Total No. of Questions: 8]	SEAT No. :
P1731	[Total No. of Pages : 4

[5460] - 560 T.E. (E & TC)

SYSTEM PROGRAMMING & OPERATING SYSTEM

(2015 Pattern) (Semester - II)

Time: 2½ Hours] [Max. Marks:70

Instructions to the candidates:

- 1) Solve Q.1 or Q.2 and Q.3 or Q.4 and Q.5 or Q.6 and Q.7 or Q.8.
- 2) Figures to the right side indicate full marks.
- **Q1)** a) Write difference between MACRO and FUNCTION with one example.[7]
 - b) Enlist the different loading schemes and explain in brief compile and go loader. [7]
 - c) Consider the following process where the arrival and burst time as shown below calculate average waiting time and turnaround time using FCFS algorithm

	Burst time	Arrival time
P1	6	0
P2	4	4
P3	3	2
		OR

- **Q2)** a) In the analysis of a source program explain the significance and main functions of Lexical Analysis, Syntax Analysis and Semantic Analysis.[7]
 - b) Explain the significance and main functions of Loader in System software.[7]
 - c) Consider the following process where the arrival and burst time as shown below. If the quantum slice time is 2 calculate average waiting time and turnaround time using Round Robin algorithm. [6]

arounc	l time using Ro	ound Robin	algorithm.
	Burst time	Arrival tir	ne O' &
P1	05	0	
P2	04	2	
P3	07	4	8.
P4	06	6	2

- **Q3)** a) What is mutual exclusion? Hence explain concept of Deadlock. [6]
 - b) What is producer Consumer problem? Explain how to solve it using semaphore. [6]
 - c) Find out the safe sequence for the execution of the following processes using bankers algorithm. [6]

Maximum resources R1 = 15, R2 = 8.

Allocation Matrix		x M	[axim	um R	equir	ed		
6		R1	R2			R1	R2	
/	P1	2	1		P1	5	6	
	P2	3	2		P2	8^	5	
	P3	3	0		P3	84	8	
				OR	0			

- **Q4)** a) Define Deadlock, explain the conditions under which deadlock occur?[6]
 - b) Explain the following terms under IPC. [6]
 - i) Shared Memory
 - ii) Message passing

[5460] - 560

c) Find out the safe sequence for the execution of the following processes using bankers algorithm. [6]

Maximum resources R1 = 4, R2 = 4

Alloca	ation	Matrix	K Maximun	n K	equire
	R1	R2	F	21	R2
P1	1	0	Pİ	16	$\sqrt{1}$
P2	1	1	P2	2	3
Р3	1	2	P3	2	2
			L X		

05	a)	Differentiate betwee	n paging an	d segmentation.
\mathbf{v}^{j}	, a,	Differentiate betwee	n paging an	a segmentation.

[6]

b) A computer has 4 page frames. Following table shows Time of loading, Time of last Access and R and M bits. Answer the following [6]

Page	Loaded	Last Reference	R	M
0	126	280	1	0
1	230	265	0	1
2	140	270	0	0
3	110	285	1	1

- i) Which page will NRU replace.
- ii) Which page will FIFO replace.
- iii) Which page will LRU replace.
- c) Consider the following page reference string

9,1,3,1,3,6,4,6,8,4,8,7,1,2

Number of page frames = 4

Calculate page fault and Hitratio using LRU page replacement algorithm.[4]

OR

Q6) a) Consider the following page reference string

A,B,C,D,A,B,E,A,B,C,D,E

Calculate page fault with FIFO page replacement algorithm, when frame size 4. **[6]**

- b) Explain demand paging and its advantages, also explain hardware support required to implement demand paging. [6]
- c) Write a note on virtual memory.

[4]

Q 7)	a)	Write a note on	[6]
		i) Directory structure in OS	
		ii) File management system in OS	
	b)	Explain DMA concept in detail.	[6]
	c)	Calculate average seek length with the help of FCFS disk scheduling algorithm for the following track sequence [90, 58, 55, 39, 18, 150]	ng [4]
		Current location of head is 55	
		OR	
Q8)	a)	Write a short note on RAID disc.	[6]
	b)	Enlist the various file operations. Explain access rights in file sharing.	[6]
	c)	Explain file attributes.	[4]
		Explain file attributes.	×

[5460] - 560