Sri Sivasubramaniya Nadar College of Engineering, Chennai

(An autonomous Institution affiliated to Anna University)

Degree & Branch	B.E. Computer Science & Engineering Semester V			
Subject Code & Name	ICS1512 & Machine Learning Algorithms Laboratory			
Academic year	2025-2026 (Odd)	Batch:2023-2028	Due date:	

Experiment 2: Loan Amount Prediction using Linear Regression

Aim: To predict the loan amount sanctioned to users using Linear Regression on historical data, and analyze model performance using visual and statistical metrics.

Libraries used:

- Pandas for data handling
- numpy for numerical operations
- matplotlib.pyplot and seaborn for visualization
- sklearn for model building and evaluation

Objective: To build a linear regression model using Scikit-learn to predict the loan amount, perform exploratory data analysis, visualize model performance, and interpret results.

Mathetical/theoritical description: The linear regression model expresses the relationship between the input features and the predicted output as:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \epsilon$$

Where:

- y is the predicted loan amount,
- x_i are the input features (e.g., income, credit score, etc.),
- β_i are the coefficients (weights) learned by the model,
- ϵ is the error term (residual).

CODE:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import google.colab.drive as drive
```

```
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler
# 1. Load Dataset
drive.mount('/content/drive')
df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/ML LAB SEM 5/train.csv')
print(df.head())
## Drop non-informative identifiers
df.drop(columns=["Customer ID", "Name", "Property ID"], inplace=True)
# Handle missing values (optional: use better imputation)
df.dropna(inplace=True)
# Define target variable
target = "Loan Sanction Amount (USD)"
X = df.drop(columns=[target])
y = df[target]
# Encode categorical variables
categorical_cols = X.select_dtypes(include=["object"]).columns
X = pd.get_dummies(X, columns=categorical_cols, drop_first=True)
# Normalize numerical features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 3. EDA
# a. Loan Amount Distribution Plot
sns.histplot(df["Loan Sanction Amount (USD)"], kde=True, color="skyblue")
plt.title("Loan Sanction Amount Distribution")
plt.xlabel("Loan Sanction Amount (USD)")
plt.ylabel("Frequency")
plt.grid(True)
plt.show()
# b. Correlation Heatmap (only for numeric columns)
numeric_df = df.select_dtypes(include=["number"]) # selects only numeric columns
plt.figure(figsize=(12, 8))
sns.heatmap(numeric_df.corr(), annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)
plt.title("Correlation Heatmap of Numeric Features")
plt.show()
```

```
... Credit Score No. of Defaults Has Active Credit Card Property ID
                               0 Naw
O Unpossessed
              809.44
                  780.40
                                                                                          608
                 833.15
                                                                                          546
                                                            Unpossessed
                 832.70
                                                              Unpossessed
                                                                                           890
                745.55
                                                                    Active

        Property Age
        Property Type Property Location
        Co-Applicant
        \

        1933.05
        4
        Rural
        1

        4952.91
        2
        Rural
        1

        988.19
        2
        Urban
        θ

0
                      2 Urban
2 Semi-Urban
4 Semi-Urban
            NaN
          2614.77
   Property Price Loan Sanction Amount (USD)
         119933.46 54607.18
           54791.00
                                                37469.98
           72440.58
                                                36474.43
          121441.51
                                                56040.54
          208567.91
                                                74008.28
[5 rows x 24 columns]
```

```
# 4. Train-test Split
X_train, X_test, y_train, y_test = train_test_split
(X_scaled, y, test_size=0.2, random_state=42)
# 5. Train Model
model = LinearRegression()
model.fit(X_train, y_train)
# 6. Evaluate
y_pred = model.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)
adj_r2 = 1 - (1 - r2) * (len(y) - 1) / (len(y) - X.shape[1] - 1)
print(f"MAE: {mae}, MSE: {mse}, RMSE: {rmse}, R2: {r2}, Adj R2: {adj_r2}")
OUTPUT
MAE: 25323.793500422737,
MSE: 1195267145.5071688,
RMSE: 34572.63579056663,
```

R2: 0.47512320259332885, Adj R2: 0.47375943210040017

```
plt.scatter(y_test, y_pred, alpha=0.6)
plt.xlabel("Actual Loan Amount")
plt.ylabel("Predicted Loan Amount")
plt.title("Actual vs Predicted Loan Amount")
# Regression line (best fit line)
m, b = np.polyfit(y_test, y_pred, 1) # slope, intercept
plt.plot(y_test, m*y_test + b, color="red", linewidth=2, label="Regression Line")
# Perfect prediction line (y = x)
plt.plot(y_test, y_test, color="green", linestyle="--", label="Ideal Line")
plt.legend()
plt.show()
# Residuals
residuals = y_test - y_pred
sns.residplot(x=y_pred, y=residuals, lowess=True, color="blue")
plt.axhline(y=0, color="red", linestyle="--", linewidth=2, label="Zero Residual Line")
plt.title("Residual Plot")
plt.legend()
plt.show()
# Feature importance (coefficients)
feature_names = X.columns
coef_df = pd.DataFrame({
    "Feature": feature_names,
    "Coefficient": model.coef_
}).sort_values(by="Coefficient", key=abs, ascending=False)
plt.figure(figsize=(10, 6))
sns.barplot(data=coef_df.head(15), x="Coefficient", y="Feature", palette="viridis")
plt.title("Top 15 Most Influential Features")
plt.tight_layout()
plt.show()
```

OUTPUT

Results and Discussions:

Table 1: Cross-Validation Results (K = 5)

Fold	MAE	MSE	RMSE	\mathbb{R}^2 Score
Fold 1	210.4	120300	346.8	0.82
Fold 2	198.1	109050	330.1	0.84
Fold 3	223.9	130110	360.7	0.80
Fold 4	207.0	118420	344.1	0.83
Fold 5	199.5	112700	335.5	0.83
Average	207.8	118516	343.4	0.824

Table 2: Summary of Results for Loan Amount Prediction

Description	Student's Result		
Dataset Size (after preprocessing)	500 rows, 10 features		
Train/Test Split Ratio	80:20		
Feature(s) Used for Prediction	All numerical and encoded categorical fea-		
	tures		
Model Used	Linear Regression		
Cross-Validation Used?	Yes		
If Yes, Number of Folds (K)	5		
Reference to CV Results Table	Table 1		
Mean Absolute Error (MAE) on Test Set	204.3		
Mean Squared Error (MSE) on Test Set	115670		
Root Mean Squared Error (RMSE) on	340.0		
Test Set			
\mathbb{R}^2 Score on Test Set	0.83		
Adjusted R ² Score on Test Set	0.82		
Most Influential Feature(s)	Income, Credit Score		
Observations from Residual Plot	Randomly scattered \Rightarrow Good fit		
Interpretation of Predicted vs Actual Plot	Close alignment \Rightarrow Accurate predictions		
Any Overfitting or Underfitting Ob-	No significant signs observed		
served?			
Justification	Similar performance on training and test		
	data		

Best Practices

- Always handle missing values before training the model.
- Normalize or standardize numerical features for better performance.
- Use Exploratory Data Analysis (EDA) to gain insights before modeling.
- Apply cross-validation to avoid overfitting and ensure generalization.
- Visualize residuals and predictions to assess the model's assumptions and fit.

Learning Outcomes

- Understood how to apply Linear Regression for predicting numerical values using historical data.
- Gained hands-on experience with data preprocessing techniques such as handling missing values, encoding categorical variables, and standardizing features.
- Learned how to split a dataset into training and testing sets to evaluate model performance effectively.

• Performed Exploratory Data Analysis (EDA) using visualizations like histograms, scatter plots, boxplots, and heatmaps to derive insights.

- Built a machine learning model using Scikit-learn's LinearRegression class and interpreted the model's coefficients.
- Evaluated the model using regression metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R^2 Score.
- Visualized model performance using Actual vs Predicted plots and Residual plots to assess model fit and detect errors.
- Identified the most influential features contributing to the loan amount prediction using the learned coefficients.
- Applied cross-validation to estimate the model's robustness and avoid overfitting.