Binary Classification:

In this our dependent variable (y) is a discrete variable where it takes two values i.e. $y \in \{0,1\}$ where 0 represents negative class and 1 represents a positive class.

Examples:

Email: Spam or not?

Online Transactions: Fraud or not?

Tumor: malignant or Benign?

<u>Threshold classifier output</u>: We use linear regression and map all predictions greater than 0.5 as a 1 and all less than 0.5 as a 0. However, this method doesn't work well because classification is not actually a linear function.

What if we use linear reg for classification problem?

If we use linear regression model then out predicted output might be <0 or sometimes it might be >1, both the cases are not suitable for classification problem.

We can use classification algorithms such as logistic Regression for the binary classification.

Logistic Regression:

Our goal is to have our hypothesis function between 0 to 1, i.e. $0 \le h_{\theta}(x) \le 1$.

θ

For Logistic regression we modify our hypothesis function as $h_{\theta}(x) = g(h_{\theta}(x))$, where g(z) is a logistic/sigmoid function, where $g(z) = \frac{1}{1 + e^{-z}}$, the graph looks like below.

Interpretation of Hypothesis Output:

 $h_{\theta}(x)$ = estimated probability that y=1 on input x.

Example of cancer prediction : $h_{\theta}(x) = 0.7 \rightarrow it$ tells that 70% chance of tumor being malignant tumor.

Another way of notation is $h_{\theta}(x) = P(y=1/x; \theta) \rightarrow$ "probability that y=1, given x, parameterized by θ " Also, $P(y=1/x; \theta) + P(y=0/x; \theta) = 1$.

Decision Boundary:

From sigmoid graph, we can say that $g(z) \ge 0.5$ when $z \ge 0$, suppose if $z = 0 \rightarrow g(z) = 1/2$

That is

- for y=1, \rightarrow g($\theta^T X$) >=0.5 i.e. ($\theta^T X$) >= 0. Similarly
- for $y = 0 \rightarrow g(\theta^T X) < 0.5$ i.e. $(\theta^T X) < 0$.

- Consider logistic regression with two features x1 and x2. Suppose theta_0 = 5, theta_1 = -1 and theta_2=0, so that $h\vartheta(x)=g(5-x1)$. Which of these shows the decision boundary of $h\vartheta(x)$?
- For y=1, $\theta^T X$ i.e. 5-x1 >= 0 \rightarrow x1 <= 5 is the required decision Boundary equation.

• The decision boundaries might not always be linear, it can also be non-linear as well.

Cost Function for Logistic Regression: