12. Design DFA using a simulator to accept the input string "a" ,"ac",and "bac".

<u>AIM</u>: To design DFA using a simulator to accept the input string "a" ,"ac",and "bac".

TRANSITION DIAGRAM:

<u>RESULT</u>: All the given strings are satisfied.

13. Design PDA using a simulator to accept the input string "aabb".

AIM: To design PDA using a simulator to accept the input string aabb.

RESULT: The PDA is designed to compute the string given as input using a simulator.

14. Design PDA using simulator to accept the input string anb²ⁿ

<u>AIM</u>: To design PDA using a simulator to accept the input string anb2n.

TRANSITION DIAGRAM:

RESULT: The PDA is designed to compute the string given as input using a simulator.

15. Design TM using simulator to accept the input string a^nb^n

<u>AIM</u>: To design TM using a simulator to accept the input string anbn.

RESULT: The TM is designed to compute the string given as input using a simulator.

16. Design TM using simulator to accept the input string anb2n

AIM: To design TM using a simulator to accept the input string anb2n.

TRANSITION DIAGRAM:

RESULT: The TM is designed to compute the string given as input using a simulator.

17. Design TM using simulator to accept the input string Palindrome "ababa"

AIM: To design TM using simulator to accept the input string Palindrome ababa

RESULT: The TM is designed to compute the string given as input using a simulator.

18. Design TM using simulator to accept the input string "ww"

AIM: To design TM using simulator to accept the input string ww

TRANSITION DIAGRAM:

RESULT: The TM is designed to compute the string given as input using a simulator.

19. Design TM using simulator to perform addition of 'aa' and 'aaa'

AIM: To design TM using simulator to perform addition of 'aa' and 'aaa'

RESULT: The TM is designed & performed addition by using a simulator.

20. Design TM using simulator to perform subtraction of aaa-aa

AIM: To design TM using simulator to perform subtraction of aaa-aa

RESULT: The TM is designed & performed subtraction by using a simulator.

21. Design DFA using a simulator to accept even number of a's.

AIM: To design DFA using a simulator to accept even number of a's.

RESULT: Hence designed DFA using a simulator to accept the even number of a's by using a simulator.

22. Design DFA using simulator to accept odd number of a's

AIM: To design DFA using simulator to accept odd number of a's

RESULT: Hence designed DFA using a simulator to accept the odd number of a's by using a simulator.

23. Design DFA using a simulator to accept the string the end with ab over set {a,b} W= aaabab.

AIM: To design DFA using a simulator to accept the string the end with ab over set $\{a,b\}$ W= aaabab.

RESULT: Hence designed DFA using a simulator to accept the string the end with ab.

24. Design DFA using simulator to accept the string having 'ab' as substring over the set {a,b}

AIM: To design DFA using simulator to accept the string having 'ab' as substring over the set {a,b}

RESULT: Hence designing DFA using a simulator to accept the string having 'ab' as substring.

25. Design DFA using simulator to accept the string start with a or b over the set $\{a,b\}$

AIM: To design DFA using simulator to accept the string start with a or b over the set $\{a,b\}$

RESULT: Hence designing DFA using a simulator to accept the string start with a or b.

27.Design TM using a simulator to accept the input string wcw.

AIM: To design TM using a simulator to accept the input string wcw.

RESULT: Hence designing TM accepting the input string wcw.

28. Design DFA using simulator to accept the string the end with ab over set {a,b} W= abbaabab

AIM: To design DFA using simulator to accept the string the end with ab over set {a,b) W= abbaabab

RESULT: Hence designing DFA using a simulator to accept the string the end with ab.

29. Design DFA using a simulator to accept the input string "bc", "c", and "bcaaa".

AIM: To design DFA using a simulator to accept the input string "bc", "c", and "bcaaa".

RESULT: Hence designing DFA using a simulator to accept the string "bc", "c", and "bcaaa".

30. Design NFA to accept any number of a's where input={a,b}.

AIM: To design NFA to accept any number of a's where input= $\{a,b\}$.

RESULT: Hence designing NFA to accept any number of a's.

31. Design PDA using simulator to accept the input string anbn

<u>AIM:</u> To design PDA using a simulator to accept the input string anbn.

RESULT: Hence designing PDA to accept the input string aⁿbⁿ

32. Design TM using simulator to perform string comparison where w={aba aba}

<u>AIM:</u> To design TM using simulator to perform string comparison where $w=\{aba\ aba\}$

RESULT: Hence designing TM using a simulator to perform string comparison.

33. Design DFA using simulator to accept the string having 'abc' as substring over the set {a,b,c}

AIM: To design DFA using simulator to accept the string having 'abc' as substring over the set {a,b,c}

RESULT: Hence DFA using simulator to accept the string having abc as substring.

${\bf 34.\ Design\ TM\ using\ simulator\ to\ perform\ string\ comparison\ where\ w=\{aba\ aba\}}$

<u>AIM:</u> To design TM using simulator to perform string comparison where w={aba aba}

RESULT: Hence designing TM to perform the string by simulator.

35. Design DFA using simulator to accept strings in which a's always appear tripled over input {a,b}

AIM: To design DFA using simulator to accept strings in which a's always appear tripled over input $\{a,b\}$

RESULT: Hence designing DFA using a simulator to accept strings in which a's always appear tripled.

36. Design NFA using a simulator to accept the string the starts with a and ends with b over the set {a,b} and check whether W= abaab is accepted or not.

AIM: To Design NFA using a simulator to accept the string the start with a and end with b over set {a,b} and check whether W= abaab is accepted or not.

RESULT: Hence designing NFA using a simulator to accept the string whether w=abaab is accepted or not.

37. Design NFA using a simulator to accept the string that start and end with different symbols over the input {a,b}.

AIM: To design NFA using a simulator to accept the string that start and end with different symbols over the input {a,b}.

RESULT: Hence designing NFA using a simulator to accept the string that start and end with different symbols.

38. Design NFA using a simulator to accept the input string "bbc" ,"c",and "bcaaa".

<u>AIM:</u> To design a NFA using a simulator to accept the input string "bc", "c", and "bcaaa".

RESULT: Hence designing NFA using a simulator to accept the string bbc, c and bcaaa

39. Design DFA using simulator to accept the string the end with abc over set {a,b,c} W= abbaababc

AIM: To design DFA using simulator to accept the string the end with abc over set $\{a,b,c\}$ W= abbaababc

RESULT: Hence designing NFA using a simulator to accept the string that end with abc.

40. Design NFA to accept any number of b's where input= $\{a,b\}$.

AIM: To design NFA to accept any number of b's where input= $\{a,b\}$.

RESULT: Hence designing NFA using a simulator to accept any number of b's.