+UE19MA251 LINEAR ALGEBRA AND ITS APPLICATIONS

.Unit 4: Orthogonalization , Eigen Values and Eigen Vectors

Orthogonal Bases, The Gram- Schmidt Orthogonalization, Introduction to Eigenvalues and Eigenvectors, Properties of Eigenvalues and Eigenvectors, Symmetric Matrices, Diagonalization of a Matrix.

Class No.	Portions to be covered
42	Orthogonal Bases- Orthogonal Matrices, Properties
43	Rectangular Matrices with orthonormal columns
44	The Gram- Schmidt Orthogonalization
45	A = QR Factorization
46	Scilab Class Number 7- The Gram- Schmidt process
47	Introduction to Eigen values and Eigenvectors
48	Properties of eigenvalues and eigenvectors, Cayley-Hamilton theorem
49	Scilab Class Number 8&9- Eigen Values and Eigen Vectors
50	Problems on Properties of Eigen values and Eigen vectors
51	Symmetric Matrices, Diagonalization of a Matrix
52	Problems on Diagonalization of a Matrix
53	Powers and Products of Matrices
54	Supplementary Problems

Classwork problems:

1.	Given the orthonomal basis
	$S = \left\{ \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}} \right), (0,1,0), \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right) \right\} $ for R ³ . Express the vector
	(1,2,3) as a linear combination of the vectors in S.
	Answer: (1,2,3)= $-\sqrt{2}v_1 + 2v_2 + 2\sqrt{2}v_3$
2.	Let W = { (a, b, b) / a, b are real } and let v = (3, 2, 6). (i) Find an orthonormal basis for W (i) Find the projection of v onto W, say v_1 (ii) Decompose v into a sum of two vectors v_1+v_2 where v_2 is projection of v onto W^{\perp} . Answer: $v = (3, 4, 4) + (0, -2, 2)$

-	
3.	Find a third column so that the matrix $Q = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{14} & -1 \\ 1/\sqrt{3} & 2/\sqrt{14} & -1 \\ -1/\sqrt{3} & 3/\sqrt{14} & -1 \end{pmatrix}$ is orthogonal.
	Answer: $\left(\frac{5}{\sqrt{42}}, \frac{-4}{\sqrt{42}}, \frac{1}{\sqrt{42}}\right)$
4.	If W is a subspace spanned by the orthogonal vectors (2, 5, -1) and (-2, 1, 1) find the point in W that is closest to (1, 2, 3).
	Answer : (-2/5, 2, 1/5)
5.	What multiple of $a_1 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ should be subtracted from $a_2 = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ to make the
	result orthogonal to a ₁ ? Factor A = QR with orthonormal vectors in Q. Answer: 1
6.	Find an orthonormal set q ₁ , q ₂ , q ₃ for which q ₁ and q ₂ span the column space of $A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 2 & 1 \end{pmatrix}$
	Which fundamental subspace contains q_3 ? What is the least squares solution of $Ax = b$ if $b = (0, 3, 0)$?
	Answer: $q_3 = \left(\frac{-4}{\sqrt{18}}, \frac{1}{\sqrt{18}}, \frac{1}{\sqrt{18}}\right)$. $x = (-5/6.3.2)$
7.	Use the Gram – Schmidt process to find a set of orthonormal vectors from the independent vectors $a_1 = (1, 0, 1)$, $a_2 = (1, 0, 0)$ and $a_3 = (2, 1, 0)$. Also find A = QR factorization where A = [$a_1 a_2 a_3$]
	Answer: $(1/\sqrt{2}, 0, 1/\sqrt{2}), (1/\sqrt{2}, 0, -1/\sqrt{2})(0, 1, 0)$
8.	Find orthogonal vectors A , B, C by Gram- Schmidt method from $a = (0, 1, 1, 1)$, $b = (1, 1, -1, 0)$ and $c = (1, 0, 2, -1)$
	Answer: $A = \left(0, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), B = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, 0\right) C = \left(\frac{4}{3}, 0, \frac{4}{3}, -\frac{4}{3}\right)$
9.	Find the eigenvalues and the corresponding eigenvectors of
	$\begin{pmatrix} 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$
	$ \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ -1 & 1 & -1 \end{pmatrix} $
	$\begin{bmatrix} 3 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$ $\begin{bmatrix} -1 & 1 & -1 \end{bmatrix}$
	Answer :Eigen values are (i) -2, 3, 6 (ii) 1, 1, 5 (iii) 1, i, -i
10.	Answer :Eigen values are (i) -2, 3, 6 (ii) 1, 1, 5 (iii) 1, i, -i Find the eigenvalues and eigenvectors of $A = \begin{pmatrix} -6 & -1 \\ 2 & -3 \end{pmatrix}$. Verify that the trace
	equals the sum of eigenvalues and the determinant equals their product. If we
	shift A to A – 7 I what are the eigenvalues and eigenvectors and how are they related to those of A? Also find the eigenvalues and eigenvectors of A, A ² , A ⁻¹ and A
	+ 41
	Answer: -4, -5; (1, -2),(-1,1); -11, -12

11.	Find the characteristic equation and hence find the inverse of $\begin{pmatrix} 1 & 3 & 1 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$
	using the Cayley – Hamilton's theorem.
12.	Find the matrix A whose eigen values are 2 and 5, and whose eigen vectors are $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ respectively using $S\Delta S^{-1}$. Answer: $A = \begin{pmatrix} 2 & 3 \\ 0 & 5 \end{pmatrix}$
13.	Factor $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ into $S\Delta S^{-1}$ and hence compute A^{85} . Answer: Eigen values are 1,3 and Eugen vectors are $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
14.	Find all eigenvalues and eigenvectors of A = $ \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} $ and write two different diagonalizing matrices S. Answer: eigenvalues are 0, 0, 3 with eigenvectors (-1, 1, 0), (-1, 0, 1), (1, 1, 1)
15.	Find the matrices S and S ⁻¹ to diagonalize $A = \begin{pmatrix} 0.6 & 0.4 \\ 0.4 & 0.6 \end{pmatrix}$ What are limits of Δ^k and $S\Delta^kS^{-1}$ as $k \to \infty$? Answer: eigenvalues of A are 1 and 0.2 with eigenvectors (1,1), (1,-1). And $\Delta^k \to \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $S\Delta^kS^{-1} \to \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$