Curso: Procesamiento Electrónico de Potencia EJERCICIOS CON CIRCUITOS FERROMAGNÉTICOS EN C.D.

Ing. Sergio A. Morales Hernández

Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

I Semestre 2021

AGENDA

• EJERCICIOS

EJERCICIO 1: ENCONTRAR ϕ

• En la estructura tenemos una profundidad de núcleo de 10 cm, una bobina con N = 200 vueltas, $\mu_r = 2500$.

EJERCICIO 1: ENCONTRAR ϕ

- En la estructura tenemos una profundidad de núcleo de 10 cm, una bobina con N = 200 vueltas, $\mu_r = 2500$.
- Encuentre el flujo que se produce con una corriente I=1 A.

• Es evidente que se tienen 2 reluctancias, debido a que, tanto las longitudes medias como las áreas transversales, son diferentes.

- Es evidente que se tienen 2 reluctancias, debido a que, tanto las longitudes medias como las áreas transversales, son diferentes.
- En este caso, $\mathcal{R}_1 = 14324 \text{ Av/Wb}$ y $\mathcal{R}_2 = 27587 \text{ Av/Wb}$.

- Es evidente que se tienen 2 reluctancias, debido a que, tanto las longitudes medias como las áreas transversales, son diferentes.
- En este caso, $\mathcal{R}_1 = 14324 \text{ Av/Wb}$ y $\mathcal{R}_2 = 27587 \text{ Av/Wb}$.
- ullet La reluctancia total sería $\mathscr{R}_t = 41911~{
 m Av/Wb}.$

- Es evidente que se tienen 2 reluctancias, debido a que, tanto las longitudes medias como las áreas transversales, son diferentes.
- En este caso, $\mathcal{R}_1=14324~\text{Av/Wb}$ y $\mathcal{R}_2=27587~\text{Av/Wb}$.
- La reluctancia total sería $\mathcal{R}_t = 41911 \text{ Av/Wb}$.
- La fuerza magnetomotriz sería $\mathscr{F}=200$ Av.

- Es evidente que se tienen 2 reluctancias, debido a que, tanto las longitudes medias como las áreas transversales, son diferentes.
- En este caso, $\mathcal{R}_1 = 14324 \text{ Av/Wb y } \mathcal{R}_2 = 27587 \text{ Av/Wb.}$
- La reluctancia total sería $\mathcal{R}_t = 41911 \text{ Av/Wb}.$
- La fuerza magnetomotriz sería $\mathscr{F}=200$ Av.
- Y por último, $\phi = 4.77 mWb$.

EJERCICIO 2: ENCONTRAR ϕ

• En la estructura tenemos una profundidad de núcleo de 10 cm, una bobina con N=200 vueltas, y el material es *Carpenter 49*.

EJERCICIO 2: ENCONTRAR ϕ

- En la estructura tenemos una profundidad de núcleo de 10 cm, una bobina con N=200 vueltas, y el material es *Carpenter 49*.
- Encuentre el flujo que se produce con una corriente I=1 A.

EJERCICIO 3: ENCONTRAR /

• La estructura mostrada tiene un material ferromagnético denominado Carpenter 49, y es laminada, con un factor de 0,9. N=500 vueltas. ¿Qué corriente se necesita para establecer un flujo $\phi=9x10^{-4}$ Wb en el segmento cd?

El circuito equivalente sería:

• El factor de apilamiento reduce el área efectiva, así que al área real se le debe aplicar ese factor para tener el área efectiva.

- El factor de apilamiento reduce el área efectiva, así que al área real se le debe aplicar ese factor para tener el área efectiva.
- $A_{ef} = 0.9 * (0.0025) = 0.00225 m^2$

- El factor de apilamiento reduce el área efectiva, así que al área real se le debe aplicar ese factor para tener el área efectiva.
- $A_{ef} = 0.9 * (0.0025) = 0.00225 m^2$
- Las longitudes medias serían: $\ell_1=0.5m$, $\ell_2=0.15m$ y $\ell_3=0.5m$.

- El factor de apilamiento reduce el área efectiva, así que al área real se le debe aplicar ese factor para tener el área efectiva.
- $A_{ef} = 0.9 * (0.0025) = 0.00225 m^2$
- Las longitudes medias serían: $\ell_1=0.5m$, $\ell_2=0.15m$ y $\ell_3=0.5m$.
- También tenemos que $\mathscr{F} = NI = H_1\ell_1 + H_2\ell_2 = H_1\ell_1 + H_3\ell_3$.

- El factor de apilamiento reduce el área efectiva, así que al área real se le debe aplicar ese factor para tener el área efectiva.
- $A_{ef} = 0.9 * (0.0025) = 0.00225 m^2$
- Las longitudes medias serían: $\ell_1=0.5m$, $\ell_2=0.15m$ y $\ell_3=0.5m$.
- También tenemos que $\mathscr{F} = NI = H_1\ell_1 + H_2\ell_2 = H_1\ell_1 + H_3\ell_3$.
- Y $H_2\ell_2 = H_3\ell_3$ y $\phi_1 = \phi_2 + \phi_3$.

• Como el área efectiva es la misma en toda la estructura, tenemos que $B_1 = B_2 + B_3$.

- Como el área efectiva es la misma en toda la estructura, tenemos que $B_1 = B_2 + B_3$.
- El flujo conocido es ϕ_3 , así que calculamos $B_3 = 0.4Wb/m^2$

- Como el área efectiva es la misma en toda la estructura, tenemos que $B_1 = B_2 + B_3$.
- El flujo conocido es ϕ_3 , así que calculamos $B_3 = 0.4Wb/m^2$
- De la curva, $H_3 = 4.718 Av/m$.

- Como el área efectiva es la misma en toda la estructura, tenemos que $B_1 = B_2 + B_3$.
- El flujo conocido es ϕ_3 , así que calculamos $B_3 = 0.4Wb/m^2$
- De la curva, $H_3 = 4.718 Av/m$.
- La "caída de tensión sería": $H_3\ell_3=2,359Av$.

- Como el área efectiva es la misma en toda la estructura, tenemos que $B_1 = B_2 + B_3$.
- El flujo conocido es ϕ_3 , así que calculamos $B_3 = 0.4Wb/m^2$
- De la curva, $H_3 = 4.718 Av/m$.
- La "caída de tensión sería": $H_3\ell_3 = 2{,}359Av$.
- Como $H_2\ell_2 = H_3\ell_3 \Rightarrow H_2 = 15{,}73Av/m$.

- Como el área efectiva es la misma en toda la estructura, tenemos que $B_1 = B_2 + B_3$.
- El flujo conocido es ϕ_3 , así que calculamos $B_3 = 0.4Wb/m^2$
- De la curva, $H_3 = 4.718 Av/m$.
- La "caída de tensión sería": $H_3\ell_3=2,359Av$.
- Como $H_2\ell_2 = H_3\ell_3 \Rightarrow H_2 = 15{,}73Av/m$.
- De la curva, $B_2 = 0.966Wb/m^2$.

- Como el área efectiva es la misma en toda la estructura, tenemos que $B_1 = B_2 + B_3$.
- El flujo conocido es ϕ_3 , así que calculamos $B_3 = 0.4Wb/m^2$
- De la curva, $H_3 = 4.718 Av/m$.
- La "caída de tensión sería": $H_3\ell_3=2,359Av$.
- Como $H_2\ell_2 = H_3\ell_3 \Rightarrow H_2 = 15{,}73Av/m$.
- De la curva, $B_2 = 0.966Wb/m^2$.
- Debido a $B_1 = B_2 + B_3$, $B_1 = 1{,}366Wb/m^2$.

- Como el área efectiva es la misma en toda la estructura, tenemos que $B_1 = B_2 + B_3$.
- El flujo conocido es ϕ_3 , así que calculamos $B_3=0.4Wb/m^2$
- De la curva, $H_3 = 4.718 Av/m$.
- La "caída de tensión sería": $H_3\ell_3=2,359Av$.
- Como $H_2\ell_2 = H_3\ell_3 \Rightarrow H_2 = 15{,}73Av/m$.
- De la curva, $B_2 = 0.966Wb/m^2$.
- Debido a $B_1 = B_2 + B_3$, $B_1 = 1{,}366Wb/m^2$.
- De la curva, $H_1 = 386,06 Av/m$ y $H_1 \ell_1 = 193,03 Av$.

- Como el área efectiva es la misma en toda la estructura, tenemos que $B_1 = B_2 + B_3$.
- El flujo conocido es ϕ_3 , así que calculamos $B_3 = 0.4Wb/m^2$
- De la curva, $H_3 = 4.718 Av/m$.
- La "caída de tensión sería": $H_3\ell_3=2,359Av$.
- Como $H_2\ell_2 = H_3\ell_3 \Rightarrow H_2 = 15{,}73Av/m$.
- De la curva, $B_2 = 0.966Wb/m^2$.
- Debido a $B_1 = B_2 + B_3$, $B_1 = 1{,}366Wb/m^2$.
- De la curva, $H_1 = 386,06 Av/m$ y $H_1 \ell_1 = 193,03 Av$.
- $\mathscr{F} = NI = H_1\ell_1 + H_2\ell_2 = 195,389.$

- Como el área efectiva es la misma en toda la estructura, tenemos que $B_1 = B_2 + B_3$.
- El flujo conocido es ϕ_3 , así que calculamos $B_3 = 0.4Wb/m^2$
- De la curva, $H_3 = 4.718 Av/m$.
- La "caída de tensión sería": $H_3\ell_3 = 2,359Av$.
- Como $H_2\ell_2 = H_3\ell_3 \Rightarrow H_2 = 15.73 \text{Av/m}$.
- De la curva, $B_2 = 0.966Wb/m^2$.
- Debido a $B_1 = B_2 + B_3$, $B_1 = 1{,}366Wb/m^2$.
- De la curva, $H_1 = 386,06 Av/m$ y $H_1 \ell_1 = 193,03 Av$.
- $\bullet \ \mathscr{F} = NI = H_1 \ell_1 + H_2 \ell_2 = 195,389.$
- Y tenemos I = 0.39A.

