Расчет свойств потока флюидов при сепарации части свободного газа из потока

Это описание содержит один из разделов руководства пользователя (мануала) к Unifloc 7.26 VBA. Полную версию мануала можно найти в репозитории https://github.com/unifloc/unifloc_vba.

Глава 1. PVT свойства флюидов

1.1. Преобразования потоков флюидов

1.1.1. PVT mod separate gas - сепарация части свободного газа из потока

Функция PVT_mod_separate_gas описывает процесс сепарации свободного газа из потока, например на приёме УЭЦН или в газосепараторе. После отделения части свободного газа из потока, свойства потока по прежнему могут быть описаны в рамках модели нелетучей нефти, но с несколько модифицированными параметрами, учитывающими изменение фазового состава. Функция PVT mod separate gas как раз рассчитывает такие параметры.

Алгоритм модификации параметров потока сводится к снижению газового фактора и расхода свободного газа, что удаляет газ из потока. При необходимости проводится корректировка давления насыщения P_b , объёмного коэффициента при давлении насыщения B_{ob} и вязкости при давлении насыщения μ_{ob} .

Как правило, сепарация газа из потока проводится при относительно низком давлении, например при давлении на приёме насоса. Для потока в трубах предполагается, что в каждый момент времени все фазы потока находятся в термодинамическом равновесии, что позволяет применять корреляции для нелетучей нефти. Однако при поступлении частично дегазированного потока в насос, давление в нем резко повышается на значительную величину (для центробежного насоса с производительностью 150 м³/сут, время прохождения потоком через одну ступень составляет около 0.02 сек [1], таким образом через ЭЦН с 400 ступеней поток будет двигаться порядка 10 сек. При этом давление может повыситься на величину порядка 200 атм). За такое время свободный газ оставшийся в потоке может не успеть достичь

термодинамического равновесия с нефтью, или другими слова может не успеть полностью раствориться. В работе Игревского В.И. [1] для учёта этого эффекта вводится коэффициент фазной неравновесности K_f

$$K_f = \frac{V_{sol}}{V_{eq}} = \frac{Q_{g.sol}}{Q_{g.eq}}$$

где V_{sol} - объем газа который растворится в нефти при движении через ЭЦН, V_{sol} - объем газа который растворился бы в нефти при движении через ЭЦН при достижении термодинамического равновесия.

Величина K_f зависит среди прочих параметров от дисперсности потока (размера пузырьков газа), и объёмного газосодержания. Для грубодисперсных смесей газ - вода можно принять $K_f = 0.2$, для тонкодисперсных от $K_f = 0.7$ до $K_f = 1$. Для газонефтяных смесей можно считать $K_f = 1$, то есть весь газ успевает раствориться в нефти при движении через ЭЦН. Это же предположении может быть использовано при движении газонефтяной смеси через трубы (скорость движения меньше в 5 - 10 раз в НКТ по сравнению с ЭЦН).

Для оценки влияния фазной неравновесности нефти на параметры многофазного потока при сепарации газа из потока можно использовать параметр gas goes into solution, который определяет значение K_f

При условии $K_f=0$ – газ выделившийся в свободное состояние не растворяется обратно в нефти, при $K_f=1$ – весь газ может раствориться при повышении давления.

Новый газовый фактор и расход свободного газа, после сепарации газа можно найти из условия

$$r_p^{new} = r_p - (r_p - r_s) k_{sep} \tag{1}$$

$$q_{gas}^{new} = q_{gas}(1 - k_{sep}) \tag{2}$$

Максимально возможное значение газосодержания при повышении давления можно найти из выражения

$$r_s^{max} = r_s + (r_p - r_s)(1 - k_{sep}) * K_f$$
 (3)

При повышении давления часть газа может раствориться в нефти, что можно описать найдя величины P_b^{new} , B_{ob}^{new} , μ_{ob}^{new} с учетом максимально достижимого значения газосодержания (3).

$$P_b^{new} = P_b(r_s^{max})$$

$$B_{ob}^{new} = B_{ob}(r_s^{max})$$

$$\mu_{ob}^{new} = \mu_{ob}(r_s^{max})$$

где соответствующие зависимости $P_b(r_s)$, $B_o(r_s)$, $\mu_o(r_s)$ определяются в соответствии с заданным набором корреляций.

Рассмотрим пример 1 преобразования свойств потока флюида для следующего набора параметров: параметры сепарации: $k_{sep}=0.5$, $p_{sep}=50$ атма, $t_{sep}=90$ С , $K_f=0$.

Таблица 1 — Исходные данные и результаты расчёта модификации флюида после частичной сепарации свободного газа. Пример 1, $K_f=0$ — газ не растворяется при повышении давления.

Параметр	Исходные значения	Модифицированные
γ_g	0.9	0.9
γ_o	0.9	0.9
r_{sb} , ${ m M}^3/{ m M}^3$	80	25
P_b , атма	130	50
T_{res} , C	90	90
B_{ob} , ${ m M}^3/{ m M}^3$	1.2	1.09
$\mu_{ob},$ c Π	1	1.96
$Q_{gas\ free},{ m M}^3/{ m cyr}$	1000	500
Q_{liq} , м 3 /сут	15	15
f_w , %	1	1
$r_p, \mathbf{m}^3/\mathbf{m}^3$	80	52

Зависимости свойств флюида от давления для примера 1 приведены на рисунке 1.

Из приведённых рисунков видно, что свойства нефти при давлении ниже давления сепарации не изменились, а новое давление насыщения показывает, что при повышении давления газ не будет растворяться в нефти. При этом значения параметров потока жидкости $Q_{liq},\,f_w$ не изменяются.

При увеличении коэффициента неравновесности $K_f=0.9$ картина изменится - эффективное значение давления насыщения нефти вырастет, что позволит части

Рис. 1 — Зависимость параметров флюида от давления до и после сепарации части свободного газа. Пример 1, $K_f = 0$ – газ не растворяется при повышении давления

газа раствориться. Ниже приводится пример 2, где также для наглядности изменён набор корреляций для следующего набора параметров: $k_{sep}=0.5$, $p_{sep}=50$ атма, $t_{sep}=90$ С , $K_f=0.9$. Результаты расчета приведены в таблице 2 и на рисунке 2.

Следует отметить, что на величину эффективного значения давления насыщения может значительно влиять выбор набора корреляций для расчёта PVT свойств, в частности корреляции для зависимости давления насыщения от газосодержания при давлении насыщения.

Таблица 2 — Исходные данные и результаты расчёта модификации флюида после частичной сепарации свободного газа. Пример 2, $K_f = 0.9$ — газ частично растворяется при повышении давления.

Параметр	Исходные значения	Модифицированные
γ_g	0.9	0.9
γ_o	0.9	0.9
r_{sb} , ${ m M}^3/{ m M}^3$	80	61
P_b , атма	130	84
T_{res} , C	90	90
B_{ob} , ${ m M}^3/{ m M}^3$	1.2	1.16
$\mu_{ob},$ с Π	1	1.22
$Q_{gas\ free},{ m M}^3/{ m cyr}$	1000	500
Q_{liq} , м 3 /сут	15	15
f_w , %	1	1
r_p , $\mathbf{m}^3/\mathbf{m}^3$	80	63

Зависимости свойств флюида от давления для примера 2 приведены на рисунке 2.

Рис. 2 — Зависимость параметров флюида от давления до и после сепарации части свободного газа. Пример 2, $K_f=0.9$ — газ частично растворяется при повышении давления

Список литературы

1. *Игревский В*. Исследование влияния газовой фазы на характеристику многоступенчатого центробежного насоса при откачке газожидкостных смесей из скважин: дис. ... канд. тех. наук: 05.15.06. — М., 1977. — 190 с.