3.5.5 MIPS32处理器设计

(指令时间特性分析)

※CPU设计的主要任务

- ※拟定指令集 √
- ※数据通路设计 √
- ※控制器设计 ✓

RISC32单/多周期处理器,指令周期如何确定?时效特性如何?

假设各部件的硬件延时(10-12秒,皮秒):

- √存储器的读写操作: 200ps
- √寄存器堆的读写操作: 100ps
- √ALU和加法器运算: 150ps
- √拼接器: 50ps
- √其它部件忽略不计: Ops
 - 1. MIP32单周期CPU分析

基于前述设计的处理器,

它能支持R、I、J型共11条目标指令。

PC回路是硬件并行的非关键路径

PC回路是硬件并行的非关键路径

用同样方法可得到如下时间:

指令类别	路径分段延时(ps)	最长延时(ps)
R/I型运算指令	200+100+150+0 +100	550
I型lw	200+100+150+200+100	750
I型sw	200+100+150+200	650
I型beq	200+100+150	450
J型指令	200+50	250

由此可见: lw指令耗时最长: 750ps

- →单周期CPU的指令周期T应不小于Iw指令时间
- \rightarrow T=750ps
- →CPU主频≈1.33GHz

※单周期CPU特性总结

- (1) 指令周期与时钟周期等长,且宽度较大;
- (2) 处理器的CPI≡1;
- (3) 在指令周期中,各种硬件资源均被相应的功能操作独占,不能共享,硬件利用率低;
- (4) 所有指令无论其实际执行时间长短,均分配较长的时钟周期,时间浪费严重;
 - →对简单的小规模指令集支持较好;
 - →难胜任浮点或更复杂指令集;

2. MIPS32多周期CPU分析

已能支持:

部分R型运算、I型(访存/分支/运算等)和J型j指令;

[举例] add rd, rs, rt **PCSrc[1:0]** # \$rd ← \$rs+\$rt 01 00 **IRWrite** <<2 **PCWrite** operation **MemWrite RegWrite RegDst lorD** 存储器 RN2 IR PC AluSrc_A1 WN 寄堆 00 → WD zero rst MDR **MemRead** /lem2Reg <<2 AluSrc_B[1:0] extend

共 4T: (FT)200+ (DT)100+ (ET)150+ (RT)100 =550ps

用同样方法,可得如下结果:

指令	FT	DT	ET	MT	RT	合计	指令周期
I/R运算	200	100	150	X	100	550	4T=800
I型lw	200	100	150	200	100	750	5T=1000
I型sw	200	100	150	200	X	650	5T=1000
I型beq	200	150	150	X	X	500	3T=600
J型指令	200	50	X	X	X	250	2T=400

由此可见: 耗时最长的步骤为读写存储器-200ps

→T=200ps → CPU主频≈5GHz

※多周期CPU特性总结

- (1) 缩短时钟周期,可以为不同的指令安排多个时钟周期, GPI > 2;
 - (2) 不同类型指令分配的时钟周期数可以不同;
 - (3) 指令周期的长度一般会变长,执行速度降低;
 - (4) 硬件可共享,硬件资源的综合利用率高。