

BHARATIYA VIDYA BHAVAN'S SARDAR PATEL INSTITUTE OF TECHNOLOGY

(Empowered Autonomous Institute Affiliated to University of Mumbai)
[Knowledge is Nectar]

Department of Computer Engineering

Course – Data Analytics Open Elective

Course – Data Analytics Open Elective						
UID	2021300126					
Name	Pranay Singhvi					
Class and Batch	TE Computer Engineering - Batch A					
Date	23-01-2024					
Lab#	2					
Aim	To find mean, median, mode, range, standard deviation, variance, first and third quartile, and correlation coefficient.					
Data Set	https://www.kaggle.com/datasets/trolukovich/nutritional-values-for-common-foods-and-products					
Colab File Link	https://colab.research.google.com/drive/1s0BvHZn_3K0UGE01jJlws0SM-cDl3z ?usp=sharing					
Purpose	Nutritional Research: Analyzing relationships between different nutrients and exploring trends in food composition for scientific and academic research.					
Code	Mean: Theory: The mean is the average of a set of values. It is calculated by summing all the values and dividing by the number of observations. Application: In a nutrients dataset, the mean can represent the average nutritional content for a specific nutrient, providing a central measure that reflects the typical value. def custom_mean(data): return sum(data) / len(data) Median: Theory: The median is the middle value in a dataset when it is ordered. It is less sensitive to extreme values than the mean. Application: In a nutrients dataset, the median can be used to understand the central tendency of the data, especially when there are outliers that might disproportionately influence the mean. def custom_median(data): sorted_data = sorted(data) n = len(sorted_data) if n % 2 == 0: return (sorted_data[n // 2 - 1] + sorted_data[n // 2]) / 2					

return sorted_data[n // 2]

else:

BHARATIYA VIDYA BHAVAN'S SARDAR PATEL INSTITUTE OF TECHNOLOGY

(Empowered Autonomous Institute Affiliated to University of Mumbai)
[Knowledge is Nectar]

Department of Computer Engineering

Mode:

Theory: The mode is the value that appears most frequently in a dataset.

Application: In a nutrients dataset, identifying the mode can highlight the most common nutrient content, aiding in understanding prevalent nutritional characteristics among foods.

```
def custom_mode(data):
    frequency = {}
    for value in data:
        frequency[value] = frequency.get(value, 0) + 1
    mode_values = [key for key, val in frequency.items() if val == max(frequency.values())]
    return mode_values
```

Range:

Theory: The range is the difference between the maximum and minimum values in a dataset. **Application**: In a nutrients dataset, the range provides insight into the spread of values, helping to identify the variability in nutrient content across different foods.

```
def range(column):
   return max(column)-min(column)
```

Standard Deviation:

Theory: Standard deviation measures the average deviation of each data point from the mean. **Application**: In a nutrients dataset, a higher standard deviation indicates greater variability in nutrient content, while a lower standard deviation suggests more consistency. Variance and standard deviation help quantify the degree of dispersion in nutrient values.

```
def custom_standard_deviation(data):
    mean_value = sum(data) / len(data)
    squared_diff = [(x - mean_value) ** 2 for x in data]
    variance = sum(squared_diff) / len(data)
    std_deviation = variance ** 0.5
    return std_deviation
```

First and Third Quartile (Q1 and Q3):

Theory: Quartiles divide a dataset into four equal parts. Q1 is the median of the lower half, and Q3 is the median of the upper half.

Application: In a nutrients dataset, quartiles help identify the distribution of nutrient values, and the interquartile range (Q3 - Q1) gives a measure of the spread around the median.

BHARATIYA VIDYA BHAVAN'S SARDAR PATEL INSTITUTE OF TECHNOLOGY

(Empowered Autonomous Institute Affiliated to University of Mumbai)
[Knowledge is Nectar]

Department of Computer Engineering

```
def calculate_quartiles(numbers):
    sorted_numbers = sorted(numbers)
    n = len(sorted_numbers)
    mid = n//2
    if n % 2 ==0:
        lh = numbers[mid]
        uh = numbers[mid]
        tirst_q = (lh[mid//2] + lh[mid//2 -1]) / 2
        third_q = (uh[mid//2] + uh[mid//2 -1]) / 2
    else:
        lh = numbers[mid]
        uh = numbers[mid]
        uh = numbers[mid]
        third_q = uh[mid//2]
        third_q = uh[mid//2]
        return [first_q,third_q]
```

Correlation Coefficient:

Theory: The correlation coefficient measures the strength and direction of a linear relationship between two variables.

Application: In a nutrients dataset, the correlation coefficient can be used to explore relationships between different nutrients. For example, it can reveal whether foods high in one nutrient tend to be high or low in another, providing valuable insights into dietary patterns.

```
def correlation_coeff(col1,col2):
    mean1 = custom_mean(col1)
    mean2 = custom_mean(col2)

sum_product_deviations = sum((xi - mean1)*(yi - mean2) for xi,yi in zip(col1,col2))
sum_sq_dev1 = sum((xi - mean1)**2 for xi in col1)
sum_sq_dev2 = sum((xi - mean2)**2 for xi in col2)

coef = sum_product_deviations / ((sum_sq_dev1*sum_sq_dev2)**0.5)
return coef
```

```
print(correlation_coeff(df["monounsaturated_fatty_acids_g"],df["saturated_fatty_acids_g"]))
0.4876755173136889
```

Now, Using all function given above in below code to print all mean, median, mode and standard deviation for each columns.

```
Table = PrettyTable()
Table.field_names = ["Columns","Mean", "Median", "Mode","Range","Standard Deviation","First Quartiles(75%)", "Third Quartiles(25%)"]
for col in columns:
    mean_value = round(custom_mean(df[col]),2)
    median_value = round(custom_median(df[col]),2)
    mode_value = custom_mode(df[col])
    range_value = range(df[col])
    deviation_value = round(custom_standard_deviation(df[col]),2)
    result = calculate_quartiles(df[col].tolist())
    Table.add_row([col,mean_value,median_value,mode_value,range_value,deviation_value,round(result[0],2),round(result[1],2)])
```

Output:

BHARATIYA VIDYA BHAVAN'S SARDAR PATEL INSTITUTE OF TECHNOLOGY

(Empowered Autonomous Institute Affiliated to University of Mumbai)
[Knowledge is Nectar]

Department of Computer Engineering

Columns	Mean	Median	Mode	Range	Standard Deviation	First Quartiles(75%)	Third Quartiles(25%)
calories_100g	255.97	221	[884]	898	166.27	91	123
total_fat	12.63	7.4	[11.0]	99.9	16.51	0.2	2.9
saturated_fat	4.19	2.2	[0.1]	95.9	6.88	0.1	0.7
cholesterol	46.88	12	[0]	3100	128.06	j 0	j 63
sodium	323.62	115	[0]	26000	743.01	2	j 861
choline	27.81	4.9	[0.0]	2403.3	55.58	4.1	125.3
j folate	49.51	j 9 i	[0]	2340	131.28	j 17	j 1
folic_acid	20.62	i ø i	[0]	1611	104.05	i 0	i ø
niacin	3.92	i 3.18 i	[0.0]	90.567	4.6	0.54	i 6.59
pantothenic acid	0.55	i 0.36 i	[0.0]	34.5	1.33	0.0	0.41
riboflavin	0.26	0.18	[0.0]	7.29	0.4	0.06	0.25
thiamin	0.24	0.09	[0.0]	11.2	0.48	0.02	0.24
vitamin a	585.31	18	[0]	100000	3487.15	5	39
vitamin_a_rae	101.08	2	[0]	30000	843.35	i õ	12
carotene_alpha	15.49	i ō i	[0]	14251	240.41		i
carotene_beta	105.79		[0]	42891	996.5	2	i
cryptoxanthin_beta	4.49		[0]	6252	114.2	i õ	i
lutein_zeaxanthin	99.72		[0]	19697	847.32	I 20	i ĕ
l lucopene	0.0	1 0 1	[0]	0	0.0	1 0	. 0
vitamin b12	1.44	0.29	[0.0]	98.89	4.61	0.0	0.6
vitamin_bi2 vitamin_b6	0.3	0.15	[0.0]	12.0	0.48	0.26	0.35
vitamin_bo	5.55	0.13	[0.0]	1900.0	46.1	21.9	0.0
vitamin_c	16.91	0.0	[0]	10000	134.46	1 0	1 0.0
vitamin_u	1.02	0.17	[0.0]	149.4	4.18	0.25	0.2
vitamin_e tocopherol_alpha	1.02	0.17	[0.0]	149.4	4.18	0.25	0.2
tocopherot_atpha vitamin_k	1.02	0.17	[0.0]	1714.5	61.86	0.23	0.2
Vitamin_k calcium	8.5 78.54	0.0 21	[0.0]	1/14.5 4332	179.53	0.5 4) 0.0 9
	/8.54	21 0.08	[0.0]	4332 15.05	1/9.53 0.59	4 0.04) 9 0.1
copper irom	0.19	0.08 1.61	[0.0]	15.05	0.59 5.98	0.04 0.3	0.1 1.1
magnesium	35.66	22	[0]	781	59.17	26	20
manganese	0.49	0.02	[0.0]	328.0	6.39	0.0	0.02
phosphorous	176.35	165	[0]	6869	175.13	20	258
potassium	278.89	239	[0]	10100	315.27	290	300
selenium	14.77	9.0	[0.0]	1917.0	29.12	1.1	46.5
zink	2.29	1.19	[0.0]	90.95	3.54	0.05	2.3
protein	13.24	10.84	[0.0]	88.32	10.26	1.0	24.34

Conclusion

In conclusion, I have learnt to calculate mean, median, mode and standard deviation. I also learnt about first and third quartiles and also learnt to find correlation between two attribute