

Supplemental SequenceDIV3.txt SEQUENCE LISTING

<110>	HO, CHIEN
	TSAI, CHING-HSUAN
	FANG, TSUEI-YUN
	SHEN, TONG-JIAN
<120>	LOW OXYGEN AFFINITY MUTANT HEMOGLOBINS
<130>	002547/20118/DIV3
<140>	09/986,666
<141>	2001-11-09
<160>	8
<170>	PatentIn version 3.1
<210>	1
<211>	28
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	DESCRIPTION OF ARTIFICIAL SEQUENCE: Primer to introduce betan108

Q mutation into plasmid pHE2 <400> 1

<400> 1 cgtctgctgg gtcaggtact agtttgcg

🧇 ខាងស្រួលមាន 👵 នេះប្រែក្រោះ 😸

28

<210> 2

211 30

atctagaggg tattaataat	gtatcgctta	aataaggagg	aataacatat	ggtgctgtct	180
cctgccgaca agaccaacgt	caaggccgcc	tggggtaagg	tcggcgcgca	cgctggcgag	240
tatggtgcgg aggccctgga	gaggatgttc	ctgtccttcc	ccaccaccaa	gacctacttc	300
ccgcacttcg atctgagcca	cggctctgcc	caggttaagg	gccacggcaa	gaaggtggcc	360
gacgcgctga ccaacgccgt	ggcgcacgtg	gacgacatgc	ccaacgcgct	gtccgccctg	420
agcgacctgc acgcgcacaa	gcttcgggtg	gacccggtca	acttcaagct	cctaagccac	480
tgcctgctgg tgaccctggc	cgcccacctc	cccgccgagt	tcacccctgc	ggtgcacgcc	540
tccctggaca agttcctggc	ttctgtgagc	accgtgctga	cctccaaata	ccgttaaact	600
agagggtatt aataatgtat	cgcttaaata	aggaggaata	acatatggtg	cacctgactc	660
ctgaggagaa gtctgccgtt	actgccctgt	ggggcaaggt	gaacgtggat	gaagttggtg	720
gtgaggccct gggcaggctg	ctggtggtct	acccttggac	ccagaggttc	tttgagtcct	780
ttggggatct gtccactcct	gatgctgtta	tgggcaaccc	taaggtgaag	gctcatggca	840
agaaagtgct cggtgccttt	agtgatggcc	tggctcacct	ggacaacctc	aagggcacct	900
ttgccacact gagtgagctg	cactgtgaca	agctgcacgt	ggatcctgag	aacttcaggc	960
tcctgggaca agtactggtc	tgtgtgctgg	cccatcactt	tggcaaagaa	ttcaccccac	1020
cagtgcaggc tgcctatcag	aaagtggtgg	ctggtgtggc	taatgccctg	gcccacaagt	1080
atcactaagc atgcatctgt	tttggcggat	gagagaagat	tttcagcctg	atacagatta	1140

<210> 6

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> DESCRIPTION OF ARTIFICIAL SEQUENCE: Primer to introduce betaL105
W mutation into plasmid pHE7

<400> 6 cctgagaact tcaggtggct aggcaacgtg ctggtc

36

<210> 7

<211> 1140

<400> 7	
aaatgagctg ttgacaatta atcatcggct cgtataatgt gtggaattgt gagcggataa	60
caatttcaca caggaaacag aattcgagct cggtacccgg gctacatgga gattaactca	120
atctagaggg tattaataat gtatcgctta aataaggagg aataacatat ggtgctgtct	180
cctgccgaca agaccaacgt caaggccgcc tggggtaagg tcggcgcgca cgctggcgag	240
tatggtgcgg aggccctgga gaggatgttc ctgtccttcc ccaccaccaa gacctacttc	300
ccgcacttcg atctgagcca cggctctgcc caggttaagg gccacggcaa gaaggtggcc	360
gacgcgctga ccaacgccgt ggcgcacgtg gacgacatgc ccaacgcgct gtccgccctg	420
agcgacctgc acgcgcacaa gcttcgggtg gacccggtca acttcaagct cctaagccac	480
tgcctgctgg tgaccctggc cgcccacctc cccgccgagt tcacccctgc ggtgcacgcc	540
tccctggaca agttcctggc ttctgtgagc accgtgctga cctccaaata ccgttaaact	600
agagggtatt aataatgtat cgcttaaata aggaggaata acatatggtg cacctgactc	660
ctgaggagaa gtctgccgtt actgccctgt ggggcaaggt gaacgtggat gaagttggtg	720
gtgaggccct gggcaggctg ctggtggtct acccttggac ccagaggttc tttgagtcct	780
ttggggatct gtccactcct gatgctgtta tgggcaaccc taaggtgaag gctcatggca	840
agaaagtgct cggtgccttt agtgatggcc tggctcacct ggacaacctc aagggcacct	900
ttgccacact gagtgagctg cactgtgaca agctgcacgt ggatcctgag aacttcaggt	960
ggctaggcaa cgtgctggtc tgtgtgctgg cccatcactt tggcaaagaa ttcacccac	1020
cagtgcaggc tgcctatcag aaagtggtgg ctggtgtggc taatgccctg gcccacaagt	1080
atcactaagc atgcatctgt tttggcggat gagagaagat tttcagcctg atacagatta	1140
<210> 8	
<211> 146	
<212> PRT	
<213> Homo sapiens	

<400> 8

Val His Leu Thr Pro Glu Glu Lys Ser Ala Trp Thr Ala Leu Trp Gly $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Lyc Val Ach Val Ach Clu Mal Cle Cle Ala che Cle Ara Lances

35 40 Page 4

Ser Thr Pro Asp Ala Val Met Gly Asn Pro Lys Val Lys Ala His Gly 50 55 60

Lys Lys Val Leu Gly Ala Phe Ser Asp Gly Leu Ala His Leu Asp Asn 65 70 75 80

Leu Lys Gly Thr Phe Ala Thr Leu Ser Glu Leu His Cys Asp Lys Leu $85 \hspace{1cm} 90 \hspace{1cm} 95$

His Val Asp Pro Glu Asn Phe Arg Leu Leu Gly Asn Val Leu Val Cys $100 \hspace{1cm} 105 \hspace{1cm} 110$

Val Leu Ala His His Phe Gly Lys Glu Phe Thr Pro Pro Val Gln Ala 115 120 125

Ala Tyr Gln Lys Val Val Ala Gly Val Ala Asn Ala Leu Ala His Lys 130 135 140

Tyr His 145