Congruence

Arithmétique et cryptographie

Sommaire

- 1. Relation de congruence.
- 2. Inverse multiplicatif.
- 3. Théorème des restes Chinois.

Concept de congruence

 La première formalisation de la notion de congruence date de 1801, avec la publication du Disquisitiones Arithmeticae de Gauss. Mais les idées sont beaucoup plus anciennes.

• En fait on ne va plus raisonner sur les nombres mais sur leurs restes dans la division euclidienne par un entier donné.

Concept de congruence

• On a en effet constaté au chapitre précédent que les restes possibles après division euclidienne par un entier m étaient 0,1,2,...,m-1.

- C'est donc comme si l'on disposait de m boîtes, et que l'on mettait dans une même boîte les entiers ayant le même reste après division Euclidienne par m.
- Deux éléments d'une même boîte seront alors dits congrus modulo m.

Concept de congruence : exemple

• Dans chacune des trois boîtes ci-dessous, les éléments sont congrus modulo 3 :

Congruence: définition

- Soit m élément de \mathbb{N}^* .
- Deux entiers relatifs a et b sont dits **congrus modulo** m si et seulement si a et b possèdent le même reste après division Euclidienne par m.
- On note alors $a \equiv b \lceil m \rceil$.

Congruence: exemple

- On a $19 \equiv 43$ [12] car les restes de 19 et 43 après division Euclidienne par 12 valent tous deux 7.
- C'est pourquoi 7, 19 et 43 heures sont représentées par une même position des aiguilles sur un cadran de montre.
- D'ailleurs, la notion de congruence et les résultats qui en découlent sont aussi appelés arithmétique de l'horloge.

Congruence : propriété élémentaire

- Soit m élément de \mathbb{N}^* , r élément de \mathbb{N} et a élément de \mathbb{Z} .
- Si r est le reste de la division Euclidienne de a par m, alors $a \equiv r[m]$.
- Réciproquement si $0 \le r < m$ et $a \equiv r[m]$ alors r est le reste de la division Euclidienne de a par m.

Congruence : définition équivalente

• Soit m élément de \mathbb{N}^* .

• Deux entiers relatifs a et b sont dits **congrus modulo** m si et seulement si a-b est un multiple de m.

Congruence : propriétés des relations d'équivalence

- Soit m élément de \mathbb{N}^* .
- **Réflexivité**: pour tout entier relatif a, $a \equiv a [m]$.
- Symétrie: pour tous entiers relatifs a et b, $a \equiv b$ [m] est équivalent à $b \equiv a$ [m].
- Transitivité: pour tous entiers relatifs a, b et c, $a \equiv b [m]$ et $b \equiv c [m]$ impliquent $a \equiv c [m]$.

Congruence : règles opératoires

- Soit m élément de \mathbb{N}^* et a,b,c,d éléments de \mathbb{Z} .
- Si $a \equiv b \lceil m \rceil$ et $c \equiv d \lceil m \rceil$ alors
 - 1. $a + c \equiv b + d[m]$.
 - 2. $ac \equiv bd [m]$.
 - 3. Pour tout élément k de \mathbb{N}^* , $a^k \equiv b^k \lceil m \rceil$.

Congruence : démonstration des règles opératoires

- D'après les hypothèses (et la définition équivalente des relations de congruence), il existe des entiers k et k' tels que a=b+km et c=d+k'm.
- On a alors a + c = b + d + (k + k')m ce qui prouve la première règle.
- On a aussi ac = bd + (bk' + dk + kk'm)m ce qui prouve la deuxième règle.
- La troisième règle découle de la seconde par récurrence.

Congruence : exemple d'application des règles opératoires

• Le reste de la division Euclidienne de 4^{2024} par 3 est égal à 1.

• En effet, $4 \equiv 1[3]$ donc d'après la troisième règle opératoire, $4^{2024} \equiv 1^{2024}[3]$.

• Et donc $4^{2024} \equiv 1[3]$.

Inverse multiplicatif: définition

- Soit m élément de \mathbb{N}^* et a élément de \mathbb{Z} .
- L'entier a est dit **inversible modulo** m s'il existe un entier relatif b tel que

$$ab \equiv 1 [m]$$

• On dit alors que b est un **inverse multiplicatif** de a **modulo** m.

Inverse multiplicatif: remarques importantes

• Étant donné un entier m, tous les entiers ne sont pas nécessairement inversibles modulo m.

• Si un entier est inversible modulo m, son inverse n'est pas unique.

Inverse multiplicatif: exemples

- L'entier 5 est inversible modulo 7 et 3 est l'un de ses inverses multiplicatifs car $5 \times 3 \equiv 1$ [7].
- Comme autres inverses multiplicatifs de 5 modulo 7 on peut citer 10,17,-4,...
- Par contre 5 n'est pas inversible modulo 10. En effet, on vérifie facilement que pour tout entier b, on a soit $5b \equiv 0$ [10] soit $5b \equiv 5$ [10].

Inverse multiplicatif: remarque sur la notion d'inverse

- Ce concept d'inverse est formellement le même que celui des nombres réels.
- Rappelons en effet qu'un réel x est inversible dans \mathbb{R} si et seulement si il existe un réel y tel que xy=1.
- La seule différence étant les définitions des opérations et de l'élément unitaire.

Critère d'inversibilité : énoncé

• Soit m élément de \mathbb{N}^* et a élément de \mathbb{Z} .

• L'entier a est inversible modulo m si et seulement si a est premier avec m, i.e. PGCD(a,m) = 1.

Critère d'inversibilité : démonstration

- Si a est inversible modulo m, par définition il existe b tel que $ab \equiv 1$ [m]. Cela signifie que ab-1 est un multiple de m et donc qu'il existe un entier k tel que ab = 1 + km. D'après le théorème de Bézout, a et m sont alors premiers entre eux.
- Réciproquement, si a et m sont premiers entre eux, d'après ce même théorème de Bézout il existe des entiers u et v tels que au + mv = 1. On a alors $au \equiv 1 [m]$, ce qui prouve bien que a est inversible modulo m.

Critère d'inversibilité : exemple

• L'entier 5 est inversible modulo 7 car PGCD (5,7) = 1.

• Par contre 5 n'est pas inversible modulo $10 \operatorname{car} \operatorname{PGCD}(5,10) = 5$.

Méthode de calcul de l'inverse : principe

- Soit m élément de \mathbb{N}^* et a élément de \mathbb{Z} .
- On suppose que l'entier a est inversible modulo m.
- Alors l'inverse multiplicatif de a modulo m est le coefficient de a dans sa relation de Bézout avec m.

Méthode de calcul de l'inverse : exemple

- Vérifions que 9 est inversible modulo 26 et calculons son inverse.
- On utilise tout d'abord l'algorithme d'Euclide pour prouver que PGCD(9,26) = 1, et pour calculer les coefficients de Bézout de 9 et 26

$$3 \times 9 + (-1) \times 26 = 1$$

• Le fait que 9 et 26 soient premiers entre eux implique que 9 est inversible modulo 26 et la relation de Bézout nous donne son inverse, à savoir 3.

Contexte historique

- On trouve trace du théorème suivant, dit théorème chinois, dans des écrits du 1er siècle : le Jiuzhang suanshu (prescriptions de calcul en neuf chapitres).
- Il permet la résolution de problèmes du type :
 - On a un certain nombre d'objets tel que si on les compte par 3 il en reste 2, si on les compte par 5 il en reste 3 et si on les compte par 7 il en reste 2; combien y a-t-il d'objets ?

Théorème des restes chinois : énoncé

On considère le système

$$\begin{cases} x \equiv a_1 [m_1] \\ x \equiv a_2 [m_2] \\ \vdots \\ x \equiv a_n [m_n] \end{cases}$$

• Où $m_1,m_2,...,m_n$ sont des éléments de \mathbb{N}^* premiers entre eux deux à deux, et $a_1,a_2,...,a_n$ des éléments de \mathbb{N} tels que

$$0 \le a_1 < m_1, 0 \le a_2 < m_2, ..., 0 \le a_n < m_n$$

Théorème des restes chinois : énoncé

Soit

$$M = m_1 \times m_2 \times ... \times m_n$$

• Le système précédent admet une unique solution modulo M donnée par

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + ... + a_n M_n y_n$$

• Où

$$M_i = \frac{M}{m_i}$$
 et $y_i M_i \equiv 1 [m_i]$

Théorème des restes chinois : démonstration

• On montre d'abord que pour tout i tel que $1 \le i \le n$, $PGCD\left(M_i, m_i\right) = 1$. On a

$$M_i = \frac{M}{m_i} = m_1 \times ... \times m_{i-1} \times m_{i+1} \times ... \times m_n$$

- D'après le théorème d'Euclide (voir prochain chapitre du cours), un diviseur premier commun à m_i et M_i diviserait nécessairement un des m_j pour un $j \neq i$.
- Mais cela contredirait le fait que $PGCD\left(m_i,m_j\right)=1$. Il n'en existe donc pas et par suite $PGCD\left(M_i,m_i\right)=1$.

Théorème des restes chinois : démonstration

- D'après le critère d'inversibilité de la partie précédente cela prouve que M_i est inversible modulo m_i , et donc qu'il existe un entier y_i tel que $M_i y_i \equiv 1 \ [m_i]$.
- On peut donc bien définir x tel que cela est fait dans l'énoncé du théorème.
- Pour montrer que x est bien solution du système, il faut vérifier que $x \equiv a_j \left[m_j \right]$ pour tout j tel que $1 \le j \le n$.

Théorème des restes chinois : démonstration

Puisque

$$M_i = m_1 \times ... \times m_{i-1} \times m_{i+1} \times ... \times m_n$$

- Il est clair que $M_i \equiv 0$ m_j pour tout $i \neq j$. Par suite $x \equiv a_j M_j y_j [m_j]$.
- Or comme on l'a vu précédemment $M_j y_j \equiv 1 \left[m_j \right]$, donc $x \equiv a_j \left[m_j \right]$.
- Cela étant vrai pour tous les j on en déduit que x est bien une solution du système.

Théorème des restes chinois : démonstration

- Il reste à prouver l'unicité modulo M. Pour cela considérons x' une autre solution du système et montrons que $x \equiv x' [M]$.
- Comme $x \equiv a_j \left[m_j \right]$ et $x' \equiv a_j \left[m_j \right]$, on a $x \equiv x' \left[m_j \right]$ pour tout j, $1 \le j \le n$.
- Cela signifie que pour tout j, $m_i | (x-x')$.
- Puisque les m_j sont premiers entre eux deux à deux, le corollaire du théorème de Gauss (cf. chapitre précédent) implique que M|(x-x'), et donc que $x \equiv x' [M]$. Q.E.D.

