ФГАОУ ВО «НИУ ИТМО» Факультет программной инженерии и компьютерной техники

Лабораторная работа

Построение и визуализация фрактальных множеств

(по дисциплине «Теория функции комплексного переменного»)

Выполнили студенты:

Горин Семён, 465592 Лабин Макар, 466449 Пивоваров Роман, 467082

Поток: 22.4

Проверил:

Поздняков Семён Сергеевич

г. Санкт-Петербург, Россия 2025

1 Множество Мандельброта

1.1 Реализация

Листинг 1: Построение множества Мандельброта

```
import numpy as np
 import matplotlib.pyplot as plt
 class Mandelbrot:
      def __init__(self, width=800, height=800, max_iterations
         =100.
                    xmin=-2.0, xmax=1.0, ymin=-1.5, ymax=1.5):
          self.width = width
          self.height = height
          self.max_iterations = max_iterations
          self.xmin = xmin
10
          self.xmax = xmax
11
          self.ymin = ymin
12
          self.ymax = ymax
13
14
      def compute(self):
15
          # take a bounded part of the complex plane and construct
16
              a grid on it
          x = np.linspace(self.xmin, self.xmax, self.width)
17
          y = np.linspace(self.ymin, self.ymax, self.height)
18
          X, Y = np.meshgrid(x, y)
19
          C = X + 1j * Y
20
21
          # init arrays
22
          z = np.zeros_like(C)
23
          iterations = np.zeros(C.shape, dtype=int)
24
25
          # construct a sequence iteratively
26
          for i in range(self.max_iterations + 1):
27
              mask = np.abs(z) \le 2.0
28
              z[mask] = z[mask]**2 + C[mask]
29
              iterations[mask] = i
30
31
          return iterations
32
33
      def plot(self, cmap='viridis'):
34
          iterations = self.compute()
35
36
          plt.figure(figsize=(10, 10))
37
38
          # create cmap
39
          cmap_obj = plt.cm.get_cmap(cmap)
40
          cmap_obj.set_under('black')
41
          #extent - borders, origin - position (0,0), vmin - scope
43
              of visibility for cmap
```

```
plt.imshow(iterations,
44
                     extent=[self.xmin, self.xmax, self.ymin, self.
45
                         ymax],
                     cmap=cmap_obj,
46
                     origin='lower',
47
                     vmin=1,
                     vmax=self.max_iterations)
49
50
          plt.colorbar(label='Количество')
51
          plt.xlabel('Re(c)')
          plt.ylabel('Im(c)')
53
          plt.title(f'Множество Мандельброта (max iterations: {self.
              max_iterations})')
          plt.show()
55
56
# example of a function call
58 mandel3 = Mandelbrot(
    xmin = -0.75, xmax = -0.65,
59
    ymin=0.1, ymax=0.2,
    max\_iterations=300
61
63 mandel3.plot()
```

1.2 Примеры визуализации

Множество Мандельброта, 50 итераций

Приближение множества Мандельброта, 300 итераций

Приближение множества Мандельброта по центру слева, 400 итераций

Множество Мандельброта, 200 итераций

Приближение множества Мандельброта на стыке, 400 итераций

Максимальное приближение множества Мандельброта, 500 итераций

2 Множество Жюлиа

2.1 Реализация

Листинг 2: Построение множества Жюлиа

```
import numpy as np
 import matplotlib.pyplot as plt
 class JuliaSet:
      def __init__(self, c, width=800, height=800, max_iterations
         =100,
                    xmin=-2.0, xmax=2.0, ymin=-2.0, ymax=2.0):
          self.c = complex(c)
          self.width = width
          self.height = height
          self.max_iterations = max_iterations
10
          self.xmin = xmin
11
          self.xmax = xmax
12
          self.ymin = ymin
13
          self.ymax = ymax
14
15
      def compute_julia(self):
16
          x = np.linspace(self.xmin, self.xmax, self.width)
17
          y = np.linspace(self.ymin, self.ymax, self.height)
18
          X, Y = np.meshgrid(x, y)
19
          Z = X + 1j * Y
20
21
          iterations = np.zeros(Z.shape, dtype=int)
22
          for i in range(1, self.max_iterations + 1):
23
              mask = np.abs(Z) \le 2.0
24
              Z[mask] = Z[mask]**2 + self.c
25
               iterations[mask] = i
26
27
          return iterations
28
29
      def plot(self, cmap='hot', show_info=True):
30
          iterations = self.compute_julia()
31
32
          plt.figure(figsize=(12, 10))
33
34
          cmap_obj = plt.cm.get_cmap(cmap)
35
          cmap_obj.set_under('black')
36
37
          im = plt.imshow(iterations,
38
                           extent=[self.xmin, self.xmax, self.ymin,
39
                              self.ymax],
                           cmap=cmap_obj,
40
                           origin='lower',
41
42
                           vmin=1,
                           vmax=self.max_iterations)
43
44
```

```
plt.colorbar(im, label='Количество итераций')
45
          plt.xlabel('Re(z)')
46
          plt.ylabel('Im(z)')
47
48
          if show_info:
49
              title = f'Множество Жюлиадля c = {self.c.real:.7f} + {
                  self.c.imag:.7f}i\n'
              title += f'Maкc. итераций: {self.max_iterations},
51
                  Paspeшeниe: {self.width}×{self.height}'
              plt.title(title)
52
          else:
53
              plt.title(f'Mножество Жюлиа (c = {self.c.real:.4f} + {
                  self.c.imag:.4f}i)')
55
          plt.tight_layout()
56
          plt.show()
57
58 # example of a function call
59 julia1 = JuliaSet(c=-0.5251993 + 0.5251993j, max_iterations=200)
60 julia1.plot(cmap='plasma')
```

2.2 Примеры визуализации

Рис. 2: примеры при различных С, 100 итераций

3 Кривая Гильберта

3.1 Описание структуры и построения

Кривая Гильберта была описана немецким математиком Давидом Гильбертом в 1891 году. Она тесно связана с понятием *всюду плотных кривых*.

Определение 1. Кривая на плоскости называется всюду плотной в некоторой области, если она проходит через любую сколь угодно малую окрестность каждой точки этой области.

Кривая Гильберта — пример непрерывной сюръекции вида $p\colon [0,1] woheadrightarrow$ $[0,1]^2$, причём она является фракталом из-за $D_T < D_F$:

- топологическая размерность D_T равна 1, поскольку прообраз отрезок;
- метрическая размерность D_F равна 2, поскольку образ квадрат.

Вышеуказанные утверждения требуют более формального обоснования, которое выходит за рамки курса. Оставим их доказательство в качестве упражнения читателю.

3.1.1 Алгоритм построения

Итеративный процесс построения кривой Γ ильберта удобно описать при помощи L-системы.

Определение 2. Детерминированной контекстнонезависимой **L-системой** называют набор, состоящий из алфавита, аксиомы, и множества правил.

Исторически она впервые была предложена биологом Аристидом Линденмайером в качестве математической модели развития растений.

Определение 3. Алфавитом называется конечное множество, а его элементы — c**имволами**.

Природа символов не важна, их единственная функция — отличаться друг от друга.

Определение 4. *Аксиомой* называется некоторая строка над алфавитом, определяющая начальное состояние системы.

Определение 5. *Правилом* называется пара, состоящая из предшественника (символа алфавита) и последователя (строки над алфавитом).

Опираясь на определения, L-cucmema для кривой Γ ильберта выглядит следующим образом:

Aлфавит:
$$A,B,F,+,-$$
 Aксиома: A Правила:
$$\begin{cases} A \to -BF + AFA + FB - \\ B \to +AF - BFB - FA + \end{cases}$$

Здесь F означает «движение вперёд», «—» — поворот влево на 90° , «+» — поворот вправо на 90° , а A и B игнорируются при рисовании.

Листинг 3: Построение кривой Гильберта

```
import matplotlib.pyplot as plt
2 import numpy as np
 def generate_hilbert_string(level):
    Generate Hilbert curve string using L-system rules
    def apply_rules(char):
      if char == 'A':
        return '-BF+AFA+FB-'
10
      elif char == 'B':
        return '+AF-BFB-FA+'
12
      else:
13
        return char
14
15
    current_string = 'A' # axiom
16
17
    for _ in range(level):
18
      new_string = ''
19
      for char in current_string:
20
        new_string += apply_rules(char)
21
      current_string = new_string
22
23
    return current_string
24
25
26 def draw_hilbert_from_string(hilbert_string, level, step=10,
     angle=90, filename="hilbert_curve.png"):
27
    Draw Hilbert curve by interpreting the generated string using
28
       matplotlib
    0.00
29
    x, y, direction = 0, 0, 0
30
    points = [(x, y)]
31
32
    for char in hilbert_string:
33
      if char == 'F':
34
        rad = np.radians(direction)
35
        x += step * np.cos(rad)
36
        y += step * np.sin(rad)
37
        points.append((x, y))
38
      elif char == '+':
39
        direction -= angle
40
      elif char == '-':
41
        direction += angle
42
43
    plt.figure(figsize=(10, 10))
44
    plt.plot(
45
        [p[0] for p in points],
46
        [p[1] for p in points],
47
        'b-',
48
```

```
linewidth=1)
49
    plt.axis('off')
50
51
    total_segments = len([c for c in hilbert_string if c == 'F'])
52
    print(f'Hilbert Curve - Level {level}')
    print(f'Total segments: {total_segments:,}')
    print(f'Saving plot to: {filename}')
55
   plt.tight_layout()
56
    plt.savefig(filename, dpi=150, bbox_inches='tight', facecolor=
57
       'white')
    plt.close()
58
59
60 def main():
    try:
61
      level = int(input("Enter the level for Hilbert curve: "))
62
      if level < 1:</pre>
63
        print("Level must be at least 1. Using level 1.")
        level = 1
65
      elif level > 7:
66
        print("Warning: High levels may take long to compute and
67
           render.")
68
      output_file = f"hilbert_curve_level{level}.png"
69
      draw_hilbert_from_string(generate_hilbert_string(level),
70
         level=level, step=8, filename=output_file)
71
    except ValueError:
72
      print("Invalid input. Please enter a valid integer.")
73
      return
74
75
76 if __name__ == "__main__":
    main()
```

3.2 Визуализации

Рис. 4: Построения кривой Гильберта разных порядков

Всего сегментов: 16,383

Всего сегментов: 1,023

3.3 Анализ структуры

Кривая Гильберта обладает рядом интересных свойств:

- Сюръективность. Кривая Гильберта не позволяет биективно отобразить отрезок в квадрат, потому что $p_n \colon [0,1] \twoheadrightarrow [0,1]^2$ при $n \to \infty$ имеет бесконечное число самопересечений. В частности, центральной точке соответствуют $p(\frac{1}{6}), p(\frac{1}{2})$ и $p(\frac{5}{6})$.
- **Недифференцируемость.** Несмотря на непрерывность отображения p, оно нигде не дифференцируемо в силу более сильного утверждения для всюду плотных кривых.²
- **Самоподобие.** Если увеличить любой подквадрат в 2n раз, мы получим кривую в точности похожую на всю кривую.

¹That's Maths: Space-Filling Curves, Part II

 $^{^2}$ Sagan H. Space-Filling Curves. Springer-Verlag, 1994. Глава 3, стр. 34-36

Заключение

Были исследованы методы построения кривой Гильберта и показано, как простое рекурсивное правило приводит к образованию сложной, самоподобной структуры. Этот фрактал является классическим примером пространствазаполняющих кривых и демонстрирует идею предельного перехода от дискретных линий к непрерывной плоской форме.