Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

Отчёт по лабораторной работе № 8

Дисциплина: Автоматизация проектирования дискретных устройств (на английском языке).

Выполнил студент гр. 5130901/10101	(подпись)	_ Д.Л. Симоновский
Руководитель	(подпись)	_ А.П. Антонов
		" <u>24</u> " <u>марта</u> 2024 г.

Санкт-Петербург

Оглавление

1.	Список иллюстраций:	2
2.	Алгоритм работы проекта:	3
3.	Ход работы:	3
4.	Вывол:	11

1. Список иллюстраций:

Рис. 1. Схема разрабатываемого устройства	3
Рис. 2. Добавление папки с ІР модулями.	
Рис. 3. Результат добавления компонентов на схему.	
Рис. 4. Настройка clk	
Рис. 5. Настройка очереди	
Рис. 6. Переименование компонентов.	
Рис. 7. Подключения clk и reset.	
Рис. 8. Подключение данных.	
Рис. 9. Результат	
Рис. 10. Block Symbol разработанного IP модуля	
Рис. 11. Сигналы clk.	
Рис. 12. Сигналы rst.	7
Рис. 13. Результат Show System with Platform Designer Interconnect	8
Рис. 14. Schematic.	
Рис. 15. Добавленные модули к проекту.	
Puc. 16. RTL Viewer устройства.	
Рис. 17. Результат запуска тестового модуля	
Рис. 18. Настройка для Signal Tap II	
Puc. 19. Signal Tap II.	

2. Алгоритм работы проекта:

Средствами Platform Designer создать структуру проекта, представленную на рисунке ниже:

Рис. 1. Схема разрабатываемого устройства.

3. Ход работы:

Выполним создание проекта со стандартными настройками, после чего добавим в проект IP файлы, предоставленные к данной лабораторной работе:

Рис. 2. Добавление папки с IP модулями.

Добавим компоненты: MyST_source_component, Avalon-ST Single Clock FIFO и MyST_sink_component. Таким образом, получим следующий результат:

Рис. 3. Результат добавления компонентов на схему.

Настройку CLK модуля:

Clock Source - clk_0

Рис. 4. Настройка clk.

Далее выполним настройку очереди:

Avalon-ST Single Clock FIFO - sc_fifo_0

Рис. 5. Настройка очереди.

Переименуем все компоненты и получим следующий результат:

Рис. 6. Переименование компонентов.

Далее выполним подключения сигналов clk и reset:

Рис. 7. Подключения clk и reset.

Выполним подключение «шины данных»:

Рис. 8. Подключение данных.

Результат выглядит следующим образом:

Рис. 9. Результат.

Посмотрим на получившийся Block Symbol:

Рис. 10. Block Symbol разработанного IP модуля.

Далее посмотрим на сигналы clk и reset, что не возникает никаких дополнительных контроллеров:

Рис. 12. Сигналы rst.

Выполним команду Show System with Platform Designer Interconnect:

Рис. 13. Результат Show System with Platform Designer Interconnect.

Посмотрим на соединения настроенных модулей в Schematic:

Рис. 14. Schematic.

Добавим созданные модули в проект:

Рис. 15. Добавленные модули к проекту.

Подключим к проекту файл верхнего уровня и выполним компиляцию

```
1 `timescale 1 ns / 1 ns
2 module lab_PD2_top (
3    input bit clk,
4    input bit reset,
5    output bit [3:0] dout
6 );
7 lab_PD2 UUT (
8    .clk_clk    (clk),
9    .reset_reset_n (reset),
10    .dout_export (dout)
11 );
12 endmodule
```

Посмотрим на RTL Viewer:

Pис. 16. RTL Viewer устройства.

Протестируем проект, используя следующий тестовый файл:

```
1 'timescale 1 ns / 1 ns
2 module tb_lab_PD2_top ();
3 bit clk;
4 bit reset;
5 bit[3:0] dout;
6
7 always
8 #50 clk = ~ clk;
9 initial
10 begin
11 clk = 1'b0;
12 reset = 1'b0;
13 #500;
14 reset = 1'b1;
15 #4000;
16 $stop;
17 end
18
19 lab_PD2_top UUT (.*);
20 endmodule
```

Результат запуска приведен ниже:

Рис. 17. Результат запуска тестового модуля.

Как мы видим, разработанное устройство соответствует ожиданиям.

Для тестирования на плате создадим следующий модуль, который позволяет изменять rst, используя SP unit:

Выполним следующую настройку для Signal Tap II:

Рис. 18. Настройка для Signal Tap II.

Результат запуска приведен ниже:

Pис. 19. Signal Tap II.

Как мы видим, результат совпадает с тестами и ожиданиями, что сведительствует о корректности выполненной работы.

4. Вывод:

В ходе выполнения лабораторной работы была создана структура проекта с использованием Platform Designer. Этот инструмент предоставляет графический интерфейс для интеграции и настройки IP-блоков, что упрощает и ускоряет процесс разработки в сравнении с ручным написанием кода.

Преимущества Platform Designer включают в себя:

- 1. Ускорение разработки: Платформа предлагает готовые IP-блоки, которые могут быть легко интегрированы в проект, сокращая время разработки.
- 2. Упрощение процесса: Использование графического интерфейса позволяет избежать сложностей в написании и отладке кода, особенно для начинающих разработчиков.
- 3. Модульность и повторное использование: IP-блоки могут быть использованы в разных проектах, что способствует повторному использованию кода и упрощает поддержку проектов.
- 4. Визуализация системы: Платформа предоставляет графическое представление структуры проекта, что облегчает понимание и анализ системы.

Таким образом, использование Platform Designer обеспечивает эффективное управление проектом, ускоряет его разработку и повышает его надежность за счет готовых компонентов и удобного интерфейса.