CHECKPOINT 3

Projeto ETL - Dimensão Tempo | DBurger Parte I

Professor: Prof. Salvio Padlipskas

Turma: 2TSCPR

Grupo Insight Hunters:

- Diego Alves Moreira RM552603
- Guilherme Yuiti Matsushita Nakamura RM85355
- João Pedro de Souza Nunes RM: 554066

SÃO PAULO, 2025

Sumário

1)	INTRODUÇÃO	. 3
2)	PREPARAÇÃO DO AMBIENTE	. 3
3)	DESENVOLVIMENTO	. 6
a)) Criação do Data Factory e Conexões	. 6
b)) dataset do Storage Account e Containers	. 8
C)) Implementação do Dataflow	. 9

1) INTRODUÇÃO

Este trabalho tem como objetivo demonstrar a implementação de um *data warehouse* utilizando ferramentas da plataforma Azure, como *Storage Account*, *Azure SQL Server* e *Data Factory*. O processo inclui a criação de containers, configuração de bancos de dados, integração de dados via *dataflows* e geração de saídas em formato CSV e SQL. A estrutura segue as boas práticas de integração e transformação de dados para apoio à tomada de decisões.

2) PREPARAÇÃO DO AMBIENTE

Primeiro preparamos o ambiente foi necessário criar as ferramentas em cloud que utilizaríamos no Azure Data Factory

Storage Account

FIAP - FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA

Foi criado os dois containers

Enviando os dados de origem

FIAP - FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA

Criando SQL Server via Script

```
-- SCRIPT PARA CRIAÇÃO DO SQL SERVER E BANCO SQL

-- Cria o SGBD Azure SQL chamado sqlserver-kidelicia
az sql server create -l brazilsouth -g cp3-dw -n kidelicia -u admsql -p
db@FIAP25 --enable-public-network true

-- Cria o banco de dados chamado dburgerdbstage0
az sql db create -g cp3-dw -s kidelicia -n dburgerdbstage0 --service-
objective Basic --backup-storage-redundancy Local --zone-redundant false

-- Libera o acesso para qualquer endereço IP da rede (somente para testes
iniciais)
az sql server firewall-rule create -g cp3-dw -s kidelicia -n AllowAll --
start-ip-address 0.0.0.0 --end-ip-address 255.255.255

-- Usuário e senha do banco de dados
-- admsql
-- db@FIAP25
```


FIAP - FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA

Criando Data Factory

3) DESENVOLVIMENTO

a) Criação do Data Factory e Conexões

O *Data Factory* foi configurado para orquestrar os pipelines. A conexão com o *Storage Account* e o SQL Server garantiu a integração entre fontes de dados.

Em todos os passos habilitamos a virtualização para facilidade de ver os dados

Storage Account

SQL Server

b) dataset do Storage Account e Containers

Para armazenar os dados brutos, foi criado um Storage Account no Azure, contendo dois containers: um para dados de entrada (input) e outro para saída (output).

Dados de entrada (input):

calendario_2023_2024_2025.xlsx

FIAP - FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA

detalhes_feriado_2023_2024_2025.csv

Dados de saída (output):

C) Implementação do Dataflow

O dataflow foi construído em etapas:

FIAP - FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA

1. Junção (Left Join) das tabelas "calendario" e "feriados".

2. **Seleção e Transformação** de colunas, incluindo conversão de *dt_evento* para *timestamp*.

3. **Criação de Colunas Derivadas** para atender à estrutura da dimensão tempo.

4. Ordenação das colunas conforme padrão DIM TEMPO.

5. Saída para CSV e SQL Server.

A execução do pipeline validou o fluxo, confirmando a integridade dos dados.

FIAP - FACULDADE DE INFORMÁTICA E ADMINISTRAÇÃO PAULISTA

3. CONCLUSÃO

O projeto demonstrou a viabilidade de integrar ferramentas Azure para construção de um *data warehouse*. A automatização via *Data Factory* e a estruturação de *dataflows* otimizaram a transformação e carga de dados, atendendo aos requisitos de negócio. Para trabalhos futuros, recomenda-se a adição de camadas de segurança e monitoramento contínuo.