**Stanford University** 

Z-score estimation of summary statistics based on LD

2017/06/05

Yosuke Tanigawa (<u>ytanigaw@stanford.edu</u>)

M. Rivas Lab (rotation student) | Biomedical Informatics Ph.D. Program

## Model

#### Notation

- $X \in \mathbb{R}^{N \times M}$ : genotype. We assume X is normalized such that is has zero-mean and unit variance.
- $Y \in \mathbb{R}^{N \times 1}$ : traits. We assume Y is normalized such that is has zero-mean and unit variance.
- $\beta \in \mathcal{R}^M$ : effect size.
- N: number of individuals.
- M: number of SNP markers.
- $V \in \mathbb{R}^{M \times M}$ : LD matrix. This can be found by  $V = X^T X$ .

#### Model

#### Linear regression model

Our regression model is:

$$Y = X\beta + \varepsilon, \quad \varepsilon \sim N(0, I)$$
 (1)

## Least square and marginal effect model

#### Least square

$$\nabla_{\beta}(Y - X\beta)^{T}(Y - X\beta) = -X^{T}(Y - X\beta) = 0$$
(2)

$$\hat{\beta} = (X^T X)^{-1} X^T Y = V^{-1} X^T Y; \quad \text{Var} \left[ \hat{\beta} \right] = \sigma_j^2 V^{-1}$$
(3)

where,  $\sigma_j^2$  is residual variance.

#### Marginal effect

$$\hat{\beta}_M = D^{-1} X^T Y; \quad \text{Var} \left[ \hat{\beta}_M \right] = \sigma_M^2 D^{-1}$$
 (4)

where, D is the diagonal matrix of V.

#### The relationship between two models

Since we have  $V\hat{\beta} = X^TY = D\hat{\beta}_M$ , we have

$$\hat{\beta} = V^{-1}D\hat{\beta}_M \tag{5}$$

#### **Z**-score

We define z-score:

$$Z := \frac{\hat{\beta}_M}{\sqrt{\operatorname{Var}\left[\hat{\beta}_M\right]}} = \frac{X^T Y}{\sqrt{N}} \tag{6}$$

We assume

$$Z \sim N(0, V) \tag{7}$$

#### Imputation of Z-scores

Let's consider to divide Z into two blocks:

- 1.  $Z_t$ : Z-score for typed SNPs
- 2.  $Z_i$ : Z-score for untyped SNPs

i.e.

$$Z^{T} = (Z_{t}^{T} \quad Z_{i}^{T}); \quad V = \begin{pmatrix} V_{tt} & V_{ti} \\ V_{it} & V_{ii} \end{pmatrix}$$

$$(8)$$

Since we modeled the Z-scores as multi-variate normal, the conditional distribution  $p(Z_i \mid Z_t)$  is also normal:

$$Z_i \mid Z_t \sim N(V_{it}Vtt^{-1}Z_t, V_{ii} - VitV_{tt}^{-1}V_{ti})$$
 (9)

# Dataset description

- Genotype info:
  - UKBB (with population stratification): 112,338 individuals
  - Focusing on chromosome 20
- LD block (plink)
  - --blocks no-pheno-req
  - --blocks-max-kb 1000
  - --blocks-min-maf .05
- GWAS summary statistics
  - ADD, age, sex, C1-C4 (first 4 components)
  - Focusing on ADD (additive effects)

### LD block structure on chromosome 20

- (left) Number of SNPs in a LD block (median 4.0)
  - Note: MAF 5%
- (right) Size of LD block (median 1.1865)



## Z-score distribution

Zero-mean and unit-variance normalization for Z-score



# Example LD block: chr20:69408-72104

```
block det df = pd.read csv(block det f, sep='\s+')
         block det df['SNPS LIST'] = block det df['SNPS'].map(lambda x: x.split('|'))
         block det df.head()
Out[7]:
                                  KB NSNPS
             CHR
                    BP1
                          BP2
                                                                                       SNPS
                                                                                                                                SNPS LIST
          0 20
                  61795 | 66370 | 4.576 | 7
                                              rs4814683|rs34147676|rs6139074|rs1418258|rs130...
                                                                                              [rs4814683, rs34147676, rs6139074, rs1418258, ...
          1 20
                  69408 72104 2.697 3
                                              rs17685809|rs11477748|rs11087028
                                                                                              [rs17685809, rs11477748, rs11087028]
          2 20
                  74347 | 79112 | 4.766 | 6
                                              rs6135141|rs146347206|rs892665|rs6111385|rs566...
                                                                                              [rs6135141, rs146347206, rs892665, rs6111385, ...
          3 20
                  80071 81979 1.909 3
                                              rs6046657|rs2196239|rs1836445
                                                                                              [rs6046657, rs2196239, rs1836445]
          4 20
                  82079 | 82139 | 0.061 | 2
                                              rs34120808|rs1836444
                                                                                              [rs34120808, rs1836444]
```

bim.loc[[0, 3, 55], :]In [5]:

In [17]: beta df.loc[[219, 222, 274], :]

Out[5]: a1 chr rs cm pos a2 69408 С Т 20 rs17685809 0 0 rs11477748 0 69481 CT 20 C **55** 20 rs11087028 0 72104 TA T

Out[17]:

|     | Unnamed: 0 | #CHROM | POS   | ID         | Z_BETA    |
|-----|------------|--------|-------|------------|-----------|
| 219 | 219        | 20     | 69408 | rs17685809 | 0.014260  |
| 222 | 222        | 20     | 69481 | rs11477748 | -0.011457 |
| 274 | 274        | 20     | 72104 | rs11087028 | 0.009447  |

# Example of Z-score imputation 2 typed SNPs + 1 untyped SNP in the LD block

## Current approach is not scalable

- plink --r2 does not provide full output for LD matrix
  - --Id-window-r2 does not work
- We need to normalize X (genotype)
- Current platform: pgenlib + python
  - Accessing on the raw data

External validation set?