08-04-2024 shift-2(1-15)

AI24BTECH11012- Pushkar Gudla

- 1) If the image of the point (-4, 5) in the line x + 2y = 2 lies on the circle $(x + 4)^2 + (y 3)^2 = r^2$, then r is equal to:
 - a) 1
 - b) 2
 - c) 75
 - d) 3
- 2) Let $\overrightarrow{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{b} = 2\hat{i} + 3\hat{j} 5\hat{k}$, $\overrightarrow{c} = 3\hat{i} \hat{j} + \lambda\hat{k}$ be three vectors. Let \overrightarrow{r} be a unit vector along $\overrightarrow{b} + \overrightarrow{c}$. If $\overrightarrow{r} \cdot \overrightarrow{a} = 3$, then 3λ is equal to:
 - a) 27
 - b) 25
 - c) 15
 - d) 21
- 3) If $\alpha \neq a$, $\beta \neq b$, $\gamma \neq c$, and $\begin{vmatrix} \alpha & \beta & 1 \\ a & b & 1 \\ c & c & 0 \end{vmatrix} = 0$, then $\frac{a}{\alpha a} + \frac{b}{\beta b} + \frac{\gamma}{\gamma c}$ is equal to:
 - a) 2
 - b) 3
 - c) 0
 - d) 1
- 4) In an increasing geometric progression of positive terms, the sum of the second and sixth terms is $\frac{70}{3}$ and the product of the third and fifth terms is 49. Then the sum of the 4th, 6th, and 8th terms is:
 - a) 96
 - b) 78
 - c) 91
 - d) 84
- 5) The number of ways five alphabets can be chosen from the alphabets of the word "MATHEMATICS", where the chosen alphabets are not necessarily distinct, is:
 - a) 175
 - b) 181
 - c) 177
 - d) 179
- 6) The sum of all possible values of $\theta \in [-\pi, 2\pi]$ for which $\frac{1+i\cos\theta}{1-2i\cos\theta}$ is purely imaginary is equal to:
 - a) 2π
 - b) 3π
 - c) 5π
 - d) 4π
- 7) If the system of equations $x + 4y z = \lambda$, $7x + 9y + \mu z = -3$, 5x + y + 2z = -1 has infinitely many solutions, then $2\mu + 3\lambda$ is equal to:
 - a) 2
 - b) -3
 - c) 3

- d) -2
- 8) If the shortest distance between the lines $\frac{x-\lambda}{2} = \frac{y-4}{3} = \frac{z-3}{4}$ and $\frac{x-2}{4} = \frac{y-4}{6} = \frac{z-7}{8}$ is $\frac{13}{\sqrt{29}}$, then a value of
 - a) $-\frac{13}{25}$ b) $\frac{13}{25}$ c) 1

 - d) -1
- 9) If the value of $\frac{3\cos 36^{\circ}+5\sin 18^{\circ}}{5\cos 36^{\circ}-3\sin 18^{\circ}}$ is $\frac{a\sqrt{5}-b}{c}$, where a, b, c are natural numbers and gcd(a, c) = 1, then a+b+c is equal to:
 - a) 50
 - b) 40
 - c) 52
 - d) 54
- 10) Let y = y(x) be the solution curve of the differential equation $\sec y \frac{dy}{dx} + 2x \sin y = x^3 \cos y$, y(1) = 0. Then $y(\sqrt{3})$ is equal to:

 - a) $\frac{\pi}{3}$ b) $\frac{\pi}{6}$ c) $\frac{\pi}{4}$ d) $\frac{\pi}{12}$
- 11) The area of the region in the first quadrant inside the circle $x^2 + y^2 = 8$ and outside the parabola $y^2 = 2x$ is equal to:

 - a) $\frac{\pi}{2} \frac{1}{3}$ b) $\pi \frac{2}{3}$ c) $\frac{\pi}{2} \frac{2}{3}$ d) $\pi \frac{1}{3}$
- 12) If the line segment joining the points (5,2) and (2,a) subtends an angle $\frac{\pi}{4}$ at the origin, then the absolute value of the product of all possible values of a is:
 - a) 6
 - b) 8
 - c) 2
- 13) Let $\overrightarrow{a} = 4\hat{i} \hat{j} + \hat{k}$, $\overrightarrow{b} = 11\hat{i} \hat{j} + \hat{k}$, and \overrightarrow{c} be a vector such that $(\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{c} \times (2\overrightarrow{a} + 3\overrightarrow{b})$. If $2\overrightarrow{a} + 3\overrightarrow{b} \cdot \overrightarrow{c} = 1670$, then $2|\overrightarrow{c}|^2$ is equal to:
 - a) 1627
 - b) 1618
 - c) 1600
 - d) 1609
- 14) If the function $f(x) = 2x^3 9ax^2 + 12a^2x + 1$ has a local maximum at $x = \alpha$ and a local minimum at $x = \alpha^2$, then α and α^2 are the roots of the equation:
 - a) $x^2 6x + 8 = 0$
 - b) $8x^2 + 6x 8 = 0$
 - c) $8x^2 6x + 1 = 0$
 - d) $x^2 + 6x + 8 = 0$
- 15) There are three bags X, Y, and Z. Bag X contains 5 one-rupee coins and 4 five-rupee coins; Bag Y contains 4 one-rupee coins and 5 five-rupee coins, and Bag Z contains 3 one-rupee coins and 6 five-rupee coins. A bag is selected at random, and a coin drawn from it at random is found to be a one-rupee coin. Then the probability that it came from bag Y is:

- a) $\frac{1}{3}$ b) $\frac{1}{2}$ c) $\frac{1}{4}$ d) $\frac{5}{12}$