STAT2911

Probability and Statistical Models

Assignment 1

Due by 11:59pm Friday April 3 2020

Late submissions are penalized as per standard university policy: Deduction of 5% of the maximum mark for each calendar day after the due date. After ten calendar days late, a mark of zero will be awarded.

1. The negative binomial RV X models the number of trials until the rth success in a sequence of independent Bernoulli trials with probability of success p in each trial. So, if q = 1 - p,

$$P(X = k) = {k-1 \choose r-1} p^r q^{k-r}, \ k = r, r+1, \cdots.$$

Let Y = X - r. What does Y measure?

Suppose that $r \to \infty$ and $q \to 0$ so that $rq \to \lambda$. Show that, for fixed $m = 0, 1, \ldots$

$$P(Y=m) \longrightarrow \frac{\lambda^m}{m!} e^{-\lambda}.$$

2. Let

$$\Omega = \{0,1\}^{\mathbb{N}} = \{ \boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots) : \alpha_i \in \{0,1\} \}.$$

Fact. There exists a σ -algebra \mathcal{F} s.t. for every $\boldsymbol{\beta} = (\beta_1, \dots, \beta_n) \in \{0, 1\}^n$, if we define the set $E_{\boldsymbol{\beta}} \subset \Omega$ as

$$E_{\beta} = \{ \boldsymbol{\alpha} \in \Omega : (\alpha_1, \alpha_2, \dots, \alpha_n) = \boldsymbol{\beta} \},$$

then $E_{\beta} \in \mathcal{F}$.

For example, with $\beta = (0, 1, 1, 0)$, E_{β} consists of all sequences $(0, 1, 1, 0, \alpha_5, \alpha_6, ...)$, where for $i \geq 5$, $\alpha_i \in \{0, 1\}$.

Let $p \in [0,1]$ then define the function P on sets E_{β} as above as

$$P(E_{\beta}) = p^{\sum_{i=1}^{n} \beta_i} (1-p)^{n-\sum_{i=1}^{n} \beta_i}.$$

Fact. P can be extended to a probability measure on (Ω, \mathcal{F}) .

- (i) What does (Ω, \mathcal{F}, P) model in this particular case?
- (ii) Show that with $\mathbf{0} = (0, 0, \dots) \in \Omega$, the set $\{\mathbf{0}\} \in \mathcal{F}$. Justify every step in your proof, that is refer precisely to any result you are using in your derivation.
- (iii) We will show later on that if B_n is a decreasing sequence of events, i.e., $B_n \supset B_{n+1}$ then

$$P\left(\bigcap_{n=1}^{\infty} B_n\right) = \lim_{n \to \infty} P(B_n).$$

Use this to show that if p > 0 then $P(\{0\}) = 0$.

- (iv) For $\alpha \in \Omega$ and $n \in \mathbb{N}$ let $X_n(\alpha) = \alpha_n$. What kind of a RV is X_n ?
- (v) For $\alpha \in \Omega$ let $X(\alpha) = \inf \{n : \alpha_n = 1\}$, where for $A \subset \mathbb{R}$, $\inf(A)$ is the infimum of the set A or its greatest lower bound. What kind of a RV is X?
- (vi) What is $X(\mathbf{0})$?
- (vii) Conclude that if p > 0 then $P(X = \infty) = 0$ but $\infty \in X(\Omega)$ (∞ is in the range of X).