

Applications of Neural Networks

Tensorflow basics with MNIST

Table of Contents

- Recap: Neural Network The Basics
- Tensorflow/Keras
- Example: MNIST
 - Step by Step in Keras
 - Evaluation metrics
 - Training
- Outlook

Neural Networks

Recap of the basics

Recap Neural Networks

• A Neural Network in general is a function f applied to "input data" x: $x \mapsto y = f(x)$

• The output y can be a number, a vector (classification) or a matrix (e.g. an image)

• f is parametrized by weights θ (all weights): $f = f_{\theta}(x)$

Recap Optimization

- Optimization problem: Given are data $D = \{(x_i, t_i)\}$. Find θ , so that the **Loss-Function** $L(f_{\theta}, D)$ is (t Target)
- L here is a function, which maps the data D to a real number l (Loss)
 - e.g. Euclidean Loss, Mean-Squared-Error MSE:

$$\ell_2 = \frac{1}{2N} \sum_{i} (f_{\theta}(x_i) - t_i)^2$$

Negative-Log-Likelihood, Cross-Entropy:

$$NLL = -\frac{1}{|D|} \sum_{i} \log \left[f_{\theta}(x_i) \Big|_{t_i} \right]$$

Recap Optimization

• Find $\min_{\theta} L(f_{\theta}, D)$ with Gradient Descent (step size/learning rate η), since in general not analytically solvable:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} L(f_{\theta}, D)$$

Gradient Descent:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \frac{1}{2N} \sum_{i} (f_{\theta}(x_i) - t_i)^2$$

Optimizing the Neural Network

In practise (with ℓ_2 -loss as an example) often not **Gradient Descent** (sums over all data points)

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \frac{1}{2N} \sum_{i} (f_{\theta}(x_i) - t_i)^2$$

but either:

• Stochastic Gradient Descent (one data point per iteration step): $\theta \leftarrow \theta - \eta \nabla_{\theta} \frac{1}{2} (f_{\theta}(x_i) - t_i)^2$

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \frac{1}{2} (f_{\theta}(x_i) - t_i)^2$$

Batch Gradient Descent (a batch B of data per iteration step)

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \frac{1}{2|B|} \sum_{i \in B} (f_{\theta}(x_i) - t_i)^2$$

This method approximates thetotal loss with one or a small amount of samples.

Outlook: Overfitting

Optimizing the Neural Network

Iterative-Training:

- Split the data into Train/Validation/Test (e.g. 60/20/20)
 - Train: Training the Network
 - Validation: Optimizing/finding the hyperparameter
 - Test: Independent evaluation of the network

Training-Loop:

- Epoch: Loop through all data once
- **Iteration**: Process one batch
- Iterations per epoch: Number of data / Batch size

Optimizing the Neural Network

Typical process:

- Split the data
- For (epoch) in (Number of epochs):
 - Randomize oder of data within the epoch
 - For (batch) in (generate batches):
 - Compute weight updates (Backpropagation)
 - Update weights
- Evaluate model on validation data (optional to improve hyperparameters)
- Evaluate model on test data (at the very very very end, do not change hyperparameter at this point anymore)

Example: Optimizing on MNIST

- You know this already from your framework development
- Simulating the real case:
 - Split data into Train/Val/Test
 - Build one or more models
 - Choose the loss
 - Choose the optimizer
- → Implement into a stronger framework
- → Tensorflow

Tensorflow

Introduction, functions, Keras

Why Tensorflow?

from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense, Conv2D

model = Sequential()

• Lecture 2: model.add(Dense(784, activation='relu'))

- Lecture 3: model.add(Conv2D(64, kernel_size=3, activation='relu', input_shape=28, 28, 1))
- + Initialize, Regularization, ...
- → A lot more functions and flexibility

What is Tensorflow?

- End-to-end open source machine learning library from Google
- Release 2015
- Backend: C++ and CUDA
- APIs in several languages
 - Python (most popular)
 - JavaScript
 - C++
 - Java
 - Go
 - Swift (Early Release)

Tensorflow 1.x

- Uses Graphs and Sessions
- 1. First build a "Computation Graph"
 - Define Variables/Placeholders for input
 - Sequentialize the operations (Layer)
 - Loss, Training, etc.
- 2. Run operations in a "Session"
 - Initialise variables, run training steps etc.
 - Computations during run time are like a black box

Tensorflow 1.x

```
import tensorflow as tf
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
V = tf.get variable("V", [784, 500], initializer=xavier initializer())
c = tf.get variable("c", [500])
W = tf.get_variable("W", [500, 10], initializer=xavier_initializer())
b = tf.get_variable("b", [10])
y = tf.matmul(tf.nn.relu(tf.matmul(x, V) + c), W) + b
loss = tf.reduce mean(tf.nn.softmax cross entropy with logits(labels=y ,logits=y))
train step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
with tf.Session() as session:
    loss, _ = sess.run([loss, train_step])
```


Tensorflow 2

- Released in 2019
- Many deprecated and redundant APIs removed or merged
- Eager Execution per default
 - → No graphs anymore
- Keras as official High-level API
 - keras → tf.keras
- Important: No separate Tensorflow GPU library necessary since 2.0

GPU Support

- Summary: https://www.tensorflow.org/install/gpu
- Only on NVIDIA GPUs
- Most recent driver software
- CUDA (note the information on the tensorflow page)
 - CUDA 11.2 für aktuelles Tensorflow (2.5)
- cuDNN: CUDA Deep Learning Library
- → Watch installation instructions

MNIST with Tensorflow

Deep Learning in practise

MNIST: Hello World of Deep Learning

- Dataset of hand written numbers
- Each number is a 28×28 px large image (actually white on black)
- Task: Recognize the class of each image

MNIST: Hello World of Deep Learning

- Training a Fully Connected Network
- Data
 - Each node has a value from 0 to 1 (normalized grayscale)
 - Input: depending on the model 2D [28,28] oder 1D [784]
- Output is a vector:
 - 10 nodes, one per class
 - Softmax for probability distribution across the 10 classes
- Categorical Cross-Entropy (NLL) as Loss

Roadmap

- Model architecture
 - First only Fully Connected
 - Parameter, functions etc.
- Dataset
 - Preprocessing
 - Reading the data
- Evaluation
 - Explaining the metrics
- Training the model

Fully Connected Architecture

	Input	Hidden Layer 1	Activation 1 $\sigma(x)$	Hidden Layer 2	Activation 2 $\sigma(x)$	Output- Layer	Softmax	Loss- Function
Layer dimensions	784	500	500	500	500	10	10	1
Weight dimensions	-	784 x 500	-	500 x 500	-	500 x 10	-	-

MNIST: Fully Connected

Forward-Variables:

•
$$h^1 = x \cdot W^1 + b^1$$

•
$$h^2 = \sigma(h^1)$$

•
$$h^3 = h^2 \cdot W^3 + b^3$$

•
$$h^4 = \sigma(h^3)$$

•
$$h^5 = h^3 \cdot W^5 + b^5$$

•
$$h^6 = \operatorname{softmax} h^5$$

•
$$NLL = -\log h_t^6$$

Backward-Variables:

•
$$\delta x = \delta h^1 \cdot W^{1^T}$$

•
$$\delta h^1 = [\sigma(x) \cdot (1 - \sigma(x))] \odot \delta h^2$$

•
$$\delta h^2 = \delta h^3 \cdot W^{3^T}$$

•
$$\delta h^3 = [\sigma(x) \cdot (1 - \sigma(x))] \odot \delta h^4$$

•
$$\delta h^4 = \delta h^5 \cdot W^{5^T}$$

•
$$\delta h^5 = \delta h^6 \odot \operatorname{softmax}'(h^5)$$

•
$$\delta h^6 = -1/h_t^6$$

Weight-Updates:

•
$$\delta W^1 = \delta h^1 \cdot x$$

•
$$\delta b^1 = \delta h^1$$

•
$$\delta W^3 = h^{2^T} \cdot \delta h^3$$

•
$$\delta b^3 = \delta h^3$$

•
$$\delta W^5 = h^{4^T} \cdot \delta h^5$$

•
$$\delta b^5 = \delta h^5$$

Fully Connected in Keras

```
from tensorflow import keras

fcn = keras.Sequential([
    keras.layers.Input(shape=(28,28)),
    keras.layers.Flatten(),
    keras.layers.Dense(units=500, activation='sigmoid'),
    keras.layers.Dense(units=500, activation='sigmoid'),
    keras.layers.Dense(units=10, activation='softmax')
    ])
```


Fully Connected Architecture

→ Layers can be summarized

	Input	Hidden Layer 1	Hidden Layer 2	Output- Layer	Loss- Function
Layer Dimensions	784	500	500	10	1
Activation function	-	Sigmoid	Sigmoid	Softmax	-

Weight dimensions implicit, since Fully Connected

Loss, Optimizer, Metrics

```
optimizer = tf.keras.optimizers.SGD(learning_rate=0.1)
# optimizer = tf.keras.optimizers.Adam()
loss = tf.keras.losses.categorical_crossentropy
metrics = ['accuracy']
```

```
fcn.compile(loss=loss,
optimizer=optimizer,
metrics=metrics)
```

- Choose from several built-in functions
 - Choose by string
 - Custom functions possible
- Compile model at the end
 - You can recompile the model as necessary (e.g. when loading an existing model)

MNIST: Data preparation

- Tensorflow provides MNIST, but other sources are also valid
- Official Training- and Test-Split

```
In [4]: mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()

In [5]: y_train
Out[5]: array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)
```

→ Labels are saved as "raw" / "sparse"

One-Hot-Encoding

- Classifikation: Output of the network is a vector of probabilities, e.g. $[0.97, 0.01, 0.00, ..., 0.02]^T$
- Labels are easier to save in direct context
 - e.g. for MNIST directly save labels as "5" or "9"
- → Labels have to be encoded for the network when loading

MNIST: Date preparation

- Loss: Sparse Categorical Cross Entropy
- → loss = tf.keras.losses.sparse_categorical_crossentropy

MNIST: Data preparation

Use part of the training data as validation data

```
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_val, y_val = x_train[0:5000], y_train[0:5000]
x_train, y_train = x_train[5000:], y_train[5000:]
```

In practise usually shuffle the data

→ Avoid correlation between the data sets

MNIST: Data preparation

MNIST can theoretically be used directly for training

- But: Data is not always fully readable
 - Especially problematic for big datasets
- Image manipulation must be performed manually or as a preprocessing step

 Real-time?
- → Keras ImageDataGenerator

MNIST Data preparation

```
datagen = tf.keras.preprocessing.image.ImageDataGenerator(
                     rescale=1./255.)
                     # target size
                     # featurewise_center=True,
                     # featurewise_std_normalization=True)
# optional: datagen.fit(x train)
batch size = 128
train generator = datagen.flow(x train, y train,
                               batch_size=batch_size,
                               shuffle=True)
                     # flow_from_dataframe
                     # flow from directory
fcn.fit(train generator,
      steps per epoch=len(x train) / batch size,
      epochs=5,
      validation data=datagen.flow(x val, y val))
```

- ImageDataGenerator comes with many functions for image manipulation and processing
- Custom generators also possible
- Allows dynamic loading and manipulation of images
- Important here: Extend image with channel dimension

Evaluation of MNIST

Several questions are relevant for evaluating the MNIST-Dataset:

- What is the total accuracy (number of correctly classified numbers)?
- What is the specific accuracy for each number class (e.g. is 7 worse due to different way of writing it)?
- Which numbers are more commonly mistaken for each other (e. g. how often is 5 mistaken for 9 and vice versa)? → confusion matrix
- Which loss function do we need, e.g. what needs to be optimized?

Evaluation metrics

For each class *k*:

- Prediction p, Ground Truth g:
 - True Positives (TP): $p = k \land g = k$
 - True Negatives (TN): $p \neq k \land g \neq k$
 - False Positives (FP): $p = k \land g \neq k$
 - False Negatives (FN): $p \neq k \land g = k$

Evaluation metrics

Total Accuracy

Compute the percentage of correct prediction, i.e. Prediction =
 Ground Truth of the total data N

Accuracy =
$$\frac{TP + TN}{N} = \frac{TP + TN}{TP + FP + TN + FN}$$

 Averages across all data: You cannot tell, whether one specific number class is classified good or bad

Evaluation metrics

More metrics:

• Precision (If k is predicted, how often is the model correct?):

$$\frac{TP}{TP + FP}$$

• Recall (What part of all GT data with class k is

Precision =

detected?):

$$\frac{TP}{TP + FN}$$

Evaluation metrics

More metrics:

• F_1 (Harmonic average of Precision and Recall):

$$F_1 = 2\frac{P \cdot R}{P + R} = \frac{\text{TP}}{\text{TP} + \frac{\text{FP}}{2} + \frac{\text{FN}}{2}}$$

• Overlap (or Intersection over Union, used especially in object detection):

$$IoU = \frac{TP}{TP + FP + FN}$$

Evaluation metrics Overview

		True cond	lition			
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\sum Condition positive}{\sum Total population}$	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = $\frac{\Sigma}{\Sigma}$ True negative $\frac{\Sigma}{\Sigma}$ Condition negative	Negative likelihood ratio (LR-) = FNR TNR	= LR+ LR-	2 · Precision · Recall Precision + Recall

More: Wikipedia entry for "Confusion Matrix"

Micro vs Macro

Micro-averaged

- First count all TP, FP, TN, FN over all classes
- Compute metric (e.g. F1) from this count
- Weight each class by number of samples within that class
- → Underrepresented classes get smaller weights

Macro-averaged

- Count TP, FP, TN, FN for each class separately
- Compute metric (e.g. F1) for each class
- Mean across all classes
- → Same weighting for all classes

Evaluation metrics

Confusion matrix:

- Shows, how many numbers were falsely classified with another
- The diagonal represents all correctly classified cases
- Can be used to understand network errors

Why not accuracy as loss?

Loss (NLL)

$-\log y_t$

- Maximizes total probability
- Softmax can be interpreted as confidence:
 - Small for unsure predictions
 - High for certain predictions
- Differentiable function

Accuracy/Error

$$1 - \delta(\operatorname{argmax} y, t)$$

$$= \begin{cases} 0 & \operatorname{argmax} y = t \\ 1 & \text{else} \end{cases}$$

- Maximizes accuracy/minimizes the error
- Non differentiable, but still possible analogous to Hinge-Loss (error is 1 oder 0)
- Unstable training

MNIST: All in all

```
import tensorflow as tf
fcn = tf.keras.Sequential([
    tf.keras.layers.Input(shape=(28,28)),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(units=500, activation='sigmoid'),
    tf.keras.layers.Dense(units=500, activation='sigmoid'),
    tf.keras.layers.Dense(units=10, activation='softmax')
])
fcn.compile(loss='sparse categorical crossentropy', optimizer='adam', metrics=['accuracy'])
mnist = tf.keras.datasets.mnist
(x train, y train), (x test, y test) = mnist.load data()
x \text{ val}, y \text{ val} = x \text{ train}[0:5000], y \text{ train}[0:5000]
x train, y train = x train[5000:], y train[5000:]
x train, x val, x test = x train/255., x val/255., x test/255.
fcn.fit(x_train, y_train, epochs=5,
        validation data=(x val, y val)
fcn.evaluate(x test, y test)
```


Callbacks

- Functions called during training
- Built-in and custom functions
 - Saving after each epoch
 - Adjusting the learning rate
 - Early Stopping
 - Logs during training

Tensorboard

- Nice tool to get an overview across different runs
- Usable in Jupyter
- Live Monitoring available

Training example

• 3 epoch training

Accuracy

• Training: 0.95

• Validation: 0.96

• Test: 0.96

	0	1	2	3	4	5	6	7	8	9
0	970	0	0	3	0	2	2	1	1	1
1	0	1126	2	2	0	1	3	0	1	0
2	7	2	986	7	7	1	5	6	9	2
3	1	1	7	972	1	3	0	7	6	12
4	1	0	8	0	942	0	3	1	1	26
5	7	4	1	27	6	818	8	4	9	8
6	14	3	0	2	8	6	919	0	6	0
7	1	12	13	4	5	1	0	962	0	30
8	3	6	8	18	12	5	9	4	897	12
9	6	6	1	12	16	1	0	5	0	962

Outlook

Exercise and next lecture

Outlook: Exercise

1. Data preparation

- Loading MNIST data
- Splitting into train and test (no validation necessary)

2. Neural Network

- Implementing a neural network in Keras
- Training the NN

3. Evaluation

- Computing different evaluation metrics
- Presenting the results (e.g. plotting the confusion matrix)

Outlook: Next Lecture

CNN for leaf detection (TF)

- Problems:
 - Little data per class
 - Big input images, not normalized
- Solutions:
 - Regularization
 - Data augmentation
 - Pretraining/Transferlearning
 - Batch Normalization
 - Sampling/Hyperparameter tuning

