Machine Learning and Applications

Course Outline

Prerequisites

The course requires familiarity with

- Calculus and Numerical Linear Algebra
- Optimization Methods
- Probability and Statistics

Recommended software: <u>Anaconda 4.2.0 (Python 3.5 version)</u>

- python>=3.5, matplotlib>=1.5.3, jupyter, ipython;
- scikit-learn>=0.17.1, pandas>=0.18.1, numpy>=1.11, scipy>=0.18.1;

Extra: XGboost (Installation), LibSVM>=3.2 (Installation)

Course Topics

The course will cover:

- Linear classification
- Multi-Class Classification
- On-Line Learning and Ensemble Methods
- Decision Forests for Classification, Regression, and Density Estimation
- Regression
- Neural Networks
- Reinforcement Learning

- Kernel Methods
- Kernel Mean Embedding of Distributions
- Dimensionality Reduction
- Manifold and Semi-Supervised Learning
- Metric Learning
- Anomaly Detection
- Conformal and Probabilistic Prediction

Course Activity and Grading

- Weekly individual home assignments
- A report on a selected original research paper
- Applied course project (individual or in a small group)
 - detailed report with replicable results
 - presentation and defense

Activity	Max. Score
Home assignments	25%
Attendance and participation	5% (+ bonus)
Written Exam	25%
Project	25%
Oral Exam	25%

Final Grade	Total Score
A "Excellent"	above 80%
B "Good"	from 65 to 79%
C "Satisfactory"	from 50% to 64%
D "Poor"	from 30% to 49%
E "Very poor"	from 15% to 29%
F "Unacceptable"	below 14%

Assignment Deadlines

- Weekly assignments shall be distributed via Canvas
- Solutions are to be submitted in PDF, IPYNB, or ZIP
- We adopt soft deadlines

Example: if the deadline is set to 2017-02-19, then

- Assignments submitted before 2017-02-20 08:59:59 MSK are not penalized
- Late submissions are penalized per each day after the deadline rounded up

Projects

Reports are to be 15-20 pages long and include:

- Problem Statement
- Overview of the state in this field
- 3. Solution
- 4. Comparison to existing methods
- Conclusion and References

Project presentation with 7-10 slides summarizing the results of the project

Assessment criteria:

- 10% -- general literacy and style of the report
- 20% -- analytical/scientific methods and approaches
- 45% -- depth of the subject understanding
- 25% -- presentation style and Q&A

Student Academic Integrity

Disciplinary penalties are imposed for

- cheating, plagiarism, fabrication or falsification of data or results;
- copying, rewriting, paraphrasing, or summarizing of text, discoveries, or insights without acknowledging or citing the source;
- allowing other students to copy one's own work, using another student's solutions
 or code without specifying this.

Penalties for misconduct include:

- asking to redo the assignment, project, or test for a reduced grade;
- getting a failing grade.

Please refer to

"Student Academic Integrity Regulations". Department of Education, Skoltech. Moscow, 2014

Main Course Materials

- 1. Mohri, M., and Rostamizadeh, A., and Talwalkar, A. Foundations of Machine Learning. MIT, 2012
- 2. Shalev-Shwartz, S., and Ben-David, S. *Understanding Machine Learning: From Theory to Algorithms*. Cambridge, 2014
- 3. Bishop, C.M. Pattern Recognition and Machine Learning. Springer, 2007
- 4. Barber, D. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012
- 5. Rasmussen, C., and Williams, C. Gaussian Processes for Machine Learning. The MIT Press, 2006.
- 6. <u>Hastie, T., and Tibshirani, R., and Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2009</u>
- 7. Schapire, R.E., Friend, Y. Boosting. MIT, 2012
- 8. Clarke, B., and Fokoue, E., and Zhang, H.H. *Principles and Theory for Data Mining and Machine Learning*. Springer, 2009

