Devoir Libre N°2

U Durée: 1 semaine

CONSIGNES GÉNÉRALES

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre. RAPPEL DES CONSIGNES

- Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition; d'autres couleurs, excepté le vert, bleu clair ou turquoise, peuvent être utilisées, mais exclusivement pour les schémas et la mise en évidence des résultats.
- Ne pas utiliser de correcteur.
- Écrire le mot FIN à la fin de votre composition.

L'énoncé se compose d'un unique problème.

Problème 1 : Suites récurrentes linéaires d'ordre 2

Soit $\mathcal S$ l'ensemble des suites réelles muni de sa structure usuelle d'espace vectoriel sur $\mathbb R$:

$$\forall X = (x_n)_{n \in \mathbb{N}} \in \mathcal{S}, \forall Y = (y_n)_{n \in \mathbb{N}} \in \mathcal{S}, \forall \lambda \in \mathbb{R}, X + Y = (x_n + y_n)_{n \in \mathbb{N}}, \lambda X = (\lambda x_n)_{n \in \mathbb{N}}$$

On considère la partie \mathcal{E} de \mathcal{S} constituée des suites $X=(x_n)_{n\in\mathbb{N}}$ vérifiant pour tout $n\in\mathbb{N}$ la relation

$$x_{n+2} = x_{n+1} + x_n.$$

Partie 1.1

- 1. a) Vérifier que $\mathcal E$ est un sous-espace vectoriel de $\mathcal S$. Quelle est la dimension de $\mathcal E$?
 - b) Les deux suites $U=(u_n)_{n\in\mathbb{N}}\in\mathcal{E}$ et $V=(v_n)_{n\in\mathbb{N}}\in\mathcal{E}$ définies par $u_0=0$, $u_1=1$ et $v_0=2$, $v_1=1$ constituent-elles une base de \mathcal{E} ?
 - c) En déduire, pour tout $n \in \mathbb{N}$, les relations

$$u_{n+1} = \frac{1}{2}u_n + \frac{1}{2}v_n, \quad v_{n+1} = \frac{5}{2}u_n + \frac{1}{2}v_n,$$

puis la relation $5u_n^2 - v_n^2 = 4(-1)^{n+1}$.

2. Pour tout $n \in \mathbb{N}$, calculer u_{2n+1} et v_{2n+1} en fonction de u_n et v_n à l'aide des formules

$$u_{2n} = u_n v_n, \quad v_{2n} = v_n^2 - 2(-1)^n$$
 (1)

et des résultats précédents, et en déduire la validité des formules (1) pour tout entier $n \ge 0$.

Partie 1.2

L'objet de cette partie est de décrire pour les suites U et V une méthode de calcul numérique commodément exploitable sur ordinateur.

On rappelle que la représentation binaire de l'entier $n \ge 0$ est l'unique suite $(b_i(n))_{i \in \mathbb{N} \setminus \{0\}}$ de nombres $b_i(n) \in \{0,1\}$ telle que $n = \sum_{i=1}^{+\infty} b_i(n) 2^{i-1}$.

- 1. a) Calculer en fonction de l'entier $n \geq 1$ le plus grand des indices i tels que $b_i(n) = 1$ (on utilisera la notation [t] pour désigner le plus grand entier inférieur ou égal au réel t).
 - b) En notant désormais $\beta(n)$ le plus grand indice i en question, calculer $\beta(39)$.
- 2. Pour tout entier $n \geq 1$, on considère la suite finie $n_1, \ldots, n_{\beta(n)}$ définie par $n_1 = b_{\beta(n)}(n)$ et, pour tout entier $i \in [1, \beta(n)]$,

$$n_{i+1} = 2n_i + b_{\beta(n)-i}(n).$$

- a) Vérifier que $n = n_{\beta(n)}$.
- b) Pour tout entier $i \in [1, \beta(n)]$, exprimer $u_{n_{i+1}}$ et $v_{n_{i+1}}$ en fonction de u_{n_i} et v_{n_i} , en tenant compte de la valeur de $b_{\beta(n)-i}(n)$.
- 3. Employer la technique qui vient d'être décrite pour calculer numériquement u_{39} et v_{39} (on indiquera le détail des calculs utilisés).

Partie 1.3

Dans cette partie, on se propose d'étudier la fonction S définie sur \mathbb{N} par S(0)=0 et, pour tout entier $n\geq 1$, par

$$S(n) = \sum_{k=0}^{n-1} \left(\sum_{i=1}^{+\infty} b_i(k) \right).$$

S(n) est donc égal au nombre d'interventions du nombre 1 dans les représentations binaires des n entiers consécutifs $0, 1, \ldots, n-1$. On posera, pour tout $k \in \mathbb{N}$:

$$s(k) = \sum_{i=1}^{+\infty} b_i(k).$$

1. a) Établir pour tout $n \in \mathbb{N}$ les relations

$$S(2n) = 2S(n) + n$$
 et $S(2n+1) = 2S(n) + n + s(n)$.

- b) Calculer la valeur de S(53).
- c) Donner, pour tout entier $p \ge 1$, une expression explicite de $S(2^p)$.
- 2. Pour tous les entiers $i \ge 1$ et $n \ge 1$, on pose

$$B_i(n) = \sum_{k=0}^{n-1} b_i(k).$$

a) Montrer que

$$B_1(n) = \frac{n}{2} + \phi\left(\frac{n}{2}\right)$$
 et $B_2(n) = \frac{n}{2} + 2\phi\left(\frac{n}{4}\right)$

où ϕ est la fonction définie sur \mathbb{R} , paire et de période 1, telle que $\phi(\xi) = -\xi$ pour tout $\xi \in \left[0, \frac{1}{2}\right]$.

- b) Tracer les graphes des fonctions $x \mapsto \frac{x}{2} + \phi\left(\frac{x}{2}\right)$ et $x \mapsto \frac{x}{2} + 2\phi\left(\frac{x}{4}\right)$.
- c) Donner au moyen de la fonction ϕ une expression de $B_i(n)$.
- d) En déduire l'égalité

$$S(n) = \frac{n\beta(n)}{2} + 2^{\beta(n)} \sum_{j=1}^{\beta(n)} \frac{1}{2^{j}} \phi\left(\frac{n}{2^{\beta(n)}} 2^{j-1}\right).$$

3. Pour tout réel x, on pose

$$f(x) = \sum_{j=1}^{+\infty} \frac{1}{2^j} \phi(2^{j-1}x).$$

- a) En notant $\log_2 x$ le logarithme de base 2 du réel x>0, exprimer pour tout entier $n\geq 1$ la différence $\frac{S(n)}{n}-\frac{1}{2}\log_2 n$ à l'aide de f et de θ , où $\theta=\beta(n)-\log_2 n$.
- b) En déduire un infiniment grand simple équivalent à S(n) lorsque n tend vers $+\infty$.
- 4. Pour tout réel x > 0, on pose $g(x) = \frac{x}{2} \log_2 x$.
 - a) Quel est le sens de la concavité du graphe de la fonction *g* ?
 - b) Comparer, pour tout entier $n \ge 1$, les positions par rapport à 0 des différences g(n) S(n) et g(2n) S(2n).
 - c) On suppose qu'il existe des entiers impairs 2n+1 strictement plus grands que 1 tels que $S(2n+1) \geq g(2n+1)$ et on note 2m+1 le plus petit d'entre eux. Trouver, sous ces hypothèses, les signes de g(2m)-S(2m) et de g(2m+2)-S(2m+2) et en déduire, à l'aide de valeurs convenables de la dérivée g' de g, une minoration et une majoration de s(m). L'hypothèse initiale de cette question est-elle justifiée ?
 - d) Déterminer le signe de la fonction g-S sur l'ensemble des entiers strictement positifs, et les entiers pour lesquels cette fonction est nulle.
- 5. a) Établir la continuité de la fonction f sur \mathbb{R} .
 - b) Montrer qu'elle n'est dérivable en aucun point x de \mathbb{R} (on pourra étudier successivement les cas $x=0, \ x=\frac{r}{2^p}$ avec $r\in\mathbb{Z}$ et $p\in\mathbb{N}$ et enfin x réel quelconque).

Fin du Devoir libre Bon courage!