ARITHMETIC Chapter 13

MCD-MCM

Una regla muy poco considerada para el cálculo del MCD es la REGLA DE STURM

Calcule el MCD de 2520; 3060; 2790 y 4545.

Resolución

MCD - MCM

Dado un conjunto de números enteros positivos, su MCD es aquel número que cumple dos condiciones.

+

Es un divisor común de dichos números.

+

Es el mayor de los divisores comunes.

Ejm Sean los números 18 y 24

Divisores Z⁺ 18 1; 2; 3; 6; 9; 18 24 1; 2; 3; 4; 6; 8; 12; 24

MCD(18; 24) = 6

Divisores comunes de 18 y 24

→ 1; 2; 3 y 6

En conclusión:

Sean los números A y B

 $CD_{comunes\ de\ A\ y\ B} = CD_{MCD(A;B)}$

Dado un conjunto de números enteros positivos, su MCM es aquel número que cumple dos condiciones.

- + Es múltiplo común de dichos números.
- + Es el menor posible.

Ejm

Sean los números 8 y 12

#	Múltiplos Z^+
8	8; 16; (24) 32; 40; 48; 12; (24) 36; 48; 60;
12	12;24, 36; 48; 60;

Múltiplos comunes de 8 y 12

MCM(8; 12) = 24

MÉTODOS PARA DETERMINAR EL MCD-MCM

or descomposición canónica

El MCD es igual al producto de sus factores primos comunes elevados a los menores exponentes posibles.

Ejm

Dados los números A,B y

Si
$$A = 2^4 \times 3^5 \times 5^2$$

 $B = 2^2 \times 3^4 \times 5^3 \times 7^2$
 $C = 2^3 \times 3^3 \times 5^2 \times 7$

$$MCD(A, B, C) = 2^2 \times 3^3 \times 5^2$$

El MCM es igual al producto de sus factores primos comunes y no comunes elevados a los mayores exponentes posibles.

Ejm

Dados los números A,B y C

Si
$$A = 2^4 \times 3 \times 5^2$$

 $B = 2^2 \times 3^4 \times 5^3 \times 7^2$
 $C = 2^3 \times 3^5 \times 5^2 \times 7$

$$MCM(A,B,C) = 2^4 \times 3^5 \times 5^3 \times 7^2$$

Por descomposición simultanea

El **MCD** es el producto de sus factores comunes. (**El procedimiento termina al encontrar los números PESI**)

Ejm

Calcule el MCD de 56; 140 y 168

 $MCD(56; 140; 168) = 2^2 \times 7 = 28$

El MCM es el producto de sus factores (El procedimiento termina al encontrar La unidad)

Calcule el MCM de 35; 15 y 21

MCM(35; 15; 21) = 3x5x7 = 105

Solo para determinar el MCD de dos números A y B.

Al calcular el MCD de 750 y 270, indique los cocientes y residuos respectivos.

cocientes sucesivos

O

PROBLEMA 1.

Resolución:

¿Cuántos múltiplos comunes de 4 cifras tienen los números 18, 40 y 56?

por lo tanto :

 $multiplos\ comunes=2520k$

Sabemos:

$$MCM_{(18,40,56)} = 2^3 \times 3^2 \times 5 \times 7$$

= 2520

= 2520 x 1

= 2520 x 2

 $= 2520 \times 3$

$$18 = 2 \times 3^2$$

$$40 = 2^3 \times 5$$

$$56 = 2^3 \times 7$$

01

PROBLEMA 2.

Hallar "n" sabiendo que el M.C.D. de $A = 8 \times 6^n$ y $B = 6 \times 8^n$ tiene 18 divisores

Resolución:

Por dato:

Sabemos:

$$MCD_{(A,B)} = 2^{n+3} \times 3$$

$$A = 8 \times 6^n = 2^{n+3} \times 3^n$$

$$B = 6 \times 8^n = 2^{3n+1} \times 3$$

$$(n+3+1)$$
 $(1+1) = 18$
 $n+4 = 9$
 $n = 5$

 $CANTIDAD DE DIVISORES_{(MCD)} = 18$

01

PROBLEMA 3.

Los cocientes sucesivos obtenidos en la determinación del MCD de A y B mediante el algoritmo de Euclides, han sido 14; 1; 1; y 2 respectivamente y si ambos números son primos entre sí. ¿Cuál es la suma de éstos?

Por dato:

cocientes		14	1	1	1	2 X
	117	8	5	3	2	1 / MCD
residuos		5	3	2	1	0 +

$$117 + 8 = 125$$

PROBLEMA 4.

En un terreno triangular de dimensiones 390 m, 858 m y 624 m se va a plantar árboles igualmente espaciados en el perímetro del terreno. ¿Cuál es la menor cantidad de árboles que se debe de plantar, si se debe incluir uno en cada vértice?

Sabemos:

$$X = MCD_{(390,858,640)} = 2$$

$$390 = 2 \times 3 \times 5 \times 13$$

$$858 = 2 \times 3 \times 11 \times 13$$

$$640 = 2^7 \times 5$$

Piden:

Cant.
$$=\frac{390 + 858 + 624}{2}$$

936 árboles

se va a plantar árboles igualmente espaciados en el perímetro del terreno

◎1

PROBLEMA 5.

Aaron Aariana están jugando boliche con pinos de plástico en la sala de su casa, sorprendentemente, Aaron derriba 8 pinos en cada tiro y su hermana Aariana 9 pinos en cada tiro. Al final del juego se dan cuenta que han derribado la misma cantidad de pinos ¿Cuál será dicha cantidad si es el mayor numeral de 3 cifras cuyo valor de mayor orden es 2?

Sabemos:

Aaron derriba 8 pinos en cada tiro y su hermana Aariana 9 pinos en cada tiro

han derribado la misma cantidad de pinos

$$MCM_{(8,9)} = 72$$

mayor numeral de 3 cifras cuyo valor de mayor orden es 2

288 pinos derribados

PROBLEMA 6.

Se han colocado postes igualmente espaciados en el contorno de un campo triangular cuyos lados miden 210, 270 y 300 m respectivamente. Sabiendo que hay un poste en cada vértice y que la distancia entre poste y poste es la mayor posible. ¿Cuántos postes se colocaron?

OBSERVACIÓN:

se va a colocar postes igualmente espaciados en el perímetro del terreno

debe incluir uno en

Sabemos:

$$X=MCD_{(210,270,300)} = 2 \times 3 \times 5$$

= 30

$$210 = 2 \times 3 \times 5 \times 7$$

$$270 = 2 \times 3^3 \times 5$$

$$300 = 2^2 \times 3 \times 5^2$$

Piden:

Cant. postes
$$= \frac{210 + 270 + 300}{30}$$

26 postes

01

◎1

PROBLEMA 7.

Un comerciante de vino, tiene 3 barriles de vino de 540; 960 y 1260 litros de capacidad. Si desea vender este vino en recipientes todos iguales, capacidad esté cuya comprendida entre 25 y 48 litros, además están contenidos exactamente en cada uno de los barriles. Calcular la cantidad recipientes que se utilizarán.

Capacidad entre 25 y 48 litros

DIVISOR COMÚN = 30

Están contenidos exactamente en cada uno de los barriles

92 recipientes