The UK Biobank Project: adding genome-wide genetic data on 500,000 individuals

Hugh Watkins
The Wellcome Trust Centre for Human Genetics
University of Oxford

Array-based SNP Genotyping

- Genome-wide
- Robust (data generation & analysis), scalable, affordable
- Good for common variant : common disease
- Genotyping <u>all</u> 500,000 participants
 - need the power
 - uniformity desirable
 - allows nested case:control studies

Array-based SNP Genotyping

Funding secured for genotyping all 500,000 participants (UK MRC, NIHR, BHF).

Two phases: First 50,000 participants: UK BiLEVE Study

Next 450,000: UK Biobank led.

Tender process to select genotyping platform, first for UK BiLEVE, the UK Biobank.

Both selected Affymetrix Axiom platform.

Membership of the UK Biobank Array Design Group

Peter Donnelly (chair), University of Oxford Jeff Barrett, Wellcome Trust Sanger Institute Jose Bras, University College London Adam Butterworth, University of Cambridge Richard Durbin, Wellcome Trust Sanger Institute Paul Elliott, Imperial College London Ian Hall, University of Nottingham John Hardy, University College London Mark McCarthy, University of Oxford Gil McVean, University of Oxford Tim Peakman, UK Biobank Nazneen Rahman, The Institute of Cancer Research Nilesh Samani, University of Leicester Martin Tobin, University of Leicester Hugh Watkins, University of Oxford

Design Process

Expert group asked to design the array.

- -> specific sets of SNPs for inclusion on the chip, often with further advice from experts in particular areas.
- -> Affymetrix then used their imputation-aware algorithms to choose additional SNPs to provide good coverage of the genome in selected categories.

UK Biobank Array Content Summary

http://www.ukbiobank.ac.uk/scientists-3/uk-biobank-axiom-array/

Content summary

Search/enquiry options

Non-disclosure agreement etc

How to order more!

UK Biobank Array Content Summary

UK Biobank Axiom® Array Content Summary

Category	Number of markers
Markers of Specific Interest	
Alzheimer's Disease	803
ApoE	1,147
Autoimmune/Inflammatory	258
Blood Phenotypes	2,545
Cancer common variants	343
Cardiometabolic	377
eQTL	17,115
Fingerprint	262
HLA	7,348
KIR	1,546
Lung function phenotypes	8,645
Common mitochondrial DNA variants	180
Neurological disease	19,791
NHGRI GWAS catalog	8,136
Pharmacogenetics/ADME	2,037
Tags for Neanderthal ancestry	11,507
Y chromosome markers	807
Rare variants in cancer predisposition genes	6,543
Rare variants in cardiac disease predisposition genes	1,710
Rare, possibly disease causing, mutations	13,729
CNV regions for developmental delay, neuropsychiatric disorders and lung function	2,369

UK Biobank Array Content Summary

Opportunities

Genotype Imputation

Sample size for UK Biobank offers potential for powerful new imputation methods.

Classical HLA Alleles

Different algorithms also allow imputation of genotypes at the classical HLA loci.

For European ancestry samples, imputation accuracy is good: over 95% at four-digit accuracy.

Exploring changes to the array to increase coverage in other ethnic groups.

Imputation-based coverage of common variation (MAF > 5%).

Left: UK Biobank Array; Right: Array which removes 250,000 SNPs (covering 1-5% variation) from UK Biobank Array and replaces them with SNPs to capture common variation in east Asian and African American samples.

Exploring changes to the array to increase coverage in other ethnic groups.

Imputation-based coverage of low frequency variation 1% < MAF < 5%)

Left: UK Biobank Array; Right: Array which removes 250,000 SNPs (covering 1-5% variation) from UK Biobank Array and replaces them with SNPs to capture common variation in east Asian and African American samples.

Set up timeline

Date	Milestone	Elapsed Time
Fri - Aug-2	UK Biobank Array Content approved	17 calendar days to manufacture first batch of Axiom UK Biobank Array
Mon - Aug-12	Start Sample processing	
Mon - Aug-19	Axiom UK Biobank received in	20 calendar days
Thu- Aug-21	Complete Sample processing Start Data Analysis	to genotype Samples on Axiom UK Biobank Array
Mon- Aug-26	Complete Data Analysis	***************************************

Timelines: primary data generation

Affy target schedule for UK Biobank

100,000 28 Apr 2014

200,000 18 Aug 2014

300,000 08 Dec 2014

450,000 22 Jun 2015 (finish)

Current data received

~98k 19 June 2014

Expecting +25k by month end June 2014

Possible Timelines: to finish QC

First batch of called genotype data for 150k available by the end of 2014

- All called genotype data for 500k by autumn 2015
- Imputation will start autumn 2015 and is expected to be available in 2016

Presentations

ASHG 2014 (QC presentation; Donnelly group)

QC publication

UK Biobank Axiom® Array
Content Summary

Membership of the UK Biobank Array Design Group

Peter Donnelly (chair), University of Oxford
Jeff Barrett, Wellcome Trust Sanger Institute
Jose Bras, University College London
Adam Butterworth, University of Cambridge
Richard Durbin, Wellcome Trust Sanger Institute
Paul Elliott, Imperial College London
Ian Hall, University of Nottingham
John Hardy, University College London
Mark McCarthy, University of Oxford
Gil McVean, University of Oxford
Tim Peakman, UK Biobank
Nazneen Rahman, The Institute of Cancer Research
Nilesh Samani, University of Leicester
Martin Tobin, University of Leicester
Hugh Watkins, University of Oxford

http://www.ukbiobank.ac.uk/scientists-3/uk-biobank-axiom-array/

Deliverables

- Genotype calls
 - Original calls plus:
 - Re-calls (from Affymetrix); ApoE, rare variants, batch effects
 - Failed SNPs set to missing per batch (e.g. Affymetrix fails, plate effect, batch effect)
- Additional QC information e.g.
 - PCA (10 PCs)
 - Related Individuals (1st-3rd degree)
 - Sample QC metrics (e.g. missingness, het. rate)
 - SNP QC metrics (e.g. Call rate, MAF, HWE)
- Intensity data (for cluster plots)
- Documentation (including Use Cases)

Additional

- Archive Affymetrix data (Full set of files; CEL files, original calls etc.)
- Subsets 'European'
 - Self reported ethnicity 'British/Irish/Other White' individuals; PCA cluster defined with Aberrant
 - Useful as controls for UK GWAS studies or studies that require a large homogeneous population
 - e.g. UK BiLEVE used self-reported ethnicity to choose samples
- CNVs Affymetrix calls ?

rs429358, Apo E SNP implicated in Alzheimer's disease Performance profile on UKBioBank Axiom array

- rs429358 historically challenging to genotype with Hybridization-based assay
 - High GC content in flanking sequence (>76% FWD in 80% REV strands)
 - Affymetrix advanced Axiom Probe Design algorithms enabled successful genotyping with specific Axiom probe construct

Colored according to calls on UKBiobank array in 270 CEU, GBR, TSI individuals.

- Call rate: 100%
- Concordance to 1000 Genomes:
 - 100% overall
 - 100% heterozygote concordance

Colored according to 1000 Genomes (phase 1, March 2012)

calls in same individuals

(gray indicates individual not included in 1000 Genomes)

Performance Summary – Early Results

	HapMap CEU (CEPH Collection)	Customer Samples
# Samples	96	96
# Samples Passed	95	95
% Samples Passed	99.0%	99.0%
% Samples Meeting Concentration Specs.	100.0%	100.0%
Avg. Call Rate	99.8%	99.8%
Avg. Reproducibility	99.93% (5 sets)	
Mendelian Inheritance Error	0.045%	-
Avg. Concordance	99.7% (HapMap)	99.8% (HapMap)

Analysis following Affymetrix best practices workflow analysis
 http://www.affymetrix.com/support/downloads/manuals/axiom_best_practice_supplement_user_guide.pdf

3 HapMap controls included on customer plate

Average r ² of all target markers in the specified MAF range					
MAF Range	Population	Axiom UKBB Array	ILMN HCE		
[0.05,0.5]	CEU	0.925	0.869		
[0.01,0.05)	CEU	0.767	0.599		
[0.05,0.5]	GBR	0.917	0.862		
[0.01,0.05)	GBR	0.738	0.581		
[0.05,0.5]	СНВ	0.877	0.838		
[0.01,0.05)	СНВ	0.548	0.477		
[0.05,0.5]	JPT	0.880	0.841		
[0.01,0.05)	JPT	0.543	0.475		
[0.05,0.5]	MXL	0.897	0.851		
[0.01,0.05)	MXL	0.735	0.624		
[0.05,0.5]	YRI	0.812	0.782		
[0.01,0.05)	YRI	0.643	0.599		
[0.05,0.5]	LWK	0.808	0.783		
[0.01,0.05)	LWK	0.636	0.598		
[0.05,0.5]	ASW	0.809	0.774		
[0.01,0.05)	ASW	0.659	0.599		

Genome-wide coverage, via imputation, in different allele frequency ranges, for various populations