

Θέμα: Εύρεση Δικριτηριακά Βέλτιστων Διαδρομών

Νταλαγιώργος Αχιλλέας

Επιβλέπων: Σπυρίδων Κοντογιάννης

Πανεπιστήμιο Ιωαννίνων

Αντικείμενο εργασίας

Πρόβλημα

Εύρεση Διαδρομής που ελαχιστοποιεί και τα δύο κόστη κριτηρίων.

Λύση

Συνήθως δεν υπάρχει μια διαδρομή που ελαχιστοποιεί και τα δύο κόστη!

Οι αλγόριθμοι εύρεσης δικριτηριακά βέλτιστων διαδρομών παράγουν ως λύση Pareto βέλτιστο μέτωπο

BOA*ε και PPA* υπολογίζουν το κατά προσέγγιση Pareto βέλτιστο σύνολο.

Βασικές Έννοιες

Χρήσιμες Έννοιες

<u>Κυριαρχία</u>

- $c_1(\pi_v) < c_1(\pi_v') \land c_2(\pi_v) < c_2(\pi_v') \rightarrow \pi_v$ $\kappa v \rho \iota \alpha \rho \chi \epsilon \iota \alpha v \sigma \tau \eta \rho \alpha \pi_v'$
- $c_1(\pi_v) \leq c_1(\pi_v') \wedge c_2(\pi_v) \leq c_2(\pi_v') \rightarrow \pi_v$ κυριαρχει ασθενως π_v'

Κατά Pareto βέλτιστο Μέτωπο Π_v

 $if \pi \in \text{Pareto frontier:}$ $\to \pi \, \delta \text{en κυραρχείται αυστηρά από κανένα } \pi'$ $If \pi' \leftarrow \Pi_v$ $\to \pi' \text{κυριαρχείται ασθενώς } \alpha \pi \text{ό} \pi \in \Pi_v$

Κατά προσέγγιση Κυριαρχία

Έστω $\varepsilon_1, \varepsilon_2 \geq 0 \in \Re : \pi_v$ ($\varepsilon_1, \varepsilon_2$)-κυριαρχεί π'_v $c_1(\pi_v) \leq (1 + \varepsilon_1) * c_1(\pi'_v) \wedge c_2(\pi_v) \leq (1 + \varepsilon_2) * c_2(\pi'_v).$ $\varepsilon_1, \varepsilon_2 \rightarrow \pi \alpha \rho \acute{\alpha} \gamma o \nu \tau \varepsilon \varsigma \pi \rho o \sigma \acute{\varepsilon} \gamma \gamma \iota \sigma \eta \varsigma.$

Κατά προσέγγιση Pareto Μέτωπο $\Pi_v^{(\varepsilon_1, \varepsilon_2)}$

- $\Pi_v^{(\varepsilon_1,\varepsilon_2)} \subseteq \Pi_v$.
- $\forall \pi \in \Pi_v^{(\varepsilon_1, \varepsilon_2)}(\varepsilon_1, \varepsilon_2)$ kuriarxei $\forall \pi \in \Pi_v$

 $BOA^*\varepsilon$ PPA^*

ΕΙΣΟΔΟΣ

- G=(V,E)
- v_{start}, v_{goal}
- c_1, c_2
- $h_1, h_2 \rightarrow \min_{cost} \pi_v \ \alpha\pi \acute{o} \ v_{goal} \ \pi \rho o \varsigma \ \kappa \alpha \theta \varepsilon \ v \ .$
- $\varepsilon_1, \varepsilon_2$

ΕΞΟΔΟΣ

*ΒΟΑ*ε / ΡΡΑ**Το κατά προσέγγιση
Pareto βέλτιστο μέτωπο

Algorithm 2: Bi-Objective A* (BOA*) **Input**: A search problem $(S, E, \mathbf{c}, s_{start}, s_{goal})$ and a consistent heuristic function h Output: A cost-unique Pareto-optimal solution set 1 $sols \leftarrow \emptyset$ 2 for each $s \in S$ do $g_2^{\min}(s) \leftarrow \infty$ 4 $x \leftarrow$ new node with $s(x) = s_{start}$ $\mathbf{g}(x) \leftarrow (0,0)$ 6 $parent(x) \leftarrow null$ 7 $\mathbf{f}(x) \leftarrow (h_1(s_{start}), h_2(s_{start}))$ s Initialize Open and add x to it 9 while Open ≠ Ø do Remove a node x from Open with the lexicographically smallest f-value of all nodes in Open if $g_2(x) \ge g_2^{\min}(s(x)) \lor (1+\epsilon) * f_2(x) \ge g_2^{\min}(s_{goal})$ then 11 continue 12 $g_2^{\min}(s(x)) \leftarrow g_2(x)$ 13 if $s(x) = s_{qoal}$ then 14 Add x to sols 15 continue 16 for each $t \in Succ(s(x))$ do 17 $y \leftarrow \text{new node with } s(y) = t$ $\mathbf{g}(y) \leftarrow \mathbf{g}(x) + \mathbf{c}(s(x), t)$ $parent(y) \leftarrow x$ $\mathbf{f}(y) \leftarrow \mathbf{g}(y) + \mathbf{h}(t)$ 21 if $g_2(y) \geq g_2^{\min}(t) \vee (1+\varepsilon) / f_2(x) \geq g_2^{\min}(s_{qoal})$ then continue 23 Add y to Open 24 25 return sols

Ψευδοκώδικας ΒΟΑ*ε

Αρχικοποίηση 1^{η}

Παράδειγμα ΒΟΑ*ε

Αρχικός κά**ξιάμοβο ς x του BOA* ≠ κορυ**φή (στομηροσφή (εστοροσφίλ)

Open

 $(s_{start}, (0,0), (3,6), null)$

Αρχικοποίηση 2^η

Παράδειγμα ΒΟΑ*ε

```
Algorithm 2: Bi-Objective A* (BOA*)
   Input: A search problem (S, E, \mathbf{c}, s_{start}, s_{goal}) and a
               consistent heuristic function h
   Output: A cost-unique Pareto-optimal solution set
1 \ sols \leftarrow \emptyset
2 for each s \in S do
g_2^{\min}(s) \leftarrow \infty
4 x \leftarrow new node with s(x) = s_{start}
\mathbf{g}(x) \leftarrow (0,0)
6 parent(x) \leftarrow null
7 \mathbf{f}(x) \leftarrow (h_1(s_{start}), h_2(s_{start}))
s Initialize Open and add x to it
9 while Open \neq \emptyset do
         Remove a node x from Open with the
          lexicographically smallest f-value of all nodes in
          Open
        if g_2(x) \ge g_2^{\min}(s(x)) \lor (1+\varepsilon) f_2(x) \ge g_2^{\min}(s_{goal}) then
             continue
         g_2^{\min}(s(x)) \leftarrow g_2(x)
        if s(x) = s_{goal} then
14
              Add x to sols
15
              continue
16
         for each t \in Succ(s(x)) do
17
              y \leftarrow \text{new node with } s(y) = t
18
              \mathbf{g}(y) \leftarrow \mathbf{g}(x) + \mathbf{c}(s(x), t)
19
              parent(y) \leftarrow x
20
              \mathbf{f}(y) \leftarrow \mathbf{g}(y) + \mathbf{h}(t)
21
              if g_2(y) \geq g_2^{\min}(t) \vee (1+\varepsilon) / f_2(x) \geq g_2^{\min}(s_{qoal}) then
22
23
                   continue
              Add y to Open
24
25 return sols
```

Ψευδοκώδικας ΒΟΑ*ε

 ∞

00

00

00

Αρχικοποίηση 3^η

 g_2^{min}

Παράδειγμα ΒΟΑ*ε

```
Algorithm 2: Bi-Objective A* (BOA*)
   Input: A search problem (S, E, \mathbf{c}, s_{start}, s_{goal}) and a
              consistent heuristic function h
   Output: A cost-unique Pareto-optimal solution set
1 sols ← Ø
2 for each s \in S do
g_2^{\min}(s) \leftarrow \infty
4 x \leftarrow new node with s(x) = s_{start}
\mathbf{g}(x) \leftarrow (0,0)
6 parent(x) \leftarrow null
7 \mathbf{f}(x) \leftarrow (h_1(s_{start}), h_2(s_{start}))
s Initialize Open and add x to it
9 while Open \neq \emptyset do
        Remove a node x from Open with the
         lexicographically smallest f-value of all nodes in
          Open
        if g_2(x) \geq g_2^{\min}(s(x)) (1+\epsilon) f_2(x) \geq g_2^{\min}(s_{goal}) hen
11
                entinue
12
        g_2^{\min}(s(x)) \leftarrow g_2(x)
13
        if s(x) = s_{goal} then
14
             Add x to sols
15
             continue
16
        for each t \in Succ(s(x)) do
17
             y \leftarrow \text{new node with } s(y) = t
18
             \mathbf{g}(y) \leftarrow \mathbf{g}(x) + \mathbf{c}(s(x), t)
19
             parent(y) \leftarrow x
20
21
             (if g_2(y) \ge g_2^{\min}(t) \lor (1+\varepsilon) * f_2(x) \ge g_2^{\min}(s_{goal}) then
22
23
             Add y to Open
24
25 return sols
```

Ψευδοκώδικας ΒΟΑ*ε

Κορυφή εκκίνησης (3,6)¥goal Κορυφή στόχος

επανάληψη 1

<u>εκτέλεση</u>

 $(s_{start}, (0, 0), (3, 6), null)$ dominated


```
Algorithm 2: Bi-Objective A* (BOA*)
   Input: A search problem (S, E, \mathbf{c}, s_{start}, s_{goal}) and a
               consistent heuristic function h
   Output: A cost-unique Pareto-optimal solution set
1 sols \leftarrow \emptyset
2 for each s \in S do
g_2^{\min}(s) \leftarrow \infty
4 x \leftarrow new node with s(x) = s_{start}
\mathbf{g}(x) \leftarrow (0,0)
6 parent(x) \leftarrow null
7 \mathbf{f}(x) \leftarrow (h_1(s_{start}), h_2(s_{start}))
 8 Initialize Open and add x to it
9 while Open ≠ Ø do
         Remove a node x from Open with the
           lexicographically smallest f-value of all nodes in
           Open
        if g_2(x) \geq g_2^{\min}(s(x)) \lor (1 + \epsilon) f_2(x) \geq g_2^{\min}(s_{goal}) then
              continue
12
         q_2^{\min}(s(x)) \leftarrow q_2(x)
        if s(x) = s_{qoal} then
              Add x to sols
15
              continue
16
        for each t \in Succ(s(x)) do
17
              y \leftarrow \text{new node with } s(y) = t
18
              \mathbf{g}(y) \leftarrow \mathbf{g}(x) + \mathbf{c}(s(x), t)
              parent(y) \leftarrow x
              \mathbf{f}(y) \leftarrow \mathbf{g}(y) + \mathbf{h}(t)
21
              if g_2(y) \geq g_2^{\min}(t) \vee (1+\varepsilon) / f_2(x) \geq g_2^{\min}(s_{goal}) then
               continue
23
              Add y to Open
25 return sols
```

Κορυφή εκκίνησης (3,6)(1, 1)Ngoal | Κορυφή στόχος

επανάληψη 2

$$(s_2, (1, 5), (3, 9), s_{start})$$
 -> not dominated

Open $(s_{goal}, (3,9), (3,9), s_2)$ $(s_1, (1,1), (4,6), s_{start})$ $(s_3, (1,1), (5,6), s_{start})$ O ∞ 5 ∞ ∞ g_2^{min}

```
Algorithm 2: Bi-Objective A* (BOA*)
   Input: A search problem (S, E, \mathbf{c}, s_{start}, s_{goal}) and a
               consistent heuristic function h
   Output: A cost-unique Pareto-optimal solution set
1 sols \leftarrow \emptyset
2 for each s \in S do
g_2^{\min}(s) \leftarrow \infty
4 x \leftarrow new node with s(x) = s_{start}
\mathbf{g}(x) \leftarrow (0,0)
6 parent(x) \leftarrow null
7 \mathbf{f}(x) \leftarrow (h_1(s_{start}), h_2(s_{start}))
 8 Initialize Open and add x to it
9 while Open \neq \emptyset do
         Remove a node x from Open with the
           lexicographically smallest f-value of all nodes in
           Open
         if g_2(x) \geq g_2^{\min}(s(x)) \lor (1 + \epsilon) f_2(x) \geq g_2^{\min}(s_{goal}) then
11
              continue
12
         g_2^{\min}(s(x)) \leftarrow g_2(x)
13
         if s(x) = s_{qoal} then
14
              Add x to sols
15
              continue
16
        for each t \in Succ(s(x)) do
17
              y \leftarrow \text{new node with } s(y) = t
18
              \mathbf{g}(y) \leftarrow \mathbf{g}(x) + \mathbf{c}(s(x), t)
19
              parent(y) \leftarrow x
20
              \mathbf{f}(y) \leftarrow \mathbf{g}(y) + \mathbf{h}(t)
21
              if g_2(y) \geq g_2^{\min}(t) \vee (1+\varepsilon) / f_2(x) \geq g_2^{\min}(s_{goal}) then
22
                continue
23
              Add y to Open
24
25 return sols
```

επανάληψη 3

 $(s_{goal}, (3, 9), (3, 9), s_2)$

Open (s₁, (1,1), (4,6), s_{start}) (s₃, (1,1), (5,6), s_{start})

 1^{st} : $(s_{goal}, (3,9), (3,9), s_2)$

sols

```
Algorithm 2: Bi-Objective A* (BOA*)
   Input: A search problem (S, E, \mathbf{c}, s_{start}, s_{goal}) and a
               consistent heuristic function h
   Output: A cost-unique Pareto-optimal solution set
1 sols \leftarrow \emptyset
2 for each s \in S do
g_2^{\min}(s) \leftarrow \infty
4 x \leftarrow new node with s(x) = s_{start}
\mathbf{g}(x) \leftarrow (0,0)
6 parent(x) \leftarrow null
7 \mathbf{f}(x) \leftarrow (h_1(s_{start}), h_2(s_{start}))
 8 Initialize Open and add x to it
9 while Open \neq \emptyset do
         Remove a node x from Open with the
           lexicographically smallest f-value of all nodes in
          Open
         if g_2(x) \geq g_2^{\min}(s(x)) \lor (1 + \epsilon) f_2(x) \geq g_2^{\min}(s_{goal}) then
11
              continue
12
         g_2^{\min}(s(x)) \leftarrow g_2(x)
13
         if s(x) = s_{qoal} then
14
              Add x to sols
15
              continue
16
        for each t \in Succ(s(x)) do
17
              y \leftarrow \text{new node with } s(y) = t
18
              \mathbf{g}(y) \leftarrow \mathbf{g}(x) + \mathbf{c}(s(x), t)
19
              parent(y) \leftarrow x
20
              \mathbf{f}(y) \leftarrow \mathbf{g}(y) + \mathbf{h}(t)
21
              if g_2(y) \geq g_2^{\min}(t) \vee (1+\varepsilon) / f_2(x) \geq g_2^{\min}(s_{goal}) then
22
                continue
23
              Add y to Open
24
25 return sols
```

επανάληψη 4

 $(s_1, (1, 1), (4, 6), s_{start})$

 g_2^{min}

```
Algorithm 2: Bi-Objective A* (BOA*)
   Input: A search problem (S, E, \mathbf{c}, s_{start}, s_{goal}) and a
               consistent heuristic function h
   Output: A cost-unique Pareto-optimal solution set
1 sols \leftarrow \emptyset
2 for each s \in S do
g_2^{\min}(s) \leftarrow \infty
4 x \leftarrow new node with s(x) = s_{start}
\mathbf{g}(x) \leftarrow (0,0)
6 parent(x) \leftarrow null
7 \mathbf{f}(x) \leftarrow (h_1(s_{start}), h_2(s_{start}))
 8 Initialize Open and add x to it
9 while Open \neq \emptyset do
         Remove a node x from Open with the
           lexicographically smallest f-value of all nodes in
          Open
        if g_2(x) \ge g_2^{\min}(s(x)) \lor (1+\varepsilon) / f_2(x) \ge g_2^{\min}(s_{goal}) then
11
              continue
12
         g_2^{\min}(s(x)) \leftarrow g_2(x)
13
        if s(x) = s_{qoal} then
14
              Add x to sols
15
              continue
16
        for each t \in Succ(s(x)) do
17
              y \leftarrow \text{new node with } s(y) = t
18
              \mathbf{g}(y) \leftarrow \mathbf{g}(x) + \mathbf{c}(s(x), t)
              parent(y) \leftarrow x
20
              \mathbf{f}(y) \leftarrow \mathbf{g}(y) + \mathbf{h}(t)
21
              if g_2(y) \ge g_2^{\min}(t) \lor (1+\varepsilon) f_2(x) \ge g_2^{\min}(s_{goal}) then
22
               continue
23
              Add y to Open
24
25 return sols
```

επανάληψη 5

$$(s_2,(2,3),(4,7),s_1)$$

```
Open
(s_{goal}, (4,7), (4,7), s_2)
(s_{3}, (1,1), (5,6), s_{start})
(s_{goal}, (8,6), (8,6), s_1)

O 1 3 \infty 9 g_2^{min}
```

```
Algorithm 2: Bi-Objective A* (BOA*)
   Input: A search problem (S, E, \mathbf{c}, s_{start}, s_{goal}) and a
               consistent heuristic function h
   Output: A cost-unique Pareto-optimal solution set
1 sols \leftarrow \emptyset
2 for each s \in S do
g_2^{\min}(s) \leftarrow \infty
4 x \leftarrow new node with s(x) = s_{start}
\mathbf{g}(x) \leftarrow (0,0)
6 parent(x) \leftarrow null
7 \mathbf{f}(x) \leftarrow (h_1(s_{start}), h_2(s_{start}))
 8 Initialize Open and add x to it
9 while Open \neq \emptyset do
         Remove a node x from Open with the
           lexicographically smallest f-value of all nodes in
          Open
        if g_2(x) \ge g_2^{\min}(s(x)) \lor (1+\varepsilon) / f_2(x) \ge g_2^{\min}(s_{goal}) then
11
              continue
12
         g_2^{\min}(s(x)) \leftarrow g_2(x)
13
        if s(x) = s_{qoal} then
14
              Add x to sols
15
              continue
16
        for each t \in Succ(s(x)) do
17
              y \leftarrow \text{new node with } s(y) = t
18
              \mathbf{g}(y) \leftarrow \mathbf{g}(x) + \mathbf{c}(s(x), t)
19
              parent(y) \leftarrow x
20
              \mathbf{f}(y) \leftarrow \mathbf{g}(y) + \mathbf{h}(t)
21
              if g_2(y) \ge g_2^{\min}(t) \lor (1+\varepsilon) f_2(x) \ge g_2^{\min}(s_{goal}) then
22
               continue
23
              Add y to Open
24
25 return sols
```

επανάληψη 6

 $(s_{goal}, (4,7), (4,7), s_2)$ Open $(s_3,(1,1),(5,6),s_{start})$ $(s_{goal}, (8,6), (8,6), s_1)$ g_2^{min} ∞ $(s_{goal}, (3,9), (3,9), s_2)$ $(s_{goal}, (4,7), (4,7), s_2)$ sols

 2^{nd} :

```
Algorithm 2: Bi-Objective A* (BOA*)
   Input: A search problem (S, E, \mathbf{c}, s_{start}, s_{goal}) and a
               consistent heuristic function h
   Output: A cost-unique Pareto-optimal solution set
1 sols \leftarrow \emptyset
2 for each s \in S do
g_2^{\min}(s) \leftarrow \infty
4 x \leftarrow new node with s(x) = s_{start}
\mathbf{g}(x) \leftarrow (0,0)
6 parent(x) \leftarrow null
7 \mathbf{f}(x) \leftarrow (h_1(s_{start}), h_2(s_{start}))
 8 Initialize Open and add x to it
9 while Open \neq \emptyset do
         Remove a node x from Open with the
           lexicographically smallest f-value of all nodes in
           Open
         if g_2(x) \geq g_2^{\min}(s(x)) \lor (1 + \epsilon) f_2(x) \geq g_2^{\min}(s_{goal}) then
11
              continue
12
         g_2^{\min}(s(x)) \leftarrow g_2(x)
13
         if s(x) = s_{qoal} then
14
              Add x to sols
15
              continue
16
        for each t \in Succ(s(x)) do
17
              y \leftarrow \text{new node with } s(y) = t
18
              \mathbf{g}(y) \leftarrow \mathbf{g}(x) + \mathbf{c}(s(x), t)
19
              parent(y) \leftarrow x
20
              \mathbf{f}(y) \leftarrow \mathbf{g}(y) + \mathbf{h}(t)
21
              if g_2(y) \geq g_2^{\min}(t) \vee (1+\varepsilon) / f_2(x) \geq g_2^{\min}(s_{goal}) then
22
                continue
23
              Add y to Open
24
25 return sols
```

Επανάληψη 7

 $(s_3, (1, 1), (5, 6), s_{start})$


```
Algorithm 2: Bi-Objective A* (BOA*)
   Input: A search problem (S, E, \mathbf{c}, s_{start}, s_{goal}) and a
               consistent heuristic function h
   Output: A cost-unique Pareto-optimal solution set
1 sols \leftarrow \emptyset
2 for each s \in S do
g_2^{\min}(s) \leftarrow \infty
4 x \leftarrow new node with s(x) = s_{start}
\mathbf{g}(x) \leftarrow (0,0)
6 parent(x) \leftarrow null
7 \mathbf{f}(x) \leftarrow (h_1(s_{start}), h_2(s_{start}))
 8 Initialize Open and add x to it
9 while Open \neq \emptyset do
         Remove a node x from Open with the
           lexicographically smallest f-value of all nodes in
           Open
         if g_2(x) \geq g_2^{\min}(s(x)) \lor (1 + \epsilon) f_2(x) \geq g_2^{\min}(s_{goal}) then
11
              continue
12
         g_2^{\min}(s(x)) \leftarrow g_2(x)
13
         if s(x) = s_{qoal} then
14
              Add x to sols
15
              continue
16
        for each t \in Succ(s(x)) do
17
              y \leftarrow \text{new node with } s(y) = t
18
              \mathbf{g}(y) \leftarrow \mathbf{g}(x) + \mathbf{c}(s(x), t)
              parent(y) \leftarrow x
              \mathbf{f}(y) \leftarrow \mathbf{g}(y) + \mathbf{h}(t)
21
              if g_2(y) \geq g_2^{\min}(t) \vee \text{(1+$\varepsilon$)*} f_2(x) \geq g_2^{\min}(s_{goal}) then
22
                continue
23
              Add y to Open
24
25 return sols
```

Επανάληψη 8

 $(s_2,(3,2),(5,6),s_3)$

Open (s_{goal}, (5,6), (5,6), s₂) (s_{goal}, (8,6), (8,6), s₁)

0 1 2 3 7

 g_2^{min}

```
Algorithm 2: Bi-Objective A* (BOA*)
   Input: A search problem (S, E, \mathbf{c}, s_{start}, s_{goal}) and a
               consistent heuristic function h
   Output: A cost-unique Pareto-optimal solution set
1 sols \leftarrow \emptyset
2 for each s \in S do
g_2^{\min}(s) \leftarrow \infty
4 x \leftarrow new node with s(x) = s_{start}
\mathbf{g}(x) \leftarrow (0,0)
6 parent(x) \leftarrow null
7 \mathbf{f}(x) \leftarrow (h_1(s_{start}), h_2(s_{start}))
 8 Initialize Open and add x to it
9 while Open \neq \emptyset do
         Remove a node x from Open with the
           lexicographically smallest f-value of all nodes in
          Open
        if g_2(x) \ge g_2^{\min}(s(x)) \lor (1+\varepsilon) / f_2(x) \ge g_2^{\min}(s_{goal}) then
11
              continue
12
        g_2^{\min}(s(x)) \leftarrow g_2(x)
13
        if s(x) = s_{qoal} then
14
              Add x to sols
15
              continue
16
        for each t \in Succ(s(x)) do
17
              y \leftarrow \text{new node with } s(y) = t
18
              \mathbf{g}(y) \leftarrow \mathbf{g}(x) + \mathbf{c}(s(x), t)
19
              parent(y) \leftarrow x
20
              \mathbf{f}(y) \leftarrow \mathbf{g}(y) + \mathbf{h}(t)
21
              if g_2(y) \geq g_2^{\min}(t) \vee (1+\varepsilon) / f_2(x) \geq g_2^{\min}(s_{goal}) then
22
               continue
23
              Add y to Open
24
25 return sols
```

Επανάληψη 9

 $(s_{aoal}, (5, 6), (5, 6), s_2)$ Open $(s_{aoal}, (8,6), (8,6), s_1)$ g_2^{min} $(s_{goal}, (3,9), (3,9), s_2)$ $(s_{goal}, (4,7), (4,7), s_2)$ $(s_{goal}, (5,6), (5,6), s_2)$ sols 2^{nd} :

 3^{rd} :

```
Algorithm 2: Bi-Objective A* (BOA*)
   Input: A search problem (S, E, \mathbf{c}, s_{start}, s_{goal}) and a
               consistent heuristic function h
   Output: A cost-unique Pareto-optimal solution set
1 sols \leftarrow \emptyset
2 for each s \in S do
g_2^{\min}(s) \leftarrow \infty
4 x \leftarrow new node with s(x) = s_{start}
\mathbf{g}(x) \leftarrow (0,0)
6 parent(x) \leftarrow null
7 \mathbf{f}(x) \leftarrow (h_1(s_{start}), h_2(s_{start}))
 8 Initialize Open and add x to it
9 while Open \neq \emptyset do
         Remove a node x from Open with the
           lexicographically smallest f-value of all nodes in
           Open
         if g_2(x) \geq g_2^{\min}(s(x)) \lor (1 + \epsilon) f_2(x) \geq g_2^{\min}(s_{goal}) then
11
              continue
12
         g_2^{\min}(s(x)) \leftarrow g_2(x)
13
         if s(x) = s_{qoal} then
14
              Add x to sols
15
              continue
16
        for each t \in Succ(s(x)) do
17
              y \leftarrow \text{new node with } s(y) = t
18
              \mathbf{g}(y) \leftarrow \mathbf{g}(x) + \mathbf{c}(s(x), t)
19
              parent(y) \leftarrow x
20
              \mathbf{f}(y) \leftarrow \mathbf{g}(y) + \mathbf{h}(t)
21
              if g_2(y) \geq g_2^{\min}(t) \vee (1+\varepsilon) / f_2(x) \geq g_2^{\min}(s_{goal}) then
22
                continue
23
              Add y to Open
24
25 return sols
```

Κορυφή εκκίνησης (3,6)(1, 1)(2, 4)Ngoal | Κορυφή στόχος

Επανάληψη 10

 $(s_{goal}, (8, 6), (8, 6), s_1)$ -> Dominated

Return

Pareto -optimal frontier

```
1^{st}: (s_{goal}, (3,9), (3,9), s_2)

2^{nd}: (s_{goal}, (4,7), (4,7), s_2)

3^{rd}: (s_{goal}, (5,6), (5,6), s_2)
```

```
Algorithm 2: Bi-Objective A* (BOA*)
   Input: A search problem (S, E, \mathbf{c}, s_{start}, s_{goal}) and a
               consistent heuristic function h
   Output: A cost-unique Pareto-optimal solution set
1 \ sols \leftarrow \emptyset
2 for each s \in S do
g_2^{\min}(s) \leftarrow \infty
4 x \leftarrow new node with s(x) = s_{start}
g(x) \leftarrow (0,0)
6 parent(x) \leftarrow null
7 \mathbf{f}(x) \leftarrow (h_1(s_{start}), h_2(s_{start}))
 8 Initialize Open and add x to it
 9 while Open \neq \emptyset do
         Remove a node x from Open with the
           lexicographically smallest f-value of all nodes in
          Open
         if g_2(x) \geq g_2^{\min}(s(x)) \vee \textit{(1+\epsilon)} \, f_2(x) \geq g_2^{\min}(s_{goal}) then
              continue
12
         g_2^{\min}(s(x)) \leftarrow g_2(x)
13
         if s(x) = s_{goal} then
              Add x to sols
15
              continue
16
        for each t \in Succ(s(x)) do
17
              y \leftarrow \text{new node with } s(y) = t
18
              \mathbf{g}(y) \leftarrow \mathbf{g}(x) + \mathbf{c}(s(x), t)
              parent(y) \leftarrow x
20
              \mathbf{f}(y) \leftarrow \mathbf{g}(y) + \mathbf{h}(t)
              if g_2(y) \ge g_2^{\min}(t) \lor (1+\varepsilon) f_2(x) \ge g_2^{\min}(s_{goal}) then
                  continue
23
              Add y to Open
25 return sols
```

κόμβος χ του ΡΡΑ*

 $tl: s(x), (g_1, g_2), (f_1, f_2), p(x)$

br: s(x), (g_1, g_2) , (f_1, f_2) , p(x)

Κόμβος BOA* -> μία διαδρομή μονοπάτι Κόμβος PPA* -> ζεύγος διαδρομών μονοπατιών

• if
$$c_{1\backslash 2}\left(\pi_v^{tl\backslash br}\right) \leq c_{1\backslash 2}\left(\pi_v^{\prime tl\backslash br}\right) \rightarrow \pi_{merged}^{tl\backslash br} = \pi^{tl\backslash br}$$

• $else \rightarrow \pi_{merged}^{tl \backslash br} = \pi'^{tl \backslash br}$

Συγχώνευση

2 επιπλέον λειτουργίες

•
$$\varepsilon_1 \ge (c_1(\pi_{merged}^{br}) - c_1(\pi_{merged}^{tl}))/c_1(\pi_{merged}^{tl})$$

•
$$\varepsilon_2 \ge (c_2(\pi_{merged}^{tl}) - c_2(\pi_{merged}^{br}))/c_2(\pi_{merged}^{br})$$

s_{start} (3, 6) (1, 1) (1, 1) (2, 4) (2, 1) (3, 5) (2, 4) (3, 5) (4, 5) (7, 5) (2, 4) (5, 7) (7, 5) (7

Αρχικοποίηση

Παράδειγμα ΡΡΑ ε=0

```
Algorithm 2 PP-A*
Input: (G = (V, E), v_{\text{start}}, v_{\text{goal}}, c_1, c_2, h_1, h_2, \varepsilon_1, \varepsilon_2)
 1: solutions_pp← ∅
                                                                         > path pairs
 2: OPEN \leftarrow new path pair (v_{\text{start}}, v_{\text{start}})
 3: while OPEN \neq \emptyset do
     (\pi_u^{\text{tl}}, \pi_u^{\text{br}}) \leftarrow \text{OPEN.extract\_min}()
      if is_dominated_PP-A*(\pi_u^{\text{tl}}, \pi_u^{\text{br}}) then
          continue
       if u = v_{\text{goal}} then
                                                                    > reached goal
          merge_to_solutions_PP-A*(\pi_u^{t1}, \pi_u^{br}, solutions_pp)
          continue
       for e = (u, v) \in \text{neighbors}(s(n), G) do
         \pi_v^{\text{tl}}, \pi_v^{\text{br}} \leftarrow \text{extend} PP-A^*((\pi_u^{\text{tl}}, \pi_u^{\text{br}}), e)
          if is_dominated_PP-A*(\pi_n^{\text{tl}}, \pi_n^{\text{br}}) then
             continue
13:
          insert_PP-A*((\pi_n^{t1}, \pi_n^{br}), OPEN)
15: solutions ← Ø
16: for (\pi^{\text{tl}}_{v_{\text{goal}}}, \pi^{\text{br}}_{v_{\text{goal}}}) \in \text{solutions\_pp } \mathbf{do}
17: solutions \leftarrow solutions \cup \{\pi_{v_{\text{real}}}^{\text{t1}}\}
18: return solutions
                            Ψευδοκώδικας ΡΡΑ*
```


επανάληψη 1

Algorithm 2 PP-A*

Input:
$$(G = (V, E), v_{\text{start}}, v_{\text{goal}}, c_1, c_2, h_1, h_2, \varepsilon_1, \varepsilon_2)$$

path pairs

2: OPEN
$$\leftarrow$$
 new path pair $(v_{\text{start}}, v_{\text{start}})$

3: while OPEN
$$\neq \emptyset$$
 do

4:
$$(\pi_u^{\text{tl}}, \pi_u^{\text{br}}) \leftarrow \text{OPEN.extract_min}()$$

5: **if** is_dominated_PP-A*
$$(\pi_u^{t1}, \pi_u^{br})$$
 then

: if
$$u = v_{\text{goal}}$$
 then

merge_to_solutions_PP-A*(
$$\pi_u^{\text{tl}}, \pi_u^{\text{br}}$$
, solutions_pp)

10: **for**
$$e = (u, v) \in \text{neighbors}(s(n), G)$$
 do

1:
$$\pi_v^{\text{tl}}, \pi_v^{\text{br}} \leftarrow \text{extend}_{PP-A^*}((\pi_u^{\text{tl}}, \pi_u^{\text{br}}), e)$$

12: **if** is_dominated_PP-A*
$$(\pi_v^{\text{tl}}, \pi_v^{\text{br}})$$
 then

14: **insert_PP-A***
$$((\pi_v^{\text{tl}}, \pi_v^{\text{br}}), \text{OPEN})$$

16: **for**
$$(\pi_{v_{\text{goal}}}^{\text{tl}}, \pi_{v_{\text{goal}}}^{\text{br}}) \in \text{solutions_pp } \mathbf{do}$$

17: solutions
$$\leftarrow$$
 solutions $\cup \{\pi_{v_{\text{goal}}}^{\pm 1}\}$

επανάληψη 2


```
Algorithm 2 PP-A*
Input: (G = (V, E), v_{\text{start}}, v_{\text{goal}}, c_1, c_2, h_1, h_2, \varepsilon_1, \varepsilon_2)
 1: solutions_pp← ∅
                                                                              > path pairs
 2: OPEN \leftarrow new path pair (v_{\text{start}}, v_{\text{start}})
 3: while OPEN \neq \emptyset do
        (\pi_u^{\text{tl}}, \pi_u^{\text{br}}) \leftarrow \text{OPEN.extract\_min}()
        if is_dominated_PP-A*(\pi_u^{\text{tl}}, \pi_u^{\text{br}}) then
           continue
        if u = v_{\text{goal}} then
                                                                          > reached goal
           merge_to_solutions_PP-A*(\pi_u^{t1}, \pi_u^{br}, solutions_pp)
           continue
        for e = (u, v) \in \text{neighbors}(s(n), G) do
           \pi_v^{\text{tl}}, \pi_v^{\text{br}} \leftarrow \text{extend}_{PP-A^*}((\pi_u^{\text{tl}}, \pi_u^{\text{br}}), e)
           if is_dominated_PP-A*(\pi_v^{t1}, \pi_v^{tr}) then
              continue
13:
           insert_PP-A*((\pi_v^{\text{t1}}, \pi_v^{\text{br}}), \text{OPEN})
15: solutions ← ∅
16: for (\pi_{v_{\text{goal}}}^{\text{tl}}, \pi_{v_{\text{goal}}}^{\text{br}}) \in \text{solutions\_pp } \mathbf{do}
17: solutions \leftarrow solutions \cup \{\pi_{v_{\text{goal}}}^{\text{tl}}\}
18: return solutions
```

Κορυφή εκκίνησης (3,6)(1, 1)(3,5)(4,5)(2, 4)Ngoal | Κορυφή στόχος (0,0)

επανάληψη 3

Open
$$(s_{goal}, (3, 9), (3, 9), s_2)$$

Sols pp

 1^{st} : $(s_{goal}, (3,9), (3,9), s_2), (s_{goal}, (3,9), (3,9), s_2)$

Algorithm 2 PP-A*

επανάληψη 4

$$(s_1, (1, 1), (4, 6), s_{start})$$

 $(s_1, (1, 1), (4, 6), s_{start})$

Open

$$tl: (s_2, (2,3), (4,7), s_1)$$

 $br: (s_2, (2,3), (4,7), s_1)$

$$tl: (s_3, (1,1), (5,6), s_{start})$$

 $br: (s_3, (1,1), (5,6), s_{start})$

$$tl: (s_{goal}, (8,6), (8,6), s_1)$$

 $br(s_{goal}, (8,6), (8,6), s_1)$

Ţ

1 5

 ∞

 g_2^{min}

Algorithm 2 PP-A*

Input:
$$(G = (V, E), v_{\text{start}}, v_{\text{goal}}, c_1, c_2, h_1, h_2, \varepsilon_1, \varepsilon_2)$$

path pairs

2: OPEN
$$\leftarrow$$
 new path pair $(v_{\text{start}}, v_{\text{start}})$

3: while OPEN
$$\neq \emptyset$$
 do

4:
$$(\pi_u^{\text{tl}}, \pi_u^{\text{br}}) \leftarrow \text{OPEN.extract_min}()$$

: if is_dominated_PP-A*
$$(\pi_n^{t1}, \pi_n^{br})$$
 then

7: **if**
$$u = v_{\text{goal}}$$
 then

> reached goal

merge_to_solutions_PP-A*(
$$\pi_u^{\text{tl}}, \pi_u^{\text{br}}$$
, solutions_pp)

10: **for**
$$e = (u, v) \in \text{neighbors}(s(n), G)$$
 do

11:
$$\pi_v^{\text{tl}}, \pi_v^{\text{br}} \leftarrow \text{extend}_{PP-A^*}((\pi_u^{\text{tl}}, \pi_u^{\text{br}}), e)$$

12: **if** is_dominated_PP-A*
$$(\pi_v^{\text{tl}}, \pi_v^{\text{br}})$$
 then

14: **insert_PP-A***
$$((\pi_v^{\text{tl}}, \pi_v^{\text{br}}), \text{OPEN})$$

16: **for**
$$(\pi_{v_{\text{goal}}}^{\text{tl}}, \pi_{v_{\text{goal}}}^{\text{br}}) \in \text{solutions_pp } \mathbf{do}$$

17: solutions
$$\leftarrow$$
 solutions $\cup \{\pi_{v_{\text{goal}}}^{\text{t1}}\}$

18: return solutions

επανάληψη 5

Open

 $tl: (s_{goal}, (4,7), (4,7), s_2)$ $br: (s_{goal}, (4,7), (4,7), s_2)$

 $tl: (s_3, (1,1), (5,6), s_{start})$ $br: (s_3, (1,1), (5,6), s_{start})$

 $tl: (s_{goal}, (8,6), (8,6), s_1)$ $br(s_{goal}, (8,6), (8,6), s_1)$ $(s_2,(2,3),(4,7),s_1)$ $(s_2,(2,3),(4,7),s_1)$

Merganeraing

 $tl!(\$\S_{0001}(44.7),(4.7),\$_2)$ $bor:(\$_{anal}(4.5),(8.6),\$_2)$

 $tl:(s_{goal},(8,5),(8,6),s_1)$ $br(s_{goal},(8,6),(8,6),s_1)$

Not bounded

1

1 3 ∞

 g_2^{min}

Algorithm 2 PP-A*

Input: $(G = (V, E), v_{\text{start}}, v_{\text{goal}}, c_1, c_2, h_1, h_2, \varepsilon_1, \varepsilon_2)$

1: solutions_pp← ∅

- path pairs
- 2: OPEN \leftarrow new path pair $(v_{\text{start}}, v_{\text{start}})$
- 3: while OPEN $\neq \emptyset$ do
- 4: $(\pi_u^{\text{tl}}, \pi_u^{\text{br}}) \leftarrow \text{OPEN.extract_min}()$
- 5: **if** is_dominated_PP-A* (π_n^{t1}, π_n^{br}) then
- 6: continue
- 7: if $u = v_{\text{goal}}$ then

- merge_to_solutions_PP-A*(π_u^{t1}, π_u^{br} , solutions_pp)
- continue
- 10: **for** $e = (u, v) \in \text{neighbors}(s(n), G)$ **do**
- 11: $\pi_v^{\text{tl}}, \pi_v^{\text{br}} \leftarrow \text{extend}_{PP-A^*}((\pi_u^{\text{tl}}, \pi_u^{\text{br}}), e)$
- if is_dominated_PP-A* $(\pi_v^{\text{tl}}, \pi_v^{\text{br}})$ then
- 13: continue
- 14: **insert_PP-A*** $((\pi_v^{\text{tl}}, \pi_v^{\text{br}}), \text{OPEN})$
- 15: solutions← ∅
- 16: **for** $(\pi_{v_{\text{goal}}}^{\text{tl}}, \pi_{v_{\text{goal}}}^{\text{br}}) \in \text{solutions_pp } \mathbf{do}$
- 17: solutions \leftarrow solutions $\cup \{\pi_{v_{\text{goal}}}^{\pm 1}\}$
- 18: return solutions

επανάληψη 6

$(s_{goal}, (4, 7), (4, 7), s_2)$ $(s_{goal}, (4, 7), (4, 7), s_2)$

$tl: (s_3, (1,1), (5,6), s_{start})$ $br: (s_3, (1,1), (5,6), s_{start})$

Open

 $tl: (s_{qoal}, (8,6), (8,6), s_1)$ $br(s_{goal}, (8,6), (8,6), s_1)$

Mergerging

 $tl: (s_{goal}, (3,9), (3,99), s_2)$ **br**:((\$_{apab},((4,79),(4,37,9);₂\$₂\$₂)

 $tl:(s_{qoal},(4,7),(4,7),s_2)$ $br: (s_{goal}, (4,7), (4,7), s_2)$

Not bounded

g_2^{min} ∞

Sols pp

1st: $(s_{goal}, (3,9), (3,9), s_2), (s_{goal}, (3,9), (3,9), s_2)$ 2nd: $(s_{goal}, (4,7), (4,7), s_2), (s_{goal}, (4,7), (4,7), s_2)$

```
Algorithm 2 PP-A*
Input: (G = (V, E), v_{\text{start}}, v_{\text{goal}}, c_1, c_2, h_1, h_2, \varepsilon_1, \varepsilon_2)
  1: solutions_pp← ∅

    path pairs

 2: OPEN \leftarrow new path pair (v_{\text{start}}, v_{\text{start}})
  3: while OPEN \neq \emptyset do
        (\pi_u^{\text{tl}}, \pi_u^{\text{br}}) \leftarrow \text{OPEN.extract\_min}()
        if is_dominated_PP-A*(\pi_u^{\text{tl}}, \pi_u^{\text{br}}) then
           continue
        if u = v_{\text{goal}} then
                                                                       > reached goal
           merge_to_solutions_PP-A*(\pi_u^{t1}, \pi_u^{br}, solutions_pp)
           continue
        for e = (u, v) \in \text{neighbors}(s(n), G) do
           \pi_n^{\text{tl}}, \pi_n^{\text{br}} \leftarrow \text{extend}_{\mathbf{PP-A}^*}((\pi_n^{\text{tl}}, \pi_n^{\text{br}}), e)
           if is_dominated_PP-A*(\pi_v^{t1}, \pi_v^{tr}) then
13:
```

14: **insert_PP-A***
$$((\pi_v^{\text{t1}}, \pi_v^{\text{br}}), \text{OPEN})$$

16: **for**
$$(\pi_{v_{\text{goal}}}^{\text{tl}}, \pi_{v_{\text{goal}}}^{\text{br}}) \in \text{solutions_pp } \mathbf{do}$$

17: solutions
$$\leftarrow$$
 solutions $\cup \{\pi_{v_{\text{goal}}}^{\pm 1}\}$

18: return solutions

Επανάληψη 7

$$(s_3, (1, 1), (5, 6), s_{start})$$

 $(s_3, (1, 1), (5, 6), s_{start})$

 $tl: (s_2, (3,2), (5,6), s_3)$

 $br: (s_2, (3,2), (5,6), s_3)$

Open

 $tl: (s_{goal}, (6,8), (6,8), s_2)$ $br:(s_{aoat},(6,8),(6,8),s_3)$

 $tl: (s_{goal}, (8,6), (8,6), s_1)$ $br(s_{goal}, (8,6), (8,6), s_1)$

 g_2^{min}

Input:
$$(G = (V, E), v_{\text{start}}, v_{\text{goal}}, c_1, c_2, h_1, h_2, \varepsilon_1, \varepsilon_2)$$

> path pairs

2: OPEN
$$\leftarrow$$
 new path pair $(v_{\text{start}}, v_{\text{start}})$

3: while OPEN
$$\neq \emptyset$$
 do

4:
$$(\pi_u^{\text{tl}}, \pi_u^{\text{br}}) \leftarrow \text{OPEN.extract_min}()$$

5: **if** is_dominated_PP-A*
$$(\pi_u^{\text{tl}}, \pi_u^{\text{br}})$$
 then

7: **if**
$$u = v_{\text{goal}}$$
 then

merge_to_solutions_PP-A*(
$$\pi_u^{\text{tl}}, \pi_u^{\text{br}}$$
, solutions_pp)

10: **for**
$$e = (u, v) \in \text{neighbors}(s(n), G)$$
 do

11:
$$\pi_v^{\text{tl}}, \pi_v^{\text{br}} \leftarrow \text{extend} PP-A^*((\pi_u^{\text{tl}}, \pi_u^{\text{br}}), e)$$

12: **if** is_dominated_PP-A*
$$(\pi_v^{\text{tl}}, \pi_v^{\text{br}})$$
 then

14: **insert_PP-A***
$$((\pi_v^{\text{tl}}, \pi_v^{\text{br}}), \text{OPEN})$$

16: **for**
$$(\pi_{v_{\text{goal}}}^{\text{tl}}, \pi_{v_{\text{goal}}}^{\text{br}}) \in \text{solutions_pp } \mathbf{do}$$

17: solutions
$$\leftarrow$$
 solutions $\cup \{\pi_{v_{\text{goal}}}^{\text{t1}}\}$

Επανάληψη 8

$tl: (s_{goal}, (5,6), (5,6), s_2)$ $br: (s_{goal}, (5,6), (5,6), s_2)$

Open

 $tl: (s_{goal}, (8,6), (8,6), s_1)$ $br(s_{goal}, (8,6), (8,6), s_1)$

Mer**menging** tl; $(s_{aogli}, (5,6), (5,6$

 $t_{l:}(s_{goal}, (5,6), (5,6), s_2)$ $b_{r:}(s_{goal}, (5,6), (5,5), s_2)$ $b_{r:}(s_{goal}, (5,6), (5,5), s_2)$

 $tl: (s_{goal}, (8,6), (8,6), s_1)$ $br(s_{goal}, (8,6), (8,6)$

Bounded

Algorithm 2 PP-A*

Input:
$$(G = (V, E), v_{\text{start}}, v_{\text{goal}}, c_1, c_2, h_1, h_2, \varepsilon_1, \varepsilon_2)$$

path pairs

2: OPEN
$$\leftarrow$$
 new path pair $(v_{\text{start}}, v_{\text{start}})$

3: while OPEN
$$\neq \emptyset$$
 do

4:
$$(\pi_u^{\text{tl}}, \pi_u^{\text{br}}) \leftarrow \text{OPEN.extract_min}()$$

5: if is_dominated_PP-A*
$$(\pi_u^{t1}, \pi_u^{br})$$
 then

7: if
$$u = v_{\text{goal}}$$
 then

merge_to_solutions_PP-A*(
$$\pi_u^{t1}, \pi_u^{br}$$
, solutions_pp)

10: **for**
$$e = (u, v) \in \text{neighbors}(s(n), G)$$
 do

11:
$$\pi_v^{\text{tl}}, \pi_v^{\text{br}} \leftarrow \text{extend} PP-A^*((\pi_u^{\text{tl}}, \pi_u^{\text{br}}), e)$$

12: **if** is_dominated_PP-A*
$$(\pi_v^{\text{tl}}, \pi_v^{\text{br}})$$
 then

14: **insert_PP-A***(
$$(\pi_v^{\text{t1}}, \pi_v^{\text{br}})$$
, OPEN)

16: for
$$(\pi_{v_{\text{goal}}}^{\text{tl}}, \pi_{v_{\text{goal}}}^{\text{br}}) \in \text{solutions_pp do}$$

17: solutions
$$\leftarrow$$
 solutions $\cup \{\pi_{v_{\text{goal}}}^{\text{tl}}\}$

Επανάληψη 9

 $(s_{aoal}, (5, 6), (5, 6), s_2)$ $(s_{goal}, (5, 6), (5, 6), s_2)$

Mentercing

tl:(15 (5 (5) (5 (5)) (5 (5)) bild (\$ \$ 39.45.56) (556), \$ 2)

 $tl:(s_{qoal},(3,9),(3,9),s_2)$ $br(s_{aoal}, (3, 9), (3, 9), s_2)$

Not bounded

Sols pp

 1^{st} : $(s_{goal}, (3,9), (3,9), s_2)$ $(s_{goal}, (3,9), (3,9), s_2)$

Open

 3^{rd} : $(s_{goal}, (5,6), (5,6), s_2), [s_{goal}, (5,6), (5,6), s_2)$

Solutions Only tl paths

 2^{nd} : $(s_{goal}, (4,7), (4,7), s_2) (s_{goal}, (4,7), (4,7), s_2)$

Algorithm 2 PP-A*

Input: $(G = (V, E), v_{\text{start}}, v_{\text{goal}}, c_1, c_2, h_1, h_2, \varepsilon_1, \varepsilon_2)$

1: solutions_pp← ∅

- path pairs
- 2: OPEN \leftarrow new path pair $(v_{\text{start}}, v_{\text{start}})$
- 3: while OPEN $\neq \emptyset$ do
- $(\pi_u^{\text{tl}}, \pi_u^{\text{br}}) \leftarrow \text{OPEN.extract_min}()$
- if is_dominated_PP-A* $(\pi_u^{\text{tl}}, \pi_u^{\text{br}})$ then
- continue
- if $u = v_{\text{goal}}$ then

- merge_to_solutions_PP-A* $(\pi_u^{t1}, \pi_u^{br}, solutions_pp)$
- continue
- for $e = (u, v) \in \text{neighbors}(s(n), G)$ do
- $\pi_n^{\text{tl}}, \pi_n^{\text{br}} \leftarrow \text{extend}_{\mathbf{PP-A}^*}((\pi_n^{\text{tl}}, \pi_n^{\text{br}}), e)$
- if is_dominated_PP-A* (π_v^{t1}, π_v^{tr}) then
- continue 13:
- insert_PP-A* $((\pi_v^{t1}, \pi_v^{br}), OPEN)$
- 15: solutions← Ø
- 16: **for** $(\pi_{v_{\text{goal}}}^{\text{tl}}, \pi_{v_{\text{goal}}}^{\text{br}}) \in \text{solutions_pp } \mathbf{do}$
- 17: solutions \leftarrow solutions $\cup \{\pi_{v_{\text{goal}}}^{\text{tl}}\}$
- 18: return solutions

Πείραμα NEA YOPKH

ε	BOA* $_{\epsilon}$ num $_{ m avg}$ sols	PPA* num _{avg} sols	BOA^*_{ϵ} $time_{avg}$	PPA* time _{avg}	${ m BOA*}_{ m \epsilon}$ ${ m num}_{ m med}$ ${ m sols}$	PPA* num _{med} sols	BOA* _ε time _{med}	PPA* time _{med}
ε=0	246,667	246,667	10,0375	46,8853	209	209	11,335	38,317
ε=0.01	29,5	27,1667	5,0695	4,8239	29	27	2,9767	1,9325
ε=0.025	14,5	13,6667	2,4415	1,5648	14	14	0,5482	0,7506
ε=0.05	8,5	7,8333	1,4129	0,8116	9	5	0,4491	0,3635
ε=0.1	4,8334	4,8334	0,4424	0,4920	5	3	0,0196	0,0451

Πείραμα ΣΑΝ ΦΡΑΝΣΙΣΚΟ

ε	BOA* _ε num _{avg} sols	PPA* num _{avg} sols	BOA* _ε time _{avg}	PPA* time _{avg}	BOA* _ε num _{med} sols	PPA* num _{med} sols	BOA*ε time _{med}	PPA* time _{med}
ε=0	230,625	230,625	3,365	3,7402	228	228	0,9694	3,7402
ε=0.01	24,625	23	1,1873	2,0871	24	23	0,0349	0,3861
ε=0.025	12,25	11,625	1,603	0,8851	13	11	0,316	0,2322
ε=0.05	7	6,875	0,9797	0,3758	7	7	0,2441	0,0727
ε=0.1	4,75	4,625	0,5454	0,2745	5	5	0,1121	0,0517

Πειράματα ΚΟΛΟΡΑΝΤΟ

ε	BOA*ε num _{avg} sols	PPA* num _{avg} sols	BOA*ε time _{avg}	PPA* time _{avg}	$egin{aligned} \mathbf{BOA^*}_{\epsilon} \ \mathbf{num_{med}} \ \mathbf{sols} \end{aligned}$	PPA* num _{med} sols	BOA*ε time _{med}	PPA* time _{med}
ε=0	108,562	108,5625	0,498	1,4158	92	92	0,1576	0,5824
ε=0.01	12	11,3125	0,259	0,1376	12	11	0,0856	0,0521
ε=0.025	6,1875	5,875	0,177	0,0681	6	6	0,0593	0,0249
ε=0.05	4,0625	3,6875	0,1063	0,0381	4	4	0,0296	0,0174
ε=0.1	2,25	2,25	0,035	0,0179	2	2	0,0232	0,0073

Λιγότερες επαναλήψεις **PPA***

BOA*

Ακριβότερες λειτουργίες

- *E>0*
- Μεγάλα (υπο)γραφήματα
- Πολλές λύσεις

Περισσότερες επαναλήψεις

Φθηνές λειτουργίες

- ε=0
- Μικρά (υπο)γραφήματα
- Λίγες λύσεις

Ευχαριστώ για τον χρόνο και την προσοχή σας!

Νταλαγιώργος Αχιλλέας