Exame Fenómenos de Transferência II - 6 de Julho de 2021

1. Uma camada de água com 1 mm de espessura é mantida a 20 °C em contacto com o ar seco a 1 atm. Admitindo que a evaporação se dá por difusão molecular através de uma camada de ar estagnado com 5 mm de espessura.

O coeficiente de difusão da água no ar é 0,26 cm²/s e a pressão de vapor da água a 20 °C é 0,0235 atm.

Constante dos gases perfeitos, R = 8,314 m³.Pa.K⁻¹.mol

- a) Calcule o coeficente de difusão da água no ar a 35 °C e 2 atm de pressão.
- b) Calcule o tempo necessário para que a água evapore completamente, se considerar uma abordagem de estado estacionário.
- c) Calcule o tempo necessário para que a água evapore completamente, se considerar uma abordagem de estado quasi-estacionário (pseudo-estacionário). Compare com o resultado obtido na alínea b) e justifique a diferença entre os valores calculados.
- 2. Considere uma solução de polietileno glicol (PEG) com uma concentração inicial em CO₂ desconhecida. Esta solução é exposta a uma atmosfera pura de CO₂, a 30°C, com pressão igual a 12 atm. Sabendo que ao fim de 1 hora, a concentração de CO₂ para a posição z=10 mm é igual a 0.15 mol.L⁻¹, calcule a concentração inicial de CO₂ existente na solução de PEG.

Assuma a constante de Henry (H=Ca/Pa) do CO₂ em PEG, a 30 $^{\circ}$ C, igual a 4 x 10 $^{-2}$ mol.L⁻¹.atm⁻¹ e D_{CO2-PEG} = 4 x 10 $^{-9}$ m².s⁻¹

$$\frac{c_{As} - c_{A}}{c_{As} - c_{A0}} = erf\left(\frac{z}{\sqrt{4Dt}}\right)$$

Table 7-1. Error function values. For negative a, erf(a) is negative

a 	erf(a)	a	erf(a)	a	crf(a)
0.0	0.0	0.48	0.50275	0.96	0.82542
0.04	0.04511	0.52	0.53790	1.00	0.84270
80.0	0.09008	0.56	0.57162	1.10	0.88021
0.12	0.13476	0.60	0.60386	1.20	0.91031
0.16	0.17901	0.64	0.63459	1.30	0.93401
0.20	0.22270	0.68	0.66378	1.40	0.95229
0.24	0.26570	0.72	0.69143	1.50	0.96611
0.28	6.30788	0.76	0.71754	1.60	0.97635
0.32	0.34913	0.80	0.7421	1.70	0.98379
0.36	0.38933	0.84	0.76514	1.80	0.98909
0.40	0.42839	0.88	0.78669	2.00	0.99532
0,44	0.46622	0.92	0.80677	3.24	0.99999

ext(|a|) = [1-(1+0.2784|a|+0.2314|a|+6.0781|a|4)]

3. Pretende-se limpar um tubo cilíndrico com 5 cm de diâmetro e 200 m de comprimento cuja superfície interior se encontra revestida de ácido benzóico. Para isso existem dois processos disponíveis:

Processo I- Circulação de água a 25ºC no interior do tubo a uma velocidade 5 m/s.

Processo II- Circulação de ar a 25ºC no interior do tubo a uma velocidade 10 m/s.

- a) Determine a concentração à saída do tubo para o processo I.
- b) Calcule a percentagem de saturação à saída do tubo, no caso de usar o processo II.
- c) Qual dos processos permite realizar a limpeza mais rapidamente? Justifique a sua resposta.

Dados: M (ác. benzóico) = 122 g/mol

Dác. benzóico-água = 1.0x10⁻⁵ cm²/s

 $D_{\text{ác. benzóico-ar}} = 0.233 \text{ cm}^2/\text{s}$

Solubilidade ác. benzólco-água = 0.003 g/cm³

Pressão de vapor do ácido benzóico=0.3 mmHg

Sc=1000

Sc=0.3

- 4. Num estudo de absorção de um composto A em água, realizado numa coluna de enchimento, obteve-se um coeficiente individual de transferência de massa para a fase líquida, k_L=2x10⁻⁵ m/s e verificou-se que, 10% da resistência global é exercida pela fase líquida. Num determinado ponto da coluna a percentagem molar de A no ar é 15% e a sua concentração molar no líquido é 0.01 mol/dm³. A pressão total é 3 atm e a constante de Henry é 0.5 atm (p_A= H x_A). A concentração molar da água é C_L=1000/18 mol/dm³.
 - a) Determine o coeficiente global de transferência de massa K_G e o coeficiente individual de transferência de massa para a fase gasosa, k_G.
 - b) Determine o fluxo molar e as composições interfaciais no referido ponto da coluna.
 - c) Será importante usar reacção química neste caso? Justifique.