Getting started with RLumCarlo

Sebastian Kreutzer, Johannes Friedrich, Vasilis Pagonis, Christoph Schmidt Last modified: 2019-10-07

Scope

RLumCarlo is collection of energ-band models to simulate luminescence signal production using Monte-Carlo (MC) methods. This document aims at providing an overview and a brief introduction to RLumCarlo and on how to use the models. The first section, will, however, provide a brief introduction into RLumCarlo and how plot and extracts its data.

A simple exlample

TODO

The models in RLumCarlo

MODEL_NAME	R_CALL	R_FILE	MODE_CORE
MC_CW_IRSL_DELOC	run_MC_CW_IRSL_DELOC()	R/run_MC_CW_IRSL_DELOC.R	$src/MC_C_MC_C$
$MC_CW_IRSL_LOC$	run_MC_CW_IRSL_LOC()	R/run_MC_CW_IRSL_LOC.R	$src/MC_C_MC_C$
MC_CW_IRSL	run_MC_CW_IRSL()	R/run_MC_CW_IRSL.R	$src/MC_C_MC_C$
MC_ISO_DELOC	run_MC_ISO_DELOC()	R/run_MC_ISO_DELOC.R	$src/MC_C_MC_IS$
MC_ISO_LOC	run_MC_ISO_LOC()	R/run_MC_ISO_LOC.R	$\mathrm{src/MC_C_MC_IS}$
MC_{ISO}	$run_MC_ISO()$	$R/run_MC_ISO.R$	$\mathrm{src/MC_C_MC_IS}$
$MC_LM_OSL_DELOC$	$run_MC_LM_OSL_DELOC()$	R/run_MC_LM_OSL_DELOC.R	$\mathrm{src}/\mathrm{MC}_\mathrm{C}_\mathrm{MC}_\mathrm{L}$
$MC_LM_OSL_LOC$	$run_MC_LM_OSL_LOC()$	$R/run_MC_LM_OSL_LOC.R$	$\mathrm{src}/\mathrm{MC}_\mathrm{C}_\mathrm{MC}_\mathrm{L}$
MC_LM_OSL	$run_MC_LM_OSL()$	$R/run_MC_LM_OSL.R$	$\mathrm{src/MC_C_MC_L}$
MC_TL_DELOC	$run_MC_TL_DELOC()$	$R/run_MC_TL_DELOC.R$	$\mathrm{src}/\mathrm{MC}_\mathrm{C}_\mathrm{MC}_\mathrm{T}$
MC_TL_LOC	$run_MC_TL_LOC()$	R/run_MC_TL_LOC.R	$\mathrm{src/MC_C_MC_T}$
MC_TL	$\operatorname{run_MC_TL}()$	$R/run_MC_TL.R$	$\mathrm{src/MC_C_MC_T}$

```
library(RLumCarlo)

times <- seq(0, 5000)

## Run MC simulation

run_MC_ISO(E = 1.2,</pre>
```

```
s = 1e10,
T = 200,
rho = 0.007,
times = times) %>%
calc_RLumCarlo() %>%
plot_RLumCarlo(norm = T, legend = T)
```



```
times <- seq(0, 1000)

## Run MC simulation

run_MC_CW_IRSL(A = 0.12, rho = 0.003, times = times) %>%
calc_RLumCarlo() %>% plot_RLumCarlo(norm = T, legend = T)

run_MC_CW_IRSL(A = 0.21, rho = 0.003, times = times) %>%
calc_RLumCarlo() %>% plot_RLumCarlo(norm = T, add = T)
```



```
s <- 3.5e12
rho <- 0.015
E <- 1.45

times <- seq(100, 450) # time = temperature

results_rc0 <- run_MC_TL(s=s, E = E, rho = rho, r_c = 0, times = times) %>%
    calc_RLumCarlo()

results_rc07 <- run_MC_TL(s=s, E = E, rho = rho, r_c = 0.7, times = times) %>%
    calc_RLumCarlo()

results_rc077 <- run_MC_TL(s=s, E = E, rho = rho, r_c = 0.77, times = times) %>%
    calc_RLumCarlo()

results_rc086 <- run_MC_TL(s=s, E = E, rho = rho, r_c = 0.86, times = times) %>%
    calc_RLumCarlo()
```



```
## set parameters
s <- 3.5e12
rho <- 0.015
E < -1.45
times <- seq(200, 500) # time = temperature
r_c \leftarrow c(0.85, 1.13, 1.3)
for(i in 1:length(r_c)){
  run_MC_TL(
    s = s,
    E = E,
   rho = rho,
   r_c = r_c[i],
   times = times
  ) %>%
  calc_RLumCarlo() %>%
  plot_RLumCarlo(legend = T, add = TRUE, col = i + 1)
}
```

