VNR VIGNANA JYOTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

B.Tech. V Semester

(22PC2CB302) MACHINE LEARNING LABORATORY

TEACHING SCHEME								
L	T/P	С						
0	2	1						

EVALUATION SCHEME										
D-D	PE	LR	CP	SEE	TOTAL					
10	10	10	10	60	100					

COURSE PRE-REQUISITES: Basic level Programming in Python

COURSE OBJECTIVES:

- To introduce students the implementation details of different Machine Learning algorithms
- To have a practical understanding of evaluating different machine learning models
- To experiment with probability-based algorithms, tree-based algorithms, association rule mining algorithms, and neural networks
- To understand ensemble models of machine learning algorithms

COURSE OUTCOMES: After completion of the course, the student should be able to

- CO-1: Implement supervised and unsupervised, and data mining algorithms
- CO-2: Apply the appropriate machine learning strategy for any given problem
- **CO-3:** Evaluate the performance of different machine learning models
- CO-4: Combine different models for ensemble learning

COURSE ARTICULATION MATRIX:

(Correlation of Course Outcomes with Program Outcomes and Program Specific Outcomes using mapping levels 1 = Slight, 2 = Moderate and 3 = Substantial)

CO -	PROGRAM OUTCOMES (PO)										PROGRAM SPECIFIC OUTCOMES (PSO)				
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	PSO-1	PSO-2	PSO-3
CO-1	3	3	3	3	3	2	2	2	3	3	3	3	3	3	3
CO-2	3	3	3	3	3	2	3	2	3	3	3	3	3	3	3
CO-3	3	3	2	3	3	2	2	2	3	3	3	3	3	2	3
CO-4	2	3	3	3	3	3	2	2	3	3	2	2	3	3	3

LIST OF PROGRAMS / EXPERIMENTS / EXERCISES:

WEEK 1:

Introduction to Python and Python Libraries- NumPy, Pandas, Matplotlib, Scikit

WEEK 2:

Perform Summary Statistics

WEEK 3:

Perform pre-processing in Python

Perform Feature Engineering and Feature Selection Methods.

WEEK 4:

Implement simple Linear regression Implement regularized Linear regression Implement regularized logistic regression

WEEK 5:

Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample

WEEK 6:

Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets

WEEK 7:

Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task.

WEEK 8:

Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set.

WEEK 9:

Build model using SVM with different kernels Implement Perceptron Learning Algorithm. Build models using different Ensemble techniques

WEEK 10:

Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library lasses/API in the program.

WEEK 11:

Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print both correct and wrong predictions. Python ML library classes can be used for this problem.

WEEK 13:

Build model to perform Clustering using K-means after applying PCA and determining the value of K using Elbow method.
Build a model to perform hierarchical Clustering.

WEEK 14:

Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs Mini projects in the Lab:

- (1) Implementation of one clustering algorithm
- (1) Implementation of one association rule mining algorithm
- (2) Implementation of one anomaly detection algorithms
- (3) Implementation of EM algorithm for some specific problem

TEXT BOOKS:

- 1. Machine Learning, Tom M. Mitchell, McGraw-Hill
- 2. Machine Learning: A Probabilistic Perspective, Kevin Murphy, MIT Press, 2012
- 3. Pattern Recognition and Machine Learning, Christopher Bishop, Springer, 2007

REFERENCES:

- 1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis
- 2. Machine Learning: The Art And Science of Algorithms That Make Sense of Data, Peter Flash, Cambridge, University press
- 3. The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, Jerome Friedman, Springer 2009

ONLINE RESOURCES:

- 1. Andrej Karpathy Interview ML Strategy | Coursera
- 2. https://developers.google.com/machine-learning/crash-course
- 3. Machine learning by Sebastian Raschka