Precipitat d silica

Patent Number:

EP0798266

Publication date:

1997-10-01

Inventor(s):

STORECK ARNOLD DR (DE); KUHLMANN ROBERT (DE); NEUMUELLER MATHIAS (DE); SIRAY MUSTAFA DR (DE)

Applicant(s)::

DEGUSSA (DE)

Requested Patent:

FP0798266, B1

Application

Number:

EP19970104764 19970320

Priority Number (s):

DE19961012118 19960327; DE19961042448 19961015

IPC Classification: C01B33/193

EC Classification: C01B33/193, A61K7/16B2B

Equivalents:

DE19642448, ES2121639T, GR3027690T

Abstract

Precipitated silica has a BET value 6f 25-350 m<2>/g, a CTAB value of 25-150 m<2>/g, a DBP absorbence of 150-300 g/100 g, a mean particle size of 5-20 mu m, a copper abrasion value of 1-20 mg in a 10 % glycerine dispersion, and a refraction index of 1.44-1.451.

Data supplied from the esp@cenet database - 12

son ve inso miles

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 798 266 A1

:

.2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 01.10.1997 Patentblatt 1997/40

(51) Int. Cl.6: C01B 33/193

(21) Anmeldenummer: 97104764.2

(22) Anmeldetag: 20.03.1997

(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE

(30) Priorität: 27.03.1996 DE 19612118 15.10.1996 DE 19642448

(71) Anmelder: DEGUSSA AG 60311 Frankfurt (DE) (72) Erfinder:

- Siray, Mustafa, Dr. 53127 Bonn (DE)
- Kuhlmann, Robert 50374 Erftstadt (DE)
- Storeck, Arnold, Dr. 60322 Frankfurt (DE)
- Neumüller, Mathias 63594 Hasselroth (DE)

(54) Fällungskieselsäure

(57)Fällungskieselsäure, die eine BET-Oberfläche von 25 - 350 m²/g, eine CTAB-Oberfläche von 25 - 150 m²/g, eine DBP-Aufnahme von 150 - 300 g/100 g, einen mittleren Teilchendurchmesser von 5 - 20 μm, einen Cu-Abrieb in 10 %iger Glyzerindispersion von 1 - 20 mg und einen Brechungsindex von 1,440 - 1,451 aufweist. Si wird hergestellt, indem man zu einer Alkalisilikatlösung mit einer Konzentration von 1,5 bis 23 g/l Na₂O (Alkalisilikat: Gewichtsverhältnis SiO2/Na2O = 3,2 - 3,5) Säurelösung und Alkalisilikatlösung mit bestimmter Konzentration und bestimmter Zulaufgeschwindigkeit unter Aufrechterhaltung einer Fälltemperatur zwischen 60 und 90 °C derartig zugibt, daß ein Viskositätsanstieg nach spätestens 20 % der Gesamtfälldauer eintritt, und die Zugabe der Reaktionspartner erst dann beendet, wenn ein Kieselsäuregehalt von größer als 130 g/l beträgt, im Anschluß die Suspension durch weitere Säurezugabe auf pH-Wert <6 einstellt, den Feststoff durch Filtration abtrennt, wäscht, trocknet und vermahlt.

Die Fällungskieselsaure kann zur Herstellung von Zahnpasten und/oder Zahnpflegemitteln eingesetzt werden.

Beschreibung

25

35

Diese Erfindung betrifft eine Fällungskieselsäur, ein Verfahren zur Herstellung einer Fällungskieselsäure sowie ihre Verwendung bei der Herstellung von Zahnpasten und/oder Zahnpflegemitteln.

Synthetisch hergestellte Kieselsäuren spielen seit vielen Jahren als Bestandteil von Zahnpflegemitteln eine große Rolle. Sie werden dabei entweder als Putzkörper und/oder Verdickungsmittel zur Einstellung der rheologischen Eigenschaften der Zahnpasten eingesetzt. Es sind auch bifunktionelle Kieselsäuren bekannt, die sowohl als Abrasiv- und auch als Verdickungsmittel Verwendung finden.

Aus dem Dokument US-A 5,225,177 (Huber) ist ein Verfahren zur Herstellung einer Kieselsäure mit einer Oberfläche von 50 - 250 m²/g, Partikelgröße von 11 µm, Brechungsindex 1,45 und Öl-Absorption von <125 bekannt.

Aus dem Dokument EP 0 308 165 (Unilever) ist ein Verfahren zur Herstellung einer Kieselsäure mit einer Oberfläche von 420-550 m^2/g , Partikelgröße von 2 - 20 μm , Brechungsindex 1,444 - 1,460 und Öl-Absorption von 70 - 140 bekannt.

Aus dem Dokument WO 94/10087 (Crosfield) ist ein Verfahren zur Herstellung einer Kieselsäure mit einer Oberfläche von 10 - 90 m^2 /g, Partikelgröße von 5 - 15 μ m, Brechungsindex 1,43 - 1,443, Öl-Absorption von 70 - 150 und mittlerem Porendurchmesser von 2 - 8 nm bekannt.

Aus dem Dokument EP 0 535 943 (Crosfield) ist ein Verfahren zur Herstellung einer Kieselsäure mit einer Oberfläche von 100 - 450 m²/g, Partikelgröße von 5 - 15 μm, Brechungsindex 1,43 - 1,443, Öl-Absorption von 70 - 130 und mittlerem Porendurchmesser von 2 - 12 nm bekannt.

Aus den Prospektdaten der Firma Rhone-Poulenc sind die Kieselsäuren Tixosil 53 bzw. Tixosil 73 bekannt, die bei einem Brechungsindex von 1,46 einen RDA-Wert von 55 % bzw. bei einer Brechungszahl von 1,44 einen RDA-Wert von 110 % aufweisen.

Diese Kieselsäuren haben für bestimmte Anwendungen den Nachteil, daß sie bei niedrigen Brechungszahlen hohe RDA-Werte aufweisen.

Aus der Patentschrift DE-A 44 23 493 ist ebenfalls ein Verfahren zur Herstellung einer Kieselsäure mit einer BET-Oberfläche von 10 - 130 m^2/g , CTAB-Oberfläche von 10 - 70 m^2/g , mittlerer Teilchendurchmesser von 5 - 20 μ m, Cu-Abrieb von 5 - 20 mg und einem Verdickungsverhalten von 300 - 3500 mPa.s bekannt.

In der Schriftenreihe Pigmente der Firma Degussa, Nummer 9, Synthetische Kieselsäuren in Zahnpasten, 3. Auflage vom Juni 1988, Seite 10, Abbildung 4 ist eine vergleichende Prüfung der Abrasivität von Sidenten nach der Kupferabrieb- und RDA-Methode graphisch dargelegt. Eine aus der DE-A 44 23 493 nach Beispiel 1 hergestellte Kieselsäure weist einen Cu-Abrieb von 17 mg (entspricht einem RDA-Wert von ca. 90 %) bei einem Brechungsindex von 1,455 auf.

Auch diese Kieselsäure hat für bestimmte Anwendungen den Nachteil, daß sie bei niedriger Brechungszahl einen hohen Cu-Abrieb bzw. RDA-Wert aufweist.

Es bestand daher die Aufgabe, eine Kieselsäure herzustellen, die diese Nachteile nicht aufweist.

Gegenstand der Erfindung ist eine Fällungskieselsäure, die eine BET-Oberfläche von 25 - 350 m²/g, eine CTAB-Oberfläche von 25 - 150 m²/g, eine DBP-Aufnahme von 150 - 300 g/100 g, einen mittleren Teilchendurchmesser von 5 - 20 μ m, einen Cu-Abrieb in 10 %iger Glyzerindispersion von 1 - 20 mg und einen Brechungsindex von 1,440 - 1,451 aufweist.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der Fällungskieselsäure, die eine BET-Oberfläche von 25 - 350 m²/g, eine CTAB-Oberfläche von 25 - 150 m²/g, eine DBP-Aufnahme von 150 - 300 g/100 g, einen mittleren Teilchendurchmesser von 5 - 20 μm, einen Cu-Abrieb in 10 %iger Glyzerindisperion von 1 - 20 mg und einen Brechungsindex von 1,440 - 1,451 aufweist, welches dadurch gekennzeichnet ist, daß man zu einer Alkalisilikatlösung mit einer Konzentration von 1,5 bis 23 g/l Na₂O (Alkalisilikat: Gewichtsverhältnis SiO₂/Na₂O = 3,2 bis 3,5), die Säurelösung und Alkalisilikatlösung mit bestimmter Konzentration und bestimmter Zulaufge-schwindigkeit unter Aufrechterhaltung einer Fälltemperatur zwischen 60 und 90 °C derart zugibt, daß ein Viskositätsanstieg nach spätestens 20 % der Fälldauer eintritt, und die Zugabe der Reaktionspartner erst dann beendet, wenn ein Kieselsäuregehalt von größer als 130 g/l erreicht wird, im Anschluß die Suspension durch weitere Säurezugabe auf pH-Wert <6 einstellt, den Feststoff durch Filtration abtrennt, wäscht, trocknet und vermahlt.

Die Alkalisilikatlösung, die zugegeben wird kann eine Konzentration von 100 bis 120 g/l Na_2O aufweisen. Der Gehalt an SiO_2 kann 350 bis 370 g/l betragen.

Die Konzentration der Schwefelsäurelösung kann 45 bis 55 Gew.-% oder 90 bis 97 Gew.-% betragen.

Während der Fällung kann die Temperatur der Reaktionsmischung konstant gehalten werden. Ebenso kann während der Fällung die Konzentration an Na₂O, die in der Vorlage eingestellt worden ist, konstant gehalten werden.

Die Zulaufgeschwindigkeit wird für die Alkalisilikatlösung und die Schwefelsäurelösung so gesteuert, daß die gewünschten konstanten Bedingungen eingehalten werden können.

Zur Filtration kann Kammer-, Membranfilterpresse, Bandfilter oder Drehfilter oder eine Kombination von zwei der zuvor genannten Filter eingesetzt werden.

Zur Trocknung kann ein Umlauftrockner, Etagentrockner, Flashtrockner, Spinflashtrockner, Stromtrockner oder

Beispiel 4

In einem 30 I Behälter werden 2,14 I Natriumsilikatlösung (7,85 Gew.% Na₂O; 26,80 Gew.% SiO₂ mit Modul SiO₂/ Na₂O = 3,4; Dichte 1,352 g/ml) und 14,42 I heißes Wasser auf 85°C eingestellt. Der Na₂O Gehalt der Vorlagenlösung beträgt 13,7 g/l.

Während 120 Minuten werden gleichzeitig unter Konstanthalten der Na₂O-Konzentration von 13,7 g/l und d. r Temperatur von 85°C 9,04 l Natriumsilikatlösung und 1,72 l 50 %iger Schwefelsäure in die Vorlage unter intensivem Rühren zugegeben. Der Viskositätsanstieg erfolgt nach der 25. Minute.

Anschließend wird die Zufuhr an Natriumsilikat gestoppt und die Zufuhr der 50 %igen Schwefelsäure fortgesetzt bis ein pH-Wert in der Kieselsäuresuspension von 3,5 erreicht wird. Der Feststoffgehalt der Suspension liegt bei 149 g SiO₂/I.

Die Fällungskieselsäuresuspension wird anschließend filtriert und mit Wasser ausgewaschen.

Nach der Verflüssigung des Filterkuchens wird das Produkt in einem Sprühtrockner getrocknet und anschließend auf einer Labor-Stiftmühle vermahlen.

Beispiel 5

In einem 30 I Behälter werden 3,96 I Natriumsilikatlösung (7,85 Gew.% Na₂O; 26,80 Gew.% SiO₂ mit Modul $SiO_2/Na_2O = 3,4$; Dichte 1,352 g/ml) und 14,46 I heißes Wasser auf 85°C eingestellt. Der Na₂O-Gehalt der Vorlagenlösung beträgt 22,8 g/l.

Während 52 Minuten werden gleichzeitig unter Konstanthalten der Na₂O-Konzentration von 22,8 g/l und der Temperatur von 85°C 7,38 I Natriumsilikatlösung und 1,41 I 50%iger Schwefelsäure in die Vorlage unter intensivem Rühren zugegeben. Der Viskositätsanstieg erfolgt nach der 21. Minute.

Anschließend wird die Zufuhr an Natriumsilikat gestoppt und die Zufuhr der 50 %igen Schwefelsäure fortgesetzt bis ein pH-Wert in der Kieselsäuresuspension von 3,5 erreicht wird. Der Feststoffgehalt der Suspension liegt bei 150 g SiO₂/I.

Die Fällungskieselsäuresuspension wird anschließend filtriert und mit Wasser ausgewaschen.

Nach der Verflüssigung des Filterkuchens wird das Produkt in einem Sprühtrockner getrocknet und anschließend auf einer Labor-Stiftmühle vermahlen.

Beispiel 6

In einem 30 I Behälter werden 3,96 I Natriumsilikatlösung (7,85 Gew.% Na_2O ; 26,80 Gew.% SiO_2 mit Modul SiO_2 / $Na_2O = 3,4$; Dichte 1,352 g/ml) und 14,46 I heißes Wasser auf 85°C eingestellt. Der Na_2O -Gehalt der Vorlagenlösung beträgt 22,8 g/l.

Während 95 Minuten werden gleichzeitig unter Konstanthalten der Na₂O-Konzentration von 22,8 g/l und der Temperatur von 85°C 11,96 l Natriumsilikatlösung und 2,11 l 50%iger Schwefelsäure in die Vorlage unter intensivem Rühren zugegeben. Der Viskositätsanstieg erfolgt nach der 23. Minute.

Anschließend wird die Zufuhr an Natriumsilikat gestoppt und die Zufuhr der 50%igen Schwefelsäure fortgesetzt bis ein pH-Wert in der Kieselsäuresuspension von 3,5 erreicht wird. Der Feststoffgehalt der Suspension liegt bei 176 g SiO₂/I.

Die Fällungskieselsäuresuspension wird anschließend filtriert und mit Wasser ausgewaschen.

Nach der Verflüssigung des Filterkuchens wird das Produkt in einem Sprühtrockner getrocknet und anschließend auf einer Labor-Stiftmühle vermahlen.

Beispiel 7

In einem 1000 I Behälter werden 9,5 I Natriumsilikatlösung (7,85 Gew.% Na_2O ; 26,80 Gew.% SiO_2 mit Modul SiO_2 / Na_2O = 3,4; Dichte 1,352 g/ml) und 600 I heißes Wasser auf 65°C eingestellt. Der Na_2O Gehalt der Vorlagenlösung beträgt 1,65 g/l.

Während 165 Minuten werden gleichzeitig unter Konstanthalten des sich bei der Na₂O-Konzentration von 1,65 g/l ergebenden pH-Wertes von 10,9 und Temperatur von 65°C 588,4 l Natriumsilikatlösung und 41,65 l 96%iger Schwefelsäure in die Vorlage unter intensivem Rühren zugegeben. Der Viskositätsanstieg erfolgt nach der 23. Minute.

Anschließend wird die Zufuhr an Natriumsilikat gestoppt und die Zufuhr der 96%igen Schwefelsäure fortgesetzt bis ein pH-Wert in der Kieselsäuresuspension von 3,5 erreicht wird. Der Feststoffgehalt der Suspension liegt bei 178 g

Die Fällungskieselsäuresuspension wird anschließend filtriert und mit Wasser ausgewaschen.

Nach der Verflüssigung des Filterkuchens wird das Produkt in einem Sprühtrockner getrocknet und anschließend auf einer Labor-Stiftmühle vermahlen.

30

45

15

4

Di physikalisch-chemischen und anwendungstechnischen Daten der erhaltenen Fällungskieselsäure sind in der Tabelle 1 aufgeführt.

То			

Beispiel		1	2	3	4	5	6	7
				,				
BET-Oberfläche	m²/g	113	221	-209	200	285	243	215
CTAB-Oberfläche	m²/g	77	92	89	60	72	49	87
Mittlerer Teilchendurchmesser	μm	10,2	10,5	10,5	11,8	12,4	12,3	13,0
Cu-Abrieb	mg	1	2,3	1,0	2,9	9,9	15,6	3,6
Brechungsindex		1,45	1,448	1,45	1,449	1,448	1,444	1,448
Feuchte	%	3,8	5,6	4,8	4,9	6,0	5,0	5,5
DBP-Aufnahme	g/100g	189	223	203	206	206	177	194
CMC-Verdickung	mPa s	7200	29000	17000	7700	12600	2300	3100
RDA					12,6	30,8		19,8
Gesamtfälldauer*	min	178	129	151	192	105	165	227
Feststoffgehalt Fällsuspension	g/l	156	135	150	149	150	176	178
Prozentualer Anteil Viskositätsanstieg an Gesamtfälldauer	%	14	18	14	13	20	14	10

^{*} Die Gesamtfälldauer setzt sich zusammen aus Fällzeit und Ansäuerungszeit bis zum End-pH-Wert.

Die Daten werden mittels der folgenden Methoden bestimmt:

5

10

15

20

25

30

35

40

50

55

- Die Bestimmung der spezifischen Stickstoff-Oberfläche (BET) erfolgt nach Brunauer-Emmet -Teller mit Hilfe der AREA-meter-Apparatur der Fa. Ströhlein. Die Bestimmung erfolgt gemäß DIN ISO 5794/1 Annex D. Die Originalmethode wurde erstmals in Journal of the America Chemical Society, 60 (1938) Seite 309 beschrieben. Die Ausheiztemperatur beträgt 160 °C für 1 Stunde.
- Die CTAB-Oberfläche wird durch Adsorption von Cetyltrimethylammoniumbromid bei pH 9 bestimmt (s. Jay, Janzen und Kraus in "Rubber Chemistry and Technology" 44 (1971) 1287).
- Die Teilchenverteilung wird mittels Coulter Counter, Modell TA II der Fa. Coulter Electronics, ermittelt. Zum Einsatz kommt die 100 μm-Kapillare.
- Die Bestimmung der Abrasivität erfolgt nach der Cu-Abriebsmethode in 10 %iger Glyzerindispersion (153 g Glyzerin wasserfrei, in dem 17 g Kieselsäure 12 min bei 1 500 UpM mit dem Flügelrührer dispergiert werden). Die Abriebmessung erfolgt durch 50 000 Doppelhübe mittels Nylonbürsten an Cu-Blechen (Elektrolyt-Kupfer) in obiger Dispersion. Aus der Differenzwägung erhält man die mg Cu-Abrieb.
 Literatur: Pfrengle, Fette, Seifen, Anstrichmittel 63 (1961) 445-451 und Reng, Dany, Parfümerie und Kosmetik 59
 - Literatur: Prrengie, Fette, Seiten, Anstrichmittel 63 (1961) 445-451 und Reng, Dany, Partumerie und Rosmetik 59 (1978) 37-45.
 - Die Bestimmung des Berechnungsindexes wird wie folgt durchgeführt:

 147,0 g 70 %iges Sorbitol und 3 g Kieselsäure oder Silikat werden in ein 150 ml Titriergefäß aus Braunglas eingewogen. Das Titriergefäß wird mit einem Deckel verschlossen und 3 Tage stehen gelassen, um eine völlige Benetzung zu garantieren. Die Titration erfolgt mit entionisiertem Wasser und als Sensor dient eine Phototrode. Diese wird zunächst mit entionisiertem Wasser auf 1000 mV = 100 % Transparenz eingestellt. Die Bürette wird gespült und die Methoden-Numm r eingegeben. Dann wird das Titriergefäß an den Titrierkopf des Titrators geschraubt. Vor der eigentlichen Titration wird 3 Minuten gerührt, um die Probe gut zu dispergieren. Dann wird entionisiertes Wasser in 0,5 ml Schritten zugegeben und zwischen jeder Zugabe 9 Sekunden gerührt. Das Maximalvolumen ist auf 40 ml eingestellt. Nach dieser Zugabe wird die Titrierkurve und die Meßwerttabelle ausgedruckt. Der ml-Ver-

brauch wird aus der Titrierkurve im Wendepunkt (Maximum) oder alternativ aus der Meßwerttabelle (Figur 1) abgelesen. Hieraus errechnet sich die Sorbitolkonzentration.

Ber chnung:

% Sorbitol =
$$\frac{E \cdot K \cdot 100}{(E + V) \cdot 100}$$

E = Einwaage Sorbitol in g

K = Sorbitol-Konzentration in % (z.B. 70)

V = ml Wasser (d = 1)

- Die Bestimmung des Verdickungsverhaltens erfolgt 20 %ig in einer Carboxymethylcellulose-Lösung (50 g PEG 400, 1 kg 87 %iges Glyzerin, 25 g AKU CMC LZ 855, 925 g Wasser). Die mindestens 1 Tag aber höchstens 2 Wochen alte Testlösung wird mit Kieselsäure versetzt, dispergiert und die Viskosität bestimmt (Brookfield RVT, Spindel 5, 10 UpM, Wert nach 1 min). Die Messung der bei 25 °C thermostatisierten Mischung erfolgt sofort, nach 0,5 h und nach 24 h. Letzterer ist der eigentliche Meßwert.
- Daneben werden die Feuchte (2 h, 105 °C, DIN ISO 787 Teil 2), die Leitfähigkeit (4 %ig), der Glühverlust (2 h bei 1.000 °C, analog DIN 55 921) bestimmt.

Patentansprüche

5

10

15

20

25

30

35

50

- Fällungskieselsäure, die eine BET-Oberfläche von 25 350 m²/g, eine CTAB-Oberfläche von 25 150 m²/g, eine DBP-Aufnahme vo 150 - 300 g/100 g, einen mittleren Teilchendurchmesser von 5 - 20 μm, einen Cu-Abrieb in 10 %iger Glyzerindispersion von 1 - 20 mg und einen Brechungsindex von 1,440 - 1,451 aufweist.
- 2. Verfahren zur Herstellung einer Fällungskieselsäure gemäß Anspruch 1, die eine BET-Oberfläche von 25 350 m²/g aufweist, eine CTAB-Oberfläche von 25 150 m²/g, eine DBP-Aufnahme von 150 300 g/100 g, einen mittleren Teilchendurchmesser von 5 20 μm, einen Cu-Abrieb in 10 %iger Glyzerindispersion von 1 20 mg und einen Brechungsindex von 1,440 1,451 aufweist, dadurch gekennzeichnet, daß man zu einer Alkalisilikatlösung mit einer Konzentration von 1,5 bis 23 g/l Na₂O (Alkalisilikat: Gewichtsverhältnis SiO₂/Na₂O = 3,2 3,5) Säurelösung und Alkalisilikatlösung mit bestimmter Konzentration und bestimmter Zulaufgeschwindigkeit unter Aufrechterhaltung einer Fälltemperatur zwischen 60 und 90 °C derartig zugibt, daß ein Viskositätsanstieg nach spätestens 20 % der Gesamtfälldauer eintritt, und die Zugabe der Reaktionspartner erst dann beendet, wenn ein Kieselsäuregehalt von größer als

130 g/l erreicht ist, im Anschluß die Suspension durch weitere Säurezugabe auf pH-Wert <6 einstellt, den Feststoff durch Filtration abtrennt, wäscht, trocknet und vermahlt.

- 3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß man zur Filtration Kammerfilterpessen oder Membranfilterpressen, oder Bandfilter, oder Drehfilter, oder zwei der genannten Filter in Kombination einsetzt.
 - 4. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß man zur Trocknung einen Umlauftrockner, Etagentrockner. Stromtrockner, Flash-Trockner, Spinflash-Trockner oder ähnliche Einrichtungen einsetzt.
- 45 5. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß man verflüssigten Filterkuchen in einem Sprühtrockner mit Atomizer oder Zweistoffdüse oder Einstoffdüse und/oder integriertem Fließbett trocknet.
 - 6. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß man den Filterkuchen einer Mahltrocknung unterzieht.
 - 7. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß man das getrocknete Pulver mittels Querstrommühle, Pendelmühle, Luftstrahlmühle mit oder ohne eingebautem Sichter vermahlt.
- 8. Verwendung der Fällungskieselsäure nach Anspruch 1 zur Herstellung von Zahnpasten und/oder Zahnpflegemitteln.

TGUR

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeidung EP 97 10 4764

	EINSCHLÄGIG			
Kategorie	Kennzeichnung des Dokume der maßgeblic	nts mit Angabe, soweit erforderlich, hen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
A,D	DE 44 23 493 A (DEG * Anspruch 1 *	USSA) 9.Februar 1995	1,2	C01B33/193
A	EP 0 139 754 A (TAK * Seite 8, Zeile 4	I CHEMICAL) 8.Mai 1985 - Zeile 13 *	1	
A,D	WO 94 10087 A (CROS ;ALDCROFT DEREK (GB WILLIA) 11.Mai 1994 * Ansprüche 1,2 *	FIELD JOSEPH & SONS); STANIER PETER	1,2	·
A,D	EP 0 535 943 A (CRO 7.April 1993 * Anspruch 1 *	SFIELD JOSEPH & SONS)	1	
A	WO 92 02454 A (CROS 20.Februar 1992 * Anspruch 1 *	FIELD JOSEPH & SONS)	1	
				RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
			1	CO1B
				A61K
	,			
Der v	ortiegende Recherchenbericht wur	de für alle Patentansprüche erstellt	\dashv	
	Recherohesort	Abschlußdatum der Recherche		Prüfer
	BERLIN	19.Juni 1997	Cle	ement, J-P
Y:vo	KATEGORIE DER GENANNTEN n besonderer Bedeutung allein betrach n besonderer Bedeutung in Verbindun deren Veröffentlichung derselben Kat- chnologischer Hintergrund chtschriftliche Offenbarung	E: älteres Patent nach dem Anr g mit einer D: in der Anmeld gorie L: aus andem Gr	lokument, das jed neldedatum veröffe ung angeführtes I ünden angeführtes	entlicht worden ist Ookument

EPO FORM 1503 03.82 (P04C03)