Environnemental Sensing

Ilist

Concepts and principles

- 0 Principles
- 1 Index analysis
- 2 Matrix generation
- 3 Aggregation
- 4 Format, storage

0 - Ilist (Indexed list)

List of values:

Age: [12, 28, 39, 58]

List of indexes:

Name: [Paul, John, Lea, Cat]

City: [Paris, Metz, Rennes, Bollène]

. . . .

Name	city	Age		
Paul	Paris	12		
John	Metz	28		
Lea	Rennes	39		
Cat	Bollène	58		

Example: csv file, measurement, log, matrix

Note: indexed values and index values can be every kind of object

0 - Data structure

1 - Index categories

Max = len(values) min = 1 x = len(codec)

Rate: (M-x)/(M-m)

Dist to min : x - m Dist to max : M - x

Definition

- Default codec: list of differents values
- Full codec : list of values

Properties

- An index with full codec is complete
- Any index have a default codec and a full codec
- Default codec is the shortest, full codec is the longest

A codec defines the correspondence between values and keys (e.g.):

- 1: Anne
- 0: Paul
- 2: John

A codec may not be bijective (e.g.):

- 0: Anne
- 1: Paul
- 2: Anne

1 - linking categories

Max = len(i1) * len(i2) min = max(len(i1), len(i2) diff = abs(len(i1) - len(i2)) x = len(index(v1, v2))

Rate: (x-m)/(M-m)

Dist to min: x - m Dist to max: M - x

- Indicators are independent of values (length or value)
- If one index is complete, all the indexes are derived from it
- If one index is unique, it is derived from all other indexes
- If A is derived (coupled) from B and B is derived (coupled) from C, A is derived (coupled) from C
- If A is coupled to B, all the relationships with other indexes are identical

1 - Example

3 columns are linked

- Full name
- Course
- Examen

3 columns are derived

- First name
- Last name
- Group

1 column is coupled

• Surname

1 column is unique

Year

ratio

Name – Course : 37,5 %

• Name – Examen : 62,5 %

• Course – Examen : 83,7 %

IndexSet			derived or linked		crossed crossed			Data	
	first name	last name	full name	surname	group	course	year	examen	score
	Anne	White	Anne White	skyler	gr1	math	2021	t1	11
	Anne	White	Anne White	skyler	gr1	math	2021	t2	13
	Anne	White	Anne White	skyler	gr1	math	2021	t3	15
	Anne	White	Anne White	skyler	gr1	english	2021	t2	10
	Anne	White	Anne White	skyler	gr1	english	2021	t3	12
	Philippe	White	Philippe White	heisenberg	gr2	math	2021	t1	15
	Philippe	White	Philippe White	heisenberg	gr2	english	2021	t2	8
	Camille	Red	Camille Red	saul	gr3	software	2021	t3	17
	Camille	Red	Camille Red	saul	gr3	software	2021	t2	18
	Camille	Red	Camille Red	saul	gr3	english	2021	t1	2
	Camille	Red	Camille Red	saul	gr3	english	2021	t2	4
	Philippe	Black	Philippe Black	gus	gr3	software	2021	t3	18
	Philippe	Black	Philippe Black	gus	gr3	english	2021	t1	6
derived coupled unique									

37% almost

1 - Codec extension

Derived to coupled

Extension of index codec

Derived to derived

Minimale extension with all keys information (see next slide)

Coupling (linked to coupled)

 Index A and B are derived from Index (A,B)
 -> eg replace two primary

 -> eg replace two primary indexes by one

- All indexes can be transformed into coupled index (codec extension)
- csv data is all composed of coupled indexes
- A derived index is defined only by his extended codec (no duplication)
- An index derived from multiple indexes has minimal codec if the dist_to_max is minimal

1 - Derived to derived

Method

- Keys can be generated with codec and reference to parent index
- First derived index is convert in coupled index
- Codec is minimal

[s1, s1, s2]

Calculation of keys

Reset index

1 - Variable extension

- Linked (derived, coupled) to crossed
 - Add link (Variable extension)
 (Link number = dist to max)

- Derived (coupled) extension
 - Link propagation is obtain with « derived to coupled » function

- Link propagation is available for all derived or coupled indexes
- All indexes can be transformed into crossed index (add values in Variable)
- Extension is impossible with linked index
- matrix data is equivalent to crossed indexes

1 - Representation

```
If length(array) <= len(index) + 1
                        only codec
                   If length(array) > len(index) + 1
                        keys + codec
JSON Array
      First
                Keys (optional)
                                          codec
     value
                                    type: typevalue
           or
                  Name: code
name
                                        (optional)
   Ilist representation:
                             standalone representation:
   parent number
                             Index length
   (order in the llist)
                             default: length(array)-1
   default: itself
Format
     Text (json), Binary (CBOR)
```

Example: 'name'

['Anne', 'Anne', 'John', 'Paul', 'John']

- Full format (standalone)
 ['name', 'Anne', 'Anne' 'John', 'Paul', 'John']
 -> Full codec (e.g. csv format)
- Default format (standalone)
 [{'name': 5}, 0,0,1,2,1,'Anne', 'John', 'Paul']
 -> Default codec, keys
- Default format (Ilist not complete)

 ['name', 0,0,1,2,1,'Anne', 'John', 'Paul']
 -> Default codec, keys
- Default format (llist primary)
 ['name', 'Anne', 'John', 'Paul']
 -> Default codec, variable extension
- Extended format (llist derived or coupled)
 [{'name': 2}, 'Anne', 'John', 'Paul', 'John']
 -> Extended codec, derived index

2 - IndexSet (list of indexes)

Index definition

- An index is derived if it's derived from at least one other index.
- An index is coupled if it's coupled from at least one other index
- An Index is primary if it's not coupled, not derived and not unique
- The parent index is the index with the lowest diff number in the list of coupling or derivating indexes (or itself if the index is primary)
- The precursor index is the Primary index in the indexing tree

IndexSet definition

- Dimension: number of primary indexes
- Complete: An indexSet is complete if all the primary indexes are crossed with each other primary index

- The number of values of a full indexset is the product of the primary indexes length
- A complete IndexSet can be transformed in a Matrix with the dimension of the indexset
- Keys data is unnecessary in a complete indexset if derived codec are extended
- Dimension can be reduced by index extension
- Dimension can be increased by variable extension

2 - Format

- Each indexset has a canonical format (at least one primary index)
- Complete data is obtained by crossing all the primary indexes (variable extension)
- Exchange format can contains only extended codec data
- Complete indexset can be transformed in Matrix
- Csv format is a canonical format with one primary index and any coupled indexes, all indexes have full codec Confidential C

2 - Matrix generation process

Index characterization

- Identification of primary indexes
- Association of coupled and derived indexes to primary indexes

Dimension reduction (if necessary)

Primary index merging (rather low rate)

Matrix generation

- Full indexes conversion
 - Linked to crossed (primary indexes)
 - Extension (derived and coupled indexes)
- Conversion
 - E.g. Xarray
 - Primary indexes -> dims
 - Derived/coupled indexes -> coords
 - -> data Indexed value

- Unique index
- -> attrs

2 - Example

Full function:

- Primary are completed
- Derived are full codec

	first name	last name	full name	surname	group	course	year	examen	score
	Anne	White	Anne White	skyler	gr1	english	2021	t1	-
	Anne	White	Anne White	skyler	gr1	english	2021	t2	10
	Anne	White	Anne White	skyler	gr1	english	2021	t3	12
	Anne	White	Anne White	skyler	gr1	math	2021	t1	11
	Anne	White	Anne White	skyler	gr1	math	2021	t2	13
	Anne	White	Anne White	skyler	gr1	math	2021	t3	15
5	Anne	White	Anne White	skyler	gr1	software	2021	t1	-
) <u>)</u>	Anne	White	Anne White	skyler	gr1	software	2021	t2	-
	Anne	White	Anne White	skyler	gr1	software	2021	t3	-

derived

coupled

unique

```
Coordinates:

in interpretation of the course of the cours
```

3 - Aggregation process

3 - Example

aw

cr

pb

IndexSet Data year examen score course 2021 11 t1 math math 2021 t2 13 2021 t3 math 15 english t2 10 2021 t3 english 2021 12

 course
 year
 examen
 score

 math
 2021
 t1
 15

 english
 2021
 t2
 8

course year examen score 2021 software t3 17 2021 software 18 2021 t1 english english 2021 t2

courseyearexamenscoresoftware2021t318english2021t16

total

first name	last name	full name	surname	group	file
Anne	White	Anne White	skyler	gr1	aw
Philippe	White	Philippe White	heisenberg	gr2	pw
Camille	Red	Camille Red	saul	gr3	cr
Philippe	Black	Philippe Black	gus	gr3	pb

total.merge()

first name	last name	full name	surname	group	course	year	examen	score
Anne	White	Anne White	skyler	gr1	math	2021	t1	11
Anne	White	Anne White	skyler	gr1	math	2021	t2	13
Anne	White	Anne White	skyler	gr1	math	2021	t3	15
Anne	White	Anne White	skyler	gr1	english	2021	t2	10
Anne	White	Anne White	skyler	gr1	english	2021	t3	12
Philippe	White	Philippe White	heisenberg	gr2	math	2021	t1	15
Philippe	White	Philippe White	heisenberg	gr2	english	2021	t2	8
Camille	Red	Camille Red	saul	gr3	software	2021	t3	17
Camille	Red	Camille Red	saul	gr3	software	2021	t2	18
Camille	Red	Camille Red	saul	gr3	english	2021	t1	2
Camille	Red	Camille Red	saul	gr3	english	2021	t2	4
Philippe	Black	Philippe Black	gus	gr3	software	2021	t3	18
Philippe	Black	Philippe Black	gus	gr3	english	2021	t1	6

4 - format

Dict + Array

Tabular format (csv)

Easy to read, duplication data, text only

Json format

- Easy to read, text only
- Not duplication data
- Compatible with NoSQL Database

Bson format

- Compatible with json format
- Binary, structured data (eg datetime)

Binary format

- CBOR (Concise Binary Object Representation)
- Compatible with json format
- Binary, numerical, text, structured (eg datetime, coordinates)

4 - list size

- Simple list size = n * l
 - n: number of values
 - I: mean value size
- Indexed list size = n * i + nx * l
 - i:integer size
 - nx: number of different values

- Indexed list size / list size = i / I (object lightness) + nx / n (unicity level)
- Properties
 - If object lightness and unicity level are low, the indexed list size is lower than simple list size
 - e.g.: i/l = 0.1, nx/n = 0.4 => indexed list size = 0.5 * list size
- In a llist with data more complex than numerical data, the json (or binary) format has a smaller size than a tabular format

Object lightness		i/I
int	2	1,00
float, int32	4	0,50
coordinate	8	0,25
string(10) (eg. timestamp)	10	0,20
simple json element (eg key/value)	20	0,10
structured json element (eg coordinates)	30	0,07
complex json element (eg geometry)	50	0,04

E.g. previous example :

• csv : 2 418 bytes

• json: 1 496 bytes

binary (CBOR): 697 bytes

1 - Derived indexes

```
[d1, d1, d2, d3, d4, d5, d6]
                                                                                                   -[d1, d1, d2, d3, d4, d5, d6]
   • 11: [d1, d1, d2, d3, d4, d5, d6]
           [0, 0, 1, 2, 3, 4, 5]
                                                       [0, 0, 1, 2, 3, 4, 5]
                                                                                                    [0, 0, 1, 2, 3, 4, 5]
           [d1, d2, d3, d4, d5, d6]
Derived
                                                      [d1, d2, d3, d4, d5, d6]
                                                                                                    [d1, d2, d3, d4, d5, d6]
E = 2
                                                                                                  —[j, j, f, f, m, s, s]
→ [0, 0, 1, 2, 3, 4, 5]
   • 14: [i, i, f, f, m, s, s]
           [0, 0, 1, 1, 2, 3, 3]
                                              Coupled [j, f, f, m, s, s]
Coupled
           [i, f, m, s]
                                                                                                    [j, f, f, m, s, s]
E = 0
                                                       [11, 11, 12, 12, 13, 14, 14] -
                                                                                                    [†1, †1, †1, †1, †2, †3, †3]
       13: [11, 11, 12, 12, 13, 14, 14]
                                                       [0, 0, 1, 1, 2, 3, 3]
                                                                                                  \rightarrow [0, 0, 1, 1, 2, 3, 3]
           [0, 0, 1, 1, 2, 3, 3]
                                                       [t1, t2, t3, t4]
                                                                                                    [<del>1</del>1, <del>1</del>1, <del>1</del>2, <del>1</del>3]
           [†1, †2, †3, †4]
```

Default codec

Calculation of the extended codec

Calculation of keys