Primitiivijuurista

Tässä lyhyessä koosteessa kerrotaan, että jokaiseen alkulukuun p > 2 liittyy ainakin yksi primitiivijuuri. Se on p:llä jaoton luku a, jolle kongruenssi $a^b \equiv 1 \mod p$ ei päde millään b . Asia ei ole aivan triviaali, mutta sen tunteminen näkyy olevan oletuksena joissakin matematiikkakilpailutehtävissä. – Seikkaperäisemmin tästä on esityksessä http://matematiikkakilpailut.fi/kirjallisuus/laajalukuteoriamoniste.pdf.

Kongruenssiyhtälön juurien lukumäärä

Olkoon p alkuluku ja

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \tag{1}$$

koknaislukukertoiminen n:nnen asteen polynomi sekä s.y.t. $(a_n, p) = 1$. Yhtälö $f(x) \equiv 0 \mod p$ on n:nnen asteen kongruenssiyhtälö. Osoitetaan induktiolla n:n suhteen, että tällaisella yhtälöllä on enintään n keskenään modulo p epäkongruenttia ratkaisua. Jos n = 1, asia on selvä. Jos $ax_1 + b \equiv 0 \mod p$ ja $ax_2 + b \equiv 0 \mod p$, niin $a(x_1 - x_2) \equiv 0 \mod p$, ja koska s.y.t.(a, p) = 1, niin $x_1 \equiv x_2 \mod p$. Oletetaan sitten, että väite on tosi astetta k < n oleville kongruenssiyhtälöille. Oletetaan, että f on niin kuin kaavassa f(x) ja että on f(x) epäkongruenttia lukua f(x) en f(x) ja koska toteuttavat kongruenssiyhtälön f(x) epäkongruenttia lukua f(x) silloin

$$q(x) = f(x) - a_n(x - x_1)(x - x_2) \cdots (x - x_n)$$

on astetta n-1 oleva polynomi, ja kongruenssiyhtälöllä $g(x) \equiv 0 \mod p$ on n keskenään epäkongruenttia ratkaisua. Induktio-oletuksen mukaan tämä on mahdollista vain, jos g(x):n korkeimmanasteisen termin kerroin on jaollinen p:llä. päättelyä jatkamalla tullaan siihen, että polynomin g(x) kaikki kertoimet ovat p:llä jaollisia, joten $g(x) \equiv 0 \mod p$ kaikilla x. Siis erityisesti $g(x_{n+1}) \equiv 0 \mod p$. Mutta koska myös $f(x_{n+1}) \equiv 0 \mod p$, on $a_n(x_{n+1}-x_1)(x_{n+1}-x_2)\cdots(x_{n+1}-x_n) \equiv 0 \mod p$. Tämä on mahdollista vain, jos jokin tulon tekijä on jaollinen p:llä eli $x_{n+1} \equiv x_j \mod p$ jollain j. Tämä on ristiriidassa luvuista x_j tehdyn epäkongruenttisuusoletuksen kanssa, joten induktioaskel on otettu ja väite todistettu.

Edellisestä tuloksesta seuraa, että kongruenssilla $x^n-1\equiv 0 \bmod p$ on enintään n keskenään epäkongruenttia ratkaisua.

Primitiivijuuren määritelmä

Eulerin funktio ϕ määritellään niin, että $\phi(m)$ on niiden kokonaislukujen $a, 1 \leq a \leq n-1$, lukumäärä, joille s.y.t.(a, m) = 1. Eulerin lause sanoo, että $a^{\phi(m)} \equiv 1 \mod m$ aina, kun s.y.t.(a, m) = 1.

Olkoon a>1 ja s.y.t.(a,m)=1. On olemassa lukuja γ , joille $a^{\gamma}\equiv 1 \mod m$. Yksi tällainen on $\phi(m)$, mutta pienempikin luku voi tulla kyseeseen. Esimerkiksi $2^3\equiv 1 \mod 7$. Pienin γ , jolle $a^{\gamma}\equiv 1 \mod m$ on a:n indeksi modulo m. Olkoon tämä pienin luku δ . Sanotaan, että a kuuluu eksponenttiin δ mod m.

Jos a kuuluu eksponenttiin δ mod m ja jos $0 \le p < q < \delta$, niin ei voi olla $a^p \equiv a^q \mod m$. Jos näin olisi, olisi $a^p(a^{q-p}-1) \equiv 0 \mod m$, ja koska s.y.t.(a, m) = 1, olisi $a^{q-p} \equiv 1 \mod m$, mikä olisi ristiriidassa δ :n minimiominaisuuden kanssa.

Jos $a^{\gamma} \equiv a^{\gamma'} \mod m$, niin $\gamma \equiv \gamma' \mod \delta$. Olkoon nimittäin $\gamma = q\delta + r$ ja $\gamma' = q'\delta + r'$, $0 \le r, r' < \delta$. Silloin $a^{\gamma} = \left(a^{\delta}\right)^q a^r \equiv a^r \mod m$ ja vastaavasti $a^{\gamma'} \equiv a^{r'} \mod m$. Edellisen kappaleen mukaan $a^r \equiv a^{r'} \mod m$ on mahdollinen vain, jos r = r' eli $\gamma - \gamma' \equiv 0 \mod m$. – Jos $\gamma \equiv \gamma' \mod \delta$, niin $\gamma = q\delta + r$ ja $\gamma' = q'\delta + r$, jolloin $a^{\gamma} = \left(a^{\delta}\right)^q a^r \equiv a^r \mod m$ ja samoin $a^{\gamma'} \equiv a^r \mod m$, joten $a^{\gamma} \equiv a^{\gamma'} \mod m$.

Erityisesti $a^{\gamma} \equiv 1$ jos ja vain jos $\delta | \gamma$. Täten jokaisella a se eksponentti, johon a kuuluu mod m, on luvun $\phi(m)$ tekijä.

Luvut, jotka kuuluvat eksponenttiin $\phi(m)$ mod m ovat primitiivijuuria modulo m. Jos p on alkuluku, niin $\phi(p) = p - 1$.

Primitiivijuuret modulo alkuluku

Oletetaan, että x kuuluu eksponenttiin $ab \mod m$. Silloin $x^{ab} \equiv 1 \mod m$. Tarkastellaan lukua x^a . Oletetaan, että x^a kuuluu eksponenttiin $\delta \mod m$. Silloin $x^{a\delta} \equiv 1 \mod m$. Yllä sanotuin nojalla $(ab)|(a\delta)$ joten $b|\delta$. Mutta koska $(x^a)^b \equiv 1 \mod m$, niin $\delta|b$. Siis onkin $\delta = b$. Oletuksesta, että x kuuluu eksponenttiin ab seuraa, että x^a kuuluu eksponenttiin b modulo m.

Olkoot a ja b kaksi lukua, joille s.y.t.(a, b) = 1. Kuulukoon x eksponenttiin a ja y eksponenttiin b modulo m. Tarkastellaan lukua xy. Oletetaan, että se kuuluu eksponenttiin δ mod m. Silloin $x^{\delta}y^{\delta} \equiv 1$ mod m ja edelleen $x^{b\delta}y^{b\delta} \equiv 1$ mod m. Mutta tästä seuraa, että $x^{b\delta} \equiv 1$ mod m ja edelleen, että $a|b\delta$. Koska (a, b) = 1, on oltava $a|\delta$. Samoin osoitetaan, että $b|\delta$. Jos kaksi yheistekijätöntä lukua ovat δ :n tekijöitä, niiden tulokin on: $ab|\delta$. Mutta toisaalta $(xy)^{ab} = (x^a)^b(y^b)^a \equiv 1$ mod m, joten $\delta|(ab)$. Siis $ab = \delta$. Tulo xy kuuluu siis eksponenttiin ab.

Olkoon nyt p>2 alkuluku. Luvut 1, 2, ..., p-1 kuuluvat jokainen johonkin eksponenttiin mod p. Olkoot $\delta_1,\,\delta_2,\,\ldots,\,\delta_r$ tällaiset eksponentit. Jokainen δ_j on luvun p-1 tekijä. Olkoon sitten τ näiden lukujen pienin yhteinen monikerta. Luvulla τ on kanoninen alkulukuhajotelma $\tau=q_1^{\alpha_1}q_2^{\alpha_2}\cdots q_k^{\alpha_k}$. Olkoon $1\leq s\leq k$. Jokin luvuista δ_j on jaollinen luvulla $q_s^{\alpha_s}$; olkoon se luku δ . Siis $\delta=aq_s^{\alpha_s}$. Jos x on luku, joka kuuluu eksponenttiin δ , niin aikaisemmin sanotun perusteella x^a kuuluu eksponenttiin $q_s^{\alpha_s}$. Merkitään lukua x^a x_s :llä. Sama pätee kaikille $s=1,\ldots,k$. Voidaan muodostaa luku $g=x_1x_2\cdots x_s$. Koska eri luvuilla x_s ei ole yhteisiä tekijöitä, g kuuluu eksponenttiin $q_1^{\alpha_1}\cdots q_k^{\alpha_k}=\tau$. Jokainen δ_j on τ :n tekijä. Jokaiselle luvuista $x=1,2,\ldots,p-1$ pätee $x^{\delta_j}\equiv 1$ mod p jollain δ_j . Mutta silloin jokaiselle tällaiselle x pätee $x^\tau\equiv 1$ mod p.

Astetta τ olevalla kongruenssilla on enintään τ eri ratkaisua. Siis $p-1 \leq \tau$. Mutta koska jokainen δ_j on p-1:n tekijä, on myös lukujen δ_i pienin yhteinen monikerta eli τ on p-1:n tekijä. Siis $\tau \leq p-1$, ja g on primitiivinen juuri mod p.