

Warsztaty modelowania

04 – feature engineering

opracowała Patrycja Naumczyk

Informacja wzajemna (mutual information)

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log rac{p(x,y)}{p(x) \, p(y)}$$

$$I(X;Y) = \int\limits_{Y}\int\limits_{X} p(x,y) \log rac{p(x,y)}{p(x)\,p(y)} \; dx\,dy$$

$$I(X;Y) = H(Y) - H(Y \mid X)$$

Porównanie wartości informacji wzajemnej (MI) oraz korelacji Pearsona i Spearmana

Informacja wzajemna w scikit learn

- 1. Ze sklearn.metrics metryki pomiaru zgodności między etykietami rzeczywistymi, a przewidzianymi przez model:
 - a) mutual_info_score
 - b) adjusted_mutual_info_score poprawka na entropię (mała liczba klas -> mała entropia)
 - c) normalized_mutual_info_score znormalizowana 0-1, ale nie(!) korygowana o entropię
- 2. Z sklearn.feature_selection ocena przydatności zmiennej wyjaśniającej dla tłumaczenia zmiennej wyjaśnianej:
 - a) mutual_info_classif
 - b) mutual_info_regression

$$MI(U,V) = \sum_{i=1}^{|U|} \sum_{j=1}^{|V|} rac{|U_i \cap V_j|}{N} \log rac{N|U_i \cap V_j|}{|U_i||V_j|}$$

