65 B

SEQUENCE LISTING

<110> Hoechst Marion Roussel Bordon-Pallier, F. Rocher, C.

<120> Human htFIIIA gene and coded htFIIIA protein

<130> 146.1364

<140> US 09/831,426 <141> 2001-05-08

<160> 10

<170> PatentIn Vers. 2.0

<210> 1

<211> 1273

<212> DNA

<213> Human

<220>

<221> CDS

<222> (176)..(1270)

20

<400> 1

atgcgcagca gcggcgcga cgcggggcgg tgcctggtga ccgcgcgcgc tcccggaagt 60

gtgccggcgt cgcgcgaagg ttcagcaggg agccgtgggc cgggcgcgc ggttcccggc 120

acgtgtctcg gcacgtggca gcgcgcctgg ccctgggctt ggaggcgccg gcgcc ctg Met

226

30

gat ccg ccg gcc gtg gtc gcc gag tcg gtg tcg tcc ttg acc atc gcc Asp Pro Pro Ala Val Val Ala Glu Ser Val Ser Ser Leu Thr Ile Ala 10

gac gcg ttc att gca gcc ggc gag agc tca gct ccg acc ccg ccg cgc 274 Asp Ala Phe Ile Ala Ala Gly Glu Ser Ser Ala Pro Thr Pro Pro Arg

ccc gcg ctt ccc agg agg ttc atc tgc tcc ttc cct gac tgc agc gcc 322

25

Pro Ala Leu Pro Arg Arg Phe Ile Cys Ser Phe Pro Asp Cys Ser Ala 35 40 45

aat tac agc aaa gcc tgg aag ctt gac gcg cac ctg tgc aag cac acg Asn Tyr Ser Lys Ala Trp Lys Leu Asp Ala His Leu Cys Lys His Thr 50 55

ggg gag aga cca ttt gtt tgt gac tat gaa ggg tgt ggc aag gcc ttc 418 Gly Glu Arg Pro Phe Val Cys Asp Tyr Glu Gly Cys Gly Lys Ala Phe 70

atc agg gac tac cat ctg agc cgc cac att ctg act cac aca gga gaa 466

Ile	Arg	Asp	Tyr 85	His	Leu	Ser	Arg	His 90	Ile	Leu	Thr	His	Thr 95	Gly	Glu	
aag Lys	ccg Pro	ttt Phe 100	gtt Val	tgt Cys	gca Ala	gcc Ala	act Thr 105	ggc Gly	tgt Cys	gat Asp	caa Gln	aaa Lys 110	ttc Phe	aac Asn	aca Thr	514
aaa Lys	tca Ser 115	aac Asn	ttg Leu	aag Lys	aaa Lys	cat His 120	ttt Phe	gaa Glu	cgc Arg	aaa Lys	cat His 125	gaa Glu	aat Asn	caa Gln	caa Gln	562
aaa Lys 130	caa Gln	tat Tyr	ata Ile	tgc Cys	agt Ser 135	ttt Phe	gaa Glu	gac Asp	tgt Cys	aag Lys 140	aag Lys	acc Thr	ttt Phe	aag Lys	aaa Lys 145	610
cat His	cag Gln	cag Gln	ctg Leu	aaa Lys 150	atc Ile	cat His	cag Gln	tgc Cys	cag Gln 155	cat His	acc Thr	aat Asn	gaa Glu	cct Pro 160	cta Leu	658
ttc Phe	aag Lys	tgt Cys	acc Thr 165	cag Gln	gaa Glu	gga Gly	tgt Cys	ggg Gly 170	aaa Lys	cac His	ttt Phe	gca Ala	tca Ser 175	ccc Pro	agc Ser	706
aag Lys	ctg Leu	aaa Lys 180	cga Arg	cat His	gcc Ala	aag Lys	gcc Ala 185	cac His	gag Glu	ggc Gly	tat Tyr	gta Val 190	tgt Cys	caa Gln	aaa Lys	754
gga Gly	tgt Cys 195	tcc Ser	ttt Phe	gtg Val	gca Ala	aaa Lys 200	aca Thr	tgg Trp	acg Thr	gaa Glu	ctt Leu 205	ctg Leu	aaa Lys	cat His	gtg Val	802
aga Arg 210	gaa Glu	acc Thr	cat His	aaa Lys	gag Glu 215	gaa Glu	ata Ile	cta Leu	tgt Cys	gaa Glu 220	gta Val	tgc Cys	cgg Arg	aaa Lys	aca Thr 225	850
ttt Phe	aaa Lys	cgc Arg	aaa Lys	gat Asp 230	tac Tyr	ctt Leu	aag Lys	caa Gln	cac His 235	atg Met	aaa Lys	act Thr	cat His	gcc Ala 240	cca Pro	898
gaa Glu	agg Arg	gat Asp	gta Val 245	tgt Cys	cgc Arg	tgt Cys	cca Pro	aga Arg 250	gaa Glu	ggc Gly	tgt Cys	gga Gly	aga Arg 255	acc Thr	tat Tyr	946
act Thr	act Thr	gtg Val 260	ttt Phe	aat Asn	ctc Leu	caa Gln	agc Ser 265	cat His	atc Ile	ctc Leu	tcc Ser	ttc Phe 270	cat His	gag Glu	gaa Glu	994
agc Ser	cgc Arg 275	cct Pro	ttt Phe	gtg Val	tgt Cys	gaa Glu 280	cat His	gct Ala	ggc Gly	tgt Cys	ggc Gly 285	aaa Lys	aca Thr	ttt Phe	gca Ala	1042
atg Met 290	aaa Lys	caa Gln	agt Ser	ctc Leu	act Thr 295	agg Arg	cat His	gct Ala	gtt Val	gta Val 300	cat His	gat Asp	cct Pro	gac Asp	aag Lys 305	1090
aag Lys	aaa Lys	atg Met	aag Lys	ctc Leu	aaa Lys	gtc Val	aaa Lys	aaa Lys	tct Ser	cgt Arg	gaa Glu	aaa Lys	cgg Arg	agt Ser	ttg Leu	1138

310 315 320

1186 gcc tct cat ctc agt gga tat atc cct ccc aaa agg aaa caa ggg caa Ala Ser His Leu Ser Gly Tyr Ile Pro Pro Lys Arg Lys Gln Gly Gln 325 1234 ggc tta tct ttg tgt caa aac gga gag tca ccc aac tgt gtg gaa gac Gly Leu Ser Leu Cys Gln Asn Gly Glu Ser Pro Asn Cys Val Glu Asp 345 aag atg ctc tcg aca gtt gca gta ctt acc ctt ggc taa 1273 Lys Met Leu Ser Thr Val Ala Val Leu Thr Leu Gly 360 <210> 2 <211> 365 <212> PRT <213> Human <400> 2 Met Asp Pro Pro Ala Val Val Ala Glu Ser Val Ser Ser Leu Thr Ile 5 Ala Asp Ala Phe Ile Ala Ala Gly Glu Ser Ser Ala Pro Thr Pro Pro 20 Arg Pro Ala Leu Pro Arg Arg Phe Ile Cys Ser Phe Pro Asp Cys Ser Ala Asn Tyr Ser Lys Ala Trp Lys Leu Asp Ala His Leu Cys Lys His 50 Thr Gly Glu Arg Pro Phe Val Cys Asp Tyr Glu Gly Cys Gly Lys Ala Phe Ile Arg Asp Tyr His Leu Ser Arg His Ile Leu Thr His Thr Gly Glu Lys Pro Phe Val Cys Ala Ala Thr Gly Cys Asp Gln Lys Phe Asn 100 Thr Lys Ser Asn Leu Lys Lys His Phe Glu Arg Lys His Glu Asn Gln 120 Gln Lys Gln Tyr Ile Cys Ser Phe Glu Asp Cys Lys Lys Thr Phe Lys 130 Lys His Gln Gln Leu Lys Ile His Gln Cys Gln His Thr Asn Glu Pro 150 Leu Phe Lys Cys Thr Gln Glu Gly Cys Gly Lys His Phe Ala Ser Pro 170 Ser Lys Leu Lys Arg His Ala Lys Ala His Glu Gly Tyr Val Cys Gln 185

Lys Gly Cys Ser Phe Val Ala Lys Thr Trp Thr Glu Leu Leu Lys His 200 Val Arg Glu Thr His Lys Glu Glu Ile Leu Cys Glu Val Cys Arg Lys 215 Thr Phe Lys Arg Lys Asp Tyr Leu Lys Gln His Met Lys Thr His Ala 230 Pro Glu Arg Asp Val Cys Arg Cys Pro Arg Glu Gly Cys Gly Arg Thr Tyr Thr Thr Val Phe Asn Leu Gln Ser His Ile Leu Ser Phe His Glu 265 Glu Ser Arg Pro Phe Val Cys Glu His Ala Gly Cys Gly Lys Thr Phe 275 280 Ala Met Lys Gln Ser Leu Thr Arg His Ala Val Val His Asp Pro Asp 295 Lys Lys Lys Met Lys Leu Lys Val Lys Lys Ser Arg Glu Lys Arg Ser 310 Leu Ala Ser His Leu Ser Gly Tyr Ile Pro Pro Lys Arg Lys Gln Gly 330 325 Gln Gly Leu Ser Leu Cys Gln Asn Gly Glu Ser Pro Asn Cys Val Glu Asp Lys Met Leu Ser Thr Val Ala Val Leu Thr Leu Gly

BI

<210> 3 <211> 1273 <212> DNA <213> Human

<400> 3
atgcgcagca gcggcgcga cgcggggggg tgcctggtga ccgcgcgcgc tcccggaagt 60
gtgccggcgt cgcgcgaagg ttcagcaggg agccgtgggc cgggcgcgc ggttcccggc 120
acgtgtctcg gcacgtggca gcgcgctgg ccctgggctt ggaggcgccg gcgccctgga 180
tccgccggcc gtggtcgccg agtcggtgc gtccttgacc atcgccgacg cgttcattgc 240
agccggcgag agctcagctc cgaccccgcc gcgccccgcg cttcccagga ggttcatctg 300
ctccttccct gactgcagcg ccaattacag caaagcctgg aagcttgacg cgcacctgtg 360
caagcacacg ggggagagac catttgtttg tgactatgaa gggtgtggca aggcctcat 420
cagggactac catctgagcc gccacattct gactcacaca ggagaaaagc cgtttgtttg 480
tgcagccact ggctgtgatc aaaaattcaa cacaaaatca aacttgaaga aacattttga 540

acgcaaacat gaaaatcaac aaaaacaata tatagcagt tttgaagact gtaagaagac 600 ctttaagaaa catcagcagc tgaaaatcca tcagtgccag cataccaatg aacctctatt 660 caagtgtacc caggaaggat gtgggaaaca ctttgcatca cccagcaagc tgaaaacaatg 720 tgccaaggcc cacgagggct atgtatgtca aaaaggatgt tcctttgtgg caaaaacatg 780 gacggaactt ctgaaacatg tgagagaaac ccataaagag gaaatactat gtgaagtatg 840 ccggaaaaca tttaaacgca aagattacct taagcaacac atgaaaacat gtgcccaagg ctgtggaaga acctatacta ctgtgttaa 960 tctccaaagc catatcctc ccttccatga ggaaagccgc ccttttgtgt gtgaacatgc 1020 tggctgtgc aaaacatttg caatgaaaca aagtctcact aggcatgctg ttgtacatga 1080 tcctgacaag aagaaaatga agctcaaagt caaaaaatct cgtgaaaaac ggagtttggc 1140 ctctcatctc agtggatata tccctccaa aaggaaacaa gggcaaggct tatctttgtg 1200 tcaaaacgga gagtcaccca actgtgtga agacaagatg ctctcgacag ttgcagtact 1260 tacccttggc taa

<210> 4 <211> 1213 <212> DNA <213> Human

By

equipment of the state of the s

gacggaactt ctgaaacatg tgagagaaac ccataaagag gaaatactat gtgaagtatg 780 ccggaaaaca tttaaacgca aagattacct taagcaacac atgaaaactc atgccccaga 840 aagggatgta tgtcgctgtc caagagaagg ctgtggaaga acctatacta ctgtgtttaa 900 tetecaaage catateetet eetteeatga ggaaageege eettttgtgt gtgaacatge 960 tggctgtggc aaaacatttg caatgaaaca aagtctcact aggcatgctg ttgtacatga 1020 tcctgacaag aagaaaatga agctcaaagt caaaaaatct cgtgaaaaac ggagtttggc 1080 ctctcatctc agtggatata tccctcccaa aaggaaacaa gggcaaggct tatctttgtg 1140 tcaaaacgga gagtcaccca actgtgtgga agacaagatg ctctcgacag ttgcagtact 1200 1213 tacccttggc taa <210> 5 <211> 34 <212> DNA <213> Human <400> 5 34 cggggtacca aaaatgcgca gcagcggcgc cgac <210> 6 <211> 21 <212> DNA <213> Human <400> 6 21 teetteetg actgeagege c <210> 7 <211> 20 <212> DNA <213> Human <400> 7 20 tgcacaggtg cgcgtcaagc <210> 8 <211> 20 <212> DNA <213> Human <400> 8 20 cacaaacaaa tggtctctcc

```
<211> 30
<212> DNA
<213> Human

<400> 9
cggtctagat tagccaaggg taagtactgc

30

<210> 10
<211> 30
<211> 30
<212> DNA
<213> Human

<400> 10
cctcccgggg ccaagggtaa gtactgcaac

30
```