

Week 9

السنة الخامسة - هندسة المعلوماتية / الذكاء الصنعي

مقرر التعلم التلقائي

Well Known DL Architecture CNN, RNN, LSTM

د. ریاض سنبل

Large networks

- What kind of neural networks can be used for large or variable length input vectors (e.g., time series)?
- Common networks:
 - CNN, RNN, etc

الشبكة العصبونية التلافيفية Convolutional Neural Network (CNN)

Convolution

• Convolution: mathematical operation on two functions x() and w() that produces a third function y() that can be viewed as a modified version of one of the original functions x()

$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau$$

To convolve a kernel with an input signal: flip the signal, move to the desired time, and accumulate every interaction with the kernel

Example Smoothing

Discrete convolution

Discrete convolution

$$y(i) = \sum_{t=-\infty}^{\infty} x(t)w(i-t)$$

Multidimensional convolution

$$y(i,j) = \sum_{t_1 = -\infty}^{\infty} \sum_{t_2 = -\infty}^{\infty} x(t_1, t_2) w(i - t_1, j - t_2)$$

Example: Edge Detection

Detect vertical edges in a grey scale image.

$$y(i,j) = x(i,j) - x(i-1,j)$$

This subtracts the pixel value above from the current pixel, capturing vertical changes (i.e., vertical edge)

$$w(i - t_1, j - t_2) = \begin{cases} 1 & t_1 = i, t_2 = j \\ -1 & t_1 = i - 1, t_2 = j \\ 0 & \text{otherwise} \end{cases}$$
 i.e. $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Hence:

$$y(i,j) = \sum_{t_1 = -\infty}^{\infty} \sum_{t_2 = -\infty}^{\infty} x(t_1, t_2) w(i - t_1, j - t_2)$$

Convolutions for feature extraction

- In neural networks:
 - A convolution denotes the linear combination of a subset of units based on a specific pattern of weights.

$$a_j = \sum_i w_{ji} z_i$$

 Convolutions are often combined with an activation function to produce a feature

$$z_j = h(a_j) = h\left(\sum_i w_{ji} z_i\right)$$

Convolutions for feature extraction

The same patterns appear in different regions.

Convolution Neural Network

A convolutional neural network refers to any network that includes an alternation of convolution and pooling layers, where some of the convolution weights are shared.

Architecture:

cat dog **Fully Connected** Feedforward network 0000000 0000000 Flatten

Can repeat many times

CNN - Convolution

1-1-1-11-1-1-11

Filter 1

stride=1

6 x 6 image

CNN – Convolution

-1	1	-1	
-1	1	-1	
-1	1	-1	

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Do the same process for every filter

CNN – Convolution

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Those are the network parameters to be learned.

1	-1	-1	
-1	1	-1	Filter :
-1	-1	1	Matrix

-1	1	-1	
-1	1	-1	Filter 2
-1	1	-1	Matrix

Each filter detects a small

pattern (3 x 3).

A convolutional neural network refers to any network that includes an alternation of convolution and pooling layers, where some of the convolution weights are shared.

Architecture:

cat dog **Fully Connected** Feedforward network 0000000 0000000 Flatten

Can repeat many times

Convolution v.s. Fully Connected

Fullyconnected

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

- Sparse interactions:Fewer connections
- Parameter sharing:Fewer weights
- Handle inputs of varying length

Pooling

- Pooling: commutative mathematical operation that combines several units
- Examples:
 - max, sum, product, average, Euclidean norm, etc.
- Commutative property (order does not matter):
 - $\max a, b = \max(b, a)$

CNN – Max Pooling

1	-1	-1	
-1	1	-1	
-1	-1	1	

Filter 1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

CNN – Max Pooling

The whole CNN

Smaller than the original image

The number of the channel is the number of filters

Can repeat many times

The whole CNN

cat dog

Example

CNN – Colorful image

CNN – Zero Padding

1	-1	-1	
-1	1	-1	Filter :
-1	-1	1	

0	0	0						
0	1	0	0	0	0	1		
0	0	1	0	0	1	0		
	0	0	1	1	0	0		
	1	0	0	0	1	0		
	0	1	0	0	1	0	0	
	0	0	1	0	1	0	0	
CvCina				0	0	0		
6 x 6 image							_	

You will get another 6 x 6 images in this way

More Application: Playing Go

Black: 1

white: -1

none: 0

Fully-connected feedforward network can be used

But CNN performs much better.

Why CNN for playing Go?

Some patterns are much smaller than the whole image

The same patterns appear in different regions.

Alpha Go uses 5 x 5 for first layer

Parameters

- # of filters: integer indicating the # of filters applied to each window.
- kernel size: tuple (width, height) indicating the size of the window.
- Stride: tuple (horizontal, vertical) indicating the horizontal and vertical shift between each window.
- Padding: "valid" or "same". Valid indicates no input padding. Same indicates that the input is padded with a border of zeros to ensure that the output has the same size as the input.

Training

- Convolutional neural networks are trained in the same way as other neural networks
 - backpropagation
- Weight sharing:
 - Combine gradients of shared weights into a single gradient

Architecture design: VGG

What is the preferred filter size?

VGG (Visual Geometry Group at Oxford, 2014): stack of small filters is often

preferred to single large filter

Fewer parameters

Deeper network

الشبكات العصبونية التكراريّة Recurrent Neural Networks

Example Application

Slot Filling

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented

as a vector)

How can we represent each word?

Taipei |

1-of-N encoding

How to represent each word as a vector?

```
1-of-N Encodinglexicon = {apple, bag, cat, dog, elephant}The vector is lexicon size.apple = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}Each dimension corresponds<br/>to a word in the lexiconbag = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix}The dimension for the word<br/>is 1, and others are 0dog = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}
```

Beyond 1-of-N encoding

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Output:

Probability distribution that the input word belonging to the slots

time of

Example Application

Recurrent Neural Network (RNN)

The same network is used again and again.

RNN

Different

The values stored in the memory is different.

Of course it can be deep ...

Bidirectional RNN

We can combine past and future evidence in separate chains

Long Short-term Memory (LSTM)

Long Short-term Memory (LSTM)

Other part of the network

LSTM

LSTM

LSTM

Encoder-Decoder Model (Seq2Seq Model)

Encoder-Decoder Model

- X⁽ⁱ⁾: ith input
- Y⁽ⁱ⁾: ith output
- C: context (embedding)

Usage:

- Machine translation
- Question answering
- Dialog

Image Caption Generation

Input an image, but output a sequence of words

