

INDUSTRIAL SIMULATION ENVIRONMENT WITH OPEN PLC

DAMIAN ATLSS, CHARLOTTE GLUTTING

Cybersecurity Exam

AGENDA OVERVIEW

01

OUR GOALS

02

DESIGN INDUSTRY CASE

03

INDUSTRY COMPONENTS SIMULATION

04

INFRASTRUCTURE SETUP

05

PROJECT SIMULATION

06

CYBERATTACKS

07

RESULTS

08

SOURCES

OUR GOALS

• Simulation of Industrial Environment and Components:

- o Design and implement a mini-industrial infrastructure to simulate an assembly station.
- Integrate components like OpenPLC, Factory I/O, and ScadaBR.

Containerization with Docker:

• Use Docker to containerize the simulation to ensure isolation and portability.

Automation with Terraform:

 Implement Terraform to automate the provisioning of the infrastructure and enable reproducibility across different deployments.

• Security Evaluation:

 Evaluate the security of the simulated industrial environment by performing various cyberattacks.

DESIGN INDUSTRY CASE

DESIGN INDUSTRY CASE

INDUSTRY COMPONENTS SIMULATION

OPEN PLC

- Open-source platform for Programmable Logic Controllers (PLCs).
- Designed for simulating and controlling industrial automation components.
- OpenPLC Runtime: Executes PLC programs and handles real-time industrial control and simulation.
- OpenPLC Editor: Provides a user-friendly interface to create and edit PLC programs.

FACTORY I/O

- Provides a dynamic 3D simulation environment for testing PLC programs.
- Complements OpenPLC for a full simulation and control workflow.

INDUSTRY COMPONENTS SIMULATION

SCADA BR

- Open-source Supervisory Control and Data Acquisition (SCADA).
- Serves as the Human-Machine Interface (HMI) for monitoring and controlling industrial processes.
- Provides a user-friendly interface to monitor real-time data.

INFRASTRUCTURE SETUP

CONTAINERIZATION AND NETWERK

- Provides isolated containers for applications and their dependencies.
- Network ensures containers can communicate with each other.
- Use Cases in Our Project: Running OpenPLC Runtime and ScadaBR and simulating cyberattacks.

INFRASTRUCTURE AS CODE

- For automating resource management.
- Used to provision Docker components.
- Simplifies Docker infrastructure management.
- Enhances scalability and reproducibility of our project environments.

PROJECT SIMULATION

CYBERATTACKS

• DDoS (Distributed Denial of Service):

• Overwhelms the OpenPLC system with excessive traffic to cause disruptions in normal operations and make it unresponsive to legitimate requests.

• HTTP Flood:

 Targets the OpenPLC web interface by simulating a large number of login attempts to prevent legitimate users from accessing the system.

• MITM (Man-in-the-Middle):

 Intercepts and manipulates communication between OpenPLC and ScadaBR to allow attackers to alter data or inject malicious commands without detection.

Modbus Flooding:

• Exploits the Modbus communication protocol by sending a flood of illegitimate requests to the OpenPLC system to disrupt its ability to process valid commands and responses.

RESULTS

Simulation Success:

- Successfully simulated an assembly station integrating OpenPLC, Factory I/O, and ScadaBR.
- Utilized two versions of OpenPLC: one running locally and another in Docker containers.

Containerization with Docker achieved:

- o Docker used to containerize all components, ensuring isolation and portability.
- o Docker networking enabled seamless communication between OpenPLC and ScadaBR.

Automation achieved:

 Terraform fully automated infrastructure provisioning, ensuring consistency and reproducibility.

• Security Testing Outcome:

- Conducted DDoS, HTTP Flood, MITM, and Modbus Flooding attacks.
- Attacks were unsuccessful because of their simple nature and to robust network configurations.

SOURCES

- https://docs.factoryio.com, 13.12.24.
- https://github.com/ScadaBR, 13.12.24.
- https://docs.docker.com/get-started/docker-overview/, 13.12.24.
- https://docs.docker.com/engine/network/, 13.12.24.
- https://www.cloudflare.com/de-de/learning/ddos/ddos-attack-tools/how-to-ddos/, 13.12.24.
- https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack.com, 13.12.24.
- https://dl.acm.org/doi/pdf/10.5555/2667510.2667517, 13.12.24.
- https://autonomylogic.com/docs/openplc-overview/, 13.12.24.
- https://www.terraform.io/, 13.12.24.

THANK YOU FOR YOUR ATTENTION

Cybersecurity Exam