

TECHNICAL REPORT

Aluno: Tauã Lima e Vitor Castro

1. Introdução

O dataset <u>Stellar Classification Dataset</u> tem como uma das maiores pesquisas astronômicas e em seu principal conceito ele apresenta informações importantes sobres as pesquisas espaciais, mais especificamente estrelas, galáxias e quasares cada qual em sua classe específica. Então seu objetivo é identificar objetos e construir modelos de classificação nas características físicas observadas .

Suas principais características são as coordenadas dos objetos no céu, magnitude fotométrica, deslocamento que fornece uma ideia de distância e velocidade relativa do objeto e a classe alvo definindo o tipo de objeto estelar.

Com base na característica apresentada ele tenta prever a classe do objeto.

procura identificar os atributos que terão maior impacto na classificação.

explora também o redshift ou as magnitudes fotométricas em classes diversas.

Já o dataset <u>Ferrari and Tesla Share Prices</u> (2015-2023) apresenta o histórico de preços das ações entre duas marcas muito famosas como Ferrari e Tesla. Dentro dele é apresentado preços de abertura, fechamento, volume de negociação e baixa e alta. Seu intuito é transparecer modelos de previsão de preços futuros do mercado e juntamente analisar também, possíveis tendências de mercado.

suas principais características são a data de observação, preço de abertura, maior preço já registrado, menor preço registrado, preço de fechamento, número de ações negociadas e diferença de dados entre as duas empresas.

Assim, busca apresentar a previsão de preços futuros de ações com base em dados, estudar como os preços das duas empresas evoluíram com o passar dos anos, identificar o desempenho de qual empresa segundo sua valorização ou estabilidade e verificar a relação entre volume de negociações e flexibilidade de preços.

2. Observações

Uma observação é que a prova em si foi bastante complicada, não só apenas para minha dupla e eu, porém mesmo tentando e tentando, ainda não foi possível uma boa compreensão dos códigos, mas no fim conseguimos resolver, mas alguns pontos não conseguimos entender e desenvolver.

3. Resultados e discussão

Nesta seção deve-se descrever como foram as resoluções de cada questão. Crie sessões indicando a questão e discuta a implementação e resultados obtidos nesta. Explique o fluxograma do processo de cada questão, indicando quais processamentos são realizados nos dados. Sempre que possível, faça gráficos, mostre imagens, diagramas de blocos para que sua solução seja a mais completa possível. Discuta sempre sobre os números obtidos em busca de motivos de erros e acerto.

1 questão

Essa questão necessita de quatro bibliotecas diferentes para que possamos resolvê-la sendo essas Pandas, Numpy, Matplotlib e Seaborn.

Importar essa bibliotecas é necessário para que ocorra a manipulação dos dados e visualização dos mesmos e também ainda garante que o ambiente está pronto para que o criador do código no caso, eu, possa chegar ao devido comando de processamento do dataset.

A primeira etapa foi o carregamento do dataset pelo seguinte caminho: pd.read csv()

A segunda etapa foi a identificação dos valores que faltavam sendo usado o comando *df.isnull().sum()* para essa identificação citada anteriormente.

Então foi necessário remover algumas linhas com o seguinte comando df.dropna().

Na terceira etapa foi definida as colunas relevantes e feito a filtragem, sendo as relevantes aquelas que poderiam ser úteis para a análise da classificação e a filtragem apenas para as colunas relevantes existentes no dataset oficial resultando em novo dataframe **df_final**.

Na quarta etapa foram feitas a inspeção de distribuição de classes usando o comando **value_counts()** verificando a quantidade de registros em suas determinadas classes e por último a visualização criando um gráfico de barras usando o comando **seaborn.countplot** para visualizar a respectiva distribuição resultando em classes balanceadas mesmo com algumas tendo um pouco mais de registros que outras e um gráfico de distribuição das classes.

Na quinta etapa realizamos a verificação dos tipos de dados e a conversão, verificando a coluna com o comando *class* sendo do tipo *object* e convertendo os valores numéricos usando o comando *astype('category').cat.codes* mapeando cada categoria.

No que resulta no final na coluna *class* contendo valores numéricos, permitindo o uso em modelos de machine learning

Na etapa 6 foram feita as verificações de modificação e exportação, havendo uma remoção de valores ausentes e transformações de classes o novo arquivo foi exportado e salvo com o novo nome *star_classification_ajustado.csv* usando *to_csv()*

Carregar Dataset \rightarrow Identificar Valores Faltantes \rightarrow Remover Valores Faltantes \rightarrow Selecionar Colunas Relevantes \rightarrow Analisar Distribuição de Classes \rightarrow Converter Classes para Numérico \rightarrow Salvar Dataset Ajustado

Portanto os pontos fortes apresentados foi a limpeza do dataset e o preparo para análises e modelagem, processo de conversão de classes para valores numéricos facilitando o uso de algoritmos machine learning e por último a distribuição de gráficos fornecendo insigths sobre a necessidade de tecnicas para lhe dar coms os dados desbalanceados

As melhorias apresentadas como escalonamentos que, dependendo do modelo de utilização, normalização ou padronização das variáveis pode ser necessárias.

2 questão

tem como objetivo

realizar o knn implementado manualmente avaliando a acurácia em diferentes métricas de distância.


```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from scipy.spatial.distance import cdist
from collections import Counter

# Carregar os dados
df = pd.read_csv(r"C:\Users\vitor\Downloads\IA.BLACK\IA--SI\AV1\star_classification.csv")

# Seleção das colunas relevantes
colunas_relevantes = ['alpha', 'delta', 'u', 'g', 'r', 'i', 'z', 'redshift', 'class']
df_final = df[colunas_relevantes]

X = df_final.drop(columns=['class'])
y = df_final['class']
X_train, X_test, y_train, y_test = train_test_split( *arrays: X, y, test_size=0.3, random_state=42)

def knn_blockwise(X_train, y_train, X_test, k, distance_metric, VI=None, block_size=1000): 1usage new*
```

primeiro se importa as bibliotecas para a necessária manipulação de dados.

segundo faze-se o carregamento e seleção de dados de dados carregando o dataset apartir do arquivo CSV e selecionando as colunas relevantes.

terceira etapa é fazer a divisão em conjunto de treinos e teste

dividindo o data set em 30% oara teste e 70% para treino.

na quarta etapa deve-se implementar uma funcão customizada para o KNN coma biblioteca *scipy* para o cálculos de distancia

e por ultimo, o calculo da acurácia comparando as acurácias do modelo para cada metrica de distancia utilizando o valos fixo para k sendo o valor 7.

depois se processa os dados na seguiinte ordem

1-dataset

dados astrofísicos, alpha, delta, u, g, r, i, z, redshift

2-divisão dos dados

train_test_split

3- pre-processamento

não houve normalização

4- cálculos de distancia

implementação utilizando a funcaão cdist da biblioteca scipy

Depois desse relatório, quais os próximos passos você sugere para este projeto?

└──> Dividir dados em treino e teste └──> Implementar função KNN

Calcular distâncias ldentificar vizinhos mais próximos

> Predizer classe > Avaliar acurácia > Comparar métricas

O KNN foi implementado com sucesso e mostrou bons níveis de acurácia e também apresentou que a métrica Mahalanobis foi mais eficaz para este dataset, mas também a Euclidiana como uma escolha mais robusta e padrão para diversos cenários.


```
C:\Users\vitor\Downloads\IA.BLACK\IA--SI\IA-BLACKZIN.SI\Scripts\python.exe C:\Users\vitor\Downloads\IA.BLACK\IA--SI\AV1\que

Usando Mahalanobis
Acurácia: 0.95

Usando Chebyshev
Acurácia: 0.81

Usando Manhattan
Acurácia: 0.85

Usando Euclidean
Acurácia: 0.83

Resumo dos resultados:
Métrica: Mahalanobis, Acurácia: 0.95
Métrica: Chebyshev, Acurácia: 0.81

Métrica: Chebyshev, Acurácia: 0.85

Métrica: Euclidean, Acurácia: 0.85

Métrica: Euclidean, Acurácia: 0.85

Métrica: Euclidean, Acurácia: 0.83

Process finished with exit code 0
```

As metricas *Mahalanobis e Euclidiana* obtiveram maior acuracia, ja a metrica *Manhattan apresentou desempenho intermediário e a Chebyshev* um desempenho mais baixo.

3. questão

Nessa questão o objetivo é verificar a normalização dos dados e seus impactos na acurácia do modelo KNN com as tecnicas de normalização logaritmica e normalização de média zero e variancia unitaria.

primeira etapa é a preparação dos dados carregando o dataset e suas respectivas colunas necessárias e substituir os dados negativos por zero e valores ausentes serem preenchidos com a mediana.

na segunda etapa normaliza

na terceira etapa divide em treino e teste

e por ultimo treina e avalia o modelo KNN resultando na normalização logaritmica com valor de 85% e na normalização media zero e variância unitária acurácia 87%. sendo que a normalização media zero e variancia unitaria obteve o melhor resultaado

4 questão

De inicio foram importadas as bibliotecas pandas, numpy, matplotlib e sklearn.

essa questão tem como principal objetivo

encontrar a melhor configuração para o KNN em termos de escolha de numeros vizinhos k e da metrica de distancia utilizada.

primeira etapa se carrega os dados e prepara os dados.

carregamento do dataset com o comando **star_classification.csv** analizando as colunas relevantes

logo após o carregamento do dataset se inicia o pré

-processamento de dados substituindo valores negativos para 0 e o preenchimento de valores ausentes.

logo após, normalizam-se os dados utilizando o comando np.log1p(x).

Por ultimo dividem-se os dados em treino e teste.

Na segunda etapa, faz-se a implementação do KNN primeiramente com o calculo paralelizado do KNN com o comando *knn_parallel_optimized* incluindo as metricas de distancia **Euclidiana**, **Chebyshev**, **Manhattan**, **Mahalanobis**.

No passo dois avalia-se os diferentes valores de k:

números de vizinhos variando entre 1 a 20 com a previsão calculada em valores e por fim, a escolha da melhor metrica de distancia sendo ela a **Euclidiana** .

Na terceira etapa segue o passo do fluxograma de processo sendo ele carregar, processar, normalizar, dividir, calcular e exibir.

```
C:\Users\vitor\Downloads\IA.BLACK\IA--SI\IA-BLACKZIN.SI\Scripts\python.exe C:\Users\vitor\Downloads\IA.BLACK\IA--SI\AV1\questao4.py
Melhor k: 6
Acurácia com o melhor k: 0.95
Process finished with exit code 0
```

portanto o KNN foi eficaz para identificar melhor valor de K e a metrica de distancia ideal. A análise é possivel ser aprimorada ao experimentar diferentes técnicas e formas de normalização, ajuste fino das métricas de distância e ainda a introdução de técnicas de redução de dimensionalidade, como a Análise de Componentes Principais.

5 questão

4. Conclusões

Os resultados esperados foram satisfeitos? Se não, qual o motivo? Qual a sua análise?

5. Próximos passos