Лабораторная работа №1

Основы администрирования операционных систем.

Бызова М.О.

04 сентября 2024

Российский университет дружбы народов, Москва, Россия

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Перед началом выполнения лабораторной работы, я скачала необходимый дистрибутив Linux Rocky, воспользовавшись сайтом (рис. 1).

Рис. 1: Скачивание дистрибутива Linux Rocky

После этого мне потребовалось выполнить установку Linux версии Red Hat (64-bit) на виртуальную машину (рис. 2).

Рис. 2: Установка Linux версии Red Hat (64-bit)

Я указала объем объём основной памяти - 2048МБ, а колличество процессоров - 1 (рис. 3).

Рис. 3: Указание объёма памяти и колличества процессоров

В размере виртуального жёсткого диска я поменяла значение на 40,00 Гб (рис. 4).

Рис. 4: Создание нового виртуального диска

После выставления всех требуемых параметров нужно запустить виртуальную машину (рис. 5).

Рис. 5: Запуск виртуальной машины

Успешно устаналиваем Rocky Linux 9.4 (рис. 6).

```
| Compared to the Compared to
```

Рис. 6: Установка Rocky Linux 9.4

После этого я перехожу к настройкам установки операционной системы и выбираю английский язык для интерфейса (рис. 7).

Рис. 7: Выбор языка интерфейса

При выборе места установки я оставила те параметры, которые были выставлены автоматически (рис. 8).

Рис. 8: Окно настройки установки: место установки

После этого я отключила КDUMP (рис. 9).

Рис. 9: Окно настройки установки: отключение КDUMP

Я подключила сетевое соединение и в качестве имени узла указала mobihzova.localdomaim (рис. 10).

Рис. 10: Окно настройки установки: сеть и имя узла

Затем я установила пароль для root и пользователя с правами администратора (рис. 11, 12).

Рис. 11: Установка пароля для root

Рис. 12: Установка пароля для пользователя с правами администратора

После этого я запустила процесс установки ОС (рис. 13).

Рис. 13: Установка ОС

Дожидаемся и завершаем установку. После успешной установки я выполнила перезагрузку системы. Последним пунктом нашей лабораторной работы становится подключение образа диска Дополнительной гостевой ОС (рис. 14, 15).

Рис. 14: подключение образа диска Дополнительной гостевой ОС

Рис. 15: подключение образа диска Дополнительной гостевой ОС

Перед началом выполнения домашнего задания посмотрим вывод команды dmesg (рис. 16).

```
[mobihzova@mobihzova ~]$ dmesg | less
```

Рис. 16: Вывод команды dmesg

1) Версия ядра Linux (Linux version).

Версию ядра можно посмотреть командой dmesg | grep "linux version". (рис. 17).

```
[mobihzova@mobihzova ~]$ dmesg | grep "Linux version"
[ 0.000000] Linux version 5.14.0-427.13.1.elp_4.x86_64 (mockbuild@iad1-prod-build@01.bld.equ.rockylinux.org) (gcc (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3), G
NU ld version 2.35.2-43.elp) #1 SMP PREEMPT_DYNAMIC Wed May 1 19:11:28 UTC 2024
[mobihzova@mobihzova ~]$
```

Рис. 17: Версия ядра Linux

2) Частота процессора (Detected Mhz processor).

Частоту процессора можно посмотреть командой dmesg | grep -I "MHz". (рис. 18).

Рис. 18: Частота процессора

3) Модель процессора (CPU0).

Модель процессора можно посмотреть командой dmesg | grep "CPU0". (рис. 19).

```
[mobihzova@mobihzova ~]$ dmesg | grep "CPU0"
[ 0.174613] smpboot: CPU0: 12th Gen Intel(R) Core(TM) i7-12650H (family: 0x6, model: 0x9a, stepping: 0x3)
```

Рис. 19: Модель процессора

4) Объем доступной оперативной памяти (Memory available).

Объём доступной памяти можно посмотреть командой free -m. (рис. 20).

[mobihzova	a@mobihzova	~]\$ free -m				
	total	used	free	shared	buff/cache	available
Mem:	3915	1160	2438	20	554	2755
Swap:	4043	0	4043			

Рис. 20: Объём доступной памяти

5) Тип обнаруженного гипервизора (Hypervisor detected).

Тип обнаруженного гипервизора можно посмотреть командой dmesg | grep -I "hypervisor detected". (рис. 21).

```
[mobihzova@mobihzova ~]$ dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
```

Рис. 21: Тип обнаружённого гипервизора

6) Тип файловой системы корневого раздела.

Тип файловой системы корневого раздела можно посмотреть командой dmesg | grep -I "filesystem" (рис. 22).

```
[mobihzova@mobihzova ~]$ dmesg | grep -i "filesystem"
[ 2.217839] XFS (dm-0): Mounting V5 Filesystem 0e7fa20f-923e-451e-8962-7e8d03
197f7d
[ 3.431904] XFS (sda1): Mounting V5 Filesystem 10634b20-6581-4f64-97fd-13819c
f10ef8
```

Рис. 22: Тип файловой системы коревого каталога раздела

7) Последовательность монтирования файловых систем.

Последовательность монтирования файловых систем можно посмотреть командой dmesg | grep -i "mount". (рис. 23).

```
obihzova@mobihzova ~l$ dmesg | grep -i "mount"
                    -cache hash table entries: 8192 (order: 4, 65536 bytes, line
                   tpoint-cache hash table entries: 8192 (order: 4, 65536 bytes
                              mting V5 Filesystem 0e7fa20f-923e-451e-8962-7e8d0
   2.705596] systemd[1]: Set up autom
                                           Arbitrary Executable File Formats F
le System Auto
   2.724918] systemd[1]:
                               ting Huge Pages File System..
   2.725658] systemd[1]:
                               ting POSIX Message Queue File System...
                           Mounting FOSIA Results
Mounting Kernel Debug File System...
   2.726293] systemd[1]:
   2.726970] systemd[1]: Hounting Kernel Trace File System...
   2.744796] systemd[1]: Starting Remount Root and Kernel File Systems...
                               ted Huge Pages File System.
                               ted POSIX Message Queue File System.
   2.749144] systemd[1]: Mount
   2.749216] systemd[1]:
                               ted Kernel Trace File System.
   2.752317] systemd[1]:
                               ting Kernel Configuration File System...
                               ting V5 Filesystem 10634b20-6581-4f64-97fd-13819
   3.431984] YES (sda1):
```

Рис. 23: Последовательность монтирования файловых систем

Выводы

В ходе выполнения лабораторной работы мной были приобретены практические навыки установки операционной системы на виртуальную машину и настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы

1. Кулябов Д.С., Королькова А.В. Основы администрирования операционных систем. Лабораторная работа №1. Установка и конфигурация операционной системы на виртуальную машину.