

Night-Time Drive Analysis using Stereo-Vision for Data Reduction in Naturalistic Driving Studies

UC San Diego

Electrical and Computer Engineering

Mark Philip Philipsen & Morten Bornø Jensen

Visual Analysis of People Lab, Aalborg University, Denmark Computer Vision and Robotics Research Laboratory, University of California, San Diego

(a) Average number of cars in front of ego-vehicle. (b) Distance to rear-end of vehicle directly in front. (c) Other vehicle entering intersection - left turn across path. (d) Other vehicle entering intersection - turning onto opposite direction. (e) Other vehicle entering intersection - turning same direction. Figure 1: Drive events that can be automatically detected by the method

proposed in this paper. Green car is ego vehicle. Red cars are other vehicles.

Proposed Method

Results

Conclusion

Acknowledgment

We would like to thank Ravi K. Satzoda, Mohan M. Trivedi, Andreas Møgelmose, and Thomas B. Moeslund for their guidance. Additionally, we would like to thank the reviewers from *Intelligent Vehicles Symposium 2015* for their comments.

References