Lecture2

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Laplacian operator

- Laplacian operator (∇^2) in 3D
 - In the cartesian coordinate, it is given by

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

- Laplacian operator (∇^2) in 1D
 - In this case, it is reduced to

$$\nabla^2 = \frac{d^2}{dx^2}$$

It is simply the second order differentiation.

Where can we find it?

The infinte potential well problem

$$\frac{d^2\psi(x)}{dx^2} = -k^2\psi(x)$$

- Therefore, solving the Schrödinger equation is just to calculate the eigenvalue/eigenfunction of the Laplacian operator.
- Analytic solutions ($\cos kx$ and $\sin kx$) are known.
- Our goal is <u>its discretization</u>.

Discretization

- Let us assume that we have N points in [0, a].
 - When they are uniformly distributed, the i-th point is given by

$$x_i = \frac{i-1}{N-1}a = (i-1)\Delta x$$

- Then, the wavefunction, $\psi(x)$, can be described with a vector of $[\psi_2 \quad \psi_3 \quad \psi_4 \quad \psi_5 \quad \cdots \quad \psi_{N-4} \quad \psi_{N-3} \quad \psi_{N-2} \quad \psi_{N-1}]^T$.
- Of course, $\psi_i = \psi(x_i)$ and the boundary conditions are imposed.
- In such a case, the second derivative can be approximated by

$$\left. \frac{d^2 \psi}{dx^2} \right|_{x=x_1} \approx \frac{\psi(x_{i+1}) - 2\psi(x_i) + \psi(x_{i-1})}{\Delta x^2}$$

Matrix form

- Consider a case of N=5.
 - Then, $\psi(x)$, can be described with a small vector of $[\psi_2 \quad \psi_3 \quad \psi_4]^T$.
 - The Laplacian operator maps the above vector into

$$\frac{1}{(\Delta x)^2} \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} \psi_2 \\ \psi_3 \\ \psi_4 \end{bmatrix}$$

- It can be regarded as a discretized version of $\frac{d^2\psi(x)}{dx^2}$.

Eigenvalue problem

- Assume a natural number, $N \geq 2$.
 - For a square matrix, A, whose size is $N \times N$, an eigenvalue (λ) and the corresponding eigenvector (x) satisfy

$$Ax = \lambda x$$

Example)

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

It is found that $\lambda = 3$ or $\lambda = 1$. Also corresponding eigenvectors are $\begin{bmatrix} 1 & -1 \end{bmatrix}^T$ and $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$, respectively.

Infinite potential well (N = 5)

Recall that the problem looks like:

$$\frac{d^2\psi}{dx^2} = -k^2\psi$$

- In a matrix form (with the boundary conditions),
 - It is simply given by

$$\frac{1}{(\Delta x)^2} \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} \psi_2 \\ \psi_3 \\ \psi_4 \end{bmatrix} = -k^2 \begin{bmatrix} \psi_2 \\ \psi_3 \\ \psi_4 \end{bmatrix}$$

where
$$\Delta x = \frac{a}{4}$$
.

– How can we solve it numerically?

MATLAB example

- MATLAB is just one possible way to do it.
 - You can use any language of your preference!
- First, set the matrix, A.

```
A = [-2.0 \ 1.0 \ 0.0; \ 1.0 \ -2.0 \ 1.0; \ 0.0 \ 1.0 \ -2.0];
```

Calculate the eigenvalues.

```
[V,D] = eig(A)
```

- Each diagonal component of D represents an eigenvalue.
- Each column of v represents the corresponding eigenvector.
- For more information, see the MATLAB manual for a function, eig.

Physical interpretation

- Eigenvalues are -3.4142, -2.0000, and -0.5858.
 - Which one is for the ground state energy?
 - It is noted that the eigenvalue is $-k^2(\Delta x)^2$.
 - Therefore, -0.5858 is for the smallest k^2 .
 - In an analytic solution, the smallest k^2 is $\left(\frac{\pi}{a}\right)^2$.
 - The energy is obtained from $E = \frac{\hbar^2}{2m}k^2$.

Practical number

- Example)
 - Assume a = 5 nm and m = 0.91 m_0 . (m_0 is the electron rest mass.)
 - Then, $\Delta x = 1.25$ nm and $k^2(\Delta x)^2 = 0.5858$.
 - So, $k^2 = 3.749 \times 10^{17}$ m⁻². \leftarrow Compare it with the analytic solution!
 - Finally, $E = \frac{\hbar^2}{2m}k^2 = 2.5148 \times 10^{-21} \text{ J} = 0.0157 \text{ eV}.$
- Of course, a higher *N* value gives a better result.
 - Draw the error of the ground state energy as a function of N.

Homework#2

- Due: AM08:00, September 10
- Problem#1
 - Write a simple code for solving the infinite potential well problem.
 - In this case, the effective mass is $0.19 m_0$.
 - Use three different values of N. (5, 50, and 500)
 - Upload your code.
 - Upload your report, too.