

Quotient inductive-inductive types

Ambrus Kaposi (ELTE)
j.w.w. András Kovács (ELTE) & Thorsten Altenkirch (Nottingham)

Conference on Software Technology and Cyber Security (STCS) 22 February 2019

INVESTING IN YOUR FUTUR

European Union European Social Fund

Overview

Inductive types by examples Universal inductive type

Indexed inductive types by examples Universal indexed inductive type

Quotient inductive types (QITs) by examples UNIVERSAL QIT

Plan

Inductive types by examples

Universal inductive type

Indexed inductive types by examples Universal indexed inductive type

Quotient inductive types (QITs) by examples UNIVERSAL QIT

Inductive types

are specified by their constructors.

E.g.

Bool: Type

true : Bool

false : Bool

means

$$\mathsf{Bool} = \{\mathsf{true},\,\mathsf{false}\}.$$

 \mathbb{N} : Type

 $\mathsf{zero}: \mathbb{N}$

 $\mathsf{suc}\ : \mathbb{N} \to \mathbb{N}$

means

 $\mathbb{N} = \{\mathsf{zero},\,\mathsf{suc}\,\mathsf{zero},\,\mathsf{suc}\,(\mathsf{suc}\,\mathsf{zero}),\,\mathsf{suc}\,(\mathsf{suc}\,\mathsf{zero})),\,\dots\},$

 \mathbb{N} : Type

zero : $\mathbb N$

 $\mathsf{suc}\ : \mathbb{N} \to \mathbb{N}$

means

$$\mathbb{N} = \{\mathsf{zero},\,\mathsf{suc}\,\mathsf{zero},\,\mathsf{suc}\,(\mathsf{suc}\,\mathsf{zero}),\,\mathsf{suc}\,(\mathsf{suc}\,(\mathsf{suc}\,\mathsf{zero})),\,\dots\},$$

usually written

$$\mathbb{N} = \{0, 1, 2, \dots\}.$$

Exp : Type

 $\mathsf{const}: \mathbb{N} \to \mathsf{Exp}$

plus : $\mathsf{Exp} \to \mathsf{Exp} \to \mathsf{Exp}$

 $\mathsf{mul} \ : \mathsf{Exp} \to \mathsf{Exp} \to \mathsf{Exp}$

means

$$\mathsf{Exp} = \left\{ \begin{array}{c|cccc} \mathsf{mul} & \mathsf{plus} \\ \mathsf{const} & \mathsf{plus} & \mathsf{const} & \mathsf{const} \\ & , & / & | & , & | & | \\ \mathsf{zero} & \mathsf{const} & \mathsf{suc} & \mathsf{suc} & \mathsf{zero} \\ & & | & | & | & | \\ & & \mathsf{zero} & \mathsf{zero} & \mathsf{zero} & \mathsf{zero} \end{array} \right\}.$$

```
\begin{array}{ll} \mathsf{Exp} & : \mathsf{Type} \\ \mathsf{const} : \mathbb{N} \to \mathsf{Exp} \\ \mathsf{plus} & : \mathsf{Exp} \to \mathsf{Exp} \to \mathsf{Exp} \\ \mathsf{mul} & : \mathsf{Exp} \to \mathsf{Exp} \to \mathsf{Exp} \end{array}
```

written in a linear notation as

```
\begin{split} \mathsf{Exp} &= \\ &\Big\{\mathsf{const}\,\mathsf{zero}, \\ &\quad \mathsf{mul}\,\big(\mathsf{plus}\,(\mathsf{const}\,(\mathsf{suc}\,\mathsf{zero}))\,(\mathsf{const}\,(\mathsf{suc}\,\mathsf{zero}))\big)\,\big(\mathsf{const}\,(\mathsf{suc}\,\mathsf{zero})\big), \\ &\quad \mathsf{plus}\,\big(\mathsf{const}\,(\mathsf{suc}\,\mathsf{zero})\big)\,(\mathsf{const}\,\mathsf{zero}),\,\dots\,\Big\}. \end{split}
```

 \mathbb{N}' : Type

 $\mathsf{suc}: \mathbb{N}' \to \mathbb{N}'$

means

$$\mathbb{N}'$$
 : Type

 $\mathsf{suc}: \mathbb{N}' \to \mathbb{N}'$

means

$$\mathbb{N}' = \{\}.$$

Why inductive?

Why inductive? We can do induction!

On Bool:
$$(P : \mathsf{Bool} \to \mathsf{Type}) \to P \mathsf{true} \to P \mathsf{false} \to (b : \mathsf{Bool}) \to P b$$

On
$$\mathbb{N}$$
: $(P : \mathbb{N} \to \mathsf{Type}) \to P \mathsf{zero} \to ((n : \mathbb{N}) \to P \mathsf{n} \to P (\mathsf{suc} \mathsf{n})) \to (n : \mathbb{N}) \to P \mathsf{n}$

On Exp:
$$(P : \mathsf{Exp} \to \mathsf{Type}) \to ((n : \mathbb{N}) \to P(\mathsf{const}\,n)) \to ((e\,e' : \mathsf{Exp}) \to P\,e \to P\,e' \to P(\mathsf{plus}\,e\,e')) \to ((e\,e' : \mathsf{Exp}) \to P\,e \to P\,e' \to P(\mathsf{mul}\,e\,e')) \to (e : \mathsf{Exp}) \to P\,e$$

Not an inductive type

```
\mathsf{Neg}:\mathsf{Type}
```

 $\mathsf{con}\,: (\mathsf{Neg} \to \bot) \to \mathsf{Neg}$

Not an inductive type

Neg : Type con :
$$(\text{Neg} \rightarrow \bot) \rightarrow \text{Neg}$$

The induction principle:

$$\begin{array}{l} \mathsf{elimNeg} : (P : \mathsf{Neg} \to \mathsf{Type}) \to \big((f : \mathsf{Neg} \to \bot) \to P \, (\mathsf{con} \, f) \big) \to \\ (n : \mathsf{Neg}) \to P \, n \end{array}$$

Not an inductive type

Neg : Type con :
$$(\text{Neg} \rightarrow \bot) \rightarrow \text{Neg}$$

The induction principle:

elimNeg :
$$(P : \mathsf{Neg} \to \mathsf{Type}) \to ((f : \mathsf{Neg} \to \bot) \to P(\mathsf{con}\,f)) \to (n : \mathsf{Neg}) \to P\,n$$

Now we can do something bad:

$$\begin{array}{ll} \mathsf{probl} & : \mathsf{Neg} \to \bot := \lambda n.\mathsf{elimNeg} \left(\lambda_.\mathsf{Neg} \to \bot \right) \left(\lambda f.f \right) n \, n \\ \mathsf{PROBL} : \bot & := \mathsf{probl} \left(\mathsf{con} \, \mathsf{probl} \right) \end{array}$$

Plan

Inductive types by examples Universal inductive type

Indexed inductive types by examples Universal indexed inductive type

Quotient inductive types (QITs) by examples UNIVERSAL QIT

What is a generic definition?

We have \bot , \top , + and \times types.

Universal inductive type (Martin-Löf, 1984): for every

 $S: \mathsf{Type}$ and $P: S \to \mathsf{Type}$

there is an inductive type

W : Type

 $\mathsf{sup}: (s:S) \to (Ps \to \mathsf{W}) \to \mathsf{W}$

What is a generic definition?

We have \bot , \top , + and \times types.

Universal inductive type (Martin-Löf, 1984): for every

 $S: \mathsf{Type}$ and $P: S \to \mathsf{Type}$

there is an inductive type

W : Type

 $\mathsf{sup}:(s:S)\to (P\,s\to \mathsf{W})\to \mathsf{W}$

E.g. \mathbb{N} is given by

$$S := \top + \top$$
 $P (\mathsf{inl}\,\mathsf{tt}) := \bot$ $P (\mathsf{inr}\,\mathsf{tt}) := \top$.

Plan

Inductive types by examples Universal inductive type

Indexed inductive types by examples

Universal indexed inductive type

Quotient inductive types (QITs) by examples UNIVERSAL QIT

An indexed inductive type

Vec: $\mathbb{N} \to \mathsf{Type}$

```
nil: Vec zero
        cons : (n : \mathbb{N}) \to \mathsf{Bool} \to \mathsf{Vec}\, n \to \mathsf{Vec}\, (\mathsf{suc}\, n)
means
Vec zero
            = \{\mathsf{nil}\}
Vec (suc zero) = \{cons zero true nil, cons zero false nil\}
```

An indexed inductive type

```
Vec: \mathbb{N} \to \mathsf{Type}
           nil: Vec zero
           cons : (n : \mathbb{N}) \to \mathsf{Bool} \to \mathsf{Vec}\, n \to \mathsf{Vec}\, (\mathsf{suc}\, n)
usually written as
Vec zero
                 = \{[]\}
Vec (suc zero) = \{[true], [false]\}
Vec(suc(suczero)) = \{[true, true], [true, false], [false, true], \dots \}
. . .
```

A mutual inductive type

Cmd : Type Block : Type skip : Cmd

ifelse : $\mathsf{Exp} \to \mathsf{Block} \to \mathsf{Block} \to \mathsf{Cmd}$

 $\mathsf{assign} \ : \mathbb{N} \to \mathsf{Exp} \to \mathsf{Cmd}$

 $\mathsf{single} \quad \mathsf{:Cmd} \to \mathsf{Block}$

 $\mathsf{semicol} : \mathsf{Cmd} \to \mathsf{Block} \to \mathsf{Block}$

BNF definitions are usually mutual inductive types.

Plan

Inductive types by examples Universal inductive type

Indexed inductive types by examples
Universal indexed inductive type

Quotient inductive types (QITs) by examples UNIVERSAL QIT

Universal indexed/mutual inductive type

Mutual inductive types can be reduced to indexed ones.

 $\mathsf{Cmd},\,\mathsf{Block} \qquad \mathsf{becomes} \qquad \mathsf{CmdOrBlock}:\mathsf{Bool} \to \mathsf{Type}$

Universal indexed/mutual inductive type

Mutual inductive types can be reduced to indexed ones.

Cmd, Block becomes $CmdOrBlock : Bool \rightarrow Type$

Altenkirch-Ghani-Hancock-McBride, 2015: for every

 $S: \mathsf{Type}$ and $P: S \to \mathsf{Type}$ and

 $out: S \rightarrow I$ and $in: (s:S) \rightarrow Ps \rightarrow I$

there is the indexed inductive type

 $\mathsf{W} \quad : \mathit{I} \rightarrow \mathsf{Type}$

 $\sup: (s:S)\big((p:Ps) \to W(insp)\big) \to W(outs)$

Plan

Inductive types by examples Universal inductive type

Indexed inductive types by examples Universal indexed inductive type

Quotient inductive types (QITs) by examples UNIVERSAL QIT

Integers

```
\label{eq:section} \begin{array}{l} \mathbb{Z} & : \mathsf{Type} \\ \mathsf{pair} & : \mathbb{N} \to \mathbb{N} \to \mathbb{Z} \\ \mathsf{quot} & : (a\,b\,a'\,b':\mathbb{N}) \to a+b'=a'+b \to \mathsf{pair}\,a\,b = \mathsf{pair}\,a'\,b' \\ \mathsf{means} \\ \\ \mathbb{Z} & = \big\{ \{ \mathsf{pair}\,0\,0,\,\mathsf{pair}\,1\,1,\,\mathsf{pair}\,2\,2,\,\dots \}, \\ \big\{ \mathsf{pair}\,0\,1,\,\mathsf{pair}\,1\,2,\,\mathsf{pair}\,2\,3,\,\dots \big\}, \end{array}
```

...}

{pair 10, pair 21, pair 32, ...}, {pair 02, pair 13, pair 24, ...},

Quotients

Given A: Type, $R: A \rightarrow A \rightarrow$ Type, the quotient type is

A/R: Type

 $[-]: A \rightarrow A/R$

quot : $(a a' : A) \rightarrow R a a' \rightarrow [a] = [a']$

Cauchy Real numbers

```
\mathbb{R}
              : Type
Ρ
              : \mathbb{O}_+ \to \mathbb{R} \to \mathbb{R} \to \mathsf{Type}
             : \mathbb{O} \to \mathbb{R}
rat
             : (f: \mathbb{Q}_+ \to \mathbb{R}) \to ((\delta \epsilon: \mathbb{Q}_+) \to \mathsf{P}(\delta + \epsilon)(f \delta)(f \epsilon)) \to \mathbb{R}
lim
             : (u v : \mathbb{R}) \to ((\epsilon : \mathbb{Q}_+) \to \mathsf{P} \epsilon u v) \to u = v
eq
ratrat : (q r : \mathbb{Q})(\epsilon : \mathbb{Q}_+)(-\epsilon < q - r < \epsilon) \rightarrow \mathsf{P} \, \epsilon \, (\mathsf{rat} \, q) \, (\mathsf{rat} \, r)
ratlim: P(\epsilon - \delta) (rat q) (g(\delta) \rightarrow P(\epsilon) (rat g) (\lim g)
limrat : P(\epsilon - \delta) (f \delta) (rat r) \rightarrow P \epsilon (lim f) (rat r)
\lim \lim P(\epsilon - \delta - \eta) (f \delta) (g \eta) \rightarrow P \epsilon (\lim f) (\lim g)
trunc : (\xi \zeta : P \in u v) \rightarrow \xi = \zeta
```

(Homotopy Type Theory book, 2013)

Partiality monad for non-terminating programs

$$\begin{array}{lll} A_{\bot} & : \mathsf{Type} & (\underline{\mathsf{Altenkirch-Danielsson-Kraus}}, \, 2017) \\ - \sqsubseteq - & : A_{\bot} \to A_{\bot} \to \mathsf{Type} \\ \eta & : A \to A_{\bot} \\ \bot & : A_{\bot} \\ & \bigsqcup & : (f : \mathbb{N} \to A_{\bot}) \big((n : \mathbb{N}) \to f \ n \sqsubseteq f \ (n+1) \big) \to A_{\bot} \\ \mathsf{refl} & : d \sqsubseteq d \\ \mathsf{inf} & : \bot \sqsubseteq d \\ \mathsf{in} & : \big((n : \mathbb{N}) \to f \ n \sqsubseteq d \big) \to \bigsqcup f \ p \sqsubseteq d \\ \mathsf{out} & : \bigsqcup f \ p \sqsubseteq d \to (n : \mathbb{N}) \to f \ n \sqsubseteq d \\ \mathsf{antisym} : \big(d \ d' : A_{\bot} \big) \to d \sqsubseteq d' \to d' \sqsubseteq d \to d = d' \\ \mathsf{trunc} & : \big(\xi \, \zeta : d \sqsubseteq d' \big) \to \xi = \zeta \end{array}$$

Algebraic syntax for a programming language

Ty : Type

 $\mathsf{Tm} \qquad : \mathsf{Ty} \to \mathsf{Type}$

Bool, Nat : Ty

true, false : Tm Bool

if – then – else – : Tm Bool ightarrow Tm A
ightarrow Tm A
ightarrow Tm A

num : $\mathbb{N} \to \mathsf{Tm}\,\mathsf{Nat}$

isZero : $\mathsf{Tm}\,\mathsf{Nat}\to\mathsf{Tm}\,\mathsf{Bool}$

if β_1 : if true then t else t' = t

if β_2 : if false then t else t' = t'

 $isZero\beta_1$: isZero(num 0) = true

isZero β_2 : isZero (num (1+n)) = false

(Altenkirch-Kaposi, 2016)

Plan

Inductive types by examples Universal inductive type

Indexed inductive types by examples Universal indexed inductive type

Quotient inductive types (QITs) by examples UNIVERSAL QIT

A domain-specific language for QIT signatures

$$\frac{\Gamma \vdash A}{\vdash \Gamma, x : A} \qquad \frac{(x : A) \in \Gamma}{\Gamma \vdash x : A} \qquad \frac{\vdash \Gamma}{\Gamma \vdash U} \qquad \frac{\Gamma \vdash a : U}{\Gamma \vdash \underline{a}}$$

$$\frac{\Gamma \vdash a : U}{\Gamma \vdash (x : a) \Rightarrow B} \qquad \frac{\Gamma \vdash t : (x : a) \Rightarrow B}{\Gamma \vdash t @ u : B[x \mapsto u]}$$

$$\frac{\Gamma \vdash u : \underline{a} \qquad \Gamma \vdash v : \underline{a}}{\Gamma \vdash u = v} \qquad \cdots$$

A domain-specific language for QIT signatures

$$\frac{\Gamma \vdash A}{\vdash \Gamma, x : A} \qquad \frac{(x : A) \in \Gamma}{\Gamma \vdash x : A} \qquad \frac{\vdash \Gamma}{\Gamma \vdash U} \qquad \frac{\Gamma \vdash a : U}{\Gamma \vdash \underline{a}}$$

$$\frac{\Gamma \vdash a : U \qquad \Gamma, x : \underline{a} \vdash B}{\Gamma \vdash (x : a) \Rightarrow B} \qquad \frac{\Gamma \vdash t : (x : a) \Rightarrow B \qquad \Gamma \vdash u : \underline{a}}{\Gamma \vdash t @ u : B[x \mapsto u]}$$

$$\frac{\Gamma \vdash u : \underline{a} \qquad \Gamma \vdash v : \underline{a}}{\Gamma \vdash u = v} \qquad \cdots$$

A signature is a context Γ , e.g.

$$(\cdot, N : U, zero : \underline{N}, suc : N \Rightarrow \underline{N})$$

 $(\cdot, Ty : U, Tm : Ty \Rightarrow U, Bool : Ty, true : \underline{Tm @ Bool}, ...)$

This is a QIT itself

```
Con
                          : Type
Τv
                          : Con \rightarrow Type
Var
                          : Con \rightarrow Type
                          : (\Gamma : \mathsf{Con}) \to \mathsf{Ty} \, \Gamma \to \mathsf{Type}
Tm
                          : Con
(-, -: -) : (\Gamma : \mathsf{Con}) \to \mathsf{Var}\,\Gamma \to \mathsf{Ty}\,\Gamma \to \mathsf{Con}
U
                    : Ту Г
                          : \mathsf{Tm}\,\mathsf{\Gamma}\,\mathsf{U}\to\mathsf{Ty}\,\mathsf{\Gamma}
(-:-) \Rightarrow -: \mathsf{Var}\,\Gamma \to (a:\mathsf{Tm}\,\Gamma\,\mathsf{U}) \to \mathsf{Ty}\,(\Gamma,x:a) \to \mathsf{Ty}\,\Gamma
                : \mathsf{Tm}\,\Gamma((x:a)\Rightarrow B)\to (u:\mathsf{Tm}\,\Gamma\,a)\to
- @ -
                             \mathsf{Tm}\,\Gamma(B[x\mapsto u])
```

Results

- ➤ A generic definition of signatures for QITs which includes all the known examples
- Description of the induction principle
 - Kaposi–Kovács, FSCD 2018
- If the universal QIT exists, then all of them exist
 - Kaposi–Kovács–Altenkirch, POPL 2019
- Existence of the universal QIT
 - People proved this in different settings, e.g. <u>Brunerie</u>
 - Part without quotients <u>done</u> (by Ambroise Lafont), full version further work

THANK YOU FOR YOUR ATTENTION!

European Union European Social Fund

GOVERNM

INVESTING IN YOUR FUTURE