B 清华大学本科生考试试题专用 题纸交回

考试课程 电路原理 A(2) 班号<u>b13</u> 学号20050/0928 姓名 <u>其注</u> 2007.1.

- 一、己知图示电路电容无初始储能, t=0 时合下开关 S。
- 求: (1) $u_S(t)$ =2V 时电容电压 $u_C(t)$ 。
 - $(2)u_{\rm S}(t)=2\sqrt{2}\sin 2t$ V 时电容电压 $u_{\rm C}(t)$ 。

(14分)

二、以 $[u_{C1} \ u_{C2} \ i_L]^T$ 为状态变量列写图示电路的状态方程,并整理为标准形式。 $(10\ f)$

$$\begin{bmatrix} \dot{u}_{C1} \\ \dot{u}_{C2} \\ \dot{i}_{L} \end{bmatrix} = A \begin{bmatrix} u_{C1} \\ u_{C2} \\ \dot{i}_{L} \end{bmatrix} + Bu_{S}$$

 $\begin{array}{c|c}
 & i_1 \\
 & \downarrow \\
 & \downarrow$

- 三、完成下面各题 (30分)
 - 1. 定性画出图示电路中电流 $i_L(t)$ 的波形。。

2. 求图示函数的卷积 e(t)*h(t)

3. 已知电路无初始储能。求初值 $u_{C}(0^{+})$, $i_{L}(0^{+})$ 。

5. 已知无损传输线的特性阻抗 Z_c =400 Ω ,传输线线长为 I,终端接有电阻R=100 Ω ,始端通过一开关接到600V直流电压源,假设开关在I=0时合上。

分别求: (1) $t_1 = \frac{7l}{4v}$ 时 (v是波速), (2) $t_2 = \frac{11l}{4v}$ 时距始端 l/2处线上的电流值i。

四 已知换路前电路处于稳态,t=0 时将开关 S 由 1 换接到 2。 用<u>拉斯拉普变换法</u>求换路后电容电压 uc(t),并给出 uc(t)的自由分量和强制分量。 (14 分) i_t

五、己知图示电路中,开关 S 合在 1 处(电路已达稳态)。 t=0 时开关 S 由 1 换接到 2, t=2ms时开关 S 又返回位置 1。求换路后电容电流 ic(t),并定性画出其波形图。
(14 分)

- 六、图(a)所示电路中N为仅含电阻的对称二端口网络。激励电压u=30V。当 $R_f=5\Omega$ 时,它可获得最大功率 $P_{max}=20$ W。
 - (1) 求二端口网络N的传输参数T;
 - (2) 设在 t=0 时将 R_t 断开改接 2F 的电容(如图 (b) 所示)。求网络函数 $H(s)=U_C(s)/U_i(s)$ 。 (12 分)

七. 电路如图七 (a) 所示,其中电容 C 初始储能不为零。当 $u_s(t)=10\varepsilon(t-1)$ V、 $i_s(t)=\varepsilon(t)$ A 时, $u_c(t)=(-5+6e^{-10t})[\varepsilon(t)-\varepsilon(t-1)]+(5-10e^{-10(t-1)})\varepsilon(t-1)$ V。如果 u_s 和 i_s 的波形如图七 (b) 所示,求 $u_c(t)$ 的零状态响应。(6分)

