0.0.1. Exercises.

Exercise 0.1. Let $p: E \to B$ be a Serre (resp. Hurewicz) fibration. Given any map of spaces $f: B' \to B$, show that the projection $f^*E \to B'$ is a Serre (resp. Hurewicz) fibration, where

$$f^*(E) = B' \times_B E = \{(b', e) \mid f(b') = p(e)\}\$$

is the pullback along f.

Proof. Consider the solid part of the diagram

In the case where p is a Hurewicz fibration, X can be any space, while when p is a Serre fibration, it represents any disk D^n .

We then obtain the first dashed arrow $X \times I \to E$ because $E \xrightarrow{p} B$ is a Hurewicz/Serre fibration. But then we have maps $X \times I \to B'$ and $X \times I \to E$, so by the universal property of the pullback, this induces a unique map $X \times I \to f^*E$ in Top.

Exercise 0.2. Let G be a topological group and H a subgroup, and let G/H have the quotient topology from the projection $p: G \to G/H$ (here G/H is the space of cosets, not the space obtained by collapsing H to a point). Assume that there exists a nonempty open set $U \subset G/H$ such that $p: p^{-1}(U) \to U$ admits a section $s: U \to p^{-1}(U)$. Prove that $G \to G/H$ is a fiber bundle. Deduce that it is a fibration.

Proof. By assumption, $p \circ s = \mathrm{id}_U$. Now, picking some $x_0 \in p^{-1}(U)$, the set $V := x_0^{-1} \cdot p^{-1}(U)$ is a neighborhood of the identity $e \in G$. Let $y \in G/H$, and pick a $y_0 \in p^{-1}(y)$. Then $y_0 \cdot V$ is a neighborhood of y_0 , hence $p(y_0 \cdot V)$ is a neighborhood of y (it is open since V was saturated with respect to p by construction and multiplication by y_0 is a homeomorphism of G, so saturated sets remain saturated). Defining $s' \colon p(y_0 \cdot V) \to y_0 \cdot V$ by $s'(\overline{x}) = s \circ p\left(y_0^{-1} \cdot p^{-1}(\overline{x})\right)$. If $\overline{x} = \overline{z}$, then $z^{-1} \cdot x \in H$, so $\left(y_0^{-1} \cdot z\right)^{-1} \cdot \left(y_0^{-1} \cdot x\right) \in H$, hence $s'(\overline{x}) = s'(\overline{z})$. We claim that s' is then also a section of $p|_{y_0V} \colon y_0 \cdot V \to p\left(y_0 \cdot V\right)$. To see this, we have

$$p\circ s'=p\circ s\circ p\circ \left(y_0^{-1}\cdot -\right)\circ p^{-1}=p\circ \left(y_0^{-1}\cdot -\right)\circ p^{-1}$$

Now if $\overline{x} = \overline{z}$ then again $z^{-1} \cdot x \in H$, so $(y_0^{-1} \cdot z)^{-1} \cdot (y_0^{-1} \cdot x) \in H$, from which the claim follows.

We claim that $p^{-1}(U)$ admits a trivialization $H \times U \cong p^{-1}(U)$ via the map $k \colon (h,u) \mapsto h \cdot s(u)$. Firstly, this is in $p^{-1}(U)$ since $p(h \cdot s(u)) = p(s(u)) = u \in U$. It is also continuous and injective as the composition $H \times U \stackrel{\mathrm{id} \times s}{\to} H \times p^{-1}(U) \stackrel{\mathrm{prod}}{\to} p^{-1}(U)$.

Furthermore, if $h \cdot v = h' \cdot v$ for some $v \in p^{-1}(U)$, then $h = h \cdot v \cdot v^{-1} = h' \cdot v \cdot v^{-1} = h'$, so the action of H on U is free.

1

Suppose $h \cdot s(U) \cap h' \cdot s(U) \neq \emptyset$, so for some $u, u' \in U$, $h \cdot s(u) = h' \cdot s(u')$. But then $u = p(h \cdot s(u)) = p(h' \cdot s(u')) = u'$, and so $h = h \cdot s(u) \cdot s(u)^{-1} = h' \cdot s(u) \cdot s(u)^{-1} = h'$. Hence $p^{-1}(U) = \bigsqcup_{h \in H} h \cdot s(U)$. Now define $r : p^{-1}(U) \to H \times U$ by $r(u) = (\sum_{h \in H} h \cdot \delta_{u \in h \cdot s(U)}, p(u))$. Then

$$r \circ k(h, u) = r(h \cdot s(u)) = (h, u)$$

and

$$k \circ r(x) = k(h, u) = x$$

since (h,u) are by definition such that p(x)=u and $x\in h\cdot s(U)$, so we must have $x=h\cdot s(u)$. Thus $k(h,u)=h\cdot s(u)=x$. So r is an inverse function to k. It remains to show that it is continuous. The coordinate p(u) is continuous, so we must show that $r_1\colon u\mapsto \sum_{h\in H}h\cdot \delta_{u\in h\cdot s(U)}$ is continuous. For this, note that for an open set $W\subset H$, $r_1^{-1}(W)=\bigcup_{h\in W}h\cdot s(U)$. Now, since $p(h\cdot s(u))=p(s(u))=u$, so $r_1^{-1}(W)\subset p^{-1}(U)$, and conversely, for any $x\in p^{-1}(U)$, there is an $h\in H$ such that $x\in h\cdot s(U)$, so $p^{-1}(U)\subset \bigcup_{h\in W}h\cdot s(U)$. Hence $r_1^{-1}(W)=p^{-1}(U)$ which is open.

This completes the proof that $G \to G/H$ is a fiber bundle.

Since any fiber bundle is a fibration, the last part follows directly.

Exercise 0.3. Recall that $S^3 \subset \mathbb{R}^4 \cong \mathbb{H}$ is a topological group, with $S^1 \subset \mathbb{C} \subset \mathbb{H}$ as a topological subgroup. Recall that

$$\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}.$$

so $S^3 \subset \mathbb{H}$ here is considered as the group whose elements are elements in \mathbb{H} with norm 1, and $S^1 \subset S^3$ as the subgroup

$${a + bi \mid a^2 + b^2 = 1}.$$

- (1) Prove (using the previous exercise) that $S^3 \to S^3/S^1$ is a fiber bundle with fiber S^1 , and therefore a fiber bundle.
- (2) Prove that $S^3/S^1\cong S^2$. The fiber sequence $S^1\to S^3\to S^2$ is called the *Hopf* fibration.
- (3) Use the LES associated to this fibration to compute $\pi_3(S^2)$.
- (4) Show that $S^3 \times K(\mathbb{Z},2)$ and S^2 have isomorphic homotopy groups. Are they homotopy equivalent?

Proof. (1) Let S^3_+ denote the open upper hemisphere. Then if $p: S^3 \to S^3/S^1$ is the quotient map, S^3/S^1 looks

0.0.2. Problems.

Problem 0.4. Suppose $p: E \to B$ is a Serre fibration and $f: X \to B$ is n-connected. Prove that the projection $E \times_B X \to E$ is also n-connected.

Proof. We are given the following commutative diagram

$$E \times_B X \longrightarrow E$$

$$\downarrow \qquad \qquad \downarrow^p$$

$$X \longrightarrow B$$

Firstly, by Exercise 1 on Problem set 4, the map $E \times_B X \to X$ is also a Serre fibration.

Secondly, by assumption in the conventions section for problem set 4, all spaces are assumed to be locally path-connected and connected, hence all spaces are path-connected. In particular, both X and B are assumed to be path-connected, so by Theorem 4.41 in Hatcher, we have a LES

$$\dots \to \pi_k(F', y_0) \to \pi_k(E \times_B X, y_0) \xrightarrow{(\pi_X)^*} \pi_k(X, x_0) \to \pi_{k-1}(F', y_0) \to \dots \to \pi_0 (E \times_B X, y_0) \to 0$$
where $F' = (\pi_X)^{-1} (x_0)$ for some $x_0 \in X$ and $y_0 \in F'$. Now,
$$F' = (\pi_X)^{-1} (x_0) = \{(e, x_0) \mid f(x_0) = p(e)\} \xrightarrow{\pi_E} p^{-1} (f(x_0)) =: F$$

where we choose F to be the fiber of $p: E \to B$ (when repeating Theorem 4.41 for this fibration), and we choose $e_0 \in F$ to be $\pi_E(y_0)$. With these choices of fibers and basepoints, we obtain that the map $\pi_E|_{F'}: F' \to F$ is a homeomorphism (it has the inverse $e \mapsto (e, x_0)$) by construction, so the following diagram commutes:

$$(F', y_0) \xrightarrow{\cong} (F, e_0)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(E \times_B X, y_0) \xrightarrow{\pi_E} (E, e_0)$$

$$\downarrow^{\pi_X} \qquad \qquad \downarrow^p$$

$$(X, x_0) \xrightarrow{f} (B, f(x_0))$$

$$(\Omega)$$

With these choices of basepoints, Theorem 4.41 gives the following long exact sequences (the solid part of the diagram)

Now, applying π_{k+1} to (Ω) , i.e., using functoriality of π_{k+1} on pointed topological spaces, we find that for $k+1 \ge 1$, we have

$$\pi_{k+1}(F', y_0) \xrightarrow{\cong} \pi_{k+1}(F, e_0)
\downarrow \qquad \qquad \downarrow
\pi_{k+1}(E \times_B X, y_0) \xrightarrow{(\pi_E)_*} \pi_{k+1}(E, e_0)
\downarrow^{(\pi_X)_*} \qquad \downarrow^{p_*}
\pi_{k+1}(X, x_0) \xrightarrow{f_*} \pi_{k+1}(B, f(x_0))$$

$$(\zeta)$$

commutes (since functoriality of π_{k+1} implies that compositions are preserved) where also f_* is an isomorphism for k < n-1 and surjective for k = n-1. We now claim that

$$\pi_{k+1}(X, x_0) \longrightarrow \pi_k(F', y_0)$$

$$\downarrow^{f_*} \qquad \qquad \cong \downarrow^{(\pi_E|_{F'})_*}$$

$$\pi_{k+1}(B, f(x_0)) \longrightarrow \pi_k(F, e_0)$$

commutes. Consider the following diagram:

The outer triangle commutes by construction: since for $g: (D^{n+1}, S^n, s_0) \to (E \times_B X, F', y_0)$, we get

$$\partial \circ (\pi_E)_* ([g]) = \partial [\pi_E \circ g] = [(\pi_E \circ g)|_{S^n}] = [\pi_E|_{F'} \circ g|_{S^n}] = (\pi_E|_{F'})_* ([g|_{S^n}]) = (\pi_E|_{F'})_* \circ \partial ([g]).$$

Also, the left hand square commutes for $k+1 \ge 1$, since this is what we obtained from (ζ) . From this, we can conclude that the right hand square also commutes for $k+1 \ge 1$, i.e., for $k \ge 0$. Explicitly, if we let k be the map $\pi_{k+1}(X,x_0) \to \pi_k(F',y_0)$ and l the map $\pi_{k+1}(B, f(x_0)) \to \pi_k(F, e_0)$, then we get

$$(\pi_E|_{F'})_* \circ j = (\pi_E|_{F'})_* \circ \partial \circ (\pi_X)_*^{-1}$$
$$= \partial \circ (\pi_E)_* \circ (\pi_X)_*^{-1}$$
$$= \partial \circ p_*^{-1} \circ f_*$$
$$= l \circ f_*$$

giving commutativity.

Therefore, we can fill in the dashed arrows in diagram (Γ) , giving that the following diagram commutes for $0 \le k < n-1$.

$$\pi_{k+2}(X, x_0) \longrightarrow \pi_{k+1}(F', y_0) \longrightarrow \pi_{k+1}(E \times_B X, y_0) \xrightarrow{(\pi_X)_*} \pi_{k+1}(X, x_0) \longrightarrow \pi_k(F', y_0)$$

$$\downarrow^{f_*} \qquad (\pi_{E|_{F'}})_* \downarrow \cong \qquad \qquad \downarrow^{(\pi_E)_*} \qquad f_* \downarrow \cong \qquad \downarrow \cong$$

$$\pi_{k+2}(B, f(x_0)) \longrightarrow \pi_{k+1}(F, e_0) \longrightarrow \pi_{k+1}(E, e_0) \xrightarrow{p_*} \pi_{k+1}(B, f(x_0)) \longrightarrow \pi_k(F, e_0)$$

By the 5-lemma, we obtain that $(\pi_E)_*$: $\pi_{k+1}(E \times_B X, y_0) \to \pi_{k+1}(E, e_0)$ is an isomorphism for $1 \le k+1 \le n-1$. Note that this also works for 1 = k+1 despite π_0 not being a group (one can simply trace through the arguments in the proof of the 5-lemma and see that it still works with exactly the same arguments). It remains to show that it is an isomorphism on π_0 and surjective on π_n . Surjectivity on π_n immediately follows by applying the 4-lemma to the following diagram:

$$\pi_n(F', y_0) \longrightarrow \pi_n(E \times_B X, y_0) \xrightarrow{(\pi_X)_*} \pi_n(X, x_0) \longrightarrow \pi_{n-1}(F', y_0)
(\pi_{E|F'})_* \not \cong \downarrow (\pi_E)_* \qquad f_* \not \cong \downarrow \cong
\pi_n(F, e_0) \longrightarrow \pi_n(E, e_0) \xrightarrow{p_*} \pi_n(B, f(x_0)) \longrightarrow \pi_{n-1}(F, e_0)$$

For the isomorphism on π_0 , note that we have assumed that E is path-connected, so it suffices to show that the induced map $(\pi_E)_*$: $\pi_0 (E \times_B X, y_0) \to \pi_0(E, e_0) = 0$ is injective. Since the diagram (footnote: ¹)

$$\pi_1(X, x_0) \longrightarrow \pi_0(F', y_0) \longrightarrow \pi_0(E \times_B X, y_0) \longrightarrow 0$$

$$\cong \downarrow f_* \qquad \cong \downarrow \qquad \qquad \downarrow (\pi_E)_*$$

$$\pi_1(B, f(x_0)) \longrightarrow \pi_0(F, e_0) \longrightarrow \underbrace{\pi_0(E, e_0)}_{0} \longrightarrow 0$$

commutes with exact rows, we obtain by the 4-lemma that $(\pi_E)_*$: $\pi_0(E \times_B X, y_0) \to \pi_0(E, e_0) = 0$ is injective, so in particular $\pi_0(E \times_B X, y_0) = 0$. Note that the part of the 4-lemma which we used (the one concluding monomorphism) does not require the objects to be groups or, for that matter, the diagram to be in an abelian category - we just need the kernel to be concrete. (See footnote ²). Thus $(\pi_E)_*$ is an isomorphism on π_0 also.

This completes the proof.

¹In this diagram, when we are talking about exactness of the rows, while π_0 of the spaces are not groups, we can still define exactness and exact sequences of pointed sets as one might expect: $(X,x) \xrightarrow{f} (Y,y) \xrightarrow{g} (Z,z)$ is exact if the composite gf is constant at z and g(a) = z implies that there a b with a = f(b)

²For concreteness, what I am saying is that all the steps in the proof of the 4-lemma as laid out for example on Wikipedia (https://en.wikipedia.org/wiki/Five_lemma) all still hold in our situation ad verbum, hence I do not wish to repeat all the arguments since it's just a lengthy diagram chase. One thing to note, however, is that when we talk about 0 in π_0 in the arguments, this means to be in the same path-component as the basepoint. With this terminology, all things go through.

Problem 0.5. The (ordered) configuration space on n-points of a space X is the subspace

$$Conf_n(X) = \{(x_1, \dots, x_n) \in X^n \mid \forall i \neq j \colon x_i \neq x_j\} \subset X^n$$

of those *n*-tuples of points that are pairwise distinct. In this problem, we consider the special case $X = \mathbb{R}^2$. You may assume that the map

$$\operatorname{Conf}_n(\mathbb{R}^2) \to \operatorname{Conf}_{n-1}(\mathbb{R}^2)$$

 $(x_1, \dots, x_n) \mapsto (x_1, \dots, x_{n-1})$

is a fiber bundle. We define the base-point of $\operatorname{Conf}_n(\mathbb{R}^2)$ to be $x = ((1,0),(2,0),\ldots,(n,0))$.

(1) Show that $\operatorname{Conf}_n(X)$ is an Eilenberg-MacLane space of type (G,1) with $G = \pi_1 \operatorname{Conf}_n(\mathbb{R}^2)$.

For $1 \le i < j \le n$, define elements $\gamma_{i,j} \in \pi_1 \operatorname{Conf}_n(X)$ as follows:

$$\gamma_{i,j}(t) = ((1,0), \dots, (i-1,0), \rho(t), (i+1,0), \dots, (n,0))$$

where $\rho: [0,1] \to \mathbb{R}^2$ is a loop that starts and ends at (i,0) and loops around (j,0) and avoids the other points.

(2) Show that the $\gamma_{i,j}$ generate $\pi_1 \operatorname{Conf}_n(\mathbb{R}^2)$.

The unordered configuration space is defined as the set of subsets of \mathbb{R}^2 of cardinality n :

$$UConf_n(\mathbb{R}^2) = \{ A \subset \mathbb{R}^2 \mid |A| = n \}.$$

This is topologised with the quotient topology coming from the map $\operatorname{Conf}_n(\mathbb{R}^2) \to \operatorname{UConf}_n(\mathbb{R}^n)$ sending (x_1, \ldots, x_n) to $\{x_1, \ldots, x_n\}$.

(3) Show that $\mathrm{UConf}_n(X)$ is an Eilenberg-MacLane space of type (G,1) with $G = \pi_1 \, \mathrm{UConf}_n(\mathbb{R}^2)$.

Proof. (1) The fiber above the base point $(x_1, \ldots, x_{n-1}) \in \operatorname{Conf}_{n-1}(\mathbb{R}^2)$ under the map is $F = \{(x_1, \ldots, x_n) \mid \forall i \colon x_n \neq x_i\} \cong \mathbb{R}^2 - \{x_1, \ldots, x_{n-1}\}$. Since every fiber bundle is a Serre fibration, we find from the LES associated to the fibration that

 $\pi_k\left(\mathbb{R}^2 - \{x_1, \dots, x_{n-1}\}\right) \to \pi_k\left(\operatorname{Conf}_n(\mathbb{R}^2)\right) \to \pi_k\left(\operatorname{Conf}_{n-1}(\mathbb{R}^2)\right) \to \pi_{k-1}\left(\mathbb{R}^2 - \{x_1, \dots, x_{n-1}\}\right).$ is exact for all $k \ge 1$.

By theorem 4.41, if $Conf_{n-1}(\mathbb{R}^2)$ is path-connected, then

$$\underbrace{\pi_0\left(\mathbb{R}^2 - \{x_1, \dots, x_0\}\right)}_{0} \to \pi_0\left(\operatorname{Conf}_n(\mathbb{R}^2)\right) \to 0$$

is exact, so $\pi_0\left(\operatorname{Conf}_n(\mathbb{R}^2)\right) \cong 0$. Now, $\operatorname{Conf}_1(\mathbb{R}^2) = \mathbb{R}^2$ which is path-connected, so by induction, $\operatorname{Conf}_n(\mathbb{R}^2)$ is path-connected for all $n \geq 1$, hence $\pi_0\left(\operatorname{Conf}_n\left(\mathbb{R}^2\right)\right) = 0$.

Now, $\mathbb{R}^2 - \{x_1, \dots, x_{n-1}\} \simeq \bigvee_{n-1} S^1$. In particular, the universal cover of a graph is a tree hence contractible, so since $\pi_k \left(\bigvee_{n-1} S^1\right)$ coincides with π_k of the universal

cover when $k \geq 2$, we find that $\pi_k\left(\mathbb{R}^2 - \{x_1, \dots, x_{n-1}\}\right) \cong 0$ for $k \geq 2$. Thus $\pi_k\left(\operatorname{Conf}_n\left(\mathbb{R}^2\right)\right) \cong \pi_k\left(\operatorname{Conf}_{n-1}(\mathbb{R}^2)\right)$ for all $k \geq 2$. By repeated application, we thus get that $\pi_k\left(\operatorname{Conf}_n\left(\mathbb{R}^2\right)\right) \cong \pi_k\left(\operatorname{Conf}_1\left(\mathbb{R}^2\right)\right) \cong \pi_k\left(\mathbb{R}^2\right) \cong 0$ for $k \geq 2$ since $\operatorname{Conf}_1\left(\mathbb{R}^2\right) = \mathbb{R}^2$.

It remains to show that $\pi_1 \operatorname{Conf}_n(\mathbb{R}^2) \neq 0$. Noting that $\pi_0 \left(\operatorname{Conf}_n(\mathbb{R}^2) \right) \cong 0$ and $\pi_2 \left(\operatorname{Conf}_{n-1}(\mathbb{R}^2) \right)$, we obtain from the LES associated to the fibration $\operatorname{Conf}_n(\mathbb{R}^2) \to \operatorname{Conf}_{n-1} \left(\mathbb{R}^2 \right)$ the following exact sequence:

$$0 \to \pi_1\left(\mathbb{R}^2 - \{x_1, \dots, x_{n-1}\}\right) \to \pi_1 \operatorname{Conf}_n\left(\mathbb{R}^2\right) \to \pi_1 \operatorname{Conf}_{n-1}\left(\mathbb{R}^2\right) \to 0$$

Now, $\pi_1\left(\mathbb{R}^2 - \{x_1, \dots, x_{n-1}\}\right) \cong \pi_1\left(\bigvee_{n-1} S^1\right) \cong F_{n-1} = \langle x_1, \dots, x_{n-1} \rangle$, the free group on n-1 elements. Now, when n=1, $\operatorname{Conf}_n\left(\mathbb{R}^2\right) = \mathbb{R}^2$, so $\pi_1\operatorname{Conf}_1\left(\mathbb{R}^2\right) \cong 0$, and hence $\pi_1\operatorname{Conf}_2\left(\mathbb{R}^2\right) \cong F_1 \cong \mathbb{Z}$. But free groups are projective, so by induction, the exact sequence

$$0 \to F_{n-1} \to \pi_1 \operatorname{Conf}_n(\mathbb{R}^2) \to \pi_1 \operatorname{Conf}_{n-1}(\mathbb{R}^2) \to 0 \tag{\xi}$$

splits, hence each $\pi_1 \operatorname{Conf}_n(\mathbb{R}^2)$ is non-trivial as it contains an isomorphic copy of a free group. This shows that $\operatorname{Conf}_n(\mathbb{R}^2)$ is a K(G,1) space for all $n \geq 1$. We will even show below that the SES in (ξ) splits.

(2)

Note. Below, we will abuse terminology by identifying F_{n-1} with $\pi_1 (\mathbb{R}^2 - \{x_1, \dots, x_{n-1}\})$ and ι_n having either as a domain.

Furthermore, these are always pointed maps.

To find generators, we first look at the actual maps in the LES for the fiber bundle. Let $p_n: \operatorname{Conf}_n(\mathbb{R}^2) \to \operatorname{Conf}_{n-1}(\mathbb{R}^2)$ be the map that forgets the last coordinate, and and let $\iota_n: \mathbb{R}^2 - \{x_1, \ldots, x_{n-1}\} \cong F \hookrightarrow \operatorname{Conf}_n(\mathbb{R}^2)$ be the inclusion of the fiber.

We now show that (ξ) splits. Define a map $s: \operatorname{Conf}_{n-1}(\mathbb{R}^2) \to \operatorname{Conf}_n(\mathbb{R}^2)$ by $s(x_1, \ldots, x_{n-1}) = (x_1, \ldots, x_{n-1}, x'_n)$ where $x'_n = (1 + \max_{i \leq n-1} |x_i|, 0)$. This map is continuous since the norm is continuous, and we also have $p \circ s = \operatorname{id}_{\operatorname{Conf}_{n-1}(\mathbb{R}^2)}$. Since both p and s preserve basepoints, we find by taking π_1 that $p_* \circ s_* = \operatorname{id}_{\pi_1 \operatorname{Conf}_{n-1}(\mathbb{R}^2)}$. That is, s_* is a section, so (ξ) splits.

Thus we have

$$F_{n-1} \oplus \pi_1 \operatorname{Conf}_{n-1}(\mathbb{R}^2) \cong \pi_1 \operatorname{Conf}_n(\mathbb{R}^2)$$

under the isomorphism $(x,y) \mapsto (\iota_n)_*(x) + s_*(y)$. Since $\pi_1 \operatorname{Conf}_2(\mathbb{R}^2) \cong \pi_1 S^1$ induced by the deformation retract $\mathbb{R}^2 - \{x_1\} \times I \to \mathbb{R}^2 - \{x_1\}$ sending $(x,t) \mapsto (1-t)(x-x_1) + t \frac{x-x_1}{\|x-x_1\|} + x_1$. Under this isomorphism, we see that $\gamma_{1,2}$ which winds around the puncture once corresponds to a generator for $\pi_1 S^1$ - namely a loop that goes once around. Thus $\gamma_{1,2}$ indeed generates $\pi_1 \operatorname{Conf}_2(\mathbb{R}^2)$.

Now, suppose we have shown for $n \leq N-1$ that $\pi_1 \operatorname{Conf}_n(\mathbb{R}^2)$ is generated by $\{\gamma_{i,j}\}_{1\leq i < j \leq n}$. Then using the isomorphism

$$\pi_1(F) \oplus \pi_1 \operatorname{Conf}_{N-1}(\mathbb{R}^2) \xrightarrow{(x,y) \mapsto \iota_{N_*}(x) + s_*(y)} \pi_1 \operatorname{Conf}_N(\mathbb{R}^2)$$

we see that the $\gamma_{i,j} \in \pi_1 \operatorname{Conf}_{N-1}(\mathbb{R}^2)$ are mapped under the isomorphism to $\gamma_{i,j} \in \pi_1 \operatorname{Conf}_{N-1}(\mathbb{R}^2)$ (we will furthermore assume that the given ρ which loop around (j,0) from (i,0) are sufficiently close to he the other points $(1,0),\ldots,(N,0)$ at all times so that $1 + \max_{i < N-1} |x_i|$ will be equal to (N,0)):

$$\gamma_{i,j}(t) = \left((1,0), \dots, (i-1,0), \rho(t), (i+1,0), \dots, \underbrace{(1 + \max_{i \le N-1} |x_i|, 0)}_{(N,0)} \right)$$

So to complete the induction, it suffices to show that the remaining loops $\gamma_{i,N}$ correspond to generators of F_{n-1} . The problem is that under the isomorphism above, a loop $\alpha_i \in \pi_1\left(\mathbb{R}^2 - \{x_1, \dots, x_{N-1}\}\right)$, which winds once around x_i and then returns to the basepoint, corresponds to the loop in $\pi_1(F)$ whose N-1 first coordinates remain fixed at x_1, \dots, x_{N-1} and where the last coordinate traces out a loop where it winds around x_i once and then returns back to the basepoint x_N . Hence all of the loops in $\pi_1(F)$ are not of the form $\gamma_{i,N}$. However, we claim that the loop is homotopic to a $\gamma_{i,N}$.

To see this, we will regard $\pi_1 \operatorname{Conf}_N(\mathbb{R}^2)$ in a different way. The group $\pi_1 \operatorname{Conf}_N(\mathbb{R}^2)$ is commonly called the pure braid group PB_N . To visualize a loop $\alpha \colon (I, \{0, 1\}) \to \pi_1\left(\operatorname{Conf}_N(\mathbb{R}^2), ((1, 0), \dots, (N, 0))\right)$ consider α as $\alpha(t) = (\alpha_1(t), \dots, \alpha_N(t))$ where $\alpha_i(t)$ is the i th coordinate of α . This α_i traces out a loop in \mathbb{R}^2 in the common sense. Define now a new map $\beta_i \colon I \to \mathbb{R}^2 \times I$ by $\beta_i(t) = (\alpha_i(t), t)$. Then $(\beta_1, \dots, \beta_N)$ is a braid. See Figure 1 for a typical example in $\pi_1 \operatorname{Conf}_3(\mathbb{R}^2)$.

FIGURE 1. Here \mathbb{C} can be replaced with \mathbb{R}^2 .

So how do the loops in the image of $(\iota_N)_*$ look like? Well, since the first N-1 coordinates are constant, our β_i are of the form $\beta_i(t) = ((i,0),t)$ for $i \leq N-1$. And since α_N by construction traced out a loop that went around one of the punctures

(i, 0) and not the others, β_N will be a strand which starts at ((N, 0), 0) then which wraps (in a continuous level-wise manner) around the i th braid once and the connects to ((N, 0), 1). See Figure 2 Now, what is a homotopy in $\pi_1 \operatorname{Conf}_n(\mathbb{R}^2)$?

Figure 2.

It will have the form $(F_1(x,t),\ldots,F_N(x,t))$ where $F_i\colon I\times I\to\mathbb{R}^2$ depicts a loop. Furthermore, at each time $t_0\in I$, $F_i(x,t_0)\neq F_j(x,t_0)$; i.e., the braids are disjoint/non-intersecting. Hence a homotopy in $\pi_1\operatorname{Conf}_n(\mathbb{R}^2)$ is the same as an isotopy of the braid that the loop depicts.

With this setup in mind, we can now show that the loop in Figure 2 is homotopic to $\gamma_{i,N}$. This, in particular, is equivalent to saying that the braid in 2 is isotopic to the braid the $\gamma_{i,N}$ corresponds to. To see this, consider the isotopy depicted in Figure 3.

At the bottom, we obtain $\gamma_{i,N}$. Thus im $(\iota_N)_*$ indeed corresponds to the remaining $\gamma_{i,j}$'s.

And this completes the inductive argument.

(3) As we equip $\operatorname{UConf}_n(\mathbb{R}^2)$ with the quotient topology obtained from the map $\operatorname{Conf}_n(\mathbb{R}^2) \to \operatorname{UConf}_n(\mathbb{R}^2)$, this map becomes continuous, and as $\operatorname{Conf}_n(\mathbb{R}^2)$ was path-connected and continuous images of path-connected spaces are path-connected, we find that $\pi_0 \operatorname{UConf}_n(\mathbb{R}^2) = 0$ for all n. Next, we claim that $\operatorname{Conf}_n(\mathbb{R}^2) \to \operatorname{UConf}_n(\mathbb{R}^2)$ is, in fact, a covering map. Let $\{x_1, \ldots, x_n\} \in \operatorname{UConf}_n(\mathbb{R}^2)$, where we have just given indices in some random fashion. We can define an action of Σ_n on (x_1, \ldots, x_n) by $\sigma \cdot (x_1, \ldots, x_n) = (x_{\sigma(1)}, \ldots, x_{\sigma(n)})$. Since all x_i are pairwise distinct, so are all $\sigma \cdot (x_1, \ldots, x_n)$. Furthermore, distinct $\sigma \in \Sigma_n$ produce distinct tuples. Since this gives us finitely many distinct elements in $(\mathbb{R}^2)^{\times n} \cong \mathbb{R}^{2n}$ which is Hausdorff, one can show that Σ_n acts properly discontinuously on $\operatorname{Conf}_n(\mathbb{R}^2)$. Furthermore, the quotient map $q \colon \operatorname{Conf}_n(\mathbb{R}^2) \to \operatorname{Conf}_n(\mathbb{R}^2) / \Sigma_n$ agrees with the quotient map $\operatorname{Conf}_n(\mathbb{R}^2) \to \operatorname{UConf}_n(\mathbb{R}^2)$.

By proposition 2.4.3 in the AlgTop1 notes, the quotient map $q: \operatorname{Conf}_n(\mathbb{R}^2) \to \operatorname{Conf}_n(\mathbb{R}^2)/\Sigma_n$ is, in fact, a covering map. By proposition 4.1 in Hatcher, then $\pi_k \operatorname{Conf}_n(\mathbb{R}^2) \cong \pi_k \operatorname{UConf}_n$ for all $k \geq 2$ and all n. We have already shown that $\pi_k \operatorname{Conf}_n(\mathbb{R}^2) \cong 0$ for all $k \geq 2$, so $\pi_k \operatorname{UConf}_n(\mathbb{R}^2) \cong 0$ for all $k \geq 2$ also.

Furthermore, by Theorem 2.2.9 in the AlgTop1 notes, q_* induces an injection on fundamental groups, so since $\pi_1 \operatorname{Conf}_n(\mathbb{R}^2)$ was nontrivial, so $\pi_1 \operatorname{UConf}_n(\mathbb{R}^2)$ is nontrivial as it contains an isomorphic copy of $\pi_1 \operatorname{Conf}_n(\mathbb{R}^2)$.

FIGURE 3.

This can also be seen very easily when we consider the visual representation of $\pi_1 \operatorname{UConf}_n(\mathbb{R}^2)$ as the standard braid group B_n . The pure braid group PB_n sits inside B_n as all the braids where each strand starts and ends at the same point i.e., it starts at some (p,0) and ends at (p,1).