A Method for Monitoring the Variability in Nuclear Absorption Characteristics of Aviation Fuels

(NASI-1M-4077) A METECE FOR PONITORING THE VARIABILITY IN NUCLEAR ABSORPTION CHARACTERISTICS OF AVIATION HORIS (NASA)

CSCL 098

233-12234

Unclas G3/61 0167197

A Method for Monitoring the Variability in Nuclear Absorption Characteristics of Aviation Fuels

Danny R. Sprinkle Langley Research Center Hampton, Virginia

Chih-Ping Shen
Old Dominion University
Norfolk, Virginia

Scientific and Technical Information Division

		•

Abstract

A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.

Introduction

We have recently demonstrated (ref. 1) the feasibility of a nuclear gauging system for fuel quantity measurement onboard an aircraft. It is based on monitoring the number of photons arriving at a counting station located a predetermined distance from an Am²⁴¹ source capsule. Several such source capsule-counting station assemblies are judiciously located throughout the fuel tanks. When the entire pathlength between the source capsule and the counter station is occupied by the fuel, the number of surviving photons will be minimal. If, on the other hand, there is no fuel in the photon path, the number of surviving photons will be maximum. By combining the information about the counting rates and the geometrical locations of the source-counter assemblies in the tanks, a reliable measure of the total fuel content of the tank can be obtained at any time. This, of course, is true only if the quality of the fuel remains constant. Recently, the Airlines Electronic Engineering Committee (AEEC) has reported concern about the variability of aviation fuel characteristics as a function of the season and geographical origin (refs. 2, 3, and 4). The concern arises from variations in the fuel composition as well as the nature and amount of contaminants. In an effort to identify the degree of variability in fuel quality, we have set up a fuel characteristics monitoring system. This system and the computational procedure used to measure changes in the nuclear absorption coefficients of the fuel samples are described in this report.

Fuel Characteristics Monitoring System

The fuel characteristics monitoring system is made up of a highly collimated 10 μ Ci Am²⁴¹ (59.5 keV) gamma radiation source and a 2-indiameter \times 2-in. NaI(Tl) crystal mounted on a photomultiplier. The source and the counter assembly are separated by a 2-in-diameter \times 4-in. glass fuel cell. The number of photons arriving at the NaI(Tl) crystal depends on the quality of the fuel in the fuel cell.

$$I_x = I_o e^{-\mu x} + B$$

where

 I_x number of photons arriving at the NaI (Tl) crystal

number of photons incident on the fuel cell

i linear attenuation coefficient of the fuel

fuel path length (fuel cell length)

B background count (counts recorded in the absence of the source)

By using a well-characterized medium in the fuel cell—such as air or distilled water—the value of I_o can be determined from a measured value of I_x . Once I_o is determined for a fixed source-detector assembly, I_x becomes the critical measurable parameter in the fuel quality study. An independent measurement of the density of the test fuel, coupled with a value of linear attenuation coefficient determined from the preceding equation, then permits a direct computation of mass attenuation coefficient $(\mu/\rho, \text{cm}^2/\text{g})$ of the sample (where ρ is the density of the test fluid).

Computational Procedure

Basic description. A computer program for gamma radiation mass attenuation coefficient PGRMAC) has been written in MS-FORTRAN 77 Version 3.31 for personal computers with a fixed-disk system, using MS-DOS Version 3.3. The program requires 12 156 bytes of disk space for storage.

The program models the experimental procedure or calculating gamma ray attenuation coefficients in the test medium. The geometrical details of the est system are summarized in figure 1. Figure 2 is a photograph of the experimental system. As shown in igure 1, gamma rays have to pass through air, glass fuel cell walls, the test fluid, and a thin aluminum housing to reach the detector surface. The intensity number of photons) of gamma radiation arriving at the detector can be written as follows:

$$I_x = I_o \left(e^{-\mu_{\text{air}} x_{\text{air}1}} e^{-\mu_{\text{glass}} x_{\text{glass}}} \right.$$

$$\times e^{-\mu_{\text{fluid}} x_{\text{fluid}}} e^{-\mu_{\text{al}} x_{\text{al}}} \right) + B \tag{1}$$

where

intensity of gamma radiation arriving at the detector

intensity of gamma radiation incident on fuel cell

 $\mu_{
m air}$ linear attenuation coefficient for air $\mu_{
m glass}$ linear attenuation coefficient for glass

 μ_{al} linear attenuation coefficient for aluminum

 μ_{fluid} linear attenuation coefficient for the test fluid

 x_{air1} air path length x_{glass} glass path length

 $x_{\rm al}$ aluminum path length

 x_{fluid} fluid path length

B background count (counts recorded in the absence of the source)

In equation (1), μ_{air} , $x_{\text{air}1}$, μ_{glass} , x_{glass} , μ_{al} , x_{al} , and x_{fluid} are known parameters (refs. 1, 5, 6, and 7). The intensities I_o and I_x need to be calculated or measured. To determine I_o , we can choose air as the reference medium. Equation (1), after subtracting the background count, can be written as follows:

$$I_x - B = I_o \left(e^{-\mu_{\mathrm{air}} x_{\mathrm{air}1}} e^{-\mu_{\mathrm{glass}} x_{\mathrm{glass}}} \right)$$

$$\times e^{-\mu_{\mathrm{fluid}} x_{\mathrm{fluid}}} e^{-\mu_{\mathrm{al}} x_{\mathrm{al}}}$$

$$I_{x(\text{air})} = I_o \left(e^{-\mu_{\text{air}} x_{\text{air}1}} e^{-\mu_{\text{glass}} x_{\text{glass}}} \right.$$

$$\times e^{-\mu_{\text{air}} x_{\text{fluid(air)}}} e^{-\mu_{\text{al}} x_{\text{al}}} \right)$$
 (2)

This gives the following relation for I_o :

$$I_{o} = I_{x}(\text{air}) \exp \left\{ \mu_{\text{air}} \left[x_{\text{air}1} + x_{\text{fluid}(\text{air})} \right] + \mu_{\text{glass}} x_{\text{glass}} + \mu_{\text{al}} x_{\text{al}} \right\}$$
(3)

$$I_o = I_x(\text{air}) \exp \left(\mu_{\text{air}} x_{\text{air}2} + \mu_{\text{glass}} x_{\text{glass}} + \mu_{\text{al}} x_{\text{al}}\right)$$
(4)

where

$$x_{\text{air}2} = x_{\text{air}1} + x_{\text{fluid(air)}}$$

Since $I_x(air)$ can be determined experimentally, I_0 is readily calculated from equation (4).

Once I_o has been obtained from equation (4), the program proceeds to compute the linear attenuation

coefficient of the test fluid from equation (1). When the glass cell is filled with the test fluid, equation (1) can be written as

$$I_x = I_o \exp \left(-\mu_{\text{air}} x_{\text{air}1} - \mu_{\text{glass}} x_{\text{glass}} - \mu_{\text{fluid}} x_{\text{fluid}} - \mu_{\text{al}} x_{\text{al}}\right)$$
(5)

Then

$$\mu_{\text{fluid}} = [\ln(I_o/I_x) - \mu_{\text{air}} x_{\text{air}1} - \mu_{\text{glass}} x_{\text{glass}} - \mu_{\text{al}} x_{\text{al}}]/x_{\text{fluid}}$$
(6)

The calculated value from equation (6) is the linear attenuation coefficient of the test fluid. Since the mass attenuation coefficient of the medium is of more fundamental importance than the linear attenuation coefficient, the density of the test fluid should be determined beforehand independently. In this program, the density of the test medium, measured experimentally, is read as an input value, and the mass attenuation coefficient is simply equal to the linear attenuation coefficient divided by the density, i.e.,

$$(\mu)_{\text{mass}} = \frac{(\mu)_{\text{linear}}}{\text{Density}} \tag{7}$$

The region of the gamma ray spectrum in which we are interested is selected, and it is marked as the region of interest (ROI) in figure 3. This includes most of the area under the total capture peak in the spectrum. The energy distribution of the gamma source forms a peak in the ROI, and the area under the peak in the ROI is interpreted as I_n for each medium in the program. The background counts within the ROI have to be determined and then subtracted from the full spectral counts in the ROI before it can be used to determine I_x or I_o . The ROI in this program is selected to be from channel 241 to channel 421. The peak falls at the middle of the region, as seen in figure 3; this range is quite adequate to monitor and analyze the characteristics of each test fluid.

Program input, output, and usage. The program input is made of two parts containing several parameters and related file names. The first part of the

input consists of 10 essential parameters that are assigned as constants in the program. They are listed below:

MUAIR=0.0002132	XGLS=0.680
MUGLS=0.46654	XAL = 0.079
MUAL=0.6639	XFUEL=10.062
XAIR1=5.080	LBEG=241
XAIR2=XAIR1 + XFLUID(AIR)	LEND=421

In the list above, MUAIR, MUGLS, and MUAL are the linear attenuation coefficients of air, glass, and aluminum, respectively (refs. 5, 6, and 7); XAIR, XGLS, XAL, and XFUEL are the air, glass, aluminum, and test medium pathlengths, respectively. The parameters LBEG and LEND correspond to the beginning and ending channel numbers for the ROI. The second part of the input is an eight-character string, which is read interactively from the keyboard, and which corresponds to two binary file names and one specific record in a data base. These two binary files, which are generated from the multichannel analyzer (MCA), refer to the gamma spectra through air and the test fluid taken on the same day. Each record in the data base has nine terms of information: density, temperature, type of medium, etc., in

The program generates four formatted output files. Two of them are data files, converted from the binary spectra through air and the test medium, that list channel numbers and counts in each of them as shown in tables I(a) and (b). Plots of the data in tables I(a) and (b) are shown in figures 4 and 5, respectively. From the data file of the air spectrum, the program calculates the value of I_o and determines the location of the centroid of the peak channel, MAXAIR, for air on that day. The program then computes I_x from the converted data file of the test fluid and determines the location of the peak centroid, MAXFLUID.

MAXAIR and MAXFLUID should coincide and should remain constant as long as the electronic system gain remains unchanged. Thus a determination of MAXAIR serves as a system calibration check. Once I_o and I_x have been determined by the above procedure, the linear attenuation coefficient of the test fluid (MUFLUID) can be obtained from equation (6). Subsequently, the mass attenuation coefficient (ATCFM) is readily calculable. The other two output files, the printout and monitor display, provide a record of the desired information about the test medium.

Program flowchart and listings. The program flowchart and listings are summarized in appendices A and B, respectively.

Test of the Sensitivity of the System

To test the sensitivity of the monitoring system, mass attenuation coefficient measurements were nade in common salt solutions in water containing different amounts of salt. The experimental results, along with the corresponding calculated values, are summarized in table II and illustrated in figure 6. It is apparent from the data shown in this table that the neasured and calculated values of the mass attenuation coefficients for different solutions agree within ±0.5 percent.

Applications

The program PGRMAC has been applied to the measurement of mass attenuation coefficients for several types of aviation fuel. These fuels have been investigated previously and can thus provide a good test of the validity of the computational procedure. Results for JP-4, JP-5, and Jet A are summarized in tables III(a), (b), and (c), respectively.

The results for the three types of fuel are further consolidated in table IV.

Concluding Remarks

A simple technique for monitoring nuclear absorption characteristics of aviation fuels, based on low energy gamma ray attenuation in the test fuels, has been developed. It has been tested on three types of aviation fuels. It is noted that the mass attenuation coefficients of the three fuels are almost equal, even though their linear attenuation coefficients and densities are slightly different. It would therefore appear that a simultaneous measurement of linear and mass attenuation coefficients and densities is a highly informative procedure. It is further noted that the values of mass attenuation coefficients calculated by using the present procedure agree with the previously reported values to within ±1 percent. It is therefore concluded that the procedures developed here are quite adequate for monitoring variability of ≥0.5 percent in fuel absorption characteristics as a function of the season and geographical points of origin of the fuels.

The international aviation consortium has agreed to provide us fuel samples from various parts of the world over the next 12 months. The linear and mass attenuation coefficients for 59.5 keV Am²⁴¹ gamma rays, as well as densities of the fuel samples, will be measured to assess the fuel composition variability.

NASA Langley Research Center Hampton, VA 23665-5225 September 26, 1988

Table I. Summary of Gamma Ray Spectrum

(a) Through air

Channel	T	Channel	1	Channel	1	T (1)	
number	Counts	number	Counts	number	Counts	Channel number	Count
1	0	56	6	111	24	166	Counts 195
2	0	57	7	112	19	167	176
3	0	58	11	113	30	168	169
4	0	59	9	114	12	169	178
5	0	60	6	115	19	170	163
6	0	61	5	116	19	171	175
7	0	62	2	117	30	172	155
8	0	63	4	118	34	173	157
9	0	64	7	119	25	174	171
10	0	65	9	120	32	175	182
11	0	66	7	121	43	176	173
12	0	67	5	122	34	177	164
13	0	68	6	123	45	178	181
14	0	69	0	124	27	179	140
15	0	70	0	125	30	180	155
16	0	71	3	126	56	181	151
17	0	72	9	127	40	182	153
18	0	73	11	128	44	183	128
19	0	74	0	129	39	184	147
20	0	75	8	130	50	185	122
21	0	76	2	131	61	186	141
22	0	77	1	132	61	187	121
23	0	78	0	133	78	188	113
24	0	79	1	134	72	189	110
25	0	80	6	135	80	190	93
26	0	81	1	136	80	191	99
27	0	82	15	137	61	192	89
28	0	83	5	138	72	193	104
29	0	84	5	139	92	194	81
30	0	85	9	140	86	195	74
31	0	86	15	141	101	196	87
32	0	87	0	142	89	197	55
33	0	88	8	143	125	198	71
34	0	89	1	144	120	199	54
35	0	90	0	145	132	200	57
36	0	91	2	146	109	201	58
37	0	92	7	147	105	202	39
38	0	93	4	148	123	203	51
39	0	94	15	149	127	204	36
40	0	95	1	150	144	205	24
41	0	96	10	151	134	206	34
42	5	97	11	152	140	207	39
43	2	98	8	153	114	208	32
44	0	99	23	154	142	209	14
45	0	100	12	155	160	210	28
46	14	101	16	156	133	211	16
47	0	102	8	157	142	212	9
48	1	103	13	158	149	213	41
49	10	104	21	159	186	214	24
50	0	105	10	160	151	215	18
51	4	106	12	161	163	216	16
52	3	107	12	162	172	217	17
53	9	108	10	163	165	218	13
54	6	109	11	164	168	219	13
55	5	110	16	165	162	220	16

Table I. Cont nued

(a) Concluded

Channel		Channel	I	Cl annel		Channel	
number	Counts	number	Counts	nu nber	Counts	number	Counts
221	10	276	123	331	1082	386	101
222	17	277	140	332	1067	387	97
223	13	278	165	333	1039	388	107
224	18	279	176	334	1032	389	111
225	19	280	214	335	1032	390	105
226	13	281	191	336	1017	391	76
227	10	282	227	337	1035	392	62
228	3	283	232	338	939	393	56
229	12	284	247	339	992	394	45
230	9	285	231	340	969	395	61
	4	286	264	341	973	396	60
231	7	287	301	342	949	397	43
232				343	967	398	52
233	3	288	315	344	963	399	26
234	8	289	307	345	919	400	45
235	0	290	373			401	34
236	21	291	384	346	922	401	13
237	11	292	359	347	845		13
238	23	293	395	348	866	403	
239	22	294	424	349	823	404	16
240	22	295	424	350	775	405	55
241	20	296	481	351	719	406	0
242	20	297	468	352	721	407	4
243	14	298	512	353	728	408	22
244	16	299	506	354	701	409	16
245	12	300	526	355	672	410	5
246	26	301	581	356	672	411	30
247	27	302	580	357	638	412	0
248	20	303	622	358	571	413	1
249	13	304	643	359	563	414	12
250	24	305	720	360	595	415	0
251	38	306	702	361	515	416	15
252	24	307	713	362	527	417	0
253	24	308	787	363	469	418	4
254	24	309	816	364	458	419	0
255	22	310	799	365	408	420	0
256	28	311	818	366	398	421	0
257	31	312	851	367	398	422	0
258	48	313	847	368	324	423	9
259	37	314	866	369	364	424	7
260	68	315	919	370	364	425	7
261	57	316	897	371	344	426	16
262	40	317	961	372	294	427	0
	39	318	960	373	287	428	0
263	73	319	949	374	289	429	6
264		li	1036	375	259	430	0
265	70	320 321	976	376	256	431	8
266	83	321	1010	377	223	432	o
267	86	322	976	378	195	433	14
268	108		1034	379	205	434	0
269	83	324	1	380	172	435	13
270	106	325	1085	11	184	436	0
271	92	326	1019	381	145	437	0
272	96	327	1034	382	133	438	0
273	120	328	1050	383		439	7
274	112	329	1056	384	125	439	Ó
275	147	330	1049	385	119	440	<u> </u>

Table I. Continued

(b) Through fuel (Jet A)

		11 01 1	· · · · · ·				
Channel		Channel		Channel	1	Channel	
number	Counts	number		number	Counts	number	Counts
1 2	0	56	11	111	163	166	19
	0	57	3	112	172	167	38
3	0	58	5	113	165	168	42
4	0	59	10	114	168	169	40
5	0	60	5	115	162	170	53
6	0	61	0	116	195	171	27
7	0	62	4	117	176	172	32
8	0	63	1	118	169	173	43
9	0	64	3	119	178	174	38
10	0	65	0	120	163	175	35
11	0	66	8	121	175	176	30
12	0	67	10	122	155	177	38
13	0	68	2	123	157	178	29
14	0	69	6	124	171	179	51
15	0	70	4	125	182	180	26
16	0	71	0	126	173	181	37
17	0	72	0	127	164	182	32
18	0	73	4	128	181	183	30
19	0	74	0	129	140	184	36
20	0	75	6	130	155	185	34
21	0	76	4	131	151	186	29
22	0	77	3	132	153	187	23
23	0	78	5	133	128	188	29
24	0	79	8	134	147	189	33
25	0	80	6	135	122	190	24
26	0	81	0	136	141	191	10
27	0	82	6	137	121	192	33
28	0	83	9	138	113	193	19
29	0	84	2	139	110	194	22
30	0	85	4	140	93	195	8
31	0	86	4	141	99	196	20
32	0	87	1	142	89	197	14
33	0	88	3	143	104	198	27
34	0	89	8	144	81	199	7
35	0	90	10	145	74	200	12
36	0	91	0	146	87	201	14
37	0	92	0	147	55	201	1
38	0	93	o	148	71	202	6
39	Ŏ	94	0	149	54	203	15
40	0	95	5	150	57	204	22
41	ő	96	0	151	33	i .	0
42	0	97	0	152	22	206	8
43	0	98	0	153		207	11
44	2	99	13	154	46	208	7
45	0	100	i	II .	30	209	15
46	5	101	0	155	36	210	18
47	2	101	134	156	35	211	16
48			140	157	25	212	9
48	1 2	103	114	158	29	213	3
I .	3	104	142	159	33	214	6
50	0	105	160	160	22	215	4
51	7	106	133	161	39	216	10
52	8	107	142	162	31	217	4
53	9	108	149	163	54	218	2
54	0	109	186	164	32	219	0
55	2	110	151	165	35	220	0

Table I. Concluded

(b) Concluded

	π		Channel		Channel		Channel	
	Channel number	Counts	number	Counts	numi er	Counts	number	Counts
-		2	276	50	33	251	386	13
	221 222	7	277	28	33::	255	387	27
	222	11	278	43	333	219	388	6
	224	0	279	54	33 1	214	389	18
	225	5	280	44	33 -	238	390	18
	226	1	281	58	33 6	235	391	13
	227	13	282	44	337	240	392	5
	228	6	283	58	33⊀	234	393	6
	229	o I	284	53	33)	188	394	28
İ	230	6	285	54	34-)	235	395	20
	231	8	286	83	341	218	396	19
	232	11	287	64	342	228	397	22
	233	12	288	5 7	343	181	398	6
	234	15	289	71	344	213	399	8
Ì	235	2	290	105	345	180	400	12
	236	0	291	83	346	171	401	3
	237	5	292	91	347	211	402	2
	238	9	293	82	348	184	403	0
İ	239	10	294	103	39	178	404	0
	240	8	295	98	31:0	194	405	0
	241	12	296	94	3: 1	169	406	3
	242	9	297	104	3.2	170	407	2
	243	1	298	128	3 3	178	408	16
ļ	244	0	299	150	3.4	109	409 410	3
	245	8	300	126	3.5	169	411	0
-	246	8	301	130	3.6	129	411	5
	247	14	302	113	3.7	143	413	16
ł	248	0	303	134	358	117 120	414	0
	249	7	304	141	359	106	415	0
-	250	18	305	166	350 351	116	416	2
	251	19	306	152	332	113	417	0
	252	10	307	158	3-33	113	418	0
	253	17	308	181 173	354	117	419	4
	254	10	309	197	365	66	420	2
	255	15	310	187	366	89	421	0
1	256	12	311 312	174	367	75	422	0
	257	9		189	368	84	423	0
	258	10	313 314	184	369	57	424	1
	259	7 3	315	194	570	61	425	5
	260 261	25	316	209	371	76	426	0
1	261	14	317	224	:72	71	427	4
-]	262 263	13	318	227	: 73	70	428	0
	263 264	9	319	208	: 74	49	429	0
	264 265	18	320	234	: 75	54	430	3
-	266	3	321	198	. 76	44	431	11
	267	17	322	242	77	50	432	6
	268	15	323	246	.:78	32	433	8
	269	8	324	244	379	26	434	0
ļ	270	23	325	234	∃80	33	435	0
	271	25	326	244	381	30	436	17
	272	19	327	232	182	33	437	3
	273	25	328	243	383	27	438 439	11
	274	33	329	225	384	0	439	7
	275	32	330	259	385	20	440	

Table II. Summary of Mass Attenuation Coefficients of Common Salt Solutions

Solution		$\frac{\mu}{\rho}$ (experimental),	$\frac{\mu}{\rho}$ (calculated),*
number	Salt solution composition	cm ² /g	cm ² /g
1	100 percent saturated solution (35.14 g of salt per 100 cm 3 of $\mathrm{H_2O}$)	0.2242 ± 0.0021	0.2243 ± 0.0013
2	80 percent saturated solution (28.11 g of salt per 100 cm ³ of $\rm H_2O$)	0.2191 ± 0.0020	0.2189 ± 0.0014
3	60 percent saturated solution (21.08 g of salt per 100 cm ³ of H_2O)	0.2132 ± 0.0019	0.2128 ± 0.0015
4	40 percent saturated solution (14.06 g of salt per 100 cm^3 of H_2O)	0.2051 ± 0.0019	0.2061 ± 0.0016
5	20 percent saturated solution (7.03 g of salt per 100 ${ m cm}^3$ of ${ m H}_2{ m O}$)	0.1989 ± 0.0019	0.1985 ± 0.0019

^{*} $\frac{\mu}{\rho}$ (calculated) values were obtained as follows:

$$(\frac{\mu}{
ho})_{
m solution} = W_1(\frac{\mu}{
ho})_{
m water} + W_2(\frac{\mu}{
ho})_{
m common\ salt}$$

where W_1 and W_2 are fractions of the solution by weight.

Table III. Summary of Results

(a) JP-4 fuel

File name JN280261.CHN
Sample I.D
Run number
Data collected at
Fuel type
Source
Airline
Location
Delivery date
Peak centroid location (air)
Peak centroid location (fuel) Channel number 328.51
Peak centroid location (fuel)
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$

(b) JP-5 fuel

File name JN270251.CHN
Sample I.D
Run number
Data collected at
Fuel type
Source
Airline
Location Langley
Delivery date
Peak centroid location (air)
Peak centroid location (fuel) Channel number 329.21
Peak centroid location (fuel)
Peak centroid location (fuel)
Peak centroid location (fuel)
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table III. Concluded

(c) Jet A fuel

File name JN270271.CHN
Sample I.D
Run number
Data collected at
Fuel type
Source
Airline
Location Langley
Delivery date
Peak centroid location (air)
Peak centroid location (fuel)
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table IV. Summary of Attenuation Coefficients for Aviation Fuels Studied

Reported values (ref. 1)	-	thoughton Mass attentiation Delisity, Little disconnection	- '6'	coefficient, cm²/g g/cm²		$0.1851 + 0.0020$ 0.7340 0.143 \pm 0.003	10010	\pm 0.0015 0.130 \pm 0.0019 0.8097 0.130 \pm 0.002	H 0.0019	0.0011 ± 0.001	± 0.0015 0.1041 ± 0.0019	
f	Present study	I inon attenuation		Coofficient cm-1	COCINCION, CIT	0 1909 1 0 0015	0.100.0 ± 2861.0	4			0.1489 ± 0.0015	
			, (1) (1)	- /3	m>/g	0011	0.7520	0000	0.8080		0 8000	100.0
		ŀ	TCST		inel		4-dl.	1 1	1P-5	2	Tot A	1

Figure 1. Geometrical details of fuel cell and associated shields/collimators.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2. Photograph of ϵ xperimental system.

Figure 3. Gamma ray spectrum through air.

Figure 4. Spectrum of gamma rays transmitted through air.

Figure 5. Spectrum of gamma rays transmitted through Jet A fuel.

Figure 6. Experimental and calculated values of mass absorption coefficient of common salt solution in water as a function of concentration.

Appendix A

Flowchart of Program (PGRMAC)

Appendix B

Listing of Computer Program (PGRMAC)

```
THIS PROGRAM PRINTS A SPECIRUM FILE FROM THE EMULATOR
1 €
2 C
         INTEGER*2 TYPE, MCA, SEG, STRTCH, LNGTDT, SPCOUI(64)
3
         INTEGER*2 SPCINI(64), BEGREC, ENDREC
         INTEGER*4 SPCIN(32), LVETME, RLTIME, AREA, DAREA, IDSMPL
5
         CHARACTER*1 SRITHE(4), SRISEC(2), SRIDTE(8), OUTPUT(30)
6
7
         CHARACTER*1 CRCTRL, ANS, NRUN, NSMPL +3
         CHARACTER FUTP*8, SORC*10, LOCA*10, DLDT*10, AIRLN*8
         CHARACTER*30 BUT30,F1LNM*15,FN1*15,FN2*15
         COMMON/PARTI/ SRTTME, SRTSEC, SRTDTE, FN1, FN2, NRUN, NSMPL, MAX! LUID
10
         COMMON/PART2/ RETIME, EVETHE, MAXCHN, MAXSPN, LBEG, LEND, MAXAIE
11
         COMMON/PART3/ ATCFL, ATCFM, NCHN (700), NCNT (700), DIO, DIX, DNL DNM
12
         COMMON/PART4/ AREA, DNSTY, 10, 1X, POWER, LUNINN, LUNDUT, IREC, THP
13
         COMMON/PARTS/ FUTP, SORC, LOCA, DLDT
14
         EQUIVALENCE (SPCOUT, SPCOUT), (SPCIN, SPCINI)
15
         EQUIVALENCE (OUT30, OUTPUT)
16
         REAL MUAIR, MUGLS, MUAL, MUFUEL, MUMAX, MUMIN, MAXCHN, MAXAIR, MA :FLUID
17
         DATA LUNCON/O/, OUTPUT/30*' //
18
         DATA CRETRL/'1'/, IER/O/
19
20 C
21 C
         START
22 C
         LUNINN=1
23
24
         LUNOUT=3
         DPEN(17,FILE='PRN',STATUS='NEW')
25
26
         WRITE(LUNCON, 90)
      90 FDRMAT(/,' ***********************************
27
                 '*************')
28
         WRITE(LUNCON, 100)
29
30 100 FORMATI/20X, SPECTRUM PRINT ROUTINE', //1X,
                'ENTER THE DESIRED FILE NAME FROM MCA: '\)
31
         READ (LUNCON, 5, ERR=8010) FILNM
32
      5 FORMAT (A15)
33
34 C
35
          NSMPL=FILNM(5:7)
36
          NRUN=FILNM(8:8)
37
         FN1(1:4)=FILNM(1:4)
3B
         FN1 (5:15) = 'AIR1, CHN'
39
         FN2(1:B)=FN1(1:B)
          FN2(9:15)= .DAT'
40
41 C
          CALL CONVERT(NSMPL, IREC)
42
          OPEN(19, FILE= 'FUELDATA.DAT', STATUS= 'OLD', ACCESS= 'DIRECT'
43
               FORM='FORMATTED', RECL=70}
44
          READ(19,25,REC=IREC) IDSMPL,DNSTY,TMP,FUTP,SORC,LOCA,DLD",
45
                                 AIRLN, ADTV
 46
       25 FORMAT(13,1X,F6.4,1X,F4.1,1X,A5,1X,A10,1X,A10,1X,A8,1X,A0,
 47
                 1X,F5.2)
```

```
49 C
  50
           DPEN(LUNINN, FILE=FN1, STATUS='OLD', ACCESS='DIRECT',
  51
                RECL=32)
  52
           OPEN(LUNGUT,FILE=FN2,STATUS='NEW')
  53
           READ (LUNINN, REC=1) TYPE, MCA, SEG, SRTSEC, RLTIME, LVETME,
  54
                SRIDIE, SRITME, STRICH, LNGTDI
  55
           IF(TYPE .NE. -1) 60 TO 8010
  56 C
           57
           CALL CALCATS(LUNINA, LUNOUT)
  58 C
           CALL CALAREA (LUNDUT)
  60
          MAXAIR=MAXCHN
          61 C
  62
          IAIR=AREA
          MUAIR=0.0002132
  63
  64
          MUGLS=0.46554
 65
          MUAL=0.6639
 66
          XAIR1=5.08
 67
          XAIR2=10.062+XAIR1
 68
          XGLS=0.68
 69
          XAL=0.079
 70
          POWER=(MUAIR*XAIR2)+(MUGLS*XGLS)+(MUAL*XAL)
 71
          IO=IAIR*EXP(POWER)
 72
          DIO=SQRT(REAL(10))
 73 C
 74 C
          CHANGE FN1, FN2 FOR EACH SAMPLE
 75 C
 76
          FN1(1:8)=FILNM(1:8)
 77
          FN1(9:15)='.CHN'
 78
          FN2(1:8)=FILNM(1:8)
 79
          FN2(9:15)='.DAT'
 80
          LUNINN=11
 81
          LUNOUT=13
 82
          OPEN(LUNINN,FILE=FN1,STATUS='OLD',ACCESS='DIRECT',RECL=32)
 83
          OPEN(LUNGUT, FILE=FN2, STATUS='NEW')
 84
          READ (LUNINN, REC=1) TYPE, MCA, SEG, SRTSEC, RLTIME, LVETME, SRTDTE,
 85
                            SRITME, STRTCH, LNGTDT
         IF(TYPE .NE. -1) 60 TO 8010
 86
 87 C
 88
         CALL CALCATS (LUNINA, LUNDUT)
 89 C
 90
         CALL CALAREA (LUNOUT)
 91
         MAXFLUID=MAXCHN
 92 C
 93
         1X=AREA
94
         DIX=SQRT(REAL(IX))
         RAMAX=REAL(IO+DIO)/REAL(IX-DIX)
95
96
         RAMIN=REAL (IO-DIO) / REAL (IX+DIX)
97
         POWER1=MUAIR+(XAIR1)+MUGLS+XGLS+MUAL+XAL
98
         XFUEL=10.062
99
         MUMAX=(1.0/XFUEL) * (LOG(RAMAX) -POWER)
100
         MUMIN=(1.0/XFUEL)*(LOG(RAMIN)-POWER)
```

```
NUFBEL = (HRMAX (MUMIN) /2.0
101
         UM1=MUFUEL-MUMAX
102
103
         DM2=MUFUEL-MUMIN
         DML=SQRT(DM1**2.0+DM2**2.0)
104
         DMM=DML/DMSTY
105
         ATCFL=MUFUEL
106
107
         ATCFM=ATCFL/DNSTY
108 C
         CALL PRNTI
109
110 C
         WRITE (LUNCON, 50)
111
      50 FORMAT(//, DO YOU WANT TO PRINT OUT CURRENT DATA (Y/N)? (1)
112
          READ (LUNCON, 55, ERR=8010) ANS
113
      55 FORMAT(A1)
114
          IF (ANS .EQ. 'Y') THEN
115
116
            CALL PRNOUT
          ELSE
117
            GO TO 999
118
          ENDIF
119
120 999 CLOSE (LUNINN)
121 1000 STOP
122 B000 IER=IER+1
123 8010 IER=IER+1
          WRITE (LUNCON, 8110) IER
124
125 8110 FORMAT( PRINT ERROR= ,14)
          GO TO 1000
126
          END
127
```

Subroutine PRNOUT

```
129
            SUBROUTINE PRNOUT
  130
            INTEGER#4 LYETME, RLTIME, AREA, DAREA
  131
           CHARACTER*1 SRTTME(4), SRTSEC(2), SRTDTE(8)
  132
           CHARACTER*1 NRUN, NSMPL *3, FN1*15, FN2*15
 133
           CHARACTER FUTP*B, SORC*10, LUCA*10, DLDT*10, AIRLN*B
 134
           COMMON/PARTI/ SRTTHE, SRTSEC, SRTDTE, FN1, FN2, NRUN, NSHPL, MAXFLUID
 135
           COMMON/PART2/ RLTIME, LVETME, MAXCHN, MAXSPN, LBEG, LEND, MAXAIR
           COMMON/PART3/ ATCFL, ATCFH, NCHN (700), NCNT (700), DIO, DIX, DHL, DHM
 136
 137
           COMMON/PART4/ AREA, DNSTY, 10, IX, POWER, LUNINN, LUNDUT, IREC, TMP
 138
           COMMON/PARTS/ FUTP, SORC, LOCA, DLDT
 139
           REAL MAXCHN, MAXAIR, MAXFLUID
 140 €
 141
           WRITE(17,*) CHAR(14).
                                        AVIATION FUEL STUDIES
 142
           WRITE(17.10) FNI
        143
 144
          145
          WRITE(17,20) NSMPL, NRUN, SRITME, SRISEC, SRIDTE
       20 FORMAT(/5%, SAMPLE I.D. : ',A4,//5%, RUN NUMBER : ',A2,//,
 146
 147
                 5X, DATA COLLECTED AT : ',2A1, ':',2A1,':',2A1,2X,
 148
                 ON (2A1, - 3A1, - 3A1)
 149
          WRITE(17,25) FUTP, SORC, LOCA, DLDT
       25 FORMATI/5X, FUEL TYPE : ',A8,//5X, 'SOURCE
 150
                                                            : ',A10,
151
         # //5x, LOCATION : ',A10,//5x, 'DELIVERY DATE : ',
152
         # A10)
153
          WRITE(17,30) MAXAIR, MAXFLUID, LBEG, LEND, MAXSPN
154
       30 FORMAT(/5X, 'PEAK CHANNEL(AIR) : ',F7.2,//5X,
155
         # 'PEAK CHANNEL(FUEL) ; ',F7.2,//5x, 'R. D. 1.
                                                              : ,15,
         # ..., 15, //5X, 'PEAK COUNTS(FUEL) : ', 15)
156
157
          WRITE(17,35) RLTIME, LVETME, 10, DIO, 1X, DIX
158
       35 FORMAT(/5%, 'REAL TIME : ',15,' seconds',//5%,
159
         # LIVE TIME : ,15, seconds ,
160
         # //5X, 'IO : ', IB, ' +/-', F5.0, //5X, 'IX : ', IB, ' +/-',
161
         # F5.0)
162
         WRITE(17,45) TMP
163
       45 FORMATI/5X, FUEL TEMPERATURE
                                        : '.F7.1.' C')
164
         WRITE(17,40) DNSTY, ATCFL, DML, ATCFH, DMM
165
      40 FORMAT(/5%, FUEL DENSITY :',F9.5,' (g/cm3)',//5%,
166
                'LINEAR ATTENU. COEFF. : ',F9.5,' +/-',F8.5,' (1/cm)',
167
        # //5%, MASS ATTENU. CDEFF. : ',F9.5,' +/-',F8.5.' (cm2/o)')
168
         RETURN
169
         END
```

Subroutine PRNT1

```
SUBROUTINE PRN11
172
         INTEGER*4 LVETME, RLTIME, AREA, DAREA
173
         CHARACTER*1 SRITME(4), SRISEC(2), SRIDTE(8)
174
         CHARACTER*1 NRUN, NSMPL*3, FN1*15, FN2*15
175
         CHARACTER FUTP*8, SORC*10, LOCA*10, DLDT*10, AIRLN*B
176
         COMMON/PARTI/ SRTTME, SRTSEC, SRTDTE, FN1, FN2, NRUN, NSMPL, MAXFL JID
177
         COMMON/PART2/ RLTIME, LVETME, MAXCHN, MAXSPN, LBEG, LEND, MAXAIR
178
          COMMON/PARTS/ ATCFL, ATCFM, NCHN (700), NCNT (700), DIO, DIX, DML, EMM
179
          COMMON/PART4/ AREA, DNSTY, 10, 1X, POWER, LUNINN, LUNDUT, IREC, THE
180
          COMMON/PARTS/ FUTP, SORC, LOCA, DLDT
181
          REAL MAXCHN, MAXAIR, MAXFLUID
182
183 C
184
          ₩RITE(0,5)
       185
                186
          WRITE(0,10) FN1
187
                               : ',A15)
       10 FORMATISX. FILE NAME
188
          WRITE(0,20) NSMPL, NRUN, SRTTME, SRTSEC, SRTDTE
189
                                                        :',A2,/,
       20 FORMAT(SX, 'SAMPLE I.D. : ',A4,/5X, 'RUN NUMBER
190
                5%, DATA COLLECTED AT : ',2A1,':',2A1,':',2A1,2X,
191
        1
                 'ON ',2A1,'-',3A1,'-',3A1)
192
          WRITE(0,25) FUTP, SORC, LOCA, DLDT
193
       25 FORMATISX, FUEL TYPE : ',A8,/5X, 'SOURCE
                                                          : A10
194
                          : ',A10,/5X,'DELIVERY DATE : ',A10)
195
         # /5%, LOCATION
          WRITE(0,30) MAXAIR, MAXFLUID, LBEG, LEND, MAXSPN
196
       30 FORMAT (5%, 'PEAK CHANNEL (AIR) : ',F7.2,/5%,
197
         # 'PEAK CHANNEL(FUEL) :',F7.2,/5X,'R. 0. 1.
                                                             :',15,
 198
         # ...,15,/5X, PEAK COUNTS(FUEL) : ,15)
 199
          RLTIME=RLTIME/50
 200
          LVETHE=LVETHE/50
 201
          WRITE(0.35) RETIME, LVETME, IO, DIO, IX, DIX
 202
        35 FORMATISX, REAL TIME : 1,15,7,5%, LIVE TIME
                                                         :',15,/5%,
 203
                 110: ',18,' +/-',
 204
         .
                  F5.0,/5%, 'IX: ',18,' +/-',F5.0)
 205
          WRITE(0,45) THP
 206
                                        . F7.1)
       45 FORMATISK, FUEL TEMPERATURE
 207
          WRITE(0,40) DNSTY, ATCFL, DML, ATCFM, DMM
 208
        40 FORMAT(5%, FUEL DENSITY : ',F9.5,/5%,
 209
                 'LINEAR ATTENU. COEFF. : ',F9.5,' +/-',F8.5,/5X,
 210
                 MASS ATTENU. COEFF. : ',F9.5,' +/-',F8.5)
 211
          RETURN
 212
 213
           END
```

Subroutine CALCNTS (LIN,LOUT)

```
215
                SUBROUTINE CALCHTS(LIN, LOUT)
      216
                INTEGER#2 BEGREC, ENDREC
     217
                INTEGER#4 LVETME, RLTIME, AREA, DAREA, SPCIN(32)
     218
                CHARACTER+1 SRTIME(4), SRTSEC(2), SRTDTE(8)
     219
                CHARACTER#1 NRUN, NSMPL#3, FN1#15, FN2#15
                CHARACTER FUTP+8,SORC=10,LOCA=10,DLDT=10,AIRLN=8
     220
                COMMON/PART1/ SRTTME, SRTSEC, SRTDTE, FN1, FN2, NRUN, NSHPL, MAXFLUID
     221
     222
                COMMON/PART2/ RLTIME, LVETME, MAXCHN, MAXSPN, LBEG, LEND, MAXAIR
                COMMON/PART3/ ATCFL, ATCFM, NCHN (700), NCNT (700), DIO, DIX, DML, DMM
     223
     224
                COMMON/PART4/ AREA, DNSTY, 10, 1%, POWER, LUNINN, LUNGUT, IREC, TMP
     225
                COMMON/PARTS/ FUTP, SORC, LOCA, DLDT
     226
                REAL HUAIR, MUGLS, NUAL, MUFUEL, MAXCHN
     227 C
     228
               ICHNNL=0
     229
               CHANLI=ICHNNL-1
    230
               LCHNNL=510
    231
               CHANLL=LCHNNL-1
    232
               BEGREC=CHANLI/B.
    233
               ENDREC=CHANLL/8.
    234
               DO 450 I=BEGREC+2,ENDREC+2
    235
               READ(LIN, REC=I, ERR=8000) (SPCIN(K), K=1,8)
1
    236
               KCHNL=8*(1-2)
    237
               DO 400 J=1,8
1
2
    238
               IF (KCHNL .GT. 1000) BD TD 8000
2
          420 WRITE(LOUT,410) KCHNL, SPCIN(J)
    239
2
    240
          410 FORMAT(1X,15,19)
    241
          500 KCHNL=KCHNL+1
   242 400 CONTINUE
   243 450 CONTINUE
    244 8000 RETURN
    245
              END
```

Subroutine CALAREA (LOUT)

```
247
             SUBROUTINE CALAREA(LOUT)
             INTEGER#2 BEGREC, ENDREC
   248
             INTEGER:4 LVETME, RLTIME, AREA, DAREA, SPC1N(32)
   249
             CHARACTER*1 SRTTME(4), SRTSEC(2), SRTDTE(8)
   250
             CHARACTER*1 NRUN, NSMPL*3, FN1*15, FN2*15
   251
             CHARACTER FUTP+8, SORC+10, LOCA+10, DLDT+10, AIRLN+8
   252
             CDMMON/PARTI/ SRTTME, SRTSEC, SRIDTE, FN1, FN2, NRUN, NSMPL, MAXFLUID
   253
              COMMON/PART2/ RLTIME, LVETME, MAXCHN, MAXSPN, LBEG, LEND, MAXAIR
   254
              COMMON/PART3/ ATCFL, ATCFM, NCHN (700), NCNT (700), DIO, DIX, BML, DMM
   255
              COMMON/PART4/ AREA, DNSTY, IO, IX, POWER, LUNINN, LUNGUT, IREC, TMP
   256
              COMMON/PARTS/ FUTP, SORC, LOCA, DLDT
   257
              REAL MUAIR, MUGLS, MUAL, MUFUEL, MAXCHN, MY
   258
   259 C
              REWIND LOUT
   260
              DO 300 I=1,500
   261
                 READ(LOUT,310,END=300) NCHN(I),NCNT(I)
   262
   263
                 FORMAT(1X, 15, 19)
         310
         300 CONTINUE
   264
   265
              LBEG=241
   266
              LEND=421
              AREA=0
   267
              MY=0.
   268
              BEG1=REAL (NCNT (LBEG+1))
   269
              BEG2=REAL (NCNT (LBEG+2))
   270
              BEG3=REAL (NCNT (LBEG+3))
   271
              HBEG=(BEG1+BEG2+BEG3)/3.0
   272
              ENDI=REAL (NCNT (LEND+1))
    273
              END2=REAL (NCNT (LEND))
    274
              END3=REAL (NCNT (LEND-1))
    275
              HEND=(END1+END2+END3)/3.0
    276
              HAVG=0.5*(HBEG+HEND)
    277
              DCHN=REAL (LEND-LBE6)
    278
              SLOPE = (HEND-HBEG) / DCHN
    279
              DO 320 L=LBEG+1,LEND+1
    280
    281
                  DAREA=NCNT(L)
1
    282
                  AREA=AREA+DAREA
1
                  H=SLOPE*(REAL(NCHN(L)-LBEG-1))+HBEG
1
    283
                  MY=MY+(REAL(NCNT(L))-H)+REAL(NCHN(L))
1
    284
          320 CONTINUE
    285
١
               EXCESS=0.5*(HBES+HEND)*DCHN
    286
               MAXCHN=MY/(REAL(AREA)-EXCESS)
    287
    288
               DO 350 I=LBE6+1,LEND+1
    289
                  ERR=REAL (NCHN(I)) -MAXCHN
                  IF (ABS(ERR) .LT. 0.5) THEN
    290
1
    291
                     MAXSPN=NCNT(1)
1
    292
                     60 TO 400
1
                  ELSE
    293
    294
                     60 TO 350
1
    295
                  ENDIF
1
    296
           350 CONTINUE
    297
           400 RETURN
    298
               END
```

Subroutine CONVERT (NSPL,IRC)

```
300
            SUBROUTINE CONVERTINSPL, IRC)
 301
            INTEGER#4 LVETME, RLTIME, AREA, DAREA
 302
            CHARACTER*1 SRITME(4), SRISEC(2), SRIDTE(8)
 303
            CHARACTER*1 NRUN,NSHPL*3,FN1*15,FN2*15
 304
            CHARACTER FUTP*8, SORC*10, LOCA*10, DLDT*10, AIRLN*8
 305
            CHARACTER*1 CR1,CR2,CR3,NSPL*3
           COMMON/PARTI/ SRTTME, SRTSEC, SRTDTE, FN1, FN2, NRUN, NSMPL, MAXFLUID
 306
           COMMON/PART2/ RLTIME, LVETME, MAXCHN, MAXSPN, LBEG, LEND, MAXAIR
 307
308
           COMMON/PART3/ ATCFL, ATCFM, NCHN (700), NCNT (700), DIO, DIX, DML, DMM
309
           COMMON/PART4/ AREA, DNSTY, 10, IX, POWER, LUNINN, LUNDUT, IREC, THP
310
           COMMON/PARTS/ FUTP, SORC, LOCA, DLDT
311 C
312
           CR1=NSPL(1:1)
313
           CR2=NSPL (2:2)
314
           CR3=NSPL (3:3)
315
           NI=ICHAR(CR1)
316
           N2=1CHAR(CR2)
317
           N3=ICHAR(CR3)
          ID=(N1-48) #100+(N2-48) #10+(N3-48)
318
          IRC= ID
319
320
          RETURN
321
          END
```

References

- 1. Singh, Jag J.; Mall, Gerald H.; Sprinkle, Danny R.; and Chegini, Hoshang: Feasibility of a Nuclear Gauge for Fuel Quantity Measurement Aboard Aircraft. NASA TM-87706, 1986.
- Featherstone, D. H.: Douglas Initiates Jet Fuel Properties Study. AEEC Lett. 87-042/FQS-07, Aeronautical Radio, Inc., Mar. 26, 1987.
- Featherstone, D. H.: Airlines Requested To Sample Fuel. AEEC Lett. 88-010/FQS-11, Aeronautical Radio, Inc., Jan. 12, 1988.
- 4 Featherstone, D. H.: Circulation of Procedural Information for Participants Involved in Industry Fuel Study. AEEC Lett. 88-103/FQS-12, Aeronautical Radio, Inc., July 7, 1988.
- 5 Davisson, Charlotte Meaker; and Evans, Robley D.: Gamma-Ray Absorption Coefficients. Reviews Modern Phys., vol. 24, no. 2, Apr. 1952, pp. 79-107.
- 6 Grodstein, Gladys White: X-Ray Attenuation Coefficients From 10 kev to 100 Mev. NBS Circ. 583, U.S. Dep. of Commerce, Apr. 30, 1957.
- 7 McGinnies, Rosemary T.: X-Ray Attenuation Coefficients From 10 kev to 100 Mev. Suppl. to NBS Circ. 583, U.S. Dep. of Commerce, Oct. 30, 1959.

National Aeronautics and Space Administration	Report Docum	nentation Pag	e				
1. Report No. NASA TM-4077	2. Government Access	ion No.	3. Recipient's C	atalog No.			
4. Title and Subtitle	N 1	A.1	5. Report Date				
A Method for Monitoring the V. Characteristics of Aviation Fuels		r Absorption	December 1	1988			
Characteristics of Aviation Fuels			6. Performing C	Organization Code			
7. Author(s) Danny R. Sprinkle and Chih-Pin	g Shen		8. Performing Organization Report L-16497				
9. Performing Organization Name and Ad	dress		10. Work Unit I	No.			
NASA Langley Research Center			141-20-10-10				
Hampton, VA 23665-5225			11. Contract or	Grant No.			
12. Sponsoring Agency Name and Address National Aeronautics and Space			1	ort and Period Covered Iemorandum			
Washington, DC 20546-0001			14. Sponsoring A	Agency Code			
test fuel cell. A computer progresample, based on the data acqueseveral types of aviation fuel.	ram for determining iired for a preset co	g the mass atter unting period, h	nuation coeffici nas been develo	ent of the test fuel oped and tested on			
17. Key Words (Suggested by Authors(s)) Am ²⁴¹ gamma ray source Mass attenuation coefficient Aviation fuel Variation in fuel properties Sodium iodide counter		18. Distribution S Unclassified-U					
			oject Category	61			
9. Security Classif.(of this report) Unclassified	20. Security Classif.(of Unclassified	this page)	21. No. of Pages	22. Price			