A Scale-Invariant Ruler for Black Holes: From Stellar-Mass to Ultra-Massive with Unified Uncertainties

Stephen L Nagy

Independent Researcher

September 2025

Abstract

We present the Black Hole Ruler, a scale-invariant framework that maps astrophysical black holes onto a common set of gravitational units and orbital landmarks. The ruler uses mass M(and, where available, spin a_*) to compute a baseline triplet—gravitational time $t_g = GM/c^3$, Schwarzschild radius $r_s = 2GM/c^2$, and ISCO frequency $f_{\rm ISCO}$ —and exploits the mass-invariant product $f_{\rm ISCO} t_g = 1/(6^{3/2}2\pi)$ as a universal sanity check. Deviations from the Schwarzschild baseline are modeled via Kerr spin corrections, and accretion physics is incorporated through a dual prescription that makes model dependence explicit: an efficiency bridge $(L = \eta_{\text{eff}} M c^2)$ versus an ADAF/RIAF branch ($\lambda_{\rm Edd} = \kappa \dot{m}^2$). The ruler is extended with environmental context (sphere of influence $r_{\rm infl} = GM/\sigma^2$) and a tidal-disruption module with a logistic capture boundary. Case studies spanning eight orders of magnitude in mass—Cygnus X-1 (XRB), Sgr A* (quiescent SMBH), and M87* (LLAGN)—demonstrate predictive and diagnostic power: spin-aware ISCO shifts, horizon magnetic fields, and Blandford-Znajek jet powers that bracket observations without fine-tuning.

Introduction 1

Black holes span ~ 10 orders of magnitude in mass, yet observations are fragmented across wavelengths and techniques. We aim to unify these regimes with a minimal, Kerr-based template and explicit uncertainty propagation. Prior work includes horizon-scale imaging, gravitational-wave catalogs, maser dynamics, and reverberation mapping. Our contribution is a scale-invariant synthesis with a dual-branch accretion prescription and a transparent catalog schema for derived quantities.

2 The Black Hole Ruler

Gravitational units and baseline invariant

We adopt units G = c = 1 for derivations, restoring constants in reported values. The core definitions are

$$t_g = GM/c^3, r_g = GM/c^2, r_s = 2r_g, (1)$$

$$t_g = GM/c^3, \qquad r_g = GM/c^2, \qquad r_s = 2r_g,$$
 (1)
 $r_{\rm ISCO}^{\rm Schw} = 6r_g, \qquad f_{\rm ISCO}^{\rm Schw} = \frac{c^3}{6^{3/2}2\pi GM}, \qquad f_{\rm ISCO}t_g = \frac{1}{6^{3/2}2\pi} \ (\approx 0.01083).$ (2)

2.2 Kerr spin corrections

Using the Bardeen-Press-Teukolsky expressions, we compute $r_{\rm ISCO}(a_*)$ and

$$f_{\rm ISCO}(a_*) = \frac{c^3}{2\pi GM} \frac{1}{r_{\rm ISCO}^{3/2} + a_*}$$
 (3)

for prograde/retrograde branches. Spin moves sources along a known one-parameter family relative to the Schwarzschild baseline.

3 Accretion Prescriptions and Jet Power

3.1 Efficiency bridge vs. ADAF/RIAF

Efficiency bridge: $\dot{m} = \lambda_{\rm Edd}/\eta_{\rm eff}$, $B_H \propto \dot{m}^{1/2} M^{-1/2}$, $P_{\rm BZ} \propto a_*^2 (\lambda_{\rm Edd}/\eta_{\rm eff}) M$.

ADAF/RIAF: $\lambda_{\rm Edd} = \kappa \dot{m}^2 \Rightarrow \dot{m} = (\lambda_{\rm Edd}/\kappa)^{1/2}$, hence $B_H \propto (\lambda_{\rm Edd}/\kappa)^{1/4} M^{-1/2}$, $P_{\rm BZ} \propto a_*^2 (\lambda_{\rm Edd}/\kappa)^{1/2} M$. We provide both branches and propagate uncertainties in log-space.

3.2 Blandford-Znajek scaling

We estimate

$$P_{\rm BZ} \approx 10^{45} \ {\rm erg \ s^{-1}} \ \left(\frac{a_*}{0.9}\right)^2 \left(\frac{B_H}{10^4 \ {\rm G}}\right)^2 \left(\frac{M}{10^9 M_{\odot}}\right)^2$$
 (4)

and report ranges based on the branch selection, guided by polarimetry and variability near $\sim 10 t_q$.

4 Environmental Context and TDE Module

4.1 Sphere of influence and morphology

We compute $r_{\rm infl} = GM/\sigma^2$ and $r_{\rm infl}/R_e$ with a three-tier σ acquisition strategy (IFU/long-slit; dynamical fallback with k-factor provenance; scaling fallback with morphology warnings). Errors are propagated via

$$\frac{\delta r_{\rm infl}}{r_{\rm infl}} = \sqrt{\left(\frac{\delta M}{M}\right)^2 + \left(2\frac{\delta \sigma}{\sigma}\right)^2},\tag{5}$$

$$\frac{\delta(r_{\rm infl}/R_e)}{(r_{\rm infl}/R_e)} = \sqrt{\left(\frac{\delta r_{\rm infl}}{r_{\rm infl}}\right)^2 + \left(\frac{\delta R_e}{R_e}\right)^2}.$$
 (6)

4.2 TDE critical mass and rates

We set a spin-aware disruption boundary with a logistic capture factor $S(M; a_*)$ and model pergalaxy rates $\Gamma_{\rm gal} = \Gamma_0 (M/10^6 M_{\odot})^{\alpha} (\rho_{\star}/\rho_0)^{\beta} (\sigma/\sigma_0)^{\gamma} S$. A hierarchical fit to current TDE samples can calibrate $(\Gamma_0, \alpha, \beta, \gamma)$; volumetric rates follow by convolving with host demographics.

5 Case Studies

5.1 Cygnus X-1 (stellar XRB)

High spin ($a_* \gtrsim 0.9$) compresses $r_{\rm ISCO}$ and approximately doubles the ISCO tone relative to Schwarzschild; inferred B_H and $P_{\rm BZ} \sim 10^{36-37}$ erg s⁻¹ align with microquasar jets.

5.2 Sgr A* (quiescent SMBH)

Extremely low $\lambda_{\rm Edd}$ with RIAF-like efficiency boosts B_H moderately while keeping $P_{\rm BZ}$ small, consistent with weak radio emission. Sphere of influence $\sim 1-2$ pc; TDEs possible.

5.3 M87* (LLAGN with jet)

MAD/RIAF branch yields $P_{\rm BZ} \sim 10^{44\pm1}~{\rm erg~s^{-1}}$, bracketing jet energetics; TDEs suppressed by direct capture. $r_{\rm infl} \sim 0.2$ –0.27 kpc (3–4% of R_e).

6 Results: Cross-Scale Atlas and Invariants

We verify the baseline invariant $f_{\rm ISCO}t_g$ across a 10-object atlas and a 2024–2025 cross-scale set (Gaia BH3, GW231123 remnant, ω Cen IMBH candidate, CEERS-1019, J0529-4351). Spin-aware frequencies are reported where credible; ADAF/bridge jet-power ranges accompany SMBH entries.

7 Uncertainties and Reproducibility

Uncertainties are propagated analytically in log form. Automated QC flags include $M-\sigma$ outliers, aperture sanity, and morphology warnings. The accompanying tables follow a consistent schema with per-entry provenance and quality grades (Gold/Silver/Bronze).

8 Discussion and Outlook

The ruler enables instrument matching, variability rescaling, imaging forecasts, and growth tests from XRBs to UMBHs. Future work: full spin posteriors via a hierarchical combiner; expanded environment metrics (gas content, nuclear profiles); calibrated TDE rates; and a \sim 50-object catalog advancing toward a community standard.

Acknowledgements

The author thanks colleagues and collaborators for discussions that informed parts of this framework.

References

- [1] Miller-Jones, J. C. A., Bahramian, A., Orosz, J. A., et al. 2021, Science, **371**, 1046–1049, "Cygnus X-1 contains a 21-solar mass black hole—implications for massive star winds", doi:10.1126/science.abb3363.
- [2] Zhao, X., Gou, L., Dong, Y., et al. 2021, Astrophysical Journal, 908, 117, "Re-estimating the Spin Parameter of the Black Hole in Cygnus X-1", doi:10.3847/1538-4357/abbcd6.
- [3] GRAVITY Collaboration (Abuter, R., Amorim, A., Bauböck, M., et al.) 2020, Astronomy & Astrophysics, 636, L5, "Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole", doi:10.1051/0004-6361/202037813.

- [4] Event Horizon Telescope Collaboration (Akiyama, K., et al.) 2022, Astrophysical Journal Letters, 930, L12, "First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way", doi:10.3847/2041-8213/ac6674.
- [5] Event Horizon Telescope Collaboration (Akiyama, K., et al.) 2019, Astrophysical Journal Letters, 875, L1, "First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole", doi:10.3847/2041-8213/ab0ec7.
- [6] Event Horizon Telescope Collaboration (Akiyama, K., et al.) 2021, Astrophysical Journal Letters, 910, L12, "First M87 Event Horizon Telescope Results. VII. Polarization of the Ring", doi:10.3847/2041-8213/abe71d.