Ecuaciones Diferenciales Ecuaciones de orden superior

Ecuaciones lineales homógeneas

Sea
$$ay' + by = 0$$
 s.t. $a \neq b$

$$\Rightarrow$$
 $y' = ky$ 2

$$\therefore y = e^{mx} \wedge y' = me^{mx}.$$

:.
$$ame^{mx} + be^{mx} = 0$$
 :: $e^{mx}(am + b) = 0$

*donde m es una solución a am + b = 0 porque, factorizando 4:2, e^{mx} nunca puede ser 0.

Parecería que para la solución particular $y = e^{\frac{-5x}{2}}$, la solución general es $y = c_1 e^{\frac{-5x}{2}}$, lo cual, derivando, tiene sentido, supongo.

De segundo grado

Consideremos:

$$ay'' + by' + cy = 0$$

Aplicando lo el mismo proceso que en la ec. 3, se obtiene.

$$am^{2}e^{mx} + bme^{mx} + ce^{mx} = 0 \wedge e^{mx} (am^{2} + bm + c) = 0$$
 6

De la misma forma, m debe ser solución de:

$$am^2 + bm + c = 0$$
 7

De la ec. 7 se obtienen m_1 y m_2 , por lo cual se producen tres casos:

Caso 1: Raíces reales y distintas —

Se obtienen dos soluciones linealmente independientes sobre \mathbb{R} de la forma $y = e^{m_n x}$ por lo cual se obtiene como solución general

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$

Caso 2: Raíces reales repetidas

Se obtienen dos soluciónes sabe Dios cómo:

$$y = c_1 e^{m_1 x} + c_2 x e^{m_1 x}$$
 9

Caso 3: Raíces complejas conjugadas

Siendo m_1 y m_2 complejas, se pueden escribir como $\alpha + i\beta$ y $\alpha - i\beta$ donde $\alpha, \beta \in \mathbb{R} \land > 0$.

De aquí podríamos tener como solución:

$$y = C_1 e^{m_1 x} + C_2 e^{m_2 x}$$
 10

pero la vida no es tan bonita.

Con la fórmula de Euler:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta), \theta \in \mathbb{R}$$

y usando sin(-x) = -sin(x) y cos(-x) = cos(x), se obtiene que:

$$e^{i\beta x} = \cos(\beta x) + i\sin(\beta x)$$
 y $e^{-i\beta x} = \cos(\beta x) - i\sin(\beta x)$ 12

Para obtener la solución general (sabe Dios por qué), se consideran los dos sigueintes casos:

Caso I: $C_1 = C_2 = 1$

$$y_1 = e^{\alpha x} \left(e^{i\beta x} + e^{-i\beta x} \right) = 2e^{\alpha x} \cos(\beta x)$$
 13

Caso II: $C_1 = 1$, $C_2 = -1$

$$y_2 = e^{\alpha x} \left(e^{i\beta x} - e^{-i\beta x} \right) = 2ie^{\alpha x} \sin(\beta x)$$
 14

Dado que en algún teorema en algún lugar dice que si y_1 es solución a una ecuación lineal homogénea, entonces c_1y_1 también es solución (en este caso, $c_1 = -i$ para y_2), $e^{\alpha x} \cos(\beta x)$ y $e^{\alpha x} \sin(\beta x)$ son soluciónes reales.

Como estas soluciones forman un conjunto fundamental sobre \mathbb{R} , la solución general es:

$$y = e^{\alpha x} \left(c_1 \cos(\beta x) + c_2 \sin(\beta x) \right)$$
 15

Valores reales —

Para y(m) = n y y'(j) = k, primer se substituye m y n y se despeja c_1 . Luego, se deriva, se substituye j y k y se despeja c_2 .

Orden n

Para una ecuación de orden n, con coeficientes $a_{n\to 0}$, se resuelve el siguiente polinomio de grado n:

$$a_n m^n + a_{n-1} m^{n-1} + \dots + a_1 m^1 + a_0 = 0$$
 16

Si todas las racies de ec. 16 son reales, entonces la solución general es

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x} + \dots + c_n e^{m_n x} + \dots$$

Si una raíz *m* se repite *k* veces, existen soluciones:

$$c_1 e^{mx} + c_2 x e^{mx} + c_3 x^2 e^{mx} + \dots + c_k x^{k-1} e^{mx}$$

Reducción de órden

Sea:

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$$
 18

Se puede obtener

$$y'' + \frac{a_1(x)}{a_2(x)}y' + \frac{a_0(x)}{a_2(x)}y = y'' + P(x)y' + Q(x)y = 0$$
19

Se conoce una solución particular y_1 (x).

Sen nesecita una segunda solución particular $y_2(x)$.

Se propone:

$$y_2(x) = u(x)y_1(x)$$
 20

. . .

$$u = \int \frac{e^{-\int P(x) dx}}{y_1^2} dx$$
 21

$$y_2 = y_1 \int \frac{e^{-\int P(x) \, dx}}{y_1^2} \, dx$$

$$y(x) = c_1 y_1 + c_2 u y_1$$
 23

Ecuación de Cauchy-Euler

$$a_n x^n \frac{d^n y}{dx^n} + a_{n-1} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 x^1 \frac{d^1 y}{dx^1} + a_0 y = g(x), \ n \in \mathbb{R}$$
 24

Solución general —

Se propone $y = x^m$. Por lo tanto, cada término $a_k x^k \frac{d^k y}{dx^k}$ se convierte en

$$a_k m (m-1)(m-2)...(m-k+1) x^m$$
 25

Por lo tanto, m debe ser raíz de una ecuación auxiliar: el polinomio formado aplicando 25, omitiendo x^m .

Orden 2

Forma general, substituyendo según ec. 25

$$a m (m-1) x^m + b m x^m + c x^m = 0$$
 26

Ecuación auxiliar

$$am(m-1) + bm + c = 0$$
 27

Caso I: Raíces distintas

$$y = c_1 x^{m_1} + c_2 x^{m_2}$$
 28

Caso II: Raíces repetidas

$$y = c_1 x^{m_1} + c_2 x^{m_1} \ln x$$
 29

Caso III: Raíces complejas conjugadas

$$m_1 = \alpha + i\beta$$
, $m_2 = \alpha - i\beta \Rightarrow y = x^{\alpha} (c_1 \cos(\beta \ln x) + c_2 \sin(\beta \ln x))$ 30

Coeficientes indeterminados: Superposición

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = g(x)$$
 31

Donde q(x) es una combinación lineal de funciónes con la forma

Polinomial,
$$e^{\alpha x}$$
, $e^{\alpha x} \sin(\beta x)$, $e^{\alpha x} \cos(\beta x)$

La solución con superposición tiene forma de la suma de una función complementaria y_c y una solución particular y_p .

Primeramente se obtiene y_c , igualando ec. 31 a 0 y resolviendo.

Luego, se resuelve y_p , la cual consiste en una suma de los términos de g(x) y sus derivadas, cada uno multiplicado por una constante.

Por ejemplo, si $g(x) = 4x^2 + 6e^x$, $y_p = Ax^2 + Be^6 + Cx + D$.

Entonces, se substituye y, y', y'', ... por y_p , y_p' , y_p'' ... en ec. 31 y se resuelve por A, B, C

La solución final es $y = y_c + y_p$.