Base-two primitive permutation groups

Hong Yi Huang

Young Group Theorist Workshop, SwissMAP, Les Diablerets
5 September 2022

Bases

Let $G \leq \operatorname{Sym}(\Omega)$ be a **transitive** permutation group, where $|\Omega|$ is finite.

Definition

A base for G is a subset Δ of Ω such that $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

Base size b(G): the minimal size of a base for G.

Examples

- $G = S_n$, $\Omega = \{1, \ldots, n\}$: b(G) = n 1.
- G = GL(V), $\Omega = V \setminus \{0\}$: b(G) = dim(V).

Bases

Let $G \leq \operatorname{Sym}(\Omega)$ be a **transitive** permutation group, where $|\Omega|$ is finite.

Definition

A base for G is a subset Δ of Ω such that $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

Base size b(G): the minimal size of a base for G.

Examples

- $G = S_n$, $\Omega = \{1, \ldots, n\}$: b(G) = n 1.
- G = GL(V), $\Omega = V \setminus \{0\}$: b(G) = dim(V).
- $G = D_{2n}$, $\Omega = \{1, \ldots, n\}$: b(G) = 2.

Observation: $b(G) = 1 \iff G$ is regular.

Observation: $b(G) = 1 \iff G$ is regular.

Let $H = G_{\alpha} \neq 1$ be a point stabiliser.

$$b(G)=2\iff G$$
 has a regular suborbit on Ω $\iff H\cap H^g=1$ for some $g\in G$

Observation: $b(G) = 1 \iff G$ is regular.

Let $H = G_{\alpha} \neq 1$ be a point stabiliser.

$$b(G)=2\iff G$$
 has a regular suborbit on Ω $\iff H\cap H^g=1$ for some $g\in G$

Recall. G is called **primitive** if H is maximal in G.

Observation: $b(G) = 1 \iff G$ is regular.

Let $H = G_{\alpha} \neq 1$ be a point stabiliser.

$$b(G)=2\iff G$$
 has a regular suborbit on Ω $\iff H\cap H^g=1$ for some $g\in G$

Recall. G is called **primitive** if H is maximal in G.

Problem. Classify the finite primitive groups G with b(G) = 2.

Observation: $b(G) = 1 \iff G$ is regular.

Let $H = G_{\alpha} \neq 1$ be a point stabiliser.

$$b(G)=2\iff G$$
 has a regular suborbit on Ω $\iff H\cap H^g=1$ for some $g\in G$

Recall. G is called **primitive** if H is maximal in G.

Problem. Classify the finite primitive groups G with b(G) = 2.

Example

p prime,
$$G = D_{2p}$$
 and $\Omega = \{1, \dots, p\} \implies G$ primitive and $b(G) = 2$.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: ask Melissa.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: ask Melissa.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: ask Melissa.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Burness et al., 2010/11: T alternating or sporadic √

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: ask Melissa.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

- Burness et al., 2010/11: T alternating or sporadic √
- G Lie type: Partial answers

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: ask Melissa.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Burness et al., 2010/11: T alternating or sporadic √

• G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: ask Melissa.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

- Burness et al., 2010/11: T alternating or sporadic √
- G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

e.g.
$$G \leqslant T^k$$
.(Out(T) \times P) with $P \neq A_k, S_k \implies b(G) = 2$.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: ask Melissa.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

- Burness et al., 2010/11: T alternating or sporadic √
- G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

e.g.
$$G \leqslant T^k.(\operatorname{Out}(T) \times P)$$
 with $P \neq A_k, S_k \implies b(G) = 2$.

H, 2022+: If
$$P = A_k$$
, then $b(G) = 2 \iff 2 < k < |T|$.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: ask Melissa.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

- Burness et al., 2010/11: T alternating or sporadic √
- G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

e.g.
$$G \leqslant T^k.(\operatorname{Out}(T) \times P)$$
 with $P \neq A_k, S_k \implies b(G) = 2$.

H, 2022+: If
$$P = A_k$$
, then $b(G) = 2 \iff 2 < k < |T|$.

Product type: $G \leq L \wr P$ with its product action on Γ^k , where $L \leq \operatorname{Sym}(\Gamma)$

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: ask Melissa.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

- Burness et al., 2010/11: T alternating or sporadic √
- G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

e.g.
$$G \leqslant T^k.(\operatorname{Out}(T) \times P)$$
 with $P \neq A_k, S_k \implies b(G) = 2$.

H, 2022+: If
$$P = A_k$$
, then $b(G) = 2 \iff 2 < k < |T|$.

Product type: $G \leq L \wr P$ with its product action on Γ^k , where $L \leq \operatorname{Sym}(\Gamma)$

• Bailey & Cameron, 2011: $b(L \wr P) = 2 \iff L$ has at least D(P) regular suborbits, where D(P) is the distinguishing number of P.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: ask Melissa.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

- Burness et al., 2010/11: T alternating or sporadic √
- G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

e.g.
$$G \leqslant T^k.(\operatorname{Out}(T) \times P)$$
 with $P \neq A_k, S_k \implies b(G) = 2$.

H, 2022+: If
$$P = A_k$$
, then $b(G) = 2 \iff 2 < k < |T|$.

Product type: $G \leq L \wr P$ with its product action on Γ^k , where $L \leq \operatorname{Sym}(\Gamma)$

- Bailey & Cameron, 2011: $b(L \wr P) = 2 \iff L$ has at least D(P) regular suborbits, where D(P) is the distinguishing number of P.
- Progress where $G < L \wr P$ (Burness & H, 2022+)

Consider

$$\mathit{Q}(\mathit{G}) = rac{|\{(lpha,eta) \in \Omega^2 : \mathit{G}_lpha \cap \mathit{G}_eta
eq 1\}|}{|\Omega|^2},$$

the probability that a random pair in Ω is **not** a base for G.

Consider

$$Q(G) = rac{|\{(lpha,eta) \in \Omega^2: G_lpha \cap G_eta
eq 1\}|}{|\Omega|^2},$$

the probability that a random pair in Ω is **not** a base for G.

Note.
$$Q(G) < 1 \iff b(G) \leqslant 2$$
.

Consider

$$Q(G) = rac{|\{(lpha,eta) \in \Omega^2 : G_lpha \cap G_eta
eq 1\}|}{|\Omega|^2},$$

the probability that a random pair in Ω is **not** a base for G.

Note. $Q(G) < 1 \iff b(G) \leqslant 2$.

Chen & H, 2022: General method to calculate Q(G).

Consider

$$Q(G) = rac{|\{(lpha,eta) \in \Omega^2: G_lpha \cap G_eta
eq 1\}|}{|\Omega|^2},$$

the probability that a random pair in Ω is **not** a base for G.

Note. $Q(G) < 1 \iff b(G) \leqslant 2$.

Chen & H, 2022: General method to calculate Q(G).

To calculate exact Q(G) is difficult, but we have

$$Q(G) < \sum_{x \in \mathcal{P}} \frac{|x^G \cap G_{\alpha}|}{|x^G|} =: \widehat{Q}(G),$$

where \mathcal{P} is the set of elements of prime order in G.

Consider

$$Q(G) = rac{|\{(lpha,eta) \in \Omega^2: G_lpha \cap G_eta
eq 1\}|}{|\Omega|^2},$$

the probability that a random pair in Ω is **not** a base for G.

Note. $Q(G) < 1 \iff b(G) \leqslant 2$.

Chen & H, 2022: General method to calculate Q(G).

To calculate exact Q(G) is difficult, but we have

$$Q(G) < \sum_{x \in \mathcal{P}} \frac{|x^G \cap G_{\alpha}|}{|x^G|} =: \widehat{Q}(G),$$

where \mathcal{P} is the set of elements of prime order in G.

Probabilistic method: $\widehat{Q}(G) < 1 \implies b(G) \leq 2$.

Assume $G \leq \operatorname{Sym}(\Omega)$ is transitive of degree n and b(G) = 2.

Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Assume $G \leq \operatorname{Sym}(\Omega)$ is transitive of degree n and b(G) = 2.

Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

• G is Frobenius $\iff \Sigma(G) \cong \mathbf{K}_n$.

Assume $G \leq \operatorname{Sym}(\Omega)$ is transitive of degree n and b(G) = 2.

Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

• G is Frobenius $\iff \Sigma(G) \cong \mathbf{K}_n$.

e.g. $G = D_{2p}$ and n = p prime.

Assume $G \leq \operatorname{Sym}(\Omega)$ is transitive of degree n and b(G) = 2.

Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

- G is Frobenius $\iff \Sigma(G) \cong \mathbf{K}_n$.
 - e.g. $G = D_{2p}$ and n = p prime.
- $G = \mathsf{GL}_2(q)$ and $\Omega = \mathbb{F}_q^2 \setminus \{0\}$.

Assume $G \leq \operatorname{Sym}(\Omega)$ is transitive of degree n and b(G) = 2.

Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

- G is Frobenius $\iff \Sigma(G) \cong \mathbf{K}_n$. e.g. $G = D_{2p}$ and n = p prime.
- $G = \mathsf{GL}_2(q)$ and $\Omega = \mathbb{F}_q^2 \setminus \{0\}$.

Note. $\{\alpha, \beta\}$ is a base $\iff \{\alpha, \beta\}$ is a basis for \mathbb{F}_q^2 .

Assume $G \leq \operatorname{Sym}(\Omega)$ is transitive of degree n and b(G) = 2.

Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

- G is Frobenius $\iff \Sigma(G) \cong \mathbf{K}_n$. e.g. $G = D_{2p}$ and n = p prime.
- $G = \operatorname{GL}_2(q)$ and $\Omega = \mathbb{F}_q^2 \setminus \{0\}$. Note. $\{\alpha, \beta\}$ is a base $\iff \{\alpha, \beta\}$ is a basis for \mathbb{F}_q^2 . Hence, $\Sigma(G) \cong \mathbf{K}_{q^2-1} - (q+1)\mathbf{K}_{q-1}$ is complete multipartite.

• $G = \mathsf{PGL}_2(q)$ and $\Omega = \{2\text{-subsets of } \{1\text{-spaces in } \mathbb{F}_q^2\}\}.$

• $G = \operatorname{PGL}_2(q)$ and $\Omega = \{2\text{-subsets of }\{1\text{-spaces in }\mathbb{F}_q^2\}\}.$ Note. $G_{\alpha} \cong D_{2(q-1)}$ and $\{\alpha,\beta\}$ is a base $\iff |\alpha \cap \beta| = 1.$

• $G = \operatorname{PGL}_2(q)$ and $\Omega = \{2\text{-subsets of }\{1\text{-spaces in }\mathbb{F}_q^2\}\}.$ Note. $G_{\alpha} \cong D_{2(q-1)}$ and $\{\alpha, \beta\}$ is a base $\iff |\alpha \cap \beta| = 1$.

Hence, $\Sigma(G) \cong J(q+1,2)$ is a Johnson graph.

• $G=\mathsf{PGL}_2(q)$ and $\Omega=\{2\text{-subsets of }\{1\text{-spaces in }\mathbb{F}_q^2\}\}.$ Note. $G_{\alpha}\cong D_{2(q-1)}$ and $\{\alpha,\beta\}$ is a base $\iff |\alpha\cap\beta|=1.$ Hence, $\Sigma(G)\cong J(q+1,2)$ is a **Johnson graph**.

For example, when q=4 we have the complement of the Petersen.

Neighbours

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Neighbours

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Observations:

• $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

- $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.
- $\Sigma(G)$ is the union of regular **orbital graphs** of G.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

- $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.
- $\Sigma(G)$ is the union of regular **orbital graphs** of G.
- G is primitive $\Longrightarrow \Sigma(G)$ is connected.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Observations:

- $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.
- $\Sigma(G)$ is the union of regular **orbital graphs** of G.
- *G* is primitive $\Longrightarrow \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Observations:

- $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.
- $\Sigma(G)$ is the union of regular **orbital graphs** of G.
- G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Conjecture (Burness & Giudici, 2020)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Conjecture (Burness & Giudici, 2020)

G primitive and
$$\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$$
.

Recall that

$$Q(G) = 1 - \frac{|\Sigma(\alpha)|}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G.

Conjecture (Burness & Giudici, 2020)

G primitive and
$$\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$$
.

Recall that

$$Q(G) = 1 - \frac{|\Sigma(\alpha)|}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G.

•
$$Q(G) < 1 \iff b(G) \leqslant 2$$
.

Conjecture (Burness & Giudici, 2020)

G primitive and
$$\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$$
.

Recall that

$$Q(G) = 1 - \frac{|\Sigma(\alpha)|}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G.

- $Q(G) < 1 \iff b(G) \leqslant 2$.
- $Q(G) < 1/2 \iff |\Sigma(\alpha)| > \frac{1}{2}|\Omega|$

Conjecture (Burness & Giudici, 2020)

G primitive and
$$\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$$
.

Recall that

$$Q(G) = 1 - \frac{|\Sigma(\alpha)|}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G.

- $Q(G) < 1 \iff b(G) \leqslant 2$.
- $Q(G) < 1/2 \iff |\Sigma(\alpha)| > \frac{1}{2}|\Omega| \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property, though $Q(G) \to 1$ as $q \to \infty$.

Example

If $G=\mathsf{PGL}_2(q)$ and $G_\alpha=D_{2(q-1)}$, then $\Sigma(G)=J(q+1,2)$ has the common neighbour property, though $Q(G)\to 1$ as $q\to\infty$.

Some other evidence:

• Chen & Du 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property, though $Q(G) \to 1$ as $q \to \infty$.

Some other evidence:

- Chen & Du 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$
- Burness & H, 2021+: G almost simple with G_{α} soluble \checkmark

Example

If $G=\mathsf{PGL}_2(q)$ and $G_\alpha=D_{2(q-1)}$, then $\Sigma(G)=J(q+1,2)$ has the common neighbour property, though $Q(G)\to 1$ as $q\to\infty$.

Some other evidence:

- Chen & Du 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$
- Burness & H, 2021+: G almost simple with G_{α} soluble \checkmark
- Lee & Popiel, 2021+: some affine groups

Example

If $G=\mathsf{PGL}_2(q)$ and $G_\alpha=D_{2(q-1)}$, then $\Sigma(G)=J(q+1,2)$ has the common neighbour property, though $Q(G)\to 1$ as $q\to\infty$.

Some other evidence:

- Chen & Du 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$
- Burness & H, 2021+: G almost simple with G_{α} soluble \checkmark
- Lee & Popiel, 2021+: some affine groups

Recall. $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

Example

If $G=\mathsf{PGL}_2(q)$ and $G_\alpha=D_{2(q-1)}$, then $\Sigma(G)=J(q+1,2)$ has the common neighbour property, though $Q(G)\to 1$ as $q\to\infty$.

Some other evidence:

- Chen & Du 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$
- Burness & H, 2021+: G almost simple with G_{α} soluble \checkmark
- Lee & Popiel, 2021+: some affine groups

Recall. $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

BG conjecture: $\Sigma(\alpha)$ meets some regular G_{β} -orbits.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property, though $Q(G) \to 1$ as $q \to \infty$.

Some other evidence:

- Chen & Du 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$
- Burness & H, 2021+: G almost simple with G_{α} soluble \checkmark
- Lee & Popiel, 2021+: some affine groups

Recall. $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

BG conjecture: $\Sigma(\alpha)$ meets some regular G_{β} -orbits.

Conjecture (Burness & H, 2022+)

 $\Sigma(\alpha)$ meets **every** regular G_{β} -orbit.

Saxl graphs:

Other invariants

Saxl graphs:

Other invariants

Burness & H, 2021+: Results on clique and independence numbers

Chen & H, 2022: Some results on valencies

Saxl graphs:

Other invariants

Burness & H, 2021+: Results on clique and independence numbers Chen & H, 2022: Some results on valencies

Some generalisations

Saxl graphs:

Other invariants

Burness & H, 2021+: Results on clique and independence numbers Chen & H, 2022: Some results on valencies

Some generalisations

The base-two project:

• Affine groups G = VH

Saxl graphs:

Other invariants

Burness & H, 2021+: Results on clique and independence numbers Chen & H, 2022: Some results on valencies

Some generalisations

The base-two project:

• Affine groups G = VH

Seress, 1996: $b(G) \leq 4$ if H is soluble

Saxl graphs:

Other invariants

Burness & H, 2021+: Results on clique and independence numbers Chen & H, 2022: Some results on valencies

Some generalisations

The base-two project:

• Affine groups G = VH

Seress, 1996: $b(G) \leq 4$ if H is soluble

Halasi & Podoski, 2016: $b(G) \leq 3$ if (|V|, |H|) = 1

Saxl graphs:

Other invariants

Burness & H, 2021+: Results on clique and independence numbers Chen & H, 2022: Some results on valencies

Some generalisations

The base-two project:

• Affine groups G = VH

Seress, 1996: $b(G) \le 4$ if H is soluble **Halasi & Podoski, 2016:** $b(G) \le 3$ if (|V|, |H|) = 1

Diagonal type groups

Thank you!