

A Study of Machine Translation for Low-Resource Languages

- Sari Dewi Budiwati
- Supervisor: Prof. Masayoshi Aritsugi
 - Pre-defense, July 28th, 2020

Outline

- Background
- Basic theory and related work
- Preliminary work
 - Single pivot in Kazakh to English (Kk-En)
 - Single and multiple pivots in Japanese to Indonesian (Ja-Id)
- Proposed approach
 - Word reordering in multiple pivots for Japanese to Indonesian (Ja-Id)
 - The comparison of phrase table combination for Kazakh to English (Kk-En) and Japanese to Indonesian (Ja-Id)
- Conclusion and future work

Background

- Machine Translation (MT) is a task of automatically translate a text from one natural language, i.e., English, to another language, i.e., Japan
- The state-of-the-art of MT
 - Statistical Machine Translation (SMT)
 - → SMT is an approach that uses <u>probabilistic models</u> of <u>faithfullness</u> and <u>fluency</u> and then combining these models to choose the most probable translation (Jurafsky and Martin, 2009)
 - Neural Machine Translation (NMT)
 - → NMT is based on <u>neural network</u> model that consist of <u>encoder-</u> decoders (Bahdanau et al., 2015)

有次•大舘研@

Background

- Koehn and Knowles (Koehn and Knowles, 2017) compared two models, and stated that the NMT model still has to overcome various challenges
 - Performance of out-of-domain
 - Performance of low-resource conditions
- Low-resource conditions is a state where two language pairs have
 - Limited parallel corpora
 - Limited linguistic tools
- There are two strategies to achieve high-quality in lowresource (Trieu, 2017)
 - Building parallel corpora
 - Utilizing existing corpora

Kumamoto University

Background

- In this study, we explore pivot approaches in the SMT model for two language pairs:
 - Kazakh to English (Kk-En)
 - → Available parallel corpora: 953,240
 - Japanese to Indonesian (Ja-Id)
 - → Available parallel corpora: 1,468,155
- Objectives
 - To apply pivot approaches and examine issues in two lowresource language pairs
 - Proposed a technique that could improve the translation quality compare to the direct translation

Contribution

- In the single pivot, we proposed a phrase table combination based on different symmetrization technique.
 - These techniques come based on the fact that the pivot approach comprises three direct translations, viz., src-trg, srcpvt, and pvt-trg, that obtained different BLEU scores when different symmetrization employed.
 - Therefore, we did phrase table combinations based on the first and second highest BLEU scores of direct translation.
 - Our approach is competitive because it can improve the translation for Kk-En by more than 0.22 compared to the direct translation. Whereas the Ja-Id still obtained the best BLEU score by direct translation by more than 0.12 compared to our approach

Kumamoto University

有次•大舘研@

Contribution

- In multiple pivots of Ja-Id, we proposed an <u>extending src-pvt phrase table</u> before the phrase table combination process.
 - These techniques arise based on our finding that the <u>non-standard symmetrization</u> has candidate phrase pair that could not be obtained by the standard one.
- In multiple pivots of Ja-Id, we employed <u>pre-ordering</u> of Japanese dataset to overcome the different word order between Japanese and Indonesian

Statistical Machine Translation

Components of SMT

- Parallel corpora
- Monolingual corpora
- Translation Model (TM)
- Language Model
- **Reordering Model**
- Decoder

SMT process

- 1. Training
- 2. Tuning
- 3. Testing
- 4. Evaluation

Kumamoto University

In order to train the parallel corpora for phrase table, the SMT needs word alignment symmetrization, viz., intersection (I), union (U), grow, grow-diagonally, grow-diag-final, grow-final, source to target (srctotgt), target to source (tgttosrc)

有次•大舘研@ Page. 9

Word alignment symmetrization examples (Jurafsky and Martin, 2009)

Kumamoto University

有次•大舘研@ Page. 10

- Direct translation
 - src → trg
- Pivot approach
 - Pivot approach is a translation from a source language (src) to a target language (trg) through an intermediate pivot language (pvt) Paul et al. (2009).
 - Sentence translation (cascade)
 - → src-pvt system
 - → pvt-trg system

Kumamoto University

- Pivot approach
 - Triangulation
 - → src-pvt TM
 - → pvt-trg TM
 - Phrase table combination

Kumamoto University

有次•大舘研@ Page. 12

- Kazakh to English (Kk-En) Machine Translation
 - The morphological segmentation has been used in SMT model (Assylbekov and Nurkas, 2014; Kartbayev, 2015b).
 - → Kazakh is agglutinative language
 - Morphological segmentation is an approach that break words into morphemes
 - Shared task in Workshop Machine Translation (2019)
 - → Most participants used NMT model with several approaches, i.e., back translation, <u>transfer learning</u>, multilingual transfer learning, sequence2sequence
 - → The transfer learning is a similar technique as the pivot approach in the SMT model.
 - Use high-resource language pair to train the parent model.
 - The parent training data replaced with the training data of lowresource language pair

Kumamoto University

有次·大舘研@ Page. 13

- The WMT results denotes that the third language still needed to improve the translation quality of Kk-En, despite in NMT model.
- Our works in Kk-En
 - We proposed a phrase table combination that uses different symmetrization for Kk-En
 - We use different symmetrization because the translation quality of src-trg, src-pvt, and pvt-trg obtained different BLEU score when non-standard symmetrization employed

有次•大舘研@

- Japanese to Indonesia (Ja-Id) machine translation
 - Paul et al. (2009) and Adiputra and Arase (2017)
 - → Focused on finding a technique that could improve the BLEU scores
 - → Paul et al (2009) find that non-English could be used to improve the translation quality in pivot approach, i.e., cascade
 - → Adiputra et al (2017) find that the SMT model outperformed the NMT model
 - Simon and Purwarianti (2013), Sulaeman and Purwarianti (2015)
 - → Focused on finding a technique that could resolve the morphological issue, i.e., word order problem, incorrect defined phrase, and words with affixes,
 - → Simon and Purwarianti (2013) proposed several techniques, i.e., using pos-tag, increasing the LM dataset, stemming for Indonesian dataset, removing Japanese particles, removing NE
 - → Sulaeman and Purwarianti (2015) proposed several techniques, i.e., the <u>pos-tag model</u>, the hierarchical model, <u>lemmatizer</u>, and post-processing.
 - → Both works did not show the generated text result for word ordering issue. Thus, it is hard to compare the pre-proposed and post-proposed of generated text **Kumamoto University**

Page. 15 有次•大館研@

- Several experimental results show that
 - The SMT model still a primary option, mainly using a pivot approach
 - It needs an additional technique to overcome the morphological issue
- Our work in Ja-Id
 - Employ pre-ordering technique in multiple pivots
 - We proposed two technique
 - → The extended phrase table of src-pvt
 - → Phrase table combination based on different symmetrization

Kumamoto University

- Characteristics of our works
 - In the phrase table combination, most researchers use <u>standard</u> <u>symmetrization</u>, i.e., gdfand. In contrast, we use <u>different</u> <u>symmetrization</u> because the translation quality of src-trg, src-pvt, and pvt-trg obtained different BLEU scores when non- standard symmetrization employed.
 - In extended phrase table of src-pvt, we employ our finding, i.e., <u>the unknown words</u> of gdfand is <u>available</u> in <u>tgttosrc</u> phrase table. As a result, the phrase pair could replace the unknown word of gdfand.

有次•大舘研@

Preliminary work

Single and multiple pivots in two low-resource languages

- 1. Single pivot in Kk <--> En
- 2. Single and multiple pivots in Ja <--> Id

有次•大舘研@ Page. 18

- Single and multiple pivots in Kazakh to English (Kk-En)
 - Background
 - → Our participation in Workshop on Machine Translation (WMT) 2019
 - → Low-resource language: Kk ↔ En
 - → Kk-En is the first language pair exploration in annual WMT. There is no experience system description from previous WMT.
 - → Dataset domain: news
- Our works
 - We build two systems:
 - → Baseline is a <u>direct</u> translation system
 - → Interpolation is a <u>pivot</u> system:
 - Russian as a pivot language
 - We use Linear Interpolation/LI (phrase table combination) as a pivot approach. We use two LM orders, i.e., 3-gram and 5-gram.

Kumamoto University

BLEU scores result

- → The interpolation system obtained high BLEU score compare to Baseline.
- → The improvement for Kk-En is 0.1 and 0.5 for 3-gram and 5-gram
- → The improvement for En-Kk is 0.1 for 3-gram and 5-gram

Table 3.2: BLEU-cased score results

Language Pair	3-gram LM	5-gram LM
KK-EN	20 0	
1. Baseline system	2.6	2.9
2. Interpolation system	2.7	3.4
EN-KK		
1. Baseline system	0.8	0.8
2. Interpolation system	0.9	0.9

有次・大舘研@ Page. 20

- Perplexity score result
 - → Lower perplexity score indicates better LM, while high perplexity scores indicates poor LM
 - → The lowest perplexity obtained by 5-gram LM in Kk-En and En-Kk

Table 3.3: Perplexity results

Language pair	3-gram LM	5-gram LM
KK-EN		
1. Baseline system	- Incl OOVs: 829.59	- Incl OOVs: 617.36
1. Dasenne system	- Excl OOVs: 77.79	- Excl OOVs: 45.51
2. Interpolation system	- Incl OOVs: 1034.50	- Incl OOVs: 762.79
2. Interpolation system	- Excl OOVs: 94.72	- Excl OOVs: 50.93
EN-KK		
1. Baseline system	- Incl OOVs: 328.940	- Incl OOVs: 256.138
1. Daseine system	- Excl OOVs: 103.27	- Excl OOVs: 77.185
9. Internalation austern	- Incl OOVs: 256.13	- Incl OOVs: 276.85
2. Interpolation system	- Excl OOVs: 79.34	- Excl OOVs: 85.40

- Single and multiple pivots in Japanese to Indonesian (Ja-Id)
 - We use four pivot languages: English, Myanmar, Malaysia, and Filipino, from ALT dataset (Riza et al., 2016)
 - We build several systems, as follows:
 - → Baseline
 - → Single pivot
 - Cascade approach
 - Triangulation approach
 - Interpolation approach
 - → Multiple pivots: combination of four phrase tables using Linear and Fillup Interpolation
 - All-LI: combine four phrase tables without src-trg by LI
 - All-FI: combine four phrase tables without src-trg by FI
 - Base-LI: Combine scr-trg and All-LI by LI
 - Base-FI: Combine src-trg and All-FI by FI
 - Dataset type: <u>Sequential</u> and <u>Random</u>

Kumamoto University

Result on Baseline Ja-Id

- → Baseline <u>random</u> obtained higher <u>BLEU score</u>, i.e., 12.17, compare to Baseline <u>sequential</u>, i.e., 11.96
- → Baseline random obtained higher <u>perplexity score</u> compare to Baseline sequential

Table 3.5: Ja-Id BLEU score on sequential data type

Systems	Cascade	Triangulation	LI	FI
Direct translation	system			
Baseline		11.96		
Single pivot syste	m			
JaId (English)	10.89	9.71	11.97	12.07
JaId (Myanmar)	9.37	8.71	11.91	12.27
JaId (Malay)	12.01	8.37	11.71	12.09
JaId (Filipino)	9.95	9.41	12.23	12.19

Table 3.6: Ja-Id BLEU score on random data type

Cascade	Trian	gulation	LI	FI
system				
		12.17		
m				
10.81	9.10		12.18	12.22
9.60	8.60		11.91	12.29
11.81	9.25		12.22	12.05
9.68	9.62		12.09	11.99
	m 10.81 9.60 11.81	m 10.81 9.10 9.60 8.60 11.81 9.25	12.17 m 10.81 9.10 9.60 8.60 11.81 9.25	12.17 m 10.81 9.10 12.18 9.60 8.60 11.91 11.81 9.25 12.22

Figure 3.1: Perplexity Score of Ja-Id single pivot for LI and FI approaches.

有次•大**舘**研@ Page. 23

- Result on Baseline Id-Ja
 - Baseline <u>random</u> obtained higher <u>BLEU score</u>, i.e., 12.00, compare to Baseline <u>sequential</u>, i.e., 11.00
 - Baseline <u>random</u> obtained higher <u>perplexity score</u> compare to Baseline sequential

Table 3.7: Id-Ja BLEU score on sequence data type Table 3.8: Id-Ja BLEU score on random data type

Systems	Cascade	Triangulation	LI	FI
Direct translation	system			
Baseline				
Single pivot syste	m			
JaId (English)	12.07	8.26	12.65	12.05
JaId (Myanmar)	9.97	6.76	10.89	12.4
JaId (Malay)	12.18	6.76	12.2	11.87
JaId (Filipino)	10.36	7.28	12.06	12.2

Systems	Cascade	Triangulation	LI	FI
Direct translation	system			
Baseline		12.00		
Single pivot syste	m		111	
JaId (English)	7.58	7.96	12.10	11.99
JaId (Myanmar)	10.32	6.51	12.84	12.88
JaId (Malay)	11.13	9.17	12.52	11.82
JaId (Filipino)	10.46	7.97	12.25	12.68

IFigure 3.2: Perplexity Score of Id-Ja single pivot for LI and FI approaches.

Kumamoto University

有次•大舘研@ Page. 24

Results for single pivot

	Single pivot Ja-Id	Single pivot Id-Ja
Worse approach	Triangulation	Triangulation
Approach that improve the BLEU score	LI & FI	LI & FI
Pivot language choice	Seq: Myanmar Rnd: Malaysia & Myanmar	Seq: Myanmar Rnd: Myanmar

Table 3.7: Id-Ja BLEU score on sequence data type

Systems	Cascade	Triangulation	LI	FI
Direct translation	system			
Baseline	11.00			
Single pivot syste	m	Medicality is	San San San San	
JaId (English)	12.07	8.26	12.65	12.05
JaId (Myanmar)	9.97	6.76	10.89	12.4
JaId (Malay)	12.18	6.76	12.2	11.87
JaId (Filipino)	10.36	7.28	12.06	12.2

Table 3.8: Id-Ja BLEU score on random data type

Systems	Cascade	Triangulation	LI	FI
Direct translation	system			
Baseline	12.00			
Single pivot syste	m			
JaId (English)	7.58	7.96	12.10	11.99
JaId (Myanmar)	10.32	6.51	12.84	12.88
JaId (Malay)	11.13	9.17	12.52	11.82
JaId (Filipino)	10.46	7.97	12.25	12.68

Table 3.5: Ja-Id BLEU score on sequential data type

Systems	Cascade	Triangulation	LI	FI
Direct translation	system			
Baseline		11.96		
Single pivot syste	m			
JaId (English)	10.89	9.71	11.97	12.07
JaId (Myanmar)	9.37	8.71	11.91	12.27
JaId (Malay)	12.01	8.37	11.71	12.09
JaId (Filipino)	9.95	9.41	12.23	12.19

Table 3.6: Ja-Id BLEU score on random data type

Systems	Cascade	Triangulation	LI	FI
Direct translation	system	100000000000000000000000000000000000000		
Baseline	12.17			
Single pivot syste	m		-7	
JaId (English)	10.81	9.10	12.18	12.22
JaId (Myanmar)	9.60	8.60	11.91	12.29
JaId (Malay)	11.81	9.25	12.22	12.05
JaId (Filipino)	9.68	9.62	12.09	11.99

有次·大舘研@ Page. 25

- Multiple pivots result
 - We use phrase tables of LI and FI from single pivot results
 - We combine four phrase tables
 - → Without src-trg phrase table: All-LI, All-FI
 - → With src-trg phrase table: Base-LI, Base-FI
 - The combination of All-LI and All-FI arranged by <u>ascending</u> and <u>descending</u> orders
 - → Example: LI results from single pivot, i.e., 11.34 for EnPT, 12.21 for MyPT, 12.11 for MsPT, and 12.15 for FiPT.
 - → All-LI ascending order: EnPT, MsPT, FiPT, MyPT,
 - → All-LI descending order: MyPT, FiPT, MsPT, and EnPT

Kumamoto University

Results for multiple pivots

	Multiple pivots of Ja-Id	Multiple pivots of Id-Ja
Approaches that improve the BLEU score	All-LI, All-FI, Base-LI	All-LI, All-FI, Base-LI, Base- FI
Phrase table orders	Descending	Ascending
Data type	Base-LI <u>Random</u> : +0.23 point	All-FI <u>Sequence</u> : +1.84 point
Perplexity score	Base-LI Random could reduce perplexity score	All-LI, All-FI, Base-LI, Base-FI could reduce perplexity score

Figure 3.5: BLEU score for Ja-Id in multiple pivots.

Figure 3.6: BLEU score for Id-Ja in multiple pivots.

有次•大**舘**研@ Page. 27

Table 3.9: Best BLEU score in Baseline, single and multiple pivots for Ja-Id

Sconario No	Baseline		Si	Multiple Pivots			
Scenario No		Cascade	Triangulate	Interpolate	Fillup Interpolation	Desc	Asc
Scenario 1	11.96	12.01 (MS)	9.71 (EN)	12.21 (MY)	12.27 (MY)	12.23 (Cat 3)	12.37 (Cat 4)
Scenario 2	12.17	11.81 (MS)	9.62 (FI)	12.22 (MS)	12.29 (MY)	12.40 (Cat 3)	12.27 (Cat 2)

Table 3.10: Best BLEU score in baseline, single and multiple pivots for Indonesia to Japanese

Scenario No	Baseline		Si	Multiple Pivots			
		Cascade	Triangulate	Interpolate	Fillup Interpolation	Desc	Asc
Scenario 1	11.00	12.18 (MS)	8.26 (EN)	12.03 (MY)	12.40 (MY)	12.15 (Cat 3)	12.84 (Cat 2)
Scenario 2	12.00	11.13 (MS)	9.17 (MS)	12.84 (MY)	12.88 (MY)	12.74 (Cat 2)	13.02 (Cat 2)

有次·大舘研@ Page. 28

Proposed approach

- 1. Word reordering in multiple pivots for Japanese to Indonesian (Ja-Id)
 - 2. The comparison of phrase table combination for Kazakh to English (Kk-En) and Japanese to Indonesian (Ja-Id)

有次•大舘研@ Page. 29

- Word reordering in multiple pivots for Japanese to Indonesian (Ja-Id)
 - The SMT model is known as it does not work for language pairs that have different word order. (Bisazza and Federico, 2016; Isozaki et al., 2012; Simon and Purwarianti, 2013).
 - We also find this issue in our previous experiment, i.e., the generated text of Indonesian from our multiple pivots experiment followed the Japanese sentence structure.
 - Approaches for word order issue, i.e., pre-ordering, post-ordering, and word ordering as part of decoding process

```
S= Jishin<sub>[N]</sub> wa<sub>[PRT]</sub> '[PCT]</sub> nantō<sub>[N]</sub> Ajia<sub>[N]</sub> wo<sub>[PRT]</sub> kaimetsu<sub>[N]</sub> sa<sub>[N]</sub> se<sub>[AUXV]</sub> ta<sub>[AUXV]</sub> 2004<sub>[N]</sub> nen<sub>[N]</sub> no<sub>[PRT]</sub> indo<sub>[N]</sub> yō<sub>[SUF]</sub> dai<sub>[PRE]</sub> jishin<sub>[N]</sub> ga<sub>[PRT]</sub> oso<sub>[N]</sub> tsu<sub>[TAIL]</sub> ta<sub>[AUXV]</sub> hi<sub>[N]</sub> kara<sub>[PRT]</sub> chōdo<sub>[ADV]</sub> ni<sub>[N]</sub> nen<sub>[N]</sub> go<sub>[SUF]</sub> ni<sub>[PRT]</sub> oki<sub>[M]</sub> ta<sub>[AUXV]</sub> '[PCT]</sub>

bahwa<sub>[SC]</sub> gempa<sub>[NN]</sub> Tenggara<sub>[NNP]</sub> '[Z]</sub> yang<sub>[SC]</sub> telah<sub>[MD]</sub> menghancurkan<sub>[NE]</sub> Asia<sub>[NNP]</sub> tahun<sub>[NN]</sub> 2004<sub>[CD]</sub> Samudera<sub>[NNP]</sub> thindia<sub>[NNP]</sub> gempa<sub>[NN]</sub> melanda<sub>[NB]</sub> besar<sub>[JJ]</sub> dari<sub>[N]</sub> tanggal<sub>[NN[N]</sub> yang<sub>[SC]</sub> hanya<sub>[RE]</sub> 2<sub>[CD]</sub> tahun<sub>[NN]</sub> setelah<sub>[SC]</sub> terjadi<sub>[NB]</sub> '[Z] (that the Southeastern earthquake, which destroyed Asia in the 2004 Indian Ocean earthquake struck a large date from only 2 years after it occurred)
```


有次・大舘研@ Page. 30

Experimental setup

- Without reordering (WoR)
 - → Taken from single and multiple pivots Ja-Id experimental result
 - → Taken from Triangulation, LI, multiple pivots of ascending
- With reordering (WR)
 - Pre-ordering Japanese dataset by Lader (Neubig et al., 2012)
 - → Systems: direct translation as baseline, one pivot system (single pivot), two pivot systems, three pivots systems, four pivot systems.

```
s= andorea<sub>[N]</sub> '[PCT]</sub> maaji<sub>[N]</sub> ga<sub>[PRT]</sub> kaishi<sub>[N]</sub> 4<sub>[N]</sub> bun<sub>[N]</sub> go<sub>[SUE]</sub> torai<sub>[N]</sub> de<sub>[PRT]</sub> itaria<sub>[N]</sub> ni<sub>[PRT]</sub> to<sub>[PRT]</sub> tokuten<sub>[N]</sub> wo<sub>[PRT]</sub> ire<sub>[N]</sub> ta<sub>[AUXV]</sub>

s'= andorea<sub>[N]</sub> '[PCT]</sub> ga<sub>[PRT]</sub> maaji<sub>[N]</sub> saisho<sub>[N]</sub> no<sub>[PRT]</sub> ta<sub>[AUXV]</sub> ire<sub>[N]</sub> wo<sub>[PRT]</sub> tokuten<sub>[N]</sub> te<sub>[PRT]</sub> tokuten<sub>[N]</sub> te<sub>[PRT]</sub> torai<sub>[N]</sub> no<sub>[PRT]</sub> go<sub>[SUE]</sub> 4<sub>[N]</sub> bun<sub>[N]</sub> kaishi<sub>[N]</sub>

Ref= Andrea Masi membuka skor di menit keempat dengan satu try untuk Italia (Andrea Masi opened the scoring in the fourth minute with a try for Italy)
```

Figure 4.1: Word ordering of Ja sentence structure, i.e., SOV, into Indonesian sentence structure, i.e., SVO, using Lader.

有次・大舘研@ Page. 31

- Proposed approach in src-pvt phrase table
 - We build the extended phrase table of src-pvt
 - The extended phrase table is a merging phrase table from two symmetrization techniques, viz., gdfand and tgttosrc
 - Based on the result that the unknown words of gdfand have candidate phrase pair in the tgttosrc
- Proposed approach step
 - We construct two pivot systems, viz., src-pvt gdfand and src-pvt tgttosrc
 - We <u>sorted</u> the unknown word of generated text from src-pvt gdfand
 - We <u>query</u> the unknown word from src-pvt <u>tgttosrc</u>
 - We merged the src-pvt gdfand and src-pvt filtered phrase table

Table 4.3: BLEU scores of src-pvt extended phrase table in WR experiment

Language	BLEU scores				
pair	gdfand phrase table	extended phrase table			
Ja-En	8.11	8.14			
Ja-Ms	7.60	7.56			
Ja-Fi	7.95	8.01			
Ja-My	4.50	4.45			

- WoR experimental result
 - The Triangulation obtained the lowest BLEU score
 - The multiple pivots of <u>Jald(EnMsFiMy)</u> outperformed the <u>Baseline</u> and <u>LI</u>, except Jald-My
 - The multiple pivots of <u>Baseline+(EnMsFiMy)</u> outperformed the Baseline and Triangulation, however <u>poorly</u> compare to LI
 - We analyze the decline of Baseline+(EnMsFiMy) BLEU score compare to Jald(EnMsFiMy)
 - Phrase table evaluation
 - Switch the phrase table: 1,041,599
 - → Feature functions
 - Baseline+(EnMsFiMy) obtained lower feature functions, i.e., distortion weight, language model weight, translation model weight.

有次•大館研@ Page. 33

WoR experimental result

Table 4.1: BLEU scores of single and multiple pivots in WoR experiments

Siı	ngle pivot	Multiple pivot		
JaId			11.96	
Language Pair	Triangulation	LI	Language Pair	LI
JaId-En	9.71	11.34	JaId (EnMsFiMy)	12.20
JaId-My	8.71	12.21	Baseline + (EnMsFiMy)	12.07
JaId-Ms	8.37	12.11		
JaId-Fi	9.41	12.15		

Table 4.2: Generated text examples of single and multiple pivots in WoR experiments

Source (Ja)	地震は、南東アジアを域	(滅させた20	104 年 の インド洋 大 地震 が 襲っ た 日 から ちょうど 二 年 後 に 起き た。
Language pair	Approach	BLEU score	Translation output
Jald (En)	Single pivot - Triangulation	9.71	gempa アジア tenggara, dan mereka untuk 壊滅 Samudra Hindia tahun 2004, menghantam gempa besar dari hanya dua tahun setelah 起き.
JaId (My)	Single pivot - LI	12.21	bahwa gempa Tenggara, yang telah menghancurkan Asia tahun 2004 Samudera Hindia gempa melanda besar dari tanggal yang hanya 2 tahun setelah terjadi.
Jald (EnMsFiMy)	Multiple pivots - LI	12.20	bahwa gempa Tenggara, yang telah menghancurkan Asia tahun 2004 Samudera Hindia gempa melanda besar dari tanggal yang hanya 2 tahun setelah terjadi.
Baseline + (EnMsFiMy)	Multiple pivots - LI	12.07	gempa SNT.57162.18909 tenggara, yang telah menghancurkan Asia tahun 2004 gempa melanda besar Samudera Hindia, yang hanya dari hari kedkecualiua terjadi pada tahun

有次·大**舘**研@ Page. 34

WR experimental result

- The Triangulation approach obtained <u>the lowest</u> BLEU score, however <u>the generated text</u> of one pivot WR experiment significantly change by means that it become <u>more understand</u> compared to one pivot WoR experiment.
- The result shows that by combining more numbers of pivot languages, then the BLEU score gradually improved.
- The generated text become more understandable, however the generated text of each system has the same result (text)

有次•大舘研@

WoR experimental result

Table 4.4: BLEU scores of single and multiple pivots in WR experiment

One pivot language		Two pivot language		Three pivot language		Four pivot language	
Language pair	Triangulation	Language Pair	LI	Language pair	LI	Language pair	LI
JaId				6.75			
JaId-En	5.99	JaId (EnMs)	6.92	JaId (EnMsFi)	6.94	JaId (MsEnFiMy)	7.15
JaId-Ms	6.30	JaId (EnFi)	6.29	JaId (EnMsMy)	6.98		
JaId-Fi	5.05	JaId (EnMy)	6.49	JaId (EnFiMy)	6.59		
JaId-My	3.16	JaId (MsFi)	6.73	JaId (MsFiMy)	6.85		
		JaId (MsMy)	6.46				

Table 4.5: Generated text examples of single and multiple pivots in WR experiment.

Source (Ja)	地震は、ちょうどた起	き二年に後	から 日 た っ 襲 インド 洋 大 地震 が の 年 2004 た せ さ 壊滅 南東 アジア を。
Language pair	Approaches	BLEU score	Translation Output
JaId-Ms	One pivot -Triangulation	6.30	gempa bumi tersebut terjadi hanya 2 tahun setelah dari hari melanda India besar gempa bumi pada tahun 2004 telah menghancurkan Tenggara Asia.
JaId (EnMs)	Two pivot -LI 6.92		gempa terjadi hanya 2 tahun setelah dari hari melanda India gempa besar pada tahun 2004 yang telah menghancurkan Asia selatan.
JaId (EnMsMy)	Three pivot -LI 6.98		gempa terjadi hanya 2 tahun setelah dari hari melanda India gempa besar pada tahun 2004 yang telah menghancurkan Asia Selatan.
Jald (MsEnFiMy)	Four pivot -LI	7.15	gempa terjadi hanya 2 tahun setelah dari hari melanda India gempa besar pada tahun 2004 yang telah menghancurkan Asia Selatan.

有次•大**舘**研@ Page. 36

Background

- The translation quality is influenced by <u>Translation Model</u> (Tian et al., 2014)
- The phrase table contains of phrase pairs that is extracted from word alignment by using symmetrization techniques such as grow-diagfinal-and (gdfand), grow, final-grow, grow-diag, intersection, union, srctotgt, and tgttosrc.
- The pivot approach consist of three language pairs, viz., src-trg, src-pvt and pvt-trg, that uses gdfand as standard symmetrization.
- The various symmetrization have obtained <u>different</u> BLEU score on language pair in high resource languages (Koehn et al., 2005, Thoudam, 2015, Sara Styme et al., 2014).
- It needs to explore the symmetrization to know which symmetrization obtained high BLEU score in src-trg, src-pvt, and pvt-trg

Kumamoto University

- Experimental setup
 - Language pairs
 - → Kk→ En and Ja → Id
 - → Kk → En taken from preliminary work, i.e., single pivot in Kk-En
 - → Ja → Id taken from preliminary work, i.e., single and multiple pivots in Ja-Id
 - Language Model orders
 - → 3-gram
 - → 5-gram
 - Direct System Experiment (DSE)
 - Direct translation in src-trg, src-pvt, and pvt-trg
 - → We explore five symmetrization, i.e., gdfand, intersection, union, srctotgt, tgttosrc

Kumamoto University

- Interpolation System Experiment (ISE)
 - → Std-ISE (Standard Interpolation System Experiment)
 - We use gdfand symmetrization
 - → F-ISE (First-best Interpolation System Experiment)
 - We use first-high symmetrization obtained from DSE
 - → S-ISE (Second-best Interpolation System Experiment)
 - We use second-best symmetrization obtained from DSE

- Experimental result in DSE
 - The LM05 systems obtained higher BLEU score compare to LM03
 - Several results show that the non-standard symmetrization obtained a higher BLEU score compare to the standard one.
 - We investigate the different BLEU scores
 - → Phrase translation parameters obtained different BLEU scores, despite we use the same word alignment tools, i.e., MGIZA++.
 - → The phrase translation parameters is scores obtained from scoring functions
 - inverse phrase translation probability (p(t|s)),
 - inverse lexical weighting (lex(t|s))
 - direct phrase translation probability (p(s|t))
 - direct lexical weight (lex(s|t)).

Kumamoto University

Table 4.8: The obtained BLEU scores of Direct System Experiments (DSE). Results in bold indicate the first highest translation quality, while those in italic indicate the second highest translation quality.

Language pair -	117				
System	gdfand	intersection	union	srctotgt	tgttosro
Kk-En LM03	3.08	2.05	3.07	2.51	3.36
Kk-En LM05	3.42	2.26	3.28	2.77	3.56
Kk-Ru LM03	6.22	4.98	4.31	5.41	5.10
Kk-Ru LM05	6.49	5.17	4.35	5.64	5.56
Ru-En LM03	4.77	0	2.92	4.09	3.12
Ru-En LM05	4.63	0	2.73	3.80	2.85
Ja-Id LM03	11.96	10.54	9.55	9.79	11.63
Ja-Id LM05	12.2	10.47	9.43	9.82	12.04
Ja-Ms LM03	12.95	10.09	10.23	10.46	12.65
Ja-Ms LM05	13.24	11.06	10.17	10.54	12.93
Ms-Id LM03	35.07	34.66	34.90	34.52	34.99
Ms-Id LM05	35.04	34.75	34.89	34.62	35.14

Table 4.10: Example of phrase translation parameter scores in Kk-En LM05. Results in bold indicates the score is higher.

Phrase-pair	Phrase translation parameters	Symmetrization		
r mase-pan	Finase translation parameters	gdfand	tgttosrc	
	Inverse phrase translation probability (p(f e))	0.5	0.5	
2007 жылдан бастап since 2007,	Inverse lexical weighting (lex(f e))	0.000930714	4.8791e-05	
	Direct phrase translation probability (p(e f))	0.5	0.333333	
	Direct lexical weighting (lex(e f))	0.00596183	0.0128321	

Table 4.9: The symmetrization technique candidate for ISE. Results in (1) is a symmetrization technique for F-ISE, and (2) is for S-ISE, when doing phrase table combination

Kk-En			Ja-Id				
LM order	Lang pair	(1)	(2)	LM order	Lang pair	(1)	(2)
LM03	Kk-En	tgttosrc	gdfand	LM03	Ja-Id	gdfand	tgttosrc
	Kk-Ru	gdfand	srctotgt		Ja-Ms	gdfand	tgttosrc
	Ru-En	gdfand	srctotgt		Ms-Id	gdfand	tgttosrc
LM05	Kk-En	tgttosrc	gdfand	LM05	Ja-Id	gdfand	tgttosrc
	Kk-Ru	gdfand	srctotgt		Ja-Ms	gdfand	tgttosrc
	Ru-En	gdfand	srctotgt		Ms-Id	tgttosrc	gdfand

- Experimental result in ISE
 - The LM05 systems obtained higher BLEU score compare to LM03
 - The F-ISE is a competitive approach because it can improve the BLEU score in Kk → En
 - → The translation parameters of phrase pair F-ISE obtained higher compare to others
 - The Baseline is outperformed the F-ISE in Ja → Id
 - → The translation parameters of phrase pair Baseline obtained higher compare to F-ISE
 - The phrase table size does not directly affect the improvement of the BLEU score.

Kumamoto University

Language Model orders

- → The longer LM order of Kk-En, i.e., LM05, obtained lower perplexity score in all systems.
- → The longer LM order could not obtain a lower perplexity score in Ja-Id.
 - <u>Target monolingual size</u> of Kk→En is thirteen times bigger, i.e., 114,375, than Ja→ Id, i.e., 8,500
 - We use the <u>same dataset</u> for <u>training</u> and <u>LM</u> in Ja-Id, i.e., *DataALT.01.jp-id.SP.true.id: 8,500*
 - The Kk-En use <u>different</u> datasets for <u>training</u>, i.e., i.e., *news-commentary-v14.en-kk.en*: *9,600* and <u>LM</u>, i.e., *news-commentary-v14.en-ru.en*: *114,375*.

Generated text

→ Wrong word position because it is followed the source sentence pattern

Kumamoto University

Table 4.11: BLEU scores of the system

Language Model	Direct translation	Std-ISE	F-ISE	S-ISE
Kk-En				
LM03	3.08	3.08	3.43	3.09
LM05	3.42	3.42	3.64	3.42
Ja-Id				
LM03	11.96	12.07	12.07	11.16
LM05	12.20	12.08	12.08	11.26

Table 4.13: Phrase translation scores of Kk-En LM05. Results in bold indicates the score is higher.

Phone weigh	Discontinuolotion commeters	Phrase translation scores		
Phrase-pair	Phrase translation parameters	Baseline	Std-ISE	F-ISE
	Inverse phrase translation probability (p(f e))	0.25	0.2484	0.0014
any avoyous war well maintain aconomic	Inverse lexical weighting (lex(f e))	0.0011	0.0011	0.0013
алу экономикалық maintain economi	Direct phrase translation probability (p(e f))	0.5	0.4968	0.9723
	Direct lexical weighting (lex(e f))	0.0002	0.0002	0.7641
	Inverse phrase translation probability (p(fle))	0.3333	0.3312	0.3241
жаңа бір маңызды саясатты important	Inverse lexical weighting (lex(f e))	0.0001	0.0001	0.0006
new policies	Direct phrase translation probability (p(e f))	0.25	0.2484	0.972348
	Direct lexical weighting (lex(e f))	0.1046	0.1039	0.1091

Table 4.12: Phrase translation scores of Ja-Id LM05. Results in bold indicates the score is higher.

Dhace sein	Phrase translation parameters	Phrase translation scores		
Phrase-pair	r-nrase translation parameters	Baseline 0.3333 0.0002 0.3333 1.23E-07 0.25 0.0024 1	Std-ISE	F-ISE
	Inverse phrase translation probability (p(f e))	0.3333	0.2946	0.2972
から 産制 III sumabusa disembak	Inverse lexical weighting (lex(f e))	0.0002	0.0001	0.0001
から 強制 rumahnya digerebek	Direct phrase translation probability (p(e f))	0.3333	0.2946	0.2949
	Direct lexical weighting (lex(e f))	1.23E-07	07 1.09E-07	1.09E-07
	Inverse phrase translation probability (p(f e))	0.25	0.2209	0.2229
から 情報 を 受け取る menerima informasi dari	Inverse lexical weighting (lex(f e))	0.0024	0.0018	0.0018
から 情報 を 文け 秋る [[] menerima informasi dari	Direct phrase translation probability (p(e f))	1	0.8839	0.8847
	Direct lexical weighting (lex(e f))	0.1019	0.0899	0.0901

Table 4.14: Phrase table size of the system

Language Model	Baseline	Standard approach (gdfand)	Initia appr F-ISE	ative oach S-ISE
Kk-En				
LM03	723,960	742,948	323,850	730,544
LM05	723,960	742,948	323,850	730,544
Ja-Id				
LM03	875,038	935,717	935,717	750,449
LM05	875,038	935,717	925,732	764,219

Table 4.15: Perplexity scores of the system

Language Model	Baseline	Standard approach	Initiative approach		
		(gdfand)	F-ISE	S-ISE	
Kk-En	1771				
LM03	148.21	148.18	284.05	148.39	
LM05	93.41	115.90	206.15	115.86	
Ja-Id					
LM03	309.32	310.25	310.25	310.09	
LM05	403.13	411.48	414.46	386.94	

```
Sono [Auti] 2004 [Boun] no [Bourtele] jishin [Boun] wa [Bourtele] magunichūdo [Boun] 9.1 [Boun] to [Bourtele] se kiroku [Boun] sa [Boun] re [Boun] 33 [Boun] fito [Boun] no [Bourtele] taka [Boun] ni [Boun] ni [Boun] tassuru [Boun] nami [Boun] o [Bourtele] taka [Boun] ni [Boun] ni [Boun] tassuru [Boun] nami [Boun] o [Bourtele] hikiokoshi [Boun] ta [Boun] tassuru [Boun] tahun [Boun] 2004 [CO] tersebut [Bound [Boun] bahwa [Boun] gempa bumi [Boun] dengan [Boun] kekuatan [Boun] 9.1 [CO] tersebut [Bound [Boun] bahwa [Boun] dengan [Boun] kekuatan [Boun] 9.1 [CO] tersebut [Bound [Boun] bahwa [Boun] ketinggian [Boun] menyebabkan [Bound [Boun] tsunami [Boun] yang [Bound [Boun] tahun] tsunami [Boun] yang [Bound [Boun] tahun] tsunami [Boun] yang [Bound [Boun] tahun] tahun earthquake with a magnitude of 9.1 and 33 feet, which reached a height caused a tsunami of waves 1
```

Figure 4.3: Sentence structure for Ja-Id, taken from LM05 F-ISE

Conclusion and future work

Conclusion

- The interpolation system of single pivot outperformed the direct translation. The non-English as pivot languages could be considered as pivot language because it could improve the translation quality.
- The more number of pivot languages (multiple pivots) could improve the BLEU score compare to the direct translation.
- The phrase table order, i.e., ascending and descending, could be considered when multiple pivots employed.
- The data type, i.e., sequence and random, could be considered to improve the BLEU score
- The longer LM order, i.e., 5-gram, obtained higher BLEU score compare to the short one, i.e., 3-gram

Kumamoto University

Conclusion and future work

- The pre-ordering should be employ for language pair that have different word order
- The improvement of src-pvt and pvt-trg should be considered to improve the pivot BLEU score
 - → The extending src-pvt phrase table
 - → The exploration of non-standard symmetrization
 - Find the first-best (F-ISE)
 - Find the second-best (S-ISE)
- Future work
 - The extending pvt-trg phrase table
 - Increasing Indonesian target monolingual target size
 - Implement the F-ISE in multiple pivots

有次•大舘研@

Thank you

有次 • 大**舘**研 @ Page. 49