

Primitives of Homomorphic Encryption: A Design Perspective

MTP Supervisors:- Prof. Debdeep Mukhopadhyay and Prof. Indrajit Chakrabarti

Sudarshan Sharma
15EC32005
Senior Undergraduate,
Dept. of Electronics and Electrical Comm. Eng.,
IIT Kharagpur, India.
Website-http://sudarshan-sh.com

Outline

- Homomorphic Encryption Introduction
- Random Number Generators
- Gaussian Samplers
- RLWE
- Future Goals

What is Homomorphic Encryption?

"I want to delegate the computation to the cloud, but the cloud shouldn't see my input"

Client:Alice (Input:x)

Delegation: Should cost less for Alice to encrypt x and decrypt f(x) than to compute f(x) herself

Server/Cloud (Function: *f*)

Homomorphic Encryption Used Cases

Social Media

- Electronics Voting
- Healthcare
- Wearables
 - Smart Watches

Internet Banking Solutions

Cloud Servers

Motivation

 Existing Public Key Cryptography Protocols like RSA and ECC will be insecure by Shor's Algorithm when large scale Quantum Computers are built.

- Need for quantum resistant algorithms
 - Lattice Based Cryptography Suitable Candidate as of now.
 - Why?
 - Extensive security analysis as well as small public key and signature sizes compared to other post-quantum algorithms
 - Most, lattice-based primitives are based on the hard problem of finding the solution to linear equations when an error is introduced.
 - Hard Problem- Learning with Errors (LWE)

□ nature

Article | Published: 23 October 2019

Quantum supremacy using a programmable superconducting processor

Frank Arute, Kunal Arya, [...] John M. Martinis

Nature **574**, 505–510(2019) | Cite this article **577k** Accesses | **5** Citations | **5722** Altmetric | Metrics

Homomorphic Encryption Types

- Fully Homomorphic Encryption (FHE)
 - a. **Arbitrary** Processing
 - b. Computationally **Expensive**
 - c. Works for all functions.
- Somewhat Homomorphic Encryption (SWHE)
 - a. **Limited** Processing
 - b. Could be **cheaper** computationally
 - c. All pre-2009 schemes were somewhat Homomorphic
- Existing constructions of (FHE) schemes start from a (SHE) scheme and use a complicated mechanism known as 'bootstrapping' on top to reduce the noise in the result.

Key Elements of Homomorphic Encryption Scheme

- Learning with Error Scheme(LWE)
 - Preferably Ring Based Learning with Errors (RLWE)
 - Computationally Efficient as Polynomial based compared to matrix based LWE
 - Uses Ideal Lattices
- A Gaussian Sampler
- Modular Arithmetic
 - Multiplication of Polynomials
 - Number Theoretic Transform(NTT)
 - Division Algorithms for some functions
- Bootstrapping Technique

noise=p/2

Random Number Generator

Two RNG scheme selected.

- J. D. Golic. **New Methods for Digital Generation and Postprocessing of Random Data**. Computers, IEEE Transactions on, 55(10):1217–1229, 2006.
 - [Cited in the paper discussed]
- Yang, B., Rožic, V., Grujic, M., Mentens, N., & Verbauwhede, I. (2018). ES-TRNG: A
 High-throughput, Low-area True Random Number Generator based on Edge Sampling.
 IACR Transactions On Cryptographic Hardware And Embedded Systems, 267-292.
 - [More Efficient in terms of area and performance]

Golic's RNG Scheme-I

- Robust techniques for generating high speed and high entropy raw binary sequence by using only logic gates.
- Additional post-processing of raw binary sequence

Fig: Digital RNG generator

Fig: Generic Post-Processing Circuit

Golic's RNG Scheme-II

Fig: Fibonacci Ring Oscillator

Fig: Galois Ring Oscillator

- The randomness, as well as the robustness, is increased by XOR-ing the outputs of the two oscillators.
 - The lengths of the two oscillators minus one should preferably be mutually prime for randomness.
 - More randomness due to metastability may be induced within a sampling unit, e.g.,
 implemented as a D-type flip-flop.
- Post Processing through LSFR which is clocked irregularly, that is if some of its output bits are discarded according to a clock control signal.

Results:-Inferences from Golic's RNG Scheme

Implementation Details

Site Type	Used	Fixed	Available	Util%
Slice LUTs	21	0	20800	0.10
LUT as Logic	19	0	20800	0.09
LUT as Memory	2	0	9600	0.02
LUT as DRAM	0	0		
LUT as Shift Reg	2	0		
Slice Registers	32	0	41600	0.08
Register as Flip Flop	32	0	41600	0.08

Implementation done on Vivado using **Primitive FPGA fabrics** as the XIIinx synthesis tool at the RTL level was yielding optimised circuit even after using constraints.

Results: Problems associated with Golic's RNG Scheme

- A greater number of constants involved.
- The selection of the **primitive polynomial**, the security is affected by the number of non-zero feedback coefficient.
 - Difficult to get the primitive polynomial of higher order.
- No master clock present in the design
 - Only the long chain of oscillator act as clock
 - After testing the design
 - Conclusions
 - The paper is quite old so maybe the LUT-LUT delay would have been greater compared to the present counterparts

ES-TRNG

- Edge Sampling, variable-precision phase encoding and repetitive sampling are used
 - Edge Sampling-An algorithm in which we select N
 edges at random from a graph. Nodes connected to
 those edges are present in the output network.
 - Variable-precision phase encoding- Only the oscillators phase around the single edges are sampled with higher precision.
 - Repetitive Sampling-Repeats the sampling at higher frequency until the high precision phase region of the oscillator is captured

Fig: Generic TRNG Architecture

ES-TRNG Important Features

- Throughput of 1.15 Mbps with 0.997 bits of Shannon entropy, only 10 LUT and 5
 flip-flops are used on Spartan-6 FPGA (lightweight).
 - A compact implementation
 - A reasonably high throughput
 - Feasibility of various implementation platforms
 - Low engineering efforts
- Tested with AIS-31, a German BSI standard which put forward a stricter requirement for the design and the evaluation of the TRNGs through a stochastic model to evaluate the unpredictability.
- We know the unpredictability of the TRNG depends on some physical processes
 - Here Timing Phase Jitter in a free running ring oscillator

ES-TRNG Hardware Architecture

Source: Yang, B et.al (2018). ES-TRNG: A High-throughput, Low-area True Random Number Generator based on Edge Sampling. IACR TCHES

ES-TRNG FPGA Architecture

Modified from source: Yang, B et.al (2018). ES-TRNG: A High-throughput, Low-area True Random Number Generator based on Edge Sampling. IACR TCHES

Results:-Inferences from ES-TRNG Scheme

Implementation Details

Site Type	Used	Fixed	Available	Util%
Slice LUTs	9	0	20800	0.04
LUT as Logic	9	0	20800	0.04
LUT as Memory	0	0	9600	0.00
LUT as DRAM	0	0		
LUT as Shift Reg	0	0		
Slice Registers	5	0	41600	0.01
Register as Flip Flop	5	0	41600	0.01

Implementation done on Vivado using **Primitive FPGA fabrics** as the XIIinx synthesis tool at the RTL level was yielding optimised circuit even after using constraints.

Results:-Evaluation- NIST

NIST Statistical Test	Pass Rate	P Value	Result
Frequency	2/10	0.000000	FAIL
Block Frequency	10/10	0.122325	PASS
Cumulative Sums	2/10	0.000000	FAIL
Runs	3/10	0.000000	FAIL
Longest Run	7/10	0.534146	FAIL
Rank	10/10	0.122325	PASS
FFT	10/10	0.739918	PASS
Non Overlapping Template	8/10	0.017912	PASS
Overlapping Template	10/10	0.739918	PASS
Universal	-	-	-
Approximate Entropy		*	
Random Excursions	-		ē
Random Excursions Variant	-	2	2
Serial	10/10	0.534146	PASS
Linear Complexity	9/10	0.004301	PASS

- NIST SP800-22 as well as the AIS-20/31 tests were performed on approximately 6 million bits.
- Therefore, we could carry out the NIST test on 10 sequences each of size around 600,000 bits.
- NIST Pass Rate: at least 8/10.
- 100 million bit required to pass the failed tests.

Results:-Evaluation- AIS

AIS 20/31 Test	Result		
Procedure A			
T0	PASS	3	
T1	PASS		
T2	PASS		
T3	PASS		
T4	PASS		
T5	PASS		
Procedure B			
T6	PASS d = 0.004530 < 0.025 s = 0.001690 < 0.02		
T7	PASS s1 = 0.3025961 < 15.13 s2 = 0.044185 < 15.13		
Т8	PASS s = 8.108488 > 7.976		

 However, even AIS fails with larger data samples.

Gaussian Sampler

Sinha Roy, S., Vercauteren, F. and Verbauwhede, I.

Sinha Roy, S., Vercauteren, F., & Verbauwhede, I. (2014). High Precision Discrete Gaussian Sampling on FPGAs. *Selected Areas In Cryptography -- SAC 2013*, 383-401. doi:10.1007/978-3-662-43414-7 19

- Introduction and existing sampling methods
- Knuth Yao Algorithm Features
- Contribution of the Paper
- Mathematical Background
- Discrete Distribution Generating Graph
- Efficient Implementation of Knuth Yao Algorithm
- Hardware Architecture
- RNGs

Introduction and Existing Sampling Methods

- Challenges in Implementation of Discrete Gaussian Distribution
 - Large number of random bits requirement
 - Lesser statistical distance requirement
 - This requires high precision floating arithmetic or large precomputed tables.

Popular Methods

Rejection

- We generate points randomly and then accept those points that are inside the distribution and then plot a histogram to obtain the value.
- Slow for gaussian (High rejection rate)
- Many random bits required due to high rejection rate for sampled values near the tail

Inversion

- First generates a random probability(uniform)
 and then selects a sample value such that the
 cumulative distribution up to that sample point
 is just larger than the randomly generated
 probability.
- High Precision of random bits.
- Size of Comparator Circuit increases.

Mathematical Background

The continuous Gaussian distribution with variance $\sigma > 0$ and mean $c \in R$, with $E \in R$ as the random variable as x is given as:

$$Pr(E = x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-c)^2/2\sigma^2}$$

For the discrete case over z, with 0 mean and $\sigma > 0$ is given as:

$$Pr(E=z) = \frac{1}{S}e^{-z^2/2\sigma^2}$$
 where $S = 1 + 2\sum_{z=1}^{\infty} e^{-z^2/2\sigma^2}$

- Where S is a **normalisation factor** approximately equal to $\sigma(2\pi)^{0.5}$
- It is calculated here by summing the entire probability values to 1.

Sampling Method & Knuth Yao Algorithm-I

• It uses **random walk on Discrete Distribution Generating (DDG) graphs** to sample non-uniform distribution.

- Let Sample Space for a random variable X consists of n elements
 - 0< r < n-1
 - Let p_r be the probability value with respect to r
 - We can create a Pmat as follows
- Using this Pmat we can create a DDG.
 - DDG is a rooted binary tree
 - It has two types of nodes
 - Terminal Nodes
 - **■** Intermediate Nodes
- Property:- Number of terminal nodes in a DDG at a level say i, is equal to the Hamming Weight of the ith column in the probability matrix

Creating DDG- An Example

Modified from Source: Sinha Roy, S., Vercauteren, F., & Verbauwhede, I. (2014). High Precision Discrete Gaussian Sampling on FPGAs. Selected Areas In Cryptography -- SAC 2013, 383-401.

Efficient Implementation of Knuth Yao Algorithm-III

Pmat

Modified from Source: Sinha Roy, S., Vercauteren, F., & Verbauwhede, I. (2014). High Precision Discrete Gaussian Sampling on FPGAs. Selected Areas In Cryptography -- SAC 2013, 383-401.

Hardware Architecture-III

Modified from Source: Sinha Roy, S., Vercauteren, F., & Verbauwhede, I. (2014). High Precision Discrete Gaussian Sampling on FPGAs. Selected Areas In Cryptography -- SAC 2013, 383-401.

Knuth Yao Sampling-Results

s=6.3 c=0

Note: Number of samples recorded from 1 million iterations. [C++ Implementation] Randomness source:std::random_device.

Constant Time Knuth Yao Algorithm

- S.S. Roy, A.Karmakar et.al proposed two methods for constant time implementation and later optimised it in their successive work. Following are the three papers:
 - Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid Verbauwhede. Compact and side channel resistant discrete gaussian sampling. Cryptology ePrint Archive, Report 2014/591, 2014. https://eprint.iacr.org/2014/591.pdf.
 - A. Karmakar, S. S. Roy, O. Reparaz, F. Vercauteren and I. Verbauwhede, "Constant-Time Discrete Gaussian Sampling," in IEEE Transactions on Computers, vol. 67, no. 11, pp. 1561-1571, 1 Nov. 2018, doi: 10.1109/TC.2018.2814587.
 - Karmakar, Angshuman and Roy, Sujoy Sinha and Vercauteren, Frederik and Verbauwhede, Ingrid, "Pushing the Speed Limit of Constant-time Discrete Gaussian Sampling. A Case Study on the Falcon Signature Scheme," in DAC '19, Proceedings of the 56th Annual Design Automation Conference 2019, pp.88:1--88:6, doi:10.1145/3316781.3317887.

Compact and Side Channel Resistant Discrete Gaussian Sampling: I

- This method caches the first k columns of the probability matrix in a table with 2^k entries. Entries are either:
 - A sample value.
 - An intermediate position in the DDG tree.
- Sampling in two parts, described as following:
 - Secure Part: Generates a k bit random index followed by table lookup. Return if sample entry.
 - Non Secure part: If table entry is a position in the DDG tree, then a random walk initiates to find a sample.
 - The algorithm **leaks** the absolute values of the samples due to the difference in timing to find a sample.

Compact and Side Channel Resistant Discrete Gaussian Sampling: II

- **Shuffling Technique**: To prevent the leakage a second countermeasure proposed:
 - A random permutation of the leaked and non-leaked samples after the sampling to obfuscate the locations of the samples from the attacker.

Bottlenecks

- The memory requirement increases exponentially with an increase in the levels of security.
- Increase in the implementation area.

Constant Time Discrete Gaussian Sampling: I

 Observe a unique mapping between the output sample values and the input random bits of the sampling algorithm.

$$s_0 = f^0(r_0, r_1, \dots, r_{n-1})$$

$$s_1 = f^1(r_0, r_1, \dots, r_{n-1})$$

$$\vdots$$

$$s_{m-1} = f^{m-1}(r_0, r_1, \dots, r_{n-1})$$

r_0	r_1	r_2	r_3	s_1	s_0	r_0	r_1	r_2	r_3	s_1	s_0
0	0	0	0	0	1	1	0	0	0	1	1
0	0	0	1	0	1	1	0	0	1	1	1
0	0	1	0	0	1	1	0	1	0	1	0
0	0	1	1	0	1 1 1 1 0	1	0	1	1	1	0
0	1	0	0	0	0	1	1	0	0	0	0
0	1	0	1	0	0 0 0	1	1	0	1	0	0
0	1	1	0	0	0	1	1	1	0	1	0
0	1	1	1	0	0	1	1	1	1	0	1

• Express the output sample values as a Boolean function of the input random bits. The samples are encoded in binary. So, each function f above gives either 0 or 1.

Constant Time Discrete Gaussian Sampling: II

- During sampling, each of these Boolean functions are evaluated in **constant-time**.
- Samples in batches. This increases the throughput.
 - Using Bit-slicing
 - Efficient storage of random bit in registers.

Bottlenecks

- This method requires a larger program memory to store the formulae f.
- Since DDG is not uniform some of the random bits are wasted i.e we reach the terminal node without utilising every random bit.

Extracted a property from the fact that not all random bits(x) it required to attain the sample.

• These lists are created using the following property and then sorted based on value of k.

Theorem 1 All the random bit strings which generate samples are of the form $x^i(0/1)^j 01^k$, where $i, j, k \in \mathbb{Z}^*$, i + j + k + 1 = n and x is the don't care bits.

- For each list the boolean functions are created.
 - Constant time execution of if/else used to club the functions.
- Bottlenecks
 - Large Program memory to store boolean functions
 - Lesser modularity.

Gaussian Sampling over the Integers: Efficient, Generic, Constant-Time: I

Sample with any standard deviation and center.

- Uses Base Samplers which are Gaussian Samplers with small standard deviations.
 - Knuth Yao as base sampler gives best results.
- Scope for constant time as each sample takes same number of iterations.

Image Source: Slides from Michael Walter Presentation at Crypto 2017.

Gaussian Sampling over the Integers: Efficient, Generic, Constant-Time: II

Two main techniques:

Recursive Convolution $f(x_1, x_2) \sim \mathcal{D}_3$

Gaussian Rounding of Center

Image Source: Slides from Michael Walter Presentation at Crypto 2017.

Gaussian Sampling over the Integers: Efficient, Generic, Constant-Time: III

Rounding center using discrete gaussian sampling.

$$c = 0.0011011b_{k} \in \mathbb{Z}/2^{k}$$

$$\begin{vmatrix} x \leftarrow \mathcal{D}_{2\mathbb{Z},b_{k},s} \\ x \leftarrow (x+b_{k})/2^{k} \\ c \leftarrow c - x \end{vmatrix}$$

$$c = 0.0011001 \in \mathbb{Z}/2^{k-1}$$

Image Source: Slides from Michael Walter Presentation at Crypto 2017.

Gaussian Sampling over the Integers: Efficient, Generic, Constant-Time: IV

- Proposed
 Architecture of the Gaussian
 Sampler.
 - s is standard deviation.
 - c is the center.

Gaussian Sampling over the Integers: Efficient, Generic, Constant-Time: Results I

Note: 2 Knuth Yao Base Sampler used. s of Base Sampler 4.01.
Randomness source:std::random_device.
Number of samples recorded from 1 million iterations. [C++ Implementation]

Gaussian Sampling over the Integers: Efficient, Generic, Constant-Time: Results II

Fixed s, c varied.

$$s=16.3 c=10.0$$

Note: 2 Knuth Yao Base Sampler used. s of Base Sampler 4.01.

Randomness source:std::random_device.

Number of samples recorded from 1 million iterations. [C++ Implementation]

Ring Learning with Error (RLWE)

- The RLWE scheme is better than the older LWE as:
 - LWE is based on matrix operation
 - Inefficient.
 - Larger key size required.
- RLWE is the algebraic version of LWE.

Definition:

Consider a ring $R_q = Z_q[x]/f$ with $f(x) = x^n + 1$, where n is a power of 2 and the prime q is taken as $q \equiv 1 \mod 2^n$. The ring-LWE distribution on $R_q \times R_q$ consists of tuples (a, t) with $a \in R_q$ chosen uniformly random and $t = as + e \in R_q$, where $s \in R_q$ is a fixed secret element and e has small coefficients sampled from the discrete Gaussian X_q .

Ring Learning with Error (RLWE)

- The distribution X_{σ} may be seen as sampling n coefficients from a normal distribution over [-q/2, q/2[, with standard deviation σ , to construct a polynomial of R_{σ} .
- The key elements required for RLWE schemes:
 - Discrete Gaussian sampling for the generation of the error polynomials.
 - Polynomial arithmetic units.
 - Addition/Subtraction.
 - Multiplication
 - NTT better than FFT as only integers are used.[Costly]
 - Reduction Modulo f(x).
 - Division-and-round unit for computing homomorphic multiplications

Future Plan

- Planning to employ a parallelised implementation of the NTT-based polynomial multiplication in multiple FPGA (preferably in FPGA-cloud setting).
- Working on to incorporate the (Residue Number System) RNS with NTT for faster arithmetic processing.
- Get the Hardware/Software architecture of Gaussian Sampler proposed working.
- Extend the RLWE design for Encryption/Decryption Scheme of Fully Homomorphic Encryption.
- Modified compact design of ES-TRNG through manual LUT placement.

End of Presentation

Thank You!