

Formale Grundlagen der Informatik

Reguläre Ausdrücke und Sprachen ε -NEA

Recap: NEA mit ε -Übergängen

 \succ Konnten zu jedem regulären Ausdruck einen ε -NEA konstruieren.

$$p \in \delta(q, \varepsilon)$$

entspricht "spontanem Zustandswechsel" von p nach q

Recap: ε -NEA - Definition

Definition:

Ein nichtdeterministischer endlicher Automat mit ε -Übergängen (ε -NEA) ist ein NEA $A=(Q,\Sigma,\delta,q_0,F)$, dessen Überführungsfunktion zu δ : $(Q\times(\Sigma\cup\{\varepsilon\}))\to \mathbf{2}^Q$ erweitert ist.

- $\hat{\delta}(q, \varepsilon)$ kann andere Zustände als q enthalten
 - \triangleright Welche Zustände sind von einem Zustand (nur) mit Hilfe von ε -Übergängen erreichbar?!
 - \triangleright ε -Hülle eines Zustands

ε -Hülle

• Sei $A=(Q,\Sigma,\delta,q_0,F)$ ein ε -NEA und $q\in Q$. Die ε -Hülle von q ist die Menge aller Zustände p, für die es Zustände r_0,r_1,\ldots,r_k gibt, $k\geq 0$, so dass

- 1. $r_0 = q$,
- 2. $r_k = p$,
- 3. $r_{i+1} \in \delta(r_i, \varepsilon)$ für alle $i, 0 \le i < k$.
- Sie wird mit $\varepsilon H(q)$ bezeichnet.
- Wegen der Option k=0 gilt für jeden Zustand q, dass $q \in \varepsilon H(q)$.

ε -NEA – Erweiterte Überführungsfunktion

- Sei $A=(Q,\Sigma,\delta,q_0,F)$ ein ε -NEA und $q\in Q,w\in \Sigma^*,a\in \Sigma$.
- 1. $\hat{\delta}(q, \varepsilon) = \varepsilon H(q)$
- 2. $\hat{\delta}(q, wa) = \bigcup_{r \in \hat{\delta}(q, w)} \bigcup_{p \in \delta(r, a)} \varepsilon H(p)$

Vom ε-NEA zum NEA

- Intuitiv:

$$\delta'(q_2, 0) = \{q_4, q_6, f, q_1, q_2, q_3\}$$
$$= \hat{\delta}(q_2, 0)$$

$$\delta'(q_0, 0) = \{q_4, q_6, f, q_1, q_2, q_3\}$$
$$= \hat{\delta}(q_0, 0)$$

Außerdem: q_0 muss akzeptierend sein

Satz 4.1: Zu jedem ε -NEA kann ein äquivalenter NEA ohne ε -Übergänge konstruiert werden.

Beweis:
$$\varepsilon$$
-NEA $A=(Q,\Sigma,\delta,q_0,F)\longrightarrow \text{NEA }A'=(Q',\Sigma',\delta'q_0',F')$ mit $Q'=Q,\Sigma'=\Sigma,q_0'=q_0,$ $\delta'(q,a)=\hat{\delta}(q,a)$ für alle $q\in Q$ und $a\in \Sigma,$

$$F' = \begin{cases} F \cup \{q_0\} & \text{falls } \varepsilon \mathsf{H}(q_0) \cap F \neq \emptyset \\ F & \text{sonst} \end{cases}$$

$$\rightarrow \varepsilon \in L(A')$$
 gdw. $\varepsilon \in L(A)$

- zu zeigen: Für alle $w \in \Sigma^+$ gilt $\hat{\delta}'(q_0, w) = \hat{\delta}(q_0, w)$.
- Induktion über |w|.
- I.A.: |w| = 1. w = a, $a \in \Sigma$

$$\hat{\delta}'(q_0, a) = \bigcup_{p \in \hat{\delta}'(q_0, \varepsilon)} \delta'(p, a) = \delta'(q_0, a) = \hat{\delta}(q_0, a)$$

• I.S.: |w| > 1. w = va, $v \in \Sigma^+$, $a \in \Sigma$

$$\hat{\delta}'(q_0, va) = \bigcup_{p \in \hat{\delta}'(q_0, v)} \delta'(p, a) = \bigcup_{p \in \hat{\delta}(q_0, v)} \delta'(p, a) = \bigcup_{p \in \hat{\delta}(q_0, v)} \hat{\delta}(p, a)$$

$$= \hat{\delta}(q_0, va)$$

$$= \hat{\delta}(q_0, va)$$

Vom ε -NEA zum NEA $F' = \left[egin{array}{ll} F \cup \{q_0\} \\ F \end{array} ight. & {\rm falls} \; \varepsilon {\rm H}(q_0) \cap F \neq \emptyset \\ {\rm sonst} \end{array} \right.$

- noch zu zeigen: $\hat{\delta}'(q_0, w) \cap F' \neq \emptyset$ gdw. $\hat{\delta}(q_0, w) \cap F \neq \emptyset$
- $w=\varepsilon$: $\hat{\delta}'(q_0,\varepsilon)=\{q_0\}$. Es gilt $q_0\in F'$ gdw. $\varepsilon \mathsf{H}(q_0)\cap F\neq\emptyset$ gdw. $\hat{\delta}(q_0,\varepsilon)\cap F\neq\emptyset$
- w = va für ein $a \in \Sigma$:
 - Falls $\hat{\delta}(q_0, w) \cap F \neq \emptyset$, dann $\hat{\delta}'(q_0, w) \cap F' \neq \emptyset$, da $F \subseteq F'$.
 - Falls $\hat{\delta}'(q_0, w) \cap (F' \setminus \{q_0\}) \neq \emptyset$, dann $\hat{\delta}(q_0, w) \cap F \neq \emptyset$.
 - Falls $q_0 \in \hat{\delta}'(q_0, w)$ und $q_0 \notin F$, dann existiert ein Zustand $f \in F$, der in der ε-Hülle von q_0 ist.
 - \triangleright Dann gilt $f \in \hat{\delta}(q_0, w)$. (siehe Induktionsbeweis auf voriger Folie)

$$\begin{split} \varepsilon \mathbf{H}(q_0) &= \{q_0, q_1, q_2\} \\ \varepsilon \mathbf{H}(q_1) &= \{q_1, q_2\} \\ \varepsilon \mathbf{H}(q_2) &= \{q_2\} \end{split}$$

$$\hat{\delta}(q_0, \varepsilon) = \{q_0, q_1, \mathbf{q_2}\}\$$

$$F' = F \cup \{q_0\} = \{q_0, q_2\}$$

$$\hat{\delta}(q_0,0)$$
: benötigen $\delta(q_0,0) = \{q_0\}, \, \delta(q_1,0) = \emptyset, \, \delta(q_2,0) = \{q_2\}$

$$\hat{\delta}(q_0, 0) = \varepsilon H(q_0) \cup \emptyset \cup \varepsilon H(q_2)$$

$$= \{q_0, q_1, q_2\}$$

$$\delta'(q_0,0) = \{q_0,q_1,q_2\}$$

$$\hat{\delta}(q_0, 1)$$
: benötigen $\delta(q_0, 1) = \emptyset$, $\delta(q_1, 1) = \{q_1\}$, $\delta(q_2, 1) = \emptyset$

$$\hat{\delta}(q_0, 1) = \varepsilon \mathsf{H}(q_1) = \{q_1, \mathbf{q}_2\} \qquad -$$

$$\delta'(q_0, 1) = \{q_1, q_2\}$$

Beseitigung von ε -Übergängen – Beispiel

$$F' = F \cup \{q_0\} = \{q_0, q_2\}$$

	0	1
q_0	$\{q_0, q_1, q_2\}$	$\{q_1, q_2\}$
q_1	$\{q_2\}$	$\{q_1, q_2\}$
q_2	$\{q_2\}$	Ø

13

Recap: Reguläre Ausdrücke – Definition

Definition: Sei Σ ein Alphabet.

Reguläre Ausdrücke (RA) über Σ sind rekursiv wie folgt definiert:

- 1. \emptyset , ε , a sind reguläre Ausdrücke für alle $a \in \Sigma$
- 2. Wenn r und s reguläre Ausdrücke über Σ sind, dann auch (r+s), (rs) und r^*

```
Beispiele für \Sigma = \{0,1\}

0 1 (0+1) (0+1)* (1 (0+1))

(0+1)*(1 (0+1))
```


Recap: Sprachen regulärer Ausdrücke

- **Definition:** Sei Σ ein Alphabet. Die **formalen Sprachen regulärer Ausdrücke** über Σ sind rekursiv wie folgt definiert:
- 1. $L(\emptyset) = \emptyset$, $L(\varepsilon) = \{\varepsilon\}$, $L(a) = \{a\}$ (für alle $a \in \Sigma$)
- 2. Sind r und s reguläre Ausdrücke über Σ , dann gilt

$$L(r+s) = L(r) \cup L(s)$$
$$L(rs) = L(r) \cdot L(s)$$
$$L(r^*) = L(r)^*$$

Von DEA zu regulären Ausdrücken

Satz 4.2: Zu jedem DEA A kann ein regulärer Ausdruck r_A mit $L(r_A) = L(A)$ konstruiert werden.

Beweis: Sei $A=(Q,\Sigma,\delta,q_1,F)$ ein DEA mit $Q=\{q_1,q_2,\ldots,q_n\}$.

 $m{R}_{ij}^{k}$ sei die Menge aller Eingabewörter, die von q_i nach q_j führen und dabei nur durch Zustände gehen, deren Index nicht größer als k ist.

 R_{ij}^k ist die Menge aller $w \in \Sigma^*$, für die gilt:

- $1. \quad \hat{\delta}(q_i, w) = q_j,$
- 2. wenn u ein Präfix von w ist und $\hat{\delta}(q_i, u) = q_{\ell}$, dann ist $\ell \leq k$.

Von DEA zu regulären Ausdrücken

• Rekursive Definition von R_{ij}^k :

$$R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1} \cup R_{ij}^{k-1}$$

$$R_{ij}^{0} = \begin{cases} \{a \mid \delta(q_i, a) = q_j\} & \text{falls } i \neq j \\ \{a \mid \delta(q_i, a) = q_j\} \cup \{\epsilon\} & \text{falls } i = j \end{cases}$$

■ Für alle $1 \le i, j, k \le n$ existiert ein regulärer Ausdruck r_{ij}^k mit $L(r_{ij}^k) = R_{ij}^k$ (VI über k):

IA: Falls
$$R_{ij}^0 = \emptyset$$
: $r_{ij}^0 = \emptyset$. Falls $R_{ij}^0 = \{a_1, a_2, \dots, a_p\}$: $r_{ij}^0 = a_1 + a_2 + \dots + a_p$.

IS: Sei $k \geq 1$. Nach IV gibt es Ausdrücke r_{ij}^{k-1} für alle R_{ij}^{k-1} .

Dann ist
$$r_{ij}^k = (r_{ik}^{k-1})(r_{kk}^{k-1})^*(r_{kj}^{k-1}) + r_{ij}^{k-1}$$
 Ausdruck für R_{ij}^k .

■ Die Sprache des DEA *A* ist

$$L(A) = \bigcup_{q_j \in F} R_{1j}^n$$

 \blacksquare Falls $F = \{q_{j_1}, q_{j_2}, \dots, q_{j_m}\}$, dann gilt

$$L(A) = L(r_{1j_1}^n + r_{1j_2}^n + \dots r_{1j_m}^n)$$

intuitiv:
$$b^*a(a+b)^*$$

$$R_{ij}^0 = \begin{cases} \{a \mid \delta(q_i, a) = q_j\} & \text{falls } i \neq j \\ \{a \mid \delta(q_i, a) = q_j\} \cup \{\epsilon\} & \text{falls } i = j \end{cases} \qquad \begin{matrix} r_{11}^0 = b + \epsilon \\ r_{21}^0 = \emptyset \end{matrix}$$

$$r_{11}^{0} = b + \varepsilon$$
 $r_{21}^{0} = \emptyset$
 $r_{12}^{0} = a$ $r_{22}^{0} = a + b + \varepsilon$

$$R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1} \cup R_{ij}^{k-1}$$

$$r_{12}^2 = r_{12}^1 (r_{22}^1)^* r_{22}^1 + r_{12}^1$$

$$R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1})^{*} R_{kj}^{k-1} \cup R_{ij}^{k-1} \qquad r_{11}^{0} = b + \varepsilon \qquad r_{21}^{0} = \emptyset$$

$$r_{12}^{2} = r_{12}^{1} (r_{22}^{1})^{*} r_{22}^{1} + r_{12}^{1} \qquad r_{12}^{0} = a \qquad r_{22}^{0} = a + b + \varepsilon$$

$$= b^{*} a(a + b + \varepsilon)^{*} (a + b + \varepsilon) + b^{*} a \cong b^{*} a(a + b)^{*} + b^{*} a \cong b^{*} a(a + b)^{*}$$

$$r_{12}^{1} = r_{11}^{0}(r_{11}^{0})^{*}r_{12}^{0} + r_{12}^{0}$$

$$= (b + \varepsilon)(b + \varepsilon)^{*}a + a$$

$$\cong b^{*}a + a \cong b^{*}a$$

$$r_{22}^{1} = r_{21}^{0}(r_{11}^{0})^{*}r_{12}^{0} + r_{22}^{0}$$

$$= \emptyset(b + \varepsilon)^{*}a + (a + b + \varepsilon)$$

$$\cong \emptyset + a + b + \varepsilon \cong a + b + \varepsilon$$

- ein intuitiveres Verfahren, das oft kleinere Ausdrücke liefert
- nutzen RA-Automaten:
 erlauben reguläre Ausdrücke als Kantenmarkierungen in Automaten
- Jeder (D)EA kann als spezieller RA-Automat aufgefasst werden!
 - Symbol an Kante als regulärer Ausdruck
 - mehrere Symbole (z.B. a, b) als regulärer Ausdruck (a + b)
 - sogar ε an Kante kann als regulärer Ausdruck aufgefasst werden
- Im Folgenden gehen wir von einem beliebigen RA-Automaten aus.

Für jeden akzeptierenden Zustand q_f :

Für jeden Zustand e, der vom Startzustand und q_f verschieden ist:

Ausblick: Zustandseliminierung

Für jeden akzeptierenden Zustand q_f :

Für jeden Zustand e, der vom Startzustand und q_f verschieden ist:

Eliminiere e

bis Automaten der Form entstanden sind.

Für
$$F = \{q_{f_1}, q_{f_2}, \dots, q_{f_m}\}$$
 bilde den Ausdruck $re = a_{f_1} + a_{f_2} + \dots + a_{f_m}$ mit
$$a_{f_i} = r_0^* s_{f_i} (t_{f_j} + b_{f_j} (r_0)^* s_{f_j})^*$$

Dann gilt L(re) = L(A).

(ohne formalen Beweis)

Folgerung 4.3:

 $\mathcal{L}(\mathsf{DEA}) = \mathcal{L}(\mathsf{NEA}) = \mathcal{L}(\varepsilon\mathsf{-NEA}) = \mathcal{L}(\mathsf{REG})$

$$\mathcal{L}(\varepsilon\text{-NEA}) = \{ L \mid L = L(A) \text{ für einen } \varepsilon\text{-NEA } A \}$$

 $\mathcal{L}(\text{REG}) = \{ L \mid L = L(r) \text{ für einen regulären Ausdruck } r \}$