Resumo de aula 13 - 2/3

1 Integrais por substituição algébrica

Diferenciais:

Dada y = f(x) uma função diferenciável. A diferencial dy é definida por

$$dy = f'(x)dx$$

onde dx é uma variável independente.

Nosso objetivo é o seguinte:

$$\int f(g(x))g'(x)dx = ?$$

Tomamos u = g(x) : du = g'(x)dx

$$\int f(g(x))g'(x)dx = \int f(u)du = F(u) + k = F(g(x)) + k$$

Exemplo 1.1. Calcule $\int x \cdot \cos(x^2) dx$

Solução:

Fazendo $u=x^2:du=(2x)'\cdot dx=2x\ dx,$ temos $xdx=\frac{du}{2},$ logo

$$\int x \cdot \cos(x^2) dx = \int \cos(x^2) \cdot x dx = \int \cos(u) \cdot \frac{du}{2} = \frac{1}{2} \int \cos u \, du = \frac{1}{2} \left(\sin u + k \right) = \frac{1}{2} \sin(x^2) + \frac{1}{2} k = \frac{1}{2} \sin(x^2) + c$$

Sendo k e c são quaisquer constantes.

Exemplo 1.2. Calcule $\int (2x+1)^3 dx$

Solução:

Exemplo	1.3.	${\bf Calcule}$	ſ	$\frac{x}{1+x^2}dx$
---------	------	-----------------	---	---------------------

Solução:

Exemplo 1.4. Calcule $\int x \sqrt{1+x^2} dx$

Solução:

Exemplo 1.5. Calcule $\int sen^3 x \cos x dx$ Solução:

Exemplo 1.6. Calcule $\int sen^4xcos^3x\,dx$ Solução:

Exemplo 1.7. Calcule $\int tg \, x \, dx$ Solução:

Exemplo 1.8. Mostre que $\int \sec x dx = \ln |\sec x + tg x| + k$ Solução: