

Property	BFS	UCS	DFS	DLS	IDS
Complete	Yes¹	Yes²	No	No	Yes¹
Optimal	No ³	Yes	No	No	No ³
Time	$\mathcal{O}ig(b^dig)$	$O\left(b^{1+\left\lfloor \frac{C^*}{\varepsilon}\right\rfloor}\right)$	$\mathcal{O}(b^m)$	$\mathcal{O}ig(b^\ellig)$	$\mathcal{O}(b^d)$
Space		$O\left(b^{1+\left\lfloor \frac{C^*}{\varepsilon}\right\rfloor}\right)$		$\mathcal{O}(b\ell)$	O(bd)
 BFS and IDS are complete if b is finite. UCS is complete if b is finite and step cost ≥ ε 					
BFS and IDS are optimal if step costs are identical.					

Previously...

- Uninformed search strategies use only the information available in the problem definition
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening search
- This class –exploit additional information!

Q1. Consider the following parameters b=3, d=3, what is the overhead of IDS as compared to DLS?

Q2. Consider the following parameters b=3, d=3, what is the number of nodes to keep track in DFS?

Choosing a Search Strategy

- Depends on the problem:
 - Finite/infinite depth of search tree
 - Known/unknown solution depth
 - Repeated states
 - Identical/non-identical step costs
 - Completeness and optimality needed?
 - Resource constraints (e.g., time, space)

Can We Do Better?

- Yes! Exploit problem-specific knowledge; obtain heuristics to guide search
- Today:
 - Informed (heuristic) search
 - Expand "more promising" nodes.

Best-First Search

- Idea: use an evaluation function f(n) for each node n
 - Cost estimate → Expand node with lowest evaluation/cost first
- Implementation:

Frontier = priority queue ordered by nondecreasing cost f

- Special cases (different choices of *f*):
 - Greedy best-first search
 - A* search

Greedy Best-First Search

- Evaluation function f(n) = h(n) (heuristic function) = estimated cost of cheapest path from n to goal
 - Restriction: h(goal) = 0
- e.g., $h_{SLD}(n) = \text{straight-line distance from } n$ to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Admissible Heuristics

- h(n) is admissible if, $\forall n, h(n) \leq h^*(n)$
- $h^*(n) = \text{true cost to reach the goal state from } n$.
- Never overestimates cost to reach goal
- Example: h_{SLD}(n) never overestimates the actual road distance (roads are at best straight!)

Admissible Heuristics

Theorem: If h(n) is admissible, then A^* using TREE-SEARCH is optimal

Optimality of A* using TREE-SEARCH

t - a suboptimal goal in the frontier.

n - an unexpanded node in the frontier; n is on a shortest path to an optimal goal t^* .

It would be **very** bad if suboptimal goal node *t* gets checked before *n* !!

 \Rightarrow f(t) is lower than f(n)

Optimality of A* using TREE-SEARCH t - a suboptimal goal in the frontier. n - an unexpanded node in the frontier; n is on a shortest path to an optimal goal t^* . t gets checked after n if f(t) > f(n)

We need to show that t gets checked after n

Consistent Heuristics Theorem: If h(n) is consistent, then A^* using GRAPH-SEARCH is optimal

Admissible vs. Consistent Heuristics

- Why is consistency a stronger sufficient condition than admissibility?
 - Consistent ⇒ admissible
 - Admissible ⇒ consistent
- k(n) be the cost of cheapest path from n to goal
- To prove, $h(n) \le k(n)$
 - If n is the goal, $h(n) = 0 \le k(n)$
 - Induction hypothesis: $h(n') \le k(n')$
 - Let, path from n to goal has i steps, n' is the successor of n
 - $n' \sim goal, i-1$ steps
- h is consistent \Rightarrow we have: $h(n) \le c(n, n') + h(n')$
 - $\leq c(n,n') + k(n') = k(n)$

Admissible vs. Consistent Heuristics • An admissible but inconsistent heuristic cannot guarantee optimality of A* using GRAPH-SEARCH • GRAPH-SEARCH discards new paths to a repeated state. May discard the optimal path. • Consistent heuristic: always follows optimal path (that lemma was important!)

Admissible Heuristics

- Let's revisit the 8-puzzle
 - Branching factor is about 3
 - Average solution depth is about 22 steps
 - Exhaustive tree search examines 3²² states
- How do we come up with good heuristics?

7	2	4
5		6
8	3	1

Admissible Heuristics

E.g., 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance (i.e., no. of squares from desired location of each tile)

7	2	4
5		6
8	3	1

• $h_1(s) = 8$

$$h_2(s) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$$

Dominance

• If $h_2(n) \ge h_1(n)$ for all n (both admissible), then h_2 dominates h_1 . It follows that h_2 incurs lower search cost than h_1 .

Average search costs (nodes generated):

d = 12

d = 24

Algorithm	# Nodes
IDS	3,644,035
$A^*(h_1)$	227
$A^*(h_2)$	73

Algorithm	# Nodes
IDS	Galactic Number
$A^*(h_1)$	39,135
$A^*(h_2)$	1,641

Deriving Admissible Heuristics

• Rules of 8-puzzle:

A tile can move from square *A* to square *B* if *A* is horizontally or vertically adjacent to *B* and *B* is blank

- We can generate three relaxed problems
 - 1. A tile can move from square A to square B if A is adjacent to B
 - 2. A tile can move from square A to square B if B is blank
 - 3. A tile can move from square A to square B

Deriving Admissible Heuristics

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem

Deriving Admissible Heuristics

- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ is the resulting heuristic.
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ (Manhattan Dist.) is the resulting heuristic

Local Search Algorithms

- The path to goal is irrelevant; the goal state itself is the solution
- State space = set of "complete" configurations
- Find final configuration satisfying constraints, e.g., n-queens
- Local search algorithms: maintain single "current best" state and try to improve it
- Advantages:
 - very little/constant memory
 - find reasonable solutions in large state space

Hill-Climbing Search

function HILL-CLIMBING(problem) **returns** a state that is a local maximum

 $current \leftarrow \texttt{Make-Node}(problem.\texttt{Initial-State}) \\ \textbf{loop do}$

 $neighbor \leftarrow$ a highest-valued successor of current

if neighbor. Value \leq current. Value then return current.State $current \leftarrow neighbor$

"Like climbing Mt. Everest in thick fog with amnesia"

Local search strategies

• Hill-climbing search: use of heuristic function to improve "current" state