Learning Scikit-Learn

Qiyang Hu
UCLA Office of Advanced Research Computing
July 28th, 2023

Outline

- Learning Scikit-learn (the basics)
 - High-level overview of scikit-learn libraries
 - According to a typical machine learning workflow
 - A lot of colab snippets as examples

Today

- Practical usage of scikit-learn
 - Deep learning and scikit-learn
 - Scikit-learn extension libraries
- High-performance machine learning using scikit-learn
 - Overview of performance issues in machine learning
 - Making the computation faster
 - Processing large dataset

What can/can't be expected in the series?

CAN	X CAN'T
Review on Machine learning workflows	Introduction to various Machine Learning models
A <u>BIG</u> picture on scikit-learn's features, functions & components	Discussions on the details of specific scikit-learn function interfaces
 Providing handy examples as demos (mainly for studying <u>after</u> the class) 	Line-by-line explanation on every demo code
High-level introduction on high performance machine learning	Lectures on detailed mechanism and implementations of HPML.

Why learning Scikit-Learn in the LLM era?

Needs to distill the domain knowledge Needs to finetune the pre-trained model

(will mention a case example today.)

Learning Scikit-Learn in 5 minutes

- A Python machine learning framework
 - Library built on numpy, scipy, matplotlib
 - Started in 2007, publicly released in 2010
 - Is currently maintained by volunteers
- Installation/Loading
 - O conda install scikit-learn-intelex
 - On H2: module load anaconda3 conda activate sklearn
 - Using Google Colab
- Designed for easy-to-use productions
 - Simplicity
 - Qualitative code
 - Performance
 - Elegant APIs
 - Excellent docs: https://scikit-learn.org

```
import sklearn
# 2 samples, 3 features
                              Data
X = [[1, 2, 3],
     [11, 12, 13]]
# classes of each sample
                                        Modeling
y = [0, 1]
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(random state=0)
clf.fit(X, y)
# predict classes of the training data
clf.predict(X)
                                         Predicting
# predict classes of new data
clf.predict([[4, 5, 6], [14, 15, 16]])
```

Outline

- Learning Scikit-learn
 - High-level overview of scikit-learn libraries
 - According to a typical machine learning workflow
 - A lot of colab snippets as examples
 - Practical usage of scikit-learn
 - Deep learning and scikit-learn
 - Scikit-learn extension libraries
- High-performance machine learning using scikit-learn
 - Overview of performance issues in machine learning
 - Making the computation faster
 - Processing large dataset

Simplified workflow for a machine learning project

Data input and data loader

- Data format can be input directly as:
 - Dense data: numpy.ndarray
 - Sparse data: scipy.sparse.matrix
- Data can be loaded from standard datasets:

```
Real world datasets
        Toy datasets
                           boston
                                                                               olivetti faces
                           iris
                                                                               20newsgroups[_vectorized]
                           diabetes
                                                                               Ifw [people/pairs]
sklearn.datasets.load
                           digits
                                                   sklearn.datasets.fetch
                                                                               covtype
                           linnerud
                                                                               rcv1
                                                                               kddcup99
                           wine
                           breast_cancer
                                                                               california housing
                           sample image[s]
                                                                               openml
```

Data Generator

sklearn.datasets.make

blob classification gaussian_quantiles hastie 10 2 circles moons multilabel classification biclusters checkerboard regression friedman[1/2/3] sparse uncorrelated s curve swiss roll low rank matrix sparse_coded_signal spd matrix sparse spd matrix

(n_samples=100, n_features=2, *,
centers=None, cluster_std=1.0,
center_box=- 10.0, 10.0,
shuffle=True, random_state=None,
return_centers=False)

For classification and clustering

For regression

For manifold learning

For decomposition

bit.ly/lskl_01

Workflow for a machine learning project

Split training and testing dataset

- Essential for an unbiased evaluation of prediction performance
 - Process related with model evaluation and selection.
 - Internally, scikit-learn uses cross-validation iterators to split

Multiple splitting methods

- Stratified splitting
- Group splitting
- Time series splitting
- Predefined splitting

Sklearn's train_test_split

- A wrapper of a single-call ShuffleSplit
- Only allows for stratified splitting
- As a base for the default cross-validations

```
>>> import numpy as np
>>> from sklearn.model_selection import train_test_split
>>> from sklearn import datasets
>>> from sklearn import svm
>>> X, y = datasets.load iris(return X y=True)
>>> X.shape, y.shape
((150, 4), (150,))
>>> X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.4, random_state=0)
>>> X_train.shape, y_train.shape
((90, 4), (90,))
>>> X_test.shape, y_test.shape
((60, 4), (60,))
```

Workflow for a machine learning project

Core objects (estimators)

Preprocessing, Feature extraction

 $\label{eq:fit} \text{fit} \ () \ \text{calculates the} \\ \text{parameters} \ \mu \ \text{and} \ \sigma \ \text{and saves} \\ \text{them as internal objects.}$

Estimator

estimator.fit(data)
estimator.fit(data, targets)
estimator.partial fit(data, targets)

fit() fits a model based on some training data and is capable of inferring some properties on new data.

Transformer

transformer.transform(data)
transformer.fit_transform(data)

predictor.predict(data)

Predictor

For Classification Algorithms

- predictor.predict_prob(data)
- predictor.decision_function(data)

Test

Data

est.transform(X_test)

Transformed

Test Data

est.fit(X_train)

Model

Training Data

Transformed

Training Data

est.transform(X_train)

Model

model.score (data)

Modeling, Learning

Workflow for a machine learning project

Preprocessing:

sklearn.preprocessing.

from sklearn.preprocessing import
StandardScaler
sc = StandardScaler()
sc.fit_tranform(X_train)
sc.transform(X_test)

sklearn.**imput**.

StandardScaler / RobustScaler MinMaxScaler / MaxAbsScaler KernelCenterer QuantileTransformer PowerTransformer normalize Normalizer OrdinalEncoder/LabelEncoder OneHotEncoder **KBinsDiscretizer** Binarizer **FunctionTransformer** PolynomialFeatures SimpleImputer IterativeImputer **KNNImputer** MissingIndicator

Standardization, or mean removal and variance scaling

Non-linear transformation

Normalization

Encoding categorical features

Discretization

Custom transformers

Imputation of missing values

Workflow for a machine learning project

Choosing the right estimator (algorithm)

Pseudo-code template for modeling and learning

```
.LogisticRegression
                       linear model
                                                                                   LogisticRegressionCV
                                                                                   PassiveAggressiveClassifier
                       svm
                                                                                   Perceptron
                       tree
                                                                                   RidgeClassifier
                                                                                   RidgeClassifierCV
                       naive bayes
                                                                                   SGDClassifier
                                                   import SpecModel
from sklearn.
                                                                                   LinearRegression
                       multioutput
                                                                                   Ridge
                       ensemble
                                                                                   RidgeCV
                                                                                   SGDRegressor
                       cluster
                                                                                   ElasticNet.
                                                                                   ElasticNetCV
                       decomposition
                                                                                   Lars
                                                                                   LarsCV
                                                                                   Lasso
                                                                                   LassoCV
model = SpecModel( hyperparameter )
                                                                                   LassoLars
                                                                                   LassoLarsCV
                                                                                   LassoLarsIC
                                              penalty='12', tol=0.0001, C=0.1,
                                                                                   OrthogonalMatchingPursuit
                                              fit intercept=True,
model.fit( X, y )
                                                                                   OrthogonalMatchingPursuitCV
                                              solver='liblinear', max iter=100,
                                                                                   ARDRegression
                                              multi class='ovr', n jobs=1, ...
                                                                                   BayesianRidge
                                                                                   PoissonRegressor
y pred = model.predict( X new )
                                                                                   GammaRegressor
                                                                                   HuberRegressor
                                                                                   RANSACRegressor
s = model.score(X new)
```

Meta-estimator: as an assembly of base estimators

Workflow for a machine learning project

Model persistence (saving/restoring a trained model)

- Python's built-in serialization:
 - Using pickle or joblib: dump and load
 - Custom transformers in Pipeline cannot be serialized by pickle or joblib
 - Consider using Neuralxle's module to <u>save custom pipeline</u> in step wise
 - Pickled model better to be deployed using containers to avoid portability issues
 - A more secure format: <u>skops</u>
- Other exporting formats
 - Open Neural Network Exchange (ONNX)
 - sklearn-onnx
 - Predictive Model Markup Language (PMML)
 - sklearn2pmml

Outline

- Learning Scikit-learn
 - High-level overview of scikit-learn libraries
 - According to a typical machine learning workflow
 - A lot of colab snippets as examples
 - Practical usage of scikit-learn
 - Deep learning and scikit-learn
 - Scikit-learn extension libraries
- High-performance machine learning using scikit-learn
 - Overview of performance issues in machine learning
 - Making the computation faster
 - Processing large dataset

Deep Learning and Scikit-Learn

- Neural networks in scikit-learn
 - Multi-layer Perceptron: MLPRegressor, MLPClassifier
 - from sklearn.neural_network import MLPClassifier
 - MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2))
 - Not versatile as Tensorflow and Pytorch, but
 - Much simpler and straightforward (esp. for early-stopping)
 - Directly support sparse data as input, saving memory a lot
 - Natively support partial-fit (will discuss in next talk)!

bit.ly/3PuFTHw

- Works together with modern exotic deep learning models
 - Large NLP models: pre-trained, semi-supervised
 - Scikit-Learn for supervised fine-tuning
 - As a top classifier layer
 - Defining the workflow

Scikit-learn extension libraries

- Libraries adopting scikit-learn functionalities
 - Data formats: <u>sklearn_pandas</u>, <u>sklear_xarray</u>, ...
 - Auto-ML: <u>auto-sklearn</u>, <u>Featuretools</u>, <u>Neuraxle</u>, ...
 - Model visualization: <u>dtreeviz</u>, <u>eli5</u>, ...
 - Model selection: <u>scikit-optimize</u>, <u>sklearn-deap</u>, ...
 - Model export: <u>onnxmltools</u>, <u>sklearn2pmml</u>, ...
 - Parallelization: <u>sk-dist</u>
 - Plotting: <u>scikit-plot</u>
- Libraries compatible with scikit-learn interfaces
 - o Time-series models: <u>tslearn</u>, <u>sktime</u>, <u>seglearn</u>, ...
 - Deep learning: <u>keras</u>, <u>skorch</u>, ...
 - Other regression/classification: <u>xgboost</u>, <u>ML Ensemble</u>, <u>gplearn</u>, ...
 - Decomposition and clustering: <u>lda</u>, <u>hdbscan</u>, ...

SciKits means a huge family of SciPy libraries

- scikit-learn
- scikit-opt
- scikit-image
- scikit-sparse
- scikit-statsmodels
- ...

Outline

- Learning Scikit-learn
 - High-level overview of scikit-learn libraries
 - According to a typical machine learning workflow
 - A lot of colab snippets as examples
 - Practical usage of scikit-learn
 - Deep learning and scikit-learn
 - Scikit-learn extension libraries
- High-performance machine learning using scikit-learn
 - Overview of performance issues in machine learning
 - Making the computation faster
 - Processing large dataset

See you Next Friday!

bit.ly/lskl_survey1

Backup Slides

Difference between SVC and SGD with hinge loss

• LinearSVC:

- o implemented in terms of liblinear
- use the *full* data and solve a convex optimization problem with respect to these data points.

SVC with kernel='linear' parameter

- implemented in terms of libsvm
- use the *full* data and solve a convex optimization problem with respect to these data points.

Stochastic Gradient Descent with loss='hinge' parameter

- treat the data in *batches* and performs a gradient descent aiming to minimize expected loss with respect to the sample distribution, assuming that the examples are iid samples of that distribution.
- o is typically used when the number of samples is very big or not ending. Observe that you can call the *partial_fit* function and feed it chunks of data.

Key Takeaways

- Learning Scikit-learn means:
 - Understanding the machine learning workflows
 - Learning its API conventions
 - Familiarizing its documentations
 - Inspecting the example codes
 - Considering the scikit-learn extensive libraries