Homework 5

Michael Brodskiy

Professor: M. Onabajo

October 22, 2024

1. (a) We may begin by writing:

$$N_A = 10^{16} \left[\frac{1}{\text{cm}^3} \right]$$
 and $N_D = 10^{18} \left[\frac{1}{\text{cm}^3} \right]$

We know that this silicon $(N_A \neq N_D)$ is *n*-type, so we may write the concentration of donors as:

$$n \approx N_D = 10^{18} \left[\frac{1}{\text{cm}^3} \right]$$

From here, we use the mass action law to write:

$$np = n_i^2$$

Where $n_i = 1.5 \cdot 10^{10} [\text{cm}^{-3}]$ for silicon at 300[K]. This gives us the hole concentration as:

$$p = \frac{(1.5 \cdot 10^{10})^2}{10^{18}}$$

$$p = 225 \left[\frac{1}{\text{cm}^3}\right]$$

(b)
$$N_A = 10^{17} \left[\frac{1}{\text{cm}^3} \right] \quad \text{and} \quad N_D = 10^{17} \left[\frac{1}{\text{cm}^3} \right]$$

Given this, we know that this silicon is intrinsic like $(N_A = N_D)$. This means that we may write:

$$n + N_A = p + N_D$$

$$n + 10^{15} = p + 10^{15}$$

$$n = p$$

Using the mass-action law, we may write:

$$n = n_i$$

Which gives us:

$$n = p = 1.5 \cdot 10^{10} \left[\frac{1}{\text{cm}^3} \right]$$

2. • V_{BE}

We begin by using the transistor equation:

$$I_e = I_{ES} e^{\frac{V_{BE}}{V_T}}$$

This can be rearranged to get:

$$V_{BE} = V_T \ln \left(\frac{I_E}{I_{ES}} \right)$$

And now we enter known values:

$$V_{BE} = .026 \ln \left(\frac{.01}{10^{-13}} \right)$$

$$V_{BE} = .6585[V]$$

 \bullet V_{BC}

Since we are given $V_{CE} > .2[V]$, the BJT is active, and we can write:

$$V_{BC} = V_{BE} - V_{CE}$$

$$V_{BC} = .6585 - 10$$

$$V_{BC} = -9.3415[V]$$

 \bullet I_B

We may use the value of β to find:

$$I_B = (1+\beta)I_E$$

$$I_B = (1+100)^{-1}(.01)$$

$$I_B = 99[\mu A]$$

• *I*_C

We then know:

$$I_C = \beta I_B$$

$$I_C = 100(99 \cdot 10^{-6})$$

$$I_C = 9.9[\text{mA}]$$

α

Finally, we find α :

$$\alpha = \frac{\beta}{\beta + 1}$$

$$\alpha = \frac{100}{100 + 1}$$

$$\alpha = .9901$$

 $3. \quad \bullet \ V_1$

Since there is a voltage drop from the base (due to forward-bias) to the emitter of .7[V], we know:

$$V_1 = -.7[V]$$

• *V*₂

We may begin by finding the emitter current at transistor Q_1 :

$$I_{EQ_1} = \frac{10 - .7}{4.7k}$$

$$I_{EQ_1} = 1.979 [\text{mA}]$$

Given the β value, we may find the collector current as:

$$I_{CQ_1} = \frac{100}{101} I_{EQ_1}$$

$$I_{CQ_1} = 1.9594 [\text{mA}]$$

We can then calculate V_2 based on KVL:

$$V_2 = 10 - (1.9594)(5.1k)$$

$$V_2 = 7.0297[\text{mV}]$$

• V₃

Applying this voltage into a KVL equation for transistor Q_2 , we may write:

$$I_{CQ_2} = \frac{10 - .0070297 - .7}{4.7k}$$
$$I_{CQ_2} = 1.9772[\text{mA}]$$

We can thus get V_3 as:

$$V_3 = 10 - (1.9772)(4.7)$$

$$V_3 = .707[V]$$

V₄

We then find the emitter voltage based on the β :

$$I_{EQ_2} = \frac{101}{100} (1.9772)$$

 $I_{EQ_2} = 1.997 [\text{mA}]$

Using KVL at the collector, we get:

$$V_4 = (3)(1.997) - 10$$
$$V_4 = -4.0091[V]$$

• V₅

We may find V_5 using the voltage drop from a forward-biased diode:

$$V_5 = V_4 - .7$$

 $V_5 = -4.0091 - .7$
 $V_5 = -4.7091[V]$

• V₆

Using KVL at the input of Q_3 , we get:

$$I_{EQ_3} = \frac{10 - 4.0091 - .7}{1.3k}$$

$$I_{EQ_3} = 4.0699 [\text{mA}]$$

We then find the collector current:

$$I_{CQ_3} = \frac{\beta}{\beta + 1} (4.0699)$$
$$I_{CQ_3} = \frac{100}{101} (4.0699)$$

$$I_{CQ_3} = 4.0296 [\text{mA}]$$

And, finally, we use KVL to get:

$$V_6 = 10 - (4.0296)(2)$$

$$V_6 = 1.9408[V]$$

We may demonstrate the values we found as:

$$V \begin{cases} 1, & -.7 \\ 2, & 7.0297 \cdot 10^{-3} \\ 3, & .707 \\ 4, & -4.0091 \\ 5, & -4.7091 \\ 6, & 1.9408 \end{cases} [V]$$

4. First, we find the thermal voltage at 180[°C]:

$$V_{T_2} = \frac{(1.38 \cdot 10^{-23}) (273 + 180)}{1.6 \cdot 10^{-19}}$$
$$V_{T_2} = .039071 [V]$$

From here, we may write our temperature difference equation to determine the initial V_{BE} voltage at 2[mA]:

$$V_{BE_o} = V_{BE_1} + .002(T_2 - T_1)$$

 $V_{BE_o} = -.7 + .002(150)$
 $V_{BE_o} = -.4[V]$

We then find the saturation current:

$$I_s = \frac{I_C}{e^{V_{BE_o}/V_{T_2}}}$$

$$I_s = \frac{.002}{e^{.4/.039071}}$$

$$I_s = 71.585[\text{nA}]$$

Finally, from this we may write:

$$V_{BE_2} = (.039071) \ln \left(\frac{.0001}{71.585 \cdot 10^{-9}} \right)$$

$$V_{BE_2} = .283[V]$$

5. (a) From running the simulation, we obtain the following result:

Figure 1: Simulation Results for Part (a)

From this, we may see that $I_B = 23.73[\mu A]$ and $I_C = 4.406[mA]$. Thus, we may obtain:

$$\beta_{Q2} = \frac{4.406}{.02373}$$
$$\beta_{Q2} = 185.67$$

(b) Once again, we simulate to obtain new values:

Figure 2: Simulation Results for Part (b)

Now, we get $I_C = 4.608$ [mA] and $I_B = 23.04$ [μ A], which gives us:

$$\beta_{QB} = \frac{4.608}{.02304}$$

$$\beta_{QB} = 200$$

This is the expected value, since we hard coded β .

(c) We may find the value of BF in the table below:

	Qbreakn	Q2N2222
	NPN	NPN
IS	100.000000E-18	14.340000E-15
BF	200	255.9
NF	1	1
VAF		74.03
IKF		.2847
ISE		14.340000E-15
NE		1.307
BR	1	6.092
NR	1	1
RB		10
RC		1
CJE		22.010000E-12
MJE		.377
CJC		7.306000E-12
MJC		.3416
TF		411.100000E-12
XTF		3
VTF		1.7
ITF		.6
TR		46.910000E-09
XTB		1.5
CN	2.42	2.42
D	.87	.87

Figure 3: Model Parameters

From this, we see that the expected BF value for the Q2N2222 is 255.9. Furthermore, we can confirm that $\overline{\rm BF}$ for the other transistor is 200.

***	BIPOLAR	JUNCTION	TRANSISTORS
NAME		Q_Q1	Q_Q2
MODEL		Qbreakn	
IB		2.30E-05	
IC		4.61E-03	4.41E-03
VBE		8.14E-01	6.82E-01
VBC	-	-8.65E+00	-9.03E+00
VCE		9.47E+00	9.71E+00
BETAD	C	2.00E+02	1.86E+02
GM		1.78E-01	1.68E-01
RPI		1.12E+03	1.19E+03
RX		0.00E+00	1.00E+01
RO		1.00E+12	1.88E+04
CBE		0.00E+00	1.06E-10
CBC		0.00E+00	3.04E-12
CJS		0.00E+00	0.00E+00
BETAA	.C	2.00E+02	1.99E+02
CBX/C	BX2	0.00E+00	0.00E+00
FT/FT	2	2.84E+18	2.44E+08

Figure 4: Operating Point Parameters

Highlighted in the above figure, we see that BETADC is about 186 and BETAAC is about 199.

(d) The following data sheet was obtained online:

ELECTRICAL CHARACTERISTICS

TC=25°C unless otherwise noted

Symbol	Ratings	Test Cor	ndition(s)	Min	Тур	Мx	Unit
V CE(SAT)	Collector-Emitter saturation Voltage (*)	Ic=150 mA, I _B =15 mA	2N2221-2N2222	-	-	0.4	<u> </u>
			2N2221A-2N2222A	-	- 0.3	1,,	
		Ic=500 mA, I _B =50 mA	2N2221-2N2222	-	-	1.6	V
			2N2221A-2N2222A	-	- 1	1	
V BE(SAT)	Base-Emitter saturation Voltage (*)	Ic=150 mA, I _B =15 mA	2N2221-2N2222	-	-	1.3	v
			2N2221A-2N2222A	0.6	-	1.2	
		Ic=500 mA, I _B =50 mA	2N2221-2N2222	-	-	2.6	
			2N2221A-2N2222A	-	-	2	
fт	Transition frequency	Ic=20 mA, Vc=20 V f= 100MHz	2N2221-2N22218A	250	-	-	MHz
			2N2222	230			
			2N2222A	300	-	-	
h fe	Small signal current gain	Ic=1 mA, VcE=10 V	2N2221A	30	-	150	
		f = 1 kHz	2N2222A	50	-	300	300 300 375
		Ic=10 mA, VcE=10 V	2N2221A	50	-	300	
		f = 1 kHz	2N2222A	75	-	375	
ta	Delay time	Ic=150 mA, I _B =15 mA	Ic=150 mA, I _B =15 mA 2N2221A		-	10	ns
		-V _{BB} =0.5 V, V _{CC} =30 V	2N2222A				
tr	Rise time	Ic=150 mA, IB=15 mA	2N2221A		-	25	ns
		-VBB=0.5 V, Vcc=30 V	2N2222A				
ts	Storage time	Ic=150 mA, Vcc=30 V	2N2221A		-	225	ns
		$I_{B1} = -I_{B2} = 15 \text{ mA}$	2N2222A	-			
tr	Fall time	Ic=150 mA, Vcc=30 V	2N2221A		-	60	ns
		$I_{B1} = -I_{B2} = 15 \text{ mA}$	2N2222A				
г ь,Сс	Feedback time constant	Ic=20 mA, VcE=20 V	2N2221A		-	150	ps
		f = 31.8MHz	2N2212A				

(*) Pulse conditions : tp < 300 $~\mu s,~\delta$ =2%

Figure 5: Q2N2222 Sample Data Sheet

From the highlighted row, we may see that, for $I_C = 1 [\text{mA}]$ and $V_{CE} = 10 [\text{V}]$, the current gain is between 50 and 300. Given that in our simulation I_C is just over 4 times as big, and V_{CE} is about 13.5[V], we can estimate that the value will be on the higher end of this range. As observed, β was 185.67, which is within the range specified by the data sheet.