Contrôle 1

Durée : trois heures

Documents et calculatrices non autorisés

Exercice 1 (2 points)

- 1. Déterminer le développement limité en 0 à l'ordre 2 de $\ln(1+e^x)$.
- 2. Déterminer $\lim_{x \to +\infty} \left(\frac{x}{x-42}\right)^x$.

Exercice 2 (3 points)

- 1. Via la règle de d'Alembert, déterminer la nature de $\sum \frac{(n!)^2}{(2n)!}$
- 2. Via la règle de Cauchy, déterminer la nature de $\sum \frac{2^n}{n^{\ln(n)}}$

Exercice 3 (5,5 points)

Le but de cet exercice est de donner la nature de la série de terme général

$$u_n = (-1)^n n^{\alpha} \left(\ln \left(\frac{n+1}{n-1} \right) \right)^{\beta}$$

où $(\alpha, \beta) \in \mathbb{R}^2$ et $n \in \mathbb{N} \setminus \{0, 1\}$.

1. Montrer que pour tout $n \in \mathbb{N} \setminus \{0, 1\}$, on a

$$\ln\left(\frac{n+1}{n-1}\right) = \ln\left(1 + \frac{1}{n}\right) - \ln\left(1 - \frac{1}{n}\right)$$

2. Montrer que

$$\ln\left(\frac{n+1}{n-1}\right) = \frac{2}{n}\left(1 + \frac{1}{3n^2} + o\left(\frac{1}{n^2}\right)\right)$$

3. En déduire que

$$u_n = (-1)^n \frac{2^{\beta}}{n^{\beta - \alpha}} \left(1 + \frac{\beta}{3n^2} + o\left(\frac{1}{n^2}\right) \right)$$

- 4. Montrer que si $\beta \leqslant \alpha$, la série $\sum u_n$ diverge.
- 5. Etude du cas $\beta > \alpha$.

On a

$$u_n = (-1)^n \frac{2^{\beta}}{n^{\beta-\alpha}} + v_n$$
 avec $v_n = (-1)^n \frac{\beta 2^{\beta}}{3n^{2+\beta-\alpha}} + o\left(\frac{1}{n^{2+\beta-\alpha}}\right)$.

- a. Montrer que $\sum v_n$ est absolument convergente.
- b. Montrer que la série de terme général $w_n=(-1)^n\frac{2^{\beta}}{n^{\beta-\alpha}}$ est convergente.
- c. En déduire la nature de $\sum u_n$.

Exercice 4 (4 points)

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}^*$ par

$$u_n = \frac{1 + (-1)^n \sqrt{n}}{1 + n}$$

- 1. En raisonnant par équivalent, déterminer la nature de $\sum \frac{1}{1+n}$
- 2. En étudiant la fonction $f: x \longmapsto \frac{\sqrt{x}}{1+x}$ sur $[1,+\infty[$, montrer que la suite $\left(\frac{\sqrt{n}}{1+n}\right)$ est décroissante dès que $n \in \mathbb{N}^*$.
- 3. En déduire la nature de $\sum \frac{(-1)^n \sqrt{n}}{1+n}$.
- 4. En déduire la nature de $\sum u_n$.

Exercice 5 (3,5 points)

Soient (u_n) et (v_n) les suites définies pour tout $n \in \mathbb{N}^*$ par

$$u_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}$$
 et $v_n = \frac{(-1)^n}{\sqrt{n}}$

- 1. Déterminer la nature de $\sum u_n$ et $\sum v_n$.
- 2. Montrer que $u_n \sim v_n$.
- 3. Que constatez-vous?

Exercice 6 (2 points)

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}^*$ par

$$u_n = n! \prod_{k=1}^n \sin\left(\frac{a}{k}\right)$$

où $a \in \mathbb{R}_+ \backslash \pi \mathbb{N}$ et $a \neq 1$.

Déterminer la nature de $\sum u_n$.