Rejection Sampling

Lessons from Buffon's Needle

Math 392

Buffon's Needle (1733)

Dorp a needle of unit length on to a wood floor of infinite expanse with plane of unit length. What is the probability the needle crosses a line between planks?

Parameterization

D: random distance from the needle midpoint to the line, $0 < D < \frac{1}{2}$

 θ : random angle between the needle and the line, $0 < \theta < \pi$.

Observe: the needle will cross when D' > D

$$\sin(heta) = rac{D'}{1/2}; \quad D' = rac{\sin(heta)}{2}$$

that is, when $\frac{\sin(\theta)}{2} > D$.

Geometric probability

$$P(ext{needle crosses line}) = P\left(rac{\sin(heta)}{2} > D
ight)$$

Monte Carlo approximation

```
theta <- runif(1e6, 0, pi)
D <- runif(1e6, 0, 1/2)
mean(sin(theta)/2 > D)

## [1] 0.635898

2/pi

## [1] 0.6366198
```

Generating from $f(\theta)$

Our original sample of θ .

```
data.frame(theta) %>%
  ggplot(aes(x = theta)) +
  geom_density() +
  theme_bw()
```


Generating from $f(\theta)$, cont.

The *theta* that meet our condition.

```
data.frame(theta) %>%
  filter(sin(theta)/2 > D) %>%
  ggplot(aes(x = theta)) +
  geom_density() +
  theme_bw()
```


Monte Carlo approximation rephrased

- 1. Generate $\theta_i \sim Unif(0, pi)$
- 2. Generate $D \sim Unif(0, 1/2)$
- 3. Retain θ_i if D < f(\theta_i)\$

Or:

- 1. Generate $\theta_i \sim Unif(0, pi)$
- 2. Retain θ_i with probability $\frac{f(\theta_i)}{1/2}$

Rejection sampling

Let $f(\theta)$ be the density we wish to sample from and $q(\theta)$ another density that we are able to sample from. Select an M>0 such that $Mq(\theta)\geq f(\theta)$ for all values of θ .

- 1. Generate $\theta_i \sim q(\theta)$
- 2. Generate $U_i \sim Unif(0,1)$
- 3. Retain $\theta_i \sim \frac{f(\theta)}{Mq(\theta)}$

Practice: Sampling from the Gamma

In groups, use rejection sampling to approximate Gamma(2, 3). Plot your approximation against the true density.

