Probability and Random Processes (15B11MA301)

Lecture-7

Department of Mathematics
Jaypee Institute of Information Technology
Noida, India

References

- 1. A. M. Mood, F. A. Graybill and D. C. Boes, Introduction to the theory of statistics, 3rd Indian Ed., Mc Graw Hill, 1973.
- 2. R. V. Hogg and A. T. Craig, Introduction to mathematical Statistics, Mc-Millan, 1995.
- 3. V. K. Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern, 1984.
- **4. S. M.Ross,** A First Course in Probability, 6th edition, Pearson Education Asia, 2002.
- **5 S. Palaniammal,** Probability and Random Processes, PHI Learning Private Limited, 2012.
- **P. L.Mayer,** Introductory Probability and Statistical Applications, Addison-Wesley, Second Edition, 1972.
- 7. R. E. Walpole, R H. Myers, S. L. Myers, and K. Ye, Probability & Statistics for Engineers & Scientists, 9th edition, Pearson Education Limited, 2016.
- 8. I. Miller and M. Miller, John E. Freund's Mathematical Statistics with Applications, 8th Edition, Pearson Education Limited 2014.

Course Content Covered

continuous random variable, cumulative distribution function, probability density function, mean, variance

Cumulative Distribution Function (CDF)

The *cumulative distribution function* of a random variable X, denoted by $F_X(.)$, is defined to be that function with domain the real line and counter-domain the interval [0, 1] which satisfies

$$F_X(x) = P[X \le x] = P[\{w: X(w) \le x\}]$$
 for every real number x .

Cumulative Distribution Function (CDF)

Properties of CDF

- $1. \lim_{x \to -\infty} F_X(x) = 0$
- $2. \lim_{x\to\infty} F_X(x) = 1$
- 3. $F_X(a) \le F_X(b)$ for all a < b. (monotone non-decreasing)
- 4. $\lim_{h\to 0^+} F_X(x+h) = F_X(x)$ (right continuity)

Second definition of CDF: Any *function* $F_X(.)$, with domain the real line and counter-domain the interval [0, 1] which satisfies above four properties is defined to be CDF.

Mean and Variance of discrete random variable

Mean: If X is a discrete random variable, then mean of X denoted by μ_X or E[X] (also read as expectation of X) is defined by

$$E[X] = \sum_{x_j} x_j f_X(x_j)$$

Variance: It is defined as follows:

$$E\left[\left(X-\mu_X\right)^2\right] = \sum_{x_i} \left(x_j - \mu_X\right)^2 f_X(x_j)$$

It is denoted by

$$\sigma_X^2$$
, var[X] or $E[(X - \mu_X)^2]$ (read as expectation of $X - \mu_X$ square)

Mean and Variance of discrete random variable

Example: Let *X* be the total of the two dice in the experiment of tossing two balanced dice. Find mean and variance of *X*.

X	2	3	4	5	6	7	8	9	10	11	12
f(x)	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Mean and Variance of discrete random variable

Example: Let *X* be the total of the two dice in the experiment of tossing two unbalanced dice. Find mean and variance of *X*.

X	2	3	4	5	6	7	8	9	10	11	12
f(x)	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Mean:
$$E[X] = \sum_{x_j} x_j f_X(x_j) = 7$$

$$\operatorname{var}\left[X\right] = \sum (x_j - \mu_X)^2 f_X(x_j)$$

$$= (2 - 7)^2 \frac{1}{36} + (3 - 7)^2 \frac{2}{36} + (4 - 7)^2 \frac{3}{36} + (5 - 7)^2 \frac{4}{36}$$

$$+ (6 - 7)^2 \frac{5}{36} + (7 - 7)^2 \frac{6}{36} + (8 - 7)^2 \frac{5}{36} + (9 - 7)^2 \frac{4}{36}$$

$$+ (10 - 7)^2 \frac{3}{36} + (11 - 7)^2 \frac{2}{36} + (12 - 7)^2 \frac{1}{36} = \frac{210}{36}.$$

PROBABILITY DENSITY FUNCTION (PDF)

Consider the small interval $\left(x - \frac{\Delta x}{2}, x + \frac{\Delta x}{2}\right)$ of length Δx round the point x. Let f(x) be any continuous function of x so that f(x)dx represents the probability that x falls in the infinitesimal interval $\left(x - \frac{\Delta x}{2}, x + \frac{\Delta x}{2}\right)$, which is denoted by

$$P\left(x - \frac{\Delta x}{2} \le x \le x + \frac{\Delta x}{2}\right) = f(x) dx.$$

Let f(x)dx represent the area bounded by the curve y = f(x), x axis and the ordinates at the points $x - \frac{\Delta x}{2}$ and $x + \frac{\Delta x}{2}$. The function f(x) so defined is known as probability density function or density function of the random variable X.

PROBABILITY DENSITY FUNCTION (PDF)

Mathematically, pdf f(x) of univariate random variable is a real valued function that satisfies the following properties:

1.
$$f(x) \ge 0 \ \forall \ x \in R$$

$$2. \int_{-\infty}^{\infty} f(x) dx = 1$$

Cumulative Distribution Function (CDF: $F_{\chi}(x)$)

X: continuous random variable

1.
$$F_X(x) = P[X \le x] = \int_{-\infty}^x f_X(u) du, -\infty < x < \infty$$

$$2. f_X(x) = \frac{dF_X(x)}{dx}$$

$$P[a \le X \le b] = P[a < X \le b]$$

$$= P[a \le X < b] = P[a < X < b] =$$

3.
$$\int_{a}^{b} f_X(x) dx = F_X(b) - F_X(a)$$

Mean and Variance of continuous random variable

Mean: If X is a continuous random variable, then mean of X denoted by μ_X or E[X] (also read as expectation of X) is defined by

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

Variance: It is defined as follows:

$$E\left[\left(X-\mu_X\right)^2\right] = \int_{-\infty}^{\infty} \left(x-\mu_X\right)^2 f_X(x) dx$$

It is denoted by

$$\sigma_X^2$$
, var[X] or $E[(X - \mu_X)^2]$ (read as expectation of $X - \mu_X$ square)

Properties of

Variance

If X is a random variable (discrete or continuous), then

1.
$$V \operatorname{ar}[X] = E[(X - \mu_X)^2] = E[X^2] - (E[X])^2$$

Provided $E[X^2]$ exists.

2.
$$\operatorname{Var}[aX + b] = a^2 \operatorname{Var}[X]$$

Example Suppose that the error in the reaction temperature, in ${}^{\circ}C$, for a controlled laboratory experiment is a continuous random variable X having the probability density function

$$f(x) = \begin{cases} \frac{x^2}{3} & \text{if } -1 < x < 2\\ 0 & \text{otherwise} \end{cases}$$

- (a) Verify that f(x) is a density function.
 - (b) Find $P(0 < X \le 1)$

Solution (a) (i) $f(x) \ge 0$ for all x.

(ii)
$$\int_{-\infty}^{\infty} f(x) \ dx = \int_{-1}^{2} \frac{x^2}{3} dx = \frac{x^3}{9} |_{-1}^{2} = \frac{8}{9} + \frac{1}{9} = 1.$$

(b)
$$P(0 < X \le 1) = \int_0^1 \frac{x^2}{3} dx = \frac{x^3}{9} \Big|_0^1 = \frac{1}{9}.$$

Example If a continuous random variable *X* having the probability density function

$$f(x) = \begin{cases} \frac{x^2}{3} & \text{if } -1 < x < 2\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find CDF of X.
 - (b) Find $P(0 < X \le 1)$ by using the CDF.

Solution (a) For
$$-1 < x < 2$$
,

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-1}^{x} \frac{t^{2}}{3} dt = \left. \frac{t^{3}}{9} \right|_{-1}^{x} = \frac{x^{3} + 1}{9}.$$

So
$$F(x) = \begin{cases} 0, & x < -1, \\ \frac{x^3 + 1}{9}, & -1 \le x < 2, \\ 1, & x \ge 2. \end{cases}$$

(b)
$$P(0 < X \le 1) = F(1) - F(0) = \frac{2}{9} - \frac{1}{9} = \frac{1}{9}$$

Example

The CDF of a random variable X is given by

$$F(x) = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x < \frac{1}{2} \\ 1 - \frac{3}{25} (3 - x)^2, & \frac{1}{2} \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

Find the PDF of X

$$f(x) = \frac{d}{dx}[F(x)] = F'(x)$$

Solution

$$f(x) = \frac{d}{dx} [F(x)] = F'(x)$$

$$f(x) = \begin{cases} 0, & x < 0 \\ 2x, & 0 \le x < \frac{1}{2} \\ \frac{6}{25} (3 - x), & \frac{1}{2} \le x < 3 \\ 0, & x \ge 3 \end{cases}$$

For the triangular distribution

$$f(x) = \begin{cases} x, & 0 < x \le 1 \\ 2 - x, & 1 \le x < 2 \\ 0, & \text{otherwise} \end{cases}$$

Find the mean and variance.

Solution:
Mean =
$$E(X) = \int_{-\infty}^{\infty} xf(x)dx = \int_{0}^{1} x \cdot x \, dx + \int_{1}^{2} x(2-x)dx = 1$$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2}f(x)dx = \int_{0}^{1} x^{2} \cdot x \, dx + \int_{1}^{2} x^{2}(2-x)dx = \frac{7}{6}$$

$$Var(X) = E[X^{2}] - (E[X])^{2} = \frac{7}{6} - 1^{2} = \frac{1}{6}$$

Practice Problem: If a continuous random variable X having the probability density function

$$f_2(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 \le x < 2 \\ 0, & \text{otherwise.} \end{cases}$$

a) Find CDF of X.

Hint

$$F(t) = \begin{cases} 0, & -\infty < t < 0 \\ \frac{t^2}{2}, & 0 \le t < 1 \\ -1 + 2t - \frac{t^2}{2}, & 1 \le t < 2 \\ 1, & t \ge 2. \end{cases}$$

Practice Problem:

A continuous random variable X is defined as

$$f(x) = (ax + bx^2) I_{(0,1)}(x),$$

where *I* is the indicator function.

if E[X]=0.6, then find

- (i) P[X<0.5],
- (ii) variance of X.

$$a=3.6$$
, $b=-2.4$, $P=0.35$, $var=0.06$

Thank You