Localized Conformal Prediction

Min, Xia

May 23, 2024

1 Conformal Prediction General[1]

Definition 1.1 (Exchangeability). [7] For any r.v. x_1, \dots, x_k , we say they are exchangeable if for any permutation $\sigma : [k] \to [k]$ (bijection), $(x_1, \dots, x_k) \stackrel{d}{=} (x_{\sigma(1)}, \dots, x_{\sigma(k)})$.

Definition 1.2 (Weighted Exchangeability). [8] For any r.v. x_1, \dots, x_k , we say they are weighted exchangeable if their joint density canbe factorized as

$$f(x_1, \dots, x_k) = \prod_{i=1}^k w_i(x_i) \cdot g(x_1, \dots, x_k),$$

where g is exchangeable, i.e., $g(x_1, \dots, x_k) = g(x_{\sigma(1)}, \dots, x_{\sigma(k)})$.

For conformal prediction two classes of targets are studied.

Definition 1.3 (Marginal Coverage). $(X,Y) \in \mathbb{R}^p \times \mathbb{R} \sim P_{XY}$ which is unknown. Given training set $Tr = \{(X_i, Y_i)\}_{i=1}^n$, and test on (X_{n+1}, Y_{n+1}) , both i.i.d.

 C_{α} satisfies distribution-free marginal coverage at level $1-\alpha$ if

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})) > 1 - \alpha, \ \forall P_{XY}$$

The probability is with respect to $\{(X_i, Y_i)\}_{i=1}^{n+1}$.

Definition 1.4 (Conditional Coverage). $(X,Y) \in \mathbb{R}^p \times \mathbb{R} \sim P_{XY}$ which is unknown. Given training set $Tr = \{(X_i, Y_i)\}_{i=1}^n$, and test on (X_{n+1}, Y_{n+1}) , both i.i.d.

 C_{α} satisfies distribution-free marginal coverage at level $1-\alpha$ if

$$P\left(Y_{n+1} \in C_{\alpha}(X_{n+1}) \middle| X_{n+1} = x\right) \ge 1 - \alpha, \ \forall P_{XY}$$

The probability is with respect to $\{(X_i, Y_i)\}_{i=1}^n$ and Y_{n+1} .

Definition 1.5 (Conformal Score Function). For data pair (X,Y) and point predictor and any loss function $V(\cdot,\cdot)$, call $R = S(X,Y) = V(Y,\hat{f}(X))$ be the conformal score(or residual).

Definition 1.6 (Efficiency). X is some r.v. following the testing distribution and C_{α} is efficient if $\mathbb{E}[|C_{\alpha}(X)|]$ is small. Define $Size(C_{\alpha}) = \frac{1}{n} \sum_{i=1}^{n} |C_{\alpha}(X_i)|$.

2 Localized CP Article1

Conformalized Quantile Regression [6]

The core idea is if conditional distribution function F(y|X=x) is known and conditional quantile is $q_{\alpha}(x) = \inf\{y : F(y|X=x) \ge \alpha\}$, for $\alpha_1 = \alpha/2$, $\alpha_2 = 1 - \alpha/2$ we can define conformal set to be $C_{\alpha}(x) = [q_{\alpha_1}(x), q_{\alpha_2}(x)]$. Next is to estimate quantiles from data.

Follow the split CP setting,

- First divide training set D into two sets: D_1 for proper training set and D_2 for calibration set. And let $n_i = |D_i|$, fit point predictor \hat{q}_{α_1} , \hat{q}_{α_2} on D_1 .
- Calculate enformity scores on calibration set: $R_i = \max\{\hat{q}_{\alpha_1}(X_i) Y_i, Y_i \hat{q}_{\alpha_2}(X_i)\}$ for $i \in D_2$, and $R = \max\{\hat{q}_{\alpha_1}(X_i) - Y_i, Y_i - \hat{q}_{\alpha_2}(X_i)\}$
- Find the $\lceil (1-\alpha)(n_2+1) \rceil$ -th empirical quantile of R_i , $i \in D_2$ as \hat{q} and construct conformal set $C_{\alpha}(x) = [\hat{q}_{\alpha_1}(x) \hat{q}, \hat{q}_{\alpha_2}(x) + \hat{q}]$

Note that $\{Y \in C_{\alpha}(X)\} = \{R \leq \hat{q}\}$. With exchangeability of R_i , $i \in D_2$ and R the coverage is assured.

Remark 2.1. Can also define $R_1 = \hat{q}_{\alpha_1}(X_i) - Y_i$, $R_2 = Y_i - \hat{q}_{\alpha_2}(X_i)$ and their $\lceil (1-\alpha)(n_2+1) \rceil$ -th empirical quantile \hat{q}_1 , \hat{q}_2 . Define conformal set $C_{\alpha}(X) = [\hat{q}_{\alpha_1}(X) - \hat{q}_1, \hat{q}_{\alpha_2}(X) + \hat{q}_2]$.

3 Localized CP Article2

Distribution-Free Predictive Inference For Regression[5]

The setting is similar here. Consider the split setting, divide training set D into two sets: D_1 for proper training set and D_2 for calibration set.

- Train $\hat{f}(x)$ on D_1 as a point predictor and based on $(X_i, |Y_i \hat{f}(X_i)|)$, $i \in D_1$, train $\hat{\rho}$ as an estimator of conditional MAD |Y f(X)| |X = x. For a given test point X fix trial data y.
- Calculate scores on calibration set $R_i = \frac{|Y_i \hat{f}(X_i)|}{\hat{\rho}(X_i)}$, $i \in D_2$, $R = \frac{|y \hat{f}(X)|}{\hat{\rho}(X)}$ and find the $\lceil (1 \alpha)(n_2 + 1) \rceil$ -th empirical quantile \hat{q}_{α} .
- Define conformal set $C_{\alpha}(X) = \{y : R \leq \hat{q}_{\alpha}\}.$

Note that $\{Y \in C_{\alpha}\} = \{R \leq \hat{q}_{\alpha}\}$ and R, R_i , $i \in D_2$ are exchangeable, it's easy to prove the coverage.

4 Localized CP Article3

Split Localized Conformal Prediction[3]

If score is defined by $R = |Y - \hat{f}(X)|$, the split CP follows setting $Y = \hat{f}(X) + \varepsilon$ where ε is independent of X. However this is not always true, we need to estimate the distribution of R|X = x.

Follow split CP setting, divide training set D into two sets: D_1 for proper training set and D_2 for calibration set.

We can estimate the distribution of R|X=x with kernel smoothing. Assume distribution $F(R=r|X=x)=\mathbb{E}\mathbb{1}(R\leq r|X=x)$, and NW estimator is

$$\hat{F}_h(R=r|X=x) = \sum_{i \in D_1} w_h(X_i|x) \mathbb{1}\{R_i \le r\},$$

where $w_h(X_i|x) = \frac{K(||g(X_i) - g(x)||/h)}{\sum\limits_{j \in D_1} K(||g(X_j) - g(x)||/h)}$ with some embedding function g. But di-

rectly find the α quantile of $\hat{F}_h(R=r|X=x)$ as \hat{q}_α and construct conformal set as

 $\{y: R \leq \hat{q}_{\alpha}\}$ cannot guarantee coverage. Further, calculate a residual score on calibration set $R'_i = R_i - Q(\alpha, \hat{F}_h(R|X=X_i)), i \in D_2, R' = R - Q(\alpha, \hat{F}_h(R|X=X))$. The exchangeability still holds on R'_i . The conformal set is $C_{\alpha} = \{y: R \leq \hat{q}'_{\alpha}\}$, where \hat{q}'_{α} is $\lceil (1-\alpha)(n_2+1) \rceil$ -th empirical quantile of R'_i , $i \in D_2$. Entire procedure is

- Train point predictor \hat{f} on D_1 and calculate score $R_i = |Y_i \hat{f}(X_i)|, i \in D_1$. Choose h to get NW estimator.
- Calculate on calibration set R_i , $Q(\alpha, \hat{F}_h(R|X=X_i))$, $i \in D_2$ and given X, for any trial data y, calculate R and $Q(\alpha, \hat{F}_h(R|X))$
- Calculate residual score on calibration set $R'_i = R_i Q(\alpha, \hat{F}_h(R|X = X_i)), i \in D_2$ and $R' = R - Q(\alpha, \hat{F}_h(R|X))$. Find $\lceil (1 - \alpha)(n_2 + 1) \rceil$ -th empirical quantile of $R'_i, i \in D_2$
- Define conformal set $C_{\alpha}(X) = \{y : R' \leq \hat{q}'_{\alpha}\}$

The coverage guarantee comes from $\{Y \in C_{\alpha}(X)\} = \{R' \leq \hat{q}'_{\alpha}\}$ and the exchange-ability within R' and R'_i , $i \in D_2$.

5 Localized CP Article4

Localized conformal prediction: a generalized inference framework for conformal prediction[2] Assume have $Z_1 = (X_1, Y_1), \dots, Z_n = (X_n, Y_n)$ at hand and Y|X varies across different X. A new observation X_{n+1} arrives and the conformal set of Y_{n+1} is required. The core idea is that for a given score function S = V(X, Y) and require estimate a correct α quantile of S|X.

First a natural idea is construct S|X's distribution. Assume any kernel function $K(x_1, x_2)$ and let $p_{i,j} = \frac{K(X_i, X_j)}{\sum\limits_{l=1}^n K(X_i, X_l)}$. Conditional on X_i assign larger weight to S_j that

has X_j near X_i . Let $F_i = \sum_{j=1}^n p_{i,j} \delta_{S_j}$ which is similar to the first idea of article3. Directly take the $1 - \alpha$ quantile cannot guarantee coverage. Take $E_Z = \{\{Z_i\}_{i=1}^{n+1} = \{z_i\}_{i=1}^{n+1}\}$ and with all Z_i drawn i.i.d., $P(Z_{n+1} = z_i | E_Z) = 1/(n+1)$. Write s_i for each z_i . As E_Z means

set equivalent, there exists some permutation $\sigma: [n+1] \to [n+1]$ s.t. $S_i = s_{\sigma(i)}$ condition on E_Z . To be specific, F_i is the distribution construct by S_i , $i = 1, \dots, n+1$ and F'_i by s_i , $i = 1, \dots, n+1$.

$$P(S_{n+1} \le Q(\alpha'; F_{n+1})|E_Z) = \sum_{i=1}^{n+1} P(S_{n+1} = s_i|E_Z) \mathbb{1} \left\{ S_{n+1} \le Q(\alpha'; F_{n+1})|E_Z, S_{n+1} = s_i \right\}.$$

The most important thing here is $Q(\alpha'; F_{n+1})|(E_Z, S_{n+1} = s_i) = Q(\alpha'; F_i')|E_Z$. The order of S_1, \dots, S_n doesn't influence F_{n+1} . Thus,

$$P(S_{n+1} \le Q(\alpha'; F_{n+1})|E_Z) = \sum_{i=1}^{n+1} P(S_{n+1} = s_i|E_Z) \mathbb{1} \left\{ s_i \le Q(\alpha'; F_i')|E_Z \right\}.$$

For any trial data $Y_{n+1} = y$, take s_i and F_i' be calculated based on sample data. Thus find α' that makes $\sum_{i=1}^{n+1} P(S_{n+1} = s_i | E_Z) \mathbb{1} \{ s_i \leq Q(\alpha'; F_i') \} \geq 1 - \alpha$ then take expectation on E_Z and we have

$$P(S_{n+1} \le Q(\alpha'; F_{n+1})) \ge 1 - \alpha.$$

Thus the entire process is as follows

- Fix trial data $Y_{n+1} = y$ and calculate score s_1, \dots, s_{n+1} and F'_1, \dots, F'_{n+1} based on $Z_1, \dots, Z_n, Z'_{n+1} = (X_{n+1}, y)$.
- Find α' that makes $\sum_{i=1}^{n+1} P(S_{n+1} = s_i | E_Z) \mathbb{1} \{ s_i \leq Q(\alpha'; F_i') \} \geq 1 \alpha$.
- Include y in conformal set if $s_{n+1} \leq Q(\alpha'; F'_{n+1})$. In conclusion $C_{\alpha}(X_{n+1}) = \{y : s_{n+1} \leq Q(\alpha'; F'_{n+1})\}$.

Remark 5.1. *****!!!!!

For agent $1, \dots, K$ each with distribution P^k we can try to find some kernel K to estimate the distance between agent i, j and further construct the distribution or find α' .

6 Localized CP Article5

Conformal prediction with local weights: randomization enables robust guarantees[4]

Assume using training dataset $(X_1, Y_1), \dots, (X_n, Y_n)$ and a test point (X_{n+1}, Y_{n+1}) all come from distribution $P = P_X \times P_{Y|X}$. Given a new X_{n+1} , sample \tilde{X} based on X_{n+1} with density $H(X_{n+1}, \cdot)$ where H be some kernel function. Thus X_{n+1}, \tilde{X} has joint density

$$P_X(X_{n+1})H(X_{n+1},\tilde{X}).$$

Conditional on \tilde{X} (means be considered as a given constant) and density of X_{n+1} is propotional to $P_X(X_{n+1})H(X_{n+1},\tilde{X})$ and finally the density ratio between X_{n+1} and $X_i, i \leq n$ is proportional to $H(X_{n+1},\tilde{X})$.

This means conditional on \tilde{X} and X_{n+1} has a covariate shift $H(X_{n+1}, \tilde{X})$ according to the training dataset. Construct empirical distribution

$$\tilde{F} = \sum_{i=1}^{n} \tilde{w}_i \delta_{S_i} + \tilde{w}_{n+1} \delta_{\infty}, \ \tilde{w}_i = \frac{H(X_i, \tilde{X})}{\sum_{j=1}^{n+1} H(X_j, \tilde{X})}.$$

The conformal set is $C_{\alpha}(X_{n+1}) = \{y : S_{n+1} \leq Q(1-\alpha, \tilde{F})\}.$

The coverage $\mathbb{P}(Y_{n+1} \in C_{\alpha}(X_{n+1})) \geq 1 - \alpha$ according to Tibshirani[8].

REFERENCES 7

References

[1] Anastasios N Angelopoulos, Stephen Bates, et al. Conformal prediction: A gentle introduction. Foundations and Trends® in Machine Learning, 16(4):494–591, 2023.

- [2] Leying Guan. Localized conformal prediction: A generalized inference framework for conformal prediction. *Biometrika*, 110(1):33–50, 2023.
- [3] Xing Han, Ziyang Tang, Joydeep Ghosh, and Qiang Liu. Split localized conformal prediction. arXiv preprint arXiv:2206.13092, 2022.
- [4] Rohan Hore and Rina Foygel Barber. Conformal prediction with local weights: randomization enables local guarantees. arXiv preprint arXiv:2310.07850, 2023.
- [5] Jing Lei, Max G'Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-free predictive inference for regression. *Journal of the American Statistical Association*, 113(523):1094–1111, 2018.
- [6] Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression. Advances in neural information processing systems, 32, 2019.
- [7] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning Research*, 9(3), 2008.
- [8] Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal prediction under covariate shift. Advances in neural information processing systems, 32, 2019.