TRƯỜNG ĐẠI HỌC GIAO THÔNG VẬN TẢI THÀNH PHỐ HỒ CHÍ MINH KHOA CƠ BẢN – BỘ MÔN TOÁN

BÀI GIẢNG ĐẠI SỐ TUYẾN TÍNH

CHƯƠNG I. MA TRẬN, ĐỊNH THỰC, HỆ
PHƯƠNG TRÌNH TUYẾN TÍNH

§1. Khái niệm và phép toán ma trận

ThS. Đinh Tiến Dũng

Giới thiệu giảng viên

- ThS: Đinh Tiến Dũng
- SĐT: 0793112122 (Zalo)
- Mail: dung.dinh@ut.edu.vn

Giới thiệu học phần

Học phần này cung cấp các kiến thức cơ bản về: ma trận; định thức; hệ phương trình tuyến tính; không gian vector; không gian Euclide; chéo hóa ma trận.

Đây là phần kiến thức cần thiết để sinh viên tiếp thu các học phần khác trong tất cả các chuyên ngành kinh tế, kỹ thuật.

TÀI LIỆU THAM KHẢO

- Bộ môn Toán, Bài giảng Đại số (lưu hành nội bộ), Trường đại Học GTVT TP.HCM, 2015
- Đỗ Công Khanh (chủ biên), Đại số tuyến tính, NXB. ĐHQG. TPHCM, 2010.
- Nguyễn Đình trí (chủ biên), Giáo trình Toán cao cấp, tập 1. NXB Giáo dục, Hà nội, 2005.
- Jean Marie Monier, Giáo trình Toán, Tập 5, 6. NXB Giáo dục, Hà nội, 2006 (dịch từ tiếng Pháp, DUNOD, Paris, 1996).
- Các hệ thống học liệu, bài giảng từ Internet.

NỘI DUNG CHƯƠNG I

- §1. Khái niệm và phép toán ma trận.
- §2. Định thức.
- §3. Tính khả nghịch và hạng của ma trận.
- §4. Hệ phương trình tuyến tính.

CHƯƠNG I. MA TRẬN, ĐỊNH THÚC, HỆ PHƯƠNG TRÌNH

§1. Khái niệm và phép toán ma trận

I. CÁC KHÁI NIÊM

❖ Ví du mở đầu

Giải hệ phương trình

$$\begin{cases} x + 2y = 5 \\ 2x - 3y = -4 \end{cases}$$

$$-2.d_1 + d_2 \rightarrow d_2 \quad \begin{cases} x + 2y = 5 \\ 0.x - 7y = -14 \end{cases}$$

$$-\frac{1}{7} \cdot d_2 \rightarrow d_2 \quad \begin{cases} x + 2y = 5 \\ 0.x + y = 2 \end{cases}$$

$$0.x + y = 2$$

$$-2d_2 + d_1 \rightarrow d_1 \quad \begin{cases} x + 0.y = 1 \\ 0.x + y = 2 \end{cases}$$

$$\begin{pmatrix} 1 & 2 & 5 \\ 2 & -3 & -4 \end{pmatrix}$$

$$\begin{array}{c} -2.d_1 + d_2 \rightarrow d_2 \\ \rightarrow \end{array} \begin{pmatrix} 1 & 2 & 5 \\ 0 & -7 & -14 \end{pmatrix}$$

$$\begin{array}{c} -\frac{1}{7}.d_2 \rightarrow d_2 \\ \rightarrow \end{array} \begin{pmatrix} 1 & 2 & 5 \\ 0 & 1 & 2 \end{pmatrix}$$

$$\begin{array}{c} -2d_2 + d_1 \rightarrow d_1 \\ \rightarrow \end{array} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

$$\begin{array}{c} Gi & i & h \\ phuong \\ trình \\ b & ang \\ phép \\ bi & i & a \\ so & c & ap \\ trên & mental \\ trận \\ \end{array}$$

Giải hệ phương trình phép biến đổi sơ cấp trên ma trận

1. Khái niệm ma trận

* Định nghĩa ma trận

Cho m, n nguyên dương. Ma trận A cỡ $m \times n$ là một bảng hình chữ nhật gồm $m \times n$ số \mathbf{a}_{ij} ($\mathbf{i} = \mathbf{1}, ..., \mathbf{m}$; $\mathbf{j} = \mathbf{1}, ..., \mathbf{n}$) được sắp thành m dòng, n cột:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = [a_{ij}]_{m \times n} = (a_{ij})_{m \times n}$$

 $với \ \mathbf{a}_{ij} \ gọi là phần tử (số hạng) nằm ở dòng thứ i và cột thứ j của ma trận <math>A$.

Ngoài ra:

• Khi m = 1: $A = [a_{11} \ a_{12} \ ... \ a_{1n}]$ gọi là ma trận dòng.

• Khi
$$n = 1$$
: $A = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$ gọi là ma trận cột.

• Khi m = n = 1: $A = [a_{11}]$, khi đó A là một số thực.

❖ Ví dụ

$$A = \begin{bmatrix} 3 & -2 & 4 & 0 \\ 1 & 3 & 0 & -5 \\ 2 & 1 & 1 & 3 \end{bmatrix}; B = \begin{bmatrix} 1 \\ -3 \\ 2 \\ 0 \end{bmatrix}; C = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}; D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

- 2. Khái niệm ma trận không
 - Dịnh nghĩa

Ma trận-không là ma trận có tất cả các phần tử đều bằng $\mathbf{0}$. K/h: $O_{m \times n}$ hay $\mathbf{0}$.

Ví dụ:
$$O_{2\times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
; $O_{3\times 2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Nhận xét: Có nhiều ma trận-không khác nhau.

3. Khái niệm hai ma trận bằng nhau

Dịnh nghĩa

Hai ma trận A và B gọi là bằng nhau nếu chúng cùng cỡ và tất cả các phần tử ở các vị trí tương ứng bằng nhau. Ký hiệu: A = B.

* Ví dụ:
$$A = \begin{bmatrix} 3 & -2 & 4 & 0 \\ 1 & 3 & 0 & -5 \\ 2 & 1 & 1 & 3 \end{bmatrix}$$
, $E = \begin{bmatrix} 3 & -2 & 4 & 0 \\ 1 & 3 & 0 & -5 \\ 2 & 1 & 1 & 3 \end{bmatrix}$

 \clubsuit Hỏi: So sánh $O_{2\times 3}$ và $O_{3\times 2}$?

 $\Rightarrow A = E$.

4. Khái niệm ma trận vuông:

Dịnh nghĩa

Ma trận $A = [a_{ij}]_{n \times n}$ cỡ $n \times n$ được gọi là ma trận vuông cấp n. Kí hiệu $A = [a_{ij}]_n$. Ngoài ra, các đường chéo được hiểu như sau:

5. Một số ma trận vuông đặc biệt:

a) Ma trận đơn vị

Dịnh nghĩa

Ma trận vuông cấp n có các phần tử trên đường chéo chính bằng 1 và tất cả các phần tử nằm ngoài đường chéo chính bằng 0 được gọi là ma trận đơn vị cấp n.

Ký hiệu: I_n hay I.

Ví dụ:

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 1 \end{bmatrix}.$$

b) Ma trận chéo:

Dịnh nghĩa

Ma trận vuông cấp n có các phần tử nằm ngoài đường chéo chính đều bằng 0 được gọi là ma trận chéo cấp n.

- c) Ma trận tam giác:
- * Định nghĩa 1

Ma trận tam giác trên là ma trận vuông mà các phần tử ở phía dưới đường chéo chính đều bằng 0.

Ví dụ:
$$A = \begin{bmatrix} 1 & 3 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 5 \end{bmatrix}$$

Dịnh nghĩa 2

Ma trận tam giác dưới là ma trận vuông mà các phần tử ở phía trên đường chéo chính đều bằng 0.

Ví dụ:
$$B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & -1 & 5 \end{bmatrix}$$

d) Ma trận đối xứng:

* Định nghĩa

Ma trận đối xứng là ma trận vuông $A = [a_{ij}]_n$ thỏa mãn: $a_{ij} = a_{ji}$ với mọi i, j = 0, 1, 2, ..., n.

* Nhận xét. Các phần tử đối xứng nhau qua đường chéo chính bằng nhau.

II. CÁC PHÉP TOÁN TRÊN MA TRẬN

1. Phép cộng-trừ hai ma trận:

Dịnh nghĩa

Cho các ma trận
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n} v \grave{a} B = \begin{bmatrix} b_{ij} \end{bmatrix}_{m \times n}$$
 cùng cỡ $m \times n$.
Ta định nghĩa: $A \pm B = \begin{bmatrix} a_{ij} \pm b_{ij} \end{bmatrix}_{m \times n}$.

Ví dụ: Cho
$$A = \begin{bmatrix} 1 & 0 & 3 \\ -2 & 1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 & 1 & 4 \\ 0 & 2 & 1 \end{bmatrix}$. Ta có:

$$A + B = \begin{bmatrix} -1 & 1 & 7 \\ -2 & 3 & 3 \end{bmatrix}; A - B = \begin{bmatrix} 3 & -1 & -1 \\ -2 & -1 & 1 \end{bmatrix}.$$

2. Phép nhân một số với một ma trận:

Dịnh nghĩa

Cho số thực k và ma trận $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ ta định nghĩa tích của k và ma trận A là một ma trận ký hiệu kA với:

$$kA = [ka_{ij}]_{m \times n}.$$

Ví dụ: Cho
$$A = \begin{bmatrix} 1 & 0 & 3 \\ -2 & 1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 & 1 & 4 \\ 0 & 2 & 1 \end{bmatrix}$. Ta có:

$$2A = \begin{bmatrix} 2 & 0 & 6 \\ -4 & 2 & 4 \end{bmatrix}; \ 3B = \begin{bmatrix} -6 & 3 & 12 \\ 0 & 6 & 3 \end{bmatrix}.$$

3. Phép nhân hai ma trận:

Dịnh nghĩa

Cho hai ma trận $A = [a_{ij}]_{m \times n}$ và $B = [b_{ij}]_{n \times p}$ (với số cột của A bằng số dòng của ma trận B). Ta định nghĩa tích của A với B là ma trận $C = [c_{ij}]_{m \times p}$ trong đó các phần tử c_{ij} được xác định như sau:

$$c_{ij} = a_{i1} b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}.$$

Ta có sơ đồ phép nhân:

Ví dụ:

$$\begin{bmatrix} 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} = [2.1 + (-1).0 + 3.4] = [14]$$

$$\begin{bmatrix} 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 5 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 14 & -6 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 & 3 \\ 0 & -3 & 6 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 5 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 14 & -6 \\ 24 & -9 \end{bmatrix}$$

Hàng nhân cột

BÀI TẬP NHÓM

Các ma trận nào sau đây có thể nhân được với nhau? Tìm tích của chúng nếu có.

$$A = \begin{bmatrix} 1 & 0 & 3 \\ -2 & 1 & 2 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 0 \\ -3 & 1 \\ 1 & 4 \end{bmatrix} \quad C = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$

 •

4. Phép chuyển vị ma trận

* Định nghĩa

Cho ma trận $A = [aij]_{m \times n} c\tilde{\sigma} m \times n$. Ma trận $c\tilde{\sigma} n \times m$ $c\tilde{\sigma}$ được từ ma trận A bằng cách đổi hàng thành cột (cột thành hàng) gọi là ma trận chuyển vị của A, ký hiệu A^t.

* Ví dụ:
$$A = \begin{bmatrix} 1 & 0 & 3 \\ -2 & 1 & 2 \end{bmatrix} \Rightarrow A^t = \begin{bmatrix} 1 & -2 \\ 0 & 1 \\ 3 & 2 \end{bmatrix}.$$

$$X = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \Rightarrow X^t = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

5. Tính chất của các phép toán:

Cho các ma trận A, B, C, O và các số thực k, l. Ta có:

1)
$$(A + B) + C = A + (B + C)$$
 9) $A(B + C) = AB + AC$
2) $A + O = O + A = A$ 10) $(A + B)C = AC + BC$
3) $A + (-A) = (-A) + A = O$ 11) $k(AB) = (kA)B = A(kB)$
4) $A + B = B + A$ 12) $A \cdot I = A = I \cdot A$
5) $k(A + B) = kA + kB$ 13) $(A + B)^t = A^t + B^t$
6) $(k + l)A = kA + lA$ 14) $(kA)^t = k(A^t)$
7) $(kl)A = k(lA)$ 15) $(A^t)^t = A$
16) $(AB)^t = B^tA^t$

Chú ý: Phép nhân ma trận không có tính chất giao hoán. Với A, B là hai ma trận vuông tùy ý thì thông thường $AB \neq BA$. Nhưng với mỗi ma trận vuông A cho trước, thì tồn tại vô số ma trận vuông B sao cho AB=BA.

6. Phép tính luỹ thừa của ma trận vuông:

Dịnh nghĩa

Nếu A là ma trận vuông cấp n và p là số tự nhiên, ta định nghĩa luỹ thừa bậc p của ma trận A, ký hiệu A^p, là ma trận vuông cấp n xác định như sau:

- $A^0 = I_n$ với mọi ma trận $A \neq 0$.
- $A^2 = A \cdot A$
- •
- $\bullet \quad A^p = A^{p-1} . A.$
- **Tính chất:** a) $(I_n)^p = I_n$, $0^p = 0$, $(p \text{ thuộc } N^*)$

$$b) D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_k \end{pmatrix} \rightarrow D^n = \begin{pmatrix} \lambda_1^n & 0 & \cdots & 0 \\ 0 & \lambda_2^n & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_k^n \end{pmatrix}$$

VD1. Cho ma trận
$$C = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$$
. Hãy tính C^{50} .

Giải

Do C là ma trận chéo nên:
$$C^{50} = \begin{bmatrix} 2^{50} & 0 \\ 0 & (-3)^{50} \end{bmatrix} = \begin{bmatrix} 2^{50} & 0 \\ 0 & 3^{50} \end{bmatrix}$$
.

VD2. Cho ma trận
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
. Hãy tính A^2 , A^3 , A^4 . Dự đoán A^p .

Giải

$$A^{2} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}; A^{3} = A^{2}A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix};$$

$$A^{4} = A^{3}A = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 8 \\ 8 & 8 \end{bmatrix}; \ A^{p} = \begin{bmatrix} 2^{p-1} & 2^{p-1} \\ 2^{p-1} & 2^{p-1} \end{bmatrix}.$$

VD3: Cho ma trận
$$B = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
. Hãy tính B^{2021} .

Giải

$$B^{2} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix};$$

$$B^{3} = B^{2}B = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 2 \\ -2 & -2 \end{bmatrix};$$

$$B^{4} = B^{3}B = \begin{bmatrix} -2 & 2 \\ -2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -4 & 0 \\ 0 & -4 \end{bmatrix} = -4 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = -4I_{2}.$$

$$B^{2021} = B^{4.505+1} = B^{4.505}B = (B^{4})^{505}B$$

$$= (-4I_{2})^{505}B = (-4)^{505}I_{2}B = -4^{505}B = \begin{bmatrix} -4^{505} & -4^{505} \\ 4^{505} & -4^{505} \end{bmatrix}$$

BÀI TẬP VỀ NHÀ

Câu 1: Cho các ma trận:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 3 & 1 & 4 \end{bmatrix}$$
; $B = \begin{bmatrix} -1 & 2 & 3 & a \\ 0 & 4 & 1 & -1 \\ 2 & 0 & -5 & a \end{bmatrix}$. Tính: B^t A^t.

Câu 2: Cho ma trận
$$A = \begin{bmatrix} 1 & -a \\ a & 1 \end{bmatrix}$$
.

- a) Tính $B = A.A^t$.
- b) Khi a=2, Tìm ma trận X sao cho : $X.B = \begin{bmatrix} 15 & 65 \\ 25 & 15 \end{bmatrix}$.

<u>Câu 3:</u> Tìm tất cả các ma trận A vuông cấp 2 với phần tử thực, thỏa phương trình sau $A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Câu 4: Tính
$$A^n$$
 biết rằng $A = \begin{pmatrix} 4 & -3 \\ 5 & -4 \end{pmatrix}$.

• • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •					
• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •	 •		• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •		• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •		• • • • • • • • • • • • • • • • • • • •
	 •		• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
	 • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	 		• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 		• • • • • • • • • • • • • • • • • • • •
	 		• • • • • • • • • • • • • • • • • • • •
	 • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	 • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	 •		
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

	 •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •
	 •	• • • • • • • • • • • • • • • • • • • •
	 	• • • • • • • • • • • • • • • • • • • •
	 •	• • • • • • • • • • • • • • • • • • • •

