ESPS3-32

Product Specification

2.4GHz Wi-Fi & BLE5.0 Coexistence Module

Date: Feb.08, 2025 Version: 1.0

Features

- General
 - Chip: ESP32-S3 Series
 - Module Size:18mm x 25.5mm x 3mm
 - Xtensa®dualCore32-bit. LX7 microprocessor 240MHz
 - 384KB ROM
 - 512K SRAM
 - 16 KB RTC SRAM
- Wi-Fi Features
 - IEEE 802.11 b/g/n-compliant
 - Center frequency range of operating channel: 2412 ~ 2484 MHz
 - 1T1R mode with data rate up to 150 Mbps
 - TX/RX A-MPDU, TX/RX A-MSDU
 - Immediate Block ACK
- **Bluetooth Features**
 - Bluetooth® 5 (LE) Bluetooth mesh
 - Speed: 125 Kbps, 500 Kbps, 1 Mbps, 2 Mbps
 - Advertising extensions
 - Multiple advertisement sets
 - Channel selection algorithm #2
 - Coexistence of Wi-Fi and Bluetooth
- Peripheral Interfaces
 - GPIO * 36;
 - I2C:
 - I2S;
 - SDIO;
 - Doctors of Intelli TWAI (CAN 2.0);
 - SPI;

- EN;
- MCPWM;
- ADC;
- LED PWM:
- Working Temperature: -40°C~85°C

Applications

- Serial transparent transmission;
- Wi-Fi prober;
- Smart power plug/Smart LED light/Smart home;
- Camera product;
- Sensor networks;
- Over-the-top (OTT) devices;
- Wireless location system beacon;
- Industrial field bus;

Module Type

Model	Flash	PSRAM	Antenna	
ESPS3-32-N4	32M bit	-	PCB	
ESPS3-32-N8	64M bit	-	PCB	
ESPS3-32-N8R2	64M bit	16M bit	PCB	
ESPS3-32-N16R2	128M bit	16M bit	PCB	
ESPS3-32-N16R8	128M bit	64M bit	PCB	

Module Structure

Update Record

Date	Version	Update
2025-02-28	V1.0	First released

Table of Contents

1. Introduction	4
2. Interface Definition	6
3. Size and Layout	9
4. Electronica Characteristics	11
5. Power Consumption	11
6. Wi-Fi RF Characteristics	12
7. Bluetooth LE Radio	13
8. Recommended Sold Temperature Curve	14
9. Minimum User System	14
10. Recommended Layout Design	15
11. Peripheral Design Suggestion	16
12. Product Handling	16
13. Packing Instruction	17

1. Introduction

ESPS3-32 Wi-Fi and BLE coexistence Module is a highly integrated single-chip low power 802.11b/g/n Wireless LAN (WLAN) network controller. It combines a dual-core 240MHz CPU, WLAN MAC, a 1T1R capable WLAN baseband, RF, and Bluetooth in a single chip. It also provides a bunch of configurable GPIO, which are configured as digital peripherals for different applications and control usage.

ESPS3-32 integrates rich peripherals, including SPI, parallel IO, ADC,UART, I2C, I2S, RMT (TX/RX), LED pulse width modulation, USB2.0 serial port, JTAG controller, MCPWM, SDIO slave controller, GDMA, Twai @controller, on-chip JTAG debugging function, event task matrix. And up to 36 GPIO and so on.

ESPS3-32 module use ESPS3-32 as Wi-Fi and BLE coexistence SOC chip.

ESPS3-32 module integrates internal memories for complete Wi-Fi protocol functions. The embedded memory configuration also provides convenient application developments.

Fig.1.1 ESPS3-32 Module Structure

Technical parameters for ESPS3-32 are listed as follows.

Table.1.1 ESPS3-32 Parameters

Type	Item	Parameter		
	Frequency	2.4G~2.5G (2412M~2484M)		
		802.11b: +19 dBm		
	Transmit power	802.11g: +17 dBm		
	· «en	802.11n: +15 dBm		
	1116	802.11b: -88 dBm (11Mbps)		
	into in the	802.11g: -76 dBm (54Mbps)		
Wi-Fi	Receiver sensitivity	802.11n: -74 dBm(MCS7, HT20)		
Wi-Fi		802.11n: -71 dBm(MCS7, HT40)		
CLO		-24dB @802.11b,11Mbps @19dBm		
		-27dB @802.11g,54Mbps @17dBm		
	EVM	-29dB @802.11n,HT20,MCS7 @15dBm		
		-29dB @802.11n,HT40,MCS7 @15dBm		
	Antenna	PCB		
BLE	RF power control range	-24~10dBm (2402 ~ 2480 MHz)		
	GDVI C	Xtensa®dualCore32-bit.LX7microprocessor		
	CPU	240MHz		
*01	Interface	UART/SDIO/SPI/I2C/GPIO		
Hardware	Working voltage	3.0V ~ 3.6V(Standard 3.3V)		
	Working temperature	-40°C ~ 85°C		
	Environment temperature	-40°C ~ 105°C		
	Shape	18mm x 25.5mm x 3mm		
Software	Wi-Fi working mode	STA, Soft-AP and sniffer modes		
	Security mode	WPS / WEP / WPA / WPA2 / WPA3		
	Update firmware	UART Download/USB Download		
	Software develop	SDK		
101	Network protocol	IPv4, TCP/UDP/HTTP/FTP/MQTT		

2. Interface Definition

ESPS3-32 Wi-Fi & BLE module interface definition is shown as below $_{\circ}$

Fig.2.1 ESPS3-32 Pins Definition (Top view)

Working modes and pins function is shown in Table 2.1.

Table.2.1Working Mode

Fig.2.1 ESPS3-32 Pins Definition (Top view)					
function is shown in Table 2.1.					
Table.2.1Working Mode					
Mode	IO0 Voltage Level				
UART Download Mode	LOW				
Flash Boot Mode	HIGH (Default)				

Table.2.2 Pins Function Definition

Num.	Pin Name	Type	Function
1	GND	P	Ground

2	3V3	P	Power supply		
3	EN	I	Chip enable; Internal Pull-up. HIGH: enable the chip.		
4	IO4	I/O	RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3		
5	IO5	I/O	RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4		
6	IO6	I/O	RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5		
7	IO7	I/O	MTDO, GPIO7, LP_GPIO7, LP_I2C_SCL, FSPID		
8	IO15	I/O	RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P		
9	IO16	I/O	RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N		
10	IO17	I/O	RTC_GPIO17, GPIO17, U1TXD, ADC2_CH6		
11	IO18	I/O	RTC_GPIO18, GPIO18, U1RXD, ADC2_CH7, CLK_OUT3		
12	IO8	I/O	RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7, SUBSPICS1		
13	IO19	I/O	RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D-		
14	IO20	I/O	RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+		
15	IO3	I/O	RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2		
16	IO46	I/O	GPIO46		
17	IO9	I/O	RTC_GPIO9, GPIO9, TOUCH9, ADC1_CH8, FSPIHD, SUBSPIHD		
18	IO10	I/O	RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPIIO4, SUBSPICS0		
19	IO11	I/O	RTC_GPIO11, GPIO11, TOUCH11, ADC2_CH0, FSPID, FSPIIO5, SUBSPID		
20	IO12	I/O	RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPIIO6, SUBSPICLK		
21	IO13	I/O	RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPIIO7, SUBSPIQ		
22	IO14	I/O	RTC_GPIO14, GPIO14, TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS, SUBSPIWP		
23	IO21	I/O	RTC_GPIO21, GPIO21		
24	IO47	I/O	SPICLK_P_DIFF, GPIO47, SUBSPICLK_P_DIFF		

25	IO48	I/O	SPICLK_N_DIFF, GPIO48, SUBSPICLK_N_DIFF
26	IO45	I/O	GPI45
27	IO0	I/O	RTC_GPIO0, GPIO0
28	IO35	I/O	SPIIO6, GPIO35, FSPID, SUBSPID
29	IO36	I/O	SPIIO7, GPIO36, FSPICLK, SUBSPICLK
30	IO37	I/O	SPIDQS, GPIO37, FSPIQ, SUBSPIQ
31	IO38	I/O	GPIO38, FSPIWP, SUBSPIWP
32	IO39	I/O	MTCK, GPIO39, CLK_OUT3, SUBSPICS1
33	IO40	I/O	MTDO, GPIO40, CLK_OUT2
34	IO41	I/O	MTDI, GPIO41, CLK_OUT1
35	IO42	I/O	MTMS, GPIO42
36	RXD0	I/O	U0RXD, GPIO44, CLK_OUT2
37	TXD0	I/O	U0TXD, GPIO43, CLK_OUT1
38	IO2	I/O	RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1
39	IO1	I/O	RTC_GPIO1, GPIO1, TOUCH1, ADC1_CH0
40	GND	P	Ground
41	EPAD	P	Ground
		·	

3. Size and Layout

Size for ESPS3-32 can be shown as follows.

Fig.3.1 Shape for ESPS3-32 (Model in pic is ESPS3-32-N4)

(b) Side View

Fig.3.2 Size for ESPS 3-32

Fig. 3.3 PCB Layout for ESPS3-32 (Top view)

4. Electronica Characteristics

Table.4.1 Electronica Characteristics

Parameter	rs	Condition	Min	Classical	Max	Unit
Store Ten	nperature	-	-40	Normal	105	$^{\circ}$
Sold Tem	perature	IPC/JEDEC J-STD-020	- 6	-11	260	$^{\circ}$
Working	Voltage		3.0	3.3	3.6	V
	V _{IL}	-1118	-0.3	-	0.25*VDD	V
1/0	V _{IH}	2	0.75*VDD	-	VDD+0.3	
I/O	V _{OL}	-	-	-	0.1*VDD	3
cto	V _{OH}	-	0.8*VDD	- 1	uno,	
Electrosta Quantity	tic Release (Human model)	TAMB=25℃	-	- 18	2	KV
Electrosta Quantity	tic Release (Machine model)	TAMB=25℃	-	-8	0.5	KV

5. Power Consumption

Table.5.1 Power Consumption

Parameters	Min	Classical	Max	Unit
RX 11n, HT20	-	-	88	mA
RX 11n, HT40	-	-	91	mA
TX 11b, 11Mbps @19dBm	-	-46	326	mA
TX 11g, 54Mbps @17dBm	- 8		270	mA
TX 11n, HT20, MCS7, @15dBm	CO		256	mA
TX 11n, HT40, MCS7, @15dBm	- **	A	260	mA
Modem-sleep, CPU is powered on @40MHz	7. 22.	18	-	mA
Light-sleep	-	240	-	uA
Deep-sleep, RTC timer + RTC memory	-	7	-	uA
Power off, CHIP_PU is set to low level	-	1	-	uA

The peak current consumption of ESPS3-32 exceed 500mA when the module start work (RF calibration work consumes maximum current). Therefore, the recommended power supply is no less than 500mA.

Note:

- 1. Active Mode: CPU and RF are all turned on.
- 2. Modem-sleep Mode: CPU is turned on. RF and baseband are turned off, but the communication is still connected.
- 3. Light-sleep Mode: CPU is turned off. RTC/external interrupt/MAC can wake up the chip. The communication is still connected.
- 4. Deep-sleep Mode: Only RTC is turned on.

6. Wi-Fi RF Characteristics

The data in the following table is gotten when voltage is 3.3V in the indoor temperature environment.

Parameters Min Classical Max Unit Input frequency 2412 2484 MHz 802.11b 19 dBm 802.11g,54Mbps 17 dBm 802.11n,MCS7 15 dBm

Table.6.1 Wi-Fi TX Characteristics

Table.6.2	Wi-Fi RX	Sensitivity
-----------	----------	-------------

Parameters	Min	Classical	Max	Unit
802.11b,1Mbps	CC	-98	-	dBm
802.11b,11Mbps	· K	-88	-	dBm
802.11g,6Mbps	1/2/5	-94	-	dBm
802.11g,54Mbps	-	-76	-	dBm
802.11n,HT20,MCS0	-	-93	-	dBm
802.11n,HT20,MCS7	-	-74	-	dBm

802.11n,HT40,MCS0	-	-90	-	dBm
802.11n,HT40,MCS7	-	-71	000	dBm

Table.6.3 Wi-Fi RX Characteristics

Parameters	Min	Classical	Max	Unit
ADJ Channel Rejection @11b, 1Mbps	-	35	-	dB
ADJ Channel Rejection @11b, 11Mbps	<u> </u>	35	-	dB
ADJ Channel Rejection @11g, 6Mbps	9	31	-	dB
ADJ Channel Rejection @11g, 54Mbps	-	14	-	dB
ADJ Channel Rejection @11n,HT20,MCS0	-	31	- 1	dB
ADJ Channel Rejection @11n,HT20,MCS7	-	13	1,170	dB
ADJ Channel Rejection @11n,HT40,MCS0	-	19	-	dB
ADJ Channel Rejection @11n,HT40,MCS7	- 9	8	-	dB

7. Bluetooth LE Radio

Table.7.1 TX Transmitter General Characteristics (Bluetooth Radio 2402 ~ 2480 MHz)

Parameters	Min	Classical	Max	Unit			
RF power control range	-24	4	10	dBm			
ADJ channel Transmit Power @F-F0±2MHz	-	-37		dBm			
ADJ channel Transmit Power @F-F0±3MHz	-	-42	117	dBm			
ADJ channel Transmit Power @F-F0±>3MHz	<u>-</u> 1	-44	-	kHz			
\triangle flavg			213	kHz			
△f2max	196		-	kHz			
ICFT	N- 7	-10	-	kHz			

Table.7.2 RX Transmitter General Characteristics (Bluetooth Radio 2402 ~ 2480 MHz)

	Para	ameters	Min	Classical	Max	Unit
	В	Sensitivity @30.8% PER	-92	-	-103	dBm
7	E	Maximum received signal @30.8% PER	0	-	-	dBm

	Co-channel C/I	-	8	-1	dB	
--	----------------	---	---	----	----	--

8. Recommended Sold Temperature Curve

- (1) Reflow Times <= 2 times (Max.)
- (2) Max Rising Slope: 3°C/sec
- (3) Max Falling Slope: -3°C/sec
- (4) Over 217°C Time: 60~120sec
- (5) Peak Temp:240°C~250°C

Fig.8.1 Recommended Reflow Profile

9. Minimum User System

This module can work just at 3.3V voltage condition:

Note:

- (1) The working voltage for module is DC 3.3V;
- (2) The max current from IO of this module is 40mA;
- (3) Wi-Fi module is at download mode: IO0 is LOW level, then module reset to power;

(4) Wi-Fi module is connected to RXD of the other MCU, and TXD is connected to RXD of the other MCU.

10. Recommended Layout Design

ESPS3-32 module can be sold on PCB board directly. For the high RF performance for the device, please notice the placement of the module. There are three ways to use the module for Wi-Fi Module with PCB antenna.

Solution 1: optical solution. The Wi-Fi module is placed on the side of the board, and the antennas are all exposed, and there is no metal material around the antenna, including wires, metal casings, weight plates, and the like.

Solution 2: sub-optical solution. The Wi-Fi module is placed on the side of the board, and the antenna below is hollowed out. There is a gap of not less than 5 mm reserved with the PCB, and there is no metal material around the antenna, including wires, metal casings, weight plates, and the like.

Solution 3: The Wi-Fi module is placed on the side of the board, and the PCB area under the antenna is empty, and copper cannot be laid.

Fig.10.1 Solution 1

Fig.10.2 Solution 2

Fig.10.3 Solution 3

11. Peripheral Design Suggestion

Wi-Fi module is already integrated into high-speed GPIO and Peripheral interface, which may be generated the switch noise. If there is a high request for the power consumption and EMI characteristics, it is suggested to connect a serial 10~100 ohm resistance, which can suppress overshoot when switching power supply, and can smooth signal. At the same time, it also can prevent electrostatic discharge (ESD).

12. Product Handling

12.1 Storage Conditions

The products sealed in moisture barrier bags (MBB) should be stored in a non-condensing atmospheric environment of < 40 °C and 90%RH. The module is rated at the moisture sensitivity level (MSL) of 3. After unpacking, the module must be soldered within 168 hours with the factory conditions 25 \pm 5 °C and 60%RH. If the above conditions are not met, the module needs to be baked.

12.2 Electrostatic Discharge (ESD)

• Human body model (HBM): ±2000 V

• Charged-device model (CDM): ±500 V

13. Packing Instruction

The product is packed in a tray, as shown in the following figure.

The size of the single box is: $340 \times 360 \times 60$ mm, and 650 pieces module is in the box. And the outer box size is $355 \times 375 \times 325$ mm, including 5 single box which include 3250 pieces module.

Fig.13.1 Module Package