Convergence

Let $(a_n)_{n\geq 1}$ be a sequence

1. The sequence $(a_n)_{n\geq 1}$ converges to a limit l in R iff

$$orall \epsilon > 0 \; \exists N \in N \; orall n > N \; |a_n - l| < \epsilon$$

- In this case, we denote this fact as $\lim_{n \to \infty} a_n = l$ or $(a_n)_{n \ge 1} \to l$
- 2. The sequence $(a_n)_{n\geq 1}$ converges to ∞ (in the extended real line $R\cup\{\infty\}$) iff $\forall r\in R\ \exists N\in N\ \forall n\geq N\ a_n>r$
 - We write $lim_{n o\infty}a_n=\infty$ or $(a_n)_{n\geq 1} o\infty$ in that case
- 3. The sequence $(a_n)_{n\geq 1}$ converges to $-\infty$ (in the extended real line $R\cup\{-\infty\}$) iff $\forall r\in R\ \exists N\in N\ \forall n\geq N\ a_n< r$
 - We write $lim_{n o \infty} a_n = -\infty$ or $(a_n)_{n \geq 1} o -\infty$ in that case
- 4. The sequence $(a_n)_{n\geq 1}$ converges if it converges either to a real number or to ∞ or to $-\infty$
- 5. The sequence $(a_n)_{n\geq 1}$ diverges if it does not converge

Understanding...

 $|a_n-l|<\epsilon$ is called the **limit inequality** and says that the distance from the n^{th} term in the sequence to the limit should be less than ϵ

 $\forall n>N.\ldots$ There should be some point N after which all the terms a_n in the sequence are within ϵ of the limit

 $\forall \epsilon>0...$: No matter what value of ϵ we pick, however tiny, we will still be able to find some value of N such that all the terms to the right of a_N in that sequence are within ϵ of the limit

• Consider the sequence $((-1)^n \cdot n)_{n\geq 1}$. It grows without bounds but it always jumps between negative and positive values in that growth. Therefore, this sequence diverges.

An Example

$$a_n = 1/n \text{ for } n \ge 1$$

$$N(\epsilon) = \left\lceil \frac{1}{\epsilon} \right\rceil$$

Common Convergent Sequences

1.
$$(a_n)_{n\geq 1} = \left(\frac{1}{n}\right)_{n\geq 1} \to 0$$
, also $(a_n)_{n\geq 1} = \left(\frac{1}{n^2}\right)_{n\geq 1} \to 0$, $(a_n)_{n\geq 1} = \left(\frac{1}{\sqrt{n}}\right)_{n\geq 1} \to 0$

2. In general, $(a_n)_{n\geq 1} = \left(\frac{1}{n^c}\right)_{n\geq 1} \to 0$ whenever c is a positive real constant c>0

3.
$$(a_n)_{n\geq 1} = \left(\frac{1}{2^n}\right)_{n\geq 1} \to 0$$
, also $(a_n)_{n\geq 1} = \left(\frac{1}{3^n}\right)_{n\geq 1} \to 0$, $(a_n)_{n\geq 1} = \left(\frac{1}{e^n}\right)_{n\geq 1} \to 0$

4. In general, $(a_n)_{n\geq 1} = \left(\frac{1}{c^n}\right)_{n\geq 1} \to 0$ whenever c is a real constant with |c| > 1; or equivalently $(a_n)_{n\geq 1} = \left(c^n\right)_{n\geq 1} \to 0$ whenever c is a real constant with |c| < 1

5.
$$(a_n)_{n\geq 1} = \left(\frac{1}{n!}\right)_{n\geq 1} \to 0$$

6.
$$(a_n)_{n\geq 1} = \left(\frac{1}{\log n}\right)_{n\geq 1} \to 0$$

Combinations of Sequences

Given sequences $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ which converge to limits a and b respectively, and a real constant λ , we have:

1.
$$\lim_{n\to\infty} \lambda a_n = \lambda a$$

2.
$$\lim_{n \to \infty} a_n + b_n = a + b$$

$$3. \lim_{n\to\infty} a_n - b_n = a - b$$

4.
$$\lim_{n\to\infty} a_n b_n = ab$$

5.
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$$
 provided that $b \neq 0$

Triangular Inequality

$$|a+b| \le |a| + |b|$$

An Example

$$a_n = \frac{3n^2 + 2n}{6n^2 + 7n + 1}$$

$$a_n = \frac{3 + \frac{2}{n}}{6 + \frac{7}{n} + \frac{1}{n^2}} = \frac{b_n}{c_n},$$

$$b_n = 3 + \frac{2}{n}$$
 and $c_n = 6 + \frac{7}{n} + \frac{1}{n^2}$.

if
$$(b_n)_{n\geq 1} \to b$$
 and $(c_n)_{n\geq 1} \to c \neq 0$,

$$\left(\frac{b_n}{c_n}\right)_{n\geq 1} \to \frac{b}{c}$$

$$(a_n)_{n\geq 1} \to \frac{3}{6} = \frac{1}{2}.$$

A sequence $(a_n)_{n\geq 1}$ can only have one limit.

Cauchy Sequence

A sequence $(a_n)_{n\geq 1}$ is a Cauchy sequence iff $orall \epsilon>0\ \exists N\in N\ orall n, m>N\ |a_n-a_m|<\epsilon$

Every sequence that converges to a real number is a Cauchy sequence

A subset $A \subset R$ is **complete** if any Cauchy sequence in A converges to a limit in A $(1/n)_{n\geq 1}$ is a Cauchy sequence

The Sandwich Theorem

Let $(l_n)_{n\geq 1}$ and $(u_n)_{n\geq 1}$ be sequences, and l a real number where both $\lim_{n\to\infty}l_n=l$ and $\lim_{n\to\infty}u_n=l$

Suppose that for a third sequence $(a_n)_{n\geq 1}$ we have: $\exists N\in N\ orall n\geq N\ l_n\leq a_n\leq u_n$

Then $\lim_{n \to \infty} a_n = l$ as well

Ratio tests for Sequences

The Ratio Test For Sequences

Let c in R be such that $0 \le c < 1$

$$\exists N \in N \ orall n \geq N \ |rac{a_{n+1}}{a_n}| \leq c \implies \lim_{n o \infty} a_n = 0$$

Limit ratio test

$$r = \lim_{n o \infty} |rac{a_{n+1}}{a_n}| \; exists \; \wedge \; r < 1 \; \Longrightarrow \; \lim_{n o \infty} a_n = 0$$

Subsequences of a Sequence

If $f:N\to R$ is a sequence and $M\subset N$ an infinite subset, then the restriction $f:M\to R$ is a **subsequence of f**

Using the usual notation $(a_n)_{n\geq 1}$ for a sequence, any subsequence of this sequence would be of the form $(a_{n_i})_{i\geq 1}$ where n_i are positive integers with $n_1 < n_2 < n_3 < \dots$

Any subsequence of a convergent sequence converges to the limit of the sequence

$$(a_n)_{n\geq 1}$$
 converges to $l\implies (a_{n_i})_{i\geq 1}$ also converges to l

Any sequence of real numbers has a monotonic subsequence

Manipulating absolute values: useful techniques

$$|x| < a \iff -a < x < a$$

$$|x \cdot y| = |x| \cdot |y|$$
.

$$\left|\frac{x}{y}\right| = \frac{|x|}{|y|}.$$

 $|x + y| \le |x| + |y|$, the triangle inequality.

 $|x-y| \ge ||x|-|y||$, the reverse triangle inequality.

Properties of real numbers

Let X be a set of real numbers Let l and u be real numbers. Then:

- u is an upper bound of X if $\forall x \in X \, (x \leq u)$
- l is a lower bound of X if $\forall x \in X \ (l \leq x)$
- a least upper bound (supremum, sup(X)) of X is an upper bound s of X such that $s \leq u$ for all upper bounds u of X
- a greatest lower bound (infimum, inf(X)) of X is a lower bound i of X such that $l \leq i$ for all lower bounds l of X

We say that such a set X is:

- Bounded above if X has an upper bound
- Bounded below if X has a lower bound
- Bounded if X has an upper and lower bound

The least upper bound of a set X is unique if it exists

Fundamental Theorem of Analysis

Let $(a_n)_{n\geq 1}$ be a sequence of real numbers that is

- Increasing and
- Bounded above

Then $s=sup\{\ a_n\ |\ n\geq 1\ \}$ exists and is the limit of the sequence $(a_n)_{n\geq 1}$

The set of real numbers is complete