Name: Wu Hei Tung Cindy SID: 11551 09536.

EXI

$$= -\frac{\int_{R}}{\int_{Q}} \frac{\partial}{\partial x} \left(\frac{p}{R} \right)$$

$$= -\frac{P}{9} \cdot \frac{C_P}{R_0} \cdot \frac{\theta}{7} \frac{\partial}{\partial x} \left(\frac{P}{R}\right)^{k}$$

$$= -C_p \theta \frac{\partial T}{\partial x}$$

... Similar in y-direction and Z-direction

$$\frac{1}{\sqrt{3b}} = -\frac{1}{\sqrt{3b}} = -\frac{2x}{\sqrt{3b}} = -\frac{2x}{\sqrt{3b}}$$

$$\pi = \left(\frac{p}{P_R}\right)^K$$

$$-\frac{1}{p}\left(\frac{\partial p}{\partial x}\right)_{p} - \frac{1}{p}\left(\frac{\partial p}{\partial x}\right)_{p} - \left(\frac{\partial z}{\partial x}\right)_{p}\left(\frac{\partial p}{\partial z}\right)_{x}$$

$$= -\frac{1}{p}\left[\left(\frac{\partial p}{\partial x}\right)_{p} - \left(\frac{\partial z}{\partial x}\right)_{p}\left(-\frac{\partial p}{\partial x}\right)_{p}\right]$$

$$= -\frac{1}{p}\left[\left(\frac{\partial p}{\partial x}\right)_{p} + \frac{\partial p}{\partial x}\left(\frac{\partial z}{\partial x}\right)_{p}\right]$$

$$= -\frac{1}{p}\left(\frac{\partial p}{\partial x}\right)_{p} + -\left(\frac{\partial z}{\partial x}\right)_{p}$$

$$= -\left(\frac{\partial z}{\partial x}\right)_{p}$$

$$= -\left(\frac{\partial z}{\partial x}\right)_{p}$$

$$= -\frac{1}{p}\left(\frac{\partial z}{\partial x}\right)_{z} = -\left(\frac{\partial z}{\partial x}\right)_{p}$$

$$\frac{1}{p}\left(\frac{\partial z}{\partial x}\right)_{z} = -\left(\frac{\partial z}{\partial x}\right)_{p}$$

$$\frac{\text{tx4}}{\text{a}}$$

$$= \frac{1}{9} \left(\frac{\text{SP}}{\text{SX}} \right)_{\sigma} - \left(\frac{\text{SE}}{\text{SX}} \right)_{\sigma} \left(\frac{\text{SE}}{\text{SE}} \right)_{\chi}$$

$$= \frac{1}{9} \left(\frac{\text{SP}}{\text{SX}} \right)_{\sigma} + \frac{1}{9} \left(\frac{\text{SE}}{\text{SX}} \right)_{\sigma} \left(\frac{\text{SE}}{\text{SX}} \right)_{\sigma}$$

$$= \frac{1}{9} \left[\frac{\text{Y}}{\text{YX}} \left(\frac{\text{Po+P}}{\text{PO}} \right) \right]_{\sigma} + \frac{1}{9} \left(\frac{\text{SE}}{\text{XX}} \right)_{\sigma}$$

Assuming hydrostatic balance:

$$= -\frac{1}{p} \left(\frac{\partial \widehat{p}}{\partial x} \right)_{\sigma} - \frac{1}{p} \left(\frac{\partial \widehat{p}}{\partial x} \right)_{\sigma} - g \left(\frac{\partial \widehat{z}}{\partial x} \right)_{\sigma}$$

$$= -\frac{1}{p} \left(\frac{\partial \widehat{p}}{\partial x} \right)_{\sigma} - \frac{1}{p} \left(\frac{\partial \widehat{p}}{\partial x} \right)_{\sigma} - g \left(\frac{\partial \widehat{z}}{\partial x} \right)_{\sigma}$$

$$= -\frac{1}{p} \left(\frac{\partial \widehat{p}}{\partial x} \right)_{\sigma} - \frac{1}{p} \left(\frac{\partial \widehat{p}}{\partial x} \right)_{\sigma} + \frac{1}{p} \left(\frac{\partial \widehat{p}}{\partial x} \right)_{\sigma} - g \left(\frac{\partial \widehat{z}}{\partial x} \right)_{\sigma}$$

$$= -\frac{1}{p} \left(\frac{\partial \widehat{p}}{\partial x} \right)_{\sigma} - \frac{1}{p} \left(\frac{\partial \widehat{p}}{\partial x} \right)_{\sigma} - g \left(\frac{\partial \widehat{z}}{\partial x} \right)_{\sigma}$$

$$= -\frac{1}{p} \left(\frac{\partial \widehat{p}}{\partial x} \right)_{\sigma} - \frac{1}{p} \left(\frac{\partial \widehat{p}}{\partial x} \right)_{\sigma} - g \left(\frac{\partial \widehat{z}}{\partial x} \right)_{\sigma}$$

$$\frac{P_0 - P_T}{P_S - P_T} = \sigma$$

$$P_0 = \sigma (P_S - P_T) + P_T$$

$$P_0 = \sigma P_S - \sigma P_T + P_T$$

 $=-\frac{1}{2}\left(\frac{3\chi}{3\lambda}\right)^{2}-\frac{1}{2}\left(\frac{3\chi}{3\lambda}\right)^{2}-\left(\frac{3\chi}{3\lambda}\right)^{2}$ 26 = DE - : - 宣氣) = - 宣義) - 写(義) - (義)。

By hydrostatic balance:
$$\frac{\partial Ps}{\partial z_s} = -\beta g$$

$$-\frac{1}{\rho} p_s = g \partial z_s = \partial \Phi_s$$

<u>Ex 3</u>

Pressure	Left	Middle	Right
200	0	0	0
250	0.0625	0.111111	0.083333
300	0.125	0.22222	0.166667
400	0.25	0.444444	0.333333
500	0.375	0.666667	0.5
650	0.5625	1	0.75
800	0.75	NaN	1
1000	1	NaN	NaN