第一章 线性规划及单纯形法

1.1 线性规划问题及其数学模型

修贤超

机电工程与自动化学院 上海大学

xcxiu@shu.edu.cn

■ 例 1

美佳公司计划制造 I、II 两种家电产品。已知各制造一件时分别占用的设备 A,设备 B 的台时、调试工序时间及每天可用于这两种家电的能力、各售出一件时的获利情况。问该公司应制造两种家电各多少件,使获取的利润为最大?

项目	产品	产品	每天可用能力
设备 A/h	0	5	15
设备 B/h	6	2	24
调试工序/h	1	1	5
利润/元	2	1	

- 例 1
 - \Box 设两种家电产量分别为变量 x_1,x_2 , 于是

$$\max z = 2x_1 + x_2$$

- 例 1
 - \Box 设两种家电产量分别为变量 x_1, x_2 , 于是

max
$$z = 2x_1 + x_2$$

s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

- 例 1
 - \Box 设两种家电产量分别为变量 x_1, x_2 , 于是

max
$$z = 2x_1 + x_2$$

s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

- 例 1
 - \Box 设两种家电产量分别为变量 x_1, x_2 , 于是

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

决策变量: x₁,x₂

- 例 1
 - \Box 设两种家电产量分别为变量 x_1, x_2 , 于是

max
$$z = 2x_1 + x_2$$

s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

• 决策变量: x₁,x₂

• 目标函数: $\max z = 2x_1 + x_2$

- 例 1
 - \Box 设两种家电产量分别为变量 x_1, x_2 , 于是

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

• 决策变量: x₁,x₂

• 目标函数: $\max z = 2x_1 + x_2$

• 约束条件: $5x_2 \le 15$, $6x_1 + 2x_2 \le 24$, $x_1 + x_2 \le 5$, $x_1, x_2 \ge 0$

■ 例 2

□ 捷运公司拟在下一年度的 1-4 月的 4 个月内需租用仓库堆放物资。 已知各月份所需仓库面积列于表

月份	1	2	3	4
所需仓库面积 $(100m^2)$	15	10	20	12

■ 例 2

□ 捷运公司拟在下一年度的 1-4 月的 4 个月内需租用仓库堆放物资。 已知各月份所需仓库面积列于表

月份	1	2	3	4
所需仓库面积 (100m²)	15	10	20	12
仓库租借费用随合同期限而定	,合同期	越长,折	扣越大,	见表
合同租借期限	1 个月	2 个月	3 个月	4 个月
合同期内的租费 $(\pi/100m^2)$	2800	4500	6000	7300

■ 例 2

□ 捷运公司拟在下一年度的 1-4 月的 4 个月内需租用仓库堆放物资。已知各月份所需仓库面积列于表

月份		1	2	3	4
所需仓库面积 (100m²)		15	10	20	12
仓库租借费用随合同期限而足	È,	合同期	越长, 折	扣越大,	见表
合同租借期限		1 个月	2 个月	3 个月	4 个月
合同期内的租费 (元 $/100m$	²)	2800	4500	6000	7300
				_ 、	

租借仓库的合同每月初都可办理,每份合同具体规定租用面积和期限。因此该厂可根据需要,在任何一个月初办理租借合同。每次办理时可签一份合同,也可签若干份租用面积和租借期限不同的合同。试确定该公司签订租借合同的最优决策,使所付租借费用最小?

- 例 2
 - ② 设 x_{ij} 表示在第 i (i = 1, 2, 3, 4) 个月初签订的租借期为 j (j = 1, 2, 3, 4) 个月的仓库面积的合同,于是

- 例 2
 - - 决策变量: x_{ij} (i, j = 1, 2, 3, 4)

- 例 2
 - ② 设 x_{ij} 表示在第 i (i = 1, 2, 3, 4) 个月初签订的租借期为 j (j = 1, 2, 3, 4) 个月的仓库面积的合同,于是
 - 决策变量: x_{ij} (i, j = 1, 2, 3, 4)
 - 目标函数:

```
min z = 2800(x_{11} + x_{21} + x_{31} + x_{41}) + 4500(x_{12} + x_{22} + x_{32} + x_{42}) + 6000(x_{13} + x_{23} + x_{33} + x_{43}) + 7300(x_{14} + x_{24} + x_{34} + x_{44})
```

- 例 2
 - ② 设 x_{ij} 表示在第 i (i = 1, 2, 3, 4) 个月初签订的租借期为 j (j = 1, 2, 3, 4) 个月的仓库面积的合同,于是
 - 决策变量: x_{ij} (i, j = 1, 2, 3, 4)
 - 目标函数:

min
$$z = 2800(x_{11} + x_{21} + x_{31} + x_{41}) + 4500(x_{12} + x_{22} + x_{32} + x_{42})$$

+ $6000(x_{13} + x_{23} + x_{33} + x_{43}) + 7300(x_{14} + x_{24} + x_{34} + x_{44})$
$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

- 例 2
 - ② 设 x_{ij} 表示在第 i (i=1,2,3,4) 个月初签订的租借期为 j (j=1,2,3,4) 个月的仓库面积的合同,于是
 - 决策变量: x_{ij} (i, j = 1, 2, 3, 4)
 - 目标函数:

约束条件:

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} \ge 15 \\ x_{12} + x_{13} + x_{14} + x_{21} + x_{22} + x_{23} \ge 10 \\ x_{13} + x_{14} + x_{22} + x_{23} + x_{31} + x_{32} \ge 20 \\ x_{14} + x_{23} + x_{32} + x_{41} \ge 12 \\ x_{ij} \ge 0 \end{cases}$$

■ 课堂练习 1

© 某工厂用三种原料 P_1 , 原料 P_2 , 原料 P_3 生产三种产品 Q_1 , 产品 Q_2 , 产品 Q_3 , 如表所示。<mark>试制订总利润最大的生产计划?</mark>

单位产品所需原料数量	产品 Q_1	产品 Q_2	产品 Q ₃	原料可用量
原料 P_1 /公斤	2	3	0	1500
原料 P_2 /公斤	0	2	4	800
原料 P ₃ /公斤	3	2	5	2000
位产品的利润/千元	3	5	4	

- 课堂练习 1
 - \Box 设每天生产三种产品的数量,分别设为 x_1, x_2, x_3 ,于是

■ 课堂练习 1

 \Box 设每天生产三种产品的数量,分别设为 x_1, x_2, x_3 ,于是

决策变量: x₁,x₂,x₃

• 目标函数: $\max z = 3x_1 + 5x_2 + 4x_3$

• 约束条件: $2x_1 + 3x_2 \le 1500$, $2x_2 + 4x_3 \le 800$, $3x_1 + 2x_2 + 5x_3 \le 2000$ $x_1, x_2, x_3 > 0$

■ 课堂练习 1

 \Box 设每天生产三种产品的数量,分别设为 x_1, x_2, x_3 ,于是

决策变量: x₁, x₂, x₃

• 目标函数: $\max z = 3x_1 + 5x_2 + 4x_3$

• 约束条件: $2x_1 + 3x_2 \le 1500$, $2x_2 + 4x_3 \le 800$, $3x_1 + 2x_2 + 5x_3 \le 2000$ $x_1, x_2, x_3 \ge 0$

□ 数学模型为

$$\max z = 3x_1 + 5x_2 + 4x_3$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 1500 \\ 2x_2 + 4x_3 \le 800 \\ 3x_1 + 2x_2 + 5x_3 \le 2000 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

■ 线性规划问题的数学模型

□ 三要素: 决策变量, 目标函数, 约束条件

- 线性规划问题的数学模型
 - □ 三要素: 决策变量, 目标函数, 约束条件

$$\max z = 3x_1 + 5x_2 + 4x_3$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 1500 \\ 2x_2 + 4x_3 \le 800 \\ 3x_1 + 2x_2 + 5x_3 \le 2000 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- 线性规划问题的数学模型
 - □ 三要素: 决策变量, 目标函数, 约束条件

$$\max z = 3x_1 + 5x_2 + 4x_3$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 1500 \\ 2x_2 + 4x_3 \le 800 \\ 3x_1 + 2x_2 + 5x_3 \le 2000 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- 决策变量的取值是连续的
- 目标函数是决策变量的线性函数
- 约束条件是含决策变量的线性等式或不等式

- 线性规划问题的数学模型
 - □ 三要素: 决策变量,目标函数,约束条件

$$\max z = 3x_1 + 5x_2 + 4x_3$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 1500 \\ 2x_2 + 4x_3 \le 800 \\ 3x_1 + 2x_2 + 5x_3 \le 2000 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- 决策变量的取值是连续的
- 目标函数是决策变量的线性函数
- 约束条件是含决策变量的线性等式或不等式
- □ "线性"的含义

- 线性规划问题的数学模型
 - □ 三要素: 决策变量,目标函数,约束条件

$$\max z = 3x_1 + 5x_2 + 4x_3$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 1500 \\ 2x_2 + 4x_3 \le 800 \\ 3x_1 + 2x_2 + 5x_3 \le 2000 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- 决策变量的取值是连续的
- 目标函数是决策变量的线性函数
- 约束条件是含决策变量的线性等式或不等式
- □ "线性"的含义
 - 比例性: 决策变量变化引起目标的改变量与决策变量改变量成正比
 - 可加性:每个决策变量对目标和约束的影响独立于其它变量
 - 连续性: 每个决策变量取连续值
 - 确定性: 线性规划中的参数 a_{ij}, b_i, c_j 为确定值

- 设线性规划问题的数学模型
 - □ 一般形式

$$\max(\min) z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

- 设线性规划问题的数学模型
 - □ 一般形式

$$\max(\min) \ z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
 s.t.
$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le (=, \ge) b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \le (=, \ge) b_2 \\ \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le (=, \ge) b_m \\ x_1, \dots, x_n \ge 0 \end{cases}$$

- 设线性规划问题的数学模型
 - □ 一般形式

$$\max(\min) \ z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
 s.t.
$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le (=, \ge) b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \le (=, \ge) b_2 \\ \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le (=, \ge) b_m \\ x_1, \dots, x_n \ge 0 \end{cases}$$

□ 简写形式

$$\max(\min) \ z = \sum_{j=1}^{n} c_j x_j$$

- 设线性规划问题的数学模型
 - □ 一般形式

$$\max(\min) \ z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
 s.t.
$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le (=, \ge) b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \le (=, \ge) b_2 \\ \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le (=, \ge) b_m \\ x_1, \dots, x_n \ge 0 \end{cases}$$

🛛 简写形式

$$\max(\min) \ z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \le (=, \ge) b_i, \ i = 1, \dots, m \\ x_j \ge 0, \ j = 1, \dots, n \end{cases}$$

- 线性规划问题的数学模型
 - □ 标准形式

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i, \ i = 1, \dots, m \\ x_j \ge 0, \ j = 1, \dots, n \end{cases}$$

- 线性规划问题的数学模型
 - □ 标准形式

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i, & i = 1, \dots, m \\ x_j \ge 0, & j = 1, \dots, n \end{cases}$$

- 目标函数是求最大值
- 所有约束条件均用等式表示
- 所有决策变量均取非负数
- 所有右端项常数均为非负数

- 非标准型转化为标准形式
 - □ 基本思路

目标函数 ⇒ 约束条件 ⇒ 决策变量

- 非标准型转化为标准形式
 - □ 基本思路

目标函数 ⇒ 约束条件 ⇒ 决策变量

□ 第一步: 目标函数的转换

$$\min z = \sum_{j=1}^{n} c_j x_j \implies \max z' = -\sum_{j=1}^{n} c_j x_j$$

■ 非标准型转化为标准型

□ 第二步: 约束条件的转换

• 右端项常数的转换

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \ b_i < 0 \quad \Rightarrow \quad -\sum_{j=1}^{n} a_{ij} x_j = -b_i$$

- 非标准型转化为标准型
 - □ 第二步: 约束条件的转换
 - 右端项常数的转换

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \ b_i < 0 \quad \Rightarrow \quad -\sum_{j=1}^{n} a_{ij} x_j = -b_i$$

• 不等式的转换——引入松弛变量

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \quad \Rightarrow \quad \sum_{j=1}^{n} a_{ij} x_j + \mathbf{s_i} = b_i, \ s_i \ge 0$$

■ 非标准型转化为标准型

□ 第二步: 约束条件的转换

• 右端项常数的转换

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, \ b_{i} < 0 \quad \Rightarrow \quad -\sum_{j=1}^{n} a_{ij} x_{j} = -b_{i}$$

• 不等式的转换——引入松弛变量

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \quad \Rightarrow \quad \sum_{j=1}^{n} a_{ij} x_j + \mathbf{s}_i = b_i, \ s_i \ge 0$$

• 不等式的转换——引入剩余变量

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \quad \Rightarrow \quad \sum_{j=1}^{n} a_{ij} x_j - \mathbf{s}_i = b_i, \ s_i \ge 0$$

- 非标准型转化为标准型
 - □ 第三步: 决策变量的转换
 - 取值无约束的转化

$$x_k$$
取值无约束 \Rightarrow $x_k = \frac{x_k' - x_k''}{x_k}, x_k', x_k'' \geq 0$

• 取值非正的转化

$$x_k \le 0 \quad \Rightarrow \quad x'_k = -x_k$$

- 例 3
 - □ 请将下式转化为线性规划标准形式

min
$$z = x_1 + 2x_2 + 3x_3$$

s.t.
$$\begin{cases}
-2x_1 + x_2 + x_3 \le 9 \\
-3x_1 + x_2 + 2x_3 \ge 4 \\
4x_1 - 2x_2 - 3x_3 = -6 \\
x_1 \le 0, \ x_2 \ge 0, \ x_3$$
取值无约束

- 例 3
 - □ 请将下式转化为线性规划标准形式

min
$$z = x_1 + 2x_2 + 3x_3$$

s.t.
$$\begin{cases} -2x_1 + x_2 + x_3 \le 9 \\ -3x_1 + x_2 + 2x_3 \ge 4 \\ 4x_1 - 2x_2 - 3x_3 = -6 \\ x_1 \le 0, \ x_2 \ge 0, \ x_3$$
取值无约束

 \Box 第一步: 目标函数的转换, 令 z' = -z, 于是

max
$$z' = -x_1 - 2x_2 - 3x_3$$

s.t.
$$\begin{cases}
-2x_1 + x_2 + x_3 \le 9 \\
-3x_1 + x_2 + 2x_3 \ge 4 \\
4x_1 - 2x_2 - 3x_3 = -6 \\
x_1 \le 0, x_2 \ge 0, x_3$$
取值无约束

- 转化为标准形式
 - □ 约束条件的转换
 - 右端项常数的转换

max
$$z' = -x_1 - 2x_2 - 3x_3$$

s.t.
$$\begin{cases} -2x_1 + x_2 + x_3 \le 9 \\ -3x_1 + x_2 + 2x_3 \ge 4 \\ -4x_1 + 2x_2 + 3x_3 = 6 \\ x_1 \le 0, \ x_2 \ge 0, \ x_3$$
取值无约束

• 不等式的转换,松弛变量 x_4 ,剩余变量 x_5

max
$$z' = x'_1 - 2x_2 - 3x'_3 + 3x''_3 + 0x_4 + 0x_5$$

s.t.
$$\begin{cases} -2x_1 + x_2 + x_3 + x_4 = 9\\ -3x_1 + x_2 + 2x_3 - x_5 = 4\\ -4x_1 + 2x_2 + 3x_3 = 6\\ x_1 \le 0, \ x_2, x_4, x_5 \ge 0, \ x_3$$
取值无约束

■ 转化为标准型

© 第三步: 决策变量的转换,令 $x_3=x_3'-x_3'',\ x_3',x_3''\geq 0$ 以及 $x_1'=-x_1$,于是

$$\max z' = x_1' - 2x_2 - 3x_3' + 3x_3'' + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} 2x_1' + x_2 + x_3' - x_3'' + x_4 = 9\\ 3x_1' + x_2 + 2x_3 - 2x_3'' - x_5 = 4\\ 4x_1' + 2x_2 + 3x_3 - 3x_3'' = 6\\ x_1', x_2, x_3', x_3'', x_4, x_5 \ge 0 \end{cases}$$

■ 转化为标准型

© 第三步: 决策变量的转换,令 $x_3=x_3'-x_3'',\ x_3',x_3''\geq 0$ 以及 $x_1'=-x_1$,于是

$$\max z' = x_1' - 2x_2 - 3x_3' + 3x_3'' + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} 2x_1' + x_2 + x_3' - x_3'' + x_4 = 9\\ 3x_1' + x_2 + 2x_3 - 2x_3'' - x_5 = 4\\ 4x_1' + 2x_2 + 3x_3 - 3x_3'' = 6\\ x_1', x_2, x_3', x_3'', x_4, x_5 \ge 0 \end{cases}$$

□ 有时为了方便,目标函数中也可以省略 x_4, x_5

- 课堂练习 2
 - □ 请将下式转化为线性规划标准形式

min
$$z = -x_1 + x_2$$

s.t.
$$\begin{cases} 2x_1 - x_2 \ge -2\\ x_1 - 2x_2 \le 2\\ x_1 + x_2 \le 5\\ x_1 \ge 0, \ x_2$$
取值无约束

- 课堂练习 2
 - 🛘 请将下式转化为线性规划标准形式

min
$$z = -x_1 + x_2$$

s.t.
$$\begin{cases} 2x_1 - x_2 \ge -2\\ x_1 - 2x_2 \le 2\\ x_1 + x_2 \le 5\\ x_1 \ge 0, \ x_2$$
取值无约束

$$\max z' = x_1 - x_2' + x_2''$$
s.t.
$$\begin{cases}
-2x_1 + x_2' - x_2'' + x_3 = 2 \\
x_1 - 2x_2 + 2x_2'' + x_4 = 2 \\
x_1 + x_2' - x_2'' + x_5 = 5 \\
x_1, x_2', x_2'', x_3, x_4, x_5 \ge 0
\end{cases}$$

■ 小结

□ 线性规划问题的标准形式

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i, & i = 1, \dots, m \\ x_j \ge 0, & j = 1, \dots, n \end{cases}$$

- □ 三要素: 决策变量, 目标函数, 约束条件
- □ 非标准型转化为标准形式

目标函数 ⇒ 约束条件 ⇒ 决策变量

- ■小结
 - □ 线性规划问题的标准形式

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i, & i = 1, \dots, m \\ x_j \ge 0, & j = 1, \dots, n \end{cases}$$

- □ 三要素: 决策变量, 目标函数, 约束条件
- □ 非标准型转化为标准形式

目标函数 ⇒ 约束条件 ⇒ 决策变量

■ 课后作业: P43, 习题 1.2

$Q\&\mathcal{A}$

Thank you! 感谢您的聆听和反馈