网络库使用说明书

Version:1.0.2.9

版本	更新	新说明	4
-,	功能		8
	网络	8库主要功能	8
	网络	各库文件说明	8
二、	编程	물导引	9
	网络	各库接口调用主要流程	9
	实时	寸数据流模块流程	10
	云台	台控制模块流程	11
	参数	数配置模块流程	12
		音对讲模块流程	
		警模块流程	
		马器模块流程	
		居类型定义说明	
		吴定义说明	
五、		数说明	
	5.1	V47H1G == ==	
		HI_NET_DEV_Init	
	5 0	HI_NET_DEV_DeInit	
	5.2	用户注册	
		HI_NET_DEV_Login	
		HI_NET_DEV_LoginExt HI_NET_DEV_Logout	
		HI_NET_DEV_Logout HI_NET_DEV_SetConnectTimeout	
		HI NET DEV SetReconnect	
	5.3		
	3.3	HI_NET_DEV_StartStream	
		HI_NET_DEV_StartStreamExt	
		HI_NET_DEV_StopStream	
		HI_NET_DEV_MakeKeyFrame	
	5.4	•	
		HI_NET_DEV_SetEventCallBack	24
		HI_NET_DEV_SetStreamCallBack	25
		HI_NET_DEV_SetDataCallBack	27
	5.5	摄像机属性设置	28
		HI_NET_DEV_SetConfig	28
		HI_NET_DEV_GetConfig	47

5.6	云台控制	56
	HI_NET_DEV_PTZ_Ctrl_Standard	56
	HI_NET_DEV_PTZ_Ctrl_StandardEx	57
	HI_NET_DEV_PTZ_Ctrl_Preset	58
	HI_NET_DEV_PTZ_Ctrl_Extend	59
	HI_NET_DEV_PTZ_Fully_Trans	59
5.7	对讲	60
	HI_NET_DEV_StartVoice	60
	HI_NET_DEV_StopVoice	61
	HI_NET_DEV_SendVoiceData	61
5.8	录像抓拍	62
	HI_NET_DEV_StartRecord	63
	HI_NET_DEV_StopRecord	63
	HI_NET_DEV_GetRecordState	64
	HI_NET_DEV_SnapJpeg	64
5.9	设置操作通道	65
	HI_NET_DEV_SetChannel	65
	HI_NET_DEV_GetChannel	66
5.10) 解码器	66
	解码器调用顺序	66
	HI_NET_DEV_GetDisplayCfg	66
	HI_NET_DEV_SetDisplayCfg	68
	HI_NET_DEV_StartDec	68
	HI_NET_DEV_StopDec	69
	HI_NET_DEV_GetLoopDecChnInfo	69
	HI_NET_DEV_SetLoopDecChnInfo	70
	HI_NET_DEV_GetLoopDecChnEnable	70
	HI_NET_DEV_SetLoopDecChnEnable	71
	HI_NET_DEV_GetLoopDecEnable	71
	HI_NET_DEV_GetChnInfo	72
	HI_NET_DEV_GetDecChnEnable	73
	HI_NET_DEV_SetDecChnEnable	73
	HI_NET_DEV_StartPassiveDecode	74
	HI_NET_DEV_StopPassiveDecode	74
	HI_NET_DEV_DecodeSendData	74
	解码器其他相关接口	76
5.11	AVI 文件解析	76
	AVI 解析调用顺序	76
	AVI 解析接口错误定义	76
	AVI_CreateReader	77
	AVI_DestroyReader	77
	AVI_ReadFrame	78
	AVI_SeekFrame	78
	AVI_ReadFileInfo	79

六、	音频编	扁解码说明	81
	6.1	音频采集格式设置	81
	6.2	音频采集流程	81
	6.3	音频播放流程	82
	6.4	音频编码	82
	6.5	音频解码	84
七、	附录		86
	附录 I	[、文件夹列表	86
	附录I	I、Linux Demo 使用说明	86
	附录II	I、厂家代码和设备类型定义	86

版本更新说明

V1. 0. 2. 9 2013-09-27

1、 添加新设备类型,字段 Se、Sf,详情请查阅《厂家代码和设备类型定义》。

V1. 0. 2. 7 2013-07-15

1、 更正 C#无法调用回调函数问题,请修正相应的回调函数,重新编译 在原来的回调中加入 NETSDK_APICALL

typedef HI_S32 (*HI_ON_STREAM_CALLBACK)(

HI U32 u32Handle, /* 句柄 */

HI_U32 u32DataType, /* 数据类型,系统数据或音视频数据 */

HI_U8* pu8Buffer, /* 数据包含帧头 */

);

变更为:

typedef HI_S32 (NETSDK_APICALL *HI_ON_STREAM_CALLBACK)(

HI_U32 u32Handle, /* 句柄 */

HI_U32 u32DataType, /* 数据类型,系统数据或音视频数据 */

HI_U8* pu8Buffer, /* 数据包含帧头 */

HI_U32 u32Length, /* 数据长度 */

HI_VOID* pUserData /* 用户数据*/

);

V1. 0. 2. 6 2013-04-13

1、 增加 AVI 文件解析 接口。

V1. 0. 2. 5 2013-04-01

1、 添加新设备类型,字段 Sc,详情请查阅《厂家代码和设备类型定义》。Sc 设备有两套分辨,第一套 960P\VGA\QVGA,第二套 720P\Q720\QQ720,用户可以根据实际应用选择需要的分辨率。

V1. 0. 2. 3 2013-02-05

1、 修改 <u>HI NET DEV SetConfig</u> 设置 OSD 参数 HI_NET_DEV_CMD_OSD_PARAM 中文, linux 下,设备类型如果为 C5,中文字符必须转换成 UTF-8。

V1. 0. 2. 2 2012-12-10

- 2、 添加三码流接口 HI_NET_DEV_StartStreamExt。三码流需要设备支持;
- 3、 网络抓拍接口: HI_NET_DEV_SnapJpeg
- 4、添加三码流控制接口:参阅 <u>HI_NET_DEV_SetConfig</u>和 <u>HI_NET_DEV_GetConfig</u> #define HI_NET_DEV_CMD_AUDIO_VOLUME_IN 0x1070 //音频输入音量

V1. 0. 2. 1 2012-10-22

- 1、添加解码器 SDK

V1. 0. 1. 9 2012-05-29

1、 增加动态 I 帧接口 HI_NET_DEV_MakeKeyFrame;

V1. 0. 1. 8 2012-03-29

- 1、 修改字段为 S7、S9 的设备的默认值;
- 2、 增加 HI NET DEV LoginExt 登陆接口,接口中带有超时时间;
- 3、 增加 <u>HI_NET_DEV_SetChannel</u> 和 <u>HI_NET_DEV_GetChannel</u>, 用于设置 NVR 通道;
- 4、 增加 NVR 参数设置

```
#define HI NET NVR CMD NET EXT
                                   0x1050 // NVR 网络参数
#define HI NET NVR CMD RTSP INFO
                                   0x1051 // NVR rtsp 参数
#define HI NET NVR CMD USER
                                   0x1052 // NVR 用户参数
#define HI NET NVR CMD CHANNEL INFO
                                   0x1053 // NVR 通道参数
                                   0x1055 // NVR 搜索设备
#define HI NET NVR CMD SEARCH
#define HI NET NVR CMD RECORD INFO
                                   0x1056 // NVR 通道录像参数
#define HI NET NVR CMD RECORD SYS
                                   0x1057 // NVR 系统参数
                                   0x1058 // NVR 时间参数
#define HI_NET_NVR_CMD_TIME
                                   0x1059 // NVR 恢复出厂设置
#define HI NET NVR CMD RESET
#define HI_NET_NVR_CMD_REBOOT
                                   0x1060 // NVR 重启
#define HI NET NVR CMD RECORD STATE
                                   0x1061 // 获取录像状态
#define HI_NET_NVR_CMD_DISK_INFO
                                   0x1062 // 获取硬盘信息
                                   0x1063 // 格式化硬盘
#define HI_NET_NVR_CMD_DISK_FORMAT
#define HI NET NVR CMD RECORD STATE EX
                                      0x1064 // 获取录像状态
具体参阅 HI_NET_DEV_SetConfig 和 HI_NET_DEV_GetConfig
```

V1. 0. 1. 6 2011-12-16

1、 添加新设备类型,字段 S9,详情请查阅《厂家代码和设备类型定义》。

V1. 0. 1. 5 2011-12-05

1、 修正 S7 字段无法获取上下左右翻转。

V1. 0. 1. 4 2011-11-22

1、 添加心跳包处理,心跳包从 HI_NET_DEV_SetDataCallBack 回调出来,详细回到请查 阅 HI_NET_DEV_SetDataCallBack。

V1. 0. 1. 3 2011-11-01

1、 添加新设备类型,字段 S8,详情请查阅《厂家代码和设备类型定义》。

V1. 0. 1. 2 2011-09-20

1、 添加新设备类型,字段 S7,详情请查阅《厂家代码和设备类型定义》。

V1. 0. 1. 1 2011-07-22

1、添加 AVI 录像接口 <u>HI_NET_DEV_StartRecord</u>、<u>HI_NET_DEV_StopRecord_</u>和 <u>HI_NET_DEV_GetRecordState</u>,并在事件回调中增加录像操作相关的操作: HI_NET_DEV_RECORD_START和HI_NET_DEV_RECORD_STOP。

V1. 0. 1. 0 2011-07-02

- 1、 添加新设备类型,字段 S5、S6,详情请查阅《厂家代码和设备类型定义》。
- 2、 添加控制输入报警开关接口: 参阅 <u>HI_NET_DEV_SetConfig_</u>和 <u>HI_NET_DEV_GetConfig</u>的HI_NET_DEV_CMD_ATTR_EXT选项。

V1. 0. 0. 9 2011-06-08

1、 <u>HI_NET_DEV_PTZ_Ctrl_Standard</u>和 <u>HI_NET_DEV_PTZ_Ctrl_StandardEx</u>添加焦点调整和光圈变化命令

#define HI_NET_DEV_CTRL_PTZ_FOCUSIN 0x3007 //焦点前调 #define HI_NET_DEV_CTRL_PTZ_FOCUSOUT 0x3008 //焦点后调 #define HI_NET_DEV_CTRL_PTZ_APERTUREIN 0x3009 //光圈放大 #define HI_NET_DEV_CTRL_PTZ_APERTUREOUT 0x3010 //光圈变小

2、 添加网络参数接口,参阅 <u>HI NET DEV SetConfig</u> 和 <u>HI NET DEV GetConfig</u> 的 HI_NET_DEV_CMD_NET_EXT 选项。改指令将 HI_NET_DEV_CMD_NET_INFO 和 HI_NET_DEV_CMD_HTTP_PORT 合并。

V1. 0. 0. 7 2011-03-12

- 1、 添加设备重启接口,参阅 <u>HI_NET_DEV_SetConfig_</u>的 <u>HI_NET_DEV_CMD_REBOOT</u> 选项。
- 2、添加设备恢复出厂设置接口,参阅 <u>HI_NET_DEV_SetConfig_</u>的 HI_NET_DEV_CMD_RESET选项。
- 3、 添加校时接口,参阅 <u>HI_NET_DEV_SetConfig_</u>和 <u>HI_NET_DEV_GetConfig_</u>的 HI_NET_DEV_CMD_SERVER_TIME 选项。

V1. 0. 0. 5 2010-12-4

- 1、 更改网络库编译选项,Windows 下为默认,去掉 HI_OS_WIN32 编译选项,Linux 下编译 要添加-DHI OS LINUX。
- 2、添加云台原点和上下左右巡航接口,目前仅支持设备信息中有 Z0 字段的设备。

V1. 0. 0. 4 2010-11-23

- 1、 更新 <u>HI_NET_DEV_GetConfig</u> 获取设备信息、产品 ID、用户连接数功能。
- 2、 修改开始对讲接口,可以兼容 G711 音频

一、功能说明

网络库主要功能

与摄像机通讯、获取码流、参数设置、语音对讲、语态控制、录像等功能。

网络库用于只连接网络部分,回调出来的数据交给播放库处理,与播放库分开。具体用 在如平台软件、集中管理客户端等工程中。

网络库文件说明

	hi_net_dev_sdk.h	头文件
网络库	NetLib.lib	LIB 库文件
	NetLib.dll	DLL 库文件
	libNetLib.so	Linux 动态库
公用文件	hi_dataType.h	头文件

二、编程导引

网络库接口调用主要流程

按实现功能的不同可以分成五个模块,实现每个模块的功能时初始化网络库、用户注册设备、注销设备和释放网络库资源这 4 个流程是必不可少的。

- 初始化网络库(HI_NET_DEV_Init 接口): 对整个网络网络库系统的初始化;
- 设置连接超时时间(HI_NET_DEV_SetConnectTimeout 接口): 这部分为可选,用于设置 SDK 中的网络连接超时时间,用户可以根据自己的需要设置该值。在不调用此接口设置超时时间的情况下,将采用 SDK 中的默认值;
- 用户注册设备(HI_NET_DEV_Login 接口): 实现用户的注册功能,注册成功后,返回的用户 ID 作为其他功能操作的唯一标识;

- 实时数据流模块:实时数据流启动后通过回调函数获取摄像机的当前实时数据。具体流程详见实时数据流模块流程;
- 云台控制模块:云台控制分为基本功能控制、云台的预置点控制和云台透传。具体 流程详见云台控制模块流程;
- 参数配置模块:设置和获取前端摄像机的参数,主要包括设备参数、网络参数、报警参数、异常参数、用户配置等参数信息。具体流程详见参数配置模块流程;
- 语音对讲转发模块:实现和前端服务器的语音数据对讲和语音数据获取,音频编码格式可以指定。具体流程详见语音对讲模块流程;
- 报警模块:处理前端服务器上传的各种报警信号。报警分为"移动报警"和"输入报警"两种数据。具体流程详见报警模块流程。

实时数据流模块流程

实时数据流启动后通过回调函数获取摄像机的当前实时数据。每一帧数据都是完整的数据帧,数据帧包含帧头,用于区分数据的类型。相关接口有:HI_NET_DEV_StartStream、HI_NET_DEV_SetStreamCallBack。

云台控制模块流程

云台控制在初始化网络库和注册设备后就可以使用,包含云台基本功能控制、预置点控 制和透传控制。

- 云台空能控制:包括上下左右方向、停止、聚焦以及灯光雨刷等扩展功能,相关接口有: HI_NET_DEV_PTZ_Ctrl_Standard、HI_NET_DEV_PTZ_Ctrl_StandardEx、HI_NET_DEV_PTZ_Ctrl_Extend;
- 预置点控制:最大可以设置 256 个预置点(具体设备设置的个数不同),相关接口有: HI_NET_DEV_PTZ_Ctrl_Preset;
- 透传控制:通过串口控制云台,相关接口有: HI_NET_DEV_PTZ_Fully_Trans。

参数配置模块流程

实现参数配置首先必须做好初始化网络库和用户注册这两个步骤,将用户注册接口返回的句柄作为配置接口的首个参数。建议在每次设置某类参数之前,先调用获取参数的接口(HI_NET_DEV_GetConfig)得到完整的参数结构,修改需要更改的参数,作为设置参数接口中的输入参数,最后调用设置参数接口(HI_NET_DEV_SetConfig),返回成功即设置成功。

语音对讲模块流程

语音对讲将自己准备好的音频数据发送到摄像机,音频数据必须编码成与摄像机端当前的音频编码的格式一致。音频的编码解码请查阅音频编解码部分和 Demo。

报警模块流程

报警回调可分为"移动报警"和"输入报警"两种数据。

- 移动报警: 当检测到镜头相应区域有移动,回调函数将移动区域的相关数据输出;
- 输入报警:摄像机参数有数据变更时有输入报警信息。

具体使用请参阅报警回调函数 HI_NET_DEV_SetDataCallBack 的使用方法。

解码器模块流程

HI_NET_DEV_SetDataCallBack 回调出来的数据是一个字符串,其中回调 HI_U32 u32DataType 的值为 3。字符串的长度用与通道数一致,如解码器的总通道数为 9,回调出来的字符串长度为 9,如果字符串为 012000000 表示第一通道当前没有解码,第二通道当前为动态解码,第三通道当前正在轮巡,即字符的每一个字节表示为: 0 没有解码,1 动态解码,2 轮巡

```
HI_U32 u32Handle = 0;
//登陆解码器
s32Ret = HI_NET_DEV_Login(&u32Handle, "admin", "admin", "192.168.1.24", 80);
if(s32Ret != HI_SUCCESS)
return HI_FAILURE;
```

```
//启用时间回调
HI_NET_DEV_SetEventCallBack(u32Handle, OnNetEventCallBack, (HI_VOID*)this);
//启用状态回调功能
HI_NET_DEV_SetDataCallBack(u32Handle, OnNetDataCallBack, this);
//启用解码器
HI_S_STREAM_INFO sStreamInfo;
s32Ret = HI_NET_DEV_StartStream(u32Handle, &sStreamInfo);
if(s32Ret != HI_SUCCESS)
    HI_NET_DEV_Logout(u32Handle);
    u32Handle = 0;
    return HI_FAILURE;
}
//开始解码器相关操作
HI_S_CHN_INFO sChnInfo;
memset(&sChnInfo, 0, sizeof(HI_S_CHN_INFO));
strcpy(sChnInfo.sHost, "192.168.1.88");
s32Ret = HI_NET_DEV_StartDec(u32Handle, u32Channel, &sChnInfo);
. . . . . .
//销毁解码器
if(u32Handle!=0)
    HI_NET_DEV_StopStream(u32Handle);
    HI_NET_DEV_Logout(u32Handle);
    u32Handle = 0;
```

}

三、数据类型定义说明

typedef unsigned char HI_U8; typedef unsigned char HI_UCHAR; typedef unsigned short HI_U16;

typedef unsigned int HI_U32;

typedef signed char HI_S8; typedef short HI_S16; typedef int HI_S32;

#ifndef _M_IX86

typedef unsigned long long HI_U64; typedef long long HI_S64;

#else

typedef __int64 HI_U64; typedef __int64 HI_S64;

#endif

typedef char* HI_CHAR; typedef char* HI_PCHAR;

typedef float HI_FLOAT; typedef double HI_DOUBLE; typedef void HI_VOID;

typedef unsigned long HI_SIZE_T; typedef unsigned long HI_LENGTH_T;

typedef enum {

 $HI_FALSE = 0,$ $HI_TRUE = 1,$

} HI_BOOL;

#ifndef NULL

#define NULL 0L

#endif

#define HI_NULL OL #define HI_NULL_PTR OL

#define HI_SUCCESS 0 #define HI_FAILURE (-1)

四、错误定义说明

#define HI_NET_DEV_PARAM_ERROR	0x41001
#define HI_NET_DEV_MEMORY_ERROR	0x41002
#define HI_NET_DEV_NOT_SUPPORT	0x41003
#define HI_NET_DEV_PARAM_CHECK_ERROR	0x51001 //Paramter input error
#define HI_NET_DEV_PARAM_CMD_ERROR	0x51002 //No command
#define HI_NET_DEV_PARAM_PARSE_ERROR	0x51003 //parsse command
#define HI_NET_DEV_NET_CONNECT_FAIL	0x52001 //connect host failure
#define HI_NET_DEV_NET_TRANSFER_FAIL	0x52002 //transfer host failure
#define HI_NET_DEV_NET_RETURN_ERROR	0x52003 //host return error
#define HI_NET_DEV_NET_NOT_SUPPORT	0x53000 //device not support the paramter

五、函数说明

5.1 初始化 SDK

HI_NET_DEV_Init

```
初始化,调用其他函数前使用,仅在初始化 SDK 使用HI_S32 HI_NET_DEV_Init(
```

);

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

HI_NET_DEV_DeInit

```
释放 SDK, 仅在释放 SDK 使用
HI_S32 HI_NET_DEV_DeInit(
);
```

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

Remarks

HI_NET_DEV_Init、HI_NET_DEV_DeInit 在一个程序中仅初始化一次,初始化 Socket

5.2 用户注册

HI_NET_DEV_Login

用户设备注册

```
HI_S32 HI_NET_DEV_Login(
HI_U32* pu32Handle,
const HI_CHAR* psUsername,
```

```
const HI_CHAR* psPassword,
const HI_CHAR* psHost,
HI_U16 u16Port
);
```

Parameters

```
pu32Handle
  [OUT] 操作句柄
psUsername
  [IN] 用户名
psPassword
  [IN] 密码
psHost
  [IN] 主机,可以是 IP 地址也可以是域名
u16Port
  [IN] 端口号
```

Return Values

HI_SUCCESS 表示成功,
HI_NET_DEV_NET_CONNECT_FAIL 表示连接失败;
HI_NET_DEV_NET_TRANSFER_FAIL 表示域名解析失败;
HI_NET_DEV_NET_RETURN_ERROR 表示主机错误。

HI_NET_DEV_LoginExt

用户设备注册扩展, 带超时

```
HI_S32 HI_NET_DEV_LoginExt (
HI_U32* pu32Handle,
const HI_CHAR* psUsername,
const HI_CHAR* psPassword,
const HI_CHAR* psHost,
HI_U16 u16Port,
HI_U32 u32TimeOut
);
```

Parameters

```
pu32Handle
  [OUT] 操作句柄
psUsername
  [IN] 用户名
psPassword
  [IN] 密码
psHost
  [IN] 主机,可以是 IP 地址也可以是域名
u16Port
```

[IN] 端口号

u32TimeOut

[IN] 超时时间,单位毫秒,默认 10000 毫秒

Return Values

HI_SUCCESS 表示成功,

HI_NET_DEV_NET_CONNECT_FAIL 表示连接失败;

HI_NET_DEV_NET_TRANSFER_FAIL 表示域名解析失败;

HI_NET_DEV_NET_RETURN_ERROR 表示主机错误。

HI_NET_DEV_Logout

用户取消登录

```
HI_S32 HI_NET_DEV_Logout(
HI_U32 u32Handle
);
```

Parameters

u32Handle

[IN] 操作句柄

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

HI_NET_DEV_SetConnectTimeout

设置连接超时时间,默认超时是5秒,单位是毫秒

```
HI_S32 HI_NET_DEV_SetConnectTimeout (
HI_U32 u32Handle
HI_U32 u32Timeout
);
```

Parameters

u32Handle

[IN] 操作句柄

u32Timeout

[IN] 超时时间,单位是毫秒

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

HI_NET_DEV_SetReconnect

设置自动重连间隔时间,默认为10秒,0为不重连,单位是毫秒

HI_S32 HI_NET_DEV_SetReconnect (

```
HI_U32 u32Handle
HI_U32 u32Interval
);
```

Parameters

u32Handle

[IN] 操作句柄

u32Interval

[IN] 自动重连间隔时间,单位是毫秒

Return Values

HI_SUCCESS 表示成功,HI_ FAILURE 表示失败。

5.3 实时预览

HI_NET_DEV_StartStream

实时数据

```
HI_S32 HI_NET_DEV_StartStream (
HI_U32 u32Handle
HI_S_STREAM_INFO* pstruStreamInfo
);
```

Parameters

u32Handle [IN] 操作句柄 pstruStreamInfo

[IN] 操作参数

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

Remarks

```
// 开始流传输
typedef struct
            u32Channel;
                            //通道号,设置获取属性相对应
   HI_U32
                            //为真连接主码流, 假连接次码流
   HI_BOOL
            blFlag;
                            //网络连接模式
   HI U32
            u32Mode;
                            //流数据类型,视频,音频,其他数据
   HI_U8
            u8Type;
} HI_S_STREAM_INFO;
// 设备 通道号,目前仅支持一个通道
#define HI NET DEV CHANNEL 1
//#define HI_NET_DEV_CHANNEL_2
```

```
//#define HI_NET_DEV_CHANNEL_3
                              3
//#define HI_NET_DEV_CHANNEL_4
                              4
// 连接网络连接模式, 目前仅支持 TCP
#define HI_NET_DEV_STREAM_MODE_TCP 0
// 流数据类型,目前不支持心跳数据
// 次码流不支持报警数据和心跳数据
#define HI NET DEV STREAM VIDEO ONLY
                                        0x01
#define HI_NET_DEV_STREAM_AUDIO_ONLY
                                        0x02
#define HI_NET_DEV_STREAM_VIDEO_AUDIO
                                        0x03
#define HI_NET_DEV_STREAM_VIDEO_DATA
                                        0x05
#define HI_NET_DEV_STREAM_AUDIO_DATA
                                        0x06
#define HI_NET_DEV_STREAM_ALL
                                        0x07
```

HI_NET_DEV_StartStreamExt

实时数据

```
HI_S32 HI_NET_DEV_StartStreamExt (
HI_U32 u32Handle
HI_S_STREAM_INFO_EXT* pstruStreamInfo
);
```

Parameters

u32Handle [IN] 操作句柄 pstruStreamInfo [IN] 操作参数

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

Remarks

```
// 开始流传输
typedef struct
                              //通道号,设置获取属性相对应
   HI_U32
             u32Channel;
                              //1:连接主码流, 2:连接次码流 3:第三码流
   HI U32
             u32Stream;
   HI_U32
             u32Mode;
                              //网络连接模式
   HI_U8
             u8Type;
                              //流数据类型,视频,音频,其他数据
} HI_S_STREAM_INFO_EXT;
u32Stream 参数:
#define HI_NET_DEV_STREAM_1
                            0
#define HI_NET_DEV_STREAM_2
```

```
#define HI_NET_DEV_STREAM_3 2
```

```
// 设备通道号,摄像机仅支持一个通道,转发支持多通道
#define HI_NET_DEV_CHANNEL_1 1
```

// 连接网络连接模式,目前仅支持 TCP #define HI NET DEV STREAM MODE TCP 0

// 流数据类型,目前不支持心跳数据

// 次码流不支持报警数据和心跳数据

#define HI_NET_DEV_STREAM_VIDEO_ONLY 0x01
#define HI_NET_DEV_STREAM_AUDIO_ONLY 0x02
#define HI_NET_DEV_STREAM_VIDEO_AUDIO 0x03
#define HI_NET_DEV_STREAM_VIDEO_DATA 0x05
#define HI_NET_DEV_STREAM_AUDIO_DATA 0x06
#define HI_NET_DEV_STREAM_ALL 0x07

HI_NET_DEV_StopStream

停止数据流

```
HI_S32 HI_NET_DEV_StopStream(
HI_U32 u32Handle
);
```

Parameters

u32Handle

[IN] 操作句柄

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

HI_NET_DEV_MakeKeyFrame

动态创建一个I帧

```
HI_S32 HI_NET_DEV_MakeKeyFrame (
HI_U32 u32Handle,
HI_U32 u32Channel
);
```

Parameters

u32Handle

[IN] 操作句柄

u32Channel

[IN] 通道, 11 表示主码流, 12 表示次码流

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

5.4 实时预览数据回调

HI_NET_DEV_SetEventCallBack

事件数据回调

```
HI_S32 HI_NET_DEV_SetEventCallBack(
HI_U32 u32Handle
HI_ON_EVENT_CALLBACK cbEventCallBack,
HI_VOID* pUserData
);
```

Parameters

```
u32Handle

[IN] 操作句柄
cbEventCallBack

[IN] 事件数据回调函数
pUserData

[IN] 用户数据
```

Callback Function

```
typedef HI_S32 (*HI_ON_EVENT_CALLBACK) (
HI_U32 u32Handle,
HI_U32 u32Event,
HI_VOID* pUserData
);
```

Callback Function Parameters

u32Handle

操作句柄

u32Event

事件

宏定义	宏定义值	含义
HI_NET_DEV_CONNECTING	0	正在连接
HI_NET_DEV_CONNECTED	1	已经连接
HI_NET_DEV_CONNECT_FAILED	2	连接失败
HI_NET_DEV_ABORTIBE_DISCONNECTED	3	关闭连接
HI_NET_DEV_NORMAL_DISCONNECTED	4	关闭连接
HI_NET_DEV_RECONNECTING	5	重新连接
HI_NET_DEV_RECORD_START	6	开始录像
HI_NET_DEV_RECORD_STOP	7	停止录像

pUserData

用户数据

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

$HI_NET_DEV_SetStreamCallBack$

码流数据回调

```
HI_S32 HI_NET_DEV_SetStreamCallBack (
HI_U32 u32Handle
HI_ON_STREAM_CALLBACK cbStreamCallBack,
HI_VOID* pUserData
);
```

Parameters

u32Handle

[IN] 操作句柄

cbStreamCallBack

[IN] 码流数据回调函数

pUserData

[IN] 用户数据

Callback Function

```
typedef HI_S32 (*HI_ON_STREAM_CALLBACK)(
HI_U32 u32Handle,
HI_U32 u32DataType,
HI_U8* pu8Buffer,
HI_U32 u32Length,
HI_VOID* pUserData
);
```

Callback Function Parameters

u32Handle

操作句柄

u32DataType

数据类型, 音视频数据或头文件数据

宏定义	宏定义值	含义
HI_NET_DEV_AV_DATA	0	音视频数据
HI_NET_DEV_SYS_DATA	1	文件数据

pu8Buffer

数据包含帧头

u32Length

数据长度

pUserData

用户数据

Return Values

HI SUCCESS 表示成功,HI FAILURE 表示失败。

Remarks

- 1、连接上的第一个数据包为 HI_NET_DEV_SYS_DATA 类型。
- 2、如果 pu8Buffer 数据为 HI_NET_DEV_SYS_DATA, pu8Buffer 的结构是由HI_S_SysHeader结构组成:

```
typedef struct
{
    HI_U32 u32Width; //视频宽
    HI_U32 u32Height; //视频高
} HI_S_VideoHeader;

typedef struct
{
    HI_U32 u32Format; //音频格式
```

} HI_S_AudioHeader;

宏定义	宏定义值	含义
HI_NET_DEV_AUDIO_TYPE_G711	0	G711
HI_NET_DEV_AUDIO_TYPE_G726	1	G726
HI_NET_DEV_AUDIO_TYPE_AMR	2	AMR

其中 u32SysFlag 为宏定义#define HI_NET_DEV_SYS_FLAG 0x53565848。

3、如果 pu8Buffer 数据为 HI_NET_DEV_AV_DATA, pu8Buffer 的帧头是由HI_S_SysHeader结构组成:

```
typedef struct {

HI_U32 u32AVFrameFlag; // 帧标志

HI_U32 u32AVFrameLen; // 帧的长度

HI_U32 u32AVFramePTS; // 时间戳

HI_U32 u32VFrameType; // 视频的类型,I 帧或 P 帧
} HI_S_AVFrame;
```

u32AVFrameFlag 格式如下表:

宏定义	宏定义值	含义
HI_NET_DEV_VIDEO_FRAME_FLAG	0x46565848	视频数据
HI_NET_DEV_AUDIO_FRAME_FLAG	0x46415848	音频数据

u32VFrameType 格式如下表:

宏定义	宏定义值	含义

HI_NET_DEV_VIDEO_FRAME_I	1	I帧
HI_NET_DEV_VIDEO_FRAME_P	2	P帧

HI_NET_DEV_SetDataCallBack

信息数据回调

```
HI_S32 HI_NET_DEV_SetDataCallBack (
HI_U32 u32Handle
HI_ON_DATA_CALLBACK cbDataCallBack,
HI_VOID* pUserData
);
```

Parameters

```
u32Handle

[IN] 操作句柄
cbDataCallBack

[IN] 信息数据回调函数
pUserData

[IN] 用户数据
```

Callback Function

```
typedef HI_S32 (*HI_ON_DATA_CALLBACK)(
HI_U32 u32Handle,
HI_U32 u32DataType,
HI_U8* pu8Buffer,
HI_U32 u32Length,
HI_VOID* pUserData
);
```

Callback Function Parameters

u32Handle

操作句柄

u32DataType

数据类型

宏定义	宏定义值	含义
HI_NET_DEV_MOTION_DETECTION	0	移动侦测报警
HI_NET_DEV_INPUT_ALARM	1	输入报警
HI_NET_DEV_KEEP_ALIVE	2	心跳包

pu8Buffer

```
数据。如果为 HI_NET_DEV_MOTION_DETECTION, 数据将以 HI_S_ALARM_MD 结构存储: typedef struct
```

HI_U32 u32Area; //区域

HI_U32 u32X; //x 坐标 HI_U32 u32Y; //y 坐标 HI_U32 u32Width; //矩形宽 HI_U32 u32Height; //矩形高

} HI_S_ALARM_MD;

u32Area 最大为 4,数据如下:

宏定义	宏定义值	含义
HI_NET_DEV_MOTION_AREA_1	1	区域 1
HI_NET_DEV_MOTION_AREA_2	2	区域 2
HI_NET_DEV_MOTION_AREA_3	3	区域3
HI_NET_DEV_MOTION_AREA_4	4	区域 4

u32Length

数据长度,HI_NET_DEV_MOTION_DETECTION,两个区域同时就有: u32Length = 2*sizeof(HI_S_ALARM_MD)

u32DataType

用户数据

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

5.5 摄像机属性设置

摄像机是否支持属性,可以通过获取 HI_NET_DEV_GET_PRODUCT_VENDOR 产品的 sProduct 判断,具体请参阅附录厂家代码和设备类型定义章节。

HI_NET_DEV_SetConfig

设置摄像机参数

```
HI_S32 HI_NET_DEV_SetConfig (
HI_U32 u32Handle
HI_U32 u32Command,
HI_VOID* pBuf,
HI_U32 u32BufLen
);
```

Parameters

u32Handle

[IN] 操作句柄

u32Command

[IN] 操作参数命令

宏定义	宏定义	含义
	值	
HI_NET_DEV_CMD_DISPLAY	0x1001	图像参数
HI_NET_DEV_CMD_DISPLAY_EXT	0x1002	翻转
HI_NET_DEV_CMD_INFRARED	0x1003	红外

HI_NET_DEV_CMD_VIDEO_PARAM	0x1004	视频参数
HI_NET_DEV_CMD_OSD_PARAM	0x1005	OSD 参数
HI_NET_DEV_CMD_AUDIO_PARAM	0x1006	音频参数
HI_NET_DEV_CMD_AUDIO_INPUT	0x1007	音频输入
HI_NET_DEV_CMD_RESOLUTION	0x1008	图像分辨率
HI_NET_DEV_CMD_FREQUENCY	0x1009	频率
HI_NET_DEV_CMD_PTZ_PARAM	0x1010	云台信息
HI_NET_DEV_CMD_MD_PARAM	0x1011	移动报警信息
HI_NET_DEV_CMD_NET_INFO	0x1012	网络信息
HI_NET_DEV_CMD_HTTP_PORT	0x1013	网页端口号
HI_NET_DEV_CMD_SERVER_TIME	0x1017	设置摄像机时间
HI_NET_DEV_CMD_REBOOT	0x1018	重启
HI_NET_DEV_CMD_RESET	0x1019	恢复出厂设置
HI_NET_DEV_CMD_NET_EXT	0x1022	设置网络参数
HI_NET_DEV_CMD_ATTR_EXT	0x1026	控制输入报警
HI_NET_NVR_CMD_NET_EXT	0x1050	NVR 网络参数
HI_NET_NVR_CMD_RTSP_INFO	0x1051	NVR rtsp 参数
HI_NET_NVR_CMD_USER	0x1052	NVR 用户参数
HI_NET_NVR_CMD_CHANNEL_INFO	0x1053	NVR 通道参数
HI_NET_NVR_CMD_RECORD_INFO	0x1056	NVR 通道录像参数
HI_NET_NVR_CMD_RECORD_SYS	0x1057	NVR 录像系统参数
HI_NET_NVR_CMD_TIME	0x1058	NVR 时间设置
HI_NET_NVR_CMD_RESET	0x1059	NVR 恢复出厂设置
HI_NET_NVR_CMD_REBOOT	0x1060	NVR 重启
HI_NET_NVR_CMD_DISK_FORMAT	0x1063	NVR 格式化硬盘
HI_NET_DEV_CMD_WIFI_PARAM	0x1030	WIFI 参数设置
HI_NET_DEV_CMD_WIFI_CHECK	0x1035	WIFI check
HI_NET_DEV_CMD_VIDEO_PARAM_EXT	0x1047	视频参数(扩展)
HI_NET_DEV_CMD_AUDIO_PARAM_EXT	0x1048	音频参数(扩展)
HI_NET_DEV_CMD_RESOLUTION_EXT	0x1049	分辨率参数(扩展)
HI_NET_DEV_CMD_AUDIO_VOLUME_IN	0x1070	音频输入音量
HI_NET_DEV_CMD_AUDIO_VOLUME_OUT	0x1071	音频输出音量

pBuf

[IN] 设置数据

u32BufLen

[IN] 数据长度

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

Remarks

1、HI_NET_DEV_CMD_DISPLAY

注: u32Brightness 值等于-1,将设置为默认值。色彩支持请参阅附录厂家代码和设备类型定义的 S 字段。

Example:

2、HI_NET_DEV_CMD_DISPLAY_EXT

} HI_S_Display_Ext;

宏定义	宏定义值	含义
HI_NET_DEV_SCENE_AUTO	0	自动
HI_NET_DEV_SCENE_INDOOR	1	室内
HI_NET_DEV_SCENE_OUTDOOR	2	室外

Example:

注:设备支持请参阅附录厂家代码和设备类型定义的 S 字段。

3、HI_NET_DEV_CMD_INFRARED

```
typedef struct HI_Infrared
{
```

HI_S32 s32Infrared; //红外状态开关

} HI_S_Infrared;

宏定义	宏定义值	含义
HI_NET_DEV_INFRARED_AUTO	0	自动
HI_NET_DEV_INFRARED_ON	1	开
HI_NET_DEV_INFRARED_OFF	2	关

Example:

```
HI_S_Infrared sInfrared;
```

sInfrared.s32Infrared = HI_NET_DEV_INFRARED_AUTO;

HI NET DEV SetConfig (lHandle,

// HI_NET_DEV_GetConfig

HI_NET_DEV_CMD_INFRARED,

&sInfrared,

sizeof(HI_S_Infrared));

注: 设备支持请参阅附录厂家代码和设备类型定义的 S 字段。

4、HI_NET_DEV_CMD_VIDEO_PARAM

```
typedef struct HI_Video
{
                             //通道
    HI U32
              u32Channel;
   HI_BOOL
              blFlag;
                             //主次码流标志, 0-次码流, 1 主码流
    HI_U32
              u32Bitrate;
                             //码率 Kb
              u32Frame;
                             //帧率
    HI_U32
    HI_U32
              u32Iframe;
                             //主帧间隔(1-300)
                             //视频编码控制 0-可变码率, 1-固定码率
    HI_BOOL
              blCbr;
              u32ImgQuality;
    HI_U32
                             //视频编码质量(1-6)
} HI_S_Video;
```

注: u32Channel 与 HI_NET_DEV_StartStream 的参数 HI_S_STREAM_INFO 中 u32Channel 一致。获取和设置都应当相同。

Example:

HI_S_Video sVideo;

```
// 注: u32Channel 与 HI_S_STREAM_INFO 一致
sVideo.u32Channel = HI_NET_DEV_CHANNEL_1;
sVideo.blFlag = HI_TRUE;
sVideo.u32Bitrate = 1024;
sVideo.u32Frame = 25;
sVideo.u32Iframe = 50;
sVideo.blCbr = HI_FALSE;
```

```
sVideo.u32ImgQuality = 1;
   HI_NET_DEV_SetConfig ( lHandle,
                                              // HI NET DEV GetConfig
                       HI_NET_DEV_CMD_VIDEO_PARAM,
                       &sVideo,
                       sizeof(HI_S_Video));
5、HI_NET_DEV_CMD_OSD_PARAM
   typedef struct HI_OSD
   {
                   blEnTime;
                                  //叠加时间
       HI_BOOL
                                  //叠加名称
       HI_BOOL
                   blEnName;
                   sName[64];
                                  //OSD 名称 //最大 18 字节
       HI_CHAR
   } HI_S_OSD;
   Example:
   HI_S_OSD sOSD;
   sOSD.blEnTime = HI_TRUE;
   sOSD.blEnName = HI TRUE;
   strcpy(sOSD. sName, "IPCAM");
   HI_NET_DEV_SetConfig ( lHandle,
                                              // HI_NET_DEV_GetConfig
                       HI_NET_DEV_CMD_OSD_PARAM,
                       &sOSD,
                       sizeof(HI_S_OSD));
```

注: C5 设备类型的摄像机 linux 下 OSD 如果为中文 OSD, 必须以 UTF-8 传入, 获取到的字符也是 UTF-8

6、HI_NET_DEV_CMD_AUDIO_PARAM

```
typedef struct HI_Audio {

HI_U32 u32Channel; //通道

HI_BOOL blFlag; //主次码流标志, 0-次码流, 1 主码流

HI_BOOL blEnable; //是否采集音频

HI_U32 u32Type; //音频格式

} HI_S_Audio;
```

注: u32Channel 与 HI_NET_DEV_StartStream 的参数 HI_S_STREAM_INFO 中 u32Channel 一致。获取和设置都应当相同。

u32Type 格式如下表:

宏定义	宏定义值	含义
HI_NET_DEV_AUDIO_TYPE_G711	0	G711
HI_NET_DEV_AUDIO_TYPE_G726	1	G726
HI_NET_DEV_AUDIO_TYPE_AMR	2	AMR

Example:

```
HI_S_Audio sAudio;
   // 注: u32Channel 与 HI_S_STREAM_INFO 一致
   sAudio.u32Channel = HI_NET_DEV_CHANNEL_1;
   sAudio.blFlag = HI_TRUE;
   sAudio.blEnable = HI_TRUE;
   sAudio.u32Type = HI_NET_DEV_AUDIO_TYPE_G711;
   HI_NET_DEV_SetConfig ( lHandle,
                                             // HI_NET_DEV_GetConfig
                      HI_NET_DEV_CMD_AUDIO_PARAM,
                      &sAudio,
                      sizeof(HI_S_Audio));
7, HI NET DEV CMD AUDIO INPUT
   typedef enum HI_AudioInput
                                 //麦克输入
       AUDIO_INPUT_MIC = 100,
                                  //线性输入
       AUDIO_INPUT_LINE = 10
   } HI_E_AudioInput;
   Example:
   HI_S32 audioInput = AUDIO_INPUT_MIC;
   HI_NET_DEV_SetConfig ( lHandle,
                                             // HI_NET_DEV_GetConfig
                      HI_NET_DEV_CMD_AUDIO_INPUT,
                      &audioInput,
                      sizeof(HI_S32));
8、HI_NET_DEV_CMD_RESOLUTION
   typedef struct HI_Resolution
   {
       HI_U32
                  u32Channel;
                                 //通道
       HI BOOL
                  blFlag;
                                  //主次码流标志, 0-次码流, 1 主码流
                  u32Resolution;
                                 //清晰度
       HI_U32
   } HI_S_Resolution;
   注: u32Channel 与 HI_NET_DEV_StartStream 的参数 HI_S_STREAM_INFO 中
   u32Channel一致。获取和设置都应当相同。
   u32Resolution 值如下表:
```

宏定义	值	含义
HI_NET_DEV_RESOLUTION_VGA	0	VGA: 640x480
HI_NET_DEV_RESOLUTION_QVGA	1	QVGA: 320x240
HI_NET_DEV_RESOLUTION_QQVGA	2	QQVGA: 160x120, 160x112
HI_NET_DEV_RESOLUTION_D1	3	D1: 704x576, 704x480
HI_NET_DEV_RESOLUTION_CIF	4	CIF: 352x288, 352x240
HI_NET_DEV_RESOLUTION_QCIF	5	QCIF: 176x144, 176x120,
		176x112
HI_NET_DEV_RESOLUTION_720P	6	720P: 1280x720

HI_NET_DEV_RESOLUTION_Q720	7	Q720: 640x352
HI_NET_DEV_RESOLUTION_ QQ72	8	QQ720: 320x176
HI_NET_DEV_RESOLUTION_ UXGA	9	UXGA: 1600x1200
HI_NET_DEV_RESOLUTION_ 960H	10	960H: 960x576
HI_NET_DEV_RESOLUTION_ Q960H	11	Q960H: 480x288
HI_NET_DEV_RESOLUTION_ QQ960H	12	QQ960H: 240x144
HI_NET_DEV_RESOLUTION_ 1080P	13	1080P: 1920x1080
HI_NET_DEV_RESOLUTION_ 960P	14	960P: 1280x960

Example:

注:分辨率设备支持请参阅附录厂家代码和设备类型定义的 S 字段。

9、HI_NET_DEV_CMD_FREQUENCY

```
typedef enum HI_Frequency {
    FREQ_50HZ_PAL = 50, //50HZ
    FREQ_60HZ_NTSC = 60 //60HZ
} HI_E_Frequency;
```

Example:

注: 附录厂家代码和设备类型定义, 目前不支持的设置频率的设备有 S1, S2 字段。

10、HI_NET_DEV_CMD_PTZ_PARAM

```
typedef struct HI_PTZ
{
    HI_U32
               u32Protocol;
                               //协议
    HI_U32
               u32Address;
                               //地址码,范围[0~255]
    HI_U32
               u32Baud;
                               //波特率
                               //数据位
    HI_U32
               u32DataBit;
    HI_U32
               u32StopBit;
                               //停止位
```

HI_U32 u32Parity; //校验

} HI_S_PTZ;

u32Protocol 协议值如下表:

宏定义	宏定义值	含义
HI_NET_DEV_PTZ_PRO_PELCOD	0	PELCO-D
HI_NET_DEV_PTZ_PRO_PELCOP	1	PELCO-P

u32Baud 波特率数据如下表:

宏定义	宏定义值	含义
HI_NET_DEV_PTZ_B110	110	110
HI_NET_DEV_PTZ_B300	300	300
HI_NET_DEV_PTZ_B1200	1200	1200
HI_NET_DEV_PTZ_B2400	2400	2400
HI_NET_DEV_PTZ_B4800	4800	4800
HI_NET_DEV_PTZ_B9600	9600	9600
HI_NET_DEV_PTZ_B19200	19200	19200
HI_NET_DEV_PTZ_B38400	38400	38400
HI_NET_DEV_PTZ_B57600	57600	57600

u32DataBit 数据位数据如下表:

宏定义	宏定义值	含义
HI_NET_DEV_PTZ_DATA_5	5	
HI_NET_DEV_PTZ_DATA_6	6	
HI_NET_DEV_PTZ_DATA_7	7	
HI_NET_DEV_PTZ_DATA_8	8	

u32StopBit 停止位数据如下表:

宏定义	宏定义值	含义
HI_NET_DEV_PTZ_STOP_1	1	
HI_NET_DEV_PTZ_STOP_2	2	

u32Parity 校验数据如下表:

宏定义	宏定义值	含义
HI_NET_DEV_PTZ_PARITY_NONE	0	无
HI_NET_DEV_PTZ_PARITY_ODD	1	奇校验
HI_NET_DEV_PTZ_PARITY_EVEN	2	偶校验

Example:

HI_S_PTZ sPtz;

sPtz. u32Protocol = HI_NET_DEV_PTZ_PRO_PELCOD;

sPtz. u32Address = 1;

sPtz. u32Baud = HI_NET_DEV_PTZ_B9600;

sPtz. u32DataBit = HI_NET_DEV_PTZ_DATA_8;

sPtz. u32StopBit = HI_NET_DEV_PTZ_STOP_1;

sPtz. u32Parity = HI_NET_DEV_PTZ_PARITY_NONE;

HI_NET_DEV_SetConfig (lHandle, // HI_NET_DEV_GetConfig

HI_NET_DEV_CMD_PTZ_PARAM,

```
sizeof(HI_S_PTZ));
11、HI_NET_DEV_CMD_MD_PARAM
   typedef struct HI_MD_PARAM
   {
       HI U32
                  u32Channel;
                                  //通道
       HI_U32
                  u32Area;
                                  //矩形区域(1~4)
                                  //是否启用
       HI_BOOL
                   blEnable;
       HI_U32
                  u32Sensitivity;
                                  //灵敏度(0~100)
                                  //x 坐标
       HI_U32
                  u32X;
       HI_U32
                  u32Y;
                                  //y 坐标
       HI_U32
                  u32Width;
                                  //矩形宽度
       HI_U32
                   u32Height;
                                  //矩形高度
   } HI_S_MD_PARAM;
   Example:
   HI S MD PARAM sMdParam;
   // 注: u32Channel 与 HI_S_STREAM_INFO 一致
   sMdParam.u32Channel = HI_NET_DEV_CHANNEL_1;
   sMdParam.u32Area = 1;
   sMdParam.bEnable = HI_TRUE;
   sMdParam.u32Sensitivity = 50;
   sMdParam.u32X = 100;
   sMdParam.u32Y = 100;
   sMdParam.u32Width = 200;
   sMdParam.u32Height = 200;
   HI_NET_DEV_SetConfig ( lHandle,
                                             // HI_NET_DEV_GetConfig
                      HI_NET_DEV_CMD_MD_PARAM,
                      &sMdParam,
                      sizeof(HI_S_MD_PARAM));
   注:次码流不支持移动侦测。
12, HI_NET_DEV_CMD_NET_INFO
   typedef struct tagHI_NETINFO
   {
                  aszServerIP[40];
                                      //IP 地址
       HI_CHAR
       HI_CHAR
                   aszNetMask[40];
                                      //子网掩码
                                      //网关
       HI_CHAR
                  aszGateWay[40];
                                      //MAC 地址
       HI_CHAR
                  aszMacAddr[40];
       HI_CHAR
                  aszFDNSIP[40];
                                      //first DNSIP
       HI_CHAR
                  aszSDNSIP[40];
                                      //DNSIP
       HI_S32
                                      //DHCP
                   s32DhcpFlag;
       HI_S32
                                      //DNS 动态分配标识*/
                  s32DnsDynFlag;
```

&sPtz,

```
}HI_S_NETINFO, *PHI_S_NETINFO;
   Example:
   HI_S_NETINFO sNetInfo;
   strcpy(sNetInfo. aszServerIP, "192.168.1.88");
   HI_NET_DEV_SetConfig ( lHandle,
                                              // HI_NET_DEV_GetConfig
                       HI_NET_DEV_CMD_NET_INFO,
                       &sNetInfo,
                       sizeof(HI_S_NETINFO));
13、 HI_NET_DEV_CMD_HTTP_PORT
   typedef struct HI_HTTPPORT
                   u32HttpPort;
       HI_U32
   } HI_S_HTTPPORT;
   Example:
   HI_S_HTTPPORT sHttpPort;
   sHttpPort.u32HttpPort = 80;
   HI_NET_DEV_SetConfig ( lHandle,
                                              // HI_NET_DEV_GetConfig
                       HI_NET_DEV_CMD_HTTP_PORT,
                       &sHttpPort,
                       sizeof(HI_S_HTTPPORT));
14、 HI_NET_DEV_CMD_SERVER_TIME
   设置摄像机端时间
   typedef struct hiSERVERTIME_INFO_S
       HI CHAR sTime[32];
                                  //摄像机时间,格式 2011.03.11.09.12.08
   } HI_S_SERVERTIME;
   sTime 为摄像机的时间,格式为 2011.03.11.09.12.08, 即 2011-3-11 09:12:08
   Example:
   HI_S_SERVERTIME sServerTime;
   memcpy(sServerTime.sTime, "2011.03.11.09.12.08", sizeof(sServerTime.sTimezone));
   HI_NET_DEV_SetConfig ( lHandle,
                           HI_NET_DEV_CMD_SERVER_TIME,
                           &sServerTime,
                           sizeof(HI_S_SERVERTIME));
15、 HI_NET_DEV_CMD_REBOOT
    重启摄像机
   Example:
   HI_NET_DEV_SetConfig (lHandle, HI_NET_DEV_CMD_REBOOT, NULL, 0);
```

```
16、 HI_NET_DEV_CMD_RESET
   恢复出厂设置
   Example:
   HI_NET_DEV_SetConfig (lHandle, HI_NET_DEV_CMD_RESET,NULL,0);
17、 HI_NET_DEV_CMD_NET_EXT
   typedef struct HI_NET_EXT
   {
       HI_S_NETINFO sNetInfo;
       HI_S_HTTPPORT sHttpPort;
   }HI_S_NET_EXT;
   typedef struct HI_HTTPPORT
   {
       HI_U32
                   u32HttpPort;
   } HI_S_HTTPPORT;
   typedef struct tagHI_NETINFO
   {
                                      //IP 地址
                   aszServerIP[40];
       HI_CHAR
                                      //子网掩码
       HI_CHAR
                   aszNetMask[40];
                  aszGateWay[40];
                                      //网关
       HI CHAR
       HI_CHAR
                  aszMacAddr[40];
                                      //MAC 地址
                  aszFDNSIP[40];
                                      //first DNSIP
       HI_CHAR
       HI_CHAR
                  aszSDNSIP[40];
                                      //DNSIP
       HI_S32
                   s32DhcpFlag;
                                      //DHCP
       HI_S32
                                      //DNS 动态分配标识*/
                   s32DnsDynFlag;
   }HI_S_NETINFO, *PHI_S_NETINFO;
   Example:
   HI_S_NET_EXT sNetExt;
   strcpy(sNetExt.sNetInfo. aszServerIP, "192.168.1.88");
   HI_NET_DEV_SetConfig ( lHandle,
                                              // HI_NET_DEV_GetConfig
                       HI_NET_DEV_CMD_NET_EXT,
                       & sNetExt,
                       sizeof(HI_S_NET_EXT));
18, HI_NET_DEV_CMD_ATTR_EXT
   设置输入报警开关
   typedef struct HI_ATTR_EXT
       HI_U32 u32Enable; //1-启用, 0-禁用
```

```
//0-关闭, 1-打开
       HI_U32 u32Flag;
    }HI_S_ATTR_EXT;
   Example:
   HI_S_ATTR_EXT sAttrExt;
   sAttrExt.u32Enable = 1;
   sAttrExt.u32Flag = 0;
   HI_NET_DEV_SetConfig ( lHandle,
                           HI_NET_DEV_CMD_ATTR_EXT,
                           & sAttrExt,
                           sizeof(HI_S_ATTR_EXT));
19、HI_NET_NVR_CMD_NET_EXT
   设置 NVR 网络参数
   typedef struct HI_NET_EXT
       HI_S_NETINFO sNetInfo;
       HI_S_HTTPPORT sHttpPort;
   }HI_S_NET_EXT;
   typedef struct HI_HTTPPORT
   {
       HI U32
                   u32HttpPort;
   } HI_S_HTTPPORT;
   typedef struct tagHI_NETINFO
                   aszServerIP[40];
                                       //IP 地址
       HI_CHAR
       HI_CHAR
                   aszNetMask[40];
                                       //子网掩码
       HI CHAR
                   aszGateWay[40];
                                       //网关
                                       //MAC 地址
       HI_CHAR
                   aszMacAddr[40];
       HI_CHAR
                   aszFDNSIP[40];
                                       //first DNSIP
       HI_CHAR
                   aszSDNSIP[40];
                                       //DNSIP
       HI_S32
                   s32DhcpFlag;
                                       //DHCP
                                       //DNS 动态分配标识*/
       HI_S32
                   s32DnsDynFlag;
    }HI_S_NETINFO, *PHI_S_NETINFO;
   Example:
   HI_S_NET_EXT sNetExt;
   strcpy(sNetExt.sNetInfo. aszServerIP, "192.168.1.88");
   HI_NET_DEV_SetConfig ( lHandle,
                                           // HI_NET_DEV_GetConfig
                           HI_NET_NVR_CMD_NET_EXT,
                           & sAttrExt,
                           sizeof(HI_S_NET_EXT));
```

```
20 HI_NET_NVR_CMD_RTSP_INFO
   设置 NVR rtsp 参数信息
   typedef struct HI_RTSPINFO
   {
       HI_U32 u32RtspPort; //RTSP 端口
       HI U32 u32AuthFlag; //是否启用 RTSP, 1 代表启用, 其他代表不启用
   } HI_S_RTSPINFO;
   Example:
   HI_S_RTSPINFO sRtspInfo;
   sRtspInfo.u32AuthFlag = 1;
   sRtspInfo.u32RtspPort = 554;
   HI_NET_DEV_SetConfig ( lHandle,
                                         // HI_NET_DEV_GetConfig
                          HI_NET_NVR_CMD_RTSP_INFO,
                          & sRtspInfo,
                          sizeof(HI_S_RTSPINFO));
21、HI_NET_NVR_CMD_USER
   设置 NVR 用户信息
   typedef struct HI_USER
       HI_CHAR sUsername[32]; //用户名,用户名只有 admin、user 和 guest
       HI CHAR sPassword[32]; //密码
   } HI_S_USER;
   Example:
   HI_S_USER sUserInfo;
   strcpy(sUserInfo.sUsername, "admin");
   strcpy(sUserInfo. sPassword, "admin");
   HI_NET_DEV_SetConfig ( lHandle,
                          HI NET NVR CMD USER,
                          & sUserInfo,
                          sizeof(HI_S_USER));
22、 HI_NET_NVR_CMD_CHANNEL_INFO
   设置 NVR 通道信息
   typedef struct HI_CHN_INFO
                             //设置通道状态 0-禁用, 1-启用
       HI_U32 u32Enable;
                             //设备 IP 地址
       HI_CHAR sHost[24];
                             //码流,在NVR中暂时不起作用
       HI_BOOL bStream;
                             //端口
       HI_U32 u32Port;
       HI_U32 u32Chn;
                             //通道,在NVR中不支持
       HI_CHAR sUsername[32]; //用户名
       HI_CHAR sPassword[32]; //密码
```

```
}HI_S_CHN_INFO;
   typedef struct hiNVR_CHN
      HI_CHAR sName[32]; //通道名称,字符要求是 UTF-8,
                     //例如中文字符要转成 UTF-8
      HI S CHN INFO sChnInfo;
   }HI_S_NVR_CHN;
   Example:
  HI_S_NVR_CHN sNvrChn;
   strcpy(sNvrChnInfo.sChnInfo.sHost, "192.168.1.20");
   sNvrChn.sChnInfo.u32Port = 80;
   sNvrChn.sChnInfo.u32Enable = 1;
   HI_NET_DEV_SetConfig ( lHandle,
                                  // HI_NET_DEV_GetConfig
                     HI_NET_NVR_CMD_CHANNEL_INFO,
                     & sNvrChn,
                     sizeof(HI S NVR CHN));
   注:调用一次只能获取或设置一个通道,可以配合 HI_NET_DEV_SetChannel 设
置 NVR 的通道再来操作。
   * 通道名称如果是宽字符,要求转换成 UTF-8 格式,如果不是,设置将失败。获
取通道信息返回的名称也是宽字符也是 UTF-8 格式的,需要转换。
23、 HI NET NVR CMD RECORD INFO
  设置 NVR 通道录像信息
   typedef struct HI_RECORD_INFO
      HI_BOOL bStream;
                     //通道录像码流,HI_TRUE-主码流,HI_FALSE-次码流
      HI U32 u32SetupAlarm;
                        //联动录像开关, 0-禁用, 1-启用
                        //输入报警联动开关,0-禁用,1-启用
      HI_U32 u32InputAlarm;
                        //移动侦测联动开关, 0-禁用, 1-启用
      HI_U32 u32MdAlarm;
                          //计划录像录像时间段,7天,没半小时为一个
      HI_CHAR sRecInfo[7][48+1];
                           单元间隔, 如星期一时间内的计划录像时间段
                           为
                           PPPPPPPP");P代表计划录像,N代表不录像。
   }HI_S_RECORD_INFO;
   Example:
   HI_S_RECORD_INFO sRecInfo;
   sRecInfo.bStream = HI_TRUE;
```

```
HI_NET_DEV_SetConfig ( lHandle,
                                    // HI_NET_DEV_GetConfig
                       HI_NET_NVR_CMD_RECORD_INFO,
                       & sRecInfo,
                       sizeof(HI_S_RECORD_INFO));
      注:调用一次只能获取或设置一个通道,可以配合 HI_NET_DEV_SetChannel
设置 NVR 的通道再来操作。
24、 HI NET NVR CMD RECORD SYS
   设置 NVR 全局信息
   typedef struct HI RECORD SYS
   {
                          //录像文件时长[1-30 分钟]
      HI U32 u32RecLen;
      HI_U32 u32AlarmLen;
                          //报警延续时长[5-60 秒]
      HI U32 u32Cover;
                          //磁盘满是否覆盖[0-否, 1-是]
                          //计划录像开关[0-关, 1-开]
      HI_U32 u32PlanRecFlag;
      HI_U32 u32PreRec;
                          //报警预录时长[5 秒]
                          //录像文件格式类型[1-264, 0-AVI]
      HI_U32 u32RecType;
                          //磁盘剩余空间[10-50 G]
      HI_U32 u32DiskRemain;
   }HI S RECORD SYS;
   Example:
   HI_S_RECORD_SYS sNvrRecSys;
   sNvrRecSys.u32RecLen = 10;
   sNvrRecSys.u32PreRec = 1;
   sNvrRecSys.u32AlarmLen = 10;
   . . . . . .
   HI NET DEV SetConfig ( lHandle,
                                        // HI NET DEV GetConfig
                       HI_NET_NVR_CMD_RECORD_SYS,
                       & sNvrRecSys,
                       sizeof(HI_S_RECORD_SYS));
25、HI_NET_NVR_CMD_TIME
   设置 NVR 前端时间
   typedef struct hiSERVERTIME_INFO_S
   {
                            //NVR 时间,格式 20110311091208
      HI_CHAR sTime[32];
   } HI S SERVERTIME;
   sTime 为摄像机的时间,格式为 20110311091208,即 2011-3-11 09:12:08
   Example:
   HI_S_SERVERTIME sServerTime;
   memcpy(sServerTime.sTime, "20110311091208", sizeof(sServerTime.sTimezone));
```

```
HI_NET_DEV_SetConfig ( lHandle,
                                        // HI_NET_DEV_GetConfig
                         HI_NET_NVR_CMD_TIME,
                         &sServerTime,
                         sizeof(HI_S_SERVERTIME));
26、 HI_NET_NVR_CMD_REBOOT
   重启摄像机
   Example:
   HI_NET_DEV_SetConfig (lHandle, HI_NET_NVR_CMD_REBOOT, NULL, 0);
27、 HI_NET_NVR_CMD_RESET
   恢复出厂设置
   Example:
   HI_NET_DEV_SetConfig (lHandle, HI_NET_NVR_CMD_RESET, NULL, 0);
28, HI NET NVR CMD DISK FORMAT
   格式化硬盘
   typedef struct HI DISK FORMAT
       HI_S32 s32DiskNum; //硬盘分区,从1开始,第一块硬盘既是1
   }HI_DISK_FORMAT;
   Example:
   HI_DISK_FORMAT sDisFormat;
   sDiskFormat.s32DiskNum = 1;
   HI_NET_DEV_SetConfig (lHandle,
                       HI_NET_NVR_CMD_DISK_FORMAT,
                       &sDisFormat,
                       Sizeof(HI_DISK_FORMAT));
29、HI_NET_DEV_CMD_WIFI_PARAM
   Wifi 参数设置
   #define WIFI_NET_INFRA 0
   #define WIFI_NET_ADHOC1
   #define WIFI_AUTH_NONE0
   #define WIFI_AUTH_WEP 1
   #define WIFI_AUTH_WPA 2
   #define WIFI_AUTH_WPA23
   #define WIFI_ENC_TKIP
   #define WIFI_ENC_AES
   typedef struct HI_WIFI_PARAM
       HI_CHAR sSsID[32]; //wifi SSID
```

```
//wifi 密钥
        HI_CHAR sKey[32];
                           //wifi 开关, 1-开启 0-关闭
        HI_U32 u32Enable;
                           //加密方式
        HI_U32 u32Auth;
                           //密码类型
       HI U32 u32Enc;
                            //连接模式,1-点对点,0-路由
        HI_U32 u32Mode;
    }HI_S_WIFI_PARAM;
    Example:
    HI_S_WIFI_PARAM sWifi;
    strcpy(sWifi.sSsID, "linksys");
    HI_NET_DEV_SetConfig (lHandle,
                          HI_NET_DEV_CMD_WIFI_PARAM,
                          & sWifi,
                          Sizeof(HI_S_WIFI_PARAM));
30、HI_NET_DEV_CMD_WIFI_CHECK
    Wifi check
    Example:
    HI_S_WIFI_PARAM sWifiParam;
    //memset(&sWifiParam, 0, sizeof(HI_S_WIFI_PARAM));
    strcpy(sWifiParam.sKey, "1234567890");
    strcpy(sWifiParam.sSsID, "linksys");
    sWifiParam.u32Mode = WIFI NET INFRA;
    sWifiParam.u32Auth = WIFI_AUTH_WPA2;
    sWifiParam.u32Enc = WIFI_ENC_AES;
    s32Ret = HI_NET_DEV_SetConfig( m_uiHandle,
                                  HI_NET_DEV_CMD_WIFI_CHECK,
                                  &sWifiParam,
                                  sizeof(HI_S_WIFI_PARAM));
    if(HI_SUCCESS != s32Ret)
    {
        return;
    }
    HI_S32 s32Enable = 0;
    s32Ret = HI_NET_DEV_GetConfig(
                                    m_uiHandle,
                                    HI_NET_DEV_CMD_WIFI_CHECK,
                                    &s32Enable,
                                    sizeof(HI_S32));
    if(HI_SUCCESS != s32Ret)
        MessageBox ("check fail");
```

```
return;
    }
    s32Enable 等于 1 表示 check 成功, 否则失败!
31,
       HI_NET_DEV_CMD_VIDEO_PARAM_EXT
   typedef struct HI_Video_Ext
       HI_U32
                  u32Channel:
                                 //通道
                                 // 0-次码流, 1 主码流, 2-第三码流
       HI_U32
                  u32Stream;
       HI_U32
                  u32Bitrate;
                                 //码率 Kb
       HI_U32
                  u32Frame;
                                 //帧率
       HI_U32
                  u32Iframe;
                                 //主帧间隔(1-300)
                                 //视频编码控制 0-可变码率, 1-固定码率
       HI BOOL
                  blCbr;
                                 //视频编码质量(1-6)
       HI_U32
                   u32ImgQuality;
   } HI_S_Video_Ext;
   注: u32Channel 与 HI_NET_DEV_StartStream 的参数 HI_S_STREAM_INFO 中
   u32Channel一致。获取和设置都应当相同。
    Example:
    HI_S_Video_Ext sVideo;
    // 注: u32Channel 与 HI_S_STREAM_INFO 一致
    sVideo.u32Channel = HI NET DEV CHANNEL 1;
    sVideo.u32Stream = HI_NET_DEV_STREAM_1;
    sVideo.u32Bitrate = 1024;
    sVideo.u32Frame = 25;
    sVideo.u32Iframe = 50;
    sVideo.blCbr = HI_FALSE;
    sVideo.u32ImgQuality = 1;
    HI NET DEV SetConfig ( lHandle,
                                             // HI NET DEV GetConfig
                      HI_NET_DEV_CMD_VIDEO_PARAM_EXT,
                      &sVideo,
                      sizeof(HI_S_Video_Ext));
32,
       HI_NET_DEV_CMD_AUDIO_PARAM_EXT
   typedef struct HI_Audio_Ext
       HI_U32
                   u32Channel;
                                 //通道
                                 // 0-次码流, 1 主码流, 2-第三码流
       HI_U32
                  u32Stream;
                                 //是否采集音频
       HI_BOOL
                  blEnable;
                                 //音频格式
       HI_U32
                   u32Type;
   } HI_S_Audio_Ext;
   注: u32Channel 与 HI_NET_DEV_StartStream 的参数 HI_S_STREAM_INFO 中
   u32Channel一致。获取和设置都应当相同。
```

u32Type 格式如下表:

宏定义	宏定义值	含义
HI_NET_DEV_AUDIO_TYPE_G711	0	G711
HI_NET_DEV_AUDIO_TYPE_G726	1	G726

Example:

33, HI_NET_DEV_CMD_RESOLUTION_EXT

```
typedef struct HI_Resolution_Ext
{
	HI_U32 u32Channel; //通道
	HI_U32 u32Stream; // 0-次码流,1 主码流,2-第三码流
	HI_U32 u32Resolution; //清晰度
} HI_S_Resolution_Ext;
```

注: u32Channel 与 HI_NET_DEV_StartStream 的参数 HI_S_STREAM_INFO 中 u32Channel 一致。获取和设置都应当相同。

u32Resolution 值如下表:

宏定义	值	含义
HI_NET_DEV_RESOLUTION_VGA	0	VGA: 640x480
HI_NET_DEV_RESOLUTION_QVGA	1	QVGA: 320x240
HI_NET_DEV_RESOLUTION_QQVGA	2	QQVGA: 160x120, 160x112
HI_NET_DEV_RESOLUTION_D1	3	D1: 704x576, 704x480
HI_NET_DEV_RESOLUTION_CIF	4	CIF: 352x288, 352x240
HI_NET_DEV_RESOLUTION_QCIF	5	QCIF: 176x144, 176x120,
		176x112
HI_NET_DEV_RESOLUTION_720P	6	720P: 1280x720

Example:

HI_S_Resolution_Ext sResolution;

```
注:分辨率设备支持请参阅附录厂家代码和设备类型定义的 S 字段。
34、
       HI_NET_DEV_CMD_AUDIO_VOLUME_IN
   typedef struct HI_AudioVolume
       HI U32 u32AudioVolume; //音频音量, 范围: 1--100
    } HI_S_AudioVolume;
    Example:
    HI_S_AudioVolume sAuVolume;
    sAuVolume.u32AudioVolume = 80
    HI NET DEV SetConfig ( lHandle,
                                             // HI_NET_DEV_GetConfig
                      HI_NET_DEV_CMD_AUDIO_VOLUME_IN,
                      &sAuVolume,
                      sizeof(HI_S_AudioVolume));
35,
       HI_NET_DEV_CMD_AUDIO_VOLUME_OUT
   typedef struct HI_AudioVolume
       HI_U32 u32AudioVolume; //音频音量,范围: 1--100
   } HI S AudioVolume;
    Example:
    HI_S_AudioVolume sAuVolume;
    sAuVolume.u32AudioVolume = 80
    HI_NET_DEV_SetConfig ( lHandle,
                                             // HI_NET_DEV_GetConfig
                      HI_NET_DEV_CMD_AUDIO_VOLUME_OUT,
                      &sAuVolume,
                      sizeof(HI S AudioVolume));
```

HI_NET_DEV_CMD_RESOLUTION_EXT,

sizeof(HI_S_Resolution_Ext));

&sResolution,

HI_NET_DEV_GetConfig

获取摄像机参数

```
HI_S32 HI_NET_DEV_GetConfig (
HI_U32 u32Handle
HI_U32 u32Command,
HI_VOID* pBuf,
HI_U32 u32BufLen
);
```

Parameters

u32Handle

[IN] 操作句柄

u32 Command

[IN] 操作参数命令

[IN] 探作麥釵命令		
宏定义	宏定义值	含义
HI_NET_DEV_GET_PRODUCT_VENDOR	0x1000	厂商信息
HI_NET_DEV_CMD_DISPLAY	0x1001	图像参数
HI_NET_DEV_CMD_DISPLAY_EXT	0x1002	翻转
HI_NET_DEV_CMD_INFRARED	0x1003	红外
HI_NET_DEV_CMD_VIDEO_PARAM	0x1004	视频参数
HI_NET_DEV_CMD_OSD_PARAM	0x1005	OSD 参数
HI_NET_DEV_CMD_AUDIO_PARAM	0x1006	音频参数
HI_NET_DEV_CMD_AUDIO_INPUT	0x1007	音频输入
HI_NET_DEV_CMD_RESOLUTION	0x1008	图像分辨率
HI_NET_DEV_CMD_FREQUENCY	0x1009	频率
HI_NET_DEV_CMD_PTZ_PARAM	0x1010	云台信息
HI_NET_DEV_CMD_MD_PARAM	0x1011	移动报警信息
HI_NET_DEV_CMD_NET_INFO	0x1012	网络配置信息
HI_NET_DEV_CMD_HTTP_PORT	0x1013	网页端口号
HI_NET_DEV_CMD_DEVICE_INFO	0x1014	设备信息
HI_NET_DEV_CMD_PRODUCTID	0x1015	产品 ID
HI_NET_DEV_CMD_USERNUM	0x1016	用户连接数
HI_NET_DEV_CMD_SERVER_TIME	0x1017	获取摄像机时间
HI_NET_DEV_CMD_NET_EXT	0x1022	获取网络参数
HI_NET_DEV_CMD_ATTR_EXT	0x1026	获取输入报警参数
HI_NET_NVR_CMD_NET_EXT	0x1050	NVR 网络参数
HI_NET_NVR_CMD_RTSP_INFO	0x1051	NVR rtsp 参数
HI_NET_NVR_CMD_USER	0x1052	NVR 用户参数
HI_NET_NVR_CMD_CHANNEL_INFO	0x1053	NVR 通道信息
HI_NET_NVR_CMD_SEARCH	0x1055	NVR 搜索 NVR 网
		络中的摄像机
HI_NET_NVR_CMD_RECORD_INFO	0x1056	NVR 通道录像参数
HI_NET_NVR_CMD_RECORD_SYS	0x1057	NVR 全局参数
HI_NET_NVR_CMD_TIME	0x1058	NVR 时间参数
HI_NET_NVR_CMD_RECORD_STATE	0x1061	NVR 录像状态
HI_NET_NVR_CMD_DISK_INFO	0x1062	NVR 硬盘状态
HI_NET_NVR_CMD_RECORD_STATE_EX	0x1064	NVR 录像状态
HI_NET_DEV_CMD_WIFI_PARAM	0x1030	WIFI 参数设置
HI_NET_DEV_CMD_WIFI_SEARCH	0x1031	WIFI 搜索
HI_NET_DEV_CMD_WIFI_CHECK	0x1035	WIFI check
HI_NET_DEV_CMD_VIDEO_PARAM_EXT	0x1047	视频参数(扩展)
HI_NET_DEV_CMD_AUDIO_PARAM_EXT	0x1048	音频参数(扩展)

HI_NET_DEV_CMD_RESOLUTION_EXT	0x1049	分辨率参数(扩展)
HI_NET_DEV_CMD_AUDIO_VOLUME_IN	0x1070	音频输入音量
HI_NET_DEV_CMD_AUDIO_VOLUME_OUT	0x1071	音频输出音量

pBuf

[OUT] 获取数据

u32BufLen

[IN] 数据长度

Return Values

HI_SUCCESS 表示成功,HI_ FAILURE 表示失败。

Remarks

获取相关信息用到的结构体与设置的结构体相同,请查阅 <u>HI_NET_DEV_SetConfig</u> 中相关结构体的定义,设置中没有用到的结构体:

```
1、HI_NET_DEV_GET_PRODUCT_VENDOR
```

2、HI_NET_DEV_CMD_DEVICE_INFO

```
typedef struct tagHI_DEVICE_INFO
{
   HI_CHAR aszServerSerialNumber[40 + 1];
                                          //设备序列号
   HI CHAR aszServerSoftVersion[64 + 1];
                                          //软件版本
   HI_CHAR aszServerName[40 + 1];
                                          //服务器名称
   HI_CHAR aszServerModel[40 + 1];
                                          //型号
   HI_CHAR aszStartDate[40 + 1];
                                          //系统启动日期时间
   HI_S32 s32ConnectState;
                                          //网络连接状态
}HI_DEVICE_INFO, *PHI_DEVICE_INFO;
Example:
HI_DEVICE_INFO sDeviceInfo;
HI_NET_DEV_GetConfig ( lHandle,
                   HI_NET_DEV_CMD_DEVICE_INFO,
                   &sDeviceInfo,
                   sizeof(HI_DEVICE_INFO));
```

```
3、HI_NET_DEV_CMD_PRODUCTID
       产品 ID 用字符串表示。
       Example:
       HI CHAR sID[64] = \{0\};
       HI_NET_DEV_GetConfig
                             (lHandle,
                                       HI_NET_DEV_CMD_PRODUCTID,
                                                                     sID,
sizeof(sID));
   4、HI_NET_DEV_CMD_USERNUM
       获取用户数据用到 int 来获取即可。
       Example:
       int nNum = 0;
       HI_NET_DEV_GetConfig (lHandle, HI_NET_DEV_CMD_USERNUM, &nNum,
sizeof(int));
   5、HI_NET_DEV_CMD_SERVER_TIME
       获取摄像机端时间
       typedef struct hiSERVERTIME_INFO_S
                                    //摄像机时间,格式 20110311091208
           HI_CHAR sTime[32];
       } HI_S_SERVERTIME;
       sTime 为摄像机的时间,格式为 20110311091208,即 2011-3-11 09:12:08
       Example:
       HI S SERVERTIME sServerTime;
       HI_NET_DEV_GetConfig
                             (lHandle,
                                       HI_NET_DEV_CMD_SERVER_TIME,
                                                                       &
   sServerTime, sizeof(HI_S_SERVERTIME));
   6、HI_NET_NVR_CMD_NET_EXT
      获取 NVR 网络参数
      typedef struct HI_NET_EXT
      {
           HI_S_NETINFO sNetInfo;
           HI_S_HTTPPORT sHttpPort;
      }HI_S_NET_EXT;
      typedef struct HI_HTTPPORT
                      u32HttpPort;
           HI_U32
      } HI_S_HTTPPORT;
      typedef struct tagHI_NETINFO
                      aszServerIP[40];
                                        //IP 地址
           HI_CHAR
```

//子网掩码

//网关

aszNetMask[40];

aszGateWay[40];

HI CHAR

HI CHAR

```
//MAC 地址
       HI_CHAR
                  aszMacAddr[40];
       HI_CHAR
                  aszFDNSIP[40];
                                     //first DNSIP
                  aszSDNSIP[40];
                                     //DNSIP
       HI_CHAR
                  s32DhcpFlag;
       HI_S32
                                     //DHCP
       HI_S32
                  s32DnsDynFlag;
                                     //DNS 动态分配标识*/
    }HI_S_NETINFO, *PHI_S_NETINFO;
   Example:
   HI_S_NET_EXT sNetExt;
   HI_NET_DEV_GetConfig ( lHandle,
                          HI_NET_NVR_CMD_NET_EXT,
                          & sAttrExt,
                          sizeof(HI_S_NET_EXT));
7、HI_NET_NVR_CMD_RTSP_INFO
   获取 NVR rtsp 参数信息
   typedef struct HI_RTSPINFO
       HI U32 u32RtspPort; //RTSP 端口
       HI_U32 u32AuthFlag; //是否启用 RTSP, 1 代表启用, 其他代表不启用
    } HI_S_RTSPINFO;
   Example:
   HI_S_RTSPINFO sRtspInfo;
   HI_NET_DEV_GetConfig ( lHandle,
                          HI_NET_NVR_CMD_RTSP_INFO,
                          & sRtspInfo,
                          sizeof(HI_S_RTSPINFO));
8, HI_NET_NVR_CMD_USER
   获取 NVR 用户信息
   typedef struct HI_USER
       HI_CHAR sUsername[32]; //用户名,用户名只有 admin、user 和 guest
       HI_CHAR sPassword[32]; //密码
    } HI_S_USER;
   typedef struct HI_USERINFO
       HI_S_USER sUser[3]; //用户名只有 admin、user 和 guest
    } HI_S_USERINFO;
   Example:
   HI_S_USERINFO sUserInfo;
   HI_NET_DEV_GetConfig ( lHandle,
                          HI_NET_NVR_CMD_USER,
                          & sUserInfo,
```

sizeof(HI_S_USERINFO));

```
9、HI_NET_NVR_CMD_CHANNEL_INFO
   获取 NVR 通道信息
   typedef struct HI_CHN_INFO
   {
                          //设置通道状态 0-禁用, 1-启用
      HI U32 u32Enable;
                          //设备 IP 地址
      HI_CHAR sHost[24];
                          //码流,在NVR 中暂时不起作用
      HI BOOL bStream;
                          //端口
      HI_U32 u32Port;
                          //通道,在NVR中不支持
      HI_U32 u32Chn;
      HI_CHAR sUsername[32]; //用户名
      HI_CHAR sPassword[32]; //密码
   }HI S CHN INFO;
   Example:
   HI_S_CHN_INFO sNvrChnInfo;
   HI_NET_DEV_GetConfig ( lHandle,
                       HI NET NVR CMD CHANNEL INFO,
                       & sNvrChnInfo,
                       sizeof(HI_S_CHN_INFO));
      注:调用一次只能获取或设置一个通道,可以配合 HI_NET_DEV_SetChannel
设置 NVR 的通道再来操作。
10, HI NET NVR CMD RECORD INFO
   获取 NVR 通道录像信息
   typedef struct HI_RECORD_INFO
      HI_BOOL bStream;
                       //通道录像码流,HI_TRUE-主码流,HI_FALSE-次码流
      HI U32 u32SetupAlarm;
                          //联动录像开关, 0-禁用, 1-启用
                          //输入报警联动开关,0-禁用,1-启用
      HI_U32 u32InputAlarm;
                          //移动侦测联动开关, 0-禁用, 1-启用
      HI_U32 u32MdAlarm;
                             //计划录像录像时间段,7天,没半小时为一个
      HI_CHAR sRecInfo[7][48+1];
                             单元间隔, 如星期一时间内的计划录像时间段
                             为
```

}HI_S_RECORD_INFO;

Example:

HI_S_RECORD_INFO sRecInfo; HI_NET_DEV_GetConfig (lHandle,

像。

 HI_NET_NVR_CMD_RECORD_INFO,
& sRecInfo,
sizeof(HI_S_RECORD_INFO));

注:调用一次只能获取或设置一个通道,可以配合 <u>HI_NET_DEV_SetChannel</u> 设置 NVR 的通道再来操作。

```
11, HI_NET_NVR_CMD_RECORD_SYS
   获取 NVR 全局信息
   typedef struct HI_RECORD_SYS
                            //录像文件时长[1-30 分钟]
       HI_U32 u32RecLen;
       HI_U32 u32AlarmLen;
                            //报警延续时长[5-60 秒]
                            //磁盘满是否覆盖[0-否, 1-是]
       HI U32 u32Cover;
       HI_U32 u32PlanRecFlag; //计划录像开关[0-关, 1-开]
       HI_U32 u32PreRec;
                            //报警预录时长[1-5 秒]
       HI_U32 u32RecType;
                            //录像文件格式类型[1-264, 0-AVI]
       HI U32 u32DiskRemain; //磁盘剩余空间[1-10 G]
   }HI_S_RECORD_SYS;
   Example:
   HI_S_RECORD_SYS sNvrRecSys;
   HI_NET_DEV_GetConfig ( lHandle,
                         HI NET NVR CMD RECORD SYS,
                         & sNvrRecSys,
                         sizeof(HI_S_RECORD_SYS));
12、 HI_NET_NVR_CMD_TIME
   获取 NVR 前端时间
   typedef struct hiSERVERTIME_INFO_S
                               //NVR 时间,格式 20110311091208
       HI_CHAR sTime[32];
   } HI_S_SERVERTIME;
   sTime 为摄像机的时间,格式为 20110311091208,即 2011-3-11 09:12:08
   Example:
   HI S SERVERTIME sServerTime;
   HI_NET_DEV_GetConfig ( lHandle,
                         HI_NET_NVR_CMD_TIME,
                         &sServerTime,
   sizeof(HI_S_SERVERTIME));
13、HI_NET_NVR_CMD_SEARCH
   搜索与 NVR 在一个局域网内的摄像机
   typedef struct HI_DEVINFO
```

```
//IP 地址
      HI_CHAR sHost[32];
                               //端口
      HI U32 u32Port;
   }HI_S_DEVINFO;
   #define MAX_SEARCH_NUM 64
                               //最大搜索设备的书
   typedef struct HI_SEARCH_INFO
                               //返回设备的数量
      HI_U32 u32Num;
      HI S DEVINFO sDevInfo[MAX SEARCH NUM]; //设备信息
   }HI_S_SEARCH_INFO;
   Example:
   HI_S_SEARCH_INFO sSearchInfo;
   HI_NET_DEV_GetConfig ( lHandle,
                        HI NET NVR CMD SEARCH,
                        &sSearchInfo,
                        sizeof(HI_S_SEARCH_INFO));
14、 HI_NET_NVR_CMD_RECORD_STATE
   HI NET NVR CMD RECORD STATE EX
   获取录像状态,两者的区别是 EX 可以同时获取多个通道的状态
  typedef struct HI_REC_STATE
   {
                        //录像连接状态 0-表示没有连接, 1-表示连接
      HI U32 u32link;
      HI_U32 u32Record;
                        //录像状态 0-无录像, 2-报警录像, 3-计划录像
   }HI_S_REC_STATE;
   Example:
   HI_S_REC_STATE sRecState;
   HI_NET_DEV_GetConfig ( lHandle,
                        HI_NET_NVR_CMD_RECORD_STATE,
                        &sRecState,
                        sizeof(HI_S_REC_STATE));
   如果想一次获取多通道状态,可以定义一个结构体如下:
   typedef struct HI_STATES
      HI_S_REC_STATE sRecState[16]; //16 个通道同时获取
   }HI_S_STATES;
   Example:
   HI_S_STATES sRecState;
   HI_NET_DEV_GetConfig ( lHandle,
                        HI_NET_NVR_CMD_RECORD_STATE_EX,
                        &sRecState,
                        sizeof(HI_S_STATES));
```

注:调用一次只能获取或设置一个通道,可以配合 <u>HI_NET_DEV_SetChannel</u> 设置 NVR 的通道再来操作。

```
15、HI_NET_NVR_CMD_DISK_INFO
   获取硬盘信息
   typedef struct HiDISK
       HI_U32 u32Total;
                          //硬盘总大小, 单位: KB
                          //硬盘可用大小, 单位: KB
       HI U32 u32Free;
   }HI_S_DISK;
   #define MAX_DISK_NUM 20
                                 //最大 20 块硬盘
   typedef struct HI_DISK_INFO
                                         //硬盘总数
       HI_S32 s32Num;
                                         //硬盘相关信息
       HI_S_DISK sDisk[MAX_DISK_NUM];
   }HI_S_DISK_INFO;
   Example:
   HI_S_DISK_INFO sDiskInfo;
   HI_NET_DEV_GetConfig ( lHandle,
                          HI_NET_NVR_CMD_DISK_INFO,
                          & sDiskInfo,
                          sizeof(HI_S_DISK_INFO));
16,
       HI_NET_DEV_CMD_WIFI_SEARCH
   查找 WIFI
   #define WIFI_NET_INFRA 0
   #define WIFI_NET_ADHOC1
   #define WIFI_AUTH_NONE0
   #define WIFI_AUTH_WEP 1
   #define WIFI_AUTH_WPA 2
   #define WIFI_AUTH_WPA23
   #define WIFI_ENC_TKIP
                          0
   #define WIFI_ENC_AES
   typedef struct HI_WFPT
       HI_CHAR sEssID[32];
       HI_S32 s32Chn;
       HI_S32 s32Rssi;
       HI_U32 u32Enc;
       HI_U32 u32Auth;
```

```
HI_U32 u32Net;
}HI_S_WFPT;
#define MAX_WFPT 64
typedef struct HI_WIFI_INFO
{
    HI S32 s32Num;
    HI_S_WFPT sWfPt[MAX_WFPT];
}HI S WIFI INFO;
Example:
HI_S_WIFI_INFO sWifiInfo;
memset(&sWifiInfo, 0, sizeof(HI_S_WIFI_INFO));
s32Ret = HI_NET_DEV_GetConfig( m_uiHandle,
                                  HI_NET_DEV_CMD_WIFI_SEARCH,
                                  &sWifiInfo,
                                  sizeof(HI_S_WIFI_INFO));
if(HI SUCCESS != s32Ret)
{
    MessageBox("Wifi seach fail!");
    return;
}
for(int i=0; i<sWifiInfo.s32Num; i++)
    printf("SSID:%s, AUTH:%d, ENC:%d, NET:%d\n",
        sWifiInfo.sWfPt[i].sEssID,
        sWifiInfo.sWfPt[i].u32Auth,
        sWifiInfo.sWfPt[i].u32Enc,
        sWifiInfo.sWfPt[i].u32Net);
}
```

5.6 云台控制

摄像机是否支持云台属性,可以通过获取 HI_NET_DEV_GET_PRODUCT_VENDOR 中 sProduct 的 Z 字段判断,具体请参阅附录厂家代码和设备类型定义章节。

HI_NET_DEV_PTZ_Ctrl_Standard

云台控制操作,设备含有 Z0 字段的设备不支持。

```
HI_S32 HI_NET_DEV_PTZ_Ctrl_Standard (
HI_U32 u32Handle
HI_U32 u32Command,
HI_U32 u32Speed
);
```

Parameters

u32Handle

[IN] 操作句柄

u32Command

[IN] 云台控制命令

宏定义	宏定义值	含义
HI_NET_DEV_CTRL_PTZ_STOP	0x3000	停止云台
HI_NET_DEV_CTRL_PTZ_UP	0x3001	云台上仰
HI_NET_DEV_CTRL_PTZ_DOWN	0x3002	云台下俯
HI_NET_DEV_CTRL_PTZ_LEFT	0x3003	云台左转
HI_NET_DEV_CTRL_PTZ_RIGHT	0x3004	云台右转
HI_NET_DEV_CTRL_PTZ_ZOOMIN	0x3005	焦距变大(倍率变大)
HI_NET_DEV_CTRL_PTZ_ZOOMOUT	0x3006	焦距变小(倍率变小)
HI_NET_DEV_CTRL_PTZ_FOCUSIN	0x3007	焦点前调
HI_NET_DEV_CTRL_PTZ_FOCUSOUT	0x3008	焦点后调
HI_NET_DEV_CTRL_PTZ_APERTUREIN	0x3009	光圈变小
HI_NET_DEV_CTRL_PTZ_APERTUREOUT	0x3010	光圈变大

u32Speed

[IN] 速度

#define HI_NET_DEV_CTRL_PTZ_SPEED_MAX 0x3F //最大速度 #define HI_NET_DEV_CTRL_PTZ_SPEED_MIN 0x00 //最小速度

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

Remarks

通过厂商 ID 的 Z 字段判断是否支持该属性。HI_S_ProductVendor 中 sProduct 值。

$HI_NET_DEV_PTZ_Ctrl_StandardEx$

云台控制操作扩展,单步执行。

```
HI_S32 HI_NET_DEV_PTZ_Ctrl_StandardEx (
HI_U32 u32Handle
HI_U32 u32Command,
);
```

Parameters

u32Handle

[IN] 操作句柄

u32Command

[IN] 云台控制命令

宏定义	宏定义值	含义
HI_NET_DEV_CTRL_PTZ_STOP	0x3000	停止云台

HI_NET_DEV_CTRL_PTZ_UP	0x3001	云台上仰
HI_NET_DEV_CTRL_PTZ_DOWN	0x3002	云台下俯
HI_NET_DEV_CTRL_PTZ_LEFT	0x3003	云台左转
HI_NET_DEV_CTRL_PTZ_RIGHT	0x3004	云台右转
HI_NET_DEV_CTRL_PTZ_ZOOMIN	0x3005	焦距变大(倍率变大)
HI_NET_DEV_CTRL_PTZ_ZOOMOUT	0x3006	焦距变小(倍率变小)
HI_NET_DEV_CTRL_PTZ_FOCUSIN	0x3007	焦点前调
HI_NET_DEV_CTRL_PTZ_FOCUSOUT	0x3008	焦点后调
HI_NET_DEV_CTRL_PTZ_APERTUREIN	0x3009	光圈变小
HI_NET_DEV_CTRL_PTZ_APERTUREOUT	0x3010	光圈变大

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

Remarks

云台控制扩展用于单步执行单步移动。

HI_NET_DEV_PTZ_Ctrl_Preset

云台预置点操作

```
HI_S32 HI_NET_DEV_PTZ_Ctrl_Preset (
HI_U32 u32Handle
HI_U32 u32Command,
HI_U32 u32Preset
);
```

Parameters

u32Handle

[IN] 操作句柄

u32Command

[IN] 云台预置点控制命令

宏定义	宏定义值	含义
HI_NET_DEV_CTRL_PTZ_GOTO_PRESET	0x3015	转到预置点
HI_NET_DEV_CTRL_PTZ_SET_PRESET	0x3016	设置预置点
HI_NET_DEV_CTRL_PTZ_CLE_PRESET	0x3017	清除预置点

u32Preset

[IN] 预置点

#define HI_NET_DEV_CTRL_PTZ_PRESET_MAX 255 #define HI_NET_DEV_CTRL_PTZ_PRESET_MIN 0

Remarks

通过厂商 ID 的 Z 字段判断是否支持该属性。HI_S_ProductVendor 中 sProduct 值。

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

HI_NET_DEV_PTZ_Ctrl_Extend

云台控制扩展

```
HI_S32 HI_NET_DEV_PTZ_Ctrl_Extend (
HI_U32 u32Handle
HI_U32 u32Command,
);
```

Parameters

u32Handle

[IN] 操作句柄

u32Command

[IN] 云台控制命令

宏定义	宏定义值	含义
HI_NET_DEV_CTRL_PTZ_LIGHT_ON	0x3021	灯光开
HI_NET_DEV_CTRL_PTZ_LIGHT_OFF	0x3022	灯光关
HI_NET_DEV_CTRL_PTZ_WIPER_ON	0x3023	雨刷开
HI_NET_DEV_CTRL_PTZ_WIPER_OFF	0x3024	雨刷关
HI_NET_DEV_CTRL_PTZ_AUTO_ON	0x3025	自动开
HI_NET_DEV_CTRL_PTZ_AUTO_OFF	0x3026	自动关
HI_ NET_DEV_CTRL_PTZ_HOME	0x3027	回到原点
HI_ NET_DEV_CTRL_PTZ_CRUISE_V	0x3028	上下巡航
HI_NET_DEV_CTRL_PTZ_CRUISE_H	0x3029	左右巡航

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

Remarks

通过厂商 ID 的 Z 字段判断是否支持该属性。HI_S_ProductVendor 中 sProduct 值。

$HI_NET_DEV_PTZ_Fully_Trans$

透明云台操作

```
HI_S32 HI_NET_DEV_PTZ_Fully_Trans (
    HI_U32    u32Handle
    HI_CHAR* psBuf,
    HI_U32    u32BufLen
);
```

Parameters

```
u32Handle
[IN] 操作句柄
psBuf
```

```
[IN] 存放云台控制码缓冲区的指针
u32BufLen
[IN] 云台控制码的长度,
#define HI_NET_DEV_CTRL_PTZ_FT_BUF_LEN 64
```

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

5.7 对讲

HI_NET_DEV_StartVoice

透明云台操作

```
HI_S32 HI_NET_DEV_StartpVoice (
HI_U32 u32Handle,
HI_U32 u32AudioType
);
```

Parameters

u32Handle

[IN] 操作句柄

u32AudioType

[IN] 音频类型(1—G711, 4—G726)目前仅支持 G711 和 G726

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

Remarks

G711 音频属性:

struAAttr.eAEncode = PLAYERSDK_AUDIO_CODEC_FORMAT_G711A; struAAttr.lBitRate = 64000;= 8000;struAAttr.lSamplesPerSec struAAttr.lBitsPerSample = 8;struAAttr.lBlockAlign = 1;struAAttr.lChannels = 1;= 0;struAAttr.length struAAttr.lFrameFlag = 0;struAAttr.pReserved = NULL;

G726 音频属性:

struAAttr.eAEncode = PLAYERSDK_AUDIO_CODEC_FORMAT_G726;

struAAttr.lBitRate = 16000; struAAttr.lSamplesPerSec = 8000; struAAttr.lBitsPerSample = 2; struAAttr.lBlockAlign = 1; struAAttr.lChannels = 1;

```
struAAttr.length = 0;

struAAttr.lFrameFlag = 0;

struAAttr.pReserved = NULL;
```

HI_NET_DEV_StopVoice

透明云台操作

```
HI_S32 HI_NET_DEV_StopVoice (
HI_U32 u32Handle
);
```

Parameters

u32Handle

[IN] 操作句柄

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

HI_NET_DEV_SendVoiceData

透明云台操作

```
HI_S32 HI_NET_DEV_SendVoiceData (
HI_U32 u32Handle
HI_CHAR *psBuf,
HI_U32 u32BufLen,
HI_U64 u64Pts
);
```

Parameters

u32Handle [IN] 操作句柄

psBuf

[IN] 音频数据 u32BufLen

[IN] 数据长度的长度,

u64Pts

[IN] 时间戳

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

Remarks

发送给摄像机的音频格式要求与摄像机端音频的类型相一致,如:如果摄像机端音频类型为 G711,发送过去的音频为 G711 压缩 8K、64 位、单声道数据;如果摄像机端音频类型为 G726,发送过去的音频为 G726 压缩 8K、16 位、单声道数据。

非海思解码库编码的音频需要在每个音频包前加入 4 个字节

G726: 0x00 0x01 0x14 0x00 G711: 0x00 0x01 0x50 0x00

5.8 录像抓拍

回调函数回调出来的复合流可以直接录制到文件当中,文件的播放可以用播放器直接播放。复合录像为自定义格式,通过网络库获取的数据保存为文件即可,具体格式如下:

Example:

```
FILE *pFile = NULL;
HI_S32 OnStreamCallback(
                               //网络库实时数据回调
       HI_U32 u32Handle,
                               //句柄
       HI U32 u32DataType,
                               //数据类型,视频或音频数据或音视频复合数据
       HI_U8* pu8Buffer,
                               //数据包含帧头
                               //数据长度
        HI_U32 u32Length,
                               //用户数据
       HI_VOID* pUserData)
{
    if (u32DataType == HI_NET_DEV_SYS_DATA)
        if (pFile != NULL)
        {
           fclose(pFile);
           pFile = NULL;
        }
        pFile = fopen("d://video1.hx", "ab+");
        if (NULL == pFile)
           return;
        fwrite(pu8Buffer, 1, u32Length, pFile);
    }
    else if (u32DataType == HI_NET_DEV_AV_DATA)
        if (NULL != pFile)
           fwrite(pu8Buffer, 1, u32Length, pFile);
    }
```

其中 u32DataType 类型为 HI_NET_DEV_SYS_DATA 时为流信息 HI_S_SysHeader,为 HI_NET_DEV_AV_DATA 时数据中包含了帧头信息 HI_S_AVFrame 和数据块,数据块的长度和 HI_S_AVFrame 的 u32AVFrameLen 一致,保存后文件结构如下:

HI_S_SysHeader

HI_S_AVFrame

}

```
数据块
HI_S_AVFrame
数据块
......
HI_S_AVFrame
数据块
HI_S_AVFrame
数据块
```

注:上述例子是在有数据就开始录像,如果想要在特定时间段录像可以将HI_S_SysHeader 结构体保存下来,录像开始时将HI_S_SysHeader 保存到文件的最前面,然后再存储实时流数据即可。

回调数据请查阅 HI_NET_DEV_SetStreamCallBack 函数的使用。

自定义格式录像在播放库中打开可以直接播放。更详细的录像调用请参阅播放库中的 DEMO。

HI_NET_DEV_StartRecord

AVI 录像

```
HI_S32 HI_NET_DEV_StartRecord (
HI_U32 u32Handle,
HI_CHAR* psPath,
HI_U32 u32Type,
HI_U32 u32Flag
);
```

Parameters

```
u32Handle
```

[IN] 操作句柄

psPath

[IN] 路径+文件名

u32Type

[IN] 录像类型

#define HI_NET_DEV_VIDEO_AVI 0 //AVI #define HI_NET_DEV_VIDEO_ASF 1 //ASF #define HI_NET_DEV_VIDEO_264 2 //自定义格式

u32Flag

[IN] 保留字段,可直接填写为0

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

HI_NET_DEV_StopRecord

停止 AVI 录像

```
HI_S32 HI_NET_DEV_StopRecord (
HI_U32 u32Handle
);
```

Parameters

u32Handle

[IN] 操作句柄

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

$HI_NET_DEV_GetRecordState$

获取录像状态

```
HI_S32 HI_NET_DEV_GetRecordState (
HI_U32 u32Handle
);
```

Parameters

u32Handle

[IN] 操作句柄

Return Values

HI_SUCCESS 表示正在录像,HI_FAILURE 表示没有录像。

HI_NET_DEV_SnapJpeg

网络抓拍

Parameters

```
u32Handle
```

[IN] 操作句柄

pu8Data

[IN] 内存数据, JPG 格式

s32BufLen

[IN] 申请内存数据的长度,不能小于 1024 字节

pSize

[IN] 返回数据大小

HI SUCCESS 表示成功,HI FAILURE 表示失败。

Remarks

网络抓拍每秒抓拍最多抓取2张图片。

网络抓拍实现抓取网络图像,保存 JPG 格式的数据到内存中,接口再登录 (HI NET DEV Login)成功后即可使用,申请的内存在外部进行,申请内存大小不能小于:

#define HI_NET_DEV_SNAP_BUF_LEN_MIN 1024

```
具体用法如下:
char *sData = (char*)malloc(1024*1024);
int nSize = 0;
s32Ret = HI_NET_DEV_SnapJpeg(m_uiHandle, (HI_U8*)sData, 1024*1024, &nSize);
if(s32Ret == HI_SUCCESS)
{
    FILE *fp = fopen("D:\\photo.jpg", "wb+");
    if( !fp )
        free(sData);

    fwrite((const char*)sData, 1, nSize, fp);
    fclose( fp );
}
free(sData);
sData = NULL;
```

5.9 设置操作通道

用户登录后,在不用请求音视频流的情况下,可以设置设备端的参数,默认设置的是第一通道。如果前端设备是多通道的设备(如 NVR),可以调用 HI_NET_DEV_SetChannel 设置为当前通道,即可对通道进行参数设置,云台控制等操作。

HI_NET_DEV_SetChannel

设置当前操作通道

```
HI_S32 HI_NET_DEV_SetChannel (
HI_U32 u32Handle,
HI_U32 u32Channel
);
```

Parameters

u32Handle

[IN] 操作句柄

u32Channel

[IN] 通道+码流,通道从 1 开始,格式: 通道*10+1 或 通道*10+2,1 代表主码流,2 代表次码流,如 11 即第一通道主码流,92 第九通道次码流

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

HI_NET_DEV_GetChannel

获取当前操作通道

```
HI_S32 HI_NET_DEV_GetChannel (
HI_U32 u32Handle
);
```

Parameters

u32Handle

[IN] 操作句柄

Return Values

返回值返回的是通道,通道从1开始,格式:通道*10+1 或 通道*10+2,1 代表主码流,2 代表次码流,如 11 即第一通道主码流,92 第九通道次码流

5.10 解码器

解码器调用顺序

HI_NET_DEV_Login //登陆解码器
HI_NET_DEV_SetDataCallBack //设置状态回调
HI_NET_DEV_StartStream //开始解码器,保持连接和获取当前状态
......
HI_NET_DEV_StartDec //解码器操作
......
HI_NET_DEV_StopStream //停止
HI_NET_DEV_Logout //取消登陆

解码器设置状态回调的目的是返回当前解码器各个通道中的状态,如回调中u32DataType的值为3,字符串为012000000 表示第一通道当前没有解码,第二通道当前为动态解码,第三通道当前正在轮巡,即字符的每一个字节表示为:0没有解码,1动态解码,2轮巡,回调的频率是每0.5秒一次。

另外可以调用 HI_NET_DEV_SetEventCallBack 实时联系与解码器的连接状态。

HI_NET_DEV_GetDisplayCfg

获取解码器系统信息

```
HI_S32 HI_NET_DEV_GetDisplayCfg (
HI_U32 u32Handle,
HI_S_DISPLAY_CFG *pDisplayCfg
);
```

```
Parameters
   u32Handle
       [IN] 操作句柄
   pDisplayCfg
       [OUT] 解码器信息
Return Values
       HI_SUCCESS 表示成功,HI_ FAILURE 表示失败。
Struct
   typedef struct hiDISPLAY_CFG
       VIDEO_MODE_E eVideoMode;
                                      // CVBS[0 或 1],VGA[9 或 10]
                                      //通道分割
       PICTURE_NUM_E
                        ePictureNum;
                                      //显示设备 VGA 或 CVBS
       DISPLAY_TYPE_E
                        eDpyType;
       DISPLAY_MODE_E
                        eDpyMode;
                                      // P、N 制
       DISPLAY_FLAG_E
                        eDpyFlag;
                                      //显示模式:满屏或按比例显示
   } HI_S_DISPLAY_CFG;
   typedef enum{
                            //单画面分割
       PICTURE_NUM_1 = 1,
       PICTURE NUM 4 = 4,
                            //4 画面分割
       PICTURE_NUM_9 = 9,
                            //9 画面分割
       PICTURE_NUM_BUTT
   }PICTURE_NUM_E;
   typedef enum{
       DISPLAY_TYPE_VGA = 0,
                               //VGA
       DISPLAY TYPE CVBS = 2,
                               //CVBS
       DISPLAY_TYPE_BUTT
   }DISPLAY_TYPE_E;
   typedef enum{
                               //P 制
       DISPLAY_MODE_PAL = 25,
       DISPLAY_MODE_NTSC= 30, //N 制
       DISPLAY_MODE_BUTT
   }DISPLAY_MODE_E;
   typedef enum{
                                      //P制,只有在CVBS才能设置
       VIDEO_MODE_PAL
                               = 0,
       VIDEO_MODE_NTSC
                               = 1,
                                      //N制,只有在CVBS才能设置
```

//只有在 VGA 才能设置

 $VIDEO_MODE_1280x1024_60 = 9,$

HI_NET_DEV_SetDisplayCfg

设置解码器系统信息

```
HI_S32 HI_NET_DEV_SetDisplayCfg (
HI_U32 u32Handle,
HI_S_DISPLAY_CFG *pDisplayCfg
);
```

Parameters

u32Handle [IN] 操作句柄 pDisplayCfg [IN] 解码器信息

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

HI_NET_DEV_StartDec

启用动态解码

```
HI_S32 HI_NET_DEV_StartDec (
HI_U32 u32Handle,
HI_U32 u32Channel,
HI_S_CHN_INFO *pDevInfo
);
```

Parameters

u32Handle [IN] 操作句柄 u32Channel [IN] 解码器通道 pDevInfo [IN] 解码通道相关参数

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

Struct

Remarks

开启通道动态解码,如果断线,解码器将自动重连,调用停止动态解码接口停止动态解码,调用轮巡接口将停止动态解码开始轮巡。

HI_NET_DEV_StopDec

停止动态解码

```
HI_S32 HI_NET_DEV_StopDec (
HI_U32 u32Handle,
HI_U32 u32Channel,
);
```

Parameters

u32Handle [IN] 操作句柄 u32Channel [IN] 解码器通道

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

HI_NET_DEV_GetLoopDecChnInfo

获取轮巡解码通道参数

```
HI_S32 HI_NET_DEV_GetLoopDecChnInfo (
HI_U32 u32Handle,
HI_U32 u32Channel,
HI_S_LOOP_INFO *pLoopInfo
);
```

Parameters

```
u32Handle
[IN] 操作句柄
u32Channel
[IN] 解码器通道
pLoopInfo
[OUT] 轮巡的解码通道参数
```

HI SUCCESS 表示成功,HI FAILURE 表示失败。

Struct

```
#define MAX_LOOP_CHN 36
typedef struct HI_LOOP_INFO
{
    HI_U32 u32LoopTime; //轮巡间隔时间,单位毫秒
    HI_S_CHN_INFO sChnInfo[MAX_LOOP_CHN]; //轮巡列表
}HI_S_LOOP_INFO;
```

Remarks

获取轮巡解码通道参数,每个通道最多有36路设备进行轮巡

HI_NET_DEV_SetLoopDecChnInfo

设置轮巡解码通道参数

```
HI_S32 HI_NET_DEV_SetLoopDecChnInfo (
HI_U32 u32Handle,
HI_U32 u32Channel,
HI_S_LOOP_INFO *pLoopInfo
);
```

Parameters

```
u32Handle

[IN] 操作句柄
u32Channel

[IN] 解码器通道
pLoopInfo

[IN] 轮巡的解码通道参数
```

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

$HI_NET_DEV_GetLoopDecChnEnable$

获取单个解码通道轮巡开关

HI_S32 HI_NET_DEV_GetLoopDecChnEnable (

```
HI_U32 u32Handle,

HI_U32 u32Channel,

HI_U32 *pu32Enable

);
```

Parameters

```
u32Handle

[IN] 操作句柄
u32Channel

[IN] 解码器通道
pu32Enable

[OUT] 0 表示关闭,1 表示打开
```

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

$HI_NET_DEV_SetLoopDecChnEnable$

设置单个解码通道轮巡开关

```
HI_S32 HI_NET_DEV_SetLoopDecChnEnable (
HI_U32 u32Handle,
HI_U32 u32Channel,
HI_U32 u32Enable
);
```

Parameters

```
u32Handle

[IN] 操作句柄
u32Channel

[IN] 解码器通道
u32Enable

[IN] 0 表示关闭,1 表示打开
```

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

HI_NET_DEV_GetLoopDecEnable

获取所有解码通道轮巡开关

```
HI_S32 HI_NET_DEV_GetLoopDecEnable (
HI_U32 u32Handle,
HI_CHAR *psEnable,
HI_U32 s32BufLen
);
```

Parameters

u32Handle

[IN] 操作句柄

psEnable

[OUT] 轮巡开关,传入的 HI_CHAR 的长度必须大于 9,如 char sEnable[9],其中 sEnable[0]表示第一通道的轮巡开关、sEnable[1]表示第二通道的轮巡开 关…… 如返回为 010000000,第二通道正在轮巡,其他通道轮巡处于关闭 状态。

s32BufLen

[IN] psEnable 缓存长度

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

HI_NET_DEV_GetChnInfo

获取当前解码通道信息

```
HI_S32 HI_NET_DEV_GetChnInfo (
HI_U32 u32Handle,
HI_U32 u32Channel,
HI_S_DEC_CHN_INFO *pDecChnInfo
);
```

Parameters

u32Handle

[IN] 操作句柄

u32Channel

[IN] 解码器通道

pDecChnInfo

[OUT] 解码通道信息

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

Struct

```
typedef struct HI_DEC_CHN_INFO {

HI_S_CHN_INFO sChnInfo; //通道相关信息

HI_U32 u32DecState; //解码通道状态: 0-不解码 1-动态解码 2-循环解码 3-按时间回放 4-按文件回放

HI_S_TIME sStartTime; //按时间回放开始时间

HI_S_TIME sStopTime; //按时间回放结束时间

HI_CHAR sFileName[128]; //按文件回放文件名

}HI_S_DEC_CHN_INFO;
```

HI_NET_DEV_GetDecChnEnable

获取当前解码通道开关

```
HI_S32 HI_NET_DEV_GetDecChnEnable (
HI_U32 u32Handle,
HI_U32 u32Channel,
HI_U32 *pu32Enable
);
```

Parameters

```
u32Handle

[IN] 操作句柄
u32Channel

[IN] 解码器通道
pu32Enable

[OUT] 0 表示关闭; 1 表示打开
```

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

$HI_NET_DEV_SetDecChnEnable$

设置当前解码通道开关

```
HI_S32 HI_NET_DEV_SetDecChnEnable (
HI_U32 u32Handle,
HI_U32 u32Channel,
HI_U32 u32Enable
);
```

Parameters

```
u32Handle

[IN] 操作句柄

u32Channel

[IN] 解码器通道

u32Enable
```

[IN] 0 表示关闭; 1 表示打开

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

$HI_NET_DEV_StartPassiveDecode$

解码器推送方式开启

```
HI_S32 HI_NET_DEV_StartPassiveDecode (
HI_U32 u32Handle,
HI_U32 u32Channel,
HI_U32* pu32PassiveHandle
);
```

Parameters

```
u32Handle
```

[IN] 操作句柄

u32Channel

[IN] 解码器通道,从1开始

pu32PassiveHandle

[OUT] 返回码流传输的句柄

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

$HI_NET_DEV_StopPassiveDecode$

解码器推送方式关闭

```
HI_S32 HI_NET_DEV_StopPassiveDecode (
HI_U32 u32PassiveHandle
);
```

Parameters

u32PassiveHandle

[IN] HI_NET_DEV_StartPassiveDecode 返回的句柄

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

Remarks

停止解码器推送必须保证 HI_NET_DEV_DecodeSendData 已经停止工作。

HI_NET_DEV_DecodeSendData

解码器推送方式数据接口

```
HI_S32 HI_NET_DEV_DecodeSendData (
HI_U32 u32PassiveHandle,
HI_U8 *pSendBuf,
HI_U32 u32BufSize
);
```

Parameters

```
u32PassiveHandle
[IN] HI_NET_DEV_StartPassiveDecode 返回的句柄
pSendBuf
[IN] 传输的 buffer 数据
u32BufSize
[IN] 传输 buffer 数据大小
```

Return Values

HI_SUCCESS 表示成功,HI_FAILURE 表示失败。

Remaks

```
数据发送格式:
typedef struct hiFrmHeader
   HI_U32 u32AVFrameFlag; //视频标志 HI_NET_DEV_VIDEO_FRAME_FLAG
                        //音频标志 HI NET DEV AUDIO FRAME FLAG
   HI_U32 u32AVFrameLen;
                       //数据长度
   HI_U32 u32AVFramePTS; //数据时间戳,暂时无效
   HI_U32 u32VFrameType;
                       //视频帧标志:
                        // I 帧: HI_NET_DEV_VIDEO_FRAME_I
                        // P帧: HI_NET_DEV_VIDEO_FRAME_P
   HI_U32 u32Width;
                        //视频宽
   HI U32 u32Height;
                        //视频高
   HI_U32 u32Format;
                        //音频格式,解码器暂时不支持音频
} HI_S_FrmHeader;
```

用法,解码器的推送方式必须按照指定格式发送,可以将帧头信息与帧数据分开发送, 也可以组合发送,如:

```
HI_S_FrmHeader sSendFrame;

sSendFrame.u32AVFrameFlag = HI_NET_DEV_VIDEO_FRAME_FLAG;

sSendFrame.u32AVFrameLen = buflen;

sSendFrame.u32AVFramePTS = 0;

sSendFrame.u32VFrameType = HI_NET_DEV_VIDEO_FRAME_I;

sSendFrame.u32Width = 704;

sSendFrame.u32Height = 576;
```

分开发送:

```
s32Ret = HI_NET_DEV_DecodeSendData(u32PassiveHandle,
                                   (HI U8*)&sSendFrame, sizeof(HI S FrmHeader));
   if(s32Ret == HI_SUCCESS)
       s32Ret = HI_NET_DEV_DecodeSendData(u32PassiveHandle, pu8Buffer, buflen);
   }
   组合发送:
   memcpy(u8Buf, &sSendFrame, sizeof(HI S FrmHeader));
   memcpy(u8Buf+sizeof(HI_S_FrmHeader), pu8Buffer, buflen);
   s32Ret = HI NET DEV DecodeSendData(u32PassiveHandle, u8Buf,
                                       buflen+ sizeof(HI_S_FrmHeader));
解码器其他相关接口
重启解码器
HI NET DEV SetConfig (u32Handle, HI NET DEV CMD REBOOT, NULL, 0);
获取设置解码器网络信息
HI_S_NET_EXT sNetExt;
HI_NET_DEV_GetConfig(u32Handle, HI_HI_NET_DEV_CMD_NET_EXT,
                    &sNetExt, sizeof(HI_S_NET_EXT));
HI_NET_DEV_SetConfig(u32Handle, HI_HI_NET_DEV_CMD_NET_EXT,
                    &sNetExt, sizeof(HI_S_NET_EXT));
获取设置解码器用户信息
HI S USER sUser;
HI_NET_DEV_GetConfig(m_u32Handle, HI_HI_NET_CMD_USER,
                    &sUser, sizeof(HI_S_USER));
HI_NET_DEV_SetConfig(m_u32Handle, HI_HI_NET_CMD_USER,
                    &sUser, sizeof(HI_S_USER));
```

5.11 AVI 文件解析

AVI 解析调用顺序

AVI_CreateReader //创建文件解析句柄
AVI_ReadFileInfo //读取 AVI 文件信息
AVI_ReadFrame //读取 AVI 文件帧信息
AVI_DestroyReader //销毁文件解析句柄

AVI 解析接口错误定义

#define ERR_AVI_OK 0x00000000 //成功 #define ERR_AVI_INVALIDARG 0x80000001 //参数错误

0x80000003 //分配内存失败 #define ERR_AVI_MALLOC 0x800000a //跳转超过总时间范围 #define ERR_AVI_OUTOFSEEKTIME #define ERR_AVI_OPEN_FILE 0x80000012 //文件打开失败 0x80000013 //读取帧数据失败 #define ERR_AVI_ENDFILE #define ERR_AVI_READ_FRAME 0x80000014 #define ERR_AVI_INVALID_STREAM 0X80000015 #define ERR_AVI_WRITE_FRAME 0x80000016 #define ERR_AVI_READ_HEADER 0x80000017 //解析 AVI 文件头失败

AVI_CreateReader

创建 AVI 解析句柄

#define ERR_AVI_WRITE_HEADER

```
HI_S32 AVI_CreateReader (
HI_U32* pAVIHandle,
HI_U8* pu8FileName
);
```

0x80000018

Parameters

pAVIHandle [OUT] 返回操作句柄 pu8FileName [IN] AVI 文件路径

Return Values

ERR_AVI_OK 表示成功,失败返回错误代码。

AVI_DestroyReader

销毁 AVI 解析句柄

```
HI_S32 AVI_DestroyReader (
HI_U32 u32Handle
);
```

Parameters

u32 Handle

[IN] 操作句柄

Return Values

ERR_AVI_OK 表示成功,失败返回错误代码。

AVI_ReadFrame

读取音视频帧信息

```
HI_S32 AVI_ReadFrame (
HI_U32 u32Handle,
AVI_FRAME_S *pFrame
);
```

Parameters

```
u32Handle
   [IN] 操作句柄
pFrame
   [OUT] 帧信息
   #define AVI_VIDEO_FRAME_FLAG 0x1
   #define AVI_AUDIO_FRAME_FLAG 0x2
   #define AVI_FRAME_KEY_P
   #define AVI_FRAME_KEY_I
                                  1
   typedef struct hiAVI_FRAME_S
   {
       HI_U64 u64Pts;
                          //时间戳
                          //
       HI_U64 u64Dts;
       HI_U8* pu8Data;
                          //帧数据
                          //帧大小
       HI_U32 u32Size;
                          //帧类型
       HI_U32 u32Type;
       HI_U32 u32KeyFlags; //视频帧 I 帧, P 帧
       HI_U32 u32Duration; //
    }AVI_FRAME_S;
```

Return Values

ERR_AVI_OK 表示成功,失败返回错误代码。

AVI_SeekFrame

时间跳转

```
HI_S32 AVI_SeekFrame (
HI_U32 u32Handle,
HI_S32 s32Pts
);
```

Parameters

Return Values

ERR_AVI_OK 表示成功,失败返回错误代码。

AVI_ReadFileInfo

```
读取 AVI 相关信息
```

```
HI_S32 AVI_ReadFileInfo (
HI_U32 u32Handle,
AVI_INFO_S *sAviInfo
);
```

Parameters

```
u32Handle
[IN] 操作句柄
sAviInfo
[OUT] AVI 文件相关信息
```

Return Values

ERR_AVI_OK 表示成功,失败返回错误代码。

Struct

```
//文件总时间
typedef struct hiAVI_DURATION_S
    HI_S32 s32Hours;
                       //时
    HI_S32 s32Mins;
                       //分
                       //秒
    HI_S32 s32Secs;
}AVI_DURATION_S;
//视频信息
#define AVI_VIDEO_FORMAT_H264 0x00
typedef struct hiAVI_VSTREAM_S
{
    HI_U16 u16FormatTag;
                           //格式, AVI_VIDEO_FORMAT_H264
                           //帧率
    HI_U16 u32FrameRate;
                           //宽
    HI_U32 u32Width;
    HI_U32 u32Height;
                           //高
} AVI_VSTREAM_S;
//音频信息
#define AVI_AUDIO_FORMAT_G711A
                                   0x00
#define AVI_AUDIO_FORMAT_G726
                                   0x01
typedef struct hiAVI_ASTREAM_S
```

六、音频编解码说明

Demo 提供了音频的编解码、PC 获取音频、播放音频和对讲实例,请查阅网络库提供的 VC demo。

编码: 提供 G711 和 G726 两种编码格式, 两种编码的格式有区别;

相关类: CHI_AENC_ENC, CHI_AI_MM

解码: 提供 G711 和 G726 两种解码格式。

相关类: CHI_ADEC_DEC, CHI_AO_MM

6.1 音频采集格式设置

声卡输入和输出的音频属性可定义如下:

```
m_waveformt.wFormatTag = WAVE_FORMAT_PCM;
m_waveformt.nChannels = 1;
m_waveformt.nSamplesPerSec = 8000;
m_waveformt.wBitsPerSample = 16;
m_waveformt.cbSize = 0;
m_waveformt.nBlockAlign = 2;
m_waveformt.nAvgBytesPerSec = 16000;
```

设置的音频格式类型是 PCM 格式,单通道,8000HZ 的采样率,每秒采集的数据大小为 16000bytes.其中,存在着下面的关系:

nBlockAlign = nChannels * wBitsPerSample / 8; nAvgBytesPerSec = nSamplesPerSec * nBlockAlign;

注: 目前音频采集必须按照 320 字节单位采集, G711 和 G726 的编码库不支持 640 字节编码, 所以采集一定要按照 320 个字节采集。

6.2 音频采集流程

6.3 音频播放流程

6.4 音频编码

设置音频编码库 hisi_voice_engine.lib,目前该库只支持格式有两种: G711A 和 G726。 根据设置音频结构 PLAYER ATTR AUDIO S 设置编码的格式并初始化编码库:

```
HRESULT CHI_AENC_ENC::HI_AENC_Init(PLAYER_ATTR_AUDIO_S *pAudioAttr)

{
    HI_S32 s32Rel;
    HI_U16 u16CodeType;

    if (NULL == pAudioAttr)
    {
        return HI_ERR_NULL_POINTER;
    }

    if (PLAYER_AUDIO_CODEC_FORMAT_G711A == pAudioAttr->eAEncode)
    {
        m_pAEncHandle = &g711_dec_state;
        u16CodeType = G711_A;
    }
    else if (PLAYER_AUDIO_CODEC_FORMAT_G711U == pAudioAttr->eAEncode)
    {
        m_pAEncHandle = &g711_dec_state;
        u16CodeType = G711_U;
    }
    else if (PLAYER_AUDIO_CODEC_FORMAT_G726 == pAudioAttr->eAEncode)
    {
        m_pAEncHandle = &g726_dec_state;
    }
}
```

```
if (16000 == pAudioAttr->lBitRate)
            u16CodeType = MEDIA_G726_16KBPS;
        else if (24000 == pAudioAttr->lBitRate)
            u16CodeType = MEDIA_G726_24KBPS;
        else if (32000 == pAudioAttr->lBitRate)
            u16CodeType = MEDIA_G726_32KBPS;
        else if (40000 == pAudioAttr->lBitRate)
            u16CodeType = MEDIA_G726_40KBPS;
        }
        else
        {
            return HI_ERR_INVALID_ARGUMENTS;
        }
    }
    else
        return HI_ERR_INVALID_ARGUMENTS;
    }
    /*重新初始化解码*/
    s32Rel = HI_VOICE_EncReset(m_pAEncHandle, u16CodeType);
    return (s32Rel == HI_SUCCESS) ? HI_SUCCESS : HI_FAILURE;
其中:
#define G711_A
                       0x01 /* 64kbps G.711 A, see RFC3551.txt 4.5.14 PCMA */
#define G711_U
                       0x02 /* 64kbps G.711 U, see RFC3551.txt 4.5.14 PCMU */
#define MEDIA_G726_16KBPS
                                         0x24 /* G726 16kbps for ASF ... */
#define MEDIA_G726_24KBPS
                                         0x25 /* G726 24kbps for ASF ... */
#define MEDIA_G726_32KBPS
                                         0x26 /* G726 32kbps for ASF ... */
#define MEDIA_G726_40KBPS
                                         0x27 /* G726 40kbps for ASF ... */
音频编码函数:
```

```
HI_VOICE_API HI_RESULT HI_VOICE_EncodeFrame (
HI_VOID *pEncState, // HI_VOICE_EncReset 的句柄
HI_S16 *pInputBuf, //没有编码的数据
HI_S16 *pOutputBuf, //编码后数据
HI_S16 len //没有编码数据的大小
```

);

编码后数据的大小:

*pOutLen = (pOutBuf[2])*2 + 4; //码流数据加上海思帧结构头

6.5 音频解码

设置音频解码库 hisi_voice_engine.lib,目前该库只支持格式有两种:G711A 和 G726。 根据设置音频结构 PLAYER ATTR AUDIO S 设置解码的格式并初始化解码:

```
HRESULT CHI_ADEC_DEC::HI_ADEC_Init(PLAYER_ATTR_AUDIO_S *pAudioAttr,
                                     PLAYER_ATTR_AUDIO_S *pOutPutAttr)
    if (NULL == pAudioAttr || NULL == pOutPutAttr)
        return HI_ERR_NULL_POINTER;
    HI_U16 u16CodeType;
    if (PLAYER_AUDIO_CODEC_FORMAT_G711A == pAudioAttr->eAEncode)
        m_pDecCodeState = &g711_dec_state;
        u16CodeType = G711_A;
    else if (PLAYER_AUDIO_CODEC_FORMAT_G711U == pAudioAttr->eAEncode)
    {
        m_pDecCodeState = &g711_dec_state;
        u16CodeType = G711_U;
    }
    else if (PLAYER_AUDIO_CODEC_FORMAT_G726 == pAudioAttr->eAEncode)
        m_pDecCodeState = &g726_dec_state;
        if (16000 == pAudioAttr->lBitRate)
            u16CodeType = MEDIA_G726_16KBPS;
        else if (24000 == pAudioAttr->lBitRate)
            u16CodeType = MEDIA_G726_24KBPS;
        else if (32000 == pAudioAttr->lBitRate)
            u16CodeType = MEDIA_G726_32KBPS;
        else if (40000 == pAudioAttr->lBitRate)
```

```
{
            u16CodeType = MEDIA_G726_40KBPS;
        else
        {
            return HI_ERR_INVALID_ARGUMENTS;
    }
    else
    {
        return HI_ERR_INVALID_ARGUMENTS;
    }
    /*重新初始化解码*/
    HI_S32 s32Rel = HI_VOICE_DecReset(m_pDecCodeState, u16CodeType);
    if (HI_SUCCESS != s32Rel)
    {
        return HI_FAILURE;
    }
    return HI_SUCCESS;
}
其中:
#define G711_A
                      0x01 /* 64kbps G.711 A, see RFC3551.txt 4.5.14 PCMA */
#define G711_U
                      0x02 /* 64kbps G.711 U, see RFC3551.txt 4.5.14 PCMU */
#define MEDIA_G726_16KBPS
                                        0x24 /* G726 16kbps for ASF ... */
#define MEDIA_G726_24KBPS
                                        0x25 /* G726 24kbps for ASF ... */
#define MEDIA_G726_32KBPS
                                        0x26 /* G726 32kbps for ASF ... */
#define MEDIA_G726_40KBPS
                                        0x27 /* G726 40kbps for ASF ... */
```

音频解码函数:

```
HI_VOICE_DecodeFrame(
HI_VOID *pDecState, // HI_VOICE_DecReset 的句柄
HI_S16 *pInputBuf, //没有解码的数据
HI_S16 *pOutputBuf, //解码后数据
HI_S16 *pLen //解码后数据大小
);
```

七、附录

附录I、文件夹列表

Lib 存放库文件, 里面含有 libNetLib.so, NetLib.lib, NetLib.dll 三个文件;

Include 存放头文件;

Linux_demo 存放 Linux Demo 文件,有 GTK 界面和无命令界面;

VC_demo存放 mfc Demo;Player录像文件播放器;Bin执行文件存放路径。

附录Ⅱ、Linux Demo 使用说明

将 libNetLib.so 拷贝到/lib 或/usr/lib 文件夹中, 编译即可。如果使用 GTK 界面要求支持 GTK 环境。

编译 linux 程序要加入编译选项-DHI_OS_LINUX

附录Ⅲ、厂家代码和设备类型定义

1. 厂商代码

用于识别生产厂家。

可以通过专用工具修改。用户只能读,不能修改。

ACSII码,32个字节长度。

2. 设备类型

用于识别设备类型,不同的设备功能不同。

可以通过专用工具修改。用户只能读,不能修改。

ACSII码,32个字节长度。

每个字段2个字节。第一个字节代表字段总类型,第二个字段代表字段子类型。

字段1	字段 2	字段 3	字段 4	字段 5	字段 6	字段 7	保留字段
芯片	制式	镜头	云台类型	网络类型	平台类型	语言类型	
·C'	'F'	'S'	'Z'	'N'	'P'	'L'	

1). 芯片字段 'C'

芯片的类型

'0'	Hi3510
' 1'	Hi3512
' 5'	GM
' 6'	Hi3518

注: C5、C6 芯片有 3 码流,每个码流不能修改分辨率

2). 制式字段 'F'

视频输入制式,当前值如下:

'0'	PAL 和 NTS 都支持
' 1'	PAL(704x576, 352x288, 176x144)最大 25 帧
'2'	NTSC(704x480, 352x240, 176x120)最大 30 帧

3). 镜头字段 'S'

感光芯片的类型,如下:

感光心	5片的类型,如卜:			
'0'	OV7725 红外控制	亮度,对比度,饱和度,色度,室内,室外,红外开关,		
		上下反转,左右镜像。主码流: VGA, QVGA, QQVGA 次		
		码流: QVGA, QQVGA		
'1'	CCDOSP	亮度,对比度,饱和度,色度。		
		主码流: D1,CIF,QCIF 次码流: CIF,QCIF		
'2'	CCD	亮度,对比度,饱和度,色度。		
		主码流: D1,CIF,QCIF 次码流: CIF,QCIF		
'3'	MT9D131	亮度,对比度(1-7),饱和度,上下反转,左右镜像。		
		主码流: 720P(最大 30 帧) 次码流: QVGA		
'4'	HDCCD	主码流: 720P(最大 30 帧) 次码流: QVGA		
'5'	630D	亮度(0-6),对比度(0-8),饱和度(0-6)。		
		主码流: 720P(最大 30 帧) 次码流: Q720P		
'6'	630C	亮度(0-4),对比度(0-4),饱和度(0-2)。		
		主码流: 720P(最大 30 帧) 次码流: Q720P		
'7'	CMOS 720P	亮度,对比度(1-7),饱和度,上下反转,左右镜像。		
		C0 C1:		
		主码流: 720P(最大 30 帧), Q720P 次码流: Q720P,		
		QQ720P		
		C5:		
		主码流: 720P; 第二码流: Q720P; 第三码流: QQ720P		
'8'	633	亮度(0-6),对比度(0-8),饱和度(0-6)。		
		C0 C1:		
		主码流: 720P(最大 30 帧), Q720P 次码流: Q720P,		
		QQ720P		
		C5:		
		主码流: 720P; 第二码流: Q720P; 第三码流: QQ720P		
'9'	CMOS 200M	亮度,对比度(1-7),饱和度,上下反转,左右镜像。		
		C0 C1:		
		主码流: 720P(最大 30 帧), Q720P 次码流: Q720P,		
		QQ720P		
		UXGA(最大 15 帧),VGA 次码流,QVGA		
		C5:		
	GGD 0.60	主码流: 720P; 第二码流: Q720P; 第三码流: QQ720P		
ʻa'	CCD 960	无图像设置 大型法 000 576 464 000 004 144		
		主码流: 928x576, 464x288, 224x144		
		次码流: 464x288, 224x144		
'c'		亮度(0-100),对比度(0-100),饱和度(0-100),上下反转,		
		左右镜像。		

	720P 模式:
	主码流: 720P; 第二码流: Q720P; 第三码流: QQ720P
	960P 模式:
	主码流: 960P; 第二码流: VGA; 第三码流: QVGA
'e'	亮度(0-100),对比度(0-100),饱和度(0-255),上下反转,
	左右镜像。
	主码流: 720P; 第二码流: Q720P; 第三码流: QQ720P
'f'	亮度(0-100),对比度(0-100),饱和度(0-255),上下反转,
	左右镜像。
	720P 模式:
	主码流: 720P; 第二码流: Q720P; 第三码流: QQ720P
	960P 模式:
	主码流: 960P; 第二码流: VGA; 第三码流: QVGA

4). 云台字段 'Z'

云台的类型,如下:

'0'	小球	上,下,左,右,上下巡航,左右巡航,回到中心位置,
		预置调用(最多8个)。没有串口设置。
' 1'	白色球	上,下,左,右,预置调用(最多8个)。固定串口设置。
'2'	变焦球	上,下,左,右,变焦,预置调用(最多8个)。固定串
		口设置。
'3'	标准	上,下,左,右,雨刷,灯光,预置调用设置。可以设
		置串口。
'4'	变倍小球	上,下,左,右,上下巡航,左右巡航,回到中心位置,
		拉近,拉远。

5). 网络字段 'N'

网络类型,如下:

'0'	支持有线
' 1'	支持 WIFI
'2'	支持 EVDO
'3'	支持 TD
'4'	支持 WCDMA

6). 平台字段 'P'

平台类型,如下:

'0'	无平台
-----	-----

7). 语言字段 'L'

语言类型,如下:

'0'	中文
'1'	英文

8). 保留字段用于以后扩展