\bigotimes the overall potential is the sum of an attractive one (generated by the goal) and a repulsive one, generated

Autonomous and Mobile Robotics M

23 December 2021 - Theory

Some questions may have more than one correct answers: for each question, indicate all the correct answers.

♦ the differential relation between the coordinates is not reducible to finite form

 \bigcirc if differentiable/integrable relations between the coordinates of the system are present 3. Given the constraints matrix equation in Pfaffian form $A(q)\dot{q}=0$, the admissible robot speed:

O finite relations between the coordinates of the system are present

 \bigotimes is generated by a matrix G(q) such that $\operatorname{Im}(G(q)) = \operatorname{Ker}(A(q)), \forall q$ \bigcirc is generated by a matrix G(q) such that $\operatorname{Ker}(G(q)) = \operatorname{Im}(A(q)), \forall q$

 \bigcirc is generated by a matrix G(q) such that $G(q) = A(q)^{-1}, \forall q$ 4. Consider an obstacle avoidance algorithm based on potential fields

1. The configuration space of a unicycle mobile robot is:

1

2. A constraint is said non-holonomic if:

	by the obstacles	
	\bigcirc a concave shape of the obstacle can in many cases avoid the problem of local minima	
	\bigcirc the control consists in setting the velocity of the robot equal to the gradient of the potential	
5.	In Reinforcement Learning algorithms, the reward:	
	○ must be a function of the agent state	
	\bigotimes can be a function of the environment state	
	o depends on time	
6.	In Reinforcement Learning algorithms, the agent:	
	\otimes selects actions to maximize total expected future reward	
	\bigotimes may require require balancing immediate and long term rewards	
	O selects actions to minimize the task execution time	
7.	A process satisfies the Markov property if:	
	○ the agent state is the same as the environment state	
	\bigotimes one can make predictions for the future of the process based solely on its present state	
	\bigcirc one can make predictions for the future of the process only based on the process full history	
8.	In Reinforcement Learning, the policy:	
	○ is the learning process that will maximize the sum of future rewards	
	is a deterministic function of the state	
	\bigotimes the strategy that the agent employs to decide the action to take on the current state	
9.	The action value function is defined as:	
	$\bigcirc q_{\pi}(s,a) = \mathbb{E}_{\pi}[R_{t+1} S_t = s, A_t = a]$	
	$\bigcirc \ q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t S_t = s]$	
	$\bigotimes q_{\pi}(s,a) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} S_{t} = s, A_{t} = a\right]$	
0.	The Bellman optimality equation for the state value function can be written as	
	$\bigcirc \ v_*(s) = \max v_\pi(s)$	
	$\bigotimes v_*(s) = \max_{a \in \mathcal{A}} q_*(s, a)$	
	$\bigotimes v_*(s) = \max_{a \in \mathcal{A}} \mathbb{E}_*[G_t S_t = s, A_t = a]$	

Autonomous and Mobile Robotics M

23 December 2021 - Exercise

The student is asked to solve the following problem.

Let us consider a fully observable and deterministic environment with 5 states providing the following rewards

$R(s_1)$	$R(s_2)$	$R(s_3)$	$R(s_4)$	$R(s_5)$
-1	0	1	0	-1

The set of possible actions is {MoveLeft, MoveRight}, proving with probability 1 the transition of the state to the left one or to the right one respectively. The environment is initially at state s_1 , and first the policy $\pi_1(\cdot) = \text{MoveRight}$ is applied for 4 time steps. Then, the policy $\pi_2(\cdot) = \text{MoveLeft}$ is applied for additional 4 time steps.

Starting from an arbitrary initialisation of the state value function and assuming a discount factor $\gamma = 1$ and a weight $\alpha = 0.5$, compute the state value function provided by a TD algorithm after the execution of π_1 and π_2 in the following two tables.

$v_{\pi_1}(s_1)$	$v_{\pi_1}(s_2)$	$v_{\pi_1}(s_3)$	$v_{\pi_1}(s_4)$	$v_{\pi_1}(s_5)$

	$v_{\pi_2}(s_1)$	$v_{\pi_2}(s_2)$	$v_{\pi_2}(s_3)$	$v_{\pi_2}(s_4)$	$v_{\pi_2}(s_5)$
ſ					

Solution:

The state value function is initialized to 0 for all the states.

ĺ	$v_{\pi_1}(s_1)$	$v_{\pi_1}(s_2)$	$v_{\pi_1}(s_3)$	$v_{\pi_1}(s_4)$	$v_{\pi_1}(s_5)$
	0	0.5	0	-0.5	0

$v_{\pi_2}(s_1)$	$v_{\pi_2}(s_2)$	$v_{\pi_2}(s_3)$	$v_{\pi_2}(s_4)$	$v_{\pi_2}(s_5)$
0	-0.25	0.25	0.25	-0.25