Лекция 01 от 05.09.2016 Основные определения и свойства рядов. Критерий Коши. Необходимое условие сходимости

Определение 1. Пусть $\{a_n\}_{n=1}^{\infty}$ — последовательность действительных чисел. Числовым рядом называется выражение вида $\sum_{n=1}^{\infty} a_n$, записываемое также как $a_1 + a_2 + \ldots + a_n + \ldots$

Определение 2. N-й частичной суммой называется сумма первых N членов.

$$S_n = a_1 + \ldots + a_N$$

Определение 3. Последовательность $\{S_n\}_{n=1}^{\infty}$ называется последовательностью частичных сумм ряда $\sum_{n=1}^{\infty} a_n$.

Говорят, что ряд cxodumcs (к числу A), если (к числу A) сходится последовательность его частичных сумм. Аналогично, ряд pacxodumcs $\kappa + \infty$ ($\kappa - \infty$), если к $+ \infty$ (к $- \infty$) расходится последовательность его частичных сумм. Если последовательность частичных сумм расходится, ряд называют pacxodsumumcs.

Определение 4. Суммой ряда называется предел $\lim_{n\to\infty} S_n$.

Вспоминая, что $a_n = S_n - S_{n-1}$, можно заключить, что особой разницы между самим рядом и последовательностью его частичных сумм нет — из одного можно получить другое и наоборот. Следовательно, вместо ряда можно рассматривать его частичные суммы.

Пример 1 (Предел Коши для последовательностей). Последовательность $\{S_n\}_{n=1}^{\infty}$ сходится тогда и только тогда, когда она удовлетворяет условию Коши, т.е.

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \forall m, k > N \Rightarrow |S_m - S_k| < \varepsilon.$$

Таким образом, мы нахаляву получили первую теорему.

Теорема 1 (Критерий Коши сходимости ряда). Для сходимости ряда $\sum_{n=1}^{\infty} a_n$ необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \forall k > N, \ \forall p \in \mathbb{N} \Rightarrow |a_{k+1} + a_{k+2} \dots + a_{k+p}| < \varepsilon.$$

Отсюда сразу же очевидно следует утверждение.

Утверждение 1 (Необходимое условие сходимости ряда). *Если ряд* $\sum_{n=1}^{\infty} a_n \ cxodumcs$, то $\lim_{n\to\infty} a_n = 0$.

Доказательство. Ряд сходится, значит,

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \forall k > N, p = 1 \Rightarrow |a_{k+1}| < \varepsilon.$$

М. Дискин, А. Иовлева, Р. Хайдуров. Математический анализ-3

А это и есть определение предела, равного нулю.

Другой способ доказательства: вспомним, что $a_n = S_n - S_{n-1}$ и что S_n , как и S_{n-1} , стремятся к одному пределу при стремлении n к бесконечности. Итого, получаем, что

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_n = 0.$$

Теперь сформулируем и докажем несколько тривиальных свойств.

Свойства 1. Пусть
$$\sum\limits_{n=1}^{\infty}a_n=A,\;\sum\limits_{n=1}^{\infty}b_n=B.\;$$
 Тогда $\sum\limits_{n=1}^{\infty}\left(a_n+b_n\right)=A+B.$

Доказательство. Это напрямую следует из свойств предела последовательности и того, что $S_n^{a+b} = S_n^a + S_n^b$.

Свойства 2. Пусть $\sum\limits_{n=1}^{\infty}a_n = A$. Тогда $\sum\limits_{n=1}^{\infty}\alpha a_n = \alpha A$ для любого действительного α .

Доказательство. Аналогично вытекает из свойств предела последовательности.

Введём еще одно определение.

Определение 5. Пусть дан ряд $\sum_{n=1}^{\infty} a_n$. Обозначим некоторые его подсуммы,

$$\underbrace{a_1 + \ldots + a_{n_1}}_{b_1} + \underbrace{a_{n_1+1} + \ldots + a_{n_2}}_{b_2} + \underbrace{a_{n_2+1} + \ldots + a_{n_3}}_{b_3} + a_{n_3+1} + \ldots,$$

где $\{n_j\}_{j=1}^{\infty}$ — возрастающая последовательность натуральных чисел. В таком случае говорят, что ряд $\sum_{k=1}^{\infty} b_k$ получен из исходного расстановкой скобок.

Утверждение 2. Если ряд сходится или расходится $\kappa \pm \infty$, то после любой расстановки скобок он сходится, неформально говоря, туда же.

Доказательство. Достаточно заметить, что частичные суммы ряда, полученного расстановкой скобок, образуют подпоследовательость в последовательности частичных сумм исходного ряда:

$$S_1^b = S_{n_1}^a$$
, $S_2^b = S_{n_2}^a$, $S_3^b = S_{n_2}^a$, ...

Осталось только вспомнить, что любая подпоследовательность сходящейся последовательности сходится туда же, куда и сама последовательность.

Обратное неверно!!! Пример такого ряда:

$$1-1+1-\ldots=\sum_{n=0}^{\infty} (-1)^n$$
.

При расстановке скобок $(1-1)+(1-1)+\ldots=0$ получается сходящийся ряд, в то время как исходный ряд расходится, хотя бы потому что не выполняется необходимое условие о стремлении членов ряда к нулю.

Однако сходимость элементов к нулю не единственное препятствие. Например, можно «распилить» единицы из предыдущего примера и получить следующий ряд:

$$1-1+\frac{1}{2}+\frac{1}{2}-\frac{1}{2}-\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}-\frac{1}{3}-\frac{1}{3}-\frac{1}{3}+\frac{1}{4}+\dots$$

Его элементы стремятся к нулю, но он все еще расходится. Однако расставив скобки, можно получить сходящийся ряд:

$$(1-1) + \left(\frac{1}{2} + \frac{1}{2} - \frac{1}{2} - \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3}\right) + \dots = 0.$$

Утверждение 3. Если $a_n \to 0$ и длины скобок ограничены (т.е. существует такое $C \in \mathbb{R}$, что $n_{k+1} - n_k < C$ при всех k), то из сходимости ряда, полученного расстановкой таких скобок, следует сходимость исходного ряда.

Доказать
ство. Доказать предлагается самостоятельно. Указание: ограничить чере
з $\frac{\varepsilon}{C}.~~\Box$

Утверждение 4. Изменение, удаление или добавление конечного числа членов ряда не влияет на его сходимость.

Поговорим теперь об абсолютной сходимости.

Определение 6. *Если сходится ряд* $\sum_{n=1}^{\infty} |a_n|$, то говорят, что ряд $\sum_{n=1}^{\infty} a_n$ сходится абсолютно.

Определение 7. Если ряд сходится, но не сходится абсолютно, то говорят, что ряд сходится условно.

Утверждение 5. Если ряд $\sum_{n=1}^{\infty} a_n$ сходится абслютно, то он сходится.

Доказательство. Сразу следует из критерия Коши. Возьмём произвольное $\varepsilon > 0$. Так как ряд из модулей сходится, то

$$\exists N \in \mathbb{N} : \forall k > N, \forall p \in \mathbb{N} \Rightarrow \sum_{k+1}^{k+p} |a_k| < \varepsilon$$

Тогда

$$\left| \sum_{n=k+1}^{k+p} a_n \right| \leqslant \sum_{n=k+1}^{k+p} |a_n| < \varepsilon$$

Определение 8. Для ряда $\sum_{n=1}^{\infty} a_n \ N$ -м хвостом или N-м остатком называется сумма

$$r_N = \sum_{n=N+1}^{\infty} a_n.$$

Иногда хвостом называют сам ряд $\sum_{n=N+1}^{\infty} a_n$, а остатком — сумму этого ряда.

Для сходящегося ряда очевидно, что каждый его хвост сходится.

М. Дискин, А. Иовлева, Р. Хайдуров. Математический анализ-3