Assignment 6: GLMs (Linear Regressios, ANOVA, & t-tests)

Atalie Fischer

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on generalized linear models.

Directions

- 1. Change "Student Name" on line 3 (above) with your name.
- 2. Work through the steps, **creating code and output** that fulfill each instruction.
- 3. Be sure to **answer the questions** in this assignment document.
- 4. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 5. After Knitting, submit the completed exercise (PDF file) to the dropbox in Sakai. Add your last name into the file name (e.g., "Fay_A06_GLMs.Rmd") prior to submission.

The completed exercise is due on Monday, February 28 at 7:00 pm.

Set up your session

- 1. Set up your session. Check your working directory. Load the tidyverse, agricolae and other needed packages. Import the *raw* NTL-LTER raw data file for chemistry/physics (NTL-LTER_Lake_ChemistryPhysics_Raw.csv). Set date columns to date objects.
- 2. Build a ggplot theme and set it as your default theme.

```
getwd()
## [1] "/Users/ataliefischer/Desktop/EDA/Environmental_Data_Analytics_2022/Assignments"
setwd("/Users/ataliefischer/Desktop/EDA/Environmental_Data_Analytics_2022")
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.1 --
## v ggplot2 3.3.5
                    v purrr
                             0.3.4
## v tibble 3.1.4
                    v dplyr
                             1.0.7
## v tidyr
           1.1.3
                    v stringr 1.4.0
## v readr
           2.0.1
                    v forcats 0.5.1
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
library(agricolae)
library(lubridate)
```

##

Simple regression

Our first research question is: Does mean lake temperature recorded during July change with depth across all lakes?

- 3. State the null and alternative hypotheses for this question: > Answer: H0: Mean lake temperature recorded during July has the equal depths across all lakes. Ha: Mean lake temperature recorded during July has different depths across all lakes.
- 4. Wrangle your NTL-LTER dataset with a pipe function so that the records meet the following criteria:
- Only dates in July.
- Only the columns: lakename, year4, daynum, depth, temperature_C
- Only complete cases (i.e., remove NAs)
- 5. Visualize the relationship among the two continuous variables with a scatter plot of temperature by depth. Add a smoothed line showing the linear model, and limit temperature values from 0 to 35 °C. Make this plot look pretty and easy to read.

```
#4
LTERdata.filtered <- LTERraw.data %>%
  mutate(month = month(sampledate)) %>%
  filter(month == 7) %>%
  select(lakename, year4, daynum, depth, temperature_C) %>%
  na.omit()
#5
ggplot(LTERdata.filtered, aes(x = temperature_C, y = depth)) +
 geom\ point(alpha = 0.50) +
  geom smooth(method = lm, color = "red") +
  scale_y_reverse() +
  xlim(0, 35) +
  labs(title = "Temperature vs. Depth in North Temperate Lakes",
       x = "Temperature (C)",
       y = "Depth (m)") +
  theme(plot.title = element_text(hjust = 0.5))
```

`geom_smooth()` using formula 'y ~ x'

Temperature vs. Depth in North Temperate Lakes

6. Interpret the figure. What does it suggest with regards to the response of temperature to depth? Do the distribution of points suggest about anything about the linearity of this trend?

Answer: Temperature generally decreases as depth increases. The distribution of points do not appear evenly scattered about the linear model, suggesting that the relationship between temperature and depth is non-linear.

7. Perform a linear regression to test the relationship and display the results

```
#7
LTER.lm <- lm(data = LTERdata.filtered, temperature_C ~ depth)
summary(LTER.lm)
##
## Call:
##
  lm(formula = temperature_C ~ depth, data = LTERdata.filtered)
##
## Residuals:
##
       Min
                1Q
                    Median
                                3Q
                                       Max
##
  -9.5173 -3.0192 0.0633
                           2.9365 13.5834
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21.95597
                           0.06792
                                     323.3
                                             <2e-16 ***
## depth
               -1.94621
                           0.01174
                                    -165.8
                                             <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 3.835 on 9726 degrees of freedom
## Multiple R-squared: 0.7387, Adjusted R-squared: 0.7387
## F-statistic: 2.75e+04 on 1 and 9726 DF, p-value: < 2.2e-16</pre>
```

8. Interpret your model results in words. Include how much of the variability in temperature is explained by changes in depth, the degrees of freedom on which this finding is based, and the statistical significance of the result. Also mention how much temperature is predicted to change for every 1m change in depth.

Answer: The model resulting from the linear regression is temperature = -1.946 (depth) + 21.956. In other words, with every meter increase in depth, temperature drops by 1.946 degrees celcius. With a p-value < 2e-16, this relationship is significant. The residual standard error is 3.84 on 9726 degrees of freedom. The multiple R-squared value is 0.739, suggesting that approximately 73.9% of the variation in temperature can be explained by depth.

Multiple regression

##

Let's tackle a similar question from a different approach. Here, we want to explore what might the best set of predictors for lake temperature in July across the monitoring period at the North Temperate Lakes LTER.

- 9. Run an AIC to determine what set of explanatory variables (year4, daynum, depth) is best suited to predict temperature.
- 10. Run a multiple regression on the recommended set of variables.

```
LTER.AIC <- lm(data = LTERdata.filtered, temperature_C ~ depth + year4 + daynum)
step(LTER.AIC)
## Start: AIC=26065.53
## temperature_C ~ depth + year4 + daynum
##
##
            Df Sum of Sq
                             RSS
                                   AIC
## <none>
                          141687 26066
## - year4
             1
                      101 141788 26070
## - daynum
             1
                     1237 142924 26148
## - depth
                  404475 546161 39189
             1
##
## Call:
## lm(formula = temperature_C ~ depth + year4 + daynum, data = LTERdata.filtered)
##
## Coefficients:
##
   (Intercept)
                       depth
                                    year4
                                                 daynum
##
      -8.57556
                    -1.94644
                                  0.01134
                                                0.03978
#10
summary(LTER.AIC)
##
## Call:
## lm(formula = temperature_C ~ depth + year4 + daynum, data = LTERdata.filtered)
##
## Residuals:
                1Q
                    Median
                                 3Q
##
## -9.6536 -3.0000 0.0902 2.9658 13.6123
```

```
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -8.575564
                          8.630715
                                     -0.994 0.32044
## depth
              -1.946437
                          0.011683 -166.611
                                             < 2e-16 ***
## year4
               0.011345
                          0.004299
                                      2.639
                                             0.00833 **
               0.039780
                                      9.215
                                             < 2e-16 ***
## daynum
                          0.004317
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.817 on 9724 degrees of freedom
## Multiple R-squared: 0.7412, Adjusted R-squared: 0.7411
## F-statistic: 9283 on 3 and 9724 DF, p-value: < 2.2e-16
```

11. What is the final set of explanatory variables that the AIC method suggests we use to predict temperature in our multiple regression? How much of the observed variance does this model explain? Is this an improvement over the model using only depth as the explanatory variable?

Answer: The AIC method suggests we use all the variables (depth, year, and day) to predict temperature because the regression that included all these variables had the lowest AIC value. With an R-squared value of 0.7412, approximately 74.12% of the variation in temperature can be explained by the interaction between depth, year, and day. This value is slightly better than our original R-squared value.

Analysis of Variance

12. Now we want to see whether the different lakes have, on average, different temperatures in the month of July. Run an ANOVA test to complete this analysis. (No need to test assumptions of normality or similar variances.) Create two sets of models: one expressed as an ANOVA models and another expressed as a linear model (as done in our lessons).

```
#12
LTER.anova <- aov(data = LTERdata.filtered, temperature_C ~ lakename)
summary(LTER.anova)
##
                 Df Sum Sq Mean Sq F value Pr(>F)
## lakename
                  8 21642
                            2705.2
                                        50 <2e-16 ***
## Residuals
               9719 525813
                              54.1
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
LTER.anova.lm <- lm(data = LTERdata.filtered, temperature_C ~ lakename)
summary(LTER.anova.lm)
##
## Call:
## lm(formula = temperature_C ~ lakename, data = LTERdata.filtered)
##
## Residuals:
##
       Min
                                3Q
                10 Median
                                       Max
  -10.769
           -6.614 - 2.679
                             7.684
                                    23.832
##
## Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                         0.6501 27.174 < 2e-16 ***
                             17.6664
```

```
## lakenameCrampton Lake
                            -2.3145
                                        0.7699 -3.006 0.002653 **
                                        0.6918 -10.695 < 2e-16 ***
## lakenameEast Long Lake
                             -7.3987
## lakenameHummingbird Lake -6.8931
                                        0.9429
                                                -7.311 2.87e-13 ***
## lakenamePaul Lake
                            -3.8522
                                                -5.788 7.36e-09 ***
                                        0.6656
## lakenamePeter Lake
                            -4.3501
                                        0.6645
                                                -6.547 6.17e-11 ***
                                        0.6769
## lakenameTuesday Lake
                            -6.5972
                                                -9.746 < 2e-16 ***
## lakenameWard Lake
                             -3.2078
                                        0.9429
                                                -3.402 0.000672 ***
## lakenameWest Long Lake
                             -6.0878
                                        0.6895
                                               -8.829 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.355 on 9719 degrees of freedom
## Multiple R-squared: 0.03953,
                                   Adjusted R-squared: 0.03874
## F-statistic:
                  50 on 8 and 9719 DF, p-value: < 2.2e-16
```

13. Is there a significant difference in mean temperature among the lakes? Report your findings.

Answer: The ANOVA results show that there is a significant difference in mean temperature among the lakes with a p-value < 2e-16. The linear model results show that the mean temperature of each lake is significantly different the others', with p-value < 2e-16. The residual error is 7.355 on 9719 degrees of freedom. The multiple R-squared value is 0.0395, suggesting that 3.95% of the variance in temperature is explained by lakes.

14. Create a graph that depicts temperature by depth, with a separate color for each lake. Add a geom_smooth (method = "lm", se = FALSE) for each lake. Make your points 50 % transparent. Adjust your y axis limits to go from 0 to 35 degrees. Clean up your graph to make it pretty.

^{##} Warning: Removed 9 rows containing non-finite values (stat_smooth).

^{##} Warning: Removed 9 rows containing missing values (geom_point).

^{##} Warning: Removed 99 rows containing missing values (geom_smooth).

Temperature vs. Depth by Lake in North Temperate Lakes

15. Use the Tukey's HSD test to determine which lakes have different means.

```
#15
LTER.tukey <- TukeyHSD(LTER.anova)
LTER.tukey
     Tukey multiple comparisons of means
##
##
       95% family-wise confidence level
##
## Fit: aov(formula = temperature_C ~ lakename, data = LTERdata.filtered)
##
## $lakename
##
                                            diff
                                                         lwr
                                                                    upr
## Crampton Lake-Central Long Lake
                                      -2.3145195 -4.7031913 0.0741524 0.0661566
## East Long Lake-Central Long Lake
                                      -7.3987410 -9.5449411 -5.2525408 0.0000000
## Hummingbird Lake-Central Long Lake -6.8931304 -9.8184178 -3.9678430 0.0000000
## Paul Lake-Central Long Lake
                                      -3.8521506 -5.9170942 -1.7872070 0.0000003
## Peter Lake-Central Long Lake
                                      -4.3501458 -6.4115874 -2.2887042 0.0000000
## Tuesday Lake-Central Long Lake
                                      -6.5971805 -8.6971605 -4.4972005 0.0000000
## Ward Lake-Central Long Lake
                                      -3.2077856 -6.1330730 -0.2824982 0.0193405
## West Long Lake-Central Long Lake
                                      -6.0877513 -8.2268550 -3.9486475 0.0000000
## East Long Lake-Crampton Lake
                                      -5.0842215 -6.5591700 -3.6092730 0.0000000
## Hummingbird Lake-Crampton Lake
                                      -4.5786109 -7.0538088 -2.1034131 0.0000004
## Paul Lake-Crampton Lake
                                      -1.5376312 -2.8916215 -0.1836408 0.0127491
## Peter Lake-Crampton Lake
                                      -2.0356263 -3.3842699 -0.6869828 0.0000999
## Tuesday Lake-Crampton Lake
                                      -4.2826611 -5.6895065 -2.8758157 0.0000000
## Ward Lake-Crampton Lake
                                      -0.8932661 -3.3684639 1.5819317 0.9714459
```

```
## West Long Lake-Crampton Lake
                                     -3.7732318 -5.2378351 -2.3086285 0.0000000
                                      0.5056106 -1.7364925 2.7477137 0.9988050
## Hummingbird Lake-East Long Lake
## Paul Lake-East Long Lake
                                      3.5465903 2.6900206 4.4031601 0.0000000
## Peter Lake-East Long Lake
                                      3.0485952 2.2005025
                                                            3.8966879 0.0000000
## Tuesday Lake-East Long Lake
                                      0.8015604 -0.1363286
                                                            1.7394495 0.1657485
## Ward Lake-East Long Lake
                                      4.1909554 1.9488523 6.4330585 0.0000002
## West Long Lake-East Long Lake
                                      1.3109897 0.2885003
                                                            2.3334791 0.0022805
## Paul Lake-Hummingbird Lake
                                       3.0409798 0.8765299
                                                            5.2054296 0.0004495
## Peter Lake-Hummingbird Lake
                                      2.5429846 0.3818755
                                                            4.7040937 0.0080666
## Tuesday Lake-Hummingbird Lake
                                      0.2959499 -1.9019508
                                                            2.4938505 0.9999752
## Ward Lake-Hummingbird Lake
                                      3.6853448 0.6889874
                                                            6.6817022 0.0043297
## West Long Lake-Hummingbird Lake
                                      0.8053791 -1.4299320
                                                            3.0406903 0.9717297
## Peter Lake-Paul Lake
                                      -0.4979952 -1.1120620 0.1160717 0.2241586
                                     -2.7450299 -3.4781416 -2.0119182 0.0000000
## Tuesday Lake-Paul Lake
                                      0.6443651 -1.5200848 2.8088149 0.9916978
## Ward Lake-Paul Lake
## West Long Lake-Paul Lake
                                     -2.2356007 -3.0742314 -1.3969699 0.0000000
## Tuesday Lake-Peter Lake
                                     -2.2470347 -2.9702236 -1.5238458 0.0000000
## Ward Lake-Peter Lake
                                     1.1423602 -1.0187489 3.3034693 0.7827037
                                     -1.7376055 -2.5675759 -0.9076350 0.0000000
## West Long Lake-Peter Lake
## Ward Lake-Tuesday Lake
                                      3.3893950 1.1914943 5.5872956 0.0000609
## West Long Lake-Tuesday Lake
                                      0.5094292 -0.4121051 1.4309636 0.7374387
## West Long Lake-Ward Lake
                                     -2.8799657 -5.1152769 -0.6446546 0.0021080
LTER.groups <- HSD.test(LTER.anova, "lakename", group = TRUE)
LTER.groups
## $statistics
##
    MSerror Df
                                 CV
     54.1016 9719 12.72087 57.82135
##
##
## $parameters
##
            name.t ntr StudentizedRange alpha
                               4.387504 0.05
##
     Tukev lakename
##
## $means
                     temperature_C
                                        std
                                               r Min Max
                                                             Q25
                                                                   Q50
                                                                          Q75
                                            128 8.9 26.8 14.400 18.40 21.000
## Central Long Lake
                          17.66641 4.196292
## Crampton Lake
                          15.35189 7.244773
                                            318 5.0 27.5 7.525 16.90 22.300
## East Long Lake
                         10.26767 6.766804 968 4.2 34.1 4.975 6.50 15.925
## Hummingbird Lake
                         10.77328 7.017845 116 4.0 31.5 5.200 7.00 15.625
## Paul Lake
                          13.81426 7.296928 2660 4.7 27.7
                                                          6.500 12.40 21.400
## Peter Lake
                         13.31626 7.669758 2872 4.0 27.0 5.600 11.40 21.500
                         11.06923 7.698687 1524 0.3 27.7
## Tuesday Lake
                                                          4.400 6.80 19.400
## Ward Lake
                         14.45862 7.409079 116 5.7 27.6 7.200 12.55 23.200
## West Long Lake
                         11.57865 6.980789 1026 4.0 25.7 5.400 8.00 18.800
##
## $comparison
## NULL
##
## $groups
                     temperature_C groups
## Central Long Lake
                          17.66641
## Crampton Lake
                          15.35189
                                       ab
## Ward Lake
                          14.45862
                                       bc
## Paul Lake
                         13.81426
                                        С
```

```
## Peter Lake
                          13.31626
                                         С
## West Long Lake
                          11.57865
                                         d
## Tuesday Lake
                          11.06923
                                        de
## Hummingbird Lake
                          10.77328
                                        de
## East Long Lake
                          10.26767
                                         е
##
## attr(,"class")
## [1] "group"
```

16. From the findings above, which lakes have the same mean temperature, statistically speaking, as Peter Lake? Does any lake have a mean temperature that is statistically distinct from all the other lakes?

Answer: Paul Lake and Ward Lake statistically have the same mean temperature as Peter Lake. There are no lakes that have a mean temperature that is statistically distinct from all the other lakes.

17. If we were just looking at Peter Lake and Paul Lake. What's another test we might explore to see whether they have distinct mean temperatures?

Answer: t-test