Exercise Sheet 5

Exercise 1 (Transport Protocols)

- 1. Explain the **differences** between TCP and UDP.
- 2. Describe **two examples**, where using the Transport Layer protocol TCP makes sense.
- 3. Describe **two examples**, where using the Transport Layer protocol UDP makes sense.
- 4. What is a **socket**?
- 5. What specifies the **Seq number** in an TCP segment?
- 6. What specifies the **Ack number** in an TCP segment?
- 7. Describe the silly window syndrome and its effect.
- 8. Describe the functioning of silly window syndrome avoidance.
- 9. Which two possible **reasons** for the occurrence of congestion in computer networks exist?
- 10. Why does the sender maintain **two windows** when using TCP and not just a single one?
- 11. What is the **slow-start** phase?
- 12. What is the **congestion avoidance** phase?
- 13. Mark in the figure the **slow-start** phase and the **congestion avoidance** phase both.

Page 1 of 7

Content: Topics of slide set 9 + 10

- 14. Describe what **fast retransmit** is?
- 15. Describe what **fast recovery** is?
- 16. The concept of TCP congestion control is called **AIMD** (= Additive Increase / Multiplicative Decrease). **Describe the reason** for the aggressive reduction and conservative increase of the congestion window.
- 17. Describe the functioning of a Denial-of-Service attack via SYN flood.

Exercise 2 (Header and Payload)

An application generates 40 bytes payload which is first packed into a single TCP segment, and then packed into a single IP packet. What is the percentage of header data in the IP packet and what is the percentage of application generated payload?

Exercise 3 (Transmission Control Protocol)

1. The diagram shows the establishment of a TCP connection. Complete the information in the table for TCP messages 2 and 3 according to TCP messages 1.

Message	ACK	SYN	FIN	Payload length	Seq number	Ack number
1	0	1	0	0	500	
2					1000	
3						

2. The diagram shows an excerpt of the transmission phase of a TCP connection. Complete the table.

Message	ACK	SYN	FIN	Payload length	Seq number	Ack number
4	0			50	501	1001
5	1			0		
6	0			100		
7	1			0		

3. The diagram shows the termination of a TCP connection. Complete the table.

Message	ACK	SYN	FIN	Payload length	Seq number	Ack number
8	0	0	1	0	2000	3000
9				0		
10				0		
11				0		

Exercise 4 (Devices in Computer Networks)

- 1. What network devices are used in computer networks?
- 2. Assign the devices to the layers of the hybrid reference model.

Exercise 5 (Devices in Computer Networks)

What network device(s) is (are) used to...

- 1. connect networks with different logical address ranges?
- 2. transmit signals over long distances by modulating them to a carrier frequency in the ultra low frequency band?
- 3. connect physical networks?
- 4. extend the range of LANs?
- 5. connect wireless network devices in the infrastructure mode?
- 6. enable communication between networks, which use different protocols?

Exercise 6 (Reference Models)

For the network devices, protocols, transmission units, line codes and addressing schemes in the table, mark the corresponding layer of the **hybrid reference model**.

1 stands for the bottom layer and 5 for the top layer in the hybrid reference model. If more than just <u>one</u> layer are a correct answer, it is sufficient to select at least a single correct layer.

	Hybrid reference model lag				
	1	2	3	4	5
4B5B					
Address Resolution Protocol (ARP)					
Alternate Mark Inversion (AMI)					
Autonomous Systems					
Border Gateway Protocol (BGP)					
Bridge					
Congestion control					
CSMA/CA					
CSMA/CD					
Cyclic Redundancy Check (CRC)					
Distance vector routing protocols					
Dynamic Host Configuration Protocol (DHCP)					
Ethernet					
File Transfer Protocol (FTP)					
Flow control					
Gateway					
Hub					
Hypertext Transfer Protocol (HTTP)					
ICMP					
Internet Protocol (IP)					
Link state routing protocols					
Logical addresses					
Manchester-Code					
Media access control					
Modem					
Multilevel Transmission Encoding - 3 Levels					
Multiport Bridge					
Non-Return to Zero					
Open Shortest Path First (OSPF)				_	

Content: Topics of slide set 9 + 10 Page 5 of 7

	Hybr	Hybrid reference model layer				
	1	2	3	4	5	
Physical addresses						
Port numbers						
Reliable end-to-end data connection						
Repeater						
Router						
Routing Information Protocol (RIP)						
Security						
Spanning Tree Protocol (STP)						
Switch						
Telnet						
Transmission Control Protocol (TCP)						
User Datagram Protocol (UDP)						
Wireless LAN						

Exercise 7 (Protocols in Computer Networks)

Which protocol is used to...

- 1. provide congestion control and flow control?
- 2. resolves logical addresses into physical addresses?
- 3. avoid collisions inside physical networks?
- 4. provide routing within autonomous systems via the Bellman-Ford algorithm?
- 5. remote control computers in an encrypted way?
- 6. provide routing within autonomous systems via the Dijkstra algorithm?
- 7. assign the network configuration to network devices?
- 8. remote control computers in a unencrypted way?
- 9. realize connectionless inter-process communication?
- 10. resolves domain names into logical addresses?
- 11. detect collisions inside physical networks?
- 12. download and upload files in an unencrypted way?
- 13. exchange (deliver) emails?
- 14. exchange diagnostic and control messages?

Content: Topics of slide set 9 + 10

Faculty of Computer Science and Engineering Frankfurt University of Applied Sciences

15. reduce a computer network to a loop-free tree?

Content: Topics of slide set 9 + 10 Page 7 of 7