

CS 4104 APPLIED MACHINE LEARNING

Dr. Hashim Yasin

National University of Computer and Emerging Sciences,

Faisalabad, Pakistan.

REGRESSION VS CLASSIFICATION

Classification

Classification problem

	Features				Label	_
#	Height (inches)	Weight (kgs)	B.P. Sys	B.P. Dia	Heart disease	
1	62	70	120	80	No	
2	72	90	110	70	No	Feature vector (4-dimensional)
3	74	80	130	70	No	
4	65	120	150	90	Yes	Label vector
5	67	100	140	85	Yes	
6	64	110	130	90	No	Tooleday Date
7	69	150	170	100	Yes	Training Data
8	66	125	145	90	?	To a Data
9	74	67	110	60	?	Test Data

Dr. Hashim Yasin

Regression problem

#	Height (inches)	Weight (kgs)	B.P. Sys	B.P. Dia	Cholesterol Level
1	62	70	120	80	150
2	72	90	110	70	160
3	74	80	130	70	130
4	65	120	150	90	200
5	67	100	140	85	190
6	64	110	130	90	130
7	69	150	170	100	250
8	66	125	145	90	?
9	74	67	110	60	3

Classification

Classification

Predict discrete-valued output

Differentiating between low-risk and high-risk customers from their income and savings

Discriminant Model:

IF income $> \theta 1$ AND savings $> \theta 2$

THEN low-risk

ELSE high-risk

Regression

□ Predict real-valued output

Examples: Price of a Used Car

- Inputs: are the car attributes—brand, year, engine capacity, mileage, and other information—that may affect a car's price.
- Output: is the price of the car.
- Such problems where the output is a <u>number</u>, are regression problems.

Regression Example

- X: car attributes (input variables)
- Y: the price of the car (target/output variables)
- Learn the program that fits the function to training examples to learn Y as the function of X.

$$y = \theta_0 + \theta_1 x$$

Classification

□ Y is discrete, a (small) finite, unordered set of classes

$$error(h(x), f(x)) = 0$$
 if $h(x) = f(x)$ else 1

0-1 Loss Error

Regression

Y is continuous, a numeric set (typically real numbers)

$$error(h(x), f(x)) = (h(x) - f(x))^2$$

Squared Error

LINEAR REGRESSION

Linear Regression with one Variable

Housing Prices (Portland)

Price (in 1000s of dollars)

Size (feet²)

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict the *real-valued* continuous output

Regression Example

Training	set of
housing	prices

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

Notation:

m = Number of training examples

x's = "input" variable / features

y's = "output" variable / "target" variable

One Training example (x, y) i^{th} training example $(x^{(i)}, y^{(i)})$

Question : How to describe *h*?

$$h: X \to Y$$

Regression Example

Training	set of
housing	prices

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's ?

How to choose these parameters, θ (regression coefficient)?

 The standard approach is the <u>least square method</u>, through which parameters are minimized.

 \Box The machine learning program optimizes the parameters, θ , such that the approximation error is minimized.

$$y = \theta_0 + \theta_1 x$$

$$\theta_1 = 0.5, \theta_0 = 1$$

$$\theta = \frac{change\ in\ Y}{change\ in\ X}$$

$$\theta_1 = 0, \theta_0 = 1.5$$

$$y = \theta_1 x + \theta_0$$

$$\theta_1 = 2$$
, $\theta_0 = 1$

$$\theta = \frac{change \ in \ Y}{change \ in \ X}$$

$$\theta_1 = 1, \theta_0 = 0$$

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

Cost Function

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:
$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Simplified:

$$h_{\theta}(x) = \theta_1 x$$

$$\theta_1$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1)$$

Acknowledgement

Tom Mitchel, Russel & Norvig, Andrew Ng, Alpydin & Ch. Eick.