Homework 1 (Part I) - 25 points

Problem 1: Graphing a bivariate function and its second order approximation

Use R to graph a 3-d plot of the function $f(x_1, x_2) = \cos(x_1 x_2)$ and its second order Taylor approximation $h(x_1, x_2) = 1 - \frac{\pi^2}{8} x_1^2$. Following are the requirements:

- i. [1 pt] Write an R function that computes the function f for any input x_1 , and x_2 .
- ii. [1 pt] Write an R function that computes the function h for any input x_1 , and x_2 .
- iii. **[3 pts]** Use the R functions in (i) and (ii) to plot a three dimensional graph that contains the surfaces for both f and h on the same frame (axes). Color surface of f red and surface of h blue. The values of x_1 for your graph should range in the interval $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ and the values of x_2 must range in the interval $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$. Divide each of the intervals by 30 equal points and evaluate the function on the 30 by 30 grid generated, and then make your plot.
- iv. **[1 pt]** Label the first axis x_1 and the second axis x_2 . Your graph should have the title "Taylor approximation of $\cos(x_1x_2)$." Make sure to show the plot from an angle with a good view of the function.
- v. **[3 pts]** In a separate 3d plot, graph the absolute value error function $e(x_1, x_2) = |f(x_1, x_2) h(x_1, x_2)|$. Use the same range and grid for x_1 and x_2 as described in (iii).
- vi. **[1 pt]** Label the first axis x_1 and the second axis x_2 . Title your plot "The error in second order Taylor expansion of $\cos(x_1x_2)$."
- vii. **[3 pts]** Plot the constant value contours for $e(x_1, x_2)$, and explain the magnitude of the error at various locations in the context of the problem.

Problem 2: Given a $p \times 1$ vector μ and a $p \times p$ positive definite matrix Σ , the pdf for a p-variate normal density at a point $\mathbf{x} = (x_1, x_2, ..., x_p)^T$ is given by

$$f(\mathbf{x}) = (2\pi)^{-\frac{p}{2}} |\Sigma|^{-1/2} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right].$$

Now consider the bivariate normal random variable, where

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \mathbf{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix}.$$

(a) [3 pts] Write the second order Taylor expansion for f(x), for the bivariate normal density, around the point

$$\mathbf{x_0} = {\mu_1 \choose \mu_2}.$$

(b) [3 pts] Graph a 3-d plot of the function $f(x_1, x_2)$ and its second order Taylor expansion for the following parameters (for each set of parameters, f and its approximation should be on the same frame):

(i)
$$\boldsymbol{\mu} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\boldsymbol{\Sigma} = \begin{pmatrix} 1 & -0.3 \\ -0.3 & 1 \end{pmatrix}$; (ii) $\boldsymbol{\mu} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\boldsymbol{\Sigma} = \begin{pmatrix} 1 & 0.8 \\ 0.8 & 1 \end{pmatrix}$

Note that the means and variances for each of the variables in the cases (i) and (ii) are 0 and 1 respectively. To get a reasonable graph, use the interval [-1.5, 1.5] for the (x_1, x_2) grid.

(c) [3 pts] Graph the constant value contours for f(x) for the cases (i) and (ii) in part (b). What is the shape of the constant value contours? What is the center of the constant value contours?

(d) [3 pts] Compute the eigenvalues and eigenvectors for each of the covariance matrices Σ given in part (b). Superimpose the eigenvectors on each of their corresponding constant value contours that you drew in part (c) and explain how the eigenvectors and eigenvalues are related to the constant value contours.