TESTE INTERMÉDIO DE MATEMÁTICA A

15 de Março de 2007

RESOLUÇÃO - VERSÃO 1

Grupo I

1.
$$e^{-x} > \frac{1}{e} \Leftrightarrow e^{-x} > e^{-1} \Leftrightarrow -x > -1 \Leftrightarrow x < 1$$
 Resposta **B**

2.
$$\log_a (a \times \sqrt[3]{a}) = \log_a (a) + \log_a (\sqrt[3]{a}) = 1 + \frac{1}{3} = \frac{4}{3}$$
 Resposta **B**

$$\begin{array}{ll} \textbf{3.} & \lim\limits_{x\to +\infty} \left[\frac{g(x)}{x} \ \times \ \Big(\ g(x) - 2 \, x \Big) \ \right] = \\ \\ & = \lim\limits_{x\to +\infty} \ \frac{g(x)}{x} \ \times \ \lim\limits_{x\to +\infty} \Big(\ g(x) - 2 \, x \Big) = 2 \times 3 = 6 \end{array} \qquad \qquad \begin{array}{ll} \text{Resposta } \textbf{C} \end{array}$$

4. Tem-se que:
$$\lim_{x \to -\infty} \frac{1}{f(x)} = \frac{1}{0^+} = +\infty$$

$$\lim_{x \to 0} \frac{1}{f(x)} = \frac{1}{0^+} = +\infty \qquad \lim_{x \to 1} \frac{1}{f(x)} = \frac{1}{+\infty} = 0$$
 Resposta B

5. Número de casos possíveis:

O número de casos possíveis é $\ ^{20}C_3$ (número de maneiras de escolher três bolas, de entre vinte).

Número de casos favoráveis:

O maior dos números saídos é 10 se, e só se:

- for escolhida a bola número 10;
- as outras duas bolas forem escolhidas de entre as bolas numeradas de 1 a 9.
 Portanto
- para a bola número 10, existe apenas uma hipótese,
- para as outras duas bolas, existem $\,^9C_2\,$ hipóteses.

O número de casos favoráveis é, assim, $~1 imes{}^9C_2 = ~^9C_2$

A probabilidade pedida é
$$\frac{^9C_2}{^{20}C_3}=\frac{36}{^{20}C_3}$$
 Resposta **D**

6. Como
$$P(A \cup B) = P(A) + P(B)$$
, resulta que $P(A \cap B) = 0$

Portanto,
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0}{P(B)} = 0$$
 Resposta A

- 7. Com duas das seis moedas,
 - não é possível obter 40 cêntimos, na opção A;
 - não é possível obter 20 cêntimos, na opção B.

Estas duas opções estão, assim, excluídas.

Relativamente às opções C e D, os valores que a variável $\,X\,$ pode tomar são os que constam da tabela. Para escolher uma destas opções, calculemos, para cada uma delas, por exemplo, P(X=20).

No caso da opção C, tem-se
$$\ P(X=20)=\ \frac{^2C_2}{^6C_2}\ =\ \frac{1}{^6C_2}$$

No caso da opção D, tem-se
$$\ P(X=20)=\ \frac{^3C_2}{^6C_2}\ =\ \frac{3}{^6C_2}$$

Resposta D

Grupo II

1. Tem-se que:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{x^{2} + 2x}{x^{3} + x} \stackrel{\left(\frac{0}{0}\right)}{=} \lim_{x \to 0^{-}} \frac{x(x+2)}{x(x^{2} + 1)} = \lim_{x \to 0^{-}} \frac{x+2}{x^{2} + 1} = 2$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{3x^2 - x \ln(x+1)}{x^2} \quad \left(\frac{0}{\underline{0}}\right)$$

$$= \lim_{x \to 0^+} \left[\frac{3 \, x^2}{x^2} \ - \ \frac{x \, \ln{(x+1)}}{x^2} \right] \ = \ \lim_{x \to 0^+} \left[3 \ - \ \frac{\ln{(x+1)}}{x} \right] =$$

$$= 3 - 1 = 2$$

Como
$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = 2$$
 , podemos concluir que $\lim_{x \to 0} f(x) = 2$.

Como $\ f(0)=2,\ {
m resulta}\ {
m que}\ \lim_{x\to 0}f(x)=f(0),\ {
m pelo}\ {
m que}\ {
m a}\ {
m função}\ {
m \'e}\ {
m contínua}\ {
m em}\ x=0.$

2.

2.1. Tem-se:
$$-\log_{10}(x)=7.4 \Leftrightarrow \log_{10}(x)=-7.4 \Leftrightarrow x=10^{-7.4}$$
 Logo, $x\approx 4\times 10^{-8}$

Portanto, a concentração de iões H_3O^+ , no sangue arterial humano é, aproximadamente, de $4\times 10^{-8}\ mol/dm^3$.

2.2. De acordo com a sugestão, designemos por $\,l\,$ a concentração de iões $\,H_3O^+\,$ no leite.

Então, a concentração de iões H_3O^+ no café é dada por 3l (pois, de acordo com o enunciado, a concentração de iões H_3O^+ no café é tripla da concentração de iões H_3O^+ no leite).

Assim, a diferença entre o $\,pH\,$ do leite e o $\,pH\,$ do café é igual a

Tem-se que:

$$-\log_{10}(l) - \left[-\log_{10}(3l)\right] = -\log_{10}(l) + \log_{10}(3l) =$$

$$= -\log_{10}(l) + \log_{10}(3) + \log_{10}(l) = \log_{10}(3) \approx 0.5$$

Portanto, a diferença entre o $\,pH\,$ do leite e o $\,pH\,$ do café é igual a $\,0.5\,$

3.

3.1. Dizer que a recta $\,r\,$ intersecta a curva $\,C\,$ em pelo menos um ponto equivale a dizer que existe pelo menos um elemento do domínio de $\,f\,$ que é solução da equação $\,f(x)=5.$

A função $\,f\,$ é contínua no intervalo $\,[0,1]$, pois é soma de duas funções contínuas.

$$\label{eq:como} \mbox{Como} \ \ f(0) = 1, \ \ \mbox{tem-se que} \ \ f(0) < 5.$$

$$\label{eq:como} \mbox{Como} \ \ f(1) = e + 3 \approx 2.7 + 3 = 5.7 \ \ \mbox{tem-se que} \ \ f(1) > 5$$

Como a função f é contínua no intervalo [0,1], e como f(0) < 5 < f(1), podemos concluir, pelo Teorema de Bolzano, que, no intervalo]0,1[, existe pelo menos uma solução da equação f(x)=5, pelo que a recta r intersecta a curva C em pelo menos um ponto.

3.2. Representa-se a seguir o referencial, a curva $\,C\,$ e a recta $\,r\,$, visualizados na calculadora.

Representa-se também o triângulo $\ [OPQ]$, onde $\ O$ é a origem do referencial, $\ P$ é o ponto de coordenadas $\ (\ 0\ ,\ e\)$ e $\ Q$ é o ponto de intersecção da curva $\ C$ com a recta $\ r$.

Na figura seguinte está apenas representado o triângulo [OPQ].

Determinemos a área deste triângulo.

Tomando para base o segmento [OP], a altura correspondente é o segmento em que:

- um dos extremos é o vértice oposto a essa base, ou seja, o ponto Q;
- o outro extremo é o ponto de intersecção da recta que contém a base com a recta que lhe é perpendicular e que passa por $\,Q.\,$

A área do triângulo é, portanto,
$$\ \frac{base \times altura}{2} \ \approx \ \frac{e \times 0.87}{2} \ \approx 1.2$$

4. Tem-se que

$$f(0) = e^0 - c = 1 - c$$

pelo que o ponto $\,B\,$ tem coordenadas $\,(0,1-c).$

Tem-se também que

$$f(x) = 0 \Leftrightarrow e^x - c = 0 \Leftrightarrow e^x = c \Leftrightarrow x = ln(c)$$

pelo que o ponto A tem coordenadas (ln(c), 0).

Portanto,

$$\overrightarrow{AB} = B - A = (0, 1 - c) - (ln(c), 0) = (-ln(c), 1 - c)$$

O declive da recta $\ AB$ é, portanto, $\ \frac{1-c}{-ln(c)} = \frac{c-1}{ln(c)}$

Tem-se, então,

$$\frac{c-1}{\ln(c)} = c-1 \iff \ln(c) = 1 \iff c = e$$