# Lições de Teoria Ergódica, Processos Estocásticos e Sistemas Dinâmicos

Nelson Luís Dias

24 de fevereiro de 2014

# Capítulo 1

## 2014-02-19: Aditividade finita

### Como conceitualizamos e formalizamos a propabilidade?

Existem várias abordagens possíveis:

1. Clássica (teórica ou "a priori"):

Consideramos um processo aleatório com n resultados igualmente prováveis, e um evento A que consiste em m desses resultados. A probabilidade desse evento é então definida por

 $P(A) \equiv \frac{m}{n}$ .

Crítica: no termo "igualmente prováveis", já há a suposição de que nós "sabemos" o que é probabilidade antes de defini-la. Trata-se portanto de um argumento circular. (COMO PODEMOS MELHORAR ESSE TEXTO?)

2. Empírica ("a posteriori" ou frequentista):

Supõe-se que um determinado experimento é repetido n vezes "nas mesmas condições". Se A é um evento identificável no experimento, a probabilidade de A é definida como o limite da razão entre número m de ocorrências de A e o número de repetições n quando  $n \to \infty$ :

$$P(A) \equiv \lim_{n \to \infty} \frac{m}{n}.$$

3. Subjetiva:

Aceita-se que podemos atribuir a diversos eventos uma "probabilidade" de ocorrência. Por exemplo, eu *acho* que a probabilidade de que eu encontre petróleo no terreno de minha casa é (ou deve ser)  $10^{-12}$ .

4. Axiomática (?).

Uma tripla de propabilidade é uma tripla formada por  $(\Omega, \mathcal{F}, P)$ , sendo  $\Omega$  um conjunto não vazio,  $\mathcal{F}$  um campo sigma (uma  $\sigma$ -álgebra) de subconjuntos de  $\Omega$  (PRECISAMOS USAR OS TERMOS CORRETOS), e P uma função, com

$$P: \mathscr{F} \to [0,1],$$
  
 $A \in \mathscr{F} \mapsto P(A).$ 

Axiomas:

$$P(A) \ge 0,\tag{1.1}$$

$$P(\Omega) = 1, (1.2)$$

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i), \quad \text{se} \quad A_i \cap A_j = \emptyset.$$
 (1.3)

Os axiomas funcionam quando  $\Omega$  é finito. Contudo, há conjuntos maiores/infinitos (?) para os quais a noção de probabilidade não faz sentido. Assim, uma  $\sigma$ -álgebra será um subconjunto de  $2^{\Omega}$  com uma certa estrutura, para o qual deverá fazer sentido especificar probabilidades.

**Exemplo**: Sabendo que  $A_1 \cup A_2 \cup A_3 = (A_1 \cup A_2) \cup A_3$ , prove por indução que o axioma (1.3) vale para todo n se ele valer para n = 2.

Para n=2,

$$A_1 \cup A_2 = \emptyset \Rightarrow P(A_1 \cup A_2) = \sum_{i=1}^{2} P(A_i).$$
 (1.4)

Suponha agora que (1.3) valha para n, e que

$$A_{n+1} \cap \left[\bigcup_{i=1}^{n} A_i\right] = \emptyset, \qquad i = 1, \dots, n.$$

Então,

$$P(A_1 \cup ... \cup A_n \cup A_{n+1}) = P(B \cup A_{n+1}), \tag{1.5}$$

fazendo-se

$$B = \bigcup_{i=1}^{n} A_i.$$

A partir de (1.4),

$$P(B \cup A_{n+1}) = P(B) + P(A_{n+1}). \tag{1.6}$$

Por sua vez, como supusemos a validade de (1.3),

$$P(B) = P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i).$$
 (1.7)

Logo,

$$P(A_1 \cup ... \cup A_n \cup A_{n+1}) = P(A_{n+1}) + \sum_{i=1}^n P(A_i) = \sum_{i=1}^{n+1} P(A_i).$$
 (1.8)

Note entretanto que, para que a prova seja válida, precisamos garantir que

$$A_{n+1} \cap \left[\bigcup_{i=1}^{n} A_i\right] = \emptyset \Rightarrow A_{n+1} \cap A_i = \emptyset, \forall i = 1, \dots, n.$$

Faça  $C=A_{n+1}$ , e considere a igualdade:

$$C \cap \left[\bigcup_{i=1}^{n} A_i\right] = \bigcup_{i=1}^{n} C \cap A_i. \tag{1.9}$$

Se ela for verdadeira, então:

$$A_{n+1} \cap \left[\bigcup_{i=1}^{n} A_i\right] = \emptyset \Rightarrow \bigcup_{i=1}^{n} C \cap A_i = \emptyset$$
$$\Rightarrow A_{n+1} \cap A_i = \emptyset, \qquad \forall i = 1, \dots, n.$$

Portanto, se (1.9) for verdadeira, a questão está liquidada. De fato,

$$x \in C \cap \left[\bigcup_{i=1}^{n} A_{i}\right] \Rightarrow (x \in C) \in \left(x \in \bigcup_{i=1}^{n} A_{i}\right),$$

$$\Rightarrow \exists j \in \{1, \dots, n\} \mid (x \in C) \in (x \in A_{j})$$

$$\Rightarrow x \in C \cap A_{j}$$

$$\Rightarrow x \in \bigcup_{i=1}^{n} C \cap A_{i}.$$

Isso significa que

$$C \cap \left[\bigcup_{i=1}^{n} A_i\right] \subseteq \bigcup_{i=1}^{n} C \cap A_i.$$

Por outro lado,

$$x \in \bigcup_{i=1}^{n} C \cap A_i \Rightarrow \exists j \mid x \in C \cap A_j$$
$$\Rightarrow x \in C \cap \bigcup_{i=1}^{n} A_i.$$

Isso significa que

$$\bigcup_{i=1}^n C \cap A_i \subseteq C \cap \left[\bigcup_{i=1}^n A_i\right].$$

Com isso, (1.9) está provada, e chegamos ao fim (desta prova).

# Notas de Aula Professor Paulo Cezar P. de Carvalho - Ailin

#### Modelos elementares

$$\Omega = \{\omega_1, ..., \omega_n\} \to \text{espaço amostral}$$

 $\mathscr{F}=2^{\Omega}\to$ é o conjunto potência e inclui todos o subconjuntos de  $\Omega$ , e, em particular, inclui  $\{\omega_1\},\{\ldots\},\{\omega_n\}$ , os quais são chamados eventos complementares.

$$P(\{\omega_i\}) = P_i \in [0, 1] \mid \sum_{i=1}^n P_i = 1$$
(1.10)

Caso equiprovável:  $P_i = 1/n, \forall i \in \{1, ..., n\}.$ 

Exemplo: 3 moedas são lançadas. Qual a probabilidade de sairem 2 caras?

Como defino  $\Omega$ ? Se considerarmos  $\Omega = \{0, 1, 2, 3\}$ , as probabilidades são 1/8 para 0 e 3, e 3/8 para 1 e 2. Para i = 0, 1, 2, 3, temos

$$P(i) = \left(\frac{1}{8}\right)^{i} \left(1 - \frac{1}{8}\right)^{3-i} {3 \choose i},\tag{1.11}$$

distribuição binomial herdada do modelo equiprovável.

**Exemplo:** Escolher um número no intervalo [0,1] tal que P([a,b]) = b-a para qualquer intervalo  $[a,b] \subset [0,1]$ .

$$\Omega = [0, 1]$$

A primeira tentativa seria atribuir  $P(\{a\})$ . Se for equiprovável com  $P \neq 0$  já estaria em contradição com a aditividade.

Com um conjunto enumerável (infinito) não é possível ter equiprobabilidade nem atribuindo probabilidade nula, porque não conseguiremos que a "soma" das  $P(\{\})$  seja 1.

# Capítulo 2

## 2014-02-24: Aditividade infinita

Passamos agora para casos em que o espaço amostral  $\Omega$  deixa de ser um conjunto finito. Um conjunto infinito pode ser enumerável ou não-enumerável. Um conjunto enumerável é um conjunto cujos elementos possam ser colocados em uma relação biunívoca com os naturais. Os racionais são um conjunto enumerável (Cantor). Os números reais no intervalo fechado [0,1] são um conjunto não-enumerável.

Quando  $\Omega$  é finito, todos os elementos de  $2^{\Omega}$  são eventos: a todos e a cada um deles pode ser atribuída uma probabilidade, e os axiomas (1.1)– (1.3) se aplicam.

Antes de seguir para o infinito, considere o exemplo: n lançamentos de uma moeda, cujos resultados individuais podem ser "cara" (0) ou "coroa" (1). Os eventos elementares com os quais podemos construir um espaço amostral são n-uplas do tipo

$$\begin{array}{c} (0,0,\ldots,0,0) \\ (0,0,\ldots,0,1) \\ (0,0,\ldots,1,0) \\ & \vdots \\ (1,1,\ldots,1,1). \end{array}$$

Existem  $2^n$  casos.

Suponha por exemplo que desejemos calcular a probabilidade de que ocorram k caras (e, consequentemente, n-k coroas). Um evento deste tipo (exatamente k caras e n-k coroas) pode ocorrer de n! maneiras. No entanto, a posição das k caras é imaterial: todos os k! casos aparecem da mesma forma. Idem para os (n-k)! casos de permuta das posições das coroas. Concluímos que há

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

possibilidades de ocorrência de k caras. A sua probabilidade é

$$\frac{\binom{n}{k}}{2^n} = \binom{n}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{n-k}.$$

Isso é um caso particular da distribuição binomial. Se 0 tem probabilidade p, e 1 tem probabilidade 1-p, a probabilidade de k zeros em n lançamentos é

$$P(k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Exercício: Mostre que

$$\sum_{k=0}^{n} P(k) = 1.$$

Prova:

$$(p + (1 - p))^{n} = 1$$

$$= \sum_{k=0}^{n} {n \choose k} p^{k} (1 - p)^{n-k}$$

$$= \sum_{k=0}^{n} P(k).$$

Agora, se  $\Omega = \{x_1, x_2, x_3, \ldots\}$  for enumerável, precisamos de

$$\sum_{i=1}^{n} P(x_i) = 1$$

e fica evidente que os  $P(x_i)$  não podem ser todos iguais. Entretanto, ainda é possível aproveitar os  $x_i$ 's desde que a soma acima funcione.

**Exemplo**: Em um jogo, dez bolas numeradas de 0 a 9 podem ser sorteadas. Cada jogador sorteia uma bola, mostra o resultado e retorna a bola. Ganha o primeiro jogador que sortear um 7. O jogo poderia durar para sempre?

Nossa opção para construção do espaço amostral é

$$\Omega = \{1, 2, 3, 4, \ldots\}$$

1 significa que o 7 foi sorteado na primeira rodada; 2 na segunda; e assim por diante. As probabilidades desses eventos não são iguais:

$$P(1) = \frac{1}{10},$$

$$P(2) = \frac{9}{10} \times \frac{1}{10},$$

$$P(3) = \frac{9}{10} \times \frac{9}{10} \times \frac{1}{10},$$

$$\vdots$$

$$P(n) = \left(\frac{9}{10}\right)^{n-1} \times \frac{1}{10}$$

É elementar verificar que P(n) é uma série geométrica com soma 1.

Finalmente, considere o caso em que desejamos atribuir probabilidades dentro do conjunto não-enumerável  $\Omega = [0,1]$ . Note que faz sentido atribuir probabilidade zero a um ponto qualquer:

$$P(X=a)=0$$

e que é muito razoável atribuir probabilidades a intervalos:

$$P([a,b]) = b - a.$$

O problema é que se A é um evento, o seu complemento  $\overline{A}$  também tem que ser, com  $P(\overline{A}) = 1 - P(A)$ , pela propriedade de aditividade finita (1.3). Portanto, se  $(a,b] \in \mathscr{F}$ , devemos também ter  $\overline{(a,b]} \in \mathscr{F}$ , onde  $\mathscr{F}$  será a classe dos eventos cujas probabilidades podem ser quantificadas.

Por exemplo, o complemento de um único intervalo (a, b]  $n\tilde{a}o$  é um único intervalo. Desconfiamos que uma criatura desse tipo,  $[0, a] \cup (b, 1]$ , precisa ser definida com as mesmas propriedades genéricas de (a, b], de forma que ambos pertençam a  $\mathscr{F}$ .