Garbage Classification using PyTorch

Garbage segregation involves separating wastes according to how it's handled or processed. It's important for recycling as some materials are recyclable and others are not.

Garbage Bins

In this notebook we'll use PyTorch for classifying trash into various categories like metal, cardboard, etc.

Let us start by importing the libraries:

import os

import torch

import torchvision

from torch.utils.data import random_split

import torchvision.models as models

import torch.nn as nn

import torch.nn.functional as F

Let us see the classes present in the dataset:

data_dir = '/kaggle/input/garbage-classification/Garbage classification'

classes = os.listdir(data_dir)

print(classes)

['metal', 'paper', 'glass', 'trash', 'plastic', 'cardboard']

Transformations:

Now, let's apply transformations to the dataset and import it for use.

from torchvision.datasets import ImageFolder

import torchvision.transforms as transforms

transformations = transforms.Compose([transforms.Resize((256, 256)), transforms.ToTensor()])

```
dataset = ImageFolder(data_dir, transform = transformations)
Let's create a helper function to see the image and its corresponding label:
import matplotlib.pyplot as plt
%matplotlib inline
def show_sample(img, label):
  print("Label:", dataset.classes[label], "(Class No: "+ str(label) + ")")
  plt.imshow(img.permute(1, 2, 0))
img, label = dataset[12]
show_sample(img, label)
Label: cardboard (Class No: 0)
random_seed = 42
torch.manual_seed(random_seed)
<torch._C.Generator at 0x7f3e5cb22ef0>
We'll split the dataset into training, validation and test sets:
train_ds, val_ds, test_ds = random_split(dataset, [1593, 176, 758])
len(train_ds), len(val_ds), len(test_ds)
(1593, 176, 758)
from torch.utils.data.dataloader import DataLoader
batch size = 32
Now, we'll create training and validation dataloaders using DataLoader.
train_dl = DataLoader(train_ds, batch_size, shuffle = True, num_workers = 4, pin_memory = True)
val_dl = DataLoader(val_ds, batch_size*2, num_workers = 4, pin_memory = True)
This is a helper function to visualize batches:
```

from torchvision.utils import make_grid

```
for images, labels in dl:
    fig, ax = plt.subplots(figsize=(12, 6))
    ax.set_xticks([])
    ax.set_yticks([])
    ax.imshow(make_grid(images, nrow = 16).permute(1, 2, 0))
    break
show_batch(train_dl)
Model Base:
Let's create the model base:
def accuracy(outputs, labels):
  _, preds = torch.max(outputs, dim=1)
  return torch.tensor(torch.sum(preds == labels).item() / len(preds))
class ImageClassificationBase(nn.Module):
  def training_step(self, batch):
    images, labels = batch
    out = self(images)
                                # Generate predictions
    loss = F.cross_entropy(out, labels) # Calculate loss
    return loss
  def validation_step(self, batch):
    images, labels = batch
    out = self(images)
                                 # Generate predictions
    loss = F.cross_entropy(out, labels) # Calculate loss
    acc = accuracy(out, labels)
                                     # Calculate accuracy
    return {'val_loss': loss.detach(), 'val_acc': acc}
  def validation_epoch_end(self, outputs):
```

def show_batch(dl):

```
batch_losses = [x['val_loss'] for x in outputs]
    epoch_loss = torch.stack(batch_losses).mean() # Combine losses
    batch_accs = [x['val_acc'] for x in outputs]
    epoch_acc = torch.stack(batch_accs).mean() # Combine accuracies
    return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()}
  def epoch_end(self, epoch, result):
    print("Epoch {}: train_loss: {:.4f}, val_loss: {:.4f}, val_acc: {:.4f}".format(
      epoch+1, result['train_loss'], result['val_loss'], result['val_acc']))
We'll be using ResNet50 for classifying images:
class ResNet(ImageClassificationBase):
  def _init_(self):
    super()._init_()
    # Use a pretrained model
    self.network = models.resnet50(pretrained=True)
    # Replace last layer
    num_ftrs = self.network.fc.in_features
    self.network.fc = nn.Linear(num_ftrs, len(dataset.classes))
  def forward(self, xb):
    return torch.sigmoid(self.network(xb))
model = ResNet()
Downloading: "https://download.pytorch.org/models/resnet50-19c8e357.pth" to
/root/.cache/torch/checkpoints/resnet50-19c8e357.pth
Porting to GPU:
GPUs tend to perform faster calculations than CPU. Let's take this advantage and use GPU for
computation:
def get_default_device():
  """Pick GPU if available, else CPU"""
```

```
if torch.cuda.is_available():
    return torch.device('cuda')
  else:
    return torch.device('cpu')
def to_device(data, device):
  """Move tensor(s) to chosen device"""
  if isinstance(data, (list,tuple)):
    return [to_device(x, device) for x in data]
  return data.to(device, non_blocking=True)
class DeviceDataLoader():
  """Wrap a dataloader to move data to a device"""
  def _init_(self, dl, device):
    self.dl = dl
    self.device = device
  def _iter_(self):
    """Yield a batch of data after moving it to device"""
    for b in self.dl:
      yield to_device(b, self.device)
  def _len_(self):
    """Number of batches"""
    return len(self.dl)
device = get_default_device()
device
device(type='cuda')
train_dl = DeviceDataLoader(train_dl, device)
val_dl = DeviceDataLoader(val_dl, device)
to_device(model, device)
```

```
ResNet(
(network): ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel size=3, stride=2, padding=1, dilation=1, ceil mode=False)
  (layer1): Sequential(
   (0): Bottleneck(
    (conv1): Conv2d(64, 64, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (downsample): Sequential(
     (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
     (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
   )
   (1): Bottleneck(
    (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv3): Conv2d(64, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
   )
   (2): Bottleneck(
    (conv1): Conv2d(256, 64, kernel size=(1, 1), stride=(1, 1), bias=False)
```

```
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
)
)
(layer2): Sequential(
(0): Bottleneck(
  (conv1): Conv2d(256, 128, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (downsample): Sequential(
   (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
   (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
)
(1): Bottleneck(
  (conv1): Conv2d(512, 128, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(128, 512, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
)
```

```
(2): Bottleneck(
  (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(128, 512, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
)
(3): Bottleneck(
  (conv1): Conv2d(512, 128, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
)
(layer3): Sequential(
(0): Bottleneck(
  (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(256, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (downsample): Sequential(
   (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
   (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
```

)

```
)
)
(1): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
)
(2): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
)
(3): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
)
(4): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
```

```
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
)
(5): Bottleneck(
  (conv1): Conv2d(1024, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
)
)
(layer4): Sequential(
(0): Bottleneck(
  (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(512, 2048, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (downsample): Sequential(
   (0): Conv2d(1024, 2048, kernel size=(1, 1), stride=(2, 2), bias=False)
   (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
)
```

```
(1): Bottleneck(
    (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv3): Conv2d(512, 2048, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
   )
   (2): Bottleneck(
    (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
  )
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=2048, out_features=6, bias=True)
@torch.no grad()
def evaluate(model, val loader):
  model.eval()
  outputs = [model.validation step(batch) for batch in val loader]
  return model.validation epoch end(outputs)
def fit(epochs, Ir, model, train_loader, val_loader, opt_func=torch.optim.SGD):
  history = []
```

)

)

```
optimizer = opt_func(model.parameters(), lr)
  for epoch in range(epochs):
    # Training Phase
    model.train()
    train_losses = []
    for batch in train_loader:
      loss = model.training_step(batch)
      train_losses.append(loss)
      loss.backward()
      optimizer.step()
      optimizer.zero_grad()
    # Validation phase
    result = evaluate(model, val_loader)
    result['train_loss'] = torch.stack(train_losses).mean().item()
    model.epoch_end(epoch, result)
    history.append(result)
  return history
model = to_device(ResNet(), device)
evaluate(model, val_dl)
{'val_loss': 1.7893962860107422, 'val_acc': 0.1215277835726738}
Let's start training the model:
num_epochs = 8
opt func = torch.optim.Adam
Ir = 5.5e-5
history = fit(num_epochs, lr, model, train_dl, val_dl, opt_func)
Epoch 1: train_loss: 1.4692, val_loss: 1.2718, val_acc: 0.8281
Epoch 2: train_loss: 1.1825, val_loss: 1.1553, val_acc: 0.9375
Epoch 3: train_loss: 1.1019, val_loss: 1.1577, val_acc: 0.9045
Epoch 4: train_loss: 1.0721, val_loss: 1.1445, val_acc: 0.8976
```

```
Epoch 5: train_loss: 1.0640, val_loss: 1.1176, val_acc: 0.9375
Epoch 6: train_loss: 1.0580, val_loss: 1.1135, val_acc: 0.9427
Epoch 7: train_loss: 1.0564, val_loss: 1.1032, val_acc: 0.9549
Epoch 8: train_loss: 1.0576, val_loss: 1.1075, val_acc: 0.9514
def plot_accuracies(history):
  accuracies = [x['val_acc'] for x in history]
  plt.plot(accuracies, '-x')
  plt.xlabel('epoch')
  plt.ylabel('accuracy')
  plt.title('Accuracy vs. No. of epochs');
plot_accuracies(history)
def plot_losses(history):
  train_losses = [x.get('train_loss') for x in history]
  val_losses = [x['val_loss'] for x in history]
  plt.plot(train_losses, '-bx')
  plt.plot(val_losses, '-rx')
  plt.xlabel('epoch')
  plt.ylabel('loss')
  plt.legend(['Training', 'Validation'])
  plt.title('Loss vs. No. of epochs');
plot_losses(history)
def predict_image(img, model):
  # Convert to a batch of 1
  xb = to_device(img.unsqueeze(0), device)
  # Get predictions from model
  yb = model(xb)
  # Pick index with highest probability
  prob, preds = torch.max(yb, dim=1)
```

```
return dataset.classes[preds[0].item()]
Let us see the model's predictions on the test dataset:
img, label = test_ds[17]
plt.imshow(img.permute(1, 2, 0))
print('Label:', dataset.classes[label], ', Predicted:', predict image(img, model))
Label: metal, Predicted: metal
img, label = test_ds[23]
plt.imshow(img.permute(1, 2, 0))
print('Label:', dataset.classes[label], ', Predicted:', predict_image(img, model))
Label: glass, Predicted: glass
import urllib.request
urllib.request.urlretrieve("https://external-
content.duckduckgo.com/iu/?u=https%3A%2F%2Fengage.vic.gov.au%2Fapplication%2Ffiles%2F1415
%2F0596%2F9236%2FDSC 0026.JPG&f=1&nofb=1", "plastic.jpg")
urllib.request.urlretrieve("https://external-
content.duckduckgo.com/iu/?u=http%3A%2F%2Fi.ebayimg.com%2Fimages%2Fi%2F291536274730-
0-1%2Fs-l1000.jpg&f=1&nofb=1", "cardboard.jpg")
urllib.request.urlretrieve("https://external-
content.duckduckgo.com/iu/?u=https%3A%2F%2Ftse4.mm.bing.net%2Fth%3Fid%3DOIP.2F0uH6Bgu
QMctAYEJ-s-1gHaHb%26pid%3DApi&f=1", "cans.jpg")
urllib.request.urlretrieve("https://external-
content.duckduckgo.com/iu/?u=https%3A%2F%2Ftinytrashcan.com%2Fwp-
content%2Fuploads%2F2018%2F08%2Ftiny-trash-can-bulk-wine-bottle.jpg&f=1&nofb=1", "wine-
trash.jpg")
urllib.request.urlretrieve("http://ourauckland.aucklandcouncil.govt.nz/media/7418/38-94320.jpg",
"paper-trash.jpg")
('paper-trash.jpg', <http.client.HTTPMessage at 0x7f3e4c0aebd0>)
Let us load the model. You can load an external pre-trained model too!
loaded_model = model
This function takes the image's name and prints the predictions:
```

Retrieve the class label

```
from PIL import Image
from pathlib import Path

def predict_external_image(image_name):
    image = Image.open(Path('./' + image_name))

example_image = transformations(image)
    plt.imshow(example_image.permute(1, 2, 0))
    print("The image resembles", predict_image(example_image, loaded_model) + ".")

predict_external_image('cans.jpg')

The image resembles metal.

predict_external_image('cardboard.jpg')

The image resembles cardboard.
```