רדוקציות מאאגניבות [IS-ל SAT]

נראה:

$$SAT \leq_{p} IS$$

$$VC \leq_{p} Subset Sum$$

$$Subset Sum \leq_{p} Knapsack$$

$$SAT \leq_{p} 3SAT$$

[את שלושת הרדוקציות האחרונות לא נספיק להראות, אז פשוט תאמינו לנו שהן מתקיימות.]

כפי שהתחלנו להסביר בשיעור הקודם, אנו רוצים להראות רדוקציה מ-SAT ל-IS, ולשם כך בהינתן נוסחה עבור SAT נייצר עבורה גרף מתאים – למשל עבור הנוסחה:

$$\varphi = \underbrace{\left(x_1 \vee \neg x_2 \vee x_3\right)}_{C_1} \wedge \underbrace{\left(\neg x_2 \vee \neg x_4\right)}_{C_2}$$

נבנה את הגרף:

להוסיף הסבר

נשים לב שאם יש n משתנים וְ-m פסוקיות, אז אנו מעוניינים למצוא קבוצה בלתי תלויה בגודל m נשים לב שאם יש לבחור השמה לכל משתנה (m קדקודים) ולפחות ליטרל אחד בכל פסוקית m (m קדקודים, כי גם הגבלנו את הגרף כך שגם ייבחר לכל היותר ליטרל אחד).]] שיקבל ערך m

הרדוקציה הפורמלית

נגדיר את הגרף:

קדקודים:

$$\begin{split} V_{C_{j}} = & \left\{ v_{l_{i}}^{j} \middle| l_{i} \in C_{j} \right\} \\ V_{\varphi} = & \bigcup_{\substack{x_{i} \text{ is a} \\ \text{variable} \\ \text{in } \varphi}} V_{x_{i}} \cup \bigcup_{\substack{C_{j} \text{ is a} \\ \text{clause} \\ \text{in } \varphi}} V_{C_{j}} \end{split}$$

קשתות:

$$E_{assign} = \left\{ \begin{pmatrix} v_{i,T}, v_{i,\mathcal{F}} \end{pmatrix} \middle| x_i \text{ is a variable in } \varphi \right\}$$

$$E_{choose} = \left\{ \begin{pmatrix} v_{l_i}^j, v_{l_i}^j \end{pmatrix} \middle| C_j \text{ is a clause in } \varphi \\ l_i, l_i \in C_j \\ l_i \neq l_i \end{cases}$$

$$E_{SAT} = \left\{ \begin{pmatrix} v_{x_i}^j, v_{i,\mathcal{F}} \end{pmatrix} \middle| x_i \in C_j \right\} \cup \left\{ \begin{pmatrix} v_{-x_i}^j, v_{i,T} \end{pmatrix} \middle| \neg x_i \in C_j \right\}$$

השמה **שלא** מספקת את הליטרל

הוכחת נכונות הרדוקציה

טענה 1 [קיום השמה מספקת]

(כך ש: $U \subseteq V_{\scriptscriptstyle{arphi}}$ קיימת השמה מספקת ל-arphi אם"ם קיימת קבוצה בלתי תלויה

- [[(רק אחד) $x_{i,\mathcal{F}}$ או שב- $x_{i,\mathcal{T}}$ או שמשתמשים ב- $x_{i,\mathcal{T}}$ או שב- $x_{i,\mathcal{T}}$ (1)
- [[ליטרל אחד בקדקוד המתאים לליטרל [] $\left|U \cap V_{C_j}\right| = 1:C_j$ לכל פסוקית (2)

<u>הוכחה</u>:

.(1) שקולה לקבוצה שמקיימת את תנאי $\left\{x_{i}\right\}$ שקולה לקבוצה שמקיימת את ענאי

את (מספקת \Leftrightarrow ניתן להרחיב את (היא מספקת \Leftrightarrow ניתן להרחיב את ע"ל: כל השמה (באופן שקול, בחירה של מקיימת את (2). U

. $E_{choose}, {\color{red}E_{assign}}$ שמקיימת את (1) וְ-(2) לא מכילה קשתות מסוג U שמקיימת את (1)

נוכיח:

(2) את (1) שמקיימת את U איימת קב"ת U

- או $u \not\in U$ מתקיים $(u,v) \in E_{\mathit{SAT}}$ קיימת (1) ואת (2) ואת (2) ואת שמקיימת את U שמקיימת שאין קשתות קשתות מהגרף, אבל לפי ההערה אנו כבר יודעים שאין קשתות $v \not\in U$ מתוך E_{SAT} , לכן נשאר רק לוודא שאין קשתות מ- E_{choose} , E_{assign}
- אזי U אזי ($v_{l_i}^j \in U$ נבחר (כלומר אם $l_i \in C_j$ אם אזי $l_i \in C_j$ אזי $l_i \leftarrow \mathcal{F}$ אזי מכילה את קדקוד ההשמה
 - ((1) עקב $l_i \leftarrow \mathcal{T}$ מכילה את ההשמה שנבחר l_i שנבחר l_i שנבחר U קיימת U
- ולכל (ולכל פסוקית ע"י עבור פסוקית ע"י עבור פסוקית (ולכל כך שההשמה המוגדרת ע"י מספקת א כנ"ל כך שההשמה המוגדרת ע"י פסוקית בחרנו ליטרל כזה)
 - $C_i \in \varphi$ שמספקת ליטרל כלשהו בכל פסוקית $\{x_i\}$ איימת השמה ל
 - קיימת השמה שמספקת כל פסוקית
 - .arphi קיימת השמה שמספקת את \Leftrightarrow

טענה 2 [גודל קב"ת]

.(2)- מספר (מספר המשתנים (m בגודל בגודל (מספר המשתנים n מספר המשתנים (m מספר המטוקיות (מספר המשתנים m

<u>הוכחה</u>:

.(E_{assign} -בל קב"ת מכילה לכל היותר קדקוד אחד בכל אחרת היא תכיל קשת ב-(E_{assign}

. (בית מכילה לכל היותר קדקוד אחד בכל אחרת (אחרת היא איל קשת ב- $V_{\mathcal{C}_i}$ כל קב"ת מכילה לכל היותר קדקוד אחד בכל

כל הקבוצות U יחד מהוות חלוקה של V_{φ} לתת-קבוצות (זרות), לכן כל קבוצה U שמכילה – קדקוד אחד לכל היותר בתת-קבוצה של החלוקה ומקיימת U מס' תתי-הקבוצות בחלוקה חייבת להכיל בדיוק קדקוד אחד בכל קבוצה, דהיינו לקיים את (1) ואת (2).

משפט [נכונות הרדוקציה]

$$\left(V_{\varphi},E_{\varphi},n+m\right)\!\in IS \Longleftrightarrow \varphi\in SAT$$

הוכחה:

.1 זה טענה "⊂"

ואת (1) אזי היא מקיימת את אזי בגודל בלתי תלויה בגודל $U\subseteq V$ אם קיימת את בל שלי – " \Rightarrow " בלתי תלויה באודל לפי טענה 1 יש השמה מספקת ל- φ .

עמוד 3 מתוך 7

משפט קוק-לוין (Cook-Levin)

 $A \leq_{_{p}} SAT$ יש קדוקציה $A \in NP$ לכל שפה

אנו נתחיל מבעיית חימום לפני שניגש להראות את הוכחת המשפט הגדול.

הימום: IS ל-SAT

נראה:

 $IS \leq_{p} SAT$

.k ומספר G = (V, E) ומספר : IS

?G -ב $k \le k$ בעיה: האם קיימת קב"ת בגודל

. ספיק. פסוק $\varphi \Leftrightarrow G$ ב- $k \leq n$ באודל פסוק ספיק. פסיק.

". v
otin U או u
otin U מתקיים מתקיים "לכל קשת" למשל, ננסה לקודד את התנאי: "לכל קשת"

 $u \in V$ לכל w_u נגדיר משתנים

 $: \left\{ w_{u} \right\}$ -משמעות השמה ל

$$w_{u} = \begin{cases} \mathcal{T}, & u \in U \\ \mathcal{F}, & u \notin U \end{cases}$$

:התנאי "u
otin U או u
otin U שקול לפסוקית u
otin U

$$C_{(u,v)} = \left(\neg w_u \lor \neg w_v \right)$$

v
otin U או u
otin U או מקיימת או שמתאימה להשמה עu
otin U או u
otin U או שמתאימה להשמה מקיימת

נגדיר את הנוסחה להיות:

$$\varphi_{IS} = \bigwedge_{(u,v)\in E} C_{(u,v)}$$

טענה [השמה מספקת אם"ם קבוצה בלתי תלויה]

G-ם את קב"ת ב- הקבוצה המתאימה היא קב"ת ב- השמה השמה היא קב

מה שכבר אמרנו מוכיח את זה.

כעת נשאר לנו לטפל בעניין גודל הקבוצה.

 $: |U| \ge 1$ דוגמה: נקודד את התנאי:

$$\bigvee_{u \in V} W_u$$

 $: |U| \ge 2$ דוגמה: נקודד את התנאי

$$\bigvee_{\substack{u,v\in V\\u\neq v}} \left(W_u \wedge W_v \right)$$

k באופן כללי, ע"מ ליצור פסוקיות שתדרושנה $\left|U\right|\geq k$ נצטרך פסוקית לכל אפשרות בחירה של קדקודים – ועבור k מספיק גדול, ערך זה הינו בסדר גודל אקספוננציאלי. בנוסף, פסוקיות אלה לא מהצורה שאנו רוצים (פסוקיות OR שביניהן יש AND). לכן דרך זו לרדוקציה לא טובה לנו.

רעיון חלופי לרדוקציה הדומה למשפט

$$(V = \{1, ..., |V|\}$$
-נניח ש

: Verify (U,k)

- $Count \leftarrow 0$ •
- :עבור t=1,...,|V| בצע

$$Count \leftarrow Count + 1$$
 אם $t \in U$ אם \circ

 $Accept \leftarrow (Count \ge k)$ •

נגדיר מערך:

$$A[j] = \begin{cases} T, & Count \ge j \\ \mathcal{F}, & Count < j \end{cases}$$

לכן לפני הלולאה (סוף איטרציה 0) המערך יראה כך:

ובאופן כללי, בנקודת זמן כלשהי, הוא נראה כך:

<u>המטרה</u>: לקודד קיצת אלגוריתם.

 $.\,x_{\star}^{i}$ נגדיר משתנים

משמעות ההשמה:

 $x_t^i = t$ בסוף איטרציה A[i]

מעבר מנקודת זמן אחת לנקודה הבאה:

אם נכתוב זאת בעזרת המשתנים שהגדרנו:

ניזכר מלוגיקה שהגרירה $A \! o \! B$ שקולה לפסוק , $\neg A \! ee B$ שקולה לפסוקית הבאה:

$$\left(\neg\left(w_{t} \land x_{t-1}^{i-1} \land \neg x_{t-1}^{i}\right) \lor x_{t}^{i}\right)$$
וקית:

ולפי חוקי דה-מורגן, הנ"ל זהה לפסוקית:

$$\left(\neg w_t \vee \neg x_{t-1}^{i-1} \vee x_{t-1}^i \vee x_t^i\right)$$

קורסי בחירה באלגוריתמים

- :(עדן, $\frac{1}{2}$ עדן, $\frac{1}{2}$ עופר ניימן):
- נפל מטריצות אלגוריתמים יותר יעילים מ $O\left(n^3\right)$ -ס כפל מטריצות אלגוריתמים יותר יעילים מ
 - שידוכים בגרפים כלליים
 - ס בדיקת ראשוניות ○
 - קריפטוגרפיה [הצפנה מבלי היכולת להעביר סוד מתואם מראש]
 - ס חישוב קוונטי 🔈
 - אלגוריתמי קירוב (רק עדן): •
 - קשות NP קשות \circ
- . לדוגמה, בכיסוי צמתים: למצוא VC בגודל -OPT דזה קשה. אבל יודעים למצוא VC בגודל VC בזמן סביר. אבל יודעים למצוא VC בגודל VC בגודל $OPT \le k \le 1.36 \cdot OPT$ זו גם בעיה VC -קשה. לא ידוע מה קורה עבור מספרים בין VC בגודל VC לא ידוע מה קורה עבור מספרים בין VC
 - ארוגמה נוספת בעיית Knapsack: למצוא KS עם ערך OPT – קשה. למצוא פתרון עם ערך $1.9999\cdot OPT$ – קל.

. poly(n) ניתן למצוא פתרון בזמן $\left(1-rac{1}{n^{100}}
ight)$ אפילו עם ערך

אם אתם מרגישים בסדר עם החומר (בגדול עוקבים אחרי מה שקורה בכיתה, ומצליחים להסתדר עם שיעורי הבית בצורה סבירה) – מומלץ לקחת אחד מהם (או את שניהם). [בקורסים של עדן יש רק מבחן בית (כלומר אין מבחן סופי, אלא רק עבודה ביתי עם משקל גדול

יותר).]