Лекция 4 Кратчайшие пути во взвешенном графе

Алгоритм Дейкстры. Ускорение с помощью двоичной кучи. Алгоритм Беллмана -Форда

Постановка задачи

Рассмотрим взвешенный неориентированный граф G(V, E).

Любому ребру (v,w) соответствует неотрицательное число l_{vw} (вес, длина, стоимость). Необходимо найти пути из $s \in V$ во все вершины графа так, чтобы длины этих путей были минимальны.

Пример:

Взрывной рост размеров графа

Алгоритм Декстеры

Дейкстрова бальная оценка ребра (vw): $len(v) + l_{vw}$

DIJKSTRA

Вход: ориентированный граф G = (V, E), представленный в виде списков смежности, вершина $s \in V$, длина $l_e \ge 0$ для каждого $e \in E$.

Постусловие: для каждой вершины v значение len(v) равно истинному кратчайшему расстоянию dist(s, v).

// инициализация

- 1) $X := \{s\}$
- len(s) := 0, len(v) := +∞ для каждого v ≠ s
 // главный цикл
- 3) while существует ребро (v, w), где $v \in X$, $w \notin X$ do
- 4) $(v^*, w^*) :=$ такое ребро, которое минимизирует $len(v) + l_{ve}$
- 5) prev[w^*] = v^*
- б) добавить w* в X
- 7) $len(w^*) := len(v^*) + l_{v^*w}$.

Каждая итерация алгоритма Дейкстры обрабатывает одну новую вершину, голову ребра, переходящего из X в V-X

Продолжение примера

Каждая итерация алгоритма Дейкстры обрабатывает одну новую вершину, голову ребра, переходящего из X в V-X

X	V-X
A(0)	B(3), C(1), D(∞), E(∞)
A(0), C(1)	B(2), D(∞), E(5)
A(0), C(1), B(2)	D(4), E(5)
A(0), C(1), B(2), D(4)	E(5)
A(0), C(1), B(2), D(4), E(5)	Ø

Когда не работает алгоритм Дейкстры

Графы с отрицательными весами ребер

По Дейкстре len(t) = -2На самом деле len(t) = -4

Прибавим 5 к каждому весу:

Алгоритм Дейкстры не работает на графах с отрицательными весами

<u>Теор.</u> (Правильность алгоритма Дейкстры)

Для каждого ориентированного графа G=(V, E), каждой стартовой вершины s каждого варианта неотрицательных реберных весов (длин) по завершении алгоритма

$$len(v) = dist(s, v) \forall v \in V.$$

Доказательство (по индукции) – по числу вершин.

Базовый случай k = |V| = 1 – очевидно (len(s) = 0 = dist(s, s)).

Пусть для первых k-1 вершин утверждение верно. На k-ом шаге выбрано ребро $(v^*,w^*),v^*\in X,w^*\in V-X,\ len(w^*)=len(v^*)+l_{v^*w^*}.$

Докажем, что $len(w^*) = dist(s, w^*)$. Для этого докажем, что

- 1) $dist(s, w^*) \leq len(w^*);$
- 2) $dist(s, w^*) \ge len(w^*)$

$(1)\ dist(s,w^*) \leq len(w^*)$. По индукционной гипотезе $dist(s,v^*) = len(v^*)$

Прикрепление ребра (v^* , w^*) в конце кратчайшего s- v^* -пути P производит s- w^* -путь P^* длины $len(v^*)$ + $l_{v^*w^*}$

Кратчайшее расстояние до вершины не превышает длину пути в эту вершину, поэтому $dist(s, w^*) \leq len(w^*)$

(2) $dist(s, w^*) \ge len(w^*)$. Рассмотрим какой-нибудь конкурирующий путь $P'(s \to w^*)$. Докажем, что длина $P' \ge len(w^*)$

Пусть (y,z) – первое ребро в P' , которое пересекает границу. Разобьём P' на 3 части: len(y) , (y,z), $z \to w^*$ длины: dist(s,y), l_{yz} , неотрицательно

Имеем: длина
$$P' \ge \underbrace{dist(s,y) + l_{yz}}_{$$
 +0 дейкстрова оценка ребра (y,z)

Каждый путь $s-w^*$ пересекает не менее одного раза из X в V-X

Т.к. алгоритм выбрал ребро с наименьшей дейкстровой оценкой, то $len(v^*) + l_{v^*w^*} \le len(y) + l_{yz}$ и длина $P' \ge len(v^*) + l_{v^*w^*} = len(w^*)$. Среди всех путей P' выберем кратчайший путь, поэтому $dist(s, w^*) \ge len(w^*)$. Если вершина не добавлялась в X, $dist(s, v) = \infty = len(v)$. **Теорема доказана.**

Время выполнения алгоритма Дейкстры

Если на шаге 4 (4) (v^*, w^*) := такое ребро, которое минимизирует $len(v) + l_{vw}$) выбирать $\min_{v \in X, \ w \in V - X} (len(v) + l_{vw}) = l_{v^*w^*}$

для каждой из O(|V|) вершин перебирать O(|E|) ребер, то время работы $O(|V| \cdot |E|)$. Можно ли быстрее? — да, если использовать двоичную кучу.

Массив можно представить в виде полного двоичного дерева, где ключ родителя не больше ключа потомка $(p \le q, p \le r)$

Куча поддерживает основные операции «вставить» и «извлечь минимум», которые выполняются за время $O(\log n)$. Будем хранить в куче необработанные вершины из V-X.

При этом будем поддерживать инвариант:

Ключом вершины $w \in V - X$ является минимальная дейкстрова оценка ребра с хвостом $v \in X$ и с головой $w \in V - X$ либо $+\infty$, если такое ребро не существует:

$$key(w) = \min_{\substack{v \in X, \\ w \in V - X}} (len(v) + l_{vw})$$

Инвариант $key(w) = \min_{v \in X, \ w \in V - X} (len(v) + l_{vw})$

Ключ вершины $w \in V - X$ определяется как минимальная дейкстрова оценка ребра с головой w и хвостом в X

Когда новая вершина v перемещается из V - X в X, ребра, выходящие из v, могут стать пересекающими ребрами

После перемещения вершины-победителя w^* в X необходимо перебрать список ребер, исходящих из w^* и проверить вершины $y \in V - X$ с ребром (w^*, y) , вычислив для них ключи согласно инварианту.

Алгоритм Дейкстры на основе кучи

DIJKSTRA (НА ОСНОВЕ КУЧИ, ЧАСТЬ 1)

Вход: ориентированный граф G = (V, E), представленный в виде списков смежности, вершина $s \in V$, длина $l_e \ge 0$ для каждого $e \in E$.

Постусловие: для каждой вершины v значение len(v) равно истинному кратчайшему расстоянию dist(s, v).

// Инициализация

- 1) X := пустое множество, H := пустая куча
- 2) key(s) := 0
- 3) for каждая $v \neq s$ do
- 4) $key(v) := +\infty; prev := nil$
- 5) for каждая v ∈ V do
- 6) Вставить v в H // либо использовать операцию // «Объединить в кучу»
 - // Главный цикл
- 7) while H является непустой do
- 8) w* := Извлечь минимум (H)
- добавить w* в X
- 10) $len(w^*) := key(w^*)$ // обновить кучу для поддержания инварианта

DIJKSTRA (НА ОСНОВЕ КУЧИ, ЧАСТЬ 2)

- 11)// обновить кучу для поддержания инварианта
- 12) **for** каждое ребро (w^*, y) **do**
- Удалить у из Н
- 14) $key(y) := min\{key(y), len(w^*) + l_{w^*y}\}$
- 15) $prev := w^*$
- **16**) вставить *у* в Н

Время работы:

```
Обозначим n = |V|, m = |E| Строка 6: O(n) или O(n \cdot log n) Цикл стр.7 : O(n) в цикле стр.8 по 1 разу O(log n) цикл for стр.12 : O(m) стр. 13 по 1 разу на ребро: O(log n) стр. 16 по 1 разу на ребро: O(log n) O(n) + O(n \cdot log n) + O(m \cdot log n) + O(m \cdot log n) O(m) + O(m \cdot log n)
```

Ребра с отрицательным весом

Если в некоторую вершину существует кратчайший путь, то длина этого пути не больше |V|-1.

Если последовательность вершин кратчайшего пути известна (s,v_1,v_2,\dots,v_k,t) , то $len(v_m)=\min{\{len(v_m),len(v_{m-1})+l(v_{m-1},v_m)\}}$

Если заранее кратчайшие пути неизвестны, то можно сделать $len(v_m)$ итераций, обновляя каждое ребро по одному разу. Тогда наверняка минимальные расстояния до каждой вершины будут найдены верно.

Ребра с отрицательным весом (продолжение)

Каждая итерация либо оставляет либо уменьшает расстояние до вершины.

итерации Вершина	0	1	2
S	0	0	0
v	~	1	1
t	~	-2	-4

Рассмотрим граф с отрицательным циклом.

итерации вершина	0	1	2	3	4	5	6
S	0	0	0	0	0	0	0
v_1	8	2	2	0	0	0	-2
v_2	8	3	3	3	1	1	-1
v_3	8	8	1	1	1	-1	-1

Метки вершин цикла можно неограниченно уменьшать. Признак наличия отрицательного цикла:

$$len(v) < len(u) + l_{uv}$$
 после $|V| - 1$ итерации

Алгоритм Беллмана-Форда

```
Вход: орграф G=(V, E), \forall x \ l(x) \in \mathbb{R}, s \in V
Выход: \forall x \in V \ len(v) = dist(s, v) либо объявление, что граф содержит отрицательный цикл
for каждой v \neq s do
 len(v) := \infty; prev[v] := nil
 len[s] := 0
for i: = 1 to |V| - 1 do // перебрать |V| - 1 раз все ребра
 for каждого ребра (u, v) \in E
   if len[v] > len[u] + l_{uv} then
     len[v] := len[u] + l_{uv}
     prev[v] := u
for каждого ребра (u, v) \in E
   if len[v] > len[u] + l_{uv} then
      return false // есть цикл отрицательной длины
return true
                                                                                  Время работы : O(|V| \cdot |E|)
```

Корректность алгоритма Беллмана-Форда

Если есть цикл отрицательной длины, то последний контрольный проход уменьшит метку какой-либо вершины. Докажем, что если есть цикл отрицательной длины, то будет «false». Допустим, что это не так:

Есть цикл c= $\langle v_0, v_1, ..., v_k \rangle$ отрицательной длины, но программа выдает «true».

Если граф ациклический, то можно решить быстрее. Применим топологическое упорядочение и затем пройдем по вершинам в найденном порядке.