COMP9016 Assignment #1

(John) Paul Nagle, R00065426

1.1 Building Your World

Task Environment

The 2D world that has been implemented is a fully observable, deterministic (i.e. actions have predictable effect on state), sequential (actions affect future outcomes i.e. the location of the agent changes), and static (i.e. the env does not change) grid of configurable height and depth.

There is one "Winning" block in the grid. If the agent lands on the "Winning" block, they are awarded 100 points, the game is declared Won, and the game is over.

There is one "Penalty" block in the game. If the agent lands on the "Penalty" block, they are penalised 50 points.

There is one Obstacle block in the game on to which the agent cannot move, and must navigate around.

The agent cannot move outside the boundaries of the grid.

They can move one square per move in any of "up", "down", "left" or "right", provided that the above restrictions are met.

Each move has a cost associated with it, which is the sum of the x and y coordinates of the square.

The game is considered Lost if the agent has not found the Winning block in the number of steps allowed.

When the game starts, the all "Things" are positioned at random locations.

i.e. 2D world with (w=10 d=10) grid

Agent Types and PEAS Descriptions

	Performance	Environment	Actuators	Sensors
Random	+100 on winning block and Win game, -50 on penalty block, -(x+y) per move, Lose game if Winning block not found in S steps	2D grid of width w and depth d, with winning block, penalty block and obstacle block.	Move (Up, Down, Left, Right)	Current position. Percepts are ignored.
Reflex	As above	As above	As above	Current position, receives percepts with available directions and associated costs
Table	As above	As above	As above	As per Reflex Agent. Decides movement based on internal table.

Advantages/Disadvantages of the different agents

	Advantages	Disadvantages
Random	Very fast	non-rational
	Easy implementation	Non optimised
	Effective in small grids	Scales badly
Reflex	Low computational overhead	Poor performance in large grids
	Rational	Inconsistent performance
	Performs better than Random	Non optimised
Table	Makes informed decisions	Requires computational overhead
	Performs better in larger grids	Optimal implementation is difficult, how
	that the other agents	to decide how to build the table?
		No proper Search or Goal Based
		decisions

Ability to perform

Random	This produces very erratic results, and is impossible to characterise in		
(random_move)	any rational way. The more steps this agent is allowed, the higher		
	likelihood it has of winning. There was nearly always a non-zero win		
	rate for this agent.		
Reflex	This agent always tends to move to $(0,0)$ and oscillate between it and		
(cheapest_move)	(1,0), as these are the cheapest moves in this game. If either happen to		
	be a penalty square, the cost can be huge. If the Winning square is not		
	between the original location of the agent and $(0,0)$ then this agent will		
	never win. 0% win rates were common for this agent.		
Table	This agent moves in a predictable fashion, but it is down to chance as		
(table_action)	to whether the Winning square is within the set list of moves that this		
	agent will make. 0% win rates were common for this agent.		

Suitability to operate in worlds of varying sizes

Sample results after experiments with 100 different worlds:

Random	Performance and win rate fluctuated randomly across worlds of different
	sizes.
Reflex	Win rate was better in smaller worlds, as there was more likelihood of the
	winning square being on the agent's path to $(0, 0)$. The reflex trigger is the
	main driver of the poor result, something that didn't always tend to $(0,0)$
	might have proved more performant.
Table	Performance improved in the bigger worlds as there was less likelihood of
	the pre-defined moves hitting the Penalty square. Conversely, Win rate was
	better in the smaller worlds, as there was more likelihood of hitting the
	Winning square in the more limited environment. This could have been
	improved by a better strategy in the table of defined moves. Defining an
	expanding circular motion, or a systematic row by row search might have
	improved the outcomes.

1.2 Searching Your World

Problem Formulation

Formulate a well defined problem statement and identify a goal-state under which your game is complete. Why is this important to search? As part of your solution you should be including the initial state, the set of actions, the transition model, a goal test function and a path cost function.

Uninformed Search Techniques

Select three uninformed search techniques and discuss their appropriateness to your world under appropriate headings for evaluating problem-solving performance. Implement the uninformed search techniques and discuss the results

Informed Search Techniques

Select three informed search techniques and discuss their appropriateness to your world under appropriate headings for evaluating problem-solving performance. Implement the informed search techniques and discuss the results.

Performance Evaluation

Write a clear and concise report detailing the search techniques performance in your agent-based game for the relevant agent types. The purpose of this is to articulate an understanding of the underlying concepts, and limitations, being implemented both from a theoretical and practical perspective.

Conclusion

- Summarize key findings
 Reflect on agent suitability and search efficiency
 Suggest improvements or future work