Active Learning in the Predict-then-Optimize Framework: A Margin-Based Approach

Mo Liu

INFORMS Workshop on Data Science

IEOR, University of California, Berkeley Joint work with Paul Grigas, Heyuan Liu and Zuo-Jun Max Shen

Build a prediction model to predict unknown parameters

Predict-then-optimize framework

Consider a stochastic optimization problem with unknown parameters:

Higher prediction accuracy Lower cost

Data collection in predict-then-optimize framework

Realization of one sample: feature + parameters (labels of the samples)

- Acquiring the labels for one sample could be very expensive.

 In a personalized pricing problem, to realize the purchase probability under all prices:
 - Customer investigation
 - Price trials
 - How can we minimize the number of labels acquired while learning an effective prediction model?
 - Select representative samples to acquire their labels
 - ➤ Active learning + predict-then-optimize framework

Agenda

- Information gathering process for predict-then-optimize framework
- > Smart predict-then-optimize loss (SPO) and preliminaries
- Theoretical motivation for margin-based algorithm
- Algorithm
- Analysis
- Numerical Experiments

Predict-then-optimize framework

Optimization problem:

$$\min_{w \in S} \mathbb{E}_{c \sim D_X} \left[c^T w | x \right] = \min_{w \in S} \mathbb{E}_{c \sim D_X} \left[c^T | x \right] w$$

Suppose we have access to the optimization oracle:

$$w^*(c) = \arg\min_{w \in S} c^T w$$

• SPO (Smart Predict-then-optimize) loss function:

$$\ell_{SPO}(\hat{c}, c) \coloneqq c^T w^*(\hat{c}) - c^T w^*(c)$$

- Predictor $h \in \mathcal{H}$
- SPO Risk:

$$R_{SPO}(h) = \mathbb{E}_{x,c \sim D}[\ell_{SPO}(h(x),c)]$$

Best predictor:

$$h^* \coloneqq \arg\min_{h \in \mathcal{H}} R_{SPO}(h)$$

Constructing the training set

- During the data collection process:
 - Feature x_i is readily available
 - Cost vector c_i is expensive
 - Large label cost
 - Time-consuming label process
- How can we minimize the number of labels acquired while achieving a small SPO risk?

Active learning

From iteration 1 to T, at each iteration t:

- \triangleright Given one unlabeled sample with feature x_t from some unknown distribution
- \triangleright Decide whether to acquire the label c_t of this sample x_t
- Goal: Use a small number of inquiries to achieve good performance

min: Number of acquired labels after T iterations

subject to: The final prediction model after T iterations has a good performance

 Label complexity: The minimum number of inquiries we need to make to attain performance at a given level

Goal of active learning

- Traditionally, active learning focuses on minimizing the prediction error
- In the predict-then-optimize framework:

Can we select samples to minimize the SPO loss directly, instead of the prediction error? After T iterations, the prediction model h_T is obtained by using the selected training set

min: Number of acquired labels after T iterations

subject to: $R_{SPO}(h_T) - R_{SPO}(h^*) \le \epsilon$

Agenda

- Information gathering process for predict-then-optimize framework
- Smart predict-then-optimize loss (SPO) and preliminaries
- > Theoretical motivation for margin-based algorithm
- Algorithm
- Analysis
- Numerical Experiments

Motivation in theory

Active learning can help to minimize SPO loss

SPO loss can help to select samples for active learning

Motivation

- Vector \hat{c} is the prediction from $\hat{h}(x)$
- Green circle is the "confidence region" of \hat{c}

Size of training set: 5

Size of training set: 5,000

Active learning help identify critical samples to minimize SPO

Motivation

Green circle has the same radius but different locations

SPO can make active learning more selective

Agenda

- Information gathering process for predict-then-optimize framework
- Smart predict-then-optimize loss (SPO) and preliminaries
- Theoretical motivation for margin-based algorithm
- > Algorithm
- Analysis
- Numerical Experiments

Margin-based algorithm

Idea: If the green circle (confidence region) intersects the boundary of the cone, then
we acquire the label of that sample

Margin-based algorithm

- Suppose C^0 is the set of cost vectors that have multiple optimal decisions
- Distance to degeneracy:

$$\nu_{\mathcal{S}}(\hat{c}) \coloneqq \inf_{c \in \mathcal{C}^0} \{ \|c - \hat{c}\| \}$$

• If $v_S(h_{t-1}(x_t)) < b_{t-1}$:

Acquire the label of this sample x_t

Model training in the prediction-then-optimize framework

- After constructing a training set, how to obtain the predictor h_T ?
- Minimize empirical loss in the selected training set
 - Squared loss
 - SPO+ loss
 - A specialized training loss that considering the downstream optimization:
 - Proposed in Elmachtoub and Grigas (2022):

$$\ell_{\text{SPO+}}(\hat{c}, c) := \max_{w \in S} \left\{ (c - 2\hat{c})^T w \right\} + 2\hat{c}^T w^*(c) - c^T w^*(c)$$

There is some benefit when using the SPO+ loss

Agenda

- Information gathering process for predict-then-optimize framework
- Smart predict-then-optimize loss (SPO) and preliminaries
- Theoretical motivation for margin-based algorithm
- Algorithm
- > Analysis
- Numerical Experiments

Theoretical guarantees for MBAL-SPO

Label complexity vs. Sample complexity

Without any assumptions about the noise distribution:

The label complexity is the same as the sample complexity in the supervised learning (Kääriäinen M (2006))

We need some additional noise conditions

Label complexity from the low noise conditions

- Near-degeneracy function Ψ: the CDF of the distance to degeneracy
 - Difficulty in distinguishing the optimal decisions from the sub-optimal decisions

Low-noise condition: $\Psi(b) \leq b_0 \cdot b^{\kappa}$, b < 1, for some $\kappa > 0$

- κ gets larger $\rightarrow \Psi(b)$ gets smaller \rightarrow easier to find the optimal decisions
- Low-noise condition is closely related to Hu et al. 2022 and Tsybakov's noise condition

Assumption:

When the excess surrogate risk is at most $\Delta \to \text{The prediction error for } \hat{h}(x)$ is at most $\mathcal{O}(\sqrt{\Delta})$

Overview of the results

• After *T* iterations:

	Active learning	Supervised learning
Excess surrogate risk	$\mathcal{O}(T^{-1/2})$	$\mathcal{O}(T^{-1/2})$
Excess SPO risk	$\Psi\left(\mathcal{O}\left(T^{-\frac{\kappa}{4}}\right)\right)$	$\Psi\left(\mathcal{O}\left(T^{-\frac{\kappa}{4}}\right)\right)$
Number of labels	$\sum_{t=1}^{T} \Psi\left(\mathcal{O}\left(t^{-\frac{\kappa}{4}}\right)\right)$	T

Overview of the results

• After *T* iterations with low-noise conditions:

	Active learning	Supervised learning
Excess surrogate risk	$\mathcal{O}(T^{-1/2})$	$\mathcal{O}(T^{-1/2})$
Excess SPO risk	$\mathcal{O}(T^{-\kappa/4})$	$\mathcal{O}(T^{-\kappa/4})$
Number of labels	$\mathcal{O}(T^{1-\kappa/4})$	T

Agenda

- Information gathering process for predict-then-optimize framework
- Smart predict-then-optimize loss (SPO) and preliminaries
- Theoretical motivation for margin-based algorithm
- Algorithm
- Analysis
- Numerical Experiments

Numerical experiments: shortest path problem

- Shortest path problem on 3×3 and 5×5 grid networks
- Predict the traveling time of each edge based on some features
- Using the SPO+ as the surrogate training loss

Numerical experiments: personalized pricing problem

- Unknown function: $d_i(p^i) \in [0,1]$
 - Purchase probability of product j under price p^i
 - $-d_i(p^i)$ depends on customer feature x
- Decisions: $w_{i,j} \in \{0,1\}$, whether the price of product j is set as p^i

$$\max_{\mathbf{w}} : \quad \mathbb{E}[\sum_{j=1}^{\mathfrak{J}} \sum_{i=1}^{\mathcal{I}} d_{j}(p_{i}) p_{i} w_{i,j} | x]$$

$$\sum_{i=1}^{\mathcal{I}} w_{i,j} = 1, \forall j = 1, 2, ..., \mathfrak{J}$$

$$\mathbf{Aw} \leq b$$

$$w_{i,j} \in \{0, 1\}, \quad i = 1, 2, ..., \mathcal{I}, j = 1, 2, ..., \mathfrak{J}.$$

• SPO loss: Revenue loss of the personalized prices based on the prediction for $d_i(p^i)$

Numerical experiments: personalized pricing problem

- Personalized pricing problem for three products
- The hypothesis class is mis-specified (The true model is exponential while the hypothesis class is linear.)

Thank you https://arxiv.org/pdf/2305.06584.pdf

Variations of the algorithm

- If the noise does not satisfy the separable conditions or we use general surrogate loss:
- We have two variations:
- Variation 1:
 - Construct a confidence set of the optimal predictor at each iteration
 - $h_t \in H_t \subset H_{t-1} \subset \cdots \subset H_0$
 - Minimize the training loss within the confidence set
- Variation 2:
 - \circ At each iteration, when $\nu_S (h_{t-1}(x_t)) > b_{t-1}$, reject samples with some probability smaller than 1

Overview of the results

• After *T* iterations under separability condition:

	Active learning	Supervised learning
Excess surrogate risk	$\mathcal{O}(T^{-1/2})$	$\mathcal{O}(T^{-1/2})$
Excess SPO risk	$\mathcal{O}(\min\{T^{-\kappa/4}, T^{-1/2}\})$	$\mathcal{O}(T^{-\kappa/4})$
Number of labels	$\mathcal{O}(1)$	T

Property of SPO+ loss

• SPO+ loss in Elmachtoub and Grigas (2022):

$$\ell_{\text{SPO+}}(\hat{c}, c) := \max_{w \in S} \left\{ (c - 2\hat{c})^T w \right\} + 2\hat{c}^T w^*(c) - c^T w^*(c)$$

Separability condition: for some $\varrho \in (0,1)$:

$$||h^*(x) - c|| \le \varrho \nu_S (h^*(x))$$

Separability condition implies:

The minimum SPO+ risk and SPO risk are both zero.

Geometric Interpretation

•
$$\ell_{SPO}(\hat{c},c) \coloneqq c^T w^*(\hat{c}) - c^T w^*(c)$$

- SPO loss is discontinuous and nonconvex.
- Convex surrogate loss function: SPO+, squared loss, ...

Summary: Three versions of MBAL-SPO

- Given a sequence b_t , and \tilde{p} (If $\tilde{p} > 0$: soft-rejection; Otherwise, hard-rejection.)
- At each iteration *t*:
- Observe x_t
- If $v_S(h_{t-1}(x_t)) \ge b_{t-1}$:
 - Flip a coin with heads-up probability \tilde{p}
 - If the coin gets heads-up:
 - Acquire its label and update the training set
 - Else:
 - Reject x_t .
- Else:
 - Acquire its label and update the training set
- Update the predictor h_t by minimizing the empirical risk within the confidence set H_t
- Update a confidence set of predictor H_t if using general surrogate loss under hard-rejection.

Margin-Based Algorithm

• What if $v_S(h_{t-1}(x_t)) \ge b_{t-1}$:

- Reject it directly?
- The SPO loss of this sample is zero, so rejecting it does not change the total SPO loss.

$$\ell_{SPO}(h_{t-1}(x_t), c_t) + \sum_{i=1}^{t-1} \ell_{SPO}(h_{t-1}(x_i), c_i)$$

- We are minimizing the surrogate loss, instead of SPO loss.
- Although SPO loss is zero, the surrogate loss is possibly nonzero.

Margin-Based Algorithm

When rejecting the sample directly:

Empirical surrogate loss

Surrogate risk.

Soft rejection

Hard rejection with SPO+ surrogate

Hard rejection with general surrogate function

Soft rejection Algorithm

- If $\nu_S(h_{t-1}(x_t)) \ge b_{t-1}$ (Green circle does not intersect with the boundary):
- \triangleright Acquire the label with probability $\tilde{p} > 0$. (soft-rejection)
- If this sample eventually gets labeled, the weight of this sample is $\frac{1}{\tilde{p}}$
 - The expectation of re-weighted empirical surrogate loss equals the surrogate risk.
- \bigcirc The expected number of labels up to time T is at least $O(\tilde{p}T)$

Proof Sketch

1. Convergence for the surrogate risk:

 $R_{\ell}(h) - R_{\ell}(h^*) = \text{average excess risk for hard rejected samples}$ + uniform convergence rate for the reweighted risk + average empirical excess risk of h

Proof Sketch

1. Convergence for the surrogate risk:

```
R_{\ell}(h) - R_{\ell}(h^*) = average excess risk for hard rejected samples (Holder's property) + uniform convergence rate for the reweighted risk (Sequential complexity) + average empirical excess risk of h (h^*is within H_t)
```

Proof Sketch

1. Convergence for the surrogate risk:

```
R_{\ell}(h) - R_{\ell}(h^*) = average excess risk for hard rejected samples (Holder's property) + uniform convergence rate for the reweighted risk (Sequential complexity) + average empirical excess risk of h (h^*is within H_t)
```

- 2. From surrogate risk to the SPO risk: near-degeneracy function.
- 3. Label complexity: Bound for the label probability at each step
- 4. For the soft-rejection, optimize \tilde{p} as a function of T to achieve a small label complexity.

Examples of operations management problems

Unknown parameters Decision

Customers' preference Product recommendation

Demand Inventory level

Price elasticity Optimal prices