

Name: Karappagari Alekya

Batch: 2

ID: cometfwc024 Date: 9th July 2025

GATE Question Paper 2010, EC Question Number 53

Question Analysis

We need to find the circuit that implements the minimized Boolean function:

$$F = \overline{X}Y + YZ$$

Correct Option: (A)

Explanation: Option (A) correctly represents the logic:

$$\overline{X}Y + YZ$$

using AND, OR, and NOT gates.

Solution in Two Steps

Step 1: Expression: $F = \overline{X}Y + YZ$ is in SOP form.

Step 2: Option (A) correctly implements $\overline{X}Y$ and YZ using AND gates and combines them using an OR gate.

Truth Table

X	Y	Z	$F = \overline{X}Y + YZ$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Truth Table of $F = \overline{X}Y + YZ$

Hardware Components

S.No	Component		
5.110	Component		
1	Raspberry Pi Pico2W		
2	Arduino Uno		
3	Breadboard		
4	Push Buttons (3x) for X, Y, Z		
5	LED for Output F		
6	Resistors (220 Ω for LED, $10k\Omega$ for pull-downs)		
7	Jumper Wires		
8	Micro USB Cable		

Table: Required Components

GPIO Pin Connections (Pico2W)

Component	Pico2W Pin	Description	
Button X	GP14	Input X	
Button Y	GP15	Input Y	
Button Z	GP16	Input Z	
LED (Output F)	GP13	Output Logic	
GND	GND	Common Ground	
3.3V	3.3V	Pull-up Supply to Buttons	

Pico2W Pin Mapping

GPIO Pin Connections (Arduino Uno)

Component	Arduino Pin	Description
Button X	D2	Input X
Button Y	D3	Input Y
Button Z	D4	Input Z
LED	D13	Output Logic
GND	GND	Ground
Vcc	5V	supply

Arduino Pin Mapping

Uploading Code to Pico2W

- 1. Connect the Raspberry Pi Pico2W to your computer using a USB cable while holding the **BOOTSEL** button
- 2. The board appears as a USB drive on your computer.
- 3. Download and drag the MicroPython .uf2 firmware file to the Pico's USB drive.
- 4. Open the **Thonny IDE** on your computer.
- In Thonny, go to Tools → Interpreter and select MicroPython (Raspberry Pi Pico).
- 6. Write or paste your Python code (logic implementation).
- Click Run or press F5 to upload and execute the code on Pico2W.
- 8. Observe the output on the LED based on button inputs.

Uploading Code to Arduino Uno

- 1. Connect the Arduino Uno to your computer using a USB cable.
- 2. Open the **Arduino IDE** (download from arduino.cc if not installed).
- 3. Select the correct board and port:
 - ullet Go to Tools o Board o Arduino Uno
 - Then Tools \rightarrow Port \rightarrow Select your device port
- 4. Write or paste your logic code (e.g., for NOR gate or expression implementation).
- 5. Click the **Upload** button (right arrow icon) or press Ctrl+U.

- 6. Wait for "Done uploading" message.
- 7. Test using push buttons and observe output on the LED.

GitHub Repository

https://github.com/Alekyakuruba/fwc/tree/main/hardware

Conclusion

Option (A) implements the given minimized logic expression $F = \overline{X}Y + YZ$ correctly. Truth table and hardware testing validate the circuit on both Raspberry Pi Pico2W and Arduino Uno.

Figure: Logic Circuit Implementation