#### **Edge Detection**

CSE 576 Ali Farhadi

# Edge



Attneave's Cat (1954)

#### Origin of edges



Edges are caused by a variety of factors

# Characterizing edges

An edge is a place of rapid change in the image intensity function



#### Image gradient





The gradient of an image:

$$\nabla f = \left[ \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid change in intensity



#### The discrete gradient

- How can we differentiate a digital image F[x,y]?
  - Option 1: reconstruct a continuous image, then take gradient
  - Option 2: take discrete derivative ("finite difference")

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

#### Image gradient



$$\frac{\partial f}{\partial x} = f(x+1,y) - f(x,y)$$

How would you implement this as a filter?

The gradient direction is given by:

$$\theta = \tan^{-1} \left( \frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

How does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

#### Sobel operator

In practice, it is common to use:

$$g_x = egin{array}{c|cccc} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \ \end{array}$$

Magnitude:

$$g = \sqrt{g_x^2 + g_y^2}$$

**Orientation:** 

$$\Theta = \tan^{-1} \left( \frac{g_y}{g_x} \right)$$

#### Sobel operator



#### Effects of noise

- Consider a single row or column of the image
  - Plotting intensity as a function of position gives a signal





Where is the edge?

#### Effects of noise

- Difference filters respond strongly to noise
  - Image noise results in pixels that look very different from their neighbors
  - Generally, the larger the noise the stronger the response
- What can we do about it?

#### Solution: smooth first



#### Derivative theorem of convolution

 Differentiation is convolution, and convolution is associative:  $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$ 

$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

This saves us one operation:



How can we find (local) maxima of a function?

# Remember: Derivative of Gaussian filter



#### Laplacian of Gaussian

• Consider  $\frac{\partial^2}{\partial x^2}(h \star f)$ Sigma = 50 Laplacian of Gaussian Kernel 0 operator  $\overline{0}$ Convolution  $\left(\frac{\partial^2}{\partial x^2}h\right) \star f$ 

Where is the edge?

Zero-crossings of bottom graph

# 2D edge detection filters



Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{2\sigma^2}}$$



derivative of Gaussian

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$





 $\nabla^2$  is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

#### Edge detection by subtraction



original

#### Edge detection by subtraction



smoothed (5x5 Gaussian)

# Edge detection by subtraction



Why does this work?

smoothed – original (scaled by 4, offset +128)

# Gaussian - image filter



Laplacian of Gaussian

 This is probably the most widely used edge detector in computer vision

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.



original image (Lena)



norm of the gradient



thresholding

#### Get Orientation at Each Pixel



theta = atan2(-gy, gx)





thinning (non-maximum suppression)

#### Non-maximum suppression



Check if pixel is local maximum along gradient direction

#### Compute Gradients (DoG)



X-Derivative of Gaussian



Y-Derivative of Gaussian



**Gradient Magnitude** 

#### Canny Edges



#### Effect of $\sigma$ (Gaussian kernel spread/size)



The choice of  $\sigma$  depends on desired behavior

- large  $\sigma$  detects large scale edges
- small  $\sigma$  detects fine features

#### An edge is not a line...





How can we detect lines?

#### Finding lines in an image

- Option 1:
  - Search for the line at every possible position/ orientation
  - What is the cost of this operation?
- Option 2:
  - Use a voting scheme: Hough transform

Finding lines in an image



- Connection between image (x,y) and Hough (m,b) spaces
  - A line in the image corresponds to a point in Hough space
  - To go from image space to Hough space:
    - given a set of points (x,y), find all (m,b) such that y = mx
       b

Finding lines in an image



- Connection between image (x,y) and Hough (m,b) spaces
  - A line in the image corresponds to a point in Hough space
  - To go from image space to Hough space:
    - given a set of points (x,y), find all (m,b) such that y = mx + b
  - What does a point  $(x_0, y_0)$  in the image space map to?
    - A: the solutions of b =  $-x_0$ m +  $y_0$
    - this is a line in Hough space

• Typically use a different parar  $= x \cos \theta + y \sin \theta$ 

- d is the perpendicular distance from the line to the origin
- $-\theta$  is the angle

- Basic Hough transform algorithm
  - 1. Initialize  $H[d, \theta]=0$
  - 2. for each edge point I[x,y] in the image

```
for \theta = 0 to 180

d = x\cos\theta + y\sin\theta
H[d, \theta] += 1
```

- 3. Find the value(s) of (d,  $\theta$ ) where H[d,  $\theta$ ] is maximum  $d = x\cos\theta + y\sin\theta$
- 4. The detected line in the image is given by
- What's the running time (measured in # votes)?









#### **Extensions**

- Extension 1: Use the image gradient
  - 1. same
  - 2. for each edge point I[x,y] in the image

```
compute unique (d, \theta) based on image gradient at (x,y) H[d, \theta] += 1
```

- 3. same
- 4. same
- What's the running time measured in votes?
- Extension 2
  - give more votes for stronger edges
- Extension 3
  - change the sampling of  $(d, \theta)$  to give more/less resolution
- Extension 4
  - The same procedure can be used with circles, squares, or any other shape, How?