

Faculty of Engineering and Technology Department of Electrical and Computer Engineering Wireless and Mobile Networks, ENCS5323 Project – Online Calculator for Wireless and Mobile Networks

Prepared By:
Mariam Hamad 1200837
Leena Affouri 1200335

Supervised By:

Dr. Mohammad K. Jubran

Birzeit University

23/6/2024

Table of Contents

Design and build an online calculator:	4
First Question: The number of bits and rate of the sampler, quantizer, source encoder, channel encoder, and interleaver:	4
First scenario:	4
Second scenario:	5
Third scenario:	6
Second question: The number of bits and rate for resource elements, OFDM symbol, Resource Blocks, and maximum transmission using parallel resource blocks:	7
First scenario:	7
Second scenario:	8
Third scenario:	9
Third question: Power transmitted in a flat environment based on the transmitter and receiver specifications:	10
First scenario:	10
Second scenario:	11
Third scenario:	12
Fourth question: Throughput in percent of Multiple Access techniques:	13
First scenario:	13
Second scenario:	14
Third scenario:	15
Fifth question: Design of cellular system:	16
First scenario:	16
Second scenario:	17
Third scenario:	10

Table of Figure:

Figure 1: First question first scenario	4
Figure 2: First question second scenario	5
Figure 3: First question third scenario	6
Figure 4: Second question First scenario	7
Figure 5: Second question second scenario	8
Figure 6: Second question third scenario	9
Figure 7: Third question first scenario	
Figure 8: Third question second scenario	11
Figure 9: Third question third scenario	12
Figure 10: Fourth question first scenario	13
Figure 11: Fourth question second scenario	14
Figure 12: Fourth question third scenario	15
Figure 13: Fifth question first scenario	16
Figure 14: Fifth question second scenario	17
Figure 15: Fifth question third scenario	18

Design and build an online calculator:

First Question:

The number of bits and rate of the sampler, quantizer, source encoder, channel encoder, and interleaver:

After making the user enter the inputs then click calculate the outputs will show based on these equations:

Sampling Frequency = $2 \times \text{bandwidth}$ Quantization Levels = $2^{\text{number of bits}}$ Input source Encoder = sampling frequency \times number of bits

Source Encoder Rate = sampling frequency \times number of bits \times compression rate

Channel Encoder Rate = $\frac{\text{Source Encoder Rate}}{\text{Encoder Rate}}$ Interleaver Rate = Channel Encoder Rate

Figure 1: First question first scenario

Figure 2: First question second scenario

Figure 3: First question third scenario

Second question:

The number of bits and rate for resource elements, OFDM symbol, Resource Blocks, and maximum transmission using parallel resource blocks:

After making the user enter the inputs then click calculate the outputs will show based on these equations:

```
Subcarriers = \frac{bandwidth}{spacing} \\ bits \ Per \ Resource \ Element = \ log_2 \ modulation \ Val \\ bits \ Per \ OFDM \ Symbol = bits \ Per \ Resource \ Element \times subcarriers \\ bits \ Per \ OFDM \ Resource \ Block = bits \ Per \ OFDM \ Symbol \times OFDM \ Symbols \\ transmission \ Rate = \frac{(number \ Of \ Parallel \ Rb \times bits \ Per \ OFDM \ Resource \ Block)}{(resource \ Block \ Duration \times 10^{-3})} \\
```


Figure 4: Second question First scenario

Figure 5: Second question second scenario

Figure 6: Second question third scenario

Third question:

Power transmitted in a flat environment based on the transmitter and receiver specifications:

After making the user enter the inputs then click calculate the outputs will show based on these equations:

pr = link margin + k + noise temp + noise figure + data rate + results['EbN0']

pt = pr + path loss + antenna feed line loss + other losses + fade margin – transmit antenna gain – receive antenna gain – receiver amplifier gain

Figure 7: Third question first scenario

Figure 8: Third question second scenario

Figure 9: Third question third scenario

Fourth question:

Throughput in percent of Multiple Access techniques:

After making the user enter the inputs then click calculate the outputs will show based on these equations:

```
"Throughput of Pure ALOHA": throughput = G \times T \times e^{(-2 \times G \times T)}

"Throughput of slotted ALOHA": throughput = G \times T \times e^{(-G \times T)}

"Throughput unslotted nonpersistent CSMA": throughput = \frac{(G \times e^{(-2 \times alpha \times T)})}{G \times (1 + 2 \times alpha) + e^{(-alpha \times G)}}

"Throughput slotted nonpersistent CSMA": throughput = \frac{(alpha \times G \times e^{(-2 \times alpha \times T)})}{G \times (1 - e^{(-2 \times alpha \times G)} + alpha)}

"Throughput unslotted 1-persistent CSMA": throughput = \frac{(G \times (1 + G + alpha \times G \times (1 + G + \frac{alpha \times G}{2})) \times e^{(-G \times (1 + 2 \times alpha))})}{(G \times (1 + 2 \times alpha) - (1 - e^{(-2 \times alpha \times G)}) + (1 + alpha \times G) \times e^{(-G \times (1 + alpha))})}
```


Figure 10: Fourth question first scenario

Figure 11: Fourth question second scenario

Figure 12: Fourth question third scenario

Fifth question:

Design of cellular system:

After making the user enter the inputs then click calculate the outputs will show based on these equations:

```
 \text{max Distance} = \text{ref Distance} \times \left(\frac{\text{probD0}}{\text{receiver Sensitivity}}\right)^{\left(\frac{1}{\text{path Loss Exponent}}\right)} 
 \text{cell Size} = \left(\frac{3 \times \sqrt{3}}{2}\right) \times \left(\text{max Distance}^{2}\right) 
 \text{number Cells} = \frac{\text{city Area}}{\text{cell Size}} 
 \text{system Traffic} = \frac{\text{num Users} \times \text{calls Per Day} \times \text{call Duration}}{(24 \times 60)} 
 \text{traffic Per Cell} = \frac{\text{system Traffic}}{\text{num Cells}} 
 \text{cells Per Cluster} = \frac{\left(\text{minimum SIR} \times \text{co Channel Cells}\right)^{\left(\frac{2}{\text{path Loss Exponent}}\right)}}{3} 
 \text{min number of carrier} = \frac{\text{the number of channel for the GOS probability with the traffic load for each cell in earlang table}}{\text{number of channel in timeslot}}
```


Figure 13: Fifth question first scenario

Figure 14: Fifth question second scenario

Figure 15: Fifth question third scenario