CSE 15: Discrete Mathematics Fall 2021 Homework #3 Solution

Joshua Chin Lab 021-CSE 015 01L

October 15, 2021

1.	Question	1:	Rules	of	Inference

Convert:

If Jane does not fly, then she is not a bird. Jane is a bird.

 \therefore Jane flies.

Into argument form:

$$\frac{\neg q \to \neg p}{p}$$

2. Question 2: More Rules of Inference

For each of the following arguments, write w hich rule of inference is used.

(a) Bats can fly(p) and are mammals(q). Therefore bats are mammals(q).

$$\frac{p \wedge q}{\cdot a}$$

This is Simplification.

(b) Pigs are mammals(q) or birds(p). Pigs are not $birds(\neg p)$. Therefore pigs are mammals(q).

$$p \lor q$$

$$\frac{\neg p}{}$$

This is Disjunctive Syllogism.

(c) Jack is a cse major(p). Jack is a freshmen(q). Therefore Jack is a CSE major and a freshmen($p \land q$).

$$\frac{p}{q}$$

$$\therefore p \land q$$

This is Conjunction.

(d) Mary is a CSE major (p). Therefore Mary is a CSE major or Mary is a History major $(p \lor q)$.

$$\frac{p}{\therefore p \vee q}$$

This is Addition.

(e) If I go hiking, I will sweat a lot $(p \to q)$. If I sweat a lot, I will lose weight $(q \to r)$. Therefore, if I go hiking, I will lose weight $(p \to r)$.

$$\frac{p \to q}{q \to r}$$
$$\therefore p \to r$$

This is Hypothetical Syllogism.

3. Question 3: Checking arguments.

State whether the following arguments are correct or not with proof.

(a) If it is sunny, then I will go swimming. It is not sunny. Therefore I will not go swimming. Argument form:

$$p \to q$$

$$\frac{\neg p}{\therefore \neg q}$$

This argument is valid. p needs to be true in order for q to be true. Since p is not true, q cannot be true

(b) If it is Sunday, then I will go to the park. It is not sunday. Therefore I will not go to the park.

$$p \to q$$

$$\frac{\neg q}{\therefore \neg p}$$

This argument is invalid. p needs to be true only for q to be true. While q is not true, that does not mean p cannot be true.

(c) I will pass the class if and only if I score at least 6F percent on the final exam. I scored 55 percent on the final exam. Therefore, I will not pass the class.

$$p \leftrightarrow q$$

$$\frac{\neg q}{\because \neg p}$$

This argument is valid. Both p and q need eachother to be true. Since one is not true, the other cannot be true.

Question 4: Proof by Contraposition.

if n is an integer and n^2 is odd, then n is odd.

This is:

$$p \to q$$

The contrapositive of this is:

$$\neg p \rightarrow \neg q$$

This is the same thing as: if n is an integer and n^2 is even, then n is even. This is a true statement.

2

4. Question 5: Proof by Cases

Prove:
$$((pT \land p2 \land p3) \rightarrow q) < -> ((pT \rightarrow q) \land (p2 \rightarrow q) \land (p3 \rightarrow q))$$

pT	<i>p</i> 2	p3	q	$pT \rightarrow q$	$p2 \rightarrow q$	$p3 \rightarrow q$	$pT \wedge p2 \wedge p3 \to q$
F	F	F	F	Т	Т	Τ	F
F	F	F	Т	Т	Т	Τ	F
F	F	Т	F	Т	Т	F	F
F	F	Т	Т	Т	Т	Τ	F
F	Т	F	F	Т	F	Т	F
F	Т	F	Т	Т	Т	Т	F
F	Т	Т	F	Т	F	F	F
F	Т	Т	Т	Т	Т	Т	F
Т	F	F	F	F	Т	Т	F
Т	F	F	Т	Т	Т	Т	F
Т	F	Т	F	F	Т	F	F
Т	F	Т	Т	Т	Т	Т	F
Т	Т	F	F	F	F	Т	T
Т	Т	F	Т	T	Т	Τ	T
Т	Т	Т	F	F	F	F	F
Т	Т	Т	Τ	Т	Т	Т	Т

$(pT \to q) \land (p2 \to q) \land (p3 \to q)$	$((pT \land p2 \land p3) \to q) < -> ((pT \to q) \land (p2 \to q) \land (p3 \to q))$
T	T
T	T
T	T
F	T
F	T
F	T
F	T
F	T
F	T
T	T

Judging by the final column of the truth table, this is a tautology.