Abstract

This document describes the notational conventions we plan to follow for the tutorial slides.

1 Probability

- Probability densities are denoted by lower case letters and probability
 mass functions are denoted by upper case letters. Defaults: P and p are
 used for model densities, Q and q for approximations to the posterior or
 proposal distributions.
- Random variables whose outcomes are data are denoted by upper case Roman letters, while outcomes are denoted by the corresponding lower case letters. Defaults: X and x for observed data, Z and z for latent data and Y and y for data labels (observed or latent).
- The set of outcomes of a random variable X is denoted by \mathcal{X} . If we take Ω to be the event space, a random variable is thus a function $X:\Omega\to\mathcal{X}$.
- Random variables whose outcomes are parameters are denoted by upper case Greek letter while outcomes are denoted by the corresponding lower case letters. Defaults: Θ and θ for model parameters and Λ and λ for inference parameters.
- Non-random hyperparameters are denoted by lower case Greek letters from the beginning of the alphabet. Default: α .
- By default, all random variables are understood to be vectors.
- The expectation of a (function of) a random variable $X \sim p$ is denoted $\mathbb{E}_p[f(X)]$ by default or $\mathbb{E}[f(X)]$ when it is clear which distribution is used.
- The entropy of a random variable X is denoted by $\mathbb{H}(X)$.
- The relative entropy, or Kullback-Leibler divergence, from a distribution q to a distribution p is denoted as KL(q || p).
- The univariate normal distribution with mean μ and variance σ^2 is denoted as $\mathcal{N}(\mu, \sigma^2)$.
- The multivariate normal distribution with mean μ and covariance matrix Σ is denoted as $\mathcal{N}(\mu, \Sigma)$.

2 Linear Algebra

• Vectors are denoted by Roman lower case letters, Matrices (and higher-order tensors) are denoted by upper case Roman letters. To avoid the proliferation of letters, we use indeces whenever possible. For example, two weight matrices may be distinguished as W_{task1} and W_{task2} . The letter W is standardly used to denote weight matrices in neural networks.

- Matrix multiplication is denoted by \times or by writing to matrices next to each other. Element-wise multiplication (Hadamard product) is denoted by \odot .
- The norm of a vector x is denoted ||x|| and the Frobenius norm of a matrix W is similarly denoted ||W||. Unless otherwise indicated, the norm is understood to be the Euclidean or L_2 -norm.