	Using TensorFlow backend. /opt/conda/lib/python3.7/site-packages/tensorFlow/python/framework/dtypes.py:526: FutureWarning: Passing (type, 1) or 'itype' as a synonym of type is deprecated; in a future version of numpy, it e understood as (type, (1,)) / '(1,) type'np_qint8 = np.dtype[["qint8", np.int8, 1]]) /opt/conda/lib/python3.7/site-packages/tensorFlow/python/framework/dtypes.py:527: FutureWarning: Passing (type, 1) or 'itype' as a synonym of type is deprecated; in a future version of numpy, it e understood as (type, (1,)) / '(1,) type'np_qint8 = np.dtype[["qint18", np.int8, 1]]) /opt/conda/lib/python3.7/site-packages/tensorFlow/python/framework/dtypes.py:528: FutureWarning: Passing (type, 1) or 'itype' as a synonym of type is deprecated; in a future version of numpy, it e understood as (type, (1,)) / '(1,) type'np_qint16 = np.dtype[["qint18", np.int16, 1]]) /opt/conda/lib/python3.7/site-packages/tensorFlow/python/framework/dtypes.py:529: FutureWarning: Passing (type, 1) or 'itype' as a synonym of type is deprecated; in a future version of numpy, it e understood as (type, (1,)) / '(1,) type'np_qint16 = np.dtype[["qint16", np.int16, 1]]) /opt/conda/lib/python3.7/site-packages/tensorFlow/python/framework/dtypes.py:530: FutureWarning: Passing (type, 1) or 'itype' as a synonym of type is deprecated; in a future version of numpy, it e understood as (type, (1,)) / '(1,) type'np_qint2 = np.dtype[["qint16", np.int16, 1]]) /opt/conda/lib/python3.7/site-packages/tensorFlow/python/framework/dtypes.py:530: FutureWarning: Passing (type, 1) or 'itype' as a synonym of type is deprecated; in a future version of numpy, it e understood as (type, (1,)) / '(1,) type'np_qint2 = np.dtype[["qint2", np.int22, 1]]) /opt/conda/lib/python3.7/site-packages/tensorFlow/python/framework/dtypes.py:535: FutureWarning: Passing (type, 1) or 'itype' as a synonym of type is deprecated; in a future version of numpy, it e understood as (type, (1,)) / '(1,) type'np_qint2 = np.dtype[["qint2", np.int22, 1]]) /opt/conda/lib
Th too	Artificial Neural Nets (ANNs) the following is a template for training an ANN using Keras with the Tensorflow backend. There are several cells where you will have to fill in the missing steps. Your activity will also require you to make some adjustments to the neural net paramete
3]: 4]: 5]:	<pre>from keras.layers import Dense, Dropout, Activation, Flatten, Input, Conv2D from keras.layers import MaxPooling2D from keras.models import Model</pre>
6]:	from keras.callbacks import EarlyStopping from keras import optimizers
0]:	Read in data import glob flist=glob.glob('Ising/*/*.dat') len(flist)
-]. -]. [7000 flist[:10] ['Ising/T2.28/img369.dat', 'Ising/T2.28/img126.dat', 'Ising/T2.28/img231.dat',
	'Ising/T2.28/img315.dat', 'Ising/T2.28/img463.dat', 'Ising/T2.28/img464.dat', 'Ising/T2.28/img464.dat', 'Ising/T2.28/img8.dat', 'Ising/T2.28/img8.dat', 'Ising/T2.28/img418.dat'] X = [] # the 2D image files Y = [] # labels for each image. T<=Tc, y=1 else y=0 Temps = [] # Temperature that each image was taken at Tc= 2.27 # write code to loop and read in all the image files and generate labels
	<pre>for f in flist: x = genfromtxt(f) L = len(x) x = reshape(x, (L,L,1)) X.append(x) #get temperature from file name T = float(f.split('/')[1][1:]) Temps.append(T) if T <= Tc: Y.append(1)</pre>
	else: Y.append(0) # convert X, Y, Temps into arrays X= array(X) Y= array(Y) Temps= array(Temps) # print out shape of X, Y. They should be of shape (Nimage, L, L, 1), (Nimage,) print(shape(X), shape(Y)) (7000, 32, 32, 1) (7000,) ow many images total were there? and what is the size L of each image?
0]:	here are 7000 images of size of 32x32 # Make image plots of sevaral snapshots: i) T < Tc ii) T ~ Tc and iii) T > Tc #T < Tc ii = where(Temps == 1.5)[0] subplot(131)
	<pre>imshow(X[ii[10],:,:,0]) # T ! Tc ii = where(Temps == 2.27)[0] subplot(132) imshow(X[ii[10],:,:,0]) # T > Tc ii = where(Temps == 3.0)[0] subplot(133) imshow(X[ii[10],:,:,0]) tight_layout()</pre>
C Sp	Create Training, Validation, Test data plit your data so that 70% is in the training set and 15% are in the validation and test sets respectively. # Fill in the missing code to split the data
	<pre>Ntrain = int(0.7*len(Y)) Nvalid = int(0.15*len(Y)) Ntest = len(Y)-Ntrain-Nvalid # shuffle the original data so that the distribution of labels will be similar across the splittings idxs = arange(len(Y)) shuffle(idxs) # make your splits into an (xtrain, ytrain, Ttrain), (xvalid, yvalid, Tvalid), (xtest, ytest, Ttest) xtrain = X[idxs[:Ntrain]] ytrain = Y[idxs[:Ntrain]] Ttrain = Temps[idxs[:Ntrain]]</pre>
	<pre>xvalid = X[idxs[Ntrain:Ntrain+Nvalid]] yvalid = Y[idxs[Ntrain:Ntrain+Nvalid]] Tvalid = Temps[idxs[Ntrain:Ntrain+Nvalid]] xtest = X[idxs[-Ntest:]] ytest = Y[idxs[-Ntest:]] Ttest = Temps[idxs[-Ntest:]] print(shape(xtrain), shape(xvalid), shape(xtest)) (4900, 32, 32, 1) (1050, 32, 32, 1) (1050, 32, 32, 1)</pre>
Fo	Augment the training data (Run only when instructed to in the activity guide) or the 2D square Ising model, the system is symmetric under left->right and up->down flips. Add these symmetry operations to triple your training data. # Loop over training data and add the following 2 new images # you need to append these flipped images to your training data. # you could convert your training sets back to lists and do append as # as a suggestion # Fill in the necessary code to complete this task
	for i in range(Ntrain): xLeft_Right = xtrain[i][:,::-1,:] xUp_Down = xtrain[i][::-1, :, :] # add these to your xtrain set and don't forget to also add in their labels to the ytrain Dense Neural Network
1]:	#DNN L = 32 # set the value of the image size inputs = Input(shape=(L,L,1)) # input layer. Shape is the shape of the input x = Flatten()(inputs) # need to flatten the 2D into 1D vector of L*L elements x = Dense(512)(x) # first dense layer has 512 neurons x = Activation('relu')(x) # ReLU activation dense neurons at random at training to minimize overfitting
	<pre>x = Dropout(0.5)(x) # Dropout layer - drops neurons at random at training to minimize overfitting x = Dense(256)(x) # 2nd dense layer block, has 256 neurons x = Activation('relu')(x) x = Dropout(0.5)(x) x = Dense(1)(x) # Final output neuron (single neuron for binary classification) outputs = Activation('sigmoid')(x) # sigmoid so that output is (0 -> 1) model = Model(inputs = inputs, outputs = outputs) # puts all the layers together into a Keras Model sgd = optimizers.SGD(lr=0.01) # choose stochastic gradient descent. lr = learning rate # model.compile(optimizer='adam',loss='binary_crossentropy', metrics=['accuracy'])</pre>
	model.compile(optimizer=sgd, loss='binary_crossentropy', metrics=['accuracy']) model.summary() # Early stopping criterion for stopping the fitting. Monitor's the validation loss and will stop # when the number of epochs where it increases = 'patience' early_stopping = EarlyStopping(monitor='val_loss', patience=3) Model: "model_2" Layer (type)
	input_2 (InputLayer) (None, 32, 32, 1) 0 flatten_2 (Flatten) (None, 1024) 0 dense_4 (Dense) (None, 512) 524800 activation_4 (Activation) (None, 512) 0 dropout_3 (Dropout) (None, 512) 0 dense_5 (Dense) (None, 256) 131328
	activation_5 (Activation) (None, 256) 0 dropout_4 (Dropout) (None, 256) 0 dense_6 (Dense) (None, 1) 257 activation_6 (Activation) (None, 1) 0 Total params: 656,385 Non-trainable params: 0
Tr 2]:	his model has 656,385 parameters # fit the model history = model.fit(xtrain, ytrain, validation_data=[xvalid, yvalid], batch_size=32, epochs =20,callbacks=[early_stopping]) WARNING:tensorflow:From /opt/conda/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a futur on. Instructions for updating: Use tf.cast instead.
3]:	Epoch 5/20 4900/4900 [============] - 3s 551us/step - loss: 0.4231 - accuracy: 0.8043 - val_loss: 0.4491 - val_accuracy: 0.7914 Epoch 6/20 4900/4900 [===========] - 3s 564us/step - loss: 0.4175 - accuracy: 0.8080 - val_loss: 0.4422 - val_accuracy: 0.7962 # Evaluate the fitted model on the test set. What is the accuracy and loss? model.evaluate(xtest, ytest)
3]: W	1050/1050 [===================================
<i>(</i>] .	<pre>scatter(ytest,yp,s=1) <matplotlib.collections.pathcollection 0x7f4e1c7915d0="" at=""> 10</matplotlib.collections.pathcollection></pre>
	0.8 - 0.6 - 0.4 - 0.2 - 0.2 - 0.3
Sc	0.0 0.0 0.2 0.4 0.6 0.8 1.0 O output if our neural net is P(Y=1), a probability. # Fill in code to make a plot of the average probability vs Temp on the test set
	<pre># Fill in code to make a plot of the average probability vs Temp on the test set Ts= unique(Temps) pavg =[] for T in Ts: ii = where(Ttest==T)[0] #all idxs where temperature at T pavg.append(mean(yp[ii]))</pre>
	<pre>plot(Ts,pavg,'') ylabel('probability < Tc') xlabel("temperature") plot([2.27,2.27],[0,1],'c') [<matplotlib.lines.line2d 0x7f4db5204150="" at="">]</matplotlib.lines.line2d></pre>
	1.0 - 0.8 - 0.2 - 0.2 -
	0.0 16 18 20 22 24 26 28 3.0 The plot shows that our DNN can predict reasonablywell wheather an image at a given temperature is above or below Convolutional Neural Network (CNN)
3]:	<pre># model definitions inputs = Input(shape=(L,L,1)) x = Conv2D(16, (2,2), name='C1d')(inputs) # first convolutional layer block has 16 2x2 filters x = Activation('relu')(x)</pre>
	<pre>x = MaxPooling2D(pool_size=(2,2))(x) # downsamples by 1/2 by taking max value in each 2x2 block x = Conv2D(15, (2,2))(x) # 2nd convolutional layer block has 16 2x2 filters x = Activation('relu')(x) # 3rd convolutional layer has 32 2x2 filters x = Conv2D(32, (2,2))(x) # 3rd convolutional layer has 32 2x2 filters x = Activation('relu')(x) # 3rd convolutional layer has 32 2x2 filters x = Activation('relu')(x) # flatten the extracted featureset from CNN layers # how many are there? x = Dense(256)(x) # Last block carries out the classification using a Dense layer x = Activation('relu')(x) # Final output neuron as before outputs = Activation('sigmoid')(x) # Final output neuron as before outputs = Activation('sigmoid')(x) # Final outputs = outputs) sgd = optimizers.SGD(1r=0.01) # model.compile(optimizer='adam',loss='binary_crossentropy', metrics=['accuracy']) model.compile(optimizer='adam',loss='binary_crossentropy', metrics=['accuracy']) model.compile(optimizer='adam',loss='binary_crossentropy', metrics=['accuracy'])</pre>
	model.summary() early_stopping = EarlyStopping(monitor='val_loss', patience=3) Model: "model_3" Layer (type)
	Cld (Conv2D) (None, 31, 31, 16) 80 activation_7 (Activation) (None, 31, 31, 16) 0 max_pooling2d_1 (MaxPooling2 (None, 15, 15, 16) 0 conv2d_1 (Conv2D) (None, 14, 14, 16) 1040 activation_8 (Activation) (None, 14, 14, 16) 0
	max_pooling2d_2 (MaxPooling2 (None, 7, 7, 16) 0 conv2d_2 (Conv2D) (None, 6, 6, 32) 2080 activation_9 (Activation) (None, 6, 6, 32) 0 max_pooling2d_3 (MaxPooling2 (None, 3, 3, 32) 0
	flatten_3 (Flatten) (None, 288) 0 dense_7 (Dense) (None, 256) 73984 activation_10 (Activation) (None, 256) 0 dropout_5 (Dropout) (None, 256) 0 dense_8 (Dense) (None, 1) 257
	activation_11 (Activation) (None, 1) 0 ====================================
-j. -j. [<pre>#get trained filters from 1st Conv2D layer filters = model.get_layer("C1d").get_weights() shape(filters) (2,)</pre>
	# fit model history = model.fit(xtrain, ytrain, validation_data=[xvalid, yvalid], batch_size=32, epochs =20,callbacks=[early_stopping], verbose=1) Train on 4900 samples, validate on 1050 samples Epoch 1/20 4900/4900 [===================================
	4900/4900 [===================================
	4900/4900 [===================================
6]: 6]:	
3]:	<pre>py = model.predict(xtest) scatter(ytest, py, s=1) <matplotlib.collections.pathcollection 0x7f4db42215d0="" at=""> 10</matplotlib.collections.pathcollection></pre>
	10 -
	# make plot of average probability vs temp for test set # Fill in code to make a plot of the average probability vs Temp on the test set
	<pre># Fill in code to make a plot of the average probability vs Temp on the test set Ts= unique(Temps) pavg =[] for T in Ts: ii = where(Ttest==T)[0] #all idxs where temperature at T pavg.append(mean(py[ii])) plot(Ts,pavg,'') ylabel('probability < Tc') xlabel("temperature")</pre>
L]:	plot([2.27,2.27],[0,1],'c') [<matplotlib.lines.line2d 0x7f4db411d790="" at="">] 10 0.8 V 0.6</matplotlib.lines.line2d>
	0.0
	<pre># make some plots showing the learned 2x2 filters. filters = model.get_layer("Cld").get_weights() print(shape(filters[0])) for i in range(16): subplot(4,4,i+1) imshow(filters[0][:,:,0,i], cmap='coolwarm')</pre> (2, 2, 1, 16)
]: [n	non-Ising model se the fitted CNN (or DNN if you want) to make predictions on data from configurations generated by a unknown model that displays a phase transition. See activity guide for instructions.
]: D: 2]:	import glob #flist=glob.glob('img/*.dat') #len(flist) #flist[:10]
]: Os	se the fitted CNN (or DNN if you want) to make predictions on data from configurations generated by a unknown model that displays a phase transition. See activity guide for instructions. import glob #flist=glob.glob('img/'.dat') #len(flist) #flist[:1e] L = 32 # images are LxL. I opened one to figure out L. Xn = [] # the 2D image files Tn = [] # Temperature that each image was taken at Ts = [2.0, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5] N = 500 # there are 501. dat files in each Temperature for T in Ts: for i in range(N): x = genfrontxt('nonIsing/T'+str(T)+'/img'+str(i+1)+'.dat') x = reshape(x, (L,L,1))
]: [N Us 2]: [08	import glob #### Size Falso glob('img'*.dat') #### Alange are Lxt. I opened one to figure out L. Xn = [
]:	import glob Import glob I = 32
]:	import njob Import njob L = 32 # Tamges are 1.xt. I opened one to Tigure out t. Xm = [] # the 20 image files To 1 in Ts: To 1 in Tampel (N). For 1 in Ts: For 1 in Treathpete (L, L, L) Xm = (J, L, L) Xm