I_D

-3.0A

-2.6A

International Rectifier

PROVISIONAL

IRLML5203

HEXFET® Power MOSFET

 $R_{DS(on)} max (m\Omega)$

98@V_{GS} = -10V

 $165@V_{GS} = -4.5V$

- Ultra Low On-Resistance
- P-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- Low Gate Charge

Description

These P-channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3TM, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.

 V_{DSS}

-30V

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	-30	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-3.0	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-2.4	A
I _{DM}	Pulsed Drain Current ①	-24	
P _D @T _A = 25°C	Power Dissipation	1.25	w
P _D @T _A = 70°C	Power Dissipation	0.80	VV
	Linear Derating Factor	10	mW/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	100	°C/W

IRLML5203

PROVISIONAL

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.019		V/°C	Reference to 25°C, I _D = -1mA
R	Static Drain-to-Source On-Resistance			98	mΩ	V _{GS} = -10V, I _D = -3.0A ②
R _{DS(on)}	Static Brain to Source Off Resistance			165	11152	V _{GS} = -4.5V, I _D = -2.6A ②
V _{GS(th)}	Gate Threshold Voltage	-1.0		-2.5	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
g _{fs}	Forward Transconductance	3.1			S	$V_{DS} = -10V, I_D = -3.0A$
1	Drain-to-Source Leakage Current			-1.0		V _{DS} = -24V, V _{GS} = 0V
I _{DSS}	Dialii-to-Source Leakage Current			-5.0	μA	$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -20V
IGSS	Gate-to-Source Reverse Leakage			100	IIA I	V _{GS} = 20V
Qg	Total Gate Charge		9.5	14		I _D = -3.0A
Q _{gs}	Gate-to-Source Charge		2.3	3.5	nC	$V_{DS} = -24V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		1.6	2.4		V _{GS} = -10V ②
t _{d(on)}	Turn-On Delay Time		12			V _{DD} = -15V ②
t _r	Rise Time		18		ns	$I_{D} = -1.0A$
t _{d(off)}	Turn-Off Delay Time		88		115	$R_G = 6.0\Omega$
t _f	Fall Time		52			$V_{GS} = -10V$
C _{iss}	Input Capacitance		510			$V_{GS} = 0V$
Coss	Output Capacitance		71		pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance		43			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-1.3		MOSFET symbol
	(Body Diode)			-1.3	A	showing the
I _{SM}	Pulsed Source Current			-24	1 ^	integral reverse
	(Body Diode) ① -24	-24	p-n junction diode.			
V_{SD}	Diode Forward Voltage			-1.2	V	T _J = 25°C, I _S = -1.3A, V _{GS} = 0V ②
t _{rr}	Reverse Recovery Time	l	17	26	ns	$T_J = 25^{\circ}C$, $I_F = -1.3A$
Q _{rr}	Reverse Recovery Charge		12	18	nC	di/dt = -100A/μs ②

Notes:

① Repetitive rating; pulse width limited by max. junction temperature.

② Pulse width \leq 400 μ s; duty cycle \leq 2%.

IRLML5203

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

4

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 11. Typical On-Resistance Vs. Gate Voltage

Fig 12. Typical On-Resistance Vs. Drain Current

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

Fig 14. Threshold Voltage Vs. Temperature

Fig 15. Typical Power Vs. Time

Micro3TM Package Outline

Dimensions are shown in millimeters (inches)

DIM	INC	HES	MILLIMETERS		
	MIN	MAX	MIN	MAX	
Α	.032	.044	0.82	1.11	
A1	.001	.004	0.02	0.10	
В	.015	.021	0.38	0.54	
С	.004	.006	0.10	0.15	
D	.105	.120	2.67	3.05	
е	.0750 BASIC		1.90 BASIC		
e1	.0375	BASIC	0.95 BASIC		
Е	.047	.055	1.20	1.40	
Н	.083	.098	2.10	2.50	
L	.005	.010	0.13	0.25	
θ	0°	8°	0°	8°	

- NOTES:
 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
 2. CONTROLLING DIMENSION: INCH.
 3 DIMENSIONS DO NOT INCLUDE MOLD FLASH.

PROVISIONAL

IRLML5203

Part Marking Information

Micro3TM

Notes: This part marking information applies to devices produced before 02/26/2001

EXAMPLE: THIS IS AN IRLML6302

WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YEAR	Υ	WEEK	W	
2001	1	01	Α	
2002	2	02	В	
2003	3	03	С	
1994	4	04	D	
1995	5			
1996	6			
1997	7			
1998	8	1	1	
1999	9	7	7	
2000	0	24	X	
		25	Υ	
		26	Z	

PART NUMBER CODE REFERENCE:

1A = IRLML2402 1B = IRLML2803 1C = IRLML6302 1D = IRLML5103 1E = IRLML6402 1F = IRLML6401 1G = IRLML2502 1H = IRLML5203

WW = (27-52) IF PRECEDED BY A LETTER

YEAR	Υ	WORK WEEK	W				
2001	Α	27	Α				
2002	В	28	В				
2003	С	29	С				
1994	D	30	D				
1995	E						
1996	F						
1997	G						
1998	Н	1	1				
1999	J		7				
2000	K	50	X				
		51	Υ				
		52	Z				

DATE CODE EXAMPLES:

YWW = 9503 = 5C YWW = 9532 = EF

Notes: This part marking information applies to devices produced after 02/26/2001

W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

PART NUMBER CODE REFERENCE:

A= IRLML2402 B= IRLML2803 C= IRLML6302 D= IRLML5103 E= IRLML6402 F= IRLML6401 G= IRLML2502 H= IRLML5203

W = (27-52) IF PRECEDED BY A LETTER

YEAR	Υ	WORK WEEK	W
2001	Α	27	Α
2002	В	28	В
2003	С	29	С
1994	D	30	D
1995	Е		
1996	F		
1997	G		
1998	Н	1	
1999	J	7	1
2000	K	50	X
		51	Υ
		52	Z

Micro3TM Tape & Reel Information Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information, 04/03