3. Krappi og vindingur

Stærðfræðigreining IIB, STÆ205G, 12. janúar 2015

Sigurður Örn Stefánsson, sigurdur@hi.is

3.1

Einingarsnertivigur

Skilgreining 3.1

Látum \mathcal{C} vera feril í plani eða rúmi. Látum \mathbf{r} vera stikun á \mathcal{C} og gerum ráð fyrir að \mathbf{r} sé þjáll stikaferill (þ.e.a.s. \mathbf{r} er samfellt diffranlegur stikaferill og $\mathbf{r}'(t) \neq \mathbf{0}$ fyrir öll t). Einingarsnertivigurinn \mathbf{T} við ferilinn \mathcal{C} í punktinum $\mathbf{r}(t)$ er skilgreindur með formúlunni

$$\mathbf{T} = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \frac{\mathbf{v}(t)}{|\mathbf{v}(t)|}.$$

3.2

Krappi

Skilgreining 3.2

Látum \mathcal{C} vera feril í plani eða rúmi og \mathbf{r} stikun á \mathcal{C} með bogalengd. (Þegar fjallað er um stikanir með bogalengd er venja að tákna stikann með s.) Lengd hraðavigurs er alltaf 1 og því er $\mathbf{T}(s) = \mathbf{v}(s)$. Krappi (e. curvature) ferilsins \mathcal{C} í punktinum $\mathbf{r}(s)$ er skilgreindur sem talan

$$\kappa(s) = \left| \frac{d\mathbf{T}}{ds} \right|.$$

Krappageisli (e. radius of curvature) í punktinum $\mathbf{r}(s)$ er skilgreindur sem

$$\rho(s) = \frac{1}{\kappa(s)}.$$

3.3

Meginbverill

Skilgreining 3.3

Látum C vera feril í plani eða rúmi og \mathbf{r} stikun á C með bogalengd. Meginþverill (e. unit principal normal) í punkti $\mathbf{r}(s)$ er skilgreindur sem vigurinn

$$\mathbf{N}(s) = \frac{\mathbf{T}'(s)}{|\mathbf{T}'(s)|} = \frac{1}{\kappa(s)}\mathbf{T}'(s).$$

3.4

Umræða 3.4

Táknum með θ hornið sem **T** myndar við grunnvigurinn **i**. Þá er $\kappa = \frac{d\theta}{ds}$.

3.5

Hjúfurplan

Skilgreining 3.5

Látum \mathcal{C} vera feril í plani eða rúmi og \mathbf{r} stikun á \mathcal{C} með bogalengd.

 $Hjúfurplani\delta$ (e. osculating plane) við ferilinn í punkti $\mathbf{r}(s)$ er planið sem spannað er af vigrunum $\mathbf{T}(s)$ og $\mathbf{N}(s)$ og liggur um punktinn $\mathbf{r}(s)$.

Hj'ufurhringur (e. osculating circle) við ferilinn í punkti $\mathbf{r}(s)$ er hringur sem liggur í hjúfurplaninu, fer í gegnum punktinn $\mathbf{r}(s)$, hefur geisla $\rho(s)$ og hefur miðju í punktinum $\mathbf{r}(s) + \rho(s)\mathbf{N}(s)$.

3.6

Tvíþverill

Skilgreining 3.6

Látum \mathcal{C} vera feril í plani eða rúmi og \mathbf{r} stikun á \mathcal{C} með bogalengd. Vigurinn

$$\mathbf{B}(s) = \mathbf{T}(s) \times \mathbf{N}(s)$$

kallas tvipverill (e. binormal) við ferilinn í $\mathbf{r}(s)$.

 $\{T(s), N(s), B(s)\}$ er þverstaðlaður grunnur og kallast **Frenet ramminn**.

3.7

Vindingur

Setning og skilgreining 3.7

Látum \mathcal{C} vera feril í plani eða rúmi og \mathbf{r} stikun á \mathcal{C} með bogalengd. Vigurinn $\mathbf{B}'(s)$ er samsíða vigrinum $\mathbf{N}(s)$, þ.e.a.s. $\mathbf{B}'(s)$ er margfeldi af $\mathbf{N}(s)$. Talan $\tau(s)$ þannig að

$$\mathbf{B}'(s) = -\tau(s)\mathbf{N}(s)$$

kallast vindingur ferilsins í punktinum $\mathbf{r}(s)$.

3.8

Frenet-Serret jöfnurnar

Jöfnur 3.8

Látum \mathcal{C} vera feril í plani eða rúmi og \mathbf{r} stikun á \mathcal{C} með bogalengd. Þá gildir

$$\mathbf{T}'(s) = \kappa \mathbf{N}$$

 $\mathbf{N}'(s) = -\kappa \mathbf{T} + \tau \mathbf{B}$
 $\mathbf{B}'(s) = -\tau \mathbf{N}$.

3.9

Setning 3.9

Látum \mathcal{C} vera feril í plani eða rúmi. Gerum ráð fyrir að \mathbf{r} sé þjáll stikaferill sem stikar \mathcal{C} . Ritum $\mathbf{v} = \mathbf{r}'(t)$ og $\mathbf{a} = \mathbf{r}''(t)$. Þá gildir í punktinum $\mathbf{r}(t)$ að

$$\mathbf{T} = \frac{\mathbf{v}}{|\mathbf{v}|}, \qquad \mathbf{B} = \frac{\mathbf{v} \times \mathbf{a}}{|\mathbf{v} \times \mathbf{a}|}, \qquad \mathbf{N} = \mathbf{B} \times \mathbf{T},$$

einnig er

$$\kappa = \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^3}, \qquad \qquad \tau = \frac{(\mathbf{v} \times \mathbf{a}) \cdot \frac{d}{dt} \mathbf{a}}{|\mathbf{v} \times \mathbf{a}|^2}.$$

3.10