(6.1) Determine whether $\int_0^1 \frac{1}{3y-2} dy$ is convergent or divergent. If it is convergent evaluate it.

To find the integral of $\int_0^1 \frac{1}{3y-2} dy$, we can use *u*-substitution with a *u* of 3y-2 and a du=3. Thus,

$$\int_0^1 \frac{1}{3y - 2} \, dy = \int_0^1 \frac{1}{3u} \, du$$

Computing the antiderivative gives us

$$\int_0^1 \frac{1}{3u} \, du = \left[\frac{1}{3} \ln u \right]_0^1$$

$$= \left[\frac{\ln(3y - 2)}{3} \right]_0^1$$

$$= \frac{\ln 1}{3} - \frac{\ln(-2)}{3}$$

$$= -\frac{\ln(-2)}{3}$$

Because our expression for the antiderivative contains $\ln(-2)$ and the natural logarithm is undefined for negative numbers, the integral $\int_0^1 \frac{1}{3y-2} dy$ is divergent.

(6.2) Use the Comparison Theorem to determine whether $\int_{4}^{\infty} \frac{5 + e^{-x}}{x} dx$ is convergent or divergent.

Let $\int_4^\infty \frac{5+e^{-x}}{x} dx$ be called (1). Currently (1) is not in a form the Comparison Theorem is able to be used on. To fix that, we can split the integral into two.

$$\int_{4}^{\infty} \frac{5 + e^{-x}}{x} \, dx = \int_{1}^{\infty} \frac{5 + e^{-x}}{x} \, dx - \int_{1}^{4} \frac{5 + e^{-x}}{x} \, dx$$

Now we can use the Comparison Theorem on the first integral, and compute a finite value for the second integral. We shall compare $\int_1^\infty \frac{5+e^{-x}}{x} \, dx \text{ to } \frac{1}{x}, \text{ and } 1 < x < \infty.$

$$e^{-x} > 1$$
 $5 + e^{-x} > 1$
 $\frac{5 + e^{-x}}{x} > \frac{1}{x}$

Now if we use the p-test on $\frac{1}{x}$, we find that $1 \nleq 1$ and therefore it is divergent. Now since

$$\frac{5+e^{-x}}{x} > \frac{1}{x}$$

the integral $\frac{5+e^{-x}}{x}$ is also divergent.

Therefore,

$$\int_{1}^{\infty} \frac{5 + e^{-x}}{x} \, dx - \int_{1}^{4} \frac{5 + e^{-x}}{x} \, dx$$

is divergent which means that

$$\int_{4}^{\infty} \frac{5 + e^{-x}}{x} \, dx$$

is divergent.

(6.3) Use the Comparison Theorem to determine whether $\int_0^{\pi/2} \sec^3 x \, dx$ is convergent or divergent.

Let us compare our integral to the integral of $\sec x$ with the same bounds. Remember that $\int \sec x \, dx = \ln|\tan x + \sec x| + C$. Therefore, using our methods for evaluating improper integrals,

$$\int_0^{\pi/2} \sec x \, dx = \int_0^t \sec x \, dx$$

$$= \left[\ln|\tan x + \sec x| \right]_0^t$$

$$= \ln|\tan t + \sec t| - \ln|\tan 0 + \sec 0|$$

$$= \ln|\tan t + \sec t| - \ln 1$$

$$= \ln|\tan t + \sec t|$$

Plugging this in to our limit gives us

$$\lim_{t \to \infty} \ln|\tan t + \sec t| = \infty$$
= Diverges

Now we know that $\int_0^{\pi/2} \sec x \, dx$ diverges, we can say that for $0 < x < \frac{\pi}{2}$

$$\sec x > 1$$

$$\sec^3 x > \sec x$$

$$\int_0^{\pi/2} \sec^3 x \, dx > \int_0^{\pi/2} \sec x \, dx$$

And since we know that $\int_0^{\pi/2} \sec x \, dx$ diverges and $\int_0^{\pi/2} \sec^3 x \, dx > \int_0^{\pi/2} \sec x \, dx$, we can say using the Comparison Theorem that $\int_0^{\pi/2} \sec^3 x \, dx$ is divergent.

- (6.4) **Professional Problem:** Decide whether the following statements are true or false. If a statement is true, prove it and if it's false, provide a specific counterexample.
 - (a) If $\int_1^\infty f(x) dx$ and $\int_1^\infty g(x) dx$ both converge, then $\int_1^\infty f(x) + g(x) dx$ also converges.
 - (b) If $\int_1^\infty f(x) + g(x) dx$ converges, then $\int_1^\infty f(x) dx$ and $\int_1^\infty g(x) dx$ also converge.
 - (c) If $\int_{1}^{\infty} f(x) dx$ diverges, then $\int_{1}^{\infty} (f(x))^{2} dx$ diverges.
 - (a) Let the statement "If $\int_1^\infty f(x) dx$ and $\int_1^\infty g(x) dx$ both converge, then $\int_1^\infty f(x) + g(x) dx$ also converges" be true. To prove this, first using basic integration we can establish that

$$\int_{1}^{\infty} f(x) dx = \lim_{x \to \infty} \left(F(x) - F(1) \right) \tag{1}$$

and that (1) converges. Now if we evaluate the integral $\int_1^\infty f(x) + g(x) dx$, we can complete the math

$$\int_{1}^{\infty} f(x) + g(x) dx = \lim_{t \to \infty} [F(x) + G(x)]_{1}^{t}$$
$$= \lim_{t \to \infty} (F(t) + G(t) - F(1) - G(1))$$

Rearranging the limt produces

$$\lim_{t \to \infty} (F(t) + G(t) - F(1) - G(1)) = \lim_{t \to \infty} (F(t) - F(1)) + \lim_{t \to \infty} (G(t) - G(1))$$
 (2)

which using the property in (1) we can clearly see is equal to $\int_1^\infty f(x) dx + \int_1^\infty g(x) dx$ and since we know both of those integral converge, we can conclude that $\int_1^\infty f(x) + g(x) dx$ also converges.

(b) To prove that if $\int_1^\infty f(x) + g(x) dx$ converges, then $\int_1^\infty f(x) dx$ and $\int_1^\infty g(x) dx$ also converge, we can take the fact that

$$\int_{1}^{\infty} f(x) + g(x) \, dx = \int_{1}^{\infty} f(x) \, dx + \int_{1}^{\infty} g(x) \, dx$$

which was shown in (2) if we convert the limits to integrals and use it to prove that $\int_1^\infty f(x) \, dx$ and $\int_1^\infty g(x) \, dx$ are convergent since $\int_1^\infty f(x) + g(x) \, dx$ converges, each of it's parts must converge to produce a finite sum.

(c) A simple counterexample to the statement "If $\int_1^\infty f(x) dx$ diverges, then $\int_1^\infty (f(x))^2 dx$ diverges" is the function $f(x) = \frac{1}{x}$. If we apply the *p*-test to f(x) because it is in the form $\frac{1}{x^p}$, we find that since f(x) has a p of 1, it fails the p-test and therefore $\int_1^\infty f(x) dx$ diverges. However,

$$\int_{1}^{\infty} (f(x))^{2} dx = \int_{1}^{\infty} \frac{1}{x^{2}} dx$$

which means that $f(x)^2$ has a p of 2 which is greater than 1 and $\int_1^\infty (f(x))^2 dx$ iss convergent. We have just disproved the statement "If $\int_1^\infty f(x) dx$ diverges, then $\int_1^\infty (f(x))^2 dx$ diverges."