

Sinais de controle do Neander para cada operação de transferência (micro-operação)

Transferência	Sinais de controle
$REM \leftarrow PC$	sel=0, carga REM
$RDM \leftarrow MEM(REM)$	Read
$PC \leftarrow PC + 1$	incrementa PC
$RI \leftarrow RDM$	carga RI
$REM \leftarrow RDM$	sel =1, carga REM
$RDM \leftarrow AC$	carga RDM
$MEM(REM) \leftarrow RDM$	Write
AC ← RDM; Atualiza N e Z	UAL(Y), carga AC, carga NZ
$AC \leftarrow AC + RDM$; Atualiza N e Z	UAL(ADD), carga AC, carga NZ
AC ← AC or RDM; Atualiza N e Z	UAL(OR), carga AC, carga NZ
AC ← AC and RDM; Atualiza N e Z	UAL(AND), carga AC, carga NZ
$AC \leftarrow not(AC)$; Atualiza N e Z	UAL(NOT), carga AC, carga NZ
$PC \leftarrow RDM$	carga PC
Parar o processamento	Halt

Sinais de controle para instruções do Neander

ciclo	STA	LDA	ADD	OR	AND	NOT
t0	sel=0,	sel=0,	sel=0,	sel=0,	sel=0,	sel=0,
	carga REM					
t1	Read,	Read,	Read,	Read,	Read,	Read,
	incrementa	incrementa	incrementa	incrementa	incrementa	incrementa
	PC	PC	PC	PC	PC	PC
t2	carga RI					
t3	sel=0,	sel=0,	sel=0,	sel=0,	sel=0,	UAL(NOT),
	carga REM	carga AC,				
						carga NZ,
						goto t0
t4	Read,	Read,	Read,	Read,	Read,	
	incrementa	incrementa	incrementa	incrementa	incrementa	
	PC	PC	PC	PC	PC	
t5	sel=1,	sel=1,	sel=1,	sel=1,	sel=1,	
	carga REM					
t6	carga RDM	Read	Read	Read	Read	
t7	Write,	UAL(Y),	UAL(ADD),	UAL(OR),	UAL(AND),	
	goto t0	carga AC,	carga AC,	carga AC,	carga AC,	
		carga NZ,	carga NZ,	carga NZ,	carga NZ,	
		goto t0	goto t0	goto t0	goto t0	

Sinais de controle para instruções do Neander (continuação)

Ciclo	JMP	JN, N=1	JN, N=0	JZ, Z=1	JZ, Z=0	NOP	HLT
t0	sel=0,						
	carga REM						
t1	Read,						
	incrementa						
	PC						
t2	carga RI						
t3	sel=0,	sel=0,	incrementa	sel=0,	incrementa	goto t0	Halt
	carga REM	carga REM	PC,	carga REM	PC,		
			goto t0		goto t0		
t4	Read	Read		Read			
t5	carga PC,	carga PC,		carga PC,			
	goto t0	goto t0		goto t0			
t6							
t7							

Expressões booleanas dos sinais de controle

```
carga REM = t0 + t3.(STA+LDA+ADD+OR+AND+JMP+JN.N+JZ.Z +
              t5.(STA+LDA+ADD+OR+AND)
incrementa PC = t1 + t4.(STA+LDA+ADD+OR+AND) + t3.(JN.N' + JZ.Z')
carga RI = t2
sel = t5.(STA+LDA+ADD+OR+AND)
carga RDM = t6.STA
Read = t1 + t4.(STA+LDA+ADD+OR+AND+JMP+JN.N+JZ.Z) +
              t6.(LDA+ADD+OR+AND)
Write = t7.STA
UAL(Y) = t7.LDA
UAL(ADD) = t7.ADD
UAL(OR) = t7.OR
UAL(AND) = t7.AND
UAL(NOT) = t3.NOT
carga AC = t7.(LDA+ADD+OR+AND) + t3.NOT
carga NZ = t7.(LDA+ADD+OR+AND) + t3.NOT = carga AC
carga PC = t5.(JMP+JN.N+JZ.Z)
goto t0 = t7.(STA+LDA+ADD+OR+AND) + t3.(NOP+NOT+JN.N'+JZ.Z') +
              t5.(JMP+JN.N+JZ.Z)
```

Circuito de temporização dos ciclos de UCP

(alternativa 1: usando um contador de 3 bits)

Circuito com contador

Diagrama de tempos com contador

Circuito de temporização dos ciclos de UCP

(alternativa 2: usando um registrador de deslocamento de 8 bits)

Circuito com registrador de deslocamento

Diagrama de tempos com registrador de deslocamento

Memória com "seleção linear"

REM	8 bits	16 bits	20 bits	24 bits	32 bits
Linhas	256	65.536	1.048.576	16.777.216	4.294.967.296

Memória com "seleção matricial"

REM	8 bits	16 bits	20 bits	24 bits	32 bits
Linhas	32	512	2.048	8.192	131.072

Organização de um "plano" de memória

CCCC LLLL	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	b000	b016	b032	b048	b064	b080	b096	b112	b128	b144	b160	b176	b192	b208	b224	b240
0001	b001	b017	b033	b049	b065	b081	b097	b113	b129	b145	b161	b177	b193	b209	b225	b241
0010	b002	b018	b034	b050	b066	b082	b098	b114	b130	b146	b162	b178	b184	b210	b226	b242
0011	b003	b019	b035	b051	b067	b083	b099	b115	b131	b147	b163	b179	b195	b211	b227	b243
0100	b004	b020	b036	b052	b068	b084	b100	b116	b132	b148	b164	b180	b196	b212	b228	b244
0101	b005	b021	b037	b053	b069	b085	b101	b117	b133	b149	b165	b181	b197	b213	b229	b245
0110	b006	b022	b038	b054	b 070	b086	b102	b118	b134	b150	b166	b182	b198	b214	b230	b246
0111	b007	b023	b039	b055	b071	b087	b103	b119	b135	b151	b167	b183	b199	b215	b231	b247
1000	b008	b024	b040	b056	b072	b088	b104	b120	b136	b152	b168	b184	b200	b216	b232	b248
1001	b009	b025	b041	b057	b073	b089	b105	b121	b137	b153	b169	b185	b201	b217	b233	b249
1010	b010	b026	b042	b058	b074	b090	b106	b122	b138	b154	b170	b186	b202	b218	b234	b250
1011	b011	b027	b043	b059	b075	b091	b107	b123	b139	b155	b171	b187	b203	b219	b235	b251
1100	b012	b028	b044	b060	b076	b092	b108	b124	b140	b156	b172	b188	b204	b220	b236	b252
1101	b013	b029	b045	b061	b077	b093	b109	b125	b141	b157	b173	b189	b205	b221	b237	b253
1110	b014	b030	b046	b062	b078	b094	b110	b126	b142	b158	b174	b190	b206	b222	b238	b254
1111	b015	b031	b047	b063	b079	b095	b111	b127	b143	b159	b175	b191	b207	b223	b239	b255

Decodificação do endereço contido no REM

Bits de uma palavra nos "planos" de memória

Célula de memória do Neander

Plano de memória construído com as células

"CI" de memória para o Neander (memória RAM de 256 bits x 1)

Nota histórica: o primeiro circuito integrado de memória RAM produzido em escala comercial foi o Intel 1103, em 1970, com 1 kbit x 1 (1024 bits).

Memória do Neander completa, com 8 CIs de 256 bits x 1

Módulo SIMM* de memória do Neander (sem bit de paridade)

Módulo SIMM* de memória do Neander (com bit de paridade)

Memória do Neander com 4 "bancos" (usando CIs de 64 bits x 1)

Contador de Programa do Neander (usando flip-flops tipo JK)

J	K	Q _{t+1}
0	0	Qt
0	1	0
1	0	1
1	1	Q _t '

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0
0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	0
0	0	0	0	0	1	0	1
0	0	0	0	0	1	1	0
0	0	0	0	0	1	1	1
0	0	0	0	1	0	0	0

Notação gráfica para indicar o tipo de resposta de flip-flops (FFs tipo RS no exemplo)

- (a) flip-flop com resposta à borda negativa do sinal de controle
- (b) flip-flop com resposta à borda positiva do sinal de controle
- (c) latch com resposta ao nível zero do sinal de controle
- (d) latch com resposta ao nível um do sinal de controle