# SuperSPAR

### An Integer Factoring Algorithm

Maxwell Sayles

Department of Computer Science

University of Calgary

May 24, 2013

### Overview

#### What is SuperSPAR?

• Improves upon SPAR (named after Shanks, Pollard, Atkin, and Rickert).

### **Overview**

#### What is SuperSPAR?

- Improves upon SPAR (named after Shanks, Pollard, Atkin, and Rickert).
- Based on arithmetic in the ideal class group of imaginary quadratic number fields.

#### Overview

#### What is SuperSPAR?

- Improves upon SPAR (named after Shanks, Pollard, Atkin, and Rickert).
- Based on arithmetic in the ideal class group of imaginary quadratic number fields.
- Uses the order of an element in this group to factor an integer.

$$Q(x,y) = ax^2 + bxy + cy^2$$

• 
$$Q(x, y) = ax^2 + bxy + cy^2$$

• 
$$Q(x,y) = 2x^2 + xy + 18y^2$$
  
=  $\{2, 8, 18, 19, 21, 24, 28, 32, 33, 39, 46, 50, 54, 63, 72, ...\}$ 

• 
$$Q(x, y) = ax^2 + bxy + cy^2$$

• 
$$Q(x,y) = 2x^2 + xy + 18y^2$$
  
=  $\{2, 8, 18, 19, 21, 24, 28, 32, 33, 39, 46, 50, 54, 63, 72, ...\}$ 

• 
$$\Delta = b^2 - 4ac$$

- $Q(x, y) = ax^2 + bxy + cy^2$
- $Q(x,y) = 2x^2 + xy + 18y^2$ =  $\{2, 8, 18, 19, 21, 24, 28, 32, 33, 39, 46, 50, 54, 63, 72, ...\}$
- $\Delta = b^2 4ac$
- $\Delta = 1^2 4 \cdot 2 \cdot 18 = -143$

- $Q(x, y) = ax^2 + bxy + cy^2$
- $Q(x,y) = 2x^2 + xy + 18y^2$ =  $\{2, 8, 18, 19, 21, 24, 28, 32, 33, 39, 46, 50, 54, 63, 72, ...\}$
- $\Delta = b^2 4ac$
- $\Delta = 1^2 4 \cdot 2 \cdot 18 = -143$
- Extremely rich theory.

- $Q(x, y) = ax^2 + bxy + cy^2$
- $Q(x,y) = 2x^2 + xy + 18y^2$ =  $\{2, 8, 18, 19, 21, 24, 28, 32, 33, 39, 46, 50, 54, 63, 72, ...\}$
- $\Delta = b^2 4ac$
- $\Delta = 1^2 4 \cdot 2 \cdot 18 = -143$
- Extremely rich theory.
- Different properties when  $\Delta < 0$  or  $\Delta > 0$ .

## Equivalence of Forms

Two forms are equivalent

$$Q(x,y) \sim Q'(x',y')$$

if there exists an invertible integral linear transformation

$$x = \alpha x' + \beta y'$$

$$y = \gamma x' + \delta y'.$$

## Equivalence of Forms

Substituting and simplifying give

$$ax^{2} + bxy + cy^{2} = a(\alpha x' + \beta y')^{2}$$
$$+b(\alpha x' + \beta y')(\gamma x' + \delta y')$$
$$+c(\gamma x' + \delta y')^{2}$$
$$= a'x'^{2} + b'x'y' + c'y'^{2}$$

## Example of Equivalent Forms

$$92x^2 - 26xy + 6y^2 \sim 6x'^2 + 2x'y' + 64y'^2$$

is given by the transformation

$$\left[\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right] = \left[\begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array}\right]$$

## Equivalence Class of Binary Quadratic Forms

An *equivalence class* is the set of all forms equivalent to a given form.

Similar to modular arithmetic:

$$0 \equiv 7, 14, 21, 28, 35, 42, \dots \pmod{7}$$
 $1 \equiv 8, 15, 22, 29, 36, 43, \dots \pmod{7}$ 
 $2 \equiv 9, 16, 23, 30, 37, 44, \dots \pmod{7}$ 
 $3 \equiv 10, 17, 24, 31, 38, 45, \dots \pmod{7}$ 
 $4 \equiv 11, 18, 25, 32, 39, 46, \dots \pmod{7}$ 
 $5 \equiv 12, 19, 26, 33, 40, 47, \dots \pmod{7}$ 
 $6 \equiv 13, 20, 27, 34, 41, 48, \dots \pmod{7}$ 

#### Reduced Forms

Work in reduced forms:

$$-a < b \le a < c \text{ or } 0 \le b \le a = c.$$

Bounds:

$$-\Delta = 4ac - b^2 \ge 4ac - a^2 \ge 3a^2$$

gives

$$|b| \le a \le \sqrt{|\Delta|/3}$$
 and  $c \le |\Delta|/4$ .

<sup>\*</sup> Only holds for  $\Delta < 0$ .

### Ideal Reduction

```
Input: (a, b, c) and \Delta.
 1: while a > c or b > a or b < -a do
        if a > c then
 2:
 3:
            swap a with c and set b \leftarrow -b
    if b > a or b < -a then
 4:
           b \leftarrow b' such that -a < b' \le a and b' \equiv b \pmod{2a}
 5:
           c \leftarrow (b^2 - \Delta)/4a
 6:
 7: if a = c and b < 0 then
 8:
    b \leftarrow -b
 9: return (a, b, c)
```

### REDUCTION EXAMPLE

$$Q(x,y) = 72x^{2} + 130xy + 64y^{2}$$

$$\sim 64x^{2} - 130xy + 72y^{2}$$

$$\sim 64x^{2} - 2xy + 6y^{2}$$

$$\sim 6x^{2} + 2xy + 64y^{2}$$

# Multiplication of Forms

$$Q_1(x,y) = 2x^2 + xy + 18y^2$$

$$= \{2,8,18,19,21,24,28,32,33,39,46,50,54,63,72,...\}$$

$$Q_2(x,y) = 3x^2 + xy + 12y^2$$

$$= \{3,12,14,16,22,26,27,36,42,48,49,53,56,64,69,...\}$$

$$R(x,y) = Q_1(x,y) \cdot Q_2(x,y)$$

$$= 6x^2 + xy + 6y^2$$

$$= \{6,24,28,32,44,52,54,57,63,72,84,96,98,99,112...\}$$

## Ideal Multiplication

**Input:** Ideals 
$$(a_1, b_1, c_1)$$
,  $(a_2, b_2, c_2)$ , and  $\Delta$ .

1: 
$$s = \gcd(a_1, a_2, (b_1 + b_2)/2) = Ya_1 + Va_2 + W(b_1 + b_2)/2$$

2: 
$$U = (V(b_1 - b_2)/2 - Wc_2) \mod (a_1/s)$$

3: 
$$a = (a_1 a_2)/s^2$$

4: 
$$b = (b_2 + 2Ua_2/s) \mod 2a$$

5: 
$$c = (b^2 - \Delta)/4a$$

# Split XGCD

Split  $s = \gcd(a_1, a_2, (b_1 + b_2)/2) = Ya_1 + Va_2 + W(b_1 + b_2)/2$  into two computations.

```
Input: Ideals (a_1, b_1, c_1), (a_2, b_2, c_2), and \Delta.

1: s' = \gcd(a_1, a_2) = Y'a_1 + V'a_2 {Y' is never used}

2: if s' = 1 then

3: s = 1, V = V', W = 0

4: else

5: s = \gcd(s', (b_1 + b_2)/2) = V''s' + W(b_1 + b_2)/2

6: V = V'V''

7: ...
```

NUCOMP – due to Shanks with improvements by Jacobson, Williams, Imbert, and Schmidt.

•  $a_1, a_2 \leq \sqrt{|\Delta|/3}$ , but the product  $a \leq |\Delta|/3$ .

- $a_1, a_2 \le \sqrt{|\Delta|/3}$ , but the product  $a \le |\Delta|/3$ .
- Reduction is the simple continued fraction expansion of b/2a.

- $a_1, a_2 \leq \sqrt{|\Delta|/3}$ , but the product  $a \leq |\Delta|/3$ .
- Reduction is the simple continued fraction expansion of b/2a.
- $b/2a \approx sU/a_1$ .

- $a_1, a_2 \leq \sqrt{|\Delta|/3}$ , but the product  $a \leq |\Delta|/3$ .
- Reduction is the simple continued fraction expansion of b/2a.
- $b/2a \approx sU/a_1$ .
- Derive the reduced product from the simple continued fraction expansion.

- $a_1, a_2 \leq \sqrt{|\Delta|/3}$ , but the product  $a \leq |\Delta|/3$ .
- Reduction is the simple continued fraction expansion of b/2a.
- $b/2a \approx sU/a_1$ .
- Derive the reduced product from the simple continued fraction expansion.
- Simplifies when squaring and cubing.

# Identity

Denoted  $1_G$ :

$$(a,b,c) = egin{cases} (1,0,\Delta/4) & ext{when } \Delta \equiv 0 \pmod 4 \ (1,1,(1-\Delta)/4) & ext{when } \Delta \equiv 1 \pmod 4 \end{cases}$$

### Inverse

$$(a, b, c)^{-1} = (a, -b, c)$$

# Class Group of Binary Quadratic Forms

#### Class group is

- closed,
- associative,
- commutative,
- has identity,
- has inverse
- finite Abelian group.

## How Does this Factor an Integer?

Ambiguous form is any form q such that  $q^2 = 1_G$ .

Three varieties:

$$(a,0,c) \Rightarrow \Delta = -4ac$$
  
 $(a,a,c) \Rightarrow \Delta = a^2 - 4ac = a(a-4c)$   
 $(a,b,a) \Rightarrow \Delta = b^2 - 4a^2 = (b+2a)(b-2a)$ 

Choose some form with  $\Delta = -kN$ .

# Finding an Ambiguous Form

Let 
$$h = \operatorname{ord}(q)$$
 such that  $q^h = 1_G$ .

If h is even, then let h' be the odd part of h and

$$q^{h'(2^j)}$$

is an ambiguous form.

### How Do We Find the Order?

- Exponentiate  $q^E$  for  $E = \prod p_i^{e_i}$  for odd primes  $p_i$ .
- Use an order finding algorithm.

## Improvements to Group Arithmetic

- Implementations for 64-bit and 128-bit arithmetic.
- Full/Partial extended greatest common divisor.
  - Implementations of XGCD for 32-bit, 64-bit, 128-bit arithmetic.

# How to Compute XGCD?

Start with

$$s = Ua + Vb$$
$$t = Xa + Yb$$

with

$$\left[\begin{array}{ccc} s & U & V \\ t & X & Y \end{array}\right] \leftarrow \left[\begin{array}{ccc} a & 1 & 0 \\ b & 0 & 1 \end{array}\right].$$

Maintain  $s \ge t \ge 0$ .

## Extended Euclidean Algorithm

```
1: procedure \operatorname{EEA}(a,b) \{a,b\in\mathbb{Z}_{\geq 0}\}
2: \begin{bmatrix} s & U & V \\ t & X & Y \end{bmatrix} \leftarrow \begin{bmatrix} a & 1 & 0 \\ b & 0 & 1 \end{bmatrix}
3: while t>0 do
4: q\leftarrow \lfloor s/t \rfloor
5: subtract q times the second row from the first
6: swap rows so that s\geq t
7: return (s,U,V)
```

# Our Left-to-Right Binary XGCD

```
1: procedure Our_L2R_XGCD(a,b) \{a,b\in\mathbb{Z}_{\geq 0}\}

2: \begin{bmatrix} s & U & V \\ t & X & Y \end{bmatrix} \leftarrow \begin{bmatrix} a & 1 & 0 \\ b & 0 & 1 \end{bmatrix}

3: while t>0 do

4: k\leftarrow \text{NumBits}(s) - \text{NumBits}(t)

5: subtract 2^k times the second row from the first

6: if s<0 then negate the first row

7: if s< t then swap the rows of the matrix

8: return (s,U,V)
```

# Binary XGCD Optimizations

64-bit simplified left-to-right binary XGCD



#### XGCD Improvement

How much faster than the reference implementations?

| Bit Range | Algorithm                | GMP  | Pari | Flint |
|-----------|--------------------------|------|------|-------|
| 1 – 31    | EEA                      | 3.44 | 1.60 | 1.17  |
| 32 – 63   | Our L2R Binary           | 1.94 | 1.29 | 1.16  |
| 64 – 118  | Our L2R Binary           | 1.38 | 1.38 | _     |
| 119 – 127 | Lehmer w/ Our 64-bit L2R | 1.12 | 1.13 | _     |

All times are based on the average. The measurement of improvement is an average over the bit range.

# Class Group Improvements

How much faster than the reference implementations?

| Operation      | Bit Range | Pari | GMP  |
|----------------|-----------|------|------|
| Multiplication | 1 – 59    | 4.27 | 5.66 |
| Squaring       | 1 - 59    | 4.27 | 4.95 |
| Cubing         | 1 - 59    | 5.86 | 4.10 |
| Multiplication | 59 – 118  | 3.60 | 2.74 |
| Squaring       | 59 – 118  | 4.02 | 2.66 |
| Cubing         | 59 – 118  | 3.82 | 1.83 |

All times are based on the average. The measurement of improvement is an average over the bit range.

#### Exponentiation Stage of SuperSPAR

Exponentiate a random form to the product of many odd prime powers.

$$E=\prod p_i{}^{e_i}$$

#### 2,3 Representations

$$N=\sum_{i=0}^k s_i 2^{a_i} 3^{b_i}.$$

#### Example:

$$23814216 = 2^3 + 2^6 + 2^{13} + 2^{14} + 2^{16} + 2^{17} + 2^{19} + 2^{21} + 2^{22} + 2^{24}$$

$$23814216 = 2^33^3 - 2^43^5 + 2^53^6 + 2^73^7 + 2^93^8 + 2^{10}3^9$$

$$23814216 = 2^33^3 - 2^43^6 - 2^83^5 + 2^{15}3^6$$

$$23814216 = 2^33^2 - 2^{13}3^2 + 2^{15}3^6$$

#### How to Exponentiate 2,3 Representations?

First we nest common factors of 2:

$$2^{15}3^6 - 2^83^5 - 2^43^6 + 2^33^3 = (((3^62^7 - 3^5)2^4 - 3^6)2^1 + 3^3)2^3$$

# Exponentiating $g^{2^{15}3^6-2^83^5-2^43^6+2^33^3}$



# Exponentiating $g^{2^{15}3^6-2^83^5-2^43^6+2^33^3}$



Left-to-Right best approximations is a technique combining the greedy approach of Berthé and Imbert with the tree based approach of Doche and Habsieger.

Left-to-Right best approximations is a technique combining the greedy approach of Berthé and Imbert with the tree based approach of Doche and Habsieger.

• Iterate on a set of partial representations  $x + \sum s_i 2^{a_i} 3^{b_i}$ .

Left-to-Right best approximations is a technique combining the greedy approach of Berthé and Imbert with the tree based approach of Doche and Habsieger.

- Iterate on a set of partial representations  $x + \sum s_i 2^{a_i} 3^{b_i}$ .
- Keep the best  $2^a 3^b$  approximations for each x.

Left-to-Right best approximations is a technique combining the greedy approach of Berthé and Imbert with the tree based approach of Doche and Habsieger.

- Iterate on a set of partial representations  $x + \sum s_i 2^{a_i} 3^{b_i}$ .
- Keep the best  $2^a 3^b$  approximations for each x.
- Squares and cubes are bound  $a \le A$ ,  $b \le B$ , and the bounds A and B are iterated.

Example - First Iteration on 777



Example - Second Iteration on 9, 48, 87, and 129



Example Results

#### 2,3 Representations for E = 777:

$$2^83^1 + 2^03^2$$
 8 squares, 2 cubes, 1 multiplication  $2^03^6 + 2^43^1$  4 squares, 6 cubes, 1 multiplication  $2^83^1 + 2^33^0 + 2^03^0$  8 squares, 1 cube, 2 multiplications  $2^33^4 + 2^73^0 + 2^03^0$  7 squares, 4 cubes, 2 multiplications

 $2^83^1 + 2^33^0 + 2^03^0$  possibly preferred since multiplication is cheaper than squaring.

# Exponentiation Improvement

How much faster than the reference implementations?

|                                                   | Binary | NAF  | Pruned<br>Tree | Greedy<br>Left-to-Right |
|---------------------------------------------------|--------|------|----------------|-------------------------|
| Left-to-Right Best<br>Approximations<br>(64-bit)  | 1.40   | 1.25 | 1.13           | 1.009                   |
| Left-to-Right Best<br>Approximations<br>(128-bit) | 1.42   | 1.25 | 1.18           | 1.010                   |

All times are based on the average. The measurement of improvement is an average over the bit range.

#### After Exponentiating

Exponentiation stage computes:

$$q'=q^E$$
.

Then repeatedly square q'.

# Search Stage of SuperSPAR

Use a bounded primorial steps algorithm to find the order of an element (due to Sutherland).

#### **Primorials**

Primorial:

$$P_t = \prod_{p_i \le p_t} p_i.$$

Coprime to  $P_t$ :

$$\phi(P_t) = \prod_{p_i \le p_t} (p_i - 1).$$

#### Baby-Step Giant-Step

Order finding due to Shanks. Requires  $O(\sqrt{N})$ .

**Input:** A group element g, and a bound on the order N.

```
1: s \leftarrow \sqrt{N}
```

2: **for** 
$$i = 1, 2, 3, ..., s$$
 **do**

3: store 
$$g^i \mapsto i$$
 in a table

4: if 
$$g^i = 1_G$$
 then return  $i$ 

5: **for** 
$$j = 1, 2, 3, ..., s$$
 **do**

- 6: **if**  $g^{sj}$  is in the lookup table **then**
- 7: then there exists some  $g^i = g^{sj}$
- 8: **return** sj i

#### What if the Order is Odd?

#### Sutherland noticed for odd orders:

**Input:** A group element g, and a bound on the order N.

```
1: s \leftarrow \sqrt{N/2} with s even

2: for i = 1, 3, 5, ..., s do

3: store g^i \mapsto i in a table

4: if g^i = 1_G then return i

5: for j = 1, 2, 3, ..., s do

6: if g^{sj} is in the lookup table then

7: then there exists some g^i = g^{sj}

8: return sj - i
```

#### If Both 2 and 3 Do Not Divide the Order?

Why stop at odd orders?

**Input:** A group element g, and a bound on the order N.

```
1: s \leftarrow \sqrt{N/3} with s a multiple of 6
```

2: **for** 
$$i = 1, 5, 7, 11, ..., s$$
 **do**

3: store 
$$g^i \mapsto i$$
 in a table

4: **if** 
$$g^i = 1_G$$
 then return  $i$ 

5: **for** 
$$j = 1, 2, 3, ..., s$$
 **do**

- 6: **if**  $g^{sj}$  is in the lookup table **then**
- 7: then there exists some  $g^i = g^{sj}$
- 8: **return** sj i

#### General Case

For all primes up to  $p_t$ .

```
Input: A group element g, and a bound on the order N.

1: s \leftarrow \sqrt{N/(P_t/\phi(P_t))} with s a multiple of P_t

2: for i=1,...,s with i coprime to P_t do

3: store g^i \mapsto i in a table

4: if g^i = 1_G then return i

5: for j=1,2,3,...,s do

6: if g^{sj} is in the lookup table then

7: then there exists some g^i = g^{sj}

8: return sj - i
```

#### How is This Useful?

The exponentiation stage computed

$$q''=q^{E\left(2^{j}\right)}$$

for

$$E=\prod_{i=2}^t p_i^{e_i}.$$

The order of q'' is likely coprime to E.

#### How to Pick the Exponent and the Order Bound

Exponent: Let  $p_t \approx N^{1/2r}$  and

$$E=\prod_{i=2}^t p_i^{e_i}$$

where  $e_i = \log_{p_i} p_t^2$ .

Search bound: Maximize w such that  $m\phi(P_w) \approx p_t$ .

How to pick r?

#### Smoothness of the Order

A random number

$$m \in [1, N]$$

is  $N^{1/u}$ -smooth with probability

$$u^{-u}$$
.

<sup>\*</sup> See Sutherland for details.

Assume the order of forms are like random integers.

• Group operations per try is  $O(N^{1/2r})$ 

- Group operations per try is  $O(N^{1/2r})$
- Assume order is random  $h \in [1, N^{1/2}]$

- Group operations per try is  $O(N^{1/2r})$
- Assume order is random  $h \in [1, N^{1/2}]$
- Probability of factoring is  $r^{-r}$

- Group operations per try is  $O(N^{1/2r})$
- Assume order is random  $h \in [1, N^{1/2}]$
- Probability of factoring is  $r^{-r}$
- Expectation is  $O(r^r N^{1/2r})$

- Group operations per try is  $O(N^{1/2r})$
- Assume order is random  $h \in [1, N^{1/2}]$
- Probability of factoring is  $r^{-r}$
- Expectation is  $O(r^r N^{1/2r})$
- Minimized for  $r = \sqrt{\ln N / \ln \ln N}$

#### How to Handle Failure?

- Try again with a different form.
- Try again with a different  $\Delta = -kN$ .

# Reference Implementation of SPAR



#### Bound the Number of Ideals per Group



# Bounded Primorial Steps Search



## Bounded Primorial Steps Search



## Bound $e_i$ in Exponent $E = \prod p_i^{e_i}$



## Independent Exponent E and Search Bound $mP_w$



## Perform a Single Search



## SPAR vs SuperSPAR



## Median Integer Factoring Times



# Median Integer Factoring Times (Zoomed Left)



# Median Integer Factoring Times (Zoomed Right)



### Thank You

 ${\sf Questions?}$ 

#### Future Work

Some work that is eagerly awaiting:

- Special case for quotients  $q \le 4$  in XGCD.
- Real quadratic fields and hyperelliptic curves.
- Improvements to left-to-right best approximations algorithm.

### Some Possible Applications

These are just a few possible applications.

#### Ideal class group:

 Class group tabulation for larger discriminants (Ramachandran2006).

#### Integer Factoring:

 Factoring left-overs after sieving in algorithms like the number field sieve using multiple large primes.

#### Contributions

#### Contributions to ideal class group arithmetic:

- Optimized implementations using 64 and 128-bit arithmetic.
- Optimized XGCD for 32, 64, and 128-bits.
  - A simplified left-to-right binary XGCD (and partial XGCD).

#### Contributions to integer factoring:

- SuperSPAR integer factoring algorithm.
- Left-to-right best approximations method for computing 2,3 representations of power primorials.

### Extended Greatest Common Divisor (XGCD)

Extended greatest common divisor solves

$$s = Ua + Vb = \gcd(a, b)$$

for the largest s dividing both a and b.

## Our Left-to-Right Binary PXGCD

```
1: procedure Our_L2R_PXGCD(a, b, T) {a, b, T \in \mathbb{Z}_{\geq 0}}
            \left[\begin{array}{cc} r_1 & c_1 \\ r_0 & c_0 \end{array}\right] \leftarrow \left[\begin{array}{cc} a & 0 \\ b & -1 \end{array}\right]
         z \leftarrow 0, s_1 \leftarrow 1, s_0 \leftarrow 1
          while r_0 \neq 0 and r_0 > T do
 4:
                 k \leftarrow \text{NumBits}(r_1) - \text{NumBits}(r_0)
 5:
                 subtract 2^k times the second row from the first
 6:
                 if r_1 < 0 then r_1 \leftarrow -r_1, c_1 \leftarrow -c_1, s_1 \leftarrow -s_1
 7:
                 if r_1 < r_0 then
 8:
                       swap the rows of the matrix and s_1 with s_0
 9.
                       z \leftarrow z + 1
10:
           return (s_1 \cdot r_1, s_1 \cdot c_1, s_0 \cdot r_0, s_0 \cdot c_0, z)
11:
```

# Left-to-Right Binary XGCDs

32-bit



# Left-to-Right Binary XGCDs

64-bit



# Left-to-Right Binary XGCDs

128-bit



### Approximate Square Root

#### Notice that

$$\begin{array}{rcl} x^{1/2} & = & 2^{(\log_2 x)/2} & \approx & 2^{\lfloor \lfloor \log_2 x + 1 \rfloor/2 \rfloor} \\ \Rightarrow & x/x^{1/2} & = & x/2^{(\log_2 x)/2} & \approx & x/2^{\lfloor \lfloor \log_2 x + 1 \rfloor/2 \rfloor}, \end{array}$$

which is approximated by shifting x right by  $\lfloor \lfloor \log_2 x + 1 \rfloor / 2 \rfloor$  bits.

64-bit ideal multiplication



128-bit ideal multiplication



64-bit ideal cubing



128-bit ideal cubing



## Large Intermediates During Cubing

Ideal Cubing (Algorithm 2.4, Page 19).

$$U = Y'c_1(Y'(b_1 - Y'c_1a_1) - 2) \mod a_1^2 \qquad \{\text{line } 4\}$$

$$U = -c_1(XY'a_1 + Yb_1) \mod a_1^2/s \qquad \{\text{line } 7\}$$

$$M_1 = \frac{(R_ia_1 + C_iUa_1)}{a_1^2} \qquad \{\text{line } 19\}$$

$$M_2 = \frac{R_i(b_1 + Ua_1) - sC_ic_1}{a_1^2} \qquad \{\text{line } 20\}$$

The problem is  $a_1 \le \sqrt{|\Delta|/3}$  so  $a_1^2 \le |\Delta|/3$ .

## GMP with 128-bit Cubing



# Exponentiation Results (16-bit Discriminants)



# Exponentiation Results (32-bit Discriminants)



# Exponentiation Results (48-bit Discriminants)



## Exponentiation Results (64-bit Discriminants)



# Exponentiation Results (80-bit Discriminants)



# Exponentiation Results (96-bit Discriminants)



# Exponentiation Results (112-bit Discriminants)



### SuperSPAR

SuperSPAR is an integer factoring algorithm based on arithmetic in the ideal class group of imaginary quadratic integers.

- Extends SPAR using a bounded primorial steps search.
- Uses improvements to ideal class group arithmetic and 2,3 representations of power primorials.
- Fastest median time for integers 49-bits to 68-bits of size.
- Fastest average time for integers 49-bits to 64-bits of size.

Median times do not appear in thesis.

# Theoretically Optimal Parameters for Exponentiation Stage

| log <sub>2</sub> N | $r = \sqrt{\ln N / \ln \ln N}$ | $\lfloor N^{1/2r} \rfloor$ | pt    | t    |
|--------------------|--------------------------------|----------------------------|-------|------|
| 16                 | 2.14693                        | 13                         | 13    | 6    |
| 32                 | 2.67523                        | 63                         | 61    | 18   |
| 48                 | 3.08112                        | 221                        | 211   | 47   |
| 64                 | 3.42016                        | 655                        | 653   | 119  |
| 80                 | 3.71609                        | 1738                       | 1733  | 270  |
| 96                 | 3.98139                        | 4258                       | 4253  | 583  |
| 112                | 4.22355                        | 9802                       | 9791  | 1208 |
| 128                | 4.44745                        | 21473                      | 21467 | 2407 |

# Theoretically Optimal Search Bounds

| log <sub>2</sub> N | $\lfloor N^{1/2r} \rfloor$ | $2m\phi(P_w)$ | $m^2\phi(P_w)P_w$ | m   | W |
|--------------------|----------------------------|---------------|-------------------|-----|---|
| 16                 | 13                         | 16            | 480               | 1   | 3 |
| 32                 | 63                         | 64            | 7680              | 4   | 3 |
| 48                 | 221                        | 224           | 94080             | 14  | 3 |
| 64                 | 655                        | 656           | 806880            | 41  | 3 |
| 80                 | 1738                       | 1824          | 7277760           | 19  | 4 |
| 96                 | 4258                       | 4320          | 40824000          | 45  | 4 |
| 112                | 9802                       | 10080         | 222264000         | 105 | 4 |
| 128                | 21473                      | 22080         | 1173110400        | 23  | 5 |

#### Factorization of the Order

Example #1

$$N = 9223375433619660527, k = 1, \Delta = -kN$$

- ord( $[\mathfrak{p}_{19}]$ ) =  $2^2 \cdot 13 \cdot 2770667$
- ord([ $\mathfrak{p}_{37}$ ]) =  $2^3 \cdot 3 \cdot 13 \cdot 2770667$
- ord([ $\mathfrak{p}_{43}$ ]) =  $2^4 \cdot 3 \cdot 13 \cdot 2770667$
- ord( $[p_{47}]$ ) =  $2^3 \cdot 3 \cdot 13 \cdot 2770667$
- ord( $[\mathfrak{p}_{59}]$ ) =  $2^4 \cdot 3 \cdot 13 \cdot 2770667$

where 
$$\mathfrak{p}_p = [p, (b + \sqrt{\Delta})/2].$$

Each prime ideal split N.

#### Factorization of the Order

Example #2

$$N = 18278283564428467183, k = 3, \Delta = -4kN$$

- ord( $[p_{11}]$ ) =  $2 \cdot 3 \cdot 59 \cdot 157 \cdot 1451$
- ord( $[p_{17}]$ ) =  $2 \cdot 5^2 \cdot 59 \cdot 157 \cdot 1451$
- ord([ $\mathfrak{p}_{23}$ ]) =  $2 \cdot 3 \cdot 5^2 \cdot 59 \cdot 157 \cdot 1451$
- ord([ $\mathfrak{p}_{29}$ ]) =  $2 \cdot 3 \cdot 59 \cdot 157 \cdot 1451$
- ord( $[\mathfrak{p}_{31}]$ ) =  $2 \cdot 5 \cdot 59 \cdot 157 \cdot 1451$

where 
$$\mathfrak{p}_p = [p, (b + \sqrt{\Delta})/2].$$

Only  $[p_{23}]$  and  $[p_{29}]$  split N.

### Reusing the Order

Once the order of an ideal class is known, we skip the search phase.

- The exponentiation stage removed all small primes ⇒ search stage not necessary.
- The exponentiation stage did not remove all small primes ⇒ stepping coprime will never find the order.

For  $N \leq 2^{80}$ , this is expected to work better than 97.7% of the time.











### SuperSPAR Prime Ideals

Sequential vs Random



### SPAR – Expanding the 2-Sylow Group

| Bits | With 2-Sylow Group | Without 2-Sylow Group |
|------|--------------------|-----------------------|
| 16   | 48.05208           | 48.02160              |
| 20   | 84.20318           | 84.09526              |
| 24   | 197.02479          | 196.84587             |
| 28   | 463.70674          | 463.60538             |
| 32   | 937.57875          | 935.81785             |
| 36   | 1709.55629         | 1706.32960            |
| 40   | 3255.31447         | 3248.67998            |

Table: Average time in microseconds to factor using SPAR when the number of ideals per class group is bound by the size of the integer to factor.

#### Flint



#### Pari



# SQUFOF (Optimized from Pari)



#### Vanilla SPAR



# SuperSPAR



#### Average Integer Factoring Times



# Average Integer Factoring Times (Zoomed Left)



# Average Integer Factoring Times (Zoomed Right)



# Simple Continued Fraction Expansion of K/L

Recurrences:

$$R_{i} = R_{i-2} - q_{i}R_{i-1}$$

$$C_{i} = C_{i-2} - q_{i}C_{i-1}$$

$$A_{i} = A_{i-2} + q_{i}A_{i-1}$$

$$B_{i} = B_{i-2} + q_{i}B_{i-1}$$

Invariants:

$$C_{i} = (-1)^{i+1}B_{i}$$

$$L = R_{i}B_{i-1} + B_{i}R_{i-1}$$

$$(-1)^{i-1} = A_{i}B_{i-1} - B_{i}A_{i-1}$$

$$(-1)^{i+1}R_{i} = LA_{i} - KB_{i}$$