Attention is all you need

a.k.a. Transformer

19.03.30 김현우(https://hwkim94.github.io)

Transformer 이전의 SOTA : RNN + Encoder-Decoder + Attention

Transformer 이전의 SOTA : RNN + Encoder-Decoder + Attention

"This inherently sequential nature precludes parallelization" 즉, previous hidden state를 사용하기 때문에 병렬처리 할 수 없어서 학습에 오랜 소요

Transformer 이전의 SOTA : RNN + Encoder-Decoder + **Attention**

"allowing modeling of dependencies without regard to their distance in the input or output sequences" 즉, 문장의 길이(단어들 사이의 거리)에 상관없이 고려해야 하는 단어의 중요도를 파악할 수 있게 도와줌

"more parallelization and can reach a new state of the art"

Overall Architecture

Architecture

Architecture

- 1. Encoder(x6) Decoder(x6)
- 2. Sublayer + Residual Connection
- 3. Multi-head Attention + FFN
- 4. Layer Norm + Dropout + Label Smoothing
- 5. Positional Encoding
- 6. Embedding

Output

Attention in Transformer

특정 단어(query)가 어떤 단어(key)와 관련되어 있는지 찾은 후, 그 중요도를 다시 그 단어(value)에 곱함 즉, query가 어떤 key와 얼마나 높은 확률로 연관성이 있는지 계산하여 다시 value에 곱해주는 것

특정 단어(query)가 어떤 단어(key)와 관련되어 있는지 찾은 후, 그 중요도를 다시 그 단어(value)에 곱함 즉, query가 어떤 key와 얼마나 높은 확률로 연관성이 있는지 계산하여 다시 value에 곱해주는 것

특정 단어(query)가 어떤 단어(key)와 관련되어 있는지 찾은 후, 그 중요도를 다시 그 단어(value)에 곱함 즉, query가 어떤 key와 얼마나 높은 확률로 연관성이 있는지 계산하여 다시 value에 곱해주는 것

a_k - key / value vector = aimension

특정 단어(query)가 어떤 단어(key)와 관련되어 있는지 찾은 후, 그 중요도를 다시 그 단어(value)에 곱함 즉, query가 어떤 key와 얼마나 높은 확률로 연관성이 있는지 계산하여 다시 value에 곱해주는 것

특정 단어(query)가 어떤 단어(key)와 관련되어 있는지 찾은 후, 그 중요도를 다시 그 단어(value)에 곱함 즉, query가 어떤 key와 얼마나 높은 확률로 연관성이 있는지 계산하여 다시 value에 곱해주는 것

특정 단어(query)가 어떤 단어(key)와 관련되어 있는지 찾은 후, 그 중요도를 다시 그 단어(value)에 곱함 즉, query가 어떤 key와 얼마나 높은 확률로 연관성이 있는지 계산하여 다시 value에 곱해주는 것

Multi-head Attention

$$\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$

$$d_k = d_v = d_{\text{model}}/h = 64.$$
 $h = 8$
$$W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}, W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}, W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v}$$
 $W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$

query, key, value를 그냥 사용하는 것이 아니라, 각각 h=8번 linear projection 따라서, 서로 다른 representation으로부터 attention을 계산

linear projection을 h=8번 해주기 때문에 연산비용이 더 요구될 것 같지만, linear projection을 통해 차원을 줄여주므로 비슷

Detailed Architecture

Self-Attention

query, key, value를 처음에는 input에서, 이후에는 previous layer에서 가져옴 즉, Q=K=V

Masked Self-Attention

auto-regressive한 모델이기 때문에 현재 decoding하는 position 이전의 생성된 단어들만 사용 (softmax에 들어가는 matrix에서 masking해야 하는 position들을 모두 –inf로 설정)

Encoder-Decoder Attention

query Q가 decoder에서 오고, key K와 value V는 encoder에서 오기 때문에 decoder의 모든 단어가 encoder의 모든 단어에 attention을 계산

Position-wise Feed Forward Network

position마다 다른 network 사용 1x1 convolution이랑 비슷한 느낌

즉, "나는 개발자가 될래요" 라는 문장에서 ["나는", "개발자가", "될래요"] 가 각각 다른 network에 의해 계산 같은 position의 weight는 공유

Learned Embedding

고정된 embedding을 사용하는 것이 아니라, embedding weight도 계속 학습 (모두 공유됨)

Positional Encoding

Transformer는 attention만 사용하기 때문에 위치정보가 결여되어 있다는 문제가 발생따라서, embedding vector에 positional vector를 더해주는 방식으로 위치정보를 반영

d_{model}차원의 vector에서 i-th elt의 pos-vec의 값이 position (단어의 위치)마다 달라짐

Training

- Adam Optimizer

```
lrate = d_{model}^{-0.5} \cdot min(step\_num^{-0.5}, step\_num \cdot warmup\_steps^{-1.5})
```

- Layer Normalization
- Dropout
- Label Smoothing

SOTA 다.

SOTA 였다.

SOTA 였었다.

SOTA 였었었었다.

- https://arxiv.org/abs/1706.03762
- https://pozalabs.github.io/transformer/
- https://reniew.github.io/43/
- https://hwkim94.github.io/