

We Divide, You Conquer: From Large-scale Ontology Alignment to Manageable Subtasks

Ernesto Jiménez-Ruiz

(1) The Alan Turing Institute, London(2) SIRIUS, University of Oslo

Asan Agibetov, Matthias Samwald Section for Artificial Intelligence and Decision Support, Medical University of Vienna

Valerie Cross
Miami University,
Oxford, Ohio

Motivation

- Large-scale ontology matching tasks still pose serious challenges to ontology alignment systems.
- Only 6 out of 10 (OAEI 2017) and 7 out of 12
 (OAEI 2018) system were able to complete the largest tasks in the *largebio track*.

Pipeline

Lexical indexes

In allow Ison	Inde	ex value	ID	URI			
Index key	Entities \mathcal{O}_1 Entities \mathcal{O}_2		7661	\mathcal{O}_1 :Serous_acinus			
{ acinus }	7661,8171	118081	8171	\mathcal{O}_1 :Hepatic_acinus			
<u> </u>	,		19987	\mathcal{O}_1 :Mesothelial_cell_of_pleura			
{ mesothelial, pleural }	19987	117237	55518	\mathcal{O}_1 :Lunate_facet_of_hamate			
			118081	\mathcal{O}_2 :Liver_acinus			
{ hamate, lunate }	55518	-	117237	\mathcal{O}_2 :Pleural_Mesothelial_Cell			
{ feed, breast }	_	113578,111023		\mathcal{O}_2 :Breast_Feeding			
(,	111023	\mathcal{O}_2 :Inability_To_Breast_Feed			

Techniques

- Clustering. Two strategies: naive and neural embedding. The neural embedding relies on the StarSpace toolkit to learn vector representations for the individual words in the index keys.
- Context as matching task. Logic-based module extraction techniques provide the context (*i.e.*, sets of *semantically related* entities) for the entities in a given mapping or set of mappings.

OAEI datasets

OAEI track	Source of \mathcal{M}^{RA}	Task	Ontology	Version	Size (classes)
Anatomy	Manually arouted	AMA-NCIA	AMA	v.2007	2,744
	Manually created	AIVIA-INGIA	NCIA	v.2007	3,304
Largebio		FMA-NCI	FMA	v.2.0	78,989
	UMLS-Metathesaurus	FMA-SNOMED	NCI	v.08.05d	66,724
		SNOMED-NCI	SNOMED	v.2009	306,591
Phenotype		HPO-MP	HPO	v.2016-BP	11,786
	Consensus alignment (vote=2)	HFO-IVIE	MP	v.2016-BP	11,721
		DOID-ORDO	DOID	v.2016-BP	9,248
		טטחט-טרטט	ORDO	v.2016-BP	12,936

Evaluation on OAEI systems

Systems failing to complete tasks in the OAEI 2015-2017 campaigns.

Tool	Task	Year	Matching	Naive strategy				Neural embedding strategy				
			subtasks	Р	R	F	t (h)	Р	R	F	t (h)	
GMap (*)	Anatomy	2015	5	0.87	0.81	0.84	1.3	0.88	0.82	0.85	0.7	
			10	0.85	0.81	0.83	1.7	0.86	0.82	0.84	0.8	
MAMBA Anator	Anatomy	Anatomy 2015	20	0.88	0.63	0.73	2.3	0.89	0.62	0.73	1.0	
	Anatomy		50	0.88	0.62	0.73	2.4	0.89	0.62	0.73	1.0	
FCA-Map FMA-N	ENAA NICI	NCI 2016	20	0.56	0.90	0.72	4.4	0.62	0.90	0.73	3.1	
	I WIA-NOI	2010	50	0.58	0.90	0.70	4.1	0.60	0.90	0.72	3.0	
KEPLER FM	ENAA NICI	MA-NCI 2017	20	0.45	0.82	0.58	8.9	0.48	0.80	0.60	4.3	
	FIVIA-INGI ZUT/	50	0.42	0.83	0.56	6.9	0.46	0.80	0.59	3.8		
РОМар	FMA-NCI 2017	2017	20	0.54	0.83	0.66	11.9	0.56	0.79	0.66	5.7	
		2017	50	0.55	0.83	0.66	8.8	0.57	0.79	0.66	4.1	
(*) Executed with 8Gb.												

Coverage ratio results

Is $m = \langle e_1, e_2 \rangle \in \mathcal{M}^{RA}$ findable in sub-tasks $\mathcal{MT}_i^{\mathsf{LexI}}$?

Size ratio results

Search space in the sub-tasks wrt the original task.

Source and target module sizes for AMA-NCIA

Source and target module sizes for FMA-NCI

International Semantic Web Conference (ISWC) 2018