Announcements

- Quiz 0 will be out on Canvas tonight at 5pm. Honorlock Based.
 Open Notes. Can attempt anywhere
- This is basically a syllabus quiz. It does not have questions related to the lecture content.
- This quiz is multiple attempts. Due at the end of the semester
- Quiz 1 onwards will cover lecture content, will be timed, will be 1 attempt only and will be due every week
- Lectures are recorded for you to revisit later. You can find it under Media Gallery.
- Project Pinned Post on Ed discussion for you to look for teammates

Machine Learning CS 4641 C

Data Analysis Toolbox 1

Nimisha Roy
Lecturer, College of Computing

Setting up

- Jupyter Notebooks (.ipynb)
 Combine code, text, and visualizations in one interactive document.
- Option 1: Anaconda (Recommended for beginners)
- Install Anaconda to get Python, Jupyter Notebook, and NumPy pre-packaged.
- Great for working offline on your computer.
- Option 2: Google Colab
- Free, browser-based environment with Jupyter-like notebooks.
- No installation needed runs on Google's cloud.
- Easy to share and collaborate with classmates.

Python List vs NumPy Array

Python Lists

- Can store mixed data types
- No element-wise math
- Slower for numerical tasks

$$a = [1, 2, 3]$$
 $a = [1, 2, 3]$
 $a = numpy = np. [1, 2]$
 $a_1 = [1, 2, 3, 1, 2, 3]$
 $a_1 = [1, 2, 3, 1, 2, 3]$
 $a_2 = a_3 * 2$
 $a_3 = [2, 4, 6]$

NumPy Arrays

- •Size more compact in memory
- Performance optimized C backend, much faster
- •Functionality built-in math, linear algebra, and SciPy support
- •Homogeneous data → efficient computations
- Vectorized operations (a+b, a*b)

Takeaway: NumPy arrays are the core data structure for efficient, large-scale numerical computing in Python.

Josin X = dimensionality mxde beatures datapoint We can splice rows - s if we split data into train, val & test sets We can splice columns -> if we need to seduce
dinensions (dinensionality seduction)
among others

NumPy Broadcasting

- Perform operations on arrays of different shapes
- NumPy automatically expands dimensions when possible
- Eliminates the need for manual loops or reshaping
- Makes code shorter, faster, and memory-

Is A*B possible?

NumPy Broadcasting

How to know matrices are broadcastable?

When two arrays don't have the same number of dimensions: NumPy prepends 1's to the smaller shape until both arrays have the same number of dimensions.

Then it compares dimensions from right -> left.

NumPy Broadcasting

Takeaway: Broadcasting allows NumPy to apply operations across arrays of different sizes seamlessly

Much faster than for loops

Summary

Lists vs Arrays

 Arrays are smaller in memory, faster, and packed with math functions

Vectorization

- Write math like math: a + b instead of looping
- Faster because operations run in optimized C code

Broadcasting

- Extends operations to arrays of different shapes automatically
- No need for manual resizing or nested loops

**** Key Takeaway:**

With NumPy, we **don't like for loops** — arrays, vectorization, and broadcasting make code cleaner, faster, and easier to reason about.

