Harmonic Analysis

If function is given in descrete form, then we use this method to calculate jourier coefficients.

 $y = f(n) = \frac{a_0}{a} + \frac{2}{n^{21}} (a_n \cos nnt b_n \sin nn)$

90= = 5 5 y;

an= 2 Zy; cosna;

bn= = = = y, Sinnn;

Quel Find the just three harmonics for the for \$10) given in the following table.

90	0	60	120	180	240	300	360
£10)	0-8	0.6	0.4	0.7	0.9	1-1	0.8

phs.

							-
00	f(0)	Ceso	Sino	(0)20	Sindo	(es 30	Sin 30
0	0.8	1	0	1	0	1	0
60	0.6	0.5	53/2	-0.5	V3/2	-1	0
120	0.4	-0.5	53/2	-0.5	-53/2	1	0
180	0.7	-1	0	1	0	-1	0
240	0.9	-0.5	-53/2	-0.5	53/2	(0
					-53/2		

$$Q_1 = \frac{1}{6} = \frac{1}{3} [0.8 - 0.7 + 0.5(0.6 - 0.9 - 0.9 + 1.1)] = 0.1$$

$$a_2 = \frac{2}{6} \mathcal{E} f(0) \cos 20 = \frac{1}{3} \left[0.8 + 0.7 - 0.5 (0.6 + 0.4 + 0.9 + 1.1) \right]$$

$$b_2 = \frac{2}{6} \ge f(0) \text{ Sind } 0 = \frac{1}{3} \cdot \frac{\sqrt{3}}{2} (0.6 - 0.4 + 0.9 - 1.1) = 0$$

$$a_3 = \frac{9}{6} = \frac{1}{6} [6.8 - 0.6 + 0.4 - 0.7 + 0.9 - 1.1]$$

.: First 3 harmonics are

third
$$n = a_3 \cos 3a + b_3 \sin 3a = -0.1 \cos 3a$$

02. Obtain the constant term and the coeff. (27)
of the first two sine and frist two coorne terms
in the Fourier expansion of y(x) labulated below

X	0		2	3	1 4	5
4	9	18	24	28	26	20

Also find the amplitude of the first harmonic.

Take the enternal as 0 = 360 = 60°

Phs

				6		-
a	y	72=0	(es 0	Sin O	Co20	Sin 20
0	9	000		0	(0
	18	7/36°	0.5	V3/2	-0.5	V3 2
2	24	97.0		53/2	-0.5	- V3
3	28	7 180	-1	0	1	0
9	26	47240	-0.5	-5	-0.5	13
5	20	5 × 300°	0.5	- 1	-0.5	-15

Constant =
$$\frac{1}{2} 90 = \frac{2}{12} = \frac{1}{6} (125) = 20.83$$

$$a_1 = \frac{2}{6} = \frac{2}{6} = \frac{1}{3} \left[9 - 28 + 0.5 \left(18 - 24 - 26 + 20 \right) \right]$$

$$= -8.33$$

Coeff. Of din $\frac{\pi x}{3} = b_1 = -1.15$?

Coeff. Of din $\frac{\pi x}{3} = b_1 = -1.15$?

This $\frac{\pi x}{3} = b_2 = 0$ The cost $\frac{\pi x}{3} = a_1 = -8.33$ The cost $\frac{\pi x}{3} = a_2 = -2.33$ Amplitude of first harmonic = $\sqrt{9}, ^2 + b, ^2 = \sqrt{(-8.33)^2 + (-1.15)^2}$

= 8.41