Algoritmusok és adatszerkezetek II. Geometriai algoritmusok

Szegedi Tudományegyetem

Alapfogalmak

Definíció

A
$$P_3 = \begin{bmatrix} x_3 \\ y_3 \end{bmatrix}$$
 pontot $P_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$ és $P_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$ pontok **konvex kombináció**jának nevezzük, amennyiben $x_3 = (1 - \alpha)x_1 + \alpha x_2$, valamint $y_3 = (1 - \alpha)y_1 + \alpha y_2$ teljesül valamely $0 \le \alpha \le 1$ -ra

Definíció

 $\overline{P_1P_2}$ szakasz a P_1 és P_2 pontokból konvex kombinációinak halmaza

Megjegyzés

Ha a pontok sorrendje is számít, irányított szakaszról beszélünk, és $\overrightarrow{P_1P_2}$ módon jelöljük

 \vec{p} -vel \overrightarrow{OP} -t, vagyis az O origóból a P-be menő irányított szakaszt (vektort) jelöljük

A keresztszorzat és a forságirány

$P_1 \times P_2$ keresztszorzata

$$\det\left(\begin{bmatrix}x_1 & x_2\\ y_1 & y_2\end{bmatrix}\right) = x_1y_2 - x_2y_1 = -P_2 \times P_1$$

Megjegyzés

 $P_1 \times P_2$ megadja az O, P_1 , P_2 , $P_1 + P_2$ koordinátákkal rendelkező paralelogramma előjeles területét

A keresztszorzat és a forságirány

$P_1 \times P_2$ keresztszorzata

$$\det\left(\begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix}\right) = x_1y_2 - x_2y_1 = -P_2 \times P_1$$

Megjegyzés

 $P_1 \times P_2$ megadja az O, P_1 , P_2 , $P_1 + P_2$ koordinátákkal rendelkező paralelogramma előjeles területét

