!!! Grader notice: Some of the tabbing for these matrices may appear messed up. I tried my best. Please assume they are proper matrices.	,
!!! I always specify the size of what the matrix should be in the "Results:"	

19x15

2.

17x13

3.

4.

15x11

(M-n)x(N-n)

5	
W	or

W	\sim	r	1,	٠
٧v	U	т	n	٠

255*1	255*2	255*1		255	510	255		
255*0	255*0	210*0	->	0	0	0	->	62
255*-1	255*-2	193*-2		-255	-510	-193		

510

115

218

109

95*-1 85*-2 106*-1 -95 -170 -106

109*1

Result:

115*1

[62,264,362,204,71]

109*2

All I did was plug the formula into a calculator and changed sigma to be 1.4, and then evaluated x on the interval.

Results: The results are a 7x1 matrix, but I cant put the matrix glyph on my answer.

-3: 0.02868

-2 : 0.10271

-1: 0.22079

0: 0.28495

1: 0.22079

2: 0.10271

3: 0.02868

7.

With the sigma size of 1.4, the -3 to 3 boundary results in slightly over 2 (~2.14) sigmas. I think the size of seven is fine, ranging from [-3,-2,...,2,3]. By the time we hit either +/- 3 we see a value so close to zero it becomes pointless to consider anything past it. If for whatever reason we wanted 9 values ranging from -4 to 4, the coefficient would be a mere 0.00481. I believe this is overkill though. In basic statistics we generally use the 68-95-99.7 for normal distribution. Which leads me to believe anything under .02 is useless for most situations.

Numbers obtained by taking the matrix from #6 and multiplying by 64 to find the closest integer number for the

numerator.

Results: 7x1 Matrix

2/64

7/64

14/64

18/64

14/64

7/64

2/64

G = K7x1 * K1*7

G = MxM^T (matrix multiplied by its transformation)

Work:

$$c11 = 1/32 \times 1/32 = 1/1024$$

$$c12 = 1/32 \times 7/64 = 7/2048$$

$$c13 = 1/32 \times 7/32 = 7/1024$$

$$c14 = 1/32 \times 9/32 = 9/1024$$

$$c15 = 1/32 \times 7/32 = 7/1024$$

$$c16 = 1/32 \times 7/64 = 7/2048$$

$$c17 = 1/32 \times 1/32 = 1/1024$$

$$c21 = 7/64 \times 1/32 = 7/2048$$

$$c22 = 7/64 \times 7/64 = 49/4096$$

$$c23 = 7/64 \times 7/32 = 49/2048$$

$$c24 = 7/64 \times 9/32 = 63/2048$$

$$c25 = 7/64 \times 7/32 = 49/2048$$

$$c26 = 7/64 \times 7/64 = 49/4096$$

$$c27 = 7/64 \times 1/32 = 7/2048$$

$$c31 = 7/32 \times 1/32 = 7/1024$$

$$c32 = 7/32 \times 7/64 = 49/2048$$

$$c33 = 7/32 \times 7/32 = 49/1024$$

$$c34 = 7/32 \times 9/32 = 63/1024$$

$$c35 = 7/32 \times 7/32 = 49/1024$$

$$c36 = 7/32 \times 7/64 = 49/2048$$

$$c37 = 7/32 \times 1/32 = 7/1024$$

 $c41 = 9/32 \times 1/32 = 9/1024$

 $c42 = 9/32 \times 7/64 = 63/2048$

 $c43 = 9/32 \times 7/32 = 63/1024$

 $c44 = 9/32 \times 9/32 = 81/1024$

 $c45 = 9/32 \times 7/32 = 63/1024$

 $c46 = 9/32 \times 7/64 = 63/2048$

 $c47 = 9/32 \times 1/32 = 9/1024$

 $c51 = 7/32 \times 1/32 = 7/1024$

 $c52 = 7/32 \times 7/64 = 49/2048$

 $c53 = 7/32 \times 7/32 = 49/1024$

 $c54 = 7/32 \times 9/32 = 63/1024$

 $c55 = 7/32 \times 7/32 = 49/1024$

 $c56 = 7/32 \times 7/64 = 49/2048$

 $c57 = 7/32 \times 1/32 = 7/1024$

 $c61 = 7/64 \times 1/32 = 7/2048$

 $c62 = 7/64 \times 7/64 = 49/4096$

 $c63 = 7/64 \times 7/32 = 49/2048$

 $c64 = 7/64 \times 9/32 = 63/2048$

 $c65 = 7/64 \times 7/32 = 49/2048$

 $c66 = 7/64 \times 7/64 = 49/4096$

 $c67 = 7/64 \times 1/32 = 7/2048$

 $c71 = 1/32 \times 1/32 = 1/1024$

 $c72 = 1/32 \times 7/64 = 7/2048$

 $c73 = 1/32 \times 7/32 = 7/1024$

 $c74 = 1/32 \times 9/32 = 9/1024$

 $c75 = 1/32 \times 7/32 = 7/1024$

 $c76 = 1/32 \times 7/64 = 7/2048$

 $c77 = 1/32 \times 1/32 = 1/1024$

Result: 7x7 Matrix.

1/1024	7/2048	7/1024	9/1024	7/1024	7/2048	1/1024
7/2048	49/4096	49/2048	63/2048	49/2048	49/4096	7/2048
7/1024	49/2048	49/1024	63/1024	49/1024	49/2048	7/1024
9/1024	63/2048	63/1024	81/1024	63/1024	63/2048	9/1024
7/1024	49/2048	49/1024	63/1024	49/1024	49/2048	7/1024
7/2048	49/4096	49/2048	63/2048	49/2048	49/4096	7/2048
1/1024	7/2048	7/1024	9/1024	7/1024	7/2048	1/1024

Take 2 time the original and then subtract the smoothing filter.

Two times the original can be defined as:

	0	0	0	0	0	0	0
--	---	---	---	---	---	---	---

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

The smoothing filter is defined as:

1/1024	7/2048	7/1024	9/1024	7/1024	7/2048	1/1024
7/2048	49/4096	49/2048	63/2048	49/2048	49/4096	7/2048
7/1024	49/2048	49/1024	63/1024	49/1024	49/2048	7/1024
9/1024	63/2048	63/1024	81/1024	63/1024	63/2048	9/1024
7/1024	49/2048	49/1024	63/1024	49/1024	49/2048	7/1024
7/2048	49/4096	49/2048	63/2048	49/2048	49/4096	7/2048
1/1024	7/2048	7/1024	9/1024	7/1024	7/2048	1/1024

Result: 7x7 Matrix with a -1 scalar, note the c44 poition has a changed value (made negative because of the -1 matrix scalar)

	1/1024	7/2048	7/1024	9/1024	7/1024	7/2048	1/1024
	7/2048	49/4096	49/2048	63/2048	49/2048	49/4096	7/2048
	7/1024	49/2048	49/1024	63/1024	49/1024	49/2048	7/1024
-1	9/1024	63/2048	63/1024	-1967/1024	63/1024	63/2048	9/1024
	7/1024	49/2048	49/1024	63/1024	49/1024	49/2048	7/1024
	7/2048	49/4096	49/2048	63/2048	49/2048	49/4096	7/2048
	1/1024	7/2048	7/1024	9/1024	7/1024	7/2048	1/1024