2021 秋线性代数(B2)期末

授课教师: 陈发来 欧阳毅 时间: 2小时

一(30',每空 5')填空

$1.设矩阵A = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$	0 1 1 0 .则A的 Jordan 标准形是	A的最小多
项式是		性变换
$A: x \to Ax$ 的二维	不变子空间为	
2.在四维欧式空间] \mathbb{R}^4 中, W 是由 $lpha_1=(1,0,1,0)$ 与 $lpha_2=(0,1,0,1)$ 生成	的子空间。
向量α = (1,1,−1,	-1)在 W 中的正交投影向量 β (即满足 $\alpha - \beta \in W^{\perp}$ E	1在W中的向
量β)是	_·	
$3.复方阵A = \begin{pmatrix} 0 \\ -i \\ 1 \end{pmatrix}$	<i>i</i> 1 0 <i>i</i>) − <i>i</i> 0	_·

- 二(15')给定数域 \mathbb{F} 上的n阶方阵A,定义 $V = \mathbb{F}^{n \times n}$ 上的线性变换 $\mathcal{A}: X \to AX XA$. 如果A可以对角化, \mathcal{A} 是否也可以对角化?请说明理由。
- $\Xi(15')$ 设A为n阶复方阵,k为正整数。用 Jordan 标准形证明: $rankA^k rankA^{k+1} \ge rankA^{k+1} rankA^{k+2}$

四(15')设矩阵
$$A = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \end{pmatrix}$$
.

- 1.求矩阵A的正交相似标准形.
- 2.设 \mathbb{R}^3 上的线性变换 \mathcal{A} : $x \to Ax \in \mathbb{R}^3$.证明: \mathcal{A} 是绕过原点的直线l的旋转变换.

并求变换的轴l及旋转角度 θ .

五(15')设A是有限维欧式空间V上的线性变换。证明:

 $V = Im\mathcal{A} \oplus Ker \backslash scriptA$

六(10')设A,B为同阶实对称方阵,且 $A \ge B \ge 0$ (即 $A \ge 0,B \ge 0$ 且 $B-A \ge 0$).证明: $\sqrt{A} \ge \sqrt{B}$.

注: 此卷有多道题与 2021 春线性代数(A2)陈发来老师班期末重合,故也可以作为 A2 的参考。