VE320 – Summer 2022

Introduction to Semiconductor Devices

Instructor: Yaping Dan (但亚平) yaping.dan@sjtu.edu.cn

Chapter 0. Course Information and Preview

Outline

- Course Information
- Preview

Course Information

Time: Monday 10:00-11:40

Wednesday 10:00-11:40

Friday 10:00-11:40 (even weeks)

Instructor: Professor Dan, Yaping

JI New Building Office 516

Email: yaping.dan@sjtu.edu.cn

• Office Hour: 9am-10am Monday, Wednesday (online in our Feishu classroom)

- Teaching Assistants:
 - Ziyi Wang, <u>ziyi.wang@sjtu.edu.cn</u>
 - Yucheng Huang, hyc391@sjtu.edu.cn
 - Yukun Lou, <u>louyukun@umich.edu</u>

Reference textbook

Semiconductor Physics and Devices: Basic Principles 4th ed.

Donald A. Neamen

Publishing house of electronic industry

Grading Policy and Assignments

Grading Policy

Final

•	Assignments	8%
•	Participation	7%
•	Midterm1	25%
•	Midterm2	30%

- Curve to be centered at B+ or A-.
- Assigned weekly on Friday, due on the following Friday.
- Approximately eight problems each assignment.

30%

Unethical Conducts

- You are free to discuss homework with each other. But the work you submit must be your own.
- Any suspicious violation of the honor code will be reported to the honor council.
- Midterm and final exams are close-book (can be changed to open book depening on survey).
- Standard cheating papers will be consulted with and published to all students, and distributed in the closed-book exams.

Changes in policy based on feedbacks

- 1) Reduce the hard line from 50 to 40.
- 2) Curve to a higher average GPA (from B to B+ or A-).
- 3) Reduce the load to ~ 8 problems /homework.
- 4) Remove the quizzes. Give Assignments a higher weight (8%).
- 5) Activity (ask questions, 2%) in class and Piazza, and attendance of class (open camera, 5%), total: 7%
- 6) Increase the example problems instructed during the lecture.
- 7) Remove some advanced topics and focus more on basics.

Outline

- Course Information
- Preview

The first semiconductor device:

Braun in 1874

Karl Ferdinand Braun

Shared the 1909 Nobel Prize in Physics with <u>Guglielmo Marconi</u> "for their contributions to the development of wireless telegraphy"

Quantum Mechanics → Semiconductor Physics (1900 - 1950s)

Max Planck, Niels Bohr, Werner Heisenberg, Louis de Broglie, Arthur Compton, Albert Einstein, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Enrico Fermi, Wolfgang Pauli, Max von Laue, Freeman Dyson, David Hilbert, Wilhelm Wien, Satyendra Nath Bose, Arnold Sommerfeld, and others.

Explosion of integrated circuits

John Bardeen, William Shockley, and Walter Brattain at Bell Labs, 1948

First transistor Bell Labs, 1948 Based on Ge (锗)

Silicon Valley

Bell Lab, New Jersey

Original site at California

Thermal oxidation

SiO₂: high quality electrical insulator

Photoligthography

Photoligthography

Photoligthography

Etching

Doping

Thermal diffusion

Ion implantation

Metallization (metal deposition)

Simple Fabrication Process

n type

1. Start with n-type substrate

2. Oxidize surface

3. Apply photoresist over SiO₂

3. Expose photoresist through photomask

4. Remove exposed photoresist

5. Etch exposed SiO₂

6. Ion implant or diffuse boron into silicon

7. Remove PR and sputter Al on surface

8. Apply PR, photomask, and etch to form Al contacts over p regions

