Programmatūras projekta darbietilpības prognozēšanas metodes

Programmatūras risku analīze DITF LDK

Problēmas

- ◆Izmantojamās informācijas kvalitāte
 - Maz lietderīgas informācijas
 - ◆Daļa prasību neskaidri formulētas
- Prognožu precizitāte
- ◆Prognožu darbības sfēra
- ◆Rezultāti nav uzskatāmi par absolūtiem skaitļiem

Neformālās metodes

- ◆Nepieciešama zināšanu bāze novērtējumam
- ◆Pamatojumu trūkums sarunās ar programmatūras pasūtītāju
- ◆Precīzi rezultāti maziem programmatūras projektiem
 - **◆**< 2 KLOC
 - <10 darbinieki, 3-6 mēneši</p>

Formālās metodes

- ◆ lepriekšēja pieredze apjomu vērtēšanā ir vēlama, bet nav obligāti nepieciešama
- Rezultāti vidējiem un lieliem projektiem
 - ◆ Vidējs
 - **◆32 KLOC**
 - ◆20-30 darbinieki, 1-2 gadi
 - ◆ Liels
 - **◆128 KLOC**
 - ◆ 100-300 darbinieki, 3-5 gadi
- ◆ Pamatojums sarunās ar programmatūras pasūtītājiem

Formālo metožu piemēri

- ◆ Delphi
- Darbu strukturēšanas metode
- Checkpoint
- SLIM (Software Lifecycle Model)
- ◆ COCOMO
- ◆ COCOMO II

Delphi metode

- Ekspertu grupa meklē vienotu viedokli par projekta darbietilpību
- Ekspertu grupā ietilpst
 - Vadītājs
 - ◆ DB, lietotāja interfisa u.c. izvēlēti speciālisti

Darba gaita

- Ekspertu grupas sākotnējā diskusija
- Darbietilpības novērtējuma formas aizpildīšana
- Vadītājs apkopo rezultātus
- Ekspertu grupa apspriež atšķirīgos rezultātus
- Process ir iteratīvs, līdz tiek sasniegts ekspertu grupas vienots viedoklis

Delphi metodes priekšrocības un trūkumi

◆ Priekšrocības

- Katram ekspertam ir daļējs priekšstats par kopējo darbietilpību un izstrādes laiku – metode apkopo vairākus viedokļus
- Var novērtēt ne tikai darbietilpību, bet arī riskus u.c. projekta izpildei kritiskas prasības

◆ Trūkumi

- Apgrūtināta ekspertu grupas izveide
- Tiek ignorēta iepriekšējo projektu izstrādes pieredze

Darbu strukturēšanas metode

Darbu strukturēšanas metodes priekšrocības un trūkumi

◆ Priekšrocības

 Ļoti precīza metode, ja ir laba izstrādes procesa organizācija

◆ Trūkumi

- Neder gadījumos, kad prasības nav skaidri formulētas
- Darbietilpīga, jo ietver arī plānošanu

Checkpoint metode

- ◆Bāze, kurā uzkrāta informācija par vairākiem tūkstošiem programmatūras izstrādes projektu (Software Productivity Research)
 - Problēmu apgabals
 - Sistēmas izmērs
 - Izstrādes vide u.c.

COCOMO modelis

- COCOMO COnstructive COst MOdel
- Empīrisku sakarību kopums, kas iegūts apstrādājot reprezentatīvu statistisko materiālu

Darbietilpības novērtējuma sfēra

Programmatūras prasību izstrāde

Projekta pārvaldība

Projekta dokumentēšana

Konfigurācijas pārvaldība

Programmatūras projektēšana

Programmēšana

Testēšana

Lietotāja dokumentācijas rakstīšana

Programmatūras instalācija

Apmācība

Programmatūras uzturēšana

COCOMO vērtējuma rezultāti attiecināmi uz

COCOMO metodes soļi

- Nepieskaņotu funkcijpunktu skaitīšana
 - Visatbildīgākais solis
 - Nepieciešama kvalitatīva ieejas informācija
- Programmrindiņu skaita iegūšana (LOC)
- Personmēnešu un kalendāro mēnešu skaita iegūšana

Jēdzienu skaidrojums – funkcijpunkts (function point)

- Sistēmas funkcionalitātes mērvienība
- Raksturo sistēmu no lietotāja viedokļa
- Funkcijpunktu skaits programmsistēmai nav atkarīgs no programmatūras realizācijas vides

Nepieskaņotu funkcijpunktu skaits

	Sarežģīti	Vidēji	Vienkārši	Kopā
Ievadi	6 * skaits +	4 * skaits +	3 * skaits +	=
Izvadi	7 * skaits +	5 * skaits +	4 * skaits +	=
Iekšēji datu faili	15 * skaits +	10 * skaits +	7 * skaits +	=
Ārēji interfeisa faili	10 * skaits +	7 * skaits +	5 * skaits +	=
Vaicājumi	6 * skaits +	4 * skaits +	3 * skaits +	=

Nepieskaņotu funkcijpunktu skaits: =

Jēdziena skaidrojums - iekšējs datu fails

 Sistēmas iekšējais datu fails ir savstarpēji loģiski saistītu datu kopa, kuras elementus rada, labo un iznīcina sistēmas iekšienē

lekšēju datu failu piemēri

- Specifiskie sistēmas uzturētie dati.
 Piemēram, informācija par darbinieku, ar kredītkarti veikto transakciju uzskaitījums u.c. specifiski sistēmā apstrādājami dati
- Sistēmas drošības, paroļu, pārbaužu, HELP, kļūdu apstrādes u.c. dati un parametri, ko apstrādā sistēmas iekšienē
- Trasēšanas, kopēšanas u.c. vēsturiska informācija, ko sistēma īpaši apstrādā

Jēdziena skaidrojums - ārējs interfeisa fails

Ārējā interfeisa fails ir savstarpēji loģiski saistītu datu kopa, no kuras vērtējamā sistēma nolasa datus, bet tos modificē cita sistēma

Ārējo interfeisu failu piemēri

- Dati, kas nolasīti no citas lietojumprogrammas.
 Piemēram, dati kurus vērtējamā sistēma nolasa no valsts nozīmes reģistriem
- Sistēmas drošības, paroļu, pārbaužu, HELP, kļūdu apstrādes u.c. dati un parametri, ko apstrādā ārpus aplūkojamās sistēmas, bet kurus sistēma izmanto
- Trasēšanas, kopēšanas u.c. vēsturiska informācija, ko īpaši apstrādā cita sistēma, bet vērtējamā sistēma lasa

lekšējo datu failu un ārējo interfeisu failu sarežģītība

 Sarežģītības noteikšanai izmanto datu elementus un apakšelementus

lekšējo datu failu un ārējo interfeisa failu sarežģītība

Apakšelementu skaits	Datu elementu skaits		
	1 - 19	20 - 50	51 +
1	Vienkārši	Vienkārši	Vidēji
2 - 5	Vienkārši	Vidēji	Sarežģīti
6 +	Vidēji	Sarežģīti	Sarežģīti

Jēdziena skaidrojums - ievads

- ◆ levads ir sistēmas process, kas apstrādā no ārpuses sistēmā ienākošus datus vai vadības informāciju
- Saņemtie dati modificē sistēmas iekšējos datu failus

levadu piemēri

- Ekrāna ievadformas, kas izmaina iekšējos datu failus, vai no kurām sistēmā nonāk vadības informācija
- Ziņojumi no citām sistēmām, kas īpaši jāapstrādā
- Specifiskie sistēmā apstrādājamie dati, kas sistēmā ienāk no citām sistēmām
- Datu failu konvertācija

levadu sarežģītība

Datu failu skaits, kurus izmanto ievads	Datu elementu skaits		
	1 - 4	5 - 15	16+
0 - 1	Vienkārši	Vienkārši	Vidēji
2 - 3	Vienkārši	Vidēji	Sarežģīti
3 +	Vidēji	Sarežģīti	Sarežģīti

levada piemērs

Jēdziena skaidrojums - izvads

◆Izvads ir sistēmas process, kas ģenerē ārpus sistēmas izejošus datus vai vadības informāciju

Izvadu piemēri

- Pārskati, kuru sagatavošanai nepieciešami datu apstrādes algoritmi. Piemēram, dažādi mēneša kopsavilkumi
- Dati, faili vai ziņojumi, kurus nosūta citai programmai.
 Piemēram, pārskats, kuru attēlo MS Word vai MS Excel
- Trasēšanas u.c. atskaites, kuras veido datu migrācijas laikā
- Informatīvi ziņojumi, kas nav kļūdu paziņojumi vai apstiprinājuma vaicājumi
- Atvasināta vai aprēķināta informācija, ko attēlo uz ekrāna
- Datu grafiskie attēlojumi. Piemēram, dažādas stabiņu vai riņķa diagrammas

Izvadu sarežģītība

Datu failu skaits, uz kuriem referencējas	Datu elementu skaits		
	1 - 5	6 - 19	20 +
0 - 1	Vienkārši	Vienkārši	Vidēji
2 - 3	Vienkārši	Vidēji	Sarežģīti
4 +	Vidēji	Sarežģīti	Sarežģīti

IZVACA W Microsoft Word - Docum File Edit View Insert DIEMERS D B D B D P

Jēdziena skaidrojums - vaicājums

- Vaicājums ir ievada iniciēts sistēmas process, kura rezultātā atlasa datus no sistēmas iekšējiem datu failiem
- Vaicājums neizmaina sistēmas iekšējos datu failus
- Vaicājums ir divdaļīgs:
 - ◆ levaddaļa vaicājuma parametri
 - ◆ Izvaddaļa vaicājuma rezultāts

Vaicājumu piemēri

- Sistēmas specifiskie dati, kurus pēc pieprasījuma nolasa no viena vai vairākiem iekšējiem datu vai ārējā interfeisa failiem
- Lietotāja funkcijas, piemēram, View, Lookup, Display, Browse
- lebūvētie vaicājumi. Piemēram, datu atlase, lai izvēlētos, kuru ierakstu labot vai izmest
- Logon informācijas ievads, ja vien ievadītā informācija neizmaina nevienu iekšēju datu failu
- Katru Help līmeni ieskaita kā vienu vaicājumu. Ja ir sistēmas Help, Help par katru ievadformu un par katru ievadlauku, tad Help sistēma jāvērtē kā 3 vaicājumi

Vaicājumu sarežģītība

Vaicājuma ievaddaļas sarežģītība

Datu tipu vai failu skaits, uz kuriem referencējas	Datu elementu skaits		
	1 - 4	5 - 15	16+
0 - 1	Vienkārši	Vienkārši	Vidēji
2	Vienkārši	Vidēji	Sarežģīti
3 +	Vidēji	Sarežģīti	Sarežģīti

Vaicājuma izvaddaļas sarežģītība

Datu tipu vai failu skaits, uz kuriem referencējas	Datu	elementu :	skaits
	1 - 5	6 - 19	20 +
0 - 1	Vienkārši	Vienkārši	Vidēji
2 - 3	Vienkārši	Vidēji	Sarežģīti
4 +	Vidēji	Sarežģīti	Sarežģīti

Vaicājuma sarežģītība ir lielākā no vaicājuma ievaddaļas un izvaddaļas sarežģītības

Vaicājuma piemērs

Algoritmu sarežģītības novērtēšana

- Algoritms, kurā izmantotas tikai aritmētiskas darbības, uzskatāms par vienkāršu
- Algoritms, kurā izmantotas sarežģītas formulas, matricu aprēķini u.c. sarežģīti matemātiski vai loģiski aprēķini, uzskatāms par sarežģītu

Algoritmu piemēri

- ◆Kārtošana, ja vērtējamā sistēmā realizēti īpaši kārtošanas algoritmi
- Meklēšana, ja vērtējamā sistēmā realizēti īpaši meklēšanas algoritmi
- Nodokļu aprēķins
- Skaitlisko metožu izmantošana

Programmrindiņu skaits

Programmrindiņu skaitu (S) iegūst nepieskaņoto funkcijpunktu skaitu reizinot ar vidējo programmrindiņu skaitu viena funkcijpunkta realizācijai

- ◆Programmrindiņu skaits viena funkcijpunkta realizācijai dažādās vidēs:
 - Assembly 320
 - Visual Basic 4.0, 5.0 25
 - ◆ C 128
 - ◆ C++ 29
 - Visual C++ 27
 - Spreadsheet 6
 - ♦ ORACLE 25

Programmrindiņu skaita pieskaņošana

- Cik % programmprodukta koda būs neizmantojami neprecīzas specifikācijas dēļ (BRAK)
- Lieliem projektiem nav ieteicams BRAK izvēlēties mazāku par 10%

◆ S - prognozējamais programmrindiņu skaits

$$S = S \bullet (1 + \frac{BRAK}{100})$$

Izstrādes risku ietekme uz darbietilpību

 ◆ lepriekšējā pieredze šādu uzdevumu risināšanā (SF₁)

0 Labi zināms uzdevums Nav

 Darbu ietekmē spēcīgi aparatūras, programmatūras, laika u.c. ierobežojumi (SF₂)

0 Neierobežo Stingri ierobežo

 Visas iespējamās atkāpes no standartrisinājumiem ir definētas un iekļautas izstrādes plānos (SF₃)

0 Pilnībā iekļautas Nē

Izstrādes risku ietekme uz darbietilpību (turpinājums)

◆ Izstrādātāju komanda (SF₄)

◆ Produkta izstrādes procesa organizācija (SF₅)

$$B = 1.01 + 0.01 - \sum_{j=1}^{5} SF_{j}$$

Izstrādes vides ietekme uz darbietilpību

◆ Izstrādātāju spējas (EM₁)

```
0.8
Augstas
Zemas
```

- ◆ Drošuma prasības (EM₂)
 - Uzsvars uz drošumu un dokumentētību
 1.7

Neliels Ekstremāls

Izstrādājamā produkta sarežģītība

0.8

Ļoti vienkāršs Ārkārtīgi sarežģīts

Datu bāzes izmērs

0.8

Ļoti maza (~10 ierakstu)

Ļoti liela (>10⁶ ierakstu)

Izstrādes vides ietekme uz darbietilpību (turpinājums)

◆ Atkārtotās pielietojamības prasības (EM₃)

 ◆ Produkta apjoma ierobežojumi un ātrdarbība (EM₄)

0.9 Zems 1.4 Ekstrēms

◆ Izstrādes kalendārais plānojums (EM₅)

1 1.3 Pārmērīgi izstiepts Ļoti saspiests

Izstrādes vides ietekme uz darbietilpību (turpinājums)

- ◆ Programmrīku atbalsts (EM₆)
 - Izstrādes vides stabilitāte

0.9
Loti stabila
Loti nestabila

◆ Integrēta vide programmprodukta izstrādei

0.8
Stipri integrēta
Nav

♦ Vides atbalsts programmatūras izstrādei komandā 0.6

Ļoti labs atbalsts

Vājš atbalsts darbam lielā komandā

$$E = \prod_{i=1}^{6} EM_i$$

Personmēnešu skaits projekta realizācijai

$$PM = 2.5 \bullet (S/1000)^{B} \bullet E$$

$$S = S \bullet (1 + \frac{BRAK}{100})$$

$$B = 1.01 + 0.01 - \sum_{j=1}^{5} SF_{j}$$

$$E = \prod_{i=1}^{6} EM_i$$

Kalendāro mēnešu skaits projekta realizācijai

$$CM = 3 \cdot PM^{(0.33 + 0.2 \cdot (B - 1.01))} \cdot \frac{EM_6}{100}$$

Darbietilpības sadalījums pa aktivitātēm

Darbietilpības sadalījums pa aktivitātēm

Activities Performed	Web	MIS	Outsource	Commercial	System	Military
01 Requirements	5.00%	7.50%	9.00%	4.00%	4.00%	7.00%
02 Prototyping	10.00%	2.00%	2.50%	1.00%	2.00%	2.00%
03 Architecture		0.50%	1.00%	2.00%	1.50%	1.00%
04 Project plans		1.00%	1.50%	1.00%	2.00%	1.00%
05 Initial design		8.00%	7.00%	6.00%	7.00%	6.00%
06 Detail design		7.00%	8.00%	5.00%	6.00%	7.00%
07 Design reviews			0.50%	1.50%	2.50%	1.00%
08 Coding	30.00%	20.00%	16.00%	23.00%	20.00%	16.00%
09 Reuse acquisition	5.00%		2.00%	2.00%	2.00%	2.00%
10 Package purchase		1.00%	1.00%		1.00%	1.00%
11 Code inspections				1.50%	1.50%	1.00%
12 Independent verification and validation						1.00%
13 Configuration management		3.00%	3.00%	1.00%	1.00%	1.50%
14 Formal integration		2.00%	2.00%	1.50%	2.00%	1.50%
15 User documentation	10.00%	7.00%	9.00%	12.00%	10.00%	10.00%
16 Unit testing	30.00%	4.00%	3.50%	2.50%	5.00%	3.00%
17 Function testing		6.00%	5.00%	6.00%	5.00%	5.00%
18 Integration testing		5.00%	5.00%	4.00%	5.00%	5.00%
19 System testing		7.00%	5.00%	7.00%	5.00%	6.00%
20 Field testing				6.00%	1.50%	3.00%
21 Acceptance testing		5.00%	3.00%		1.00%	3.00%
22 Independent testing						1.00%
23 Quality assurance			1.00%	2.00%	2.00%	1.00%
24 Installation/training		2.00%	3.00%		1.00%	1.00%
25 Project management	10.00%	12.00%	12.00%	11.00%	12.00%	13.00%
Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Activities	7	18	21	20	23	25

Vērtējumu precizitāte

Literatūras avoti

- http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
- COCOMO II Model Definition Manual, University of Southern California, 86 p.
- T. Capers Jones. Estimating Software Costs, McGraw-Hill, USA, 1998
- ◆ A.J.Albrecht. Measuring Application Development Productivity._Proc. IBM Applic. Dev. Symposium, Monterey, California, 1979
- R.Pressman. Software Engineering: A Practitioner's Approach._McGraw-Hill, 1992, pp 41-91