Discussion Section – Week 3

10/21/2020

Xuehai He

What we have learnt so far?

- Monotonic functions
- Optimization & Convexity
- Linear Regression with OLS
 - Polynomial Regression
- Robust estimation
 - Norms
 - Regularization
- Error metrics

Monotonic functions

Brain teaser: Is f(x) = 5 monotonic?

Why apply log to ML problems?

In general: $W^* = \arg \min_W \mathcal{L}(W)$, where $\mathcal{L}(W) = e_{training}$ defines a loss/objective function in machine learning.

- Provides numeric stability & prevent the dealing with too large or too small numbers.
- If L(w) -> In(L(w)), the landscape of L(w) is still retained because In
 is a monotonic function.

<u>Optimization</u>

Definition:

"Set of optima"

- 1. w^* is a globally optimal solution for $w^* \in \Omega$ and $L(w^*) \leq L(w) \forall w \in \Omega$
- 2. w^* is a locally optimal solution if there is a neighborhood \mathcal{N} around w such that $w^* \in \Omega$, $L(w^*) \leq L(w)$, $\forall w \in \mathcal{N} \cap \Omega$.

You can end up in local minima very easily when optimizing!!!

Guaranteed optimum & Convexity

- When the loss function is convex, it is guaranteed that we would converge to the global optimum.
- Closed form solution if the function is differentiable at all points.
- What are convex functions?

 $f:X o\mathbb{R}$ be a function.

f(x)

f is convex if,

 $orall x_1, x_2 \in X, orall t \in [0,1]: \qquad f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2)$

Linear Regression with OLS

Obtain/train:
$$f(x, W) = w_0 + w_1 x$$

$$W^* = \arg\min_{W} \sum_{i} (\mathbf{x}_i^T \cdot W - y_i)^2$$

$$W = \left(\begin{array}{c} w_0 \\ w_1 \end{array}\right) \quad \mathbf{x}_i = \left(\begin{array}{c} 1 \\ x_i \end{array}\right)$$

$$W^* = \arg\min_{W} = \arg\min_{W} L(W) = (XW - Y)^T (XW - Y)$$

$$L(W) = W^T X^T X W - W^T X^T Y - Y^T X W + Y^T Y$$

$$\frac{dL(W)}{dW} = 2X^T X W - 2X^T Y = 0$$

$$W^* = (X^T X)^{-1} X^T Y$$

We did this last time!

Polynomial Regression with OLS

Which curve best fits the data?

Polynomial

What's the optimum W?

$$S_{training} = \{(x_i, y_i), i = 1..n\}$$

Input: $x, x \in R$

Model parameter:
$$\mathbf{w} = (w_0, w_1, ..., w_d), w_i \in R$$

Output:
$$y = w_0 + w_1 x_1 + w_2 x_1^2 + \dots + w_q x_m^q$$

Polynomial Regression with OLS

Which curve best fits the data?

Polynomial

$$S_{training} = \{(x_i, y_i), i = 1..n\}$$

Input: $x, x \in R$

Model parameter:
$$\mathbf{w} = (w_0, w_1, ..., w_d), w_i \in R$$

Output:
$$y = w_0 + w_1 x_1 + w_2 x_1^2 + \dots + w_q x_m^q$$

What's the optimum W?

It is still the same optimization problem except W and X have different elements & shape.

$$W^* = \arg \min_{W} = \arg \min_{W} L(W) = (XW - Y)^T (XW - Y)$$
$$L(W) = W^T X^T X W - W^T X^T Y - Y^T X W + Y^T Y$$
$$\frac{dL(W)}{dW} = 2X^T X W - 2X^T Y = 0$$
$$W^* = (X^T X)^{-1} X^T Y$$

In general, linear regression with least squares estimation

$$Y = X$$
 W linear w.r.t. the W!

With an analytical solution:

$$W^* = (X^T X)^{-1} X^T Y$$

Robust Estimation – penalize data

- How much importance is given to the outliers?
- If loss = L2 norm (MSE), outliers have large impact
- If loss = L1 norm (MAE), outliers don't have such a large impact

L2 norm: (squared)

$$e = \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i; \theta))^2$$

L1 norm:

$$e = \sum_{i=1}^{n} |y_i - f(\mathbf{x}_i; \theta)|$$

Optimizing L1 norm (need for gradient descent)

1. Loss (Cost) Function

$$L(W) = \sum_{i=1}^{n} |\mathbf{x}_i^T W - y_i|$$

2. Obtain the gradient

$$\frac{\partial L(W)}{\partial W} = \sum_{i=1}^{n} sign(\mathbf{x}_{i}^{T}W - y_{i}) \times \mathbf{x}_{i}$$

3. Update parameter W

$$W_{t+1} = W_t - \lambda_t \frac{\partial L(W)}{\partial W}$$

L2 loss -> convex & differentiable at all points -> w* is the global optimum and we can get a closed form solution.

L1 loss -> convex but not differentiable at origin -> though there exists a global minima (at origin) it cannot be expressed in closed form -> hence, perform gradient descent to update weights and reach close to w*

Robust estimation — penalize model (regularization)

$$L(\mathbf{w}) = (X\mathbf{w} - \mathbf{y})^T (X\mathbf{w} - \mathbf{y}) + \frac{\lambda}{2} ||\mathbf{w}||_2$$

Let's try optimizing this loss! Grab a pen & paper ©

$$L(\omega) = (x\vec{\omega} - \vec{y})^{T}(x\vec{\omega} - \vec{y}) + \frac{1}{2} ||\vec{\omega}||_{2} = (x\vec{\omega} - \vec{y})^{T}(x\vec{\omega} - \vec{y}) + \frac{1}{2} ||\vec{\omega}||_{2}$$

$$= (x\vec{\omega} - \vec{y})^{T}(x\vec{\omega} - \vec{y}) + \frac{1}{2} ||\vec{\omega}||_{2}^{2}$$

$$= (x\vec{\omega} - \vec{y})^{T}(x\vec{\omega} - \vec{y}) + \frac{1}{2} ||\vec{\omega}||_{2}^{2}$$

$$= (x\vec{\omega} - \vec{y})^{T}(x\vec{\omega} - \vec{y}) + \frac{1}{2} ||\vec{\omega}||_{2}^{2}$$

$$= (x\vec{\omega} - \vec{y})^{T}(x\vec{\omega} - \vec{y}) + \frac{1}{2} ||\vec{\omega}||_{2}^{2}$$

$$= (x\vec{\omega} - \vec{y})^{T}(x\vec{\omega} - \vec{y}) + \frac{1}{2} ||\vec{\omega}||_{2}^{2}$$

$$\frac{\partial L(\omega)}{\partial \omega} = 2X^{T}X\vec{\omega} - 2X^{T}\vec{y} + \frac{\lambda}{2} \cdot 2\vec{\omega}$$
Setting
$$\frac{\partial L(\omega)}{\partial \omega} = 0,$$

$$\Rightarrow 2X^{T}X\vec{\omega} + \lambda\vec{\omega} = 2X^{T}\vec{y}$$

$$\Rightarrow X^{T}X\vec{\omega} + \frac{1}{2}\lambda T\vec{\omega} = X^{T}\vec{y}$$

$$\Rightarrow X^{T}X\vec{\omega} + \frac{1}{2}\lambda T\vec{\omega} = X^{T}\vec{y}$$

Error metrics – Confusion matrix

- Accuracy is a good performance metric typically when the dataset is class balanced.
- When there is large imbalance (say, 99% of the data belong to class 0 & 1% belong to class 1), accuracy is biased by the majority class.
 - More likely that your model will bias to the majority class!
- Other metrics from the confusion matrix
 - Sensitivity/Recall Ability to identify the + class
 - Specificity Ability to identify the class
 - Precision How many of the predictions are correct?
 - F1-Score f(Precision, Recall)

	Predicted +	Predicted -				
True +	TP	FN				
True -	FP	TN				

Which metric to use? (in general)

- Event detection (detecting heart beats or an anomaly in a signal) Sensitivity vs.
 Specificity (ROC curve)
- Typical classification problems F1-Score, Precision vs. Recall (Precision-Recall curve)
- Balanced dataset accuracy

Grab a pen & paper ©

Identify the convexity for the following six functions (a-f) (Write down whether the function in convex or non-convex).

Grab a pen & paper ©

Identify the convexity for the following six functions (a-f) (Write down whether the function in convex or non-convex).

Solution:

Convex – a,c Non-Convex – b,d,e,f

Problem 1

There are 20 samples in a dataset – 15 belong to class A and the remaining 5 belong to class B.

A model f(w) when trained on the dataset correctly classifies 5 samples from class A and 3 samples from class B.

- What is the confusion matrix?
- What is the sensitivity, TPR = TP/(TP+FN) considering B is the + class?

Problem 1

There are 20 samples in a dataset – 15 belong to class A and the remaining 5 belong to class B.

A model f(w) when trained on the dataset correctly classifies 5 samples from class A and 3 samples from class B.

- What is the confusion matrix?
- What is the sensitivity, TPR = TP/(TP+FN) considering B is the + class?

$$3/(3+2) = 3/5 = 0.6$$

	Pred A	Pred B				
True A	5	10				
True B	2	3				

Problem 2

A classifier is trying to predict one of the 2 classes {0,1} by returning probabilities for all the 10 samples in the dataset.

We assign the samples to class 1 if the posterior probabilities are greater than a threshold.

X	1	2	3	4	5	6	7	8	9	10
True	1	0	1	1	1	0	1	1	1	1
Post. Prob.	0.8	0.65	0.75	0.98	0.33	0.03	0.44	0.55	0.76	0.43

- 1. What is the accuracy when the threshold = 0.5?
- 2. How does the accuracy change when threshold = 0.8 and 0.3?
- 3. Is accuracy a good measure?
- Confusion matrix when threshold = 0.5?
- 5. Find precision & recall when threshold = 0.5. What's the F1 score?

X	1	2	3	4	5	6	7	8	9	10	Accuracy
True	1	0	1	1	1	0	1	1	1	1	
Post. Prob.	0.8	0.65	0.75	0.98	0.33	0.03	0.44	0.55	0.76	0.43	
Pred when th = 0.5	1	1	1	1	0	0	0	1	1	0	6/10
Pred when th = 0.8	1/0	0	0	1	0	0	0	0	0	0	4/10 or 3/10
Pred when th = 0.3	1	1	1	1	1	0	1	1	1	1	9/10

Th = 0.5	Pred 1	Pred 0
True 1	5	3
True 0	1	1

Recall = TP/(TP+FN) = 5/8 Precision = TP/(TP+FP) = 5/6

F1-Score = 2*Precision*Recall/(Precision+Recall) ~= 0.73

L(w) = exp(yŷ) where
$$\hat{y} = \hat{x}^T\hat{w}$$

Griven: $y = 5$, $x = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$, $w = \begin{bmatrix} e^{10} \\ e^{20} \end{bmatrix}$
Find: $\frac{\partial L(w)}{\partial w}$ and $\frac{\partial \ln(L(w))}{\partial w}$
What is the relation between them?
By what factor? "Provide a sough extimate".

$$L(\omega) = \exp(y\hat{y}) = \exp(y\hat{z}T\vec{\omega})$$

$$\frac{\partial L(\omega)}{\partial \omega} = y\hat{z}T\exp(y\hat{z}T\vec{\omega})$$

$$= (5) (1) \cdot \exp((5)(14)(e^{10}))$$

$$= (5) \left(\frac{1}{4}\right) \cdot exp\left(\frac{5}{1}\left(1\right) + \frac{e}{20}\right)$$

$$\ln\left(L(\omega)\right) = \sqrt{\chi} \times \omega$$

 $\frac{\partial \ln \left(L(\omega)\right)}{\partial \ln \left(L(\omega)\right)} = y^{2} = (5) \begin{pmatrix} 1 \\ 4 \end{pmatrix}$