

Memristive oscillatory circuits for resolution of NP-complete logic puzzles: Sudoku case

<u>Theodoros Panagiotis Chatzinikolaou*</u>, Iosif-Angelos Fyrigos*, Rafailia-Eleni Karamani*, Vasileios Ntinas*†, Giorgos Dimitrakopoulos*, Sorin Cotofana‡, Georgios Ch. Sirakoulis*

- * Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
- † Department of Electronic Engineering, Universitat Polytécnica de Catalunya, Barcelona, Spain
- ‡ Department of Quantum and Computer Engineering, Delft University of Technology, Delft, The Netherlands

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Solving NP-Complete Logic Puzzles

Solving NP-Complete Logic Puzzles

Solving NP-Complete Logic Puzzles

Unconventional Computing Circuits

010110 101101 110100

Presentation Outline

- > Proposed Memristor-RC Oscillating System
- > The Sudoku Logic Puzzle in brief
- > Representing Sudoku in a Memristor-RC Circuit
- > Conclusions

The Memristor Device

From the Prediction

1971

Memristor—The Missing Circuit Element

LEON O. CHUA, SENIOR MEMBER, IEEE

The Memristor Device

To the Realization

1971

Memristor—The Missing Circuit Element

LEON O. CHUA, SENIOR MEMBER, IEEE

2008

The Memristor Device

Today's Applications

1971

Memristor—The Missing Circuit Element

LEON O. CHUA, SENIOR MEMBER, IEEE

2008

today

Memristor Model

Memristor In Brief

I. Vourkas, A. Batsos, and G. Ch. Sirakoulis, "SPICE modeling of nonlinear memristive behavior", International Journal of Circuit Theory Applications, vol. 43, no. 5, pp. 553–565, May 2015.

Memristor Model

Unipolar device fitting: v – i curves.

Voltage-current relationship together with the voltage-current transients.

The measurement method imposes
the input voltage waveform:
right after the SET is accomplished
the sawtooth wave is reset to perform the next switch.

F. Garcia-Redondo, R. P. Gowers, A. Crespo-Yepes, M. L'opez-Vallejo, and L. Jiang, "SPICE compact modeling of bipolar/unipolar memristorswitching governed by electrical thresholds", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 8, pp. 1255–1264, 2016.

Memristor Model

Unipolar device fitting: v – i curves.

Voltage-current relationship together with the voltage-current transients.

The measurement method imposes
the input voltage waveform:
right after the SET is accomplished
the sawtooth wave is reset to perform the next switch.

F. Garcia-Redondo, R. P. Gowers, A. Crespo-Yepes, M. L'opez-Vallejo, and L. Jiang, "SPICE compact modeling of bipolar/unipolar memristorswitching governed by electrical thresholds",

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 8, pp. 1255–1264, 2016.

Schematic for the fundamentals of the storage mechanism in unipolar RRAMs, including preliminary forming for initiating the localized filament, RESET for filament thermal rupture and SET for the structural recovery of the filament.

Copyright 2009, American Institute of Physics.

D. Ielmini, R. Bruchhaus, R. Waser, "Thermochemical resistive switching: materials, mechanisms, and scaling projections", Phase Transitions, vol. 84, no. 7, pp. 570-602, July 2011.

$$LRS < R \ll HRS$$

-15

0

0.5

1.5

2.5

Time (s)

3.5

4.5

Rows

Columns

Groups

Pre-defined Cells

2			1
4		1	
3	1		2

Solution

2	4	3	1
1	3	2	4
4	2	1	3
3	1	4	2

9x9 Sudoku

9x9 Sudoku Representation

Cells Representation

Rows Representation

Row Connections

Columns Representation

Column Connections

Groups Representation

Group Connections

Node's Output Voltage

Initial Conditions

3x3 Sudoku

Conclusions

- A memristor-based oscillator has been utilised to address the resolution of Sudoku puzzles
- The presented circuit is able to intrinsically come to a solution, without the use of complicated algorithmic methods
- The designed circuit comprises only of nano-scale integration compatible electronics elements

Future Work

- > Scaling-up the proposed circuit methodology
- > Designing a re-programmable array of interconnections between nodes
- A future generic logic puzzle problem solver
- A further exploration of the system's behaviour in the initial conditions domain

Thank you for your attention

