Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника (РЛ)» Кафедра «Технология приборостроения (РЛ6)»

Лабораторная работа №3

"Анализатор цепей."

по дисциплине "Электрорадиоизмерения"

Выполнили студенты группы РЛ6-81 Филимонов С.В.

Преподаватель Федоркова Н.В.

Цель:

Изучение методики измерения переходного затухания СВЧ устройства с помощью анализатора цепей Agilent Technologies

План:

- 1. Выписать из описаний характеристики анализатора цепей.
- 2. Ознакомиться с инструкцией по эксплуатации и принципом работы анализатора цепей и измеряемого устройства.
 - 3. Составить методику измерения S параметров и Кст.
- 4. Провести измерения АЧХ фильтра для центральной частоты 1,5 ГГц в полосе частот от 0,6 ГГц до 5,1 ГГц. Измерить ширину полосы пропускания по уровню 3 дБ.
 - 5. Измерить коэффициент стоячей волны (SWR).
 - 6. Сфотографировать изображения на дисплее. Составить отчет.

Характеристики анализатора цепей:

<u>Анализатор цепей Agilent 8720ES</u> - это анализатор цепей с частотой 20 ГГц от Agilent. Анализатор цепей — это мощный инструмент, измеряющий линейные характеристики радиочастотных устройств с непревзойденной точностью. Ряд отраслей промышленности используют анализаторы цепей для тестирования оборудования, измерения материалов и контроля целостности сигналов.

Характеристики:

Вход измерительного порта:
 диапазон частот, ГГц от 0,05 до 20;
- динамический диапазон, дБ от 77 до 100;
- уровень мощности, дБмот минус 70 до 10.
Выход измерительного порта:
- диапазон частот, ГГц от 0,05 до 20;
- разрешающая способность, Гц1.
Диапазоны отображения измеряемых величин:
- амплитуда, дБ± 200;
- фаза, градусы± 180.
Пределы допускаемой погрешности измерений коэффициента передачи в диапазо-
не частот от 50 до 500 МГц, не более:
- для значений коэффициента передачи от 5 до 0 дБ ± 0.07 ;
- для значений коэффициента передачи от 0 до минус 40 дБ ± 0.2 ;
- для значений коэффициента передачи от минус 40 до минус 70 дБ± 1,3.
Пределы допускаемой погрешности измерений коэффициента передачи в диапазо-
не частот от 0,5 до 2 ГГц, не более:
- для значений коэффициента передачи от 5 до 0 дБ± 0,07;
- для значений коэффициента передачи от 0 до минус 40 дБ ± 0.15 ;
- для значений коэффициента передачи от минус 40 до минус 70 дБ± 0,35.
Пределы допускаемой погрешности измерений коэффициента передачи в диапазо-
не частот от 2 до 8 ГГц, не более:
- для значений коэффициента передачи от 5 до 0 дБ± 0,15;
- для значений коэффициента передачи от 0 до минус 40 дБ \pm 0,2;
- для значений коэффициента передачи от минус 40 до минус 70 дБ \pm 0,3.
Пределы допускаемой погрешности измерений коэффициента передачи в диапазо-
не частот от 8 до 20 ГГц, не более:
- для значений коэффициента передачи от 5 до 0 дБ ± 0.2 ;
- для значений коэффициента передачи от 0 до минус 40 дБ \pm 0,2;
- для значений коэффициента передачи от минус 40 до минус 70 дБ \pm 0,4.
Потребляемая мощность, Вт, не более
Габаритные размеры (длинна х ширина х высота), мм, не более 457 х 425 х 222.
Масса, кг, не более
Рабочие условия эксплуатации:
- температура окружающего воздуха, °С
- относительная влажность воздуха, %

Рис. 1 - Характеристики анализатора цепей.

Принцип действия анализатора основан на раздельном выделении и индикации сигналов, пропорциональных мощности падающей от генератора, прошедшей через изме- ряемый объект и отраженных волн. Анализатор позволяет наблюдать на экране

индикато- ра частотные характеристики ослабления и производить их измерение. Конструктивно анализатор объединяет в одном корпусе источник ВЧ сигнала, блок измерений S-параметров, многофункциональный приемник иустройство индикации. Блок измерений S-параметров обеспечивает возможность измерять характеристики отражения и передачи четырехполюсников. Мощность ВЧ сигнала может подаваться на порт 1ипорт 2анализатора.

Методика измерения S-параметров и $K_{\rm cr}$:

- 1) Измерение параметра S21:
- 1. Нажать **Preset** для возвращения анализатора в исходное состояние.
- 2. Подключить исследуемое устройство.
- 3. Выбрать следующие параметры измерения:

```
Meas – Refl: FWD S21 (A/R);
Center – 2.5 – G/n;
Span – 5 – G/n;
Scale Ref – Auto scale;
```

- Avg Averaging factor 32 x1;
- 4. Установить Averaging в положение ON.
- 5. С помощью маркеров снять данные с графика.
- 6. Калибровка результатов
- 6.1. Выбрать калибровочный набор, который подходит для исследуемого устройства.

- 6.2 Последовательно подключать компоненты **Open**, **Short** и **Load**, сохранить полученные результаты.
 - 2) Измерение коэффициента стоячей волны
- 1. Format SWR Scale Ref Auto Scale.
- 2. С помощью маркеров снять данные с графика.

Сборка установки:

Рис. 2 - Собранная установка.

Измерение АЧХ фильтра:

АЧХ фильтра для центральной частоты 1.6 ГГц в полосе частот от 0.6 ГГц до 5 ГГц:

Рис. 3 - АЧХ фильтра нижних частот.

Из графика видно,
минимальная затухание сост = 1.63 дБ. Ширина полосу по уровню +-3 дБ.

Измерим коэффициент стоячей волны (SWR).

Рис. 4 - Измерение коэффициент стоячей волны.

Коэффициент стоячей волны на центральной частоте равен $K_{cr}=1.2321.$

Вывод.

В ходе лабораторной работы были изучены методы измерения S-параметров с помощью анализатора цепей, методы построения AЧX, изучена методика определения коэффициента стоячей волны.