If the energy distribution for fission neutrons from ²³⁵U follows the functional approximation (for energy in MeV)

$$\chi(E) = 0.453e^{-1.036E} \sinh(\sqrt{2.29E}).$$

then the most probable energy of a neutron corresponds to the maximum of the function. A maximum value will be found at a critical point of the function, which can be found via differentiation (specifically when $\frac{d\chi}{dE} = 0$):

$$\begin{split} \frac{d\chi}{dE} &= 0 = \frac{d}{dE} \left(0.453 e^{-1.036E_{\text{max}}} \sinh(\sqrt{2.29E_{\text{max}}}) \right) \\ 0 &= 0.453 \frac{d}{dE} \left(e^{-1.036E_{\text{max}}} \sinh(\sqrt{2.29E_{\text{max}}}) \right) \\ 0 &= 0.453 \left[e^{-1.036E} \frac{d}{dE} \sinh(\sqrt{2.29E_{\text{max}}}) + \frac{d}{dE} \left(e^{-1.036E_{\text{max}}} \right) \sinh(\sqrt{2.29E_{\text{max}}}) \right] \\ 0 &= 0.453 \left[e^{-1.036E} \cosh(\sqrt{2.29E}) \frac{d}{dE} \left(\sqrt{2.29E_{\text{max}}} \right) - 1.036 e^{-1.036E} \sinh(\sqrt{2.29E}) \right] \\ 0 &= 0.453 \left[e^{-1.036E} \cosh(\sqrt{2.29E}) \frac{\sqrt{2.29}}{2\sqrt{E_{\text{max}}}} - 1.036 e^{-1.036E} \sinh(\sqrt{2.29E}) \right] \\ 0 &= \frac{\sqrt{2.29} \cosh(\sqrt{2.29E})}{2\sqrt{E_{\text{max}}}} - 1.036 \sinh(\sqrt{2.29E}) \\ 0 &= 1 - 1.369 \sqrt{E_{\text{max}}} \tanh(\sqrt{2.29E_{\text{max}}}) \\ 1 &= 1.369 \sqrt{E_{\text{max}}} \tanh(\sqrt{2.29E_{\text{max}}}) \end{split}$$

$$E_{\rm max} = 0.724 \ {\rm MeV}$$

The average energy can be found by finding the expected value of the function on the domain $[0,\infty)$.

$$E_{\text{ave}} = \int_0^\infty E \, \chi(E) \, dE$$

$$= \int_0^\infty E \left(0.453 e^{-1.036E} \sinh(\sqrt{2.29E}) \right) \, dE$$

$$= 0.453 \int_0^\infty E \, e^{-1.036E} \sinh(\sqrt{2.29E}) \, dE$$

This integral cannot be solved analytically. Solving numerically (with Wolram Alpha),

$$E_{\text{ave}} = 1.98 \text{ MeV}$$

A general reaction rate for process x as a function of energy can be defined as

$$R_x(E) = \Sigma_x(E)\phi(E)$$

where $\Sigma_x(E)$ is the macroscopic cross section for reaction x and ϕ is the neutron flux, both at energy E. The macroscopic cross section can be further decomposed, so that

$$R_x(E) = n_x \sigma_x(E) \phi(E).$$

Comparing neutron-neutron reactions with all neutron-nuclei reactions, the ratio of reaction rates is

$$\frac{R_{nn}(E)}{R_{tot}(E)} = \frac{n_n \sigma_{nn}(E)\phi(E)}{n_{\text{UO}_2} \sigma_{tot}(E)\phi(E)}.$$

We can know that the neutron flux is $\phi(0.025 \text{ eV} = 10^{16} \text{ neutrons/(cm}^2 \cdot \text{s})$ and they are at thermal energies $(E = 0.025 \text{ eV} \text{ and traveling at } v = \sqrt{\frac{2(0.025 \text{ eV})}{m_n}} = 2.190 \times 10^5 \text{ cm/s})$. The neutrons that are then in a 1 cm³ volume at any given second is

$$n_n = \frac{\phi(0.025 \text{ eV})}{v} = \frac{10^{16} \text{ neutrons/(cm}^2 \cdot \text{s})}{2.190 \times 10^5 \text{ cm/s}} = 4.566 \times 10^{10} \text{ neutrons/cm}^3$$

For UO₂, $\rho = 10.97 \text{ g/cm}^3$, $m_{\rm O} = 16.0 \text{ g/mol}$, $m_{\rm U8} = 238.05 \text{ g/mol}$, and $m_{\rm U5} = 235.04 \text{ g/mol}$. If we use an enrichment of 5% (atom percent), then $m_{\rm UO_2} = 0.95(238.05) + 0.05(235.04) + 2(16.0) = 269.90 \text{ g/mol}$. For number density, we find

$$n_{\rm UO_2} = \frac{\rho N_A}{m_{\rm UO_2}} = \frac{(10.97~{\rm g/cm^3})(6.022\times10^{23})}{269.90~{\rm g/mol}} = 2.448\times10^{22}~{\rm molecules/cm^3}$$

Additionally, we're given that $\sigma_{nn}=10$ b, and we can determine the microscopic cross section for UO₂ from tabulated data. (From ENDF/B-VII.1 at 0.025 eV: $\sigma_{tot,U8}=11.962$ b, $\sigma_{tot,U5}=698.856$ b, and $\sigma_{tot,O}=3.852$ b)

$$\sigma_{tot} = 0.95\sigma_{tot,U8} + 0.05\sigma_{tot,U5} + 2\sigma_{tot,O}$$

$$\sigma_{tot} = 0.95(11.962 \text{ b}) + 0.05(698.856 \text{ b}) + 2(3.852 \text{ b})$$

$$\sigma_{tot} = 54.011 \text{ b}$$

We can now sove for the ratio of reaction rates (noting that $\phi(E)$ cancels in the numerator and denominator)

$$\frac{R_{nn}(E)}{R_{tot}(E)} = \frac{n_n \sigma_{nn}(E)}{n_{\text{UO}_2} \sigma_{tot}(E)} = \frac{(4.566 \times 10^{10} \text{ neutrons/cm}^3)(10 \text{ b})}{(2.448 \times 10^{22} \text{ molecules/cm}^3)(54.011 \text{ b})}$$
$$\frac{R_{nn}(E)}{R_{tot}(E)} = 3.40 \times 10^{-13}$$

The rate of neutron-neutron collisions is 13 orders of magnitudes less than the rate of neutron-UO₂ collisions.

Problem 4

First, we define the average scattering cosine $\bar{\mu}_0$ as the average dot product, $\langle \hat{\Omega} \cdot \hat{\Omega}' \rangle$. When normalized by $4\pi \Sigma_s$, the total of cross sections for scattering from any angle $\hat{\Omega}$ to any other angle $\hat{\Omega}'$, this is

$$\bar{\mu}_0 \equiv \langle \hat{\Omega} \cdot \hat{\Omega}' \rangle = \left(\frac{1}{4\pi \Sigma_s}\right) \int_{4\pi} d\hat{\Omega} \int_{4\pi} d\hat{\Omega}' \, \hat{\Omega} \cdot \hat{\Omega}' \Sigma_s (\hat{\Omega} \cdot \hat{\Omega}')$$

In the center of mass system, the probability that a particle scatters in any direction is roughly uniform, $\Sigma_{\text{CM}}(\theta_C) = \frac{\Sigma_s}{4\pi}$,

$$\bar{\mu}_0 = \frac{1}{\Sigma_s} \int_{4\pi} d\hat{\Omega} \int_{4\pi} d\hat{\Omega}' \, \hat{\Omega} \cdot \hat{\Omega}' \Sigma_{\rm CM}(\theta_C).$$

A critical reactor has a multiplication factor of k=1. The multiplication factor (for an infinite reactor) can be defined as

$$k_{\infty} \equiv \frac{\# \text{ neutrons produced}}{\# \text{ neutrons absorbed}}$$

Mathematically, the number of neutrons produced is $\int_0^\infty \nu \Sigma_f(E) \phi(E) dE$ and the number of neutrons absorbed is $\int_0^\infty \Sigma_a(E)\phi(E) dE$. Altogether, we can mathematically describe a critical reactor as

$$1 = \frac{\int_0^\infty \nu \Sigma_f(E) \phi(E) dE}{\int_0^\infty \Sigma_a(E) \phi(E) dE}$$

or equivalently

$$\int_0^\infty \nu \Sigma_f(E) \phi(E) dE = \int_0^\infty \Sigma_a(E) \phi(E) dE.$$

Since we are considering only thermal cross sections, we will let $\Sigma_X(E) = \Sigma_X(0.025 \text{ eV}) = \Sigma_{X,T}$ and we find

$$\nu \Sigma_{f,T} \int_0^\infty \phi(E) dE = \Sigma_{a,T} \int_0^\infty \phi(E) dE.$$

The integrals over flux cancel, and so

$$\nu \Sigma_{f,T} = \Sigma_{a,T}.$$

The macroscopic cross sections can be rewritten as $\Sigma_{f,T} = \Sigma_{f,T,\mathrm{f}}$ and $\Sigma_{a,T} = \Sigma_{a,T,\mathrm{f}} + \Sigma_{a,T,\mathrm{m}}$ where subscripts f and m denote fuel and moderator, respectively. Furthermore, each macroscopic cross section for each material can be expressed in terms of the material's number density and microscopic cross section, $\Sigma = n\sigma$. In total

$$\nu n_{\rm f} \sigma_{\rm f,T,f} = n_{\rm f} \sigma_{\rm a,T,f} + n_{\rm m} \sigma_{\rm a,T,m}$$

The fuel-to-moderator density at criticality can then be expressed as

$$\frac{n_{\rm f}}{n_{\rm m}} = \frac{\sigma_{a,T,{\rm m}}}{\nu \sigma_{f,T,{\rm f}} - \sigma_{a,T,{\rm f}}}. \label{eq:nf}$$

$$b.)$$
 Beryllium

$$c.$$
) Water

$$\frac{n_{\rm f}}{n_{\rm max}} = 4.55 \times 10^{-6}$$

$$\frac{n_{\rm f}}{n_{\rm m}} = 1.36 \times 10^{-5}$$

$$\frac{n_{\rm f}}{n_{\rm res}} = 8.99 \times 10^{-4}$$

$$\frac{n_{\rm f}}{n_{\rm m}} = 4.55 \times 10^{-6} \qquad \qquad \frac{n_{\rm f}}{n_{\rm m}} = 1.36 \times 10^{-5} \qquad \qquad \frac{n_{\rm f}}{n_{\rm m}} = 8.99 \times 10^{-4} \qquad \qquad \frac{n_{\rm f}}{n_{\rm m}} = 1.64 \times 10^{-6}$$

(see attached Jupyter notebook for full calculations)

a.)

Like in Problem 5,

$$k_{\infty} = \frac{\int_0^{\infty} \nu \Sigma_f(E) \phi(E) dE}{\int_0^{\infty} \Sigma_a(E) \phi(E) dE}.$$

Again, since we are only considering cross sections averaged over the fast spectrum, we can state that $\Sigma_X(E) = \Sigma_{X,F}$, and then

$$k_{\infty} = \frac{\nu \Sigma_{f,F} \int_0^{\infty} \phi(E) \, dE}{\Sigma_{a,F} \int_0^{\infty} \phi(E) \, dE} = \frac{\nu \Sigma_{f,F}}{\Sigma_{a,F}}.$$

Next, we repeat our decomposition of the numerator and denominator, leaving

$$k_{\infty} = \frac{\nu_{\mathrm{PuO}_2} n_{\mathrm{PuO}_2} \sigma_{F,\mathrm{PuO}_2} + \nu_{\mathrm{UO}_2} n_{\mathrm{UO}_2} \sigma_{F,\mathrm{UO}_2}}{n_{\mathrm{PuO}_2} \sigma_{a,F,\mathrm{PuO}_2} + n_{\mathrm{UO}_2} \sigma_{a,F,\mathrm{UO}_2} + n_{\mathrm{Fe}} \sigma_{a,F,\mathrm{Fe}} + n_{\mathrm{Na}} \sigma_{a,F,\mathrm{Na}}}$$

After solving this equation with the given values, we find

$$k_{\infty} = 1.332$$

b.)

We can use the densities and volume fractions to determine the fraction of the core mass that is fuel.

c.)

If k=1 and the non-leakage probability is $P_{NL}=0.90$, then we can reexpress our earlier equation as

$$k = 1 = P_{NL} \frac{\nu \Sigma_{f,F} \int_0^\infty \phi(E) dE}{\Sigma_{a,F} \int_0^\infty \phi(E) dE} = P_{NL} \frac{\nu \Sigma_{f,F}}{\Sigma_{a,F}},$$

or

$$P_{NL}\nu\Sigma_{f,F}=\Sigma_{a,F}.$$

When separated into individual materials, this is

$$P_{NL} \sum_{i} \nu_{i} n_{i} \sigma_{f,i} = \sum_{j} n_{j} \sigma_{a,j}.$$

or explicitly

 $P_{NL}\left(\nu_{\mathrm{PuO}_2}n_{\mathrm{PuO}_2}\sigma_{F,\mathrm{PuO}_2} + \nu_{\mathrm{UO}_2}n_{\mathrm{UO}_2}\sigma_{F,\mathrm{UO}_2}\right) = n_{\mathrm{PuO}_2}\sigma_{a,F,\mathrm{PuO}_2} + n_{\mathrm{UO}_2}\sigma_{a,F,\mathrm{UO}_2} + n_{\mathrm{Fe}}\sigma_{a,F,\mathrm{Fe}} + n_{\mathrm{Na}}\sigma_{a,F,\mathrm{Na}}$

We recall that $n_{\text{PuO}_2} = f_{\text{f,PuO}_2}(0.3) \frac{\rho_{\text{PuO}_2} N_A}{m_{\text{PuO}_2}}$ and $n_{\text{UO}_2} = (1 - f_{\text{f,PuO}_2})(0.3) \frac{\rho_{\text{UO}_2} N_A}{m_{\text{UO}_2}}$, while $n_{\text{Na}} = (0.5) \frac{\rho_{\text{Na}} N_A}{m_{\text{Na}}}$ and $n_{\text{Fe}} = (0.2) \frac{\rho_{\text{Fe}} N_A}{m_{\text{Fe}}}$. We can substitute these expressions into the equation above and solve for $f_{\text{f,PuO}_2}$.

The fuel must be 10.322% PuO_2 and 89.678% UO_2 for a critical reactor with $P_{NL}=0.9$

(see attached Jupyter notebook for full calculations)

We are told that the albedo is defined as the ratio of current out of a reflecting surface and into a reflecting surface, $\alpha \equiv \frac{J_{\rm out}}{J_{\rm in}}$. We also note that without an internal source, the one-speed, one-dimensional diffusion equation in the reflector is given by

$$\frac{d^2\phi(x)}{dx} - \frac{1}{L^2}\phi(x) = 0$$

where $L = \sqrt{\frac{D}{\Sigma_a}}$ is the diffusion length in the reflector and D is the diffusion coefficient of the reflector (both constant).

This equation is constrained by two boundary conditions:

$$\phi(\tilde{a}) = 0$$

$$J_+(0) = J_{\rm in}.$$

The first of these states that the flux must go to zero at the extrapolated distance (no infinite flux over all space), and the second implies that the uniformly distributed slab source can be treated as a uniform plane source at the boundary from the perspective of the reflector.

We can now solve the one-speed diffusion equation for the reflector. The solution is of the form

$$\phi(x) = C_1 e^{x/L} + C_2 e^{-x/L}.$$

Applying our first boundary condition,

$$\phi(\tilde{a}) = 0 = C_1 e^{\tilde{a}/L} + C_2 e^{-\tilde{a}/L}$$
$$C_2 = -C_1 e^{2\tilde{a}/L}$$

and so

$$\phi(x) = C_1 e^{x/L} - C_1 e^{2\tilde{a}/L} e^{-x/L},$$

or, when factoring out $C = 2C_1 e^{\tilde{a}/L}$

$$\phi(x) = C \frac{e^{(x-\tilde{a})/L} - e^{(\tilde{a}-x)/L}}{2} = C \sinh\left(\frac{x-\tilde{a}}{L}\right).$$

We can then apply our second boundary condition if we note that

$$J_{+}(x) = \frac{\phi(x)}{4} - \frac{D}{2} \frac{d\phi(x)}{dx}$$

which means

$$J_{\rm in} = \frac{C \sinh\left(\frac{-\tilde{a}}{L}\right)}{4} - \frac{D}{2} \frac{d}{dx} \left[C \sinh\left(\frac{x - \tilde{a}}{L}\right) \right]_{x=0}$$

or more simply

$$J_{\rm in} = \frac{C \sinh\left(\frac{-\tilde{a}}{L}\right)}{4} - \frac{CD}{2L} \cosh\left(\frac{-\tilde{a}}{L}\right)$$

We also know that $J(x) = -D\frac{d\phi(x)}{dx}$, so

$$J(x) = -D\frac{d}{dx} \left[C \sinh\left(\frac{x - \tilde{a}}{L}\right) \right]$$
$$= -\frac{CD}{L} \cosh\left(\frac{x - \tilde{a}}{L}\right)$$

Finally, since $J(x) = J_{+}(x) - J_{-}(x)$,

$$J(0) = J_{+}(0) - J_{-}(0) = J_{\text{in}} - J_{\text{out}}$$

or equivalently,

$$\begin{split} J_{\text{out}} &= J_{\text{in}} - J(0) \\ &= \frac{C \sinh\left(\frac{-\tilde{a}}{L}\right)}{4} - \frac{CD}{2L} \cosh\left(\frac{-\tilde{a}}{L}\right) + \frac{CD}{L} \cosh\left(\frac{-\tilde{a}}{L}\right) \\ &= \frac{C \sinh\left(\frac{-\tilde{a}}{L}\right)}{4} + \frac{CD}{2L} \cosh\left(\frac{-\tilde{a}}{L}\right) \end{split}$$

Altogether, we have

$$\frac{J_{\text{out}}}{J_{\text{in}}} = \frac{\frac{C \sinh\left(\frac{-\tilde{a}}{L}\right)}{4} + \frac{CD}{2L} \cosh\left(\frac{-\tilde{a}}{L}\right)}{\frac{C \sinh\left(\frac{-\tilde{a}}{L}\right)}{4} - \frac{CD}{2L} \cosh\left(\frac{-\tilde{a}}{L}\right)}$$
$$= \frac{1 + \frac{2D}{L} \coth\left(\frac{-\tilde{a}}{L}\right)}{1 - \frac{2D}{L} \coth\left(\frac{-\tilde{a}}{L}\right)}$$

Since hyperbolic cotangent is an odd function, we can simplify this to

$$\alpha = \frac{1 - \frac{2D}{L} \coth\left(\frac{\tilde{a}}{L}\right)}{1 + \frac{2D}{L} \coth\left(\frac{\tilde{a}}{L}\right)}$$

Problem 8

From the previous problem, $\alpha \equiv \frac{J_{\text{out}}}{J_{\text{in}}}$. If we further define $\beta \equiv \frac{J_{+}(a)-J_{-}(a)}{J_{+}(a)}$, we can express β in terms of α through algebraic maniupulation. First, we let $J_{+}(a) = J_{\text{in}}$ and $J_{-}(a) = J_{\text{out}}$ for the right handed boundary.

$$eta = rac{J_{
m in}-J_{
m out}}{J_{
m in}}$$
 $= 1-rac{J_{
m out}}{J_{
m in}}$ $eta = 1-lpha$

We can also define $\gamma \equiv \frac{J(a)}{\phi(a)}$ and then express it in terms of α as well. Again we let $J_+(a) = J_{\rm in}$ and $J_-(a) = J_{\rm out}$ for the right handed boundary, but we also now note that $J_+(x) = \frac{\phi(x)}{4} - \frac{D}{2} \frac{d\phi(x)}{dx} = \frac{\phi(x)}{4} + \frac{J(x)}{2}$. From here, $\phi(x)$ can be found as $\phi(x) = 4J_-(x) - 2J(x)$.

$$\gamma = \frac{J_{+}(a) - J_{-}(a)}{4J_{+}(a) - 2J(a)}$$

$$= \frac{J_{+}(a) - J_{-}(a)}{4J_{+}(a) - 2J_{+}(a) + 2J_{-}(a)}$$

$$= \frac{J_{\text{in}} - J_{\text{out}}}{4J_{\text{in}} - 2J_{\text{in}} + 2J_{\text{out}}}$$

$$= \frac{J_{\text{in}} - J_{\text{out}}}{2(J_{\text{in}} + J_{\text{out}})}$$

$$= \frac{1 - \frac{J_{\text{out}}}{J_{\text{in}}}}{2(1 + \frac{J_{\text{out}}}{J_{\text{in}}})}$$

$$\gamma = \frac{1 - \alpha}{2(1 + \alpha)}$$

With these values we can then solve for α in terms of each β and γ . Very simply

$$\alpha = 1 - \beta$$

but also

$$\gamma = \frac{1 - \alpha}{2(1 + \alpha)}$$

$$2\gamma = \frac{1 - \alpha}{1 + \alpha}$$

$$2\gamma(1 + \alpha) = 1 - \alpha$$

$$2\gamma + 2\alpha\gamma = 1 - \alpha$$

$$2\gamma - 1 = -\alpha - 2\alpha\gamma$$

$$2\gamma - 1 = \alpha(-1 - 2\gamma)$$

$$\alpha = \frac{2\gamma - 1}{-1 - 2\gamma}$$

$$\alpha = \frac{1 - 2\gamma}{1 + 2\gamma}$$

Problem 10

Answer the following questions as true or false, provide a one sentence justification for your answer

- 1. The integro-differential form of the transport equation expresses a local balance between neutron production and losses.
- 2. A vacuum boundary condition for the integro-differential transport equation implies a zero outgoing angular flux.
- 3. In the transport equation in curvilinear coordinates, the redistribution term allows neutrons to migrate between the directions as they move along a straight line.
- 4. A nuclear system is subcritical if its eigenvalues satisfy max(Re(j)) ; 1.
- 5. The energy spectrum of the fundamental eigenmode of the eigenvalue problem is skewed as though a 1 absorber is present.

NE250_HW02_mnegus-prob5

October 5, 2017

1 NE 250 – Homework 2

1.1 Problem 5

10/6/2017

A critical reactor has a multiplication factor of k = 1. The multiplication factor (for an infinite reactor) can be defined as

$$k_{\infty} \equiv \frac{\text{# neutrons produced}}{\text{# neutrons absorbed}}$$

Mathematically, the number of neutrons produced is $\int_0^\infty \nu \Sigma_f(E) \phi(E) \, dE$ and the number of neutrons absorbed is $\int_0^\infty \Sigma_a(E) \phi(E) \, dE$. Altogether, we can mathematically describe a critical reactor as

$$1 = \frac{\int_0^\infty \nu \Sigma_f(E) \phi(E) dE}{\int_0^\infty \Sigma_a(E) \phi(E) dE}$$

or equivalently

$$\int_0^\infty \nu \Sigma_f(E) \phi(E) dE = \int_0^\infty \Sigma_a(E) \phi(E) dE.$$

Since we are considering only thermal cross sections, we will let $\Sigma_X(E) = \Sigma_X(0.025 \, \text{eV}) = \Sigma_{X,T}$ and we find

$$\nu \Sigma_{f,T} \int_0^\infty \phi(E) dE = \Sigma_{a,T} \int_0^\infty \phi(E) dE.$$

The integrals over flux cancel, and so

$$\nu \Sigma_{f,T} = \Sigma_{a,T}.$$

The macroscopic cross sections can be rewritten as $\Sigma_{f,T} = \Sigma_{f,T,f}$ and $\Sigma_{a,T} = \Sigma_{a,T,f} + \Sigma_{a,T,m}$ where subscripts f and m denote fuel and moderator, respectively. Furthermore, each macroscopic cross section for each material can be expressed in terms of the material's number density and microscopic cross section, $\Sigma = n\sigma$. In total

$$\nu n_{\rm f} \sigma_{f,T,{\rm f}} = n_{\rm f} \sigma_{a,T,{\rm f}} + n_{\rm m} \sigma_{a,T,{\rm m}}.$$

The fuel-to-moderator (number) density ratio at criticality can then be expressed as

$$\frac{n_{\rm f}}{n_{\rm m}} = \frac{\sigma_{a,T,{\rm m}}}{\nu \sigma_{f,T,{\rm f}} - \sigma_{a,T,{\rm f}}}. \label{eq:nf}$$

```
In [1]: def FMratio(absorbXS_mod,absorbXS_fuel,fissionXS_fuel,nu):
                                                                                          return absorbXS_mod/(nu*fissionXS_fuel - absorbXS_fuel)
                  We can define our thermal cross sections as follows (from ENDF/B-VII.1)
In [2]: fissionXS = {'U235': 585.086}
                                                            absorbXS = \{'C12': 0.00336,
                                                                                                                                                     'Be9': 0.01004,
                                                                                                                                                       'H1': 0.33201,
                                                                                                                                                      'H2':
                                                                                                                                                                                                               0.00051,
                                                                                                                                                      '016': 0.00019,
                                                                                                                                                       'U235': 585.086 + 98.6864
                                                            absorbXS['graphite'] = absorbXS['C12']
                                                             absorbXS['water'] = 2*absorbXS['H1'] + absorbXS['O16']
                                                             absorbXS['heavy water'] = 2*absorbXS['H2'] + absorbXS['O16']
                  a) Graphite
In [3]: absorbXS_mod=absorbXS['graphite']
                                                            print('Critical Fuel-to-Moderator Ratio: ',FMratio(absorbXS_mod,absorbXS['University of the print of the
Critical Fuel-to-Moderator Ratio: 4.5457204996214396e-06
                  b) Beryllium
In [4]: absorbXS_mod=absorbXS['Be9']
                                                           print('Critical Fuel-to-Moderator Ratio: ',FMratio(absorbXS_mod,absorbXS['University of the content of the
Critical Fuel-to-Moderator Ratio: 1.358304577863073e-05
                  c) Water
In [5]: absorbXS_mod=absorbXS['water']
                                                           print('Critical Fuel-to-Moderator Ratio: ',FMratio(absorbXS_mod,absorbXS['University of the content of the
Critical Fuel-to-Moderator Ratio: 0.0008986050634087967
                  d) Heavy Water
In [6]: absorbXS_mod=absorbXS['heavy water']
                                                           print('Critical Fuel-to-Moderator Ratio: ',FMratio(absorbXS_mod,absorbXS['University of the print of the
Critical Fuel-to-Moderator Ratio: 1.6370005370660543e-06
```

NE250_HW02_mnegus-prob6

October 5, 2017

1 NE 250 – Homework 2

1.1 Problem 6

10/6/2017

a) Like in Problem 5,

$$k_{\infty} = \frac{\int_0^{\infty} \nu \Sigma_f(E) \phi(E) dE}{\int_0^{\infty} \Sigma_a(E) \phi(E) dE}.$$

Again, since we are only considering cross sections averaged over the fast spectrum, we can state that $\Sigma_X(E) = \Sigma_{X,F}$, and then

$$k_{\infty} = \frac{\nu \Sigma_{f,F} \int_0^{\infty} \phi(E) dE}{\Sigma_{a,F} \int_0^{\infty} \phi(E) dE} = \frac{\nu \Sigma_{f,F}}{\Sigma_{a,F}}.$$

Next, we repeat our decomposition of the numerator and denominator. For neutron production, we find

$$\nu \Sigma_f = \sum_i \nu_i n_i \sigma_{f,i}$$

where i represents the ith fuel.

For neutron absorption,

$$\Sigma_a = \sum_{i} n_j \sigma_{a,j}$$

and j represents the j^{th} material in the reactor.

We substitute these into our equation for k_{∞} and solve.

We are given the material densities in $[g/cm^3]$, the volume fractions of the materials, and the microscopic cross sections $[1/cm^2]$.

The number densities can be found by using the molar masses of the materials [g/mol] and the formula, $n_j = f_j \frac{\rho_j N_A}{m_j}$.

We are also given ν_{PuO_2} and ν_{UO_2} .

Now we can solve for k_{∞}

```
In [7]: fuels = ['PuO2','UO2']
    materials = ['PuO2','UO2','Na','Fe']
    print('k_infinity =',k_infinity(fuels,materials,nu,n,xsf,xsa))
k_infinity = 1.3324856823514228
```

b) The masses of the total core and fuel are given by $\sum_k f_k \rho_k$, where k represents the kth material or fuel.

The fraction of the core which is fuel is 61.579%

c) If k=1 and the non-leakage probability is 0.90, then we can reexpress our earlier equation as

$$k = 1 = P_{NL} \frac{\nu \Sigma_{f,F} \int_0^\infty \phi(E) dE}{\Sigma_{a,F} \int_0^\infty \phi(E) dE} = P_{NL} \frac{\nu \Sigma_{f,F}}{\Sigma_{a,F}},$$

or

$$P_{NL}\nu\Sigma_{f,F}=\Sigma_{a,F}.$$

When separated into individual materials, this is

$$P_{NL} \sum_{i} \nu_{i} n_{i} \sigma_{f,i} = \sum_{i} n_{j} \sigma_{a,j}.$$

or explicitly

 $P_{NL}\left(\nu_{\text{PuO}_2}n_{\text{PuO}_2}\sigma_{F,\text{PuO}_2}+\nu_{\text{UO}_2}n_{\text{UO}_2}\sigma_{F,\text{UO}_2}\right)=n_{\text{PuO}_2}\sigma_{a,F,\text{PuO}_2}+n_{\text{UO}_2}\sigma_{a,F,\text{UO}_2}+n_{\text{Fe}}\sigma_{a,F,\text{Fe}}+n_{\text{Na}}\sigma_{a,F,\text{Na}}$ We recall that $n_{\text{PuO}_2}=f_{\text{f},\text{PuO}_2}(0.3)\frac{\rho_{\text{PuO}_2}N_A}{m_{\text{PuO}_2}}$ and $n_{\text{UO}_2}=(1-f_{\text{f},\text{PuO}_2})(0.3)\frac{\rho_{\text{UO}_2}N_A}{m_{\text{UO}_2}}$, while $n_{\text{Na}}=(0.5)\frac{\rho_{\text{Na}}N_A}{m_{\text{Na}}}$ and $n_{\text{Fe}}=(0.2)\frac{\rho_{\text{Fe}}N_A}{m_{\text{Fe}}}$. Then,

$$P_{NL}\left(\nu_{\text{PuO}_2}f_{\text{f,PuO}_2}(0.3)\frac{\rho_{\text{PuO}_2}N_A}{m_{\text{PuO}_2}}\sigma_{F,\text{PuO}_2} + \nu_{\text{UO}_2}(1-f_{\text{f,PuO}_2})(0.3)\frac{\rho_{\text{UO}_2}N_A}{m_{\text{UO}_2}}\sigma_{F,\text{UO}_2}\right) = f_{\text{f,PuO}_2}(0.3)\frac{\rho_{\text{PuO}_2}N_A}{m_{\text{PuO}_2}}\sigma_{a,F,\text{PuO}_2}$$
 which can be expanded to

 $f_{\rm f,PuO_2}P_{NL}\nu_{\rm PuO_2}(0.3)\frac{\rho_{\rm PuO_2}}{m_{\rm PuO_2}}\sigma_{\rm F,PuO_2} + P_{NL}\nu_{\rm UO_2}(0.3)\frac{\rho_{\rm UO2}}{m_{\rm UO_2}}\sigma_{\rm F,UO_2} - f_{\rm f,PuO_2}P_{NL}\nu_{\rm UO_2}(0.3)\frac{\rho_{\rm UO2}}{m_{\rm UO_2}}\sigma_{\rm F,UO_2} = f_{\rm f,PuO_2}(0.3)\frac{\rho_{\rm UO2}}{m_{\rm UO_2}}\sigma_{\rm F,UO_2} - f_{\rm f,PuO_2}P_{NL}\nu_{\rm UO_2}(0.3)\frac{\rho_{\rm UO2}}{m_{\rm UO_2}}\sigma_{\rm F,UO_2} = f_{\rm f,PuO_2}(0.3)\frac{\rho_{\rm UO2}}{m_{\rm UO_2}}\sigma_{\rm F,UO_2} + f_{\rm f,PuO_2}(0.3)\frac{\rho_{\rm UO_2}}{m_{\rm UO_2}}\sigma_{\rm F,UO_2} + f_{\rm f,PuO_2}(0.3)\frac{\rho_$

$$f_{\mathrm{f,PuO_2}}\left(P_{NL}\nu_{\mathrm{PuO_2}}(0.3)\frac{\rho_{\mathrm{PuO_2}}}{m_{\mathrm{PuO_2}}}\sigma_{F,\mathrm{PuO_2}} - P_{NL}\nu_{\mathrm{UO_2}}(0.3)\frac{\rho_{\mathrm{UO_2}}}{m_{\mathrm{UO_2}}}\sigma_{F,\mathrm{UO_2}} - (0.3)\frac{\rho_{\mathrm{PuO_2}}}{m_{\mathrm{PuO_2}}}\sigma_{a,F,\mathrm{PuO_2}} + (0.3)\frac{\rho_{\mathrm{UO_2}}}{m_{\mathrm{UO_2}}}\sigma_{a,F,\mathrm{UO_2}}\right)$$

$$f_{\rm f,PuO_2} = \frac{(0.3)\frac{\rho_{\rm UO_2}}{m_{\rm UO_2}}\sigma_{a,F,{\rm UO_2}} + (0.2)\frac{\rho_{\rm Fe}}{m_{\rm Fe}}\sigma_{a,F,{\rm Fe}} + (0.5)\frac{\rho_{\rm Na}}{m_{\rm Na}}\sigma_{a,F,{\rm Na}} - P_{NL}\nu_{{\rm UO_2}}(0.3)\frac{\rho_{\rm UO_2}}{m_{{\rm UO_2}}}\sigma_{F,{\rm UO_2}}}{0.3\left(P_{NL}\nu_{{\rm PuO_2}}\frac{\rho_{{\rm PuO_2}}}{m_{{\rm PuO_2}}}\sigma_{F,{\rm PuO_2}} - P_{NL}\nu_{{\rm UO_2}}\frac{\rho_{{\rm UO_2}}}{m_{{\rm UO_2}}}\sigma_{F,{\rm UO_2}} - \frac{\rho_{{\rm PuO_2}}}{m_{{\rm PuO_2}}}\sigma_{a,F,{\rm PuO_2}} + \frac{\rho_{{\rm UO_2}}}{m_{{\rm UO_2}}}\sigma_{a,F,{\rm UO_2}}\right)}$$

```
In [10]: P_NL = 0.90
    numerator = 0.3*xsa['U02']*densities['U02']/m['U02'] + 0.2*xsa['Fe']*densities
    denominator = 0.3*(P_NL*nu['Pu02']*xsf['Pu02']*densities['Pu02']/m['Pu02']
    f = numerator/denominator
    print('The reactor will be critical if {}% of the fuel volume is Pu02 ({})
```

The reactor will be critical if 10.322% of the fuel volume is PuO2 (3.097% of the