Table I. Isotopic Data

Z	ΕI	Α	Abundance(%	s) σγ(total) b	g(293°K)	Νγ	$E\gamma(\sigma\gamma)$ for most intense capture gamma rays
1	H H	1 2	99.9885(70) 0.0115(70)	0.3326(7) 0.000519(7)	0.999 1.000	1	2223.24835(0.3326)
2	He	3	0.000137(3) σ _σ (3	0.000031(9) ³ He)=5333(7) t	1.000	1	20520.46(4.2×10 ⁻¹¹)
3	He Li	4 6	99.999863(3) 7.59(4) $\sigma_{s}(6)$	0.0 0.039(4) ⁶ Li)=940(4) b	1.000 1.000	0 3	
4 5	Li Be B	7 9 10	92.41(4) 100 19.9(7)	0.045(3) ´ 0.0088(4) 0.5(1) ¹⁰ B)=3837(9) b	1.000 1.000 1.000	3 13 10	2032.30(0.0381), 980.53(0.00415), 1051.90(0.00414) 6809.61(0.0058), 3367.448(0.00285), 853.630(0.00208) 477.595(716)
6	B C C	11 12 13	80.1(7) 98.93(8) 1.07(8)	0.005(3) 0.00353(5) 0.00137(4)	1.000 1.000 0.998	0 6 7	4945.301(0.00261), 1261.765(0.00124), 3683.920(0.00122)
7	N	14	99.632(7) σ _ρ (0.0798(14) ¹⁴ N)=1.83(3) b	1.000	60	5269.159(0.0236), 5297.821(0.01680), 5533.395(0.0155)
8	N 0 0 0	15 16 17 18	0.368(7) 99.757(16) 0.038(1) 0.205(14)	0.000024(8) 0.000190(19) 0.00054(7) 0.00016(1)	1.003 1.000 0.999 1.000	12 4 20 13	870.68(1.77×10 ⁻⁴), 2184.42(1.64×10 ⁻⁴), 1087.75(1.58×10 ⁻⁴)
9 10	F Ne Ne	19 20 21	100 90.48(3) 0.27(1)	0.0096(5) 0.037(4) 0.67(11)	1.000 1.000 1.000	168 27 11	1633.53(0.0096)d, 583.561(0.00356), 656.006(0.00197) 2035.67(0.0245), 350.72(0.0198), 4374.13(0.01910)
11 12	Ne Na Mg Mg Mg	22 23 24 25 26	9.25(3) 100 78.99(4) 10.00(1) 11.01(3)	0.045(6) 0.530(5) 0.0536(15) 0.200(5) 0.0386(6)	1.000 1.000 1.001 1.001 1.001	15 240 35 206 44	1979.89(0.00306), 1017.00(0.0030) 1368.66(0.530)d, 2754.13(0.530)d, 472.202(0.478)d 3916.84(0.0320), 585.00(0.0314), 2828.172(0.0240) 1808.668(0.0180), 1129.575(0.00891), 3831.480(0.00418)
13 14	Al [*] Si Si	27 28 29	100 92.2297(7) 4.6832(5)	0.231(3) 0.177(5) 0.119(3)	1.000 1.001 1.003	216 46 99	1778.92(0.232)d, 30.6380(0.0798), 7724.027(0.0493) 3538.966(0.1190), 4933.889(0.1120), 2092.902(0.0331)
15 16	Si P S S	30 31 32 33 34	3.0872(5) 100 94.93(31) 0.76(2) 4.29(28)	0.107(2) 0.172(6) 0.548(10) 0.454(25) 0.235(5)	1.007 1.001 1.000 1.001 1.001	39 158 101 249 55	512.646(0.079), 78.083(0.059), 636.663(0.0311) 840.993(0.347), 5420.574(0.308), 2379.661(0.208)
17 18	S Cl Cl Ar	36 35 37 36	0.02(1) 75.78(4) 24.22(4) 0.3365(30)	0.23(2) 43.5(4) 0.430(6) 5.2(5)	1.014 1.000 1.000 1.016	22 384 71 10	1164.8650(8.91), 517.0730(7.58), 6110.842(6.59)
19	Ar K K	38 40 39 40	0.0632(5) 99.6003(30) 93.2581(44) 0.0117(1)	0.8(2) 0.66(1) 2.1(2) 30(4)	1.040 1.002 1.001 1.000	0 40 308 490 638	167.30(0.53), 4745.3(0.36), 1186.8(0.34) 29.8300(1.380), 770.3050(0.903), 1158.887(0.1600)
20	K Ca Ca Ca Ca	41 40 42 43 44 46	6.7302(44) 96.94(16) 0.647(23) 0.135(10) 2.09(11) 0.004(3)	1.45(3) 0.41(2) 0.68(7) 6.2(6) 0.88(5) 0.72(3)	1.001 1.001 1.001 1.001 1.001 1.000	49 44 129 41 10	1942.67(0.352), 6419.59(0.176), 4418.52(0.0708)
21 22	Ca Sc Ti Ti	48 45 46 47	0.187(21) 100 8.25(3) 7.44(2)	1.09(14) 27.2(2) 0.59(18)	1.001 1.002 1.001 1.001	15 440 23 175	227.773(7.13), 147.011(6.08), 142.528(4.88)d
	Ti Ti Ti	48 49 50	73.72(3) 5.41(2) 5.18(2)	1.52(11) 7.88(25) 1.79(12) 0.179(3)	1.002 1.001 1.001	92 88 19	1381.745(5.18), 6760.084(2.97), 6418.426(1.96)
23 24	V V Cr	50 51 50	0.25Ò(́4) 99.750(4) 4.345(13)	21(4) 4.92(4) 15.9(2)	0.999 1.001 1.000	328 309 64	<i>1434.10(4.81)d,</i> 125.082(1.61), 6517.282(0.78) 749.09(0.569), 8510.77(0.233), 8482.80(0.169)
	Cr Cr Cr	52 53 54	83.789(18) 9.501(17) 2.365(7)	0.76(6) 18.2(15) 0.36(4)	1.000 1.000 1.000	16 90 38	7938.46(0.424) 834.849(1.38), 8884.36(0.78), 9719.06(0.260)
25 26	Mn Fe Fe	55 54 56	100 5.845(35) 91.754(36)	13.36(5) 2.25(18) 2.59(14)	1.000 1.001 1.000	126 33 193	846.754(13.10)d, 1810.72(3.62)d, 26.560(3.42) 9297.68(0.0747) 7631.136(0.653), 7645.5450(0.549), 352.347(0.273)
27 28	Fe Fo Ni Ni Ni Ni	57 58 59 58 60 61 62 64	2.119(10) 0.282(4) 100 68.0769(89) 26.2231(77) 1.1399(6) 3.6345(17) 0.9256(9)	2.5(3) 1.30(3) 37.18(6) 4.5(2) 2.9(2) 2.5(8) 14.5(3) 1.63(7)	1.001 1.002 1.000 1.000 1.000 1.000 1.000	35 67 340 236 137 64 53 35	229.879(7.18), 277.161(6.77), 555.972(5.76) 8998.414(1.49), 464.978(0.843), 8533.509(0.721) 7819.517(0.336), 282.917(0.211), 7536.637(0.190) 6837.50(0.458)

^{*} Decay gamma: ²⁰F(11.163 s), ²⁴Na(20.20 ms), ²⁸Al(2.2414 m), ⁴⁶Sc(18.75 s), ⁵²V(3.75 m), ⁵⁶Mn(2.5789 h)

Table I. Isotopic Data, continued

Z	ΕI	Α	Abundance(%) σγ(total) b	q(293°K)	Νγ	Eγ(σγ) for most intense capture gamma rays
29	Cu	63	69.17(3)	4.52(2)	1.001	305	278.250(0.893), 7915.62(0.869), 159.281(0.648)
30	Cu Zn	65 64	30.83(3) 48.63(60)	2.17(3) 1.1(1)	1.002 1.001	350 78	185.96(0.244), 465.14(0.1350), 385.77(0.1310) 115.225(0.167), 7863.55(0.1410), 855.69(0.066)
	Zn Zn	66 67	27.90(27) 4.10(13)	0.62(6) 9.5(14)	1.000 1.000	17 175	6958.8(0.043) 1077.335(0.356), 1883.12(0.0718), 1340.14(0.0457)
	Zn	68	18.75(51)	1.07(10)	1.000	33	1007.809(0.056), 5474.02(0.042), 834.77(0.037)
31	Zn Ga	70 69	0.62(3) 60.108(9)	0.091(5) 1.68(7)	1.000 1.000	79 66	508.19(0.349), 690.943(0.305), 187.84(0.1080)
32	Ga Ge		39.892(9) 20.84(87)	4.73(15) 3.45(16)	1.001 1.000	245 84	834.08(1.65)d, 2201.91(0.52)d, 629.96(0.490)d 175.05(0.164), 499.87(0.162)
02	Ge	72	27.54(34)	0.95(11)	1.000	47	
		74	7.73(5) 36.28(73)	14.4(4) 0.53(5)	1.000 1.000	603 47	595.851(1.100), 867.899(0.553), 608.353(0.250)
33	Ge As	76 75	7.61(38) 100	0.14(2) 4.23(8)	1.000 1.000	196 348	559.10(2.00)d, 165.0490(0.996), 86.7880(0.579)
34	Se	74	0.89(4)	51.8(12)	1.001	142	286.5710(0.280)
	Se Se	76 77	9.37(29) 7.63(16)	85(7) 42(4)	1.000 1.000	456 215	238.9980(2.06), 520.6370(1.260), 161.9220(0.855)d 613.724(2.14), 694.914(0.443), 1308.632(0.317)
	Se Se	78 80	23.77(28) 49.61(41)	0.430(22) 0.61(5)	1.000 1.000	37 71	
25	Se	82	8.73(22)	0.044(3)	1.000	0	245 202(0.00), 274 274(0.462), 244 002(0.460)
35	Br Br	79 81	50.69(7) 49.31(7)	10.32(13) 2.36(5)	1.000 1.000	257 181	245.203(0.80), 271.374(0.462), 314.982(0.460) 776.517(0.990)d, 554.3480(0.838)d, 619.106(0.515)d
36	Kr Kr	78 80	0.35(1) 2.28(6)	4.7(7) 11.5(5)	1.000 1.000	1 1	
	Kr Kr	82 83	11.58(14) 11.49(6)	19(4) 202(10)	1.000 0.995	2 75	991 74/20 9) 1212 42/9 29) 1462 96/7 10)
	Kr	84	57.00(4)	0.111(15)	1.000	7	881.74(20.8), 1213.42(8.28), 1463.86(7.10)
37	Kr Rb	86 85	17.30(22) 72.17(2)	0.003(2) 0.48(9)	1.000 1.000	38 90	556.82(0.0913), 487.89(0.0494), 555.61(0.0407)d
38	Rb Sr	87 84	27.83(2) 0.56(1)	0.12(3) 0.62(6)	1.000 1.000	86 5	196.34(0.00964)
30	Sr	86	9.86(1)	1.04(7)	1.000	375	
	Sr Sr	87 88	7.00(1) 82.58(1)	17(3) 0.0058(4)	1.006 1.000	210 57	1836.067(1.030), 898.055(0.702), 850.657(0.275)
39 40	Y Zr	89 90	100 51.45(40)	1.28(2) ´ 0.011(5)	1.005 1.000	397 15	6080.171(0.76), 776.613(0.659), 202.53(0.289) 1465.7(0.063), 1205.6(0.042), 2042.2(0.032)
40	Zr	91	11.22(5)	1.24(25)	1.000	81	934.4640(0.125), 1405.159(0.0301), 560.958(0.0285)
	Zr Zr	92 94	17.15(8) 17.38(28)	0.22(6) 0.0499(24)	1.000 1.000	18 14	
41	Zr Nb	96 93	2.80(9) 100	0.020(1) 1.15(5)	1.000 1.002	34 535	1102.67(0.0235) 99.4070(0.196), 255.9290(0.176), 253.115(0.1320)
42	Мо	92	14.84(35) 9.25(12)	0.0190 0.0150	1.000	5 13	00.10.0(01.00), =00.0=00(01.00), =00.1.0(01.0=0)
	Mo Mo	95	15.92(13)	13.4(3)	1.001 0.998	139	778.221(2.02), 849.85(0.43), 847.603(0.324)
	Mo Mo		16.68(2) 9.55(8)	0.5(2) 2.5(2)	1.001 0.998	36 110	
		98	24.13(31) 9.63(23)	0.137(5) 0.199(3)	1.000 1.000	56 332	
44	Ru	96	5.54(14)	0.22(2)	1.001	2	
	Ru Ru	98 99	1.87(3) 12.76(14)	<8.0 7.1(10)	1.002 1.002	1 134	539.538(1.53), 686.907(0.52)
	Ru Ru	100) 12.60(7) [′] 17.06(2)	5.0(6) 3.4(9)	1.000 1.001	32 60	475.0950(0.98), 631.22(0.30), 627.970(0.176)
	Ru	102	2 31.55(14)	1.21(7)	1.000	173	1959.30(0.38), 631.22(0.30), 627.970(0.176)
45	Ru Rh	103	l 18.62(27) 3 100	0.47(2) 145(2)	1.000 1.023	183 264	180.87(22.6), 97.14(19.5), 51.50(16.0)
46	Pd Pd	102	2 1.02(1) 1 11.14(8)	3.4(3) 0.6(3)	0.997 1.000	4 11	
	Pd	105	5 22.33(8)	21.0(15)	0.995	114	511.843(4.00), 717.356(0.777), 616.192(0.629)
	Pd Pd	108	3 27.33(3) 3 26.46(9)	0.31(3) 7.6(4)	0.999 1.000	7 140	
47	Pd Ag	110) 11.72(9) ' 51.839(8)	0.23(3) 37.6(12)	1.000 0.998	87 172	78.91(3.90), 206.46(3.58), 192.90(2.20)
	Αğ	109	48.161(8)	91(1)	1.005	129	198.72(7.75), 235.62(4.62), 117.45(3.85)
48	Cd Cd	108	3 1.25(6) 3 0.89(3)	~1.0 0.72(13)	1.000 1.001	0	
	Cd Cd	110 111) 12.49(18) 12.80(12)	11(1) 24(3)	1.000 0.995	191 5	245.3(274)
	Cd Cd	112	2 24.13(21)	2.2(5)	1.000 1.337	0	558 32(1860) 651 10(259)
	Cd	114	3 12.22(12) 3 28.73(42)	20600(400) 0.34(2)	1.000	134 0	558.32(1860), 651.19(358)
	Cd	116	7.49(18)	0.075(20)	1.000	0	

^{*} Decay gamma: ⁷²Ga(39.68 ms), ⁷⁶As(26.24 h), ⁷⁷Se(17.36 s), ⁸²Br(35.30 h), ⁸⁶Rb(1.017 m)

Table I. Isotopic Data, continued

Z	EI	A Abundance(%				Εγ(σγ) for most intense capture gamma rays
49	In In	113 4.29(5) 115 95.71(5)	15.1(13) 283(8)		232 199	1293.54(131)d, 1097.30(87.3)d, 416.86(43.0)d
50	Sn	112 0.97(1)	0.86(9)		0	1293.34(131)a, 1097.30(67.3)a, 410.80(43.0)a
	Sn	114 0.66(1)	0.12(3)		0	4202 504/0 4240\ 072 640/0 0450\ 2442 202/0 0450\
	Sn Sn	115 0.34(1) 116 14.54(9)	30(7) 0.14(3)		395 9	1293.591(0.1340), 972.619(0.0158), 2112.302(0.0152) 158.65(0.0145)
	Sn	117 7.68(7)	1.32(18)	1.000	19	1229.64(0.0673)
	Sn Sn	118 24.22(9) 119 8.59(4)	0.23(5) 2.2(5)		9 9	1171.28(0.0879)
	Sn	120 32.58(9)	0.14(3)	1.000	10	1171.25(0.0070)
	Sn	122 4.63(3) ´ 124 5.79(5)	0.139(15)	1.000	9 25	
51	Sn Sb	124 5.79(5)	0.134(5) 5.9(2)		25 151	564.24(2.700)d, 61.4130(0.75), 78.0910(0.48)
50	Sb	123 42.79(5)	4.1(1)	1.001	175	87.6010(0.212), 40.8040(0.10), 155.1780(0.081)
52	Te Te	120 0.09(1) ´ 122 2.55(12)	2.3(3) 3.9(5)		0 113	
	Te	123 0.89(3)	418(30)	1.011	162	602.729(2.46), 722.772(0.52), 645.819(0.263)
	Te Te	124 4.74(14) 125 7.07(15)	6.8(13) 1.55(16)		280 8	
	Te	126 18.84(25)	1.0(15)	1.000 2	2	
	Te	128 31.74(8)	0.215(8)		23	
53	Te I	130 34.08(62) 127 100	0.29(6) 6.2(2)		258 348	133.6110(1.42), 442.901(0.595)d, 27.3620(0.43)
54	Хe	124 0.09(1)	165(11)	1.004	4	
	Xe Xe	126 0.09(1) 128 1.92(3)	3.8(8) 5.2(13)		0 7	
	Xe	129 26.44(24)	21(7)	1.001	59	536.17(1.71)
	Xe Xe	130 4.08(2) 131 21.18(3)	4.8(12) 85(10)		13 72	667.79(6.7), 772.72(1.78), 630.29(1.41)
	Xe	132 26.89(6)	0.41(5)	1.000 (0	007.73(0.7), 772.72(1.70), 000.23(1.41)
	Xe	134 10.44(10)	0.265(20)		0	
55	Xe Cs	136 8.87(16) 133 100	0.26(2) 30.3(11)		113 384	176.4040(2.47), 205.615(1.560), 510.795(1.54)
56	Ba	130 0.106(1)	8.7(9)	1.000 2	2	
	Ba Ba	132 0.101(1) 134 2.417(18)	7.0(8) 1.5(3)		2 120	
	Ba	135 6.592(12)	5.8(9)	1.000	87	818.514(0.212), 1261.52(0.095)
	Ba Ba	136 7.854(24) 137 11.232(24)	0.68(17) 3.6(2)		96 210	283.58(0.0404) 1435.77(0.308), 1444.91(0.0801), 462.78(0.0660)
	Ba	138 71.698(42)	0.40(4)	1.000	48	627.29(0.294), 4095.84(0.155), 454.73(0.0853)
57	La La	138 0.090(1) 139 99.910(1)	57(6) 9.04(4)		6 308	1596.21(5.84)d, 487.021(2.79)d, 815.772(1.430)d
58	Ce	136 0.185(2)	6.5(10)	0.999	65	1390.21(3.04)0, 401.021(2.19)0, 013.112(1.430)0
	Ce	138 0.251(2)	1.02(24)	0.991	9	004 00/0 044) 4700 40/0 440) 475 04/0 000)
	Ce Ce	140 88.45Ò(51) 142 11.114(51)	0.58(2) 0.97(2)		29 48	661.99(0.241), 4766.10(0.113), 475.04(0.082) 1107.66(0.040), 737.43(0.026), 4336.46(0.0251)
59	Pr	141 100	11.5(3)	0.999 2	213	176.8630(1.06), 140.9050(0.479), 1575.6(0.426)d
60	Nd Nd	142 27.2(5) 143 12.2(2)	18.7(7) 325(10)		208 119	742.106(3.8) 696.499(33.3), 618.062(13.4), 814.12(4.98)
	Nd	144 23.8(3)	3.6(3)	1.000	16	000.100(00.0), 010.002(10.1), 011.12(1.00)
	Nd	145 8.3(1)	42(2)		123	
	Nd Nd	146 17.2(3) 148 5.7(1)	1.41(5) 2.58(14)	1.000 2	73 298	
00	Nd	150 5.6(2)	1.03(8)	0.999	581	
62		144 3.07(7) 147 14.99(18)	1.64(10) 57(3)		0 22	
	Sm	148 11.24(10)	2.4(6)	1.000 (0	
		149 13.82(7) 150 7.38(1)	40100(600) 100(4)		161 301	333.97(4790), 439.40(28601), 737.44(597)
	Sm	152 26.75(16)	206(6)	1.003	160	
62	Sm	154 22.75(29) 151 47.81(3)	8.3(5)		136	80 847(1430) 841 570/22214 77 22(107)
63	Eu Eu	153 52.19(3)	9200(300) 312(7)		200 64	89.847(1430), <i>841.570(223)d</i> , 77.23(187)
64	Gd	152 0.20(1)	735(20)	0.998	503	
	Gd Gd	154 2.18(3) 155 14.80(12)	85(12) 60900(500)		329 324	199.2130(2020), 88.9670(1380)
	Gd	156 20.47(9)	1.8(7)	1.001 (0	
	Gd Gd	157 15.65(2) 158 24.84(7)	254000(800) 2.2(2)		390 20	181.931(72003), 79.5100(40101), 944.174(3090)
	Gd	160 21.86(19)	1.4(3)	1.000	98	
65	Tb	159 100	23.3(4)	1.000 2	224	75.0500(1.78), 63.6860(1.46), 64.1100(1.2)

^{*} Decay gamma: ¹¹⁶In(54.41 m), ¹²²Sb(2.7238 d), ¹²⁸I(24.99 m), ¹⁴⁰La(1.6781 d), ¹⁴²Pr(19.12 h), ¹⁵²Eu(9.3116 h)

Table I. Isotopic Data, continued

Z	EI	A Abundance(%	%) σγ(total) b	g(293°K)	Νγ	Εγ(σγ) for most intense capture gamma rays
66	Dy	156 0.06(1)	33(3)	1.009	25	
	Dy Dy	158 0.10(1) 160 2.34(8)	43(6) 55(3)	0.989 1.009	0 100	
	Dy	161 18.91(24)	600(25)	0.991	78	185.19(39.1), 882.27(18.3), 80.64(16.5)
	Dy	162 25.51(26)	194(10)	1.005	328	
	Dy Dy	163 24.90(16) 164 28.18(37)	134(7) 2650(70)	1.003 0.988	45 271	184.257(146), 538.609(69.2), 496.931(44.9)
67	Ηo	165 100	64.7(12)	1.002	550	136.6650(14.5), 116.8360(8.1), 80.574(3.87)d
68	Er	162 0.14(1)	19(2)	1.001 1.000	1 0	
	Er Er	164 1.61(3) 166 33.61(35)	13(2) 16.9(16)	1.000	87	
	Er	167 22.93(17)	649(8)	1.069	805	184.2850(56), 815.9890(42.5), 198.2440(29.9)
	Er Er	168 26.78(26) 170 14.93(27)	2.74(8) 8.9(3)	1.000 1.000	102 97	
69		169 100	105(2)	1.005	302	204.4480(8.72), 149.7180(7.11), 144.4800(5.96)
70	Yb	168 0.13(1)	2300(170)	1.057	233	191.2140(0.22)
	Yb Yb	170 3.04(15) 171 14.28(57)	9.9(18) 58(4)	1.001 0.999	23 266	78.7430(0.67), 181.529(0.53), 1076.246(0.52)
	Yb	172 21.83(67)	1.3(8)	1.000	25	
	Yb	173 16.13(27)	15.5(15)	1.001	44	175.30(0.58), 102.60(0.44), 76.99(0.40)
	Yb Yb	174 31.83(92) 176 12.76(41)	63.2(15) 2.85(5)	0.999 1.000	176 129	514.868(9.0)d, 639.261(1.43), 396.329(1.42)d
71	Lu	175 97.41(2)	23.1(14)	0.976	304	71.5170(3.96), 225.4030(1.73), 310.1870(1.49)
72	Lu Hf	176 2.59(2) 174 0.16(1)	2090(70) 549(7)	1.752 0.986	184 23	150.392(13.8), 457.944(8.3), 138.607(6.79)
12	Hf	174 0.16(1)	24(3)	1.002	5	
	Hf	177 18.60(9)	373(10)	1.020	308	213.439(29.3), 93.182(13.3), 325.559(6.69)
	Hf Hf	178 27.28(7) 179 13.629(6)	137(7) 41(3)	1.003 0.997	347 339	214.3410(16.3)d, 214.3410(5.7), 303.9880(3.38)
	Hf	180 35.08(16)	13.04(7)	0.997	105	
73	Ta	180 0.012(2)	563(60)	1.358	0	070 4000(0.00) 470 0070(4.040) 400 000(4.400)
74	Ta W	181 99.988(2) 180 0.12(1)	20.5(5) <150	1.004 0.997	262 3	270.4030(2.60), 173.2050(1.210), 402.623(1.180)
77	W	182 26.50(16)	19.9(2)	1.003	131	6190.78(0.45), 46.4840(0.192), 5164.43(0.19)
	W	183 14.31(4)	10.3(2)	0.999	211	111.216(0.195), 792.059(0.119), 903.274(0.115)
	W W	184 30.64(2) 186 28.42(19)	1.7(1) 38.5(5)	0.999 1.001	75 225	4573.7(0.104) 685.73(3.24)d, 479.550(2.59)d, 72.002(1.32)d
75	Re	185 37.40(2) [°]	112(2)	1.004	188	59.0100(5.5), 137.157(5.29)d, 214.647(2.53)
76		187 62.60(2)	79.2(10)	0.982	218	63.5820(8.0), 155.041(7.16)d, 207.853(4.44)
76	Os Os	184 0.02(1) 186 1.59(3)	3000(150) 80(13)	1.000 0.998	72 38	
	Os	187 1.96(2)	245(40)	0.983	174	155.10(1.19), 633.14(0.585), 478.04(0.523)
	Os Os	188 13.24(8) 189 16.15(5)	4.7(5) 25(4)	1.002 1.004	163 147	272.82(0.242) 186.7180(2.08), 557.978(0.84), 569.344(0.694)
	Os	190 26.26(2)	13.1(9)	0.997	76	5146.63(0.409), 527.60(0.300)
	Os	192 40.78(19)	3.12(16)	1.000	95	054 000(40.0) 04 0740(7.7) 400 4050(0.5)
77	lr Ir	191 37.3(2) 193 62.7(2)	954(10) 111(5)	0.996 1.017	286 303	351.689(10.9), 84.2740(7.7), 136.1250(6.5) 328.448(9.1)d, 371.5020(2.11), 278.5040(1.8)
78	Pt	190 0.014(1)	142(4)	0.998	0	020.770(0.774, 07.110020(2.117), 27.0100.10(110)
	Pt	192 0.782(7)	10.0(25)	1.001	0	
	Pt Pt	194 32.967(99) 195 33.832(10)	0.58(19) 28.5(12)	1.000 1.000	64 235	355.6840(6.17), 332.985(2.580)
	Pt	196 25.242(41)	0.45(4)	1.000	36	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
79	Pt Au	198 7.163(55) 197 100	3.66(19) 98.65(9)	1.000 1.005	44 737	411.8020(94.30)d, 214.9710(9.0), 247.5730(5.56)
80	Hg	196 0.15(1)	3190(180)	0.988	10	477.8020(34.30/d, 214.37 10(3.0), 247.3730(3.30)
	Hğ	198 9.97(20)	2.0(3)	1.001	3	007.047(054), 5007.00(00.5), 4000.000(50.0)
	Hg Hg	199 16.87(22) 200 23.10(19)	2150(50) <60	0.989 1.000	425 0	367.947(251), 5967.02(62.5), 1693.296(56.2)
	Hg	201 13.18(9)	5.7(12)	1.000	97	
	Ηğ	202 29.86(26)	4.42(7)	1.000	0	
81	Hg TI	204 6.87(15) 203 29.524(14)	0.43(10) 11.4(2)	1.000 1.000	13 113	139.94(0.400), 347.96(0.361), 318.88(0.325)
	ΤI	205 70.476(14)	0.104(17)	1.000	13	
82	Pb	204 1.4(1)	0.66(7)	1.001	35	
	Pb Pb	206 24.1(1) 207 22.1(1)	0.0266(12) 0.63(3)	1.001 1.001	6 23	7367.78(0.137)
	Pb	208 52.4(1)	0.00023(3)	1.003	0	
83	Bi Th	209 100 ´ 232 100	0.0338(7)	0.999	230	4171.05(0.0171), 4054.57(0.0137), 319.78(0.0115)
90 92	Th U	234 0.0055(5)	7.35(3) 99.8(13)	0.995 0.990	196 49	583.27(0.279), 566.63(0.19), 472.30(0.165)
	Ū	235 0.7200(51)	98.3(8)	0.985	8	297.00(0.220), 1279.01(0.200), 943.14(0.082)
	U	238 99.274(11)	2.680(19)	1.002	267	74.6640(1.30000)d, 106.1230(0.723)d, 277.5990(0.382)d

^{*} Decay gamma: ${}^{166}_{194}$ Ho(26.80 h), ${}^{175}_{198}$ Ho(26.85 d), ${}^{179}_{198}$ Hf(18.67 s), ${}^{187}_{198}$ W(23.72 h), ${}^{186}_{194}$ Re(3.7183 d), ${}^{188}_{198}$ Re(17.005 h), ${}^{198}_{198}$ Au(2.69517 d), ${}^{239}_{198}$ U(23.45 m)