Canonical Correlation Analysis III

Canonical Coefficients

- Two sets of canonical coefficients (weights)
 - One set to combine the Xs
 - The other set to combine the Ys
 - Interpreted similarly to regression coefficients

```
F_1 = E1$Eigenvector[1,1] * X_1 + E1$Eigenvector[1,1] * X_2

F_2 = E1$Eigenvector[1,2] * X_1 + E1$Eigenvector[2,2] * X_2

G_1 = E2$Eigenvector[1,1] * Y_1 + E2$Eigenvector[1,1] * Y_2

G_2 = E2$Eigenvector[1,2] * Y_1 + E2$Eigenvector[2,2] * Y_2
```

Canonical Coefficients

- Two sets of canonical coefficients (weights)
 - One set to combine the Xs
 - The other set to combine the Ys
 - Interpreted similarly to regression coefficients
- * Test statistical significance of canonical correlations
 - The maximum number of canonical correlations equals to the number of variables in the smaller set
 - Not all will be statistically significant
 - Not all statistical significant CCs will be meaningful
 - This can be done using CCP package in R by p.asym(), with options for test statistics, commonly use "Wilks" stand for Wilk's Lambda to be approximated by Chi-square distribution Bartlett's Chi Square test

Example: head lengths of 1st and 2nd sons

```
> headsize
                                                                                     (IAMA 3.13.1)
      head1 breadth1 head2 breadth2
 [1,]
        191
                 155
                       179
                                 145
 [2,]
                                 152
        195
                 149
                       201
                                       headsize.std <- sweep(headsize, 2, apply(headsize, 2, sd), FUN="/")
 [3,]
        181
                 148
                       185
                                 149
                                       R <- cor(headsize.std)</pre>
 [4,]
        183
                 153
                       188
                                 149
                                       R11 \leftarrow R[1:2,1:2]
                                 142
 [5,]
        176
                       171
                 144
                                       R12 <- R[3:4,1:2]
                                 152
 [6,]
        208
                 157
                       192
                                       R21 <- R[1:2,3:4]
 [7,]
        189
                 150
                       190
                                 149
 [8,]
        197
                 159
                       189
                                 152
                                       R22 <- R[3:4,3:4]
[9,]
        188
                 152
                       197
                                 159
                                       R11.inv <- solve(R11)
[10,]
        192
                 150
                       187
                                 151
                                       R22.inv <- solve(R22)
        179
                 158
                                 148
[11,]
                       186
                                 147
[12,]
        183
                 147
                       174
                                                                     E_1 = R_{11}^{-1} R_{12} R_{22}^{-1} R_{21}, \ E_2 = R_{22}^{-1} R_{21} R_{11}^{-1} R_{12}
[13,]
        174
                 150
                       185
                                 152
                                       # compute E1 and E2
[14,]
        190
                 159
                       195
                                 157
                                       E1 <- R11.inv %*% R12 %*% R22.inv %*% R21
[15,]
        188
                 151
                       187
                                 158
                                       E2 <- R22.inv %*% R21 %*% R11.inv %*% R12
[16,]
        163
                 137
                       161
                                 130
[17,]
        195
                 155
                       183
                                 158
                                       # compute eigenvalues and eigenvectors of E1 and E2:
                                 148
[18,]
        186
                 153
                       173
[19,]
        181
                 145
                       182
                                 146
                                       eigen(E1)
[20,]
        175
                       165
                                 137
                 140
                                       eigen(E2)
[21,]
                                 152
        192
                 154
                       185
[22,]
        174
                       178
                                 147
                 143
[23,]
                                 143
        176
                 139
                       176
[24,]
        197
                       200
                                 158
                 167
```

[25,]

E₁ is p-by-p; E₂ is q-by-q. p is the dimension of the predictors set q is the dimension of the predictants set.

```
>eigen(E1)
$values
[1] 0.621781555 0.002887785
$vectors [,1] [,2]
[1,] -0.6947269 -0.7089828
[2,] -0.7192736 0.7052258
> eigen(E2)
$values
[1] 0.621781555 0.002887785
$vectors [,1] [,2]
[1,] 0.7424369 -0.7039264
[2,] 0.6699160 0.7102729
```

The canonical correlations express the association between the x and y variables after removal of the within-set correlation.

```
F_1 = -0.69 * head1 - 0.72 * breadth1;
F_2 = -0.70*head1 + 0.71*breadth1;
G_1 = +0.74*head2 + 0.70*breadth2;
G_2 = -0.70 * head2 + 0.71 * breadth2.
# Since we work with standardized data from the beginning, so
# no correction of scaling of CC vectors is needed:
# OPTIONAL:
# compute the canonical correlation vectors:
(a1 <- eigen(E1)$vectors[,1])</pre>
(a2 <- eigen(E1)$vectors[,2])</pre>
(b1 <- eigen(E2)$vectors[,1])</pre>
(b2 <- eigen(E2)$vectors[,2])</pre>
# correct the scaling of the canonical correlation vectors:
(a1 <- -1 * a1 / sqrt(t(a1) %*% R11 %*% a1))
(a2 <- -1 * a2 / sqrt(t(a2) %*% R11 %*% a2))
(b1 <- b1 / sqrt(t(b1) %*% R22 %*% b1))
(b2 <- -1 * b2 / sqrt(t(b2) %*% R22 %*% b2))
# check scaling:
t(a1) %*% R11 %*% a1
t(a2) %*% R11 %*% a2
t(b1) %*% R22 %*% b1
t(b2) %*% R22 %*% b2
```

```
# compute canonical correlation variables:
F1 <- headsize.std[,1:2] %*% a1 # size first son
F2 <- headsize.std[,1:2] %*% a2 # shape first son
G1 <- headsize.std[,3:4] %*% b1 # size second son
G2 <- headsize.std[,3:4] %*% b2 # shape second son
# check covariance matrix:
round(var(cbind(F1,F2,G1,G2)),3)
# plot canonical correlation variables:
par(mfrow=c(1,2))
plot(F1,G1,main="Head size, correlation=0.788", xlab="F1 =
'size' of the 1st son", ylab="G1 = 'size' of the 2nd son")
plot(F2,G2, main="Head shape, correlation=.053", xlab="u2 =
'shape' of the 1st son", ylab="G2 = 'shape' of the 2nd son")
```

Head size, correlation=0.788

G1 = 'size' of the 2nd son $^{\circ}$ <u>ტ</u> F1 = 'size' of the 1st son

Head shape, correlation=.053

Loadings (structure coefficients)

- Questions to assist your interpretations:
 - 1. How well do the variates on either side relate to their own original variables?
 - 2. What is the associations between a variable and its respective canonical variate? correlations
- Recall that: the pair of canonical variates with best correlation might not exactly interpretable
- Coefficients are for the computation of the variates, loadings are more for expressing the relationships of the variables to the construct (canonical variates)
 - ☐ Canonical communality coefficient
 - ☐ Canonical variate adequacy coefficient

Coefficients

- □ Canonical communality coefficient
 - Sum of the squared structure coefficients (loadings) across selected* canonical variates for a given variable
 - Measures how much variance of that original variable is explained or reproduced by the canonical variates
 - * If looking at all variates, it shall equal one, typically we often want to check those retained for interpretation or prediction.
- □Canonical variate adequacy coefficient
 - Average of all the squared structure coefficients (loadings) for one set of variables with respect to their canonical variate
 - Measures how well a resulted canonical variate represents the variance in that set of original variables.

Redundancy

- Questions to assist checking redundancy:
 - 1. How strongly do the original variables in one set relate to the canonical variates on the other side?
 - 2. How much of the average proportion of variance of the original variables in one set may be predicted from the variables in the other set High redundancy suggests potentially high ability to predict
 - Product of the mean squared structure coefficient, i.e., the canonical adequacy coefficient for a canonical variate times the squared canonical correlation coefficient.
 - Canonical correlation reflects the % of variance in the predictant canonical variate explained by the predictor canonical variate
- ➤ Redundancy has to do with assessing the effectiveness of the canonical analysis in capturing the variance of the original variables

CCA in R cancor()

data(*LifeCycleSavings*): savings ratio from 1960-1970

sr	numeric	aggregate personal savings
pop15	numeric	% of population under 15
pop75	numeric	% of population over 75
dpi	numeric	real per-capita disposable income
ddpi	numeric	% growth rate of dpi

```
pop = LifeCycleSavings[, 2:3] # select pop15 and pop75
oec = LifeCycleSavings[, -(2:3)] # select all the others
cancor(pop, oec)
```

```
CCA in R
                                         cancor()
pop15 -0.009110856 -0.03622206
pop75 0.048647514 -0.26031158
```

```
ddpi 0.0041706000 -1.226790e-02 5.188324e-02
           0.08(sr) + 0.0001(dpi) + 0.004(ddpi) = -0.009(pop15) + 0.048(pop75)
$xcenter
pop15 pop75
                                      1<sup>st</sup> Canonical variate function
35.0896 2.2930
$ycenter
  dpi ddpi
sr
9.6710 1106.7584 3.7576
```

[,3]

cancor(pop, oec)

[,1] [,2]

[1] 0.8247966 0.3652762

[,2]

sr 0.0084710221 3.337936e-02 -5.157130e-03

dpi 0.0001307398 -7.588232e-05 4.543705e-06

\$cor

\$xcoef

\$ycoef

[,1]

CCA in R

matcor()&cc() in package(CCA)

pakcage(CCA) provides extension to the cancor()

- cancor() has limited outputs, package(CCA) provides a complete list of outputs in terms of both numerical and graphical
- package(CCA) enhances handling of missing values
- package (CCA) can perform regularized CCA when n<max(p,q).

data(nutrimouse): from the Toxicology & Pharmacology Laboratory

A list containing the following components:

- gene: data frame (40 * 120) with numerical variables
- lipid: data frame (40 * 21) with numerical variables
- diet: factor vector (40)
- genotype: factor vector (40)

```
X = as.matrix(nutrimouse$gene)
Y = as.matrix(nutrimouse$lipid)
correl = matcor(X, Y)
img.matcor(correl, type = 2)
```

CCA in R

matcor()&cc()

Correlation matrices for: X variables (upper-left), Y variables (upper-right), cross-correlation $X \times Y$ (bottom). Increasing values are translated into colors from blue (negative correlation) to red (positive correlation).

Classical CCA: n > p+q

CCA in R

matcor()&cc()

```
Xr = as.matrix(nutrimouse$gene[, sample(1:120, size = 10)])
res.cc = cc(Xr, Y)
par(mar=c(4,4,4,4))
barplot(res.cc$cor, xlab = "Dimension",ylab = "Canonical
correlations", names.arg = 1:10, ylim = c(0,1))
plt.cc(res.cc)
```

- 1. Randomly choose 10 genes among the 120 \rightarrow Xr;
- 2. CCA on Xr (40-by-10) and Y (40-by-21)
- 3. Barplot of the canonical correlations (remember scree plot?)
- 4. Original variables and units are plotted on the first two canonical variates (remember similar presentations in PCA, MDS and EFA etc. ?)

matcor()&cc()

Canonical correlations

Dimension

CCA in R

matcor()&cc()

plt.cc(res.cc,d1=1,d2=3,type="v",var.label=TRUE)

Regularized CCA

CCA in R

estim.regul()
rcc()

Gene (X): 40-by-120; Lipid (Y): 40-by-21

Correlation matrix: S_{XX} and S_{YY}

```
RCCA: \sum_{XX}(\lambda_1) = S_{XX} + \lambda_1 I_p; \sum_{YY}(\lambda_2) = S_{YY} + \lambda_2 I_q
```

How to set 'good' values for the regularization parameters?

- > Leave-one-out cross validation by estim.regul()
- ➤ Default grid is 5 equally-spaced points [0.001,1]

```
res.regul = estim.regul(X, Y, plt = TRUE, grid1 = seq(0.0001, 0.2, l=51), grid2 = seq(0, 0.2, l=51)) # \lambda_1 = 0.008096; # \lambda_2 = 0.064; # CV-score = 0.8852923 contour(res.regul$grid1, res.regul$grid2, res.regul$mat, add = TRUE, levels = c(0,0.5,0.7), col = "blue") contour(res.regul$grid1, res.regul$grid2, res.regul$mat, add = TRUE, levels = c(0.8,0.85,0.88), col = "darkgreen")
```


CV-score for λ_1 and λ_2 on a 51 × 51 grid defined by equally-spaced discretization points on the region: $0.0001 \le \lambda_1 \le 0.2$ and $0 \le \lambda_2 \le 0.2$. Two kinds of contour plots are also displayed for values equal to $\{0-0.5-0.7\}$ (in blue) and to $\{0.8-0.85-0.88\}$ (in green).

Regularized CCA

```
res.rcc = rcc(X, Y, 0.008096, 0.064)
barplot(res.rcc$cor, xlab = "Dimension",ylab = "Canonical
correlations", names.arg = 1:21, ylim = c(0,1))
plt.cc(res.rcc, var.label = TRUE,ind.names =
paste(nutrimouse$genotype, nutrimouse$diet, sep = "-"))
```


Martin et al. (2007)

"CCA" in R

cca() in package(vegan)

- pakcage(vegan) developed for community ecologists; thus a good collection of ordination methods for the field;
 - PCA, MDS, FA and more...
- But it has a lot of functions & associated visualization tools for us to use for other data.

data(*dune*): Vegetation and Environment in Dutch Dune Meadows

■ The *dune* meadow vegetation data has cover class values of 30 species on 20 sites. The corresponding environmental data frame *dune.env* is a data frame of 20 observations on 5 variables

CCA in package(vegan) stands for Canonical Correspondence Analysis

MDS in package(vegan)

Non-metric MDS

Dissimilarity: vegdist(,...) "manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "go wer", "altGower", "morisita", "horn", "mountford", "raup", "binomial", "c hao", "cao" or "mahalanobis"

```
data(dune)
dis = vegdist(dune)
m = monoMDS(dis, model = "loc")
```

loc: non-metric MDS with separate regressions for each point

MDS model: "global" is normal non-metric MDS with a monotone regression, "local" is non-metric MDS with separate regressions for each point, "linear" uses linear regression, and "hybrid" uses linear regression for dissimilarities below a threshold in addition to monotone regression.

MDS in package(vegan)

```
> m
Call:
  monoMDS(dist = dis, model = "loc")
Local non-metric Multidimensional Scaling
20 points, dissimilarity 'bray', call 'vegdist(x =
dune)'
Dimensions: 2
                             monoMDS has some rotation options to
Stress: 0.1232248
                             assist your initial diagnosis
Stress type 1, weak ties
Scores scaled to unit root mean square, rotated to
principal components
Stopped after 71 iterations: Stress nearly unchanged
(ratio > sratmax)
> plot(m)
```

MDS in package(vegan)

Let's see another better wrapper for non-metric MDS in *vegan*

metaMDS() in package(vegan)

metaMDS() – THE POWERFUL WRAPPER

- 1. Use adequate dissimilarity measures (function *vegdist*),
- 2. Run NMDS several times with <u>random starting</u> <u>configurations</u> avoid local minimum,
- 3. Compares results, w.r.t. minimizing sum of squared differences (function *procrustes*),
- 4. Stop after finding twice a similar minimum stress solution,
- 5. Scale & rotate the solution,
- 6. Add species scores to the configuration as weighted averages (function *wascores*): before we only see the 20 sites

metaMDS() in package(vegan)

```
> ord <- metaMDS(dune)</pre>
Run 0 stress 0.1192678
Run 1 stress 0.1812935
Run 2 stress 0.330578
Run 3 stress 0.1183186
... New best solution
... procrustes: rmse 0.02026999 max resid 0.06495494
Run 4 stress 0.1922247
Run 5 stress 0.2361935
Run 6 stress 0.119269
Run 7 stress 0.1808916
Run 8 stress 0.1192679
Run 9 stress 0.1192679
Run 10 stress 0.1192685
Run 11 stress 0.1183186
... procrustes: rmse 2.444379e-06 max resid
7.278529e-06
*** Solution reached
```

metaMDS() in package(vegan)

```
> ord
Call:
metaMDS(comm = dune)
global Multidimensional Scaling using monoMDS
Data: dune
Distance: bray
Dimensions: 2
Stress: 0.1183186
Stress type 1, weak ties
Two convergent solutions found after 11 tries
Scaling: centring, PC rotation, halfchange scaling
Species: expanded scores based on 'dune'
```

CCA in R

metaMDS() in package(vegan)

"CCA" in R

cca() in package(vegan)

data(*dune*): Vegetation and Environment in Dutch Dune Meadows

■ The *dune* meadow vegetation data has cover class values of 30 species on 20 sites. The corresponding environmental data frame *dune.env* is a data frame of 20 observations on the following 5 variables:

A1: a numeric vector of thickness of soil A1 horizon.

Moisture: an ordered factor with levels: 1 < 2 < 4 < 5.

Management: a factor with levels: BF (Biological farming), HF (Hobby farming), NM (Nature Conservation Management), and SF (Standard Farming).

Use: an ordered factor of land-use with levels: Hayfield < Haypastu < Pasture.

Manure: an ordered factor with levels: 0 < 1 < 2 < 3 < 4.

"CCA" in R

cca() in package(vegan)

Inertia Proportion Rank

Total 2.1153 1.0000

Constrained 1.5032 0.7106 12

Unconstrained 0.6121 0.2894 7

Inertia is mean squared contingency coefficient

Some constraints were aliased because they were collinear (redundant)

Eigenvalues for constrained axes:

CCA1 CCA2 CCA3 CCA4 CCA5 CCA6 CCA7 CCA8 CCA9 CCA10 0.4671 0.3410 0.1761 0.1532 0.0953 0.0703 0.0589 0.0499 0.0318 0.0260 CCA11 CCA12 0.0228 0.0108

Eigenvalues for unconstrained axes:

CA1 CA2 CA3 CA4 CA5 CA6 CA7 0.27237 0.10876 0.08975 0.06305 0.03489 0.02529 0.01798

Canonical Correspondence Analysis (Optional topic)

References provided on CourseWorks

SUMMARY Things to check

- □Number of canonical variate pairs
 - How many prove to be statistically/practically significant?
- ☐ Interpreting the canonical variates
 - Where is the meaning in the combinations of variables created?
- ☐ Importance of canonical variates
 - How strong is the correlation between the canonical variates?
 - What is the nature of the variate's relation to the individual variables in its own set? The other set?
- □ Canonical variate scores
 - If one did directly measure the variate, what would the subjects' scores be? (similar to the factor scores)

Limitations

- I. By maximizing the correlation between the linear combinations of X and Y, there is a possibly of having the combination unexplainable.
- 2. Nonlinearity still causes problems: Classical \rightarrow Regularized CCA
- 3. CCA is very sensitive to data involved
- 4. Correlation does not imply causality, necessary but not sufficient condition for causality.
- 5. It is more of a descriptive procedure, as being a simple correlation in the end.