We claim:

1. A compound of formula I

10

5

15

25

35

45 R1 and

R2 cals R1 an

are each independently F or H or one of said radicals R1 and R2 may be OH;

R3 is OH or F, with the proviso that at least one of the radicals R1, R2 and R3 must be F;

R4 is OH;

A is O, NH, CH₂, S or a bond;

X is C, O, S or N, with the proviso that X is C when Y is O or S;

Y is N, O or S;

60

55

m is 1 or 2;

R5

is hydrogen, F, Cl, Br, I, OH, CF₃, NO₂, CN, COOH, CO(C₁-C₆)-alkyl, COO(C₁-C₆)-alkyl, CONH₂, CONH(C₁-C₆)-alkyl, CON[(C₁-C₆)-alkyl]₂, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₁-C₆)-alkoxy, HO-(C₁-C₆)-alkyl, (C₁-C₆)-alkyl-O-(C₁-C₆)-alkyl, phenyl, benzyl, (C₁-C₆)-alkoxycarboxyl,

10

5

ŗ.

۴.

wherein said $CO(C_1-C_6)$ -alkyl, $COO(C_1-C_6)$ -alkyl, $CONH(C_1-C_6)$ -alkyl, $CON[(C_1-C_6)$ -alkyl]_2, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_1-C_6) -alkyl, (C_1-C_6) -alkyl-O- (C_1-C_6) -alkyl and (C_1-C_6) -alkoxycarboxyl radicals are optionally substituted with one or more fluorine atoms,

15

 SO_2 -NH₂, SO_2 NH(C₁-C₆)-alkyl, SO_2 N[(C₁-C₆)-alkyl]₂, S-(C₁-C₆)-alkyl, S-(CH₂)₀-phenyl, SO-(CH₂)₀-phenyl, SO_2 -(CH₂)₀-phenyl, SO_2 -(CH₂)₀-phenyl,

20

wherein said $SO_2NH(C_1-C_6)$ -alkyl, $SO_2N[(C_1-C_6)$ -alkyl]₂, $S-(C_1-C_6)$ -alkyl, $SO-(C_1-C_6)$ -alkyl and $SO_2-(C_1-C_6)$ -alkyl radicals are optionally substituted with one or more fluorine atoms, and wherein the phenyl ring of said $S-(CH_2)_0$ -phenyl, $SO-(CH_2)_0$ -phenyl and $SO_2-(CH_2)_0$ -phenyl radicals is optionally mono- or disubstituted with F, Cl, Br, OH, CF₃, NO₂, CN, OCF₃, $O-(C_1-C_6)$ -alkyl, (C_1-C_6) -alkyl or NH₂, and wherein o is 0, 1, 2, 3, 4, 5, or 6,

25

NH₂, NH-(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl)₂, NH(C₁-C₇)-acyl, phenyl or O-(CH₂)₀-phenyl,

30

wherein the phenyl ring of said phenyl and O-(CH₂)₀-phenyl radicals is optionally mono-, di-, or trisubstituted with F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, (C₁-C₆)-alkyl, NH₂, NH(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl)₂, SO₂-CH₃, COOH, COO-(C₁-C₆)-alkyl or CONH₂, and wherein o is as hereinabove defined;

35

or, when Y is S, R5 and R6 taken together with the carbon atoms to which they are attached may form a phenyl ring;

is H, (C_1-C_6) -alkyl, (C_1-C_6) -alkenyl, (C_3-C_6) -cycloalkyl, or R6 phenyl wherein said phenyl radical is optionally substituted with halogen or (C₁-C₄)-alkyl; is (C₀-C₁₅)-alkanediyl, wherein one or more of the carbon 5 В said alkanediyl radical may be replaced, independently of one another, with -O-, -(C=O)-, -CH=CH-, -C = C -, -S -, -CH(OH) -, -CHF -, $-CF_2 -$, -(S - O) -, $-(SO_2) -$, $-N((C_1-C_6)-alkyl)-$, $-N((C_1-C_6)-alkyl-phenyl)-$ or -NH-; 10 is 0, 1, 2, 3 or 4; n is a 3-, 4-, 5-, 6- or 7-membered saturated, partially saturated or Cyc1 unsaturated ring, wherein one carbon atom of said ring may be 15 replaced by O, N or S; R7. R8. and R9 are each independently hydrogen, F, Cl, Br, I, OH, CF₃, NO_2 , CN, COOH, COO(C₁-C₆)-alkyl, CO(C₁-C₄)-alkyl, CONH₂, $CONH(C_1-C_6)$ -alkyl, $CON[(C_1-C_6)-alkyl]_2$ (C_1-C_6) -alkyl, 20 (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_1-C_8) -alkoxy, $HO-(C_1-C_6)$ alkyl, (C_1-C_6) -alkyl-O- (C_1-C_6) -alkyl, said $COO(C_1-C_6)$ -alkyl, $CO(C_1-C_4)$ -alkyl, wherein $CONH(C_1-C_6)$ -alkyl, $CON[(C_1-C_6)$ -alkyl]₂, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_1-C_8) -alkoxy, HO-25 (C_1-C_6) -alkyl and (C_1-C_6) -alkyl-O- (C_1-C_6) -alkyl radicals are optionally substituted with one or more fluorine atoms, SO₂-NH₂, $SO_2NH(C_1-C_6)$ -alkyl, $SO_2N[(C_1-C_6)-alkyl]_2$ $S-(C_1-C_6)$ -alkyl, $S-(CH_2)_0$ -phenyl, SCF_3 $SO-(C_1-C_6)$ -alkyl, 30 SO-(CH₂)₀-phenyl, SO₂-(C₁-C₆)-alkyl, SO₂-(CH₂)₀-phenyl, $SO_2NH(C_1-C_6)$ -alkyl, $SO_2N[(C_1-C_6)$ wherein said alkyl]₂, $S-(C_1-C_6)$ -alkyl, $SO-(C_1-C_6)$ -alkyl SO₂-(C₁-C₆)-alkyl radicals are optionally substituted with one or more fluorine atoms, and wherein the phenyl ring of said S-(CH₂)₀-phenyl, SO-(CH₂)₀-phenyl 35 and SO₂-(CH₂)₀-phenyl radicals is optionally mono- or

disubstituted with F, Cl, Br, OH, CF₃, NO₂, CN, OCF₃, O- (C_1-C_6) -alkyl, (C_1-C_6) -alkyl or NH₂, and wherein o is

as hereinabove defined, NH2, NH-(C1-C6)-alkyl, N((C1-C6)-alkyl)2, NH(C1-C7)-acyl,

phenyl or O-(CH₂)_o-phenyl,

wherein the phenyl ring of said phenyl and O-(CH₂)_o-phenyl radicals is optionally mono-, di-, or trisubstituted with F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, (C₁-C₈)-alkoxy, (C₁-C₆)-alkyl, NH₂, NH(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl)₂, SO₂-CH₃, COOH, COO-(C₁-C₆)-alkyl or CONH₂, and wherein o is as hereinabove defined;

10

5

ï

or R8 and R9 taken together with the carbon atoms to which they are attached form a 5-, 6- or 7- membered, saturated, partially saturated or completely unsaturated ring herein referred to as Cyc2,

15

wherein one or two carbon atom(s) in said Cyc2 ring are optionally replaced by N, O or S, and wherein said Cyc2 ring is optionally substituted with (C₁-C₆)-alkyl, (C₂-C₅)-alkynyl,

20

wherein said (C₁-C₆)-alkyl, (C₂-C₅)-alkenyl and (C₂-C₅)-alkynyl radicals are optionally substituted with F, Cl, OH, CF₃, NO₂, CN, COO(C₁-C₄)-alkyl, CONH₂, CONH(C₁-C₄)-alkyl or OCF₃, and wherein a -CH₂- group contained in said (C₁-C₆)-alkyl, (C₂-C₅)-alkenyl and (C₂-C₅)-alkynyl

radicals is optionally replaced by -O-;

25

and pharmaceutically acceptable salts thereof.

2. The compound of Claim 1 wherein:

30

R1 and R2 are each independently F or H or one of said radicals R1 and R2 may be OH, with the proviso that at least one of said radicals R1 and R2 is F;

35

R3 is OH;

R4

is OH;

Α is O or NH;

X is C. O or N, with the proviso that X is C when Y is S;

is N or S: 5 Υ

> is 1 or 2; m

is hydrogen, F, Cl, Br, I, OH, CF₃, NO₂, CN, COOH, R5 $CO(C_1-C_6)$ -alkyl, $COO(C_1-C_6)$ -alkyl, $CONH_2$, $CONH(C_1-C_6)$ -10 alkyl, $CON[(C_1-C_6)-alkyl]_2$, $(C_1-C_6)-alkyl$, $(C_2-C_6)-alkenyl$, (C_2-C_6) -alkynyl, (C_1-C_6) -alkoxy, $HO-(C_1-C_6)$ -alkyl, (C_1-C_6) -(C1-C6)benzyl or alkyl-O-(C₁-C₆)-alkyl, phenyl, alkoxycarboxyl,

> $CO(C_1-C_6)$ -alkyl, $COO(C_1-C_6)$ -alkyl, wherein said $CONH(C_1-C_6)$ -alkyl, $CON[(C_1-C_6)$ -alkyl]₂, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_1-C_6) -alkoxy, HO- (C_1-C_6) -alkyl, (C_1-C_6) -alkyl-O- (C_1-C_6) -alkyl, (C_1-C_6) alkoxycarboxyl and SO-(C1-C6)-alkyl radicals are optionally substituted with one or more fluorine atoms,

or when Y is S, R5 and R6 taken together with the carbon atoms to which they are attached may form a phenyl ring;

is H, (C₁-C₆)-alkyl, (C₁-C₆)-alkenyl, (C₃-C₆)-cycloalkyl, or phenyl 25 R6 wherein said phenyl radical is optionally substituted with halogen or (C₁-C₄)-alkyl;

is (C₀-C₁₅)-alkanediyl, wherein one or more of the carbon in said alkanediyl radical may be replaced, independently of one another, with -O-, -(C=O)-, -CH=CH-, $-C = C_{-}, -S_{-}, -CH(OH)_{-}, -CHF_{-}, -CF_{2-}, -(S=O)_{-}, -(SO_{2})_{-},$ $-N((C_1-C_6)-alkyl)-$, $-N((C_1-C_6)-alkyl-phenyl)-$ or -NH-;

is 0, 1, 2, 3 or 4; 35 n

> is a 3-, 4-, 5-, 6- or 7-membered saturated, partially saturated or Cyc1 unsaturated ring, wherein one carbon atom of said ring may be replaced by O or S;

15

ii.

4,

20

30

В

R7, R8, and R9 are each independently hydrogen, F, CI, Br, I, OH, CF₃, NO₂, CN, COOH, COO(C₁-C₆)-alkyl, CO(C₁-C₄)-alkyl, CONH₂, CONH(C₁-C₆)-alkyl, CON[(C₁-C₆)-alkyl]₂, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₁-C₈)-alkoxy, HO-(C₁-C₆)-alkyl, (C₁-C₆)-alkyl, CF₃ or SO-(C₁-C₆)-alkyl,

wherein said $COO(C_1-C_6)$ -alkyl, $CO(C_1-C_4)$ -alkyl, $CONH(C_1-C_6)$ -alkyl, $CON[(C_1-C_6)$ -alkyl]_2, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_1-C_8) -alkoxy, $HO-(C_1-C_6)$ -alkyl, (C_1-C_6) -alkyl- $O-(C_1-C_6)$ -alkyl, $S-(C_1-C_6)$ -alkyl and $SO-(C_1-C_6)$ -alkyl radicals are optionally substituted with one or more fluorine atoms,

or R8 and R9 taken together with the carbon atoms to which they are attached form a 5-, 6- or 7- membered, saturated, partially saturated or completely unsaturated ring herein referred to as Cyc2,

wherein one or two carbon atom(s) in said Cyc2 ring is optionally replaced by N, O or S, and wherein said Cyc2 ring is optionally substituted with (C_1-C_6) -alkyl, (C_2-C_5) -alkenyl or (C_2-C_5) -alkynyl,

wherein said (C_1 - C_6)-alkyl, (C_2 - C_5)-alkenyl and (C_2 - C_5)-alkynyl radicals are optionally substituted with F, Cl, OH, CF₃, NO₂, CN, COO(C_1 - C_4)-alkyl, CONH₂, CONH(C_1 - C_4)-alkyl or OCF₃, and wherein a –CH2- group contained in said (C_1 - C_6)-alkyl, (C_2 - C_5)-alkenyl and (C_2 - C_5)-alkynyl radicals is optionally replaced by –O-.

3. The compound of Claim 1 wherein the sugar residues are beta(β)-linked and the stereochemistry in the 2, 3 and 5 position of the sugar residue has the D-gluco configuration.

4. The compound of Claim 1 wherein:

R1 and R2 are each independently F or H or one of said radicals R1 and

15

10

5

5

i I

20

25

30

35

R2 may be OH,

with the proviso that at least one of said radicals R1 and R2 is F;

5 R3 is OH;

R4 is OH;

A is O;

10

20

ij

8

X is C, O or N, with the proviso that X is C when Y is S;

Y is N or S;

15 m is 1;

is hydrogen, F, Cl, CF₃, OCF₃, COO(C₁-C₄)-alkyl, (C₁-C₅)-alkyl, (C₂-C₄)-alkenyl, (C₂-C₄)-alkynyl, (C₁-C₄)-alkoxy, HO-(C₁-C₄)-alkyl, (C₁-C₄)-alkyl-O-(C₁-C₄)-alkyl, phenyl, benzyl, (C₁-C₄)-alkoxycarboxyl, OCH₂CF₃ or (C₁-C₄)-alkyl-CF₂-,

or when Y is S, R5 and R6 taken together with the carbon atoms to which they are attached may form a phenyl ring;

25 R6 is H, (C_1-C_6) -alkyl, (C_1-C_6) -alkenyl, (C_3-C_6) -cycloalkyl, or phenyl wherein said phenyl radical is optionally substituted with halogen or (C_1-C_4) -alkyl;

B is (C₁-C₄)-alkanediyl, wherein one carbon atom in said alkanediyl radical may be replaced with -O-, -(C=O)-, -CH(OH)-, -CHF-, -CF₂-, -CO-NH-;

n is 2 or 3;

35 Cyc1 is an unsaturated 5- or 6-membered ring, wherein one carbon atom of said ring may be replaced by O or S;

R7, R8, and R9 are each independently hydrogen, F, Cl, Br, I, OH, (C₁-C₄)-alkyl, OCH₂CF₃, (C₁-C₈)-alkoxy, HO-(C₁-C₆)-alkyl, (C₁-C₄)-

alkyl-O- (C_1-C_4) -alkyl, S- (C_1-C_4) -alkyl, SCF₃ or OCF₃,

or R8 and R9 taken together form the radicals –C=CH-O-,
-CH=CH-S- or –CH=CH-CH=CH- and, with the carbon atoms to
which they are attached, form an unsaturated or partially
saturated 5- or 6-membered ring, said ring being optionally
substituted by (C₁-C₄)-alkoxy or –O-(CH₂)_p-O- wherein p is 1 or
2.

10 5. The compound of Claim 1 wherein:

R1 and R2 are each independently F or H, with the proviso that at least one of said radicals R1 and R2 is F;

R3 is OH;

ï

ζ,

5

15

35

R4 is OH;

20 A is O;

X is C and Y is S, or is O and Y is N, or is N and Y is N;

25 m is 1;

R5 is hydrogen, CF₃, (C₁-C₆)-alkyl, or when Y is S, R5 and R6 taken together with the carbon atoms to which they are attached may form a phenyl ring,

R6 is H, (C_1-C_4) -alkyl or phenyl;

B is $-CH_2$ -, $-C2H_4$ -, $-C_3H_6$ -, -CO-NH-CH₂- or -CO-CH₂-CH₂-;

n is 2 or 3;

Cyc1 is an unsaturated 5- or 6-membered ring, wherein one carbon atom of said ring may be replaced by S;

R7, R8, and R9 are each independently hydrogen, F, Cl, Br, I, (C₁-C₆)-alkyl, (C₁-C₄)-alkoxy, S-(C₁-C₄)-alkyl, SCF3 or OCF3,

5

ç

J,

or R8 and R9 taken together form the radicals –C=CH-O-or –CH=CH-CH=CH- and, with the carbon atoms to which they are attached, form an unsaturated or partially saturated 5- or 6-membered ring, said ring being optionally substituted by (C1-C4)-alkoxy.

10

6. The compound of Claim 1 wherein:

R1 and R2 are each independently F or H,
with the proviso that at least one of said radicals R1 and R2 is F;

R3 is OH;

20 R4 is OH;

A is O;

X is C and Y is S, or 25 is N and Y is N;

m is 1;

R5 is hydrogen, CF₃, (C₁-C₆)-alkyl, or when Y is S, R5 and R6 30 taken together with the carbon atoms to which they are attached may form a phenyl ring,

R6 is H or (C_1-C_4) -alkyl;

35 B is $-CH_2$ - or -CO-NH- CH_2 -;

n is 2 or 3;

Cyc1 is phenyl or thiophene;

R7, R8, and R9 are each independently hydrogen or Cl,

7.

r T

10

20

25

or R8 and R9 taken together with the carbon atoms to which they are attached, form a furan ring or a phenyl ring optionally substituted with methoxy.

- 7. A pharmaceutical composition comprising a compound of Claim 1 and a pharmaceutically acceptable carrier.
- 8. A pharmaceutical composition comprising a compound of Claim 1 and one or more blood glucose-lowering active ingredients.
- 9. A method of treating type 1 or type 2 diabetes which comprises
 administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1.
 - 10. A method of lowering blood glucose which comprises administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1.
 - 11. A method of treating type 1 or type 2 diabetes which comprises administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1 with at least one other blood glucose-lowering active ingredient.
- 12. A method of lowering blood glucose which comprises administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1 with at least one other blood glucose-lowering
 30 active ingredient.