Spark Workshop

internals, architecture & coding

Roadmap

- RDDs
 - Definition
 - Operations
- Execution workflow
 - o DAG
 - Stages and tasks
 - Shuffle
- Architecture
 - Components
 - Memory model
- Coding
 - spark-shell
 - building and submitting Spark applications to YARN

Meet Spark

- Generalized framework for distributed data processing (batch, graph, ML)
- Scala collections functional API for manipulating data at scale
- In-memory data caching and reuse across computations
- Applies set of coarse-grained transformations over partitioned data
- Failure recovery relies on lineage to recompute failed tasks
- Supports majority of input formats and integrates with Mesos / YARN

Spark makes data engineers happy

Backup/restore of Cassandra tables in Parquet

```
def backup(sc: SparkContext, sqlContext: SQLContext, config: Config) {
    sc.cassandraTable(config.keyspace, config.table).map(_.toEvent).toDF()
    .write.parquet(s"${config.targetDir}/${config.table}.parquet")
}

def restore(sc: SparkContext, sqlContext: SQLContext, config: Config) {
    sqlContext.read.parquet(s"${config.targetDir}/${config.table}.parquet")
    .map(_.toEvent).saveToCassandra(config.keyspace, config.table)
}
```

Query different data sources to identify discrepancies

```
sqlContext.sql {

"""

SELECT count()

FROM cassandra_event_rollups

JOIN mongo_event_rollups

ON cassandra_event_rollups.uuid = cassandra_event_rollups.uuid

WHERE cassandra_event_rollups.value != cassandra_event_rollups.value

""".stripMargin
}
```

Core Concepts

RDD: Resilient Distributed Dataset

- A fault-tolerant, immutable, parallel data structure
- Provides API for
 - manipulating the collection of elements (transformations and materialization)
 - persisting intermediate results in memory for later reuse
 - controlling partitioning to optimize data placement
- Can be created through deterministic operation
 - from storage (distributed file system, database, plain file)
 - from another RDD
- Stores information about parent RDDs
 - for execution optimization and operations pipelining
 - to recompute the data in case of failure

RDD: a developer's view

- Distributed immutable data + lazily evaluated operations
 - partitioned data + iterator
 - transformations & actions
- An interface defining 5 main properties

```
a list of partitions (e.g. splits in Hadoop)
def getPartitions: Array[Partition]
a list of dependencies on other RDDs
                                                                      lineage
def getDependencies: Seq[Dependency[ ]]
a function for computing each split
def compute(split: Partition, context: TaskContext): Iterator[T]
(optional) a list of preferred locations to compute each split on
def getPreferredLocations(split: Partition): Seq[String] = Nil
                                                                      execution optimization
(optional) a partitioner for key-value RDDs
val partitioner: Option[Partitioner] = None
```

RDDs Example

HadoopRDD

- getPartitions = HDFS blocks
- getDependencies = None
- compute = load block in memory
- getPrefferedLocations = HDFS block locations
- partitioner = None

MapPartitionsRDD

- getPartitions = same as parent
- getDependencies = parent RDD
- compute = compute parent and apply map()
- getPrefferedLocations = same as parent
- partitioner = None

RDD Operations

Transformations

- apply user function to every element in a partition (or to the whole partition)
- apply aggregation function to the whole dataset (groupBy, sortBy)
- introduce dependencies between RDDs to form DAG
- provide functionality for repartitioning (repartition, partitionBy)

Actions

- trigger job execution
- used to materialize computation results

Extra: persistence

- explicitly store RDDs in memory, on disk or off-heap (cache, persist)
- checkpointing for truncating RDD lineage

Execution workflow

Code sample: joining aggregated and raw data

```
//aggregate events after specific date for given campaign
val events = sc.cassandraTable("demo", "event")
               .map(_.toEvent)
                .filter(event => event.campaignId == campaignId && event.time.isAfter(watermark))
               .keyBy(_.`type`)
               .reduceByKey( + )
               .cache()
//aggregate campaigns by type
val campaigns = sc.cassandraTable("demo", "campaign")
                  .map(_.toCampaign)
                   .filter(campaign => campaign.id == campaignId && campaign.time.isBefore(watermark))
                  .keyBy(_.eventType)
                  .reduceByKey(_ + _)
                  .cache()
//joined rollups and raw events
val joinedTotals = campaigns.join(events)
                            .map { case (key, (campaign, event)) => CampaignTotals(campaign, event) }
                            .collect()
//count totals separately
val eventTotals = events.map{ case (t, e) => s"$t -> ${e.value}" }.collect()
val campaignTotals = campaigns.map{ case (t, e) => s"$t -> ${e.value}" }.collect()
```

DAG

Dependency types

not co-partitioned

Narrow (pipelineable)

- each partition of the parent RDD is used by at most one partition of the child RDD
- allow for pipelined execution on one cluster node
- failure recovery is more efficient as only lost parent partitions need to be recomputed

Wide (shuffle)

- multiple child partitions may depend on one parent partition
- require data from all parent partitions to be available and to be shuffled across the nodes
- if some partition is lost from all the ancestors a complete recomputation is needed

Stages and Tasks

Stages breakdown strategy

- check backwards from final RDD
- add each "narrow" dependency to the current stage
- create new stage when there's a shuffle dependency

Tasks

- ShuffleMapTask partitions its input for shuffle
- ResultTask sends its output to the driver

Shuffle

Shuffle Write

- redistributes data among partitions and writes files to disk
- each hash shuffle task creates one file per "reduce" task (total = MxR)
- sort shuffle task creates one file with regions assigned to reducer
- sort shuffle uses in-memory sorting with spillover to disk to get final result

Shuffle Read

- fetches the files and applies reduce() logic
- if data ordering is needed then it is sorted on "reducer" side for any type of shuffle (SPARK-2926)

Sort Shuffle

- Incoming records accumulated and sorted in memory according their target partition ids
- Sorted records are written to file or multiple files if spilled and then merged
- index file stores offsets of the data blocks in the data file
- Sorting without deserialization is possible under certain conditions (SPARK-7081)

Architecture Recap

Spark Driver

- separate process to execute user applications
- creates SparkContext to schedule jobs execution and negotiate with cluster manager

Executors

- run tasks scheduled by driver
- store computation results in memory, on disk or off-heap
- interact with storage systems

Cluster Manager

- Mesos
- YARN
- Spark Standalone

Spark Components

Spark Components

SparkContext

 represents the connection to a Spark cluster, and can be used to create RDDs, accumulators and broadcast variables on that cluster

DAGScheduler

- computes a DAG of stages for each job and submits them to TaskScheduler
- determines preferred locations for tasks (based on cache status or shuffle files locations) and finds minimum schedule to run the jobs

TaskScheduler

 responsible for sending tasks to the cluster, running them, retrying if there are failures, and mitigating stragglers

SchedulerBackend

 backend interface for scheduling systems that allows plugging in different implementations(Mesos, YARN, Standalone, local)

BlockManager

 provides interfaces for putting and retrieving blocks both locally and remotely into various stores (memory, disk, and off-heap)

Memory Management in Spark 1.6

JVM Heap

- Execution Memory
 - storage for data needed during tasks execution
 - shuffle-related data
- Storage Memory
 - storage of cached RDDs and broadcast variables
 - possible to borrow from execution memory (spill otherwise)
 - safeguard value is 0.5 of Spark Memory when cached blocks are immune to eviction
- User Memory
 - user data structures and internal metadata in Spark
 - safeguarding against OOM
- Reserved memory
 - memory needed for running executor itself and not strictly related to Spark

Workshop

code available @ github.com/datastrophic/spark-workshop

Execution Modes

- spark-shell --master [local | spark | yarn-client | mesos]
 - launches REPL connected to specified cluster manager
 - always runs in client mode
- spark-submit --master [local | spark:// | mesos:// | yarn] spark-job.jar
 - launches assembly jar on the cluster

Masters

- local[k] run Spark locally with K worker threads
- spark launches driver app on Spark Standalone installation
- mesos driver will spawn executors on Mesos cluster (deploy-mode: client | cluster)
- yarn same idea as with Mesos (deploy-mode: client | cluster)

Deploy Modes

- client driver executed as a separate process on the machine where it has been launched and spawns executors
- cluster driver launched as a container using underlying cluster manager

Invocation examples

```
spark-shell \
--master yarn \
--deploy-mode client \
--executor-cores 1 \
--num-executors 2 \
--jars /target/spark-workshop.jar \
--conf spark.cassandra.connection.host=cassandra
spark-submit --class io.datastrophic.spark.workshop.ParametrizedApplicationExample \
--master yarn \
--deploy-mode cluster \
--num-executors 2 \
--driver-memory 1g \
--executor-memory 1g \
/target/spark-workshop.jar \
--cassandra-host cassandra \
--keyspace demo \
--table event \
--target-dir /workshop/dumps
```

Live Demo

- spark-shell
- Spark UI
- creating an app with Typesafe Activator
- Spark SQL and DataFrames API
- coding

Coding ideas

- get familiar with API through sample project
 - join data from different storage systems
 - aggregate data with breakdown by date
- play with caching and persistence
- check out join behavior applying different partitioning
- familiarize with Spark UI
- experiment with new DataSet API (since 1.6)
- [your awesome idea here]

Questions