Билет 60

Автор1,, АвторN
22 июня 2020 г.

Содержани	\mathbf{e}
-----------	--------------

0 1		П П ос	· ·	1
U. I	Билет Ы: Признаки	Дирихле и Леирница	для равномерной сходимости	
U • I	Diffici co. Hphonemi	Ziipiiiii ii etelieliiida	Aum publication on Amicoli	

Билет 60 СОДЕРЖАНИЕ

0.1. Билет 60: Признаки Дирихле и Лейбница для равномерной сходимости

Теорема 0.1 (Признак Дирихле (Дурихле)).

 $a_n, b_n : E \mapsto \mathbb{R}$

1.
$$\left|\sum_{k=1}^{n} a_k(x)\right| \leqslant K \,\forall n \,\forall x \in E$$

- $2. b_n \rightrightarrows 0$ на E
- 3. $\forall x \in E \, b_n(x)$ монотонны по n

При выполнении этих условий $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ - равномерно сходится на E.

Доказательство.

 $A_n(x) := \sum_{k=1}^n a_k(x)$. $|A_n(x)| \leq K$, по условию. Воспользуемся преобразованием Абеля (если забыли доказательство - оно в вопросе 46). Его корректность для функциональных рядов можно проверить, повторив обычное доказательсвто с приписанным '(x)'

$$\sum_{k=1}^{n} a_n(x)b_n(x) = A_n(x)b_n(x) + \sum_{k=1}^{n-1} A_k(x)(b_k(x) - b_{k+1}(x))$$

- $A_n(x)b_n(x) \rightrightarrows 0$ как произведение равномерно ограниченной на равномерно стремящуюся к нулю
- $\sum_{k=1}^{\infty} A_k(x)(b_k(x)-b_{k+1}(x))$ равномерно сходится. Воспользуемся для доказательства этого факта признаком сравнения.

 $u_k(x) := A_k(x)(b_k(x) - b_{k+1}(x))$ и $v_n(x) := K|b_k(x) - b_{k+1}(x)|$ Осталось доказать, что $v_n(x)$ - равномерно сходится. $\sum_{n=1}^{\infty} |b_n(x) - b_{n+1}(x)| \underbrace{=}_{b_n(x)-\text{монотонные}} \left| \sum_{n=1}^{\infty} b_n(x) - b_{n+1}(x) \right|$. Посмотрим на

частичные суммы:

$$\left| \sum_{k=1}^{n} b_k(x) - b_{k+1}(x) \right| = |b_1(x) - b_{n+1}(x)| \Longrightarrow |b_1(x)|$$

Докажем последний переход:

$$||b_1(x) - b_{n+1}(x)| - b_1(x)| \le |b_1(x) - b_{n+1}(x) - b_1(x)| = |b_{n+1}(x)|$$

Так как частичные суммы равномерно сходятся, то и сам ряд равномерно сходится.

Теорема 0.2 (Признак Лейбница).

$$b_n: E \mapsto \mathbb{R}$$

- 1. $\forall x \in E \, b_n(x) \geqslant 0$ и монотонны
- $2. b_n(x) \Longrightarrow 0$ на E.

Билет 60 СОДЕРЖАНИЕ

Тогда ряд $\sum_{n=1}^{\infty} (-1)^{n-1} b_n(x)$ - равномерно сходится.

Доказательство.

 $a_n(x):=(-1)^{n-1}.$ И воспользуемся признаком Дирихле для $a_n(x)$ и $b_n(x).$ Частичные суммы $a_n(x)$ либо 1, либо $0\Rightarrow$ ограничены.

Пример. $\sum\limits_{n=1}^{\infty}\frac{(-1)^n}{n}x^n$ - равномерно сходитя на (0;1)

Доказательство.

 $\frac{x^n}{n} \leqslant \frac{1}{n} \Rightarrow \frac{x^n}{n} \rightrightarrows 0$, также $\frac{x^n}{n}$ монотонная. Получаем равномерную сходимость ряда по Лейбницу. Также ряд $\sum_{n=1}^{\infty} |(-1)^{n-1} \frac{x^n}{n}|$ - сходится, так как меньше геометрической прогрессии. **НО** такой ряд не сходится равномерно по критерию Коши.