Master's Thesis Defense

The Prize-Collecting Steiner Tree Problem and Related Problems

William Jack Lysgaard Sprent

DIKU

31st August 2018

The fun we are having today:

- 1 Introduction
- 2 The Prize-Collecting Steiner Tree Problem
- Other Ways of Collecting Prize
- 4 The Median Tree Problem
- 5 Summary / Reflections

Outline

- 1 Introduction
- 2 The Prize-Collecting Steiner Tree Problem
- 3 Other Ways of Collecting Prize
- 4 The Median Tree Problem
- 5 Summary / Reflections

What happened in the last six months?

I read a stack of research papers about the PCSTP.

- I read a stack of research papers about the PCSTP.
- I read a smaller stack of research papers about related problems.

- I read a stack of research papers about the PCSTP.
- I read a smaller stack of research papers about related problems.
- I was indecisive.

- I read a stack of research papers about the PCSTP.
- I read a smaller stack of research papers about related problems.
- I was indecisive.
- I worked on a solver for the Median Tree Problem.

Why the PCSTP?

- It's a hard problem. Hard problems are worth solving.
- It relates to the Steiner Tree Problem, and shares some of its characteristica.

Why the PCSTP?

- It's a hard problem. Hard problems are worth solving.
- It relates to the Steiner Tree Problem, and shares some of its characteristica.
- Finally: *It is an interesting problem*.

The Survey

What makes a survey necessary?

The Survey

What makes a survey necessary?

- A lot is written about the PCSTP, but it is unstructured and disjoint.
- Some of these papers touch on very complex subjects and are sometimes short and unintuitive.
- The PCSTP is a good "case study" for an ILP problem.

The Survey

What makes a survey necessary?

- A lot is written about the PCSTP, but it is unstructured and disjoint.
- Some of these papers touch on very complex subjects and are sometimes short and unintuitive.
- The PCSTP is a good "case study" for an ILP problem.
- There is a lot to learn.

Why the Median Tree Problem?

Why the Median Tree Problem?

We'll get back to that later.

Outline

- 1 Introduction
- 2 The Prize-Collecting Steiner Tree Problem
- 3 Other Ways of Collecting Prize
- 4 The Median Tree Problem
- 5 Summary / Reflections

Short History

- Defined by Egon Balas in 1988 as a side effect.
- Subject to steady focus in the late 90's and early 00's.
- One of the subjects of the 11th DIMACs Implementation Challenge in 2014.

Problem Definition

Given an undirected graph

$$G = (V, E, c, p)$$

where $c: E \to \mathbb{R}^+$ defines edge weights, and $p: V \to \mathbb{R}^+$ defines vertex *prizes*, then the solution to the *PCSTP* is a tree

$$T = (V_T, E_T, c, p) \subseteq G$$

which minimizes

$$c(T) = \min_{T} \sum_{(i,j) \in E_T} c_{ij} + \sum_{v \in (V \setminus V_T)} p_v.$$

Example

Example

The Survey Quick Summary

Contents of the Survey:

- 1 The history of solving the PCSTP.
- 2 Preprocessing routines.
- 3 Two heuristic algorithms. LP-based and search based.
- 4 An approximation algorithm: the GW Algorithm.
- 5 How to separate GSECs.
- 6 The DHEA and SCIP-Jack solvers.

The Survey Main Points

The Survey Main Points

What have we learned?

1 The PCSTP is well covered all things considered.

- ① The PCSTP is well covered all things considered.
- Preprocessing is very good for the PCSTP.

- 1 The PCSTP is well covered all things considered.
- 2 Preprocessing is very good for the PCSTP.
- 3 Directed formulations of the problem are preferable for branch and bound.

- 1 The PCSTP is well covered all things considered.
- 2 Preprocessing is *very* good for the PCSTP.
- 3 Directed formulations of the problem are preferable for branch and bound.
- 4 Heuristics are aplenty.

The Survey Main Points

Curiosities

- Not a lot of focus on applications.
- Linear progress?
- Somewhat general methods besides preprocessing.

Curiosities

- Not a lot of focus on applications.
- Linear progress?
- Somewhat general methods besides preprocessing.

On to other problems.

Outline

- 1 Introduction
- 2 The Prize-Collecting Steiner Tree Problem
- 3 Other Ways of Collecting Prize
- 4 The Median Tree Problem
- 5 Summary / Reflections

Prize-Collecting Tours

Three main variants:

- 1 The Prize-Collecting Travelling Salesman Problem
- The Orienteering Problem
- The Profitable Tour Problem

Prize-Collecting Tours

Three main variants:

- 1 The Prize-Collecting Travelling Salesman Problem
- 2 The Orienteering Problem
- The Profitable Tour Problem

Some Notes:

- Main point of the Balas paper in 88.
- Shares approximation algorithms.
- Apart from the OP, not well covered.

Median Subgraphs

- Assignment Problem.
- Different shapes of facility.
- Median Trees.

Summary

- Two axis' of similarity: structure and prize function.
- PCSTP is the most well researched problem in the family.

Summary

- Two axis' of similarity: structure and prize function.
- PCSTP is the most well researched problem in the family.

What now?

Outline

- 1 Introduction
- 2 The Prize-Collecting Steiner Tree Problem
- 3 Other Ways of Collecting Prize
- 4 The Median Tree Problem
- 5 Summary / Reflections

Options

- Stay with the PCSTP.
- Look at the Profitable Tour Problem.
- Look at the Median Tree Problem.

Motivation

Median Trees over Prize-Collecting Tours

- A feasible solution to the PCSTP is a feasible solution to the MTP.
- Collect Prize vs. Assignment: similar although not the exact same — trade offs.

Motivation

Median Trees over Prize-Collecting Tours

- A feasible solution to the PCSTP is a feasible solution to the MTP.
- Collect Prize vs. Assignment: similar although not the exact same — trade offs.

And a splash of subjectivity.

Problem Definition

Let G=(V,E,c,d) be an undirected graph. Denote $c:E\to\mathbb{R}^+$ as an *edge cost* function and $d:V\times V\to\mathbb{R}^+$ be an *assignment cost* function where we have

$$d_{ii} = 0.$$

Then the *Median Tree Problem* is defined as finding a *connected* subgraph $T=(V_T,E_T)$ of G where $V_T\subseteq V$ and $E_T\subseteq E$ which minimises the cost function,

$$c(T) = \sum_{ij \in E_T} c_{ij} + \sum_{i \in V} \min_{j \in V_T} d_{ij}.$$

Example

Example

d_{ij}	a	$\mid b \mid$	С	d	e	f	g
а	0	12	12	12	12	12	12
b	0	0	0	0	0	0	0
С	0	0	0	0	0	0	0
d	10	10	10	0	10	10	10
e	0	0	0	0	0	0	0
f	0	0	0	0	0	0	0
g	3	3	3	3	3	3	0

Example

ILP Formulation

$$\begin{array}{ll} \text{minimize} & \sum\limits_{ij \in E} c_{ij}x_{ij} + \sum\limits_{i,j \in V} d_{ij}y_{ij} & \text{(1a)} \\ \\ \text{subject to} & \sum\limits_{ij \in E} x_{ij} = \sum\limits_{i \in V} y_{ii} - 1 & \text{(1b)} \\ \\ & x(E(S)) \leq \sum\limits_{i \in S \setminus \{s\}} y_{ii} \ \forall S \subseteq V, s \in S & \text{(1c)} \\ \\ & \sum\limits_{j \in V} y_{kj} = 1 & \forall k \in V & \text{(1d)} \\ \\ & y_{ik} \leq y_{kk} & \forall i, k \in V & \text{(1e)} \\ \\ & y_{kk} \leq \sum\limits_{i \in \delta(k)} x_{ik} & \forall k \in V & \text{(1f)} \\ \\ & \mathbf{x} \in \mathbb{B}^{|E|} & \text{(1g)} \\ & \mathbf{y} \in \mathbb{B}^{|V \times V|} & \text{(1h)} \\ \end{array}$$

Valid Inequalities

Valid Inequalities

Forced self-assignment:

$$y_{ii} \geq x_{ji}$$
 $\forall i \in V, \forall j \in \delta(i).$

Valid Inequalities

Forced self-assignment:

$$y_{ii} \geq x_{ji} \qquad \forall i \in V, \forall j \in \delta(i).$$

Degree of Nonterminals:

$$\sum_{j \in \delta(i)} x_{ij} \ge 2x_{ik} \qquad \forall i \in N, \ \forall k \in \delta(i)$$

■ Based on the Gurobi MIP solver.

- Based on the Gurobi MIP solver.
- Callbacks written in Python 3.

- Based on the Gurobi MIP solver.
- Callbacks written in Python 3.
- Applies methods from the PCSTP survey:

- Based on the Gurobi MIP solver.
- Callbacks written in Python 3.
- Applies methods from the PCSTP survey:
 - Primal heuristic from the DHEA solver.
 - User cuts based on GSEC separation from an article by Lucena and Resende for the PCSTP.

Outline

- 1 Introduction
- 2 The Prize-Collecting Steiner Tree Problem
- 3 Other Ways of Collecting Prize
- 4 The Median Tree Problem
- 5 Summary / Reflections

What did I manage to do?

haha

Improvements

The Survey

Improvements

Further Work

Solve a real problem

haha

Postface

Questions?