Differential Privacy

Zhipeng Cai

Outline

- Example
- Definition
- Neighboring databases
- Sensitivity
 - Global Sensitivity
 - Local Sensitivity
 - Smooth Sensitivity

Outline

- Laplace Mechanism
- Exponential Mechanism
- Composition Theorems
 - Simple Composition
 - Advanced Composition
 - Necessary Materials

Example

• Scenario of Statistic Releasing

Example

- Suppose medical database D
 - Permits for counting Flu=0 and Flu=1 are provided
 - An adversary obtains background information
 - D' containing all the tuples except Bob's
 - Q: whether Bob gets flu?

D	
Name	Flu
Hunter	1
Alice	0
Bob	1
Eric	0
Frank	1

D'	
Name	Flu
Hunter	1
Alice	0
Eric	0
Frank	1

Example

- Suppose medical database D
 - Two queries (using provided permits)

- **-** 3-2=1
- Conclusion: Bob must get flu!

Name	Flu
Hunter	1
Alice	0
Bob	1
Eric	0

Flu
1
0
0
1

Example

• Output Perturbation

Definition

- Differential Privacy
 - A mechanism \mathcal{A} satisfies (ε, δ) -differential privacy if for any neighboring databases D, D' differing in only one tuple and any output $S \in \mathcal{O}(\mathcal{A})$ which represents the possible output set of \mathcal{A} ,

 $\Pr[\mathcal{A}(D) \in S] \le e^{\varepsilon} \times \Pr[\mathcal{A}(D') \in S] + \delta.$

– If $\delta = 0$, \mathcal{A} satisfies ε -differential privacy

We mainly focus on ε -differential privacy, as most studies do ...

Definition

Differential Privacy

- ε-differential privacy is usually called pure differential privacy
 - The difference of output probability distributions for neighboring databases are strictly bounded by e^{ε}

Definition

· Differential Privacy

- $-(\varepsilon, \delta)$ -differential privacy is also called approximate differential privacy
 - provides freedom to violate strict ε-differential privacy for some low probability events

Definition

• Tips

 Neighboring databases D, D' can be obtained either by adding or removing one tuple, or by changing the value of one tuple.

Name	Flu		Name	Flu		Name	Flu
Hunter	1		Hunter	1		Hunter	1
Alice	0	Neighboring	Alice	0	Neighboring	Alice	0
Eric	0		Bob	1		Bob	0
Frank	1		Eric	0		Eric	0
			Frank	1		Frank	1

Definition

• Tips

- Neighboring Databases D and D'
 - Unbounded: D can be obtained by adding a tuple to D' or removing a tuple from D'
 - The size of unbounded neighboring databases differ at 1

Name	Flu		Name	Flu
Hunter	1	Unbounded	Hunter	1
Alice	0	Neighboring	Alice	0
Eric	0	`	Bob	1
Frank	1		Eric	0
			Frank	1

Definition

• Tips

- Neighboring Databases D and D'
 - Bounded: D can be obtained by modifying a tuple in D'
 - · Bounded neighboring databases have the same size

Name	Flu		Name	Flu
Hunter	1	Bounded	Hunter	1
Alice	0	Neighboring	Alice	0
Bob	1		Bob	0
Eric	0		Eric	0
Frank	1		Frank	1

Definition

• Tips

- Neighboring Databases D and D'
 - In this course we mainly focus on unbounded neighboring databases
 - The idea of designing and analyzing differential privacy approaches based on bounded and unbounded neighboring databases are similar
 - Slight difference may occur when comparing the function results on D and D'

Definition

• Tips

- $-\varepsilon$ controls the probability difference of guess whether one tuple exists in the database or not.
 - $\varepsilon \to 0$, indistinguishable ("perfect" protection)
 - Usually, ϵ may be 0.01, 0.1 or ln2, ln3, etc.

Definition

• Tips

- The equation satisfies symmetry
 - $\Pr[\mathcal{A}(D) \in S] \le e^{\varepsilon} \times \Pr[\mathcal{A}(D') \in S] + \delta$
 - $\Pr[\mathcal{A}(D') \in S] \le e^{\varepsilon} \times \Pr[\mathcal{A}(D) \in S] + \delta$
- When we set δ as 0
 - $\Pr[\mathcal{A}(D) \in S] \le e^{\varepsilon} \times \Pr[\mathcal{A}(D') \in S]$
 - $\Pr[\mathcal{A}(D') \in S] \le e^{\varepsilon} \times \Pr[\mathcal{A}(D) \in S]$

Definition

• Example

- Suppose a medical database D (storing flu records)
- Protect Bob from opting in D or out of D', i.e., Bob's health status cannot be inferred confidently.
- Neighboring databases
 - D and D' differ only with whether Bob opting in.
- Probability calculation based on observation S
 - $Pr(\mathcal{A}(D) \in S)$ vs $Pr(\mathcal{A}(D') \in S)$
- $-\varepsilon$ gives the bound of probability ratio.

Definition

• Key points

- Goal: what to be protected after all?
- Determination of neighboring databases
- Calculation of two Probabilities
- Selection of ε
- Base of theoretical proof

Sensitivity

· What Differential Privacy Guarantees

- Each individual has little effect on the output
- Similar inputs, similar outputs
- Neighboring databases are used to depict similar inputs
- Before making outputs similar, we need to recognize their difference (for similar inputs)

Sensitivity

Sensitivity

- Depicts the effect an individual could take on the output
- The added noise *Z* is calibrated according to sensitivity of *f*

Users

· Global sensitivity

- For any query function $f: D \to R^d$, where D is a dataset and R^d is a d-dimension real-valued vector, the global sensitivity of f is defined as $\Delta f = \max_{n,n'} ||f(D) - f(D')||_1$

where D and D 'denote neighboring databases differing in only one tuple and $||\cdot||_1$ denotes l_1 norm.

$$l_1$$
 norm: $||v||_1 = \sum_{1 \leq i \leq d} |v_i|$

Sensitivity

Tips

- The global sensitivity means the maximal change of query result when changing a tuple (extreme case).
- The global sensitivity is only related to query function, and has nothing to do with database itself.

Sensitivity

• Tips

 For some functions, the global sensitivity is easy to compute. However, for other functions, the global sensitivity may be difficult to compute.

```
Q1: compute the sum
Q2: compute the count
Q3: compute the max
Q3: Differentially private deep learning
Q3: Differentially private graph mining
Difficult case samples
```

Sensitivity

Tips

 The global sensitivity can be large or small. Clearly, larger value means large amount of noise to be added, thus leading to poor utility.

```
If \Delta f = 1
f(D) = 100
f(D') = 101
It is sufficient to confusing 100 with 101 by using a noise 0.5

If \Delta f = 100
f(D) = 100
f(D) = 100
f(D') = 200
A noise at scale of 0.5 is obviously insufficient to confuse 100 and 200

Pr[\mathcal{A}(D) = 100.5] = Pr[\mathcal{A}(D') = 199.5] over \mathcal{A}(D') = 100.5] = Pr[\mathcal{A}(D') = 199.5] over \mathcal{A}(D') = 100.5] = Pr[\mathcal{A}(D') = 100.5]
```

• Example: Count function: $\Delta f = 1$

Name	Flu		Name	Flu		Name	Flu
Hunter	1		Hunter	1		Hunter	1
Alice	0	Neighboring	Alice	0	Neighboring	Alice	0
Eric	0	` '	Bob	1	` '	Bob	0
Frank	1		Eric	0		Eric	0
			Frank	1		Frank	1
Count	t(1)=2		Coun	t(1)=3		Count	t(1)=2

Sensitivity

• Example: Histogram Query $\Delta f = 2$

Sensitivity

- Example: Median
 - Suppose extreme case D: (0, 0, 0, n, n)
 - A neighboring database D': (0, 0, n, n, n)
 - -Med(D) = 0
 - -Med(D') = n
 - $-\Delta f = n$ (the maximal possible element)

Sensitivity

- · Local sensitivity
 - For any query function $f: D \to \mathbb{R}^d$, the local sensitivity of f is defined as

$$LS_f(D) = \max_{D'} ||f(D) - f(D')||_1$$

where D and D ' denote neighboring databases differing in only one tuple and $||\cdot||_1$ denotes l_1 norm.

· Local sensitivity

Bounded neighboring is considered

- -f: Compute the maximal salary difference
- Valid salary: [10000, 100000]

Sensitivity

Example

- Median:
 - Suppose $D: (x_1, x_2, ..., x_{n-1}, x_n), n$ is odd
 - $Med(D) = x_m, m = (n+1)/2$
 - $LS_f(D) = \max(x_m x_{m-1}, x_{m+1} x_m)$

 $LS_f(D)$ is usually much smaller than Δf which is the maximal possible element $x_1 \cdots x_{m+t} \cdots x_{m-1} x_m \cdots x_{m+t} \cdots x_n$

Sensitivity

Tips

- The local sensitivity is related to not only query function but also database itself.
- $-\Delta f = \max_{D} LS_f(D)$
- Introducing the local sensitivity may add less noise.
- However, the noise magnitude can reveal the database information, i.e., the local sensitivity cannot satisfy differential privacy.

Sensitivity

· Privacy Branch of Local Sensitivity

- Example: f is to compute median
 - Database Values are between 0 and $M, M \gg 0$
 - Neighboring database D(0,0,0,0,0,M,M) and D'(0,0,0,0,M,M,M)
 - f(D) = 0 and f(D') = 0
 - $LS_f(D) = 0$ and $LS_f(D') = M$
 - Noise Z are calibrated according to 0 and M respectively for computing $\mathcal{A}(D)$ and $\mathcal{A}(D')$
 - $\mathcal{A}(D)$ and $\mathcal{A}(D')$ will not be similar

The adversary will be able to distinguish D and D'

• Smooth Sensitivity

- Motivation
 - Avoid to employ global sensitivity
 - Databases with smaller local sensitivity could be calibrated with smaller noise
 - Add instance-specified noise while differential privacy is preserved at the same time

Sensitivity

• Smooth Sensitivity

- Requirement
 - The difference of smooth sensitivity for neighboring databases should be bounded
 - · No smaller than local sensitivity
 - · No larger than global sensitivity

Sensitivity

· Smooth Bound

- For β > 0, a smooth function *S*: *D* → *R*⁺ is a β-smooth upper bound on the local sensitivity of *f* if it satisfies the following requirements:
 - $S(D) \ge LS_f(D)$
 - $S(D) \le e^{\beta} LS_f(D)$

A function S that is an upper bound on LS_f at all points and such that $\ln(S(\cdot))$ has low sensitivity

Sensitivity

• Smooth Bound

Note that the constant function $S(x) = \Delta f$ meets the requirements with $\beta = 0$.

· Smooth sensitivity

– For any query function $f: D \to \mathbb{R}^d$, the smooth sensitivity of f is defined as

$$S_{f,\beta}^*(D) = \max_{D'} (LS_f(D') \cdot e^{-\beta d(D,D')})$$

where d(D, D') denotes the Hamming distance between neighboring databases D and D'.

Sensitivity

• Property of Smooth Sensitivity

- $-S_{f,\beta}^*$ is a β -smooth upper bound on LS_f . In addition, $S_{f,\beta}^*(D) \leq S(D)$ for all database D for every β -smooth upper bound S on LS_f .
- Key Points
 - $S_{f,\beta}^*(D) \ge LS_f(D)$
 - $S_{f,\beta}^*(D) \le e^{\beta} L S_f(D)$
 - $S_{f,\beta}^*$ is the smallest β -smooth upper bound on LS_f

Sensitivity

· Smooth Sensitivity Brings Differential Privacy

- 1-Dimensional Case
 - Let f: D → ℝ be any real-valued function and let S: D → ℝ be a β-smooth upper bound on the local sensitivity of f then

- If $\beta \le \frac{\varepsilon}{2(\gamma+1)}$ and $\gamma > 1$, the algorithm $x \mapsto f(x) + \frac{2(\gamma+1)S(x)}{\varepsilon}\eta$, where η is sampled from distribution with density $h(z) \propto \frac{1}{1+|z|^{\gamma}}$, is ε -differentially private

 α and β are parameters of the noise distribution

Sensitivity

· Smooth Sensitivity Brings Differential Privacy

- 1-Dimensional Case
 - Let f: D → ℝ be any real-valued function and let S: D → ℝ be a β-smooth upper bound on the local sensitivity of f then

- If
$$\beta \leq \frac{\varepsilon}{2\ln(\frac{\varepsilon}{\delta})}$$
 and $\delta \in (0,1)$, the algorithm $x \mapsto f(x) + \frac{2S(x)}{\varepsilon}\eta$, where $\eta \sim Lap(1)$ (ε, δ) -differentially private

 α and β are parameters of the noise distribution

$$S_{f,\beta}^{*}(D) = \max_{D'} (LS_{f}(D') \cdot e^{-\beta d(D,D')})$$
Sensitivity

- Example of Calculating Smooth Sensitivity
 - Median:
 - Suppose $D: (x_1, x_2, ..., x_{n-1}, x_n), n$ is an odd
 - $Med(D) = x_{m_1} m = (n+1)/2$
 - $LS_f(D) = \max(x_m x_{m-1}, x_{m+1} x_m)$
 - ullet Let k denotes up to k tuples changed
 - The smooth sensitivity of the median is $S_{f med,\epsilon}^*(D) = \max_{k=0,\dots,n} (e^{-k\beta} \cdot \max_{t=0,\dots,k+1} max(x_{m+t} x_{m+t-k-1}, x_{m+t+1} x_{m+t}))$ It can be computed in $O(n^2)$

$$S_{f,\beta}^{*}(D) = \max_{D'}(LS_{f}(D') \cdot e^{-\beta d(D,D')})$$

- An Idea of Computing $S_{f,\beta}^*(D)$
 - Suppose we change up to k tuples $A^{(k)}(D) = \max_{D' \in \mathbb{D}: d(D,D') \le k} LS_f(D')$
 - Smooth sensitivity could be expressed using $A^k(D)$ $S_{f,\beta}^*(D) = \max_{k=0,\dots,n} e^{-k\beta} (\max_{D' \in \mathbb{D}: d(D,D') \le k} LS_f(D'))$
 - $= \max_{k=0,\dots,n} e^{-k\beta} A^k(D)$

Sensitivity

• Computing $S_{f_{med \, \varepsilon}}^*(D)$

Sensitivity

• Computing $S_{f_{med \, \varepsilon}}^*(D)$

$$-\operatorname{For} f = Median \\ A^{(k)}(D) = \max_{D' \in \mathbb{D}: d(D,D') \leq k} LS_f(D')$$

Data range: [0, 10], $Med(D) = x_5 = 5$

D = (1,2,3,4,5,6,7,8,9)

What is the maximum $LS_f(D')$ if k tuples are changed from D to $D'(d(D, D') \le k)$?

• To Compute the Maximum $LS_f(D')$

- Solution to get maximum candidates
 - Let t = 0, ..., k
 - Change t tuples to 10, starting from x_5 to the right
 - Change k t tuples to 0, starting from x_4 to the left
- Change 0 tuple

- No tuples are changed, so the maximum local sensitivity is $\mathit{LS}_f(D)$
- $\max_{D' \in \mathbb{D}: d(D, D') \le k} LS_f(D') = LS_f(D) = \max\{x_5 x_4, x_6 x_5\}$

Sensitivity

- Change 1 tuple

 $- LS_f(D') = \max\{x_6 - x_4, x_7 - x_6\}$

$$S_{f_{med,\epsilon}}^*(D) = \max_{k=0,...,n} (e^{-k\beta} \cdot \max_{t=0,...,k+1} max(x_{m+t} - x_{m+t-k-1}, x_{m+t+1} - x_{m+t}))$$

Sensitivity

- Change 2 tuple

Sensitivity

· Remark on Smooth Sensitivity

- Produce less noisy for better accuracy
- Computing smooth sensitivity is usually non-trivial
 - · Some cases lead to NP-Hard problems
 - Need to crack the computational structure of f
 - · Even approximate smooth sensitivity is complicated
- Tractable cases of smooth sensitivity
 - · Median, cost of a minimum spanning tree ...
- Global sensitivity is in more common use

• Remember Normal Distribution?

– The Normal Distribution (centered at μ) with standard deviation σ is the distribution with probability density function:

$$Norm(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

- Mean: μ
- Variance: σ^2

Laplace Mechanism

• Remember Normal Distribution?

Normal distributions with different means and variances

Laplace Mechanism

• Laplace Distribution

The Laplace Distribution (centered at μ) with scale
 b is the distribution with probability density

$$Lap(x) = \frac{1}{2b} \exp(-\frac{|x - \mu|}{b})$$

- Mean: μ
- Variance: 2b2

Laplace Mechanism

• Laplace Distribution

Laplace distributions with different means and variances

• Laplace Distribution

- Notation Lap(b)
 - denotes the Laplace Distribution (centered at 0) with scale \boldsymbol{b}
 - sometimes abused as a random variable $X \sim Lap(b)$

Laplace Mechanism

• Terms

- \mathbf{X} : the universe of database records
- $-\mathbb{N}^{|\mathcal{X}|}$: the universe of databases
- $-D \in \mathbb{N}^{|\mathcal{X}|}$: a database (represented as a histogram)
- $-||D||_1$: l_1 -norm of a database D (size of D)
- $-||D D'||_1$: number of records differ between databases D and D' (D and D' are arbitrary databases)

Laplace Mechanism

Examples

- $-X = \{1, 2, 3, 4, 5\}$
- $-D \in \mathbb{N}^{|\mathcal{X}|}$: (1,0,1,0,2), containing 1, 3, 5, 5
- $-D' \in \mathbb{N}^{|\mathcal{X}|}$: (1,0,1,0,1), containing 1, 3, 5
- $-||D||_1 = ||(1,0,1,0,2)||_1 = 4$
- $-||D D'||_1 = ||(1,0,1,0,2) (1,0,1,0,1),||_1 = 1$

Laplace Mechanism

Mechanism

- $-l_1$ -sensitivity
 - The l_1 -sensitivity of a function $f \colon \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^k$ is $\Delta f = \max_{\substack{D,D' \in \mathbb{N}^{|\mathcal{X}|} \\ ||D-D'||_1 \le 1}} ||f(D) f(D')||_1$
 - It captures the magnitude by which a single individual's data can change f in the worst case
 - · Here we focus on unbounded neighboring databases

 $\sum_{1 \le i \le k} |f(D)_i - f(D')_i| \le \Delta f \text{ if } ||D - D'||_1 \le 1 \text{ holds.}$

• Mechanism

- Definition of Laplace Mechanism
 - Given any function f: N^{|X|} → R^k, the Laplace Mechanism is defined as:

$$\mathcal{M}(D, f(.), \varepsilon) = f(D) + (Y_1, ..., Y_k)$$

where Y_i is independent and identically distributed random variables drawn from $Lap(\Delta f/\varepsilon)$.

Laplace Mechanism works for real valued functions

Laplace Mechanism

• Mechanism

- $-Lap(\Delta f/\varepsilon)$: noise in Laplace Mechanism
 - Larger Δf brings larger noise
 - Smaller ε brings larger noise

Question:
Which Laplace Distribution brings the smallest noise?

 $Lap(x) = \frac{1}{2b} \exp(-\frac{|x|}{b})$ $b = \Delta f/\varepsilon$

Laplace Mechanism

Mechanism

- A Property of Laplace Distribution

A Property of Laprace Distribution
$$\frac{Lap(x)}{Lap(x')} = \frac{Lap(x) = \frac{1}{2b} \exp(-\frac{|x - \mu|}{b})}{Lap(x') = \frac{1}{2b} \exp(-\frac{|x' - \mu|}{b})}$$

$$= \exp\left(\frac{|x' - \mu| - |x - \mu|}{b}\right) \le \exp\left(\frac{|x - x'|}{b}\right)$$

 $Lap(x) = \frac{1}{2b} \exp(-\frac{|x - \mu|}{b}) \qquad \frac{Lap(x)}{Lap(x')} \le \exp(\frac{|x - x'|}{b})$

Laplace Mechanism

Mechanism

- Property of Laplace Mechanism
 - The Laplace Mechanism $\mathcal{M}(D, f(.), \varepsilon)$ preserves ε -differential privacy
- Proof Sketch
 - Let $D, D' \in \mathbb{N}^{|\mathcal{X}|}$ and $||D D'||_1 \le 1$
 - Let p_D and $p_{D'}$ be the probability density function of $\mathcal{M}(D, f(.), \varepsilon)$ and $\mathcal{M}(D', f(.), \varepsilon)$
 - For any $z \in \mathbb{R}^k$, how to calculate $p_D(z)$ and $p_{D'}(z)$?

· Mechanism

- Proof Sketch (CONT'D)
 - If the Laplace Mechanism $\mathcal{M}(D, f(.), \varepsilon)$ outputs z on database, the noise added on dimension i is $Y_i = z_i - f(D)_i$
 - The probability of adding Y_i is $Lap(z_i f(D)_i)$
 - The probability of outputting z is

$$p_D(z) = \prod_{1 \le i \le k} Lap(z_i - f(D)_i)$$

Laplace Mechanism

• Mechanism

- Proof Sketch (CONT'D)

• Compare $p_D(z)$ and $p_{D'}(z)$

$$\frac{Lap(x)}{Lap(x')} \le \exp\left(\frac{|x - x'|}{b}\right)$$
$$b = \Delta f/\varepsilon$$

$$\frac{p_D(z)}{p_{D'}(z)} = \prod_{i=1}^{k} \left(\frac{Lap(z_i - f(D)_i)}{Lap(z_i - f(D')_i)} \right)$$

$$\leq \prod_{i=1}^{k} \exp\left(\frac{\varepsilon |f(D)_i - f(D')_i|}{\Delta f} \right)$$

$$\left(\varepsilon \sum_{1 \le i \le k} |f(D)_i - f(D')_i| \right)$$

$$\begin{split} \sum_{1 \le i \le k} |f(D)_i - f(D')_i| &\leq \Delta f \text{ if } \\ ||D - D'||_1 &\leq 1 \text{ holds.} \end{split}$$

$$\begin{aligned} &\widehat{t} = \widehat{1} & & \\ &= \exp\left(\frac{\varepsilon \sum_{1 \le i \le k} |f(D)_i - f(D')_i|}{\Delta f}\right) \le \exp\left(\frac{\varepsilon \Delta f}{\Delta f}\right) \\ &= \exp(\varepsilon) \end{aligned}$$

Laplace Mechanism

· Mechanism

- A fact on Laplace Distribution
 - If $Y \sim Lap(b)$, then $\Pr[|Y| \ge t \times b] = \exp(-t)$
- Proof
 - $Pr[|Y| \ge t \times b] = 2Pr[Y \ge t \times b]$
 - $2\Pr[Y \ge t \times b] = 2 \int_{t \times b}^{+\infty} Lap(x) dx = 2 \int_{t \times b}^{+\infty} \frac{1}{2b} e^{-\frac{x}{b}} dx$
 - $2\int_{t\times b}^{+\infty} \frac{1}{2h} e^{-\frac{x}{b}} dx = \int_{-\infty}^{-t} e^y dy$ Set $y = -\frac{x}{b}$

Set
$$y = -\frac{x}{b}$$

•
$$\int_{-\infty}^{-t} e^{y} dy = e^{y}|_{-\infty}^{-t} = e^{-t} - 0 = e^{-t}$$

Laplace Mechanism

Mechanism

- Accuracy of Laplace Mechanism
 - Let $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^k$, and let $y = \mathcal{M}(D, f(.), \varepsilon)$. Then for

$$\Pr[||f(D) - y||_{\infty} \ge \ln(\frac{k}{\delta}) \times (\frac{\Delta f}{\varepsilon})] \le \delta$$

Mechanism

- Proof of Accuracy
$$\begin{split} &\Pr\left[||f(x)-y||_{\infty} \geq \ln\left(\frac{k}{\delta}\right) \times \left(\frac{\Delta f}{\varepsilon}\right)\right] = \Pr\left[\max_{i \in [k]} |Y_i| \geq \ln\left(\frac{k}{\delta}\right) \times \left(\frac{\Delta f}{\varepsilon}\right)\right] \\ &= 1 - \Pr[\max_{i \in [k]} |Y_i| < \ln\left(\frac{k}{\delta}\right) \times \left(\frac{\Delta f}{\varepsilon}\right)] \end{split}$$
 $=1-\prod\nolimits_{i\in[k]}(1-\Pr[|Y_i|\geq \ln\left(\frac{k}{\delta}\right)\times\left(\frac{\Delta f}{\varepsilon}\right)])$ $\leq k \times \Pr[|Y_i| \geq \ln\left(\frac{k}{\delta}\right) \times \left(\frac{\Delta f}{\varepsilon}\right)]$ $= k \times \exp\left(-\ln\left(\frac{k}{\delta}\right)\right) = \delta$

Laplace Mechanism

Example

- Counting Queries
 - How many records in the database satisfy property P?
- Laplace Mechanism for Counting Queries

 - $\mathcal{M}(D, f(.), \varepsilon) = f(D) + Lap(1/\varepsilon)$

f: count the number of person with flu f(D) = 3Choose $\varepsilon = 0.1$ Laplace Mechanism outputs 3 + Lap(10)A random variable drawn from Laplace distribution with $\mu = 0$ and b = 10

Laplace Mechanism

• Example

- Histogram Queries
 - A database is partitioned into **disjoined** cells, and the query asks how many records lie in each of the cells.
- Laplace Mechanism for Histogram Queries
 - The sensitivity is 1,
 - $\mathcal{M}(D, f(.), \varepsilon) = f(D) + (Y_1, ..., Y_k)$
 - Add independent noise $Y_i \sim Lap(1/\varepsilon)$ to each cell

$$f(D) = <2,3>$$
, set $\varepsilon = 0.1$, Laplace Mechanism outputs $<2+Lap(10),3+Lap(10)>$

Laplace Mechanism

Example

- Among 10000 family names, which is the most common?
 - · Utilization of histogram queries
 - Set $\varepsilon = 1$
 - · To count the number of each family name, add independent noise $Y_i \sim Lap(1)$ ($\Delta f = 1, \varepsilon = 1$)
 - $-\Pr[|Y_i| < ?] \ge 95\%$
 - Is it a small error for large population, say 300000 persons
 - · Report the family name with the largest count

• Example

- $-\Delta f = 1$, $\varepsilon = 1$, k = 10000, set $\delta = 0.05$
- Recall the property of Laplace Distribution

$$\Pr[||f(D) - y||_{\infty} \ge \ln(\frac{k}{\delta}) \times (\frac{\Delta f}{\varepsilon})] \le \delta$$

- We can get $\Pr[Y_i \ge \ln(\frac{10000}{0.05}) \times \frac{1}{1}] \le 0.05$, that is $\Pr[Y_i < \ln(\frac{10000}{0.05})] \ge 95\%$
- $-\ln\left(\frac{10000}{0.05}\right) \approx 12.2$

It is a small error for large population, say 300000 persons

Laplace Mechanism

• Example

- Which is the most popular food among students?
 - Note that each student could love multiple food
 - m types of food
- Recall the solution to histogram queries
 - Adding or removing a student at most change *m* cells
 - Sensitivity is m (the number of food types) instead of 1 for the popularity count of each food
 - Large amount of noise $Lap(m/\varepsilon)$ is added to each count

Laplace Mechanism

• Example

- Which is the most popular food among students?
 - · Note that each student could love multiple food
 - m types of food

Name	Salad	BBQ	Noodle	Rice	Milk
Frank	1	0	1	1	1
Tom	0	1	0	1	1
Jacky	0	0	1	0	1
Ross	1	1	0	0	0
Monica	1	1	0	1	1

Laplace Mechanism

• Example

- Recall the solution to histogram queries
 - Sensitivity is *m* (the number of food types) instead of 1 for the popularity count of each food
 - Large amount of noise $Lap(m/\varepsilon)$ is added to each count
 - f(D) =< 3,3,2,3,4 >
 - Set $\varepsilon = 0.1$
 - The Laplace Mechanism computes a histogram < 3 + Lap(10m), 3 + Lap(10m), 2 + Lap(10m), 3 + Lap(10m), 4 + Lap(10m) >

• Example (CONT'D)

- Note that we just need to recognize the most common food, not to compute a histogram
- Report Noisy Max Algorithm
 - Add independent noise $Lap(1/\varepsilon)$ to each of the m counts of food
 - · Report the food with largest noisy count
- Report Noisy Max Algorithm preserves εdifferential privacy
 - · Try to formulate and proof it on your own efforts

Exponential Mechanism

• Motivation of Exponential Mechanism

- Situation: We wish to choose the "best" response
 - However, adding noise directly to the computed quantity can completely destroy its value
- Example
 - A company wants to donate souvenir T-shirts to a class with largest number of students in a junior school. The class name and the student number should be reported by the junior school. If noise is added on the student quantity, perhaps not all students will get a souvenir Tshirt. (e.g. class A is reported with 49 students, however there are 50 students in class A in fact)

Exponential Mechanism

• Motivation of Exponential Mechanism

- We need a natural building block for privately answering queries with
 - · Arbitrary utilities (could be user-specified)
 - Arbitrary non-numeric range

These motivate the Exponential Mechanism

Exponential Mechanism

Mechanism

- Utility Function $u: \mathbb{N}^{|\mathcal{X}|} \times \mathcal{R} \to \mathbb{R}$
 - \mathcal{R} is the range of outputs
 - u maps database/output pairs to utility scores
- Sensitivity of the Utility Score

$$\Delta u \equiv \max_{\substack{r \in \mathcal{R} \\ D, D' : ||D - D'||_1 \le 1}} |u(D, r) - u(D', r)|$$

Example

- -D consists of a number of A and B, output the A or B with the larger count
- - u(D,A) = count(A)
 - u(D,B) = count(B)
- Sensitivity: $\Delta u = 1$
 - · Adding or removing an A or a B will bring the utility function value a change at most 1

Exponential Mechanism

· Mechanism

- Definition of Exponential Mechanism
 - The exponential mechanism $\mathcal{M}_E(D, u, \mathcal{R}, \varepsilon)$ selects and outputs an element $r \in \mathcal{R}$ with probability proportional to $\exp(\frac{\varepsilon \times u(D,r)}{2\Delta u})$.
- A Limitation of Exponential Mechanism
 - Not feasible when the range of u is super-polynomially large in the natural parameters of the problem

Exponential Mechanism

Example

- -D consists of a number of A and B, output the A or B with the larger count. Let u(D, A) = count(A)and u(D, B) = count(B), so $\Delta u = 1$
- Given D = (B, B), count(A) = 0, count(B) = 2

•
$$\exp\left(\frac{\varepsilon \times u(D,A)}{2\Delta u}\right) = \exp\left(\frac{\varepsilon \times 0}{2\times 1}\right) = 1$$

• $\exp\left(\frac{\varepsilon \times u(D,B)}{2\Delta u}\right) = \exp\left(\frac{\varepsilon \times 2}{2\times 1}\right) = e^{\varepsilon}$

•
$$\exp\left(\frac{\varepsilon \times u(D,B)}{2\Delta u}\right) = \exp\left(\frac{\varepsilon \times 2}{2\times 1}\right) = e$$

•
$$\Pr[\mathcal{M}_E(D, u, \mathcal{R}, \varepsilon) = A] = \frac{1}{1 + e^{\varepsilon}}$$

•
$$\Pr[\mathcal{M}_E(D, u, \mathcal{R}, \varepsilon) = B] = \frac{e^{\varepsilon}}{1 + e^{\varepsilon}}$$

Exponential Mechanism

Mechanism

- A Property of Exponential Mechanism
 - For D and D' that $||D D'||_1 \le 1$, together with a given r, we can get

$$\frac{\exp\left(\frac{\varepsilon\times u(D,r)}{2\Delta u}\right)}{\exp\left(\frac{\varepsilon\times u(D',r)}{2\Delta u}\right)} = \exp\left(\frac{\varepsilon\left(u(D,r)-u(D',r)\right)}{2\Delta u}\right)$$

$$\leq \exp\left(\frac{\varepsilon \Delta u}{2\Delta u}\right) = e^{\frac{\varepsilon}{2}}$$

For D and D' that $||D-D'||_1 \leq 1$, $\exp\left(\frac{\varepsilon \times u(D,r)}{2\Delta u}\right) \leq e^{\frac{\varepsilon}{2}} \exp\left(\frac{\varepsilon \times u(D',r)}{2\Delta u}\right)$

· Mechanism

- Property of Exponential Mechanism
 - The exponential mechanism $\mathcal{M}_E(D, u, \mathcal{R}, \varepsilon)$ preserves ε -differential privacy
- Proof Sketch
 - Let $D, D' \in \mathbb{N}^{|\mathcal{X}|}$ and $||D D'||_1 \le 1$
 - For any $r \in \mathcal{R}^k$, compare the probabilities that $\mathcal{M}_E(D, u, \mathcal{R}, \varepsilon)$ and $\mathcal{M}_E(D', u, \mathcal{R}, \varepsilon)$ select r respectively

Exponential Mechanism

$$\begin{split} & \cdot \text{Pr}[M_E(D,u,\mathcal{R},\varepsilon) = r]}{\Pr[M_E(D',u,\mathcal{R},\varepsilon) = r]} = \frac{\frac{\exp\left(\frac{\varepsilon \times u(D,r)}{2\Delta u}\right)}{\sum_{r' \in \mathcal{R}} \exp\left(\frac{\varepsilon \times u(D',r')}{2\Delta u}\right)}}{\frac{\sum_{r' \in \mathcal{R}} \exp\left(\frac{\varepsilon \times u(D',r')}{2\Delta u}\right)}{2\Delta u}} \\ & = \frac{\exp\left(\frac{\varepsilon \times u(D',r)}{2\Delta u}\right)}{\exp\left(\frac{\varepsilon \times u(D',r)}{2\Delta u}\right)} \times \frac{\sum_{r' \in \mathcal{R}} \exp\left(\frac{\varepsilon \times u(D',r')}{2\Delta u}\right)}{\sum_{r' \in \mathcal{R}} \exp\left(\frac{\varepsilon \times u(D',r')}{2\Delta u}\right)} \\ & \text{Recall: For } D \text{ and } D' \text{ that } ||D - D'||_1 \leq 1, \exp\left(\frac{\varepsilon \times u(D',r)}{2\Delta u}\right) \leq \frac{\varepsilon^2}{2\Delta u} \exp\left(\frac{\varepsilon \times u(D',r)}{2\Delta u}\right) \\ & \text{We get } \exp\left(\frac{\varepsilon \times u(D,r)}{2\Delta u}\right) \leq e^{\frac{\varepsilon}{2}} \exp\left(\frac{\varepsilon \times u(D',r)}{2\Delta u}\right) \text{ and }, \\ & \exp\left(\frac{\varepsilon \times u(D',r)}{2\Delta u}\right) \leq e^{\frac{\varepsilon}{2}} \exp\left(\frac{\varepsilon \times u(D',r)}{2\Delta u}\right). \end{split}$$

Exponential Mechanism

-- Proof Sketch

$$\begin{split} \bullet & \frac{\Pr[\mathcal{M}_{E}(D,u,\mathcal{R},\varepsilon) = z]}{\Pr[\mathcal{M}_{E}(D',u,\mathcal{R},\varepsilon) = z]} = \frac{\exp(\frac{\varepsilon \times u(D',r)}{2\Delta u})}{\exp(\frac{\varepsilon \times u(D',r)}{2\Delta u})} \times \frac{\sum_{r' \in \mathcal{R}} \exp(\frac{\varepsilon \times u(D',r')}{2\Delta u})}{\sum_{r' \in \mathcal{R}} \exp(\frac{\varepsilon \times u(D',r)}{2\Delta u})} \\ & \leq \frac{e^{\frac{\varepsilon}{2}} \exp(\frac{\varepsilon \times u(D',r)}{2\Delta u})}{\exp(\frac{\varepsilon \times u(D',r)}{2\Delta u})} \times \frac{e^{\frac{\varepsilon}{2}} \sum_{r' \in \mathcal{R}} \exp(\frac{\varepsilon \times u(D,r')}{2\Delta u})}{\sum_{r' \in \mathcal{R}} \exp(\frac{\varepsilon \times u(D,r')}{2\Delta u})} \\ & = e^{\frac{\varepsilon}{2}} \times e^{\frac{\varepsilon}{2}} = \exp(\varepsilon) \end{split}$$

So we conclude the Exponential Mechanism preserves ε -differential privacy

Recall: For D and D' that $||D - D'||_1 \le 1$, $\exp\left(\frac{\varepsilon \times u(D,r)}{2\Delta u}\right) \le e^{\frac{\varepsilon}{2}} \exp\left(\frac{\varepsilon \times u(D',r)}{2\Delta u}\right)$

Exponential Mechanism

Mechanism

- Accuracy of Exponential Mechanism
 - Fixing a database D, let $\mathcal{R}_{OPT} = \{r \in \mathcal{R}: u(D,r) = OPT_u(D)\}$ denote the set of elements in R which attain the optimal utility score $OPT_u(D)$, then

$$\Pr[u\left(D, \mathcal{M}_E(D, u, \mathcal{R}, \varepsilon)\right) \leq OPT_u(D) - \frac{2\Delta u}{\varepsilon} (\ln\left(\frac{|\mathcal{R}|}{|\mathcal{R}_{OPT}|}\right) + t)] \leq \exp(-t)$$

This property bounds the probability of achieving a utility far from the optimal utility $OPT_u(D)$

· Mechanism

- Proof Sketch of Accuracy

$$\bullet \ \Pr \Big[u \Big(D, \mathcal{M}_E \big(D, u, \mathcal{R}, \varepsilon \big) \Big) \leq c \Big] = \frac{\sum_{r \in \mathcal{R}, u(D,r) \leq c} \exp \Big(\frac{\varepsilon u(D,r)}{2 \Delta u} \Big)}{\sum_{r' \in \mathcal{R}} \exp \Big(\frac{\varepsilon u(D,r')}{2 \Delta u} \Big)}$$

- Amplify the numerator $\sum_{r \in \mathcal{R}, u(D,r) \leq c} \exp\left(\frac{\varepsilon u(D,r)}{2\Delta u}\right)$
- Shrink the denominator $\sum_{r' \in \mathcal{R}} \exp\left(\frac{\varepsilon u(D, r')}{2\Delta u}\right)$

Exponential Mechanism

· Mechanism

- Proof Sketch of Accuracy
 - The number of terms in $\sum_{r \in \mathcal{R}, u(D,r) \leq c} \exp\left(\frac{\varepsilon u(D,r)}{2\Delta u}\right)$ is no more than $|\mathcal{R}|$, and in each term $u(D,r) \leq c$, so we have $\sum_{r \in \mathcal{R}, u(D,r) \leq c} \exp\left(\frac{\varepsilon u(D,r)}{2\Delta u}\right) \leq |\mathcal{R}| \exp\left(\frac{\varepsilon c}{2\Delta u}\right)$
 - $|\mathcal{R}_{OPT}| \exp\left(\frac{\varepsilon OPT_u(D)}{2\Delta u}\right)$ only contains results leading to the optimal utility, so

$$|\mathcal{R}_{OPT}| \exp\left(\frac{\varepsilon OPT_u(D)}{2\Delta u}\right) \leq \sum_{r' \in \mathcal{R}} \exp\left(\frac{\varepsilon u(D, r')}{2\Delta u}\right)$$

Exponential Mechanism

· Mechanism

$$\begin{split} & \Pr \Big[u \Big(\mathcal{M}_E \big(D, u, \mathcal{R}, \varepsilon \big) \Big) \leq c \Big] \leq \frac{|\mathcal{R}| \exp \Big(\frac{\varepsilon c}{2 \Delta u} \Big)}{|\mathcal{R}_{OPT}| \exp \Big(\frac{\varepsilon O P T_u(x)}{2 \Delta u} \Big)} \\ & = \frac{|\mathcal{R}|}{|\mathcal{R}_{OPT}|} \exp \Big(\frac{\varepsilon (c - O P T_u(x))}{2 \Delta u} \Big) \end{split}$$

• Let $c = OPT_u(x) - \frac{2\Delta u}{\varepsilon} \left(\ln \left(\frac{|\mathcal{R}|}{|\mathcal{R}_{OBT}|} \right) + t \right)$ and we get it

Exponential Mechanism

· Mechanism

- Improved Accuracy of Exponential Mechanism
 - Fixing a database D, we have $\Pr[u\big(\mathcal{M}_E(D,u,\mathcal{R},\varepsilon)\big) \leq OPT_u(D) - \frac{2\Delta u}{\varepsilon} \big(\ln(|\mathcal{R}|) + t\big)]$ $\leq \exp(-t)$

- Think about why it holds ...

• Recall the Example

- D consists of a number of A and B, output the A or B with the larger count
- Set
 - u(D, A) = count(A)
 - u(D,B) = count(B)
- Sensitivity: $\Delta u = 1$
 - Adding or removing an A or a B will bring the utility function value a change at most 1

Exponential Mechanism

• Example

- From the improved accuracy of exponential mechanism, the probability of outputting (wrong) outcome A is at most $2e^{-c(\varepsilon/2\Delta u)} = 2e^{-c\varepsilon/2}$
 - u(x, A) = count(A) = 0, u(x, B) = count(B) = c > 0
 - $OPT_u(D) = c$, $|\mathcal{R}| = 2$, $u(\mathcal{M}_E(D, u, \mathcal{R}, \varepsilon)) = 0$
 - So we have $\frac{2\Delta u}{\varepsilon}(\ln(|\mathcal{R}|) + t) = c$, thus $t = \frac{\varepsilon c}{2} \ln 2$
 - $\exp(-t) = 2e^{-c\varepsilon/2}$

A is outputted

 $\Pr[u(\mathcal{M}_E(D, u, \mathcal{R}, \varepsilon)) \le OPT_u(D) - \frac{2\Delta u}{c}(\ln(|\mathcal{R}|) + t)] \le \exp(-t)$

Composition Theorems

Purpose of Composition

- Combine our differentially private building blocks including Laplace Mechanism and Exponential Mechanism to deal with complex problems
- Make sure the result of combination is also differentially private
- Privacy budgets ε and δ degrade
- Analyze how ε and δ degrade

Composition Theorems

• Purpose of Composition

- Suppose we combine identical Laplace
 Mechanisms through m times of running, and then report the mean of these results
- Each Laplace Mechanism is ε -differentially private
- After m times of running, can we still guarantee differential privacy?
- If so, is there any privacy degrade in this scenario? i.e., what's the achieved privacy budget?

• Simple Composition Theorems

- Sequential Composition
 - Let $\mathcal{M}_i \colon \mathbb{N}^{|\mathcal{X}|} \to \mathcal{R}_i$ be an ε_i -differentially private algorithm, where $i \in [k]$. Define their sequential composition as $\mathcal{M}: \mathbb{N}^{|\mathcal{X}|} \to \prod_{i=1}^k \mathcal{R}_i$ by mapping $\mathcal{M}(D) = (\mathcal{M}_1(D), ..., \mathcal{M}_k(D))$. Then \mathcal{M} provides $\sum_{i=1}^{k} \varepsilon_i$ -differential privacy.

Composition Theorems

• Simple Composition Theorems

- Proof of Sequential Composition

• Let
$$D, D' \in \mathbb{N}^{|X|}$$
 and $||D - D'||_1 \le 1$. Consider $r = (r_1, \dots, r_k) \in \prod_{i=1}^k \mathcal{R}_i$. Then we have:

$$\Pr[M(x) = r] \quad \prod_{i=1}^k \Pr[M_i(x) = r_i]$$

$$\begin{split} & \frac{\Pr[\mathcal{M}(x) = r]}{\Pr[\mathcal{M}(y) = r]} = \frac{\prod_{l=1}^{k} \Pr[\mathcal{M}_{l}(x) = r_{l}]}{\prod_{l=1}^{k} \Pr[\mathcal{M}_{l}(y) = r_{l}]} \\ & = \prod_{l=1}^{k} \frac{\Pr[\mathcal{M}_{l}(x) = r_{l}]}{\Pr[\mathcal{M}_{l}(y) = r_{l}]} \\ & \leq e^{\varepsilon_{1}} \times \cdots \times e^{\varepsilon_{k}} = e^{\sum_{i=1}^{k} \varepsilon_{i}} \end{split}$$

Each \mathcal{M}_i is differentially private, so we have $\frac{\Pr[\mathcal{M}_i(x)=r]}{\Pr[\mathcal{M}_i(y)=r]} \leq e^{\varepsilon_i}$

Composition Theorems

• Simple Composition Theorems

- Example: Given a database D

•
$$Q = < Q_1, Q_2, Q_3 >$$

- Q_1 : count of D ,

• $\mathcal{M} = (\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3)$ computes $Q = \langle Q_1, Q_2, Q_3 \rangle$ with privacy budgets $\varepsilon_1, \varepsilon_2, \varepsilon_3$ respectively

Composition Theorems

• Simple Composition Theorems

- Example:

• For query result
$$r=(r_1,r_2,r_3)$$
, in the worst case, none of r_1,r_2,r_3 satisfies that $\frac{\Pr[\mathcal{M}_i(D)=r_i]}{\Pr[\mathcal{M}_i(D')=r_i]}=1$

For each of \mathcal{M}_i , we have $\frac{\Pr[\mathcal{M}_i(D)=r_i]}{\Pr[\mathcal{M}_i(D')=r_i]} \leq e^{\varepsilon_i}$

Then $\frac{\Pr[\mathcal{M}(D)=r]}{\Pr[\mathcal{M}(D')=r]}$

$$= \frac{\Pr[\mathcal{M}_1(D)=r_1]}{\Pr[\mathcal{M}_1(D')=r_1]} \times \frac{\Pr[\mathcal{M}_2(D)=r_2]}{\Pr[\mathcal{M}_2(D')=r_2]} \times \frac{\Pr[\mathcal{M}_i(D)=r_3]}{\Pr[\mathcal{M}_i(D')=r_3]}$$

$$< e^{\varepsilon_1+\varepsilon_2+\varepsilon_3}$$

• Simple Composition Theorems

- Parallel Composition
 - Let $\mathcal{M}_i \colon \mathbb{N}^{|\mathcal{X}|} \to \mathcal{R}_i$ be an ε_i -differentially private algorithm, where $i \in [k]$. Each \mathcal{M}_i only processes database records in \mathcal{X}_i , and $\mathcal{X}_i \cap \mathcal{X}_j = \emptyset$ for any different $i,j \in [k]$. Define their parallel composition as $\mathcal{M} \colon \mathbb{N}^{|\mathcal{X}|} \to \prod_{i=1}^k \mathcal{R}_i$ by mapping $\mathcal{M}(x) = (\mathcal{M}_1(x), \dots, \mathcal{M}_k(x))$. Then \mathcal{M} provides $\max_{1 \le i \le k} \varepsilon_i$ -differential privacy.

Composition Theorems

• Simple Composition Theorems

- Proof of Parallel Composition
 - Let $D, D' \in \mathbb{N}^{|\mathcal{X}|}$ and $||D D'||_1 \le 1$. Consider $r = (r_1, ..., r_k) \in \prod_{i=1}^k \mathcal{R}_i$. Denote D_i and D_i' consists of records processed by \mathcal{M}_i in D and D' respectively. So we have at most one pair of D_i and D_i that are different. Suppose $D_i \ne D_i$, then:

$$\begin{split} &\frac{\Pr[\mathcal{M}(D) = r]}{\Pr[\mathcal{M}(D') = r]} = \frac{\prod_{i=1}^{k} \Pr[\mathcal{M}_{i}(D_{i}) = r_{i}]}{\prod_{i=1}^{k} \Pr[\mathcal{M}_{i}(D'_{i}) = r_{i}]} \\ &= \frac{\Pr[\mathcal{M}_{j}(x_{j}) = r_{j}]}{\Pr[\mathcal{M}_{j}(y_{j}) = r_{j}]} \le e^{\varepsilon_{j}} \le e^{\max_{1 \le i \le k} \varepsilon_{i}} \end{split}$$

Composition Theorems

• Simple Composition Theorems

- Example
 - D and D' are neighboring databases
 - $Q = < Q_1, Q_2, Q_3 >$
 - Q₁: sum of first 20 tuples
 - Q₂: sum of the second 20 tuples
 - Q₃: sum of the rest tuples
 - $\mathcal{M}=(\mathcal{M}_1,\mathcal{M}_2,\mathcal{M}_3)$ computes $Q=< Q_1,Q_2,Q_3>$ with privacy budgets $\varepsilon_1,\varepsilon_2,\varepsilon_3$ respectively

Composition Theorems

• Simple Composition Theorems

- Example
 - For query result $r = (r_1, r_2, r_3)$, except one of r_1, r_2, r_3 , the others satisfy that

$$\frac{\Pr[\mathcal{M}_i(D) = r_i]}{\Pr[\mathcal{M}_i(D') = r_i]} = 1$$

- If $\frac{\Pr[\mathcal{M}_j(D)=r_j]}{\Pr[\mathcal{M}_j(D')=r_j]} \neq 1$, then \mathcal{M} is ε_j -differentially private
- Of course $\varepsilon_j \leq \max_{1 \leq i \leq 3} \varepsilon_i$

• Simple Composition Theorems

- k-fold composition for (ε, δ) -differential privacy
 - Let $\mathcal{M}_i \colon \mathbb{N}^{|X|} \to \mathcal{R}_i$ be an $(\varepsilon_i, \delta_i)$ -differentially private algorithm, where $i \in [k]$. Define $\mathcal{M}_{[k]} \colon \mathbb{N}^{|X|} \to \prod_{i=1}^k \mathcal{R}_i$ by mapping $\mathcal{M}_{[k]}(D) = (\mathcal{M}_1(D), ..., \mathcal{M}_k(D))$. Then $\mathcal{M}_{[k]}$ provides $(\sum_{i=1}^k \varepsilon_i, \sum_{i=1}^k \delta_i)$ -differential privacy.

Composition Theorems

• Comments on Simple *k*-Fold Composition

- If we want to keep fixed level of privacy for $\mathcal{M}_{[k]}(D)$, each \mathcal{M}_i must injects k times amount of noise
- Too noisy when k is large
- Any other way to reduce the noise while ensuring the privacy level?

Trade-off a little δ with large amount of arepsilon

Composition Theorems

Advanced Composition Theorem

- Improved version of k-fold composition theorem
 - For all ε , δ , $\delta' \ge 0$, the k-fold composition of (ε, δ) -differentially private algorithms satisfies $(\varepsilon', k\delta + \delta')$ -differential privacy, where

$$\varepsilon' = \sqrt{2kln(1/\delta')}\varepsilon + k\varepsilon(e^{\varepsilon} - 1).$$

Composition Theorems

• Comments on Advanced Composition Theorem

$$-\varepsilon' = \sqrt{2kln(1/\delta')}\varepsilon + k\varepsilon(e^{\varepsilon} - 1)$$

• $(e^{\varepsilon} - 1) \to 0$ when $\varepsilon \to 0$

- $-\varepsilon'$ is $O(\sqrt{k}\varepsilon)$ rather than $O(k\varepsilon)$ when ε is small
- Choosing a δ' to obtain a reasonable ε'

• Utilization of Advanced Composition Theorem

- Fixing ε for individual algorithms based on ε' and δ'
 - Given target privacy parameters $0 < \varepsilon' < 1$ and $\delta' > 0$, to ensure $(\varepsilon', k\delta + \delta')$ -differential privacy for the k-fold composition, it suffices that each individual mechanism is (ε, δ) -differentially private, where

$$\varepsilon = \frac{\varepsilon'}{2\sqrt{2k\ln(1/\delta')}}$$

Composition Theorems

• Necessary Materials for Understandings

- KL-Divergence
 - The KL-Divergence, or Relative Entropy, between two random variables *Y* and *Z* taking values from the same domain is defined to be:

$$D(Y||Z) = \mathbb{E}_{y \sim Y} \left[\ln \frac{\Pr[Y=y]}{\Pr[Z=y]} \right].$$

KL-Divergence could be used to measure the difference between the outputs of a mechanism over two neighboring databases

Composition Theorems

· Necessary Materials for Understandings

- Max Divergence
 - The Max Divergence between two random variables Y and Z taking values from the same domain is defined to be:

$$D_{\infty}(Y||Z) = \max_{S \subseteq Supp(Y)} \left[\ln \frac{\Pr[Y=y]}{\Pr[Z=y]} \right].$$

- Remark on Max Divergence
 - A Mechanism $\mathcal M$ is ε -differentially private iff on every two neighboring databases x and y,

$$D_{\infty}(\mathcal{M}(x)||\mathcal{M}(y)) \leq \varepsilon$$
 and $D_{\infty}(\mathcal{M}(y)||\mathcal{M}(x)) \leq \varepsilon$.

Composition Theorems

· Necessary Materials for Understandings

- $-\delta$ -Approximate Max Divergence
 - The δ -Approximate Max Divergence between two random variables Y and Z is defined to be:

$$D_{\infty}^{\delta}(Y||Z) = \max_{\substack{S \subseteq Supp(Y) \\ \Pr[Y \in S] \ge \delta}} [\ln \frac{\Pr[Y \in S] - \delta}{\Pr[Z \in S]}].$$

- Remark on δ -Approximate Max Divergence
 - A Mechanism \mathcal{M} is (ε, δ) -differentially private iff on every two neighboring databases x and y, $D_{\infty}^{\delta}(\mathcal{M}(x)||\mathcal{M}(y)) \leq \varepsilon \text{ and } D_{\infty}^{\delta}(\mathcal{M}(y)||\mathcal{M}(x)) \leq \varepsilon.$

Necessary Materials for Understandings

- Statistical Distance
 - The statistical distance between two random variables Y and Z is defined as

$$\Delta(Y,Z) = \max_{S} |\Pr[Y \in S] - \Pr[Z \in S]|.$$

• We say that Y and Z are δ -close if $\Delta(Y, Z) \leq \delta$.

Composition Theorems

· Necessary Materials for Understandings

- Properties of the Above Divergence
 - $D_{\infty}^{\delta}(Y||Z) \le \varepsilon$ iff there exists a random variable Y' such that $\Delta(Y,Y') \le \delta$ and $D_{\infty}(Y'||Z) \le \varepsilon$.
 - We have both $D_{\infty}^{\delta}(Y||Z) \leq \varepsilon$ and $D_{\infty}^{\delta}(Z||Y) \leq \varepsilon$ iff there exist random variables Y' and Z' such that $\Delta(Y,Y') \leq \delta/(e^{\varepsilon}+1)$, $\Delta(Z,Z') \leq \delta/(e^{\varepsilon}+1)$, and $D_{\infty}(Y'||Z') \leq \varepsilon$.
 - Suppose that random variables Y and Z satisfy $D_{\infty}(Y||Z) \le \varepsilon$ and $D_{\infty}(Z||Y) \le \varepsilon$. Then $D(Y||Z) \le \varepsilon(e^{\varepsilon} 1)$.

Composition Theorems

• Necessary Materials for Understandings

- Azuma's Inequality
 - Let C_1, \ldots, C_k be real valued random variables such that for every $i \in [k]$, $\Pr[|C_i| \le \alpha] = 1$, and for every $(c_1, \ldots, c_{i-1}) \in Supp(C_1, \ldots, C_{i-1})$, we have $\mathbb{E}[C_i|C_1 = c_1, \ldots, C_{i-1} = c_{i-1}] \le \beta.$ Then for every z > 0, we have $\Pr[\sum_{i=1}^k C_i > k\beta + z\sqrt{k}\alpha] \le e^{-z^2/2}.$

Composition Theorems

- Necessary Materials for Understandings
 - The properties of Divergence and Azuma's Inequality are adopted in the proof of Advanced Composition Theorem.

For all $\varepsilon, \delta, \delta' \geq 0$, the k-fold composition of (ε, δ) -differentially private algorithms satisfies $(\varepsilon', k\delta + \delta')$ -differential privacy, where $\varepsilon' = \sqrt{2kln(1/\delta')}\varepsilon + k\varepsilon(e^\varepsilon - 1).$