

Apprentissage par Renforcement

Partie I

Les 3 sous domaines du Machine Learning

Applications du RL

Principe du RL: interaction env./agent

Principe du RL: la politique

L'agent possède une politique
$$\pi$$
:

$$\pi(s) = a$$
ou
$$\pi(a|s) = P(A_t = a|S_t = s)$$
ou
$$\begin{cases} \pi(s) = \text{loi L} \\ a \sim L \end{cases}$$

Principe du RL: transitions et épisodes

Pour Mario : un épisode = un niveau

L'env. commence dans $s_0 \in S_{initiaux}$ Il se termine à t = T quand $s_t \in S_{finaux}$

Principe du RL: gain futur

<u>But</u>: maximiser le gain futur G_t :

$$G_t = \sum_{t' \ge t}^T r_{t'}$$

Pour Mario:

$$r_t = dx = avancement à t$$

 $G_t = avancement futur$

Objectif: Trouver
$$\pi^* = \underset{\pi}{\operatorname{argmax}} E[G_t | \pi]$$

Principe du RL : l'environnement

L'environnement est régi par des lois probabilistes qu'on appelle le <u>modèle</u> :

$$P_{S \to S'}^{a} = P(S_{t+1} = s' | S_t = s, A_t = a)$$

(probabilité que l'env. arrive dans s'si on fait a dans s)

 $R_s^a = E[R_t|S_t = s, A_t = a]$

(récompense moyenne si on fait a dans s)

Reinforcement Learning

Model-based

On connait le modèle de l'env. et on va l'exploiter directement

Model-free

On a besoin d'interagir avec l'env.

Environnements de RL

Exemple 1 : L'environnement CartPole

État : $s = (position et vitesse en x et en \theta)$

Action: $a \in \{\leftarrow, \rightarrow\}$

Reward: r = +1

Exemple 2 : Jeu vidéo type Mario

État : s =

Action: $a \in \{ jump, \leftarrow, \rightarrow \}$

Reward: $r = \frac{dx}{dt}$

Environnements de RL

Exemple 3 : Échecs (face à un adversaire donné)

État :

ou (1.e4e5 2.Nc3Nf6 3.f4d5)

Action:

a = prochain coup

Reward:

r = +1 si victoire, -1 si défaite, 0 sinon

Exemple 4: Robotique

État :

s = capteurs de pression/position du robot

Action:

a = ordres pour chaque muscle robotique

Reward:

r = récompense pour se tenir droit, tenir un objet, etc...

Plusieurs types d'environnements

L'environnement peut être:

- déterministe ou bien stochastique (= inclure de l'aléatoire) L'objectif est de trouver π qui maximise $E[G_t \mid \pi]$

- terminal ou non : T peut valoir $+\infty$ Pour éviter que $G_t = \sum_{t' \ge t}^{+\infty} r_t$ ne diverge, on introduit la notion de Discount Factor $\gamma \in [0,1[.\ \gamma=0,99\ \text{par exemple.}]$

$$G_t = \sum_{t'>t}^{T} \gamma^{t'-t} r_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

Markovien ou non :

Propriété de Markov : l'état actuel contient toute l'information des états précédents

Plusieurs types d'environnements

L'environnement peut être :

- parfaitement observable ou non : On parlera alors d'observations plutôt que d'état : $o_t = x(s_t)$

Model-based ou Model-free:

Model-based = accès au modèle $P^a_{S \to S'}$ et R^a_S (cas des échecs et autres jeux adversariaux) Model-free = modèle inaccessible/trop complexe, nécessité d'interagir avec l'environnement (Mario, CartPole, simulateurs physiques)

Reinforcement Learning

Model-based

On connait le modèle de l'env. et on va l'exploiter directement

Model-free

On a besoin d'interagir avec l'env.

Plusieurs types d'environnements

Environnement	Détermininiste Ou Stochastique	Terminal ?	Observabilité	Markovien ?	Model-based ou Model-free
Mario	Déterministe	Oui	Partielle	Non	Model-free
Échecs (en connaissant $\pi_{adversaire}$)	Stochastique si $\pi_{adversaire}$ l'est	Non	Totale	Oui	Model-based
CartPole (pendule inversé)	Déterministe	Non (mais on l'arrête à 500 steps)	Totale	Oui	Model-free
Environnement robotique réel (non simulé)	Stochastique	Non	Partielle	Dépend de la qualité des capteurs	Model-free

Certains env. sont également non stationnaires (le modèle change au cours du temps) et nécessitent d'y appliquer des algorithmes qui s'adaptent en permanence.

13

Environnement Shaping

Pré-traitement de l'environnement : états

Espace d'observation : doit être assez condensé

- Assez riche pour contenir toute l'information importante

Agent

Pré-traitement de l'env. : reward

La reward comme but : L'agent maximise la reward, il faut donc la design pour qu'elle corresponde à <u>votre</u> but La reward comme signal : Les valeurs relatives de la reward aident l'agent à apprendre ce qu'il doit faire

Reward sparse: reward rarement non nulle, difficile pour l'agent d'apprendre

Reward dense : reward non uniforme, permet d'aider l'agent à accomplir des sous-objectifs

Environnement	Reward sparse	Reward dense
Mario	+1 quand niveau réussi	$\frac{dx}{dt}$
Échecs	+1/-1 en fin de partie	n pour chaque pièce prise, +/-100 en fin de partie
Labyrinthe	+1 à la sortie	$\frac{d}{dt}$ (proximité avec le but)

Mal définir la reward peut amener à des comportements inattendus

Pré-traitement de l'env. : action

Réduire l'espace d'action le plus possible :

Action : $a \in \{ \text{ jump, } \leftarrow, \rightarrow, \text{ jump } + \rightarrow, \text{ jump } + \leftarrow, \text{ fireball, fireball } + \rightarrow, \dots \}$ Action « suffisantes » : $a \in \{ \rightarrow, \text{ jump } + \rightarrow \}$

Créer des actions automatisées

Exemple : a = « kill enemy »

Prendre l'action a a pour effet de générer une suite de commandes censé tuer le prochain ennemi dans le jeu.

Remarque : on peut même faire apprendre un « sous-agent » à apprendre à bien réaliser la macro-action a, et dans ce cas, on parle d'apprentissage par renforcement hiérarchique.

Pré-traitement de l'env.

18

Definissez vos propres environnements

OceanEnv: exemple d'environnement custom avec Gym:

Gym: Bibliothèque pour définir vos environnements ou en utiliser des déjà implémentés.

Comment apprendre?

Les valeurs d'état et d'action

Valeur d'état :

$$v_{\pi}(s) = E[G_t | S_t = s, \pi]$$

à quel point mon état s est bon avec la politique π

Valeur d'action:

$$q_{\pi}(s,a) = E[G_t | S_t = s, A_t = a, \pi]$$

à quel point mon action a est bonne dans l'état s et avec la politique π

$$v_{\pi_{se \ rapprocher \ de \ la \ rive}}(s) = ?$$
 $v_{\pi_{s'eloigner \ de \ la \ rive}}(s) = ?$

$$q_{\pi_{se \, rapprocher \, de \, la \, rive}}(s, s'approcher) = ?$$
 $q_{\pi_{se \, rapprocher \, de \, la \, rive}}(s, s'\'eloigner) = ?$

Les valeurs d'état et d'action

Valeur d'état :

$$v_{\pi}(s) = E[G_t | S_t = s, \pi]$$

à quel point mon état s est bon avec la politique π

Valeur d'action:

$$q_{\pi}(s,a) = E[G_t | S_t = s, A_t = a, \pi]$$

à quel point mon action a est bonne dans l'état s et avec la politique π

$$v_{\pi_{se \, rapprocher \, de \, la \, rive}}(s) = -s$$
 $v_{\pi_{s'eloigner \, de \, la \, rive}}(s) = -\infty$

$$q_{\pi_{se \, rapprocher \, de \, la \, rive}}(s, s'approcher) = -s$$
 $q_{\pi_{se \, rapprocher \, de \, la \, rive}}(s, s'\'eloigner) = -s - 2$

Cadre du RL: Markovian Decision Process

On se place dans le cadre d'un MDP:

- Environnement Markovien
- Parfaitement observable

$$MDP = (S, A, P_{S \to S'}^a, R_S^a)$$

Politique:

$$\pi(a|s) = P(A_t = a|S_t = s)$$

Valeur d'état :

$$v_{\pi}(s) = E[G_t | S_t = s, \pi]$$

Valeur d'action :

$$q_{\pi}(s, a) = E[G_t | S_t = s, A_t = a, \pi]$$

But : Trouver π qui maximise le gain futur G_t :

$$G_t = \sum_{t'=t}^{I} \gamma^{t'-t} r_{t'}$$

Division du problème du RL en 2 sous problèmes 3

Prediction Problem:

Estimer les valeurs de v_{π} et q_{π}

Estimateurs : \hat{v}_{π} et \hat{q}_{π}

Control Problem

Améliorer π

Connaître $\hat{q}_{\pi}(s, a)$ permet de choisir les meilleures actions

Generalized Policy Iteration:

Sous catégories du RL

Model-Based
Reinforcement Learning

Dynamic Programming: Prediction Problem

On connait le modèle $(P_{s \to s'}^a$, R_s^a) et la politique π . On cherche tout d'abord à estimer $v_{\pi}(s)$ et $q_{\pi}(s,a)$ (Prediction Problem).

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) q_{\pi}(s,a)$$

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s \in S} P_{ss'}^a v_{\pi}(s')$$

Bootstrapping: utiliser des valeurs d'états/d'actions pour calculer d'autres valeurs d'états/d'actions

Équations de Ford-Bellman dynamiques

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) (R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_{\pi}(s'))$$

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \left(\sum_{a' \in A} \pi(a'|s') q_{\pi}(s',a') \right)$$

En notant V le vecteur des valeurs d'états $V = (v_{\pi}(s))_{s \in S}$ on obtient une équation de la forme V = f(V). Méthode de convergence itérative :

$$\begin{cases} V_0 & \text{arbitraire} \\ V_{k+1} = f(V_k) \end{cases}$$

Iterative Policy Evaluation

Algorithme: Iterative Policy Evaluation

Algorithme utilisé en Dynamic Programming répondant au Prediction Problem

```
Input \pi, the policy to be evaluated

Initialize an array V(s) = 0, for all s \in S^+

Repeat

\Delta \leftarrow 0

For each s \in S:

v \leftarrow V(s)

V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]

\Delta \leftarrow \max(\Delta,|v - V(s)|)

until \Delta < \theta (a small positive number)

Output V \approx v_{\pi}
```

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s)(R_s^a + \gamma \sum_{a \in A} P_{ss'}^a v_{\pi}(s))$$

Iterative Policy Evaluation: Résultats

$$\pi$$
 = se rapprocher $(\gamma = 0.98)$

$$\pi$$
 = s'éloigner $(\gamma = 0.8)$

Iterative Policy Evaluation: Résultats

$$\pi$$
 = se rapprocher $(\gamma = 0.98)$

De l'évaluation au Control Problem

Amélioration de la politique :

$$\pi(s) \coloneqq \underset{a}{\operatorname{argmax}} \, \hat{q}_{\pi}(s, a) \approx \underset{a}{\operatorname{argmax}} \, q_{\pi}(s, a)$$

Policy Iteration

Algorithme: Policy Iteration

Algorithme utilisé en Dynamic Programming pour résoudre le Control Problem.

Policy Iteration : Résultats

Policy Iteration ($n_{iter} = 5$ itérations d'évaluation)

Équations de Ford-Bellman optimales

On évalue non pas π quelconque mais directment π^* la politique optimale.

$$v_{\pi}(s) = \max_{a \in A} (R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_{\pi}(s')) \qquad q_{\pi}(s, a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \max_{a' \in A} (q_{\pi}(s', a'))$$
35

Value Iteration

Algorithme: Value Iteration

Algorithme utilisé en Dynamic Programming pour résoudre le Control Problem.

Évaluation de π^* la politique optimale

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \max_{a' \in A} (q_{\pi}(s',a'))$$

Dynamic Programming: Conclusion

Avantages:

- Converge rapidement vers la solution optimale
- Fortes fondations mathématiques

Inconvénients:

- Adaptés à des petits espaces d'observations/actions discrets (finis) et non continus
- Model-Based : nécessite d'avoir accès au modèle

Fin de la 1^{ère} formation Des questions?

Sources et ressources

Reinforcement Learning: an introduction, Sutton & Barto

Cours de DeepMind 2021 sur le RL : https://dpmd.ai/DeepMindxUCL21

Blog de Lilian Weng: https://lilianweng.github.io

GitHub formation (slides & code): github.com/tboulet/Formation-Reinforcement-Learning

Apprentissage par Renforcement

Partie II

On se place dans le cadre d'un MDP:

- Environnement Markovien
- Parfaitement observable

Politique:

$$\pi(a|s) = P(A_t = a|S_t = s)$$

Valeur d'état :

$$v_{\pi}(s) = E[G_t | S_t = s, \pi]$$

Valeur d'action :

$$q_{\pi}(s, a) = E[G_t | S_t = s, A_t = a, \pi]$$

But : maximiser le gain futur G_t :

$$G_t = \sum_{t'=t}^T \gamma^{t'-t} r_{t'}$$

OceanEnv: exemple d'environnement custom avec Gym:

Algorithme de RL

Monte Carlo Methods

MonteCarlo: Apprendre par l'interaction

But : apprendre $\widehat{v_{\pi}}(s)$ à partir des G_t observés.

MonteCarlo (sur 1 épisode):

- On joue un épisode τ où on observe des états S_{τ}
- $\forall s_t \in S_\tau, \widehat{v_\pi}(s_t) \leftarrow G_t$

MonteCarlo (sur *N* épisodes) :

- On joue *N* épisode où on observe des états *S*
- $\forall s \in S, \widehat{v_{\pi}}(s) \leftarrow \text{moyenne}(\{G_t | S_t = s\})$

N = tradeoff temps/variance

MonteCarlo pour *q*:

- On joue N épisode où on observe des couples (s, a)
- \forall (s, a) observés, $\widehat{q_{\pi}}(s, a) \leftarrow \text{moyenne}(\{G_t | S_t = s, A_t = a\})$

Avantages : intuitif, mathématiquement vrai : $E[G_t|S_t=s]=v_\pi(s)$, l'estimateur de MonteCarlo v_{MC} est dit non-biaisé Inconvénients : terminal, haute variance

MonteCarlo: Apprendre par l'interaction

Environnement : morpion face à un adversaire jouant aléatoirement Reward $r = \pm 1$ quand on gagne/perd, 0 sinon

Episode 1:

$$r = -1$$

Episode 2 :

L'apprentissage est terminal : on est obligé d'attendre la fin d'un épisode pour mettre à jour v

S	$\widehat{v_{\pi}}(oldsymbol{s})$
0	$\frac{-1+1}{2}$
00	-1
X O	+1
X X O O	$\frac{-1+1}{2}$
X X O O X O O	+1

Remarque: cumulative vs. moving average

Cumulative average

$$\widehat{X}_N = \frac{x_1 + x_2 + \dots + x_N}{N}$$

Formule incrémentale :

$$\hat{X}_{N+1} = \frac{N}{N+1} \hat{X}_N + \frac{1}{N+1} x_{N+1}$$

- \hat{X}_N tend vers E[X] à l'infini.
- Adapté aux env. et politiques stationnaires
- Tous les x_i pesent autant

Exemple pour Monte Carlo:

A chaque fin d'épisode, pour chaque s vu à t_s :

$$\widehat{v_{\pi}}(s) = \frac{N(s)}{N(s)+1} \widehat{v_{\pi}}(s) + \frac{1}{N(s)+1} G_{t_s}$$

Moving average

Formule incrémentale :

$$\hat{X}_{N+1} = (1 - \alpha)\hat{X}_N + \alpha x_{N+1}$$

On notera: $\hat{X} \leftarrow x_i$

- \hat{X} se rapproche de E[X] en permanence
- Adapté aux env. et politiques non stationnaires
- Les x_i récents pesent plus

Exemple pour Monte Carlo:

A chaque fin d'épisode, pour chaque s vu à t_s :

$$\widehat{v_{\pi}}(s) = 0.99 \ \widehat{v_{\pi}}(s) + 0.01 \ G_{t_s}$$

Monte Carlo : Résultats pour $\widehat{v}_{\pi}(s)$

$$\pi=$$
 se rapprocher

$$a = \begin{cases} se \ rapprocher, & 80\% \\ s' \'eloigner, & 20\% \end{cases}$$

 $\pi = s'$ éloigner

Remarques d'implémentation : les $\widehat{v_{\pi}}(s)$ sont initialisés aléatoirement et on utilise **moving average** pour apprendre $v_{\pi}(s)$.

Problème d'exploration : pour $\pi_{s'eloigner}$, on ne voit jamais les états proches de la rive, et donc on ne peut pas les évaluer 49

Monte Carlo : Résultats pour $\hat{q}_{\pi}(s)$

$$\pi = \text{se rapprocher}$$

$$\pi = \begin{cases} se \ rapprocher, & 80\% \\ s' \'eloigner, & 20\% \end{cases}$$

$$\pi=$$
 s'éloigner

Problème d'exploration : les actions qui ne sont jamais prises, et les états qui ne sont jamais atteint en jouant π ne sont pas évalués

MonteCarlo ne sait PAS évaluer les politiques déterministes

Monte Carlo: Control Problem

Algorithme: Monte Carlo Control

Problème de la politique greedy : on a vu que Monte Carlo n'évalue pas bien les politiques déterministes pour ce qui est des actions non choisies, car l'algorithme a besoin d'expériences où ces actions ont lieues.

Dilemme Exploration vs. Exploitation

Problème d'exploration : certaines actions sont peu visitées donc moins bien estimées.

Solution : utiliser des politiques plus exploratives

Politique
$$\varepsilon$$
-greedy : $\pi(s) \coloneqq \begin{cases} \operatorname{argmax} \hat{q}_{\pi}(s, a) & \text{avec probabilité } 1 - \varepsilon \\ a & \text{avec probabilité } \varepsilon \end{cases}$

Politique de Boltzmann :
$$\pi(a|s) \coloneqq \frac{e^{\widehat{q_{\pi}}(s,a)/T}}{\sum_{a'} e^{\widehat{q_{\pi}}(s,a')/T}}$$

Politique UCB :
$$\pi(s) \coloneqq \operatorname*{argmax}(\hat{q}_{\pi}(s, a) + c\sqrt{\frac{\log(t)}{N(s, a)}})$$
 exploitation exploration

Remarque : le dilemme exploitation/exploration est un aspect essentiel du RL. Il est largement étudié dans un problème fondamental du RL, celui des K machines à sous (N-Bandit Problem).

Monte Carlo: Control Problem

Algorithme : Monte Carlo Control

Monte Carlo Control: Résultats

Remarques d'implémentation : Les q values sont initialisées aléatoirement au début, puis à chaque phase d'évaluation (Prediction) elles sont initialisés comme les précédentes Q values.

On explore avec une politique ϵ greedy avec ϵ constant à 0,1.

Monte Carlo: Conclusion

Avantages:

- Peut apprendre de vraies expériences donc adapté aux problèmes réels

Inconvénients:

- Offline: On doit attendre la fin d'un episode pour estimer les valeurs
- Variance de l'estimateur élevé quand T devient grand

TD Learning methods

Vers TD Learning: le dilemme biais-variance

Exemple d'algo avec du biais :

Qu'est ce que le biais d'un estimateur \hat{v} ?

C'est l'erreur systématique $|E[\hat{v}] - v_{\pi}|$.

Si le biais est non nul, on apprend vers une mauvaise valeur.

$$v_{\text{MonteCarlo}} = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \dots + \gamma^{T-t} R_T$$

- Sans biais : $E[v_{\text{MonteCarlo}}] = v_{\pi}(s_t)$
- Variance très importante car R_T et s_t très peu corellés

Exemple d'algo avec de la variance :

Qu'est ce que la variance ?

C'est l'erreur typique $(\hat{v} - E[\hat{v}])^2$ obtenue pour 1 estimation. Si la variance est élevée, il faudra beaucoup de sample avant d'avoir une bonne estimation.

Sources de variance : transitions/reward/politique de l'agent stochastiques

TD Learning

Comme dans Monte Carlo on apprend par l'expérience, mais ici par bootstrapping on n'attend pas la fin de l'épisode :

$$\widehat{v_{\pi}}(s_t) \leftarrow r_t + \gamma \widehat{v_{\pi}}(s_{t+1})$$

TD(0)

$$\widehat{v_{\pi}}(s_t) \leftarrow r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots + \gamma^{T-t} r_T = G_t$$

MonteCarlo

 $R_t + \gamma v_{\pi}(S_{t+1})$ est un estimateur sans biais et à faible variance de $v_{\pi}(s_t) = E_{\pi}[G_t | S_t = s_t]$.

 $R_t + \gamma \hat{v}_{\pi}(S_{t+1})$ est un estimateur avec biais mais à faible variance.

terme non biaisé, permettant d'apprendre

terme biaisé, estime la suite des rewards

TD Learning: Prediction Problem


```
Implémentation : \widehat{v_{\pi}}(s_t) \coloneqq \widehat{v_{\pi}}(s_t) + \alpha(r_t + \gamma \widehat{v_{\pi}}(s_{t+1}) - \widehat{v_{\pi}}(s))
\delta_t = \text{Différence Temporelle (TD)}
```

avec $\alpha = 0.01$ par exemple, le Learning Rate

Algorithme : TD(0) (pour le Prediction Problem d'estimer v)

```
Input: the policy \pi to be evaluated Initialize V(s) arbitrarily (e.g., V(s) = 0, \forall s \in \mathbb{S}^+) Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

A \leftarrow \text{action given by } \pi \text{ for } S

Take action A; observe reward, R, and next state, S'

V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S)\right]
S \leftarrow S'
until S is terminal
```


L'apprentissage est non nécessairement terminal : on peut apprendre pendant qu'on joue!

TD(0) : Résultats pour $\hat{v}_{\pi}(s)$

$$\pi=$$
 se rapprocher

$$\pi = \begin{cases} se \ rapprocher, & 80\% \\ s' \'eloigner, & 20\% \end{cases}$$

$$\pi=$$
 s'éloigner

Problème d'exploration : pour $\pi_{s'eloigner}$, on ne voit jamais les états proches de la rive, et donc on ne peut pas les évaluer

TD Learning: Prediction Problem

Et pour les q values ?

$$\widehat{v_{\pi}}(s_t) \leftarrow r_t + \gamma \widehat{v_{\pi}}(s_{t+1})$$

$$\widehat{q_{\pi}}(s_t, a_t) \leftarrow r_t + \gamma \widehat{q_{\pi}}(s_{t+1}, a_{t+1})$$

$$\widehat{q_{\pi}}(s_t, a_t) \leftarrow r_t + \gamma \sum_{a'} \pi(a'|s_{t+1}) \widehat{q_{\pi}}(s_{t+1}, a')$$
SARSA
$$E_{\pi}[G_t|S_t = s_t, A_t = a_t]$$

$$\widehat{q_{\pi}}(s_t, a_t) \leftarrow r_t + \gamma \sum_{a'} \pi(a'|s_{t+1}) \widehat{q_{\pi}}(s_{t+1}, a')$$
SARSA-Expected
$$E_{\pi}[G_t|S_t = s_t, A_t = a_t]$$

même biais mais moins de variance car pas de a_{t+1}

Dans le cas de $\pi = greedy(\widehat{q_{\pi}})$, SARSA-Expected correspond à :

$$\widehat{q_{\pi}} \leftarrow r_t + \gamma \max_{\alpha'} \widehat{q_{\pi}}(s_{t+1}, \alpha')$$

Q Learning

SARSA: Résultats pour $\hat{q}_{\pi}(s)$

$$\pi = \text{se rapprocher}$$

$$\pi = \begin{cases} se \ rapprocher, & 80\% \\ s' \'eloigner, & 20\% \end{cases}$$

$$\pi=\mathrm{s'\'eloigner}$$

Problème d'exploration : pour $\pi_{s'eloigner}$, on ne voit jamais les états proches de la rive, et donc on ne peut pas les évaluer

TD Learning: Control Problem

 $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$

 $S \leftarrow S'$; $A \leftarrow A'$;

until S is terminal

SARSA Control: Résultats

Remarques d'implémentation :

Les q values sont initialisées aléatoirement au début.

On explore avec une politique ϵ greedy avec ϵ constant à 0,1.

n-step TD Learning

Plutôt que de bootstrap au bout d'une étape, on va bootstrap après n étapes

$$\widehat{v_{\pi}}(s_t) \leftarrow r_t + \gamma r_{t+1} + \dots + \gamma^{n-1} r_{t+n-1} + \gamma^n \widehat{v_{\pi}}(s_{t+n}) \qquad \text{n-step TD}$$

$$\widehat{q_{\pi}}(s_t, a_t) \leftarrow r_t + \gamma r_{t+1} + \dots + \gamma^{n-1} r_{t+n-1} + \gamma^n \widehat{q_{\pi}}(s_{t+n}, a_{t+n}) \qquad \text{n-step SARSA}$$

$$\widehat{q_{\pi}}(s_t, a_t) \leftarrow r_t + \gamma r_{t+1} + \dots + \gamma^{T-t} r_T \qquad \qquad \text{MonteCarlo} \qquad (n \to +\infty)$$

Augmenter n a pour effet de :

- Augmenter la variance
- Imposer d'attendre plus longtemps (n étapes) avant d'apprendre
- Baisser le biais

L'hyperparamètre n optimal dépend de l'env. et d'autres hyperparamètres.

TD Learning: Conclusion

Avantages:

- Pas besoin d'attendre la fin de l'épisode pour apprendre
- Faible variance

Inconvénients:

- Biaisé car $\widehat{v_{\pi}}(s_t) \neq v_{\pi}(s_t)$

Off Policy et Q-Learning

Les limites des politiques exploratives

Besoin d'exploration : $\pi = \varepsilon$ greedy Implémenté ainsi, Monte Carlo Control et SARSA Control entrainent alors $\pi_{target} = \varepsilon$ greedy vers la meilleure politique explorative.

Or sur certains environnements, la meilleure politique explorative est trop prudente et est bien inférieure à la meilleure politique :

Environnement: The Cliff

Solution : dissocier politique cible π (à évaluer et améliorer) de politique comportementale μ (avec qui jouer les épisodes) :

$$\begin{cases} \pi = greedy \\ \mu = exploration (\varepsilon \ greedy, UCB, ...) \end{cases}$$

Le fait d'utiliser une politique comportementale μ différente de la politique qu'on entraı̂ne π constitue l'apprentissage Off Policy.

Off Policy

Déf. : Off Policy = utiliser une politique de comportement μ différente de votre politique à évaluer et optimiser π .

Les algorithmes de RL Off Policy, de la forme $\widehat{q_{\pi}}(s,a) \leftarrow X$ vérifient :

$$E_{\mu}[X] = q_{\pi}(s, a)$$

Off Policy?

$$\widehat{v_{\pi}}(s_t) \leftarrow r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots + \gamma^{T-t} r_T \qquad \qquad \text{MC} \qquad \text{pour estimer } E_{\pi}[G_t | S_t = s_t]$$

$$\widehat{v_{\pi}}(s_t) \leftarrow r_t + \gamma \widehat{v_{\pi}}(s_{t+1})$$

$$E_{\pi}[G_t|S_t = s_t]$$

$$\widehat{q_{\pi}}(s_t, a_t) \leftarrow r_t + \gamma \widehat{q_{\pi}}(s_{t+1}, a_{t+1})$$

$$E_{\pi}[G_t|S_t = s_t, A_t = a_t]$$

$$\widehat{q_{\pi}}(s_t, a_t) \leftarrow r_t + \gamma \sum_{a'} \pi(a'|s_{t+1}) \widehat{q_{\pi}}(s_{t+1}, a')$$

$$E_{\pi}[G_t|S_t = s_t, A_t = a_t]$$

Experience Replay: apprendre des exp. passées

L'Off Policy permet de réutiliser les transitions qui ont été tirées avec d'anciennes politiques.

Experience Replay: On ne va pas apprendre qu'une fois de chaque transition (s_t, a_t, r_t, s_{t+1}) : on va les stocker dans une mémoire B appelée replay buffer.

Interêts:

- Sample efficiency : on utilise plusieurs fois chaque transition tirée
- Décorrélation : Les transitions tirées de B sont décorellées
- Parallélisation : on va pouvoir entrainer en même temps qu'on joue (de manière parallèle)
- Évite le catastrophic forgetting (càd oublier les informations extraites des plus anciennes transitions)

Q Learning

Dans le cas de $\pi = greedy(\widehat{q}_{\pi})$, SARSA-Expected correspond à :

$$\widehat{q_{\pi}} \leftarrow r_t + \gamma \max_{\alpha'} \widehat{q_{\pi}}(s_{t+1}, \alpha')$$

Q Learning

Cet algorithme est qui a l'avantage d'être Off Policy, online et de faible variance est connu sous le nom de Q Learning.

$$\begin{cases} \pi = \operatorname{greedy}(\widehat{q_{\pi}}) \\ \mu = \epsilon \operatorname{greedy}(\widehat{q_{\pi}}) \text{ (old)} \end{cases}$$

Q Learning loop:

Amélioration

On améliore π : $\pi \coloneqq \operatorname{greedy}(\widehat{q_{\pi}})$

Entrainement

On tire n_{samples} transitions de B Entrainement de $\widehat{q_{\pi}}$

Interraction

Récolte des transitions avec μ pendant n_{steps} steps ou $n_{episodes}$ épisodes.

Ajout à B

environnement

Remarque : l'équation du Q Learning peut se voir comme une application de l'équation de Bellman optimale.

Deep Reinforcement Learning

Cas tabulaire:

S	0	1	 $n_{state}-1$
$\widehat{v_{\pi}}(s)$	0,00	-0,98	 -7,96

Apprentissage:

$$\widehat{v_{\pi}}(s) \coloneqq \widehat{v_{\pi}}(s) + \alpha(X - \widehat{v_{\pi}}(s))$$

Comment faire quand les espaces d'observations (et d'actions) sont trop grands ?

Deep RL:

Combinons tout ça : Deep Q Network (DQN)


```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights for episode =1,M do
Initialise sequence s_1=\{x_1\} and preprocessed sequenced \phi_1=\phi(s_1) for t=1,T do
With probability \epsilon select a random action a_t otherwise select a_t=\max_a Q^*(\phi(s_t),a;\theta)
Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set s_{t+1}=s_t,a_t,x_{t+1} and preprocess \phi_{t+1}=\phi(s_{t+1}) Store transition (\phi_t,a_t,r_t,\phi_{t+1}) in \mathcal{D}
Sample random minibatch of transitions (\phi_j,a_j,r_j,\phi_{j+1}) from \mathcal{D}
Set y_j=\left\{ \begin{array}{ll} r_j & \text{for terminal } \phi_{j+1} \\ r_j+\gamma\max_{a'}Q(\phi_{j+1},a';\theta) & \text{for non-terminal } \phi_{j+1} \end{array} \right.
```

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3

Deep Q Learning

end for

end for

Parallélisation en RL

Problème : en travaillant on-policy, on obtient des données issus des mêmes épisodes donc corrélés, ce qui augmente la variance.

La parallélisation permet :

- de décorréler les batch de données, ce qui réduit la variance
- de run plusieurs environnements en même temps (gain de temps)
- de vectoriser les données (gain de temps via l'usage de GPUs)

Taxonomie du RL

Reinforcement Learning

Model-based

Dynamic Programming

- Bellman equations
- Iterative Policy Eval.
- Policy Iteration
- Value Iteration

Problèmes généraux du RL

- Instabilité due à la variance des G_t
- Instabilité due à l'entrainement simultané de plusieurs réseaux
- Peu de garanties de convergence dans le cas du Deep RL
- Grande sensibilité aux hyperparamètres (qui sont nombreux)

Pour aller plus loin : les librairies de RL

Pour les environnements :

Gym

Pour les agents :

StableBaselines3:

- simple et rapide en application
- choix par défaut

RLlib:

- adapté au multi-agent et au hiérarchique
- scalable (construit sur Ray, librairie de parallélisation)
- à privilégier pour les gros projets

D'autres librairies : CleanRL, ML agent (Unity), OpenAI Baselines, KerasRL ...

Pour aller plus loin : ressources en RL

Reinforcement Learning: an introduction, Sutton & Barto

Cours de DeepMind 2021 sur le RL : https://dpmd.ai/DeepMindxUCL21

Playing Atari with Deep Reinforcement Learning, DeepMind, 2013

Spinning Up (ressource educative pour ceux voulant apprendre le RL):

https://spinningup.openai.com/en/latest/

Blog de Lilian Weng sur le RL: https://lilianweng.github.io

Value-based RL basics : Medium article
Policy-based RL basics : Medium article

Fin
Des questions?

Sources et ressources :

Reinforcement Learning: an introduction, Sutton & Barto

Cours de DeepMind 2021 sur le RL : https://dpmd.ai/DeepMindxUCL21

Blog de Lilian Weng: https://lilianweng.github.io

GitHub formation (slides & code): github.com/tboulet/Formation-Reinforcement-Learning

ANNEXE

Off Policy par Importance Sampling

Il est possible de transformer un algo on-policy en un algorithme off-policy si on connaît π et μ

Importance Sampling: estimer l'espérance d'une distribution à partir d'échantillon issus d'une distribution différente:

$$\mathbb{E}_p[f(\mathbf{x})] = \int p(\mathbf{x})f(\mathbf{x})d\mathbf{x} = \int q(\mathbf{x}) \left[\frac{p(\mathbf{x})}{q(\mathbf{x})}f(\mathbf{x}) \right] d\mathbf{x} = \mathbb{E}_q \left[\frac{p(\mathbf{x})}{q(\mathbf{x})}f(\mathbf{x}) \right]$$

Application au RL, exemple avec R_0 :

$$E_{\pi}[R_0] = \sum_{a_0} \pi(a_0|s_0) R_{s_0}^{a_0} = \sum_{a_0} \mu(a_0|s_0) \frac{\pi(a_0|s_0)}{\mu(a_0|s_0)} R_{s_0}^{a_0} = E_{\mu}[\frac{\pi(A_0|S_0)}{\mu(A_0|S_0)} R_0]$$

Haute variance

Interprétation : Si τ (obtenue avec μ) est plus probable d'arriver avec μ qu'avec π , il est logique qu'elle pèse moins dans le calcul de $\hat{E}_{\pi}[f(x)]$.

TD(0) Off Policy:
$$\widehat{v_{\pi}}(s_t) \leftarrow (R_t + \gamma \widehat{v_{\pi}}(s_{t+1})) * \frac{\pi(a_t|s_t)}{\mu(a_t|s_t)}$$

Policy-based RL

Policy Gradients: le principe

Politique π_{θ} paramétrée:

$$\pi_{\theta}: S \to [0,1]^{n_{actions}}$$

$$s \to (\pi_{\theta}(a_k|s))_{1 \le i \le n}$$

But : définir une fonction objectif $J(\theta)$ différentiable par rapport à θ pour faire une montée de gradient :

$$\theta \coloneqq \theta + \alpha \nabla_{\theta} J(\theta)$$

Remarque : plutôt qu'une distribution d'action discrète en sortie on peut avoir une distribution continue $\pi_{\theta}(s) = (m, \sigma)$ On peut aussi utiliser une politique déterministe $\pi_{\theta}(s) = a$

Policy Gradients: la théorie

Fonction objectif:

$$J(\theta) = E_{\pi_{\theta}}[G_0] = \int_{\tau} G_0(\tau) \rho_{\pi_{\theta}}(\tau) d\tau$$

$$E[X] = \int_{\omega} X(\omega)\rho(\omega)d\omega \quad X \to (\Omega, A, \rho)$$

Avec
$$\rho_{\pi_{\theta}}(\tau) = C_{\tau} \prod_{t=0}^{T} \pi_{\theta}(a_t | s_t)$$

Calcul du gradient :

Thus, the gradient is
$$\nabla \ln(u) = \frac{\nabla u}{u}$$

$$\nabla \ln(u) = \int_{\tau} G_0(\tau) \rho_{\pi_{\theta}}(\tau) d\tau = \int_{\tau} G_0(\tau) \nabla_{\theta} \rho_{\pi_{\theta}}(\tau) d\tau = \int_{\tau} G_0(\tau) \rho_{\pi_{\theta}}(\tau) \nabla_{\theta} \ln(\rho_{\pi_{\theta}}(\tau)) d\tau = E_{\pi_{\theta}}[G_0 \nabla_{\theta} \ln(\rho_{\pi_{\theta}})]$$

Estimation empirique de $\nabla_{\theta} J(\theta)$:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \left[G_0^i * \sum_{t=0}^{T_i} \nabla_{\theta} \ln \pi_{\theta} \left(a_t^i \left| s_t^i \right. \right) \right]$$
 REINFORCE

Problème de causalité : les premières rewards (dans G_0^i) ont ici une influence sur les gradients des dernières actions Solution : on fait passer G_0^i dans la somme et on enlève les rewards précédents t'.

Policy Gradients : les problèmes

Estimation empirique de $\nabla_{\theta} J_t(\theta)$ causal :

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i}^{T_{i}} \sum_{t=0}^{T_{i}} \gamma^{t} G_{t}^{i} \nabla_{\theta} \ln \pi_{\theta} (a_{t}^{i} | s_{t}^{i})$$
 REINFORCE

Input: a differentiable policy parameterization $\pi(a|s, \boldsymbol{\theta})$ Algorithm parameter: step size $\alpha > 0$ Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ (e.g., to $\boldsymbol{0}$)

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_*

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \boldsymbol{\theta})$

Loop for each step of the episode t = 0, 1, ..., T - 1:

$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G \nabla \ln \pi (A_t | S_t, \boldsymbol{\theta})$$

$$(G_t)$$

Problème de variance : les policy gradients souffrent de gros problèmes de variance Le fait d'avoir une mesure non-centrée d'à quel point l'action est bonne $(G_i^{t'})$ rend l'apprentissage instable.

Solution: ajout d'une baseline pour centrer cette mesure:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \sum_{t=0}^{T_{i}} \gamma^{t} (G_{t}^{i} - b(s_{t})) \nabla_{\theta} \ln \pi_{\theta} (a_{t}^{i} \mid s_{t}^{i})$$
ajout d'une baseline

Policy Gradients: ajout d'une baseline

Ajout d'une baseline :

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \sum_{t=0}^{T_i} \gamma^t (G_t^i - b(s_t)) \nabla_{\theta} \ln \pi_{\theta} (a_t^i | s_t^i)$$

ajout d'une baseline

Effet : réduction de la variance sans pour autant augmenter le biais :

$$\nabla_{\theta} \int_{\tau} b(s_t) \rho_{\pi_{\theta}}(\tau) d\tau = b(s_t) \nabla_{\theta} \int_{\tau} \rho_{\pi_{\theta}}(\tau) d\tau = b(s_t) \nabla_{\theta}(1) = 0$$

Choix pour $G_t^i - b(s)$:

- $G_t \widehat{v_{\pi}}(s_t)$
- $R_t + \gamma \widehat{v_{\pi}}(s_t) \widehat{v_{\pi}}(s_{t+1})$
- $\widehat{q_{\pi}}(s_t, a_t)$
- $-\widehat{q_{\pi}}(s_t, a_t) \widehat{v_{\pi}}(s_t) \coloneqq \widehat{A_{\pi}}(s_t, a_t) \text{ (advantage function)}$

L'idéal est un estimateur non biaisé et à faible variance de A.

Le choix est un trade-off biais/variance/online

Les algorithmes Actor Critic

Les Actor Critics sont des algorithmes qui entraînent à la fois une politique π (l'actor) ainsi qu'un "critic" : v et/ou q qui va aider à entrainer π .

Actor-Critic training loop

Entrainement de l'actor π_{θ} :

$$\theta \coloneqq \theta + \alpha \sum_{t'=0}^{T} \gamma^{t'} (G_{t'} - \widehat{v_{\pi}^{\varphi}}(s)) * \nabla_{\theta} \ln \pi_{\theta} (a_{t'} | s_{t'})$$

Entrainement du critic $\widehat{v_{\pi}^{arphi}}$:

$$\varphi \coloneqq \varphi - \alpha' \, \nabla_{\varphi}(\operatorname{Loss}\left(\widehat{v_{\pi}^{\varphi}}(s), G_{t}\right))$$