IN THE CLAIMS

The text of all claims under examination is submitted, and the status of each is identified. This listing of claims replaces all prior versions, and listings, of claims in the application.

1-18. (cancelled).

19. (previously presented): A polymer material comprising components (a) and (b) in form of a fiber, textile, nonwoven or film is contained on or visibly below the surface of a protective clothing, a mask or an irradiation indicating tag, wherein

(a) is a compound comprising one or more mono-hydroxyphenyl moieties, each carrying one or two bonds to either a linking group connecting the moiety with 1 to 3 further moieties of the same type or to an anchor group, and 1-3 further substituents selected from alkyl of 1 to 12 carbon atoms, where the linking groups are di-, tri- or tetravalent aliphatic groups of 1 to 20 carbon atoms and divalent linking groups are selected from alkylene which may be interrupted and/or end-capped with –O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO-, -CONH-, a group L₁, phenylene or phenylene which is substituted by C₁-C₁₂alkyl and/or C₁-C₁₂alkoxy and/or C₂-C₁₂alkanoyloxy and/or C₃-C₁₂alkenoyloxy; divalent mono-, di- or tricycloalkylene groups; divalent mono-, di- or tricycloalkylene groups interrupted by -O-; -O-; -NH-; -S-; -CO-; -COO-; -OCO-; -NHCO-; and -CONH-; trivalent groups are selected from trivalent alkyl groups of 3 to 20 carbon atoms; said trivalent alkyl groups interrupted and/or end-capped with –O-, -NH-, -S-,

-CO-, -COO-, -OCO-, -NHCO-, -CONH-, a group L_1 , phenylene or phenylene which is substituted by C_1 - C_{12} alkyl and/or C_1 - C_{12} alkoxy and/or C_2 - C_{12} alkanoyloxy and/or C_3 - C_{12} alkenoyloxy; and trivalent groups of the formulae

$$A_{7}$$

$$N$$

$$A_{7}$$

$$N$$

$$A_{7}$$

tetravalent groups are selected from tetravalent alkyl groups of 4 to 20 carbon atoms; and said tetravalent alkyl groups interrupted and/or end-capped with –O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO-, -CONH-, a group L₁, phenylene or phenylene which is substituted by C_1 - C_{12} alkyl and/or C_1 - C_{12} alkoxy and/or C_2 - C_{12} alkanoyloxy and/or C_3 - C_{12} alkenoyloxy; wherein

L₁ is a group selected from the formulae

$$\begin{array}{c|c}
 & L_2 \\
 & N \\
 & N \\
 & N
\end{array}$$

$$A_7$$
 A_6 A_7 A_7

 L_2 is OH, C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, C_2 - C_{12} hydroxyalkyl; C_2 - C_{12} hydroxyalkoxy; L_3 independently are C_1 - C_4 alkylene; L_4 independently are H or C_1 - C_4 alkyl; and

anchor groups are selected from

 C_1 - C_{22} alkyl; C_1 - C_{22} alkyl- A_5 -; C_2 - C_{22} alkyl interrupted by - A_5 -; - A_4 -phenyl; - A_4 -phenyl where the phenyl core is substituted by C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, C_2 - C_{12} alkanoyloxy and/or C_3 - C_{12} alkenoyloxy; C_1 - C_8 alkyl substituted by a group of the formula

$$H_3C$$
 CH_3 $N-R'$; H_3C CH_3

phosphite, phosphate or phosphonate ester groups, of the formula

$$-A_3-(O)_m-P(=O)_p(OA_1)(OA_2);$$

or the anchor group is of the formula

$$A_{7}$$

$$N$$

$$N$$

$$A_{6}$$

$$N$$

$$A_{6}$$

where m and p independently are 0 or 1;

 A_1 and A_2 independently are C_1 - C_{12} alkyl or phenyl or phenyl substituted by C_1 - C_{12} alkyl or an equivalent of an alkaline, alkaline earth or aluminum atom;

A₃ is a direct bond or C₁-C₈alkylene;

A₄ is selected from C₁-C₈alkylene and A₅;

 A_5 is selected from –O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO- and -CONH-;

A₆ is selected from C₁-C₁₈alkoxy, C₁-C₁₈alkylthio and C₁-C₁₈alkylamino;

 A_7 is -O- or -NH-;

R' is H, C₁-C₁₈alkyl, C₁-C₁₈alkoxy or cyclohexyloxy;

or the anchor group is C₃-C₂₂alkylene or C₃-C₂₂oxaalkylene attached with both open bonds to adjacent carbon atoms of the mono-hydroxyphenyl moiety; or

component (a) can also be a phenolic UV absorber compound selected from benzotriazoles of the formula (IIa), 2-hydroxybenzophenones of the formula (IIb) and 2-hydroxyphenyltriazines of formula (IIc):

$$\begin{array}{c|c} N & OH \\ \hline T_3 & \\ N & T_2 \end{array} \hspace{1cm} \text{(IIa)}$$

wherein T_1 is hydrogen, C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is substituted by phenyl,

or
$$T_1$$
 is a group of the formula
$$\begin{array}{c|c} OH & N & \\ \hline \\ N & N \\ \hline \\ T_2 \\ \end{array}$$

 L_{10} is a divalent group -(CH₂)_n- , where n is from the range 1-8; L_{10} is hydrogen, C_1 - C_{18} alkyl, or is C_1 - C_{18} alkyl which is substituted by COOT₅, C_1 - C_{18} alkoxy, hydroxyl, phenyl or C_2 - C_{18} acyloxy;

 T_3 is hydrogen, halogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, C_2 - C_{18} acyloxy, perfluoroalkyl of 1 to 12 carbon atoms , or T_3 is phenyl; and

 T_5 is C_1 - C_{18} alkyl or C_4 - C_{50} alkyl interrupted by one or more O and/or substituted by OH or

by a group
$$T_1 \longrightarrow T_3$$
$$-OOC-L_{10}$$

$$G_3$$
 O OH G_1 (IIb)

wherein

G₁, G₂ and G₃ independently are hydrogen, hydroxy or C₁-C₁₈alkoxy;

$$G_{12}$$

$$G_{11}$$

$$G_{10}$$

$$G_{8}$$

$$G_{9}$$

$$G_{9}$$

$$G_{9}$$

$$G_{10}$$

$$G_{9}$$

wherein

 G_8 is C_1 - C_{18} alkyl, or is C_4 - C_{18} alkyl which is interrupted by COO or OCO or O, or is interrupted by O and substituted by OH; and

 G_9 , G_{10} , G_{11} and G_{12} independently are hydrogen, methyl, hydroxy or OG_8 ; and G_9 and G_{12} also comprise phenyl; and

- (b) is a colour former, wherein said protective clothing, mask or irradiation indicating tag undergoes an irreversible color change upon exposure to irradiation.
- **20.** (previously presented): The polymer material according to claim 19, , wherein the irradiation is of higher energy than visible light and is selected from ultraviolet light, X-ray, gamma radiation and particle radiation .

21. (cancelled).

22. (previously presented): The polymer material according to claim 19, wherein component (a) is a compound of the formula (A)

$$\begin{array}{c|c}
R_{2} & R_{4} \\
HO & R_{3} & R_{5} \\
\end{array}$$
(A)

wherein

 R_2 is methyl or tertiary C_4 - C_{12} alkyl;

 R_3 , R_4 and R_5 independently are hydrogen, methyl or tertiary C_4 - C_{12} alkyl; n is from the range 1-4:

when n is 1,

 R_1 is tertiary C_4 - C_{12} alkyl; C_1 - C_{22} alkyl- A_5 -; C_2 - C_{22} alkyl interrupted by - A_5 -; - A_5 -phenyl; - A_5 -phenyl where the phenyl core is substituted by C_1 - C_{12} alkyl; - A_4 -phenyl where the phenyl core is substituted by C_2 - C_{12} alkanoyloxy and/or C_3 - C_{12} alkenoyloxy, and optionally further by

 C_1 - C_{12} alkyl; or R_1 together with R_5 is C_3 - C_{22} alkylene or C_3 - C_{22} oxaalkylene attached with both open bonds to adjacent carbon atoms of the mono-hydroxyphenyl moiety; or is a group of one the formulae

 $-A_3-(O)_m-P(=O)_p(OA_1)(OA_2)$; or

$$A_{6} \qquad N \qquad A_{6}$$

where m and p independently are 0 or 1;

 A_1 and A_2 independently are C_1 - C_{12} alkyl or phenyl or phenyl substituted by C_1 - C_{12} alkyl or an equivalent of an alkaline, alkaline earth or aluminum atom;

A₃ is a direct bond or C₁-C₈alkylene;

 A_4 is selected from C_1 - C_8 alkylene, -O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO- and -CONH-;

A₅ is selected from -O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO- and -CONH-;

A₆ is selected from C₁-C₁₈alkoxy, C₁-C₁₈alkylthio and C₁-C₁₈alkylamino;

 A_7 is -O- or -NH-;

A₈ is C₁-C₇alkyl; and

R' is C₁-C₁₈alkyl;

when n is 2, R₁ is C₁-C₂₀alkylene which may be interrupted and/or end-capped with –O-, -NH-, -S-, -CO-, -COO-, -NHCO-, -CONH-, -L₁-, phenylene, phenylene which is substituted by C₁-C₁₂alkyl and/or C₁-C₁₂alkoxy and/or C₂-C₁₂alkanoyloxy and/or C₃-C₁₂alkenoyloxy; divalent mono-, di- or tricycloalkylene groups; divalent mono-, di- or tricycloalkylene groups interrupted by –O-; –O-; -NH-; -S-; -CO-; -COO-; -OCO-; -NHCO-; or -CONH-;

when n is 3, R_1 is trivalent alkyl of 3 to 20 carbon atoms; said trivalent alkyl interrupted or end-capped with $-O_7$, $-NH_7$, $-S_7$, $-CO_7$, $-COO_7$, $-OCO_7$, $-NHCO_7$, $-CONH_7$, $-L_{17}$, phenylene or phenylene which is substituted by C_1-C_{12} alkyl and/or C_1-C_{12} alkoxy and/or C_2-C_{12} alkanoyloxy and/or C_3-C_{12} alkenoyloxy; or trivalent groups of the formulae

$$0 \bigvee_{N \bigvee_{O} N} 0$$

or

$$A_{7}$$

$$A_{7}$$

$$N$$

$$A_{7}$$

$$N$$

$$A_{7}$$

when n is 4, R_1 is tetravalent alkyl of 4 to 20 carbon atoms; said tetravalent alkyl interrupted or end-capped with $-O_-$, $-NH_-$, $-S_-$, $-CO_-$, $-COO_-$, $-OCO_-$, $-NHCO_-$, $-CONH_-$, $-L_1_-$, phenylene or phenylene which is substituted by C_1-C_{12} alkyl and/or C_1-C_{12} alkoxy and/or C_2-C_{12} alkanoyloxy and/or C_3-C_{12} alkenoyloxy;

L₁ is a group selected from the formulae

and

$$A_7$$
 A_7 A_7

 $\label{eq:L2} L_2 \text{ is OH, } C_1\text{-}C_{12}\text{alkyl, } C_1\text{-}C_{12}\text{alkoxy, } C_2\text{-}C_{12}\text{hydroxyalkyl; or } C_2\text{-}C_{12}\text{hydroxyalkoxy; } \\ L_3 \text{ independently are } C_1\text{-}C_4\text{alkylene; and } \\ L_4 \text{ independently are H or } C_1\text{-}C_4\text{alkyl}.$

23. (previously presented): The polymer material according to claim 22, wherein R₂ is methyl, tert-butyl or tert-pentyl;

 R_3 , R_4 and R_5 independently are hydrogen, methyl, tert-butyl or tert-pentyl; when n is 1,

 R_1 is tertiary butyl, tertiary pentyl; C_1 - C_{22} alkyl- A_5 -; C_2 - C_{22} alkyl interrupted by - A_5 -; - A_5 -phenyl where the phenyl core is substituted by C_1 - C_{12} alkyl; - A_4 -phenyl where the phenyl core is substituted by C_3 - C_4 alkenoyloxy and C_1 - C_{12} alkyl; or R_1 together with R_5 is C_3 - C_{22} alkylene or C_3 - C_{22} oxaalkylene attached with both open bonds to adjacent carbon atoms of the mono-hydroxyphenyl moiety; or R_1 is a group of one the formulae

 $-A_3-P(=O)(OA_1)(OA_2)$; or

$$A_{6}$$

$$N$$

$$N$$

$$A_{6}$$

$$N$$

$$A_{6}$$

where

 A_1 and A_2 independently are C_1 - C_4 alkyl or an equivalent of a metal atom selected from Li, Na, K, $\frac{1}{2}$ Mg, $\frac{1}{2}$ Ca and 1/3 Al;

A₃ is methylene;

A₄ is C₁-C₈alkylene;

 A_5 is selected from –O-, -S-, -COO-, -OCO-, -NHCO- and -CONH-;

A₆ is selected from C₄-C₁₈alkylthio and C₄-C₁₈alkylamino;

 A_7 is -NH-;

A₈ is C₁-C₇alkyl; and

R' is C₁-C₁₈alkyl;

when n is 2, R_1 is C_1 - C_{12} alkylene; C_2 - C_{20} alkylene interrupted and/or end-capped with -O-, -S-, -COO-, -OCO-, -NHCO-, -CONH- or -L₁-; or R_1 is a divalent mono-, di- or tricycloalkylene group; or R_1 is -O-; -NH-; or -S-;

when n is 3, R_1 is trivalent alkyl of 3 to 20 carbon atoms; said trivalent alkyl interrupted by -O-, -S-, - COO-, -OCO-, -NHCO-, -CONH-, phenylene or phenylene which is substituted by C_1 - C_{12} alkyl; or R_1 is a trivalent group of one of the formulae

or

$$0 \bigvee_{N \bigvee_{O}} 0$$

when n is 4, R₁ is tetravalent alkyl of 4 to 20 carbon atoms; or said tetravalent alkyl interrupted by –O-, -S-, -COO-, -OCO-, -NHCO- or -CONH-; and

L₁ is a group of the formula

 L_3 independently are C_1 - C_4 alkylene; and L_4 independently are H or C_1 - C_4 alkyl.

- **24.** (previously presented): The polymer material according to claim 19, wherein the colour former is a triphenylmethane, lactone, benzoxazine, spiropyran, fluoran or phthalide.
- **25.** (currently amended): The polymer material according to claim 19, wherein the polymeric material contains 0.001 to 10 % by weight of the phenolic antioxidant and/or phenolic UVA component (a), based on the total weight of the polymeric material.
- **26.** (previously presented): The polymer material according to claim 19, wherein the polymeric material contains 0.001 to 10 % by weight of the colour former with respect to the total weight of the polymeric material.

- **27.** (previously presented): The polymer material according to claim 26, wherein the polymeric material contains 0.01 to 5 % by weight of the colour former with respect to the total weight of the polymeric material.
- **28.** (previously presented): The polymer material according to claim 19, wherein the polymeric material is a transparent thermoplast.

-1.

- 29. (previously presented): The polymer material according to claim 19, wherein the polymeric material is selected from styrene acrylonitrile copolymer, polyolefin, polyvinylchloride, polychlorobutadiene, polyesters and glycol modified polyesters, polyacrylics, polystyrene, acrylonitrile styrene acrylate copolymer, polyamide, acrylonitrile styrene butadiene copolymer, polycarbonate and blends or alloys thereof.
- **30.** (previously presented): Process for monitoring irradiation by X-ray or radioactive material, which process comprises placing a tag or sample of a polymer material comprising components (a) and (b) in the site to be controlled, and subsequently checking the colour of the tag or sample, wherein
 - (a) is a compound comprising one or more mono-hydroxyphenyl moieties, each carrying one or two bonds to either a linking group connecting the moiety with 1 to 3 further moieties of the same type or to an anchor group, and 1-3 further substituents selected from alkyl of 1 to 12 carbon atoms, where the linking groups are di-, tri- or tetravalent aliphatic groups of 1 to 20 carbon atoms and divalent linking groups are selected from alkylene which may be interrupted and/or end-capped with –O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO-, -CONH-, a group L₁, phenylene or phenylene which is substituted by C₁-C₁₂alkyl and/or C₁-C₁₂alkoxy and/or C₂-C₁₂alkanoyloxy and/or C₃-C₁₂alkenoyloxy; divalent mono-, di- or tricycloalkylene groups; divalent mono-, di- or tricycloalkylene groups interrupted by -O-; -O-; -NH-; -S-; -CO-; -COO-; -OCO-; -NHCO-; and -CONH-; trivalent groups are selected from trivalent alkyl groups of 3 to 20 carbon atoms; said trivalent alkyl groups interrupted and/or end-capped with –O-, -NH-, -S-,
 - -CO-, -COO-, -OCO-, -NHCO-, -CONH-, a group L_1 , phenylene or phenylene which is substituted by C_1 - C_{12} alkyl and/or C_1 - C_{12} alkoxy and/or C_2 - C_{12} alkanoyloxy; and trivalent groups of the formulae

$$A_{7}$$

$$N$$

$$N$$

$$A_{7}$$

$$N$$

$$A_{7}$$

tetravalent groups are selected from tetravalent alkyl groups of 4 to 20 carbon atoms; and said tetravalent alkyl groups interrupted and/or end-capped with –O-, -NH-, -S-, -CO-, - COO-, -OCO-, -NHCO-, -CONH-, a group L_1 , phenylene or phenylene which is substituted by C_1 - C_{12} alkyl and/or C_1 - C_{12} alkoxy and/or C_2 - C_{12} alkanoyloxy and/or C_3 - C_{12} alkenoyloxy; wherein

L₁ is a group selected from the formulae

$$\begin{array}{c|c}
 & L_2 \\
 & N \\
 & N \\
 & O
\end{array}$$

Ų.

$$A_7$$
 A_7 A_7 A_7

 L_2 is OH, C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, C_2 - C_{12} hydroxyalkyl; C_2 - C_{12} hydroxyalkoxy; L_3 independently are C_1 - C_4 alkylene; L_4 independently are H or C_1 - C_4 alkyl; and

anchor groups are selected from

 $C_{1}-C_{22}\text{alkyl}; \ C_{1}-C_{22}\text{alkyl}-A_{5}-; \ C_{2}-C_{22}\text{alkyl} \ interrupted by -A_{5}-; \ -A_{4}-\text{phenyl}; \ -A_{4}-\text{phenyl} \ where the phenyl core is substituted by $C_{1}-C_{12}\text{alkyl}, \ C_{1}-C_{12}\text{alkoxy}, \ C_{2}-C_{12}\text{alkanoyloxy} \ \text{and/or } C_{3}-C_{12}\text{alkenoyloxy}; \ C_{1}-C_{8}\text{alkyl} \ \text{substituted by a group of the formula}$

phosphite, phosphate or phosphonate ester groups, of the formula

$$-A_3-(O)_m-P(=O)_p(OA_1)(OA_2);$$

or the anchor group is of the formula

$$A_{6} \stackrel{A_{7}}{\stackrel{N}{\longrightarrow}} A_{6}$$

where m and p independently are 0 or 1;

 A_1 and A_2 independently are C_1 - C_{12} alkyl or phenyl or phenyl substituted by C_1 - C_{12} alkyl or an equivalent of an alkaline, alkaline earth or aluminum atom;

A₃ is a direct bond or C₁-C₈alkylene;

A₄ is selected from C₁-C₈alkylene and A₅;

 A_5 is selected from –O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO- and -CONH-;

A₆ is selected from C₁-C₁₈alkoxy, C₁-C₁₈alkylthio and C₁-C₁₈alkylamino;

 A_7 is -O- or -NH-;

R' is H, C₁-C₁₈alkyl, C₁-C₁₈alkoxy or cyclohexyloxy;

or the anchor group is C₃-C₂₂alkylene or C₃-C₂₂oxaalkylene attached with both open bonds to adjacent carbon atoms of the mono-hydroxyphenyl moiety; or

component (a) can also be a phenolic UV absorber compound selected from benzotriazoles of the formula (IIa), 2-hydroxybenzophenones of the formula (IIb) and 2-hydroxyphenyltriazines of formula (IIc):

wherein T_1 is hydrogen, C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is substituted by phenyl,

or
$$T_1$$
 is a group of the formula
$$\begin{array}{c} OH & N \\ \hline \\ V \\ \hline \\ T_2 \end{array}$$

 L_{10} is a divalent group -(CH₂)_n- , where n is from the range 1-8;

 T_2 is hydrogen, C_1 - C_{18} alkyl, or is C_1 - C_{18} alkyl which is substituted by COOT₅, C_1 - C_{18} alkoxy, hydroxyl, phenyl or C_2 - C_{18} acyloxy;

 T_3 is hydrogen, halogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, C_2 - C_{18} acyloxy, perfluoroalkyl of 1 to 12 carbon atoms , or T_3 is phenyl; and

 T_5 is C_1 - C_{18} alkyl or C_4 - C_{50} alkyl interrupted by one or more O and/or substituted by OH or

by a group

$$G_3$$
 O OH G_1 (IIb)

wherein

 $G_1,\ G_2$ and G_3 independently are hydrogen, hydroxy or $C_1\text{-}C_{18}$ alkoxy;

$$G_{8}O$$

$$G_{12}$$

$$G_{11}$$

$$G_{10}$$

$$G_{3}$$

$$G_{3}$$

$$G_{4}$$

$$G_{4}$$

wherein

 G_8 is C_1 - C_{18} alkyl, or is C_4 - C_{18} alkyl which is interrupted by COO or OCO or O, or is interrupted by O and substituted by OH; and

 G_9 , G_{10} , G_{11} and G_{12} independently are hydrogen, methyl, hydroxy or OG_8 ; and G_9 and G_{12} also comprise phenyl; and

- (b) is a colour former.
- **31.** (previously presented): The process according to claim 30, wherein a polymer material comprising components a) and b) are in the form of a fiber, textile, nonwoven or film contained on or visibly below a surface of a protective clothing, a mask or an irradiation indicating tag, and said protective clothing, mask or irradiation indicating tag undergoes an irreversible color change upon exposure to irradiation.
- **32.** (previously presented): The polymer material according to claim 20, wherein the irradiation is from ultraviolet laser or ultraviolet lamp radiation of 285 to 400 nm, electron radiation, X-ray and gamma radiation.
- **33.** (new): Process for monitoring irradiation, which process comprises placing a tag or sample of a polymer material comprising components (a) and (b) in the site to be controlled,

exposing said tag or sample to irradiation from ultraviolet laser or ultraviolet lamp radiation of 285 to 400 nm, electron radiation, X-ray or gamma radiation,

and

subsequently checking the colour of the tag or sample,

wherein

(a) is a compound comprising one or more mono-hydroxyphenyl moieties, each carrying one or two bonds to either a linking group connecting the moiety with 1 to 3 further moieties of the same type or to an anchor group, and 1-3 further substituents selected from alkyl of 1 to 12 carbon atoms, where the linking groups are di-, tri- or tetravalent aliphatic groups of 1 to 20 carbon atoms and divalent linking groups are selected from alkylene which may be interrupted and/or end-capped with –O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO-, -CONH-, a group L₁, phenylene or phenylene which is substituted by C₁-C₁₂alkyl and/or C₁-C₁₂alkoxy and/or C₂-C₁₂alkanoyloxy and/or C₃-C₁₂alkenoyloxy; divalent mono-, di- or tricycloalkylene groups; divalent mono-, di- or tricycloalkylene groups interrupted by -O-; -O-; -NH-; -S-; -CO-; -COO-; -OCO-; -NHCO-; and -CONH-; trivalent groups are selected from trivalent alkyl groups interrupted and/or end-capped with –O-, -NH-, -S-,

-CO-, -COO-, -OCO-, -NHCO-, -CONH-, a group L_1 , phenylene or phenylene which is substituted by C_1 - C_{12} alkyl and/or C_1 - C_{12} alkoxy and/or C_2 - C_{12} alkanoyloxy; and trivalent groups of the formulae

$$L_3$$
 L_4
 L_3
 L_4

$$A_{7}$$

$$A_{7}$$

$$A_{7}$$

$$A_{7}$$

$$A_{7}$$

tetravalent groups are selected from tetravalent alkyl groups of 4 to 20 carbon atoms; and said tetravalent alkyl groups interrupted and/or end-capped with –O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO-, -CONH-, a group L_1 , phenylene or phenylene which is substituted by C_1 - C_{12} alkyl and/or C_1 - C_{12} alkoxy and/or C_2 - C_{12} alkanoyloxy and/or C_3 - C_{12} alkenoyloxy; wherein

L₁ is a group selected from the formulae

 L_2 is OH, C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, C_2 - C_{12} hydroxyalkyl; C_2 - C_{12} hydroxyalkoxy; L_3 independently are C_1 - C_4 alkylene; L_4 independently are H or C_1 - C_4 alkyl; and

anchor groups are selected from

 C_{1} – C_{22} alkyl; C_{1} – C_{22} alkyl- A_{5} -; C_{2} – C_{22} alkyl interrupted by - A_{5} -; - A_{4} -phenyl; - A_{4} -phenyl where the phenyl core is substituted by C_{1} - C_{12} alkyl, C_{1} - C_{12} alkoxy, C_{2} - C_{12} alkanoyloxy and/or C_{3} - C_{12} alkenoyloxy; C_{1} - C_{8} alkyl substituted by a group of the formula

$$H_3C$$
 CH_3 $N-R'$; H_3C CH_3

phosphite, phosphate or phosphonate ester groups, of the formula

$$-A_3-(O)_m-P(=O)_p(OA_1)(OA_2);$$

or the anchor group is of the formula

$$A_{7}$$

$$N$$

$$A_{6}$$

$$N$$

$$A_{6}$$

where m and p independently are 0 or 1;

 A_1 and A_2 independently are C_1 - C_{12} alkyl or phenyl or phenyl substituted by C_1 - C_{12} alkyl or an equivalent of an alkaline, alkaline earth or aluminum atom;

A₃ is a direct bond or C₁-C₈alkylene;

A₄ is selected from C₁-C₈alkylene and A₅;

 A_5 is selected from –O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO- and -CONH-;

A₆ is selected from C₁-C₁₈alkoxy, C₁-C₁₈alkylthio and C₁-C₁₈alkylamino;

 A_7 is -O- or -NH-;

R' is H, C₁-C₁₈alkyl, C₁-C₁₈alkoxy or cyclohexyloxy;

or the anchor group is C₃-C₂₂alkylene or C₃-C₂₂oxaalkylene attached with both open bonds to adjacent carbon atoms of the mono-hydroxyphenyl moiety; or

component (a) can also be a phenolic UV absorber compound selected from benzotriazoles of the formula (IIa), 2-hydroxybenzophenones of the formula (IIb) and 2-hydroxyphenyltriazines of formula (IIc):

wherein T₁ is hydrogen, C₁-C₁₈alkyl, or C₁-C₁₈alkyl which is substituted by phenyl,

or T_1 is a group of the formula $\begin{array}{c} OH & N \\ \hline \\ V_1 \\ \hline \\ T_2 \end{array}$

 L_{10} is a divalent group -(CH₂)_n-, where n is from the range 1-8;

 T_2 is hydrogen, C_1 - C_{18} alkyl, or is C_1 - C_{18} alkyl which is substituted by COOT₅, C_1 - C_{18} alkoxy, hydroxyl, phenyl or C_2 - C_{18} acyloxy;

 T_3 is hydrogen, halogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, C_2 - C_{18} acyloxy, perfluoroalkyl of 1 to 12 carbon atoms , or T_3 is phenyl; and

 T_5 is C_1 - C_{18} alkyl or C_4 - C_{50} alkyl interrupted by one or more O and/or substituted by OH or

by a group $T_1 \longrightarrow T_3$ $-OOC-L_{10}$

$$G_3$$
 OH G_1 (IIb)

wherein

 $G_{\text{1}},~G_{\text{2}}$ and G_{3} independently are hydrogen, hydroxy or $C_{\text{1}}\text{-}C_{\text{18}}\text{alkoxy};$

$$G_{12}$$

$$G_{11}$$

$$G_{10}$$

$$G_{8}O$$

$$G_{9}$$

$$G_{9}$$

$$G_{10}$$

$$G_{9}$$

wherein

 G_8 is C_1 - C_{18} alkyl, or is C_4 - C_{18} alkyl which is interrupted by COO or OCO or O, or is interrupted by O and substituted by OH; and

 G_9 , G_{10} , G_{11} and G_{12} independently are hydrogen, methyl, hydroxy or OG_8 ; and G_9 and G_{12} also comprise phenyl; and

(b) is a colour former.

34. (new): The process according to claim 33, wherein component (a) is a compound of the formula (A)

$$\begin{array}{c|c}
R_2 \\
R_3 \\
R_5 \\
R_5
\end{array}$$
(A)

wherein

R₂ is methyl or tertiary C₄-C₁₂ alkyl;

 R_3 , R_4 and R_5 independently are hydrogen, methyl or tertiary C_4 - C_{12} alkyl; n is from the range 1-4:

when n is 1,

 R_1 is tertiary C_4 - C_{12} alkyl; C_1 - C_{22} alkyl- A_5 -; C_2 - C_{22} alkyl interrupted by - A_5 -; - A_5 -phenyl; - A_5 -phenyl where the phenyl core is substituted by C_1 - C_{12} alkyl; - A_4 -phenyl where the phenyl core is substituted by C_2 - C_{12} alkanoyloxy and/or C_3 - C_{12} alkenoyloxy, and optionally further by

 C_1 - C_{12} alkyl; or R_1 together with R_5 is C_3 - C_{22} alkylene or C_3 - C_{22} oxaalkylene attached with both open bonds to adjacent carbon atoms of the mono-hydroxyphenyl moiety; or is a group of one the formulae

$$-A_3-(O)_m-P(=O)_p(OA_1)(OA_2)$$
; or

$$A_{6}$$

$$N$$

$$A_{6}$$

$$N$$

$$A_{6}$$

where m and p independently are 0 or 1;

 A_1 and A_2 independently are C_1 - C_{12} alkyl or phenyl or phenyl substituted by C_1 - C_{12} alkyl or an equivalent of an alkaline, alkaline earth or aluminum atom;

A₃ is a direct bond or C₁-C₈alkylene;

 A_4 is selected from C_1 - C_8 alkylene, -O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO- and -CONH-:

A₅ is selected from -O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO- and -CONH-;

A₆ is selected from C₁-C₁₈alkoxy, C₁-C₁₈alkylthio and C₁-C₁₈alkylamino;

 A_7 is -O- or -NH-;

A₈ is C₁-C₇alkyl; and

R' is C₁-C₁₈alkyl;

when n is 3, R_1 is trivalent alkyl of 3 to 20 carbon atoms; said trivalent alkyl interrupted or end-capped with $-O_1$, $-NH_2$, $-S_3$, $-CO_4$, $-COO_4$, $-COO_5$, $-COO_4$, $-COO_5$, $-COO_6$, $-COO_$

'n,

or

$$A_7$$
 A_7
 A_7
 A_7
 A_7

when n is 4, R_1 is tetravalent alkyl of 4 to 20 carbon atoms; said tetravalent alkyl interrupted or end-capped with $-O_-$, $-NH_-$, $-S_-$, $-CO_-$, $-COO_-$, $-OCO_-$, $-NHCO_-$, $-CONH_-$, $-L_1_-$, phenylene or phenylene which is substituted by C_1-C_{12} alkyl and/or C_1-C_{12} alkoxy and/or C_2-C_{12} alkanoyloxy and/or C_3-C_{12} alkenoyloxy;

 L_1 is a group selected from the formulae

$$\begin{array}{c|c}
 & L_2 \\
 & N \\
 & N \\
 & O
\end{array}$$

and

$$A_{7} \qquad A_{6} \qquad \vdots$$

 $\label{eq:L2} L_2 \text{ is OH, } C_1\text{-}C_{12}\text{alkyl, } C_1\text{-}C_{12}\text{alkoxy, } C_2\text{-}C_{12}\text{hydroxyalkyl; or } C_2\text{-}C_{12}\text{hydroxyalkoxy;} \\ L_3 \text{ independently are } C_1\text{-}C_4\text{alkylene; and} \\ L_4 \text{ independently are H or } C_1\text{-}C_4\text{alkyl}.$

35. (new): The process according to claim 34, wherein R_2 is methyl, tert-butyl or tert-pentyl; R_3 , R_4 and R_5 independently are hydrogen, methyl, tert-butyl or tert-pentyl; when n is 1,

 R_1 is tertiary butyl, tertiary pentyl; C_1 - C_{22} alkyl- A_5 -; C_2 - C_{22} alkyl interrupted by - A_5 -; - A_5 -phenyl where the phenyl core is substituted by C_1 - C_{12} alkyl; - A_4 -phenyl where the phenyl core is substituted by C_3 - C_4 alkenoyloxy and C_1 - C_{12} alkyl; or R_1 together with R_5 is C_3 - C_{22} alkylene or C_3 - C_{22} oxaalkylene attached with both open bonds to adjacent carbon atoms of the mono-hydroxyphenyl moiety; or R_1 is a group of one the formulae

$$A_8$$
 A_7 A_7

 $-A_3-P(=O)(OA_1)(OA_2)$; or

$$A_{6}$$

$$A_{6}$$

$$A_{6}$$

$$A_{6}$$

where

 A_1 and A_2 independently are C_1 - C_4 alkyl or an equivalent of a metal atom selected from Li, Na, K, ½ Mg, ½ Ca and 1/3 Al;

A₃ is methylene;

A₄ is C₁-C₈alkylene;

A₅ is selected from -O-, -S-, -COO-, -OCO-, -NHCO- and -CONH-;

A₆ is selected from C₄-C₁₈alkylthio and C₄-C₁₈alkylamino;

 A_7 is -NH-;

A₈ is C₁-C₇alkyl; and

R' is C_1 - C_{18} alkyl;

when n is 2, R_1 is C_1 - C_{12} alkylene; C_2 - C_{20} alkylene interrupted and/or end-capped with -O-, -S-, -COO-, -NHCO-, -CONH- or $-L_1$ -; or R_1 is a divalent mono-, di- or tricycloalkylene group; or R_1 is -O-; -NH-; or -S-;

when n is 3, R_1 is trivalent alkyl of 3 to 20 carbon atoms; said trivalent alkyl interrupted by -O-, -S-, -COO-, -OCO-, -NHCO-, -CONH-, phenylene or phenylene which is substituted by C_1 - C_{12} alkyl; or R_1 is a trivalent group of one of the formulae

or

$$0 \longrightarrow N \longrightarrow 0$$

$$N \longrightarrow N$$

when n is 4, R₁ is tetravalent alkyl of 4 to 20 carbon atoms; or said tetravalent alkyl interrupted by –O-, -S-, -COO-, -OCO-, -NHCO- or -CONH-; and

L₁ is a group of the formula

 L_3 independently are C_1 - C_4 alkylene; and L_4 independently are H or C_1 - C_4 alkyl.

- **36. (new):** The process according to claim 33, wherein the colour former is a triphenylmethane, lactone, benzoxazine, spiropyran, fluoran or phthalide.
- **37.** (new): The process according to claim 33, wherein the polymeric material contains 0.001 to 10 % by weight of component (a), based on the total weight of the polymeric material.
- **38.** (new): The process according to claim 33, wherein the polymeric material contains 0.001 to 10 % by weight of the colour former with respect to the total weight of the polymeric material.
- **39.** (new): The process according to claim 33, wherein the polymeric material contains 0.01 to 5 % by weight of the colour former with respect to the total weight of the polymeric material.
- **40. (new):** The process according to claim 33, wherein the polymeric material is a transparent thermoplast.
- **41. (new):** The process according to claim 33, wherein the polymeric material is selected from the group consisting of styrene acrylonitrile copolymer, polyolefin, polyvinylchloride, polychlorobutadiene, polyesters and glycol modified polyesters, polyacrylics, polystyrene, acrylonitrile styrene acrylate copolymer, polyamide, acrylonitrile styrene butadiene copolymer, polycarbonate and blends or alloys thereof.