ITP20001/ECE20010 Data Structures

Chapter 5, 7, 9, 10

- introduction
- binary tree
- complete binary tree
 - max heap, min heap
 - Chapter 7 heap sorting
 - Chapter 9 priority queues
- binary search tree(bst)
- AVL tree Chapter 10 Efficient BST

Major references:

- 1. Fundamentals of Data Structures by Horowitz, Sahni, Anderson-Freed,
- 2. Algorithms 4th edition Part 1 & Part 2 by Robert Sedgewick and Kevin Wayne
- 3. Wikipedia and many resources available from internet

BST

- Definition: A binary search tree is a binary tree in symmetric order.
- A binary tree is either
 - empty
 - a key-value pair and two binary trees [neither of which contain that key]
- Symmetric order means that
 - every node has a key
 - every node's key is larger than all keys in its left subtree smaller than all keys in its right subtree

equal keys ruled out

BST

- Definition: A binary search tree is a binary tree in symmetric order.
- All BST operations are O(d), where d is tree depth
- Minimum d is d= [log₂N] for a binary tree with N nodes
 - What is the best case tree?
 - What is the worst case tree?
- So, best case running time of BST operations is
 O(log N)

BST

Worst case running time is O(N)

- What happens when you Insert elements in ascending order?
 - Insert: 2, 4, 6, 8, 10, 12 into an empty BST
- Problem: Lack of "balance";
 - compare depths of left and right subtree
- Unbalanced degenerate tree

Balanced and unbalanced BST

Approaches to balancing trees

- Don't balance
 - May end up with some nodes very deep
- Strict balance
 - The tree must always be balanced perfectly
- Pretty good balance
 - Only allow a little out of balance
- Adjust on access
 - Self-adjusting

Balancing Binary Search Trees

Many algorithms exist for keeping BST balanced

- Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
- Weight-balanced trees
- Red-black trees;
- Splay trees and other self-adjusting trees
- B-trees and other (e.g. 2-4 trees) multiway search trees

Perfect Balance

- Want a complete tree after every operation
 - tree is full except possibly in the lower right
- This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree

- Named after 2 Russian mathematicians
- Georgii Adelson-Velsky (1922 ?)
- Evgenii Mikhailovich Landis (1921-1997)

AVL - Good but not Perfect Balance

- Height-balanced binary search trees
- Balance factor of a node
 - height(left subtree) height(right subtree)
- For every node, heights of left and right subtree can differ by no more than 1
 - Store current heights in each node or compute it on the fly

height of node =
$$h$$

balance factor = h_{left} - h_{right}
empty height = -1

Node Heights after Insert 7

- Insert operation may cause balance factor to become 2 or -2 for some node
 - Only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left} h_{right}) is 2 or -2, adjust tree by rotation around the node

Single Rotation in an AVL Tree

Single Rotation in an AVL Tree

LL Case Single Right Rotation

Single Rotation in an AVL Tree

RR Case Single Left Rotation

AVL Tree Balanced?

AVL Tree Balanced?

Insertion of 34

Imbalance at 30 Balance factor at 30 = -2

Double rotation RL

Double rotation - LR Case

Double rotation - RL Case

Insertions in AVL Trees

Let the node that needs rebalancing be a.

There are 4 cases:

- Outside Cases (require single rotation):
 - 1. Insertion into left subtree of left child of a.
 - 2. Insertion into right subtree of right child of a.
- Inside Cases (require double rotation):
 - 1. Insertion into right subtree of left child of a.
 - 2. Insertion into left subtree of right child of a.

The rebalancing is performed through four separate rotation algorithms.

Consider a valid AVL subtree

Consider a valid AVL subtree

Do a "right rotation" LL Case h h+1

Single right rotation

Do a "right rotation"

Outside Case Completed

AVL property has been restored!

LL Case - Single Rotation

"Right rotation" done!
("Left rotation" is mirror symmetric)

Consider a valid AVL subtree

Double rotation: second rotation

Double rotation: second rotation

right rotation complete Balance has been restored LR Case h h h or h-1

- The numbered circles represent the nodes being rebalanced.
- The lettered triangles represent subtrees which are themselves balanced AVL trees.
- A blue number next to a node denotes possible balance factors
- (those in parentheses occurring only in case of deletion).
- Source: <u>www.wikipedia.com</u>

Implementation

- You can either keep the height or just the difference in height,
 - i.e. the balance factor; this has to be modified on the path of insertion even if you don't perform rotations
 - Once you have performed a rotation (single or double) you won't need to go back up the tree
- You may compute the balance factor on the fly after the insert is done during the recursion.

Single Rotation - LL case

outside case


```
node rotateLL(node A)
{
  node B =
  A->left =
  B->right =
  return
}
```


Single Rotation - RR case

outside case


```
node rotateRR(node A)
{
  node B =
  A->right =
  B->left =
  return
}
```

Double Rotation - LR

inside case


```
node rotateLR(node A) // RR and LL
{
  node B =
  A->left = rotateRR( );
  return rotateLL( );  What will return eventually?
}
```

Double Rotation - RL

inside case


```
node rotateRL(node A) { // LL and RR
{
  node B = A->right;
  A->right = rotateLL( );
  return rotateRR( );
}
```


Insertion of 34 Imbalance at 30

Double rotation RL

Balance factor at 30 = -2

Insertion of 34 Imbalance at 30

Double rotation RL

Balance factor at 30 = -2

Insertion of 34 Imbalance at 30

Double rotation RL

Balance factor at 30 = -2

Balance Factor and Height

```
int getHeight(node node) {
  if (node == NULL) return 0;
  int left = leftHeight (node->left);
  int right = rightHeight(node->right);
  return (left > right) ? left + 1 : right + 1;
}
```

```
int balanceFactor(node node) {
  if (node == NULL) return 0;
  int left = leftHeight (node->left);
  int right = rightHeight(node->right);
  return left - right;
}
```

Rebalance

```
node rebalance(node node)
                                  checking single or
  bf = balanceFactor(node);
                                / double rotation
  if (bf >= 2) {
    if (balanceFactor(node->left) >= 1) {
      node = rotateLL(node); // LL ← outside case
    else
      node = rotateLR(node); // LR ← inside case
  else if (bf \leq= -2) {
    if (balanceFactor(node->right) <= -1)</pre>
      node = rotateRR(node);
    else
      node = rotateRL(node);
  return node;
```


N(h) = minimum number of nodes in an AVL tree of height h.

- Basis
 - N(0) = 1, N(1) = 2
- Induction
 - N(h) = N(h-1) + N(h-2) + 1
- Solution (compare it with Fibonacci analysis)
 - N(h) $\geq \phi^h$ ($\phi \approx 1.62$)

Height of an AVL Tree

• $N(h) \geq \phi^h \quad (\phi \approx 1.62)$

Suppose we have n nodes in an AVL tree of height h.

- $n \ge N(h)$
- $n \ge \varphi^h$ hence $log_{\varphi}n \ge h$ (relatively well balanced tree!!)
- $h \le 1.44 \log_2 n$ (i.e., 'Find' operation takes $O(\log n)$)

Pros and Cons of AVL Trees

Arguments for AVL trees:

- Search is O(log N) since AVL trees are always balanced.
- Insertion and deletions are also O(logn)
- The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

- Difficult to program & debug; more space for balance factor.
- Asymptotically faster but rebalancing costs time.
- Most large searches are done in database systems on disk and duse other structures (e.g. B-trees).
- May be OK to have O(N) for a single operation if total run ti me for many consecutive operations is fast (e.g. Splay trees).