18.701 November 27, 2014

Review for Quiz 3

Group Theory

- Conjugation, the map $g, x \longrightarrow gxg^{-1}$ is a group operation.
- The conjugacy class C(x) of an element of a group G is its orbit for the operation of conjugation: $C(x) = \{y \in G \mid y = gxg^{-1} \text{ for some } g \text{ ibn } G\}$. You should know about conjugacy classes in the symmetric group.
- The centralizer Z(x) of x is its stabilizer for the operation: $Z(x) = \{g \in G \mid gxg^{-1} = x\}$
- Counting: |G| = |C(x)||Z(x)| Therefore the terms on the right side divide |G|. Also, |C(x)| = 1 if and only if x is in the center of G.

Class equation If $C_1, ..., C_k$ are the conjugacy classes in G, then $|G| = |C_1| + \cdots + |C_k|$. You should be able to compute the class equation for verious small groups.

• A p-group G is a group whose order is a positive power of a prime p.

Fixed Point Theorem Let G be a p-group and let S be a set on which G operates. If p doesn't divide |S|, there is a fixed element $s \in S$, an element such that gs = s for all $g \in G$.

• The center of a p-group is not the trivial group. Every group of order p^2 is abelian.

Sylow Theorems Let $|G| = p^e m$, where $e \ge 1$ and p does not divide m.

- (i) There is a subgroup of G of order p^e , a Sylow subgroup.
- (ii) The Sylow subgroups are conjugate subgroups, and every subgroup that is a p-group is contained in a Sylow Subgroup.
- (iii) The number s of Sylow Subgroups divides m and is congruent 1 modulo p.
- Learn the **Todd-Coxeter Algorithm**, if you haven't already.
- Chapter 8 is reviewed in the text, pages 252-253.
- For Chapter 9, study SU_2 , SO_3 and one-parameter groups.