DERIVATIVES OF LOGARITHMIC FUNCTIONS

$$\frac{d}{dx} (\log_a x) = \frac{1}{x \ln a}$$

PROOF Let $y = log_a x$. Then $a^y = x$

Differentiating this equation implicitly with respect to x, we get

$$a^{y}(\ln a) \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{a^y \ln a} = \frac{1}{x \ln a}$$

If we put in [1], then the factor $\ln a$ on the right side becomes $\ln e$ = 1 and we get the formula for the derivative of the natural logarithmic function $\log_e x = \ln x$:

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

EXAMPLE

Differentiate $y = \ln(x^3 + 1)$.

SOLUTION

To use the Chain Rule, we let $u = x^3 + 1$. Then $y = \ln u$, so

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = \frac{1}{u}\frac{du}{dx} = \frac{1}{x^3 + 1}(3x^2) = \frac{3x^2}{x^3 + 1}$$

In general, if we combine [2] with the Chain Rule as in Example 1, we get

$$\frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx} \quad \text{or} \quad \frac{d}{dx}[\ln g(x)] = \frac{g'(x)}{g(x)}$$

EXAMPLE Find $\frac{d}{dx} \ln(\sin x)$.

SOLUTION Using [3], we have

$$\frac{d}{dx}\ln(\sin x) = \frac{1}{\sin x}\frac{d}{dx}(\sin x) = \frac{1}{\sin x}\cos x = \cot x$$

EXAMPLE Differentiate $f(x) = \log_{10}(2 + \sin x)$.

SOLUTION Using [1] with a = 10, we have

$$f'(x) = \frac{d}{dx} \log_{10}(2 + \sin x) = \frac{1}{(2 + \sin x) \ln 10} \frac{d}{dx} (2 + \sin x)$$

$$= \frac{\cos x}{(2 + \sin x) \ln 10}$$

EXAMPLE Find $\frac{d}{dx} \ln \frac{x+1}{\sqrt{x-2}}$.

SOLUTION 1

$$\frac{d}{dx} \ln \frac{x+1}{\sqrt{x-2}} = \frac{1}{\frac{x+1}{\sqrt{x-2}}} \frac{d}{dx} \frac{x+1}{\sqrt{x-2}}$$

$$= \frac{\sqrt{x-2}}{x+1} \frac{\sqrt{x-2} \cdot 1 - (x+1)(\frac{1}{2})(x-2)^{-1/2}}{x-2}$$

$$=\frac{x-2-\frac{1}{2}(x+1)}{(x+1)(x-2)}=\frac{x-5}{2(x+1)(x-2)}$$

SOLUTION 2 If we first simplify the given function using the laws of logarithms, then the differentiation becomes easier:

$$\frac{d}{dx} \ln \frac{x+1}{\sqrt{x-2}} = \frac{d}{dx} \left[\ln(x+1) - \frac{1}{2} \ln(x-2) \right]$$
$$= \frac{1}{x+1} - \frac{1}{2} \left(\frac{1}{x-2} \right)$$

EXAMPLE Find f'(x) if $f(x) = \ln |x|$.

SOLUTION Since
$$f(x) = \begin{cases} \ln x & \text{if } x > 0 \\ \ln(-x) & \text{if } x < 0 \end{cases}$$

it follows that
$$f'(x) = \begin{cases} \frac{1}{x} & \text{if } x > 0\\ \frac{1}{-x}(-1) = \frac{1}{x} & \text{if } x < 0 \end{cases}$$

Thus f'(x) = 1/x for all $x \neq 0$.

$$\frac{d}{dx} \ln|x| = \frac{1}{x}$$

LOGARITHMIC DIFFERENTIATION

The calculation of derivatives of complicated functions involving products, quotients, or powers can often be simplified by taking logarithms. The method used in the following example is called **logarithmic differentiation**.

EXAMPLE Differentiate
$$y = \frac{x^{3/4}\sqrt{x^2 + 1}}{(3x + 2)^5}$$
.

SOLUTION We take logarithms of both sides of the equation and use the Laws of Logarithms to simplify:

$$\ln y = \frac{3}{4} \ln x + \frac{1}{2} \ln(x^2 + 1) - 5 \ln(3x + 2)$$

Differentiating implicitly with respect to x gives

$$\frac{1}{y}\frac{dy}{dx} = \frac{3}{4} \cdot \frac{1}{x} + \frac{1}{2} \cdot \frac{2x}{x^2 + 1} - 5 \cdot \frac{3}{3x + 2}$$

Solving for dy/dx, we get

$$\frac{dy}{dx} = y \left(\frac{3}{4x} + \frac{x}{x^2 + 1} - \frac{15}{3x + 2} \right)$$

Because we have an explicit expression for *y*, we can substitute and write

$$\frac{dy}{dx} = \frac{x^{3/4}\sqrt{x^2+1}}{(3x+2)^5} \left(\frac{3}{4x} + \frac{x}{x^2+1} - \frac{15}{3x+2}\right)$$

STEPS IN LOGARITHMIC DIFFERENTIATION

- 1. Take natural logarithms of both sides of an equation y = f(x) and use the Laws of Logarithms to simplify.
- 2. Differentiate implicitly with respect to x.
- 3. Solve the resulting equation for y'.

If f(x) < 0 for some values of x, then $\ln f(x)$ is not defined, but we can write |y| = |f(x)| and use [4].

THE POWER RULE If *n* is any real number and $f(x) = x^n$, then

$$f'(x) = nx^{n-1}$$

PROOF

Let $y = x^n$ and use logarithmic differentiation

$$\ln|y| = \ln|x|^n = n \ln|x| \qquad x \neq 0$$

Therefore
$$\frac{y'}{y} = \frac{n}{x}$$

Hence
$$y' = n \frac{y}{x} = n \frac{x^n}{x} = nx^{n-1}$$

In general there are four cases for exponents and bases:

1.
$$\frac{d}{dx}(a^b) = 0$$
 (a and b are constants)

2.
$$\frac{d}{dx}[f(x)]^b = b[f(x)]^{b-1}f'(x)$$

3.
$$\frac{d}{dx}[a^{g(x)}] = a^{g(x)}(\ln a)g'(x)$$

4. To find $(d/dx)[f(x)]^{g(x)}$, logarithmic differentiation can be used

EXAMPLE Differentiate $y = x^{\sqrt{x}}$.

SOLUTION 1 Using logarithmic differentiation, we have

$$\ln y = \ln x^{\sqrt{x}} = \sqrt{x} \ln x$$

$$\frac{y'}{y} = \sqrt{x} \cdot \frac{1}{x} + (\ln x) \frac{1}{2\sqrt{x}}$$

$$y' = y \left(\frac{1}{\sqrt{x}} + \frac{\ln x}{2\sqrt{x}} \right) = x^{\sqrt{x}} \left(\frac{2 + \ln x}{2\sqrt{x}} \right)$$

SOLUTION 2 Another method is to write $x^{\sqrt{x}} = (e^{\ln x})^{\sqrt{x}}$:

$$\frac{d}{dx}(x^{\sqrt{x}}) = \frac{d}{dx}(e^{\sqrt{x}\ln x}) = e^{\sqrt{x}\ln x}\frac{d}{dx}(\sqrt{x}\ln x)$$

$$= x^{\sqrt{x}} \left(\frac{2 + \ln x}{2\sqrt{x}} \right)$$

THE NUMBER e AS A LIMIT

We have shown that if $f(x) = \ln x$, then f'(x) = 1/x. Thus f'(1) = 1. We now use this fact to express the number e as a limit.

From the definition of a derivative as a limit, we have

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$

$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln 1}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)$$

$$= \lim_{x \to 0} \ln(1 + x)^{1/x}$$

Because f'(1) = 1, we have $\lim_{x \to 0} \ln(1 + x)^{1/x} = 1$

$$e = e^1 = e^{\lim_{x \to 0} \ln(1+x)^{1/x}} = \lim_{x \to 0} e^{\ln(1+x)^{1/x}} = \lim_{x \to 0} (1+x)^{1/x}$$

[5]
$$e = \lim_{x \to 0} (1 + x)^{1/x}$$

If we put n = 1/x in [5], then $n \to \infty$ as $x \to 0^+$ and so an alternative expression for e is

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$