HAEKTPONIKH II

Αναφορά Εργαστηριακής Άσκηση 2

Μη Γραμμικές Εφαρμογές Τελεστικών Ενισχυτών

LAB31138249

Μπεχτσούδης Χρήστος ₂₀₁₆₀₃₀₀₀₅ Γάκης Κωσταντίνος ₂₀₁₁₀₃₀₀₆₆ Μιχάλης Γαλάνης ₂₀₁₆₀₃₀₀₃₆

ΕΙΣΑΓΩΓΗ

Σε αυτή την εργαστηριακή άσκηση μελετήθηκαν μη γραμμικές εφαρμογές τελεστικών ενισχυτών με συνδιασμό χρήσης αρνητικής αναδραση. Συγκεκριμένα, αναφερόμαστε στα κυκλώματα του ανορθωτή πλήρους κύματος (full-wave rectifier), του μετατροπέα AC/DC (AC/DC Converter) και του περιοριστή (limiter).

🖹 ΑΝΟΡΘΩΤΗΣ ΠΛΗΡΟΥΣ ΚΥΜΑΤΟΣ (2.2.2)

Το κύκλωμα του ανορθωτή βρίσκεται στο παρακάτω σχήμα με $R=R_L=10k\Omega$ και διόδους $\mathbf{D_P},\mathbf{D_N}$ τύπου $\mathbf{1N4148}$:

🞚 Θεωρητική Ανάλυση – Ορθά πολωμένες Δίοδοι

🗵 Πειραματική Διαδικασία - Ορθά Πολωμένες Δίοδοι

Αφού συνδέθηκε το κύκλωμα σύμφωνα με το σχήμα, παρακάτω παρουσιάζονται οι κυματομορφές εισόδου και εξόδου ξεχωριστά η καθεμία και ύστερα στο ίδιο διάγραμμα:

Παραθέτουμε επίσης τις κυματομορφές που παράγονται από το πρόγραμμα προσωμοίωσης **LT Spice** όπου στο πρώτο διάγραμμα επιβεβαιώνονται οι κυματομορφές της πειραματικής διαδικασίας και στο δεύτερο επιβαιβεώνεται η θεωρητική συνάρτηση μεταφοράς.

🔢 Θεωρητική Ανάλυση – Ανάστροφα Πολωμένες Δίοδοι

🔢 Πειραματική Διαδικασία – Ανάστροφα Πολωμένες Δίοδοι

Όπως και προηγουμένος, στο εργαστήριο ο παλμογράφος παρήγαγε τις παρακάτω κυματομορφές:

Παρομοίως με τη περίπτωση των ορθών πολωμένων διόδων, παραθέτουμε τις κυματομορφές που παράγονται από το **SPICE**. Και πάλι, στο πρώτο διάγραμμα της επόμενης σελίδας επιβεβαιώνονται οι κυματομορφές της πειραματικής διαδικασίας και στο δεύτερο επιβαιβεώνεται η θεωρητική συνάρτηση μεταφοράς.

\blacksquare ΜΕΤΑΤΡΟΠΕΑΣ AC/DC (2.2.3)

Παραθέτουμε σε επόμενο σχήμα τον μετατροπέα με $R=30k\Omega$ και $C=10\mu F$:

🔢 Θεωρητική Ανάλυση

Η θεωρία για το κύκλωμα του μετατροπέα AC/DC είναι η ίδια, ουσιαστικά είναι ένας ανορθωτής πλήρους σήματος και έχει και ένα πυκνωτή παράλληλα για να κάνει την εξομάλυνση και να παραχθεί τελικά το DC σήμα.

🔢 Πειραματική Διαδικασία

Αφού συνδέθηκε το κύκλωμα σύμφωνα με το σχήμα, παρακάτω παρουσιάζονται οι κυματομορφές για ημιτονοειδές, τριγωνικό και τετραγωνικό σήμα αντίστοιχα με $V_{p-p}=1V$ και συχνότητα $\mathbf{f}=100Hz$.

Για άλλη μια φορά, εισάγοντας το κύκλωμα στο Spice παράγουμε τα παρακάτω αποτελέσματα:

Η διαφορές στις κυματομορφές εισόδου/εξόδου για ημιτονοειδές, τριγωνικό και τετραγωνικό – αντίστοιχο - σήμα φαίνονται στην επόμενη σελίδα στα επόμενα 3 διαγράμματα:

🖹 ΠΕΡΙΟΡΙΣΤΗΣ (2.2.4)

Κύκλωμα περιοριστή με $R=1k\Omega$, $\mathbf{f}=100Hz$ και $\mathbf{D_1}=\mathbf{D_2}=\mathbf{BZX55C}$ 5.1V Zener:

🔢 Θεωρητική Ανάλυση

Όταν η τάση V_i είναι θετική, η δίοδος D_1 άγει σε αντίθεση με τη D_2 που είναι ανάστροφα πολωμένη και η έξοδος του τελεστικού ενισχυτή είναι αντεστραμμένη. Αντίθετα, εάν η V_i είναι αρνητική τότε η D_1 είναι αναστροφα πολωμένη και η D_2 άγει.

Ο ψαλιδισμός προέρχεται από το γεγονός οτι η V_i ισούται με V_{zener} και η δίοδος βρίσκεται στη ζώνη κατάρρευσης.

Πιο συγκεκριμένα:

$$V_i > 0 \Leftrightarrow V_o = -iR = -\left(\frac{V_i}{R}\right)R = -V_i$$

KQI

$$V_i < 0 \stackrel{\alpha \nu \tau (\sigma \tau o i \chi \alpha}{\longleftrightarrow} V_o = -V_i$$

Θεωρητικό διάγραμμα της συνάρτησης μεταφοράς του περιοριστή:

Πειραματική Διαδικασία

Στη πρώτη εικόνα αριστερά περιγράφονται οι κυματομορφές τάσης εισόδου/εξόδου με κατάλληλη μέγιστη τάση εισόδου V_i έτσι ώστε να μην υπάρχει παραμόρφωση, ενώ στα δεξιά περιγράφονται οι κυματομορφές τάσης εισόδου/εξόδου του παλμογράφου με παραμόρφωση και συγκεκριμένα με $V_{i(p-p)}=10V$ και $\mathbf{f}=100Hz$.

Παρακάτω βρίσκονται όλα τα αποτελέσματα από τη προσωμοίωση του κυκλώματος στο LT Spice:

Χωρίς παραμόρφωση:

Με παραμόρφωση:

