Te:	electrical torque, gen. by coils	[Nm]
Ic:	coil current	[A]
Tfr:	rotor dynamic friction torque	[Nm]
Trb:	torsion bar torque	[Nm]
Tw:	angular momentum	[Nm*s]
w:	angular velocity	[rad/s]
yrad:	angular position	[rad]
ydeg:	angular position	[°]
Ucci:	current controller input	[V]
Ucco:	current controller output	[V]
Ush:	shunt voltage	[V]

CL: coil inductance [H] CR: coil resistance [ohm] RIN: rotor inertia [kg*m²] [Nm/rad] KTR: torsion bar const [V*s/rad] BEM: back EMF const FR: rotor dyn. friction [Nm*s/rad] TRC: torque const [Nm/A]

Torque produced by coil current will rotate the rotor until it is balanced by the opposing torque of torsion bar, load and dynamic friction torque. balance of force: Te=Ttb+Tfr

Te - (Ttb+Tfr)=0 -> no movement

integrate(1 Nm)dt = 1 Nm*s

