4 Индукция

Задача 4.1. Докажите, что любой квадрат можно разрезать на любое, начиная с шести, количество квадратов.

Задача 4.2. При каких n>3 набор гирь с массами $1,2,3,\ldots,n$ граммов можно разложить на три равные по массе кучки?

Задача 4.3. Докажите неравенство для натуральных n:

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \geqslant \sqrt{n}.$$

Задача 4.4. Доказать по индукции, что для любых натуральных $n\geqslant 2$ выполняется неравенство:

$$\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 1.$$

Задача 4.5. Пусть $T_n = \sum_{k=0}^n (2k)^3$ и $U_n = \sum_{k=0}^{2n+1} k^3$. Объясните, почему $U_n + T_n = \sum_{k=0}^n (2k+1)^3$. Вычислите T_n и U_n .

Задача 4.6. Упростите $\sum_{k=0}^{n} (2k+1)^3$.

Задача 4.7. Докажите, что $\sum\limits_{k=1}^{2^n} \frac{1}{k} \geqslant 1 + \frac{n}{2} \ \ \forall n \in \mathbb{N}.$

Задача 4.8. Последовательность (u_n) задаётся первым членом $u_0=0$ и формулой $u_{n+1}=2u_n+1 \quad \forall n\in\mathbb{N}$. Посчитайте несколько первых членов, сделайте предположение о рекуррентном выражении u_n и затем докажите его.

Задача 4.9. Последовательность (u_n) задаётся первым членом $u_0=1$ и формулой $u_{n+1}=\frac{1}{3}(u_n+4n+6) \ \forall n\in \mathbb{N}$. Докажите, что $\forall n\in \mathbb{N}:\ u_n=2n+\frac{1}{3^n}$.

Задача 4.10. Последовательность (u_n) задаётся первыми членами $u_0=u_1=0,\ u_2=2$ и формулой $u_{n+3}=3u_{n+2}-3u_{n+1}+u_n\ \forall n\in N.$ Посчитайте несколько первых членов, сделайте предположение о рекуррентном выражении u_n и затем докажите его.

Задача 4.11. Даны натуральные числа x_1,\dots,x_n . Доказать, что число $(1+x_1)^2\dots(1+x_n^2)$ можно представить в виде суммы квадратов двух целых чисел.

Задача 4.12. Елпидифор обладает талантом: на любом отрезке он может отмечать точки, делящие отрезок в отношении n:(n+1) для любого натурального n. Он полагает, что этого таланта достаточно, чтобы разделить отрезок в произвольно заданном рациональном отношении. Подтвердите это или опровергните это.

Задача 4.13. Вычислите произведение

$$\frac{2^3-1}{2^3+1} \cdot \frac{3^3-1}{3^3+1} \cdot \dots \cdot \frac{n^3-1}{n^3+1}.$$

Задача 4.14. Числовая последовательность $A_1, A_2, \ldots, A_n, \ldots$ определена равенствами $A_1=1, A_2=-1, A_n=-A_{n-1}-2A_{n-2}(n\geqslant 3)$. Докажите, что при любом натуральном n число $2^{n+2}-7A_n^2$ является полным квадратом.

Задача 4.15. Доказать, что любое число 2^n , где $n=3,4,5,\dots$ можно представить в виде $7x^2+y^2$, где x и y — нечётные числа.

Задача 4.16. На бобриный праздник все пришли с уникальными деревяшками. Бобры любят дарить друг другу подарки и каждый готов подарить другому все свои деревяшки или любую их часть. Старейшина считает, что если какой-то набор уже кому-то дарили, то дарить точно такой-же другому бобру нельзя. Можете посчитать, сколько различных наборов может быть подарено?