

PARTITION of [a, b] is finte lest DEF LET &: [a,b] = R be founded and P = { xo. xn } a part thon of [a, b] $L(f, P, [ab]) = \sum_{j=1}^{\infty} (x_j - x_{j-1}) \inf_{x_{j-1}, x_{j-1}} f$ LOWER + UPPER DARBOUX SUMS

for some set of points of. PROPI When you refine a partition Re Lower Darboux Sun in creases Re Upper Darbour Sum de creases SMAZUER BIGGER

NOTE By Prop Z Re Set & L(f, P, [a, 1]) / P up portition of [a, 17] a bounded above by U(f, 2x0, x, 3, [a, b]) = (sup f) (b-a) So L(f, Ca b]) Fandes Rinto. PROP3 L(f. [ab]) = U(f, [ab]) PF LET 5 > 0. Sonce L (f, Cet) so a LUB FP: L(f, [ab]) - E = L(f, P, [ab]) NOT U.B. U(f, [ab]).+ E > U(f, P'(ab7) 2 (f, [ab]) - E < L(f, 7, [ab]) < U(f, p' [ab]) + E

Since This strue 45 50 L(f, [ab]) & U(f, [ab]). DEF Let f: Sa, bJ -> R be bounded for RIEVIANN INTEGRABUE if L(P, [a b]) = U(P, [a b]) J fdx := L ((Lab)) = U(L, [ab]) THM Let f: [a,b] _ IR be CTS on bounded interval. Then fis Rieman Integrable

STS U (f. [ab]) & L (f. [ab])

PE LET \$ >0. Some for UNIFORMLY CB 5-t/< 5 3

	7
Choose	$n : px = \frac{b-a}{n} < S$ and let
P-(x0)	, xn Swhee xp = a + l Dx
The	
	(a,b) _ L(f, [a,b)
	J(f, PG, D) _ L(f, P, G, D)
	$\frac{b-a}{n} \stackrel{?}{=} \left(\sup_{j=1, i \neq j} f - \inf_{j=1, i \neq j} f \right)$
	$\frac{3-\alpha}{n} \stackrel{?}{\leq} \left[f(\xi_i) - f(\eta_i) \right]$
	as f is CD so sup tinf are attained
	at some zin ni e [zin, zi]
	$\frac{b-a}{n} \cdot \frac{\tilde{S}}{\tilde{S}} = \frac{b_{y} \mathcal{D}}{b_{y} \mathcal{D}} = \frac{185-y_{1}165}{185-y_{1}165}$
	$(b-a)$ ε
	true 42 so: U(P, Ia, D) < L(P, [ab))

