

IS 6733: Deep Learning on Cloud Platforms

01 Artificial Neural Networks

Copy Right Notice

 Most slides in this presentation are adopted from slides of text book and various sources.
 The Copyright belong to the original authors.
 Thanks!

Why Neural Network

- Some tasks can be done easily by humans but are hard by conventional paradigms on Von Neumann machine with algorithmic approach
 - Pattern recognition (old friends, hand-written characters)
 - Content addressable recall
 - Approximate, common sense reasoning (driving, playing piano, baseball player)
- These tasks are often experience based, hard to apply logic.

Biological Motivation

Humans:

- Neuron switching time ~0.001 second
- [⋄] Number of neurons ~10¹⁰
- Connections per neuron ~ 10⁴⁻⁵
- Scene recognition time ~0.1 second
- # Highly parallel computation process.
- Biological Learning Systems are built of very complex webs of interconnected neurons.
- Information-Processing abilities of biological neural systems must follow from highly parallel processes operating on representations that are distributed over many neurons

What is an neural network

- A set of nodes (units, neurons, processing elements)
 - Each node has input and output
 - Each node performs a simple computation by its node function
- Weighted connections between nodes
 - Connectivity gives the structure/architecture of the net
 - What can be computed by a NN is primarily determined by the connections and their weights
- A very much simplified version of networks of neurons in animal nerve systems

ANN vs. Bio NN

ANN

- Nodes
 - input
 - output
 - node function
- Connections
 - connection strength

Bio NN

- Cell body
 - signal from other neurons
 - firing frequency
 - firing mechanism
- Synapses
 - synaptic strength

Properties of artificial neural nets

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

When to Consider Neural Networks

- Input is high-dimensional discrete or real-valued
- Output is discrete or real valued
- Output is a vector of values
- Possibly noisy data
- Form of target function is unknown
- Human readability of result is unimportant
- **Examples:**
 - Speech phoneme recognition
 - Image classification
 - Financial prediction

History of Neural Networks

- 4 1943: McCulloch and Pitts proposed a model of a neuron --> Perceptron
- 4 1960s: Widrow and Hoff explored Perceptron networks (which they called "Adelines") and the delta rule.
- 4 1962: Rosenblatt proved the convergence of the perceptron training rule.
- 4 1969: Minsky and Papert showed that the Perceptron cannot deal with nonlinearly-separable data sets---even those that represent simple function such as X-OR.
- *** 1970-1985: Very little research on Neural Nets**
- 4 1986: Invention of Backpropagation [Rumelhart and McClelland, but also Parker and earlier on: Werbos] which can learn from nonlinearly-separable data sets.
- Since 1985: A lot of research in Neural Nets!

A Perceptron (a neuron)

The network

- Input vector i; (including threshold input = 1)
- Weight vector $\mathbf{w} = (w_0, w_1, ..., w_n)$

$$net = w \cdot i_j = \sum_{k=0}^{n} w_k i_{k,j}$$

Output: bipolar (-1, 1) using the sign node function

$$output = \begin{cases} 1 & \text{if } w \cdot i_j > 0 \\ -1 & \text{otherwise} \end{cases}$$

Training samples

Pairs $(i_j, class(i_j))$ where $class(i_j)$ is the correct classification of i_j

Input weight weighted vector x vector w sum

Activation function

Aside: Multilayer Perceptron

Activation functions

Step (threshold) function

$$f(\mathrm{net}) = \left\{egin{array}{ll} a & ext{if net} & < c & & f(net) \ b & ext{if net} & > c & & \end{array}
ight.$$

Ramp function

$$f(\mathrm{net}) = egin{cases} a & ext{if net} \leq c \ b & ext{if net} \geq d \ a + rac{(\mathrm{net}-c)(b-a)}{(d-c)} & ext{otherwise} \end{cases}$$

More: https://360digitmg.com/blog/activation-functions-neural-networks

Activation functions

Sigmoid function

- S-shaped
- Continuous and everywhere differentiable
- Rotationally symmetric about some point (net = c)
- Asymptotically approaches saturation points

$$f(\text{net}) = z + \frac{1}{1 + \exp(-x \cdot \text{net} + y)}$$

 $f(\text{net}) = \tanh(x \cdot \text{net} - y) + z,$

Decision Surface of a Perceptron: Linear separability

- n dimensional patterns $(x_1, ..., x_n)$
 - ## Hyperplane $w_0 + w_1 x_1 + w_2 x_2 + ... + w_n x_n = 0$ dividing the space into two regions
- Can we get the weights from a set of sample patterns?
 - If the problem is linearly separable, then YES (by perceptron learning)

Examples of linearly separable classes

Logical AND function patterns (bipolar) decision boundary

x: class I (output = 1) o: class II (output = -1)

Logical OR function patterns (bipolar) decision boundary

x1	x2	output	w1 = 1
-1	-1	-1	w2 = 1
-1	1	1	w0 = 1
1	-1	1	
1	1	1	1 + x1 + x2 = 0

x: class I (output = 1) o: class II (output = -1)

Functions not representable

- Some functions are not representable by perceptron
 - Not linearly separable

Training:

- Update w so that all sample inputs are correctly classified (if possible)
- \bullet If an input i_i is misclassified by the current w
 - * class(i_i) · $\mathbf{w} \cdot i_i < 0$
 - \bullet change w to $w + \Delta w$ so that $(w + \Delta w) \cdot i_j$ is closer to $class(i_j)$

Perceptron Training Rule

Where

$$w_i = w_i + \Delta w_i$$
$$\Delta w_i = \eta(t - o)x_i$$

- Where
 - $t = c(\vec{x})$ is the target value
 - o is perceptron output
 - η is a small positive constant, called learning rate

Perceptron Training Algorithm

- Start with a randomly chosen weight vector w₀
- ***** Let k=1;
- While some input vectors remain misclassified, do
 - Let x_i be a misclassified input vector
 - **Update the weight vector to** $w_k = w_{k-1} + \eta(t-o)x_k$
 - Increment k;
- End while

- # It will converge if
 - Training data is linearly separable
 - η is a sufficiently small
- *Theorem: If there is a w^* such that $f(i_p \cdot w^*) = class(i_p)$ for all P training sample patterns $\{i_p, class(i_p)\}$, then for any start weight vector w^0 , the perceptron learning rule will converge to a weight vector w^+ such that for all p

$$f(i_p \cdot w^+) = class(i_p)$$

(w^* and w^+ may not be the same.)

Justification

$$(w+\eta \cdot (t-o) \cdot x_k) \cdot x_k = w \cdot x_k + \eta \cdot (t-o) \cdot x_k \cdot x_k$$
then
$$(w+\eta \cdot (t-o) \cdot x_k) \cdot x_k - w \cdot x_k = \eta \cdot (t-o) \cdot x_k \cdot x_k$$
since $x_k \cdot x_k > 0$

$$\begin{cases} > 0 & \text{if } class(i_j) = 1 \\ < 0 & \text{if } class(i_j) = -1 \end{cases}$$

 \Rightarrow new *net* moves toward $class(i_i)$

Termination criteria: learning stops when all samples are correctly classified

- Assuming the problem is linearly separable
- Assuming the learning rate (η) is sufficiently small

Choice of learning rate:

- # If η is too large: existing weights are overtaken by Δw
- If η is too small (≈ 0): very slow to converge
- **Common choice:** $0.1 < \eta < 1.$

Example, perceptron learning function AND

Training samples

	in_0	in_1	in_2	d
p0	1	-1	-1	-1
p1	1	-1	1	-1
p2	1	1	-1	-1
р3	1	1	1	1

Initial weights W(0)

w0	w1	w2
1	1	-1

Learning rate = 1

Present p0

- net = W(0)p0 = (1, 1, -1)(1, -1, -1) = 1
- p0 misclassified, learning occurs
- -W(1) = W(0) + (t-o)*p0 = (-1, 3, 1)
- New net = W(1)p0 = -5 is closer to target (t = -1)

Present p1

- net = (-1, 3, 1)(1, -1, 1) = -3
- no learning occurs

Present p2

- net = (-1, 3, 1)(1, 1, -1) = 1
- = W(2) = (-1, 3, 1) + (-2)(1, 1, -1) = (-3, 1, 3)
- New net = W(2)p2 = -5

Present p3

- net = (-3, 1, 3)(1, 1, 1) = 1
- no learning occurs

• Present p0, p1, p2, p3

- All correctly classified with W(2)
- Learning stops with W(2)

Delta Rule

- The preceptron rule fail to converge if the examples are not linearly separable.
- Delta rule will converge toward a best-fit approximation to the target concept if the training example are not linearly separable.
 - * The delta rule is to use gradient descent to search the hypothesis space.

Consider simpler linear unit, where

$$o(x) = \vec{w} \cdot \vec{x} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Let's learn w_i's that minimize the squared error

$$E(\vec{w}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

***** Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)
= \sum_{d} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d})
\frac{\partial E}{\partial w_i} = \sum_{d} (t_d - o_d) (-x_{i,d})$$

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) \ x_{id}$$

Gradient-Descent $(training_examples, \eta)$

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero.
 - For each $\langle \vec{x}, t \rangle$ in $training_examples$, Do
 - * Input the instance \vec{x} to the unit and compute the output o
 - * For each linear unit weight w_i , Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t-o)x_i$$

- For each linear unit weight w_i , Do

$$w_i \leftarrow w_i + \Delta w_i$$

Stochastic gradient descent

Practical difficulties of gradient descent

- Converge to local minimum can sometimes be quite slow
- If there are multiple local minima in the error surface, there is no guarantee that the procedure will find the global minimum.

Stochastic gradient descent: update weights incrementally

- Do until satisfied
 - For each training example d in D
 - **Compute the gradient** $\nabla E_d[\vec{x}]$
 - * Then, $\vec{w} = \vec{w} \eta \nabla E_d[\vec{w}]$
- Stochastic (incremental) gradient descent can approximate standard gradient descent arbitrarily closely if learning rate made small enough.

Stochastic gradient descent

Key differences:

- In standard gradient descent, the error is summed over all examples before updating weights, where in stochastic gradient weights are updated upon examining each training example
- Summing over multiple examples in standard gradient descent requires more computation per weight update step
 - Use larger step size per weight in standard gradient descent
- In cases where there are multiple local minima with respect to E(w), stochastic gradient descent can sometimes avoid falling into these local minima.

Summary

Perceptron training rule updates weights on the error in the thresholded perceptron output

$$o(\vec{x}) = \operatorname{sgn}(\vec{w} \cdot \vec{x})$$

Delta training rule updates weights on the error in the unthresholed linear combination of inputs

$$o(\vec{x}) = \vec{w} \cdot \vec{x}$$

Summary

- Perceptron training rule guaranteed to succeed if
 - Training examples are linearly separable
 - Sufficiently small learning rate
- Delta training rule uses gradient descent
 - Guaranteed to converge to hypothesis with minimum squared error
 - Given sufficiently small learning rate
 - Even when training data contains noise
 - Even when training data not separable by H.

A Multilayer Neural Network

Output vector Output layer Hidden layer W_{ij} **Input layer**

Input vector: X

How A Multilayer Neural Network Works?

- The inputs to the network correspond to the attributes measured for each training example
- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a hidden layer
- The number of hidden layers is arbitrary, although usually only one
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction
- The network is feed-forward in that none of the weights cycles back to an input unit or to an output unit of a previous layer
- From a statistical point of view, networks perform nonlinear regression: Given enough hidden units and enough training samples, they can closely approximate any function

Multilayer Networks of Sigmoid Units

Architecture:

- Feedforward network of at least one layer of non-linear hidden nodes, e.g., # of layers L ≥ 2 (not counting the input layer)
- Node function is differentiable
 - most common: sigmoid function

$$\mathcal{S}(net) = rac{1}{1 + e^{(-net)}}$$

Nice property:

$$\frac{dS(x)}{dx} = S(x)(1 - S(x))$$

- We can derive gradient descent rules to train
 - One sigmoid unit
 - Multilayer networks of sigmoid units

Backpropagation Learning

Notation:

- * x_{ii}: the ith input to unit j
- * w_{ii}: the weight associated with ith input to unit j
- $net_i = \sum_i w_{ii} x_{ii}$ (the weighted sum of inputs for unit j)
- oi: the output computed by unit j
- t_i: the target output for unit j
- σ: the sigmoid function
- outputs: the set of units in the final layer of the network
- Downstream(j): the set of units whose immediate inputs include the output of unit j.

Backpropagation Learning

Idea of BP learning:

- Update of weights in w_{21} (from hidden layer to output layer): delta rule as in a single layer net using sum square error
- Delta rule is not applicable to updating weights in w_{10} (from input and hidden layer) because we don't know the desired values for hidden nodes
- **Solution**: Propagating errors at output nodes down to hidden nodes, these computed errors on hidden nodes drives the update of weights in w_{10} (again by delta rule), thus called error **BACKPROPAGATION (BP)** learning
- How to compute errors on hidden nodes is the key
- Error backpropagation can be continued downward if the net has more than one hidden layer
- Proposed first by Werbos (1974), current formulation by Rumelhart, Hinton, and Williams (1986)

For each training example d every weight w_{ji} is updated by adding to it Δw_{ji}

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}}$$

Where Ed is the error on training example d, summed over all output units in the network

$$E(\vec{w}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Noted that weight w_{ji} can influence the rest of the network only through net_j. Therefore, we can use the chain rule to write

$$\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} x_{ji}$$

- **Our remaining task is to derive a convenient expression of** $\frac{\partial E_d}{\partial net_j}$. Two cases are considered:
 - Unit j is an output unit for the network
 - Unit j is an internal unit.

Training rule for output unit weights

net_j can influence the rest of the network only through o_j,
Then

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j}$$

First term:

$$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$$

$$= \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2 = \frac{1}{2} \times 2 \times (t_j - o_j) \frac{\partial (t_j - o_j)}{\partial o_j}$$

$$= -(t_j - o_j)$$

Derivatives will

be zero for all

output units

Second term:

$$\begin{array}{l} \text{m:} & o_j = \sigma(net_j) \\ \\ \frac{\partial o_j}{\partial net_j} = \frac{\partial \sigma(net_j)}{\partial net_j} = o_j(1-o_j) \end{array}$$

Put it together:

$$\frac{\partial E_d}{\partial net_j} = -(t_j - o_j)o_j(1 - o_j)$$

Then, we have the stochastic gradient descent rule for output units

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ii}} = \eta (t_j - o_j) o_j (1 - o_j) x_{ji}$$

Training rule for hidden unit weights

net_j (j is the internal node) can influence the rest of the network through Downstream(j), Then

$$\frac{\partial E_{d}}{\partial net_{j}} = \sum_{k \in Downstream(j)} \frac{\partial E_{d}}{\partial net_{k}} \frac{\partial net_{k}}{\partial net_{j}}$$

$$= \sum_{k \in Downstream(j)} -\delta_{k} \frac{\partial net_{k}}{\partial net_{j}}$$

$$= \sum_{k \in Downstream(j)} -\delta_{k} \frac{\partial net_{k}}{\partial o_{j}} \frac{\partial o_{j}}{\partial net_{j}}$$

$$= \sum_{k \in Downstream(j)} -\delta_{k} w_{kj} \frac{\partial o_{j}}{\partial net_{j}}$$

$$= \sum_{k \in Downstream(j)} -\delta_{k} w_{kj} \frac{\partial o_{j}}{\partial net_{j}}$$

$$= \sum_{k \in Downstream(j)} -\delta_{k} w_{kj} o_{j} (1 - o_{j})$$

We set

$$\delta_{j} = -\frac{\partial E_{d}}{\partial net_{j}} = o_{j}(1 - o_{j}) \sum_{k \in Downstream(j)} \delta_{k} w_{kj}$$

Then, we have the stochastic gradient descent rule for hidden units

$$\Delta w_{ji} = \eta \delta_j x_{ji}$$

BACKPROPAGATION(training_examples, η , n_{in} , n_{out} , n_{hidden})

Each training example is a pair of the form $\langle \vec{x}, \vec{t} \rangle$, where \vec{x} is the vector of network input values, and \vec{t} is the vector of target network output values.

 η is the learning rate (e.g., .05). n_{in} is the number of network inputs, n_{hidden} the number of units in the hidden layer, and n_{out} the number of output units.

The input from unit i into unit j is denoted x_{ji} , and the weight from unit i to unit j is denoted w_{ji} .

- Create a feed-forward network with n_{in} inputs, n_{hidden} hidden units, and n_{out} output units.
- Initialize all network weights to small random numbers (e.g., between -.05 and .05).
- Until the termination condition is met, Do
 - For each $\langle \vec{x}, \vec{t} \rangle$ in training_examples, Do

Propagate the input forward through the network:

1. Input the instance \vec{x} to the network and compute the output o_u of every unit u in the network.

Propagate the errors backward through the network:

2. For each network output unit k, calculate its error term δ_k

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k) \tag{T4.3}$$

3. For each hidden unit h, calculate its error term δ_h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{kh} \delta_k \tag{T4.4}$$

Update each network weight w_{ii}

$$w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$$

where

$$\Delta w_{ji} = \eta \, \delta_j \, x_{ji} \tag{T4.5}$$

Learning Hidden Layer Representations

A target function

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Learning Hidden Layer Representations

4 A network:

Learning Hidden Layer Representations

Sum of squared errors for each output unit

Learning Hidden Layer Representations

Hidden unit encoding for input 01000000

Learning Hidden Layer Representations

Weights from inputs to on hidden unit

Learning Hidden Layer Representations

Learned hidden layer representation after 5000 training epochs

Input		Hidden				Output
		V	⁷ alue	es		
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001

Example, BP learning function XOR

Training samples (bipolar)

	in_1	in_2	d
P0	-1 -1		-1
P1	-1	1	1
P2	1	-1	1
P3	1	1	-1

Network: 2-2-1 with thresholds (fixed output 1)

• Initial weights W(0)

$$w_1^{(1,0)}$$
: $(-0.5, 0.5, -0.5)$
 $w_2^{(1,0)}$: $(-0.5, -0.5, 0.5)$
 $w^{(2,1)}$: $(-1, 1, 1)$

- Learning rate = 0.2
- Node function: hyperbolic tangent

$$g(x) = \tanh(x) = \frac{1 - e^{-x}}{1 + e^{-x}};$$

$$\lim_{x \to \pm \infty} g(x) = \pm 1$$

$$s(x) = \frac{1}{1 + e^{-x}};$$

$$g(x) = 2s(x) - 1$$

$$s'(x) = s(x)(1 - s(x))$$

$$g'(x) = 0.5(1 + g(x))(1 - g(x))$$

Present $P_0 = (1, -1, -1)$: $d_0 = -1$

Forward computing

$$net_1 = w_1^{(1,0)} p_0 = (-0.5, 0.5, -0.5) (1, -1, -1) = -0.5$$

$$net_2 = w_2^{(1,0)} p_0 = (-0.5, -0.5, 0.5) (1, -1, -1) = -0.5$$

$$x_1^{(1)} = g(net_1) = 2/(1 + e^{0.5}) - 1 = -0.24492$$

$$x_1^{(1)} = g(net_2) = 2/(1 + e^{0.5}) - 1 = -0.24492$$

$$net_o = w^{(2,1)}x^{(1)} = (-1, 1, 1)(1, -0.24492, -0.24492) = -1.48984$$

$$o = g(net_o) = -0.63211$$

Error back propogating

$$l = d - o = -1 - (-0.63211) = -0.36789$$

$$\delta = l \cdot g'(net_o) = l \cdot (1 + g(net_o))(1 - g(net_o))$$

$$= -0.3679 \cdot (1 - 0.6321)(1 + 0.6321) = -0.2209$$

$$\mu_1 = \delta \cdot w_1^{(2,1)} \cdot g'(net_1)$$

$$= -0.2209 \cdot 1 \cdot (1 - 0.24492) \cdot (1 + 0.24492) = -0.20765$$

$$\mu_2 = \delta \cdot w_2^{(2,1)} \cdot g'(net_2)$$

$$= -0.2209 \cdot 1 \cdot (1 - 0.24492) \cdot (1 + 0.24492) = -0.20765$$

Weight update

$$\Delta w^{(2,1)} = \eta \cdot \delta \cdot x^{(1)}$$

$$= 0.2 \cdot (-0.2209) \cdot (1, -0.2449, -0.2449) = (-0.0442, 0.0108, 0.0108)$$

$$w^{(2,1)} = w^{(2,1)} + \Delta w^{(2,1)} = (-1, 1, 1) + (-0.0442, 0.0108, 0.0108)$$

$$= (-0.5415, 1.0108, 1.0108)$$

$$\Delta w_1^{(1,0)} = \eta \cdot \mu_1 \cdot p_0 = 0.2 \cdot (-0.2077) \cdot (1, -1, -1) = (-0.0415, 0.0415, 0.0415)$$

$$\Delta w_2^{(1,0)} = \eta \cdot \mu_2 \cdot p_0 = 0.2 \cdot (-0.2077) \cdot (1, -1, -1) = (-0.0415, 0.0415, 0.0415)$$

$$w_1^{(1,0)} = w_1^{(1,0)} + \Delta w_1^{(1,0)} = (-0.5, 0.5, -0.5) + (-0.0415, 0.0415, 0.0415)$$

$$= (-0.5415, 0.5415, -0.4585)$$

$$w_2^{(1,0)} = w_2^{(1,0)} + \Delta w_2^{(1,0)} = (-0.5, -0.5, 0.5) + (-0.0415, 0.0415, 0.0415)$$

$$= (-0.5415, -0.4585, 0.5415)$$

Error for $P_0 = l^2$ reduced from 0.135345 to 0.102823

MSE reduction: every 10 epochs

Output: every 10 epochs

epoch	1	10	20	40	90	140	190	d
P0	-0.63	-0.05	-0.38	-0.77	-0.89	-0.92	-0.93	-1
P1	-0.63	-0.08	0.23	0.68	0.85	0.89	0.90	1
P2	-0.62	-0.16	0.15	0.68	0.85	0.89	0.90	1
рЗ	-0.38	0.03	-0.37	-0.77	-0.89	-0.92	-0.93	-1
MSE	1.44	1.12	0.52	0.074	0.019	0.010	0.007	

After epoch 1

	$w_1^{(1,0)}$	$w_2^{(1,0)}$	_W (2,1)
init	(-0.5, 0.5, -0.5)	(-0.5, -0.5, 0.5)	(-1, 1, 1)
p0	-0.5415, 0.5415, -0.4585	-0.5415, -0.45845, 0.5415	-1.0442, 1.0108, 1.0108
p1	-0.5732, 0.5732, -0.4266	-0.5732, -0.4268, 0.5732	-1.0787, 1.0213, 1.0213
p2	-0.3858, 0.7607, -0.6142	-0.4617, -0.3152, 0.4617	-0.8867, 1.0616, 0.8952
р3	-0.4591, 0.6874, -0.6875	-0.5228, -0.3763, 0.4005	-0.9567, 1.0699, 0.9061

epoch

13	-1.4018, 1.4177, -1.6290	-1.5219, -1.8368, 1.6367	0.6917, 1.1440, 1.1693
40	-2.2827, 2.5563, -2.5987	-2.3627, -2.6817, 2.6417	1.9870, 2.4841, 2.4580
90	-2.6416, 2.9562, -2.9679	-2.7002, -3.0275, 3.0159	2.7061, 3.1776, 3.1667
190	-2.8594, 3.18739, -3.1921	-2.9080, -3.2403, 3.2356	3.1995, 3.6531, 3.6468

Strength of BP

Great representation power

- Boolean functions
 - Every Boolean function can be represented by network with single hidden layer
 - But might require exponential hidden units.
- Continuous functions
 - Every bounded continuous function can be approximated with arbitrarily small error by network with one hidden layer
 - Any function can be approximated to arbitrary accuracy by a network with two hidden layers

Wide applicability of BP learning

- Only requires that a good set of training samples is available
- Does not require substantial prior knowledge or deep understanding of the domain itself (ill structured problems)
- Tolerates noise and missing data in training samples (graceful degrading)
- **Easy to implement the core of the learning algorithm**
- Good generalization power
 - Often produce accurate results for inputs outside the training set

Deficiencies of BP

- Learning often takes a long time to converge
 - Complex functions often need hundreds or thousands of epochs
- The net is essentially a black box
 - * It may provide a desired mapping between input and output vectors (**x**, **o**) but does not have the information of why a particular **x** is mapped to a particular **o**.
 - It thus cannot provide an intuitive (e.g., causal) explanation for the computed result.
 - This is because the hidden nodes and the learned weights do not have clear semantics.
 - What can be learned are operational parameters, not general, abstract knowledge of a domain
 - Unlike many statistical methods, there is no theoretically wellfounded way to assess the quality of BP learning
 - * What is the confidence level one can have for a trained BP net, with the final *E* (which may or may not be close to zero)?
 - What is the confidence level of o computed from input x using such net?

Deficiencies of BP

* Problem with gradient descent approach

- only guarantees to reduce the total error to a local minimum. (E may not be reduced to zero)
- Cannot escape from the local minimum error state
- Not every function that is representable can be learned
- How bad: depends on the shape of the error surface. Too many valleys/wells will make it easy to be trapped in local minima
- Possible remedies:
 - Try nets with different # of hidden layers and hidden nodes (they may lead to different error surfaces, some might be better than others)
 - Try different initial weights (different starting points on the surface)
 - Forced escape from local minima by random perturbation (e.g., simulated annealing)

Variations of BP nets

- Adding momentum term (to speedup learning)
 - Weights update at time n contains the momentum of the previous updates, e.g.,

$$\Delta w_{ji}(n) = \eta \delta_j x_{ji} + \alpha \Delta w_{ji}(n-1)$$

- Avoid sudden change of directions of weight update (smoothing the learning process)
- Error is no longer monotonically decreasing
- Batch mode of weight update
 - Weight update once per each epoch (cumulated over all P samples)
 - Smoothing the training sample outliers
 - Learning independent of the order of sample

Variations of BP nets

lacktriangledown Variations on learning rate $oldsymbol{\eta}$

- Fixed rate much smaller than 1
- \bullet Start with large η , gradually decrease its value
- Start with a small η , steadily double it until MSE start to increase
- Give known underrepresented samples higher rates
- Find the maximum safe step size at each stage of learning (to avoid overshoot the minimum E when increasing η)
- Adaptive learning rate (delta-bar-delta method)
 - \clubsuit Each weight $w_{k,j}$ has its own rate $\eta_{k,j}$
 - If $\Delta w_{k,j}$ remains in the same direction, increase $\eta_{k,j}(E)$ has a smooth curve in the vicinity of current w)
 - # If $\Delta w_{k,j}$ changes the direction, decrease $\eta_{k,j}$ (E has a rough curve in the vicinity of current w)

Overfitting in Neural Networks

Overfitting in Neural Networks

Overfitting in Neural Networks

How to address the overfitting problem

- Weight decay: decrease each weight by some small factor during each iteration
- Use a validation set of data

- A good BP net requires more than the core of the learning algorithms. Many parameters must be carefully selected to ensure a good performance.
- Although the deficiencies of BP nets cannot be completely cured, some of them can be eased by some practical means.
- Initial weights (and biases)
 - **#** Random, [-0.05, 0.05], [-0.1, 0.1], [-1, 1]
 - * Normalize weights for hidden layer $(w^{(1, 0)})$ (Nguyen-Widrow)
 - Random assign initial weights for all hidden nodes
 - For each hidden node j, normalize its weight by

$$w_{j,i}^{(1,0)} = \beta \cdot w_{j,i}^{(1,0)} / ||w_j^{(1,0)}||_2$$
 where $\beta = 0.7\sqrt[n]{m}$

m = # of hiddent nodes, n = # of input nodes

$$\left\| w_j^{(1,0)} \right\|_2 = \beta$$
 after normalization

Avoid bias in weight initialization:

Training samples:

- Quality and quantity of training samples often determines the quality of learning results
- Samples must collectively represent well the problem space
 - Random sampling
 - Proportional sampling (with prior knowledge of the problem space)
- # of training patterns needed: There is no theoretically idea number.
 - Baum and Haussler (1989): P = W/e, where
 - W: total # of weights to be trained (depends on net structure)
 - e: acceptable classification error rate

If the net can be trained to correctly classify (1-e/2)P of the P training samples, then classification accuracy of this net is 1-e for input patterns drawn from the same sample space

Example: W = 27, e = 0.05, P = 540. If we can successfully train the network to correctly classify (1 - 0.05/2)*540 = 526 of the samples, the net will work correctly 95% of time with other input.

- How many hidden layers and hidden nodes per layer:
 - Theoretically, one hidden layer (possibly with many hidden nodes) is sufficient for any L2 functions
 - There is no theoretical results on minimum necessary # of hidden nodes
 - Practical rule of thumb:
 - # n = # of input nodes; m = # of hidden nodes
 - For binary/bipolar data: m = 2n
 - For real data: m >> 2n
 - Multiple hidden layers with fewer nodes may be trained faster for similar quality in some applications

Data representation:

- Binary vs. bipolar
 - Bipolar representation uses training samples more efficiently

$$\Delta w_{j,i}^{(1,0)} = \eta \cdot \mu_j \cdot x_i \qquad \Delta w_{k,j}^{(2,1)} = \eta \cdot \delta_k \cdot x_j^{(1)}$$

no learning will occur when $x_i = 0$ or $x_j^{(1)} = 0$ with binary rep.

of patterns can be represented with n input nodes:

binary: 2ⁿ

bipolar: $2^{(n-1)}$ if no biases used, this is due to (anti) symmetry (if output for input x is o, output for input -x will be -o)

Real value data

- Input nodes: real value nodes (may subject to normalization)
- Hidden nodes with sigmoid or other non-linear function
- Node function for output nodes: often linear (even identity)

e.g.,
$$o_k = \sum w_{k,j}^{(2,1)} x_j^{(1)}$$

Training may be much slower than with binary/bipolar data (some use binary encoding of real values)

Neural Network as a Classifier

Weakness

- Long training time
- Require a number of parameters typically best determined empirically, e.g., the network topology or "structure."
- Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of "hidden units" in the network

Strength

- High tolerance to noisy data
- Ability to classify untrained patterns
- Well-suited for continuous-valued inputs and outputs
- Successful on a wide array of real-world data
- Algorithms are inherently parallel
- Techniques have recently been developed for the extraction of rules from trained neural networks