Задача об ограниченном ранце.

Абрамов З.И.

Швецов Г.А.

группа ФН2-42Б

18 июня 2022 г.

Постановка задачи

Пусть имеется n типов предметов. Каждый тип предмета i характеризуется весом w_i и стоимостью c_i одного предмета и количеством предметов k_i данного типа. Также имеется рюкзак вместимости W.

Требуется собрать набор с максимальной полезностью таким образом, чтобы он имел вместимость не больше W. При этом количество предметов типа i не должно превышать k_i .

В математической форме:

$$\sum_{i=1}^n c_i x_i o \mathsf{max}$$
 $\sum_{i=1}^n w_i x_i \leqslant W$ $orall i \in \{1, \dots, n\}$ $x_i \in \{0, \dots, k_i\}$

Метод ветвей и границ

Дерево полного перебора, соответствующее поиску решения для трех предметов.

Метод ветвей и границ является вариацией метода полного перебора с той разницей, что исключаются заведомо неоптимальные ветви дерева полного перебора.

Метод ветвей и границ

Динамическое программирование

Подход динамического программирования состоит в том, что если при решении исходной задачи часто решаются одинаковые подзадачи, то имеет смысл сохранять решение таких подзадач, сократив тем самым количество вычислений.

Динамическое программирование

В качестве таких подзадач будем решать задачу о ранце для первых n' < n предметов и рюкзака вместимости W' < W.

n'W'	1	2	3	4	5	6
1						
2	4					
3						
4						

$$n' = 3, \quad W' = 5;$$

 $w_3 = 2, \quad k_3 = 2;$
 $dp[3, 4] = \max_{x_i = 0, 1, 2} (x_i \cdot c_3 + dp[2, 4 - x_i \cdot 2]).$

 $W = 6, \quad n = 4;$

Пример работы

Пример с двумя решениями при $\max_\mathrm{weight} = 1000.$

Исходные данные			Решение 1					
item	count	weight	cost	item	count	max_cost	sum_weight	
				10	6		983	
1	6	54	8	7	4	1		
2	5	63	12	2	5	298		
3	4	55	2	6	6			
4	3	63	7	9	5			
	_		-	Решение 2				
5	8	97	6	item	count	max cost	sum weight	
6	6	26	11	1	2	_	1000	
7	4	91	16	10	6			
8	7	42	2	7	3	298		
	•			2	5	250		
9	5	8	18	6	6			
10	6	18	3	9	5			

Время исполнения методов на С++

Время исполнения методов на Wolfram Mathematica

Постановка задачи Метод ветвей и границ Динамическое программирование Пример работы Время исполнения методов

Спасибо за внимание!