Bayes nets

CS B553 Spring 2013

Announcements

- Readings and lecture notes online on OnCourse
 - Under the "Wiki" tab
- · Assignment 1 online
 - Due next Thursday
 - Looking for a partner? Stay after class or post in the OnCourse Forum.

An example

- Say we want to decide whether someone has the flu (F) based on their temperature (T) and achiness (A)
- A, T, and F are clearly not independent
- But a weaker assumption of conditional independence may be appropriate, $A\perp T|F$
 - Says that A and T are independent for a given value of F
 - We can represent this assumption with a *Bayesian network*:

Another example

• Now we can factor P(A,T,F) as:

$$P(A, T, F) = P(A|F)P(T|F)P(F)$$

- To decide whether someone has the flu given observed symptoms, we'll want to compute P(F | A, T)
 - How to compute this?

Naïve Bayes model

- Assuming conditional independence among observed variables is called naïve Bayes
 - Class label C we want to infer
 - Set of observable variables X1, X2, ... Xn
 - Assume that observable variables are independent conditioned on the class label C
 - Estimate prior distribution P(C) and conditional distributions P(X1|C), ..., P(Xn | C) from training data
 - Use Bayes' Law to calculate P(C | X1 ... Xn)

Another example

- Suppose we want to model students in CS B553, using several random variables:
 - Intelligence (I)
 - GPA (G)
 - SAT score (S)
 - Difficulty of courses taken (D)
- Strength of letter of recommendation (L)
- Intuitively, arrows in the BN represent direct dependencies between variables
 - Assuming these dependences, how does the joint distribution P(I,G,S,D,L) factor?

Conditional probability distributions Low High Easy Hard 0.6 0.4 Intelligence A B C Grade Low, Hard 0.05 0.25 0.7 Bad Good High, Éasy 0.9 0.08 0.02 Letter High, Hard 0.5 0.3 0.2 ow 0.95 0.05 Hi**gh** _{0.2} | _{0.8} Weak Strong 0.1 0.9 0.4 0.6 0.99 0.01

Types of reasoning in Bayes nets

- · Causal reasoning
 - Probabilities "flow downwards" towards leaves of tree
- · Evidential reasoning
 - Probabilities "flow upwards" away from leaves
- · Intercausal reasoning
 - Knowledge about one cause affects your belief of another cause
 - Probabilities "flow" downwards and then upwards

Independencies in this example

- Is $G \perp S$?
- Is $G \perp S|I$?
- Is $L \perp I|G$?
- Is $D \perp I$?
- Is $D \perp I|G$?
- Is $G \perp L|D,I$?

Bayesian networks

- A Bayesian network is defined by a pair (G,P), where:
 - G is a dag (directed acyclic graph), with nodes corresponding to variables {X1, X2, ... Xn} and edges to direct dependencies
 - P is a probability distribution that satisfies independence assumptions induced by G
- The dag G encodes the conditional independence assumptions:

$$X_i \perp \operatorname{Nd}(X_i) \mid \operatorname{Pa}(X_i)$$

where Nd(Xi) is the set of non-descendants of Xi,
 and Pa(Xi) is the set of parents of Xi

Independencies in this example

- Is $G \perp S$?
- Is $G \perp S|I$? • Is $L \perp I|G$?
- is $D \perp I \mid G$
- Is $D \perp I$?
- Is $D \perp I|G$?
- Is $G \perp L|D,I$?

(But other independencies may also hold!)

Factorization of Bayes nets

• Given a Bayes net (G,P) over variables {X1, X2 ... Xn}, the joint probability distribution factors as,

$$P(X_1,...,X_n) = \prod_{i=1}^n P(X_i \, | \, \mathrm{Pa}(X_i))$$

– Proof sketch?

Independencies in Bayes nets

• We already have a set of some conditional independence relationships, given by:

$$X_i \perp \operatorname{Nd}(X_i) \mid \operatorname{Pa}(X_i)$$

- These are just the relationships directly defined by G; there are often others
- We'd like to derive all conditional independence relationships
 - (Why?)

For three nodes, Four cases • Is $X \perp Y \mid Z$ in each case? Is $X \perp Y$ in each case? $X \quad Y \quad Y \quad Z \quad Z \quad X \quad Y$ (a) (b) (c) (d) Yes Yes Yes No No No Yes

Active trails

- Influence can "flow" from X to Y along active trails
 - Patterns (a), (b), and (c) are active iff Z is not observed
 - Pattern (d) is active iff Z is observed

- In general, a trail is active given a set of nodes Z if
 - In any "v-structure" (type (d)) above, the middle node or one of its descendants is in Z
 - No other node along the trail is in **Z**

d-separatedness

- Sets of nodes X and Y are *d-separated* with respect to nodes Z if there is no active trail between X and Y.
- If X and Y are d-separated given Z in G, then we're guaranteed that $X \perp Y \mid Z$ in P
- If X and Y are not d-separated given Z in G, then there exists some distribution for which X and Y are dependent
- Stronger result: For almost all possible distributions, d-separation is equivalent to conditional independence.

Independencies in this example

Sample application: Solving constraint problems

- Say someone gives us a Boolean expression like, $(Q_1 \ {\rm OR} \ Q_2 \ {\rm OR} \ Q_3) \ {\rm AND} \ (Q_4 \ {\rm OR} \ Q_5 \ {\rm OR} \ Q_6) \ {\rm AND} \ \dots$
 - Where Q's may repeat and may include negation
 - We'd like to decide if there exists an assignment of boolean values to the Q's such that the expression is true
- This problem can be solved using a Bayes nets
 - Use conditional probabilities to "program" AND and OR operations

CSP with a Bayes net

- Q nodes represent variables in CSP
- C nodes have CPDs that implement "OR" operations
- A nodes have CPDs that implement "AND" operations
- CSP can be satisfied iff P(X) > 0

Bad news!

- We just showed a reduction from 3-SAT to Bayes net inference!
 - I.e., if we could solve Bayes net inference efficiently, then we can solve 3-SAT efficiently
 - But 3-SAT is NP-hard
 - So Bayes net inference is NP hard also...