Autoencoders

ML Instruction Team, Fall 2022

CE Department Sharif University of Technology

> Mahsa Yazdani Arian Amani

Let's Think

Let's start with a question!

How can we combine neural networks and unlabeled data to perform compression?

The Power Of Unsupervised Learning

- Huge datasets compared to supervised learning (No need for labeling)
- Can find previously unknown patterns in data that are impossible with supervised learning

Figure: Types of Machine learning: Deep learning (supervised and unsupervised learning) (Jones [2017]), Source

- Compression:
 - ▶ AEs can compress our input into a lower dimensional vector and try to reconstruct the original input from that vector

- Dimensionality Reduction:
 - ▶ AEs can perform dimensionality reduction

Image coloring and noise reduction

IMAGE COLORING

Before

After

IMAGE NOISE REDUCTION

Before

After

Noise reduction

Source

Watermark removal

Source

Super-Resolution

What is an Autoencoder?

- An autoencoder is a type of artificial neural network, capable of learning a low dimensional representation of the input data (codings), without supervision (unlabeled training data - unsupervised learning)
- Autoencoders take an input X and try to predict X. We use a bottleneck laver with a smaller dimension compared to the input, to use as the coding.

Figure: Schematic structure of an autoencoder with 3 fully connected hidden layers. The code (z bottleneck) is the most internal layer, Source

Autoencoders: Architecture

- Autoencoders consist of 3 parts:
 - **1** Encoder: Function f(x) that transforms input x to the latent variable z
 - Bottleneck : Single layer of neurons that represent the encoding of our input, therefore the most important part of our model
 - **3** Decoder: Function h(z) that tries to reconstruct input x from encoded latent variable $z \to h(z) = h(f(x)) = x'$

Figure: Autoencoder Architecture (with a little joke :)), Source

Linear vs. Non-Linear

- If your AE uses only linear activations and MSE loss function:
 - ► It will be performing PCA (Principal Component Analysis)
 - ▶ So we need non-linearity to get the most out of autoencoders

Linear vs. Non-Linear

Linear vs nonlinear dimensionality reduction

Stacked Autoencoders

- Autoencoders can have multiple hidden layers to learn more complex encoding/decoding functions - deep autoencoders
- Although, using too deep networks, can cause overfitting
 - ▶ Your model will just memorize points in the coding space for each training data, instead of learning a good latent representation of them

Loss and Training

- We're trying to reconstruct our input
- Common loss functions for training autoencoders are:
 - ► L2: $loss(x, x') = \sum_{i=1}^{m} (x^{(i)} x'^{(i)})^2$
 - Cross-Entropy

Figure: Schematic of an autoencoder architecture with mean-squared error reconstruction loss.[1]

Pretraining

You can use an autoencoder for pretraining on supervised problems with few labeled data

Figure: Using unsupervised learning for pretraining with autoencoders

Autoencoders & Images

Are normal autoencoders suitable for working with images?

- Encoder: A regular CNN
- ▶ Decoder: A network that uses transpose convolutional layers (or upsampling layers with convolution layers)

Convolutional Encoder-Decoder architecture

Denoising Autoencoders (DAE)

- An AE learns the identity function which brings the risk of overfitting
- A DAE forces the model to learn a more robust latent representation
- It can also be used to efficiently remove noise from noisy images

Figure: Illustration of denoising autoencoder model architecture, Source

Results of an autoencoder, predicting what the original data was, without even seeing it

- DAEs won't simply memorize the inputs and outputs (More robustness)
- Intuitively, a DAE learns a projection from a neighborhood of our training data back onto the training data (Refrence)

- DAEs won't simply memorize the inputs and outputs (More robustness)
- Intuitively, a DAE learns a projection from a neighborhood of our training data back onto the training data (Refrence)

- DAEs won't simply memorize the inputs and outputs (More robustness)
- Intuitively, a DAE learns a projection from a neighborhood of our training data back onto the training data (Refrence)

- DAEs won't simply memorize the inputs and outputs (More robustness)
- Intuitively, a DAE learns a projection from a neighborhood of our training data back onto the training data (Refrence)

Autoencoder Generative Models

How can we generate **NEW** data with Autoencoders??

hint: Autoencoder learns the feature space!

Walking through an example

- We can try to decode a random point from the latent space to generate new data
- The freedom of AEs leads to a severe overfitting which results in some points of the latent space being meaningless once decoded

Figure: Irregular latent space prevent us from using autoencoder for new content generation, Source

Walking through an example

Not all of the points in latent space have meaningful reconstructions

Figure: Latent space and the decoded outputs for some points in it, Source

Walking through an example

What we want is something like the following picture. So that with sampling from the latent space, we can generate new shapes.

Figure: Regularisation tends to create a "gradient" over the information encoded in the latent space, Source

Variational Autoencoders

Ideas for solving this problem?

Variational Autoencoders

loss =
$$\|\mathbf{x} - \mathbf{x}'\|^2 + \text{KL}[N(\mu_{\nu}, \sigma_{\nu}), N(0, I)] = \|\mathbf{x} - \mathbf{d}(\mathbf{z})\|^2 + \text{KL}[N(\mu_{\nu}, \sigma_{\nu}), N(0, I)]$$

Image References

- https://lilianweng.github.io/posts/2018-08-12-vae/
- https://emkademy.medium.com/1-first-step-to-generative-deep-learning-withautoencoders-22bd41e56d18
- Aurelien Geron. 2019. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd. ed.). O'Reilly Media, Inc.
- https://github.com/wojciechmo/vae
- https://ai.googleblog.com/2017/08/making-visible-watermarks-more-effective.html
- https://medium.com/@harishr2301/denoising-autoencoders-996e866e5cd0
- https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781787121089/4/ch04lvl1sec51/setting-up-stacked-autoencoders
- https://www.analyticsvidhya.com/blog/2021/01/auto-encoders-for-computer-vision-an-endless-world-of-possibilities/
- https://towardsdatascience.com/convolutional-autoencoders-for-image-noise-reduction-32fce9fc1763
- https://ift6266h17.files.wordpress.com/2017/03/14_autoencoders.pdf
- https://towardsdatascience.com/understanding-variational-autoencoders-vaesf70510919f73

References

- Aurelien Geron. 2019. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd. ed.). O'Reilly Media, Inc.
- https://www.cs.toronto.edu/ rgrosse/courses/csc321 2017/slides/lec20.pdf
- https://www.math.purdue.edu/ buzzard/MA598-Spring2019/Lectures/Lec16%20-%20Autoencoders.pptx
- http://cs231n.stanford.edu/slides/2019/cs231n 2019 lecture11.pdf

Refrences

Yasemin Bozkurt, Tristan Bereau, and Joseph Rudzinski.

Interpretable embeddings from molecular simulations using gaussian mixture variational autoencoders.

Machine Learning: Science and Technology, 1, 03 2020.

Thank You!

Any Question?