

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2023 - 2024)

ENTHUSIAST, LEADER & ACHIEVER COURSE

PHASE : ALL PHASE TARGET : PRE-MEDICAL 2024

Test Type: MAJOR Test Pattern: NEET (UG)

TEST DATE: 24-04-2024

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	4	1	2	3	2	1	3	3	4	2	3	3	3	3	1	4	1	2	4	2	4	3	1	1	1	1	2	3	2	1
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A.	2	1	2	1	3	4	3	2	4	3	3	1	3	2	1	3	1	3	1	3	2	3	2	3	1	2	3	2	1	3
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	1	1	3	2	3	1	3	2	4	3	4	3	2	4	3	1	1	3	3	1	3	1	4	4	2	2	2	4	4	2
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	3	1	3	4	4	2	3	3	4	3	2	2	2	2	1	3	3	1	3	3	4	1	2	1	2	1	1	3	4	4
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	1	3	4	4	1	3	2	1	2	3	2	2	3	4	4	1	4	1	4	3	2	1	2	3	1	3	2	2	3	2
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
A.	2	4	3	3	4	2	3	4	1	1	2	3	2	4	3	1	3	4	3	2	4	3	4	3	2	3	2	4	3	2
Q.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200										
A.	2	4	4	3	2	1	1	1	1	1	2	4	1	4	4	4	4	1	3	2										

HINT - SHEET

SUBJECT: BOTANY

SECTION-A

- 1. **Ans (4)** NCERT-XII, Pg # 3
- 2. Ans (1) NCERT Pg. No. 9
- 3. Ans (2) NCERT Page No. # 19
- 4. Ans (3) NCERT-XI Pg. # 23
- 5. Ans (2) NCERT XI Pg # 27
- 6. Ans (1) NCERT (XI) Pg # 38
- 7. Ans (3) NCERT (XI) Pg. # 38

- 8. Ans (3) NCERT XI Pg. No.74
- 9. Ans (4) NCERT XI Pg # 76,77
- 10. Ans (2)
 NCERT 11th Class
- 11. Ans (3) NCERT, Pg. # 92
- 12. Ans (3)

 NCERT 12th Class (Chapter-2) Page No. 23:

 Part: 2.2.1 Stamen, Microsporangium and Pollen Grain: Diagram: When a spindle is positioned asymmetrically in a dividing cell, the resulting daughter cells are unequal in size
- 13. Ans (3) NCERT-XII, Pg. # 34
- 14. Ans (3)
 NCERT 12th Class (Chapter-2) Page No. 27

Join - @Allen_Achiever_Tests

- 15. **Ans (1)**NCERT Module Pg. No. 222
- 16. Ans (4) NCERT, Page No. 213
- 17. Ans (1)
 NCERT Module Pg. No.
- 18. Ans (2) NCERT Pg. # 229
- 19. Ans (4) NCERT Pg. # 252
- **20. Ans (2)** NCERT Pg. No. # 251
- **21. Ans (4)** NCERT Pg. No. # 241
- **22. Ans (3)** NCERT-XII, Pg. # 235
- 23. Ans (1) NCERT XII, Pg.No.#235-236
- **24. Ans (1)** NCERT XII, Pg.No.#235-236
- **25. Ans (1)** NCERT, Page no. 243
- **26. Ans (1)** NCERT, Page No. 243
- 27. Ans (2) NCERT Pg. # 260
- 28. Ans (3) NCERT Pg. # 107
- 29. Ans (2) NCERT (XIIth) Pg. # 112
- **30.** Ans (1) NCERT XII Pg. # 181
- 31. Ans (2)
 Pg.NCERT 187
- **32.** Ans (1) NCERT Pg. # 89

- 33. Ans (2) NCERT-XII Pg. # 73, 76, 77
- **34. Ans (1)** NCERT page # 90
- **35. Ans (3)** NCERT Pg. # 188

SECTION-B

- **36. Ans (4)** NCERT Pg # 82 & 83
- 37. Ans (3) NCERT Pg. No. 10
- 38. Ans (2) NCERT XI, Pg. # 36
- 39. Ans (4) NCERT Pg. No. 65
- **40. Ans (3)** NCERT XIth Pg.#70
- **41. Ans (3)** NCERT (XI) Pg. # 89
- **42. Ans (1)** NCERT XI Pg. No. # 87
- 43. Ans (3)
 NCERT 12th Class (Chapter-2) Page No. 35
- **44. Ans (2)** NCERT Module Pg. No. 222
- **45. Ans (1)** NCERT Pg. # 216, 217
- **46. Ans (3)** NCERT-XI, Pg. # 240, 242, 243, 244
- **47. Ans (1)** NCERT Pg. # 266, 284
- **48. Ans (3)** NCERT Pg. No. 261
- **49.** Ans (1) NCERT (XIIth) Pg. # 111

ALLEN® - WA POLICIAST, LEADER & ACHIEVER COURSE/PHASE-ALL PHASE/24-04-2024

50. Ans (3) NCERT-XII Pg. # 81

SUBJECT: ZOOLOGY

SECTION-A

- **51. Ans (2)** NCERT Pg. # 53
- **54. Ans (3)** NCERT Pg. No. # 53
- **56. Ans (2)** NCERT-XI, Pg#112, IInd PARA
- 58. Ans (2) NCERT-(XIth) Pg. # 284
- **60. Ans (3)** NCERT-XI Pg. # 294
- **64. Ans (2)** Pg. No. 339_XI NCERT
- 68. Ans (2) NCERT-XII, Pg. # 54
- **70. Ans (3)** NCERT Pg. # 150
- **71. Ans (4)** NCERT (XIIth) Pg. # 150-151 (Para 8.2.1)
- 72. Ans (3)

 NCERT-XII, Page No. 152 (E) and 164 (H),

 Para = 8.2.3
- 73. Ans (2) NCERT (XII) Pg. # 136
- 74. Ans (4) NCERT: PAGE 137
- **75. Ans (3)** NCERT XI, Pg. # 136
- **76.** Ans (1) NCERT page 133
- 77. Ans (1)
 NCERT XI Pg # 145
- 78. Ans (3) NCERT Pg. No. 172

- **79. Ans (3)** NCERT, Pg # 182
- **80. Ans (1)** NCERT Pg. # 210
- 81. Ans (3) NCERT, Pg # 45
- 84. Ans (4) NCERT Pg. # 333

SECTION-B

- **86. Ans (2)** NCERT-XII Page No. 48
- **89. Ans (4)** NCERT (XII) Pg. # 147, Para-8.1
- **90. Ans (2)** NCERT-XI, Pg. # 169
- 91. Ans (3)

 NCERT-XI, Pg # 134

 Four: Lysosome, Golgi body, ER, Thylakoid
- 92. Ans (1) NCERT Pg.#149
- 93. Ans (3) NCERT XII, Pg. No. 198
- **94. Ans (4)** NCERT-XI, Pg # 183
- 95. Ans (4) NCERT-XI, Pg # 102,103
- **97. Ans (3)** NCERT XI Pg. # 284
- 98. Ans (3) NCERT XI, Pg. No. 335
- **99. Ans (4)** NCERT-XI, Pg # 175

SUBJECT: CHEMISTRY

SECTION-A

112. Ans (1) NCERT XI, Pg. # 370 (isomerisation)

1016CMD303031230108

113. Ans (2)

$$A \rightarrow \nearrow$$
, $B \rightarrow \nearrow$, $C \rightarrow \nearrow$

115. Ans (2) $(CH_3)_3C^+$ has 9 α H

116. Ans (1)

 I^{st} is most stable due to non polarity, II^{nd} is more stable than III^{rd} since -ve is on more electronegativity & +ve is on less electronegative.

- 117. **Ans (1)**NCERT XI, Pg. # 345
- 118. Ans (3) NCERT XI, Pg. # 323
- **121. Ans (1)** Diazzonium is prepared in cold condition.

122. Ans (3)

$$\begin{array}{c} \text{CH}_{3} & \text{CH}_{3} \\ \text{CH}_{3} - \text{C-OH} & \xrightarrow{\text{Cu}} \text{CH}_{3} - \text{C} \\ \text{CH}_{3} & \text{CH}_{2} - \text{C} \\ \text{CH}_{2} & \text{(i) O}_{3} \\ \text{H-C-H+ CH}_{3} - \text{C-CH}_{3} \end{array}$$

- **124.** Ans (4) NCERT (2021), Part-1, Pg # 20
- 125. Ans (1) NCERT (2021), Part-1, Pg # 210
- **126. Ans (3)** NCERT (2021), Part-1, Pg # 227
- **127. Ans (2)** NCERT (2021), Part-1, Pg # 176
- **128. Ans (1)** NCERT (2021), Part-1, Pg # 181,188
- **129.** Ans (2) NCERT (2021), Part-1, Pg # 55
- 130. Ans (3) NCERT (2021), Part-II, Pg # 272

- **131. Ans (2)** NCERT-XII, Part-I, Pg # 40
- 133. Ans (3) $\pi \propto i \times C$
- **134. Ans (4)** NCERT-XII, Part-1, Pg # 135
- 135. Ans (4) $\therefore \Delta T_f = i \times K_f \times m$

$$\Rightarrow 1.62 = \frac{i \times 4.9 \times \frac{2}{25} \times 1000}{122} \Rightarrow i = 0.504$$

$$\therefore \alpha = \frac{1 - i}{1 - \frac{1}{n}} = \frac{1 - 0.504}{1 - \frac{1}{2}}$$

[:
$$2C_6H_5COOH \rightleftharpoons (C_6H_5COOH)_2$$
]
= 0.496×2
= $0.992 = 99.2\%$

SECTION-B

$$(1) CH_3 - CH_2 - CH_2 - NH_2$$

$$(3) CH3-CH2-NH-CH3$$

- **146.** Ans (3) NCERT (2021), Part-1, Pg # 37
- **147. Ans (2)**NCERT (2021), Part-II, Pg # 272
- **148. Ans (2)** NCERT-XII, Part-I, Pg # 67
- 150. Ans (2) $10^{\left(\frac{n \times E_{\text{cell}}^{\circ}}{0.06}\right)} = 10^{6}$ $\Rightarrow \frac{n \times E_{\text{cell}}^{\circ}}{0.06} = 6$ $\Rightarrow E_{\text{cell}}^{\circ} = \frac{6 \times 0.06}{2} = 0.18V$

SUBJECT: PHYSICS

SECTION-A

152. Ans (4)

Energy $\propto T^4$

$$\frac{E_1}{E_2} = \left(\frac{T_1}{T_2}\right)^4$$

$$\frac{20}{E} = \left(\frac{T}{2T}\right)^2$$

$$E = 320 \text{ kcal/m}^2 - \text{min}$$

153. Ans (3)

On heating all values increases.

154. Ans (3)

$$PV = NKT$$

$$V, K, T = constant$$

$$\frac{P}{P_2} = \frac{N}{2N}$$

$$P_2 = 2P$$

155. Ans (4)

Ideal gas follows Ideal gas equation

156. Ans (2)

Given:
$$y_1 = 4 \sin 404 \pi t$$
, $= y_2 = 3 \sin 400 \pi t$

$$\therefore$$
 $\omega_1 = 404\pi$, $\omega_2 = 400\pi$, $A_1 = 4$, $A_2 = 3$

$$\omega_1 = 2\pi v_1$$

or
$$404\pi = 2\pi v_1$$

or
$$v_1 = 202 Hz$$

$$\omega_2 = 2\pi v_2$$

or
$$400\pi = 2\pi v_2$$

or
$$v_2 = 200 \text{ Hz}$$

But frequency = $v_1 - v_2 = 202 - 200 = 2$ Hz

$$\frac{I_{\text{max.}}}{I_{\text{min.}}} = \left(\frac{A_1 + A_2}{A_1 - A_2}\right)^2 = \left(\frac{4+3}{4-3}\right)^2 \\
= \left(\frac{7}{1}\right)^2 = \frac{49}{1}$$

157. Ans (3)

$$\frac{1}{2}kx^2 = \frac{1}{2}k(A^2 - x^2) \Rightarrow x = \pm \frac{A}{\sqrt{2}}$$

158. Ans (4)

In one complete oscillation change in velocity is

159. Ans (1)

At resonance

$$X_L = X_C \text{ or } IX_C = IX_L$$

$$V = V_R : I = \frac{V}{R} = \frac{100}{1000} = 0.1A$$

Now,
$$V_L = V_C = IX_C = \frac{I}{\omega_C}$$

$$= \frac{0.1}{200 \times 2 \times 10^{-6}} = 250 \text{ V}$$

160. Ans (1)

$$:$$
 I = neA Vd

$$Vd = \frac{I}{neA} = \frac{1.6}{(10^{29}) (1.6 \times 10^{-19}) \times 1 \times 10^{-6}}$$
$$Vd = 10^{-4} \text{ m/sec.}$$

161. Ans (2)

$$Eq = \frac{6 \times 1 - 2 \times 1}{1 + 1} = 2 \text{ volt}$$

$$E_{Total} = 4 - 2 = 2$$
 volt

162. Ans (3)

$$q = CV$$

after dielectric slab

$$C' = KC$$

q remain unchanged

$$V = E.d$$

as
$$V \downarrow$$
, $E \downarrow$

$$E_x = \frac{-dV}{dx} = -160xi$$

$$= -160 \times -2 = 320 \text{ v/m}$$

$$E_y = \frac{-dV}{dx} = -120y\hat{j}$$

$$= -120 \times 4 = -480 \text{ v/m}$$

Join - @Allen_Achiever_Tests

164. Ans (4)

$$B_{sol} = 5 \left(\frac{\mu_0 \text{Ni}}{\ell} \right)$$

$$= 5 \left[\frac{4\pi \times 10^{-7} \times 200 \times 3.14}{50 \times 10^{-2}} \right]$$

$$= 8 \times 10^{-3} \text{ T}$$

$$= 8 \text{ mT}$$

165. Ans (3)

$$B = \frac{\mu_0 I}{2r}$$

$$I = \frac{q}{T} = e \times \frac{n}{2}$$

$$\Rightarrow$$
 B = $\frac{\mu_0 ne}{4r}$

167. Ans (3)

As
$$X = a^2b^3c^{5/2}d^{-2}$$

The percentage error in x is

$$\frac{\Delta X}{X} \times 100 = \left[2\left(\frac{\Delta a}{a}\right) + 3\left(\frac{\Delta b}{b}\right) + \frac{5}{2}\left(\frac{\Delta c}{c}\right) + 2\left(\frac{\Delta d}{d}\right) \right] \times 100$$
$$= 2 \times 1\% + 3 \times 2\% + \frac{5}{2} \times 2\% + 2 \times 4\% = 21\%$$

168. Ans (4)

$$\Rightarrow \frac{d_2}{d_1} = \left(\frac{u_2}{u_1}\right)^2 \Rightarrow \frac{d_2}{2} = \left(\frac{80}{40}\right)^2 \Rightarrow d_2 = 8 \text{ m}$$

170. Ans (2)

$$a = \frac{30 - 6}{6} = 4 \text{m/s}$$

$$30 - N = 1(4)$$

 $N_{12} = 26 N$

171. Ans (4)

$$P_{avg} = \frac{mgh}{t} = \frac{300 \times 9.8 \times 2}{3}$$
$$= 1960 \text{ watt}$$

172. Ans (3)

Conceptual.

173. Ans (4)

$$N = \frac{PV}{KT} = \frac{10^6 \times 1000}{1.38 \times 10^{-16} \times 300} = 2.4 \times 10^{22}$$

174. Ans (3)

$$a_{rolling} = \frac{g \sin \theta}{\left(1 + \frac{K^2}{R^2}\right)} = \frac{g \sin \theta}{\left(1 + \frac{2}{5}\right)} = \frac{5g \sin \theta}{7} \dots (i)$$

$$a_{\text{sliding}} = g \sin \theta$$
(ii)

from (i) & (ii)

$$a = \frac{5}{7}a_{\text{sliding}}$$

$$a_{\text{sliding}} = \frac{7a}{5}$$

175. Ans (2)

$$F_{\text{resultant}} = \sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos(120^\circ)}$$
$$= \sqrt{F_1^2 + F_1^2 - 2F_1^2 \times \frac{1}{2}}$$
$$= F_1 = 2G$$

176. Ans (3)

$$F_{rer} = \frac{2T}{d}A$$

$$= \frac{2 \times (75 \text{dyne/cm})}{\left(12 \times 10^{-3} \text{cm}\right)} \left(8 \text{cm}^2\right)$$

$$= 10^5 \text{ dyne}$$

$$s.g = \frac{W_a - W_L}{W_{ai} = W_w}$$
$$= \frac{15 - 13}{15 - 12} = \frac{2}{3}$$

ALLEN® - WA ENTHUSIAST, LEADER & ACHIEVER COURSE/PHASE-ALL PHASE/24-04-2024

178. Ans (4)

A	В	A + B	$Y = \overline{A + B}$					
1	0	1	0					
1	1	1	0					
0	1	1	0					
1	0	1	0					
0	0	0	1					

$$X = \overline{A + B} = A + B$$

$$Y = A + B \text{ NOR gate}$$
So 0 to 4 A + B = 1, y = 0
between 4 to 5 A = 0, B = 0,
$$X = 0, Y = 1$$

179. Ans (3)

 $v_{in} > v_z$ hence diode is at B/D $i = 200\Omega$ $+ 5V \rightarrow 10V$ i = 5/200 = 0.025A $i_L = 10/10^3 = 10 \text{mA}$

 $i_Z = i - i_L = 25 - 10 = 15 \text{mA}$

181. Ans (2)
$$\delta = i + e - A \Rightarrow A = 45^{\circ} (i = 15^{\circ}; e = 60^{\circ})$$

182. Ans (4)

As $\mu_2 > \mu_1$, the upper half of the lens will become diverging.

As $\mu_1 > \mu_3$, the lower half of the lens will become converging.

183. Ans (4)

$$\Delta E = E_0 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$
 frist exited state
$$= 13.6 \left(\frac{1}{2^2} - \frac{1}{4^2} \right)$$
 & third exicited state
$$= 13.6 \left(\frac{4-1}{16} \right) = 2.55 \text{ eV}$$

184. Ans (3)

According to the results of lenard experiment

I =
$$10^{-10}$$
 W/m²
 $\lambda = 5.6 \times 10^{-7}$ m
A = 10^{-6} m²
no. of photons per second = n = 5×10^{24} p λ
n = 5×10^{24} IA λ
= $5 \times 10^{24} \times 10^{-10} \times 10^{-6} \times 5.6 \times 10^{-7}$
= 280

SECTION-B

186. Ans (1)

From principle of moments:

Let extra force applied be F at a distance x from pivot in upward direction (assuming x < 50)

$$Fx + (10) (F) + (10) F = (30) (F) + (30) (F)$$

$$Fx = 40 F \Rightarrow x = 40 cm$$

 \Rightarrow Possible solution F' = F at 40 cm from pivot, or 10 cm from left end in upward direction.

187. Ans (1)

$$V = \sqrt{\frac{T}{\mu}}$$

$$T = v^{2} u = \left(\frac{w}{k}\right)^{2} \mu$$

$$T = \left(\frac{30}{1}\right)^{2} \times 1.3 \times 10^{-4}$$

$$= 0.12 \text{ N}$$

188. Ans (1)

$$\phi = \vec{E} \cdot \vec{A} = \left(\frac{E_0}{a} \times a\right) \cdot a^2 \cos 0$$
$$= E_0 a^2$$

189. Ans (1)

190. Ans (1)

induced charge =
$$\frac{2NAB}{R}$$
=
$$\frac{2 \times 100 \times \pi \times (1 \times 10^{-2})^{2} \times \mu_{0}nI}{20}$$
=
$$2 \times 10^{-4}C$$

Join - @Allen_Achiever_Testss

191. Ans (2)

$$e = \vec{\ell}$$
. $(\vec{B} \times \vec{v})$ where $\vec{v} = \hat{i}$ m/sec

$$=5\hat{j}.\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 4 & 5 \\ 1 & 0 & 0 \end{vmatrix} = 5\hat{j}. \left(5\hat{j} - 4\hat{k}\right) = 25 \text{ volt}$$

193. Ans (1)

$$P = 2 qa$$

$$\vec{P}_r = P\hat{i} + P\hat{j}$$

$$Pr = P\sqrt{2} = qa\sqrt{2}$$

$$= 4 \times 10^{-8} \text{ C.m.}$$

and along
$$\hat{i} + \hat{j}$$
 or $\frac{a}{2}\hat{i} + \frac{a}{2}\hat{j}$

194. Ans (4)

$$v\frac{dm}{dt} = m(g+a)$$

$$500 \left(\frac{dm}{dt}\right) = 1000 \times 15$$

$$\left(\frac{dm}{dt}\right) = 30 \text{ kg/s}$$

195. Ans (4)

Tangential acceleration $a_t = 2 \text{ m/s}^2$

Centripetal acceleration

$$a_c = \frac{v^2}{R} = \frac{(20)^2}{200} = 2 \,\text{m/s}^2$$

$$a = \sqrt{a_{c}^{2} + a_{t}^{2}}$$

$$a = \sqrt{2^{2} + 2^{2}}$$

$$a = 2\sqrt{2} = 2 \times 1.4$$

$$a = 2.8 \text{ m/s}^{2}$$

196. Ans (4)

Theory

197. Ans (4)

198. Ans (1)

$$\sin \theta = \frac{n\lambda}{a}$$

$$a = \frac{n\lambda}{\sin \theta}$$

199. Ans (3)

$$\Delta m = 7.016004 + 1.007825 - 2 \times 4.002603$$

= $8.023829 - 8.005206$
= 0.018623

$$E = \Delta m \times 931.5 \text{ MeV}$$

$$E = 0.018623 \times 931.5 \text{ MeV}$$

$$E = 17.34 \text{ MeV}$$

$$E \simeq 17 \text{ MeV}$$

$$\lambda \propto \frac{1}{\sqrt{v}}$$

$$\frac{10^{-10}}{\lambda} = \sqrt{\frac{600}{150}}$$

$$\Rightarrow \lambda = \frac{1}{2} \times 10^{-10} \text{ m}$$

$$\lambda = 0.5 \text{ Å}$$