Lab 3 Solution (CS 270 – Fall 2016)

- Derive a truth table for the output bits (Sum and CarryOut) of a full adder.
- Using the truth table derive a sum of products expression for Sum and CarryOut. Draw a circuit for these expressions.
- Express Sum and CarryOut using the parity and majority functions
 - \Rightarrow parity($x_1,...,x_n$) = 1 if an odd number of x_i s are 1
 - \clubsuit majority($x_1,...,x_n$) = 1 if a majority of x_i s are 1
- Using properties of Boolean algebra simplify your expressions. Use xor for Sum. Draw the simplified circuits.

Full Adder

Used to add to binary numbers stored as an array of bits using carry ripple addition

- Three binary inputs
 - ❖a, b and CarryIn
- Two binary outputs

Sum and CarryOut such that a + b + CarryIn =	=
2*CarryOut + Sum	

Carry	110
A	101
В	111
A+B =	1100

Derive a truth table for the output bits (Sum and CarryOut) of a full adder.

а	b	CarryIn	Sum	CarryOut
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$s = \bar{a}\bar{b}c_i + \bar{a}b\bar{c}_i + a\bar{b}\bar{c}_i + abc_i$$

$$c_o = \bar{a}bc_i + a\bar{b}c_i + ab\bar{c}_i + abc_i$$

Note that s = parity(a,b, c_i), c_o = majority(a,b, c_i)

Simplification of carry out

$$c_o = \overline{a}bc_i + a\overline{b}c_i + ab\overline{c_i} + abc_i$$

$$c_o = bc_i(\overline{a} + a) + ac_i(\overline{b} + b) + ab(\overline{c_i} + c_i)$$

$$c_o = bc_i + ac_i + ab$$

$$c_o = bc_i + ac_i + ab$$

Note the simplified expression has 5 operations. It can be simplified further (4 operations)

$$c_o = (b+a)c_i + ab$$

Simplification of sum

$$s = \bar{a}\bar{b}c_i + \bar{a}b\bar{c}_i + a\bar{b}\bar{c}_i + abc_i$$

$$s = (\bar{a}b + a\bar{b})\bar{c}_i + (ab + \bar{a}\bar{b})c_i$$

$$s = (a \oplus b)\bar{c}_i + (a \oplus b)c_i$$

$$s = (a \oplus b \oplus c_i)$$

That $(ab + \bar{a}\bar{b}) = \overline{(a \oplus b)}$ easily follows from the truth table. It can also be derived using Boolean algebra (next slide)

$$\overline{(a \oplus b)} = \overline{(\bar{a}b + a\bar{b})}$$

$$= \overline{\bar{a}b} \cdot \overline{a\bar{b}}$$

$$= (\bar{a} + \bar{b}) \cdot (\bar{a} + \bar{b})$$

$$= (a + \bar{b}) \cdot (\bar{a} + b)$$

$$= a(\bar{a} + b) + \bar{b}(\bar{a} + b)$$

$$= a\bar{a} + ab + \bar{b}\bar{a} + \bar{b}b$$

$$= 0 + ab + \bar{b}\bar{a}$$

$$= ab + \bar{a}\bar{b}$$

Full Adder

- Sum = parity(a,b,CarryIn)
 - \triangleright a \oplus b \oplus c + a•b•c \equiv a \oplus b \oplus c
- CarryOut = majority(a,b,CarryIn)
 - b CarryIn + a CarryIn + a b + a b CarryIn ≡
 - ▶ b•CarryIn + a•CarryIn + a•b

а	b	CarryIn	Sum	CarryOut
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

