Yakeen NEET 2.0 2026

Physics By Saleem Sir

Motion in a Straight Line

DPP: 8

Q1 The variation of velocity of a particle moving along straight line is shown in the figure. The distance travelled by the particle in $4\ \mathrm{s}$ is

- (A) 25 m
- (B) 30 m
- (C) 55 m
- (D) 60 m

Q2 The v - t graph of a linear motion is shown in adjoining figure. The distance from origin after 8 seconds is:

- (A) 18 meters
- (B) 8 meters
- (C) 16 meters
- (D) 6 meters

Q3 If position time graph of a particle is sine curve as shown, what will be its velocity-time graph

Q4 The adjoining curve represents the velocity-time graph of a particle, its acceleration values along OA, AB and BC in metre $/\sec^2$ are respectively

 $\bf Q5$ The particle moves with rectilinear motion given the acceleration-displacement (a-S) curve is shown in figure, determine the velocity after the particle has traveled $30~\rm m.$ If the initial velocity is $10~\rm m/s.$

- (A) 10 m/s
- (B) 40 m/s.
- (C) 20 m/s.
- (D) 60 m/s.
- Q6 Figure shows the graph of velocity versus time for a particle going along x-axis. Initially at t=0 particle is at $x=3~\mathrm{m}$. Find position of particle at $t=2 \mathrm{\ s.}$ (in m)

- (A) 9 m
- (B) 3 m
- (C) 12 m
- (D) 6 m
- Q7 Velocity-time graph of a particle moving in a straight line is shown in figure. In the time interval from t=0 to $t=14~\mathrm{s}$, find average velocity

- (A) $\left(\frac{50}{7}\right)$ m/s (C) $\left(\frac{20}{7}\right)$ m/s

- (B) $\left(\frac{25}{7}\right) \, \mathrm{m/s}$ (D) $\left(\frac{15}{7}\right) \, \mathrm{m/s}$
- Q8 Velocity-time graph of a particle moving in a straight line is shown in figure. In the time

interval from t=0 to $t=14~\mathrm{s}$, find average speed of the particle.

- (A) 20 m/s
- (B) 40 m/s
- (C) 10 m/s
- (D) 30 m/s
- **Q9** A rocket is launched upward from the earths surface whose velocity time graphs shown in figure. Then maximum height attained by the rocket is:

- (A) 1 km
- (B) 10 km
- (C) 100 km
- (D) 60 km

Answer Key

Q1	(C)	Q6	(A)
Q2	(D)	Q7	(A)
Q3	(C)	Q6 Q7 Q8	(C)
Q4	(A)	Q9	(D)
Q5	(C)		

