Step 1: Import Required Libraries

```
In [1]: # Importing essential libraries
    import numpy as np # For numerical operations
    import pandas as pd # For data manipulation and analysis
    import matplotlib.pyplot as plt # For data visualization
    import seaborn as sns # For enhanced visualizations
    from sklearn.model_selection import train_test_split # For splitting the dataset
    from sklearn.preprocessing import LabelEncoder, StandardScaler # For data encoding and scaling
    from sklearn.decomposition import PCA # For Principal Component Analysis
    from sklearn.linear_model import LogisticRegression # Logistic Regression model
    from sklearn.metrics import accuracy_score # For evaluating model accuracy
In [3]: # Ignore warnings
    import warnings
    import warnings
    import ignore')
```

Step 2: Load and Explore the Dataset

```
In [6]: # Load the dataset
data = pd.read_csv(r"D:\FSDS Material\Dataset\Classification\adult.csv")

# Preview the dataset
print(data.head())

# Check dataset information to identify missing values and data types
print(data.info())

# Check the shape of the dataset
print(f"Dataset contains {data.shape[0]} rows and {data.shape[1]} columns.")
```

```
age workclass fnlwgt
                            education education.num marital.status \
0
   90
                   77053
                              HS-grad
                                                   9
                                                            Widowed
1
    82
         Private 132870
                              HS-grad
                                                   9
                                                            Widowed
2
    66
               ? 186061 Some-college
                                                  10
                                                            Widowed
3
    54
         Private 140359
                              7th-8th
                                                   4
                                                           Divorced
4
         Private 264663 Some-college
                                                  10
                                                          Separated
    41
          occupation
                      relationship
                                     race
                                              sex capital.gain \
0
                     Not-in-family White Female
1
     Exec-managerial Not-in-family White Female
                                                              0
2
                         Unmarried Black Female
                                                              0
   Machine-op-inspct
                         Unmarried White Female
                                                              0
      Prof-specialty
                         Own-child White Female
                                                              0
4
   capital.loss hours.per.week native.country income
0
           4356
                            40 United-States <=50K
1
           4356
                            18 United-States <=50K
2
           4356
                            40 United-States <=50K
3
           3900
                                United-States <=50K
4
           3900
                            40 United-States <=50K
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
     Column
                     Non-Null Count Dtype
0
                     32561 non-null int64
     age
1
     workclass
                     32561 non-null object
2
     fnlwgt
                     32561 non-null int64
     education
3
                     32561 non-null object
     education.num
                     32561 non-null int64
4
5
     marital.status
                    32561 non-null object
6
     occupation
                     32561 non-null object
7
     relationship
                     32561 non-null object
8
     race
                     32561 non-null object
9
                     32561 non-null object
     sex
     capital.gain
10
                     32561 non-null int64
    capital.loss
                     32561 non-null int64
12 hours.per.week
                    32561 non-null int64
                    32561 non-null object
    native.country
14 income
                     32561 non-null object
dtypes: int64(6), object(9)
memory usage: 3.7+ MB
```

None

Dataset contains 32561 rows and 15 columns.

Step 3: Handle Missing Values

age	0
workclass	1836
fnlwgt	0
education	0
education.num	0
marital.status	0
occupation	1843
relationship	0
race	0
sex	0
capital.gain	0
capital.loss	0
hours.per.week	0
native.country	583
income	0
dtype: int64	
age	0
workclass	0
fnlwgt	0
education	0
education.num	0
marital.status	0
occupation	0
relationship	0
race	0
sex	0
capital.gain	0
capital.loss	0
hours.per.week	0
native.country	0
income	0
dtype: int64	

In [11]: data.isnull().sum()

```
Out[11]: age
         workclass
         fnlwgt
          education
          education.num
          marital.status
          occupation
          relationship
          race
          sex
          capital.gain
          capital.loss
          hours.per.week
          native.country
          income
          dtype: int64
```

Step 4: Set Feature Matrix (X) and Target Variable (y)

```
In [14]: # Separate feature matrix (X) and target variable (y)
X = data.drop(['income'], axis=1) # Drop target column from features
y = data['income'] # Target variable
```

Step 5: Split Data into Training and Test Sets

```
In [17]: # Split the dataset into 70% training and 30% testing
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
```

Step 6: Encode Categorical Variables

```
for col in categorical_cols:
    X_train[col] = le.fit_transform(X_train[col])
    X_test[col] = le.transform(X_test[col])
```

Step 7: Feature Scaling

```
In [23]: # Standardize features for consistent PCA application
    scaler = StandardScaler()
    X_train = pd.DataFrame(scaler.fit_transform(X_train), columns=X.columns)
    X_test = pd.DataFrame(scaler.transform(X_test), columns=X.columns)
```

In [25]: X_train

\cap	H	+	н	7	ς.		0
\cup	и	L	L	_	_	J	0

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	sex
0	0.101484	2.600478	-1.494279	-0.332263	1.133894	-0.402341	-0.782234	2.214196	0.392980	-1.430470
1	0.028248	-1.884720	0.438778	0.184396	-0.423425	-0.402341	-0.026696	-0.899410	0.392980	0.699071
2	0.247956	-0.090641	0.045292	1.217715	-0.034095	0.926666	-0.782234	-0.276689	0.392980	-1.430470
3	-0.850587	-1.884720	0.793152	0.184396	-0.423425	0.926666	-0.530388	0.968753	0.392980	0.699071
4	-0.044989	-2.781760	-0.853275	0.442726	1.523223	-0.402341	-0.782234	-0.899410	0.392980	0.699071
•••	•••					•••	•••		•••	
22787	3.763293	1.703439	0.870243	1.217715	-0.034095	-0.402341	-0.530388	-0.899410	0.392980	0.699071
22788	-0.191461	-0.090641	0.847831	0.184396	-0.423425	-0.402341	1.736225	-0.899410	0.392980	0.699071
22789	-0.923823	-0.090641	-1.302317	-2.140570	-0.812755	0.926666	1.232533	0.346032	-1.963453	0.699071
22790	0.394429	-0.090641	-0.704154	0.442726	1.523223	-0.402341	-0.782234	-0.899410	0.392980	0.699071
22791	0.028248	-0.090641	0.326815	0.184396	-0.423425	-0.402341	-1.034080	-0.899410	0.392980	0.699071

22792 rows × 14 columns

 \triangleleft

[27]:	X_test	t									
[27]:		age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	sex
	0	1.273263	-0.090641	0.798307	-1.107252	-1.980744	2.255673	1.232533	1.591474	0.392980	-1.430470
	1	-1.436476	-0.090641	0.448823	0.184396	-0.423425	0.926666	-0.278542	0.968753	0.392980	-1.430470
	2	-1.143531	-0.090641	-0.608164	1.217715	-0.034095	0.926666	0.225150	-0.276689	-3.141670	-1.430470
	3	-0.118225	-2.781760	-1.332357	-0.332263	1.133894	-0.402341	0.728841	-0.899410	0.392980	0.699071
	4	0.760610	-0.090641	2.202540	0.442726	1.523223	-0.402341	1.232533	-0.899410	0.392980	0.699071
	•••		•••	•••		•••		•••			
	9764	-0.118225	1.703439	-1.518569	0.184396	-0.423425	-0.402341	-0.530388	-0.899410	0.392980	0.699071
	9765	-0.923823	-0.090641	-0.228829	0.184396	-0.423425	-0.402341	1.232533	-0.899410	0.392980	0.699071
	9766	-0.997059	-0.090641	-0.312141	1.217715	-0.034095	0.926666	0.728841	0.968753	0.392980	0.699071
	9767	-0.337933	-0.090641	-0.393536	0.184396	-0.423425	0.926666	-0.026696	1.591474	-1.963453	-1.430470
	9768	0.833846	-0.090641	-0.901761	-0.590592	0.355234	-0.402341	-1.034080	-0.899410	0.392980	0.699071
	9769 rd	ows × 14 cc	lumns								
	4										•

Step 8: Train Logistic Regression with All Features

```
In [28]: # Train Logistic Regression model on all features
logreg = LogisticRegression()
logreg.fit(X_train, y_train)

# Make predictions on the test set
y_pred = logreg.predict(X_test)

# Calculate accuracy
print(f"Logistic Regression Accuracy (All Features): {accuracy_score(y_test, y_pred):.4f}".format(accuracy_score(y_test));
```

Logistic Regression Accuracy (All Features): 0.8218

Step 9: Apply PCA for Dimensionality Reduction

```
In [36]: # Apply PCA to reduce dimensionality
    pca = PCA()
    X_train_pca = pca.fit_transform(X_train)
    X_test_pca = pca.transform(X_test)

# Explained variance ratio for each principal component
    print("Explained Variance Ratio:", pca.explained_variance_ratio_)

# Calculate cumulative explained variance
    cumulative_variance = np.cumsum(pca.explained_variance_ratio_)
    print("Cumulative Explained Variance:", cumulative_variance)

Explained Variance Ratio: [0.14757168 0.10182915 0.08147199 0.07880174 0.07463545 0.07274281
    0.07009602 0.06756902 0.0647268  0.06131155 0.06084207 0.04839584
    0.04265038 0.02741548]

Cumulative Explained Variance: [0.14757168 0.24940083 0.33087282 0.40967457 0.48431002 0.55705283
    0.62714886 0.69465787 0.75938468 0.82069623 0.8815383 0.92993414
    0.97258452 1. ]
```

Step 10: Determine Optimal Number of Dimensions

```
In [38]: # Find the number of components to preserve 90% of variance
    optimal_dims = np.argmax(cumulative_variance >= 0.90) + 1
    print(f"Number of components to preserve 90% variance: {optimal_dims}")

# Apply PCA with the optimal number of components
    pca_optimal = PCA(n_components=optimal_dims)
    X_train_pca = pca_optimal.fit_transform(X_train)
    X_test_pca = pca_optimal.transform(X_test)
```

Number of components to preserve 90% variance: 12

Step 11: Train Logistic Regression with Reduced Features

```
In [49]: # Train Logistic Regression with PCA-transformed features
logreg_pca = LogisticRegression()
logreg_pca.fit(X_train_pca, y_train)

# Make predictions
y_pred_pca = logreg_pca.predict(X_test_pca)

# Calculate accuracy
print(f"Logistic Regression Accuracy (PCA Features): {accuracy_score(y_test, y_pred_pca):.4f}")
```

Logistic Regression Accuracy (PCA Features): 0.8209

Step 12: Plot Explained Variance Ratio

```
In [45]: # Visualize cumulative explained variance
    plt.figure(figsize=(8, 6))
    plt.plot(cumulative_variance, marker='o')
    plt.axhline(y=0.90, color='r', linestyle='--', label='90% Variance Threshold')
    plt.xlabel('Number of Principal Components')
    plt.ylabel('Cumulative Explained Variance')
    plt.title('Explained Variance vs. Number of Components')
    plt.legend()
    plt.grid()
    plt.show()
```


In []: