

Temporizadores e Contadores

- O 8051 possui 2 T/C internos de 16 Bits programáveis e com capacidade de operação independente da CPU.
- Contadores crescentes (up-counter) que geram sinal de interrupção na ocorrência de overflow.
- Podem ser habilitados ou desabilitados por Software ou por Hardware.

Dois registradores (SFR) comandam a programação dos T/C

Registradores na área dos SFR que mostram os valores dos T/C

Registrador **TCON**

(Timer/Counter Control) → Endereçável a Bit

TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0		
TF1	TCON.7	Flag de overflow do Timer 1. Ativado por hardware quando o Timer 1 transborda. Zerado por hardware assim que o processador salta para a rotina de atendimento da interrupção							
TR1	TCON.6	Bit de contro	le do Timer	1. Ativado/z	erado por so	ftware para	Ligar/Desliga	ar o Timer 1.	
TF0	TCON.5	_			•	•		sborda. Zerado por interrupção	
TR0	TCON.4	Bit de contro	Bit de controle do Timer 0. Ativado/zerado por software para Ligar/Desligar o Timer 0.						
IE1	TCON.3	Flag de bord Externa 1 é		•		•	•	na borda na Interrupção essada.	
IT1	TCON.2	Bit de contro Interrupção				•	•	a especificar se a	
IE0	TCON.1	_	Flag de borda da Interrupção Externa 0. Ativado por hardware quando uma borda na Interrupção Externa 0 é detectada. Zerado por hardware quando a interrupção é processada.						
IT0	TCON.0	Bit de contro Interrupção				•	•	a especificar se a	

SETB TR1; Dispara(liga) o T1

SETB TR0; Dispara(liga) o T0

CLR TR1; Pára (Desliga) o T1

CLR TR0; Pára (Desliga) o T0

Controle de Disparo do Timer

a) Controle por Hardware

Quem liga e desliga o Timer é um pulso aplicado externamente à CPU no pino Int (Int0 ou Int1).

Exemplo para o Timer 1:

Quando o Bit TR1 (em TCON) é 1 e GATE=1 (em TMOD), o Timer1 contará enquanto o pino INT1 na CPU for 1.

TCON	TF1	TR1	7F0	TR0	IE1	IT1	IE0	IT0
TMOD	V	Tim	er 1			Tim	er 0	
INIOD	GATE	C/T	M1	MO	GATE	C/T	M1	МО

6

Exemplo para o Timer1:

GATE = 1

MOV TMOD,#10000000b ; Programa o Timer1 para ; controle por Hardware (GATE=1)

SETB TR1 ; Liga o Timer1

Quando o valor lógico no pino Int1 da CPU for 1, o Timer1 começa a contar os pulsos do clock interno. Quando este valor for 0, o Timer1 pára a contagem.

Exemplo para o Timer0:

Quando o valor lógico no pino Int0 da CPU for 1, o Timer0 começa a contar os pulsos do clock interno. Quando este valor for 0, o Timer0 pára a contagem.

MOV TMOD,#00001000b; Programa o Timer0 para

; controle por Hardware (GATE=1)

SETB TR0 ; Liga o Timer0

Controle de Disparo do Timer

a) Controle por Software

GATE = 0

Quem liga e desliga o Timer são os comandos aplicados sobre o bit TR (TR1 ou TR0).

TMOD

Timer 1				Timer 0				
GATE	C/T	M1	МО	GATE	C/T	M1	MO	

Exemplo para o Timer1:

```
MOV TMOD,#0xxxxxxxb; programa o T1 para controle; por Software (GATE=0)

SETB TR1; Liga o T1

CLR TR1; Desliga o T1

9
```

Exemplo para o Timer0:

GATE = 0

TMOD

Timer 1				A	Tim	er O	
GATE	C/T	M1	MO	GATE	C/T	M1	MO

Seleção de Função

Timer (Temporizador) → entrada de pulsos através do clock interno ((freqüência do oscilador)/12).

Counter (Contador) → entrada de pulsos externa através dos pinos T0 ou T1 da CPU.

Obs: A frequência externa deve ser no máximo a metade da frequência da CPU.

Esquemático geral simplificado

Interrupção dos Timers/Counters

Obs: Os bits de flag de TCON, TF1 e TF0 são ativados e desativados por Hardware.

NÃO devem ser alterados por software!!!!

TF1	TCON.7	Flag de overflow do Timer 1. Ativado por hardware quando o Timer 1 transborda. Zerado por hardware assim que o processador salta para a rotina de atendimento da interrupção
TR1	TCON.6	Bit de controle do Timer 1. Ativado/zerado por software para Ligar/Desligar o Timer 1.
TF0	TCON.5	Flag de overflow do Timer 0. Ativado por hardware quando o Timer 0 transborda. Zerado por hardware assim que o processador salta para a rotina de atendimento da interrupção
TR0	TCON.4	Bit de controle do Timer 0. Ativado/zerado por software para Ligar/Desligar o Timer 0.

Seleção de Modo

M1	МО		MODOS DE OPERAÇÃO
0	0	0	Contador / Temporizador de 13 bits (8 bits + 5 bits de prescaler)
0	1	1	Contador / Temporizador de 16 bits
1	0	2	Contador / Temporizador de 8 bits auto-recarregável
1	1	3	Para o Timer0: TL0 é um Contador / Temporizador de 8 bits controlado pelos bits de controle do Timer0 e TH0 é um Contador / Temporizador de 8 bits controlado pelos bits de controle do Timer1
1	1	3	O Timer1 não funciona no modo 3

Modo 0

Contador / Temporizador de 13 Bits → 8 Bits + 5 Bits de prescaler

Exemplo:

Usar o Timer0 como contador no Modo 0, para contar 32 pulsos 100 vezes e, após a contagem acionar um mecanismo que liga um motor conectado ao bit 0 da porta P1.

Para contar 100 pulsos em THO, o contador deve contar de x até 255.

$$255 - x = 100$$
 \Rightarrow $x = 155 = 9Bh$

O Contador é crescente (UP Counter) → O contador contará em TH0 de 155 a 255, ou seja, 100 vezes.

100 contagens
$$\rightarrow$$
 9Bh até FFh
(FFh – 9Bh = 64h \rightarrow 100d)

Logo, deve-se carregar inicialmente o valor de TH0 com 9Bh

MOV TH0,#9Bh

O Timer0 conta em TL0 32 pulsos . A cada 32 pulsos é incrementado o valor de TH0.

Depois de 100 x 32 pulsos, ocorre um overflow em TH0 ocasionando TF0=1 .

TCON

TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
-----	-----	-----	-----	-----	-----	-----	-----

TMOD

	Timer 1				Tim	er O	
GATE	C/T	M1	MO	GATE	C/T	M1	MO
0	0	0	0	0	1	0	0

Exemplo:

```
ORG 0
       SJMP Proa
               000вh
                       ; Endereco da sub-rotina do TO
       ORG
Sub1:
                      ; Evita Interrupção da Interrupção
       CLR
              EA
              P1.0
       SETB
                       : Aciona o mecanismo
       CLR
            P1.0
       SETB EA
                       : Re-habilita as Interrupções
             TH0,#9Bh
                      : contar cem vezes
       MOV
       RETT
                       :Retorna
                            **************
                ETO
                     :habilita Interrupção do TO
Prog:
       SETB
             TH0,#9Bh
                      ; contar cem vezes
       MOV
            TL0,#00h
       MOV
                       contar trinta e dois pulsos
             TMOD,#04
                       ;TO no modo O como Contador e
       MOV
                      ; disparo por software
                      ;habilita as interrupções
               EA
       SETB
       SETB
            TRO
                      :Dispara o TO
              P1.0
                      ; Desliga o mecanismo
       CLR
       SJMP
                      : Permanece em Loop
Loop:
              Loop
       END
```

Obs: Toda a vez que a contagem atingir 100 x 32 pulsos o programa desvia para Sub1 e aciona o mecanismo

Modo 1

Contador/Temporizador de 16 Bits

• O valor inicial pode ser programado por Software

Exemplo 1:

1) Programar o Timer1 como um Temporizador (Timer) no Modo 1 com controle por Software para gerar um pulso positivo de 30 ms na Porta P1.0. (Se o Cristal for de 12 MHz, a frequência será 12 MHz/12 = 1 MHz)

Programação do Timer1

período = 1 us = 1 ciclo de Máquina

TMOD

	Timer 1				Timer 0			
GATE	C/T	M1	MO	GATE	C/T	M1	MO	
0	0	0	1	0	0	0	0	

Freqüência do temporizador (ft)

$$ft = \frac{f}{12}$$

Freqüência do Cristal (f)

Intervalo de tempo de contagem

$$\Delta t = n. \frac{1}{ft}$$

Número de pulsos a serem contados (*n*)

O contador deve contar de x até o máximo valor 65535 (FFFFh)

Logo,
$$65535 - x = \Delta t \cdot ft = \Delta t \cdot \frac{f}{12} \implies x = 65535 - \Delta t \cdot \frac{f}{12}$$

 (Δt)

O valor de x deve ser arredondado para o inteiro mais próximo

$$\left| x = 65535 - \Delta t \cdot \frac{f}{12} \right|$$

$$\Delta t = 30 \text{ ms} = 30.000 \mu \text{s}$$

$$f = 12 MHz$$

$$x = 65535 - 30000.\frac{12}{12}$$

$$x = 35535 = 8ACFh$$

30 ms → contar de 8ACFh a FFFFh (35535 a 65535 = 30.000 us) se o cristal for de 12 MHz

MOV TH1,#8Ah MOV TL1,#0CFh

Pulso positivo de 30ms na Porta P1.0

```
0
         ORG
         SJMP
                  Prog
Sub1:
                  001Bh
                                    : Sub-rotina do T1
         ORG
         CLR
                  EΑ
                  P1.0
                                    ; Fim do Pulso depois de 30 ms
         CLR
         RETT
                  P1.0
                                    ; Zera a saída de pulso
Prog:
         CLR
         SETB
                  ET1
                                    ; Habilita a interrupção do Tl
                                     ; T1 no Modo 1, temporizador e
                  TMOD,#10h
         MOV
                                     ;controle por software
                                     ;Contar de 8ACFh até FFFFh
                  TH1,#8Ah
         MOV
                  TL1,#0CFh
         MOV
         SETB
                                    ;habilita as interrupções
                  EΑ
                  TR1
                                    ;Inicia a contagem
         SETB
                  P1.0
                                    ; Início do pulso
         SETB
         SJMP
         END
```

Exemplo 2:

Programar o Timer1 como Contador (Counter) no Modo 1 com controle por Software. A entrada de pulsos deverá ser aplicada no pino T1 da CPU.

Programação do Timer1

TMOD

	Timer 1 ATE C/T M1 M0			Timer 0				
GATE	C/T	M1	M0	GATE	C/T	M1	МО	
0	1	0	1	0	0	0	0	

Os pulsos a serem contados devem entrar através do pino T1 da CPU em frequência inferior à metade do Cristal.

Modo 2

Contador/Temporizador de 8 Bits Auto-recarregável

Deve-se armazenar em THx o Valor de Recarga.

Exemplo:

1)Temporizador de 8 Bits no Modo 2 (de 7Fh a FFh) para o Timer1. Controle por software.

Programação do Timer1

TMOD

	Timer 1 GATE C/T M1 M0				Tim	er 0	
GATE	C/T	M1	MO	GATE	C/T	M1	MO
0	0	1	0	0	0	0	0

MOV TMOD,#20h

; Programa o T/C 1 no Modo 2 como

;temporizador e controle por Software

MOV TH1,#7Fh

MOV TL1,#7Fh

SETB TR1 ;Inicia a contagem

Modo 3

- O Timer1 não funciona no Modo 3.
- O Timer0 no Modo 3 estabelece TL0 e TH0 como dois contadores separados de 8 Bits cada.

Modo 3

- Como o Timer1 não opera neste modo, TH0 gera uma solicitação de Interrupção através de TF1.
- O Timer1 pode ser programado em outro modo, mas aí, não gera overflow em TF1 para solicitação de Interrupção .
- TH0 só funciona como Temporizador (Timer) pois só usa a freqüência interna (1/12 oscilador)

Exemplo: Programa que gera duas ondas quadradas usando as interrupções dos Timers

Os Temporizadores contam Ciclos de Máquina!!!!

```
ORG
               Prog
               000BH
       ORG
               Sub0
               001Bh
       ORG
       SJMP
Prog:
       CLR
       CLR
               P1.1
       SETB
               ET1
               ET0
       SETB
               TMOD, #11h
       MOV
               TH1,#0FFh
       MOV
               TL1,#0FEh
       MOV
               THO, #0FFh
       MOV
               TL0,#0FDh
       MOV
       SETB
               FΑ
               TR1
       SETB
               TR0
       SETB
       SJMP
```

```
Sub0:
         CLR
                   EΑ
                   P1.0
         CPL
         CLR
                   TR1
                   TR0
         CLR
                   THO, #0FFh
         MOV
                   TL0,#0FDh
         MOV
                   EΑ
         SETB
                   TR1
         SETB
                   TR0
         SETB
Sub1:
         CLR
                   EΑ
         CPL
                   P1.1
         CLR
                   TR1
                   TR0
         CLR
                   TH1,#0FFh
         MOV
                   TL1,#0FEh
         MOV
                   EA
         SETB
                   TR1
         SETB
                   TR0
         SETB
         END
                                  28
```

Exercício Aula_4

- Escrever o programa do exemplo anterior no simulador MCU8051.
- Inserir Breakpoints nas linhas (clicar no número da linha)
 12, 27 e 39 (instruções logo após os bits das portas terem sido alterados. Anotados com setas na figura anterior).
- Avaliar a forma de onda nas duas portas (desenhar) e marcar o valor do tempo (em microssegundos) das partes positiva e negativa de cada uma.
- Considerar o cristal de 12 MHz.