定理 2.30 < A , \lor , \land > を束< A , \leqslant > によって定義される代数系とする。任意の要素 a.b.c.d \in A に対して、次の式が成り立つ。

- (1) 交換律 : $a \lor b = b \lor a$, $a \land b = b \land a$
- (2) べき等律: $a \lor a = a$, $a \land a = a$
- (3) 結合律 : $(a \lor b) \lor c = a \lor (b \lor c)$, $(a \land b) \land c = a \land (b \land c)$
- (4) 吸収律 : $a \lor (a \land b) = a$, $a \land (a \lor b) = a$

【証明】

- (1): 束の任意の要素aとbに対して、aとbの上限(下限)はbとaの上限(下限)と同じである。すなわち、a∨b=b∨a、a∧b=b∧aである。
- (2): 定理 2.27 により、 $a \le a \lor a$ である。半順序関係 \le の反射律により、 $a \le a$ である。定理 2.29 により、 $a \lor a \le a$ である。よって、半順序関係 \le の反対称律により、 $a \lor a = a$ も成り立つ。
- (3): 定理 2.27 により.
 - (i) $a \leq a \vee (b \vee c)$, $b \leq a \vee b \leq (a \vee b) \vee c$,
 - (ii) $b \le b \lor c \le a \lor (b \lor c)$, $c \le (a \lor b) \lor c$,
 - (iii) $c \leq b \vee c \leq a \vee (b \vee c)$, $a \leq a \vee b \leq (a \vee b) \vee c$,

である。(i)と(ii)から定理 2.29 により、

- (iv) $a \lor b \le a \lor (b \lor c)$, $b \lor c \le (a \lor b) \lor c$,
- (iii)と(iv)から定理 2.29 により,

$$(a \lor b) \lor c \le a \lor (b \lor c)$$
, $a \lor (b \lor c) \le (a \lor b) \lor c$,

である。

半順序関係<の反対称律により、 $(a \lor b) \lor c = a \lor (b \lor c)$ である。

双対原理により、 $(a \land b) \land c = a \land (b \land c)$ も成り立つ。

(4): 定理 2.27 により、 $a \le a \lor (a \land b)$ 、 $a \land b \le a$ である。 $a \le a \lor c$ 定理 2.29 により、 $a \lor (a \land b) \le a$ である。ゆえに、 $a \lor (a \land b) = a$ である。双対原理により、 $a \land (a \lor b) = a$ も成り立つ。