IUT de Montpellier M3103 Algorithmique avancée

TD1

Pour tous les exercices, on détaillera la spécification des algorithmes (action, prérequis), et on vérifiera que les appels respectent les prérequis.

1 Exercices de base sur les entiers

Exercice 1. Factorielle Ecrire un algorithme récursif int factorielle (int n) qui pour tout $n \in \mathbb{N}^*$ calcule n!.

Exercice 2. Pair Ecrire un algorithme récursif boolean pair (int n) qui pour tout $n \in \mathbb{N}$ retourne vrai ssi n est pair.

Exercice 3. Somme impairs Ecrire un algorithme récursif int sommeImpairs (int n) qui pour tout $n \geq 1$, n impair, calcule $\sum_{i=0}^{\frac{n-1}{2}} (2i+1)$.

Exercice 4. Puissance Ecrire un algorithme récursif int puiss (int x, int n) qui pour tout entier x et pour tout $n \in \mathbb{N}$ calcule x^n . Nous écrirons une autre version de cet algorithme de type "diviser pour régner" plus tard.

2 Exercices de base sur les tableaux

Exercice 5. Nombre d'occurences

Question 5.1.

Ecrire un algorithme récursif int nbOccAux (int x, int []t, int i) qui pour tout entier x, tableau t non vide et pour tout i tel que $0 \le i < t.length$ calcule le nombre d'occurences de x dans le sous tableau t[i..(t.length-1)].

Ouestion 5.2.

En déduire un algorithme (non récursif .. mais sans boucle !) int nbOcc (int x, int []t) qui calcule le nombre d'occurences de x dans t. Indication : appelez nbOccAux.

Question 5.3.

Exercice 6. Palindrome En s'inspirant de la démarche de l'exercice précédent (c'est à dire en écrivant un estPalindromeAux(.....) POUR LEQUEL VOUS INDIQUEREZ VOS PREREQUIS), écrire un algorithme boolean estPalindrome (char []t) qui détermine si t est un palindrome. Par exemple, t = ['a', 'b', 'c', 'b', 'a'] est un palindrome, t = ['a', 'b', 'b', 'a'] est un palindrome, mais t = ['a', 'b', 'c', 'e', 'a'] n'est pas un palindrome.

Exercice 7. Croissants En s'inspirant de la démarche de l'exercice précédent, écrire un algorithme boolean croissants (int []t) qui détermine si les éléments de t sont rangés par ordre croissant.

Exercices bonus

Exercice 8. Pavage avec des dominos On considère une grille de 2 cases de haut et $n \geq 1$ cases de large, ainsi que des dominos de taille 2×1 (que l'on peut placer horizontalement ou verticalement sur le damier). On appelle **paver** une grille le fait de disposer des dominos pour couvrir toutes les cases, sans laisser de trous, sans que deux dominos se chevauchent, et sans qu'un domino soit à moitié sur la grille et à moitié dehors.

Question 8.1.

Dessinez les 3 façons de paver une grille de 2 cases de hauteur 3 de largeur.

Ouestion 8.2

Ecrire un algorithme récursif int f (int n) qui pour tout entier $n \ge 1$ calcule le nombre de façons de paver une grille de 2 cases de haut et de n cases de large. Par exemple, pour n=3, f(3) doit retouner 3

Question 8.3.

Et f .. vous la reconnaissez ?

Exercice 9. Numérotation du plan On considère la fonction C qui à tout couple d'entiers (x,y) associe un entier comme indiqué sur le schéma.

Question 9.1.

Ecrire un algorithme récursif int C (int x, int y) qui pour tout $x \in \mathbb{N}$ et $y \in \mathbb{N}$ calcule C(x,y)

Question 9.2.

On admettra (voir dessin!) que C est une bijection, et donc que pour tout $n \in \mathbb{N}$ il existe unique couple (x,y) tel que C(x,y)=n. Un tel couple sera noté $C^{-1}(n)$. Ecrire un algorithme récursif int [] invC (int n) qui pour tout $n \in \mathbb{N}$ calcule le couple $C^{-1}(n)$ (sous la forme d'un tableau de taille 2 de la forme [x,y])

Exercice 10. PGCD Nous allons écrire l'algorithme récursif d'Euclide pour calculer le PGCD de deux entiers naturels.

Question 10.1.

Soient a et b dans \mathbb{N} , avec b > 0. Soient q et r dans \mathbb{N} tels que a = bq + r, avec $0 \le r < b$. Montrer que pour tout x, (x divise a et x divise b) \Leftrightarrow (x divise b et x divise r).

Question 10.2

Soient a et b dans \mathbb{N} , avec b > 0. Montrer que PGCD(a, b) = PGCD(b, r).

Question 10.3.

En déduire un algorithme récursif int PGCD (int a, int b) qui pour tout a et b dans \mathbb{N} calcule le pgcd de a et b.