

How is host-microbe mutualism in the gut established and maintained?

Multicellular life did not take over the globe by combat, but by networking

- Dr. Lynn Margulis

- Tissue maturation
- Innate defense
- Barrier resilience

Window of opportunity for microbiota modulation from gestation to childhood.

Christian Milani et al. Microbiol. Mol. Biol. Rev. 2017:81:e00036-17

Development of an intestinal microbial community

Koenig et al. Proc Natl Acad Sci. 2011; 108 Suppl 1:4578-85

Bacterial succession and host sculpting shape the developing intestine and it's microbiota

Rook et al 2017 The Lancet

Bevins and Salzman 2011 CMLS

Infant health status and microbiota establishment

Christian Milani et al. Microbiol. Mol. Biol. Rev. 2017;81:e00036-17

Infant health status and microbiota establishment

How do differences in microbial colonization produce different health and developmental outcomes?

Bacterial interactions with epithelium are central to understanding the mechanistic causes of microbiota-associated diseases

Comparing intestinal model systems

Young VB. Old and new models for studying host-microbe interactions in health and disease: C. difficile as an example. *Am J Physiol Gastrointest Liver Physiol.* 2017

Directed differentiation of pluripotent stem cells into intestinal tissue

Spence, J.R., Mayhew, C.N., Rankin, S.A., Kuhar, M.F., Vallance, J.E., Tolle, K., Hoskins, E.E., Kalinichenko, V. V, Wells, S.I., Zorn, A.M., et al. (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. *Nature* 470, 105–109.

Directed differentiation of pluripotent stem cells into intestinal tissue

culture

Spence, J.R., Mayhew, C.N., Rankin, S.A., Kuhar, M.F., Vallance, J.E., Tolle, K., Hoskins, E.E., Kalinichenko, V. V, Wells, S.I., Zorn, A.M., et al. (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. *Nature* 470, 105–109.

Stem-cell derived organoids are capable of maturation into adult-like structures upon transplantation

Watson et al. (2014). An in vivo model of human small intestine using pluripotent stem cells. Nat. Med. 20, 1310–1314.

Stem-cell derived organoids are capable of maturation into adult-like structures upon transplantation

Finkbeiner, S.R., Hill, D.R., Altheim, C.H., Dedhia, P.H., Taylor, M.J., Tsai, Y.H., Chin, A.M., Mahe, M.M., Watson, C.L., Freeman, J.J., et al. (2015). *Stem Cell Reports* 4, 1140–1155.

Methodology for colonizing HIOs with live bacteria

DAY -30 to -1: Prepare HIOs according to McCraken et al (2011) and plate 1 HIO per well (24-well plate) in 50 µl Matrigel and 500 µl ENR media

DAY 0: Microinject approximately 1 μL of the overnight *E. coli* culture (diluted in PBS) into the HIO lumen

After microinjection:

Remove ENR media and wash 1X with sterile PBS.

0-1 h post-microinjection:

Add ENR media containing Pen/Strep mix and incubate at 37 °C for 1 hour

1 h post-microinjection:

Remove ENR containing antibiotics and wash 1X with sterile PBS.

Replace fresh ENR without antibiotics and culture at 37 °C and 5% CO₂

Hill et al. (2017). eLife Hill et al. (2017). JoVE

Stable bacterial colonization promotes expression of gene sets critical for epithelial barrier function

Measuring epithelial barrier permeability in HIOs

Hill et al. (2017). Journal of Visualized Experiments

E. coli colonization enhances epithelial barrier resilience

- TNFα and IFNy released during intestinal inflammation increases epithelial barrier permeability
- Control HIOs or HIO pre-colonized with E. coli treated with TNFα and IFNy for 24 hrs
- Epithelial barrier integrity is maintained during cytokine challenge in colonized HIOs

E. coli colonization enhances epithelial barrier resilience

Hill et al. (2017).

Broad Implications

- Immature epithelium and underlying mesenchyme is sufficient to maintain symbiosis with bacteria
 - Achieved through enhanced epithelial barrier defense
 - No immune cells required

Hill DR, Huang S, Nagy MS, Yadagiri VK, Fields C, Mukherjee D, Bons B, Dedhia PH, Chin AM, Tsai YH, Thodla S, Schmidt TM, Walk S, Young VB, Spence JR. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. Elife. 2017 Nov 7;6. pii: e29132. doi:10.7554/eLife.29132.

Is the epithelial response to <u>primary microbial</u> <u>colonization</u> species-specific?

Designing a screen of representative microbial colonists

Novel Alternative Model Systems of Enteric Disease (NAMSED)

Robust host transcriptional response to bacterial colonization

Identification of strain specific host response gene sets

The host transcriptional response to bacterial colonization is species-specific

The host transcriptional response to bacterial colonization is species-specific

- K-means algorithm finds patterns in a large data set without prior knowledge
- Each gene is assigned to one of K groups based on expression across all colonization conditions
- K is defined a priori as part of the hypothesis (e.g. There are 7 distinct transcriptional responses to the 7 bacterial colonization conditions)
- Each *cluster* is a list of genes that have a shared pattern across conditions

The host transcriptional response to bacterial colonization is species-specific

Evidence of specific transcriptional control over genes in each cluster

Transcription factor target set over-abundance test

Over-abundance test: more genes in a list from a given gene set (TFT) than expected by chance.

Expression of downstream NF-kB targets varries by bacterial strain

Network analysis reveals novel correlations between gene expression events

What are the functional consequences of variation in epithelial transcriptional response?

Effect of bacteria on epithelial barrier function is highly straindependent

Secreted cytokine response to bacterial colonists varies widely

Network analysis reveals novel correlations between gene expression events

Epithelial cytokines control AMP secretion

BD-2 inhibits *E. coli* growth *in vitro*

Pre-treatment with IL-1β supresses microbial growth

Epithelial cytokines control AMP secretion

Cytokine environment alters epithelial permeability

A working hypothesis on bacterial-epithelial interactions during gut colonization

Many questions remain

- How do bacteria elicit distinct epithelial responses?
- How do we distinguish the initial response to bacteria from the response to cytokines induced by bacteria?
- Does the epithelial response to initial colonists shape the environment in ways that affect subsequent colonists?
- Does the epithelial response reflect microbial community composition?

Extending the HIO platform for application to clinical sample sets

Necrotizing enterocolitis is a critical health challenge

- Severe intestinal inflammation and necrosis
- Affects up to 0.5% of US newborns
- 7-fold elevated risk among premature and low birth weight infants
- In-hospital mortality of up to 30%
- Lifelong complications and disability among survivors

There has been no improvement in NEC incidence or mortality in over 40 years

NEC results from intestinal immaturity and aberrant microbial colonization

Neu, J. & Walker, W. A. Necrotizing enterocolitis. N. Engl. J. Med. 364, 255–64 (2011).

NEC results from intestinal immaturity and aberrant microbial colonization

Neu, J. & Walker, W. A. Necrotizing enterocolitis. N. Engl. J. Med. 364, 255–64 (2011).

Metagenomic Sequencing with Strain-Level Resolution Implicates Uropathogenic *E. coli* in Necrotizing Enterocolitis and Mortality in Preterm Infants

Doyle V. Ward,^{1,4,*} Matthias Scholz,^{2,4} Moreno Zolfo,² Diana H. Taft,³ Kurt R. Schibler,³ Adrian Tett,² Nicola Segata,^{2,5} and Ardythe L. Morrow^{3,5}

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

¹Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA 01655, USA

²Centre for Integrative Biology, University of Trento, Trento, TN 38123, Italy

³Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA

⁴Co-first author

⁵Co-senior author

^{*}Correspondence: doyle.ward@umassmed.edu http://dx.doi.org/10.1016/j.celrep.2016.03.015

Extending the HIO platform for application to clinical sample sets

GOAL: Identify and characterize clinical *E. coli* strains with physiologically relevant effects on the immature intestinal epithelium

Description of clinical isolates

Table 1: Clinical E. coli isolates cohort

Clinical status	Unique Isolates	DOL * acquisition mean (range)	DOL NEC onset mean (range)
Non-NEC	19	33.7 (8-59)	-
NEC	28	26.4 (2-58)	31.2 (17-61)
post-NEC	5	33.3 (20-58)	31.6 (17-56)
<i>pre</i> -NEC	23	24.9 (2-56)	31.1 (17-61)
Total	47	29.3 (2-59)	31.2 (17-61)

^{*}Day of Life or days post-partum

Elucidating the mechanistic connections between tissue response, *E. coli* genetics, and clinical outcomes

GOALS:

- Evaluate effect of clinical E. coli isolates on HIO
- Identify E. coli genetic factors that predict the HIO repsonse

Elucidating the mechanistic connections between tissue response, *E. coli* genetics, and clinical outcomes

GOALS:

- Evaluate effect of clinical E. coli isolates on HIO
- Identify E. coli genetic factors that predict the HIO repsonse

Elucidating the mechanistic connections between tissue response, *E. coli* genetics, and clinical outcomes

Correlate *E. coli* genomes & Clinical data with HIO response

GOALS:

- Evaluate effect of clinical E. coli isolates on HIO
- Identify E. coli genetic factors that predict the HIO repsonse

Screening distinct E. coli isolates for effects on epithelial barrier permeability in HIOs

Dr. Roberto Cieza

Clinical E. coli isolates elicit distinct patterns of cytokine secretion

Correlating clinical status with HIO response

Correlating epithelial barrier permeability with epithelial secretions

A Web of Correlated Data

...and the tools to test those correlations directly

Ongoing work

- Sequence, assemble, and annotate genomes for all clinical isolates (Dr. Roberto Cieza)
- Correlate genomic features with HIO response and identify genes associated with barrier function and cytokine secretion
- Test role of specific bacterial and host genes in vitro (Molecular Koch's postulates)
 - Can we identify bacterial genes associated with epithelial barrier integrity?
 - Are these bacterial genes associated with NEC risk in clinical populations?

HIOs are a flexible and modular model system

