7. 限界は破れるか(2) - ニューラルネットワーク -

- ・誤差評価に基づく学習
 - ◆ 誤差最小の線形識別面を学習できる
 - ◆ 非線形識別面の学習は可能だが、どのような非線形関数にする かを事前に設計する必要がある
 - ◆ 誤差最小・任意形の識別面を学習することはできないか
 - → ニューラルネットワーク

• 神経細胞の計算メカニズム

◆ ニューロンがシナプス結合によって複雑に結合

◆ 入力された電気信号の重み付き和の値によって、各二ューロンの

- 閾値論理ユニットによるニューロンのモデル化
 - ◆ w^Tx = 0 という特徴空間上の識別面を表現(w, xはd+1次元)
 - → パーセプトロン(データが線形分離可能なときのみ学習可能)

- 活性化関数をシグモイド関数に差し替え
 - ◆ 入力の重み付き和を大小関係は変えずにO~Iの値に変換
 - ◆ データが線形分離不可能でも誤差最小の線形識別面が学習可能

- フィードフォワード型ニューラルネットワーク
 - ◆ ユニットを階層状に結合することで非線形識別面を表現

多クラス識別の出力層には 活性化関数として以下の softmax関数を用いる

$$g_k = \frac{\exp(h_k)}{\sum_{j=1}^c \exp(h_j)}$$

2クラスの場合はシグモイド関数と同じ

• ニューラルネットワークによる非線形識別面の実現

• ニューラルネットワークによる非線形識別面の実現

• 誤差逆伝播法の名前の由来

- 結合重みの調整アルゴリズム
 - 特定のデータ x_p に対する二乗誤差
 - $\bullet J$ はwの関数
 - w を J の勾配方向へ一定量だけ動かすことを繰り返して、最適解へ収束させる(\rightarrow 勾配降下法)

 $J(\boldsymbol{w}) \equiv \frac{1}{2} \sum_{i=1}^{c} (g_i(\boldsymbol{x}_p) - b_i)^2$

• 閾値論理ユニットの入出力

・ 学習パターン \mathbf{x}_p が入力されたときのユニットj の入力 $h_{jp} = \sum w_{ij}g_{ip}$

ユニットjの出力

$$g_{jp} = f(h_{jp})$$

• 出力層における誤差の定義

$$J_p = \frac{1}{2} \sum_{l} (g_{lp} - b_{lp})^2$$

• ユニット j の重みの調整式

$$w'_{ij} = w_{ij} - \rho \frac{\partial J_p}{\partial w_{ij}}$$

- 調整量の計算
 - ◆ 合成関数の微分の公式を使う

$$\frac{\partial J_p}{\partial w_{ij}} = \frac{\partial J_p}{\partial h_{jp}} \cdot \frac{\partial h_{jp}}{\partial w_{ij}}$$

- 右辺第2項は g_{ip}
- 右辺第 | 項を ε_{jp} とおく

$$\varepsilon_{jp} = \frac{\partial J_p}{\partial h_{jp}} = \frac{\partial J_p}{\partial g_{jp}} \cdot \frac{\partial g_{jp}}{\partial h_{jp}} = \frac{\partial J_p}{\partial g_{jp}} \cdot f'(h_{jp})$$

• ユニット j が出力層の場合

$$\frac{\partial J_p}{\partial g_{jp}} = g_{jp} - b_{jp}$$

• ユニット *j* が中間層の場合

$$\frac{\partial J_p}{\partial g_{jp}} = \sum_{k} \frac{\partial J_p}{\partial h_{kp}} \cdot \frac{\partial h_{kp}}{\partial g_{jp}} = \sum_{k} \varepsilon_{kp} w_{jk}$$

- 活性化関数の微分
 - ◆ シグモイド関数の場合: *g_{jp}* (1-*g_{jp}*)

• 誤差の変化量

$$\varepsilon_{jp} = \begin{cases} (g_{jp} - b_{jp})g_{jp}(1 - g_{jp}) & \text{出力層} \\ (\sum_{k} \varepsilon_{kp} w_{jk})g_{jp}(1 - g_{jp}) & \text{中間層} \end{cases}$$

・重みの修正式

$$w'_{ij} = \begin{cases} w_{ij} - \rho(g_{jp} - b_{jp})g_{jp}(1 - g_{jp})g_{ip} & \text{出力層} \\ w_{ij} - \rho(\sum_{k} \varepsilon_{kp} w_{jk})g_{jp}(1 - g_{jp})g_{ip} & \text{中間層} \end{cases}$$

- 誤差逆伝播法
 - 1. リンクの重みを小さな初期値に設定
 - 2. 個々の学習データ (x_i, y_i) に対してエポック数だけ以下繰り返し
 - 入力 x_i に対するネットワークの出力 g_i を計算
 - a. 出力層のユニットに対してエラー量計算
 - b. 中間層のユニットに対してエラー量計算

$$\varepsilon_{jp} = \begin{cases} (g_{jp} - b_{jp})g_{jp}(1 - g_{jp}) & \text{出力層} \\ (\sum_{k} \varepsilon_{kp} w_{jk})g_{jp}(1 - g_{jp}) & \text{中間層} \end{cases}$$

c. 重みの更新

$$w'_{ij} = \begin{cases} w_{ij} - \rho(g_{jp} - b_{jp})g_{jp}(1 - g_{jp})g_{ip} & \text{出力層} \\ w_{ij} - \rho(\sum_{k} \varepsilon_{kp} w_{jk})g_{jp}(1 - g_{jp})g_{ip} & \text{中間層} \end{cases}$$

- 過学習に気をつけよう
 - ◆ ニューラルネットワークは非線形識別面を学習することができるので、学習データの誤識別率を限りなくOに近づけることができる
 - ◆ そのような識別面は、未知データに対して誤識別率が高いことが 多い
 - ◆ このように学習データに特化しすぎた識別面が学習される現象を 過学習とよぶ
- 例題7.1

7.3 ディープニューラルネットワーク

- 深層学習:多階層ニューラルネットによる学習
 - ◆ 多階層での学習を可能にする工夫
 - ◆ 問題に特化したネットワーク構造の導入

7.3.1 勾配消失問題とは

- 多階層における誤差逆伝播法の問題点
 - ◆ 入力層に近づくにつれて修正量が消失する

7.3.1 勾配消失問題とは

https://playground.tensorflow.org/

- 事前学習法
 - ◆ 深層学習における初期パラメータ学習

- 事前学習法のアイディア
 - ◆ 自己写像学習による重みの初期値設定

- 活性化関数をrectified linear関数(ReLU)に変更
- ReLUの利点
 - ◆ 誤差消失が起こりにくい
 - ◆ Oを出力するユニットが多くなる

- 過学習の回避
 - ◆ ドロップアウト:ランダムに一定割合のユニットを消して学習を行う

• 畳み込みニューラルネットワーク

• 畳み込みニューラルネットワークの演算

- リカレントニューラルネットワーク
 - ◆ 時系列信号の認識や自然言語処理に適する

(a) リカレントニューラルネットワーク

(b) 帰還路を時間方向に展開

- Transformer: Self-attention + フィードフォワードNN
 - ◆ 自分の中間表現を作るときに、入力の 他の部分との関係を計算
 - ◆ BERTなどの事前学習モデルに使われる

まとめ

- ニューラルネットワークは誤差を最小にする確率的勾配降 下法の枠組みで非線形識別面を学習できる
- 多階層のニューラルネットワークは誤差逆伝播法を用いる
- 勾配消失問題などで学習がうまくゆかないことがあったが、 現在では様々な工夫により深層学習が可能になっている