

IIC2223 — Teoría de Autómatas y Lenguajes Formales — 2' 2020

PAUTA CONTROL 2

Pregunta 1

Pregunta 1.1

Una posible solución es definir la gramática $\mathcal{G} = (V, \Sigma, P, S)$ con $\Sigma = \{a, b\}, V = \{X, Y, S\}$ con las siguientes producciones:

$$\begin{array}{ll} S & \rightarrow & YS \,|\, \varepsilon \\ X & \rightarrow & aXa \,|\, bXb \,|\, a \,|\, b \,|\, \varepsilon \\ Y & \rightarrow & aXa \,|\, bXb \end{array}$$

y explicar la correctitud de esta gramática. Dado lo anterior, la distribución de puntaje es la siguiente:

- (1 punto) Por definir bien X, es decir la producción asociada a los palíndromos comunes.
- (1 punto) Por definir la variable inicial tal que genere la clausura de Kleene.
- (0.5 puntos) Por definir bien Y o la producción que asegure la no trivialidad de los palíndromos.
- (0.5 puntos) Por explicar la correctitud de la gramática.

Pregunta 1.2

Una posible solución es usar el lema de bombeo con $w = \underbrace{a}_x \underbrace{b^N}_y \underbrace{ab^N a}_z$. Luego dada una división arbitraria para y:

$$b^n b^m b^l = b^N$$

Bombeamos a^m con i=2 nos queda $w'=ab^{N+m}ab^Na$ y podemos notar que no es un palindrome ni es una concatenación de palindromes.

Dado lo anterior, la distribución de puntaje es la siguiente:

- (1.5 puntos) Por elegir de manera correcta la palabra a bombear con sus subdivisiones correspondientes.
- (1 punto) Por bombear correctamente.
- (0.5 puntos) Por usar el lema de bombeo correctamente.

Pregunta 2

Pregunta 2.1

Dado que $\mathcal{L}(\mathcal{G})$ es un lenguaje finito, podemos enumerar las palabras pertenecientes al lenguaje, $\mathcal{L}(\mathcal{G}) = \{w_1, w_2, ..., w_n\}$. Luego, sea $\mathcal{G}' = (\{S'\}, \Sigma, P', S')$, tal que $S' \to w_i \in P'$ para todo $w_i \in \mathcal{L}(\mathcal{G})$. Es fácil ver que $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}')$ ya que $w \in \mathcal{L}(\mathcal{G})$ si, y solo si, $S' \to w \in P'$ si, y solo si, $w \in \mathcal{L}(\mathcal{G})'$. Finalmente \mathcal{G}' es una gramática con una sola variable y cumple que $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}')$.

Dado lo anterior, la distribución de puntaje es la siguiente:

- (0.5 puntos) Por una correcta utilización de que el lenguaje $\mathcal{L}(\mathcal{G})$ es finito.
- (2 puntos) Por dar una contrucción correcta de \mathcal{G}' .
- (0.5 puntos) Por demostrar que $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}')$.

Pregunta 2.2

Sea $V_{\infty} = \{X \in V \mid \mathcal{L}(X) \text{ es infinito}\}\ y\ V_{<\infty} = \{X \in V \mid \mathcal{L}(X) \text{ es finito}\}\$. Dado que $\mathcal{L}(\mathcal{G})$ es infinito, $\mathcal{L}(S)$ también lo es, por lo tanto, podemos concluir que $V_{\infty} \neq \emptyset$.

Sea $\mathcal{G}' = (V_{\infty}, \Sigma, P', S)$ tal que para cada regla de la forma $X \to \alpha_0 X_1 \alpha_1 X_2 ... X_k \alpha_k \in P$, con $X \in V_{\infty}, \alpha_i \in \{V_{\infty} \cup \Sigma\}^*, X_j \in V_{<\infty} i \in \{0, 1, ..., k\}$, agregamos una regla $X \to \alpha_0 w_1 \alpha_1 ... w_k \alpha_k \in P'$ para todo $w_j \in \mathcal{L}(X_j)$. Cabe destacar en esta definición de P', que cuando $k = 0, X \to \alpha_0$, con $\alpha_0 \in \{V_{\infty} \cup \Sigma\}^*$ pertenecen a P', por lo que las reglas que no involucran a las variables de lenguaje finito que pertenecen a P, también lo están en P'.

Ahora demostraremos que el lenguaje de cada variable $X \in V_{\infty}$ es igual con respecto a cada gramática, es decir $\mathcal{L}_{\mathcal{G}}(X) = \mathcal{L}_{\mathcal{G}'}(X)$.

■ Por demostrar $\mathcal{L}_{\mathcal{G}}(X) \subseteq \mathcal{L}_{\mathcal{G}'}(X)$. Sabemos que $w \in \mathcal{L}_{\mathcal{G}}(X) \to X \Rightarrow_{\mathcal{G}}^* w$ Por inducción sobre el largo de la derivación.

Caso base. Para una derivación de largo $1 X \Rightarrow_{\mathcal{G}} w$ entonces $X \to w \in P$ y, por lo tanto, $X \to w \in P'$. De acá podemos deducir que $X \Rightarrow_{\mathcal{G}'} w$ y $w \in \mathcal{L}_{\mathcal{G}'}(X)$.

Inducción. Suponemos que para todo $w \in \mathcal{L}_{\mathcal{G}}(X)$ tal que $X \Rightarrow_{\mathcal{G}}^* w$ con una derivación de largo menor o igual a n, entonces $w \in \mathcal{L}_{\mathcal{G}'}(X)$.

Demostraremos que para todo $w \in \mathcal{L}_{\mathcal{G}}(X)$ tal que $X \Rightarrow_{\mathcal{G}}^* w$ con una derivación de largo igual a n+1, entonces $w \in \mathcal{L}_{\mathcal{G}'}(X)$. Sea $w \in \mathcal{L}_{\mathcal{G}}(X)$ tal que $X \Rightarrow_{\mathcal{G}}^* w$ con una derivación de largo igual a n+1. Entonces $X \Rightarrow_{\mathcal{G}} \beta \Rightarrow_{\mathcal{G}}^* w$ con $\beta \in \{V \cup \Sigma\}$ y $\beta \Rightarrow_{\mathcal{G}}^* w$ es una derivación de largo n.

Se pueden dar dos casos:

- 1. Si $\beta \in \{V_{\infty} \cup \Sigma\}$, entonces $X \to \beta \in P'$ y tenemos que $X \Rightarrow_{\mathcal{G}'} \beta$. Luego, por hipótesis de inducción $X \Rightarrow_{\mathcal{G}'} \beta \Rightarrow_{\mathcal{G}'}^* w$ y $w \in \mathcal{L}_{\mathcal{G}'}(X)$.
- 2. Si $\beta = \beta_0 X_1 \beta_1 ... X_m \beta_m$ con cada $X_j \in V_{<\infty}$ (es decir β tiene al menos una variable perteneciente a $V_{<\infty}$), entonces por construcción de \mathcal{G}' , $X \to \beta_0 w_1 \beta_1 ... w_m \beta_m \in P'$ con cada $w_i \in \mathcal{L}(X_i)$. Por lo tanto $X \Rightarrow_{\mathcal{G}'} \beta_0 w_1 \beta_1 ... w_m \beta_m \in P'$ para cada $w_i \in \mathcal{L}(X_i)$. Por hipótesis de inducción $X \Rightarrow_{\mathcal{G}'}^* w$ y concluimos que $w \in \mathcal{L}_{\mathcal{G}'}(X)$.

Finalmente, $\mathcal{L}_{\mathcal{G}}(X) \subseteq \mathcal{L}_{\mathcal{G}'}(X)$.

■ Por demostrar $\mathcal{L}_{\mathcal{G}'}(X) \subseteq \mathcal{L}_{\mathcal{G}}(X)$. Sabemos que $w \in \mathcal{L}_{\mathcal{G}'}(X)$ y entonces $X \Rightarrow_{\mathcal{G}'}^* w$. De nuevo, por inducción sobre el largo de la derivación:

Caso base. Para una derivación de largo 1 sabemos que $X \Rightarrow_{\mathcal{G}'} w$ con $X \to w \in P'$. Pueden ocurrir dos casos:

- 1. Si $X \to w \in P$, entonces $X \Rightarrow_{\mathcal{G}} w \ y \ w \in \mathcal{L}_{\mathcal{G}}(X)$.
- 2. Si $X \to w \notin P$, por construcción de \mathcal{G}' , $X \to \beta_0 X_1 \beta_1 ... X_m \beta_m \in P$ con cada $X_j \in V_{<\infty}$ y $\beta_0 X_1 \beta_1 ... X_m \beta_m \Rightarrow_{\mathcal{G}}^* w$. Por lo tanto $X \Rightarrow_{\mathcal{G}}^* w$ y $w \in \mathcal{L}_{\mathcal{G}}(X)$.

Inducción. Suponemos que para todo $w \in \mathcal{L}_{\mathcal{G}'}(X)$ tal que $X \Rightarrow_{\mathcal{G}'}^* w$ con una derivación de largo menor o igual a n, entonces se cumple que $w \in \mathcal{L}_{\mathcal{G}}(X)$. Demostraremos que para todo $w \in \mathcal{L}_{\mathcal{G}'}(X)$ tal que $X \Rightarrow_{\mathcal{G}'}^* w$ con una derivación de largo igual a n + 1, entonces $w \in \mathcal{L}_{\mathcal{G}}(X)$.

Sea $w \in \mathcal{L}_{\mathcal{G}'}(X)$ tal que $X \Rightarrow_{\mathcal{G}'}^* w$ con una derivación de largo igual a n+1. Entonces $X \Rightarrow_{\mathcal{G}'} \beta \Rightarrow_{\mathcal{G}'}^* w$ con $\beta \in \{V_{\infty} \cup \Sigma\}$ y $\beta \Rightarrow_{\mathcal{G}'}^* w$ es una derivación de largo n. Acá se pueden dar dos casos:

- 1. Si $X \to \beta \in P$ entonces $X \Rightarrow_{\mathcal{G}} \beta$. Por hipótesis de inducción $X \Rightarrow_{\mathcal{G}} \beta \Rightarrow_{\mathcal{G}}^* w \ y \ w \in \mathcal{L}_{\mathcal{G}}(X)$.
- 2. Si $X \to \beta \notin P$, por construcción de \mathcal{G}' , $X \to \beta_0 X_1 \beta_1 ... X_m \beta_m \in P$ con cada $X_j \in V_{<\infty}$ y $\beta_0 X_1 \beta_1 ... X_m \beta_m \Rightarrow_{\mathcal{G}}^* \beta$. Por hipotesis de inducción $\beta \Rightarrow_{\mathcal{G}}^* w$, por lo tanto $X \Rightarrow_{\mathcal{G}}^* w$ y $w \in \mathcal{L}_{\mathcal{G}}(X)$.

Finalmente, concluimos que $\mathcal{L}_{\mathcal{G}'}(X) \subseteq \mathcal{L}_{\mathcal{G}}(X)$.

De los dos puntos anteriores se concluye que $\mathcal{L}_{\mathcal{G}'}(X) = \mathcal{L}_{\mathcal{G}}(X)$. Más aún, sabemos que para todo $X \in V_{\infty}$ se tiene que $\mathcal{L}(X)$ es infinito, y $\mathcal{L}(\mathcal{G}) = \mathcal{L}_{\mathcal{G}}(S) = \mathcal{L}_{\mathcal{G}'}(S) = \mathcal{L}(\mathcal{G}')$.

Dado lo anterior, la distribución de puntaje es la siguiente:

- (2 punto) Por la construcción de la gramática.
- (0.25 puntos) Por la demostración de que para toda variable perteneciente a la nueva gramática, su lenguaje es infinito.
- (0.25 puntos) Por demostrar que el lenguaje de la nueva gramática es igual al lenguaje de la gramática original.