МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по Заданию 1

на тему «Преобразование аналогового сигнала в цифровой сигнал»

Дисциплина: СиСПИ

Группа: 21ПТ(в)1

Выполнил: Резаев М. К.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

1 Цель работы: изучение преобразования аналогового сигнала в цифровой сигнал.

2 Задание. Осуществить преобразование аналогового сигнала, приведенного на рисунке 1 в цифровую кодовую последовательность. Определить шумы квантования. Результаты привести на временной диаграмме и в таблице по шаблону таблицы 1. Вид аналогового сигнала, его максимальную амплитуду и частотный диапазон взять из таблицы 2 в соответствии с вариантом.

Рисунок 1 — 26 вариант задания (сигнал)

3 Выполнение работы.

- 3.1 В соответсвии с рисунком и 26 вариантом задания были определены:
 - $U_{MAX} = 2 B$ и U_{MIN} : -2 B;
 - в соотвествии с заданием $U_{O\Gamma P} = U_{MAX} = 2 B$;
 - в соотвествии с вариантом $f_{MIN} = 0.4$ к Γ ц и $f_{MAX} = 5.9$ к Γ ц;
 - в соответсвии с заданием $\Delta_{\text{идоп}} = 0.25 \text{ B}$;

Было расчитано минимальное число уровней квантования N_{MIN} по формуле $(U_{MAX}-U_{MIN})/\Delta_{u_{JOH}}$. $N_{MIN}=4$ / 0.25=16

Было определено число уровней N_{KB} из условия $N_{\text{KB}} > N_{\text{MIN}}$. $N_{\text{KB}} = 32$.

Было определено количество разрядов n в коде. $n = log_2 32 = 5$ бит.

Было расчитан шаг квантования по формуле $\,\delta = U_{\text{O\GammaP}}/2^{\text{n}} = 2/2^5 = 0,0625\,\,\text{B}.$

Была рассчитана частота дискретизации в соотвествии с теоремой Котельникова (любой непрерывный сигнал, ограниченный по спектру верхней частотой Fв, полностью определяется последовательностью своих дискретных отсчетов, взятых через промежуток времени $T_{\pi} \le 1/2F_{B}$) должна удовлетворять условию $F_{\pi} \ge 2F_{B}$). $F_{\pi} = F_{MAX} * 2 = 11,8 \ \mbox{к} \Gamma$ ц

3.2 При частоте дескритизации 11,8 кГц длина одного отсчета будет равна 1000 мс / 11800 гц = 0,09мс \rightarrow количесвто отсчетов за 1мс будет равно 1мс / 0,09мс \approx 11 отсчетов, для 6мс количество отсчетов равняется 66. Было определено Uвх(t), Uкв(t), Δ KB(t) и N. Результат представлен в таблице 1. Отсчеты Uвх(t) представлены на рисунке 2.

Таблица 1 — Результаты измерений

Отсчет сигнала	UBX(t), B	UKB(t),B	ΔKB(t)	N	Двоичный код
1	1,10	1,13	-0,02	18	10010
2	1,15	1,19	-0,04	19	10011
3	1,18	1,19	-0,01	19	10011
4	1,16	1,19	-0,03	19	10011
5	1,13	1,19	-0,06	19	10011
6	1,07	1,13	-0,06	18	10010
7	0,99	1,00	-0,01	16	10000
8	0,89	0,94	-0,05	15	01111
9	0,78	0,81	-0,03	13	01101
10	0,66	0,69	-0,02	11	01011
11	0,54	0,56	-0,03	9	01001
12	0,43	0,44	-0,01	7	00111
13	0,32	0,38	-0,05	6	00110
14	0,22	0,25	-0,03	4	00100
15	0,15	0,19	-0,04	3	00011
16	0,09	0,13	-0,04	2	00010
17	0,05	0,06	-0,01	1	00001
18	0,06	0,06	0,00	1	00001
19	0,08	0,13	-0,05	2	00010
20	0,13	0,13	0,00	2	00010
21	0,19	0,25	-0,06	4	00100
22	0,27	0,31	-0,04	5	00101
23	0,37	0,38	-0,01	6	00110
24	0,48	0,50	-0,02	8	01000
25	0,59	0,63	-0,04	10	01010
26	0,71	0,75	-0,04	12	01100
27	0,82	0,88	-0,05	14	01110
28	0,93	0,94	-0,01	15	01111
29	1,04	1,06	-0,02	17	10001
30	1,11	1,13	-0,02	18	10010
31	1,15	1,19	-0,03	19	10011
32	1,18	1,19	-0,01	19	10011
33	1,16	1,19	-0,03	19	10011
34	1,12	1,13	0,00	18	10010
35	1,06	1,06	-0,01	17	10001
36	0,95	1,00	-0,05	16	10000

37	0,83	0,88	-0,04	14	01110
38	0,65	0,69	-0,03	11	01011
39	0,46	0,50	-0,04	8	01000
40	0,25	0,31	-0,06	5	00101
41	0,02	0,06	-0,04	1	00001
42	0,22	0,25	-0,03	4	00100
43	0,46	0,50	-0,04	8	01000
44	0,72	0,75	-0,03	12	01100
45	0,95	1,00	-0,05	16	10000
46	1,16	1,19	-0,03	19	10011
47	1,37	1,38	0,00	22	10110
48	1,56	1,56	0,00	25	11001
49	1,71	1,75	-0,04	28	11100
50	1,82	1,88	-0,05	30	11110
51	1,90	1,94	-0,03	31	11111
52	1,93	1,94	-0,01	31	11111
53	1,92	1,94	-0,02	31	11111
54	1,86	1,88	-0,01	30	11110
55	1,79	1,81	-0,03	29	11101
56	1,66	1,69	-0,03	27	11011
57	1,49	1,50	-0,01	24	11000
58	1,29	1,31	-0,02	21	10101
59	1,08	1,13	-0,05	18	10010
60	0,85	0,88	-0,02	14	01110
61	0,61	0,63	-0,01	10	01010
62	0,36	0,38	-0,01	6	00110
63	0,12	0,13	0,00	2	00010
64	0,12	0,13	-0,01	2	00010
65	0,33	0,38	-0,04	6	00110
66	0,54	0,56	-0,02	9	01001

 $3.3~~\mathrm{B}$ соответствии с вариантом задания кодовая последовательность была записана с помощью NRZI. Результат приведен на рисунке 2 — 6.

Рисунок 3 — Коды с 1 по 16

Рисунок 4 — Коды с 17 по 32

Рисунок 4 — Коды с 33 по 48

Рисунок 5 — Коды с 49 по 64

Рисунок 6 — Коды с 65 по 66

4 Вывод: было изучено преобразование аналогового сигнала в цифровой сигнал.