SN751508, SN751518 DC PLASMA DISPLAY DRIVERS

VCC = 5 V

CL = 15 pF

-RL = 91 kΩ-

TRANSITION TIME, Q OUTPUT,

LOW TO HIGH

FREE-AIR TEMPERATURE

20 30 40 50 60

TA-Free-Air Temperature-°C

FIGURE 7

ADVANCE INFORMATION

TRANSITION TIME, Q OUTPUT,

HIGH TO LOW

FREE-AIR TEMPERATURE

10 20 30 40 50 60 70 80

TA-Free-Air Temperature - °C

FIGURE 8

VCC - 5 V

CL = 15 pF RL = 91 kΩ

0

• Each Device Drives 10 Lines

60-V Output Voltage Rating

• 40-mA Output Source Current

High-Speed Serially-Shifted Data Input

CMOS-Compatible Inputs

Latches on All Driver Outputs

 Improved Direct Replacement for UCN4810A and TL4810A

description

The TL4810BI and TL4810B are monolithic BIDFET[†] integrated circuits designed to drive a dot matrix or segmented vacuum fluorescent display (VFD). These devices feature a serial data output to cascade additional devices for large display arrays.

A 10-bit data word is serially loaded into the shift register on the positive-going transitions of the clock. Parallel data is transferred to the output buffers through a 10-bit D-type latch while the latch enable input is high and is latched when the latch enable is low. When the blanking input is high, all outputs are low.

Outputs are totem-pole structures formed by n-p-n emitter-follower and double-diffused MOS (DMOS) transistors with output voltage ratings of 70 volts and 40 milliamperes source-current capability. All inputs are compatible with CMOS and TTL levels, but each requires the addition of a pull-up resistor to VDD when driven by TTL logic.

The TL4810BI is characterized for operation from -40°C to 85°C. The TL4810B is characterized for operation from 0°C to 70°C.

TL4810BI, TL4810B VACUUM FLUORESCENT DISPLAY DRIVERS

D2715, DECEMBER 1984-REVISED FEBRUARY 1985

3

Driv

N DUAL-IN-LINE PACKAGE (TOP VIEW) J18 | Q9 17 | Q10 16 | SERIA_ DATA OUT 15 | VBB 14 | DATA N 13 | BLANK NG 12 | Q1 11 | Q2 Q7 | 2 Q6 | 3 06 | 3 CLOCK | 4 VSS | 5 VDD | 6 LATCH ENABLE (STROBE) | 7 05 | 8 04 | 9

> DW SMALL OUTLINE PACKAGE (TOP VIEW)

Q8 1 U20 Q9 19 Q10 07 2 06 73 17 SERIAL DATA OUT CLOCK 4 16 VBB 15 DAT- IN 14 BLANKING 13 Q1

12 02

Copyright © 1984, Texas Instruments Incorpo

04 710

ADVANCE INFORMATION

3-170

3

Display Drivers

Texas INSTRUMENTS † BIDFET-Bipolar, Double-Diffused, N-Channel and P-Channel MOS transistors on same chip-patented process

PRODUCTION DATA documents contain information current as of publication data. Products conform to specifications per the terms of Texas instruments atendard warranty. Production processing does not necessarily include testing of all perameters.

INSTRUMENTS

3-171

TYPICAL CHARACTERISTICS

VALID

TL4810BI, TL4810B VACUUM FLUORESCENT DISPLAY DRIVERS

LATCH ENABLE (7)
BLANKING (13)
EN3
DISP CLOCK (4) SHG10

logic symbol†

Drivers

2D D 3 (2) Q7 2D D 3 (11) Q8 2D D 3 (18) Q9 2D D 3 (17) Q10 (16) SERIAL DATA OUT

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the N package.

BLANKING-d LATCH-DATA IN CLOCK -6 STAGES (Q3 THRU Q8) NOT SHOWN

logic diagram (positive logic)

FUNCTION TABLE

FUNCTION	CONTROL INPUTS			SHIFT REGISTERS	LATCHES	OUTPUTS			
	CLOCK	LOCK ENABLE ING		R1 THRU R10 [‡]	LC1 THRU LC10	SERIAL	Q1 THRU Q10		
LOAD	Ť	х	×	Load and shift [‡]	Determined by Latch Enable §	R10	Determined by Blanking		
	Not	X	×	No change	Determined by Latch Enable §	R10	Determined by Blanking		
LATCH	X	L	×	As determined above	Stored data	R10	Determined by Blanking		
	×	н	X	As determined above	New data	R10	Determined by Blanking		
	×	х	Н	As determined above	Determined by Latch Enable §	R10	All L		
DEMIN	X	X	L	As determined above	Determined by Latch Enable 5	R10	LC1 thru LC10 respectively		

H = high level, L = low level, X = irrelevant, 1 = low-to-high-level transition.

Register R10 takes on the state of R8, R9 takes on the state of R8 R2 takes on the state of R1 and R1 takes on the state of the data input.

Show data enter the latches while Latch Enable is high. These data are stored while Latch Enable is low.

a outputs schematics of inputs and outputs

Texas Instruments

TL4810BI, TL4810B VACUUM FLUORESCENT DISPLAY DRIVERS

electrical characteristics over recommended operating free-air temperature range, $V_{DD} = 5 \text{ V}$ to 15 V, $V_{BB} = 60 \text{ V}$, $V_{SS} = 0$ (unless otherwise noted)

DADAMETED		PARAMETER TEST CONDITIONS†			TL4810	31		TL4810	В		
	PARAMI	EIER	TEST CONDITIONS.		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
	High-level	Q outputs	IOH = -25 mA		57.5	58		57.5	58	- 11	
011	output	ut a	V _{DD} = 5 V, I _{OH} = -100 μA		4	4.5	-	4	4.5		V
	voltage	Serial output	V _{DD} = 15 V, IC	$_{\rm H} = -100 \mu A$	14	14.7		14	14.7		
7	Low-level	Q outputs	I _{OH} = 1 μA, Bi	anking input at V _{DD}		0.5	1		0.5	1	
VOL	output	Serial output	V _{DD} = 5 V, I _C	L = 100 μA		0.05	0.1		0.05	0.1	V
	voltage	Serial output	VDD = 15 V, IC	L = 100 μA		0.02	0.1		0.02	0.1	
Low-level Q output current			anking input at V _{DD} ,	2.5	3.7		2.5	3.7			
IOL	(pull-down current)		V _O = 60 V, BI T _A = 85 °C	anking input at V _{DD} ,	2						mA
$I_{O(off)}$ Off-state output current $V_{O} = 0$, V_{O			- 1	- 15		- 1	- 15	μΑ			
Н	High-level	nput current	VI = VDD			30	50		30	50	μΑ
All outputs low				0.5	1		0.5	1			
ВВ	Supply cur	rent from VBB	All outputs high, T,	A = 0°C to MAX		2.7	4		2.7	4	mA
		All outputs high, TA = -40°C				5					
			All inputs at 0 V,	V _{DD} = 5 V		10	50		10	50	
lpp	Supply our	rent from VDD	One Q output high	V _{DD} = 15 V	10	100		10	100		
טטי	aupply cur	eur now ADD	All inputs at 0 V,	V _{DD} = 5 V		10	50		10	50	_A A
			All outputs low	V _{DD} = 15 V		10	100		10	100	

 † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at $T_A \approx 25\,^{\circ}$ C, except for Iq.

timing requirements over recommended operating free-air temperature range

	PARAMETER	V _{DD}	V _{DD} ·	UNIT		
	PANAMETER	MIN	MAX	MIN	MAX	UNIT
tw(CKH)	Pulse duration, clock high	250		50		ns
tw(LEH)	Pulse duration, latch enable high	250		50		ns
t _{su(D)}	Setup time, data before clock1	125		25		ns
th(D)	Hold time, data after clock†	125		25		ns
tCKH-LEH	Delay time, clock 1 to latch enable high	125		25		ns

witching characteristics, VBB = 60 V, TA = 25 °C

	PARAMETER		MIN	TYP	MAX	UNIT
		V _{DD} = 5 V	1 0.5			-
^t pd	Propagation delay time, latch enable to output	V _{DD} = 15 V				μS

TL4810BI, TL4810B VACUUM FLUORESCENT DISPLAY DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	Logic supply voltage Vpp (see Note 1)
	Logic supply voltage, VDD (see Note 1) 18 V Driver supply voltage, VBB 18 V Output voltage 70 V
	Output voltage
	Input voltage
	Continuous total dissipation at 25°C free air tomposition — 0.3 V to VDD + 0.3 V
	DW package
	N package 1150 mW Operating free-air temperature range: TL4810BI 875 mW TL4810BI -40°C to 85°C TL4810BI -40°C to 85°C
	TL4810B
	Storage temperature range
	Storage temperature range 1.246 r0B 0 °C to 70 °C Lead temperature 1,6 mm (1/18 inch) from case for 10 seconds -65 °C to 150 °C 260 °C -65 °C to 150 °C
TE	S: 1. Voltage values are with respect to Voc

NOTES: 1. Voltage values are with respect to V_SS.
2. For operation above 25 °C free-air temperature, refer to the Dissipation Derating Table.

DISSIPATION DERATING TABLE

POWER	PACTOR	ABOVE
1150	9.2 mW/°C	25 °C
875		25°C
	RATING 1150	RATING FACTOR 1150 9.2 mW/°C

recommended operating conditions

PAR	TL4810BI			TL4810B			T	
Supply voltage, VDD	MIN	NOM	MAX	MIN	NOM	MAX	UNI	
Supply voltage, VBB		4.75		15.75	4.75		15.75	V
Supply voltage, VSS		5		60	5		60	v
High-level input voltage, VIH	for V _{DD} = 5 V		0			0		v
	for V _{DD} = 15 V	3.5		5.3	3.5		5.3	
Low-level input voltage, VII	101 ADD = 12 A	13.5		15.3	13.5		15.3	٧
Continuous high-level output current, IOH		-0.3 [†]		0.8	-0.3†	10.	0.8	V
Operating free-air temperature, TA		-40		-25		-	-25	mA
	ne algebraic convention, in which the less positive (more neg			85	0		70	°C

[†] The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this date sheet for logic

TL4810BI, TL4810B **VACUUM FLUORESCENT DISPLAY DRIVERS**

THERMAL INFORMATION

TL5812I, TL5812 VACUUM FLUORESCENT DISPLAY DRIVERS

D2914, OCTOBER 1985-REVISED AUGUST 1986

- Drives Up to 20 Lines
- 70-V Output Voltage Swing Capability
- 40-mA Output Source Current Capability
- · High-Speed Serially-Shifted Data Input
- CMOS-Compatible Inputs
- Direct Replacement for Sprague UCN5812A

The TL5812I and TL5812 are monolithic BIDFET tintegrated circuits designed to drive a dot matrix or segmented vacuum fluorescent display (VFD). Each device features a serial data output to cascade additional devices for large display arrays.

A 20-bit data word is serially loaded into the shift register on the low-to-high transition of the clock input. Parallel data is transferred to the output buffers through a 20-bit D-type latch while the Latch Enable input is high and is latched when the Latch Enable input is low. When the blanking input is high, all outputs are low.

The outputs are totem-pole structures formed by n-p-n emitter-follower and double-diffused MOS (DMOS) transistors with output voltage ratings of 70 volts and a source-current capability of 40 milliamperes. All inputs are CMOS compatible.

The TL5812l is characterized for operation from $-40\,^{\circ}\text{C}$ to $85\,^{\circ}\text{C}$. The TL5812 is characterized for operation from $0\,^{\circ}\text{C}$ to $70\,^{\circ}\text{C}$.

VBB 1 U28 VDD OUT 2 27 DATA IN SERIAL DATA OUT 2 26 Q1 25 Q2

020 3 019 4 018 5 017 6 016 7 015 8 014 9 25 02 24 03 23 04 22 05 21 06 20 07 19 08 18 09 17 010 18 100 013 10

012 11 Q11 12 BLANKING 13

VSS 14 (TOP VIEW)

O19 O20 O20 SERIV VDD VDD DATA 018 0 5 24 Q Q3 23 Q Q4 22 Q Q5 21 Q Q6 20 Q Q7 19 Q Q8 017 6 016

015 8 014 9 013 10 012 11 12 13 14 15 16 17 18 VSS CLOCK TROBE) Q10

[†] BIDFET — Bipolar, double-diffused, N-channel and P-channel MOS transistors on the same chip — patented process.

INSTRUMENTS

opyright © 1985, Texas Instruments Incorporated

3

Driv