3, 4, 7, 13, 14, 15, 17,18,19, 23, 24, 25, 26, 28, 3^{Differentiation}

Single Correct Answer Type

Level 1

- If $x = \log p$ and y = 1/p, then
 - (a) $\frac{d^2y}{dx^2} 2p = 0$ (b) $\frac{d^2y}{dx^2} + y = 0$
- - (c) $\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$ (d) $\frac{d^2y}{dx^2} \frac{dy}{dx} = 0$
- If $y = e^{\tan^{-1} x}$, then $(1 + x^2) \frac{d^2 y}{dx^2} =$
 - (a) $(1-2x)\frac{dy}{dx}$
- (b) $-2x\frac{dy}{dx}$

- If $y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{3!}$, then $\frac{dy}{dy} = \frac{1}{2!} + \frac{1}{3!} +$

- (b) y + $\frac{x^{n}}{n!}$
- (c) $y \frac{x^n}{n!}$ (d) $y 1 \frac{x^n}{n!}$
- $\frac{d}{dx}\cos^{-1}\sqrt{\cos x} =$
 - (a) $\frac{1}{2}\sqrt{1+\sec x}$
- (b) $\sqrt{1+\sec x}$
- (c) $-\frac{1}{2}\sqrt{1+\sec x}$
- $\frac{d}{dx} \tan^{-1} \left(\frac{ax b}{bx + a} \right) =$
 - (a) $\frac{1}{1+x^2} \frac{a^2}{a^2+b^2}$ (b) $\frac{-1}{1+x^2} \frac{a^2}{a^2+b^2}$
 - (c) $\frac{1}{1+x^2} + \frac{a^2}{a^2-b^2}$
- (d) None of these
- If $y = \sqrt{\frac{1-x}{1+x}}$, prove that $(1-x^2) \frac{dy}{dx} =$

- $\frac{dy}{dx}$ for $y = tan^{-1} \left\{ \sqrt{\frac{1 + \cos x}{1 \cos x}} \right\}$, $0 < x < \pi$ is

- If $y = \tan^{-1} \sqrt{\frac{x+1}{x-1}}$ then $\frac{dy}{dx}$ is equal to
 - (a) $\frac{-1}{2|x|\sqrt{x^2-1}}$ (b) $\frac{-1}{2x\sqrt{x^2-1}}$
 - (c) $\frac{1}{2x\sqrt{x^2-1}}$
- (d) None of these

- If $y = ax^{n+1} + bx^{-n}$, then $x^2 \frac{d^2y}{dx^2} =$

- 10. If $y = \sqrt{(a-x)(x-b)} (a-b) \tan^{-1} \sqrt{\frac{a-x}{x-b}}$,
 - then $\frac{dy}{dx} =$
 - (a) 1

- (b) $\sqrt{\frac{a-x}{x-b}}$
- (c) $\sqrt{(a-x)(x-b)}$ (d) $\frac{1}{\sqrt{(a-x)(b-x)}}$
- 11. If $x = a \cos \theta$, $y = b \sin \theta$, then $\frac{d^3y}{dx^3}$ is equal to
 - (a) $-\frac{3b}{a^3}$ $\csc^4 \theta \cot^4 \theta$
 - (b) $\frac{3b}{a^3}$ $\csc^4 \theta \cot \theta$
 - (c) $-\frac{3b}{a^3}\cos ec^4\theta \cot \theta$
 - (d) None of these
- If $y = \tan^{-1} \frac{4x}{1+5x^2} + \tan^{-1} \frac{2+3x}{3-2x}$, then $\frac{dy}{dx} = \frac{1}{3} + \frac{1$
 - (a) $\frac{1}{1+25x^2} + \frac{2}{1+x^2}$ (b) $\frac{5}{1+25x^2} + \frac{2}{1+x^2}$
 - (c) $\frac{5}{1+25x^2}$
- $\frac{d}{dx}\sqrt{\frac{1-\sin 2x}{1+\sin 2x}} =$ 13.
 - (a) sec² x
- (b) $-\sec^2\left(\frac{\pi}{4}-x\right)$
- (c) $\sec^2\left(\frac{\pi}{4} + x\right)$ (d) $\sec^2\left(\frac{\pi}{4} x\right)$
- If $f(x) = \sqrt{1 + \cos^2(x^2)}$, then $f'\left(\frac{\sqrt{\pi}}{2}\right)$ is 14.
 - (a) $\sqrt{\pi}/6$
- (b) $-\sqrt{(\pi/6)}$
- (c) $1/\sqrt{6}$
- (d) $\pi/\sqrt{6}$
- If $y = \log_{sinx}(tan x)$, then $\left(\frac{dy}{dx}\right)_{-1/4} =$ 15.
 - (a) $4/(\log 2)$
- (b) $-4 \log 2$
- (c) $-4/(\log 2)$
- (d) None of these
- If $y = \frac{\sin^{-1} x}{\sqrt{1-x^2}}$, then $(1-x^2)\frac{dy}{dx}$ is equal to 16.
- (b) 1 + xy
- (c) 1 xv
- (d) xy 2.

- If $y = log \left(\frac{1+x}{1-x} \right)^{1/4} \frac{1}{2} tan^{-1} x$, then $\frac{dy}{dx} =$ 17.
 - (a) $\frac{x^2}{1-x^4}$
- (b) $\frac{2x^2}{1-x^4}$
- (d) None of these
- If $y = \frac{\sqrt{x}(2x+3)^2}{\sqrt{x+1}}$, then $\frac{dy}{dx} =$
 - (a) $y \left[\frac{1}{2x} + \frac{4}{2x-3} \frac{1}{2(x+1)} \right]$
 - (b) $y \left| \frac{1}{3x} + \frac{4}{2x+3} + \frac{1}{2(x+1)} \right|$
 - (c) $y \left[\frac{1}{3x} + \frac{4}{2x+3} + \frac{1}{x+1} \right]$
 - (d) None of these
- If $f'(x) = \sqrt{2x^2 1}$ and $y = f(x^2)$ then $\frac{dy}{dx}$ at 19. x = 1 is
 - (a) 2

- (d) None of these
- $x = t \cos t$, $y = t + \sin t$ then $\frac{d^2x}{dv^2}$ at $t = \frac{\pi}{2}$ is equal 20.
- (b) $-\frac{\pi+4}{2}$
- (d) None of these
- If $y = x x^2$, then the derivative of y^2 with respect 21. to x2 is
 - (a) 1 2x
- (b) 2 4x
- (c) $3x 2x^2$
- (d) $1 3x + 2x^2$
- $\frac{\mathrm{d}}{\mathrm{d}x} \left[\tan^{-1} \left(\frac{\sqrt{x}(3-x)}{1-3x} \right) \right] =$ 22.
 - (a) $\frac{1}{2(1+x)\sqrt{x}}$
- (b) $\frac{3}{(1+x)\sqrt{x}}$
- (c) $\frac{2}{(1+x)\sqrt{x}}$ (d) $\frac{3}{2(1+x)\sqrt{x}}$
- If $y\sqrt{x^2+1} = \log\{\sqrt{x^2+1} x\}$, then 23. $(x^2 + 1)\frac{dy}{dx} + xy + 1 =$

(b) 1

- (d) None of these
- If $y^x = x^y$, then $\frac{dy}{dx}$ is 24.
 - (a) $\frac{y}{x}$
- (b) $\frac{y (x \log y y)}{x (y \log x x)}$
- (c) $\frac{x}{y}$
- (d) $\frac{x \log y}{y \log x}$

- The value of $\frac{d}{dx}$ (|x-1|+|x-5|) at x = 3 is 25.

- If $y = \frac{(x)^2 + \sqrt{\cos x^2 + \sqrt{\cos x^2 + \dots + \cos x}}}{\cos x^2 + \sqrt{\cos x^2 + x}}$ 26.
 - then $\frac{dy}{dx}$ is equal to
 - (a) $\frac{-\sin}{2y-1}$
- (b) $\frac{-2x\sin x^2}{2y-1}$
- (c) $\frac{-\sin x^2}{x(2y-1)}$
- (d) none of these
- If $f(x) = \log |2x|$, $x \ne 0$, then f'(x) is equal to 27.
 - (a) 1/x
- (b) -1/x
- (c) 1/|x|
- (d) none of these
- If $x = a \sin 2\theta (1 + \cos 2\theta)$, $y = b \cos 2\theta (1 \cos 2\theta)$ 28. 2θ), then $\frac{dy}{dx}$ =
 - (a) $\frac{b \tan \theta}{a}$
- (b) $\frac{a \tan \theta}{b}$
- (c) $\frac{a}{b \tan \theta}$
- (d) $\frac{b}{a \tan \theta}$
- Let $y = e^{2x}$. Then $\left(\frac{d^2y}{dx^2}\right) \left(\frac{d^2x}{dy^2}\right)$ is: 29.

- (c) $2e^{-2x}$
- (d) $-2e^{-2x}$
- If $y = e^{\sqrt{x}} + e^{-\sqrt{x}}$ then xy'' + (1/2)y' is equal to 30.
 - (a) y

- (b) $x \left(e^{\sqrt{x}} + e^{-\sqrt{x}} \right)$
- (c) (1/4)y
- (d) \sqrt{x} y
- 31. $g(x) = sgn \sin x$, then g'(1) equals

 - (a) 0
- (b) $-\cos 1$
- (c) cos 1 (d) None of these If $y = \sin^{-1} \left[\sqrt{x - ax} - \sqrt{a - ax} \right]$, then $\frac{dy}{dx}$ is equal 32.
- (b) $\sin \sqrt{x} \cdot \sin \sqrt{a}$
- (c) $\frac{1}{2\sqrt{x}\sqrt{1-x}}$
- The function y defined by the equation $xy \log y$ 33. = 1 satisfies $x(yy'' + y'^2) - y'' + kyy' = 0$. The
 - (a) 3

- (c) 1 (d) none of these The equation $y^2e^{xy} = 9e^{-3} \cdot x^2$ defines y as a 34.
 - differentiable function of x. The value of $\frac{dy}{dx}$ for x = -1 and y = 3 is
 - (a) 15/2
- (b) -9/5

(c) 3

(d) 15

35. If
$$x = \sin^{-1} t$$
 and $y = \log (1 - t^2)$; then $\frac{d^2 y}{dx^2}\Big|_{t=1/2}$ is

$$(a) - 8/3$$

(b)
$$8/3$$

$$(d) -3/4$$

36.
$$\frac{dy}{dx}$$
 for $y = \tan^{-1} \left\{ \frac{1 - \cos x}{\sin x} \right\}, -\pi < x < \pi \text{ is}$

$$(c) -1/2$$

$$(d) -1$$
.

37. Let
$$y = \ln (1 + \cos x)^2$$
 then the value of
$$\frac{d^2y}{dx^2} + \frac{2}{e^{y/2}}$$
 equals

(b)
$$\frac{2}{1 + \cos x}$$

(c)
$$\frac{4}{(1+\cos x)}$$

$$(d) \frac{-4}{\left(1+\cos x\right)^2}$$

Level	1								ad/(1.76)		
1.	(c)	2.	(a)		3.	(b)	4.	(a)	5.	(d)	
6.	(c)	7.	(a)		8.	(a)	9.	(b) ·	pay T paid 10.	(b)	prea
11.	(c)	12.	(c)		13.	(b)	14.	(b)	15.	(c)	
16.	(b)	17.	(a)		18.	(a)	19.	(a)	20.	(b)	
21.	(d)	22.	(d)		23.	(a)	24.	(b)	25.	(b)	
26.	(b)	27.	(a)		28.	(a)	29.	(d)	30.	(c)	
31.	(a)	32.	(c)	A	33.	(b)	34.	(d)	35.	(a)	
36.	(b)	37.	(a)								