Petit Dejeuner de la Finance Paris, Nov 27, 2002

Empirical Aspects of Dispersion Trading in U.S. Equity Markets

Marco Avellaneda Courant Institute of Mathematical Sciences, New York University & Gargoyle Strategic Investments

What is Dispersion Trading?

- Sell index option, buy options on index components ("sell correlation")
- Buy index option, sell options on index components ("buy correlation")

Motivation: to profit from price differences in volatility markets using index options and options on individual stocks

Opportunities: Market segmentation, temporary shifts in correlations between assets, idiosyncratic news on individual stocks

Index Arbitrage versus Dispersion Trading

Index Arbitrage:

Reconstruct an index product (ETF) using the component stocks

Dispersion Trading:

Reconstruct an index option using options on the component stocks

Main U.S. indices and sectors

- Major Indices: SPX, DJX, NDX
 SPX, DJA, OOO, (F. 1)
 - SPY, DIA, QQQ (Exchange-Traded Funds)
- Sector Indices:

Semiconductors: SMH, SOX

Biotech: BBH, BTK Pharmaceuticals: PPH, DRG

Financials: BKX, XBD, XLF, RKH

Oil & Gas: XNG, XOI, OSX

High Tech, WWW, Boxes: MSH, HHH, XBD, XCI

Retail: RTH

NASDAQ-100 Index (NDX) and ETF (QQQ)

- QQQ ~ 1/40 * NDX
- Capitalization-weighted
- QQQ trades as a stock
- •QQQ options: largest daily traded volume in U.S.

Sector Exchange Traded Funds

~ 20 - 40 stocks in same sector

Weightings by:

- capitalization
- equal-dollar
- equal-stock

SOX
ALTR
AMAT
AMD
INTC
KLAC
LLTC
LSCC
LSI
MOT
MU
NSM
NVLS
RMBS
TER
TXN
XLNX

XNG	
APA	
APC	
BR	
BRR	
EEX	
ENE	
EOG	
EPG	
KMI	
NBL	
NFG	
OEI	
PPP	
STR	
WMB	

-
AHC
BP
CHV
COC.B
XOM
KMG
OXY
P
REP
RD
SUN
TX
TOT
UCL
MRO

Index Option Arbitrage (Dispersion Trading)

- Takes advantage of differences in implied volatilities of index options and implied volatilities of individual stock options
- Main source of arbitrage: correlations between asset prices vary with time due to corporate events, earnings, and "macro" shocks
- Full or partial index reconstruction

Profit-loss scenarios for a dispersion trade in a single day

Scenario 1

Stock P/L: - 2.30 Index P/L: - 0.01 Total P/L: - 2.41

Scenario 2

Stock P/L: +9.41 Index P/L: - 0.22 Total P/L: +9.18

First approximation to hedging: "Intrinsic Value Hedge"

$$I = \sum_{i=1}^{M} w_i S_i$$
 $w_i = \text{number of shares, scaled by ``divisor''}$

$$K = \sum_{j=1}^{M} w_i K_i \quad \Rightarrow \quad$$

 $\max(I - K, 0) \le \sum_{j=1}^{M} w_i \max(S_i - K_i, 0)$

$$C_I(I,K,T) \leq \sum_{j=1}^{M} w_i C_i(S_i,K_i,T)$$

IVH: use index weights for option hedge

IVH: premium from index is less than premium from components "Super-replication"

Makes sense for deep-in-the-money options

Intrinsic-Value Hedging is `exact' only if stocks are perfectly correlated

$$I(T) = \sum_{i=1}^{M} w_i S_i(T) = \sum_{i=1}^{M} w_i F_i e^{\sigma_i N_i - \frac{1}{2} \sigma_i^2 T}$$

$$\rho_{ij} \equiv 1 \implies N_i \equiv N = \text{standardized normal}$$

Solve for
$$X$$
 in : $K = \sum_{i=1}^{M} w_i F_i e^{\sigma_i X - \frac{1}{2}\sigma_i^2 T}$

Set: $K_i = F_i e^{\sigma_i X - \frac{1}{2} \sigma_i^2 T}$ \therefore

 $\frac{1}{2}\sigma_i^2 T$ Jamshidian (1989)
for pricing bond
options in 1-factor
model

Similar to

 $\max(I(T) - K,0) = \sum_{i=1}^{M} w_i \max(S_i(T) - K_i,0) \quad \forall T$

IVH: Hedge with ``equal-delta'' options

$$K_{i} = F_{i}e^{\sigma_{i}X\sqrt{T} - \frac{1}{2}\sigma_{i}^{2}T} \qquad \therefore \qquad X = \frac{1}{\sigma_{i}\sqrt{T}}\ln\left(\frac{K_{i}}{F_{i}}\right) + \frac{1}{2}\sigma_{i}\sqrt{T}$$

$$-X = \frac{1}{\sigma_{i}\sqrt{T}}\ln\left(\frac{F_{i}}{K_{i}}\right) - \frac{1}{2}\sigma_{i}\sqrt{T} = d_{2}$$

$$N(d_{2}) = \text{constant}$$

$$\log - \text{moneyness} \approx \text{constant}$$

$$\text{Deltas} \approx \text{constant}$$

What happens after you enter a trade: Risk/return in hedged option trading

Unhedged call option

Hedged option

Profit-loss for a hedged single option position (Black –Scholes)

$$P/L \approx \theta \cdot (n^2 - 1) + NV \cdot \frac{d\sigma}{\sigma}$$

$$\theta$$
 = time - decay (dollars), $n = \frac{\Delta S}{S\sigma\sqrt{\Delta t}}$, NV = normalized Vega = $\sigma\frac{\partial C}{\partial \sigma}$

 $n \sim$ standardized move

Gamma P/L for an Index Option

Assume $d\sigma = 0$

Index Gamma P/L = $\theta_I (n_I^2 - 1)$

$$n_I = \sum_{i=1}^M \frac{p_i \sigma_i}{\sigma_I} n_i$$

$$n_I = \sum_{i=1}^{M} \frac{p_i \sigma_i}{\sigma_I} n_i \qquad p_i = \frac{w_i S_i}{\sum_{i=1}^{M} w_i S_j}$$

$$\sigma_I^2 = \sum_{ij=1}^M p_i p_j \sigma_i \sigma_j \rho_{ij}$$

Index P/L =
$$\theta_I \sum_{i=1}^{M} \frac{p_i^2 \sigma_i^2}{\sigma_I^2} (n_i^2 - 1) + \theta_I \sum_{i \neq j} \frac{p_i p_j \sigma_i \sigma_j}{\sigma_I^2} (n_i n_j - \rho_{ij})$$

Gamma P/L for Dispersion Trade

 i^{th} stock P/L $\approx \theta_i \cdot (n_i^2 - 1)$

Dispersion Trade P/L $\approx \sum_{i=1}^{M} \left(\theta_i + \frac{p_i^2 \sigma_i^2}{\sigma_i^2} \theta_I\right) \left(n_i^2 - 1\right) + \theta_I \sum_{i \neq i} \frac{p_i p_j \sigma_i \sigma_j}{\sigma_i^2} \left(n_i n_j - \rho_{ij}\right)$

diagonal term: realized single-stock movements vs. implied volatilities

off-diagonal term: realized cross-market movements vs. implied correlation

Introducing the Dispersion Statistic

$$D^{2} = \sum_{i=1}^{N} p_{i} (X_{i} - Y)^{2}$$

$$X_{i} = \frac{\Delta S_{i}}{S_{i}}, \quad Y = \frac{\Delta I}{I}$$

$$X_i = \frac{\Delta S_i}{S_i}, \quad Y = \frac{\Delta I}{I}$$

$$D^{2} = \sum_{i=1}^{N} p_{i} \sigma_{i}^{2} n_{i}^{2} - \sigma_{I}^{2} n_{I}^{2}$$

$$\begin{split} \text{P/L} &= \sum_{i=1}^{N} \theta_i \left(n_i^2 - 1 \right) + \theta_I \left(n_I^2 - 1 \right) \\ &= \sum_{i=1}^{N} \theta_i n_i^2 + \theta_I n_I^2 - \Theta \qquad \Theta \equiv \sum_{i=1}^{N} \theta_i + \theta_I \\ &= \sum_{i=1}^{N} \theta_i n_i^2 + \frac{\theta_I}{\sigma_I^2} \sum_{i=1}^{N} p_i \sigma_i^2 n_i^2 - \frac{\theta_I}{\sigma_I^2} \sum_{i=1}^{N} p_i \sigma_i^2 n_i^2 + \theta_I n_I^2 - \Theta \\ &= \sum_{i=1}^{N} \left(\frac{\theta_I p_i \sigma_i^2 n_i^2}{\sigma_I^2} + \theta_i \right) n_i^2 - \frac{\theta_I}{\sigma_I^2} D^2 - \Theta \end{split}$$

Summary of Gamma P/L for Dispersion Trade

Gamma P/L =
$$\sum_{i=1}^{N} \left(\frac{\theta_{I} p_{i} \sigma_{i}^{2} n_{i}^{2}}{\sigma_{I}^{2}} + \theta_{i} \right) n_{i}^{2} - \frac{\theta_{I}}{\sigma_{I}^{2}} D^{2} - \Theta$$
"Idiosyncratic"

Gamma

Dispersion

Gamma

Time-Decay

Example: "Pure long dispersion" (zero idiosyncratic Gamma):

$$\theta_{i} = -\theta_{I} \frac{p_{i} \sigma_{i}^{2}}{\sigma_{I}^{2}} \qquad \Theta = \left| \theta_{I} \left| \left(\frac{\sum_{i} p_{i} \sigma_{i}^{2}}{\sigma_{I}^{2}} - 1 \right) \right| \ge \left| \theta_{I} \left| \left(\frac{\sum_{i} p_{i} \sigma_{i}}{\sigma_{I}^{2}} - 1 \right) \right| > 0$$

25 20 15 10 70 75 80 85 90 95 100 105 110 115 120 125 130 Payoff function for a trade with short index/long options (IVH), 2 stocks

Value function (B&S) for the IVH position as a function of stock prices (2 stocks)

In general: short index IVH is short-Gamma along the diagonal, long-Gamma for ``transversal'' moves

Vega Risk

Sensitivity to volatility: move all single-stock implied volatilities by the same percentage amount

Vega P/L =
$$\sum_{j=1}^{M} \text{Vega}_{j} \Delta \sigma_{j} + \text{Vega}_{I} \Delta \sigma_{I}$$

$$= \sum_{j=1}^{M} (NV)_{j} \frac{\Delta \sigma_{j}}{\sigma_{j}} + (NV)_{I} \frac{\Delta \sigma_{I}}{\sigma_{I}}$$

$$= \left[\sum_{j=1}^{M} (NV)_{j} + (NV)_{I} \right] \frac{\Delta \sigma}{\sigma}$$

$$NV = \text{normalized vega} = \sigma \frac{\partial V}{\partial \sigma}$$

Market/Volatility Risk

- Short Gamma on a perfectly correlated move
- Monotone-increasing dependence on volatility (IVH)

"Rega": Sensitivity to correlation

$$\rho_{ij} \rightarrow \rho_{ij} + \Delta \rho \quad i \neq j$$

$$\sigma_{I}^{2} \rightarrow \sum_{ij=1}^{M} p_{i} p_{j} \sigma_{i} \sigma_{j} \rho_{ij} + \left(\sum_{i \neq j} p_{i} p_{j} \sigma_{i} \sigma_{j}\right) \Delta \rho$$

$$\Delta \sigma_I^2 = \left[\left(\sigma_I^{(1)} \right)^2 - \left(\sigma_I^{(0)} \right)^2 \right] \Delta \rho,$$

$$\Delta \sigma_{I}^{2} = \left[\left(\sigma_{I}^{(1)} \right)^{2} - \left(\sigma_{I}^{(0)} \right)^{2} \right] \Delta \rho, \qquad \sigma_{I}^{(1)} = \sum_{j=1}^{M} p_{j} \sigma_{j}, \qquad \sigma_{I}^{(0)} = \sqrt{\sum_{j=1}^{M} p_{j}^{2} \sigma_{j}^{2}}$$

$$\frac{\Delta \sigma_I}{\sigma_I} = \frac{1}{2} \frac{\left(\sigma_I^{(1)}\right)^2 - \left(\sigma_I^{(0)}\right)^2}{\sigma_I^2} \Delta \rho$$

Correlation P/L =
$$\frac{1}{2} (NV)_I \frac{(\sigma_I^{(1)})^2 - (\sigma_I^{(0)})^2}{\sigma_I^2} \Delta \rho$$
 Rega = $\frac{1}{2} \left(\frac{(\sigma_I^{(1)})^2 - (\sigma_I^{(0)})^2}{\sigma_I^2} \right) \times (NV)_I$

Rega =
$$\frac{1}{2} \left(\frac{\left(\sigma_I^{(1)} \right)^2 - \left(\sigma_I^{(0)} \right)^2}{\sigma_I^2} \right) \times (NV)_I$$

Market/Correlation Sensitivity

- Short Gamma on a perfectly correlated move
- Monotone-decreasing dependence on correlation

Entering a trade...

Valuation Method I: Weighted Monte Carlo

- Simulate scenarios (paths) for the group of stocks that comprise the index or indices under consideration
- Simulate the cash-flows of options on all the stocks and the index options
- Select weights or probabilities on the scenarios in such a way that all options/forward prices are correctly reproduced by averaging over the paths
- Use ``weighted Monte Carlo'' to derive fair-value of target options and compare with market values

MC with Non-Uniform Probabilities

Avellaneda, Buff, Friedman, Kruk, Grandchamp: IJTAF, 1999

•SDE is used to sample the path space

$$dX = \Sigma \cdot dW + B \cdot dt$$

- •SDE represents Bayesian prior, e.g. subjective probability
- •Reweighted probabilities reflect prices of traded securities Arrow-Debreu probabilities

MC with Non-Uniform Probabilities

Avellaneda, Buff, Friedman, Kruk, Grandchamp: IJTAF, 1999

•SDE is used to sample the path space

$$dX = \Sigma \cdot dW + B \cdot dt$$

- •SDE represents Bayesian prior, e.g. subjective probability
- •Reweighted probabilities reflect prices of traded securities Arrow-Debreu probabilities

Computation of weights: Max-Entropy Method

Determine probabilities by maximizing entropy or minimizing cross-entropy with respect to prior

Maximize
$$H(p) = -\sum_{i=1}^{\nu} p_i \ln p_i$$

Subject to

Market prices of single-stock options
$$\begin{pmatrix} C_1 \\ C_2 \\ * \\ C_N \end{pmatrix} = \begin{pmatrix} g_{11} & * & g_{1\nu} \\ * & * & * \\ g_{N1} & * & g_{N\nu} \end{pmatrix} \cdot \begin{pmatrix} p_1 \\ * \\ * \\ p_{\nu} \end{pmatrix}$$
Risk-neutral pricing probabilities

Valuation Method II: (WKB) Steepest-Descent Approximation

(Avellaneda, Boyer-Olson, Busca, Friz: RISK 2002, C.R.A.S. Paris 2003)

Improvement on Standard Volatility Formula for Index Options

$$\sigma_I^2 = \sum_{j=1}^N p_j^2 \sigma_j^2 + \sum_{i \neq j} p_i p_j \sigma_i \sigma_j \rho_{ij}$$
 (*)

- Assume that the correlation is given
- Use markets on single-stock volatilities taking into account volatility skew
- How can we integrate volatility skew information into (*)?

Steepest-Descent Approximation

- Define a risk-neutral 1-factor model for the index process $\frac{dI}{I} = \sigma_I(I, t)dW + \mu_I(I, t)dt$
- Local index vol= conditional expectation of local variance (rigorous)

$$\sigma_I^2(I,t) = \mathbb{E}\left[\sum_{jk=1}^N \sigma_j(S_j(t),t)\sigma_k(S_k(t),t)\rho_{jk}p_jp_k \left| \sum_{j=1}^N w_jS_j(t) = I \right|\right]$$

■ Approximate this conditional expectation using the most likely stock configuration $(S_1^*,...,S_N^*)$ given that $\sum_i w_i S_i(t) = I$

$$\sigma_I^2(I,t) \cong \sum_{ij=1}^N p_i p_j S_i^* S_j^* \sigma_i \left(S_i^*,t\right) \sigma_j \left(S_j^*,t\right)$$

Gargoyle Dispersion Fund

- Joint venture between Gargoyle Strategic Partners and Marco Avellaneda (manager)
- Started Trading: May 2001
- Uses proprietary system to detect trades and executes electronically and through network of brokers in 5 U.S. exchanges
- 1 FT junior trader, 3 PT senior traders, 1 FT risk manager

Dispersion Fund Performance

Trading Period: 15 months

Cumulative ROI* since inception: 28.33%

Annualized Rate of Return: 22.65%

Annualized Standard Deviation: 26.59%

Worst monthly loss: August 02, -16%

Correlation with S&P 500: 35%

Correlation with VIX Index: - 33%

* After paying brokerage fees and commissions, etc

Conclusions

- Dispersion trading: a form of ``statistical correlation arbitrage''
- Sell correlation by selling index options and buying options on the components
- Buy correlation by buying index options and selling options on the components
- ``Convergence trading'' style.
- Price discovery using model and market data on vol skews
- Sophisticated trading strategy. Potentially very profitable, with moderate (but not low) risk profile.

Index option volatility, Returns Dispersion and Implied Correlations

Speaker: Marco Avellaneda

Dedicated to Nicole El Karoui on her 60th birthday

Avellaneda, Boyer-Olson, Busca and Friz:

'Reconstructing Volatility', *RISK Oct 2002*; 'Large Deviations Methods and the Pricing of Index Options in Finance', *CRAS Paris 2003*<u>Juyoung Lim:</u>

`Pricing and Hedging Index Options' Ph D Thesis, NYU 2003

Outline

- Stylized facts about index options and volatility
- Steepest descent approximation: matching index skew with single-stock option skews
- Implied correlation: skew and term structure
- Modelling correlation skew
- Statistics of implied correlation for different markets/sectors

U.S. Equities: Main Sectors & Their Indices

Major Indices: SPX, DJX, NDX
 SPY, DIA, QQQ (Exchange-Traded Funds)

Sector Indices & Index Trackers:

Semiconductors: SMH, SOX

Biotech: BBH, BTK

Pharmaceuticals: PPH, DRG

Financials: BKX, XBD, XLF, RKH

Oil & Gas: XNG, XOI, OSX

High Tech, WWW, Boxes: MSH, HHH, XBD, XCI

Retail: RTH

All these indices have options

COMS	CMGI	LGTO	PSFT
ADPT	CNET	LVLT	PMCS
ADCT	CMCSK	LLTC	QLGC
ADLAC	CPWR	ERICY	QCOM
ADBE	CMVT	LCOS	QTRN
ALTR	CEFT	MXIM	RNWK
AMZN	CNXT	MCLD	RFMD
APCC	COST	MEDI	SANM
AMGN	DELL	MFNX	SDLI
APOL	DLTR	MCHP	SEBL
AAPL	EBAY	MSFT	SIAL
AMAT	DISH	MOLX	SSCC
AMCC	ERTS	NTAP	SPLS
ATHM	FISV	NETA	SBUX
ATML	GMST	NXTL	SUNW
BBBY	GENZ	NXLK	SNPS
BGEN	GBLX	NWAC	TLAB
BMET	MLHR	NOVL	USAI
BMCS	ITWO	NTLI	VRSN
BVSN	IMNX	ORCL	VRTS
CHIR	INTC	PCAR	VTSS
CIEN	INTU	PHSY	VSTR
CTAS	JDSU	SPOT	WCOM
csco	JNPR	PMTC	XLNX
CTXS	KLAC	PAYX	YHOO

Components of NASDAQ 100 Trust (AMEX:QQQ)

- Capitalization-weighted average of 100 largest stocks in NASDAQ
- •QQQ trades as a stock
- QQQ options are the most heavily traded contracts in the world

SOX, XNG, XOI

XNG	XOI	SOX
APA	AHC	ALTR
APC	BP	AMAT
BR	CHV	AMD
BRR	COC.B	INTC
EEX	XOM	KLAC
ENE	KMG	LLTC
EOG	OXY	LSCC
EPG	P	LSI
KMI	REP	MOT
NBL	RD	MU
NFG	SUN	NSM
OEI	TX	NVLS
PPP	TOT	RMBS
STR	UCL	TER
WMB	MRO	TXN
VVIVID	IVINO	XLNX

... & many others

BBH: Basket of 20 Biotechnology Stocks

Ticker	Shares	ATM ImVol	Ticker	Shares	ATM ImVol
ABI	18	55	GILD	8	46
AFFX	4	64	HGSI	8	84
ALKS	4	106	ICOS	4	64
AMGN	46	40	IDPH	12	72
BGEN	13	41	MEDI	15	82
CHIR	16	37	MLNM	12	92
CRA	4	55	QLTI	5	64
DNA	44	53.5	SEPR	6	84
ENZN	3	81	SHPGY	6.8271	47
GENZ	14	56	BBH	-	32

BBH March 2003 Implied Vols

Pricing Date: Jan 22 03 10:42 AM

Implied Volatility Curve for Options on Dow Jones Average

DJX Mar 03 Pricing Date: 10/25/02

Stylized facts about equity volatility curves

Implied volatility curves are typically <u>downward sloping</u>

Counterexamples: precious metal stocks are upward sloping

There is little curvature (or smile). Skew is important.

AOL Jan 2001 Options:

Implied volatility curve on Dec 20,2000

Market close

Strike

Stock probability is not lognormal

The AOL ''volatility skew'' for several expiration dates

What is the relation between index options and options on the components?

Standard (log-normal) Volatility Formula for Index Options

$$\sigma_I^2 = \sum_{j=1}^N p_j^2 \sigma_j^2 + \sum_{i \neq j} p_i p_j \sigma_i \sigma_j \rho_{ij} \qquad (*)$$

Does not apply when volatilities are strike-dependent

How can we incorporate volatility skew information into (*)?

Volatility Modeling

$$\frac{dS}{S} = \sigma_t dW$$

A.
$$\sigma_t = \sigma(S, t)$$

Dupire's Local Volatility $\sigma(S,t) = \sigma(t) \left(\frac{S}{S_0}\right)^{\gamma}$

B.
$$\frac{d\sigma_t}{\sigma_t} = \kappa dZ_t$$

Stochastic Volatility

2. Implied vol. curve

$$\sigma_{\text{implied}}(K,T) = \sigma_{\text{implied}}(S,T) \cdot (1 + a \ln(K/S))$$

Joint stock-volatility dynamics gives rise to an implied volatility curve

Relation between Stochastic Volatility and Local Volatility

$$\frac{dS_t}{S_t} = \sigma_t dZ_t$$

$$\sigma_{\text{loc}}^{2}(S,t) = E\{ \sigma_{t}^{2} \mid S_{t} = S \}$$

Derman, Kani & Kamal1997, Britten -Jones and Neuberger, 2000, Gatheral 2000, Lim 2003

Application to Index Options

$$I = \sum_{i=1}^{n} w_i S_i$$

Index = weighted sum of stock prices (constant weights)

Diffusion eq. for each stock reflects vol skew (local vol)

$$\begin{cases} \frac{dS_i}{S_i} = \sigma_i(S_i, t)dW_i + \mu_i dt, & \mu_i = r - d_i, \\ E(dW_i dW_j) = \rho_{ij} dt \end{cases}$$

$$\frac{dI}{I} = \sigma_{I}(S,t)dZ + \mu_{I}(S,t)dt$$

$$\sigma_I^2(S,t) = \frac{\sum_{ij} \sigma_i(S_i,t) \sigma_j(S_j,t) w_i S_i w_j S_j \rho_{ij}}{I^2} \qquad \mu_I(S,t) = \frac{\sum_i \mu_i w_i S_i}{I}$$

Characterization of the equivalent local volatility for the index

$$\sigma_{I,\text{loc}}^{2}(I,t) = E\left\{\frac{\sum_{ij} \sigma_{i}(S_{i}(t),t)\sigma_{j}(S_{j}(t),t)S_{i}(t)S_{j}(t)w_{i}w_{j}\rho_{ij}}{I^{2}} \middle| \sum_{i} w_{i}S_{i}(t) = I\right\}$$

$$= E\left\{\sum_{ij} p_i(S(t))p_j(S(t))\sigma_i(S_i(t),t)\sigma_j(S_j(t),t)\rho_{ij}\left|\sum_i w_iS_i(t)=I\right\}\right\}$$

$$p_i(S) = \frac{w_i S_i}{\sum_j w_j S_j}, \qquad i = 1, ..., n.$$

- sigma_I can be seen as a 'stochastic vol' driving the index
- sigma_I_loc is then the ``equivalent local vol"

Varadhan's Formula and Large Deviations

$$\begin{cases} dX_i = \sum_{j=1}^n \sigma_i^j(X,t)dW_j & E\{dW_j dW_k\} = \rho_{jk}dt \\ X_i(0) = x_i \end{cases}$$

Dupire local volatility model for each stock

log Prob.
$$\{X(t) = y | X(0) = x\} \approx -\frac{d^2(x, y)}{2t}, \quad (\overline{\sigma})^2 t \ll 1$$

$$d^{2}(x,y) = \inf_{\gamma(0)=x,\gamma(1)=y} \int_{0}^{1} \sum_{i=1}^{n} g_{ij}(\gamma(s)) \gamma^{i}(s) \gamma^{j}(s) ds$$

Riemannian metric

$$g(x) = a^{-1}(x)$$
 $a_{ij}(x) = \sigma_i(x,0)\sigma_j(x,0)\rho_{ij}$

In practice: dimensionless time ~ 0.02

Steepest-descent approximation

Change to log-scale:
$$x_i \equiv \log \left(\frac{S_i}{S_i(0)e^{\mu_i t}} \right) = \log \left(\frac{S_i}{F_i(t)} \right)$$
 $i = 1, 2, ..., n$.

$$\sigma_{I,\text{loc}}^{2}(I,t) = \frac{E \left\{ \sigma_{I}^{2} \delta(I(t) - I) \right\}}{E \left\{ \delta(I(t) - I) \right\}}$$

Applying Varadhan's Formula,

$$\sigma_{I,\text{loc}}^2(I,t) \cong \sigma_I^2(S^*,t)$$
 $S_i^* = S_i(0)e^{\mu_i t}e^{x_i^*}$

where

$$x^* = \arg\min\left\{d^2(0, x) \middle| \sum_i w_i S_i(0) e^{\mu_i t} e^{x_i} = I\right\}$$

Steepest Descent=Most Likely Stock Price Configuration

Replace conditional distribution by "Dirac function" at most likely configuration

Characterization of MLC

Euler-Lagrange equations: find (χ^*, χ) such that

$$\int_{0}^{x_{i}^{*}} \frac{du}{\sigma_{i}(u)} = \lambda \sum_{j=1}^{n} p_{j}(x^{*}) \sigma_{j}(x_{j}^{*}) \rho_{ij} \quad i = 1,..., n$$

$$\sum_{i=1}^{n} w_{i} S_{i}(0) e^{x_{i}^{*} + \mu_{i}t} = I$$

$$\sigma_{I,\text{loc}}^2(I,t) = \sum_{ij=1}^n p_i(x^*) p_j(x^*) \sigma_i(x_i^*) \sigma_j(x_j^*) \rho_{ij}$$

Linearization gives CAPM-like characterization

$$\sigma_I^2(0) = \sum_{ij=1}^n p_i(0) p_j(0) \sigma_i(0) \sigma_j(0) \rho_{ij}$$
$$\overline{x} = \ln \left(\frac{I}{I(0)e^{\overline{\mu}}} \right)$$

$$x_i^* \cong \frac{\overline{x}}{\sigma_I^2(0)} \sum_{j=1}^n \rho_{ij} p_j(0) \sigma_i(0) \sigma_j(0) = \frac{\overline{x}}{\sigma_I^2(0)} Cov(x_i, \overline{x})$$

$$x_{i}^{*} = \hat{\beta}_{i} \bar{x}$$

$$\hat{\beta} = Cov\left(\frac{\Delta S}{S}, \frac{\Delta I}{I}\right) / Var\left(\frac{\Delta I}{I}\right)$$

Most likely config. : described by the risk-neutral regression coefficients of stock returns with the index return (``micro" CAPM)

From local volatilities back to Black-Scholes implied volatilities

- Seek direct relation between implied volatilities of single-stock options and implied volatility of index options
- Tool: Berestycki-Busca-Florent large-deviations result for single-stock ("1/2 slope rule")

$$\sigma^{\text{impl.}}(x) \approx \left(\frac{1}{x} \int_{0}^{x} \frac{du}{\sigma(u)}\right)^{-1}$$

$$\sigma^{\text{impl.}}(x) \approx \frac{1}{2} (\sigma^{\text{impl.}}(0) + \sigma(x))$$

Alternatively: integrate LV along most likely path

$$(\sigma^{\text{impl}}(x,T))^{2} \approx \frac{1}{T} \int_{0}^{T} \sigma_{\text{loc}}^{2}(x^{*}(s),s) ds$$
$$\approx \frac{1}{T} \int_{0}^{T} \sigma_{\text{loc}}^{2}(xs,s) ds$$

- -- For small dimensionless time, the price diffusion is localized in a neighborhood of the most likely path
- -- this implies the ½ slope rule as trapezoidal approximation to the integral

Computing The Index Volatility

$$\left(\sigma_{I}^{\text{imp1}}(\bar{x},T)\right)^{2} \approx \frac{1}{T} \int_{0}^{T} \sum_{ij=1}^{N} \sigma_{i}(x_{i}^{*}(s),s) \sigma_{j}(x_{j}^{*}(s),s) p_{i} p_{j} \rho_{ij} ds$$

$$\approx \frac{1}{T} \int_{0}^{T} \sum_{ij=1}^{N} \sigma_{i}(\beta_{i}\bar{x}s,s) \sigma_{j}(\beta_{j}\bar{x}s,s) p_{i} p_{j} \rho_{ij} ds$$

$$= \sum_{ij=1}^{N} \left[\frac{1}{T} \int_{0}^{T} \sigma_{i}(\beta_{i}\bar{x}s,s) \sigma_{j}(\beta_{j}\bar{x}s,s) ds \right] p_{i} p_{j} \rho_{ij}$$

$$\approx \sum_{ij=1}^{N} \sigma_{i}^{\text{imp1}}(\beta_{i}\bar{x},T) \sigma_{j}^{\text{imp1}}(\beta_{j}\bar{x},T) p_{i} p_{j} \rho_{ij} Q_{ij}(\bar{x},T)$$

$$\therefore Q_{ij}(\bar{x},T) = \frac{\left[\frac{1}{T}\int_{0}^{T} \sigma_{i}(\beta_{i}\bar{x}s,s)\sigma_{j}(\beta_{j}\bar{x}s,s)ds\right]}{\left[\frac{1}{T}\int_{0}^{T} \sigma_{i}^{2}(\beta_{i}\bar{x}s,s)ds\right]^{1/2}\left[\frac{1}{T}\int_{0}^{T} \sigma_{j}^{2}(\beta_{j}\bar{x}s,s)ds\right]^{1/2}}$$

Reconstruction Rule for Index Volatility

-- SD approximation is consistent with
$$Q_{ij}(\bar{x},T) \approx 1$$

$$\left(\sigma_{I}^{\text{impl}}(\bar{x},T)\right)^{2} \approx \sum_{ij=1}^{N} \sigma_{i}^{\text{impl}}(\beta_{i}\bar{x},T)\sigma_{j}^{\text{impl}}(\beta_{j}\bar{x},T)p_{i}p_{j}\rho_{ij}$$

An \overline{x} percent OTM strike for index corresponds to a $\beta_1 \overline{x}$ percent OTM strike for stock 1, etc.

DJX: Dow Jones Industrial Average

T=1 month

DJX Nov 02 Pricing Date: 10/25/02

DJX Dec 02 Pricing Date: 10/25/02

T=3 months

DJX Jan 03 Pricing Date: 10/25/02

T= 5 months

DJX Mar 03 Pricing Date: 10/25/02

T=7 months

DJX June 03 Pricing Date: 10/25/02

(Quote date: Aug 20, 2002)

Expiration: Sep 02

(Quote date: Aug 20, 2002)

Expiration: Oct 02

(Quote date: Aug 20, 2002)

Expiration: Nov 02

(Quote date: Aug 20, 2002)

Expiration: Dec 02

Implied Correlation: a single correlation coefficient consistent with index vol

$$\left(\sigma_{I}^{\text{impl}}\right)^{2} = \sum_{i=1}^{N} p_{i}^{2} \left(\sigma_{i}^{\text{impl}}\right)^{2} + \overline{\rho} \sum_{i \neq j}^{N} p_{i} p_{j} \sigma_{i}^{\text{impl}} \sigma_{j}^{\text{impl}}$$

$$\frac{1}{\rho} = \frac{\left(\sigma_{I}^{\text{impl}}\right)^{2} - \sum_{i=1}^{N} p_{i} \left(\sigma_{i}^{\text{impl}}\right)^{2}}{\sum_{i \neq j}^{N} p_{i} p_{j} \sigma_{i}^{\text{impl}} \sigma_{j}^{\text{impl}}} = \frac{\left(\sigma_{I}^{\text{impl}}\right)^{2} - \sum_{i=1}^{N} p_{i}^{2} \left(\sigma_{i}^{\text{impl}}\right)^{2}}{\left(\sum_{i=1}^{N} p_{i} \sigma_{i}^{\text{impl}}\right)^{2} - \sum_{i=1}^{N} p_{i}^{2} \left(\sigma_{i}^{\text{impl}}\right)^{2}}$$

Approximate formula:

Dow Jones Index

Dow Jones Index: Correlation Skew

Quote Date 9/1/1998 Spot price=78.26

Quote Date 12/10/2001 Spot=99.21

A model for ``Correlation skew": Stochastic Volatility Systems

$$\frac{dS_i}{S_i} = \sigma_i dW_i \qquad \frac{d\sigma_i}{\sigma_i} = \kappa_i dZ_i
E(dW_i dW_j) = \rho_{ij} dt \qquad E(dW_i dZ_j) = r_{ij} dt$$

$$\overline{x} = \frac{dI}{I}, \qquad x_i = \frac{dS_i}{S_i} \qquad y_i = \frac{d\sigma_i}{\sigma_i}$$

Look for most likely configuration of stocks and vols $(x_1,...,x_n,y_1,...,y_n)$ corresponding to a given index displacement x

Most likely configuration for Stochastic Volatility Systems

$$x_i^* = \beta_i \overline{x}$$

$$\beta_i = \frac{\sigma_i \rho_{iI}}{\sigma_I}$$

$$y_i^* = \gamma_i \overline{x}$$

$$\gamma_i = \frac{\kappa_i r_{iI}}{\sigma_I}$$

Most likely configuration for stocks moves and volatility moves, given the index move

$$\sigma_{I,\operatorname{loc}}^{2}(\bar{x},t) \cong \sum_{i=1}^{n} p_{i} p_{j} \sigma_{i} (0,t) \sigma_{j} (0,t) e^{\gamma_{i} \bar{x}} e^{\gamma_{j} \bar{x}} \rho_{ij}$$

Method I: Dupire & Most Likely Configuration for Stock Moves

Method II: Stochastic Volatility System and joint MLC for Stocks and Volatilities

Methods I and II are not `equivalent'

Dupire local vol. for single names

$$\sigma_{i,\text{loc}}(x_i,t) \approx \sigma_i(0,t)e^{\varpi_i x_i}$$

$$\varpi_i = \frac{\kappa_i r_{ii}}{\sigma_i}$$

$$\sigma_{I,\text{loc}}^{2}\left(\bar{x},t\right) = \sum_{ij} p_{i} p_{j} \sigma_{i} \left(0,t\right) \sigma_{j} \left(0,t\right) \rho_{ij} e^{\varpi_{i}\beta_{i}\bar{x}} e^{\varpi_{j}\beta_{j}\bar{x}}$$

$$\sigma_{I,\text{loc}}^{2}\left(\bar{x},t\right) = \sum_{ij} p_{i} p_{j} \sigma_{i} \left(0,t\right) \sigma_{j} \left(0,t\right) \rho_{ij} e^{\gamma_{i} \bar{x}} e^{\gamma_{j} \bar{x}}$$

Stochastic Volatility Systems give rise to Index-dependent correlations

$$\sigma_{I,\text{loc}}^{2}\left(\bar{x},t\right) \approx \sum_{ij} p_{i} p_{j} \sigma_{i} \left(0,t\right) \sigma_{j}\left(0,t\right) \rho_{ij} e^{\gamma_{i} \bar{x}} e^{\gamma_{j} \bar{x}}$$

Method II

$$\approx \sum_{ij} p_i p_j \underline{\sigma_i} \underbrace{(0,t)}_{e^{\beta_i \overline{\omega_i} x}} \underline{\sigma_j} (0,t) e^{\beta_j \overline{\omega_j} x} \rho_{ij} e^{\gamma_i \overline{x}} e^{\gamma_j \overline{x}} e^{-\beta_i \overline{\omega_i} x} e^{-\beta_i \overline{\omega_i} x}$$

$$\approx \sum_{ij} p_i p_j \sigma_{i,\text{loc}} \left(\beta_i \bar{x}, t \right) \sigma_{i,\text{loc}} \left(\beta_i \bar{x}, t \right) \rho_{ij} \left(\bar{x} \right)$$

$$\rho_{ij}(\bar{x}) \equiv \rho_{ij} e^{(\gamma_i + \gamma_j - \beta_i \varpi_i - \beta_j \varpi_j)\bar{x}}$$

Equivalence holds only under additional assumptions on stock-volatility correlations

$$\boldsymbol{\sigma}_{i}\boldsymbol{\beta}_{i} = \frac{\kappa_{i}r_{ii}}{\sigma_{i}}\frac{\sigma_{i}\rho_{iI}}{\sigma_{I}} = \frac{\kappa_{i}r_{ii}\rho_{iI}}{\sigma_{I}}$$

Method I

$$\gamma_i = \frac{\kappa_i r_{iI}}{\sigma_I}$$

Method II

$$r_{iI} = r_{ii} \rho_{iI}$$

$$r_{ij} = r_{ii} \rho_{ij}$$

Conditions under which both methods give equivalent valuations

Numerical Example

$$\sigma_1 = 20\%, \sigma_2 = 30\%, \rho = 40\%$$

$$r = \begin{bmatrix} -0.7 & -0.5 \\ -0.6 & -0.7 \end{bmatrix}, \quad \kappa_1 = \kappa_2 = 50\%$$

Lee, Wang and Karim

RISK, Dec 2003

- Propose a stochastic average correlation
- Linear econometric fit:

$$\overline{\rho} = \alpha + \beta \ln I + \varepsilon$$

Rho_bar is the `average' correlation

$$OEX: \qquad \beta = -0.66$$

$$BKX: \beta = -0.34$$

OEX 60 days correlations

J. Lim: Statistical distribution of implied correlations

NYU Thesis, 2003

$$f(\overline{\rho}) = \text{p.d.f.}$$
 for implied correlation

Parametric model:
$$\frac{1}{\rho} \sim \frac{2}{\pi} \operatorname{Arctan}(X)$$

 $X \sim N(\mu_0, \sigma_0^2)$

DJX Implied Correlation (1998-2003)

1 month

2 months

- -- Heavy right-tails, low mean
- -- characteristic of major indices

3 months

BBH Biotech Index

BBH Biotech Index

Mean=0.5-0.55 Heavy tails

PPH Pharmaceutical Index

PPH Index correlation

SOX Semiconductor Index

DJX, PPH, SOX, BBH

The shapes of implied correlation distribution for different sectors

DJX 60 days correlation

QQQ 60 days correlation

Conclusions

- Steepest-descent approximation: a simple tool for analyzing the volatility skew of index options
- Implied correlation (for an index): the constant correlation number that makes the index option correctly valued
- In general there is a correlation skew and term-structure
- Statistics of implied correlations: evidence of heavy tails for broad market indices; `stability' for narrow sectors
- Study of market correlations presents several open problems that are interesting in theory and practice