CAPÍTULO II

MODELO DE INTERAÇÃO PESSOA MÁQUINA

- 1. Sistema Humano de Perceção
- 2. Sistema Cognitivo
- 3. Sistema Motor

SISTEMA HUMANO DE PERCEÇÃO

UNIDADES DE ENTRADA E SAÍDA DE INFORMAÇÃO

- Sistema visual
- Sistema auditivo
- Sistema tátil

VISÃO

Sensação: Receção física dos estímulos Perceção: Processamento e interpretação

Os cones e os bastonetes produzem sinais elétricos ao serem estimulados pela luz

LUZ -> CÓRNEA -> CRISTALINO | RETINA -> IMPULSOS NERVOSOS -> PERCEÇÕES VISUAIS Os dois foto-receptores (cones e bastonetes) ajudam neste processo

O cérebro deteta padrões e movimento -> processa e interpreta a informação recebida

Bastonetes

- São todos do mesmo tipo
- Sensíveis à luz ténue
- Permitem a visão para baixas intensidades luminosas
- Objetos coloridos aparecem sem cor no escuro

Cones

- Utilizados para a luz brilhante
- Contêm informações sobre a cor
- Permitem a visão colorida em claridades média e grande (visão diurna)
- Se a intensidade luminosa oscilar muito rapidaemente, o olho não pode acompanhar as variações

CORES

O uso da cor requer uma gestão cuidadosa As cores utilizadas devem ter funções:

- apelativas
- informativas
- descritivas

A cor afeta a perceção visual dependendo se for bem ou mal utilizada

ASPETOS COGNITIVOS DAS CORES

Consistência

A atribuição incoerente de cores dificulta a aprenndizagem

Simplicidade

O número de cores a utilizar deve ser 7 +- 2, pois o ser humano não consegue manipular adequadamente mais cores em simultâneo

Evita a sensação de ecrãs cheios ou confusos Evita a dispersão da atenção

Semântica

- Codificar para reduzir o esforço mental de cognição
- Seguir estereótipos
- Evitar contrariar a identidade cultural do utilizador
- Evitar contrariar a identidade geográfica do utilizador
- Evitar contrariar a identidade etária do utilizador

Cores quentes

- Ação
- Avanço
- Intrusão

Cores frias

- Passividade
- Afastamento

Cores escuras

- Autoridade
- Poder
- Controlo

Realce de informação

Grupos de informação

- Informação fortemente relacionada sugere utilização de cores similares
- Informação diversa sugere cores de contraste
- Evitar os extremos

Aspetos de perceção das cores

- Fácil perceção da informação auxilia nas tarefas cognitivas
- Combinação de corses para áreas
- Saturação de cores
 - □ Não deve ser utilizada como mecanismo de codificação originam fadiga
 - □ Podem ser utilizadas para destacar elementos

- ™Mau exemplo
 - Cores saturadas
 - Provoca cansaço
- Distrai o utilizador da tarefa

Aspetos de perceção das cores - ÁREAS GRANDES

- Utilizar cores neutras, não saturadas ou de brilho reduzido
- Áreas de cores diferentes -> parece estar a distâncias diferentes

Aspetos de perceção das cores - ÁREAS PEQUENAS

- Não atribuir à cor responsabilidades de codificação de informação

Considerações adicionais

- Em gráficos com poucas cores, a cor de fundo deverá ser uma cor complementar das cores das linhas ou símbolos do gráfico
- Quando o número de cores for grande, a melhor solução será para a cor de fundo aplicar um tom de cinzento
- A cor de texto deve criar um contraste nítido com a cor de fundo no que diz respeito À tonalidade e intensidade
 - □ Cor de fundo cor menos luminosa
 - ☐ Texto cor mais luminosa

- Para marcar uma parte do texto utilizar cores com diferentes luminosidades

Branco sobre negro marcado a amarelo

- MELHORES COMBINAÇÕES:

- Preto sobre amarelo
- Amarelo sobre preto
- Preto sobre branco
- Branco sobre preto
- Branco sobre vermelho
- Vermelho sobre branco
- Branco sobre azul
- Azul sobre branco
- Verde sobre branco
- Vermelho sobre amarelo
- Atender a significados não desejados
 - Duas informações na mesma cor podem sugerir que estão ligadas ainda que isso não seja verdade
- Poupar nas cores do menu de modo a não confundir com a informação a codificar
- A leitura da cor de uma área é influenciada pela cor da área envolvente
- Luz ambiente condiciona ênfase de informação
- A cor e uma área pode afetar a leitura do tamanho dessa área

CONSEQUÊNCIAS DE UMA UTILIZAÇÃO INDEVIDA

- Fadiga ou desconforto visual
- Distração
- Ilegibilidade
- Dificuldade na aprendizagem
- Afastamento dos utilizadores

INTERPRETAÇÃO DE SINAIS

- Tamanho e Profundidade
- Ângulo visual
- Acuidade visual
- Brilho
- Cor

- Compensação

- Movimento
- Alterações de luz
- Realizado pelo sistema visual humano
- Contexto usado para resolver ambiguidade
- Ilusões de ótica devido à sobre-compensação

PROCESSO DE LEITURA

- Feito por agrupamentos de palavras/elementos e saltos
- Perceções durante os saltos
- Descodificado através do reconhecimento de padrões

- Contexto

PSICOLOGIA DE GESTALT - LEIS DO AGRUPAMENTO PERCETIVO

Os princípios de Gestalt estipulam algumas das estratégias básicas para permitir ao desginer dirigir o olhar do utilizador

LEI DO FECHAMENTO

O cérebro humano tem a inclinação de fechar ou concluir formas que vemos inacabadas ou abertas devido a padrões sensoriais e de ordem espacial

LEI DA PROXIMIDADE

Agrupar elementos por distâncias entre si - formar grupos visuais de elementos que se encontram próximos

LEI DA FAMILIARIDADE/SEMELHANÇA

Tendência natural de colocar em relação elementos semelhantes, sejam por forma, cor ou dimensão

LEI DA CONTINUIDADE/DO DESTINO COMUM

Todos os elementos são percebidos como parte de um objeto coerente se, por exemplo, eles estiverem alinhados entre si são considerados um conjunto

LEI DA PREGÂNCIA

O nível de facilidade em que se identifica e compreende-se visualmente uma peça é medido através da pregnância (forma e estabilidade de uma perceção)

LEI DA SIMETRIA

Quando ocorre um peso igual de pregnância, proximidade, unidade e semelhança entre objetos do mesmo sistema

SISTEMA AUDITIVO

Fornece informação sobre ambiente

- Distâncias
- Direções
- Objetos
- ...

Poderoso em determinadas situações

- Jogos
- Alternativa, quando existem deficiências noutros canais
- Ecolocalização

SISTEMA TÁTIL

- Fornece informação importante sobre o ambiente
- Área "chave" para deficientes visuais
- Estímulos através de recetores na pele
 - termorreceptores calor e frio
 - nocirreceptores dor
 - mecanoreceptores pressão
- Algumas áreas mais sensíveis
 - cinestia / ergonomia perceção da posição do corpo afecta conforto e desempenho

UNIDADES DE ARMAZENAMENTO DE INFORMAÇÃO

- Memórias Sensoriais
- Short-Term Memory (STM) Memórias a curto prazo
- Long-Term Memory (LTM) Memórias a longo prazo

Processamento de informação

MEMÓRIA SENSORIAL

- Buffer de estímulos recebidos dos sentidos
 - Visual Icónico estímulos visuais

- Auditivo Ecóico estímulos auditivos
- Tacto Háptico estímulos tácteis
- É constantemente reescrita
- Envia informação para o cérebro a alta velocidade
- Armazena a amostra de informação (imagem fixa) do mundo real o tempo necessário para a informação ser processada
- Armazena muita informação durante pouco tempo

MEMÓRIA DE CURTA DURAÇÃO/PRAZO (STM)

- Memória de Trabalho
- Guarda informação temporária
 - Guardamos resultados intermédios ao fazer contas "de cabeça"
 - Guardamos início de uma frase ao ler
- Acesso rápido: ~70ms
- Retenção curta: ~200ms
- Capacidade limitada: 7+-2 pedaços de informação (chunks) REGRA DE MILLER
- O agrupamento de informação aumenta a capacidade e optimiza a utilização da STM

ESTRUTURA DA STM

- Tem muito pouca capacidade e mantém a informação só alguns segundos
- Inclui um processador relativamente lento o qual permite efetuar as operações mentais conscientes (pensamento)
- Principal estrangulamento no processo global de processamento de informação
- A informação é organizada em padrões

PROCESSAMENTO DA STM

- Procura de significado e padrões no mundo real
- Nº mágico de Miller: 7 (7 opções num menu, 7 ícones numa toolbar, 7 bullets numa lista, 7 elementos num menu pull down, 7 tabs no topo de uma página de um website, ...)

MEMÓRIA DE LONGO PRAZO (LTM)

Repositório de todo o nosso conhecimento

- Informação factual
- Conhecimento experimental
- Regras de comportamento
- Tudo o que sabemos

CAPACIDADE

Ilimitada

DURAÇÃO

Ilimitada

ESTRUTURA DINÂMICA, COMPLEXA E RICA

Constantemente reorganizada Acesso através de múltiplas chaves Processo de armazenamento e leitura é lento, pouco preciso e difícil

RETENÇÃO

- Desloca informação de STM para LTM
- Otimizada com o treino ao longo do tempo
- Facilitada pela estrutura, significado e familaridade

HIPÓTESE DE TEMPO TOTAL

Quantidade de informação retida ~ tempo de retenção

EFEITO DE DISTRIBUIÇÃO DE TREINO

Retenção otimizada distribuindo treino ao longo do tempo

CAUSAS DO ESQUECIMENTO

- Evanescência
 - □ Informação perde-se gradualmente, mas muito lentamente
- Interferência
 - □ Nova informação substitui antiga: interferência retroactiva
 - □ Informação amiga interfere com nova: inibição pró-ativa
- Fatores emocionais
 - □ A memória é seletiva: lembra coisas boas e esquece as más

COMO RECUPERAR INFORMAÇÃO

- Lembrança
 - □ Informação reproduzida a partir da memória
 - □ Pode ser assistida por pistas
- Reconhecimento
 - □ Informação apresenta conhecimento antes visto
 - ☐ Menos complexo que lembrança, porque lembrança constitui a pista

SISTEMA COGNITIVO - PROS vs CONTRAS

POSITIVO	NEGATIVO
Capacidade ilimitada LTM	Capacidade limitada STM
Duração ilimitada LTM	Duração limitada STM
Elevada capacidade de aprendizagem	Processamento com erros
Poderoso mecanismo de atenção	Processamento muito lento
Reconhecimento de padrões	

NOTAS:

- Capacidade de selecionar o que se pretende armazenar e processar essa informação
- Processamento semântico de toda a informação
- Atenção atraída involuntariamente
- Capacidade de concenctração num único canal, monitorizando o ambiente à procura de sinais de alta prioridade
- Usar atributos de modo a auxiliar a focalizar a atenção nos tipos de informação
- Salientar as pistas visuais
- Atrair a atenção de modo involuntário usando mecanismos fortes como o som, o

movimento, as cores ou elementos visuais extra

- Cibernautas ignoram frequentemente uma área de uma página porqu está numa zona de baixa prioridade ou que supões ter uma informação não atrativa
- Memorização do vocabulário
- Aprendizagem de conceitos e regras
- Aquisição de competências motoras
- Facilitadores de aprendizagem:
 - ☐ Usar metáforas ou analogias
 - □ Aplicar boa estruturação, organização e coerência da informação
 - □ Apresentar informação de modo incremental
 - □ Fornecer informação só quando o utilizador necessitar

Relembrar

- □ Informação repoduzida a partir da memória
- □ Poe/deve ser auxiliado por pistas

Reconhecimento

- □ A informação dá conhecimento que anteriormente já estivemos perante o assunto
- □ Menos complexo que relembrar

CARACTERÍSTICAS

- Seres humanos são mais heurísticos do que algorítmicos na realização de tarefas
- Escolhem estratégias sub-ótimas na resolução de problemas de baixa prioridade
- Aprendem melhores estratégias através da prática

IMPLICAÇÕES

Dados:

- Usar pistas redundantes
- Usar estruturas de treino
- Fornecer informação estruturada e não isolada
- Adicionar novo conhecimento àquele que é armazenado na LTM de modo a resolver um problema ou efetuar uma tarefa

Introdução de dados:

- Quando faltam parâmetros pedir e não fornecer mensagens de erro
- Fornecer realimentação imediata
- Fornecer sugestões
- Usar valores por omissão dependendo do contexto
- Usar parâmetros da execução anterior

Navegação:

- Fornecer informações de contexto
- Fornecer interfaces dependendes de interações anteriormente efetuadas
- Proteger os noviços da complexidade
- Fornecer informações sobre:
 - □ onde estamos no diálogo
 - □ como lá chegamos
 - □ para onde queremos ir

SISTEMA MOTOR

- Comportamentos rápidos (escrever, falar) executados por instruções pré-programadas
- Realimentação motora e tátil, duarante a atividade motora, facilita precisão
- Diferentes grupos de músculos nos movimentos grandes e pequenos

Movimento

- Tempo de movimento: depende da idade, forma física, etc.
- Tempo de reação: depende do tipo de estímulo
- Tempo de resposta ao estímulo: tempo de reação + tempo de movimento
- Aumento do tempo de reação diminui a precisão do utilizador não experiente mas não do utilizador experiente

LEI DE FITTS

Tempo (T) para atingir um alvo no ecrã/tempo para selecionar uma opção depende da distância da posição atual (Dist) e da dimensão (Size)

Depende do tamanho do alvo e da distância

$$T = a + k * log(Dist/size + 1)$$

a = tempo de reação para clicar num botãok = velocidade da mão/dispositivo

- Fazer botões com melhores designs
- Proporcionar ao utilizador a melhor hipótese de clicar no botão ou no link certo:
 - ☐ Antecipar o sítio onde os olhos dos seus utilizadores e o cursor do rato provavelmente se encontrarão
 - Colocar as zonas interativas fisicamente próximas aos locais mais prováveis de cliques
 - ☐ Tornar as zonas interativas visualmente significativas e perto de outros elementos visualemente significativos
 - ☐ Remover blocos que fazem com que os alvos de cliques não se notem, usando espaço em branco ou eliminando elementos concorrentes

LEI DE HICK

Tempo necessário para tomar uma decisão é proporcional à quantidade de informação

$$T = K \cdot \log_2(n+1)$$

n = número de opções

RESUMO DA LEI DE FITTS E DE HICKS

- LEI DE FITTS
 - □ Reduzir a distância
 - □ Aumentar as dimensões do alvo
- LEI DE HICKS
 - □ Número ótimo de opções por menu
 - □ Relacionado com STM

RESUMO CAPÍTULO II

- As capacidades das pessoas para processar informação são limitadas
 - Fortes implicações no desenho das Interfaces
- o A informação é recebida e transmitida através de vários canais
 - Visual, auditivo, tátil e motor
- o A informação é guardada na memória
 - Sensorial, de curto prazo e de longo prazo
- o A informação é processada e aplicada
 - Raciocínio, solução de problemas, aquisição de saber