	* Prerequisites In this assignment you will implement the Naive Bayes Classifier. Before starting this assignment, make sure you understand the concepts discussed in the videos in Week 2 about Naive Bayes. You can also find it useful to read Chapter 1 of the textbook. Also, make sure that you are familiar with the numpy.ndarray class of python's numpy library and that you are able to answer the following questions: Let's assume a is a numpy array. • What is an array's shape (e.g., what is the meaning of a.shape)? • What is numpy's reshaping operation? How much computational over-head would it induce? • What is numpy's transpose operation, and how it is different from reshaping? Does it cause computation overhead? • What is the meaning of the commands a.reshape(-1, 1) and a.reshape(-1)? • Would happens to the variable a after we call b = a.reshape(-1)? Does any of the attributes of
	 a change? How do assignments in python and numpy work in general? Does the b=a statement use copying by value? Or is it copying by reference? Would the answer to the previous question change depending on whether a is a numpy array or a scalar value? You can answer all of these questions by Reading numpy's documentation from https://numpy.org/doc/stable/. Making trials using dummy variables. *Assignment Summary The UC Irvine machine learning data repository hosts a famous dataset, the Pima Indians dataset, on whether a patient has diabetes originally owned by the National Institute of Diabetes and Digestive and Kidney Diseases and donated by Vincent Sigillito. You can find it at https://www.kaggle.com/uciml/pima-indians-diabetes-database/data. This data has a set of attributes of patients, and a categorical variable
	 telling whether the patient is diabetic or not. For several attributes in this data set, a value of 0 may indicate a missing value of the variable. It has a total of 768 data-points. Part 1-A) First, you will build a simple naive Bayes classifier to classify this data set. We will use 20% of the data for evaluation and the other 80% for training. You should use a normal distribution to model each of the class-conditional distributions. (Class conditional probability is the probability of each attribute value for an attribute, for each outcome value. https://www.sciencedirect.com/topics/mathematics/conditional-probability) (The posterior probability is calculated by updating the prior probability using Bayes' theorem.) Report the accuracy of the classifier on the 20% evaluation data, where accuracy is the number of correct predictions as a fraction of total predictions. Part 1-B) Next, you will adjust your code so that, for attributes 3 (Diastolic blood pressure), 4 (Triceps skin fold thickness), 6 (Body mass index), and 8 (Age), it regards a value of 0 as a missing value when estimating the class-conditional distributions, and the posterior. Report the accuracy of the classifier on the 20% that was held out for evaluation. Part 1-C) Last, you will have some experience with SVMLight, an off-the-shelf implementation of Support Vector Machines or SVMs. For now, you don't need to understand much about SVM's, we will explore them in more depth in the following exercises. You will install SVMLight, which you can find at http://svmlight.joachims.org, to train and evaluate an SVM to classify this data.
	You should NOT substitute NA values for zeros for attributes 3, 4, 6, and 8. Report the accuracy of the classifier on the held out 20% O. Data O.1 Description The UC Irvine's Machine Learning Data Repository Department hosts a Kaggle Competition with famous collection of data on whether a patient has diabetes (the Pima Indians dataset), originally owned by the National Institute of Diabetes and Digestive and Kidney Diseases and donated by Vincent Sigillito. You can find this data at https://www.kaggle.com/uciml/pima-indians-diabetes-database/data. The Kaggle website offers valuable visualizations of the original data dimensions in its dashboard. It is quite insightful to take the time and make sense of the data using their dashboard before applying any method to the data.
In [36]:	 Input/Output: This data has a set of attributes of patients, and a categorical variable telling whether the patient is diabetic or not. Missing Data: For several attributes in this data set, a value of 0 may indicate a missing value of the variable. Final Goal: We want to build a classifier that can predict whether a patient has diabetes or not. To do this, we will train multiple kinds of models, and will be handing the missing data with different approaches for each method (i.e., some methods will ignore their existence, while others may do something about the missing data). O.3 Loading *matplotlib inline import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt
In [37]: Out[37]:	### df = pd.read_csv('/BasicClassification-lib/diabetes.csv') Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
<pre>In [38]: In [39]: Out[39]:</pre>	training samples, and the number of columns is 8 (i.e., the number of features). We will define eval_features in a similar fashion • We would also create the 1-d numpy arrays train_labels and eval_labels which contain the training and evaluation labels, respectively. # Let's generate the split ourselves. np_random = np.random.RandomState(seed=12345) #?? rand_unifs = np_random.uniform(0,1, size=df.shape[0]) #produce N random numbers from U division_thresh = np.percentile(rand_unifs, 80) # return 80th %ile of the random numb train_indicator = rand_unifs < division_thresh # train_indicator = 1 if random number eval_indicator = rand_unifs >= division_thresh # eval_indicator = 1 if random number train_df = df[train_indicator].reset_index(drop=True) #use training obs indicator to train_features = train_df.loc[:, train_df.columns != 'Outcome'].values #training feat train_labels = train_df.loc[:, train_df.columns != 'Outcome'].values #training feat train_labels = train_df['Outcome'].values # outcome column is the labels vector train_df.head() Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome 0
In [40]: Out[40]: In [41]:	3
Out[41]: In [42]:	O.2 Pre-processing The Data Some of the columns exhibit missing values. We will use a Naive Bayes Classifier later that will treat such missing values in a special way. To be specific, for attribute 3 (Diastolic blood pressure), attribute 4 (Triceps skin fold thickness), attribute 6 (Body mass index), and attribute 8 (Age), we should regard a value of 0 as a missing value. Therefore, we will be creating the train_featues_with_nans and eval_features_with_nans numpy arrays to be just like their train_features and eval_features counter-parts, but with the zero-values in such columns replaced with nans. train_df_with_nans = train_df.copy(deep=True) eval_df_with_nans = eval_df.copy(deep=True) for col_with_nans in ['BloodPressure', 'SkintThickness', 'BMI', 'Age']: train_df_with_nans[col_with_nans] = train_df_with_nans[col_with_nans].replace(0, np train_features_with_nans = train_df_with_nans.loc[:, train_df_with_nans.columns != 'O eval_features_with_nans = eval_df_with_nans.loc[:, eval_df_with_nans.columns != 'Outc pandas.DataFrame.loc: Access a group of rows and columns by label(s) or a boolean array. Pandas.DataFrame.values property: DataFrame.values Return a Numpy representation of the DataFrame, ie numpy.ndarray where only the values in the dataFrame will be returned, the axes labels will be removed. Warning: We recommend using DataFrame.to_numpy() instead.
Out[43]:	print('Here are the training rows with at least one missing values.') print('') print('You can see that such incomplete data points constitute a substantial part of print('') #Show only the rows with missing values: nan_training_data = train_df_with_nans[train_df_with_nans.isna().any(axis=1)] nan_training_data #len(nan_training_data)/len(train_df_with_nans) #30% Here are the training rows with at least one missing values. You can see that such incomplete data points constitute a substantial part of the dat a. Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outco 1 8 183 64.0 NaN 0 23.3 0.672 32 4 5 116 74.0 NaN 0 25.6 0.201 30 5 10 115 NaN NaN 0 35.3 0.134 29 7 8 125 96.0 NaN 0 NaN 0 0.232 54
	8 4 110 92.0 NaN 0 37.6 0.191 30 <
	1. Part 1 (Building a simple Naive Bayes Classifier) Consider a single sample (or observation) (\mathbf{x},y) , where the feature vector is denoted with \mathbf{x} , and the label is denoted with y . We will also denote the j^{th} feature of \mathbf{x} with $x^{(j)}$. According to the textbook, the Naive Bayes Classifier uses the following decision rule: "Choose y such that $\left[\log p(y) + \sum_{j} \log p(x^{(j)} y)\right]$ is the largest" However, we first need to define the probabilistic models (ie: the PDFs) of the prior $p(y)$ and the class-conditional feature distributions $p(x^{(j)} y)$ using the training data. • Modelling the prior $p(y)$: We fit a Bernoulli distribution to the Outcome variable of train_df. • Modelling the class-conditional feature distributions $p(x^{(j)} y)$: We fit Gaussian distributions, and infer the Gaussian mean and variance parameters from train_df. Task 1 Write a function log_prior that takes a numpy array train_labels as input, and outputs the following vector as a column numpy array (i.e., with shape $(2,1)$). $\log p_y = \begin{bmatrix} \log p(y=0) \\ \log p(y=1) \end{bmatrix}$
In [44]: Out[44]: In [45]:	Try and avoid the utilization of loops as much as possible. No loops are necessary. Hint: Make sure all the array shapes are what you need and expect. You can reshape any numpy array without any tangible computational over-head. P_y is log of the prior probabiliy. $\log_{py} = \text{np.array}(\text{[1-sum(train_labels)/len(train_labels)}, \text{sum(train_labels)/len(train_labels)}) / \text{len(train_labels)} / \text{len(train_labels)} / \text{len(train_labels)} / \text{log_py}$ $\operatorname{array}([[0.65960912], [0.34039088]])$ $\operatorname{def} \log_{py} = \operatorname{np.array}(\text{[np.log(1-sum(train_labels)/len(train_labels)}), \text{np.log(sum(train_labels)}) / \text{len(train_labels)} / len(t$
	<pre>assert log_py.shape == (2,1) return log_py</pre>
In [49]:	features. $\mu_y = \begin{bmatrix} \mathbb{E}[x^{(0)} y=0] & \mathbb{E}[x^{(0)} y=1] \\ \mathbb{E}[x^{(1)} y=0] & \mathbb{E}[x^{(1)} y=1] \\ \dots & \dots \\ \mathbb{E}[x^{(7)} y=0] & \mathbb{E}[x^{(7)} y=1] \end{bmatrix}$ Some points regarding this task: $\bullet \text{ The train_features numpy array has a shape of } (N,8) \text{ where } N \text{ is the number of training data points, and } 8 \text{ is the number of the features.}$ $\bullet \text{ The train_labels numpy array has a shape of } (N,) \text{ .}$ $\bullet \text{ You can assume that train_features has no missing elements in this task.}$ $\bullet \text{ Try and avoid the utilization of loops as much as possible. No loops are necessary.}$ $\text{Thought process notes:}$ $\bullet \text{ need train features where train_labels are 0 vs. 1}$ $\bullet \text{ need sum } X^{(i)} \text{ where } y = 0 \text{ and count } X^{(i)}, \text{ where } y = 1$ $\text{def } \text{cc_mean_ignore_missing (train_features, train_labels):}$ $\text{N, d = train_features.shape}$
In [50]:	<pre>some_feats = np.array([[1. , 85. , 66. , 29. , 0. , 26.6, 0.4, 31.],</pre>
<pre>In [51]: In [52]: Out[52]:</pre>	mu_y = cc_mean_ignore_missing(train_features, train_labels) mu_y array([[3.48641975,
	Task 3 Write a function <code>cc_std_ignore_missing</code> that takes the numpy arrays <code>train_features</code> and <code>train_labels</code> as input, and outputs the following matrix with the shape $(8,2)$, where 8 is the number of features. $\sigma_y = \begin{bmatrix} \operatorname{std}[x^{(0)} y=0] & \operatorname{std}[x^{(0)} y=1] \\ \operatorname{std}[x^{(1)} y=0] & \operatorname{std}[x^{(1)} y=1] \\ \dots & \dots \\ \operatorname{std}[x^{(7)} y=0] & \operatorname{std}[x^{(7)} y=1] \end{bmatrix}$ Some points regarding this task: • The <code>train_features</code> numpy array has a shape of <code>(N,8)</code> where <code>N</code> is the number of training data points, and 8 is the number of the features. • The <code>train_labels</code> numpy array has a shape of <code>(N,0)</code> .
In [53]: In [54]:	• You can assume that train_features has no missing elements in this task. • Try and avoid the utilization of loops as much as possible. No loops are necessary. def cc_std_ignore_missing(train_features, train_labels): N, d = train_features.shape std_yeq1 = np.std(train_features[(train_labels == 1)], axis = 0) std_yeq0 = np.std(train_features[(train_labels == 0)], axis = 0) #combine into list, convert to array, transpose sigma_y = np.array([std_yeq0, std_yeq1]).T assert sigma_y.shape == (d, 2) return sigma_y # Performing sanity checks on your implementation some_feats = np.array([[1., 85., 66., 29., 0., 26.6, 0.4, 31.],
<pre>In [55]: In [56]: Out[56]:</pre>	[0.094, 0.8],
	and outputs the following matrix with the shape $(N,2)$ IN: $\log p_y = \begin{bmatrix} \log p(y=0) \\ \log p(y=1) \end{bmatrix}$ $\mu_y = \begin{bmatrix} \mathbb{E}[x^{(0)} y=0] & \mathbb{E}[x^{(0)} y=1] \\ \mathbb{E}[x^{(1)} y=0] & \mathbb{E}[x^{(1)} y=1] \\ \dots & \dots \\ \mathbb{E}[x^{(7)} y=0] & \mathbb{E}[x^{(7)} y=1] \end{bmatrix}$ $\sigma_y = \begin{bmatrix} \operatorname{std}[x^{(0)} y=0] & \operatorname{std}[x^{(0)} y=1] \\ \operatorname{std}[x^{(1)} y=0] & \operatorname{std}[x^{(1)} y=1] \\ \dots & \dots \\ \operatorname{std}[x^{(7)} y=0] & \operatorname{std}[x^{(7)} y=1] \end{bmatrix}$ OUT:
	$\log p_{x,y} = \begin{bmatrix} \log p(y=0) + \sum_{j=0}^7 \log p(x_1^{(j)} y=0) \end{bmatrix} & \left[\log p(y=1) + \sum_{j=0}^7 \log p(x_1^{(j)} y=1) \right] \\ \log p(y=0) + \sum_{j=0}^7 \log p(x_2^{(j)} y=0) \end{bmatrix} & \left[\log p(y=1) + \sum_{j=0}^7 \log p(x_2^{(j)} y=1) \right] \\ \dots & \dots \\ \left[\log p(y=0) + \sum_{j=0}^7 \log p(x_N^{(j)} y=0) \right] & \left[\log p(y=1) + \sum_{j=0}^7 \log p(x_N^{(j)} y=1) \right] \end{bmatrix}$ where • N is the number of training data points. • x_i is the i^{th} training data point. Try and avoid the utilization of loops as much as possible. No loops are necessary. Hint: Remember that we are modelling $p(x_i^{(j)} y)$ with a Gaussian whose parameters are defined inside μ_y and σ_y . Write the Gaussian PDF expression and take its natural log on paper , then implement it. Important Note: Do not use third-party and non-standard implementations for computing $\log p(x_i^{(j)} y)$. Using functions that find the Gaussian PDF, and then taking their \log is numerically unstable ; the Gaussian PDF values can easily become extremely small numbers that cannot be represented using floating point standards and thus would be stored as zero. Taking the \log of a zero value will throw an error. On the other hand, it is unnecessary to compute and store $p(x_i^{(j)} y)$ in order to find $\log p(x_i^{(j)} y)$; you can write $\log p(x_i^{(j)} y)$ as a direct function of μ_y , σ_y and the features. This latter approach is numerically stable, and can be applied when the PDF values are much smaller than could be stored using the common standards. THOUGHT PROCESS Want: $y = argmax_{y \in Y} \left[\log \left[\frac{1}{\sigma_y \sqrt{2\pi}} \right] - \frac{1}{2} \frac{(x^{(i)} - \mu_y)^2}{\sigma_y^2} \right] + \log[P(y)]$
In [57]:	, where train_features: (N, 8) $\mu_y\colon (8,2)$ $\sigma_y\ (8,2)$ Part 1. $\log[P(y)]$ Shape: (2, 1) Part 2. $\log(\frac{1}{\sigma_y\sqrt{2\pi}})$: Compute using sigma_y. Straight forward. Shape: (8, 2) Part 3. $-\frac{(x^{(i)}-\mu_y)^2}{2\sigma_y^2}$ Two (5, 8)s The three variables that need to be used, train_features, mu_y, and sigma_y, have different shapes; (5, 8), (8, 2), and (8, 2), respectively. So you cannot just do train_features - mu_y. mu_y has both $y=0$ and $y=1$ component. The final answer also has both $y=0$ component and $y=1$ component. So, take $y=0$ component from mu_y to do the math and do another with $y=1$ component. The same logic applies to sigma_y during the computation. Shape of the result for one component: (5, 8), same as that of train_features. There are two of these. Part 4. The final math is: for each component of y , $\sum (Part2 + Part3) + Part1$. Reminder, both Part 1 and Part 2 have $y=0$ and $y=1$ component.
Out[57]:	Some_feats = np.afray([[1. , 85. , 60. , 29. , 0. , 20. , 0. , 31.],
In [58]: In [59]:	<pre>def log_prob(train_features, mu_y, sigma_y, log_py): N, d = train_features.shape #part 2 p2 = np.log((sigma_y * np.sqrt(2*np.pi))**-1) #(8,2) p2_0 = p2[:,0] p2_1 = p2[:,1] #part 3 # -1 * (((8,5) - (8,1))/(8,1)) p3_0 = -1*((some_feats.T - mu_y[:, 0].reshape(d,1))**2 / (2 * some_std_y[:, 0].rep3_1 = -1*((some_feats.T - mu_y[:, 1].reshape(d,1))**2 / (2 * some_std_y[:, 1].rep1_0 = some_log_py[0,0] #scalar p1_1 = some_log_py[1,0] #scalar #result should be (N,2) # part 2: (8,) (d,) # part 3: (5,8) (N,d) # d,N d,1 log_p_x_y = np.array([np.sum(p3_0 + p2_0.reshape(8,1), axis = 0) + p1_0, np.sum(p3_0 + p2_0.reshape(8,1), axis = 0) + p1_0, np.sum(p3_0 + p2_0.reshape(8,1), axis = 0) # Performing sanity checks on your implementation some_feats = np.array([[1. , 85. , 66. , 29. , 0. , 26.6, 0.4, 31.],</pre>
	<pre>some_feats = np.array([[1., 85., 66., 29., 0., 26.6, 0.4, 31.],</pre>
	AssertionError: *********************************
	[-0.92487962, -1.19573902], [-0.92487962, -1.19573902], [6.53068018, 4.08709238], [-1.18911339, 5.30706393], [-8.4565552, 7.66223767], [0.99217652, -2.82666943], [-7.60190338, 0.38475557]]) sigma_y = np.array([[6.87450118, 8.93814137], [5.51200317, 2.61487541], [5.11012132, 5.54466], [1.63257473, 3.17213761], [6.33579734, 2.66937004], [1.39194346, 0.602003], [7.54738978, 1.67183637], [2.2723157, 9.35673231]]) train_features = np.array([[-9.49838327, 3.04374429, -6.74039902, 0.91495477, 7.97643398, [8.37789946, 8.27349512, 4.34892098, 7.25922999, 2.63769389, 8.26424067, -1.15483306, -8.97197674], [-4.50834093, -9.80100556, -8.52155491, 8.72995625, -9.47867952, -9.16549087, 7.16644183, -7.93507627], [-8.8655367, -6.38517908, 5.86102575, 5.32905634, -3.64497922, -6.17479696, -7.66996382, -3.81338443], [9.71569349, 4.89464348, -0.09130156, 4.63850721, 7.93120011, -8.60888033, 9.70616698, -9.66130399], [-1.70691529, -1.68519579, -0.94768778, 7.42520094, 0.43600506, -9.87705265, -5.23393889, -8.99784883]])
	<pre>### You can copy the following auto-generated snippet into a new cell to reproduce the issue. ### Use the + button on the top left of the screen to insert a new cell below.</pre>
	<pre>### Use the + button on the top left of the screen to insert a new cell below. ####### Test Arguments ####### from copy import deepcopy failed_arguments = deepcopy(test_results['test_kwargs']) log_py = failed_arguments['log_py'] mu_y = failed_arguments['iog_py'] mu_y = failed_arguments['iog_py'] mu_y = failed_arguments['iog_py'] sigma_y = failed_arguments['iog_py'] rain_features = failed_arguments['train_features'] ####### Your Code Body ###### N, d = train_features.shape p2 = np.log((sigma_y * np.sqrt(2*np.pi))**-1) #(8,2) p2 0 = p2[:,0] p2_1 = p2[:,1] p3_0 = -1*((some_feats.T - mu_y[:, 0].reshape(d,1))**2 / (2 * some_std_y[:, 0].reshape(d,1)**2)) #(N,8) p3_1 = -1*((some_feats.T - mu_y[:, 1].reshape(d,1))**2 / (2 * some_std_y[:, 1].reshape(d,1)**2)) #(N,8) p1_0 = some_log_py[0,0] #scalar p1_1 = some_log_py[0,0] #scalar p1_1 = some_log_py[1,0] #scalar p2_1.reshape(8,1), axis = 0) + p1_1]).T #(5,2) = (N,2) assert log_p_x_y_shape == (N,2) returned_var = log_p_x_y # returned variable ##### Checking Solutions ##### my_solution = returned_var # Your Solution correct_sol = test_results['correct_sol'] # The Reference Solution if isinstance(correct_sol, np.ndarray): assert my_solution.dtype is correct_sol.dtype assert my_solution.shape == correct_sol.shape assert my_solution.shape == correct_sol.shape assert np.allclose(my_solution, on_rondarray) print('If you_passed_the_above_assertions, it_probably_means_that_you_have_fixed_the be issue! Well Done!') print('Now_you_have_to_do_3 things:')</pre>
In [20]: In []:	####### Test Arguments ####### from copy import despecopy failed arguments despecopy failed arguments despecopy failed arguments 'log py') muy = failed arguments ('sigma y') sigma y = failed arguments('sigma y') sigma y = failed arguments('may y') sigma y = failed arguments('may y') sigma y = failed arguments('sigma y') sigma y = failed sigma y'' sigma y = failed sigma y'' sigma y = failed sigma y sigma y = failed sigma seat y = failed sigma y'' sigma y = failed sigma y = failed sigma y'' sigma y = failed sigma y = failed sigma y'' sigma y = failed sigma y = failed sigma y'' sigma y = failed sigma y = failed sigma y'' sigma y = failed sigma y''' sigma y = failed sigma y = failed sigma y''' sigma y = failed

			Part 2 (Building a Naive Bayes Classifier Considering Missing Entries) In this part, we will modify some of the parameter inference functions of the Naive Bayes classifier to make it able to ignore the NaN entries when inferring the Gaussian mean and stds. Task 5 Write a function cc_mean_consider_missing that
	23]		 has exactly the same input and output types as the cc_mean_ignore_missing function, and has similar functionality to cc_mean_ignore_missing except that it can handle and ignore the NaN entries when computing the class conditional means. You can borrow most of the code from your cc_mean_ignore_missing implementation, but you should make it compatible with the existence of NaN values in the features. Try and avoid the utilization of loops as much as possible. No loops are necessary. Hint: You may find the np.nanmean function useful. def cc_mean_consider_missing(train_features_with_nans, train_labels):
n	[]	0 0	<pre>N, d = train_features_with_nans.shape # your code here raise NotImplementedError assert not np.isnan(mu_y).any() assert mu_y.shape == (d, 2) return mu_y # Performing sanity checks on your implementation some_feats = np.array([[1. , 85. , 66. , 29. , 0. , 26.6, 0.4, 31.],</pre>
			<pre>[5. , 116. , 74. , 0. , 0. , 25.6, 0.2, 30.]]) some_labels = np.array([0, 1, 0, 1, 0]) for i,j in [(0,0), (1,1), (2,3), (3,4), (4, 2)]: some_feats[i,j] = np.nan some_mu_y = cc_mean_consider_missing(some_feats, some_labels) assert np.array_equal(some_mu_y.round(2), np.array([[3. , 4.],</pre>
n n		0 0	<pre># Checking against the pre-computed test database test_results = test_case_checker(cc_mean_consider_missing, task_id=5) assert test_results['passed'], test_results['message'] # This cell is left empty as a seperator. You can leave this cell as it is, and you so mu_y = cc_mean_consider_missing(train_features_with_nans, train_labels) mu_y</pre>
			Task 6 Write a function cc_std_consider_missing that • has exactly the same input and output types as the cc_std_ignore_missing function, • and has similar functionality to cc_std_ignore_missing except that it can handle and ignore the NaN entries when computing the class conditional means. You can borrow most of the code from your cc_std_ignore_missing implementation, but you should make it compatible with the existence of NaN values in the features. Try and avoid the utilization of loops as much as possible. No loops are necessary.
n		:	<pre>• Hint: You may find the</pre>
n			<pre># Performing sanity checks on your implementation some_feats = np.array([[1. , 85. , 66. , 29. , 0. , 26.6, 0.4, 31.],</pre>
n			# This cell is left empty as a seperator. You can leave this cell as it is, and you signs the pre-to-mark of
n n			<pre>sigma_y = cc_std_consider_missing(train_features_with_nans, train_labels) sigma_y 2.1. Writing the Naive Bayes Classifier With Missing Data Handling class NBClassifierWithMissing(NBClassifier): def get_cc_means(self): mu_y = cc_mean_consider_missing(self.train_features, self.train_labels) return mu_y</pre>
			<pre>def get_cc_std(self): sigma_y = cc_std_consider_missing(self.train_features, self.train_labels) return sigma_y def predict(self, features): preds = [] for feature in features: is_num = np.logical_not(np.isnan(feature)) mu_y_not_nan = self.mu_y[is_num,:] std_y_not_nan = self.sigma_y[is_num,:] feats_not_nan = feature[is_num].reshape(1,-1) log_p_x_y = log_prob(feats_not_nan, mu_y_not_nan, std_y_not_nan, self.log_preds.append(log_p_x_y.argmax(axis=1).item())</pre>
n n			<pre>return np.array(preds) diabetes_classifier_nans = NBClassifierWithMissing(train_features_with_nans, train_lattrain_pred = diabetes_classifier_nans.predict(train_features_with_nans) eval_pred = diabetes_classifier_nans.predict(eval_features_with_nans) train_acc = (train_pred==train_labels).mean() eval_acc = (eval_pred==eval_labels).mean() print(f'The training data accuracy of your trained model is {train_acc}') print(f'The evaluation data accuracy of your trained model is {eval_acc}')</pre>
			3. Running SVMlight In this section, we are going to investigate the support vector machine classification method. We will become familiar with this classification method in week 3. However, in this section, we are just going to observe how this method performs to set the stage for the third week. SVMlight (http://svmlight.joachims.org/) is a famous implementation of the SVM classifier. SVMLight can be called from a shell terminal, and there is no nice wrapper for it in python3. Therefore: 1. We have to export the training data to a special format called svmlight/libsvm. This can be done using scikit-learn.
n	[]	0 0	2. We have to run the svm_learn program to learn the model and then store it. 3. We have to import the model back to python. 3.1 Exporting the training data to libsvm format from sklearn.datasets import dump_svmlight_file dump_svmlight_file(train_features, 2*train_labels-1, 'training_feats.data',
n		•	<pre>!chmod +x/BasicClassification-lib/svmlight/svm_learn from subprocess import Popen, PIPE process = Popen(["/BasicClassification-lib/svmlight/svm_learn", "./training_feats.dastdout, stderr = process.communicate() print(stdout.decode("utf-8"))</pre> 3.3 Importing the SVM Model from svm2weight import get_svmlight_weights svm_weights, thresh = get_svmlight_weights('svm_model.txt', printOutput=False)
n n			<pre>def symlight_classifier(train_features): return (train_features @ sym_weights - thresh).reshape(-1) >= 0. train_pred = symlight_classifier(train_features) eval_pred = symlight_classifier(eval_features) train_acc = (train_pred==train_labels).mean() eval_acc = (eval_pred==eval_labels).mean() print(f'The training data accuracy of your trained model is {train_acc}') print(f'The evaluation data accuracy of your trained model is {eval_acc}')</pre>
n		:	# Cleaning up after our work is done !rm -rf svm_model.txt training_feats.data

gnb = GaussianNB().fit(train_features, train_labels)
train_pred_sk = gnb.predict(train_features)
eval_pred_sk = gnb.predict(eval_features)
print(f'The training data accuracy of your trained model is {(train_pred_sk == train_:
 print(f'The evaluation data accuracy of your trained model is {(eval_pred_sk == eval_:

The training data accuracy of your trained model is 0.7671009771986971 The evaluation data accuracy of your trained model is 0.7532467532467533