M2. Bayesian Decision Theory (incl. Bayes classifiers)

Manikandan Narayanan

Feb 4-5,10-11,15 2021

PRML Jan-May 2021 (MKN section)

Acknowledgment of Sources

Slides based on content from related

Courses:

- IITM Profs. Arun/Harish/Chandra's PRML offerings (slides, quizzes, notes, etc.), Prof. Ravi's "Intro to ML" slides cited respectively as [AR], [HR], [CC], [BR] in the bottom right of a slide.
- India NPTEL PR course by IISc Prof. PS. Sastry (slides, etc.) cited as [PSS] in the bottom right of a slide.

Books:

- PRML by Bishop. (content, figures, slides, etc.) cited as [CMB]
- Pattern Classification by Duda, Hart and Stork. (content, figures, etc.) [DHS]
- Mathematics for ML by Deisenroth, Faisal and Ong. (content, figures, etc.) [DFO]

Outline of Module M2

- M2. Bayesian Decision Theory (incl. Bayes classifiers)
 - M2.0 Introduction/Background (on Probability Theory)
 - M2.1 Bayesian Decision Theory
 - M2.1.0 Decision Theory for Classification/Regression (common defns./notations)
 - M2.1.1 Decision Theory for Classification (Bayes classifiers)
 - M2.1.2 Decision Theory for Regression (Squared loss, etc.)

M2.1.0 Decision Theory (for classification/regression)

x is feature vector (input), t is target/response (output).

- Inference step
- Determine either p(t|x) or p(x,t).
- Decision step
- For any given x, determine optimal t.
- Optimality wrt *risk* or *expected loss*; General loss functions are:
 - Classification (t discrete): misclassification rate, loss-matrix based function, etc.
 - Regression (t continuous): squared loss, Minkowski loss, etc.

Notations

- Feature vector $x \in \mathcal{X}$
 - Feature vector $\mathbf{x} = (x_1, x_2, ..., x_D)$ Feature space $\mathcal{X} = \mathbb{R}^D$
 - - Think of D=1 in rest of slides, but Bayesian decision theory (Bayes classifier) holds for any D.
- Target/response $t \in \mathcal{Y}$
 - Discrete: Target space $\mathcal{Y} = \{C_1, C_2, \dots, C_K\}$
 - Often times also referred to as {1,2,..,K}, or for binary (K=2) classifiers as {0,1} or {-1,+1}
 - Continuous: Target space $\mathcal{Y} = \mathbb{R}$
- Classifier or regressor is simply a function from feature to target space
 - i.e., it maps each point in the feature space to a unique point in the target space
 - $h: \mathcal{X} \to \{C_1, \dots, C_K\}$
 - $y: \mathcal{X} \to \mathbb{R}$

Notations (Bayes rule)

•
$$P(t|\mathbf{x}) = \frac{P(t)P(\mathbf{X}|t)}{P(\mathbf{x})} \propto P(t)P(\mathbf{x}|t)$$

(posterior = prior x likelihood (class conditional) / evidence)

- P(x,t) = P(x) P(t|x) = P(t) P(x|t)(joint = evidence x posterior = prior x liklhd. (class cond.))
- For binary t, $P(x) = P(t = C_1)P(x|C_1) + p(t = C_2)P(x|C_2)$ = $P(C_1)P(x|C_1) + P(C_2)P(x|C_2)$

Outline of Module M2

- M2. Bayesian Decision Theory (incl. Bayes classifiers)
 - M2.0 Introduction/Background (on Probability Theory)
 - M2.1 Bayesian Decision Theory
 - M2.1.0 Decision Theory for Classification/Regression (common defns./notations)
 - M2.1.1 Decision Theory for Classification (Bayes classifiers)
 - M2.1.2 Decision Theory for Regression (Squared loss, etc.)

M2.1.0 Decision Theory for Classification

- Inference step
- Determine either p(x,t) or $p(t = C_k|x)$.
- Decision step
- For any given x, determine optimal class label $h(x) = C_j$ for t.
- Optimality wrt *risk* or *expected loss* (misclassification rate or general loss function/matrix for binary vs. multi-class classifiers)

Bayes classifier (two classes)

•
$$h(x) = C_1$$
 if $P(C_1|x) > P(C_2|x)$
= C_2 o. w (otherwise i.e., $P(C_2|x) \ge P(C_1|x)$)

```
(Note: P(C_1|\mathbf{x}) > P(C_2|\mathbf{x}) \Leftrightarrow \leftarrow for discriminative models P(C_1,\mathbf{x}) > P(C_2,\mathbf{x}) \Leftrightarrow \leftarrow for generative models P(C_1)P(\mathbf{x}|C_1) > P(C_2)P(\mathbf{x}|C_2) \leftarrow for gen. models' learning)
```

- Bayes classifier is the optimal classifier among all classifiers
 - wrt minimizing the probability of error (aka misclassification rate), ...
 - ...assuming complete knowledge of the posterior distribution.

• Let Decision region $R_i := \{x \in \mathcal{X} \mid h(x) = C_i\}$

• Let Decision region $R_i := \{x \in \mathcal{X} \mid h(x) = C_i\}$

$$P(exfor) = P(h(x) + t)$$

• Let Decision region $R_i := \{x \in \mathcal{X} \mid h(x) = C_i\}$

$$P(expor) = P(h(x) + t)$$

$$= \int_{X,t} \sum_{h(x) \neq t} P(x,t) 1_{th(x) \neq ty} dx$$

$$= \int_{X} \sum_{h(x) \neq ty} P(x,t) 1_{th(x) \neq ty} dx$$

• Let Decision region $R_i \coloneqq \{x \in \mathcal{X} \mid h(x) = C_i\}$

$$P(excor) = P(h(x) \neq t)$$

$$= \int_{X,t} P(x,t) \int_{Y} h(x) \neq ty$$

$$= \int_{X,t} P(t|X) \int_{Y} h(x) \neq ty$$

$$= \int_{X,t} P(t|X) \int_{Y} h(x) + ty P(x) dx$$

$$p(\text{mistake}) = p(\mathbf{x} \in \mathcal{R}_1, \mathcal{C}_2) + p(\mathbf{x} \in \mathcal{R}_2, \mathcal{C}_1)$$
$$= \int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) d\mathbf{x} + \int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) d\mathbf{x}.$$

Can decision regions be discontiguous in the optimal classifier?

Can decision regions be discontiguous in the optimal classifier?

Bayes classifier (multi-class; K > 2 classes)

•
$$h(x) = C_j$$
 if $P(t = C_j | x) \ge P(t = C_j, | x)$ $\forall j' \in \{1, ..., K\} \setminus \{j\}$

$$= \operatorname{argmax}_{C_j} P(t = C_j | x) \text{ (ties broken arbitrarily)}$$

- Again optimal classifier among all classifiers
 - wrt same criteria as for binary classifier i.e., minimum misclassification rate (or) equivalently maximum classification accuracy...
 - ...assuming complete knowledge of the posterior distribution

Optimality of multi-class classifier (max. accuracy)

Bayes classifier – General Loss Function (Matrix)

Bayes classifier – General Loss Function (Matrix)

• Example: classify medical images as 'cancer' or 'normal'

Optimality - Minimum Expected Loss

$$\mathbb{E}[L] = \sum_{t=C_1,\dots,C_K} \sum_{j=C_1,\dots,C_K} \int_{R_j} L_{tj} p(x,t) dx$$

Regions \mathcal{R}_j are chosen to minimize (next slides show why)

$$\mathbb{E}[L \mid X = x] = \sum_{t=C_1,\dots,C_K} L_{t,h(X)=j} p(t|x)$$

Optimality - Minimum Expected Loss

$$\mathbb{E}[L] = \sum_{t=C_1,\dots,C_K} \sum_{j=C_1,\dots,C_K} \int_{R_j} L_{tj} p(x,t) dx$$

Regions \mathcal{R}_i are chosen to minimize (next slides show why)

$$\mathbb{E}[L \mid X = x] = \sum_{t=C_1,\dots,C_K} L_{t,h(X)=j} p(t|x)$$

 $\mathbb{E}[L \mid X = x] = \sum_{t=C_1,\dots,C_K} L_{t,h(X)=j} p(t|x)$ $\downarrow D$ $\downarrow D$ $\downarrow D$ $\downarrow D$ $\downarrow D$ $\downarrow D$ $\lim_{t=c_1,\dots,c_K} t = \lim_{t=c_1,\dots,c_K} t = \lim_{t\to\infty} \int_{t}^{t} \left(\frac{1}{t} \right) dt$ $\lim_{t\to\infty} \int_{t}^{t} \int_{t}^{t} \left(\frac{1}{t} \right) dt$

[CMB]

Optimality - Minimum Expected Loss (indicator fn. notation)

EID =
$$\sum_{x=c}^{c} P(t|x) \cdot Z_{i-t}$$
 | $\sum_{y=c}^{c} L_{i} P(t|x) \cdot Z_{i-t}$ | $\sum_{x=c}^{c} L_{i} P(t|x) \cdot 1$ | $\sum_{x=c}^{c} L_{i} P$

Optimality - Minimum Expected Loss (cond. expectation notation)

$$\begin{aligned} E[L] &= E_X[E_{t|X}[L]] &= E_X[E_{t|X}[L]] \\ &= E_X[E_{t|X}[L-t,h(x)]] \\ &= E_X[\underbrace{E_{t|X}[L-t,h(x)]}] \\ &= E_X[\underbrace{E_{t|X}[L-t,h(x)]}] \end{aligned}$$

$$Choose h(x)=j st = is minimized$$

Cancer example – one final look!

• Example: classify medical images as 'cancer' or 'normal'

Cancer example – one final look!

• Example: classify medical images as 'cancer' or 'normal'

Decision
$$\begin{array}{c}
\text{cancer normal} \\
\text{Expansion} \\
\text{cancer} \\
\text{normal}
\end{array}$$

$$\begin{array}{c}
\text{cancer} \\
\text{1000} \\
\text{1}
\end{array}$$

$$\begin{array}{c}
\text{O} \\
\text{1}
\end{array}$$

$$\begin{array}{c}
\text{O} \\
\text{O}
\end{array}$$

$$\begin{array}{c}
\text{NS.} \\
\text{OSSS if } \\
\text{N(X)=C}
\end{array}$$

Inference and decision: three approaches for classification

- Generative model approach:
 - (I) Model $p(x, C_k) = p(x|C_k)p(C_k)$
 - (I) Use Bayes' theorem $p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})}$
 - (D) Apply optimal decision criteria
- Discriminative model approach:
 - (I) Model $p(C_k|\mathbf{x})$ directly
 - (D) Apply optimal decision criteria

- Discriminant function approach:
 - (D) Learn a function that maps each x to a class label directly from training data Note: No posterior probabilities!

Why separate Inference and Decision? (i.e., why infer (posterior) probabilities?)

- Minimizing risk (loss matrix may change over time)
- Reject option

- Combining models (Popular Naïve Bayes classifier)
- Etc.

Problem Setting

- Naïve Bayes Classifier
 - Assumption: The features are independent given the class labels

Problem Setting

- Naïve Bayes Classifier
 - Assumption: The features are independent given the class labels

Independent:
$$p(X_1, X_2) = p(X_1)p(X_2)$$

Conditionally independent: $p(X_1, X_2|Y) = p(X_1|Y)p(X_2|Y)$

Naïve Bayes

Naive Bayes assumption:

$$\begin{split} p\left(X\middle|Y\right) &= p\left(X_{1}, X_{2}, \cdots, X_{p}\middle|Y\right) \\ &= p\left(X_{p}\middle|X_{1}, X_{2}, \cdots, X_{p-1}, Y\right) p\left(X_{p-1}\middle|X_{1}, X_{2}, \cdots, X_{p-2}, Y\right) \cdots p\left(X_{1}\middle|Y\right) \\ &= p\left(X_{p}\middle|Y\right) p\left(X_{p-1}\middle|Y\right) \cdots p\left(X_{1}\middle|Y\right) \end{split}$$

$$p(Y|X) = \frac{p(X_p|Y)p(X_{p-1}|Y)\cdots p(X_1|Y)p(Y)}{p(X)}$$

$$\approx p(X_p|Y)p(X_{p-1}|Y)\cdots p(X_1|Y)p(Y)$$

Naïve Bayes

- Assumption: The features are independent given the class labels
- Simple form for the probability distribution
- Not necessarily linear hyperplane ©.
- Typically estimate by counting co-occurrences of feature value with class label
 - Maximum likelihood estimate
- Surprisingly powerful, especially in data with many features
 - High dimensional spaces

Understanding Bayes Theorem

Given the data of accident reports and status as injured or not injured of the person after the accident.

P(c)=6/14 pai=8/14	St p(Y/G)=1/2
15Gi = 119	$P(R 4) = \frac{2}{3}$ $P(R 4) = \frac{1}{8}$
	12 p(y/s)=1/8 p(y/s)=1/4
	D CIVITY

p(4) p(7) p(MK)Cyp(cy-)

p(2) y Mxx p(y)Cyp Mx/Cy) y Case: Yamaha and Not repaired

	Injured or		
Bike		Not	
name	Repaired	injured	
Yamaha	Yes	Injured	
Yamaha	No	Injured	
Suzuki	No	Not injured_	
TVS	Yes	Not injured -	
Honda	Yes	Not injured-	
⁄ /Suzuki	Yes	Not injured -	
TVS	Yes	Injured	
ŢVS	No	Injured	
KHOnda	Yes	Not injured -	
Yamaha	No	Injured	
Suzuki	Yes	Not injured -	
TVS	No	Injured	
Honda	Yes	Not injured –	
Yamaha	No	Not injured -	

Classification through Bayes Theorem

Given data on bikes and their features

Bikes	weight	Engine		
yamaha	100	300		
yamaha	110	250		
yamaha	92	250		
yamaha	80	200		
Honda	90	250		
Honda	65	200		
Honda	80	150		
Honda	70	175		

Predict the bike that was purchased from a given set of features,

Weight = 85 and engine = 250, Bike = ??

Where p(yamaha) = 0.5 and p(Honda) = 0.5

- Assumptions
 Weight and engine are continuous variables
- Weight and engine are independent variables

Classification through Bayes Theorem

	Mean	Mean	Variance	Variance
	(weight)	(Engine)	(weights)	(engine)
Yamaha(Y)	95.5	250	161	1666.66
Honda(H)	76.25	193.75	122.91	1822.91

Using Gaussian naïve Bayes,

P(Y/x(weight, engine)) = p(Y) *p(weight/Y)*p(engine/Y)*(1/p(x))P(H/x) = p(H) *p(weight/H)*p(engine/H)*(1/p(x))

Using Gaussian distribution,

		,
Probability	weight	engine
Yamaha	0.022331	0.009775
Honda	0.026361	0.003924

$$p(x = v|c) = \frac{1}{\sqrt{2\pi\sigma_c^2}} e^{-\frac{(v-\mu_c)^2}{2\sigma_c^2}}$$

P(yamaha/x) > p(Honda/x)

