

Universidade do Minho

Controlo ótimo de um modelo de autoimunidade

Relatório de Desenvolvimento

André Neves da Costa (A95869) Bruno Miguel Fernandes Araújo (A97509)

Filipe José Silva Castro (A96156)

June 1, 2023

Contents

1		Populações de células		
	1.1	Atividade	3	
	1.2	Interações	3	
2	Modelo macroscópico para autoimunidade			
	2.1	Modelo microscópico para autoimunidade	3	
	2.2	Sistema de equações diferenciais	3	
	2.3	Resolução numérica	4	
	2.4	Gráficos	4	
3	Con	strolo ótimo de um modelo de autoimunidade	5	
	3.1	Sistema de equações diferenciais	Ę	
	3.2	Imunoterapia e controlo ótimo	5	
	3.3	Resolução Numérica	E	
	3 4		6	

1 Populações de células

1.1 Atividade

- ullet Auto-antigénios o Estimulam e ativam células T-autoreativas.
- Células T-autoreativas → Produzem Citoquinas IL-2 responsáveis pelo desencadear de uma cascata inflamatória autoimune.
- Células T-reguladoras e Killer e Killer → Suprimem a atividade e eliminam auto-antigénios e células T-autoreativas.
- Citoquinas IL-2 IL-2→ Estimulam a proliferação e a atividade das células T-reguladoras e Killer e Killer.

1.2 Interações

Ao existir interação entre,

- Auto-antigénios e T-autoreativas Haverá aumento na atividade e do número de células de ambas as populações.
- Auto-antigénios e T-reguladoras e Killer Leva à diminuição da atividade e do número de células dos auto-antigénios e ao aumento do número das células T-reguladoras e Killer.
- T-autoreativas e T-reguladoras e Killer Vai se verificar diminuição na atividade e número de células da população de células T-autoreativas.
- T-reguladoras e Killer e Citoquinas IL-2 Verifica-se aumento na atividade e número de células na população de células T-reguladoras e Killer.

2 Modelo macroscópico para autoimunidade

2.1 Modelo microscópico para autoimunidade

O estado interno do sistema biológico é descrito por um conjunto de funções de distribuição, $f_i(t, u)$, i = 1, 2, 3, 4, que dão o número de células da população p_i com atividade $u \in [0, 1]$ no tempo $t \ge 0$.

O número de células de uma população p_i num instante de tempo t > 0 é dado por

$$n_i(t) = \int_0^1 f_i(t, u) d_u$$

2.2 Sistema de equações diferenciais

O modelo macrocópico que descreve as interações entre as células é o seguinte,

$$A'(t) = p_{12}A(t)R(t) - d_{13}A(t)S(t) - d_{1}A(t)$$

$$R'(t) = p_{21}R(t)A(t) - d_{23}R(t)S(t) - d_{2}R(t)$$

$$S'(t) = p_{31}S(t)A(t) + p_{34}S(t)I(t) - d_{3}S(t)$$

$$I'(t) = -d_{4}I(t),$$

onde

$$A(t) = n_1(t), R(t) = n_2(t), S(t) = n_3(t), I(t) = n_4(t)$$

 $p_{ij} \to {\rm taxa}$ de proliferação das células da população p_i por interação com células da população p_j d $_{ij} \to {\rm taxa}$ de destruição das células da população p_i por interação com células da população p_j d $_i \to {\rm taxa}$ de morte natural das células da população p_i

2.3 Resolução numérica

Usamos **odeint** de scipy.integrate para resolver o sistema de equações e **pyplot** de matplotlib para criar os gráficos de evolução das variáveis do sistema.

Nestas simulações consideramos as seguintes taxas

$$p12 = 1$$
, $p21 = 19$, $p31 = 20$, $p34 = 0$, $d12 = 0.45$, $d23 = 0.01$, $d1 = 0.001$, $d2 = 0.001$, $d3 = 0.001$, $d4 = 0$

e valores iniciais

$$A(0) = R(0) = S(0) = 0.01.$$

2.4 Gráficos

3 Controlo ótimo de um modelo de autoimunidade

3.1 Sistema de equações diferenciais

Introduzindo uma função de controlo x(t) no sistema macroscópico de autoimunidade obtém-se

$$A'(t) = p_{12}A(t)R(t) - d_{13}A(t)S(t) - d_{1}A(t)$$

$$R'(t) = p_{21}R(t)A(t) - d_{23}R(t)S(t) - d_{2}R(t)$$

$$S'(t) = p_{31}S(t)A(t) + p_{34}S(t)I(t) - d_{3}S(t)$$

$$I'(t) = x(t) - d_{4}I(t),$$

onde x(t) representa uma fonte externa de Citoquinas IL-2 IL-2 injetada no corpo humano ao longo do tempo.

3.2 Imunoterapia e controlo ótimo

- A imunoterapia tem como objetivo controlar a proliferação de células da população R através da administração de IL-2.
- O objetivo do problema do controlo ótimo é reduzir o número de células R, minimizando em simultâneo a administração da injeção de IL-2.

De forma a resolver o problema do controlo ótimo define-se o funcional a minimizar como sendo

$$\int_0^{t_f} (\beta R(t) + \alpha x(t)) dt,$$

onde t_f é o instante de tempo em que o tratamento acaba, $\alpha, \beta > 0$ são os pesos constantes das células R e da administração de IL-2, respetivamente.

O termo $\beta R(t)$ representa o número de células R que são eliminadas ao longo do tempo e o termo $\alpha x(t)$ reflete o efeito negativo da administração de IL-2 no paciente.

O problema do controlo ótimo tem como objetivo determinar

$$0 \le x(t) \le 1\min \int_0^{t_f} (\beta R(t) + \alpha x(t)) dt$$

sujeito ao sistema macroscópico PC.

O problema do controlo ótimo pode ser descrito pelo seguinte sistema (na forma de Mayer)

$$0 \le x(t) \le 1\min Y(t_f)$$

$$A'(t) = p_{12}A(t)R(t) - d_{13}A(t)S(t) - d_{1}A(t)$$

$$R'(t) = p_{21}R(t)A(t) - d_{23}R(t)S(t) - d_{2}R(t)$$

$$S'(t) = p_{31}S(t)A(t) + p_{34}S(t)I(t) - d_{3}S(t)$$

$$I(t) = x(t) - d_{4}I(t)$$

$$Y'(t) = \beta R(t) + \alpha x(t)$$

3.3 Resolução Numérica

Usamos o **minimize** de scipy.optimize para calcular o $0 \le x(t) \le 1 \min Y(t_f)$ e se obter os valores de x que satisfazem o controlo ótimo, de resto usamos o mesmo método mencionado no caso sem imunoterapia. Nestas simulações consideramos as seguintes taxas

$$p12 = 1, p21 = 19, p31 = 20, p34 = 0, d12 = 0.45, d23 = 0.01,$$

 $d1 = 0.001, d2 = 0.001, d3 = 0.001, d4 = 0, \alpha = 1, \beta = 1$

e valores iniciais

$$A(0) = R(0) = S(0) = 0.01, I(0) = 0.001, Y(0) = 0$$

3.4 Gráficos

