Poglavje IV **Relacijsko poizvedovanje**

Formalni poizvedovalni jeziki

- O relacijskih poizvedovalnih jezikih
- Relacijska algebra
- Relacijski račun

O relacijskih poizvedovalnih jezikih

- Relacijska algebra in relacijski račun sta formalna jezika povezana z relacijskim modelom.
 - Relacijska algebra je visokonivojski postopkovni jezik
 - Relacijski račun je nepostopkovni ali deklarativni jezik.
- Zaprta jezika: rezultat vsake operacije nad relacijami je zopet relacija
- Formalno sta ekvivalentna.
- Vsak jezik, s katerim lahko pridobimo relacije, ki jih je moč pridobiti z relacijsko algebro ali računom, je relacijsko popoln (relationally complete).

Relacijska algebra in relacijski račun

- Relacijska algebra
 - osnova za povpraševalne programske jezike (SQL)
 - napredna, zahtevnejša uporaba

Relacijski račun

- osnova za vizualne povpraševalne jezike (query by example - QBE, raznolike implementacije, npr. phpMyAdmin Query, Microsoft Access Query Design Grid)
- enostavna uporaba za manjše naloge
- primerno predvsem za preproste uporabnike

Relacijska algebra...

- Namen relacijskega podatkovnega modela ni samo hranjenje podatkov, ampak tudi operacije nad njimi
- Operacije relacijske algebre se izvedejo na eni ali več relacij, z namenom, da bi pridobili novo relacijo. Pri tem se osnovna relacija ne spremeni.
- Tako operandi kot tudi rezultat so relacije: izhod ene operacije je lahko vhod v drugo.
- Omogoča gnezdenje izrazov tako kot velja za aritmetične izraze.

Operacije nad relacijami – relacijska algebra

- Relacije so množice tradicionalni operatorji: unija ∪, presek ∩, razlika -, kartezični produkt ×
- Posebni relacijski operatorji: selekcija σ , projekcija π , stik \bowtie ali $|\times|$, deljenje /
- Vedno moramo upoštevati, da je relacija množica!
- Element množice je celotna vrstica!

Preprosti SELECT in relacijska algebra

SELECT A1, A2, ..., Ak
FROM T1, T2, ..., Tn
WHERE P;

$$egin{aligned} \pi_{_{A1,A2,...,Ak}}\ T1{ imes}T2{ imes}...{ imes}Tn \ oldsymbol{\sigma}_{_{P}} \end{aligned}$$

$$\pi_{A1,A2,...Ak}(\sigma_{P}(T1{\times}T2{\times}...{\times}Tn))$$

- Rezultat stavka SELECT kot začasna tabela!
- SELECT DISTINCT ali SELECT [ALL]: DISTINCT izloči duplikate iz rezultata; privzeta vrednost ALL jih ohrani!

Večmestni pogojni stik

Enostavne operacije relacijske algebre...

Primer osnovnih relacij

Relacija r:

Relacija s:

Α	В	С	D	Е	F
а	b	С	b	g	а
d	а	f	d	а	f
С	b	d			

- Primerljivost elementov relacij: niso pomembna imena atributov, ampak njihova kompatibilnost (primerljivost)!
- Kdaj sta elementa (vrstici) enaka? Kadar se ujemata v vseh istoležnih atributih!

Projekcija π

- $\Pi_{A1, A2, ..., An}$ (r) ali $\pi_{A1, A2, ..., An}$ (r)
- Deluje na relaciji r; vrne relacijo, ki vsebuje samo tiste atribute (stolpce), ki so našteti.
- Operacija eliminira morebitne podvojene vrstice duplikate - po projekciji dobljena relacije ostane množica.

Projekcija π

Α	В	С
а	b	C
d	а	f
С	b	d

D	Е	F
b	g	а
d	а	f

$\pi_{_{A,R}}(r)$		$\pi_{\mathcal{B}}(r)$
Α	В	В
а	b	b
d	а	а
С	b	-b-

Sintaksa: $\pi_{A1,A2,...Ak}$ - naštejemo atribute

Včasih se lahko zmanjša tudi število vrstic!

Jadralec(<u>jid</u>, ime, rating, starost)
Coln(<u>cid</u>, ime, dolzina, barva)
Rezervacija(<u>jid</u>, cid, dan)

Primer projekcije

- Izpiši imena in dolžine vseh čolnov
- $\Pi_{\text{ime, dolzina}}$ (Coln)

cid	ime	dolzina	barva
101	Elan	34	modra
102	Elan	34	rdeca
103	Sun Odyssey	37	zelena
104	Bavaria	50	rdeca

ime	dolzina
Elan	34
Elan	34
Sun Odyssey	37
Bavaria	50

Selekcija **O**

- \bullet σ_{pogoj} (r)
- Deluje na relaciji r; vrne relacijo, ki vsebuje samo tiste n-terice (vrstice) iz relacije r, ki zadoščajo logičnemu pogoju.

Selekcija **O**

_		
Α	В	С
а	b	С
d	а	f
С	b	d

D	Е
b	g
d	а

$$\sigma_{_{B \lessdot b}}(r)$$

$$\sigma_{8=b\wedge C=d}(r)$$

А	В	С
С	b	d

Sintaksa: $\sigma_P(r)$

Logični pogoj P je lahko poljubno kompleksen, nanaša pa se lahko le na elemente znotraj ene vrstice relacije r!

Jadralec(<u>jid</u>, ime, rating, starost)
Coln(<u>cid</u>, ime, dolzina, barva)

Rezervacija(jid, cid, dan)

Primer selekcije

- Izpiši vse čolne krajše od 40 čevljev
- σ_{dolzina<40} (Coln)

cid	ime	dolzina	barva
101	Elan	34	modra
102	Elan	34	rdeca
103	Sun Odyssey	37	zelena
104	Bavaria	50	rdeca

cid	ime	dolzina	barva
101	Elan	34	modra
102	Elan	34	rdeca
103	Sun Odyssey	37	zelena

Unija

- R ∪ S
- Unija dveh relacij R in S je relacija, ki vsebuje vse n-terice (vrstice) relacije R in relacije S.
- Operacija eliminira duplikate (rezultat je množica!).
- Za smiselnost rezultata se morata operanda R in S domensko in pomensko ujemati po atributih.
 - R(ime: text, EMSO: int)
 ∪ S (priimek: text, starost: int)
- Če ima relacija R I n-teric in relacija S J n-teric, potem njuna unija predstavlja združitev v eno relacijo z največ I+J n-tericami.

Razlika

- R S ali R \ S
- Razlika med relacijama R in S (R-S) vrne relacijo, ki vsebuje samo tiste n-terice (vrstice), ki so v R in jih ni v S.
- Za smiselnost rezultata se morata R in S ujemati po domenah in pomenu atributov.
 - R(ime. text, EMSO. int) S (priimek. text, starost. int)

Presek

- R ∩ S
- Presek med relacijama R in S (R ∩ S) vrne relacijo, ki vsebuje tiste n-terice (vrstice), ki se nahajajo v obeh relacijah.
- Za smiselnost rezultata se morata R in S ujemati po domenah in pomenu atributov.
 - -R(ime: text, EMSO: int) ∩ S (priimek: text, starost: int)
- Presek lahko izpeljemo iz osnovnih operacij:

$$R \cap S = R - (R - S)$$

Unija, presek, razlika

Α	В	С
а	b	С
d	а	f
С	b	d

D	Е	F
b	g	а
d	а	f

Shema rezultata operacije prevzame shemo prve relacije! Vprašanje: Kako poteka primerjava enakosti elementov?

Relacija $r \cup s$:

Relacija $r \cap s$:

G	Н	I	G	Н	I
а	b	С	d	а	f
d	а	f	Relacija r - s:		
С	b	d	G	Н	1
b	g	а	a	b	С
d	а	f	С	b	d

jid	ime	rating	starost
22	Darko	7	45.0
29	Borut	1	33.0
31	Lojze	8	55.5
32	Andrej	8	25.5
58	Rajko	10	35.0
64	Henrik	7	35.0
71	Zdravko	10	16.0
74	Henrik	9	35.0
85	Anze	3	25.5
95	Bine	3	63.5

cid	ime	dolzina	barva
101	Elan	34	modra
102	Elan	34	rdeca
103	Sun Odyssey	37	zelena
104	Bavaria	50	rdeca

Primer unije

Izpiši imena jadralcev in imena čolnov

 Π_{ime} (coln) \cup Π_{ime} (jadralec)

ime
Bine
Darko
Bavaria
Andrej
Borut
Lojze
Sun Odyssey
Zdravko
Henrik
Rajko
Elan
Anze

jid	ime	rating	starost
22	Darko	7	45.0
29	Borut	1	33.0
31	Lojze	8	55.5
32	Andrej	8	25.5
58	Rajko	10	35.0
64	Henrik	7	35.0
71	Zdravko	10	16.0
74	Henrik	9	35.0
85	Anze	3	25.5
95	Bine	3	63.5

cid	ime	dolzina	barva
101	Elan	34	modra
102	Elan	34	rdeca
103	Sun Odyssey	37	zelena
104	Bavaria	50	rdeca

Primer preseka

Izpiši imena čolnov, ki se imenujejo enako kot jadralci Π_{ime} (coln) \cap Π_{ime} (jadralec)

ime

jid	ime	rating	starost
22	Darko	7	45.0
29	Borut	1	33.0
31	Lojze	8	55.5
32	Andrej	8	25.5
58	Rajko	10	35.0
64	Henrik	7	35.0
71	Zdravko	10	16.0
74	Henrik	9	35.0
85	Anze	3	25.5
95	Bine	3	63.5

cid	ime	dolzina	barva
101	Elan	34	modra
102	Elan	34	rdeca
103	Sun Odyssey	37	zelena
104	Bavaria	50	rdeca

Primer preseka

Izpiši imena čolnov, ki se ne imenujejo enako kot jadralci Π_{ime} (coln) – Π_{ime} (jadralec)

ime
Sun Odyssey
Elan
Bavaria

Kartezični produkt

Α	В	С
а	b	С
d	а	f
С	b	d

E	F
g	а
а	f

Relacija r × s:

А	В	С	D	E	F
а	b	С	b	g	а
d	а	f	b	g	а
С	b	d	b	g	а
а	b	С	d	а	f
d	а	f	d	а	f
С	b	d	d	а	f

Primer kartezičnega produkta

- Izpiši imena jadralcev, ki se pojavljajo v rezervacijah
- Π_{ime} (jadralec × rezervacija)

jid	cid	dan
22	101	2006-10-10
22	102	2006-10-10
22	103	2006-10-08
22	104	2006-10-07
31	102	2006-11-10
31	103	2006-11-06
31	104	2006-11-12
64	101	2006-09-05
64	102	2006-09-08
74	103	2006-09-08

jid	ime	rating	starost
22	Darko	7	45.0
29	Borut	1	33.0
31	Lojze	8	55.5
32	Andrej	8	25.5
58	Rajko	10	35.0
64	Henrik	7	35.0
71	Zdravko	10	16.0
74	Henrik	9	35.0
85	Anze	3	25.5
95	Bine	3	63.5

PODATKOVNE BAZE

- 173 -

.....

Kartezični produkt s selekcijo

- S selekcijo lahko omejimo kartezični produkt
- Izpiši imena jadralcev, ki se pojavljajo v rezervacijah, kjer je šifra jadralca v relaciji rezervacija enaka šifri jadralca v relaciji jadralec

$$\Pi_{\text{ime}}(\sigma_{\text{jadralec.jid} = \text{rezervacija.jid}}(\text{jadralec} \times \text{rezervacija}))$$

Primer kartezičnega produkta s selekcijo

 $\Pi_{\text{ime}} \left(\sigma_{\text{jadralec.jid}} = \text{rezervacija.jid} \right)$ $\left(\text{jadralec} \times \text{rezervacija} \right)$

jid	cid	dan
22	101	2006-10-10
22	102	2006-10-10
22	103	2006-10-08
22	104	2006-10-07
31	102	2006-11-10
31	103	2006-11-06
31	104	2006-11-12
64	101	2006-09-05
64	102	2006-09-08
74	103	2006-09-08

jid	ime	rating	starost
22	Darko	7	45.0
29	Borut	1	33.0
31	Lojze	8	55.5
32	Andrej	8	25.5
58	Rajko	10	35.0
64	Henrik	7	35.0
71	Zdravko	10	16.0
74	Henrik	9	35.0
85	Anze	3	25.5
95	Bine	3	63.5

ime	
Lojze	
Darko	
Henrik	

Stične operacije...

- Kartezični produkt s selekcijo je osnovna operacija za povezovanje relacij (tabel).
- Kartezični produkt s selekcijo združimo v eno operacijo, ki jo imenujemo stik.
- Stik je ena najbolj časovno kompleksnih operacij s stališča implementacije v relacijskih SUPB; eden ključnih "krivcev" za probleme z učinkovitostjo.
- Stične operacije so asociativne (kot kartezični produkt).

Stične operacije...

- S stičnimi operacijami implementiramo logične (fizično neodvisne) povezave med podatki (primerjajte s hierarhičnim in mrežnim modelom)
- Obstaja več vrst stičnih operacij:
 - Najbolj splošen je pogojni (theta) stik (join)
 - Ekvistik (equijoin) poseben primer pogojnega stika
 - Naravni stik (natural join) je poseben primer ekvistika
 - Odprti (zunanji) stik (outer join)
 - Delni stik, polstik (semijoin)

Pogojni stik (θ stik)...

- R ⋈_p S
- Pogojni stik med relacijama R in S vrne n-terice (vrstice), ki zadoščajo pogoju P kartezičnega produkta R in S.
- Pogoj P je sestavljen iz izrazov R.A_i <OP> S.B_j, kjer je <OP> poljuben primerjalni operator:

povezanih z logičnimi operatorji:

$$\wedge_{\prime} \vee_{\prime} \neg$$

Pogoj P je načeloma lahko poljubno kompleksen.

Pogojni stik (θ stik)

Pogojni stik definiramo s pomočjo selekcije in kartezičnega produkta:

$$R \bowtie_{P} S = R \mid \times \mid_{P} S \equiv \sigma_{P}(R \times S)$$

 Stopnja (število atributov) rezultata pogojnega stika je seštevek stopenj operandov (npr. relacij R in S).

Pogojni (theta) stik

$$r \mid \underset{\theta}{\times} \mid s = r \mid \underset{P}{\times} \mid s \equiv \sigma_{P}(r \times s)$$

- Alternativna sintaksa: | × | ali ⋈
- | × | kot kartezični produkt, omejen s pogojem

Pogojni stik (1. korak)

Α	В	С
а	b	С
d	а	f
С	b	d

$$r \left| \mathbf{x} \right| s =$$

А	В	С	D	E	F
а	b	С	b	g	а
d	а	f	b	g	а
С	b	d	b	g	а
а	b	С	d	а	f
d	а	f	d	а	f
С	b	d	d	а	f

Pogojni stik (2. korak)

Α	В	С
а	b	C
d	а	f
С	b	d

D	Е	F
b	g	а
d	а	f
	,	

$$r \left| \mathbf{X} \right| \mathbf{S} = \mathbf{S} = \mathbf{S} = \mathbf{S}$$

А	В	С	D	Е	F
а	b	С	b	g	а
d		f	h	~	
5	a	•	b	9	- a -
С	b	d	b	g	а
а	b	С	d	а	f
	_	£	J		<u> </u>
u	а		u	а	
C	b	d	d	а	f
				_	•

Pogojni stik (rezultat)

Α	В	С
а	b	С
d	а	f
С	b	d

D	Е	F
b	g	а
d	а	f

$$r \left| \mathbf{x} \right| \mathbf{s} = \mathbf{s}$$

Α	В	С	D	Е	F
а	b	С	b	g	а
С	b	d	b	g	а
а	b	С	d	а	f

Ekvistik in naravni stik

- Če pogoj P vsebuje zgolj enakosti (=), gre za ekvistik. Ekvistik je najpogostejši pogojni stik.
- Naravni stik: je ekvistik po vseh istoimenskih atributih. Naravni stik je najpogostejši ekvistik.
 - Oznaka brez pogoja P: | x | ali ⋈
 - Ker je nekaj atributov po naravnem stiku odveč, jih izločimo (projekcija na različne atribute)
 - Zakaj so odveč?

Primer ekvistika

 Π_{ime} (jadralec \bowtie_{jid} rezervacija)

jid	cid	dan
22	101	2006-10-10
22	102	2006-10-10
22	103	2006-10-08
22	104	2006-10-07
31	102	2006-11-10
31	103	2006-11-06
31	104	2006-11-12
64	101	2006-09-05
64	102	2006-09-08
74	103	2006-09-08

jid	ime	rating	starost
22	Darko	7	45.0
29	Borut	1	33.0
31	Lojze	8	55.5
32	Andrej	8	25.5
58	Rajko	10	35.0
64	Henrik	7	35.0
71	Zdravko	10	16.0
74	Henrik	9	35.0
85	Anze	3	25.5
95	Bine	3	63.5

ime	
Lojze	
Darko	
Henrik	

Naravni stik

- R ⋈ S
- Naravni stik relacij R in S je posebna vrsta ekvistika preko vseh skupnih (istoimenskih) atributov relacij R in S.
- Pazite na pomen skupnih (istoimenskih) atributov:
 npr. ime (človeka, mesta, psa, avta, ...)
- Pri vsakem naravnem stiku se vzame le po en primerek skupnega atributa.

Naravni stik (1. korak)

Implicitni pogoj: r.B=s.B ∧ r.C=s.C

Naravni stik (2. korak)

Naravni stik (3. korak)

Primer naravnega stika

 Π_{ime} (jadralec \bowtie rezervacija)

jid	cid	dan
22	101	2006-10-10
22	102	2006-10-10
22	103	2006-10-08
22	104	2006-10-07
31	102	2006-11-10
31	103	2006-11-06
31	104	2006-11-12
64	101	2006-09-05
64	102	2006-09-08
74 ATKOVNE BAZ	103	2006-09-08

jid	ime	rating	starost
22	Darko	7	45.0
29	Borut	1	33.0
31	Lojze	8	55.5
32	Andrej	8	25.5
58	Rajko	10	35.0
64	Henrik	7	35.0
71	Zdravko	10	16.0
74	Henrik	9	35.0
85	Anze	3	25.5
95	Bine	3	63.5

ime	
Lojze	
Darko	
Henrik	

PODATKOVNE BAZ

Zunanji (odprti) stik

- Zunanji stik nam omogoča, da prikažemo tudi nterice (vrstice), ki nimajo definirane vrednosti v stičnih atributih (stolpcih).
- Nedefinirane vrednosti stičnih atributov ostanejo prazne (oznaka NULL v SQL terminologiji)

PODATKOVNE BAZE

Zunanji (odprti) stik

- Ločimo levo odprti (R×S) in desno odprti (R×S) stik.
- Levo odprti stik med relacijama R in S je stik, kjer so vključene v rezultat tudi n-terice relacije R, ki nimajo para v S z enakimi stičnimi atributi.
- Desno odprti stik med relacijama R in S je stik, kjer so vključene v rezultat tudi n-terice relacije S, ki nimajo para v R z enakimi stičnimi atributi.

PODATKOVNE BAZE

Primer zunanjega stika

- Izpiši imena jadralcev in šifre čolnov, ki so jih rezervirali
- $\Pi_{\text{ime, cid}}$ (jadralec \rtimes rezervacija)

ime	cid
Darko	101
Darko	102
Darko	103
Darko	104
Lojze	102
Lojze	103
Lojze	104
Henrik	101
Henrik	102
Henrik	103
Zdravko	
Anze	
Andrej	
Bine	
Borut	
Rajko	

Za primerjavo: naravni stik

- Izpiši imena jadralcev in šifre čolnov, ki so jih rezervirali
- $\Pi_{\text{ime, cid}}$ (jadralec \bowtie rezervacija)

cid
101
102
103
104
102
103
104
101
102
103

Delni stik (polstik)

- Delni stik predstavlja relacijo, ki vsebuje tiste nterice (vrstice) relacije R, ki nastopajo v pogojnem stiku z relacijo S.
- Delni stik lahko zapišemo s pomočjo stika in projekcije na atribute leve (A_R) ali desne (A_S) relacije.
- Levi delni stik: $R \triangleright_P S = \prod_{A_R} (R \bowtie_P S)$
- Desni delni stik: $R \triangleleft_P S = \Pi_{A_S}(R \bowtie_P S)$

Primer delnega stika

 Izpiši vse podrobnosti o jadralcih, ki so rezervirali čoln s šifro 101

jadralec
$$\triangleright_{jadralec.jid} = rezervacija.jid$$
 $\sigma_{cid=101}$ (rezervacija)

 Ponavadi delni stik v SQL ni eksplicitno implementiran

id	ime	rating	starost
22	Darko	7	45.0
22	Darko	7	45.0
22	Darko	7	45.0
22	Darko	7	45.0
31	Lojze	8	55.5
31	Lojze	8	55.5
31	Lojze	8	55.5
64	Henrik	7	35.0
64	Henrik	7	35.0
74	Henrik	9	35.0

PODATKOVNE BAZE

- 197 -

Večmestni pogojni stik

- Pogojni stik več kot dveh relacij
- Prefiksna oblika:

$$\bowtie_{P} (R_{1}, R_{2}, R_{3}, ..., R_{k}) =$$

$$= \mathbf{O}_{P}(R_1 \times R_2 \times R_3 \times ... \times R_k) =$$

$$= R_1 \bowtie_{P_1} R_2 \bowtie_{P_2} R_3 \bowtie_{P_3} ... \bowtie_{P_{k-1}} R_k$$
kadar velja

$$P = P_1 \wedge P_2 \wedge P_3 \wedge ... \wedge P_{k-1}$$

Primer večmestnega pogojnega stika

- Izpiši imena jadralcev in čolnov, ki so jih rezervirali.
- Večmestni stik:

Zaporedje dvomestnih stikov

 $\prod_{\text{jadralec.ime, coln.ime}} (\text{jadralec} \bowtie_{\text{jid}} \text{rezervacija} \bowtie_{\text{cid}} \text{coln})$

Količnik

- R / S
- Količnik med relacijama R in S vrne relacijo z atributi C, ki jo sestavljajo tiste n-terice (vrstice) iz R, ki se nahajajo poleg vseh n-teric v S.
- Količnik T = R/S lahko izrazimo z osnovnimi operacijami:

$$T1 \leftarrow \Pi_{C}(R)$$

$$T2 \leftarrow \Pi_{C}((S \times T_{1}) - R)$$

$$T \leftarrow T_{1} - T_{2}$$

PODATKOVNE BAZE

Primer količnika

Izpiši šifre jadralcev, ki so rezervirali vse čolne.
 {jid, cid} / {cid}

• $(\Pi_{\text{jid, cid}} \text{ (rezervacija)}) / \Pi_{\text{cid}} \text{ (coln)}$

jid	
22	

jid	cid	dan
22	101	2006-10-10
22	102	2006-10-10
22	103	2006-10-08
22	104	2006-10-07
31	102	2006-11-10
31	103	2006-11-06
31	104	2006-11-12
64	101	2006-09-05
64	102	2006-09-08
74	103	2006-09-08

cid	ime	dolzina	barva
101	Elan	34	modra
102	Elan	34	rdeca
103	Sun Odyssey	37	zelena
104	Bavaria	50	rdeca

- 201 -

Razumevanje relacijske algebre

Jadralec(<u>jid</u>, ime, rating, starost)
Coln(<u>cid</u>, ime, dolzina, barva)
Rezervacija(<u>jid</u>, cid, dan)

Opiši relacije, ki jih pridobimo z naslednjimi operacijami relacijske algebre:

- a) $\Pi_{ime}(Coln)$
- b) $\Pi_{\text{coln.ime}}(\sigma_{\text{Coln.cid}=\text{Rezervacija.cid}}(\text{Coln} \times \text{Rezervacija}))$
- c) $\Pi_{coln.barva}(Rezervacija \bowtie_{Rezervacija.cid} = Coln.cid}(\sigma_{dolzina > 30}(Coln)))$
- d) $\Pi_{Jadralec.ime,Coln.ime}$ (Jadralec \bowtie Rezervacija \bowtie Coln)
- e) $\Pi_{ladralec.ime}$ (Jadralec \rtimes ($\sigma_{dan \geq '1.11.2006'}$ (Rezervacija)))

Projekcija

Jadralec(<u>jid</u>, ime, rating, starost)
Coln(<u>cid</u>, ime, dolzina, barva)
Rezervacija(jid, cid, dan)

- Poišči (izpiši) šifre in imena vseh jadralcev:
- Poišči barve vseh čolnov

$$\pi_{\mathit{pd,tme}}(\mathsf{jadralec})$$

$$\pi_{barw}(\cosh)$$

Selekcija

Jadralec(<u>jid</u>, ime, rating, starost)
Coln(<u>cid</u>, ime, dolzina, barva)
Rezervacija(<u>jid</u>, cid, dan)

- Poišči (izpiši) šifre in imena vseh jadralcev, starejsih od 50 let:
- Poišči barve vseh čolnov krajših od 40 čevljev

$$\pi_{\textit{fid.ime}}(\sigma_{\textit{startest}>50}(\text{jadralee}))$$

$$\pi_{barva}(\sigma_{dolzina<40}(\mathrm{coln}))$$

Stik

Jadralec(<u>jid</u>, ime, rating, starost)
Coln(<u>cid</u>, ime, dolzina, barva)
Rezervacija(<u>jid</u>, cid, dan)

 Poišči vse pare imen jadralcev in čolnov, kjer je jadralec rezerviral čoln

- Kaj je narobe:
 - Kam spada katero ime?
 - Kakšni so pogoji obeh naravnih stikov (asociativnost!)

jadralee |×| rezervacija |×| coln –

- (jadralee |×| rezervacija) |×| coln –

= jadralee |×| (rezervacija |×| coln)

rezervacija.cid=coln.cid

jadralec.jid=rezervacija.jid ∧ jadralec.ime=coln.ime

Stik

Jadralec(<u>jid</u>, ime, rating, starost)
Coln(<u>cid</u>, ime, dolzina, barva)
Rezervacija(<u>jid</u>, cid, dan)

 Poišči vse pare imen jadralcev in čolnov, kjer je jadralec rezerviral ustrezen čoln

$$\pi_{\text{polyment}}(\text{jadralec} \quad |\times| \quad \text{rezervacija} \quad |\times| \quad \text{colm})$$

$$\pi_{\substack{\text{poisson}\\\text{colorino}}}$$
 (jadralec | \times | rezervacija | \times | color)

 Poišči vse pare imen jadralcev in čolnov, kjer je jadralec starejši od 50 let rezerviral ustrezen čoln

$$\pi_{\text{potential}}(\sigma_{\text{manifold}}(\text{jadralec}) + \underset{red}{\times} ||\text{rezervacija}||_{red}^{\times} ||\text{coln}||_{red}^{\times}$$