CPE301 - FALL 2019

Design Assignment 2C

Student Name: Dillon Archibald

Student #: 5004439916

Student Email: Archid1@unlv.nevada.edu

Primary Github address:

Directory: https://github.com/Dil-bert/Alabaster.git

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

List of Components used

1xAtmega328P

1xBreadboard

1xLED

4xWires

Block diagram with pins used in the Atmega328P

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

N/A

3. DEVELOPED MODIFIED CODE OF TASK 2/A from TASK 1/A

```
TCNT0 = 0X00:
                      // Setting the count register to 0[count goes from 0-255]
  TCCR0B = 0X05;
                        // Setting the Prescaler to 1024 and starting the timer
  while (1) {
    PORTB ^=(1<<DDB2);
                                        // Toggle PortB.2 (Turn on)
    while(count != 15){
                                   // Run timer 81 times
       while((TIFR0 & 0X01) == 0){}; // run timer until overflow
         TCNT0 = 0X00;
                                  // reset the timer count
                                 // reset the tiemr over flow flag
         TIFR0 = 0X01;
                                  // increment the count of timer overflows
         count = count + 1;
       }
    count = 0;
                               // Reset the count of overflows
    PORTB ^=(1<<DDB2);
                                        // Toggle PortB.2 (Turn off)
    while(count != 23){
                                   // Run timer 81 times
       while((TIFR0 & 0X01) == 0){}; // run timer until overflow
       TCNT0 = 0X00;
                                  // reset the timer count
                             // reset the tiemr over flow flag
// increment the count of timer overflows
       TIFR0 = 0X01;
       count = count + 1;
    count = 0;
                              // Reset the count of overflows
  }
* DA2c 1 b.c
* Created: 10/12/2019 6:16:22 PM
* Author : Dilbert
#define F CPU 16000000UL
#include <avr/io.h>
#include <util/delay.h>
int main(void)
  unsigned short count = 0; // Counting variable
  DDRC \models (0<<DDC3); // Set PortC.3 as an input
  PORTC =(1<<DDC3); // Set PortC.3 pull up High
  DDRB |=(1<<DDB2); // Set PortB.2 as an output
  PORTB =(0<<DDB2); // Set PortB.2 Low (LED off)
  TCCR0A = 0;
                      //Timer0, Normal mode, internal clk
  TCNT0 = 0X00;
                       //Setting the count register to 0[count goes from 0-255]
  TCCR0B = 0X05;
                         //Setting the Prescaler to 1024 and starting the timer
```

```
while (1) {
    if(!(PINC & (1 << 3))){
                                       //If input PinC.3 == 0
                                          //Toggle PortB.2 (Turn on)
       PORTB ^=(1<<DDC2);
       while(count != 81){
                                      //Run timer 81 times
         while((TIFR0 & 0X01) == 0)\{\}; // run timer until overflow
         TCNT0 = 0X00:
                                     //reset the timer count
                                   //reset the tiemr over flow flag
         TIFR0 = 0X01;
                                   //increment the count of timer overflows
         count = count + 1;
       PORTB ^=(1<<DDB2);
                                          //Toggle PortB.2 (Turn off)
    count = 0;
                                 //Reset the count of overflows
}
* DA2c 2 a.c
* Created: 10/16/2019 8:57:56 PM
* Author : Dilbert
#define F CPU 16000000UL
#include <avr/io.h>
#include <avr/interrupt.h>
unsigned short county;
                          // Global counter variable
int main(void)
  county = 0:
                      // Set count to zero
  DDRB = 1 << 2;
                       // Set PortB.2 as an output
                         // Set PortB.2 high (Turn on LED)
  PORTB = 1 << 2;
  TCNT0 = 0X00:
                         // Clear the timer count register
  TIMSK0 = (1<<TOIE0); // Turn on the timer overflow interrupt
  TCCR0A = 0X00:
                          // Set the Timer control register. A = 0x00 (Normal mode)
                          // Set the Timer control register.B = 0x00 (Prescaler 1024)
  TCCR0B = 0X05;
  sei();
                  // Global interrupts Enable
  while(1){
    if(county == 15){ // If count equals 15 (40% of period)
       PORTB = 0 << 2; // Set PortB.2 Low (Turn off LED)
    if(county == 38){ // If count equals 38 (end of period)
       PORTB = 1<<2; // Set PortB.2 High (Turn on LED)
       county = 0;
                      // Reset Counter to 0
```

```
};
ISR (TIMER0_OVF_vect){
                              // Overflow Interrupt service request function
  county = county + 1; // Count increment Plus one
  TCNT0 = 00;
                        // Reset the timer count register to 0x00
/*
* DA2c_2_b.c
* Created: 10/15/2019 8:52:37 AM
* Author : Dilbert
#define F_CPU 16000000UL
#include <avr/io.h>
#include <avr/interrupt.h>
unsigned short county;
                         // Global Count Variable
int main(void)
  DDRB = 1 << 2;
                       // Set PortB.2 as an output
  PORTB = 0 << 2;
                        // Set PortB.2 Low (LED off)
  DDRC = 1 << 3;
                       // Set PortC.3 as an input
  PORTC = 1 << 3;
                        // Set PortC.3 Pull up high
  county = 0;
                      // Set global count to 0
  TCNT0 = 0X00;
                        // Set the Timer count register to zero
  TIMSK0 = (1<<TOIE0); // Set the Timer Overflow interrupt enabled
                  // Global interrupt enable
  sei();
  while(1){
    if(county == 82)
                        // If Count = 82
                        // Set global counter to 0
       county = 0;
       PORTB = 0 << 2; // Set PortB.2 Low (LED off)
    if(!(PINC & (1 << 3))){ // If PortC.3 Goes low (Button pressed)
                     // Set global counter to 0
       county = 0;
                          // Set PortB.2 High (LED on)
       PORTB = 1 << 2;
                            // Set Timer Control Register.A = 0x00 (Normal Mode)
      TCCR0A = 0X00;
                            // Set Timer Control Register.B = 0x05 (Prescaler 1024)
      TCCR0B = 0X05;
  };
ISR (TIMER0_OVF_vect){
                              // Timer Overflow interrupt Service Request
  county = county + 1; // Increment Count + 1
```

```
TCNT0 = 00;
                        // Reset the timer count register to zero
}
/*
* DA2c 3 a.c
* Created: 10/16/2019 10:01:39 PM
* Author: Dilbert
#include <avr/io.h>
#define F CPU 16000000UL
#include <avr/io.h>
#include <avr/interrupt.h>
unsigned short county;
int main(void){
    county = 0;
                        // Global count variable set to zero
  DDRB = (0 << 2);
                         // Set PortB.2 as an output
    PORTB = (1 << 2);
                            // Set PortB.2 high (Turn on LED)
                         // Set the output compare register to 0xFF
  OCR0A = 0XFF;
                            // Set the Timer compare register.B WGM01 = 1 (CTC mode)
    TCCR0A = 0X02;
    TCCR0B = 0X05;
                            // Set the Timer compare register. A CS02 & CS00 = 1 (Prescaler
1024)
    TIMSK0 = (1 < OCIEOA); // Set the Timer mask to outut the compare flag interrupt
                    // Global interrupt enable
    sei();
  while (1)
    if(county == 15){ // If the count goes to 15 enter (after 40% of period)
       PORTB = (0 << 2); // Set PortB.2 Low (turn off LED)
    if(county == 38){ // If the count goes to 38 enter (after completion of period)
       PORTB = (1 << 2); // Set PortB.2 High (turn on LED)
       county = 0;
                   // Set count to zero
    }
  }
}
ISR (TIMERO_COMPA_vect) { // Compare interrupt service request function
  county = county + 1; // Count increment + 1
  TIFR0 = (1 << OCF0A); // Reset the compare flag interrupt register
}
```

```
/*
* DA2c_3_b.c
* Created: 10/16/2019 10:55:44 PM
* Author : Dilbert
#define F_CPU 16000000UL
#include <avr/io.h>
#include <avr/interrupt.h>
unsigned short county;
int main(void){
  DDRB = (1 << 2); // SET B2 AS OUTPUT
  PORTB = (0 << 2); // SET B2 OUTPUT LOW
  DDRC = (0 << 3); // SET C3 AS INPUT
  PORTC = (1 << 3); // SET C3 PULL UP RESISTOR HIGH
   county = 0; // GLOBAL COUNT VARIABLE = 0
  while (1)
    if(!(PINC & (1 << 3))){
                           // If pinC.3 goes low
                              // Toggle PortB.2 (Turn on)
      PORTB = (1 << DDB2);
                        // Ensure Count variable is zero
      county = 0;
        OCR0A = 0XFF;
                             // Set the compare register to 0xFF
                             // Control RegisterA WGM01 = 1 (CTC mode)
        TCCR0A = 0X02;
        TCCR0B = 0X05;
                              // Control RegisterB CS02 and CS00 = 1 (1024
PRESCALER)
        TIMSK0 = (1<<OCIE0A); // Set the Timer mask for compare interrupt flag
        sei();
    if(county == 81)
                      // Run timer 81 times
      PORTB =(0<<DDB2); // Toggle PortB.2 low (Turn off)
                  // Set Counter to zero.
      county = 0;
  }
ISR (TIMERO_COMPA_vect) { // Timer compare flag interrupt service request
  county = county + 1; // Increment the counter 1
  TIFR0 = (1 << OCF0A); // Toggle the compare flag
}
```

4. SCHEMATICS

5. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

6. SCREENSHOT OF EACH DEMO (BOARD SETUP)

B)

7. VIDEO LINKS OF EACH DEMO

https://youtu.be/Xa5l69hDQ1k https://youtu.be/zoWdS4xFqil https://youtu.be/ImDZS8CBW1M https://youtu.be/aWjO_K6-Hw4 https://youtu.be/07uVIZxCxxM https://youtu.be/K1sqPyIqINE

8. GITHUB LINK OF THIS DA

Alabaster/DesignAssignments/DA2c/

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Dillon Archibald