Doubly-Robust Lasso Bandit

Gi-Soo Kim & Myunghee Cho Paik, Department of Statistics, Seoul National University

gisoo1989@snu.ac.kr & myungheechopaik@snu.ac.kr

MOTIVATION

- Contextual multi-armed bandit (MAB) algorithms are widely used in sequential decision tasks such as news article recommendation systems, web page ad placement algorithms, and mobile health.
- Many algorithms require the dimension of the context (d) not be too large. The cumulative regrets are proportional to a polynomial function of d.
- In modern applications however, web or mobile-based contextual variables are often high-dimensional, with only a sparse subset of $s_0(\ll d)$ variables related to the reward.

SETTINGS

• Set of arms at decision time t $(t = 1, \dots, T)$:

$$\{b_1(t),\cdots,b_N(t)\}\stackrel{i.i.d.}{\sim}\mathcal{P}_b,$$

where \mathcal{P}_b is some distribution over $\mathbb{R}^{N \times d}$.

• Reward of pulling *i*-th arm at time *t*:

$$r_i(t) = b_i(t)^T \beta + \eta_i(t), \quad i = 1, \dots, N,$$

where $\beta \in \mathbb{R}^d$ is **sparse** with $||\beta||_0 = s_0(\ll d)$ and $\eta_i(t)$ is R-sub-Gaussian for some $0 < R < O(\sqrt[4]{\log T/T})$.

- The optimal arm at time t is $a^*(t) := \underset{1 \le i \le N}{\operatorname{argmax}} \{b_i(t)^T \beta\}.$
- At time t, the learner chooses and pulls one arm a(t) according to probability vector $[\pi_1(t), \cdots, \pi_N(t)]$ $(\sum_{i=1}^N \pi_i(t) = 1)$, and observes $r_{a(t)}(t)$.
- Goal: minimize sum of regrets,

$$R(T) := \sum_{t=1}^{T} regret(t) = \sum_{t=1}^{T} \{b_{a^*(t)}(t)^T \beta - b_{a(t)}(t)^T \beta\}.$$

MAIN RESULTS

- We propose a new linear contextual MAB algorithm for high-dimensional, sparse reward models.
- We construct a new estimator for the linear regression parameter using **Lasso** along with the **context information of all arms** through techniques from missing data literature.
- The high-probability regret upper bound is tight, does not depend on number of arms, and scales with $\log d$ instead of a polynomial function of d.

CHALLENGES

• Lasso is a good tool for estimating a high-dimensional, sparse regression parameter.

- Lasso estimate has fast convergence under assumption that covariates are **compatible**, i.e., **not too correleated**. Under minor conditions, compatibility holds for i.i.d. data.
- In contextual MABs however, contexts of the chosens arms $b_{a(t)}(t)'s$ tend to be highly correlated as the learner adapts his (her) decision rule.

PROPOSED METHOD

<u>Idea</u> Instead of applying Lasso on the pairs $\{(b_{a(\tau)}(\tau), r_{a(\tau)}(\tau)\}_{\tau=1}^t$, apply Lasso on the pairs $\{(\bar{b}(\tau), \hat{r}(\tau))\}_{\tau=1}^t$, where

$$\bar{b}(\tau) = \frac{1}{N} \sum_{i=1}^{N} b_i(\tau)$$

$$\hat{r}(\tau) = \bar{b}(\tau)^T \hat{\beta}_{\tau-1} + \frac{1}{N} \frac{r_{a(\tau)}(\tau) - b_{a(\tau)}(\tau)^T \hat{\beta}_{\tau-1}}{\pi_{a(\tau)}(\tau)},$$

and $\beta_{\tau-1}$ is the β estimate of the previous step.

- As opposed to $b_{a(\tau)}(\tau)$'s, the average contexts $\bar{b}(\tau)$'s are i.i.d. \Rightarrow the average contexts satisfy compatibility condition.
- The pseudo-reward $\hat{r}(\tau)$ is the unbiased, **doubly-robust** estimate (Bang and Robins, 2005) of the reward corresponding to the average context $\bar{b}(\tau)$.

Algorithm 1 Doubly-Robust Lasso Bandit algorithm

end for

Inputs:
$$\lambda_1, \lambda_2, z_T, \beta_0 = 0_d, \mathbb{S} = \{\}$$
.

for $t = 1, 2, \cdots, T$ do

Observe $\{b_1(t), b_2(t), \cdots, b_N(t)\} \sim \mathcal{P}_b$

if $t \leq z_T$ then

Pull arm $a(t) = i$ with probability $\frac{1}{N}$ $(i = 1, \cdots, N)$
 $\pi_{a(t)}(t) \leftarrow 1/N$

else

 $\lambda_{1t} \leftarrow \lambda_1 \sqrt{(\log t + \log d)/t}$, sample $m_t \sim Ber(\lambda_{1t})$

if $m_t = 1$ then

Pull arm $a(t) = i$ with probability $\frac{1}{N}$ $(i = 1, \cdots, N)$

else

Pull arm $a(t) = \underset{1 \leq i \leq N}{\operatorname{argmax}} \{b_i(t)^T \hat{\beta}_{t-1}\}$

end if

 $\pi_{a(t)}(t) \leftarrow \lambda_{1t}/N + (1 - \lambda_{1t})I\{a(t) = \underset{1 \leq i \leq N}{\operatorname{argmax}} \{b_i(t)^T \hat{\beta}_{t-1}\}\}$

end if

Observe $r_{a(t)}(t)$
 $\bar{b}(t) \leftarrow \frac{1}{N} \sum_{i=1}^{N} b_i(t), \quad \hat{r}(t) \leftarrow \bar{b}(t)^T \hat{\beta}_{t-1} + \frac{1}{N} \frac{r_{a(t)}(t) - b_{a(t)}(t)^T \hat{\beta}_{t-1}}{\pi_{a(t)}(t)}$
 $S \leftarrow S \cup \{(\bar{b}(t), \hat{r}(t))\}$
 $\lambda_{2t} \leftarrow \lambda_2 \sqrt{(\log t + \log d)/t}$
 $\hat{\beta}_t \leftarrow \underset{Targin}{\operatorname{argmin}} \{\frac{1}{t} \sum_{(b,\hat{r}) \in S} (\hat{r} - \bar{b}^T \beta)^2 + \lambda_{2t} ||\beta||_1\}$

PROPERTIES OF $\hat{r}(\tau)$

1. UNBIASEDNESS $\hat{r}(\tau)$ is **unbiased** for $\bar{b}(\tau)^T \beta$ given filtration $\mathcal{F}_{\tau-1}$:

$$\mathbb{E}_{\tau}[\hat{r}(\tau)] = \mathbb{E}_{\tau}\left[\frac{1}{N}\sum_{i=1}^{N}\left(1 - \frac{I(a(\tau) = i)}{\pi_{i}(\tau)}\right)b_{i}(\tau)^{T}\hat{\beta}_{\tau-1} + \frac{1}{N}\sum_{i=1}^{N}\frac{I(a(\tau) = i)}{\pi_{i}(\tau)}r_{i}(\tau)\right]$$
$$= \mathbb{E}_{\tau}\left[\frac{1}{N}\sum_{i=1}^{N}r_{i}(\tau)\right] = \bar{b}(\tau)^{T}\beta,$$

where $\mathbb{E}_{\tau}[\cdot] = \mathbb{E}[\cdot|\mathcal{F}_{\tau-1}]$, $\mathcal{F}_{\tau-1} = \{\mathcal{H}_{\tau-1}, \{b_i(\tau)\}_{i=1}^N\}$, $\mathcal{H}_{\tau-1}$ is history until time $\tau - 1$.

- 2. <u>BOUNDED VARIANCE</u> Suppose $\hat{\beta}_{\tau-1}$ enjoys fast convergence, $||\hat{\beta}_{\tau-1} \beta||_1 \le O(\sqrt{\log(d\tau)/\tau})$. Then $\hat{r}(\tau)$ has **constant variance** under restriction $\pi_{a(\tau)}(\tau) \ge O(\frac{1}{N}\sqrt{\log(d\tau)/\tau})$.
- \Rightarrow The resulting estimate $\hat{\beta}_t$ using $\{\bar{b}(\tau), \hat{r}(\tau)\}_{\tau=1}^t$ fastly converges. By induction, the next pseudo-reward $\hat{r}(t+1)$ is unbiased and has constant variance, so $\hat{\beta}_{t+1}$ fastly converges, and so on....
- \Rightarrow We ensure $\pi_{a(\tau)}(\tau) \geq O\left(\frac{1}{N}\sqrt{\log(d\tau)/\tau}\right)$ by randomizing the arm selection between uniform random selection and deterministic selection based on $\hat{\beta}_{\tau-1}$. Uniform random selection leads to suboptimal choice of arms. However, probability of doing uniform random selection decreases with time.

Theorem. With high probability, $R(T) \leq O\left(s_0 \log(dT)\sqrt{T}\right)$.

EXPERIMENTS

- We compare the Doubly-Robust Lasso Bandit with Lasso Bandit (Bastani and Bayati, 2015), which assumes a different reward model, $r_i(t) = b(t)^T \beta_i$ with $||\beta_i|| = s_0$ and imposes compatibility through forced-sampling of each arm.
- We set d = 100 and $s_0 = 5$.

Figure 1: Median (solid), 1st and 3rd quartiles (dashed) of cumulative regret over 10 replications.

Acknowledgements

This work was supported by the National Research Foundation of Korea under grant NRF-2017R1A2B4008956.