BLG 453E

Week 14

Basic Geometric 2D shape analysis

Dr. Yusuf H. Sahin

Parametrized Curves

- Our goal is to characterize certain subsets of \mathbb{R}^3 (to be called curves) that are:
 - in a certain sense, one-dimensional
 - the methods of differential calculus can be applied.
- A natural way of defining such subsets is through differentiable functions.
 - It has, at all points, derivatives of all orders
 - Autonomically continuous
- **Definition:** A parametrized differentiable curve is a differentiable map

of an open interval I = (a, b) of the real line R into R^3 .

$$\alpha = I \rightarrow R^3$$

- α is a correspondence which maps each $t \in I$ into a point $\alpha(t) = (x(t), y(t), z(t)) \in R^3$ in such a way that the functions x(t), y(t), z(t) are differentiable.
 - t: Curve parameter

Tangent Vector

• Considering the first derivatives of x(t), y(t), z(t) the tangent vector is defined as

$$\alpha'(t) = (x'(t), y'(t), z'(t))$$

- Also called velocity vector.
- The set $\alpha(t) \subset \mathbb{R}^3$ is called the trace of α .

$$\alpha(t) = (a\cos t, a\sin t, bt), t \in R$$

Trace: A helix of pitch $2\pi b$ on the cylinder $x^2 + y^2 = a^2$.

Parametrized Curves

• Ex. 1: The map $\alpha: R \to R^2$ given by $\alpha(t) = (t^3 - 4t, t^2 - 4), t \in R$ is a parametrized differentiable curve.

• Could not be one-to-one.

• **Ex. 2:** The map $\alpha: R \to R^2$ given by $\alpha(t) = (t, |t|), t \in R$ is is not a parametrized differentiable curve, since |t| is not differentiable at t = 0

Trace & Velocity

• The two distinct parametrized curves

$$\alpha(t) = (\cos t, \sin t)$$

$$b(t) = (\cos 2t, \sin 2t)$$

where $t \in (0 - \epsilon, 2\pi + \epsilon)$, $\epsilon > 0$ have the same trace: $x^2 + y^2 = 1$. However, the velocity vector of the second curve is the double of the first one.

Regular Curves

- Tangent Line:
 - For each $t \in I$ where $\alpha' \neq 0$, there is a well-defined straight line, which contains the point $\alpha(t)$ and the vector $\alpha'(t)$.
- We call any point t where $\alpha'(t) = 0$ is a singular point.

• A parametrized differentiable curve $\alpha: I \to R^3$ is said to be regular if $\alpha'(t) \neq 0$ for all $t \in I$.

Arc Lengths

• Given $t_0 \in I$, the arc length of a regular parametrized curve $\alpha: I \to R^3$ from the point t_0 is

$$s(t) = \int_{t_0}^t |\alpha'(t)| \, dt$$

where

$$|\alpha'(t)| = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}$$

is the length of vector $\alpha'(t)$.

• Since $\alpha'(t) \neq 0$, the arc length s is a differentiable function of t and $\frac{ds}{dt} = |\alpha'(t)|$.

Parametrization by arc length

- To work with velocity vectors with constant magnitude, the parameter t could be chosen to represent the arc length s.
- In this case, $\frac{ds}{dt} = |\alpha'(t)| = 1$.
- Then

$$s = \int_{t_0}^t dt = t - t_0$$

- t is the arc length of α measured from some point.
- It is not necessary to mention the origin of the arc length s, since most concepts are defined only in terms of the derivatives of $\alpha(s)$.

Curvature

- The curve $\alpha: I = (a, b) \to R^3$ could also be parametrized by arc length s.
- Using tangent vectors of unit length $\alpha'(s)$, the norm $|\alpha''(s)|$ of the second derivative measures the rate of change of the angle which neighboring tangents make with the tangent at s.
 - how rapidly the curve pulls away from the tangent line at s, in a neighborhood of s
- **Curvature:** For a curve parametrized by arc length $s \in I$, the number $|\alpha''(s)| = k(s)$ is called the curvature of α at s.

Curvature

- If α is a straight line, $\alpha(s) = us + v$, where u and v are constant vectors (|u| = 1), then k = 0.
- By a change of orientation, the tangent vector changes its direction; that is, if $\alpha(s) = \beta(-s)$, then

$$\frac{d\beta}{d(-s)}(-s) = -\frac{d\alpha}{ds}(s)$$

 $\alpha''(s)$ and the curvature remain invariant under a change of orientation.

• At points where $k(s) \neq 0$, we can define:

$$\alpha''(s) = k(s)n(s) = t'(s)$$

$$b(s) = t(s) \times n(s)$$

$$b'(s) = t'(s) \times n(s) + t(s) \times n'(s) = t(s) \times n'(s)$$

t(s): unit tangent vector

n(s): unit normal vector

b(s): binormal vector, normal of the

osculating plane

10

Torsion

$$b'(s) = t'(s) \times n(s) + t(s) \times n'(s) = t(s) \times n'(s)$$

• Since b'(s) is parallel to n(s), we may write

$$b'(s) = \tau(s)n(s)$$

for some function $\tau(s)$.

- **Definition:** Let $\alpha: I \to R^3$ be a curve parametrized by arc length s such that $\alpha''(s) \neq 0, s \in I$, $\tau(s)$ defined by $b'(s) = \tau(s)n(s)$ is called the torsion of α at point s.
- If α is contained in a plane then the plane of the curve agrees with the osculating plane; hence $\tau(s)=0$.

Frenet Equations

- To each value of the parameter s, we have associated three orthogonal unit vectors t(s), n(s), b(s).
- The trihedron thus formed is referred to as the Frenet trihedron at s.
- Derivaties of these vectors will give us geometrical information g(L) around the neighborhood.

$$t'(s) = k(s)n(s)$$

$$b'(s) = \tau(s)n(s)$$

$$n'(s) = b'(s) \times t(s) + t(s) \times t'(s) = -\tau(s)b(s) - k(s)t(s)$$

Pombo, J., & Ambrósio, J. (2012). An alternative method to include track irregularities in railway vehicle dynamic analyses. *Nonlinear Dynamics*, *68*, 161-176.

Curvature Orientation

$$t'(s) = k(s)n(s)$$

- **k(s)>0:** The curve bends towards the side of n, and the curvature vector aligns with n
- k(s)<0: The curve bends away from the side of n, and the curvature vector points opposite to n.
- The sign of k(s) determines whether n points "inside" or "outside" the curve's bend.

Regular Surfaces

• A regular surface in \mathbb{R}^3 is obtained by taking pieces of a plane, deforming them, and arranging them in such a way that the resulting figure has no sharp points, edges, or self-intersections.

A subset $S \subset \mathbb{R}^3$ is a regular surface if, for each $p \in S$, there exists a neighborhood V in \mathbb{R}^3 and a map $x: U \to V \cap S$ of an open set $U \subset \mathbb{R}^2$ onto $V \cap S \subset \mathbb{R}^3$.

- The mapping x is called a parametrization of local coordinates in the neighborhood of p.
- The neighborhood $V \cap S$ is called the coordinate neighborhood.

Properties of Regular Surfaces

1. x is differentiable. This means that if we write

$$\mathbf{x}(u,v) = (\mathbf{x}(u,v), \mathbf{y}(u,v), \mathbf{z}(u,v)), (u,v) \in U,$$

the functions x(u, v), y(u, v), z(u, v) have continuous partial derivatives of all orders in U.

- **2.** x is a homeomorphism. Both x and its inverse x^{-1} : $V \cap S \to U$ are continuous.
- **3.** For each $q \in U$, the differential $dx_q: R^2 \to R^3$ is one-to-one.

dx_q

- Let $q = (u_0, v_0)$.
- For a constant v_0 , by aligning the values of u, we can create the coordinate curve (e_1 in \mathbb{R}^2)

$$u \rightarrow (x(u, v_0), y(u, v_0), z(u, v_0))$$

which lies on S and has a tangent vector at x(q).

$$dx_q(e_1) = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) = \frac{\partial x}{\partial u}$$

• Similarly, for e_2 :

$$v \rightarrow (x(u_0, v), y(u_0, v), z(u_0, v))$$

$$dx_q(e_2) = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right) = \frac{\partial x}{\partial v}$$

• Thus, the matrix of the linear map dx_q is:

$$dx_{q} = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{bmatrix}$$

Cond 3.

The two column vectors of this matrix to be linearly independent.

Q:

• Could we define regular surfaces for the given points?

Q:

• Could we define regular surfaces for the given points?

Unit Sphere

Let us show that the unit sphere

$$S^2 = \{(x, y, z) \in \mathbb{R}^3; x^2 + y^2 + z^2 = 1\}$$

is a regular surface.

A subset $S \subset \mathbb{R}^3$ is a regular surface if, for each $p \in S$, there exists a neighborhood V in \mathbb{R}^3 and a map $x: U \to V \cap S$ of an open set $U \subset \mathbb{R}^2$ onto $V \cap S \subset \mathbb{R}^3$.

First, check for x:

$$x_1(x,y) = (x, y, \sqrt{1 - (x^2 + y^2)}), \quad (x,y) \in U$$

 $U = \{(x,y) \in R^2; x^2 + y^2 < 1\}$

Since $x^2 + y^2 < 1$, the function $\sqrt{1 - (x^2 + y^2)}$ has continuous partial derivatives of all orders. Thus Condition 1 holds.

Condition 2 holds, since x_1 is one-to-one and x_1^{-1} could be reobtained by projection.

Condition 3 holds, since
$$\frac{\partial x_1}{\partial x} = \left(1,0,\frac{-x}{\sqrt{1-(x^2+y^2)}}\right)$$
 and $\frac{\partial x_1}{\partial y} = \left(0,1,\frac{-y}{\sqrt{1-(x^2+y^2)}}\right)$ are linearly independent.

Unit Sphere

• We shall now cover the whole sphere with similar parametrizations as:

$$x_2(x,y) = (x, y, -\sqrt{1 - (x^2 + y^2)})$$

- $x_1(U) \cup x_2(U)$ covers S^2 minus the equator $\{(x, y, z) \in R^3; x^2 + y^2 = 1, z = 0\}$.
- Using the xz and zy planes, we can define other parametrizations:

$$x_3(x,z) = (x, \sqrt{1 - (x^2 + z^2)}, z)$$

$$x_4(x,z) = (x, -\sqrt{1 - (x^2 + z^2)}, z)$$

$$x_5(y,z) = (\sqrt{1 - (y^2 + z^2)}, y, z)$$

$$x_6(y,z) = (-\sqrt{1 - (y^2 + z^2)}, y, z)$$

Geographical Coordinates

• It is convenient to relate parametrizations to the geographical coordinates on S^2 .

$$V = \{(\theta, \phi); 0 < \theta < \pi, 0 < \phi < 2\pi\}$$

 $x: V \to R^3$

$$x(\theta,\phi) = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$$

colatitude longitude

Differential Functions in \mathbb{R}^n

• If $f: U \to R$ is a differentiable function in an open set U of R^2 , then the graph of f:

$$(x, y, f(x, y))$$
 for $(x, y) \in U$

is a regular surface.

• Given a differentiable map $F: U \subset \mathbb{R}^n \to \mathbb{R}^m$, we say that $p \in U$ is a critical point of F if the differential $dF_p: \mathbb{R}^n \to \mathbb{R}^m$ is not a surjective mapping.

• If $f: U \subset \mathbb{R}^3 \to R$ is a differentiable function and $a \in f(U)$ is a regular (non-critical) value of f, then $f^{-1}(a)$ is a regular surface in \mathbb{R}^3 .

Ex:

• The ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ is a regular surface.

$$f(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1$$

is a differentiable function and 0 is a regular value of f.
$$f_x = \frac{2x}{a^2}, \ f_y = \frac{2y}{b^2}, f_z = \frac{2z}{c^2}$$

• The hyperboloid of two sheets $-x^2 - y^2 + z^2 = 1$ is a regular surface. $f(x, y, z) = -x^2 - y^2 + z^2 - 1$

Note that the surface S is not connected.

Ex:

• The torus T is a regular surface generated by rotating a circle S^1 of radius r about a straight line belonging to the plane of the circle and at a distance a > r away from the center of the circle.

$$f(x, y, z) = z^2 + \left(\sqrt{x^2 + y^2} - a\right)^2$$

