

<u>Help</u>

alswaji 🗸

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Software Installation</u>

☆ Course / Topic 7: Random Variables, Expectation, and Variance / 7.7 Two Variables

()

Problem Sets due Jul 8, 2022 16:34 +03

Video

7.7a_Two_variables

POLL

If X has three different outcomes and Y has four different outcomes, how many outcomes does the joint random variable (X,Y) have?

RESULTS

Results gathered from 45 respondents.

FEEDBACK

The answer is $3\times4=12$.

1

0 points possible (ungraded)

Which of the following hold for all **Independent** random variables, X and Y?

$$P(X = x | Y = y) = P(Y = y | X = x)$$

Explanation

If two random variables are independent, by definition, $P(X=x,Y=y)=P(X=x)\,P(Y=y)$. Since $P(X=x,Y=y)=P(X=x|Y=y)\,P(Y=y)$, we have P(X=x|Y=y)=P(X=x).

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

2 (Graded)

3/3 points (graded)

A joint probabilty mass table is given as follows:

$X \setminus Y$	0	1	
0	0.15	0.25	
1	0.45	0.15	

1) Choose the correct marginal PMFs for $oldsymbol{X}$ and $oldsymbol{Y}$.

\bigcirc	x, y	$P\left(x ight)$	$P\left(y ight)$
	0	0.15	0.45
	1	0.25	0.5

\bigcirc	x, y	P(x)	$P\left(y ight)$
	0	0.6	0.4
	1	0.4	0.6

Answer

Correct: Video: Two Variables

x, y	$P\left(x ight)$	$P\left(y ight)$	
0	0.4	0.6	
1	0.6	0.4	

Explanation

$$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) = 0.15 + 0.25 = 0.4$$
 $P(X = 1) = P(X = 1, Y = 0) + P(X = 1, Y = 1) = 0.45 + 0.15 = 0.6$
 $P(Y = 0) = P(Y = 0, X = 0) + P(Y = 0, X = 1) = 0.15 + 0.45 = 0.6$
 $P(Y = 1) = P(Y = 1, X = 0) + P(Y = 1, X = 1) = 0.25 + 0.15 = 0.4$

2) Find P(X = 0|Y = 0).

 \bigcirc 0.375

0.667

1

Correct: Video: Two Variables

Explanation

$$P\left(X=0|Y=0
ight)=rac{P(X=0,Y=0)}{P(Y=0)}=rac{0.15}{0.6}=0.25$$

3) Find P(Y = 1|X = 0).

0.375

0.417

0.625

0.750

Answer

Correct: Video: Two Variables

Explanation

$$P\left(Y=1|X=0
ight)=rac{P(X=0,Y=1)}{P(X=0)}=rac{0.25}{0.4}=0.625$$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

3

0 points possible (ungraded)

Given independent random variables $oldsymbol{X}$ and $oldsymbol{Y}$ with the following joint distribution. Find

$X \setminus Y$	0	1	\mathbf{sum}
0	b	?	0.7
1	?	0.18	?
sum	\boldsymbol{a}	?	

• a

0.4

✓ Answer: 0.4

0.4

Explanation

$$P(X=1)=1-P(X=0)=0.3$$
, $P(Y=1)=1-P(Y=0)=1-a$. By independence of X and Y , $P(X=1,Y=1)=0.18=P(X=1)\cdot P(Y=1)=0.3\cdot (1-a)$. Thus $a=0.4$.

• b

0.28

✓ Answer: 0.28

0.28

Explanation

$$b = P(X = 0, Y = 0) = P(X = 0) \cdot P(Y = 0) = P(X = 0) \cdot a = 0.7 \times 0.4 = 0.28.$$

Submit

1 Answers are displayed within the problem

4

0 points possible (ungraded)

Which equation accurately describes the marginal PMFs for the random variables, $oldsymbol{X}$ and $oldsymbol{Y}$?

$$\bigcirc P(X=x) = \sum_{x} p(X=x, Y=y), \quad P(Y=y) = \sum_{y} p(X=x, Y=y)$$

$$igoplus P(X=x) = \sum_{y} p(X=x, Y=y), \quad P(Y=y) = \sum_{x} p(X=x, Y=y)$$

$$\bigcirc P(X=x) = \sum_{x} p(Y=y), \quad P(Y=y) = \sum_{y} p(X=x)$$

$$\bigcirc P(X=x) = \sum_{y} p(X=x), \quad P(Y=y) = \sum_{x} p(Y=y)$$

~

Answer

Correct: Video: Two Variables

Explanation

Refer to the video and slides.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

5 (Graded)

8/8 points (graded)

Roll two fair six-sided dice, and let $oldsymbol{X}$, $oldsymbol{Y}$ denote the first and the second numbers.

If
$$Z=\max\{X,Y\}$$
, find

• E(Z)

161/36 **Answer:** 4.4722

 $\frac{161}{36}$

Explanation

The distribution of $oldsymbol{Z}$ is

$$P(Z=1)=rac{1}{36}, P(Z=2)=rac{3}{36}, P(Z=3)=rac{5}{36}, P(Z=4)=rac{7}{36}, P(Z=5)=rac{9}{36}, P(Z=6)=rac{11}{36}$$
 The expectation of Z is $E(Z)=\sum_{i=1}^6 i\cdot P(Z=i)=rac{161}{36}=4.472$

• *V*(*Z*)

1.972 **Answer:** 1.9715

1.972

Explanation

$$E\left(Z^2
ight)=\sum_{i=1}^6i^2\cdot P\left(Z=i
ight)=rac{791}{36}$$
 The variance of Z is $V\left(Z
ight)=E\left(Z^2
ight)-E^2\left(Z
ight)=1.9715$

If
$$Z=|X-Y|$$
, find

• E(Z)70/36

Answer: 1.9444

Explanation

The distribution of $oldsymbol{Z}$ is

$$P(Z=0)=rac{6}{36}, P(Z=1)=rac{10}{36}, P(Z=2)=rac{8}{36}, P(Z=3)=rac{6}{36}, P(Z=4)=rac{4}{36}, P(Z=5)=rac{2}{36}$$
 The expectation of Z is $E(Z)=\sum_{i=0}^{5}i\cdot P(Z=i)=rac{35}{18}=1.9444$

• *V*(*Z*)

2.0525 **Answer:** 2.0525

2.0525

Explanation

$$E\left(Z^2
ight)=\sum_{i=0}^5 i^2\cdot P\left(Z=i
ight)=rac{35}{6}$$
 The variance of Z is $V\left(Z
ight)=E\left(Z^2
ight)-E^2\left(Z
ight)=2.0525$

? Hint (1 of 1): What is the PMF of Z (i.e. $P_{Z}\left(z\right)$)?

Next Hint

Submit

You have used 1 of 4 attempts

Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Topic 7 / Two Variables

Add a Post

Previous

Next >

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

© 2022 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>