1 Замечания из конспектов, которые не вошли в билеты

1.1 Множества меры ноль

Опр

 $E\subset\mathbb{R}$, говорят, что E - мн-во меры ноль, если:

$$\forall \mathcal{E} > 0 \quad \exists I_j = (\alpha_j, \beta_j) : E \subset \bigcup_{j \in \mathbb{N}} I_j \quad \sum_{j=1}^{\infty} |I_j| < \mathcal{E} \ (|I_j| = \beta_j - \alpha_j)$$
He bojne yem cy.
Habop otkp. Hht.

Примеры

1) ∀ Конечное множество - мн-во меры ноль

$$E = \{x_1, ..., x_n\}$$

,
$$I_j:=(x_j-\frac{\mathcal{E}}{4n},x_j+\frac{\mathcal{E}}{4n}),$$
 $\sum\limits_{j=1}^n|I_j|=\frac{\mathcal{E}}{2}$ 2) $A=\{a_j\}_{j\in\mathbb{N}}$ - счётное \Rightarrow имеет меру

0.

Как покрыть \mathbb{N} ? $|I_j| = \frac{\mathcal{E}}{2j+1}$ - геом. прогрессия

3) Несчетное множество меры ноль: Канторовское мн-во (Канторовский компакт), построение:

$$C = \bigcap_{n=1}^{\infty} C_n$$

Определим $C_{\frac{1}{3^p}}$ как множество отрезков, получинных для $\mathcal{E}=\frac{1}{3^p}$ для крайних точек каждого отрезка из C_p (они их покроют "вплотную" и по краям будет немного лишнего). На каждом шаге p у нас 2^p отрезков

$$\Rightarrow |C_{\frac{1}{3^p}}| = 5\frac{2^{p-1}}{3^p} \underset{p \to \infty}{\to} 0$$

1.2 Критерий Лебега интегрируемости функции

Теорема

Пусть $f:[a,b] \to \mathbb{R}$, тогда: $f \in R[a,b] \Leftrightarrow f$ имеет ограниченное мн-во точек разрыва и меру 0

Примеры

 $\frac{\mathbf{D}(\mathbf{x})}{\mathbf{D}}$ Функция Дирихле $\mathcal{D}(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$

 $\mathcal{D} \notin R[0,1]$. Проверим по критерию Лебега. Множество точек разрыва - \mathbb{R} , но оно не множество меры 0 (слишком много точек).

2) Функция Римана $\Phi(x)=\begin{cases} 0, & x\notin\mathbb{Q}\\ \frac{1}{n}, & x=\frac{m}{n} \text{ - несократимая дробь} \end{cases}$

Оказывается, она интегрируема по Риману на любом отрезке. Рассмотрим [0,1]:

- а) $\forall a \in \mathbb{Q}$ точка разрыва Φ :
- $\Phi(a)>0$ по определению. С другой стороны как угодно близко найдётся иррациональная точка, в которой функция принимает значение 0.
 - б) $\forall a \notin \mathbb{Q}$ непрерывна:

Для произвольного $\mathcal{E} > 0$ рассмотрим множество $M = \{x \in \mathbb{R} : f(x) \geq \mathcal{E}\}.$

Никакая иррациональная точка не лежит в M, поскольку в иррациональных точках функция f обращается в ноль.

Если $x\in M$, тогда x есть рациональное число вида $x=\frac{m}{n}$, где $m\in\mathbb{Z},\ n\in\mathbb{N}$, дробь $\frac{m}{n}$ несократима, и тогда $f(x)=\frac{1}{n}\geq\mathcal{E}$ и, следовательно, $n\leq\frac{1}{\mathcal{E}}$. Из ограничения на n следует, что пересечение множества M и любого ограниченного интервала состоит из конечного числа точек.

Пусть α - произвольное иррациональное число. По определению $f(\alpha)=0$. Мы можем выбрать окрестность точки α так, чтобы в ней не содержалась ни одна точка множества M. Если же $x\notin M$, то $f(x)<\mathcal{E}$. Таким образом, мы нашли интервал, который требуется в определении непрерывности.