Instructor: Professor Lawrence Teitelman

Analysis of Algorithms – CS 700/32 Lecture#6 – March 9 2016 Notes by: Yuqian Zhang

Section 1: Homework

3/9 Q4 T(1)=1	local control
T(n)=T(sn)+1	111 0 0101 111 001 0
N=32k /N= 32k/3 = 32k-1	You wan't have the same
T(n) = T(stn) + 1= T(2)=1)+	- 1 key to the problem
S(k) = S(k-1)+1	
3(1)=7(17)+1=2	northion, I hav it mikes,
3(k)-3(k-1)=13	
i	(k) - S(1) = k
S(2) - S(1)=1	3(k)= K+C
S(1) - S 1071. To	nfsikeloglogn+[7

Section 2:

Huffman Coding

It is one of data compression, but the best compression.

It is an example of greedy algorithm (like Fraction Knapsack mentioned before)

Greedy algorithms is where you make locally optimal choice in global optimal choice.

(Uses small grained, or local minimal/maximal choices in attempt to result in a global minimum/maximum. At each step, the algorithm makes the near choice that appears to lead toward the goal in the long-term.)

If you want to represent a letter how much space need? Old way→ASCII 8 bits
But all things take 8 bits, can we do better than that?
Yes→find relative frequency

Instructor: Professor Lawrence Teitelman

Example: in the text there are 100 characters, and only contains following letters

.....finally we got:

So, if we want to encode 'badbed', it is:

(The length of encoding would be the depth of the leaf)

b- 1010 a- 100

d- 111

b- 1010

e- 0

d- 111

Comparing to ASCII, which using fixed 8 bits to check, Huffman Tree do not implement fixed length. When you are out of leaf,

you are in the end of character. The beauty of Huffman coding is no 2 can have 2 different codings have the same prefix and 1 has something more. Thus, that allows you to decode compressed text. (About space, just take it as one of relative frequency)

Most greedy part: taking nest 2 smallest numbers on the list and combine them into sum and go into the bottom.

Q: How does it work (implement) in real coding?

The data structure: **heap**. (Always gets the min on the top) [O(nlgn)]

Instructor: Professor Lawrence Teitelman

Binary Search Tree

• 2-3 Tree

Hopcraft 1970 O(logn)

A 2–3 tree is a tree data structure, where every node with children (internal node) has either two children (2-node) and one data element or three children (3-nodes) and two data elements.

AVL

AV= Adelson- Velsky L = Landis 1967 Abs(height of (leftSubTree)-height of (RightSubTree))<= 1

Red-Black

Guibas Sedgewick 1978 Not perfect balanced, but balanced enough, not breaking (lgn)

B-tree

Bayer McCreight 1972 A large amount of data

• B+ tree

Like B- tree, but has more children

It keep tracking the node height

• Trie (Tree/Try)

R.de la Brandais 1959 Also called prefix-tree Example: cat cab dog dab Time O(m) Maximum length of word

Splay Tree

A splay tree is a self-adjusting binary search tree with the additional property that recently accessed elements are quick to access again. It performs basic operations such as insertion, look-up and removal in O(log n) amortized time.

Bring what you'll searching for (close) to the root/top

Instructor: Professor Lawrence Teitelman

Section 3: Review

In Order

Instructor: Professor Lawrence Teitelman

13+ > 13+ N2= M	n(n+1)(-n+1)
13+23+33+n3= [(n(n+1) 72
1,45 42 4N,- 1	
164	capilo off throat soil c.
and t bn3f ch2f di	n+e share
Proof by Induction	Jac 192) John S
base case	Bring des Comments
inductive hypothesis	
inductive step PCK)=	, PCE+1) Valor malpha = VA MA
	1967 Sport = 7
harmonic series 1+3	5+ 1/2 + + 1/n + 1/n + 1/n + 1/n + 1/n
	It leap tout of the height.
Telescoping (in) -	-Tin+)== Tinj
O .	- T(m2) = T(n+)
:	· B+tree he were children
(23) - Mark T(1) -	- T(0) =
Domain Transformation	PARAMET 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	N=2k 3= 2k-1
	S(k)= 8(k-1)-
Plange Transformation	((n))= 3T(n-1) =
	3n + 3n
	7(n) = 8(n-1)+
Print Tin)	P(n)= T(n) P(n+1) = T(n+1) n+2
(3(nH) = Tinti	1/ 17 (n+1) = T(n+1)
iting Net	"Smalled"
Expansion	maker gains another - gains
	= (T(2)+1)+1 == T(3)+3=T(10+9)
= (0.1)2 (0.3) (1	!
2	= 'Tuit lagin

Instructor: Professor Lawrence Teitelman

linea	Homogenous Precurrence Equations	
	F(9== f(1)=1	
	fin = fin-1) + fin-2)	
	$x^n = x^{n-1} + x^{n-2} \qquad \alpha x_1^n + b x_2^n$	
	$x^* = x + 1 \rightarrow got 2$ unique adutions	
	Bucket Sert > defends on # of buckets	
	$3^n \approx 10^{n/3} = (10)^n$ estimation	
3	~ 10 Togsto or 10 n 19/03	
	Mater Thorong 3 cases might be useful in host	
data	structures.	
sta	ack. (has limit access to the data)	
Qu	neue (and deQ)	
12	st	
Tr	RR (BST Hap Min/Max Hap)	
	(priorityQ)	
Find minimum linear O(n) Binary O(lgn)		
Sd - Sd	ection problem 3 Ways	
O P	presbring -> find ith smallest go to posture i.	
35	ilogn+ an, ? Chuid hoop partial sort	
	Could need	
). Selection sort -> find i smallest	
3	half quick sort. Sorting both sides of pivot	
	median of CS.	
	Arg > O(n) Worst > O(n)	
Sorti	ng BubbleSort n³ MorgeSort ngh	
	Solaction Sort. nº Quick Sort top (Och) nigh	
100	#InsertionSort N=> linear HapSort no worst	
	ngh	

Instructor: Professor Lawrence Teitelman

Each outcome should be in 1 leaf. There are n^2 outcomes cause there are n! leaves.	11! leaves.
each outcome shall be in 1	loof. n° outomes
compartion-based is	
	(ローナナーールナーン
Mon - comparision -base &	Sort "XA SAX + +AX =
	mall fixed-range data
	depends on # of buokets
Padix Sort -> adia	be basen in element
	10-1986 OL 10 1003
Master Thoron, 3 cas	es might be useful in test
	0.5000
	is limit access to the data)
	(and deld)
	St. May Heap 1
	(Dythorx
0,190)	ans I linear Ours Binary
	amblems 2 Ways