CR-171989

CSDL-T-950

AN ADAPTIVE NUMERIC PREDICTOR-CORRECTOR GUIDANCE ALGORITHM FOR ATMOSPHERIC ENTRY VEHICLES

by

Kenneth Milton Spratlin

May 1987

Master of Science Thesis
Massachusetts Institute of Technology

(NASA-CR-171989) AN ADAPTIVE NUMERIC PREDICTOR-CORRECTOR GUIDANCE ALGORITHM FOR ATMOSPHERIC ENTRY VEHICLES M.S. Thesis - MIT, Cambridge (Draper (Charles Stark) Lab.) 206 p Avail: NTIS HC A10/MF A01

N87 - 26934

Unclas G3/17 0090665

The Charles Stark Draper Laboratory, Inc.

555 Technology Square Cambridge, Massachusetts 02139

/ <u></u>			ر <i>پ</i>
			:
			,
•			
g.			

AN ADAPTIVE NUMERIC PREDICTOR-CORRECTOR GUIDANCE ALGORITHM FOR ATMOSPHERIC ENTRY VEHICLES

by

Kenneth Milton Spratlin -

B.A.E., Georgia Institute of Technology (1985)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1987

©Kenneth Milton Spratlin, 1987

Kenneth M. Spratlin	Signature of Author_
Department of Aeronautics and Astronautics May 8, 1987	
Professor Richard H. Battin Department of Aeronautics and Astronautics	Approved by_
Thesis Supervisor	·
Timothy J. Brand Technical Supervisor, CSDL	Approved by_
Professor Harold Y. Wachman	Accepted by_
Chairman, Department Graduate Committee	

AN ADAPTIVE NUMERIC PREDICTOR-CORRECTOR GUIDANCE ALGORITHM FOR ATMOSPHERIC ENTRY VEHICLES

by

Kenneth Milton Spratlin

Submitted to the Department of Aeronautics and Astronautics on May 8, 1987, in partial fulfillment of the requirements for the Degree of Master of Science in Aeronautics and Astronautics

ABSTRACT

An adaptive numeric predictor-corrector guidance algorithm is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented.

Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.

Thesis Supervisor: Dr. Richard H. Battin

Title: Adjunct Professor of Aeronautics and Astronautics

Technical Supervisor: Timothy J. Brand

Title: Division Leader, The Charles Stark Draper Laboratory, Inc.

PRECEDENG PAGE BLANK NOT FILMED

				•		
					!	
		o				
						4
• •		·	•			
					e	
						•

ACKNOWLEDGEMENT

This report was prepared at The Charles Stark Draper Laboratory, Inc. in support of NASA Langley Research Center (LaRC) Task Order No. 87-43 under Contract NAS9-17560 with the NASA Lyndon B. Johnson Space Center (JSC).

Publication of this report does not constitute approval by the Draper Laboratory or the sponsoring agency of the findings or conclusions contained herein. It is published for the exchange and stimulation of ideas.

I hereby assign my copyright of this thesis to The Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts.

Kenneth M. Sprattin

Permission is hereby granted by The Charles Stark Draper Laboratory, Inc. to the Massachusetts Institute of Technology to reproduce any or all of this thesis.

I wish to take this opportunity to thank some of the many people who have helped me during the preparation of this thesis and my stay at M.I.T.. I would like to express my sincere gratitude to The Charles Stark Draper Laboratory for making my graduate study possible through the Draper Fellowship. I wish to thank all of the members of the Guidance and Navigation Analysis Division for their technical assistance and willingness to share their expertise. In particular I would like to thank T. Brand, J. Higgins, and A. Engel for their patience, assistance, and support during the preparation of this thesis and work on the Aeroassist Flight Experiment. I wish to thank my thesis advisor, Dr. R.H. Battin, for his assistance and in particular for his abilities as an educator. A special thanks for his encouragement and support goes to B. Kriegsman who recently passed away. He is greatly missed. I found the opportunity to interact with the people at CSDL to be the most rewarding aspect of my studies at M.I.T..

I also wish to thank H. Stone and R. Powell of NASA/LaRC for the opportunity to work on the ERV entry guidance problem and their assistance in answering my questions.

Most importantly, I wish to thank my parents and sisters for their unending love and support over the years.

PRECEDENG PAGE BLANK NOT FILMED

Q

TABLE OF CONTENTS

Sec	tion	Pa	ıge
1.0	INTF	ODUCTION	21
2.0	мот	IVATION	23
	2.1	Introduction	23
	2.2	Dispersions	26
	2.3	Reference Trajectories	28
	2.4	Guidance Approach	31
3.0	GUI	DANCE DESIGN	33
	3.1	Introduction	33
	3.2	Unit Target Vector	34
	3.3	Commanded Attitude Computation	35
	3,4	Corrector Algorithm	36
	3.5	Predictor Algorithm	39
	3.	5.1 Introduction	39
	3.	5.2 Equations of Motion	40
	3.	5.3 Integration of the Equations of Motion	44
	3.	5.4 Termination Conditions for the Predictor	46
	3.	5.5 Final State Error Computation	46
	3	5.6. Algorithm Coding	10

PERCEDING PAGE BLANK NOT FILMED

	3.6	Estimators	48
	3.7	Heat Rate Control	52
			7
4.0	PERI	FORMANCE	57
	4.1	Simulator	57
	4.2	Open-Loop Footprint	57
	4.3	Effect of Dispersions on Footprint	59
	4.4	Estimator Performance	60
	4.5	Closed-Loop Performance	61
	4.6	Heat Rate Control Performance	63
	4.7	Overcontrol	63
	4.8	Algorithm Execution Time	66
5.0	FUT	URE RESEARCH TOPICS AND CONCLUSIONS	69
	5.1	Future Research Topics	69
	5.2	Conclusions	71
App	endix	P	age
Арр	endix	A. ERV AERODYNAMICS MODEL	133
Арр	endix	B. ALGORITHM PROGRAM LISTINGS	135
1 int	of Do	forences	211

LIST OF ILLUSTRATIONS

Figur	re F	Page
1.	Three-View Drawing of the ERV	. 78
2.	Atmospheric Wind Profile	. 79
3.	Envelope of Density Profiles Derived from Shuttle Flights	. 80
4.	STS-1 Density Profile Comparison	. 81
5.	STS-9 Density Profile Comparison	. 82
6.	Multiphase Bank Angle Program for L/D = 1.5	. 83
7.	Crossrange Versus Number of Bank Steps	. 84
8.	Comparison of Optimum Bank Angle Programs	85
9.	Optimum Shuttle Angle of Attack Profile for Maximum Downrange	86
10.	Optimum Shuttle Bank Angle Profile for Maximum Crossrange	87
11.	Optimum Shuttle Angle of Attack Profile for Maximum Crossrange	. 88
12.	Landing Footprint for the ERV	89
13.	Altitude Histories for the Entry Missions of the ERV	90
14.	Bank Angle Histories for the Entry Missions of the ERV	91
15.	Angle of Attack Histories for the Entry Missions of the ERV	92
16.	Heat Rate Histories for the Entry Missions of the ERV	93
17.	Heat Load Histories for the Entry Missions of the ERV	94
18.	Bank Angle Versus Velocity Profile	95
19.	Definitions of Downrange and Crossrange Errors	96
20.	Predicted Lift Coefficient Profile for the ERV	97
0.4	Dradiated I/D Drafile for the EDV	00

22.	Predicted L/D versus Angle of Attack Profile for the ERV	. 99
23.	ERV Open-Loop Footprint with the Control Profile	100
24.	Time Response of the Density Filter	101
25.	Time Response of the L/D Filter	102
26.	Closed-Loop Altitude History for the Maximum Downrange Case	103
27.	Closed-Loop Velocity History for the Maximum Downrange Case	104
28.	Closed-Loop Heat Rate History for the Maximum Downrange Case	105
29.	Closed-Loop Heat Load History for the Maximum Downrange Case	106
30.	Closed-Loop Downrange History for the Maximum Downrange Case	107
31.	Closed-Loop Crossrange History for the Maximum Downrange Case	108
32.	Closed-Loop Altitude History for the Maximum Crossrange Case	109
33.	Closed-Loop Velocity History for the Maximum Crossrange Case	110
34.	Closed-Loop Heat Rate History for the Maximum Crossrange Case	111
35.	Closed-Loop Heat Load History for the Maximum Crossrange Case	112
36.	Closed-Loop Downrange History for the Maximum Crossrange Case	113
37 .	Closed-Loop Crossrange History for the Maximum Crossrange Case	114
38.	Closed-Loop Altitude History for the Minimum Downrange Case	115
39.	Closed-Loop Velocity History for the Minimum Downrange Case	116
40.	Closed-Loop Heat Rate History for the Minimum Downrange Case	117
41.	Closed-Loop Heat Load History for the Minimum Downrange Case	118
42.	Closed-Loop Downrange History for the Minimum Downrange Case	119
43.	Closed-Loop Crossrange History for the Minimum Downrange Case	120
44.	Angle of Attack Comparison for the Maximum Downrange Case	121
45.	Bank Angle Comparison for the Maximum Downrange Case	122
46.	Angle of Attack Comparison for the Maximum Crossrange Case	1,23
47.	Bank Angle Comparison for the Maximum Crossrange Case	124
48.	Angle of Attack Comparison for the Minimum Downrange Case	125

49.	Bank Angle Comparison for the Minimum Downrange Case	126
5 0.	Bank Angle Versus Time Comparison for Heat Rate Control	127
51.	Angle of Attack Versus Time Comparison for Heat Rate Control	128
52.	Heat Rate Versus Time Comparison for Heat Rate Control	129
53.	Bank Angle Versus Velocity Comparison for Heat Rate Control	130
54.	Angle of Attack Versus Time Comparison with Overcontrol	131
55.	Required Execution Time for the Predictor-Corrector	132

LIST OF TABLES

Table		Page
1.	Characteristics of the ERV and Trajectory Entry Conditions	73
2.	Dispersions Used in Performance Study	73
3.	Dispersed Cases for Maximum Downrange Region	74
4.	Dispersed Cases for Maximum Crossrange Region	75
5.	Dispersed Cases for Minimum Downrange Region	76
6.	Maximum Downrange Region Closed-Loop Results	77
7.	Maximum Crossrange Region Closed-Loop Results	77
8.	Minimum Downrange Region Closed-Loop Results	77

PRECEDING PAGE BLANK NOT FILMED

SYMBOLS

a = acceleration magnitude

 \overline{a} = acceleration vector

 a_i = inertial acceleration measured by the inertial measurement unit

 A_i = total inertial acceleration vector

AOTV = Aerobraking Orbital Transfer Vehicle

BTU = British Thermal Unit

 \overline{c} = mean aerodynamic chord

 $cos(\Delta \phi)$ = cosine of incremental lift for heat rate control

C' = proportionality factor for the linear viscosity-temperature relationship

 C_D = aerodynamic drag coefficient

 C_L = aerodynamic lift coefficient

 C_s = speed of sound

CPU = central processing unit

CR = crossrange

CSDL = The Charles Stark Draper Laboratory, Inc.

det = determinant of sensitivity matrix

DR = downrange

DOF = degree of freedom

ERV = Entry Research Vehicle

 f_{earth} = flattening of oblate Earth

 $\overline{F_i}$ = inertial force vector

g = gravitational acceleration magnitude

 $\overline{g_i}$ = gravitational acceleration vector

PRECEDING PAGE BLANK NOT FILWED

GPS = Global Positioning System

h = altitude

 \dot{h} = derivative of altitude with time

 \ddot{h} = second-derivative of altitude with time

 h_s = scale height for exponential atmosphere model

i = unit vector

 J_2 = second zonal harmonic coefficient

JSC = Lyndon B. Johnson Space Center

k = term in geodetic to geocentric latitude conversion

K = term in heat rate control equation

K = velocity vector term in the integration algorithm

K' = acceleration vector term in the integration algorithm

 $K_{\Lambda_{t}}$ = gain on acceleration magnitude in variable time step equation

 $K_{L/D}$ = multiplicative scale factor on the nominal L/D

 $K_{\hat{o}}$ = gain on heat rate error in heat rate control equation

 $K_{\ddot{a}}$ = gain on rate of change of heat rate in heat rate control equation

 K_{ρ} = multiplicative scale factor on the standard density

 K_1 = gain in first-order filter for density smoothing

 K_2 = gain in first-order filter for L/D smoothing

L/D = lift-to-drag ratio

LaRC = Langley Research Center

m = mass

M = Mach Number

 M_i^{EF} = inertial-to-Earth-fixed transformation matrix

 M_0 = mean molecular weight of air at sea level

n.m. = nautical mile

NASA = National Aeronautics and Space Administration

POST = Program to Optimize Simulated Trajectories

 \overline{q} = dynamic pressure

Q = heat load

 \dot{Q} = heat rate

 \ddot{Q} = time rate of change of heat rate

R = position vector magnitude

 $R_{equator}$ = radius of oblate Earth at equator

 $\overline{R_i}$ = inertial position vector

 R_{pole} = radius of oblate Earth at pole

Re = Reynolds Number

S = Sutherland's constant in viscosity equation

S = aerodynamic reference area

SEADS = Shuttle Entry Air Data System

 t_{GMT} = Greenwich mean time

T' = reference temperature

 T_{M} = molecular scale temperature

 $T_{\it static}$ = freestream static temperature

 T_{wall} = wall temperature

TAEM = Terminal Area Energy Management

 \overline{V} = Viscous Interaction Parameter

 V_i = magnitude of inertial velocity

 V_i = inertial velocity vector

 V_R = magnitude of Earth-relative velocity

 V_R = Earth-relative velocity vector

z = geocentric colatitude of the postion vector

 α = angle of attack

 β = angle of sideslip

 δ = small incremental change

 Δ = incremental change

γ = ratio of specific heats for air

 λ = longitude

 μ = coefficient of viscosity for air

 μ = Earth gravitational constant

 ω_{earth} = Earth's rotation vector

 ω_n = natural frequency of heat rate control response

 ϕ = bank angle

 \mathscr{R} = universal gas constant

 ρ = atmospheric density

 σ = standard deviation

 τ = time constant of filter

 ζ = damping ratio of heat rate control response

SUBSCRIPTS

aero = aerodynamic

c = geocentric

cmd = command

d = desired

des = desired

drag = drag term

e = error

EI = entry interface

f = final

g = geodetic

imu = inertial measurement unit

inplane = projection of target unit vector into plane formed by the

position vector and the relative velocity vector

lat = direction perpendicular to the plane formed by the position vector

and the relative velocity vector

lift = lift term

lim = limiting value or boundary

L/D = lift-to-drag ratio

max = maximum

min = minimum

nom = nominal

perpen = direction perpendicular to the plane formed by the position vector

and the relative velocity vector

pole = direction of the north pole

R = direction of the position vector

sl = sea level

std = standard value

t = target aim point

 ρ = atmospheric density

SUPERSCRIPTS

EF = coordinatized in Earth-fixed coordinates

imu = value measured by inertial measurement unit on current cycle

imu past = value measured by inertial measurement unit on past cycle

= estimated or measured

= value from previous guidance cycle

1.0 INTRODUCTION

Routine access to space and the maintenance of a Space Station will increasingly require greater flexibility in mission planning and the requirement for lower system maintenance costs. The launch and recovery phases of space flight have historically been the most demanding phases of space flight and therefore require the most development effort and investment. Mission flexibility requires more frequent launch and deorbit opportunities. For the case of re-entry vehicles, deorbit opportunities are defined by the ranging capability of the vehicle. A high L/D yehicle increases the available deorbit opportunities increasing mission flexibility. High L/D vehicles also are of interest for over-flight missions for the purpose of reconnaissance.

Entry guidance algorithms developed to date have been highly vehicle-specific and required great development and maintenance efforts over the life of the vehicle. These algorithms were not applicable to other vehicles without extensive modification.

This study seeks to design an adaptive entry guidance algorithm that maximizes the usable footprint by making full use of the available vehicle capability. This algorithm should also be easy to maintain throughout the vehicle definition phase and operational life. Minimizing the number of mission-dependent input parameters (I-loads) is desirable. The algorithm should also be easily transported to other vehicles to minimize development cost. Transportability is accomplished by minimizing vehicle-specific features of the algorithm. Explicit heat rate control should be provided to allow full use of the entry corridor up to the heat rate limits.

This study seeks to design such an algorithm. A candidate entry guidance algorithm is defined for the NASA Entry Research Vehicle (ERV), but is easily adapted to other vehicles with minimal modification. The proposed algorithm attains almost complete coverage of the achievable footprint, while employing a simple one-phase entry algorithm with explicit heat rate control. Vehicle-specific features and I-loads are minimized, reducing algorithm development and maintenance costs.

The ERV [1] is a proposed high-performance entry vehicle designed as a test bed for future technology development in the areas of:

- 1. Maneuvering entry/synergetic plane change
- 2. Atmospheric uncertainties
- 3. Advanced thermal protection systems
- 4. Aerodynamic/aeroheating prediction
- 5. Adaptive guidance and navigation
- 6. Load-bearing thermostructures

The ERV is designed for deployment from the Space Shuttle, after which the ERV enters the atmosphere for demonstration of the synergetic plane change, over-flight, and entry missions. Figure 1 on page 78 shows a three-view drawing of the ERV and the surface areas of the aerodynamic control surfaces. Also seen is the size of the ERV in relation to the diameter of the Shuttle payload bay in which the ERV must fit.

2.0 MOTIVATION

2.1 INTRODUCTION

The goal of any entry guidance algorithm is to successfully guide the vehicle to the desired final state for the largest range of dispersions possible without violating any vehicle constraints while also maximizing the achievable footprint. It is also desirable to minimize the mission and vehicle-specific aspects of the guidance algorithm so as to minimize premission analysis and planning. Transportability of the algorithm from one vehicle to another significantly reduces guidance algorithm development effort and cost.

To maximize the footprint attainable, the guidance algorithm must follow the optimal path to any particular point in the footprint. The algorithms developed to date for such vehicles as the Apollo capsule [2] and the Space Shuttle [3] have attempted to do this by fitting the optimal trajectory with phases that follow important parameters (reference profiles) over some range of conditions. These guidance algorithms were required to be computationally efficient because of the limited on-board computer resources available. Analytic expressions for the reference profiles allowed for low execution time and tailoring of the trajectory for vehicle-specific constraints. For example, trajectories for these vehicles had to be shaped to reduce and control the maximum heat rate experienced below that allowed for the available thermal protection system materials.

The Space Shuttle entry guidance system employs three major modes with seven phases:

- 1. Entry
 - a. Pre-entry
 - b. Temperature control
 - c. Equilibrium glide
 - d. Constant drag
 - e. Transition
- 2. Terminal Area Energy Management
- 3. Approach and Landing

Except for the pre-entry phase which is open-loop, each phase is described by an analytic expression relating the desired drag and altitude rate (the measured feedback terms used) to the desired profile. Because the algorithms are tailored for a particular vehicle and the reference profiles do not follow the optimal profile to all points in the footprint, guidance algorithms developed to date can not be easily adapted to other vehicles or provide full coverage of the theoretically achievable footprint.

The next generation of entry vehicles will not be so constrained due to advances in thermal protection system materials and computer technology. For example, flight computers are now capable of supercomputer speeds on the order of 40 million instructions per second utilizing parallel processing architecture [4]. A different approach to guidance that attempts to follow an optimal profile to maximize footprint capability is therefore possible.

The proposed approach is a predictor-corrector algorithm that numerically predicts the final state for a particular control variable history and then corrects the control variable history to satisfy the specified final state constraints. This approach, proposed previously for

various guidance problems, has most often been impractical because of the long trajectories that must be predicted and the slow computer speeds.

Such an approach has been employed for the Space Shuttle Powered Explicit Guidance (PEG) [5] used for second stage ascent and orbit insertion burns where the trajectory is short enough to be predicted with the available computer resources. The Shuttle algorithm numerically predicts the gravitational effects during the powered flight phase with a 10 step integration of the 500 second trajectory.

A predictor-corrector has also been proposed for Aerobraking Orbital Transfer Vehicles (AOTV) [6] which would utilize more advanced computers. This algorithm numerically integrates the equations of motion along a skimming trajectory through the upper atmosphere that is approximately 500 seconds long and requires about 100 integration steps.

The trajectories flown by the ERV or any high L/D entry vehicle are typically from 30 to 100 minutes long from entry interface (400K feet) to landing, so the computational demand for such an algorithm is very great early in the entry when the time to landing is long. However, because the entry is long and the vehicle has excess ranging capability for all but a small region along the edge of the footprint, the accuracy of the early predictions need not be as high as for the later predictions. Hence, large time steps can be used early in the predictor algorithm. Later, when the vehicle nears the landing site, the time remaining is short, and hence, the prediction is short. This allows the predictor-corrector to be executed more often near landing just like the current analytic algorithms. Throughout the entry, vehicles using an analytic guidance algorithm with reference profiles must closely follow the reference profile if the assumed reference profile is to guide the vehicle to the correct final state. A predictor-corrector effectively recomputes a new reference profile each time it is executed, so the guidance execution rate can be much lower than that for analytic algorithms.

2.2 DISPERSIONS

Before the guidance algorithm can be designed, the possible dispersions that may affect the trajectory must be considered. The Shuttle entry guidance system is required to reach the Terminal Area Energy Management (TAEM) interface with less than a 2.5 nautical mile position error from the target aim point. The dispersions of significance to an entry vehicle trajectory include:

- 1. Vehicle characteristics
 - a. Mass
 - b. Aerodynamics
 - c. Maneuver rates
- 2. Environment characteristics
 - a. Atmospheric density
 - b. Atmospheric winds
 - Atmospheric properties influencing aerodynamic flow regimes (temperature, mean free path, etc.)
- 3. Initial entry state vector
 - a. Velocity
 - b. Flight path angle
 - c. Heading
- 4. Propagation errors in navigation state vector

Of these potential dispersion sources, only the vehicle mass, aerodynamics, and the atmospheric density and winds will be significant. By the early 1990's, almost perfect navigation can be expected through use of the Global Positioning System (GPS). If the deorbit burn guidance and control systems are assumed to correctly guide to the navigated state

and there are no navigation errors, then the dispersions in the initial entry state vector are negligible.

The vehicle mass should be known accurately, so for this study, a 3σ error of $\pm 5\%$ is assumed. Experience from the Space Shuttle program shows that the vehicle aerodynamics should be known to within $\pm 5\%$ for the force coefficients on the first flight. Only the stability derivatives and control effectiveness were missed significantly [7]. Even though the force coefficients may be known to excellent accuracy, reduced control effectiveness can reduce the possible trim angle of attack range reducing the maximum L/D achievable. Therefore, for this study, a $\pm 10\%$ dispersion in the lift and drag coefficients is considered. It should be noted that the first few flights of a new vehicle are usually targeted to the middle of the footprint to maximize margin and allow for accurate determination of the vehicle characteristics before the full ranging capability of the vehicle is used. After the first few flights, the aerodynamic characteristics should be known to within a few percent, so only about a $\pm 3\%$ dispersion must be considered.

The atmospheric dispersions were obtained from two sources. Reference [8] specifies the atmospheric dispersions to which aerospace vehicles must be designed. The average of the steady state winds at four geographic locations is shown in Figure 2 on page 79. This model was incorporated into the simulator environment with a magnitude scale factor to simulate less than worst-case winds. The wind direction was selected for each run made with winds and held constant throughout the trajectory. Reference [8] specifies Reference [9] as the source for atmospheric density dispersions. However, the recent Shuttle flights have provided estimated density data of a quality never before available. Atmospheric density profiles derived from Shuttle accelerometer measurements of the normal force acceleration and the estimated normal force coefficient and relative velocity vector are presented in Reference [10]. Figure 3 on page 80, taken from that report, shows the envelope of the

derived density profiles for the first 12 Shuttle flights. Of particular interest is the range of dispersions seen: -47% to \pm 12%. Figures 4 on page 81 and 5 on page 82 show the density profiles for the STS-1 and STS-9 Shuttle flights. High frequency density shear components and constant density biases from the standard atmosphere are seen. For this study, constant density biases of \pm 30% and the Shuttle derived density profiles from Reference [10] were used.

2.3 REFERENCE TRAJECTORIES

The size of the footprint for a particular vehicle is determined by the range in vehicle L/D and the constraints placed on the trajectory such as heat rate limits. The edges of the footprint correspond to the use of maximum or minimum L/D. Maximum downrange or crossrange, for example, requires maximum L/D, while minimum downrange requires minimum L/D.

The determination of the optimal angle of attack and bank angle control histories for maximum crossrange and downrange has been the topic of many papers [11] [12] [13]. Wagner [12] used several optimization techniques to evaluate the maximum crossrange achievable for a multiphase bank angle history flown at maximum L/D. The multiphase bank profiles considered are shown in Figure 6 on page 83. It is seen that as the number of phases increases, the multiphase profile approaches the optimal continuous profile also shown in this figure. It was determined that a three-phase bank angle profile as illustrated in Figure 6 achieved almost the same crossrange as a continuous bank profile. This is shown in Figure 7 on page 84 reproduced here from that paper. Further, as the number of phases

increases, the optimum bank angle profile approaches a continuous profile that is almost linear with velocity as shown in Figure 8 on page 85. It was also shown that flying at the maximum L/D maximizes the crossrange attained.

This result is confirmed in Reference [13] which utilized a nonlinear programming technique to optimize the Space Shuttle trajectory for the maximum downrange and maximum crossrange cases. The maximum downrange trajectory requires flying at zero bank angle and at the angle of attack corresponding to maximum L/D as shown in Figure 9 on page 86. The control histories for the maximum crossrange case are shown in Figures 10 on page 87 and 11 on page 88. Again, the optimal control history is the angle of attack corresponding to maximum L/D and an almost linear bank angle profile with velocity.

Optimized trajectories for the ERV were reported in Reference [14]. These trajectories were determined using the Program to Optimize Simulated Trajectories (POST) [15] and imposed the following constraints on the trajectories:

- Maximum heat rate of 125 BTU/sq ft/sec
- 2. Maximum heat load of 150K BTU/sq ft

The achievable footprint with these constraints, reported in Reference [14], is shown here in Figure 12 on page 89. Subsequently, the heat load limit was increased to 175K BTU/sq ft resulting in the larger footprint shown in Figure 12. As will be seen, these footprints omit a large area in the minimum downrange region that is achievable within the heating constraints. Also shown is the footprint of the Space Shuttle which has a maximum hypersonic L/D of 1.2 as compared with 1.8 for the ERV.

Figure 13 on page 90 shows the altitude history for the maximum downrange, maximum crossrange, and minimum downrange cases. Figures 14 on page 91 and 15 on page 92

show the bank angle and angle of attack histories for these trajectories. Figures 16 on page 93 and 17 on page 94 show the heat rate and heat load histories for these cases.

Figure 15 shows that the constant angle of attack corresponding to maximum L/D is flown for the edge of the footprint except for the minimum downrange case. For the minimum downrange case, the angle of attack corresponding to the minimum L/D on the back side of the L/D curve (high drag coefficient) is flown early, followed by a ramp in angle of attack starting at 1500 seconds after entry interface. This ramp corresponds to the vehicle actually turning around and flying slightly back uprange, so maximum L/D is desired later to maximize the distance flown uprange. The angle of attack for the maximum downrange case is slightly greater than that for maximum L/D because this trajectory exceeds the heat load limit if flown at maximum L/D. The maximum downrange region of the footprint is therefore limited by the heat load limit set for the ERV. If the limit were relaxed, flight at maximum L/D would allow a longer downrange trajectory.

Figure 14 shows that the bank angle profile for maximum crossrange is approximately linear with time which is almost linear with velocity, which suggests that a linear bank angle profile with velocity is sufficient. The maximum downrange case has a constant bank angle of zero which is again linear with velocity. The minimum downrange case does not have a linear bank profile. As was mentioned previously, for this case, the vehicle turns around and flys back uprange.

The results of these studies suggest that use of a constant angle of attack profile and a linear bank with velocity profile will capture a large portion of the achievable footprint. As will be seen in the results, these profiles suffice to capture most of the footprint reported in Reference [14] and additionally reach a large area in the minimum downrange region out-

side the reported footprint. Only a small area of the reported footprint in the minimum downrange region is unachievable.

Also of interest are the peaks in heat rate seen in Figure 16. Because the peaks in heat rate are very short, explicit control of the heat rate should be possible in the maximum heat rate regions without significantly impacting the guidance.

2.4 GUIDANCE APPROACH

The guidance design will attempt to maximize the size of the footprint while flying a constant angle of attack profile and a linear bank angle with velocity profile. The predictor algorithm integrates the equations of motion forward in time using the assumed control profile and the necessary environment and vehicle models. The corrector then determines (using multiple predicted trajectories with various control histories) the sensitivities of the final state constraints to the control variables. The sensitivities are then used to compute the required control variable values to reach the desired final state conditions. Heat rate control is provided locally during the regions of maximum heating without significantly affecting the assumed control histories. Also, in-flight measurements are utilized to increase the accuracy of the predicted trajectories by compensating for off-nominal conditions.

Such a simple profile for the maximum downrange and crossrange cases simplifies the modeling of the control histories in the predictor. The only remaining question is how much of the footprint this profile will capture. As will be seen in Subsection "4.2 Open-Loop

Footprint" on page 57, such a profile achieves almost complete coverage of the achievable footprint.

Also of concern is the linearity and convergence properties of the final state constraints with the control variables. As will be seen, over almost all of the footprint except near the edges, the constraints are highly linear and convergent with the control variables. Operationally, only about 75% of the achievable footprint is used to ensure guidance margin. Thus, the question of nonconvergence near the edges is avoided.

3.0 GUIDANCE DESIGN

3.1 INTRODUCTION

This section describes the implementational details of the guidance scheme described in the previous section. The equations of motion and environment and vehicle characteristics modeled in the predictor algorithm are described. The corrector algorithm to control the final state constraints with the two available control variables is derived. Also derived are the heat rate control and in-flight measurement algorithms. The heat rate control algorithm provides control of the peaks in stagnation heat rate during the early portion of entry. The in-flight measurement algorithm utilizes accelerations measured by the navigation system to more accurately model the expected environment and vehicle characteristics in the predictor algorithm. Because the predictor-corrector algorithm is computationally intensive, areas where significant execution time savings have been or can be realized are indicated. Program listings of the algorithm coded in the HAL/S computer language are presented in "Appendix B. ALGORITHM PROGRAM LISTINGS" on page 135.

As will be seen, the only inputs to the guidance system are the environment and vehicle models, the assumed control profiles, and the navigated state vector. The state vector is an input to any guidance system. The other inputs are developed for the analysis of any new vehicle. Therefore, the guidance system is highly transportable between vehicles because only the vehicle characteristics and aerodynamics model must be changed for a new vehicle.

3.2 UNIT TARGET VECTOR

The target aim point to which the vehicle is to be guided is specified by the longitude and geodetic latitude of the Terminal Area Energy Management (TAEM) interface point which occurs at 80K feet for the Shuttle. This point is selected based on the guidance algorithm employed during the TAEM guidance phase. TAEM guidance provides precise control of vehicle energy during the final stages of entry to guide to a specified runway with acceptable energy. For computational ease, the longitude and geodetic latitude are converted to a target unit vector in Earth-fixed coordinates by first computing the geocentric latitude from,

$$\phi_c = \tan^{-1} \left(\frac{\tan(\phi_g)}{k} \right) \tag{1}$$

where,

$$k = \left(\frac{R_{equator}}{R_{pole}}\right)^2 = \left(\frac{1}{1 - f_{earth}}\right)^2 \tag{2}$$

The unit target vector is then computed from,

$$\vec{i_t^{EF}} = \begin{bmatrix} \cos(\phi_c) & \cos(\lambda) \\ \cos(\phi_c) & \sin(\lambda) \\ \sin(\phi_c) \end{bmatrix}$$
 (3)

Alternatively,

$$\overrightarrow{i_t^{EF}} = \begin{bmatrix} i_x \\ i_y \\ i_z \end{bmatrix}_t^{EF} \tag{4}$$

where,

$$i_z = \sin(\phi_c) \tag{5}$$

$$i_{x} = \cos(\lambda) \sqrt{1 - i_{z}^{2}} \tag{6}$$

$$i_{y} = \operatorname{sign}(\lambda) \sqrt{1 - i_{x}^{2} - i_{z}^{2}}$$
 (7)

3.3 COMMANDED ATTITUDE COMPUTATION

Because the predictor can not be executed as frequently as analytic guidance algorithms early in the entry, and because it in fact does not have to be executed as frequently, it is necessary to update the commands sent to the vehicle autopilot more frequently than the predictor-corrector execution rate. Typically, this would be done at the rate of current analytic guidance algorithms, e.g., the Space Shuttle rate of .52 hz. The commanded bank angle, ϕ_{cmd} , is computed for the linear bank with velocity profile as shown in Figure 18 on page 95 from the desired bank angle, ϕ_{d} , and the current navigated inertial velocity magnitude, V_{l} ,

$$\phi_{cmd} = \phi_d \frac{V_t - V_f}{V_{El} - V_f} \tag{8}$$

to yield the near-optimal linear bank with velocity profile. The desired angle of attack control history is a constant angle of attack, and therefore,

$$\alpha_{emd} = \alpha_d$$
 (9)

As implemented in the current design, the guidance algorithm executive is executed at 1.0 hz. The attitude commands are updated at this frequency using Eq. (8) and (9). The predictor-corrector algorithm is executed at .02 hz. during the entire entry phase, although it is practical to run it much more frequently late in the trajectory when the length of the trajectory to be predicted is short. The possible execution rate of the predictor-corrector for a typical flight computer is addressed in Subsection "4.8 Algorithm Execution Time" on page 66.

3.4 CORRECTOR ALGORITHM

The corrector algorithm is executed to update the commanded attitude control history to be flown. The guidance algorithm controls to two final state constraints, downrange error and crossrange error, using two control variables, a constant angle of attack and the intercept of the bank profile at the entry interface velocity as shown in Figure 18 on page 95 and expressed in Eq. (8).

Expanding the downrange and crossrange errors in a Taylor series expansion of the control variables and neglecting the second-order and higher terms yields,

$$\Delta DR_e = \frac{\partial DR_e}{\partial \alpha_d} \Delta \alpha_d + \frac{\partial DR_e}{\partial \phi_d} \Delta \phi_d + \dots$$
 (10)

$$\Delta CR_e = \frac{\partial CR_e}{\partial \alpha_d} \Delta \alpha_d + \frac{\partial CR_e}{\partial \phi_d} \Delta \phi_d + \dots$$
 (11)

To intercept the target, the change in the constraint errors must null the predicted errors, or,

$$\Delta DR_e = -DR_e \tag{12}$$

$$\Delta CR_e = -CR_e \tag{13}$$

Equations (10) through (13) provide a set of two simultaneous equations in two unknowns,

$$\begin{bmatrix} \frac{\partial DR_e}{\partial \alpha_d} & \frac{\partial DR_e}{\partial \phi_d} \\ \frac{\partial CR_e}{\partial \alpha_d} & \frac{\partial CR_e}{\partial \phi_d} \end{bmatrix} \begin{bmatrix} \Delta \alpha_d \\ \Delta \phi_d \end{bmatrix} = \begin{bmatrix} -DR_e \\ -CR_e \end{bmatrix}$$
(14)

which are solved for the control variable changes required,

$$\Delta \alpha_d = \left(\frac{\partial DR_e}{\partial \phi_d} CR_e - \frac{\partial CR_e}{\partial \phi_d} DR_e \right) / \det$$
 (15)

$$\Delta \phi_d = \left(\frac{\partial CR_e}{\partial \alpha_H} DR_e - \frac{\partial DR_e}{\partial \alpha_d} CR_e\right) / \det$$
 (16)

where det is the determinant of the matrix in Eq. (14). The partial derivatives are approximated by finite difference equations of the form,

$$\frac{\partial DR_e}{\partial \phi_d} = \frac{DR_e(\phi_d = \phi_3) - DR_e(\phi_d = \phi_1)}{\phi_3 - \phi_1} \tag{17}$$

There are four partial derivatives that must be evaluated. They can be evaluated from three predicted trajectories with control histories selected as:

1.
$$\alpha_1 = \alpha'_d$$
 $\phi_1 = \phi'_d$

2.
$$\alpha_2 = \alpha'_d + \delta \alpha_d, \phi_2 = \phi'_d$$

3.
$$\alpha_3 = \alpha'_{d}$$
, $\phi_3 = \phi'_{d} + \delta\phi_{d}$

where the primes denote the control variables from the previous guidance solution. The new guidance commands are then,

$$\alpha_d = \alpha'_d + \Delta \alpha_d \tag{18}$$

$$\phi_{d} = \phi'_{d} + \Delta \phi_{d} \tag{19}$$

Protection must be provided for the case where the determinant in Eq. (15) and (16) is small or identically zero which corresponds to a loss of control authority of the control variables over the control constraints. In this case, no change is made to the control variables, and the guidance command from the previous cycle is used. As the vehicle approaches the TAEM interface altitude, the control authority decreases. Large control variable changes become necessary to null the constraint errors in the short flight time remaining. This problem can be avoided in one of two ways. First, the guidance commands can be frozen at a selected point before the termination altitude. For entry guidance, this approach is not preferred because the vehicle still has not landed. Alternatively, the target aim point can be lowered below the TAEM interface altitude point at which TAEM guidance is activated. The decreasing control authority problem is therefore reduced.

For the simulated trajectories in this report, the first approach is employed because it is desired to evaluate guidance performance by considering the dispersions in the final state at the TAEM interface altitude. Because the guidance algorithm controls only the final state and not the intermediate states, it is necessary to target for the point at which the guidance is terminated.

3.5 PREDICTOR ALGORITHM

3.5.1 Introduction

The predictor algorithm is a simplified three-degree-of-freedom (3-DOF) trajectory simulator complete with models for those environment and vehicle characteristics necessary to model the translational equations of motion of the vehicle. Because the predictor is computationally intensive, the algorithm must be carefully designed to minimize computation, and the coding of the algorithm in a particular computer language should make use of any language-specific features to reduce computational requirements. Also, because the corrector only utilizes the final state vector errors to correct the control variables, only the accuracy of the predicted final state vector need be considered in selecting those effects to be modeled.

The environmental effects of concern for the long trajectories flown by entry vehicles over large altitude and velocity ranges are:

- 1. Variation of atmospheric properties with altitude
- 2. Earth oblateness effect on gravity vector
- 3. Effect of atmospheric rotation with Earth on relative velocity vector
- 4. Movement of runway due to Earth rotation

The vehicle characteristics of importance are:

- 1. Vehicle mass
- 2. Aerodynamic coefficient variation with flight regime
- 3. Aerodynamic coefficient variation with angle of attack
- 4. Control history during trajectory

Dispersions to be considered are:

- 1. Vehicle mass variation from nominal
- 2. Winds
- 3. Atmospheric density variation from nominal atmosphere
- 4. Aerodynamic coefficient variation from nominal

These dispersions can be measured in-flight because they affect the sensed acceleration measured by the vehicle's inertial navigation system. The estimation of these dispersions is discussed in Subsection "3.6 Estimators" on page 48.

The predictor performs the following computations upon being called by the corrector with a desired control variable history:

- 1. Initialize the predictor state to the navigated state vector
- 2. Compute any ancillary parameters from the state vector
- Compute the total acceleration vector from the predictor state vector and the environment and vehicle models using the control variable profiles specified by the corrector
- 4. Integrate the equations of motion forward in time one time step
- 5. Check the predictor termination conditions
 - a. Repeat steps 3 and 4 if the conditions are not met
 - b. Continue on to step 6 if the conditions are met
- Compute and return to the corrector the final predicted state errors from the target state vector and the predicted final state vector

3.5.2 Equations of Motion

The corrector provides a time-homogeneous navigated state vector comprised of,

- 1. The GMT time tag of the state vector, t_{GMT}
- 2. The inertial position vector, $\overrightarrow{R_i}$
- 3. The inertial velocity vector, $\overrightarrow{V_i}$

Also provided is the control variable history to be followed for the prediction. The equations of motion to be integrated are,

$$\frac{d\vec{R}_i}{dt} = \vec{V}_i \tag{20}$$

$$\frac{d\overrightarrow{V_i}}{dt} = \overrightarrow{A_i} \tag{21}$$

The acceleration is computed from the atmosphere and vehicle models as follows,

$$\vec{A}_i = \frac{\vec{F}_i}{m} = \vec{g}_i + \vec{a}_{aero} \tag{22}$$

The gravitational acceleration, $\overrightarrow{g_i}$, is computed including the J_2 term as,

$$\overrightarrow{g_l} = -\frac{\mu}{|\overrightarrow{R_l}|^2} \overrightarrow{i_g} \tag{23}$$

where,

$$\overrightarrow{i_g} = \overrightarrow{i_R} + \frac{3}{2} J_2 \frac{R_{equator}^2}{|\overrightarrow{R_l}|^2} ((1-5 z^2) \overrightarrow{i_R} + 2 z \overrightarrow{i_{pole}})$$
 (24)

and,

$$Z = \overrightarrow{i}_R \cdot \overrightarrow{i}_{pole} \tag{25}$$

The aerodynamic acceleration, $\overrightarrow{a}_{aero}$, is computed from,

$$\overrightarrow{a}_{aero} = \overrightarrow{a}_{lift} + \overrightarrow{i}_{lift} + \overrightarrow{a}_{drag} \overrightarrow{i}_{drag}$$
 (26)

where,

$$a_{lift} = \frac{C_L \ \overline{q} \ S}{m} \tag{27}$$

$$a_{drag} = \frac{C_0 \ \overline{q} \ S}{m} \tag{28}$$

$$\overline{q} = \frac{1}{2} \rho V_R^2 \tag{29}$$

$$V_R^2 = \overrightarrow{V}_R \cdot \overrightarrow{V}_R \tag{30}$$

$$\overrightarrow{V}_{R} = \overrightarrow{V}_{I} - \overrightarrow{\omega}_{earth} \times \overrightarrow{R}_{I}$$
 (31)

$$\vec{i}_{drag} = -\frac{\vec{V}_R}{|\vec{V}_C|} \tag{32}$$

$$\vec{i}_{lift} = (\vec{i}_{drag} \times \vec{i}_{lat}) \cos(\phi) + \vec{i}_{lat} \sin(\phi)$$
(33)

$$\vec{i}_{lat} = \frac{\vec{i}_R \times \vec{i}_{drag}}{|\vec{i}_R \times \vec{i}_{drag}|}$$
(34)

$$\overrightarrow{i}_{R} = \frac{\overrightarrow{R}_{l}}{|\overrightarrow{R}_{l}|} \tag{35}$$

The acceleration due to lift, a_{lift} , is more easily computed from,

$$a_{lift} = \frac{L}{D} a_{drag} \tag{36}$$

since the nominal lift-to-drag ratio, L/D, is corrected using in-flight accelerometer measurements of the actual vehicle sensed aerodynamic accelerations.

The atmospheric density, ρ , is computed by the atmosphere model using the position vector, $\overrightarrow{R_l}$. The 1962 U.S. Standard Atmosphere model is employed and is described in Reference [16]. If another atmosphere model is selected as being a more accurate estimate of the day-of-flight atmosphere, this model would replace the 1962 U.S. Standard Atmosphere model. An operational vehicle might employ monthly or seasonal atmospheres from such

sources as the GRAM Atmosphere [9] or even day-of-flight measurements to more accurately model the expected atmosphere in the predictions. The level of accuracy required in the atmosphere model will depend on the vehicle ranging capability and the amount of that capability to be used for a particular entry. Entries to the edges of the footprint will demand a very accurate atmosphere model.

The aerodynamic coefficients are highly vehicle dependent. To minimize computational requirements, they should be updated during the prediction as infrequently as possible. Of course, the update frequency required depends on the trajectory flown and the rate of change of the aerodynamic coefficients with flight regime change. The aerodynamic coefficient model for the ERV is presented in "Appendix A. ERV AERODYNAMICS MODEL" on page 133.

The density, ρ , from the atmosphere model and the lift-to-drag ratio, L/D, from the aero-dynamic model are both corrected by in-flight measurements as covered in Subsection "3.6 Estimators" on page 48. The estimated dispersions are compensated for using the following equations,

$$\rho = K_{\rho} \rho_{std} \tag{37}$$

$$\frac{L}{D} = K_{\frac{L}{D}} \left(\frac{C_L}{C_D} \right)_{nom} \tag{38}$$

where the density and lift-to-drag ratio scale factors, K_{ρ} and $K_{\frac{L}{D}}$, are provided by the estimator and are held constant throughout the prediction being made.

The control history to be followed is the constant angle of attack, α_d , and the linear bank angle with velocity, ϕ . The latter is computed from,

$$\phi = \phi_d \frac{V_i - V_f}{V_{EI} - V_f} \tag{39}$$

where ϕ_d is the intercept of the linear bank angle profile at the entry interface velocity, $V_{\it El}$. Because the entry interface and final velocities are not known a priori, and because small variations in them have little effect on the predicted trajectory compared with the selected control variables' values, the velocities are selected as constant values that cover all expected dispersions in the entry and final velocities. These values are,

$$V_{EI} = 26,000 \text{ ft/sec}$$

$$V_f = 1,000 \text{ ft/sec}$$

3.5.3 Integration of the Equations of Motion

The equations of motion are integrated using the 4th order Runge-Kutta algorithm with a variable time step to minimize the number of time steps required to integrate the trajectory to the final state. The 4th order Runge-Kutta algorithm requires four evaluations of the acceleration per time step, but permits a time step more than four times as large as an algorithm requiring only one acceleration evaluation per time step. The Runge-Kutta solution [17] for the differential equations of motion of the form,

$$\frac{d\vec{R}_i}{dt} = \vec{V}_i \tag{40}$$

$$\frac{d\overrightarrow{V_i}}{dt} = f(t, \overrightarrow{R_i}, \overrightarrow{V_i}) \tag{41}$$

is,

$$\overrightarrow{R}_{i}(t+\Delta t) = \overrightarrow{R}_{i}(t) + \frac{\Delta t}{6} (\overrightarrow{K}_{0} + 2\overrightarrow{K}_{1} + 2\overrightarrow{K}_{2} + \overrightarrow{K}_{3})$$

$$(42)$$

$$\overrightarrow{V}_{i}(t+\Delta t) = \overrightarrow{V}_{i}(t) + \frac{\Delta t}{6} (\overrightarrow{K'}_{0} + 2\overrightarrow{K'}_{1} + 2\overrightarrow{K'}_{2} + \overrightarrow{K'}_{3})$$

$$\tag{43}$$

where,

$$\overrightarrow{K}_0 = \overrightarrow{V}_i$$
 (44)

$$\vec{K}_1 = (\vec{V}_i + \frac{\vec{K}'_0}{2}) \tag{45}$$

$$\vec{K}_2 = (\vec{V}_I + \frac{\vec{K}_1}{2}) \tag{46}$$

$$\vec{K}_3 = (\vec{V}_1 + \vec{K}_2) \tag{47}$$

$$\overrightarrow{K'}_0 = f(t, \overrightarrow{R_i} \overrightarrow{V_i}) \tag{48}$$

$$\vec{K'}_1 = f(t + \frac{\Delta t}{2}, \vec{R}_i + \Delta t \frac{\vec{K}_0}{2}, \vec{V}_i + \Delta t \frac{\vec{K'}_0}{2}) \tag{49}$$

$$\vec{K'}_2 = f(t + \frac{\Delta t}{2}, \vec{R}_i + \Delta t \frac{\vec{K}_1}{2}, \vec{V}_i + \Delta t \frac{\vec{K'}_1}{2})$$
 (50)

$$\overrightarrow{K'}_3 = f(t + \Delta t, \overrightarrow{R_i} + \Delta t \overrightarrow{K_2}, \overrightarrow{V_i} + \Delta t \overrightarrow{K'_2})$$
 (51)

The time step is varied inversely with the total acceleration on the vehicle. This method of time step control was selected because of its simplicity. The time step control equation is of the form,

$$\Delta t = \frac{K_{\Delta t}}{|A_i|} \tag{52}$$

and the time step is limited between a minimum and maximum value,

$$\Delta t = midval\left(\Delta t_{\min}, \ \Delta t, \ \Delta t_{\max}\right) \tag{53}$$

The optimization of the integration algorithm is important in developing a flight quality algorithm, but is beyond the scope of this study. Higher-order integration algorithms with time step control methods [17] may yield significant reductions in the required computation time.

3.5.4 Termination Conditions for the Predictor

After each integration time step, the predicted state is compared with the termination condition. The termination condition is defined by the altitude of TAEM interface (80K feet). Because the predicted state at the TAEM interface altitude may have a relatively large altitude rate and range rate, the predictor must be terminated accurately to provide an altitude-homogeneous set of predicted state errors. Also, the variable time step control may allow large integration time steps if the acceleration is low near the final state, further complicating the task of terminating accurately. Reasonable altitude homogeneity is ensured by forcing use of the minimum integration time step starting some safe altitude above the termination altitude.

3.5.5 Final State Error Computation

The final state errors are computed from the unit target vector and the predicted final state vector. Because the target is fixed to the Earth and moves a significant distance dur-

ing the long entry trajectory, the rotation of the Earth must be considered. This is done by transforming the final state vector from inertial to Earth-fixed coordinates with the rotation matrix M_i^{EF} which is computed from the predicted termination time, the known orientation of the Earth at some epoch time, and the known rotation rate of the Earth. This computation is performed in the Earth-Fixed-From-Reference subroutine of the predictor-corrector which may actually be a GN&C utility function also employed by the navigation principal function.

The downrange and crossrange errors are defined as shown in Figure 19 on page 96. The errors are computed by first computing the downrange (in-plane) and crossrange (perpendicular) directions as follows,

$$\overrightarrow{R_i^{EF}} = \widehat{M_i^{EF}} \overrightarrow{R_i^{I}} \tag{54}$$

$$\overrightarrow{i_R^{EF}} = \frac{\overrightarrow{R_I^{EF}}}{|\overrightarrow{R_I^{EF}}|} \tag{55}$$

$$\vec{V}_R^{EF} = M_I^{EF} \vec{V}_R^{I} \tag{56}$$

$$\overrightarrow{i_{perpen}} = \frac{\overrightarrow{i_R^{F}} \times \overrightarrow{V_R^{EF}}}{|\overrightarrow{i_E^{F}} \times \overrightarrow{V_E^{F}}|}$$
(57)

$$\frac{\vec{i}_{inplane}^{EF}}{\vec{i}_{inplane}^{EF}} = \frac{\vec{i}_{t}^{EF} - (\vec{i}_{t}^{EF} \cdot \vec{i}_{perpen}^{EF}) \vec{i}_{perpen}^{EF}}{|\vec{i}_{t}^{EF} - (\vec{i}_{t}^{EF} \cdot \vec{i}_{perpen}^{EF}) \vec{i}_{perpen}^{EF}|}$$
(58)

The downrange and crossrange errors are then,

$$DR_e = R_{equator} \cos^{-1}(\overrightarrow{i_R^{EF}} \times \overrightarrow{i_{inplane}^{EF}}) sign((\overrightarrow{i_R^{EF}} \times \overrightarrow{i_{inplane}^{EF}}) \cdot \overrightarrow{i_{perpen}^{EF}})$$
(59)

$$CR_e = R_{equator} \cos^{-1}(\overrightarrow{i_{inplane}^{EF}} \cdot \overrightarrow{i_{iplane}^{EF}}) sign((\overrightarrow{i_{inplane}^{EF}} \times \overrightarrow{i_{t}^{EF}}) \cdot (\overrightarrow{i_{perpen}^{EF}} \times \overrightarrow{i_{inplane}^{EF}}))$$
(60)

These errors have the dimensions of $R_{equator}$ and are converted to nautical miles for ease of interpretation.

3.5.6 Algorithm Coding

A few comments regarding implementation of the predictor are appropriate. The computations required to update the aerodynamic coefficients are the major computational load for the predictor. It was found that it is not necessary to update the aerodynamics on each of the four acceleration evaluations of the 4th order Runge-Kutta algorithm. They are therefore only evaluated once each integration time step. The computational load could be reduced further if they are only updated when the independent variables (altitude, viscous interaction parameter, and Mach Number) change by a significant amount from the previous update. Also, although not done in this implementation, the aerodynamic coefficients should be curve-fit if possible to avoid a table lookup and interpolation implementation. It is noted in Figures 20 on page 97 and 21 on page 98 that the aerodynamic coefficients do not change very much below 300K feet until the Mach Number decreases below 2, so perhaps, two tables or curve-fits would suffice instead of the thirty tables currently used.

3.6 ESTIMATORS

The final state predicted by the predictor algorithm for a particular control history is a function of the assumed environment and vehicle characteristics. The accuracy of the predicted final state can be increased, and hence, the guidance margin increased, if in-flight

measurements are utilized to make the assumed models more accurately reflect the conditions actually experienced by the vehicle.

The accelerations modeled in the predictor are due to gravity and the aerodynamic forces. The gravity acceleration can be modeled to sufficient accuracy using standard gravity models. However, the aerodynamic accelerations are subject to significant variations due to uncertainties in the atmospheric density, atmospheric winds, vehicle aerodynamics, and vehicle mass. These uncertainties can be compensated for in the predictor by applying a multiplicative scale factor to the lift and drag accelerations modeled in the predictor that is equal to the ratio of the actual accelerations experienced to the predicted accelerations at any point in the trajectory.

The measured lift and drag accelerations are derived from the inertial measurement system sensed acceleration assuming a zero sideslip angle as follows,

$$\hat{a}_{drag} = -\vec{a}_{l} \cdot \frac{\vec{V}_{R}}{|\vec{V}_{R}|}$$
 (61)

$$\hat{a}_{lift} = \sqrt{\hat{a}_{l} \cdot \hat{a}_{l} - \hat{a}_{drag}^{2}} \tag{62}$$

where the inertial acceleration, $\overrightarrow{a_i}$, is computed by back-differencing the accumulated sensed velocity counts from the inertial measurement unit,

$$\vec{a}_{l} = \frac{\vec{V}_{l}^{'mu} - \vec{V}_{l}^{'mu \text{ past}}}{\Delta t_{lmu}}$$
(63)

In the predictor, the aerodynamic accelerations are,

$$a_{drag} = \frac{C_D S}{m} \frac{1}{2} \rho V_R^2 \tag{64}$$

$$a_{lift} = \frac{L}{D} a_{drag} \tag{65}$$

Data from the Shuttle program [10] shows that the primary dispersion affecting the aerodynamic acceleration is in the atmospheric density. Further, over large altitude ranges, this dispersion can be modeled to an accuracy sufficient for the prediction process as a constant multiplicative bias. Therefore, for implementational purposes, the dispersion in the aerodynamic accelerations due to the atmospheric uncertainties will be lumped into a density scale factor as follows,

$$K_{\rho} = \frac{\hat{\rho}}{\rho_{std}} \tag{66}$$

where,

$$\hat{\rho} = \frac{2 \hat{a}_{drag}}{V_R^2} \left(\frac{m}{C_D S} \right)_{nom}$$
 (67)

and the values for the nominal vehicle characteristics and the nominal atmospheric density are determined using the predictor models for the vehicle state at the time of the measurement. Because the nominal ballistic coefficient is assumed in deriving the measured density, and the measured acceleration is due to the actual ballistic coefficient, uncertainties in the ballistic coefficient will be reflected in the measured density. The equation for the drag acceleration in the predictor is then,

$$a_{drag} = \left(\frac{C_D S}{m}\right)_{nom} \frac{1}{2} V_R^2 K_\rho \rho_{std}$$
 (68)

or substituting for ${\it K}_{
ho}$ from Eq. (66) yields,

$$a_{drag} = \left(\frac{C_D S}{m}\right)_{nom} \frac{1}{2} V_R^2 \hat{\rho}$$
 (69)

Substituting for $\stackrel{\wedge}{\rho}$ from Eq. (67) then yields,

$$a_{drag} = \stackrel{\wedge}{a}_{drag} \tag{70}$$

so the modeled drag is corrected for the dispersed drag coefficient, density, relative velocity, and vehicle mass.

In general, the measured drag acceleration is a noisy signal and will exhibit short term variations due to short lived local atmospheric dispersions [10]. Filtering of the density scale factor is therefore necessary and is implemented using a first-order filter,

$$K_{\rho} = (1 - K_1) K_{\rho} + K_1 \frac{\hat{\rho}}{\rho_{std}}$$

$$(71)$$

which has a time constant , $au_{
ho}$, of,

$$\tau_{\rho} = -\frac{\Delta t}{\ln(1 - K_1)} \tag{72}$$

where Δt is the sample rate of the measured drag acceleration, and K_1 is the filter gain. A similar lift-to-drag ratio scale factor is derived and applied to the lift acceleration,

$$a_{lift} = K_{\frac{L}{D}} \left(\frac{L}{D}\right)_{nom} a_{drag} \tag{73}$$

where,

$$K_{\frac{L}{D}} = \frac{\left(\frac{\hat{L}}{D}\right)}{\left(\frac{L}{D}\right)_{\text{corr}}} \tag{74}$$

and,

$$\left(\frac{\hat{L}}{D}\right) = \frac{\hat{a}_{lift}}{\hat{a}_{drag}} \tag{75}$$

Again, filtering is necessary,

$$K_{\frac{L}{D}} = (1 - K_2) K_{\frac{L}{D}} + K_2 \frac{\left(\frac{L}{D}\right)}{\left(\frac{L}{D}\right)_{nom}}$$
(76)

yielding a time constant, $\tau_{\frac{L}{o}}$, of,

$$\tau_{\frac{L}{D}} = -\frac{\Delta t}{\ln(1 - K_2)} \tag{77}$$

A time constant of 25 seconds was selected for both the density and L/D filters. This value filtered out the high frequency density shear components seen in the Shuttle profiles while still providing adequate response to long term disturbances.

3.7 HEAT RATE CONTROL

The primary trajectory constraint on entry vehicles is the maximum heat rate the vehicle can withstand. In general, the thermal protection system material is selected to withstand

the maximum local heat rate on any particular portion of the vehicle, and the material thickness is selected to withstand the total integrated heat load c/er the trajectory. Accurate pre-flight predictions of the expected heat rate during entry can significantly reduce the thermal protection system weight yielding significant performance increases for an entire mission.

Inspecting the reference trajectories in Figure 16 on page 93 shows that sharp peaks in the heat rate occur. If these peaks are accurately controlled, and this control can be accomplished using only short term departures from the predictor assumed control history, no significant departure will occur from the desired trajectory.

Heat rate control can be accomplished using either angle of attack, bank angle, or a combination of both. Of these, bank angle alone is preferred because a constant angle of attack trajectory is assumed and because angle of attack changes the vehicle drag coefficient resulting in a rapid change in energy rate and a rapid departure from the desired trajectory. Also, most entry vehicles restrict the angle of attack range during maximum heat rate regions to reduce the area on the vehicle that must be protected from the high heat rate. Although the ERV does not need to restrict the angle of attack range, and hence, the guidance does not provide for such a capabilty, the restriction can be handled by replacing the constant angle of attack control history by a reference angle of attack control history about which a constant angle of attack bias is applied for control.

Heat rate control is accomplished by computing the incremental bank angle required to fly along the specified heat rate boundary (assumed to be a constant heat rate for any flight regime) and then modulating bank angle according to the guidance value or the guidance value plus the incremental lift for heat rate control, whichever requires more lift up. Hence, no effort is made to pull the vehicle down into the atmosphere to follow the heat rate bound-

ary; instead, lift up is applied if the vehicle is flying "too low". The incremental lift for heat rate control is computed to provide a second-order control response as follows,

$$\cos(\Delta\phi) = \frac{K_{\ddot{Q}}}{\overline{q}} (\ddot{Q} - \ddot{Q}_{des}) + \frac{K_{\dot{Q}}}{\overline{q}} (\dot{Q} - \dot{Q}_{lim})$$
 (78)

To fly along a constant heat rate boundary,

$$\dot{Q}_{lim} = constant$$
 (79)

and the desired rate of change of heat rate, $\ddot{Q}_{\textit{des}}$, is,

$$\ddot{Q}_{des} = 0 ag{80}$$

SO,

$$\cos(\Delta\phi) = \frac{K_{\ddot{Q}}}{\overline{q}} \ddot{Q} + \frac{K_{\dot{Q}}}{\overline{q}} (\dot{Q}_{\perp} - \dot{Q}_{lim})$$
 (81)

The stagnation heat rate is determined using the Engineering Correlation Formula [18] for a one foot radius reference sphere as,

$$\dot{Q} = 17700 \sqrt{\rho} \left(\frac{V_R}{10000} \right)^{3.05} \tag{82}$$

The time rate of change of heat rate, \ddot{Q} , is determined by back-differencing the heat rate between guidance cycles,

$$\ddot{Q} = \frac{\dot{Q} - \dot{Q}_{past}}{\Delta t} \tag{83}$$

The equations of motion assuming small flight path angle yield,

$$\ddot{h} = \frac{C_L \ \bar{q} \ S}{m} \cos(\phi) - g \tag{84}$$

Considering only the perturbations due to the incremental lift, $\cos(\Delta\phi)$, from Eq. (81) yields,

$$\ddot{h} - \frac{C_L S}{m} K_{\ddot{Q}} \ddot{Q} + K_{\dot{Q}} (\dot{Q} - \dot{Q}_{lim}) = 0$$
 (85)

Proper selection of the gains $K_{\hat{Q}}$ and $K_{\hat{Q}}$ is accomplished by linearizing Eq. (85) in altitude and assuming that the time rate of change of V_R is small compared to the change in $\sqrt{\rho}$. With these assumptions,

$$\dot{Q} = 17700 \left(\frac{V_R}{10000} \right)^{3.05} \frac{d\sqrt{\rho}}{dh} h \tag{86}$$

and,

$$\ddot{Q} = 17700 \left(\frac{V_R}{10000}\right)^{3.05} \frac{d\sqrt{\rho}}{dh} \frac{dh}{dt}$$
 (87)

Therefore, the homogeneous second-order differential equation in altitude is,

$$\ddot{h} + K K_{\ddot{q}} \dot{h} + K K_{\dot{q}} h = 0 \tag{88}$$

where,

$$K = -\frac{C_L S}{m} 17700 \left(\frac{V_R}{10000}\right)^{3.05} \frac{d\sqrt{\rho}}{dh}$$
 (89)

The natural frequency and damping ratio of the second-order differential equation are,

$$\omega_n = \sqrt{K K_{\dot{Q}}} \tag{90}$$

$$\zeta = \frac{K K_{\ddot{o}}}{2 \omega_{a}}$$
 (91)

or alternatively, for a desired natural frequency and damping ratio, $K_{\ddot{Q}}$ and $K_{\ddot{Q}}$ are selected as,

$$K_{\dot{Q}} = \frac{\omega_n^2}{K} \tag{92}$$

$$K_{\widetilde{Q}} = \frac{2 \zeta \omega_n}{K} \tag{93}$$

The derivative in Eq. (89) can be evaluated assuming an exponential atmosphere of the form,

$$\rho = \rho_{sl} e^{-(h/h_s)}$$
(94)

yielding,

$$\frac{d\sqrt{\rho}}{dh} = -\frac{\sqrt{\rho_{sl}}}{2h_s} e^{-(h/2h_s)}$$
(95)

This logic is contained in the guidance algorithm in the Heat Rate Control subroutine. The incremental lift required for heat rate control is provided to the Attitude Command subroutine which adds it into the guidance command if it requires more lift up than the guidance command. This occurs when the incremental lift given by Eq. (81) is greater than zero,

$$\cos(\Delta\phi) > 0 \tag{96}$$

Appropriate values of the natural frequency and damping ratio were determined parametrically as,

$$\omega_n = 0.10 \frac{\text{rad}}{\text{sec}} \tag{97}$$

$$\zeta = 1.00 \tag{98}$$

4.0 PERFORMANCE

4.1 SIMULATOR

Open-loop and closed-loop entry trajectories were simulated for the Entry Research Vehicle (ERV) using a derivative of the 6-DOF Aeroassist Flight Experiment Simulator (AFES-IM) [19] developed at The Charles Stark Draper Laboratory which is coded in the HAL computer language. For this study, the aerodynamic model described in "Appendix A. ERV AERODYNAMICS MODEL" on page 133 and the wind model shown in Figure 2 on page 79 were incorporated into the AFESIM. The characteristics of the ERV [14] are listed in Table 1 on page 73. The entry conditions with which all trajectories were initialized are also listed in Table 1 on page 73. Because only the performance characteristics of the guidance were being evaluated, the simulator was operated in the 3-DOF mode.

4.2 OPEN-LOOP FOOTPRINT

Open-loop trajectories were run using the constant angle of attack and linear bank with velocity profiles to determine the portion of the footprint achievable. All trajectories were terminated at the TAEM interface altitude of 80K feet, so the footprint can be increased about 100 nautical miles in all directions due to the range flown below 80K feet.

Figure 22 on page 99 shows the lift-to-drag ratio, L/D, for the ERV at Mach 10 versus angle of attack, α. It is seen that maximum L/D is obtained at an angle of attack of 15 degrees. It is desirable to fly on the back side of the L/D curve (angle of attack greater than 15 degrees) so as to maximize the drag coefficient for a given L/D. This reduces heating by causing a quicker loss of velocity early in entry than flying at the same L/D on the front side of the L/D curve. The L/D versus angle of attack curve shows the same shape with the maximum L/D at 15 degrees for all flight regimes with only a variation in the magnitude of L/D across the angle of attack range. Therefore, angle of attack is modulated between 15 and 50 degrees for the footprint with 15 degrees corresponding to maximum L/D and 50 degrees corresponding to minimum L/D.

The open-loop footprint is shown in Figure 23 on page 100. Also shown for comparison is the reported footprint for a heat load limit of 175K BTU/sq ft (shown earlier in Figure 12 on page 89). That footprint included the range flown below 80K feet, hence the slight differences. It is seen that almost the entire reportedly achievable footprint is captured with the assumed control profile. Most importantly, all of the maximum crossrange region is reached when the range flown below 80K feet is included. Also, most of the minimum downrange region of the footprint was captured even though the control profiles used do not correspond to the optimal profiles determined using POST and shown in Figures 14 on page 91 and 15 on page 92. Additionally, the footprint reported in Reference [14] does not include the large area in the minimum downrange region that the open-loop trajectories reached. The small area not reached in the minimum downrange region by the control profiles is relatively unimportant because the downrange ranging capability of the vehicle can be adjusted by changing the deorbit time. A vehicle in low earth orbit travels at about four nautical miles per second, so downrange is easily adjusted while on-orbit.

Because the predictor-corrector guidance algorithm will follow the same control histories as used to generate the open-loop footprint for a nominal trajectory, the guidance algorithm can reach all of the open-loop footprint for nominal conditions. It is seen that the achievable footprint is bounded by the heat rate and heat load limits imposed on the ERV. At least an additional 2000 nautical miles of ranging capability in the downrange direction exists if the heat limits are relaxed.

4.3 EFFECT OF DISPERSIONS ON FOOTPRINT

The effect of dispersions on the achievable footprint was determined by repeating the open-loop trajectories with the dispersions discussed in Subsection "2.2 Dispersions" on page 26. The worst-case (3 σ) dispersions are summarized in Table 2 on page 73. Table 3 on page 74 shows the dispersions in downrange and crossrange for three of the control histories in the maximum downrange region of the footprint. It is seen that only variations in the lift and drag coefficients cause significant dispersions in the final state. Also, it is seen that the effect of a +10% C_L dispersion is the same as that of a -10% C_D dispersion. This is expected because both dispersions cause the same increase in the vehicle L/D. The same occurs for a -10% C_L dispersion and a +10% C_D dispersion, both of which decrease the vehicle L/D.

The effects of the dispersions on trajectories to the maximum crossrange region of the footprint are seen in Table 4 on page 75. Again, it is seen that aerodynamic dispersions have the greatest effect. A dispersion that increases L/D increases the range, while a dispersion that decreases L/D decreases the range.

Table 5 on page 76 shows the effects of the dispersions on the minimum downrange region of the footprint. The worst-case range dispersions again occur for the aerodynamic dispersions.

4.4 ESTIMATOR PERFORMANCE

Figure 24 on page 101 shows the time response of the density filter with a 25 second time constant for the STS-9 atmosphere. This trajectory also has dispersions of $\pm 1.9\%$ in C_D , -3.2% in mass, and a 63.8% crosswind. Therefore, the filter output does not follow the actual density dispersion also shown in the figure. When the acceleration level is below 0.07 g's, the measurements are not incorporated, so the filter is inactive before 300 seconds and from 600 to 850 seconds. As the velocity drops, the wind becomes a greater contributor to the measured density error, hence the divergence in the measured density ratio starting at 1000 seconds. Figure 25 on page 102 shows the response of the L/D filter with a 25 second time constant for a -1.9% C_L and a $\pm 1.9\%$ C_D dispersion. Again, the winds affect the measurement by creating errors in the navigated angle of attack, so the estimated L/D ratio is slightly in error.

The use of an air data system like the Shuttle Entry Air Data System (SEADS) could significantly improve the estimation process by providing accurate estimates of the angle of attack, atmospheric density, and wind magnitude and direction. More accurate estimates will increase the guidance margin, thereby increasing the achievable footprint for dispersed trajectories.

4.5 CLOSED-LOOP PERFORMANCE

Based on the results of the open-loop trajectories with dispersions, worst-case dispersions were selected for each of three regions of the footprint: maximum downrange, maximum crossrange, and minimum downrange. Closed-loop trajectories with the predictor-corrector guidance algorithm were then run to the three regions of the footprint. The three target points selected for the closed-loop performance evaluation are shown in Figure 23 on page 100. The 3σ errors defined in Table 2 on page 73 were scaled such that the total error due to multiple error sources would still represent a 3σ dispersion so as to test the guidance system for reasonably probable dispersion cases [20]. To run all dispersions at their 3σ levels would be unrealistic.

The nominal and dispersed results for trajectories to each of the three regions are listed in Tables 6 on page 77 through 8 on page 77. Plots of selected parameters from these cases are included. Figures 26 on page 103 through 31 on page 108 present the altitude, velocity, heat rate, heat load, downrange, and crossrange time histories for the nominal maximum downrange trajectory. Figures 32 on page 109 through 37 on page 114 present the altitude, velocity, heat rate, heat load, downrange, and crossrange time histories for the nominal maximum crossrange trajectory. Figures 38 on page 115 through 43 on page 120 present the altitude, velocity, heat rate, heat load, downrange, and crossrange time histories for the nominal minimum downrange trajectory. In each of these cases, it is seen that the heat rate does not approach the heat rate limit, so no incremental bank angle is needed for heat rate control.

The control histories for the nominal maximum downrange trajectory and the dispersed case listed second in Table 6 on page 77 are presented in Figure 44 on page 121 and

Figure 45 on page 122. Figure 44 shows the angle of attack histories for the nominal and dispersed maximum downrange cases. It is seen that a two degree change in angle of attack is required early in the trajectory increasing to four degrees by the end of the trajectory. Figure 45 shows the bank angle histories for the nominal and dispersed maximum downrange cases. The bank angle required shows no change from zero degrees for this case.

The control histories for the nominal maximum crossrange trajectory and the dispersed case listed second in Table 7 on page 77 are presented in Figure 46 on page 123 and Figure 47 on page 124. Again, it is seen that a four degree change in angle of attack is required for the dispersed case. The bank angle history shows no change for the dispersed case from that of the nominal case.

The control histories for the nominal minimum downrange trajectory and the dispersed case listed second in Table 8 on page 77 are presented in Figure 48 on page 125 and Figure 49 on page 126. For this case, approximately a one degree change in angle of attack is required. No change is required in the bank angle profile.

The required change in angle of attack for each of the dispersed cases shown was primarily due to the change in the vehicle L/D as this was shown to be the primary dispersion source in Subsection "4.3 Effect of Dispersions on Footprint" on page 59. The breaking point of the guidance occurs when the vehicle does not have enough L/D range to overcome the loss in L/D due to aerodynamic dispersions. As mentioned previously, the Shuttle entry guidance algorithm was required to guide to the TAEM interface aim point to within 2.5 nautical miles of position. The results presented for the nominal and dispersed cases show that this requirement is met with the predictor-corrector guidance algorithm. Also, the trajectory plots show that the algorithm achieves this performance with very infrequent guidance

updates (.02 hz.) and with very small control variable changes from the nominal constant angle of attack and linear bank with velocity profiles. Most importantly, almost all of the achievable footprint is captured using the predictor-corrector algorithm.

4.6 HEAT RATE CONTROL PERFORMANCE

The closed-loop trajectories shown previously did not require heat rate control because the maximum heat rate experienced was significantly lower than the limit imposed on the ERV. The time responses for bank angle, angle of attack, and heat rate for the beginning of a typical trajectory with and without heat rate control are shown in Figures 50 on page 127 through 52 on page 129. The resulting bank angle versus velocity profile is shown in Figure 53 on page 130. These trajectories are for the middle of the footprint where the peak heat rate does not exceed the limit for the ERV. Therefore, for illustrative purposes, the heat rate limit was reduced to 100 BTU/sq ft/sec. Comparing the trajectories with and without heat rate control, it is seen that the heat rate control takes place over a fairly long time range, but requires a significant departure from the linear bank profile over only a very short velocity range. The impact on the trajectory is therefore small, and the predictor-corrector stays converged on almost the same control history even though the vehicle does not follow the assumed control profile during the heat rate control area.

4.7 OVERCONTROL

For those trajectories not at the edge of the footprint, excess vehicle capability exists that can be utilized to increase guidance margin for dispersions that may occur later in the trajectory. For example, a 13,800 nautical mile downrange trajectory for the ERV only requires flying at 20 degrees angle of attack instead of 15 degrees for the nominal trajectory. The ERV can modulate angle of attack between 15 degrees (maximum L/D) and 50 degrees (minimum L/D) on the back side of the L/D curve, so the modulation capability is not equally centered about the commanded angle of attack if flying at 20 degrees. By flying at 15 degrees (maximum L/D) early in the trajectory, guidance can center the remaining guidance capability equally about the aim point to cover dispersions in all directions, not just those that require less L/D to reach the target point. This approach is referred to here as overcontrol or command biasing.

Overcontrol can be implemented in several ways. First, the command can be biased from the desired command when that command is not in the center of the modulation range. As the vehicle flies a biased angle of attack, for example, the predicted final state will differ from that for the unbiased command in such a direction that the next guidance command will be moved in the direction opposite to the bias. By biasing in the proper direction, the command can be driven toward the center of the modulation range. If the guidance requires an L/D higher than that in the middle of the L/D range, flying at an even higher L/D will drive the required L/D toward the middle. Secondly, the target aim point can be moved from the nominal aim point early in the entry. For example, for a trajectory to the maximum downrange region of the footprint, the target aim point can be moved even farther downrange. Of course, at some point in the trajectory, the aim point must be moved back to the desired point.

The first approach was implemented in the predictor-corrector algorithm by biasing the angle of attack by five degrees when it was more than two degrees away from 30 degrees. The biasing was terminated at an inertial velocity of 13,500 feet per second so as to allow the guidance to fly the proper control history near the end of the trajectory to reach the target aim point.

Figure 54 on page 131 compares the angle of attack control history for a 13,760 nautical mile downrange trajectory with the dispersions used for the closed-loop trajectories shown earlier. Without overcontrol, the vehicle misses the target aim point by 19.20 nautical miles. This occurs because the wind contribution to the dispersion increases as the vehicle velocity drops, so the multiplicative scale factor on density does not properly model this dispersion. As the wind contribution increases, a higher L/D is required, and the angle of attack is driven to 15 degrees or maximum L/D. Because maximum L/D was not utilized earlier in the trajectory, the vehicle did not reach the target. Late in the trajectory, the predictor-corrector goes unconverged as control authority is exhausted, causing the angle of attack to jump between 15 and 30 degrees. By this point, the target aim point was unreachable anyway due to the dispersions.

With command biasing, the commanded angle of attack early in the trajectory is that corresponding to maximum L/D or 15 degrees. It is seen that biasing drives the commanded angle of attack to 25 degrees once the biasing is terminated at a velocity of 13,500 feet per second or a time of 3,700 seconds. Later, when the wind dispersion drives the angle of attack toward 15 degrees, there is significant margin remaining, and the angle of attack is only driven to 24.5 degrees by the dispersion. With command biasing, the miss distance at TAEM interface is only 0.27 nautical miles. Therefore, guidance margin is increased by using overcontrol. More of the theoretically achievable footprint is attainable for dispersed

cases. An even larger magnitude dispersion could have been handled late in the trajectory since the angle of attack was not driven to that for maximum L/D.

Further work is needed in this area to determine the proper way to utilize overcontrol to maximize guidance margin for the expected dispersions. The probability of the various dispersions occurring and the histories of those dispersions along a trajectory must be considered. For example, if a "thick" atmosphere is encountered early in the trajectory equal to the worst-case expected dispersion, it is highly unlikely that the atmosphere will get "thicker" later in the trajectory. Therefore, it is unnecessary to preserve guidance margin in the direction needed to cover a "thicker" atmosphere beyond that already required for the expected worst-case atmosphere. Such considerations should be taken into account in the design of the overcontrol algorithm.

4.8 ALGORITHM EXECUTION TIME

An estimate of the execution time required for the predictor-corrector algorithm was made using the execution time estimate feature of the HAL compiler. The estimate is for the AP101 Shuttle flight computer. Figure 55 on page 132 shows the execution time required in seconds as a function of the time to the TAEM interface point for a maximum downrange trajectory. It is seen that early in the entry when the trajectory to be predicted is long, the predictor requires 43.7 seconds of CPU time. When only 500 seconds to the TAEM interface point remains, the required time drops to 4.5 seconds. This figure can also be interpreted as the minimum update interval for the predictor-corrector. Also, the guidance command will be computed and sent to the vehicle autopilot a period of time after the start of the guidance

cycle equal to the required execution time. It is seen that early in the entry, a significant delay occurs between the start of the guidance cycle and the computation of the guidance command. This delay was not simulated in the closed-loop trajectories, but will have a minimal effect on the guidance margin because the guidance is not trying to fly a reference trajectory like the analytic guidance algorithms. The predictor-corrector is numerically computing a trajectory that will fly directly to the target aim point. Any error that builds up between the start of the guidance cycle and the issuing of the guidance command can be nulled easily since the entry is long, and the error will shrink as the delay decreases with decreasing time to the TAEM interface point.

The Shuttle AP101 CPU is the product of early 1970's technology and is significantly slower than flight computers that might be employed in future entry vehicles. The 80C86 CPU for example is two to five times faster than the AP101 CPU, so the execution time required shown in Figure 55 on page 132 can be scaled down by a factor of two to five. Computers utilizing parallel processing architecture could predict the three required trajectories simultaneously in three CPUs, cutting the required execution time by a factor of three. If scaled by a factor of four due to the faster CPU and a factor of three due to parallel processing architecture, the maximum time required drops to 3.6 seconds, and the time with 500 seconds remaining to the TAEM interface point drops to 0.4 seconds. The predictor-corrector is therefore a viable guidance scheme for future entry vehicles.

5.0 FUTURE RESEARCH TOPICS AND CONCLUSIONS

5.1 FUTURE RESEARCH TOPICS

Several topics for further algorithm development and optimization are discussed. These are:

- 1. Further reductions in CPU execution time
- 2. Use of an air data system for in-flight measurements
- 3. Use of overcontrol to increase guidance margin
- 4. Control of more than two state constraints

Optimization of the predictor algorithm and the integration scheme can yield significant reductions in execution time beyond that already attained. Simplifying the aerodynamic model can yield a great reduction in execution time and an equally important reduction in the computer core required. The current model has 30 tables, each with 51 breakpoints over the angle of attack range. A curve fit of the aerodynamic coefficients over the angle of attack range and the flow regimes would reduce the core required to store the model data and the computations required for each lookup.

The estimator algorithm was shown to be effective in determining the dispersions from in-flight measurements. However, the estimator is unable to differentiate between density dispersions and atmospheric winds. Figure 24 on page 101 showed that the multiplicative density scale factor did not accurately model the wind contribution to the drag acceleration because the relative contribution of the wind to the dispersion increases as the vehicle

PRECEDENG PAGE BLANK NOT FILMED

velocity drops late in the trajectory. An air data system could provide an independent measurement of the atmospheric winds, improving the estimation process and increasing guidance margin by increasing the accuracy of the predicted trajectories.

The concept of overcontrol was introduced and shown to be effective for at least one dispersed case. Further investigations should be made to determine how much overcontrol is optimal for the expected dispersions. It may be possible to use the sensitivities of the constraints to the control variables to determine a proper amount of command biasing for any particular dispersion at any point in the trajectory.

Only the downrange error and crossrange error at TAEM interface are controlled in the current design. The vehicle energy is not controlled which can allow significant dispersions in the ranging capability during the TAEM phase of entry. Approaches include redefining the TAEM aim point in terms of a desired energy level or utilizing a third control variable to provide control over an energy level constraint. The Space Shuttle makes use of a split rudder as a speedbrake to provide a large energy control capability. Such an approach could be utilized with the predictor-corrector by computing the sensitivity of the three constraints to the three control variables. This would require four predictions instead of the three currently needed, but the fourth prediction could be made only during the latter part of entry to clean up any dispersions in energy level that occur during the entry due to dispersions. The CPU execution time would then increase by one-third over that currently projected when the third constraint is controlled.

5.2 CONCLUSIONS

A predictor-corrector entry guidance algorithm has been demonstrated that exhibits excellent performance and almost complete coverage of the achievable footprint. This algorithm employs a simple control variable history to achieve near-optimal guidance for the maximum downrange and maximum crossrange trajectories. Explicit heat rate control is employed without significantly impacting the achievable footprint. This is achieved because unlike previous guidance algorithms that included a long heat rate control phase with no active targeting, the proposed algorithm always actively targets to the aim point and only controls heat rate in the short high heat rate regions as required.

The algorithm has been demonstrated to handle atmospheric and aerodynamic dispersions within the capability of the vehicle. The required computer execution time is shown to be within the capability of new flight computers.

Algorithm adaptability is provided through the utilization of in-flight measurements to improve the accuracy of the predicted trajectory. Algorithm maintenance is simplified because there are no reference trajectories used, and there are a minimum of vehicle/mission-specific input parameters (I-loads). Transportability of the algorithm between different entry vehicles is provided by eliminating vehicle-specific entry phases other than the heat rate control phase which only requires the input of a heat rate limit. The guidance algorithm does require a vehicle aerodynamic model, but this is developed in the normal vehicle definition phase anyway.

In summary, an entry guidance algorithm has been developed that achieves near-optimal performance while maximizing flexibility, adaptability, and transportability. Although

more computationally intensive than analytic algorithms, execution of the predictor-corrector is within the capability of current flight computers. It is hoped that this guidance approach will significantly reduce the development and maintenance costs for new entry guidance systems.

Table 1. Characteristics of the ERV and Trajectory Entry Conditions

Mass 186.0 slu	ıgs
Reference area 177.6 sq	ft
Mean Aerodynamic Chord 25.0 ft	
Altitude 400,000.0 ft	
Inertial Velocity 25,778.843 ft/s	sec
Flight Path Angle -0.996 de	g
Inclination 28.50 de	g
Latitude -28.071 de	
Longitude -69.313 de	ġ
Vacuum Apogee 150.0 n.r	n.
Vacuum Perigee 20.0 n.r	n.

Table 2. Dispersions Used in Performance Study

Dispersion	Symbol	Magnitude (%)	Direction (deg)
Aerodynamics			
Lift Coefficient	CL+	+ 10%	
ant occinionant	CL-	-10%	
Drag Coefficient	CD+	+10%	
	$CD^{}$	-10%	
Vehicle Properties			
Mass	M^+	+5%	
	M	-5%	
Atmospheric Properties			
Density	ρ^+	+30%	
o and any	ρ^-	-30%	
Tailwind	TW	99%	61.5 deg
Positive Crosswind	cw+	99%	151.5 deg
Headwind	HW	99%	241.5 deg
Negative Crosswind	CW-	99%	331.5 deg

Table 3. Dispersed Cases for Maximum Downrange Region

α_d	ϕ_d	Dispersion	Downrange	Crossrange
(deg)	(deg)		(n.m.)	(n.m.)
15	0	NOMINAL	14817	497
15	0	CL+	16445	456
15	0	· CL [—]	13229	420
15	0	CD+	13242	422
15	0	CD-	16810	427
15	0	M ⁺ -	14890	498
15	0	M^-	14739	496
15	0	$ ho^+$	14615	494
15	0	ρ^-	15089	498
15	0	TW	14882	498
15	0	cw+	14829	497
15	0	HW	14751	496
15	0	CW-	14802	497
20	Ö	NOMINAL	13849	463
20	0	CL+	15388	499
20	0	CL-	12355	344
20	0	CD+	12384	347
20	0	CD ⁻	15711	491
20	0	M^+	13909	466
20	0	M_	13785	460
20	0	$ ho^+$	13659	453
20	0	$ ho^-$	14105	475
20	0	TW .	13901	466
20	0	cw+	13857	464
20	0	HW	13796	461
20	0	CW	13838	463
25	0	NOMINAL	12116	321
25	0	CL+	13415	439
25	0	CL [—]	10822	178
25	0	CD+	10858	183
25	0	CD ⁻	13715	456
25	0	M ⁺	13161	325
25	0	м-	12068	316
25	0	ρ^+	11950	305
25	0	ρ^-	12339	342
25	0	TW	12155	324
25	0	CW+	12121	321
25	0	HW	12076	317
25	0	CW-	12108	320

Table 4. Dispersed Cases for Maximum Crossrange Region

α_d	ϕ_d	Dispersion	Downrange	Crossrange
(deg)	(deg)		(n.m.)	(n.m.)
15	60	NOMINAL	8308	1822
15	60	CL+	9035	2149
15	60	CL ⁻	7602	1506
15	60	CD+	7605	1531
15	60	CD ⁻	9200	2193
15	60	M^+	8342	1825
15	60	M ⁻	8271	1819
15	60	$ ho^+$	8197	1823
15	60	ρ^-	8465	1820
15	60	TW	8260	1737
15	60	cw+	8473	1890
15	60	HW .	8313	1866
15	60	cw-	7984	1692
20	60	NOMINAL	7791	1661
.20	60	CL ⁺	8476	1966
20	60	CL [—]	7125	1370
20	60	CD+	7132	1392
20	60	CD^-	8622	2007
20 1	60	M^+	7820	1664
20	60	M	7761	1659
20	60	$ ho^+$	7689	1662
20	60	ρ^-	7934	1660
20	60	TW	7766	1607
20	6Ò	cw+	7846	1686
20	60	HW	7775	1673
20	60	cw-	7580	1572
25	60	NOMINAL	6940	1344
25	60	CL+	7539	1602
25	60	CL ⁻	6355	1100
25	60	CD+	6363	1119
25	60	CD-	7661	1635
25	60	M^+	6963	1345
25	60	м-	6915	1342
25	60	ρ^+	6848	1344
25	60	ρ-	7070	1342
25	60	TW	6933	1317
25	60	cw+ .	6958	1355
25	60	HW	6921	1347
25	60	cw ⁻	6819	1290

Table 5. Dispersed Cases for Minimum Downrange Region

α_d	ϕ_d	Dispersion	Downrange	Crossrange
(deg)	(deg)	•	(n.m.)	(n.m.)
30	90	NOMINAL	2982	938
30	90	CL ⁺	3014	1102
30	90	CL [—]	2934	778
30	90	CD+	2914	793
30	90	CD-	3045	1119
30	90	M^+	2996	937
30	90	M ⁻	2969	938
30	90	$ ho^+$	2914	943
30	90	$ ho^-$	3078	930
30	90	TW	2993	914
30	90	cw+	2992	941
30	90	HW	2996	939
30	90	CW	2982	907
30	80	NOMINAL	3851	1041
30	80	CL+	4011	1233
30	80	CL	3680	858
30	80	CD+	3668	875
30	80	CD ⁻	4060	1254
30	80	M^+	3865	1041
30	80	м <u>-</u>	3865	1041
30	80	$ ho^+$	3778	1046
30	_. 80	ρ^-	3954	1034
30	80	TW	3856	1020
30	80	cw+	3841	1044
30	80	HW	3834	1042
30	80	CW-	3828	1007
30	70	NOMINAL	4932	1075
30	70	CL+	5262	1279
30	70	CL-	4602	881
30	70	CD+	4600	898
30	70	CD [—]	5337	1304
30	70	M^+	4949	1075
30	70	M-	4915	1075
30	70	$ ho^+$	4854	1078
30	70	ρ^-	5043	1069
30	70	TW	4934	1057
30	70	cw+	4925	1077
30	70	HW	4914	1074
30	70	CW-	4884	1040

Table 6. Maximum Downrange Region Closed-Loop Results

Dispersions						Final State	
CĹ (%)	CD (%)	Mass (%)	ρ (%)	Wind (%)	ϕ_g (deg)	λ (deg)	Error (n.m.)
	T.	ARGET	POINT		+ 9.800	+144.700	
- 1.9 - 1.9 - 1.9 - 1.9	+ 1.9 + 1.9 + 1.9 + 1.9	NOMII - 3.2 - 3.2 - 3.2 - 3.2	+19.1 STS 1 STS 9 STS11	63.8 HW 63.8 HW 63.8 HW	+ 9.799 + 9.799 + 9.803 + 9.802 + 9.801	+ 144.702 + 144.701 + 144.694 + 144.696 + 144.698	0.13 0.08 0.30 0.27 0.13

Table 7. Maximum Crossrange Region Closed-Loop Results

Dispersions						Final State	
CL (%)	CD (%)	Mass (%)	ρ (%)	Wind (%)	ϕ_g (deg)	λ (deg)	Error (n.m.)
	TARGET POINT					+ 55.000	-
- 1.9 - 1.9 - 1.9 - 1.9	+ 1.9 + 1.9 + 1.9 + 1.9	NOMII - 3.2 - 3.2 - 3.2 - 3.2	NAL +19.1 STS 1 STS 9 STS11	63.8 CW ⁻ 63.8 CW ⁻ 63.8 CW ⁻	- 2.301 - 2.295 - 2.304 - 2.301 - 2.299	+ 55.000 + 54.998 + 55.001 + 54.990 + 55.000	0.06 0.32 0.25 0.60 0.06

Table 8. Minimum Downrange Region Closed-Loop Results

Dispersions						Final State	
CL (%)	CD (%)	Mass (%)	ρ (%)	Wind (%)	ϕ_g (deg)	λ (deg)	Error (n.m.)
	T	ARGET	POINT		-14.900	+ 9.800	-
+ 1.9 + 1.9 + 1.9 + 1.9	- 1.9 - 1.9 - 1.9 - 1.9	NOMIN + 3.2 + 3.2 + 3.2 + 3.2	VAL -19.1 STS 1 STS 9 STS11	63.8 TW 63.8 TW 63.8 TW 63.8 TW	-14.897 -14.902 -14.901 -14.900 -14.899	+ 9.798 + 9.801 + 9.800 + 9.800 + 9.799	0.22 0.13 0.06 0.00 0.08

Figure 1. Three-View Drawing of the ERV

SCALAR WIND SPEED V (m/sec) STEADY-STATE ENVELOPES AS FUNCTIONS OF ALTITUDE H (km) FOR TWO PROBABILITIES P (%) ENCOMPASSING ALL FOUR LOCATIONS

	P≃	95			P =	99	
н	v	н	v	Ħ	v	н	v
1	22	17	44	- 1	28	15	70
3	31	20	29	3	38	20	41
		23	29	5	56	23	41
6	54	50	150	6	60	50	170
		60	150	7	68	60	170
10	75	75	120	9	88	75	135
11	76	80	120	11	88	80	135
12	78			12	92		
13	74			13	88		
				14	88		

Figure 2. Atmospheric Wind Profile

Figure 3. Envelope of Density Profiles Derived from Shuttle Flights

Figure 4. STS-1 Density Profile Comparison

Figure 5. STS-9 Density Profile Comparison

Figure 6. Multiphase Bank Angle Program for L/D = 1.5

Figure 7. Crossrange Versus Number of Bank Steps

Figure 8. Comparison of Optimum Bank Angle Programs

Figure 9. Optimum Shuttle Angle of Attack Profile for Maximum Downrange

Figure 10. Optimum Shuttle Bank Angle Profile for Maximum Crossrange

Figure 11. Optimum Shuttle Angle of Attack Profile for Maximum Crossrange

Figure 12. Landing Footprint for the ERV

Figure 13. Altitude Histories for the Entry Missions of the ERV

Figure 14. Bank Angle Histories for the Entry Missions of the ERV

Figure 15. Angle of Attack Histories for the Entry Missions of the ERV

Figure 16. Heat Rate Histories for the Entry Missions of the ERV

Figure 17. Heat Load Histories for the Entry Missions of the ERV

Figure 18. Bank Angle Versus Velocity Profile

Figure 19. Definitions of Downrange and Crossrange Errors

Figure 20. Predicted Lift Coefficient Profile for the ERV

Figure 21. Predicted L/D Profile for the ERV

Figure 22. Predicted L/D versus Angle of Attack Profile for the ERV

Figure 23. ERV Open-Loop Footprint with the Control Profile

Figure 24. Time Response of the Density Filter

Figure 25. Time Response of the L/D Filter

Figure 26. Closed-Loop Altitude History for the Maximum Downrange Case

C - 2

Figure 27. Closed-Loop Velocity History for the Maximum Downrange Case

Figure 28. Closed-Loop Heat Rate History for the Maximum Downrange Case

Figure 29. Closed-Loop Heat Load History for the Maximum Downrange Case

Figure 30. Closed-Loop Downrange History for the Maximum Downrange Case

Figure 31. Closed-Loop Crossrange History for the Maximum Downrange Case

Figure 32. Closed-Loop Altitude History for the Maximum Crossrange Case

Figure 33. Closed-Loop Velocity History for the Maximum Crossrange Case

Figure 34. Closed-Loop Heat Rate History for the Maximum Crossrange Case

Figure 35. Closed-Loop Heat Load History for the Maximum Crossrange Case

Figure 36. Closed-Loop Downrange History for the Maximum Crossrange Case

Figure 37. Closed-Loop Crossrange History for the Maximum Crossrange Case

Figure 38. Closed-Loop Altitude History for the Minimum Downrange Case

Figure 39. Closed-Loop Velocity History for the Minimum Downrange Case

Figure 40. Closed-Loop Heat Rate History for the Minimum Downrange Case

Figure 41. Closed-Loop Heat Load History for the Minimum Downrange Case

Figure 42. Closed-Loop Downrange History for the Minimum Downrange Case

Figure 43. Closed-Loop Crossrange History for the Minimum Downrange Case

Figure 44. Angle of Attack Comparison for the Maximum Downrange Case

Figure 45. Bank Angle Comparison for the Maximum Downrange Case

Figure 46. Angle of Attack Comparison for the Maximum Crossrange Case

Figure 47. Bank Angle Comparison for the Maximum Crossrange Case

Figure 48. Angle of Attack Comparison for the Minimum Downrange Case

Figure 49. Bank Angle Comparison for the Minimum Downrange Case

Figure 50. Bank Angle Versus Time Comparison for Heat Rate Control

Figure 51. Angle of Attack Versus Time Comparison for Heat Rate Control

Figure 52. Heat Rate Versus Time Comparison for Heat Rate Control

Figure 53. Bank Angle Versus Velocity Comparison for Heat Rate Control

Figure 54. Angle of Attack Versus Time Comparison with Overcontrol

Figure 55. Required Execution Time for the Predictor-Corrector

APPENDIX A. ERV AERODYNAMICS MODEL

The aerodynamics of the ERV were reported in Reference [14], and the longitudinal performance coefficients, C_L and L/D, are shown in Figures 20 on page 97 and 21 on page 98. Figure 22 on page 99 shows a typical L/D versus angle of attack profile. This profile is for a Mach Number of 10, but across the flow regimes, the maximum L/D always occurs at an angle of attack of approximately 15 degrees. This data was incorporated into the aerodynamic model of the simulator and into the aerodynamic model of the predictor. It is seen that the aerodynamic flow regimes are a function of:

- 1. Mach Number, ™
- 2. Viscous Interaction Parameter, \overline{V}
- 3. Altitude, h

The Mach Number, M, is computed from,

$$M = \frac{V_R}{C_s} \tag{99}$$

where the speed of sound, C_s , is computed from,

$$C_{s} = \sqrt{\gamma \frac{\mathscr{R}}{M_{0}} T_{M}} \tag{100}$$

The viscous interaction parameter, \overline{V} , is computed from,

$$\overline{V} = M \sqrt{\frac{C'}{Re}}$$
 (101)

where,

$$C' = \left(\frac{T'}{T_{static}}\right)^{0.5} \left[\frac{T_{static} + 122.1 \times 10^{-(5/T_{static})}}{T' + 122.1 \times 10^{-(5/T')}} \right]^{1.0}$$
 (102)

and,

$$\frac{T'}{T_{static}} = 0.468 + 0.532 \frac{T_{wall}}{T_{static}} + 0.195 \frac{\gamma - 1}{2} M^2$$
 (103)

The Reynolds Number, Re, is calculated from,

$$Re = \frac{\rho \ V_R \ \bar{c}}{\mu} \tag{104}$$

where the coefficient of viscosity for air, μ , is given by,

$$\mu = \frac{\beta T_{static}^{3/2}}{S + T_{static}}$$
 (105)

APPENDIX B. ALGORITHM PROGRAM LISTINGS

Compiled listings of the flight software principal functions for the predictor-corrector guidance algorithm as coded for use in the 6-DOF Aeroassist Flight Experiment Simulator (AFESIM) follow. The algorithms are coded in the HAL/S computer language. The principal functions are:

- 1. IL_LOAD Values for all constants and I-loads
- 2. FSW_SEQ Flight Software Sequencer
- 3. ORB_NAV Orbit Navigation Algorithm
- 4. AERO_GUID Predictor-Corrector Guidance Algorithm

At the beginning of each principal function is a description of the function and the input/output parameters. At the end of each principal function is a cross reference table listing the program line at which each variable is referenced or computed.

PRECEDENG PAGE BLANK NOT FILMED

HAL/S	STD 360-24.20 INTERMETRICS, INC.	APRIL 27, 1987	15:0:48.60
STMT	SOURCE		CURRENT SCOPE
211 H	IL_LOAD:		IL_LOAD
211 H	PROCEDURE;		IL_LOAD
. ci	FUNCTION: VALUES OF I-LOADS AND CONSTANTS INPUTS: NONE OUTPUTS: ALL I-LOADS AND CONSTANTS LISTED COMMENTS: NONE		IL_LOAD IL_LOAD IL_LOAD IL_LOAD IL_LOAD IL_LOAD
C C C	MATH CONSTANTS AND CONVERSION FACTORS		IL_LOAD IL_LOAD IL_LOAD
212 MI	DECLARE PI SCALAR DOUBLE CONSTANT(3.1415926535897932385);		IL_LOAD
213 M	DECLARE DLG_TO_SEC SCALAR DOUBLE CONSTANT(3600);		I IL_LOAD
214 M	DECLARE SEC_TO_DEG SCALAR DOUBLE CONSTANT(1 / DEG_TO_SEC);		IL_LOAD
215 Mi	DECLARE DEG_TO_RAD SCALAR DOUBLE CONSTANT(PI / 180);		IL_LOAD
216 M	DECLARE RAD_TO_DEG SCALAR DOUBLE CONSTANT(1 / DEG_TO_RAD);		IL_LOAD
217 Mİ	DECLARE SEC_TO_RAD SCALAR DOUBLE CONSTANT(DEG_TO_RAD / 3600);		IL_LOAD
218 M	DECLARE RAD_TO_SEC SCALAR DOUBLE CONSTANT(1 / SEC_TO_RAD);		IL_LOAD
219 M	DECLARE FI_TO_M SCALAR DOUBLE CONSTANT(0.3048);		IL_LOAD
220 M	DECLARE M_TO_FT SCALAR DOUBLE CONSTANT(1 / FT_TO_M);	*	IL_LOAD
221 M	DECLARE FT_TO_NM SCALAR DOUBLE CONSTANT(FT_TO_M / 1852);		IL_LOAD
222 Mi	DECLARE NM_TO_FT SCALAR DOUBLE CONSTANT(1 / FT_TO_NM);		IL_LOAD
223 M	DECLARE G_TO_FPS2 SCALAR DOUBLE CONSTANT(9.80665 M_TO_FT);		IL_LOAD
224 M	DECLARE FPS2_TO_G SCALAR DOUBLE CONSTANT(1 / G_TO_FPS2);		IL_LOAD
225 M	DECLARE LBM_TO_KG SCALAR DOUBLE CONSTANT(.45359237);		IL_LOAD
226 M	DECLARE KG_TO_LBM SCALAR DOUBLE CONSTANT(1 / LBM_TO_KG);		i IL_LOAD
227 M	DECLARE SLUG_TO_KG SCALAR DOUBLE CONSTANT(LBM_TO_KG G_TO_FPS2);		IL_LOAD
228 M	DECLARE KG_TO_SLUG SCALAR DOUBLE CONSTANT(KG_TO_LBM FPS2_TO_G);		IL_LOAD
229 M	DECLARE LBF_TO_N SCALAR DOUBLE CONSTANT(4.4482216152605);		IL_LOAD
230 M	DECLARE N_TO_LBF SCALAR DOUBLE CONSTANT(1 / LBF_TO_N);		1 IL_LOAD

	,				
HAL/S	STD 360-24.20 INTERMETRICS, INC. APRIL 2		:48.60		٠
STMT	SOURCE		CURRENT SCOPE		
C) C) C)	FSW SEQ VARIABLES	1	IL_LOAD IL_LOAD IL_LOAD		
231 M	AERO_DAP_CNT = 1;	. 1	IL_LOAD		
232 M	AERO_DAP_PHS = 0;	1	IL_LOAD		
233 MI	AERO_GUID_CNT = 5;	1	IL_LOAD		
234 MI	AERO_GUID_PHS = 0;	1	IL_LOAD		
235 MI	ORB_NAV_CNT = 5;	1	IL_LOAD		
23 <u>6</u> Mi	ORB_NAY_PHS = 0;	1	IL_LOAD		
ci ci	EPOCH DATA	1	IL_LOAD IL_LOAD IL_LOAO		
E 237 M S	* EF_TO_REF_AT_EPOCH = MATRIX (+1.0, +0.0, +0.0, +0.0, +1.0, +0.0, +0.0, +0.0) adouble,3,3).0, +1.0),	IL_LOAD		•
238 HI	T_EPOCH = 0;	t	IL_LOAD	•	
CI CI	EARTH PHYSICAL PARAMETERS	i	IL_LOAD IL_LOAD IL_LOAD		
239 HI	EARTH_FLAT = 1 / 298.3;		IL_LOAD	•	•
240 MI	EARTH_J2 = 1082.7E-6;	1	IL_LOAD		
E 241 M	3 EARTH_MU = (3.986012E14) / (.3048) ;	ŀ	IL_LOAD	×	
E 242 M S	- EARTH_POLE = VECTOR (2.8991969340471790E-3, -5.1580036678323420E-5, @DOUBLE,3	1	IL_LOAD		
242 M	9.999579598948170E-1);	1	IL_LOAD		•
243 M	EARTH_R = (6378166.0) / .3048;	i	IL_LOAD		
244 MI	EARTH_RATE = 7.292114883223324E-5;	I	IL_LOAD	•	
E 245 Mi	- ME_NAV = EARTH_RATE EARTH_POLE;	!	IL_LOAD		

HAL/S	STD 360-24.20 INTERMETRIC	S, INC.	APRIL 27, 1987	15:0:48.60
STMT	so	URCE		CURRENT SCOPE
C C C	PREDICTOR-CORRECTOR I-LOADS (MISSION-SPECIFIC)			IL_LOAD IL_LOAD IL_LOAD
c c c c	TARGET AIM POINT FOR MAXIMUM DOWNRANGE CASE OCHGIRANGE = 13849 N.M. CROSSRANGE = 497 N.M.			IL_LOAD IL_LOAD IL_LOAD IL_LOAD IL_LOAD
cl cl cl	INITIAL CONDITIONS: LATITUDE -28.071 DEG LONGITUDE -69.313 DEG INCLINATION 28.50 DEG FLIGHT PATH ANGLE INERTIAL VELOCITY 25778.843 FT/SEC ALTITUDE 400000.0 FT			IL_LOAD IL_LOAD IL_LOAD IL_LOAD IL_LOAD IL_LOAD IL_LOAD IL_LOAD IL_LOAD IL_LOAD
CI CI	GEODETIC LATITUDE OF TAEM INTERFACE AIM POINT			IL_LOAD IL_LOAD IL_LOAD
246 M]	LAT_TARGET = 3.084;			IL_LOAD
C C C 247 M	LONGITUDE OF TAEM INTERFACE AIM POINT LONG_TARGET = 157.659;			IL_LOAD IL_LOAD IL_LOAD
ci ci	INITIAL CONTROL VALUES FOR MAXIMUM DOWNRANGE CA	ISE		IL_LOAD IL_LOAD IL_LOAD
248 MI 249 MI	PHI_EI = 0.0; ALPHA_EI = 20.0;			IL_LOAD IL_LOAD
CI CI CI	ESTIMATOR FILTER GAINS (TAU = 25.0 SECONDS)			IL_LOAD IIL_LOAD IIL_LOAD
250 M	K_RHO_FILTER_GAIN = .03921;			I IL_LOAD
251 M	L_OVER_D_FILTER_GAIN = .03921;			IL_LOAD
c c c	VEHICLE MASS (SLUGS)			IL_LOAD IL_LOAD IL_LOAD
252 MI	MASS_NAV = 186.0;			IL_LOAD

C
7
_
↽

	IF FOWD		enip-passarium = 50;	261 M
	11_10AD 11_10AD 11_10AD			10
	ן גר־רסעם		TG = T.03	160 MI
	II			3 3 3
	I IL_LOAD		S_REF = 177.44	1H 652
	IF FOVD IF FOVD IF FOVD		REFERENCE AREA OF ERV	
	I IF TOWD		ti = Jagom_YTIVARa	258 M
	IF_FOVD IF_FOVD IF_FOVD		GRAVITY MODEL WITH J2 TERM	3 3 3
	1 I T - FOAD		G_RUN_GUIDANCE = 0.075	M TZS
	IF_LOAD It_LOAD It_LOAD		G-LEYEL AT WHICH TO ACTIVATE GUIDANCE	0 0 0
	11 TCOVD		ALT_TAEM_BIAS = ALT_TAEM + 10000.01	18 952
	I IF FOVD		10.00008 = M3AT_TA	SEE W
	ן ור־רסעם		ALT_FREEZE_GUID = 100000.03	SE¢ W
	IF_FOWD		, 0.00000p = TIX3_TIA	IN EES
	IF_LOAD IF_LOAD IF_LOAD IL_LOAD		ALTITUDES AT WHICH GUIDANCE QUITS, FREEZES COMMAND, TARGETS, AND USES MINIMUM TINE STEP FOR INTEGRATION	0 0 0
	IL_LOAD IL_LOAD IL_LOAD		PREDICTOR-CORRECTOR I-LOADS (DESIGN PARAMETERS NOT NORMALLY CHANGED)	10
oos	совием		SOURCE	THTS
	15:0:48.60	T861 .TS JI99A	STD 360-24.20 INTERMETRICS, INC.	S/7¥H

HAL/S	STD 360-24.20 I N T E R	METRICS,	INC.	APRIL 27, 1987	15:0:48.60
STMT		SOURCE			CURRENT SCOPE
C C C	LINEAR BANK WITH VELOCITY PROFILE CO	NSTANTS			IL_LOAD IL_LOAD IL_LOAD
262 HI	PHI_DES_MAX = 180.0;				IL_LOAD
263 M	PHI_MAX = 90.0;	•			IL_LOAD
264 MI	V_FINAL_MAG = 1000.0;				I IL_LOAD
265 M	V_INITIAL_MAG = 26000.03		•		IL_LOAD
266 MI	V_MAG_CHANGE = V_INITIAL_MAG - V_F	INAL_MAG;			IL_LOAD
CI CI CI	CONSTANT ANGLE OF ATTACK PROFILE CON	STANTS	ı		IL_LOAD IL_LOAD IL_LOAD
267 MI	ALPHA_MAX = 45.03				IL_LOAD
268 M	ALPHA_MIN = 15.0;				IL_LOAD
C C C	VARIABLE TIME STEP CONTROL CONSTANTS	•			IL_LOAD IL_LOAD IL_LOAD
269 MI	DELTA_T_PRED_GAIN = 200.03				IL_LOAD
270 MI	DELTA_T_PRED_MAX = 20.0;				I IL_LOAD
271 Hi	DELTA_T_PRED_MIN = 2.0;				IL_LOAD
cl cl	HEAT RATE CONTROL CONSTANTS				IL_LOAD IL_LOAD IL_LOAD
272 M	HS = 23500.03				IL_LOAD
273 M	OMEGA_QDOT = 0.10;				IL_LOAD
274 MI	QDOT_LIMIT = 125.0;				I IL_LOAD
275 M	RHO_SL = 0.002378;				I IL_LOAD
276 MI	ZETA_QDOT = 1.00;				! IL_LOAD
277 Mi	CLOSE IL_LOAD;		•		IL_LOAD
*** B L	OCK SUMMARY***				

ORIGINAL PAGE IS
OF POOR QUALITY

COMPOOL VARIABLES USED

HAL/S STD 360-24.20

INTERMETRICS, INC.

APRIL 27, 1987 15:0:48.60

STMT

SOURCE

CURRENT SCOPE

AERO_DAP_CNT*, AERO_DAP_PHS*, AERO_GUID_CNT*, AERO_GUID_PHS*, ORB_NAV_CNT*, ORB_NAV_PHS*, EF_TO_REF_AT_EPOCH*, T_EPOCH*
EARTH_FLAT*, EARTH_J2*, EARTH_MU*, EARTH_POLE*, EARTH_R*, EARTH_RATE*, NE_NAV*, EARTH_RATE*, EARTH_POLE*, LAT_TARGET*
LONG_TARGET*, PHI_EI*, ALPHA_EI*, K_RHO_FILTER_GAIN*, L_OVER_D_FILTER_GAIN*, MASS_NAV*, ALT_EXIT*, ALT_FREEZE_GUID*, ALT_TAEM*
ALT_TAEM_BIAS*, ALT_TAEM, G_RUN_GUIDANCE*, GRAVITY_MODEL*, S_REF*, DT_AEROGUID*, GUID_PASS_LIN*, PHI_DES_MAX*, PHI_MAX*
V_FINAL_MAG*, V_INITIAL_MAG*, V_MAG_CHANGE*, V_INITIAL_MAG, V_FINAL_MAG, ALPHA_MAX*, ALPHA_MIN*, DELTA_T_PRED_GAIN*
DELTA_T_PRED_MAX*, DELTA_T_PRED_MIN*, HS*, OMEGA_QDOT*, QDOT_LIMIT*, RHO_GL*, ZETA_QDOT*

142

ORIGINAL PAGE IS

HAL/S STD 360-24.20

INTERHETRICS, INC.

APRIL 27, 1987 15:0:48.60

**** COMPILATION LAYOUT ****

IL_POOL: EXTERNAL COMPOOLS

IL_LOAD: PROCEDURE;

14

. . **.** .

- --

OF POOR QUALITY

HAL/S STD 360-24.20

INTERMETRICS, INC

APRIL 27, 1987 15:0:48.60

SYMBOL & CROSS REFERENCE TABLE LISTING:

(CROSS REFERENCE FLAG KEY: 4 = ASSIGNMENT, 2 = REFERENCE, 1 = SUBSCRIPT USE, 0 = DEFINITION)

	CROSS REFERENCE FI	AG KEY: 4 = ASSIGNMENT, 2 = REFERE	NCE, 1 = SUBSCRIPT USE, 0 = DEFINITION)	
DCL	NAME	ТҮРЕ	ATTRIBUTES & CROSS REFERENCE	
21	AERO_DAP_CNT	INTEGER	SINGLE, ALIGNED, INITIAL XREF: 0 0021	4 0231 NOT REFERENCED
20	AERO DAP PHS	INTEGER	SINGLE, ALIGNED, INITIAL XREF: 0 0020	
	AERO_GUID_CNT	INTEGER	SINGLE, ALIGNED, INITIAL XREF: 0 0023	
	AERO GUID PHS	INTEGER	SINGLE, ALIGNED, INITIAL XREF: 0 0022	
	ALPHA_EI	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0097	
	ALPHA MAX	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0209	
	ALPHA MIN	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0209	
	ALT_EXIT	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0079	
209		SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0209	
209		SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0209	
209		SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0209	
215	DEG_TO_RAD	SCALAR	DOUBLE, ALIGNED, STATIC, CONSTANT	XREF: 0 0215 2 0216
			2 0217	ARE1: 0 0215 2 0210
213	DEG TO SEC	SCALAR	DOUBLE, ALIGNED, STATIC, CONSTANT	XREF: 0 0213 2 0214
	DELTA_T_PRED_GAIN	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0209	
	DELTA_T_PRED_MAX	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0209	
	DELTA_T_PRED_MIN	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0209	
	DT_AEROGUID ~	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0209	
	EARTH FLAT	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0159	
	EARTH_J2	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0160	
	EARTH_MU	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0161	
	EARTH POLE	3 - VECTOR	DOUBLE, ALIGNED, INITIAL XREF: 0 0162	
163	EARTH_R	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0163	
164	EARTH_RATE	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0164	
4		3 X 3 MATRIX	DOUBLE, ALIGNED, INITIAL XREF: 0 0004	
224	FPS2_TO_G	SCALAR	DOUBLE, ALIGNED, STATIC, CONSTANT	XREF: 0 0224 2 0228
219	FT_TO_M	SCALAR	DOUBLE, ALIGNED, STATIC, CONSTANT	XREF: 0 0219 2 0220
			2 0221	
221	FT_TO_NM	SCALAR	DOUBLE, ALIGNED, STATIC, CONSTANT	XREF: 0 0221 2 0222
209	G_RUN_GUIDANCE	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0209	4 0257 NOT REFERENCED
223	G_TO_FPS2	SCALAR	DOUBLE, ALIGNED, STATIC, CONSTANT	XREF: 0 0223 2 0224
			2 0227	
165	GRAVITY_MODEL	INTEGER	SINGLE, ALIGNED, INITIAL XREF: 0 0165	4 0258 NOT REFERENCED
	GUID_PASS_LIM	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0209	4 0261 NOT REFERENCED
209	HS	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0209	4 0272 NOT REFERENCED
211	IL_LOAD	PROCEDURE	XREF: 0 0211 NOT REFERENCED	
168		SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0168	4 0250 NOT REFERENCED
	KG_TO_LBM	SCALAR	DOUBLE, ALIGNED, STATIC, CONSTANT	XREF: 0 0226 2 0228
228	KG_TO_SLUG	SCALAR	DOUBLE, ALIGNED, STATIC, CONSTANT	XREF: 0 0228
			NOT REFERENCED	
	L_OVER_D_FILTER_GAIN	SCALAR .	SINGLE, ALIGNED, INITIAL XREF: 0 0171	
	LAT_TARGET	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0209	4 0246 NOT REFERENCED
229		SCALAR	DOUBLE, ALIGNED, STATIC, CONSTANT	XREF: 0 0229 2 0230
225	LBM_TO_KG	SCALAR	DOUBLE, ALIGNED, STATIC, CONSTANT	XREF: 0 0225 2 0226
	1010 710077		2 0227	
	LONG_TARGET	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0209	
	M_TO_FT	SCALAR	DOUBLE, ALIGNED, STATIC, CONSTANT	XREF: 0 0220 2 0223
	MASS_NAV	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0010	
250	N_TO_LBF	SCALAR	DOUBLE, ALIGNED, STATIC, CONSTANT	XREF: 0 0230
			NOT REFERENCED	

S POOR

HAL/S	STD 360-24	.20 INTERMETRICS, INC.	APRIL 27, 1987	15:1:9.08
THT		SOURCE		CURRENT SCOPE
518 MI	FSW_SEQ:			FSH_SEQ
518 M	PROCEDURE;			FSH_SEQ
13 10 10 10 10 10	INPUTS:	EXECUTE FLIGHT SOFTMARE PRINCIPAL FUNCTIONS AT PROPER RATE AND IN PROPER ORDER WHEN FUNCTIONS ACTIVE ORB MAV_ACT - ORBIT NAVIGATION ACTIVE FLAG AERO_GUID_ACT - PREDICTOR-CORRECTOR ACTIVE FLAG AERO_DAP_ACT - DIGITAL AUTOPILOT ACTIVE FLAG NONE NOTE		FSM_SEQ FSM_SEQ FSM_SEQ FSM_SEQ FSM_SEQ FSM_SEQ FSM_SEQ FSM_SEQ FSM_SEQ
c i c i	LOCAL VAR			FSW_SEQ FSW_SEQ FSW_SEQ
519 M	DECLARE	FSM_PASS INTEGER DOUBLE INITIAL(0);		FSM_SEQ

HAL/S	STD 360-24.20 INTERMETRICS, INC. APRI	L 27, 1987 15:1:9.08
STMT	SOURCE	CURRENT SCOPE
E 520 M	IF ORB_NAV_ACT = ON AND MOD(FSM_PASS, ORB_NAV_CNT) = ORB_NAV_PMS THEN	FSM_SEQ
521 Mj	CALL ORB_NAY;	FSM_SEQ
E 522 M	. IF AERO_GUID_ACT = ON AND MOD(FSM_PASS, AERO_GUID_CNT) = AERO_GUID_PHS THEN	 FSM_SEQ
523 M	CALL AERO_GUID;	FSM_SEQ
	į.	
524 M	. IF AERO_DAP_ACT = ON AND MOD(FSM_PASS, AERO_DAP_CNT) = AERO_DAP_PHS THEN	 FSM_SEQ
525 M	CALL AERO_DAP;	FSM_SEQ
526 M	FSM_PASS = FSM_PASS + 1;	FSH_SEQ
527 Mi	CLOSE FSM_SEQ;	FSH_SEQ

*** BLOCK SUMMARY ***

EXTERNAL PROCEDURES CALLED ORB_NAV, AERO_GUID, AERO_DAP

COMPOOL VARIABLES USED ORB_NAV_ACT, ORB_NAV_CNT, ORB_NAV_PHS, AERO_GUID_ACT, AERO_GUID_CNT, AERO_GUID_PHS, AERO_DAP_ACT, AERO_DAP_CNT, AERO_DAP_PHS

HAL/S STD 360-24.20

INTERHETRICS, INC.,

APRIL 27, 1987 15:1:9.08

**** COMPILATION LAYOUT ****

IL_POOL: EXTERNAL COMPOOL;

FSM_POOL: EXTERNAL COMPOOL;

ORB_NAV: EXTERNAL PROCEDURE;

AERO_GUID: EXTERNAL PROCEDURE;

AERO_DAP: EXTERNAL PROCEDURE;

FSW_SEQ: PROCEDURE;

48

149

HAL/S STD 360-24.20

INTERMETRICS, INC.

APRIL 27, 1987 15:1:9.08

ORIGINAL PAGE IS

SYMBOL & CROSS REFERENCE TABLE LISTING:

(CROSS REFERENCE FLAG KEY: 4 = ASSIGNMENT, 2 = REFERENCE, 1 = SUBSCRIPT USE, 0 = DEFINITION)

DCL N	NAME	ТҮРЕ	ATTRIBUTES & CROSS REFERENCE
255 A 21 A 20 A 516 A 256 A 22 A 519 F 518 F 515 0 262 0 35 0	AERO_DAP AERO_DAP_ACT AERO_DAP_CHT AERO_DAP_PHS AERO_GUID_ACT AERO_GUID_ACT AERO_GUID_PHS FSM_PASS FSM_SEQ ORB_NAY DRB_NAY DRB_NAY_ACT DRB_NAY_CTT	PROCEDURE BIT(1) INTEGER INTEGER PROCEDURE BIT(1) INTEGER INTEGER INTEGER INTEGER PROCEDURE PROCEDURE BIT(1) INTEGER INTEGER	EXTERNAL, VERSION=1 XREF: 0 0517 2 0525 ALIGNED, INITIAL XREF: 0 0255 2 0524 SINGLE, ALIGHED, INITIAL XREF: 0 0001 2 0524 SINGLE, ALIGHED, INITIAL XREF: 0 0002 0 0524 EXTERNAL, VERSION=1 XREF: 0 0516 2 0522 SINGLE, ALIGNED, INITIAL XREF: 0 0023 2 0522 SINGLE, ALIGNED, INITIAL XREF: 0 0022 2 0522 SINGLE, ALIGNED, STATIC, INITIAL XREF: 0 00516 2 0519 EXERPIAL VERSION=1 XREF: 0 0515 2 0520 EXTERNAL, VERSION=1 XREF: 0 0515 2 0521 ALIGNED, INITIAL XREF: 0 0262 2 0520 SINGLE, ALIGNED, STATIC, INITIAL XREF: 0 0515 2 0521 ALIGNED, INITIAL XREF: 0 0262 2 0520 SINGLE, ALIGNED, INITIAL XREF: 0 0355 2 0520
34 0	DRB_NAV_PHS	INTEGER	SINGLE, ALIGNED, INITIAL XREF: 0 0034 2 0520

	STD 360-2	4.20 INTERMETRICS, INC. APRIL 27, 1	987 11:19:28.56
•		SOURCE	CURRENT SCOP
M)	ORB_NAV:		I ORB_NAV
М	PROCEDURE 3		I ORB_NAV
C I	FUNCTION:	MAINTAIN ESTIMATE OF VEHICLE STATE VECTOR AND COMPUTE	ORB_NAV
CI		STATE VECTOR DERIVED PARAMETERS	ORB_NAV
CI	INPUTS:	T_ATTITUDE - TIME TAG OF STATE VECTOR	ORB NAV
CI		RI - POSITION VECTOR	ORB_NAV
ci		VI - VELOCITY VECTOR	ORB_NAV
ci		AI - ACCELERATION VECTOR	ORB_NAV
Cİ		QIB - ATTITUDE QUATERNION	ORB_NAV
CI	OUTDUTE.	PHI - BANK ANGLE	ORB_NAV
ci	OUTPUTS:		ORB_NAY
či		R_NAV - POSITION VECTOR V_NAV - VELOCITY VECTOR	ORB_NAV
či		A_NAY - ACCELERATION VECTOR	ORB_NAV
ci		Q_B_TO_I - ATTITUDE QUATERNION	ORB_NAV
ci		R_NAV_MAG - MAGNITUDE OF POSITION VECTOR	ORB_NAV ORB_NAV
C		UNIT R - UNIT VECTOR IN DIRECTION OF POSITION VECTOR	ORB_NAV
CI		ALT_NAV - ALTITUDE ABOVE FISHER ELLIPSOID V_NAV_NAG - MAGNITUDE OF VELOCITY VECTOR	ORB NAV
C			ORB NAV
C1		V_REL_MAY - RELATIVE VELOCITY VECTOR V_REL_MAG - MAGNITUDE OF RELATIVE VELOCITY VECTOR	ORB_NAV
C		V_REL_MAG - MAGNITUDE OF RELATIVE VELOCITY VECTOR	ORB_NAV
Cİ		RDOT_NAV - RADIAL VELOCITY MAGNITUDE	ORB_NAV
ci		RDDT_NAV - RADIAL VELOCITY MAGNITUDE G_LOAD - SENSED ACCELERATION MAGNITUDE IN G'S ALPHA_NAV - ANGLE OF ATTACK	ORB NAV
ci			ORB_NAV
ci		BETA_NAV - SIDESLIP ANGLE	ORB_NAV
cl		PHT_NAV - BANK ANGLE	ORB_NAV
c l	COMENTO.	ENTRY_COMPLETE - TAEM INTERFACE FLAG	ORB_NAV
ci	COMMENTS:	PERFECT NAVIGATION IS ASSUMED, SO THE STATE VECTOR FROM	ORB_NAV
či		FROM THE ENVIRONMENT MODEL IS COPIED.	ORB_NAV
C,			J DRB_NAV
			•
Сİ			ORB NAV
Сİ	LOCAL VAR	ABLES	ORB NAV
CI			ORB_NAV

	,	•			
VAN_890				ting = VAN_ING	W 025
VAN_890 VAN_890 VAN_890				READ BANK ANGLE	0 0 0
VAN_BRO				. 4819 = 1_0T_8_9	E1 E1
VAN_890 VAN_890 VAN_890				REED ATTITUDE QUATERNION	0 0 0
VAM_890					258 M
I ORB_NAV				IV = VAN_V	EI ESV WI
VAN_890			•	. IA = VAN_A	526 H]
VAN_890 VAN_890 VAN_890				READ STATE VECTOR	0 0 0
VAW_890 [¿30UTITTA_Ţ = VAN_UMI_T	1M 222
VAN_890 VAN_890 VAN_890			•	READ TIME TAG	13 13
VAN_890 VAN_890 VAN_890			, .	COPY ENVIRONMENT STATE VECTOR	0 0 0
CURRENT SCOPE			SOURCE		титг
95.85:61:11	APRIL 27, 1987	. эиг	, e s m e t e i c s ,	N I 05.45-086 GTS	S/TYH

HAL/S	STD 360-24.20 INTERMETRICS, INC. APRIL 27, 1987	1:19:28.56
STMT	SOURCE	CURRENT SCOPE
C I	COMPUTE STATE VECTOR DERIVED PARAMETERS	ORB_NAV ORB_NAV ORB_NAV
531 M	T_NAV = T_IMU_NAV;	[ORB_NAV
532 M	R_NAV_MAG = ABVAL(R_NAV);	ORB_NAV
E 533 M	UNIT_R = R_NAV / R_NAV_MAG;	I I ORB_NAV
E 534 M	ALT_NAV = R_NAV_MAG - (1 - EARTH_FLAT) EARTH_R / SQRT(1 + ((1 - EARTH_FLAT) - 1) (1 - (UNIT_R)	ORB_NAV
E 534 Mi	EARTH_POLE))),	ORB_NAV
535 M	V_NAV_MAG = ABVAL(V_NAV);	ORB_NAV
- E 536 M E	V_REL_NAV = V_NAV - (HE_NAV * R_NAV);	ORB_NAV
537 H	V_REL_MAG = ABVAL(V_REL_NAV);	I I ORB_NAV
538 M	RDOT_NAV = V_NAV . UNIT_R;	ORB_NAV
539 H	G_LOAD = ABYAL(A_NAY) FPS2_TO_G;	I ORB_NAV
C C C	ANGLE OF ATTACK AND SIDESLIP ANGLE	ORB_NAV
E 540 M	VREL_BODY = SQFORM(SQPOSE(Q_B_TO_I), V_REL_NAV);	 ORB_NAV
541 M S	ALPHA_NAV = SARCTAN2(VREL_BODY , VREL_BODY) RAD_TO_DEG; 3	ORB_NAV
542 MI SI	BETA_NAV = ARCSIN(VREL_BODY / V_REL_MAG) RAD_TO_DEG;	ORB_NAV
c c c	FLAG SIGNALING TAEM INTERFACE OR SKIP OUT	ORB_NAV ORB_NAV ORB_NAV
543 MI	IF ((ALT_NAV > ALT_EXIT) AND (RDOT_NAV > 0)) OR (ALT_NAV < ALT_TAEM) THEN	ORB_NAV
E 544 M	AERO_BRAKE_COMPLETE = TRUE;	ORB_NAV

HAL/S STD 360-24.20

11:19:28.56

CURRENT SCOPE

STMT

545 MI CLOSE ORB_NAV;

ORB_NAV

**** BLOCK SUMMARY ****

EXTERNAL FUNCTIONS INVOKED SQFORM, SQPOSE, SARCTAN2

FOUL VARIABLES USED
TIND, MAY*, TIATTUDE, R_NAV*, RI, V_NAV*, VI, A_NAV*, AI, Q_B_TO_I*, QIB, PHI_NAV*, PHI, T_NAV*, T_IMU_NAV, R_NAV_MAG*, R_NAV
UNIT_R*, R_NAV_MAG, ALT_NAV*, EARTH_FLAT, EARTH_R, UNIT_R, EARTH_POLE, V_NAV_HAG*, V_NAV, V_REL_MAV*, NE_NAV, V_REL_MAG*
V_REL_NAV, RDOT_NAV*, G_LOAD*, A_NAV, FPS2_TO_G, Q_B_TO_I, ALPHA_NAV*, RAD_TO_DEG, BETA_NAV*, V_REL_MAG, ALT_NAV, ALT_EXIT
RDOT_NAV, ALT_TAEM, AERO_BRAKE_COMPLETE*

APRIL 27, 1987 11:19:28.56

**** COMPILATION LAYOUT ****

ENV_POOL: EXTERNAL COMPOOL;

FSW_POOL: EXTERNAL COMPOOL;

IL_POOL: EXTERNAL COMPOOL;

DQFORM: EXTERNAL FUNCTION;

Q_ERR_ANG: EXTERNAL FUNCTION;

SARCTAN2: EXTERNAL FUNCTION;

SQFORM: EXTERNAL FUNCTION;

SQMULT: EXTERNAL FUNCTION;

SQPOSE: EXTERNAL FUNCTION;

SRV_TO_QIL: EXTERNAL FUNCTION;

ORB_NAV: PROCEDURE;

햣

(CROSS REFERENCE FLAG KEY: 4 = ASSIGNMENT, 2 = REFERENCE, 1 = SUBSCRIPT USE, 0 = DEFINITION)

DCL	NAME	TYPE	ATTRIBUTES & CROSS REFERENCE
88	A NAV	3 - VECTOR	DOUBLE, ALIGNED, INITIAL XREF: 0 0088 4 0528 2 0539
78	AERO_BRAKE_COMPLETE	BIT(1)	ALIGNED, INITIAL XREF: 0 0078 4 0544 NOT REFERENCED
	AI	3 - VECTOR	DCUBLE, ALIGNED, INITIAL XREF: 0 0001 2 0528
	ALPHA_NAV	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0075 4 0541 NOT REFERENCED
	ALT_EXIT	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0384 2 0543
80	ALT_NAV	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0080 4 0534 2 0543
514	ALT_TAEM	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0514 2 0543
76		SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0076 4 0542 NOT REFERENCED
518		SCALAR	SINGLE, ALIGNED, INPUT-PARM XREF: 0 0518
516	DQFORM	3 - VECTOR FUNCTION	DOUBLE, INITIAL, EXTERNAL, VERSION=2 XREF: 0 0516
			NOT REFERENCED
464	EARTH_FLAT	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0464 2 0534
	EARTH_POLE	3 - VECTOR	DOUBLE, ALIGNED, INITIAL XREF: 0 0467 2 0534
	EARTH_R	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0468 2 0534
	FPS2_TO_G	SCALAR	DOUBLE, ALIGNED, CONSTANT XREF: 0 0015 2 0019 2 0539
	G_LOAD	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0083 4 0539 NOT REFERENCED
	ORB_NAV	PROCEDURE	XREF: 0 0523 NOT REFERENCED
520		4 - VECTOR	SINGLE, ALIGNED, INPUT-PARM XREF: 0 0520
	PHI	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0001 2 0530
	PHI_NAV	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0077 4 0530 NOT REFERENCED
521		4 - VECTOR	SINGLE, ALIGNED, INPUT-PARM XREF: 0 0521
519		4 - VECTOR	SINGLE, ALIGNED, INPUT-PARM XREF: 0 0519
517		4 - VECTOR	SINGLE, ALIGNED, INPUT-PARM XREF: 0 0517
520		4 - VECTOR	SINGLE, ALIGNED, INPUT-PARM XREF: 0 0520
516		4 - VECTOR	DOUBLE, ALIGNED, INPUT-PARM XREF: 0 0516
	Q B_TO_I	4 - VECTOR	SINGLE, ALIGNED, INITIAL XREF: 0 0064 4 0529 2 0540
	Q_ERR_ANG	3 - VECTOR FUNCTION	SINGLE, INITIAL, EXTERNAL, VERSION=2 XREF: 0 0517
	4_r.m_xm	3 1201011 1011012011	NOT REFERENCED
1	QIB	4 - VECTOR	DOUBLE, ALIGNED, INITIAL XREF: 0 0001 2 0529
522		3 - VECTOR	SINGLE, ALIGNED, INPUT-PARM XREF: 0 0522
	R_NAV	3 - VECTOR	DOUBLE, ALIGNED, INITIAL XREF: 0 0087 4 0526 2 0532 2 0533
0,	17.144	3 - YECTOR	2 0536
89	R NAV MAG	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0089 4 0532 2 0533 2 0534
7		SCALAR	DOUBLE, ALIGNED, CONSTANT XREF: 0 0007 2 0541 2 0542
	RDOT_NAV	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0090 4 0538 2 0543
	RI	3 - VECTOR	DOUBLE, ALIGNED, INITIAL XREF: 0 0001 2 0526
	SARCTAN2	SCALAR FUNCTION	SINGLE, INITIAL, EXTERNAL, VERSION=2 XREF: 0 0518 2 0541
	SARG	SCALAR	SINGLE, ALIGNED, INPUT-PARM XREF: 0 0518
		3 - VECTOR FUNCTION	SINGLE, INITIAL, EXTERNAL, VERSION=3 XREF: 0 0519 2 0540
	SQFORM	4 - VECTOR FUNCTION	SINGLE, INITIAL, EXTERNAL, VERSION=3 XREF: 0 0520
520	SQHULT	4 - VECTOR FONCITON	NOT REFERENCED
F03	COROCE	4 VECTOR FIRSTYON	SINGLE, INITIAL, EXTERNAL, VERSION=3 XREF: 0 0521 2 0540
	SQPOSE	4 - VECTOR FUNCTION	
522	SRV_TO_QIL	4 - VECTOR FUNCTION	SINGLE, INITIAL, EXTÉRNAL, VERSION=2 XREF: 0 0522
,	T ATTITUDE	CCALAD	NOT REFERENCED
	T_ATTITUDE	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0001 2 0525
	T_IMU_NAV	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0067 4 0525 2 0531
	T_NAV	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0092 4 0531 NOT REFERENCED
516		3 - VECTOR	DOUBLE, ALIGNED, INPUT-PARM XREF: 0 0516
519		3 - VECTOR	SINGLE, ALIGNED, INPUT-PARM XREF: 0 0519
93	UNIT_R	3 - VECTOR	DOUBLE, ALIGNED, INITIAL XREF: 0 0093 4 0533 2 0534 2 0538

```
HAL/S STD 360-24.20
                                         INTERMETRICS, INC.
                                                                                                         APRIL 27, 1987 11:19:28.56
DCL NAME
                                        TYPE
                                                                             ATTRIBUTES & CROSS REFERENCE
522 V
94 V_NAV
                                                                           SINGLE, ALIGNED, INPUT-PARM XREF: 0 0522
DOUBLE, ALIGNED, INITIAL XREF: 0 0094 4 0527 2 0535 2 0536
2 0538
                                 3 - VECTOR
                                 3 - VECTOR
95 V_NAV_MAG
96 V_REL_MAG
97 V_REL_NAV
1 VI
                                 SCALAR
                                                                            DOUBLE, ALIGNED, INITIAL XREF: 0 0095 4 0535 NOT REFERENCED
                                SCALAR
                                                                           DOUBLE, ALIGNED, INITIAL XREF: 0 0096 4 0537 2 0542

DOUBLE, ALIGNED, INITIAL XREF: 0 0097 4 0536 2 0537 2 0540

DOUBLE, ALIGNED, INITIAL XREF: 0 0001 2 0527
                                 3 - VECTOR
                                 3 - VECTOR
524 VREL_BODY
                                 3 - VECTOR
                                                                            SINGLE, ALIGNED, STATIC, INITIAL XREF: 0 0524 4 0540 2 0541
481 WE_NAV
                                 3 - VECTOR
                                                                            SINGLE, ALIGNED, INITIAL XREF: 0 0481 2 0536
```

HAL/S	STD 360-24.20	INTERMETRICS, INC. APRIL 27, 1987	14:13:	28.85
HT		SOURCE	C	CURRENT SCOPE
15 M	AERO_GUID:		1.4	AERO_GUID
15 MI	PROCEDURE;		1 4	AERO_GUID
ci			1.4	AERO_GUID
C į		4/1/87	1 4	AERO_GUID
C!	FUNCTION:	NUMERIC PREDICTOR/CORRECTOR ENTRY GUIDANCE ALGORITHM		\ERO_GUID
C		FOR THE ENTRY RESEARCH VEHICLE (ERV).		AERO_GUID
c!	INPUTS:	A_NAV - SENSED INERTIAL ACCELERATION VECTOR		AERO_GUID
ci		ALPHA_NAV - ANGLE OF ATTACK		NERO_GUID
ci		ALT_NAV - ALTITUDE ABOVE FISHER ELLIPSOID		NERO_GUID
C		G_LOAD - SENSED ACCELERATION MAGNITUDE IN G'S		AERO_GUID
c		R_NAV - INERTIAL POSITION VECTOR		AERO_GUID
c l		T_GMT - GREENWICH MEAN TIME		VERO_GUID
ci		V_NAV - INERTIAL VELOCITY VECTOR		AERO_GUID
či		V_NAV_MAG - INERTIAL VELOCITY MAGNITUDE		EKO_GUID
ci		V_REL_MAG - RELATIVE VELOCITY MAGNITUDE		ERO_GUID
ci	OUTPUTS:	V_REL_NAV ~ RELATIVE VELOCITY VECTOR ALPHA CHD ~ COMMANDED ANGLE OF ATTACK		VERO_GUID
či	0011013:	PHI_CMD - COMMANDED BANK ANGLE		ERO_GUID
ci	DESIGNED BY:			ERO_GUID
či		C.S. DRAPER LABORATORY, INC.		VERO_GUID
či		MAIL STOP 2B		NERO_GUID NERO GUID
či		555 TECHNOLOGY SQUARE		NERO_GUID
či		CAMBRIDGE, MA 02139		AERO GUID
či		(617) 258-2441		AERO_GUID
či		(44) 230 231 /		AERO_GUID

ORIGINAL PACE IS

HAL/S	STD 360-24.20 INTERMETRICS, INC.	April 27, 1987	14:13:28.85
STMT	SOURCE		CURRENT SCOPE
c) c)	LOCAL VARIABLES		AERO_GUID AERO_GUID AERO_GUID
516 M	DECLARE ALPHA_DES SCALAR SINGLE;		AERO_GUID
517 M	DECLARE CL_EST SCALAR SINGLE;		AERO_GUID
518 MI	DECLARE COSPHI_QDOT SCALAR SINGLE INITIAL(-1.0);		AERO_GUID
519 MJ	DECLARE DELTA_T_PRED SCALAR SINGLE;		AERO_GUID
520 M	DECLARE EF_FROM_REF_AT_EPOCH MATRIX(3, 3) DOUBLE;		AERO_GUID
521 M	DECLARE GUID_PASS INTEGER SINGLE;		AERO_GUID
522 MI	DECLARE I_TARGET_EF VECTOR(3) DOUBLE;		AERO_GUID
523 M	DECLARE INITIALIZE_GUIDANCE BOOLEAN INITIAL(TRUE);		AERO_GUID
524 MI	DECLARE PHI_DES SCALAR SINGLE;		I AERO_GUID
525 M	DECLARE RHO_NAV SCALAR SINGLE;		AERO_GUID
C C C	ATMOSPHERIC PROPERTIES STRUCTURE		AERO_GUID AERO_GUID AERO_GUID
526 MI	STRUCTURE ATMOSPROP:		AERO_GUID
526 M	1 H SCALAR SINGLE,		AERO_GUID
526 M	1 RHO SCALAR SINGLE,		AERO_GUID
526 M	1 TS SCALAR SINGLE,		# AERO_GUID
526 M	1 TM SCALAR SINGLE;		i AERO_GUID

ORIGINAL PAGE IS OF POOR QUALITY

		HI COLO-PASS = 01	
GIUƏ_OЯЗA			
AERO_GUID		M 1 IF (GUID_PASS >= GUID_PASS_LIM) THEN	825
i veko enio		W T GNID_PASS = GUID_PASS + 11	723
VEKO_GUID AERO_GUID AERO_GUID		10 10 10 10 10 10 10 10	
AERO_GUID		WI I CALL CORRECTOR1	929
AERO_GUID		M I IF (GUID_PASS = 0) AND (ALT_MAY > ALT_FREEZE_GUID) THEN	929
OZUO ON JA AERO GUID AERO GUID		C RUN PREDICTOR/CORRECTOR AT CORRECT RATE	
I AERO_GUID		H 1 CALL FILTERS	925
VERO COLD VERO COLD VERO COLD		C RUN L/D AND DENSITY ESTIMATORS	.
VERO_GUID		fog (H	EES
AERO_GUID AERO_GUID AERO_GUID		C	
AERO_CUID		H IE IG_LOAD > G_RUN_GUIDANCE) THEN	222
VERO_GUID		H END?	tss
VERO_GUID		H I INILIEVISE EN EN E E E E E E E E E E E E E E E E	
VERO COLD		M I CALL INITIAL_GUID.	625
VERO_GUID		too lu	828
AERO_GUID AERO_GUID AERO_GUID			
VERO_GUID		E IF (INITIALIZE_GUIDANCE = TRUE) THEN	752
VERO_GUID AERO_GUID AERO_GUID		C PREDICTOR-CORRECTOR EXECUTIVE	
слевеит эсоре		SOURCE	TMT2
14:13:28.85	T861 .TS JIRGA	.S SID 360-24.20 INTERMETRICS, INC.	JAH

HAL/S		RICS, INC.	APRIL 27, 1987	4:13:28.85
STMT	•	SOURCE		CURRENT SCOPE
C I C I	COMPUTE BANK MAGNITUDE FOR HEAT RATE CONTR	IOL		AERO_GUID AERO_GUID AERO_GUID
540 Mi	1 CALL HEAT_RATE_CONTROL;			AERO_GUID
C C C	UPDATE COMMANDED ATTITUDE			AERO_GUID AERO_GUID AERO_GUID
541 MI	1 CALL ATTITUDE_COMMAND;	4		AERO_GUID
542 M	END;			AERO_GUID

INITIAL_GUID		
INITIAL_GUID		[3 [3
INITIAL_GUID	SAVE OF THE AREA O	13
INITIAL_GUID	PHI_CMD = MIDVAL((-PHI_MAX), PHI_EI, PHI_MAX);	H +55
INITIAL_GUID	ALPHA_CHD = MIDVAL(ALPHA_MIN, ALPHA_EI, ALPHA_MAX);	IN 255
INITIAL_GUID		·
INITIAL CUID		ĺo
INITIAL_GUID	INITIAL TITIUDE COMMAND	0 0
OIUƏ_JAITINI	bHI_DES = PHI_EI;	H 255
INITIAL_GUID	LI3_AH9JA = 230_AH9JA	W tss
GIUD_JAITINI	•	
INTIAL GUID		ĺĵ
INITIAL GUID	INITIAL ALPHA AND BANK GUESS	3 3
INITIAL_GUID	enio"byzz = 01	IM 055
INITIAL_GUID		
INITIAL GUID		İo
INITIAL GUID	GUIDANCE COUNT FOR PRED-CORR	3 3
INITIAL_GUID	FF_FROM_REF_AT_EPOCH = TRANSPOSE(EF_TO_REF_AT_EPOCH);	IH 6 5 5
ı	*	13
INITIAL_GUID		[]
INITIAL_GUID	ORIENTATION OF EARTH AT EPOCH	เว็
INITIAL_GUID		ci
INITIAL_GUID	DECIPHE Z SCALAR SINGLE;	IH 859
INITIAL_GUID		•
·	DECTABE A SCALAR SINGLES	M 792
GIUD_LAITINI (DECLARE X SCALAR SINGLES	IM 945
INITIAL_GUID	DECLARE LONG SCALAR SINGLE	W 5+5
INITIAL_GUID	DECLARE LAT SCALAR SINGLES	W 55 5
INITIAL_GUID		lo Cl
INITIAL_GUID		10
GIUƏ_JAITINI		is
I INITIAL_GUID		l o
diuə_JAITINI		13
OIUD_JAITINI		
· INITIAL_GUID	PROCEDURE 1	W £95
INITIAL_GUID	INITIAL_GUID:	•
спивент эсоре	SOURCE	THTS
***********		TMT2
14:13:28.85	STD 360-24.20 INTERMETRICS, INC. APRIL 27, 1967	SYJAH

```
162
```

			, ,	
I INITIAL_GUID		tar_curp,	W CFORE IN	072
I INITIAL_GUID		. to.t = VAN_	н к ⁻ гор ⁻	699
INITIAL_GUID		10.1 = VAN_	ны к_вно_	895
INITIAL GUID INITIAL GUID GUID TAITINI		TZE FILTERS	12	
INITIAL_GUID		SET_EF = UNIT(VECTOR (X, Y, Z)), approve.5	E) I_TARG	19 9
INITIAL_GUID		= SGRT(Y) SIGN(LONG);	= A H	995
INITIAL_GUID			WI EFRE	995
INITIAL_GUID		fo =	= A	595
INITIAL_CUID		<= 0)	H IE CK	5 95
INITIAL_GUID		2 2 - X -	: H A = I E	£95
INITIAL_GUID		= SQRT(X) COS(LONG);	= X IN 3	299
INITIAL_GUID			S WI EFRE	295
INITIAL_GUID		fo =	= X {N :	T99
INITIAL_GUID		<= 0) THEN	H) IE (X	095
INITIAL_GUID		; z -	HI X = I	6 5 9
INITIAL_GUID		1 (TALIMI	IS = Z .IH 1	828
INITIAL_GUID INITIAL_GUID GIUD_JAITINI	: : S3.	UNIT TARGET VECTOR IN EARTH-FIXED COORDINAT		
INITIAL_GUID		S ARCTAN(TAN(LAT) (1 - EARTH_FLAT)),	[3 TAJ [M '	722 ·
DIUD_JAITINI IUD_JAITINI GIUD_JAITINI		GEODETIC LATITUDE TO GEOCENTRIC LATITUDE	CI CONVERT	
INITIAL_GUID		LOAR_OT_BEG T DEG_TO_RAD,	= TAJ [H	955
INITIAL_GUID		LONG_TARGET DEG_TO_RAD;	: H FONC :	555
совкемт эсоре	:	SOURCE	J	THTZ
14:13:28.85	INC. APRIL 27, 1987	-S4.20 INTERMETRICS,	N. S STD 360-	AH

HAL/S STD 360-24.20

INTERMETRICS, INC.

APRIL 27, 1987 14:13:28.85

STMT

SOURCE

CURRENT SCOPE

COMPOOL VARIABLES USED

EF_TO_REF_AT_EPOCH, ALPHA_EI, PHI_EI, ALPHA_CMD*, ALPHA_MIN, ALPHA_MAX, PHI_CMD*, PHI_MAX, LONG_TARGET, DEG_TO_RAD, LAT_TARGET
EARTH_FLAT, K_RHO_NAV*, K_LOO_NAV*

OUTER VARIABLES USED EF_FROM_REF_AT_EPOCH*, GUID_PASS*, ALPHA_DES*, PHI_DES*, I_TARGET_EF*

WAL CO	CTR 7/0 0/ 00		
	STD 360-24.20 INTERMETRICS, INC.	APRIL 27, 1987	14:13:28.85
STMT	SOURCE		CURRENT SCOPE
571 M	FILTERS:		FILTERS
	PROCEDURE;		FILTERS
cl cl	FUNCTION: IN-FLIGHT ACCELERATION MEASUREMENT FILTERING		FILTERS
ci	TOTAL TOTAL THE FELLOW ACCEPTANT ON MEASUREMENT FILTERING		FILTERS FILTERS
CI			
cj	LOCAL VARIABLES		FILTERS FILTERS
¢I			FILTERS
572 H	DECLARE A_DRAG_MAG SCALAR SINGLE;		FILTERS
573 M	DECLARE A_LIFT_MAG SCALAR SINGLE;		FILTERS
574 MI	DECLARE ATMOS ATMOSPROP-STRUCTURE;		FILTERS
575 M	DECLARE CD_NOM SCALAR SINGLE;		FILTERS
576 M	DECLARE CL_NOM SCALAR SINGLE;		FILTERS
577 M	DECLARE LOD_MEAS SCALAR SINGLE;		FILTERS
578 M	DECLARE LOD_NOM SCALAR SINGLE;		FILTERS
579 M]	DECLARE MACH SCALAR SINGLE;		FILTERS
580 MI	DECLARE RHO_MEAS SCALAR SINGLE;		FILTERS
581 M	DECLARE V_BAR SCALAR SINGLE;		FILTERS
			*
C I	LOOK UP OF NOMINAL DENSITY AND L/D		FILTERS
ci			FILTERS
Εİ			FILTERS
582 MI	CALL USATMOS62(R_NAV, EARTH_POLE) ASSIGN(ATMOS);		 FILTERS
Εİ	•		• •
583 M	CALL AERO_PARAMETERS(V_REL_MAG, ATMOS) ASSIGN(V_BAR, MACH);		FILTERS
584 MJ	CALL LOOKUP(ALPHA_NAY, ATMOS.H, V_BAR, MACH) ASSIGN(CL_NOM, CD_NOM);		FILTERS
585 M	LOD_NOM = CL_NOM / CD_NOM;		FILTERS
CI			FILTERS
CI CI	COMPUTE DRAG AND LIFT ACCELERATION		FILTERS
			FILTERS
E 586 M	A_DRAG_MAG = -(A_NAV . V_REL_NAV) / V_REL_MAG;		ı
300			FILTERS

```
HAL/S STD 360-24.20
                                 INTERMETRICS, INC.
                                                                                   APRIL·27, 1987
                                                                                                   14:13:28.85
STHT
                                                   SOURCE
                                                                                                         CURRENT SCOPE
 587 M
          A_LIFT_MAG = SQRT(A_NAV . A_NAV - A_DRAG_MAG A_DRAG_MAG);
                                                                                                       FILTERS
                                                                                                       | FILTERS
        COMPUTE MEASURED L/D AND DENSITY
                                                                                                       FILTERS
                                                                                                       | FILTERS
 588 H
          LOD_MEAS = A_LIFT_MAG / A DRAG MAG;
                                                                                                      | FILTERS
          RHO_MEAS = 2 A_DRAG_MAG MASS_NAV / (CD_NOM S_REF V_REL_MAG );
 589 M
                                                                                                       FILTERS
                                                                                                       I FILTERS
        FILTER MEASURED L/D AND DENSITY RATIOS
    ci
                                                                                                       FILTERS
    CI
                                                                                                      FILTERS
          K_LOD_NAV = (1 - L_OVER_D_FILTER_GAIN) K_LOD_NAV + L_OVER_D_FILTER_GAIN (LOD_MEAS / LOD_NOM);
                                                                                                      | FILTERS
          K_RHO_NAV = (1 - K_RHO_FILTER_GAIN) K_RHO_NAV + K_RHO_FILTER_GAIN (RHO_MEAS / ATMOS.RHO);
                                                                                                      | FILTERS
                                                                                                      | FILTERS
        COMPUTE FILTERED MEASURED DENSITY
                                                                                                       FILTERS
                                                                                                      FILTERS
592 M
          RHO_NAV = K_RHO_NAV ATMOS.RHO;
                                                                                                      | FILTERS
                                                                                                      | FILTERS
        COMPUTE FILTERED ESTIMATED CL
                                                                                                       FILTERS
    CI
                                                                                                      | FILTERS
593 MI CL_EST = K_LOD_NAV CL_NOM;
                                                                                                      | FILTERS
 594 MI CLOSE FILTERS;
                                                                                                      | FILTERS
**** BLOCK SUMMARY ***
OUTER PROCEDURES CALLED
    LOOKUP, AERO_PARAMETERS, USATMOS62
COMPOOL VARIABLES USED
   R_NAV, EARTH_POLE, V_REL_MAG, ALPHA_NAV, A_NAV, V_REL_NAV, MASS_NAV, S_REF, K_LOD_NAV*, L_OVER_D_FILTER_GAIN, K_LOD_NAV
   K_RHO_NAV*, K_RHO_FILTER_GAIN, K_RHO_NAV
OUTER VARIABLES USED
    RHO_NAV*, CL_EST*
```

OUTER STRUCTURE TEMPLATES USED ATMOSPROP

HAI /S	STD 360-24.20 INTERMETRICS. INC.		
STMT		APRIL 27, 1987	14:13:28.85
	SOURCE		CURRENT SCOPE
	HEAT_RATE_CONTROL:		HEAT_RATE_CONTROL
	PROCEDURE;		HEAT_RATE_CONTROL
C C	FUNCTION: CONTROL PEAK HEAT RATE		HEAT_RATE_CONTROL HEAT_RATE_CONTROL HEAT_RATE_CONTROL
c! c! c!	LOCAL VARIABLES		HEAT_RATE_CONTROL HEAT_RATE_CONTROL HEAT_RATE_CONTROL
596 M	DECLARE COSPHI_1 SCALAR SINGLE;		HEAT_RATE_CONTROL
597 M	DECLARE COSPHI_2 SCALAR SINGLE;		I HEAT_RATE_CONTROL
598 M	DECLARE FIRST_PASS BOOLEAN INITIAL(TRUE);		HEAT_RATE_CONTROL
599 M	DECLARE HS_2 SCALAR SINGLE;		HEAT_RATE_CONTROL
600 MI	DECLARE K_QDOT SCALAR SINGLE;	,	HEAT_RATE_CONTROL
601 Mi	DECLARE K_QDOT_RATE SCALAR SINGLE;	;	I HEAT_RATE_CONTROL
602 M	DECLARE K1_GAIN SCALAR SINGLE;		HEAT_RATE_CONTROL
603 M	DECLARE K1_QDOT SCALAR SINGLE;		I HEAT_RATE_CONTROL
604 M	DECLARE OMEGA_QDOT_SQUARED SCALAR SINGLE;		HEAT_RATE_CONTROL
605 M	DECLARE QBAR SCALAR SINGLE;		I HEAT_RATE_CONTROL
606 MI	DECLARE ADOT SCALAR SINGLE;		HEAT_RATE_CONTROL
607 M	DECLARE QDOT_PAST SCALAR SINGLE;	•	I HEAT_RATE_CONTROL
608 M	DECLARE QDOT_RATE SCALAR SINGLE;		HEAT_RATE_CONTROL
609 Mi	DECLARE THO_ZETA_OMEGA SCALAR SINGLE;		HEAT_RATE_CONTROL
610 M	QDOT = 17700.0 SQRT(RHO_NAV) (V_REL_MAG / 10000) ;		 HEAT_RATE_CONTROL
611 M	IF (FIRST_PASS = TRUE) THEN		NEAT BATE CONTROL
612 M	DO3	•	HEAT_RATE_CONTROL
ΕÌ			! HEAT_RATE_CONTROL
613 M 1	FIRST_PASS = FALSE;		HEAT_RATE_CONTROL
c l	HEAT RATE CONTROL CONSTANTS		HEAT_RATE_CONTROL HEAT_RATE_CONTROL

```
HAL/S STD 360-24.20
                                  INTERMETRICS, INC.
                                                                                      APRIL 27, 1987
                                                                                                       14:13:28.85
STHT
                                                     SOURCE
                                                                                                            CURRENT SCOPE
     C1
                                                                                                           I HEAT_RATE_CONTROL
 614 M| 1
                 HS_2 = 2 HS;
                                                                                                           HEAT_RATE_CONTROL
 615 MI 1
                 K1_GAIN = S_REF SQRT(RHO_SL) 17700.0 / (HS_2 MASS_NAV);
                                                                                                           | HEAT_RATE_CONTROL
 616 MI 1
                 OMEGA_QDOT_SQUARED = OMEGA_QDOT OMEGA_QDOT;
                                                                                                          | HEAT_RATE_CONTROL
 617 MI 1
                 THO_ZETA_OMEGA = 2 ZETA_QDOT OMEGA QDOT:
                                                                                                          I HEAT_RATE_CONTROL
     C1
                                                                                                          HEAT_RATE_CONTROL
HEAT_RATE_CONTROL
HEAT_RATE_CONTROL
        FIRST PASS INITIALIZATION
     CI
 618 MI 1
                QDOT_RATE = 0;
                                                                                                          I HEAT_RATE_CONTROL
619 MJ
             END;
                                                                                                          I HEAT_RATE_CONTROL
 620 M
          ELSE
                                                                                                          I HEAT_RATE CONTROL
 620 M
             QDOT_RATE = (QDOT - QDOT_PAST) / DT_AEROGUID;
                                                                                                          HEAT_RATE_CONTROL
621 MI
          QDOT_PAST = QDOT:
                                                                                                          | HEAT_RATE_CONTROL
          IF (QDOT > .5 QDOT_LIMIT) THEN
622 MJ
                                                                                                          I HEAT_RATE_CONTROL
623 M
             DO3
                                                                                                          I HEAT_RATE_CONTROL
        ------
                                                                                                          I HEAT_RATE_CONTROL
        ESTIMATED DYNAMIC PRESSURE
                                                                                                          HEAT_RATE_CONTROL
                                                                                                          HEAT_RATE_CONTROL
624 MI 1
                QBAR = .5 RHO_NAV V_REL MAG V REL MAG.
                                                                                                          HEAT_RATE_CONTROL
                                                                                                          I HEAT_RATE_CONTROL
        HEAT RATE CONTROL GAINS
                                                                                                          HEAT_RATE_CONTROL
                                                                                                          HEAT_RATE_CONTROL
625 M 1
                K1_QDOT = K1_GAIN CL_EST (V_REL_MAG / 10000.0)
                                                                EXP(-(ALT_NAV / HS_2));
                                                                                                          HEAT_RATE_CONTROL
626 MI 1
                K_QDOT = OMEGA_QDOT_SQUARED / K1_QDOT)
                                                                                                         I HEAT_RATE_CONTROL
627 MI 1
                K_QDOT_RATE = THO_ZETA_OMEGA / K1_QDOT;
                                                                                                         | HEAT_RATE_CONTROL
                                                                                                          I HEAT_RATE_CONTROL
       HEAT RATE CONTROL EQUATION
                                                                                                          HEAT_RATE CONTROL
                                                                                                         HEAT_RATE_CONTROL
628 M| 1
               COSPHI_1 = K_QDOT_RATE QDOT_RATE / QBAR;
                                                                                                         | HEAT_RATE_CONTROL
629 M| 1
               COSPHI_2 = K_QDOT (QDOT - QDOT_LIMIT) / QBAR;
                                                                                                         | HEAT_RATE_CONTROL
630 HI 1
               COSPHI_QDOT = COSPHI_1 + COSPHI_2;
                                                                                                         I HEAT_RATE_CONTROL
```

16

```
APRIL 27, 1987 14:13:28.85
                              INTERHETRICS, INC.
 HAL/S STD 360-24.20
                                                                                                CURRENT SCOPE
STMT
                                               SOURCE
                                                                                               HEAT_RATE_CONTROL
631 M
            END §
                                                                                               | HEAT_RATE_CONTROL
632 M
         ELSE
632 M
           COSPHI_QDOT = -1.0;
                                                                                               | HEAT_RATE_CONTROL
                                                                                               I HEAT_RATE_CONTROL
633 M! CLOSE HEAT_RATE_CONTROL;
```

COMPOOL VARIABLES USED V_REL_MAG, HS, S_REF, RHO_SL, MASS_NAV, OMEGA_QDOT, ZETA_QDOT, DT_AEROGUID, QDOT_LIMIT, ALT_NAV

**** BLOCK SUMMARY ****

OUTER VARIABLES USED RHO_NAV, CL_EST, COSPHI_QDOT*

```
HAL/S STD 360-24.20
                                                                                     APRIL 27, 1987
                                                                                                       14:13:28.85
STMT
                                                     SOURCE
                                                                                                            CURRENT SCOPE
 634 M! ATTITUDE_COMMAND:
                                                                                                          I ATTITUDE_COMMAND
 634 MI PROCEDURE;
                                                                                                          I ATTITUDE COMMAND
                                                                                                          ATTITUDE COMMAND
        LOAD ALPHA COMMAND
                                                                                                           ATTITUDE_CONMAND
                                                                                                          ATTITUDE_COMMAND
635 M
         ALPHA_CMD = ALPHA_DES;
                                                                                                          I ATTITUDE_COMMAND
                                                                                                          ! ATTITUDE_COMMAND
        COMPUTE AND LIMIT PHI COMMAND
                                                                                                           ATTITUDE_COMMAND
                                                                                                          ATTITUDE_COMMAND
636 MI
          PHI_CMD = PHI_DES ABS(V_NAV_MAG - V_FINAL_MAG) / V_MAG_CHANGE;
                                                                                                          1 ATTITUDE_COMMAND
637 M
          PHI_CMD = MIDVAL((-PHI_MAX), PHI_CMD, PHI_MAX);
                                                                                                          | ATTITUDE_COMMAND
    C I
                                                                                                          | ATTITUDE_COMMAND
        ADJUST COMMANDED BANK ANGLE FOR HEAT RATE CONTROL
                                                                                                           ATTITUDE_COMMAND
    C1
                                                                                                          ATTITUDE_COMMAND
638 MI
          IF (COSPHI_QDOT > 0) THEN
                                                                                                          ATTITUDE_COMMAND
639 MI
                                                                                                          I ATTITUDE_COMMAND
640 MI 1
                TEMPORARY COSPHI_CMD SCALAR SINGLE;
                                                                                                          | ATTITUDE_COMMAND
641 MI 1
                COSPHI_CMD = COS(PHI_CMD DEG_TO_RAD) + COSPHI_QDOT;
                                                                                                          I ATTITUDE_COMMAND
642 M 1
                COSPHI_CMD = MIDVAL(-1.0, COSPHI_CMD, +1.0);
                                                                                                          ATTITUDE_COMMAND
643 H! 1
                PHI_CMD = SIGN(PHI_CMD) ARCCOS(COSPHI_CMD) RAD_TO_DEG;
                                                                                                          I ATTITUDE_COMMAND
644 MI
                                                                                                          ATTITUDE_COMMAND
                                                                                                          ATTITUDE_COMMAND
ATTITUDE_COMMAND
        LIMIT ALPHA AND PHI COMMANDS
                                                                                                          ATTITUDE_COMMAND
645 M
          ALPHA_CMD = MIDVAL(ALPHA_MIN, ALPHA_CMD, ALPHA_MAX);
                                                                                                          ATTITUDE_COMMAND
         PHI_CMD = MIDVAL((-PHI_MAX), PHI_CMD, PHI_MAX);
                                                                                                          I ATTITUDE_COMMAND
647 MI CLOSE ATTITUDE_COMMAND;
                                                                                                          1 ATTITUDE_COMMAND
**** BLOCK SUMMARY ****
COMPOOL VARIABLES USED
   ALPHA_CMD*, PHI_CMD*, V_NAV_MAG, V_FINAL_MAG, V_MAG_CHANGE, PHI_MAX, PHI_CMD, DEG_TO_RAD, RAD_TO_DEG, ALPHA_MIN, ALPHA_CMD
```

ALPHA_MAX
OUTER VARIABLES USED

ALPHA_DES, PHI_DES, COSPHI_QDOT

	STD 360-24.20 INTERMETRICS, INC.	APRIL 27, 1987	14:13:28.85
STMT	SOURCE		CURRENT SCOPE
648 MI	CORRECTOR:	•	CORRECTOR
648 M	PROCEDURE 9		CORRECTOR
cl cl	FUNCTION: PREDICTOR/CORRECTOR SEQUENCER		CORRECTOR CORRECTOR CORRECTOR
c) c)	LOCAL VARIABLES		CORRECTOR CORRECTOR CORRECTOR
649 MI	DECLARE ALPHA_TRY SCALAR SINGLE;		CORRECTOR
650 MI	DECLARE DELTA_ALPHA SCALAR SINGLE CONSTANT(3);		CORRECTOR
651 M	DECLARE DELTA_PHI SCALAR SINGLE CONSTANT(3);		CORRECTOR
652 M	DECLARE DETERM SCALAR SINGLE INITIAL(0);		CORRECTOR
653 M	DECLARE DDRE_DA SCALAR SINGLE;		CORRECTOR
654 MI	DECLARE DDRE_DP SCALAR SINGLE;		CORRECTOR
655 M}	DECLARE DCRE_DA SCALAR SINGLE;		CORRECTOR
656 M	DECLARE DCRE_DP SCALAR SINGLE;		CORRECTOR
657 MI	DECLARE CRE SCALAR SINGLE;		CORRECTOR
658 M	DECLARE CR_ERROR ARRAY(3) SCALAR SINGLE;		CORRECTOR
659 M	DECLARE CR_ERR SCALAR SINGLE;		1 CORRECTOR
660 MI	DECLARE PHI_TRY SCALAR SINGLE;		CORRECTOR
661 M	DECLARE PRED_EXIT BOOLEAN;		CORRECTOR
662 MI	DECLARE DR_ERROR ARRAY(3) SCALAR SINGLE;		CORRECTOR
663 M	DECLARE DR_ERR SCALAR SINGLE;		CORRECTOR
664 MI	DECLARE DRE SCALAR SINGLE;		CORRECTOR
			•
665 MI	DO FOR TEMPORARY I = 1 TO 3;		CORRECTOR
646 MI	DO CASE I;		CORRECTOR
667 M	2 00;		CORRECTOR CASE 1
668 M	ALPHA_TRY = ALPHA_DES;		CORRECTOR
669 MI	PHI_TRY = PHI_DES;		i CORRECTOR

	HAL/S STD 360-24.20 INTERMETRICS, INC.	APRIL 27, 1987 14:13:28.85
	STHT SOURCE ,	CURRENT SCOPE
	670 M 2 END;	CORRECTOR
	671 M 2 DOs	CORRECTOR CASE 2
	672 H 3 ALPHA_TRY = ALPHA_DES + DELTA_ALPHA;	1 CORRECTOR
	673 M 3 PHI_TRY = PHI_DES;	! CORRECTOR
·	674 MI 2 END;	i CORRECTOR
	675 MI 2 DO3	i CORRECTOR CASE 3
	676 MI 3 ALPHA_TRY = ALPHA_DES;	I CORRECTOR
	677 H 3 PHI_TRY = PHI_DES + DELTA_PHI;	CORRECTOR
	678 M) 2 END;	CORRECTOR
	679 M 1 END;	CORRECTOR DO CASE END
	C C C C C C C C C C C C C C C	CORRECTOR CORRECTOR CORRECTOR
·	680 Hi 1 CALL PREDICTOR;	CORRECTOR
171	C C Store final state errors C	CORRECTOR CORRECTOR CORRECTOR
	681 H 1 DR_ERROR = DR_ERR; S I	CORRECTOR
	692 H 1 CR_ERROR = CR_ERR; S I	CORRECTOR
	683 Mi END;	CORRECTOR
	C C COMPUTE PARTIALS C	CORRECTOR CORRECTOR CORRECTOR
	664 MI DDRE_DA = (DR_ERROR - DR_ERROR) / DELTA_ALPHA; SI 2 1	CORRECTOR
	685 M DDRE_DP = (DR_ERROR - DR_ERROR) / DELTA_PHI; SI 1	CORRECTOR
•	686 M DCRE_DA = (CR_ERROR - CR_ERROR) / DELTA_ALPHA; S 2 1	CORRECTOR
	687 M DCRE_DP = (CR_ERROR - CR_ERROR) / DELTA_PHI; Si 3 1	CORRECTOR
		·

	HAL/S STD 360-24.20 INTERHETRICS, INC.	APRIL 27, 1987 14:13:28.85
•	STMT SOURCE	CURRENT SCOPE
	688 MI DRE = DR_ERROR ; SI 1	CORRECTOR
	689 HI CRE = CR_ERROR; SI 1 .	! CORRECTOR
	C C SOLVE SET OF 2 SIMULTANEOUS EQUATIONS C	CORRECTOR CORRECTOR CORRECTOR
3	690 M) DETERM = DCRE_DP DDRE_DA - DDRE_DP DCRE_DA;	CORRECTOR
,	691 M IF (DETERM -= 0) THEN	CORRECTOR
	692 MJ DO,	I CORRECTOR
	693 M 1 1 ALPHA_DES = ALPHA_DES + (DDRE_DP CRE - DCRE_DP DRE) / DETER	Ms CORRECTOR
	694 H! 1 ALPHA_DES = MIDVAL(ALPHA_MIN, ALPHA_DES, ALPHA_MAX);	I CORRECTOR
	695 HI 1 PHI_DES = PHI_DES - (DDRE_DA CRE - DCRE_DA DRE) / DETERM;	I CORRECTOR
	696 M 1 PHI_DES = MIDVAL((-PHI_DES_MAX), PHI_DES, PHI_DES_MAX);	CORRECTOR
	697 MI END;	CORRECTOR

o

STHT			
	SOURCE		CURRENT SCOP
698 M	PREDICTOR:	•	PREDICTOR
698 H	PROCEDURE;		PREDICTOR
CI			PREDICTOR
C)	FUNCTION: NUMERIC PREDICTOR ALGORITHM		PREDICTOR PREDICTOR
cl			
či	LOCAL FUNCTION		PREDICTOR PREDICTOR
ci			PREDICTOR
699 HI	DECLARE EARTH_FIXED_FROM_REFERENCE FUNCTION MATRIX(3, 3) DOUBLE;		PREDICTOR
ci		•	PREDICTOR
CI CI	LOCAL VARIABLES		PREDICTOR PREDICTOR
700 HI	DECLARE TOTAL_TIME_STEPS INTEGER SINGLE;		
701 M	DECLARE A_PRED VECTOR(3) DOUBLE;		PREDICTOR
702 H	DECLARE A_PRED_MAG SCALAR SINGLE;		PREDICTOR
703 M	DECLARE ALPHA_PRED SCALAR SINGLE;		
704 MI	DECLARE ATMOS ATMOSPROP-STRUCTURE		PREDICTOR
705 MI	DECLARE CD_PRED SCALAR SINGLE;		PREDICTOR
706 MI	DECLARE CL_PRED SCALAR SINGLE;		PREDICTOR
707 M	DECLARE DOT SCALAR DOUBLE;		PREDICTOR
708 MI	DECLARE EF_FROM_REF MATRIX(3, 3) DOUBLE;		PREDICTOR
709 MI	DECLARE I_INPLANE VECTOR(3) DOUBLE;		PREDICTOR
710 Mj	DECLARE I_NORMAL VECTOR(3) DOUBLE;		PREDICTOR
711 M	DECLARE INTEG_LOOP SCALAR SINGLE;		PREDICTOR
712 H	DECLARE IR_E VECTOR(3) DOUBLE;		PREDICTOR
713 M	DECLARE LOD_PRED SCALAR SINGLE;		PREDICTOR
714 M	DECLARE MACH_PRED SCALAR SINGLE;		PREDICTOR
715 M	DECLARE PHI_PRED SCALAR SINGLE;		PREDICTOR
716 M	DECLARE R_PRED VECTOR(3) DOUBLE;		PREDICTOR
717 H	DECLARE R_MAG_PRED SCALAR DOUBLE;		PREDICTOR

•

,

	HAL/S	STD 360-24.20	INTERMETRIC	S, INC.	APRIL 27, 1987	14:13:28.85	
	STMT		soc	JRCE		CURRENT SCOPE	
	719 M	DECLARE T_PRED SCA	LAR DOUBLE;			PREDICTOR	
	720 M	DECLARE V_BAR_PRED	SCALAR SINGLE;			PREDICTOR	
	721 M	DECLARE V_MAG_PRED	SCALAR DOUBLE;			PREDICTOR	
	722 M	DECLARE V_PRED VEC	TOR(3) DOUBLE;			PREDICTOR	
	723 M	DECLARE V_REL_MAG_I	PRED SCALAR SINGLE;			PREDICTOR	
	724 MI	DECLARE V_REL_PRED	VECTOR(3) SINGLE;			PREDICTOR	
	725 H	DECLARE VR_E VECTOR	R(3) DOUBLE,	ſ		PREDICTOR	
	cl cl	INITIALIZE PREDICTOR	STATE VECTOR			PREDICTOR PREDICTOR PREDICTOR	
	726 M	T_PRED = T_GMT;				1 PREDICTOR	
	727 M	R_PRED = R_NAV;			·	 PREDICTOR	
	728 M	R_MAG_PRED = ABVAL(R_PRED);			PREDICTOR	•.
	729 M E	V_PRED = V_NAV;				 PREDICTOR	
	730 ĤÍ El	V_MAG_PRED = ABVAL(V_PRED);			PREDICTOR	unia Line
	731 H	V_REL_PRED = V_PRED	- (WE_NAV * R_PRED);			PREDICTOR	
0	732 M	V_REL_MAG_PRED = AB	VAL(V_REL_PRED);			PREDICTOR	
		ANGLE OF ATTACK FOR P				PREDICTOR PREDICTOR PREDICTOR	
•	733 M	ALPHA_PRED = ALPHA_	TRY;			PREDICTOR	
	C C C	INITIALIZE 1962 U.S.	STANDARD ATMOSPHERE			PREDICTOR PREDICTOR PREDICTOR	
	E 734 M	CALL USATHOS62(R_PR	+ ED, EARTH_POLE) ASSIGN(ATMOS	5);		 PREDICTOR	
	C C C	FORCE 1ST TIME STEP TO	D BE MINIMUM TIME STEP			PREDICTOR PREDICTOR PREDICTOR	

HAL/S	STD 360-24.20 INTERMETRICS, INC. APRIL 27,	1987 14:13:28.85
TMT	SOURCE .	CURRENT SCOPE
735 MI SI	A_PRED = VECTOR {999999., 999999.}; asingle,3	PREDICTOR
c c	PREDICTOR LOOP	PREDICTOR PREDICTOR PREDICTOR
736 M	DO FOR TEMPORARY TIME_INCREMENT = 1 TO 5000;	PREDICTOR
CI CI	COMPUTE TIME STEP FOR 4TH ORDER RUNGA-KUTTA INTEGRATION	PREDICTOR PREDICTOR PREDICTOR
737 MI	1 TOTAL_TIME_STEPS = TIME_INCREMENT;	PREDICTOR
738 MI	1 IF (ATMOS.H <= ALT_TAEM_BIAS) THEN	PREDICTOR
739 MI	1 DELTA_T_PRED = DELTA_T_PRED_MIN;	PREDICTOR
740 MI	1 ELSE	PREDICTOR
740 M	λ 00;	PREDICTOR
E 741 H	2 A_PRED_MAG = ABVAL(A_PRED);	 PREDICTOR
742 MI	2 IF (A_PRED_MAG -= 0) THEN	PREDICTOR
743 Mi	2 DELTA_T_PRED = DELTA_T_PRED_GAIN / A_PRED_MAG;	PREDICTOR
744 MI	2 ELSE	PREDICTOR
744 MI	<pre>2 DELTA_T_PRED = DELTA_T_PRED_MAX;</pre>	PREDICTOR
745 M	<pre>2 DELTA_T_PRED = MIDVAL(DELTA_T_PRED_MIN, DELTA_T_PRED, DELTA_T_PRED_MAX);</pre>	PREDICTOR
746 H	1 END;	PREDICTOR
c1 c1	AERODYNAMIC PROPERTIES LOOK-UP	PREDICTOR PREDICTOR PREDICTOR
E 747 M	+ 1 CALL AERO_PARAMETERS(V_REL_MAG_PRED, ATMOS) ASSIGN(V_BAR_PRED, MACH_PRED);	 PREDICTOR
748 MI	1 CALL LOOKUP(ALPHA_PRED, ATMOS.H, V_BAR_PRED, MACH_PRED) ASSIGN(CL_PRED, CD_PRED);	PREDICTOR
C C C	ESTIMATED L/D .	PREDICTOR PREDICTOR PREDICTOR
749 MI	1 LOD_PRED = K_LOD_NAV CL_PRED / CD_PRED;	PREDICTOR

ORIGINAL PAGE

HAL/S	STD 360-24.20 INTERHETRICS, INC. A	PRIL 27, 1987 14:13:28.85
STMT	SOURCE	CURRENT SCOPE
C C	EQUATIONS OF MOTION FOR ERV ENTRY	PREDICTOR PREDICTOR PREDICTOR
750 M	1 DO FOR INTEG_LOOP = 1 TO 4;	PREDICTOR
751 MI	2 TEMPORARY AERO_ACCEL VECTOR(3) SINGLE;	PREDICTOR
752 MI	2 TEMPORARY CPHI SCALAR SINGLE;	! PREDICTOR
753 M	2 TEMPORARY DRAG_ACCEL SCALAR SINGLE;	PREDICTOR
754 H		PREDICTOR
755 M	2 TEMPORARY HS_NORM_PRED SCALAR SINGLE;	PREDICTOR
756 M	2 TEMPORARY I_LAT VECTOR(3) SINGLE;	PREDICTOR
757 M	2 TEMPORARY I_LIFT VECTOR(3) SINGLE;	PREDICTOR
758 M	2 TEMPORARY I_VEL VECTOR(3) SINGLE;	PREDICTOR
759 M	2 TEMPORARY LIFT_ACCEL SCALAR SINGLE;	PREDICTOR
760 M	2 TEMPORARY RHO_PRED SCALAR SINGLE;	PREDICTOR
761 ·M	2 TEMPORARY SPHI SCALAR SINGLE;	PREDICTOR
762 M	2 TEMPORARY U_PRED VECTOR(3) DOUBLE;	PREDICTOR
763 M]	2 TEMPORARY Z_PRED SCALAR DOUBLE;	PREDICTOR
c c c	ESTIMATED DENSITY	PREDICTOR PREDICTOR PREDICTOR
764 HI	2 RHO_PRED = K_RHO_NAV ATMOS.RHO;	PREDICTOR
c) c)	BANK ANGLE MODEL	PREDICTOR PREDICTOR PREDICTOR
765 M	<pre>PHI_PRED = PHI_TRY ABS(V_MAG_PRED - V_FINAL_MAG) / V_MAG_CHANGE;</pre>	! PREDICTOR
766 Mi	<pre>PHI_PRED = MIDVAL((-PHI_MAX), PHI_PRED, PHI_MAX) DEG_TO_RAD;</pre>	PREDICTOR
767 M	CPHI = COS(PHI_PRED);	PREDICTOR
768 M]	SPHI = SIN(PHI_PRED);	PREDICTOR
ci ci	AERODYNAMIC ACCELERATION	PREDICTOR PREDICTOR PREDICTOR

•

.

ORIGINAL PAGE IS OF POOR QUALITY

HAL/S STD 360	D-24.20 INTERMETRICS, INC. APRIL 27, 1987	
STHT	APRIL 27, 1707	14:13:28.85
	SOURCE	CURRENT SCOPE
E 769 H 2	DRAG_ACCEL = .5 RHO_PRED V_REL_MAG_PRED CD_PRED S_REF / MASS_NAV;	PREDICTOR
770 MJ 2	LIFT_ACCEL = LOD_PRED DRAG_ACCEL;	PREDICTOR
771 H 2	I_VEL = V_REL_PRED / V_REL_MAG_PRED;	PREDICTOR
E 772 M 2	I_LAT = UNIT(I_VEL * R_PRED);	 PREDICTOR
773 MI 2	I_LIFT = UNIT(I_LAT * I_VEL) CPHI + I_LAT SPHI;	PREDICTOR
774 MI 2	AERO_ACCEL = LIFT_ACCEL I_LIFT - DRAG_ACCEL I_VEL;	PREDICTOR
C GRAVITY	ACCELERATION WITH J2 TERM	PREDICTOR PREDICTOR PREDICTOR
775 MI 2	U_PRED = R_PRED / R_MAG_PRED;	PREDICTOR
E 776 M 2	Z_PRED = U_PRED . EARTH_POLE;	PREDICTOR
E 777 H 2		 PREDICTOR
777 H 2	Z_PRED EARTH_POLE);	PREDICTOR
E 778 H 2	GRAV_ACCEL = -(EARTH_MU / R_MAG_PRED) U_PRED;	PREDICTOR
	CCELERATION	PREDICTOR PREDICTOR PREDICTOR
E 779 H 2	A_PRED = AERO_ACCEL + GRAV_ACCEL;	i PREDICTOR
CI CI CALL RU CI	NGA-KUTTA INTEGRATOR	PREDICTOR PREDICTOR PREDICTOR
780 Mi 2	CALL INTEGRATOR;	PREDICTOR
•••	ARAMETERS	PREDICTOR PREDICTOR PREDICTOR
E 781 M 2	R_MAG_PRED = ABVAL(R_PRED);	 PREDICTOR

	SOURCE		CURRENT SCO
E I Mi 2 V_MAG_PREI	J = ABVAL(V_PRED);		PREDICTOR
C		•	PREDICTOR PREDICTOR PREDICTOR
E I - M I 2 V_REL_PREI	= V_PRED - (ME_NAV * R_PRED);		PREDICTOR
E H 2 V_REL_HAG	PRED = ABVAL(V_REL_PRED);		i ! PREDICTOR
CI 1962 U.S. STANDARI	ATMOSPHERE		PREDICTOR PREDICTOR PREDICTOR
EI HI 2 CALL USATE	- + HOS62(R_PRED, EARTH_POLE) ASSIGN(ATMOS);		PREDICTOR
Mi 1 END;			PREDICTOR
CI STATE PARAMETERS.			PREDICTOR PREDICTOR PREDICTOR
M1 1 T_PRED = T_P	RED + DELTA_T_PRED;		PREDICTOR
E M 1 RDOT_PRED = 1	 /_PRED . R_PRED / R_MAG_PRED;		PREDICTOR
CI CHECK FOR ATMOSPHI	RIC EXIT		PREDICTOR PREDICTOR PREDICTOR
MI 1 IF ((ATMOS.H	> 400000) AND (RDOT_PRED > 0)) THEN		PREDICTOR
E . M 1 PRED_EXIT	= TRUE;		 PREDICTOR
E !	T = TRUE) THEN		 PREDICTOR
Mi 1 EXIT;			PREDICTOR
CI CHECK FOR TAEM IN	TERFACE		PREDICTOR PREDICTOR PREDICTOR
Mi 1 IF (ATMOS.H	= ALT_TAEM) THEN	•	PREDICTOR
MI 1 EXITS			i PREDICTOR

9
OF POOR
PAGE
7 %

HAL/S	STD 360-24.20 INTERHETRICS, INC. APRIL 27, 1987 14	:13:28.85
STMT	SOURCE	CURRENT SCOPE
C C C	COMPUTE DOMNRANGE AND CROSSRANGE ERRORS	PREDICTOR PREDICTOR PREDICTOR
E! 796 Hi	* EF_FROM_REF = EARTH_FIXED_FROM_REFERENCE(T_PRED);	 PREDICTOR
E 797 H	IR_E = UNIT(EF_FROM_REF R_PRED);	PREDICTOR
E 798 M	VR_E = EF_FROM_REF (V_PRED - ME_NAV * R_PRED);	PREDICTOR
E i 799 Hi	I_NORMAL = UNIT(IR_E * VR_E);	PREDICTOR
13 14 008	<pre>I_INPLANE = UNIT(I_TARGET_EF - (I_TARGET_EF . I_NORMAL) I_NORMAL);</pre>	PREDICTOR
E 801 M	DOT = I_INPLANE . I_TARGET_EF;	 PREDICTOR
802 MI	IF (ABS(DOT) > 1) THEN	PREDICTOR
803 MI	DOT = SIGN(DOT);	PREDICTOR
E 804 M]	CR_ERR = EARTH_R FT_TO_NM ARCCOS(DOT) SIGN((I_INPLANE * I_TARGET_EF) . (I_NORMAL * I_INPLANE)))	PREDICTOR
E 805 M	DOT = IR_E . I_INPLANES	! ! PREDICTOR
806 MI	IF (ABS(DOT) > 1) THEN	PREDICTOR
807 MI	DOT = SIGN(DOT);	PREDICTOR
E 808 M	. DR_ERR = EARTH_R FT_TO_NM ARCCOS(DOT) SIGN((IR_E * I_INPLANE) . I_NORMAL);	PREDICTOR

HAL/S	STD 360-24.20	INTERMETRICS, INC.	AÞRIL 27, 1987	`14:13:28.85
STMT		SOURCE	•	CURRENT SCOPE
809 MI	INTEGRATOR:			INTEGRATOR
809 M!	PROCEDURE \$			INTEGRATOR
C C C	FUNCTION: 4TH ORDER R	UNGA-KUTTA INTEGRATOR ALGORITHM		INTEGRATOR INTEGRATOR INTEGRATOR
C C C	LOCAL VARIABLES			INTEGRATOR INTEGRATOR INTEGRATOR
810 M	DECLARE ACCUM_ACCEL	VECTOR(3) DOUBLE;		INTEGRATOR
811 M	DECLARE ACCUM_VEL V	ECTOR(3) DOUBLE;		INTEGRATOR
812 H	DECLARE ORIG_POS VE	CTOR(3) DOUBLE;		INTEGRATOR
813 M	DECLARE ORIG_VEL VE	CTOR(3) DOUBLE;		INTEGRATOR
814 MI 815 MJ	DO CASE INTEG_LOOP;			INTEGRATOR INTEGRATOR CASE 1
E 816 M	2 ORIG_POS = R_I	- PRED;		i I INTEGRATOR
817 M	2 ORIG_VEL = V_	- PRED;		 INTEGRATOR
818 M	2 ACCUM_VEL = V	PRED:		 INTEGRATOR
E 819 M	2 ACCUM_ACCEL =	A_PRED;		! ! INTEGRATOR
E 820 M	2 R_PRED = ORIG	POS + .5 DELTA_T_PRED V_PRED;		I I INTEGRATOR
821 M	2 V_PRED = ORIG	VEL + .5 DELTA_T_PRED A_PRED;		I INTEGRATOR
822 M	1 END;			INTEGRATOR
823 M	1 DO3			I INTEGRATOR CASE 2
E 824 M	2 ACCUM_VEL = A	CCUM_VEL + 2 V_PRED;		I INTEGRATOR
E 825 M	2 ACCUM_ACCEL =	ACCUM_ACCEL + 2 A_PRED;		 INTEGRATOR

```
STHT
                                                                                                             CURRENT SCOPE
826 M 2
                R_PRED = ORIG_POS + .5 DELTA_T_PRED V_PRED;
                                                                                                           INTEGRATOR
E |
827 M | 2
                V_PRED = ORIG_VEL + .5 DELTA_T_PRED A_PRED;
                                                                                                           INTEGRATOR
828 M| 1
                                                                                                           | INTEGRATOR
829 MI 1
                                                                                                           INTEGRATOR CASE 3
E |
830 M | 2
                ACCUM_VEL = ACCUM_VEL + 2 V_PRED;
                                                                                                           INTEGRATOR
E!
831 MI 2
                ACCUM_ACCEL = ACCUM_ACCEL + 2 A_PRED;
                                                                                                           INTEGRATOR
E!
832 MI 2
                R_PRED = ORIG_POS + DELTA_T_PRED V_PRED;
                                                                                                           INTEGRATOR
E |
833 M | 2
                                                                                                                                             OF POOR QUALITY
                V_PRED = ORIG_VEL + DELTA_T_PRED A_PRED;
                                                                                                           INTEGRATOR
834 M 1
                                                                                                           | INTEGRATOR
835 MJ 1
             DO s
                                                                                                           I INTEGRATOR CASE 4
E |
836 M | 2
                R_PRED = ORIG_POS + (ACCUM_VEL + V_PRED) DELTA_T_PRED / 6;
                                                                                                           INTEGRATOR
E |
837 M | 2
                V_PRED = ORIG_VEL + (ACCUM_ACCEL + A_PRED) DELTA_T_PRED / 6;
                                                                                                           INTEGRATOR
838 MI 1
                                                                                                           INTEGRATOR
839 M END;
                                                                                                           I INTEGRATOR DO CASE END
840 MI CLOSE INTEGRATOR;
                                                                                                           | INTEGRATOR
**** BLOCK SUMMARY ***
```

APRIL 27, 1987

14:13:28.85

INTERMETRICS, INC.

INTEG_LOOP, R_PRED, V_PRED, A_PRED, R_PRED*, DELTA_T_PRED, V_PRED*

HAL/S STD 360-24.20 INTERMETRICS, INC. APRIL 27, 1987 14:13:28.85 CURRENT SCOPE STHT 841 M! EARTH_FIXED_FROM_REFERENCE: | EARTH_FIXED_FROM_REFER | EARTH_FIXED_FROM_REFER 841 M! FUNCTION(T) MATRIX(3, 3) DOUBLE; | EARTH FIXED_FROM_REFER _____ EARTH_FIXED_FROM_REFER DATE: EARTH_FIXED_FROM_REFER FUNCTION: COMPUTE (LEFT) REFERENCE INERTIAL TO EARTH-FIXED EARTH FIXED FROM REFER TRANSFORMATION MATRIX OR VARIOUS APPROXIMATIONS THEREOF. ci EARTH_FIXED_FROM_REFER T - THE NUMBER OF SECONDS ELAPSED SINCE TIME ORIGIN CI OUTPUTS: EARTH-FIXED FROM REFERENCE ROTATION MATRIX | EARTH_FIXED_FROM_REFER EARTH_FIXED_FROM_REFER COMMENTS: NONE | EARTH_FIXED_FROM_REFER REFERENCE: UNDOCUMENTED Ci ______ | EARTH_FIXED_FROM_REFER CI | EARTH_FIXED_FROM_REFER DECLARE T SCALAR DOUBLE; 842 M | EARTH_FIXED_FROM_REFER 843 MI DECLARE CLAMBDA SCALAR DOUBLE; | EARTH_FIXED_FROM_REFER DECLARE SLAMBDA SCALAR DOUBLE; 845 M CLAMBDA = COS((T - T_EPOCH) EARTH_RATE); | EARTH_FIXED_FROM_REFER # EARTH_FIXED_FROM_REFER 846 MI SLAMBDA = SIN((T - T_EPOCH) EARTH_RATE); (CLAMBDA, SLAMBDA, 0, -SLAMBDA, CLAMBDA, 0, 0, 0, 1) | EARTH_FIXED_FROM_REFER 847 M RETURN (MATRIX abouble,3,3 si EARTH_FIXED_FROM_REFER EF_FROM_REF_AT_EPOCH); 847 MI | EARTH_FIXED_FROM_REFER 848 M CLOSE EARTH_FIXED_FROM_REFERENCE;

**** BLOCK SUMMARY ****

COMPOOL VARIABLES USED T_EPOCH, EARTH_RATE OUTER VARIABLES USED EF_FROM_REF_AT_EPOCH

_2

HAL/S STD 360-24.20

INTERMETRICS, INC.

APRIL 27, 1987

14:13:28.85

STMT

SOURCE

CURRENT SCOPE

849 M! CLOSE PREDICTOR;

| PREDICTOR

**** BLOCK SUMMARY ***

OUTER PROCEDURES CALLED USATHOS62, AERO_PARAMETERS, LOOKUP

COMPOOL VARIABLES USED

T-GHT, R.NAY, V-NAV, ME_NAV, EARTH_POLE, ALT_TAEM_BIAS, DELTA_T_PRED_HIN, DELTA_T_PRED_GAIN, DELTA_T_PRED_MAX, K_LOD_NAV K_RHO_NAV, V_FINAL_MAG, V_MAG_CHANGE, PHI_MAX, DEG_TO_RAD, S_REF, MASS_NAV, EARTH_J2, EARTH_R, EARTH_MU, ALT_TAEM, FT_TO_NM

OUTER VARIABLES USED
ALPHA_TRY, DELTA_T_PRED*, DELTA_T_PRED, PHI_TRY, PRED_EXIT*, PRED_EXIT, I_TARGET_EF, CR_ERR*, DR_ERR*

OUTER STRUCTURE TEMPLATES USED ATMOSPROP

≂

HAL/S STD 360-24.20

INTERMETRICS, INC.

APRIL 27, 1987 14:13:28.85

STHT

SOURCE

CURRENT SCOPE

850 MI CLOSE CORRECTORS

CORRECTOR

**** BLOCK SUMMARY ****

COMPOOL VARIABLES USED
ALPHA_MIN, ALPHA_MAX, PHI_DES_MAX

OUTER VARIABLES USED ALPHA_DES, PHI_DES, ALPHA_DES*, PHI_DES*

HAL/S	STD 360-24.20 INTERMETRICS, INC. APRIL 27, 1987 14	:13:28.85
STMT	SOURCE	CURRENT SCOPE
851 M	AERO_PARAMETERS:	AERO_PARAMETERS
851 M	PROCEDURE(V_REL_MAG, ATMOS) ASSIGN(V_BAR, MACH);	AERO_PARAMETERS
CI CI	FUNCTION: COMPUTE AERODYNAMIC FLOW REGIME PARAMETERS	AERO_PARAMETERS AERO_PARAMETERS AERO_PARAMETERS
CI CI	LOCAL VARIABLES	AERO_PARAMETERS AERO_PARAMETERS AERO_PARAMETERS
852 Mi	DECLARE V_REL_MAG SCALAR SINGLE;	AERO_PARAMETERS
853 M	DECLARE ATMOS ATMOSPROP-STRUCTURE;	AERO_PARAMETERS
854 MI	DECLARE MACH SCALAR SINGLE;	AERO_PARAMETERS
855 M	DECLARE V_BAR SCALAR SINGLE;	AERO_PARAMETERS
856 MI	DECLARE C_PRIME SCALAR SINGLE;	AERO_PARAMETERS
857 M	DECLARE GAMMA_VBAR SCALAR SINGLE;	AERO_PARAMETERS
858 MI	DECLARE REYNOLDS_NUMBER SINGLE;	! AERO_PARAMETERS
859 MI	DECLARE SPEED_OF_SOUND SCALAR SINGLE;	AERO_PARAMETERS
860 MI	DECLARE T_PRIME SCALAR SINGLE;	AERO_PARAMETERS
861 M	DECLARE T_MALL SCALAR SINGLE;	I AERO_PARAMETERS
862 MI	DECLARE VISCOSITY SCALAR SINGLE;	1 AERO_PARAMETERS
cl cl	LOCAL CONSTANTS	AERO_PARAMETERS AERO_PARAMETERS AERO_PARAMETERS
863 MI	DECLARE C_BAR SCALAR SINGLE CONSTANT(25.0);	AERO_PARAMETERS
864 MI	DECLARE DEG_R_TO_DEG_K SCALAR SINGLE CONSTANT(9 / 5);	AERO_PARAMETERS
865 MI	DECLARE GAMMA SCALAR SINGLE CONSTANT(1.4);	AERO_PARAMETERS
E 866 M	DECLARE UNIV_GAS_CONST SCALAR SINGLE CONSTANT(8.31432 10);	AERO_PARAMETERS
867 Mi	DECLARE MOLE_MT_ZERO SCALAR SINGLE CONSTANT(28.9644);	1 AERO_PARAMETERS
868 M	DECLARE SPEED_OF_SOUND_CONST SCALAR SINGLE CONSTANT(SQRT(GAMMA UNIV_GAS_CONST / MOLE_MT_ZERO));	I AERO_PARAMETERS

OF POOR QUALITY

	•	
	HAL/S STD 360-24.20 INTERMETRICS, INC. APRIL 27, 1987	14:13:28.85
	STMT SOURCE	CURRENT SCOPE
	C! C! MACH NUMBER C!	AERO_PARAMETERS AERO_PARAMETERS AERO_PARAMETERS
	869 MI SPEED_OF_SOUND = SPEED_OF_SOUND_CONST M_TO_FT SQRT(ATMOS.TM);	AERO_PARAMETERS
	·870 M IF SPEED_OF_SOUND = 0 THEN	i AERO_PARAMETERS
	871 Mi MACH = 0;	i AERO_PARAMETERS
	872 MI ELSE	AERO_PARAMETERS
_	872 H MACH = V_REL_MAG / SPEED_OF_SOUND;	AERO_PARAMETERS
1866	C C REYNOLDS NURBER C	i AERO_PARAMETERS i AERO_PARAMETERS i AERO_PARAMETERS
	E -6 1.5 873 H VISCOSITY = 1.458 10 KG_TO_SLUG ATMOS.TS / ((110.4 + ATMOS.TS) M_TO_FT);	AERO_PARAMETERS
	874 H IF (VISCOSITY = 0 OR ATMOS.H > 300000) THEN	AERO_PARAMETERS
	875 Hi REYNOLDS_NUMBER = 0;	AERO_PARAMETERS
	876 MI ELSE	AERO_PARAMETERS
•	REYNOLDS_NUMBER = ATMOS.RHO V_REL_MAG C_BAR / VISCOSITY;	AERO_PARAMETERS
	CI VISCOUS PARAMETER CI	AERO_PARAMETERS AERO_PARAMETERS AERO_PARAMETERS
	877 M IF REYNOLDS_NUMBER = 0 THEN	! AERO_PARAMETERS
	878 MI V_BAR = 0;	1 AERO_PARAMETERS
	879 MI ELSE .	i AERO_PARAMETERS

HAL/S	STD 360-24.20 INTERMETRICS, INC. APRIL 27, 1987	4:13:28.85
STMT	SOURCE	CURRENT SCOPE
879 M	00;	AERO_PARAMETERS
c c	T_MALL FOR VISCOUS PARAMETER	AERO_PARAMETERS AERO_PARAMETERS AERO_PARAMETERS
880 HI	1 IF (ATMOS.H < 249000) THEN	1 AERO_PARAMETERS
881 M	T_MALL = 2178.0 DEG_R_TO_DEG_K;	AERO_PARAMETERS
882 MJ	1 ELSE IF (ATMOS.H >= 249000) AND (ATMOS.H < 360000) THEN	I AERO_PARAMETERS
883 Mi	T_MALL = (5913.0 - 0.015 ATMOS.H) DEG_R_TO_DEG_K;	AERO_PARAMETERS
884 M	1 ELSE IF (ATMOS.H >= 360000) THEN	AERO_PARAMETERS
885 MI	T_MALL = 504.0 DEG_R_TO_DEG_K;	AERO_PARAMETERS
C C C	GAMMA FOR VISCOUS PARAMETER	AERO_PARAMETERS AERO_PARAMETERS AERO_PARAMETERS
886 H	1 IF (ATMOS.H < 100000) THEN	I AERO_PARAMETERS
887 MI	1 GAMMA_VBAR = 1.4;	AERO_PARAMETERS
888 H	Troops in the same of the same	1 AERO_PARAMETERS
889 HI	1 GAMMA_VBAR = 1.7 - 3.00E-6 ATMOS.H;	1 AERO_PARAMETERS
890 MI	1 ELSE IF (ATMOS.H >= 170000) AND (ATMOS.H < 225000) THEN	AERO_PARAMETERS
891 M	1 GAMMA_VBAR = 1.375 - 1.09E-6 ATMOS.H;	AERO_PARAMETERS
892 MI	1 ELSE IF (ATMOS.H >= 225000) AND (ATMOS.H < 300000) THEN	AERO_PARAMETERS
893 Mi	1 GAMMA_VBAR = 1.220 - 4.00E-7 ATMOS.H;	I AERO_PARAMETERS
894 MI	1 ELSE IF (ATMOS.H >= 300000) THEN	AERO_PARAMETERS
895 MI	1 GAMMA_VBAR = 1.1;	AERO_PARAMETERS
ci ci	T_PRIME AND C_PRIME FOR VISCOUS PARAMETER	AERO_PARAMETERS AERO_PARAMETERS AERO_PARAMETERS
E 896 M	T_PRIME = (.468 + .532 T_MALL / ATMOS.TS + .195 (GAMMA_VBAR ~ 1) MACH / 2) ATMOS.TS;	AERO_PARAMETERS
897 M	77 (1_PRINE V 122.1 10	- AERO_PARAMETERS
897 M	(5/T_PRIME) 1 1));	AERO_PARAMETERS

```
HAL/S STD 360-24.20 INTERHETRICS, INC. APRIL 27, 1987 14:13:28.85

STHT SOURCE CURRENT SCOPE

898 M 1 V_BAR = MACH (C_PRIME / REYNOLDS_NUMBER) , | AERO_PARAMETERS

899 M 1 END; | AERO_PARAMETERS

900 M 1 CLOSE AERO_PARAMETERS; | AERO_PARAMETERS
```

**** B L O C K S U M M A R Y ****

COMPOOL VARIABLES USED M_TO_FT, KG_TO_SLUG

OUTER STRUCTURE TEMPLATES USED ATMOSPROP

Q	Ş
Poor	GIVE
 ALLIVIO	PAGE IS

		•
HAL/S	STD 360-24.20 INTERMETRICS, INC. APRIL 27	7, 1987 14:13:28.85
STMT	SOURCE	CURRENT SCOPE
901 M	LOOKUP:	. I LOOKUP
901 M	PROCEDURE(ALPHA, ALT, V_BAR, MACH) ASSIGNICL, CD);	, I TOOKAL
13 13 13 13 13 13	FUNCTION: LOOK-UP OF CL AND CD VERSUS ALPHA, ALTITUDE, VISCOUS PARAMETER, AND MACH NAMBER. INPUTS: ALPHA - ANGLE OF ATTACK (DEG) ALTITUDE - ALTITUDE ABOVE FISHER ELLIPSOID (FT) V_BAR - VISCOUS PARAMETER MACH - MACH NUMBER	I LOCKUP I LOCKUP I LOCKUP I LOCKUP I LOCKUP I LOCKUP I LOCKUP
c c c c	CL - LIFT COEFFICIENT FLOM_REGIME: 1 = USE ALITIUDE DATA 2 = USE V_BAR DATA 3 = USE MACH DATA REFERENCE: NOT DOCUMENTED	I LOOKUP I LOOKUP I LOOKUP I LOOKUP I LOOKUP I LOOKUP I LOOKUP
ci ci ci	INPUT AND OUTPUT VARIABLES	i LOOKUP i LOOKUP i LOOKUP i LOOKUP
902 M	DECLARE ALPHA SCALAR SINGLE;	LOOKUP
903 MI	DECLARE ALT SCALAR SINGLE;) LOOKUP
904 M	DECLARE CD SCALAR SINGLE;	1 LOOKUP
905 H	DECLARE CL SCALAR SINGLE;	! LOOKUP
906 MI	DECLARE MACH SCALAR SINGLE;	LOOKUP
907 Mi	DECLARE V_BAR SCALAR SINGLE;	LOOKUP
C C C	LOCAL VARIABLES	I LOOKUP I LOOKUP I LOOKUP
908 M	DECLARE ALPHA_FRACT SCALAR SINGLE;	LOOKUP
909 MI	DECLARE ALPHA_MAX SCALAR SINGLE CONSTANT(50);	LOOKUP
910 M	DECLARE ALPHA_MIN SCALAR SINGLE CONSTANT(0);	LOOKUP
911 M	DECLARE ALT_L SCALAR SINGLE;	I LOOKUP
912 HI	DECLARE ALT_MAX SCALAR SINGLE CONSTANT(537000);	1 LOOKUP
913 H	DECLARE ALT_MIN SCALAR SINGLE CONSTANT(300000);	LOOKUP
914 Mi	DECLARE ALT_RUN SCALAR SINGLE CONSTANT(ALT_MAX - ALT_MIN);	LOOKUP
915 Mi	DECLARE CD_1 SCALAR SINGLE;	LOOKUP

`	
v	
4	

•	ГООКПЬ				(()) (0, (0720.	H 126	
	ГООКПЬ	. 2720 2450 6050 6410; . 2	010. (0200.)1	BLE ARRAY(8) SCALAR SINGLE CONSTAN	DECLARE V_BAR_TA	IM TE6	
	i rooknb		,	M SCALAR SINGLE CONSTANT(0.0050)	DECLARE V_BAR_MI	IM 026	
	і гоокпь		•	X SCALAR SINGLE CONSTANT(0.0744);	DECLARE V_BAR_MA	IM 626	
	i rookna			SCALAR SINGLES	DECLARE VERREL	IM 826	
	і гоокпь			A SCALAR SINGLE!	DECLARE SIN_ALPH	IN 726	
	1 FOOKIND			SCALAR SINGLE CONSTANT(2)	DECLARE MACH_MIN	IM 926	
	i rooknb			SCALAR SINGLE CONSTANTILLO		IM 526	
	I FOOKUP				ресгиве мисн г	IN +26	
•	i rooknb				DECLARE J INTEGE	IM 226	
	l rooknb				DECLARE I INTEGE	IM 526	
	i rooknb			IME INTEGER SINGLE,		IM IS6	
en en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de en la companya de la companya de la companya de la companya de la companya de la companya de la companya de la	FOOKAB				DECLARE FRACT SC	IM 026	
	i rooknb			IN SCALAR SINGLES		IH 6T6	·
÷ ₩	I FOOKNE				DECLARE CL_2 SCA	[H 816	
	I FOOKING				DECLARE CL_1 SCA	H 216	
•	ГООКЛЬ	1			DECLARE CD_2 SCA	H 916	
	совием эсоре			SOURCE		THTZ	•
	14:13:28.85	7861 .75 JIS9A	. эиг	INTERHETRICS,	02.42-03£ 012		
					00 90 072 413	37 1411	
*.							
•		•					

 HÁL/S
 STD 360-24.20
 INTERMETRICS, INC.
 APRIL 27, 1987
 14:13:28.85

 THT
 SOURCE
 CURRENT SCOPE

C ERV AERODYNAMIC DATA TABLES NOT LISTED

LOOKUP LOOKUP LOOKUP

e

ГООКЛЬ	T END?	W 956
i rooknb	S FRACT = (ALT_L - ALT_MIN) / ALT_RUN;	H E96
l L FOOKAB	\$ CD_S = CD_ALT + (CD_ALT - CD_ALT) ALPHA_FRACT; c.s L.s	M S26 S
і гоокпь	S CD_1 = CD_ALT + (CD_ALT - CD_ALT ') ALPHA_FRACT;	W 196
i I rooknb	\$ CL_S = CL_ALT + (CL_ALT - CL_ALT) ALPHA_FRACT; L,3	W 056
l I rooknb	$c_{L,1} = c_{L,2} + T + (c_{L,2} + T) - c_{L,2} $ $c_{L,1} = c_{L,1} + (c_{L,2} + C) + (c_{L,1} + C)$	S H 6 5 6
гоокль	S ALT_L = MIDVAL(ALT_MIN, ALT, ALT, ALT_MAX);	W 856
FOOKING CASE 1	t pot	W 256
FOOKIND FOOKIND FOOKIND	ATAU DUTITIA	10 10
FOOKND FOOKND FOOKND	INTERPOLATE FOR ALPHA USING CORRECT TABLES	10 10
FOOKIN	DO CASE FLOW_REGIMES	IN 9 5 6
1 гоокпь	FLOW REGIME = 21	IH 556
FOOKNB	· · · · · · · · · · · · · · · · · · ·	IN 546
ГООКЛЬ	FLOW_REGIME = 31	IH 556
FOOKING	ELSE IF (MACH <= MACH_MAX) THEN	₩ £ 5 6
I FOOKOB	EFOM KERINE = J?	IM S46
ГООКЛЬ	TF (ALT >= ALT_MIN) THEN	W T+6
1 FOOKING	FLOW REGIME = 01	IN 056
FOOKING FOOKING FOOKING	DETERMINE FLOW REGIME TO USE FOR LOOK UP	0 0 0
 ГООКЛЬ	ALPHA_ERACT = (ALPHA - TRUNCATE(ALPHA));	IM 626
FOOKING	J = MIDVAL(1, (TRUNCATE(ALPHA) + 1), 50),	IM 826
FOOKING FOOKING FOOKING	DETERMINE INDEX OF ANGLE OF ATTACK	10 10
спинемт всоре	SOURCE	1H1S
14:13:28.85	STD 360-24.20 INTERMETRICS, INC. APRIL 27, 1967	S/74H

ORIGINAL PAGE IS OF POOR QUALITY

rooknb	CD_1 = CD_MACH + (CD_MACH - CD_MACH) ALPHA_FRACT; L,1] S	; I E26	_
		-		
гоокпь	Class Course Cou	4 S	1 S76	
L'OOKUP	2 CL_1 = CL_MACH + (CL_MACH - CL_MACH) ALPHA_FRACT, L,1 L,1 L,1	2 I	; 1 TZ6	
FOOKIND	I = MIDVAL(1, (TRUNCATE(MACH_L / 2)), 4),	2 1	026	•
ГООКЛЬ	CORPORATION CONTRACTOR	-	696	
FOOKING CASE 3	fog T	. 16	896	
FOOKAB FOOKAB FOOKAB	Wild Havis	10	l I	
. rooknb	I END?	. 19	196	
і гоокпь	. FRACT = (V_BAR_L - V_BAR_TABLE) \ (V_BAR_TABLE) = T.ABL	IS ! !W	996	
i L COKUP	$ c_{D,S} = c_{D,VISC} + (c_{D,VISC} - c_{D,VISC}) $ $ c_{D,VISC} + (c_{D,VISC} - c_{D,VISC}) $	IS IN	596	
I FOOKAB	$ CD_L I = CD_V ISC + (CD_V ISC - CD_V ISC) ALPHA_FRACT, $ $ L_{i,l} I_{i,l+1} I_{i,$	IS HI	5 96	
! гоок∩ь	S CL_S = CL_VISC + (CL_VISC - CL_VISC) ALPHA_FRACT) 1+1,1	IS IN	£ 96	
i rooknb	$S \qquad CL_I = CL_VISC + (CL_VISC - CL_VISC) ALPHA_FRACT, \\ L,1 \qquad L,1 $	i Is	296	
FOOKUP	S END!	IN	T96	
FOOKIN	2 EXIL ³	IH	096	
l "COKUP	Х	ıs		
		İM	656	
FOOKING	Σ I = $K_{\rm J}$	ļW	856	
ГООКЛЬ		IH	2 56	
1 COOKUP	2 V_BAR_L = HIDVAL(V_BAR_MIN, V_BAR, V_BAR_MAX);	IH	956	
1 FOOKING CASE &	ioa i	lw	556	
i FOOKND i FOOKND i FOOKND	VISCOUS DATA	13		
сливеит эсоре	SOURCE	•	титг	
28.85:21	STD 360-24.20 INTERMETRICS, INC. APRIL 27, 1987 14.			

```
HAL/S STD 360-24.20
                                                               APRIL 27, 1987 14:13:28.85
                       INTERMETRICS, INC.
STMT
                                                                                CURRENT SCOPE
            LOOKUP
 975 M! 2
            FRACT = (MACH_L / 2 - I);
                                                                               i LOOKUP
 976 M 1 END3
                                                                               LOOKUP
 977 MI END;
                                                                               I LOOKUP DO CASE END
                                                                               LOOKUP
   C INTERPOLATE BETWEEN TABLES
                                                                               LOOKUP
                                                                               LOOKUP
 978 MI CL = CL_1 + (CL_2 - CL_1) FRACT;
                                                                               LOOKUP
 979 MI CD = CD_1 + (CD_2 - CD_1) FRACT;
                                                                               LOOKUP
 980 MI CLOSE LOOKUP;
                                                                               1 LOOKUP
```

```
14:13:28.85
                                                                                   APRIL 27, 1987
                                 INTERMETRICS, INC.
 HAL/S STD 360-24.20
                                                                                                         CURRENT SCOPE
                                                    SOURCE
STMT
                                                                                                        USATMOS62
 981 M| USATMOS62:
                                                                                                        USATMOS62
 981 M| PROCEDURE(R, POLE) ASSIGN(ATMOS);
                                                                                                        USATMOS62
                                                                                                         USATMOS62
                12/28/81
        DATE:
                                                                                                         USATMOS62
        FUNCTION: COMPUTES THE DENSITY OF THE ATMOSPHERE (0-150KM)
                                                                                                         USATMOS62
                  AT A SPECIFIED ALTITUDE USING THE 1962 U.S.STANDARD
                                                                                                          USATMOS62
                  ATMOSPHERE MODEL.
                                                                                                         USATMOS62
                          - INERTIAL POSITION VECTOR (FT)
        INPUTS:
                                                                                                          USATMOS62
                      POLE - INERTIAL NORTH POLE (ND)
                                                                                                          USATMOS62
                      ATMOS.H - ALTITUDE (FT)
        OUTPUTS:
                                                                                                          USATMOS62
                      ATMOS.RHO - DENSITY (LBM/FT**3)
                                                                                                          USATMOS62
                      ATMOS.TS - STATIC TEMPERATURE OF AIR (DEG K)
                                                                                                          USATMOS62
                      ATMOS.TM - MOLECULAR TEMPERATURE OF AIR (DEG K)
     Сl
                                                                                                          USATMOS62
                           - EARTH EQUATORIAL RADIUS (M)
         NOMENCLATURE: A
                                                                                                          USATMOS62
                           - EARTH FLATTENING (ND)
                                                                                                          USATMOS62
                          - EARTH RADIUS (PHI = 45 DEGS) (M)
                      RO
                                                                                                          USATMOS62
                      PHI - GEOGRAPHIC LATITUDE (DEGS)
     Сl
                                                                                                          USATMOS62
                      PSI - GEOCENTRIC LATITUDE (DEGS)
                                                                                                          USATMOS62
                          - SEA-LEVEL GRAVITY (M/S/S)
     Сİ
                      GO
                                                                                                          USATHOS62
                           - MEAN MOLECULAR WEIGHT OF AIR (ND)
                      MO
                                                                                                          USATMOS62
                           - UNIVERSAL GAS CONSTANT
     ci
                                                                                                          USATMOS62
                                   (JOULES / (DEG K) / (KG-MOL))
     ci
                                                                                                          USATMOS62
     čΙ
                                                                                                         USATMOS62
           DECLARE ATMOS ATMOSPROP-STRUCTURE;
  982 MI
                                                                                                        USATMOS62
           DECLARE R VECTOR(3) DOUBLE;
  983 MI
                                                                                                         | USATMOS62
           DECLARE POLE VECTOR(3) DOUBLE;
  984 MI
                                                                                                         | USATMOS62
           DECLARE GO SCALAR SINGLE CONSTANT(9.80665);
  985 MI
                                                                                                         USATMOS62
           DECLARE MO SCALAR SINGLE CONSTANT(28.9644);
  986 MI
                                                                                                         | USATMOS62
           DECLARE RR SCALAR SINGLE CONSTANT(8314.32);
                                                                                                         1 USATMOS62
            DECLARE K2 SCALAR SINGLE CONSTANT(GO MO / RR);
  988 MI
                                                                                                         L USATMOS62
            DECLARE M_TO_FT SCALAR DOUBLE CONSTANT(1 / .3048);
  989 MI
                                                                                                         USATMOS62
            DECLARE KG_TO_LBM SCALAR SINGLE CONSTANT(1 / .45359237);
  990 MI
                                                                                                         | USATMOS62
            DECLARE A SCALAR DOUBLE CONSTANT(6378178);
  991 MI
                                                                                                          USATMOS62
            DECLARE F SCALAR DOUBLE CONSTANT(1 / 298.32);
```

HAL/S	STD 360-24.20 INTERMETRICS, INC. APRIL 27, 1987 14	:13:28.85
STMT	SOURCE	CURRENT SCOPE
E 993 M	DECLARE RO SCALAR SINGLE CONSTANT(A SQRT((1 + (1 - F)) / (1 + (1 - F))));	USATMOS62
994 MI	DECLARE I INTEGER SINGLE;	USATHOS62
995 MI	DECLARE NSEGS INTEGER SINGLE CONSTANT(12);	1 USATMOS62
996 MI	DECLARE H_BASE ARRAY(NSEGS + 1) SCALAR SINGLE CONSTANT(0, 11000, 20000, 32000, 47000, 52000,	I USATMOS62
996 MI	61000, 79000, 90000, 100000, 110000, 120000, 150000);	USATMOS62
997 MI	DECLARE TM_BASE ARRAY(NSEGS + 1) SCALAR SINGLE CONSTANT(288.15, 216.65, 216.65, 228.65, 270.65,	USATHOS62
997 MI	270.65, 252.65, 180.65, 180.65, 210.65, 260.65, 360.65, 960.65);	USATMOS62
998 MJ	DECLARE T_BASE ARRAY(NSEGS + 1) SCALAR SINGLE CONSTANT(288.15, 216.65, 216.65, 228.65, 270.65,	USATMOS62
998 MI	270.65, 252.65, 180.65, 180.65, 210.02, 257.00, 349.49, 892.79);	USATMOS62
999 MI	DECLARE RHO_BASE ARRAY(NSEGS + 1) SCALAR SINGLE CONSTANT(1.2250, 0.36392, 0.088035, 0.013225,	USATHOS62
999 MI	0.0014275, 0.00075943, 0.00025109, 0.00002001, 0.000003170, 0.0000004974, 0.00000009829,	USATMOS62
999 MI	0.0000002436, 0.000000001836);	USATMOS62
1000, MI	DECLARE DTMDH ARRAY(NSEGS) SCALAR SINGLE INITIAL(0065, .0000, .0010, .0028, .0000,0020, -	USATMOS62
1000 M	.0040, .0000, .0030, .0050, .0100, .0200);	USATMOS62
1001 M	DECLARE DTDH ARRAY(NSEGS) SCALAR SINGLE INITIAL(006500, .000000, .001000, .0028000, .000000000	USATMOS62
1001 M	,002000,004000, .000000, .002937, .0046980, .009249000, .018110};	USATMOS62
1002 Mİ	DECLARE SCALAR DOUBLE,	USATMOS62
1002 M	R_MAG, H, SPSI;	USATHOS62
1003 MI	DECLARE SCALAR SINGLE,	1 USATMOS62
1003 M	DH, EXPO, ALTADJ, ALTRATIO, GRAVRATIO, TEMPRATIO;	USATHOS62
C1 C1	DETERMINE ALTITUDE ABOVE FISHER ELLIPSOID	USATHOS62 USATHOS62 USATHOS62
E 1004 M	R_MAG = ABVAL(R);	I USATMOS62
E 1005 M	SPSI = (R / R_MAG) . POLE;	i I usatmose2

	۰	•		•
•	٦		-	

		•	
	·	· ·	
	SAZOHTAZU	fog	TOSE WI T
	SAROHTARU	IF (H < 90000) THEM	T IN SZOT
	SAZOMTARU	t hata ha + 32A8_t = 21.20mta 1	IS IN ZZOT
	SAZONTAZU 	A HUMTO HO + 32A8_MT = MT.20MTA I	IS TOST WI T
	4740121311		•
•	SAZOHTAZU	(3848_H - H = HQ	TOSO HI T
	CAPONTABIL I	. asea n - n - nu	. 111 0001
	SAZOMTAZU	END?	T W 6TOT
	SAZOHTAZU	EXILI	TOTE WI S
•	1	T+N	ls
	SAZONTAZU	IF (H < H_BASE) THEN	S IM TIOI
	SASONTARU	'N = I	1016 M 2
	SAZONTAZU	DO FOR TEMPORARY N = 1 TO NSEGS,	T IN STOT
	SARONTARU	t OITARVARƏ = OITARVARƏ	T IN PTOT
	i		13
	SARONTARU	H = GRAYARD = H	TOTE WI T
	S 3 2 OMTARU	IF (H < 90000) THEN	T IM STOT
	SAZONTAZU	GRAVARTIO = RO \ (RO + 1);	T IN TIOT
	7000111400 1	100	IN OTOT
	SAZONTAZU		
	SAZONTARU	EFRE VILLE OF THE PROPERTY OF	1010 H
	SAZONTARU	10 = OHR, SOHTA	IM 6001
	SASONTARU	IE (H > 120000) THEN	
	SASONTARU Sarontaru	TERMINE DENZITY, STATIC TEMPERATURE, AND MOLECULAR TEMPERATURE	ci DE
	SAZOMTAZU		Io
	SAZOMTAZU	413_01_M H = H.20MTA	
	SASOMTARU	2 H = (R_MAG / M_TO_FT) - A (1 - F) / SQRT(1 - F (2 - F) (1 - SPSI));	1000 H 13
	совкеит эсоре	SOURCE	TMT2
	87 14:13:86.85	TO 360-24.20 INTERMETRICS, INC. APRIL 27, 19	LS S/74H

HAL/S S	ID 360-24.20 INTERMETRICS, INC. APRIL 27, 1987 14	:13:28.85
STMT	SOURCE	CURRENT SCOPE
1025 M 2 S	IF (DTMOH = 0) THEN	UGATMOS62
1026 MI 2 SI	ATMOS.RHO = RHO_BASE EXP(-K2 DH / TM_BASE);	USATMOS62
1027 MI 2	ELSE	I USATMOS62
1027 M 2	DO;	USATMOS62
1028 M 3 S	EXPO = 1 + K2 / DTMDH ;	USATMOS62
E 1029 M 3 S	ATMOS.RHO = RHO_BASE (TM_BASE / ATMOS.TM) ;	USATMOS62
1030 M 2	END;	I USATMOS62
1031 M 1	END;	I USATMOS62
1032 MI 1	ELSE	USATHOS62
1032 M 1	00)	I USATMOS62
1033 MI 2 Si	ALTADJ = RO + H_BASE - TM_BASE / DTMOH;	USATHOS62
1034 H 2 S	ALTRATIO = (RO + H) / (RO + H_BASE); I	USATMOS62
1035 M 2 S	TEMPRATIO = TM_BASE / ATMOS.TM;	USATMOS62
E 1036 M 2 S	EXPO = (K2 / DTMDH) (RO / ALTADJ),	USATMOS62
1037 M 2 Si	ATMOS.RHO = RHO_BASE TEMPRATIO EXP((K2 / DTMDH) GRAVRATIO ALTRATIO (DH / ALTADJ))	USATHOS62
E 1037 M 2	EXPO (TEMPRATIO ALTRATIO) ;	I I USATMOS62
1038 M 1	END;	I USATMOS62
E 1039 M 1	ATMOS.RHO = ATMOS.RHO (KG_TO_LBH / (M_TO_FT G_TO_FPS2));	 USATMOS62
1040 M	FND	
1041 M CLO	SE LISATMOSA2.	USATMOS62
		I USATMOS62

INTERMETRICS, INC.

APRIL 27, 1987 14:13:28.85

STMT

SOURCE

CURRENT SCOPE

**** BLOCK SUMMARY ****

COMPOOL VARIABLES USED G_TO_FPS2

OUTER STRUCTURE TEMPLATES USED ATMOSPROP

APRIL 27, 1987 14:13:28.85

STMT

CURRENT SCOPE

| AERO_GUID

1042 MJ CLOSE AERO_GUID;

**** BLOCK SUMMARY ****

COMPOOL VARIABLES USED
G_LOAD, G_RUN_GUIDANCE, ALT_NAV, ALT_FREEZE_GUID, GUID_PASS_LIM

APRIL 27, 1987 14:13:28.85

**** COMPILATION LAYOUT ****

FSM_POOL: EXTERNAL COMPOOL:

IL_POOL: EXTERNAL COMPOOL;

AERO_GUID: PROCEDURE;

INITIAL_GUID: PROCEDURE;

FILTERS: PROCEDURE;

HEAT_RATE_CONTROL: PROCEDURE;

ATTITUDE_COMMAND: PROCEDURE;

CORRECTOR: PROCEDURE;

PREDICTOR: PROCEDURE;

INTEGRATOR: PROCEDURE;

EARTH_FIXED_FROM_REFERENCE: FUNCTION;

AERO_PARAMETERS: PROCEDURE;

LOOKUP: PROCEDURE;

USATMOS62: PROCEDURE:

(CROSS REFERENCE FLAG KEY: 4 = ASSIGNMENT, 2 = REFERENCE, 1 = SUBSCRIPT USE, 0 = DEFINITION)

DCL	NAME	TYPE	ATTRIBUTES & CROSS REFERENCE
526	ATMOSPROP	STRUCTURE TEMPLATE	ALIGNED XREF: 0 0526 2 0574 2 0582 2 0583 2 0584 2 0591
	ATTION NOT	STRUCTURE TEMPLATE	
			2 0592 2 0704 2 0734 2 0738 2 0747 2 0748 2 0764 2 0785
			2 0789 2 0793 2 0853 2 0869 2 0873 2 0874 2 0876 2 0880
			2 0882 2 0883 2 0884 2 0886 2 0888 2 0889 2 0890 2 0891
			2 0892 2 0893 2 0894 2 0896 2 0897 2 0982 2 1007 2 1009
			2 1021 2 1022 2 1026 2 1029 2 1035 2 1037 2 1039
526	н	1 SCALAR	SINGLE, ALIGNED XREF: 0 0526 2 0584 2 0738 2 0748 2 0789
			2 0793 2 0874 2 0880 2 0882 2 0883 2 0884 2 0886 2 0888
			2 0889 2 0890 2 0891 2 0892 2 0893 2 0894 4 1007
526	RHO	1 SCALAR	SINGLE, ALIGNED XREF: 0 0526 2 0591 2 0592 2 0764 2 0876
			4 1009 4 1026 4 1029 4 1037 6 1039
526	TS	1 SCALAR	SINGLE, ALIGNED XREF: 0 0526 2 0873 2 0896 2 0897 4 1022
526	TM	1 SCALAR	SINGLE, ALIGNED XREF: 0 0526 2 0869 4 1021 2 1029 2 1035
991		SCALAR	
	~	SCALAR	DOUBLE, ALIGNED, STATIC, CONSTANT XREF: 0 0991 2 0993
672	A_DRAG_MAG	SCALAR	2 1006
316	A_DRAG_NAG	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0572 4 0586 2 0587 2 0588
	4 4 TET 140		2 0589
	A_LIFT_MAG	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0573 4 0587 2 0588
	A_NAV	3 - VECTOR	DOUBLE, ALIGNED, INITIAL XREF: 0 0087 2 0586 2 0587
701	A_PRED	3 - VECTOR	DOUBLE, ALIGNED, STATIC XREF: 0 0701 4 0735 2 0741 4 0779
			2 0819 2 0821 2 0825 2 0827 2 0831 2 0833 2 0837
702	A_PRED_MAG	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0702 4 0741 2 0742 2 0743
810	ACCUM_ACCEL	3 - VECTOR	DOUBLE, ALIGNED, STATIC XREF: 0 0810 4 0819 6 0825 6 0831
			2 0837
811	ACCUM_VEL	3 - VECTOR	DOUBLE, ALIGNED, STATIC XREF: 0 0811 4 0818 6 0824 6 0830
	_	•	2 0836
751	AERO_ACCEL	3 - VECTOR	SINGLE, TEMPORARY XREF: 0 0751 4 0774 2 0779
	AERO_GUID	PROCEDURE	XREF: 0 0515 NOT REFERENCED
	AERO_PARAMETERS	PROCEDURE	XREF: 2 0583 2 0747 0 0851
	ALPHA	SCALAR	
,		COMEAN	SINGLE, ALIGNED, INPUT-PARM XREF: 0 0901 0 0902 2 0938 2 0939
352	ALPHA, CMD	SCALAR	
	ALPHA_DES		SINGLE, ALIGNED, INITIAL XREF: 0 0352 4 0553 4 0635 6 0645
510	ALFIIA_ULS	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0516 4 0551 2 0635 2 0668
601	ALPHA EI	004140	2 0672 2 0676 6 0693 6 0694
		SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0401 2 0551 2 0553
908	ALPHA_FRACT	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0908 4 0939 2 0949 2 0950
			2 0951 2 0952 2 0962 2 0963 2 0964 2 0965 2 0971 2 0972
			2 0973 2 0974
	ALPHA_MAX	SCALAR ·	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0553 2 0645 2 0694
909	ALPHA_MAX	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0909
			NOT REFERENCED
513	ALPHA_MIN	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0553 2 0645 2 0694
910	ALPHA_MIN	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0910
	=		NOT REFERENCED
74	ALPHA NAV	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0074 2 0584
	ALPHA PRED	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0703 4 0733 2 0748
	ALPHA_TRY	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0649 4 0668 4 0672 4 0676
,	·: · 		2 0733
901	ALT	SCALAR	
/01	n=1	JUALAN	SINGLE, ALIGNED, INPUT-PARM XREF: 0 0901 0 0903 2 0941
			2 0948

70.

HAL	/S STD 360-24.20	INTERMETRICS, INC	. APRIL 27, 1987 14:13:28.85
DCL	NAME	ТҮРЕ	ATTRIBUTES & CROSS REFERENCE
513	ALT_FREEZE_GUID	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0535
911	ALT_L	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0911 4 0948 2 0953
912	ALT_MAX	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0912 2 0914
	_		2 0948
913	ALT_MIN	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0913 2 0914
			2 0941 2 0948 2 0953
79	ALT NAV	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0079 2 0535 2 0625
914	ALT_RUN	SCALAR	
	ALT_TAEM	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0914 2 0953 SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0793
	ALT_TAEM_BIAS	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0738
	ALTADJ	SCALAR	
	ALTRATIO	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 1003 4 1033 2 1036 2 1037 SINGLE, ALIGNED, STATIC XREF: 0 1003 4 1034 2 1037
	ATMOS	STRUCTURE	
		- Thousand	ATMOSPROP-STRUCTURE, ALIGNED, ASSIGN-PARM XREF: 0 0981 0 0982 4 1007 4 1009 4 1021 4 1022 4 1026 6 1029 2 1035
			4 1037 6 1039
851	ATMOS	STRUCTURE	
			ATMOSPROP-STRUCTURE, ALIGNED, INPUT-PARM XREF: 0 0851 0 0853
		٥	2 0869 2 0873 2 0874 2 0876 2 0880 2 0882 2 0883 2 0884
		* •	2 0886 2 0888 2 0889 2 0890 2 0891 2 0892 2 0893 2 0894
574	ATMOS	STRUCTURE	2 0896 2 0897
		STROCTORE	ATMOSPROP-STRUCTURE, ALIGNED, STATIC XREF: 0 0574 4 0582
704	ATMOS	STRUCTURE	2 0583 2 0584 2 0591 2 0592
		STRUCTURE	ATMOSPROP-STRUCTURE, ALIGNED, STATIC XREF: 0 0704 4 0734
634	ATTITUDE_COMMAND	PROCEDURE	2 0738 2 0747 2 0748 2 0764 4 0785 2 0789 2 0793
	C_BAR	SCALAR	XREF: 2 0541 0 0634
	C PRIME	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0863 2 0876
901		SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0856 4 0897 2 0898
,,,		SCALAR	SINGLE, ALIGNED, ASSIGN-PARM XREF: 0 0901 0 0904 4 0979
922	CD_ALT	SCALAR ARRAY	NOT REFERENCED
,,,,	CD.,ALI	SCALAR ARRAY	ARRAY(2,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0935
937	CD MACH	SCALAR ARRAY	2 0951 2 0952
/	op_11.xc.11	SCALAR ARRAS	ARRAY(5,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0937
575	CD NOM	SCALAR	2 0973 2 0974
	CD PRED	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0575 4 0584 2 0585 2 0589
	CD VISC	SCALAR ARRAY	SINGLE, ALIGNED, STATIC XREF: 0 0705 4 0748 2 0749 2 0769
,,,,	CD_113C	SCALAR ARRAT	ARRAY(8,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0935
935	CD_1	CC41 4D	2 0964 2 0965
713	CD_I	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0915 4 0951 4 0964 4 0973
914	CD_2	CCALAD	2 0979
,10	CD_2	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0916 4 0952 4 0965 4 0974
901	CI	CCALAR	2 0979
701	CL	SCALAR	SINGLE, ALIGNED, ASSIGN-PARM XREF: 0 0901 0 0905 4 0978
072	C) ALT	001149 49944	NOT REFERENCED
724	CL_ALT	SCALAR ARRAY	ARRAY(2,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0932
E17	CL EST	22442	2 0949 2 0950
		SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0517 4 0593 2 0625
. 730	CL_MACH	SCALAR ARRAY	ARRAY(5,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0936
E74	CI NOM	004149	2 0971 2 0972
	CL_NOM	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0576 4 0584 2 0585 2 0593
	CL_PRED	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0706 4 0748 2 0749
724	CL_VISC	SCALAR ARRAY	ARRAY(8,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0934
017	CL 3	****	2 0962 2 0963
917	CL_1	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0917 4 0949 4 0962 4 0971
010	Cl 2	004140	2 0978
310	CL_2	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0918 4 0950 4 0963 4 0972
			2 0978

HAL	/S STD 360-24.20	INTERMETRICS, INC	. APRIL 27, 1987 14:13:28.85
DCL	NAME	TYPE	ATTRIBUTES & CROSS REFERENCE
843	CLAMBDA	SCALAR	DOUBLE, ALIGNED, STATIC XREF: 0 0843 4 0845 2 0847
	CORRECTOR	PROCEDURE	XREF: 2 0536 0 0648
	COS ALPHA	SCALAR	
	COSPHI_CMD	SCALAR	
	COSPHI_QDOT	SCALAR	SINGLE, TEMPORARY XREF: 0 0640 4 0641 6 0642 2 0643
510	COSFRIT_QUOT	SCALAR	SINGLE, ALIGNED, STATIC, INITIAL XREF: 0 0518 4 0630 4 0632
EO/	COCDUT 1	201112	2 0638 2 0641
	COSPHI_1	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0596 4 0628 2 0630
	COSPHI_2	SCALAR .	SINGLE, ALIGNED, STATIC XREF: 0 0597 4 0629 2 0630
	CPHI	SCALAR	SINGLE, TEMPORARY XREF: 0 0752 4 0767 2 0773
	CR_ERR	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0659 2 0682 4 0804
658	CR_ERROR	SCALAR ARRAY	ARRAY(3), SINGLE, ALIGNED, STATIC XREF: 0 0658 4 0682
			2 0686 2 0687 2 0689
	CRE	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0657 4 0689 2 0693 2 0695
655	DCRE_DA	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0655 4 0686 2 0690 2 0695
	DCRE_DP	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0656 4 0687 2 0690 2 0693
653	DDRE_DA	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0653 4 0684 2 0690 2 0695
654	DDRE_DP	SCALAR .	SINGLE, ALIGNED, STATIC XREF: 0 0654 4 0685 2 0690 2 0693
864	DEG R TO DEG K	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0864 2 0881
			2 0883 2 0885
5	DEG_TO_RAD	SCALAR	DOUBLE, ALIGNED, CONSTANT XREF: 0 0005 2 0006 2 0007
			2 0555 2 0556 2 0641 2 0766
650	DELTA_ALPHA	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0650 2 0672
		DUNEAR	2 0684 2 0686
651	DELTA_PHI	SCALAR	
031	DEC17_1112	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0651 2 0677
E10	DELTA_T_PRED	SCALAR	2 0685 2 0687
51,	DCC1A_1_FRED	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0519 4 0739 4 0743 4 0744
		•	6 0745 2 0787 2 0820 2 0821 2 0826 2 0827 2 0832 2 0833
F17	DELTA E DOED CATAL		2 0836 2 0837
	DELTA_T_PRED_GAIN	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0743
	DELTA_T_PRED_MAX	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0744 2 0745
	DELTA_T_PRED_MIN	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0739 2 0745
652	DETERM	SCALAR	SINGLE, ALIGNED, STATIC, INITIAL XREF: 0 0652 4 0690 2 0691
			2 0693 2 0695
1003	DH	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 1003 4 1020 2 1021 2 1022
			2 1026 2 1037
707	DOT	SCALAR	DOUBLE, ALIGNED, STATIC XREF: 0 0707 4 0801 2 0802 6 0803
			2 0804 4 0805 2 0806 6 0807 2 0808
663	DR_ERR	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0663 2 0681 4 0808
662	DR_ERROR	SCALAR ARRAY	ARRAY(3), SINGLE, ALIGNED, STATIC XREF: 0 0662 4 0681
	_		2 0684 2 0685 2 0688
753	DRAG_ACCEL	SCALAR	SINGLE, TEMPORARY XREF: 0 0753 4 0769 2 0770 2 0774
664		SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0664 4 0688 2 0693 2 0695
513	=	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0004 4 0008 2 0093 2 0095
1001		SCALAR ARRAY	
1001	0.00	SCALAR ARRAI	ARRAY(12), SINGLE, ALIGNED, STATIC, INITIAL XREF: 0 1001
1000	DTMDH	CCALAD ADDAY	2 1022
1000	OTUDA	SCALAR ARRAY	ARRAY(12), SINGLE, ALIGNED, STATIC, INITIAL XREF: C 1000
400	EARTH STUEN FROM REFERENCE	7 V 7 MITRIU FIRMTTON	2 1021 2 1025 2 1028 2 1033 2 1036 2 1037
	EARTH_FIXED_FROM_REFERENCE	3 X 3 MATRIX FUNCTION	DOUBLE XREF: 0 0699 2 0796
	EARTH_FLAT	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0463 2 0557
	EARTH_J2	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0464 2 0777
	EARTH_MU	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0465 2 0778
466	EARTH_POLE	3 - VECTOR	DOUBLE, ALIGNED, INITIAL XREF: 0 0466 2 0582 2 0734 2 0776
			2 0777 2 0785
	EARTH_R ,	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0467 2 0777 2 0804 2 0808
468	EARTH_RATE	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0468 2 0845 2 0846

HAL	/S STD 360-24.20	INTERMETRICS, . I	N C . APRIL 27, 1987 14:13:28.85
DCL	NAME	TYPE	ATTRIBUTES & CROSS REFERENCE
708	EF_FROM_REF	3 X 3 MATRIX	DOUBLE, ALIGNED, STATIC XREF: 0 0708 4 0796 2 0797 2 0798
	EF_FROM_REF_AT_EPOCH	3 X 3 MATRIX	DOUBLE, ALIGNED, STATIC XREF: 0.0520 4 0549 2 0847
	EF_TO_REF_AT_EPOCH	3 X 3 MATRIX	DOUBLE, ALIGNED, INITIAL XREF: 0 0308 2 0549
1003	EXPO	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 1003 4 1028 2 1029 4 1036 2 1037
992	F	SCALAR	DOUBLE, ALIGNED, STATIC, CONSTANT XREF: 0 0992 2 0993 2 1006
571	FILTERS	PROCEDURE	XREF: 2 0534 0 0571
	FIRST_PASS	BIT(1)	ALIGNED, STATIC, INITIAL XREF: 0 0598 2 0611 4 0613
	FLOW_REGIME	INTEGER	SINGLE, ALIGNED, STATIC XREF: 0 0921 4 0940 4 0942 4 0944
	_		4 0945 2 0946 Single, Aligned, Static XREF: 0 0920 4 0953 4 0966 4 0975
920	FRACT	SCALAR	2 0978 2 0979
11	FT_TO_NM	SCALAR	DOUBLE, ALIGNED, CONSTANT XREF: 0 0011 2 0012 2 0804 2 0808
82	G_LOAD	SCALAR	DOUBLE, ALIGNED, INITIAL XREF: 0 0082 2 0532
	G RUN GUIDANCE	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0532
	G_TO_FPS2	SCALAR	DOUBLE, ALIGNED, CONSTANT XREF: 0 0013 2 0014 2 0017 2 1039
865	GAMMA	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0865 2 0868
	GAMMA_VBAR	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0857 4 0887 4 0889 4 0891 4 0893 4 0895 2 0896
756	CDAY ACCEL	3 - VECTOR	DOUBLE, TEMPORARY XREF: 0 0754 4 0778 2 0779
	GRAV_ACCEL Gravratio	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 1003 4 1011 2 1013 6 1014
1003	OKATIKA120	CONEAR	2 1037
521	GUID_PASS	INTEGER	SINGLE, ALIGNED, STATIC XREF: 0 0521 2 0535 6 0537 2 0538 4 0539 4 0550
513	GUID_PASS_LIM	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0538
985		SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0985 2 0988
1002		SCALAR	DOUBLE, ALIGNED, STATIC XREF: 0 1002 4 1006 2 1007 2 1008
2002			2 1011 2 1012 6 1013 2 1017 2 1020 2 1023 2 1034
526	н ,	SCALAR	**** SEE STRUCTURE TEMPLATE ATMOSPROP
	H_BASE	SCALAR ARRAY	ARRAY(13), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0996
	-		2 1017 2 1020 2 1033 2 1034
595	HEAT_RATE_CONTROL	PROCEDURE	XREF: 2 0540 0 0595
513	HS	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0614
	HS_NORM_PRED	SCALAR	SINGLE, TEMPORARY XREF: 0 0755 NOT USED
599	HS_2	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0599 4 0614 2 0615 2 0625
665		INTEGER	SINGLE, TEMPORARY XREF: 4 0665 2 0666 1 0681 1 0682
922	1	INTEGER	SINGLE, ALIGNED, STATIC XREF: 0 0922 4 0958 1 0962 1 0963
			1 0964 1 0965 1 0966 4 0970 1 0971 1 0972 1 0973 1 0974
			2 0975
994	I .	INTEGER	SINGLE, ALIGNED, STATIC XREF: 0 0994 4 1016 1 1020 1 1021 1 1022 1 1025 1 1026 1 1028 1 1029 1 1033 1 1034 1 1035
		7 1150700	1 1036 1 1037 DOUBLE, ALIGNED, STATIC XREF: 0 0709 4 0800 2 0801 2 0804
709	I_INPLANE	3 - VECTOR	DOUBLE, ALIGNED, STATIC XREF: 0 0709 4 0800 2 0801 2 0804 2 0805 2 0808
751	7 147	Z VECTOR	SINGLE, TEMPORARY XREF: 0 0756 4 0772 2 0773
	I_LAT	3 - VECTOR 3 - VECTOR	SINGLE, TEMPORARY XREF: 0 0757 4 0773 2 0774
	I_LIFT	3 - VECTOR	DOUBLE, ALIGHED, STATIC XREF: 0 0710 4 0799 2 0800 2 0804
/10	I_NORMAL	3 - VECTOR	2 0808
Egg	I_TARGET_EF	3 - VECTOR ,	DOUBLE, ALIGNED, STATIC XREF: 0 0522 4 0567 2 0800 2 0801
252	*_10//0F1_F1	3 - VECTOR ,	2 0804
758	I_VEL	3 - VECTOR	SINGLE, TEMPORARY XREF: 0 0758 4 0771 2 0772 2 0773

HAL	/S STD 360-24.20	INTERMETRICS, INC	. APRIL 27, 1987 14:13:28.85
DCL	NAME	TYPE	ATTRIBUTES & CROSS REFERENCE
542	INITIAL_GUID	PROCEDURE	XREF: 2 0529 0 0542
	INITIALIZE_GUIDANCE	BIT(1)	ALIGNED, STATIC, INITIAL XREF: 0 0523 2 0527 4 0530
	INTEG LOOP	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0711 4 0750 2 0814
	INTEGRATOR	PROCEDURE	XREF: 2 0780 0 0809
	IR_E	3 - VECTOR	DOUBLE, ALIGNED, STATIC XREF: 0 0712 4 0797 2 0799 2 0805
	*"_"	3 720761	2 0808
923	.1	INTEGER	SINGLE, ALIGNED, STATIC XREF: 0 0923 4 0938 1 0949 1 0950
,	•	1111 LOEK	1 0951 1 0952 1 0962 1 0963 1 0964 1 0965 1 0971 1 0972
			1 0973 1 0974
957	ĸ	INTEGER	SINGLE, TEMPORARY XREF: 4 0957 2 0958 1 0959
	K_LOD_NAV	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0084 4 0569 6 0590 2 0593
•	K_EOD_IMY	JUALAR	2 0749
400	K_QDOT	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0600 4 0626 2 0629
	K_QDOT_RATE	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0601 4 0627 2 0628
	K_RHO_FILTER_GAIN	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0472 2 0591
	K_RHO_NAV	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0083 4 0568 6 0591 2 0592
03	K_KIIO_IVAY	SCALAR	2 0764
000	KG TO LBM	SCALAR	
			SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0990 2 1039
	KG_TO_SLUG K1_GAIN	SCALAR SCALAR	DOUBLE, ALIGNED, CONSTANT XREF: 0 0018 2 0873
			SINGLE, ALIGNED, STATIC XREF: 0 0602 4 0615 2 0625
	K1_QDOT	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0603 4 0625 2 0626 2 0627
988	K2	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0988 2 1026
6.7E	LOVER B STITER CATA	CCALAD	2 1028 2 1036 2 1037
	L_OVER_D_FILTER_GAIN	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0475 2 0590
	LAT	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0544 4 0556 6 0557 2 0558
	LAT_TARGET	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0556
	LIFT_ACCEL	SCALAR	SINGLE, TEMPORARY XREF: 0 0759 4 0770 2 0774
	LOD_MEAS	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0577 4 0588 2 0590
	LOD_NOM	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0578 4 0585 2 0590
	LOD_PRED	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0713 4 0749 2 0770
	LONG	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0545 4 0555 2 0562 2 0566
	LONG_TARGET	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0555
	LOOKUP		XREF: 2 0584 2 0748 0 0901
10	M_TO_FT	SCALAR	DOUBLE, ALIGNED, CONSTANT XREF: 0 0010 2 0013 2 0869
			2 0873
989	M_TO_FT	SCALAR	DOUBLE, ALIGNED, STATIC, CONSTANT XREF: 0 0989 2 1006
	***		ž 1007 2 1039
901	MACH	SCALAR	SINGLE, ALIGNED, INPUT-PARM XREF: 0 0901 0 0906 2 0943
			2 0969
	MACH	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0579 4 0583 2 0584
851	MACH	SCALAR	SINGLE, ALIGNED, ASSIGN-PARM XREF: 0 0851 0 0854 4 0871
			4 0872 2 0896 2 0898
	MACH_L	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0924 4 0969 2 0970 2 0975
925	MACH_MAX	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0925 2 0943
			2 0969
	MACH_MIN	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0926 2 0969
	MACH_PRED	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0714 4 0747 2 0748
	MASS_NAV	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0314 2 0589 2 0615 2 0769
	MOLE_HT_ZERO	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0867 2 0868
986		SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0986 2 0988
1015		INTEGER	SINGLE, TEMPORARY XREF: 4 1015 2 1016 1 1017
995	NSEGS	INTEGER	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0995 2 0996
			2 0997 2 0998 2 0999 2 1000 2 1001 2 1015
	OMEGA_QDOT	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0616 2 0617
604	OMEGA_QDOT_SQUARED	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0604 4 0616 2 0626
			· · · · · · · · · · · · · · · · · · ·

		•	
HAL	/S STD 360-24.20	INTERMETRICS, INC	. APRIL 27, 1987 14:13:28.85
DCL	NAME	TYPE	ATTRIBUTES & CROSS REFERENCE
812	ORIG_POS	3 - VECTOR	DOUBLE, ALIGNED, STATIC XREF: 0 0812 4 0816 2 0820 2 0826 2 0832 2 0836
813	ORIG_VEL	3 - VECTOR	DOUBLE, ALIGNED, STATIC XREF: 0 0813 4 0817 2 0821 2 0827 2 0833 2 0837
25	PHI_CMD	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0025 4 0554 4 0636 6 0637 2 0641 6 0643 6 0646
524	PHI_DES	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0524 4 0552 2 0636 2 0669 2 0673 2 0677 6 0695 6 0696
513	PHI_DES_MAX	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0696
402	PHI_EI	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0402 2 0552 2 0554
513	PHI_MAX	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0554 2 0637 2 0646 2 0766
715	PHI_PRED	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0715 4 0765 6 0766 2 0767 2 0768
660	PHI_TRY	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0660 4 0669 4 0673 4 0677 2 0765
981	POLE	3 - VECTOR	DOUBLE, ALIGNED, INPUT-PARM XREF: 0 0981 0 0984 2 1005
	PRED_EXIT	BIT(1)	ALIGNED, STATIC XREF: 0 0661 4 0790 2 0791
	PREDICTOR	PROCEDURE	XREF: 2 0680 0 0697 SINGLE, ALTGNED, STATIC XREF: 0 0605 4 0624 2 0628 2 0629
605	QBAR	SCALAR	
606	TOGP	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0606 4 0610 2 0620 2 0621 2 0622 2 0629
	QDOT_LIMIT	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0622 2 0629
	QDOT_PAST	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0607 2 0620 4 0621
	QDOT_RATE	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0608 4 0618 4 0620 2 0628
981		3 - VECTOR	DOUBLE, ALIGNED, INPUT-PARM XREF: 0 0981 0 0983 2 1004 2 1005
	R_MAG	SCALAR	DOUBLE, ALIGNED, STATIC XREF: 0 1002 4 1004 2 1005 2 1006
	R_MAG_PRED	SCALAR	DOUBLE, ALIGNED, STATIC XREF: 0 0717 4 0728 2 0775 2 0777 2 0778 4 0781 2 0788
	R_NAV	3 - VECTOR	DOUBLE, ALIGNED, INITIAL XREF: 0 0086 2 0582 2 0727 DOUBLE, ALIGNED, STATIC XREF: 0 0716 4 0727 2 0728 2 0731
716	R_PRED	3 - VECTOR	DOUBLE, ALIGNED, STATIC XREF: 0 0716 4 0727 2 0728 2 0731 2 0734 2 0772 2 0775 2 0781 2 0783 2 0785 2 0788 2 0797 2 0798 2 0816 4 0820 4 0826 4 0832 4 0836
	RAD_TO_DEG	SCALAR	DOUBLE, ALIGNED, CONSTANT XREF: 0 0006 2 0643
	RDOT PRED	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0718 4 0788 2 0789
858	REYNOLDS_NUMBER	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0858 4 0875 4 0876 2 0877 2 0898
526	RHO	SCALAR	**** SEE STRUCTURE TEMPLATE ATMOSPROP
999	RHO_BASE	SCALAR ARRAY	ARRAY(13), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0999 2 1026 2 1029 2 1037
580	RHO_MEAS	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0580 4 0589 2 0591
525	RHO_NAV	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0525 4 0592 2 0610 2 0624
760		SCALAR	SINGLE, TEMPORARY XREF: 0 0760 4 0764 2 0769
513	RHO_SL	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0615
987	RR .	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0987 2 0988
993	RO	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0993 2 1011 2 1033 2 1034 2 1036
478	S_REF	SCALAR	SINGLE, ALIGNED, INITIAL XREF: 0 0478 2 0589 2 0615 2 0769
927	SIN_ALPHA	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0927 NOT USED
	SLAMBDA	SCALAR	DOUBLE, ALIGNED, STATIC XREF: 0 0844 4 0846 2 0847
859	SPEED_OF_SOUND	SCALAR	SINGLE, ALIGNED, STATIC XREF: 0 0859 4 0869 2 0870 2 0872
868	SPEED_OF_SOUND_CONST	SCALAR	SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0868 2 0869
	SPHI	SCALAR	SINGLE, TEMPORARY XREF: 0 0761 4 0768 2 0773
1002	SPSI	SCALAR	DOUBLE, ALIGNED, STATIC XREF: 0 1002 4 1005 2 1006

2 0946 3	6 0787 2 0796 2 0897 4 0883 4 0885 2 1037 XREF: 0 0997 NOT REFERENCED 2 0627
2	XREF: 0 0998 2 0846 6 0787 2 0796 2 0897 4 0883 4 0885 2 1037 XREF: 0 0997 NOT REFERENCED 2 0627 2 0776 6 0777
T_BASE	2 0846 6 0787 2 0796 2 0897 4 0883 2 1037 XREF: 0 0997 NOT REFERENCED 2 0627 2 0776 6 0777
T_EPOCH	6 0787 2 0796 2 0897 4 0883 4 0885 2 1037 XREF: 0 0997 NOT REFERENCED 2 0627 2 0776 6 0777
22 T_GMT	6 0787 2 0796 2 0897 4 0883 4 0885 2 1037 XREF: 0 0997 NOT REFERENCED 2 0627 2 0776 6 0777
T-PRED	2 0897 4 0883 4 0885 2 1037 XREF: 0 0997 NOT REFERENCED 2 0627 2 0776 6 0777
860 T_PRIME SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0860 4 0896 861 T_MALL SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0860 4 0896 1 T_MALL SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0860 4 0896 1 003 TEMPRATIO SCALAR SINGLE, ALIGNED, STATIC XREF: 0 1003 4 1035 736 TIME_INCREMENT INTEGER SINGLE, TEMPORARY XREF: 4 0736 2 0737 7526 TH SCALAR XREF: 0 0860 X 1035 737 7526 TH SCALAR XREF: 0 0860 X 1035 737 7526 TH SCALAR XREF: 0 0860 X 1035 737 7526 TH SCALAR XREF: 0 1003 4 1035 737 7526 TH SCALAR XREF: 0 1003 4 1035 737 7526 TH SCALAR XREF: 0 1003 4 1035 737 7526 TH SCALAR XREF: 0 1003 4 1035 737 7526 TH SCALAR XREF: 0 1003 4 1035 737 7526 TH SCALAR XREF: 0 1003 4 1035 737 7526 TH SCALAR XREF: 0 1003 4 1035 737 7526 TH SCALAR XREF: 0 1003 4 1035 737 7526 TH SCALAR XREF: 0 1003 4 1035 737 7526 TH SCALAR XREF: 0 1003 4 1035 737 7526 TH SCALAR XREF: 0 1003 4 1035 737 7526 TH SCALAR XREF: 0 1003 4 1035 737 7526 TH SCALAR XREF: 0 1003 4 1035 737 7526 TH SCALAR XREF: 0 1003 4 1035 737 7526 TH SCALAR XREF: 0 1003 4 1035 737 7526 TH SCALAR XREF: 0 1005 1 100	2 0897 4 0883 4 0885 2 1037 XREF: 0 0997 NOT REFERENCED 2 0627 2 0776 6 0777
SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0861 4 0881	2 1037 XREF: 0 0997 NOT REFERENCED 2 0627 2 0776 6 0777
TIME_INCREMENT	XREF: 0 0997 NOT REFERENCED 2 0627 2 0776 6 0777
SCALAR	NOT REFERENCED 2 0627 2 0776 6 0777
SCALAR	NOT REFERENCED 2 0627 2 0776 6 0777
2 1021 2 1026 2 1029 2 1033 2 1035 Total_time_steps	NOT REFERENCED 2 0627 2 0776 6 0777
TOTAL_TIME_STEPS	2 0627 2 0776 6 0777
SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0609 4 0617	2 0776 6 0777
Total	2 0776 6 0777
2 0778 2 0778 3	
981 USATMOS62 PROCEDURE XREF: 2 0582 2 0734 2 0785 0 0981 901 V_BAR SCALAR SINGLE, ALIGNED, INPUT-PARM XREF: 0 0901 851 V_BAR SCALAR SINGLE, ALIGNED, ASSIGN-PARM XREF: 0 0961 8581 V_BAR SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0501 4 0563 928 V_BAR L SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0928 4 0956 929 V_BAR_MAX SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0928 4 0956 929 V_BAR_MIN SCALAR SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0700 4 0747 930 V_BAR_MIN SCALAR SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0720 4 0747 931 V_BAR_TABLE SCALAR SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0720 4 0747 931 V_BAR_TABLE SCALAR SINGLE, ALIGNED, STATIC, CONSTANT 2 0959 2 0966 513 V_FINAL_MAG SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0636 513 V_MAG_CHANGE SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0636 513 V_MAG_CHANGE SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 093 2 07626 721 V_MAG_PRED SCALAR DOUBLE, ALIGNED, INITIAL XREF: 0 093 2 0729 94 V_NAV 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0994 2 0636 722 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0994 2 0636 722 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0722 4 0729 94 V_NAV_MAG SCALAR DOUBLE, ALIGNED, INITIAL XREF: 0 0722 4 0729 94 V_NAV_MAG SCALAR DOUBLE, ALIGNED, INITIAL XREF: 0 0994 2 0636 722 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0994 2 0636 722 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0994 2 0636 722 V_PRED 3 - OO994 2 0789 2 0789 2 09798 2 097	0 0866 2 0868
901 V_BAR SCALAR SINGLE, ALIGNED, INPUT-PARM XREF: 0 0901 851 V_BAR SCALAR SINGLE, ALIGNED, ASSIGN-PARM XREF: 0 0901 851 V_BAR SCALAR SINGLE, ALIGNED, ASSIGN-PARM XREF: 0 0901 852 V_BAR SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0901 853 V_BAR SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0908 4 0956 854 V_BAR MAX SCALAR SINGLE, ALIGNED, STATIC CONSTANT XREF: 0 0908 4 0956 855 V_BAR MIN SCALAR SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0908 4 0909 856 V_BAR MIN SCALAR SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0908 4 0909 857 V_BAR MIN SCALAR SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0908 4 0909 858 V_BAR MIN SCALAR SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0909 1 0 0906 858 V_BAR MIN SCALAR SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0909 2 0906 859 V_BAR MIN SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0636 8513 V_FINAL MAG SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0636 8513 V_MAG CHANGE SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 0913 2 0636 8513 V_MAG PRED SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 0913 2 0636 8513 V_MAG PRED SCALAR DOUBLE, ALIGNED, INITIAL XREF: 0 0909 2 0720 95 V_NAV 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0909 2 0720 96 V_NAV MAG SCALAR DOUBLE, ALIGNED, INITIAL XREF: 0 0094 2 0636 852 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0913 2 0720 96 V_NAV MAG SCALAR DOUBLE, ALIGNED, INITIAL XREF: 0 0913 2 0720 97 V_NAV MAG SCALAR DOUBLE, ALIGNED, INITIAL XREF: 0 0915 2 0636 95 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0915 2 0636 95 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0915 2 0636 95 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0915 2 0636 95 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0720 4 0720 95 V_DRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0915 2 0636 95 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0915 2 0636 95 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0915 2 0636 95 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0915 2 0636 95 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL	
SCALAR SINGLE, ALIGNED, ASSIGN-PARM XREF: 0 0851	
SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0581 4 0583	0 0907 2 0956
928 V_BAR_L 929 V_BAR_HAX 929 V_BAR_HAX 929 V_BAR_HAX 929 V_BAR_HAX 929 V_BAR_HAX 929 V_BAR_HAX 920 V_BAR_HAX 920 V_BAR_HAX 920 V_BAR_HAX 920 V_BAR_HAX 920 V_BAR_HAX 920 V_BAR_HAX 921 V_BAR_HAX 921 V_BAR_TABLE 922 V_BAR_TABLE 923 V_BAR_TABLE 924 V_BAR_TABLE 925 V_BAR_TABLE 925 V_BAR_TABLE 926 SCALAR 927 V_BAR_TABLE 926 SCALAR 927 V_BAR_TABLE 927 V_HAG_HAXGE 928 SCALAR 928 SCALAR 929 V_HAG_HAXGE 929 SCALAR 929 V_HAG_HAXGE 930 V_HAG_HAXGE 930 V_HAG_HAXGE 930 V_HAG_HAXGE 930 V_NAV 930 V_NAV 930 V_NAV 930 V_NAV 930 V_NAV 930 V_NAV 930 V_NAV 930 V_NAV 930 V_NAV 930 V_NAV 940 V_NAV_MAG 950 SCALAR 950 SCA	0 0855 4 0878
929 V_BAR_MAX SCALAR SINGLE, ALIGNED, STATIC, CONSTANT XREF: 930 V_BAR_MIN SCALAR SINGLE, ALIGNED, STATIC, CONSTANT XREF: 970 V_BAR_PRED SCALAR SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0720 4 0747 931 V_BAR_TABLE SCALAR ARRAY ARRAY(8), SINGLE, ALIGNED, STATIC, CONSTANT 2 0759 2 0966	2 0584
930 V_BAR_MIN SCALAR SINGLE, ALIGNED, STATIC, CONSTANT XREF: 720 V_BAR_PRED SCALAR SINGLE, ALIGNED, STATIC, XREF: 0 0720 4 0747 931 V_BAR_TABLE SCALAR ARRAY ARRAY(8), SINGLE, ALIGNED, STATIC, CONSTANT 2 0959 2 0966 513 V_FINAL_MAG SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0636 513 V_MAG_CHANGE SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0636 721 V_MAG_PRED SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 0721 4 0730 93 V_NAV 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 093 2 0729 94 V_NAV_MAG SCALAR DOUBLE, ALIGNED, INITIAL XREF: 0 094 2 0636 722 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 094 2 0636 722 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0994 2 0636 722 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0722 4 0729 94 V_NAV_MAG SCALAR DOUBLE, ALIGNED, STATIC XREF: 0 0722 4 0729 95 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0798 2 0818	2 0959 2 0966
720 V_BAR_PRED SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0720 4 0747	0 0929 2 0956
931 V_BAR_TABLE SCALAR ARRAY 2 ARRAY(8), SINGLE, ALIGNED, STATIC, CONSTANT 2 0959 2 0966 513 V_FINAL_MAG SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0636 513 V_MAG_CHANGE SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0636 721 V_MAG_PRED SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 0721 4 0730 73 V_NAV 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0093 2 0729 94 V_NAV_MAG SCALAR DOUBLE, ALIGNED, INITIAL XREF: 0 0094 2 0636 722 V_PRED 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0722 4 0729 94 V_NAV_MAG SCALAR DOUBLE, ALIGNED, STATIC XREF: 0 0722 4 0729 95 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0722 9 0732 96 V_NAV_MAG SCALAR DOUBLE, ALIGNED, STATIC XREF: 0 0722 9 0732 97 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0722 9 0732 98 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0722 9 0732 99 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0722 9 0732 99 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0722 9 0732 99 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0722 9 0732 90 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0732 9 0732 90 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0732 9 0732 91 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0732 9 0732 92 0732 2 0733 2 0738 2 0738 2 0738 2 0738 2 0738 2 0738 2 0738	0 0930 2 0956
2 0959 2 0966 513 V_FINAL_MAG SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0636 513 V_MAG_CHANGE SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0636 721 V_MAG_PRED SCALAR DOUBLE, ALIGNED, STATIC XREF: 0 0721 4 0730 93 V_NAV 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0093 2 0729 94 V_NAV_MAG SCALAR DOUBLE, ALIGNED, INITIAL XREF: 0 0094 2 0636 722 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0722 4 0729 95 V_NAV_MAG SCALAR DOUBLE, ALIGNED, STATIC XREF: 0 0794 2 0636 722 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0792 2 0793 2 0798 2 0798 2 0917 2 0818	2 0748
513 V_MAG_CHANGE SCALAR SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0636 721 V_MAG_PRED SCALAR DOUBLE, ALIGNED, STATIC XREF: 0 0721 4 0730 93 V_NAV 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 093 2 0729 94 V_NAV_MAG SCALAR DOUBLE, ALIGNED, INITIAL XREF: 0 0994 2 0636 722 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0722 4 0729 2 0782 2 0783 2 0788 2 0788 2 0788 2 0917 2 0818	XREF: 0 0931
721 V_MAG_PRED	2 0765
93 V_NAV 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0093 2 0729 94 V_NAV_HAG SCALAR DOUBLE, ALIGNED, INITIAL XREF: 0 0094 2 0636 722 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0722 4 0729 2 0782 2 0783 2 0788 2 0788 2 0781 2 0818	2 0765
94 V_NAV_MAG SCALAR DOUBLE, ALIGNED, INITIAL XREF: 0 0094 2 0636 722 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0722 4 0729 2 0782 2 0783 2 0788 2 0798 2 0817 2 0818	2 0765 4 0782
722 V_PRED 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0722 4 0729 2 0782 2 0783 2 0788 2 0798 2 0817 2 0818	
2 0782 2 0783 2 0788 2 0798 2 0817 2 0818	
	2 0730 2 0731
2 0824 2 0826 4 0827 2 0830 2 0832 4 0833	
2 0876	0 Q852 2 0872
95 V_REL_MAG SCALAR DOUBLE, ALIGNED, INITIAL XREF: 0 0095 2 0583 2 0610 2 0624 2 0625	2 0586 2 0589
723 V_REL_MAG_PRED SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0723 4 0732 2 0771 4 0784	2 0747 2 0769
96 V_REL_NAV 3 - VECTOR DOUBLE, ALIGNED, INITIAL XREF: 0 0096 2 0586	
724 V_REL_PRED 3 - VECTOR SINGLE, ALIGNED, STATIC XREF: 0 0724 4 0731 4 0783 2 0784	2 0732 2 0771
862 VISCOSITY SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0862 4 0873	2 0874 2 0876
725 VR_E 3 - VECTOR DOUBLE, ALIGNED, STATIC XREF: 0 0725 4 0798	
480 WE_NAV 3 - VECTOR SINGLE, ALIGNED, INITIAL XREF: 0 0480 2 0731	2 0783 2 0798
546 X SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0546 4 0559 6 0562 2 0563 2 0567	2 0560 4 0561
SCALAR SINGLE, ALIGNED, STATIC XREF: 0 0547 4 0563	2 0546 4 0545

INTERMETRICS, INC.

APRIL 27, 1987 14:13:28.85

TYPE

ATTRIBUTES & CROSS REFERENCE

548 Z

SCALAR

6 0566 2 0567 SINGLE, ALIGNED, STATIC XREF: 0 0548 4 0558 2 0559 2 0563 2 0557 DOUBLE, TEMPORARY SINGLE, ALIGNED, INITIAL XREF: 0 0763 2 0677

763 Z_PRED 513 ZETA_QOOT SCALAR SCALAR

LIST OF REFERENCES

- Freeman, D.C., Powell, R.W., Naftel, J.C., and Wurster, K.E., "Definition of an Entry Research Vehicle", AIAA Paper 85-0969, AIAA 20th Thermophysics Conference, Williamsburg, Virginia, June 1985.
- Morth, R., Reentry Guidance for Apollo, MIT Document R-532, January 1966.
- Shuttle Level C FSSR, Part A, Entry Through Landing Guidance, STS 83-0001A, December 15, 1982.
- 4. Lerner, E.J., "Supercomputer in a Six-Inch Cube", *Aerospace America*, Vol. 4, No. 11, November 1986, pp. 13-14.
- 5. Brand, T.J., Brown, D.W., and Higgins, J.P., Space Shuttle G&N Equation Document No. 24 (Revision 2), Unified Powered Flight Guidance, CSDL C-4108, June 1974.
- Higgins, J.P., "An Aerobraking Guidance Concept for a Low L/D AOTV", CSDL Memo No. 10E-84-04, May 24, 1984.
- Young, J.D., Underwood, J.M., et al., "The Aerodynamic Challenges of the Design and Development of the Space Shuttle Orbiter", Space Shuttle Technical Conference, NASA CP-2342 Part 1, held at the Lyndon B. Johnson Space Center, Houston, Texas, June 28-30, 1983.

PRECEDING PAGE BLANK NOT FILMED

- 8. Terrestrial Environment (Climatic) Criteria Guidelines for Use in Aerospace Vehicle

 Development, 1982 Revision, NASA TM 82473, June 1982.
- Justus, C.G., Fletcher, G.R., Gramling, F.E., and Pace, W.B., The NASA/MSFC Global Reference Atmosphere Model MOD 3, (with Spherical Harmonic Wind Model), NASA Contractor Report 3256, March 1980.
- Findley, J.T., Kelly, G.M., and Troutman, P.A., Final Report Shuttle Derived Atmospheric Density Model, NASA Contractor Report 171824, November 1986.
- 11. Bryson, A.E., Mikami, K., and Battle, C.T., "Optimum Lateral Turns for a Re-Entry Glider", Aerospace Engineering, March, 1962, pp. 18-23.
- 12. Wagner, W.E., "Roll Modulation for Maximum Re-Entry Lateral Range", *Journal of Space-craft*, Vol. 2, No. 5, September-October 1965.
- Zondervan, K., Bauer, T., Betts, J., and Huffman, W., "Solving the Optimal Control Problem Using a Nonlinear Programming Technique Part 3: Optimal Shuttle Reentry Trajectories", AIAA Paper 84-2039, AIAA/AAS Astrodynamics Conference, Seattle, Washington, August 1984.
- Powell, R.W., Naftel, J.C., and Cunningham, M.J., "Performance Evaluation of an Entry Research Vehicle", AIAA Paper 86-0270, AIAA 24th Aerospace Sciences Meeting, Reno, Nevada, January 1986.
- 15. Program to Optimize Simulated Trajectories (POST) Volume I Formulation Manual, NASA CR-132689, April 1975.

- U.S. Standard Atmosphere, 1962, Prepared under the sponsorship of NASA, U.S. Air Force, and U.S. Weather Bureau, Published by the US Government Printing Office, 1962.
- 17: Battin, R.H., An Introduction to the Mathematics and Methods of Astrodynamics, forth-coming book, 1987.
- 18. Scott, C.D., et al., "The Aerothermodynamics and Thermal Protection System Challenges for an Aerobraking Orbital Transfer Vehicle", Presented at the NASA Symposium on Recent Advances in TPS and Structures for Future Space Transportation Systems, held on December 13-15, 1983.
- 19. Aeroassist Flight Experiment, AFESIM All-Digital Functional Simulator, Simulator Definition Documentation, Volume 1, CSDL-R-1951, March 27, 1987.
- Phillips, R.E., "Three Aspects of Covariance/Monte Carlo Analysis: Bias, Reducing Dimensionality and Systematically Choosing Error Vectors", CSDL Memo No. 10E-86-18, June 23, 1986.

