CME 2206 – LAB PROJECT

ASSIGNMENT 1 - ALU DESIGN

Figure 1 Block Diagram of ALU

You are expected to implement an ALU design that is suitable for your common bus (assignment-1) and save it as a block diagram ('symbol file') with the name, "ALU" as shown in Figure 1. Test and simulate your implementation by applying supported operations listed in Table 1. The ALU must support following operations that is selected by the input control X[3..0].

X[30]	CODE	OPERATION	SYMBOL	DESCRIPTION
0	0000	Rd Rs×2	DBL	Double content of Rs and store result in Rd
1	0001	Rd Rs/2	DBT	Divide content of Rs by 2 and store result in Rd
2	0010	R_d $R_s \wedge S_z$	AND	R_s AND S_2 (can be R_x or data) and store result in R_d
3	0011	Rd ←Rs	NOT	Complement Rs content and load the result into Rd
4	0100	R _d ← R _s ⊕ S ₂	XOR	XOR contents of S1 and S2 and store result in Rd
5	0101	← R _s + S ₂	ADD	Add Rs to S₂ (can be Rx or data) and store result
6	0110	R _d ← R _S + 1	INC	Increment content of Rs and store result in Rd

Table 1 ALU Operation Control