T7 - Interferência e Difração

1ª Parte – Introdução

A - Padrão de interferência produzido por duas fendas

Nesta 1^a Parte usou-se a seguinte montagem experimental:

Usando a fenda D da *diffraction plate window,* onde b=0.04 mm e a=0.125 mm, onda b e a correspondem á abertura das fendas e á espessura de separação, respetivamente.

Olhando através da fenda observa-se o padrão de interferência e a escala da régua:

Para cada filtro de cor azul, verde e vermelho. Com uma distância entre a escala e a fenda (L) correspondente a 30 cm, anotaram-se o número de franjas (N) e a posição correspondente á escala (X). Nota: na figura acima seria N=6 e X=1,2 cm.

Registaram-se os seguintes valores de N e X:

Fenda D	Azul	Verde	Vermelho
N	6	6	6
X(m)	0,007	0,008	0,01

Como,

$$\lambda = \frac{a}{N} \cdot \frac{X}{L}$$

tem-se:

Fenda D	Azul	Verde	Vermelho
Comprimento de onda (m)	4,86E-07	5,56E-07	6,94E-07

Comparando os resultados obtidos com os intervalos teóricos, apenas no filtro de cor azul se encontra fora do intervalo, mas ligeiramente por isso consideramos estas medições um sucesso.

Usando a fenda E da *diffraction plate window,* onda $b = 0.04 \, mm$ e $a = 0.25 \, mm$. Segundo a equação,

$$\lambda = \frac{a}{N} \cdot \frac{X}{L}$$

Mantendo λ e L fixos, verificar-se-á uma diminuição de X e um aumento de N. Experimentalmente verificou-se isso, dificultando a leitura dos valores de N e X.

B - Padrão de difração produzido por uma fenda

Com a fenda A o padrão de intensidade tem igual espaçamento ao padrão de intensidade das franjas produzidas pela fenda D. Como b da fenda A e D são iguais o padrão da frenda D é um "envelope" ao padrão da fenda A, onde as cristas da fenda D são resultantes das sucessivas

interferências constritivas e destrutivas. Observando-se os seguintes padrões das fendas A e D respetivamente:

Alternando entre a fenda A, B e C, sabemos que $b_A < b_B < b_C$ e o que se observa é que $X_A > X_B > X_C$. Ou seja, caso b seja muito pequeno numa fenda dupla o padrão observado terá um X enorme!

2ª Parte – Determinação do Comprimento de Onda de Uma Radiação

A – Dupla fenda

Na segunda parte do trabalho, foi usado um laser para projetar o padrão de interferência na parede. O objetivo era usar a expressão seguinte para calcular o comprimento de onda da radiação emitida pelo laser:

$$\lambda = \frac{\Delta y_m a}{ms}$$

Onde a é a distância entre fendas, s a distância da fenda ao alvo e Δy_m é a separação entre m+1 máximos ou mínimos consecutivos.

Com,

$$-a = 0.04 \, mm$$

$$-s = 43 \, dm$$

Registando os seguintes valores:

Δy	m	λ (m)
0,007	1	6,5E-07
0,014	2	6,5E-07
0,021	3	6,5E-07
0,027	4	6,3E-07
0,034	5	6,3E-07
0,041	6	6,4E-07
0,075	11	6,3E-07

Calculando a incerteza associada a cada valor de λ , a partir da propagação da incerteza inserida no apêndice, com $(\sigma_{\Delta y_m}=0.0005~m~e~\sigma_s=0.05~m)$:

λ (m)	Incerteza associada a cada valor de λ
6,5E-07	5E-08
6,5E-07	3E-08
6,5E-07	2E-08
6,3E-07	1E-08
6,3E-07	1E-08
6,4E-07	1E-08
6,3E-07	1E-08

Tendo em conta os valores da tabela acima, vemos que os valores de λ possuem menor incerteza quanto maior o valor de m mínimos, tendo haver com o facto de haver uma diminuição da incerteza relativa associada á leitura de Δy . Sendo assim apenas se considera o último valor, ou seja, $\lambda=(6,3\pm0,1)\times10^{-7}$ m. O valor teórico do comprimento de onda de um laser vermelho é $\lambda=6,33\times10^{-7}$ m , como o valor teórico se encontra dentro do intervalo obtido, consideramos a experiência um sucesso!

B - Múltipla fenda

Agora como os seguintes valores:

$$-a = 0,125 mm$$

$$-s = 43 dm$$

E, para minimizar a incerteza foi apenas medido o espaçamento entre os máximos mais afastados:

Δy	m	λ (m)	Incerteza associada a
			cada valor de λ
0,11	5	6,40E-07	8E-09

Ou seja, $\lambda = (6.40 \pm 0.08) \times 10^{-7}$ m onde o valor teórico também se encontra enquadrado!

Apêndice

$$\sigma_{\lambda} = \sqrt{\left(\frac{\partial \lambda}{\partial \Delta y_m}\right)^2 (\sigma_{\Delta y_m})^2 + \left(\frac{\partial \lambda}{\partial s}\right)^2 (\sigma_s)^2}$$

$$\sigma_{\lambda} = \sqrt{\left(\frac{a}{ms}\right)^2 \left(\sigma_{\Delta y_m}\right)^2 + \left(\frac{\Delta y_m a}{m s^2}\right)^2 \left(\sigma_s\right)^2}$$