第三次作业

院(系)	班级	学号	姓名	
Pボ(が)	191 EX	マ マ		_

一、填空题

1、设随机变量 X 与 Y 相互独立, 具有相同的分布律,

X	0	1
P	0.4	0.6

P	(x, y)	maz(x Y)
0.16	(0.0) (0,1)	0
924	(0,1)	ſ
0.24	(1, 0) (1, 1)	1
036	(1, 1)	ι

2. 设随机变量 (XY) 的联合分布律为

$$P\{X = m, Y = n\} = \begin{cases} \frac{1}{2^{m+1}}, m \ge n, \\ m, n = 1, 2, \dots, p\{Y = n\} = \sum_{n=1}^{\infty} p\{X = n, Y = n\} = \sum_{n=1}^{\infty} \frac{1}{2^{n}} \\ 0, m < n, \end{cases}$$

 $P(X=m)=\sum_{n=1}^{\infty}P(X=m,Y=n)$ 0, m < n, 则关于 X 的边缘分布律为 $P(X=m)=\frac{m}{2^{n+1}}$ m < 1/2 1

3. 若二维随机变量(X,Y) 在区域 $\{(x,y)|x^2+y^2\leq R^2\}$ 上服从均匀分布,则(X,Y) 的概率密度函数为 $f(x,y)=\sqrt{n_{\rm E}}$ 。 $2+y^2\in \mathbb{R}^2$ 人 设随机变量 X 和 Y 相互独立, X 在区间(0,2) 上服从均匀分布, Y 服从参数为 $\lambda=1$ 的指数分布,则概率 $P\{X+Y>1\}=1-\frac{1}{2}$ 。 $f_X(x)=1$ 。 $f_Y(y)=1$ 。 $f_Y(y$

X	0	1	2
P	0.25	0.5	0.25

则 $P\{X \ge Y\} = _{\Upsilon}$

$$P\{1 < \max(X, Y) \le 2\} = \frac{1}{3}$$

$$f_{\chi}(x) = \begin{cases} \frac{1}{2} & o(x) \\ 0 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{cases}$$
 $F_{\chi}(x) = \begin{cases} \frac{1}{2} & o(x) \\ \frac{1}{2} & o(x) \\ \frac{1}{2} & o(x) \end{cases}$

- Mo Frackey (2)= 7. 设随机变量 X 和 Y 相互独立,且 $X \sim N(1,2)$, $Y \sim N(0,1)$, Z = 2X - Y + 3 的概率密度为 10×10^{-10} 10×10^{-1

结论,者义饰函数为下以口、爱食函数为仅以

图Y= X+A 的分析函数为 Fx (での) 会交函数为(x b- a)

-DOCZ Ctoo 或利用统论. 苦れ~り(かの) B) axtb~ N (autb. 20) => X+3~ N (M+3, 62)

8. 设二维随机变量 (X,Y) 服从正态分布 N(1,0;1,1;0), 则

 $P\{XY-Y<0\}=\frac{1}{2}$

P(xx-4<0) = b(x2) 460) + b(x<1.420)

二、选择题 メソーソ 60 ⇔ くなん ソくの) ひくとくし、ソフラ

=P{x71}P{Y<0}+P{x<1}P{Y>0l

1. 关于随机事件 $\{X \le a, Y \le b\}$ $\{X > a, Y > b\}$ 下列结论正确的是(**8**

- (A) 为对立事件。 **对主事件为以700以以76)**
- (C) 为相互独立事件。
- (D) $P\{X \le a, Y \le b\} > P\{X > a, Y > b\}$.

2、设二维随机变量(X,Y)在平面区域G上服从均匀分布,其中G是由x轴,y轴以及 直线 y=2x+1 所围成的三角形域,则(X,Y)的关于 X 的边缘概率密度为(\bigcirc

(B).
$$f_x(x) = \begin{cases} 8x + 4, & -\frac{1}{2} < x < 0 \\ 0, & 共 它. \end{cases}$$

(C)
$$f_x(x) = \begin{cases} 4x + 2, & -\frac{1}{2} < x < 0, & 其它. \end{cases}$$

(C)
$$f_x(x) = \begin{cases} 4x + 2, & -\frac{1}{2} < x < 0, \\ 0, & 其它. \end{cases}$$
 (D) $f_x(x) = \begin{cases} 4x + 4, & -\frac{1}{2} < x < 0, \\ 0, & 其它. \end{cases}$ 有力 (Exploy)

AN3 3. 设平面区域 G 是由 x 轴, y 轴以及直线 $x+\frac{y}{2}=1$ 所围成的三角形域,二维随机变量

(A)
$$f_{x,y}(x|y) = \begin{cases} \frac{2}{2-y}, & 0 < x < 1 - \frac{y}{2}, \\ 0, & \text{其它.} \end{cases}$$

(B)
$$f_{xy}(x|y) = \begin{cases} \frac{2}{1-y}, & 0 < x < 1 - \frac{y}{2}, \\ 0, & \text{ #:} \end{cases}$$

(C)
$$f_{x,y}(x|y) = \begin{cases} \frac{1}{2-y}, & 0 < x < 1 - \frac{y}{2}, \\ 0, & \text{ 其它.} \end{cases}$$

(D)
$$f_{xy}(x|y) = \begin{cases} \frac{1}{1-y}, & 0 < x < 1 - \frac{y}{2}, \\ 0, & 1 \in \mathbb{Z}. \end{cases}$$

4. 设二维随机变量(X,Y)的分布函数为

$$(X,Y)$$
在 G 上版从均匀分布,则 $f_{xy}(x|y) = (A)(0 < y < 2)$

$$(A) f_{xy}(x|y) = \begin{cases} \frac{2}{2-y}, & 0 < x < 1 - \frac{y}{2}, \\ 0, &$$
其它.

$$F(x, y) = A\left(\frac{\pi}{2} + \arctan x\right) \left(B + \arctan \frac{y}{2}\right)$$

则常数 A 和 B 的值依次为 (C)

$$(A) \pi^2 n \frac{2}{\pi}$$

(B)
$$\frac{1}{\pi}$$
 $\pi \frac{\pi}{4}$

(A)
$$\pi^2 \sqrt[4]{\frac{2}{\pi}}$$
. (B) $\frac{1}{\pi} \sqrt[4]{\frac{\pi}{4}}$. (C) $\frac{1}{\pi^2} \sqrt[4]{\frac{\pi}{2}}$. (D) $\frac{1}{\pi} \sqrt[4]{\frac{\pi}{2}}$.

5. 设随机变量 X, Y相互独立且都服从参数为 A 的指数分布, 则下列选项中服从参数 为2λ的指数分布的随机变量是 (D)

8=x+Y: fu(=)=[= fx(z)fx(=x)dz =) = 2=0 $f_0(z)=$ $\begin{pmatrix} A \end{pmatrix}$ X+Y. $\begin{pmatrix} B \end{pmatrix}$ X-Y. $\begin{pmatrix} B \end{pmatrix}$ X-Y. $\begin{pmatrix} C \end{pmatrix}$ $\max\{X,Y\}$. $\lim_{z\to 0} (D) \min\{X,Y\}$. $\lim_{z\to 0} (D)$. \lim_{z

是 X 与 Y 相互独立的充分必要条件的 = / こで、 370 | こと 1 こと 250 是 (D), 其中x, y 为任意实数,

(A) $P\{X \ge x, Y \ge y\} = P\{X \ge x\}P\{Y \ge y\}$.

(B)
$$F(x, y) = F_x(x)F_y(y)$$
.

(C) $f(x, y) = f_{x}(x)f_{y}(y)$.

(D)
$$\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$$
.

7. 设随机变量 X, Y 相互独立, X 服从 N(0,1), Y 服从 N(1,1), 则(B)

(A)
$$P(X+Y \le 0) = 0.5$$
.

(B)
$$P(X+Y \le 1) = 0.5$$
.

(C)
$$P(X-Y \le 0) = 0.5$$
.

(D)
$$P(X-Y \le 1) = 0.5$$
.

8. 设 X 和 Y 是两个随机变量,且 $P(X \ge 0, Y \ge 0) = \frac{3}{7}$, $P(X \ge 0) = P(Y \ge 0) = \frac{4}{7}$, 则 $P(\max\{X,Y\} \ge 0) = (\triangleright).$

(A)
$$\frac{2}{7}$$
. (B) $\frac{3}{7}$. (C) $\frac{4}{7}$. (D) $\frac{5}{7}$. = $\frac{3}{7}$ + $\frac{3}{7}$ - $\frac{3}{7}$.

*9. 设(X,Y)具有概率密度函数 $f(x,y) = \frac{1+\sin x \sin y}{2\pi} e^{-\frac{x^2+y^2}{2}}$,则(D)

 $f_{\mathbf{x}}(\mathbf{z}) = \int_{-\infty}^{+\infty} f(\mathbf{z}, \mathbf{y}) d\mathbf{y}$ $f_{\mathbf{x}}(\mathbf{z}) = \int_{-\infty}^{+\infty} f(\mathbf{z}, \mathbf{y}) d\mathbf{y}$ $f_{\mathbf{x}}(\mathbf{z}) = \int_{-\infty}^{+\infty} d\mathbf{y} + \int_{-\infty}^{+\infty} d\mathbf{y} + \int_{-\infty}^{+\infty} d\mathbf{y} d\mathbf{y} + \int_{-\infty}^{+\infty} d\mathbf{y} d\mathbf{y} + \int_{-\infty}^{+\infty} d\mathbf{y} d\mathbf{y} d\mathbf{y} d\mathbf{y} d\mathbf{y}$

- (C) (X,Y) 不服从二维正态分布,且X 和Y均不服从一维正态分布;
- (D) (X,Y) 不服从二维正态分布, 但 X 和 Y 均服从一维正态分布.

三、计算题

P(T) 1. 设随机变量 X 在 1, 2, 3, 4 四个数字中等可能取值,随机变量 Y 在 1~ X 中等可能地取一整数值,求(X,Y)的概率分布,并判断 X 和 Y 起否独立。

観 P(x=で、Y=コ)=の、当コマで財

P(x=t, Y=j)=p(x=t)·P(Y=j(x=t)=+·七=+ t=1,2,1,4,3≤t.

(x Y)	的概率	分布也		1000
27	1	2		_ 4
7	4	0	٥	9
2	*	1	0	٥
3	亢	七	市	o
4	九	古	古	访

P(x=1)= キ P(Y=1)= キャカナガナー = 15

显然、P1x=1. Y=1)=女+ Kx=13. P1Y=13

故x5YK独立、

PPT有 2. 设随机事件 A、B 满足 $P(A) = \frac{1}{4}$, $P(B|A) = P(A|B) = \frac{1}{2}$, 令

$$X = \begin{cases} 1, & A \ \text{发生,} \\ 0, & A$$
不发生, $Y = \begin{cases} 1, & B \ \text{发生,} \\ 0, & B$ 不发生,

求(1)(X,Y)的概率分布;(2)Z=X+Y的概率分布.

解由P(A)= 中 P(B)A)= 于 可得 P(AB)= P(A) P(B)A)= 方 又由P(A)B)= 亡 可得 P(B)= P(AB) = 子.

P(x=1, Y=1)=p(AB)=\$. P(x=1, Y=0)=p(AB)=\$-\$=\$.
P(x=0, Y=1)=p(BA)=p(BA)=\$-\$-\$.

P(x=0, Y=0) = P(AB) = 1 - P(AUB) = 1 - P(B) + P(AB) = 1 - 女 - 女 + 宮 = ठ (x, y) 的分布律为

3、设随机变量ひ在区间[-2,2]上服从均匀分布、令

$$X = \begin{cases} -1 & \stackrel{\scriptstyle i}{T}U \le -1, \\ 1 & \stackrel{\scriptstyle i}{T}U > -1, \end{cases} \quad Y = \begin{cases} -1 & \stackrel{\scriptstyle i}{T}U \le 1, \\ 1 & \stackrel{\scriptstyle i}{T}U > 1, \end{cases}$$

求(X,Y)的联合分布律

P4x=-1,Y=-1) # P4x=-1,1Y=-1) P(x=-1, Y=-1)=P(u=-1)= (-1+du=+ P(x=-1)=+ P(x=-1)===

P(x=-1, Y=1) = P(us-1, u>1)= P(p)=0

P(X=1, Y=1) = P(+<UE)]=(:, 女d~=七

P(x=1, Y=1)= P(ロ>1)=(ですれい=す

$$f(x, y) = \begin{cases} ke^{-(2x+y)}, & x > 0, y > 0, \\ 0, & \exists \vec{c}. \end{cases}$$

(1) 求系数k; (2) 条件概率密度 $f_{x|y}(x|y)$; (3) 判断X和Y是否相互独立; (4) 计算概

率 $P\{X < 2|Y < 1\}$: (5) 求 $Z = \min\{X, Y\}$ 的密度函数 $f_{Z}(z)$. 解 (1) 由 「 f(z y) dz dy = 「 for ke^{-2z-y} dz dy = 上 得 k=2.

(2)
$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(zy) dz = \int_{0}^{+\infty} z e^{-2zy} dz = e^{-y}$$
. y_{70} $f_{Y}(y) = \int_{0}^{+\infty} f(zy) dz = \int_{0}^{+\infty} y_{70} dz = e^{-y}$. y_{50}

(1)
$$f_{x}(z) = \int_{-\infty}^{+\infty} f(z, y) dy = \int_{-\infty}^{+\infty} z e^{-2z-y} dy = z e^{2z}$$
, $z = 70$

$$f_{x}(z) = \int_{-\infty}^{+\infty} f(z, y) dy = \int_{-\infty}^{+\infty} z e^{-2z-y} dy = z e^{2z}$$

$$f_{x}(z) = \int_{-\infty}^{+\infty} f(z, y) dy = \int_{-\infty}^{+\infty} z e^{-2z-y} dy = z e^{2z}$$

$$f_{x}(z) = \int_{-\infty}^{+\infty} f(z, y) dy = \int_{-\infty}^{+\infty} z e^{-2z-y} dy = z e^{2z}$$

$$f_{x}(z) = \int_{-\infty}^{+\infty} f(z, y) dy = \int_{-\infty}^{+\infty} z e^{-2z-y} dy = z e^{2z}$$

$$f_{x}(z) = \int_{-\infty}^{+\infty} f(z, y) dy = \int_{-\infty}^{+\infty} z e^{-2z-y} dy = z e^{2z}$$

$$f_{x}(z) = \int_{-\infty}^{+\infty} f(z, y) dy = \int_{-\infty}^{+\infty} z e^{-2z-y} dy = z e^{2z}$$

易见 f(z,y)=fx(z)fy(y) 对-切て,y均成立, 故 x和Y相互独立 可利用独立性信到 (4) $P(x<-1,y<-1) = \frac{P(x<-1,y<-1)}{P(y<-1)} = \frac{\int_0^z dz \int_0^z z^{2x-y} dy}{\int_0^z e^{-y} dy} = \frac{(1-e^{-1})(1-e^{-1})}{1-e^{-1}}$ 天皇中 P(x<-1,y<-1) (5) $F_{2}(z) = I-(1-F_{2}(z))$ (1-Fy(z)) = $\begin{cases} 1-e^{-2z} & z > 0 \\ 0 & z \le 0 \end{cases}$ その こ $F_{2}(z) = I$

5. 设随机变量
$$(X,Y)$$
的概率密度为 $f(x,y) = \begin{cases} be^{-t,Y}, & 0 < x < 1,0 < y < \infty \\ 0, & \text{其他.} \end{cases}$
(1) 确定常数 b . (2)求边缘概率密度函数. (3) 求 $U = \max\{X,Y\}$ 的分布函数. 解 (1) 由 $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$ 得 $\int_{0}^{+\infty} dx \int_{0}^{+\infty} be^{-\frac{t}{2} - t} dy = b(1-e^{-t}) = 1$ 解得 $b = \frac{1}{1-e^{-t}} = \frac{e^{-t}}{e^{-t}}$.
(2) $f_{X}(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-\frac{t}{2} - t} dy = \frac{e^{-t}}{e^{-t}} e^{-\frac{t}{2}}$. $o(x < t)$ 基它 $f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-\frac{t}{2} - t} dx = e^{-\frac{t}{2}}$. $y > 0$ 显然 $x > t$ 和重效立

$$f_{Y}(y) = \int_{-\infty}^{\infty} f(x,y) dx = \int_{0}^{\infty} \frac{e^{-z-y}}{e^{-z}} dx = e^{-y}. \quad y \neq 0$$

$$(3) F_{U}(y) = F_{X}(y) F_{Y}(y) \qquad F_{X}(y) = \int_{-\infty}^{\infty} f_{X}(t) dt = \int_{0}^{\infty} \frac{e^{-z}}{e^{-z}} e^{-z} dt = e^{-z} (1-e^{-z}). \quad o \leq y \leq 1$$

$$F_{Y}(y) = \begin{cases} 1-e^{-x} & y \neq 0 \\ 0 & y \leq 0 \end{cases}$$

$$(1) \frac{e^{-z}}{e^{-z}} (1-e^{-z}) + \frac{e^{-z}}{e^{-z}} (1-e^{-z$$

解(1) アイメファイ)= (fをy)かとdy= ('dを(ましてとy)dy= ('(なーをで)かと=ない

(1) 法一·

$$= \begin{cases} \int_{0}^{2} dz \int_{0}^{2-z} (z-z-y) dy = z^{2} - \frac{1}{3}z^{3} & 0 \le 2 \le 1 \\ 1 - \int_{z-1}^{z} dz \int_{0}^{2-z} (z-z-y) dy = -\frac{1}{3} + 4z + z^{2} + \frac{1}{3}z^{2} & 1 \le 2 \le 2 \end{cases}$$

$$= \begin{cases} 1 - \int_{z-1}^{z} dz \int_{0}^{2-z} (z-z-y) dy = -\frac{1}{3} + 4z + z^{2} + \frac{1}{3}z^{2} & 1 \le 2 \le 2 \end{cases}$$

$$= 272.$$