Maiores Divisores Comuns e Menores Múltiplos Comuns Matemática Discreta

Prof. MSc. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

24 de março de 2014

Outline

Major Divisor Comum

MDC pela Fatoração dos Números

Menor Múltiplo Comum

O Algoritmo de Euclides

MDC como Combinação Linear

Exercícios

Outline

Major Divisor Comum

MDC pela Fatoração dos Números

Menor Múltiplo Comum

O Algoritmo de Euclides

MDC como Combinação Linea

Exercícios

O maior inteiro que divide a dois inteiros quaisquer é o máximo divisor comum desses dois inteiros.

Definição

Sejam s e t inteiros diferentes de zero. O maior inteiro d tal que d|s e d|t é chamado de maior divisor comum de s e t. O maior divisor comum de s e t é denotado mdc(s,t).

O maior inteiro que divide a dois inteiros quaisquer é o máximo divisor comum desses dois inteiros.

Definição

Sejam s e t inteiros diferentes de zero. O maior inteiro d tal que d|s e d|t é chamado de maior divisor comum de s e t. O maior divisor comum de s e t é denotado mdc(s,t).

Exemplo

• O MDC de 10 e 25?

O maior inteiro que divide a dois inteiros quaisquer é o máximo divisor comum desses dois inteiros.

Definição

Sejam s e t inteiros diferentes de zero. O maior inteiro d tal que d|s e d|t é chamado de maior divisor comum de s e t. O maior divisor comum de s e t é denotado mdc(s,t).

Exemplo

• O MDC de 10 e 25? **Comuns:** 1,5.

O maior inteiro que divide a dois inteiros quaisquer é o máximo divisor comum desses dois inteiros.

Definição

Sejam s e t inteiros diferentes de zero. O maior inteiro d tal que d|s e d|t é chamado de maior divisor comum de s e t. O maior divisor comum de s e t é denotado mdc(s,t).

- O MDC de 10 e 25? **Comuns:** 1,5. **R:** mdc(10,25) = 5.
- O MDC de 10 e 30?

O maior inteiro que divide a dois inteiros quaisquer é o máximo divisor comum desses dois inteiros.

Definição

Sejam s e t inteiros diferentes de zero. O maior inteiro d tal que d|s e d|t é chamado de maior divisor comum de s e t. O maior divisor comum de s e t é denotado mdc(s,t).

- O MDC de 10 e 25? **Comuns:** 1,5. **R:** mdc(10,25) = 5.
- O MDC de 10 e 30? **Comuns:** 1,2,5,10.

O maior inteiro que divide a dois inteiros quaisquer é o máximo divisor comum desses dois inteiros.

Definição

Sejam s e t inteiros diferentes de zero. O maior inteiro d tal que d|s e d|t é chamado de maior divisor comum de s e t. O maior divisor comum de s e t é denotado mdc(s,t).

- O MDC de 10 e 25? **Comuns:** 1,5. **R:** mdc(10,25) = 5.
- O MDC de 10 e 30? **Comuns:** 1,2,5,10. **R:** mdc(10,30) = 10.
- O MDC de 10 e 21?

O maior inteiro que divide a dois inteiros quaisquer é o máximo divisor comum desses dois inteiros.

Definição

Sejam s e t inteiros diferentes de zero. O maior inteiro d tal que d|s e d|t é chamado de maior divisor comum de s e t. O maior divisor comum de s e t é denotado mdc(s,t).

- O MDC de 10 e 25? **Comuns:** 1,5. **R:** mdc(10,25) = 5.
- O MDC de 10 e 30? **Comuns:** 1,2,5,10. **R:** mdc(10,30) = 10.
- O MDC de 10 e 21? Comuns: 1.

O maior inteiro que divide a dois inteiros quaisquer é o máximo divisor comum desses dois inteiros.

Definição

Sejam s e t inteiros diferentes de zero. O maior inteiro d tal que d|s e d|t é chamado de maior divisor comum de s e t. O maior divisor comum de s e t é denotado mdc(s,t).

- O MDC de 10 e 25? **Comuns:** 1,5. **R:** mdc(10,25) = 5.
- O MDC de 10 e 30? **Comuns:** 1,2,5,10. **R:** mdc(10,30) = 10.
- O MDC de 10 e 21? **Comuns:** 1. **R:** mdc(10,21) = 1.

Números Primos Entre Si

A noção de MDC é usada para distinguir números primos entre si.

Definição

Dois inteiros s e t são primos entre si quando seu MDC é 1.

Números Primos Entre Si

A noção de MDC é usada para distinguir números primos entre si.

Definição

Dois inteiros s e t são primos entre si quando seu MDC é 1.

Exemplo

• O MDC de 10 e 21? **Comuns:** 1.

R:
$$mdc(10, 21) = 1$$
.

Números Primos Entre Si Dois a Dois

Definição

Os inteiros s_1, s_2, \ldots, s_n são primos entre si dois a dois quando o $mdc(a_i, a_j) = 1$ para cada par de inteiros s_i, s_j com $1 \le i < j \le n$.

Números Primos Entre Si Dois a Dois

Definição

Os inteiros $s_1, s_2, ..., s_n$ são primos entre si dois a dois quando o $mdc(a_i, a_j) = 1$ para cada par de inteiros s_i, s_j com $1 \le i < j \le n$.

Exemplo

Os inteiros 6, 13, 17, e 55 são primos dois a dois?

Números Primos Entre Si Dois a Dois

Definição

Os inteiros s_1, s_2, \ldots, s_n são primos entre si dois a dois quando o $mdc(a_i, a_j) = 1$ para cada par de inteiros s_i, s_j com $1 \le i < j \le n$.

Exemplo

Os inteiros 6, 13, 17, e 55 são primos dois a dois? R: SIM!

Outline

Major Divisor Comum

MDC pela Fatoração dos Números

Menor Múltiplo Comum

O Algoritmo de Euclides

MDC como Combinação Linea

Exercícios

Podemos encontrar o MDC de dois inteiros s e t a partir das suas fatorações em primos. Suponha que:

- $s = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$
- $t = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$
- onde cada expoente é um inteiro não negativo e as listas de primos nas bases são idênticas.

Podemos encontrar o MDC de dois inteiros *s* e *t* a partir das suas fatorações em primos. Suponha que:

- $s = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$
- $t = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$
- onde cada expoente é um inteiro não negativo e as listas de primos nas bases são idênticas.

Proposição

$$mdc(s,t) = p_1^{min(a_1,b_1)} p_2^{min(a_2,b_2)} \dots p_n^{min(a_n,b_n)}$$

Exemplo

Uma vez que $120 = 2^3.3^1.5^1$ e $500 = 2^2.3^0.5^3$, observamos mdc(120, 500)

Podemos encontrar o MDC de dois inteiros *s* e *t* a partir das suas fatorações em primos. Suponha que:

- $s = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$
- $t = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$
- onde cada expoente é um inteiro não negativo e as listas de primos nas bases são idênticas.

Proposição

$$mdc(s,t) = p_1^{min(a_1,b_1)} p_2^{min(a_2,b_2)} \dots p_n^{min(a_n,b_n)}$$

Uma vez que
$$120 = 2^3.3^1.5^1$$
 e $500 = 2^2.3^0.5^3$, observamos $mdc(120,500) = 2^{min(3,2)}.3^{min(1,0)}.5^{min(1,3)}$

Podemos encontrar o MDC de dois inteiros *s* e *t* a partir das suas fatorações em primos. Suponha que:

- $s = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$
- $t = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$
- onde cada expoente é um inteiro não negativo e as listas de primos nas bases são idênticas.

Proposição

$$mdc(s,t) = p_1^{min(a_1,b_1)} p_2^{min(a_2,b_2)} \dots p_n^{min(a_n,b_n)}$$

Uma vez que
$$120 = 2^3.3^1.5^1$$
 e $500 = 2^2.3^0.5^3$, observamos $mdc(120, 500) = 2^{min(3,2)}.3^{min(1,0)}.5^{min(1,3)} = 2^2.3^0.5^1 = 20$.

Outline

Maior Divisor Comum

MDC pela Fatoração dos Números

Menor Múltiplo Comum

O Algoritmo de Euclides

MDC como Combinação Linea

Exercícios

A fatoração também pode ser usada para encontrar o Menor Múltiplo Comum de dois inteiros.

Definição

O menor múltiplo comum de dois inteiros s e t é o menor inteiro positivo m tal que s|m| e t|m|. O menor múltiplo comum de s e t é denotado mmc(s,t).

A fatoração também pode ser usada para encontrar o Menor Múltiplo Comum de dois inteiros.

Definição

O menor múltiplo comum de dois inteiros s e t é o menor inteiro positivo m tal que s|m| e t|m|. O menor múltiplo comum de s e t é denotado mmc(s,t).

Proposição

$$mmc(s,t) = p_1^{max(a_1,b_1)} p_2^{max(a_2,b_2)} \dots p_n^{max(a_n,b_n)}$$

A fatoração também pode ser usada para encontrar o Menor Múltiplo Comum de dois inteiros.

Definição

O menor múltiplo comum de dois inteiros s e t é o menor inteiro positivo m tal que s|m| e t|m|. O menor múltiplo comum de s e t é denotado mmc(s,t).

Proposição

$$mmc(s,t) = p_1^{max(a_1,b_1)} p_2^{max(a_2,b_2)} \dots p_n^{max(a_n,b_n)}$$

Exemplo

Uma vez que $120 = 2^3.3^1.5^1$ e $500 = 2^2.3^0.5^3$, observamos mmc(120, 500)

A fatoração também pode ser usada para encontrar o Menor Múltiplo Comum de dois inteiros.

Definição

O menor múltiplo comum de dois inteiros s e t é o menor inteiro positivo m tal que s|m e t|m. O menor múltiplo comum de s e t é denotado mmc(s,t).

Proposição

$$mmc(s,t) = p_1^{max(a_1,b_1)} p_2^{max(a_2,b_2)} \dots p_n^{max(a_n,b_n)}$$

Uma vez que
$$120 = 2^3.3^1.5^1$$
 e $500 = 2^2.3^0.5^3$, observamos $mmc(120, 500) = 2^{max(3,2)}.3^{max(1,0)}.5^{max(1,3)}$

A fatoração também pode ser usada para encontrar o Menor Múltiplo Comum de dois inteiros.

Definição

O menor múltiplo comum de dois inteiros s e t é o menor inteiro positivo m tal que s|m| e t|m|. O menor múltiplo comum de s e t é denotado mmc(s,t).

Proposição

$$mmc(s,t) = p_1^{max(a_1,b_1)} p_2^{max(a_2,b_2)} \dots p_n^{max(a_n,b_n)}$$

Uma vez que
$$120 = 2^3.3^1.5^1$$
 e $500 = 2^2.3^0.5^3$, observamos $mmc(120, 500) = 2^{max(3,2)}.3^{max(1,0)}.5^{max(1,3)} = 2^3.3^1.5^3 = 3000$.

Teorema

Sejam s, t inteiros positivos, então

$$st = mdc(s, t).mmc(s, t)$$

Teorema

Sejam s, t inteiros positivos, então

$$st = mdc(s, t).mmc(s, t)$$

Prova

Dados $s = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$ e $t = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$, observe que a multiplicação dos dois números coincidirá com as múltiplicações dos seus MDC e MMC (quadro).

Outline

Maior Divisor Comum

MDC pela Fatoração dos Números

Menor Múltiplo Comum

O Algoritmo de Euclides

MDC como Combinação Linea

Exercícios

O Algoritmo de Euclides

- Encontrar o MDC pela fatoração é ineficiente...
- O algoritmo de Euclides reduz a operação a poucos passos e é mais direto.

• Considere o problema de calcular *mdc*(91, 287)

¹Se 287 = ks e 91 = kt, então 287 - 91 = k(s - t), ou seja, a diferença é múltiplo de k. Além disso, 287 - 3.91 = k(s - 3t).

- Considere o problema de calcular *mdc*(91, 287)
 - **1.** Observe que 287 = 91.3 + 14 (divisão comum)

¹Se 287 = ks e 91 = kt, então 287 - 91 = k(s - t), ou seja, a diferença é múltiplo de k. Além disso, 287 - 3.91 = k(s - 3t).

- Considere o problema de calcular *mdc*(91, 287)
 - **1.** Observe que 287 = 91.3 + 14 (divisão comum)
 - 2. Qualquer divisor comum k de 287 e 91 deve também dividir 14.

¹Se 287 = ks e 91 = kt, então 287 - 91 = k(s - t), ou seja, a diferença é múltiplo de k. Além disso, 287 - 3.91 = k(s - 3t).

- Considere o problema de calcular *mdc*(91, 287)
 - **1.** Observe que 287 = 91.3 + 14 (divisão comum)
 - 2. Qualquer divisor comum k de 287 e 91 deve também dividir 14. 1

¹Se 287 = ks e 91 = kt, então 287 - 91 = k(s - t), ou seja, a diferença é múltiplo de k. Além disso, 287 - 3.91 = k(s - 3t).

- Considere o problema de calcular mdc(91, 287)
 - **1.** Observe que 287 = 91.3 + 14 (divisão comum)
 - 2. Qualquer divisor comum k de 287 e 91 deve também dividir 14. 1
 - 3. Portanto, podemos calcular *mdc*(91, 14) no lugar.

¹Se 287 = ks e 91 = kt, então 287 - 91 = k(s - t), ou seja, a diferença é múltiplo de k. Além disso, 287 - 3.91 = k(s - 3t).

O Algoritmo de Euclides - Exemplo

- Considere o problema de calcular *mdc*(91, 287)
 - **1.** Observe que 287 = 91.3 + 14 (divisão comum)
 - 2. Qualquer divisor comum k de 287 e 91 deve também dividir 14. 1
 - 3. Portanto, podemos calcular *mdc*(91, 14) no lugar.
 - **4.** No próximo passo, uma vez que 91 = 14.6 + 7, podemos calcular mdc(7, 14) invés de mdc(91, 14).

¹Se 287 = ks e 91 = kt, então 287 - 91 = k(s - t), ou seja, a diferença é múltiplo de k. Além disso, 287 - 3.91 = k(s - 3t).

O Algoritmo de Euclides - Exemplo

- Considere o problema de calcular *mdc*(91, 287)
 - **1.** Observe que 287 = 91.3 + 14 (divisão comum)
 - 2. Qualquer divisor comum k de 287 e 91 deve também dividir 14. 1
 - 3. Portanto, podemos calcular mdc(91, 14) no lugar.
 - **4.** No próximo passo, uma vez que 91 = 14.6 + 7, podemos calcular mdc(7, 14) invés de mdc(91, 14).
 - **5.** Encontramos mdc(7, 14) = 7.

¹Se 287 = ks e 91 = kt, então 287 - 91 = k(s - t), ou seja, a diferença é múltiplo de k. Além disso, 287 - 3.91 = k(s - 3t).

O Algoritmo de Euclides - Exemplo

- Considere o problema de calcular *mdc*(91, 287)
 - **1.** Observe que 287 = 91.3 + 14 (divisão comum)
 - 2. Qualquer divisor comum k de 287 e 91 deve também dividir 14. 1
 - 3. Portanto, podemos calcular *mdc*(91, 14) no lugar.
 - **4.** No próximo passo, uma vez que 91 = 14.6 + 7, podemos calcular mdc(7, 14) invés de mdc(91, 14).
 - **5.** Encontramos mdc(7, 14) = 7.
 - **6.** Concluímos mdc(91, 287) = mdc(91, 14) = mdc(7, 14) = 7.

¹Se 287 = ks e 91 = kt, então 287 - 91 = k(s - t), ou seja, a diferença é múltiplo de k. Além disso, 287 - 3.91 = k(s - 3t).

O algoritmo é baseado no seguinte resultado:

Lema

Seja s = qt + r, onde s, t, q, r são inteiros e s, t positivos, então mdc(s, t) = mdc(t, r).

O algoritmo é baseado no seguinte resultado:

Lema

Seja s = qt + r, onde s, t, q, r são inteiros e s, t positivos, então mdc(s, t) = mdc(t, r).

Prova

1. Suponha que d divide s e t.

O algoritmo é baseado no seguinte resultado:

Lema

Seja s = qt + r, onde s, t, q, r são inteiros e s, t positivos, então mdc(s, t) = mdc(t, r).

Prova

 Suponha que d divide s e t. Então s = dm e t = dn para algum m, n inteiros.

O algoritmo é baseado no seguinte resultado:

Lema

Seja s = qt + r, onde s, t, q, r são inteiros e s, t positivos, então mdc(s, t) = mdc(t, r).

Prova

- **1.** Suponha que d divide s e t. Então s = dm e t = dn para algum m, n inteiros. Logo, d divide s qt = r e todo divisor comum de s e t é um divisor comum de t e r.
- 2. Suponha que d divide t e r.

O algoritmo é baseado no seguinte resultado:

Lema

Seja s = qt + r, onde s, t, q, r são inteiros e s, t positivos, então mdc(s, t) = mdc(t, r).

Prova

- Suponha que d divide s e t. Então s = dm e t = dn para algum m, n inteiros. Logo, d divide s - qt = r e todo divisor comum de s e t é um divisor comum de t e r.
- **2.** Suponha que d divide t e r. Então d divide tq + r = s e todo divisor comum de t e r é também um divisor comum de s e t.

O algoritmo é baseado no seguinte resultado:

Lema

Seja s = qt + r, onde s, t, q, r são inteiros e s, t positivos, então mdc(s, t) = mdc(t, r).

Prova

- Suponha que d divide s e t. Então s = dm e t = dn para algum m, n inteiros. Logo, d divide s - qt = r e todo divisor comum de s e t é um divisor comum de t e r.
- **2.** Suponha que d divide t e r. Então d divide tq + r = s e todo divisor comum de t e r é também um divisor comum de s e t.

Como s, t tem os mesmos divisores comuns de t, r, concluímos que mdc(s,t) = mdc(t,r).

Outline

Maior Divisor Comum

MDC pela Fatoração dos Números

Menor Múltiplo Comum

O Algoritmo de Euclides

MDC como Combinação Linear

Exercícios

Teorema (de Bézout)

Se s e t são inteiros positivos, então existem inteiros m, n tais que mdc(s,t) = sm + tn.

Teorema (de Bézout)

Se s e t são inteiros positivos, então existem inteiros m, n tais que mdc(s,t) = sm + tn.

Exemplo

mdc(252, 198) = 18 = 4.252 - 5.198.

Teorema (de Bézout)

Se s e t são inteiros positivos, então existem inteiros m, n tais que mdc(s,t) = sm + tn.

Exemplo

mdc(252, 198) = 18 = 4.252 - 5.198.

PERGUNTA:

Como encontrar o MDC de inteiros s, t como uma combinação linear?

Teorema (de Bézout)

Se s e t são inteiros positivos, então existem inteiros m, n tais que mdc(s,t) = sm + tn.

Exemplo

mdc(252, 198) = 18 = 4.252 - 5.198.

PERGUNTA:

Como encontrar o MDC de inteiros s, t como uma combinação linear? **R:** O Algoritmo de Euclides ajuda.

PERGUNTA:

Como encontrar o MDC de inteiros s, t como uma combinação linear? **R**: O Algoritmo de Euclides ajuda.

Exemplo

PERGUNTA:

Como encontrar o MDC de inteiros s, t como uma combinação linear? **R:** O Algoritmo de Euclides ajuda.

Exemplo

- Começamos com Euclides.
 - \circ 252 = 1.198 + 54;

PERGUNTA:

Como encontrar o MDC de inteiros s, t como uma combinação linear? **R**: O Algoritmo de Euclides ajuda.

Exemplo

- Começamos com Euclides.
 - \circ 252 = 1.198 + 54; 198 = 3.54 + 36;

PERGUNTA:

Como encontrar o MDC de inteiros s, t como uma combinação linear? **R**: O Algoritmo de Euclides ajuda.

Exemplo

- Começamos com Euclides.
 - \circ 252 = 1.198 + 54; 198 = 3.54 + 36; 54 = 1.36 + 18;

PERGUNTA:

Como encontrar o MDC de inteiros s, t como uma combinação linear? **R**: O Algoritmo de Euclides ajuda.

Exemplo

- Começamos com Euclides.
 - \circ 252 = 1.198 + 54; 198 = 3.54 + 36; 54 = 1.36 + 18; 36 = 2.18

PERGUNTA:

Como encontrar o MDC de inteiros s, t como uma combinação linear? **R**: O Algoritmo de Euclides ajuda.

Exemplo

- Começamos com Euclides.
 - \circ 252 = 1.198 + 54; 198 = 3.54 + 36; 54 = 1.36 + 18; 36 = 2.18
- Na volta (detalhes no quadro):
 - \circ Temos 18 = 54 1.36 e 36 = 198 3.54.

PERGUNTA:

Como encontrar o MDC de inteiros s, t como uma combinação linear? **R**: O Algoritmo de Euclides ajuda.

Exemplo

- Começamos com Euclides.
 - \circ 252 = 1.198 + 54; 198 = 3.54 + 36; 54 = 1.36 + 18; 36 = 2.18
- Na volta (detalhes no quadro):
 - \circ Temos 18 = 54 1.36 e 36 = 198 3.54.
 - \circ Subtituindo, temos 18 = 54 1.(198 3.54) = 4.54 1.198.

PERGUNTA:

Como encontrar o MDC de inteiros s, t como uma combinação linear? **R**: O Algoritmo de Euclides ajuda.

Exemplo

- Começamos com Euclides.
 - \circ 252 = 1.198 + 54; 198 = 3.54 + 36; 54 = 1.36 + 18; 36 = 2.18
- Na volta (detalhes no quadro):
 - \circ Temos 18 = 54 1.36 e 36 = 198 3.54.
 - \circ Subtituindo, temos 18 = 54 1.(198 3.54) = 4.54 1.198.
 - \circ Similarmente, temos 18 = 4.(252 198) 1.198 = 4.252 5.198.

Outline

Maior Divisor Comum

MDC pela Fatoração dos Números

Menor Múltiplo Comum

O Algoritmo de Euclides

MDC como Combinação Linea

Exercícios

Exercícios

- 1. Encontre a fatoração única em primos dos números 414 e 662.
- **2.** Calcule *mdc*(414, 662) e *mmc*(414, 662) usando as fatorações.
- **3.** Utilize o algoritmo de Euclides para determinar mdc(414, 662).
- **4.** Baseado na resposta do item 3, calcule *mmc*(414, 662).
- **5.** Baseado na resposta do item 3, expresse *mdc*(414, 662) como uma combinação linear.