Datenstrukturen und effiziente Algorithmen

Markus Vieth

David Klopp

19. Januar 2016

Inhaltsverzeichnis

1	Vorl	esung	1
	1.1	Das Heiratsproblem]
		1.1.1 Lemma: (Berge)	4
		1.1.2 Beweis:	4
		1.1.3 Pseudo-Code	٠
	1.2	Laufzeit	٠
	1.3	Hopcroft-Karp-Algorithmus	٠

1 Vorlesung

1.1 Das Heiratsproblem - Maximum cardinality matching in bipartiten Graphen

Abbildung 1.1: Ausgangsproblem

$$G = (V_1 \dot{\cup} V_2, E)$$

 $E\subseteq E$ heißt Matching, wenn jeder Knoten zu höchstens einer Kante aus M inzident ist. Freie Knoten sind an keiner Matching-Kante beteiligt.

Mheißt $\underline{\text{maximales}}$ Matching, wenn Mdurch Hinzunahme einer weiteren Kante nicht vergrößert werden kann.

Ge sucht ist ein <u>maximum-Matching</u> $M^* \text{ mit } |M^*| \geq |M| \ \forall \ M \text{ Matching}.$

(a) Nicht optimales Matching

(b) optimales Matching

1 Vorlesung

Abbildung 1.3: Alternierender Pfad

Alternierender Graph, der mit einem Singleknoten startet und endet, nennt man einen augmentierten Pfad.

Zum finden eines augmentierten Pfades verwenden wir folgenden Graphen $G_M = (V_1 \cup V_2 \cup \{s\}, E')$

$$E' = \{(v_1, v_2) | v_1 \in V_1, v_2 \in V_2, (v_1, v_2) \in E \setminus M\}$$

$$\cup \{(v_2, v_1) | v_1 \in V_1, v_2 \in V_2, (v_1, v_2) \in M\} \cup \{(s, v_1) | v_1 \in V_1 \text{ frei}\}$$

Mit Hilfe von BFS oder DFS können wir in G_M augmentierende Pfade leicht finden. Also

Zei
$$\mathcal{O}(|V| + |E|)$$

1.1.1 Lemma: (Berge)

Ein Matching M ist ein maximum-Matching \Leftrightarrow Es gibt keinen M-augmentierenden Pfad.

1.1.2 Beweis:

 $"A \Rightarrow B"$

 $\neg B \Rightarrow \neg A$ Es gibt M-augm. Pfad $\Rightarrow M$ ist kein maximum Matching

 $"A \Leftrightarrow B"$

 $\neg A \Rightarrow \neg B$ Sei M noch kein maximum Matching.

$\mathbf{z.z.}$ Es gibt ein M-augm. Pfad

 M^* sei ein maximum Matching, d.h. $|M^*| > |M|$.

Betrachte den Graphen $\tilde{G} = (V_1 \cup V_2, M \oplus M^*)$

Alle Knoten in \tilde{G} haben höchstens Grad 2, ansonsten wäre ein Knoten inzident zu zwei Kanten aus dem Gleichen Matching M oder M^* .

G besteht aus einzelnen Knoten, Pfaden gerader oder ungerader Länge und Zyklen gerader Länge.

Abbildung 1.4: Beispiel

z.z. Es gibt in G mindestens einen M-augment. Pfad p, der mehr Kanten aus M^* als aus M besitzt. Dies gilt, weil ansonsten $|M^*| \leq |M|$

q.e.d.

1.1.3 Pseudo-Code

```
\begin{array}{lll} 1 & \texttt{M} = \emptyset; \\ 2 & \texttt{do} \ \{ \\ 3 & \texttt{P} = \texttt{findAugmPath}(G_M); \\ 4 & \texttt{if} \ (\texttt{P} = = \texttt{NULL}) \ \texttt{break}; \\ 5 & \texttt{M} = \texttt{M} \oplus \texttt{P}; \\ 6 & \texttt{hull}(\texttt{true}); \end{array}
```

Wiederholung: Symmetrische Differenz

$$A \oplus B = A \setminus B \cup B \setminus A$$

Abbildung 1.5: Symmetrische Differenz

1.2 Laufzeit

$$\mathcal{O}(\min(|V_1|, |V_2|) \cdot (|V| + |E|))$$
$$= \mathcal{O}(|V| \cdot |E|)$$

1.3 Hopcroft-Karp-Algorithmus

erzielt Laufzeit von $\mathcal{O}(\sqrt{|V|}\cdot |E|)$

```
\begin{array}{lll} 1 & \texttt{M} = \emptyset; \\ 2 & \texttt{do} \ \{ \\ 3 & G_L = \texttt{buildLevelGraph}(G_M); \\ 4 & \mathcal{P} = \texttt{findAugmPath}(G_L); \\ 5 & \texttt{M} = \texttt{M} \oplus \texttt{\mathcal}\{\texttt{P}\}; \\ 6 & \texttt{\mathcal}\{\texttt{P}\}; \end{array}
```

 G_L kann mittels BFS in Zeit $\mathcal{O}(|V| + |E|)$ konstruiert werden. Zum Auffinden einer maximalen Menge von M-augmentierenden Pfaden in G_L verwenden wir DFS und entfernen jedes mal den gefunden Pfad P_i aus G_L . DFS sorgt dafür, dass P_i in Zeit $\mathcal{O}(|P_i|)$ gefunden und gelöscht werden kann.

```
\Rightarrow findAugmPaths(G_L) hat nur Laufzeit O(|E|)
```

Abbildungsverzeichnis

1.1	Ausgangsproblem	1
1.3	Alternierender Pfad	2
1.4	Beispiel	2
1.5	Symmetrische Differenz	3