

Vrije Universiteit Brussel VOORBEREIDING BACHELOR PROEF 12/03/2014

CACHE SIMULATIE

Door: Lenaerts Sander

Begeleider: Mattias De Wael

Promotor: Jennifer Sartor

Inhoud

- Doel van caches
- Wat zijn caches
- Waarom caches bestuderen
- Hoe werken caches
- Vier centrale vragen rond caches
- Coherency in multicore
- conclusie

Doel

Processor: 0.3 - 0.5 ns

=> 160 tot 666 keer sneller

Main Memory: 80 -200 ns

Wat zijn caches

Hardware component

Gereserveerd geheugen

Link tussen CPU en main memory

Bevat kopieën

Waarom

Hardware fabrikanten

Zelf caches samenstellen

Cache simulatie

Caches bestuderen

Locality

```
    (define (map lst function)

            (unless (null? lst)
            (function (car lst))
            (map (cdr lst) function)))
```


Locality

```
    (define (map lst function)

            (unless (null? lst)
            (function (car lst))
            (map (cdr lst) function)))
```


Locality

```
    (define (map lst function)

            (unless (null? lst)
            (function (car lst))
            (map (cdr lst) function)))
```


Block placement

Block Number

Memory

Set Number

Cache

Fully

(2-way) Set Associative Associative

Direct Mapped

Block identification

Read 5 / write 5 12

Block replacement

Block Number

Memory

Set Number

Cache

Fully

(2-way) Set Associative Associative

Direct Mapped

Write-through: write 1 16

L1				1		42				
L2		1	42							
MM	42									

Write-through: write 1 16

L1				1		16				
L2		1	42							
D 4 D 4	42									
MM	42									_

Write-through: write 1 16

Write-through: write 1 16

Write-back: write 1 16

L1	1	С	42	

L2	1 C 42		5 C 15	

Write-back: write 1 16

L1	1	D	16	

L2	1 C 42		5 C 15	

Write-back: Read 5

L1 1 D 16

L2 1 C 42 5 C 18

Write-back: Read 5

L2 1 D 16 5 C 18

Write-back: Read 5

L1	5	С	18	
				i

L2	1 D 16		5 C 18	
	l			

Combo: write 1 16

L1	1	42	

L2	1 42			
		l		

Combo: write 1 16

L1	1	16	

L2	1	16				
			l		l	

Combo: write 1 16

L1	1	С	42	

L2	1 42			5 18		
		1			l	

Combo: Read 5

L1 1 D 16

L2 1 42 5 18

Combo: Read 5

L1	5	С	18	
				1

L2	1 1	U		5 18	

Write 1 16

L1				5		18					
L2		1	42					5	18		
·		•									
MM	42										

Write-through: Write 1 16

L1				5		18					
L2		1	16					5	18		
MM	16										

Write-back: Write 1 16

L1			1	D)	16					
L2		1 C 42						5 C	18		
MM	42										

Multicore processoren

		Proce Write					Proce	ssor	2	
L1	2	5				2	5			
L2			2	5				2	5	
L3			2	5						

		Proce	ssor	1			Proce Writ	ssor 2 e 2 7	
L1	2	9				2	7		
L2			2	9				2 7	
L3			2	7					

		Proce	ssor	1			Proce Writ		2	
L1	2	9				2	5			
L2			2	9				2	5	
L3			2	9						

		Proce	ssor 1	-		Processor 2 Write 2 7						
L1	#f	9				2	7					
L2			#f	9				2	7			
L3			2	7								

Conclussie

- Drie methoden
 - Read
 - Write
 - Invalidate

Conclusie

- variatie punten
 - Blok placement: 3
 - Replacement strategie: 4
 - Write strategie: 4
 - Coherence protocolen: 5
 - Multilevel in/exclusion: 2
 - Read boven write: 2
 - Prefetching/pipelining/way-predicition: 3
 - Single / non-blocking caches: 2
 - => 4320

Conclusie

- Zes knoppen
 - Cache creatie
 - Vind set adres
 - Vind blok
 - Na cache operatie
 - Replacement strategy
 - Write strategy

