

Unit 4 Unsupervised Learning (2

Course > weeks)

> <u>Lecture 15. Generative Models</u> > 10. MLE for Gaussian Distribution

Audit Access Expires May 11, 2020

You lose all access to this course, including your progress, on May 11, 2020.

10. MLE for Gaussian Distribution MLEs for Gaussian Distribution

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

MLE for the Gaussian Distribution

1/1 point (graded)

In this problem, we will derive the maximum likelihood estimates for a Gaussian model.

Let X be a Gaussian random variable in d-dimensional real space (R^d) with mean μ and standard deviation σ .

Note that μ,σ are the parameters of a Gaussian generative model.

Recall from the lecture that, the probability density function for a Gaussian random variable is given as follows:

$$f_{X}\left(x|\mu,\sigma^{2}
ight)=rac{1}{\left(2\pi\sigma^{2}
ight)^{d/2}}e^{-\left\Vert x-\mu
ight\Vert ^{2}/2\sigma^{2}}$$

Let $S_n=\{X^{(1)},X^{(2)},\dots X^{(n)}\}$ be i.i.d. random variables following a Gaussian distribution with mean μ and variance σ^2 .

Then their joint probability density function is given by

$$\prod_{t=1}^{n} P\left(x^{(t)} | \mu, \sigma^{2}
ight) = \prod_{t=1}^{n} rac{1}{\left(2\pi\sigma^{2}
ight)^{d/2}} e^{-\left\|x^{(t)} - \mu
ight\|^{2} / 2\sigma^{2}}$$

Taking logarithm of the above function, we get

$$egin{aligned} \log P\left(S_n | \mu, \sigma^2
ight) &= \log \left(\prod_{t=1}^n rac{1}{(2\pi\sigma^2)^{d/2}} e^{-\|x^{(t)} - \mu\|^2/2\sigma^2}
ight) \ &= \sum_{t=1}^n \log rac{1}{(2\pi\sigma^2)^{d/2}} + \sum_{t=1}^n \log e^{-\|x^{(t)} - \mu\|^2/2\sigma^2} \ &= \sum_{t=1}^n -rac{d}{2} \log \left(2\pi\sigma^2
ight) + \sum_{t=1}^n \log e^{-\|x^{(t)} - \mu\|^2/2\sigma^2} \ &= -rac{nd}{2} \log \left(2\pi\sigma^2
ight) - rac{1}{2\sigma^2} \sum_{t=1}^n \left\|x^{(t)} - \mu\right\|^2. \end{aligned}$$

Compute the partial derivative $\dfrac{\partial \log P\left(S_n|\mu,\sigma^2\right)}{\partial \mu}$ using the above derived expression for $P\left(S_n|\mu,\sigma^2\right)$.

Choose the correct expression from options below.

$$iggledown rac{\partial \log P(S_n|\mu,\sigma^2)}{\partial \mu} = -rac{1}{\sigma^2} \sum_{t=1}^n \left(x^{(t)} - \mu
ight)$$

$$igotimes rac{\partial \log P(S_n | \mu, \sigma^2)}{\partial \mu} = rac{1}{\sigma^2} \sum_{t=1}^n \left(x^{(t)} - \mu
ight)$$

$$iggl(rac{\partial \log P(S_n|\mu,\sigma^2)}{\partial \mu} = rac{1}{\mu^2} \sum_{t=1}^n \left(x^{(t)} - \mu
ight)$$

$$iggl(rac{\partial \log P(S_n | \mu, \sigma^2)}{\partial \mu} = -rac{1}{\mu^2} \sum_{t=1}^n \left(x^{(t)} - \mu
ight)$$

Solution:

$$rac{\partial}{\partial \mu} \! \log P\left(S_n | \mu, \sigma^2
ight)$$

$$=-rac{1}{2\sigma^{2}}\sum_{t=1}^{n}-2\left(x^{\left(t
ight)}-\mu
ight)$$

$$=rac{1}{\sigma^2} \sum_{t=1}^n \left(x^{(t)} - \mu
ight)$$

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

MLE for the Mean

1/1 point (graded)

Use the answer from the previous problem in order to solve the following equation

$$rac{\partial \log P\left(S_n | \mu, \sigma^2
ight)}{\partial \mu} = 0$$

Compute expression for $\hat{\mu}$ that is a solution for the above equation.

Choose the correct expression from options below

$$igcap \hat{\mu} = \prod_{t=1}^n x^{(t)}$$

$$igcap_{\hat{\mu}} = rac{\prod_{t=1}^n x^{(t)}}{n}$$

$$igcap \hat{\mu} = \sum_{t=1}^n x^{(t)}$$

$$\hat{m{\mu}} = rac{\sum_{t=1}^n x^{(t)}}{n}$$

Solution:

Recall from the previous solution that

$$rac{\partial \log P\left(S_n | \mu, \sigma^2
ight)}{\partial \mu} = rac{1}{\sigma^2} \sum_{t=1}^n \|x^{(t)} - \mu\|$$

Setting the above expression to zero, we get:

$$rac{1}{\sigma^2} \sum_{t=1}^n \|x^{(t)} - \hat{\mu}\| = 0$$

$$\sum_{t=1}^n \|x^{(t)} - \hat{\mu}\| = 0$$

$$\sum_{t=1}^n \left(x^{(t)}
ight) - n\hat{\mu} = 0$$

Resulting in the final expression for $\hat{\mu}$ as follows:

$$\hat{\mu} = rac{\sum_{t=1}^n x^{(t)}}{n}$$

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

MLE for the Variance I

1/1 point (graded)

Compute the partial derivative $\frac{\partial \log P(S_n|\mu,\sigma^2)}{\partial \sigma^2}$ using the above derived expression for $P\left(S_n|\mu,\sigma^2\right)$ which is restated below as well:

$$\log P\left(S_n|\mu,\sigma^2
ight) = -rac{nd}{2} \mathrm{log}\left(2\pi\sigma^2
ight) - rac{1}{2\sigma^2} \sum_{t=1}^n \left\|x^{(t)} - \mu
ight\|^2$$

Choose the correct expression from options below.

10. MLE for Gaussian Distribution | Lecture 15. ...

https://courses.edx.org/courses/course-v1:MITx+...

$$rac{\partial \log P(S_n | \mu, \sigma^2)}{\partial \sigma^2} = rac{nd}{2\sigma^2} + rac{\sum_{t=1}^n \left\| x^{(t)} - \mu
ight\|^2}{2(\sigma^2)^2}$$

$$rac{\partial \log P(S_n | \mu, \sigma^2)}{\partial \sigma^2} = -rac{nd}{2\sigma^2} + rac{\sum_{t=1}^n \left\|x^{(t)} - \mu
ight\|^2}{2(\sigma^2)^2}$$

$$iggledown rac{\partial \log P(S_n | \mu, \sigma^2)}{\partial \sigma^2} = rac{nd}{2\sigma^2} - rac{\sum_{t=1}^n \left\| x^{(t)} - \mu
ight\|^2}{2(\sigma^2)^2}$$

$$iggleq rac{\partial \log P(S_n | \mu, \sigma^2)}{\partial \sigma^2} = rac{\sum_{t=1}^n \left\| x^{(t)} - \mu
ight\|^2}{2(\sigma^2)^2}$$

Solution:

$$\frac{\partial \log P\left(S_{n} | \mu, \sigma^{2}\right)}{\partial \sigma^{2}} = \frac{\partial}{\partial \sigma^{2}} \{-\frac{nd}{2} \log \left(2 \prod \sigma^{2}\right)\} - \frac{\partial}{\sigma^{2}} \{\frac{1}{2\sigma^{2}} \sum_{t=1}^{n} \left\|x^{(t)} - \mu\right\|^{2}\}$$

$$rac{\partial \log P\left(S_n | \mu, \sigma^2
ight)}{\partial \sigma^2} = -rac{nd}{2\sigma^2} + rac{\sum_{t=1}^n \left\|x^{(t)} - \mu
ight\|^2}{2{\left(\sigma^2
ight)}^2}$$

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

MLE for the Variance II

1/1 point (graded)

Using the answer from the previous problem in order to solve the equation

$$rac{\partial \log P\left(S_n | \mu, \sigma^2
ight)}{\partial \sigma^2} = 0$$

Compute expression for $\hat{\sigma}^2$ that is a solution for the above equation.

Choose the correct expression from options below

$$\hat{\sigma}^2 = rac{\sum_{t=1}^n \left\|x^{(t)} - \mu
ight\|^2}{nd}$$

$$igcap \hat{\sigma}^2 = -rac{\sum_{t=1}^n \left\|x^{(t)} - \mu
ight\|^2}{nd}$$

$$\hat{\sigma}^2 = -rac{\sum_{t=1}^n \left\|x^{(t)} - \mu
ight\|^2}{n}$$

$$\hat{\sigma}^2 = -rac{\prod_{t=1}^n \left\|x^{(t)} - \mu
ight\|^2}{nd}$$

Solution:

Recall from the previous solution that

$$rac{\partial \log P\left(S_n | \mu, \sigma^2
ight)}{\partial \sigma^2} = -rac{nd}{2\sigma^2} + rac{\sum_{t=1}^n \left\|x^{(t)} - \mu
ight\|^2}{2{\left(\sigma^2
ight)}^2}$$

Setting the above expression to zero, we get:

$$-rac{nd}{2\sigma^2} + rac{\sum_{t=1}^n \left\|x^{(t)} - \mu
ight\|^2}{2{(\sigma^2)}^2} = 0$$

$$nd = rac{\sum_{t=1}^{n} \left\|x^{(t)} - \mu
ight\|^2}{\sigma^2}$$

The above equation leads us to our final expression for $\hat{\sigma}^2$:

$$\hat{\sigma}^2 = rac{\sum_{t=1}^n \left\|x^{(t)} - \mu
ight\|^2}{nd}$$

Submit

You have used 1 of 2 attempts

• Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 4 Unsupervised Learning (2 weeks) :Lecture 15. Generative Models / 10. MLE for Gaussian Distribution

© All Rights Reserved