

Recap

- What is Machine Learning
- How is it useful for Civil Engineers
- Overview of Machine Learning Methods
- Linear Regression
 - Bivariate
 - Regression interpretation
 - Multivariate
- Logistic Regression
 - Maximum likelihood estimation
 - Regularization (introduction)
- Naïve Bayesian Classifier
 - What is it
 - What makes it naïve
 - · Bayes theorem
 - Prior, likelihood and posterior
- K-Nearest Neighbor
 - How does the algorithm work
 - Why is it a lazy learner
 - How to do regression and classification
- Introduction to Decision Trees
 - Fundamentals
 - Information Gain, Entropy and Gini Index
 - ID3 algorithm
 - Classification and Regression Trees (CART)
 - Multi-Adaptive Regression Splines (MARS)

- Ensemble learners
 - Introduction
- Their benefits and drawbacks
- Simple (voting) ensemble learners
- Bagging and Pasting
- · Generic bagging classifiers
- Random Forest classifiers
- Bagging Classifier
- Unsupervised Learning
 - KNN

Perceptrons
Multilayer Perceptrons
Deep Neural Networks
Time-series modeling
LSTM amd GRU
Image Processing Basics

Python – Introduction

Python – Functions

Python - Pandas

Python – np, scipy, statsmodels

Python – Scikit learn – linear, metrics

Python - Matplotlib, seaborn

Python - Mixed_Naive_Bayes

Python – scikit learn neighbors module

Python – scikit learn ensemble voting

Python – scikit learn bagging classifier

Python – scikit learn RandomForestClassifer

R – Classification and Regression Trees using rpart

R – Drawing trees using rpart.plot

R - Multiadaptive Regression Splines (MARS) using Earth Algorithm

Convolution Neural Networks

What are CNNs

- Convolution Neural Networks are deep learners that are used for image processing tasks
 - Image classification
- They are built by modeling the visual cortex of the brain
- They assign importance to various parts of an image and learn to identify and distinguish one part from another
 - Importance is assigned using weights and biases
- They offer greater flexability and lower preprocessing for image classification

Visual Cortex

- Responsible for recognizing visual stimuli by the human brain
- Each neural in the visual cortex is responsible to only learn a small feature of the overall picture
 - This small portion is referred to as perceptive field
 - Some only are able to distinguish hortizontal lines and others only vertical
- A series of overlapping neurons are then used to complete the entire image

CNN Architecture

Convolution Layer (Kernel)

 Uses a convolution operation with a filter the image

- The filter moves sequentially across the image in discrete steps
 - Stride is the step size

$$K = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 Filter Stride = 1

Convolution Layer

 When an image has multiple bands convolution is applied over each band and the results aggregated into a single band

Convolution Layer - Padding

- Same Padding Convolution is carried out by padding the image
 - Extend the image by adding pixels along the boundary
 - Results in a convoluted image that the same dimensions as the original image
- Valid Padding Convolution is carried out by not padding the original image
 - No addition of pixels
 - Results in a convoluted image that has the same size as the filter dimension

Padded cells always have zero values

Convolution Layers - Purpose

- There can be more than one Convolution layer within the model
- The purpose of the convolution layers is to extract some portion of information about the image
- Lower level convolution layers typically extract lower level features
 - Edges, color, gradient
- Higher level convolution layers extract high dimensional features
 - Shapes, boundaries within an image

Pooling Layer - Purpose

- Reduces the spatial size of the image
 - Reduce the amount of computations
 - Extract dominant features while maintaining rotational and positional invariant
 - Very similar to the functionality of Principal Component Analysis
- Pooling helps remove (or at least reduce) noise from the dataset
 - Enhance the information (signal)

Pooling Types

- There are two pooling types
 - Average Pooling
 - Max Pooling
- Average Pooling takes the average value over the dimension of the kernel
- Maximum Pooling takes the maximum value over the dimension of the kernel

Fully Connected Layer

- The final portion of the CNN is a fully connected Feedforward Neural Network
 - MLP
- This layer learns nonlinear relationships in the transformed space
 - Space transformed by earlier convolution and pooled layers
- The image has to be flattened to 1D array before being sent out to the fully connected layer
- Use an activation function to perform classification?
 - Logistic or Softmax

You should know

- What are convolution neural networks
- What can it be used for and why?
- What is a kernel and a stride?
- What is a convolution layer
 - What is it's purpose?
 - How does it work?
- What is a pooling layer
 - What is it's purpose?
- What is the purpose of the Fully Connected Layer?