425 Applied 3D Algebra

HW₂

Joey Domino

1. Matrix Multiplication

$$(x1, x2) * (a1, a2)$$
 $x1*a1+x2*a3$ $x1*a2+x2*a4$ $(x3, x4)$ $(a3, a4) =$ $x3*a1+x4*a3$ $x3*a2+x4*a4$

b.
$$\begin{bmatrix} -4 & -1 & 3 \\ -2 & 1 & -4 \\ -5 & -5 & -5 \end{bmatrix}$$
 \bullet $\begin{bmatrix} 1 & -4 & 2 \\ -2 & 3 & 4 \\ -2 & 0 & -1 \end{bmatrix}$

c.
$$\begin{pmatrix} -1 & 0 & 4 \\ 2 & -1 & 1 \\ 2 & -4 & -2 \end{pmatrix} \bullet \begin{pmatrix} -5 & 3 & -1 \\ 3 & 2 & -4 \\ 1 & 2 & 3 \end{pmatrix}$$

d.
$$\begin{pmatrix} -4 & 2 & -2 \\ -5 & 2 & -4 \\ -3 & -3 & -4 \end{pmatrix} \bullet \begin{pmatrix} -4 & -3 & -5 \\ -4 & 3 & -2 \\ 4 & 4 & -5 \end{pmatrix}$$

2. Compare Order of Operations

a. A took me about 8-10 minutes to write out.

A took the about 8-10 limites to write out:
$$A = \begin{pmatrix} -4 & -4 & -4 \\ -2 & 4 & -4 \\ -5 & -4 & 3 \end{pmatrix} \quad B = \begin{pmatrix} 3 & -5 & -1 \\ -2 & -4 & -3 \\ 4 & 4 & -5 \end{pmatrix} \quad V = \begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix}$$

b. B is faster. Took me about 5 minutes to write out

3. Gaussian Elimination to find Inverse Matrix

$$A = \begin{pmatrix} 4 & -5 & -3 \\ 1 & -5 & 3 \\ 2 & 4 & -3 \end{pmatrix}$$

```
-5/4 -3/4
0 -5/1 -(-5/4) 3/1 - (-3/4)
                                         1
                                              0
                                                    Use 'Add multiple rows to another"
  4/1 - 2(-5/4) - 3/1 - 2(-3/4)
                                              1
                                                    operation on rows 2 and 3
  -5/4 -3/4
                                     1/4
  -20/4 -(-5/4) 12/4 - (-3/4)
                                     -1/4
   16/4 - 2(-5/4) - 12/4 - 2(-3/4)
   -5/4 -3/4
                      -1/4
  -15/4 15/4
                             -1 0
                                             Clean it up
    13/2 -3/2
                      -1/2
  -5/4 -3/4
  -15/4*-4/15 15/4*-4/15
                                     -1/4*-4/15
                                                   1*-4/15
                                                                   Multiply R2 to
                                                                   get 1 in 2<sup>nd</sup>position
   13/2 -6/4
   -5/4 -3/4
                                    0
                      1/15
           -1
                              -4/15 0
0
                                             V—Zero out r1 and r2
    13/2 -3/2
                      -1/2
                                                             0+(5/4)*(-4/15) 0+(5/4)*0
    -5/4+5/4*1
                -3/4-5/4*-1
                                     1/4+ (5/4)*(1/15)
0
                      -1
                                     1/15
                                                            -4/15
    13/2-13/2*1 -3/2+13/2*-1
                                     -1/2-(13/2)*(1/15)
                                                            0-(13/2*-4/15)
1
     0
           -2
                              1/4+ (5/60)
                                                    0- (-1/1)*(1/3)
                                                                      0
0
     1
           -1
                              1/15
                                                    -4/15
                                                                           <-simplify
            5
                              -1/2-(13/2)*(2/30)
                                                    0-(13/2*-4/15) 1
     0
           -2
                              1/4+ (1/12)
                                                    -1/3
0
                                                    -4/15
     1
           -1
                              1/15
                                                                           <-simplify
            5
                              -1/2-26/60)
                                                    0-(52/30)
           -2
                              3/12+ 1/12
                                                    -1/3
     0
                                                    -4/15
                              1/15
     1
           -1
                                                                           <-simplify
                              -15/30 -13/30
            5
                                                    0+26/15
                                             -1/3
     0
           -2
                              4/12
                                                              0
                                             -4/15
     1
           -1
                              1/15
                                                              0
                                                                           <-simplify
            5
                              -28/30
                                             26/15
```

-1/25 9/25 2/5 -3/25 2/25 1/5 -14/75 26/75 1/5 <-Inverse!						
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	0 1 0	0 0 1	-1/25 -3/25 -14/75	9/25 2/25 26/75	2/5 1/5 1/5	<-Inverse!
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	0 1 0	0 0 1	-3/75 -9/75 -14/75	27/75 6/75 26/75	2/5 1/5 1/5	<-Simplify
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	0 1 0	0 0 1	25/75-28/75 5/75-14/75 -14/75	-25/75+52/75 -20/75+26/75 26/75	2/5 1/5 1/5	<-Simplify
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	0 1 0	-2+2 -1+1 1		2*-14/75 -1/3+2*20 +1*-14/75 -4/15+1*2 5 26/75		<-Zero r1r2
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	0 1 0	-2 -1 1	1/3 1/15 -14/7	-1/3 -4/15 5 26/75	0 0 1/5	<-Simplify
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	0 1 0	-2 -1 1	1/3 1/15 -14/7		0 0 1/5	<-Simplify
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	0 1 0	-2 -1 5/5	1/3 1/15 -14/1	-1/3 -4/15 5*1/5 26/15*1/5	0 0 5 1/5	<-Divide r3 by 5
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	0 1 0	-2 -1 5	1/3 1/15 -14/1		0 0 1	<-simplify

PROOF

$$(A^i)A = A(A^i) = I$$
 Multiple matrix by its inverse to get an identity matrix.

Inverse =
$$\begin{pmatrix} -1/25 & 9/25 & 2/5 \\ -3/25 & 2/25 & 1/5 \\ -14/75 & 26/75 & 1/5 \end{pmatrix}$$

$$A = \begin{pmatrix} 4 & -5 & -3 \\ 1 & -5 & 3 \\ 2 & 4 & -3 \end{pmatrix}$$

<u>A*A^I</u>

$$egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

<u>A^I * A</u>

$$egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

$$|A| = Ai,j(-1)^i+j^Ai,J$$

a.

$$\left(\begin{array}{cccc}
1 & -4 & & -2 \\
-3 & -2 & & 3 \\
1 & -4 & & 2
\end{array}\right)$$

Top Row

DET = -56

Bottom Row:

$$-16 - 12 - 28$$

DET CHECK = -56

bottom Row

DET = 31

Top row:

DET CHECK = 31

c

Row 2:

First 3x3 Top Row:

4th 3x3 Bottom Row:

Finish 4x4 calculation

Row 4:

First 3x3 Middle Row:

3rd 3x3 Top Row:

Bring them back into 4x4 caclulation

DET CHECK: 138

5.

$$n = 1/sqrt(2) (-1, 0, -1)$$

 $T(v) = v - (v*n)n$

a. Show T is a linear transformation

Will only be called linear if for any u and v vectors and scalar a

T(u+v) = T(u) + T(v)

T(au) = aT(u)

U = (u1, u2, u3)

V = (v1,v2,v3)

T(u+v) = |(u1+v1) + 2(u2+v2)|
|(u3+v3) - 3(u2+v2)|

T(u)+T(v) = |u1 + 2u2| + |v1 + 2v2|
|u3 - 3u2| |v3 - 3v3|

|(u1+v1) + 2(u2+v2)|
|(u3 + v3) - 3(u3 + v3)|

T(au) = a(u1,u2,u3)

(au1 au2 au3)

$$a \begin{pmatrix} (u1 + 2u2) \\ (u3 - 3u2) \end{pmatrix} = aT(u)$$

b. Give matrix form M for T. Characterize transformation Given that we are a linear transformation:

$$T(e0) = (1,0,0)*n$$

$$T(e1) = (0,1,0)*n$$

$$T(e2) = (0,0,1)*n$$

$$M = \begin{pmatrix} T(e00) & T(e10) & T(e20) \\ T(e00) & T(e10) & T(e20) \\ T(e00) & T(e10) & T(e20) \end{pmatrix} \begin{bmatrix} n1 \\ n2 \\ n3 \end{bmatrix}$$

c. Let v = (0, 0, 2). Compute T(v) and Mv. Answers should be the same.

$$T(v) = (v*n)n$$

$$(0,0,2)(-1,0,-1)$$

$$T(e0) = ((1,0,0) * (-1,0,-1))(-1,0,-1)$$

$$T(e2) = ((1,0,0) * (-1,0,-1)) (-1,0,-1)$$

$$Mv = \begin{pmatrix} 1, & 0, & 1 \\ 0, & 0, & 0 \\ 1, & 0, & 1 \end{pmatrix}$$

$$Mt = \begin{pmatrix} 1, & 0, & 1 \\ 0, & 0, & 0 \\ 1, & 0, & 1 \end{pmatrix} * \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

$$Mt = \begin{bmatrix} 0, 0, 0 \\ 1, 0, 1 \end{bmatrix} * \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

$$\begin{pmatrix}
1*0 + 0*0 + 1*2 \\
0*0 + 0*0 + 0*2 \\
1*0 + 0*0 + 1*2
\end{pmatrix}$$

d. BONUS: what was this calculating?

Flipped the item around and increased its speed or displaced it further than its old trajectory

