# Mastering DeepScale R

Build and deploy A1 Models with ollama



# · what is Deep Scale R?

- · Fine-tuned version of Deep Seek-RI-Distilled Quen 1.5B
- · specifically designed to surpass open AI's OI preview model in mathematical reasoning tasks.
- · High accuracy and efficiency
- · Extremely lightweight yet powerful model for A1-driven computations.
- · why Choose DeepScaleR?
- light weight (1.5B parameters) yet powerful
- Outperforms larger models in structured math evaluations.
- Runs locally with Ollama (No API costs!)
- Supports fine tuning & Customization
- low-latency inference (ideal for real-time applications)

### · Overview of Deepscale R's Capabilities

- 1. Distilled from DeepSeek-RI for Efficiency.
  - DeepSeek-RI is a family of open-source LLMs with strong performance in text generation and reasoning.
  - DeepScale R refines this architecture to be optimized for math heavy and structured problem - solving tasks.
  - It retains the speed and efficiency of Deep Seek-R1 while enhancing accuracy for numerical and symbolic reasoning.
- 2. Advanced Mathematical Capabilities
  - Optimized for symbolic, algebraic, and numerical tasks, including:
    - · Arithmetic and Algebra {+,-,\*, | and algebraic equations}
    - · linear Algebra Ematrix operations, determinants and agent values }
    - · Calculus {Derivatives, Integrals, Limits and Series expansion }
    - · Probability and Statistics & Bayesian analysis, hypothesis testing
    - · logical and Symbolic Reasoning { Theorem proving, formal logic }
- 3. Small yet powerful (1.5B Parameters)
  - Deep Scale R is significantly smaller than most mainstream LLMs yet delivers comparable (or better) performance in its target areas.
  - Designed for low-latency inference, making it ideal for edge devices, personal AI assistants,
     and embedded AI Systems.
- · Supports quantization techniques to further reduce memory footprint while retaining accuracy.
- 4. Optimized for Deployment
  - · Compatible with ollama, enabling fast and easy local inference.
  - · Can run on CPUs and GPUs, making it more accessible than larger models.
  - · Supports fine-tuning with LORA and QLORA, allowing easy customization for specific domains

# Comparison:

### Deep Scale R vs. Open AI's 01 - Preview

| Feature                      | Deep Scale R (1.5B)                                                       | Open AI's 01 - preview                                              |
|------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|
| Model Size                   | 1.5B Parameters                                                           | 98 + Parameters                                                     |
| Performance on<br>Math tasks | Better in structured math evaluations (algebra, calculus, linear algebra) | Strong in general problem-solving but<br>weaker in structured math. |
| Inference speed              | Fast (optimized for low-latency inference)                                | Slower due to Larger model Size                                     |
| Resource<br>Requirement      | lightweight, runs on CPV and GPV                                          | Heavier, requires GPU acceleration                                  |
| fine - Tuning<br>capability  | LoRA/QLORA supported for domain specific improvements                     | limited fine - tuning options                                       |
| Deployment Ease              | Runs with Ollama, easy local setup                                        | Requires cloud-based APIs                                           |
| licence L<br>Accessibility   | Open - Source & Locally deployable                                        | Closed - Source, API - only                                         |

#### Key takeway

DeepScaleR Outperforms open AI - 01-preview in mathematical reasoning, has a much Smaller footprint and is ideal for local AI deployments.

### · Performance On Math Evaluations

- · Benchmarking against other models
- Deep Scale R was tested on multiple math reasoning Datasets:
  - GSM8K (Grade School Math 8K) > arithemetic & word problems
  - MATH Dataset → High School and Olympiad Level math.
  - · Hendrycks MATH > complex math reasoning
  - APPS (AI problem solving) > Algorithm and problem solving tasks.

| Model                | GSM8K (Accuracy %) | MATH Dataset | Inference speed |
|----------------------|--------------------|--------------|-----------------|
| Deepscaler (1.5B)    | 8.5 %              | 78 %         | Fast (CPU+ GPU) |
| Open AI's 01-preview | 80 %               | 70%          | Slower (GPU)    |
| GPT-3.5 - turbo      | 82 %               | 74%          | Medium          |
| Mistral - 7 B        | 79 %               | 71 %         | Slow (GPU)      |

- Key Insights from Performance Evaluations
- · Deep Scale R outperforms Open AI's O1 preview on structured math datasets.
- · Achieves near GPT 3.5 levels of accuracy in problem solving with only 1.5B parameters.
- · Much faster inference speed compared to larger models

# · what is Ollama 9

- · open-source framework that enables easy local deployment and inference of large language Models.
- Designed for efficiency, simplicity, and Jast API model execution on personal computers, workstations, and servers.
- Download, run, and interact with models like DeepScaleR, Mistral, Llama, and more without needing complex Cloud based APIs and GPU Clusters.

### · Introduction to the Ollama Framework

- · what Does Ollama do?
  - · Runs LLMs Locally without requiring cloud-based APIs.
  - ·Supports Optimized models like Deepscale R, Mistral, Quen, Llama and other open-source LLMs.
  - · Provides a simple interface to interact with models via CLI, API, or Python SDK
  - ·Works efficiently on both CPV and GPV, making AI accessible on a variety of machines.
- · Key Features of ollama
  - · Local AI Execution No external API calls & runs entirely on our machine.
- Lightweight & Optimized uses quantized models for efficiency.
- Model Management can easily bull, update and switch between models.
- Build-in API offers a simple way to integrate AI into applications.
- · Secure & private No data leaves your local environment.
- · How Does Ollama Work 9
  - · Ollama provides a unified way to interact with different LLMs using a simple Command line Interface[CLI] or API
  - · Download & Run Models
  - · Interact via API

# · why use Ollama for AI Inference?

- No More Expensive API Calls: Instead of relaying on cloud based APIs, like open AI or anthropic
  that charge per request. Ollama allows to run AI models locally, saving cost and ensuring unlimited usage.
- Faster Response Times: It eliminates the latency issue of cloud hosted models, making it ideal for real time applications like chatbots, assistants, and AI driven automation.
- · Works Offline: It does not require an internet connection, making it perfect for:
  - · Edge AI Applications (AI running on local devices)
  - · Privacy Focused AI (no cloud data transmission)
  - · AI for secure Environments (finance, defence, healthcare, etc)
- Supports Multiple Models: Ollama supports multiple LLM architectures, so can switch models on demand.
  - · Ollama run deepScale R (for math)
  - · Ollama run mistral (for general reasoning)
  - · Ollama run qwen (for multilingual tasks)
- · Optimized for CPUs and GPUs
  - Runs efficiently on consumer grade hardware
  - . Supports quantization (like GIGIML, GIPTQ) for lower memory usage and better speed.
  - · No need for high-end GPUs, but scales well with them

# · How Ollama Simplifies LLM Deployment

- · Easy Installation & Setup
- Unlike traditional AI Development, which requires bython environments, Cuda, and dependency management.
  - · Install ollama (Mac/linux/windows WSL)
    - 600 to Ollama.com
    - Download on your machine
  - · Pull a model
    - Go to terminal
    - check version: Ollama -v
    - bull model: Ollama bull deep Scaler
  - · Run a model locally
    - run model: Ollama run deepScaler
    - chat with it
    - exit model : / bye
- · Built-in Model serving
- Ollama includes a Local API server, so you don't need to set up Flask, FastAPI, or other servers separately.
- Seamless Integration with Applications:
  - · Python SDK · Java Script API · Dockerized AI Apps
- · why use ollama for Deepscale R 9
- No Cloud Costs: Runs entirely on your local Machine
- Fast AI Inference bow latency, ideal for real time AI
- Easy Deployment: CLI and API make model serving effortless
- Supports multiple models : Switching between AI models easily
- Private & Secure: No data leaves your local system

### Hands - On Project

### 1. setting up the Environment

- a. Install ollama
- b Download and Run Deepscaler Locally
- c. Running inference with Deepscaler

#### 2. Project 1: AI - Powered Math Solver

- · Use DeepscaleR to build an AI-powered math Solver that can handle complex math problems such as algebra, calculus, and linear algebra.
- · Step by Step:
- Using Deep Scaler for solving mathematical equations
- Implementing a web-based math assistant using Python & Flask.

#### 3. Project 2: AI Chatbot using Deep Scale R

- Handle general-purpose conversations, and we will deploy it as an API while ensuring low-latency responses
- · Step 1: Building a chatbot for General Purpose Conversation
- · Step 2: Deploying DeepScaleR in an API
- · step 3: Building a web-based Chatbot UI with Gradio