MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR

Department of Computer Science and Engineering

CSP610 Lab Elective

Note: Lab- I Time: 2 hrs Write the program in Python.

- 1. Consider a biometric matcher that generates similarity scores in the range [0,1]. Its genuine and impostor score distributions are as follows: $p(s|genuine) = 4 + 4s^2$ and $p(s|impostor) = 4 4s^2$. Suppose the following decision rule is employed: s is classified as a genuine score. If $s \ge \eta$; else it is classified as an impostor score. Here, $\eta \in [0,1]$.
- 2. Plot the genuine and impostor distributions in a single graph.
- 3. Write a program to compute the DET and ROC curves based on these two distributions. Plot the DET and ROC curves.
- 4. Consider a theoretical biometric matcher that generates distance scores in the range $[-\infty, +\infty]$. Assume that the genuine and impostor score distributions due to this matcher can be approximately modeled as N(20,5) and N(60,15), respectively. Here, $N(\mu, \sigma^2)$ denotes a normal distribution with mean, μ , and variance, σ^2 . Suppose the following decision rule is employed: s is classified as a genuine score if $s \leq \eta$; else it is classified as an impostor score. Here, $\eta \in [0, 100]$.
- 5. Plot the genuine and impostor distributions in a single graph. The distributions should be contained in the range [0, 100].
- 6. Write a program to compute the DET and ROC curves based on these two distributions. Plot the DET and ROC curves.

ROC=tpr vs fpr

tpr=tp/(tp+fn)

fpr=fp/(tn+fp)