Algoritmos y Estructuras de Datos I

Segundo cuatrimestre de 2024

Departamento de Computación - FCEyN - UBA

Lógica proposicional y Especificación de problemas

Se acuerdan de lógica proposicional...

- ► Si bien no utilizaremos un lenguaje formal para especificar... ¿Es lo mismo decir?...
 - Mañana llueve e iré a comprar un paragüas
 - ► Si mañana llueve iré a comprar un paragüas
 - O mañana no llueve o no iré a comprar un paragüas
 - ► Compraré un paragüas por si mañana llueve
 - ► Si compro un paragüas, mañana llueve

IP - AED I: Temario de la clase

- ► Lógica Proposicional
 - Motivación
 - Sintáxis
 - Semántica clásica
 - ► Tablas de verdad
 - ► Tautologías, contradicciones y contingencias
 - Noción de equivalencia de fórmulas y Relaciones de fuerza
 - Semántica trivaluada
 - Algunos ejercicios
- ► Presentación de nuestro lenguaje de especificación
 - Estructura de una especificación
 - Lenguaje semiformal
 - Contrato.
 - ► Interpretando especificaciones Ejemplos
 - ► Tipos de datos
 - ► Básicos (ℤ, ℝ, Bool, Char)
 - ► Tuplas (Uplas)
 - Secuencias
 - Renombre de tipos
 - Sobre-especificación y sub-especificación
 - Modularización en especificación

2

El abogado del diablo

- ► ¿Inocente o culpable?
 - ► Su torso está desnudo... pero... ¿y sus pies?
 - ▶ ¿Realmente estaba en el pasillo y en el ascensor al mismo tiempo?

2

.

Lógica proposicional

- Es la lógica que habla sobre las proposiciones.
- ► Son oraciones que tienen un valor de verdad, Verdadero o Falso .
- Sirve para poder deducir el valor de verdad de una proposición, a partir de conocer el valor de otras.

5

Ejemplos

¿Cuáles son fórmulas?

- $ightharpoonup p \lor q$ no
- $ightharpoonup (p \lor q)$ sí
- ightharpoonup p ee q
 ightarrow r no
- $\blacktriangleright \ (p \lor q) \to r \qquad \text{no}$
- $\blacktriangleright ((p \lor q) \to r) \qquad \mathsf{si}$
- $lackbox{} (p
 ightarrow q
 ightarrow r)$ no

Lógica proposicional - Sintaxis

► Símbolos:

True, False, \neg , \wedge , \vee , \rightarrow , \leftrightarrow , (,)

► Variables proposicionales (infinitas)

$$p$$
, q , r , ...

- ► Fórmulas
 - 1. True y False son fórmulas
 - 2. Cualquier variable proposicional (p, q, r, etc) es una fórmula
 - 3. Si A es una fórmula, $\neg A$ es una fórmula
 - 4. Si A_1, A_2, \ldots, A_n son fórmulas, $(A_1 \wedge A_2 \wedge \cdots \wedge A_n)$ es una fórmula
 - 5. Si A_1, A_2, \ldots, A_n son fórmulas, $(A_1 \vee A_2 \vee \cdots \vee A_n)$ es una fórmula
 - 6. Si A y B son fórmulas, $(A \rightarrow B)$ es una fórmula
 - 7. Si A y B son fórmulas, $(A \leftrightarrow B)$ es una fórmula

.

Semántica clásica

- ► Dos valores de verdad: "verdadero" (V) y "falso" (F).
- ► Interpretación:
 - ► True siempre vale V.
 - False siempre vale F.
 - ▶ ¬ se interpreta como "no", se llama negación.
 - ► ∧ se interpreta como "y", se llama conjunción.
 - ▶ ∨ se interpreta como "o" (no exclusivo), se llama disyunción.
 - ► → se interpreta como "si... entonces", se llama implicación.

7

Semántica clásica: tablas de verdad

Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

р	$\neg p$
V	F
F	V

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

р	q	$(p \lor q)$
V	V	V
V	F	V
F	V	V
F	F	F

р	q	(p o q)
V	V	V
V	F	F
F	V	V
F	F	V

р	q	$(p \leftrightarrow q)$
V	V	V
V	F	F
F	V	F
F	F	V

9

Ejemplo: tabla de verdad para $((p \land q) \rightarrow r)$

р	q	r	$(p \wedge q)$	$((p \land q) \rightarrow r)$
1	1	1	1	1
1	1	0	1	0
1	0	1	0	1
1	0	0	0	1
0	1	1	0	1
0	1	0	0	1
0	0	1	0	1
0	0	0	0	1

10

Tautologías, contradicciones y contingencias

▶ Una fórmula es una tautología si siempre toma el valor *V* para valores definidos de sus variables proposicionales.

Por ejemplo, $((p \land q) \to p)$ es tautología:

р	q	$(p \land q)$	$((p \land q) \to p)$
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	V

► Una fórmula es una contradicción si siempre toma el valor *F* para valores definidos de sus variables proposicionales.

Por ejemplo, $(p \land \neg p)$ es contradicción:

р	$\neg p$	$(p \land \neg p)$
V	F	F
F	V	F

► Una fórmula es una contingencia cuando no es ni tautología ni contradicción.

Equivalencias entre fórmulas

- ▶ Dos fórmulas A y es B son equivalentes (y se escribe $A \equiv B$) si y sólo si, $A \leftrightarrow B$ es una tautologia.
- ► Teorema: Las siguientes fórmulas son tautologías.
 - 1. Doble negación $(\neg \neg p \leftrightarrow p)$
 - 2. Idempotencia

$$((p \land p) \leftrightarrow p)$$

$$((p \lor p) \leftrightarrow p)$$

3. Asociatividad

$$(((p \land q) \land r) \leftrightarrow (p \land (q \land r)))$$
$$(((p \lor q) \lor r) \leftrightarrow (p \lor (q \lor r)))$$

4. Conmutatividad

$$((p \land q) \leftrightarrow (q \land p)) \ ((p \lor q) \leftrightarrow (q \lor p))$$

5. Distributividad

$$((p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r)))$$
$$((p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \lor r)))$$

6. Reglas de De Morgan

$$(\neg(p \land q) \leftrightarrow (\neg p \lor \neg q))$$

$$(\neg(p\lor q)\leftrightarrow(\neg p\land \neg q))$$

Relación de fuerza

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que *A* fuerza a *B* o que *B* es más débil que *A*.
- ▶ Por ejemplo,
 - 1. $i(p \land q)$ es más fuerte que p? Sí
 - 2. $\downarrow(p \lor q)$ es más fuerte que p? No
 - 3. ¿p es más fuerte que $(q \rightarrow p)$? Sí Pero notemos que si q está indefinido y p es verdadero entonces $(q \rightarrow p)$ está indefinido.
 - 4. ip es más fuerte que q? No
 - 5. $\not p$ es más fuerte que p? Sí
 - 6. ¿hay una fórmula más fuerte que todas? Sí, False
 - 7. ¿hay una fórmula más débil que todas? Sí, True

13

Semántica trivaluada (secuencial)

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- ► la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

Introducimos los operadores lógicos \land_L (y-luego, o conditional and, o cand), \lor_L (o-luego o conditional or, o cor).

р	q	$(p \wedge_L q)$
V	V	V
V	F	F
F	V	F
F	F	F
V	T	Τ
F	Τ	F
Τ	V	\perp
\perp	F	\perp
T	T	Ţ

р	q	$(p \lor_L q)$
V	V	V
V	F	V
F	V	V
F	F	F
V	T	V
F	Τ	
1	V	
1	F	
\perp	\perp	

Expresión bien definida

- ► Toda expresión está bien definida si todas las proposiciones valen *T* o *F*.
- ► Sin embargo, existe la posibilidad de que haya expresiones que no estén bien definidas.
 - Por ejemplo, la expresión x/y = 5 no está bien definida si y = 0.
- ► Por esta razón, necesitamos una lógica que nos permita decir que está bien definida la siguiente expresión
 - $y = 0 \lor x/y = 5$
- ► Para esto, introducimos tres valores de verdad:
 - 1. verdadero (V)
 - 2. falso (F)
 - 3. indefinido (\perp)

1

Semántica trivaluada (secuencial)

¿Cuál es la tabla de verdad de \rightarrow_L ?

р	q	$(p \rightarrow_L q)$
V	V	V
V	F	F
F	V	V
F	F	V
V	T	
F	T	V
Т	V	
Т	F	
Т	T	

Entonces...

Lógica proposicional y lógica trivaluada

- ► Convención: Dado que nuestros tipos de datos siempre tendrán como valor posible el indefinido o ⊥, en general, asumiremos que estamos utilizando la lógica trivaluada por default.
- ► Es decir, salvo en los casos dónde se indique lo contrario:
 - $ightharpoonup \wedge_L$ directamente
 - v así con todos los operadores vistos.
- ¿Qué pasa con la definición de tautología, contradicción y contingencia en la lógica trivaluada?
 - Adaptaremos las definiciones para solo tener en cuenta los valores de verdad de las fórmulas cuando no están indefinidas
 - Por esto, cuando hacemos las tablas de verdad para analizar si una fórmula es tautología, contradicción o contingencia, pensaremos en la lógica bivaluada

11

Entonces... hablando de lógica proposicional

- ► ¿Es lo mismo decir...?
 - Mañana llueve e iré a comprar un paragüas
 - ► Si mañana llueve iré a comprar un paragüas
 - O mañana no llueve o no iré a comprar un paragüas
 - Compraré un paragüas por si mañana llueve
 - ► Si compro un paragüas, mañana llueve

18

Entonces... hablando de lógica proposicional

- ► Si llamamos:
 - ► a = Mañana Ilueve
 - \blacktriangleright b = Ir'e a comprar un paragüas
- ► Mañana llueve e iré a comprar un paragüas Lo podriamos modelar como: *a* ∧ *b*
- ► Si mañana llueve iré a comprar un paragüas Lo podriamos modelar como: $a \rightarrow b$
- O mañana no llueve o no iré a comprar un paragüas Lo podriamos modelar como: ¬a ∨ ¬b
- ► Compraré un paragüas por si mañana llueve
 - ► ¡A veces es difícil desambigüar!
 - Por si mañana llueve es una nueva proposición
- ► Si compro un paragüas, mañana llueve Lo podriamos modelar como: $b \rightarrow a$

Práctica 1: Ejercicio 2

Determinar el valor de verdad de las siguientes proposiciones:

- a) $(\neg a \lor b)$
- b) $(c \lor (y \land x) \lor b)$

cuando el valor de verdad de a, b y c es verdadero, mientras que el de x e y es falso.

Práctica 1: Ejercicio 3

Determinar, utilizando tablas de verdad, si las siguientes fórmulas son tautologías, contradicciones o contingencias.

b)
$$(p \land \neg p)$$

d)
$$((p \lor q) \to p)$$

i)
$$((p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r)))$$

Práctica 1: Ejercicio 7

Usando reglas de equivalencia (conmutatividad, asociatividad, De Morgan, etc) determinar si los siguientes pares de fórmulas son equivalencias. Indicar en cada paso qué regla se utilizó.

2.
$$(p \lor q) \land (p \lor r)$$

 $(\neg p \rightarrow (q \land r))$

$$(
eg p
ightarrow (q \wedge r))$$
 \downarrow Reemplazo implicación
 $(p \lor (q \wedge r))$
 \downarrow Distributiva
 $((p \lor q) \wedge (p \lor r))$

Práctica 1: Ejercicio 4

Determinar la relación de fuerza de los siguientes pares de fórmulas. Indicar cuál de las dos es más fuerte.:

1. True, False False
$$\alpha = (p \wedge q) \\ \beta = (p \vee q)$$

Práctica 1: Ejercicio 7

Usando reglas de equivalencia (conmutatividad, asociatividad, De Morgan, etc) determinar si los siguientes pares de fórmulas son equivalencias. Indicar en cada paso qué regla se utilizó.

Presentemos nuestro Lenguaje de Especificación

Problemas y Especificaciones

Inicialmente los problemas resolveremos con una computadora serán planteados como funciones. Es decir:

- ▶ Dados ciertos datos de entrada, obtendremos un resultado
- ► Más adelante en la materia, extenderemos el tipo de problemas que podemos resolver...

26

Definición (Especificación) de un problema

```
problema nombre(parámetros) : tipo de dato del resultado {
   requiere etiqueta: { condiciones sobre los parámetros de entrada }
   asegura etiqueta: { condiciones sobre los parámetros de salida }
}
```

- ▶ nombre: nombre que le damos al problema
 - será resuelto por una función con ese mismo nombre
- parámetros: lista de parámetros separada por comas, donde cada parámetro contiene:
 - Nombre del parámetro
 - Tipo de datos del parámetro
- ▶ tipo de dato del resultado: tipo de dato del resultado del problema (inicialmente especificaremos funciones)
 - En los asegura, podremos referenciar el valor devuelto con el nombre de res
- etiquetas: son nombres opcionales que nos servirán para nombrar declarativamente a las condiciones de los requiere o aseguras.

Definición (Especificación) de un problema

► Sobre los requiere

- Describen todas las condiciones y posibles valores o casuísticas de los parámetros de entrada.
- Puede haber más de un requiere (recomendamos una condición por renglón). Se asume que valen todos juntos (es una conjunción).
- Evitar contradicciones (un requiere no debería contradecir a otro).

► Sobre los asegura

- Describen todas las condiciones y posibles valores o casuísticas de los parámetros de salida y entrada/salida en función de los parámetros de entrada.
- Puede haber más de un asegura (recomendamos una condición por renglón). Se asume que valen todos juntos (es una conjunción).
- Evitar contradicciones (un asegura no debería contradecir a otro).

```
problema soyContradictorio(x : \mathbb{Z}) : \mathbb{Z}{
    requiere esMayor: \{x > 0\}
    requiere esMenor: \{x < 0\}
    asegura esElSiguiente: \{res + 1 = x\}
    asegura esElAnterior: \{res - 1 = x\}
}
```

Ejemplos

```
problema raizCuadrada(x : \mathbb{R}) : \mathbb{R}  { requiere: \{x \geq 0\} asegura: \{res \times res = x \land res \geq 0\} } problema sumar(x : \mathbb{Z}, y : \mathbb{Z}) : \mathbb{Z}  { requiere: \{True\} asegura: \{res = x + y\} } problema restar(x : \mathbb{Z}, y : \mathbb{Z}) : \mathbb{Z}  { requiere: \{True\} asegura: \{res = x - y\} } problema cualquieramayor(x : \mathbb{Z}) : \mathbb{Z}  { requiere: \{True\} asegura: \{res > x\} }
```

30

¿Por qué nuestro lenguaje será semiformal?: Ejemplos

```
problema raizCuadrada(x : \mathbb{R}) : \mathbb{R} {
	requiere: \{x \text{ debe ser mayor o igual que 0}\}
	asegura: \{res \text{ debe ser mayor o igual que 0}\}
	asegura: \{res \text{ elevado al cuadrado será }x\}
}

problema sumar(x : \mathbb{Z}, y : \mathbb{Z}) : \mathbb{Z} {
	requiere: \{-\}
	asegura: \{res \text{ es la suma de }x \text{ e }y\}
}

problema restar(x : \mathbb{Z}, y : \mathbb{Z}) : \mathbb{Z} {
	requiere: \{\text{Siempre cumplen}\}
	asegura: \{res \text{ es la resta de }x \text{ menos }y\}
}

problema cualquieramayor(x : \mathbb{Z}) : \mathbb{Z} {
	requiere: \{\text{Vale para cualquier valor posible de }x\}
	asegura: \{res \text{ debe tener cualquier valor mayor a }x\}
}
```

El contrato

- ► Contrato: El programador escribe un programa P tal que si el usuario suministra datos que hacen verdadera la precondición, entonces P termina en una cantidad finita de pasos retornando un valor que hace verdadera la postcondición.
- ► El programa *P* es correcto para la especificación dada por la precondición y la postcondición exactamente cuando se cumple el contrato.
- ► Si el usuario no cumple la precondición y *P* se cuelga o no cumple la poscondición...
 - ▶ ¿El usuario tiene derecho a quejarse?
 - ¿Se cumple el contrato?
- ► Si el usuario cumple la precondición y *P* se cuelga o no cumple la poscondición...
 - ▶ ¿El usuario tiene derecho a quejarse?
 - ► ¿Se cumple el contrato?

Interpretando una especificación

```
problema raizCuadrada(x : R) : R {
    requiere: {x debe ser mayor o igual que 0}
    asegura: {res debe ser mayor o igual que 0}
    asegura: {res elevado al cuadrado será x}
}
```

- ► ¿Qué significa esta especificación?
- ► Se especifica que si el programa raizCuadrada se comienza a ejecutar en un estado que cumple x ≥ 0, entonces el programa **termina** y el estado final cumple res × res = x y res > 0.

33

Tipos de datos

- ► Un **tipo de datos** es un conjunto de valores (el conjunto base del tipo) provisto de una serie de operaciones que involucran a esos valores.
- ► Para hablar de un elemento de un tipo *T* en nuestro lenguaje, escribimos un término o expresión
 - Variable de tipo T (ejemplos: x, y, z, etc)
 - Constante de tipo T (ejemplos: 1, -1, $\frac{1}{5}$, 'a', etc)
 - ► Función (operación) aplicada a otros términos (del tipo *T* o de otro tipo)
- lacktriangle Todos los tipos tienen un elemento distinguido: $oldsymbol{\perp}$ o Indef

Otro ejemplo

Dados dos enteros dividendo y divisor, obtener el cociente entero entre ellos.

```
problema cociente(dividendo: \mathbb{Z}, divisor: \mathbb{Z}): \mathbb{Z} { requiere: \{divisor > 0\} asegura: \{res \times divisor \leq dividendo\} asegura: \{(res + 1) \times divisor > dividendo\} }
```

Qué sucede si ejecutamos con ...

- ightharpoonup divisor = 0?
- ▶ dividendo = -4 y divisor = -2, y obtenemos res = 2?
- \blacktriangleright dividendo = -4 y divisor = -2, y obtenemos res = 0?
- \blacktriangleright dividendo = 4 y divisor = -2, y el programa no termina?

34

Tipos de datos de nuestro lenguaje de especificación

- Básicos
 - ► Enteros (ℤ)
 - ► Reales (ℝ)
 - ▶ Booleanos (Bool)
 - Caracteres (Char)
- ► Tuplas (Uplas)
- Secuencias

Tipo \mathbb{Z} (números enteros)

- ► Su conjunto base son los números enteros.
- ightharpoonup Constantes: 0 ; 1 ; -1 ; 2 ; -2 ; ...
- ► Operaciones aritméticas:
 - ightharpoonup a + b (suma); a b (resta); abs(a) (valor absoluto)
 - \triangleright a \times b (multiplicación); a div b (división entera);
 - ightharpoonup a mod b (resto de dividir a a por b), a^b o pot(a,b) (potencia)
 - ightharpoonup a / b (división, da un valor de \mathbb{R})
- ► Fórmulas que comparan términos de tipo Z:
 - $ightharpoonup a < b ext{ (menor)}$
 - $ightharpoonup a \le b$ o $a \le b$ (menor o igual)
 - ightharpoonup a > b (mayor)
 - $ightharpoonup a \ge b ext{ o } a >= b ext{ (mayor o igual)}$
 - $ightharpoonup a = b ext{ (iguales)}$
 - $\Rightarrow a \neq b$ (distintos)

37

Tipo Bool (valor de verdad)

- ▶ Su conjunto base es $\mathbb{B} = \{ \mathbf{true}, \mathbf{false} \}$.
- ► Conectivos lógicos: !, &&, ||, con la semántica bi-valuada estándar.
- Fórmulas que comparan términos de tipo Bool:
 - ► a = b
 - $ightharpoonup a \neq b$ (se puese escribir a! = b)

Tipo \mathbb{R} (números reales)

- ► Su conjunto base son los números reales.
- ightharpoonup Constantes: 0 ; 1 ; -7 ; 81 ; 7,4552 ; π ...
- ► Operaciones aritméticas:
 - ► Suma, resta y producto (pero no div y mod)
 - ► a/b (división)
 - $\triangleright \log_b(a)$ (logaritmo)
 - ► Funciones trigonométricas
- ightharpoonup Fórmulas que comparan términos de tipo \mathbb{R} :
 - $ightharpoonup a < b ext{ (menor)}$
 - $ightharpoonup a \le b$ o $a \le b$ (menor o igual)
 - ightharpoonup a > b (mayor)
 - \triangleright a > b o a >= b (mayor o igual)
 - $ightharpoonup a = b ext{ (iguales)}$
 - $ightharpoonup a \neq b$ (distintos)

38

Tipo Char (caracteres)

- ► Sus elementos son las letras, dígitos y símbolos.
- Constantes: 'a', 'b', 'c',..., 'z',..., 'A', 'B', 'C',..., 'Z',..., '0', '1', '2',..., '9' (en el orden dado por el estándar ASCII).
- ► Función ord, que numera los caracteres, con las siguientes propiedades:
 - $ightharpoonup {
 m ord}('a') + 1 = {
 m ord}('b')$
 - ightharpoonup ord('A') + 1 = ord('B')
 - ightharpoonup ord('1') + 1 = ord('2')
- Función char, de modo tal que si c es cualquier char entonces char(ord(c)) = c.
- Las comparaciones entre caracteres son comparaciones entre sus órdenes, de modo tal que a < b es equivalente a ord(a) < ord(b).

Tipo upla (o tupla)

- Una estructura de datos es una forma particular de organizar la información.
- ▶ Uplas, de dos o más elementos, cada uno de cualquier tipo.
- ▶ $T_0 \times T_1 \times \cdots \times T_k$: Tipo de las k-uplas de elementos de tipos T_0 , T_1 , ... T_k , respectivamente, donde k es fijo.
- ► Ejemplos:
 - $ightharpoonup \mathbb{Z} \times \mathbb{Z}$ son los pares ordenados de enteros.
 - $ightharpoonup \mathbb{Z} imes \text{Char} imes \text{Bool son las triplas ordenadas con un entero, luego un carácter y luego un valor booleano.}$
- ▶ nésimo: $(a_0, \ldots, a_k)_m$ es el valor a_m en caso de que $0 \le m \le k$. Si no, está indefinido.
- ► Ejemplos:
 - $(7,5)_0 = 7$ $(4a', true, 78)_2 = 78$

41

Secuencias, Notación

- ▶ Una forma de escribir un elemento de tipo $seq\langle T \rangle$ es escribir términos de tipo T separados por comas, entre $\langle \dots \rangle$.
 - \triangleright $\langle 1, 2, 3, 4, 1, 0 \rangle$ es una secuencia de \mathbb{Z} .
 - $ightharpoonup \langle 1, 1+1, 3, 2\times 2, 5 \mod 2, 0 \rangle$ es otra secuencia de $\mathbb Z$ (igual a la anterior).
- ► La secuencia vacía se escribe ⟨⟩, cualquiera sea el tipo de los elementos de la secuencia.
- ► Se puede formar secuencias de elementos de cualquier tipo.
 - ▶ Como $seq\langle \mathbb{Z} \rangle$ es un tipo, podemos armar secuencias de $seq\langle \mathbb{Z} \rangle$ (secuencias de secuencias de \mathbb{Z} , o sea $seq\langle seq\langle \mathbb{Z} \rangle \rangle$).

Secuencias

- ► Secuencia: Varios elementos del mismo tipo T, posiblemente repetidos, ubicados en un cierto orden.
- $ightharpoonup seq \langle T \rangle$ es el tipo de las secuencias cuyos elementos son de tipo T.
- ► T es un tipo arbitrario.
 - ► Hay secuencias de Z, de Bool, de Días, de 5-uplas:
 - también hay secuencias de secuencias de *T*;
 - etcétera.

42

Secuencias bien formadas

Indicar si las siguientes secuencias están bien formadas. Si están bien formadas, indicar su tipo $(seq\langle \mathbb{Z} \rangle, etc...)$

- \blacktriangleright $\langle 1,2,3,4,5 \rangle$? Bien Formada. Tipa como $seq\langle \mathbb{Z} \rangle$ y $seq\langle \mathbb{R} \rangle$
- $ightharpoonup \langle 1, true, 3, 4, 5 \rangle$? No está bien formada porque no es homogénea (Bool y \mathbb{Z})
- \blacktriangleright $\langle a', 2, 3, 4, 5 \rangle$? No está bien formada porque no es homogénea (*Char* y \mathbb{Z})
- $\blacktriangleright \ \langle 'H','o','l','a' \rangle ?$ Bien Formada. Tipa como $seq \langle \mathit{Char} \rangle$
- lacktriangledown $\langle true, false, true, true
 angle$? Bien Formada. Tipa como $seq \langle \mathsf{Bool} \rangle$
- $ightharpoonup \langle rac{2}{5}, \pi, e \rangle$? Bien Formada. Tipa como $seq \langle \mathbb{R} \rangle$
- \blacktriangleright $\langle \rangle$? Bien formada. Tipa como cualquier secuencia $seq\langle X \rangle$ donde X es un tipo válido.
- $lack \langle \langle \rangle \rangle$? Bien formada. Tipa como cualquier secuencia $seq\langle seq\langle X \rangle \rangle$ donde X es un tipo válido.

Funciones sobre secuencias

Longitud

- ► Longitud: $length(a : seq\langle T \rangle) : \mathbb{Z}$
 - ▶ Representa la longitud de la secuencia a.
 - Notación: length(a) se puede escribir como |a| o como a.length.
- ► Ejemplos:
 - $|\langle\rangle|=0$
 - $|\langle H', o', I', a' \rangle| = 4$
 - $|\langle 1,1,2\rangle|=3$

45

Funciones con secuencias

Pertenece

- ▶ Pertenece: $pertenece(x : T, s : seq\langle T \rangle) : Bool$
 - Es **true** sí y solo sí x es elemento de s.
 - Notación: pertenece(x, s) se puede escribir como $x \in s$.
- ► Ejemplos:
 - $ightharpoonup (1,'b') \in \langle (1,'a'), (2,'b'), (3,'c'), (1,'b') \rangle$? true
 - $(1,'b') \in \langle (1,'a'), (2,'b'), (3,'c'), (3,'b') \rangle$? false

Funciones con secuencias

i-ésimo elemento

- ▶ Indexación: $seq\langle T \rangle [i : \mathbb{Z}] : T$
 - Requiere $0 \le i < |a|$.
 - Es el elemento en la *i*-ésima posición de *a*.
 - La primera posición es la 0.
 - ► Notación: *a*[*i*].
 - \triangleright Si no vale $0 \le i < |a|$ se indefine.
- ► Ejemplos:
 - ('H','o','I','a')[0] = 'H'

 - ('H','o','I','a')[2] = 'I'
 - ('H','o','I','a')[3] = 'a'
 - (1,1,1,1)[0] = 1
 - $\langle \rangle [0] = \bot$ (Indefinido)

Funciones con secuencias

Igualdad

Dos secuencias s_0 y s_1 (notación $s_0 = s_1$) son iguales si y sólo si

- ► Tienen la misma cantidad de elementos
- ▶ Dada una posición, el elemento contenido en la secuencia s_0 es igual al elemento contenido en la secuencia s_1 .

Eiemplos:

- $\langle 1, 2, 3, 4 \rangle = \langle 1, 2, 3, 4 \rangle$? Sí
- \blacktriangleright $\langle \rangle = \langle \rangle$? Sí
- ► $\langle 4, 4, 4 \rangle = \langle 4, 4, 4 \rangle$? Sí
- \blacktriangleright $\langle 1, 2, 3, 4, 5 \rangle = \langle 1, 2, 3, 4 \rangle$? No
- \blacktriangleright $\langle 1, 2, 3, 4, 5 \rangle = \langle 1, 2, 4, 5, 6 \rangle$? No
- $ightharpoonup \langle 1, 2, 3, 5, 4 \rangle = \langle 1, 2, 3, 4, 5 \rangle$? No

Funciones con secuencias

Cabeza o Head

ightharpoonup Cabeza: $head(a:seq\langle T\rangle):T$

Requiere |a| > 0.

Es el primer elemento de la secuencia a.

Es equivalente a la expresión a[0].

ightharpoonup Si no vale |a| > 0 se indefine.

► Ejemplos:

• head((1,1,1,1)) = 1

49

Funciones con secuencias

Cola o Tail

ightharpoonup Cola: $tail(a: seq\langle T \rangle) : seq\langle T \rangle$

Requiere |a| > 0.

Es la secuencia resultante de eliminar su primer elemento.

ightharpoonup Si no vale |a| > 0 se indefine.

► Ejemplos:

 $\blacktriangleright tail(\langle'H','o','l','a'\rangle) = \langle'o','l','a'\rangle$

ightharpoonup tail($\langle \rangle$) = \perp (Indefinido)

ightharpoonup tail($\langle 6 \rangle$) = $\langle \rangle$

50

Funciones con secuencias

Agregar al principio o addFirst

- ▶ Agregar cabeza: $addFirst(t : T, a : seq\langle T \rangle) : seq\langle T \rangle$
 - Es una secuencia con los elementos de a, agregándole t como primer elemento.
 - Es una función que no se indefine
- ► Ejemplos:
 - $\blacktriangle \ \ \, addFirst('x',\langle'H','o','I','a'\rangle) = \langle'x','H','o','I','a'\rangle$
 - ▶ $addFirst(5, \langle 1, 1, 1, 1 \rangle) = \langle 5, 1, 1, 1, 1 \rangle$
 - ightharpoonup addFirst $(1,\langle\rangle)=\langle1\rangle$

Funciones con secuencias

Concatenación o concat

- ► Concatenación: $concat(a : seq\langle T \rangle, b : seq\langle T \rangle) : seq\langle T \rangle$
 - Es una secuencia con los elementos de a, seguidos de los de b.
 - Notación: concat(a, b) se puede escribir a + + b.
- ► Ejemplos:

 - $concat(\langle 1, 2 \rangle, \langle 3, 4 \rangle) = \langle 1, 2, 3, 4 \rangle$
 - ightharpoonup concat($\langle \rangle, \langle \rangle$) = $\langle \rangle$
 - ightharpoonup concat($\langle 2,3\rangle,\langle \rangle$) = $\langle 2,3\rangle$
 - ightharpoonup concat($\langle \rangle, \langle 5, 7 \rangle$) = $\langle 5, 7 \rangle$

Funciones con secuencias

Subsecuencia o subseq

- ▶ Subsecuencia: $subseq(a : seq\langle T \rangle, d, h : \mathbb{Z}) : seq\langle T \rangle$
 - Es una sublista de a en las posiciones entre d (inclusive) y h (exclusive).
 - Cuando 0 < d = h < |a|, retorna la secuencia vacía.
 - ightharpoonup Cuando no se cumple 0 < d < h < |a|, se indefine!
- ► Ejemplos:
 - ightharpoonup subseq($\langle 'H', 'o', 'I', 'a' \rangle, 0, 1$) = $\langle 'H' \rangle$
 - $subseq(\langle 'H', 'o', 'I', 'a' \rangle, 0, 4) = \langle 'H', 'o', 'I', 'a' \rangle$
 - $subseq(\langle 'H', 'o', 'I', 'a' \rangle, 2, 2) = \langle \rangle$
 - ightharpoonup subseq $(\langle 'H', 'o', 'I', 'a' \rangle, -1, 3) = <math>\bot$
 - ightharpoonup subseq($\langle 'H', 'o', 'l', 'a' \rangle, 0, 10$) = \bot
 - subseq($\langle 'H', 'o', 'I', 'a' \rangle, 3, 1$) = \bot

53

Operaciones sobre secuencias

- ▶ $length(a : seq\langle T \rangle) : \mathbb{Z} \text{ (notación } |a|)$
- ▶ $pertenece(x : T, s : seq\langle T \rangle)$: Bool (notación $x \in s$)
- ▶ indexación: $seg\langle T \rangle [i : \mathbb{Z}] : T$
- ▶ igualdad: $seq\langle T \rangle = seq\langle T \rangle$
- ▶ $head(a : seq\langle T \rangle) : T$
- ightharpoonup tail(a: seq $\langle T \rangle$): seq $\langle T \rangle$
- ightharpoonup addFirst(t : T, a : seq $\langle T \rangle$) : seq $\langle T \rangle$
- ▶ $concat(a : seq\langle T \rangle, b : seq\langle T \rangle) : seq\langle T \rangle$ (notación a++b)
- $subseq(a : seq\langle T \rangle, d, h : \mathbb{Z}) : \langle T \rangle$
- ightharpoonup setAt(a: seq $\langle T \rangle$, i: \mathbb{Z} , val: T): seq $\langle T \rangle$

Funciones con secuencias

Modificar un valor o setAt

- ightharpoonup Cambiar una posición: $setAt(a:seg\langle T \rangle, i: \mathbb{Z}, val: T): seg\langle T \rangle$
 - Requiere 0 < i < |a|
 - Es una secuencia igual a a, pero con valor val en la posición i.
- ► Ejemplos
 - $\blacktriangleright setAt(\langle 'H', 'o', 'I', 'a' \rangle, 0, 'X') = \langle 'X', 'o', 'I', 'a' \rangle$
 - $> setAt(\langle 'H', 'o', 'I', 'a' \rangle, 3, 'A') = \langle 'H', 'o', 'I', 'A' \rangle$
 - ightharpoonup $setAt(\langle \rangle, 0, 5) = \bot$ (Indefinido)

54

Renombre de tipos

- ▶ Un renombre de tipos (o *alias* en inglés) en un lenguaje es una forma de crear un nuevo nombre para un tipo de dato que ya existe.
- ► Este nuevo nombre no crea un nuevo tipo de dato, sino que simplemente actúa como un sinónimo del tipo original.
- ▶ Puede ser útil para hacer la especificación más legible o para adaptar un tipo genérico a un contexto específico.
- ightharpoonup En nuestro lenguaje de especificación vamos a adoptar la notación $Renombre \ T_1 = T_2$
- ► Ejemplos:
 - Un usuario en un sistema puede estar representado con una tupla de 2 elementos, donde el primero corresponde al número de identificación (id) y el segundo a su nombre de usuario. Entonces: Renombre Usuario = Z × seg⟨Char⟩
 - Una publicación de un usuario en una red social puede representarse con una tupla de 3 elementos compuesta por: el autor de dicha publicación, el texto publicado y el conjunto de los usuarios que le dieron me gusta. Entonces:

Renombre Publicación = Usuario \times seg $\langle Char \rangle \times$ seg $\langle Usuario \rangle$

Problemas comunes de las especificaciones

- ► ¿Qué sucede si especifico de menos?
- ► ¿Qué sucede si especifico de más?

57

Sub-especificación

- ► Consiste en dar una precondición más restrictiva de lo realmente necesario, o bien una postcondición más débil de la que se necesita.
- ► Deja afuera datos de entrada o ignora condiciones necesarias para la salida (permite soluciones no deseadas).
- ► Ejemplo:

```
problema distinto(x : \mathbb{Z}) : \mathbb{Z}\{ requiere: \{x > 0\} asegura: \{res \neq x\} \} ... en vez de: problema distinto(x : \mathbb{Z}) : \mathbb{Z}\{ requiere: \{True\} asegura: \{res \neq x\} \}
```

Sobre-especificación

- Consiste en dar una postcondición más restrictiva de la que se necesita, o bien dar una precondición más laxa.
- ► Limita los posibles algoritmos que resuelven el problema, porque impone más condiciones para la salida, o amplía los datos de entrada.

```
► Ejemplo:
```

```
problema distinto(x : ℤ) : ℤ {
    requiere: {True}
    asegura: {res = x + 1}
  }

... en lugar de:
```

 \mathbb{Z} ... en lugar de: problema $distinto(x:\mathbb{Z}):\mathbb{Z}\{$

```
requiere: \{True\}
asegura: \{res \neq x\}
```

5

Modularización

Partiendo un problema en problemas mas chicos

Dadas dos secuencias, queremos saber si uno es una una permutación¹ de la otra secuencia:

¿Cuándo será una secuencia permutación de la otra?

- ► Tienen los mismos elementos
- ► Cada elemento aparece la misma cantidad de veces en ambas secuencias

```
problema esPermutacion(s1, s2: seq\langle T \rangle): Bool { asegura: \{res = true \leftrightarrow para cada elemento es cierto que tiene la misma cantidad de apariciones en <math>s1 y s2 } }
```

Pero... falta algo...

¹mismos elementos y misma cantidad por cada elemento, en un orden potencialmente distinto

Modularización

Partiendo un problema en problemas mas chicos

Ahora, tenemos que especificar el problema cantidadDeApariciones

¿Cómo podemos saber la cantidad de apariciones de un elemento en una lista?

- ► Podríamos sumar 1 por cada posición donde el elemento en dicha posición es el que buscamos!
- ▶ Las operaciones de Sumatorias y Productorias también podemos usarlos

```
problema cantidadDeApariciones(s:seq\langle T\rangle,e:T):\mathbb{Z} { asegura \{res= la cantidad de veces que el elemento e aparece en la lista s } }
```

61

Modularización

O partir el problema en problemas más chicos...

Los conceptos de modularización y encapsulamiento siempre estarán relacionados con los principios de diseño de software. La estrategia se puede resumir en:

- Descomponer un problema grande en problemas más pequeños (y sencillos)
- ► Componerlos y obtener la solución al problema original

Esto favocere muchos aspectos de calidad como:

- ► La reutilización (una función auxiliar puede ser utilizada en muchos contextos)
- ► Es más facil probar algo chico que algo grande (si cada parte cumple su función correctamente, es más probable que todas juntas también lo haga)
- ► La declaratividad (es más facil entender al ojo humano)

Recapitulando

Partiendo un problema en problemas mas chicos

Dadas dos secuencias, queremos saber si uno es una una permutación¹ de la otra secuencia:

```
problema esPermutacion(s1, s2: seq\langle T \rangle): Bool {    asegura: \{res = true \leftrightarrow (para \ cada \ elemento \ e \ de \ T, \ se \ cumple \ que \ (cantidadDeApariciones(s1, e) = cantidadDeApariciones(s2, e)))} \} Donde...

problema cantidadDeApariciones(s: seq\langle T \rangle, e: T): \mathbb{Z} \ \{ \ asegura \ \{res = \ la \ cantidad \ de \ veces \ que \ el \ elemento \ e \ aparece \ en \ la \ lista \ s \ \} \}
```

Y así podemos modularizar y descomponer nuestro problemas, partiendolos en problemas más chicos. Y también los podremos reutilizar!

62

Modularización

Top Down versus Bottom Up

También es aplicable a la especificación de problemas:

buttom -uf

```
problema esPermutacion(s1, s2 : seq\langle T \rangle) : Bool { asegura: \{res = true \leftrightarrow (para \ cada \ elemento \ e \ de \ T, \ se \ cumple \ que \ (cantidadDeApariciones(s1, e) = cantidadDeApariciones(s2, e)))} \} problema cantidadDeApariciones(s : seq\langle T \rangle, e : T) : \mathbb{Z} \ \{ asegura \{res = \text{la cantidad } \text{de veces } \text{que \ el \ elemento } \text{e \ aparece \ en \ la \ lista } \text{s} \ \}
```

¿Lo encaramos Top Down o Bottom Up?

 $^{^{1}\}mathrm{mismos}$ elementos y misma cantidad por cada elemento, en un orden potencialmente distinto