Transformer as Symbolic Logic Rule-Base

Yan King Yin $^{1[0009-0007-8238-2442]}$ and Second Author $^{2[1111-2222-3333-4444]}$

Abstract. This short paper shows that Transformers can implement a certain flavor of symbolic-logic rules engine. As Transformers are shown to be Turing universal[1], this should come as no surprise, but such an insight could be a cornerstone for neuro-symbolic AGI.

Keywords: Transformer · Self-Attention · symbolic logic · neurosymbolic AI

Fig. 1.

 $^{^{1}}$ general.intelligence@gmail.com 2 Springer Heidelberg, Tiergartenstr. 17, 69121 Heidelberg, Germany

Fig 1 A show

Fig 1(a) shows a schematic diagram of Transformer, which serves as a refresher, assuming the reader is familiar with its workings. "Input" tokens are translated to Q, K, V (query, key, value)'s via matrix multiplication, which can be regarded as a kind of table look-up, or **memory store** 1(a). From an abstract point of view, the Transformer has the following structure, which gives rise to its **equivariance** property (if input elements are swapped in a certain order, the output elements changes the same way) 1(c).

The equivariance property corresponds to the ${\bf exchangeability}$ of logic propositions:

$$A \wedge B \Leftrightarrow B \wedge A$$
 (1)

For example:

it's raining \land I'm heart-broken \Leftrightarrow I'm heart-broken \land it's raining (2)

Propositions are made up of **atomic concepts**, but here, at the sub-propositional level, atoms cannot be permuted freely, eg:

$$I \cdot love \cdot her \neq she \cdot loves \cdot me$$
 (3)

otherwise there would be no such things as heart-breaks.

Fig. 2.

Now let's refresh a bit on **classical logic-based AI**. This is its basic architecture 2(a). There would be a huge number of rules in the Knowledge Base, and the system needs to match these rules one by one against propositions in the system's **state** (= working memory) 2(B).

For the Transformer, it is a kind of memory stored **between** input elements (stored as the Q, K, V matrices), and it **implicitly** plays the role of a logic rule-base $2\mathbb{C}$.

A crucial insight is that the **Self-Attention** mechanism had its origin in NTMs (**Neural Turing Machines**) proposed by Graves *et al* 2014. The Turing machine needs to have a "memory tape" but in the neural setting this memory must be *differentiable*. If the memory is addressed by an index $i \in \mathbb{N}$, then it won't be differentiable. So they came up with a **content-addressable** memory mechanism where a memory matrix is looked up using the "query-key-value" method. A nice explantion of NTMs can be found in the book *Fundamentals of Deep Learning* [Buduma, Locascio 2017].

Now consider LLMs (**Large Language Models**) such as BERT or GPT. Given a natural-language sentence, we'd like to convert or **decompose** it into a bunch of logic propositions 3. The structure on the right of (3) is a **mental state** of a logical AI system. It is composed of (exchangeable) propositions, which are in turn made up of atomic concepts. This 2-level structure is characteristic of all **logical** systems.

Surprisingly, I found that the Transformer completely satisfies this 2-level logic structure.

4 Yan et al.

On the **first layer**, a Transformer transforms each input word token into one proposition 3.

The crucial point here is that the propositions are composed of atoms (), this is achieved in the Transformer by **adding** vectors (that represent atomic concepts), ie, by **superposition**. Note also that the Transformer is equivariant, so we must add "positional encoding" to each word, to indicate their ordering.

At **higher layers**, there is no need for positional encoding, and logic propositions can be freely exchanged, exactly as what happens in Transformers 3.

Note that in the above, every \uparrow arrow uses the same (Q, K, V) matrices as "rule-base", that may limit the number of rules that can be represented. To circumvent this, **Multi-Head Attention** allows to use different (Q, K, V) matrices on the same layer.

Theorem 1. This is a sample theorem. The run-in heading is set in bold, while the following text appears in italics. Definitions, lemmas, propositions, and corollaries are styled the same way.

References

[1] Colin Wei, Yining Chen, and Tengyu Ma. "Statistically meaningful approximation: a case study on approximating turing machines with transformers". In: arXiv preprint arXiv:2107.13163 (2021).