Design of Waffle Slab (without beams) by Direct Design Method

Building Plan

Assume S = (32 + x/2)', Building spans = (S, S, S) by (S, S, S)

Building Height = 4@10' = 40'

Loads: LL = 40 psf, FF = 20 psf, RW = 20 psf [i.e., (40 + x/2), (20 + x/4), (20 + x/4) psf]

Material Properties: $f'_c = 3$ ksi, $f_s = 20$ ksi [i.e., $f'_c = (3 + x/20)$ ksi, $f_s = (20 + x/4)$ ksi

Design of Slabs and Ribs

Slabs

Assuming 10 square pans per slab; i.e., (3.2'×3.2') c/c and (2.7'×2.7') clear spans (with 6" ribs)

Slab thickness =
$$2.5'' \Rightarrow$$
 Self weight = $2.5 \times 150/12 = 31.25$ psf

- \therefore Total load on slab, w = 31.25 + 20 + 20 + 40 = 111.25 psf = 0.111 ksf
- :. Maximum Moment for an edge-supported (2.7'×2.7') slab with Support condition Case 2

$$M^{(-)}_{max} = 0.045 \text{ wL}^2 = 0.045 \times 0.111 \times (2.7)^2 = 0.0365 \text{ k}'/'$$

∴ Modulus of rupture =
$$5\sqrt{f_c}' = 5\sqrt{(3/1000)} = 0.274$$
 ksi; i.e., Allowable tensile stress = $0.274/2 = 0.137$ ksi

$$S_{sect} = bh^2/6 \Rightarrow 0.0365 = h^2/6 \times 0.137 \Rightarrow h_{req} = \sqrt{(0.0365 \times 6/0.137)} = 1.26''$$

- ∴ Slab thickness, h = 2.5'' is OK; i.e. $d = 2'' \Rightarrow A_{s(Temp)} = 0.0025$ bh $= 0.0025 \times 12 \times 2.5 = 0.075$ in 2 /ft
- ∴ Use appropriate wire mesh to provide the required $A_{s(Temp)}$; i.e., 1/8''-wire diameter (2"×2") mesh

Ribs

Maximum clear span = 31'; Slab without edge beam and $f_y = 40$ ksi

$$\Rightarrow$$
 Slab thickness = $L_n(0.8 + f_v/200)/33 = 31 \times (0.8 + 40/200) \times 12/33 = 11.27''$

- ∴ Assume 18" thickness; i.e., 13.5" below slab, with $b_w = 6$ "
- :. Average thickness without column head = $18 \{(2.7 \times 2.7) \times 15.5\}/(3.2 \times 3.2) = 6.97''$

If column head covers $(5 \times 5 = 25)$ square pans, average thickness of slab

$$=6.97 + \{25 \times (2.7 \times 2.7) \times 15.5\}/(32 \times 32) = 9.72''$$

Assuming the entire slab thickness to be = 9.72''

Self weight =
$$9.72 \times 150/12 = 121.5 \text{ psf}$$

:. Total load on slab =
$$121.5 + 20 + 20 + 40 \approx 201.5 \text{ psf} = 0.202 \text{ ksf}$$

For design,
$$n = 9$$
, $k = 0.378$, $j = 0.874$, $R = 0.223$ ksi

$$d = 18 - 1.5 = 16.5$$
"; $A_s = M/f_s jd = M \times 12/(20 \times 0.874 \times 16.5) = M/24.04$

:. Moment capacity
$$M_{c(max)} = Rbd^2 = 0.223 \times 1 \times 16.5^2 = 60.70 \text{ k}'/\text{, or } 30.35 \text{ k}'/\text{rib}$$

Also,
$$A_{s(Temp)} = 0.0025$$
 bt = $0.0025 \times 12 \times 18 = 0.54$ in²/'; or 0.27 in²/rib

Punching shear force in slab $\cong 0.202 \times \{32^2 - (16 + 2/12)^2\} = 153.71 \text{ k}$

and in column head
$$\cong 0.202 \times \{32^2 - (12/12 + 16.5/12)^2\} = 205.25 \text{ k}$$

:. Stresses are =
$$153.71/(4(16 \times 12 + 2) \times 2) = 0.099$$
 ksi and = $205.25/(4(12 + 16.5) \times 16.5) = 0.109$ ksi

Allowable punching shear stress, $\tau_{punch} = 2\sqrt{f_c'} = 2\sqrt{(3/1000)} = 0.110 \text{ ksi} \Rightarrow \text{OK for punching shear}$

Panels in the Long and Short Direction

Panel 1 (and all other panels)

Width of Panel = 16.5'

No edge beam along panel length; $\therefore \alpha_1 = 0$, for all slabs

Also no transverse beam $\Rightarrow \beta_t = 0$, for all slabs

Column strip = Short span (c/c)/4 = 32/4 = 8', Middle strip = 16 - 8 = 8' (i.e., 2.5 pans per strip) Slab (S_I)

Slab size (= $32' \times 32'$ c/c) = $31' \times 31'$

$$\therefore M_0 = wL_2L_n^2/8 = 0.202 \times 16.5 \times 31^2/8 = 399.48 \text{ k}'$$

Support (c)
$$\Rightarrow M_{Ext}^- = 0.26 \text{ M}_0 = 103.87 \text{ k'}, M^+ = 0.52 \text{ M}_0 = 207.73 \text{ k'}, M_{Int}^- = 0.70 \text{ M}_0 = 279.64 \text{ k'}$$

$$L_2/L_1 = 32/32 = 1.0$$
, $\alpha_1 L_2/L_1 = 0$

:. Total column strip moments are

$$M_{CExt}^- = 1.00 M_{Ext}^- = 103.87 \text{ k'}$$
; i.e., $103.87 \text{ k'}/8' = 12.98 \text{ k'}/'$; $A_{sCExt}^- = 12.98/24.04 = 0.54 \text{ in}^2/'$

$$M_C^+ = 0.60 \text{ M}^+ = 124.64 \text{ k}'; \text{ i.e., } 124.64 \text{ k}'/2.5 \text{ rib} = 49.86 \text{ k}'/; A_{CExt}^+ = 49.86/24.04 = 2.07 \text{ in}^2/\text{rib}$$

$$M_{CInt}^- = 0.75 M_{Int}^- = 209.73 k'; 209.73 k'/8' = 26.22 k'/'; A_{sCInt}^- = 26.22/24.04 = 1.09 in^2/'$$

.. Total middle strip moments are

$$M_{MExt}^- = 103.87 - 103.87 = 0 \text{ k'}$$
; i.e., $0 \text{ k'/8'} = 0 \text{ k''}$; $A_{sMExt}^- = 0/24.04 = 0.0 \text{ in}^2/\text{'}$

$$M_M^+ = 207.73 - 124.64 = 83.09 \text{ k}'; \text{ i.e., } 83.09 \text{ k}'/2.5 \text{ rib} = 33.24 \text{ k}'/\text{rib}; A_M^+ = 33.24/24.04 = 1.38 \text{ in}^2/\text{rib}$$

$$M_{MInt}^- = 279.64 - 209.73 = 69.91 \text{ k'}$$
; i.e., $69.91 \text{ k'}/8' = 8.74 \text{ k'}/'$; $A_{MInt}^+ = 8.74/24.04 = 0.36 \text{ in}^2/'$

Slab (S_2)

Slab size (= $32' \times 32'$ c/c) = $31' \times 31'$

$$\therefore M_0 = wL_2L_n^2/8 = 0.202 \times 16.5 \times 31^2/8 = 399.48 \ k'$$

$$Interior \ Support \Rightarrow M_{Int}^{-} = 0.65 \ M_0 = 259.67 \ k', \ M^{+} = 0.35 \ M_0 = 139.82 \ k', \ M_{Int}^{-} = 0.65 \ M_0 = 259.67 \ k'$$

$$L_2/L_1 = 32/32 = 1.0$$
, $\alpha_1 L_2/L_1 = 0$

:. Total column strip moments are

$$M_{CInt}^- = 0.75 \; M_{Ext}^- = 194.75 \; k'; \; i.e., \; 194.75 \; k'/8' = 24.34 \; k'/'; \; A_{sCInt}^- = 24.34/24.04 = 1.01 \; in^2/' \; A_{sCIN}^- = 24.34/24.0$$

$$M_C^+ = 0.60 \text{ M}^+ = 83.89 \text{ k}'; \text{ i.e., } 83.89 \text{ k}'/2.5 \text{ rib} = 33.56 \text{ k}'/\text{rib}; A_{sM}^+ = 33.56/24.04 = 1.40 \text{ in}^2/\text{rib}$$

$$M_{CInt}^- = 0.75 \; M_{Int}^- = 194.75 \; k'; \; i.e., \; 194.75 \; k'/8' = 24.34 \; k'/'; \; A_{sCInt}^- = 24.34/24.04 = 1.01 \; in^2/' = 24.34/24.04 = 1.01 \; i$$

.. Total middle strip moments are

$$M_{MInt}^- = 259.67 - 194.75 = 64.92 \text{ k'}$$
; i.e., $64.92 \text{ k'}/8' = 8.11 \text{ k'}/'$; $A_{sMInt}^- = 8.11/24.04 = 0.34 \text{ in}^2/'$

$$M_M^+ = 139.82 - 83.89 = 55.93 \text{ k'}$$
; i.e., $55.93 \text{ k'}/2.5 \text{ rib} = 22.37 \text{ k'/rib}$; $A_{sM}^+ = 22.37/24.04 = 0.93 \text{ in}^2/\text{rib}$

$$M_{MInt}^- = 259.67 - 194.75 = 64.92 \text{ k'}$$
; i.e., $64.92 \text{ k'}/8' = 8.11 \text{ k'}/'$; $A_{sMInt}^- = 8.11/24.04 = 0.34 \text{ in}^2/'$

Denoting slab reinforcement by in²/' (-ve) and rib reinforcement by in²/rib (+ve highlighted)

