Small Project: Peak detection

Peak detection

- Peak detection is a common objective in biomedical signal processing.
- Examples:
 - ECG
 - Analysis of biofluids by:
 - Chromatography
 - Mass Spectrometry
 - Ion Mobility Spectrometry
 - Nuclear Magnetic Resonance
- In many cases the objective is to retrieve the peak location and the amplitude.
- Difficulties and solutions:
 - Noise (digital filtering, smoothing, de-noising)
 - Baseline problems (detrend, baseline estimation)
 - Peak overlapping (deconvolution, signal separation)
 - Distortions in peak shape

Example signal

Clean signal: Smoothing + Baseline correction

Techniques for peak detection

Design your own method

Materials supplied and Evaluation

Additional materials:

· Peak detection literature

■ Tools:

- · 'findpeaks' function in R
- Explore 'gsignal::conv' in R to implement a cross-correlation filter (matched filter)
- Use package R.Matlab to read Matlab data files.

■ Ten signal examples:

- · Signal + Ground truth
- One example of a clean peak intensity one

Objective

- Peak detection
- · Intensity estimation

■ Figures of merit

- Sensitivity and Specificity of peak detection
- Time accuracy of peak location
- Mean absolute error of peak intensity

Evaluation of intermediate results and team ranking

Weekly submission of your analysis file and return of the performance

■ Final score

• 50% Algorithm performance, 50% Oral presentation

