sons suggestions 1- among us trap remix

disc. 13 cs61b sp22 hichdas sparus

97 avalon

graphs and LLRBs

slides bit.ly/abhi-disc

attendance bit.ly/abhi-attendance

1. Homework 8 due Tuesday 4/19

- 1. Homework 8 due Tuesday 4/19
- 2. Week 13 Survey due Tuesday 4/19

- 1. Homework 8 due Tuesday 4/19
- 2. Week 13 Survey due Tuesday 4/19
- 3. Gitlet checkpoint due Friday 4/22

- 1. Homework 8 due Tuesday 4/19
- 2. Week 13 Survey due Tuesday 4/19
- 3. Gitlet checkpoint due Friday 4/22
- 4. Lab 14 due Friday 4/22

general questions, lecture, etc.

Selection Sort	$\Theta(N^2)$	$\Theta(N^2)$	Θ(1)	<u>Link</u>	
Heapsort (in place)	Θ(N)*	Θ(N log N)	Θ(1)	<u>Link</u>	Bad cache (61C) performance.
Mergesort	Θ(N log N)	Θ(N log N)	Θ(N)	<u>Link</u>	Fastest of these ^
Insertion Sort (in place)	Θ(N)	Θ(N ²)	Θ(1)	<u>Link</u>	Best for small N or almost sorted.
QuickSort LTHS (left pivote tony hoare, shuffled)	Θ(N log N)	Θ(N ²)	Θ(logN) (call stack)	<u>Link</u>	Empirically the fastest sort, rare worst case
LSD Radix Sort	Θ(WN+WR)	Θ(WN+WR)	Θ(N+R)	1	Alphabetical only
MSD Radix Sort	Θ(N+R)	Θ(WN+WR)	Θ(N+WR)		Bad caching (61C)
*: An array of all duplicates yields linear runtime for heapsort.					

Worst Case

Runtime

Space

Demo

Best Case

Runtime

(Josh Hug 2021)

Notes

^{`:} An array of all duplicates yleids linear runtime for neapsort. N: Number of keys. R: Size of alphabet. W: Width of longest key.

why do we need balance?

how do we get "bushy-ness?"

- guarantee all leaves are same distance from root
- fit multiple items into a node!

B-tree invariants

B-tree invariants

 need all leaves to be the same distance from the root

B-tree invariants

- need all leaves to be the same distance from the root
- 2. inner (non-leaf) nodes with *k* items need *k*+1 children

- problem with B-tree implementation—complicated
- instead, introduce "glue nodes"—nodes colored red to represent a combination of two nodes

LLRB

rotateLeft(A); rotateRight(A); В colorFlip(A);

depth-first graph traversals

- preorder: visit node, then traverse children
- inorder: traverse left child, then node, then traverse right child
- postorder: traverse children, then visit node

depth-first graph traversals (informal)

start by tracing the graph counterclockwise,

- preorder: visit "left sides" of nodes
- inorder: visit "bottom sides" of nodes
- postorder: visit "right sides" of nodes

breadth first search (algorithm)

- put the starting node in the queue
- pop the first item from the queue (the starting node) and visit it
 - when you visit a node, add all its children/"neighbors" to the queue
- pop and visit the next item in the queue

continue until there are no more items in the queue!

topological sort

 take a cycle-less graph and "flatten" so all edges point the same way

worksheet (on 61B website)

bit.ly/abhi-attendance

bit.ly/abhi-feedback

slides: bit.ly/abhi-disc