

Аппаратное обеспечение робототехнических систем

Vlasov Sergey

smvlasov@itmo.ru

Timer

Periodic Timers

Polling and Interrupts

Triggering

Detailed Description of a Simple, Periodic Timer

General-purpose timers

✓ Interrupt & DMA output

✓ Event

DTG

Output control

Reg Preload registers transferred to active registers on U event according to control bit

ITMO UNIVERSITY

TIM control register 1 (TIMx_CR1)

TIM control register 2 (TIMx_CR2)

TIM slave mode control register (TIMx_SMCR)

TIM DMA/interrupt enable register (TIMx_DIER)

TIM status register (TIMx_SR)

TIM event generation register (TIMx EGR)

TIM capture/compare mode register 1/2 (TIMx_CCMR1/2)

TIM capture/compare enable register (TIMx_CCER) TIM counter (TIMx_CNT)

TIM prescaler (TIMx_PSC)

TIM auto-reload register (TIMx_ARR)

TIM repetition counter register (TIMx_RCR)

TIM capture/compare register 1-4 (TIMx_CCR1-4)

TIM break and dead-time register (TIMx_BDTR) TIM DMA control register (TIMx_DCR)

TIM DMA address for full transfer (TIMx DMAR)

TIM prescaler (TIMx_PSC)

Address offset: 0x28

$$f_{CK_CNT} = \frac{f_{CK_PSC}}{(PSC[15:0]+1)}$$

TIM auto-reload register (TIMx_ARR)

Address offset: 0x2C

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ARR[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

TIM counter (TIMx_CNT)

Address offset: 0x24

15 10 6 CNT[15:0] rw rw

Prescaler description

TIM control register 1 (TIMx_CR1)

Address offset: 0x00

15	14	13	12	11	10	9	ŏ	1	О	5	4	3	2	1	U
Res.	Res.	Res.	Res.	Res.	Res.	CKD	[1:0]	ARPE	CMS	[1:0]	DIR	OPM	URS	UDIS	CEN
						rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
						•	•	•	•	•	•	•	•		

CEN: Counter enable 0: Counter disabled

1: Counter enabled **OPM:** One pulse mode

OPIVI. One pulse mout

- 0: Counter is not stopped at update event
- 1: Counter stops counting at the next update event

(clearing the bit CEN)

DIR: Direction

- 0: Counter used as upcounter
- 1: Counter used as downcounter
- **ARPE:** Auto-reload preload enable
- 0: TIMx_ARR register is not buffered 1: TIMx_ARR register is buffered

- **CMS:** Center-aligned mode selection
- 00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR).

ITMO UNIVERSITY

- 01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting down.
- 10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting up.
- 11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set both when the counter is counting up or down.

Upcounting mode

Upcounting mode

Auto-reload preload register

__/____

36

Write a new value in TIMx_ARR

Upcounting mode

Downcounting mode

Center-aligned mode (up/down counting)

TIM DMA/interrupt enable register (TIMx_DIER)

Address offset: 0x0C

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	TDE	COMDE	CC4DE	CC3DE	CC2DE	CC1DE	UDE	BIE	TIE	COMIE	CC4IE	CC3IE	CC2IE	CC1IE	UIE
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

UIE: Update interrupt enable

0: Update interrupt disabled

1: Update interrupt enabled

CCxIE: Capture/Compare x interrupt enable

0: CC1 interrupt disabled

1: CC1 interrupt enabled

TIM status register (TIMx_SR)

Address offset: 0x10

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	Res.	Res.	CC4OF	CC3OF	CC2OF	CC1OF	Res.	BIF	TIF	COMIF	CC4IF	CC3IF	CC2IF	CC1IF	UIF
			rc_w0	rc_w0	rc_w0	rc_w0		rc_w0							

ITMO UNIVERSITY

UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.

0: No update occurred.

1: Update interrupt pending. This bit is set by hardware when the registers are updated

CCxIF: Capture/Compare x interrupt flag

If channel CCx is configured as output:

This flag is set by hardware when the counter matches the compare value, with some exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register description). It is cleared by software.

- 0: No match.
- 1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.

When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit goes high on the counter overflow (in upcounting and up/down-counting modes) or underflow (in downcounting mode)

If channel CC1 is configured as input:

This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1 register.

- 0: No input capture occurred
- 1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected on IC1 which matches the selected polarity)

Direct Memory Access

DMA Controller & its Working

DMA Controller Data Transfer

DMA Diagram

STM32 DMA

STM32 DMA

ITSMOre than a UNIVERSITY

Channel selection

Peripheral requests	Stream 0	Stream 1	Stream 2	Stream 3
Channel 0	SPI3_RX	-	SPI3_RX	SPI2_RX
Channel 1	I2C1_RX	I2C3_RX	-	-
Channel 2	TIM4_CH1	-	I2S3_EXT_RX	TIM4_CH2
Channel 3	I2S3_EXT_RX	TIM2_UP TIM2_CH3	I2C3_RX	I2S2_EXT_RX
Channel 4	-	-	-	-
Channel 5	-	-	TIM3_CH4 TIM3_UP	-

DMA SxCR

Source, destination and transfer modes

Bits DIR[1:0] of the DMA_SxCR register	Direction	Source address	Destination address
00	Peripheral-to-memory	DMA_SxPAR	DMA_SxM0AR
01	Memory-to-peripheral	DMA_SxM0AR	DMA_SxPAR
10	Memory-to-memory	DMA_SxPAR	DMA_SxM0AR
11	reserved	-	-

Peripheral-to-memory mode

ITsMOre than a UNIVERSITY

Memory-to-peripheral mode

Memory-to-memory mode

ITsMOre than a UNIVERSITY

ITMO UNIVERSITY

- DMA low/high interrupt status register (DMA_{L/H}ISR)
- DMA low/high interrupt flag clear register (DMA_{L/H}IFCR)
- DMA stream x configuration register (DMA_SxCR) (x = 0..7)
- DMA stream x number of data register (DMA_SxNDTR) (x = 0..7)
- DMA stream x peripheral address register (DMA_SxPAR) (x = 0..7)
- DMA stream x memory 0 address register (DMA_SxM0AR) (x = 0..7)
- DMA stream x memory 1 address register (DMA_SxM1AR) (x = 0..7)
- DMA stream x FIFO control register (DMA_SxFCR) (x = 0..7)

ITMO UNIVERSITY

18

17

16

DMA stream x configuration register (DMA_SxCR) (x = 0..7)

Address offset: 0x10 + 0x18 * stream number

28

Res.		Res.	Res.	(CHSEL[2:	[0]	MBURS	T [1:0]	PBUI	RST[1:0]		CT	DBM	PL[1:0]
				rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PINCOS	MSIZ	E[1:0]	PSIZ	E[1:0]	MINC	PINC	CIRC	DIR	[1:0]	PFCTRL	TCIE	HTIE	TEIE	DMEIE	EN
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
EN: stream	n enable					{ <i>P/N</i>	1}INC: pe	peripheral/memory				CHSEL: channel selection			
This bit is	set and cleared by software. incremer							ode				000: ch	annel 0 s	elected	

0: address pointer is fixed

done according to PSIZE)

1: address pointer is incremented

after each data transfer (increment is

{P/M}SIZE: peripheral/memory data

24

This bit is set and cleared by software. 0: stream disabled

30

1: stream enabled

31

{DME/TE/HT/TC}EI: direct mode error/transfer

0: interrupt disabled

1: interrupt enabled **DIR:** data transfer direction

00: peripheral-to-memory 01: memory-to-peripheral

10: memory-to-memory

11: reserved

error/half transfer/transfer complete interrupt enable

00: byte (8-bit) 01: half-word (16-bit)

size

10: word (32-bit)

11: reserved

uuu: channei u selected

001: channel 1 selected 010: channel 2 selected 011: channel 3 selected

100: channel 4 selected 101: channel 5 selected

110: channel 6 selected

20

21

19

111: channel 7 selected

DMA stream x peripheral/memory 0 address register (DMA_Sx $\{P/M0\}AR$) (x = 0..7)

Address offset: 0x18/0x1C + 0x18 * stream number

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						P/	AR/M0A[31:16]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Р	AR/M0A	[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

DMA stream x number of data register (DMA_SxNDTR) (x = 0..7)

Address offset: 0x14 + 0x18 * stream number

<i>/</i> (G)	ai C55	01150	OXI-	T 1 OX	10 3	Cican	illali	IDCI							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							NDT	[15:0]							
m.,	m.,	m.,	mu	n.,	m.,	P2.47	P1.1	m.,	m.,	m.,	n.,	n.,	n.,	m.,	P2.47

DMA low/high interrupt status register (DMA_{L/H}ISR) DMA low/high interrupt flag clear register (DMA_{L/H}IFCR)

Address offset: 0x00, 0x04, 0x08, 0x0C

31	30	2	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res	s. R	es.		TCIF3	HTIF	3 TEIF	3 DMEIF3	Res	. FEIF3	TCIF2	HTIF2	TEIF2	DMEIF2		FEIF2
					r	r	r	r		r	r	r	r	r		r
15	14	1	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	Res	s. R	es.	Res.	TCIF1	HTIF	1 TEIF	1 DMEIF1	Res	FEIF1	TCIF0	HTIF0	TEIF0	DMEIF0	Res.	FEIF0
					r	r	r	r		r	r	r	r	r		r
31	30	29	28	2	7	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res	CTC	IF3 C	HTIF3	CTEIF3	CDMEIF3	Res.	CFEIF3	CTCIF2	CHTIF2	CTEIF2	CDMEIF2	Res.	CFEIF2
				W	v	W	W	W		w	W	w	W	w		w
15	14	13	12	1	1	10	9	8	7	6	5	4	3	2	1	0
Res.	Res.	Res.	Res	CTC	IF1 C	HTIF1	CTEIF1	CDMEIF1	Res.	CFEIF1	CTCIF0	CHTIF0	CTEIF0	CDMEIF0	Res.	CFEIF0
	•			١٨	,	\\\	W	\\/		١٨/	W	\\/	\\/	W		\\/

FEIFx: stream x {clear} FIFO error interrupt flag

DMEIFx: stream x {clear} direct mode error interrupt flag

TEIFx: stream x {clear} transfer error interrupt flag

HTIFx: stream x {clear} half transfer interrupt flag

TCIFx: stream x {clear} transfer complete interrupt flag

DMA Enable algorithm

Steps for start DMA transfer

- 1. Enable DMA transfer in peripheral device.
- 2. Config DMA stream:
 - 1. Select peripheral channel.
 - 2. Set transfer direction.
 - 3. Set increase mode for memory or peripheral, if required.
 - 4. Enable events interrupts, if required.
- 3. Set peripheral address, memory address and number of bytes for transfer.
- 4. Start transfer by enabling DMA Stream.

DMA Example

ITsMOre than a UNIVERSITY

```
ITMO UNIVERSITY
uint8 t tx data[10];
int main()
   RCC->APB1ENR |= RCC APB1ENR USART2EN;
   RCC->AHB1ENR |= RCC AHB1ENR DMA1EN;
   USART2->BRR = APB1/USART BAUDRATE;
   USART2->CR1 = USART CR1 UE | USART CR1 TE | USART CR1 RE;
   USART2->CR3 = USART CR3 DMAT;
   DMA1 Stream6->CR = DMA SxCR DIR 0 | DMA SxCR MINC | DMA SxCR CHSEL 2;
   DMA1 Stream6->PAR = (uint32 t) &USART2->DR;
   DMA1 Stream6->MOAR = (uint32 t) &tx data;
   DMA1 Stream6->HIFCR = DMA HIFCR CTCIF6 | DMA HIFCR CHTIF6;
   DMA1 Stream6->NDTR = 10;
   DMA1 Stream6->CR |= DMA SxCR EN;
```

Thank you for attention

www.ifmo.ru

ITSMOre than a
UNIVERSITY