微分方程历届试题选 (二) 参考答案

一、求解下列方程:

1.
$$y'' + a^2y = 8\cos bx$$
 ($a > 0, b > 0$) (2005-2006 学年第三学期)

解:特征方程为 $r^2 + a^2 = 0$,特征根 $r = \pm ai$.

于是, $y'' + a^2y = 0$ 的通解为 $Y = C_1 \cos ax + C_2 \sin ax$, 其中 C_1 , C_2 为任意常数.

下面求 $y'' + a^2y = 8\cos bx$ 的特解.

(1)当a=b时, $\lambda+i\omega=b$ i=ai为特征根.

因此,设特解为 $y^* = x(k_1 \cos ax + k_2 \sin ax)$,

$$(y^*)' = (k_1 \cos ax + k_2 \sin ax) + x(-ak_1 \sin ax + ak_2 \cos ax)$$
$$= (k_1 + ak_2 x)\cos ax + (k_2 - ak_1 x)\sin ax ,$$

$$(y^*)'' = (2ak_2 - a^2k_1x)\cos ax + (-2ak_1 - a^2k_2x)\sin ax$$
.

由 $(y^*)'' + a^2 y^* = 8\cos bx$ 可得

$$(2ak_2 - a^2k_1x)\cos ax + (-2ak_1 - a^2k_2x)\sin ax + a^2(k_1x\cos ax + k_2x\sin ax) = 8\cos bx,$$

即 $2ak_2\cos ax - 2ak_1\sin ax = 8\cos bx.$

于是,
$$\begin{cases} 2ak_2 = 8 \\ -2ak_1 = 0 \end{cases}$$
, 则 $k_2 = \frac{4}{a}$, $k_1 = 0$ 。

故
$$y^* = \frac{4}{a}x\sin ax$$
.

因此,方程 $y'' + a^2y = 8\cos bx$ 的通解为 $y = C_1\cos ax + C_2\sin ax + \frac{4}{a}x\sin ax$, 其中 C_1 , C_2 为任意常数.

(2) 当 $a \neq b$ 时, $\lambda + i \omega = bi$ 不是特征根.

因此,设特解为 $y^* = k_1 \cos bx + k_2 \sin bx$,

$$(y^*)' = -k_1 b \sin bx + k_2 b \cos bx$$
, $(y^*)'' = -k_1 b^2 \cos bx - k_2 b^2 \sin bx$.

由
$$(y^*)'' + a^2 y^* = 8\cos bx$$
可得

$$-k_1b^2\cos bx - k_2b^2\sin bx + a^2(k_1\cos bx + k_2\sin bx) = 8\cos bx ,$$

$$\mathbb{P} \qquad k_1(a^2 - b^2)\cos bx + k_2(a^2 - b^2)\sin bx = 8\cos bx.$$

于是,
$$\begin{cases} k_1(a^2-b^2)=8\\ k_2(a^2-b^2)=0 \end{cases}$$
,故 $k_1=\frac{8}{a^2-b^2}, k_2=0$.

故
$$y^* = \frac{8}{a^2 - b^2} \cos bx.$$

从而,原方程的通解为 $y = C_1 \cos ax + C_2 \sin ax + \frac{8}{a^2 - b^2} \cos bx$,其中 C_1 , C_2 为任意常数.

2.
$$y'' = 3\sqrt{y}$$
, $y|_{x=0} = 1$, $y'|_{x=0} = 2$ (2005-2006 学年第三学期)

解: 设
$$y' = p(y)$$
,则 $y'' = p\frac{\mathrm{d}p}{\mathrm{d}y}$,于是, $p\frac{\mathrm{d}p}{\mathrm{d}y} = 3\sqrt{y}$,即 $p\mathrm{d}p = 3\sqrt{y}\mathrm{d}y$.

两边积分,得
$$\int p dp = \int 3\sqrt{y} dy$$
,即 $\frac{1}{2}p^2 = 3 \cdot \frac{2}{3}\sqrt{y^3} + C_1$,即 $p = \sqrt{4\sqrt{y^3} + C_1}$ 。

由
$$y|_{x=0} = 1$$
, $p|_{x=0} = 2$, 故 $2 = \sqrt{4 + C_1}$, 所以, $C_1 = 0$ 。

所以,
$$\frac{dy}{dx} = 2y^{\frac{3}{4}}$$
, 即 $y^{-\frac{3}{4}}dy = 2dx$ 。

两边积分,得
$$\int y^{-\frac{3}{4}} dy = \int 2 dx$$
,即 $4y^{\frac{1}{4}} = 2x + C_2$ 。

由
$$y|_{x=0} = 1$$
, 得 $4 = C_2$, 于是, 所求的解为 $4y^{\frac{1}{4}} = 2x + 4$, 即 $y = \frac{1}{16}(x+2)^4$ 。

3.
$$y'' + a^2 y = e^x$$
。 (2008-2009 学年第二学期期中试卷)

解: (1) a = 0时, $y'' = e^x$, 积分两次, 可得微分方程的通解:

$$y = e^x + C_1 x + C_2$$

其中 C_1 , C_2 为任意常数。

(2) $a \neq 0$ 时,不妨设 a > 0,此时特征方程为 $r^2 + a^2 = 0$,特征根为 $r = \pm a i$.

于是,对应的齐次方程 $y''+a^2y=0$ 的通解为 $Y=C_1\cos ax+C_2\sin ax$,其中 C_1 , C_2 为任意常数。

因为
$$f(x) = P_m(x)e^{\lambda x} = e^x$$
,此时 $P_m(x) = 1$, $m = 0$, $\lambda = 1$ 不是特征根。

因此可设特解 $y^* = Q_m(x)e^{\lambda x} = be^x$, 代入方程 $y'' + a^2y = e^x$, 可得

$$be^x + a^2be^x = e^x$$

即
$$b = \frac{1}{1+a^2}$$
, 故得特解 $y^* = \frac{1}{1+a^2}e^x$.

因此,所求通解为 $y = C_1 \cos ax + C_2 \sin ax + \frac{1}{1+a^2} e^x$,其中 C_1 , C_2 为任意常数。

如果a < 0,则所求通解为 $y = C_1 \cos |a| x + C_2 \sin |a| x + \frac{1}{1+a^2} e^x$,也可以写成

$$y = C_1 \cos ax + C_2 \sin ax + \frac{1}{1+a^2} e^x$$
,

其中 C_1 , C_2 为任意常数。

4. $y'' + y' = e^x + \cos x$ 。(2010-2011 学年第二学期期中试卷)

解:特征方程为 $r^2 + r = 0$,特征根为 $r_1 = 0$, $r_2 = -1$.

于是对应齐次方程 y'' + y' = 0 的通解为 $Y = C_1 + C_2 e^{-x}$, 其中 C_1 , C_2 为任意常数。

考虑 $f_1(x)=P_m(x)\mathrm{e}^{\lambda x}=\mathrm{e}^x$,于是, $P_m(x)=1$,m=0 , $\lambda=1$ 不是特征根,则取 $y_1^*=a\mathrm{e}^x$;

考虑 $f_2(x) = e^{\lambda x} (P_1(x) \cos \omega x + P_n(x) \sin \omega x) = \cos x$,

于是, $P_l(x) = 1$, $P_n(x) = 0$, 故l = n = 0, 故取 $m = \max\{l, n\} = 0$.

 $\lambda = 0$, $\omega = 1$, $\lambda + i\omega = i$ 不是特征根,因此可设 $y_2^* = b\cos x + c\sin x$.

因此, $y^* = y_1^* + y_2^* = ae^x + b\cos x + c\sin x$, 代入微分方程 $y'' + y' = e^x + \cos x$, 得

$$ae^{x} - b\cos x - c\sin x + ae^{x} - b\sin x + c\cos x = e^{x} + \cos x,$$

 $2ae^{x} + (c-b)\cos x - (b+c)\sin x = e^{x} + \cos x.$

比较两边系数,得 $\begin{cases} 2a=1\\ c-b=1\\ b+c=0 \end{cases}$ 解得 $\begin{cases} a=\frac{1}{2}\\ c=\frac{1}{2}\\ b=-\frac{1}{2} \end{cases}$

故 $y^* = \frac{1}{2}e^x - \frac{1}{2}\cos x + \frac{1}{2}\sin x$, 因此, 所求方程的通解为

$$y = C_1 + C_2 e^{-x} + \frac{1}{2} (e^x - \cos x + \sin x),$$

其中 C_1 , C_2 为任意常数。

5. $yy'' = 2[(y')^2 - y']$ 满足 y(0) = 1, y'(0) = 2(2012-2013 学年第二学期期中试卷)

解: 因为方程不显含 x , 则设 y'=p(y) , 则 $y''=p\frac{\mathrm{d}p}{\mathrm{d}y}$, 故 $yp\frac{\mathrm{d}p}{\mathrm{d}y}=2(p^2-p)$, 即

$$\frac{1}{p-1}\mathrm{d}p = \frac{2}{y}\mathrm{d}y \,,$$

两边积分, $\int \frac{1}{p-1} dp = \int \frac{2}{y} dy$, 得 $\ln |p-1| = 2 \ln |y| + \ln |C_1| = \ln |C_1 y^2|$, 故 $p = 1 + C_1 y^2$.

由已知条件 y(0) = 1, y'(0) = 2 可得 $2 = 1 + C_1$, 于是 $C_1 = 1$ 。

故 $\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + y^2$,即 $\frac{1}{1 + y^2} \mathrm{d}y = \mathrm{d}x$,两边积分,可得 $\arctan y = x + C_2$,即 $y = \tan(x + C_2)$ 。

由 y(0)=1 可得 $1=\tan C_2$,则 $C_2=\frac{\pi}{4}$,所求微分方程的解为 $y=\tan(x+\frac{\pi}{4})$ 。

6. 求初值问题 $y'' + 9y = 6e^{3x}$, y(0) = y'(0) = 0的解. (2013-2014 学年第二学期期中试卷)

解: 特征方程 $r^2+9=0$, 特征根 $r=\pm 3$ i , 则对应齐次方程 y''+9y=0 的通解为 $Y=C_1\cos 3x+C_2\sin 3x$, 其中 C_1 , C_2 为任意常数。

由于 $f(x) = P_m(x)e^{\lambda x} = 6e^{3x}$, $P_m(x) = 6$, m = 0 , $\lambda = 3$ 不是特征根 , 因此取 $y'' + 9y = 6e^{3x}$ 的特解为 $y^* = x^k Q_m(x)e^{\lambda x} = ae^{3x}$, 代入方程 , 可得 $9ae^{3x} + 9ae^{3x} = 6e^{3x}$, 解比较两边系数 , 得 $a = \frac{1}{3}$.

故微分方程 $y'' + 9y = 6e^{3x}$ 的通解为 $y = C_1 \cos 3x + C_2 \sin 3x + \frac{1}{3}e^{3x}$, 其中 C_1 , C_2 为任意常数。

由
$$y(0) = y'(0) = 0$$
 可得
$$\begin{cases} C_1 + \frac{1}{3} = 0 \\ 3C_2 + 1 = 0 \end{cases}$$
, 解得 $C_1 = C_2 = -\frac{1}{3}$.

故所求微分方程初值问题的解为 $y = \frac{1}{3}(-\cos 3x - \sin 3x + e^{3x})$ 。

7.求微分方程 $y'' = 2y^3$ 满足初始条件 $y|_{x=0} = 1$, $y'|_{x=0} = 1$ 的特解。(2014-2015) 学年第一学期期末试卷)

解:因为方程 $y''=2y^3$ 不显含 x ,故设 y'=p(y) ,则 $y''=p\frac{\mathrm{d}p}{\mathrm{d}y}$,于是方程可化为 $p\frac{\mathrm{d}p}{\mathrm{d}y}=2y^3$,即

 $2p dp = 4y^3 dy$, 两边积分,可得 $p^2 = y^4 + C_1$, 于是, $p = \sqrt{y^4 + C_1}$ 。

由 $y|_{x=0} = 1$, $y'|_{x=0} = 1$ 可得 $1 = \sqrt{1 + C_1}$, 求得 $C_1 = 0$,

则 $p=y^2$,即 $\frac{\mathrm{d}y}{\mathrm{d}x}=y^2$,分离变量,可得 $\frac{\mathrm{d}y}{y^2}=\mathrm{d}x$,两边积分,可得 $-\frac{1}{y}=x+C_2$.

由 $y|_{x=0}=1$, 得 $-1=0+C_2$, 故 $C_2=-1$, 于是, $-\frac{1}{y}=x-1$.

所求初值问题的解为 $y = \frac{1}{1-x}$ 。

8.求微分方程 $xy'' = y' \ln y'$ 满足条件 $y\Big|_{y=1} = 1$, $y'\Big|_{y=1} = e$ 的特解.(2015-2016 学年第一学期期末试卷)

解: 注意到原方程不显含 y , 令 y' = p(x) , 原方程可降阶为 $x \frac{dp}{dx} = p \ln p$.

分离变量得 $\frac{\mathrm{d}p}{p\ln p} = \frac{1}{x}\mathrm{d}x$,两边积分得 $\ln |\mathbf{l}p| = |\mathbf{l}n| + |\mathbf{l}_{1}n$.

整理得 $p = e^{C_1 x}$, 由 $y'|_{x=1} = e$ 可得 $C_1 = 1$, 即 $\frac{dy}{dx} = p = e^x$.

再积分一次,得 $y = e^x + C_2$.

由 $y|_{x=1} = 1$ 得 $C_2 = 1 - e$. 故所求微分方程的特解为 $y = e^x + 1 - e$.

9. 求微分方程 $y'' - y = 2(e^x + \cos x)$ 满足初始条件 y(0) = 0, y'(0) = 2 的特解。(2016-2017 学年第一学期期末试卷)

解:原微分方程的特征方程为 $r^2-1=0$,解得特征根 $r_1=-1, r_2=-1$.

因此可令微分方程的一个特解为 $y^* = ae^x + bos * csi$, 代入原微分方程求得 a=1,b=-1 c=

故微分方程的特解为 $y = xe^x - \cos x + C_1e^{-x} + C_2e^x$ 。又 y(0) = 0,y'(0) = 2,从而 $y(0) = -1 + C_1 + C_2 = 0$, $y'(0) = 1 - C_1 + C_2 = 2$,

解得 $C_1 = 0, C_2 = 1$.

因此满足初始条件微分方程的特解为 $y = xe^x - \cos x + e^x$ 。

10. $yy'' + (y')^2 = 0$; (2017-2018 学年第二学期期中试卷)

解: 令
$$y' = P(y)$$
,则 $y'' = P\frac{dP}{dy}$.

于是,
$$yP\frac{dP}{dy} + P^2 = 0$$
, 即 $\frac{dP}{P} = -\frac{dy}{y}$.

两边积分,得 $\ln |P| = -\ln |y| + \ln |C_1|$,即 $P = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{C_1'}{y}$.

分离变量,得 $y dy = C_1' dx$,两边积分后,得 $\frac{1}{2} y^2 = C_1' x + C_2'$.

故原方程的通解为 $y^2 = C_1 x + C_2$, 其中 C_1 , C_2 为任意常数.

11. $y'' + 3y' + 2y = 3e^x + 6\sin x$; (2017-2018 学年第二学期期中试卷)

解:由 $r^2+3r+2=0$,解得 $r_1=-1$, $r_2=-2$.对应的齐次线性方程的通解为 $Y=C_1e^{-x}+C_2e^{-2x}$.

设
$$y'' + 3y' + 2y = 3e^x$$
 的特解为 $y_1^* = Ae^x$, 代入方程 $y'' + 3y' + 2y = 3e^x$, 解得 $A = \frac{1}{2}$, 故 $y_1^* = \frac{1}{2}e^x$.

设 $y'' + 3y' + 2y = 6\sin x$ 的特解为 $y_2^* = B\cos x + D\sin x$, 代入方程 $y'' + 3y' + 2y = 6\sin x$, 得 $(B+3D)\cos x + (D-3B)\sin x = 6\sin x ,$

故
$$\begin{cases} B+3D=0 \\ D-3B=6 \end{cases}$$
 解得 $\begin{cases} B=-\frac{9}{5} \\ D=\frac{3}{5} \end{cases}$

于是,
$$y_2^* = -\frac{9}{5}\cos x + \frac{3}{5}\sin x$$
.

故所求微分方程的通解为 $y = C_1 e^{-x} + C_2 e^{-2x} + \frac{1}{2} e^x - \frac{9}{5} \cos x + \frac{3}{5} \sin x$,其中 C_1 , C_2 为任意常数.

12. $y'' = 2y^3$, y(0) = y'(0) = 1; (2018-2019 学年第二学期期中试卷)

解:与第7题相同。

13. $y'' - 2y' + y = 1 + \sin x$ (2018-2019 学年第二学期期中试卷)

解: 特征方程为 $r^2 - 2r + 1 = 0$, 特征根为 $r_1 = r_2 = 1$ 。

对应的齐次方程的通解为 $Y = (C_1 + C_2 x)e^x$,其中 C_1 , C_2 为任意常数.

$$f_1(x) = P_m(x)e^{\lambda x} = 1$$
 , $P_m(x) = 1$, $m = 0$, $\lambda = 0$ 不是特征根 ,可取 $y_1^* = x^k Q_m(x)e^{\lambda x} = a$;

 $f_2(x) = e^{\lambda x} (P_l(x) \cos \omega x + P_n(x) \sin \omega x) = \sin x$, $P_l(x) = 0$, l = 0, $P_n(x) = 1$, n = 0, \mp

是, $m = \max\{l, n\} = 0$ 。

 $\lambda = 0$, $\omega = 1$, $\lambda + i\omega = i$ 不是特征根, 可取

$$y_2^* = x^k e^{\lambda x} (R_m(x) \cos \omega x + R_m(x) \sin \omega x) = b \cos x + c \sin x;$$

故设特解 $y^* = y_1^* + y_2^* = a + b\cos x + c\sin x$, 代入 $y'' - 2y' + y = 1 + \sin x$, 得

 $-b\cos x - c\sin x - 2(-b\sin x + c\cos x) + a + b\cos x + c\sin x = 1 + \sin x$

即 $a+2b\sin x-2c\cos x=1+\sin x$ 。

比较两边系数,得 $a=1, b=\frac{1}{2}, c=0$,从而 $y^*=1+\frac{1}{2}\cos x$ 。

于是,所求的通解为 $y = (C_1 + C_2 x)e^x + 1 + \frac{1}{2}\cos x$,其中 C_1 , C_2 为任意常数.

14. 曲线上任一点的切线在 y 轴上的截距和法线在 x 轴上的截距的比为一定值, 求此曲线方程。(2005-2006 学年第三学期)

解:设(x,y)是曲线y=y(x)上任意一点,则过该点的切线方程为Y-y=y'(X-x)。

令 X = 0, 可得切线在 y 轴上的截距为 Y = y - xy'。

过该点的法线方程为 $Y-y=-\frac{1}{y'}(X-x)$,令Y=0,则得法线在x 轴上的截距为 X=x+yy'。

由已知条件,
$$\frac{y-xy'}{x+yy'}$$
为常数,设为 $k \neq 0$,即 $\frac{y-xy'}{x+yy'} = k$,整理后可得 $y' = \frac{y-kx}{ky+x} = \frac{\frac{y}{x}-k}{k\frac{y}{x}+1}$ 。

这是齐次方程,令 $u = \frac{y}{x}$,则 y = xu,则 y' = u + xu'。

于是,
$$u + xu' = \frac{u - k}{ku + 1}$$
, 即 $xu' = -\frac{k(1 + u^2)}{ku + 1}$, 也即 $\frac{ku + 1}{1 + u^2}$ d $u = -\frac{k}{x}$ d x .

两边积分,得
$$\int \frac{2ku+2}{1+u^2} du = -\int \frac{2k}{x} dx$$
,即

$$k \ln(1+u^2) + 2 \arctan u = -2k \ln |x| + C$$
,

也即 $k \ln(x^2 + y^2) + 2 \arctan \frac{y}{x} = C$,其中C为任意常数。

15. 设函数 y(x)满足 $y'(x) = 1 + \int_0^x [6\sin^2 t - y(t)]dt$, y(0) = 1, 求 y(x).

(2013-2014 学年第二学期期中试卷)

对方程 $y'(x) = 1 + \int_0^x [6\sin^2 t - y(t)] dt$ 两边求导,则 $y''(x) = 6\sin^2 x - y(x)$,即 $y'' + y = 3 - 3\cos 2x$.

齐次方程 y''+y=0 的特征方程为 $r^2+1=0$,特征根为 $r=\pm i$,故齐次方程 y''+y=0 的通解为 $Y=C_1\cos x+C_2\sin x.$

容易看到 y'' + y = 3 有一特解 $y_1^* = 3$.

设 $y'' + y = -3\cos 2x$ 的特解为 $y_2^* = a\cos 2x + b\sin 2x$, 代入方程 $y'' + y = -3\cos 2x$ 中,得 $-4a\cos 2x - 4b\sin 2x + a\cos 2x + b\sin 2x = -3\cos 2x$.

比较系数,可得a=1,b=0,则 $y_2^*=\cos 2x$.

所以, $y'' + y = 3 - 3\cos 2x$ 的通解为 $y = C_1\cos x + C_2\sin x + 3 + \cos 2x$.

由
$$y(0) = 1$$
, $y'(0) = 1$ 可得 $C_1 = -3$, $C_2 = 1$.

故 $y = -3\cos x + \sin x + 3 + \cos 2x$.

16. 设函数 y=y(x) 满足微分方程 $y''-4y'+3y=xe^x$,且其图形在点 (0,1) 处的切线与曲线 $y=x^2-\frac{1}{4}x+1$ 在该点的切线重合,求函数 y=y(x).(2015-2016 学年第一学期期末试卷)

解:特征方程 $r^2-4r+3=0$,特征根 $r_1=1$, $r_2=3$,对应齐次方程的通解为 $Y(x)=c_1\mathrm{e}^x+c_2\mathrm{e}^{3x}$.设原方程的特解为 $y^*(x)=x^k\cdot Q_m(x)\cdot \mathrm{e}^{\lambda x}=x(ax+b)\mathrm{e}^x$,将 $y^*(x)$ 代入原方程,并整理得 -4ax+2a-2b=x ,

所以有-4a=1,2a-2b=0,解得 $a=b=-\frac{1}{4}$.

∴原方程的通解 $y(x) = c_1 e^x + c_2 e^{3x} + (-\frac{1}{4}x^2 - \frac{1}{4}x)e^x$, 其中 c_1 , c_2 为任意常数.

又已知有公切线,得 $y(0)=1, y'(0)=-\frac{1}{4}$,即 $c_1+c_2=1, c_1+3c_2=\frac{1}{4}=-\frac{1}{4}$,解得

$$c_1 = \frac{3}{2}, c_2 = -\frac{1}{2}.$$

所以,
$$y(x) = \frac{3}{2}e^x - \frac{1}{2}e^{3x} + (-\frac{1}{4}x^2 - \frac{1}{4}x)e^x$$
.

17. 已知二阶齐次线性方程 $y'' + p(x)y' - y\cos^2 x = 0$ 有两个互为倒数的特解,求 p(x) 及此方程的通解。 (2013-2014 学年第二学期期中试卷)

解: 设 y = y(x) 是原方程的解,则 $\frac{1}{y}$ 也是方程的解,于是,

$$(\frac{1}{y})'' + p(x)(\frac{1}{y})' - \frac{1}{y}\cos^2 x = 0$$
,

$$\frac{-yy'' + 2(y')^2}{y^3} - p(x)\frac{y'}{y^2} - \frac{1}{y}\cos^2 x = 0.$$

$$\Rightarrow \frac{2(y')^2}{y^3} - \frac{y'' + p(x)y'}{y^2} - \frac{1}{y}\cos^2 x = 0.$$

曲
$$y'' + p(x)y' = y\cos^2 x$$
,可得 $\frac{2(y')^2}{y^3} - \frac{2}{y}\cos^2 x = 0$,则 $y' = y\cos x$ 或 $y' = -y\cos x$.

解得 $y = e^{\tan x}$ 或 $y = e^{-\tan x}$.

代入原方程, 得 $p(x) = \tan x$.

通解为 $y = C_1 \mathrm{e}^{\tan x} + C_2 \mathrm{e}^{-\tan x}$,其中 C_1 , C_2 为任意常数。