Name: Student No.: Group 0

For each of the following problems, find the correct answer (tick as appropriate!). No justifications are required. Each problem has exactly one correct solution, which is worth 1 mark. Incorrect solutions (including no answer, multiple answers, or unreadable answers) will be assigned 0 marks; there are no penalties.

1. The (real or complex) solution space of $y - 2y' + ty^{(3)} = 0$, t > 0, has dimension

2 3 4 5

2. The sequence $\phi_0, \phi_1, \phi_2, \dots$ of Picard-Lindelöf iterates for the IVP y' = 2y, y(1) = 1 has $\phi_2(t)$ equal to

- 3. For the solution y(t) of the IVP $y' = (y-1)\cos t$, y(0) = 2 the value $y(\pi/2)$ is equal to $y(\pi/2)$.
- 4. Which of the following ODE's has distinct solutions $y_1, y_2 : [0, 1) \to \mathbb{R}$ satisfying $y_1(0) = y_2(0)$?

 $y' = y^2$ $y' = y\sqrt{t}$ $y' = t\sqrt{y}$ y' = ty y' = |y|

- 5. $e^x(x+1) dx + (ye^y xe^x) dy = 0$ has the integrating factor e^{-x} e^{-x} e^{-y} e^{-x-y}
- 6. For the solution y(t) of the IVP $y' = y^3 4y$, y(0) = 3 the limit $\lim_{t \to +\infty} y(t)$ is equal to 0 2 $+\infty$ $-\infty$
- 7. For the solution y(t) of the IVP $y' = (\cos t)/y$, y(0) = 1 the value $y(\pi/2)$ is equal to 0 1 $\frac{1}{2}$ $\sqrt{3}$ $\frac{1}{2}\sqrt{3}$
- 8. For which of the following ODE's does the set of solutions $\phi \colon \mathbb{R} \to \mathbb{R} \ \underline{not}$ form a (linear) subspace of $\mathbb{R}^{\mathbb{R}}$?

y' = |t|y yy' = 0 ty' = y y' = t(y+1) $y'' = t^2(y'-y)$

9. For which choice of $f_n(x)$ does $\sum_{n=1}^{\infty} f_n(x)$ converge uniformly on $[0,+\infty)$?

 $f_n(x) = \sin(x)/n$ $f_n(x) = e^{-nx}/n$ $f_n(x) = x/n^4$ $f_n(x) = 1/(n+x^2)$ $f_n(x) = 1/(n^2+x)$

10. If y = y(x) solves y' = x/y then z = y/x solves

z' = z $z' = (1 - z^2)/(xz)$ $z' = xz/(1 - z^2)$ z' = 0z' = 1/z

11. For the solution $y: (0, +\infty) \to \mathbb{R}$ of the IVP	$t^2y''-2y=0,$	y(1) = y'(1) = 1	the value
y(2) is equal to			

 $\frac{2}{6}$

 $\frac{12}{6}$

 $\frac{17}{6}$

 $\frac{22}{6}$

12. Any solution y(t) of y'' + 4y = 0 satisfying y(0) = 0 also satisfies

 $y(\pi/4) = 0$ $y(\pi/2) = 0$ y'(0) = 0 y'(0) = 1 y'(0) = 2

13. $y'' - 2y' + y = e^t - 2$ has a particular solution $y_p(t)$ of the form

 $c_0 + c_1 e^t$

 $c_0 + c_1 t e^t$

 $c_0 + c_1 t^2 e^t$

 $(c_0+c_1t)e^t$

 $(c_0+c_1t^2)e^t$

- 14. The function $f(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^a} \cos((2k+1)x)$, $a \in \mathbb{Z}$, is continuous on \mathbb{R} if and only if $a \ge 2$ $a \ge 0$ $a \ge 1$ $a \ge 3$ $a \ge 4$
- 15. Maximal solutions of $y' = y^2 y + 1$ are defined on an interval of the form

(a,b)

[a,b] $(a,+\infty)$ $(-\infty,b)$ $(-\infty,+\infty)$

with $a, b \in \mathbb{R}$.

Time allowed: 45 min

CLOSED BOOK

Good luck!