Travaux Dirigés de Physique

CHARLES TUCHENDLER

MPSI 4 – LYCÉE SAINT-LOUIS

Année 2017/2018

Table des matières

TD n° 19	Du gaz parfait aux fluides réels et aux phases condensées	1
Exercice n° 1 - Compo	ortement d'un gaz aux basses pressions	1
Exercice n° 2 - Compa	raison entre le modèle du gaz parfait et le modèle du gaz de Van der Waals	1
Exercice n° 3 - Compa	raison des gaz monoatomiques et diatomiques	2
Exercice n° 4 - Tempé	rature cinétique et vitesse quadratique moyenne	2
Exercice n° 5 - Fuite d	le l'atmosphère	2
Exercice n° 6 - Gonflag	ge d'un pneu	3
Exercice n° 7 - Air de	la salle de classe	3
Evercice nº 8 - Tempé	ratura cinátique et ánorgia cinátique	3

TD N° 19

Du gaz parfait aux fluides réels et aux phases condensées

Exercice n° 1 - Comportement d'un gaz aux basses pressions

La figure ci-dessous représente la courbe du produit PV d'une mole d'un gaz réel à la température $T=300~{\rm K}$ en fonction du logarithme décimal de la pression exprimée en bar.

- 1. Dans quel domaine le gaz peut-il être considéré comme parfait ?
 - Proposer un encadrement pour les valeurs de la pression.
- 2. En déduire la valeur numérique de A. Quelle est la dimension de PV? En déduire l'unité de A.

Exercice n° 2 - Comparaison entre le modèle du gaz parfait et le modèle du gaz de Van der Waals

Une mole de dioxyde de carbone obéit à l'équation d'état de Van der Waals :

$$(P + \frac{a}{V^2})(V - b) = RT$$

Pour caractériser la différence de comportement entre le gaz réel et le gaz parfait, on souhaite comparer les volumes V et V' occupés par le gaz réel et le gaz parfait dans le mêmes conditions de température et de pression. On définit à cette fin le facteur de compressibilité :

$$Z = \frac{V}{V'}$$
 avec $V' = \frac{RT}{P}$, donc $Z = \frac{PV}{RT}$

qui tend vers l'unité si le comportement du gaz se rapproche de celui d'un gaz parfait. Lorsque c'est le cas, on peut développer soit Z en fonction de $\frac{1}{V}:Z=1+\frac{B}{V}+\frac{C}{V^2}+\frac{D}{V^3}+...$, soit Z en fonction de la pression $P:Z=1+B'P+C'P^2+D'P^3+...$

- 1. (a) Exprimer les deux coefficients B et C en fonction de a, b, R et T.
 - (b) En comparant les deux séries infinies, trouver les expressions des coefficients de B' et C' en fonction de B, C, R et T.
- 2. Interprétation physique des isothermes d'Agamat : aux basses pressions, on se limite à : $Z \simeq 1 + B'P$.
 - (a) Donner l'allure, dans un diagramme PV = f(P), des isothermes des ce gaz réel selon la température de l'expérience.
 - (b) Pour quelle température (dite de Mariotte) retrouve-t-on un comportement analogue au gaz parfait?

Exercice n° 3 - Comparaison des gaz monoatomiques et diatomiques

On utilise une enceinte fermée, de volume $V=10.0\,\mathrm{L}$ constant pour comparer les propriétés des gaz monoatomiques et diatomiques. Cette enceinte, parfaitement calorifugée (c'est à dire qu'elle est isolée thermiquement), contient une résistance électrique $r=10~\Omega$ qui peut être parcourue par un courant ajustable I. La température ambiante T est $300\,\mathrm{K}$.

$$Donn\acute{e}es: R = 8{,}32\,\mathrm{J\,K^{-1}\,mol^{-1}}; \mathcal{N}_A = 6{,}02 \times 10^{23}\,\mathrm{mol^{-1}}$$

- 1. L'enceinte contient une mole d'argon, un gaz monoatomique supposé parfait dans les conditions de l'étude et dont la masse molaire vaut $M_{\rm Ar}=39.9\,{\rm g\,mol^{-1}}$.
 - (a) Calculer la pression P_1 de l'argon à température ambiante.
 - (b) Calculer l'énergie cinétique moyenne de translation d'un atome d'argon. En déduire la vitesse moyenne d'un atome.
 - (c) On fait circuler un courant d'intensité I=1 A dans la résistance pendant une durée Δt égale à une minute. Calculer la température T_{f1} puis la pression P_{f1} du gaz à la fin de cette opération, sachant que l'énergie apportée au gaz par la résistance est intégralement transférée à celui-ci sous forme d'énergie interne.
 - (d) Que vaut à présent l'énergie cinétique de translation d'un atome d'argon?
- 2. L'enceinte contient maintenant une mole de dioxygène à température ambiante. Dans les conditions d'expérimentation, le dioxygène est un gaz diatomique que nous considérons parfait. La masse molaire de l'oxygène est $M_O=16\,\mathrm{g\,mol^{-1}}$
 - (a) Déterminer la pression P_2 du dioxygène, l'énergie cinétique de translation des molécules et leur vitesse quadratique moyenne. Comparer ces valeurs avec celles obtenues pour l'argon.
 - (b) On fait à nouveau passer un courant de 1 A dans la résistance pendant une minute. Quelle est alors la température T_{f2} du gaz?
 - (c) Calculer l'énergie cinétique de translation moyenne des molécules de dioxygène. Donner une interprétation microscopique de la différence avec l'énergie cinétique de translation moyenne obtenue pour l'argon.
 - (d) Pendant combien de temps aurait-on dû faire circuler le courant I pour que le dioxygène atteigne une température identique à celle obtenue pour l'argon?

Exercice n° 4 - Température cinétique et vitesse quadratique moyenne

Un récipient de volume 1 dm³, à parois adiabatiques isolantes, contient 1, 4 g de diazote à la pression atmosphérique. Le diazote sera considéré comme un gaz parfait.

- 1. Quelle est la température du gaz dans le récipient?
- 2. Quelle est la densité de molécules n^* (nombre de molécules par unité de volume) dans le récipient?
- 3. Quelle est l'énergie cinétique moyenne de translation ε d'une molécule N_2 ?
- 4. Quelle est sa vitesse quadratique moyenne $u = \sqrt{\langle v^2 \rangle}$?

Exercice n° 5 - Fuite de l'atmosphère

- 1. Calculer numériquement pour une température de 300 K, la vitesse quadratique moyenne du dihydrogène et du diazote.
- 2. On donne les vitesses de libération d'un corps au voisinage de la Terre, $v_{\ell_{\rm T}}=1,1\times10^4~{\rm m.s^{-1}},$ et au voisinage de la Lune, $v_{\ell_{\rm L}}=2,3\times10^3~{\rm m.s^{-1}}.$
 - Calculer les rapports entre les vitesses de libération et les vitesses quadratiques moyenne. Commenter
- 3. Quelle devrait être l'ordre de grandeur de la température pour que le diazote, constituant majoritaire de l'atmosphère terrestre, échappe quantitativement à l'attraction terrestre? Commenter.
- 4. Question subsidiaire : Déterminer les vitesses de libération données en 2.

Données :
$$G = 6,67 \times 10^{-11} \text{ SI}$$
; $R_{\rm T} = 6,4 \times 10^6 \text{ m}$; $R_{\rm L} = 1,8 \times 10^6 \text{ m}$; $M_{\rm T} = 6,0 \times 10^{24} \text{ kg}$; $M_{\rm L} = 7,4 \times 10^{22} \text{ kg}$; $M(N) = 14,0 \text{ g.mol}^{-1}$.

Exercice nº 6 - Gonflage d'un pneu

Dans cet exercice, l'air est assimilé à un gaz parfait.

- 1. Un pneu sans chambre, de volume supposé constant, est gonflé à froid, à la température $\theta_1 = 20$ °C, sous la pression $P_1 = 2,1$ bar. Après avoir roulé un certain temps, on mesure une pression $P_2 = 2,3$ bar. Expliquer ce phénomène.
- 2. Une bouteille d'acier, munie d'un détendeur, contient dans un volume $V_b = 80$ L, de l'air comprimé sous $P_b = 15$ bar. En ouvrant le détendeur à la pression atmosphérique, quel volume d'air peut-on extraire à température constante?
- 3. On veut gonfler des pneus de volume $V_p = 50$ L à la pression $P_p = 2,6$ bar au moyen de cette bouteille d'air comprimé. Les pneus sont initialement à la pression atmosphérique $P_{atm} = 1$ bar. On suppose que le gonflage se fait de façon isotherme (T = cte = 300 K).
 - (a) Donner l'expression de la quantité de matière d'air n_p présente dans le pneu gonflé. En déduire la quantité de matière n_i qu'il faut injecter dans le pneu.
 - (b) Déterminer l'expression de la pression dans la bouteille après un premier gonflage, puis après x gonflages.
 - (c) En déduire combien de pneus peuvent être gonflés avec cette bouteille.

Exercice n° 7 - Air de la salle de classe

On considère l'air de la classe comme un gaz parfait au repos formé à 80% de diazote N_2 et à 20% de dioxygène O_2 . La pression est de une atmosphère (1 atm = 1,013 bar) et la température est de 29°C.

Les dimensions de la salle sont L=8 m, $\ell=5$ m et h=3 m.

Données : $M(N) = 14 \text{ g.mol}^{-1}$; $M(O) = 16 \text{ g.mol}^{-1}$; $\mathcal{N}_A = 6{,}02.10^{23} \text{ mol}^{-1}$ et $R = 8{,}314 \text{ SI}$.

- 1. Déterminer le volume V de la classe et la masse molaire moyenne M de l'air.
- 2. Déterminer la quantité de matière n d'air présent dans la classe ainsi que les nombre N de molécules d'air et leur masse totale m.
- 3. En déduire la masse volumique ρ de l'air, la densité particulaire n^* (nombre de molécules par unité de volume) ainsi que la distance moyenne d entre deux molécules.
- 4. Classer toutes les grandeurs utilisées en deux catégories : intensives ou extensives.

Exercice n° 8 - Température cinétique et énergie cinétique

- 1. Exprimer le produit PV d'un gaz monoatomique supposé parfait en fonction du nombre de molécules, puis du nombre de moles et enfin de l'énergie cinétique de translation.
- 2. Calculer l'énergie cinétique d'agitation thermique d'une mole de diazote dans les conditions normales.
- 3. Calculer la vitesse quadratique moyenne du diazote dans les conditions normales.
- 4. On met en contact thermique deux réservoirs, l'un contenant du dioxygène sous une pression de 2 bar, l'autre de l'argon sous une pression de 10 bar. Au bout d'un temps suffisant, la température est identique pour les deux gaz. Calculer le rapport des vitesses quadratiques moyennes.

Données : $M(N) = 14,0 \text{ g.mol}^{-1}, M(O) = 16 \text{ g.mol}^{-1}, M(Ar) = 39,9 \text{ g.mol}^{-1}$