Project Development Phase Model Performance Test

Date	10 November 2022	
Team ID	PNT2022TMID41762	
Project Name	Web Phishing Detection	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE – 16.6%, MSE -33.2, RMSE – 57.6%, R2 score – 66.4%	mae = metrics.neam_absolute_error(y_test, ypred) mae = metrics.neam_squared_error(y_test, ypred) mae = op.sqt(mae) = or.met*[0.5] r2 = metrics.neam_squared_error(y_test, ypred) r2 = metrics.neam_squared_error(y_test, ypred) print(mae,mee,mee,r2) 0.1664465264543987 0.13288308928859373 0.5769584467697476 0.6648228855322114
2.	Tune the Model	Hyperparameter Tuning – 95% Validation Method – KFOLD & Cross Validation Method	mired and Creas visibilities release from nitry, relate import dilenses from nitry, related and related long left from nitrom characters import desilentions inglises of from nitrom, notated import desilentions inglises of from nitrom, notated import desilentions of it could the desirent X - lond, [ris], charge y = lond, [ris], [charge it repror months and nitrot your CV nethod months - desilentions of nitrot pour CV nethod if could not left in the could not nitrot pour CV nethod if could not nitrot nitrot nitrot pour CV nethod if could not nitrot nit

Metrics:

```
mae = metrics.mean_absolute_error(y_test, ypred)
mse = metrics.mean_squared_error(y_test, ypred)
rmse = np.sqrt(mse) # or mse**(0.5)
r2 = metrics.r2_score(y_test,ypred)
print(mae,mse,rmse,r2)
```

0.16644052464947987 0.33288104929895973 0.5769584467697476 0.6648228065232114

Tune the model:

```
#KFOLD and Cross Validation Model
from scipy.stats import wilcoxon
from sklearn.datasets import load_iris
from sklearn.ensemble import GradientBoostingClassifier
from xgboost import XGBClassifier
from sklearn.model_selection import cross_val_score, KFold
# Load the dataset
X = load_iris().data
y = load_iris().target
# Prepare models and select your CV method
model1 = GradientBoostingClassifier(n estimators=100)
model2 = XGBClassifier(n_estimators=100)
kf = KFold(n_splits=20, random_state=None)
# Extract results for each model on the same folds
results_model1 = cross_val_score(model1, X, y, cv=kf)
results_model2 = cross_val_score(model2, X, y, cv=kf)
stat, p = wilcoxon(results_model1, results_model2, zero_method='zsplit');
stat
```

95.0