

Innovation Fund Denmark

Leading edge erosion defect forecasting and its coupling to wind farm control

Jens Visbech Madsen¹, Tuhfe Göçmen¹, Charlotte Bay Hasager¹, Ásta Hannesdóttir¹, Jakob IIsted Bech¹, Andrea Hahmann¹, Morten Handberg², Andreas Espersen², Hristo Shkalov², Kristian Pagh Nielsen³, and Pierre-Elouan Réthoré¹

- ¹ DTU Wind Energy
- ² Wind Power Lab
- ³ Danish Meteorological Institute

Acknowledgements: Funding Innovation Fund Denmark grant 9067-00008B for the Blade Defect Forecasting project (Dec. 2019- March 2022).

Presentation outline

- Introduction to the Blade Defect Forecasting (BDF) project
- Data (weather and blade inspections)
- Modelling
- Results
- Perspective to wind farm control

Introduction to BDF

Motivation:

- Unplanned blade repairs account for a major added operational expense
- Wind turbine blade maintenance plans are typically based on assumptions
- There is a need for site-specific blade maintenance planning for:
 - 1. Already operating wind farms
 - 2. New sites

Objectives:

- Develop a blade defect forecasting tool that can be used to estimate the expected defects based on environmental parameters
- Identify inter-relations between blade degradation and environmental conditions
- Establish a comprehensive environmental parameter database for Northern Europe based on mesoscale weather data

Modelling problem

Proposed modelling workflow

Weather data

- Provided by DMI's NWP model HARMONIE
- 106 sites located in Northern Europe
- Mesoscale data with:
 - Horizontal resolution: 2.5 km
 - Temporal resolution: hourly
- Data format:
 - Accumulated hourly surface fields (e.g., precipitation)
 - Model level fields (e.g., wind speed, wind direction, TKE)
- Rain impingement how much rain has hit the tip of the blade

Blade inspections

- 12 inspections on 7 different wind farms in Northern Europe
- Inspections are performed manually, ground- or drone-based
- 678 blades inspected with more than 14,000 defects observed on the leading edge
- Defects are categorized by defect type and severity
- Sequences of weather data with blade inspections gives us damage states at the start and end of each sequence → 18 samples in total

2009	2010	20	2011		2012 2013		13	2014		2015		2016		2017		2018		2019		2020	
Wind farm 1																					
Wind farm 2																					
		_	_																		
					Ш				<u> </u>	<u> </u>	<u> </u>	L	L	L	<u> </u>						
Wind farm 3																					
																	<u> </u>				
Wind farm 4																					
		+	-																		
Wind farm 5																					
\vdash		+-	+	_																_	
		+	+	\vdash																	
		+	 	\vdash																	
Wind farm 6																					
\vdash		_	_	<u> </u>										<u> </u>							
				L	L			L	<u> </u>		<u> </u>	L	L	L	L		L	L			
								N	/ind	farm	7										

Defect encoding to damage state

Problem: We need to encode a full wind farm inspection into a numerical value that can be used for modelling

Solution:

- 1. Assigning weights to each defect category that reflects the urgency for repair
- 2. Per inspection \rightarrow per blade \rightarrow max defect

Output:

- 1. An encoded damage value per inspection that represents the state of the wind farm
- A joint distribution of defects (type and severity) that is conditioned by the encoded damage state

Ensemble modelling

Model architecture:

Inputs:

- impingement
- encoded damage state at start

Output:

encoded damage state

Hidden layers:

- two hidden layers with 10 neurons in each
- relu activation
- no regularization
- kernel initializers = RandomNormal($\mu = 0.5$, $\sigma = 0.5$)

10

bias initializers = Zeros()

Loss:

mean squared error

Model performance

11

Results – mapping tool

12

Future work

Short-term:

- More sites → better populated erosion map
- Decoding damage state back to expected distribution of defects
- How does input uncertainty propagate through the model?

Long-term:

- More inspections → better uncertainty quantification
- Implement the defect forecasting model into a wind farm control framework

14 December 2021 DTU Wind Energy LEE blade defect forecasting and control

13

Perspective to wind farm control

Concept of BDF tool for optimal LEE control:

Rotor speed curve → impingement model →

BDF tool

→ Expected damage state

Wind turbine:

- Design variables: Rotor speed curve and rain threshold
- Single WT control → not considering added effects on farm level

Wind farm:

- Design variables: Rotor speed curve(s!) and rain threshold(s!)
- Combined WT-specific control → wake effects, loads

Questions