SMART FACTORY

○ 권준기 김동일 배송이 우동주 조현정 진유훈

CONTENTS

- Business Issue
- **12** 프로젝트 정의
- APS System 데이터마트 / 수요예측 / 생산판매계획 / 시각화
- 04 기대효과

Business Issue

고객사 (S사)

주사업분야: 화학 혼화제, 특수 혼화제, 무기 혼화재 등 생산 및 판매

건설회사

고객사(S사)

완제품

건설현장

Business Issue

Issue 1

직전 3개월 판매량을 기준으로 3개월 생산계획 실행

생산계획과 실제 판매량과 30% 정도의 차이가 있음

Issue 2

수요예측을 하지 않으므로 중장기적 수요에 대한 대비 및 대책 미흡

Issue 3

원재료 재고파악을 위한 비효율적인 인력 및 시간 투입(일 평균 90분)

프로젝트 정의

"APS시스템" 구축

중장기 수요예측

재고파악 및 주문 자동화

APS(Advanced Planning and Scheduling System)

자재/기계/사람 및 수요를 동기화하여 원자재 관리와 제품 생산을 최적화하는 프로세스

개발환경

APS System

데이터마트

기본 데이터(제	네공)
----------	-----

파생 데이터

외부 데이터

제품기본

생산LOT기본

수주분석

제품별 기준투입량

날쎄

원자재기본

생산레시피기본

중장기수주예측

안전재고량기준

건축착공면적

거래처기본

자재발주기본

중장기시각화

생판계획예측 원재료량

영업수주기본

자재납품기본

생판계획예측

원자재 자동발주내역

AI APS SYSTEM

수요예측모델

시계열모델을 통한 6개월 판매량 예측

활용: 중장기 수요예측을 통한

설비투자 의사결정 지원

생산계획모델

회귀모델을 통한 3개월 판매량 예측

활용: AI를 활용한 예측을 통한 정확도 높은 생산 및 판매계획 지원

수요예측모델

데이터마트

납기일자

판매수량

제품명

날씨데이터_기온

날씨데이터_습도

GRU MODEL

분석용 데이터셋

납기일자

판매수량 (일별 합계,target)

제품명

날씨데이터_기온

날씨데이터_습도

수요예측모델

SARIMA

 $R^2 0.75$

GRU

RMSE 9921.9791 R² 0.7898 **BILSTM**

RMSE 10647.4712 R² 0.7877

** 제품 PEMA-PR1500기준

최종모델 선정

다변량 GRU 모델

생산계획모델

데이터마트

납기일자

판매수량

제품명

예측중량

건축착공면적

분석용 데이터셋

판매수량 (일별 합계, target)

제품명(원핫인코딩)

예측중량(일별 합계)

건축착공면적(2년 월평균)

생산계획모델

RandomForest

RMSLE 0.2274 R² 0.9543 **LGBM**

RMSLE 0.2200 R² 0.9519 DecisionTree

RMSLE 0.2343 R² 0.9475 XGB

RMSLE 0.2309 R² 0.9436

최종모델 선정

RandomForest Regressor 모델

기존 시스템 대비 정확도 약 25% 개선

원자재 자동 발주

원자재 자동 발주

안전 재고량

=(일일최고 판매량 x 최대 리드타임) - (일일 평균 판매량 x 평균 리드타임)

	초과량	안전재고량
추가 주문		
현재 재고량	현재 재고량	

리드타임 동안 발생할 수 있는 비상 수요에 대비하기 위해 보유하는 재고

시각화 예시

기대효과

- ◯ 권준기 github.com/
- 김동일 github.com/donkimkong
- U 배송이 github.com/kksonge
- ♀ 우동주 github.com/WooDongJu
- ☑ 조현정 github.com/JoHyunjeong
- 진유훈 github.com/JINYUHOON

Thank you