Effect size

Is the difference that I measure important/practically relevant?

1-sample *t*-test

Statistical & practical significance

Statistical significance:

Is the difference between sample average and the reference value convincing? I.e., is the difference (much) larger than the error in this difference?

Significant if:
$$\left| t = \frac{\bar{y} - \mu}{s_{\bar{y}}} \right| > t_{\text{crit.2}}$$

Practical significance:

Is the difference between sample average and the reference value important? I.e., is the difference (much) larger than the noise in the data? Practical significance = effect size: Cohen's $d_s=\frac{\bar{y}-\mu}{s}$

Effect size: Cohen's d

The effect size for a t-test is usually expressed as the value of Cohen's d:

Jacob Cohen

$$d_{S} = \frac{\bar{y} - \mu}{S}$$

- Cohen's d measures the difference $\bar{y} \mu$ in "units" of the noise = standard deviation s
- Cohen's d is dimensionless, \pm independent from n!
- What is a "large" difference, what is "small"? Depends on the context, but general guidelines*:

Value Cohen's $d_{\scriptscriptstyle S}$	Interpretation
0.2	Small difference
0.5	Medium difference
0.8	Large difference

^{*)} Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.

Effect size: Cohen's d

Cohen's
$$d$$
: $d_s = \frac{y - \mu}{s}$

Calculation:

$$d_S = \frac{(\bar{y} - \mu)}{S} = \frac{t}{\sqrt{n}}$$

because

$$t = \frac{(\bar{y} - \mu)}{s/\sqrt{n}} = \frac{(\bar{y} - \mu)}{s} \cdot \sqrt{n} = d_s \cdot \sqrt{n}$$

Effect size: Cohen's d

Cohen's
$$d$$
: $d_s = \frac{\bar{y} - \mu}{s}$

Example: $\bar{y} = 3.50$, s = 0.50

Effectsterkte: Cohen's d

Cohen's
$$d$$
: $d_S = \frac{\bar{y} - \mu}{S}$

Example: $\bar{y} = 3.50$, s = 0.50, $\mu = 3.25$

n=2 data

n=20 data

$n = 5 \, \text{data}$

$n = 100 \, \mathrm{data}$

Nr. of measurements n & effect size

- To have a "small" difference significant, you need a large number of measurements...
- To have a "large" difference significant, you need less measurements...
- We have $t=d_S\cdot \sqrt{n}$, so $t_{\text{crit.2}}=d_S\cdot \sqrt{n}$, so $t_{\text{crit.2}}=d_S \cdot \sqrt{n}$, so $t_{\text{crit.2}}=d_S \cdot \sqrt{n}$, so

Value Cohen's $\mid d_{\scriptscriptstyle S} \mid$	Interpretation	Minimum n to get significant difference
0.2	Small difference	99
0.5	Medium difference	18
0.8	Large difference	9

Welch *t*-test

Statistical & practical significance

Statistical significance:

Is the difference between sample average and the reference value convincing? I.e. is the difference (much) larger than the error in this difference?

Significant if:
$$\left| t = \frac{\bar{y} - \mu}{s_{\bar{y}}} \right| > t_{\text{crit.2}}$$

Practical significance:

Is the difference between sample average and the reference value important? I.e. is the difference (much) larger than the noise in the data? Practical significance = effect size: Cohen's $d_{\rm av} = \frac{\bar{y}_1 - \bar{y}_2}{s_n}$

Effect size: Cohen's d_{av}

The effect size for a t-test is usually expressed as the value of Cohen's d:

Jacob Cohen

$$d_{\text{av}} = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$$

- Cohen's d measures the difference $\bar{y} \mu$ in "units" of the noise = average standard deviation s_p
- Cohen's d is dimensionless, \pm independent from n!
- What is a "large" difference, what is "small"? Depends on the context, but general guidelines*:

Value Cohen's $d_{ m av}$	Interpretation	
0.2	Small difference	
0.5	Medium difference	
0.8	Large difference	

^{*)} Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.

Effect size: Cohen's d_{av}

Cohen's d: $d_{av} = \frac{y_1 - y_2}{s_p}$

Calculation:

$$d_{\text{av}} = \frac{\bar{y}_1 - \bar{y}_2}{s_p} = t \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

because

$$t = \frac{(\bar{y}_1 - \bar{y}_2)}{s_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{(\bar{y}_1 - \bar{y}_2)}{s_p} \cdot \frac{1}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = d_{av} \cdot \frac{1}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Effect size: Cohen's d_{av}

Cohen's
$$d: d_{av} = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$$

Example: $\bar{y}_1 = 3.50$, $s_p = 0.50$

Effect size: Cohen's $d_{\rm av}$

Cohen's
$$d: d_{av} = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$$

Example: $\bar{y}_1 = 3.50$, $\bar{y}_2 = 3.25$, $s_p = 0.50$

5.0

Mean, \bar{y}

^{*} Per dataset n, in total 2n data points

Nr. of measurements n & effect size

- To have a "small" difference significant, you need a large number of measurements...
- To have a "large" difference significant, you need less measurements...
- We have $t=d_{\rm av}/\sqrt{\frac{1}{n}+\frac{1}{n}}$, so $t_{\rm crit.2}=d_{\rm av}\cdot\sqrt{n/2}$, so $t_{\rm crit.2}=d_{\rm av}*{\rm sqrt}(n/2)$

Value Cohen's $d_{ m av}$	Interpretation	Minimum n per set to get significant difference
0.2	Small difference	194
0.5	Medium difference	32
0.8	Large difference	14

1-sample z-test

1-sample z-test: effect size

• Cramér's V^2 (cf. \mathbb{R}^2 at regression):

$$V^2 = \frac{\chi^2}{N} = \frac{z^2}{N}$$

Harald Cramér

Interpretation*:

Value Cramer's V^2 :	Interpretation
0.00	No difference w.r.t. expected
0.01	Small difference w.r.t. expected
0.09	Medium difference w.r.t. expected
0.25	Large difference w.r.t. expected
1.00	Maximum difference w.r.t. expected

1-sample z-test: effect size

V² measures strengthdeviation from expected

 π_i : expected

 p_i : observed

Levels factor A

p.i