Frühjahr 17 Themennummer 3 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Gegeben ist die Folge von Funktionen $(f_n)_{n\in\mathbb{N}}$ von Funktionen $f_n:\mathbb{R}\to\mathbb{R}$ mit

$$f_n(x) = \frac{n}{1 + n^2 x^2}.$$

Beweisen Sie:

- (a) f_n konvergiert auf dem offenen Intervall (0,1) punktweise, aber nicht gleichmäßig gegen 0.
- (b) $\lim_{n \to \infty} \int_0^1 f_n(x) dx = \frac{\pi}{2}$.
- (c) Für jeden Parameter $\alpha \in (0,1)$ ist $\lim_{n \to \infty} \int_0^1 x^{\alpha} f_n(x) dx = 0$.

Lösungsvorschlag:

(a) Für alle $x \in (0,1)$ ist $x^2 > 0$ und kürzen von $n^2 > 0$ liefert $f_n(x) = \frac{\frac{1}{n}}{\frac{1}{n^2} + x^2}$, was für $n \to \infty$ gegen $\frac{0}{0+x^2} = 0$ konvergiert. Damit ist die punktweise Konvergenz gezeigt.

 $n \to \infty$ gegen $\frac{1}{0+x^2} = 0$ konvergiert. Damit ist die punktweise Konvergenz gezeigt. Wäre die Konvergenz gleichmäßig so würde sich ein Widerspruch zu Aussage (b) ergeben, weil wir dann Limes und Integration vertauschen könnten und $\int_0^1 0 \ dx = 0 \neq \frac{\pi}{2}$ einen Widerspruch liefern würde. Wir können aber auch direkt $f_n(\frac{1}{n}) = \frac{n}{2}$ berechnen, womit wir $||f_n - 0||_{\infty} \geq \frac{n}{2}$ für n > 1 erhalten, was die gleichmäßige Konvergenz widerlegt, weil das für $n \to \infty$ gegen ∞ divergiert und nicht gegen 0 konvergiert.

(b) Für alle $n \in \mathbb{N}$ ist $\arctan(nx)' = f_n(x)$, nach dem HDI gilt also

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \lim_{n \to \infty} (\arctan(n) - \arctan(0)) = \frac{\pi}{2}.$$

(c) Wir integrieren partiell und erhalten

$$\int_0^1 x^{\alpha} f_n(x) \, dx = x^{\alpha} \arctan(nx)|_{x=0}^{x=1} - \int_0^1 \alpha x^{\alpha-1} \arctan(nx) \, dx.$$

Der Minuend lautet $\arctan(n)$ was wie in (b) gegen $\frac{\pi}{2}$ konvergiert. Für den Subtrahenden werden wir ebenfalls Konvergenz gegen $\frac{\pi}{2}$ zeigen, womit die Aussage bewiesen wäre. Es gilt für $0 \le c \le 1$ die Identität

$$\int_0^1 \alpha x^{\alpha - 1} \arctan(nx) \, dx = \int_0^c \alpha x^{\alpha - 1} \arctan(nx) \, dx + \int_c^1 \alpha x^{\alpha - 1} \arctan(nx) \, dx.$$

Sei nun 0 < c < 1 fixiert, dann gilt für den ersten Summanden unabhängig von n

$$\int_0^c \alpha x^{\alpha - 1} \arctan(nx) \, dx \le \int_0^c \frac{\pi}{2} \alpha x^{\alpha - 1} dx = \frac{\pi}{2} c^{\alpha},$$

1

was für $c \to 0$ gegen 0 konvergiert. Außerdem konvergiert $\alpha x^{\alpha-1} \arctan(nx)$ auf [c,1] gleichmäßig gegen $\frac{\pi}{2}\alpha x^{\alpha-1}$, denn

$$|\alpha x^{\alpha-1}(\arctan(nx) - \frac{\pi}{2})| \le \alpha c^{\alpha-1}(\frac{\pi}{2} - \arctan(nc))$$

gilt für alle $x \in [c,1]$ nach der Monotonie von $x^{\alpha-1}$ und $\arctan(nx)$. Das konvergiert für $n \to \infty$ gegen 0, also folgt wie behauptet die gleichmäßige Konvergenz. Damit konvergiert $\int_c^1 \alpha x^{\alpha-1} \arctan(nx) \ \mathrm{d}x$ für $n \to \infty$ gegen $\frac{\pi}{2} \int_c^1 \alpha x^{\alpha-1} \ \mathrm{d}x = \frac{\pi}{2} (1-c^\alpha)$. Sei nun $\varepsilon > 0$ beliebig gewählt, wir müssen ein $N \in \mathbb{N}$ finden, sodass für alle $n \in \mathbb{N}$ mit $n \ge N$ die Ungleichung $\left| \int_0^1 \alpha x^{\alpha-1} \arctan(nx) \ \mathrm{d}x - \frac{\pi}{2} \right| < \varepsilon$ gilt. Es ist

$$\left| \int_0^1 \alpha x^{\alpha - 1} \arctan(nx) \, dx - \frac{\pi}{2} \right|$$

$$\leq \int_0^c \alpha x^{\alpha - 1} \arctan(nx) \, dx + \left| \int_c^1 \alpha x^{\alpha - 1} \arctan(nx) \, dx - \frac{\pi}{2} (1 - c^{\alpha}) \right| + \frac{\pi}{2} c^{\alpha}$$

$$\leq \left| \int_c^1 \alpha x^{\alpha - 1} \arctan(nx) \, dx - \frac{\pi}{2} (1 - c^{\alpha}) \right| + \pi c^{\alpha}$$

Für $c \to 0$ geht der zweite Summand gegen 0. Wir finden also ein $c \in (0,1)$ mit $c^{\alpha} < \frac{\varepsilon}{2\pi}$, dann ist der zweite Summand kleiner als $\frac{\varepsilon}{2}$. Wir hatten auch gesehen, dass der erste Summand für $n \to \infty$ gegen 0 konvergiert, wir finden also ein $N \in \mathbb{N}$ sodass für alle $n \in \mathbb{N}$ mit $n \geq N$ dieser Summand kleiner als $\frac{\varepsilon}{2}$ ist. Damit haben wir unsere gewünschte Ungleichung erzielt und die Konvergenz gezeigt.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$