

TP4 Etude des signaux et Représentation fréquentielle

Les principales fonctions MATLAB à utiliser pour réaliser le travail demandé sont indiquées en italique et en caractères gras (tapez help pour l'aide en ligne de MATLAB).

I. Etude des signaux

Dans cette partie, nous allons étudier et représenter des exemples de signaux.

Exercice 1 : Génération des signaux périodiques

Générer et représenter les signaux périodiques suivants en respectant les paramètres indiqués:

- Signal carré de deux manières différentes
- 1. En utilisant square
- 2. En utilisant rectpuls

$$(f = 50Hz, f_e = 1000Hz, t = 0: pas: 1.5)$$

- Signal triangulaire de deux manières différentes :
- 1. En utilisant sawtooth
- 2. En utilisant tripuls

$$(f = 50Hz, f_e = 1000Hz, t = 0: pas: 1.5)$$

Signal sinusoïdal (signaux cos et sin sur la même figure)

$$(t \in [0,20]s, pas = 0.1)$$

Signal sinus cardinal

$$(t \in \left[\frac{-5}{f_0}, \frac{5}{f_0}\right] s, f_0 = 10, N = 1000)$$

II. Transformée de Fourier et représentation spectrale

Exercice 1:

- 1. Déclarer les variables suivantes :
- $t = \frac{-5}{f_0} : \frac{5}{f_0}$ Vecteur temps(linspace)

1

GCR

- $f_0 = 1$ Fréquence du signal
- $A_0 = 1$ Amplitude du signal
- N = 1000 Longueur du vecteur temps.
- 1. Générer et représenter un signal sinusoïdal s.
- 2. Générer et représenter la partie réelle et la partie imaginaire du spectre S(f) du signal s $(t_e = t(2) t(1), N_{fft} = 2^{14})$

(fftshift, fft, plot, hold on)

- 3. Gêner et représenter un signal sinusoïdal s_2 la somme de plusieurs signaux de fréquences et d'amplitudes différentes :
- $f_1 = 3 \times f_0$ Fréquence du deuxième signal
- $f_2 = 5 \times f_0$ Fréquence du troisième signal
- $A_1 = 0.3$ Amplitude du deuxième signal
- $A_2 = 0.1$ Amplitude du troisième signal
- 4. Représenter la transformée de Fourier X(f) du signal s_2 . (fftshift, fft, plot)
- 5. Interpréter les fréquences obtenues
- 6. Représenter la transformée de Fourier $X_{sc}(f)$ du signal sinus cardinal créé dans la partie I. (fftshift, fft, plot)
- 7. Interpréter les fréquences obtenues
- 8. Représenter la transformée de Fourier $X_{sc}(f)$ du signal sinus cardinal créé dans la partie I en variant le vecteur temps $(t \in \left[\frac{-10}{f_0}, \frac{10}{f_0}\right] s)$. (fftshift, fft, plot)
- 9. Que remarquez-vous?
- 10. Représenter la transformée de Fourier $X_{sc2}(f)$ du signal sinus cardinal créé dans la partie I en variant la fréquence à $2 \times f_0$. (fftshift, fft, plot)
- 11. Que remarquez-vous?
- 12. Générer et représenter un signal s_3 somme du signal sinusoïdal s créé dans la question 1 et le sinus cardinal créé dans la partie I.
- 13. Représenter sa transformée de Fourier $X_{sc3}(f)$ (fftshift, fft, plot)
- 14. Que remarquez-vous?

III. Signaux et bruit

- 1. Déclarer les variables suivantes :
- N = 1000 Longueur vecteur temps
- t = 0:1 Vecteur temps (linspace)
- $f_1 = 7 Hz$ Fréquence du premier signal sinusoïdal
- $f_2 = 2 Hz$ Fréquence du deuxième signal sinusoïdal
- $A_1 = 2$ Amplitude du premier signal sinusoïdal
- $A_2 = 1$ Amplitude du deuxième signal sinusoïdal
- 1. Gêner et représenter un signal sinusoïdal s_1 composé de deux signaux sinusoïdaux
- 2. Générer et représenter un bruit blanc Gaussien b (randn)
- 3. Représenter les deux signaux générés b et s_1 sur la même figure.
- 4. Ajouter le bruit généré au signal s_1 .
- 5. Représenter le signal bruité.
- 6. Ajouter le bruit b aux différents signaux générés dans partie I.
- 7. Représenter les différents signaux bruités (subplot)