STAT253/317 Winter 2021 Lecture 24

Yibi Huang

- Brownian Motion with Drift
- Stopping Time, Strong Markov Property (Review)
- Wald's Identities for Brownian Motion

Brownian Motion with Drift

A stochastic process $\{B(t), t \geq 0\}$ is said to be a *Brownian motion* process with drift coefficient μ and variance parameter σ^2 if

- (i) B(0) = 0;
- (ii) $\{B(t), t \ge 0\}$ has stationary and independent increments;
- (iii) for every $t \ge 0$, $s \ge 0$, $B(t+s) B(s) \sim N(\mu t, \sigma^2 t)$

Stopping Time (Review)

For a continuous time stochastic process $\{X(t), t \geq 0\}$, a *stopping time T with respect to* $\{X(t), t \geq 0\}$ is a nonnegative random variable, such that the event $\{T \leq t\}$ depends only on $\{X(s), 0 \leq s \leq t\}$ but not $\{X(s), s > t\}$.

Remark: If T is a stopping time with respect to $\{X(t), t \geq 0\}$, for each non-random n > 0, the stopping time truncated at n

$$(T \wedge n)$$
 defined as min (T, n)

is also a stopping time with respective to $\{X(t), t \geq 0\}$.

- **Reason**: $\{(T \land n) \le t\} = \{T \le t\} \cup \{n \le t\}$
 - ▶ The event $\{n \le t\}$ is non-random, does not depend on $\{X(s)\}$
 - ▶ The event $\{T \le t\}$ depends only on $\{X(s), 0 \le s \le t\}$ but not $\{X(s), s > t\}$ since T is a stopping time

Hence the event $\{(T \land n) \le t\}$ depends on $\{X(s), 0 \le s \le t\}$ only but not $\{X(s), s > t\}$, which shows $(T \land n)$ is also a stopping time. Lecture 24 - 3

Strong Markov Property (Review)

Let $\{B(t), t \geq 0\}$ be a Brownian Motion (with drift μ), and let T be a stopping time respective to $\{B(t), t \geq 0\}$. Then

(a) Define Z(t) = B(t+T) - B(T), $t \ge 0$. Then $\{Z(t), t \ge 0\}$ is also a Brownian Motion with drift μ

(b) For each t > 0, $\{Z(s), 0 \le s \le t\}$ is independent of

 $\{B(s), 0 \le s \le T\}$ **Remark:** If T is not a stopping time, the Strong Markov Property may not be true. For example, let

$$T = T_{\text{max}} = \min \Big\{ t : B(t) = \max_{0 \le s \le 1} B(s) \Big\},$$
where $(B(t), t > 0)$ is a standard Brownian mation

where $\{B(t), t \geq 0\}$ is a standard Brownian motion.

- ▶ T_{max} is not a stopping time since the event $\{T_{\text{max}} \leq t\}$ depends not just $\{B(s), 0 \leq s \leq t\}$, but on the entire $\{B(s), 0 \leq s \leq 1\}$.
 - Since $B(T_{\text{max}})$ will be the maximum of $\{B(s), 0 \le s \le 1\}$, $B(t + T_{\text{max}}) B(T_{\text{max}})$ will be ≤ 0 for $t \le 1 T_{\text{max}}$, and hence is not Brownian motion

Lecture 24 - 4

Wald's Identities for Brownian Motion

If $\{B(t), t \geq 0\}$ is a Brownian motion process with drift μ and variance parameter σ^2 , and T is a **bounded stopping time** with respect to $\{B(t)\}$, then

- (i) $\mathbb{E}[B(T)] = \mu \mathbb{E}[T]$,
- (ii) $\mathbb{E}[B^2(T)] = \sigma^2 \mathbb{E}[T] + \mu^2 \mathbb{E}[T^2],$
- (iii) $\mathbb{E}[e^{ heta B(T)-(heta \mu+rac{ heta^2\sigma^2}{2})T}]=1$ for all $heta\in\mathbb{R}$

Remark:

- For *nonrandom* times T = t, the identities follows from the elementary properties of the normal distribution
- ▶ If *T* is *unbounded*, the identities may not be true
 - Example: if $T = T_1$ be the hitting time to value 1 of a standard Brownian motion, then B(T) = 1. So $\mathbb{E}[B(T)] \neq 0$.
- ▶ If *T* is not a stopping time, the identities may also fail.
 - Example: if $T = T_{\max} = \min\{t : B(t) = \max_{0 \le s \le 1} B(s)\}$ then $\mathbb{E}[B(T_{\max})] = \mathbb{E}[\max_{0 \le s \le 1} B(s)] > 0$.

Application of Wald's Identities

For constants a, b > 0 Let $T = T_{-a,b}$ be the first time t such that the standard Brownian Motion process hit -a or b

$$T_{-a,b} = \min\{t : B(t) = -a, \text{ or } B(t) = b\}$$

T is a stopping time since the event

$$\{T \leq t\} = \Big\{ \max_{0 \leq s \leq t} B(s) \geq b \Big\} \bigcup \Big\{ \min_{0 \leq s \leq t} B(s) \leq -a \Big\},$$

depends on $\{B(s), 0 \le s \le t\}$ only.

- ightharpoonup T is finite, but <u>unbounded</u> \Rightarrow Wald's identities may <u>not</u> apply.
- ► However, for each integer $n \ge 1$, the random variable $T \land n = \min(T, n)$ is a bounded stopping time. By the first and second Wald's identities, we have

$$\mathbb{E}[B(T \wedge n)] = 0$$
 and $\mathbb{E}[B^2(T \wedge n)] = \mathbb{E}[T \wedge n]$

Application of Wald's Identities (Cont'd)

- ▶ From that $-a \le B(T \land n) \le b$, we know $|B(T \land n)|$ is uniformly bounded by a + b for all n
 - As $P(T < \infty) = 1$, we have $\lim_{n \to \infty} B(T \wedge n) = B(T)$ w/ prob. 1.

By Bounded Convergence Theorem,
$$\mathbb{E}[B(T)] = \lim_{n \to \infty} \mathbb{E}[B(T \land n)] = 0 \qquad (1)$$

$$\mathbb{E}[B^2(T)] = \lim_{n \to \infty} \mathbb{E}[B^2(T \land n)] = \lim_{n \to \infty} \mathbb{E}[T \land n] = \mathbb{E}[T] \qquad (2)$$

▶ Because B(T) = -a or b, from that

$$\mathbb{E}[B(T)] = -a\mathrm{P}(B(T) = -a) + b\mathrm{P}(B(T) = b) = 0$$
 and that $\mathrm{P}(B(T) = -a) + \mathrm{P}(B(T) = b) = 1$, it follows that
$$\mathrm{P}(B(T) = -a) = \frac{b}{a+b}, \quad \mathrm{P}(B(T) = b) = \frac{a}{a+b}$$

From the above and (2), one may easily deduce that

$$\mathbb{E}[T] = \mathbb{E}[B^2(T)] = a^2 P(B(T) = -a) + b^2 P(B(T) = b) = ab$$
Lecture 24 - 7

Exercise 10.22: $T_{-a,b}$ for Brownian with Drift

Let $\{B(t), t \geq 0\}$ be Brownian Motion with drift coefficient $\mu \neq 0$ and variance parameter σ^2 . For constants a, b > 0 let

$$T = T_{-a,b} = \min\{t : B(t) = -a, \text{ or } B(t) = b\}$$

T is again a finite but <u>unbounded</u> stopping time, so Wald's identities may <u>not</u> be applied directly. However, using the truncated stopping time $T \wedge n = \min(T, n)$ and Bounded Convergence Theorem, we can prove that the first Wald's identity holds for T

$$\mu \mathbb{E}[T] = \mathbb{E}[B(T)] = -aP(B(T) = -a) + bP(B(T) = b).$$

However, when $\mu \neq 0$, we cannot use this equation and that $\mathrm{P}(B(T) = -a) + \mathrm{P}(B(T) = b) = 1$ to solve for $\mathrm{P}(B(T) = -a)$ and $\mathrm{P}(B(T) = b)$ since $\mathbb{E}[T]$ is unknown. Instead we will use the third Wald's identity.

Exercise 10.22: $T_{-a,b}$ for Brownian with Drift (Cont'd)

▶ By the third Wald's identity, we have

$$\mathbb{E}[e^{\theta B(T \wedge n) - (\theta \mu + \frac{\theta^2 \sigma^2}{2})(T \wedge n)}] = 1 \quad \text{for all } \theta \in \mathbb{R}. \tag{3}$$

Let us choose $\theta=\theta_0=-2\mu/\sigma^2$ so that the 2nd term in the exponent of (3) vanishes. So

$$\mathbb{E}[e^{\theta_0 B(T \wedge n)}] = 1$$

- ► $-a \le B(T \land n) \le b \Rightarrow |B(T \land n)| \le a + b$ $\Rightarrow e^{\theta_0 B(T \land n)} < e^{\theta_0 (a+b)}$
- ▶ By the Bounded Convergence Theorem,

$$1 = \lim_{n \to \infty} \mathbb{E}[e^{\theta_0 B(T \wedge n)}] = \mathbb{E}[e^{\theta_0 B(T)}]$$
$$= e^{-\theta_0 a} P(B(T) = -a) + e^{\theta_0 b} P(B(T) = b)$$

Exercise 10.22: $T_{-a,b}$ for Brownian with Drift (Cont'd)

Solving the equation

$$1 = e^{-\theta_0 a} P(B(T) = -a) + e^{\theta_0 b} P(B(T) = b)$$

and the equation P(B(T) = -a) + P(B(T) = b) = 1 for P(B(T) = -a) and P(B(T) = b), one can get that

$$P(B(T) = -a) = \frac{1 - e^{\theta_0 b}}{e^{-\theta_0 a} - e^{\theta_0 b}}, \quad P(B(T) = b) = \frac{e^{-\theta_0 a} - 1}{e^{-\theta_0 a} - e^{\theta_0 b}}$$

Theorem 1. Let $\{B(t), t \geq 0\}$ be a Brownian Motion with drift coefficient $\mu \neq 0$ and variance parameter σ^2 , the probability that the process reach b>0 before hitting -a<0 is given by

$$P(B(T_{-a,b}) = b) = \frac{\exp(2\mu a/\sigma^2) - 1}{\exp(2\mu a/\sigma^2) - \exp(-2\mu b/\sigma^2)}$$

Proof of Wald's Identities for Brownian Motion

- Since T is bounded, there is a nonrandom $N < \infty$ such that $\mathrm{P}(T < N) = 1$
- ▶ By the Strong Markov Property, the post-T process B(t+T) B(T) is
 - ▶ also a Brownian Motion process with drift μ and variance parameter σ^2 , and
 - ▶ independent of $\{B(s), 0 \le s \le T\}$, and in particular, independent of the random vector (T, B(T)).
- ▶ Hence, given that T = s the conditional distribution of B(N) B(T) is normal with mean $\mu(N s)$ and variance $\sigma^2(N s)$. It follows that

$$\mathbb{E}\left[e^{\theta[B(N)-B(T)]-\theta\mu(N-T)-\frac{\theta^2\sigma^2(N-T)}{2}}\Big|T,B(T)\right]=1$$

Proof of Wald's Identities (Cont'd)

Therefore

$$\begin{split} \mathbb{E}[e^{\theta B(T) - \theta \mu T - \frac{\theta^2 \sigma^2 T}{2}}] &= \mathbb{E}[e^{\theta B(T) - \theta \mu T - \frac{\theta^2 \sigma^2 T}{2}}] \times 1 \\ &= \mathbb{E}[e^{\theta B(T) - \theta \mu T - \frac{\theta^2 \sigma^2 T}{2}}] \\ &\quad \times \mathbb{E}\Big[e^{\theta [B(N) - B(T)] - \theta \mu (N - T) - \frac{\theta^2 \sigma^2 (N - T)}{2}} \Big| T, B(T) \Big] \\ &= \mathbb{E}\Big[\mathbb{E}\Big[e^{\theta B(T) - \theta \mu T - \frac{\theta^2 \sigma^2 T}{2} + \theta [B(N) - B(T)] - \theta \mu (N - T) - \frac{\theta^2 \sigma^2 (N - T)}{2}} \Big| T, B(T) \Big]\Big] \\ &= \mathbb{E}\Big[\mathbb{E}\Big[e^{\theta B(N) - \theta \mu N - \frac{\theta^2 \sigma^2 N}{2}} \Big| T, B(T) \Big]\Big] \\ &= \mathbb{E}[e^{\theta B(N) - \theta \mu N - \frac{\theta^2 \sigma^2 N}{2}}] = 1 \end{split}$$

This proves the third identity.

The first and second identity can be derived by differentiating the third identity with respective to θ once and twice respectively, and letting $\theta=0$.