Enhancing Fraud Detection in Financial Transactions Using Machine Learning Techniques in R

Project Report

Course: MGT 256 - Business Analytics for Management

Instructor: Prof. Adem Orsdemir

Group 6 – Data Ninjas

Piyush Devansh

Siddharth Patil

Sanjana Sharan

Niraj Kumar Agrawal

Vipin

Table of Contents

- 1. Objective
- 2. Dataset Overview
- 3. Visualization and Insights
 - Examples and Key Findings
- 4. Methodology
 - Data Cleaning
 - Exploratory Data Analysis (EDA)
 - Feature Engineering
 - Model Development
 - Model Evaluation
 - Deployment Simulation

5. Results

- Logistic Regression
- Random Forest
- Gradient Boosting (XGBoost)
- Comparison of Model Performance

6. Real-World Relevance

• Applications in Banking, E-Commerce, Insurance, Government, and Other Sectors

7. Implementation and Challenges

• Implementation Steps

8. Conclusion

- Key Takeaways
- Future Work

9. References

1. Objective

Fraudulent financial activities pose severe risks, resulting in substantial monetary losses and a decline in customer trust. The objective of this project is to build a robust fraud detection system leveraging machine learning techniques to identify fraudulent transactions in real-time. This initiative aims to minimize financial losses, improve customer trust, and enhance the integrity of financial systems.

2. Dataset Overview

- Dataset Name: Fraud Detection
- **Observations:** 1,010
- Variables: 19
- **Target Variable:** Fraud (1 = Fraudulent, 0 = Legitimate)
- Key Features:
 - TransactionAmount
 - IsForeignTransaction
 - NumChargebacks
 - HasEmailDomainBlacklisted

3. Insights from Visualizations:

- High correlation between IsForeignTransaction and IsHighRiskCountry.
- Outliers in TransactionAmount often associated with fraudulent behavior.
- Certain user behaviors, such as high chargeback counts, are significant fraud indicators.
- High-value transaction outliers suggest potential anomalies or fraud
- Logistic regression outperforms other models in distinguishing fraud
- Features like "HasEmailDomainBlacklisted" and "NumChargebacks" are strong predictors of fraud

Visualization

4. Methodology

The project was conducted in the following phases:

1. Data Cleaning:

- o Handled missing values by imputation and removal.
- o Removed duplicates to ensure unbiased results.
- Validated data types and corrected inconsistencies.

2. Exploratory Data Analysis (EDA):

- o Analyzed trends, distributions, and relationships between variables.
- o Visualized data through histograms, scatterplots, and box plots.
- o Identified potential anomalies such as outliers in transaction amounts and age.

3. Feature Engineering:

- Selected relevant features such as TransactionAmount and NumChargebacks for predictive modeling.
- o Transformed categorical variables into numerical formats for machine learning compatibility.
- o Scaled and normalized data to improve model performance.

4. Model Development:

- Trained and tested four machine learning algorithms: Logistic Regression, Random Forest,
 Gradient Boosting, and Support Vector Machine (SVM).
- Used cross-validation to ensure model robustness.
- o Fine-tuned hyperparameters for optimal performance.

5. Model Evaluation:

- o Measured performance using metrics like AUC, accuracy, and precision-recall curves.
- o Compared the results to determine the best-performing model.

6. **Deployment Simulation:**

o Implemented a simulated environment to test real-time fraud detection capabilities.

5. Results

The following models were evaluated:

1. Logistic Regression:

- Achieved the highest AUC.
- Demonstrated strong performance for linear relationships.
- Quick to train and interpret.

2. Random Forest:

- Reduced overfitting through ensemble learning.
- Provided high accuracy.
- Effective in handling missing data and outliers.

3. Gradient Boosting (XGBoost):

- Competitive AUC, slightly below Logistic Regression.
- Effective for complex non-linear patterns.
- Robust against overfitting with proper regularization.

4. Support Vector Machine (SVM):

- Lowest AUC among the models tested.
- Less effective in distinguishing between classes.
- Computationally intensive for large datasets.

Comparison of Model Performance:

Model	AUC	Strengths	Weaknesses
Logistic Regression	0.92	High AUC, simple, interpretable	Limited for non-linear data
Random Forest	0.89	Robust, handles outliers	Slower for large datasets
Gradient Boosting	0.88	Handles complex patterns	Computationally intensive
Support Vector Machine	0.78	Handles high-dimensional data	Low performance in this case

Model Insights:

- Logistic Regression showed the steepest ROC curve, demonstrating its ability to distinguish between fraudulent and legitimate transactions.
- Random Forest and Gradient Boosting were highly effective for detecting fraud with complex patterns.
- SVM, though less effective, provided insights into high-dimensional data handling.

6. Real-World Relevance

The developed fraud detection models have applications across various sectors:

- Banking: Real-time detection of suspicious activities, ensuring compliance with anti-money laundering regulations.
- E-Commerce: Monitoring transaction behaviors to prevent chargeback fraud and fake account activities.
- **Insurance:** Identifying fraudulent claims using predictive analytics.
- **Government:** Preventing tax fraud and ensuring integrity in fund disbursements.

Extended Applications:

- Healthcare: Detecting fraudulent billing activities and anomalies in patient data.
- **Retail:** Identifying suspicious promotional activities and discount abuse.
- Travel: Preventing fake booking transactions in online travel services.

7. Implementation and Challenges

Implementation Steps:

- Integration of fraud detection models into transaction processing systems.
- Real-time monitoring dashboards to flag high-risk transactions.
- Continuous updating of the models with new data to enhance accuracy.

Challenges Faced:

- Imbalanced Dataset: Addressed using oversampling techniques like SMOTE.
- Real-time Processing: Optimized algorithms for lower latency.
- False Positives: Reduced by fine-tuning decision thresholds.

8. Conclusion

The project successfully demonstrated the application of machine learning in fraud detection:

• Key Takeaways:

- Logistic Regression and Gradient Boosting excel in accuracy and robustness.
- Predictive models effectively reduce financial risks and operational inefficiencies.

• Future Work:

- Integration of additional features like geolocation and IP tracking.
- Exploration of deep learning models for enhanced prediction accuracy.
- Real-time deployment for financial institutions and e-commerce platforms.

9. References

- Microsoft Learn. (2024). Tutorial: Use R to detect fraud Microsoft Fabric. Retrieved from https://learn.microsoft.com/en-us/fabric/data-science/r-fraud-detection[1]
- ProjectPro. (2024). Credit Card Fraud Detection Project using Machine Learning. Retrieved from
 https://www.projectpro.io/article/credit-card-fraud-detection-project-with-source-code-in-python/568[2]
- DataFlair. (n.d.). Credit Card Fraud Detection with Python & Machine Learning. Retrieved from https://data-flair.training/blogs/credit-card-fraud-detection-python-machine-learning/[3]

.