 2.7 2.8 Ц. od od 1(8.6) 3(6.6) (3.1) 2 2.6F (2.9) [(3.2)] K(1.5)3 K(2.5)8 K(2.5)8 (3.3) \$ (3.7) 5 (1.6) 5 K (1.7) 3 3.45 (2.8) (4.7) 325 2.5 F (2.4) \$ (2.2)F 3.0 6. 00 7.2 03 30 3.0 3. 2.9 3.0 3.0 42 3.3 2.2 3.3 200 (IL 61.0 E <1.0 [2.8] g(8.6) $(3.6)^{5}_{5}$ (2.7)F (2.7) P (2.6)5 N[2.2] (3.0) (2.6)F 2.4F 3.2 F (3.4)F 2.8 F 3.1 F ¥. (8.2) 3.0 3.0 3,2 2.8 05 ∢ 2.7 3.4 1.9 Washington, 27 [2.6]F (1.7) 5 (2.7) (2.4)5 (2.4) F (2.3)F (2.C) P 2(2.5) 2.65 C 3) P (3.5)3 (2.3) 2 2.8 F 180 F 20 00 n <1.0 E (2.3) 2.6 2.9 7. 00 2.7 7.4 3.2 2.9 76 ⋖ ō K ⟨1.0 € (2.4)A (\$ - \$) \$ (27) F 2.3 F (2.3) F 1.75 (3.0)3 (3.0) (25) K(1.6) 3 (4.3) [2.1] (2.3) P 79. Observed at --3.0 2,2 2.4 2.2 2.6 2.7 7.4 00 8 8,7 33 2.7 2.7 T Medlan Caunt 9 <u>ඉ</u> S ~ -23 4 2 1

Sweep 1.0 Mc ta 25.0 Mc In 0.25 min Manual

Autamatic

B Form adopted June 1946

 $TABLE \hspace{0.2cm} 5.1 \\ \text{Central Radia Prapagation Laboratory, National Bureau of Standards, Washington 25, D.C.}$

, Cic																																				
of Standards	5	J. W. P.	2330	(2.5)F	26F	2.6	3.1	(. e)J	(2.5)6	А	25	2.5	12 64 54	2.9	2.7	5(28)5	AK	(2.2)	(2.1) F	2.5	2.2	2.26	(2.3)	1.7 K	[2.2]	2.6 €	(2.1)F	(2.6)%	2.2 6	2.1	2.0 F	1.73	8.1		2.3	28
	(Institu	E. J. W.	2230 2	2.21	25	7.2	3.0	K(1.7) 3 K	(2.7)	2.1	2.5	25.	2.3	00	А	A S	(2.4) x	_	1(0.2)	ł.	[2.2] A	2.3 %	0.5%	<1.0 E	1	2.2 F	2.2 F	3.0	(2.1)	2.2	(1.9)	8:1	1.93		7.7	18
Rifferen	Mc C.,	Mc C.	2130 2	1.0 F	2.5	2.7	[30]4	FSK	2.67	2.2	2.4	2.5	2.3	2.00	2.7	A	(2.3) F	2.4	1.96	m 7	(2.3) [7 7	(2.3)° (x (1.9) \$	1.9F	30)6	2.25	3.0	(2.1) 6	2.3	1.95	2.0	7:7		1.3	3.8
Mational		í	2030 2	2.9	29	3.0	2.9	A A	2.7 4	2.3	2.7	2.7	2.4	2.7	(2.9)F	AS	(2.6) F (1961	2.7	0	(3.9A) {10.5)	2.1 * 1	2.16	(3.1)\$ ((2.5)E	3.1	2.56	2.4	2.2	2.2	2,3	-	2.6	2.7
S	Scaled by:	Calculated by:	J	33F	32	3.7	(2.7) 5	k (2.0) 3	(3 27")	3.0	2.9	3.0	2.7	2.8	3.3F (5	(3.6)	(3.1) \$ (3	2.5 F			₹	(3.2) F	2.7F	2.5	(2.7)) Z(4.4)	2.8	3.5	2.9	2.7	2.6 %	2.4	2/2		7.7	
	, ,,	Ü	1830 19	4.0	3.7	3.4	3/ (6	3/4/5	(3.8)° (3	4.7	3.7	33	3.45	3.3	4.5	4.4	3.8 (3	40	[3.0]5	3.7	[2.8] A	(3.7) E (3	3.8	Q.L.	3.2 (603 (9	3.25	3.7	3.5	<u></u>	3.0	2.7	3.2 (2	-	3.6	30
<i>3</i>			1730 18	7:50	5.0	4.6	4.7	(3.7) 5	4.7 8	4.9	4.9	35	4.3	1 64	6.6 4	5:8	(4.5)5	47	4.5)8	ĺ	-	(4.9) (C)	5.0	3.8	3.8	6.5	3.00 1	4.8	44,18	0	0 +	(3.5)8	8.4		4.7	30
1 cz up.			1630 17	00	5:8	5.6 4	62 1	445 K(3	5.4 4	5.2	5.8	5:4	5.6	6.6	70 6	[6.9]	63 (4	5.0 4	5.4 (4	5.6 #	5.7	7:8	5:3	6.2	5.8 3	7.4 6	5.2 3	7	6.0 (4	5:1 4	(5:3) H +		×		5:6	30
, wasning			1530 16	0	7	6.1 5	7 4.9	4.6K X 4	5.8	5.8	6.2 5	6.0	6.0 5	6.2 6	6.7	5.8 [6	6.2	6.6 5.5	5:9	-	5.5	0:0	4.9	6.03 6	6.2 5	7.0	5.8 5	6.0 5.	6.1	6.0	6.4 (5	5.7	5.7 5		Đ	30
Standards	שואט		1430 15	6.4	6.0	6.1 6	9 8.4	4.6 %	5.9	5:7	6.7 6	U	5.7 6	5.8	616	6.63 3	3 3.3	9 8.0	7.7	6.7 6.	6.7 3	6.4 5	6.6	6.4 6	5.8 6	6.2.	4.0	16.67	6.4 6	3	6.44	6.6 5	5.8 5		4.0	-
regulat		Mean Time		*	00	6	7.0 6	8 K	4.0	9	6.	2 6	06	6.6 3	(70)° 0	6.3	6.4 6	6.4 6	6.0	6.6	5.5 6	6.0	6.4 6	2	6.0 3	_	8.9		6.7 6	00	6.8	6.2 6	6.0 5		6.6	30 30
orlandi Bu	ONCOPHENIC	- 1	30 1330	5 6	2	9 9.9	6.8 11	4.9 K	7.0 6.	6 5	7	6.6 6.	7.0 6	6.6	2	5.6 6	_	6.8 6	5.8 6	6.03 6	6.4 5	9 9.9	773	5	6.6	7.7	7	(7.2) 6.6	48.5	6.8	6.2 6	5.83	(5:6)7 6.		6.6	30 3
Kadia Prapagarian Labaraiary, National Bureau at Standards, Washington 25, D.	N T T	75° W	1230	7 6	2 7	6.2 6	6.6	¥	6.3	9 6	6.5	9 0.9	6.4	5.93 6	6.5 7	-	6.		_				2 3	9 8.9	6.4	7 4.9	9 0	7	6.4	6.3	0.8	6.6 3	ود		6.4	30
lian Labo		1	30 1130	5.	9	6.2 6.	6.3 6.	5 K 5"0	5.6 6.	3 5.	ц	m	9 0	4	6.2 6.	5:5 5:8	5.5 5.6	4.9	5.7 6.0	6.4 6.2	6 5.5	6.9	5:6	6.0 H 6.	6.0	4 6.	5 7.0	5.5	0	6.4	9 6	00	9 6		-2	
Prapagai	Services .		1030	5.5	9	5.6 " 6.	6.2 6.	¥. 4.	m	5.8 5.	5.4 6	5:8 6	3	5.9 6	5:6 6.	5.0 5.	5.0 5.	5.6 6.1		5.9 6.	5.5 5.6	5.4 6.0	6.3 6.8	0 6.	6.3	(5:2) 6	.5	7.33 6.	2 7.	6.43	7 6.	2 2	7			30
=			30 0930	0	7 6	7	9. 0	42K 4	0 5	7	6	7	1)8 6.		_	į		4.7	9 3:6	5.6 5.	5.7 5.	- 1		9	9:0	(5:6) (5:	2 6	00	1	5.7 6.	5.7 5.	03 5.	5.8		5:4 5:6	30
Centro			90	5	0	2 5.	7	, O.K. 4	0,	9	0 5:	0	48 (5	1 5.4				-	7 4		_		5 (5)	3 5.			7 6	9 5.	9 6	5		00	0 5		20	30
			05 20 05	(3.1) \$ 4.	7	7 5:2	34 5.2	X	(2.7) 9 4.	3 4	1 5.	2	3 4	2 571	7 5.1	(2.3) 3.9	2.5 3.9	15 30	ent	(2.7) 4.4	6 43	2.4 4.2	4.	[28]F 4.	2.4	[2.8] 4.1	5F 4.	K K	8/3 4.9	7.	1 50	4.	5.		7 4.	30
			0630	:05 (3.	2	9	E. C.	2.0k 2.6	0 7	(30) 3	5	9	128	3	0,0	(2.4)3 (2	2.2 2	1 X 2.04	(10E 2.0	(25)3 (2)	i,	215 2	[2.1] (2.2)\$	(2.6)P	5 2.5	(1.6)3 [2	3.26 2.	(3.1) 3	3 (2.8)3	5 2.4	2 3.1	5 2.9	2.8F 2.9		5 2.7	30
555		M.	30 0530	7	2	2	rg rg	7 4 2.	(2.3) K(2.	(2.7) P (30	(2.3) = 2.	2 3	(F)		F	(24) (2.		<	118 E 116	(26) a	7.8			281 (21	(3.0) 2.5	(1.5) [(1.4	2	- 1	(3.6) 3.	7 2.	3.	2.	.8F		2	30
ovembe	(Month)		30 0430	4 2.2	E3	7.	3	7 2.	×	(2.9) (2.		3	3.3	3.1	3 F 2.4	!	5)3 2.7	_		11	2.5	3.3) 2 2.9	2.7 F 2.0	ų.	×	(1.4) (1.3	7	- 1	[3.2]F (3.	2	2 F 3.	K4	.6 F 2		ñ	30
ž	Ι.,	1 -	30 0330	t) 6 2.	3	2.	3	4	(2.5) 7 (2.4)		2.5 \$ 2.5	3./	9 3.0	30	2.8	<u>_</u>		- 1		88 2.61	- 1		(2.7)9 2:	0	<u></u>	ш	4	- 1	(2.8) [13.	7	0	3.1F 3.	8		-	29
Mc	Washington.	Lot 38.7°N	0 0230	(2.4)	(30)	5	9F 3.1	0 2.9	(2.1) x (2		-	90	9 0	5	m)	2.5° 2.9	38% (3.7)3		<1.0 £ <1.0 £	(2.3) (2.8)			[2.5] (2.		3/	PF (2.17	(2.7) 3.4	- 1			8 F 2.9	-	7 2.4		8 2.9	67
0	rstic)		30 0130	A	7 (3.0)	7 2	76 2.9'	3 3.0	613	4	A	7 2	7	3 2	3.	_	251	- 1	(10E <1.	- 1	_ 1	- 1	- 1	12.7/8 3.0F		7 2.8	- 1	- 1	- 1	ä	7	5 3.1	5 1.7		7	25
fo F2	(Characteristic)	OBSSI VSU UI	у 0030	A	2 2.7	3	4 2.	5 3.3	6 40.	7 F	8	9 2.	e,	4	3	3.0			\dashv		+	(2.0)5	7	-	x (1.9)		(2.8)	-	7	(2.2)	2.5	2.5	9.1		7	nt +6
	1 6	5	Day				,	-	-		~	,	9	=	12	- 3	4	15	91	17	8	61	20	21	22	23	24	25	26	27	28	29	32	ъ	Median	Count

Sweep 1.0 Mc ta 25.0 Mc In 0.25 min TABLE 52

Form adopted June 1946

Central Radio Propagatian Labaratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

National Bureau of Standards

Mc C, E.J. W. Mc C. E.J.W. Calculated by Scaled by:

75° W Moor (Characteristic) (Unit) (Mourit) (Mourit) (Mourit) (Observed of Washington, D. C.

_
1
250
0
a
B
300
220
B
B
a
B
B
R
a
210
Ø
_
MACRO THE
CLUBERRY.
- 1

Sweep 1.0 Mc to 25.0 Mc In 0.25 min

Manual 🖂 Autamatic 🖼

adopted June 1946

Mational Bureau of Standards

E.J.W. J.W.P.

Scaled by: Mc C.

TABLE 53 Sential Radio Propegitian Laboratory, National Bureau of Standards, Washington 25, D.C.

CNOSPHERIO DA LA

November 1953

Observed of Washington, D. C.

O FI Mc (Characteristic) (Unit)

J.W.P. E. J. W. 22 Calculated by: MC C. 00 7 LA 0 0 9 9 9 a d BA 4 3 9 9 18.2 27 0 14.0 (39)H 3.9 (38)S 14 weep 1.0 Mc to 23.0 Mc in 9.25 min 3.7 3.4 13-91 (4.0) 1 (4.0) L (3.9) 4 Ma. 39 % (3.9) " 199 (3.8) 5 (3.9) 3.9 4.0 90 4 4 _ 3.9 K 7 (0 h) 20 W 3.8 H 1881 3.9 14.0)4 40 w. 90 3.9 3.9 4.1 37 K (3.8) 38, (3.7) H 30 3.9 3.9 (3.9) 35 m; 3.3 3.7 4 4 4 4 \neg 3.5 K ~ 3.5 3.0 60 4 d 4 1 d 997 99 d 9 0 99 0 9 dd 0.7 90 0.3 Lat 38.7°N , Long 77, 1º W 04 03 02 ō 00 Median 15 = 16 17 19 Day M 4 S 9 _ 00 0 12 1 4 18 20 22 23 24 25 29 30 Ø 27 28 10

Manual Cl Automatic B

Form adopted June 1946

277.1°W		. 0	ONOSPHERIC DATA Scaled by: MC C. E. J.W.	by: Mc C. E. J. W.	13	(001) (100) A (100)	100 100	(00)	06/1 00/ 00/ A A A A A	X X X X X X X X X X X X X X X X X X X	1) 0// 0// A A A B 0/20 //	A 100 (100) A A A A	24 A A 100 /10 /20	(1/0) A (1/0) A (1/0) A	1/0 1/10 1/10 100 100 100 100 100 100 10	(01) (01) (01) (01) (01) (01)	A 100 110 [100] 100 110 120	110 100 (120)	06/ 01/ 01/ 00/ 10/ 01/ 01/	06/ 06/ 06/ 01/ 00/ 01/ 01/ 01/	[00] 00/ 00/ 01/ 01/ 00/ 00/	A A A A .000 A	110" A (110)" (110" A A A	00/ 00/ 00/ 00/ 00/ 00/	A (100) 8 (001) 001 (00) A (100)	1) 8(05,1) 06, 8(011) 8(011) 8(06) 1 001	110" 110 110 120 110 110 (120)	100 100 100 100 110 100	00/ 00/ 00/ 00/ 00/	[120]	A A 110 100 110" 100 H (120)	0) 110 [100] 100 100 110 110 100	1) (001) (001) 001 001 011 011	110 110 110	110 m		10 110 100 100 100 100 100 110 1	1,5 2, 2,5 2,5 3,8 3,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1
	<u>' </u>		1	Wo1.77 gnp	-												25 S COMM 10			cimises.	(National)			Y011			(continue)						~ .					

28

Form adopted June 1946

TABLE 55 Cantrol Rodla Propogotion Lobaratory, National Bureau of Standards, Washington 25, D.C.

foE		Mc	N	November, 1953	1,1953						300		- C	A T A C	Tools tools	Dalocal representation between the control of the c			National	- 1	regn	S	landard	S
(Characteristic)	9	(Unit) Washinaton		Konth)						2	2	ことはこれのころ		Z - Z - Z - Z - Z - Z - Z - Z - Z - Z -	4			Scot	Scoled by:	Mc C.	In Inst	W. J.	Ic C., E. J. W. J. W. P.	
		Lat 38.7°N	N , Long.	M 01.77	×				2		7	75° W	Mean Time	me				Calc	uloted by	Calculoted by: Mc C.s.	T.	E. J. W. J. W. P.	N. P.	
Doy 00	ō	02	03	04	0.5	5 06	6 07	08,	60	0	=	22	. 13	14	12	17	0	6	20	21	22	23		
_								A	A	A	A	3.0	12.97A	2.8	2.6 A				-					
2	-							2.4	4 2.7	2.9	3.0	[3.0]A	3.0	2.9	2.5 2.1									
ы								3.	8.6	2.8	2.9	3.0	3.0	2.8										
4								A				A	A	(2.8) P (2	V .	2.3 H			.comile					
22							1	X	X A K	AX	AA	(2.9) A	2.8 K	2.7 K		AK								
9								A (6.1)	1	A A	A	A	A (8.8)	2.7	4	(2.0)A								
7								(2.1) A	A 12.47	9	8.6	A	A	4.		A			abanty-ulia					
80								2.2 H		A(0.6)		A		3	9	A								
6								A	di.	(2.7) A	10	0.8	2.9	2.8		Call In								
10								(22)	7.8	2.8	9.8		8.8	X										
Ξ			_					~	1	2.7	29	3.0	[2.8]A	7	-			District of the last of the la			ROTANIA SAOCTATION			
12								A	A	A	A	A	A											
13								2.0	А		49.6	2.9	A		9	3								
14								A	(2.4)P	2.6		2.7		100	23 11.	H (6.1)								
15								2.0	(2.5)	(2.5) P (2.6)P		2.7	2.7	A	-	6.7								
91				CONTRACT:				A	2.4	[2.6] A		2.7	I	2.5	व्यक्ष	6.1								
17								2.0	-	2.4 H [2.6] A		R	A	2.6	B	10			infescie.					
8 -								1.9 #		1 2.6 H		(2.7)P (2.8)B	A	A	AAA									
61								V	A	A		A	A		23F A	1			allicireir					
20								(2.0)	P [2.3]A	1 . 8 !		2.9	9	5										
21								5	2.3#	2.6		(2.6) A	2.8 H		2.3 /.	1.7								
22								8	(2.4)#				2.7		2.3 H A	J +								
23								A	11	03.6	2.7	8.8	-											
24					_			2.0 H	7 2.5	27	3.00	2.8	2.0	2.6	2.4 1.9	9								
25								A	A	2.6	3.6	(3.8)	2.8	[2.5]A		8.1			-					
26								A	V	A	3.6	2.8	2.7#	H(2.5)H	B. A. A	-								
27								(1.9) P	P (2.4) S	SA	A	3.0	2.8	2.5	AAA	1								
28								8.0	H 2.4	-	2.7	2.0		-	2.4 1.9	8								
59								A	2.4	[2.6]A	2.7	P.JA	2.7	2.6	2.3 A									
30								A	4.4	9.8	2.7#	A	A	2.6 H	2.4H A									
3	-				-	The second second					The same of the sa													
			+																					
Median								2.0	4.8	2.6	2.7	8.8	2.8	3.6	2.4	6.7								
Count						-		15	20	18	da	22	22	24	73 (1									

Sweep LQ Mc to 25.0 Mc in 0.25 min Manual C Automotic B

Standards

0

56 TABLE

Certral Radia Propagatian Laboratory, Natianal Bureau af Standards, Washingtan 25, D.C.

DATAD ONOSPHERIC

November, 1953

(Characteristic) (Unit)

D. C.

Washington,

Observed at

McC, E. J. W. Bureau National Scaled by:

E. J. W. 291,20 3.0 110 37100 3.0 /19 2.3 120 41 110 2.8 110 3.1 110 3.0 110 13/100 (N) 53 W 00 ш ш W ш Ш Ш W ш lid Ш MC C. 181,20 5.27,110 2.7/110 24 110 3.3 110 2.3/20 3.0/10 110 100 0/ 110 0// 3.01,00 7 ζ! |} 30 W 37/110 32 3.17130 4.5110 26/110 22/10 45 110 22/100 3.3/110 27 110 3.6 110 3.2 110 30,00 E 本 本一本 本 30 2 W W ¥ ш ш 4.5 110 2.9 110 20 110 3.0 110 2.3/00 4.6,00 3.81/10 3.0/10 2.8 110 3.6/110 Calculated by: 30 20 ¥ W W ¥ Ш ш 47 110 14/20 24 110 4.27110 3.5,20 2.7 110 3.01/10 3.17/10 4.0 110 3.8,00 3.5,00 341,00 2.2/100 3.01,00 3.27,00 351 90 21/00/2.3/00/251/00 10 23/20 2.3/00 4.1/100 2.2/10 22 30 <u>6</u> Ш ч F W W W زرنا ш ш W W 2.61,10 3.2 110 2.3 837110 17 110 40,00 51,00 58,00 24 110 22 120 35,00 1.8,000 24,000 110 3.51,110 4.3,00 42,00 33 100 3.0 130 31/100 2.3/100 4.3 110 3.2,110 24 110 2.2 30 W ш uj Ш W Ш W W ιij Ш 2.4/40 2.2/20 24/00 23 14 3.3 100 2.0/20 36/20 22 30 W _ W W ш ų, Ш 12.5 3.17,30 3.7 100 39/100 7:7 21/20 2.5 110 14.1 100 220 110 2.0 110 2.0120 2.1/30 1.9 100 4.1 120 7.0 100 2.6/20 2.4 100 6.6/100 50 G 9 P U P B B Y 2.5,30 4.4 24,00 3.11,00 21/00 34,30 3.8,20 2.8,30 #1/00 2.5/00 6.91,00 2.9,20 2.8,20 2.5,20 3.7/10 3.8/20 36/30 2.6/30 24/20 3.6,00 26,00 2.81,00 21,00 23,00 24,00 30/40 3.0/40 2.7/40 2.6 100 76/110 37/20 7.4 31,00 32,00 30 b b y (j 3 U Ġ Y G () U J U U 7.01,00 2.9/20 30 ** 3.0/00 3.8 110 3.91,00 Sweep 1.0 Mc to 25.0 Mc in 0 25 min 4 G J B Ġ Ġ Ġ S Ġ B 32,30 32,20 6 G U Y Ü Y Magn Time 100/1.4 26,00 3.5 100 3.51110 00/ 50/00/54/00 3.1 100 2.7/100 301/00 10 3.7,00 381,00 2.81,00 45,20 2.2,00 6.8,00 y U B Ġ Y U Ġ S Ġ Y 35,000 27 5.2 100 100/00/ 3,100 32/20 39,00 00/ 3/110 0/ 75° W 2 Ø B Y B U Ġ B P 30 B b Ġ y P 3.6/100 00/9# 3.71,00 371/00 3.2,00 3.17/00 36,00 3.8 /20 38 110 24,00 30/100 2.7 4.31,00 4.8,100 23 100 49/20 71 110 3.8 110 3.0 110 3.0 110 38/00 30 Ġ U Ŋ Ġ U y Ġ () Ġ U Ç G B U 361,00 6.81,00 3.2/10 39 110 2.4 110 011 49 29/40 3.4 110 3.2 110 4.1 120 50110 10.5/120 3.01/10 3.3/10 3.61/100 2.8 120 3.3,20 3.8 110 30/110 25/20 3.67110 0/ 30 G B y y 30 0 P B 27 520 3.8,00 20,00 361,00 25 110 4.7 120 5.2 110 4.9 100 3.3 110 4.2,20 4.4/20 2.6/20 24 110 3.2/20 26/10 3.07 £ 2.7 J G 29 0.00 Ġ (J S (J U Ġ b 3.81,00 30110 28/20 20 110 361,30 2.3 110 30/20 21 130 32110 3.21,00 221/00 361/10 2.2 y U 30 80 U Ġ b B B B G B Ġ Ġ 00/100 11.04/10 2.91,20 * * 3.0/20 21/50 3.61,110 110 3.7/10 3.51,20 2.4,20 2.17,00 2.37,10 2.7 120 3.6 110 3.1/110 30 W uj Ш 0 E W Ш ш W ij W 27 100 2.5 100 30,00 33/20 2.3/140 7.41,30 2.21,00 34,100 2.4 110 22 110 23 110 2.9 120 水米ペクシ W 90 Ш 30 Ш ш ¥ W ш w ш Ш W W W W W 3.81,00 2.3/100 F 4.37 140 2.4 100 23/10 40 100 39100 947116 391,00 29,00 2.7,00 68/120 13 110 2.9 100 7.47/20 2.5,00 30 0 W ш 2.41,00 3.5 100 3.91,100 4.3/120 2.5,00 12 110 37 110 3.0 5,10 2.2 110 45,20 W 91.77 Long 77.19 W 42,00 3.1 110 04 100/45 00/ * * 30 А Ч Ш ш W W W W 25/110 34/10 4.9,00 3.9,00 4.3,00 2.7100 2.67110 2.2,100 2.31/00 3.0 // 47 110 3.3 110 4.100 3.8,00 2.41,00 * * 03 2.4/80 30 ш Ш B ш ш W W W W W W W W ш ш 30/100 4.3/130 24/10 31,00 33 100 3.2,00 2.5 100 3.6/100 24 110 3.9,00 3.1,00 1.4 100 1.8 100 * * * * 2.51/10 2.3/10 2.41/100 21/00 00 00 Ш W ш Ш ш ч U W Ш لنا w ш 38 100 00/4.4 3.7/10 2.3 110 2.5 110 2.3 4 2.3 100 39,000 2.5,000 4.3,00 4.5,00 30 0 Ш W ш لى U ú w W Ш W w ш W ш IJ W 3.5 100 3.3 100 2.5,00 2.4 100 37 110 36 110 2.9 140 30/00 2.4 110 4.4,00 35 110 2.4 110 17/120 2.7/10 110 2 t 30 00 W W ш ш ш ш ш W Median Caunt 20 Day 2 4 വ 9 00 6 0 = 10 4 2 9 24 25 56 27 59 2 1 8 6 22 23 2 28 30

foE, OR LESS OF RECORDER. * * MEDIAN fE: LESS THAN MEDIAN THAN LOWER FREQUENCY LIMIT

Form doopted June

Standards E. J. ₩.

10

Bureau

National

Scaled by:

McC

Central Radia Prapagatian Lobaratary, National Bureau of Standards, Washington 25, mil 57

November 1953

(MI500)F2

Ö

Washington,

ONOSPHERIC DATA

E. J. W. . 2.1F (1.9) B 20 E 30 (22.1) 2.15 225 (2.0) A (2.0) 000 A(P.1) (1.9) \$ K(2.0) \$ 215 0 FX EK 0.00 128 0 20 23 T, Mc C (2.1)A 215 20F (1.9)° GOF (1.93 2.0 0.6 27 22 2.00 2.35 (23)5 (00)F 20 F (2.3) [2.3) F 2.0F (33) 1 (21) 1 / (2.0) 5 1:00 3. 18 3 SK 2.2 8 0.8 00 2 Z. 50 215 (2.0)2 2.2 F A(5.50) Colculated by: 6 3 13 1.8 5 2.2 77 7: es w is is 7:5 2 3 4.6 2.3 20 3 318 X is (24)3 2.4E 6.00 (B. 2) 37 (2.1) 8 (2.3)3 (2.2) KS L. 6 8 2.3 4.6 8.3 2.2 5. 2 7 3.5 <u>ග</u> J 2.25 12.2)6 (23) 5 (2.2) 5 (25) 2.35 330 2.57 m 23 2.8 S. D. 25 50 7:7 63 23 7.8 <u>cc</u> M. 1(+ c) 4.60 2.75 H(3.0) 23 2.5 2.5 2 5 (23)3 2.3 3. 3.6 33 7 23 8 3 4 2 7.4 3.5 2 25 B 1 x (2.4)2 100 7 7 346 4.6 3 7.4 33 2 5 7 6 2.6 2.4 2.4 7.8 2.5 2.4 20 2.5 9 17 25# 23 3 2 242 8 3x 23 27 2.5 24 3,6 3.5 3 6 2 7 5.70 7.7 7 6 0.8 4.0 2.5 A. K 25 8 ς. ρ 5 B 2.3H 224 2.4.E 7.3 22.4 7.7 2.3 8 6.1 2.4 8. 2.3 is is 3 2.4 2.4 30 25 3.4 4 Mean Time 24 1.9 K 3 6 7 33 23 8 2.3 7.4 4.8 3:5 7.4 ng 10 7.00 3.5 8.3 2.5 4.8 4.8 7.6 33 7.4 6 7.6 3.5 15.8 7.6 2. ES 2.34 204 2.5 J. 3.3 4.6 5.5 83 7 7 2.6 4.6 23 6 2.3 2.3 2.7 75° W 3 2.4 S 4.4 4.8 3 33 4.8 7.6 3. 3 7. 2.0 4.6 7.4 12 2.34 (S. 4. 2) 1.8 K 2.4 # 7 7 5.5 rof. 33 5.5 2 3. C. 33 7.6 2.4 = 19K 6.3 2. 4.6 8 4.7 8 3.5. + 4.6 B n V 2.4 0 2.6 (2.4) 2.5 3.45 2.3 30 10 2 4 8.51 7.4 7.8 7 K 200 33 3.6 3.5 24 5 30 60 (x 6)5 2.2 K 20 13 7.4 4.5 08 3 th to (23) 4.4 8.4 2. x x 4 8 07 4.3 (22)3 2.35 d W 68 - 70 1)5 8.5 7.4 T 3.4 23 (2.1)3 7 : 70 26.8 7:4 77 K 0.5 K 2.2 53 23.1 F Wol. 77, Lang 77, 1º W 3.7 8 04 (20) (20) 225 200 (20) (21) (d 3) F (2 3) F 7 7 03 50 7 8 8 7 29 3)5 (22)2 (21) 2.15 3.25 21.5 Y 2 1)F 8 2. 02 7 Z 4 (22)F 215 2.05 (2 1/2 × 5(18) (21) 7 3.4 0 ¥ P 2.03 (2.1) 5 2.0 Observed at __ 7 00 3 P Median Count Day 2 4 9 22 2 2 -0 9 2 8 6 23 24 26 27 2 4 28 30 2 29 10

Sweep 1.0 Mc to 25.0 Mc In 0.25 min Manual Cl Automatic (3) Form adopted June 1946

TABLE

Radio Prapagation Labaratory, National Bureau of Standords, Washington 25, D.C.

November, 1953

(M3000)F2, (Unit)

D. C.

Washington

Standards E. J. W. Bureau C. (Institution) National Scoled by:

3 ы Ш (3.1) } (2.9) 5 (3.1) 5 50 5 3.1 12.9) (3.0) (30) (30) 32 0.0 30 0 32 2.7 3.2 5 (31) 0 00 3.1 L Mc C. (3.0) } 315 (29)3 2000 (30) 30 (33) (31)A 305 (3.2) (30)F (29) 5 (3.1) 5 0 (2.8)x 33 0 200 0 3 5 2.9 0 5 3. 3.3 ₹ T (3.1) (3.2) F 3.0 4 32 F 5.27 (3.0) 5 (1E) S 3.2 5 32 3. 3.0 3.2 3.2 5 3.2 0.0 (33) 3.0 2 3.1 2 2 S (3.3)F (32)4 3.0 F (32) 325 3.4 F 3.1 F K(3.0)P (34) (3.3) A (3.4)5 K(31) 5 3.2 Calculated by 3.2 3.4 3.2 32 κ) W 9 3. 20 3 3 3 3. 53 3/5 (3.2) } (3.4)3 X 3.25 (3.3) 83 3.4 3 34 3.4 33 32 0 3 3. 0.0 34 32 5. 5.5 35 3 34 30 3.2 5 3.1 K (3.3) 8 (32)5 (31)3 (2) (2) (3) (3.5)3 36 7 3.2 3 5 3.4 34 32 3 *w* 3 3 3 W W 3 3.2 3.1 36 25 0 3.3 35 3 3.00 (35)7 34 K (3.5/P (34)5 (3.44) 5 (33)3 13 3.5 5 3 5 3.5 5 3.4 3.3 5 3.6 3.3 30 3.6 34 30 3 3.5 3.5 3 36 3.1 30 34 _ 18(3.4) 3.5 5 3.4 3.57 3.6 35 3.5 6 30 3.5 3 30 3.4 3 3 ω) 10 3.5 3.5 3.5 ω Ω 33 3 3.5 <u>છ</u> 3 3.6 3 3 35 3.6 34 K 350 3.4 3 0 3.5 W N 3.4 34 3 3.4 5 3.5 3 3.6 3.7 3.4 3.5 3 3 30 3.6 3.7 00 23 5 3.6 3 36 36 34 35 3.4 34 30 3 30 4 3.6 33 33 3 2 3.51 35 2.5 34 3 7.5 3.5 3 3.4 3 36 36 3.5 3.5 3 3.5 33 # 2.9 X 3 3.6 3.3 3.4 3.2 3 3.6 3 4 3.5 140 3 33 5 35 3.4 3.4 34 35 34 35 3.3 3.4 36 3.4 3.5 3.5 3 3.6 0 3.3 23 (3.4) 5 300 75° W 32 34 34 3.4 34 3.5 63 3 34 34 34 20 3.4 3.4 34 30 3.4 3 3.4 3.6 34 34 3.7 32 3.4 3.7 (n) 2 3 3.3 3.7 33 # 2.7 K (3.7)5 35 4 (3.5) (3.1) 3.4 32 36 3.2 3 3.4 3.6 2 34 3 3 3 3.6 34 3 3 9 3.3 is) 3 3.2 3 30 = 35 " X X X (3.6) 5 35 3 3. 36 34 3 3 12 3.5 3.4 3.6 3 50 3 3.7 35 5 3.5 5 m G 3 37 3.5 3.7 5 30 34 0 3.1 × 35 35 3.4 3.6 3 3.5 3 3.6 3.5 3.6 3.4 37 30 60 3.4 3 3 3.4 33 34 34 5 35 3 6 3 M 3.7 37 (3.7) 3 3 3.4 3 3.6 3.6 36 3.6 3 3 3.2 3.6 00 3.6 ξ, (2) 3 3 ~ ~ 3 3 4 3 50 37 3.7 08 3.6 3.7 3.7 38 200 (34) 7 (3.4) 5 53 5.4 7 3.5 3.5 3.4 00 30 3.4 34 3.4 3 3 3.4 3.3 3.4 3.3 5 3 35 3.6 3.6 33 36 3.5 35 3 5 30 07 (32) 8 (35) 3 5. S. F. N. 3.1 F (32) } A S 3.45 (31) 3.3 F (3.1) 6 3.4 3 3.2 3.4 53 8 90 3 34 9.3 2.9 7 4 4 S S ш W 3.2 F 3.5 V (3.2) 6 32 F (3.2) 3 345 345 3.2 X N. 3. 345 A K (3.2) 3 3.1 4 3.2 3.2 3.4 34 34 3 34 6. 3 34 34 3.1 3 97 0.53 Ų, T S (3.2) 5 747 T X 3/5 3 355 (3.3) 5 36 F Long 77.1ºW (33)F 3.2 F K(3.1) P (3.1) 5 32 3 63.33 04 3 3 5 5 3 3.1 34 34 3.1 3 25 ш (31)F W W (3.1) 5 K(32)3 60 (3.1) 5 K (2.9)3 K (3.3) 8 K (3.2) P (3.3)5 FX 52 33 (32) 5 (3.4) F 33 (3.1) 32 2.2 3.1 3.1 3.1 3 34 03 3.1 7 33 3/ 3.2 70 4 Lot 38.7°N (2.9) 5 (32)F (31)F (34) F (3.2)F (3.2) (30) \$ (30) 5 (32) (31) } K K 3.2 F 33 3.1 F (3.2) 3.2 F (3.0) [(3.2)] 24 3.2 (3.1) 32 3.0 32 (29) 3. 3 1 02 2 53 u ₹ 3 K (3.1) F (31) = × (31) (3.0)F (3.3)5 51 31 F 32 3.2 5 (30) (31) } (31)5 (3.1) 3.2 3 3.1 0 3.2 0 3. 3. T Ш L. X (30) 4 (3.2)F 3.1. (32) 8 (28)3 (31)F (31)5 (31) 5 X(2.9)4 (31) 7 (3.0)x 3.0 F (31) F 30 € (3.0) F 30 0.0 0 9 0 Observed at ... 3 3. 3/ 31 3.0 J. 00 T 97 ш T Median Count Ŋ 4 S 9 ω Ø 0 4 20 30 Day = 2 2 5 9 _ 24 8 6 23 25 26 2 27 8 22 က္ခ 5

Sweep 10 Mc to 250 Mc in 0 25 min

Automatic 38 Monual 🗅

Form odopted June 1946

of Standards

National Bureau E.J.W.

(Institution) Mc C, J. W. P.

Scoled by:

TABLE 59
Central Rodio Propogatian Loborotory, National Bureou of Standards, Woshington 25, D.C.

IONOSPHERIC DATA

November 1953

(M3000)FI (Unit)

D. C.

Washington,

Observed at

a. J. W. F Mc G. E.J.W. 2 Colculated by: 20 <u>0</u> 00 \succeq 9 4 9 9 001 4 O A 00 0 A, 8 d d d 2 7 8 _1 7.7 9 9 9 3.5 K Sweep 19 Mc to 250 Mc in 025 min (3.7) 5 4 7 w. 90 w So 3.6 X (3.5)4 (3.8) H (3.6) 5 123 15 12 J. (3.8) (3.9) # (3.7) 4 3.6 K 75° W (3.9 2 3.7 H 3.7 2 3.7 37 9.0 3.7 0.7 30 3.7 3.6 3.6 _1 1 (3.9)# 3.5 K · = (3.7) ₩ 60 4. _1 1 30 3.89 30 0 4 _1 1 3.5 K (3.6) (3.9) 4 8 0 4 0 0.7 6 7 _ 1 _1 60 43 ⋖ 7 4 0 A X Q 08 d ald 1 ď 0 0 9 3 Ø 4 d. Ø d d 0.5 90 0 29 Lat 38.7° N. Long 77.1° W 04 03 02 0 00 Median Count 0 4 5 2 -Day 4 S 9 00 0 5 5 00 6 20 22 23 24 27 59 30 25

Manual

Automotic

Manual

Porm adopted Juna 1946

Central Rodio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C. 0

ONOSPHERIC DATA

November 1953

(MISOO)E (Unit)

0

Observed at Washington,

5

9

00 0

4

2

0

2

10

National Bureau of Standards (Institution) Scaled by:

MC C. E. J. W.

Calculated by:

10 N 63 61 20 0 90 4.02 0 9 1000 4.02 15 4.2 4.00 (22) Q V 4.1 (4.3) 75° W 20 4.3 0 Œ 17 (T 4.3 T 14 1/2 4.3 0 4.3 3.3 60 0.8 0.7 90 0.5 Lat 38.7°N, Lang 77.1°W 04 03 02 ō 00

15

9 | 2

7

8 6

20

22 23 24 25 25 26

27 28 29 30 10 Sweep_10_Mc to 25.0_Mc In 0.25_min

Median Count Manuel | Automatic B

Table 61

Ionospheric Storminess at Washington, D. C.

November 1953

Day	Ionospheric 00-12 GCT	character* 12-24 GCT	Principal Beginning GCT		Geomagnetic 00-12 GCT	character** 12-24 GCT
1 2 3 4 5 6 7 8 9 10 11	3 1 2 1 4 2 2 1 1	2 1 1 5 2 3 1 1 2 2	0900	1100	2 2 1 2 3 1 2 2 1 0 0	2 1 2 1 1 1 2 0 0
12 13 14 15 16 17 18	1 2 1 5 3 1	0 3 1 2 2	0300	1200	0 2 5 4 4 4 3 3 4	2 4 4 4 3 3
20 21 22 23 24 25 26 27 28 29 30	2 2 2 4 2 2 1 2 3 2 2 3	211231121222	0100	1000	43233323121	4 2 1 3 2 3 1 2 1 0 1

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.
----Dashes indicate continuing storm.

Table 62
Zurich Provisional Relative Sunspot Numbers
November 1953

Date	Ez*	Date	Bz*
1	12	17	0
3	11	18	0
3	10	19	0
4	9	50	0
5	0	21	0
6	0	22	0
7	0	23	0
8	0	24	0
9	0	25	0
10	0	26	0
11	0	27	0
12	0	28	0
13	0	29	0
14	0	30	0
15	0		1
16	0	Mean:	1.4

^{*}Dependent on observations at Zürich Observatory and its stations at Locarno and Arosa.

Table 63a

Radio Propagation Quality Figures (Including Comparisons with Short-Term and Advance Forecasts)

Cotober 1953

Day		th At 6-hou	rly		188	med. s	fore		Whole day quality index	(J-ra	os fore ports) day; i	for	ne	rag- tic Ch
-	90 to 96	06 00 12	12 to 18	18 to 24	00	06	12	18		l-4 days	4-7 deys	8-25 days	Half	day (2)
12345	5 6 6 6	6 5 6 6	7 7 7 7	6 7 7 6	5 5 6 6 7	3 5 6 6	6 6 7 7 7	6 7 7 7	6 6 7 7 7	(4) 5 5 6 6	(4) (4) 5 6	x	2 2 1 2	2 2 2 1
6 7 8 9	6 6 7 6	6 5 5 6 7	7 7 7 7	7 6 7 7	7 7 6 5 6	7 6 5 5 6	7 6 7 7	7 7 6 7	7 6 7 7	7 7 7 7	6 ? ? ?		1 3 2 3 2	1 2 3 2 2
11 13 13 14 15	7 7 6 6	6 6 7 6 6	7 7 7 7	7 7 7 7 5	6 7 7 7	6 7 7 6	7 7 8 7	7 7 7 7 (4)	7 7 7 7 6	7 7 7 7 6	7 7 6 6 6		1 1 1 1 1	2 1 1 (5)
16 17 18 19 20	(4) (3) (3) (2) (2)	(3) (3) (2) (2) (2)	6 5 (4) (4) 5	(4) (4) (4) (4) (4)	(3) (3) (3) (2) (2)	(3) (3) (2) (2) (2)	5 (4) (4) (4) (4)	5 (4) (4) (3) (4)	(4) (3) (3) (3) (3)	(3) (3) (3) (4) (3)	(3) (3) (3) (4) (4)	X X X	(4) (4) (4) (6) (4)	(4) (4) (5) (4) (4)
21 22 23 24 26	(3) (4) (3) (3) (4)	(3) (4) (3) (4)	5 6 5 7	6 5 5 6	(2) (4) (3) (3) (4)	(2) (3) (3) (4)	(4) 5 5 5 5	5 5 5 5	(4) (4) (4) (4) 5	(4) 5 (4) (4) 5	(4) 5 5 5 5	I	(4) 3 3 1 3	2 2 2 2 2
26 27 28 29 30 31	(4) 5 (4) 5 6 (4)	(4) 5 6 5 6	7 6 7 7 7	6 6 6 6 6	5 5 (4) 5 5 5	(3) (4) (3) 5 5 4	6 6 6 7 6	7 5 6 7 6 7	5 6 6 6 6	6 6 6 6 7	6 6 6 7 7		2 (4) 2 2 2 3	1 2 3 1 1
Score:	iet per	riods	F 5	3 T	9 8 1 0	9 8 0 3	15 13 1 0	16 10 0	1	14 6 1	10 9 1 2			
Distur	req bed	lods	I S	3 J	9 4 Q 0	8 3 0 0	0 0	3 2 0 0		6 3 0 0	3 6 0			

Q-scale of Radio Propagation Quality

- (1) useless (2) very poor (3) poor (4) poor to fair 5 fair 6 fair to good

- 7 good 8 very good 9 excellent

K-scale of Geomagnetic Activity 0 to 9, 9 representing the greatest disturbance; $K_{\rm Ch} \gg \frac{\mu}{2}$ indicates significant disturbance, enclosel in () for emphasis

- Scoring: (beginning October 1952)

 P Perfect: forecast quality equal to observed
 S Satisfactory: (beginning October 1952) forecast quality one grade different
- from observed

 U Unsatisfactory: forecast quality two or more grades different from observed when both forecast and observed were >5, or both < 5

 F Failure: other times when forecast quality
- two or more grades different from observed

Symbols:
 X - probable disturbed date

Note: All times are UT (Universal Time or GCT)

Short-Term Forecasts---October 1953

- forecast

 individual reports of quality (adjusted to CRPL scale)

X CRPL observation (not in consensus)

Outcome of Advance Forecasts (1 to 4 days ahead) --- October 1953

Table 64a

Coronal observations at Climax, Colorado (5303A), east limb

Date					ree														00				De	ree	6 8	out	h c	of t	he	60	lar	equ	ato	or			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1953																																					
Nov. 1.6	-	-	-	_	-	_	-	_	-	-	-	-	-	2	3	2	1	2	3	4	11	13	1	-	-	2	2	2	1	1	-	-	-	-	-	-	_
2.6	-	-	-	-	-	-	-	2	2	2	-	-	-	-	_	1	1	2	3	2	3	4	4	2	1	1	1	1	1	-	-	-	-	-	-	-	-
4.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
8.6	-	_	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-
9.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11.9	-	-	-	-	*	_	-	-	-	-	-	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12./	-	-	-	-	-	-	-	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
14.9	-	-	_	-	-	-	-	-	-	-	-	-	-	-	3	3	2	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-
15.7	-	-	-	-	-	-	-	-	-	-	1	1	1	2	3	4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-
16.8	-	-	_	-	-	-	-	-	1	3	3	1	1	3	9	9	5	3	1	-	-	_	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
27.6	-	-	-	_	-	_	-	-	-	_	-	1	1	3	5	7	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20.8	-	-	-	-	-	1	1	1	1	1	1	1	3	3	3	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
25.8	-	-	-	_	-	-	-	3	3	3	3	2	2	-	-	-	-	-	1	4	2	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-
28.7	-	-	-	-	-	-	1	2	3	3	2	1	2	2	-	-	1	1	- 1	-	1	1	1	-	-	-	2	2	-	-	-	-	-	-	-	-	-
30.9	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	X

Table 65a

Coronal observations at Climax, Colorado (6374A), east limb

Date				Deg	ree	s n	ort	h o	ft	he	so]	ar	equ	ato	r				~^				Deg	ree	8 8	out	h c	of t	the	60.	lar	equ	atc	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1953																																					
Nov. 1.6	3	2	1	1	1	1	1	1	2	3	4	5	5	5	5	5	5	5	5	5	15	13	14	5	4	2	1	1	2	2	2	2	2	2	2	3	3
2.6	3	3	3	3	1	1	2	2	2	2	3	5	5	5	5	5	5	5	6	6	6	6	7	6	6	4	1	1	2	2	2	2	2	3	3	3	3
4.6	2	2	2	2	1	1	1	1	1	3	4	4	3	2	2	3	4	4	4	4	4	4	4	4	4	4	2	2	2	2	2	2	3	3	3	3	3
8.6	2	2	1	1	2	2	1	1	2	2	2	3	3	3	4	4	4	5	6	5	4	4	4	5	5	4	2	2	2	2	2	2	2	3	3	3	3
9.7	3	2	1	1	1	1	1	1	2	3	4	3	2	2	4	4	5	6	6	6	5	5	4	5	5	5	4	2	2	2	2	2	3	3	3	3	2
11.9	2	3	2	2	2	2	1	1	1	3	3	2	2	2	3	5	6	6	5	7	7	7	6	6	6	6	5	2	2	2	2	2	3	3	3	3	3
12.7	2	3	1	1	1	1	1	1	1	1	3	2	2	3	3	3	4	5	5	6	5	5	5	6	5	5	4	2	2	2	2	2	3	3	3	3	2
14.9	_	-	-	_	-	-	-	-	-	-	2	2	2	2	2	2	2	3	3	3	3	3	3	4	3	3	3	3	1	1	1	1	1	1	1	2	2
15.7	1	_	_	-	-		_	-	1	1	1	2	3	1	I.	1	1	2	4	3	4	4	5	4	4	4	3	3	2	2	3	3	3	3	3	3	3
16.8	1	1	2	2	2	1	1	1	1	2	2	2	2	2	3	8	1	1	1	4	5	5	5	5	5	4	2	2	2	2	2	2	2	2	2	2	2
17.6	1	2	2	-	-	-	-	_	1	1	2	2	2	2	3	8	7	2	4	5	6	6	5	6	6	6	4	3	1	1	1	1	2	2	3	3	1
20.8	2	2	1	1	1	1	1	1	1	1	2	3	3	2	1	1	2	3	4	5	5	5	4	3	3	3	3	1	1	1	1	1	1	1	1	2	2
25.8	2	2	1	1	1	1	1	1	1	1	1	1	2	3	3	4	5	4	6	9	8	3	4	2	2	1	1	1	1	1	1	1	1	2	2	2	2
28.7	2	1	1	1	1	1	1	1	1	2	4	4	5	5	4	8	9	9	8	4	3	4	5	5	2	1	1	1	1	1	1	2	3	4	4	3	2
30.9	1	1	1	1	1	1	1	1	1	1	2	3	3	2	2	2	3	2	3	4	4	3	4	3	3	2	1	1	1	1	1	1	2	2	2	2	X

Table 66a

Coronal observations at Climax, Colorado (6702A), east limb

The 6702A coronal line was not visible on any of the observation dates in November 1.6 when there was an observed intensity 1 from $N05^{\circ}$ to $S10^{\circ}$.

 $\underline{\text{Table 6lib}}$ Coronal observations at Climax, Colorado (5303A), west limb

)ate				Deg	ree	\$ 5	out	h c	f t	he	sol	ar	equ	ato	r			- 1					Deg	ree	s n	ort	h o	f tl	ne	sol	ar	equ	ato	r			
GCT	90	85	80	75	70	65	50·	55	50	45	40	35	30	25	20	15	10	3	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1953																																					
ov. 1.6	_	_	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	-	-	1	3	5	3	2	2	-	_	_	_	-	-	40	m2	_	_	_	_
2.6	-	_	_	-	_	_	_	_	_	_	-	_	_	_	_	-	_	-	1	3	8	11	6	5	3	1	1	1	1	-	_	-	_	_	_	-	-
4.6	-	_	-	_	-	-	_	_	_	_	-	-		-	-	-	-	-	-	-	5	10	10	5	3	3	2	2	1	1	-	-	_	-	-	-	-
8.6	-	_	_	_	-	_	_	_	-	_	_	-	-	_	-	-	-	-	-	3	3	3	2	2	-	-	-	2	2	1	-	-	_	-	_	-	
9.7	-	_	_	_	-	_	_	_	-	_	-	**	-	-	-	***	-	-	1	2	2	1	-	_	-	-	1	1	1	-	-	-	-	-	400	-	490
11.9	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	1	5	2	1	-	-	_	-	-	-	-	-	-	-	-	_	-	-	-	_	-
12.7	-	_	-	_	-	-	_	-	-	-	-	-	_	-	-	-	5	9	2	3	1	1	2	1	1	1	1	1	2	2	_		_	-	-	-	-
14.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3	3	-	-	-	-	-	-	-		-	-	•	_	-	_	40	-	-	-	000
15.7	-	-	-	_	_	-	-	-	-	-	-	-		-	1	1	1	1	1	-	-	_	_	-	-	-	-	-	-	-	_	_	_	-	-	_	00
16.8	-	-	-	-	-	-	-	-	_		-	-	-	-	_	-	-	-	-	40		-	_	_	_	***	_	cas	dis	-	-	can-	-	-	-	_	-
17.6	-	•	_	-	-	-	-	-	-	_	1	1	1	-	-	-	***	-	-	1	-	-	-	-	-	-	-	-	-	_	-	-	_	-	-	_	003
20.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	2	3	1	1	-	-	-	-	-	-	-	-	-	-	-	_	-	00
25.8a	-	_	-	-	-	-	-	-	_	-	-	-	-	-	-	_	_	-	-	-	-	-	-	-	2	1	2	-	-	-	-	-	_	-	-	000	60
28.7	-	-	-	-	_	-	-	-	***	-	-	-	-	-	-	_	***	-	-	1	2	3	3	3	3	3	2	2	1	1	1	-	-	Ger	40	Oe-	-
30.9a	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ.	Х	Х	Х	Х	Х	Х	Х	Χ	Х	X	Х	Х	Х	-	_	_	_	-	_

Table 65b

Coronal observations at Climax, Colorado (6374A), west limb

Date				eg.	ree	s s	out	h o	f t	he	sol	ar	equ	ato	or								Deg	ree	SI	nort	th o	of ·	the	so	lar	eq	uat	or			
GCT	90	85						55								15	10	5	00	5	10										60				80	85	90
1953																																					
Nov. 1.6	3	3	2	2	1	1	1	1	2	4	4	4	3	4	5	5	5	4	3	3	3	1	-	-	1	4	1	1	1	1	1	1	1	2	2	2	3
2.6	3	2	1	1	1	1	1	1	3	4	4	5	5	5	6	5	5	5	3	4	4	3	1	1	1	1	1	1	1	1	1	2	3	3	3	3	3
4.6	3	2	2	2	2	2	1	1	1	1	4	4	5	5	5	5	5	5	4	3	3	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
8.6	3	3	3	1	1	1	1	1	2	3	3	3	3	4	4	4	5	4	4	4	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	2
9.7	2	3	3	2	1	1	1	2	2	3	4	3	2	4	4	4	4	4	4	3	3	3	2	2	2	2	1	1	1	1	1	2	2	2	2	2	3
11.9	3	1	1	1	1	1	1	1	1	2	2	2	2	1	3	4	3	8	7	3	3	3	2	2	2	3	2	1	1	1	1	1	2	2	2	2	2
12.7	2	3	2	2	1	1	1	1	1	2	2	2	2	3	3	3	5	5	6	5	3	2	2	2	2	2	2	1	1	1	1	1	2	2	2	2	2
14.9	2	1	-	_	-	-	-		_	-	_	_	1	2	2	2	3	3	3	4	3	3	3	2	2	1	1	1	1	1	1	1	2	2	2	2	_
15.7	3	2	2	2	2	1	1	1	1	1	1	2	2	2	2	3	4	4	5	4	3	3	2	2	2	1	1	1	1	1	1	1	1	1	2	2	1
16.8	2	2	2	2	1	1	1	1	1	1	1	1	3	4	4	4	4	4	5	3	3	3	2	2	2	2	2	3	2	2	2	2	2	3	2	1	1
17.6	1	1	1	1	1	1	1	1	-	-	-	1	2	3	3	4	4	4	3	3	3	3	2	2	2	3	3	3	2	1	1	1	1	1	1	3	1
20.8	2	1	1	1	1	1	1	1	2	2	2	2	2	3	4	4	4	3	3	3	3	3	3	3	3	3	3	3	2	2	2	2	2	2	1	2	2
25.8a	2	1	1	1	1	1	1	1	1	2	3	4	4	4	5	4	7	6	6	6	5	5	5	5	3	2	2	2	2	1	1	2	2	2	2	2	2
28.7	2	2	1	1	1	1	1	1	1	3	5	5	4	5	5	5	5	5	4	3	4	3	2	1	4	2	1	1	1	1	1	1	2	2	2	2	2
30.9a	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	X	1	1	1	1	2	1

Table 66b
Coronal observations at Climax, Colorado (6702A), west limb

The 6702A coronal line was not visible on any of the observation dates in November. The position angles included in the plate estimation for November 30.7, were the same as for the 5303A line.

Table 67a

Coronal observations at Sacramento Peak, New Mexico (5303A), east limb

Date		_	-	Deg	ree	s n	ort	h o	ft	he	60]	ar	equ	ato	r			1	~~				Deg	ree	8 8	out	h o	1	he	80	lar	equ	atc	r	70-	75	
	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	<u>55</u>	60	65	70	<u>75</u>	80	85	90
				10				-																													
1953						2	2	7	3	4	4	4	4	3	4	4	3	3	2	5	5	7	8	5	4	3	2	3	3	3	4	3	2	2	_	_	-
Nov. 2.7	_	-	_	_	_	4	2	7	2	2	3	3	3	2	3	3	4	3	4	3	4	4	4	4	3	2	3	2	4	4	3	4	3	2	-	-	-
3.7	_	_	_	_	_	_	-	_	_	_	_	_	2	2	3	4	3	3	4	4	5	6	5	4	3	3	2	2	4	3	3	_	_	_	-	-	-
4.8a 7.7	-	_	_	_	_	2	2	3	3	3	3	3	2	3	4	4	5	8	7	4	3	3	2	2	2	_	_	-	2	3	3	2	2	-	-	-	-
8.7	-	_	_	_	_	-		_	2	3	2	3	3	3	4	3	4	5	4	4	4	3	2	3	2	2	_	_	2	2		-	-	-	-	-	-
9.7	_	_	_	_	_	_	_	2	3	4	3	3	2	3	2	3	3	4	3	3	2	2	2	2	3	3	2	2	2	2	2	-	-	3	2	-	-
11.7	_	_	_	_	_	_	2	3	3	3	4	3	3	4	4	5	4	3	3	2	3	2	_	_	_	_	_	-	2	2	2	2	-	-	-	-	-
12.7	-	_	_	_	_	_	2	3	4	5	4	4	5	4	4	4	3	2	2	2	2	_	_	2	2	-	-	-	2	2	-	-	-	-	-	-	-
13.7	_	_	_	_	_	_	3	4	5	5	6	5	4	5	5	5	4	3	2	3	2	-	_	2	-	-	2	-	-	-	-	-	-	-	-	_	-
14.7		_	_	_	-	_	2	2	3	4	4	5	4	5	6	8	7	5	3	3	3	3	2	2	3	2	-	-	2	2	-	_	-	-	-	-	-
15.7		_	_	_	_	_	2	2	3	4	5	4	5	5	7	13	16	7	4	5	3	2	2	-	-	_	-	-	-	-	-	-	-	-	-	-	-
16.8	_	_	_	_	_	_	2	3	4	5	4	4	5	5	11	18	14	8	4	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17.7	_	_	_	_	_	_	_	2	3	3	3	3	4	5	8	12	16	5	3	2	2	_	-	-	-	-	2	-	-	-	-	_	-	-	-	-	-
20.8	_	_	_	_	_	3	2	3	3	3	3	3	3	4	4	5	5	4	3	2	2	-	-	-	2	2	3	2	-	-	-	2	3	-	-	-	-
21.9a	-	_	_	_	_	2	2	3	3	3	3	3	2	3	3	2	3	3	3	2	-	2	-	-	-	2	2	2	-	-	-	-	-	-	-	-	-
22.7	_	_	_	_	_	_	2	3	4	4	4	4	4	5	5	4	5	3	3	3	3	4	3	2	2	3	2	2	5	4	4	3	2	-	-	-	-
23.9a	_	_	_	_	_	_	_	2	3	3	3	2	2	2	3	3	5	5	4	3	5	4	3	3	-	-	-	-	-	-	-	_	_	-	-	-	-
24.7	-	_	_	-	-	3	4	5	6	6	4	4	5	5	4	4	3	3	4	8	11	10	4	4	2	2	3	2	3	3	3	2	2	-	-	-	-
25.7	-	_	_	_	-	_	3	5	6	7	7	6	5	4	3	2	2	2	3	13	16	11	6	4	3	2	2	2	3	2	3	2	3	-	_	_	-
26.7	-	_	-	_	_	2	3	5	6	6	5	5	4	4	4	3	4	5	8	7	8	7	6	3	3	2	2	2	3	3	2	3	2	-	-	-	-
28.7	_	_	_	-	2	3	3	4	4	4	3	2	2	3	4	2	3	3	2	3	3	3	3	2	3	2	3	3	_	-	-	-	-	_	-	-	-
29.7	-	-	_	-	-	-	2	3	4	5	3	3	2	3	3	3	2	3	2	3	4	4	3	2	3	2	2	3	2	2	-	-	-	-	-	-	-
30.7	-	-	-	-	_	-	2	3	3	3	3	3	3	4	3	3	2	2	2	2	3	3	3	3	3	2	4	3	5	4	3	2	-	-	-	-	-

Table 68a

Coronal observations at Sacramento Peak, New Mexico (6374A), east limb

Date			1	Deg	ree	s n	ort	h o	f t	he	80]	ar	equ	ato	r								Deg	ree	8 8	out	h c	f t	he	80]	Lar	equ	ato	r			
GCT	90	85	80 '	75	70	65	60	55	50	115	40	35	30	25	20	15	10	5	00	5	10	15		25				45			60			75	80	85	90
1953																																					
Nov. 2.7	3	3	3	2	3	2	2	2	_	3	4	5	5	4	5	8	8	7	8	8	8	7	7	6	5	5	3	3	3	3	3	2	-	2	2	2	3
3.7	3	3	3	2	3	3	_	2	3	3	4	5	4	4	3	3	3	4	5	8	7	8	7	6	5	4	3	2	3	2	-	2	2	2	3	3	4
4.8a	3	2	3	3	2	3	2	2	2	3	4	5	4	4	3	3	2	3	3	5	4	5	3	4	5	5	4	3	2	2	3	2	-	2	2	3	3
7.7	4	5	4	4	3	3	3	3	2	3	4	5	6	8	7	7	6	5	5	5	8	9	9	13	11	10	6	4	4	2	3	2	2	2	3	3	3
8.7	3	4	3	3	2	2	2	_	_	2	4	4	4	5	6	7	8	9	12	11	8	5	6	11	12	12	7	4	4	3	2	2	-	-	3	3	3
9.7	5	6	4	4	4	3	3	2	2	4	8	7	6	4	5	9	10	11	14	13	11	10	7	7	14	13	10	8	4	3	2	2	2	3	2	2	2
11.7	3	3	4	3	3	3	2	2	_	2	5	4	3	3	4	6	8	9	7	8	12	11	6	5	6	11	7	3	2	3	-	-	-	2	3	2	3
12.7	3	5	4	3	4	3	3	-	2	-	10	5	4	4	5	12	12	12	13	11	10	8	9	8	8	9	7	3	_	-	2	3	3	3	2	3	3
13.7	5	5	7	6	5	4	3	4	2	3	8	9	3	5	5	5	5	12	12	11	12	11	11	10	8	8	7	6	5	3	2	2	2	3	2	3	3
14.7	4	3	5	3	3	2	3	2	2	-	6	8	9	7	5	5	5	10	9	8	8	7	8	9	10	12	12	11	7	3	-	2	-	3	3	2	3
15.7	4	2	3	2	3	2	2	_	-	2	5	4	7	5	4	3	4	5	5	6	8	7	7	14	12	8	7	7	5	3	2	-	_	2	3	2	2
16.8	4	3	2	2	3	3	2	2	2	3	3	3	3	3	2	3	14	3	3	5	6	6	7	8	7	7	5	4	3	3	2	-	-	-	2	2	3
17.7	4	3	3	2	2	3	2	2	3	3	3	3	2	2	-	6	14	5	5	10	11	11	10	8	9	8	7	5	3	3	2	2	2	-	-	-	-
20.8	4	3	4	3	2	2	-	-	2	2	4	5	4	4	3	3	4	4	5	9	11	10	8	6	5	5	5	4	3	3	-	-	2	2	3	2	2
21.9a	2	2	2	_	2	2	-	_	2	_	2	3	3	3	2	-	2	3	3	4	5	4	4	3	2	3	2	3	2	2		-	-	-	-	_	-
22.7	4	3	4	4	3	2	2	-	-	2	4	5	5	4	3	4	5	11	12	14	13	12	7	6	6	4	5	4	3	2	-	2	2	2	2	3	3
23.9a	-	-	-	-	-	-	-	-	-	-	3	3	3	3	2	-	2	3	2	11	14	5	3	-	3	2	2	3	-	-	~	-	-	-	-	-	-
24.7	3	4	4	3	3	2	2	_	-	_	3	3	4	5	6	6	6	5	16	20	23	20	16	11	5	5	4	3	3	-	2	2	2	3	3	5	3
25.7	4	5	4	4	3	2	2	2	-	-	3	5	6	7	8	. 9	11	13	14	15	16	14	7	5	4	4	4	5	3	2	2	2	2	3	3	4	4
26.7	3	4	4	3	3	2	2	-	2	2	4	5	8	7	6	6	8	12	20	14	13	10	5	6	4	4	4	3	4	3	2	2	3	3	2	3	3
28.7	3	5	4	3	3	2	3	2	3	2	5	6	7	8	7	6	8	13	14	11	7	4	3	5	6	6	3	3	4	2	2	2	2	3	3	3	3
29.7	4	4	3	3	2	2	2	2	3	3	5	7	7	8	5	5	8	13	14	11	6	5	6	7	6	7	3	2	4	3	2	2	2	3	3	4	3
30.7	4	4	3	4	3	2	2	3	3	5	5	8	7	6	6	5	5	10	10	12	11	8	7	7	7	6	3	2	2	-	-	2	2	3	3	3	3

Date				Dec	ree	25 5	sout	h o	ft	he :	sol	ar	eou	ato	r			1					Des	ree	s r	ort	h o	f 1	the	so.	lar	egu	ato	r			
GCT	90	85	80	75	70	65	50	55	50	45	40	35	30	25	20	15	10	-5	00	3	10	15	20	25	30	35	70	45	50	55	60	65	70	75	08	85	90
									_		-	-							T																		
1953 Nov. 2.7					2	2	7	2	3	2	2	2	3	2	3	3	3	2	4	11	16	23	26	15	14	10	8	5	6	3	3	3	2	_	-	~	-
	_	_	_	_	~	۵.	2	<i>د</i> ح	2	3	2	2	3	3	3	3	4	3	6	li i	16	20	30	23	14	11	8	5	4	4	4	3	2	_	-	_	-
3.7	_	-	_	_	_	_	-	_	-	2	3	3	2	2	3	3	3	2	3	4	6	13	18	20	10	8	5	. 3	4	4	2	2	2	-	-	_	-
4.8 7.7	_	-	_	_	_	_	2	2	3	3	3	4	3	4	3	5	5	4	3	5	7	-8	11	14	11	8	4	5	6	5	4	4	3	2	-		
8.7	_	_	_	_	_	_	2	~	2	3	4	3	3	3	3	4	4	5	4	5	6	7	8	9	7	6	5	5	5	6	4	4	3	-	40	-	-
9.7	-	-	_	_	_	-	2	7	1	5	3	3	2	3	4	4	5	4	5	5	5	6	6	5	5	4	5	6	8	7	6	4	2	-	-	-	-
11.7		-	_	_	_	~	2	3	3	2	3	4	3	3	5	5	6	14	111	4	3	4	5	4	5	4	3	4	4	4	4	3	2	-	-	-	-
12.7	- 7			_	_	3	3	4	3	3	4	5	4	5	5	4			22	11	8	6	6	10	9	5	5	6	7	8	6	3	2	2	-	-	-
	-	-		_	_	_	2	2	2	3	4	4	4	3	4	5		14	13	7	6	5	6	7	6	5	5	5	7	6	5	4	2	2	-	_	-
13.7 14.7	-	-	-	_	_	_	-	2	2	3	4	4	3	4	3	6		14	10	5	4	3	4	4	4	3	3	3	5	4	4	4	3	-	_	-	-
15.7		-	-	_	_	_	_	۵	2	2	4	3	2	3	2	3	5	7	5	3	3	3	4	4	4	4	3	3	2	3	3	3	2	-	-	-	-
16.8	-	_	_	_	_	_	_	2	2	3	3	3	3	2	2	2	3	4	3	3	2	2	2	2	3	2	2	3	3	2	2	2	_	_	49	_	
17.7a	_	_	_	_	_	_	_	-	-	_	2	3	2	3	2	2	2	_	2	3	3	4	4	3	2	2	3	2	3	3	2	-	-	_	-	-	-
20.8	_	_	_	2	_	2	_	_	2	3	2	2	3	2	3	2	2	3	3	4	5	4	3	2	3	2	2	2	3	2	2	-	-	-	-	==>	-
21.9a	_	_	_	-	_	_	_	_	_	_	3	3	2	_	_	_	_	_	_	2	3	3	3	2	2	2	2	3	3	2	2	-	_	-	-	-	-
22.7	_	_	_	_	_	_	_	_	_	_	3	3	3	3	3	2	3	4	4	4	3	3	2	2	3	3	3	3	3	3	2	_	-	_	-	_	-
23.9a	_	_	_	_	_	_	_	_	_	-	3	3	2	2	_	-	2	3	3		_		_		-	40	quo	3	3	2	-	_	_	_		-	
24.7	_	_	_	_	_	_	_	_	_	_	3	3	2	3	2	3	3	4	4	2	3	2	3	2	3	3	4	3	3	4	2	2	2	-		_	-
25.7	_		_	_	_	_	_		2	3	3	3	2	_	_	_	_	_	_	_	_	_	2	2	3	3	3	3	4	4	3	3	2	-	-	_	_
26.7	_	_	_	_	_	_	_		2	2	3	3	3	2	3	3	3	2	2	3	3	3	4	3	2	3	3	3	4	4	5	2	_	-	-	_	-
28.7	-	-	_	_	_	-	_	_	-		2	2	3	3	3	2	2	2	2	2	3	7	8	4	4	4	3	2	2	3	2	-	_	-	_	-	çisi
29.7	_	_	_	_	_	_	_	_	_	-	_		2	2	3	3	2	2	4	8	.13	11	8	7	5	4	3	4	3	4	3	2	2	_	_	-	
30.7	_	_	_	_	_	_	2	2	3	2	2	2	2	3	3	3	2	3	3	4	5	11	14	14	13	7	5	6	5	4	4	3	2	2	_	_	-
- 50.1								~		~	~	~																									

Table 68b

Coronal observations at Sacramento Peak, New Mexico (6374A), west limb

Date				Deg	ree	s s	out	h o	ft	he.	so.	ar	equ	ato	r			-	<u> </u>				Deg	ree	s n	ort	h o	ı t.	ne	sol	ur	equ	ato	r			
GCT	90	85	80													15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1953																				Γ																	_
Nov. 2.7	3	3	3	3	3	2	2	2	3	4	7	6	5	7	8	8	7	9	8	5	4	4	3	2	2	3	4	3	-	2	2	-	-	2	2	3	3
3.7	4	3	3	3	3	2	-	2	2	3	4	5	6	8	14	13	12	11	12	5	4	8	10	2	-	-	2	-	2	3	2	2	3	3	4	4	3
4.8	3	2	2	2	-	2	-	2	con	2	2	3	5	6	8	7	7	6	5	4	4	3	5	2	-	-	3	-	-	2	2	3	2	2	2	3	3
7.7	3	3	2	5	2	3	3	2	2	3	3	3	3	4	5	4	5	6	8	5	5	4	3	2	3	7	8	4	-	-	-	-	2	3	3	5	4
8.7	3	3	3	4	4	2	2	-	-	2	3	3	4	4	5.	5	6	8	9	5	4	3	3	2	3	6	5	4	2	2	2	2	3	3	4	3	3
9.7	2	3	4	3	4	2	2	2	2	4	6	7	6	6	6	7	7	8	9	8	5	4	5	4	4	4	4	4	5	3	3	3	3	3	5	.7	5
11.7	3	2	3	2	3	3	2	2	2	3	4	4	4	4	5	6	7	6	18	11	8	5	3	4	3	5	4	3	2	2	2	3	3	3	4	3	3
12.7	3	3	4	4	2	3	2	2	3	3	4	4	3	4	4	6	7	8	11	16	13	10	5	4	3	8	7	6	4	2	-	-	2	3	3	3	3
13.7	3	3	4	3	2	2	-	-	2	2	4	2	3	4	5	4	5	8	17	14	5	4	4	3	3	7	6	5	3	2	-	3	4	4	4	5	5
14.7	3	3	4	. 4	3	2	2	3	2	2	3	2	3	5	5	4	4	10	11	10	8	7	5	5	4	4	5	4	3	3	2	2	2	3	3	3	4
15.7	2	2	2	3	2	2	-	2	-	2	-	2	3	5	8	7	6	8	7	8	7	7	6	4	5	5	4	4	3	2	2	-	3	2	3	4	4
16.8	3	3	3	3	3	2	-	-	2	3	2	2	2	5	7	7	7	8	8	10	7	5	5	4	4	4	3	3	4	3	2	-		2	3	3	4
17.7a	-	2	3	3	3	-	-	2	2	3	-	-	3	4	4	4	4	4	4	5	4	4	4	3	3	3	4	3	3	2	_	_	-	-	2	3	4
20.8	2	3	3	3	3	3	-	-	2	2	3	3	4	5	5	5	4	4	4	5	6	3	4	3	5	4	8	7	5	4	3	2	2	3	2	2	4
21.9a	-	-	-	-	en	-	-	-	-	-	2	2	3	3	2	-	_	-	2	3	4	3	2	3	3	3	3	3	-	2	_	_	_	2	2	-	2
22.7	3	4	3	3	2	2	-	-	2	3	5	4	4	4	4	3	3	3	4	5	8	9	8	7	6	7	8	5	4	2	2	2	2	3	3	2	4
23.9a	-	-	_	-	-	-	-	-	-	-	2	3	3	3	3	3	4	2	2	3	3	5	6	4	2	2	3	2	-	-	-	_	_	-	-	-	-
24.7	3	4	4	2	3	2	3	-	-	3	2	3	3	2	3	-	-	2	3	4	5	5	5	6	4	3	4	4	2	3	2	-	3	2	2	3	3
25.7	4	3	5	4	3	2	2	2	2	3	5	7	8	7	6	4	11	14	13	14	13	12	11	8	9	6	4	5	4	3	2	2	2	2	-	3	4
26.7	3	3	3	2	3	2	-	2	-	2	8	10	9	8	8	7	6	13	14	13	12	11	8	5	4	4	5	6	4	2	2	2	3	3	4	3	3
28.7	3	4	3	3	-	2	2	2	2	6	7	8	9	5	6	7	7	7	14	11	10	7	5	4	4	7	6	4	4	3	2	3	3	3	2	3	3
29.7	3	4	4	3	4	3	3	2	2	5	6	7	5	4	5	8	10	10	8	4	4	5	3	3	2	3	5	4	4	2	2	2	3	3	3	5	4
30.7	3	4	4	3	3	2	2	2	2	3	5	8	10	7	7	8	11	12	10	8	4	3	2	2	3	2	4	4	3	2	-	2	-	2	3	4	4

Table 69a

Coronal observations at Sacramento Peak, New Mexico (6702A), east limb

Date	Γ			Deg	ree	6 I	ort	h c	or i	the	80.	lar	egi	ato	r					T			Des	ree	8 8	out	h o	ft	he	oa.	lar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85 90	j
1953																				Т																	
Nov. 2.7	-	-	-	_	_	-	_	_	_	_	_	_	_	_	_	_	-	_	-	-	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_		
3.7	-	-	-	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-		
4.8a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
7.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-		
8.7	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	-	-	-	-	-	-	-		
9.7	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
11.7	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-		
12.7	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	- ,-	
13.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
14.7	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
15.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-		
16.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
17.7	-	_	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-		
20.8	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-		,
21.9a	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-		,
22.7	-	-	-	-	-	_	-	-	-	_	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-		,
23.9a	ru	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		,
24.7	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-		,
25.7	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-		
26.7	194	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-		
28.7	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-		,
29.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
30.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-			

<u>Table 69b</u>

Coronal observations at Sacramento Peak, New Mexico (6702A), west limb

Date	Degrees south of the solar equator	Degrees north of the solar equator
GCT	90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5	0° Degrees north of the solar equator 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
1953		
Nov. 2.7		2 2 3 2 2
3.7		2 2 3 3 2
4.8		2 2 3 3 2
7.7		
8.7		
9.7		
11.7		
12.7	2	3 2
13.7		
14.7		
15.7		
16.8		
17.7a		
20.8		
21.9a		
22.7		
23.9a		
24.7		
25.7		
26.7		
28.7		
29.7 30.7		
30.7		

Table 70a

Sudden Ionosphere Disturbances Observed at Washington, D. C.

October 1953

1953 Day	GCT Beginning Ind	Location of transmitters	Relative intensity at minimum ⁴	Other phenomena
Ostober 24,	1322 1420	Ohio, England	0.1	

*Ratio of received field intensity during SID to average field intensity before and after, for station KQ2XAU, (formerly W8XAL), 6080 kilocycles, 600 kilometers distant

Table 70b

Sudden Ionosphere Disturbances Observed at Washington, D. C.

November 1953

No sudden ionosphere disturbances were observed during the month of November.

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

Table 71 Solar Flares, November 1953

No solar flares were reported for the month of Movember 1953.

Table 72

Indices of Geomagnetic Activity for October 1953

Preliminary values of international character-figures, C; Geomagnetic planetary three-hour-range indices, Kp; Magnetically selected quiet and disturbed days

Gr. Day 1953	C	Values Kp three-hour interval 1 2 3 4 5 6 7 8	Sum	Final Selected Days
1 2 3 4 5	0.8 0.4 0.3 0.2 0.0	30 5- 2+ 2- 3+ 2- 30 1+ 2- 1+ 1- 2- 2- 2+ 2- 10 1- 3- 2- 2+ 20 2- 10 2- 20 10 0+ 1+ 10 10 2- 1+ 1- 1+ 1+ 2- 0+ 0+ 10 1-	210 120 14- 10- 7+	Five Quiet 5 6 12
6 7 8 9 10	0.2 0.7 0.7 0.5 0.6	2- 10 2- 10	10- 180 1.8+ 170 17+	13 14
11 12 13 14 15	0.5 0.2 0.1 0.0 1.6	1- 10 1- 2- 30 3+ 2+ 10 1- 10 1- 10 1- 0+ 20 1+ 1- 10 0+ 1+ 1- 2- 1+ 2- 1- 20 10 0+ 0+ 1- 0+ 00 00 00 20 2- 60 7+ 6- 5+	14- 8- 9- 5+ 280	Five Disturbed 15 16 18
16 17 18 19 20	1.6 1.4 1.5 1.6 1.4	60 5- 40 2+ 3- 5- 6- 60 5- 4- 4+ 4+ 4- 5+ 4+ 40 4+ 5- 50 4+ 5+ 60 5+ 5+ 6+ 5+ 6- 60 5+ 5- 4+ 4- 4+ 5+ 5- 40 5- 5- 5- 5-	360 34+ 40+ 41+ 370	19 20
21 22 23 24 25	1.0 0.9 0.6 0.7 0.3	3+ 30 5+ 6- 4+ 3- 1+ 20 2- 4+ 5- 3+ 30 40 30 2+ 30 40 3+ 3- 2+ 3- 20 10 0+ 0+ 2+ 3- 5- 2+ 10 1+ 3- 4- 20 2+ 2- 10 2- 20	28- 26+ 210 150 170	Ten Quiet 2 3 4
26 27 28 29 30 31	0.1 0.8 0.4 0.6 0.3 0.2	1+ 2- 2+ 20	110 25+ 140 200 14- 12+	5 6 12 13 14 26
Mean:	0.65			30

JULY 1952

69.2°N, 53.5°W

Index of Tables and Graphs of Ionospheric Data

in CRPL-F112

	Table page Figu	re page					
Anchorage, Alaska							
October 1953	14	48					
Baguio, P. I.							
August 1953	19	62					
Buenos Aires, Argentina							
September 1953	17	58					
Capetown, Union of South Africa							
August 1953	19	63					
July 1953	20	65					
De Bilt, Holland	16	55					
September 1953	10	<i></i>					
September 1953	18	59					
Fairbanks, Alaska	±1.00 €	27					
October 1953	14	48					
Formosa, China		. •					
September 1953	17	57					
August 1953	18	61					
Godhavn, Greenland							
July 1953	19	64					
June 1953	20	66					
May 1953	20	66					
April 1953	20	67					
March 1953	21	68					
February 1953	21	68					
January 1953	21	69					
December 1952	21	69					
November 1952	21	70					
July 1952	21	70					
Graz, Austria	3.5	50					
October 1953	15	50 56					
September 1953	17 18	50 61					
July 1953	19	64					
Guam I.	2 7	04					
October 1953	16	53					
Huancayo, Peru	m 4						
October 1953	16	54					
September 1953	17	58					
Johannesburg, Union of South Africa							
August 1953	19	62					
July 1953	20	65					
Kiruna, Sweden							
September 1953	16	54					
August 1953	18	59					

Index (CRPL-F112, concluded)

									Table page	Figure page
Leopoldville, Belgian Congo									3.5	
September 1953 Lindau/Harz, Germany	•	• •	•	•	0	•	٠	•	17	57
August 1953									18	60
Lulea, Sweden	•	• •	•	•	•	•	•	•	20	00
September 1953	•		•	•	۰	٠	•		16	55
August 1953									18	60
Maui, Hawaii										
October 1953		• •	•	•	0	•	•	•	15	52
Okinawa I.									3.0	73
October 1953	· · · · ·	• •	٠	•	•	6	•	•	15	51
October 1953									14	49
Panama Canal Zone		•	•	•	•	•	•	•	49 Y	• /
October 1953			•		0		•	•	16	53
Puerto Rico, W. I.										-
October 1953	•	• •	٠	0	•		0	•	15	52
Reykjavik, Iceland									20	1=
May 1953	• •	• •	•	•	•	0	•	•	20	67
San Francisco, California October 1953									15	50
Schwarzenburg, Switzerland	• •	• •	۰	9	•	•	•	•	* 5	50
September 1953									17	56
Tromso, Morway				•	•			•	-1	
October 1953			•	•	•	•	•	•	14	47
Upsala, Sweden										
October 1953	• (• •	٠	•	•	•	•	•	14	49
Washington, D. C.									14	47
November 1953	• •	• •	•	•	•	•	•	•	14	47
August 1953									19	63
White Sands, New Mexico		•	•	9	•	•	•	•	-/	0,7
October 1953									15	51

CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]

Daily:

Radio disturbance forecasts, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweekly:

CRPL-J. North Atlantic Radio Propagation Forecast (of days most likely to be disturbed during following month).

North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following CRPL—Jp. month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly:

CRPL-D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 16-1B-2 series.)

CRPL-F. Ionospheric Data.

Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific. *IRPL—A.

*IRPL-H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards:

NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:

IRPL—C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944. IRPL—G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions. (G1, G3, available. Others out of print; see second footnote.)

IRPL—R. Nonscheduled reports:

Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable R4. Frequencies.

R5. Criteria for Ionospheric Storminess.

**R6.

R6. Experimental Studies of Ionospheric Propagation as Applied to the Loran System.
R7. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

R9. An Automatic Instantaneous Indicator of Skip Distance and MUF. R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

**R11. A Nomographic Method for both Prediction and Observation Correlation of Ionosphere Character-

**R12. Short Time Variations in Ionosphere Characteristics. R14. A Graphical Method for Calculating Ground Reflection Coefficients.

**R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.

**R17. Japanese Ionospheric Data—1943.

R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures-October 1943 Through May 1945.

**R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)

**R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.
**R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System. **R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.
**R26. The Ionosphere as a Measure of Solar Activity.

R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.

**R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.

**R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

**R33. Ionospheric Data on File at IRPL.

**R34. The Interpretation of Recorded Values of fEs.

**R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

Reports on tropospheric propagation:

Radar operation and weather. (Superseded by JANP 101.) Radar coverage and weather. (Superseded by JANP 102.) T1. T2.

Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group CRPL--T3. WPG---5.)

Items bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNC 14 () Series. **Out of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.