12 Vectors and the Geometry of Space

Copyright © Cengage Learning. All rights reserved.

12.4 The Cross Product

The Cross Product of Two Vectors

The Cross Product of Two Vectors (1 of 9)

Given two nonzero vectors $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, suppose that a nonzero vector $\mathbf{c} = \langle c_1, c_2, c_3 \rangle$ is perpendicular to both \mathbf{a} and \mathbf{b} . Then $\mathbf{a} \cdot \mathbf{c} = 0$ and $\mathbf{b} \cdot \mathbf{c} = 0$ and so

$$1 \quad a_1c_1 + a_2c_2 + a_3c_3 = 0$$

$$2 \quad b_1c_1 + b_2c_2 + b_3c_3 = 0$$

The Cross Product of Two Vectors (2 of 9)

To eliminate c_3 we multiply (1) by b_3 and (2) by a_3 and subtract:

$$3 \quad (a_1b_3 - a_3b_1)c_1 + (a_2b_3 - a_3b_2)c_2 = 0$$

Equation 3 has the form $pc_1 + qc_2 = 0$, for which an obvious solution is $c_1 = q$ and $c_2 = -p$. So a solution of (3) is

$$c_1 = a_2b_3 - a_3b_2$$
 $c_2 = a_3b_1 - a_1b_3$

The Cross Product of Two Vectors (3 of 9)

Substituting these values into (1) and (2), we then get

$$c_3 = a_1 b_2 - a_2 b_1$$

This means that a vector perpendicular to both **a** and **b** is

$$\langle c_1, c_2, c_3 \rangle = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$

The resulting vector is called the *cross product* of **a** and **b** and is denoted by $\mathbf{a} \times \mathbf{b}$.

The Cross Product of Two Vectors (4 of 9)

4 Definition of the Cross Product $a = \langle a_1, a_2, a_3 \rangle$ and $b = \langle b_1, b_2, b_3 \rangle$, then the **cross product** of **a** and **b** is the vector

$$\mathbf{a} \times \mathbf{b} = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle$$

Notice that the **cross product** $\mathbf{a} \times \mathbf{b}$ of two vectors \mathbf{a} and \mathbf{b} is a vector (whereas the dot product, product is a scalar). For this reason it is also called the **vector product**.

Note that $\mathbf{a} \times \mathbf{b}$ is defined only when \mathbf{a} and \mathbf{b} are three-dimensional vectors.

The Cross Product of Two Vectors (5 of 9)

In order to make Definition 4 easier to remember, we use the notation of determinants.

A determinant of order 2 is defined by

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

For example,

$$\begin{vmatrix} 2 & 1 \\ -6 & 4 \end{vmatrix} = 2(4) - 1(-6) = 14$$

The Cross Product of Two Vectors (6 of 9)

A **determinant of order 3** can be defined in terms of second-order determinants

$$\begin{vmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

Observe that each term on the right side of Equation 5 involves a number a_i in the first row of the determinant, and a_i is multiplied by the second-order determinant obtained from the left side by deleting the row and column in which a_i appears.

The Cross Product of Two Vectors (7 of 9)

Notice also the minus sign in the second term. For example,

$$\begin{vmatrix} 1 & 2 & -1 \\ 3 & 0 & 1 \\ -5 & 4 & 2 \end{vmatrix} = 1 \begin{vmatrix} 0 & 1 \\ 4 & 2 \end{vmatrix} - 2 \begin{vmatrix} 3 & 1 \\ -5 & 2 \end{vmatrix} + (-1) \begin{vmatrix} 3 & 0 \\ -5 & 4 \end{vmatrix}$$
$$= 1(0-4) - 2(6+5) + (-1)(12-0)$$
$$= -38$$

The Cross Product of Two Vectors (8 of 9)

If we now rewrite Definition 4 using second-order determinants and the standard basis vectors \mathbf{i} , \mathbf{j} , and \mathbf{k} , we see that the cross product of the vectors $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ is

$$\mathbf{a} \times \mathbf{b} = (a_{2}b_{3} - a_{3}b_{2})\mathbf{i} - (a_{1}b_{3} - a_{3}b_{1})\mathbf{j} + (a_{1}b_{2} - a_{2}b_{1})\mathbf{k}$$

$$= \begin{vmatrix} a_{2} & a_{3} \\ b_{2} & b_{3} \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_{1} & a_{3} \\ b_{1} & b_{3} \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_{1} & a_{2} \\ b_{1} & b_{2} \end{vmatrix} \mathbf{k}$$

The Cross Product of Two Vectors (9 of 9)

In view of the similarity between Equations 5 and 6, we often write

7
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Although the first row of the symbolic determinant in Equation 7 consists of vectors, if we expand it as if it were an ordinary determinant using the rule in Equation 5, we obtain Equation 6.

The symbolic formula in Equation 7 is probably the easiest way of remembering and computing cross products.

Example 1

If a = (1, 3, 4) and b = (2, 7, -5), then

$$a \times b = \begin{vmatrix} 1 & j & k \\ 1 & 3 & 4 \\ 2 & 7 & -5 \end{vmatrix}$$

$$= \begin{vmatrix} 3 & 4 \\ 7 & -5 \end{vmatrix} i - \begin{vmatrix} 1 & 4 \\ 2 & -5 \end{vmatrix} j + \begin{vmatrix} 1 & 3 \\ 2 & 7 \end{vmatrix} k$$

$$= (-15 - 28)i - (-5 - 8)j + (7 - 6)k$$

$$= -43i + 13j + k$$

Properties of the Cross Product

Properties of the Cross Product (1 of 10)

We constructed the cross product $\mathbf{a} \times \mathbf{b}$ so that it would be perpendicular to both \mathbf{a} and \mathbf{b} . This is one of the most important properties of a cross product.

8 Theorem The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .

Properties of the Cross Product (2 of 10)

If **a** and **b** are represented by directed line segments with the same initial point (as in Figure 1), then Theorem 8 says that the cross product **a** × **b** points in a direction perpendicular to the plane through **a** and **b**.

The right-hand rule gives the direction of $\mathbf{a} \times \mathbf{b}$.

Figure 1

Properties of the Cross Product (3 of 10)

It turns out that the direction of $\mathbf{a} \times \mathbf{b}$ is given by the *right-hand rule*: If the fingers of your right hand curl in the direction of a rotation (through an angle less than 180°) from to \mathbf{a} to \mathbf{b} , then your thumb points in the direction of $\mathbf{a} \times \mathbf{b}$.

Now that we know the direction of the vector $\mathbf{a} \times \mathbf{b}$, the remaining thing we need to complete its geometric description is its length $|\mathbf{a} \times \mathbf{b}|$. This is given by following theorem.

9 Theorem If θ is the angle between **a** and **b** (so $0 \le \theta \le \pi$), then the length of the cross product **a** \times **b** is given by

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$$

Properties of the Cross Product (4 of 10)

10 Corollary Two nonzero vectors a and b are parallel if and only if

$$a \times b = 0$$

Since a vector is completely determined by its magnitude and direction, we can now say that for nonparallel vectors \mathbf{a} and \mathbf{b} , $\mathbf{a} \times \mathbf{b}$ is the vector that is perpendicular to both \mathbf{a} and \mathbf{b} , whose orientation is determined by the right-hand rule, and whose length is $|\mathbf{a}||\mathbf{b}|\sin\theta$.

In fact, that is exactly how physicists define $\mathbf{a} \times \mathbf{b}$.

Properties of the Cross Product (5 of 10)

The geometric interpretation of Theorem 9 can be seen by looking at Figure 2.

Figure 2

Properties of the Cross Product (6 of 10)

If **a** and **b** are represented by directed line segments with the same initial point, then they determine a parallelogram with base |a|, $altitude |b| \sin \theta$, and area

$$A = |\mathbf{a}|(|\mathbf{b}|\sin\theta) = |\mathbf{a} \times \mathbf{b}|$$

Thus we have the following way of interpreting the magnitude of a cross product.

The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b} .

Example 4

Find the area of the triangle with vertices P(1, 4, 6), Q(-2, 5, -1), and R(1, -1, 1).

$$a = R - P = (0, -5, -5)$$
 $|a \times b|$
 $|a \times b|$

Example 4

Find the area of the triangle with vertices P(1, 4, 6), Q(-2, 5, -1), and R(1, -1, 1).

Solution:

We computed that $\overrightarrow{PQ} \times \overrightarrow{PR} = \langle -40, -15, 15 \rangle$. The area of the parallelogram with adjacent sides PQ and PR is the length of this cross product:

$$|\overrightarrow{PQ} \times \overrightarrow{PR}| = \sqrt{(-40)^2 + (-15)^2 + 15^2}$$
$$= 5\sqrt{82}$$

The area A of the triangle PQR is half the area of this parallelogram, that is, $\frac{5}{2}\sqrt{82}$.

Properties of the Cross Product (7 of 10)

If we apply Theorems 8 and 9 to the standard basis vectors **i**, **j**, and **k** using $\theta = \frac{\pi}{2}$, we obtain

$$i \times j = k$$
 $j \times k = i$ $k \times i = j$
 $j \times i = -k$ $k \times j = -i$ $i \times k = -j$

Observe that

$$\vec{a} \times \vec{J} \neq \vec{J} \times \vec{i}$$
 $\vec{a} \times \vec{J} \neq \vec{J} \times \vec{i}$
 $\vec{a} \times \vec{J} = -\vec{J} \times \vec{J}$

Properties of the Cross Product (8 of 10)

Thus the cross product is not commutative. Also

$$i \times (i \times j) = i \times k = -j$$

whereas

$$(\mathbf{i} \times \mathbf{i}) \times \mathbf{j} = 0 \times \mathbf{j} = 0$$

So the associative law for multiplication does not usually hold; that is, in general,

$$(a \times b) \times c \neq a \times (b \times c)$$

However, some of the usual laws of algebra do hold for cross products.

Properties of the Cross Product (9 of 10)

The following theorem summarizes the properties of vector products.

11 Properties of the Cross Product If **a**, **b**, and **c** are vectors and **c** is a scalar, then

1.
$$a \times b = -b \times a$$

2.
$$(ca) \times b = c(a \times b) = a \times (cb)$$

3.
$$a \times (b + c) = a \times b + a \times c$$

4.
$$(a + b) \times c = a \times c + b \times c$$

5.
$$a \cdot (b \times c) = (a \times b) \cdot c$$

6.
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

Properties of the Cross Product (10 of 10)

These properties can be proved by writing the vectors in terms of their components and using the definition of a cross product.

If
$$a = \langle a_1, a_2, a_3 \rangle$$
, $b = \langle b_1, b_2, b_3 \rangle$, and $c = \langle c_1, c_2, c_3 \rangle$, then

$$12 \ a \cdot (b \times c) = a_1(b_2c_3 - b_3c_2) + a_2(b_3c_1 - b_1c_3) + a_3(b_1c_2 - b_2c_1)$$

$$= a_1b_2c_3 - a_1b_3c_2 + a_2b_3c_1 - a_2b_1c_3 + a_3b_1c_2 - a_3b_2c_1$$

$$= (a_2b_3 - a_3b_2)c_1 + (a_3b_1 - a_1b_3)c_2 + (a_1b_2 - a_2b_1)c_3$$

$$= (a \times b) \cdot c$$

Triple Products

Triple Products (1 of 5)

The product $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ that occurs in Property 5 is called the **scalar triple product** of the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} . Notice from Equation 12 that we can write the scalar triple product as a determinant:

13
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Triple Products (2 of 5)

The geometric significance of the scalar triple product can be seen by considering the parallelepiped determined by the vectors **a**, **b**, and **c**. (See Figure 3.)

The area of the base parallelogram is $A = |b \times c|$.

Triple Products (3 of 5)

If θ is the angle between **a** and **b** × **c**, then the height *h* of the parallelepiped is $h = |\mathbf{a}| |\cos \theta|$. (We must use $|\cos \theta|$ instead of $\cos \theta$ in $\operatorname{case} \theta > \frac{\pi}{2}$.) Therefore the volume of the parallelepiped is

$$V = Ah = |\mathbf{b} \times \mathbf{c}| |\mathbf{a}| |\cos \theta| = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$
 (by Theorem 12.3.3)

Thus we have proved the following formula.

14 The volume of the parallelepiped determined by the vectors **a**, **b**, and **c** is the magnitude of their scalar triple product:

$$V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$

Triple Products (4 of 5)

If we use the formula in (14) and discover that the volume of the parallelepiped determined by **a**, **b**, and **c** is 0, then the vectors must lie in the same plane; that is, they are **coplanar**.

Example 5

Use the scalar triple product to show that the vectors $a = \langle 1, 4, -7 \rangle$, $b = \langle 2, -1, 4 \rangle$, and $c = \langle 0, -9, 18 \rangle$, are coplanar.

Solution:

We use Equation 13 to compute their scalar triple product:

$$\begin{array}{c|cccc}
a \cdot (b \times c) & & & \\
1 & 4 & -7 \\
2 & -1 & 4 \\
0 & -9 & 18
\end{array}$$

Example 5 – Solution

$$= 1 \begin{vmatrix} -1 & 4 \\ -9 & 18 \end{vmatrix} - 4 \begin{vmatrix} 2 & 4 \\ 0 & 18 \end{vmatrix} - 7 \begin{vmatrix} 2 & -1 \\ 0 & -9 \end{vmatrix}$$
$$= 1(18) - 4(36) - 7(-18)$$
$$= 0$$

Therefore, by (14), the volume of the parallelepiped determined by **a**, **b**, and **c** is 0. This means that **a**, **b**, and **c** are coplanar.

Triple Products (5 of 5)

The product $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ that occurs in Property 6 is called the **vector triple product** of \mathbf{a} , \mathbf{b} , and \mathbf{c} .

Application: Torque

Application: Torque (1 of 3)

The idea of a cross product occurs often in physics. In particular, we consider a force **F** acting on a rigid body at a point given by a position vector **r**. (For instance, if we tighten a bolt by applying a force to a wrench as in Figure 4, we produce a turning effect.)

Figure 4

Application: Torque (2 of 3)

The **torque** τ (relative to the origin) is defined to be the cross product of the position and force vectors

$$\tau = r \times F$$

and measures the tendency of the body to rotate about the origin. The direction of the torque vector indicates the axis of rotation.

Application: Torque (3 of 3)

According to Theorem 9, the magnitude of the torque vector is

$$|\tau| = |\mathbf{r} \times \mathbf{F}| = |\mathbf{r}||\mathbf{F}|\sin\theta$$

where θ is the angle between the position and force vectors. Observe that the only component of **F** that can cause a rotation is the one perpendicular to **r**, that is, $|F| \sin \theta$.

The magnitude of the torque is equal to the area of the parallelogram determined by **r** and **F**.

Example 6

A bolt is tightened by applying a 40-N force to a 0.25-m wrench as shown in Figure 5.

Find the magnitude of the torque about the center of the bolt.

Example 6 – Solution

The magnitude of the torque vector is

$$|\tau| = |r \times F| = |r||F| \sin 7.5^{\circ}$$

= $(0.25)(40) \sin 75^{\circ}$
= $10 \sin 7.5^{\circ} \approx 9.66 \text{ N} \cdot \text{m}$

If the bolt is right-threaded, then the torque vector itself is

$$\tau = |\tau| n \approx 9.66 \text{ n}$$

where **n** is a unit vector directed down into the page (by the right-hand rule).