CSE8803/CX4803

Machine Learning in Computational Biology

Lecture 12: RNA Secondary Structure Prediction

Yunan Luo

	Date	Topic	Contents
	1/10/2022	Introduction	Course intro & how to present papers
	1/12/2022		Dynamic programming & sequence alignment I
Learning from structure	1/17/2022		No class (MLK Day)
Learning norm structure	1/19/2022	Learning from	Sequence alignment II
	1/24/2022	sequence data	HMM & gene/motif finding
	1/26/2022		HMM & Profile HMM
	1/31/2022		Deep learning for DNA/protein sequence
	2/2/2022		Learn from high-dim data: PCA, autoencoder & VAE
	2/7/2022		Learn from high-dim data: MDS, tSNE, UMAP
	2/9/2022	Learning from high-dim data	Clustering I
	2/14/2022	mgn-dim data	Clustering II
	2/16/2022		Clustering III
	2/21/2022	Phase 1	Student presentation 1-3
	2/23/2022	presentations	Student presentation 4-6
	2/28/2022	Learning from	RNA structure prediction
	3/2/2022	structure data	Deep learning for structures (protein structure prediction)
	3/7/2022	Phase 2 presentations	Student presentation 7-9
	3/9/2022	Learning from	Network basics & traditinal ML for graphs
	3/14/2022	network data	Network embeddings
	3/16/2022	Phase 3 presentations	Student presentation 10-12
	3/21/2022		No class (Spring Break)
	3/23/2022	Spring break	No class (Spring Break)
	3/28/2022	Learning from	Graphical Models
	3/30/2022	network data	Deep learning for networks (graph neural networks)

Central Dogma of Molecular Biology

Three fundamental molecules:

1. **DNA** Information storage.

2. RNA

Old view: Mostly a "messenger". New view: Performs many important functions, through 3-D structure!

3. Protein

Perform most cellular functions (biochemistry, signaling, control, etc.)

DNA -> RNA -> Protein

Copyright @ 1997, by John Wiley & Sons, Inc. All rights reserved.

RNA

• Single-stranded

- A (adenine)
- o C (cytosine)
- U (uracil)
- G (guanine)
- Can fold into structures due to nucleotide complementarity.

Comes in many flavors:

mRNA, rRNA, tRNA, tmRNA, snRNA, snoRNA, scaRNA, aRNA, asRNA, piwiRNA, etc.

RNA – Nucleotide Complementarity

RNA can fold into structures due to nucleotide complementarity:

A <--> U and G <--> C

A <--> U (2 hydrogen bonds) is slightly weaker than G <--> C (3 hydrogen bonds)

G <--> U also observed but not as stable

Cytosine (C)

Guanine (G)

Transfer RNA (tRNA) Secondary Structure

http://bioinfo.bisr.res.in/project/crat/pictures/codon.jpg

RNA Secondary Structure Elements

Each base/nucleotide participates in at most one pairing

Secondary structure is determined by a set of non-overlapping base/nucleotide pairs

Nesting and Pseudoknot

Base pairs (i,j) and (i',j') are **nested** provided i < i' < j' < j or i' < i < j < j'

Base pairs (i, j) and (i', j') form a **pseudoknot** provided i < i' < j < j' or i' < i < j' < j

Most RNA molecules consist of nested base pairs

Nesting and Pseudoknot -- Examples

Nesting

5' - G C G G A U U C U G C C C C A A U U C G C A C C A - 3'

Pseudoknot

5'-UUCCGAAGCUCAACGGGAAAAUGAGCU-3'

Nesting and Pseudoknot -- Examples

Nesting

```
5'-GCGGAUUCUGCCCCAAUUCGCACCA-3'
(((((((-----)))))))))----
```

```
5' CA-3'
| AC
| G•C
| C•G
| G•C
| U•A
| U•A
| C C
| C C
| G•C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C C
| C
```

Pseudoknot

```
5'-UUCCGAAGCUCAACGGGAAAAUGAGCU-3'
((((((-(((((-)))))))---)))))
```


Nussinov Algorithm

RNA can fold into structures due to nucleotide complementarity:

A <--> U and G <--> C

Secondary structure is determined by a set of non-overlapping complementary base pairs

Question: How to find maximum number of such pairs?

5'-GCGGAUUCUGCCCCAAUUCGCACCA-3'

Nussinov Algorithm

RNA can fold into structures due to nucleotide complementarity:

A <--> U and G <--> C

Secondary structure is determined by a set of non-overlapping complementary base pairs

Question: How to find maximum number of such pairs?

Need to constrain space of feasible solutions!

Nussinov Algorithm

RNA can fold into structures due to nucleotide complementarity:

A <--> U and G <--> C

Secondary structure is determined by a set of non-overlapping complementary base pairs

Question: How to find maximum number of such pairs?

Need to constrain space of feasible solutions!

SIAM J. APPL, MATH. Vol. 35, No. 1, July 1978 © Society for Industrial and Applied Mathematics 0036-1399/78/3501-0006 \$01.00/0

ALGORITHMS FOR LOOP MATCHINGS*

RUTH NUSSINOV,† GEORGE PIECZENIK,‡ JERROLD R. GRIGGS¶
AND DANIEL J. KLEITMAN§

Problem: Given RNA sequence $\mathbf{v} \in \{A, U, C, G\}^n$, find a *pseudoknot-free secondary* structure with the maximum number of complementary base pairings

Problem: Given RNA sequence $\mathbf{v} \in \{A, U, C, G\}^n$, find a *pseudoknot-free secondary* structure with the maximum number of complementary base pairings

5'-GCGGAUUCUGCCCCAAUUCGCACCA-3'

Problem: Given RNA sequence $\mathbf{v} \in \{A, U, C, G\}^n$, find a *pseudoknot-free secondary* structure with the maximum number of complementary base pairings

Let s[i,j] denote the maximum number of pseudoknot-free complementary base pairings in subsequence v_i , ..., v_i

Problem: Given RNA sequence $\mathbf{v} \in \{A, U, C, G\}^n$, find a *pseudoknot-free secondary* structure with the maximum number of complementary base pairings

Let s[i,j] denote the maximum number of pseudoknot-free complementary base pairings in subsequence v_i, \dots, v_j

Problem: Given RNA sequence $\mathbf{v} \in \{A, U, C, G\}^n$, find a *pseudoknot-free secondary* structure with the maximum number of complementary base pairings

Let s[i,j] denote the maximum number of pseudoknot-free complementary base pairings in subsequence v_i , ..., v_j

$$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \text{ (1)} \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not\in \Gamma, \text{ (1*)} \\ s[i+1,j], & \text{if } i < j, & \text{(2)} \\ s[i,j-1], & \text{if } i < j, & \text{(3)} \\ \max_{i < k < j} \{s[i,k]+s[k+1,j]\}, & \text{if } i < j, & \text{(4)} \end{cases}$$

 $\Gamma = \{(G,C), (C,G), (A,U), (U,A)\}$

Problem: Given RNA sequence $\mathbf{v} \in \{A, U, C, G\}^n$, find a *pseudoknot-free secondary* structure with the maximum number of complementary base pairings

Let s[i,j] denote the maximum number of pseudoknot-free complementary base pairings in subsequence v_i , ..., v_i

$$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \text{ (1)} \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not\in \Gamma, \text{ (1*)} \\ s[i+1,j], & \text{if } i < j, & \text{(2)} \\ s[i,j-1], & \text{if } i < j, & \text{(3)} \\ \max_{i < k < j} \{s[i,k]+s[k+1,j]\}, & \text{if } i < j, & \text{(4)} \end{cases}$$

Question:

Which case is redundant?

	(((((573	- T	-	0. 7 3	i.E.v	75	878	-		150	5)	100	70))))		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
	G	C	U	С	G	G	G	U	U	C	С	C	U	Α	U	U	C	Α	Α	G	Α	G	C		
Develop intuition	0																							G	1
Bovolop intaltion	0	0																						C	2
	0	0																						U	3
	0	0	0	0																				C	4
	0	0	0	0	0																			G	5
	0	0	0	0	0	0									0 - 5			3					0 7	G	6
$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not \in \Gamma, \\ s[i+1,j], & \text{if } i < j, \\ s[i,j-1], & \text{if } i < j, \\ \max_{i < k < j} \{s[i,k] + s[k+1,j]\}, & \text{if } i < j, \end{cases}$	0	0	0	0	0	0	0																	G	7
$s[i+1,j-1]+1,$ if $i < j$ and $(v_i,v_j) \in \Gamma,$	0	0	0	0	0	0	0	0									9							U	8
$s[i,j] = \max \begin{cases} s[i+1,j-1], & \text{if } i < j \text{ and } (v_i, v_j) \notin 1, \\ s[i+1,j], & \text{if } i < j. \end{cases}$	0	0	0	0	0	0	0	0	0															U	9
s[i, j-1], if i < j,	0	0	0	0	0	0	0	0	0	0					8 - 5		3 28						8 - 3	C	10
$\max_{i < k < j} \{ s[i, k] + s[k+1, j] \}, \text{ if } i < j,$	0	0	0	0	0	0	0	0	0	0	0									ĵ j				C	11
	0	0	0	0	0	0	0	0	0	0	0	0												C	12
	0	0	0	0	0	0	0	0	0	0	0	0	0											U	13
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9-3		ê - 28						80 - 8	Α	14
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0									U	15
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								U	16
	0	0	0	0	0	0						-	_	0	0	0	0							С	17
	0	0	0	0	0		0 13	700					0		0		0	0					80 - 8	Α	18
	0	0	0	0	0	0		0				0	0	-	0		0							Α	19
	0	0	0	0	0	0	0	0	-			0	0		2	10000	0	-		0				G	20
	0	0		0	0	0		-	11.00	1.000		- 100	- 0.0	2000				-			_		8 3	Α	21
	0	0	0.00	0	0	1,700	0 33		-						0		10.00		2 5 5				9 - V	G	22
	0			0	0								0	-				-				-	100 0		23

	(((((-	150	-	878	153	75	878	-	374	150	5)	15%	75))))		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
	G	C	U	С	G	G	G	U	U	C	С	C	U	Α	U	U	C	Α	Α	G	Α	G	C		
Develop intuition	0																						5	G	1
Dovolop intartion	0	0																		Ï		4		C	2
	0	0																			3			U	3
	0	0	0	0																2				C	4
	0	0	0	0	0												1	1	1					G	5
	0	0	0	0	0	0									0 - 5	0							9 3	G	6
$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not \in \Gamma, \\ s[i+1,j], & \text{if } i < j, \\ s[i,j-1], & \text{if } i < j, \\ \max_{i < k < j} \{s[i,k] + s[k+1,j]\}, & \text{if } i < j, \end{cases}$	0	0	0	0	0	0	0									0								G	7
$s[i+1,j-1]+1,$ if $i < j$ and $(v_i,v_j) \in \Gamma$,	0	0	0	0	0	0	0	0	- 2							0	9							U	8
$s[i,j] = \max \begin{cases} s[i+1,j-1], & \text{if } i < j \text{ and } (v_i, v_j) \notin 1, \\ s[i+1,j], & \text{if } i < j. \end{cases}$	0	0	0	0	0	0	0	0	0							0								U	9
s[i, j-1], if $i < j,$	0	0	0	0	0	0	0	0	0	0					8 - 5	0	0.— x8						9 - 3	C	10
$\max_{i < k < j} \{ s[i, k] + s[k+1, j] \}, \text{ if } i < j,$	0	0	0	0	0	0	0	0	0	0	0					0								C	11
	0	0	0	0	0	0	0	0	0	0	0	0				0								C	12
	0	0	0	0	0	0	0	0	0	0	0	0	0			0								U	13
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	- 3					9 8	Α	14
	0	0	0	0	0	0	0	0	-		0	0	0	0	0	0								U	15
	0	0		0	0	0										0								U	16
	0	0		0	0	0						-	0	3 3 3									100	С	17
	0	0		0	0	0	0 1						0		0 3033	-	0			* *			9 - 8	Α	18
	0	0	0	0	0	0	0	0				0	0	-	0		0							Α	19
	0	0	0	0	0	0	0	0	-			0	0			10000	0			0				G	20
	0	0	0	0	0	0	0	0	3 1 30	-		- 100	- 0.0	2000					-	200	0		(C)	A	21
	0	0	0.00	0	0	0	2010						0	1,000	2000	-	10.00	_	0.00	2000			9 - E	G	22
				-	-				- 1000	-			-	-				-	-			-	0		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	23

	(((((((727	7 <u>2</u> 5	22))	25	(<u> 25</u>))	22	323))))		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
	G	C	U	C	G	G	G	U	U	C	C	C	U	Α	U	U	C	Α	Α	G	Α	G	C		
Develop intuition	0										9 %													G	1
Bovolop ilitalia	0	0																						C	2
	0	0	0												ĺ									U	3
	0	0	0	0																				C	4
	0	0	0	0	0				3								3.							G	5
	0	0	0	0	0	0																		G	6
$ \begin{pmatrix} 0, & \text{if } i \ge j, \\ 0, & \text{otherwise} \end{pmatrix} $	0	0	0	0	0	0	0										(II							G	7
$ s[i+1,j-1]+1, \qquad \text{if } i < j \text{ and } (v_i, v_j) \in \Gamma,$	0	0	0	0	0	0	0	0																U	8
$s[i,j] = \max \begin{cases} s[i+1,j-1], & \text{if } i < j \text{ and } (v_i, v_j) \notin 1, \\ s[i+1,i], & \text{if } i < j. \end{cases}$	0	0	0	0	0	0	0	0	0								3							U	9
$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not \in \Gamma, \\ s[i+1,j], & \text{if } i < j, \\ s[i,j-1], & \text{if } i < j, \\ \max_{i < k < j} \{s[i,k]+s[k+1,j]\}, & \text{if } i < j, \end{cases}$	0	0	0	0	0	0	0	0	0	0														C	10
$\max_{i < k < j} \{s[i, k] + s[k+1, j]\}, \text{ if } i < j,$	0	0	0	0	0	0	0	0	0	0	0						12							С	11
	0	0	0	0	0	0	0	0	0	0	0	0												С	12
	0	0	0	0	0	0	0	0	0	0	0	0	0											U	13
	0	0	0	0	0	0	0	0	0	0	0	0	0	0										Α	14
	0	0	0	0	0	0	0	0	0	0	0		0	0	-		es.		1 8			25 - 6		U	15
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			1 7					U	16
	0	0	0	0	0		721176			22.00			-	1	900		1000							C	17
	0	0	0	0	0	0	0	0	0	0			0	-	-			0						Α	18
	0		0	0	0		-		0		-		-	-	1100	910		-	2 3					Α	19
	0		0	0	0		0	1	0	0	100			0		200				0				G	20
	0	100.00	0	0	0		(2000)		0	0	200	100			20000		1	1000		0	0			Α	21
	0		0	0	0		0	1000	0	0			0.00	-		1.5	-			0		1000		G	22
	0	>///	0	0	0	0	0	00100	0	0					0	0				0	0		_	C	23

	(((((((75		(T)))	5	())	1780	=))))		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
	G	C	U	С	G	G	G	U	U	C	C	C	U	Α	U	U	C	Α	Α	G	Α	G	С		
Develop intuition	0																							G	1
201010 milantion	0	0																						C	2
	0	0	0																					U	3
	0	0	0	0																				C	4
	0	0	0	0	0																			G	5
	0	0	0	0	0	0																		G	6
$\begin{cases} 0, & \text{if } i \geq j, \\ \vdots & \vdots & \vdots \end{cases}$	0	0	0	0	0	0	0																	G	7
$s[i+1, j-1] + 1, if i < j and (v_i, v_j) \in \Gamma, s[i+1, j-1], if i < j and (v_i, v_j) \notin \Gamma,$	0	0	0	0	0	0	0	0																U	8
$s[i,j] = \max \begin{cases} s[i+1,j-1], & \text{if } i < j \text{ and } (v_i, v_j) \notin 1, \\ s[i+1,j], & \text{if } i < j, \end{cases}$	0	0	0	0	0	0	0	0	0															U	9
s[i, j-1], if i < j,	0	0	0	0	0	0	0	0	0	0														C	10
$\max_{i < k < j} \{ s[i, k] + s[k+1, j] \}, \text{ if } i < j,$	0	0	0	0	0	0	0	0	0	0	0													C	11
	0	0	0	0	0	0	0	0	0	0	0	0												C	12
	0	0	0	0	0	0	0	0	0	0	0	0	0											U	13
	0	0	0	0	0	0	0	0	0	0	0	0	0	0										Α	14
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0									U	15
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								U	16
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							C	17
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						Α	18
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					Α	19
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				G	20
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			Α	21
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		G	22
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		С	23

		((((((122	123	22))	25	(<u>185</u>))	- 22	227))))		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
	G	C	U	С	G	G	G	U	U	C	С	C	U	Α	U	U	C	Α	Α	G	Α	G	C		
Develop intuition	0		9 - 10						a - 5		9 %	-					32 - E		9 %				8	G	1
Bovolop intaltion	0	0																				7		C	2
	0	0	0	1																	6			U	3
	0	0	0	0																5				C	4
	0	0	0	0	0							-					4	4	4					G	5
	0	0	0	0	0	0						2				3								G	6
$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not \in \Gamma \\ s[i+1,j], & \text{if } i < j, \\ s[i,j-1], & \text{if } i < j, \\ \max_{i < k < j} \{s[i,k] + s[k+1,j]\}, & \text{if } i < j, \end{cases}$	0	0	0	0	0	0	0				1													G	7
$s[i+1,j-1]+1,$ if $i < j$ and $(v_i,v_j) \in \Gamma$, 0	0	0	0	0	0	0	0		0														U	8
$s[i,j] = \max \begin{cases} s[i+1,j-1], & \text{if } i < j \text{ and } (v_i, v_j) \notin I \\ s[i+1,j], & \text{if } i < j. \end{cases}$	0	0	0	0	0	0	0	0	0	0	6 %						a :		6 %					U	9
s[i, j-1], if $i < j,$	0	0	0	0	0	0	0	0	0	0														C	10
$\max_{i < k < j} \{s[i, k] + s[k+1, j]\}, \text{ if } i < j,$	0	0	0	0	0	0	0	0	0	0	0						13.		30					С	11
	0	0	0	0	0	0	0	0	0	0	0	0												C	12
	0	0	0	0	0	0	0	0	0	0	0	0	0			1								U	13
	0	0	0	0	0	0	- 10	0	- 3		0	0	0	0		0								Α	14
	0	0	0	0	0	0	0	0	3		0	0	0	0	0		s .		30			25 0		U	15
	0	0	0	0	0	0		0			0		0		0	0			* ×					U	16
	0	0		0	0	0	-	0		10.00			0		0									С	17
	0			0	0	0		-	- 25	_			0		0		-	- 00						Α	18
	0	10000		0	0	0	10000	-					0		0				9 19	1		25 - 0		Α	19
	0		0	0	0	0		0	100				0		0	0								G	20
	0	200.00		0	0	0	(80%)	0		9978			0	-	0	0		2007.0		-				Α	21
	0		200	0	0	0		0				-	0		0	0				-	100			G	22
	0	>//2>	10000	0	0	0	1000	0		- 250		-	0	0	0	0			-	- 10				С	23

Nussinov Algorithm – Traceback Step

$$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not \in \Gamma, \\ s[i+1,j], & \text{if } i < j, \\ s[i,j-1], & \text{if } i < j, \\ \max_{i < k < j} \{s[i,k]+s[k+1,j]\}, & \text{if } i < j, \end{cases}$$

$$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not \in \Gamma, \\ s[i+1,j], & \text{if } i < j, \\ s[i,j-1], & \text{if } i < j, \\ \max_{i < k < j} \{s[i,k] + s[k+1,j]\}, & \text{if } i < j, \end{cases}$$

In order of increasing j - i

$$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not \in \Gamma, \\ s[i+1,j], & \text{if } i < j, \\ s[i,j-1], & \text{if } i < j, \\ \max_{i < k < j} \{s[i,k] + s[k+1,j]\}, & \text{if } i < j, \end{cases}$$

In order of increasing j - i

$$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not \in \Gamma, \\ s[i+1,j], & \text{if } i < j, \\ s[i,j-1], & \text{if } i < j, \\ \max_{i < k < j} \{s[i,k] + s[k+1,j]\}, & \text{if } i < j, \end{cases}$$

In order of increasing j - i

	1				j				n	
	G	G	G	A	A	A	U	С	С	
G	0									
G	0	0								
G	0	0	0							
A	0	0	0	0						
A	0	0	0	0	0					
Α	0	0	0	0	0	0				
U	0	0	0	0	0	0	0			
С	0	0	0	0	0	0	0	0		
С	0	0	0	0	0	0	0	0	0	
	G A A U C	G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G G G G G G G G G G G G G G G G G G G	G G G G G G G G G G G G G G G G G G G	G G G A G 0 G 0 0 A 0 0 0 0 A 0 0 0 0 A 0 0 0 0 U 0 0 0 0 C 0 0 0 0	G G G A A G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G G G A A A G 0 0 - - - - G 0 0 0 - - - - A 0 0 0 0 0 - - - - A 0 0 0 0 0 0 0 0 U 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0	G G G A A A U G 0 0 - - - - G 0 0 0 - - - - A 0 0 0 0 0 - - - A 0 0 0 0 0 0 - - - U 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0	G G G A A A U C G O O O O O O O O O O O O O O O O O O O	G G G A A A U C C G O O O O O O O O O O O O O O O O

$$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \text{ (1)} \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not\in \Gamma, \text{ (1*)} \\ s[i+1,j], & \text{if } i < j, & \text{(2)} \\ s[i,j-1], & \text{if } i < j, & \text{(3)} \\ \max_{i < k < j} \{s[i,k]+s[k+1,j]\}, & \text{if } i < j, & \text{(4)} \end{cases}$$

		1				j				n	
		G	G	G	A	A	A	U	С	С	
1	G	0	0								
	G	0	0	0							
	G	0	0	0	0						
	A	0	0	0	0	0					
i	A	0	0	0	0	0	0				
	A	0	0	0	0	0	0	1			
	U	0	0	0	0	0	0	0	0		
	С	0	0	0	0	0	0	0	0	0	
n	С	0	0	0	0	0	0	0	0	0	

$$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \text{ (1)} \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not\in \Gamma, \text{ (1*)} \\ s[i+1,j], & \text{if } i < j, & \text{(2)} \\ s[i,j-1], & \text{if } i < j, & \text{(3)} \\ \max_{i < k < j} \{s[i,k]+s[k+1,j]\}, & \text{if } i < j, & \text{(4)} \end{cases}$$

		1				J				Ш	
		G	G	G	A	A	A	U	С	С	
1	G	0	0	0							
	G	0	0	0	0						
	G	0	0	0	0	0					
	A	0	0	0	0	0	0				
i	A	0	0	0	0	0	0	1			
	A	0	0	0	0	0	0	1	1		
	U	0	0	0	0	0	0	0	0	0	
	С	0	0	0	0	0	0	0	0	0	
n	С	0	0	0	0	0	0	0	0	0	

$$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \text{ (1)} \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not\in \Gamma, \text{ (1*)} \\ s[i+1,j], & \text{if } i < j, & \text{(2)} \\ s[i,j-1], & \text{if } i < j, & \text{(3)} \\ \max_{i < k < j} \{s[i,k]+s[k+1,j]\}, & \text{if } i < j, & \text{(4)} \end{cases}$$

		1				j				n	
		G	G	G	A	A	A	U	С	С	
1	G	0	0	0	0						
	G	0	0	0	0	0					
	G	0	0	0	0	0	0				
	A	0	0	0	0	0	0	1			
i	A	0	0	0	0	0	0	1	1		
	A	0	0	0	0	0	0	1	1	1	
	U	0	0	0	0	0	0	0	0	0	
	С	0	0	0	0	0	0	0	0	0	
n	С	0	0	0	0	0	0	0	0	0	

$$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \text{ (1)} \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not\in \Gamma, \text{ (1*)} \\ s[i+1,j], & \text{if } i < j, & \text{(2)} \\ s[i,j-1], & \text{if } i < j, & \text{(3)} \\ \max_{i < k < j} \{s[i,k]+s[k+1,j]\}, & \text{if } i < j, & \text{(4)} \end{cases}$$

		1				j				n	
		G	G	G	A	A	A	U	С	С	
1	G	0	0	0	0	0	0	1	2	3	
	G	0	0	0	0	0	0	1	2	3	
	G	0	0	0	0	0	0	1	2	2	
	Α	0	0	0	0	0	0	1	1	1	
i	Α	0	0	0	0	0	0	1	1	1	
	Α	0	0	0	0	0	0	1	1	1	
	U	0	0	0	0	0	0	0	0	0	
	С	0	0	0	0	0	0	0	0	0	
n	С	0	0	0	0	0	0	0	0	0	

$$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \text{ (1)} \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not\in \Gamma, \text{ (1*)} \\ s[i+1,j], & \text{if } i < j, & \text{(2)} \\ s[i,j-1], & \text{if } i < j, & \text{(3)} \\ \max_{i < k < j} \{s[i,k]+s[k+1,j]\}, & \text{if } i < j, & \text{(4)} \end{cases}$$

		1				j				n
		G	G	G	A	A	A	U	С	С
1	G	0	0	0	0	0	0	1	2	3
	G	0	0	0	0	0	0	1	2	3
	G	0	0	0	0	0	0	1	2	2
	A	0	0	0	0	0	0	1	1	1
i	A	0	0	0	0	0	0	1	1	1
	A	0	0	0	0	0	0	1	1	1
	U	0	0	0	0	0	0	0	0	0
	С	0	0	0	0	0	0	0	0	0
n	С	0	0	0	0	0	0	0	0	0

Nussinov Algorithm – Example With Bifurcation

	1			j				n
	G	С	A	С	G	A	С	G
G	0	1	1	1	2	2	2	3
С	0	0	0	0	1	1	1	2
A	0	0	0	0	1	1	1	2
С	0	0	0	0	1	1	1	2
G	0	0	0	0	0	0	1	1
A	0	0	0	0	0	0	0	1
G	0	0	0	0	0	0	0	1
С	0	0	0	0	0	0	0	0

Where did we come from to get here?

$$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \text{ (1)} \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not\in \Gamma, \text{ (1*)} \\ s[i+1,j], & \text{if } i < j, & \text{(2)} \\ s[i,j-1], & \text{if } i < j, & \text{(3)} \\ \max_{i < k < j} \{s[i,k]+s[k+1,j]\}, & \text{if } i < j, & \text{(4)} \end{cases}$$

n

Nussinov Algorithm – Example With Bifurcation

$$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \text{ (1)} \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not\in \Gamma, \text{ (1*)} \\ s[i+1,j], & \text{if } i < j, & \text{(2)} \\ s[i,j-1], & \text{if } i < j, & \text{(3)} \\ \max_{i < k < j} \{s[i,k] + s[k+1,j]\}, & \text{if } i < j, & \text{(4)} \end{cases}$$

GCACGACG
().((.))

Nussinov Algorithm – Alternative Solutions

	G	G	G	A	A	A	U	С	C
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	2
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
U	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

Does this make sense?

Sharp loops are not preferred

Hairpin Loops with Minimum Length

$$s[i,j] = \max \begin{cases} 0, & \text{if } i + \ell \ge j, \\ s[i+1,j-1] + 1, & \text{if } i + \ell < j, \\ s[i+1,j-1], & \text{if } i + \ell < j, \\ s[i+1,j], & \text{if } i + \ell < j, \\ s[i,j-1], & \text{if } i + \ell < j, \\ \max_{i+\ell < k < j} \{s[i,k] + s[k+1,j]\}, & \text{if } i + \ell < j, \\ \max_{i+\ell < k < j} \{s[i,k] + s[k+1,j]\}, & \text{if } i + \ell < j, \end{cases}$$
(1)

A typical value of minimum loop length is 4

Time and space complexity

$$s[i,j] = \max \begin{cases} 0, & \text{if } i \geq j, \\ s[i+1,j-1]+1, & \text{if } i < j \text{ and } (v_i,v_j) \in \Gamma, \\ s[i+1,j-1], & \text{if } i < j \text{ and } (v_i,v_j) \not \in \Gamma, \\ s[i+1,j], & \text{if } i < j, \\ s[i,j-1], & \text{if } i < j, \\ \max_{i < k < j} \{s[i,k]+s[k+1,j]\}, & \text{if } i < j, \end{cases}$$

- We have a subproblem for every interval (i,j)
- How many subproblems are there?

$$\binom{n}{2} = O(n^2)$$

- Each takes O(n) time to solve
 - have to search over all possible choices of *k*
- Total running time is $O(n^3)$
- Space complexity $O(n^2)$

RNA Secondary Structure Prediction in Practice

Rather than maximize number of compl. base pairs, minimize free energy (FE)

Zuker's algorithm: Dynamic programming w/ three matrices similar to affine gap penalties

- V(i,j): FE of optimal structure of s[i..j] assuming i,j form a base pair
- VBI(i,j): FE of optimal structure of s[i..j] assuming i,j closes a bulge or internal loop
- VM(i,j): FE of optimal structure of s[i..j] assuming i,j closes a multibranch loop

FE minimization with pseudoknots is NP-hard [Lyngso and Pedersen, RECOMB 2000]

Summary

- RNA is a sequence of four bases/nucleotides {A, U, C, G}
- RNA folds into structures due to base/nucleotide complementarity
 - A <--> U and C <--> G
- RNA secondary structure is defined by a set of non-overlapping complementary nucleotide pairs
- RNA folding rules:
 - If two bases are closer than 4 bases apart, they cannot pair (no sharp turns)
 - Each base is matched to at most one other base
 - The allowable pairs are {U, A} and {C, G}
 - Pairs cannot "cross."
- Nussinov Algorithm: Dynamic programming to find pseudoknot-free structure with maximum number of complementary nucleotide pairs