多元统计分析

第8讲 因子分析(1)

Johnson & Wichern Ch9.1-9.3

统计学研究中心 邓婉璐 wanludeng@tsinghua.edu.cn

2018-2019春季学期

Motivating Example

> Here are some scores for students from high school.

满分100	数学	物理	化学	历史	政治	语文	总分
A	98	97	93	73	70	80	511
В	75	71	80	95	94	96	511

- How would you like to describe the student A and B?
- > Correlation matrix:

R	数学	物理	化学	历史	政治	语文
数学	1	0.44	0.41	0.28	0.29	0.25
物理		1	0.35	0.16	0.19	0.18
化学			1	0.31	0.32	0.32
历史				1	0.61	0.47
政治					1	0.46
语文						1

Motivating Example

> Charles Spearman(1863-1945): 1904, Consider children's exam performance in

 X_1 = Classics, X_2 = French, X_3 = English,

with observation correlation matrix

$$R = \begin{bmatrix} 1 & 0.83 & 0.78 \\ 0.83 & 1 & 0.67 \\ 0.78 & 0.67 & 1 \end{bmatrix}$$

➤ Model:

$$X_1 = l_1 F + \varepsilon_1$$

$$X_2 = l_2 F + \varepsilon_2$$

$$X_3 = l_3 F + \varepsilon_3$$

Outline

- > Introduction and Model
- > Methods for Estimation
 - PC method
 - MLE method
- Explanation Rotation
- > Factor Scores
 - Weighted LSE Method
 - Regression Method

Introduction and Model

Overview of Factor Analysis

- Early development in psychometrics by Karl Pearson, Charles Spearman, etc.
- > To describe the covariance structure among many variables with a few unobservable or latent variables called factors
 - Reduction: reduce high dimension data to a few variables
 - Interpretation: explain the covariance of observed variables with latent factors

$$\sum_{(p \times p)} = \begin{bmatrix} \sigma_{11} & \cdots & \sigma_{1p} \\ \vdots & \ddots & \vdots \\ \sigma_{p1} & \cdots & \sigma_{pp} \end{bmatrix}$$

Orthogonal Factor Model (I)

- The observable random vector **X**, with *p* components, with mean and covariance
- X is linearly dependent upon a few common factors and specific factors, with

loading 也叫因子载荷
$$X_1 - \mu_1 = l_{11}F_1 + l_{12}F_2 + \dots + l_{1m}F_m + \varepsilon_1 \qquad \text{or} \qquad \frac{\mathbf{X} - \mathbf{\mu}}{(p \times 1)} = \frac{\mathbf{L}}{(p \times m)} \frac{\mathbf{F}}{(m \times 1)} + \frac{\mathbf{E}}{(p \times 1)}$$

$$X_2 - \mu_2 = l_{21}F_1 + l_{22}F_2 + \dots + l_{2m}F_m + \varepsilon_2$$

$$X_{p} - \mu_{p} = l_{p1}F_{1} + l_{p2}F_{2} + \dots + l_{pm}F_{m} + \varepsilon_{p}$$

$$\mathbf{X} - \mathbf{\mu} = \mathbf{L} \mathbf{F} + \mathbf{\varepsilon}_{(p \times 1)} + \mathbf{\varepsilon}_{(p \times 1)}$$

这里的因子类似设计变 量,也可以是随机的

Orthogonal Factor Model (II)

Assumptions continued

$$\mathbf{X} - \mathbf{\mu} = \mathbf{L} \mathbf{F} + \mathbf{\varepsilon}$$

$$(p \times 1) \quad (p \times m) \quad (m \times 1) \quad (p \times 1)$$

一般模型

$$E(\mathbf{F}) = 0, \quad \operatorname{Cov}(\mathbf{F}) = E(\mathbf{FF'}) = \mathbf{I}_{(m \times m)}$$

$$E(\mathbf{\epsilon}) = 0, \quad \operatorname{Cov}(\mathbf{\epsilon}) = E(\mathbf{\epsilon}\mathbf{\epsilon'}) = \mathbf{\Psi}_{(p \times p)}$$

$$\operatorname{Cov}(\mathbf{\epsilon}, \mathbf{F}) = E(\mathbf{\epsilon}\mathbf{F'}) = \mathbf{0}_{(p \times m)}$$

$$\Psi = \begin{bmatrix} \psi_1 & 0 & \cdots & 0 \\ 0 & \psi_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \psi_p \end{bmatrix}$$

每个因子正交, 误差项正交

Covariance Structure Implied

$$\begin{split} (X - \mu)(X - \mu)' &= (LF + \epsilon)((LF + \epsilon)' \\ &= (LF)(F'L') + \epsilon(F'L') + (LF)\epsilon' + \epsilon\epsilon' \end{split}$$

$$\Sigma = \text{Cov}(\mathbf{X}) = E(\mathbf{X} - \mathbf{\mu})(\mathbf{X} - \mathbf{\mu})'$$

$$= \mathbf{L}E(\mathbf{FF'})\mathbf{L'} + E(\mathbf{\epsilon}\mathbf{F'})\mathbf{L'} + LE(\mathbf{F\epsilon'}) + E(\mathbf{\epsilon}\mathbf{\epsilon'})$$

$$=LL'+\Psi$$

$$(\mathbf{X} - \mathbf{\mu})\mathbf{F}' = (\mathbf{L}\mathbf{F} + \mathbf{\epsilon})\mathbf{F}'$$

$$\operatorname{Cov}(\mathbf{X}, \mathbf{F}) = E(\mathbf{X} - \mathbf{\mu})\mathbf{F}' = \mathbf{L}$$

Covariance

$$\sigma_{ii} = l_{i1}^{2} + l_{i2}^{2} + \dots + l_{im}^{2} + \psi_{i}$$

$$= h_{i}^{2} + \psi_{i}$$

$$= \operatorname{Communality} + \operatorname{Specific variance}$$

$$\sigma_{ik} = \operatorname{Cov}(X_{i}, X_{k}) = \mathbf{l_{i}'l_{k}}$$

$$= l_{i1}l_{k1} + \dots + l_{im}l_{km}$$

Example (Textbook Ex9.1)

$$\Sigma = LL' + \Psi$$

分析的时候却是 只需要考虑方差 就好了

$$\begin{bmatrix} 19 & 30 & 2 & 12 \\ 30 & 57 & 5 & 23 \\ 2 & 5 & 38 & 47 \\ 12 & 23 & 47 & 68 \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 7 & 2 \\ -1 & 6 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} 4 & 7 & -1 & 1 \\ 1 & 2 & 6 & 8 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Example (Textbook Ex9.1)

$$\mathbf{L} = \begin{bmatrix} \ell_{11} & \ell_{12} \\ \ell_{21} & \ell_{22} \\ \ell_{31} & \ell_{32} \\ \ell_{41} & \ell_{42} \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 7 & 2 \\ -1 & 6 \\ 1 & 8 \end{bmatrix},$$

$$\Psi = \begin{bmatrix}
\psi_1 & 0 & 0 & 0 \\
0 & \psi_2 & 0 & 0 \\
0 & 0 & \psi_3 & 0 \\
0 & 0 & 0 & \psi_4
\end{bmatrix} = \begin{bmatrix}
2 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{bmatrix}$$

$$h_1^2 = \ell_{11}^2 + \ell_{12}^2 = 4^2 + 1^2 = 17$$

$$\sigma_{11} = (\ell_{11}^2 + \ell_{12}^2) + \psi_1 = h_1^2 + \psi_1$$

$$\begin{array}{rcl}
19 & = & 4^2 + 1^2 & + & 2 & = & 17 + 2 \\
\text{variance} & = & \text{communality} + & \text{specific} \\
& & \text{variance}
\end{array}$$

Understanding the model - Reduction

- How many parameters are there in a covariance matrix?
- How many parameters are there in the orthogonal factor model?
- What is the maximum number of common factors?

Limitation of FA model: Not all covariance matrix can be factored as $LL'+\Psi$, where the number of factors m << p

See Example 9.2 in textbook (maybe the solution exists mathematically, but not statistically; e.g. correlation > 1 or variance < 0, - (ultra) Heywood case (Heywood 1931))

Understanding the model - Nonidentifiability

Consider orthogonal matrix T

$$X - \mu = LF + \varepsilon$$

$$=L(TT')F+\varepsilon$$

$$= (LT)(T'F) + \varepsilon$$

$$L^* = LT$$
, $F^* = T'F$

 $X - \mu = L * F * + \varepsilon$

Check model assumptions

增加一个正交矩阵之后还是因子分解

L is not unique!

- > Since the model doesn't change, we'll later use this in two ways
 - ♦ To "rotate" the factors to make them more interpretable
 - ♦ To assist in optimization for maximum likelihood estimation.

Understanding the model - Scale Invariant

Consider diagonal matrix C

$$\mathbf{X} = \mu + \mathbf{LF} + \varepsilon$$

$$Y = CX = C\mu + C\mathbf{LF} + C\varepsilon$$
$$= \mu_C + L_CF + \varepsilon_C$$

The structures are not affected by choices of **C**

 $Var(\varepsilon_C) = C\Psi C'$ is diagonal since C is diagonal.

So, in this sense, FA is unaffected by rescaling of the variables.

Targets of Model

- ightharpoonup Suppose x_1, x_2, \cdots, x_n represent n independent drawings from some p-dimensional population, with mean vector μ and covariance matrix Σ .
- > Sample covariance matrix S, sample correlation matrix R
- ightharpoonup Objective: find $\hat{\mathbf{L}}$ and $\hat{\mathbf{\Psi}}$, with $\mathbf{S} \approx \hat{\mathbf{L}} \hat{\mathbf{L}}' + \hat{\mathbf{\Psi}}$

What is the meaning of the latent factors?
♦ L
♦ Rotation
What are the latent factors?
♦ F

Principle Component Approach for Estimating Loadings

Principal Component Approach

- ightharpoonup Objective: find $\hat{\mathbf{L}}$ and $\hat{\mathbf{\Psi}}$, with $\mathbf{S} \approx \hat{\mathbf{L}} \, \hat{\mathbf{L}}$ '+ $\hat{\mathbf{\Psi}}$
- > Intuitively, we may use PCA / spectral decomposition:

$$\Sigma = \left[\sqrt{\lambda_1} e_1 : \sqrt{\lambda_2} e_2 : \cdots : \sqrt{\lambda_p} e_p\right] \begin{bmatrix} \sqrt{\lambda_1} e_1' \\ \sqrt{\lambda_2} e_2' \\ \vdots \\ \sqrt{\lambda_p} e_p' \end{bmatrix} = L_0 L_0' + 0 = L_0 L_0' \\ (p \times p)(p \times p) = (p \times p)(p \times p)$$

The spectral decomposition is not useful! # common factors = # variables

Principal Component Approach

When the last *p-m* eigenvalues are small, neglect the contribution of the corresponding eigenvalue-eigenvector pairs

$$\Sigma \approx \left[\sqrt{\lambda_{1}}e_{1} : \sqrt{\lambda_{2}}e_{2} : \cdots : \sqrt{\lambda_{m}}e_{m}\right] \begin{bmatrix} \sqrt{\lambda_{1}}e_{1}' \\ \sqrt{\lambda_{2}}e_{2}' \\ \vdots \\ \sqrt{\lambda_{m}}e_{m}' \end{bmatrix} = \underbrace{L}_{(p \times m)(m \times p)} \underbrace{L}_{(p \times m)(m \times p)}$$

What is $\widetilde{\Psi}$?

What is communality \widetilde{h}_{i}^{2} ?

Given sample covariance matrix S or sample correlation matrix R

$$\tilde{L} = \left[\sqrt{\hat{\lambda}_1} \, \hat{e}_1 : \sqrt{\hat{\lambda}_2} \, \hat{e}_2 : \cdots : \sqrt{\hat{\lambda}_m} \, \hat{e}_m \right]$$

Example (Textbook Ex9.1)

$$\Sigma = L_0 L_0' \approx L L' + \Psi$$

For illustration, the numbers are rounded.

2	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Principal Component Approach

Given sample covariance matrix S or sample correlation matrix R

$$\tilde{L} = \left[\sqrt{\hat{\lambda}_1} \hat{e}_1 : \sqrt{\hat{\lambda}_2} \hat{e}_2 : \cdots : \sqrt{\hat{\lambda}_m} \hat{e}_m \right]$$

Factor loadings

ightharpoonup The specific variances may be taken to be the diagonal elements of $S-\tilde{\mathbf{L}}\tilde{\mathbf{L}}'$ Not diagonal

Note: the estimated loadings for a given factor do not change as the number of factors is increased.

Example (Textbook Ex9.1)

$$\Sigma = L_0 L_0' \approx L L' + \Psi$$

For illustration, the numbers are rounded.

Selection of m

- Similar to PCA
- Consider the residual matrix $S (\widetilde{L}\widetilde{L}' + \widetilde{\Psi})$

Matrix Approximation

It can be shown that

Sum of Squared entries of
$$\mathbf{S} - (\widetilde{\mathbf{L}}\widetilde{\mathbf{L}}' + \widetilde{\mathbf{\Psi}}) \leq \hat{\lambda}_{m+1}^2 + \cdots + \hat{\lambda}_p^2$$

 Consequently, a small value for the sum of the squares of the neglected eigenvalues implies a small value for the sum of the squared errors of approximation.

Selection of *m*: another perspective

What is the total variance in X?

$$tr(S) = S_{11} + \dots + S_{pp}$$

• What is the contribution of common factor *i* to the total variance?

$$l_{1i}^2 + \dots + l_{pi}^2 = \hat{\lambda}_i$$

Proportion of variance explained by the common factors

$$\frac{\hat{\lambda}_1 + \dots + \hat{\lambda}_m}{tr(S)}$$

Example: Consumer Preference

Taste
Good buy for money
Flavor
Suitable for snack
Provides lots of energy

 1
 0.02
 0.96
 0.42
 0.01

 1
 0.13
 0.71
 0.85

 1
 0.50
 0.11

 1
 0.79

In fact, from the view of PCA, only 2 eigenvalues of sample correlation matrix **R** exceeds 1.

Finally, we choose m = 2.

What is the *m*?

	Estimat	ed factor	Communalitie	Specific
	loa	dings	S	variances
Variable	F_1	F_2	h_{i}^{2}	ψ _i
Taste	0. 56	0.82	0.98	0.02
Good buy for money	0. 78	-0.53	0.88	0. 12
Flavor	0.65	0.75	0.98	0.02
Suitable for snack	0. 94	-0.10	0.89	0.11
Provides lots of energy	0.80	-0.54	0.93	0.07
Eigenvalues	2.85	1.81		
Cumulative proportion of total				
(standardized)				
sample variance	0. 571	0.932		

24

Table 9.1

Principle Factor Approach for Estimating Loadings

Principal Factor Approach

 Intuitive idea: the common factors should account for the off-diagonal elements, as well as the communality portions of the diagonal elements

$$\mathbf{X} - \mathbf{\mu} = \mathbf{L} \mathbf{F} + \mathbf{\varepsilon}_{(p \times 1)}$$

$$\Sigma = LL'+\Psi$$

Iteration for optimization:

Initial $\widetilde{f \Psi}$

Find $\widetilde{\mathbf{L}}$, the largest meigenvectors of the

eigen decomposition of ${f S}$ - $\widetilde{f \Psi}$

$$\widetilde{\mathbf{\Psi}} = diag(\mathbf{S} - \widetilde{\mathbf{L}}\widetilde{\mathbf{L}}')$$

Discussions

- Choice of initial estimates of specific variances
- Some of the eigenvalues of \mathbf{S} $\widetilde{\mathbf{\Psi}}$ may be negative
- Communality may exceed total variance, Heywood case
- Reasonable suggestion of how to initial $\widetilde{\Psi}$

$$h_i^{*2} = 1 - \psi_i^* = 1 - \frac{1}{r^{ii}}$$

 r^{ii} is the i - th diagonal element of ${\bf R}^{-1}$

Maximum Likelihood Approach for Estimating Loadings

Maximum Likelihood Approach

 Assumption: the common factors and the specific factors are jointly normally distributed

$$\mathbf{X} - \mathbf{\mu} = \mathbf{L} \quad \mathbf{F} + \mathbf{\varepsilon} \\
 (p \times 1) \quad (p \times 1) \quad (p \times 1) \quad \mathbf{X} \sim N_p(\mathbf{\mu}, \mathbf{\Sigma})$$

$$\mathbf{F} \sim N_m(\mathbf{0}, \mathbf{I}) \quad \Rightarrow \quad \mathbf{\Sigma} = \mathbf{L}\mathbf{L}' + \mathbf{\Psi}$$

$$\mathbf{\varepsilon} \sim N_p(\mathbf{0}, \mathbf{\Psi}) \quad \text{subject to } \mathbf{L}' \mathbf{\Psi}^{-1} \mathbf{L} = \mathbf{\Delta}$$

$$F \perp \varepsilon$$

Maximum Likelihood Approach

$$L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{np}{2}} |\boldsymbol{\Sigma}|^{-\frac{n}{2}} \exp\{-\frac{1}{2}tr[\boldsymbol{\Sigma}^{-1}(\sum_{j=1}^{n} (\mathbf{x}_{j} - \overline{\mathbf{x}})(\mathbf{x}_{j} - \overline{\mathbf{x}})' + n(\overline{\mathbf{x}} - \boldsymbol{\mu})(\overline{\mathbf{x}} - \boldsymbol{\mu})')]\}$$

$$= (2\pi)^{-\frac{(n-1)p}{2}} |\Sigma|^{-\frac{(n-1)}{2}} \exp\{-\frac{1}{2}tr[\Sigma^{-1}(\sum_{j=1}^{n} (\mathbf{x}_{j} - \overline{\mathbf{x}})(\mathbf{x}_{j} - \overline{\mathbf{x}})')]\}$$

$$\times (2\pi)^{-\frac{p}{2}} |\Sigma|^{-\frac{1}{2}} \exp\{-\frac{n}{2}(\overline{\mathbf{x}} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}} - \boldsymbol{\mu})\}$$

The model depends on L and Ψ through $\Sigma = LL' + \Psi$ It is not well defined because of multiplicity of choices of L

Impose computationally convenient uniqueness condition:

 $L'\Psi^{-1}L = \Delta$, Δ is a diagonal matrix

Maximum Likelihood Approach

Res 9.1

Let $X_1,...,X_n$ be a random sample from $N_p(\mu,\Sigma)$, where $\Sigma = LL' + \Psi$ is the covariance matrix for the m common factor model. The maximum likelihood estimators $\hat{L}, \hat{\Psi}$, and $\hat{\mu}$ subject to $\hat{L}\hat{\Psi}^{-1}\hat{L}'$ being diagonal.

Then, the MLE of the communalities are

共有方差

$$\hat{h}_{i}^{2} = \hat{l}_{i1}^{2} + \hat{l}_{i2}^{2} + \dots + \hat{l}_{im}^{2}$$
, for $i = 1, 2, \dots, p$

SO

$$\begin{pmatrix} \text{Proportion of total sample} \\ \text{variance due to } j \text{ - th factor} \end{pmatrix} = \frac{\hat{l}_{1j}^2 + \hat{l}_{1j}^2 + \dots + \hat{l}_{pj}^2}{s_{11} + s_{22} + \dots + s_{pp}}$$

Standardization

- If the variables are standardized so that $Z=V^{-1/2}(X-\mu)$
- What is the covariance matrix ρ ?

$$\rho = V^{-1/2} \Sigma V^{-1/2} = (V^{-1/2} L)(V^{-1/2} L)' + V^{-1/2} \Psi V^{-1/2}$$

• Thus, we have a factorization of ρ :

$$L_z = V^{-1/2}L, \ \Psi_z = V^{-1/2}\Psi V^{-1/2}$$

• The MLE of ρ is

$$\widehat{\boldsymbol{\rho}} = (\widehat{\mathbf{V}}^{-1/2} \widehat{\mathbf{L}}) (\widehat{\mathbf{V}}^{-1/2} \widehat{\mathbf{L}})' + \widehat{\mathbf{V}}^{-1/2} \widehat{\boldsymbol{\Psi}} \widehat{\mathbf{V}}^{-1/2}$$
$$= \widehat{\mathbf{L}}_z \widehat{\mathbf{L}}_z' + \widehat{\boldsymbol{\Psi}}_z$$

Question:

Why?

What is $\widehat{\mathbf{V}}^{ extstyle{-1/2}}$?

Does PC approach have similar property?

Note:

- ➤ The MLE method could produce very different results when m→ m+1
- ➤ The MLE method can also experience difficulties with Heywood cases

Example: Stock-price data

	Mozim	um likol	ibood	Dringing 1 components			
	Maximum likelihood			Principal components Specific			
			Specific				
Variable	Estimate	d factor	variance	Estimated factor		variance	
	loadings		S	loadings		S	
	F_1	F_2	/ i	F_1	F_2	ψ _i	
J P Morgan	0. 115	0. 755	0.42	0.732	-0.437	0.27	
Citibank	0.322	0. 788	0.27	0.831	-0. 280	0. 23	
Wells Fargo	0. 182	0.652	0.54	0.726	-0.374	0.33	
Royal Dutch Shell	1.000	-0.000	0.00	0.605	0.694	0. 15	
ExxonMobil	0.683	-0.032	0.53	0. 563	0.719	0.17	
Cumulative							
proportion of total							
()							
standardized)							
sample variance	0.323	0.647		0. 487	0.769		

Discussion:

- > Are the columns orthogonal?
- Estimated value (specific variances)
- > % of total variance explained?

```
Homework:
princomp() / factpc() (library(mvstats))
factanal()
```

A Large Sample Test for the Number of Common Factors

 Normality Assumption: the common factors and the specific factors are jointly normally distributed

$$H_0: \sum_{(p \times p)} = \mathbf{L} \mathbf{L}' + \Psi_{(p \times p)}, \text{ subject to } \mathbf{L}' \Psi^{-1} \mathbf{L} = \Delta$$

 H_1 : Σ any other positive definte matrix

• Likelihood Ratio test $-2 \ln \Lambda = -2 \ln \left[\frac{\text{maximum likelihood under H}_0}{\text{maximized likelihood}} \right]$

A Large Sample Test for the Number of Common Factors

> Under null:

$$\hat{\mu} = \overline{\mathbf{x}}, \qquad \hat{\Sigma} = \hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi}$$

the maximized likelihood ∝

$$|\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\mathbf{\Psi}}|^{-n/2} \exp\{-\frac{1}{2}n \operatorname{tr}[(\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\mathbf{\Psi}})^{-1}\mathbf{S}_n]\}$$

> Under alternative:

$$\hat{\boldsymbol{\mu}} = \overline{\mathbf{x}}, \ \hat{\boldsymbol{\Sigma}} = \frac{n-1}{n} \mathbf{S}, \text{ or } \mathbf{S}_n$$

the maximized likelihood $\propto |\mathbf{S}_n|^{-n/2} e^{-np/2}$

$$-2\ln \Lambda = -2\ln \left[\frac{\text{maximum likelihood under H}_0}{\text{maximized likelihood}}\right] = n\ln \left(\frac{|\widehat{\Sigma}|}{|\mathbf{S}_n|}\right)$$

Degree of Freedom:

$$v - v_0 = \frac{1}{2} p(p+1) - p(m+1) + \frac{1}{2} m(m-1)$$

Key Points

Orthogonal Factor Model (motivation, assumptions, concepts)

- > Latent factor variables, dimension reduction
- > Zero mean, uncorrelated
- > Common factor, specific factor, communality
- ➤ Not unique / non-identifiable, scale invariant

Methods of Estimation

- PC method
 - ♦ Factor loading
 - ♦ How to determine m (the number of common factors)
- Principal factor solution (not required)
- Maximum likelihood method

 - ♦ Restriction for uniqueness
 - How to determine m (the number of common factors)
 - ♦ Standardized version
 - ♦ Comparison to PC method