STAT 620: Asymptotic Statistics

Spring 2022

Lecture: Mar 29

Lecturer: Xianyang Zhang

1 Stochastic process

Let $\{X_t\}_{t\in\mathcal{T}}$ be a collection of real valued random variables. This is a stochastic process indexed by \mathcal{T} .

2 Sub-Gaussian process

Let (\mathcal{T}, ρ) be a metric space. We say $\{X_t\}_{t\in\mathcal{T}}$ is a sub-Gaussian process if:

$$\mathbb{E}[\exp(\lambda(X_s - X_t))] \le \exp\left(\frac{\lambda^2 \rho(s, t)^2}{2}\right) \quad \forall \lambda > 0, s, t \in \mathcal{T}.$$

2.1 Example 1

A Gaussian process is an example of a sub-Gaussian process. To see this, let $\mathcal{T} = \mathbb{R}^d$ and $Z \sim N(0, \sigma^2 I_d)$. Define $X_t = t^\top Z$. Note that $X_t - X_s = (t - s)^\top Z$ has a normal distribution with mean zero and variance $||t - s||^2 \sigma^2$. Therefore, we have

$$E[e^{\lambda(X_t - X_s)}] \le e^{\lambda^2 \sigma^2 ||t - s||^2/2}.$$

2.2 Example 2

Let T be a vector space equipped with a norm $\|\cdot\|$, and X_i be some random variables taking values in \mathcal{X} . Suppose $l: T \times \mathcal{X} \to \mathbb{R}$ is Lipschitz in its first argument, that is

$$|l(t,x) - l(s,x)| \le ||t-s||$$

for all $x \in \mathcal{X}$ and $s, t \in T$. Then for a sequence of i.i.d Rademacher random variables ϵ_i , as $\epsilon_i(l(t, X_i) - l(s, X_i))$ is bounded between $-\|t - s\|$ and $\|t - s\|$, we have

$$E\left[\exp\left(\lambda \sum_{i=1}^{n} \epsilon_{i}(l(t, X_{i}) - l(s, X_{i}))\right)\right] = E\left[E\left[\exp\left(\lambda \sum_{i=1}^{n} \epsilon_{i}(l(t, X_{i}) - l(s, X_{i}))\right) \middle| X_{1}, \dots, X_{n}\right]\right]$$

$$\leq E\left[E\left[\exp\left(\frac{\lambda^{2}}{2} \sum_{i=1}^{n} (l(t, X_{i}) - l(s, X_{i}))^{2}\right) \middle| X_{1}, \dots, X_{n}\right]\right]$$

$$\leq \exp\left(\frac{\lambda^{2} n ||t - s||^{2}}{2}\right).$$

Therefore, $Z_t = \sum_{i=1}^n \epsilon_i l(t, X_i)$ is a sub-Gaussian process with $\rho(s, t) = \sqrt{n} ||s - t||$.

3 Dudley's integral entropy

Let $\{X_t\}_{t\in\mathcal{T}}$ be a ρ -sub-Gaussian separable and mean-zero process. Our goal is to derive an upper bound for the quantity

$$E[\sup_{t\in\mathcal{T}}X_t].$$

The key technique we shall use is the chaining argument.

3.1 Chaining argument

Let $\epsilon_k = 2^{-k}D$, where $D = \sup_{s,t \in \mathcal{T}} \rho(s,t)$ is the diameter of \mathcal{T} . Let $\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2, \ldots$ be a sequence of covers of \mathcal{T} , where \mathcal{T}_k is an ϵ_k -net of \mathcal{T} and $\mathcal{T}_0 = \{t_0\}$ for some $t_0 \in \mathcal{T}$.

Define $\pi_k: \mathcal{T} \to \mathcal{T}_k$ the projetion of the points in \mathcal{T} onto \mathcal{T}_k so that

$$\rho(r, \pi_k(r)) < \epsilon_k$$

for all k and $r \in \mathcal{T}$.

For any $t \in \mathcal{T}_k$, we note that $\pi_k(t) = t$ and $\pi_0(t) = t_0$. Consider the following decomposition

$$X_t - X_{t_0} = \sum_{i=1}^k \left(X_{\pi_i \circ \dots \circ \pi_k(t)} - X_{\pi_{i-1} \circ \pi_i \dots \circ \pi_k(t)} \right)$$

for any $t \in \mathcal{T}_k$. Notice that

$$\max_{t \in \mathcal{T}_k} (X_t - X_{t_0}) \le \sum_{i=1}^k \max_{t \in \mathcal{T}_k} \left(X_{\pi_i \circ \cdots \circ \pi_k(t)} - X_{\pi_{i-1} \circ \pi_i \cdots \circ \pi_k(t)} \right) \le \sum_{i=1}^k \max_{t \in \mathcal{T}_i} \left(X_t - X_{\pi_{i-1}(t)} \right).$$

Here $\max_{t \in \mathcal{T}_i} (X_t - X_{\pi_{i-1}(t)})$ is a finite maximum of $(2^{1-i}D)^2$ -Sub-Gaussian variables. because $\rho(t, \pi_{i-1}(t)) \le 2^{1-i}D$. Recall that for N σ^2 -sub-Gaussian variables, we have

$$E[\max_{1 \le i \le N} Y_i] \le \sqrt{2\sigma^2 \log N}.$$

Thus we have

$$E[\max_{t \in \mathcal{T}_i} \left(X_t - X_{\pi_{i-1}(t)} \right)] \le \sqrt{24^{1-i}D^2 \log |\mathcal{T}_i|}$$

where $|\mathcal{T}_i|$ denotes the cardinality of the set \mathcal{T}_i . Therefore, we get

$$E[\max_{t \in \mathcal{T}_{k}} (X_{t} - X_{t_{0}})] \leq \sum_{i=1}^{k} E[\max_{t \in \mathcal{T}_{i}} (X_{t} - X_{\pi_{i-1}(t)})]$$

$$\leq \sum_{i=1}^{k} \sqrt{24^{1-i}D^{2}\log|\mathcal{T}_{i}|}$$

$$= \sum_{i=1}^{k} \sqrt{2}2D2^{-i}\sqrt{\log N(\mathcal{T}, \rho, D2^{-i})}$$

$$\leq 4\sqrt{2} \sum_{i=1}^{k} \int_{D2^{-(i+1)}}^{D2^{-i}} \sqrt{\log N(\mathcal{T}, \rho, u)} du$$

$$= 4\sqrt{2} \int_{D2^{-(k+1)}}^{D/2} \sqrt{\log N(\mathcal{T}, \rho, u)} du$$

$$\leq 4\sqrt{2} \int_{0}^{D/2} \sqrt{\log N(\mathcal{T}, \rho, u)} du.$$

We further get

$$E[\sup_{t \in \mathcal{T}} X_t] = E[\liminf_k \sup_{t \in \mathcal{T}_k \cup \mathcal{T}_0} (X_t - X_{t_0}) + X_{t_0}]$$

$$\leq \liminf_k E[\sup_{t \in \mathcal{T}_k \cup \mathcal{T}_0} (X_t - X_{t_0})]$$

$$\leq 4\sqrt{2} \int_0^{D/2} \sqrt{\log N(\mathcal{T}, \rho, u)} du.$$

where the first equality follows the separability and the first inequality follows from Fatou's Lemma. To sum up, we obtain

$$E[\sup_{t \in \mathcal{T}} X_t] \le 4\sqrt{2} \int_0^{D/2} \sqrt{\log N(\mathcal{T}, \rho, u)} du.$$