Metodi del Calcolo Scientifico

Risoluzione di sistemi lineari tramite il metodo di Cholesky

SILVA EDOARDO 816560 ZHIGUI BRYAN 816335 MARCHETTI DAVIDE 815990

 $A.A.\ 2019/2020$

Abstract

Lo scopo di questo progetto è di studiare l'implementazione del metodo di Choleski per la risoluzione sistemi lineari per matrici sparse, simmetriche e defite positive in ambienti di programmazione open source e di compararli con l'implementazione di MATLAB.

Il confronto avverrà in termini di tempo, accuratezza, impiego della memoria e anche facilità d'uso sia in ambiente Linux che Windows, eseguendo il codice su diverse matrici sparse derivate da problemi reali e raccolte nella SuiteSparse Matrix Collection.

1 Analisi dell'implementazione

1.1 MATLAB

Per la decomposizione di cholesky, MATLAB mette a disposizione il modulo **cholesky.matlab** contenente tutto il necessario. In particolare è stata utilizzata la funzione **chol**

Utilizzo

R = chol(A, [triangle]): Fattorizza la matrice A simmetrica definita positiva in una matrice triangolare superiore R tale che $A = R^{-1}R$. Il pa-

rametro triangle permette di scegliere se attuare la decomposizione in una matrice triangolare superiore (opzione di default) o traiangolare inferiore. In quest'ultimo caso, la matrice R risultante dall'equazione soddisferà l'uguaglianza $A=RR^{-1}$.

Manutenzione

La libreria è stata rilasciata per la prima volta nell'aggiornamento R2013a MATLAB. Attualmente, è ancora supportata e non presenta lacune o problemi che sono stati riscontrati durante il suo l'utilizzo.

Licenza

Essendo MATLAB un software closed-source, non è possibile accedere al codice sorgente del modulo.

1.2 Open-Source (C++)

Dopo un'attenta analisi e comparazione di diverse opzioni, l'implementazione in C++ è stata costruita utilizzando **Eigen**, libreria che si pone l'obiettivo di essere leggera ed offire supporto alle operazioni su vettori e matrici dense e sparse.

Utilizzo

Eigen::loadMarket(A, filename): Importa i valori di una matrice sparsa memorizzata in un file .mtx nella matrice fornita come primo argomento. Nel nostro programma, A è definita come Eigen::SparseMatrix<Type>.

Il modulo unsupported/Eigen/SparseExtra che contiene queste funzionalità è attualmente deprecato.

- Eigen::VectorXd::Ones(A.rows()): dichiara matrice di dimensioni fissate (prese dalle dimensioni della matrice A), package 'VectorXd' usato per le operazioni su matrici dinamiche di double.
- Eigen::SimplicialCholesky<SpMat> chol(A): Pacchetto creato per gestire matrici di grandi dimensioni con pochi elementi diversi da 0. Implementa uno schema di rappresentazione e gestione dei valori

diversi da 0 con uso di poca memoria e alte prestazioni. Il metodo $\operatorname{chol}(A)$ implementa la fattorizzazione di Cholesky della matrice A.

• Eigen::VectorXd x_ap = chol.solve(b): Applicazione del risolutore iterativo per risolvere la fattorizzazione.

1.2.1 Manutenzione

Eigen è in sviluppo attivo, tuttavia, alcuni moduli sono marcati come deprecati e non ne è garantito il loro pieno funzionamento. Un esempio di questi è il modulo MarketIO, che permette di effettuare operazioni di Input e Ouput con file in formato Matrix Market (.mtx).

1.2.2 Problemi

Durante lo sviluppo, l'utilizzo di una classe deprecata ha inizialmente rallentato lo sviluppo. Infatti, delle matrici importate tramite MarketIO veniva ignorato il fatto che fossero salvate come simmetriche o meno.

La soluzione a questo problema è stata messa in pratica modificando lo script matlab mmwrite di conversione per file .mat in .mtx e rigenerando le matrici a partire dai file .mat, assicurandosi che venissero salvati correttamente tutti gli elementi della matrice.

1.2.3 Licenza

Eigen è un software gratuito ed open-source rilasciato con licenza Mozilla Public License 2.0 (MPL2: simple weak copyleft license) dalla versione 3.1.1.

2 Specifiche hardware

3 Risultati

3.1 Windows

Tempo

Errore relativo

Memoria

3.2 Linux

Tempo

Errore relativo

Memoria

- 4 Conclusioni
- 5 Code