Deep learning e segmentazione per la biologia cellulare

Utilizzo del transfer learning in Matlab per l'identificazione di cellule in microscopia

Alessandro Mastrofini

Elaborazione di Immagini Università degli Studi di Roma Tor Vergata

Image segmentation

- Pixel-based
- Edge-based
- Region-based
- Model-based
- Supervised methods

$$\begin{split} \mathsf{CM} &= \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}} = \frac{\mathit{TP}}{\mathsf{Total\ arai\ in\ GT}} \\ \mathsf{CR} &= \frac{\mathit{TP}}{\mathit{TP} + \mathit{FP}} = \frac{\mathit{TP}}{\mathsf{Total\ area\ in\ BW}} \\ \mathsf{FM} &= \frac{2 \cdot \mathit{CM} \cdot \mathit{CR}}{\mathit{CM} + \mathit{CR}} \in [0;1] \end{split}$$

Transfer learning


```
 \left\{B\right\} == 1 \\ \left\{N\right\} == 0 \\ 1 \\ 2 \\ 3 \\ ["N","B"],[0 \ 1]); \\ 1 \\ pxLayer = pixelClassificationLayer(... 2 \\ Name', 'labels', 'Classes', tbl.Name,... 3 \\ ClassWeights', classWeights); \\ 2 \\ Name', 'labels', 'Classes', tbl.Name,... 3 \\ ClassWeights', classWeights); \\ 3 \\ ClassWeights', classWeights'; \\ 2 \\ Name', 'labels', 'ClassWeights'; \\ 3 \\ Name', 'labels', 'ClassWeights'; \\ 3 \\ Name', 'labels', 'ClassWeights'; \\ 4 \\ Name', 'Name', 'Name
```

Training dataset

Classification layer

```
dec_c4
convolution2dL.
     lgraph = deeplabv3plusLayers(imageSize, numClasses, "resnet50");
    % balance predominance of 0
                                                                                                                dec_bn4
     tbl = countEachLabel(pximds);
     totalNumberOfPixels = sum(tbl.PixelCount);
     frequency = tbl. PixelCount / totalNumberOfPixels:
     classWeights = 1./frequency;
                                                                                                               dec relu4
     pxLayer = pixelClassificationLayer('Name', 'labels', 'Classes',...
     tbl. Name. 'ClassWeights', classWeights):
     lgraph = replaceLayer(lgraph, "classification", pxLayer);
     options = trainingOptions('sgdm', 'MaxEpochs', 30, ...
                                                                                                             scorer
convolution2dL
11
     'MiniBatchSize', 8, 'Plots', 'training-progress');
12
     [net, info] = trainNetwork(pximds, lgraph, options);
                                                                                                             dec_upsample2
transposedCon...
                                                                                                  dec crop2
                                                                                                  crop2dLaver
                                   outputSize
```

Training

Application

```
1 for I = 1:length(f_test)
2    testImage=imread([strcat(dataPath, '/FRAME_TEST_SEG/'), f_test(I).name]);
3    C_test = semanticseg(testImage,net);
4    D=C_test='B';
5    GTImage=imread([strcat(dataPath, '/GT_TEST/'), gt_train(I).name]);
6    [TP,FP,FN,CR,CM,FM_test(I)]=evaluation_segmentation(...
7    bwareafilt(D,1),GTImage);
8    imshowpair(testImage, bwareafilt(D,1), 'montage');
9    pause(0.5); drawnow;
10    clear C_test D testImage;
11 end
```


n. 25:

Solver

Training options

Augmenter

Pretrained networks


```
clear pximds | graph | [pximds,|graph] = prepareMyNet(net,'netName',imds,pxds); | [net_net,info_net,FM_test_net,compTime_net] = trainAndTest(pximds,|graph,... | dataPath,f_test,gt_train); | [accuracy_net,loss_net,FM_mean_net] = figureAccAndLoss(info_net,FM_test_net)
```