Supervised Learning - Selection and Regularization for Regression Models

Mark Asch - IMU/VLP/CSU 2023

Program

1. Data Analysis

- (a) Introduction: the 4 identifiers of "big data" and "data science"
- (b) Supervised learning methods: regression—advanced, k-NN, linear classification methods, SVM, NN, decision trees.
- (c) Unsupervised learning methods: k-means, principal component analysis, clustering.

Limits of the Regression Model

Recall the standard linear model for a regression,

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p$$

that describes the relationship between the response Y and the p explanatory variables X_1, \ldots, X_p and is fit by least-squares

- Properties:
 - ⇒ easy to interpret
 - ⇒ inference is possible and rigorous
 - ⇒ can take into account non-linearities (on condition to know, or to guess, them...)
 - \Rightarrow robustness for real problems
- Before passing to nonlinear models (k-nn, SVM, trees, NN, etc.), is it possible to improve the linear model?
- Why should we use other fitting methods based on least-squares?

⇒ Forecast Precision

- → if the true relation is approximately linear, then the bias of SLR will be small
- \rightarrow if $n\gg p$, then the variance of SLR will be small and we obtain good predictive performance on (unseen) test data
- \rightarrow if $n \approx p$, then SLR will have a tendency to over-fit and the variance will be high and give bad predictions
- \rightarrow if p>n, then the variance is infinite and SLR cannot be used...
- → by constraining or shrinking the estimated coefficients, we can reduce the variance without too much increase in the bias—this produces a clear improvement of the predictive precision

⇒ Model Interpretation

- → often, in multiple regression, several explanatory variables are not associated with the response
- → including such non-pertinent variables leads to complex models—see bias-variance tradeoff
- → the selection of attributes/variables can eliminate these nuisance variables...

Three classes of methods

- 1. Selection of subsets: we identify a subset of the p predictors and we apply least-squares to this reduced set
- 2. Regularization/penalization/shrinking: we fit on all p variables, but we shrink the coefficients towards zero, thus reducing the variance (in the limit, we perform attribute selection...). The two common approaches are:
 - ridge regression
 - LASSO regression
- 3. Reduction of dimension: we project the p predictors onto a subspace of dimension M with M < p. The two common approaches are:
 - PCR—principal component regression
 - PLS—partial least-squares

Subset Selection

Recall:

$$RSS(\beta) = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

$$R^2 = 1 - \frac{RSS}{TSS}$$

- ullet we fit a SLR for each possible combination of p predictors
 - $\Rightarrow p$ models with a single predictor
 - \Rightarrow $\binom{p}{2} = p(p-1)/2$ models with two predictors, etc., etc.
- we then choose the best model (see criteria below)
- Algorithm:

```
Let M_0 l be the null model, without predictors for k=1,2,\ldots,p fit all \binom{p}{k} models of k predictors choose the best model M_k of minimal RSS or maximal R^2 next k Select the best model among M_0,\ldots,M_p by cross-validation, AIC, BIC or adjusted R^2
```

- ullet when p is large, the method of subset selection can be too expensive
- we can proceed stepwise, by adding (forward) or removing (backward) predictors one-by-one (stepwise selection)

Criteria of Choice

- the selection methods produce an ensemble of models
 - \Rightarrow each model contains a subset of p explanatory variables (predictors)
 - ⇒ which model is the best???
 - \Rightarrow the model that contains all the predictors will always have the smallest value of RSS and the greatest value of $R^2=1-{\rm RSS/TSS}$
 - ightarrow Conclusion: RSS and R^2 are NOT good criteria for choosing a model among those with a different number of predictors
- We must estimate the test error in order to best select among the models:
 - 1. Indirect estimation by refitting on the training error
 - 2. Direct estimation by a validation set or cross-validation (see below)

Criteria for Refitting

There are four criteria that can be used for selecting a model among models with different numbers of variables:

- 1. C_p
- 2. AIC (Akaike Information Criterion)
- 3. BIC (Bayesian Information Criterion)
- 4. Adjusted \mathbb{R}^2

Criterion C_p

• for a model fitted by least-squares with d explanatory variables (predictors), define

$$C_p = \frac{1}{n} \left(\text{RSS} + 2d\hat{\sigma}^2 \right)$$

where $\hat{\sigma}^2$ is an estimation of the variance of the error ϵ associated to each measurement/observation in the multilinear regression formula

- ullet we estimate $\hat{\sigma}^2$ using the complete model with all the explanatory variables
- the C_p statistic adds a penalization of $2d\hat{\sigma}^2$ to the training RSS in order to compensate for the fact that the training error always underestimates the test error.
- ullet we can show that C_p diminishes for models with a small value of the test error

 \bullet Conclusion: we choose the model with the minimal ${\cal C}_p$ value

Criterion AIC

- defined for a broad class of models fitted by a maximum likelihood (ML) method
- the Akaike Information Criterion is defined as

$$AIC = \frac{1}{n\hat{\sigma}^2} \left(RSS + 2d\hat{\sigma}^2 \right)$$

• in the case of SLR with Gaussian errors, ML and LS are identical!

Criterion BIC

- criterion obtained from a Bayesian analysis...
- ullet for a LS model with d predictors, define the Bayesian Information Criterion

BIC =
$$\frac{1}{n\hat{\sigma}^2} \left(RSS + d\hat{\sigma}^2 \log n \right)$$

- just as for C_p , the BIC will take a small value for a model with a low test error
- but, the factor $\log n$ will penalize models having many variables, and thus select smaller models (less complex ones) than C_p or AIC
- Conclusion: we choose the model with the minimal BIC value

Criterion Adjusted R^2

- this criterion modifies the coefficient of determination R^2 , to compensate for the fact that the RSS always diminishes when we add variables, and hence $R^2=1-{\rm RSS}/{\rm TSS}$ increases
- the definition takes into account both n and d,

Adjusted
$$R^2 = 1 - \frac{\text{RSS}/(n-d-1)}{\text{TSS}/(n-1)}$$

- here, a large value implies a model with small test error
- adding nuisance variables gives an increase in d and an increase of ${\rm RSS}/(n-d-1)$, and thus a reduction of the ${\rm Adjusted}\,R^2$
 - \Rightarrow in theory, the model with the largest (best) $\operatorname{Adjusted} R^2$ will only contain the good variables and no nuisance variables

Cross Validation

- ✓ use a validation/test set to directly estimate the test error, without additional hypotheses
- ✓ applicable in more general contexts...
- **✗** CPU time can become a practical limit...

Methods of Regularization/Shrinking

- we will now modify directly the least-squares minimization criterion
- Recall: least-squares regression estimates the coefficients β_0, \ldots, β_p by the minimization of

$$RSS(\beta) = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

- we obtain 2 alternative methods:
 - ⇒ ridge regression
 - ⇒ the LASSO (least absolute shrinkage and selection operator)

Ridge Regression (RR)

• Penalized Least-Squares are used to estimate the values of β_i

$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2,$$

where $\lambda \geq 0$ is a tuning parameter, and the new term introduces a "shrinkage" by reducing the effects of terms whose squared values are small—this term will be small when $\beta_1, \ldots \beta_p$, are close to zero and its effect will be to shrink the estimates of the β_j towards zero

- \Rightarrow we use cross validation to estimate λ
- \Rightarrow the coefficient of the intercept, β_0 , is not shrunk—it measures the average of the response when all the $X_i=0$
- \Rightarrow advantage over SLR: less variance, more bias when λ increases
- influence of λ

- \Rightarrow when $\lambda=0,$ the ridge gives the least-squares estimates
- \Rightarrow when $\lambda \to \infty$, the ridge coefficients tend to zero
- ⇒ selecting a good value is critical, and we use cross-validation.

advantages over SLR:

- ⇒ bias-variance tradeoff...
- \Rightarrow with increasing λ , the flexibility of the fit by ridge decreases, which implies less variance and more bias
- \Rightarrow works well when SLR has a high variance, especially when $n \approx p$ and n < p.

LASSO Regression

• uses the l_1 -norm to penalize the β_i ,

$$RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

- can, for λ large enough, cancel the coefficients and thus reduce the dimension of predictors, which facilitates interpretation of the regression obtained—this is also called "feature selection";
 - \Rightarrow we use cross-validation on a set of values $\{\lambda_1,\ldots,\lambda_m\}$ to estimate λ
- Ridge or LASSO?
 - ⇒ LASSO provides more interpretable models
 - ⇒ LASSO has better performance when the response indeed depends on a subset of features

Cross-Validation for λ

- ullet choose a grid of values for λ
- fix the number of folds for the cross-validation
- ullet for each value of λ compute the CV error
- ullet select the value of λ for which the CV error is minimal
- fit the model again,
 - ⇒ with all the observations
 - \Rightarrow with the optimal value of λ
- Beware of RNG initialization for reproducibility.

Methods of Dimension Reduction

• 2 steps

- \Rightarrow transform the explanatory variables X_1, X_2, \ldots, X_p , then
- ⇒ fit a least-squares model to the transformed variables

• 2 approaches

- ⇒ non-supervised: PCR—principal component regression
- ⇒ supervised: PLS—partial least-squares

Methods of Dimension Reduction II

• let Z_1, Z_2, \ldots, Z_M with M < p, be linear combinations of the original p predictors

$$Z_m = \sum_{j=1}^p \phi_{jm} X_j, \quad m = 1, \dots, M$$

• fit a linear regression model

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \epsilon_i, \quad i = 1, \dots, n$$

- if the coefficients $\phi_{1m}, \phi_{2m}, \ldots, \phi_{pm}$ are well-chosen, the a dimension reduction approach can attain a better performance than SLR
 - \Rightarrow the dimension is reduced from p+1 to M+1

⇒ the fit is special case of SLR

$$\sum_{m=1}^{M} \theta_m z_{im} = \sum_{j=1}^{p} \beta_j x_{ij}$$

with

$$\beta_j = \sum_{m=1}^{M} \theta_m \phi_{jm}$$

- the new coefficients are constrained and thus biased, but when p>n and $M\ll p$ the reduction of variance can be consequential
- the 2 steps of any variance reduction method are:
 - 1. obtain transformed predictors Z_1, Z_2, \ldots, Z_M
 - 2. fit a model to these M predictors

Principal Component Regression (PCR)

- PCA (see below) is an established method for obtaining a low-dimensional set of attributes from a large set of variables
 - ⇒ PCA is an unsupervised approach
 - ⇒ the first principal component gives the direction in which the observations vary the most, etc.
- strong hypothesis:
 - \Rightarrow the principal components, that are calculated from X, are indeed representative of Y
 - ⇒ if yes, they can detect causality by considerably reducing the dimension of the parameter space

• 2 steps:

- 1. Calculate the first M principal components
- 2. Use these M components in a linear regression model that we fit by least-squares

Conclusions

- \Rightarrow since $M \ll p,$ any overfitting is automatically attenuated
- \Rightarrow PCR does not perform feature selection—the original p predictors are still there, though in the form of linear combinations
- \Rightarrow there is thus a link between PCR and ridge regression...
- \Rightarrow the choice of M is made by cross-validation
- ⇒ it is strongly recommended to normalize the explanatory variables, unless they are of the same units

Partial Least-Squares (PLS)

- This is a supervised alternative to PCR:
 - \Rightarrow find the components of X that are also pertinent for Y
 - \Rightarrow calculate an ensemble of latent vectors that execute simultaneously a decomposition of X and of Y, under the constraint that these components describe as much as possible of the covariance between X and Y
 - ⇒ the algorithms are quite complex...
- Steps of the computation:
 - \Rightarrow normalize the p explanatory variables
 - \Rightarrow calculate Z_1 by setting each ϕ_{j1} in

$$Z_1 = \sum_{j=1}^p \phi_{j1} X_j$$

equal to the linear regression coefficient of Y on X_j which will place the most weight on the variables having the strongest correlation with the response

- \Rightarrow calculate Z_2
 - \rightarrow fit each of the variables for Z_1 by computing the regression on the residues...
- \Rightarrow etc.

Remarks:

- \Rightarrow PLS is often used in industrial applications where p is big and n is small
- ⇒ PLS is rarely better than LASSO, but does not require any tuning...

Take-Home Lessons

- The linear regression method, in its numerous guises, shows how we quantify uncertainty as best as possible.
- Recall that the methods reduce the known part of the uncertainty since they are optimal estimates, but that the unknown, irreducible part remains.
- Our job is then to inform the decision-maker on how risky this is. For this, we carefully modeled the "noise" in the system, and we proposed five methods for quantifying its effects:
- 1. Use the R-squared value.
- 2. Use the p-values resulting from a hypothesis test, based on the t-statistic.
- 3. Check the normality of the residues.

- 4. Use cross-validation.
- 5. Check whether adding variables or transforming variables has an effect on the previous four.
- If we perform all the above, rigorously, then we have fulfilled our responsibilities as modelers, engineers, data scientists, and applied mathematicians.

Examples

- 1. Ridge Regression and LASSO for baseball data reg-ridge-lasso.html
- 2. PCR and PLS for baseball reg_PCR_PLS.html
- 3. Subset Selection for baseball reg-subset-sel.html

References

- 1. G. James, D. Witten, T. Hastie, R. Tibshirani. *An Introduction to Statistical Learning with Applications in R.* Springer. 2013.
- 2. T. Hastie, R. Tibshirani, J. Friedman. *The Elements of Statistical Learning*. Springer. 2009.
- 3. Rachel Schutt and Cathy O'Neil. *Doing Data Science*. O'Reilly. 2014.