completing the square

You can write quadratic equations in a different format by completing the square. x^2+bx+c is equal to $(x+\frac{b}{2})^2-(\frac{b}{2})^2+c$.

How? Let's find out.

By expanding $(x+\frac{b}{2})^2$, we get $x^2+bx+\frac{b^2}{4}$, and expanding $-(\frac{b}{2})^2$, we get $-\frac{b^2}{4}$.

So, basically, $(x+\frac{b}{2})^2-(\frac{b}{2})^2+c$ can be written as $x^2+bx+\frac{b^2}{4}-\frac{b^2}{4}+c$ which is just x^2+bx+c .

Sure, this is working backwards, but how do we solve it from the quadratic equation?

- 1. Make sure the coefficient of x^2 is 1. If there is a coefficient a, divide the whole equation by a. e.g., $ax^2+bx+c=x^2+\frac{b}{a}x+\frac{c}{a}$
- 2. Take bx and divide it by 2x (or take $\frac{b}{a}x$ and divide it by 2x) to get $\frac{b}{2}$ or $\frac{b}{2a}$.
- 3. Make a square with x and $\frac{b}{2}$ and subtract $(\frac{b}{2})^2$ from the equation.
- 4. So, it will look like this: $(x+rac{b}{2})^2-(rac{b}{2})^2+c$
- 5. And now you're done!!