

Sistemas Gráficos e Interacção

Época de Recurso 202				
N.º	Nome			
Duração da prova: 45 minutos Cotação de cada pergunta: assinalada com parêntesis rectos Perguntas de escolha múltipla: cada resposta incorrecta desconta 1/3 do valor da pergunta				
Parte Teórica 10%				
a. [3.3] As vulgares impressoras de jacto de tinta constituem exemplos de dispositivos				
i. ii. iii. iv.	Matriciais Vectoriais Tensoriais Nenhuma das anteriores			
b. [3.3] 0	b. [3.3] Qual das seguintes matrizes representa o ponto 3D com coordenadas (4.0, -2.0, -1.0)?			
i. ii. iv.	[4.0, -2.0, -1.0, 0.0] ^T [2.0, -1.0, -0.5, 1.0] ^T [8.0, -4.0, -2.0, 2.0] ^T Nenhuma das anteriores			
c. [3.3] Qual das seguintes transformações usaria para transformar o objecto A da Figura 1 no objecto B?				
i. ii. iv.	Rotação Escalamento Shearing Nenhuma das anteriores			

Figura 1

В

- d. [3.3] Que técnica de representação de sólidos está ilustrada na Figura 2?
- B-Rep
 - CSG Octrees
 - iv. Nenhuma das anteriores

Figura 2

- e. [3.3] Nos modelos de iluminação locais, a intensidade da componente de reflexão difusa
 - Varia consoante a posição da fonte de luz
 - ii. Varia consoante a posição do observador
 - iii. Pode ser calculada de forma aproximada com o recurso ao vector halfway
 - Nenhuma das anteriores
- f. [3.3] A função de mapeamento de texturas ilustrada na Figura 3 baseia-se numa parametrização

- Cúbica i.
- Cilíndrica
- Esférica
- Nenhuma das anteriores

Sistemas Gráficos e Interacção

Época de Recurso		2022-02-25
N.º	Nome	

Parte Teórico-Prática 20%

a. **[3.0]** Considere o polígono representado na Figura 4. Este está rodado de 45° em torno do eixo Z. Indique as componentes do vector normal unitário.

Normal: (0.0, 0.0, 1.0) ou (0.0, 0.0, -1.0), pois o enunciado não indica para onde está voltado o lado da frente do polígono

b. [3.0] Considere um automóvel, localizado na posição car.position.x, car.position.y, car.position.z, seguindo na direcção car.rotation.z. Pretende-se colocar uma câmara a seguir o veículo, colocada na traseira deste a uma distância DIST e a uma altura ALT. Indique os argumentos dos seguintes métodos usados para configurar a câmara.

- c. [1.4] Um objeto Sprite é definido usando
 - i. Geometry e Material
 - ii. Light e Scene
 - iii. Apenas Geometry
 - iv.) Apenas Material
- d. [1.4] Numa PerspectiveCamera, o valor do parâmetro Near
 - i. Pode assumir qualquer valor real
 - ii. Tem de ser *Near* < 0.0
 - (iii.) Tem de ser *Near* > 0.0
 - iv. Tem de ser Near > Far
- e. [1.4] No Three.js, a orientação da face da frente de um polígono
 - i. É definida usando o parâmetro frontFace
 - ii. Fica sempre orientada para o z positivo
 - (iii.) É definida pela ordem em que se indicam os vértices do polígono
 - iv. Não existe, pois os polígonos não têm frente nem verso

Sistemas Gráficos e Interacção

Época de Recurso		
N.º	Nome	
f.	 [1.4] No Three.js, ao usar uma DirectionalLight, i. Usando uma câmara Orthographic ii. Usando uma câmara Perspective iii. Usando 6 câmaras Perspective iv. Sem o recurso a câmaras auxiliares 	o cálculo das sombras é efectuado
g.	 [1.4] Quando se usa uma SpotLight, que propabertura do foco? i. penumbra e decay ii. opening e orientation iii. sweep e position iv. angle e target 	riedades se utilizam para definir a orientação e
h.	i. texture ii. uv iii. st iv. texmap	no Three.js, usa-se o atributo da BufferGeometry
i.	 [1.4] No Three.js, se se pretender aplicar numa i. Deve-se usar o WebGLRenderTarget ii. Deve-se usar o RenderTolmage iii. Deve-se usar um Sprite iv. Não é possível 	textura o resultado de uma renderização
j.	 [1.4] Para implementar <i>picking</i> no Three.js, é ne i. As coordenadas normalizadas do rato (c ii. A câmara que foi usada na renderização iii. Os objectos aos quais se pretende fazer iv. Todas as anteriores 	ou local onde se pretende fazer picking)
k.	 [1.4] Quando se activa o Fog no Three.js i. Todo o canvas é afectado ii. Apenas as zonas do canvas com objecto iii. O Fog só afecta os objectos que são filh iv. Nenhuma das anteriores 	
I.	[1.4] Na técnica de pós-processamento usa tipicamente realizada usando i. InitPass ii. StartPass iii. GlitchPass iv. RenderPass	ando <i>EffectComposer</i> , a primeira passagem é