CS 2050 Homework 2

Hemen Shah Section B1 Grading TA: Akshay

January 22nd, 2014

$1.2 \ \#20$

A says The two of us are both knights.

- B says A is a knave.
- p: A is knight
- q: B is a knight

```
(p \to (p \land q)) \land (\neg p \to \neg(p \land q)) \land (q \to \neg p) \land (\neg q \to \neg \neg p)
                                                                                                                      given
(p \to (p \land q)) \land (\neg p \to (\neg p \lor \neg q)) \land (q \to \neg p) \land (\neg q \to \neg \neg p)
                                                                                                                  demorgans
  (p \to (p \land q)) \land (\neg p \to (\neg p \lor \neg q)) \land (q \to \neg p) \land (\neg q \to p)
                                                                                                              double negation
 (\neg p \lor (p \land q)) \land (\neg p \to (\neg p \lor \neg q)) \land (q \to \neg p) \land (\neg q \to p)
                                                                                                           material implication
 (\neg p \lor (p \land q)) \land (\neg \neg p \lor (\neg p \lor \neg q)) \land (q \to \neg p) \land (\neg q \to p)
                                                                                                           material implication
   (\neg p \lor (p \land q)) \land (p \lor (\neg p \lor \neg q)) \land (q \to \neg p) \land (\neg q \to p)
                                                                                                              double negation
                                                                                                           material implication
   (\neg p \lor (p \land q)) \land (p \lor (\neg p \lor \neg q)) \land (\neg q \lor \neg p) \land (\neg q \to p)
  (\neg p \lor (p \land q)) \land (p \lor (\neg p \lor \neg q)) \land (\neg q \lor \neg p) \land (\neg \neg q \lor p)
                                                                                                           material implication
    (\neg p \lor (p \land q)) \land (p \lor (\neg p \lor \neg q)) \land (\neg q \lor \neg p) \land (q \lor p)
                                                                                                              double negation
    (\neg p \lor (p \land q)) \land ((p \lor \neg p) \lor \neg q) \land (\neg q \lor \neg p) \land (q \lor p)
                                                                                                                  associative
          (\neg p \lor (p \land q)) \land (T \lor \neg q) \land (\neg q \lor \neg p) \land (q \lor p)
                                                                                                                 negation law
               (\neg p \lor (p \land q)) \land (T) \land (\neg q \lor \neg p) \land (q \lor p)
                                                                                                                  domination
                    (\neg p \lor (p \land q)) \land (\neg q \lor \neg p) \land (q \lor p)
                                                                                                                     identity
               ((\neg p \lor p) \land (\neg p \lor q)) \land (\neg q \lor \neg p) \land (q \lor p)
                                                                                                                  distributive
              ((p \lor \neg p) \land (\neg p \lor q)) \land (\neg q \lor \neg p) \land (q \lor p)
                                                                                                                 commutative
                   ((T) \land (\neg p \lor q)) \land (\neg q \lor \neg p) \land (q \lor p)
                                                                                                                  domination
                   ((\neg p \lor q) \land (T)) \land (\neg q \lor \neg p) \land (q \lor p)
                                                                                                                commutative
                         (\neg p \lor q) \land (\neg q \lor \neg p) \land (q \lor p)
                                                                                                                     identity
                         (\neg p \lor q) \land (\neg p \lor \neg q) \land (q \lor p)
                                                                                                                commutative
                              (\neg p \land (q \lor \neg q)) \land (q \lor p)
                                                                                                                 distributive
                                   (\neg p \land T) \land (q \lor p)
                                                                                                                 negation law
                                         \neg p \land (q \lor p)
                                                                                                                     identity
                                                                                                                  distributive
                                    (\neg p \land q) \lor (\neg p \land p)
                                   (\neg p \land q) \lor (p \land \neg p)
                                                                                                                 commutative
                                         (\neg p \land q) \lor F
                                                                                                                 negation law
                                                                                                                     identity
                                             \neg p \land q
```

LADBAP - A is knave B is knight

1.2 # 22

A says A is a knight B says B is a knight p: A is a knight q: B is a knight

```
(p \to p) \land (\neg p \to \neg p) \land (q \to q) \land (\neg q \to \neg q)
                                                                                               given
 (\neg p \lor p) \land (\neg p \to \neg p) \land (q \to q) \land (\neg q \to \neg q)
                                                                                  material implication
(\neg p \lor p) \land (\neg \neg p \lor \neg p) \land (q \to q) \land (\neg q \to \neg q)
                                                                                  material implication
(\neg p \lor p) \land (\neg \neg p \lor \neg p) \land (\neg q \lor q) \land (\neg q \to \neg q)
                                                                                  material implication
(\neg p \lor p) \land (\neg \neg p \lor \neg p) \land (\neg q \lor q) \land (\neg \neg q \lor \neg q)
                                                                                  material implication
  (\neg p \lor p) \land (p \lor \neg p) \land (\neg q \lor q) \land (\neg \neg q \lor \neg q)
                                                                                      double negation
     (\neg p \lor p) \land (p \lor \neg p) \land (\neg q \lor q) \land (q \lor \neg q)
                                                                                      double negation
     (p \lor \neg p) \land (p \lor \neg p) \land (\neg q \lor q) \land (q \lor \neg q)
                                                                                        commutative
     (p \vee \neg p) \wedge (p \vee \neg p) \wedge (q \vee \neg q) \wedge (q \vee \neg q)
                                                                                        commutative
          T \wedge (p \vee \neg p) \wedge (q \vee \neg q) \wedge (q \vee \neg q)
                                                                                        negation law
               T \wedge T \wedge (q \vee \neg q) \wedge (q \vee \neg q)
                                                                                        negation law
                     T \wedge T \wedge T \wedge (q \vee \neg q)
                                                                                        negation law
                          T \wedge T \wedge T \wedge T
                                                                                        negation law
                              T \wedge T \wedge T
                                                                                         idempotent
                                 T \wedge T
                                                                                         idempotent
                                     T
                                                                                         idempotent
```

LADBAP - We don't know anything about either of them. Their being a knight or a knave does not change the truth value

1.3 #4

a.						
p	q	r	$(p \lor q)$	$(p \lor q) \lor r$	$(q \vee r)$	$p \vee (q \vee r)$
T	Т	Т	Т	T	Τ	T
T	Т	F	Т	T	Т	T
T	F	Т	Т	T	Т	T
T	F	F	Т	Т	F	Т
F	Т	Т	Т	T	Т	T
F	Т	F	Т	T	Т	T
F	F	Т	F	T	Τ	T
F	F	F	F	F	F	F

The columns for $(p \lor q) \lor r$ and $p \lor (q \lor r)$ match exactly and so are equivalent

1.3 #8

- a. Kwame will take a job in industry or go to graduate school
- i: Kwame will take a job in industry
- g: Kwame will go to graduate school
- $\neg(i \lor g)$
- $\neg i \land \neg g$

Kwame will not take a job in industry and he will not go to graduate school

- b. Yoshiko knows Java and calculus
- j: Yoshiko knows Java
- c: Yoshiko knows calculus
- $\neg (j \land c)$
- $\neg j \lor \neg c$

Yoshiko does not know either Java or calculus or both.

- c. James is young and strong
- y: James is young
- s: James is strong
- $\neg(y \land s)$
- $\neg y \lor \neg s$

James is not young or not strong or not both

- d. Rita will move to Oregon or Washington
- o: Rita will move to Oregon

w: Rita will move to Washington

 $\neg(o \lor w)$

 $\neg o \land \neg w$

Rita will not move to Oregon and Washington

1.3 #10

Tautology by truth tables

[i]	\wedge	(p)	\rightarrow	a)	\rightarrow	a
11	, , ,	(1	,	91	· /	ч

	L ^z	\ 1	1/] 1		
	p	q	$p \rightarrow q$	$p \wedge (p \to q)$	$[p \land (p \to q)] \to q$
	Τ	Т	T	T	Т
	Т	F	F	F	Т
Ì	F	Т	Т	T	Т
Ì	F	F	Т	Τ	Т

 $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$

p	q	r	$(p \lor q)$	$(p \to r)$	$(q \rightarrow r)$	$(p \lor q) \land (p \to r)$	$(p \lor q) \land (p \to r) \land (q \to r)$	$[(p \lor q) \land (p \to r) \land (q \to r)] \to r$
T	T	Т	Т	Т	Т	T	Т	Т
T	T	F	Т	F	F	F	F	Т
T	F	Т	Т	Т	Т	T	Т	Т
T	F	F	Т	F	Т	F	F	Т
F	Т	Т	Т	Т	Т	T	T	Т
F	Т	F	Т	Т	F	T	F	T
F	F	Т	F	T	Т	F	F	Т
F	F	F	F	Т	Т	F	F	Т

$1.3 \ #12$

Prove tautology by logical equivalence

 $[p \land (p \to q)] \to q$

$[p \land (p \to q)] \to q$	
$[p \land (p \to q)] \to q$	given
$[p \land (\neg p \lor q)] \to q$	material implication
$\neg [p \land (\neg p \lor q)] \lor q$	material implication
$ [\neg p \lor \neg (\neg p \lor q)] \lor q $	demorgans
$ [\neg p \lor (\neg \neg p \land \neg q)] \lor q $	demorgans
$[\neg p \lor (p \land \neg q)] \lor q$	double negation
$ [(\neg p \lor p) \land (\neg p \lor \neg q)] \lor q $	distributive
$[(T) \land (\neg p \lor \neg q)] \lor q$	negation law
$[(\neg p \vee \neg q) \wedge T] \vee q$	commutative
$[\neg p \lor \neg q] \lor q$	identity
$\neg p \lor [\neg q \lor q]$	associative
$\neg p \lor T$	negation law
$\mid T$	domination

LADBAP - This thing even looks a little like an arrow looking down. That is how BA this P is. True means that this is a tautology

$$[(p\vee q)\wedge (p\to r)\wedge (q\to r)]\to r$$

```
[(p \lor q) \land (p \to r) \land (q \to r)] \to r
                                                                                         given
       [(p \lor q) \land (\neg p \lor r) \land (q \to r)] \to r
                                                                            material implication
       [(p \lor q) \land (\neg p \lor r) \land (\neg q \lor r)] \to r
                                                                             material implication
      \neg [(p \lor q) \land (\neg p \lor r) \land (\neg q \lor r)] \lor r
                                                                            material implication
    [\neg(p \lor q) \lor \neg(\neg p \lor r) \lor \neg(\neg q \lor r)] \lor r
                                                                                     demorgans
 [(\neg p \wedge \neg q) \vee (\neg \neg p \wedge \neg r) \vee \neg (\neg q \vee r)] \vee r
                                                                                     demorgans
[(\neg p \land \neg q) \lor (\neg \neg p \land \neg r) \lor (\neg \neg q \land \neg r)] \lor r
                                                                                     demorgans
  [(\neg p \land \neg q) \lor (p \land \neg r) \lor (\neg \neg q \land \neg r)] \lor r
                                                                                double negation
     [(\neg p \land \neg q) \lor (p \land \neg r) \lor (q \land \neg r)] \lor r
                                                                                double negation
     [(\neg p \land \neg q) \lor (\neg r \land p) \lor (q \land \neg r)] \lor r
                                                                                  commutative
     [(\neg p \land \neg q) \lor (\neg r \land p) \lor (\neg r \land q)] \lor r
                                                                                  commutative
         [(\neg p \land \neg q) \lor (\neg r \land (p \lor q))] \lor r
                                                                                    distributive
         r \vee [(\neg p \wedge \neg q) \vee (\neg r \wedge (p \vee q))]
                                                                                  commutative
         [r \lor (\neg p \land \neg q)] \lor (\neg r \land (p \lor q))
                                                                                     associative
        [r \lor (\neg p \land \neg q)] \lor \neg [r \lor \neg (p \lor q)]
                                                                                     demorgans
       [r \vee (\neg p \wedge \neg q)] \vee \neg [r \vee (\neg p \wedge \neg q)]
                                                                                     demorgans
                                                                                   negation law
```

LADBAP - in the second to last line the things in the brackets were the same. This allowed me to get a true using the negation law which means that the statement is tautologous.

1.3 #14

prove that $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$ is a tautology

```
(\neg p \land (p \rightarrow q)) \rightarrow \neg q
                                                     given
 (\neg p \land (\neg p \lor q)) \rightarrow \neg q
                                         material implication
 \neg(\neg p \land (\neg p \lor q)) \lor \neg q
                                         material implication
(\neg \neg p \lor \neg (\neg p \lor q)) \lor \neg q
                                                 demorgans
(\neg \neg p \lor (\neg \neg p \land q)) \lor \neg q
                                                 demorgans
  (p \lor (\neg \neg p \land q)) \lor \neg q
                                            double negation
    (p \lor (p \land q)) \lor \neg q
                                            double negation
((p \lor p) \land (p \lor q)) \lor \neg q
                                                distributive
   ((T) \land (p \lor q)) \lor \neg q
                                                idempotent
    ((p \lor q) \land T) \lor \neg q
                                               commutative
         (p \lor q) \lor \neg q
                                                   identity
         p \lor (q \lor \neg q)
                                                 associative
             p \vee T
                                                  negation
                                                domination
```

LADBAP - ended up with true so tautology

1.3 # 22

show that $(p \to q) \land (p \to r)$ and $p \to (q \land r)$ are logically equivalent

```
 \begin{array}{ll} (p \to q) \wedge (p \to r) & \text{given} \\ (\neg p \vee q) \wedge (p \to r) & \text{material implication} \\ (\neg p \vee q) \wedge (\neg p \vee r) & \text{material implication} \\ \neg p \vee (q \wedge r) & \text{distributive} \\ p \to (q \wedge r) & \text{material implication} \end{array}
```

LADBAP - the last statement matches the second statement in the question exactly so the two statements are logically equivalent

1.4 #6

Let N(x) be the statement x has visited North Dakota, where the domain consists of the students in your school.

- a. There exists a student who has visited North Carolina
- b. Every student has visited North Carolina.
- e. Not all students have visited North Carolina
- f. Every student has not visited North Carolina

1.4 #10

- a. $\exists x (C(x) \land D(x) \land F(x))$
- b. $\forall x (C(x) \lor D(x) \lor F(x))$
- c. $\exists x (C(x) \land \neg D(x) \land F(x))$
- d. $\forall x \neg (C(x) \land D(x) \land F(x))$
- e. $\exists x C(x) \land \exists x D(x) \land \exists x F(x)$

1.4 #32

a. $\forall dF(d) d \in \text{all dogs and } F(d)$: d has fleas

 $\neg(\forall dF(d))$

 $\exists d \neg F(d)$ using demorgans

There exists a dog that does not have fleas

b. $\exists h A(h) h \in \text{all horses and } A(h)$: h can add $\neg(\exists h A(h))$

 $\forall \hat{h} \neg A(\hat{h})$ using demorgans

All horses can not add

d. $\forall m \neg F(m)$ m
 \in monkeys and F(m): m can speak French

 $\neg(\forall m\neg F(m))$

 $\exists m \neg \neg F(m)$) using demorgans

 $\exists mF(m)$) using double negation

There exists a monkey that can speak french

1.4 #62

- a. $\forall x (P(x) \to \neg S(x))$
- b. $\forall x (R(x) \to S(x))$
- c. $\forall x(Q(x) \to P(x))$
- d. $\forall x(Q(x) \to \neg R(x))$

e.

- $\neg P \vee \neg S$ material implication from a
- $\neg R \lor S$ material implication from b
- $\neg Q \lor P$ material implication from c
- $\neg P \lor \neg R$ 1 and 2 resolution
- $\neg Q \lor \neg R$ 3 and 4 resolution

it matches the material implication from d - ($\neg Q \lor \neg R$) so it is a correct conclusion