





# Flexible and Wearable sensors for health monitoring applications

Reva Teotia (2019A3PS0268P)

## Introduction

Wearable devices for continuous and remote health monitoring.

#### Requirements

- Light weight
- Flexible
- Biocompatible

#### **Applications**

- Pulse rate measurement
- Motion detection
- Glucose, pH and other biological indicators detection
- Physiological signal like EEG, EMG, ECG monitoring



## Temperature Sensors

Temperature sensors are vital for monitoring the body temperature. Temperature outside the normal range can be critical for the health.

#### **Transduction mechanism**

- Flexible resistance temperature detector (FRTD)
- Thermistors
- Thermocouple



innovate

## Temperature Sensors

#### Flexible resistive temperature detector (FRTD)

Change in temperature cause a change in electrical resistance.

- Temperature coefficient of resistance (TCR) =  $(\Delta R/R_0)/\Delta T$
- Sensitivity  $S = \Delta R/R_0$

Active material - Metals like Ni, Cu, Pt

Carbon derivatives - CNT,

graphene, quantum dots

Conducting polymers -

PEDOT:PSS

#### **Fabrication methods -**

Laser Digital Printing (LDP) Inkjet printing Sputtering Spin coating



lead

#### **Thermistors**

The resistance changes occurs due to change in temperature.

**Active material** - Metals like Pt, Cu, Ag, Au, AgNW Carbon derivatives like rGO, CNT, graphene

Substrate - PI, PDMS, PET, PEN

Fabrication methods -

Inkjet printing Sputtering Spin coating



#### **Thermocouples**

Seebeck effect - production of emf in two dissimilar conductors when the junctions are maintained at different temperatures.

#### Active material - alloy films

- nickel-aluminum-silicon-manganese alloy film,
- nickel-aluminum alloy film,
- p-Sb2Te3 film, n-Bi3Te3 film, Bi-Te film and Sb-Te film

#### **Fabrication methods -**

Sputtering Spin coating



**Heat Sink** 

K-type Thermocouple

**Heater K-type** 

Thermocouple

+Heater

Thermal pad

+Heat Sink

innovate

## Pressure Sensors

Pressure sensors can be used for determining pulse, blood pressure or external pressure applied on e-skin or prosthetics.

#### **Transduction mechanism**

- Capacitive
- Piezoelectric
- Piezoresistive



#### **Capacitive Pressure sensor**

$$C = \varepsilon_r \varepsilon_0 A/d$$

Where  $\varepsilon_r$  is the relative permittivity, A is the plate area and d is the gap between plates.

**Active material -** dielectric material - PDMS, PU, organosilicon elastomer, polystyrene, PET, woven-spacer structures

Microstructures are created to enhance sensitivity.



## Pressure Sensors

#### Piezoelectric Pressure sensor

Piezoelectric effect - The application of external pressure that cause deformation generates current and vice versa.





Active material - P(VDF-TrFE)), barium titanate (BaTiO3), lead zirconate-titanate (PZT), and zinc oxide (ZnO)

### Pressure Sensors

#### **Piezoresistive Pressure sensor**

Piezoresistance - Deformation in the structure cause change in electrical resistance.

Active material - metallic particles, metal NW carbon-based materials including carbon black, CNTs, and reduced graphene oxide (rGO)





## Strain Sensors

Strain is the relative change in the length of a structure under stress.

Strain sensors convert mechanical stimuli into optical or electrical signals.

**Application** - Recognize the posture or gesture

Continuous blood pressure monitoring

Artificial tactile sensation

Vocal-cord vibrations

Pulse

Respiration

#### **Transduction mechanism**

- Piezoresistive
- Capacitive
- Piezoelectric









#### **Piezoresistive Strain sensor**

Tensile strain Gauge factor (GF) =  $(\Delta R / R0) / \epsilon$ , that is, the fractional change in the resistance, with  $\epsilon$  being the strain



Piezoresistive strain sensor

Compressive strain Sensitivity =  $(\Delta E / E0) / \Delta P$ . where  $\Delta E$  represents the change in the electrical signals

**Active material -** CNT, graphene, carbon black, polymers, metal nanowires

Advantages - simple structure, low cost, high linearity and excellent sensing performance



## Strain Sensors

#### **Capacitive Strain sensor**

Gauge factor,  $GF = (\Delta C / C0) / \epsilon$ 

Active material - dielectric material - elastomers, ionic liquid/gels, thinned inorganic material

**Advantages -** Low input energy, High dynamic response and Low noise impact



innovate

#### Piezoelectric Strain sensor

These can be used as a generator as well as the biosensor.

Evaluated in either of the two working modes - open circuit voltage ( $V_{oc}$ ) Short circuit current ( $I_{sc}$ )

**Active material -** ZnO, PZT nanoribbons, BaTiO3, and organic polymer like PVDF

## Thank You