

Supply and Demand: Elasticity and Applications Module 4 Lesson1

Module Overview

Elasticity

"It measures responsiveness of one variable to changes in another variable."

Percentage change in dependant variable Percentage change in independent variable

Elastic

Inelastic

Price Elasticity of Demand

Price elasticity of demand is the percentage change in quantity demanded divided by the percentage change in price:

$$E pD = \frac{Percentage change in quantity demanded}{Percentage change in price}$$

% change in quantity =
$$\frac{Q_2 - Q_1}{(Q_2 + Q_1) \div 2} \times 100$$
% change in price =
$$\frac{P_2 - P_1}{(P_2 + P_1) \div 2} \times 100$$

EpD =
$$Q2 - Q1$$
 * $P1 + P2$
P2 - P1 Q1+ Q2

Types of Price Elasticity of Demand

change in Qd

IF	Then	Туре	Example	Curve
1. % change in Qd > % change in Price	EpD >1	Relative Elastic	Comfort/luxury	flatter
2. % change in Qd < % change in Price	EpD <1	Relative Inelastic	Necessities	steeper
3. % change in Qd = % change in Price	EpD =1	Unitary Elastic	Accessories	Normal
4. % change in price brings no change in Qd	EpD =0	Perfectly Inelastic	Life saving drugs/medicines	
5. Small % change in price brings infinite	EpD =∞	Perfectly Elastic	No real life example	

Case A: Price = 90 and quantity = 240

Case B: Price = 110 and quantity = 160

ELASTICITY AND REVENUE

Many businesses want to know whether raising prices will raise or lower revenues.

ELASTICITY AND REVENUE

- 1. When demand is price-inelastic, a price decrease reduces total revenue.
- 2. When demand is price-elastic, a price decrease increases total revenue
- **3.** In the borderline case of unit-elastic demand, a price decrease leads to no change in total revenue.

Example: Higher cost with Inelastic Demand

Factors Determining Price Elasticity of Demand

- a. Availability of Substitutes.
- b. Proportion of the Income Spent on the Good.
- c. Time Period.

Supply and Demand: Elasticity and Applications Module 4 Lesson2

Income Elasticity of Demand

Income elasticity of demand is defined as the percentage change in demand divided by the percentage change in income.

It tells us the responsiveness of demand to changes in income.

- ⇒If goods are Normal : EDI > 0 (Positive)
- \Rightarrow If goods are Inferior : EDI < 0 (Negative)

EID =
$$D2 - D1$$
 * $Y1 + Y2$
 $Y2 - Y1$ $D1 + D2$

Income (Y)	Demand (D)
100	20
150	26

Ans:

(a) Calculating Income Elasticity

Knowledge Check

Label each of the following goods as a luxury, necessity, or inferior good. Income elasticity is given for each.

Dental Service 5.1 Economy class travel -0.5 Shoes 0.62

Cross Elasticity of Demand

The percentage change in demand divided by the percentage change in the price of a related good.

It shows the responsiveness of demand to changes in prices of related goods

- ⇒If goods are Substitute : EDI > 0 (Positive)
- ⇒ If goods are Complement : EDI < 0 (Negative)

EID =
$$\frac{DA2 - DA1}{PB2 - PB1}$$
 * $\frac{PB1 + PB2}{DA1 + DA2}$

Price (B)	Demand (A)	
100	108	
95	104	

Ans:

(b) Calculating Cross-Price Elasticity

Price Elasticity of Supply

The price elasticity of supply is the percentage change in quantity supplied divided by the percentage change in price.

EpS =
$$Q2 - Q1$$
 * $P1 + P2$ $Q1 + Q2$

Types of Price Elasticity of Supply

IF	Then	Туре	Curve
1. % change in Qs % >change in Price	EpS	Relative Elastic	
			flatter
2. % change in Qs %< change in Price	EpS	Relative Inelastic	steeper
3. % change in Qs= % change in Price	EpS	Unitary Elastic	Normal
4. % change in price brings no change in Qs	EpS	Perfectly Inelastic	
5. Small % change in price brings infinite change in Qs	EpS =∞	Perfectly Elastic	·

Factors Determining Price Elasticity of Supply

- **1.** Time period
- 2. Ability to store output
- 3. Factor mobility