Notes for Mathematical System

2018.Oct.31

1. Representation

1.1 Categorical & Numerical

1.2 Numerical System:

100-based-system

12-based-system

Decimal(Ten)/Quniary(Five) Based-System

Electronic

A and B high or C high will make the output high.

A or B high and C high will make the output high.

A low or B high will make the ouput high.

The long bar above the output means that the output goes low when A or B go high.

Binary Logic

Logic gates

• Graphic Symbols and Input-Output Signals for Logic gates:

Fig. 1.4 Symbols for digital logic circuits

Fig. 1.5 Input-Output signals for gates

Binary-Based Operation

Hexadecimal	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Heximal (16)

ASCII Table

Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0	0		32	20	40	[space]	64	40	100	@	96	60	140	` _
1	1	1		33	21	41	1	65	41	101	A	97	61	141	a
2	2	2		34	22	42		66	42	102	В	98	62	142	b
3	3	3		35	23	43	#	67	43	103	C	99	63	143	С
4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
5	5	5		37	25	45	%	69	45	105	E	101	65	145	e
6	6	6		38	26	46	&	70	46	106	F	102	66	146	f
7	7	7		39	27	47		71	47	107	G	103	67	147	g
8	8	10		40	28	50	(72	48	110	Н	104	68	150	h
9	9	11		41	29	51)	73	49	111	1	105	69	151	i
10	Α	12		42	2A	52	*	74	4A	112	J	106	6A	152	j
11	В	13		43	2B	53	+	75	4B	113	K	107	6B	153	k
12	C	14		44	2C	54	,	76	4C	114	L	108	6C	154	1
13	D	15		45	2D	55	-	77	4D	115	M	109	6D	155	m
14	E	16		46	2E	56		78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	/	79	4F	117	0	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	P	112	70	160	р
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	S	115	73	163	S
20	14	24		52	34	64	4	84	54	124	Т	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	V
23	17	27		55	37	67	7	87	57	127	W	119	77	167	w
24	18	30		56	38	70	8	88	58	130	X	120	78	170	x
25	19	31		57	39	71	9	89	59	131	Υ	121	79	171	У
26	1A	32		58	3A	72	:	90	5A	132	Z	122	7A	172	z
27	1B	33		59	3B	73	;	91	5B	133	[123	7B	173	{
28	1C	34		60	3C	74	<	92	5C	134	\	124	7C	174	1
29	1D	35		61	3D	75	=	93	5D	135]	125	7D	175	}
30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	~
31	1F	37		63	3F	77	?	95	5F	137	_	127	7F	177	

Unicode

Python >> ord('测')

2. Calculus

The Counts Operation is about: Add (+)

Two power, two things, two force..

Each one has the same influence of one result.

We write the a1 + a2 + a3 + \dots aN:

$$\sum_{k=1}^{n} a_k$$

$$\sum_{k=1}^{\infty} a_k$$

If the limit does not exist, the series diverges; otherwise, it converges.

Some Feature:

$$\sum_{k=1}^{n} (ca_k + b_k) = c \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k.$$

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n$$

$$\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)$$

Geometric series:

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n}$$

$$\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1}$$

If |x| < 1:

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} .$$

Natural Logarithm:

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \cdots$$

Multiplication *:

Y = kx;

Two variable y and x are **proportional** if one is always a constant multiple of the other.

For some nonzero constant \emph{k} , We write:

 $y \propto x$.

Product:

$$\prod_{k=1}^{n} a_k$$

$$\lg\left(\prod_{k=1}^n a_k\right) = \sum_{k=1}^n \lg a_k \ .$$

3. Logic

Set, a collection of distinguishable objects.

$$\sin \$$$

S = $\{1, 2, 3\}$ = $\{2, 3, 1\}$ = $\{3, 1, 2\}$

- \emptyset denotes the *empty set*, that is, the set containing no members.
- \mathbb{Z} denotes the set of *integers*, that is, the set $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$.
- \mathbb{R} denotes the set of *real numbers*.
- \mathbb{N} denotes the set of *natural numbers*, that is, the set $\{0, 1, 2, \ldots\}$.

• The *intersection* of sets A and B is the set

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$
.

• The *union* of sets A and B is the set

$$A \cup B = \{x : x \in A \text{ or } x \in B\} .$$

• The *difference* between two sets A and B is the set

$$A - B = \{x : x \in A \text{ and } x \notin B\}$$
.

Associative laws:

$$A \cap (B \cap C) = (A \cap B) \cap C,$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$
.

Distributive laws:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
,

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

Absorption laws:

$$A \cap (A \cup B) = A$$

$$A \cup (A \cap B) = A.$$

The Mark:

- =
- \(\forall \)
- s.t
- ::
- .
- argmax()

5. Linear Algebra

6. Probability

$$f(x\mid \mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

where

- μ is the mean or expectation of the distribution (and also its median and mode),
- ullet σ is the standard deviation, and
- σ^2 is the variance.

$$\operatorname{Var}(X) = \operatorname{E} \left[(X - \mu)^2 \right].$$

7. Graph

Degree of a vertex is the number of edges incident to the vertex.

8. Dynamic Programming