Introduction

Not Just Depressed: Bipolar Disorder Prediction on Reddit

Ivan Sekulić, Matej Gjurković, Jan Šnajder

Text Analysis and Knowledge Engineering Lab University of Zagreb

WASSA @ EMNLP, Brussels 31 October, 2018

Motivation

How does everyday language reflect basic social and personality processes?

How does everyday language reflect our mental health?

Motivation

Can text and emotion analysis help with bipolar disorder detection?

Overview

- Introduction
- Dataset
- Bipolar Disorder Prediction
- 4 Feature Analysis
- Emotion Analysis

Feature Analysis

Mental health & language

The Mental Health issue

- Up to 27% of Europe population suffer or have suffered from some kind of mental disorder (WHO, 2017; Wykes et al., 2015)
- 35–50% go undiagnosed

Language analysis for deeper understanding and early detection of illnesses:

 Depression (Rude et al., 2004; De Choudhury et al., 2013), anxiety (Shen and Rudzicz, 2017), PTSD (Coppersmith et al., 2015), schizophrenia (Benton et al., 2017), bipolar disorder (Kramer et al., 2004)

Bipolar Disorder

Uncontrolled changes in mood and energy levels

Bipolar Disorder Prediction

- Manic and depressive episodes
- Recurrent phases that differ in intensity and duration

Why is research on bipolar disorder important?

- Affects more than 60M people worldwide
- High suicide rate (more than 6%)

Emotion Analysis

Reddit: a gold mine for user-generated text

Reddit

Introduction

- One of the largest social media sites in the world
- User anonymity
- Wide range of topics

Self-reported mental disorders

- Bipolar-related subreddits: bipolar, bipolar2, BipolarReddit, BipolarSOs, bipolarart
- Search for "I am diagnosed with bipolar" in user's comments
- Inspect users' flairs (following Gjurković and Šnajder, 2018): "Bipolar", "BP1", etc.

Self-reported Bipolar Disorder

Self-reported Bipolar Disorder

• Compiled a **control group** to represent general Reddit population

Dataset pruning

Introduction

Cleaning the dataset:

- Removed all comments on bipolar-related subreddits, as well as on the general mentalhealth subreddit
- Removed all comments that had "bipolar" or "BP" in them
- Keep only users with > 1000 words left resulting in ~ 3.5 k bipolar users

Dataset pruning

Introduction

Cleaning the dataset:

- Removed all comments on bipolar-related subreddits, as well as on the general mentalhealth subreddit
- Removed all comments that had "bipolar" or "BP" in them
- Keep only users with > 1000 words left resulting in ~ 3.5 k bipolar users

Parallel work by Cohan et al. (2018): gathered 36k users labeled with 9 mental disorders

Emotion Analysis

Topical Categories

- Additional topic bias reduction
- Manually grouped top ~400 subreddits in the categories below:

Category	# bipolar	# control
Animals	397	898
AskReddit	1797	2767
Gaming	489	1501
Jobs and finance	293	586
Movies/music/books	502	1606
Politics	332	2445
Religion	264	700
Sex and relationships	948	1000
Sports	156	785
All	3488	3931

Feature Extraction

- (1) Psycholinguistic features:
 - LIWC (Pennebaker et al., 2015) classify the words into dictionary-defined categories (syntactic, topical, psychological features)
 - Empath (Fast et al., 2016) based on neural embeddings (200 manually curated categories)
- (2) Lexical features tf-idf weighted bag-of-words
- (3) Reddit user features post/comment ratio, #gilded posts, ups-downs, time intervals between comments

Results

- Binary classification task
- Models: SVM, Logistic Regression, Random Forest
- 10x5 nested cross-validation

	Acc	F1
MCC	0.529	_
Random	0.546	0.453
SVM	0.865	0.853
LogReg	0.866	0.849
RF	0.869	0.863

Per-category results

Introduction

* two-sided t-test, p<0.001

	МСС	Our models
Animals	0.693	0.807*
AskReddit	0.606	0.856*
Gaming	0.754	0.777*
Jobs and finance	0.665	0.752*
Movies/music/books	0.761	0.817*
Politics	0.880	0.882*
Religion	0.724	0.784*
Sex and relationships	0.513	0.801*
Sports	0.832	0.837

Feature	Bipolar μ	$Control\ \mu$
pronoun	16.87	14.86
ppron	10.69	8.66
i	5.84	3.38
article	5.88	6.55
health	0.96	0.50
feel	0.69	0.48
power	2.11	2.58
bio	2.65	1.90
Authentic	52.65	32.92
Clout	48.51	58.03

In line with previous research on depression: Personal pronoun *I* (Stirman and Pennebaker, 2001; Rude et al., 2004)

Per-category analysis

Feature	Authentic	i	health	feel	power	bio	article
Animals	+	+	+	+	+	+	+
AskReddit	+	+	+	+	+	+	+
Gaming	+	+					+
Jobs	+	+	+	+	+	+	+
Movies	+	+	+	+	+	+	+
Politics	+	+	+	+		+	+
Religion	+	+	+	+	+		+
Sex	+	+	+	+	+	+	+
Sports	+	+		+			

+ signals significant difference in feature value between bipolar and control group

Emotion-expressive words analysis

LIWC emotion-related categories

Feature	Bipolar μ	$Control\ \mu$
affect	6.415	6.074
posemo	3.899	3.442
negemo	2.432	2.569
anxiety	0.367	0.266
anger	0.818	1.128
sad	0.455	0.363

User-level emotion variance

- Split comments of 100 users (of both groups) with more than 100K words into monthly chunks
- Calculate LIWC features for each month and compute their standard deviations

Feature Analysis

User-level emotion variance

- Split comments of 100 users (of both groups) with more than 100K words into monthly chunks
- Calculate LIWC features for each month and compute their standard deviations

	Bipolar	Control	p-value
posemo	0.00272*	0.00166	0.00272
negemo	0.00583*	0.00379	0.00583
anxiety	0.00765*	0.00627	0.00765
anger	0.01745	0.01422	0.01745
sadness	0.00695*	0.00572	0.00695

^{*} p<0.01; averages of SDs in the use of emotion-expressive words

Wrapping up

Conclusion

- preliminary study of bipolar disorder
- benchmark classification results (86% accuracy)
- psycholinguistic and emotion-related feature analysis

Bipolar Disorder Prediction

Future work

- Detect manic and depressive episodes compare to clinical depression
- Deep learning for prediction

Introduction

Not Just Depressed: Bipolar Disorder Prediction on Reddit

Ivan Sekulić, Matej Gjurković, Jan Šnajder

ivan.sekulic@h-its.org takelab@fer.hr

Thank you!

	LIWC	Empath	Tf-idf	All
SVM LogReg	0.837 0.841	0.782 0.819	0.865 0.866	0.838 0.862
RF	0.829	0.825	0.869	0.869

Emotion Analysis

Topical categories 1

Introduction

Animals: cats, Dogtraining, dogs, Aquariums, AnimalsBeingJerks;

AskReddit: AskReddit, IAmA, todayilearned, CasualConversation, Showerthoughts;

Gaming: gaming, DotA2, PS4, pcmasterrace, Games;

Jobs and finance: wallstreetbets, Economics, personalfinance, Frugal. TalesFromRetail:

Mental disorders: depression, Drugs, ADHD, mentalhealth, SuicideWatch:

Movies/music/books: movies, books, Music, harrypotter, BigBrother;

Politics: politics, Libertarian, Political Discussion, SandersForPresident, Conservative:

Topical categories 2

Religion: Christianity, atheism, islam, exmuslim, DebateReligion;

Sex and relationships: relationships, AskWomen,

TwoXChromosomes, actuallesbians, childfree;

Sports: nfl, nba, clevelandcavs, MMA, olympics.

Colon

ipron motion

hear

compare netspeak

Insignificant features

Introduction

Period Periods
achieve win, success, better
WPS Words/sentence
quant Quantifiers
see view, saw, seen
differ Differentiation

Impersonal pronouns

arrive, car, go

listen, hearing greater, best, after

btw. lol. thx

Colons

20 / 20