SPRINT – 1 PROJECT DOCUMENT

Date	12 November 2022
Team ID	PNT2022TMID13084
Project Name	Flight Delay Prediction Using Machine Learning

DEVELOPMENT PHASE:

SPRINT-1:

Outline:

- 1. Data Pre-processing
- 2. Data Analysis
- 3. Model Building
- 4. Saving Best Model

Required Libraries:

Pandas - Data Pre-processing

Numpy - Data Pre-processing,

Analysis

• Matplotlib - Visualization

Seaborn - Visualization

Sklearn - Model Building

Pickle - Model saving

Software/Tool:

- Google colab
- Used Language Python

Data Pre-processing:

Data Collection:

Dataset is collected from the IBM career smartinternz portal in Guided Project. **Dataset description:**

The dataset contains 26 variables with various data types such as string, object, time, integer, float.

Data	columns (total 26 co	lumns):	
	Column	Non-Null Count	Dtype
0	YEAR	11231 non-null	int64
1	QUARTER	11231 non-null	int64
2		11231 non-null	int64
3	DAY_OF_MONTH	11231 non-null	int64
4		11231 non-null	int64
5	UNIQUE_CARRIER	11231 non-null	object
6	TAIL_NUM	11231 non-null	object
7	FL_NUM	11231 non-null	int64
8	ORIGIN_AIRPORT_ID	11231 non-null	int64
9	ORIGIN	11231 non-null	object
10	DEST_AIRPORT_ID	11231 non-null	int64
11		11231 non-null	
12	CRS_DEP_TIME	11231 non-null	int64
13	DEP_TIME	11124 non-null	float64
14	DEP_DELAY	11124 non-null	float64
15	DEP_DEL15	11124 non-null	float64
16	CRS_ARR_TIME	11231 non-null	int64
17	ARR_TIME	11116 non-null	float64
18	ARR_DELAY	11043 non-null	float64
19	ARR_DEL15	11043 non-null	float64
20	CANCELLED	11231 non-null	float64
21	DIVERTED	11231 non-null	float64
22	CRS_ELAPSED_TIME	11231 non-null	float64
23	ACTUAL_ELAPSED_TIME	11043 non-null	float64
24	DISTANCE	11231 non-null	float64
25	Unnamed: 25	0 non-null	float64

Columns Description:

Dest means Destination Airport.

Crs_dep_time and crs_arr_time is planned departure and arrival time.

Crs_elapsed _time is estimated travel time as per plan.

Arr_time and dep_time are actual arrival and departure time.

Actual_elapsed_time is actual travelled time

To pre-process our dataset, we need to import above mentioned required libraries, then import data using pandas.

This data does not contain any duplicated values and null values except in arrival, departure time columns, because these left empty when flights are cancelled.

Descriptive Analytics:

Data Analysis And Visualization:

<matplotlib.axes. subplots.AxesSubplot at 0x7f5f3feb7b50>

This graph shows the positive trend and strong binding between arrival and departure delay.

```
plt.scatter(data1["DAY_OF_MONTH"],data1["DEP_DELAY"],color="red")
plt.subplot(2,1,2)
plt.scatter(data1["DAY_OF_MONTH"],data1["ARR_DELAY"],color="yellow")
plt.show()
```


This above picture shows the relationship between day of month and delays.

This above boxplot shows the trends of days of the week and delay, Monday and Saturday had high delays.

This above boxplot shows the seasonal relationship between months and delays. August had highest no of delays.

Correlation between columns:

Model Buliding:

We builded

Decision Tree with 0.8376550169109357
Random Forest with 0.8095238095238095
SVM with 0.7378727191811304
KNN with 0.7894971072541166
Logistic Regession with 0.7997329773030708

We will explore only Random Forest and Decision Tree which have high accuracy Random Forest:

Testing Sensitivity for Random Forest 0.9138110072689511
Testing Specificity for Random Forest 0.25
Testing Precision for Random Forest 0.9898762654668166
Testing accuracy for Random Forest 0.8095238095238095

Decision Tree:

Testing Accuracy for Decision Tree 0.8376550169109357
Testing Sensitivity for Decision Tree 0.9147335423197492
Testing Specificity for Decision Tree 0.15083798882681565
Testing Precision for Decision Tree 0.9056486654252017
Testing accuracy for Decision Tree 0.6973742768135291

Model Saving:Random Forest gives the best accuracy then others, so we save random forest model using pickle.

```
[156] import pickle

[157] pickle.dump(rf,open("rfmodel.pkl",'wb'))
```

Conclusion: In this sprint, we builded our model, evaluated and saved. In next sprint, we deploy our model IBM cloud using IBM Watson and building Dashboard.