МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра теории функций и стохастического анализа

ОТЧЕТ ПО ПРОИЗВОДСТВЕННОЙ (БАЗОВОЙ) ПРАКТИКЕ

студента 4 курса 451 группы направления 38.03.05 — Бизнес-информатика

> механико-математического факультета Чайковского Петра Ильича

Место прохождения: завод "Тантал"	
Сроки прохождения: с 29.06.2019 г. по 26.07.2019 г.	
Оценка:	
Руководитель практики от СГУ	
доцент, к. фм. н.	Н. Ю. Агафонова
Руководитель практики от организации	
ведущий программист	Д. Э. Кнутов

СОДЕРЖАНИЕ

1	Пост	гановка задачи	4
2	Teop	ретические сведения по рассмотренным темам с их обоснованием.	5
3	Результаты работы		8
	3.1	Алгоритм определения свойства рефлексивности	8
	3.2	Алгоритм определения свойства симметричности	12
	3.3	Описание алгоритмов построения основных замыканий бинар-	
		ных отношений	13
	3.4	Псевдокоды рассмотренных алгоритмов	14
	3.5	Коды программ, реализующих рассмотренные алгоритмы	15
	3.6	Результаты тестирования программ	16
	3.7	Оценки сложности рассмотренных алгоритмов	17

1 Постановка задачи

Цель работы — изучение основных свойств бинарных отношений и операций замыкания бинарных отношений.

Порядок выполнения работы:

- 1. Разобрать основные определения видов бинарных отношений и разработать алгоритмы классификации бинарных отношений.
- 2. Изучить свойства бинарных отношений и рассмотреть основные системы замыкания на множестве бинарных отношений.
- 3. Разработать алгоритмы построения основных замыканий бинарных отношений.

2 Теоретические сведения по рассмотренным темам с их обоснованием

Определение. Подмножества декартова произведения $A \times B$ множеств A и B называется бинарными отношениями между элементами множеств A, B и обозначаются строчными греческими буквами: $\rho, \sigma, \ldots, \rho_1, \rho_2, \ldots$

Определение. Бинарное отношение $\rho \subset A \times A$ называется:

- 1. $pe \phi nek cue ны m$, если $(a, a) \in \rho$ для всякого $a \in A$;
- 2. симметричным, если $(a, b) \in \rho \implies (b, a) \in \rho$;
- 3. антисимметричным, если $(a, b) \in \rho$ и $(b, a) \in \rho \implies a = b$;
- 4. mранзumueныM, eсли $(a, b) \in \rho$ и $(b, c) \in \rho \implies (a, c) \in \rho$.

Символом Δ_A обозначается тождественное отношение на множестве A, которое определяется по формуле:

$$\Delta_A = \{ (a, a) | a \in A \}.$$

Тогда бинарное отношение $\rho \subset A \times A$ является:

- 1. $pe \phi$ лексивным, если $\Delta_A \subset \rho$;
- 2. симметричным, если $\rho^{-1} \subset \rho$;
- 3. антисимметричным, если $\rho \cap \rho^{-1} \subset \Delta_A$;
- 4. mpaнзumuвным, если $\rho \rho \subset \rho$.

Определение. Бинарное отношение ρ на множестве A называется:

- 1. отношением эквивалентности (эквивалентностью), если оно рефлексивно, симметрично и транзитивно.
- 2. *отношением порядка (порядком)*, если оно рефлексивно, антисимметрично и транзитивно.
- 3. *отношением квазипорядка (квазипорядком)*, если оно рефлексивно и транзитивно.

Определение. Множество Z подмножеств множества A называется cucmemoŭ замыканий, если оно замкнуто относительно пересечений, т.е. выполняется:

$$\bigcap B \in Z \quad \forall B \subset Z.$$

В частности, для $\varnothing \subset Z$ выполняется $\cap \varnothing = A \in Z$.

Лемма 1. О системах замыканий бинарных отношений. На множестве $P(A^2)$ всех бинарных отношений между элементами множества A следующие множества являются системами замыканий:

- 1. Z_r множество всех рефлексивных бинарных отношений между элементами множества A.
- $2.\ Z_s$ множество всех симметричных бинарных отношений между элементами множества A.
- 3. Z_t множество всех транзитивных бинарных отношений между элементами множества A.
- 4. $Z_{eq} = Eq(A)$ множество всех отношений эквивалентности на множестве A.

Множество Z_{as} всех антисимметричных бинарных отношений между элементами множества A не является системой замыканий.

Определение. Оператором замыкания на множестве A называется отображение f множества всех подмножеств P(A) в себя, удовлетворяющее условиям:

- 1) $X \subset Y \implies f(X) \subset f(Y)$;
- 2) $X \subset f(X)$;
- $3) (f \circ f)(X) = f(X)$

для всех $X,Y\in P(A)$. Для подмножества $X\subset A$ значение f(X) называется samukahuem подмножества X.

- **Лемма 2. О замыканиях бинарных отношений.** На множестве $P(A^2)$ всех бинарных отношений между элементами множества A следующие отображения являются операторами замыканий:
- 1) $f_r(\rho) = \varrho \cup \Delta_A$ наименьшее рефлексивное бинарное отношение, содержащее отношение $\rho \subset A^2$,
- 2) $f_s(\rho) = \varrho \cup \varrho^{-1}$ наименьшее симметричное бинарное отношение, содержащее отношение $\rho \subset A^2$,
- 3) $f_t(\rho)=\bigcup_{n=1}^\infty \rho^n$ наименьшее транзитивное бинарное отношение, содержащее отношение $\rho\subset A^2,$
- 4) $f_{eq}(\rho) = (f_t \circ f_s \circ f_r)(\rho)$ наименьшее отношение эквивалентности, содержащее отношение $\rho \subset A^2$.

- 3 Результаты работы
- 3.1 Алгоритм определения свойства рефлексивности.

Описание алгоритма определения свойства рефлексивности.

Вход: список смежности бинарного отношения ρ .

Выход: строка «Бинарное отношение является/не является рефлексивным.» и bool значение **true** или **false**.

Метод: для каждого элемента a, находящегося в бинарном отношении ρ (с некоторыми элементами b_i), просматривается его список смежности. В этом списке смежности ищется сам элемент a. Алгоритм прекрщает свою работу, если был найден элемент a, список смежности которого не содержит a, или, если для всякого элемента a его список смежности содержит a.

Псевдокод алгоритма определения свойства рефлексивности.

```
isReflexive(binaryRelation)
  {
2
     for element in binaryRelation
3
4
       flag = false;
5
6
       for subelement in element:
7
         if (subelement == element):
8
9
            flag = true;
10
       if (!flag)
11
12
         return false;
     }
13
14
15
     return true;
16 }
```

Листинг 1: Псевдокод алгоритма.

Код программы, реализующей алгоритм определения свойства рефлексивности.

```
bool isReflexive(map<int, set<int>> binaryRelation)
2
     bool isReflexive = false;
3
     set < int > :: iterator it;
4
     int i;
5
6
     for (auto element : binaryRelation)
8
       isReflexive = false;
9
       it = element.second.begin();
10
11
       for (; it != element.second.end(); ++it)
12
         if (element.first == *it)
13
         {
14
           isReflexive = !isReflexive;
15
16
           break;
         }
17
       if (!isReflexive)
19
         break;
20
     }
21
22
     cout << "\n" <<
23
24
       (isReflexive ? "\nBINARY RELATION IS REFLEXIVE.\n" :
                       "\nBINARY RELATION IS NOT REFLEXIVE.\n");
25
     return isReflexive;
26
27 }
```

Листинг 2: Код программы.

Результат тестирования программы определения свойства бинарного отношения.

Для демонстрации работы программы рассмотрим два произвольных бинарных отношения ρ и δ , на первом из которых свойство рефлексивности выполняется, а на втором нет.

Сгенерируем 8 пар элементов, соответствующих бинарному отношению ρ . Получаем следующие пары:

```
INPUT THE NUMBER OF PAIRS:
8
NOW INPUT THE PAIRS:
(13; 1). (16; 68). (17; 9). (34; 98). (56; 5). (60; 42). (81; 61). (91; 57).
```

Рисунок 1 – Пары элементов, находящихся в нерефлексивном бинарном отношении.

Как видно, данное отношение не является рефлексивным. Посмотрим на выход программы:

```
INPUT THE NUMBER OF PAIRS:
8
NOW INPUT THE PAIRS:
(13; 1). (16; 68). (17; 9). (34; 98). (56; 5). (60; 42). (81; 61). (91; 57).
BINARY RELATION IS NOT REFLEXIVE.
```

Рисунок 2 – Проверка на рефлексивность не пройдена.

Выход программы совпадает с тем фактом, что отношение не является рефлексивным. Теперь рассмотрим бинарное отношение δ , на котором свойство рефлексивности выполняется. Рассмотрим 8 следующих пар:

```
INPUT THE NUMBER OF PAIRS:
8
NOW INPUT THE PAIRS:
(0; 0), (0; 1), (0; 2). (1; 0), (1; 1), (1; 2). (2; 2).
```

Рисунок 3 – Пары элементов, находящихся в рефлексивном бинарном отношении.

Как видно, отношение является рефлексивным. Посмотрим на выход программы:

```
INPUT THE NUMBER OF PAIRS:
8
NOW INPUT THE PAIRS:
(13; 1). (16; 68). (17; 9). (34; 98). (56; 5). (60; 42). (81; 61). (91; 57).
BINARY RELATION IS NOT REFLEXIVE.
```

Рисунок 4 – Проверка на рефлексивность не пройдена.

Выход программы совпадает с тем фактом, что отношение является рефлексивным.

3.2 Алгоритм определения свойства симметричности.

Описание алгоритма определения свойства симметричности.

Вход: список смежности бинарного отношения ρ . **выход:**

3.3	Описание алгоритмов построения основных замыкани	ий би -
нарных	отношений	

3.4 Псевдокоды рассмотренных алгоритмов

3.5 Коды программ, реализующих рассмотренные алгоритмы

3.6 Результаты тестирования программ

3.7 Оценки сложности рассмотренных алгоритмов