Получение и измерение вакуума. (2.3.1)

Зайнуллин Амир Б05-206

7 апреля 2023 г.

1 Аннотация

Цель работы: 1) измерение объёмов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным.

В данной работе изучаются традиционные методы откачки механическим насосом до давления 10^{-2} торр и диффузионым масляным насосом до давления 10^{-5} торр, а также методы измерения вакуума в этом диапазоне.

2 Теоретические сведения

Процесс откачки

Производительность насоса определяется скоростью откачки W (π/c): W — это объем газа, удаляемого из сосуда при данном давлении за единицу времени.

Рассмотрим обычную схему откачки. Обозначим через Q_d количество газа, десорбирующегося с поверхности откачиваемого объема в единицу времени, через Q_i — количество газа, проникающего в единицу времени в этот объем извне — через течи. Будем считать, что насос обладает скоростью откачки W и в то же время сам является источником газа; пусть Q_n — поток газа, поступающего из насоса назад в откачиваемую систему. Будем измерять количество газа Q_d , Q_i и Q_n . Основное уравнение, описывающее процесс откачки, имеет вид

$$-VdP = (PW - Q_d - Q_n - Q_i)dt. (1)$$

Левая часть этого уравнения равна убыли газа в откачиваемом объеме V, а правая определяет количество газа, уносимого насосом, и количество прибывающего вследствие перечисленных выше причин за время dt. При достижении предельного вакуума (давление P_{pr})

$$\frac{dP}{dt} = 0, (2)$$

$$W = \frac{\sum Q_i}{P_{pr}}. (3)$$

Обычно Q_i постоянно, а Q_n и Q_d слабо зависят от времени, поэтому в наших условиях все эти члены можно считать постоянными. Считая также постоянной скорость откачки

W, уравнение(1) можно проинтегрировать и получить

$$P = P_o \exp\left(-\frac{W}{V}t\right). \tag{4}$$

Течение газа через трубу

Для количества газа, протекающего через трубу в условиях высокого вакуума справедлива формула

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3 \sqrt{\frac{2\pi RT}{\mu}} \frac{P_2 - P_1}{L}.$$
 (5)

Применим эту формулу к случаю, когда труба соединяет установку с насосом. Пренебрежем давлением P_1 у конца, обращенного к насосу. Будем измерять количество газа, покидающего установку при давлении $P = P_2$. Пропускная способность трубы

$$C_{\rm Tp} = \left(\frac{dV}{dt}\right)_{\rm Tp} = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2\pi RT}{\mu}}.$$
 (6)

Мы видим, что пропускная способность зависит от радиуса трубы в третьей степени и обратно пропорциональна ее длине. В вакуумных установках следует поэтому применять широкие короткие трубы.

3 Экспериментальная установка и методика измерений

Рис. 1: Схема установки

Установка изготовлена из стекла, и состоит из форвакуумного баллона (ФБ), высоковакуумного диффузионного насоса (ВН), высоковакуумного баллона (ВБ), масляного (М) и ионизационного (И) манометров, термопарных манометров (М1 и М2), форвакуумного насоса (ФН) и соединительных кранов (К1,К2, ... К6). Кроме того, в состав установки входят: реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

Методика измерений

1. Определим объемы форвакуумной и высоковакуумной частей установки. Сначала впустим атмосферу в установку. Запрем воздух при комнатных условиях в капилляре между кранами 5 и 6. После этого откачаем воздух из оставшейся части установки (сделав это в два этапа - сначала насос должен откачать сам себя, а только потом - установку). После этого мы сначала высвободим запертый воздух только в ФВ часть, а затем добавим к ней и ВВ. Тогда записав уравнение Менделеева-Клапейрона и зная объем капилляра, мы найдем объемы соответствующих частей установки:

$$P_0 V_0 = P_v (V_f + V_v), (7)$$

где P_0 – атмосферное давление; V_0 – объем капилляра и кранов 5 и 6; P_v – установившееся давление; V_f и V_v – соотвественно объемы форвауумной и высоковакуумной частей.

- 2. Для измерения скорости откачки диффузионного насоса измерим улучшение вакуума во времени. Построим график зависимости $\ln \frac{P-P_{pr}}{P_0}$ от t. Из формулы(4) следует, что наклон, построенной кривой, есть W/V
- 3. Откроем кран 6 и создадим исскуственную течь через капилляр. Рассчитаем производительность насоса по различию P_{pr} и P_u , где P_u установившееся давление в высоковакуумной части с искусственной течью. В условиях высокого вакуума справдлива формула(6), где положим $P_1 := P_u$, P_2 давление в форвакуумной части.

4 Результаты измерений и обработка данных

Определение объема форвакуумной и высоковакуумной частей установки

В таблице приведены параметры установки.

ρ , k Γ/M^3	V_0 , cm ³	P_0 , торр		
885	50	738		

Таблица 1: Некоторые параметры установки.

$h_{1\text{-}pop}, \text{ cm}$ 12				$h_{2\text{вместе}}, \text{ cm}$	$\Delta h_{\text{вместе}}$, см	V_{dop}	$V_{\text{вместе}}$	$V_{\text{выс}}$
		38,5	26,5	17	33,9	16,9	2139,8	3355,3

Таблица 2: Таблица полученных объемов

Чтобы найти объемы сосудов проведем измерения согласно описанию работы. По формуле Бойля Мариотта

$$P_0V_0 = pV_{\text{сосуда}}$$

где p считаем по формуле $\rho g \Delta h$

$$V = \frac{P_0 V_0}{\rho q \Delta h}$$

Сначала подставим Δh для фор. части, найдем объем форвакуумной. Потом возьмем для обоих вместе и найдем объедененный объем.

Относительная погрешность сосудов будет равна относительной погрешности Δh , поэтому

Получение высокого вакуума и измерение скорости откачки

Открываем все краны и проводим первоначальную выкачку воздуха форвакуумным насосом. После приближения к предельному давлению ($\sim 10^{-2}$ торр), закрываем кран 6 и включаем диффузионный насос. Ждем пока масло закипит и начнется дальнейшая выкачка уже диффузионным насосом. По достижению давления порядка $\sim 10^{-3}$ торр включаем ионизационный манометр, которым и будем измерять давление в дальнейшем.

Чтобы измерить скорость откачки W замерим как изменяется давление в высоковаку-умной части от времени. Сосгласно теории давление должно падать по правилу, где у нас $P_{\text{пр}} = 4.7 \cdot 10^{-5}$ торр

$$P - P_{\text{np}} = (P_0 - P_{\text{np}}) \exp\left(-\frac{W}{V_{\text{BB}}}t\right)$$
(8)

Логарифмируя, получаем

$$\ln(P - P_{\text{np}}) = -\frac{W}{V_{\text{BB}}}t + c \tag{9}$$

Аппроксимируя наши данные согласно формуле получим значение для W. Измерение проведем 2 раза. Результаты изображены на графиках.

t, c	P mm	t, c	Рмм	$\ln(P-P_0)$	t, c	P MM	t, c	P MM	$\ln(P-P_0)$
0	5,3	0	52	3,86	0	5,4	0	50	3,8
3	5,7	2	44	3,67	3	6,7	3	36	3,44
7	8,3	4	31	3,27	7	9,4	6	23	2,91
12	12	6	21	2,79	12	14	10	12	1,99
16	15	8	17	2,51	18	16	14	7,8	1,33
21	19	11	10	1,67	23	21	16	6,7	0,69
28	24	14	7,7	1,10	29	26	19	5,5	-0,22
35	29	17	6,6	0,64	34	29	22	5,2	-0,69
43	35	19	5,8	0,10	44	36			
55	41	22	5,5	-0,22	50	39			
64	47	26	5,2	-0,69	57	44			
72	52			_	64	50			

Таблица 3: Результаты измерений

$$k_1 = -(0.188 \pm 0.006) \text{ c}^{-1}$$
 $k_2 = -(0.213 \pm 0.007) \text{ c}^{-1}$
 $k_{\text{cp}} = -(0.200 \pm 0.007) \text{ c}^{-1}$

$$W = (244 \pm 7) \frac{\text{cm}^3}{\text{c}}$$

(10)

Рис. 2: График для первого повышения

Рис. 3: График для второго повышения

Теперь определим величину потока $Q_{\rm H}$. Для обшего потока имеем формулу

$$P_{\rm np}W = (Q_1 + Q_{\rm H})RT \tag{11}$$

где $Q_1 = Q_{\rm u} + Q_{\rm d}$. Теперь, если по достижению предельного давления закрыть кран 3, то насос будет отсоиденен от высоковакуумной части, и уравнение описывающее давление от времени примет вид

$$V_{\scriptscriptstyle \rm BB}dP=Q_1RTdt$$

интегрируя которую получим

$$P = \frac{Q_1 RT}{V_{\text{BB}}} t + c \tag{12}$$

Измерив зависимость давления от времени и аппроксимируя данные прямой можно получить Q. Отсюда получаем

$$k_{1} = (0.67 \pm 0.001) \cdot 10^{-5} \frac{\text{Topp}}{\text{c}}$$

$$k_{2} = (0.7 \pm 0.001) \cdot 10^{-5} \frac{\text{Topp}}{\text{c}}$$

$$k_{\text{cp}} = (0.69 \pm 0.001) \cdot 10^{-5} \frac{\text{Topp}}{\text{c}}$$

$$Q_{1} = (84 \pm 4) \cdot 10^{-4} \text{Topp} \cdot \text{cm}^{3} \text{c}^{-1}$$
(13)

Используя формулу $Q_{\rm H}=P_{\rm np}W-Q_1$ получим, что: $Q_{\rm H}=(3.10\pm0.14)\cdot10^{-3}$ торр \cdot см $^3/{\rm c}.$

Рис. 4: График для первого понижения

Рис. 5: График для второго понижения

Измерение скорости откачки путем создания исскуственной течи

Открывая краны 5 и 6 мы создаем исскуственную течь через каппиляр. Измеряя изменение давления при создании течи можно посчитать производительность насоса. Опишем данную мысль математически. Обозначим $P_{\rm BB}$ – давление в высоковакуумной части, а $P_{\rm \Phi B}$ – давление в форвакуумной части. До открытия каппиляра

$$\frac{P_{\rm np}W}{RT} = Q \tag{14}$$

а после открытия

$$\frac{P_{\text{ycr}}W}{RT} = Q + Q_{\text{кап}} \tag{15}$$

где $P_{\rm ycr}$ – установившееся давление после открытия капилляра, а $C_{\rm Tp}$ – пропускная способность капилляра. В нашей установке

Оценим пропускную способность трубки:

$$L = (10.8 \pm 0.1) \text{ cm};$$
 $d = (0.8 \pm 0.1) \text{ mm},$ (16)

$$C_{\text{TP}} = (5.7 \pm 0.3) \cdot 10^{-7} \text{ m}^3/\text{c}.$$
 (17)

$$P_{\text{пр}} = (4.7 \pm 0.1) \cdot 10^{-5} \text{ торр}$$

 $P_{\text{уст}} = (8 \pm 0.1) \cdot 10^{-5} \text{ торр}$
 $P_{\text{фв}} = (4 \pm 0.1) \cdot 10^{-4} \text{ торр}$
 $T = 295 \text{ K}$

Подставляя числа получаем

$$W = \frac{P_{\Phi B}}{P_{ycr} - P_{np}} \frac{4r^3}{3L} \sqrt{\frac{2\pi RT}{\mu}} \approx 7 \frac{cM^3}{c}$$
 (18)

5 Выводы

В данной лабораторной работе мы определили скорость откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума. Нашли объемы форвакуумной, высоковакуумной части установки. Возможные расхождения данных могли возникнуть из за изменения температуры, созданное нагреваемым масляным высоковакуумным насосом. Возможно у манометра погрешность оказывала большое влияние на значение результатов, но из за того что мы ее не учитывали, получили разные данные. Возможно, пропускная способность капилляра сильно занижает скорость откачки.

Вакуум в установке ухудшается и улучшается. Удалось линеаризовать эти зависимости. в хорошем результате помогают убедиться графики, на которых прослеживается линейная зависимость (для улучшения вакуума – линейная зависимость $\ln((P-P_0)/(P_0-P_{\text{пр}}))$) от t, а для ухудшения – P(t)).