1.

We want to multiply 2101 and 1130. We have

$$c_2 = 21 * 11$$

 $c_0 = 01 * 30$
 $c_1 = (21 + 01) * (11 + 30) - ((21 * 11) + 01 * 30)$
 $= (22 * 41) - (21 * 11) - (01 * 30)$

Thus we break it down further as follows.

For 21 * 11 we have:

$$c_2 = 2 * 1 = 2$$

 $c_0 = 1 * 1 = 1$
 $c_1 = (2+1) * (1 * 1) - (2 * 1 + 1 * 1)$
 $= 3$

So

$$21 * 11 = 2 \cdot 10^2 + 3 \cdot 10 + 1 = 231$$

For 01 * 30 we have:

$$c_2 = 0 * 3 = 0$$

 $c_0 = 1 * 0 = 0$
 $c_1 = (0+1) * (3+0) - (0+0)$
 $= 3$

So

$$01 * 30 = 0 \cdot 10^2 + 3 \cdot 10 + 0 = 30$$

For 01 * 30 we have:

$$c_2 = 2 * 4 = 8$$

 $c_0 = 2 * 1 = 2$
 $c_1 = (2 + 2) * (4 * 1) - (8 + 2)$
 $= 10$

So

$$22 * 41 = 8 \cdot 10^2 + 10 \cdot 10 + 2 = 902$$

Putting it all together, we have

$$2101 * 1130 = 231 \cdot 10^4 + (902 - 231 - 30) \cdot 10^2 + 30$$
$$= 2,374,130$$

2.

3.

(a) First we sort the array with a sorting algorithm with optimal efficiency will be in the first and last positions of the array respectively. Thus, we have an efficiency as follows:

$$T(n) = T_{\text{sort}}(n) + T_{\text{select}}(n) \in \Theta(n \log n) + \Theta(1) = \Theta(n \log n)$$

(b) First assign a varible called min to A[0] and then loop through the array and if A[i] is less than min, then reassign min to A[i]. Then create a variable called max and loop through again reassigning if an element of the array is larger than max. Since we had to loop through the array twice, then T(n) = 2n and $T(n) \in \Theta(n)$.

4 (b).

4 (c).

5.

6(a).

6(b).

7.

First, we create the max heap, and then we proceed with the deleting procedure.

8.

A counterexample is if we want to sort the array 5, 5', 3, where we denote the second 5 with 5'.

Then the sorted array becomes 3, 5, 5'. So the two fives are swapped.

9.

10. The frequency and distribution arrays are as follows.

Array values	a	b	\mathbf{c}	d
Frequency	2	3	2	1
Distribution	2	5	7	8

Then we build the sorted array.

	$D[0\ldots 3]$			Sorted array								
A[7] = b				8					b			
A[6] = a	2	4	7	8		a						
A[5] = a	1	4	7	8	a							
A[4] = b	0	4	7	8				b				
A[3] = c	0	3	7	8							c	
A[2] = d	0	3	6	8								d
A[1] = c	0	3	6	7						c		
A[0] = b	0		5	7			b					

So the sorted array is a, a, b, b, b, c, c, d.