CSC343 Worksheet 2 Solution

June 11, 2020

1. Exercise 2.4.1:

a) $\sigma_{speed \geq 3.0}$ (Movies)

Models 1005, 1006, 1013 have speed greater than 3.0

	model	speed	ram	hd	price
	1001	2.66	1024	250	2114
	1002	2.10	512	250	995
	1003	1.42	512	80	478
	1004	2.80	1024	250	649
\rightarrow	1005	3.20	512	250	630
-	1006	3.20	1024	320	1049
	1007	2.20	1024	200	510
	1008	2.20	2048	250	770
	1009	2.00	1024	250	650
	1010	2.80	2048	300	770
	1011	1.86	2048	160	959
	1012	2.80	1024	160	649
→	1013	3.06	512	80	529

Notes:

- \bullet Select
 - Is indicated by σ
 - Syntax: σ_{QUERY} SCHEMA_NAME
 - e.g $\sigma_{length \geq 100 \text{ AND } studioName=`Fox'}(Movies)$

Relation - Movies

title	year	length	in Color	studioName	producerC#
Star Wars	1977	124	sciFi	Fox	12345
Galaxy Quest	1999	104	comedy	DreamWorks	67890

b) Notes:

- Project
 - Syntax: $\pi_{A_1,A_2,\cdots,A_n}(Rel)$
 - * A_1, \dots, A_n represents attributes
 - Picks certain columns
 - e.g

What are the titles and years of movies made by Fox that are at least 100 minutes long?

$$\pi_{title,year}(\sigma_{length \geq 100 \text{ AND } studioName=\text{`Fox'}})(\text{Movies})$$

- Cross-Product / Cartesian Product
 - Combines two relations
 - Syntax: Relation $1 \times \text{Relation } 2$
 - e.g. Names and GPAs of students with HS>1000 who applied to CS and were rejected

 $\pi_{sName,GPA}(\sigma_{Student.sID=Apply.sID} \text{ AND } HS>1000 \text{ AND } major=`cs' \text{ AND } dec=`R') (Student \times Apply)$

- Natural Join
 - Enforce equality on all attributes with the same name
 - Eliminiate one copy of duplicate attributes
 - Is symbolized by \bowtie
 - Syntax: Relation $1 \bowtie \text{Relation } 2$
 - e.g.

Names and GPAs of students with HS > 1000 who applied to CS and were rejected.

 $\pi_{sName,GPA}(\sigma_{HS>1000~{\bf AND}~major=`cs'~{\bf AND}~dec=`R'}({\it Student}\bowtie {\it Apply}))$

- e.g.2.

Names and GPAs of students with HS>1000 who applied to CS at college with enr>20,000 and were rejected

```
\pi_{sName,GPA}(\sigma_{HS>1000~{\bf AND}~enr>20000~{\bf AND}~major=`cs'~{\bf AND}~dec=`R'}({\rm Student}\bowtie({\rm Apply}\bowtie{\rm College}))
```


• Union Operator

- Syntax $R \cup S$
- Is the set of elements that are in R or S or both.
- An element appears only once in the union even if it is present in both R and S.
- Is like \mathbf{UNION} keyword in SQL
- e.g.

List of college and student names

$$\pi_{cName}(\text{College}) \cup \pi_{sName}(\text{Student})$$

• Difference Operator

- Syntax: R S
- Is also called the difference of R and S
- is the set of elements that are in R but not in S.
- Is like **EXCEPT** keyword in SQL
- e.g.

IDs and names of students who didn't apply anywhere

$$\pi_{sID}(Student) - \pi_{sID}(Apply)$$

- Intersection Operator
 - Syntax: $R \cap S$
 - Is also canned the *intersection* of R and S
 - Is the set of elements that are in both R and S
 - e.g.

Names that are both a college name and a student name

$$\pi_{cName}(\text{College}) - \pi_{sName}(\text{Student})$$