Aufbau Analysis

Michael Kaltenbäck

Inhaltsverzeichnis

Vo	rwort		ix
12	Topol	ogische Grundbegriffe	1
	12.1	Topologische Grundbegriffe	1
	12.2	Abgeschlossene Mengen	6
	12.3	Häufungspunkte von Netzen*	10
	12.4	Stetige Abbildungen	11
	12.5	Basis, Subbasis	16
	12.6	Initiale Topologie	20
	12.7	Spur- und Produkttopologie	23
	12.8	Finale Topologie*	27
	12.9	Zusammenhang und Trennungseigenschaft (T1)	30
	12.10	Trennungseigenschaften (T3) und (T4)	33
	12.11	Das Lemma von Urysohn	35
	12.12	Kompaktheit	39
	12.13	Satz von Tychonoff*	44
	12.14	Abstand und Durchmesser von Mengen	45
	12.15	Kompaktheit in metrischen Räumen	46
	12.16	Abzählbar kompakt und folgenkompakt*	52
	12.17	Alexandroff-Kompaktifizierung	53
	12.18	Der Satz von Stone-Weierstraß	56
	12.19	Übungsaufgaben	61
13	Impli	zite Funktionen und Mannigfaltigkeiten	73
	13.1	Der Banachsche Fixpunktsatz	73
	13.2	Implizite Funktionen	75
	13.3	Der Umkehrsatz	81
	13.4	Höhere Ableitbarkeit von impliziten Funktionen*	85
	13.5	Mannigfaltigkeiten	87
	13.6	Tangentialräume	97
	13.7	Gebiete mit orientierbarem Rand	104
	13.8	Abstrakte Mannigfaltigkeiten*	
	13.9	Übungsaufgaben	

vi Inhaltsverzeichnis

14	Meng	en und Abbildungen	121
	14.1	Rechnen auf $[0, +\infty]$ und $[-\infty, +\infty]$	121
	14.2	Fortsetzung von Funktionenräumen	122
	14.3	<i>M</i> -fortsetzbare Funktionale	125
	14.4	σ -Algebren und messbare Funktionen	130
	14.5	Integrale nichtnegativer Funktionen	134
	14.6	Integrierbare $[-\infty, +\infty]$ -wertige Funktionen	136
	14.7	Multiplizierte, eingeschränkte und transformierte Maße	140
	14.8	Von Funktionalen erzeugte σ -Algebren	143
	14.9	Fortsetzung von Maßen und Vergleichssatz	148
	14.10	Der Darstellungssatz von Riesz	153
	14.11	Das Lebesguesche Maß auf \mathbb{R}^d	159
	14.12	Reguläre Maße*	167
	14.13	Initiale σ -Algebren	173
	14.14	Produktmaße	175
	14.15	Integrale komplexwertiger und vektorwertiger Funktionen	183
	14.16	Haarsches Maß auf topologischen Gruppen*	191
	14.17	Übungsaufgaben	202
15	Trans	sformationsformel, Integralsätze	215
	15.1	Transformationsformel	215
	15.2	Stetig differenzierbare topologische Gruppe im \mathbb{R}^{d*}	225
	15.3	C^1 -Bilder von Nullmengen*	227
	15.4	Satz von Sard*	
		Fixpunktsatz von Brouwer*	
	15.6	Invarianzsätze von Brouwer*	233
	15.7	Integration über Mannigfaltigkeiten	
	15.8	Faltung	247
	15.9	Integralsätze	
	15.10	Poissonsches Integral*	262
	15.11	Übungsaufgaben	268
16	Funk	tionenräume	277
	16.1	Die Höldersche und andere Ungleichungen	277
	16.2	L^p -Räume \mathbb{R} -wertiger Funktionen	280
	16.3	L^p -Räume \mathbb{C} -wertiger Funktionen	282
	16.4	Konvergenz im Maß	
	16.5	Fast gleichmäßige Konvergenz	
	16.6	Dichtheit in L^p	
	16.7	Faltung am L^1	
	16.8	Schwache Ableitung	
	16.9	Übungsaufgaben	

Inhaltsverzeichnis vii

17	Integ	graltransformationen und Fourierreihen 303
		Fouriertransformation von L^1 Funktionen
		Fouriertransformation von L^2 Funktionen
		Laplacetransformation
		Fourierreihen
		Fourierreihen auf $L^2[-\pi,\pi]$
		Gleichmäßige Konvergenz von Fourierreihen*
		Übungsaufgaben
18	Dual	itäten und komplexe Maße 333
	18.1	Der Satz von Radon-Nikodym
	18.2	Die Dualräume der L^p -Räume
	18.3	Signierte und komplexe Maße
	18.4	$C_0(\Omega)$ und sein Dualraum*
		Übungsaufgaben
19	Abso	olut stetige Funktionen* 357
	19.1	Verteilungsfunktionen
	19.2	Existenz der Ableitung fast überall
	19.3	Transformation via Verteilungsfunktion
	19.4	Verteilungsfunktionen von reellen und komplexen Maßen auf \mathbb{R} 366
	19.5	Übungsaufgaben
A	Mäc	htigkeit und das Lemma von Zorn 375
	A.1	Mächtigkeit von Mengen
	A.2	Halbordnungen und Lemma von Zorn
	A.3	Mehr über die Mächtigkeit von Mengen
Lit	eratu	rverzeichnis 385
Inc	lex	386

viii Inhaltsverzeichnis

Vorwort

Nach der Veröffentlichung meines ersten Buches [K], *Fundament Analysis*, welches aus den Vorlesungen Analysis 1 und Analysis 2 an der TU Wien und den dazugehörigen Skripten hervorgegangen ist, lag es nahe, auch aus den Inhalten der Analysis 3 Vorlesung, welche ebenfalls in einem Skriptum zusammengefasst waren, ein Buch zu verfassen. Zusätzlich zur Materie der Vorlesungen Analysis 1 und 2 sowie Lineare Algebra 1 und 2 stellt die Maßtheorie, welche an der TU Wien im Rahmen eigener Vorlesungen gelehrt wird, ein wesentliches Werkzeug für große Teile meiner Analysis 3 Vorlesung dar.

Themen wie das mehrdimensionale Integral, die Transformationsformel, das Oberflächenintegral und die Integralsätze können ohne Maßtheorie behandelt werden und wurden früher meist auch ohne diese behandelt. Für eine mathematisch genaue Diskussion dieser Inhalte ist dann aber ein technisch relativ aufwendiger Apparat vonnöten, der gleichsam eine abgespeckte Ausgabe der Maßtheorie darstellt und der später, ganz im Gegensatz zur Maßtheorie, nicht mehr gebraucht wird. Für mich macht es daher Sinn, die Maßtheorie als zentralen Inhalt der Höheren Analysis zu betrachten.

Im Lichte dessen sollte ein Buch über die Grundlagen der Höheren Analysis auch eine Einführung in die Maßtheorie beinhalten. Also habe ich bei der Erstellung des vorliegenden Buches mit Kapitel 14 begonnen und damit meine persönliche Sicht auf die Maßtheorie und auf das Lebesguesche Integral in Textform gegossen. Das von der klassischen Literatur zur Maßtheorie Abweichende dabei ist, dass der Ausgangspunkt nicht Mengensysteme samt $[0, +\infty]$ -wertiger Funktionen darauf mit gewissen Eigenschaften, sondern Vektorräume $\mathcal F$ bestehend aus Funktionen mit der Eigenschaft, dass mit f auch |f| zu diesem Vektorraum gehört, samt gewisser 'linearer' Abbildungen von $\{f \in \mathcal F: g \ge 0\}$ nach $[0, +\infty]$ sind; siehe dafür Definition 14.3.2. Dieser Zugang orientiert sich am sogenannten Daniell Integral; siehe etwa [HR]. Der wesentliche Vorteil hier besteht darin, dass der in der modernen Analysis so wichtige Darstellungssatz von Riesz, Satz 14.10.7, gleichsam mit herausfällt. Es folgen klassische Inhalte wie etwa der Satz von der beschränkten Konvergenz, der Satz von Fubini, Integrale komplexwertiger Funktionen, wobei einerseits der Daniellsche Ansatz und andererseits klassische Literatur zur Maßtheorie wie das Buch [E] als Vorlage dienten.

Da mein zweites Buch als Fortsetzung von *Fundament Analysis* gedacht ist, startet hier die Kapitelnummerierung nicht mit dem ersten Kapitel, sondern mit Kapitel 12. Das letzte Kapitel der ersten Ausgabe von *Fundament Analysis* ist ebenfalls Kapitel 12. Ich habe mich aber entschlossen, dieses Kapitel über die Grundlagen der mengentheoretischen Topologie von meinem ersten Buch in mein zweites Buch zu verschieben, da es sich dabei

doch um eine fortgeschrittene Materie innerhalb der Analysis handelt. Zentrale Inhalte des darauffolgenden Kapitel 13 sind der Satz über implizite Funktionen, der Umkehrsatz und die Theorie der im \mathbb{R}^p eingebetteten Mannigfaltigkeiten. Zu dem anschließenden Kapitel 14 wurde oben schon einiges gesagt. Das Kapitel 15 widmet sich der Transformationsformel für Integrale nach dem Lebesgueschen Maß, dem Oberflächenmaß von eingebetteten Mannigfaltigkeiten, den Integralsätzen von Gauß und Green sowie einigen interessanten Konsequenzen dieser klassischen Resultate der Höheren Analysis. In Kapitel 16 werden die L^p -Räume für $p \in [1, +\infty]$ eingeführt und grundlegende Ergebnisse dazu gebracht. Weiters werden Konvergenz im Maß, dazugehörige Funktionenräume und schließlich die schwache Ableitung diskutiert. Kapitel 17 behandelt die Fouriertransformation, die Laplacetransformation und klassische Fourierreihen. Im vorletzten Kapitel 18 werden der für die Maßtheorie zentrale Satz von Radon-Nikodym bewiesen, signierte sowie reelle und komplexe Maße eingeführt und diskutiert sowie die topologischen Dualräume der L^p -Räume und des Raumes $C_0(X)$ für einen lokalkompakten Hausdorffraum X bestimmt. Schließlich behandelt das letzte Kapitel Verteilungsfunktionen von (reellen, komplexen) Maßen auf R, stellt einen Zusammenhang zur Weglänge her, betrachtet absolut stetige Funktionen auf $\mathbb R$ und zeigt, dass sich die Radon-Nikodym Ableitung eines Maßes auf $\mathbb R$ bezüglich eines anderen Maßes auch mit einer Art 'Grenzwert des Differenzenquotienten' berechnen lässt.

Die mit * gekennzeichneten Abschnitte, Resultate bzw. Bemerkungen sind weiterführendes bzw. tiefer erklärendes Material, welches nicht zum Verständnis von nachfolgenden Inhalten notwendig ist, und daher beim ersten Mal übergangen werden kann.

Ein großer Teil des vorliegenden Buches ist aus dem Skriptum zur Vorlesung Analysis 3, die ich schon einige Male gehalten habe, entstanden. Ich wurde dabei immer wieder auf Druckfehler, mathematische Ungereimtheiten oder auch Fehlendes hingewiesen, wofür ich sehr, sehr dankbar bin. Ich hoffe also, dass das vorliegende Werk nicht mehr allzu fehlerbehaftet ist. Sollten Sie beim Lesen doch noch Fehler finden, dann bitte ich Sie, mich auf diese per Email aufmerksam zu machen. Besonderen Dank möchte ich sowohl Brigitte Wyss für die Erstellung des Bildes eines Apfels am Buchdeckel meines ersten Buches 'Fundament Analysis' als auch Martin Kaar für die aus dem Apfels gemachte Birne am Buchdeckel des vorliegenden Buches ausdrücken. Der Titel 'Aufbau Analysis' soll für den Stellenwert der hier gebrachten Inhalte im Gebäude der modernen Analysis stehen und setzt gleichsam auf das 'Fundament Analysis' auf.