Introduction

In this note(s), I will work with a matrix A with m rows and n columns. A can be viewed as a function that maps a vector, \vec{v} , in \mathbb{R}^n to $A\vec{v}$ in \mathbb{R}^m . I have two, closely related, goals for this note concerning this matrix A. The first is to prove the Rank Nullity Theorem, N = Dim(Range(A)) + Dim(Nullspace(A)). And the second is to discus decomposing the domain of A (viewed as a function), \mathbb{R}^n , as the direct sum of the nullspace of A and any complementary subspace to it in \mathbb{R}^n . Note that for the second goal, one such complementary subspace to the nullspace is the rowspace, its orthogonal complement in \mathbb{R}^n .

Appendix: Linear Independence, Dependence, Redundancy, Nullspace

Let me start by reviewing the definition(s) of linear independence and dependence.

A set of vectors $\{a_1,a_2,...,a_n\}$ is linearly independent if the only way to form the zero vector, $\vec{0}$, by taking a linear combination of the them is when all the weights are 0. That is, $x_1\vec{a_1}+x_2\vec{a_2}+...+x_n\vec{a_n}=\vec{0}$ only when all the x_i are themselves 0. All the x_i being 0 is known as the trivial solution to this equation. Note, the above equation can be written in matrix form as $A\vec{x}=\vec{0}$ where A=

$$(a_1 \ a_2 \ \dots \ a_n)$$
 and $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$. Then, if the only solution to this equation is $x = \vec{0}$, $\{a_1, a_2, ..., a_n\}$ is

linearly independent. And matrix A has a trivial nullspace only containing the zero vector.

And if a set of vectors is not linearly independent, then it is linearly dependent. This means that there exists a nontrivial solution to $x_1\vec{a_1} + x_2\vec{a_2} + ... + x_n\vec{a_n} = \vec{0}$.

An upshot is of this is that at least one of the a_i can be expressed as a linear combination of the remaining vectors. To see this for a set of linearly independent vectors, consider the nontrivial

solution,
$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
. At least one of the x_i is not 0 so from $x_1 \vec{a_1} + x_2 \vec{a_2} + \ldots + x_n \overrightarrow{a_n} = \vec{0}$,

$$x_i \vec{a_i} = \sum_{i \neq i} -x_j \vec{a_j}$$

$$\vec{a_i} = \sum_{j \neq i} - \left(\frac{x_j}{x_i}\right) \vec{a_j}$$

Another upshot is that the matrix A, again formed by concatenating the a_i , has a nontrivial nullspace. Since $A\vec{x}=\vec{0}$ for a non-trivial \vec{x} , the nullspace of A contains that non-zero \vec{x} at the very least. Moreover, the nullspace contains all scalar multiples of \vec{x} as well, $\mathrm{span}(\vec{x})$ or $k\vec{x}$. I can show this by taking the equation, $x_1\vec{a_1}+x_2\vec{a_2}+\ldots+x_n\overrightarrow{a_n}=\vec{0}$, and multiplying both sides by k to get $kx_1\vec{a_1}+kx_2\vec{a_2}+\ldots+kx_n\overrightarrow{a_n}=\vec{0}$. $k\vec{0}=\vec{0}$ and thus $k\vec{x}$ also satisfies the equation $A(k\vec{x})=\vec{0}$.

Linear Independence And Uniqueness

Say I have 2 vectors $\vec{a_1}$ and $\vec{a_2}$ that are linearly independent. Then I will show that $A\vec{x} = \vec{b}$ has exactly one solution. If $\vec{b} = \vec{0}$, this is evident by the definition of linear independence, as the solution is $\vec{x} = \vec{0}$.

Suppose for contradiction that $A\vec{x} = \vec{b}$ has two solutions, \vec{u} and \vec{v} where $\vec{u} \neq \vec{v}$, then:

$$A\vec{u} = A\vec{v} \Rightarrow A\vec{u} - A\vec{v} = \vec{0} \Rightarrow A(\vec{u} - \vec{v}) = 0$$

But this means

Axler proof

Key idea: Redundancy and NullSpace Where last implication follows from linearity. So if $\vec{u} \neq \vec{v}$, I have found a non-trivial vector in the nullspace of A, $\vec{u} - \vec{v}$.