

Mission Concept Study

Planetary Science Decadal Survey Titan Saturn System Mission

Science Champion: John Spencer (spencer@boulder.swri.edu)

NASA HQ POC: Curt Niebur (curt.niebur@nasa.gov)

Data Release, Distribution, and Cost Interpretation Statements

This document is intended to support the SS2012 Planetary Science Decadal Survey.

The data contained in this document may not be modified in any way.

Cost estimates described or summarized in this document were generated as part of a preliminary concept study, are model-based, assume a JPL in-house build, and do not constitute a commitment on the part of JPL or Caltech. References to work months, work years, or FTEs generally combine multiple staff grades and experience levels.

Cost reserves for development and operations were included as prescribed by the NASA ground rules for the Planetary Science Decadal Survey. Unadjusted estimate totals and cost reserve allocations would be revised as needed in future more-detailed studies as appropriate for the specific cost-risks for a given mission concept.

Planetary Science Decadal Survey

Mission Concept Study Final Report

Acknowledgments	iv
Executive Summary	V
Overview	V
Background	V
Study Approach	vi
Science Overview	vii
Mission Architecture Assessment	viii
Mission Implementation	ix
Cost, Schedule, and Risk	xii
Summary and Conclusions	xiv
1. Scientific Objectives	1
Science Questions and Objectives	1
Science Traceability	2
2. High-Level Mission Concept	34
Overview	34
Concept Maturity Level	34
Technology Maturity	34
Key Trades	35
3. Technical Overview	38
Instrument Payload Description	38
Baseline Flight System	44
Baseline Concept of Operations and Mission Design	50
Planetary Protection	53
Risk List	5.3

4.	Development Schedule and Schedule Constraints	54
High	h-Level Mission Schedule	54
Тес	hnology Development Plan	58
Dev	relopment Schedule and Constraints	58
5.	Mission Life-Cycle Cost	59
Cos	ting Methodology and Basis of Estimate	59
Cos	t Estimates	59
Fiç	gures	
Figu	re ES-1. NASA/ESA geographically diverse team operates as a seamless integrated unit	
	incorporating lessons learned from the Cassini-Huygens model.	vi
Figu	re ES-2. The TSSM orbiter will have multiple opportunities to sample Enceladus' plumes	viii
Figu	re ES-3. TSSM's Baseline architecture maximizes science return to investment ratio within NA	\SA and
	ESA resources, at risk comparable to Cassini-Huygens.	ix
Figu	re ES-4. NASA/ESA and NASA-only mission architectures include robust descopes while rem	aining
	above the science floor.	ix
Figu	re ES-5. Baseline mission concept includes coordinated orbital observation and in situ elemer	nts x
Figu	re ES-6. Top-level Baseline mission timeline.	xiii
Figu	re 3-1. Risk Matrix	53
Figu	re 4-1. Schedule—Orbiter	55
Figu	re 4-2. Schedule—Montgolfière / Lake Lander	57
Figu	re 4-3. Schedule—Orbiter Testbed / ATLO	58
Та	bles	
Tabl	le ES-1. TSSM science goals	viii
Tabl	le ES-2. Key mission characteristics of the TSSM Baseline mission concept	xi
Tabl	le 1-1. Science Traceability Matrix—Orbiter	2
Tabl	le 1-2. Science Traceability Matrix—Montgolfière	17
Tabl	le 1-3. Science Traceability Matrix—Lake Lander	28
Tabl	le 2-1. Concept Maturity Level Definitions	34
Tabl	le 3-1. Instrument Specifications—Orbiter	39
Tabl	le 3-2. Payload Mass and Power—Orbiter	40
Tabl	le 3-3. Instrument Specifications—Montgolfière	41
Tabl	le 3-4. Payload Mass and Power—Montgolfière	42

Table 3-5. Instrument Specifications—Lake Lander	43
Table 3-6. Payload Mass and Power—Lake Lander	44
Table 3-7. Flight System Element Mass and Power—Orbiter	44
Table 3-8. Flight System Element Characteristics—Orbiter	44
Table 3-9. Flight System Element Mass and Power—SEP Stage	46
Table 3-10. Flight System Element Characteristics—SEP Stage	46
Table 3-11. Flight System Element Mass and Power—Montgolfière	47
Table 3-12. Flight System Element Characteristics—Montgolfière	48
Table 3-13. Flight System Element Mass and Power—Lake Lander	49
Table 3-14. Flight System Element Characteristics—Lake Lander	49
Table 3-15. Mission Design	50
Table 3-16. Mission Operations and Ground Data Systems—Orbiter	51
Table 3-17. Mission Operations and Ground Data Systems—Montgolfière	52
Table 3-18. Mission Operations and Ground Data Systems—Lander	52
Table 4-1. Key Phase Duration—Orbiter	54
Table 4-2. Key Phase Duration—Montgolfière and Lake Lander	56
Table 5-1. Total Mission Cost Funding Profile—Orbiter	60

Appendices

A. Acronyms

B. References

Acknowledgments

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

© 2010. All rights reserved.

Executive Summary

(Taken directly from Titan Saturn System Mission Study 2008: Final Report [1], Section 1.)

Overview

Titan is a high priority for exploration, as recommended by NASA's 2006 Solar System Exploration (SSE) Roadmap (NASA 2006), NASA's 2003 National Research Council (NRC) Decadal Survey (NRC Space Studies Board 2003) and ESA's Cosmic Vision Program Themes. Recent revolutionary Cassini-Huygens discoveries have dramatically escalated interest in Titan as the next scientific target in the outer Solar System. This study demonstrates that an exciting Titan Saturn System Mission (TSSM) that explores two worlds of intense astrobiological interest can be initiated now as a single NASA/ESA collaboration.

The Cassini-Huygens mission has revealed the Earth-like world of Saturn's moon Titan and showed the potential habitability of another moon, Enceladus. As anticipated by the 2003 Decadal Survey, recent Cassini-Huygens discoveries have revolutionized our understanding of the Titan system and its potential for harboring the "ingredients" necessary for life. These discoveries reveal that Titan is very rich in organics, possibly contains a vast subsurface ocean, and has energy sources to drive chemical evolution. The complex interaction between the atmosphere and surface produces lakes, dunes, and seasonal changes that are features that Titan shares with Earth. Cassini's discovery of active geysers on Enceladus revealed a second icy moon in the Saturn system that is synergistic with Titan in understanding planetary evolution and in adding another potential abode in the Saturn system for life as we know it. These discoveries have dramatically escalated the interest in Titan as the next scientific target for an outer Solar System mission.

Although the scope of science possible at Titan covers the entire range of planetary science disciplines, the TSSM team has developed a mission architecture that focuses NASA and ESA resources on the highest priority science questions. Results of this study confirm that a flagship-class mission to Titan (including the Saturn system and Enceladus) could be done at acceptable risk within the specified budgetary constraints and can proceed now.

Background

NASA and ESA are completing Pre-Phase A concept studies in support of a joint selection process for the next Outer Planet Flagship Mission (OPFM).

The Titan Saturn System Mission (TSSM) study was directed to redesign the 2007 Titan Explorer mission concept to meet new constraints specified under the revised Requirements and Ground Rules document (2008) and Statement of Work (2008), key elements of which are listed below.

- Respond to the 2007 Study independent review board findings.
- Produce a mission concept that optimally balances science, cost, and risk.
- Define a NASA/ESA Baseline and Floor mission that includes a NASA-provided Titan orbiter that
 would not utilize aerocapture. The orbiter shall have the capability of delivering and providing
 relay communications for multiple Titan in situ elements that would be provided by ESA as part of
 a collaborative program.
- Define a NASA-only mission and Floor mission that could be implemented by NASA in the event ESA does not participate.
- Include Saturn system and Enceladus as Level 1 science requirements to the extent they inform
 us about Titan.
- Include minimum of 33% reserves/margins in all areas.

 Use a launch date of 2020 for schedule and cost purposes. Alternative launch dates from 2018 through 2022 should be identified.

This study and its predecessors are intended to support a joint NASA-ESA down-select to a single OPFM expected in February 2009.

Study Approach

TSSM builds upon the results of more than a decade of previous studies as well as thorough science assessment, rigorous systems engineering, and experience gained from the Cassini-Huygens mission to develop a high fidelity concept in support of the NASA/ESA OPFM down-selection process.

An international science and technical team was formed with the goal to develop a focused, cost-effective TSSM (Figure ES-1). NASA and ESA formed a Joint Science Definition Team (JSDT) with 16 US and 15 European members. It was led by a NASA-appointed co-chair (from the University of Arizona, UA) and an ESA-appointed co-chair (from ESA/ESTEC) that established science objectives and participated in the design of the mission. JPL and ESA jointly formed the technical team with members from JPL, APL, NASA Glenn, ESA/ESTEC, ESA/ESOC, and CNES. It designed the mission and its elements. The JSDT and technical team worked as an integrated unit to define a mission that fully responds to the Statement of Work and Ground Rules for this study. This was achieved by establishing science goals and objectives that derive directly from guiding documents and then tracing these forward to define a planning payload and technical requirements on the mission as described in §2.0 and §4.1.1. These provided the basis for the team to develop a concept that balances cost and risk and achieves the science goals established by the JSDT as described in §2.0.

The Baseline Mission concept developed by the study team includes a NASA orbiter with Solar Electric Propulsion (SEP) stage and ESA provided lander and montgolfière balloon. The floor for this NASA-ESA mission preserves all flight elements except the SEP stage with the impact of taking as much as 1.5 years longer to reach Saturn.

Figure ES-1. NASA/ESA geographically diverse team operates as a seamless integrated unit incorporating lessons learned from the Cassini-Huygens model.

Science Overview

Titan, a rich, diverse body offering the potential for extraordinary scientific return, is emerging as the compelling choice for the next Outer Planet Flagship Mission.

Titan, a complex, Earth-like moon with organics, shares features both with other large icy satellites and the terrestrial planets. It is subjected to tidal stresses, and its surface has been modified tectonically to form mountains. It is likely that cryovolcanism exists where liquid water, perhaps in concert with ammonia and carbon dioxide, makes its way to the surface from the interior. Cassini revealed that Titan has the largest accessible inventory of organic material in the solar system aside from Earth, and its active hydrological cycle is analogous to that of Earth, but with methane replacing water. Titan's clouds, rain. flash floods, and greenhouse and anti-greenhouse effects might provide important lessons for Earth's long-term climate evolution. Albeit with dramatically different chemistry, Titan's landscape appears remarkably Earth-like, featuring dunes, fluvial channels, and mountain ridges, as well as polar lakes filled with liquid hydrocarbons. Titan's dense atmosphere is mostly nitrogen—like Earth's—and varies seasonally in temperature, dynamical behavior, and composition, including a winter polar structure analogous to Earth's ozone hole. Finally, although Titan is similar to Earth in many ways, its atmosphere is unique in the solar system, experiencing strong dynamical forcing by gravitational tides (a trait Titan may share with many extrasolar planets). A mission launched in the 2018–2022 timeframe would provide a unique opportunity to measure a seasonal phase complementary to that observed by Voyager and by Cassini, including its extended missions.

Recent discoveries of the complex interactions of Titan's atmosphere with the surface, interior, and space environment demand focused and enduring observation over a range of temporal and spatial scales. The TSSM two-year orbital mission at Titan would sample the diverse and dynamic conditions in the ionosphere where complex organic chemistry begins, observe seasonal changes in the atmosphere, and make global near-infrared and radar altimetric maps of the surface. This study of Titan from orbit with better instruments has the potential of achieving a 2–3 order-of-magnitude increase in Titan science return over that of the Cassini mission.

Chemical processes begin in Titan's upper atmosphere and could be extensively sampled by an orbiting spacecraft alone. However, there is substantial additional benefit of extending the measurements to Titan's lower atmosphere and the surface. Titan's surface may replicate key steps toward the synthesis of prebiotic molecules that may have been present on the early Earth as precursors to life. In situ chemical analysis, both in the atmosphere and on the surface, would enable the assessment of the kinds of chemical species that are present on the surface and of how far such putative reactions have advanced. The rich inventory of complex organic molecules that are known or suspected to be present at the surface makes new astrobiological insights inevitable. In situ elements also enable powerful techniques such as subsurface sounding to be applied to exploring Titan's interior structure. Understanding the forces that shape Titan's diverse landscape benefits from detailed investigations of various terrain types at different locations, a demanding requirement anywhere else, but one that is uniquely straightforward at Titan using a montgolfière hot-air balloon. TSSM's montgolfière could circumnavigate Titan carried by winds. exploring with high resolution cameras and subsurface-probing radar. The combination of orbiting and in situ elements is a powerful and, for Titan, unprecedented opportunity for synergistic investigations synthesis of data from these carefully selected instrumentation suites is the path to understanding this profoundly complex body.

En route to Titan, opportunities exist to significantly extend our understanding of Saturn's magnetosphere. Furthermore, the tour through the Saturn system would take the orbiter through the plumes of Enceladus (Figure ES-2). Using more capable instrumentation not available on the Cassini spacecraft, these investigations would not only inform us about these fascinating parts of the Saturn system, but would help us address important questions about Titan as well.

The TSSM Science Goals as shown in Table ES-1 respond directly to NASA's science objectives, ESA's Cosmic Vision themes, and science questions raised by the extraordinary discoveries by Cassini-Huygens. TSSM science would embrace geology, meteorology, chemistry, dynamics, geophysics, space physics, hydrology, and a host of other disciplines. Thus, it would engage a wider community than for

Table ES-1. TSSM science goals.

	J
Goal	Summary
Goal A: Titan: an Earthlike System	How does Titan function as a system; to what extent are there similarities and differences with Earth and other solar system bodies?
Goal B: Titan's Organic Inventory	To what level of complexity has prebiotic chemistry evolved in the Titan system?
Goal C: Enceladus and Saturn's magnetosphere	What can be learned from Enceladus and from Saturn's magnetosphere about the origin and evolution of Titan?

virtually any other target in the outer Solar System. Clearly, Titan, a rich, diverse body offering the promise of extraordinary scientific return, is emerging as the compelling choice for the next NASA Flagship mission.

Mission Architecture Assessment

A robust architecture has been developed that would enable NASA/ESA or NASA-only mission options that respond comprehensively to the science requirements.

Many different mission architectures and trades were explored. Various combinations of orbiter and

in situ elements, propulsion elements, single-launch versus multiple-launch scenarios and delivered mass versus trip time performance were assessed. Per the study ground rules, aerocapture concepts were not pursued as part of this study but can be found in the 2007 Titan Explorer study report.

The TSSM Baseline mission was chosen from a comprehensive assessment of alternative concepts and was found to be the optimal balance between science, cost, and risk. Results shown in Figure ES-3 indicate that the combination of orbiter, solar electric propulsion, lander, and montgolfière would provide the highest science value per unit of currency invested.

This Baseline mission architecture provides descope options for both NASA and ESA to a scientifically attractive NASA/ESA Floor mission (as shown in Figure ES-4 and described in §3.3.1.2), yielding a very robust project implementation plan. The Baseline is comprised of a NASA orbiter with SEP stage and ESA-provided lander and montgolfière hot air balloon. The floor for this NASA/ESA mission would not include the SEP stage, in addition to other potential descopes (§4.11.7.8), and would result in a 1.5-year longer interplanetary trajectory. The impact to science is limited to later return of science data. The impact to the mission is reduced flexibility.

In the event of an ESA decision not to participate, a NASA-only mission could proceed. If this decision is made late in the process an exciting orbiter-only mission would be feasible that fully meets the Level 1 science requirements. However, if the decision occurred during or prior to Phase A there would be the possibility of a mission with US provided *in situ* elements (and/or possibly other international contributions). Investigating non-ESA provided *in situ* elements was beyond the scope of this study and therefore the orbiter-only option was assessed. The orbiter-only architecture described in this report preserves Titan, Saturn system, and Enceladus Level 1 science but gives up montgolfière and lander

Figure ES-2. The TSSM orbiter would have multiple opportunities to sample Enceladus' plumes.

Figure ES-3. TSSM's Baseline architecture maximizes science return to investment ratio within NASA and ESA resources, at risk comparable to Cassini-Huygens.

Figure ES-4. NASA/ESA and NASA-only mission architectures include robust descopes while remaining above the science floor.

measurements. The impact to science of the fully descoped NASA-only orbiter mission is limited to later return of science data. The impact to the mission is reduced flexibility.

An orbiter-only mission with the instrument complement described here provides a qualitatively different and quantitatively more powerful data set about Titan than did Cassini-Huygens, and would fundamentally revolutionize our understanding of Titan. It would do likewise for Enceladus. The orbiter-only mission has been judged by the JSDT to be well worth the price of a Flagship-class mission.

Transition to a viable NASA-only mission can occur at any time and at any point in any descope sequence from the Baseline mission to the NASA/ESA Floor mission. An important characteristic of this structure is that if an ESA decision not to participate occurred, even up to launch, there are clear transition pathways from the NASA/ESA mission to a viable NASA-only mission.

Mission Implementation

TSSM implementation options include orbiter and in situ elements that build upon and apply the design, operational experience and lessons learned from Cassini-Huygens, Galileo, Mars Orbiter, New Horizons, Dawn, MESSENGER, Beagle-2 and Exomars missions.

The flight elements shown in Figure ES-5 would be launched on an Atlas V 551 launch vehicle in 2020 using a gravity-assist SEP trajectory to achieve a trip time of 9 years to Saturn. Following Saturn orbit insertion, the orbiter would conduct a Saturn system tour, including 7 close Enceladus flybys and 16 Titan flybys. This phase would allow excellent opportunities to observe Saturn, multiple icy moons and the complex interaction between Titan and Saturn's magnetosphere. The montgolfière would be released on the first Titan flyby, after Saturn orbit insertion, and would use an X-band relay link with the orbiter for communications. The lander would be released on the second Titan flyby and communicate with the orbiter during the flyby only. This 24-month period would also mark the mission phase when all of the Titan *in situ* data is relayed back to Earth. Following its tour of the Saturn system, the orbiter would enter into a highly elliptical Titan orbit to conduct a two-month concurrent Aerosampling and Aerobraking Phase in Titan's atmosphere, sampling altitudes as low as 600 km. The orbiter would then execute a final periapsis raise burn to achieve a 1500-km circular, 85° polar-mapping orbit. This Circular Orbit Phase would last 20 months.

Figure ES-5. Baseline mission concept includes coordinated orbital observation and in situ elements.

On completion of the mission, a Decommissioning and Disposal Phase would be initiated by performing a moderate sized maneuver that begins the orbit decay. Small maneuvers during the decay would target the final impact site to ensure planetary protection requirements are met.

The orbiter concept has mass allocations of 165 kg for its remote sensing instruments and 830 kg for ESA-provided *in situ* elements. Payload and operational scenarios were developed with the JSDT to meet the prioritized science objectives. Flight and ground systems are sized to provide the data volumes necessary to return measurement data from the orbiter and *in situ* elements.

The integrated JSDT has defined a model/planning payload for the purposes of conducting this study. Instrumentation for the orbiter, lake lander, and montgolfière elements were configured in an optimal way to collaboratively achieve the mission science goals. It is anticipated that NASA and ESA would issue coordinated announcements of opportunity (AO) for the mission instrumentation, respectively for the orbiter and for the *in situ* elements. It is anticipated that instruments related to each of the mission elements would be open for competition throughout the international community as this was the case for Cassini-Huygens.

TSSM benefits from proven experience, proven Flight Systems, existing launch capabilities, lessons learned and well-understood trajectory options. The design relies on traditional chemical propulsion (similar to Cassini and Galileo), proven solar electric propulsion, a power source consisting of five Advanced Stirling Radioisotope Generators (ASRGs) and a robust data relay and downlink system. The concept is also fully compatible with Multimission Radioisotope Thermoelectric Generators (MMRTGs). Table ES-2 lists major characteristics of the Baseline mission. NASA will decide which RPS would be used.

The TSSM concept meets or exceeds reserves and margins prescribed in the study ground rules that exceed JPL's Flight Project Practices and Design Principles developed and used successfully over the past several decades. Design life of the flight system is based on design rules and techniques manifestly demonstrated by Voyager, Galileo, and Cassini during their long-life missions. Environmental risk factors are minimal and well-understood.

The same organizations that partnered on Cassini-Huygens have partnered to bring their experience to carry out TSSM:

- JPL has built and is currently operating the Cassini orbiter at Saturn.
- JPL is the only organization to have delivered probes to the outer planets.
- JPL and APL are the only organizations to have sent RPSs to the outer planets.
- ESA (through CNES) has an active terrestrial ballooning program and has previously worked on balloons for both Mars and Venus.
- ESA is the only organization to have landed a probe (Huygens) on Titan.

Table ES-2. Key mission characteristics of the TSSM Baseline mission concept.

Architecture	Orbiter with in situ elements
Launch vehicle	Atlas V 551
Launch date	9/2020
Trajectory	Earth-Venus-Earth-Earth gravity assist
Flight time to Saturn	9 years
Saturn System Tour Phase	24 months
Number of close Enceladus encounters during the Saturn Tour	7
Number of Titan encounters during the Saturn Tour	16
Titan Aerosampling Phase	2 months
Titan Orbital Phase	20 months
Radiation Design Point*	<15 krads
Science Instruments, mass allocation	
Orbiter	6 plus radio science; 165 kg
Montgolfiére	7 plus radio science; ~25 kg
Lake Lander	5 plus radio science; ~32 kg
Average data volume return from Titan orbit	5.4 Gb/Earth day (compressed)
Cumulative data volume	
Orbiter	>4.9 Tb
Montgolfiére	>300 Gb – 1.3 Tb
Lake Lander	>500 Mb – 3.4 Gb

^{*}Behind 100 mils of Al, RDF of 1

Cost, Schedule, and Risk

The TSSM Baseline concept provides a comprehensive response to science objectives that leverages NASA and ESA resources and reduces risk to ensure technical readiness.

As shown in Figure ES-3, NASA/ESA and NASA-only options have been defined with associated descope paths.

The total cost to NASA (rounded up) is estimated to be \$3.7B in real year dollars (RY) for the NASA/ESA Baseline mission and \$3.3B (RY) for the NASA/ESA Floor mission. This cost to NASA does not include ESA's costs. The costs to ESA are commensurate with the budget envelope for an L-class mission of the Cosmic Vision 2015–2025 program (650M€ Cost-at-Completion). These ESA costs do not include the development and delivery of the balloon envelope, which would be provided by CNES. Furthermore the provision of science instruments is expected from European national funding, and is therefore also not included in ESA's costs. Clearly this collaborative partnership provides a very significant science-to-cost ratio benefit to both NASA and ESA. In the event that ESA makes the decision not to participate, the cost of a NASA-only mission is estimated to be \$3.6B (RY) and the fully descoped NASA-only Floor mission is estimated to cost \$3.2B (RY).

Budget reserves for these costs were established by comparing a top down architectural assessment of risk with a bottoms-up WBS assessment based upon perceived risk. Reserves estimates from each of these two methods were triangulated with the reserves floor of 33% as called out by the Ground Rules. The larger of the three values was used by the project. As determined from the process described above, the TSSM budget reserves are calculated as:

- Phase A = 10%
- Phase B through D = at 35% per Bottoms Up analysis. The Cost Risk Subfactors analysis yielded a 34% estimate. Further details are discussed in Appendix D.
- Phase E = 15%

The reserves base is the current best estimate cost including RPS but excludes DSN Aperture, Launch System, and EPO.

The TSSM project implementation schedule is based on experience from prior Flagship missions and the unique aspects of this mission. It includes milestones and funded schedule margins consistent with NASA directive NPR 7120.5D and JPL Flight Project Practices. This schedule is driven primarily by long lead procurements, an extensive Verification and Validation (V&V) program, and mission trajectory considerations. Coordination with ESA during development and integration of the *in situ* elements is planned. A timeline for the mission with phase durations, key decision points, and operational modes is shown in Figure ES-6. The current schedule is based on a 2020 launch as directed in the ground rules for this effort. If a 2018 launch opportunity is preferred, the schedule could be adjusted for the two year advance. Later dates are easily accommodated as well.

An ESA baseline schedule was derived during the assessment study of the ESA provided *in situ* elements and it is confirmed as being compatible with a 2020 launch. Earlier launch dates are also possible.

While the science resulting from TSSM is a giant leap beyond Cassini-Huygens, the development risk for the Baseline TSSM is comparable to that for Cassini-Huygens. Long-lead items such as radioisotope power systems (RPS), propulsion systems, and structure are planned to be initiated early in the development process to ensure on-time availability for integration. Because the NASA orbiter and ESA *in situ* elements build upon Cassini-Huygens, MRO, MESSENGER, Dawn, New Horizons, Beagle-2 and Exomars experience and lessons learned, the technical development, and cost risks are well understood.

Figure ES-6. Top-level Baseline mission timeline.

Summary and Conclusions

Important science questions are now well established for Titan and the time is right to initiate a dedicated robust mission to answer them. TSSM would provide unequalled value by exploring two worlds of intense astrobiological interest (Titan AND Enceladus) as a single NASA/ESA collaboration. The excitement can continue!

A mission to study Titan in depth is a high priority for exploration, as stated by the 2003 NRC Decadal Survey large satellites panel.

Europa and Titan stand out as the highest-priority targets....It cannot now be predicted whether Europa or Titan will ultimately prove to be the most promising satellite for long-term exploration. However, Cassini-Huygens will surely revolutionize our understanding of Titan...

Since the 2003 Decadal Survey, Cassini-Huygens discoveries have revolutionized our understanding of Titan and its potential for harboring the "ingredients" necessary for life. With these recent discoveries, the high priority of Titan is reinforced (NAI letter, Appendix M).

Remarkably, the picture that has emerged is one in which all the aspects of astrobiological interest are packaged in one body. Titan appears to have an ocean beneath its crust, almost certainly mostly of liquid water. Contact with rock during the early history of Titan, as the body differentiated, would have led to a salty ocean. The ocean would be suffused with organics from Titan's interior and from its surface (delivered by impacts), leaving Titan with a warm, salty, organic-laden ocean. Added to this is a dense atmosphere with active climate and organic chemistry, a surface of hydrocarbon seas and river channels, and a climate system that is more Earth-like in its operation than that of any other place in the solar system.

The Titan Saturn System Mission represents the logical next step in outer planets exploration with a host of features, ready to be implemented now.

- Unequalled exploration of two worlds of intense astrobiological interest (Titan AND Enceladus) in a single NASA/ESA collaboration.
- Major advance beyond Cassini-Huygens in accomplishing Decadal objectives.
- Science engagement over the full range of planetary science disciplines—Geology, Geophysics, Atmospheres, Astrobiology, Chemistry, Magnetospheres—through deployment of new instruments in orbit, in atmospheric flight, and on a large sea, and investigate the plumes of Enceladus in ways that Cassini could not do.
- Built upon a demonstrated capability to design, land, and operate probes on Titan (e.g., ESA Huygens), and Saturn-based orbiters (e.g., NASA Cassini).
- Baseline mission options provide feed forward SEP stage to enable other science missions.
- Leverages synergistic NASA/ESA resources, reduces risk, and ensures technical readiness.
- Ensures programmatic flexibility with frequent launch opportunities.
- Offers NASA-only options in the event ESA decides not to participate.

A unique mission for an extraordinary world, the Titan Saturn System Mission provides a kind of planetary exploration never before attempted by humans and ideally suited to the environment of Titan. This study confirms that the mission is ready to proceed.

1. Scientific Objectives

Science Questions and Objectives

See Titan Saturn System Mission Study 2008: Final Report [1], Section 2.

Science Traceability

Table 1-1. Science Traceability Matrix—Orbiter

_ 90	IENCE OB IECTIV	/F	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENT
Goal A: How does Titan function as a system; to what extent are there similarities and O1: Determin how energy is deposited in the upper atmosphere to drive the chemistry and	O1: Determine how energy is	Determine energy is sited in pper sphere to the isistry and scape rate ijor spheric	M1: Measure properties of thermal-magnetospheric charged particles that deposit energy into Titan's atmosphere such as fluxes, composition and spatial/temporal dependence of electrons and ions. Measure electrons from 0–1 MeV with 20° angular resolution and 30% energy resolution in the upward-looking and downward-looking hemispheres; ions from 0 to 1 MeV with 20° angular resolution and 30% energy resolution in the upward-looking downward-looking hemispheres and with the ability to stare in the ram and corotation directions at low energies (<30 keV). The plasma instrument must be able to separate methane group ions, ammonia group ions and water group ions.	A1: Low Energy Plasma and Particles Instrument includes plasma (ion and electron) spectrometers with energy range eV–30keV Energetic particle spectrometers cover the range 10 keV to 1 MeV. These form part of a combined package with dual head vector Magnetometer and Langmuir probe. Plasma instrument will require time resolution better than 60 s in order to resolve 1 atmospheric scale height or better.	MAPP	Periapses from 700 km upward during aerosampling and 950 km upwards during main mission. Complete range of local times and latitudes. Downward and upward going hemispheres visible. Knowledge of the orbiter attitude and a rigid boom to house the magnetometer sensors. If onboard plasma moments are required, the magnetic field measured on board (i.e., without on the ground correction due to spacecraft interference) must have sufficient accuracy to provide the required pitch angle accuracy, this puts constraints on the magnetic cleanliness requirements of the orbiter and the boom length.
	atmosphere to drive the chemistry and the escape rate of major atmospheric		M2: Energy input from thermal-magnetospheric sources. Measure thermal electron density and temperature in situ and density profiles as a function of altitude from the ionospheric peak to the orbiter. Measure ionospheric ion density, winds and temperatures in top side ionosphere.	A1: Langmuir (swept voltage/current) probe as part of combined package with Low Energy Plasma and Particles Instrument, Energetic Particle Spectrometer and dual vector magnetometer. Time resolution better than 60 s to resolve atmospheric scale height.	MAPP	Periapses from 700 km upward during aerosampling and 950 km upwards during main mission. Complete range of local times and latitudes.
			M3: Energy input from EUV and UV as a function of altitude from the ionospheric peak to the orbiter.	A1: Modeled from swept voltage/current obtained by Langmuir probe.	MAPP	Periapses from 700 km upward during aerosampling and 950 km upwards during main mission.
		I2: Quantify the escape flux of elemental hydrogen.	M1: Vertical profiles of atmospheric constituents containing H, C, and N, including major isotopologues, from 800 to 2000 km altitude with precision of better than 5%.	A1: Direct sampling Mass spectrometry up to 10,000 Da with sensitivity of less than 10 ⁴ cm ⁻³ and dynamic range of 10 ⁸ .	PMS	Periapses varying from 700 km upward during aerosampling. Ram direction pointing of the instrument during aerosampling. Sample inlet should be located far from the main thrusters to avoid contamination.
		carbon, nitrogen.		A2: Submillimeter sounding at 540–640 GHz with resolution 300 khz and 5% precision in retrieved abundances.	SMS	High Data Volume Data Rate: 48 kbits/s. Limb viewing from polar orbit, in-track and off-track orientation

KEY: O1...O4 = Objective 1...Objective 4; I1...I4 = Investigation 1 ...Investigation 4; M1...M4 = Measurement 1...Measurement 4; A1...A4 = Approach 1...Approach 4

SO	CIENCE OBJECTIV	/E	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENT
	O1: Determine how energy is deposited in the upper	gy is in I2: Quantify the escape flux of elemental hydrogen, carbon, nitrogen.	M2: Vertical profiles of atmospheric constituents containing H, C, and N, including major isotopologues, from 100 to 500 km altitude with precision of better than 1%.	A1: Passive Thermal-infrared Fourier Transform spectrometry, in the 30–1400 wavenumbers (7–333 μm) region; resolution 0.1–3.0 wavenumber.	TIRS	Limb and nadir viewing on polar orbit, in-track and off-track orientation
	atmosphere to drive the chemistry and the escape rate of major atmospheric constituents.		M3: Magnetic field of Titan where escape mechanisms of C, N, H are operating. Measure vector magnetic field perturbations of order a few nT (with a resolution of order 0.04 nT) to quantify the escape flux of elemental hydrogen, carbon, and nitrogen	A1: Vector Magnetometry (part of a combined instrument).	MAPP	Continuous measurements, globally distributed at varying altitudes.
			M1: Vertical profiles atmospheric constituents containing oxygen including major isotopologues, from	A1: Submillimeter sounding at 540–640 GHz with resolution 300 khz and 5% precision in retrieved abundances.	SMS	Limb viewing from polar orbit, in-track and off-track orientation
Goal A: How does Titan function as a system; to what extent	02: Characterize	characterize ne relative nortance of exogenic and not of not of the atmosphere.	100–1500 km altitude with precision better than 5%.	A2: Direct sampling Mass spectrometry up to 10,000 Da at 1% peak height with mass resolution 3000–10,000 and high sensitivity (0.1 ppm at 850 km).	PMS	Periapses varying from 700 km upward and ram direction pointing of the instrument during aerosampling. Sample inlet should be located far from the main thrusters to avoid contamination.
are there	importance of					Low Data Volume Data Rate: 4 kbits/s
similarities and differences with Earth and other solar	exogenic and endogenic oxygen sources.		M2: Vertical profiles of atmospheric constituents containing oxygen including major isotopologues, in lower atmosphere with precision of 1%.	A1: Passive Thermal-infrared Fourier Transform spectrometry, in the 30–1400 wavenumbers (7–333 μm) region (CO at 30–80 cm ⁻¹ , H ₂ O at 60–200 cm ⁻¹ , CO ₂ at 670 cm ⁻¹) resolution 0.1–3.0 wavenumber.	TIRS	Limb and nadir viewing on polar orbit, rotation in azimuth
system bodies?			M1: Inventory of surface constituents containing oxygen including major isotopologues at 250 m resolution.	A1: Near-IR mapping spectroscopy within the atmospheric transmission windows from 0.85–2.4 µm and 4.8–5.8 µm with spectral resolution >400 and spatial resolution = 250 m.	HiRIS	Prefer mapping phase orbit within ±3 hrs from local noon
	O3: Characterize the major processes controlling the global distribution of atmospheric chemical constituents.	D3: Characterize	M1: Vertical, latitudinal and temporal dependence of condensed and gaseous species in the atmosphere from the surface to 1500 km with	A1: Passive Thermal-infrared Fourier Transform spectrometry, in the 30–1400 wavenumbers (7–333 μm) region; resolution 0.1–3.0 wavenumber.	TIRS	Limb and nadir viewing on polar orbit, rotation in azimuth
		I1: Characterize the major	precision better than 10%.	A2: Submillimeter sounding at 540–640 GHz with resolution 300 khz and 10% precision in retrieved abundances.	SMS	Limb viewing on polar orbit, rotation in azimuth
		bution of behavior of cycles.		A3: Direct sampling Mass spectrometry up to 10,000 Da with mass resolution 3000–10,000 at 1% peak height, high sensitivity (0.1 ppm at 850 km) and a dynamic range of 108.	PMS	Periapses varying from 700 km upward and ram direction pointing of the instrument during aerosampling. Sample inlet should be located far from the main thrusters to avoid contamination.

SC	CIENCE OBJECTIV	VE	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENT
	O3: Characterize the major		M1: 4D transport with precision of better than 5%.	A1: Mid- to far-infrared spectra of the stratosphere in the 30–1400 wavenumbers (7–333 µm) region, spectral resolution of 3 to 15 wavenumbers, spatial resolution of <5 mrad IFOV.	TIRS	Limb and nadir viewing on polar orbit, rotation in azimuth
	processes controlling the global distribution of	I2: Determine the relative importance of global		A2: Submillimeter sounding at 540–640 GHz with resolution 300 khz and 10% precision in retrieved abundances and 5 m/s in winds.	SMS	Limb viewing from polar orbit, in-track and off-track orientation
	atmospheric chemical constituents.	transport.		A3: Direct sampling Mass spectrometry up to 10,000 Da with mass resolution 3000–10,000 at 1% peak height, high sensitivity (0.1 ppm at 850 km) and a dynamic range of 108.	PMS	Periapses varying from 700 km upward and ram direction pointing of the instrument during aerosampling. Sample inlet should be located far from the main thrusters to avoid contamination.
Goal A: How does Titan function as a system; to	atmospheric th circulation and flow of energy and its dy	aracterize Inspect of energy its ability on rt- altitud Strato tropos tempe 10%. Thermine tropos Inspect of energy its ability on state. altitud Strato tropos altitud Strato tropos altitud Strato tropos tempe 10%. Thermine tropos M2: Wascura 3D win accura 3D win 100 to 10 km	M1: Temperature versus pressure for altitude, lat/long, and time. Stratospheric temperature to 1 K and tropospheric / mesospheric temperatures to 0.1 K; pressure to 10%. Vertical resolution < scale height thermosphere and stratosphere; 0.5 km troposphere.	A1: Mid- to far-infrared spectra of the stratosphere in the 30–1400 wavenumbers (7–333 μm) region, spectral resolution of 3 to 15 wavenumbers, spatial resolution of <5 mrad IFOV.	TIRS	Limb and nadir viewing on polar orbit, rotation in azimuth
what extent are there similarities and differences				A2: Radio occultations over latitudes 85°N to 85°S using the USO. End to end radio link stability (Allan deviation) required to carry out the measurement is 10 ⁻¹³ at 10 s integration time.	RSA	Optimized occultation geometry
with Earth and other solar system bodies?				A3: Submillimeter sounding at 540–640 GHz with resolution 300 khz and 1 K accuracy in retrieved atmospheric temperatures.	SMS	Limb viewing on polar orbit, rotation in azimuth
			M2: Winds with ~5 m/s or better accuracy. Zonal and meridional. Global 3D wind and temperature fields from 100 to 1500 km at vertical resolution of 10 km.	A1: Image clouds using a low spatial and spectral resolution mode of the near-IR spectrometer that provides images in multiple near-IR wavelengths, both in and out of the methane windows, 130 km wide with 1 km resolution during the circular mapping phase, and 1000 km wide with 2 km resolution during aerobraking.	HiRIS	Requires observations during Saturn orbit and aerosampling (elliptical orbit) phase
				A2: Mid- to far-infrared spectra of the stratosphere in the 30–1400 wavenumbers (7–333 μm) region, spectral resolution of 3 to 15 wavenumbers, spatial resolution of <5 mrad IFOV.	TIRS	Limb and nadir viewing on polar orbit, rotation in azimuth
				A3: Submillimeter at 540–640 GHz with resolution 300 khz down and 5 m/s accuracy in retrieved zonal and meridional winds.	SMS	Limb viewing from polar orbit, in-track and off-track orientation

SCIENCE OBJECTIVE			MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENT
		I2: Determine the impact of	M1: Cloud frequency with a spatial resolution of 1 km and fields of view >hundreds of kilometers in extent.	A1: Image clouds using a low spatial and spectral resolution mode of the near-IR spectrometer that provides images in multiple near-IR wavelengths, both in and out of the methane windows, 130 km wide with 1 km resolution during the circular mapping phase, and 1000 km wide with 2 km resolution during aerobraking.	HiRIS	Requires observations during Saturn orbit and aerosampling (elliptical orbit) phase
		the impact of haze and clouds.	M2: Cloud top altitude and vertical extent, morphology, size of clouds and likelihood of precipitation. Resolve heights to 10% of a scale height; determine cloud bases through direct or indirect (e.g., methane vapor profile) approaches. Repeat observations of early summer hemisphere convective clouds at spatial resolution 1 km.	A1: Image clouds using a low spatial and spectral resolution mode of the near-IR spectrometer that provides images in multiple near-IR wavelengths, both in and out of the methane windows, 130 km wide with 1 km resolution during the circular mapping phase, and 1000 km wide with 2 km resolution during aerobraking.	HiRIS	Repeat passes over high southern latitudes during mapping phase.
Goal A: How does Titan function as a system; to what extent are there	O4: Characterize the atmospheric		M1: Vertical distributions of abundances of minor constituents as a function of latitude, time of day and season with better than 10% accuracy.	A1: Mid-infrared spectra of the stratosphere in the 30–1400 wavenumbers (7–333 μm) region, spectral resolution of 0.1–3 wavenumbers, spatial resolution of <5 mrad IFOV.	TIRS	Limb and nadir viewing on polar orbit, rotation in azimuth
similarities and differences	circulation and flow of energy and its	low of energy and its atmospheric composition. the effects of atmospheric composition.		A2: Submillimeter sounding at 540–640 GHz with resolution 300 khz and 5% precision in retrieved abundances.	SMS	Limb viewing from polar orbit, in-track and off-track orientation
with Earth and other solar system bodies?	variability on short- timescales.			A3: Direct sampling Mass spectrometry up to 10,000 Da at 1% peak height with mass resolution 3000–10,000 and a dynamic range of 108.	PMS	Periapses varying from 700 km upward during aerosampling. Ram direction pointing of the instrument during aerosampling. Sample inlet should be located far from the main thrusters to avoid contamination.
			M1: Global topography with 10 m depth resolution in the region from 85°N to 85°S. Horizontal resolution required is 5–10 km cross track, 1 km lateral (along track) with 10 m vertical precision altimetry. Long temporal coverage of active regions.	A1: Altimetry measurements with single band (>20 MHz center) radar with capability of ~10 m height resolution and 1 km (along-track) and 5-10 km (cross-track) spatial resolution.	TiPRA	TiPRA can operate on the nightside.
			M2: Map extent of surface covered by liquid at 50 m resolution and 80% surface coverage.	A1: High-resolution near-IR imaging at 2.05 \pm 0.08 μ m, 2.73 \pm 0.08 μ m, and 5.35 \pm 0.45 μ m.	HiRIS	Prefer mapping phase orbit at ±4 hrs from local noon
			M3: Temperature gradients between liquid surface and surrounding terrains with 1 K precision.	A1: Mid- to far-infrared spectra of the stratosphere from 30–1400 wave numbers (7–333 μm), spectral resolution of 3 to 15 wave numbers, spatial resolution of <5 mrad IFOV.	TIRS	Nadir viewing

SC	CIENCE OBJECTIV	/E	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENT
	O4: Characterize the	I4: Determine	M4: Identify active volcanism in the equatorial region with 50 m resolution from orbit and .2.5 m resolution from	A1: High-resolution near-IR imaging at 2.05 ± 0.08 μm, 2.73 ± 0.08 μm, and 5.35 ± 0.45 μm.	HiRIS	Prefer mapping phase orbit at ±4 hrs from local noon
	atmospheric circulation and flow of energy and its variability on short- timescales.	the effects of surface processes on meteorology.	10 km altitude	A2: Mid- to far-infrared spectra of the stratosphere from 30–1400 wave numbers (7–333 μm), spectral resolution of 3 to 15 wave numbers, spatial resolution of <5 mrad IFOV.	TIRS	Limb and nadir viewing on polar orbit, rotation in azimuth
		I1: Quantify the total major-hydrocarbon	M1: Lake and sea bathymetry. Lateral 10 km /10 m vertical precision.	A1: Single band (>20 MHz center) penetrating radar and altimetry with capability of sub-surface sounding to a depth of ~5 km with ~10 m depth resolution.	TiPRA	Measurement above the lake early and late in the mapping phase for seasonal progression
Goal A: How does Titan function as a system; to	O5: Characterize the amount of liquid on the Titan surface today.	Characterize the amount of liquid on the Titan surface ethane) inventory present in the lakes and	M2: Map extent of surface covered by liquid at 50 m resolution and 80% surface coverage.	A1: High-resolution near-IR imaging at 2.05 ± 0.08 μm, 2.73 ± 0.08 μm, and 5.35 ± 0.45 μm.	HiRIS	Prefer mapping phase orbit at ±4 hrs from local noon. Measurement above the lake early and late in the mapping phase for seasonal progression
what extent are there similarities and differences	·	I2: Determine the depth of the lake at the landing site.	M1: Lake and sea bathymetry. Lateral 10 km /10 m vertical precision.	A1: Single band (>20 MHz center) penetrating radar and altimetry with capability of sub-surface sounding to a depth of ~5 km with ~10 m depth resolution.	TiPRA	Coordinated effort with lander and orbiter.
with Earth and other solar system bodies?	O6: Characterize the major processes transforming the surface throughout time.	laracterize features; correlate regional elevation changes with geomorph-	M1: Surface topography with 10 m height resolution in the region from 85°N to 85°S. Horizontal resolution required is 5–10 km cross track, 1 km lateral (along track) with 10 m vertical precision altimetry. Long temporal coverage of active regions	A1: Altimetry measurements with single band (>20 MHz center) radar with capability of ~10 m height resolution and 1 km (along-track) and 5–10 km (cross-track) spatial resolution.	TiPRA	TiPRA can take data on the nightside.
			M2: Surface topography with 10 m height resolution and 0.5 km spatial resolution.	A1: High-resolution near-IR stereo imaging at 5.35 ± 0.45 μm.	HiRIS	Requires two global maps: one acquired near nadir and one acquired looking off nadir
			M3: Surface composition with 250 m resolution in region at all available latitudes	A1: Near-IR mapping spectroscopy within the atmospheric transmission windows from 0.85–2.4 µm and 4.8–5.8 µm with spectral resolution >400 and spatial resolution = 250 m.	HiRIS	Prefer mapping phase orbit within ±3 hrs from local noon
		variations.	M4: Map surface features at 50 m resolution in multiple wavelengths and 80% surface coverage and correlate morphology and spectral characteristics of surface features with topography.	A1: High-resolution near-IR imaging at 2.05 ± 0.08 μm, 2.73 ± 0.08 μm, and 5.35 ± 0.45 μm.	HiRIS	Prefer mapping phase orbit at ±4 hrs from local noon

SC	CIENCE OBJECTIV	/E	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENT
		I2: Characterize the origin of major surface features.	M1: Map surface features at 50 m resolution in multiple wavelengths and 80% surface coverage and correlate morphology and spectral characteristics of surface features with topography.	A1: High-resolution near-IR imaging at 2.05 \pm 0.08 μ m, 2.73 \pm 0.08 μ m, and 5.35 \pm 0.45 μ m.	HiRIS	Prefer mapping phase orbit at ±4 hrs from local noon
	06: Characterize	including the effects of liquid flow, tectonic, volcanic, and impact events.	M2: Search for surface changes, especially in lakes, channels, volcanic and aeolian features (tectonic changes and impacts are less likely).	A1: Repeated high-resolution near-IR imaging of selected regions on several timescales at $2.05 \pm 0.08 \ \mu m$, $2.73 \pm 0.08 \ \mu m$, and/or $5.35 \pm 0.45 \ \mu m$.	HiRIS	Repeated observations over variety of timescales, especially in regions where changes are likely (e.g., polar regions, sites of clouds/storms/precipitation), prefer mapping phase orbit at ±4 hrs from local noon
Goal A: How does Titan	the major processes transforming the surface throughout time.	I3: Determine the internal magnetic signal of Titan	M1: Magnetic map of the surface	A1: Dual sensor, vector magnetometer, with sensors located on a boom away from the magnetic signature of the Orbiter.	MAPP	Precise location of the orbiter, Orbiter attitude and rigid boom for the magnetometer sensor. Continuous magnetic field data, as much coverage of the surface as possible. Consideration of magnetic cleanliness requirements vs. boom length
function as a system; to what extent are there similarities and differences with Earth and		I4: Detect and measure the depth of shallow subsurface reservoirs of liquid (hydrocarbons).	M1: Sounding profiles of subsurface dielectric horizons, over the entire mappable surface, up to 5 km depth at 10 m vertical resolution, and long temporal coverage of active regions.	A1: Single band (>20 MHz center) penetrating radar with capability of sub- surface sounding to a depth of ~5 km with ~10 m depth resolution.	TiPRA	TiPRA can take data on the nightside.
other solar system bodies?		I1: Determine crustal/subcru stal structure; reflectance of subsurface stratification.	M1: Sounding profiles of subsurface dielectric horizons, over the entire mappable surface, up to 5 km depth at 10 m vertical resolution, and long temporal coverage of active regions.	A1: Single band (>20 MHz center) penetrating radar with capability of sub- surface sounding to a depth of ~5 km with ~10 m depth resolution.	TiPRA	TiPRA can take data on the nightside.
	07: Determine the existence of a subsurface liquid water ocean.	I2: Determine if the crust is decoupled	M1: Degree-two gravity coefficients (J ₂ , C_{22} , S_{22}) to yield k_2 and phase lag. Harmonic amplitudes down to 0.1 ppm Titan surface gravity (equivalent to 1.3×10^{-5} cm/s ²).	A1: Relative velocity between the spacecraft and ground station determined from Doppler tracking with an accuracy up to 50 μ m/s with 60 s integration periods. (Ka-band link stability ~10 ⁻¹⁵ after all calibrations including accelerometer for non-gravitational forces).	RSA	Optimized gravity configuration near closest approach with minimized non-gravitational forces; repeat observations at the same C/A point but different true anomalies (e.g., apoapsis, periapsis)
		from the interior and the thickness	M2: Rotation parameters to 0.1 degree/yr and pole position shift to 0.1 degree/year.	A1: Repeated high-resolution near-IR imaging at $2.05 \pm 0.08 \mu m$, $2.73 \pm 0.08 \mu m$, and/or $5.35 \pm 0.45 \mu m$.	HiRIS	Repeated observations of fiducial points
		and rigidity of the icy crust.	M3: The long-wavelength topography of Titan and topographic effects of large-scale geologic structures. Lateral 1–10 km/vertical 10 m; satisfied by global topographic measurements.	A1: Altimetry measurements with single band (>20 MHz center) radar with capability of ~10 m height resolution and 1 km (along-track) and 5–10 km (cross-track) spatial resolution.	TiPRA	TiPRA can take data on the nightside. Need to tune the frequency after first pass.

KEY: O1...O4 = Objective 1...Objective 4; I1...I4 = Investigation 1 ...Investigation 4; M1...M4 = Measurement 1...Measurement 4; A1...A4 = Approach 1...Approach 4

SCIENCE OBJECTIVE		MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENT	
Goal A: How does Titan function as a system; to what extent are there	O7: Determine the existence of a subsurface liquid water ocean.	I3: Determine the induced magnetic field signatures in order to confirm subsurface liquid and place constraints on the conductivity and depth of the liquid	M1: Measure vector magnetic field perturbations of order a few nT (with a resolution of order 0.04 nT). Measurements of the inducing magnetic field allow separation of the inducing magnetic field (measured by the orbiter) from the induced fields (measured by the montgolfière/lander).	A1: Vector Magnetometry (part of a combined instrument).	MAPP	Requires a combination of orbiter and montgolfière magnetometer measurements to be able to unequivocally resolve the induced signatures.
similarities and differences with Earth and other solar system	O8: Determine the state of internal differentiation, whether Titan has a metal	I1: Map interior structure of Titan.	M1: Global gravity field to at least degree six. Doppler accurate to 50 µm/s with 60 s integration periods.	A1: Relative velocity between the spacecraft and ground station determined from Doppler tracking with an accuracy up to 50 μm/s with 60 s integration periods. (Ka-band link stability ~10 ⁻¹⁵ after all calibrations including accelerometer for non-gravitational forces).	RSA	Prefer mapping phase orbit height of 1500 km
bodies?	core and an intrinsic magnetic field, and constrain the crustal expression of thermal evolution of Titan's interior.	I2: Determine whether Titan has a dynamo.	M1: Detect or set limits on the intrinsic magnetic field of Titan. Measure vector magnetic field perturbations of order a few nT (with a resolution of order 0.04 nT). Thermal and magnetospheric plasma measurements will provide supportive role with regard to external currents from magnetospheric measurements.	A1: Vector Magnetometry (part of a combined instrument).	MAPP	Continuous measurements, globally distributed at varying altitudes. Knowledge of orbiter attitude and location, and a rigid magnetometer boom. Consideration of magnetic cleanliness requirements vs. boom length.
Goal B: To what level of	O1: Determine the processes leading to formation of	I1: Assay the speciation and abundances	M1: Abundances of monomer and polymer organic species and inorganic species with a detectability of <1 ppb and an accuracy of better than 3% over	A1: Passive Thermal-infrared Fourier Transform spectrometry, in the region from 30–1400 wavenumbers (7–333 μm); resolution 0.1–3.0 wavenumber.	TIRS	Limb and nadir viewing on polar orbit, rotation in
complexity has prebiotic chemistry evolved in the Titan system?	complex organics in the Titan atmosphere and their deposition on the surface.	of atmospheric trace molecular constituents.	an altitude range from 30–1500 km.	A2: Submillimeter sounding at 540–640 GHz with resolution 300 khz and 10% precision in retrieved abundances.	SMS	Limb viewing from polar orbit, in-track and off-track orientation

S	CIENCE OBJECTIV	/E	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENT
		I1: Assay the speciation and abundances of	M1: Abundances of monomer and polymer organic species and inorganic species with a detectability of <1 ppb and an accuracy of better than 3% over an altitude range from 30–1500 km.	A3: Direct sampling Mass spectrometry up to 10,000 Da with mass resolution 10,000 at 1% of the peak height, sensitivity of 1 ppb at 850 km and a dynamic range of 108.	PMS	Periapses varying from 700 km upward during aerosampling. Ram direction pointing of the instrument during aerosampling. Sample inlet should be located far from the main thrusters to avoid contamination.
		atmospheric trace molecular constituents.	M2: Stable isotope ratios of nitrogen, carbon, oxygen and hydrogen in photochemical products of methane, nitrogen and carbon monoxide.	A1: Direct sampling Mass spectrometry up to 10,000 Da with mass resolution 10,000 at 1% of the peak height and a dynamic range of 108.	PMS	Periapses varying from 700 km upward during aerosampling. Ram direction pointing of the instrument during aerosampling. Sample inlet should be located far from the main thrusters to avoid contamination.
	Q1: Determine	I2: Assay the molecular complexity of the condensed phase.	M1: Abundances of organic species in the atmosphere with a detectability of <1 ppb and an accuracy of better than 3% over an altitude range of 30–500 km, at polar latitudes with <5 mradians spatial resolution and long temporal coverage.	Transform spectrometry, in the region 30–1400 wavenumbers (7–333 µm); resolution 0.1–3.0 wavenumbers.		Limb and nadir viewing on polar orbit, rotation in azimuth
Goal B: To what level of complexity has prebiotic chemistry evolved in the Titan system?	the processes leading to formation of complex organics in the Titan atmosphere and their deposition on the surface.	I3: Quantify the sources of chemical energy for atmospheric chemistry.	M1: 3D ion-electron plasma measurements with FOV ~2π steradians, view flow in corotation and ram directions; view upward and downward looking hemispheres (unlikely to be simultaneous at all times). 3D plasma electron measurements must cover the energy range from 1 eV to 30 keV with angular resolution ~ 20°x20°, energy resolution Δ E/E ~18% and geometric factor GF ~ 1.0e³ cm²-ster-eV/eV. Electron measure-ments from 0.01 eV to 40 eV will be provided by LP. 3D plasma ion measurements must cover the energy range from 1 eV to 30 kV, angular resolution 20°x20°, energy resolution Δ E/E ~18%, mass range 1 ≤ M/Q ≤ 10,000 amu/charge, and geometric factor GF ~ 1.0e³ cm²-ster-eV/eV . The energetic particle measurements will be from 20 keV to 1 MeV for electrons and 10 MeV for ions with energy resolution Δ E/E ~30%, angular resolution ~30° and GF ~ 0.05 cm²-ster or greater. The energetic ion measurements should have mass resolution M/ Δ M ~10 or better.	A1: Low Energy Plasma and Particles Instrument (measures ion and electron fluxes from few ev ⁻¹⁰ MeV. Plasma instrument (E/Q <30 kV) must separate water group, methane group and ammonium group ions with TOF mass resolution M/ΔM ~10 to 60 Energetic Particle Spectrometer (measures magnetospheric particle fluxes from 10 keV to >Mev) with M/ΔM ~10 as part of a combined package with dual head vector Magnetometer and Langmuir probe.	MAPP	Periapses from 700 km upward during aerosampling and 950 km upwards during main mission. Complete range of local times and latitudes. Downward going hemisphere visible.

SO	CIENCE OBJECTIV	/E	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENT
	O1: Determine the processes leading to formation of complex organics in the	I3: Quantify the sources of chemical energy for atmospheric chemistry.	M2: Thermal electron density and temperature from ionosphere peak upward.	A1: Langmuir (swept voltage/current) probe as part of combined package with Low Energy Plasma and Particles Instrument, Energetic Particle Spectrometer and dual vector magnetometer. (Note: to obtain implied vertical profile requires topside sounding using low frequency ionospheric sounder addition to TiPRA similar to MARSIS)	Atmospheric sampling phase to get vertical profiles.	
	Titan atmosphere and their		M3: Flux of UV photons.	A1:: Modeled from swept voltage/current obtained by Langmuir probe (part of combined package)	MAPP	Continuous measurements, globally distributed at varying altitudes
	deposition on the surface.	I4: Determine surface composition.	M1: Inventory organic and inorganic surface constituents at 250 m spatial resolution.	A1: Near-IR mapping spectroscopy within the atmospheric transmission windows from 0.85–2.4 µm and 4.8–5.8 µm with spectral resolution >400 and spatial resolution = 250 m.	HiRIS	Prefer mapping phase orbit within ±3 hrs from local noon
Goal B: To what level of complexity has prebiotic chemistry evolved in the Titan system?	Characterize the degree to which the Titan organic inventory is different from known abiotic organic material in meteorites.	I1: Assay the composition of organic deposits exposed at the surface, including dunes, lakes, seas.	M1: Inventory organic and inorganic surface constituents at 250 m spatial resolution.	A1: Near-IR mapping spectroscopy within the atmospheric transmission windows from 0.85–2.4 µm and 4.8–5.8 µm with spectral resolution >400 and spatial resolution = 250 m.	HiRIS	Prefer mapping phase orbit within ±3 hrs from local noon
	O3: Characterize what chemical modification of organics occurs on the surface.		M1: Inventory organic species between +65 and -90 degrees latitude with 250 m spatial resolution and long temporal coverage.	A1: Repeated near-IR mapping spectroscopy within the 2- and 5-µm atmospheric-methane transmission windows (1.9–2.4 µm and 4.8–5.8 µm) with spectral resolution >400 and spatial resolution = 250 m.	HiRIS	Prefer mapping phase orbit within ±3 hrs from local noon
		cryovolcanism in modification and hydrolysis of organics.	M2: Sounding profiles of subsurface dielectric horizons with 10 m vertical resolution and extensive surface coverage. Horizontal resolution required is 5–10 km cross track, 1 km lateral (along track) with 10 m vertical precision altimetry.	A1: Single band (>20 MHz center) penetrating radar with capability of sub- surface sounding to a depth of ~5 km with ~10 m depth resolution.	TiPRA	

SO	CIENCE OBJECTIV	VE	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENT
		I2: Determine the importance of surface inorganic compounds as surface catalysts or doping agents.	M1: Identify inorganic salts and compounds containing phosphorous and other potentially reactive inorganic agents, from latitude 85°N to 85°S with 250 m spatial resolution and long temporal coverage.	A1: Partially completed with repeated near-IR mapping spectroscopy within the atmospheric transmission windows from 0.85–2.4 µm and 4.8–5.8 µm with spectral resolution >400 and spatial resolution = 250 m.	HiRIS	Prefer mapping phase orbit within ±3 hrs from local noon
			M1: Flux of cosmic rays.	A1: Use star tracker to determine flux.		
			M2: Distribution of impacts visible at the surface or buried as a result of erosional and depositional modification.	A1: High-resolution near-IR imaging at 2.05 ± 0.08 μm, 2.73 ± 0.08 μm, and 5.35 ± 0.45 μm.	HiRIS	Prefer mapping phase orbit at ±4 hrs from local noon
	O3: Characterize what chemical	I3: Quantify the sources of energy for surface		A2: Single band (>20 MHz center) penetrating radar with capability of sub- surface sounding to a depth of ~5 km with ~10 m depth resolution.		TiPRA can take data on the nightside.
Goal B: To what level of complexity	modification of organics occurs on the surface.	chemistry and identify the sites where it may have been present.	M3: Map surface at 50 m resolution in multiple wavelengths and correlate morphology and spectral characteristics of surface features with topography.	A1: High-resolution near-IR imaging at 2.05 \pm 0.08 μ m, 2.73 \pm 0.08 μ m, and 5.35 \pm 0.45 μ m.	HiRIS	Prefer mapping phase orbit at ±4 hrs from local noon
has prebiotic chemistry evolved in the Titan system?	canace.		M4: Map compounds such as acetylene and polyacetylene that indicate sites of chemical energy from latitudes 85°N to 85°S with 250 m spatial resolution and long temporal coverage.	A1: Repeated near-IR mapping spectroscopy within the atmospheric transmission windows from 0.85–2.4 µm and 4.8–5.8 µm with spectral resolution >400 and spatial resolution = 250 m	HiRIS	Prefer mapping phase orbit within ±3 hrs from local noon
		I4: Quantify the amount of aerosols deposited on Titan's surface and their modification as they get buried.	M1: Sounding profiles of subsurface dielectric horizons with 10 m vertical resolution and extensive surface coverage. Horizontal resolution required is 5–10 km cross track, 1 km lateral (along track) with 10 m vertical precision altimetry.	A1: Single band (>20 MHz center) penetrating radar with capability of sub- surface sounding to a depth of ~5 km with ~10 m depth resolution.	TiPRA	TiPRA can take data on the nightside. Profiles coordinated with HiRIS data.
	O4: Characterize the complexity of species in the subsurface ocean. I1: Determine whether evidence of sub-surface ocean species is present in cryovolcanic sites.		M1: Map compounds such as ammonia, sulfates, and more complex organics (e.g., CH ₃ COOH) at cryovolcanic sites with 250 m spatial resolution.	A1: Near-IR mapping spectroscopy within the atmospheric transmission windows from 0.85–2.4 µm and 4.8–5.8 µm with spectral resolution >400 and spatial resolution = 250 m.	HiRIS	Prefer mapping phase orbit within ±3 hrs from local noon

SC	CIENCE OBJECTIV	/E	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENT
		I1: Determine	M1: Isotopic composition of surface carbon and oxygen species at 250 m resolution.	A1: Partially met with near-IR mapping spectroscopy within the atmospheric transmission windows from 0.85–2.4 µm and 4.8–5.8 µm with spectral resolution >400 and spatial resolution = 250 m.	HiRIS	Prefer mapping phase orbit within ±3 hrs from local noon
		whether carbon dioxide is primarily internally	M2: Isotopic composition of atmospheric carbon and oxygen species from the surface to 1500 km.	A1: Mid-infrared spectra of the stratosphere with 30–1400 wave numbers (7–333 μm), spectral resolution of 0.1 to 3 wave numbers, spatial resolution of <5 mrad IFOV.	TIRS	Limb and nadir viewing on polar orbit, rotation in azimuth
		derived or photo-chemically		A2: Submillimeter sounding at 540–640 GHz with resolution 300 khz and 5% precision in retrieved abundances.	SMS	Limb viewing from polar orbit, in-track and off-track orientation
Goal B: To what level of	O5: Characterize bulk composition,	produced.		A3: Direct sampling Mass spectrometry up to 10,000 Da with mass resolution 10,000 at 1% peak height and dynamic range of 108.	PMS	Periapses varying from 700 km upward during aerosampling. Ram direction pointing of the instrument during aerosampling. Sample inlet should be located far from the main thrusters to avoid contamination.
complexity has prebiotic chemistry evolved in the Titan system?	sources of nitrogen and methane, and exchange between the surface and the	of and , and 12: Determine whether the methane is	M1: Isotopic composition of atmospheric carbon with precision of 0.1 per mil at altitudes from 600 km upwards (particularly in well mixed region below 850 km).	A1: Direct sampling Mass spectrometry with sensitivity of 10 ppb at 850 km altitude. A dual inlet system with a reference gas is required for accurate isotope determination.	PMS	Periapses varying from 700 km upward during aerosampling. Ram direction pointing of the instrument during aerosampling. Sample inlet should be located far from the main thrusters to avoid contamination.
	interior.		M2: Isotopic composition of surface carbon species at 250 m spatial resolution.	A1: Near-IR mapping spectroscopy within the atmospheric transmission windows from 0.85–2.4 µm and 4.8–5.8 µm with spectral resolution >400 and spatial resolution = 250 m.	HiRIS	Prefer mapping phase orbit within ±3 hrs from local noon
		I3: Determine whether molecular	M1: Isotopic composition of atmospheric nitrogen from 600 km upwards to a precision of 0.1 per mil.	A1: Direct sampling Mass spectrometry with sensitivity of 10 ppb at 850 km altitude. A dual inlet system with a reference gas is required for accurate isotope determination.	PMS	Periapses varying from 700 km upward during aerosampling. Ram direction pointing of the instrument during aerosampling. Sample inlet should be located far from the main thrusters to avoid contamination.
		nitrogen is derived from ammonia.	M2: Inventory compounds such as ammonia and ammonium hydrate between +65 and -90 degrees latitude with 250 m spatial resolution.	A1: Near-IR mapping spectroscopy within the atmospheric transmission windows from 0.85–2.4 µm and 4.8–5.8 µm with spectral resolution >400 and spatial resolution = 250 m.	HiRIS	Prefer mapping phase orbit within ±3 hrs from local noon

S	CIENCE OBJECTIV	/E	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENT
Goal B: To what level of complexity has prebiotic chemistry	O5: Characterize bulk composition, sources of nitrogen and methane, and Characterize whether pockets of partial melt are present a depth. I4: Determine whether pockets of partial melt are present a depth.		M1: Sounding profiles of subsurface dielectric horizons with 10 m vertical resolution and extensive surface coverage. Horizontal resolution required is 5–10 km cross track, 1 km lateral (along track) with 10 m vertical precision altimetry.	A1: Single band (>20 MHz center) penetrating radar with capability of sub- surface sounding to a depth of ~5 km with ~10 m depth resolution.	TiPRA	TiPRA can take data on the nightside. Profiles coordinated with HiRIS data.
evolved in the Titan system?	exchange between the surface and the interior.	15: Determine the isotopic ratios of noble gases'	M1: Quantify noble gas isotopic ratios (Ar, Kr, Xe)	A1: Direct sampling Mass spectrometry with sensitivity of 10 ppb at 850 km altitude. A dual inlet system with a reference gas is required for accurate isotope determination.	PMS	Periapses varying from 700 km upward during aerosampling. Ram direction pointing of the instrument during aerosampling.
Goal C: What can be learned from Enceladus and from Saturn's magnetos phere about the origin and evolution of Titan?	O1: Determine how Titan's atmosphere evolves by virtue of its coupling to the Saturn magneto-sphere and Titan's low gravity.	I1: Determine how energy is deposited in the upper atmosphere of Titan to drive the chemistry and the escape rate of major atmospheric constituents.	M1: 3D ion-electron plasma measurements with FOV ~2π steradians, view flow in corotation and ram directions; view upward and downward looking hemispheres (not likely to be simultaneous at all times). The 3D plasma electron measurements must cover the energy range from 1 eV to 30 keV with angular resolution ~20°x20°, energy resolution Δ E/E ~ 18% and geometric factor GF ~ 1.0e-3 cm²-ster-eV/eV. Electron measurements from 0.01 eV to 40 eV will be provided by LP. The 3D plasma ion measurements must cover the energy range from 0.1 V to 30 kV, angular resolution 20°x20°, energy resolution Δ E/E ~ 18%, mass range 1 ≤ M/Q ≤ 10,000 amu/charge, and geometric factor GF ~ 1.0e-3 cm²-ster-eV/eV (ability to attenuate GF desirable for ionospheric measurements. The hot plasma and energetic particle measurements will be from 20 keV to 1 MeV for electrons and 10 MeV for ions with energy resolution Δ E/E ~30%, angular resolution ~30° and GF ~ 0.05 cm²-ster or greater. The energetic ion measurements should have mass resolution M/ΔM ~10 or better.	A1: Measure ion and electron fluxes from few ev-10 MeV. Plasma instrument (E/Q <30 kV) must separate water group, methane group and ammonium group ions with TOF mass resolution M/ΔM ~10 (ST) and 60 (LEF). Energetic Particle Spectrometer (measures magnetospheric particle fluxes from 10 keV to >Mev) with M/ΔM ~ 10 as part of a combined package. The plasma instrument will need to measure the ion composition within Saturn's magnetosphere with water group ions indicating an Enceladus source and nitrogen ions and methane ions indicating a Titan source.	MAPP	Periapses from 700 km upward during aerosampling and 950 km upwards during main mission. Complete range of local times and latitudes. Downward and upward going hemispheres visible.

	SC	IENCE OBJECTIV	/E	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENT
	е	O1: Determine	I1: Determine how energy is deposited in the upper atmosphere of Titan to drive	M2: Thermal electron density and temperature <i>in situ</i> and density profiles as a function of altitude from the ionospheric peak to the orbiter.	A1: Langmuir (swept voltage/current) probe as part of combined packager. (Note: to obtain implied vertical profile requires topside sounding using low frequency ionospheric sounder addition to TiPRA [similar to MARSIS])	MAPP	Periapses from 700 km upward during aerosampling and 950 km upwards during main mission. Complete range of local times and latitudes.
	how Titan's atmosphere evolves by virtue of its coupling to the Saturn	atmosphere evolves by virtue of its coupling to the	the chemistry and the escape rate of major atmospheric constituents.	M3: Abundances of upper atmospheric constituents with M up to 10,000 Da; mass resolution 10,000 at 1% of peak height at altitudes from 700 km through 1000 km; sensitivity including isotopes, detectability down to 0.01 ppb.	A1: Direct sampling Mass spectrometry up to 10,000 Da with mass resolution 10,000 at 1% peak height and dynamic range of 108.	PMS	Ram direction pointing of the instrument during flybys. Sample inlet should be located far from the main thrusters to avoid contamination.
	Saturn	sphere and	I2: Determine the escape	M1: Vertical profiles of carbon, nitrogen and oxygen containing compounds as	A1: Submillimeter sounding at 540–640 GHz with resolution 300 khz.	SMS	Limb viewing from polar orbit, in-track and off-track orientation
Goal C: What can be learned from Enceladus and from	dr can earned eladus		rates and mechanisms of major atmospheric species on Titan.	major and minor constituents near the exobase of Titan with accuracy better than 5%.	A2: Mid-infrared spectra of the stratosphere over the region 30–1400 wave numbers (7–333 μm), spectral resolution of 0.1 to 3 wave numbers, spatial resolution of <5 mrad IFOV.	TIRS	Limb and nadir viewing on polar orbit, rotation in azimuth
Saturn's magnetos phere about the origin and evolution		O2: Infer the crustal and deep internal structure of Enceladus, including the	Enceladus' internal activity,	M1: Degree-two gravity coefficients (J ₂ , C ₂₂ , S ₂₂). Harmonic amplitudes down to 0.1 ppm Enceladus surface gravity.	A1: Relative velocity between the spacecraft and ground station determined from Doppler tracking with an accuracy up to 50 μm/s with 60 s integration periods. (Ka-band link stability ~10 ⁻¹⁵ after all calibrations including accelerometer for non-gravitational forces).	RSA	Optimized gravity configuration near closest approach with minimized non-gravitational forces as well as Doppler tracking over long arcs.
of Titan?	Enceladus			M2: Sounding profiles of subsurface dielectric horizons, in the active region, up to 50 km depth at 100 m vertical resolution and a spatial resolution better than 2 km.	A1: Single band (>20 MHz center) penetrating radar and altimetry with capability of sub-surface sounding to a depth of ~50 km with ~10 m depth resolution.		Observations at C/A for all flybys. Use long radar echo gate in order to receive echoes from greater penetration depths. Simultaneous observation with RSA to
	Enc	presence of gravity anomalies, and the moon's tidal history.	between a solid crust and a liquid layer, as well as partial melt pockets			TiPRA	obtain both the subsurface structure and associated gravity signature.
			I2: Test for true polar wander on Enceladus.	M1: Obliquity and spin of Enceladus.	A1: Repeated high resolution near-IR imaging at 2.05 ± 0.08 μm, 2.73 ± 0.08 μm, and 5.35 ± 0.45 μm.	HiRIS	Acquired ~600 km from Enceladus. Repeated on multiple passes.

	SC	IENCE OBJECTIV	/E	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENT
		O3: Characterize the chemistry of the Enceladus	I1: Determine the composition of the plume, including	M1: Abundances and time variability of organic and inorganic species in the plume, including heavy polymers at mass resolution 10,000 at 1% of peak height.	A1: Direct sampling Mass spectrometry up to 10,000 Da with mass resolution 10,000 at 1% peak height and dynamic range of 108.	PMS	Ram direction pointing of the instrument during flybys. Sample inlet should be located far from the main thrusters to avoid contamination. High Data Volume Data Rate: 48
		plumes.	isotopic abundances.		A2 Submillimeter sounding at 540–640 GHz with resolution 300 khz.	SMS	kbits/s Map plumes
				M1: Map surface features at 0.5 km spatial resolution at the global scale.	A1: Whole-disk near-IR imaging at 2.05 ± 0.08 μm, 2.73 ± 0.08 μm, and 5.35 ± 0.45 μm.		Acquired ~15,000 km from Enceladus
				M2: Composition of surface at 1 km spatial resolution at the global scale.	A1: Near-IR mapping spectroscopy from 0.85–2.4 μm and 4.8–5.8 μm with spectral resolution >400.	HiRIS	Acquired ~6,000 km from Enceladus
Goal C:				M3: Map surface features at 30 m spatial resolution of candidate locations on a regional scale.	A1: High-resolution Near-IR imaging at 2.05 ± 0.08 μm, 2.73 ± 0.08 μm, and 5.35 ± 0.45 μm.	HiRIS	Acquired ~1000 km from Enceladus
What can be learned from Enceladus and	adns	the active	I1: Characterize the global and regional geo- morphology of Enceladus' surface.	M4: Surface topography at 10 m vertical resolution, a spatial resolution along-track up to 100 m, and crosstrack up to 1 km of candidate locations on a regional scale.	A1: Single band (>20 MHz center) penetrating radar and altimetry with capability of sub-surface sounding to a depth of ~50 km with ~10 m depth resolution.	TiPRA	Observations at C/A for all flybys. Simultaneous observation with RSA to obtain both the subsurface structure and associated gravity signature.
Saturn's magnetos phere about the	Enceladus			M5: Composition of surface geologic features at 300 m spatial resolution of candidates locations on a regional scale.	A1: Near-IR mapping spectroscopy from 0.85–2.4 μm and 4.8–5.8 μm with spectral resolution >400.	HiRIS	Acquired ~1,800 km from Enceladus
origin and evolution of Titan?		region near the south pole, and whether liquid water exists beneath the area.		M6: Sounding profiles of subsurface dielectric horizons, in the active region up to 50 km depth, at 10 m vertical resolution, a spatial resolution alongtrack up to 0.1 km and cross-track up to 1 km.	A1: Single band (>20 MHz center) penetrating radar and altimetry with capability of sub-surface sounding to a depth of ~50 km with ~10 m depth resolution.	TiPRA	Observations at C/A for all flybys. Use long radar echo gate in order to receive echoes from greater penetration depths Simultaneous observation with RSA to obtain both the subsurface structure and associated gravity signature.
			I2: Determine whether thermal anomalies exist underneath the surface.	M1: Surface temperature distribution with precision 1 K; spatial resolution 100 meters.	A1: Mid-infrared spectra of the surface in the 30–1400 wave numbers (7–333 μm) region, spectral resolution of 3 to 15 wave numbers, spatial resolution of <5 mrad IFOV.	TIRS	Nadir viewing of the surface, range less than 600 km
				M2: Sounding profiles of subsurface dielectric horizons, in the active region up to 50 km depth	A1: Single band (>20 MHz center) penetrating radar and altimetry with capability of sub-surface sounding to a depth of ~50 km with ~10 m depth resolution.	TiPRA	Observations at C/A for all flybys. Use long radar echo gate in order to receive echoes from greater penetration depths Simultaneous observation with RSA to obtain both the subsurface structure and associated gravity signature.

	SC	IENCE OBJECTIV	/E	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENT
		O4: Understand the formation of the active region near the south pole, and	I3: Determine the origin of the surface organic materials and	M1: Gravity field amplitude down to 0.1 ppm Enceladus surface gravity.	A1: Relative velocity between the spacecraft and ground station determined from Doppler tracking with an accuracy up to 50 μm/s with 60 s integration periods. (Ka-band link stability ~10 ⁻¹⁵ after all calibrations including accelerometer for non-gravitational forces).	RSA	Optimized gravity configuration near closest approach with minimized non-gravitational forces
	whether liquid water exists beneath the	water exists	its connection with interior reservoirs.	M2: Composition of surface organics at 300 m spatial resolution.	A1: Near-IR mapping spectroscopy from 0.85–2.4 μm and 4.8–5.8 μm with spectral resolution >400.	HiRIS	Acquired ~1,800 km from Enceladus
				M1: Distribution of water ice and frost at 300 m spatial resolution.	A1: Near-IR mapping spectroscopy from 0.85–2.4 µm and 4.8–5.8 µm with spectral resolution >400.		Acquired ~1,800 km from Enceladus
			I1: Determine whether extrusion of	M2: Sounding profiles of subsurface dielectric horizons, in the active region, up to 50 km depth at 10 m vertical resolution, a spatial resolution along-	A1: Single band (>20 MHz center) penetrating radar and altimetry with capability of sub-surface sounding to a depth of ~50 km with ~10 m depth	TiPRA	Observations at C/A for all flybys. Use long radar echo gate in order to receive echoes from greater penetration depths
Goal C: What can be learned	What can	O5: Identify and characterize candidate sites on Enceladus for future in situ exploration.	water ice or liquid water has occurred recently.	track up to 0.1 km and cross-track up to 1 km.	resolution.		Simultaneous observation with RSA to obtain both the subsurface structure and associated gravity signature.
from Enceladus and Saturn's magnetos	Enceladus			M3: Surface temperature distribution with precision 1 K; spatial resolution 100 meters.	A1: Mid-infrared spectra of the stratosphere in the 30–1400 wave numbers (7–333 µm) region, spectral resolution of 3 to 15 wave numbers, spatial resolution of <5 mrad IFOV.	TIRS	Nadir viewing of the surface, range less than 600 km
phere about the origin and evolution	Е		ize sites adus in la	M1: Variations in the tiger stripe regions as a function of true anomaly at 30 m spatial resolution.	A1 : High-resolution near-IR imaging at 2.05 ± 0.08 μm, 2.73 ± 0.08 μm, and/or 5.35 ± 0.45 μm repeated at multiple true anomalies.	HiRIS	Acquired ~1000 km from Enceladus. Requires multiple flybys over the south polar region.
of Titan?				M2: Gravity field amplitude down to 0.1 ppm Enceladus surface gravity at candidate locations. Repeat coverage for different true anomalies.	A1: Relative velocity between the spacecraft and ground station determined from Doppler tracking with an accuracy up to 50 μm/s with 60 s integration periods. (Ka-band link stability ~10 ⁻¹⁵ after all calibrations including accelerometer for non-gravitational forces).	RSA	Optimized gravity configuration near closest approach with minimized non-gravitational forces, as well as Doppler tracking over long arcs.
			of extremely thin crust or exposed liquid within cracks	M3: Sounding profiles of subsurface dielectric horizons, in the active region, up to 50 km depth at 10 m vertical resolution, a spatial resolution along-	A1: Single band (>20 MHz center) penetrating radar and altimetry with capability of sub-surface sounding to a depth of ~50 km with ~10 m depth	TiPRA	Observations at C/A for all flybys. Use long radar echo gate in order to receive echoes from greater penetration depths
			exist.	track up to 0.1 km and cross-track up to 1 km.	resolution.		Simultaneous observation with RSA to obtain both the subsurface structure and associated gravity signature.
				M4: Surface temperature distribution with precision 1 K; spatial resolution 100 meters.	A1: Mid-infrared spectra of the stratosphere in the 30–1400 wave numbers (7–333 µm) region, spectral resolution of 3 to 15 wave numbers, spatial resolution of <5 mrad IFOV.	TIRS	Nadir viewing of the surface, range less than 600 km

KEY: O1...O4 = Objective 1...Objective 4; I1...I4 = Investigation 1 ...Investigation 4; M1...M4 = Measurement 1...Measurement 4; A1...A4 = Approach 1...Approach 4

Table 1-2. Science Traceability Matrix—Montgolfière

					Tati ix	- Montgomere
	SCIENCE OBJEC	TIVE	MEASUREMENT	INSTRUMENT		MISSION REQUIREMENTS
	O2:	I1: Quantify the flux of exospheric oxygen into the	M3: O content of the aerosols	A1: In situ analysis of the aerosols collected at the level of the montgolfière	TMCA	Collect aerosols that are falling from higher altitudes; 1 km and 5° attitude knowledge of montgolfière.
	Characterize the relative importance of exogenic and endogenic oxygen sources.	atmosphere.	M4: Amount of O bearing molecules in the troposphere	A1: Infrared spectra of the atmosphere, including CO and CO ₂	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
		I2: Quantify the flux of endogenic oxygen from the surface and interior.	M1: Inventory of surface constituents containing oxygen, including major isotopologues at 250 m or better resolution	A2: Infrared spectral maps of the surface at wavelengths absorbed by the O bearing molecules (4.92 μm for CO ₂) at 10% level within a pixel	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
Goal A: How does Titan function as a system; to what extent are there similarities and	O3: Characterize the major processes controlling the global distribution of atmospheric chemical constituents.	I1: Characterize the major chemical cycles.	M1: Vertical, latitudinal, and temporal dependence of condensed and gaseous species in the atmosphere from 0 to 1500 km with precision better than 10%	A5: Pump the atmosphere into the chemical analyzer to analyze ethane mole fraction and other volatile species in troposphere (gas and condensed phase), with a precision of 5%	TMCA	Tracking of the montgolfière (lat, long, alt); 1 km and 5°attitude knowledge required.
differences with Earth and other solar system bodies?		I2: Determine the relative importance of global transport.	M3: Ethane mole fraction in the troposphere (gas and condensed phases) at different longitudes (day/night variations); ethane/methane	A1: Pump the atmosphere into the chemical analyzer to analyze ethane mole fraction in troposphere (gas and condensed phase), with a precision of 5%	TMCA	Tracking of the montgolfière (lat, long, alt); 1 km and 5° attitude knowledge of montgolfière
	O4: Characterize the atmospheric	racterize I1: Determine the	M5: Track the drift of the montgolfière to infer strength and directions of winds.	A1: The location of the montgolfière relative to Titan by tri-axial accelerometers and gyroscopes (inertial platform) to infer wind field and gusts.	ASI/ MET	ASI should be placed as close as possible to the center of gravity of the gondola. 1 km and 5° attitude knowledge of montgolfière.
	circulation and flow of energy.	dynamical state.	M6: Measure deposition of sunlight as a function of altitude to infer the radiation balance in the troposphere.	A1: Solar light arriving at the altitude of the montgolfière during its journey in the tropical regions	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required. 1 km and 5° attitude knowledge of montgolfière.

	SCIENCE OBJECT	TIVE	MEASUREMENT	INSTRUMENT		MISSION REQUIREMENTS
			M7: Vertical profile of temperature, pressure, and density (T and P accuracy to 0.1 K and 1 mPa and resolution to 0.02 K and 0.1% respectively). Determine the trajectory of the montgolfière during entry and descent and floating phase	A1: Measure T by a Pt wire resistance thermometer and P by Kiel probe and capacitive gauges. Pressure and temperature measurements during the descent. Monitor meteorological conditions during the montgolfière journey	ASI/ MET	ASI pressure inlet and thermometers should have access to the atmospheric unperturbed flow (outside the descent probe boundary layer). The trajectory of the probe (entry and descent module reconstructed from the engineering sensor data (e.g., IMU), the high sensitive scientific accelerometer (and/or IMU). Coordination with orbiter RSA data.
Goal A: How does	How does itan function is a system; o what extent are here imilarities ind lifferences How does O4: Characterize the atmospheric circulation and flow of energy.			A2: Three-axis in situ accelerometer measurements to a precision of 10 ⁻⁵ m/s ² during entry and during the montgolfière journey	ASI/ MET	ASI-ACC should be placed as close as possible to the entry module CoG. ASI operating before nominal interface entry altitude (1270 km). Coordination with orbiter RSA data.
Titan function as a system; to what extent are there similarities and differences with Earth		d	M8: Pressure, temperature variations in space and time (T and P accuracy to 0.1 K and 1 mPa and resolution to 0.02 K and 0.1% respectively)	A1: Pressure, temperature, and accelerometry during the journey of the montgolfière	ASI/ MET	1 km and 5° attitude knowledge of montgolfière.
and other solar system bodies?			M9: Determine large surface temperature	A1: Infrared spectra of the surface between 5 and 5.6 µm will enable us to see T variations larger than 50 K.	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
			M10: Timing (local time, orbital phase) of cloud occurrence,	A1: Continuous monitoring of cloud formation	VISTA -B	1 km and 5° attitude knowledge of montgolfière required.
			evolution, cloud base/top and appearance	A2: Continuous monitoring of meteorological conditions	ASI/ MET	1 km and 5° attitude knowledge of montgolfière
		I2: Determine the impact of haze and clouds.	M4: Track the motion of clouds (and cryovolcanic vents, if any). Search for orographic clouds.	A1: Imaging from the gondola at 10 m resolution	VISTA -B	1 km and 5° attitude knowledge of montgolfière
				A2: Infrared spectral maps of the clouds and terrain	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.

	SCIENCE OBJEC	TIVE	MEASUREMENT	INSTRUMENT		MISSION REQUIREMENTS
			M5: Particle size distribution and optical properties of clouds and haze	A1: Infrared measurements of reflective light	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
			M6: Profile of methane mole fraction and its variations in the equatorial regions; fraction of methane	A1: Infrared spectral maps to measure the width of the methane absorption bands to determine the amount of methane	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
Goal A: How does Titan function as a system; to what	and clouds.	in the condensed phase compared to the total atmospheric methane abundance	in the condensed phase compared to the total atmospheric	A2: Pump the atmosphere into the chemical analyzer to analyze methane mole fraction in troposphere (gas and condensed phase), with a precision of 1%	TMCA	Tracking of the montgolfière (lat, long, alt); 1 km and 5° attitude knowledge required.
extent are there similarities and differences with Earth and other solar system bodies?	O4: Characterize the atmospheric circulation and flow of energy.	eric Id		A3: In situ monitoring of T and P conditions. Simultaneous measurements of pressure and T are necessary to assess the phase of the species (e.g., condensation) and to associate a certain pressure level in the atmosphere (or equivalent altitude level) to the mole fractions determined by TMCA.	ASI/ MET	1 km and 5° attitude knowledge of montgolfière
		I3: Determine the effects of atmospheric composition.	M3: Profile of ethane mole fraction and its variations in the equatorial regions; fraction of ethane in the condensed phase compared to the total atmospheric ethane abundance	A1: Infrared spectral maps to measure the width of the ethane absorption bands to determine the amount of ethane	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.

	SCIENCE OBJEC	ΓΙVΕ	MEASUREMENT	INSTRUMENT		MISSION REQUIREMENTS
	v does n function a system; that ont are 13: Determine the effects of atmospheric composition.		M3: Profile of ethane mole fraction and its variations in the equatorial regions; fraction of ethane in the condensed phase compared to the total atmospheric	A2: Pump the atmosphere into the chemical analyzer to analyze ethane mole fraction in troposphere (gas and condensed phase), with a precision of 1%	TMCA	Tracking of the montgolfière (lat, long, alt); 1 km and 5° attitude knowledge required.
Goal A: How does Titan function as a system; to what extent are		ethane abundance	A3: In situ monitoring of T and P conditions Simultaneous measurements of pressure and T are necessary to assess the phase of the species (e.g., condensation) and to associate a certain pressure level in the atmosphere (or equivalent altitude level) to the mole fractions determined by TMCA.	ASI/ MET	1 km and 5° attitude knowledge of montgolfière.	
there similarities and	the atmospheric circulation and		M4: Determine the topography and find correlation with clouds and turbulences.	A1: Topography and clouds are determined by the stereo imaging	VISTA -B	1 km and 5° attitude knowledge of montgolfière
differences with Earth and other	flow of energy.			A2: Topography is determined by first echo of the radar sounder	TRS	Precise identification of the trajectory of the montgolfière increases the quality of the measurements; 1 km and 5° attitude knowledge required.
solar system bodies?				A3: Infrared spectrometry to monitor the clouds	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context
	I4: Determine the effects of surface processes on meteorology.			A4: In situ monitoring of meteorological conditions (T, P, and wind) to investigate thermal variations, turbulence and dynamics (e.g., gravity waves and tides)	ASI/ MET	1 km and 5° attitude knowledge of montgolfière.
		M: Determine the	M4: Identify active volcanism in the	A1: Infrared spectral maps	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context
		equatorial region with 50 m resolution from orbit and .2.5 m resolution from 10km altitude	A2: Stereo and high-res imaging from the Gondola	VISTA -B	1 km and 5° attitude knowledge requirement of montgolfière	

	SCIENCE OBJECT	TIVE	MEASUREMENT	INSTRUMENT		MISSION REQUIREMENTS
			M6: Search for possible surface methane sources	A1: Stereo and high-res imaging from the Gondola	VISTA -B	1 km and 5° attitude knowledge of montgolfière
			(vents, etc.) in the equatorial regions.	A2: Monitor atmospheric methane concentration.	TMCA	Precise location of montgolfière to 1 km and 5° attitude knowledge.
				A3: In situ monitoring of meteorological conditions by direct T and P measurements (T and P accuracy to 0.1 K and 1 mPa and resolution to 0.02 K and 0.1% respectively) and gondola attitude	ASI/ MET	Precise location of montgolfière to 1 km and 5° attitude knowledge.
Goal A: How does Titan function as a system; to what extent are	ow does an function a system; what tent are O4:			A4: Infrared spectral maps to measure the width of the methane absorption bands to determine the amount of methane	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context
there similarities	Characterize the atmospheric		M7: Global distribution of surface wind directions	A1: Direction of dunes/cloud movement	VISTA -B	Precise location of montgolfière to 1 km and 5° attitude knowledge .
and differences with Earth and other solar system bodies?	circulation and flow of energy. with Earth and other solar system			A2: Wind field inferred from T and P measurements (T and P accuracy to 0.1 K and 1 mPa and resolution to 0.02 K and 0.1% respectively) and monitoring the gondola attitude	AS/ MET	Wind field inferred from T and P measurements and monitoring the gondola attitude; 1 km and 5° attitude knowledge requirement of montgolfière
		I5: Determine the exchange of	M6: Global distribution of surface	A1: Radar measurements	TRS	Precise location of montgolfière—1 km and 5° attitude knowledge required.
		momentum,	roughness and topography	A2: Stereo imaging (10 m/pix)	VISTA -B	Precise location of montgolfière—1 km and 5° attitude knowledge required.
		energy and matter between the surface and atmosphere and characterize the planetary boundary layer.		A3: Measure the shadows of reliefs within the infrared maps	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
			M7: Diurnal temperature variations and time- series meteorology	A1: Measure the temperature by a Pt wire resistance thermometer with ΔT = 0.1 K	ASI/ MET	Same as ASI/MET above

	SCIENCE OBJECT	TIVE	MEASUREMENT	INSTRUMENT		MISSION REQUIREMENTS
		I5: Determine the exchange of	M8: Distribution of condensates at the	A1: Infrared identification of condensate species	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
		momentum, energy and matter between the surface and atmosphere and characterize the planetary boundary layer.	surface	A2: High spatial resolution color images of the surface at equatorial latitudes; ground truth for orbiter measurement	VISTA -B	Precise location of montgolfière to 1 km and 5° attitude knowledge of montgolfière
			M9: Abundance of water ice at the surface	A1: Infrared mapping through the methane windows and compare windows where ice absorbs (e.g., 1.6 and 2.0 μm) and where it does not (1.05 μm).	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
Goal A: How does Titan function as a system; to what extent are	O4:		M2: Global electric circuit and fair-weather electric field in the range from 0–10 kHz. With a height resolution of 1 km	A1: Measurement of electric field using dipole antennas; vertical and horizontal electric field in the frequency range from DC to VLF (~10 kHz)	TEEP- B	1 km and 5° attitude knowledge of montgolfière
there similarities and differences with Earth and other solar system	Characterize the atmospheric circulation and flow of energy.		M3: Extra low and low frequency (ELF-VLF) magnetic components of the atmospheric electricity from 0–10 kHz	A1: Measurement of magnetic field using loop antenna; vertical and horizontal electric field in the frequency range from DC to VLF (~10 kHz nas or search coils)	TEEP- B	1 km and 5° attitude knowledge of montgolfière
bodies?		I6: Determine the connection	M4: Search for electric discharges.	A1: Long exposure nighttime imaging	VISTA -B	Precise location of montgolfière from Inertial Navigation System (INS); 1 km requirement
		between weather, ionosphere, and		A2: Electric field and optical sensors	TEEP- B	Coordinated with VISTA-B
		electricity.	M5: Electrical conductivity and permittivity of the	A1: Relaxation probe to measure the conductivity of all charged species	TEEP- B	Time series of conductivity (all charged species)
			atmosphere (positive and negative ions + electrons) to 1 km resolution in the range 10 ⁻¹⁴ to 10 ⁻⁶ Sm ⁻¹ and electrons only, with a height resolution to 100 m in the range 10 ⁻¹¹ to 10 ⁻⁶ Sm ⁻¹	A2: Mutual impedance probe which measures the conductivity of electronics only	TEEP- B	Amplitude and phase of electric signal

KEY: O1...O4 = Objective 1...Objective 4; I1...I4 = Investigation 1 ...Investigation 4; M1...M4 = Measurement 1...Measurement 4; A1...A4 = Approach 1...Approach 4

	SCIENCE OBJEC	TIVE	MEASUREMENT	INSTRUMENT		MISSION REQUIREMENTS
		I3: Determine surface composition that	M1: Optical maps in the methane windows at 2.5 m resolution	A1: Use the infrared images at different incidence angles to determine the nature of the surface (liquid or solid)	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
	05: Characterize	might reveal the presence of liquids.	M2: Precipitation rate, solid or liquid nature of precipitation	A1: In situ monitoring of T and P conditions with reference to the altitude level	ASI/ MET	1 km and 5° attitude knowledge of montgolfière
	the amount of			A3: In situ observations at all wavelengths.	VISTA -B	Precise location of montgolfière to 1 km and 5° attitude knowledge of montgolfière
Goal A:	liquid on the Titan surface today.	I4: Determine the nature of precipitation	M1: Lateral variations of surface compounds in the valley networks at 5 m resolution	A1: Map lateral variations of surface composition in the river networks and at their mouth	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
How does Titan function as a system; to what extent are there similarities		responsible for the formation of valley networks in the tropical regions.		A3: High spatial resolution color images of the surface at equatorial latitudes; ground truth for orbiter measurement	VISTA -B	Precise location of montgolfière to 1 km and 5° attitude knowledge.
and differences		I1: Determine the origin of major	M5: Measure regional topography	A1: Stereo images of the surface	VISTA -B	Precise location of montgolfière to 1 km and 5° attitude knowledge
with Earth and other solar system bodies?	06: Characterize	crustal features; correlate regional elevation changes with geomorph- ology and compositional variations.		A2: Reflection of radar signal	TRS	Precise identification of the trajectory of the montgolfière increases the quality of the measurements
	the major processes transforming the surface throughout time.	12: Characterize the origin of major surface features, including the effects of liquid flow, tectonic, volcanic, and impact events.	M4: Geological maps at 2.5 m resolution	A1: Infrared mapping through the methane windows	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
		I3: Determine the internal magnetic signal.	M1: Magnetic map, taken from a constant altitude	A1: Dual sensor magnetometer fixed to boom on gondola	MAG	Precise location of montgolfière to 1 km and 5° attitude knowledge 1 km continuous magnetic field data, as much coverage of the surface as possible. Consideration of magnetic cleanliness requirements vs. boom length. Complementarities with orbiter measurements during Titan flybys.

KEY: O1...O4 = Objective 1...Objective 4; I1...I4 = Investigation 1 ...Investigation 4; M1...M4 = Measurement 1...Measurement 4; A1...A4 = Approach 1...Approach 4

	SCIENCE OBJECT	ΓΙVΕ	MEASUREMENT	INSTRUMENT		MISSION REQUIREMENTS
	O6: Characterize the major	I4: Detect and measure the depth of shallow subsurface reservoirs of liquid (hydrocarbons).	M2: Subsurface sounding at frequency between 150 and 200 MHz in order to detect liquid reservoirs less than 1 km deep.	A1: High resolution subsurface profiles over few hundred meters (500 m) spot size and vertical resolution <6 m	TRS	Precise location of the montgolfière makes it possible an integrated multiscale analysis of the TRS profiles with the radar measurements acquired by the sounder on the orbiter. Precise location of montgolfière to 1 km and 5° attitude knowledge.
Goal A: How does Titan function as a system; to what extent are there similarities	the major processes transforming the surface throughout time.	15: Determine the subsurface structures and constrain the stratigraphic history of dunes.	M1: Subsurface sounding along the montgolfière journey at a frequency between 150 and 200 MHz (vertical resolution of less than 10 meters and spatial resolution less than 200 meters)	A1: Radar sounding	TRS	Comparison between optical remote sensing images and radar profiles. Precise location of the montgolfière makes it possible an integrated multiscale analysis of the TRS profiles with the radar measurements acquired by the sounder on the orbiter. Precise location of montgolfière to 1 km and 5° attitude knowledge.
and differences with Earth and other solar system bodies?	07 : Determine	12: Determine if the crust is decoupled from the interior and the thickness and rigidity of the icy crust.	M1: Map of geological structures at different true anomalies	A1: High-resolution mapping of surface features with their precise location	VISTA -B	Precise location of montgolfière to 1 km and 5° attitude knowledge.
	the existence of a subsurface liquid water ocean.	I3: Determine the induced magnetic field signatures in order to confirm subsurface liquid and place constraints on the conductivity and depth of the liquid	M3: In situ vector magnetic field measurements	A1: Dual sensor magnetometer fixed to boom on gondola	MAG	Precise location of montgolfière to 1 km and 5° attitude knowledge. Continuous magnetic field data combined with magnetic field measurements from the orbiter and lander. Nightside data at 0600 Saturn Local Time highly desirable. Desirable (not required) to have some measurements with the lander, montgolfière, and orbiter in a line radiating from Saturn.

	SCIENCE OBJECT	TIVE	MEASUREMENT	INSTRUMENT		MISSION REQUIREMENTS
Goal A: How does Titan function as a system; to what	O8: Determine the state of internal differentiation, whether Titan has a metal	I2: Determine whether Titan has a dynamo.	M2: In situ vector magnetic field measurements	A1: Dual sensor magnetometer fixed to boom on gondola	MAG	Precise location of montgolfière to 1 km and 5° attitude knowledge. Continuous magnetic field data combined with magnetic field measurements from the orbiter and lander. Nightside data at 0600 Saturn Local Time highly desirable. Desirable (not required) to have some measurements with the lander, montgolfière, and orbiter in a line radiating from Saturn.
extent are there similarities and differences	core and an intrinsic magnetic field, and constrain the crustal	I3: Quantify exchange	M3: Measure noble gases and isotopes (esp., Ar, Kr, Xe) to ppb levels in gas phase and aerosols	A1: In situ measurement of aerosols and atmospheric gas phase, with a precision of 1%	TMCA	Good location to 1 km and 5° attitude knowledge of montgolfière
with Earth and other solar system bodies?	expression of thermal evolution of Titan's interior.	between interior and atmosphere.	M4: Subsurface layering	A1: High resolution subsurface profiles over few hundred meters (500 m) spot size and vertical resolution <6 m	TRS	Precise location of the montgolfière to integrate multiscale analysis of the TRS profiles with the radar measurements acquired by the sounder on the orbiter; 1 km and 5° attitude knowledge of montgolfière
	O1: Determine	I1: Assay the speciation and abundance of	M4: Concentration of molecular constituents in the troposphere with S/N ratio >100	A1: IR reflectance spectra with long integration times to enable spectral summing over homogeneous regions.	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
			M5: Latitudinal and vertical distribution of minor species and its temporal variation	A1: In situ analysis of minor species	TMCA	Same location of the montgolfière at different times; analysis of only low molecular mass species
Goal B: To what level of complexity has prebiotic	the chemical pathways leading to formation of complex		M6: Day-night variation of minor species to infer information about condensation	A1: In situ analysis of minor species gas and condensed phase	TMCA	Same location of the montgolfière during at least one full Titan day
chemistry evolved in the Titan system?	organics at all altitudes in the Titan atmosphere and their deposition on the surface.	atmospheric trace molecular constituents.	M7: Monitor T and P conditions to help determine species abundances and condensation.	A1: In situ measurements of T and P with reference to the altitude level. Simultaneous measurements of P and T are necessary to assess the phase of the species (e.g., condensation) and to associate a certain pressure level in the atmosphere (or equivalent altitude level) to the mole fractions determined by TMCA.	ASI/ MET	1 km and 5° attitude knowledge of montgolfière.

KEY: O1...O4 = Objective 1...Objective 4; I1...I4 = Investigation 1 ...Investigation 4; M1...M4 = Measurement 1...Measurement 4; A1...A4 = Approach 1...Approach 4

	SCIENCE OBJECT	TIVE	MEASUREMENT	INSTRUMENT		MISSION REQUIREMENTS
			M2: Chemical composition (elemental, molecular isotopic, and chiral) of aerosols	A1: Collect aerosols during their descent to the surface	TMCA	1 km and 5° attitude knowledge of montgolfière
		I2: Assay the molecular	M3: Chemical abundance of gases in troposphere	A1: In situ analysis of major and minor species	TMCA	1 km and 5° attitude knowledge of montgolfière
	O1: Determine the chemical pathways leading to formation of complex organics at all altitudes in the	complexity of the condensed phase.	M4: Monitoring of T and P (T and P accuracy to 0.1 K and 1 mPa; and resolution to 0.02 K and 0.1% respectively) conditions to asses condensation status	A1: In situ measurements of T and P with reference to the altitude level	ASI/ MET	1 km and 5° attitude knowledge of montgolfière
	Titan atmosphere	I3: Quantify the	M3: Search for electric discharges	A1: Electric field and optical sensors	TEEP- B	Coordinated with VISTA-B
Goal B: To what level of complexity has prebiotic	and their deposition on the surface.	sources of chemical energy for atmospheric chemistry.	M4: Infrared spectra of relevant complex organics	A1: Identify organic species in the 5–5.6 µm wavelength range	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
chemistry evolved in the Titan system?		14: Determine surface composition.	M3: High spatial resolution (2.5 meters at 10 km) infrared spectra at wavelengths larger than 4.8 µm	A1: Identify organic species in the 5–5.6 μm wavelength range	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
			M4: In situ sampling of surface organic inventory	A1: MS analysis of collected surface material	TMCA	Surface composition measured when landing.
	O2:	I1: Assay the composition of organic deposits	M5: High-resolution images to detect organic materials	A1: Identify organic species in the 5–5.6 µm wavelength range	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
	Characterize the degree to which the Titan	exposed at the surface, including dunes, lakes, and seas.		A2: Stereo images	VISTA -B	Precise location of montgolfière to 1 km and 5° attitude knowledge.
	organic inventory is different from known abiotic organic material in meteorites.	I3: Determine the location and the composition of complex organics in and around	M1: High-spatial resolution mapping of organics in areas such as impact craters and	A1: High spatial resolution (2.5 meters at 10 km) infrared spectra at wavelengths between 5 and 6 µm	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
		impact craters in the equatorial regions.	cryovolcanoes.	A2: High resolution color images	VISTA -B	Precise location of montgolfière tp 1 km and 5° attitude knowledge.

KEY: O1...O4 = Objective 1...Objective 4; I1...I4 = Investigation 1 ...Investigation 4; M1...M4 = Measurement 1...Measurement 4; A1...A4 = Approach 1...Approach 4

	SCIENCE OBJECT	ΓΙVΕ	MEASUREMENT	INSTRUMENT		MISSION REQUIREMENTS
	O3: Characterize what chemical modification of organics occurs on the surface.	I1: Determine the roles of cratering and cryovolcanism in modification and hydrolysis of organics.	M4: Subsurface stratification of organics.	A1: Radar sounding of the subsurface at frequency between 150 and 200 MHz allowing a spatial resolution of a few hundred meters (500 m) and vertical resolution <6 m	TRS	Precise identification of the trajectory of the montgolfière to 1 km and 5° attitude knowledge required.
		12: Determine the importance of surface inorganic compounds as surface catalysts or doping agents.	M2: Identify inorganic salts and compounds containing phosphorous and other potentially reactive inorganic agents in equatorial regions.	A1: Partially met with repeated near-IR mapping spectroscopy within the atmospheric transmission windows. High spatial resolution (2.5 m at 10 km) infrared mapping of the surface	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
Goal B: To what level of complexity has prebiotic	O4: Characterize the complexity of species in the subsurface ocean.	II: Determine whether evidence of sub-surface ocean species is present in cryovolcanic sites.	M2: Map compounds such as ammonia, sulfates, and more complex organics (e.g., CH ₃ COOH) at cryovolcanic sites	A1: Near-IR mapping spectroscopy within the atmospheric transmission windows with 2.5 m spatial resolution.	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
chemistry evolved in the Titan system?		II: Determine whether carbon dioxide is primarily internally derived or photochemically produced.	M3: Profile of CO and CO2 in the troposphere	A1: Infrared spectroscopy within the methane windows.	BIS	Precise identification of the trajectory of the montgolfière to 1 km and 5° attitude knowledge required
	O5: Characterize bulk composition, sources of	I2: Determine whether methane is primordial or derived from carbon dioxide.	M5: Map of surface CO ₂ in the equatorial regions	A1: High spatial resolution (2.5 m at 10 km) infrared mapping of the surface.	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
	nitrogen and methane, and exchange between the surface and the interior.	I3: Determine whether molecular nitrogen is derived from ammonia.	M5: Detect ammonia in surface material: down to 1% in local deposits	A1: High spatial resolution (2.5 m at 10 km) infrared mapping of the surface	BIS	Adapt the observation strategy to the motion of the montgolfière. Coordination with VISTA-B for context is required.
		I4: Determine whether pockets of partial melt are present at depth.	M2: Subsurface sounding at frequency between 150 and 200 MHz in order to detect liquid reservoirs less than 1 km deep.	A1: High resolution subsurface profiles over few hundred meters (500 m) spot size and vertical resolution <6 m	TRS	Precise location of the montgolfière makes it possible an integrated multiscale analysis of the TRS profiles with the radar measurements acquired by the sounder on the orbiter. Precise location of montgolfière to 1 km and 5° attitude knowledge.

KEY: O1...O4 = Objective 1...Objective 4; I1...I4 = Investigation 1 ...Investigation 4; M1...M4 = Measurement 1...Measurement 4; A1...A4 = Approach 1...Approach 4

Table 1-3. Science Traceability Matrix—Lake Lander

	SCIENCE OBJEC	TIVE	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENTS
	01: Determine how energy is	I1: Quantify the deposition of radiation into Titan's atmosphere.	M4: Vertical profile of the magnetic field magnitude and direction to quantify the magnetic shielding effect of the ionosphere and extent of the penetration of Saturn's magnetic field.	A1: Measure dual sensor (gradiometer) vector magnetic field along the path of the probe during the entry and descent with a good knowledge of the location of the probe to reconstruct the descent.	SPP	Magnetometer on during descent, and some consideration of the magnetic cleanliness of the lander. A dual sensor magnetometer with the sensors mounted ideally on a boom or mast away from the probe body to allow characterization of
Goal A: How does Titan function as a system; to what extent are	deposited in the upper atmosphere to drive the chemistry and the escape rate of major atmospheric constituents.	I2: Quantify the escape flux of elemental hydrogen, carbon, nitrogen.	M3: Magnetic field of Titan during descent to correlate with orbiter data. Measure vector magnetic field perturbations of order a few nT (with a resolution of order 0.04 nT) to quantify the escape flux of elemental hydrogen, carbon and nitrogen.	A1: Vector magnetometry (part of a combined instrument, integrated with a low energy plasma and particles instrument, energetic particle spectrometer and Langmuir probe).	SPP	the magnetic field coming from the probe to enable ground processing to remove this contaminating field and achieve a more accurate measurement of the ambient magnetic field (so-called gradiometer configuration). This could also be achieved (if a boom or mast is not feasible) by having an primary sensor at an extremity of the probe and several secondary sensors fitted along an axis of the probe to provide a gradiometer type measurement.
there similarities and	02: Characterize	tive flux of endogenic oxygen from the surface and interior.	M2: Amount of O in the lake	A1: GC x GC separation followed by high resolution MS and MEMS sensor analysis.	TLCA	Liquid sampling from the lake.
differences with Earth	the relative importance of		M3: Isotopic ratio ¹⁸ O/ ¹⁶ O	A1: GC x GC separation followed by pyrolysis and isotopic mass spectrometry.	TLCA	Lake and atmosphere sampling
and other solar system bodies?	exogenic and endogenic oxygen sources.		M4: Nature and composition of Obearing molecules	A1: GC x GC separation followed by high resolution MS and MEMS sensor analysis.	TLCA	Lake and atmosphere sampling
	O3: Characterize the major	I1: Characterize the major chemical cycles.	M1: Methane and ethane mole fraction in the troposphere	A4: Direct gas inlet into MS	TLCA	Atmospheric sampling during the descent.
	processes controlling the global distribution of atmospheric chemical constituents.	I2: Determine the relative importance of global transport.	M2: Isotopic ratios of C and N in both the liquid phase and in the aerosols that may be present in the lake	A1: Collect the liquid phase and the compounds in suspension and analyze with isotopic mass spectrometry. Liquid separation by GC x GC / combustion furnace / isotope ratio mass spectrometer for C and N ratios. Sol analysis by pyrolysis of filtered solids.	TLCA	Lake sampling with solid and liquid separation.

	SCIENCE OBJECT	ΓΙVE	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENTS
		I1: Determine the atmospheric thermal and	M3: Vertical profile of temperature, pressure (T and P accuracy to 0.1 K and 1 mP and resolution to 0.02 K and 0.1% respectively) and density in the northern hemisphere above a lake.	A1: Measure T by a Pt wire resistance thermometer and P by Kiel probe and capacitive gauges during the descent, monitor meteorological conditions at the surface of the lake	ASI/ MET	ASI-ACC should be placed as close as possible to the entry module Center of Mass. ASI pressure inlet and thermometers should has access to the atmospheric unperturbed flow (outside the descent probe boundary layer) The trajectory of the probe (entry and descent module reconstructed from the engineering sensor data (e.g., IMU), the high sensitive scientific accelerometer (and/or IMU)
Goal A: How does Titan function as a system; to what extent are	O4:	dynamical state.	M3: Vertical profile of temperature, pressure (T and P accuracy to 0.1 K and 1 mPa and resolution to 0.02 K and 0.1% respectively) and density in the northern hemisphere above a lake.	A2: Three-axis <i>in situ</i> accelerometer measurements during entry to a precision of 10-5 m/s ² in order to reconstruct the location of the lander during its descent.	ASI/ MET	ASI-ACC should be placed as close as possible to the entry module Center of Mass. ASI operates before nominal interface entry altitude (1270 km).
there similarities and	Characterize the atmospheric circulation and		M4: Surface temperature of lakes to 0.1 K accuracy with a resolution of 0.02 K	A1: Measure the temperature at the surface of the lake with a Pt wire resistance thermometer	ASI/ MET	Continuous measurements for duration of lander lifetime.
differences with Earth and other solar	flow of energy.	I2: Determine the effect of haze and clouds.	M3: Extent and lateral and vertical distribution of clouds above the lakes	A1: Acquire image in the VIS/NIR during the probe's descent from an altitude of ~50 km	TiPI	The amount of light is minimal and comes from Saturn shine and diffuse scattering in Titan's atmosphere.
system bodies?		I3: Determine the effects of atmospheric composition.	M2: Mole fraction of methane, ethane, and other compounds in the troposphere.	A1: Direct gas inlet into MS	TLCA	Atmospheric sampling during the descent.
		I4: Determine the effects of surface processes on	M3: Temperature gradients between liquid surface and surrounding terrains with 1 K precision. Pressure and temperature at the surface of the lake	A2: Measure T by a Pt wire resistance thermometer and P by Kiel probe and capacitive gauges	ASI/ MET	Continuous measurements for duration of lander lifetime.
		meteorology.	M5: Nature of the molecules evaporating from the lake	A1: Direct gas inlet into sorption bed followed by heated injection into GC x GC MS	TLCA	Collect atmospheric sample above the lake surface.

	SCIENCE OBJEC	ΓΙVE	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENTS
		I5: Determine the exchange of	M1: Wind directions at the surface of the lake	A1: Measure T by a Pt wire resistance thermometer and P by Kiel probe and capacitive gauges	ASI/ MET	Continuous measurements for duration of lander lifetime.
		momentum, energy and	M2: Temperature of the atmosphere at the surface of the lake to 0.1 K	A1: T measurements with fast sampling to study the boundary layer	ASI/ MET	Continuous measurements for duration of lander lifetime.
		matter between the surface and atmosphere and	M3: Wave motion on lake	A1: Record motion of liquid lander through accelerometers	SPP	Continuous measurements for duration of lander lifetime.
		characterize the planetary	M4: Methane humidity as a function altitude and time	A1: Atmospheric sound speed	SPP	Continuous measurements for duration of lander lifetime.
		boundary layer.	M5: Distribution of condensates at the surface	A1: Record images of the lake just before landing	TiPI	Huygens like measurement with LEDs turned on
	O4: Characterize		M1: Electrical conductivity and permittivity of the atmosphere	A1: Relaxation probe to measure the conductivity of all charged species	ASI/ MET	Measurements during descent.
Goal A: How does Titan function as a system;	the atmospheric circulation and flow of energy.	I6: Determine the connection between weather, ionosphere and electricity.	(positive and negative ions + electrons) to 1 km resolution in the range 10 ⁻¹⁴ to 10 ⁻⁶ Sm ⁻¹ and electrons only, with a height resolution to 100 m in the range 10 ⁻¹¹ to 10 ⁻⁶ Sm ⁻¹	A2: Mutual impedance probe which measures the conductivity of electrons only	ASI/ MET	Measurements during descent
to what extent are there similarities			M2: Global electric circuit and fairweather electric field in the range from 0–10 kHz. With a height resolution of 1 km	A1: Measurement of electric field using dipole antennas	ASI/ MET	Vertical and horizontal electric field in the frequency range from DC to VLF (~10 kHz)
and differences with Earth			M3: Extremely low frequency-very low frequency (ELF-VLF) magnetic components from 0–10 kHz	A1: Measurement of magnetic field using loop antennas or search coils	ASI/ MET	Measurements during descent
and other solar system			M4: Search for electric discharges	A1: Electric field and optical sensors	ASI/ MET	Coordinated with TiPI
bodies?		I1: Quantify the	M3: Separate ethane, ethylene acetylene, and hydrogen cyanide in the liquid mixture	A1: GC x GC MS	TLCA	Lake sampling
	05: Characterize	total major hydrocarbon (methane / ethane)	M4: Bulk properties such as sound speed, density, refractive index, thermal conductivity, permittivity	A1: Acoustic force transducers (1–10 MHz), archimedes float, refractometer, line heat source, capacitor stack	SPP	Sensors need to be exposed to liquid after landing. Acoustic sensors need to be facing each other with clear path between them.
	the amount of liquid on the Titan surface today.	inventory present in the lakes and seas.	M5: Permittivity and electric conductivity) in the range 10 ⁻¹⁴ to 10 ⁻⁶ Sm ⁻¹ of the surface (liquid or solid substrate	A1: Mutual impedance probe which measures permittivity and the conductivity of electrons and relaxation probe which measures the conductivity of all charged species	ASI/ MET	Lake sampling
		I2: Determine the depth of the lake at the landing site.	M1: Acoustic sounding	A1: SONAR: 10–20 khz acoustic pulse every 1 to 10 s.	SPP	Sonar needs to be immersed into lake, facing vertically downward.
			M2: Monitor probe motion at and after splashdown	A1: Accelerometers	SPP	Location at center of mass of probe

KEY: O1...O4 = Objective 1...Objective 4; I1...I4 = Investigation 1 ...Investigation 4; M1...M4 = Measurement 1...Measurement 4; A1...A4 = Approach 1...Approach 4

	SCIENCE OBJEC	TIVE	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENTS
	O6: Characterize the major processes transforming the surface throughout time.	I2: Characterize the origin of major surface features, including the effects of liquid flow, tectonic, volcanic, and impact events.	M3: Map the distribution of different surface features around the landing site	A1: Record images before and after landing	TiPl	Use Saturn shine to map Titan's surface.
Goal A: How does Titan function as a system; to what extent are there similarities and differences	O7: Determine the existence of a subsurface liquid water ocean.	I3: Determine the induced magnetic field signatures in order to confirm subsurface liquid and place constraints on the conductivity and depth of the liquid	M3: Vector magnetic field measurements on the Titan surface to quantify the induced magnetic field and hence constrain the presence of a sub-surface conducting layer (possibly liquid water ocean)	A1: Measure dual sensor (gradiometer) vector magnetic field on Titan's surface	SPP	Knowledge of probe attitude and location. Continuous magnetic field data (desirable, to combine data with magnetic field measurements from the montgolfière and orbiter). Also desirable (not required) to have some measurements with the lake lander, montgolfière, and orbiter in a line radiating from Saturn. Consideration of magnetic cleanliness requirement, and use of gradiometer configuration.
with Earth and other solar system	O8: Determine the state of internal differentiation,		M1: D/H in methane and ethane to 0.1 per mil in the atmosphere and the lake	A1: Isotope ratio mass spectrometry with GC separation of Hydrogen in atmosphere and pyrolytic reduction to measure D/H in methane and ethane.	TLCA	Lake sampling
bodies?	whether Titan has a metal core and an intrinsic magnetic field, and constrain the crustal expression of thermal evolution of Titan's interior.	I3: Quantify exchange between interior and atmosphere.	M2: Measure noble gases	A1: Direct inlet into noble gas concentrator / getter and then into an MS	TLCA	In situ analysis of noble gases during the descent and at the surface of the lake

	SCIENCE OBJEC	ΓΙVE	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENTS
	O1: Determine the chemical	I1: Assay the speciation and abundance of atmospheric trace molecular constituents.	M3: Detailed molecular analysis of the lake and atmosphere above the lake	A1: GC x GC separation followed by high resolution MS.	TLCA	Liquid and atmosphere sampling
	pathways leading to	I3: Quantify the sources of	M4: Search for electric discharges during descent	A1: Electric field	ASI/ MET	Altitude and attitude measured during the descent by accelerometers and gyros.
	formation of complex organics at all altitudes in the	chemical energy for atmospheric chemistry.	·	A2: Acquire image in the VIS/NIR during the probe's descent	TiPI	Knowledge of position during descent.
	Titan atmosphere and their	14: Determine surface composition.	M2: Map the distribution of different surface features	A1: Record images just after landing	TiPI	LEDs turned on
Goal B: To what level of complexity has	deposition on the surface.	I5: Determine the composition of organics in the lake and the isotopic ratios of major elements.	M1: Isotopic ratio of C, N, and O in the organic molecules to 0.1 per mil	A1: GC x GC separation followed by conversion and isotopic mass spectrometry. Combustion for C and N analysis and pyrolysis for O analysis.	TLCA	Lake sampling
prebiotic chemistry evolved in the Titan	02:	I1: Assay the composition of	M2: Inventory organic content of the lakes, including potential solid species in suspension	A1: GC x GC-MS for liquids. Pyrolysis GC x GC – MS for solids	TLCA	Lake sampling with solid and liquid separation before analysis
system?	Characterize the degree to which the Titan	organic deposits exposed at the surface,	M3: Determine optical and electrical properties of the liquid (transparency, refraction)	A1: Measure refractive index, permittivity, and conductivity	SPP	2 kB @ 1 Hz
	organic inventory is different from known abiotic	including dunes, lakes, and seas.	M4: Determine optical properties of the lake materials to identify time dependent variations	A1: Measure surface albedo variations just before and after landing	TiPI	LEDs turned on
	material in meteorites.	12: Determine the chirality of organic molecules.	M1: Chirality of complex organics	A1: GC x GC-MS with derivatization and chiral columns.	TLCA	Lake sampling
	O3: Characterize what chemical modification of organics occurs at the surface.	I1: Determine the roles of cratering and cryovolcanism in modification and hydrolysis of organics.	M3: Search for complex oxygenated organics dissolved or in suspension	A1: GC x GC-MS for liquids. Pyrolysis GC x GC – MS for solids	TLCA	Lake sampling with solid and liquid separation before analysis

	SCIENCE OBJEC	TIVE	MEASUREMENT	INSTRUMENT		FUNCTIONAL REQUIREMENTS
	O5:	I1: Determine whether carbon dioxide is primarily internally derived or photochemically produced.	M2: Isotopic composition of atmospheric carbon and oxygen species from the surface to 1500 km.	A2: GC x GC separation of lake samples followed by conversion and isotopic mass spectrometry. Combustion for C analysis and pyrolysis for O analysis.	TLCA	Lake sampling
Goal B: To what level of complexity	Characterize bulk composition, sources of	I2: Determine whether methane is primordial or	M3: Isotopic composition in lake of carbon in methane to 0.1 per mil and compare with isotopic composition in the atmosphere	A1: Isotope ratio mass spectrometry with GC separation of methane in atmosphere or lake liquid and combustion to measure C isotopes	TLCA	Lake and atmosphere sampling
has prebiotic chemistry	nitrogen and methane, and	derived from carbon dioxide.	M4: Isotopic ratio of C in other lake organics	A1: GC x GC separation followed by combustion and isotopic mass spectrometry.	TLCA	Lake sampling
evolved in the Titan system?	exchange between the surface and the interior.	I3: Determine whether molecular nitrogen is	M3: Isotopic composition of atmospheric nitrogen and noble gas isotopic ratios (Ar, Kr, Xe) to a precision of 0.1 per mil	A1: Direct inlet into noble gas concentrator / getter and then into a MS	TLCA	Measurement made during descent and on the surface.
	derive	derived from ammonia.	M4: Analyze dissolved N ₂ and ammonia in the lakes and determine their isotopic composition	A1: Membrane inlet with cold trapping of ammonia followed by pyrolysis and isotopic mass spectrometry.	TLCA	Lake sampling
			M1: Quantify noble gas isotopic ratios (Ar, Kr Xe)	A2: Direct inlet into noble gas concentrator / getter and then into a MS	TLCA	Measurement made during descent and on the surface.

2. High-Level Mission Concept

Overview

See Titan Saturn System Mission Study 2008: Final Report [1], Section 4.

Concept Maturity Level

Table 2-1 summarizes the NASA definitions for concept maturity levels (CMLs). The Titan Saturn System Mission (TSSM) concept is between CMLs 5 and 6. Detailed science traceability, defined relationships, and dependencies are all completed for the planning payload. The basic implementation mode has been selected and major partnerships are established. Technologies and risks have been defined. Mitigation plans are in place and some early mitigation activities are being executed. The basic verification and validation (V&V) approach has been defined for the planetary protection and radioisotope power source (RPS) requirements and testbeds/software and integration and test (I&T) approaches are story-boarded. The development schedule has been developed through to the subsystem levels (in some cases below that) and integrated into a master schedule. This schedule was used to develop a quasi-grassroots cost estimate. The spacecraft, planetary protection, project integration and test, and mission design are a grassroots estimate, but other areas are model based. In two areas (mission assurance and education and public outreach) the costs are rules-of-thumb based.

Table 2-1. Concept Maturity Level Definitions

Concept Maturity Level	Definition	Attributes
CML 6	Final Implementation Concept	Requirements trace and schedule to subsystem level, grassroots cost, V&V approach for key areas
CML 5	Initial Implementation Concept	Detailed science traceability, defined relationships and dependencies: partnering, heritage, technology, key risks and mitigations, system make/buy
CML 4	Preferred Design Point	Point design to subsystem level mass, power, performance, cost, risk
CML 3	Trade Space	Architectures and objectives trade space evaluated for cost, risk, performance
CML 2	Initial Feasibility	Physics works, ballpark mass and cost
CML 1	Cocktail Napkin	Defined objectives and approaches, basic architecture concept

Technology Maturity

Mission / Orbiter Technology Maturity

See Titan Saturn System Mission Study 2008: Final Report [1], Section 4.9.

Montgolfière / Lake Lander Technology Maturity

See TSSM In Situ Elements 2008 Assessment Study Report [2], Section 11.

Key Trades

See Titan Saturn System Mission Study 2008: Final Report [1], Section 4.4.7.

- A single main engine was chosen over a dual engine concept. This trade will be revisited.
- Solar electric propulsion (SEP) was chosen over a chemical system with a large launch vehicle (Delta IV Heavy), or with a longer trip time, and a shorter science phase to keep within the 14-year nominal RPS lifetime. See Table 2-2 for the list of propulsion options.

Table 2-2. TSSM Propulsion Trade

Case	Launch Vehicle	Cruise Propulsion	Flight Time to Saturn (years)	In-Situ Element	(\$RY)	(\$FY07)
1	A541	Chemical	8	None	(\$377)	(\$273)
2	A551	Chemical	10.5	B+L	(\$205)	(\$145)
3	A551	SEP	9	B+L	_	_
4	A521	SEP	7.5	None	(\$223)	(\$160)
5	Delta IVH	Chemical	9	B+L	\$244	\$148
6	Delta IVH	SEP	6	B+L	\$299	\$215
7	Ares V	Chemical	3	B+L	\$159	\$136

Table 2-3. TSSM Completed Trade Studies

Trade Name	Trade Options*	Discussion
SEP	Include SEP stage vs. chemical only propulsion	Although approximately \$100M more expensive, the inclusion of a SEP stage significantly reduces trip time and enhances mission flexibility by providing significant additional margin for mass growth traded against trip time.
SEP architecture	Integral vs. separable SEP stage	A separable SEP stage was chosen for the TSSM design as it allows for a significant mass jettison before Saturn Orbit Insertion (SOI), thus increasing delivered mass capability to Titan. Design of the SEP stage as a self-contained unit also results in a feed-forward flight element that would be available to future missions.
RPS system	MMRTG vs. ASRG	ASRGs were chosen based on their reduced mass, increased power output, and reduced cost. If a programmatic decision is made to use MMRTGs, TSSM is carrying extra mass margin (above the required 33%) and power margin to accommodate either RPS system.
Power requirements	Four vs. five vs. Six MMRTGs	Power requirements for science instruments and telecom dictated the use of the equivalent of five MMRTGs. With four MMRTGs, adequate power would not be available to operate instruments (the duty cycles would have to be unacceptably low). Six MMRTGs would make a more comfortable science scenario, but would cause the mission to exceed the study guidelines for available plutonium quantity when combined with the MMRTG on the Montgolfière and RHU demands. Unless NASA directs the use of MMRTGs, this trade is no longer applicable due to a change in study guidelines allowing the use

Trade Name	Trade Options*	Discussion
		of ASRGs. Subsequent analysis showed that four ASRGs accommodate the power requirements met by five MMRTGs (and even provides more power than the five-MMRTG case). A fifth ASRG is carried as an onboard spare for redundancy.
OpNav camera	Include OpNav vs. no OpNav	Optical navigation is needed to determine the orbit of Enceladus to sufficient accuracy to enable low-altitude flybys. Without optical navigation, the altitude of these flybys would likely be limited to 500 km; with optical navigation these flybys could go as low as 25 km (as demonstrated in Cassini's Equinox Mission).
Fine attitude control	RWAs vs. MIT thrusters	RWAs were chosen to perform 3-axis control because, while the micro-impulse thrusters (MITs) require less power (by ~35 W) and will potentially cost less, they may require a large mass hit in hydrazine propellant. The RWAs will provide slightly better pointing control, especially with respect to pointing stability. The MITs have uncertain development and qualification costs at this time.
IMU	MIMU vs. SIRU	Although the micro-inertial measurement unit (MIMU) is less massive and costly (even though two are required for redundancy), there are concerns with the MIMU's lifetime. The internally redundant space inertial reference unit (SIRU) was selected for its longer life capability. This trade will be revisited in Phase A.
Thruster layout	Coupled vs. uncoupled thrusters	Coupled thrusters were used in the TSSM design to avoid accumulation of unwanted ΔV errors. Additionally, during the release of the in-situ elements, coupled thrusters provide double the control authority, and therefore higher reliability.
Main engine	Single vs. dual	Two engines for redundancy introduce complexities that have not yet been worked. It was deemed that implementation of this redundancy was not the best use of resources (i.e., cost and mass) at this time. This will be revisited in Phase A.
Thrust control	Gimbaled main engine vs. TVC thrusters	A propulsion system table top review concluded that, though a gimbaled main engine is more costly, it is a more robust design. Gimbaling provides a wider range for the center of gravity, which is especially important with the release of two large insitu elements.
Engine cover	Include engine cover vs. no engine cover	There was concern that particulates may damage the engine during Saturn ring crossings, Enceladus plume flybys, and engine-first Titan aerobraking segments of the mission, as well as the long lifetime requirement on the engine.
Propellant tank material	Titanium vs. COPV	Composite overwrapped pressure vessel (COPV) tanks are industry standard and are significantly less massive and less expensive than traditional Titanium tanks.
Propellant tank configuration	Tank mass vs. spacecraft stack height	Although a trade was conducted to determine system-level mass savings for increasing tank width (and therefore mass) and reducing spacecraft stack height (and therefore decreasing overall system mass), ultimately the stack height was not reduced due to in-situ accommodation needs.

Trade Name	Trade Options*	Discussion
HGA pointing	Monopulse tracking vs. spacecraft pointing w/ stiff antenna	TSSM has a Mars Reconnaisance Orbiter (MRO)-derived antenna design for maximum stiffness. This includes a body-fixed gimbal platform for the antenna. The open-loop spacecraft pointing design using the stiff antenna was considered the more robust, lower cost option when compared to closed-loop monopulse tracking. Additionally, spacecraft pointing requires a lower demand on DSN resources.
HGA diameter and articulation	3 m vs. 4 m, gimbaled vs. bodyfixed	The 2007 Titan Explorer study made use of a 3 m HGA, but this earlier study assumed 70 m receiving stations. As a result of the 2008 guideline to not assume 70 m stations, it was decided to adopt the larger antenna to recapture some of the data rate that would be lost by relying on the 34 m ground stations. To fit within the confines of the LV fairing, the antenna was positioned on the top deck of the orbiter. This axial location has the added benefits of protecting the spacecraft during ring crossings, serving as a sun shade, and acting as an aerodynamic stabilizer during aerobraking. Deciding to articulate the high gain antenna (HGA) (instead of putting the instruments on a scan platform or body-fixing the antenna and instruments like Cassini) came out of the operations lessons-learned activity.
Radio science and relay communication	UST vs. SDST	The universal space transponder (UST) accomplishes orbiter-to-Earth communication, relay communication with the <i>in situ</i> elements, and Ka-uplink (a science requirement) in a single unit, thus taking the place of a small deep space transponder (SDST), an Electra, and a Ka translator. While the SDST is flight proven, it is currently out of production. The UST is under development, and will be monitored carefully throughout Phase A.
Safe mode communication	USO vs. USO not required for communication	An ultra-stable oscillator (USO) is not required for flight-system safe-mode operations (an initial concern), but was included in the design for science purposes because it enables radio occultations in Titan's atmosphere.
C&DH system interfaces	MSIA Card vs. MREU	MSAP system interface assembly (MSIA) is the card used in the multimission system architecture platform (MSAP) C&DH architecture to interface with other spacecraft systems (in TSSM's case, the in-situ elements and the OpNav camera), but the MSIA uses significant power. An alternative architecture using a MSAP remote engineering unit (MREU) in place of the MSIA was investigated, but did not realize the power savings originally hoped for and complicated the design.
Memory type	Flash vs. SDRAM vs. SRAM	Flash memory is very sensitive to radiation (tolerant to only 7 krad), and would therefore require significant shielding to meet even the modest radiation requirements of this mission. SDRAM was chosen for its rad hard availability and because it provides more memory when compared to a SRAM card with the same sized footprint
Instrument interface type	SpaceWire vs. diversified interfaces	The goal of the TSSM C&DH design was to maximize the use of current MSAP designs. To use a SpaceWire-only system (a high-speed, low-error-rate interface) would have resulted in modifications to the current MSAP SFC card, which has only four SpaceWire ports. The current TSSM design utilizes SpaceWire and RSB for instrument interfaces and 1553 to interface with other spacecraft subsystems.

^{* =} Chosen option indicated in bold.

3. Technical Overview

Instrument Payload Description

See Titan Saturn System Mission Study 2008: Final Report [1], Section 4.2

Baseline Orbiter Payload

See Titan Saturn System Mission Study 2008: Final Report [1], Section 4.2

Table 3-1. Baseline Instrument Specifications—Orbiter

Table 3-1. Daseille ilistrument Specifications—Orbitei											
	Units	High Resolution Imager and Spectrometer (HiRIS)	Titan Penetrating Radar and Altimeter (TiPRA)	Polymer Mass Spectrometer (PMS)	Submillimeter Spectrometer (SMS)	Thermal Infrared Spectrometer (TIRS)	MAPP- Magnetometer	MAPP- Energetic Particle Spectrometer (EPS)	MAPP- Langmuir Probe	MAPP-Plasma Spectrometer	Radio Science and Accelerometer (RSA)
Number of channels		3/410	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Size/dimensions (for each instrument)	mxmxm	0.3 x 0.5 x 0.6 plus electronics box: 0.07 x 0.15 x 0.20	2 10-m dipole antennae, each stowed 1.5 x 0.3 x 0.2	TBD	0.2 x 0.2 x 0.2 plus 15 cm parabolic dish	0.3 x 0.4 x 0.5	3.6 m boom	TBD	TBD	TBD	TBD
Instrument mass without contingency (CBE*)	kg	28.4	11	29.2	12.3	16.5	2.2	1.5	1.5	5.0	0
Instrument mass contingency	%	30	30	30	30	30	30	30	30	30	30
Instrument mass with contingency (CBE+Reserve)	kg	36.9	14.3	38	16	21.5	2.9	2.0	2.0	6.5	0
Instrument average payload power without contingency	w	28 (1 operating) or 32 (both operating)	25	25 (low mass range) or 47 (high mass range)	45	17	3	2.5	1	9	0
Instrument average payload power contingency	%	30	30	30	30	30	30	30	30	30	30
Instrument average payload power with contingency	w	36.4	32.5	32.5	58.5	22.1	3.9	3.3	1.3	11.7	0
Instrument average science data rate^ without contingency	kbps	77 (imager) or 225 (spec)	20–30 (alt mode) or 280 (sounder) or 20,000 (burst)	2.5–60 (depends on data rate mode)	14	10	4	5	0.1	1–10 (depends on data rate mode)	TBD
Instrument average science data^ rate contingency	%	0	0	0	0	0	0	0	0	0	0
Instrument average science data^ rate with contingency	kbps	77 (imager) or 225 (spec)	20–30 (alt mode) or 280 (sounder) or 20,000 (burst)	2.5–60 (depends on data rate mode)	14	10	4	5	0.1	1–10 (depends on data rate mode)	TBD
Instrument fields of view (if appropriate)	degrees	20	N/A	Mounted on a rotating platform. Closed ion source: two 60 half-angle centered on each gas ram direction. Open ion source: two 7.5 half-angle FOVs in the same directions.	N/A	Mid-IR: 3 Far-IR: 4.3	N/A	N/A	N/A	N/A	N/A
Pointing requirements (knowledge)	µrad	200	100	2	1	1	5	5	N/A	N/A	N/A
Pointing requirements (control)	millirad	1	100	5	5	3	10	10	N/A	N/A	N/A
Pointing requirements (stability)	µrad /sec	60/1	N/A	1,000/1	1,000/60	1,000/120	1,000/1	1,000/1	N/A	N/A	N/A

^{*}CBE = Current best estimate

[^]Instrument data rate defined as science data rate prior to on-board processing

Table 3-2. Baseline Payload Mass and Power—Orbiter

		Mass		Average Power			
Instrument	CBE (kg)	% Cont.	MEV (kg)	CBE (W)	% Cont.	MEV (W)	
HiRIS	28.4	30	36.9	28 (1 operating) or 32 (2 operating)	30	36.4	
TiPRA	11.0	30	14.3	25	30	32.5	
PMS	29.2	30	38.0	25 (low mass range) or 47 (high mass range)	30	32.5	
SMS	12.3	30	16.0	45	30	58.5	
TIRS	16.5	30	21.5	17	30	22.1	
MAPP-MAG	2.2	30	2.9	3	30	3.9	
MAPP-EPS	1.5	30	2.0	2.5	30	3.3	
MAPP-Langmuir probe	1.5	30	2.0	1	30	1.3	
MAPP-plasma spectrometer	5.0	30	6.5	9	30	11.7	
RSA	0.0	30	0	0.0	30	0	
Total Payload Mass	107.6	_	140.1	155.5*	_	202.2*	

^{*}The instruments are not operated at the same time, so the spacecraft is not required to supply the total payload power or total payload downlink rate. Maximum instantaneous power supply with margin is 165 W.

Baseline Montgolfière Payload

See TSSM In Situ Elements 2008 Assessment Study Report [2], Sections 3.4.3.1 and 4.3.1, and 2008 CDF Study Report Tandem Study of a Two-Probe Mission to Titan [3], Section 7.1.1. Montgolfière instrument mass contingencies are 20%, consistent with ESA practice for items requiring redesign.

Table 3-3. Baseline Instrument Specifications—Montgolfière

	Units	Balloon Imaging Spectrometer (BIS)	Visual Imaging System for Titan Balloon (Vista-B)	Atmospheric Structure Instrument/ Meteorological Package (ASI/Met)	Titan Electric Environment Package (TEEP-B)	Titan Radar Sounder	Titan Montgolfière Chemical Analyser (TMCA)	Magnetometer (MAG)	Montgolfière Radio Science Transmitter (MRST)
Number of channels		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Size/dimensions (for each instrument)	mxmxm	0.26 x 0.24 x 0.15 (optics) 0.2 x 0.3 x 0.1 (electronics)	TBD	0.2 x 0.2 x 0.2	0.1 x 0.1 x 0.02 0.05 x 0.004 x 0.001 (antenna)	0.37 x 0.25 x 0.13 1 m antenna	0.35 x 0.25 x 0.15	Two sensors@ 0.11 x 0.07 x 0.05 and electronics @ 0.1 x 0.12 x 0.03	TBD
Instrument mass without contingency (CBE*)	kg	3.0	2	1.0	1.0	8.0	6.0	0.5	1.0
Instrument mass contingency	%	20	20	20	20	20	20	20	20
Instrument mass with contingency (CBE+Reserve)	kg	3.6	2.4	1.2	1.2	9.6	7.2	0.6	1.2
Instrument average payload power without contingency	W	10	5	5	2.0	15	15	1.5	-
Instrument average payload power contingency	%	20	20	20	1	20	20	20	20
Instrument average payload power with contingency	W	12	6	6	20	18	18	1.8	-
Instrument average science data rate^ without contingency	kbps	740	10,240	0.15	1.2	TBD	5	0.8	TBD (very low)
Instrument average science data^ rate contingency	%	0	0	0	0	0	0	0	0
Instrument average science data^ rate with contingency	kbps	740	10,240	0.15	1.2	TBD	5	0.8	TBD (very low)
Instrument fields of view (if appropriate)	degrees	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pointing requirements (knowledge)	μrad	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pointing requirements (control)	millirad	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pointing requirements (stability)	µrad /sec	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

^{*}CBE = Current best estimate

[^]Instrument data rate defined as science data rate prior to on-board processing

Table 3-4. Baseline Payload Mass and Power—Montgolfière

		Mass	_	Α	verage Pov	/er
	CBE (kg)	% Cont.	MEV (kg)	CBE (W)	% Cont.	MEV (W)
BIS	3.0	20	3.6	10	20	12
Vista-B	2.0	20	2.4	5	20	6
ASI/Met	1.0	20	1.2	5	20	6
TEEP-B	1.0	20	1.2	1	20	1.2
TRS	8.0	20	9.6	15	20	18
TMCA	6.0	20	7.2	8	20	9.6
MAG	0.5	20	0.6	1.5	20	1.8
MRST	_	20	_	_	20	_
Total Payload Mass	21.5	_	25.8	45.5	_	54.6

Baseline Lake Lander Payload

See TSSM In Situ Elements 2008 Assessment Study Report [2], Sections 3.4.3.2 and 4.3.2, and 2008 CDF Study Report Tandem Study of a Two-Probe Mission to Titan [3], Section 9.1.1.

Table 3-5. Baseline Instrument Specifications—Lake Lander

	1		•	Difficultions Earle E	1	1
	Units	Titan Lander Chemical Analyzer (TLCA)	Titan Probe Imager (TiPI)	ASI/Met-TEEP-L	Surface Properties Package	Lander Radio Science Transponder (LRST)
Number of channels		N/A	N/A	N/A	N/A	N/A
Size/dimensions (for each instrument)	mxmxm	0.3 x 0.25 x 0.15	TBD	TBD	TBD	TBD
Instrument mass without contingency (CBE*)	kg	23	1.0	1.5	1.5	2.0
Instrument mass contingency	%	20	20	20	20	20
Instrument mass with contingency (CBE+Reserve)	kg	27.6	1.2	1.8	1.8	2.4
Instrument average payload power without contingency	W	75	7.0	5.5	10	20
Instrument average payload power contingency	%	20	20	20	20	20
Instrument average payload power with contingency	W	90	8.4	6.6	13.2	24
Instrument average science data rate^ without contingency	kbps	5.0	10	2.15	16.0	TBD (very low)
Instrument average science data^ rate contingency	%	0	0	0	0	0
Instrument average science data [^] rate with contingency	kbps	5.0	10	2.15	16.0	TBD (very low)
Instrument fields of view (if appropriate)	degrees	N/A	N/A	N/A	N/A	N/A
Pointing requirements (knowledge)	μrad	N/A	N/A	N/A	N/A	N/A
Pointing requirements (control)	millirad	N/A	N/A	N/A	N/A	N/A
Pointing requirements (stability)	µrad /sec	N/A	N/A	N/A	N/A	N/A

^{*}CBE = Current best estimate

[^]Instrument data rate defined as science data rate prior to on-board processing

Table 3-6. Baseline Payload Mass and Power—Lake Lander

		Mass		Average Power			
	CBE (kg)	% Cont.	MEV (kg)	CBE (W)	% Cont.	MEV (W)	
TLCA	23	20	27.6	75	20	90	
TiPI	1	20	1.2	7	20	8.4	
ASI/Met-TEEP-L	1.5	20	1.8	5.5	20	6.6	
Surface Properties Package	1.5	20	1.8	11	20	13.2	
LRST	_	20	_	_	20	_	
Total Payload Mass	27.0	20	32.4	98.5	20	118.2	

Baseline Flight System

Baseline Orbiter Flight System

See Titan Saturn System Mission Study 2008: Final Report [1], Section 4.4.

Table 3-7. Flight System Element Mass and Power—Orbiter

	Mass			Average Power		
	CBE (kg)	% Cont.	MEV (kg)	CBE (W)	% Cont.	MEV (W)
Structures and mechanisms	350	30	456	15	49	22
Thermal control	82	30	106	33	49	49
Propulsion (dry mass)	154	27	196	76	49	113
Attitude control	53	21	64	90	49	134
Command & data handling	32	17	37	58	49	86
Telecommunications	64	27	82	99	49	148
Power w/o RPS RPS Power	64 107	30 49	83 160	20	49	30
Cabling	68	30	89	28	49	42
SEP stage power accommodation	_	_	_	54	49	80
Total Flight Element Dry Bus Mass	974	31	1,273	473*	49	704*

^{*}Power amounts are not simultaneous. See Titan Saturn System Mission Study 2008: Final Report [1], Section 4.4, Table 4.4-5 for details.

Table 3-8. Flight System Element Characteristics—Orbiter

Flight System Element Parameters (as appropriate)	Value/ Summary, units
General	
Design life, months	61 month SEP Cruise
	58 month Chemical Cruise
	24 month Saturn Tour
	3 month Aerobraking
	20 month Titan Orbit

Structure	
Structures material (aluminum, exotic, composite, etc.)	Graphite composite, aluminum
(honeycomb
Number of articulated structures	2
Number of deployed structures	0
Aeroshell diameter, m	N/A
Thermal Control	
Type of thermal control used	MLI, thermal surfaces, thermal conduction control, electrical heaters, and RHUs, both fixed and variable
Propulsion	
Estimated delta-V budget, m/s	2,377
Propulsion type(s) and associated propellant(s)/oxidizer(s)	Dual-mode
Number of thrusters and tanks	1 biprop main plus 16 monoprop
Specific impulse of each propulsion mode, seconds	323 biprop, 217 mono-prop
Attitude Control	
Control method (3-axis, spinner, grav-gradient, etc.).	3-axis
Control reference (solar, inertial, Earth-nadir, Earth-limb, etc.)	Sun sensors, star trackers, IMU
Attitude control capability, degrees	±0.7 mrad (3σ, radial)
Attitude knowledge limit, degrees	0.15 mrad
Agility requirements (maneuvers, scanning, etc.)	
Articulation/#-axes (solar arrays, antennas, gimbals, etc.)	2 axes for both HGA and main engine
Sensor and actuator information (precision/errors, torque, momentum storage capabilities, etc.)	4 RWAs with 25 Nms of angular storage, 16 4.5-N RCS thrusters
Command & Data Handling	
Flight element housekeeping data rate, kbps	10
Data storage capacity, Mbits	32,000
Maximum storage record rate, kbps	40,000
Maximum storage playback rate, kbps	200
Power	
Type of array structure (rigid, flexible, body mounted, deployed, articulated)	5 ASRGs (4 operating; 1 spare)
Array size, meters x meters	N/A
Solar cell type (Si, GaAs, multi-junction GaAs, concentrators)	N/A
Expected power generation at beginning of life (BOL) and end of life (EOL), watts	600 (BOL) 540 (EOL)*
On-orbit average power consumption, watts	394
Battery type (NiCd, NiH, Li-ion)	Li-ion
Battery storage capacity, amp-hours	Two 25-Amp-hours
	· · · · · · · · · · · · · · · · · · ·

^{*}Four ASRGs. Fifth ASRG included as a spare.

Baseline Solar Electric Propulsion (SEP) Flight System

See Titan Saturn System Mission Study 2008: Final Report [1], Section 4.4.4.

Table 3-9. Flight System Element Mass and Power—SEP Stage

	Mass			Average Power		
	CBE (kg)	% Cont.	MEV (kg)	CBE (W)	% Cont.	MEV (W)
Structures and mechanisms	154	29	199	N/A	N/A	N/A
Thermal control	38	47	56	N/A	N/A	N/A
Propulsion (dry mass)	168	30	218	14,000	N/A	14,000
Attitude control	3	10	3	N/A	N/A	N/A
Command & data handling	8	18	10	N/A	N/A	N/A
Telecommunications	N/A	N/A	N/A	N/A	N/A	N/A
Power	96	30	124	15,000	N/A	150,000
Cabling	34	30	44	N/A	N/A	N/A
Total Flight Element Dry Bus Mass	502	31	655	_	N/A	-

Table 3-10. Flight System Element Characteristics—SEP Stage

Flight System Element Parameters (as appropriate)	Value/ Summary, units
General	
Design life, months	61 months
Structure	
Structures material (aluminum, exotic, composite, etc.)	Aluminum
Number of articulated structures	0
Number of deployed structures	Two solar array wings
Aeroshell diameter, m	N/A
Thermal Control	
Type of thermal control used	MLI, heaters
Propulsion	
Estimated delta-V budget, m/s	2,750
Propulsion type(s) and associated propellant(s)/oxidizer(s)	SEP
Number of thrusters and tanks	3
Specific impulse of each propulsion mode, seconds	>4,100*
Attitude Control	N/A
Control method (3-axis, spinner, grav-gradient, etc.).	N/A
Control reference (solar, inertial, Earth-nadir, Earth-limb, etc.)	N/A
Attitude control capability, degrees	N/A
Attitude knowledge limit, degrees	N/A
Agility requirements (maneuvers, scanning, etc.)	N/A
Articulation/#-axes (solar arrays, antennas, gimbals, etc.)	Three 2-axis gimbals on thrusters

Sensor and actuator information (precision/errors, torque, momentum storage capabilities, etc.)	
Command & Data Handling	N/A
Flight element housekeeping data rate, kbps	N/A
Data storage capacity, Mbits	N/A
Maximum storage record rate, kbps	N/A
Maximum storage playback rate, kbps	N/A
Power	N/A
Type of array structure (rigid, flexible, body mounted, deployed, articulated)	Two 7.5-kW Ultraflex wings
Array size, meters x meters	6 m diam
Solar cell type (Si, GaAs, multi-junction GaAs, concentrators)	Triple-junction GaAs
Expected power generation at beginning of life (BOL) and end of life (EOL), watts	15 kW
On-orbit average power consumption, watts	15 kW during thrusting
Battery type (NiCd, NiH, Li-ion)	N/A
Battery storage capacity, amp-hours	N/A

^{*}NEXT Ion Propulsion System Development Status and Capabilities, Michael J. Patterson and Scott W. Benson, NASA Glenn Research Center, http://esto.nasa.gov/conferences/nstc2007/papers/Patterson_Michael_D10P3_NSTC-07-0014.pdf

Baseline Montgolfière Flight System with Spin Eject

See 2008 CDF Study Report Tandem Study of a Two-Probe Mission to Titan [3], Section 7.2.4.

Table 3-11. Flight System Element Mass and Power—Montgolfière

5 ,				9			
	Mass			Average Power			
	CBE (kg)	% Cont.	MEV (kg)	CBE (W)	% Cont.	MEV (W)	
Structures	114.9	20	137.9	0	0	0	
Balloon	109.9	0	109.9	0	0	0	
Thermal control	93.3	5.9	98.8	0	0	0	
Mechanisms	25.8	11.5	28.7	0	0	0	
Attitude control	5.3	13.9	6.0	6	0	6	
Command & data handling	7.9	10.0	8.6	10	0	10	
Telecommunications	17.4	17.2	18.7	70	0	70	
Power	4.2	16.5	5.0	_	0	_	
DLS (front and back shields)	18.2	10.0	20.0	0	0	0	
Harness	16	20.0	19.2	11	0	11	
Total Flight Element Dry Bus Mass	412.9	-	452.8*	97**	0**	97**	

^{*}ESA carried 20% margin on top of subsystem contingency for a total of 548.1 kg

^{**}The Montgolfière power system was designed for a simultaneous maximum power of 100 W. This is accomplished with load sharing. The maximum simultaneous load is calculated as 92 W.

Table 3-12. Flight System Element Characteristics—Montgolfière

Flight System Element Parameters (as appropriate)	Value/ Summary, units
General	
Design life, months	6 months after arrival
Structure	
Structures material (aluminum, exotic, composite, etc.)	Carbon fiber reinforced plastic Honey Comb Shells
Number of articulated structures	1
Number of deployed structures	6
Aeroshell diameter, m	2.6
Thermal Control	
Type of thermal control used	RHUs, waste heat
Propulsion	
Estimated delta-V budget, m/s	N/A
Propulsion type(s) and associated propellant(s)/oxidizer(s)	Parachute
Number of thrusters and tanks	N/A
Specific impulse of each propulsion mode, seconds	N/A
Attitude Control	
Control method (3-axis, spinner, grav-gradient, etc.).	Spinner/gravity-gradient
Control reference (solar, inertial, Earth-nadir, Earth-limb, etc.)	N/A
Attitude control capability, degrees	N/A
Attitude knowledge limit, degrees	1
Agility requirements (maneuvers, scanning, etc.)	N/A
Articulation/#-axes (solar arrays, antennas, gimbals, etc.)	N/A
Sensor and actuator information (precision/errors, torque, momentum storage capabilities, etc.)	3 accelerometers, 2 G- switches, 3 coarse gyros, 3 sun/Saturn sensor, IMU, pressure sensor
Command & Data Handling	
Flight element housekeeping data rate, kbps	TBD
Data storage capacity, Mbits	32,000
Maximum storage record rate, kbps	200,000
Maximum storage playback rate, kbps	TBD
Power	
Type of array structure (rigid, flexible, body mounted, deployed, articulated)	1 MMRTG
Array size, meters x meters	N/A
Solar cell type (Si, GaAs, multi-junction GaAs, concentrators)	N/A
Expected power generation at beginning of life (BOL) and end of life (EOL), watts	100 electrical, 1,690 thermal (EOL)
On-orbit average power consumption, watts	92 electrical, 1,000 thermal
Battery type (NiCd, NiH, Li-ion)	N/A
Battery storage capacity, amp-hours	0

Baseline Lake Lander Flight System with Spin Eject

See 2008 CDF Study Report Tandem Study of a Two-Probe Mission to Titan [3], Section 9.2.5.

Table 3-13. Flight System Element Mass and Power—Lake Lander

	Mass			Average Power		
	CBE (kg)	% Cont.	MEV (kg)	CBE (W)	% Cont.	MEV (W)
Structures	30.7	20	36.8	0	0	0
Mechanisms	20.5	10	22.6	0	0	0
Thermal control	29.9	1.3	30.3	0	0	0
Propulsion (dry mass)	0	0	0	0	0	0
Attitude control (AOCS)	1.7	12.7	2.0	5	0	5
Command & data handling (DHS)	6.1	10	6.7	12	0	12
Telecommunications	9.3	7	10.0	25	0	25
Power	6.9	13.2	7.8	13	0	13
DLS	13.5	10	14.86	0	0	0
Harness	11	20	13.2	0	0	0
Total Flight Element Dry Bus Mass	129.6	-	144.1	55	0	55

Table 3-14. Flight System Element Characteristics—Lake Lander

Flight System Element Parameters (as appropriate)	Value/ Summary, units
General	
Design life, months	9 hours after arrival
Structure	
Structures material (aluminum, exotic, composite, etc.)	Carbon fiber reinforced plastic Honey Comb Shells, impact attenuation foam
Number of articulated structures	0
Number of deployed structures	3
Aeroshell diameter, m	1.8
Thermal Control	
Type of thermal control used	RHUs
Propulsion	
Estimated delta-V budget, m/s	N/A
Propulsion type(s) and associated propellant(s)/oxidizer(s)	Parachutes
Number of thrusters and tanks	N/A
Specific impulse of each propulsion mode, seconds	N/A
Attitude Control	
Control method (3-axis, spinner, grav-gradient, etc.).	Spinner/gravity-gradient
Control reference (solar, inertial, Earth-nadir, Earth-limb, etc.)	N/A
Attitude control capability, degrees	N/A
Attitude knowledge limit, degrees	N/A
Agility requirements (maneuvers, scanning, etc.)	N/A
Articulation/#-axes (solar arrays, antennas, gimbals, etc.)	N/A

Sensor and actuator information (precision/errors, torque, momentum storage capabilities, etc.)	3 accelerometers, 1 gyro, 2 pressure sensors, 4-gswitch sensors
Command & Data Handling	
Flight element housekeeping data rate, kbps	Small-TBD
Data storage capacity, Mbits	14,000
Maximum storage record rate, kbps	200,000
Maximum storage playback rate, kbps	
Power	
Type of array structure (rigid, flexible, body mounted, deployed, articulated)	Primary batteries
Array size, meters x meters	N/A
Solar cell type (Si, GaAs, multi-junction GaAs, concentrators)	N/A
Expected power generation at beginning of life (BOL) and end of life (EOL), watts	0
On-orbit average power consumption, watts	1.6
Battery type (NiCd, NiH, Li-ion)	SAFT LiSO ₂
Battery storage capacity, amp-hours	806

Baseline Concept of Operations and Mission Design

See Titan Saturn System Mission Study 2008: Final Report [1], Sections 4.3, 4.5.1, 4.6.4, and Appendix C.

Table 3-15. Mission Design

Parameter	Value	Units
Orbit parameters (apogee, perigee, inclination, etc.)	Orbiter Titan orbit only	km
	1,500 circular	deg
	85	
	Descending node	
	LST 11:30 a.m. to 9 a.m.	
Mission lifetime	61 SEP Cruise	mos
	58 Chemical Cruise	
	24 Saturn Tour	
	2 Aerobraking	
	20 Titan Orbit	
	Total: 165	
Maximum eclipse period	N/A	min
Launch site	ETR	
Total flight element #1 mass with contingency (includes instruments)—orbiter	1,613	kg
Total flight element #2 mass with contingency (includes instruments)—SEP stage	655	kg
Total flight element #3 mass with contingency (includes instruments)—montgolfiére	571	kg
Total flight element #4 mass with contingency (includes instruments)—lake lander	190	kg
Propellant mass without contingency	2,528 bi-prop 410 (SEP)	kg
	410 (SEF)	l

Propellant contingency	0 bi-prop 10 (SEP)	%
Propellant mass with contingency	2,528 bi-prop 451 SEP fuel	kg
Launch adapter mass with contingency	26	kg
Total launch mass	6,203	kg
Launch vehicle	Atlas V 551	type
Launch vehicle lift capability	6,265	kg
Launch vehicle mass margin	62	kg
Launch vehicle mass margin (%)	35	%

Baseline Orbiter Concept of Operations and Mission Design

The orbiter relays data to Earth for both the montgolfière and lake lander as the primary data-link.

Table 3-16. Mission Operations and Ground Data Systems—Orbiter

Dannelink	-			<u> </u>	1			
Downlink Information	SEP Cruise	Cruise	Saturn Tour	Aerobraking	Titan Orbit			
Number of contacts per week	1–1.5	0.5 -21	14	21	14			
Number of weeks for mission phase, weeks	264	251	104	9	95			
Downlink frequency band, GHz	8.425/32.05	8.425/32.05	8.425/32.05	8.425/32.05	8.425/32.05			
Sci & telemetry data rate(s), kbps	0.01	0.01	10(x)-200(Ka)	10(x)-200(Ka)	10(x)-200(Ka)			
Transmitting antenna type(s) and gain(s), DBi	MGA-X 22 4 m HGA-X; 48.4 4 m HGA-Ka, 60.7	MGA-X 22 4 m HGA-X 48.4; 4 m HGA-Ka, 60.7						
Transmitter peak power, watts(DC)	69	69	79	69	99			
Downlink receiving antenna gain, DBi	DSS-25 68.4 X; 79 Ka	DSS-25 68.4 X; 79 Ka	DSS-25 68.4 X; 79 Ka	DSS-25 68.4 X; 79 Ka	DSS-25 68.4 X; 79 Ka			
Transmitting power amplifier output, watts (RF)	25	25	25-X/35-Ka	25-X/35-Ka	25-X/35-Ka			
Total daily data volume (MB/day)	<1	<1	15,000 Max	16.9	14,440			
Uplink Information								
Number of uplinks per day	0.14	0.07	1	1	1			
Uplink frequency band, GHz	7.17	7.17	7.17/34.33	7.17/34.33	7.17/34.33			
Telecommand data rate, kbps	140	140	140	140	140			
Receiving antenna type(s) and gain(s), DBi	MGA, 21.5	MGA, 21.5	4 m HGA-X, 47.0; 4 m HGA-Ka, 61.3	4m HGA-X, 47.0; 4 m HGA-Ka, 61.3	4m HGA-X, 47.0; 4 m HGA-Ka, 61.3			

Baseline Montgolfière Concept of Operations and Mission Design

Montgolfiére data is relayed to the orbiter, although low data rate direct-to-Earth contact is possible.

Table 3-17. Mission Operations and Ground Data Systems— Montgolfière

Downlink Information	Balloon Science Phase
Number of contacts per week	Varies depending on orbiter distance
Number of weeks for mission phase, weeks	26
Downlink frequency band, GHz	8.45
Telemetry data rate(s), kbps	10–1,000
Transmitting antenna type(s) and gain(s), DBi	50 cm HGA, 31
Transmitter peak power, watts	45
Downlink receiving antenna gain, DBi	47
Transmitting power amplifier output, watts	25
Total daily data volume, (MB/day)	TBD
Uplink Information	
Number of uplinks per day	Varies depending on orbiter distance
Uplink frequency band, GHz	7.17
Telecommand data rate, kbps	Varies depending on orbiter distance
Receiving antenna type(s) and gain(s), DBi	4 m HGA X, 47

Baseline Lake Lander Concept of Operations and Mission Design

The lake lander sends data continuously to the orbiter during its nine hour mission.

Table 3-18. Mission Operations and Ground Data Systems—Lander

Downlink Information	Mission Phase 1
Number of contacts per week	Continuous
Number of weeks for mission phase	9 hours
Downlink frequency band, GHz	8.45
Telemetry data rate(s), kbps	1,024
Transmitting antenna type(s) and gain(s), DBi	MGA, 0
Transmitter peak power, watts	15
Downlink receiving antenna gain, DBi	47
Transmitting power amplifier output, watts	8
Total daily data volume, (MB/day)	3,400
Uplink Information	
Number of uplinks per day	Continuous
Uplink frequency band, GHz	7.17
Telecommand data rate, kbps	Varies depending on orbiter distance
Receiving antenna type(s) and gain(s), DBi	4 m HGA X, 47

Planetary Protection

See Titan Saturn System Mission Study 2008: Final Report [1], Section 4.7 and Section 4.10.6.

Risk List

See Titan Saturn System Mission Study 2008: Final Report [1], Section 4.10.

Figure 3-1. Risk Matrix

4. Development Schedule and Schedule Constraints

High-Level Mission Schedule

See Titan Saturn System Mission Study 2008: Final Report [1], Section 4.11.6, and TSSM In Situ Elements [2], Section 12.6.

Orbiter / Mission Schedule

Table 4-1. Key Phase Duration—Orbiter

Project Phase	Duration (Months)
Phase A – Conceptual Design	18
Phase B – Preliminary Design	18
Phase C – Detailed Design	24
Phase D – Integration & Test	28
Phase E – Primary Mission Operations	153
Phase F – Extended Mission Operations	6
Start of Phase B to PDR	16
Start of Phase B to CDR	28
Start of Phase B to delivery of instrument #1	45
Start of Phase B to delivery of instrument #2	45
Start of Phase B to delivery of instrument #n	45
Start of Phase B to delivery of flight element #1—orbiter	53
Start of Phase B to delivery of flight element #2—SEP stage	54
Start of Phase B to delivery of flight element #3—montgolfiére	46
Start of Phase B to delivery of flight element #4—lake lander	46
System-level integration & test	26
Project total funded schedule reserve	8.5
Total development time Phase B–D	70

Figure 4-1. Schedule—Orbiter

Montgolfière / Lake Lander Schedule

Table 4-2. Key Phase Duration—Montgolfière and Lake Lander

Project Phase	Duration (Months)
Conceptual Design	45
Preliminary Design	21
Phase C – Detailed Design	30
Phase D – Integration & Test	36
Start of Preliminary Design to PDR	21
Start of Preliminary Design to CDR	51
Start of Preliminary Design to Delivery of Instruments	78
Total development time Preliminary Design—Delivery to Project	81

Figure 4-2. Schedule—Montgolfière / Lake Lander

Technology Development Plan

See Titan Saturn System Mission Study 2008: Final Report [1], Section 4.9.

Development Schedule and Constraints

See Titan Saturn System Mission Study 2008: Final Report [1], Section 4.3.11, 4.4.2, and 4.4.6.

Figure 4-3. Schedule—Orbiter Testbed / ATLO

5. Mission Life-Cycle Cost

See Titan Saturn System Mission Study 2008: Final Report [1], Section 4.11.7 and Appendix D.

Costing Methodology and Basis of Estimate

The NASA portion of the TSSM cost estimate presented here is the total mission cost for the complete project life cycle from Phase A through Phase F as presented in Table 5-1. Notice that the real year (RY) cost profile is provided for an assumed 2020 launch. The total costs per year and by phase are also presented in 2015 then-year dollars. Note that the total costs per year at the bottom of the table shows costs based on the reserve posture determined in the 2008 study as well as the reserve requirements specified in the NASA ground rules (50% cost reserves for Phases A–D and 25% cost reserves for Phase E).

Cost Estimates

Orbiter Cost Estimates

See Titan Saturn System Mission Study 2008: Final Report [1], Appendix D.

The cost to NASA for the orbiter flight system, SEP stage, accommodation of in-situ elements, launch, and operations is shown in Table 5-1.

Table 5-1. Total Mission Cost Funding Profile—Orbiter

(FY costs in Real Year Dollars, Totals in Real Year and 2015 Dollars)

		Die				Dhan D				`		iii i (Cai	i cai	Dollars	, rotais	1111100	ıı ı cai	and Z	J 10 D	oliai 3)		F								Dhan E		T-4-LCDV	T-4-1 CEV4E
	FY 2013	Phas FY 2014		Total	FY 2015	Phase B FY 2016	Total	FY 2016	FY 2017		Phase C/D FY 2019	FY 2020	FY 202	1 Total	FY 2021	FY 2022	FY 2023	FY 2024	FY 2025	FY 2026	Pha FY 2027		FY 2029	FY 2030	FY 2031	FY 2032	FY 2033	Total	FY 2033	Phase F FY 2034	Total	Total \$RY All Phases	Total \$FY15 All Phases
01 Project Management	1,026	6,510	1,698				30,777			17,601	15,058	14,800	1,08		6,956		4,493	4,515	4,655	4,667	4,700	4,900	5.416	5.688	5,959		4,922	67,660	234	357		183,394	158,488
02 Project System Engineering	333	2,744	822				8,955			8,470	8,615	8,606	60		628	_	732	775	785	812	832	862	963	985	1,019	1,056	922	11,078	25	57		59,841	53,534
03 Safety & Mission Assurance	701	2,331	738	3,770	7,277	10,837	18,114	5,307	21,134	19,737	10,370	7,756	47	9 64,784	815	797	760	647	706	632	591	633	956	1,093	1,837	1,901	1,556	12,924	275	642	917	100,510	91,335
04 Science & Technology	250	1,034	253		4,117		8,297	3,742		14,192	8,337	8,621	72		6,225		7,253	7,650	7,766	8,023		8,514	8,979	9,139	46,144	51,123	44,503	220,552	4,145	9,148		294,831	214,404
04.01 Sci Mgmt	81	334	82		1,024	, , ,	2,066	391		1,702	1,737	1,797	15		1,709	1,926	1,993	2,098	2,134	2,205	,	2,343	2,467	2,515	5,277	5,697	4,930	37,558	473	1,014	1,487	49,008	36,609
04.02 Sci Implement	156	646	158	960	2,381	2,416	4,797	3,111	12,916 10	11,280	4,865	5,033	42	37,627	3,266 1,250	3,679 1,406	3,808 1.452	4,024 1,528	4,081 1,551	4,217 1,600	4,321 1.639	4,475 1,695	4,729 1,783	4,809	33,459	37,267 8,158	32,516 7.057	144,652 38,342	2,997 675	6,684	9,681	197,718	143,239 27,554
04.03 Sci Support 05 Payload System	306	1.365	350	2,021		13,210	25,103	24,582		85,189	28,306	28,284	2,35			1,400	1,432	1,320	1,001	1,000	1,039	1,090	1,703	1,814	7,409	0,130	7,037	30,342	0/3	1,450	2,126	40,517 297,065	277,592
05.01 PL Sys Mgmt	220	1,010	263		853		1,719			1,400	1,426	1,476	12																		-	9,287	8,772
05.02 PL System Eng	86	356	86	528	838	1,841	2,679	651	2,703	2,850	2,491	1,735	8	4 10,512																	-	13,719	12,828
05.04 HiRIS	-	-	-	-	2,156		4,371	4,983		17,051	5,155	5,300	45																		-	57,803	53,991
05.05 MAPP Combined Cost	-	-	-	-	1,416	, -	2,869	3,271	13,450	11,193	3,384	3,479	29																			37,944	35,442
05.06 TIRS	-	-	-	-	1,747		3,541	4,037	16,598	13,813	4,176	4,293	36																			46,827	43,739
05.07 PMS 05.08 TiPRA	-	-	-	-	1,222 2,192		2,478 4,443			9,666 17,334	2,923 5,241	3,004 5,388	25 46															-			-	32,769 58,762	30,608 54,887
05.09 RSA	-		_		2,132	- 2,201		3,003	- 20,023	- 17,004	- 5,241	3,300	40	- 04,510														-				- 30,702	34,007
05.10 SMS	-	-	-	-	1,468	1,508	2,976	3,393	13,950	11,609	3,510	3,608	30	9 36,380																	-	39,356	36,761
05.30 Sci Inst Purge	-	-	-	-	-	27	27	39	259	274	-	-		- 572																		599	562
06 Spacecraft System	11,140	28,501	9,683		103,294		234,029	54,614		154,866	59,748	40,237	1,74															-			-	804,634	767,029
06.01 SC Mgmt	183	1,275	366	,-	,		2,404	402	,	1,762	1,794	1,859	13															-			-	11,851	11,197
06.02 SC Sys Eng	403	3,149	1,143		6,321		14,039 180,706	2,561		8,740	6,538	4,282	1 10															-			-	50,607 596,911	48,050
06a Orbiter 06a.4 Power SS	10,275 246	22,821 1.614	7,790 686	40,885 2,546	76,334 5,446		21,413	32,344 1.976	156,159 21.785	7,006	37,649 1.352	30,526 2.133	1,19																		-	596,911	569,581 55,825
06a.5 C&DH SS	41	2,404	1,487		-, -	-,	27,410	4,569	,	5,896	477	420	"	- 26,247																		57,589	55,758
06a.6 Telecom SS	7,785	6,115	728		24,511		36,372	3,433		7,035	2,138	2,019	31																		-	84,649	82,813
06a.7 Mechanical SS	176	1,330	1,183	2,689	11,273	18,213	29,486	6,946	44,260	43,930	6,047	5,685		106,869														-			-	139,043	131,436
06a.8 Thermal SS	375	1,658	802		5,328		9,968	950		7,775	4,546	2,562	9	- ,																	-	33,369	31,656
06a.9 Propulsion SS	891	5,857	1,285	-,	9,888	,	24,824	4,832		8,035	1,824	3,140	19	,																	-	56,953	55,103
06a.10 GN&C SS 06a.11 Harness	740	3,545	1,226 85	5,511 112	6,475	14,355 1,120	20,829	6,039 372	22,523 3,006	9,066 4,928	3,369 1,913	3,184 1,777		- 44,181 - 11,995														-			-	70,521 14,109	67,519 13,121
06a.11 Flamess 06a.12 Flight Software		27 165	266	431		, .	6,266	2.126		16,307	11.771	7.058	47															-				58.572	54,282
06a.13 Materials & Proc	21	106	41		239	,	1,032	273	,	1,109	483	126	77	- 3,125																	-	4,324	4,092
06a.14 Flight System Testbeds	-	-	-		74		1,104	828		4,765	2,802	2,421		- 15,064																	-	16,168	14,947
06a.18 Trailblazer	-	-	-		-	-		-	766	1,594	927	-		- 3,287																	-	3,287	3,031
06b SEP Stage	279	1,255	384				36,880	19,307	42,720	26,918	13,766	3,570	18																		-	145,265	138,200
06b.3 IPS Subsystem	44 17	181	44			7,047	18,307	11,346	19,632	5,943	1,419	497	7																		-	57,484	55,317
06b.4 Power System 06b.5 Mechanical	- 17	171	101	289	6,339 131		13,544 1,330	2,294 863		7,036 6,036	707 4,926	677	3	6 20,160 - 20,831																	-	33,994 22,161	32,559 20,678
06b.6 Thermal	111	460	129	699	933		2,001	390		3,063	2,687	1.548	1	8 9,421																		12,121	11,310
06b.7 GN&C	107	444	110	662	480		1,054	264		665	330	326	1	8 2,959																	-	4,674	4,472
06b.8 C&DH	-	-	-		-	-		3,865	-	531	-	-		- 4,396																	-	4,396	4,254
06b.9 I&T	-	-	-	-	303		643		,	3,643	3,698	522	4	,														-			-	10,435	9,610
07 Mission Operations System	140	1,298	471	1,910	1,865	4,508	6,373	1,801	8,404	9,961	12,612	22,262	2,33	3 57,37 4	24,775	25,477	23,730	18,013	21,327	17,283	15,512	17,254	32,664	39,508	42,709	42,037	32,256	352,547	3,703	2,164	5,868	424,071	315,411
08 Launch Services (see below) 09 Ground Data System	331	1.530	424	2,286	1.473	4,122	5,595	1.605	8.839	10,342	11.656	13.573	72	9 46,744	3.189	3.320	3.406	2,982	2,797	2.816	2,378	2,597	3,921	4.532	4.445	4.044	3.380	43.808	258	355	613	99,046	82,360
10 Project System Integration & Test	- 331	1,550	191	336	1,473		6,248	,		10,109	20,114	19,873	10		3,103	3,320	3,400	2,302	2,131	2,010	2,310	2,331	3,321	4,002	4,440	4,044	3,300	43,000	230	- 300	- 013	67,300	61,390
11 Education & Public Outreach	74	245	78		764		1,736	507		1,648	871	814	5	-	832	813	775	660	720	645	603	646	975	1,115	1,874	1,939	1,587	13,182	157	232	389	21,605	17,128
12 Mission Design	556	3,781	1,032	5,370	3,470		6,460	906		3,931	3,881	3,946	25												-						-	28,500	27,112
Subtotal before Reserves	14,858	49,485	15,741	80,083	154,617	197,069	351,686	102,438	408,242	336,046	179,569	168,773	10,45	8 1,205,525	43,419	42,824	41,149	35,242	38,758	34,877	32,840	35,406	53,873	62,060	103,988	108,190	89,126	721,752	8,798	12,955	21,753	2,380,798	2,065,782
Reserves as determined in 2008 study	1,478					80,279								3 482,843																	3,205		663,735
Total NASA Phase A-F Cost (No LV)	16,336	54,408	17,307	88,052	208,466	277,348				-			14,10	1,688,368	-,	49,126	47,205	40,429	44,464	40,012	37,675	40,620	61,808	/1,202	119,305	124,128	102,257	828,037	10,094	14,863	24,957	3,115,227	2,729,517
06a.17 Orbiter RPS 06c Lander RPS	-	-	 		-	1,568	21,882 1,568		29,993	61,665	31,696	-		130,648				+									-	-			-	152,530 1,568	142,266 1,526
06d Balloon RPS	1		 		 	9,821	9,821		11,313	23,260	11,956	 		- 49,280																		59,101	55,188
DSN Aperture		-	-				- 5,021	2,701			- 11,550	<u> </u>	3,52	,	671	747	768	3,574	812	683	407	419	8,177	13,445	21,143	31,595	25,067	107,508	-	-	-	111,030	73,407
Launch Vehicle	- 1	-	-		-	-		-	32,412	133,279	102,758	-	-,,,,	- 268,448				.,					-,	2,	.,	,		,				268,448	246,141
Total NASA Phase A-F Cost (With LV)	16,336	54,408	17,307	88,052	208,466	310,619	519,085	151,674					17,62	2 2,140,266		49,873	47,973	44,003	45,275	40,695	38,083	41,039	69,985	84,647	140,448	155,722	127,324	935,545	10,094	14,863	24,957	3,707,905	3,248,046
														ed with new re																			
Subtotal before Reserves	14,858	49,485	15,741		154,617	197,069	,	. ,						8 1,205,525		42,824				34,877		,			103,988					,	21,753	,,	2,065,782
Reserves of 50% A-D and 25% E as		a · = · ·		40,041			175,843	51,219	204,121	168,023	89,784	84,386	5,22	9 602,762	10,855	10,706	10,287	8,810	9,689	8,719	8,210	8,851	13,468	15,515	25,997	27,047	22,281	180,438	2,199	3,239	5,438	1,004,523	871,609
required by NASA SS2012 PS Decadal	7,429			400 401	77,309		F07 F05	450.05	040.000	F0 4 070	000.050	050 450	45.00	0 4000 000	F 4 0 T 2	F0 F0:	F/ 40=	44.050	40.447	40 500	44.040	44.05=	07.044	77.57-	400.00-	405.00=	444.40=	000.400	40.00=	10.100	07.404	0.005.004	0.007.000
Total NASA Phase A-F Cost (No LV)	22,286	74,227	23,611	120,124	231,926					504,070 61,665		253,159	15,68		54,273	53,531	51,437	44,052	48,447	43,596	41,049	44,257	67,341	77,575	129,985	135,237	111,407	902,190	10,997	16,193	27,191		2,937,392
06a.17 Orbiter RPS 06c Lander RPS	-	-	-		-	21,882 1,568	21,882 1,568		29,993	61,665	31,696	-		130,648				+									-	•			-	152,530 1,568	142,266 1,526
06d Balloon RPS	1	<u> </u>	 		 	9,821	9,821		11,313	23,260	11,956	 		- 49,280				+						 								59,101	55,188
DSN Aperture		-	<u> </u>		-		-,	-,.51	,,	_0,_00	,550	-	3,52			747	768	3,574	812	683	407	419	8,177	13,445	21.143	31,595	25,067	107,508	-	-		111,030	73,407
Launch Vehicle	- 1	-	-		-	- 1		-	32,412	133,279	102,758	-	1 .,,,,	- 268,448				.,					-,	-,	.,	,		,,				268,448	246,141
Total NASA Phase A-F Cost (With LV)	22,286	74,227	23,611	120,124	231,926	328,874	560,800	163,702	686,081				19,20	,		54,278	52,205	47,626	49,259	44,279	41,457	44,676	75,518	91,020	151,128	166,832	136,475	1,009,697	10,997	16,193	27,191	3,977,999	3,455,921

Montgolfière and Lake Lander Cost Estimates

The European Space Agency (ESA) *Cosmic Vision 2015*–25 call for mission ideas allocated 650 M€ for the cost to ESA for an L-class mission proposal. This was equivalent to approximately \$1B US in 2008. Preliminary cost estimates, conducted by ESA and not validated by NASA, confirmed that this limit will not be exceeded provided the following assumptions are correct:

- The balloon technology development and balloon material for flight will be provided by CNES without additional ESA contribution.
- The NASA-provided orbiter would carry and release the ESA in-situ elements.
- The MMRTG and all RHUs would be provided by NASA at no cost to ESA.
- The instruments would be contributed by ESA member states

Additional margin was taken into account by ESA to provide for an expected cost increase, if more stringent planetary protection requirements arise should Titan be elevated to category IV.

Appendix A. Acronyms

AO	announcement of opportunity	RWA	reaction wheel assembly								
ASI	Italian Space Agency	RY	real year								
ASRG	advanced stirling radioisotope	SDST	small deep space transponder								
	generators	SEP	solar electric propulsion								
ATLO	assembly, test, and launch operations	SIRU	space inertial reference unit								
BIS	balloon imaging spectrometer	SMS	sub-millimeter sounder								
CBE	current best estimate	SOI	Saturn Orbit Insertion								
COPV	composite overwrapped pressure	SPP	surface properties package								
	vessel	SSE	Solar System Exploration								
CML	concept maturity level	TEEP	Titan electronic environment								
DSN	Deep Space Network	T:DD A	package								
HGA	high gain antenna	TiPRA	Titan penetrating radar and altimeter								
HiRIS	high-resolution imager and spectrometer	TIRS	Thermal IR spectrometer								
I&T	integration and test	TLCA	Titan lander chemical analyzer								
JSDT	Joint Science Definition Team	TMCA	Titan montgolfière chemical analyzer								
LV	launch vehicle	TRS	Titan radar sounder								
MAG	magnetometer	TSSM	Titan Saturn System Mission								
MAPP	magnetometer and plasma package	USO	ultra-stable oscillator								
MEV	maximum expected value	UST	universal space transponder								
MIMU	micro-inertial measurement unit	VISTA	visual imaging system Titan for balloon								
MIT	micro-impulse thrusters	V&V	verification and validation								
MMRTGs	multimission radioisotope thermoelectric generator		vollingation and validation								
MREU	MSAP remote engineering unit										
MRO	Mars Reconnaisance Orbiter										
MSAP	multimission system architecture platform										
MSIA	MSAP system interface assembly										
NRC	National Research Council										
OPFM	Outer Planet Flagship Mission										
PMS	polymer mass spectrometer										
RPS	radioisotope power systems										
RSA	radio science and accelerometer										

Appendix B. References

- [1] National Aeronautics and Space Administration, and European Space Agency. 30 January 2009. Titan Saturn System Mission Final Report on the NASA Contribution to a Joint Mission with ESA. Task Order #NM0710851.
- [2] National Aeronautics and Space Administration, and European Space Agency. 12 February 2009. TSSM In Situ Elements: ESA Contribution to the Titan Saturn System Mission Assessment Study Report. ESA-SRE(2008)4, Issue 1, Revision 2.
- [3] ESTEC Concurrent Design Facility Team. Christian Erd, Study Manager. August 2009. 2008 CDF Study Report Tandem Study of a Two-Probe Mission to Titan. CDF 78A.