Appello – Parte 1

23/01/2023 — versione 1 —

32 pt - durata 1h 30' - MS Forms

Gli studenti aventi diritto a svolgere la **prova ridotta** del 30% secondo la L.170/2010 (indicazioni **Multichance** team) **NON** svolgono i quesiti contrassegnati con (***)

TEST - 15 pt

1-1 pt

Dati l'insieme dei numeri floating point $\mathbb{F}(2,7,-10,10)$, il numero reale $x=\pi$ e la sua rappresentazione in artimetica floating point $fl(x)\in\mathbb{F}$, si stimi l'errore relativo $\frac{|x-fl(x)|}{|x|}$.

$$7.8125 \cdot 10^{-3} = 2^{-7}$$

2-1 pt (***) No Multichance

Si consideri il seguente algoritmo: dati $A \in \mathbb{R}$, positivo, e $x_0 = A$, si ponga $x_{n+1} = \frac{A}{3(x_n)^2} + \frac{2}{3}x_n$ per $n = 0, 1, 2, \ldots$ Il valore x_n fornisce un'approssimazione di $A^{1/3}$ per n "sufficientemente" grande. Posto A = 216, si riporti il valore x_{10} ottenuto applicando l'algoritmo.

6.1148

3-2 pt (***) No Multichance

Si consideri il metodo di Richardson stazionario precondizionato per risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$, dove $A = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & -2 \\ -1 & -2 & 6 \end{bmatrix}$ e $\mathbf{b} = \mathbf{1}$. Posto il precon-

dizionatore $P=\left[\begin{array}{ccc} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{array}\right]$, si calcoli il valore ottimale del parametro $\alpha_{opt}\in\mathbb{R}$

e lo si utilizzi per determinare l'iterata $\mathbf{x}^{(5)} \in \mathbb{R}^3$ del metodo usando opportunamente la funzione Matlab[®] richardson.m e avendo scelto $\mathbf{x}^{(0)} = \mathbf{0}$. Si riportino $\alpha_{opt} \in \mathbf{x}^{(5)}$.

$$\alpha_{opt} = 1.0947, \, \mathbf{x}^{(5)} = (0.4926 \ 0.5770 \ 0.4309)^T$$

4 — 2 pt

Sia data una matrice $A=\left[\begin{array}{ccc} 5 & -1 & 0 \\ -1 & \theta & 1 \\ 0 & 0 & 3 \end{array}\right]$ dipendente da un parametro $\theta\in\mathbb{R}.$

Si determinino i valori di tale parametro θ per cui il metodo di Jacobi applicato alla soluzione di un sistema lineare $A \mathbf{x} = \mathbf{b}$ converge per ogni scelta dell'iterata iniziale.

$$|\theta| > \frac{1}{5}$$

5 — 2 pt

Si consideri la matrice di Hilbert $A = \mathtt{hilb}(7) \in \mathbb{R}^{7 \times 7}$. Si applichi il metodo delle potenze inverse con shift s = 0.2 per l'approssimazione di $\lambda_2(A)$ a partire dal vettore iniziale $\mathbf{x}^{(0)} = \mathbf{1} \in \mathbb{R}^7$. Si riportino i valori delle approssimazioni $\lambda^{(0)}$, $\lambda^{(1)}$ e $\lambda^{(2)}$ di tale autovalore.

1.3174, 0.2794, 0.2713

6-2 pt (***) No Multichance

Si consideri la matrice $A=\begin{bmatrix} 3 & \theta & 1 \\ -\theta & 1 & 4 \\ 0 & 0 & 9 \end{bmatrix}$ dipendente da un parametro $\theta\in\mathbb{R}$.

Per quali valori di θ è possibile applicare il metodo delle iterazioni QR per il calcolo degli autovalori di A?

$$-1 < \theta < 1$$

7-1 pt

Si consideri la funzione $f(x) = \cos^2(\pi x)$ e il metodo di Newton per l'approssimazione dello zero $\alpha = 0.5$. Scelto $x^{(0)}$ "sufficientemente" vicino ad α , qual è l'ordine di convergenza p atteso per il metodo?

1

8-1 pt

Si consideri il metodo di *Newton modificato* per l'approssimazione dello zero $\alpha = 1$ della funzione $f(x) = (x-1) \log(x)$. Si riporti il valore dell'iterata $x^{(1)}$ ottenuta applicando il metodo a partire da $x^{(0)} = 0.9$.

0.9973

9-1 pt

Si consideri una funzione $\phi \in C^{\infty}(\mathbb{R})$, dotata del punto fisso α tale che $\phi'(\alpha) = 0$, ma $\phi''(\alpha) \neq 0$. Si supponga di approssimare α tramite il metodo delle iterazioni di punto fisso e che all'iterata k-esima sia associato l'errore $\left|x^{(k)} - \alpha\right| = 10^{-1}$. Assumendo che $\left|x^{(k+1)} - \alpha\right| = 10^{-2}$, si riporti il valore stimato dell'errore $\left|x^{(k+2)} - \alpha\right|$. 10^{-4}

10 — 2 pt

Si consideri la funzione di iterazione $\phi(x)=\theta\,x\,(1-x)$ dipendente dal parametro $\theta\in\mathbb{R}$ tale che $\theta>1$ e dotata di due punti fissi $\alpha_1=0$ e $\alpha_2=1-\frac{1}{\theta}$. Per quali valori di $\theta>1$ il metodo delle iterazioni di punto fisso converge ad α_1 e α_2 , scegliendo le iterate iniziali "sufficientemente" vicine rispettivamente ad α_1 e α_2 ?

nessuno, $1 < \theta < 3$

ESERCIZIO - 17 pt

Si consideri il sistema lineare A $\mathbf{x} = \mathbf{b}$, dove $A = \operatorname{tridiag}(-1, 2, -1) \in \mathbb{R}^{n \times n}$ e $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$ per $n \geq 1$. A è matrice tridiagonale, simmetrica e definita positiva.

Punto 1) — 2 pt

Quale metodo diretto utilizzereste per risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$ indicato? Si motivi dettagliatamente la risposta data a confronto di altri metodi diretti in relazione al numero di operazioni e si descriva sinteticamente tale metodo.

Spazio per risposta lunga

Punto 2) — 3 pt (***) No Multichance

Si intende risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$, sapendo che $\mathbf{x} = \mathbf{1}$. Supponiamo che, a causa degli errori di arrotondamento, il vettore \mathbf{b} sia affetto da una perturbazione $\delta \mathbf{b} = 10^{-6} \mathbf{c}$, dove $\mathbf{c} \in \mathbb{R}^n$ è tale che $\|\mathbf{c}\|_2 = 1$, e che si risolva dunque il sistema lineare perturbato $A(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$.

Posto n=1000, si stimi l'errore relativo $\|\delta \mathbf{x}\|_2/\|\mathbf{x}\|_2$ commesso, motivando il risultato alla luce della teoria. Inoltre, si verifichi con Matlab[®] la validità di tale stima commentando il risultato ottenuto. Per la verifica in Matlab[®], si utilizzi il seguente vettore \mathbf{c} :

```
>> c = rand(size(b));
>> c = c./norm(c);
e si risolva il sistema lineare con il comando \ di Matlab<sup>®</sup> .
```

 $err_{stim}=0.2872,\,err_{vero}=0.0025$

Spazio per risposta lunga

Punto 3) — 2 pt

Per la matrice A con n=1000 e il vettore \mathbf{b} assegnato con i dati del Punto 2), si applichi il metodo del gradiente implementato nella funzione Matlab[®] $\mathbf{richardson.m}$ usando la tolleranza sul criterio d'arresto basato sul residuo normalizzato $tol=10^{-2}$, il numero massimo di iterazioni pari a 10^3 e l'iterata iniziale $\mathbf{x}^{(0)}=\mathbf{b}$. Si riportino: i comandi Matlab[®] usati, il numero N di iterazioni effettuate, la prima componente della soluzione approssimata $x_1=\left(\mathbf{x}^{(N)}\right)_1$, il valore del residuo nor-

malizzato
$$r_{norm}^{(N)} = \frac{\|\mathbf{r}^{(N)}\|}{\|\mathbf{b}\|}$$
 e l'errore relativo $e_{rel}^{(N)} = \frac{\|\mathbf{x} - \mathbf{x}^{(N)}\|}{\|\mathbf{x}\|}$.

$$N = 315$$
, $x_1 = 0.9552$, $r_{norm}^{(N)} = 0.01$, $e_{rel}^{(N)} = 0.9802$

Spazio per risposta lunga

Punto 4) — 3 pt

Si ripeta il Punto 3) considerando ora il metodo del gradiente coniugato usando opportunamente la funzione Matlab $^{\circledR}$ pcg.

Inoltre, si confrontino e si discutano i risultati con quelli ottenuti al Punto 3), in particolare in termini delle stime dell'errore dei due metodi

$$N = 98$$
, $x_1 = 0.9898$, $r_{norm}^{(N)} = 0.0099$, $e_{rel}^{(N)} = 0.9315$

Spazio per risposta lunga

Punto 5) — 2 pt

Sempre considerando la matrice A con n=1000, si approssimi l'autovalore $\lambda_{max}(A)$ tramite il metodo delle potenze dirette implementato nella funzione ${\tt eigpower.m.}$ Si consideri la tolleranza $tol=10^{-6}$ sul criterio d'arresto, il numero massimo di iterazioni pari a 10^3 e l'iterata iniziale ${\tt x}^{(0)}={\tt 1}$. Si riportino: i comandi Matlab usati, il numero N di iterazioni effettuate, e le approssimazioni dell'autovalore $\lambda^{(0)}$, $\lambda^{(1)}$ e $\lambda^{(N)}$ così ottenute.

$$N = 867$$
, $\lambda^{(0)} = 0.002$, $\lambda^{(1)} = 2.0$, $\lambda^{(N)} = 3.9965$

Spazio per risposta lunga

Punto 6) - 2 pt (***) No Multichance

Dopo aver svolto il Punto 5), sapendo che il valore esatto dell'autovalore massimo della matrice A è $\lambda_{max} = 2\left(1 + \cos\left(\frac{1}{1001}\pi\right)\right)$ e che l'errore al passo k è $e^{(k)} =$

 $\left|\lambda^{(k)} - \lambda_{max}\right|$, si stimino l'ordine e il fattore di convergenza ottenuti applicando il metodo delle potenze. Si modifichi opportunamente la funzione eigpower.m. Si riportino i comandi Matlab[®] usati e si giustifichi il risultato ottenuto.

1,
$$\lim_{k \to +\infty} \frac{e^{(k+1)}}{e^{(k)}} = 0.9988$$

Spazio per risposta lunga

Punto 7) — 3 pt

Dato un generico sistema di equazioni non lineari $\mathbf{F}(\mathbf{x}) = \mathbf{0}$, dove $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ per $n \geq 1$, si può approssimare lo zero $\boldsymbol{\alpha} \in \mathbb{R}^n$ tramite il metodo di Gauss–Newton descritto nel seguente algoritmo utilizzando la matrice Jacobiana $J_{\mathbf{F}}(\mathbf{x}) \in \mathbb{R}^{n \times n}$ di $\mathbf{F}(\mathbf{x})$.

Algorithm 1: Metodo di Gauss-Newton Dato $\mathbf{x}^{(0)} \in \mathbb{R}^n$; for k = 0, 1, 2, ..., fino a che un criterio d'arresto è soddisfatto do porre $B_k = J_{\mathbf{F}}\left(\mathbf{x}^{(k)}\right)$; risolvere il sistema lineare $\left(B_k^T B_k\right) \boldsymbol{\delta}^{(k)} = -B_k^T \mathbf{F}\left(\mathbf{x}^{(k)}\right)$; $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \boldsymbol{\delta}^{(k)}$; end

Si implementi il precedente algoritmo in una funzione Matlab® gaussnewton.m, dove $\mathbf{x}^{(k)}$ fornisce un'approssimazione di α

Si consideri ora il seguente sistema di equazioni non lineari per n = 1000.

$$\mathbf{F}(\mathbf{x}) = e^{-\mathbf{x}/10} + A\mathbf{x} - \mathbf{1} = \mathbf{0},$$

dove $\mathbf{F}: \mathbb{R}^{1000} \to \mathbb{R}^{1000}$ e la matrice A è stata definita precedentemente. Si approssimi lo zero $\boldsymbol{\alpha} = \mathbf{0} \in \mathbb{R}^{1000}$ usando la funzione Matlab® gaussnewton.m implementata, scegliendo $\mathbf{x}^{(0)} = \mathbf{1} \in \mathbb{R}^{1000}$.

Si riportino i valori della prima componente della prima, seconda e terza iterata, ovvero $(\mathbf{x}^{(1)})_1$, $(\mathbf{x}^{(2)})_1$ e $(\mathbf{x}^{(3)})_1$, ottenute applicando il metodo e i comandi Matlab® usati.

 $0.0029, 0.0012, 6.5510 \cdot 10^{-6}$

Spazio per risposta lunga