

MEC-E6007 Mechanical Testing of Materials

Sven Bossuyt April 2023

Course Content: learning from breaking things

Load

- loadframes, actuators, and grips
- quasi-static, dynamic, and cyclic loading

Measure

- measurement of force, displacement, and strain
- digital image correlation and other full-field measurement techniques

Analyse

- selected special challenges in mechanical testing (ask for yours!)
- introduction to inverse problem methodologies in experimental mechanics

case study

summative assessment of the intended learning outcomes

- You can treat writing this as the inverse problem to grading it.

choose a question to be answered with a mechanical test

- provide context situating the question
- conclude how confident you would be to perform this test yourself
 - or what help you would need
- could be standardized, from a journal paper, from your research, or hypothetical
 - cite your sources!

describe the test

- specimen preparation
- qualitative and quantitative characterization of the specimen before and after the test
- physical quantities to be measured
 - including measurement methods
- instruments used
 - criteria those must satisfy
- relevant safety precautions
- how to analyse test results
- reasons the test results might not be valid
 - how to detect that when it is the case

Inverse Problem Methodologies

Inverse Problems:

Mixed Numerical Experimental Techniques

determine model parameters from observed data

- forward problem predicts observations for given model parameters
 - iterative solution to find model parameters that agree with observations
- inverse problem is often ill-posed
 - regularisation, preferably using a priori knowledge about actual experiment

iterative solutions

model updating, parameter identification, model validation parameters and verification... forward problem evaluated model many times inside loop update predictions experiment observations compare result

difficulty of inverse problems

Hadamard conditions:

- a problem is well-posed if
 - a solution exists
 - the solution is unique
 - the solution depends continuously on the data
- inverse problems are often ill-posed

regularisation modifies the problem statement to make it more well-posed

extensive literature and active research in mathematics

a problem is well-posed if

- a solution exists
- the solution is unique
- the solution is stable, i.e., it depends continuously on the data

a problem is well-posed if

- a solution exists
- the solution is unique
- the solution is stable, i.e., it depends continuously on the data

a problem is well-posed if

- a solution exists
- the solution is unique
- the solution is stable, i.e., it depends continuously on the data

a problem is well-posed if

- a solution exists
- the solution is unique
- the solution is stable, i.e., it depends continuously on the data

a problem is well-posed if

- a solution exists
- the solution is unique
- the solution is stable, i.e., it depends continuously on the data

a problem is well-posed if

- a solution exists
- the solution is unique
- the solution is stable, i.e., it depends continuously on the data

regularization

modify an ill-posed problem to make it well-posed

- explicitly modify equation, e.g., by adding regularization term
- implicitly modify problem statement or solution search space

define a new problem that is "close" to original problem

recover original problem in limit where regularization parameter → zero

codify prior information about solution

- e.g., look for smoothly varying fields
- extreme case: vary simulation parameters to reproduce observations

Inverse Problems

in Experimental Mechanics

parameter identification

- over-determined
- ill-posed only with non-linearities

full-field measurements

- under-determined
- excessive regularization causes artifacts

forward problems solved by finite element models

- computationally intensive
- shape functions act as regularization
- finer mesh requires more computation and gives less regularization

identification of mechanical properties

simple tests with uniformly loaded gauge section

- inverse problem is trivial
- not always possible experimentally
- lots of tests when many parameters are needed

inverse problem and test with complex loading

- make use of computation power and full-field measurements
- sensitivity depends on test design (e.g., specimen shape)
 - can test actual components of products in relevant load cases
- coupled measurements of different parameters

inverse problem methodologies

for identification of mechanical properties

finite element model updating

 iterative solution comparing measured strain or displacement fields with finite element model results to update model parameters

equilibrium gap method

• if material model is wrong, then stresses calculated from measured strains are not in equilibrium, so iterate parameters in model to fix that

integrated DIC

• use finite element model parameters as parametrization of admissible displacement fields in DIC calculation

virtual fields method

- analytically calculate sensitivities of model parameters to measured displacements
- directly write system of equations relating measurements to sought parameters

Virtual Fields Method

mechanics of deformable solids

- solid of any shape,
 subjected to mechanical load
 - $displacement field \mathbf{u}$
 - strain field $oldsymbol{arepsilon}$
 - stress field σ
- body forces
 - acceleration **a** in dynamic problems
 - other body forces **b** (e.g. gravity)
- external surface $S = S_f \cup S_u$
- tractions **T** specified on S_f
 - free surface has zero traction
- displacements **u** specified on S_u

3 types of problems

in mechanics of deformable solids

solid of any shape, subjected to mechanical load

- 1. find fields \mathbf{u} , $\boldsymbol{\varepsilon}$ and $\boldsymbol{\sigma}$ for known boundary conditions and constitutive behaviour
 - classical FEM problem
- 2. identify constitutive behaviour from measured deformations
- 3. determine reaction forces

variational formulation of theoretical mechanics

- "weak form"
 - weaker constraints on solution
- multiply local equilibrium equation with test function and integrate

$$\nabla \cdot \boldsymbol{\sigma} + \mathbf{b} = \rho \mathbf{a}$$

for vector-valued test function u*

$$\int_{V} (\mathbf{\nabla \cdot \sigma}) \cdot \mathbf{u}^* dV + \int_{V} \mathbf{b} \cdot \mathbf{u}^* dV = \int_{V} \rho \mathbf{a} \cdot \mathbf{u}^* dV$$

• integrate by parts to get div \mathbf{u}^* instead of div $\boldsymbol{\sigma}$

$$\int_{V} \mathbf{\nabla \cdot (\sigma \cdot u^{*})} dV = \int_{V} (\mathbf{\nabla \cdot \sigma}) \cdot \mathbf{u}^{*} dV + \int_{V} \mathbf{\sigma \cdot \nabla u^{*}} dV$$

and use Gauss theorem to convert to surface integral of traction T

$$\int_{V} \mathbf{\nabla \cdot (\sigma \cdot u^{*})} dV = \oint_{S} \mathbf{n \cdot \sigma \cdot u^{*}} dS = \oint_{S} \mathbf{T \cdot u^{*}} dS$$

so that

$$\int_{V} (\mathbf{\nabla \cdot \sigma}) \cdot \mathbf{u}^* dV = \oint_{S} \mathbf{T} \cdot \mathbf{u}^* dS - \int_{V} \boldsymbol{\sigma} \cdot \mathbf{\nabla u}^* dV$$

$$\int_{V} (\mathbf{\nabla \cdot \sigma}) \cdot \mathbf{u}^* dV = \oint_{S} \mathbf{T} \cdot \mathbf{u}^* dS - \int_{V} \boldsymbol{\sigma} \cdot \mathbf{\nabla u}^* dV$$

• for symmetric σ and kinematically admissible \mathbf{u}^* simplifies to

$$\int_{V} (\mathbf{\nabla \cdot \sigma}) \cdot \mathbf{u}^* dV = \oint_{S_f} \mathbf{T} \cdot \mathbf{u}^* dS - \int_{V} \boldsymbol{\sigma} \cdot (\mathbf{\nabla}^{\text{sym}} \mathbf{u}^*) dV$$

which yields

$$\oint_{S_f} \mathbf{T} \cdot \mathbf{u}^* dS - \int_V \boldsymbol{\sigma} \cdot (\boldsymbol{\nabla}^{\text{sym}} \mathbf{u}^*) dV + \int_V \mathbf{b} \cdot \mathbf{u}^* dV = \int_V \rho \mathbf{a} \cdot \mathbf{u}^* dV$$

weak form of mechanical equilibrium equation in deformable solid

$$\oint_{S_f} \mathbf{T} \cdot \mathbf{u}^* dS$$

$$+ \oint_{S_n} \mathbf{T} \cdot \mathbf{u}^* dS$$

$$- \int_{V} \boldsymbol{\sigma} \cdot (\boldsymbol{\nabla}^{\operatorname{sym}} \mathbf{u}^{*}) dV$$

$$+\int_{V} \mathbf{b} \cdot \mathbf{u}^* dV$$

$$= \int_{V} \rho \mathbf{a} \cdot \mathbf{u}^* dV$$

$$\forall \mathbf{u}^*$$

remarks

- A continuous body is at equilibrium if the virtual work of all forces acting on the body is null in any kinematically admissible virtual displacement.
- If **u*** is in meters, then the virtual work is in Joules.
- The test functions \mathbf{u}^* are arbitrary weight functions, not related to the actual displacement field \mathbf{u} and independent of stress field $\boldsymbol{\sigma}$.
 - Expanding \mathbf{u}^* in FEM shape functions is exact, not an approximation.
 - The mesh used for these shape functions does not have to conform to the object.
- The reaction force term disappears for kinematically admissible \mathbf{u}^* .
- If \mathbf{u}^* is discontinuous, then tractions along the discontinuity must be introduced to apply Gauss theorem.
- The Galerkin method and FEM can be derived from this.

$$\sigma = \mathrm{Q}\epsilon$$

$$\begin{cases} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{cases} = \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} & Q_{14} & Q_{15} & Q_{16} \\ Q_{12} & Q_{22} & Q_{23} & Q_{24} & Q_{25} & Q_{26} \\ Q_{13} & Q_{23} & Q_{33} & Q_{34} & Q_{35} & Q_{36} \\ Q_{14} & Q_{24} & Q_{34} & Q_{44} & Q_{45} & Q_{46} \\ Q_{15} & Q_{25} & Q_{35} & Q_{45} & Q_{55} & Q_{56} \\ Q_{16} & Q_{26} & Q_{36} & Q_{46} & Q_{56} & Q_{66} \end{bmatrix} \begin{cases} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \end{cases}$$

• orthotropic

$$\sigma = \mathrm{Q}\epsilon$$

$$\begin{cases}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\sigma_{4} \\
\sigma_{5} \\
\sigma_{6}
\end{cases} =
\begin{bmatrix}
Q_{11} & Q_{12} & Q_{13} & 0 & 0 & 0 \\
Q_{12} & Q_{22} & Q_{23} & 0 & 0 & 0 \\
Q_{13} & Q_{23} & Q_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & Q_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & Q_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & Q_{66}
\end{bmatrix}
\begin{cases}
\epsilon_{1} \\
\epsilon_{2} \\
\epsilon_{3} \\
\epsilon_{4} \\
\epsilon_{5} \\
\epsilon_{6}
\end{cases}$$

• cubic

$$oldsymbol{\sigma} = \mathbf{Q} oldsymbol{\epsilon}$$

$$\begin{cases}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\sigma_{4} \\
\sigma_{5} \\
\sigma_{6}
\end{cases} =
\begin{bmatrix}
Q_{11} & Q_{12} & Q_{12} & 0 & 0 & 0 \\
Q_{12} & Q_{11} & Q_{12} & 0 & 0 & 0 \\
Q_{12} & Q_{12} & Q_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & Q_{66} & 0 & 0 \\
0 & 0 & 0 & 0 & Q_{66} & 0 \\
0 & 0 & 0 & 0 & 0 & Q_{66}
\end{bmatrix}
\begin{cases}
\epsilon_{1} \\
\epsilon_{2} \\
\epsilon_{3} \\
\epsilon_{4} \\
\epsilon_{5} \\
\epsilon_{6}
\end{cases}$$

$$Q_{11} = \frac{E}{1 - \nu^2} \qquad Q_{12} = \frac{\nu E}{1 - \nu^2} \qquad Q_{66} = G$$

• isotropic

$$oldsymbol{\sigma} = \mathbf{Q} oldsymbol{\epsilon}$$

$$\begin{cases}
\sigma_1 \\
\sigma_2 \\
\sigma_3 \\
\sigma_4 \\
\sigma_5 \\
\sigma_6
\end{cases} = \begin{bmatrix}
Q_{11} & Q_{12} & Q_{12} & 0 & 0 & 0 \\
Q_{12} & Q_{11} & Q_{12} & 0 & 0 & 0 \\
Q_{12} & Q_{12} & Q_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{Q_{11} - Q_{12}}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{Q_{11} - Q_{12}}{2} & 0 \\
0 & 0 & 0 & 0 & \frac{Q_{11} - Q_{12}}{2} & 0 \\
0 & 0 & 0 & 0 & \frac{Q_{11} - Q_{12}}{2}
\end{bmatrix}
\begin{cases}
\epsilon_1 \\
\epsilon_2 \\
\epsilon_3 \\
\epsilon_4 \\
\epsilon_5 \\
\epsilon_6
\end{cases}$$

$$Q_{11} = \frac{E}{1 - \nu^2}$$
 $Q_{12} = \frac{\nu E}{1 - \nu^2}$ $Q_{66} = G = \frac{E}{2(1 + \nu)}$

$$Q_{66} = G = \frac{E}{2(1+\nu)}$$

- substitute linear elastic constitutive equations
- apply principle of virtual work

for simplicity, consider static in-plane cubic case without body forces

$$\oint_{S_f} \mathbf{T} \cdot \mathbf{u}^* dS - \int_V \boldsymbol{\sigma} \cdot (\boldsymbol{\nabla}^{\text{sym}} \mathbf{u}^*) dV + \int_V \mathbf{b} \cdot \mathbf{u}^* dV = \int_V \rho \mathbf{a} \cdot \mathbf{u}^* dV$$

$$\begin{cases}
 \sigma_1 \\
 \sigma_2 \\
 \sigma_6
 \end{cases} =
 \begin{bmatrix}
 Q_{11} & Q_{12} & 0 \\
 Q_{12} & Q_{11} & 0 \\
 0 & 0 & Q_{66}
 \end{bmatrix}
 \begin{cases}
 \epsilon_1 \\
 \epsilon_2 \\
 \epsilon_6
 \end{cases}$$

- substitute linear elastic constitutive equations
- apply principle of virtual work

for simplicity, consider static in-plane cubic case without body forces

$$\int_{V} \boldsymbol{\sigma} \cdot (\boldsymbol{\nabla}^{\text{sym}} \mathbf{u}^{*}) dV$$

$$= \int_{V} (Q_{11} \epsilon_{1} \epsilon_{1}^{*} + Q_{11} \epsilon_{2} \epsilon_{2}^{*} + Q_{12} (\epsilon_{1} \epsilon_{2}^{*} + \epsilon_{2} \epsilon_{1}^{*}) + Q_{66} \epsilon_{6} \epsilon_{6}^{*}) dV$$

$$= \oint_{S_{f}} \mathbf{T} \cdot \mathbf{u}^{*} dS$$

- substitute linear elastic constitutive equations
- apply principle of virtual work

for simplicity, consider static in-plane cubic case without body forces

$$\left(\int_{V} (\epsilon_{1} \epsilon_{1}^{*} + \epsilon_{2} \epsilon_{2}^{*}) dV\right) Q_{11} + \left(\int_{V} (\epsilon_{1} \epsilon_{2}^{*} + \epsilon_{2} \epsilon_{1}^{*}) dV\right) Q_{12} + \left(\int_{V} (\epsilon_{6} \epsilon_{6}^{*}) dV\right) Q_{66}$$

$$= \oint_{S_{f}} \mathbf{T} \cdot \mathbf{u}^{*} dS$$

- substitute linear elastic constitutive equations
- apply principle of virtual work
- for as many virtual fields as independent coefficients

$$\left(\int_{V} \left(\epsilon_{1} \epsilon_{1}^{*(1)} + \epsilon_{2} \epsilon_{2}^{*(1)}\right) dV\right) Q_{11} + \left(\int_{V} \left(\epsilon_{1} \epsilon_{2}^{*(1)} + \epsilon_{2} \epsilon_{1}^{*(1)}\right) dV\right) Q_{12} + \left(\int_{V} \left(\epsilon_{6} \epsilon_{6}^{*(1)}\right) dV\right) Q_{66} = \oint_{S_{f}} \mathbf{T} \cdot \mathbf{u}^{*(1)} dS$$

$$\left(\int_{V} \left(\epsilon_{1} \epsilon_{1}^{*(2)} + \epsilon_{2} \epsilon_{2}^{*(2)}\right) dV\right) Q_{11} + \left(\int_{V} \left(\epsilon_{1} \epsilon_{2}^{*(2)} + \epsilon_{2} \epsilon_{1}^{*(2)}\right) dV\right) Q_{12} + \left(\int_{V} \left(\epsilon_{6} \epsilon_{6}^{*(2)}\right) dV\right) Q_{66} = \oint_{S_{f}} \mathbf{T} \cdot \mathbf{u}^{*(2)} dS$$

$$\left(\int_{V} \left(\epsilon_{1} \epsilon_{1}^{*(3)} + \epsilon_{2} \epsilon_{2}^{*(3)}\right) dV\right) Q_{11} + \left(\int_{V} \left(\epsilon_{1} \epsilon_{2}^{*(3)} + \epsilon_{2} \epsilon_{1}^{*(3)}\right) dV\right) Q_{12} + \left(\int_{V} \left(\epsilon_{6} \epsilon_{6}^{*(3)}\right) dV\right) Q_{66} = \oint_{S} \mathbf{T} \cdot \mathbf{u}^{*(3)} dS$$

- substitute linear elastic constitutive equations
- apply principle of virtual work
- for as many virtual fields as independent coefficients

$$\begin{bmatrix} \int_{V} (\epsilon_{1} \epsilon_{1}^{*(1)} + \epsilon_{2} \epsilon_{2}^{*(1)}) dV & \int_{V} (\epsilon_{1} \epsilon_{2}^{*(1)} + \epsilon_{2} \epsilon_{1}^{*(1)}) dV & \int_{V} (\epsilon_{6} \epsilon_{6}^{*(1)}) dV \\ \int_{V} (\epsilon_{1} \epsilon_{1}^{*(2)} + \epsilon_{2} \epsilon_{2}^{*(2)}) dV & \int_{V} (\epsilon_{1} \epsilon_{2}^{*(2)} + \epsilon_{2} \epsilon_{1}^{*(2)}) dV & \int_{V} (\epsilon_{6} \epsilon_{6}^{*(2)}) dV \\ \int_{V} (\epsilon_{1} \epsilon_{1}^{*(3)} + \epsilon_{2} \epsilon_{2}^{*(3)}) dV & \int_{V} (\epsilon_{1} \epsilon_{2}^{*(3)} + \epsilon_{2} \epsilon_{1}^{*(3)}) dV & \int_{V} (\epsilon_{6} \epsilon_{6}^{*(3)}) dV \end{bmatrix} \begin{bmatrix} Q_{11} \\ Q_{12} \\ Q_{66} \end{bmatrix} = \begin{bmatrix} \oint_{S_{f}} \mathbf{T} \cdot \mathbf{u}^{*(1)} dS \\ \oint_{S_{f}} \mathbf{T} \cdot \mathbf{u}^{*(2)} dS \\ \oint_{S_{f}} \mathbf{T} \cdot \mathbf{u}^{*(3)} dS \end{bmatrix}$$

- substitute linear elastic constitutive equations
- apply principle of virtual work
- for as many virtual fields as independent coefficients

$$\mathbf{A} \cdot \mathbf{Q} = \mathbf{B}$$

$$\mathbf{A} = \begin{bmatrix} \int_{V} (\epsilon_{1} \epsilon_{1}^{*(1)} + \epsilon_{2} \epsilon_{2}^{*(1)}) dV & \int_{V} (\epsilon_{1} \epsilon_{2}^{*(1)} + \epsilon_{2} \epsilon_{1}^{*(1)}) dV & \int_{V} (\epsilon_{6} \epsilon_{6}^{*(1)}) dV \\ \int_{V} (\epsilon_{1} \epsilon_{1}^{*(2)} + \epsilon_{2} \epsilon_{2}^{*(2)}) dV & \int_{V} (\epsilon_{1} \epsilon_{2}^{*(2)} + \epsilon_{2} \epsilon_{1}^{*(2)}) dV & \int_{V} (\epsilon_{6} \epsilon_{6}^{*(2)}) dV \\ \int_{V} (\epsilon_{1} \epsilon_{1}^{*(3)} + \epsilon_{2} \epsilon_{2}^{*(3)}) dV & \int_{V} (\epsilon_{1} \epsilon_{2}^{*(3)} + \epsilon_{2} \epsilon_{1}^{*(3)}) dV & \int_{V} (\epsilon_{6} \epsilon_{6}^{*(3)}) dV \end{bmatrix}$$

$$\mathbf{Q} = \begin{cases} Q_{11} \\ Q_{12} \\ Q_{66} \end{cases} \quad \mathbf{B} = \begin{cases} \oint_{S_f} \mathbf{T} \cdot \mathbf{u}^{*(1)} dS \\ \oint_{S_f} \mathbf{T} \cdot \mathbf{u}^{*(2)} dS \\ \oint_{S_f} \mathbf{T} \cdot \mathbf{u}^{*(3)} dS \end{cases}$$

special virtual fields

- The equation $\mathbf{A} \cdot \mathbf{Q} = \mathbf{B}$ still depends on the choice of virtual fields.
 - valid for any choice of virtual fields
 - solvable for any linearly independent choice of virtual fields
 - numerically stable if condition number of ${f A}$ is close to 1
- It is possible to choose the virtual fields such that A is perfectly conditioned and trivially solvable by making A = I the identity matrix.
 - A = I is a set of linear equations
 - as many equations as elements of **A**
- It is possible to assess a priori how sensitive to noise the calculation is.
 - coefficients depend on material coefficients ${f Q}$
 - optimized virtual fields minimize noise sensitivity
 - iteratively solving material coefficients and optimizing converges quickly