Лекция 12

Масса и плотность. Геометрия масс

Рассмотрим сплошную связную неизменяемую механическую систему и жестко связанное с ней подвижное пространство с репером $(0, \vec{\iota}, \vec{j}, \vec{k})$, и D область в подвижном пространстве, занимаемая этой механической системой. Любую точку M можно задать радиус вектором (или же её координатами).

Если в области D задана скалярная неотрицательная функция μ, то будем говорить, что на рассматриваемой механической системе задано распределение масс (плотность).

Твердое тело - сплошная связная неизменяемая механическая система с заданным распределением масс на ней.

Если функция плотности тела непрерывна в заданной области, то: можно ввести в рассмотрение величина, называемыми моментами порядка $\alpha = i + j + k$:

$$J(i,j,k) = \iiint\limits_{D} \mu(x,y,z) x^{i} y^{j} z^{k} \, dx dy dz, \ i,j,k \in [0:+\infty)$$

Момент нулевого порядка (i=j=k=0) – масса твёрдого тела.

Геометрические характеристики (зависят только от распределения масс и не меняются во времни):

• Осевые моменты:

$$J_{xx} = J(0,2,0) + J(0,0,2), J_{yy} = J(2,0,0) + J(0,0,2), J_{zz} = J(0,2,0) + J(2,0,0)$$

• Произведение инерции (центробежные моменты инерции твёрдого тела):

$$J_{yz} = J(0,1,1), J_{zx} = J(1,0,1), J_{xy} = J(1,1,0)$$

• Центр масс C – характеристика распределения масс твёрдого тела. Радиус вектор точки центра масс определяется равенством: $\vec{r}_C = m^{-1} \iiint_D \mu(x,y,z) \vec{r} dx dy dz$, т.е. координаты этой точки определяются следующими формулами: $x_C = m^{-1} J(1,0,0), y_C = m^{-1} J(0,1,0), z_C = m^{-1} J(0,0,1)$

Моментом инерции материальной точки относительно оси I – величина mh^2 , где m – масса точки, а h – расстояние до оси I. Моментом инерции твердого тела относительно оси I – величина $J_l = \iiint_D h^2(x,y,z)\mu(x,y,z)dxdydz$, где D – область подвижного пространства, занимаемая телом, μ - плотность тела, h – расстояние от точки M (принадлежащей области D) с координатами x,y,z, до оси I.

Для того, чтобы момент инерции материальной точки массы m относительно оси l был равен моменту инерции твердого тела той же массы относительно той же оси, эта точка должна находиться на расстоянии $d_l = \sqrt{J_l/m}$ от l. Эта величина называется paduycom инерции mвёрдого mела omносиmельно оси l.

Теорема (Гюйгенс — Штейнер): Если l_C — ось, проходящая через центр масс С твёрдого телапараллельно оси I на расстоянии d от неё, то $J_l=md^2+J_{l_C}$, где J_l , J_{l_C} — моменты инерции твёрдого тела относительно осе й I и l_C , а m — масса этого тела.

Теорема: Если I – ось,, проходящая через начало О репера $(O, \vec{\iota}, \vec{J}, \vec{k})$, а α, β, γ – её направляющие косинусы в этом репере, то $J_l = J_{xx} \propto^2 + J_{yy} \beta^2 + J_{zz} \gamma^2 - 2(J_{yz} \beta \gamma + J_{zx} \gamma \alpha + J_{xy} \alpha \beta)$, где J_l - момент инерции твердого тела относительно оси I, а J_{xx} , J_{yy} , J_{zz} , J_{yz} , J_{zx} , J_{xy} – осевые и центробежные моменты инерции этого тела.

Пусть $J_{xy}=J_{yx}, J_{yz}=J_{zy}, J_{zx}=xz$. Запишем матрицу квадратичной формы формулы $J_l=J_{xx}\propto^2+J_{yy}\beta^2+J_{zz}\gamma^2-2(J_{yz}\beta\gamma+J_{zx}\gamma\alpha+J_{xy}\alpha\beta)$:

$$J = \begin{pmatrix} J_{xx} & -J_{xz} & -J_{xz} \\ -J_{yx} & J_{yy} & -J_{yz} \\ -J_{zx} & -J_{zy} & J_{zz} \end{pmatrix}$$

В случае, если \vec{l} — единичный вектор вдоль оси I, то равенство $J_l = J_{xx} \propto^2 + J_{yy} \beta^2 + J_{zz} \gamma^2 - 2(J_{yz}\beta\gamma + J_{zx}\gamma\alpha + J_{xy}\alpha\beta)$ можно переписать в виде: $J_l = \vec{l} \cdot J \vec{l}$.

Тензорными оказываются преобразования элементов матрицы J, соответствующие всевозможным

преобразованиям базисов по формулам:
$$\begin{pmatrix} \overrightarrow{l'} \\ \overrightarrow{j'} \\ \overrightarrow{k'} \end{pmatrix} = \begin{pmatrix} p_{1,1} & p_{1,2} & p_{1,3} \\ p_{2,1} & p_{2,2} & p_{2,3} \\ p_{3,1} & p_{3,2} & p_{3,3} \end{pmatrix} \begin{pmatrix} \overrightarrow{l} \\ \overrightarrow{j} \\ \overrightarrow{k} \end{pmatrix}$$
, где $(O, \overrightarrow{l'}, \overrightarrow{j'}, \overrightarrow{k'})$ – репер,

полученный из репера $(0,\vec{\iota},\vec{j},\vec{k})$ в результате поворота в подвижном точечном пространстве. Таблица J в заданном базисе вместе с формулами ее преобразования к любому другому базису задает тензор второго ранга, который называют *тензором твёрдого тела для точки О.* В заданном репере $(0,\vec{\iota}',\vec{j'},\vec{k'})$, матрица J является матрицей некоторого линейного оператора в \mathbb{R}^3 , его называют *оператором инерции твёрдого тела* в этом репере.

Рассмотрим пучок всех прямых (осей), проходящих через точку О. Относительно каждой оси I пучка данное твёрдое тело имеет свой момент инерции J_l . Картину распределения момента инерции твердого тела в зависимости от выбора оси пучка дает эллипсоид инерции.

Если на каждой из осей / пучка выберем точку М с координатами х,у,z такую, что расстояние до точки О равно $1/\sqrt{J_l}$. Таким образом $x=r \propto$, $y=r\beta$, $z=r\gamma$. Получим уравнение эллипсоида инерции твёрдого тела в точке O:

$$J_{xx}x^2 + J_{yy}y^2 + J_{zz}z^2 - 2(J_{yz}yz + J_{zx}zx + J_{xy}xy) = 1$$

Наименьшая (наибольшая) из главных осей эллипсоида инерции — та его главная ось, которой соответствует наименьший (наибольший) из его главных диаметров. Наименьший момент инерции тело имеет относительно наибольшей оси его эллипсоида инерции, а наибольший — относительно наименьшей оси этого эллипсоида. Главные оси эллипсоида называют *главными осями инерции твердого тела* для точки О. В случае, когда орты $\vec{t}, \vec{j}, \vec{k}$ репера направлены по главным осям эллипсоида инерции, то центробежные моменты инерции равны нулю, а осевые моменты инерции равны моментам инерции относительно главных осей, — их называют главными моментами инерции твердого тела для точки О. В данном репере уравнение

эллипсоида принимает вид: $J_{xx}x^2 + J_{yy}y^2 + J_{zz}z^2 = 1$. Если начало О репера совпадает с центром масс С твердого тела, то эллипсоид инерции называют его центральным эллипсоидом инерции, его главные оси называют главными центральными осями инерции, а величины J_{xx} , J_{yy} , J_{zz} — его главными центральными моментами инерции.

Основные законы динамики твердого тела

Зададим неподвижный репер $(O, \vec{e}_\xi, \vec{e}_\eta, \vec{e}_\zeta)$ и подвижный репер $(M_0, \vec{\imath}, \vec{J}, \vec{k})$, жестко связанный с телом, ξ , η , ζ и x, y, z – координаты точки M твёрдого тела в этих реперах. Пусть \vec{r} – радиус вектор, \vec{v} – скорость, $v = |\vec{v}|$ – величина скорости этой точки твёрдого тела в неподвижном репере, \vec{r}_A , \vec{v}_A - радиус-вектор и скорость некоторой точки A (полюса) в этом же репере. Если $\mu = \mu(x, y, z)$ — распределение масс твердого тела, то его количество движения \vec{Q} , кинетический момент $\vec{\kappa}_A$ относительно полюса A и кинетическую энергию T твёрдого тела определяют формулами:

$$\vec{Q} = \iiint_D \mu(x, y, z) \vec{v} dx dy dz,$$

$$\vec{\kappa}_A = \iiint_D \mu(x, y, z) (\vec{r} - \vec{r}_A) \times (\vec{v} - \vec{v}_A) dx dy dz,$$

$$T = \frac{1}{2} \iiint_D \mu(x, y, z) v^2 dx dy dz$$

Так как подынтегральные выражения в этих формулах зависят от скоростей точек твердого тела, а распределение скоростей этих точек дается формулой Эйлера, то используя эту формулу можно преобразовать выражения для этих величин.

Пусть ω_x , ω_y , ω_z и κ_x , κ_y , κ_z – координаты векторов $\vec{\omega}$ и $\vec{\kappa}_O$ (кинетический момент твёрдого тела относительно неподвижной точки) в подвижном репере. Проектируя $\vec{\kappa}_O$ на орты подвижного репера, получаем:

$$\begin{pmatrix} \kappa_x \\ \kappa_y \\ \kappa_z \end{pmatrix} = \begin{pmatrix} J_{xx} & -J_{xz} & -J_{xz} \\ -J_{yx} & J_{yy} & -J_{yz} \\ -J_{zx} & -J_{zy} & J_{zz} \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}$$

Таким образом $\vec{\kappa}_O = J \vec{\omega}$. В главных осях инерции для точки О матрица оператора J диагональна.

Закон (теорема) о движении центра масс твердого тела: $\vec{mr_c} = \vec{F}$, где $\vec{r_c}$ – радиус-вектор центра масс твёрдого тела, m – его масса, а \vec{F} – главный вектор действующих на него сил. Таким образом, центр масс твердого тела движется так, как двигалась бы материальная точка с массой, равной массе этого твердого тела, под действием силы, равной главному вектору действующих на него сил.

Закон (теорема) об изменении главного вектора количества движения твердого тела: $\frac{d\vec{Q}}{dt} = \vec{F}, d\vec{Q} = \vec{F}dt, \vec{Q} - \vec{Q}_0 = \int_{t_0}^t \vec{F}dt$, где \vec{Q} – количество движения твёрдого тела, $\vec{Q}_0 = \vec{Q}|_{t=t_0}$, а \vec{F} – главный вектор сил, действующих на твёрдое тело.

Закон (теорема) об изменении кинетического момента твердого тела - производная кинетического момента этого тела относительно подвижного полюса A и главный момент $\overrightarrow{\mathcal{M}}_A$, действующих на тело внешних сил относительно того же полюса связаны равенством: $\frac{d}{dt} \vec{\kappa}_A +$

 $m(\vec{r_c}-\vec{r_A}) imes \vec{w_A} = \overrightarrow{\mathcal{M}_A}$, где $\vec{r_c}$ – радиус вектор центра масс тела, $\vec{r_A}$, $\overrightarrow{w_A}$ – радиус вектор и ускорение полюса A, а m – масса тела.

Закон (теорема) об изменении кинетической энергии твердого тела: $T-T_0=\mathcal{A}$, T- кинетическая энергия твердого тела в момент времени t, $T_0=T|_{t=t_0}$, а $\mathcal{A}-$ работа всех сил, действующих на тело, на промежутке времени $[t_0,t]$.