Forelesning 7: Gjeld, total risiko og systematisk risiko

Læringsmål:

- Beregne kontantstrøm til kreditorene og overskuddet for eierne med utgangspunkt i data om et investeringsprosjekt og et finansieringsprosjekt.
- Vise med et eksempel at forventet overskudd pr. aksje stiger med stigende gjeldsgrad.
- Forklare hva en arbitrasjemulighet er.
- Konstruere en arbitrasjestrategi for å høste en arbitrasjegevinst.
- Gjengi de to hovedresultatene til Miller og Modigliani (M&M) med formler og ord for en verden uten skatt.
- Forklare hvorfor kapitalverdimodellen kan gi to prosjekter samme kapitalkostnad selv om de ifølge M&M ikke er i samme risikoklasse.

Oppdatert: 2021-09-27

Gjeldsgrad og risiko

• Problemstilling: Hvilken effekt har endring i kapitalstrukturen (forholdet mellom gjeld og egenkapitalen) på finansieringsrisikoen?

Formelt kan vi definere dette forholdet på to litt ulike måter:

1. Gjeldsandel: (mellom 0 og 1)

$$G/(G+E) \tag{1}$$

2. Gjeldsgrad (mellom $0 \text{ og } \infty$)

$$G/E$$
 (2)

I selve omtalen av bedriftens kapitalstruktur benyttes disse begrepene gjerne om hverandre, men i de formlene som vi nå skal se på vil det være nødvendig å gjøre et skille mellom de.

Sammenhengen mellom forventet avkastning og totalrisiko for et gitt investeringsprosjekt

Alternative navn på investeringsrisiko: eiendelsrisiko, prosjektrisiko, driftsrisiko elle forretningsrisiko.

Samtlige betegnelser signaliserer at usikkerheten skriver seg fra bedriftens *produksjonsvirksomhet*. Faktorer som påvirker denne kan være:

- Etterspørselsrisiko
- Prisusikkerhet på produktprisene
- Prisusikkerhet på råvarerisiko
- Endret markedsmakt
- Høyere faste utbetalinger

I slutten av dette kurset skal vi se nærmer på noen finansielle instrumenter (eks. swapper, futures og opsjonner) kan benyttes til påvirke usikkerheten til disse kontantstrømmene.

Eksempel 6.1: Overskudd før renter (OFR) til Kapitalstruktur i fem alternative tilstander.

Tilstand:	1	2	3	4	5
OFR	250	200	150	100	50
Sannsynlighet	0.2	0.2	0.2	0.2	0.2

Tilstand:	1	2	3	4	5
OFR	250	200	150	100	50
Renter	0	0	0	0	0
OER	250	200	150	100	50
OPA	25	20	15	10	5

Tilstand:	1	2	3	4	5
OFR	250	200	150	100	50
Renter	50	50	50	50	50
OER	200	150	100	50	0
OPA	40	30	20	10	0

er i mill. kroner.

Forventet avkastning og total risiko

Ingen gjeld

- Forventet avkastning: 15
- Standardavvik: 7
- Variasjonskoeffisienten: 0.5
- Utfallsspekteret: 20

Fem effekter av økt gjeldsgrad:

- 1. OPA øker
- 2. OPA blir mer usikkert (høyere total risiko)
- 3. OPA blir høyere i gode tider, men lavere i dårlige tider
- 4. Variasjonskoeffisienten ved gjeldsgrad lik 0 reflekterer kun investeringsrisiko
- 5. Positiv gjeldsgrad gir automatisk finansieringsrisiko

Med gjeldsandel på 50%

- Forventet avkastning: 20
- Standardavvik: 14
- Variasjonskoeffisienten: 0.7
- Utfallsspekteret: 40

Sammenhengen mellom forventet avkastning og systemrisiko for et gitt investeringsprosjekt

Benytter β_I for *systematisk risko* som et mål på ikke-diversifisebar risiko i den kontantstrømmen som driften gir (dvs. uten hensyn hvordan driften er finansiert).

Alterntive navn er: investeringsbeta, foretningsbeta, prosjektbeta eller driftsbeta.

Formelt (uten skatt, men med konkursrisiko)

• Systematisk investeringsrisiko

$$eta_I = w_E eta_E + w_G eta_G$$

• Løst for egenkapitalbeta

$$eta_E = eta_I + (eta_I - eta_G)(rac{G}{E})$$

• Uten konkursrisiko ($eta_G=0$)

$$eta_E = eta_I (1 + rac{G}{E})$$

Eksempel 6.4: Kapitalstruktur er 100 prosent egenkapitalfinansiert og aksjens systematiske risiko $\beta_I = 0.8$. Ledelsen tror at (1) en økning i gjeldsgraden (G/E) opp til 1 ikke medfører noen konkursrisiko, men (2) gjeldsbeta etter det stiger med 0.1 pr enhets økning i G/E.

G/E	0	0.2	0.5	1	1.5	2	3
Investeringsbeta	1	1	1	1	1	1	1
Gjeldsbeta	0	0	0	0	0.05	0.1	0.2
Aksjebeta	1	1	1	1	1.0475	1.09	1.16

Gjeldsgrad og verdi i perfekte kapitalmarkeder

I kapittel 6 så vi at økt gjeldsgrad førte til

- 1. Økt forventet avkastning
- 2. Økt risiko (både for total risiko og systematisk risiko)

Spørsmålet vi stiller nå:

• Er den positive effekten av 1. større, lik (dette omtales som *seperasjonsprinsippet*) eller mindre av de negative effekten av 2.?

Oppsplitting av en kontantstrøm

• Til kreditorene: R=0

• Til aksjonærene: $OER_U = OFR$ • Totalt: $R + OER_U = OFR$

• Til kreditorene: $R = r \cdot PG$

• Til aksjonærene: $OER_M = OFR - r \cdot PG$

• Totalt:

$$R + OER_M =$$

$$r \cdot PG - OFR - r \cdot PG = OFR$$

Pålydende gjeld	100	200	400	600	700
Gjeldsrente	0.04	0.04	0.05	0.06	0.08
Til kreditorene	4	8	20	36	56
Til eierne	96	92	80	64	44
Totalt	100	100	100	100	100

Resultat: Gjeldsgrad påvirker kun fordelingen mellom kreditorer og eiere, men ikke den totale kontantstrømmen

Arbitrasje

Dersom gjeldsgraden ikke påvirker den totale kontantstrømmen, hva betyr dette for verdien av to selskaper som *kun* utskiller seg i finansieringsform?

Eksempel 7.2: Tar utgangspunkt i to selskaper med lik total kontantstrøm, ulik finansfor og verdifastsettelse

Selskap U (100 prosentet egenkapitalfinansiert)

- Verdien av selskapet 1000. Hvor $V_U=E_U=1000$ og $G_U=0$
- Gir dividiende = OFR
- Salg 10 prosent av aksjer: 1000*0.1=100,-

Selskap M

- Verdien av selskapet 900. Hvor $V_M=900,\,E_M=500\,$ og $G_M=450$ med en pålydende gjeld på 6 prosent
- Gir dividiende = $OFR 0.06 \cdot 500 = OFR 30$
- Kjøper for 90,-
- Investering: Aksjer $0.1 \cdot 500$ og Obligasjoner $0.1 \cdot 400$ som totalt er lik 90
- Utbetaling: $0.1 \cdot OFR$

Arbitrasjegevinst ("pengepumpe"): 90,- av et beløp på 100,- kan benyttes til å oppnå samme kontantstrøm.

Generell strategi:

- 1. Selg dine *aksjer* i det overprisede selskapet
- 2. Kjøp deg inn i det underprisede selskapet. Porteføljen må da tilpasses slik at a. Uten gjeld i det overprisede selskapet, kjøper du samme andel av egenkapital og gjeld i det underprise selskapet b. Med gjeld i det overprisede selskapet, låner du privat for å få samme gjeldsgrad som i det overprisede selskapet]

Resultat: Den arbitrasjestrategien fører til at verdifastsettelsen blir lik (pga. økt tilbud av det overprisede selskapet samt økt etterspørsel av det underprise selskapet) mellom de to selskapene.

Miller & Modigliani (M&M)

Som vist vil arbitrasje føre til lik verdifastsette, men hva blir verdien som blir fastsatt i markedet?

Forutsetninger til grunn for verdsetting av selskaper

Markedet:

- Alle investorer har full informasjon om markedsmulighetene
- For samme risiko, alle kan låne til samme rente
- Ingen transaksjonskostnader
- Alle selskapers egenkapital og gjeld er fritt omsettelige via aksjer og obligasjoner
- Ingen betaler skatt

Investeringssiden:

- Selskapenes M og U OFR er perfekt korrelerte (vi skal snart se at vi har mulighet til å lette på denne forutsetningen)
- OFR er evigvarende
- Sannsynlighetfordelingen for OFR den samme i alle perioder for begge selskaper

Finansieringsiden:

- Fast evigvarende gjeld
- OER går kun til utbytte

Basert på disse forutsetningene kan vi sette opp tre uttrykk som viser forventet avkastning for gjeld (k_G), egenkapital (k_E) og totalkapital (k_T):

$$k_G = \frac{r \cdot PG}{G} \tag{3}$$

$$k_E = \frac{E(OER)}{E} \tag{4}$$

$$k_T = \frac{E(OFR)}{V} \tag{5}$$

• M&M-1

$$V = \frac{E(OFR)}{k_t} = \frac{E(OFR)}{k_u} \tag{6}$$

• M&M-2

$$k_E = k_T + (k_T - k_G) \frac{G}{E} == k_U + (k_U - k_G) \frac{G}{E}$$
 (7)

Seperasjonsprinsippet

- M&M impliserer at det ikke er mulig å øke bedriftens eller enkeltstående prosjekters verdi gjennom finansieringsformen:

 - Økt gjeldsgrad fører til økt finansieringsrisiko og dermed økning i eiernes avkastningskrav
 Men totalkapitalkostnaden påvirkes ikke av gjeldsgraden, og selskapsverdien foreblir derfor uendret
 - 3. Dette resultatet ofte som *seperasjonsprinsippet*

Eksempel 7.5: TV fabrikken Tittco budsert OFR=2 mill for neste år og alle perioder framover. Selskapet disponerer avdragsfri gjeld med 250 tusen i utestående renter. En bedrift i samme risikoklasse, men som er gjeldfri, har en investeringsrisiko $\beta_I=0.04$

• Ifølge M&M-I vil verdien til Tittco være gitt ved

$$V = \frac{E(OFR)}{k_u} = \frac{2}{0.04} = 50 \tag{8}$$

• Ifølge M&M-II

FIGUR 7.1 Total- og egenkapitalkostnad i AS Tittco ved gjeldsgrad (G/E) varierende fra 0 til 3. Kapitalkostnaden ved null gjeldsgrad er $k_{u'}$

Sammenhengen mellom KVM og M&M

Vi løsner nå på forutsetningen om de to selskapene som sammenlignes skal være i samme risikoklasse (som innbærer lik total og systematisk risiko). Vi definerer istedet risikoklasse (som i KVM) some alle selskaper med en bestemt investeringsbeta. Eksemplet nedenfor viser at KVM, under de nå mindre restriktive forutsetningen, impliserer både M&M-1 og M&M-2.

Eksempel 7.5: For Demo ASA er $\beta_G=0.02$ og $\beta_E=1.4$. Selskapet er finansiert med like mye gjeld som egenkapital, $w_G=w_E=0.05$. Den risikofrie renten i markedet $r_f=0.03$ mens markedsporteføljen forventede avkastning E(rp)=1.4.

Alternativ 1: KVM

$$k_E = r_f + eta_E \left[E(r_m) - r_f
ight] \ = 0.03 + 1.4 [0.08 - 0.03] = 0.10$$

Konklusjon:M&Ms konklusjonder holder også under mer robuste og velkjente forutsetninger.

Alternativ 2: M&M

Vi har fra kapittel 6 (uten skatt)

$$eta_I = w_E eta_E + w_G eta_G \ = 0.5 \cdot 1.4 + 0.5 \cdot 0.20 = 0.80$$

som fra KVM gir (sjekk ut!) $k_U = 0.07$. Vider har vi

$$k_G = r_f + eta_G \left[E(r_m) - r_f
ight] \ = 0.03 + 0.2 [0.08 - 0.03] = 0.04$$

Vi kan derfor benytte M&M-2:

$$k_E = 0.07 + 0.2 \cdot (0.08 - 0.03) = 0.10$$

knitr::knit_exit()