Optimización y metaheurísticas I

Unidad 4: Metaheurísticas - Optimización Discreta

Dr. Jonás Velasco Álvarez

jvelascoa@up.edu.mx

El problema de la mochila

Dr. Jonás Velasco Álvarez

COM158: Opt. & Meta. I

Definición

Dr. Jonás Velasco Álvarez

The knapsack problem. Se tiene un conjunto de n objetos, donde cada objeto j tienen asociado un beneficio p_j y un peso w_j . Por otro lado se tiene una mochila, donde se pueden introducir los objetos, que tiene una capacidad máxima de peso W. Se asume que el peso, el beneficio y la capacidad no son negativos.

El problema consiste en seleccionar un subconjunto de objetos que proporcionen el mayor beneficio, sujeto a la restricción de no exceder la capacidad de la mochila.

Modelo

Variables de decisión

$$x_j = \begin{cases} 1, & \text{si el objeto } j \text{ se introduce en la mochila.} \\ 0, & \text{en otro caso.} \end{cases}$$

donde $j = 1, \ldots, n$.

Restricción de capacidad

$$\sum_{j=1}^{n} w_j x_j \le W$$

Función objetivo

3 / 25

$$\max z = \sum_{j=1}^{n} p_j x_j$$

Dr. Jonás Velasco Álvarez COM158: Opt. & Meta. I 4/25

4日 > 4日 > 4日 > 4日 > 4日 > 日 り90

Aplicaciones

Este tipo de problemas pueden representar diversas situaciones en la vida real tales como:

- operaciones de carga
- selección de proyectos de inversión
- control de presupuestos
- corte de materiales
- diseño de métodos criptográficos

イロトイプトイミトイミト ミークタで

4日 → 4団 → 4 三 → 4 三 → 9 0 ○

6 / 25

Dr. Jonás Velasco Álvarez

COM158: Opt. & Meta. I

Dr. Jonás Velasco Álvarez

COM158: Opt. & Meta. I

Recocido simulado

 $T, \alpha, K, \epsilon := \mathsf{Parametros} \; \mathsf{del} \; \mathsf{SA}$

 $r \leftarrow \mathcal{U}(0,1)$

end if

end if

 $T \leftarrow \alpha T$

 $k \leftarrow k+1$

 $\mathbf{x}_{k+1} \leftarrow \hat{\mathbf{x}}$

Generar una solución candidata x̂ if $f(\hat{\mathbf{x}}) > f(\mathbf{x}_k)$ then $\mathbf{x}_{k+1} \leftarrow \hat{\mathbf{x}}$

 $\left(\frac{f(\mathbf{x}_k) - f(\hat{\mathbf{x}})}{T}\right)$

3: while $k \leq K \wedge T > \epsilon$ do

2: Elegir un vector inicial \mathbf{x}_k de manera aleatoria o determinista

1: $k \leftarrow 0$

8:

9:

10:

11: 12.

13:

14:

15:

16:

17: end while

6 / 25

Recocido simulado

Dr. Jonás Velasco Álvarez

```
Input:
   T, \alpha, K, \epsilon := \mathsf{Par}\mathsf{ametros} \; \mathsf{del} \; \mathsf{SA}
 2: Elegir un vector inicial \mathbf{x}_k de manera aleatoria o determinista
 3: while k < K \wedge T > \epsilon do
             Generar una solución candidata x̂
             if f(\hat{\mathbf{x}}) > f(\mathbf{x}_k) then
                   \mathbf{x}_{k+1} \leftarrow \hat{\mathbf{x}}
 6:
 7:
             else
                    r \leftarrow \mathcal{U}(0, 1)
 8:
                                    \left(\frac{f(\mathbf{x}_k) - f(\hat{\mathbf{x}})}{T}\right)
 9:
10:
                          \mathbf{x}_{k+1} \leftarrow \mathbf{\hat{x}}
11:
                    else
12:
                          \mathbf{x}_{k+1} \leftarrow \mathbf{x}_k
             end if
             T \leftarrow \alpha T
16:
             k \leftarrow k+1
17: end while
```

 \blacksquare Una solución candidata $\hat{\mathbf{x}}$ se obtiene por hacer pequeños cambios a una solución \mathbf{x}_k .

COM158: Opt. & Meta. I

Recocido simulado

```
Input:
   T, \alpha, K, \epsilon := \mathsf{Par}ametros del SA
 2: Elegir un vector inicial \mathbf{x}_k de manera aleatoria o determinista
 3: while k < K \wedge T > \epsilon do
            Generar una solución candidata x̂
            if f(\hat{\mathbf{x}}) > f(\mathbf{x}_k) then
                  \mathbf{x}_{k+1} \leftarrow \hat{\mathbf{x}}
            else
                   r \leftarrow \mathcal{U}(0,1)
 8:
                                  \left(\frac{f(\mathbf{x}_k) - f(\hat{\mathbf{x}})}{T}\right)
10:
                         \mathbf{x}_{k+1} \leftarrow \mathbf{\hat{x}}
11:
                   else
12:
                         \mathbf{x}_{k+1} \leftarrow \mathbf{x}_k
                   end if
14:
             end if
15:
             T \leftarrow \alpha T
16:
            k \leftarrow k+1
17: end while
```

- \blacksquare Una solución candidata $\hat{\mathbf{x}}$ se obtiene por hacer pequeños cambios a una solución \mathbf{x}_k .
- 1-flip. Dado $\mathbf{x}_k = (0, 1, 0, 0)$, las posibles soluciones candidatas $\hat{\mathbf{x}}$ son: (0,0,0,0), (1,1,0,0), (0,1,1,0), (0,1,0,1).

Dr. Jonás Velasco Álvarez COM158: Opt. & Meta. I 6 / 25

Búsqueda Tabú

Ideas básicas

Características básicas

- Es un algoritmo de búsqueda local basado en el uso de memoria.
- Es posible aceptar soluciones que empeoran la solución actual.
- La memoria se utiliza para no repetir la trayectoria de búsqueda.
- Existen dos tipos de memoria: memoria reciente y memoria a largo plazo.
- En la memoria se guardan atributos de soluciones.

- Movimiento: Encontrar el valor de la j-ésima variable activa no tabú, tal que $x_j=0$ y definir $x_j=1$, siempre que no se viole la restricción mochila. Si no hay un movimiento disponible de este tipo, busque la j-ésima variable activa no tabu más grande de manera que $x_j=1$ y establezca $x_j=0$.
- **Atributo tabú:** Es el índice de la variable cuyo valor se cambió en el movimiento más reciente.
- Regla de activación tabú: Una variable tabú activa no puede cambiar su valor por ciertas iteraciones de permanencia tabú.
- Criterio de aspiración: Remover la variable tabú activa.

Ur. Jonás Velasco Álvarez COM158: Opt. & Meta. I 7/25

Dr. Jonás Velasco Álvarez

COM158: Opt. & Meta. I

4 D > 4 D > 4 E > 4 E > E 9990

8 / 25

Pseudocódigo

Dr. Jonás Velasco Álvarez

Algorithm 3 (STM First-Improving Tabu Search)

```
1. x \leftarrow x^{\text{best}} \leftarrow \text{ initial solution}
```

2. do

 $3. f(x^*) = \infty$

4. for all $x' \in N^*(x)$

5. **if** $f(x') < f(x^*)$ then $x^* \leftarrow x'$

6. **if** f(x') < f(x) then break

7. **if** $f(x^*) < f(x^{\text{best}})$ then $x^{\text{best}} \leftarrow x^*$

8. $x \leftarrow x^*$

9. update STM

10. **while** termination criterion is not satisfied

Pseudocódigo

4 D > 4 B > 4 B > 4 B > 9 Q C

イロトイ部トイミトイミト ミークタで

COM158: Opt. & Meta. I

9 / 25

Dr. Jonás Velasco Álvarez

COM158: Opt. & Meta. I

Problema de la mochila

Maximize $10x_1 + 14x_2 + 9x_3 + 8x_4 + 7x_5 + 5x_6 + 9x_7 + 3x_8$

subject to $7x_1 + 12x_2 + 8x_3 + 9x_4 + 8x_5 + 6x_6 + 11x_7 + 5x_8 \le 38$,

 $x_i = \{0, 1\}$ for $j = 1, \dots, 8$.

Table 1. Initial solution.

Variable	Profit	Weight	Ratio	Value	Profit	Weight
1	10	7	1.43	1	10	7
2	14	12	1.17	0	0	0
3	9	8	1.13	0	0	0
4	8	9	0.89	1	8	9
5	7	8	0.88	1	7	8
6	5	6	0.83	1	5	6
7	9	11	0.82	0	0	0
8	3	5	0.60	1	3	5
Total	_	_	_	_	33	35

Problema de la mochila

Table 2. Neighborhood of initial solution.

No.	Move	Neighbor	Profit	Weight	Feasible?
1	$x_1 = 0$	(4, 5, 6, 8)	23	28	Yes
2	$x_{2} = 1$	(1, 2, 4, 5, 6, 8)	47	47	No
3	$x_3 = 1$	(1, 3, 4, 5, 6, 8)	42	43	No
4	$x_4 = 0$	(1, 5, 6, 8)	25	26	Yes
5	$x_5 = 0$	(1, 4, 6, 8)	26	27	Yes
6	$x_6 = 0$	(1, 4, 5, 8)	28	29	Yes
7	$x_7 = 1$	(1, 4, 5, 6, 7, 8)	42	46	No
8	$x_8 = 0$	(1, 4, 5, 6)	30	30	Yes

4 D > 4 B > 4 E > 4 E > E 990 11 / 25

Dr. Jonás Velasco Álvarez COM158: Opt. & Meta. I Dr. Jonás Velasco Álvarez

COM158: Opt. & Meta. I

4□▶ 4□▶ 4□▶ 4□▶ □ 900 12 / 25

Problema de la mochila

Dr. Jonás Velasco Álvarez

Table 3. Iterations of the STM TS with TabuTenure = 2.

Iteration	Current solution	Profit	Weight	Tabu active	Move
1	(1, 4, 5, 6, 8)	33	35		8
2	(1, 4, 5, 6)	30	30	8	3
3	(1, 3, 4, 5, 6)	39	38	3 8	6
4	(1, 3, 4, 5)	34	32	6 3	8
5	(1, 3, 4, 5, 8)	37	37	8 6	5
6	(1, 3, 4, 8)	30	29	5 8	6
7	(1, 3, 4, 6, 8)	35	35	6 5	8
8	(1, 3, 4, 6)	32	30	8 6	5
9	(1, 3, 4, 5, 6)	39	38	5 8	6
10	(1, 3, 4, 5)	34	32	6 5	8
11	(1, 3, 4, 5, 8)	37	37	8 6	5
12	(1, 3, 4, 8)	30	29	5 8	6
13	(1, 3, 4, 6, 8)	35	35	6 5	8
14	(1, 3, 4, 6)	32	30	8 6	5
15	(1, 3, 4, 5, 6)	39	38	5 8	6

Problema de la mochila

Table 4. Iterations of the STM TS with TabuTenure = 3.

Iteration	Current solution	Profit	Weight	Tabu active	Move
1	(1, 4, 5, 6, 8)	33	35		8
2	(1, 4, 5, 6)	30	30	8	3
3	(1, 3, 4, 5, 6)	39	38	3 8	6
4	(1, 3, 4, 5)	34	32	6 3 8	5
5	(1, 3, 4)	27	24	5 6 3	2
6	(1, 2, 3, 4)	41	36	2 5 6	4
7	(1, 2, 3)	33	27	4 2 5	6
8	(1, 2, 3, 6)	38	33	$6\ 4\ 2$	8
9	(1, 2, 3, 6, 8)	41	38	8 6 4	3
10	(1, 2, 6, 8)	32	30	3 8 6	5
11	(1, 2, 5, 6, 8)	39	38	5 3 8	6
12	(1, 2, 5, 8)	34	32	6 5 3	8
13	(1, 2, 5)	31	27	8 6 5	3
14	(1, 2, 3, 5)	40	35	3 8 6	5
15	(1, 2, 3)	33	27	5 3 8	4

COM158: Opt. & Meta. I 13 / 25 Dr. Jonás Velasco Álvarez COM158: Opt. & Meta. I 14 / 25

Problema de la mochila

Dr. Jonás Velasco Álvarez COM158: Opt. & Meta. I 15/25