MỤC LỤC

MỤC LỤC				
DANE	DANH MỤC HÌNH ẢNH			
DANE	I MŲC	C BÅNG	v	
Chươn	g 1 G	liới thiệu	1	
Chươn	g 2 K	ciến thức nền tảng	5	
2.1	Các tl	hành phần cơ bản của học tăng cường	5	
	2.1.1	Hệ thống và môi trường	5	
	2.1.2	Returns	7	
2.2	Mô hì	inh Markov Decision Processes	8	
	2.2.1	Định nghĩa mô hình Markov Decision Processes	8	
	2.2.2	Chính sách và hàm giá trị	11	
	2.2.3	Hàm giá trị tối ưu	14	
	2.2.4	Quy trình lặp chính sách	16	
2.3	Quy t	rình lặp chính sách không có MDP	21	
	2.3.1	Phương pháp cải thiện chính sách	21	
	2.3.2	Phương pháp đánh giá chính sách	22	
Chươn	g 3 K	Cết hợp học tăng cường với học sâu	35	
3.1	Học t	ăng cường kết hợp với học sâu	35	
	3.1.1	Lý do cần áp dụng học sâu	35	
	3.1.2	Giới thiệu học sâu	36	
	3.1.3	Mạng nơ-ron tích chập	37	

		3.1.4	Sử dụng mạng nơ-ron để xấp xỉ hàm	43		
		3.1.5	Học tăng cường kết hợp với xấp xỉ hàm	48		
	3.2	3.2 Kết hợp học tăng cường với học sâu vào bài toán tự động chơ				
		3.2.1	"Deep Q-Network"	50		
		3.2.2	$K\tilde{y}$ thuật làm tăng tính ổn định	52		
		3.2.3	Vấn đề "overestimation" của thuật toán Q-learning $$	53		
Chương 4 Kết quả thực nghiệm 5						
	4.1	Giới tl	niệu Arcade Learning Environment	54		
	4.2	Giới th	niệu cấu trúc mạng và các siêu tham số đã chọn	54		
	4.3	Kết qu	ıå thực nghiệm	54		
Chương 5 Kết luận và hướng phát triển			55			
$\mathbf{T} \stackrel{\lambda}{A}$	ΓÀI LIỆU THAM KHẢO			56		

DANH MỤC HÌNH ẢNH

1.1	Hình ảnh các game trên hệ máy Atari	3
2.1	Quá trình tương tác giữa hệ thông và môi trường	6
2.2	Đồ thị minh họa chuyển trạng thái cho robot thu gom	10
2.3	Đồ thị minh họa quan hệ giữa những hàm giá trị	12
2.4	Đồ thị minh họa cho hàm giá trị	12
2.5	Đồ thị minh họa quan hệ giữa những hàm giá trị tối ưu	15
2.6	Đồ thị minh họa phương trình Bellman trong hàm giá trị tối ưu	15
2.7	Quy trình lặp chính sách	16
2.8	Cập nhật hàm giá trị bằng quy hoạch động	18
2.9	Ta có một chính $\pi,$ đầu tiên ta thực hiện đánh giá chính sách π	
	để có được hàm giá trị theo chính sách này, tiếp theo ta thực hiện	
	cải thiện chính sách bằng cách lựu chọn tham lam hành động có	
	giá trị lớn nhất dựa trên hàm giá trị đang có. Sau khi có được	
	chính sách mới, ta tiếp tục đánh giá chính sách để có được hàm	
	giá trị theo chính sách đó. Và tiếp tục cải thiện khi đã có được	
	hàm giá trị. Quá trình này được lặp nhiều lần cho đến khi đạt	
	được chính sách tối ưu cũng như hàm giá trị tối ưu	20
2.10	Cập nhật hàm giá trị bằng phương pháp Monte Carlo	24
2.11	Minh họa phương pháp n -step TD	29
2.12	Minh họa phương pháp $Sarsa(0)$	32
2.13	Minh họa phương pháp Q-learning	34
3.1	Hình mô phỏng cách hoạt động của mô hình học sâu	38
3.2	Phép tính đặc trung của CNN	40

3.3	Phép dịch chuyển bộ lọc của CNN	40
3.4	Tầng tích chập với ba bộ lọc	42
3.5	Cấu trúc mạng "Deep Q-Network"	51

DANH MỤC BẢNG

Chương 1

Giới thiệu

Những năm gần đây, **học tăng cường** (Reinforcement learning) liên tục đạt được những thành tựu quan trọng trong lĩnh vực Trí tuệ nhân tạo (Artificial Intelligence). Những đóng góp nổi bật của phương pháp này bao gồm: tự động điều khiển robot di chuyển, điều khiển mô hình máy bay trực thăng, hệ thống chơi cờ vây... Trong số các thành tựu này, hệ thống chơi cờ vây với khả năng chiến thắng những kỳ thủ hàng đầu thế giới là một cột mốc quan trọng của lĩnh vực Trí tuệ nhân tạo. Dù vậy, học tăng cường không phải là một phương pháp mới được phát triển gần đây. Nền tảng lý thuyết của học tăng cường đã được xây dựng từ những năm 1980.

Được xây dựng nhằm mô phỏng quá trình học của con người, ý tưởng chính của học tăng cường là tìm cách lựa chọn hành động tối ưu để nhận được **nhiều nhất giá trị điểm thưởng** (Reward). Giá trị điểm thưởng này có ý nghĩa tương tự cảm nhận của con người về môi trường. Khi một đứa trẻ bắt đầu "học" về thế giới xung quanh của mình, những cảm giác như đau đớn (ứng với điểm thưởng thấp) hay vui sướng (điểm thưởng cao) chính là mục tiêu cần tối ưu của việc học. Một điểm quan trọng của học tăng cường là nó được xây dựng với ít giả định nhất có thể về môi trường xung quanh. Hệ thống sử dụng học tăng cường (Agent) không cần biết cách thức hoạt động của môi trường để hoạt động. Ví dụ như để điều khiển robot tìm được đi trong mê cung, hệ thống không cần biết mê cung được xây dựng thế nào hay kích thước là bao nhiêu. Việc hạn chế tối đa những ràng buộc về dữ liệu đầu vào của bài toán học tăng cường giúp cho phương pháp này có thể áp dụng vào nhiều bài toán thực tế.

Học tăng cường được xem là một nhánh trong lĩnh vực máy học ngoài hai nhánh: học có giám sát và học không có giám sát. Trong bài toán học có giám sát, dữ liệu thường được gán nhán thủ công sẵn và việc chủ yếu của hệ thống là làm sao dự đoán chính xác các nhãn đó với dữ liệu mới. Các nhãn này có thể xem như là sự hướng dẫn trong quá trình học; tính đúng sai của việc học lúc này có thể được xác định dựa vào kết quả dự đoán của hệ thống và nhãn đúng của dữ liệu. Tiếp theo đối với những bài toán học không có giám sát, dữ liệu học thường không được gán nhãn nên công việc của việc học là phải tự tìm ra được cấu trúc "ẩn" bên dưới dữ liệu đó. Khác với hai loại bài toán vừa nêu, trong bài toán học tăng cường, hệ thống không nhận được nhãn thực sự (tức hành động tối ưu của tình huống hiện tại) mà chỉ nhận được điểm thưởng từ môi trường. Điểm thưởng lúc này chỉ thể hiện mức độ "tốt/xấu" của hành động vừa chọn chứ không nói lên hành động đó có phải là hành động tối ưu hay không. Điểm thưởng này thông thường rất thưa: ta có thể chỉ nhận được điểm thưởng có ý nghĩa (khác không) sau hàng nghìn hành động. Ngoài ra, giá trị điểm thưởng thường là không đơn định và rất nhiễu: cùng một hành động tại cùng một trang thái, ta có thể nhận được điểm thưởng khác nhau vào hai thời điểm khác nhau. Đây cũng chính là những khó khăn cơ bản của bài toán học tăng cường.

Các trò chơi điện tử thường hay có điểm số mà người chơi cần phải tối ưu hoá. Đặc điểm này trùng với yêu cầu của bài toán học tăng cường, vì vậy các trò chơi này cũng chính là những ứng dụng tự nhiên nhất của phương pháp học tăng cường. Trong luận văn này, chúng em áp dụng phương pháp học tăng cường nhằm xây dựng hệ thống tự động chơi các game trên hệ máy Atari. Dữ liệu đầu vào của hệ thống chỉ bao gồm các frame ảnh RGB cùng với điểm số hiện tại. Từ hình ảnh thô này, hệ thống cần tìm cách chơi sao cho điểm số cuối màn chơi (Episode) là lớn nhất có thể. Hệ thống hoàn toàn không biết quy luật của game trước khi bắt đầu quá trình học mà phải tự tìm hiểu quy luật và chiến thuật chơi tối ưu. Lý do luận văn sử dụng game của máy Atari là vì các game này có quy luật chơi tương đối đơn giản nhưng lại rất đa dạng. Mỗi màn chơi thường có độ dài vừa phải (từ 2 - 15 phút) và số hành động có ý nghĩa không quá nhiều (18 hành động). Ngoài ra, các trò chơi này có thể được giả lập trên máy vi tính với tốc độ cao, giúp quá trình học được tăng tốc.

Hình 1.1: Hình ảnh các game trên hệ máy Atari

Một số khó khăn trước mắt có thể thấy ở bài toán tự động chơi game bao gồm:

- Hệ thống không được cung cấp luật chơi của game. Chính vì thế nó cũng không thể biết được hành động nào nên làm hoặc không nên làm ứng với từng tình huống cụ thể.
- Đữ liệu đầu vào là hình ảnh RGB có kích thước 210×160 . Để học được một chiến thuật chơi đơn giản thì hệ thống cũng phải chơi "thử và sai" một số lượng lớn màn chơi (có thể lên đến 10000 frame). Vì vậy, lượng dữ liệu đầu vào cần phải xử lý là rất lớn.
- Các game có hình ảnh, nội dung rất khác nhau. Để có thể học cách chơi của nhiều game khác nhau thì thuật toán học phải mang tính tổng quát cao, không sử dụng các tính chất riêng biệt của từng game.
- Để đạt được điểm số cao (ngang hoặc hơn điểm số của con người) thì phải tìm được chiến thuật chơi mang tính lâu dài. Những phương pháp tham lam, lựa chọn hành động để đạt điểm tối đa trong tương lai gần thường

không tối ưu.

[TODO: Thêm hướng tiếp cận liên quan + các thực nghiệm + Reference]

Trong những năm gần đây, học sâu đạt được nhiều bước đột phá trong nhiều lĩnh vực như Thị giác máy tính (Computer Vision), Nhận diện giọng nói (Speech Recognition), ... Việc kết hợp giữa học sâu và học tăng cường đã dẫn đến một hướng tiếp cận mới cho bài toán tự động chơi game: học tăng cường sâu (Deep reinforcement learning) [5]. Với học sâu, ta có thể học được những đặc trưng cấp cao (high level features) từ hình ảnh thô mà không cần phải tự thiết kế đặc trưng bằng tay (hand-designed features). Khi kết hợp với học tăng cường, ta có một hình "End-to-end": việc học đặc trưng và học chiến thuật chơi được liên kết chặt chẽ với nhau. Trong luận văn này, chúng em thực hiện việc cài đặt lại phương pháp học tăng cường sâu và thử nghiệm mô hình với những tham số khác nhau. Cùng với đó, luận văn thử nghiệm kỹ thuật học chuyển tiếp (Transfer learning) nhằm giảm thời gian huấn luyện cho nhiều game.

Chương 2

Kiến thức nền tảng

Trong chương này sẽ trình bày những kiến thức nền tảng của học tăng cường. Trong phần đầu tiên chúng em sẽ trình bày định nghĩa của các thành phần cơ bản trong học tăng cường. Tiếp đó sẽ đề cập đến mô hình Markov Decision Processes được áp dụng trong việc đánh giá lý thuyết một số thành phần của bài toán học tăng cường. Cùng với đó sẽ trình bày qui trình tổng quát để đánh giá và cải thiện chính sách trong bài toán. Cuối cùng chúng em sẽ trình bày một số phương pháp phổ biến thường được áp dụng để đánh giá cũng như cải thiện giúp hệ thông có cách giải tốt hơn cho bài toán trên.

2.1 Các thành phần cơ bản của học tăng cường

2.1.1 Hệ thống và môi trường

Trong học tăng cường, đối tượng học và đưa ra quyết định được gọi chung là $h\hat{e}$ thống. Nó tương tác trực tiếp tới một đối tượng được gọi là $môi\ trường$. Sự tương tác này được diễn ra liên tục. Hệ thống lựa chọn hành động dựa trên những gì nó nhận được từ môi trường. Những thông tin này bao gồm:

• Trạng thái (state): Những thông tin hữu ích mà hệ thống có thể cảm nhận được từ môi trường. Ví dụ trong đánh cờ, trạng thái có thể là vị trí những quân cờ đang có trên bàn cờ. Thường được ký hiệu là s.

Hình 2.1: Quá trình tương tác giữa hệ thông và môi trường

• Điểm thưởng (reward): Giá trị mà môi trường trả ra tương ứng với trạng thái mà nó vừa đạt được hoặc hành động mà hệ thống vừa thực hiện. Thường được ký hiệu là r. Cũng với ví dụ đánh cờ, điểm thưởng mà hệ thống có thể nhận được từ môi trường trong ví dụ này là: +1 nếu hệ thống thắng, -1 nếu hệ thống thua, và trong quá trình đánh cờ điểm thưởng có thể là 0 cho mỗi trạng thái bàn cờ.

Từ trạng thái và điểm thưởng nhận được, hệ thống dựa vào đó để ra quyết định chọn hành động phù hợp sao cho cố gắng đạt được nhiều điểm thưởng nhất.

Hệ thống và môi trường tương tác theo một chuỗi tuần tự các thời điểm, t = 0, 1, 2, Tại mỗi thời điểm t, hệ thống nhận những mô tả trạng thái của môi trường, $S_t \in \mathcal{S}$, với \mathcal{S} là tập các trạng thái có thể có. Dựa vào những mô tả trạng thái nhận được, hệ thống chọn một hành động, $A_t \in (S_t)$, trong đó (S_t) là tập các hành động có thể thực hiện tại trạng thái S_t . Tại thời điểm t+1 sau đó, hệ thống nhận được giá trị điểm thưởng, $R_{t+1} \in \mathbb{R}$, cùng với trạng thái tiếp theo S_{t+1} Quá trình tương tác giữa hệ thống và môi trường được mô tả trong hình 2.1

Các thành phần của hệ thống gồm có:

Chính sách. Chính sách, π, xác định khả năng chọn một hành động khi hệ thống nhận được một trạng thái s. Chính xác tại thời điểm t được xác định π_t(a | s) = P[A_t = a | S_t = s]. Để đạt được mục tiêu được nhiều điểm thưởng nhất, hệ thống cần có một chính sách chọn lựa hành động phù hợp

mỗi khi gặp một trạng thái. Những phương pháp học tăng cường thường tập trung thay đổi các chính sách của hệ thống sao cho đạt được kết quả tốt trong thực nghiệm.

- Hàm giá trị. Hầu hết các thuật toán học tăng cường đầu tập trung đánh giá những hàm giá trị, các hàm này đánh giá một trạng thái hoặc hành động là tốt như thế nào cho hệ thống thông qua việc ước lượng điểm thưởng mà hệ thống có thể nhận được ở tương lai. Thông thường, giá trị của một trạng thái s, dưới một chính sách π được ký hiệu v_π(s) là lượng điểm thưởng kỳ vọng nhận được bắt đầu từ trạng thái s về sau.
- Mô hình. Trong một số bài toán học tăng cường, hệ thống có thể xây dựng mô hình cho riêng mình để mô phỏng lại môi trường. Qua đó cho phép hệ thống có thể suy luận hoặc dự đoán những thông tin mà nó có thể nhận được từ môi trường trong tương lai.

2.1.2 Returns

Return G_t xác định lượng điểm thưởng mà hệ thống nhận được kể từ thời điểm t đến tương lai. Return thường được xác định bằng nhiều hàm khác nhau, trong đó hàm đơn giản nhất xác định return bằng tổng các điểm thưởng có thể nhận được. Nó có dạng như sau:

$$G_t = R_{t+1} + R_{t+2} + \dots + R_T (2.1)$$

ở đây T là thời điểm cuối cuối cùng hệ thống tương tác với môi trường.

Mặt khác, return cũng có thể được xác định bằng tổng điểm thưởng đã bị discount qua từng thời đi. Nó được định nghĩa như sau:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots + \gamma^{T-1} R_T = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$
 (2.2)

Trong đó γ là một hệ số với giá trị $0 \leqslant \gamma \leqslant 1$. γ cũng được gọi là tỉ lệ discount. Tỉ lệ này xác định độ tin tưởng của hệ thống vào giá trị điểm thưởng ở tương lai. Khi $\gamma \to 1$, hệ thống có su hướng quan tâm đến giá trị điểm thưởng tương

lai càng nhiều. Đặc biệt với $\gamma = 0$, khi đó hệ thống chỉ quan tâm giá trị điểm thưởng ở hiện tại mà bỏ qua những giá trị điểm thưởng ở tương lai.

2.2 Mô hình Markov Decision Processes

2.2.1 Định nghĩa mô hình Markov Decision Processes

Mô hình Markov Decision Processes (MDP) được sử dụng để mô hình hóa bài toán học tăng cường một cách có hình thức. Cụ thể, MDP là một bộ bao gồm 5 thành phần $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ trong đó:

- \mathcal{S} : tập trạng thái hữu hạn có thể có của môi trường.
- \mathcal{A} : tập những hành động hữu hạn mà hệ thống có thể thực hiện để tương tác với môi trường.
- γ : Hệ số có giá trị thỏa $0 \leqslant \gamma \leqslant 1$ thể hiện mức độ tin tưởng về giá trị điểm thưởng nhận được ở tương lai.
- \mathcal{P} : ma trận xác suất chuyển trạng thái. Trong đó $\mathcal{P}^a_{ss'}$ là xác suất chuyển đến trạng thái s' khi hệ thống đang ở trạng thái s và thực hiện hành động a.

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$
 (2.3)

• \mathcal{R} : ma trận điểm thưởng theo từng bộ (trạng thái, hành động). \mathcal{R}^a_s là kỳ vọng giá trị điểm thưởng nhận được khi hệ thống thực hiện hành động a ở trạng thái s.

$$\mathcal{R}_s^a = \mathbb{E}[R_t \mid S_t = s, A_t = a] \tag{2.4}$$

Ví dụ: Mô hình MDP trong robot thu gom Công việc của robot này là thu lượm những lon soda đã được uống hết trong văn phòng. Nó có những cảm biến để xác định những lon soda này, bánh xe và cánh tay để di chuyển và gắp nhặt những lon này bỏ vào thùng. Robot hoạt động bằng pin sạc. Hệ thống điều khiển của robot có chức năng tiếp nhận những thông tin từ cảm biến từ đó điểu khiển bánh xe và cánh tay. Trong ví dụ, chúng em chỉ xét dựa trên mức độ pin

hiện tại robot nên quyết định tìm kiếm những lon soda như thế nào? Robot có thể có ba quyết định (1) thực hiện tìm kiếm một lon soda, (2) đứng yên và đợi người khác mang lon soda đến cho nó, (3) quay trở lại nơi sạc pin. Trạng thái của môi trường được xác định là trạng thái của pin hiện tại của robot. Cách tốt nhất để tìm kiếm những lon soda là robot thực hiện hành động tìm kiếm, nhưng việc này sẽ làm giảm dung lượng của pin. Ngược lại nếu robot đứng yên và đợi thì dung lượng pin của nó không giảm. Mỗi khi dung lượng pin của robot ở mức thấp nó sẽ quay lại chỗ sạc pin. Trường hợp xấu nhất có thể xảy ra là robot không đủ dung lượng pin để quay lại nơi sạc khi đó nó sẽ đứng yên và đợi ai đó mang nó đến chỗ sạc. Do đó robot cần có một chiến lược phù hợp để đạt được hiệu năng cao nhất có thể. Hệ thống đưa ra những quyết định của nó dựa trên mức năng lượng pin. Mức năng lượng này có thể được xác định hai mức cao và $th\hat{a}p$. Khi đó tập trạng thái mà hệ thống có thể nhận được $\mathcal{S} = \{\text{cao}, \text{thấp}\}$. Những hành động của hệ thống trong ví dụ này được xét đơn giản gồm ba hành động đơi, tìm kiếm, và sạc pin. Khi dung lượng pin ở trạng thái cao, hệ thống chỉ thực hiện hai hành động: tìm kiếm và đợi. Ngược lại khi ở trạng thái thấp, hệ thống có thể thực hiện ba hành động: tìm kiếm, đợi, và sạc pin.

$$\mathcal{A}(cao) = \{tim \ ki\acute{e}m, d\phi i\}$$

$$\mathcal{A}(th\hat{a}p) = \{tim\ ki\hat{e}m, doi, sac\ pin\}$$

Khi mức năng lượng pin ở mức cao, việc robot thực hiện tìm kiếm sẽ có xác suất α năng lượng pin vẫn ở mức cao, và $1-\alpha$ năng lượng của pi sẽ chuyển về mức thấp. Mặt khác, khi mức năng lượng ở mức thấp, nếu robot thực hiện tìm kiếm sẽ có xác suất β năng lượng pin ở mức thấp và $1-\beta$ chuyển đến mức cao, trường hợp này xảy ra khi dung lượng pin cạn kiệt và cần ai đó mang nó đến chỗ sạc cho đến khi đạt mức năng lượng cao. Ngoài ra, mỗi lần robot thu gom được một lon soda nó sẽ nhận được +1 điểm thưởng và sẽ bị -3 điểm thưởng mỗi khi nó phải cần ai đó mang đến chỗ sạc. $r_{\rm dợi}$, $r_{\rm tìm}$ kiếm là số lượng lon soda kỳ vọng mà robot có thể thu gom được trong khi đợi và tìm kiếm. Hình 2.2 minh họa cho mỗ hình MDP trong robot thu gom.

Hình 2.2: Đồ thị minh họa chuyển trạng thái cho robot thu gom. Trong đồ thị có hai loại node: node trạng thái và node hành động. Node trạng thái minh họa những trạng thái có thể có mà hệ thống có thể nhận được, nó được ký hiệu một vòng tròn lớn với tên của trạng thái bên trong. Node hành động tường ứng với cặp (trạng thái, hành động). Việc thực hiện hành động a tại trạng thái s tương ứng trên đồ thị là một cạnh bắt đầu từ node trạng s tới node hành động a. Khi đó môi trường sẽ trả ra trạng thái tiếp theo s' ứng với đích của mũi tên đi từ node hành động a. Xác suất chuyển tới trạng thái s' khi thực hiện hành động a ở trạng thái s $p(s' \mid s, a)$, và giá trị điểm thưởng kỳ vọng nhận được trong trường hợp này r(s, a, s') tương ứng với ký hiệu trên mũi tên. Ví dụ: khi mức năng lượng pin đăng ở trạng thái thấp, hệ thống quyết định thực hiện hành động $sac\ pin$ khi đó trạng thái tiếp theo mà hệ thống nhận được sẽ là mức năng lượng pin ở trạng thái $cao\ v$ à xác suất chuyển tới trạng thái $cao\ p(cao\ |\ thấp, sạc\ pin)$ là s0 và giá trị kỳ vọng điểm thưởng tương ứng s0 thấp, sạc pin, cao) là s0.

2.2.2 Chính sách và hàm giá trị

Một chính sách π xác định xác suất mà hệ thông thực hiện hành động a khi nó trong trạng thái s được ký hiệu $\pi(a \mid s)$. Có thể nói chính sách như "bộ não" của hệ thống, nó quyết định cách thức mà hệ thống hành động trong những trạng thái cụ thể do đó một chính sách tốt cũng làm cho khả năng hệ thống ra quyết định trở nên tốt hơn.

Hàm giá trị cho biết những trạng thái hoặc những cặp hành động và trạng thái tốt như thế nào cho hệ thông khi nó trong những trạng thái hoặc thực hiện những cặp hành động và trạng thái đó. Khái niệm tốt ở đây nghĩa là giá trị điểm thưởng kỳ vọng mà hệ thông có thể nhận được ở tương lai. Hầu hết các thuật toán trong học tăng cường đều tập trung vào việc đánh giá những hàm giá trị qua đó cải thiện chính sách trở nên tốt hơn. Điểm thưởng mà hệ thống có thể nhận được trong tương lai phụ thuộc vào những hành động mà nó thực hiện. Do đó hàm giá trị chịu ảnh hưởng rất nhiều vào chính sách. Giá trị của trạng thái s dưới một chính sách π , ký hiệu $v_{\pi}(s)$, là giá trị kỳ vọng của return mà hệ thống nhận được bắt đầu từ trạng thái s theo chính sách π sau đó. Với mô hình MDP, $v_{\pi}(s)$ được định nghĩa như sau:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \middle| S_t = s \right]$$
 (2.5)

 v_{π} được gọi là hàm giá trị trạng thái dưới chính sách π .

Tương tự, chúng ta định nghĩa giá trị của việc thực hiện hành động a trong trạng thái s dưới chính sách π , được ký hiệu $q_{\pi}(s,a)$, là giá trị kỳ vọng của return mà hệ thống nhận được bắt đầu từ việc thực hiện hành động a trong trạng thái s theo chính sách π

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s, A_t = a \right] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \middle| S_t = s, A_t = a \right]$$
 (2.6)

 q_{π} được gọi là hàm giá trị hành động dưới chính sách π .

Hình 2.3 minh họa quan hệ giữa hàm giá trị trạng thái và hàm giá trị hành động, khi có được hàm giá trị này ta có thể có được hàm giá trị còn lại. Phương

Hình 2.3: Đồ thị minh họa quan hệ giữa hàm giá trị trạng thái và hàm giá trị hành động

Hình 2.4: Đồ thị minh họa cho (a) v_{π} và (b) q_{π}

trình 2.7 xác hàm giá trị của một trạng thái bằng giá trị kỳ vọng giá trị của các hành động thực hiện tại trạng thái đó. Hình 2.3a minh họa quan hệ giữa giá trị của một trạng thái s và giá trị của các hành động thực hiện tại trạng thái đó. Hình 2.3b cho thấy từ việc thực hiện hành động a tại trạng thái s, môi trường có thể trả ra nhiều trạng thái tiếp theo s' khác nhau. Do đó giá trị của hành động a ở trạng thái s có thể được xác định bằng tổng giá trị kỳ vọng điểm thưởng nhận được và giá trị kỳ vọng của các trạng thái tiếp theo đó đã được nhân với hệ số γ . Cách xác định này được biểu diễn trong phương trình 2.8.

$$v_{\pi} = \sum_{a \in \mathcal{A}(s)} \pi(a \mid s) q_{\pi}(s, a)$$
 (2.7)

$$q_{\pi}(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_{\pi}(s')$$
(2.8)

Hàm giá trị có một tính chất cơ bản thường được áp dụng trong học tăng

cường đó là mối quan hệ đệ quy. Cho bất kỳ chính sách π với bất kỳ trạng thái s, hàm giá trị cho một trạng thái được xác định:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_{t} \mid S_{t} = s \right]$$

$$= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots \mid S_{t} = s \right]$$

$$= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) \mid S_{t} = s \right]$$

$$= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s \right]$$

$$= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s \right]$$

$$= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s \right]$$

$$(2.9)$$

Phương trình 2.9 được gọi là phương trình Bellman cho v_{π} . Từ phương trình này ta thấy được mối liên quan giữa giá trị của một trạng s bất kỳ và giá trị của những trạng thái tiếp theo đạt được từ trạng thái đó. Ý tưởng nhìn trước một bước, hay nói cách khác đánh giá trạng thái hiện tại bằng cách nhìn trước tất cả những trạng tái tiếp theo có thể đạt được từ trạng thái đó, được minh họa trong hình 2.4a. Từ một trạng thái, môi trường có thể trả ra nhiều điểm thưởng r và trạng thái tiếp theo s' khác nhau. Phương trình 2.9 sẽ trung bình tất cả các trường hợp có thể đó lại theo xác suất mà chúng xuất hiện. Phương trình này cũng cho thấy giá trị của một trạng thái phải bằng tổng giá trị kỳ vọng của những trạng thái tiếp sau đó và giá trị kỳ vọng điểm thưởng nhận được.

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right]$$
 (2.10)

Phân tích phương trình 2.6 tương tự như đã làm đối với hàm giá trị hành động, ta có được phương trình 2.10. Hình 2.4b minh họa ý tưởng nhìn trước một đước để đánh giá giá trị của một hành động ở trạng thái hiện tại. Từ một hành động a ở trạng thái s, môi trường có thể trả ra nhiều điểm thưởng r và trạng thái s' khác nhau. Trong mỗi trạng thái s' lại có nhiều hành động a' khác nhau có thể thực hiện. Phương trình 2.10 sẽ trung bình tất cả các trường hợp có thể đó lại theo xác suất mà chúng được thực hiện. Hay nói cách khác, phương trình 2.10 cho thấy giá trị của một hành động a tại trạng thái s, $q_{\pi}(a, s)$ cũng được xác định tổng bằng giá trị kỳ vọng điểm thưởng hệ thống nhận được nhận được ngay sau khi thực hiện thực hiện hành động đó và giá trị kỳ vọng của các hành

động trong những trạng thái kế tiếp.

2.2.3 Hàm giá tri tối ưu

Để giải quyết những vấn đề trong học tăng cường, chúng ta cần tìm một chính sách sao cho hệ thống có thể đạt được nhiều điểm thưởng nhất có thể. Một chính sách π được xác định là tốt hơn hoặc bằng chính sách π' khi giá trị kỳ vọng của return theo chính sách π lớn hơn hoặc bằng giá trị đó theo chính sách π' . Hay có thể định nghĩa theo cách khác:

$$\pi \ge \pi' \iff v_{\pi}(s) \ge v_{\pi'}(s), \forall s \in \mathcal{S}$$
 (2.11)

Luôn có ít nhất một chính sách tốt hơn hoặc bằng tất cả các chính sách còn lại [6]. Chúng được gọi chung là chính sách tối ưu và được ký hiệu π_* . Những chính sách tối ưu đều cùng có chung một hàm giá trị trạng thái và hàm giá trị hành động. Hai loại hàm giá trị này có thể được gọi chung là hàm giá trị tối ưu. Chúng ta cũng có thể gọi tách biệt hàm giá trị trạng thái tối ưu đối với hàm giá trị trạng thái và hàm giá trị hành động tối ưu đối với hàm giá trị hành động. Phương trình 2.12 và 2.13 định nghĩa hình thức cho hai loại hàm này

$$v_*(s) = \max_{\pi} v_{\pi}(s), \forall s \in \mathcal{S}$$
 (2.12)

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a), \forall s \in \mathcal{S} \text{ và } \forall a \in \mathcal{A}(s)$$
 (2.13)

Từ hai phương trình 2.12 và 2.13 thấy rằng để xác định hàm giá trị tối ưu của mỗi trạng thái s hoặc cặp trạng thái và hành động (s, a), ta cần thử đánh giá giá trị của chúng theo tất cả các chính sách có thể có và chọn giá trị cao nhất là giá trị tối ưu cho trạng thái s hoặc cặp trạng thái và hành động (s, a).

Hình 2.5 minh họa quan hệ giữa giá trị trạng thái tối ưu và hàm giá trị hành động tối ưu, khi có được hàm này ta dễ dàng có được hàm còn lại. Trong hình 2.5a, ta có thể xác định giá trị tối ưu cho trạng thái s dựa trên hàm giá trị hành động tối ưu của các hành động có thể thực hiện tại trạng thái đó. Phương trình 2.14 xác định giá trị tối ưu cho trạng thái s bằng cách chọn giá trị hành động tối ưu lớn nhất trong các hành động có thể thực hiện ở trọng thái đó. Tương tự

Hình 2.5: Đồ thị minh họa quan hệ giữa hàm giá trị trạng thái tối ưu và hàm giá trị hành động tối ưu

Hình 2.6: Đồ thị minh họa phương trình Bellman trong (a) v_* và (b) q_*

trong hình 2.5b, ta có thể xác định giá trị tối ưu cho hành động a ở trạng thái s, dựa trên hàm giá trị trạng thái tối ưu của các trạng thái kế tiếp đạt được từ hành động đó. Phương trình 2.15 xác định giá trị tối ưu của hành động a tại trạng thái s bằng tổng giá trị kỳ vọng điểm thưởng nhận được từ môi trường và giá trị tối ưu kỳ vọng của những trạng thái kế tiếp đã nhân với hệ số γ .

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_*(s, a)$$
 (2.14)

$$q_*(s, a) = R_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$
 (2.15)

$$v_*(s) = \max_{a \in \mathcal{A}(s)} R_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$
 (2.16)

$$q_*(s, a) = R_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a' \in \mathcal{A}(s')} q_*(s', a')$$
 (2.17)

Hình 2.7: Quy trình chung trong lặp chính sách

Phương trình 2.16 và 2.17 dễ dàng có được bằng cách thay thế hai phương trình 2.14 và 2.15 qua lại lẫn nhau. Từ hai phương trình này, ta thấy được dạng phương trình Bellman trong hàm giá trị trạng thái tối ưu và hàm giá trị hành động tối ưu. Hình 2.6 minh họa ý tưởng nhìn trước một bước của phương trình Bellman trong hàm giá trị tối ưu. Trong đó hình 2.6a minh họa cách thức xác định giá trị tối ưu cho một trạng thái ứng với phương trình 2.16. Hình 2.6b minh họa cách thức xác định giá trị tối ưu của một hành động ở một trạng thái ứng với phương trình 2.17.

2.2.4 Quy trình lặp chính sách

Trong các bài toán học tăng cường, mục tiêu chính của ta là tìm được chính sách tối ưu π_* nhằm giúp cho hệ thông giải quyết bài toán tốt nhất có thể. Do đó ta cần có quy trình để thay đổi chính sách hiện tại trở nên tối ưu. Quy trình này được gọi là *quy trình lặp chính sách*. Hình 2.7 minh họa quy trình chung của lặp chính sách. Trong quy trình này được chia thành hai giai đoạn:

- Đánh giá chính sách: Việc đánh giá một chính sách π được thực hiện bằng cách xác định hàm giá trị trạng thái của dưới chính sách đó.
- Cải thiện chính sách: Sau khi có được hàm giá trị của một chính sách π, chính sách cải thiện mới π' được tạo ra bằng cách thực hiện tham lam trên hàm giá trị của chính sách π, tức là chỉ chọn thực hiện hành động có giá trị cao nhất dựa trên hàm giá trị trạng thái; việc này có thể thực hiện được do mối quan hệ giữa hai loại hàm.

Một chính sách π_1 được cải thiện từ chính sách π_0 dựa trên hàm giá trị trạng thái v_{π_0} . Khi có được chính sách π_1 ta có thể tính được hàm giá trị v_{π_1} qua đó tiếp tục cải thiện để có được chính sách π_2 . Quá trình này diễn ra cho đến khi đạt được chính sách tối ưu.

$$\pi_0 \xrightarrow{\text{Dánh giá}} v_{\pi_0} \xrightarrow{\text{Cải thiện}} \pi_1 \xrightarrow{\text{Dánh giá}} v_{\pi_1} \xrightarrow{\text{Cải thiện}} \pi_2 \cdots \xrightarrow{\text{Cải thiện}} \pi_* \xrightarrow{\text{Dánh giá}} v_{\pi_*}$$

2.2.4.1 Đánh giá chính sách bằng quy hoạch động (Dynamic Programming)

Quy hoạch động thường được dùng để giải quyết các bài toán tối ưu mà dữ liệu có tính thứ tự, ví dụ như dữ liệu chuỗi hay dữ liệu thời gian. Một bài toán tối ưu có thể được giải quyết bằng quy hoạch động cần có hai đặc điểm:

- Quy tặc tối ưu (Principle of Optimality): các bài toán có thể phân rã thành các bài toán con, và kết quả của bài toán con này đóng góp vào lời giải của bài toán gốc.
- Các bài toán con chồng lấn lên nhau và lặp lại nhiều lần: nhằm tận dụng lại kết quả của những bài toán con đã tính toán trước đó.

Trong nhiều bài toán học tăng cường, kỹ thuật quy hoạch động được dùng để tìm chính sách tối ưu hoặc tối ưu hàm giá trị. Để có thể áp dụng kỹ thuật quy hoạch động, những bài toán này cũng cần phải thỏa yêu cầu là hệ thống có kiến thức đầy đủ về môi trường hay cách khác môi trường có mô hình MDP. Quy hoạch động xác định hàm giá trị của một chính sách bằng cách cập nhật hàm giá trị được khởi tạo bất kỳ ban đầu qua nhiều vòng lặp, dựa vào phương trình Bellman. Ý tưởng của cách xác định này như sau: Ban đầu khởi tạo hàm giá trị v_0 bất kỳ cho tất cả các trạng thái, trừ trạng thái kết thúc được luôn có giá trị là 0. Tiến hành cập nhật hàm giá trị mới v_1 cho chính sách dựa trên hàm giá trị v_0 theo phương trình 2.18. Tương tự cập nhật hàm giá trị mới v_2 dựa trên v_1 . Quá trình lặp cho đến khi độ khác biệt giữa hàm giá trị sau và giá trị trước đó nhỏ hơn một lượng cho trước. Quy trình cập nhật được minh họa trong hình 2.8, trong đó giá trị mới v_{k+1} của trạng thái s được xác định dựa trên giá trị kỳ vọng điểm thưởng nhận được theo chính sách π , và giá trị hiện tại v_k của các

Hình 2.8: Đồ thị minh họa cập nhật hàm giá trị bằng quy hoạch động

trạng thái s' kế tiếp trạng thái s'. Tổng thể của việc đánh giá chính sách bằng quy hoạch động được trình bày ở thuật toán 2.1

$$v_{k+1}(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a \mid s) (\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s'))$$
 (2.18)

Thuật toán 2.1 Xác định hàm giá trị bằng quy hoạch động

Đầu vào: Chính sách π cần đánh giá

Đầu ra: Hàm giá trị V xấp xỉ hàm giá trị v_{π} của chính sách π

Thao tác:

- 1: Khởi tạo ngẫu nhiên V(s) cho tất cả trạng thái s không phải trạng thái kết thúc. Nếu s là trạng thái kết thúc, V(s) = 0
- 2: repeat
- 3: $\Delta \leftarrow 0 \%\%$ Tính độ khác biệt giữa hàm giá trị cũ và giá trị mới. Độ lớn của Δ được xác định là độ khác biệt lớn nhất giữa giá trị cũ và giá trị mới của một trạng thái trong tất cả các trạng thái.
- 4: **for** $s \in \mathcal{S}$ **do** %% Với mỗi trạng thái
- 5: $v \leftarrow V(s)$ %% Lưu giá trị hiện tại của trạng thái s
- 6: $V(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a \mid s) (\mathcal{R}^a_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} V(s'))$ %% Tính giá trị mới cho trạng thái s dựa trên giá trị hiện tại của các trạng thái s' kế tiếp của trạng thái s, và giá trị kỳ vọng của các hành động tại trạng thái đó theo chính sách π .
- 7: $\Delta \leftarrow \max(\Delta, |v V(s)|)$ %% Cập nhật giá trị mới cho Δ
- 8: end for
- 9: **until** $\Delta < \theta$ (Một lượng đủ nhỏ)

[TODO] Ví dụ minh họa TD

Mặc dù đã quy hoạch động đã được chứng minh là xấp xỉ tốt hay thậm chí là tìm được hàm giá trị trạng thái của chính sách π [2], nhưng trong các bài toán học thực tế của học tăng cường đặc biệt là những bài toán lớn thì quy hoạch động trở nên không khả thi do chi phí tính toán cao, trong trường hợp xấu nhất chi phí tính toán thuộc $O(k^n)$ với k là số hành động và n là số trạng thái.

2.2.4.2 Cải thiện chính sách bằng phương pháp tham lam (greedy)

Mục tiêu chúng ta xác định hàm giá trị cho một chính sách là để tìm một chính sách tốt hơn chính sách hiện tại. Giả sử chúng ta có một chính sách π cố định tức là với mỗi trạng thái s, chính sách này luôn chọn thực hiện một hành động cố định, $\pi(s) = a$. Và cũng đã xác định được một hàm giá trị v_{π} cho một chính sách đó. Với một trạng thái s, câu hỏi đặt ra là chúng ta nên thay đổi một chính sách cố định khác chọn hành động $a' \neq \pi(s)$ không? Chúng ta biết giá trị của trạng thái s theo chính sách hiện tại π , $v_{\pi}(s)$, tốt như thế nào nhưng liệu chính sách mới π' có tốt hơn hay trở nên tệ đị? Theo [6], ta có thể cải thiện một chính sách bằng cách chọn hành động có giá trị cao nhật tại mỗi trạng thái s. Chính xách mới π' được xác định trong 2.19.

$$\pi'(a|s) \begin{cases} 1 & \text{n\'eu } a = \underset{a \in A}{\operatorname{argmax}} q(s, a) \\ 0 & \text{ngược lại} \end{cases}$$
 (2.19)

Ngoài ra, việc cải thiện chính sách bằng phương pháp tham lam này, ta đồng thời cũng cải thiện được hàm giá trị [6]. Việc đánh giá và cải thiện chính sách qua nhiều vòng lặp sẽ hội tụ về chính sách tối ưu cũng như hàm giá trị tối ưu. Hình 2.9 minh họa quá trình hội tụ của lặp chính sách.

Hình 2.9: Ta có một chính π , đầu tiên ta thực hiện đánh giá chính sách π để có được hàm giá trị theo chính sách này, tiếp theo ta thực hiện cải thiện chính sách bằng cách lựu chọn tham lam hành động có giá trị lớn nhất dựa trên hàm giá trị đang có. Sau khi có được chính sách mới, ta tiếp tục đánh giá chính sách để có được hàm giá trị theo chính sách đó. Và tiếp tục cải thiện khi đã có được hàm giá trị. Quá trình này được lặp nhiều lần cho đến khi đạt được chính sách tối ưu cũng như hàm giá trị tối ưu.

2.3 Quy trình lặp chính sách không có MDP

Trong nhiều bài toán thực tế thông thường chúng ta không có kiến thức đầy đủ về môi trường như ma trận chuyển trạng thái \mathcal{P} , ma trận điểm thưởng \mathcal{R} , tập các trạng thái \mathcal{A} . Do đó một yêu cầu được đặt ra là hệ thống phải có khả năng học từ những thông tin mà nó tiếp nhận được qua việc tương tác với môi trường. Các thông tin này thường ở dạng chuỗi (trạng thái, hành động, điểm thưởng) $S_1, A_1, R_2, S_2, A_2, R_3, \ldots, S_T$. Với T là thời điểm kết thúc việc tương tác của hệ thống với môi trường.

2.3.1 Phương pháp cải thiện chính sách

Phương pháp ϵ -greedy

Trong những bài toán học tăng cường thực tế, chúng ta thường không có mô hình của môi trường như: tập các trạng thái có thể có, xác suất chuyển từ trạng thái này sang trạng thái khác, và điểm thưởng nhận được cho tất cả các trạng thái. Do đó, câu hỏi đặt ra là chúng ta nên thực hiện khai thác những kiến thức đã học để tìm lời giải tối ưu hay khám phá những kiến thức mới để có cơ hội tìm được lời giải tối ưu hơn cho bài toán. Ví dụ: trong bài toán chọn nhà nhà hàng.

- Khai thác: Chọn nhà hàng đã từng vào mà mình thích nhất.
- Khám phá: Thử chọn một nhà hàng mới.

Nếu chỉ khai thác những kiến thức đã học mà không thực hiện khám phá kiến thức mới thông thường chúng ta chỉ tìm được lời giải tối ưu cục bộ trong những kiến thức đã học. Ngược lại nếu chỉ thực hiện khám phá kiến thức mới mà không thực hiện khai thác kiến thức đã học, chúng ta không thể tìm được lời giải tối ưu.

Ý tưởng của phương pháp ϵ -greedy đảm bảo luôn khám phá kiến thức mới trong quá trình khai thác. Trong bài toán cải thiện chính sách, giả sử chúng có hàm giá trị hành động Q, phương pháp ϵ -greedy đảm bảo các hành động luôn có khả năng được chọn thực hiện tại mỗi trạng thái. Phương pháp ϵ -greedy sẽ thực

hiện hoàn toàn ngẫu nhiên mà không quan tâm đến hàm giá trị hành động với xác suất ϵ tại mỗi trạng thái; ngược lại ϵ -greedy sẽ chọn thực hiện hành động dựa trên tham lam hàm giá trị hành động với xác suất $1-\epsilon$. Qua đó, ta thấy được nếu tại một trạng thái s có thể thực hiện được m hành động khác nhau thì xác xuất để chọn một hành động bất kỳ được chọn mà không quan tâm đến giá trị của chúng là ϵ/m . Từ 2.20, tại một trạng thái s, hành động có giá trị lớn nhất sẽ có xác suất được chọn thực hiện là $\epsilon/m+1-\epsilon$, ngược lại một hành động không có giá lớn nhất cũng có xác suất được chọn là ϵ/m .

$$\pi(a|s) = \begin{cases} \epsilon/m + 1 - \epsilon & \text{n\'eu } a = \underset{a \in A}{\operatorname{argmax}} Q(s, a) \\ \epsilon/m & \text{ngược lại} \end{cases}$$
 (2.20)

Câu hỏi đặt một chính sách π' thực hiện ϵ -greedy trên hàm giá trị hành động của chính sách π có tốt hơn chính sách π không? Theo định lý tối ưu: Với chính sách thực hiện theo phương pháp ϵ -greedy π bất kỳ, một chính sách khác π' thực hiện ϵ -greedy trên hàm giá trị hành động của chính sách π , q_{π} , luôn là một chính sách tốt hơn hoặc bằng chính sách π , $v_{\pi'}(s) \geq v_{\pi'}(s), \forall s \in \mathcal{S}$.

2.3.2 Phương pháp đánh giá chính sách

Trong phần này, chúng em sẽ trình bày một số phương pháp được áp dụng để đánh giá chính sách.

2.3.2.1 Phương pháp Monte Carlo (MC)

Tương tự với quy hoạch động, Monte Carlo (MC) xác định hàm giá trị của một chính sách bằng cách cập nhật hàm giá trị khởi tạo qua nhiều vòng lặp. Điểm biệt khác với quy hoạch động của phương pháp MC là nó có thể áp dụng để đánh giá chính sách khi hệ thông không có kiến thức đầy đủ về môi trường. MC dựa trên những thông tin mà hệ thông có được qua việc tương tác với môi trường để xấp xỉ hàm giá trị. Thông thường những thông tin này được chia thành các mẫu thực nghiệm. Mỗi mẫu thực nghiệm là một chuỗi bắt đầu từ một trạng thái bất kỳ cho đến khi đạt được một trong những trạng thái kết thúc. Khi đó MC chỉ thực hiện cập nhật hàm giá trị khi kết thúc một mẫu thực nghiệm.

Ý tưởng của MC là xác định giá trị của một trạng thái s qua các mẫu thực nghiệm. Phương pháp MC xác định giá trị của trạng thái s bằng cách trung bình những return mà hệ thông nhận được sau khi quan sát được trạng thái s. Khi quan sát càng nhiều mẫu thực nghiệm có trạng thái s xuất hiện, giá trị trung bình sẽ càng xấp xỉ tốt giá trị thực của trạng thái này theo chính sách π .

Một mẫu thực nghiệm là những thông tin có được trong quá trình hệ thống tương tác với môi trường bằng chính sách π . Giá trị của trạng thái s, v(s) được tính dựa trên những mẫu thực nghiệm có trạng thái s xuất hiện. Một trạng thái s có thể xuất hiện nhiều lần trong một mẫu thực nghiệm. Lần xuất hiện đầu tiên của trạng thái s trong một mẫu thực nghiệm được gọi là first-visit trạng thái đó. Phương pháp first-visit MC xác định giá trị trạng thái s $v_{\pi}(s)$ bằng trung bình tất cả return mà hệ thống nhận sau lần first-visit của trạng thái s trong các mẫu thực nghiệm. Tổng thể của việc đánh giá chính sách bằng first-visit MC được trình bày ở thuật toán 2.2. Hình 2.10 minh họa cách thức cập nhật hàm giá trị trên một mẫu thực nghiệm.

Thuật toán 2.2 Xác định hàm giá trị trạng thái bằng phương pháp first-visit MC

Đầu vào: Chính sách π cần đánh giá

Đầu ra: Hàm giá trị V xấp xỉ hàm giá trị v_{π} của chính sách π

Thao tác:

- 1: Khởi tạo ngẫu nhiên V(s) cho tất cả trạng thái s không phải trạng thái kết thúc. Nếu s là trạng thái kết thúc, V(s) = 0
- 2: Khởi tạo danh sách rỗng $\mathbf{Returns}(s)$ cho tất cả trạng thái $s \in \mathcal{S}$ %% Danh sách $\mathbf{Returns}(s)$ chứa tất cả các return mà hệ thống nhận được sau lần first-visit của trạng thái s trong các mẫu thực nghiệm.

```
3: repeat
4: Tạo một mẫu thực nghiệm E bằng chính sách π
5: for mỗi trạng thái s xuất hiện lần đầu trong E do
6: G ← return nhận được sau lần xuất hiện đầu tiên của s
7: Thêm G vào danh sách Returns(s)
8: V(s) ← average(Returns(s))
9: end for
10: until Thỏa điều kiện dừng
```

Trong nhiều trường hợp, hệ thống không có được mô hình của môi trường, việc sử dụng hàm giá trị hành động trở nên khả thi hơn hàm giá trị trạng thái.

Hình 2.10: Đồ thị minh họa cập nhật hàm giá trị trên một mẫu thực nghiệm bằng phương pháp first-visit MC. Hình tròn lớn được ký cho trạng thái xuất hiện. Hình tròn nhỏ được ký cho hành động thực hiện. Màu xác khác nhau giữa các hình tròn biểu thị cho sự khác nhau giữa các trạng thái. Phương pháp first-visit MC chỉ cập nhật giá trị cho các trạng thái khi kết thúc một mẫu thực nghiệm, và mỗi trạng thái chỉ được cập nhật một lần mặc dù trạng thái đó có thể xuất hiện nhiều lần trong cùng một mẫu.

Với việc có được mô hình của môi trường, hàm giá trị trạng thái là đủ để cải thiện một chính xách trở nên tốt hơn; nó đơn giản là nhìn trước trạng thái tiếp theo và chọn bất kỳ hành động nào dẫn đến trạng thái đó mà đạt được nhiều điểm thưởng nhất. Ngược lại, nếu không có được mô hình của môi trường, hàm giá trị trạng thái là không đủ do hệ thống không thế xác định được trạng thái tiếp theo là trạng thái gì. Vì vậy, nó cần đánh giá giá trị của mỗi hành động trong mỗi trang thái để xác định hành động nào nên thực hiện ở mỗi trang thái qua đó cải thiện chính sách đang thực hiện. Việc xác định hàm giá trị hành đọng q_{π} được thực hiện tương tự như đã làm với hàm giá trị trạng thái v_{π} . Để xác định giá trị của hành động a tại trạng thái s, nó thực hiện tính trung bình các return mà hệ thộng nhận được dựa vào các mẫu thực nghiệm có sự xuất hiện của cặp trạng thái hành động (s,a). Lẫn xuất hiện đầu tiên của cặp trạng thái và hành động (s,a) trong một mẫu thực nghiệm được gọi là first-visit của cặp trạng thái và hành động đó. Phương pháp first-visit MC xác định giá trị của hành động a ở trạng thái s, $q_{\pi}(s,a)$ bằng trung bình tất cả các return nhận được sau lần first-visit của cặp (s,a) trong các mẫu thực nghiệm. Thuật toán 2.3 trình bày cách thức xác định hàm giá trị hành động bằng first-visit MC.

Thuật toán 2.3 Xác định hàm giá trị hành động bằng phương pháp first-visit MC

Đầu vào: Chính sách π cần đánh giá

Đầu ra: Hàm giá trị V xấp xỉ hàm giá trị v_{π} của chính sách π

Thao tác:

- 1: Khởi tạo ngẫu nhiên Q(s,a) cho tất cả các cặp trạng thái, hành động s,a.
- 2: Khởi tạo danh sách rỗng $\mathbf{Returns}(s,a)$ cho tất cả các cặp trạng thái, hành động (s,a). %% Danh sách $\mathbf{Returns}(s,a)$ chứa tất cả các return mà hệ thống nhận được sau lần first-visit của cặp trạng thái, hành động (s,a) trong các mẫu thực nghiệm.
- 3: repeat
- 4: Tạo một thực nghiệm E bằng chính sách π
- 5: **for** mỗi cặp trạng thái, hành động (s, a) xuất hiện lần đầu trong E **do**
- 6: $G \leftarrow$ return nhận được sau lần xuất hiện đầu tiên của cặp trạng thái, hành động (s,a)
- 7: Thêm G vào danh sách Returns(s, a)
- 8: $Q(s, a) \leftarrow \text{average}(\text{Returns}(s))$
- 9: end for
- 10: **until** Thỏa điều kiện dừng

2.3.2.2 Phương pháp Temporal Difference (TD)

Phương pháp Temporal Difference (TD) kết hợp ý tưởng giữa Monte Carlo và quy hoạch động. Giống như Monte Carlo, phương pháp TD có thể học trực tiếp từ các mẫu thực nghiệm có được qua việc tương tác của hệ thống với môi trường mà không cần có mô hình của môi trường. Mặt khác tương tự với quy hoạch động, phương pháp TD thựa hiện cập nhật giá trị dựa trên những phần đã được xác định trước đó mà không phải đợi đến khi kết thúc một mẫu thực nghiệm như MC.

Giả sử ta có các trung bình $\mu_1, \, \mu_2, \, \dots$ của chuỗi x_1, x_2, \dots có thể được tính

như sau:

$$\mu_{k} = \frac{1}{k} \sum_{j=1}^{k} x_{j}$$

$$= \frac{1}{k} \left(x_{k} + \sum_{j=1}^{k-1} x_{j} \right)$$

$$= \frac{1}{k} (x_{k} + (k-1) \mu_{k-1})$$

$$= \mu_{k-1} + \frac{1}{k} (x_{k} - \mu_{k-1})$$
(2.21)

Phương pháp Monte Carlo phải đợi cho đến khi tính được return sau lần xuất hiện của một trạng thái để thực hiện cập nhật giá trị cho trạng thái đó, và giá trị của một trạng thái được cập nhật qua nhiều vòng lặp. Dựa vào phương trình 2.21 giá trị của mỗi trạng thái có thể được cập nhật như sau:

$$N(S_t) \leftarrow N(S_t) + 1 \tag{2.22}$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$
 (2.23)

Khi đó G_t được gọi là mục tiêu cập nhật cho $V(S_t)$. Mặt khác, khi môi trường không ổn định việc cập nhật giá trị trạng thái theo 2.23 thường được cố định bằng hệ số α :

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t)) \tag{2.24}$$

Khác với phương pháp MC, phương pháp TD chỉ cần đợi tới bước tiếp theo ngay sau đó t+1 để hình thành một cái đích cho việc cập nhật qua việc quan sát điểm thưởng R_{t+1} và giá trị của trạng thái tiếp theo $V(S_{t+1})$. Phương pháp TD đơn giản nhất được gọi là TD(0). Cách thức cập nhật giá trị của một trạng thái trong phương pháp này như sau:

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$
 (2.25)

Trong 2.25 ta thấy mục tiêu cập nhật cho $V(S_t)$ trong TD(0) là $R_{t+1} + \gamma V(S_{t+1})$. Vì phương pháp TD thực hiện cập nhật giá trị của một trạng thái dựa một

phần vào các giá trị của những trạng thái tiếp theo nên phương pháp này là một phương pháp "bootstapping", tương tự với quy hoạch động. Như đã định nghĩa trong 2.2.2, giá trị của trạng thái s dưới chính sách π được xác định:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_{t} \mid S_{t} = s \right]$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \middle| S_{t} = s \right]$$

$$= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \middle| S_{t} = s \right]$$

$$= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s \right]$$

$$= (2.27)$$

Qua đó, ta thấy rằng phương pháp MC sử dụng ước lượng của 2.26 là mục tiêu cập nhật; trong khi đó phương pháp quy hoạch động sử dụng ước lượng của 2.27. Mục tiêu cập nhật của MC là một ước lượng vì không biết giá trị kỳ vọng trong 2.26 do đó một mẫu return được sử dụng để thay thế cho giá trị kỳ vọng thực sự của nó. Mục tiêu cập nhật của quy hoạch động cũng là một ước lượng không phải vì giá trị kỳ vọng, do trong quy hoạch động chúng ta giả định hệ thống có mô hình của môi trường, nhưng là vì $v_{\pi}(S_{t+1})$ là không biết do hiện tại nó đang được đánh giá; do đó $V(S_{t+1})$ được sử dụng để thay thế. Mục tiêu cập nhất trong TD là một ước lượng do cả hai nguyên nhân trên nên TD ước lượng giá trị kỳ vọng trong 2.26 qua mẫu và sử dụng ước lượng của hàm giá trị hiện tại V để thay thế cho hàm giá trị đúng v_{π} . Vì vậy, phương pháp TD được cho là phương pháp kết hợp cách lấy mẫu của MC và bootstrapping của quy hoạch động. Từng bước thực hiện cập nhật hàm giá trị bằng phương pháp TD(0) được trình bày trong thuật toán thuật toán 2.4.

Với bất kỳ chính sách π cố định. Việc xác định hàm giá trị bằng phương pháp TD đã được chứng minh hội tu về hàm giá trị v_{π} theo luật số lớn. Trong thực nghiệm, phương pháp TD thường hội tụ về hàm giá trị v_{π} nhanh hơn phương pháp MC.

Phương pháp TD(0) xem giá trị của các trạng thái kế tiếp từ một trạng thái s là giá trị đại diện cho điểm thưởng mà trạng thái s có thể nhận được ở tương lai; và dựa vào giá trị đại diện này và điểm thưởng nhận được ngay trạng thái s

Thuật toán 2.4 Xác định hàm giá trị trạng thái bằng TD(0)

Đầu vào: Chính sách π cần đánh giá

Đầu ra: Hàm giá trị V xấp xỉ hàm giá trị v_{π} của chính sách π

Thao tác:

```
1: repeat
```

2: Tạo một mẫu thực nghiệm E bằng chính sách π

3: Khởi tạo trạng thái s

4: **for** mỗi bước trong E **do**

5: $A \leftarrow \text{hành động được chọn theo chính } \pi \text{ tại } s$

Thực hiện hành động A; quan sát điểm thưởng r nhận được, và trạng thái tiếp theo s'

7: $V(s) \leftarrow V(s) + \alpha \left[r + \gamma V(s') - V(s)\right]$ %% Thực hiện cập nhật giá trị cho trạng thái s

8: $s \leftarrow s'$

9: end for

10: **until** thỏa điều kiện dừng

để xác định giá trị của trạng thái đó. Tổng quát cho phương pháp TD là n-step TD. Để đánh xác định giá trị của một trạng thái s, phương pháp n-step TD xem giá trị của trạng thái thứ n sau đó là giá trị đại diện cho điểm thưởng mà hệ thống có thể nhận được từ bước thứ n trở về sau; và xác định giá trị của trạng thái s dựa trên giá trị đại diện này cùng với điểm thưởng đã nhận được ở n bước sáu đó. Hình 2.11 minh họa xác định hàm giá trị trạng thái bằng phương pháp n-step TD. Phương pháp này thực hiện cập nhật cho một trạng thái ở bước thứ n sau khi trạng thái s xuất hiện trong mẫu thực nghiệm.

Xét một chuỗi trạng thái, điểm thưởng S_t , R_{t+1} , S_{t+1} , R_{t+2} , ..., S_T . Như chúng ta đã biết, Monte Carlo thực hiện cập nhật ước lượng giá trị của trạng thái s chỉ khi tính được return của trạng thái đó:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{T-t-1} R_T$$

trong đó T là thời điểm cuối cùng trong một mẫu thực nghiệm. Ngược với MC, TD(0) thực hiện cập nhật cho một trạng thái dựa trên điểm thưởng vừa nhận được ngay trạng thái đó và giá trị hiện tại của các trạng thái kế tiếp sau đó mà

Hình 2.11: Đồ thị bên trái ngoài cùng minh họa xác định hàm giá trị bằng phương pháp $\mathrm{TD}(0)$, trong khi đó đồ thị bên phải ngoài cùng minh họa cho phương pháp Monte Carlo. Các đồ thị ở giữa minh họa phương pháp n-step TD ứng với từng giá trị của n

không cần đợi đến khi tính được return:

$$G_t^{(1)} = R_{t+1} + \gamma V_k(S_{t+1})$$

với V_k là giá trị hiện tại của trạng thái sau khi cập nhật k lần.

Tổng quát, phương pháp n-step TD thực hiện cập nhật giá trị ước lượng của một trạng thái s sau n bước kể từ lúc trạng thái s xuất hiện trong mẫu thực nghiệm; và mục tiêu cập nhật được xác định:

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V_k(S_{t+n}), \forall n \ge 1 \quad (2.28)$$

Sau khi xác định mục tiêu cập nhật, việc thực hiện cập nhật giá trị ước lượng của một trạng thái tại lần lặp thứ k+1 tương tự như đã thực hiện ở hai phương pháp trên:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[G_t^{(n)} - V(S_t) \right]$$

2.3.2.3 Phương pháp Sarsa

Phương pháp Sarsa được dùng để xác định hàm giá trị hành động q_{π} thay vì giá trị trạng thái v_{π} cho chính sách π . Trong Sarsa, chúng ta quan tâm chuyển từ cặp trạng thái, hành động này sang cặp trạng thái, hành động khác và học giá trị của những cặp trạng thái, hành động; thay vì chỉ quan tâm đến sự chuyển tiếp trạng thái, cũng như giá trị của chúng như trong TD. Tương tự với TD, Sarsa dựa trên phương pháp "boostrapping" để xác định giá trị điểm thưởng mà hệ thống có thể nhận được ở tương lai từ một thời điểm xác định, đồng thời xác định giá trị của một cặp trạng thái và hành động qua nhiều lần lặp cập nhật.

Phương pháp đơn giản nhất trong Sarsa được gọi là Sarsa(0). Cách thức cập nhật giá trị của một cặp trạng thái và hành động bằng Sarsa(0) được thực hiện:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$
 (2.29)

Giá trị của hành động A_t tại trạng thái S_t được cập nhật dựa trên điểm thưởng từ môi trường ứng với hành động đó và giá trị của hành động ở trạng thái kế tiếp sau đó. Nếu trạng thái tiếp theo S_{t+1} là trạng thái kết thúc khi đó giá trị của

các hành động tại trạng thái đó đều có giá trị là không; tức là $Q(S_{t+1}, A_{t+1}) = 0$ Cách thức cập nhật của Sarsa(0) được minh họa trong hình 2.12. Cập nhật này sử dụng một bộ gồm 5 phần tử cho cập nhật $(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1})$.

Thuật toán 2.5 Xác định hàm giá trị hành động bằng Sarsa(0)

```
Đầu vào: Chính sách \pi cần đánh giá
Đầu ra: Hàm giá trị Q xấp xỉ hàm giá trị q_{\pi} của chính sách \pi
Thao tác:
 1: repeat
       Tạo một mẫu thực nghiệm E bằng chính sách \pi
 2:
       Khởi tạo trạng thái S
 3:
       Chọn một hành động A tại trạng thái S theo chính sách \pi
 4:
       for mỗi bước trong E do
 5:
           Thực hiện hành động A; quan sát điểm thưởng R nhận được, và trạng
 6:
    thái tiếp theo S'
           Chọn hành động A' ở trạng thái S' theo chính sách \pi
 7:
           Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right] %% Thực hiện
 8:
     cập nhật giá trị cho cặp trạng thái, hành động S,A
           S \leftarrow S'
 9:
           A \leftarrow A'
10:
        end for
11:
12: until thỏa điều kiện dừng
```

Phương pháp n-step Sarsa là phương pháp tổng quát cho việc đánh giá chính sách bằng cách xác định hàm giá trị hành động. Mục tiêu cập nhật của n-step Sarsa cho một cặp trạng thái và hành động (S_t, A_t) được xác định:

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n}, A_{t+1})$$
 (2.30)

Sau khi xác định được mục tiêu cập nhật, giá trị của một cặp trạng thái và hành đông được cập nhật tương tự như cách cập nhật trong 2.29 của Sarsa(0):

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[G_t^{(n)} - Q(S_t, A_t) \right]$$
(2.31)

Hình 2.12: Đồ thị minh họa xác định hàm giá trị hành động bằng phương pháp Sarsa(0)

2.3.2.4 Phương pháp Q-learning

On-policy và off-policy

Ý tưởng của on-policy là dựa trên những kinh nghiệm thực tế của chính hệ thống, nó có thể tự cải thiện trở nên tốt hơn. Những phương pháp thực hiện theo on-policy là những phương pháp đánh giá và cải thiện chính sách π dựa trên những mẫu dữ liệu có được qua việc tương tác với môi trường theo chính chính sách đó. Các phương pháp quy hoạch động, MC, TD, Sarsa là những phương pháp thực hiện theo on-policy. Ngược lại với on-policy, ý tưởng của off-policy là hệ thống có thể cải thiện chính sách của nó dựa trên những kinh nghiệm thực tế của một hệ thống có một chính sách thực hiện khác. Những phương pháp thực hiện theo off-policy đánh giá và cải thiện chính sách π dựa trên những mẫu dữ liệu có được qua việc tương tác với môi trường theo một chính sách π' khác. Ngoài ra, những phương pháp thực hiện theo off-policy có thể tận dụng lai những mẫu dữ liệu cũ để tiếp tục cải thiện chính sách.

Phương pháp off-policy Q-learning

Một trong những đột phá quan trọng nhất trong học tăng cường được phát triển dựa trên phương pháp TD được biết đến chính là Q-learning [6]. Tương tự như những phương pháp ở trên, phương pháp Q-learning xác định giá trị của một cặp trạng thái và hành động bằng cách cập nhật giá trị ước lượng của nó qua

nhiều lần lặp:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$
 (2.32)

Mục tiêu cập nhật giá trị của cặp trạng thái, hành động (S_t, A_t) bằng phương pháp Q-learning dựa trên giá trị điểm thưởng nhận được R_{t+1} và giá trị của hành động lớn nhất ở trạng thái kế tiếp S_{t+1} . Hình 2.13 minh họa cho cách thức xác định mục tiêu cập nhật của Q-learning. Một điểm khác biệt của phương pháp Q-learning so với các phương pháp trên là nó xấp xỉ trực tiếp hàm giá trị hành động tối ưu q_* , mà không phải phụ thuộc quá nhiều vào chính sách mà nó đang theo. Ảnh hưởng của chính sách mà hệ thông đang theo đối với phương pháp này là: nó xác định cặp trạng thái và hành động nào được xuất hiện trong các mẫu thực nghiệm. Tuy nhiên để đảm bảo xác định được giá trị hành động tối ưu, một yêu cầu tối thiểu là các cặp trạng thái và hành động đều được xuất hiện trong quá trình đánh giá chính sách và giá trị các cặp trạng thái, hành động đều được cập nhật liên tục. Từng bước thực hiện của phương pháp Q-learning được trình bày trong thuật toán 2.6.

Thuật toán 2.6 Xác định hàm giá trị hành động tối ưu bằng Q-learning

Đầu vào:

Đầu ra: Hàm giá trị Q xấp xỉ hàm giá trị q_*

Thao tác:

- 1: repeat
- 2: Tạo một mẫu thực nghiệm E bằng chính sách π' (thực hiện ϵ -greedy theo hàm giá trị Q hiện tại)
- S: Khởi tạo trạng thái S
- 4: **for** mỗi bước trong E **do**
- 5: Chọn một hành động A tại trạng thái S theo chính sách π'
- 6: Thực hiện hành động A; quan sát điểm thưởng R nhận được, và trạng thái tiếp theo S'
- 7: $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) Q(S,A)\right]$ %% Thực hiện cập nhật giá trị cho cặp trạng thái, hành động S,A
- 8: $S \leftarrow S'$
- 9: end for
- 10: **until** thỏa điều kiện dừng

Hình 2.13: Đồ thị minh họa cập nhật hàm giá trị hành động bằng phương pháp Q-learning. Q-learning xác định mục tiêu cập nhật cho giá trị của cặp trạng thái, hành động (S_t, A_t) bằng tổng giữa điểm thưởng R_{t+1} nhận được khi thực hiện hành động A_t tại trạng thái S_t và giá trị hành động a lớn nhất tại trạng thái kế tiếp S_{t+1} đã nhân với hệ số γ .

Chương 3

Kết hợp học tăng cường với học sâu

Những thành công gần đây của học sâu (Deep learning) trong các bài toán như xử lý ngôn ngữ tự nhiên, nhận diện đối tượng trong ảnh... đặt ra vấn đề: liệu các kỹ thuật trong học sâu có thể áp dụng vào học tăng cường? Để trả lời câu hỏi đó, chương này trình bày về hướng tiếp cận kết hợp học sâu với học tăng cường để áp dụng vào bài toán "Tự động chơi game". Hướng tiếp cận mới mẻ này của lĩnh vực học tăng cường này mang tên "Học tăng cường sâu" (Deep reinforcement learning)

Chương này trình bày hai phần:

- Nguyên nhân cần sử dụng học sâu và kiến thức cơ bản về học sâu
- \bullet Áp dụng học tăng cường sâu vào bài toán "Tự động chơi game"

3.1 Học tăng cường kết hợp với học sâu

3.1.1 Lý do cần áp dụng học sâu

Những thuật toán học tăng cường được trình bày trong chương trước đều tìm chính sách tối ưu dựa vào hàm giá trị. Việc tính **đúng** và **nhanh** hàm giá trị ảnh hưởng rất nhiều đến kết quả của bài toán. Các thuật toán học tăng cường

cổ điển như "Monte Carlo" (MC) hay "Temporal-Difference" (TD) đều đã được chính minh là luôn hội tụ trong những điều kiện nhất định [6]. Ngoài ra, khi áp dụng vào các bài toán kinh điển của học tăng cường thì các thuật toán này đều hội tụ khá nhanh.

Tuy nhiên, với những bài toán thực tế với số trạng thái rất lớn thì việc lưu véc-tơ hàm giá trị trạng thái v_{π} (hoặc ma trận hàm giá trị hành động q_{π}) là việc không thể. Ví dụ như "frame hình" của bài toán tự động chơi game có kích thước $210 \times 160 \times 3 = 100800$ điểm ảnh; mỗi điểm ảnh có giá trị trong khoảng [0,127] nên số trạng thái có thể có lên đến 128^{100800} . Vì vậy, việc lưu trữ hàm giá trị dưới dạng bảng là không khả thi về mặt bộ nhớ. Còn về mặt tốc độ tính toán thì các thuật toán học tăng cường trên đều tính hàm giá trị *rời rạc* cho từng trạng thái. Với số trạng thái quá lớn như trên thì ta không thể duyệt lần lượt từng trạng thái để tính được.

Những lý do trên dẫn đến việc sử dụng một phương pháp xấp xỉ hàm là bắt buộc cho các bài toán học tăng cường với số trạng thái lớn. Một trong những tiếp cận rất tự nhiên đó là sử dụng các mô hình học có giám sát như là một phương pháp xấp xỉ hàm giá trị. Đặc biệt, với những đột phá gần đây của học sâu trong lĩnh vực xử lý ảnh, video... thì việc áp dụng các mô hình phổ biến của học sâu vào bài toán tự động chơi game là đầy hứa hẹn.

3.1.2 Giới thiệu học sâu

Các mô hình truyền thống trong lĩnh vực máy học như "Linear regression", "Bayesian learning"... thông thường đều hoạt động trên các đặc trưng được *rút trích một cách thủ công* (hand-designed features). Với dữ liệu thô thu thập được từ thực tế, các nhà khoa học xây dựng các phương pháp rút trích ra những "thông tin hữu ích" (thường được gọi là đặc trưng) để cung cấp cho các mô hình máy học. Kết quả nhận được từ các mô hình này phụ thuộc rất lớn vào cách biểu diễn dữ liệu. Ví dụ như trong bài toán nhận diện người nói từ một đoạn âm thanh, các đặc trưng có thể bao gồm: độ lớn âm thanh, tần số trung bình của đoạn âm,... Nếu các đặc trưng này không đủ "mạnh" (như có hai người nói đoạn âm thanh nhưng lại có chung độ lớn, tần số...) thì các mô hình học sẽ không thể phân biệt.

Để giải quyết vấn đề thiết kế đặc trưng, các mô hình máy học thuộc loại "Học biểu diễn" (Representation learning) ra đời. Các mô hình này có khả năng tự động học luôn các đặc trưng cần thiết cho quá trình phân tích dữ liệu. Nhờ vậy, các mô hình này có thể áp dụng được dễ dàng hơn vào các bài toán thực tế mà không cần con người phải can thiệp. Tuy nhiên, các đặc trưng cần thiết lại có thể rất phức tạp. Việc học ra các đặc trưng này có thể khó ngang với việc giải bài toán gốc. Ví dụ như trong bài toán nhận diện người nói trên, ta có thể sử dụng thông tin về giọng địa phương của người nói (accent). Đặc trưng này rất trừu tượng, không dễ phân tích bằng máy tính mặc dù con người có thể nhận biết một cách khá dễ dàng. Vì vậy, nếu các đặc trưng cần thiết quá khó để học thì các mô hình máy học thuộc loại "Học biểu diễn" cũng không thể cho kết quả tốt.

Học sâu (Deep learning) được ra đời nhằm giải quyết các vấn đề trên. Học sâu là một nhánh của "Học biểu diễn" nên vẫn có thể tự động học ra các đặc trưng hữu ích. Học sâu được thiết kế để học ra các đặc trưng có quan hệ với nhau theo nhiều tầng (layer). Các đặc trưng ở tầng phía sau được xây dựng dựa vào các đặc trưng ở tầng phía trước. Các tầng đầu tiên bao gồm những đặc trưng đơn giản và các tầng tiếp theo ngày càng trừu tượng, ngày càng phức tạp hơn. Mỗi tầng chỉ cần học cách xây dựng đặc trưng từ những đặc trưng ở tầng phía trước (đã có sẵn độ trừu tượng nhất định) thay vì học từ dữ liệu thô ban đầu; điều này giúp cho học sâu có khả năng học được những đặc trưng rất phức tạp.

Một trong những mô hình học sâu phổ biến nhất và cũng cho kết quả rất tốt với dữ liệu ảnh đó là mạng nơ-ron tích chập (Convolutional Networks). Với bài toán tự động chơi game, dữ liệu hệ thống nhận được từ môi trường là ảnh RGB. Chính vì vậy, mạng nơ-ron tích chập là một mô hình rất phù hợp để kết hợp với các thuật toán học tăng cường.

3.1.3 Mạng nơ-ron tích chập

Mạng nơ-ron tích chập (Convolutional Networks - CNN) là một mô hình học sâu được áp dụng rộng rãi trong các bài toán liên quan đến ảnh, video hoặc âm thanh... CNN được thiết kế để tận dụng thông tin về không gian (spatial

Hình 3.1: Hình mô phỏng cách hoạt động của mô hình học sâu cho bài toán nhận diện đối tượng trong ảnh. Dữ liệu đầu vào là hình ảnh RGB chứa đối tượng cần xác đinh. Tầng đầu tiên của mô hình là tầng "input" tiếp nhân thông tin này dưới dạng ma trấn số. Các tầng tiếp theo ngoại trừ tầng cuối cùng được gọi là tầng ẩn "hidden layer" vì đặc trưng học được tại đây con người không quan sát được. Các tầng ấn học các đặc trưng ngày càng trừu tượng dựa vào đặc trưng ở tầng phía trước. Tầng ẩn đầu tiên học được các đặc trưng về cạnh bằng cách so sánh độ sáng giữa các điểm ảnh gần nhau. Tầng ẩn thứ hai học được các đặc trung về đường cong bằng cách tổng hợp đặc trung về cạnh ở tầng trước đó. Tầng ẩn thứ ba học được các đặc trưng về bộ phận của đồ vật như khuôn mặt, bánh xe... dựa vào các đặc trưng về đường cong ở tầng trước. Tầng cuối cùng được gọi là tầng "output" có nhiệm vụ tìm kiếm các bộ phận và trả về lớp đối tượng tương ứng. Bằng cách học đặc trưng ngày càng trừu tượng hơn, các mô hình học sâu có khả năng tư động học được các đặc trung từ đơn giản đến phức tạp; tất cả đều nhằm hỗ trợ cho quá trình phân lớp dữ liệu (hình được chỉnh sửa từ [1])

structures) của các loại dữ liệu nêu trên. Ví dụ như trong bài toán nhận diện mặt người trong ảnh, thông tin về vị trí của mắt, mũi, miệng... là rất quan trọng. Nếu ta coi các điểm ảnh đều có ý nghĩa tương tự nhau thì ta đã bỏ quên thông tin về vị trí của những đặc trưng này. Ví dụ như khi ta tìm được hai mắt và miệng trong bức ảnh, ta có thể xác định vị trí tương đối của mũi là nằm ở giữa hai đặc trưng này. Trong ví dụ trên, nếu ta áp dụng các mô hình không quan tâm đến loại dữ liệu (coi từng thuộc tính dữ liệu đầu vào là độc lập) thì ta sẽ không tận dụng được thông tin về không gian trong đó.

Để tận dụng thông tin về không gian trong dữ liệu ảnh, CNN được thiết kế để học các đặc trưng trên một vùng nhỏ của ảnh. Các đặc trưng này được lưu trữ dưới dạng những bộ lọc (filter) thường có kích thước nhỏ hơn nhiều so với kích thước ảnh gốc. Các đặc trưng sau khi được học được áp dụng trên toàn bộ ảnh gốc để kiếm tra xem vị trí nào của ảnh xuất hiện đặc trưng này. CNN thực hiện phép kiểm tra này bằng cách "trượt" các bộ lọc này trên toàn bộ ảnh gốc. Phép "trượt" được thực hiện lần lượt từ trái qua phải và từ trên xuống dưới. Một cách tổng quát, phép "trượt" này có thể di chuyển không đồng đều theo hai chiều: ta có thể chỉ di chuyển qua phải một điểm ảnh nhưng lại di chuyển xuống dưới hai điểm ảnh. Tại mỗi vị trí, bộ lọc có nhiệm vụ kiểm tra thử đặc trung được học có xuất hiện (hoặc mức độ rõ ràng của đặc trưng - đặc trưng xuất hiện nhiều hay ít) tại vị trí này không. Kết quả của phép kiểm tra này được lưu trữ lại dưới dạng một "bức ảnh" nhỏ hơn; giá trị mỗi "điểm ảnh" lúc này chính là kết quả của phép kiểm tra đặc trung của bộ lọc. Do phép "trượt" được thực hiện theo thứ tự được nêu ở trên, các "điểm ảnh" kết quả vẫn mang thông tin tương đối về vị trí: "điểm ảnh" bên trái ứng với kết quả của vùng nằm bên trái trong ảnh gốc và tương tự với điểm ảnh bên phải.

Phép "kiếm tra" đặc trưng của bộ lọc được thực hiện thông qua phép toán **tích chập** (convolution):

$$a_{i,j} = \sigma \left(b + \sum_{u=0}^{height} \sum_{v=0}^{width} w_{u,v} x_{i+u,j+v} \right)$$
(3.1)

Trong đó:

Hình 3.2: Hình mô tả phép "kiểm tra" đặc trưng của bộ lọc có kích thước 5×5 tại vị trí đầu tiên (góc trái trên) của ảnh đầu vào. Kết quả của phép "kiểm tra" này được lưu lại thành một "điểm ảnh" trong "bức ảnh kết quả". Lưu ý ảnh đầu vào trong ví dụ ở đây có kích thước 28×28 . Do bộ lọc chỉ kiểm tra những vùng nằm hoàn toàn trong ảnh nên kích thước của "bức ảnh" đầu ra là 24×24

Hình 3.3: Bộ lọc được trượt sang một điểm ảnh về phía bên phải để kiểm tra vùng cục bộ 5×5 bên cạnh. Kết quả của phép "kiểm tra" này được lưu lại thành một "điểm ảnh" bên phải của kết quả của vùng cục bộ trước đó. Thực hiện lần lượt quá trình "trượt" này đến hết ảnh ta sẽ có "bức ảnh kết quả" cuối cùng. "Bức ảnh kết quả" này mang thông tin về một đặc trưng cụ thể tại những vùng cục bộ liên tiếp nhau của ảnh gốc.

- $a_{i,j}$ là kết quả của phép kiểm tra tại vùng có góc trái trên là i,j trong ảnh gốc.
- b là số thực gọi là "bias" của bộ lọc.
- width, height lần lượt là chiều rộng và chiều cao của bộ lọc $(5 \times 5 \text{ trong hình } (\ref{eq:condition}))$.
- w là ma trận trọng số có kích thước $height \times width$ của bộ lọc. $w_{u,v}$ là thành phần dòng u cột v của ma trận.
- $x_{i+u,j+v}$ là giá trị điểm ảnh đầu vào tại vị trí dòng i+u và cột j+v.
- \bullet σ là một hàm phi tuyến được gọi là hàm kích hoạt (activation function).

Phép toán tích chập này chỉ đơn giản là một tổng gồm các tích của trọng số và giá trị điểm ảnh. Hàm kích hoạt sau đó nhận giá trị tổng của phép tích chập để thực hiện phép biến đổi phi tuyến tính; nhờ có hàm kích hoạt, bộ lọc có thể học được những đặc trưng phi tuyến tính. Một trong những hàm phi tuyến hay được áp dụng đó là hàm "Rectified linear": $\sigma(x) = \max(0, x)$. Công thức tích chập trên chứa hai thành phần cần được "học" đó là "bias" b và ma trận trọng số w. Hai thành phần này lưu trữ thông tin về đặc trưng mà bộ lọc học được. Một trong những đặc điểm quan trọng nhất là việc ma trận trọng số w và "bias" b được sử dụng chung cho việc "kiểm tra" đặc trưng tại mọi vị trí của ảnh gốc. Nhờ việc sử dụng chung ma trận trọng số và "bias" này, số lượng trọng số phải học của CNN được giảm đi rất nhiều. Cụ thể hơn, với ảnh gốc kích thước $28 \times 28 = 764$ như trong hình (??), nếu áp dụng mạng nơ-ron truyền thẳng thông thường để học đặc trưng từ toàn bộ ảnh, số lượng trọng số sẽ lên đến 764 cho một đặc trưng. Trong khi đó, CNN chỉ gồm khoảng $5 \times 5 = 25$ trọng số cần học.

Một bộ lọc của CNN chỉ học được một đặc trưng cụ thể. Tuy nhiên trong bài toán thực tế, ta cần nhiều đặc trưng khác nhau trên ảnh. Ví dụ như để nhận diện khuôn mặt trên ảnh, ta cần đặc trưng về mắt, miệng... Để học được nhiều đặc trưng khác nhau với CNN, ta chỉ việc thiết kế thêm nhiều bộ lọc học đặc trưng song song với nhau từ ảnh gốc. Với mỗi bộ lọc, ta cần học một ma trận

Hình 3.4: Hình mô tả tầng tích chập với ba bộ lọc học đặc trưng từ ảnh đầu vào. Mỗi bộ lọc lúc này học một bộ trọng số w và giá trị "bias" b khác nhau. Do các bộ lọc có cùng kích thước (5×5) nên "bức hình" kết quả cũng có cùng kích thước. Ta coi mỗi "bức hình" kết quả như một kênh (channel) khác nhau của bức hình và ghép chúng lại thành một bức hình lớn hơn gồm ba kênh. Các kênh này cũng giống như ba kênh màu khác nhau của ảnh RGB.

trọng số và giá trị "bias" khác nhau. Ta gọi tập hợp các bộ lọc này là một tầng tích chập (convolution layer). Hình (??) mô tả tầng tích chập với ba bộ lọc.

CNN là một mô hình học sâu. Vì vậy để học được những đặc trưng có tính trừu tượng cao, CNN áp dụng phương pháp tổng hợp đặc trưng phức tạp từ những đặc trưng đơn giản hơn. Để tổng hợp đặc trưng, ta chỉ việc coi "bức hình kết quả" như là bức ảnh đầu vào và thêm tầng tích chập mới học đặc trưng từ bức hình này. Do kết quả của tầng tích chập trước mang thông tin về đặc trưng được học bởi các bộ lọc, tầng tích chập tiếp theo thực hiện việc học từ các đặc trưng đã học ở tầng trước. Nhờ vậy, việc thêm vào các tầng tích chập tiếp theo sẽ giúp mô hình học được những đặc trưng ngày càng phức tạp hơn.

Phần tiếp theo sẽ trình bày cách sử dụng CNN như là một công cụ xấp xỉ hàm hỗ trợ cho các thuật toán học tăng cường. Do có khả năng học đặc trưng tự động, ta có thể thiết kế một công cụ xấp xỉ hàm "đa năng": vừa học đặc trưng từ hình ảnh, vừa xấp xỉ hàm mong muốn từ những hình ảnh đó.

3.1.4 Sử dụng mạng nơ-ron để xấp xỉ hàm

Việc sử dụng mạng nơ-ron tích chập (hoặc mạng nơ-ron nói chung) để xấp xỉ hàm giá trị mang lại ba lợi ích quan trọng:

- Mạng nơ-ron có khả năng học được những đặc trưng phức tạp từ dữ liệu thô.
- Mạng no-ron có thể xấp xỉ hàm giá trị phức tạp.
- Mạng nơ-ron có tính tổng quát hoá.

Mạng nơ-ron là một mô hình học sâu nên có thể học được những đặc trưng phức tạp từ dữ liệu thô như đã nói ở phần trên. Cụ thể hơn trong bài toán tự động chơi game, ta có thể đưa dữ liệu đầu vào là các "frame hình" RGB thẳng vào "input" của mạng nơ-ron để tính ra giá trị tương ứng. Nhờ vậy, ta không cần phải thiết kế các đặc trưng bằng tay để biểu diễn cho từng trạng thái của game. Ngoài ra, do qua trình học đặc trưng là hoàn toàn tự động, thuật toán học tăng cường lúc này có thể áp dụng cho bất kỳ game nào mà không cần phải thay đổi cách rút trích đặc trưng. Với một mô hình cố định lúc này, ta có thể học chơi được nhiều game. Đây cũng chính là mục đích của bài toán tự động chơi game: xây dựng mô hình có khả năng tự động học chơi tốt nhiều game chứ không chỉ chơi "hoàn hảo" một game.

Với bài toán tự động chơi game, giá trị của một trạng thái bất kỳ rất khó xác định do một màn game thường rất dài. Vì thế, hàm giá trị của bài toán này là một hàm phi tuyến phức tạp và không liên tục. Công cụ xấp xỉ hàm giá trị phải có khả năng xấp xỉ những hàm phức tạp như vậy thì thuật toán học tăng cường mới đạt được hiệu quả. Với cách nhìn nhận mạng nơ-ron như là một công cụ xấp xỉ hàm, ta có thể thấy mạng nơ-ron rất linh hoạt với khả năng xấp xỉ hàm đích bất kỳ.

Một tính chất quan trọng khác của mạng nơ-ron chính là **khả năng tổng quát hoá** (generalization). Nhờ đặc điểm này mà quá trình học tăng cường được tăng tốc đáng kể. Thay vì phải duyệt qua từng trạng thái (thậm chí phải duyệt nhiều lần) để tính hàm giá trị tại đó, mạng nơ-ron có khả năng "dự đoán" giá trị của một trạng thái chưa từng thấy dựa vào những trạng thái đã thấy.

Như trong bài toán tự động chơi game thì các "frame hình" liên tiếp thường rất giống nhau và các trạng thái này thường cũng có giá trị tương đương nhau. Vì vậy, khi học xong cách chơi một game nào đó, thuật toán học tăng cường vẫn hoạt động tốt trong quá trình kiểm thử khi gặp những tình huống game chưa từng thấy trong lúc huấn luyện.

Các thuật toán học tăng cường ở chương 2 đều lưu hàm giá trị dưới dạng bảng (lookup table). Để sử dụng mạng nơ-ron như một công cụ xấp xỉ hàm, lúc này ta coi hàm giá trị là một hàm có tham số (parameterized function) và đi tìm các tham số này:

$$\hat{v}(s;\theta) \approx v_{\pi}(s) \tag{3.2}$$

$$\hat{q}(s, a; \theta) \approx q_{\pi}(s, a)$$
 (3.3)

 θ là bộ trọng số của mạng nơ-ron mà ta cần học. Để học được bộ trọng số xấp xỉ tốt hàm đích $(v_{\pi}(s))$ hoặc $q_{\pi}(s,a)$), ta cung cấp các mẫu dữ liệu (data sample). Mỗi mẫu bao gồm dữ liệu đầu vào của mạng nơ-ron (tức trạng thái s hoặc bộ trạng thái, hành động s,a) cùng với giá trị đích mong muốn (tức $v_{\pi}(s)$ hoặc $q_{\pi}(s,a)$). Khi ta cung cấp đủ nhiều mẫu dữ liệu cho mạng nơ-ron, các bộ tham số sẽ được thay đổi để mạng xấp xỉ được hàm đích mong muốn. Số lượng mẫu dữ liệu càng lớn thì mạng nơ-ron càng "thấy" được nhiều giá trị tại nhiều vị trí khác nhau của hàm đích hơn, khi đó mạng nơ-ron càng có khả năng xấp xỉ hàm đích tốt hơn. Để xét xem mạng nơ-ron có xấp xỉ tốt hàm đích hay chưa, ta có thể tính độ "khác biệt" của giá trị đích với giá trị xấp xỉ trên cả không gian đầu vào:

$$J(\theta) = \mathbb{E}_{s \sim \pi} [(v_{\pi}(s) - \hat{v}(s; \theta))^2]$$
(3.4)

$$J(\theta) = \mathbb{E}_{s,a \sim \pi} [(q_{\pi}(s,a) - \hat{q}(s,a;\theta))^2]$$
(3.5)

Kỳ vọng $\mathbb{E}_{s\sim\pi}$ ý chỉ kỳ vọng với biến ngẫu nhiên là trạng thái s được lấy từ phân bố do chính sách π tạo nên. Ví dụ như ta cần xấp xỉ hàm giá trị của một chính sách chỉ luôn "đi qua trái" thì s sẽ là những trạng thái mà khi đi theo chính sách này, ta có thể gặp được s. Trong khi đó nếu chính sách đang xét là "đứng yên" (không thay đổi trạng thái) thì s chỉ có thể có một trạng thái duy nhất đó là

trạng thái bắt đầu. Giá trị nằm trong kỳ vọng là độ lỗi bình phương giữa giá trị xấp xỉ và giá trị đích. Với hàm lỗi bình phương, có thể thấy khi $J(\theta)$ càng nhỏ thì bộ trọng số θ giúp cho mạng nơ-ron xấp xỉ hàm đích càng tốt. Lý do chính ta chọn độ lỗi bình phương (ví dụ thay vì độ lỗi theo trị tuyệt đối) là vì việc tính toán (như đạo hàm) trên hàm bình phương khá dễ dàng.

Lưu ý là ở đây, hàm lỗi $J(\theta)$ là hàm theo θ ; tức là lúc này, ta cố định bộ trọng số θ để tìm ra "sai số" mà bộ trọng số này gây ra. Nếu ta có hai bộ trọng số θ_1 và θ_2 , ta có thể so sánh khả năng xấp xỉ hàm đích của chúng bằng cách so sánh giá trị $J(\theta_1)$ và $J(\theta_2)$ tương ứng.

Tuy nhiên ta không thể tính độ lỗi trên mọi điểm dữ liệu đầu vào theo công thức (3.4) và (3.5) được vì số lượng trạng thái là rất lớn. Vậy ta có thể xấp xỉ giá trị $J(\theta)$ bằng cách chỉ xét độ lỗi trên một "tập huấn luyện" (hay còn gọi là "Batch") các trạng thái mà ta biết được giá trị đích. Khi đó, kỳ vọng $\mathbb{E}_{s\sim\pi}$ được thay thế bằng giá trị trung bình độ lỗi trên từng mẫu dữ liệu của "batch":

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (v_{\pi}(S_i) - \hat{v}(S_i; \theta))^2$$
(3.6)

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (q_{\pi}(S_i, A_i) - \hat{q}(S_i, A_i; \theta))^2$$
(3.7)

Trong đó:

- N là số mẫu dữ liệu trong "batch".
- S_i , A_i tương ứng là trạng thái và hành động của mẫu dữ liệu thứ i của "batch".

Với một tập huấn luyện, ta mong muốn tìm được bộ trọng số giúp cho mạng nơ-ron xấp xỉ tốt hàm đích trên các mẫu dữ liệu thuộc tập huấn luyện này. Một thuật toán đơn giản và hay được sử dụng để tìm bộ trọng số này đó là "Batch Gradient Descent" (BGD). Để cực tiểu hoá hàm $J(\theta)$, thuật toán BGD thực hiện lặp lại nhiều "bước đi" nhỏ để thay đổi bộ trọng số θ dần dần; mỗi bước đi sẽ giúp cho hàm $J(\theta)$ giảm đi một ít. Để chọn "hướng đi" (tức cách cập nhật θ) thì BGD sẽ "nhìn" xung quanh vị trí hiện tại và đi theo hướng nào giúp giảm

 $J(\theta)$ nhiều nhất có thể. Hướng đi này chính là ngược hướng véc-tơ đạo hàm riêng (tức "gradient") của hàm $J(\theta)$ tại θ . Như vậy, thuật toán BGD thực hiện lặp lại nhiều lần việc cập nhật bộ trọng số θ theo công thức:

$$\theta_{t+1} = \theta_t - \alpha \nabla_{\theta} J(\theta) \tag{3.8}$$

Trong đó:

- θ_t là bộ trọng số tại bước thứ t.
- α là hệ số học (learning rate); giá trị này dùng để điều khiển độ lớn của "bước đi".
- $\nabla_{\theta}J(\theta)$ là véc-tơ đạo hàm riêng của hàm $J(\theta)$ tại vị trí θ

Do ta chỉ "nhìn" cục bộ tại ví trí hiện tại nên nếu ta đi một bước quá dài (hệ số học α lớn) thì giá trị hàm lỗi J tại điểm đến sẽ không chắc là sẽ giảm; còn nếu bước đi quá ngắn thì mỗi bước chỉ giảm J một ít, khi đó ta sẽ tốn rất nhiều thời gian để J đạt giá trị cực tiểu.

Một thuật toán cải tiến của BGD hay được sử dụng đó là "Stochastic Gradient Descent" (SGD). Điểm yếu của thuật toán BGD là ta cần phải tính véc-tơ đạo hàm riêng cho **tất cả** các mẫu trong "batch" để cập nhật được một lần cho bộ trọng số. Thuật toán SGD khắc phục điểm yếu này bằng cách chọn ngẫu nhiên một số mẫu dữ liệu trong "batch" (gọi là "mini-batch"), tính véc-tơ đạo hàm riêng trung bình trên "mini-batch" này và thực hiện cập nhật bộ trọng số. Lúc này, véc-tơ đạo hàm riêng trung bình trên "mini-batch" có thể coi là một xấp xỉ của véc-tơ đao hàm riêng trung bình trên toàn bô tập huấn luyên. Do véc-tơ này chỉ tính trên "mini-batch" nên khi cập nhật, giá trị $J(\theta)$ có thể tăng. Tuy nhiên, khi cập nhật nhiều lần thì xu hướng chung là hàm lỗi $J(\theta)$ sẽ giảm. Khi tập huấn luyên càng lớn thì lợi thế của thuật toán SGD càng rõ. Với tập huấn luyên gồm 1000 mẫu thì thuật toán BGD chỉ cập nhật trọng số được **một** lần sau khi duyệt qua hết dữ liệu; trong khi đó, thuật toán SGD với kích thước "mini-batch" là 10 có thể cập nhật được 100 lần. Kích thước của "mini-batch" lúc này ảnh hưởng đến độ chính xác của véc-tơ đạo hàm riêng của $J(\theta)$. Nếu kích thước quá nhỏ thì véc-to đạo hàm riêng trung bình trên "mini-batch" sẽ không xấp xỉ tốt

véc-tơ đạo hàm riêng trung bình trên toàn bộ tập huấn luyện. Nếu kích thước quá lớn thì lợi thế về tốc độ của SGD so với BGD sẽ không còn cao.

Như đã đề cập ở chương 2, để cải tiến chính sách khi không có đầy đủ thông tin về môi trường (tức không có các ma trận của MDP) ta cần xấp xỉ q_{π} thay vì v_{π} . Áp dụng thuật toán SGD để cực tiểu hoá hàm lỗi (3.7), công thức cập nhật bộ trọng số tại thời điểm t có dạng:

$$\theta_{t+1} = \theta_t - \Delta \theta_t \tag{3.9}$$

$$= \theta_t - \alpha \nabla_{\theta_t} J(\theta_t) \tag{3.10}$$

$$= \theta_t - \alpha \nabla_{\theta_t} \left(\frac{1}{B} \sum_{i=1}^B (q_{\pi}(S_i, A_i) - \hat{q}(S_i, A_i; \theta_t))^2 \right)$$
 (3.11)

$$= \theta_t - \alpha \frac{1}{B} \sum_{i=1}^{B} (q_{\pi}(S_i, A_i) - \hat{q}(S_i, A_i; \theta_t)) \nabla_{\theta_t} \hat{q}(S_i, A_i; \theta_t)$$
 (3.12)

Ở đây:

- $\Delta\theta$ là giá trị cập nhật tại cho một "mini-batch".
- $\bullet~B$ là kích thước của "mini-batch"
- $q_{\pi}(S_i, A_i)$ là giá trị **thật sự** của hành động A_i tại trạng thái S_i khi thực hiện theo chính sách π
- $\hat{q}(S_i, A_i; \theta_t)$ là giá trị **xấp xỉ** của hành động A_i tại trạng thái S_i khi thực hiện theo chính sách π
- $\nabla_{\theta_t} \hat{q}(S_i, A_i; \theta_t)$ là véc-tơ đạo hàm riêng của hàm \hat{q} tại trạng thái S_i và hành động A_i

Công thức trên bao gồm một tổng các số hạng có thể được tính riêng lẻ cho từng mẫu dữ liệu. Vậy để đơn giản hoá công thức, ta viết lại công thức trên cho duy nhất một mẫu dữ liệu; khi cần thiết lập công thức tổng quát cho một "mini-batch", ta chỉ việc tính giá trị trung bình của nhiều mẫu. Lúc này, công thức mới sẽ ứng với trường hợp kích thước "mini-batch" đúng bằng một nên ta

có thể bỏ chỉ số i của từng mẫu dữ liệu:

$$\theta_{t+1} = \theta_t - \alpha(q_{\pi}(S, A) - \hat{q}(S, A; \theta_t)) \nabla_{\theta_t} \hat{q}(S, A; \theta_t)$$
(3.13)

3.1.5 Học tăng cường kết hợp với xấp xỉ hàm

Áp dụng thuật toán SGD để tối ưu hàm lỗi J theo công thức (3.12) thì ta sẽ cực tiểu hoá được độ khác biệt giữa hai hàm q_{π} và \hat{q} . Tuy nhiên, giá trị đích thực sự mà ta mong muốn là $q_{\pi}(s,a)$ ta không biết được mà chỉ có một số **mẫu** S_t, A_i khi tương tác với môi trường. Các thuật toán học tăng cường chính là kỹ thuật giúp ta có được một ước lượng đơn giản của giá trị đích này. Như ở chương 2, ta có hai thuật toán để ước lượng hàm giá trị: thuật toán "Monte-Carlo" (MC) và thuật toán "Temporal Difference" (TD).

Với thuật toán MC, ta chỉ việc thay thế $q_{\pi}(s, a)$ bằng một ước lượng không chệch của giá trị này. Theo định nghĩa:

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T \middle| S_t = s, A_t = a \right]$$
 (3.14)

Vậy ta có thể lấy $R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-t-1} R_T$ làm một ước lượng cho $q_{\pi}(s,a)$. Giá trị này có thể dễ dàng có được bằng cách cho hệ thống tương tác với môi trường đến khi kết thúc một màn (tức một "episode"). Sau đó với mỗi trạng thái S_t của "episode", ta chỉ cần tính tổng điểm thưởng đến cuối "episode" để có giá trị ước lượng mong muốn. Đây là một ước lượng không chệch do kỳ vọng của biểu thức này bằng đúng $q_{\pi}(s,a)$. Vậy công thức cập nhật bộ trọng số trong (3.13) được thay bằng:

$$\theta_{t+1} = \theta_t - \alpha(G_t - \hat{q}(S, A; \theta_t)) \nabla_{\theta_t} \hat{q}(S, A; \theta_t)$$
(3.15)

 G_t ở đây là tổng điểm thưởng (tức "Returns") nhận được khi thực hiện hành động A tại trạng thái S. Kết hợp thuật toán MC với thuật toán SGD để cực tiểu hoá hàm lỗi của mạng nơ-ron, ta có được một thuật toán học tăng cường kết hợp học sâu hoàn chỉnh để giải các bài toán có số trạng thái lớn.

Với ý tưởng tương tự, để sử dụng mạng nơ-ron để xấp xỉ hàm giá trị cho

thuật toán "Q-learning", ta sử dụng tổng điểm thưởng được "bootstrap" để ước lượng $q_{\pi}(s,a)$. Cụ thể hơn, ta sẽ thay thế giá trị $q_{\pi}(s,a)$ trong công thức (3.14) bằng $R_{t+1}+\gamma\max_a\hat{q}(S_{t+1},a;\theta)$. Có thể thấy rằng, giá trị "bootstrap" này là một ước lượng chệch của $q_{\pi}(s,a)$. Tuy vậy, ước lượng này chỉ gồm tổng của hai số hạng R_{t+1} và $\gamma\max_a\hat{q}(S_{t+1},a;\theta)$ nên có phương sai thấp hơn nhiều so với ước lượng của MC (gồm tổng của nhiều số hạng R_{t+1} , R_{t+2} , ...). Dây cũng chính là một sự "thoả hiệp" (trade-off) giữa hai giá trị "bias" và "variance" của hai thuật toán MC và "Q-learning". Thuật toán MC sử dụng một ước lượng không chệch nên có "bias" bằng không nhưng "variance" (tức phương sai) càng cao; khi đó tổng điểm thưởng của cùng một bộ (S,A) sẽ thay đổi rất nhiều. Khi các giá trị này thay đổi quá nhanh thì mạng nơ-ron sẽ học chậm hơn. Trong khi đó "Q-learning" sử dụng một ước lượng chệch nên có "bias" lớn nhưng phương sai lại nhỏ; khi đó giá trị "bootstrap" của cùng một bộ (S,A) sẽ ít thay đổi trong những lần duyệt đến khác nhau. Tương tự như thuật toán MC, công thức cập nhật bộ trọng số trong (3.13) được thay bằng:

$$\theta_{t+1} = \theta_t - \alpha (R_{t+1} + \gamma \max_{a} \hat{q}(S_{t+1}, a; \theta) - \hat{q}(S, A; \theta_t)) \nabla_{\theta_t} \hat{q}(S, A; \theta_t)$$
(3.16)

Mã giả của thuật toán "Q-learning" với xấp xỉ hàm được trình bày ở (3.1).

Thuật toán 3.1 "Q-learning" kết hợp với xấp xỉ hàm

 $\mathbf{D}\mathbf{\hat{a}u}$ vào: Số "episode" cần thực hiện để cập nhật bộ trọng số mạng no-ron

Đầu ra: Bộ trọng số θ của mạng nơ-ron

Thao tác:

- 1: Khởi tạo ngẫu nhiên bộ trọng số θ của mạng nơ-ron
- 2: repeat
- 3: Tương tác với môi trường dựa vào chính sách có hàm giá trị được xấp xỉ bởi $\hat{q}(;\theta)$ đến khi kết thúc "episode" để có được tập các mẫu dữ liệu $S_1,A_1,R_2,S_2,A_2,R_3,...,S_{T-1},A_{T-1},R_T$
- 4: Chia tập dữ liệu trên thành các "mini-batch" gồm B mẫu dữ liệu có dạng S_i, A_i, R_{i+1}
- 5: **for** mỗi "mini-batch" của tập dữ liệu **do**
- 6: Cập nhật θ theo công thức (3.16) cho toàn bộ các phần tử trong "mini-batch"
- 7: end for
- 8: **until** Thực hiện đủ số "episode"

3.2 Kết hợp học tăng cường với học sâu vào bài toán tự động chơi game

Phần này trình bày cách kết hợp thuật toán học tăng cường với học sâu vào bài toán tự động chơi game. Đầu tiên, chúng em sẽ trình bày về cấu trúc mạng "Deep Q-Network" [5] - cấu trúc mạng nơ-ron tích chập kết hợp với mạng nơ-ron truyền thẳng được thiết kế riêng biệt cho bài toán tự động chơi game. Phần tiếp theo trình bày hai kỹ thuật quan trọng giúp tăng tính ổn định của quá trình học. Phần cuối cùng đề cập đến vấn đề "đánh giá quá cao" (overestimation) ảnh hưởng thế nào lên kết quả của hệ thống cũng như cách thức giải quyết vấn đề này.

3.2.1 "Deep Q-Network"

Để có được cấu trúc mạng "Deep Q-Network" [5] hoàn chỉnh và hoạt động tốt cho bài toán tự động chơi game, ta kết hợp thuật toán "Q-learning" với mạng nơ-ron tích chập có cấu trúc phù hợp với bài toán. Trong bài toán tự động chơi game, dữ liệu đầu vào mà hệ thống nhận được từ môi trường tại mỗi thời điểm là một ảnh RGB có kích thước 210×160 . Ta có thể đưa cả hình ảnh này làm dữ liệu đầu vào cho mạng nơ-ron tích chập; tuy nhiên với kích thước khá lớn như vậy, việc huấn luyện hệ thống sẽ tốn nhiều thời gian. Để tăng tốc độ huấn luyện lên, ta có thể thực hiện việc thu nhỏ (scale) ảnh về kích thước nhỏ hơn. Việc tiền xử lý ảnh bằng cách thu nhỏ có thể làm mất mát thông tin, tuy nhiên thực nghiệm cho thấy hệ thống vẫn có độ chính xác cao.

Một điểm quan trọng trong bài toán tự động chơi game là hình ảnh tại mội thời điểm không mô tả hết thông tin cần thiết. Ví dụ như khi có hình của một quả bóng, ta không biết hướng và vận tốc hiện tại của quả bóng. Để giải quyết điều này, ta có thể ghép hình ảnh của nhiều thời điểm liên tiếp lại theo thứ tự thời gian. Khi đó một trạng thái S_t sẽ gồm nhiều hình ảnh của các thời điểm liên nhau và chứa luôn cả thông tin về thời gian.

Với cách thiết kế mạng nơ-ron thông thường, ta cần cung cấp trạng thái S và hành động A để tính được giá trị xấp xỉ $\hat{q}(S,A;\theta)$. Cách thiết kế này không

Hình 3.5: Hình mô tả cấu trúc mạng "Deep Q-Network" [5]. Hai tầng ẩn đầu tiên là tầng tích chập với hàm kích hoạt "rectified linear". Tầng ẩn tiếp theo là tầng "fully-connected" có nhiệm vụ tổng hợp đặc trưng trên toàn ảnh của tầng trước. Tầng "output" cũng là tầng "fully-connected" trả về kết quả là giá trị của từng hành động ứng với trạng thái đầu vào. Tầng "output" không có hàm kích hoạt.

phù hợp cho thuật toán "Q-learning": ta cần phải lan truyền tiến nhiều lần để tính giá trị $\max_a \hat{q}(S, a; \theta)$ trong công thức (3.16). Để khắc phục nhược điểm này, ta chỉnh lại cấu trúc mạng để "input" là trạng thái S và "output" là giá trị của mọi hành động tại trạng thái này: $\hat{q}(S, a; \theta) \forall a$. Với cấu trúc này, ta chỉ việc lan truyền tiến một lần và lấy max giá trị "output" của mạng nơ-ron. Như vậy, số nơ-ron của tầng "output" là số lượng hành động có thể có.

Đế tổng hợp các đặc trưng được học từ các tầng tích chập, các tầng ấn cuối cùng của mạng nơ-ron sẽ là các tầng "fully-connected". Các tầng tích chập có chức năng tìm kiếm các đặc trưng cục bộ cần thiết còn tầng "fully-connected" có nhiệm vụ tổng hợp các đặc trưng đó trên **toàn ảnh**. Tầng "output" cũng là một tầng "fully-connected" với số nơ-ron là số hành động có thể có. Lưu ý là do tầng này trả về kết quả là giá trị của từng hành động nên ta không áp dụng hàm kích hoạt tại đây. Hình () mô tả cấu trúc mạng "Deep Q-Network".

3.2.2 Kỹ thuật làm tăng tính ổn định

Đặc điểm của thuật toán "Q-learning" khi áp dụng xấp xỉ hàm đó là thuật toán không chắc sẽ hội tụ [6]. Hội tụ ở đây ý chỉ sau một số bước cập nhật hữu hạn, giá trị hành động của trạng thái sẽ hội tụ về giá trị nhất định. Do đặc điểm này, nếu ta huấn luyện mạng nơ-ron bằng thuật toán SGD thông thường thì nhiều khả năng "Q-learning" sẽ không hội tụ dẫn đến chính sách tương ứng sẽ không được tốt. Để giải quyết vấn đề này, chúng em áp dụng hai kỹ thuật giúp tăng tính ổn định và khả năng hội tụ: kỹ thuật "Experience replay" [3] và kỹ thuật cố định "Q-target" [4].

"Experience replay"

Thuật toán "Q-learning" kết hợp với xấp xỉ hàm cho phép ta học "online": sau mỗi bước tương tác với môi trường và nhận được dữ liệu mới, ta có thể cập nhật ngay bộ trọng số mạng nơ-ron. Tuy nhiên, cách học này có thể gây ra vấn đề không hội tụ. Lý do là các mẫu dữ liệu liên tiếp nhau thường có tương quan (correlation) với nhau rất lớn. Ngoài ra, các mẫu dữ liệu phía sau bị ảnh hưởng bởi chính sách (tương ứng với bộ trọng số mạng nơ-ron) ngay trước đó. Ví dụ như chính sách hiện tại là "luôn qua trái" thì các mẫu dữ liệu liên tiếp sẽ lấy từ phân bố "qua trái". Khi chính sách thay đổi sang "luôn qua phải" thì tất cả các mẫu dữ liệu mới sẽ lấy từ phân bố "qua phải". Khi các mẫu dữ liệu có tương quan lớn và phân bố dữ liệu thay đổi nhanh thì "Q-learning" sẽ khó hội tụ [5].

Kỹ thuật "experience replay" [3] giải quyết vấn đề này bằng cách lưu trữ lại một tập các mẫu dữ liệu nhận được gần đây nhất. Sau đó, mỗi lần muốn cập nhật bộ trọng số, ta chỉ việc lấy một ngẫu nhiên một "mini-batch" từ tập dữ liệu này để học. Ý tưởng của kỹ thuật này giống như việc ta "gợi nhớ" lại các kinh nghiệm đã có từ trước đó và học lại từ chúng. Cách làm này cũng mang tính "củng cố" lại những kinh nghiệm mà hệ thống học được trong quá khứ. Do việc lấy ngẫu nhiên nên các mẫu dữ liệu trong "mini-batch" sẽ không còn tương quan lớn với nhau. Ngoài ra, việc lưu trữ lại giúp các mẫu dữ liệu có thể được học lại nhiều lần. Điều này giúp hệ thống học được nhiều hơn mà không phải tương tác với môi trường quá nhiều.

Cố định "Q-target"

3.2.3 Vấn đề "overestimation" của thuật toán Q-learning

Chương 4

Kết quả thực nghiệm

Trong chương này sẽ trình bày chi tiết về cấu trúc mô hình mà chúng em đã thiết lập. Đồng thời đề cập đến những phương pháp để đánh giá mô hình học và những kết quả thực nghiệm đã nhận được. Qua đó so sánh với các phương pháp đã đề xuất trước đây để thấy được tính hiệu quả của mô hình này.

- 4.1 Giới thiệu Arcade Learning Environment
- 4.2 Giới thiệu cấu trúc mạng và các siêu tham số đã chọn
- 4.3 Kết quả thực nghiệm

Chương 5

Kết luận và hướng phát triển

TÀI LIỆU THAM KHẢO

- [1] I. G. Y. Bengio and A. Courville, "Deep learning," 2016, book in preparation for MIT Press. [Online]. Available: http://www.deeplearningbook.org 38
- [2] G. J. Gordon, "Stable function approximation in dynamic programming," in *Proceedings of the twelfth international conference on machine learning*, 1995, pp. 261–268. 19
- [3] L.-J. Lin, "Reinforcement learning for robots using neural networks," DTIC Document, Tech. Rep., 1993. 52
- [4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, "Playing atari with deep reinforcement learning," arXiv preprint arXiv:1312.5602, 2013. 52
- [5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, "Human-level control through deep reinforcement learning," *Nature*, pp. 529–533, 2015. 4, 50, 51, 52
- [6] R. S. Sutton and A. G. Barto, *Introduction to reinforcement learning*. MIT Press Cambridge, 1998, vol. 135. 14, 19, 32, 36, 52