- MUH ALTWEADURE

MATEMATİK - II SINAV SORULARI

Müh. Fak.	MAT 162 Matematik IL	Ara Sinav		22.03.2017	Süre 75 dakikadır
Öğrenci No:	A	dı ve Soyadı:		İmza:	lik 30 dakika sınavdan çıkmak yasaktır.
S-1) (20p) 8	m uzunluğundaki bir karo orta noktaları birleştirilere	enin her defasında)	S-2) (20p) li	$\lim_{x \to (0,0)} \frac{x^2 + y^2}{x^2 - y^2} = 7$	
iç içe kareler	elde ediliyor. Bu şekilde	tüm karelerin	Çözüm:		
çevrelerin uz Çözüm:	unluklarının toplamı ne o	lur. 6	dim lin	$\frac{x^2-y^2}{x^2-y^2}$	$= \lim_{x \to 0} \left(\frac{x^2}{x^2} \right) =$
		1	dim (dim		
9= 4	18十二年17年	[二]	Minither- Gor	the olde;	pundan limit

= 4 | 8+ 3 12+ 342 -- 100

= 4 [8+ \$ 12+\$ (2) 2+---

Keetupsal hoordmortlevlander Gerulebila

Dimit

S-3) (20p) $\sum_{n=0}^{\infty} \frac{3}{n!}$ serisinin karakterini inceleyiniz.

Cözüm:

Aim and aim into!

Aim and aim nor into!

- Aim no (n+1)! no of 1

- Aim (n+1)! no of 1

- OZ L oldupunden

Oren testinden verilen som

yokursoktir.

Q 1+1

 $\frac{3}{n!}+1$

S.4) (15p) 3 cm yarıçaplı daire şeklindeki bir levhanın yoğunluğu her noktada o noktanın dairenin merkezine olan uzaklığı ile orantılı olarak değişmektedir. Dairenin sınırı üzerinde yoğunluk 3 olduğuna göre bu levhanın kütlesini hesaplayınız.

Bir (xiy) nollosinch doirenin merhatine
olon 12-hliji Vx2+y2 dir. => Topunlula

T (xiy) = k / x2+y2 dip x2+y2=9

iain V = 3 old. k=1 olor. =>

M= S / x2+y2 dxdy kutopas/
koordino Hordig

D= 0 = 0

D= 0 = 0

D= 0 = 0

= 18 TT olor.

91,02.03

anti

S.5. (20p) Bir dikdörkenin bir kenarı x=10 diğeri y=24 cm dir. Kısa kenar 4 mm artırılır uzun kenar 1 mm kısaltılırsa köşegeni yaklaşık olarak ne kadar değişir. (diferensiyel kullanılacak)

S.6) (15 p) $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ serisinin toplamını bulunuz. Nim Sn= lin (1- 1+

Гек. Fak. 2016-2017 Ваћаг	MAT 162Matematik II Ara Sınavı	Şube:	
Öğrenci No:		Adı ve Soyadı:	Ĭ
:			
S-1) (15p) $\sum_{k=1}^{\infty}$	$\begin{cases} k^{\frac{3}{2}} \\ 2^{k+1} \end{cases}$ serisinin karakterin	i inceleyiniz. (Orar	Testi kulanılacaktır)
Çözüm		170	2 1200
l=1	in orkery =	- lim (kt	17/2/
)	com on	ke) 00 2k	-t1/L3
	In 1 Kett	73 _	3
36	1m = 1) - 2.	一支人工
	K-300	CONFEST	ere yakınıal
0/grigin	dan oran	The state of	3,
(km() S	at 1/(=+	1)) >	3= 1 11
it is	13 2 4	2 * 1	= 2/1
			×
·			
S-2) (15n)	$\lim_{(x,y)\to(0,0)}\frac{1}{x^2}$	y ³ limitini kut	uncal knordinatlarda
		+ y2	upsai kooramanana
faydalanarak l Çözüm:			
	=rCos0, y=1		
	rsino)3 -2 Cos20+r25M3	lm	r3 SMB
1:im >	2 2 2 25 2	La CAN	-2
r→0	Cos' O+1-31M	טפו	1
	7		\ \ \\.\\
= 1m	, rSM30 = 1	o prgngr	mdan MmH
	*		

017	Süre 60 dakikadır	Gözetmen Parafı	1	2	3	Toplam
						8
	İlk 30 dakika sınavdan çıkmak yasıktır.		4	5	6	

S-3) (20p) $\sum_{k=1}^{\infty} \frac{k^k}{k \cdot 5^k}$ kuvvet serisinin yakınsaklık yarıçapını ve yakınsaklık aralığını

$$L = \lim_{k \to \infty} \left| \frac{C_{k+1}}{C_{k}} \right| = \lim_{k \to \infty} \frac{k \cdot 5^{k}}{(k+1) \cdot 5^{k+1}} = \frac{1}{5} \cdot \dim$$

 $\mathbf{F}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$ ve $\mathbf{G}(t) = 2t\mathbf{i} - \mathbf{j} + t^3\mathbf{k}$ vektör S-4)(15p) $(\mathbf{F}(t)\mathbf{X}\mathbf{G}(t))'$ değerli fonksiyonları için turevini hesaplayınız.

Cözüm:

$$\vec{F}(t) = (t, t^2, t^3)$$

 $\vec{F}(t) = (2t, -1, t^3)$
 $\vec{F}(t) = (2t, -1, t^3)$

S-5) (15p) $\int_{1}^{2} \frac{dx}{\sqrt{x-1}}$ Genelleştirilmiş integralinin çeşidini belirleyerek yakınsaklık durumunu inceleyiniz.

Cözüm:

ikinct gest genellesthilms integral-Jes dx - Im C dx Jes ot J Tx-1. Exot J Tx-1. = Im 2 Tx-1.

> = lim (2-2/E). Exot

elde edilm. Dolayisylei integral.
yakansak o'nip degen 2 dm.

S-6)
$$(20p)z = \arctan \frac{x}{y}$$
, $x = u\cos v$, $y = u\sin v$ ise

 $\frac{\partial z}{\partial u}$ ve $\frac{\partial z}{\partial v}$ titrevierini hesaplayınız.

Cözüm:

 $\frac{\partial z}{\partial u} = \frac{\partial z}{\partial v}$ $\frac{\partial x}{\partial u} + \frac{\partial z}{\partial u}$ $\frac{\partial y}{\partial u}$
 $\frac{\partial z}{\partial u} = \frac{\partial z}{\partial v}$ $\frac{\partial x}{\partial u} + \frac{\partial z}{\partial u}$ $\frac{\partial y}{\partial u}$ $\frac{\partial y}{\partial u}$
 $\frac{y}{x^2 + y^2}$ $\cos v - \frac{x}{x^2 + y^2}$ $\cos v$ $\frac{z}{x^2 + y^2}$ $\frac{\partial z}{\partial v}$ $\frac{\partial z}$

12 - Ja July Ja

Müh. Fak.	MAT 162 Matematik II	Genel Sinav	10.05.2017
Öğrenci No:	Adı ve Soyadı:	Bölümü:	İmza:

S.1. $x^2 + y^2 + z^2 = 1$ küresi üzerindeki (x, y, z) noktaları için x + z ifadesinin en büyük değerini hesaplayınız. (Türev Kullanılacak) (20 P)

$$f(xyz) = x+2 = x+\sqrt{1-x^2-y^2} = 1$$

$$f_{2} = 1 + \frac{1}{2} \cdot (-2x) \cdot (1-x^2-y^2)^{-1/2} = 1 - \frac{x}{\sqrt{1-x^2-y^2}} = 0$$

$$f_{3} = \frac{1}{2} \cdot (-2y) \cdot (1-x^2-y^2)^{-1/2} = \frac{y}{\sqrt{1-x^2-y^2}} = 0 \Rightarrow y = 0$$

$$\sqrt{1-x^2-y^2} = 21 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 + \sqrt{2}$$

$$2\pi^2 = 1 +$$

S.2 $y = 2 - x^2$ eğrisi ile y = -x doğrusu arasında kalan bölgenin alanını iki katlı integral yardımıyla hesaplayınız. (20 P)

S.3
$$\lim_{t \to \pi} (\tan t\vec{i} + 3t^2\vec{j} - 7\vec{k}) = ?$$
 (15 P)

=
$$\lim_{t \to 1} |\tan 3t^2j - \lim_{t \to 1} 7k$$

= $\lim_{t \to 1} |\tan 3t^2j - 7k$
= $\lim_{t \to 1} |\tan 3t^2j - 7k$
= $\lim_{t \to 1} |\tan 3t^2j - 7k$
= $\lim_{t \to 1} |\tan 3t^2j - 7k$
= $\lim_{t \to 1} |\tan 3t^2j - 7k$

S.4. $f(x,y) = \ln(x^2 + y^2)$ fonksiyonunun x- ekseni ile $\frac{n}{4}$ derecelik açı yapan doğru-yönündeki türevinin (2,-2) noktasındaki değerini hesaplayınız. (15 P)

$$\nabla f = \frac{\partial f}{\partial x} \stackrel{?}{}_{1} + \frac{\partial f}{\partial y} \stackrel{?}{}_{2} = \frac{2x}{2^{2}+y^{2}} \stackrel{?}{}_{1} + \frac{2y}{2^{2}} \stackrel{?}{}_{2}$$

$$U = \cos \frac{\pi}{4} \stackrel{?}{}_{1} - \frac{\sin \pi}{4} = \frac{\pi}{2^{2}} + \frac{\pi}{2^{2}} \stackrel{?}{}_{2}$$

$$\left(\frac{\partial uf}{\partial y} \right)_{p} = \left(\frac{2x}{x^{2}+y^{2}} \cdot \frac{\sqrt{2}}{2} + \frac{2y}{x^{2}+y^{2}} \cdot \frac{\sqrt{2}}{2} \right) \left(\frac{2y}{2} - \frac{y}{2} \right)$$

$$= \left(\frac{4y}{4y^{2}} + \frac{2(-2)}{4y^{2}} \right) \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \cdot \left(\frac{4y}{8} - \frac{4y}{8} \right)$$

$$= 0$$

S.5.
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n} \right)^{n^2}$$
 serisinin karakterini inceleyiniz. (15 P)

$$\lim_{n\to\infty} \left(\frac{n+1}{n} \right)^{n^2} = \lim_{n\to\infty} \left(\frac{n+1}{n} \right)^n = \lim_{n\to\infty} \left(\frac{n+1}{n} \right)^n$$

S.6.
$$u = xy + yz + xz$$
, $x = r + 2\theta$, $y = 3\theta - \varphi$, $z = 2\theta + \varphi$ için $\frac{\partial u}{\partial \theta} = ?$ (15 P)

Müh. Fak. MAT 162 Matematik II Butunleme S	mar.	017 Sure 75 dakikadır
Öğrenci No: Adı ve Soyadı:	İmza:	llk 30 dakjka smaydan sikmak yasaktir.

S-1) (20p) $z = x.e^{\frac{y}{x}}$ fonksiyonunun $x.z_x + y.z_y = z$ denklemini sağladığını gösteriniz.

Cozum:

$$Z_{x} = e + x \cdot (-\frac{y}{w^{2}}) e^{y/x}$$
 $= e - \frac{y}{x} e^{y/x}$
 $Z_{y} = x \cdot e^{y/x} \cdot \frac{1}{x} = e^{y/x}$
 $X \cdot Z_{x} + y \cdot Z_{y} = x \cdot e^{-x} \cdot \frac{y/x}{x}$
 $+ \frac{y/x}{x} = x \cdot e^{-x} = z$

S-2) (15p). B bölges (y=x)ve $y=x^2$ eğrisi arasında kalan bölge olduğuna göre $\iint (x+y+1)dxdy$ integralini hesaplayınız

Çözüm:) (x+4+1)qaqx $= \int_{0}^{1} \left(n^{2} + \frac{x^{2}}{2} + x - x^{3} - \frac{x^{4}}{2} - x^{2} \right) dx$ S-3) (15p) $x - yz + \cos(xyz) = 0$ kapali formunda verilen z=f(x,y) fonlsiyonu için kısmi türevlerin (0,-1,1) noktasındaki değerlerini hesaplayınız.

Cözüm:

$$Z_{\times}(0_{-1,4}) = \frac{1 - Sino.(-1).1}{1 - Sino.0} = (-1)$$

$$\frac{Zy}{F_2} = \frac{-Z - Sin(xyz) \cdot xz}{-y - sin(xyz) \cdot xy}$$

$$Zy(0,-1,1) = -\frac{-1-Sin0}{1-Sin0.0} = 1$$

S.4) (15p) 3 cm yarıçaplı daire şeklindeki bir levhanın yoğunluğu her noktada o noktanın dairenin merkezine olan uzaklığı ile orantılı olarak değişmektedir. Dairenin sınırı üzerinde yoğunluk 3 olduğuna göre bu levhanın kütlesini hesaplayınız.

Bir (xiy) nowboinen doirenn normaine
slan 12-whiji Vx2+y2 dir. =) topinhula

T (xiy) = k / x2+y2 dup x2+y2=9
iain V = 3 old. k=1 olor. =>

M= S (Vx2+y2 dxdy kutopa)
koordinothordia

S.5. (20p) Bir dikdörkenin bir kenarı x=10 diğeri y=24 cm dir. Kısa kenar 4 mm artırılır uzun kenar 1 mm kısaltılırsa köşegeni yaklaşık olarak ne kadar değişir. (diferensiyel kullanılacak)

S.6) (15 p) $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ serisinin toplamını bulunuz. $Sn = \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \sum_{k=1}^{\infty} \left(\frac{1}{k} + \frac{1}{k+1}\right)$ $= 1 - \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right)$ $= 1 - \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = 1$ Aim $Sn = \lim_{k \to \infty} \left(1 - \frac{1}{k+1}\right) = 1$ Slep = 1 Slep

Müh. Fak.	MAT 162 Matematik II	Vize Sınavı	06.04.2016	Süre 70 dakikadır
Adı ve Soyadı:	(6)	Öğrenci No:	Ímza:	İlk 30 dakika sınavdan çıkmak yasaktır.

S-1) (10p)
$$\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2} = ?$$
 (Yontem serbest)

I Yol: (Karteeyen koordination) Mu (lm 2x2) = lm 0 = 0 y=x dogrupu boyunca lm 2x2 =1 limit roktur.

II Yol: (Kutupsal koordinatlar) X=rcoso y=rsna (X14)->(0,0) lken r-> als Com 2 r2 (coso + sino) = Coso sino
r= 0 r2 (coso + sino) = degist limit yoktur

S-2) (10p) $\sum_{n=1}^{\infty} \frac{n^2}{n!}$ serisinin karakterini inceleyiniz.

Um anti = Um (n+1)2/(n+1)!

Böldin testi geregince alunialitur.

90 (n+1)

02+2011

S-3) (15p) $y = -x^2 + 4x$ ve y = x eğrileri arasında kalan bölgenin y-ekseni etrafında döndürülmesiyle oluşan dönel cismin hacmini hesaplayınız.

Çözüm:

Kesim noktalarını bulalım. $-x^2+4x=X \Rightarrow x=0 \text{ ve } x=3$ Kabuk Metodu

$$V = \int_{0}^{3} 2\pi x \left(-x^{2} + 4x - x\right) dx$$

$$V = 2\pi \int_{0}^{3} \left(-x^{3} + 4x^{2} - x^{2}\right) dx$$

$$V = 2\pi \int_{0}^{3} \left(-x^{3} + 3x^{2}\right) dx$$

$$V = \frac{27}{2} \pi b^{3}$$

Open Doc. Dr. Yavuz ALTIN Matematik Bölümü

S-4) (15p) Şekilde (0,0) merkezli çeyrek çember ile d doğrusunun grafiği verilmiştir. Buna göre taralı bölgeyi ifade eden integral formülünü yazınız. (integralin değeri hesaplanmayacaktır)

Çözüm:

$$d = \frac{x}{-4} + \frac{y}{4} = 1 \implies y = x + 4$$

$$x^{2} + y^{2} = 16 \implies y = \sqrt{16 - x^{2}}$$
Taralı Alan =
$$\int \left[\sqrt{16 - x^{2}} - (x + 4) \right] dx$$

שושחטר:

S-5) (10p) $z = xy \ln(x + y)$ fonksiyonunun dz tam diferensiyelini bulunuz.

S-6) (10p)
$$\sum_{k=1}^{\infty} \frac{4}{2^{k-1}}$$
 serisinin toplamı kaçtır?

Cözüm:

$$S_{n} = \sum_{k=1}^{n} \frac{1}{2^{k-1}} = 4\left(1 + \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n-1}}\right)$$

$$= \left(\frac{1}{2^{n}} + \dots + \frac{1}{2^{n-1}}\right) = 8$$

$$1 - \frac{1}{2^{n}} = 8$$

$$\frac{5}{k=1} \frac{4}{2k-1} = 8 \, dir.$$

S-7) (15p)
$$w = x + 2y + z^2$$
 ye $x = y / s$, $y = y + \ln s$, $z = r^2$ olmak üzere $\frac{\partial w}{\partial r}$ kısmi türevini hesaplayınız.

$$\frac{\partial W}{\partial r} = \frac{\partial W}{\partial x} \cdot \frac{\partial X}{\partial r} + \frac{\partial W}{\partial y} \cdot \frac{\partial Z}{\partial r}$$

$$= 1 \cdot \left(\frac{1}{5}\right) + 2 \cdot \frac{1}{5} \cdot \left(\frac{1}{5$$

Colen : Doç. Dr. Yavuz ALTIN Firat Üniversitesi Matematik Bölümü

S-8) (15p)
$$\sum_{n=0}^{\infty} (-1)^n \frac{(x-3)^n}{2n+1}$$
 serisinin yakınsaklık aralığını bulunuz.

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| \ge 1$$

$$\lim_{n\to\infty} \left| \frac{(-1)^{n+1} (x-3)^{n+1}}{a_n(x-3)^{n+1}} \frac{2n+1}{(-1)^n (x-3)^n} \right| \ge 1$$

$$\lim_{n\to\infty} |x-3| \frac{2n+1}{2n+3} = |x-3| < 1$$

Yalunsaklık Aralığı: (2,4]dır.

Müh. Fak.	MAT 162 Matematik II	Final Smays	18.05.2016	Süre 70 dakikadır	Gözetmen Parafi	Ţ	3	5	Toplam
Adı ye Soyadı:		Öğrenci No:	Įmza;	lik 30 dakika sınavdan çıkmak yasaktır.		1	4	6	

S-1) (20p) $u = \ln(x^3 + y^3 + z^3 - 3xyz)$ fonksiyonu verilsin. $\times u_x + \mu u_y + 2u_z = ?$

Cözüm:

$$U_{X} = \underbrace{\frac{3 \times^{2} - 3 y 2}{X^{3} + y^{3} + z^{3} - 3 \times y 2}}_{X}$$

$$L_y = \frac{3y^2 - 3x^2}{x^3 + y^3 + 2^3 - 3x^2}$$

$$U_{2} = \frac{32^{2} - 3 \times 4}{x^{3} + y^{3} + 2^{3} - 3 \times 4^{2}}$$

$$=\frac{3(x^{3}+y^{3}+z^{3}-3xy^{2})}{(x^{3}+y^{3}+z^{3}-3xy^{2})}$$

$$=\frac{3(x^{3}+y^{3}+z^{3}-3xy^{2})}{(x^{3}+y^{3}+z^{3}-3xy^{2})}$$

S-2) (15p) $z = e^{-x^2-y^2}$ yüzeyinin P(0,0,1) noktasındaki teğet düzleminin denklemini bulunuz.

Cözüm:

$$F(x_1y_1z) = Z - e^{-x^2-y^2} = 0$$

$$\frac{\partial F}{\partial x} \Big|_{P(0,0,1)} = 2 \times e^{-x^2 - y^2} \Big|_{F(0,0,1)} = 0$$

$$\frac{\partial F}{\partial y} \Big|_{P(0,0,1)} = 2ye^{-x^2-y^2/2} \Big|_{P(0,0,1)} = 0$$

$$\frac{\partial F}{\partial z}\Big|_{P(0,0,1)} = 1$$

Teget dielemin denklemi 0. (x-0) +0(y-0) +1(2-1)=0

Cicaco: Doc. Dr. Yavuz ALTIN First Üniversitesi Matematik Bölümü S-3) (15p) Boyutları x, y, z olan dikdörtgenler prizması formunda bir kutunun hacmi 48 cm³ tür. Uzunluğu x ve z kadar olan yüzlerin birim alanını boyama maliyeti 1 liradır. Bu maliyet, uzunluğu x ve y kadar olan yüzeyler için 2 lira, uzunluğu y ve z kadar olan yüzler için 3 liradır. Boyama maliyetini minimum kılmak için kutunun kenar uzunlukları ne olmalıdır? (Kısmi türevler ile yapılacaktır)

Coziim:

$$V = xy^{2} = 7 = \frac{48}{xy}$$

$$C = 2x^{2} + 4xy + 6y^{2}$$

$$= 4xy + \frac{288}{x} + \frac{96}{y}$$

$$Cx = 4y - \frac{288}{x^{2}} = 0$$

$$Cy = 4x - \frac{96}{y^{2}} = 0$$

$$x = 6cmve \ y = 2cm$$

$$\frac{2}{62} = \frac{48}{62} = 4cm$$

S-5) (15p) $y = 2 - x^2$ parabold ile y = -x doğrusu arasında kalan bölgenin alanını iki katlı integral yardımıyla hesaplayınız.

Keilm nolitalarını bulalım y=y => 2-x2=-x=>

$$A = \int_{x=1}^{z} \int_{y=-x}^{2-x^2} dy dx = \int_{y=-x}^{2} \int_{x=-x}^{2-x^2} dx$$

$$= \int_{-1}^{2} (2-x^{2}+x) dx.$$

$$= \int_{-1}^{2} (2-x^{2}+x) dx.$$

$$= 2x - \frac{x^{3}}{3} + \frac{x^{2}}{2} \Big|_{-1}^{2} = \frac{9}{2} br^{2} = \int_{0}^{1/2} \frac{1}{2} e^{r^{2}} \Big|_{0}^{2} dv = \frac{e^{4}-1}{2} e^{1} \frac{1}{2} e^{r^{2}}$$

Claten: Dog. Dr. Yavuz ALTIN First Oniversitesi Matematik Bölümü

S-6) (20p)
$$\int_{0}^{2} \int_{0}^{\sqrt{4-x^2}} e^{x^2+y^2} dy dx = ?$$

Kutupsal koordinatlar lle

alianses
$$\int_{0}^{2} \int_{0}^{\sqrt{4-x^2}} \frac{1}{e^{x^2+y^2}} dy dx = \int_{0}^{\sqrt{1/2}} \int_{0}^{2} \frac{e^{x^2+y^2}}{\sqrt{4x^2+y^2}} dy dx = \int_{0}^{\sqrt{1/2}} \int_{0}^{2} \frac{e^{x^2+y^2}}{\sqrt{4x^2+y^2}} dx = \int_{0}^{\sqrt{1/2}} \int_{0}^{2} \frac{e^{x^2+y^2}}{\sqrt{4x^2+y^2}} dx = \int_{0}^{\sqrt{1/2}} \int_{0}^{2} \frac{e^{x^2+y^2}}{\sqrt{4x^2+y^2}} dx = \int_{0}^{\sqrt{1/2}} \int_{0}^{2} \frac{e^{x^2+y^2}}{\sqrt{4x^2+y^2}} dx = \int_{0}^{\sqrt{1/2}} \frac{e^{x^2+y^2}}{\sqrt{4x^2+y^2}} dx = \int_{0}^{\sqrt$$

$$= \int_{0}^{\pi/2} \frac{1}{2} e^{r^{2}} \Big|_{0}^{2} d\theta = \frac{e^{4} - 1}{2} \theta \Big|_{0}^{\pi/2}$$

$$=\frac{e^{4}-1}{2}\frac{1}{2}$$

Múh. Fak.	MAT 162 Matematik II	Bütünleme Sınavı	08.06.2016	Süre 70 dakikadır	Gözetmen Paralı	T_	3	3	Toplam
Adı ve Soyadı:		Óğrenci No:	Imza:	llk 30 dakika sınavdan çakmak yasaktır.		1	<u></u>	6	

g an canal = _ 6.2 2.3 .1.3 12 + 6 m fankeivanninn

S-1) (15p)
$$\sum_{k=1}^{\infty} \frac{1}{k!}$$
 scrisinin karakterini inceleyiniz.

Çözüm:

the the San Care of the Care o

Bélim (oran) testinini Mygularsak

lim (18+1 = lim /(2+1)! K-200 CIK K-200 1

 $= \lim_{k \to \infty} \frac{1}{(k+1)!} \frac{k!}{1}$

oldugundan Verilen Seri yolunaktır.

S-2) (15p)
$$z = \arctan \frac{x}{y}$$
, $x = u \cdot \cos v$, $y = u \cdot \sin v$
olmak üzere $\frac{\partial z}{\partial v} = ?$

$$\frac{\partial t}{\partial v} = \frac{\partial t}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial x}{\partial y} \frac{\partial y}{\partial x}$$

$$= \frac{1}{x} \frac{1}{x^2} \frac{(-u \sin v)}{(-u \sin v)} + \frac{x^2}{y^2} \frac{(u \cos v)}{(-u \cos v)}$$

$$= \frac{1}{x^2} \frac{1}{y^2} \frac{(u \cos v)}{(-u \cos v)} + \frac{x^2}{y^2} \frac{(u \cos v)}{(-u \cos v)}$$

S-3) (20p) $z = 6x^2 - 2x^3 + 3y^2 + 6xy$ fonksiyonunun yerel ekstremum noktalarını bulunuz.

$$Z_{x} = 12x - 6x^{2} + 6y = 0$$

$$Z_{y} = 6y + 6x = 0$$

S-4) (15p)
$$\int_{0}^{1} \int_{2}^{4-2x} dy dx = 7$$

Çözüm:

$$\int_{0}^{62 \text{dm}} \frac{1}{4^{-2}} \frac{4^{-2}}{2} \times \frac{1}{2} \frac{4^{-2}}{2} \times \frac{1}{2$$

$$= \int_{0}^{1} (4-2x-2) dx = \int_{0}^{1} (2-2x) dx$$

S-5) (15p) $\int_{0}^{1} \int_{y}^{1} e^{x^{2}} dxdy$ integralinin integrasyon sırasını değiştirerek hesaplayınız.

Çőzüm:

$$\int_{y=0}^{2} e^{x^{2}} dx dy = \int_{y=0}^{2} e^{x^{2}} dy dx$$

$$= \int_{0}^{2} e^{x^{2}} dx dy = \int_{0}^{2} e^{x^{2}} dy dx$$

$$= \int_{0}^{2} e^{x^{2}} dx dx = \int_{0}^{2} e^{x^{2}} dy dx$$

$$= \int_{0}^{2} e^{x^{2}} dx dx = \int_{0}^{2} e^{x^{2}} dy dx$$

$$= \int_{0}^{2} e^{x^{2}} dx dx = \int_{0}^{2} e^{x^{2}} dy dx$$

$$= \int_{0}^{2} e^{x^{2}} dx dy = \int_{0}^{2} e^{x^{2}} dy dx$$

$$= \int_{0}^{2} e^{x^{2}} dx dy = \int_{0}^{2} e^{x^{2}} dy dx$$

$$= \int_{0}^{2} e^{x^{2}} dx dy = \int_{0}^{2} e^{x^{2}} dy dx$$

$$= \int_{0}^{2} e^{x^{2}} dx dx = \int_{0}^{2} e^{x^{2}} dy dx$$

$$= \int_{0}^{2} e^{x^{2}} dx dx = \int_{0}^{2} e^{x^{2}} dy dx$$

$$= \int_{0}^{2} e^{x^{2}} dx dx = \int_{0}^{2} e^{x^{2}} dy dx$$

S-6) (20p) $y = x^2$ ve $y = 3x^2$ parabolleri ile $y = \frac{2}{x}$ ve $y = \frac{4}{x}$ eğrileri tarafından sınırlanan bölgenin alanını iki katlı integral yardımıyla bulunuz.

Cözüm

$$\frac{y}{x} = \frac{1}{1} \cdot \frac{y}{x^2} = \frac{3}{1} \cdot \frac{1}{x^2} = \frac{3}{1} \cdot$$

Müh. Fak.	MAT 162 Matematik II	Vize Sınavı 1		
Adı ve Soyadı:		Öğrenci No:	tmza:	
		Süre 70 dakikadır.		
		İlk 30 dakika sınaydan çıkmak yasaktır.		

S-1) $\sum_{k=1}^{\infty} \frac{kx^k}{3^k}$ kuvvet serisinin yakınsaklık aralığını

bulunuz

Çözüm:

$$C_{k} = \frac{k}{3^{k}}$$

$$= \lim_{k \to 1} \frac{C_{k+1}}{C_{k}} = \lim_{k \to 1} \frac{k+1}{3^{k+1}} \cdot \frac{3^{k}}{4^{k}}$$

$$= \lim_{k \to 1} \frac{k+1}{3^{k}} = \frac{1}{3}$$

$$\Rightarrow R = \frac{1}{k} \Rightarrow R = 3 \text{ bulling}.$$

 $|X| < 3 \Rightarrow -3 < x < 3$ $x = -3 \Rightarrow \sum k(-1)^k$ serisi irahsahtir $x = 3 \Rightarrow \sum k$ serisi irahsahtir Yakunsahlik arahigi (-3,3) diir.

S-2) $f(x) = e^{3x}$ fonksiyonunun x = 1 noktası civarında ürettiği Taylor serisini bulunuz.

$$f'(x) = e^{3x}$$

$$f'(x) = 3e^{3x}$$

$$f''(x) = 3^{2}e^{3x}$$

$$f''(x) = 3^{2}e^{3x} \Rightarrow f''(1) = 3^{2}e^{3}$$

$$= \frac{1}{2} \frac{1}{2} \frac{1}{2} e^{3}(x-1)^{2}$$

$$= \frac{1}{2} \frac{1}{2} \frac{1}{2} e^{3}(x-1)^{2}$$

S-3) y = x + 2, 3y = 2 - x ve y = -3x + 6 doğruları arasında kalan bölgenin alanını hesaplayınız. (integral kullanılacaktır)

Çözüm:

$$x+2 = -3x+6 \Rightarrow x = f$$

$$\frac{2}{3} - \frac{x}{3} = x+2 \Rightarrow x = -1$$

$$A = \int \left[(x+2) - (\frac{2}{3} - \frac{x}{3}) \right] dx + \int \left[(-3x+6) - (\frac{2}{3} - \frac{x}{3}) \right] dx$$

$$A = 4 br^{2}$$

S-4)
$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2} = ?$$

Cözüm:

I. 401: $\lim_{x\to 0} (\lim_{x\to 0} \frac{x^2}{x^2+y^2}) = \lim_{x\to 0} 1 = 1$ $\lim_{y\to 0} (\lim_{x\to 0} \frac{x^2}{x^2+y^2}) = \lim_{x\to 0} 0 = 0$ $\Rightarrow 1 \neq 0$ old. $(\lim_{x\to 0} \frac{x^2}{x^2+y^2}) = \lim_{x\to 0} 0 = 0$

S-5)
$$\sum_{k=1}^{\infty} \frac{4}{2^{k-1}}$$
 serisinin toplamı kaçtır?

$$\sum \frac{4}{2^{k-1}} = 4\left(1 + \frac{1}{2} + \left(\frac{1}{2}\right)^{2} + \dots\right)$$

$$= 4. \text{ lim} \quad \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = 4 \cdot \frac{1 - 0}{1 - \frac{1}{2}} = 8$$

S-6) y = 2x doğrusunun [0,1] aralığındaki parçasının x-ekseni etrafında dönmesiyle oluşan dönel yüzeyin alanını bulunuz.

Çözüm:

$$A = 2\pi \int_{0}^{b} 3\sqrt{1+(3^{1})^{2}} dx$$

$$= 2\pi \int_{0}^{b} 2x \sqrt{1+2^{2}} dx$$

$$= 4\sqrt{5}\pi \int_{0}^{1} x dx$$

$$A = 2\sqrt{5}\pi \int_{0}^{1} x dx$$

S-7) $y = x^2$ eğrisi x = 2 doğrusu ve x-ekseni arasında kalan bölgenin x-ekseni etrafında dönmesiyle oluşan dönel cismin hacını aşağıdakilerden hangisidir?

Çözüm:

$$V = \pi \int_{0}^{2} (x^{2})^{2} dx$$

$$= \frac{x^{7}}{5} \pi \Big|_{0}^{2} = \frac{32\pi}{5} br^{3}$$

S-8)
$$f(x, y) = x^2 e^{\frac{y}{x}}$$
 ise $f_{xy}(1,1) = ?$

$$f_{x} = 2xe^{\frac{y}{x}} + x^{2}(-\frac{y}{x^{2}})e^{\frac{y}{x}}$$

$$\Rightarrow f_{x} = (2x-y)e^{\frac{y}{x}}$$

$$f_{xy} = -e^{\frac{y}{x}} + (2x-y)\cdot\frac{1}{x}e^{\frac{y}{x}}$$

$$\Rightarrow f_{xy}(+,1) = 0 \quad \text{buluwr.}$$

Mūh. Fak.	MAT 162 Matematik II	Mazeret Sinavi	25.05.2015	Süre 50 dakikadır.
Adı ve Soyadı:		Öğrenci No:	Imza:	İlk 25 dakika sınavdan çıkı

S-1)
$$u = x^2 + y^2$$
, $x = \cos t$, $y = \sin t$ ise
$$\frac{du}{dt}(1) = ?$$
Cozúm:

S-2) $y=x^2$ ile y=x+2 arasında kalan bölgenin alanını bulunuz. (İki katlı integral kullanlaraktır)

S-3) $f(x, y) = x^3 - y^3 + 3xy + 3$ fonksiyonunun yerel ekstremum değerlerini bulunuz.

Çözüm:

S-4)
$$\int_{0}^{1} \int_{0}^{2} (2x + y^{2}) dx dy = ?$$
Çözüm:

Müh. Fak.	MAT 162 Matematik II	Final Sinavi	01.06.2015	Süre 80 dakikadır
Adı ve Soyadı:		Öğrenci No:	Ìmza:	ilk 30 dakika sınavdan çıkmak yaşak

S-1) (10p)
$$\int_{1}^{2} \frac{dx}{2x-1} = ?$$

Cotam:
$$\frac{2}{2} \frac{dx}{2x-1} = \frac{1}{2} \int_{1}^{2} \frac{2 dx}{2x-1} = \frac{1}{2} \ln |2x-1| \Big|_{1}^{2}$$

$$= \frac{1}{2} \ln 3 - \frac{1}{2} \ln 1$$

$$= \frac{1}{2} \ln 3$$

S-2) (10p)
$$\sum_{k=1}^{\infty} \frac{k}{2^k}$$
 serisinin karakterini inceleyiniz.

Cozim: Oran testr uygulanırsa

=
$$l_{\text{run}} \frac{l_{\text{t}+1}}{2k} = \frac{1}{2} \times 1$$
 oldupunden

yeluns aluter.

S-3) (15p) I. bölgede $y = x^2$ ve y = 2x + 3 arasında kalan bölgenin alanını iki katlı integral ile hesaplayınız.

Çözüm:

$$A = \int_{0}^{3} \int_{0}^{2x+3} dy dx = \int_{0}^{3} \left[\frac{2x+3}{x^{2}} \right] dx$$

$$= \int_{0}^{3} (2x+3-x^{2}) dx$$

$$= \int_{0}^{3} (2x+3-x^{2}) dx$$

$$= \int_{0}^{3} (2x+3-x^{2}) dx$$

S-4) $(15p) \sqrt{(2,99)^2 + (4,01)^2}$ sayısının yaklaşık değerini tam diferensiyeli kullanarak bulunuz.

Cözűm:

$$\Rightarrow dz = 0.002$$

$$\Rightarrow \sqrt{2.49}^2 + (4.01)^2 = \sqrt{3^2 + 4^2} + 0.002$$

$$= 5,002$$

S-5) (10p) 12 tane ayrıtının toplamı 24 cm olan bir dikdörtgenler prizmasının hacmi en fazla kaç cm³ dür. (Kısmi türevler kullanılacaktır)

Cözüm

$$4 \times + 4y + 4z = 24 \Rightarrow x + y + z = 6$$
 $V = xyz = xy(6 - x - y)$
 $V_x = 6y - 2xy - y^2 = 0 \Rightarrow y(6 - 2x - y) = 0$
 $V_y = 6x - x^2 - 2xy = 0 \Rightarrow x(6 - x - 2y) = 0$
 $\Rightarrow 2x + y = 6$
 $\Rightarrow x = 2$
 $\Rightarrow y = 2$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$
 $\Rightarrow 0$

S-6) (10p)
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$$
 ile verilen $z = f(x, y)$ kapalı fonksiyonunun $z_x(2,3,6)$ türevini bulunuz.

Çōzüm:

$$\frac{7}{4} = \frac{35}{3x} = -\frac{f_x}{f_x} = -\frac{-\frac{1}{x^2}}{-\frac{1}{x^2}} = -\frac{2^2}{x^2}$$

$$\Rightarrow -\frac{2^2}{x^2}\Big|_{(2,3,6)} = -9$$

S-7) (15p) $\int_{0}^{1} \int_{x^{2}}^{x} x \, dy \, dx$ integralini hesaplayınız ve

(sadece) integrasyon sırasını değiştiriniz.

Çözüm

$$\int_{0}^{1} \int_{x^{2}}^{x} x \, dy \, dx = \int_{0}^{1} x \, y \, \Big|_{x^{2}}^{x} \, dx$$

$$= \int_{0}^{1} (x \cdot x - x \cdot x^{2}) \, dx = \int_{0}^{1} (x^{2} - x^{3}) \, dx$$

$$= \frac{x^{3}}{3} - \frac{x^{4}}{4} \Big|_{0}^{1} = \frac{1}{12}$$

S-8) (15p)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^3}} \cos(x^2 + y^2) \, dy \, dx = ?$$

Cözüm:

$$\int \frac{\sqrt{1-x^2}}{\int \cos(x^2+y^2) \, dy \, dx} = \int \frac{\pi}{2} \int \cos(r^2 \cos\theta + r^2 \sin\theta) \, r \, dr \, d\theta$$

$$= \int \int r \cos r^2 \, dr \, d\theta = \int \frac{1}{2} \sin r \, d\theta$$

$$= \int \int r \cos r^2 \, dr \, d\theta = \int \frac{1}{2} \sin r \, d\theta$$

$$=\frac{1}{2}\int_{0}^{\pi/2}\sin 1d\theta = \frac{\sin 1}{2}\cdot\theta$$

$$=\frac{\sin 1}{2}\cdot\frac{\pi}{2}$$

Müh. Fak. MAT 162 Matematik Π		Bütünleme Sınavı		22.06.2015		
Öğrenci No:		Adı ve Soyadı:	1.17	İmza:		

S-1) (15p)
$$\int_{0}^{1} \int_{0}^{2} (2x+y^{2}) dx dy = ?$$
Cözüm:
$$\int_{0}^{2} \left(2x+y^{2} \right) dx dy = \int_{0}^{2} \left(x^{2}+y^{2} \right) dy$$

$$= \int_{0}^{2} \left(4+2y^{2} \right) dy = \frac{14}{3}$$

S-2) (20p) $\int_{-2}^{1} \int_{-2}^{3x+2} dydx$ integralini hesaplayınız ve (sadece) integrasyon sırasını değiştiriniz.

Cözüm:

$$41 \text{ 3X+2}$$

 3 X+2
 $-2 \text{ X}^2 + 4 \text{ X}$
 $-2 \text{ X}^2 + 4 \text{ X}$
 $-2 \text{ X}^2 + 4 \text{ X}$
 $-2 \text{ X}^2 + 4 \text{ X}$
 $-2 \text{ X}^2 + 4 \text{ X}$
 $-2 \text{ X}^2 + 4 \text{ X}$
 $-2 \text{ X}^2 - 2 \text{ X}^2 + 4 \text{ X}$
 $-2 \text{ X}^2 - 2 \text$

b)
$$y = 3x+2 \Rightarrow x = \frac{y-2}{3}$$

 $y = x^2 + 4x \Rightarrow x^2 + 4x - y = 0$
 $\Rightarrow \Delta = 16 + 4y$
 $x_{1,2} = -4 + \sqrt{16 + 4y} = -2 + \sqrt{y+4}$

$$\int_{x=-2}^{3} \int_{y=x^{2}+4x}^{3x+2} dx = \int_{x=-\frac{y-2}{3}}^{5-2+\sqrt{4+y}} dx dy = 1$$

$$x=-2 \int_{y=x^{2}+4x}^{3x+2} dx = \int_{x=-\frac{y-2}{3}}^{5-2+\sqrt{4+y}} dx dy = 1$$

S-3) (15p)
$$\lim_{(x,y)\to(0,0)} \frac{x-y}{x+y} = ?$$

Cözüm:

lun (hing
$$\frac{x-y}{x+y}$$
) = hun $(\frac{x}{x})$ = 1

lun (hun $\frac{x-y}{x+y}$) = hun $(-\frac{y}{y})$ = -1

you (hun $\frac{x-y}{x+y}$) = hun $(-\frac{y}{y})$ = -1

olup -1 + 1 oldugundan

(0,0) nolutameda hunit yolutur.

S-4) (15p)
$$z = e^x \sin y$$
 ise $z_{xx} + z_{yy} = ?$

Çözüm:

$$Z_{x} = e^{x} \sin y$$

 $Z_{xx} = e^{x} \sin y$
 $Z_{y} = e^{x} \cos y$
 $Z_{yy} = -e^{x} \sin y$
 $Z_{xx} + Z_{yy} = e^{x} \sin y - e^{x} \sin y = 0$
bulumer.

S-5) (20p) $z = (x-1)^2 + 2y^2$ fonksiyonunun yerel ekstremum noktalarını (y.max, y.min, eyer) bulunuz.

Çözüm

$$Z_{x} = 2(x-1) = 0 \Rightarrow x = 1$$
 (1,0)
 $Z_{y} = 4y = 0 \Rightarrow y = 0$
 $Z_{xx} \cdot Z_{yy} - Z_{xy}^{2} = 2.4 - 0 = 8 > 0$
Ve $Z_{xx} = 2 > 0$ oldupundam
(1,0) nolutarında yerel
minimum vardır.

S-6) (15p) $y = x^2$ eğrisi x = 2 doğrusu ve x-ekseni arasında kalan bölgenin x-ekseni etrafında dönmesiyle oluşan dönel cismin haemini bulunuz. (Tek katlı belirli integral)

Çözüm:

$$V = \pi \int_{0}^{2} (x^{2})^{2} dx$$

$$= \frac{x^{5}}{5} \pi \Big|_{0}^{2} = \frac{32\pi}{5} br^{3}$$

MATEMATİK II MAZERET SINAVI 27.06.2014

	enginence Official alexaniu rami:
Adı ve Soyadı: Ö	ğrenci No: İmza:
S-1) $\int_{0.2y}^{1.2} \cos x^2 dx dy$ Integralini integrasyon sırasını değiştirerek hesaplayınız (20p).	S-2) $z = xy$ $x = e^x \cos y$ $y = e^x \sin y$ fonksiyonları için $\frac{\partial z}{\partial u}$ ve $\frac{\partial z}{\partial v}$ türevlerini hesaplayınız (20p).
Çözüm: X=2y	$\frac{\partial f}{\partial x} = \frac{\partial x}{\partial x} \cdot \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \cdot \frac{\partial h}{\partial x}$
2 x X=2	$= y \cdot e^{\prime} \cos V + x \cdot e^{\prime} \sin V$ $= e^{\prime} \sin V \cdot e^{\prime} \cos V + e^{\prime} \cos V e^{\prime} \sin V$ $= e^{24} \sin V \cdot \cos V + e^{24} \cos V \cdot \sin V$
$\int_{0}^{2} \int_{0}^{1/2} \cos(x^{2}) dy dx \longrightarrow \text{Disarbosit}$	$= 2e^{2u} \sin \cos v$ $= e^{2u} \sin 2v$
$= \int_{0}^{2} \left(y \cdot \cos(x^{2}) \right)^{\frac{1}{2}} dx$ $= \int_{0}^{2} \left(\frac{x}{2} \cos(x^{2}) - 0 \cdot \cos(x^{2}) \right) dx$	$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$ $= y \cdot (-e'\sin v) + x \cdot e'' \cdot \cos v$
$= \frac{1}{2} \int_{0}^{2} x \cos(x^{2}) dx, u = x^{2}$ $\frac{du}{dx} = x dx$	=-e'sinv.e'sinv + e'cosve cosv =-e2'sin2v + e2'cres2v
$=\frac{1}{4}\int \cos u du = \frac{1}{4}\sin u ^2$	$= e^{2\nu} \left(\cos^2 v - \sin^2 v \right) =$ $= e^{2\nu} \left(\cos^2 v - \sin^2 v \right)$
$=\frac{1}{4}\sin(x^2)\Big _{0}^{2}=\frac{\sin 4}{4}$	£7*

AŞAĞIDAKİ AÇIKLAMAYI MUTLAKA OKUYUNUZ!

1.) Sınav 5 soru üzerinden değerlendirilecektir. 2 soru seçmelidir. Yapmadığınız 2 soruyu aşağıdaki puan tablosunda X işareti koyarak belirleyiniz.

2.) Süre 75 dakikadır. Sınavın ilk 30 dakikası dışarı çıkmak kesinlikle yasaktır. Başarılar dilerim

MÜHENDISLİK FAKÜLTESİ 1.-II. ÖĞRETİM

MAT 162 - Matematik II Genel sınav Dersin hocasının ismi:

31.05.2014

					***************************************	ADMILE					1.05, 2014
Fakülte No	_ :				2	1 3	TA	1 5	1 6	77	·
Adı Soyadı								3	D		Toplam
Imza				3		1				1 1	
Bölümü				1				1			
(20 puan) CEVAP:	serisinin kar	-				türevin 20 puai EVAP:	in (1,1) n)	x noktas	ındaki o	göre $\frac{\partial}{\partial x}$ leğerini	edy hesaplayınız.
$a_{k} = \frac{\ell}{2}$	nk 2k	Olu+1	= ln(4+1) c+1	300	主=	X2	K.	1+(生)2	$= \frac{x^3}{x^2 + 4^2}$

Dalambert Oran testhai uygulayalım.

$$\frac{\partial^2 x}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial^2}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{x^3}{x^2 + y^2} \right)$$

$$\lim_{k \to \infty} \frac{\partial u_{k+1}}{\partial u} = \lim_{k \to \infty} \frac{\ln(u+1)}{2^{k+1}} \cdot \frac{2^k}{\ln u}$$

$$= \lim_{k \to \infty} \frac{\ln(u+1)}{2^{k+2}} \cdot \frac{x^2}{\ln u}$$

$$= \frac{3x^2(x^2 + y^2) - 2x(x^3)}{(x^2 + y^2)^2}$$

$$= \lim_{k \to \infty} \frac{\ln(u+1)}{2^{k+2}} \cdot \frac{x^2}{\ln u}$$

$$= \frac{3x^4 + 3x^2y^2 - 2x^4}{(x^2 + y^2)^2} = \frac{x^4 + 3x^2y^2 - 2x^4}{(x^2 + y^2)^2}$$

$$= \frac{1}{2} \lim_{k \to \infty} \frac{1}{12}$$

$$= \frac{1}{2} \lim_{k \to \infty} \frac{1}{12}$$

$$= \frac{1}{2} \lim_{k \to \infty} \frac{1}{12}$$

$$= \frac{1}{2} \lim_{k \to \infty} \frac{1}{12}$$

= 1 < 1 oldegundan verilen seri, yakınsalıtır.

$$\frac{1}{2^{k+1}} = \frac{\ln(k+1)}{2^{k+1}} \frac{2^{\frac{2}{3}}}{2^{\frac{2}{3}}} = x^{\frac{2}{3}} \cdot \frac{1}{1+(\frac{4}{x})^{2}} = \frac{x^{\frac{3}{3}}}{x^{\frac{2}{3}}+y^{2}}$$

$$\frac{1}{2^{k+1}} = \lim_{k \to \infty} \frac{\ln(k+1)}{2^{k+1}} \cdot \frac{2^{k}}{\ln k} = \frac{3}{3^{\frac{2}{3}}} \left(\frac{3^{\frac{2}{3}}}{3^{\frac{2}{3}}}\right) = \frac{3}{3^{\frac{2}{3}}} \left(\frac{x^{\frac{3}{3}}}{x^{\frac{2}{3}}+y^{2}}\right)$$

$$= \lim_{k \to \infty} \frac{\ln(k+1)}{2^{k+1}} \cdot \frac{2^{k}}{\ln k} = \frac{3x^{\frac{2}{3}} + 3x^{\frac{2}{3}}y^{\frac{2}{3}} - 2x^{\frac{2}{3}}}{(x^{\frac{2}{3}}+y^{2})^{2}} = \frac{x^{\frac{2}{3}} + 3x^{\frac{2}{3}}y^{\frac{2}{3}}}{(x^{\frac{2}{3}}+y^{2})^{2}} = \frac{x^{\frac{2}{3}}}{(x^{\frac{2}{3}}+y^{2})^{2}} \frac{x^{\frac{2}{3}}}{(x^{\frac{2}{3}+y^{2})^{2}}} = \frac{x^{\frac{2}{3}}}{($$

S-3)
$$w = x + 2y + z^3$$
, $x = \frac{r}{s}$, $y = e^{3r} + \ln(s^2 + 4)$.

 $z = \arcsin r$

fonksiyonları verilsin. Buna göre zincir kuralı

yardımıyla $\frac{\partial w}{\partial r}$, $\frac{\partial w}{\partial s}$ threvlerini hesaplayınız.

(20 puan)

CEVAP:

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$$

$$= 1 \cdot \left(\frac{1}{5}\right) + 2 \cdot \left(3e^{3r}\right) + 3z^2 \cdot \left(\frac{1}{\sqrt{1-r^2}}\right)$$

$$= \frac{1}{5} + 6e^{3r} + \frac{3z^2}{\sqrt{1-r^2}}$$

$$\frac{\partial w}{\partial r} = \frac{1}{5} + 6e^{3r} + 3 \cdot \frac{\left(arcsinr\right)^2}{\sqrt{1-r^2}}$$

$$\frac{\partial w}{\partial S} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial S} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial S} + \frac{\partial w}{\partial x} \frac{\partial z}{\partial S}$$

$$= 4 \cdot \left(-\frac{C}{S^2}\right) + 2 \cdot \left(\frac{2S}{S^2 + 4}\right) + 3z^2 \cdot (0)$$

$$\frac{\partial w}{\partial S} = -\frac{C}{S^2} + \frac{4S}{S^2 + 4}$$

S.4) $y = x^2$ ile $y = 4x - x^2$ tarafından sınırlanan bölgenin alanını hesaplayınız.

(20 puan)

CEVAP:

$$x^{2} = 4x - x^{2}$$

$$2x^{2} - 4x - 20$$

$$2x(x-2) = 0$$

$$2x(x-2) = 0$$

$$2x(x-2) = 0$$

$$4x - x^{2}$$

$$= \int_{0}^{2} (4x - x^{2} - x^{2}) dx$$

$$= \int_{0}^{2} (4x - 2x^{2}) dx$$

$$= \int_{0}^{2} (4x - 2x^{2}) dx$$

$$= \left(2x^{2} - 2x^{2}\right) \int_{0}^{2} dx$$

$$= \left(2(2)^{2} - 2(2^{3})\right) - (0)$$

$$= 8 - \frac{16}{3} = 8 + 2$$

$$\begin{cases} u = x + y \\ v = x - y \end{cases} = 0 \text{ for soin } u = 3 \qquad v = 1$$

$$\vec{J} = \frac{\partial(x_1 y_1)}{\partial(u_1 v_1)} = \frac{1}{\frac{\partial(u_1 v_1)}{\partial(x_1 y_1)}} = \frac{1}{\frac{1}{1 - 1}} = \frac{1}{-2}$$

$$\int \frac{x-y}{x+y} dA = \int \int \frac{1}{3} \frac{1}{|x|^{1-\frac{1}{2}}} du dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln x)^{\frac{3}{3}} dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{2} \int \frac{1}{3} (x \ln 3 - x \ln 1) dx$$

$$= \frac{1}{$$

S.6). y=1-x, y=1, x=1 doğruları tarafından sınırlanan bölgeye yerleştirilen $\sigma(x,y)=xy$ yoğunluklu bir levhanın kütlesini bulunuz.

(20 puan)
CEVAP:

4

Y=1

X=1

Y=1-x

$$M = \iint_{S} \sigma'(x_1 y_1) dx dy$$

$$= \iint_{S} \int_{-x+1}^{1} (xy_1) dy dx$$

$$= \iint_{S} \left(\frac{xy_2^2}{2} \right) \int_{-x+1}^{1} dx$$

$$= \iint_{S} \left(\frac{x \cdot \frac{1^2}{2}}{x^2} - \frac{x \cdot (-x+1)^2}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x}{2} - \frac{x \cdot (x^2 - 2x + 1)}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x}{2} - \frac{x \cdot (x^2 - 2x + 1)}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

$$= \iint_{S} \left(\frac{x - x^3 + 2x^2 - x}{2} \right) dx$$

c)
$$\int \int dy dx = \int (\frac{y}{x})^{2} dx$$
$$= \int (2x - x) dx$$
$$= \int x dx$$
$$= \frac{x^{2}}{2} \int dx$$
$$= \left(\frac{1^{2}}{2} - \frac{0^{2}}{2}\right)$$

MATI36 MATEMATIK II ARASINAV

22.04.2011

Fakülte No

Adı ve Soyadı

176	1557	11.793	*****	-	1	1 1	0	0	"FOT	Toplan
1	2	3	4	5	6	1	Ь	3	20	Z-F
_	-								1	W

SORÜLAR

- 1) $f(x,y) = \sqrt{\frac{x-y}{x+y}}$ fonksiyonunun tanım kümesini bulup, kartezyen düzlemde gösteriniz.
- 2) $\lim_{(x,y)\to(0,0)} \frac{2-\sqrt{xy+4}}{xy}$ limitini hesaplayınız.
- 3) $z= \arcsin \frac{x-y}{x+y}$ fonksiyomunun $\pi z_x + y z_y = 0$ denklemini sağladığını gösteriniz.
- 4) $u(x,t)=\sin ax\sin bt$ fonksiyonunun $a=\frac{a}{b}$ olmak üzere $u_{zz}=c^2u_{tt}$ denklemini sağladığını güsteriniz.
- 5) f ve g türevlenebilen herhangi iki fonksiyon olmak tizere, zincir kuralından yararlanarık $z=xf\left(x+y\right)+yg\left(x+y\right)$ fonksiyonunun $z_{xx}-2z_{xy}+z_{yy}=0$ denklemini sağladığını gösterinis.
- 6) A(1,2,5) ve B(3,13,15) noktaları veriliyor. f(x,y,z)=xy+yz+zx fonksiyonunun AB yönündeki türevini bulunuz. Bu türevin A noktasındaki değerini hesaplayınız.
- 7) $z=x^3-y^3-2xy+6$ fonksiyonunun yerel extremum noktalarını bulup cinsini belirleyiniz.
- 8) $\frac{d}{dx} \int_{-\infty}^{x^2} \frac{e^{-xt}}{t} dt$ tilrevini hesaplaymız.
- 9) Ust turafı açık olan dikdörtgen prizma şeklinde $4m^3$ hacminde bir 55p bidəmi yapınak için en az kaç m^2 saza ihtiyaç vardır?
- 10) $z = 9 4x^2 y^2$ paraboloidinin hangi noktasındaki teğet düzlemi z = 4y düzlemine peralel olur?

Prof. Dr. Mikail ET

CEVAPLAR

CEVAPLAL

1)
$$\frac{x+y}{x-y} > 0 \Rightarrow x-y > 0$$

x-y <0 ve x ty <0 olmalidir.

2)
$$\lim_{(x,y)\to (0,0)} \frac{2-\sqrt{xy+4}}{(x,y)\to (0,0)} \frac{(2-\sqrt{xy+4})(2+\sqrt{xy+4})}{(x,y)\to (0,0)}$$

$$= \lim_{(x,y)\to(0,0)} \frac{(y-(xy+4))}{(xy+4)}$$

$$= \lim_{(x,y)\to(0,0)} \frac{1}{(x,y)\to(0,0)} = \frac{1}{2+\sqrt{xy+4}} = -\frac{1}{4}$$

3)
$$=\frac{1}{\sqrt{1-\left(\frac{x-y}{x+y}\right)^2}}\cdot\left(\frac{x+y-x+y}{(x+y)^2}\right)=\frac{2y}{(x+y)\sqrt{(x+y)^2-(x-y)^2}}$$

$$\frac{2y}{\sqrt{1 - \left(\frac{x - y}{x + y}\right)^2}} = \frac{2x}{(x + y)^2 - (x - y)^2}$$

9)
$$x.y. z = 4 \Rightarrow z = \frac{4}{xy}$$
 $f(x_1y, z) = xy + 2xz + 2yz \Rightarrow g(x_1y) = f(x_1y, \frac{4}{xy}) = xy + 8(\frac{1}{x} + \frac{1}{y})$
 $g_x = y - \frac{8}{x^2} = 0$
 $g_y = x - \frac{8}{y^2} = 0$
 $g_y = x - \frac{8}{y^2} = 0$
 $g_{xy} = \frac{16}{x^3}$, $g_{yy} = \frac{16}{y^3}$ we $g_{xy} = 1$ bolow,

 $f(x_1y_1, z) = xy + 2xz + 2yz \Rightarrow g(x_1y_1) = f(x_1y_1, \frac{4}{x_1y_1}) = xy + 8(\frac{1}{x_1} + \frac{1}{y_1})$
 $g_{xy} = y - \frac{8}{x_1^2} = 0$
 $g_{xy} = \frac{1}{x_1^2} = 0$
 $g_{xy} = \frac{1}{x_1^2} = 0$
 $g_{xy} = \frac{1}{x_1^2} = 0$
 $g_{xy} = \frac{1}{x_1^2} = 0$
 $g_{xy} = \frac{1}{x_1^2} = 0$
 $g_{xy} = \frac{1}{x_1^2} = 0$
 $g_{xy} = \frac{1}{x_1^2} = 0$
 $g_{xy} = \frac{1}{x_1^2} = 0$
 $g_{xy} = \frac{1}{x_1^2} = 0$
 $g_{xy} = \frac{1}{x_1^2} = 0$
 $g_{xy} = \frac{1}{x_1^2} = 0$

(2,2,1) beyother bir prizma icin isi az sac al digin dan Lullanila bu sa f(2,2,1) = 4+2,2 = 12m2 dr.

$$f(x_0, y_0, z_0) = 9 - 4x^2 - y^2 - z \qquad (x_0, y_0, z_0)$$

$$f_{x} = -8x \qquad \Rightarrow f_x (x_0, y_0, z_0) = -8x_0$$

$$f_y = -2y \qquad \Rightarrow f_y (x_0, y_0, z_0) = -2y_0$$

$$f_{\overline{z}} = -1 \Rightarrow f_{\overline{z}}(x_0, y_0, \overline{z}_0) = -1$$

fx(x0,40),(x-x0) + fy(x0,40),(y-40) + fz(x0,45,70)(7-70)=0 → -8xo (x-xo) - 2yo (y-yo) - 2+20 = 0

$$=$$
 $-8x_0x - 2xy + 2(9-20) - 2+20 = 0$

Bu tget distanin to 44 distanine paralel olmosi igin x=0, 25=4=95-2, v= 7=9-4=5 olmalider, (0,-2,5)

)
$$-2x = 3x^{2} - 2y = 0$$

$$\Rightarrow y = \frac{3}{2}x^{2} \Rightarrow y = \frac{3}{2}\left(-\frac{3}{2}y^{2}\right)^{2} = \frac{27}{8}y^{4}$$

$$\Rightarrow y = \frac{3}{2}y^{4} = 0 \Rightarrow y\left(1 - \left(\frac{2}{2}y\right)^{3}\right) = 0$$

$$\Rightarrow y = 0 \quad \text{vers} \quad \left(\frac{3}{2}y\right)^{3} = 1 \Rightarrow y = \frac{0}{3}$$

$$\Rightarrow y = 0 \quad \text{vers} \quad \left(\frac{3}{2}y\right)^{3} = 1 \Rightarrow y = \frac{0}{3}$$

$$\Rightarrow y = 0 \quad \text{vers} \quad \left(\frac{3}{2}y\right)^{3} = 1 \Rightarrow y = \frac{0}{3}$$

$$\Rightarrow y = 0 \quad \text{vers} \quad \left(\frac{3}{2}y\right)^{3} = 1 \Rightarrow y = \frac{0}{3}$$

$$\Rightarrow y = 0 \quad \text{vers} \quad \left(\frac{3}{2}y\right)^{3} = 1 \Rightarrow y = \frac{0}{3}$$

(0,0) ve $B\left(-\frac{2}{3},\frac{2}{3}\right)$ trifit not tolordir.

21x = 6x → D(x,y) = 7xx. 75y - 75y = -36xy-4 zyy = - 6y 7xy =-2

3(A) = -420 oldgradan A noblasi are noblasidir. 2(B) = -36(-4)-4=60>0 ve = (B)=420 oldgodn yere I maximum noktosidr.

$$= \int_{-\infty}^{\infty} \frac{e^{-xt}}{dx} dt = \int_{-\infty}^{\infty} \frac{d}{dx} \left(\frac{e^{-xt}}{t}\right) dt + \frac{e^{-x^3}}{x^2} dx = \frac{e^{-x^2}}{x}$$

$$= \int_{-\infty}^{\infty} e^{-xt} dt + \frac{2}{x} e^{-x^3} - \frac{1}{x} e^{-x^2}$$

$$= \frac{1}{x} e^{-x^3} - \frac{1}{x} e^{-x^2} + \frac{2}{x} e^{-x^3} - \frac{1}{x} e^{-x^2}$$

$$= \frac{3}{x} e^{-x^3} - \frac{2}{x} e^{-x^2}$$

)
$$\frac{\partial u}{\partial x} = a \cdot \sinh t \cdot \cos(ax)$$
 $\Rightarrow \frac{\partial^2 u}{\partial x^2} = -a^2 \cdot \sinh t \cdot \sin(ax)$

$$\frac{\partial u}{\partial x} = b \cdot \sin(ax) \cdot \cos(bt) \Rightarrow \frac{\partial^2 u}{\partial t^2} = -b^2 \cdot \sin(ax) \cdot \sin(bt)$$

$$\frac{\partial^2 u}{\partial x^2} = c^2 \cdot \frac{\partial^2 u}{\partial t^2} \Rightarrow -a^2 \cdot \sinh(ax) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(bt)$$

$$\Rightarrow a^2 = b^2 c^2$$

$$\Rightarrow a^2 = b^2 c^2$$

$$\Rightarrow a^2 = b^2 c^2$$

$$\Rightarrow a^2 = a^2 \cdot \sin(bx) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(bx)$$

$$\Rightarrow a^2 = b^2 c^2$$

$$\Rightarrow a^2 = b^2 c^2$$

$$\Rightarrow a^2 = a^2 \cdot \sin(bx) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(bx)$$

$$\Rightarrow a^2 = b^2 c^2$$

$$\Rightarrow a^2 = a^2 \cdot \sin(bx) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(bx)$$

$$\Rightarrow a^2 = b^2 c^2$$

$$\Rightarrow a^2 = a^2 \cdot \sin(bx) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(bx)$$

$$\Rightarrow a^2 = b^2 c^2$$

$$\Rightarrow a^2 = a^2 \cdot \sin(bx) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(bx)$$

$$\Rightarrow a^2 = b^2 c^2$$

$$\Rightarrow a^2 = a^2 \cdot \sin(bx) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(bx)$$

$$\Rightarrow a^2 = b^2 c^2$$

$$\Rightarrow a^2 = a^2 \cdot \sin(bx) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(bx)$$

$$\Rightarrow a^2 = b^2 c^2$$

$$\Rightarrow a^2 = a^2 \cdot \sin(bx) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(bx)$$

$$\Rightarrow a^2 = b^2 c^2$$

$$\Rightarrow a^2 = a^2 \cdot \sin(bx) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(bx)$$

$$\Rightarrow a^2 = b^2 c^2$$

$$\Rightarrow a^2 = a^2 \cdot \sin(bx) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(bx)$$

$$\Rightarrow a^2 = b^2 c^2$$

$$\Rightarrow a^2 = a^2 \cdot \sin(bx) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(bx)$$

$$\Rightarrow a^2 = a^2 \cdot \sin(bx) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 = b^2 c^2 \cdot \sin(ax) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 = b^2 c^2 \cdot \sin(ax) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 = a^2 \cdot \sin(ax) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 = a^2 \cdot \sin(ax) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 = a^2 \cdot \sin(ax) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 = a^2 \cdot \sin(ax) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 = a^2 \cdot \sin(ax) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 = a^2 \cdot \sin(ax) \cdot \sin(ax) = -b^2 c^2 \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 = a^2 \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 = a^2 \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 \cdot \sin(ax) \cdot \sin(ax) \cdot \sin(ax)$$

$$\Rightarrow a^2 \cdot \sin(ax)$$

6)
$$AB = (3-1, 13-2, 15-5) = (2,11,10) \Rightarrow ||AB| = \sqrt{2^2 + ||^2 + 10^2} = 15$$

$$\Rightarrow B = \frac{AB}{||AB||} = (\frac{2}{15}, \frac{11}{15}, \frac{10}{15}) \quad \text{olur},$$

$$D_U f = f_X \cdot U_1 + f_Y \cdot U_2 + f_Z \cdot U_3 = \frac{2}{15} (y+z) + \frac{11}{15} (x+z) + \frac{10}{15} (x+y)$$

$$= \frac{21x + 12y + 13z}{15} \Rightarrow D_U f = \frac{21 + 21 + 65}{15} = \frac{110}{15}$$

1) y = x4-2x2 ve y=2x2 egrilori tarafından sınırlanan sölgenin alanını hesaplayınız.

Caroni.

$$x^{4}-2x^{2} = 2x^{2}$$
 $x^{4}-4x^{2} = 0$
 $x^{2}(x^{2}-4) = 0$
 $x_{1,2}=0$
 $x_{3}=2x_{4}=2$

$$A = \int_{-2}^{2} \int_{x^4-2x^2}^{2x^2} dy dx = 2 \cdot \int_{x^4-2x^2}^{2} dy dx$$

$$= 2 \int_{0}^{2} (4x^{2} - x^{4}) dx$$

$$= 2 \left(\frac{4}{3}x^{3} - \frac{x^{5}}{5} \right) \Big|_{0}^{2}$$

$$= \frac{64}{3} - \frac{64}{5} = \frac{128}{5} \frac{1}{5} \frac{2}{5}$$

-) x2=y, x2=4y, y2=1x, y2=1x parabollor barafinda sinir-

$$\frac{\partial (u_j v)}{\partial (u_j v)} = \frac{1}{2} \frac{\partial$$

$$I = \int \int (x-y)^{2} \sin^{2}(x+y) dx dy = \int \int u^{2} \sin^{2}v \cdot \frac{1}{2} dx dv$$

$$= \frac{1}{2} \int \int \int u^{2} \sin^{2}v dx dv$$

$$= \frac{1}{2} \int \int \int u^{2} \sin^{2}v dv = \frac{\pi^{3}}{3} \int \int \int \frac{3\pi}{\pi} \frac{1 - \cos 2v}{2} dv$$

$$= \frac{\pi^{3}}{6} \left(v - \frac{\sin 2v}{2} \right) \left(\frac{3\pi}{\pi} - \frac{\sin 6\pi}{2} \right) - \left(\pi - \frac{\sin 2\pi}{2} \right)$$

$$= \frac{\pi^{3}}{6} \left(v - \frac{\sin 2v}{2} \right) \left(\frac{3\pi}{\pi} - \frac{\sin 6\pi}{2} \right) - \left(\pi - \frac{\sin 2\pi}{2} \right)$$

$$= \frac{\pi^{3}}{3} \left(v - \frac{\sin 2v}{2} \right) \left(\frac{3\pi}{\pi} - \frac{\sin 6\pi}{2} \right) - \left(\frac{\pi}{\pi} - \frac{\sin 2\pi}{2} \right)$$

Lim
$$\begin{cases} \lim_{x\to 0} \frac{x^2-y^2}{x^2+y^2} \end{cases} = \lim_{x\to 0} \frac{x^2}{x^2} = 1$$

olop limitler egit olmodiginden lim $f(x,y)$ mexent $\lim_{x\to 0} \frac{x^2-y^2}{x^2+y^2} = -1$

olop limitler egit olmodiginden lim $f(x,y)$ mexent $\lim_{x\to 0} \frac{x^2-y^2}{x^2+y^2} = -1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+y^2} = \lim_{x\to 0} \frac{x^2}{x^2+y^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+y^2} = \lim_{x\to 0} \frac{x^2}{x^2+y^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+y^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+y^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+y^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+y^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+y^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+y^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2+z^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2-y^2} = 1$
 $\lim_{x\to 0} \frac{x^2-y^2}{x^2-y^2} = 1$
 $\lim_{x\to 0} \frac{x^$

ve beize galilde 320 = 222-x2-y2 bulunur, Burada

$$\frac{\partial^{2} U}{\partial x^{2}} + \frac{\partial^{2} U}{\partial y^{2}} + \frac{\partial^{2} U}{\partial z^{2}} = \frac{2x^{2} - y^{2} - z^{2} + 2y^{2} - x^{2} - z^{2} + 2z^{2} - x^{2} - y^{2}}{\left(x^{2} + y^{2} + z^{2}\right)^{\frac{1}{2}/2}} = 0$$

olv.

$$F_{2}(1,2) = -\frac{F_{2}(1,2,0)}{F_{2}(1,2,0)} = -\frac{17}{4}$$
, $F_{2}(1,2) = -\frac{F_{3}(1,2,0)}{F_{2}(1,2,0)} = -\frac{15}{4}$

bulurur.

$$J = \frac{\partial(x,y)}{\partial(x,y)} = \frac{1}{\frac{\partial(u,v)}{\partial(x,y)}} = \frac{1}{\frac{2x}{y^2}} - \frac{x^2}{y^2}$$

$$= \frac{1}{3} \text{ olaceofinder}$$

$$A = \iint_{B} dx dy = \iint_{3} dx dv = \iint_{2} \int_{1}^{3} \int_{1}^{4} dx dv = \iint_{3} (4-1)(3-2) = 16^{2}$$

bular.

3)

FIRAT ÜNİVERSİTESİ Matematik Bölümü

	,					
			Maten	natik-II		
		Makin	a Müh.	Mazeret	Sınavı	
Kod	: Mat162		Soyadı	:		
	: 2010-201.	1	Adı		Öğrenci	No:
Dönem Öğrt Gör	: Banar : Fāruk Po	lat	Bölüm	:	-0	
Ü			İmza	\$		
Tarih Zaman	: 17.05.201 : 10:00	1		4 Say	fada 5 Soru Vardı	r
Süre	: 80 dakika				olam 100 Puandır	
1 2	3 4	Б				

(20 puan) 1) (a_n) dizisi, $a_1 = 1$, $a_{n+1} = \sqrt{1 + 2a_n}$ ile tanımlarıyor.

The many and approximately as a contract of the contract of th

a) (a_n) dizisinin artan ve üstten 3 ile sınırlı olduğunu tümevarım yöntemiyle gösteriniz.

b) (a_n) dizisinin limitini bulunuz.

(20 puan) 2. Aşağıdaki serilerin yakınsaklık durumunu araştırınız.
a) $\sum_{n=1}^{\infty} \frac{n!}{1.3.5...(2n-1)}$

a)
$$\sum_{n=1}^{\infty} \frac{n!}{1.3.5...(2n-1)}$$

b)
$$\sum_{n=1}^{\infty} 3^{\frac{1}{n^2}}$$

(20 puan)3. $\sum_{n=1}^{\infty} \frac{n}{n+1} \frac{x^n}{2^n}$ kuvvet serisinin merkezini, yakınsaklık yarıçapını ve yakınsaklık aralığını bulunuz.

(20 puan)4 a) $\int_0^\infty \frac{\arctan x}{1+x^2} dx$ integralinin yakınsaklık durumunu inceleyiniz.

b) $\int_1^\infty \frac{dx}{x^2 + \sin^2 x}$ integralinin yakınsaklık durumunu inceleyiniz.

(20 puan)5.a) x-2y+3z=0 ve 2x+3y-4z=4 düzlemlerinin arakesitinden ve (1,0,2) noktasından geçen düzlemin denklemini yazınız.

b) (2,-1,-1) noktasından geçen ve x+y=0 ile x-y+2z=0 düzlemlerinin herbirine paralel olan **doğrunun denklemini standart formda** yazınız.

MAT 136 Matematik II Genel Smav Sorularidir

18 Haziran 2010

Fakülte No	:	***************************************	1	2	3	4	5	6	7	8	9	10
Adı .	:	***************************************		× .	- 34	100 m	-			ay a	_580	N/4
Soyadı	:	***************************************	h					<u></u>			5000	

SORULAR

- 1. $f(x,y) = \ln \left[\left(16 x^2 y^2 \right) \left(x^2 + y^2 4 \right) \right]$ fonksiyonun tanım bölgesini bulunuz, bölgeyi düzlemde gösteriniz.
- 2. $f(x,y) = \begin{cases} \frac{x^2 y^2}{x^2 + y^3} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$ fonkslyonun (0,0) da sürekliliğini incelayiniz.
- 3. $(x,y,z) \neq (0,0,0)$ olmak üzere $u(x,y,z) = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$ fonksiyonu için $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$ ifadesini hesaplayınız
- 4. $2x^4z^3 + 3xy^2 + 4xz + 3y + 5x 23 = 0$ eşitliği ile verilen z = f(x, y) fonksiyonu için $z_x(1, 2)$ ve $z_y(1, 2)$ türevlerini hesaplayınız.
- 5. $f(x, y, \dot{z})$ fonksiyonun i, j, k birim vektörleri yönündeki türevlerini bulunuz.
- 6. B bölgesi , birinci bölgede $x^2-y^2=1, x^2-y^2=9, xy=2, xy=4$ hiperbolleri tarafından sınırlanan bölge olduğuna göre $I=\int\int_B \left(x^2+y^2\right)dxdy$ integralini hesaplayınız.
- 7. x = 0, y = 0 ve x + y = 1 doğruları tarafından sınırlanan üçgensel bir bölge içerisine yerleştirilen bir levhama (x,y) noktasındaki yoğunluğu o noktanın koordinatları çarpınma eşittir. Bu levhann ağırlık merkezini bulunuz.
- 8. G bölgesi $x^2 + y^2 = 9$ ve $x^2 + y^2 = 16$ silindirleri ile z = 0 ve z = 3 düzlemleri tarafından sınırlanan bölge olduğuna göre $I = \iiint_G x^2 dx dy dz$ integralini hesaplayınız.
 - x + 2y + kz = 0
- 9. 2x+ky+2z=0, denklem sisteminin hangi k değerleri için aşıkar çözümün dışında çözümü vardır. 3x+y+z=0
- 10. $A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 3 \\ -3 & -8 & -4 \end{bmatrix}$ matrisinin tersini bulunuz.

Not: 1. ve 2. sorular 5, 6 ve 8. sorular 15, diger sorular 10 puan olup, sure 100 dakikadır.

CEVAPLAR

(16-x2-y2)(x2-y2) > 0 yari 4 < x2 +y2 < 16 sellinde

Li tom (x,y) notterlarinde fonteigen tenim ve real

displicit. Bu notterlarin objection desired tenim böljesi orgin

meteri ve 4 yarıcaplı genberin içi ve orgin merteri.

2 yarıqaplı genberin diridir.

(9) Katsayılar determinantı (6)
$$\Delta = \begin{vmatrix} 1 & 2 & k \\ 2 & k & 2 \end{vmatrix} = 0$$
 olmalıdır.

$$\Delta = k-2 - (-8) + k(2-3k) = -3k^2 + 3k + 6 = 0$$
 olup
buradon $k = -1$ ve $k = 2$ bulunur.

bu know

$$A_{11} = \begin{vmatrix} 5 & 3 \\ -8 & -4 \end{vmatrix} = 4 \quad A_{12} = -\begin{vmatrix} 2 & 3 \\ -3 & -4 \end{vmatrix} = -1 \quad A_{13} = \begin{vmatrix} 2 & 5 \\ -3 & -8 \end{vmatrix} = -1$$

$$A_{21} = -\begin{vmatrix} 3 & 2 \\ -8 & -4 \end{vmatrix} = -4$$
 $A_{22} = \begin{vmatrix} -3 & -4 \\ 1 & 2 \end{vmatrix} = 2$ $A_{23} = -\begin{vmatrix} 1 & 3 \\ -3 & -8 \end{vmatrix} = -1$

$$A_{31} = \begin{vmatrix} 3 & 2 \\ 5 & 3 \end{vmatrix} = -1$$
 $A_{32} = -\begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = 1$ $A_{33} = \begin{vmatrix} 1 & 3 \\ 2 & 5 \end{vmatrix} = -1$

Bradon

$$Adj A = \begin{bmatrix} 4 & -4 & -1 \\ -1 & 2 & 1 \\ -1 & -1 & -1 \end{bmatrix}$$
 ohr.

$$A^{-1} = \frac{A + J \cdot A}{|A|} = \begin{bmatrix} -4 & 4 & 1 \\ 1 & -2 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$
 by king.

(1) flxy = x2y. fortelymon x 1 ve y-2 no towelled consinter

Creation:
$$f_{x} = 2xy|_{x=1} = 4$$
, $f_{xx} = 2y|_{x=1} = 4$, $f_{xxy} = 2$

$$f_{xy} = 2x|_{x=1} = 2$$

$$f_{y=2} = 2x|_{x=1} = 4$$
, $f_{y=2} = 2x|_{x=1} = 4$, $f_{xxy} = 2$

$$f_{y=2} = 2x|_{x=1} = 4$$
, $f_{y=2} = 2x|_{x=1} = 4$, $f_{yx} = 2$

olur. Burandon,

$$f(x,y) = f(1,2) + (x-1)f_{x}(1,2) + (y-2)f_{y}(1,2) +$$

$$+ \frac{1}{2!} [(x-1)^{2} f_{xx}(1,2) + 2(x-1)[y-2) f_{xy}(1,2) + (y-2)^{2} f_{yy}(1,2)]$$

$$+ \frac{1}{3!} [(x-1)^{3} f_{xxx}(1,2) + 3(x-1)^{2} (y-2) f_{xxy}(1,2) + 3(x-1)[y-2)^{2} f_{yy}(1,2)]$$

$$+ [y-2]^{3} f_{yy}(1,2)$$

$$=2+4(x-1)+(y-2)+1[4(x-1)^{2}+4(x-1)(y-2)]$$

$$+\frac{1}{3!}[6(x-1)^{2}(y-2)]$$
bolong.

2) 7-arctanxy fonksiyonu (1,1) nottasında ikinci metebeden terimlere Locder Taylor serisine acalım;

Chazzin:
$$\frac{3}{1+2y^2} \left| \frac{y}{y=1} \right| = \frac{1}{2}$$
, $\frac{3}{1+2y^2} \left| \frac{x}{y=1} \right| = \frac{1}{2}$

$$\frac{2}{2} = \frac{-2xy^3}{(1+x^2y^2)^2} \Big|_{x=1} = \frac{-2}{4} = \frac{1}{2}, \quad \frac{3y}{(1+x^2y^2)^2} = \frac{1}{2}$$

$$\frac{2}{xy} = \frac{(1+x^2y^2) - 2x^2y^2}{(1+x^2y^2)^2} = \frac{1-x^2y^2}{(1+x^2y^2)^2} = 0$$
 dir. Bu

teledirete,

i) F $(x,y,z) = x^2 + y^2 + z^2 - 2xy - xz - 1 = 0$ ile kapali olarak veilan z(x,y) fonksiyonun x = 0, y = 0, z = 1 noktosi civarinda ikinci martebadan tüzürlere kadar Taylor savisine açınız.

-deim: 2x +2+2x -2y -x7x -2=0

below.

$$z_{xx} = \frac{(-2+z_x)(2z-x) - (2y-2x+z)(2z_x-1)}{(2z-x)^2} \Big|_{(0,0,1)} = -\frac{3}{4}$$

$$z_{yy} = \frac{-2(2z-x) - (2x-2y)(2z_y)}{(2z-x)^2}\Big|_{(0,0,1)} = -1$$

$$z_{xy} = \frac{(2+z_y)(2z-x)-(2y-2x+z)(2z_y)}{(2z-x)^2}\Big|_{(0,0,1)} = 1$$
 elde edilir.

Bu deserbi Taylor addiminda yorne yazarsak;

4) U-V-X2-14-1=0, U+V2-X-4-1=0 destables ille lapoli
elevate variet u=u(xy) fortstyrunu x=1, y=1, u=1, v=1 noktelevate letaci mertebeden toreviere lader Toylor aculmini
bulance.

Cazom: 0x - 0x = 2x $\Rightarrow 0x = \frac{1+xv+1}{2v+1}$, $v_x = \frac{1-2x}{2v+1}$

 $U_{xx} = \frac{(4v + 4xv_x)(2v+1) - 2v_x(4xv_H)}{(2v+1)^2}$ olip (1,1,2,1)

nolotasinda Uz= = 3, Vx=-1 , Vxx = 34 dr.

uy - vy = -1 uy + 2v + y = 1 $y = \frac{1 - 2v}{2v + 1}$ $y = \frac{2}{2v + 1}$

 $v_{xy} = \frac{-2v_x(2v_+) - 2v_x(1-2v)}{(2v_+)^2}$

 $u_{yy} = \frac{-2vv_y(2v+1) - 2v_y(1-2v)}{(2v+1)^2}$ ve (1,1,2,1) nochesindo

 $uy = -\frac{1}{3}$, $vy = \frac{9}{3}$, $uxy = \frac{4}{27}$ ve $uyy = -\frac{8}{27}$ bulster.

U(xy)= U(1,1) + (x-1) Ux (1,1)+ (y-1) (y(1,1)

+1[(x-1)20xx (1,1) + 2(x-1)(y-1)0xy(1,1) + (y-120yy(1,1)]

+ 02

 $= 2 + \frac{5}{3}(x-1) + \left(-\frac{1}{3}\right)(y-1) + \frac{1}{2!} \left[\frac{34}{27}(x-1)^2 + 2 \cdot \frac{4}{27}(x-1)(y-1) - \frac{8}{27}(y-1)^2\right] + \epsilon_2$

elde edilir.

1) Asagrala verilen integrallerin integrasyon bajasaini albina, ntegrasyon strasmi dejeticiniz ve dejetici hesaplayınız.

7 620m;

 $\int \int (x_{4y}) dy dx = \int (x_{3} + \frac{x_{4}}{2}) \int dx = \int (x_{3} + \frac{x_{4}}{2}) dx$ $= \left(\frac{\times^4}{4} + \frac{\times^5}{10}\right) \int_0^1 = \frac{1}{4} + \frac{1}{10} = \frac{7}{20}$

b)
$$\int_{1}^{e^{2}} dxdy = \int_{1}^{e^{2}} dydx$$
 e^{2} $-\frac{1}{2}$ $\frac{1}{2}$ e^{2}

$$= \int_{0}^{2} (e^{x} - 1) dx = (e^{x} - x) \Big|_{0}^{2} = (e^{2} - 2) - 1$$

$$= e^{2} - 3.$$

1) internasion belossi, kasalar (17,0), (277,77), (17,271), (0,71) olan paralellenar old. gore

U=xery, v=xty donc = yordmyla hesaplayino.

bulour. Benzer selile y== olir. Buna gare leuhanin agirlik!

(8)
$$T = \iint_{\mathcal{B}} \left[\int_{0}^{3} x^{2} dz \right] dx dy = \iint_{\mathcal{B}} x^{2} z \int_{0}^{3} dx dy = \iint_{\mathcal{B}} 3x^{2} dx dy$$

olr. Kutupsal Loordhatlara geallise,

$$T = 3 \int_{0}^{2\pi} \int_{0}^{4\pi} e^{2\pi s^{2} ||x|^{2}} dx = \frac{3}{4} \int_{0}^{2\pi} e^{4} \int_{0}^{4\pi} e^{-3s^{2} ||x|^{2}} dx$$

$$= \frac{525}{4} \int_{0}^{2\pi} \frac{1}{2} (1 + \cos 2t) dt$$

$$= \frac{525}{4} \left(\frac{1}{2} + \frac{1}{4} \sin 2t \right) \Big|_{0}^{2\pi}$$

$$= \frac{525}{4} \pi$$

D; f(x,y,z) = Vf. 7 = fx + 0+0 = fx alum.

O halde bir fontsigoner i yonen deli türevi f. kısmi tirevi dir. Benzer sekilde Dif(xıyız), Dif(xıyız) türevleri hesepan diginda

 $D_{i} f(x,y,z) = f_{x}(x,y,z), D_{y} f(x,y,z) = f_{y}(x,y,z), D_{y} f(x,y,z) = f_{z}(x,y,z)$

dogrolari alde edilir.

$$\frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{\frac{\partial(u,v)}{\partial(x,y)}} = \frac{1}{\begin{vmatrix} 2x & -2y \end{vmatrix}} = \frac{1}{2x^2 + 2y^2}$$
 olup.

bulur.

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ I.-II. ÖĞRETİM MAT 172- Matematik II Mazeret sınavı Ders sorumluları: N.ÇATALBAŞ & Erdal BAŞ 20. 05.2009

110				1	2	3	4	Toplam
Adı ve Soyadı	:							
NOT: süre	i 75 dakikad	IF RACADIT	4.D				-	

The state of the s	
S-1 $\iint_{B} \frac{y^{2}e^{x^{2}y^{2}}}{x} dA$ integralini hesaplayı	nız.
$B = \{(x, y) \in \mathbb{R}^2 : x^2 \le y \le 2x^2, 2 \le xy\}$	≤ 3}

Çözüm: y = 2x y = x2
1 V 13"
Xy=3
XO TO THE REAL PROPERTY OF THE PERTY OF THE
11 = xy = 1 + 1 + 2 = 3
$V = \frac{1}{2} \Rightarrow V : 1 \Rightarrow 2$
Y=====================================
2 j
SS 92 = 29 dA = 5 5 = 2 e 15 1. du
JJ = dA=JJ ×
A
,
T = 1 X RY
- (EU × U) 3
$J = \frac{1}{\begin{vmatrix} v & v & v \\ v & v & v \end{vmatrix}} = \frac{1}{\begin{vmatrix} v & v & v \\ v & v & v \end{vmatrix}} = \frac{x}{\begin{vmatrix} v & v & v \\ v & v & v \end{vmatrix}}$
0
$= \int_{2}^{2} \frac{y^{2}}{x} e^{u^{2}x^{2}} dudv = \frac{1}{3} \int_{2}^{2} e^{u^{2}x^{2}} dudv$
= = x dudy== e.xydudy
72 29.
2 23
- 1 ((1.evaludy = 1 de dv)
$=\frac{1}{3}\int\int u \cdot e^{u^{2}} du dv = \frac{1}{3}\int_{1}^{2} \frac{1}{2}e^{u^{2}} dv$
0
1 8 67 (1 1 (29 24))
= 1 (e -e) dx= 6 (e -e / 1)
= 1 (e - e4) [dx = 1 (e - e4)]
. 5
$= \frac{1}{6} \left(e^9 - e^9 \right)$
1

S-2)
$$u = f(x, y, z) = x + y + z,$$

$$v = g(x, y, z) = x(y + z)$$
fonksiyonlarının,
$$w = h(x, y, z) = x^2 + y^2 + z^2 + 2yz$$
fonksiyonel bağımlı olup olmadığını gösteriniz. Eğer bağımlı ise aralarındaki bağımtıyı yazınız.

ete edilir

S-3)
$$z = e^{\frac{y}{y}} \sin \frac{x}{y} + e^{\frac{y}{x}} \cos \frac{y}{x}$$
 fonksiyonunun $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 0$ denklemini sağladığını gösteriniz.

Cözüm:

S-4) Yarıçapı a ve merkez açısı 2θ olan daire dilimi biçimindeki homojen bir levhanın ağırlık merkezinin koordinatlarını bulunuz.

Çözüm:

$$\overline{X} = \frac{1}{30} \int_{-0}^{\infty} \int_{-$$

$$=\frac{2}{30} \sin \varphi = \frac{200 \sin \theta}{30}$$

gäre simetri oldupardan

INSAAT MUHENDISLIGI

MAT 162 MATEMATIK I DERSI 2008-2009 BAHAR Y. YILI TELAFI-MAZERET SINAVI SORULARIAIR.

S. I. Asapidaki limitleri hesaplayınız.

a) lim sinx-sinm , b) lim x2+3x-10 . x->m cosx-cosm x->2 x2+2x-8

S.2. $x^2+y^2+3xy-2x+3=0$ kapalı fonksiyonu veriliyor, x=1, y=-2 isin $\frac{dy}{dx}$ in deferi kaletir?

5.3. $f(x) = 2x^{3} + 5x^{2} - 7x + 11 \text{ ise}$ $f''(-1) = n \cdot \text{eolir?}$ $f''(-1) = n \cdot \text{eolir?}$

5.4. Asapidaki interpralleri hesaplayınız.

a) $\int (x^{3/2} + 7x^{7} + 5x^{7} + 3) dx$ b) $\int x^{2} e^{3x} dx$

5.5. $\int_{-3}^{3} (x^{3} + x^{2} - 12x) dx$ integralini hesaplayınız.

Not: sure 70 dakikadir.

CEVAPLAR

FIRAT UNIVERSITES! INSAAT MUHENDISLIGI

MAT 162 MATEMATIK I DERSI 2008-2009 BAHAR YYU GENEL SWAY SORULARIDIR.

GENEL SIVII	7 2 3 4 5 7
Adi ve Soyadi:	
T. J. Wai	ng na. 2009

Tak. No:

$$09.06.2009$$

S. I. Asapidaki Limitleri hesaplayınız.

a) $\lim_{x\to\infty} \frac{2x^2 + 5x - 7}{3x^2 + 4x + 3}$, b) $\lim_{x\to\infty} \frac{e^{2x}}{x^2}$

S. 2. $f(x) = \begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \\ -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \\ -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac{1}{5}(2x^2 + 3) & -\infty < x \le 1 \end{cases}$
 $\begin{cases} \frac$

a) $\int 3x^2 \sqrt{x^3 + 2} \, dx$, b) $\int e^x x^2 dx$ 5.5. Asapidaki belirli integralleri hesaplayınız:

Not: sure 70 dakkadır.

CEVAPLAR

× * ru .

S-5) (20p) $\sum_{k=1}^{\infty} \frac{(x-1)^k}{k}$ kuvvet serisinin yakınsaklık

Ch = 1 lu Chel = lui 1 = 1 1x-11 < R.

(=0 Icin \(\frac{(-1)}{k}\) afterne serisi galunsalıtır.

K22 igin I = I = armoruh serisi irahsalutir

onus olarale yalunoalelile iralign [0,2) dir.

S-6) (20p) $\int_0^{\infty} \frac{dx}{(1+x^2)(1+\arctan x)}$ integralinin değerini

Cozum:

= !n | 1 + arctan 00 |

 $= \ln \left(1 + \frac{1}{2}\right)$

Mähendisiik Fak, MAT 162 Matematik II Arasınavı		Dersin F	locası:			04	00 0010 1	
Böllmä:	Sube:	Süre 60 d		lk 30 dakii	(= mmayda-	U4.	08.2019	
Adı ve Soyadı :					31MA74MB	CIKMINE YO	saktır.	Puar
As			2	3	4	5	6	
Oğrenci No :	Imza:							

S-1) (15p) $\lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{x^2-y^2}$ limitininin mevcut olup

olmadığını araştırınız.

Circle (lin $\frac{(x+y)^2}{x^2-y^2}$) = lin $\frac{x^2}{x^2} = 1$ $x \to 0$ $y \to 0$ $\frac{(x+y)^2}{x^2-y^2}$ = lin $\frac{x^2}{x^2} = -1$ lin (lin $\frac{(x+y)^2}{x^2-y^2}$) = lin $\frac{x^2}{y^2} = -1$ $y \to 0$ $x \to 0$ $\frac{(x+y)^2}{x^2-y^2}$ = $y \to 0$ $\frac{x^2}{x^2} = -1$

S-2) (15p) $\sum_{k=1}^{\infty} \frac{3^k}{k^3}$ serisinin karakterini inceleyiniz.

Çözüm:

I'm
$$\frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{(kn_1)^3}{3^k}$$

$$= \lim_{k \to \infty} \frac{3^{k+1}}{(k+1)^3} \cdot \frac{k^3}{3^k}$$

$$= \lim_{k \to \infty} \frac{3^k}{(k+1)^3} = 3 > 1$$
olduğundan iroksalıtır.

S-3) (15p) $5xy^2z^3 + x^2 - y^2 - 5z^2 = 0$ kapalı fonksiyonu için $\frac{\partial z}{\partial x}\Big|_{(i,l,1)}$ türevini hesaplayınız.

Cözüm:

$$\frac{\partial z}{\partial x} = -\frac{f_x}{f_x} = -\frac{5y^2z^3 + 2x}{15xy^2z^2 - 10z}$$

$$= -\frac{7}{5}$$

S-4) (15p) Bir dikdörtgenin kısa kenarı 20 cm, uzun kenarı 30 cm dir. Eğer kısa kenarı 1mm artar, uzun kenarı 2mm azalırsa Alanı yaklaşık kaç cm² olur? (Tan diferensiyel hesabı kullanılacaktır)

Çözüm:

$$A = x \cdot y$$

$$dx = 0.1$$

$$dy = -0.2$$

$$dA = A_x dx + A_y dy$$

$$dA = y dx + x dy$$

dA = ydx + xdy dA = 30.(0,1) + 20(-0,2) dA = -1 olduğundun.

Alan 1 cm² azalır. Sonuş

olaralı yahlazılı 20.30 - 1 = 599 cm²olur.

Minhendistik Fak, MAT 162 Matematik II Arasınavı		Dersin Hocası:				0.8	08.04.2019	
Batania:	Grubu:	Süre 70 dakikadır. İlk 30 dakika sınaydan çıkmak yasaktır.						
Adi ve Soyndi:	lin tee		2	3	4	5	T .	
Ogrenci No:	tmza:							

S-1) (20p)
$$\sum_{n=1}^{\infty} \frac{1}{n5^n} (x-3)^n$$
 serisinin yakınsaklık aralığını bulunuz

Cözüm:

$$C_{\mu} = \frac{1}{0.5^n}$$
, $\aleph_0 = 3$

$$\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n\to\infty} \frac{n.5^n}{(n+1).5^{n+1}}$$

$$= \frac{1}{5} \lim_{n\to\infty} \frac{n}{n+1} = \frac{1}{5} = 1$$

$$\frac{(-5)^n}{n} = \frac{\sum_{i=1}^{\infty} (-1)^n}{n}$$

Duser Alterne seridir telbnita fasti,

old. Jakinsak.

$$(58)$$
 iuin $\frac{50}{5}$ $\frac{50}{0.50}$ = $\frac{50}{0.51}$ $\frac{1}{0}$

Harmonik serl and bld. inalizali

S-2) (15p)
$$x^2y + zx^3 + z^3y - xyz - 1$$
 ile verilen $z = f(x, y)$ fonksiyonunun z_x kısmi türevini (1,0,1) noktasında hesaplayınız.

Çözüm

$$\frac{2x = -\frac{Fx}{F_2}}{= -\frac{(2xy + 32x^2 - yz)}{(x^3 + 32^2y - xy)}}$$

$$2_{x}(1.0.1) = -\frac{(21.0 + 3.1.1 - 01)}{(1^{3} + 3.1^{2} \cdot 0 - 1.0)}$$

$$=-\frac{3}{4}=-\frac{3}{4}$$

 $\int_{S(3)} (15p) \lim_{(x,y)\to (0,2)} \frac{x^2}{x^2-y} \text{ limitinin var olmadiğini}$

Kartezyen Koordinatlardan.

Possile ulmodifinde. Elmila moveut مادةااط:٠

S-4) (20p) $\sqrt{(3.01)^2 + (3.98)^2}$ sayısının yaktaşık değerini

$$=\frac{3}{5}(0.01) + \frac{4}{5}(-0.02)$$

Het Herap Makinasi Kuliandaruk old integral yokinsol.

S-5) (15p) $\sum_{n=1}^{\infty} \frac{(n+2)!}{3^n (n!)^2}$ serisinin karakterini inceleyiniz.

$$= \lim_{n \to \infty} \frac{n+3}{3(n+1)^2} = 0$$

Oct old seel yokensale.

S-6) (15p) $\int_2^\infty \frac{dx}{x(\ln x)^2}$ integralinin çeşidini belirleyiniz. Yakınsaklık durumunu İnceleyip, değerini

Cüzüm:

Brinch Crest Genellestrilms to