Name/ID #: Aaron Garcia/030556771

Name of Assignment: Computer Assignment 3

Due Date: Nov 27th, 2022

Submission Date: Nov 26th, 2022 Hand Written Exercises 1 and 2

9(Computer Assignment 3 D Aboxaf 100 crinamental light bulbs contains: Yogreen, 60 red, and 100 total bulbs Find probability 3 are red given samplings done a) with replacement: use Binomial: P(2x=x3)= Cx px q(n-x) p=.60, q=.40 Ex=33-4C3 (0.6)3 (0.4)=3456
07	N=a+b b) without replacement: Use Hyper Geometric: P(4x=x3) = aCx bCn-x NCn P(4x=33) = 60C3 40C1 ~ 3491 100 Cu Prisonof 40 VV cons and 60 Humans, 100 total. Xis RV of volcans selected. 4 are sent to be executed. From 0 = X = 4, Create probability table using Binomial / Hypergeometric
	Probability = xwlants Binamia Hypergeometric P(1/4 = 03) 1296 1244 1244 1246 1244 1246 1244 1246

Binomial

Trials: 25 Prob of Success: 0.1

Trials: 100 Prob of Success: 0.1

Trials: 25 Prob of Success: 0.15

Trials: 100 Prob of Success: 0.15

Trials: 25 Prob of Success: 0.25

Trials: 100 Prob of Success: 0.25

Trials: 25 Prob of Success: 0.5

Trials: 100 Prob of Success: 0.5

Hyper-Geometric:

Green: 3 Red: 17

Green: 5 Red: 15

Green: 10 Red: 30

Green: 25 Red: 75

Green: 50 Red: 50

Binomial VS Error:

Vulcan (40) VS Humans (60):

```
Binomial
[0, 1, 2, 3, 4]
[0.1296, 0.3455999999999996, 0.345600000000001, 0.1536000000000004, 0.025600000000000005]

Hypergeometric
[0, 1, 2, 3, 4]
[0.12455782185413997, 0.3490745876607438, 0.35208385134747433, 0.15117724690626017, 0.023306492231381776]

Error
[0, 1, 2, 3, 4]
[0.005242178145860019, -0.003474587660743822, -0.0064838513474742565, 0.0024227530937398767, 0.0022935077686182283]
```

Poisson:

L=2

L=4

L=6

L=8

L=10

L=12

What happens to the Poisson distribution as the value of the parameter changes?

- If you have N number of attempts trials, the closer Lambda is to N/2, the more it resembles a standard bell curve.

How might it play a role in the application of the central limit theorem?

- The closer you are to the Lth (Lambda-th) trial in the Poisson distribution, the higher the odds you have of succeeding on that trial number. (probability is higher)
- Taking such probabilities of one graph, generating binomial distributions based on those probabilities, and plotting them will result in them being normally distributed at a mean of said Lambda, as dictated by the CLT.