1. Рефлексивно и транзитивно затваряне на релация. Затваряне на множество относно множество от функции или релации.

<u>Def.</u> Нека R е релация в множеството A. Рефлексивното и транзитивното затваряне R^* на релацията R се определя:

- а) Ако $(a, b) \in R$, то $(a, b) \in R^*$;
- b) 3a $\forall a \in A, (a, a) \in R^*$;
- c) Ako $(a,b) \in R^*$ u $(b,c) \in R^*$, to $(a,c) \in R^*$.

<u>Def.</u> Нека A е множество и $f:A^n \to A$, а $B \subseteq A$. Затварянето B^* на множеството B относно f се определя индуктивно както следва:

- а) Ако $a \in B$, то $a \in B^*$;
- b) Ako $a_1, ..., a_n \in B^*$ u $f(a_1, ..., a_n) = b$, to $b \in B^*$.

Пример 1:

Разглеждаме №.

$$f: \mathbb{N} \to \mathbb{N}$$

 $f(a) = a + 1$
 $B = \{0\} \implies B^* = \{0, f(0), f(f(0)), ...\} = \{0, 1, 2, ...\}$

Пример 2:

Разглеждаме \mathbb{R} .

$$f: \mathbb{R} \to \mathbb{R}$$

 $f(a) = a\sqrt{2}$
 $B = \{1\} \implies B^* = \{1, \sqrt{2}, 2, 2\sqrt{2}, 4, 4\sqrt{2}, ...\} = \{(\sqrt{2})^n | n = 0, 1, 2, 3, ...\}$

Пример 3:

Нека
$$A = \big\{\{a,b\},\{b,c\},\{a,c\}\big\}$$
 и нека f да бъде \cap (сечение). $B = \big\{\{a,b\},\{b,c\}\big\} \Longrightarrow B^* = \{\{a,b\},\{b,c\},\{b\}\}.$ При f да бъде \cup (обединение) $\Longrightarrow B^* = \{\{a,b\},\{b,c\},\{a,b,c\}\}.$

<u>Def.</u> Нека A е множество и $f_i \colon A^{n_i} \to A, i = 1, ..., k$ а $B \subseteq A$. Затварянето B^* на множеството B относно $f_1, ..., f_k$ се определя индуктивно както следва:

- а) Ако $a \in B$, то $a \in B^*$;
- b) Ако $a_1,\ldots,a_{n_i}\in B^*$ и $f_i\big(a_1,\ldots,a_{n_i}\big)=b$, то $b\in B^*$, $i=1,\ldots,k$.

<u>Def.</u> Нека A е множество и R е (n+1)-местна релация в A и $B \subseteq A$. Тогава определяме затварянето B^* относно R по следния начин:

- a) Ako $a \in B$, to $a \in B^*$;
- b) Ako $a_1, ..., a_n \in B^*$ u $(a_1, ..., a_n, b) \in B^*$, to $b \in B^*$.