

MLPs FOR IMAGES

Its power source becomes a problem:

- MLPs works properly only for very small images (e. g. MNIST, Fashion-MNIST).
 - Drawbacks:
 - Only work in 1D: image flattening is needed.
 - Dense layers: are fully connected.
- #parameters number explosion: unfeasible its use
 - Currently, easily image resolution > 12 Mpixels (e. g. $12 \cdot 1024 \times 1024$)
 - Input layer: $n_{input} \approx 12 \cdot 10^6$ neurons.
 - hidden_1: $n_1 = 10^6$ neurons.
 - $\#\mathbf{W}^{[1]} \approx 12 \cdot 10^6 \cdot 10^6 \approx 10^{13}$

credits

REFOCUSING IS NEEDED FOR IMAGE PROBLEMS

Inspiration source: brain structures

- The senses are intrinsically related to living creatures.
 - a) Perception is processed in brain zones non-related to conscious activity.
 - We do it unconsciously.
 - We are not able to express it using rules. e. g. find a cat in an image.
 - b) There are specialized areas in the brain for each sense:
 - Vision: visual cortex. Hearing: auditive cortex.
 - c) Successive brain areas form a preprocessing pipeline:
 - Before reaching brain areas of conscious activity.
 - d) There are brain zones that combine information from different senses.

VISUAL CORTEX NEUROPHYSIOLOGY

Image processing in brain:

- Hubel & Torsten. Nobel Medicine Prize in 1981 for research on visual cortex.
 - a) Idea of local receptive field:
 - Mapping retina -> cortex: small neuron groups react to stimulus in concrete regions of the visual field.
 - Overlapping groups cover the whole visual field.
 - b) Groups of neurons reacts to simple patterns.
 - E. g. V, H orientations.
 - c) Other groups of neurons react to more complex patterns:
 - Combination of simpler patterns.

APPLY CORTEX IDEAS TO NEURAL NETWORKS

Constraints on architectures (LeCun, 1998):

- Idea:
 - At our disposal, a priori knowledge of the problem.
 - Constraints on model architecture, based on this knowledge.
- Impact:
 - Improvement of model generalization capacity.
 - A significant reduction of #parameters.

Directly applicable in images:

- Flattening -> loss of neighbourhood info.
- It makes sense to define a grid.
- Good idea to extract local features and combine them.

Χ

Χ

Χ

Χ

NOVEL ARCHITECTURE = CNNs

▶ LeNet-5 (LeCun, 1989-1998):

- Applied the novel backpropagation technique to images problems.
- Selected problem: handwritten digits recognition.
- Released a reference dataset: MNIST.
- Foundation of current CNNs.

A model ahead of its time:

- It was not popular at its time: due to the lack of computation HW.
- Explosion of interest in CNNs: (when GPUs appeared)
 - In AlexNet (2012): a slight variation of LeNet trained on GPU
 - Won the ImageNet: image recognition challenge.
 - Since then, CNNs became the de facto tool for image classification.

credits

CNN BASIC BLOCKS

Constraints on the architecture:

- CNN has two blocks:
 - A final "classical" MLP predicting the class.
 - A new "preprocessing block" before the MLP

Why this preprocessing block:

- MLP still needs a flattened 1D-array.
- Idea: inject in this 1D-array as much info as possible.
- Creating new layers that perform operations in 2D:
 - Convolutional layer: extracts image features.
 - Pooling layer: subsamples image.

PROBLEMS: FROM 1D TO 2D

Problems:

- In dense layers:
 - Interconnection: each neuron one layer
 - With all neurons of the previous layer.
- Impact:
 - Huge number of weights (parameters)
- Extension to 2D dense layers:
 - An even bigger number of weights.
 - An alternative approach is needed.

CONVOLUTIONAL LAYER: INTUITION

Emulating local receptive fields:

- Goal: avoid losing pixel neighbourhood info.
- Perform operations in 2D: no flattening.
- Each neuron of the layer:
 - No more connected to all neurons of the previous layer.
 - Is only connected to a rectangle (f_W, f_H) : pixel local info es captured.

Intuitive interpretation of layer operation:

- All pixels (i, j) of the convolutional layer are traversed.
- An operation is applied on a rectangle of pixels of the previous layer.

CONVOLUTIONAL LAYER: OPERATION

Renaming a dense 2D-layer operation: convolution

- Input image= matrix of values in range 0-255 (grayscale)
- Kernel (or filter): 3x3, 5x5, 7x7.Dim(Kernel) << Dim(Imagen)
 - Classical dense layer (but 2D) and with all weights zero except for the concrete rectangle of the kernel
- Convolution: $H = I \otimes K$, element-wise product of both matrices and a final sum of all its elements.
 - Output layer: Feature Map.

Image: convolutional layer input

5x5

2	9	11	22	42				
12	43	2	0	65		0	0	1
9	87	65	2	90	\otimes	1	0	0
21	21	44	7	2		0	0	1
45	2	21	2	0			Kerne	

0 0 1 88 67 134

1 0 0 = 55 94 132

0 0 1 107 25 134

Kernel 3x3

Feature map convolutional layer output 3x3

CONVOLUTION BY HAND

convolution 43₀ 65₁ 87₀

2	9	11	22	42		100	nvoluti	on
12 ₀	43 ₀	2,	0	65		88		
91	87 ₀	65 ₀	2	90	=	55		
21 ₀	21 ₀	44	7	2				
45	2	21	2	0				

Kernel

0	0	1
1	0	0
0	0	1

2	9	11	22	42		cor	nvoluti	on
12	43	2	0	65		88		
9 ₀	87 ₀	65 ₁	2	90	=	55		
21 ₁	21 ₀	44 ₀	7	2		107		
45 ₀	2 ₀	21_1	2	0				

2	9 ₀	11 ₀	22 ₁	42		cor	nvoluti	on
12	43 ₁	2 ₀	00	65		88	67	
9	87 ₀	65 ₀	2	90	=	55		
21	21	44	7	2		107		
45	2	21	2	0				

••

KERNEL UTILITY: FEATURE EXTRACTION

Identity kernel

0	0	0
0	1	0
0	0	0

Feature map 1

Outline kernel

	-1	-1	-1
)	-1	8	-1
	-1	-1	-1

Feature map 2

Sobel left

Feature map 3

Sobel bottom

	-1	-2	-1
\otimes	0	0	0
	1	2	1

Feature map 4

Lighten kernel

 $igotimes 0 & 0 & 0 \\ igotimes 0 & 2 & 0 \\ \hline 0 & 0 & 0 \\ \hline$

Feature map 5

5

Darken kernel

	0	0	0
\otimes	0	0,5	0
	0	0	0

Feature map 6

credits

CONV LAYER = PARTICULAR DENSE LAYER

CNN training: kernel weights

Sparse weights:

- Dense layers: each neuron has weights to all neurons of the prev. layer.
- Conv layers: each neuron has only weights to a rectangle of the previous layer.

Parameter (weights) sharing:

- Dense layers: $W^{[i]}$, in general, weight values are different.
- Convolutional: kernel weights are shared by all neurons in the layer.

Equivariance to translation:

- Kernel can detect the feature in any area of the image (under translation).
- Non-equivariance under other transformations (e. g. rotation).

STACKING OF FEATURE MAPS

More than one kernel can be applied:

- Each kernel generates a feature map.
- Apply different kernels to an image, as much as needed.
- Each kernel has its own weights.

CONV LAYER PARAMETERS: PADDING

Conv layer alters original image shape:

- No-padding: loss of $(f_H 1)$ rows and $(f_W 1)$ columns.
- Zero-padding:
 - Original image margins are padded with zeros.
 - Goal: maintain original image size after conv layer application.

2 ₀	9 ₀	11,	22	42				
12	43 ₀	2 ₀	0	65		88		
9 ₀	87 ₀	65 ₁	2	90	=			
21	21	44	7	2				
45	2	21	2	0			3x3	

00	00	01	0	0	0	0
0	2 ₀	9 ₀	11	22	42	0
00	12	43 ₀	2	0	65	0
0	9	87	65	2	90	0
0	21	21	44	7	2	0
0	45	2	21	2	0	0
0	0	0	0	0	0	0

CONV LAYER PARAMETERS: STRIDE

Kernel sliding control:

- Stride: kernel displacement while sliding along the image.
 - Typically, stride = 1.
 - If stride > 1, output size < original image size.
 - If necessary, S_V : vertical stride $\neq S_H$: horizontal stride.

00	00	01	0	0	0	0
0_1	2 ₀	9 ₀	11	22	42	0
00	12	43 ₀	2	0	65	0
0	9	87	65	2	90	0
0	21	21	44	7	2	0
0	45	2	21	2	0	0
0	0	0	0	0	0	0

0	0	0	0	0	0	0
0	2	9	11	22	42	0
00	12 ₀	43 ₁	2	0	65	0
0_1	9 ₀	87 ₀	65	2	90	0
00	21 ₁	21 ₀	44	7	2	0
0	45	2	21	2	0	0
0	0	0	0	0	0	0

FROM MATRICES TO TENSORS

Images representation:

- Grayscale image: 1 x 2D-array.
- Colour image: 3 x 2D-arrays (or channels).
 - 1 channel for each colour: Red (R), Green (G), Blue (B).
- Depending on the problem extra channel are possible:
 - E. g. satellite images: multiple additional infrared channels.

In NN frameworks:

- 3D-tensors: [height, width, channels]
- Mini-batch: [batchsize, height, width, channels]

Grayscale (2D-Tensor)

2	7	1	6	0	0
9	9	2	6	1	8
1	4	9	8	7	3
0	4	2	5	0	6
6	3	0	3	3	1
7	5	1	3	7	4

Colour-3 channels (3D-Tensor)

			1)
2	7	1	6	0	0)
9	9	2	6	1	8	3
1	4	9	8	7	3	\$;
0	4	2	5	0	6	
6	3	0	3	3	1	1
7	5	1	3	7	4	•

IMAGES WITH MULTIPLE CHANNELS

Convolutions on volume:

- Now kernel has multiple channels
- #channels kernel = #channels image
- Σ(each kernel "channel" acts on its associated image channel).
- Output = 1 feature map.

MULTIPLE CHANNELS & MULTIPLE KERNELS

WHOLE CONVOLUTIONAL LAYER

POOLING: LAYER

Subsampling:

- Goal: reduce size of each feature map.
- Parallelism with convolution:
 - Pooling kernel = identity kernel. Typ. 2x2.
 - Not sum, but another aggregation operation: AVG, MAX
- Applied to each input channel separately
- # input channels = # output channels.

Layer parameters:

- No-Padding, to reduce output size.
- Stride > 1, to reduce output size. Typ. stride = 2.

Avg Pooling

Max Pooling

POOLING LAYER: INVARIANCE

Common pooling layers:

- Older: AvgPool2D.
 - Averaging: less info is lost.
- Bets results: MaxPool2D.
 - Preserves stronger features.
 - Sends clearer signals to the next layer.
- Lately: GlobalAvgPool2D.
 - Highly destructive.
 - Return a unique value. Not a feature map.
 - Useful as an output layer.

credits

Capture small invariances:

- Translations, rotations and scaling:
 - 1. Useful in classification problems
 - 2. Non-useful in segmentation problems

WHOLE POOLING LAYER

Training: nothing to learn. All weights = 1

feature maps (n channels)

6x6x5

TYPICAL CNN ARQUITECTURE

As image progresses:

kernels increases

several conv + pool blocks

BORRADOR

REFERENCE CHALLENGE

ImageNET challenge (2010):

- ILSVRC (ImageNet Large Scale Visual Recognition Challenge)
- 1.2M images (up to 256 pixels).
- Classification problem.
- #clases = 10.000

Winner model: top-5 error rate

- Classifier outputs probability of each class.
- Classes with top-5 probabilities are selected.
- % times correct class is not among them.
- Also exists top-1 rate.

ImageNet Challenge classification error

<u>credits</u>

FIRST HIT OF CNNs

AlexNet (2012, error 16%):

- Based on LeNet-5.
- First conv stacking without pooling.
- # layers = 5 conv + 3 dense
- # params = 60M
- Dropout 50%.
- Data augm.: brightness, shifting and flipping.

ZF Net (2013, error 12%)

- Hyperparameters tuning:
 - #feature maps
 - kernel size, stride.

2nd SIGNIFICANT ADVANCE

GoogLeNet (2014, error 7%):

- Innovation: Inception module.
- # layers = 22 (much deeper)
- # params = 6M

3x3 + 1(S) => Kernel 3x3 + Stride=1 + "Same"

2014 SILVER MEDAL: VGGNet

VGGNet (2014, error 7.3%):

- A very simple classical.
- Stacking de 2 conv + pooling.
- # layers = 16, 19 conv + 2 dense.
- VGG16, VGG19, ...
- # params = 140M.

ResNet (2015, error 3.6%):

- Innovation: residual nets.
- # layers = 152.
- # params = 11M.

