

A High-Performance and Fast-Recovery Scheme for Secure Non-Volatile Memory Systems

Yujie Shi, Yu Hua, Jianming Huang

Huazhong University of Science and Technology, China

IEEE Cluster 2024

Non-Volatile memory

- Byte-addressability
- Non-volatility
- Low Latency
 - Similar to DRAM
- Large capacity
 - TB-scale

Intel Optane

Data Confidentiality
 Attackers can steal plaintext

Data Confidentiality
 Attackers can steal plaintext
 Solution: encryption

Data Confidentiality
 Counter Mode Encryption (CME)

Data Integrity
 Attackers can tamper with/replay data

Data Integrity

Attackers can tamper with/replay data

Solution: integrity check

Data Integrity

HMAC: detect tampering attack Integrity tree (SGX-style integrity tree (SIT)): detect replay attack

High performance NVM systems

- Security metadata are cached in the memory controller(MC)
- Lazy update scheme
 - Only update parent node when flushing child node

High performance NVM systems

- Security metadata are cached in the memory controller(MC)
- Lazy update scheme
 - Only update parent node when flushing child node

High performance NVM systems

- Security metadata are cached in the memory controller(MC)
- Lazy update scheme
 - Only update parent node when flushing child node

Н

Н

Н

Challenge1: recover the stale metadata

- Counter cannot be generated from child nodes
- HMAC calculation requires the counter of parent node as input

Challenge2: verify the retrieved metadata

- Root is inconsistent with the whole tree
- STAR[HPCA@21] / Anubis[ISCA@19]: cache tree (low performance)

Challenge3: recover the stale metadata quickly

Recovering the whole tree requires hour-scale for TB-memory

Bridge the gap between high performance and fast recovery

Steins Architecture

Counter generation scheme for recovery

- Observation
 - Requirement for counter in SIT: never reused -> monotonically increasing
- Generating the counter instead of using self-increasing counter
 - Recover from split counter scheme
 - Recover from general counter scheme

Verification during recovery

- Target
 - recover A' B' C' E' ... correctly

Verification during recovery

- Integrity attacks
 - Tampering attacks on child nodes: detected by HMAC

Verification during recovery

- Integrity attacks
 - Tampering attacks on child nodes: detected by HMAC
 - Attackers are limited to replaying child nodes

- Observation
 - Retrieved counter is smaller than the newest counter
 - The counter is monotonically increasing

- Observation
 - Retrieved counter is smaller than the newest counter
 - Node is consistent with its child nodes

- Appropriate Trust Bases
 - Level Increases(Lincs)

The total increase of cached counters of dirty nodes over their counterparts in NVM for each level

- Recovery Processes(From root to leaf)
 - Replay A: detected by root

- Recovery Processes(From root to leaf)
 - Replay A: detected by root
 - Replay C: A' becomes smaller

- Recovery Processes(From root to leaf)
 - No attack:
 - Retrieved A' and B' can be trusted

- Recovery Processes(From root to leaf)
 - No attack:
 - Retrieved A' and B' can be trusted to verify
 - Recover and verify L_{n-2} nodes (C' E')
 - Root 1 4 H
 - Recover and verify leaf nodes

Track dirty nodes for fast recovery

Performance Evaluation Gem5 + NVMain

Processor	8 cores(2 GHz); L1(32 KB), L2(512 KB), L3(2 MB) Caches
Memory Controller	Security Metadata Cache(256 KB)
	Record lines (16KB)
NVM	16 GB
SIT	8/9 levels

Comparisons

- Anubis[ISCA'19]
- > STAR [HPCA'21]
- Our Steins (Steins-GC / Steins-SC)
- Write-Back (WB-GC / WB-SC)

Execution time

Similar to the baseline which does not support recovery

Execution time

Steins-SC performs much better than Steins-GC

Recovery time

> Steins-SC: 0.44s

> Steins-GC: 0.08s

Conclusion

- Design goal
 - Bridge the gap between fast recovery and high performance in secure
 NVM systems.

- We propose cost-efficient Steins, supporting the fast recovery of SIT while guaranteeing high performance.
 - Efficient counter generation scheme for recovery.
 - Offset-based tracking for fast location.
 - Appropriate trust bases for fast verification.