FIZ1431 - Proyecto Final

Instituto de Física Pontificia Universidad Católica de Chile Segundo Semestre 2018

Fecha de entrega: 29 de noviembre, 23:59 hrs. Número de integrantes por grupo: 2.

Recuerde comentar adecuadamente el código. Comentarios insuficientes o códigos muy difiíciles de entender produciraán un descuento en la nota final. La ejecución del programa debe resolver completamente el problema planteado.

Un modelo Monte Carlo del transporte de partículas

Escriba un programa para estimar la probabilidad de transmisión y absorción de partículas emanadas de un núcleo esférico de material fisionable y que atraviesan una serie de cascarones esféricos de material moderador y concéntricos con el núcleo emisor de radiación. La transmisión se define como una partícula que logra atravesar los cascarones esféricos hacia el exterior. Un esquema de la situación y los datos para cada región del problema se muestran a continuación.

Región	$\Sigma_{-}t(cm^{-1})$	$\Sigma_{-}a(cm^{-1})$	Espesor (cm)
Núcleo	0.05	0.005	0.50
Cascarón 1	0.1	0.01	0.10
Cascarón 2	10.0	0.1	0.10
Cascarón 3	100.0	10.0	0.10

Considere que las partículas son generadas uniformemente en el núcleo fisionable, con una dirección inicial aleatoria. Considere un modelo monoenergético con solo absorción y dispersión, por lo que debe considerar los siguientes procesos estocásticos:

- Distancia al siguiente punto de interacción
- Tipo de interacción (absorción o dispersión)
- Ángulo de dispersión, en el caso de una interacción de dispersión.

Ejecute el programa para 1 000, 100 000 y 10 000 000 historias. Obtenga la probabilidad de absorción y transmisión e incertidumbres asociadas para cada caso. Discuta sus resultados y genere un informe final que debe considerar los siguientes puntos:

- Breve introducción al método Monte Carlo y su uso en el transporte de partículas
- Materiales y métodos empleados para generar este programa
- Resultados y discusión
- Conclusiones

Se adjunta una pauta de corrección que será considerada para la corrección del informe final.