

Continual Meta RL

By Kellen Kanarios

Supervised Learning

use (s_t, a_t, s_{t+1}, r_t) to improve π_{θ}

Meta Learning

Meta Learning

Meta Reinforcement Learning

Meta Reinforcement Learning

Goal: meta-learn generally useful knowledge

- Learned online as we adapt to the current task.
- Transfers across similar tasks.

Discovery of Useful Questions (Veeriah et al.)

A Structured State Representation

A Structured State Representation

General Value Functions (Sutton et al.)

$$V^{\pi,c,\gamma}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t c_{t+1} | \pi, c, s_0 = s\right]$$

cumulant $c: \mathcal{S} \to \mathbb{R}$.

state-dependent discount factor $\gamma: \mathcal{S} \to [0,1]$

• Can learn using traditional TD methods i.e. GAE, V-trace, etc.

0.53	0.59	0.66	0.73	0.81	0.9	1	
0.53	0.59	0.66	0.73	0.81	0.9	1	
0.53	0.59	0.66	0.73	0.81	0.9	1	
0.53	0.59	0.66	0.73	0.81	0.9	1	
0.53	0.59	0.66	0.73	0.81	0.9	1	

$$-\alpha \nabla_{\theta^{y_i}} \mathcal{L}^{ans} = \alpha \left(G_t^{y_i} - y_i(x_t) \right) \nabla_{\theta_i^y} y_i(x_t)$$

$$\theta_{t,k} \leftarrow \theta_{t,k-1} - \alpha' \nabla_{\theta_{t,k-1}} \mathcal{L}^{RL}(\theta_{t,k-1}) - \alpha' \nabla_{\theta_{t,k-1}} \mathcal{L}^{ans}(\theta_{t,k-1}).$$

$$\eta_{t+1} \leftarrow \eta_t - \alpha \nabla_{\eta} \sum_{k=1}^{L} \mathcal{L}^{RL}(\theta_{t,k}).$$

$$\theta_{t,k} \leftarrow \theta_{t,k-1} - \alpha' \nabla_{\theta_{t,k-1}} \mathcal{L}^{RL}(\theta_{t,k-1}) - \alpha' \nabla_{\theta_{t,k-1}} \mathcal{L}^{ans}(\theta_{t,k-1}).$$

Inner Update: ----

$$\theta_{t,k} \leftarrow \theta_{t,k-1} - \alpha' \nabla_{\theta_{t,k-1}} \mathcal{L}^{RL}(\theta_{t,k-1}) - \alpha' \nabla_{\theta_{t,k-1}} \mathcal{L}^{ans}(\theta_{t,k-1}).$$

Inner Update: ----

$$\theta_{t,k} \leftarrow \theta_{t,k-1} - \alpha' \nabla_{\theta_{t,k-1}} \mathcal{L}^{RL}(\theta_{t,k-1}) - \alpha' \nabla_{\theta_{t,k-1}} \mathcal{L}^{ans}(\theta_{t,k-1}).$$

$$\eta_{t+1} \leftarrow \eta_t - \alpha \nabla_{\eta} \sum_{k=1}^{L} \mathcal{L}^{RL}(\theta_{t,k}).$$

Inner Update: ----

Outer Update: ——

How do we learn useful questions?

$$\theta_{t,k} \leftarrow \theta_{t,k-1} - \alpha' \nabla_{\theta_{t,k-1}} \mathcal{L}^{RL}(\theta_{t,k-1}) - \alpha' \nabla_{\theta_{t,k-1}} \mathcal{L}^{ans}(\theta_{t,k-1}).$$

$$\eta_{t+1} \leftarrow \eta_t - \alpha \nabla_{\eta} \sum_{k=1}^{L} \mathcal{L}^{RL}(\theta_{t,k}).$$

Inner Update: ---

Outer Update: ——

Gradient Flow: ---→

How do we learn useful questions?

How do we learn useful questions?

Decoupling Task Objective

- Meta objective based on learning dynamics
- **Idea**: Future policy will be better than current one

Decoupling Task Objective

- Meta objective based on learning dynamics
- Idea: Future policy will be better than current one

Bootstrapped Meta Gradient (BMG):

$$\mathcal{L}_{\text{outer}} = \text{KL}(\pi_{\theta_{t+K}(\eta)} || \pi_{\theta_{t+K+L}}),$$

Non-Stationarity

Answer targets are constantly changing

Plasticity Loss

Non-Stationarity

Answer targets are constantly changing

Plasticity Loss

Concatenated Rectified Linear Unit

CReLU(x) = [ReLU(x), ReLU(-x)]

Experiments

Meta RL Is HARD!

- Truncated backprop
- Evolutionary strategies

Continual RL: Where to go from here?

What does it mean to learn continually?

"A continual learning agent is an agent that never stops learning" - Abel et al.

What does it mean to learn continually?

"A continual learning agent is an agent that never stops learning" - Abel et al.

In practice:

- No known task distribution a priori.
- Tasks are encountered sequentially and may or may not be seen again.

What does it mean to learn continually?

"A continual learning agent is an agent that never stops learning" - Abel et al.

In practice:

- No known task distribution a priori.
- Tasks are encountered sequentially and may or may not be seen again.

What we want:

- Given a sufficient amount of samples in each task learn the optimal policy for each task -> **Plasticity.**
- Perform "better" on previously learned tasks -> Minimizing Catastrophic Forgetting/Interference.
- Similar "structure" to a previous task better performance -> Forward Transfer.

Forward Transfer: Off Policy GVF

GVFs are learned on policy in previous method.

Forward Transfer: Off Policy GVF

GVFs are learned on policy in previous method.

Forward Transfer: Off Policy GVF

• GVFs are learned on policy in previous method.

Linear MDP Assumption: Can decompose reward as $r_t = \langle \phi(s_t, a_t), w \rangle$

Linear MDP Assumption: Can decompose reward as $r_t = \langle \phi(s_t, a_t), w \rangle$

- Assumed to be given *cumulant* $\phi : \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$
- $w \in \mathbb{R}^d$ encodes the task representation
- We learn a successor feature $\psi(s_t, a_t)$ via bootstrapping $\psi(s_t, a_t) = \phi(s_t, a_t) + \gamma \psi(s_{t+1}, a^*)$
- Then we have that $\langle \psi(s_t, a_t), w \rangle = Q(s_t, a_t)$
- Then we can quickly learn GVFs of new tasks via learning new w

Linear MDP Assumption: Can decompose reward as $r_t = \langle \phi(s_t, a_t), w \rangle$

- Assumed to be given *cumulant* $\phi : \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$
- $w \in \mathbb{R}^d$ encodes the task representation
- We learn a successor feature $\psi(s_t, a_t)$ via bootstrapping $\psi(s_t, a_t) = \phi(s_t, a_t) + \gamma \psi(s_{t+1}, a^*)$
- Then we have that $\langle \psi(s_t, a_t), w \rangle = Q(s_t, a_t)$
- ullet Then we can quickly learn GVFs of new tasks via learning new w

Universal Successor Feature Approximator:

- ullet Learn task conditioned successor feature approximator $oldsymbol{\psi}(s,a,oldsymbol{w})$
- Can learn optimal off policy $\psi(s_t, a_t, \boldsymbol{w}) = \phi(s_t) + \gamma \psi(s_{t+1}, a^*, \boldsymbol{w})$

Universal Successor Feature Approximator:

- Learn task conditioned successor feature approximator $\psi(s,a,oldsymbol{w})$
- Can learn optimal off policy $\boldsymbol{\psi}(s_t, a_t, \boldsymbol{w}) = \boldsymbol{\phi}(s_t) + \gamma \boldsymbol{\psi}(s_{t+1}, a^*, \boldsymbol{w})$

$$\min_{w} \|r(s_t, a_t) - \langle \boldsymbol{\phi}(s_t, a_t), \boldsymbol{w} \rangle\|$$

Off Policy: Deadly Triad

- If target bootstrap at s_1 increases θ then bootstrap target also increases
- ullet Causes divergence when s_2 not visited by behavior policy

Off Policy: Deadly Triad

- If target bootstrap at s_1 increases θ then bootstrap target also increases
- Causes divergence when s_2 not visited by behavior policy

Off Policy: Deadly Triad

- If target bootstrap at s_1 increases θ then bootstrap target also increases
- ullet Causes divergence when s_2 not visited by behavior policy

$\begin{aligned} \textbf{V-Trace:} \\ \delta_t V &= \rho_t (r_t + \gamma V(x_{t+1}) - V(x_t)) \\ v_s &\stackrel{\text{def}}{=} V\left(x_s\right) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \left(\prod_{i=s}^{t-1} c_i\right) \delta_t V \end{aligned} \qquad c_i = \min \left(\bar{c}, \frac{\pi(a_t|x_t)}{\mu(a_t|x_t)}\right)$

Catastrophic Forgetting

$$\min_{\theta_0^j} \left(\sum_{i=1}^t \left(\ell_i \left(\theta_0^j \right) \right) - \alpha \sum_{p,q \le t} \left(\frac{\partial \ell_p \left(\theta_0^j \right)}{\partial \theta_0^j} \cdot \frac{\partial \ell_q \left(\theta_0^j \right)}{\partial \theta_0^j} \right) \right)$$

Catastrophic Forgetting

$$\min_{\theta_0^j} \left(\sum_{i=1}^t \left(\ell_i \left(\theta_0^j \right) \right) - \alpha \sum_{p,q \le t} \left(\frac{\partial \ell_p \left(\theta_0^j \right)}{\partial \theta_0^j} \cdot \frac{\partial \ell_q \left(\theta_0^j \right)}{\partial \theta_0^j} \right) \right)$$

Forward Transfer

$$\frac{\partial \ell_p \left(\theta_0^j\right)}{\partial \theta_0^j} \cdot \frac{\partial \ell_q \left(\theta_0^j\right)}{\partial \theta_0^j} > 0$$

Catastrophic Interference

$$\frac{\partial \ell_p \left(\theta_0^j\right)}{\partial \theta_0^j} \cdot \frac{\partial \ell_q \left(\theta_0^j\right)}{\partial \theta_0^j} < 0$$

Catastrophic Forgetting

$$\min_{\theta_0^j} \left(\sum_{i=1}^t \left(\ell_i \left(\theta_0^j \right) \right) - \alpha \sum_{p,q \le t} \left(\frac{\partial \ell_p \left(\theta_0^j \right)}{\partial \theta_0^j} \cdot \frac{\partial \ell_q \left(\theta_0^j \right)}{\partial \theta_0^j} \right) \right)$$

Problem: No access to ℓ_i in continual RL

Catastrophic Forgetting: Intuition

Catastrophic Forgetting: An Idea

Use representative task trajectory.

Rough Plans for Future Work

- Investigate plasticity of meta-gradients / viability for continual learning.
- Improving stability of online meta RL.
- Mitigating interference / improving transfer in continual reinforcement learning.
- How to co-learn tasks and successor features for structured representation in CRL.

If any of this sounds interesting reach out!