

Fig. 1. Side-channel attacks to the Shannon cipher system.

- 1) Source Processing: At the node,  $X^n$  is encrypted with the key  $K^n$  using the encryption function Enc. The ciphertext  $C^n$  of  $X^n$  is given by  $C^n := \operatorname{Enc}(X^n) = X^n \oplus K^n$ .
- 2) Transmission: Next, the ciphertext  $C^n$  is sent to the information processing center D through a public communication channel. Meanwhile, the key  $K^n$  is sent to D through a private communication channel.
- 3) Sink Node Processing: In D, we decrypt the ciphertext  $C^n$  using the key  $K^n$  through the corresponding decryption procedure Dec defined by  $\operatorname{Dec}(C^n) = C^n \ominus K^n$ . It is obvious that we can correctly reproduce the source output  $X^n$  from  $C^n$  and  $K^n$  by the decryption function Dec.

## Side-Channel Attacks by Eavesdropper Adversary:

An (eavesdropper) adversary  $\mathcal{A}$  eavesdrops the public communication channel in the system. The adversary  $\mathcal{A}$  also uses a side information obtained by side-channel attacks. Let  $\mathcal{Z}$  be a finite set and let  $W: \mathcal{X} \to \mathcal{Z}$  be a noisy channel. Let Z be a channel output from W for the input random variable K. We consider the discrete memoryless channel specified with W. Let  $Z^n \in \mathcal{Z}^n$  be a random variable obtained as the channel output by connecting  $K^n \in \mathcal{X}^n$  to the input of channel. We write a conditional distribution on  $Z^n$  given  $K^n$  as

$$W^n = \{W^n(z^n|k^n)\}_{(k^n,z^n)\in\mathcal{K}^n\times\mathcal{Z}^n}.$$

Since the channel is memoryless, we have

$$W^{n}(z^{n}|k^{n}) = \prod_{t=1}^{n} W(z_{t}|k_{t}). \tag{1}$$

On the above output  $\mathbb{Z}^n$  of  $\mathbb{W}^n$  for the input  $\mathbb{K}^n$ , we assume the followings.

- The three random variables X, K and Z, satisfy  $X \perp (K, Z)$ , which implies that  $X^n \perp (K^n, Z^n)$ .
- W is given in the system and the adversary  $\mathcal A$  can not control W.
- By side-channel attacks, the adversary  $\mathcal{A}$  can access  $Z^n$ . We next formulate side information the adversary  $\mathcal{A}$  obtains by side-channel attacks. For each  $n=1,2,\cdots$ , let  $\varphi_{\mathcal{A}}^{(n)}:\mathcal{Z}^n\to\mathcal{M}_{\mathcal{A}}^{(n)}$  be an encoder function. Set  $\varphi_{\mathcal{A}}:=\{\varphi_{\mathcal{A}}^{(n)}\}_{n=1,2,\cdots}$ . Let

$$R_{\mathcal{A}}^{(n)} := \frac{1}{n} \log ||\varphi_{\mathcal{A}}|| = \frac{1}{n} \log |\mathcal{M}_{\mathcal{A}}^{(n)}|$$

be a rate of the encoder function  $\varphi_A^{(n)}$ . For  $R_A > 0$ , we set

$$\mathcal{F}_{\mathcal{A}}^{(n)}(R_{\mathcal{A}}) := \{ \varphi_{\mathcal{A}}^{(n)} : R_{\mathcal{A}}^{(n)} \le R_{\mathcal{A}} \}.$$



Fig. 2. Our proposed solution: linear encoders as privacy amplifiers.

On encoded side information the adversary  $\mathcal{A}$  obtains we assume the following.

- The adversary  $\mathcal{A}$ , having accessed  $Z^n$ , obtains the encoded additional information  $\varphi_{\mathcal{A}}^{(n)}(Z^n)$ . For each  $n=1,2,\cdots$ , the adversary  $\mathcal{A}$  can design  $\varphi_{\mathcal{A}}^{(n)}$ .
- The sequence  $\{R_{\mathcal{A}}^{(n)}\}_{n=1}^{\infty}$  must be upper bounded by a prescribed value. In other words, the adversary  $\mathcal{A}$  must use  $\varphi_{\mathcal{A}}^{(n)}$  such that for some  $R_{\mathcal{A}}$  and for any sufficiently large  $n, \varphi_{\mathcal{A}}^{(n)} \in \mathcal{F}_{\mathcal{A}}^{(n)}(R_{\mathcal{A}})$ .

## C. Proposed Idea: Affine Encoder as Privacy Amplifier

For each  $n=1,2,\cdots$ , let  $\phi^{(n)}:\mathcal{X}^n\to\mathcal{X}^m$  be a linear mapping. We define the mapping  $\phi^{(n)}$  by

$$\phi^{(n)}(x^n) = x^n A \text{ for } x^n \in \mathcal{X}^n, \tag{2}$$

where A is a matrix with n rows and m columns. Entries of A are from  $\mathcal{X}$ . We fix  $b^m \in \mathcal{X}^m$ . Define the mapping  $\varphi^{(n)}: \mathcal{X}^n \to \mathcal{X}^m$  by

$$\varphi^{(n)}(k^n) := \varphi^{(n)}(k^n) \oplus b^m$$
$$= k^n A \oplus b^m, \text{ for } k^n \in \mathcal{X}^n. \tag{3}$$

The mapping  $\varphi^{(n)}$  is called the affine mapping induced by the linear mapping  $\phi^{(n)}$  and constant vector  $b^m \in \mathcal{X}^m$ . By the definition (3) of  $\varphi^{(n)}$ , those satisfy the following affine structure:

$$\varphi^{(n)}(y^n \oplus k^n)(x^n \oplus k^n)A \oplus b^m = x^n A \oplus (k^n A \oplus b^m)$$
$$= \phi^{(n)}(x^n) \oplus \varphi^{(n)}(k^n), \text{ for } x^n, k^n \in \mathcal{X}^n. \tag{4}$$

Next, let  $\psi^{(n)}$  be the corresponding decoder for  $\phi^{(n)}$  such that  $\psi^{(n)}: \mathcal{X}^m \to \mathcal{X}^n$ . Note that  $\psi^{(n)}$  does not have a linear structure in general.

## Description of Proposed Procedure:

We describe the procedure of our privacy amplified system as follows.

1) Encoding of Ciphertext: First, we use  $\varphi^{(n)}$  to encode the ciphertext  $C^n = X^n \oplus K^n$ . Let  $\widetilde{C}^m = \varphi^{(n)}(C^n)$ . Then, instead of sending  $C^n$ , we send  $\widetilde{C}^m$  to the public communication channel. By the affine structure (4) of encoder we have that

$$\widetilde{C}^{m} = \varphi^{(n)}(X^{n} \oplus K^{n})$$

$$= \phi^{(n)}(X^{n}) \oplus \varphi^{(n)}(K^{n}) = \widetilde{X}^{m} \oplus \widetilde{K}^{m}, \qquad (5)$$

where we set  $\widetilde{X}^m := \phi^{(n)}(X^n), \widetilde{K}^m := \varphi^{(n)}(K^n).$