

Introdução a Optimização

Filipe Alvelos falvelos@dps.uminho.pt

Outubro 2014 – Fevereiro 2015

Porquê optimização?

- Exemplo "Travelling salesman problem"
- Determinar a ordem pela qual devem ser visitadas um conjunto de cidades de forma a que todas elas sejam visitadas uma e uma só vez e se termine na cidade em que se começou
- O objectivo é a distância total percorrida ser a menor possível

Porquê optimização?

- Algoritmo de enumeração completa (pesquisa exaustiva)
 - Obter o custo de cada um dos ciclos
 - · Escolher o ciclo com menor custo
- O número de ciclos num problema com *n* cidades é *n!*
 - Para *n*=10, número de ciclos: 10! = 3628800
 - Para n=30, número de ciclos: $30! = 2.65 \times 10^{32}$
 - Testando um bilião de alternativas por segundo (um computador muito bom!), o tempo total seria mais de oito milénios!
 - Estima-se que a idade do universo seja 4.4×1017 segundos
 - Para n=100, número de possibilidades: $100! = 9.3 \times 10^{157}$
 - Estima-se que o número de átomos no universo esteja entre 10^{78} e 10^{82}

FA, Introdução a Optimização

Optimização

- São precisas outras abordagens porque há muitos problemas relevantes que são demasiado complexos / grandes para o bom senso (+ informática) ser responsável pelas decisões
 - programação linear e inteira
 - algoritmos específicos
 - heurístias (e meta-heurísticas)
- Problema de optimização

Min f(s)sujeito a: $s \in S$

- s representa uma solução
- S representa o conjunto das soluções admissíveis
- f(s) é a função objectivo (faz corresponder a cada s o seu valor)

Programação linear e inteira

- Se *f*(*x*) for uma função linear em que *x* é um vector de variáveis de decisão *contínuas* e *S* puder ser representado através de equações e/ou inequações lineares, tem-se um modelo de programação linear
- Se f(x) for uma função linear em que x é um vector de variáveis de decisão em que pelo menos algumas são binárias e/ou inteiras e S puder ser representado através de equações e/ou inequações lineares, tem-se um modelo de programação (linear) inteira mista
- Métodos para programação linear e inteira garantem a obtenção de uma solução óptima (solução que tem um valor maior (em maximização) / menor (em minimização) ou igual a qualquer solução admissível)
- Software para programação linear e inteira
 - Solver Excel
 - OpenSolver Excel
 - IBM ILOG CPLEX
 - ..

FA, Introdução a Optimização

Programação linear

- Determinar dieta diária com menor custo possível que cumpra determinados requisitos nutritivos.
- Requisitos nutritivos diários:
 - exactamente 3000 calorias;
 - pelo menos 100 gramas de proteínas.
 - Alimentos disponíveis A, B e C, com preços e composição nutritiva dados na tabela.

	Calorias / unidade de alimento	Proteínas (gramas / unidade de alimento)	Custo (€ / unidade de alimento)	
A	1000	20	10	
В	1000	50	10	
С	3000	50	20	

Programação linear

 x_i – quantidade a ingerir diariamente do alimento j, j = 1,2,3

$$Min \ z = 10x_1 + 10x_2 + 20x_3$$

s.a:

 $1000x_1 + 1000x_2 + 3000x_3 = 3000$

$$20x_1 + 50x_2 + 50x_3 \ge 100$$

$$x_i \ge 0, j = 1, 2, 3$$

FA, Introdução a Optimização

Programação linear

• Uma determinada empresa produz três tipos de produtos (A, B e C) que são processados em duas máquinas (M1 e M2). O tempo de processamento (em minutos por unidade processada), a capacidade das máquinas (em minutos) e o lucro obtido (em unidades monetárias por unidade produzida) são dados na tabela. Pretende-se determinar as quantidades a produzir de cada produto de forma a maximizar o lucro total.

	А	В	С	Capacidade (minutos)
M1	13	12	15	200
M2	21	18	14	220
Lucro (U.M./unidade)	160	100	150	

Programação linear

 x_i – quantidade a produzir do produto j = 1,2,3.

$$Max z = 160x_1 + 100x_2 + 150x_3$$

s.a :

$$13x_1 + 12x_2 + 15x_3 \le 200$$

$$21x_1 + 18x_2 + 14x_3 \le 220$$

$$x_j \ge 0, j = 1,2,3.$$

FA, Introdução a Optimização

Programação linear

• Uma empresa de distribuição pretende transportar um determinado produto de três locais onde está disponível (A, B e C) para outros três locais (1, 2, e 3). Nos locais A, B e C estão disponíveis 20, 30 e 40 unidades do produto, respectivamente. Nos locais 1, 2 e 3 são necessárias 15, 25 e 50 unidades, respectivamente. Na tabela em baixo, apresentam-se os custos de transportar uma unidade entre cada local origem e cada local destino. Pretende-se determinar as quantidades a enviar entre cada local origem e cada local destino de forma a minimizar o custo total de transporte.

	1	2	3
А	9	5	4
В	8	2	3
С	4	5	8

Programação linear

 x_{ij} – quantidade a transportar de i para j, i = 1, 2, 3, j = 1, 2, 3.

$$Min \ z = 9x_{11} + 5x_{12} + 4x_{13} + 8x_{21} + 2x_{22} + 3x_{23} + 4x_{31} + 5x_{32} + 8x_{33}$$
 s.a :

$$x_{11} + x_{12} + x_{13} = 20$$

$$x_{21} + x_{22} + x_{23} = 30$$

$$x_{31} + x_{32} + x_{33} = 40$$

$$x_{11} + x_{21} + x_{31} = 15$$

$$x_{12} + x_{22} + x_{32} = 25$$

 $x_{13} + x_{23} + x_{33} = 50$

$$x_{ij} \ge 0, i = 1,2,3, j = 1,2,3.$$

FA, Introdução a Optimização

Programação inteira

 Seleccionar um conjunto de projectos, cada qual com um determinado orçamento e um determinado proveito, de tal forma que o orçamento disponível (20 unidades monetárias – UM) não seja excedido e o proveito total seja máximo.

Projecto 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Proveito 39 35 68 61 46 46 38 16 42 68 85 72 42 16 75 25 29 31 68 67

Orçamento 4 5 5 10 7 5 5 2 3 10 8 6 3 1 8 1 3 3 8 6

Programação inteira

- Variáveis de decisão
- $x_j = \begin{cases} 1, se \ projecto \ j \ \'e \ seleccionado \\ 0, caso \ contr\'ario \end{cases}$, $j=1,\ldots,20$
- $Maz = 39x_1 + 35x_2 + \dots + 67x_{20}$
- sujeito a:
- $4x_1 + 5x_2 + \dots + 6x_{20} \le 20$
- $x_j \in \{0,1\}, j = 1, ..., 20$

FA, Introdução a Optimização

Programação inteira

• Num determinado serviço de um hospital pretende-se fazer a escala de 10 enfermeiros para 10 turnos críticos. Cada enfermeiro deve trabalhar exactamente em um turno e em cada turno deve estar presente exactamente um enfermeiro. Na Tabela são apresentadas as preferências de cada enfermeiro em relação a cada turno numa escala de 1 a 10 em que 1 corresponde à preferência máxima. Pretende-se determinar qual o turno que cada enfermeiro deve efectuar.

•	o tarno que cada emermeno deve e									
	Enfermeiro									
	1	1	1	3	5	3	5	1	1	2
	3	2	2	7	9	9	6	2	3	1
	2	10	3	1	3	2	7	4	2	3
	8	4	4	4	6	7	1	5	4	5
	9	5	5	2	4	6	2	9	5	4
	4	3	6	5	7	5	3	10	6	8
	5	6	7	8	10	4	8	6	10	7
	7	7	8	9	1	10	9	8	9	6
	6	8	9	10	2	8	10	7	7	10
	10	9	10	6	8	1	4	3	8	9
	FA, Introdução a Optimização									

Programação inteira

• Uma solução obtida com uma heurística

1

Enfermeiro									
1	2	3	4	5	6	7	8	9	10
$ \widehat{1} $	1	1	3	5	3	5	1	1	2
3	2	2	7	9	9	6	2	3	1
2	10	$\left(3\right)$) 1	3	2	7	4	2	3
8	4	4	4	6	7	1	5	4	5
9	5	5	2	4	6	2	9	5	4
4	3	6	5	7	5	3	10	6	8
5	6	7	8	10	4	8	$\left \left(6 \right) \right $	10	7
7	7	8	9	$\left(1\right)$	10	9	8	9	6
6	8	9	10	2	8	10	7	7	(10)
10	9	10	6	8	(1)	4	3	8	9

FA, Introdução a Optimização

Programação inteira

- Variáveis de decisão
- $x_{ij} = \begin{cases} 1, se \ turno \ i \ fica \ com \ enfermeiro \ j \\ 0, caso \ contr\'ario \end{cases}$, $i = 1, \dots 10; \ j = 1, \dots, 10$
- $Min\ z = x_{11} + x_{12} + x_{13} + 3x_{14} + \dots + 9x_{10,10} = \sum_{i=1}^{10} \sum_{j=1}^{10} p_{ij}x_{ij}$
- Restrições
- $x_{11} + x_{12} + x_{13} + \dots + x_{1,10} = 1$
- $x_{21} + x_{22} + x_{23} + \dots + x_{2,10} = 1$
- ..
- $x_{10,1} + x_{10,2} + x_{10,3} + \dots + x_{10,10} = 1$
- $x_{11} + x_{21} + x_{31} + \dots + x_{10,1} = 1$
- ..
- $x_{1,10} + x_{2,10} + x_{3,10} + \dots + x_{10,10} = 1$
- $x_{ij} \in \{0,1\} \ OU \ x_{ij} \ge 0$