N₁ | Solides usuels

- D Définitions
- Un **solide** est un objet en relief. On ne peut pas le tracer en vraie grandeur sur une feuille de papier plane.
- Un **patron** permet de fabriquer le solide par pliage.
- La **perspective cavalière** permet de représenter le solide sur une feuille papier en donnant l'impression de la 3D.

D Solides usuels

Parallélépipède rectangle

 $V = largeur \times hauteur \times profondeur$

Le patron est composé de rectangles.

L'aire d'un rectangle est : $A = \text{Longueur} \times \text{largeur}$

Pyramides

 $\mathcal{V} = (\text{Aire de la base} \times \text{hauteur}) \div 3$

Le patron est composé d'un polygone et de triangles.

L'aire d'un triangle est : $A = (base \times hauteur) \div 2$

Cylindre de révolution

 $\mathcal{V} = \text{Aire de la base} \times \text{hauteur}$

Le patron est composé d'un rectangle et de deux disques. L'aire d'un disque est : $A = \pi \times \text{rayon}^2$

- On considère un parallélépipède rectangle ABCEDFGH tel que $AB=5\ cm$; $BC=4\ cm$ et $AE=3\ cm$. Calculer le volume de ce solide. Tracer en vraie grandeur un patron de ce solide. En déduire l'aire de ce patron.
- On considère un cylindre de révolution de rayon **5** *cm* et de hauteur **9** *cm*. Calculer le volume de ce solide. Tracer en vraie grandeur un patron de ce solide. En déduire l'aire de ce patron.
- On considère une pyramide régulière SABCD à base carrée (de centre O) telle que $AB = 8 \ cm$ et de hauteur $6 \ cm$. Déterminer les longueurs SO et BC. Calculer le volume de ce solide. Tracer en vraie grandeur un patron de ce solide. En déduire l'aire de ce patron.

N₂ Autres solides usuels

Cône de révolution

V =Aire de la base \times hauteur $\div 3$

Le patron est composé d'un disque et d'une portion de disque avec $\alpha=$ rayon \div génératrice \times 360°

Sphère et boule

 $V = \frac{4}{3}\pi \times \text{rayon}^3$

 $A = 4 \times \pi \times \text{rayon}^2$

La sphère n'a pas de patron.

- On considère un cône de révolution de rayon $OC = 6 \ cm$ et de hauteur $OH = 12 \ cm$. Calculer le volume de ce solide. Tracer en vraie grandeur un patron de ce solide. En déduire l'aire de ce patron.
- On considère une sphère de rayon 8 cm. Calculer le volume et l'aire de ce solide.

$n^{\circ}1$ Intersections de plans

On considère un parallélépipède rectangle

ABCDEFGH et I un point de [AB].

- Reproduire la figure ci-contre et y placer le point I.
- 2 Construire sur cette figure :
 - les intersections des plans (EHI) et (AFB);
 - les intersections des plans (EHI) et (HDG);
 - les intersections des plans (EHI) et (BDF);
 - les intersections des plans (EHI) et (FBC).

n°2 Pyramide régulière

On considère une pyramide régulière SABCD à base carrée (de centre O) telle que $AB=5\ cm$ et $SA=10\ cm$.

- Représenter en perpective cavalière cette pyramide en prenant comme angle de fuite $lpha=45^\circ$
- Quelle est la nature du triangle SAB et du triangle SAO ?
- Tracer en vraie grandeur un patron de cette pyramide.
- Calculer AO. En déduire la hauteur (valeur exacte) de cette pyramide.
- Calculer le volume exact \mathcal{V}_1 de cette pyramide puis la valeur approchée au millième.
- On coupe cette pyramide par un plan horizontal à sa base et qui passe par le point O' qui est le milieu du segment [SO]. Cela forme deux solides dont SA'B'C'D' qui est une pyramide à base carrée de centre O'.
 - a) Tracer en vraie grandeur un patron de la pyramide SA'B'C'D'.
 - **b)** Calculer le volume \mathcal{V}_2 de SA'B'C'D' puis le rapport $\frac{\mathcal{V}_2}{\mathcal{V}_1}$