A Test Lab Techno Corp.

Changan Lab: No. 140 -1, Changan Street, Bade City, Taoyuan County, Taiwan R.O.C.

Tel: 886-3-271-0188 / Fax: 886-3-271-0190

SAR EVALUATION REPORT

Test Report No. : 1410FS12-03

Applicant : DBI Innovations Limited

Product Type : GSM/WCDMA/LTE Android Smartphone

Trade Name : Tonino Lamborghini

Model Number : 88 Tauri

Date of Received : Sep. 03, 2014

Test Period : Sep. 04 ~ Sep. 24, 2014

Date of Issued : Nov. 20, 2014

Test Environment : Ambient Temperature : $22 \pm 2 \degree C$

Relative Humidity: 40 - 70 %

Standard : KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03

KDB 865664 D02 RF Exposure Reporting v01r01

ANSI/IEEE C95.1-1999 IEEE Std. 1528-2013 IEEE Std. 1528a-2005 47 CFR Part §2.1093; KDB 447498 D01 KDB 248227 D01

KDB 941225 D01 / D02 / D03 / D05 / D06

Max. Reported SAR : 0.696 W/kg Head SAR

0.900 W/kg Body SAR

KDB 648474 D04

(Bill Hu)

Test Lab Location : Chang-an Lab

 The test operations have to be performed with cautious behavior, the test results are as attached.

2. The test results are under chamber environment of A Test Lab Techno Corp. A Test Lab Techno Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples.

test results with regard to other specimens or samples.

The measurement report has to be written approval of A Test Lab Techno Corp. It may only be reproduced or published in full. This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. The test results in the report only apply to the tested sample.

Approved By

Tested By

(Škv Chou)

Contents

1.	Summ	nary of Maximum Reported SAR Value	4
2.	Descr	iption of Equipment under Test (EUT)	5
3.	Introd	uction	7
	3.1	SAR Definition	7
4.	SAR N	Measurement Setup	
	4.1	DASY E-Field Probe System	9
	4.2	Data Acquisition Electronic (DAE) System	. 12
	4.3	Robot	
	4.4	Measurement Server	. 12
	4.5	Device Holder	. 13
	4.6	Phantom - SAM v4.0	. 13
	4.7	Oval Flat Phantom - ELI 4.0	. 14
	4.8	Data Storage and Evaluation	. 14
5.	Tissue	e Simulating Liquids	. 17
	5.1	Ingredients	. 18
	5.2	Recipes	. 18
	5.3	Liquid Depth	. 19
6.	SAR 7	Festing with RF Transmitters	. 20
	6.1	SAR Testing with GSM/GPRS/EGPRS Transmitters	. 20
	6.2	SAR Testing with WCDMA Transmitters	. 20
	6.3	SAR Testing with HSDPA Transmitters	. 20
	6.4	SAR Testing with LTE-FDD Transmitters	
	6.5	LTE Frequency range and channel bandwidth	. 23
	6.6	Power reduction	
	6.7	SAR Testing with 802.11 Transmitters	. 26
	6.8	General Device Setup	. 26
	6.9	Conducted Power	. 28
	6.10	Antenna location	. 52
	6.11	Stand-alone SAR Evaluate	. 57
	6.12	Simultaneous Transmitting Evaluate	. 58
	6.13	SAR test reduction according to KDB	. 64
7.		m Verification and Validation	
	7.1	Symmetric Dipoles for System Verification	. 66
	7.2	Liquid Parameters	
	7.3	Verification Summary	
	7.4	Validation Summary	.72
8.	Test E	quipment List	
		rement Uncertainty	

10. Measurement Procedure							
10.1	Spatial Peak SAR Evaluation	76					
10.2	Area & Zoom Scan Procedures	77					
10.3	Volume Scan Procedures	77					
10.4	SAR Averaged Methods	77					
10.5	Power Drift Monitoring	77					
11. SAR 7	Fest Results Summary	78					
11.1	Head Measurement SAR	78					
11.2	Body Measurement SAR	83					
11.3	Hot-spot mode Measurement SAR	83					
11.4	Extremity Measurement SAR	89					
11.5	SAR Measurement Variability	89					
11.6	Std. C95.1-1999 RF Exposure Limit	90					
12. Concl	usion	91					
13. Refere	ences	91					
14. SAR Measurement Guidance							
Appendix A - System Performance Check							
	Appendix B - SAR Measurement Data						
Appendix	ppendix C - Calibration						

1. Summary of Maximum Reported SAR Value

Band	Max. Reported Head SAR1g(W/Kg)
GSM/GPRS/EGPRS/DTM 850 (SIM1)	0.432
GSM/GPRS/EGPRS/DTM 850 (SIM2)	0.234
GSM/GPRS/EGPRS/DTM 1900 (SIM1)	0.315
GSM/GPRS/EGPRS/DTM 1900 (SIM2)	0.560
WCDMA Band II	0.437
WCDMA Band V	0.272
LTE Band 2 (QPSK)	0.523
LTE Band 4 (QPSK)	0.696
LTE Band 5 (QPSK)	0.306
2.4G WLAN	0.211
Bluetooth	N/A
Simultaneous Transmission	1.199

Band	Max. Reported Body SAR1g(W/Kg)
GSM/GPRS/EGPRS/DTM 850 (SIM1)	0.576
GSM/GPRS/EGPRS/DTM 850 (SIM2)	0.323
GSM/GPRS/EGPRS/DTM 1900 (SIM1)	0.442
GSM/GPRS/EGPRS/DTM 1900 (SIM2)	0.241
WCDMA Band II	0.517
WCDMA Band V	0.371
LTE Band 2 (QPSK)	0.729
LTE Band 4 (QPSK)	0.900
LTE Band 5 (QPSK)	0.386
2.4G WLAN	0.105
Bluetooth	0.013
Simultaneous Transmission	1.286

Note: The SAR limit (Head & Body: SAR1g 1.6 W/kg) for general population / uncontrolled exposure is specified in ANSI/IEEE C95.1-1991.

2. Description of Equipment under Test (EUT)

Applicant	DBI Innovations Limited						
Applicant Address	3905 Two Exchange Square, Suite No.8459, 8 Connaught P	lace, Hong Kong					
Manufacture	Qisda (Suzhou) Co., Ltd.						
Manufacture Address	169, Zhujiang Road, New District, Suzhou, Jiangsu Province	, P.R. China					
Product Type	GSM/WCDMA/LTE Android Smartphone						
Trade Name	Tonino Lamborghini						
Model Number	88 Tauri						
IMEI No.	IMEI1: 356537050191189, IMEI2: 356537050195636						
FCC ID	2ADF9-88TAURI						
RF Function	GSM/GPRS/EGPRS/DTM 850						
	GSM/GPRS/EGPRS/DTM 1900						
	WCDMA(RMC 12.2K) / HSDPA / HSUPA / HSPA+ Band II						
	WCDMA(RMC 12.2K) / HSDPA / HSUPA / HSPA+ Band V						
	LTE Band 2 / Band 4 / Band 5						
	IEEE 802.11b / 802.11g / 802.11n (2.4GHz) 20MHz						
	Bluetooth v3.0						
	Bluetooth v4.0 LE	0					
Tx Frequency	Band	Operate Frequency					
TX 1 requeries	Bund	(MHz)					
	GSM/GPRS/EGPRS/DTM 850	824.2 - 848.8					
	GSM/GPRS/EGPRS/DTM 1900	1850.2 - 1909.8					
	WCDMA(RMC 12.2K) / HSDPA / HSUPA / HSPA+ Band II	1852.4 - 1907.6					
	WCDMA (RMC 12.2K) / HSDPA / HSUPA / HSPA+ Band V	826.4 - 846.6					
	LTE Band 2 (BW 1.4, 3, 5, 10, 15, 20 MHz)	1850.7 - 1909.3					
	LTE Band 4 (BW 1.4, 3, 5, 10, 15, 20 MHz)	1710.7 - 1754.3					
	LTE Band 5 (BW 1.4, 3, 5, 10 MHz)	824.7 - 848.3					
	IEEE 802.11b / 802.11g / 802.11n (2.4GHz) 20MHz	2412 - 2462					
	Bluetooth v3.0	2402 - 2480					
	Bluetooth v4.0 :LE	2402 - 2480					
RF Conducted Power	Band	Power (W / dBm)					
(Avg.)	GSM/GPRS/EGPRS/DTM 850	2.099 / 33.22					
	GSM/GPRS/EGPRS/DTM 1900	1.245 / 30.95					
	WCDMA(RMC 12.2K) / HSDPA / HSUPA / HSPA+ Band II	0.238 / 23.77					
	WCDMA (RMC 12.2K) / HSDPA / HSUPA / HSPA+ Band V	0.228 / 23.58					
	LTE Band 2	0.215 / 23.32					
	LTE Band 4	0.224 / 23.51					
	LTE Band 5	0.218 / 23.39					
	IEEE 802.11b	0.017 / 12.20					
	IEEE 802.11g	0.042 / 16.19					
	IEEE 802.11n (2.4GHz) 20MHz	0.028 / 14.52					
	Bluetooth v3.0	0.007 / 8.31					
	Bluetooth v4.0 LE 0.001 / 0.71						

Report Number: 1410FS12-03 Page 5 of 347

Max. Reported SAR	0.696 W/kg Head SAR
	0.900 W/kg Body SAR
Antenna Type	Internal Antenna
Device Category	Portable Device
RF Exposure Environment	General Population / Uncontrolled
Application Type	Certification

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment / general population exposure limits specified in Standard C95.1-1999 and had been tested in accordance with the measurement procedures specified in IEEE Std. 1528-2013 and IEEE Std. 1528a-2005.

3. Introduction

The A Test Lab Techno Corp. has performed measurements of the maximum potential exposure to the user of **DBI Innovations Limited Trade Name : Tonino Lamborghini Model(s) : 88 Tauri**. The test procedures, as described in American National Standards, Institute C95.1-1999 [1] were employed and they specify the maximum exposure limit of 1.6mW/g as averaged over any 1 gram of tissue for portable devices being used within 20cm between user and EUT in the uncontrolled environment. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the equipment used are included within this test report.

3.1 SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dw) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Figure 2).

$$SAR = \frac{d}{dt} \left(\frac{dw}{dm} \right) = \frac{d}{dt} \left(\frac{dw}{\rho dv} \right)$$

Figure 2. SAR Mathematical Equation

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma E^2}{\rho}$$

Where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m3)

E = RMS electric field strength (V/m)

*Note:

The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane [2]

4. SAR Measurement Setup

The DASY52 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Stäubli TX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 4. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 5. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 6. A computer operating Windows 2000 or Windows XP.
- 7. DASY52 software.
- 8. Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- 9. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 10. The device holder for handheld mobile phones.
- 11. Tissue simulating liquid mixed according to the given recipes.
- 12. Validation dipole kits allowing validating the proper functioning of the system.

4.1 DASY E-Field Probe System

The SAR measurements were conducted with the dosimetric probe (manufactured by SPEAG), designed in the classical triangular configuration [3] and optimized for dosimetric evaluation. The probes is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

Report Number: 1410FS12-03 Page 9 of 347

4.1.1 E-Field Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection System

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.q., glycol)

Calibration In air from 10 MHz to 6 GHz

In brain and muscle simulating tissue at frequencies of 835MHz, 1750MHz, 1900MHz and

2450MHz (accuracy ±8%)

Calibration for other liquids and frequencies upon request

Frequency ±0.2 dB (30 MHz to 6 GHz)

Directivity ±0.3 dB in brain tissue (rotation around probe axis)

±0.5 dB in brain tissue (rotation normal probe axis)

Dynamic Range 10μ W/g to > 100mW/g; Linearity: ± 0.2 dB

Dimensions Overall length: 337mm

Tip length: 9mm Body diameter: 10mm Tip diameter: 2.5mm

Distance from probe tip to dipole centers: 1.0mm

Application General dosimetry up to 6GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

4.1.2 E-Field Probe Calibration process

Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (head or body),

Δ T = Temperature increase due to RF exposure.

Or SAR =
$$\frac{|E|^2 \sigma}{\rho}$$

Where:

σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

4.2 Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Intel Core(TM)2 CPU

Clock Speed: @ 1.86GHz

Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY52 v52.8 (7) & SEMCAD X Version 14.6.10 (7164)

Connecting Lines: Optical downlink for data and status info

Optical uplink for commands and clock

4.3 Robot

Positioner: Stäubli Unimation Corp. Robot Model: TX90XL

Repeatability: ±0.02 mm

No. of Axis: 6

4.4 Measurement Server

Processor: PC/104 with a 400MHz intel ULV Celeron

I/O-board: Link to DAE4 (or DAE3)

16-bit A/D converter for surface detection system

Digital I/O interface Serial link to robot

Direct emergency stop output for robot

Report Number: 1410FS12-03 Page 12 of 347

4.5 Device Holder

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

4.6 Phantom - SAM v4.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness	2 ±0.2 mm
Filling Volume	Approx. 25 liters
Dimensions	1000×500 mm (LxW)
Table 1. Spe	cification of SAM v4.0

Figure 6. SAM Twin Phantom

4.7 Oval Flat Phantom - ELI 4.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (Oval Flat) phantom defined in IEEE 1528-2013, IEEE Std. 1528a-2005, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of wireless portable device usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

P	
Shell Thickness	2 ±0.2 mm
Filling Volume	Approx. 30 liters
Dimensions	190×600×400 mm (H×L×W)
Table 2. Spe	ecification of ELI 4.0

Figure 7. Oval Flat Phantom

4.8 Data Storage and Evaluation

4.8.1 Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension DA4 or DA5. The post processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

Report Number: 1410FS12-03 Page 14 of 347

4.8.2 Data Evaluation

The DASY post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi

- Diode compression point dcpi

Device parameters : - Frequency f

- Crest factor cf

Media parameters : - Conductivity of

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcpi = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H_{i} = \sqrt{V_{i}} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^{2}}{f}$$

H-field probes :

with Vi = compensated signal of channel i (i = x, y, z)

Normi= sensor sensitivity of channel i (i = x, y, z)

μV/(V/m)2 for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_{x}^{2} + E_{y}^{2} + E_{z}^{2}}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm3

*Note: That the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = \frac{H_{tot}^2}{37.7}$

with Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

5. Tissue Simulating Liquids

The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue. The dielectric parameters of the liquids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an E5071B Network Analyzer.

IEEE SCC-34/SC-2 in 1528 recommended Tissue Dielectric Parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in human head. Other head and body tissue parameters that have not been specified in 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equation and extrapolated according to the head parameter specified in 1528.

Target Frequency	He	ead	Во	ody
(MHz)	εr	σ (S/m)	٤r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00
	(εr = relative permitt	tivity, σ = conductivity a	and $\rho = 1000 \text{ kg/m3}$)	

Table 3. Tissue dielectric parameters for head and body phantoms

5.1 Ingredients

The following ingredients are used:

- Water: deionized water (pure H_20), resistivity \geq 16 M Ω -as basis for the liquid
- Sugar: refied white sugar (typically 99.7 % sucrose, available as crystal sugar in food shops)
 to reduce relative permittivity
- Salt: pure NaCl -to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20 C), CAS # 54290 -to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS # 55965-84-9 -to prevent the spread of bacteria and molds
- DGBE: Diethylenglycol-monobuthyl ether (DGBE), Fluka Chemie GmbH, CAS # 112-34-5 -to reduce relative permittivity

5.2 Recipes

The following tables give the recipes for tissue simulating liquids to be used in different frequency bands. Note: The goal dielectric parameters (at 22 $^{\circ}$ C) must be achieved within a tolerance of ±5% for ϵ and ±5% for σ .

Ingredients	Frequency (MHz)											
(% by weight)	750		835		1750		1900		2450		2600	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	39.28	51.30	41.45	52.40	54.50	40.20	54.90	40.40	62.70	73.20	60.30	71.40
Salt (NaCl)	1.47	1.42	1.45	1.50	0.17	0.49	0.18	0.50	0.50	0.10	0.60	0.20
Sugar	58.15	46.18	56.00	45.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bactericide	0.10	0.10	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	0.00	0.00	45.33	59.31	44.92	59.10	36.80	26.70	39.10	28.40
Dielectric Constant	41.88	54.60	42.54	56.10	40.10	53.60	39.90	54.00	39.80	52.50	39.80	52.50
Conductivity (S/m)	0.90	0.97	0.91	0.95	1.39	1.49	1.42	1.45	1.88	1.78	1.88	1.78

Salt: $99^+\%$ Pure Sodium Chloride Sugar: $98^+\%$ Pure Sucrose Water: De-ionized, $16\ M\Omega^+$ resistivity HEC: Hydroxyethyl Cellulose DGBE: $99^+\%$ Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Report Number: 1410FS12-03 Page 18 of 347

5.3 Liquid Depth

According to KDB865664 ,the depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm with \leq \pm 0.5 cm variation for SAR measurements \geq 3 GHz and \geq 10.0 cm with \leq \pm 0.5 cm variation for measurements > 3 GHz.

6. SAR Testing with RF Transmitters

6.1 SAR Testing with GSM/GPRS/EGPRS Transmitters

Configure the basestation to support GMSK and 8PSK call respectively, and set timeslot transmission for GMSK GSM/GPRS and 8PSK EDGE. Measure and record power outputs for both modulations, that test is applicable.

6.2 SAR Testing with WCDMA Transmitters

Configure the basestation to support all WCDMA tests in respect to the 3GPP 34.121.Measure the power at Ch4132, 4183 and 4233 for US cell; Ch9262, 9400 and 9538 for US PCS Band.

- Step 1: set a Test Mode 1 loop back with a 12.2kbps Reference Measurement Channel (RMC).
- Step 2: set and send continuously up power control commands to the device.
- Step 3: measure the power at the device antenna connector using the power meter with average detector and test SAR

6.3 SAR Testing with HSDPA Transmitters

HSDPA Date Devices setup for SAR Measurement

HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Setup for Release 5 HSDPA											
Sub-test	βc	βd	βd (SF)	βc/βd	βhs ^(1,2)	CM ⁽³⁾ (dB)	MRP ⁽³⁾ (dB)				
1	2/15	15/15	64	2/15	4/15	0.0	0.0				
2	12/15(4)	15/15(4)	64	12/15(4)	24/15	1.0	0.0				
3	15/15	8/15	64	15/8	30/15	1.5	0.5				
4	15/15	4/15	64	15/4	30/15	1.5	0.5				

Note

- 1. Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 8 \Leftrightarrow Ahs = β hs/ β c = 30/15 \Leftrightarrow β hs= 30/15 * β c
- 2. For theHS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1A and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and Δ_{NACK} = 30/15 with β hs = 30/15 * β c and Δ_{CQI} = 24/15 with β hs = 24/15* β c
- 3. CM = 1 for $\beta c/\beta d$ =12/15, $\beta hs/\beta c$ =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- 4. For subtest 2 the β c/ β d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β c = 11/15 and β d = 15/15.

Report Number: 1410FS12-03 Page 20 of 347

HSPA Date Devices setup for SAR Measurement.

The following procedures are applicable to HSPA (HSUPA/HSDPA) data devices operating under 3GPP Release 6. Body exposure conditions generally apply to these devices, including handsets and data modems operating in various electronic devices. HSUPA operates in conjunction with WCDMA and HSDPA. SAR is initially measured in WCDMA test configurations without HSPA. The default test configuration is to establish a radio link between the DUT and a communication test set to configure a 12.2 kbps RMC (reference measurement channel) in Test Loop Mode 1. SAR for HSPA is selectively measured with HS-DPCCH, EDPCCH and E-DPDCH, all enabled, along with a 12.2 kbps RMC using the highest SAR configuration in WCDMA with 12.2 kbps RMC only. An FRC is configured according to HSDPCCH Sub-test 1 using H-set 1 and QPSK. HSPA is configured according to E-DCH Subtest 5 requirements. SAR for other HSPA sub-test configurations is also confirmed selectively according to output power, exposure conditions and E-DCH UE Category. Maximum output power is verified according to procedures in applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. The UE Categories for HSDPCCH and HSPA should be clearly identified in the SAR report. The following procedures are applicable only if Maximum Power Reduction (MPR) is implemented according to Cubic Metric (CM) requirements.

When voice transmission and head exposure conditions are applicable to a WCDMA/HSPA data device, head exposure is measured according to the 'Head SAR Measurements' procedures in the 'WCDMA Handsets' section of this document. SAR for body exposure configurations are measured according to the 'Body SAR Measurements' procedures in the 'WCDMA Handsets' section of this document. In addition, body SAR is also measured for HSPA when the maximum average output of each RF channel with HSPA active is at least ¼ dB higher than that measured without HSPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP is applicable for head exposure, SAR is not required when the maximum output of each RF channel with HSPA is less than ¼ dB higher than that measured using 12.2 kbps RMC; otherwise, the same HSPA configuration used for body measurements should be used to test for head exposure.

Due to inner loop power control requirements in HSPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA should be configured according to the β values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document.

Report Number: 1410FS12-03 Page 21 of 347

The highest body SAR measured in Antenna Extended & Retracted configurations on a channel in 12.2 kbps RMC. The possible channels are the High, Middle & Low channel. Contact the FCC Laboratory for test and approval requirements if the maximum output power measured in E-DCH Sub-test 2 - 4 is higher than Sub-test 5.

	Setup for Release 6 HSPA / Release 7 HSPA+													
Sub- test	βс	βd	βd (SF)	βc/βd	βhs ⁽¹⁾	βес	βed	Bed (SF)	Bed (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI	
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75	
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67	
3	15/15	9/15	64	15/9	30/15	30/15	βed1: 47/15 βed2: 47/15	4	2	2.0	1.0	15	92	
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71	
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81	

Note

- 1. Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 8 \Leftrightarrow Ahs = β hs/ β c = 30/15 \Leftrightarrow β hs= 30/15 * β c.
- 2. CM = 1 for $\beta c/\beta d$ =12/15, $\beta hs/\beta c$ =24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- 3. For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.
- 4. For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to βc = 14/15 and βd = 15/15.
- 5. Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.
- 6. βed can not be set directly; it is set by Absolute Grant Value.

6.4 SAR Testing with LTE-FDD Transmitters

All SAR measurements for LTE were performed using the Anritsu MT8820C. A closed loop power control setting allowed the UE to transmit at the maximum output power during the SAR measurements. Configure the basestation to support LTE tests in respect to the 3GPP 36.521-1, and set ch , RB allocation number ,RB allocation offset , and send continuously Up power control commands to the device.

MPR was enabled for this device. A-MPR was disabled for all SAR test measurements.

6.5 LTE Frequency range and channel bandwidth

Channel bandwidth support:

Band	BW (MHz)							
Band	1.4	3	5	10	15	20		
LTE Band 2	V	V	V	V	V	V		
LTE Band 4	V	V	V	V	V	V		
LTE Band 5	V	V	V	V				

LTE Band	Bandwidth (MHz)	Test requency ID	N_{UL}	Frequency of Uplink (MHz)
		Low Range	18607	1850.7
	1.4	Mid Range	18900	1880.0
		High Range	19193	1909.3
		Low Range	18615	1851.5
	3	Mid Range	18900	1880.0
		High Range	19185	1908.5
	5	Low Range		1852.5
		5 Mid Range		1880.0
LTE Band 2		High Range	19175	1907.5
LTE Ballu 2		Low Range	18650	1855.0
	10	Mid Range	18900	1880.0
		High Range	19150	1905.0
		Low Range	18675	1857.5
	15	Mid Range	18900	1880.0
		High Range	19125	1902.5
		Low Range	18700	1860.0
	20	Mid Range	18900	1880.0
		High Range	19100	1900.0

Report Number: 1410FS12-03 Page 23 of 347

LTE Band	Bandwidth (MHz)	Test requency ID	N _{UL}	Frequency of Uplink (MHz)
		Low Range	19957	1710.7
	1.4	Mid Range	20175	1732.5
		High Range	20393	1754.3
		Low Range	19965	1711.5
	3	Mid Range	20175	1732.5
		High Range	20385	1753.5
		Low Range	19975	1712.5
	5	Mid Range	20175	1732.5
LTE Band 4		High Range	20375	1752.5
LIE Ballu 4		Low Range	20000	1715.0
	10	Mid Range	20175	1732.5
		High Range	20350	1750.0
		Low Range	20025	1717.5
	15	Mid Range	20175	1732.5
		High Range	20325	1747.5
		Low Range	20050	1720.0
	20	Mid Range	20175	1732.5
		High Range	20300	1745.0
		Low Range	20407	824.7
	1.4	Mid Range	20525	836.5
		High Range	20643	848.3
		Low Range	20415	825.5
	3	Mid Range	20525	836.5
LTE Band 5		High Range	20635	847.5
LIE Ballu 3		Low Range	20425	826.5
	5	Mid Range	20525	836.5
		High Range	20625	846.5
		Low Range	20450	829.0
	10	Mid Range	20525	836.5
		High Range	20600	844.0

6.5.1 Maximum power reduction (MPR)

Identify the LTE voice/data requirements in each operating mode and exposure condition with respect to head and body test configurations, antenna locations, handset flip-cover or slide positions, antenna diversity conditions etc.

The voice and data transmission:

Data only device.

Identify if Maximum Power Reduction (MPR) is optional or mandatory, i.e. built-in by design:

- ♦ Maximum Power Reduction (MPR) is mandatory, i.e. built-in by design.
- ◆ A-MPR (additional MPR) must be disabled
- ◆ A-MPR was disabled during testing.

Maximum Power Reduction (MPR) for Power Class 3									
Channel bandwidth / Transmission bandwidth configuration (RB)									
Modulation	Modulation 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20MHz MPR (dB)								
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1		
16 QAM ≤5 ≤4 ≤8 ≤12 ≤16 ≤18 ≤1									
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2		

6.6 Power reduction

No power reduction issue.

6.7 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 b/g transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

6.8 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

Frequency Channel Configurations

802.11 a/b/g and 4.9 GHz operating modes are tested independently according to the service requirements in each frequency band. 802.11 b/g modes are tested on channels 1, 6 and 11. 802.11a is tested for UNII operations on channels 36 and 48 in the 5.15-5.25 GHz band; channels 52 and 64 in the 5.25-5.35 GHz band; channels 104, 116, 124 and 136 in the 5.470-5.725 GHz band; and channels 149 and 161 in the 5.8 GHz band. When 5.8 GHz §15.247 is also available, channels 149, 157 and 165 should be tested instead of the UNII channels. 4.9 GHz is tested on channels 1, 10 and 5 or 6, whichever has the higher output power, for 5 MHz channels; channels 11, 15 and 19 for 10 MHz channels; and channels 21 and 25 for 20 MHz channels. These are referred to as the "default test channels". 802.11g mode was evaluated only if the output power was 0.25 dB higher than the 802.11b mode.

Report Number: 1410FS12-03 Page 26 of 347

		IEEE 8	02.11 Test Cl	nannels per FCC Re	quirement			
					De	efault Test "C	hannels'	,
Mo	ode	GHz	Channel	Turbo Channel	§15	.247	UNII	
					802.11b	802.11g		
		2412	1#		✓	∇		
IEEE 80	2.11 b/g	2437	6	6	✓	∇		
			11#		✓	∇		
		5.18	36				✓	
		5.20	40	42 (5.21 GHz)				*
		5.22	44	42 (3.21 (312)				*
		5.24	48	50 (5.25 GHz)			✓	
		5.26	52	30 (3.23 GHZ)			✓	
	UNII	5.28	56	58 (5.29 GHz)				*
		5.30	60					*
		5.32	64				✓	
	OINII	5.500	100					*
		5.520	104				✓	
IEEE 802.11a		5.540	108					*
		5.560	112	Unknown				*
		5.580	116	OTIKITOWIT			✓	
		5.660	132					*
		5.680	136				✓	
		5.700	140					*
	UNII 5.765 or §15.247 5.785	5.745	149		✓		✓	
		5.765	153	152 (5.76 GHz)		*		*
		5.785	157		✓			*
		5.805	161	160 (5.80 GHz)		*	✓	
	§15.247	5.825	165		✓			

^{✓ = &}quot;default test channels"

^{* =} possible 802.11a channels with maximum average output > the "default test channels"

^{∇ =} possible 802.11g channels with maximum average output ¼ dB ≥ the "default test channels"

^{# =} when output power is reduced for channel 1 and/or 11 to meet restricted band requirements the

6.9 Conducted Power

Band	Modulation	Data Rate	СН	Frequency (MHz)	Average (dBm)	e Power _SIM1
				(1011 12)	Time Average	Burst Average
			Lowest	824.2	24.02	33.05
GSM 850			Middle	836.6	23.98	33.01
			Highest	848.8	24.19	33.22
		4Down 11 In	Lowest	824.2	23.95	32.98
		4Down1Up Duty factor 1/8	Middle	836.6	23.89	32.92
		Buty luctor 170	Highest	848.8	24.12	33.15
		3Down2Up	Lowest	824.2	24.74	30.76
GPRS 850	GMSK	Duty factor 2/8	Middle	836.6	24.93	30.95
Multi Class :12 Max Up:4 Max Down:4 Sum:5		Buty luctor 270	Highest	848.8	24.82	30.84
		2Down 2Lln	Lowest	824.2	24.67	28.93
		2Down3Up Duty factor 3/8	Middle	836.6	24.66	28.92
		Daty lactor 5/6	Highest	848.8	24.53	28.79
		1Down4Up Duty factor 4/8	Lowest	824.2	24.53	27.54
			Middle	836.6	24.50	27.51
			Highest	848.8	24.47	27.48
		4D avvin 41 lin	Lowest	824.2	18.32	27.35
		4Down1Up Duty factor 1/8	Middle	836.6	18.30	27.33
		Highest 848.8 3Down2Up Duty factor 2/8 Middle 836.6	Highest	848.8	18.21	27.24
			824.2	18.96	24.98	
EGPRS 850			Middle	836.6	18.95	24.97
Multi Class :12	8PSK	Buty luctor 270	Highest	848.8	18.81	24.83
Max Up:4	or Six		Lowest	824.2	20.35	24.61
Max Down:4 Sum:5		2Down3Up Duty factor 3/8	Middle	836.6	20.34	24.60
		Buty luctor 6/6	Highest	848.8	20.32	24.58
		1Down4Up	Lowest	824.2	21.54	24.55
		Duty factor 4/8	Middle	836.6	21.52	24.53
		Duty lactor 4/0	Highest	848.8	21.42	24.43
DTM 850 (GSM+GPRS)		op	Lowest	824.2	24.48	28.74
Multi Class :11 Max Up:3	í GMSK	2Down3Up Duty factor 3/8	Middle	836.6	24.45	28.71
Down:4 Sum:5			Highest	848.8	24.30	28.56
DTM 850 (GSM+EGPRS)		0D ave= 01 l=	Lowest	824.2	20.32	24.58
Multi Class :11 Max Up:3	GMSK/8PSK	2Down3Up Duty factor 3/8	Middle	836.6	20.29	24.55
Down:4 Sum:5			Highest	848.8	20.25	24.51

Note: 1. Time Average power slot duty cycle factor calculate:

1up: Average burst power+10*LOG(1/8)

2up: Average burst power+10*LOG(2/8)

3up: Average burst power+10*LOG(3/8)

4up: Average burst power+10*LOG(4/8)

Report Number: 1410FS12-03 Page 28 of 347

Band	Modulation	Data Rate	СН	Frequency	Average (dBm)	
				(MHz)	Time Average	Burst Average
			Lowest	824.2	23.87	32.90
GSM 850			Middle	836.6	23.83	32.86
			Highest	848.8	24.04	33.07
		4D	Lowest	824.2	23.77	32.80
		4Down1Up Duty factor 1/8	Middle	836.6	23.71	32.74
		Daty lactor 170	Highest	848.8	23.94	32.97
			Lowest	bwest 824.2 iddle 836.6 ghest 848.8 bwest 824.2 iddle 836.6 ghest 848.8 bwest 824.2	24.56	30.58
GPRS 850	GMSK	3Down2Up Duty factor 2/8	Middle	836.6	24.75	30.77
Multi Class :12		Daty lactor 2/0	Highest	848.8	24.64	30.66
Max Up:4 Max Down:4 Sum:5			Lowest	824.2	24.49	28.75
		2Down3Up Duty factor 3/8	Middle	836.6	24.48	28.74
		Daty lactor 5/6	Highest	848.8	24.35	28.61
		1Down4Up Duty factor 4/8	Lowest	824.2	24.35	27.36
			Middle	836.6	24.32	27.33
			Highest	848.8	24.29	27.30
		4Down1Up Duty factor 1/8	Lowest	824.2	18.14	27.17
			Middle	836.6	18.12	27.15
			Highest	848.8	18.03	27.06
		2D a 21 Jm	Lowest 824.2 18	18.78	24.80	
EGPRS 850		3Down2Up Duty factor 2/8	Middle	836.6	18.77	24.79
Multi Class :12	8PSK	Buty luctor 2/0	Highest	848.8	18.63	24.65
Max Up:4	or or	2Down3Up	Lowest	824.2	20.17	24.43
Max Down:4 Sum:5		Duty factor 3/8	Middle	836.6	20.16	24.42
		Buty luctor of	Highest	848.8	20.14	24.40
		1Down4Up	Lowest	824.2	21.36	24.37
		Duty factor 4/8	Middle	836.6	21.34	24.35
		Buty luctor 170	Highest	848.8	21.24	24.25
DTM 850 (GSM+GPRS)			Lowest	824.2	24.30	28.56
Multi Class :11	GMSK	2Down3Up Duty factor 3/8	Middle	836.6	24.27	28.53
Max Up:3 Down:4 Sum:5			Highest	848.8	24.12	28.38
DTM 850 (GSM+EGPRS)	GMSK/8PSK		Lowest	824.2	20.14	24.40
Multi Class :11		2Down3Up Duty factor 3/8	Middle	836.6	20.11	24.37
Max Up:3 Down:4 Sum:5		•	Highest	848.8	20.07	24.33

Note: 1. Time Average power slot duty cycle factor calculate:

1up: Average burst power+10*LOG(1/8)

2up: Average burst power+10*LOG(2/8)

3up: Average burst power+10*LOG(3/8)

4up: Average burst power+10*LOG(4/8)

Report Number: 1410FS12-03 Page 29 of 347

Band	Modulation	Data Rate	СН	Frequency	Average (dBm)	
				(MHz)	Time Average	Burst Average
			Lowest	1850.2	21.88	30.91
GSM 1900			Middle	1880.0	21.79	30.82
			Highest	1909.8	21.92	30.95
		4D	Lowest	1850.2	21.84	30.87
		4Down1Up Duty factor 1/8	Middle	1880.0	21.66	30.69
		Daty lactor 170	Highest	1909.8	21.78	30.81
			Lowest	1850.2	22.16	28.18
GPRS 1900	GMSK	3Down2Up	Middle	1880.0	22.13	28.15
Multi Class :12		Duty factor 2/8 Highest	Highest	1909.8	22.18	28.20
Max Up:4 Max Down:4 Sum:5			Lowest	1850.2	22.62	26.88
		2Down3Up Duty factor 3/8	Middle	1880.0	22.65	26.91
		Duty lactor 3/6	Highest	1909.8	22.67	26.93
		1Down4Up Duty factor 4/8	Lowest	1850.2	22.39	25.40
			Middle	1880.0	22.33	25.34
			Highest	1909.8	22.38	25.39
		4Down1Up	Lowest	1850.2	17.85	26.88
		Duty factor 1/8	Middle	1880.0	17.72	26.75
		Buty lactor 170	Highest	1909.8	17.66	26.69
		2Down 2Lln	Lowest	st 1850.2 18.26	18.26	24.28
EGPRS 1900		3Down2Up Duty factor 2/8	Middle	1880.0	18.20	24.22
Multi Class :12	8PSK	Daty lactor in	Highest	1909.8	18.16	24.18
Max Up:4	or or	2Down3Up	Lowest	1850.2	19.91	24.17
Max Down:4 Sum:5		Duty factor 3/8	Middle	1880.0	19.86	24.12
		Buty luctor of	Highest	1909.8	19.80	24.06
		1Down4Up	Lowest	1850.2	20.97	23.98
		Duty factor 4/8	Middle	1880.0	20.91	23.92
		Buty luctor in	Highest	1909.8	20.86	23.87
DTM 1900 (GSM+GPRS)			Lowest	1850.2	22.45	26.71
Multi Class :11	GMSK	2Down3Up Duty factor 3/8	Middle	1880.0	22.48	26.74
Max Up:3 Down:4 Sum:5			Highest	1909.8	22.51	26.77
DTM 1900 (GSM+EGPRS)	GMSK/8PSK	0.0	Lowest	1850.2	19.78	24.04
Multi Class :11 Max Up:3		2Down3Up Duty factor 3/8	Middle	1880.0	19.73	23.99
Down:4 Sum:5			Highest	1909.8	19.67	23.93

Note: 1. Time Average power slot duty cycle factor calculate:

1up: Average burst power+10*LOG(1/8)

2up: Average burst power+10*LOG(2/8)

3up: Average burst power+10*LOG(3/8)

4up: Average burst power+10*LOG(4/8)

Report Number: 1410FS12-03 Page 30 of 347

Band	Modulation	Data Rate	СН	Frequency	Average (dBm)	
				(MHz)	Time Average	Burst Average
			Lowest	1850.2	21.73	30.76
GSM 1900			Middle	1880.0	21.64	30.67
			Highest	1909.8	21.77	30.80
		45411.	Lowest	1850.2	21.65	30.68
		4Down1Up Duty factor 1/8	Middle	1880.0	21.47	30.50
		Daty lactor 170	Highest	1909.8	21.59	30.62
			Lowest	1850.2	21.97	27.99
GPRS 1900	GMSK	3Down2Up Duty factor 2/8	Middle	1880.0	21.94	27.96
Multi Class :12		Highest		1909.8	21.99	28.01
Max Up:4 Max Down:4 Sum:5			Lowest	1850.2	22.43	26.69
		2Down3Up Duty factor 3/8	Middle	1880.0	22.46	26.72
		Duty lactor 3/6	Highest	1909.8	22.48	26.74
		1Down4Up Duty factor 4/8	Lowest	1850.2	22.20	25.21
			Middle	1880.0	22.14	25.15
			Highest	1909.8	22.19	25.20
		4Down1Up Duty factor 1/8	Lowest	1850.2	17.68	26.71
			Middle	1880.0	17.55	26.58
			Highest	1909.8	17.49	26.52
		2D a 21 Jm	3Down2Up Lowest 1850.2	18.09	24.11	
EGPRS 1900		Duty factor 2/8	Middle	1880.0	18.03	24.05
Multi Class :12	8PSK	Buty luctor 270	Highest	1909.8	17.99	24.01
Max Up:4	or Six	2D avvis 21 lm	Lowest	1850.2	19.74	24.00
Max Down:4 Sum:5		2Down3Up Duty factor 3/8	Middle	1880.0	19.69	23.95
		Daty lactor 5/6	Highest	1909.8	19.63	23.89
		1Down4Up	Lowest	1850.2	20.80	23.81
		Duty factor 4/8	Middle	1880.0	20.74	23.75
		Buty luctor 170	Highest	1909.8	20.69	23.70
DTM 1900 (GSM+GPRS)			Lowest	1850.2	22.28	26.54
Multi Class :11	GMSK	2Down3Up Duty factor 3/8	Middle	1880.0	22.31	26.57
Max Up:3 Down:4 Sum:5			Highest	1909.8	22.34	26.60
DTM 1900 (GSM+EGPRS)	GMSK/8PSK	00	Lowest	1850.2	19.61	23.87
Multi Class :11 Max Up:3		2Down3Up Duty factor 3/8	Middle	1880.0	19.56	23.82
Down:4 Sum:5			Highest	1909.8	19.50	23.76

Note: 1. Time Average power slot duty cycle factor calculate:

1up: Average burst power+10*LOG(1/8)

2up: Average burst power+10*LOG(2/8)

3up: Average burst power+10*LOG(3/8)

4up: Average burst power+10*LOG(4/8)

Band	Modulation	Sub-test	СН	Frequency (MHz)	Burst Average Power (dBm)
			Lowest	1852.4	23.77
WCDMA Band II	RMC12.2K		Middle	1880.0	23.55
			Highest	1907.6	23.49
		1	Lowest	1852.4	22.72
			Middle	1880.0	22.55
			Highest	1907.6	22.49
			Lowest	1852.4	22.70
		2	Middle	1880.0	22.51
LICDDA Dand II	ODCK		Highest	1907.6	22.46
HSDPA Band II	QPSK		Lowest	1852.4	22.25
		3	Middle	1880.0	22.09
			Highest	1907.6	22.01
			Lowest	1852.4	22.20
		4	Middle	1880.0	22.04
			Highest	1907.6	21.99
			Lowest	1852.4	21.97
		1	Middle	1880.0	21.84
			Highest	1907.6	21.77
		2	Lowest	1852.4	20.01
			Middle	1880.0	19.86
			Highest	1907.6	19.78
			Lowest	1852.4	20.98
HSUPA Band II	QPSK	3	Middle	1880.0	20.82
			Highest	1907.6	20.76
		4	Lowest	1852.4	19.96
			Middle	1880.0	19.80
			Highest	1907.6	19.75
			Lowest	1852.4	21.95
		5	Middle	1880.0	21.80
			Highest	1907.6	21.74
			Lowest	1852.4	21.74
		1	Middle	1880.0	21.57
			Highest	1907.6	21.49
			Lowest	1852.4	19.78
		2	Middle	1880.0	19.58
			Highest	1907.6	19.51
			Lowest	1852.4	20.74
HSPA+ Band II	16QAM	3	Middle	1880.0	20.58
			Highest	1907.6	20.52
			Lowest	1852.4	19.74
		4	Middle	1880.0	19.54
			Highest	1907.6	19.47
		5	Lowest	1852.4	21.70
			Middle	1880.0	21.55
			Highest	1907.6	21.46

Band	Modulation	Sub-test	СН	Frequency (MHz)	Burst Average Power (dBm)
			Lowest	826.4	23.54
WCDMA Band V	RMC12.2K		Middle	836.6	23.58
			Highest	846.6	23.49
		1	Lowest	826.4	22.52
			Middle	836.6	22.58
			Highest	846.6	22.42
	1		Lowest	826.4	22.47
		2	Middle	836.6	22.55
	0.000		Highest	846.6	22.38
HSDPA Band V	QPSK -		Lowest	826.4	22.05
		3	Middle	836.6	22.09
			Highest	846.6	21.94
			Lowest	826.4	22.00
		4	Middle	836.6	22.07
		-	Highest	846.6	21.89
			Lowest	826.4	21.74
		1	Middle	836.6	21.81
			Highest	846.6	21.63
		2	Lowest	826.4	19.77
			Middle	836.6	19.83
		_	Highest	846.6	19.64
			Lowest	826.4	20.74
HSUPA	QPSK	3	Middle	836.6	20.79
Band V	Qi oit		Highest	846.6	20.60
		4	Lowest	826.4	19.72
			Middle	836.6	19.80
		•	Highest	846.6	19.60
			Lowest	826.4	21.69
		5	Middle	836.6	21.77
		-	Highest	846.6	21.60
	 		Lowest	826.4	21.53
		1	Middle	836.6	21.57
		•	Highest	846.6	21.38
			Lowest	826.4	19.55
		2	Middle	836.6	19.58
		_	Highest	846.6	19.41
			Lowest	826.4	20.55
HSPA+	16QAM	3	Middle	836.6	20.58
Band V		-	Highest	846.6	20.39
			Lowest	826.4	19.52
		4	Middle	836.6	19.55
		-	Highest	846.6	19.34
		5	Lowest	826.4	21.50
			Middle	836.6	21.55
			whate	555.6	21.00

Band	Channel	Modulation	Channel	Frequency		figuration	Burst Average Power
Danu	Bandwidth	Modulation	Cildille	(MHz)	Size	Offset	(dBm)
					1	0	23.29
					1	3	23.25
					1	5	23.26
			18607	1850.7	3	0	23.26
					3	2	23.26
					3	3	23.24
					6	0	22.32
					1	0	23.32
					1	3	23.27
					1	5	23.28
		QPSK	18900	1880.0	3	0	23.26
					3	2	23.29
					3	3	23.27
					6	0	22.33
					1	0	23.27
			19193	1909.3	1	3	23.24
					1	5	23.21
					3	0	23.18
					3	2	23.14
					3	3	23.08
LTE	1.4 MHz				6	0	22.21
Band 2	1.4 1/11112			18607 1850.7	1	0	22.28
					1	3	22.25
					1	5	22.23
			18607		3	0	22.21
					3	2	22.18
					3	3	22.15
					6	0	22.13
					1	0	22.31
					1	3	22.28
					1	5	22.24
		16QAM	18900	1880.0	3	0	22.18
					3	2	22.14
					3	3	22.08
					6	0	22.03
					1	0	22.25
					1	3	22.18
					1	5	22.14
			19193	1909.3	3	0	22.11
					3	2	22.08
					3	3	22.05
					6	0	22.01

Band	Channel	Modulation	Channel	Frequency (MHz)	RB Configuration		Burst Average Power
	Bandwidth				Size	Offset	(dBm)
LTE Band 2		QPSK	18615	1851.5	1	0	23.25
	3MHz				1	8	23.22
					1	14	23.21
					8	0	22.33
					8	4	22.25
					8	8	22.32
					15	0	22.29
			18900	1880.0	1	0	23.28
					1	8	23.24
					1	14	23.21
					8	0	22.30
					8	4	22.33
					8	8	22.29
					15	0	22.37
			19185	1908.5	1	0	23.21
					1	8	23.18
					1	14	23.16
					8	0	22.22
					8	4	22.15
					8	8	22.21
					15	0	22.20
		16QAM	18615	1851.5	1	0	22.23
					1	8	22.15
					1	14	22.08
					8	0	21.34
					8	4	21.33
					8	8	21.36
					15	0	21.29
			18900	1880.0	1	0	22.27
					1	8	22.24
					1	14	22.21
					8	0	21.33
					8	4	21.40
					8	8	21.36
					15	0	21.31
			19185	1908.5	1	0	22.17
					1	8	22.13
					1	14	22.14
					8	0	21.30
					8	4	21.24
					8	8	21.29
					15	0	21.26

Band	Channel Bandwidth	Modulation	Channel	Frequency (MHz)	RB Configuration		Burst Average Power
					Size	Offset	(dBm)
LTE Band 2		QPSK	18625	1852.5	1	0	23.25
					1	13	23.23
					1	24	23.19
					12	0	22.29
					12	6	22.27
					12	13	22.28
					25	0	22.29
			18900	1880.0	1	0	23.29
					1	13	23.24
					1	24	23.27
					12	0	22.28
					12	6	22.33
					12	13	22.31
					25	0	22.33
			19175	1907.5	1	0	23.22
	5MHz				1	13	23.19
					1	24	23.18
					12	0	22.20
					12	6	22.17
					12	13	22.20
					25	0	22.23
		16QAM	18625	1852.5	1	0	22.24
					1	13	22.19
					1	24	22.18
					12	0	21.32
					12	6	21.32
					12	13	21.32
					25	0	21.32
			18900	1880.0	1	0	22.29
					1	13	22.23
					1	24	22.25
					12	0	21.36
					12	6	21.36
					12	13	21.37
					25	0	21.35
			19175	1907.5	1	0	22.17
					1	13	22.13
					1	24	22.11
					12	0	21.31
					12	6	21.28
					12	13	21.28
					25	0	21.26

David	Channel	Mandalatina	Observati	Frequency	RB Con	figuration	Burst Average Power
Band	Bandwidth	Modulation	Channel	(MHz)	Size	Offset	(dBm)
					1	0	23.23
					1	25	23.21
					1	49	23.14
			18650	1855.0	25	0	22.29
					25	13	22.27
					25	25	22.26
					50	0	22.47
					1	0	23.27
					1	25	23.24
					1	49	23.25
		QPSK	18900	1880.0	25	0	22.30
	Qi O				25	13	22.31
					25	25	22.34
					50	0	22.41
					1	0	23.22
					1	25	23.18
					1	49	23.16
			19150	1905.0	25	0	22.25
					25	13	22.20
					25	25	22.23
LTE	10MHz				50	0	22.29
Band 2	TOME		18650	1855.0	1	0	22.23
					1	25	22.21
					1	49	22.15
					25	0	21.35
					25	13	21.34
					25	25	21.33
					50	0	21.35
					1	0	22.25
					1	25	22.21
					1	49	22.18
		16QAM	18900	1880.0	25	0	21.32
					25	13	21.34
					25	25	21.37
					50	0	21.42
					1	0	22.19
					1	25	22.15
					1	49	22.11
			19150	1905.0	25	0	21.34
					25	13	21.33
					25	25	21.26
					50	0	21.32

David	Channel	Mandalatina	Observati	Frequency	RB Con	figuration	Burst Average Power
Band	Bandwidth	Modulation	Channel	(MHz)	Size	Offset	(dBm)
					1	0	23.32
					1	38	23.28
					1	74	23.16
			18675	1857.5	38	0	23.17
					38	18	23.22
					38	38	23.28
					75	0	22.47
					1	0	23.28
					1	38	23.24
					1	74	23.26
		QPSK	18900	1880	38	0	22.34
	Qi O				38	18	22.38
					38	38	22.39
					75	0	22.45
					1	0	23.30
					1	38	23.23
					1	74	23.24
			19125	1902.5	38	0	22.23
					38	18	22.30
					38	38	22.23
LTE	15MHz				75	0	22.34
Band 2	IDIVIDZ			1857.5	1	0	22.32
					1	38	22.26
					1	74	22.21
			18675		38	0	21.33
					38	18	21.31
					38	38	21.33
					75	0	21.40
					1	0	22.29
					1	38	22.26
					1	74	22.26
		16QAM	18900	1880	38	0	21.33
					38	18	21.31
					38	38	21.40
					75	0	21.47
					1	0	22.30
					1	38	22.19
					1	74	22.23
			19125	1902.5	38	0	21.24
					38	18	21.33
					38	38	21.26
					75	0	21.37

Dand	Channel	Madulation	Channal	Frequency	RB Con	figuration	Burst Average Power
Band	Bandwidth	Modulation	Channel	(MHz)	Size	Offset	(dBm)
					1	0	23.27
					1	50	23.18
					1	99	23.16
			18700	1860	50	0	22.51
					50	25	22.47
					50	50	22.46
					100	0	22.48
					1	0	23.29
					1	50	23.24
					1	99	23.26
		QPSK	18900	1880	50	0	22.52
					50	25	22.45
					50	50	22.49
					100	0	22.41
					1	0	23.26
					1	50	23.25
					1	99	23.24
			19100	1900	50	0	22.49
					50	25	22.30
					50	50	22.31
LTE	20MHz				100	0	22.34
Band 2	ZUIVITIZ		18700	1860	1	0	22.29
					1	50	22.20
					1	99	22.15
					50	0	21.40
					50	25	21.44
					50	50	21.45
					100	0	21.50
					1	0	22.32
					1	50	22.27
					1	99	22.25
		16QAM	18900	1880	50	0	21.43
					50	25	21.43
					50	50	21.47
					100	0	21.45
					1	0	22.25
					1	50	22.19
					1	99	22.21
			19100	1900	50	0	21.41
					50	25	21.34
					50	50	21.35
					100	0	21.37

Dand	Channel	Modulation	Channel	Frequency	RB Conf	figuration	Burst Average Power
Band	Bandwidth	iviodulation	Channel	(MHz)	Size	Offset	(dBm)
					1	0	23.37
					1	3	23.33
					1	5	23.32
			19957	1710.7	3	0	23.34
					3	2	23.30
					3	3	23.31
					6	0	22.39
					1	0	23.44
					1	3	23.38
					1	5	23.42
		QPSK	20175	1732.5	3	0	23.41
					3	2	23.43
					3	3	23.37
					6	0	22.47
					1	0	23.51
					1	3	23.48
					1	5	23.43
			20393	1754.3	3	0	23.44
					3	2	23.45
					3	3	23.47
LTE	1.4MHz				6	0	22.51
Band 4	1.4101⊓2		19957	1710.7	1	0	22.36
					1	3	22.29
					1	5	22.29
					3	0	22.31
					3	2	22.32
					3	3	22.33
					6	0	21.30
					1	0	22.41
					1	3	22.38
					1	5	22.35
		16QAM	20175	1732.5	3	0	22.31
					3	2	22.27
					3	3	22.25
					6	0	21.34
					1	0	22.43
					1	3	22.39
			20202		1	5	22.36
			20393	1754.3	3	0	22.35
					3	2	22.31
					3	3	22.25
					6	0	21.44

Band	Channel	Modulation	Channel	Frequency	RB Conf	figuration	Burst Average Power
Dallu	Bandwidth	Wodulation	Chamilei	(MHz)	Size	Offset	(dBm)
					1	0	23.36
					1	8	23.30
					1	14	23.30
			19965	1711.5	8	0	22.34
					8	4	22.33
					8	8	22.38
					15	0	22.39
					1	0	23.38
					1	8	23.34
					1	14	23.33
		QPSK	20175	1732.5	8	0	22.45
					8	4	22.42
					8	8	22.42
					15	0	22.48
					1	0	23.41
					1	8	23.39
					1	14	23.34
			20385	1753.5	8	0	22.44
					8	4	22.44
					8	8	22.45
LTE	2041.1-				15	0	22.49
Band 4	3MHz		19965		1	0	22.31
					1	8	22.26
				9965 1711.5	1	14	22.29
					8	0	21.40
					8	4	21.38
					8	8	21.42
					15	0	21.37
					1	0	22.34
					1	8	22.30
					1	14	22.27
		16QAM	20175	1732.5	8	0	21.47
					8	4	21.44
					8	8	21.45
					15	0	21.43
					1	0	22.37
					1	8	22.34
					1	14	22.32
			20385	1753.5	8	0	21.49
					8	4	21.51
					8	8	21.52
	1				15	0	21.45

Dand	Channel	Modulation	Channel	Frequency	RB Con	figuration	Burst Average Power
Band	Bandwidth	Modulation	Chamilei	(MHz)	Size	Offset	(dBm)
					1	0	23.35
					1	13	23.31
					1	24	23.30
			19975	1712.5	12	0	22.36
					12	6	22.36
					12	13	22.42
					25	0	22.41
					1	0	23.43
					1	13	23.36
					1	24	23.39
		QPSK	20175	1732.5	12	0	22.46
					12	6	22.43
					12	13	22.43
					25	0	22.41
					1	0	23.42
					1	13	23.38
					1	24	23.34
			20375	1752.5	12	0	22.43
					12	6	22.40
					12	13	22.43
LTE	5MHz				25	0	22.46
Band 4	SIVITZ			1712.5	1	0	22.35
					1	13	22.32
					1	24	22.26
			19975		12	0	21.43
					12	6	21.43
					12	13	21.42
					25	0	21.43
					1	0	22.36
					1	13	22.31
					1	24	22.27
		16QAM	20175	1732.5	12	0	21.48
					12	6	21.45
					12	13	21.47
					25	0	21.49
					1	0	22.38
					1	13	22.36
					1	24	22.32
			20375	1752.5	12	0	21.51
					12	6	21.51
					12	13	21.53
					25	0	21.53

Band	Channel	Modulation	Channel	Frequency	RB Con	figuration	Burst Average Power
Бапи	Bandwidth	Modulation	Channel	(MHz)	Size	Offset	(dBm)
					1	0	23.32
					1	25	23.28
					1	49	23.31
			20000	1715.0	25	0	22.39
					25	13	22.37
					25	25	22.38
					50	0	22.48
					1	0	23.41
					1	25	23.36
					1	49	23.34
		QPSK	20175	1732.5	25	0	22.38
					25	13	22.44
					25	25	22.40
					50	0	22.51
					1	0	23.43
					1	25	23.37
					1	49	23.36
			20350	1750.0	25	0	22.37
					25	13	22.45
					25	25	22.40
LTE	10MHz				50	0	22.53
Band 4	TOME			1715.0	1	0	22.32
					1	25	22.25
					1	49	22.28
			20000		25	0	21.40
					25	13	21.41
					25	25	21.36
					50	0	21.44
					1	0	22.37
					1	25	22.33
					1	49	22.31
		16QAM	20175	1732.5	25	0	21.45
					25	13	21.41
					25	25	21.46
					50	0	21.50
					1	0	22.36
					1	25	22.34
					1	49	22.28
			20350	1750.0	25	0	21.48
					25	13	21.47
					25	25	21.46
					50	0	21.51

Band	Channel	Modulation	Channel	Frequency	RB Con	figuration	Burst Average Power
Бапи	Bandwidth	iviodulation	Channel	(MHz)	Size	Offset	(dBm)
					1	0	23.37
					1	38	23.32
					1	74	23.31
			20025	1717.5	38	0	22.47
					38	18	22.40
					38	38	22.45
					75	0	22.46
					1	0	23.39
					1	38	23.36
	QPS				1	74	23.31
		QPSK	20175	1732.5	38	0	22.52
					38	18	22.52
					38	38	22.48
					75	0	22.54
					1	0	23.43
					1	38	23.38
					1	74	23.41
			20325	1747.5	38	0	22.54
					38	18	22.48
					38	38	22.48
LTE	15MHz				75	0	22.50
Band 4	1 JIVII 12			1717.5	1	0	22.36
					1	38	22.29
					1	74	22.25
			20025		38	0	21.41
					38	18	21.38
					38	38	21.37
					75	0	21.47
					1	0	22.34
					1	38	22.31
					1	74	22.26
		16QAM	20175	1732.5	38	0	21.41
					38	18	21.46
					38	38	21.45
					75	0	21.57
					1	0	22.43
					1	38	22.32
					1	74	22.33
			20325	1747.5	38	0	21.52
					38	18	21.44
					38	38	21.42
					75	0	21.52

Band	Channel	Modulation	Channel	Frequency	RB Con	figuration	Burst Average Power
Dallu	Bandwidth	Modulation	Chamilei	(MHz)	Size	Offset	(dBm)
					1	0	23.36
					1	50	23.34
					1	99	23.35
			20050	1720.0	50	0	22.56
					50	25	22.46
					50	50	22.43
					100	0	22.41
					1	0	23.38
					1	50	23.36
					1	99	23.33
		QPSK	20175	1732.5	50	0	22.56
					50	25	22.54
					50	50	22.54
					100	0	22.58
					1	0	23.47
					1	50	23.35
					1	99	23.38
			20300	1745.0	50	0	22.63
					50	25	22.48
					50	50	22.52
LTE	20MHz				100	0	22.62
Band 4	201011 12			1720.0	1	0	22.32
					1	50	22.26
					1	99	22.27
			20050		50	0	21.49
					50	25	21.47
					50	50	21.47
					100	0	21.50
					1	0	22.38
					1	50	22.34
					1	99	22.31
		16QAM	20175	1732.5	50	0	21.56
					50	25	21.55
					50	50	21.59
					100	0	21.60
					1	0	22.45
					1	50	22.30
					1	99	22.36
			20300	1745.0	50	0	21.56
					50	25	21.48
					50	50	21.52
				1	100	0	21.64

Band	Channel	Modulation	Channel	Frequency	RB Con	figuration	Burst Average Power
Dariu	Bandwidth	Wiodulation	Charmer	(MHz)	Size	Offset	(dBm)
					1	0	23.39
					1	3	23.36
					1	5	23.25
			20407	824.7	3	0	23.37
					3	2	23.38
					3	3	23.32
					6	0	22.39
					1	0	23.36
					1	3	23.29
					1	5	23.33
	C	QPSK	20525	836.5	3	0	23.32
					3	2	23.32
					3	3	23.32
					6	0	22.36
					1	0	23.29
					1	3	23.24
					1	5	23.26
			20643	848.3	3	0	23.28
					3	2	23.28
					3	3	23.27
LTE	1.4MHz				6	0	22.35
Band 5	1.4WHZ		20407	824.7	1	0	22.36
					1	3	22.29
					1	5	22.21
					3	0	22.32
					3	2	22.33
					3	3	22.32
					6	0	21.24
					1	0	22.33
					1	3	22.29
					1	5	22.28
		16QAM	20525	836.5	3	0	22.30
					3	2	22.27
					3	3	22.30
					6	0	21.23
					1	0	22.27
					1	3	22.21
					1	5	22.20
			20643	848.3	3	0	22.27
					3	2	22.26
					3	3	22.25
					6	0	21.19

Band	Channel	Modulation	Channel	Frequency	RB Con	figuration	Burst Average Power
Dariu	Bandwidth	iviodulation	Charmer	(MHz)	Size	Offset	(dBm)
					1	0	23.30
					1	8	23.17
					1	14	23.30
			20415	825.5	8	0	22.38
					8	4	22.28
					8	8	22.38
					15	0	22.35
					1	0	23.29
					1	8	23.26
					1	14	23.26
		QPSK	20525	836.5	8	0	22.29
					8	4	22.29
					8	8	22.31
					15	0	22.35
					1	0	23.25
					1	8	23.20
					1	14	23.25
			20635	847.5	8	0	22.30
					8	4	22.28
					8	8	22.27
LTE	0.41.1-				15	0	22.33
Band 5	3MHz		20415	825.5	1	0	22.31
					1	8	22.26
					1	14	22.17
					8	0	21.32
					8	4	21.29
					8	8	21.35
					15	0	21.35
					1	0	22.23
					1	8	22.21
					1	14	22.23
		16QAM	20525	836.5	8	0	21.34
					8	4	21.34
					8	8	21.33
					15	0	21.30
				1	1	0	22.25
					1	8	22.19
					1	14	22.19
			20635	847.5	8	0	21.28
					8	4	21.34
					8	8	21.34
					15	0	21.26

Band	Channel	Modulation	Channel	Frequency	F	lB	Burst Average Power
Danu	Bandwidth	iviodulation	Channel	(MHz)	Size	Offset	(dBm)
					1	0	23.31
					1	13	23.26
					1	24	23.28
			20425	826.5	12	0	22.31
					12	6	22.29
					12	13	22.33
					25	0	22.35
					1	0	23.26
					1	13	23.22
					1	24	23.24
		QPSK	20525	836.5	12	0	22.29
					12	6	22.31
					12	13	22.34
					25	0	22.32
					1	0	23.23
					1	13	23.21
					1	24	23.18
			20625	846.5	12	0	22.29
					12	6	22.25
					12	13	22.28
LTE					25	0	22.26
Band 5	5MHz			826.5	1	0	22.24
					1	13	22.23
					1	24	22.24
			20425		12	0	21.35
					12	6	21.34
					12	13	21.32
					25	0	21.34
					1	0	22.28
					1	13	22.20
					1	24	22.19
		16QAM	20525	836.5	12	0	21.31
					12	6	21.31
					12	13	21.31
					25	0	21.33
					1	0	22.21
					1	13	22.18
					1	24	22.19
			20625	846.5	12	0	21.30
					12	6	21.29
					12	13	21.29
					25	0	21.27

Band	Channel	Modulation	Channel	Frequency	RB Con	figuration	Burst Average Power
Бапи	Bandwidth	iviodulation	Channel	(MHz)	Size	Offset	(dBm)
					1	0	23.29
					1	25	23.28
					1	49	23.25
			20450	829.0	25	0	22.39
					25	13	22.30
					25	25	22.31
					50	0	22.38
					1	0	23.23
					1	25	23.22
					1	49	23.22
		QPSK	20525	836.5	25	0	22.37
					25	13	22.27
					25	25	22.26
					50	0	22.33
					1	0	23.27
					1	25	23.23
					1	49	23.26
			20600	844.0	25	0	22.36
					25	13	22.26
					25	25	22.30
LTE	10MHz				50	0	22.35
Band 5	TUIVIHZ		20450	829.0	1	0	22.26
					1	25	22.21
					1	49	22.25
					25	0	21.30
					25	13	21.28
					25	25	21.33
					50	0	21.36
					1	0	22.25
					1	25	22.18
					1	49	22.21
		16QAM	20525	836.5	25	0	21.31
					25	13	21.29
					25	25	21.30
					50	0	21.34
					1	0	22.22
					1	25	22.21
					1	49	22.18
			20600	844.0	25	0	21.33
					25	13	21.30
					25	25	21.27
					50	0	21.36

Band	Data Rate	СН	Frequency (MHz)	Average Power (dBm)
		1	2412.0	12.20
	1M	6	2437.0	11.84
IEEE 802.11b		11	2462.0	11.47
ILLE 002.110	2M	6	2437.0	11.79
	5.5M	6	2437.0	11.80
	11M	6	2437.0	11.61
		1	2412.0	16.17
	6M	6	2437.0	16.19
		11	2462.0	16.10
	9M	6	2437.0	16.14
IEEE 802.11g	12M	6	2437.0	16.08
l leee 602.11g	18M	6	2437.0	16.11
	24M	6	2437.0	16.01
	36M	6	2437.0	16.17
	48M	6	2437.0	16.07
	54M	6	2437.0	15.78
		1	2412.0	14.39
	6.5M	6	2437.0	14.52
		11	2462.0	14.50
IEEE 802.11n	13M	6	2437.0	14.49
20MHz	19.5M	6	2437.0	14.51
(2.4 GHz)	26M	6	2437.0	14.37
(2 0112)	39M	6	2437.0	14.46
	52M	6	2437.0	14.45
	58.5M	6	2437.0	14.49
	65M	6	2437.0	14.42

Band	СН	Frequency (MHz)	Packet Type	Average Power (dBm)
			DH1	6.94
	0	2402	DH3	6.93
			DH5	7.02
Bluetooth v3.0			DH1	8.21
	39	2441	DH3	8.30
GFSK			DH5	8.31
			DH1	5.72
	78	2480	DH3	5.76
			DH5	5.81
			DH1	5.45
	0	2402	DH3	5.41
			DH5	5.51
Bluetooth v3.0			DH1	7.26
	39	2441	DH3	7.30
π /4-DQPSK			DH5	7.31
	78		DH1	4.22
		2480	DH3	4.25
			DH5	4.30
			DH1	5.99
	0	2402	DH3	6.04
			DH5	6.06
Bluetooth v3.0			DH1	7.31
	39	2441	DH3	7.26
8DPSK			DH5	7.33
			DH1	4.21
	78	2480	DH3	4.22
			DH5	4.31
	0	2402		-0.79
Bluetooth v4.0 LE	19	2440		0.71
	39	2480		-0.86

6.10 Antenna location

		Antenna-	Jser					
Distance of WWAN to	edge	Distance of WWAN to	o edge	Distance of WLAN and Bluetooth to	Distance of WLAN and Bluetooth to edge			
WWAN Antenna 1 to Side 1	1.8mm	WWAN Antenna2 to Side 1	9mm	WLAN and Bluetooth Antenna to Side 1	7.8mm			
WWAN Antenna 1 to Side 2	2.3mm	WWAN Antenna2 to Side 2	2.3mm	WLAN and Bluetooth Antenna to Side 2	2.3mm			
WWAN Antenna 1 to Side 3	139.8mm	WWAN Antenna2 to Side 3	1.8mm	WLAN and Bluetooth Antenna to Side 3	3.2mm			
WWAN Antenna 1 to Side 4	1.5mm	WWAN Antenna2 to Side 4	100mm	WLAN and Bluetooth Antenna to Side 4	139mm			
WWAN Antenna 1 to Side 5	17.7mm	WWAN Antenna2 to Side 5	5 70.5mm WLAN and Bluetooth Antenna to		2.2mm			
WWAN Antenna 1 to Side 6	7.1mm	WWAN Antenna2 to Side 6	2.2mm	WLAN and Bluetooth Antenna to Side 6	68.1mm			
		Antenna-Ar	ntenna					
Ante	nna account			Distance (mm)				
WWAN Antenna1 to \	WLAN and B	luetooth Antenna	134.5					
WWAN Antenna2 to \	WLAN and B	luetooth Antenna	60					
WWAN Antenn	a1 to WWAN	I Antenna2		90				

Report Number: 1410FS12-03 Page 52 of 347

6.11 Stand-alone SAR Evaluate

Transmitter and antenna implementation as below:

	•		
Band	WWAN Antenna 1	WWAN Antenna 2	WLAN and Bluetooth Antenna
WWAN	V	V	X
WLAN	X	X	V
Bluetooth	Х	Х	V

Stand-alone transmission configurations as below:

Band	RC	RT	LC	LT	Side 1	Side 2	Side 3	Side 4	Side 5	Side 6
GSM 850	٧	٧	٧	٧	٧	٧	٧	-	-	-
GPRS 850	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
DTM 850	٧	٧	٧	٧	٧	٧	٧	-	-	1
GSM 1900	٧	٧	٧	٧	٧	٧	٧	ı	ı	ı
GPRS 1900	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
DTM 1900	٧	٧	٧	٧	٧	٧	٧	-	-	-
WCDMA/HSDPA/HSUPA/HSPA+ Band II	٧	٧	٧	٧	٧	٧	-	٧	٧	٧
WCDMA/HSDPA/HSUPA/HSPA+ Band V	٧	٧	٧	٧	٧	٧	-	٧	٧	٧
LTE Band 2	٧	٧	٧	٧	٧	٧	1	٧	٧	٧
LTE Band 4	٧	٧	٧	٧	٧	٧	-	٧	٧	٧
LTE Band 5	٧	٧	٧	٧	٧	٧	ı	٧	٧	٧
IEEE 802.11b	٧	٧	٧	٧	٧	٧	٧	-	٧	-
IEEE 802.11g	٧	٧	٧	٧	٧	٧	٧	-	٧	-
IEEE 802.11n (20MHz)	٧	٧	٧	٧	٧	٧	٧	-	٧	-
Bluetooth v3.0	-	-	-	-	٧	٧	-	-	-	-
Bluetooth v4.0 LE	-	-	-	-	٧	٧	-	-	-	-

Note: The "-" on behalf of Stand-alone SAR is not required (Refer to KDB447498 D01 4.3.1 for the Standalone SAR test exclusion considerations)

6.12 Simultaneous Transmitting Evaluate

Simultaneous transmission configurations as below:

Condition	Side	Frequer	ncy Band
Condition	Side	WWAN	WLAN and Bluetooth
1	RC	V	V
2	RT	V	V
3	LC	V	V
4	LT	V	V
5	1	V	V
6	2	V	V
7	3	V	V
8	4	V	V
9	5	V	V
10	6	V	V

6.12.1 Estimated SAR

Estimated SAR for test separation distances ≤ 50 mm

Antenna	Side	Band	Channel	Power-Tune up (dBm)	Frequency (GHz)	Distance (mm)	Power (mW)	Estimated SAR ^{1g} (W/Kg)
	RC		39	8.5	2.441	5	7	0.292
Divotooth	RT	Bluetooth v3.0	39	8.5	2.441	5	7	0.292
Bluetooth	LC	Bluetooth vs.0	39	8.5	2.441	5	7	0.292
	LT		39	8.5	2.441	5	7	0.292
	RC		19	0.8	2.440	5	1	0.042
Divistanth	RT	Bluetooth v4.0 LE	19	0.8	2.440	5	1	0.042
Bluetooth	LC	Bluetooth v4.0 LE	19	0.8	2.440	5	1	0.042
	LT		19	0.8	2.440	5	1	0.042
Divotoeth	Side 3	Bluetooth v3.0	39	8.5	2.441	5	7	0.292
Bluetooth	Side 3	Bluetooth v4.0 LE	19	0.8	2.440	5	1	0.042
Bluetooth	Side 5	Bluetooth v3.0	39	8.5	2.441	5	7	0.292
Diuelootii	Side 5	Bluetooth v4.0 LE	19	0.8	2.440	5	1	0.042

Estimated SAR for test separation distances > 50 mm

Antenna	Phanton Position	Band	Estimated SAR ^{1g} (W/Kg)
		WCDMA Band II	0.4
		WCDMA Band V	0.4
WWLAN_Antenna 1	Side 3	LTE Band 2	0.4
		LTE Band 4	0.4
		LTE Band 5	0.4
		IEEE 802.11b	0.4
WLAN		IEEE 802.11g	0.4
	Side 4	IEEE 802.11n (20MHz)	0.4
Bluetooth		Bluetooth v3.0	0.4
Diuelootii		Bluetooth v4.0 LE	0.4
		IEEE 802.11b	0.4
WLAN		IEEE 802.11g	0.4
,	Side 6	IEEE 802.11n (20MHz)	0.4
Bluetooth		Bluetooth v3.0	0.4
Didelootii		Bluetooth v4.0 LE	0.4

6.12.2 Sum of 1-g SAR of all simultaneously transmitting

When the sum of 1-g SAR of all simultaneously transmitting antennas in and operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration.

Sum of 1-g SAR of summary as below:

		Spacing		WWAN A	ntenna	WLAN Ant	enna	Bluetooth A	Antenna	∑ SAR¹g	_
Phanton	n Position	(mm)	ASSY	Band	SAR ^{1g} (W/Kg)	Band	SAR ^{1g} (W/Kg)	Band	SAR ^{1g} (W/Kg)	(W/Kg)	Event
		0	N/A	GSM 850	0.379	IEEE 802.11g	0.211	Bluetooth	*0.292	0.882	<1.6
		0	N/A	GPRS 850	0.284	IEEE 802.11g	0.211	Bluetooth	*0.292	0.787	<1.6
		0	N/A	DTM 850	0.245	IEEE 802.11g	0.211	Bluetooth	*0.292	0.748	<1.6
		0	N/A	GSM 1900	0.315	IEEE 802.11g	0.211	Bluetooth	*0.292	0.818	<1.6
		0	N/A	GPRS 1900	0.305	IEEE 802.11g	0.211	Bluetooth	*0.292	0.808	<1.6
Head	RC	0	N/A	DTM 1900	0.253	IEEE 802.11g	0.211	Bluetooth	*0.292	0.756	<1.6
71000	110	0	N/A	WCDMA Band II	0.437	IEEE 802.11g	0.211	Bluetooth	*0.292	0.940	<1.6
		0	N/A	WCDMA Band V	0.221	IEEE 802.11g	0.211	Bluetooth	*0.292	0.724	<1.6
		0	N/A	LTE Band 2	0.523	IEEE 802.11g	0.211	Bluetooth	*0.292	1.026	<1.6
		0	N/A	LTE Band 4	0.696	IEEE 802.11g	0.211	Bluetooth	*0.292	1.199	<1.6
		0	N/A	LTE Band 5	0.264	IEEE 802.11g	0.211	Bluetooth	*0.292	0.767	<1.6
		0	N/A	GSM 850	0.263	IEEE 802.11g	0.195	Bluetooth	*0.292	0.750	<1.6
		0	N/A	GPRS 850	0.200	IEEE 802.11g	0.195	Bluetooth	*0.292	0.687	<1.6
		0	N/A	DTM 850	0.179	IEEE 802.11g	0.195	Bluetooth	*0.292	0.666	<1.6
		0	N/A	GSM 1900	0.258	IEEE 802.11g	0.195	Bluetooth	*0.292	0.745	<1.6
		0	N/A	GPRS 1900	0.196	IEEE 802.11g	0.195	Bluetooth	*0.292	0.683	<1.6
Head	RT	0	N/A	DTM 1900	0.213	IEEE 802.11g	0.195	Bluetooth	*0.292	0.700	<1.6
7.00.0		0	N/A	WCDMA Band II	0.098	IEEE 802.11g	0.195	Bluetooth	*0.292	0.585	<1.6
		0	N/A	WCDMA Band V	0.165	IEEE 802.11g	0.195	Bluetooth	*0.292	0.652	<1.6
		0	N/A	LTE Band 2	0.142	IEEE 802.11g	0.195	Bluetooth	*0.292	0.629	<1.6
		0	N/A	LTE Band 4	0.246	IEEE 802.11g	0.195	Bluetooth	*0.292	0.733	<1.6
		0	N/A	LTE Band 5	0.217	IEEE 802.11g	0.195	Bluetooth	*0.292	0.704	<1.6

Note 1: *=Estimated SAR

^{2: **}The Estimated SAR 0.4W/Kg for 1g SAR when the WWAN Antenna for Side 3 test separation distances is > 50 mm.

		Spacing		WWAN A	ntenna	WLAN Ant	enna	Bluetooth A	Antenna	∑ SAR¹g	
Phantor	n Position	(mm)	ASSY	Band	SAR ^{1g} (W/Kg)	Band	SAR ^{1g} (W/Kg)	Band	SAR ^{1g} (W/Kg)	(W/Kg)	Event
		0	N/A	GSM 850	0.432	IEEE 802.11g	0.049	Bluetooth	*0.292	0.773	<1.6
		0	N/A	GPRS 850	0.349	IEEE 802.11g	0.049	Bluetooth	*0.292	0.690	<1.6
		0	N/A	DTM 850	0.261	IEEE 802.11g	0.049	Bluetooth	*0.292	0.602	<1.6
		0	N/A	GSM 1900	0.560	IEEE 802.11g	0.049	Bluetooth	*0.292	0.901	<1.6
		0	N/A	GPRS 1900	0.535	IEEE 802.11g	0.049	Bluetooth	*0.292	0.876	<1.6
Head	LC	0	N/A	DTM 1900	0.480	IEEE 802.11g	0.049	Bluetooth	*0.292	0.821	<1.6
liodd		0	N/A	WCDMA Band II	0.232	IEEE 802.11g	0.049	Bluetooth	*0.292	0.573	<1.6
		0	N/A	WCDMA Band V	0.272	IEEE 802.11g	0.049	Bluetooth	*0.292	0.613	<1.6
		0	N/A	LTE Band 2	0.257	IEEE 802.11g	0.049	Bluetooth	*0.292	0.598	<1.6
		0	N/A	LTE Band 4	0.426	IEEE 802.11g	0.049	Bluetooth	*0.292	0.767	<1.6
		0	N/A	LTE Band 5	0.306	IEEE 802.11g	0.049	Bluetooth	*0.292	0.647	<1.6
		0	N/A	GSM 850	0.250	IEEE 802.11g	0.053	Bluetooth	*0.292	0.595	<1.6
		0	N/A	GPRS 850	0.194	IEEE 802.11g	0.053	Bluetooth	*0.292	0.539	<1.6
		0	N/A	DTM 850	0.153	IEEE 802.11g	0.053	Bluetooth	*0.292	0.498	<1.6
		0	N/A	GSM 1900	0.427	IEEE 802.11g	0.053	Bluetooth	*0.292	0.772	<1.6
		0	N/A	GPRS 1900	0.432	IEEE 802.11g	0.053	Bluetooth	*0.292	0.777	<1.6
Head	LT	0	N/A	DTM 1900	0.299	IEEE 802.11g	0.053	Bluetooth	*0.292	0.644	<1.6
1.00.0		0	N/A	WCDMA Band II	0.156	IEEE 802.11g	0.053	Bluetooth	*0.292	0.501	<1.6
		0	N/A	WCDMA Band V	0.151	IEEE 802.11g	0.053	Bluetooth	*0.292	0.496	<1.6
		0	N/A	LTE Band 2	0.199	IEEE 802.11g	0.053	Bluetooth	*0.292	0.544	<1.6
		0	N/A	LTE Band 4	0.265	IEEE 802.11g	0.053	Bluetooth	*0.292	0.610	<1.6
		0	N/A	LTE Band 5	0.178	IEEE 802.11g	0.053	Bluetooth	*0.292	0.523	<1.6

Note 1: *=Estimated SAR

^{2: **}The Estimated SAR 0.4W/Kg for 1g SAR when the WWAN Antenna for Side 3 test separation distances is > 50 mm.

		Spacing		WWAN A	ntenna	WLAN Ant	enna	Bluetooth A	Antenna	∑ SAR¹g	
Phantor	n Position	(mm)	ASSY	Band	SAR ^{1g} (W/Kg)	Band	SAR ^{1g} (W/Kg)	Band	SAR ^{1g} (W/Kg)	(W/Kg)	Event
		10	N/A	GSM 850	0.544	IEEE 802.11g	0.059	Bluetooth	0.005	0.608	<1.6
		10	N/A	GPRS 850	0.421	IEEE 802.11g	0.059	Bluetooth	0.005	0.485	<1.6
		10	N/A	DTM 850	0.363	IEEE 802.11g	0.059	Bluetooth	0.005	0.427	<1.6
		10	N/A	GSM 1900	0.368	IEEE 802.11g	0.059	Bluetooth	0.005	0.432	<1.6
		10	N/A	GPRS 1900	0.442	IEEE 802.11g	0.059	Bluetooth	0.005	0.506	<1.6
Flat	Side 1	10	N/A	DTM 1900	0.351	IEEE 802.11g	0.059	Bluetooth	0.005	0.415	<1.6
1 100	Oldo 1	10	N/A	WCDMA Band II	0.517	IEEE 802.11g	0.059	Bluetooth	0.005	0.581	<1.6
		10	N/A	WCDMA Band V	0.288	IEEE 802.11g	0.059	Bluetooth	0.005	0.352	<1.6
		10	N/A	LTE Band 2	0.729	IEEE 802.11g	0.059	Bluetooth	0.005	0.793	<1.6
		10	N/A	LTE Band 4	0.900	IEEE 802.11g	0.059	Bluetooth	0.005	0.964	<1.6
		10	N/A	LTE Band 5	0.364	IEEE 802.11g	0.059	Bluetooth	0.005	0.428	<1.6
		10	N/A	GSM 850	0.576	IEEE 802.11g	0.105	Bluetooth	0.013	0.694	<1.6
		10	N/A	GPRS 850	0.404	IEEE 802.11g	0.105	Bluetooth	0.013	0.522	<1.6
		10	N/A	DTM 850	0.341	IEEE 802.11g	0.105	Bluetooth	0.013	0.459	<1.6
		10	N/A	GSM 1900	0.317	IEEE 802.11g	0.105	Bluetooth	0.013	0.435	<1.6
		10	N/A	GPRS 1900	0.332	IEEE 802.11g	0.105	Bluetooth	0.013	0.450	<1.6
Flat	Side 2	10	N/A	DTM 1900	0.271	IEEE 802.11g	0.105	Bluetooth	0.013	0.389	<1.6
1 100	Oldo L	10	N/A	WCDMA Band II	0.461	IEEE 802.11g	0.105	Bluetooth	0.013	0.579	<1.6
		10	N/A	WCDMA Band V	0.371	IEEE 802.11g	0.105	Bluetooth	0.013	0.489	<1.6
		10	N/A	LTE Band 2	0.511	IEEE 802.11g	0.105	Bluetooth	0.013	0.629	<1.6
		10	N/A	LTE Band 4	0.617	IEEE 802.11g	0.105	Bluetooth	0.013	0.735	<1.6
		10	N/A	LTE Band 5	0.386	IEEE 802.11g	0.105	Bluetooth	0.013	0.504	<1.6

Note 1: *=Estimated SAR

^{2: **}The Estimated SAR 0.4W/Kg for 1g SAR when the WWAN Antenna for Side 3 test separation distances is > 50 mm.

		Spacing		WWAN A	ntenna	WLAN Ant	enna	Bluetooth A	Antenna	∑ SAR¹g	
Phanton	n Position	(mm)	ASSY	Band	SAR ^{1g} (W/Kg)	Band	SAR ^{1g} (W/Kg)	Band	SAR ^{1g} (W/Kg)	(W/Kg)	Event
		10	N/A	GPRS 850	0.051	IEEE 802.11g	0.067	Bluetooth	*0.292	0.410	<1.6
Elat		10	N/A	GPRS 1900	0.074	IEEE 802.11g	0.067	Bluetooth	*0.292	0.433	<1.6
		10	N/A	WCDMA Band II	**0.4	IEEE 802.11g	0.067	Bluetooth	*0.292	0.759	<1.6
Flat	Side 3	10	N/A	WCDMA Band V	**0.4	IEEE 802.11g	0.067	Bluetooth	*0.292	0.759	<1.6
		10	N/A	LTE Band 2	**0.4	IEEE 802.11g	0.067	Bluetooth	*0.292	0.759	<1.6
		10	N/A	LTE Band 4	**0.4	IEEE 802.11g	0.067	Bluetooth	*0.292	0.759	<1.6
		10	N/A	LTE Band 5	**0.4	IEEE 802.11g	0.067	Bluetooth	*0.292	0.759	<1.6
		10	N/A	GPRS 850	0.092	IEEE 802.11g	**0.4	Bluetooth	**0.4	0.892	<1.6
		10	N/A	GPRS 1900	0.266	IEEE 802.11g	**0.4	Bluetooth	**0.4	1.066	<1.6
		10	N/A	WCDMA Band II	0.286	IEEE 802.11g	**0.4	Bluetooth	**0.4	1.086	<1.6
Flat	Side 4	10	N/A	WCDMA Band V	0.072	IEEE 802.11g	**0.4	Bluetooth	**0.4	0.872	<1.6
		10	N/A	LTE Band 2	0.410	IEEE 802.11g	**0.4	Bluetooth	**0.4	1.210	<1.6
		10	N/A	LTE Band 4	0.309	IEEE 802.11g	**0.4	Bluetooth	**0.4	1.109	<1.6
		10	N/A	LTE Band 5	0.076	IEEE 802.11g	**0.4	Bluetooth	**0.4	0.876	<1.6
		10	N/A	GPRS 850	0.308	IEEE 802.11g	0.089	Bluetooth	*0.292	0.689	<1.6
		10	N/A	GPRS 1900	0.047	IEEE 802.11g	0.089	Bluetooth	*0.292	0.428	<1.6
		10	N/A	WCDMA Band II	0.076	IEEE 802.11g	0.089	Bluetooth	*0.292	0.457	<1.6
Flat	Side 5	10	N/A	WCDMA Band V	0.267	IEEE 802.11g	0.089	Bluetooth	*0.292	0.648	<1.6
		10	N/A	LTE Band 2	0.099	IEEE 802.11g	0.089	Bluetooth	*0.292	0.480	<1.6
		10	N/A	LTE Band 4	0.086	IEEE 802.11g	0.089	Bluetooth	*0.292	0.467	<1.6
		10	N/A	LTE Band 5	0.263	IEEE 802.11g	0.089	Bluetooth	*0.292	0.644	<1.6
		10	N/A	GPRS 850	0.160	IEEE 802.11g	**0.4	Bluetooth	**0.4	0.960	<1.6
		10	N/A	GPRS 1900	0.311	IEEE 802.11g	**0.4	Bluetooth	**0.4	1.111	<1.6
		10	N/A	WCDMA Band II	0.363	IEEE 802.11g	**0.4	Bluetooth	**0.4	1.163	<1.6
Flat	Side 6	10	N/A	WCDMA Band V	0.133	IEEE 802.11g	**0.4	Bluetooth	**0.4	0.933	<1.6
		10	N/A	LTE Band 2	0.441	IEEE 802.11g	**0.4	Bluetooth	**0.4	1.241	<1.6
		10	N/A	LTE Band 4	0.486	IEEE 802.11g	**0.4	Bluetooth	**0.4	1.286	<1.6
		10	N/A	LTE Band 5	0.175	IEEE 802.11g	**0.4	Bluetooth	**0.4	0.975	<1.6

Note 1: *=Estimated SAR

^{2: **}The Estimated SAR 0.4W/Kg for 1g SAR when the WWAN Antenna for Side 3 test separation distances is > 50 mm.

6.12.3 SAR to peak location separation ratio (SPLSR)

When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The ratio is determined by $(SAR1 + SAR2)^1.5/Ri$, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

All of sum of SAR < 1.6 W/Kg, therefore SPLSR is not required.

6.13 SAR test reduction according to KDB

General:

- The test data reported are the worst-case SAR value with the position set in a typical configuration.
 Test procedures used were according to FCC, Supplement C [June 2001], IEEE1528-2013 and IEEE Std. 1528a-2005.
- All modes of operation were investigated, and worst-case results are reported.
- Tissue parameters and temperatures are listed on the SAR plots.
- Batteries are fully charged for all readings.
- When the Channel's SAR 1g of maximum conducted power is > 0.8 mW/g, low, middle and high channel are supposed to be tested.

KDB 447498:

• The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to IEEE1528-2013 and IEEE Std. 1528a-2005.

KDB 865664:

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg.
- When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg.
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5
 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Report Number: 1410FS12-03 Page 64 of 347

KDB 941225:

- In order to qualify for the above test reduction, the maximum burst-averaged output power for each mode (GMS/GPRS/EDGE) and the corresponding multi-slot class must be clearly identified in the SAR report for each frequency band. We perform worst case SAR with maximum time-average power on GMS/GPRS/EDGE mode.
- When HSDPA & (HSUPA / HSPA+ uplink with QPSK) power are not more than WCDMA 12.2K RMC 0.25dB and the SAR value of WCDMA BII/BV<1.2 mW/g ,therefore HSDPA & HSUPA / HSPA+ Stand-alone SAR is not required.
- When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation, otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel.
- For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 5.2.1 and 5.2.2 are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > ½ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.
- For smaller channel bandwidth SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > ½ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.
- SAR must be measured for all sides and surfaces with a transmitting antenna located within 25 mm from that surface or edge.

KDB 248227:

• If the conducted power of (802.11g and 802.11n) are higher than 802.11b 0.25dB,(802.11g and 802.11n) are supposed to be tested.

Report Number: 1410FS12-03 Page 65 of 347

7. System Verification and Validation

7.1 Symmetric Dipoles for System Verification

Construction Symmetrical dipole with I/4 balun enables measurement of feed point impedance with NWA

matched for use near flat phantoms filled with head simulating solutions Includes distance holder and tripod adaptor Calibration Calibrated SAR value for specified position and input

power at the flat phantom in head simulating solutions.

Frequency 835, 1750, 1900 and 2450 MHz

Return Loss > 20 dB at specified verification position Power Capability > 100 W (f < 1GHz); > 40 W (f > 1GHz)

Options Dipoles for other frequencies or solutions and other calibration conditions are available upon

request

Dimensions D835V2: dipole length 161 mm; overall height 340 mm

D1750V2: dipole length 75.2 mm; overall height 301.5 mm D1900V2: dipole length 67.7 mm; overall height 300 mm D2450V2: dipole length 51.5 mm; overall height 300 mm

7.2 Liquid Parameters

Liquid Verify											
Ambient Te	mperature :	22 ± 2	2 °C ; Relative	Humidity:	40 -70%						
Liquid Type	Frequency	Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)	Measured Date			
	820MHz	22.0	εr	41.57	42.39	1.97%	± 5				
	OZOWII IZ	22.0	σ	0.898	0.865	-3.68%	± 5				
835MHz	835MHz	22.0	٤r	41.50	42.40	2.17%	± 5	2014/09/09			
(Head)	0001011 12	22.0	σ	0.900	0.906	0.67%	± 5	2014/00/00			
	850MHz	22.0	٤r	41.50	42.69	2.87%	± 5				
	OOOWII 12	22.0	σ	0.916	0.939	2.51%	± 5				
	820MHz	22.0	εr	41.57	42.39	1.97%	± 5				
	OZOWII IZ	22.0	σ	0.898	0.865	-3.68%	± 5				
835MHz	835MHz	22.0	εr	41.50	42.40	2.17%	± 5	2014/09/10			
(Head)	OJJIVII IZ	22.0	σ	0.900	0.906	0.67%	± 5	2014/09/10			
	850MHz	22.0	εr	41.50	42.69	2.87%	± 5				
		22.0	σ	0.916	0.939	2.51%	± 5				
	820MHz	22.0	εr	41.57	42.39	1.97%	± 5				
			σ	0.898	0.865	-3.68%	± 5				
835MHz	835MHz	22.0	εr	41.50	42.40	2.17%	± 5	2014/09/11			
(Head)		22.0	σ	0.900	0.906	0.67%	± 5	2014/09/11			
	850MHz	22.0	εr	41.50	42.69	2.87%	± 5				
	030IVII 12	22.0	σ	0.916	0.939	2.51%	± 5				
	1700MHz	22.0	εr	40.14	41.24	2.74%	± 5				
	1700IVII IZ	22.0	σ	1.343	1.380	2.76%	± 5				
1750MHz	1750MHz	22.0	εr	40.10	41.10	2.49%	± 5	2014/09/15			
(Head)	1730W112	22.0	σ	1.370	1.419	3.58%	± 5	2014/09/15			
	1760MHz	22.0	٤r	40.06	41.09	2.49%	± 5				
	1700IVII 12	22.0	σ	1.377	1.427	3.63%	± 5				
1900MHz	19501/147	22.0	εr	40.00	40.82	2.05%	± 5				
	1850MHz	22.0	σ	1.400	1.344	-4.00%	± 5				
	1900MHz	22.0	εr	40.00	40.70	1.75%	± 5	2014/09/12			
(Head)	1 900IVII IZ	22.0	σ	1.400	1.392	-0.57%	± 5	2014/09/12			
	1950MHz	22.0	εr	40.00	40.59	1.48%	± 5				
	I SOUNITZ	22.0	σ	1.400	1.439	2.79%	± 5				

Table 4. Measured Tissue dielectric parameters for body phantoms -1

Report Number: 1410FS12-03 Page 67 of 347

Liquid Verif	·y										
Ambient Te	Ambient Temperature : 22 ± 2 °C ; Relative Humidity : 40 -70%										
Liquid Type Frequency Temp		Temp (°C)	Parameters	ters Target Measured Deviation Value Value (%)		Deviation (%)	Limit (%)	Measured Date			
	2400MHz	22.0	٤r	39.29	38.48	-2.06%	± 5				
	2400IVII 12	22.0	σ	1.756	1.779	1.31%	± 5				
2450MHz	2450MHz	22.0	εr	39.20	38.36	-2.14%	± 5	2014/09/19			
(Head)	2430WII 12	22.0	σ	1.800	1.840	2.22%	± 5	2014/09/19			
	2500MHz	22.0	εr	39.13	38.16	-2.48%	± 5				
	2500IVII 12	22.0	σ	1.853	1.884	1.67%	± 5				
	2400MHz	22.0	εr	39.29	38.48	-2.06%	± 5				
	Z-TOOIVII IZ	22.0	σ	1.756	1.779	1.31%	± 5				
2450MHz	2450MHz	22.0	εr	39.20	38.36	-2.14%	± 5	2014/09/22			
(Head)	2450IVIHZ	22.0	σ	1.800	1.840	2.22%	± 5	2014/09/22			
	2500MHz	2500MHz	2500MHz	2500MHz	22.0	εr	39.13	38.16	-2.48%	± 5	
		22.0	σ	1.853	1.884	1.67%	± 5				
	820MHz	22.0	εr	55.26	55.33	0.13%	± 5				
	020111112	22.0	σ	0.969	0.973	0.41%	± 5				
835MHz	835MHz	22.0	εr	55.20	55.29	0.16%	± 5	2014/09/04			
(Body)		22.0	σ	0.970	0.990	2.06%	± 5	2014/00/04			
	850MHz	22.0	εr	55.15	55.28	0.24%	± 5				
	OOOWII 12	22.0	σ	0.988	1.011	2.33%	± 5				
	820MHz	22.0	٤r	55.26	55.33	0.13%	± 5				
	OZOWII IZ	22.0	σ	0.969	0.973	0.41%	± 5				
835MHz	835MHz	22.0	εr	55.20	55.29	0.16%	± 5	2014/09/05			
(Body)	OOOWI 12	22.0	σ	0.970	0.990	2.06%	± 5	201 4 /09/03			
	850MHz	22.0	εr	55.15	55.28	0.24%	± 5				
	000111112	22.0	σ	0.988	1.011	2.33%	± 5				
	820MHz	22.0	εr	55.26	55.33	0.13%	± 5				
		22.0	σ	0.969	0.973	0.41%	± 5				
835MHz	835MHz	22.0	εr	55.20	55.29	0.16%	± 5	2014/09/10			
(Body)			σ	0.970	0.990	2.06%	± 5	2017/03/10			
	850MHz	22.0	εr	55.15	55.28	0.24%	± 5				
			σ	0.988	1.011	2.33%	± 5				

Table 5. Measured Tissue dielectric parameters for body phantoms -2

Liquid Verif	·y										
Ambient Te	Ambient Temperature : 22 ± 2 °C ; Relative Humidity : 40 -70%										
Liquid Type	Frequency	Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)	Measured Date			
	820MHz	22.0	٤r	55.26	55.33	0.13%	± 5				
	020IVII 12	22.0	σ	0.969	0.973	0.41%	± 5				
835MHz	835MHz	22.0	εr	55.20	55.29	0.16%	± 5	2014/09/11			
(Body)	0331011 12	22.0	σ	0.970	0.990	2.06%	± 5	2014/09/11			
	850MHz	22.0	εr	55.15	55.28	0.24%	± 5				
	050IVII 12	22.0	σ	0.988	1.011	2.33%	± 5				
	1700MHz	22.0	εr	53.56	54.56	1.87%	± 5				
	1700IVII 12	22.0	σ	1.457	1.473	1.10%	± 5				
1750MHz	1750MHz	22.0	٤r	53.40	54.71	2.40%	± 5	2014/09/14			
(Body)		22.0	σ	1.490	1.517	1.81%	± 5	2014/09/14			
	1760MHz	1760MU-z	1760MU-	22.0	٤r	53.41	54.73	2.47%	± 5		
		22.0	σ	1.495	1.522	1.81%	± 5				
	1850MHz	22.0	٤r	53.30	52.36	-1.76%	± 5				
		22.0	σ	1.520	1.456	-4.21%	± 5				
1900MHz	1900MHz	22.0	٤r	53.30	52.46	-1.58%	± 5	2014/09/13			
(Body)		22.0	σ	1.520	1.475	-2.96%	± 5	2017/08/13			
	1950MHz	22.0	εr	53.30	52.06	-2.33%	± 5				
	1930WI1Z	22.0	σ	1.520	1.583	4.15%	± 5				
	2400MHz	22.0	εr	52.77	54.02	2.37%	± 5				
	Z-TOOIVII IZ	22.0	σ	1.902	1.881	-1.10%	± 5				
2450MHz	2450MHz	22.0	εr	52.70	54.46	3.34%	± 5	2014/09/22			
(Body)	2430WII 12	22.0	σ	1.950	1.980	1.54%	± 5	2014/09/22			
	2500MHz	22.0	εr	52.64	53.61	1.84%	± 5				
	2500IVII 12	22.0	σ	2.021	2.016	-0.25%	± 5				
	2400MHz	22.0	εr	52.77	54.02	2.37%	± 5				
	ZTOOIVII IZ	22.0	σ	1.902	1.881	-1.10%	± 5				
2450MHz	2450MHz	22.0	εr	52.70	54.46	3.34%	± 5	2014/09/24			
(Body)	Z T JUIVII IZ	22.0	σ	1.950	1.980	1.54%	± 5	2014/09/24			
	2500MHz	22.0	εr	52.64	53.61	1.84%	± 5				
	ZJUUIVII IZ	22.0	σ	2.021	2.016	-0.25%	± 5				

Table 6. Measured Tissue dielectric parameters for body phantoms -3

7.3 Verification Summary

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of \pm 7%. The verification was performed at 835, 1750, 1900 and 2450MHz.

	Frequency	Power	SAR _{1g}	SAR _{10g}	Drift (dB)	Difference percentage		Probe	Dipole	1W Target		Date
Туре	(MHz)	1 OWEI	(W/Kg)	(W/Kg)		1g	10g	Model / Serial No.	Model / Serial No.	SAR _{1g} (W/Kg)	SAR _{10g} (W/Kg)	
		250 mW	2.23	1.46				EX3DV4	D835V2			
Head	835	Normalize to 1 Watt	8.92	5.84	-0.11	-4.20%	-3.20%	SN:3977	SN:4d082	9.31	6.03	Sep. 09, 2014
l		250 mW	2.33	1.52	0.4-			EX3DV4	D835V2	2.24		
Head	835	Normalize to 1 Watt	9.32	6.08	-0.17	0.10%	0.80%	SN:3977	SN:4d082	9.31	6.03	Sep. 10, 2014
		250 mW	2.36	1.54	-0.03	1.40%	2.20%	EX3DV4 SN:3977	D835V2 SN:4d082	9.31	6.03	Sep. 11, 2014
Head	835	Normalize to 1 Watt	9.44	6.16								
		250 mW	9.14	4.74	-0.16	6 -0.40%	-2.80%	EX3DV4	D1750V2 SN:1023		19.50	Sep. 15, 2014
Head	1750	Normalize to 1 Watt	36.56	18.96				SN:3977		36.70		
	4000	250 mW	9.92	5.16				EX3DV4	D1900V2	10.00		Sep. 12, 2014
Head	1900	Normalize to 1 Watt	39.68	20.64	-0.1	-2.30%	-2.60%	SN:3977	SN:5d111	40.60	21.20	
		250 mW	13.30	6.12				EX3DV4	D2450V2			
Head	2450	Normalize to 1 Watt	53.20	24.48	-0.13	2.30%	0.70%	SN:3977	SN:712	52.00	24.30	Sep. 19, 2014
	0.450		12.50	5.82			1.005	EX3DV4	D2450V2 SN:712	52.00	24.30	
Head	2450	Normalize to 1 Watt	50.00	23.28	0	-3.80%	-4.20%	SN:3977				Sep. 22, 2014

Report Number: 1410FS12-03 Page 70 of 347

	Frequency	Power	SAR _{1g}	SAR _{10g}	Drift			Probe	Dipole	1W Target		Date
Туре	(MHz)	1 OWEI	(W/Kg)	(W/Kg)	(dB)	1g	10g	Model / Serial No.	Model / Serial No.	SAR _{1g} (W/Kg)	SAR _{10g} (W/Kg)	Date
		250 mW	2.39	1.58				EX3DV4	D835V2			
Body	835	Normalize to 1 Watt	9.56	6.32	-0.01	0.60%	0.80%	SN:3977	SN:4d082	9.50	6.27	Sep. 04, 2014
		250 mW	2.43	1.60				EX3DV4	D835V2			
Body	835	Normalize to 1 Watt	9.72	6.40	-0.1	2.30%	2.10%	SN:3977	SN:4d082	9.50	6.27	Sep. 05, 2014
		250 mW	2.46	1.62			3.30%	EX3DV4	D835V2 SN:4d082	9.50	6.27	Sep. 10, 2014
Body	835	Normalize to 1 Watt	9.84	6.48	-0.18	3.60%		SN:3977				
		250 mW	2.39	1.57	-0.02	0.60%	0.20%	EX3DV4 SN:3977	D835V2 SN:4d082		6.27	0 44 0044
Body	835	Normalize to 1 Watt	9.56	6.28						9.50		Sep. 11, 2014
		250 mW	9.62	5.05		1.50%	-1.00%	EX3DV4 SN:3977	D1750V2 SN:1023		20.40	Sep. 14, 2014
Body	1750	Normalize to 1 Watt	38.48	20.20	-0.12					37.90		
	4000	250 mW	10.00	5.23	0.40	4.000/	0.700/	EX3DV4	D1900V2	10.10	04.50	
Body	1900	Normalize to 1 Watt	40.00	20.92	-0.19	-1.00%	-2.70%	SN:3977	SN:5d111	40.40	21.50	Sep. 13, 2014
	0.450	250 mW	12.30	5.81			4.400/	EX3DV4	D2450V2			
Body	2450	Normalize to 1 Watt	49.20	23.24	0.05	-2.20%	-1.10%	SN:3977	SN:712	50.30	23.50	Sep. 22, 2014
		250 mW	12.20	5.68				EX3DV4	D2450V2 SN:712	50.30	23.50	
Body	2450	Normalize to 1 Watt	48.80	22.72	-0.01	-3.00%	-3.30%	SN:3977				Sep. 24, 2014

7.4 Validation Summary

Per FCC KDB 865664 D02v01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2013 and FCC KDB 865664 D01v01r03. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters as below.

Probe Type	Prob Cal.		Cond.	Perm.	C	W Validation	1	Мо	od. Validati		
Model / Serial No.	Point (MHz)	Head / Body	εr	О	Sensitivity	Probe	Probe	Mod.	Duty	PAR	Date
Seliai No.	(1011 12)		13		Gensiavity	Linearity	Isotropy	Туре	Factor	FAIN	
EX3DV4 SN:3977	835	Head	42.40	0.906	Pass	Pass	Pass	GMSK	Pass	N/A	Sep. 09, 2014
EX3DV4 SN:3977	835	Head	42.40	0.906	Pass	Pass	Pass	GMSK	Pass	N/A	Sep. 10, 2014
EX3DV4 SN:3977	835	Head	42.40	0.906	Pass	Pass	Pass	GMSK	Pass	N/A	Sep. 11, 2014
EX3DV4 SN:3977	835	Body	55.29	0.990	Pass	Pass	Pass	GMSK	Pass	N/A	Sep. 04, 2014
EX3DV4 SN:3977	835	Body	55.29	0.990	Pass	Pass	Pass	GMSK	Pass	N/A	Sep. 05, 2014
EX3DV4 SN:3977	835	Body	55.29	0.990	Pass	Pass	Pass	GMSK	Pass	N/A	Sep. 10, 2014
EX3DV4 SN:3977	835	Body	55.29	0.990	Pass	Pass	Pass	GMSK	Pass	N/A	Sep. 11, 2014
EX3DV4 SN:3977	1750	Head	41.10	1.419	Pass	Pass	Pass	GMSK	Pass	N/A	Sep. 15, 2014
EX3DV4 SN:3977	1750	Body	54.71	1.517	Pass	Pass	Pass	GMSK	Pass	N/A	Sep. 14, 2014
EX3DV4 SN:3977	1900	Head	40.70	1.392	Pass	Pass	Pass	GMSK	Pass	N/A	Sep. 12, 2014
EX3DV4 SN:3977	1900	Body	52.46	1.475	Pass	Pass	Pass	GMSK	Pass	N/A	Sep. 13, 2014
EX3DV4 SN:3977	2450	Head	38.36	1.840	Pass	Pass	Pass	OFDM	N/A	Pass	Sep. 19, 2014
EX3DV4 SN:3977	2450	Head	38.36	1.840	Pass	Pass	Pass	OFDM	N/A	Pass	Sep. 22, 2014
EX3DV4 SN:3977	2450	Body	54.46	1.980	Pass	Pass	Pass	OFDM	N/A	Pass	Sep. 22, 2014
EX3DV4 SN:3977	2450	Body	54.46	1.980	Pass	Pass	Pass	OFDM	N/A	Pass	Sep. 24, 2014

Report Number: 1410FS12-03 Page 72 of 347

8. Test Equipment List

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calib	ration	
Wandacturer		Турслиоцеі	Ochai Nambei	Last Cal.	Due Date	
SPEAG	835MHz System Validation Kit	D835V2	4d082	Jul. 23, 2014	Jul. 23, 2015	
SPEAG	1750MHz System Validation Kit	D1750V2	1023	Jun. 17, 2014	Jun. 17, 2015	
SPEAG	1900MHz System Validation Kit	D1900V2	5d111	Jul. 23, 2014	Jul. 23, 2015	
SPEAG	2450MHz System Validation Kit	D2450V2	712	Mar. 04, 2014	Mar. 04, 2015	
SPEAG	Dosimetric E-Field Probe	EX3DV4	3977	Feb. 17, 2014	Feb. 17, 2015	
SPEAG	Data Acquisition Electronics	DAE4	779	Feb. 25, 2014	Feb. 25, 2015	
SPEAG	Device Holder	N/A	N/A	NO	CR	
SPEAG	Measurement Server	SE UMS 011 AA	1025	NO	CR	
SPEAG	Phantom	SAM V4.0	TP-1150	NO	CR	
SPEAG	Robot	Staubli TX90XL	F07/564ZA1/C/01	NO	CR	
SPEAG	Software	DASY52 V52.8 (7)	N/A	NO	CR	
SPEAG	Software	SEMCAD X V14.6.10 (7164)	N/A	NO	CR	
Agilent	Dielectric Probe Kit	85070C	US99360094	NO	CR	
Agilent	ENA Series Network Analyzer	E5071B	MY42404655	Apr. 10, 2014	Apr. 10, 2015	
R&S	Power Sensor	NRP-Z22	100179	May 20, 2014	May 20, 2015	
Agilent	MXF-G-B RF Vector Signal Generator	N5182B	MY53050382	May 30, 2014	May 30, 2015	
Agilent	Dual Directional Coupler	778D	50334	NCR		
Mini-Circuits	Power Amplifier	ZHL-42W-SMA	D111103#5	NCR		
Mini-Circuits	Power Amplifier	ZVE-8G-SMA	D042005 671800514	NCR		
Aisi	Attenuator	IEAT 3dB	N/A	NO	CR	

Table 7. Test Equipment List

Report Number: 1410FS12-03 Page 73 of 347

9. Measurement Uncertainty

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental. However, we estimate the measurement uncertainties in SAR to be less than $\pm 19.62~\%~(8)$. The frequency range of the measurement uncertainty is 750 \sim 5800MHz $\pm 10.1~\%$

According to Std. C95.3 [9], the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of \pm 1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least \pm 2dB can be expected.

Report Number: 1410FS12-03 Page 74 of 347

Item	Uncertainty Component	Uncertainty Value	Prob. Dist	Div.	<i>c_i</i> (1g)	<i>c_i</i> (10g)	Std. Unc.	Std. Unc. (10-g)	v _i or V _{eff}
Meas	urement System								
u1	Probe Calibration (<i>k</i> =1)	±5.05%	Normal	1	1	1	±5.05%	±5.05%	∞
u2	Probe Isotropy	±7.6%	Rectangular	$\sqrt{3}$	0.7	0.7	±3.1%	±3.1%	8
u3	Boundary Effect	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.6%	±0.6%	8
u4	Linearity	±4.7%	Rectangular	$\sqrt{3}$	1	1	±2.7%	±2.7%	8
u5	System Detection Limit	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.58%	±0.58%	8
u6	Readout Electronics	±0.3%	Normal	1	1	1	±0.3%	±0.3%	8
u7	Response Time	±0.8%	Rectangular	$\sqrt{3}$	1	1	±0.5%	±0.5%	8
u8	Integration Time	±2.6%	Rectangular	$\sqrt{3}$	1	1	±1.5%	±1.5%	8
u9	RF Ambient Conditions	±0%	Rectangular	$\sqrt{3}$	1	1	±0%	±0%	8
u10	RF Ambient Reflections	±0%	Rectangular	$\sqrt{3}$	1	1	±0%	±0%	∞
u11	Probe Positioner Mechanical Tolerance	±0.4%	Rectangular	$\sqrt{3}$	1	1	±0.2%	±0.2%	8
u12	Probe Positioning with respect to Phantom Shell	±2.9%	Rectangular	$\sqrt{3}$	1	1	±1.7%	±1.7%	8
u13	Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Test s	ample Related					•			
u14	Test sample Positioning	±3.6%	Normal	1	1	1	±3.6%	±3.6%	89
u15	Device Holder Uncertainty	±3.5%	Normal	1	1	1	±3.5%	±3.5%	5
u16	Output Power Variation - SAR drift measurement	±5.0%	Rectangular	$\sqrt{3}$	1	1	±2.9%	±2.9%	8
Phant	om and Tissue Parameters								
u17	Phantom Uncertainty (shape and thickness tolerances)	±4.0%	Rectangular	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
u18	Liquid Conductivity - deviation from target values	±5.0%	Rectangular	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	∞
u19	Liquid Conductivity - measurement uncertainty	±1.93%	Normal	1	0.64	0.43	±1.24%	±0.83%	69
u20	Liquid Permittivity - deviation from target values	±5.0%	Rectangular	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
u21	Liquid Permittivity - measurement uncertainty	±1.4%	Normal	1	0.6	0.49	±0.84%	±1.69%	69
	Combined standard uncertaint	у	RSS				±9.81%	±9.62%	313
	Expanded uncertainty (95% CONFIDENCE LEVEL)		<i>k</i> =2				±19.62%	±19.24%	

Table 8. Uncertainty Budget of DASY

10. Measurement Procedure

The measurement procedures are as follows:

- 1. For WLAN function, engineering testing software installed on Notebook can provide continuous transmitting signal.
- 2. Measure output power through RF cable and power meter
- 3. Set scan area, grid size and other setting on the DASY software
- 4. Find out the largest SAR result on these testing positions of each band
- 5. Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- 1. Power reference measurement
- 2. Area scan
- 3. Zoom scan
- 4. Power drift measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages

- 1. Extraction of the measured data (grid and values) from the Zoom Scan
- 2. Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. Generation of a high-resolution mesh within the measured volume
- 4. Interpolation of all measured values form the measurement grid to the high-resolution grid
- 5. Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- Calculation of the averaged SAR within masses of 1g and 10g

Report Number: 1410FS12-03 Page 76 of 347

10.2 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures points and step size follow as below. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

Grid Type	Frequ	iency	Ste	ep size (m	ım)	X*Y*Z	(Cube size	Э		Step size)
			Χ	Υ	Z	(Point)	Χ	Υ	Z	Χ	Υ	Z
	\leq 3GHz	≦2GHz	≤8	≤8	≤ 5	5*5*7	32	32	30	8	8	5
uniform grid		2G - 3G	≤ 5	≤ 5	≤ 5	7*7*7	30	30	30	5	5	5
unilonni gna		3 - 4GHz	≤ 5	≤ 5	≤ 4	7*7*8	30	30	28	5	5	4
	3 - 6GHz	4 - 5GHz	≤ 4	≤ 4	≤ 3	8*8*10	28	28	27	4	4	3
		5 - 6GHz	≤ 4	≤ 4	≤ 2	8*8*12	28	28	22	4	4	2

(Our measure settings are refer KDB Publication 865664 D01v01)

10.3 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the DUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

10.4 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

10.5 Power Drift Monitoring

All SAR testing is under the DUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of DUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Report Number: 1410FS12-03 Page 77 of 347

11. SAR Test Results Summary

11.1 Head Measurement SAR

Index.	Position	Band	Ch.	Data Rate or Sub-Test	SIM	Spacing (mm)	SAR 1g (W/Kg)	Power Drift	Burst Avg Power	Max tune-up	Reported SAR _{1g} (W/Kg)
#8	RC		251	1D1U	1	0	0.355	0.03	33.22	33.5	0.379
#9	RT	GSM 850	251	1D1U	1	0	0.247	-0.07	33.22	33.5	0.263
#10	LC	G3W 650	251	1D1U	1	0	0.405	0.03	33.22	33.5	0.432
#11	LT		251	1D1U	1	0	0.234	-0.11	33.22	33.5	0.250
#12	RC		190	3D2U	1	0	0.281	0.02	30.95	31.0	0.284
#13	RT	GPRS 850	190	3D2U	1	0	0.198	0.04	30.95	31.0	0.200
#14	LC	GFK3 000	190	3D2U	1	0	0.345	0.19	30.95	31.0	0.349
#15	LT		190	3D2U	1	0	0.192	0.01	30.95	31.0	0.194
#28	RC		128	2D3U	1	0	0.231	-0.15	28.74	29.0	0.245
#29	RT	DTM 850	128	2D3U	1	0	0.169	-0.09	28.74	29.0	0.179
#30	LC		128	2D3U	1	0	0.246	0.02	28.74	29.0	0.261
#31	LT		128	2D3U	1	0	0.144	-0.07	28.74	29.0	0.153
#71	RC		810	1D1U	1	0	0.311	0.11	30.95	31.0	0.315
#72	RT	GSM 1900	810	1D1U	1	0	0.091	0.03	30.95	31.0	0.092
#73	LC	G3W 1900	810	1D1U	1	0	0.150	0.14	30.95	31.0	0.152
#74	LT		810	1D1U	1	0	0.123	0.09	30.95	31.0	0.124
#75	RC		810	2D3U	1	0	0.300	-0.07	26.93	27.0	0.305
#76	RT	GPRS 1900	810	2D3U	1	0	0.081	-0.02	26.93	27.0	0.082
#77	LC	GI NO 1900	810	2D3U	1	0	0.146	-0.03	26.93	27.0	0.148
#78	LT		810	2D3U	1	0	0.118	-0.06	26.93	27.0	0.120
#79	RC		810	2D3U	1	0	0.240	-0.04	26.77	27.0	0.253
#80	RT	DTM 1900	810	2D3U	1	0	0.076	0.06	26.77	27.0	0.080
#81	LC	טואו ואוט	810	2D3U	1	0	0.114	0.02	26.77	27.0	0.120
#82	LT		810	2D3U	1	0	0.104	0.10	26.77	27.0	0.110

Note: 1. According KDB 447498 D01 V05r02 section 4.1.4, the "Reported" explanation as below:
"When SAR or MPE is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported."

Report Number: 1410FS12-03 Page 78 of 347

^{2.} If the Channel's SAR 1g of maximum conducted power is > 0.8 mW/g, low, middle and high channel are supposed to be tested.

^{3.} SIM 1 is only usable with WWan antenna 1 and SIM interface 2 with WWAN antenna 2.

Index.	Position	Band	Ch.	Data Rate or Sub-Test	SIM	Spacing (mm)	SAR _{1g} (W/Kg)	Power Drift	Burst Avg Power	Max tune-up	Reported SAR _{1g} (W/Kg)
#59	RC		251	1D1U	2	0	0.153	0.13	33.07	33.5	0.169
#60	RT	GSM 850	251	1D1U	2	0	0.104	0.04	33.07	33.5	0.115
#61	LC	GOINI 000	251	1D1U	2	0	0.212	-0.04	33.07	33.5	0.234
#62	LT		251	1D1U	2	0	0.173	-0.01	33.07	33.5	0.191
#63	RC		190	3D2U	2	0	0.117	0.02	30.77	31.0	0.123
#64	RT	GPRS 850	190	3D2U	2	0	0.091	0.06	30.77	31.0	0.096
#65	LC	GPK5 850	190	3D2U	2	0	0.160	-0.19	30.77	31.0	0.169
#66	LT		190	3D2U	2	0	0.137	0.08	30.77	31.0	0.144
#67	RC		128	2D3U	2	0	0.084	0.10	28.56	29.0	0.093
#68	RT	DTM 050	128	2D3U	2	0	0.070	0.06	28.56	29.0	0.077
#69	LC	DTM 850	128	2D3U	2	0	0.112	0.12	28.56	29.0	0.124
#70	LT		128	2D3U	2	0	0.090	0.12	28.56	29.0	0.100
#95	RC		810	1D1U	2	0	0.258	0.01	30.80	31.0	0.270
#96	RT	GSM 1900	810	1D1U	2	0	0.246	-0.01	30.80	31.0	0.258
#97	LC	GSW 1900	810	1D1U	2	0	0.535	0.13	30.80	31.0	0.560
#98	LT		810	1D1U	2	0	0.408	0.01	30.80	31.0	0.427
#99	RC		810	2D3U	2	0	0.201	0.03	26.74	27.0	0.213
#100	RT	GPRS 1900	810	2D3U	2	0	0.185	-0.07	26.74	27.0	0.196
#101	LC	GPRS 1900	810	2D3U	2	0	0.504	0.04	26.74	27.0	0.535
#102	LT		810	2D3U	2	0	0.407	-0.01	26.74	27.0	0.432
#103	RC	DTM 1900 -	810	2D3U	2	0	0.180	0.19	26.60	27.0	0.197
#104	RT		810	2D3U	2	0	0.194	0.04	26.60	27.0	0.213
#105	LC		810	2D3U	2	0	0.438	0.10	26.60	27.0	0.480
#106	LT		810	2D3U	2	0	0.273	-0.01	26.60	27.0	0.299

^{2.} If the Channel's SAR 1g of maximum conducted power is > 0.8 mW/g, low, middle and high channel are supposed to be tested.

^{3.} SIM 1 is only usable with WWan antenna 1 and SIM interface 2 with WWAN antenna 2.

Index.	Position	Band	Ch.	Data Rate or Sub-Test	SIM	Spacing (mm)	SAR 1g (W/Kg)	Power Drift	Burst Avg Power	Max tune-up	Reported SAR _{1g} (W/Kg)
#91	RC		9262	RMC12.2K		0	0.414	0.06	23.77	24.0	0.437
#92	RT	WCDMA Bond II	9262	RMC12.2K		0	0.093	0.17	23.77	24.0	0.098
#93	LC	WCDMA Band II	9262	RMC12.2K		0	0.220	-0.19	23.77	24.0	0.232
#94	LT		9262	RMC12.2K		0	0.148	0.11	23.77	24.0	0.156
#16	RC		4183	RMC12.2K		0	0.201	-0.06	23.58	24.0	0.221
#17	RT	WCDMA Band V	4183	RMC12.2K		0	0.150	0.08	23.58	24.0	0.165
#18	LC		4183	RMC12.2K		0	0.247	-0.17	23.58	24.0	0.272
#19	LT		4183	RMC12.2K		0	0.137	-0.07	23.58	24.0	0.151

- 2. If the Channel's SAR 1g of maximum conducted power is > 0.8 mW/g, low, middle and high channel are supposed to be tested.
- 3. HSDPA & HSUPA power are not more than WCDMA 0.25dB and the SAR value of WCDMA <1.2 mW/g therefore HSDPA & HSUPA Stand-alone SAR is not required.
- 4. SIM 1 is only usable with WWan antenna 1 and SIM interface 2 with WWAN antenna 2.

Report Number: 1410FS12-03 Page 80 of 347

Index.	Position	Band	Ch.	BW	Modulation	F	RB	Side to	Spacing			Burst Avg		Reported
				(MHz)		Size	Offset	Phantom	(mm)	(W/Kg)	Drift	Power	tune-up	SAR 1g
#83	RC		18900	20	QPSK	1	0	1	0	0.498	0.08	23.29	23.5	0.523
#87	RC		18900	20	QPSK	50	0	1	0	0.387	0.12	22.52	23.5	0.485
#84	RT		18900	20	QPSK	1	0	1	0	0.135	0.04	23.29	23.5	0.142
#88	RT	LTE Band 2	18900	20	QPSK	50	0	1	0	0.107	0.04	22.52	23.5	0.134
#85	LC	LIE Dallu Z	18900	20	QPSK	1	0	1	0	0.245	0.17	23.29	23.5	0.257
#89	LC		18900	20	QPSK	50	0	1	0	0.164	0.18	22.52	23.5	0.206
#86	LT		18900	20	QPSK	1	0	1	0	0.190	-0.13	23.29	23.5	0.199
#90	LT		18900	20	QPSK	50	0	1	0	0.151	0.04	22.52	23.5	0.189
#158	RC		20300	20	QPSK	1	0	1	0	0.691	0.12	23.47	23.5	0.696
#162	RC		20300	20	QPSK	50	0	1	0	0.554	0.01	22.63	23.5	0.677
#159	RT		20300	20	QPSK	1	0	1	0	0.244	0.04	23.47	23.5	0.246
#163	RT	LTE Band 4	20300	20	QPSK	50	0	1	0	0.189	0.01	22.63	23.5	0.231
#160	LC	LIE Dallu 4	20300	20	QPSK	1	0	1	0	0.423	-0.06	23.47	23.5	0.426
#164	LC		20300	20	QPSK	50	0	1	0	0.337	0.06	22.63	23.5	0.412
#161	LT		20300	20	QPSK	1	0	1	0	0.263	0.07	23.47	23.5	0.265
#165	LT		20300	20	QPSK	50	0	1	0	0.211	-0.06	22.63	23.5	0.258
#20	RC		20450	10	QPSK	1	0	1	0	0.252	0.12	23.29	23.5	0.264
#24	RC		20450	10	QPSK	25	0	1	0	0.192	0.10	22.34	23.5	0.251
#21	RT		20450	10	QPSK	1	0	1	0	0.207	-0.17	23.29	23.5	0.217
#25	RT	LTE Bond 5	20450	10	QPSK	25	0	1	0	0.143	0.12	22.34	23.5	0.187
#22	LC	LTE Band 5	20450	10	QPSK	1	0	1	0	0.292	0.19	23.29	23.5	0.306
#26	LC		20450	10	QPSK	25	0	1	0	0.221	0.14	22.34	23.5	0.289
#23	LT		20450	10	QPSK	1	0	1	0	0.170	-0.11	23.29	23.5	0.178
#27	LT		20450	10	QPSK	25	0	1	0	0.132	0.02	22.34	23.5	0.172

- 2. If the Channel's SAR 1g of maximum conducted power is > 0.8 mW/g, low, middle and high channel are supposed to be tested.
- 3. SIM 1 is only usable with WWan antenna 1 and SIM interface 2 with WWAN antenna 2.

Index.	Position	Band	Ch.	Data Rate or Sub-Test	Side to Phantom	Spacing (mm)	SAR _{1g} (W/Kg)	Power Drift	Burst Avg Power	Max tune-up	Reported SAR _{1g} (W/Kg)
#166	RC		1	1M		0	0.066	0.04	12.20	12.5	0.071
#167	RT	IEEE 802.11b	1	1M		0	0.057	-0.15	12.20	12.5	0.061
#168	LC	IEEE OUZ.IID	1	1M		0	0.015	-0.08	12.20	12.5	0.016
#169	LT		1	1M		0	0.015	0.18	12.20	12.5	0.016
#170	RC	IEEE 000 44 m	6	6M		0	0.196	-0.17	16.19	16.5	0.211
#171	RT		6	6M		0	0.182	-0.03	16.19	16.5	0.195
#172	LC	IEEE 802.11g	6	6M		0	0.046	-0.12	16.19	16.5	0.049
#173	LT		6	6M		0	0.049	-0.11	16.19	16.5	0.053
#174	RC		6	6.5M		0	0.170	0.01	14.52	15.0	0.190
#175	RT	IEEE 802.11n (20MHz)	6	6.5M		0	0.141	-0.02	14.52	15.0	0.157
#176	LC		6	6.5M		0	0.025	0.05	14.52	15.0	0.028
#177	LT		6	6.5M		0	0.035	-0.08	14.52	15.0	0.039

- 2. If the Channel's SAR 1g of maximum conducted power is > 0.8 mW/g, low, middle and high channel are supposed to be tested.
- 3. SIM 1 is only usable with WWan antenna 1 and SIM interface 2 with WWAN antenna 2.

11.2 Body Measurement SAR

Evaluated body SAR is not available.

11.3 Hot-spot mode Measurement SAR

Index.	Position	Band	Ch.	Data Rate or Sub-Test	Side to Phantom	Spacing (mm)	SIM	Accessory	SAR 1g (W/Kg)	Power Drift	Burst Avg Power	Max tune-up	Reported SAR 1g\ (W/Kg)
#1	Flat	GSM 850	251	1D1U	1	10	1	Headset	0.510	-0.05	33.22	33.5	0.544
#2	Flat	GOIVI OOO	251	1D1U	2	10	1	Headset	0.540	-0.03	33.22	33.5	0.576
#3	Flat		190	3D2U	1	10	1		0.416	-0.01	30.95	31.0	0.421
#4	Flat		190	3D2U	2	10	1		0.399	-0.03	30.95	31.0	0.404
#5	Flat	GPRS 850	190	3D2U	4	10	1		0.091	-0.13	30.95	31.0	0.092
#6	Flat		190	3D2U	5	10	1		0.304	-0.10	30.95	31.0	0.308
#7	Flat		190	3D2U	6	10	1		0.156	-0.04	30.95	31.0	0.158
#32	Flat	DTM 850	128	2D3U	1	10	1	Headset	0.342	0.07	28.74	29.0	0.363
#33	Flat	D 1 W 030	128	2D3U	2	10	1	Headset	0.321	-0.03	28.74	29.0	0.341
#116	Flat	GSM 1900	810	1D1U	1	10	1	Headset	0.364	0.00	30.95	31.0	0.368
#117	Flat	GSIVI 1900	810	1D1U	2	10	1	Headset	0.313	0.08	30.95	31.0	0.317
#118	Flat		810	2D3U	1	10	1		0.435	-0.18	26.93	27.0	0.442
#119	Flat		810	2D3U	2	10	1		0.327	-0.09	26.93	27.0	0.332
#120	Flat	GPRS 1900	810	2D3U	4	10	1		0.262	-0.11	26.93	27.0	0.266
#121	Flat	<u> </u>	810	2D3U	5	10	1		0.046	-0.11	26.93	27.0	0.047
#122	Flat		810	2D3U	6	10	1		0.306	-0.13	26.93	27.0	0.311
#123	Flat	DTM 1900	810	2D3U	1	10	1	Headset	0.333	0.02	26.77	27.0	0.351
#124	Flat	חוות ופונים	810	2D3U	2	10	1	Headset	0.257	-0.08	26.77	27.0	0.271

Note: 1. According KDB 447498 D01 V05r02 section 4.1.4, the "Reported" explanation as below:
"When SAR or MPE is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported."

- 2. If the Channel's SAR 1g of maximum conducted power is > 0.8 mW/g, low, middle and high channel are supposed to be tested.
- 3. For hot-spot mode, the WWAN antenna1 location to edge >2.5 cm therefore test Side 3 are not required.
- 4. SIM 1 is only usable with WWan antenna 1 and SIM interface 2 with WWAN antenna 2.

Report Number: 1410FS12-03 Page 83 of 347

Index.	Position	Band	Ch.	Data Rate or Sub-Test	Side to Phantom	Spacing (mm)	SIM	Accessory	SAR _{1g} (W/Kg)	Power Drift	Burst Avg Power	Max tune-up	Reported SAR 1g\ (W/Kg)
#50	Flat	GSM 850	251	1D1U	1	10	2	Headset	0.067	0.18	33.07	33.5	0.074
#51	Flat	GSIVI 000	251	1D1U	2	10	2	Headset	0.282	-0.18	33.07	33.5	0.311
#52	Flat		190	3D2U	1	10	2		0.068	-0.02	30.77	31.0	0.072
#53	Flat	GPRS 850	190	3D2U	2	10	2		0.306	0.11	30.77	31.0	0.323
#54	Flat	GFK3 000	190	3D2U	3	10	2		0.048	0.01	30.77	31.0	0.051
#56	Flat		190	3D2U	6	10	2		0.152	-0.06	30.77	31.0	0.160
#57	Flat	DTM 850	128	2D3U	1	10	2	Headset	0.049	0.01	28.56	29.0	0.054
#58	Flat	D 1 IVI 000	128	2D3U	2	10	2	Headset	0.209	-0.02	28.56	29.0	0.231
#107	Flat	GSM 1900	810	1D1U	1	10	2	Headset	0.100	0.17	30.80	31.0	0.105
#108	Flat	GSW 1900	810	1D1U	2	10	2	Headset	0.222	0.12	30.80	31.0	0.232
#109	Flat		810	2D3U	1	10	2		0.089	0.19	26.74	27.0	0.094
#110	Flat	CDDS 1000	810	2D3U	2	10	2		0.227	-0.06	26.74	27.0	0.241
#111	Flat	GPRS 1900 —	810	2D3U	3	10	2		0.070	-0.04	26.74	27.0	0.074
#113	Flat	⊢	810	2D3U	6	10	2		0.201	-0.13	26.74	27.0	0.213
#114	Flat	DTM 1900	810	2D3U	1	10	2	Headset	0.077	0.17	26.60	27.0	0.084
#115	Flat		810	2D3U	2	10	2	Headset	0.163	-0.03	26.60	27.0	0.179

Note: 1. According KDB 447498 D01 V05r02 section 4.1.4, the "Reported" explanation as below:
"When SAR or MPE is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported."

- 2. If the Channel's SAR 1g of maximum conducted power is > 0.8 mW/g, low, middle and high channel are supposed to be tested.
- 3. For hot-spot mode the WWAN antenna2 location to edge >2.5 cm therefore test Side 4 and Side5 are not required.
- 4. SIM 1 is only usable with WWan antenna 1 and SIM interface 2 with WWAN antenna 2.

Index.	Position	Band	Ch.	Data Rate or Sub-Test	Side to Phantom	Spacing (mm)	Accessory	SAR _{1g} (W/Kg)	Power Drift	Burst Avg Power	Max tune-up	Reported SAR 1g\ (W/Kg)
#125	Flat		9262	RMC12.2K	1	10		0.490	-0.18	23.77	24.0	0.517
#130	Flat		9262	RMC12.2K	1	10	Headset	0.469	-0.04	23.77	24.0	0.495
#126	Flat	WCDMA	9262	RMC12.2K	2	10		0.437	-0.06	23.77	24.0	0.461
#127	Flat	Band II	9262	RMC12.2K	4	10		0.271	-0.01	23.77	24.0	0.286
#128	Flat		9262	RMC12.2K	5	10		0.072	0.04	23.77	24.0	0.076
#129	Flat		9262	RMC12.2K	6	10		0.344	0.04	23.77	24.0	0.363
#34	Flat		4183	RMC12.2K	1	10		0.261	0.05	23.58	24.0	0.288
#39	Flat		4183	RMC12.2K	2	10	Headset	0.337	-0.03	23.58	24.0	0.371
#35	Flat	WCDMA	4183	RMC12.2K	2	10		0.325	-0.01	23.58	24.0	0.358
#36	Flat	Band V	4183	RMC12.2K	4	10		0.065	-0.03	23.58	24.0	0.072
#37	Flat		4183	RMC12.2K	5	10		0.242	-0.10	23.58	24.0	0.267
#38	Flat		4183	RMC12.2K	6	10		0.121	-0.08	23.58	24.0	0.133

Note: 1. According KDB 447498 D01 V05r02 section 4.1.4, the "Reported" explanation as below:
"When SAR or MPE is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported."

- 2. If the Channel's SAR 1g of maximum conducted power is > 0.8 mW/g, low, middle and high channel are supposed to be tested.
- 3. HSDPA & HSUPA power are not more than WCDMA 0.25dB and the SAR value of WCDMA <1.2 mW/g, therefore HSDPA & HSUPA Stand-alone SAR is not required.

Index.	Position	Band	Ch.	BW (MHz)	RB Size	RB Offset	Side to Phantom	Spacing (mm)	Accessory	SAR 1g (W/Kg)	Power Drift	Burst Avg Power	Max tune-up	Reported SAR 1g\ (W/Kg)
#131	Flat		18900	20	1	0	1	10		0.657	-0.03	23.29	23.5	0.690
#132	Flat		18900	20	1	0	2	10		0.487	0.10	23.29	23.5	0.511
#133	Flat		18900	20	1	0	4	10		0.391	0.14	23.29	23.5	0.410
#134	Flat		18900	20	1	0	5	10		0.094	-0.15	23.29	23.5	0.099
#135	Flat	LTE Band 2	18900	20	1	0	6	10		0.420	-0.19	23.29	23.5	0.441
#136	Flat	(QPSK)	18900	20	50	0	1	10		0.582	0.07	22.52	23.5	0.729
#137	Flat		18900	20	50	0	2	10		0.392	-0.11	22.52	23.5	0.491
#138	Flat		18900	20	50	0	4	10		0.315	-0.13	22.52	23.5	0.395
#139	Flat		18900	20	50	0	5	10		0.077	-0.19	22.52	23.5	0.096
#140	Flat		18900	20	50	0	6	10		0.348	-0.11	22.52	23.5	0.436
#151	Flat		20050	20	1	0	1	10		0.829	-0.05	23.36	23.5	0.856
#156	Flat		20050	20	50	0	1	10		0.570	-0.10	22.56	23.5	0.708
#152	Flat		20175	20	1	0	1	10		0.845	0.00	23.38	23.5	0.869
#153	Flat		20175	20	1	0	1	10	Headset	0.875	-0.07	23.38	23.5	0.900
#157	Flat		20175	20	50	0	1	10		0.590	0.01	22.56	23.5	0.733
#141	Flat		20300	20	1	0	1	10		0.818	0.19	23.47	23.5	0.824
#142	Flat		20300	20	1	0	2	10		0.564	-0.16	23.47	23.5	0.568
#143	Flat	LTE Band 4	20300	20	1	0	4	10		0.307	-0.18	23.47	23.5	0.309
#144	Flat	(QPSK)	20300	20	1	0	5	10		0.082	0.02	23.47	23.5	0.083
#145	Flat		20300	20	1	0	6	10		0.483	-0.06	23.47	23.5	0.486
#146	Flat		20300	20	50	0	1	10		0.681	-0.09	22.63	23.5	0.832
#147	Flat	2 2 2	20300	20	50	0	2	10		0.505	0.01	22.63	23.5	0.617
#148	Flat		20300	20	50	0	4	10		0.251	-0.11	22.63	23.5	0.307
#149	Flat		20300	20	50	0	5	10		0.070	-0.05	22.63	23.5	0.086
#150	Flat		20300	20	50	0	6	10		0.392	-0.12	22.63	23.5	0.479
#155	Flat		20300	20	100	0	1	10		0.597	-0.08	22.62	23.5	0.731

- 2. If the Channel's SAR 1g of maximum conducted power is > 0.8 mW/g, low, middle and high channel are supposed to be tested.
- 3. If the Channel's Reported SAR 1g of LTE Band is > 0.8 W/Kg, 100% RB of the channel are supposed to be tested.
- 4. For LTE body SAR, we perform worst case of LTE body SAR with accessories to do test.

Index.	Position	Band	Ch.	BW (MHz)	RB Size	RB Offset	Side to Phantom	Spacing (mm)	Accessory	SAR 1g (W/Kg)	Power Drift	Burst Avg Power	Max tune-up	Reported SAR 1g\ (W/Kg)
#40	Flat	LTE Band 5	20450	10	1	0	1	10		0.347	-0.04	23.29	23.5	0.364
#41	Flat		20450	10	1	0	2	10		0.368	0.14	23.29	23.5	0.386
#42	Flat		20450	10	1	0	4	10		0.072	-0.18	23.29	23.5	0.076
#43	Flat		20450	10	1	0	5	10		0.251	-0.04	23.29	23.5	0.263
#44	Flat		20450	10	1	0	6	10		0.167	-0.05	23.29	23.5	0.175
#45	Flat	(QPSK)	20450	10	25	0	1	10		0.250	0.09	22.34	23.5	0.327
#46	Flat		20450	10	25	0	2	10		0.232	0.16	22.34	23.5	0.303
#47	Flat		20450	10	25	0	4	10		0.055	-0.15	22.34	23.5	0.072
#48	Flat		20450	10	25	0	5	10		0.184	-0.10	22.34	23.5	0.240
#49	Flat		20450	10	25	0	6	10		0.121	-0.10	22.34	23.5	0.158

- 2. If the Channel's SAR 1g of maximum conducted power is > 0.8 mW/g, low, middle and high channel are supposed to be tested.
- 3. If the Channel's Reported SAR 1g of LTE Band is > 0.8 W/Kg, 100% RB of the channel are supposed to be tested.
- 4. For LTE body SAR, we perform worst case of LTE body SAR with accessories to do test.

Index.	Position	Band	Ch.	Data Rate or Sub-Test	Side to Phantom	Spacing (mm)	Accessory	SAR _{1g} (W/Kg)	Power Drift	Burst Avg Power	Max tune-up	Reported SAR 1g\ (W/Kg)
#178	Flat		1	1M	1	10		0.016	0.00	12.20	12.5	0.017
#179	Flat	IEEE 802.11b	1	1M	2	10		0.027	-0.13	12.20	12.5	0.029
#180	Flat	IEEE 002.11D	1	1M	3	10		0.017	0.17	12.20	12.5	0.018
#181	Flat		1	1M	5	10		0.021	0.00	12.20	12.5	0.023
#182	Flat		6	6M	1	10		0.055	0.00	16.19	16.5	0.059
#183	Flat	IEEE 802.11g	6	6M	2	10		0.098	-0.15	16.19	16.5	0.105
#184	Flat	IEEE 002.119	6	6M	3	10		0.062	0.11	16.19	16.5	0.067
#185	Flat		6	6M	5	10		0.083	-0.08	16.19	16.5	0.089
#186	Flat		6	6.5M	1	10		0.036	0.00	14.52	15.0	0.040
#187	Flat	IEEE 802.11n	6	6.5M	2	10		0.072	0.08	14.52	15.0	0.080
#188	Flat	(20Hz)	6	6.5M	3	10		0.041	0.14	14.52	15.0	0.046
#189	Flat		6	6.5M	5	10		0.056	0.01	14.52	15.0	0.063
#190	Flat	Bluetooth	39	1M	1	10		0.004	0.00	8.31	8.5	0.005
#191	Flat	v3.0	39	1M	2	10		0.012	-0.09	8.31	8.5	0.013
#192	Flat	Bluetooth	19		1	10		0.003	0.09	0.71	0.8	0.003
#193	Flat	v4.0 LE	19		2	10		0.007	0.00	0.71	0.8	0.008

Note: 1. According KDB 447498 D01 V05r02 section 4.1.4, the "Reported" explanation as below:
"When SAR or MPE is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported."

- 2. If the Channel's SAR 1g of maximum conducted power is > 0.8 mW/g, low, middle and high channel are supposed to be tested.
- 3. For hot-spot mode, the WLAN antenna location to edge >2.5 cm therefore test Side 4 and Side 6 are not required.

11.4 Extremity Measurement SAR

Evaluated extremity SAR is not available.

11.5 SAR Measurement Variability

Detailed evaluations please refer KDB 865664 on "SAR test reduction according to KDB" section.

Index.	Position			,	RB Size			Side to Phantom		ASSY.	SAR 1g (W/Kg)	Drift	Ava	Max tune-un	Reported SAR 10	Repeated measure- ment Ratio
#154	Flat	LTE Band 4 (QPSK)	20175	20	1	0	1	1	10	Headset	0.806	0.03	23.38	23.5	0.830	1.05<1.2

Note: 1. According KDB 447498 D01 V05r02 section 4.1.4, the "Reported" explanation as below:
"When SAR or MPE is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported."

- 2. The original highest measured Reported SAR 1g is ≥ 0.8 W/kg, repeat that measurement onece.
- 3. For LTE body SAR, we perform worst case of LTE body SAR with accessories to do test.

Report Number: 1410FS12-03 Page 89 of 347

11.6 Std. C95.1-1999 RF Exposure Limit

	Population	Occupational				
Human Exposure	Uncontrolled	Controlled				
Tiuman Exposure	Exposure	Exposure				
	(W/kg) or (mW/g)	(W/kg) or (mW/g)				
Spatial Peak SAR*	1.60	8.00				
(head)	1.00	0.00				
Spatial Peak SAR**	0.08	0.40				
(Whole Body)	0.00	0.40				
Spatial Peak SAR***	1.60	8.00				
(Partial-Body)	1.00					
Spatial Peak SAR****	4.00	20.00				
(Hands / Feet / Ankle / Wrist)	4.00					

Table 9. Safety Limits for Partial Body Exposure

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue.
 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Average value of the SAR averaged over the partial body.
- **** The Spatial Peak value of the SAR averaged over any 10 grams of tissue.

 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Population / Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational / Controlled Environments: are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

Report Number: 1410FS12-03 Page 90 of 347

12. Conclusion

The SAR test values found for the portable mobile phone **DBI Innovations Limited Trade Name : Tonino Lamborghini Model(s) : 88 Tauri** is below the maximum recommended level of 1.6 W/kg (mW/g).

13. References

- [1] Std. C95.1-1999, "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300KHz to 100GHz", New York.
- [2] NCRP, National Council on Radiation Protection and Measurements, "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields", NCRP report NO. 86, 1986.
- [3] T. Schmid, O. Egger, and N. Kuster, "Automatic E-field scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp, 105-113, Jan. 1996.
- [4] K. Pokovi^c, T. Schmid, and N. Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequency", in ICECOM'97, Dubrovnik, October 15-17, 1997, pp.120-124.
- [5] K. Pokovi ^c, T. Schmid, and N. Kuster, "E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [6] N. Kuster, and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz", IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [7] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148.
- [8] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [9] Std. C95.3-1991, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, Aug. 1992.
- [10] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10KHz-300GHz, Jan. 1995.
- [11] IEEE Std 1528™-2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head From Wireless Communications Devices: Measurement Techniques
- [12] IEEE Std 1528a™-2005 (Amendment to IEEE Std 1528™-2013), IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

Report Number: 1410FS12-03 Page 91 of 347

14. SAR Measurement Guidance

- [1] KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03
- [2] KDB 865664 D02 RF Exposure Reporting v01r01
- [3] KDB 447498 D01 General RF Exposure Guidance v05r02
- [4] KDB 248227 D01 SAR meas for 802 11 a b g v01r02.
- [5] KDB 648474 D04 Handset SAR v01r02
- [6] KDB 941225 D01 SAR test for 3G devices v02
- [7] KDB 941225 D02 Guidance PBA for 3GPP R6 HSPA v02r01
- [8] KDB 941225 D03 SAR Test Reduction GSM GPRS EDGE vo1
- [9] KDB 941225 D05 SAR for LTE Devices v02r01
- [10] KDB 941225 D06 Hotspot Mode SAR v01r01

Report Number: 1410FS12-03 Page 92 of 347

Appendix A - System Performance Check

Test Laboratory: A Test Lab Techno Corp.

Date: 2014/9/4Time: PM 03:47:57

System Performance Check at 835MHz_20140904_Body

DUT: Dipole 835 MHz;Type: D835V2;Serial: D835V2 - SN:4d082

Communication System: UID 0, CW (0);Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 55.294$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

System Performance Check at 835MHz/Area Scan (61x121x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.21 W/kg

System Performance Check at 835MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.049 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 3.03 W/kg

0 dB = 3.03 W/kg = 4.81 dBW/kg

Report Number: 1410FS12-03 Page 93 of 347

Test Laboratory: A Test Lab Techno Corp.

Date: 2014/9/5Time: PM 04:25:28

System Performance Check at 835MHz 20140905 Body

DUT: Dipole 835 MHz;Type: D835V2;Serial: D835V2 - SN:4d082

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 55.294$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

System Performance Check at 835MHz/Area Scan (61x121x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.03 W/kg

System Performance Check at 835MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.544 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 3.07 W/kg

0 dB = 3.07 W/kg = 4.87 dBW/kg

Test Laboratory: A Test Lab Techno Corp.

Date: 2014/9/9Time: AM 09:28:50

System Performance Check at 835MHz 20140909 Head

DUT: Dipole 835 MHz;Type: D835V2;Serial: D835V2 - SN:4d082

Communication System: UID 0, CW (0);Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.906$ S/m; $\varepsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

System Performance Check at 835MHz/Area Scan (61x121x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.82 W/kg

System Performance Check at 835MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.683 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 3.36 W/kg

SAR(1 g) = 2.23 W/kg; SAR(10 g) = 1.46 W/kg

Maximum value of SAR (measured) = 2.84 W/kg

0 dB = 2.84 W/kg = 4.53 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: AM 09:28:31

System Performance Check at 835MHz_20140910_Head

DUT: Dipole 835 MHz;Type: D835V2;Serial: D835V2 - SN:4d082

Communication System: UID 0, CW (0);Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.906$ S/m; $\varepsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

System Performance Check at 835MHz/Area Scan (61x121x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.01 W/kg

System Performance Check at 835MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.438 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 3.52 W/kg

SAR(1 g) = 2.33 W/kg; SAR(10 g) = 1.52 W/kg

Maximum value of SAR (measured) = 2.97 W/kg

0 dB = 2.97 W/kg = 4.73 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: PM 04:10:29

System Performance Check at 835MHz_20140910_Body

DUT: Dipole 835 MHz;Type: D835V2;Serial: D835V2 - SN:4d082

Communication System: UID 0, CW (0);Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 55.294$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

System Performance Check at 835MHz/Area Scan (61x121x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.11 W/kg

System Performance Check at 835MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.185 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.62 W/kg Maximum value of SAR (measured) = 3.10 W/kg

0 dB = 3.10 W/kg = 4.91 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: PM 03:45:25

System Performance Check at 835MHz_20140911_Body

DUT: Dipole 835 MHz;Type: D835V2;Serial: D835V2 - SN:4d082

Communication System: UID 0, CW (0);Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 55.294$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

System Performance Check at 835MHz/Area Scan (61x121x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.08 W/kg

System Performance Check at 835MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.190 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.52 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 3.02 W/kg

0 dB = 3.02 W/kg = 4.80 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: PM 08:10:37

System Performance Check at 835MHz 20140911 Head

DUT: Dipole 835 MHz;Type: D835V2;Serial: D835V2 - SN:4d082

Communication System: UID 0, CW (0);Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.906$ S/m; $\varepsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

System Performance Check at 835MHz/Area Scan (61x121x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.04 W/kg

System Performance Check at 835MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.028 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.59 W/kg

SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 3.02 W/kg

0 dB = 3.02 W/kg = 4.80 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 03:34:55

System Performance Check at 1750MHz 20140914 Body

DUT: Dipole 1750 MHz;Type: D1750V2;Serial: D1750V2 - SN:1023

Communication System: UID 0, CW (0);Frequency: 1750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.517$ S/m; $\varepsilon_r = 54.706$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

System Performance Check at 1750MHz/Area Scan (61x61x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 13.5 W/kg

System Performance Check at 1750MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.366 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 9.62 W/kg; SAR(10 g) = 5.05 W/kg

Maximum value of SAR (measured) = 13.7 W/kg

0 dB = 13.7 W/kg = 11.37 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: PM 02:01:55

System Performance Check at 1750MHz 20140915 Head

DUT: Dipole D1750V2_SN1023;Type: D1750V2;Serial: D1750V2 - SN:1023Communication System: UID 0, CW (0);Frequency: 1750 MHz;Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; σ = 1.419 S/m; ε_r = 41.101; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(8.14, 8.14, 8.14); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

System Performance Check at 1750MHz/Area Scan (61x61x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 13.1 W/kg

System Performance Check at 1750MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.633 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 9.14 W/kg; SAR(10 g) = 4.74 W/kg

Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: AM 10:59:05

System Performance Check at 1900MHz 20140912 Head

DUT: Dipole D1900V2_SN5d111;Type: D1900V2;Serial: D1900V2 - SN:5d111 Communication System: UID 0, CW (0);Frequency: 1900 MHz;Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.392 \text{ S/m}$; $\epsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

System Performance Check at 1900MHz/Area Scan (61x61x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.3 W/kg

System Performance Check at 1900MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.3 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 18.2 W/kg

SAR(1 g) = 9.92 W/kg; SAR(10 g) = 5.16 W/kg

Maximum value of SAR (measured) = 14.3 W/kg

0 dB = 14.3 W/kg = 11.55 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: PM 06:02:20

System Performance Check at 1900MHz_20140913_Body

DUT: Dipole D1900V2_SN5d111;Type: D1900V2;Serial: D1900V2 - SN:5d111

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.475 S/m; ε_r = 52.463; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

System Performance Check at 1900MHz/Area Scan (61x61x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.0 W/kg

System Performance Check at 1900MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.019 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 10 W/kg; SAR(10 g) = 5.23 W/kg

Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/19Time: PM 11:40:19

System Performance Check at 2450MHz_20140919_Head DUT: Dipole 2450 MHz;Type: D2450V2;Serial: D2450V2 - SN:712

Communication System: UID 0, CW (0);Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $\varepsilon_r = 38.359$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.24, 7.24, 7.24); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

System Performance Check at 2450MHz/Area Scan (61x61x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 20.7 W/kg

System Performance Check at 2450MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.4 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.12 W/kg Maximum value of SAR (measured) = 20.4 W/kg

0 dB = 20.4 W/kg = 13.10 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/22Time: AM 10:18:08

System Performance Check at 2450MHz_20140922_Head DUT: Dipole 2450 MHz;Type: D2450V2;Serial: D2450V2 - SN:712

Communication System: UID 0, CW (0);Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $\varepsilon_r = 38.359$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.24, 7.24, 7.24); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

System Performance Check at 2450MHz/Area Scan (61x61x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 18.9 W/kg

System Performance Check at 2450MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.4 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 24.9 W/kg

SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.82 W/kg Maximum value of SAR (measured) = 18.8 W/kg

0 dB = 18.8 W/kg = 12.74 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/22Time: PM 09:23:59

System Performance Check at 2450MHz_20140922_Body DUT: Dipole 2450 MHz;Type: D2450V2;Serial: D2450V2 - SN:712

Communication System: UID 0, CW (0);Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.98$ S/m; $\varepsilon_r = 54.458$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

System Performance Check at 2450MHz/Area Scan (61x61x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 20.5 W/kg

System Performance Check at 2450MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.2 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 24.4 W/kg

SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.81 W/kg Maximum value of SAR (measured) = 18.5 W/kg

0 dB = 18.5 W/kg = 12.67 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/24Time: AM 10:18:18

System Performance Check at 2450MHz_20140924_Body DUT: Dipole 2450 MHz;Type: D2450V2;Serial: D2450V2 - SN:712

Communication System: UID 0, CW (0);Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.98$ S/m; $\varepsilon_r = 54.458$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

System Performance Check at 2450MHz/Area Scan (61x61x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 18.6 W/kg

System Performance Check at 2450MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.353 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 25.0 W/kg

SAR(1 g) = 12.2 W/kg; SAR(10 g) = 5.68 W/kg

Maximum value of SAR (measured) = 18.6 W/kg

0 dB = 18.6 W/kg = 12.70 dBW/kg

Appendix B - SAR Measurement Data

Test Laboratory: A Test Lab Techno Corp.

Date: 2014/9/9Time: AM 10:14:34 8_RC_GSM 850 CH251_SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, GSM850 (0);Frequency: 848.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 849 MHz; $\sigma = 0.937$ S/m; $\varepsilon_r = 42.676$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.371 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.261 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.449 W/kg

SAR(1 g) = 0.355 W/kg; SAR(10 g) = 0.277 W/kg Maximum value of SAR (measured) = 0.411 W/kg

0 dB = 0.411 W/kg = -3.86 dBW/kg

Report Number: 1410FS12-03 Page 108 of 347

Date: 2014/9/9Time: AM 10:59:29 9 RT GSM 850 CH251 SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, GSM850 (0);Frequency: 848.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 849 MHz; $\sigma = 0.937$ S/m; $\varepsilon_r = 42.676$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.299 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.919 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.318 W/kg

SAR(1 g) = 0.247 W/kg; SAR(10 g) = 0.161 W/kg Maximum value of SAR (measured) = 0.293 W/kg

0 dB = 0.293 W/kg = -5.33 dBW/kg

Date: 2014/9/9Time: AM 11:24:35 10 LC GSM 850 CH251 SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, GSM850 (0);Frequency: 848.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 849 MHz; $\sigma = 0.937$ S/m; $\varepsilon_r = 42.676$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.532 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.407 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.507 W/kg

SAR(1 g) = 0.405 W/kg; SAR(10 g) = 0.313 W/kg Maximum value of SAR (measured) = 0.452 W/kg

0 dB = 0.452 W/kg = -3.45 dBW/kg

Date: 2014/9/9Time: AM 11:53:35 11 LT GSM 850 CH251 SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, GSM850 (0);Frequency: 848.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 849 MHz; $\sigma = 0.937$ S/m; $\varepsilon_r = 42.676$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.264 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.666 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.289 W/kg

SAR(1 g) = 0.234 W/kg; SAR(10 g) = 0.182 W/kg Maximum value of SAR (measured) = 0.265 W/kg

0 dB = 0.265 W/kg = -5.77 dBW/kg

Date: 2014/9/9Time: PM 01:50:25

12 RC GPRS 850 CH190 3D2U SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.911 S/m; ε_r = 42.448; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.325 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.732 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.353 W/kg

SAR(1 g) = 0.281 W/kg; SAR(10 g) = 0.218 W/kg Maximum value of SAR (measured) = 0.320 W/kg

0 dB = 0.320 W/kg = -4.95 dBW/kg

Date: 2014/9/9Time: PM 02:10:27

13 RT GPRS 850 CH190 3D2U SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.911 S/m; ε_r = 42.448; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.228 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.460 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.250 W/kg

SAR(1 g) = 0.198 W/kg; SAR(10 g) = 0.133 W/kg Maximum value of SAR (measured) = 0.230 W/kg

0 dB = 0.230 W/kg = -6.38 dBW/kg

Date: 2014/9/9Time: PM 01:06:59

14 LC GPRS 850 CH190 3D2U SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.911 S/m; ε_r = 42.448; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.428 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.988 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.440 W/kg

SAR(1 g) = 0.345 W/kg; SAR(10 g) = 0.255 W/kg Maximum value of SAR (measured) = 0.384 W/kg

0 dB = 0.384 W/kg = -4.16 dBW/kg

Date: 2014/9/9Time: PM 01:27:59
15 LT GPRS 850 CH190 3D2U SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.911 S/m; ε_r = 42.448; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.213 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.794 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.235 W/kg

SAR(1 g) = 0.192 W/kg; SAR(10 g) = 0.151 W/kg Maximum value of SAR (measured) = 0.216 W/kg

0 dB = 0.216 W/kg = -6.66 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: PM 02:04:24

28 RC DTM 850 CH128 2D3U SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, DTM 850 (2Down, 3Up) (0);Frequency: 824.2 MHz;Duty Cycle: 1:2.8 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.876 S/m; ϵ_r = 42.357; ρ = 1000 kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.270 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.869 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.286 W/kg

SAR(1 g) = 0.231 W/kg; SAR(10 g) = 0.185 W/kg Maximum value of SAR (measured) = 0.262 W/kg

0 dB = 0.262 W/kg = -5.82 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: PM 02:24:43
29 RT DTM 850 CH128 2D3U SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, DTM 850 (2Down, 3Up) (0);Frequency: 824.2 MHz;Duty Cycle: 1:2.8 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.876 S/m; ϵ_r = 42.357; ρ = 1000 kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.194 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.302 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.209 W/kg

SAR(1 g) = 0.169 W/kg; SAR(10 g) = 0.120 W/kg Maximum value of SAR (measured) = 0.192 W/kg

0 dB = 0.192 W/kg = -7.17 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: PM 02:48:56

30 LC DTM 850 CH128 2D3U SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, DTM 850 (2Down, 3Up) (0);Frequency: 824.2 MHz;Duty Cycle: 1:2.8 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.876 S/m; ϵ_r = 42.357; ρ = 1000 kg/m³ Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.286 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.701 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.304 W/kg

SAR(1 g) = 0.246 W/kg; SAR(10 g) = 0.197 W/kg Maximum value of SAR (measured) = 0.273 W/kg

0 dB = 0.273 W/kg = -5.64 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: PM 03:10:44
31 LT DTM 850 CH128 2D3U SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, DTM 850 (2Down, 3Up) (0);Frequency: 824.2 MHz;Duty Cycle: 1:2.8 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.876 S/m; ϵ_r = 42.357; ρ = 1000 kg/m³ Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.160 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.933 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.175 W/kg

SAR(1 g) = 0.144 W/kg; SAR(10 g) = 0.115 W/kg Maximum value of SAR (measured) = 0.162 W/kg

0 dB = 0.162 W/kg = -7.90 dBW/kg

Date: 2014/9/12Time: AM 11:27:41

71_RC_PCS CH810_SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, PCS (0);Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1910 MHz; $\sigma = 1.402 \text{ S/m}$; $\varepsilon_r = 40.66$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.393 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.852 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.483 W/kg

SAR(1 g) = 0.311 W/kg; SAR(10 g) = 0.193 W/kg Maximum value of SAR (measured) = 0.404 W/kg

0 dB = 0.404 W/kg = -3.94 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: AM 11:48:52

72 RT PCS CH810 SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, PCS (0);Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1910 MHz; $\sigma = 1.402 \text{ S/m}$; $\varepsilon_r = 40.66$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.122 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.836 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.143 W/kg

SAR(1 g) = 0.091 W/kg; SAR(10 g) = 0.052 W/kg Maximum value of SAR (measured) = 0.118 W/kg

0 dB = 0.118 W/kg = -9.28 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 01:05:58

73 LC PCS CH810 SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, PCS (0);Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1910 MHz; $\sigma = 1.402$ S/m; $\varepsilon_r = 40.66$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.167 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.929 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.238 W/kg

SAR(1 g) = 0.150 W/kg; SAR(10 g) = 0.092 W/kg Maximum value of SAR (measured) = 0.196 W/kg

0 dB = 0.196 W/kg = -7.08 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 01:28:50

74 LT PCS CH810 SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, PCS (0);Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1910 MHz; $\sigma = 1.402$ S/m; $\varepsilon_r = 40.66$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.168 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.199 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.209 W/kg

SAR(1 g) = 0.123 W/kg; SAR(10 g) = 0.069 W/kg Maximum value of SAR (measured) = 0.158 W/kg

0 dB = 0.158 W/kg = -8.01 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 09:52:04

75 RC GPRS PCS CH810 2D3U SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, GPRS PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.386 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.578 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.471 W/kg

SAR(1 g) = 0.300 W/kg; SAR(10 g) = 0.186 W/kg Maximum value of SAR (measured) = 0.390 W/kg

0 dB = 0.390 W/kg = -4.09 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 10:12:09

76 RT GPRS PCS CH810 2D3U SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, GPRS PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.105 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.453 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.127 W/kg

SAR(1 g) = 0.081 W/kg; SAR(10 g) = 0.047 W/kg Maximum value of SAR (measured) = 0.105 W/kg

0 dB = 0.105 W/kg = -9.79 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 02:11:26

77 LC GPRS PCS CH810 2D3U SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, GPRS PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.168 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.791 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.228 W/kg

SAR(1 g) = 0.146 W/kg; SAR(10 g) = 0.091 W/kg Maximum value of SAR (measured) = 0.191 W/kg

0 dB = 0.191 W/kg = -7.19 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 01:48:54

78 LT GPRS PCS CH810 2D3U SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, GPRS PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.162 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.290 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.200 W/kg

SAR(1 g) = 0.118 W/kg; SAR(10 g) = 0.066 W/kg Maximum value of SAR (measured) = 0.152 W/kg

0 dB = 0.152 W/kg = -8.18 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 10:47:48

79_RC_DTM PCS CH810_2D3U_SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, DTM PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.8

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.307 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.737 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.373 W/kg

SAR(1 g) = 0.240 W/kg; SAR(10 g) = 0.152 W/kg Maximum value of SAR (measured) = 0.310 W/kg

0 dB = 0.310 W/kg = -5.09 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 11:07:54

80 RT DTM PCS CH810 2D3U SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, DTM PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.8

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0997 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.283 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.120 W/kg

SAR(1 g) = 0.076 W/kg; SAR(10 g) = 0.044 W/kg Maximum value of SAR (measured) = 0.0991 W/kg

0 dB = 0.0991 W/kg = -10.04 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 11:40:31

81 LC DTM PCS CH810 2D3U SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, DTM PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.8

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.144 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.872 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.181 W/kg

SAR(1 g) = 0.114 W/kg; SAR(10 g) = 0.076 W/kg Maximum value of SAR (measured) = 0.151 W/kg

0 dB = 0.151 W/kg = -8.21 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: AM 12:01:22

82 LT DTM PCS CH810 2D3U SIM1

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, DTM PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.8

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.139 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.044 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.171 W/kg

SAR(1 g) = 0.104 W/kg; SAR(10 g) = 0.060 W/kg Maximum value of SAR (measured) = 0.132 W/kg

0 dB = 0.132 W/kg = -8.79 dBW/kg

Date: 2014/9/11Time: PM 09:25:37 **59 RC GSM 850 CH251 SIM2**

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, GSM850 (0);Frequency: 848.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 849 MHz; $\sigma = 0.937$ S/m; $\varepsilon_r = 42.676$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.185 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.164 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.222 W/kg

SAR(1 g) = 0.153 W/kg; SAR(10 g) = 0.108 W/kg Maximum value of SAR (measured) = 0.187 W/kg

0 dB = 0.187 W/kg = -7.28 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: PM 09:57:13

60 RT GSM 850 CH251 SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, GSM850 (0);Frequency: 848.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 849 MHz; $\sigma = 0.937$ S/m; $\varepsilon_r = 42.676$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.128 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.031 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.146 W/kg

SAR(1 g) = 0.104 W/kg; SAR(10 g) = 0.073 W/kg Maximum value of SAR (measured) = 0.126 W/kg

0 dB = 0.126 W/kg = -9.00 dBW/kg

Date: 2014/9/11Time: PM 10:36:27 **61 LC GSM 850 CH251 SIM2**

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, GSM850 (0);Frequency: 848.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 849 MHz; $\sigma = 0.937$ S/m; $\varepsilon_r = 42.676$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.273 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.022 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.352 W/kg

SAR(1 g) = 0.212 W/kg; SAR(10 g) = 0.129 W/kg Maximum value of SAR (measured) = 0.282 W/kg

0 dB = 0.282 W/kg = -5.50 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: PM 10:57:58

62 LT GSM 850 CH251 SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, GSM850 (0);Frequency: 848.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 849 MHz; $\sigma = 0.937$ S/m; $\varepsilon_r = 42.676$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.230 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.093 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.286 W/kg

SAR(1 g) = 0.173 W/kg; SAR(10 g) = 0.107 W/kg Maximum value of SAR (measured) = 0.221 W/kg

0 dB = 0.221 W/kg = -6.56 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: AM 12:06:50 63 RC GPRS 850 CH190 3D2U SIM2

DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050195636

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0);Frequency: 836.6 MHz;Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.911 S/m; ε_r = 42.448; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.134 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.703 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.157 W/kg

CAR(4 a) 0.447 M/Isas CAR(40 a) 0.00

SAR(1 g) = 0.117 W/kg; SAR(10 g) = 0.085 W/kg Maximum value of SAR (measured) = 0.139 W/kg

0 dB = 0.139 W/kg = -8.57 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: AM 12:31:49 64 RT GPRS 850 CH190 3D2U SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.911 S/m; ε_r = 42.448; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.110 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.794 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.126 W/kg

SAR(1 g) = 0.091 W/kg; SAR(10 g) = 0.064 W/kgMaximum value of SAR (measured) = 0.110 W/kg

0 dB = 0.110 W/kg = -9.59 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: AM 12:54:36

65 LC GPRS 850 CH190 3D2U SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.911 S/m; ε_r = 42.448; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.204 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.277 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.269 W/kg

SAR(1 g) = 0.160 W/kg; SAR(10 g) = 0.098 W/kgMaximum value of SAR (measured) = 0.203 W/kg

0 dB = 0.203 W/kg = -6.93 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: AM 01:17:22

66 LT GPRS 850 CH190 3D2U SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.911 S/m; ε_r = 42.448; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.181 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.824 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.223 W/kg

SAR(1 g) = 0.137 W/kg; SAR(10 g) = 0.086 W/kg Maximum value of SAR (measured) = 0.182 W/kg

0 dB = 0.182 W/kg = -7.40 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: AM 01:41:47

67 RC DTM 850 CH128 2D3U SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, DTM 850 (2Down, 3Up) (0);Frequency: 824.2 MHz;Duty Cycle: 1:2.8 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.876$ S/m; $\epsilon_r = 42.357$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0989 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.087 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.115 W/kg

SAR(1 g) = 0.084 W/kg; SAR(10 g) = 0.060 W/kg Maximum value of SAR (measured) = 0.101 W/kg

0 dB = 0.101 W/kg = -9.96 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: AM 02:10:18

68 RT DTM 850 CH128 2D3U SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, DTM 850 (2Down, 3Up) (0);Frequency: 824.2 MHz;Duty Cycle: 1:2.8 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.876 S/m; ϵ_r = 42.357; ρ = 1000 kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0839 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.235 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.0970 W/kg

SAR(1 g) = 0.070 W/kg; SAR(10 g) = 0.049 W/kg Maximum value of SAR (measured) = 0.0831 W/kg

0 dB = 0.0831 W/kg = -10.80 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: AM 09:15:59

69 LC DTM 850 CH128 2D3U SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, DTM 850 (2Down, 3Up) (0);Frequency: 824.2 MHz;Duty Cycle: 1:2.8 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.876 S/m; ϵ_r = 42.357; ρ = 1000 kg/m³ Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.143 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.396 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.185 W/kg

SAR(1 g) = 0.112 W/kg; SAR(10 g) = 0.070 W/kg Maximum value of SAR (measured) = 0.145 W/kg

0 dB = 0.145 W/kg = -8.39 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: AM 09:36:43

70_LT_DTM 850 CH128_2D3U_SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, DTM 850 (2Down, 3Up) (0);Frequency: 824.2 MHz;Duty Cycle: 1:2.8 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.876 S/m; ϵ_r = 42.357; ρ = 1000 kg/m³ Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.121 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.187 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.147 W/kg

SAR(1 g) = 0.090 W/kg; SAR(10 g) = 0.057 W/kg Maximum value of SAR (measured) = 0.119 W/kg

0 dB = 0.119 W/kg = -9.24 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: AM 02:14:50

95 RC PCS CH810 SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, PCS (0);Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1910 MHz; $\sigma = 1.402 \text{ S/m}$; $\varepsilon_r = 40.66$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.370 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.901 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.434 W/kg

SAR(1 g) = 0.258 W/kg; SAR(10 g) = 0.145 W/kg Maximum value of SAR (measured) = 0.336 W/kg

0 dB = 0.336 W/kg = -4.74 dBW/kg

Date: 2014/9/13Time: AM 02:35:31

96_RT_PCS CH810_SIM2 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050195636

Communication System: UID 0, PCS (0);Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1910 MHz; $\sigma = 1.402 \text{ S/m}$; $\varepsilon_r = 40.66$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.333 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.277 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.391 W/kg

SAR(1 g) = 0.246 W/kg; SAR(10 g) = 0.144 W/kg Maximum value of SAR (measured) = 0.319 W/kg

0 dB = 0.319 W/kg = -4.96 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: AM 09:07:17

97 LC PCS CH810 SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, PCS (0);Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1910 MHz; $\sigma = 1.402$ S/m; $\varepsilon_r = 40.66$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.616 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.795 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.985 W/kg

SAR(1 g) = 0.535 W/kg; SAR(10 g) = 0.259 W/kg Maximum value of SAR (measured) = 0.787 W/kg

0 dB = 0.787 W/kg = -1.04 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: AM 09:27:11

98 LT PCS CH810 SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, PCS (0);Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1910 MHz; $\sigma = 1.402$ S/m; $\varepsilon_r = 40.66$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.497 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.815 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.721 W/kg

CAR(4 a) 0.400 M//cm CAR(40 a) 0.200

SAR(1 g) = 0.408 W/kg; SAR(10 g) = 0.208 W/kg Maximum value of SAR (measured) = 0.578 W/kg

0 dB = 0.578 W/kg = -2.38 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: AM 12:30:32

99 RC GPRS PCS CH810 2D3U SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, GPRS PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.284 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.504 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.334 W/kg

SAR(1 g) = 0.201 W/kg; SAR(10 g) = 0.114 W/kg Maximum value of SAR (measured) = 0.258 W/kg

0 dB = 0.258 W/kg = -5.88 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: AM 12:50:35

100 RT GPRS PCS CH810 2D3U SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, GPRS PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.241 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.764 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.290 W/kg

SAR(1 g) = 0.185 W/kg; SAR(10 g) = 0.108 W/kg Maximum value of SAR (measured) = 0.238 W/kg

0 dB = 0.238 W/kg = -6.23 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: AM 01:18:26

101 LC GPRS PCS CH810 2D3U SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, GPRS PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.603 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.064 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.949 W/kg

SAR(1 g) = 0.504 W/kg; SAR(10 g) = 0.245 W/kg Maximum value of SAR (measured) = 0.763 W/kg

0 dB = 0.763 W/kg = -1.17 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: AM 01:46:21

102 LT GPRS PCS CH810 2D3U SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, GPRS PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.535 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.269 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.708 W/kg

SAR(1 g) = 0.407 W/kg; SAR(10 g) = 0.208 W/kg Maximum value of SAR (measured) = 0.572 W/kg

0 dB = 0.572 W/kg = -2.43 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: AM 10:31:20

103 RC DTM PCS CH810 2D3U SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, DTM PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.8

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.253 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.462 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.305 W/kg

SAR(1 g) = 0.180 W/kg; SAR(10 g) = 0.102 W/kg

Maximum value of SAR (measured) = 0.241 W/kg

0 dB = 0.241 W/kg = -6.18 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: AM 10:51:04

104 RT DTM PCS CH810 2D3U SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, DTM PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.8

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.251 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.782 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.309 W/kg

SAR(1 g) = 0.194 W/kg; SAR(10 g) = 0.113 W/kgMaximum value of SAR (measured) = 0.244 W/kg

0 dB = 0.244 W/kg = -6.13 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: AM 10:08:56 105 LC DTM PCS CH810 2D3U SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, DTM PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.8

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.518 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.520 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.794 W/kg

SAR(1 g) = 0.438 W/kg; SAR(10 g) = 0.218 W/kgMaximum value of SAR (measured) = 0.634 W/kg

0 dB = 0.634 W/kg = -1.98 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: AM 09:48:32

106 LT DTM PCS CH810 2D3U SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050195636

Communication System: UID 0, DTM PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.8

Medium parameters used: f = 1910 MHz; σ = 1.402 S/m; ε_r = 40.66; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.336 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.797 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.470 W/kg

SAR(1 g) = 0.273 W/kg; SAR(10 g) = 0.143 W/kgMaximum value of SAR (measured) = 0.381 W/kg

0 dB = 0.381 W/kg = -4.19 dBW/kg

Date: 2014/9/12Time: PM 05:58:17 91 RC WCDMA Bandll CH9262

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band II (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.346 \text{ S/m}$; $\varepsilon_r = 40.815$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.523 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.782 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.641 W/kg

SAR(1 g) = 0.414 W/kg; SAR(10 g) = 0.260 W/kg Maximum value of SAR (measured) = 0.517 W/kg

0 dB = 0.517 W/kg = -2.87 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 05:38:23

92 RT WCDMA Bandll CH9262

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band II (0);Frequency: 1852.4 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.346 \text{ S/m}$; $\epsilon_r = 40.815$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.120 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.813 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.143 W/kg

SAR(1 g) = 0.093 W/kg; SAR(10 g) = 0.055 W/kg Maximum value of SAR (measured) = 0.121 W/kg

0 dB = 0.121 W/kg = -9.17 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 08:53:36

93 LC WCDMA Bandll CH9262

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band II (0);Frequency: 1852.4 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.346 \text{ S/m}$; $\varepsilon_r = 40.815$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.230 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.332 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.360 W/kg

SAR(1 g) = 0.220 W/kg; SAR(10 g) = 0.130 W/kg Maximum value of SAR (measured) = 0.302 W/kg

0 dB = 0.302 W/kg = -5.20 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 09:14:25

94 LT WCDMA Bandll CH9262

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band II (0);Frequency: 1852.4 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.346 \text{ S/m}$; $\varepsilon_r = 40.815$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.198 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.612 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.247 W/kg

SAR(1 g) = 0.148 W/kg; SAR(10 g) = 0.085 W/kg Maximum value of SAR (measured) = 0.195 W/kg

0 dB = 0.195 W/kg = -7.10 dBW/kg

Date: 2014/9/9Time: PM 02:57:28 16 RC WCDMA BandV CH4183

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band V (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 837 MHz; σ = 0.911 S/m; ε_r = 42.448; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.224 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.726 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.255 W/kg

SAR(1 g) = 0.201 W/kg; SAR(10 g) = 0.156 W/kg Maximum value of SAR (measured) = 0.233 W/kg

0 dB = 0.233 W/kg = -6.33 dBW/kg

Date: 2014/9/9Time: PM 03:19:24 17 RT WCDMA BandV CH4183

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band V (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 837 MHz; σ = 0.911 S/m; ε_r = 42.448; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.177 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.778 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.193 W/kg

SAR(1 g) = 0.150 W/kg; SAR(10 g) = 0.098 W/kg Maximum value of SAR (measured) = 0.178 W/kg

0 dB = 0.178 W/kg = -7.50 dBW/kg

Date: 2014/9/9Time: PM 03:41:51 18_LC_WCDMA BandV CH4183

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band V (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 837 MHz; σ = 0.911 S/m; ε_r = 42.448; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.311 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 6.604 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.329 W/kg

SAR(1 g) = 0.247 W/kg; SAR(10 g) = 0.169 W/kg Maximum value of SAR (measured) = 0.283 W/kg

0 dB = 0.283 W/kg = -5.48 dBW/kg

Date: 2014/9/9Time: PM 04:10:31 19 LT WCDMA BandV CH4183

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band V (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 837 MHz; σ = 0.911 S/m; ε_r = 42.448; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.158 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.952 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.173 W/kg

SAR(1 g) = 0.137 W/kg; SAR(10 g) = 0.104 W/kg Maximum value of SAR (measured) = 0.158 W/kg

0 dB = 0.158 W/kg = -8.01 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 04:28:26

83_RC_LTE Band2 BW 20M CH18900 QPSK with 1RB Size 0RB Offset DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.371$ S/m; $\varepsilon_r = 40.783$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.638 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.841 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.771 W/kg

SAR(1 g) = 0.498 W/kg; SAR(10 g) = 0.313 W/kg Maximum value of SAR (measured) = 0.629 W/kg

0 dB = 0.629 W/kg = -2.01 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 03:59:08

87_RC_LTE Band2 BW 20M CH18900 QPSK with 50RB Size 0RB Offset DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.371$ S/m; $\varepsilon_r = 40.783$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.497 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.942 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.603 W/kg

SAR(1 g) = 0.387 W/kg; SAR(10 g) = 0.242 W/kg Maximum value of SAR (measured) = 0.488 W/kg

0 dB = 0.488 W/kg = -3.12 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 04:53:44

84_RT_LTE Band2 BW 20M CH18900 QPSK with 1RB Size 0RB Offset

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.371$ S/m; $\varepsilon_r = 40.783$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.176 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.978 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.209 W/kg

SAR(1 g) = 0.135 W/kg; SAR(10 g) = 0.080 W/kg Maximum value of SAR (measured) = 0.174 W/kg

0 dB = 0.174 W/kg = -7.59 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 05:13:12

88_RT_LTE Band2 BW 20M CH18900 QPSK with 50RB Size 0RB Offset DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.371$ S/m; $\varepsilon_r = 40.783$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.143 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.778 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.166 W/kg

SAR(1 g) = 0.107 W/kg; SAR(10 g) = 0.062 W/kg Maximum value of SAR (measured) = 0.140 W/kg

0 dB = 0.140 W/kg = -8.54 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 02:34:58

85_LC_LTE Band2 BW 20M CH18900 QPSK with 1RB Size 0RB Offset

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.371$ S/m; $\varepsilon_r = 40.783$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.268 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.119 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.386 W/kg

SAR(1 g) = 0.245 W/kg; SAR(10 g) = 0.152 W/kg Maximum value of SAR (measured) = 0.321 W/kg

0 dB = 0.321 W/kg = -4.93 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 03:35:31

89_LC_LTE Band2 BW 20M CH18900 QPSK with 50RB Size 0RB Offset DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.371$ S/m; $\varepsilon_r = 40.783$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.200 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.285 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.259 W/kg

SAR(1 g) = 0.164 W/kg; SAR(10 g) = 0.109 W/kg Maximum value of SAR (measured) = 0.222 W/kg

0 dB = 0.222 W/kg = -6.54 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 02:55:35

86_LT_LTE Band2 BW 20M CH18900 QPSK with 1RB Size 0RB Offset

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.371$ S/m; $\varepsilon_r = 40.783$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.253 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.817 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.318 W/kg

SAR(1 g) = 0.190 W/kg; SAR(10 g) = 0.109 W/kg Maximum value of SAR (measured) = 0.239 W/kg

0 dB = 0.239 W/kg = -6.22 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/12Time: PM 03:14:56

90_LT_LTE Band2 BW 20M CH18900 QPSK with 50RB Size 0RB Offset

DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.371$ S/m; $\varepsilon_r = 40.783$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.97, 7.97, 7.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.200 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.669 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.251 W/kg

SAR(1 g) = 0.151 W/kg; SAR(10 g) = 0.086 W/kg Maximum value of SAR (measured) = 0.197 W/kg

0 dB = 0.197 W/kg = -7.06 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: PM 02:30:21

158_RC_LTE Band4 BW 20M CH20300 QPSK with 1RB Size 0RB Offset

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1745 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.415$ S/m; $\varepsilon_r = 41.11$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(8.14, 8.14, 8.14); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.824 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.480 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.691 W/kg; SAR(10 g) = 0.425 W/kg Maximum value of SAR (measured) = 0.874 W/kg

0 dB = 0.874 W/kg = -0.58 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: PM 02:50:30

162_RC_LTE Band4 BW 20M CH20300 QPSK with 50RB Size 0RB Offset DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1745 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.415$ S/m; $\varepsilon_r = 41.11$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(8.14, 8.14, 8.14); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.632 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.557 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.885 W/kg

SAR(1 g) = 0.554 W/kg; SAR(10 g) = 0.333 W/kg Maximum value of SAR (measured) = 0.724 W/kg

0 dB = 0.724 W/kg = -1.40 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: PM 03:30:52

159_RT_LTE Band4 BW 20M CH20300 QPSK with 1RB Size 0RB Offset

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1745 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.415$ S/m; $\varepsilon_r = 41.11$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(8.14, 8.14, 8.14); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.312 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.691 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.375 W/kg

SAR(1 g) = 0.244 W/kg; SAR(10 g) = 0.144 W/kg Maximum value of SAR (measured) = 0.308 W/kg

0 dB = 0.308 W/kg = -5.11 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: PM 03:10:52

163_RT_LTE Band4 BW 20M CH20300 QPSK with 50RB Size 0RB Offset

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1745 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.415$ S/m; $\varepsilon_r = 41.11$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(8.14, 8.14, 8.14); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.243 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.984 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.293 W/kg

SAR(1 g) = 0.189 W/kg; SAR(10 g) = 0.110 W/kg Maximum value of SAR (measured) = 0.242 W/kg

0 dB = 0.242 W/kg = -6.16 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: PM 03:54:06

160_LC_LTE Band4 BW 20M CH20300 QPSK with 1RB Size 0RB Offset

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1745 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.415$ S/m; $\varepsilon_r = 41.11$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(8.14, 8.14, 8.14); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.508 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.983 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.713 W/kg SAR(1 g) = 0.423 W/kg; SAR(10 g) = 0.247 W/kg

Maximum value of SAR (measured) = 0.566 W/kg

0 dB = 0.566 W/kg = -2.47 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: PM 04:24:37

164_LC_LTE Band4 BW 20M CH20300 QPSK with 50RB Size 0RB Offset

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1745 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.415$ S/m; $\varepsilon_r = 41.11$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(8.14, 8.14, 8.14); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.397 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.652 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.568 W/kg

SAR(1 g) = 0.337 W/kg; SAR(10 g) = 0.195 W/kg Maximum value of SAR (measured) = 0.451 W/kg

0 dB = 0.451 W/kg = -3.46 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: PM 05:15:01

161 LT LTE Band4 BW 20M CH20300 QPSK with 1RB Size 0RB Offset

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1745 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.415$ S/m; $\varepsilon_r = 41.11$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(8.14, 8.14, 8.14); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.363 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.140 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.435 W/kg

SAR(1 g) = 0.263 W/kg; SAR(10 g) = 0.154 W/kg Maximum value of SAR (measured) = 0.334 W/kg

0 dB = 0.334 W/kg = -4.76 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: PM 04:44:33

165_LT_LTE Band4 BW 20M CH20300 QPSK with 50RB Size 0RB Offset

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1745 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.415$ S/m; $\varepsilon_r = 41.11$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(8.14, 8.14, 8.14); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.293 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.949 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.348 W/kg

SAR(1 g) = 0.211 W/kg; SAR(10 g) = 0.122 W/kg Maximum value of SAR (measured) = 0.270 W/kg

0 dB = 0.270 W/kg = -5.69 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: AM 02:07:17

20_RC_LTE Band5 BW 10M CH20450 QPSK with 1RB Size 0RB Offset DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 829 MHz;Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.888$ S/m; $\varepsilon_r = 42.355$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.278 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.938 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.312 W/kg

SAR(1 g) = 0.252 W/kg; SAR(10 g) = 0.200 W/kg Maximum value of SAR (measured) = 0.287 W/kg

0 dB = 0.287 W/kg = -5.42 dBW/kg

Page 180 of 347

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: AM 01:41:22

24_RC_LTE Band5 BW 10M CH20450 QPSK with 25RB Size 0RB Offset DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 829 MHz;Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.888$ S/m; $\varepsilon_r = 42.355$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.215 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.928 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.238 W/kg

SAR(1 g) = 0.192 W/kg; SAR(10 g) = 0.153 W/kg Maximum value of SAR (measured) = 0.217 W/kg

0 dB = 0.217 W/kg = -6.64 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: AM 01:41:22

24_RC_LTE Band5 BW 10M CH20450 QPSK with 25RB Size 0RB Offset DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 829 MHz;Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.888$ S/m; $\varepsilon_r = 42.355$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.215 W/kg

Right Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.928 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.238 W/kg

SAR(1 g) = 0.192 W/kg; SAR(10 g) = 0.153 W/kg Maximum value of SAR (measured) = 0.217 W/kg

0 dB = 0.217 W/kg = -6.64 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: AM 10:08:08

25_RT_LTE Band5 BW 10M CH20450 QPSK with 25RB Size 0RB Offset DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 829 MHz;Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.888$ S/m; $\varepsilon_r = 42.355$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.161 W/kg

Right Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.000 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.176 W/kg

SAR(1 g) = 0.143 W/kg; SAR(10 g) = 0.112 W/kg Maximum value of SAR (measured) = 0.162 W/kg

0 dB = 0.162 W/kg = -7.90 dBW/kg

Date: 2014/9/9Time: PM 04:42:17

22_LC_LTE Band5 BW 10M CH20450 QPSK with 1RB Size 0RB Offset

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 829 MHz;Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.888$ S/m; $\varepsilon_r = 42.355$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.356 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.280 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.386 W/kg

SAR(1 g) = 0.292 W/kg; SAR(10 g) = 0.196 W/kg

Maximum value of SAR (measured) = 0.334 W/kg

0 dB = 0.334 W/kg = -4.76 dBW/kg

Date: 2014/9/9Time: PM 05:51:37

26_LC_LTE Band5 BW 10M CH20450 QPSK with 25RB Size 0RB Offset

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 829 MHz; Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.888$ S/m; $\varepsilon_r = 42.355$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.283 W/kg

Left Cheek/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.261 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.280 W/kg

SAR(1 g) = 0.221 W/kg; SAR(10 g) = 0.170 W/kg Maximum value of SAR (measured) = 0.246 W/kg

0 dB = 0.246 W/kg = -6.09 dBW/kg

Date: 2014/9/9Time: PM 05:04:45

23_LT_LTE Band5 BW 10M CH20450 QPSK with 1RB Size 0RB Offset

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 829 MHz; Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.888$ S/m; $\varepsilon_r = 42.355$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.197 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.167 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.212 W/kg

SAR(1 g) = 0.170 W/kg; SAR(10 g) = 0.129 W/kg Maximum value of SAR (measured) = 0.195 W/kg

0 dB = 0.195 W/kg = -7.10 dBW/kg

Date: 2014/9/9Time: PM 05:26:17

27_LT_LTE Band5 BW 10M CH20450 QPSK with 25RB Size 0RB Offset DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 829 MHz; Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.888$ S/m; $\varepsilon_r = 42.355$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.62, 9.62, 9.62); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (81x141x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.148 W/kg

Left Tilted/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.411 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.164 W/kg

SAR(1 g) = 0.132 W/kg; SAR(10 g) = 0.101 W/kg

Maximum value of SAR (measured) = 0.149 W/kg

0 dB = 0.149 W/kg = -8.27 dBW/kg

Date: 2014/9/20Time: AM 12:34:51

166_RC_802.11b CH1_1M

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11b (0);Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.792$ S/m; $\varepsilon_r = 38.418$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.24, 7.24, 7.24); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (121x211x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.129 W/kg

Right Cheek/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.951 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.168 W/kg

SAR(1 g) = 0.066 W/kg; SAR(10 g) = 0.028 W/kg Maximum value of SAR (measured) = 0.112 W/kg

0 dB = 0.112 W/kg = -9.51 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/20Time: AM 01:15:48

167 RT 802.11b CH1 1M

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.792$ S/m; $\varepsilon_r = 38.418$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.24, 7.24, 7.24); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (121x211x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.114 W/kg

Right Tilted/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.328 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.134 W/kg

SAR(1 g) = 0.057 W/kg; SAR(10 g) = 0.024 W/kg

Maximum value of SAR (measured) = 0.0910 W/kg

0 dB = 0.0910 W/kg = -10.41 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/22Time: AM 11:03:13

168 LC 802.11b CH1 1M

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11b (0);Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.792$ S/m; $\varepsilon_r = 38.418$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.24, 7.24, 7.24); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (121x211x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0257 W/kg

Left Cheek/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.097 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.0630 W/kg

SAR(1 g) = 0.015 W/kg; SAR(10 g) = 0.0059 W/kg Maximum value of SAR (measured) = 0.0213 W/kg

0 dB = 0.0213 W/kg = -16.72 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/22Time: AM 11:45:18

169 LT 802.11b CH1 1M

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11b (0);Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.792$ S/m; $\epsilon_r = 38.418$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.24, 7.24, 7.24); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (121x211x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0256 W/kg

Left Tilted/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.400 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.0300 W/kg

SAR(1 g) = 0.015 W/kg; SAR(10 g) = 0.00639 W/kg Maximum value of SAR (measured) = 0.0227 W/kg

0 dB = 0.0227 W/kg = -16.44 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/22Time: PM 02:27:41

170 RC 802.11g CH6 6M

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11g (0);Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.823$ S/m; $\epsilon_r = 38.37$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.24, 7.24, 7.24); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (131x211x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.299 W/kg

Right Cheek/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.903 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 0.493 W/kg

SAR(1 g) = 0.196 W/kg; SAR(10 g) = 0.077 W/kg Maximum value of SAR (measured) = 0.329 W/kg

0 dB = 0.329 W/kg = -4.83 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/22Time: PM 03:11:23

171 RT 802.11q CH6 6M

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11g (0);Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.823$ S/m; $\epsilon_r = 38.37$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.24, 7.24, 7.24); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (131x211x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.273 W/kg

Right Tilted/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.297 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.446 W/kg

SAR(1 g) = 0.182 W/kg; SAR(10 g) = 0.072 W/kg

Maximum value of SAR (measured) = 0.308 W/kg

0 dB = 0.308 W/kg = -5.11 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/22Time: PM 04:08:25

172_LC_802.11g CH6_6M

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11g (0);Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.823$ S/m; $\epsilon_r = 38.37$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.24, 7.24, 7.24); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (121x211x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0766 W/kg

Left Cheek/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.216 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.0930 W/kg

SAR(1 g) = 0.046 W/kg; SAR(10 g) = 0.021 W/kg Maximum value of SAR (measured) = 0.0681 W/kg

0 dB = 0.0681 W/kg = -11.67 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/22Time: PM 04:50:01

173 LT 802.11q CH6 6M

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11g (0);Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.823$ S/m; $\epsilon_r = 38.37$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.24, 7.24, 7.24); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (121x211x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0779 W/kg

Left Tilted/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.191 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.0970 W/kg

SAR(1 g) = 0.049 W/kg; SAR(10 g) = 0.024 W/kg Maximum value of SAR (measured) = 0.0739 W/kg

0 dB = 0.0739 W/kg = -11.31 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/22Time: PM 05:42:34

174 RC 802.11n HT20 CH6 6.5M

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11n(2.4GHz) (0);Frequency: 2437 MHz;Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.823$ S/m; $\varepsilon_r = 38.37$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.24, 7.24, 7.24); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Cheek/Area Scan (131x211x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.240 W/kg

Right Cheek/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.762 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.452 W/kg

SAR(1 g) = 0.170 W/kg; SAR(10 g) = 0.066 W/kg Maximum value of SAR (measured) = 0.286 W/kg

0 dB = 0.286 W/kg = -5.44 dBW/kg

Date: 2014/9/22Time: PM 06:30:01 175 RT 802.11n HT20 CH6 6.5M

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11n(2.4GHz) (0);Frequency: 2437 MHz;Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.823$ S/m; $\varepsilon_r = 38.37$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.24, 7.24, 7.24); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Right Tilted/Area Scan (131x211x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.217 W/kg

Right Tilted/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.953 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.352 W/kg

SAR(1 g) = 0.141 W/kg; SAR(10 g) = 0.056 W/kg Maximum value of SAR (measured) = 0.239 W/kg

0 dB = 0.239 W/kg = -6.22 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/22Time: PM 07:17:45

176 LC 802.11n HT20 CH6 6.5M

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11n(2.4GHz) (0);Frequency: 2437 MHz;Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.823$ S/m; $\varepsilon_r = 38.37$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.24, 7.24, 7.24); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Cheek/Area Scan (131x211x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0609 W/kg

Left Cheek/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.537 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.0820 W/kg

SAR(1 g) = 0.025 W/kg; SAR(10 g) = 0.00768 W/kg Maximum value of SAR (measured) = 0.0495 W/kg

0 dB = 0.0495 W/kg = -13.05 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/22Time: PM 07:59:52

177 LT 802.11n HT20 CH6 6.5M

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11n(2.4GHz) (0);Frequency: 2437 MHz;Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.823$ S/m; $\varepsilon_r = 38.37$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.24, 7.24, 7.24); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Left Tilted/Area Scan (131x211x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0644 W/kg

Left Tilted/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.241 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.0670 W/kg

SAR(1 g) = 0.035 W/kg; SAR(10 g) = 0.016 W/kg Maximum value of SAR (measured) = 0.0507 W/kg

0 dB = 0.0507 W/kg = -12.95 dBW/kg

Date: 2014/9/4Time: PM 04:20:10

1_Flat_GSM 850 CH251_headset_side1 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GSM850 (0);Frequency: 848.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 849 MHz; $\sigma = 1.009$ S/m; $\varepsilon_r = 55.288$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.652 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.448 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.758 W/kg

SAR(1 g) = 0.510 W/kg; SAR(10 g) = 0.342 W/kg Maximum value of SAR (measured) = 0.640 W/kg

0 dB = 0.640 W/kg = -1.94 dBW/kg

Date: 2014/9/4Time: PM 04:44:29

2_Flat_GSM 850 CH251_headset_side2 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GSM850 (0);Frequency: 848.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 849 MHz; $\sigma = 1.009$ S/m; $\varepsilon_r = 55.288$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.684 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 16.871 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.781 W/kg

SAR(1 g) = 0.540 W/kg; SAR(10 g) = 0.349 W/kg Maximum value of SAR (measured) = 0.669 W/kg

0 dB = 0.669 W/kg = -1.75 dBW/kg

Date: 2014/9/4Time: PM 05:34:07

3_Flat_GPRS 850 CH190_3D2U_side1 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.484 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 21.002 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.535 W/kg

SAR(1 g) = 0.416 W/kg; SAR(10 g) = 0.313 W/kg Maximum value of SAR (measured) = 0.479 W/kg

0 dB = 0.479 W/kg = -3.20 dBW/kg

Date: 2014/9/4Time: PM 05:10:50

4_Flat_GPRS 850 CH190_3D2U_side2 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.531 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.498 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.607 W/kg

SAR(1 g) = 0.399 W/kg; SAR(10 g) = 0.257 W/kg Maximum value of SAR (measured) = 0.510 W/kg

0 dB = 0.510 W/kg = -2.92 dBW/kg

Date: 2014/9/5Time: PM 05:11:22

5_Flat_GPRS 850 CH190_3D2U_side4 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.111 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.629 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.135 W/kg

SAR(1 g) = 0.091 W/kg; SAR(10 g) = 0.060 W/kg Maximum value of SAR (measured) = 0.114 W/kg

0 dB = 0.114 W/kg = -9.43 dBW/kg

Date: 2014/9/5Time: PM 05:29:35

6_Flat_GPRS 850 CH190_3D2U_side5 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.371 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.316 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.433 W/kg

SAR(1 g) = 0.304 W/kg; SAR(10 g) = 0.209 W/kg Maximum value of SAR (measured) = 0.376 W/kg

0 dB = 0.376 W/kg = -4.25 dBW/kg

Date: 2014/9/5Time: PM 05:51:17

7_Flat_GPRS 850 CH190_3D2U_side6 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.192 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.916 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.224 W/kg

SAR(1 g) = 0.156 W/kg; SAR(10 g) = 0.106 W/kg Maximum value of SAR (measured) = 0.194 W/kg

0 dB = 0.194 W/kg = -7.12 dBW/kg

Date: 2014/9/5Time: PM 05:51:17

7_Flat_GPRS 850 CH190_3D2U_side6 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.192 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 11.916 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.224 W/kg

SAR(1 g) = 0.156 W/kg; SAR(10 g) = 0.106 W/kg Maximum value of SAR (measured) = 0.194 W/kg

0 dB = 0.194 W/kg = -7.12 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: PM 05:07:29

33_Flat_DTM 850 CH128_2D3U_headset_side2 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, DTM 850 (2Down, 3Up) (0); Frequency: 824.2 MHz; Duty Cycle: 1:2.8 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.978 S/m; ϵ_r = 55.317; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.435 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.032 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.483 W/kg

SAR(1 g) = 0.321 W/kg; SAR(10 g) = 0.210 W/kg Maximum value of SAR (measured) = 0.403 W/kg

0 dB = 0.403 W/kg = -3.95 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: PM 11:52:38

116_Flat_PCS CH810_headset_side1 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, PCS (0);Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1910 MHz; $\sigma = 1.496 \text{ S/m}$; $\epsilon_r = 52.287$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.494 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.237 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 0.617 W/kg

SAR(1 g) = 0.364 W/kg; SAR(10 g) = 0.210 W/kg Maximum value of SAR (measured) = 0.496 W/kg

0 dB = 0.496 W/kg = -3.05 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: AM 01:03:33

117_Flat_PCS CH810_headset_side2 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, PCS (0);Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1910 MHz; $\sigma = 1.496$ S/m; $\varepsilon_r = 52.287$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.424 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.462 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.502 W/kg

SAR(1 g) = 0.313 W/kg; SAR(10 g) = 0.184 W/kg Maximum value of SAR (measured) = 0.408 W/kg

0 dB = 0.408 W/kg = -3.89 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: PM 10:43:25

118_Flat_GPRS PCS CH810_2D3U_side1 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.496 S/m; ε_r = 52.287; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.611 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.097 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 0.730 W/kg

SAR(1 g) = 0.435 W/kg; SAR(10 g) = 0.246 W/kg Maximum value of SAR (measured) = 0.568 W/kg

0 dB = 0.568 W/kg = -2.46 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: PM 11:08:51

119_Flat_GPRS PCS CH810_2D3U_side2 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.496 S/m; ε_r = 52.287; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.458 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.697 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.535 W/kg

SAR(1 g) = 0.327 W/kg; SAR(10 g) = 0.194 W/kg Maximum value of SAR (measured) = 0.426 W/kg

0 dB = 0.426 W/kg = -3.71 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: PM 11:33:34

120_Flat_GPRS PCS CH810_2D3U_side4 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS PCS (2Down,3Up) (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.496 S/m; ε_r = 52.287; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.349 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.180 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.431 W/kg

SAR(1 g) = 0.262 W/kg; SAR(10 g) = 0.151 W/kg Maximum value of SAR (measured) = 0.354 W/kg

0 dB = 0.354 W/kg = -4.51 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: PM 10:16:58

121_Flat_GPRS PCS CH810_2D3U_side5 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.496 S/m; ε_r = 52.287; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0607 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.558 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.0760 W/kg

SAR(1 g) = 0.046 W/kg; SAR(10 g) = 0.026 W/kg Maximum value of SAR (measured) = 0.0612 W/kg

0 dB = 0.0612 W/kg = -12.13 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: PM 09:56:28

122_Flat_GPRS PCS CH810_2D3U_side6 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS PCS (2Down,3Up) (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.496 S/m; ε_r = 52.287; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.410 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 10.348 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.500 W/kg

SAR(1 g) = 0.306 W/kg; SAR(10 g) = 0.178 W/kg Maximum value of SAR (measured) = 0.410 W/kg

0 dB = 0.410 W/kg = -3.87 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: AM 12:14:48

123_Flat_DTM PCS CH810_2D3U_headset_side1 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, DTM PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.8

Medium parameters used: f = 1910 MHz; σ = 1.496 S/m; ε_r = 52.287; ρ = 1000 kg/m²

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.441 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.162 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.553 W/kg

SAR(1 g) = 0.333 W/kg; SAR(10 g) = 0.194 W/kg Maximum value of SAR (measured) = 0.447 W/kg

0 dB = 0.447 W/kg = -3.50 dBW/kg

Page 216 of 347

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: AM 12:38:03

124_Flat_DTM PCS CH810_2D3U_headset_side2 surface to phantom 10mm_SIM1 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, DTM PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.8

Medium parameters used: f = 1910 MHz; σ = 1.496 S/m; ε_r = 52.287; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.352 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.462 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.414 W/kg

SAR(1 g) = 0.257 W/kg; SAR(10 g) = 0.154 W/kg Maximum value of SAR (measured) = 0.332 W/kg

0 dB = 0.332 W/kg = -4.79 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: PM 02:28:30

50_Flat_GSM 850 CH251_headset_side1 surface to phantom 10mm_SIM2 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GSM850 (0);Frequency: 848.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 849 MHz; $\sigma = 1.009$ S/m; $\varepsilon_r = 55.288$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0824 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.784 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.0980 W/kg

SAR(1 g) = 0.067 W/kg; SAR(10 g) = 0.047 W/kg Maximum value of SAR (measured) = 0.0825 W/kg

0 dB = 0.0825 W/kg = -10.84 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: PM 03:01:57

51_Flat_GSM 850 CH251_headset_side2 surface to phantom 10mm_SIM2 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GSM850 (0);Frequency: 848.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 849 MHz; $\sigma = 1.009$ S/m; $\varepsilon_r = 55.288$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.378 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.359 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.429 W/kg

SAR(1 g) = 0.282 W/kg; SAR(10 g) = 0.186 W/kg Maximum value of SAR (measured) = 0.353 W/kg

0 dB = 0.353 W/kg = -4.52 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: PM 04:17:16

52_Flat_GPRS 850 CH190_3D2U_side1 surface to phantom 10mm_SIM2 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0844 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.254 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.100 W/kg

SAR(1 g) = 0.068 W/kg; SAR(10 g) = 0.048 W/kg Maximum value of SAR (measured) = 0.0839 W/kg

0 dB = 0.0839 W/kg = -10.76 dBW/kg

Page 220 of 347

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: PM 04:46:03

53_Flat_GPRS 850 CH190_3D2U_side2 surface to phantom 10mm_SIM2 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.439 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.572 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.484 W/kg

SAR(1 g) = 0.306 W/kg; SAR(10 g) = 0.198 W/kg Maximum value of SAR (measured) = 0.401 W/kg

0 dB = 0.401 W/kg = -3.97 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: PM 05:19:34

54_Flat_GPRS 850 CH190_3D2U_side3 surface to phantom 10mm_SIM2 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0577 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.677 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.0670 W/kg

SAR(1 g) = 0.048 W/kg; SAR(10 g) = 0.032 W/kg Maximum value of SAR (measured) = 0.0578 W/kg

0 dB = 0.0578 W/kg = -12.38 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: PM 06:01:48

56 Flat GPRS 850 CH190 3D2U side6 surface to phantom 10mm SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189 Communication System: UID 0, GPRS 850 (3Down, 2Up) (0); Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.200 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.425 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.237 W/kg

SAR(1 g) = 0.152 W/kg; SAR(10 g) = 0.094 W/kgMaximum value of SAR (measured) = 0.200 W/kg

0 dB = 0.200 W/kg = -6.99 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: PM 06:33:47

57_Flat_DTM 850 CH128_2D3U_headset_side1 surface to phantom 10mm_SIM2 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, DTM 850 (2Down, 3Up) (0);Frequency: 824.2 MHz;Duty Cycle: 1:2.8 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.978 S/m; ϵ_r = 55.317; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0611 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.242 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.0700 W/kg

SAR(1 g) = 0.049 W/kg; SAR(10 g) = 0.035 W/kg Maximum value of SAR (measured) = 0.0597 W/kg

0 dB = 0.0597 W/kg = -12.24 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: PM 06:56:42

58_Flat_DTM 850 CH128_2D3U_headset_side2 surface to phantom 10mm_SIM2 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, DTM 850 (2Down, 3Up) (0);Frequency: 824.2 MHz;Duty Cycle: 1:2.8 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.978 S/m; ϵ_r = 55.317; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.285 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.671 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.325 W/kg

SAR(1 g) = 0.209 W/kg; SAR(10 g) = 0.137 W/kg Maximum value of SAR (measured) = 0.268 W/kg

0 dB = 0.268 W/kg = -5.72 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: PM 06:28:30

107_Flat_PCS CH810_headset_side1 surface to phantom 10mm_SIM2

DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, PCS (0);Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1910 MHz; $\sigma = 1.496 \text{ S/m}$; $\epsilon_r = 52.287$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.125 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.084 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.163 W/kg

SAR(1 g) = 0.100 W/kg; SAR(10 g) = 0.056 W/kg Maximum value of SAR (measured) = 0.133 W/kg

0 dB = 0.133 W/kg = -8.76 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: PM 07:16:50

108_Flat_PCS CH810_headset_side2 surface to phantom 10mm_SIM2

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, PCS (0);Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1910 MHz; $\sigma = 1.496$ S/m; $\varepsilon_r = 52.287$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.313 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.020 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.404 W/kg

SAR(1 g) = 0.222 W/kg; SAR(10 g) = 0.113 W/kg Maximum value of SAR (measured) = 0.320 W/kg

0 dB = 0.320 W/kg = -4.95 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: PM 08:29:29

109_Flat_GPRS PCS CH810_2D3U_side1 surface to phantom 10mm_SIM2 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS PCS (2Down,3Up) (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.496 S/m; ε_r = 52.287; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.111 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.903 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.146 W/kg

SAR(1 g) = 0.089 W/kg; SAR(10 g) = 0.050 W/kg Maximum value of SAR (measured) = 0.119 W/kg

0 dB = 0.119 W/kg = -9.24 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: PM 08:06:04

110_Flat_GPRS PCS CH810_2D3U_side2 surface to phantom 10mm_SIM2 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS PCS (2Down,3Up) (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.496 S/m; ε_r = 52.287; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.312 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.044 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.406 W/kg

SAR(1 g) = 0.227 W/kg; SAR(10 g) = 0.116 W/kg Maximum value of SAR (measured) = 0.322 W/kg

0 dB = 0.322 W/kg = -4.92 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: PM 08:53:11

111_Flat_GPRS PCS CH810_2D3U_side3 surface to phantom 10mm_SIM2 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.496 S/m; ε_r = 52.287; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0936 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.563 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.116 W/kg

SAR(1 g) = 0.070 W/kg; SAR(10 g) = 0.040 W/kg Maximum value of SAR (measured) = 0.0941 W/kg

0 dB = 0.0941 W/kg = -10.26 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: PM 09:31:30

113_Flat_GPRS PCS CH810_2D3U_side6 surface to phantom 10mm_SIM2 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, GPRS PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.67

Medium parameters used: f = 1910 MHz; σ = 1.496 S/m; ε_r = 52.287; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.296 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.889 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.349 W/kg

SAR(1 g) = 0.201 W/kg; SAR(10 g) = 0.110 W/kg Maximum value of SAR (measured) = 0.273 W/kg

0 dB = 0.273 W/kg = -5.64 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: PM 06:50:32

114_Flat_DTM PCS CH810_2D3U_headset_side1 surface to phantom 10mm_SIM2 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, DTM PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.8

Medium parameters used: f = 1910 MHz; σ = 1.496 S/m; ε_r = 52.287; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0983 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.846 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.125 W/kg

SAR(1 g) = 0.077 W/kg; SAR(10 g) = 0.044 W/kg Maximum value of SAR (measured) = 0.101 W/kg

0 dB = 0.101 W/kg = -9.96 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/13Time: PM 07:43:01

115_Flat_DTM PCS CH810_2D3U_headset_side2 surface to phantom 10mm_SIM2 DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, DTM PCS (2Down,3Up) (0);Frequency: 1909.8 MHz;Duty Cycle: 1:2.8

Medium parameters used: f = 1910 MHz; σ = 1.496 S/m; ε_r = 52.287; ρ = 1000 kg/m²

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.228 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.642 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.290 W/kg

SAR(1 g) = 0.163 W/kg; SAR(10 g) = 0.084 W/kg Maximum value of SAR (measured) = 0.230 W/kg

0 dB = 0.230 W/kg = -6.38 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: AM 01:30:58

125_Flat_WCDMA Bandll CH9262_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band II (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.458 \text{ S/m}$; $\varepsilon_r = 52.394$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.676 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.948 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 0.824 W/kg

SAR(1 g) = 0.490 W/kg; SAR(10 g) = 0.287 W/kg Maximum value of SAR (measured) = 0.657 W/kg

0 dB = 0.657 W/kg = -1.82 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: AM 09:53:02

130_Flat_WCDMA Bandll CH9262_headset_side1 surface to phantom 10mm DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, WCDMA Band II (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.458 \text{ S/m}$; $\varepsilon_r = 52.394$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.644 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.308 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.783 W/kg

SAR(1 g) = 0.469 W/kg; SAR(10 g) = 0.278 W/kg Maximum value of SAR (measured) = 0.631 W/kg

0 dB = 0.631 W/kg = -2.00 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: AM 02:12:46

126_Flat_WCDMA Bandll CH9262_side2 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band II (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.458 \text{ S/m}$; $\varepsilon_r = 52.394$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.580 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.521 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.702 W/kg

SAR(1 g) = 0.437 W/kg; SAR(10 g) = 0.263 W/kg Maximum value of SAR (measured) = 0.575 W/kg

0 dB = 0.575 W/kg = -2.40 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: AM 02:48:46

127_Flat_WCDMA Bandll CH9262_side4 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band II (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.458 \text{ S/m}$; $\varepsilon_r = 52.394$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.360 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.917 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.440 W/kg

SAR(1 g) = 0.271 W/kg; SAR(10 g) = 0.158 W/kg Maximum value of SAR (measured) = 0.364 W/kg

0 dB = 0.364 W/kg = -4.39 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: AM 03:10:03

128_Flat_WCDMA Bandll CH9262_side5 surface to phantom 10mm

DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, WCDMA Band II (0);Frequency: 1852.4 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.458 \text{ S/m}$; $\varepsilon_r = 52.394$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.0947 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.510 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.115 W/kg

SAR(1 g) = 0.072 W/kg; SAR(10 g) = 0.043 W/kg Maximum value of SAR (measured) = 0.0950 W/kg

0 dB = 0.0950 W/kg = -10.22 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: AM 09:22:31

129_Flat_WCDMA Bandll CH9262_side6 surface to phantom 10mm

DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, WCDMA Band II (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.458 \text{ S/m}$; $\varepsilon_r = 52.394$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.493 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 10.440 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.551 W/kg

SAR(1 g) = 0.344 W/kg; SAR(10 g) = 0.203 W/kg Maximum value of SAR (measured) = 0.455 W/kg

0 dB = 0.455 W/kg = -3.42 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: PM 05:36:58

34_Flat_WCDMA BandV CH4183_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band V (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.342 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.578 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.405 W/kg

SAR(1 g) = 0.261 W/kg; SAR(10 g) = 0.171 W/kg Maximum value of SAR (measured) = 0.335 W/kg

0 dB = 0.335 W/kg = -4.75 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: PM 11:55:36

39_Flat_WCDMA BandV CH4183_headset_side2 surface to phantom 10mm DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, WCDMA Band V (0);Frequency: 836.6 MHz;Duty Cycle: 1:1

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.452 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.538 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.511 W/kg

SAR(1 g) = 0.337 W/kg; SAR(10 g) = 0.217 W/kg Maximum value of SAR (measured) = 0.425 W/kg

0 dB = 0.425 W/kg = -3.72 dBW/kg

Page 241 of 347

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: PM 10:20:01

35 Flat WCDMA BandV CH4183 side2 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band V (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.434 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.027 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.497 W/kg

SAR(1 g) = 0.325 W/kg; SAR(10 g) = 0.208 W/kg Maximum value of SAR (measured) = 0.413 W/kg

0 dB = 0.413 W/kg = -3.84 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: PM 10:45:44

36_Flat_WCDMA BandV CH4183_side4 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band V (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0780 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.717 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.0970 W/kg

SAR(1 g) = 0.065 W/kg; SAR(10 g) = 0.042 W/kg Maximum value of SAR (measured) = 0.0832 W/kg

0 dB = 0.0832 W/kg = -10.80 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: PM 11:03:31

37_Flat_WCDMA BandV CH4183_side5 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band V (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.294 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.066 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.350 W/kg

SAR(1 g) = 0.242 W/kg; SAR(10 g) = 0.164 W/kg Maximum value of SAR (measured) = 0.302 W/kg

0 dB = 0.302 W/kg = -5.20 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/10Time: PM 11:25:07

38_Flat_WCDMA BandV CH4183_side6 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, WCDMA Band V (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.305; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.147 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.596 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.173 W/kg

SAR(1 g) = 0.121 W/kg; SAR(10 g) = 0.082 W/kg Maximum value of SAR (measured) = 0.149 W/kg

0 dB = 0.149 W/kg = -8.27 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: AM 10:31:14

131_Flat_LTE Band2 BW 20M CH18900 QPSK with 1RB Size 0RB Offset_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.458$ S/m; $\varepsilon_r = 52.636$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.899 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.630 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.657 W/kg; SAR(10 g) = 0.381 W/kg Maximum value of SAR (measured) = 0.860 W/kg

0 dB = 0.860 W/kg = -0.66 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: AM 11:08:42

132_Flat_LTE Band2 BW 20M CH18900 QPSK with 1RB Size 0RB Offset_side2 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.458$ S/m; $\varepsilon_r = 52.636$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.676 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.916 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.795 W/kg

SAR(1 g) = 0.487 W/kg; SAR(10 g) = 0.294 W/kg Maximum value of SAR (measured) = 0.639 W/kg

0 dB = 0.639 W/kg = -1.94 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: AM 11:38:24

133_Flat_LTE Band2 BW 20M CH18900 QPSK with 1RB Size 0RB Offset_side4 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.458$ S/m; $\varepsilon_r = 52.636$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.525 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.541 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.636 W/kg

SAR(1 g) = 0.391 W/kg; SAR(10 g) = 0.226 W/kg Maximum value of SAR (measured) = 0.524 W/kg

0 dB = 0.524 W/kg = -2.81 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: AM 11:58:34

134_Flat_LTE Band2 BW 20M CH18900 QPSK with 1RB Size 0RB Offset_side5 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.458$ S/m; $\varepsilon_r = 52.636$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.123 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.333 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.153 W/kg

SAR(1 g) = 0.094 W/kg; SAR(10 g) = 0.056 W/kg Maximum value of SAR (measured) = 0.125 W/kg

0 dB = 0.125 W/kg = -9.03 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 01:17:00

135_Flat_LTE Band2 BW 20M CH18900 QPSK with 1RB Size 0RB Offset_side6 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.458$ S/m; $\varepsilon_r = 52.636$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.570 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.684 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.670 W/kg

SAR(1 g) = 0.420 W/kg; SAR(10 g) = 0.248 W/kg Maximum value of SAR (measured) = 0.555 W/kg

0 dB = 0.555 W/kg = -2.56 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 02:11:11

136_Flat_LTE Band2 BW 20M CH18900 QPSK with 50RB Size 0RB Offset_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.458$ S/m; $\varepsilon_r = 52.636$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.836 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.103 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.984 W/kg

SAR(1 g) = 0.582 W/kg; SAR(10 g) = 0.333 W/kg Maximum value of SAR (measured) = 0.781 W/kg

0 dB = 0.781 W/kg = -1.07 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 03:01:48

137_Flat_LTE Band2 BW 20M CH18900 QPSK with 50RB Size 0RB Offset_side2 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.458$ S/m; $\varepsilon_r = 52.636$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.537 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.976 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.638 W/kg

SAR(1 g) = 0.392 W/kg; SAR(10 g) = 0.234 W/kg Maximum value of SAR (measured) = 0.514 W/kg

0 dB = 0.514 W/kg = -2.89 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 01:52:58

138_Flat_LTE Band2 BW 20M CH18900 QPSK with 50RB Size 0RB Offset_side4 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.458$ S/m; $\varepsilon_r = 52.636$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.417 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.501 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.516 W/kg

SAR(1 g) = 0.315 W/kg; SAR(10 g) = 0.181 W/kg Maximum value of SAR (measured) = 0.424 W/kg

0 dB = 0.424 W/kg = -3.73 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 12:17:34

139_Flat_LTE Band2 BW 20M CH18900 QPSK with 50RB Size 0RB Offset_side5 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.458$ S/m; $\varepsilon_r = 52.636$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0988 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.795 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.125 W/kg

SAR(1 g) = 0.077 W/kg; SAR(10 g) = 0.045 W/kg Maximum value of SAR (measured) = 0.103 W/kg

0 dB = 0.103 W/kg = -9.87 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 12:41:24

140 Flat LTE Band2 BW 20M CH18900 QPSK with 50RB Size 0RB Offset side6 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.458 S/m; ε_r = 52.636; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.37, 7.37, 7.37); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.465 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.224 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.561 W/kg

SAR(1 g) = 0.348 W/kg; SAR(10 g) = 0.204 W/kgMaximum value of SAR (measured) = 0.463 W/kg

0 dB = 0.463 W/kg = -3.34 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 05:34:27

151_Flat_LTE Band4 BW 20M CH20050 QPSK with 1RB Size 0RB Offset_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 1720 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1720 MHz; $\sigma = 1.494$ S/m; $\varepsilon_r = 54.545$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.24 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.280 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.829 W/kg; SAR(10 g) = 0.486 W/kg

Maximum value of SAR (measured) = 1.14 W/kg

0 dB = 1.14 W/kg = 0.57 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 09:42:13

156_Flat_LTE Band4 BW 20M CH20050 QPSK with 50RB Size 0RB Offset_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1720 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1720 MHz; $\sigma = 1.494$ S/m; $\epsilon_r = 54.545$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.836 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.871 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.931 W/kg

SAR(1 g) = 0.570 W/kg; SAR(10 g) = 0.342 W/kg Maximum value of SAR (measured) = 0.752 W/kg

0 dB = 0.752 W/kg = -1.24 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 05:58:37

152_Flat_LTE Band4 BW 20M CH20175 QPSK with 1RB Size 0RB Offset_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.506 \text{ S/m}$; $\varepsilon_r = 54.605$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.22 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.866 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.845 W/kg; SAR(10 g) = 0.502 W/kg Maximum value of SAR (measured) = 1.11 W/kg

0 dB = 1.11 W/kg = 0.45 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 06:22:20

153_Flat_LTE Band4 BW 20M CH20175 QPSK with 1RB Size 0RB Offset_headset_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.506 \text{ S/m}$; $\varepsilon_r = 54.605$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.23 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.253 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.875 W/kg; SAR(10 g) = 0.526 W/kg Maximum value of SAR (measured) = 1.12 W/kg

0 dB = 1.12 W/kg = 0.49 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 10:03:54

157_Flat_LTE Band4 BW 20M CH20175 QPSK with 50RB Size 0RB Offset_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.506 \text{ S/m}$; $\varepsilon_r = 54.605$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.826 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.206 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.960 W/kg

SAR(1 g) = 0.590 W/kg; SAR(10 g) = 0.352 W/kg Maximum value of SAR (measured) = 0.771 W/kg

0 dB = 0.771 W/kg = -1.13 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 10:03:54

157_Flat_LTE Band4 BW 20M CH20175 QPSK with 50RB Size 0RB Offset_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.506 \text{ S/m}$; $\varepsilon_r = 54.605$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.826 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.206 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.960 W/kg

SAR(1 g) = 0.590 W/kg; SAR(10 g) = 0.352 W/kg Maximum value of SAR (measured) = 0.771 W/kg

0 dB = 0.771 W/kg = -1.13 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 10:03:54

157_Flat_LTE Band4 BW 20M CH20175 QPSK with 50RB Size 0RB Offset_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.506 \text{ S/m}$; $\varepsilon_r = 54.605$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.826 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.206 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.960 W/kg

SAR(1 g) = 0.590 W/kg; SAR(10 g) = 0.352 W/kg Maximum value of SAR (measured) = 0.771 W/kg

0 dB = 0.771 W/kg = -1.13 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: AM 09:57:10

143_Flat_LTE Band4 BW 20M CH20300 QPSK with 1RB Size 0RB Offset_side4 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1745 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.514$ S/m; $\epsilon_r = 54.682$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.410 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.992 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 0.494 W/kg

SAR(1 g) = 0.307 W/kg; SAR(10 g) = 0.180 W/kg Maximum value of SAR (measured) = 0.409 W/kg

0 dB = 0.409 W/kg = -3.88 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: AM 10:34:01

144_Flat_LTE Band4 BW 20M CH20300 QPSK with 1RB Size 0RB Offset_side5 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1745 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.514$ S/m; $\epsilon_r = 54.682$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.100 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.047 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.128 W/kg

SAR(1 g) = 0.082 W/kg; SAR(10 g) = 0.050 W/kg Maximum value of SAR (measured) = 0.107 W/kg

0 dB = 0.107 W/kg = -9.71 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: AM 10:34:01

144_Flat_LTE Band4 BW 20M CH20300 QPSK with 1RB Size 0RB Offset_side5 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.514$ S/m; $\varepsilon_r = 54.682$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.100 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.047 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.128 W/kg

SAR(1 g) = 0.082 W/kg; SAR(10 g) = 0.050 W/kg Maximum value of SAR (measured) = 0.107 W/kg

0 dB = 0.107 W/kg = -9.71 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 05:09:18

146_Flat_LTE Band4 BW 20M CH20300 QPSK with 50RB Size 0RB Offset_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.514$ S/m; $\varepsilon_r = 54.682$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.973 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.909 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.681 W/kg; SAR(10 g) = 0.400 W/kg Maximum value of SAR (measured) = 0.903 W/kg

0 dB = 0.903 W/kg = -0.44 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: AM 09:22:23

147_Flat_LTE Band4 BW 20M CH20300 QPSK with 50RB Size 0RB Offset_side2 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.514$ S/m; $\varepsilon_r = 54.682$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.657 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.896 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.809 W/kg

SAR(1 g) = 0.505 W/kg; SAR(10 g) = 0.302 W/kg Maximum value of SAR (measured) = 0.677 W/kg

0 dB = 0.677 W/kg = -1.69 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: AM 10:12:50

148_Flat_LTE Band4 BW 20M CH20300 QPSK with 50RB Size 0RB Offset_side4 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1745 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.514$ S/m; $\epsilon_r = 54.682$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.333 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.220 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.405 W/kg

SAR(1 g) = 0.251 W/kg; SAR(10 g) = 0.147 W/kg Maximum value of SAR (measured) = 0.335 W/kg

0 dB = 0.335 W/kg = -4.75 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: AM 10:53:17

149_Flat_LTE Band4 BW 20M CH20300 QPSK with 50RB Size 0RB Offset_side5 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 1745 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.514$ S/m; $\varepsilon_r = 54.682$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0931 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.081 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.109 W/kg

SAR(1 g) = 0.070 W/kg; SAR(10 g) = 0.043 W/kg Maximum value of SAR (measured) = 0.0921 W/kg

0 dB = 0.0921 W/kg = -10.36 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/15Time: AM 11:34:56

150_Flat_LTE Band4 BW 20M CH20300 QPSK with 50RB Size 0RB Offset_side6 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.514$ S/m; $\varepsilon_r = 54.682$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.526 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.802 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.621 W/kg

SAR(1 g) = 0.392 W/kg; SAR(10 g) = 0.233 W/kg Maximum value of SAR (measured) = 0.517 W/kg

0 dB = 0.517 W/kg = -2.87 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 09:18:03

155_Flat_LTE Band4 BW 20M CH20300 QPSK with 100RB Size 0RB Offset_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.514$ S/m; $\varepsilon_r = 54.682$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.851 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.617 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.979 W/kg

SAR(1 g) = 0.597 W/kg; SAR(10 g) = 0.354 W/kg Maximum value of SAR (measured) = 0.784 W/kg

0 dB = 0.784 W/kg = -1.06 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: AM 09:44:33

40_Flat_LTE Band5 BW 10M CH20450 QPSK with 1RB Size 0RB Offset_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 829 MHz; Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.982$ S/m; $\varepsilon_r = 55.325$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.397 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.153 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.454 W/kg

SAR(1 g) = 0.347 W/kg; SAR(10 g) = 0.260 W/kg Maximum value of SAR (measured) = 0.404 W/kg

0 dB = 0.404 W/kg = -3.94 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: AM 10:09:47

41_Flat_LTE Band5 BW 10M CH20450 QPSK with 1RB Size 0RB Offset_side2 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 829 MHz; Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.982$ S/m; $\varepsilon_r = 55.325$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.495 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.646 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.567 W/kg

SAR(1 g) = 0.368 W/kg; SAR(10 g) = 0.234 W/kg Maximum value of SAR (measured) = 0.471 W/kg

0 dB = 0.471 W/kg = -3.27 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: AM 10:37:12

42_Flat_LTE Band5 BW 10M CH20450 QPSK with 1RB Size 0RB Offset_side4 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 829 MHz;Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.982$ S/m; $\varepsilon_r = 55.325$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.0849 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.116 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 0.104 W/kg

SAR(1 g) = 0.072 W/kg; SAR(10 g) = 0.047 W/kg Maximum value of SAR (measured) = 0.0907 W/kg

0 dB = 0.0907 W/kg = -10.42 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: AM 10:37:12

42_Flat_LTE Band5 BW 10M CH20450 QPSK with 1RB Size 0RB Offset_side4 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 829 MHz;Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.982$ S/m; $\varepsilon_r = 55.325$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.0849 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.116 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 0.104 W/kg

SAR(1 g) = 0.072 W/kg; SAR(10 g) = 0.047 W/kg Maximum value of SAR (measured) = 0.0907 W/kg

0 dB = 0.0907 W/kg = -10.42 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: AM 11:18:12

44_Flat_LTE Band5 BW 10M CH20450 QPSK with 1RB Size 0RB Offset_side6 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0);Frequency: 829 MHz;Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.982$ S/m; $\varepsilon_r = 55.325$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.204 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.066 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.240 W/kg

SAR(1 g) = 0.167 W/kg; SAR(10 g) = 0.113 W/kg Maximum value of SAR (measured) = 0.207 W/kg

0 dB = 0.207 W/kg = -6.84 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: PM 01:47:25

45_Flat_LTE Band5 BW 10M CH20450 QPSK with 25RB Size 0RB Offset_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 829 MHz; Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.982$ S/m; $\varepsilon_r = 55.325$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.286 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.621 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.322 W/kg

SAR(1 g) = 0.250 W/kg; SAR(10 g) = 0.193 W/kg Maximum value of SAR (measured) = 0.287 W/kg

0 dB = 0.287 W/kg = -5.42 dBW/kg

Report Number: 1410FS12-03 Page 277 of 347

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: PM 01:24:36

46_Flat_LTE Band5 BW 10M CH20450 QPSK with 25RB Size 0RB Offset_side2 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 829 MHz; Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.982$ S/m; $\varepsilon_r = 55.325$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.312 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.083 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 0.351 W/kg

SAR(1 g) = 0.232 W/kg; SAR(10 g) = 0.150 W/kg Maximum value of SAR (measured) = 0.294 W/kg

0 dB = 0.294 W/kg = -5.32 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: PM 01:07:02

47_Flat_LTE Band5 BW 10M CH20450 QPSK with 25RB Size 0RB Offset_side4 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 829 MHz; Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.982$ S/m; $\varepsilon_r = 55.325$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.0660 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.172 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.0800 W/kg

SAR(1 g) = 0.055 W/kg; SAR(10 g) = 0.035 W/kg Maximum value of SAR (measured) = 0.0680 W/kg

0 dB = 0.0680 W/kg = -11.67 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: AM 11:56:32

48_Flat_LTE Band5 BW 10M CH20450 QPSK with 25RB Size 0RB Offset_side5 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 829 MHz; Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.982$ S/m; $\varepsilon_r = 55.325$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.225 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.442 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.264 W/kg

SAR(1 g) = 0.184 W/kg; SAR(10 g) = 0.126 W/kg Maximum value of SAR (measured) = 0.228 W/kg

0 dB = 0.228 W/kg = -6.42 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/11Time: AM 11:37:05

49_Flat_LTE Band5 BW 10M CH20450 QPSK with 25RB Size 0RB Offset_side6 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 829 MHz; Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.982$ S/m; $\varepsilon_r = 55.325$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(9.74, 9.74, 9.74); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (61x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.151 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.326 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.176 W/kg

SAR(1 g) = 0.121 W/kg; SAR(10 g) = 0.082 W/kg

Maximum value of SAR (measured) = 0.151 W/kg

0 dB = 0.151 W/kg = -8.21 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/14Time: PM 08:45:34

154_Flat_LTE Band4 BW 20M CH20175 QPSK with 1RB Size 0RB Offset_Original #153_headset_side1 surface to phantom 10mm_measurement once

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Generic LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.506 \text{ S/m}$; $\varepsilon_r = 54.605$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(7.69, 7.69, 7.69); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (81x131x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.09 W/kg

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.945 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.806 W/kg; SAR(10 g) = 0.486 W/kg

Maximum value of SAR (measured) = 1.05 W/kg

0 dB = 1.05 W/kg = 0.21 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/23Time: AM 12:06:55

178_Flat_802.11b CH1_1M_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11b (0);Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.927$ S/m; $\varepsilon_r = 53.982$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (121x191x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0285 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.272 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 0.0960 W/kg

SAR(1 g) = 0.016 W/kg; SAR(10 g) = 0.00616 W/kg Maximum value of SAR (measured) = 0.0256 W/kg

0 dB = 0.0256 W/kg = -15.92 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/23Time: AM 12:50:54

179 Flat 802.11b CH1 1M side2 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.927$ S/m; $\varepsilon_r = 53.982$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (121x191x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0393 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.968 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.0540 W/kg

SAR(1 g) = 0.027 W/kg; SAR(10 g) = 0.013 W/kg Maximum value of SAR (measured) = 0.0392 W/kg

0 dB = 0.0392 W/kg = -14.07 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/23Time: AM 01:35:04

180 Flat 802.11b CH1 1M side3 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.927$ S/m; $\varepsilon_r = 53.982$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (91x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0229 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.452 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.0360 W/kg

SAR(1 g) = 0.017 W/kg; SAR(10 g) = 0.00739 W/kg Maximum value of SAR (measured) = 0.0264 W/kg

0 dB = 0.0264 W/kg = -15.78 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/23Time: AM 02:04:53

181_Flat_802.11b CH1_1M_side5 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.927$ S/m; $\varepsilon_r = 53.982$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (91x191x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0376 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.817 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 0.0770 W/kg

SAR(1 g) = 0.021 W/kg; SAR(10 g) = 0.00799 W/kg Maximum value of SAR (measured) = 0.0339 W/kg

0 dB = 0.0339 W/kg = -14.70 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/23Time: AM 09:49:35

182_Flat_802.11g CH6_6M_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11g (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.988$ S/m; $\varepsilon_r = 54.297$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (121x191x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0820 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.111 W/kg

SAR(1 g) = 0.055 W/kg; SAR(10 g) = 0.026 W/kg Maximum value of SAR (measured) = 0.0801 W/kg

0 dB = 0.0801 W/kg = -10.96 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/23Time: AM 11:11:37

183 Flat 802.11g CH6 6M side2 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11g (0);Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.988$ S/m; $\varepsilon_r = 54.297$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (121x191x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.136 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.930 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.186 W/kg

SAR(1 g) = 0.098 W/kg; SAR(10 g) = 0.051 W/kg Maximum value of SAR (measured) = 0.140 W/kg

0 dB = 0.140 W/kg = -8.54 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/23Time: PM 01:06:46

184_Flat_802.11g CH6_6M_side3 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11g (0);Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.988$ S/m; $\varepsilon_r = 54.297$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (91x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0850 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.342 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.118 W/kg

SAR(1 g) = 0.062 W/kg; SAR(10 g) = 0.031 W/kg Maximum value of SAR (measured) = 0.0890 W/kg

0 dB = 0.0890 W/kg = -10.51 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/23Time: PM 01:41:42

185_Flat_802.11g CH6_6M_side5 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11g (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.988$ S/m; $\varepsilon_r = 54.297$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (91x191x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.133 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.773 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.169 W/kg

SAR(1 g) = 0.083 W/kg; SAR(10 g) = 0.037 W/kg Maximum value of SAR (measured) = 0.125 W/kg

0 dB = 0.125 W/kg = -9.03 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/23Time: PM 03:28:55

186_Flat_802.11n HT20 CH6_6.5M_side1 surface to phantom 10mm DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, IEEE 802.11n(2.4GHz) (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.988$ S/m; $\varepsilon_r = 54.297$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (121x191x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0585 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.0770 W/kg

SAR(1 g) = 0.036 W/kg; SAR(10 g) = 0.016 W/kg

Maximum value of SAR (measured) = 0.0566 W/kg

0 dB = 0.0566 W/kg = -12.47 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/23Time: PM 04:18:14

187_Flat_802.11n HT20 CH6_6.5M_side2 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, IEEE 802.11n(2.4GHz) (0);Frequency: 2437 MHz;Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.988$ S/m; $\varepsilon_r = 54.297$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (121x191x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.102 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.676 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.140 W/kg

SAR(1 g) = 0.072 W/kg; SAR(10 g) = 0.037 W/kg Maximum value of SAR (measured) = 0.103 W/kg

0 dB = 0.103 W/kg = -9.87 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/23Time: PM 05:07:07

188_Flat_802.11n HT20 CH6_6.5M_side3 surface to phantom 10mm DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, IEEE 802.11n(2.4GHz) (0);Frequency: 2437 MHz;Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.988$ S/m; $\varepsilon_r = 54.297$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (91x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0605 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.904 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.0820 W/kg

SAR(1 g) = 0.041 W/kg; SAR(10 g) = 0.020 W/kg Maximum value of SAR (measured) = 0.0596 W/kg

0 dB = 0.0596 W/kg = -12.25 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/23Time: PM 02:47:56

189_Flat_802.11n HT20 CH6_6.5M_side5 surface to phantom 10mm DUT: 88 Tauri;Type: GSM/WCDMA/LTE Android Smartphone;Serial: 356537050191189

Communication System: UID 0, IEEE 802.11n(2.4GHz) (0);Frequency: 2437 MHz;Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.988 \text{ S/m}$; $\varepsilon_r = 54.297$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (91x191x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0886 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.120 W/kg

SAR(1 g) = 0.056 W/kg; SAR(10 g) = 0.025 W/kg Maximum value of SAR (measured) = 0.0870 W/kg

0 dB = 0.0870 W/kg = -10.60 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/24Time: AM 10:51:53

190_Flat_BT3.0 CH39_1M_DH5_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Bluetooth (0);Frequency: 2441 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2441 MHz; $\sigma = 1.989$ S/m; $\epsilon_r = 54.352$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (121x191x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0142 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.0190 W/kg

SAR(1 g) = 0.00431 W/kg; SAR(10 g) = 0.00122 W/kg Maximum value of SAR (measured) = 0.00837 W/kg

0 dB = 0.00837 W/kg = -20.77 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/24Time: AM 11:36:03

191 Flat BT3.0 CH39 1M DH5 side2 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Bluetooth (0);Frequency: 2441 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2441 MHz; $\sigma = 1.989$ S/m; $\epsilon_r = 54.352$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (121x191x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0243 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.152 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.0240 W/kg

SAR(1 g) = 0.012 W/kg; SAR(10 g) = 0.00524 W/kg Maximum value of SAR (measured) = 0.0182 W/kg

0 dB = 0.0182 W/kg = -17.40 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/24Time: PM 03:55:32

192_Flat_BT_LE CH19_side1 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Bluetooth 4.0 (0); Frequency: 2440 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2440 MHz; $\sigma = 1.989$ S/m; $\varepsilon_r = 54.337$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (121x191x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.00705 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.0170 W/kg

SAR(1 g) = 0.00256 W/kg; SAR(10 g) = 0.000482 W/kg Maximum value of SAR (measured) = 0.00677 W/kg

0 dB = 0.00677 W/kg = -21.69 dBW/kg

Test Laboratory: A Test Lab Techno Corp. Date: 2014/9/24Time: PM 04:41:11

193_Flat_BT_LE CH19_side2 surface to phantom 10mm

DUT: 88 Tauri; Type: GSM/WCDMA/LTE Android Smartphone; Serial: 356537050191189

Communication System: UID 0, Bluetooth 4.0 (0); Frequency: 2440 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2440 MHz; $\sigma = 1.989$ S/m; $\varepsilon_r = 54.337$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977;ConvF(6.97, 6.97, 6.97); Calibrated: 2014/2/17;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2014/2/25
- Phantom: SAM with CRP;Type: SAM;Serial: TP-1150 and higher
- Measurement SW: DASY52, Version 52.8 (7);SEMCAD X Version 14.6.10 (7164)

Flat/Area Scan (121x191x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0302 W/kg

Flat/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.0290 W/kg

SAR(1 g) = 0.00749 W/kg; SAR(10 g) = 0.00256 W/kg Maximum value of SAR (measured) = 0.0166 W/kg

0 dB = 0.0166 W/kg = -17.80 dBW/kg

Appendix C - Calibration

All of the instruments Calibration information are listed below.

- Dipole _ D835V2 SN:4d082 Calibration No.D835V2-4d082_Jul14
- Dipole _ D1750V2 SN:1023 Calibration No.D1750V2-1023_Jun14
- Dipole _ D1900V2 SN:5d111 Calibration No.D1900V2-5d111_Jul14
- Dipole _ D2450V2 SN:712 Calibration No.D2450V2-712_Mar14
- Probe _ EX3DV4 SN:3977 Calibration No.EX3-3977_Feb14
- DAE _ DAE4 SN:779 Calibration No.DAE4-779_Feb14

Report Number: 1410FS12-03 Page 299 of 347