Politecnico di Milano	Analisi Matematica II	5 fe	bbraio	2018			
Prof. E. Maluta							
Ing. Informatica e Ing. delle Telecomunicazioni	Prima Parte						
Cognome e Nome:	Matricola:	P	${f T}$	1	2	3	4

Ogni risposta va scritta nello spazio sotto il quesito e motivata con calcoli o/e spiegazioni.

1. Stabilire se il dominio della funzione f definita da $\log(3-xy)$ è aperto, chiuso, né aperto né chiuso, limitato o non limitato.

2. Sia f definita da $f(x,y) = y^2 - x^2 - xy$. Stabilire se la restrizione di f alla parabola di equazione $y = 3x^2$ è limitata.

3. Sia $f(x, y, z) = \sin(xy) + z^2$. Scrivere il differenziale di f, relativo a un incremento (dx, dy, dz), nel punto (0, 2, 3)

4. Stabilire se la curva di equazione parametrica $\mathbf{r}(t) = ((\sin t)^3, t, 3t)$, con $t \in [0, 2\pi]$, è piana, regolare, chiusa.

5. Determinare il massimo e il minimo assoluti di f definita da f(x,y)=x-2y sull'insieme $\{(x,y)\in\mathbb{R}^2:\,x\geq 0\,\wedge\,0\leq y\leq 1-x\}.$

_	~			_	,		, 1	,
6.	${\bf Calcolare}$	il rotore	del	campo \mathbf{F}	(x, y, z)) =	(yz, x^2)	y, xz).

7. Calcolare
$$\int_0^1 \left(\sum_0^{+\infty} \frac{x^{n+1}}{(n+1)!} \right) dx$$
.

8. Determinare l'insieme
$$A$$
 di convergenza puntuale della serie $\sum_{1}^{+\infty} (3x-3)^n$.

9. Scrivere un'equazione differenziale lineare omogenea a coefficienti costanti di ordine 2 che abbia
$$\phi_1 = e^{2t}$$
 e $\phi_2 = te^{2t}$ tra le proprie soluzioni.

10. Stabilire se il sistema di equazioni differenziali
$$\mathbf{y}'=A\mathbf{y},$$
 dove $A=\begin{bmatrix} 4 & 0 \\ -2 & 1 \end{bmatrix}$, ammette soluzioni non identicamente nulle Φ tali che $\lim_{t\to+\infty} \mathbf{\Phi}(t)=0$.