Problems for Week 9: Focusing

- 1) Assume that you imaging an isotropic scatter on the bed of an ice sheet using focused airborne ice penetrating radar data that has been focused with two different apertures L_1 and L_2 (where $L_1 < L_2$), spanning the scattering angles θ_1 and θ_2 at the bed, and resulting in focused bed echo strengths E_1 and E_2 .
 - a. Is E_1/E_2 greater-than, less-than, or equal-to L_1/L_2 ?
 - b. Is θ_1/θ_2 greater-than, less-than, or equal-to L_1/L_2 ?
 - c. If the bed does not scatter energy isotropically, will be E_1/E_2 larger, smaller, or the same?
 - d. If the bed does not scatter energy isotropically, will be θ_1/θ_2 larger, smaller, or the same?
- 2) Assume that you have collected ice penetrating radar data collected with a center frequency of 60 MHz, from an airborne platform at a survey height of 500m and moving at 100 m/s to look at layers 1km below the surface.
 - a. If the data is focused with a focusing aperture of 400m, what is the steepest englacial layer that will be reproduced in the ragargram?
 - b. If the data is focused with a focusing aperture of 2km, what is the steepest englacial layer that will be reproduced in the ragargram?
 - c. If the data is raw, what is the steepest englacial layer that will be reproduced in the ragargram?
- 3) Assume that you measure the range (R in meters) and phase (Φ in degrees) from a scatter on the ice surface 500 m below an airborne ice penetrating radar system with a center frequency of 60 MHz and a bandwidth of 15 MHz.
 - a. What will be the change in range δR and change in phase $\delta \Phi$ when the aircraft moves 2 m along track?
 - b. What will δR and $\delta \Phi$ be when the aircraft moves 20m along track?
 - c. What will δR and $\delta \Phi$ be when the aircraft moves 200m along track?
 - d. What will δR and $\delta \Phi$ be when the aircraft moves 2km along track?
 - e. Estimate the focusing aperture length above which range-migration would be necessary in focusing.
- 4) What is the impact of range-migrated focusing on:
 - a. Detecting shallowly sloping layers?
 - b. Detecting steeply sloping layers?
 - c. Along-track off-nadir surface clutter?
 - d. Crass-track off-nadir surface clutter?
 - e. Detecting a flat rough bed?
 - f. Detecting a sloping rough bed?
 - g. Echo strength reduction due to bed roughness?
 - h. Range resolution?

- 5) If you are choosing a center frequency for an ice penetrating system and have two choices F_{C1} and F_{C2} where $(F_{C1} > F_{C2})$
 - a. Which will be more robust to scattering from a rough surface?
 - b. Which has the potential for better post-focusing azimuth resolution?
 - c. Which has the potential for better range resolution?
 - d. Which will experience a greater gain in SNR as a result of focusing (relative to additive noise)?
 - e. Describe the physical limit(s) on improved post-focusing azimuth resolution from changing the carrier frequency.