ПЛН30

ΕΝΌΤΗΤΑ 3: ΚΑΝΟΝΙΚΈΣ ΓΛΩΣΣΕΣ

Μάθημα 3.5: Ισοδυναμία Κ.Ε. – Μ.Π.Α. – Ν.Π.Α.

Δημήτρης Ψούνης

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

Α. Σκοπός του Μαθήματος

Οι στόχοι του μαθήματος είναι:

Επίπεδο Α

- > Μετατροπή ΜΠΑ (με ε-κινήσεις) σε ΜΠΑ (χωρίς ε-κινήσεις)
- > Μετατροπή ΜΠΑ (χωρίς ε-κινήσεις) σε ΝΠΑ

Επίπεδο Β

Μετατροπή Κ.Ε. σε ΜΠΑ (με ε-κινήσεις)

Επίπεδο Γ

▶ Μετατροπή ΝΠΑ σε Κ.Ε.

ΠΕΡΙΕΧΟΜΕΝΑ

Α. Σκοπός του Μαθήματος

Β. Θεωρία

- 1. Μετατροπή ΚΕ σε ΜΠΑ (με ε-κινήσεις)
 - 1. Αλγόριθμος Μετατροπής ΚΕ σε ΜΠΑ (με ε-κινήσεις)
 - 2. Παραδείγματα
- 2. Μετατροπή ΜΠΑ (με ε-κινήσεις) σε ΜΠΑ (χωρίς ε-κινήσεις)
 - 1. Αλγόριθμος Μετατροπής ΜΠΑ (με ε-κινήσεις) σε ΜΠΑ (χωρίς ε-κινήσεις)
 - 2. Παραδείγματα
 - 3. Εφαρμογή με εμπειρικό τρόπο
- 3. Μετατροπή ΜΠΑ (χωρίς ε-κινήσεις) σε ΝΠΑ
 - 1. Αλγόριθμος Μετατροπής ΜΠΑ (χωρίς ε-κινήσεις) σε ΝΠΑ
 - 2. Παραδείγματα
 - 3. Εφαρμογή με εμπειρικό τρόπο
- 4. Μετατροπή ΝΠΑ σε ΚΕ
 - 1. Αλγόριθμος Μετατροπής ΜΠΑ (χωρίς ε-κινήσεις) σε ΝΠΑ
 - 2. Παραδείγματα

Γ.Ασκήσεις

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

Β. Θεωρία

Μετατροπές

Ορισμός Κανονικής Γλώσσας:

- Μία γλώσσα θα λέγεται Κανονική Γλώσσα αν και μόνο αν
 - Υπάρχει Κανονική Εκφραση (Κ.Ε.) που την περιγράφει.
 - Υπάρχει Ντετερμινιστικό Πεπερασμένο Αυτόματο (Ν.Π.Α.) που αναγνωρίζει τις συμβολοσειρές της.
 - Υπάρχει Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο (Μ.Π.Α) που αναγνωρίζει τις συμβολοσειρές της.
- Η έννοια της ισοδυναμίας των παραπάνω κατασκευασμάτων θα αποδειχθεί ως εξής:
 - > Θα δούμε αλγόριθμο που μετατρέπει Κ.Ε. σε Μ.Π.Α-ε
 - > Θα δούμε αλγόριθμο που μετατρέπει Μ.Π.Α-ε σε ΜΠΑ
 - > Θα δούμε αλγόριθμο που μετατρέπει ΜΠΑ σε ΝΠΑ
 - > Θα δούμε αλγόριθμο που μετατρέπει ΝΠΑ σε Κ.Ε.
- > Στα παραπάνω εννοούμε:
 - > ΜΠΑ-ε: Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο με ε-κινήσεις
 - > ΜΠΑ: Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο χωρίς ε-κινήσεις

1. Μετατροπή Κ.Ε. σε ΜΠΑ-ε

1. Αλγόριθμος Μετατροπής

Η μετατροπή μιας Κ.Ε σε ΜΠΑ-ε γίνεται με βάση τους εξής κανόνες:

1. Τα αυτόματα για τις στοιχειώδεις κανονικές εκφράσεις Ø, ε, σ είναι:

Επίσης το βιβλίο του ΕΑΠ μας δίνει το δικαίωμα να θεωρήσουμε ότι και το ΜΠΑ για μια σκέτη συμβολοσειρά προκύπτει με «ξάπλωμα» της συμβολοσειράς σε διαδοχικές μεταβάσεις (π.χ. Μ(001)):

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

www.psounis.gr

Β. Θεωρία

- 1. Μετατροπή Κ.Ε. σε ΜΠΑ-ε
- 1. Αλγόριθμος Μετατροπής

Δηλαδή:

- Φεύγουν ε-κινήσεις από τις τελικές του M(R1) προς την αρχική του M(R2)
- Οι τελικές του M(R1) γίνονται μη τελικές καταστάσεις.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

Β. Θεωρία

1. Μετατροπή Κ.Ε. σε ΜΠΑ-ε

1. Αλγόριθμος Μετατροπής

Έστω τώρα ότι για μια κανονική έκφραση R έχουμε την εξής αναπαράσταση για το ΜΠΑ που την αναγνωρίζει:

Έτσι αν έχουμε δύο αυτόματα M(R1), M(R2) θα διατυπώσουμε κανόνες για την παραγωγή των αυτομάτων των κανονικών εκφράσεων R_1+R_2 , R_1R_2 και R^*

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

www.psounis.gr

Β. Θεωρία

- 1. Μετατροπή Κ.Ε. σε ΜΠΑ-ε
- 1. Αλγόριθμος Μετατροπής

- Προσθέτουμε μία νέα αρχική κατάσταση
- Με ε-κινήσεις πηγαίνουμε από την νέα αρχική κατάσταση στις προηγούμενες αρχικές.

1. Μετατροπή Κ.Ε. σε ΜΠΑ-ε

1. Αλγόριθμος Μετατροπής

Δηλαδή:

- Προσθέτουμε μία νέα αρχική κατάσταση (που είναι και τελική)
- Με ε-κίνηση πάμε από την νέα αρχική στην προηγούμενη αρχική.
- Με ε-κινήσεις φεύγουμε από τις προηγούμενες τελικές προς την νέα αρχική.
- Οι προηγούμενες τελικές γίνονται μη τελικές καταστάσεις.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

T annosq.www

Β. Θεωρία

1. Μετατροπή Κ.Ε. σε ΜΠΑ-ε

2. Παραδείγματα

Δημήτρης Ψούνης, ΠΛΗ3ο, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

10 www.psounis.gr

Β. Θεωρία

1. Μετατροπή Κ.Ε. σε ΜΠΑ-ε

2. Παραδείγματα

Με χρήση των παραπάνω κανόνων μπορούμε να μετατρέψουμε οποιοδήποτε αυτόματο στο ισοδύναμο ΜΠΑ-ε πηγαίνοντας «από μέσα προς τα έξω», δηλαδή πρώτα τις συμβολοσειρές και έπειτα βήμα βήμα σύνθεση της κανονικής έκφρασης:

Παράδειγμα (1+01)*:

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

www.psounis

Β. Θεωρία

<u>2. Μετατροπή ΜΠΑ-ε σε ΜΠΑ</u>

1. Αλγόριθμος Μετατροπής

<u>ΘΕΩΡΗΜΑ:</u> Κάθε ΜΠΑ-ε, έστω $\widehat{\mathbf{M}}=(\widehat{\mathbf{Q}},\widehat{\boldsymbol{\Sigma}},\widehat{q_0},\widehat{\boldsymbol{\delta}},\widehat{\mathbf{F}})$ μετατρέπεται σε ένα ισοδύναμο ΜΠΑ $\mathbf{M}=(\mathbf{Q},\mathbf{\Sigma},q_0,\boldsymbol{\delta},F)$ χωρίς ε-κινήσεις.

Οι κανόνες της μετατροπής είναι οι εξής:

- 1. Οι καταστάσεις μένουν ίδιες: $Q=\widehat{Q}$, το αλφάβητο μένει ίδιο: $\Sigma=\widehat{\Sigma}$ και η αρχική κατάσταση μένει ίδια: $q_0=\widehat{q_0}$
- 2. Οι τελικές καταστάσεις είναι ίδιες: $F=\widehat{F}$ και συμπεριλαμβάνουμε και την αρχική κατάσταση q_0 (γινεται τελική) αν υπάρχει μονοπάτι ε-κινήσεων από την αρχική σε κάποια τελική κατάσταση.
- 3. Ορίζουμε την συνάρτηση δ υπολογίζονται για κάθε κατάσταση q και σύμβολο εισόδου σ την συνάρτηση:

$$\delta(q,\sigma) = \varepsilon(\hat{\delta}(\varepsilon(q),\sigma))$$

- $\varepsilon(Q)$: Σε ποιες καταστάσεις πάμε από την Q χωρίς το διάβασμα κάποιου συμβόλου (προσοχή ότι πάντα μένουμε και στην Q)
- $\hat{\delta}(Q, \sigma)$: Σε ποιες καταστάσεις πάμε από την Q διαβάζοντας το σύμβολο σ.

2. Μετατροπή Μετατροπή ΜΠΑ-ε σε ΜΠΑ

2. Παράδειγμα Χρήσης του Τυπικού Ορισμού

ΠΑΡΑΔΕΙΓΜΑ: Μετατρέπουμε το ακόλουθο ΜΠΑ-ε στο ισοδύναμο ΜΠΑ:

Εφαρμόζουμε τον ορισμό:

•
$$\delta(A, 0) = \varepsilon \left(\hat{\delta}(\varepsilon(A), 0)\right) = \varepsilon \left(\hat{\delta}(\{A, B, \Delta\}, 0)\right) = \varepsilon(\{B\}) = \{B, \Delta\}$$

•
$$\delta(A, 1) = \varepsilon(\hat{\delta}(\varepsilon(A), 1)) = \varepsilon(\hat{\delta}(A, B, \Delta), 1) = \varepsilon(\{\Gamma\}) = \{\Gamma\}$$

•
$$\delta(B,0) = \varepsilon(\hat{\delta}(\varepsilon(B),0)) = \varepsilon(\hat{\delta}(\{B,\Delta\},0)) = \varepsilon(\{B\}) = \{B,\Delta\}$$

$$\delta(B,1) = \varepsilon \left(\hat{\delta}(\varepsilon(B),1) \right) = \varepsilon \left(\hat{\delta}(\{B,\Delta\},1) \right) = \varepsilon(\{\Gamma\}) = \{\Gamma\}$$

•
$$\delta(\Gamma, 0) = \varepsilon (\hat{\delta}(\varepsilon(\Gamma), 0)) = \varepsilon (\hat{\delta}(\{\Gamma\}, 0)) = \varepsilon(\emptyset) = \emptyset$$

$$\delta(\Gamma, 1) = \varepsilon \left(\hat{\delta}(\varepsilon(\Gamma), 1) \right) = \varepsilon \left(\hat{\delta}(\{\Gamma\}, 1) \right) = \varepsilon(\{A\}) = \{A, B, \Delta\}$$

$$\delta(\Delta, 0) = \varepsilon \left(\hat{\delta}(\varepsilon(\Delta), 0)\right) = \varepsilon \left(\hat{\delta}(\{\Delta\}, 0)\right) = \varepsilon(\{B\}) = \{B, \Delta\}$$

•
$$\delta(\Delta, 1) = \varepsilon(\hat{\delta}(\varepsilon(\Delta), 1)) = \varepsilon(\hat{\delta}(\{\Delta\}, 1)) = \varepsilon(\{\Gamma\}) = \{\Gamma\}$$

Συνεπώς το ΜΠΑ είναι:

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

Β. Θεωρία

ПРОХЕІРО

2. Μετατροπή Μετατροπή ΜΠΑ-ε σε ΜΠΑ

4. Παράδεινμα με Εμπειρικό Τρόπο

ΠΑΡΑΔΕΙΓΜΑ: Μετατρέπουμε το ακόλουθο ΜΠΑ-ε στο ισοδύναμο ΜΠΑ:

D:			
		0	1
	A	ε:A,B,Δ ο:⊗,⊗,Β ε:B,Δ	ε:A,B,Δ 1:⊗,⊗,Γ ε:Γ
	В	ε:Β,Δ ο:⊗,Β ε:Β,Δ	ε:Β,Δ 1:⊗,Γ ε:Γ
	Γ	ε:Γ ο:⊗ ε:	ε:Γ 1:Α ε:Α,Β,Δ
	Δ	ε:Δ ο:Β ε:Β Λ	ε:Δ 1:Γ ε·Γ

ΚΑΘΑΡΟ:

Ο πίνακας μετάβασης που προκύπτει από τον αλγόριθμο μετατροπής είναι:

	0	1
A	{B,Δ}	$\{\Gamma\}$
В	{B,Δ}	$\{\Gamma\}$
Γ	Ø	$\{A,B,\Delta\}$
Δ	{B,Δ}	{Γ}

Δημήτρης Ψούνης, ΠΛΗ3ο, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

Β. Θεωρία

2. Μετατροπή Μετατροπή ΜΠΑ-ε σε ΜΠΑ

3. Εφαρμογή με εμπειρικό τρόπο

Εμπειρικά θα εφαρμόζουμε τον αλγόριθμο ως εξής:

- Θα βάζουμε τις ίδιες καταστάσεις
- Θα βάζουμε την ίδια αρχική και τις ίδιες τελικές.
 - Θα παρατηρούμε αν υπάρχει μονοπάτι ε-κινήσεων από την αρχική σε κάποια τελική οπότε και οι αρχικές θα νίνονται τελικές.
- Θα κατασκευάζουμε στο πρόχειρο ένα πινακακι μετάβασης που για κάθε κατ/ση και σύμβολο θα υπολογίζουμε το ε-σ-ε του:
 - ε: που πάμε από την κατάσταση χωρίς διάβασμα συμβόλου (προσοχή ότι πάντα μένουμε και στην ίδια κατάσταση χωρίς διάβασμα συμβόλου)
 - σ: που πηναίνουμε από τις καταστάσεις του προηνούμενου βήματος με το σύμβολο που
 - ε: που πάμε από τις καταστάσεις του προηγούμενου βήματος χωρίς διάβασμα συμβόλου
 - Για παράδεινμα στο αυτόματο:

- Π.χ. για την κατ/ση Α με 0:
 - ε: Α.Β.Δ
 - 0:⊗.⊗.B
 - ε: Β Λ

Τελικά στο καθαρό θα παρουσιάζουμε μόνο τον πίνακα μετάβασης και το σχήμα του αυτομάτου

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

Β. Θεωρία

3. Μετατροπή ΜΠΑ σε ΝΠΑ

1. Αλγόριθμος Μετατροπής

ΘΕΩΡΗΜΑ: Κάθε ΜΠΑ, έστω $M = (Q, \Sigma, q_0, \delta, F)$ μετατρέπεται σε ένα ισοδύναμο NПА $M' = (Q', \Sigma', q'_0, \delta', F').$

Οι κανόνες της μετατροπής είναι οι εξής:

- 1. Οι καταστάσεις 0', είναι όσα και τα υποσύνολα του Q. 'Αρα ισχύει ότι το ΝΠΑ θα έχει 2^{|Q|} καταστάσεις.
- 2. Το αλφάβητο μένει ίδιο: Σ'=Σ
- 3. Η αρχική κατάσταση είναι ίδια και συγκεκριμένα: $q'_0 = \{q'_0\}$
- 4. Ορίζουμε την συνάρτηση δ΄ υπολογίζοντας για κάθε κατάσταση Χ και συμβολο εισόδου σ την παράσταση:

$$\delta'(X,\sigma) = \bigcup_{p \in X} \delta(p,\sigma)$$

Δηλαδή για κάθε κατάσταση που ανήκει στην Χ υπολογίζουμε σε ποιες καταστάσεις πάμε με το σύμβολο σ στο ΜΠΑ. Η ένωση τους είναι η νέα κατάσταση.

5. Οι τελικές καταστάσεις είναι όσες περιέχουν τελική κατάσταση του Μ: $F' = \{ g \in Q' \mid g \cap F \neq \emptyset \}$

3. Μετατροπή ΜΠΑ σε ΝΠΑ

2. Παράδεινμα Χρήσης του Τυπικού Ορισμού

ΠΑΡΑΔΕΙΓΜΑ: Μετατρέπουμε το ακόλουθο ΜΠΑ στο ισοδύναμο ΝΠΑ:

Όλα τα υποσύνολα των καταστάσεων είναι: \emptyset , $\{A\}$, $\{B\}$, $\{\Gamma\}$, $\{A,B\}$, $\{A,\Gamma\}$, $\{B,\Gamma\}$, $\{A,B,\Gamma\}$

Υπολογίζουμε την συνάρτηση δ' για κάθε υποσύνολο και κάθε σύμβολο εισόδου:

- $\delta(\emptyset,0) = \emptyset$
 - $\delta(\{A, B\}, 0) = \emptyset$
- $\delta(\emptyset, 1) = \emptyset$ • $\delta(\{A\}, 0) = \emptyset$
- $\delta(\{A,\Gamma\},0) = \{\Gamma\}$
- $\delta(\{A\}, 1) = \{B, \Gamma\}$
- $\delta(\{A, \Gamma\}, 1) = \{B, \Gamma\}$

• $\delta(\{A, B\}, 1) = \{B, \Gamma\}$

• $\delta(\{B\}, 0) = \emptyset$

• $\delta(\{B,\Gamma\},0) = \{\Gamma\}$

• $\delta(\{B\}, 1) = \emptyset$ • $\delta(\{\Gamma\},0) = \{\Gamma\}$

• $\delta(\{B, \Gamma\}, 1) = \{B\}$

• $\delta(\{A, B, \Gamma\}, 0) = \{\Gamma\}$

• $\delta(\{\Gamma\}, 1) = \{B\}$

• $\delta(\{A, B, \Gamma\}, 1) = \{B, \Gamma\}$

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

Β. Θεωρία

3. Μετατροπή ΜΠΑ σε ΝΠΑ

2. Παράδειγμα Χρήσης του Τυπικού Ορισμού

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

Β. Θεωρία

3. Μετατροπή ΜΠΑ σε ΝΠΑ

2. Παράδεινμα Χρήσης του Τυπικού Ορισμού

ΚΑΝΟΝΑΣ ΑΠΛΟΠΟΙΗΣΗΣ: Αν για κάποια κατάσταση δεν υπάρχει μονοπάτι που να ξεκινάει από την αρχική και να καταλήγει σε αυτήν τότε αυτή μπορεί να καταργηθεί. Εφαρμογή: Καταργούνται οι {Α,Β}, {Α,Β,Γ}, {Α,Γ}

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

Β. Θεωρία

3. Μετατροπή ΜΠΑ σε ΝΠΑ

3. Εφαρμονή με εμπειρικό τρόπο

Εμπερικά θα εφαρμόζουμε τον αλγόριθμο ως εξής:

- Θα κατασκευάζουμε τον πίνακα μετάβασης του αρχικού ΜΠΑ στο πρόχειρο.
- Θα κατασκευάζουμε τον πίνακα μετάβασης του νέου ΝΠΑ ως εξής:
 - Θα βάζουμε μόνο την αρχική κατάσταση στον νέο πίνακα.
 - Όποιες νέες καταστάσεις προκύπτουν θα τις θέτουμε προς μελέτη σε νέες γραμμές του πίνακα μετάβασης του ΝΠΑ.
 - Η μελέτη μίας κατάστασης Χ με το σύμβολο εισόδου σ γίνεται ως εξής:
 - Για κάθε κατάσταση που περιέχεται στο Χ γράφουμε τον συνδυασμό των καταστάσεων που πηγαίνουμε με το σ από κάθε κατάσταση που περιέχεται στο Χ.
 - Ο πίνακας μετάβασης θα σταματά όταν δεν θα υπάρχουν νέες καταστάσεις προς διερευνηση.
- Θα δίνουμε την σχηματική απεικόνιση του ΝΠΑ
 - Η αρχική κατάσταση είναι η ίδια
 - Οι τελικές καταστάσεις είναι όσες περιέχουν τελική του ΜΠΑ.

3. Μετατροπή ΜΠΑ σε ΝΠΑ

3. Εφαρμογή με εμπειρικό τρόπο

ΠΑΡΑΔΕΙΓΜΑ: Μετατρέπουμε το ακόλουθο ΜΠΑ στο ισοδύναμο ΝΠΑ:

ΠΡΟΧΕΙΡΟ

	0	1
A	Ø	{B,Γ}
В	Ø	Ø
Γ	$\{\Gamma\}$	{B}

ΚΑΘΑΡΟ: Εφαρμόζω τον αλνόριθμο μετατροπής ΜΠΑ=>ΝΠΑ

		0	1
	{A}	Ø	{B,Γ}
	Ø	Ø	Ø
	{B,Γ}	$\{\Gamma\}$	{B}
	$\{\Gamma\}$	$\{\Gamma\}$	{B}
	{B}	Ø	Ø

και σχηματικά είναι:

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

Β. Θεωρία

4. Μετατροπή ΝΠΑ σε ΚΕ

2. Παράδειγμα

Η επίλυση είναι αναδρομική δηλαδή «από πάνω προς τα κάτω», προκειμένου να υπολογιστούν μόνο οι αναγκαίες εκφράσεις:

$$R = R^3(1,3) = R^2(1,3) + R^2(1,3)(R^2(3,3))^*R^2(3,3)$$

Υπολογίζουμε τους όρους που προέκυψαν: $R^{2}(1,3) = R^{1}(1,3) + R^{1}(1,2)(R^{1}(2,2))^{*}R^{1}(2,3)$

 $R^{2}(3,3) = R^{1}(3,3) + R^{1}(3,2)(R^{1}(2,2))*R^{1}(2,3)$ Υπολογίζουμε τους όρους που προέκυψαν:

 $R^{1}(1,3) = R^{0}(1,3) + R^{0}(1,1)(R^{0}(1,1))^{*}R^{0}(1,3)$

 $R^{1}(1,2) = R^{0}(1,2) + R^{0}(1,1)(R^{0}(1,1))^{*}R^{0}(1,2)$

 $R^{1}(2,2) = R^{0}(2,2) + R^{0}(2,1)(R^{0}(1,1))*R^{0}(1,2)$

 $R^{1}(3,3) = R^{0}(3,3) + R^{0}(3,1)(R^{0}(1,1)) R^{0}(1,3)$

 $R^{1}(2,3) = R^{0}(2,3) + R^{0}(2,1)(R^{0}(1,1))*R^{0}(1,3)$ $R^{1}(3,2) = R^{0}(3,3) + R^{0}(3,1)(R^{0}(1,1)) R^{0}(1,2)$

Υπολογίζουμε τους όρους που προέκυψαν:

 $R^0(1.1) = 1 + \varepsilon$

 $R^0(1,2)=0$

 $R^0(1,3) = \emptyset$

 $R^0(2,1)=1$

 $R^0(2,2) = \varepsilon$

 $R^0(2,3)=0$ $R^0(3,1)=1$

 $R^0(3,2) = \emptyset$

 $R^{0}(3,3) = 0 + \varepsilon$

Β. Θεωρία

4. Μετατροπή ΝΠΑ σε Κ.Ε.

1. Αλνόριθμος Μετατροπής

ΘΕΩΡΗΜΑ: Κάθε ΝΠΑ, έστω $M = (Q, \Sigma, q_0, \delta, F)$ μετατρέπεται σε μία ισοδύναμη κανονική έκφραση.

Η διαδικασία της μετατροπής είναι η εξής:

- Θεωρούμε ότι οι καταστάσεις έχουν αρίθμηση: 1.....η
- 2. Ορίζουμε το Rk(p,q) ως το σύνολο των συμβολοσειρών που αντιστοιχούν σε ένα μονοπάτι από το ρ στο α χρησιμοποιώντας τις καταστάσεις 1.....k και υπολογίζουμε:
 - 1. Αρχικά υπολογίζουμε τα $R^{0}(p,q) = \{\sigma \mid \delta(p,\sigma) = q\}$ αν υπάρχει μετάβαση από την p στην q διαβάζοντας σ και ειδικά: $R^{0}(p,p) = \{ \sigma \mid \delta(p,\sigma) = p \} \cup \{ \varepsilon \}$
 - 2. Και έπειτα για κάθε k=1,...,n $R^{k}(p,q) = R^{k-1}(p,q) + R^{k-1}(p,p_{\nu}) (R^{k-1}(p_{\nu},p_{\nu}))^{*} R^{k-1}(p_{\nu},q)$
- 3. Τελικά η κανονική έκφραση είναι: $R = R^n(q_0, f_1) + R^n(q_0, f_2) + ... + R^n(q_0, f_m)$ Όπου οι $f_1, f_2, ..., f_m$ οι τελικές καταστάσεις του αυτομάτου.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

Β. Θεωρία

4. Μετατροπή ΝΠΑ σε ΚΕ

2. Παράδεινμα

Η κανονική εκφραση θα κατασκευαστεί συμπληρώνοντας αντίστροφα τις ποσότητες που έχουμε κατασκευάσει (χρησιμοποιούμε τις ιδιότητες (s+ε)*=s* και sØ=Ø

Από τους αρχικούς όρους: Έχουμε τους όρους: $R^{0}(1,1) = 1 + \varepsilon$ $R^{1}(1,3) = \emptyset + (1+\varepsilon)(1+\varepsilon)^{*}\emptyset = \emptyset$ $R^0(1.2) = 0$ $R^{1}(1,2) = 0 + (1+\varepsilon)(1+\varepsilon)^{*}0 = 0 + 11^{*}0$ $R^{1}(2.2) = \varepsilon + 1(1+\varepsilon)^{*}0 = \varepsilon + 11^{*}0$ $R^0(1,3) = \emptyset$ $R^0(2.1) = 1$ $R^{1}(2.3) = 0 + 1(1 + \varepsilon)^{*}\emptyset = 0$ $R^{0}(2,2) = \varepsilon$ $R^{1}(3,3) = 0 + \varepsilon + 1(1+\varepsilon)^{*}\emptyset = 0 + \varepsilon$ $R^0(2,3) = 0$ $R^{1}(3.2) = \emptyset + 1(1+\varepsilon)^{*}0 = 11^{*}0$ $R^0(3.1) = 1$ Άρα έχουμε τους όρους: $R^0(3,2) = \emptyset$ $R^2(1.3) = \emptyset + (0 + 11^{\circ}0)(e + 11^{\circ}0)^{\circ}0$ $R^0(3,3) = 0 + \varepsilon$ $= (0 + 11^*0)(11^*0)^*0$ $R^2(3,3) = 0 + \varepsilon + 11^*0(\varepsilon + 11^*0)^*0$ $= 0 + \varepsilon + 11^*0(11^*0)^*0$

Άρα η τελική κανονική έκφραση είναι:

 $R = (0 + 11^{*}0)(11^{*}0)^{*}0 + (0 + 11^{*}0)(11^{*}0)^{*}0(0 + \varepsilon + 11^{*}0(11^{*}0)^{*}0)^{*}(0 + \varepsilon + 11^{*}0(11^{*}0)^{*}0)$

Δώστε ΜΠΑ που αναγνωρίζουν τις συμβολοσειρές των κανονικών εκφράσεων: (A) (11)*+0*

- (B) 010(11)*01+0*10*
- $(\Gamma) (0+10)^* + (1+0^*0)^* + 1$

<u>Γ. Ασκήσεις</u> <u>Ασκηση Κατανόησης 2</u>

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

Μετατρέψτε το ακόλουθο ΜΠΑ-ε στο ισοδύναμο ΜΠΑ χρησιμοποιώντας τον αλγόριθμο μετατροπής ΜΠΑ-ε σε ΜΠΑ:

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

www.psounis.gr

27 unis.gr

<u>Γ. Ασκήσεις</u> <u>Ασκηση Κατανόησης 3</u>

Μετατρέψτε το ακόλουθο ΜΠΑ-ε στο ισοδύναμο ΜΠΑ χρησιμοποιώντας τον αλγόριθμο μετατροπής ΜΠΑ-ε σε ΜΠΑ:

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

ng.sinuosq.www

<u>Γ. Ασκήσεις</u> Ασκηση Κατανόησης 4

Για την γλώσσα L={w∈ {0,1}* | w αρχίζει με 00}

- (Α) Δώστε κανονική έκφραση που παράγει την L
- (Β) Δώστε ΜΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας.
- (Γ) Δώστε το ισοδύναμο ΝΠΑ (εφαρμόστε τον αλγόριθμο ΜΠΑ=>ΝΠΑ)

<u>Γ. Ασκήσεις</u> <u>Ασκηση Κατανόησης 5</u>

Για την γλώσσα L={w∈ {0,1}* | w τελειώνει με 001}

- (Α) Δώστε κανονική έκφραση που παράγει την L
- (Β) Δώστε ΜΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας.
- (Γ) Δώστε το ισοδύναμο ΝΠΑ (εφαρμόστε τον αλγόριθμο ΜΠΑ=>ΝΠΑ)

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

<u>Γ. Ασκήσεις</u> <u>Εφαρμογή 2</u>

Δίνεται η κανονική έκφραση (1+00)*

- 1. Δώστε ΜΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας χρησιμοποιώντας τον αλγόριθμο μετατροπής Κ.Ε. σε ΜΠΑ
- 2. Δώστε ΜΠΑ για την γλώσσα που παράγει η κανονική έκφραση (χωρίς ε-κινήσεις)
- 3. Μετατρέψτε το ΜΠΑ στο ισοδύναμο ΝΠΑ.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 3.5: Ισοδυναμία ΚΕ - ΜΠΑ - ΝΠΑ

<u>Γ. Ασκήσεις</u> <u>Εφαρμογή 1</u>

Δίνεται η κανονική έκφραση 0*1*01

- 1. Δώστε ΜΠΑ που αναγνωρίζει τις συμβολοσειρές της γλώσσας χρησιμοποιώντας τον αλγόριθμο μετατροπής Κ.Ε. σε ΜΠΑ
- 2. Δώστε ΜΠΑ για την γλώσσα που παράγει η κανονική έκφραση (με ακριβώς μία εκίνηση)
- 3. Μετατρέψτε το ΜΠΑ του ερωτήματος 2 σε ένα ισοδύναμο χωρίς ε-κινήσεις
- 4. Μετατρέψτε το ΜΠΑ στο ισοδύναμο ΝΠΑ.