Распознавание речи. Произносительные словари

П. А. Холявин

p.kholyavin@spbu.ru

13.03.2024

Произносительные словари

нарисо1ван нарисо1вано нарисо1ваны нарисова1ть

```
n a r' i s o0 v a n
n a r' i s o0 v a n a
n a r' i s o0 v a n y
n a r' i s a v a0 t'
```


Представление лексикона как дерева

Допустим, у нас есть слова ban, band, banned, bat, beef. Как будет выглядеть дерево?

Методы создания словарей

- 1. Экспертный
- 2. Автоматический (grapheme-to-phoneme, G2P)
- а) по правилам
- б) с помощью машинного обучения
- в) с помощью систем распознавания речи
- 3. Гибридный (?)

Автоматическая транскрипция

G2P (Grapheme-to-Phoneme)

- 1. Определение фонемного состава (а какие фонемы?)
- 2. Определение фонетического качества звуков

+ проблема вариативности: какой вариант выбрать для системы?

Вариативность

Орфография	CORPRES	SibLing
двойной согласный		
военного	/vajé n ava/	/vajé nn ava/
выпадение фонемы /ј/		
мавзолеем	/mavzal ^j e j im/	/mavzal ^j éim/
ассимиляция по мягкости		
поднялась	/pa dn jilás'/	/pa d ^j n ^j ilás'/

Фонемная транскрипция

1) По словарю

PHOENTX F TY1 N THO K S PHOENIX'S F IY1 N IHO K S IHO Z PHONE F OW1 N PHONE'S F OW1 N 7 PHONED F OW1 N D PHONEMATE F OW1 N M EY2 T PHONEME F OW1 N TYO M PHONEMES F OW1 N IYO M Z PHONEMIC F AHO N IY1 M IHO K PHONES F OW1 N 7 PHONETIC F AHO N EH1 T THO K PHONETICALLY F AHO N EH1 T IHO K L IYO PHONETICS F AHO N EH1 T IHO K S PHONEY F OW1 N TYO PHONIC F AA1 N IHO K PHONTCS F AA1 N IHO K S PHONING F OW1 N IHO NG PHONOGRAPH F OW1 N AHO G R AE2 F PHONOGRAPHS F OW1 N AHO G R AE2 F S PHONOLOGICAL F OW2 N AHO L AA1 JH THO K AHO L PHONOLOGY F AHO N AA1 L AHO JH TY2

Фонемная транскрипция

2) По правилам

Правила могут кодироваться в конечных автоматах,

. . .

```
def final devoicing(trans):
    """apply to individual words"""
    for cur in reversed(trans):
        if cur.name not in data.obstruents:
            break
        cur.devoice()
def reflexive suffix(trans):
    """apply before a_to_i() to individual words"""
   if trans.last.match(["t|t'", "s'", "a"], reverse=True):
        trans[-3].name = "c"
        trans.remove(trans[-2])
def genitive ending(trans):
    """apply before vowel_reduction() to individual words"""
    if trans.last.match(["o|e", "g", "o"], reverse=True):
       trans[-2].name = "v"
   elif trans.last.match(["o|e", "g", "o", "s'", "a"], reverse=True):
        trans[-4].name = "v"
```


Фонемная транскрипция

- 3) Статистические методы и машинное обучение:
- Марковские цепи
- FST (конечные автоматы)
- Нейронные сети: LSTM, трансформеры, ...

Стыки слов

Кот бежит $/kod b^{j}i3it/$

Отец дома /atje[dz] dóma/

Раз в жизни /ra $_{\rm rag}$ (v) $_{\rm 3}iz^{\rm i}n^{\rm j}i/$

Фонетическая транскрипция

- 1. Отражение коартикуляции звуков, влияние ударения
- 2. Стили произношения и типы произнесения

Типы произнесения: полный и неполный (невозможно восстановить фонемный состав)

```
[gəvɐˈrʲit]
[gəˈrʲit]
[grʲit]
```

3. Влияние других просодических явлений

Взвешенные конечные преобразователи (WFST)

1. Конечный автомат (finite-state acceptor)

2. Конечный преобразователь (finite-state transducer)

1. Выравнивание обучающего материала (alignment)

1. Выравнивание обучающего материала

1. Выравнивание обучающего материала

```
Algorithm 1: EM-driven M2One/One2M

Input: sequence pairs, seq1_max, seq2_max, seq1_del, seq2_del

Output: γ, AlignedLattices

1 foreach sequence pair (seq1, seq2) do

2  | lattice ← Seq2FST(seq1, seq2, seq1_max, seq2_max, seq1_del, seq2_del)

3 foreach lattice do

4  | Expectation(lattice, γ)

5 Maximization(γ, total);
```

```
Algorithm 3: Maximization step
 Algorithm 2: Expectation step
   Input: AlignedLattices
                                                                                      Input: γ, total
   Output: \gamma, total
                                                                                      Output: Ynew
1 foreach FSA alignment lattice F do
                                                                                  1 foreach i[e] \in \gamma do
        \alpha \leftarrow \text{ShortestDistance}(F)
                                                                                            \gamma[i[e]]_{new} \leftarrow \gamma[i[e]] \oslash total
        \beta \leftarrow \text{ShortestDistance}(F^R)
        foreach state q \in Q[F] do
              foreach arc \ e \in E[q] do
                   v \leftarrow ((\alpha[q] \otimes w[e]) \otimes \beta[n[e]]) \otimes \beta[0];
                   \gamma[i[e]] \leftarrow \gamma[i[e]] \oplus v;
                   total \leftarrow total \oplus v;
```


1. Обучение n-граммной модели на графемах

- 1. Декодирование (генерация транскрипции):
- 2. Создание конечного акцептора

- 3. Композиция с n-граммной моделью
- 4. Поиск наилучшего пути

Другие методы

- 1. Рекуррентные нейронные сети (RNN)
- 2. Listen, Attend and Spell (BiLSTM + attention)
- 3. Трансформеры

Listen, Attend and Spell

Генерация транскрипций с помощью ASR

- 1. Автоматическая разметка на слова
- 2. Создание матрицы ошибок (confusion matrix)
- Обучение N-граммной модели для "фонем"
- 4. Пофонемное распознавание слов/последовательностей слов, для которых нужны транскрипции
- 5. Удаление транскрипций, которые отличаются от существующих звуками, которые часто путаются системой (п. 2)

Генерация транскрипций с помощью ASR

rank	pronunciations	
(1)	? AI N T ER M IE N	
(2)	? AINE2NTERMIEN	
(3)	NTERMIEN	
(4)	NE2NTERMIEN	
(5)	? AINE2NTERMIEN	
(6)	? ENTERMIEN	

Pronunciation Candidates for "einen Termin"

rank	pronunciations		pronunciations	
(1)	NOXAINTERMIEN			
(2)	NOX? AINTERMIEN NOXAINE2NTERMIEN			
(3)	NOXAINE2NTERMIEN			
(4)	NOXE2NTERMIEN			

Pronunciation Candidates for "noch einen Termin"

Динамические словари

- 1. Выбор варианта в зависимости от:
- 2. Темпа
- 3. Длины слова
- 4. Фонетического контекста
- 5. Лексического контекста

Оценка качества транскрипций

- 1. Word Error Rate
- 2. Phone Error Rate
- 3. Phone-based dynamic programming (PDP)

A	A	Match
x	В	Mutate
-	C	Insert
D	D	Match
Y		Delete
E	E	Match

Спасибо за внимание!

