[section]

1 Теоремы, утверждения, леммы

1.1 Машины Тьюринга

Thesis (Черч, Тьюринг). Для любой алгоритмически вычислимой функции существует вычисляющая ее значение машина Тьюринга.

Theorem 1.1. Множество L_0 не распознается никакой машиной Тьюринга.

Theorem 1.2 (Эквивалентность машин Тьюринга). MT с командами $\{-1,0,+1\}$ эквивалентна MT с бесконечной только в одну сторону лентой.

1.2 Булевы функции

Theorem 1.3. Для любой булевой функции, не равной тождественно нулю, существует $C \not \square H \Phi$, ее задающая.

Statement 1.

Построение СДНФ:

$$f(x_1, \dots x_n) = \bigvee_{f(\sigma_1, \dots \sigma_n) = 1} (x_1^{\sigma_1} \vee \dots x_n^{\sigma_n})$$

 Π остроение $CKH\Phi$:

$$f(x_1, \dots x_n) = \bigwedge_{f(\sigma_1, \dots \sigma_n) = 0} (x_1^{\neg \sigma_1} \lor \dots x_n^{\neg \sigma_n})$$

Построение многочлена Жегалкина:

$$f(x_1, \dots x_n) = a \oplus \bigoplus_{\substack{1 \le i_1 < \dots < i_k \le n \\ k \in \{1, \dots n\}}} a_{i_1, \dots i_k} \wedge x_{i_1} \wedge \dots x_{i_k}, \quad a, a_{i_1}, \dots a_{i_k} \in \{0, 1\}$$

Theorem 1.4. Для любой функции существует и единственное представление многочленом Жегалкина.

Statement 2. Knaccu T_0, T_1, S, M, L - замкнуты.

Theorem 1.5 (Пост, 1921). Множество булевых функций \mathcal{F} является полным тогда и только тогда, когда \mathcal{F} не содержится ни в одном из пяти классов T_0, T_1, S, M, L .

1.3 Комбинаторика

Statement 3. $C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$

Statement 4 (Бином Ньютона). $(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$

Theorem 1.6. $(\frac{n}{e})^n < n! < n^n$

1.4 Графы

Lemma 1.

- 1. $\sum_{v \in V} \deg(v) = 2|E|$
- 2. В ориентированном графе сумма входящих степеней равна сумме исходящих.
- 3. Всякий конечный граф содержит четное число вершин нечетной степени.

Theorem 1.7.

- 1. Связный граф содержит эйлеров цикл тогда и только тогда, когда все вершины в нем имеют четную степень.
- 2. Связный граф содержит эйлеров путь, тогда и только тогда, когда он содержит две или ноль вершин нечетной степени.

Theorem 1.8.

- 1. Сильно связный ориентированный граф содержит эйлеров цикл тогда и только тогда, когда все вершины в нем имеют равные степени.
- 2. Сильно связный граф содержит эйлеров путь, тогда и только тогда, когда все, кроме, возможно двух, имеют равные степени.

Theorem 1.9. В графе де Брейна существует эйлеров цикл и строка длины $k^{n+1} + n$, содержащая все подстроки длины n + 1.

Theorem 1.10 (Дирак, 1952). Если в графе G с n > 3 вершинами сумма степеней любых двух вершин больше либо равна n - 1(n), то существует гамильтонов путь $(uu\kappa n)$.

Theorem 1.11 (о мостах). Ребро является мостом тогда и только тогда, когда оно не принадлежит ни одному циклу.

Theorem 1.12 (о деревьях). Для простого графа G следующие условия эквивалентни:

1. G - дерево.

- 2. $\forall x, y \in G, x \neq y : \exists ! nymb us x b y.$
- 3. G не содержит циклов, но если любую пару не смежных вершин соединить ребром, то в новом графе будет ровно 1 цикл.
- 4. G связный граф u |V| = |E| + 1.
- 5. G не содержит циклов u|V| = |E| + 1.
- 6. G связный граф, и всякое ребро в нем мост.

Theorem 1.13 (Формула Эйлера, 1758). |V| - |E| + |F| = 2 для любого плоского графа.

Theorem 1.14.

- 1. G(V,E) планарный граф без петель и кратных ребер, где $|E| \geq 3$. Тогда $3|V| 6 \geq |E|$.
- 2. Если любой цикл имеет длину хотя бы $l, mo |E| \leq \frac{l}{l-2} (|V|-2)$

Statement 5. В любом планарном графе без петель и кратных ребер есть вершина cmenehu не больше 5.

Lemma 2. $K_5, K_{3,3}$ - не планарные.

Theorem 1.15 (Понтрягин, Куратовский, 1930). Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных K_5 , $K_{3,3}$.

Theorem 1.16 (О художесвенной галерее, Хватал, 1975). Для всякого $n \ge 3$ в любом n-угольнике достаточно $\lfloor \frac{n}{3} \rfloor$ сторожей расставленных в его вершинах, чтобы каждую внутреннюю точку видел хотя бы один.

Lemma 3. Любой многоугольник можно триангулировать, причем полученный граф раскрашивается в три цвета.

Theorem 1.17 (Фари, 1948). Для любого графа без кратных ребер и петель существует укладка, в которой, все ребра представлены отрезками.

Lemma 4 (О триангуляции). G - плоский граф без петель, причем в границе каждой грани хотя бы три вершины. Тогда существует триангуляция остовным подграфом которой является G.

Statement 6. Рассмотрим цикл с хотя бы тремя вершинами, которые покрашены в хотя бы три цвета так, что любые две соседние покрашены в разные цвета. Тогда можно триангулировать его внутреннюю область так, что все проведенные диагонали соединяют вершины разных цветов.

Theorem 1.18 (Хивуд). Всякий планарный граф раскрашивается в пять цветов.

Theorem 1.19 (Критерий раскраски в два цвета). Граф двудолен тогда и только тогда, когда не содержит нечетных циклов.

Lemma 5. Если граф нельзя покрасить в k цветов, то он содержит индуцированный подграф, в котором все степени хотя бы k.

Theorem 1.20 (Брукс, 1941). Пусть в G степени всех вершин не более d. Если $d \geq 3$, u ни одна компонента связности не является полным подграфом K_{d+1} , то $\chi(G) \leq d$. Если d=2, u ни одна компонента связности не является нечетным циклом, то $\chi(G)=2$.

Statement 7. Граф H можно покрасить g k цветов тогда u только тогда, когда H/uv или H+uv, где $(u,v) \notin E(H)$, можно покрасить g k цветов.

Theorem 1.21 (Лемма Холла, 1935). Пусть $G = (V_1, V_2, E)$ - двудольный граф. Паросочетание, покрывающее V_1 существует тогда и только тогда, когда $\forall U \subseteq V_1, |U| = k$, у вершин в U в совокупности не менее k смежных вершин в V_2 .

Theorem 1.22 (Татта, 1947). В графе G = (V, E) есть совершенное паросочетание тогда и только тогда, когда $\forall U \subseteq V$ подграф $G \setminus U$ содержит не более |U| нечетных компонент связности.

Theorem 1.23 (Формула Бержа). Число вершин, непокрытых максимальным паросочетанием равно $\max_{U \subset V} (odd(G \setminus U) - |U|) = d(G)$ - дефект графа G.

Theorem 1.24 (Геринг, 2000). Пусть $V_1, V_2 \subseteq V(G)$; $k \in \mathbb{N}$. Тогда верно одно из условий:

- 1. В V(G) найдется подмножество U, |U| < k, разделяющее V_1, V_2 .
- 2. В G найдется хотя бы k простых путей из V_1 в V_2 , не имеющие общих вершин.

Theorem 1.25 (Менгер, 1927). Пусть a, b - вершины связного графа, не соединенные ребром. Тогда минимальное число вершин (a, b)-разделяющего множества равно наибольшему числу не пересекающихся по вершинам путей из a b.

Theorem 1.26 (Кёнинг, 1931). *Максимальное число ребер в паросочетании двудольного* графа равно минимальному числу в его вершинном покрытии.

Theorem 1.27 (Петерсон, 1891). Во всяком 3-регулярном графе без мостов есть совершенное паросочетание.

Theorem 1.28 (Кёнинг, о раскраске ребер). В двудольном графе $G = (V_1, V_2, E)$ существует правильная раскраска ребер в d цветов, где $d = \max_{v \in V} \deg v$.

Theorem 1.29 (Визинг, 1964). Во всяком графе существует правильная раскраска в d+1 цвет, где d - наибольшая степень вершин.

Lemma 6. $\Pi ycmv G = (V, E)$.

- $1. \ v$ вершина со степенью не более k
- 2. $\deg u \leq k, \forall (u, v) \in E$
- 3. $|\deg u = k| \le 1, (u, v) \in E$

Тогда, если $G\setminus\{v\}$ можно раскрасить в k цветов, то и G можно покрасить в k цветов.

Theorem 1.30 (Гейл, Шепли, об устойчивых браках, 1962). Во всяком двудольном графе для любых предпочтений $\{\leq_v\}_{v\in V_1\cup V_2}$ существует устойчивое паросочетание.

Thesis (Рамсей). В достаточно большой структуре, об устройстве которой ничего не предполагается, можно найти подструктуру, устроенную некоторым регулярным образом.

Theorem 1.31 (Рамсей, 1930). Для любых натуральных чисел $\{k; m_1, \dots m_d\}$ найдется $N \in \mathbb{N}$ обладающее свойством $\mathcal{R}(k; m_1, \dots m_d)$. Иными словами, число $R(k; m_1, \dots m_d)$ существует и конечно.

Statement 8.

1.
$$R(1; m_1 ... m_d) = \sum_{i=1}^d m_i - d + 1, \quad \forall m_i \in \mathbb{N}$$

2. $Ecnu \min(m_1, ..., m_d) < k, mo \ R(k; m_1, ..., m_d) = \min(m_1, ..., m_d)$

Theorem 1.32 (Верхняя оценка чисел Рамсея). $R(n,m) \leq C_{n+m-2}^{m-1}$

Corollary 1 (Верхняя оценка диагональных чисер Рамсея). $R(n,n) \leq (1+o(1)) \frac{4^{n-1}}{\sqrt{2\pi n}}$

Theorem 1.33 (Нижняя оценка диагональных чисел Рамсея). $R(n,n) \ge 2^{\frac{n}{2}}, \quad n \ge 2$

Theorem 1.34 (Шур, 1917). Если натуральный ряд покрашен в конечное число цветов, то уравнение x + y = z имеет одноцветное решение.

Theorem 1.35 (Эрдеш, Секреш, 1935). Для любого натурального k найдется такое N, что из любых N точек на плоскости общего положения найдется k, являющихся вершинами выпуклого k-угольника.

Statement 9.

- 1. Из любых пяти точек общего положения найдутся четыре в выпуклом положении.
- 2. Если из $k \geq 4$ точек любые четыре лежат в выпуклом положении, то все лежат в выпуклом положении.