The comparison summary is listed below,

Comparison of the finite element solutions u(0, y) with the series solution and the Ritz solution.

	Triangular elem.		Rectangu	lar elem.	Ritz	Series
y	8	32	4	16	solution	solution
0.00	0.3125	0.3013	0.3107	0.2984	0.3125	0.2947
0.25	0.2708*	0.2805	0.2759*	0.2824	0.2930	0.2789
0.50	0.2292	0.2292	0.2411	0.2322	0.2344	0.2293
0.75	0.1146*	0.1393	0.1205*	0.1414	0.1367	0.1397
1.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

^{*} Interpolated value

The results match well with the hand calculation solution. And the finite element solution obtained by 32 triangular elements is the most accurate when compared to the series solution.

1. With 8 triangular elements

input data and output:

```
*** ECHO OF THE INPUT DATA STARTS ***
Hw-7-1: Solution of the Poisson equation (mesh of triangles)
               ITYPE,IGRAD,ITEM,NEIGN
 0 1 0 0
 0 3 1 0
                     IELTYP,NPE,MESH,NPRNT
 2 2
                     NX, NY
 0.0 0.5 0.5
                     X0, DX(I)
 0.0 0.5 0.5
                       Y0, DY(I)
                    NSPV
 3161718191
                      ISPV(I,J)
 0.0 0.0 0.0 0.0 0.0
                       VSPV(I)
                    NSSV
 1.0 0.0 0.0
                       A10, A1X, A1Y
                       A20, A2X, A2Y
 1.0 0.0 0.0
 0.0
                     A00
                    ICONV
 0
 1.0 0.0 0.0
                       FO, FX, FY
  **** ECHO OF THE INPUT DATA ENDS ****
Hw-7-1: Solution of the Poisson equation (mesh of triangles)
     OUTPUT from program *** FEM2D *** by J. N. REDDY
       ANALYSIS OF A POISSON/LAPLACE EQUATION
  COEFFICIENTS OF THE DIFFERENTIAL EQUATION:
   Coefficient, A10 ..... = 0.1000E+01
   Coefficient, A1X ..... = 0.0000E+00
   Coefficient. A1Y ..... = 0.0000E+00
   Coefficient, A20 ..... = 0.1000E+01
   Coefficient, A2X ..... = 0.0000E+00
   Coefficient, A2Y ..... 0.0000E+00
   Coefficient, A00 ..... = 0.0000E+00
  CONTINUOUS SOURCE COEFFICIENTS:
   Coefficient, F0 ..... = 0.1000E+01
   Coefficient, FX ..... = 0.0000E+00
```

```
Coefficient, FY ..... = 0.0000E+00
  ***** A STEADY-STATE PROBLEM is analyzed ******
  *** A mesh of TRIANGLES is chosen by user ***
FINITE ELEMENT MESH INFORMATION:
  Element type: 0 = Triangle; >0 = Quad.)..= 0
  Number of nodes per element, NPE ...... 3
  No. of primary deg. of freedom/node, NDF = 1
  Number of elements in the mesh, NEM .....= 8
  Number of nodes in the mesh, NNM ......= 9
  Number of equations to be solved, NEQ ... = 9
  Half bandwidth of the matrix GLK, NHBW ..= 5
  Mesh subdivisions, NX and NY ..... 2 2
  No. of specified PRIMARY variables, NSPV = 5
Node x-coord. y-coord. Speci. primary & secondary variables
                (0, unspecified; >0, specified)
                 Primary DOF Secondary DOF
 1 0.0000E+00 0.0000E+00
                                      n
  2 0.5000E+00 0.0000E+00
                               0
                                      0
 3 0.1000E+01 0.0000E+00
                               1
                                      0
 4 0.0000E+00 0.5000E+00
                               0
                                      0
  5 0.5000E+00 0.5000E+00
                               0
                                      0
 6 0.1000E+01 0.5000E+00
                               1
 7 0.0000E+00 0.1000E+01
                               1
                                      0
 8 0.5000E+00 0.1000E+01
                                      0
                               1
 9 0.1000E+01 0.1000E+01
NUMERICAL INTEGRATION DATA:
  Full Integration polynomial degree, IPDF = 3
  Number of full integration points, NIPF = 4
  Reduced Integration polynomial deg.,IPDR = 1
  No. of reduced integration points, NIPR = 1
  Integ. poly. deg. for stress comp., ISTR = 1
  No. of integ. pts. for stress comp., NSTR = 1
SOLUTION:
Node x-coord. y-coord. Primary DOF
 1 0.00000E+00 0.00000E+00 0.31250E+00
 2 0.50000E+00 0.00000E+00 0.22917E+00
 3 0.10000E+01 0.00000E+00 0.00000E+00
 4 0.00000E+00 0.50000E+00 0.22917E+00
 5 0.50000E+00 0.50000E+00 0.17708E+00
 6 0.10000E+01 0.50000E+00 0.00000E+00
 7 0.00000E+00 0.10000E+01 0.00000E+00
 8 0.50000E+00 0.10000E+01 0.00000E+00
 9 0.10000E+01 0.10000E+01 0.00000E+00
The orientation of gradient vector is measured from the positive x-axis
x-coord. y-coord. -a11(du/dx) -a22(du/dy) Flux Mgntd Orientation
0.3333E+00 0.1667E+00 0.1667E+00 0.1042E+00 0.1965E+00
                                                        32.01
57.99
0.8333E+00 0.1667E+00 0.4583E+00 0.0000E+00 0.4583E+00
                                                         0.00
16.39
```

```
0.3333E+00 0.6667E+00 0.1042E+00 0.3542E+00 0.3692E+00 73.61
0.1667E+00 0.8333E+00 0.0000E+00 0.4583E+00 90.00
0.8333E+00 0.6667E+00 0.3542E+00 0.0000E+00 0.3542E+00 0.00
0.6667E+00 0.8333E+00 0.0000E+00 0.3542E+00 90.00

Stop - Program terminated.
```

2. With 4 rectangular elements

Input data and output:

```
*** ECHO OF THE INPUT DATA STARTS ***
Hw-7-2: Solution of the Poisson equation (mesh of rectangles)
 0 1 0 0
                     ITYPE,IGRAD,ITEM,NEIGN
                      IELTYP,NPE,MESH,NPRNT
 1 4 1 0
 2 2
                     NX, NY
 0.0 0.5 0.5
                        X0, DX(I)
 0.0 0.5 0.5
                        Y0, DY(I)
                     NSPV
 3161718191
                        ISPV(I,J)
 0.0 0.0 0.0 0.0 0.0
                        VSPV(I)
                     NSSV
 1.0 0.0 0.0
                        A10, A1X, A1Y
 1.0 0.0 0.0
                        A20, A2X, A2Y
 0.0
                      A00
                     ICONV
 0
 1.0 0.0 0.0
                        FO, FX, FY
  **** ECHO OF THE INPUT DATA ENDS ****
Hw-7-2: Solution of the Poisson equation (mesh of rectangles)
     OUTPUT from program *** FEM2D *** by J. N. REDDY
       ANALYSIS OF A POISSON/LAPLACE EQUATION
  COEFFICIENTS OF THE DIFFERENTIAL EQUATION:
   Coefficient, A10 ..... = 0.1000E+01
   Coefficient, A1X ..... = 0.0000E+00
   Coefficient, A1Y ..... = 0.0000E+00
   Coefficient, A20 ..... = 0.1000E+01
   Coefficient, A2X ..... = 0.0000E+00
   Coefficient, A2Y ..... = 0.0000E+00
   Coefficient, A00 ..... = 0.0000E+00
  CONTINUOUS SOURCE COEFFICIENTS:
   Coefficient, F0 ..... = 0.1000E+01
   Coefficient, FX ..... = 0.0000E+00
   Coefficient, FY ..... 0.0000E+00
   ***** A STEADY-STATE PROBLEM is analyzed ******
   *** A mesh of QUADRILATERALS is chosen by user ***
  FINITE ELEMENT MESH INFORMATION:
   Element type: 0 = Triangle; >0 = Quad.)..= 1
   Number of nodes per element, NPE ...... 4
   No. of primary deg. of freedom/node, NDF = 1
   Number of elements in the mesh, NEM .... = 4
   Number of nodes in the mesh, NNM ......= 9
   Number of equations to be solved, NEQ ... = 9
   Half bandwidth of the matrix GLK, NHBW ..= 5
```

```
Mesh subdivisions, NX and NY ..... 2 2
   No. of specified PRIMARY variables, NSPV = 5
  Node x-coord. y-coord. Speci. primary & secondary variables
                  (0, unspecified; >0, specified)
                   Primary DOF Secondary DOF
   1 0.0000E+00 0.0000E+00
                                 0
                                         0
   2 0.5000E+00 0.0000E+00
                                 0
                                         0
   3 0.1000E+01 0.0000E+00
                                 1
                                         0
   4 0.0000E+00 0.5000E+00
                                 n
                                         O
   5 0.5000E+00 0.5000E+00
                                 0
                                         0
   6 0.1000E+01 0.5000E+00
                                 1
                                         0
  7 0.0000E+00 0.1000E+01
                                         0
                                 1
   8 0.5000E+00 0.1000E+01
                                 1
                                         0
   9 0.1000E+01 0.1000E+01
                                         0
  NUMERICAL INTEGRATION DATA:
   Full quadrature (IPDF x IPDF) rule, IPDF = 2
   Reduced quadrature (IPDR x IPDR), IPDR = 1
   Quadrature rule used in postproc., ISTR = 1
  SOLUTION:
  Node x-coord. y-coord. Primary DOF
   1 0.00000E+00 0.00000E+00 0.31071E+00
   2 0.50000E+00 0.00000E+00 0.24107E+00
   3 0.10000E+01 0.00000E+00 0.00000E+00
   4 0.00000E+00 0.50000E+00 0.24107E+00
   5 0.50000E+00 0.50000E+00 0.19286E+00
   6 0.10000E+01 0.50000E+00 0.00000E+00
   7 0.00000E+00 0.10000E+01 0.00000E+00
   8 0.50000E+00 0.10000E+01 0.00000E+00
   9 0.10000E+01 0.10000E+01 0.00000E+00
 The orientation of gradient vector is measured from the positive x-axis
 x-coord. y-coord. -a11(du/dx) -a22(du/dy) Flux Mgntd Orientation
 0.2500E+00 0.2500E+00 0.1179E+00 0.1179E+00 0.1667E+00
 0.7500E+00 0.2500E+00 0.4339E+00 0.4821E-01 0.4366E+00
 0.2500E+00 0.7500E+00 0.4821E-01 0.4339E+00 0.4366E+00 83.66
 0.7500E+00 0.7500E+00 0.1929E+00 0.1929E+00 0.2727E+00 45.00
Stop - Program terminated.
```

3. With 32 triangular elements

Input data and output:

```
*** ECHO OF THE INPUT DATA STARTS ***

Hw-7-3: Solution of the Poisson equation (mesh of 32 triangles)

0 1 0 0 ITYPE,IGRAD,ITEM,NEIGN

0 3 1 0 IELTYP,NPE,MESH,NPRNT

4 4 NX, NY

0.0 0.25 0.25 0.25 0.25 X0, DX(I)

0.0 0.25 0.25 0.25 0.25 Y0, DY(I)

9 NSPV
```

```
5 1 10 1 15 1 20 1 21 1 22 1 23 1 24 1 25 1
                                              ISPV(I,J)
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
                                         VSPV(I)
                     NSSV
 1.0 0.0 0.0
                        A10, A1X, A1Y
 1.0 0.0 0.0
                        A20, A2X, A2Y
 0.0
                      A00
                     ICONV
 1.0 0.0 0.0
                        FO. FX. FY
  **** ECHO OF THE INPUT DATA ENDS ****
Hw-7-3: Solution of the Poisson equation (mesh of 32 triangles)
     OUTPUT from program *** FEM2D *** by J. N. REDDY
       ANALYSIS OF A POISSON/LAPLACE EQUATION
  COEFFICIENTS OF THE DIFFERENTIAL EQUATION:
   Coefficient, A10 ..... = 0.1000E+01
   Coefficient, A1X ..... = 0.0000E+00
   Coefficient, A1Y ..... = 0.0000E+00
   Coefficient, A20 ..... = 0.1000E+01
   Coefficient, A2X ..... = 0.0000E+00
   Coefficient, A2Y ..... 0.0000E+00
   Coefficient, A00 ..... 0.0000E+00
  CONTINUOUS SOURCE COEFFICIENTS:
   Coefficient, F0 ..... = 0.1000E+01
   Coefficient, FX ..... = 0.0000E+00
   Coefficient, FY ..... = 0.0000E+00
   ***** A STEADY-STATE PROBLEM is analyzed ******
   *** A mesh of TRIANGLES is chosen by user ***
  FINITE ELEMENT MESH INFORMATION:
   Element type: 0 = Triangle; >0 = Quad.)..= 0
   Number of nodes per element, NPE ...... 3
   No. of primary deg. of freedom/node, NDF = 1
   Number of elements in the mesh, NEM ..... 32
   Number of nodes in the mesh, NNM ......= 25
   Number of equations to be solved, NEQ ... = 25
   Half bandwidth of the matrix GLK, NHBW ..= 7
   Mesh subdivisions, NX and NY ..... 4 4
   No. of specified PRIMARY variables, NSPV = 9
  Node x-coord. y-coord. Speci. primary & secondary variables
                  (0, unspecified; >0, specified)
                   Primary DOF Secondary DOF
   1 0.0000E+00 0.0000E+00
                                 O
                                         O
   2 0.2500E+00 0.0000E+00
                                 0
                                         0
   3 0.5000E+00 0.0000E+00
                                 0
                                         0
   4 0.7500E+00 0.0000E+00
                                 0
                                         O
   5 0.1000E+01 0.0000E+00
                                 1
                                         O
   6 0.0000E+00 0.2500E+00
   7 0.2500E+00 0.2500E+00
                                 n
                                         0
                                 0
                                         0
   8 0.5000E+00 0.2500E+00
   9 0.7500E+00 0.2500E+00
                                 0
                                         0
```

10 0.1000E+01 0.2500E+00

1

0

11 0.0000E+00 0.5000E+00 0 0 12 0.2500E+00 0.5000E+00 0 0 13 0.5000E+00 0.5000E+00 0 0 14 0.7500E+00 0.5000E+00 0 0 15 0.1000E+01 0.5000E+00 1 0 16 0.0000E+00 0.7500E+00 0 0 17 0.2500E+00 0.7500E+00 0 0 18 0.5000E+00 0.7500E+00 0 0 19 0.7500E+00 0.7500E+00 1 0 20 0.1000E+01 0.7500E+00 1 0 21 0.0000E+01 0.7500E+01 1 0 22 0.2500E+00 0.1000E+01 1 0 23 0.5000E+00 0.1000E+01 1 0 24 0.7500E+00 0.1000E+01 1 0 25 0.1000E+01 0.1000E+01 1 0 25 0.1000E+01 0.1000E+01 1 0 25 0.1000E+01 0.1000E+01 1 0					
13 0.5000E+00 0.5000E+00 0 0 14 0.7500E+00 0.5000E+00 1 0 15 0.1000E+01 0.5000E+00 1 0 16 0.0000E+00 0.7500E+00 0 0 17 0.2500E+00 0.7500E+00 0 0 18 0.5000E+00 0.7500E+00 0 0 19 0.7500E+00 0.7500E+00 0 0 20 0.1000E+01 0.7500E+00 1 0 21 0.0000E+00 0.1000E+01 1 0 22 0.2500E+00 0.1000E+01 1 0 23 0.5000E+00 0.1000E+01 1 0 24 0.7500E+00 0.1000E+01 1 0	11 0.0000E+00	0.5000E+00	0	0	
14 0.7500E+00 0.5000E+00 0 0 15 0.1000E+01 0.5000E+00 1 0 16 0.0000E+00 0.7500E+00 0 0 17 0.2500E+00 0.7500E+00 0 0 18 0.5000E+00 0.7500E+00 0 0 19 0.7500E+00 0.7500E+00 0 0 20 0.1000E+01 0.7500E+00 1 0 21 0.0000E+00 0.1000E+01 1 0 22 0.2500E+00 0.1000E+01 1 0 23 0.5000E+00 0.1000E+01 1 0 24 0.7500E+00 0.1000E+01 1 0	12 0.2500E+00	0.5000E+00	0	0	
15 0.1000E+01 0.5000E+00 1 0 16 0.0000E+00 0.7500E+00 0 0 17 0.2500E+00 0.7500E+00 0 0 18 0.5000E+00 0.7500E+00 0 0 19 0.7500E+00 0.7500E+00 0 0 20 0.1000E+01 0.7500E+00 1 0 21 0.0000E+00 0.1000E+01 1 0 22 0.2500E+00 0.1000E+01 1 0 23 0.5000E+00 0.1000E+01 1 0 24 0.7500E+00 0.1000E+01 1 0	13 0.5000E+00	0.5000E+00	0	0	
16 0.0000E+00 0.7500E+00 0 0 17 0.2500E+00 0.7500E+00 0 0 18 0.5000E+00 0.7500E+00 0 0 19 0.7500E+00 0.7500E+00 0 0 20 0.1000E+01 0.7500E+00 1 0 21 0.0000E+00 0.1000E+01 1 0 22 0.2500E+00 0.1000E+01 1 0 23 0.5000E+00 0.1000E+01 1 0 24 0.7500E+00 0.1000E+01 1 0	14 0.7500E+00	0.5000E+00	0	0	
17 0.2500E+00 0.7500E+00 0 0 18 0.5000E+00 0.7500E+00 0 0 19 0.7500E+00 0.7500E+00 0 20 0.1000E+01 0.7500E+00 1 0 21 0.0000E+00 0.1000E+01 1 0 22 0.2500E+00 0.1000E+01 1 0 23 0.5000E+00 0.1000E+01 1 0 24 0.7500E+00 0.1000E+01 1 0	15 0.1000E+01	0.5000E+00	1	0	
18 0.5000E+00 0.7500E+00 0 0 19 0.7500E+00 0.7500E+00 0 0 20 0.1000E+01 0.7500E+00 1 0 21 0.0000E+00 0.1000E+01 1 0 22 0.2500E+00 0.1000E+01 1 0 23 0.5000E+00 0.1000E+01 1 0 24 0.7500E+00 0.1000E+01 1 0	16 0.0000E+00	0.7500E+00	0	0	
19 0.7500E+00 0.7500E+00 0 0 20 0.1000E+01 0.7500E+00 1 0 21 0.0000E+00 0.1000E+01 1 0 22 0.2500E+00 0.1000E+01 1 0 23 0.5000E+00 0.1000E+01 1 0 24 0.7500E+00 0.1000E+01 1 0	17 0.2500E+00	0.7500E+00	0	0	
20 0.1000E+01 0.7500E+00 1 0 21 0.0000E+00 0.1000E+01 1 0 22 0.2500E+00 0.1000E+01 1 0 23 0.5000E+00 0.1000E+01 1 0 24 0.7500E+00 0.1000E+01 1 0	18 0.5000E+00	0.7500E+00	0	0	
21 0.0000E+00 0.1000E+01 1 0 22 0.2500E+00 0.1000E+01 1 0 23 0.5000E+00 0.1000E+01 1 0 24 0.7500E+00 0.1000E+01 1 0	19 0.7500E+00	0.7500E+00	0	0	
22 0.2500E+00 0.1000E+01 1 0 23 0.5000E+00 0.1000E+01 1 0 24 0.7500E+00 0.1000E+01 1 0	20 0.1000E+01	0.7500E+00	1	0	
23 0.5000E+00 0.1000E+01 1 0 24 0.7500E+00 0.1000E+01 1 0	21 0.0000E+00	0.1000E+01	1	0	
24 0.7500E+00 0.1000E+01 1 0	22 0.2500E+00	0.1000E+01	1	0	
	23 0.5000E+00	0.1000E+01	1	0	
25 0 1000F+01 0 1000F+01 1 0	24 0.7500E+00	0.1000E+01	1	0	
25 0.10002.01 0.10002.01	25 0.1000E+01	0.1000E+01	1	0	
25 0.10001.01 0.10001.01			1	-	

NUMERICAL INTEGRATION DATA:

Full Integration polynomial degree, IPDF = 3
Number of full integration points, NIPF = 4
Reduced Integration polynomial deg.,IPDR = 1
No. of reduced integration points, NIPR = 1
Integ. poly. deg. for stress comp., ISTR = 1
No. of integ. pts. for stress comp.,NSTR = 1

SOLUTION:

```
Node x-coord. y-coord. Primary DOF
1 0.00000E+00 0.00000E+00 0.30132E+00
2 0.25000E+00 0.00000E+00 0.28048E+00
3 0.50000E+00 0.00000E+00 0.22917E+00
4 0.75000E+00 0.00000E+00 0.13925E+00
5 0.10000E+01 0.00000E+00 0.00000E+00
6 0.00000E+00 0.25000E+00 0.28048E+00
7 0.25000E+00 0.25000E+00 0.26448E+00
8 0.50000E+00 0.25000E+00 0.21722E+00
9 0.75000E+00 0.25000E+00 0.13266E+00
11 0.00000E+00 0.50000E+00 0.22917E+00
12  0.25000E+00  0.50000E+00  0.21722E+00
13  0.50000E+00  0.50000E+00  0.18007E+00
14 0.75000E+00 0.50000E+00 0.11167E+00
15  0.10000E+01  0.50000E+00  0.00000E+00
16  0.00000E+00  0.75000E+00  0.13925E+00
17  0.25000E+00  0.75000E+00  0.13266E+00
18  0.50000E+00  0.75000E+00  0.11167E+00
19 0.75000E+00 0.75000E+00 0.71461E-01
20 0.10000E+01 0.75000E+00 0.00000E+00
21 0.00000E+00 0.10000E+01 0.00000E+00
22 0.25000E+00 0.10000E+01 0.00000E+00
23  0.50000E+00  0.10000E+01  0.00000E+00
24 0.75000E+00 0.10000E+01 0.00000E+00
25  0.10000E+01  0.10000E+01  0.00000E+00
```

The orientation of gradient vector is measured from the positive x-axis

x-coord. y-coord. -a11(du/dx) -a22(du/dy) Flux Mgntd Orientation

0.1667E+00 0.8333E-01 0.8333E-01 0.6403E-01 0.1051E+00 37.54 0.8333E-01 0.1667E+00 0.6403E-01 0.8333E-01 0.1051E+00 52.46

```
0.3333E+00 0.1667E+00 0.1890E+00 0.6403E-01 0.1996E+00 18.71
0.5833E+00 0.1667E+00 0.3382E+00 0.4779E-01 0.3416E+00 8.04
0.00
0.8333E+00 0.1667E+00 0.5306E+00 0.2635E-01 0.5313E+00
                                    2.84
0.1667E+00 0.3333E+00 0.6403E-01 0.1890E+00 0.1996E+00 71.29
0.4167E+00 0.3333E+00 0.1890E+00 0.1486E+00 0.2404E+00 38.17
0.3333E+00 0.4167E+00 0.1486E+00 0.1890E+00 0.2404E+00 51.83
0.6667E+00 0.3333E+00 0.3382E+00 0.8395E-01 0.3485E+00 13.94
0.9167E+00 0.3333E+00 0.5306E+00 0.0000E+00 0.5306E+00 0.00
0.8333F+00 0.4167F+00 0.4467F+00 0.8395F-01 0.4545F+00 10.64
0.1667E+00 0.5833E+00 0.4779E-01 0.3382E+00 0.3416E+00 81.96
0.4167E+00 0.5833E+00 0.1486E+00 0.2736E+00 0.3113E+00 61.49
0.3333E+00 0.6667E+00 0.8395E-01 0.3382E+00 0.3485E+00 76.06
0.5833E+00 0.6667E+00 0.1608E+00 0.2736E+00 0.3174E+00 59.55
0.9167E+00 0.5833E+00 0.4467E+00 0.0000E+00 0.4467E+00 0.00
0.8333E+00 0.6667E+00 0.2858E+00 0.1608E+00 0.3280E+00 29.37
0.4167E+00 0.8333E+00 0.8395E-01 0.4467E+00 0.4545E+00 79.36
0.6667E+00 0.8333E+00 0.1608E+00 0.2858E+00 0.3280E+00 60.63
0.5833E+00 0.9167E+00 0.0000E+00 0.4467E+00 0.4467E+00 90.00
0.8333E+00 0.9167E+00 0.0000E+00 0.2858E+00 0.2858E+00 90.00
Stop - Program terminated.
```

4. With 16 rectangular elements

Input data and output:

```
*** ECHO OF THE INPUT DATA STARTS ***
Hw-7-3: Solution of the Poisson equation (mesh of 16 rectangles)
 0 1 0 0
                     ITYPE,IGRAD,ITEM,NEIGN
 1 4 1 0
                      IELTYP,NPE,MESH,NPRNT
 4 4
                     NX, NY
 0.0 0.25 0.25 0.25 0.25
                                   X0, DX(I)
 0.0 0.25 0.25 0.25 0.25
                                  Y0, DY(I)
                    NSPV
 5 1 10 1 15 1 20 1 21 1 22 1 23 1 24 1 25 1
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 VSPV(I)
 0
                     NSSV
 1.0 0.0 0.0
                        A10, A1X, A1Y
 1.0 0.0 0.0
                        A20, A2X, A2Y
 0.0
                      A00
                     ICONV
 1.0 0.0 0.0
                        FO, FX, FY
  **** ECHO OF THE INPUT DATA ENDS ****
Hw-7-3: Solution of the Poisson equation (mesh of 16 rectangles)
     OUTPUT from program *** FEM2D *** by J. N. REDDY
       ANALYSIS OF A POISSON/LAPLACE EQUATION
  COEFFICIENTS OF THE DIFFERENTIAL EQUATION:
```

C ((' - ' A40	0.4000	r. 04		
Coefficient, A10				
Coefficient, A1X				
Coefficient, A1Y				
Coefficient, A2V				
Coefficient, A2X				
Coefficient, A2Y				
Coefficient, A00	.= 0.0000	E+00		
CONTINUOUS SOURCE COEFFICI	ENTS:			
Coefficient, F0				
Coefficient, FX				
Coefficient, FY	= 0.0000E	+00		
***** A STEADY-STATE PRO				
*** A mesh of QUADRILATERA	LS is chose	en by use	er ***	
FINITE ELEMENT MESH INFORM	ATION:			
Element type: 0 = Triangle; >0				
Number of nodes per element,	NPE	.= 4		
No. of primary deg. of freedom				
Number of elements in the me	sh, NEM .	= 16		
Number of nodes in the mesh,	NNM	= 25		
Number of equations to be sol	ved, NEQ	= 25		
Half bandwidth of the matrix G	ILK, NHBW	/= 7		
Mesh subdivisions, NX and NY	=	4 4		
No. of specified PRIMARY varia	bles, NSP	V = 9		
Node x-coord. y-coord. Spec	i. primary	& secon	dary variables	
(0, unspecified	d; >0, spec	ified)	dary variables	
	d; >0, spec	ified)	dary variables	
(0, unspecified	d; >0, spec	ified)	dary variables	
(0, unspecified	d; >0, spec	ified)	dary variables	
(0, unspecified Primary DOF	d; >0, spec Seconda	cified) ry DOF	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00	d; >0, spec Seconda	cified) ry DOF 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00	d; >0, spec Seconda 0 0	cified) ry DOF 0 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00	0 0 0	ory DOF 0 0 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00	0 0 0 0	ory DOF 0 0 0 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00	0 0 0 0 0	cified) ry DOF 0 0 0 0 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00	0 0 0 0 0 1	0 0 0 0 0 0 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00	0 0 0 0 0 1 0	0 0 0 0 0 0 0 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 8 0.5000E+00 0.2500E+00	0 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 8 0.5000E+00 0.2500E+00 9 0.7500E+00 0.2500E+00	0 0 0 0 0 1 0 0 0	ory DOF 0 0 0 0 0 0 0 0 0 0 0 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 8 0.5000E+00 0.2500E+00 9 0.7500E+00 0.2500E+00 10 0.1000E+01 0.2500E+00	0 0 0 0 0 0 1 0 0 0 0	ory DOF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 8 0.5000E+00 0.2500E+00 9 0.7500E+00 0.2500E+00 10 0.1000E+01 0.2500E+00 11 0.0000E+00 0.5000E+00	0 0 0 0 0 0 1 0 0 0 0 0	ory DOF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 8 0.5000E+00 0.2500E+00 9 0.7500E+00 0.2500E+00 10 0.1000E+01 0.2500E+00 11 0.0000E+00 0.5000E+00 12 0.2500E+00 0.5000E+00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ory DOF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 8 0.5000E+00 0.2500E+00 9 0.7500E+00 0.2500E+00 10 0.1000E+01 0.2500E+00 11 0.0000E+00 0.5000E+00 12 0.2500E+00 0.5000E+00 13 0.5000E+00 0.5000E+00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ory DOF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 8 0.5000E+00 0.2500E+00 9 0.7500E+00 0.2500E+00 10 0.1000E+01 0.2500E+00 11 0.0000E+00 0.5000E+00 12 0.2500E+00 0.5000E+00 13 0.5000E+00 0.5000E+00 14 0.7500E+00 0.5000E+00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ory DOF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 9 0.7500E+00 0.2500E+00 10 0.1000E+01 0.2500E+00 11 0.0000E+01 0.2500E+00 12 0.2500E+00 0.5000E+00 13 0.5000E+00 0.5000E+00 14 0.7500E+00 0.5000E+00 15 0.1000E+01 0.5000E+00	0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	ory DOF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 9 0.7500E+00 0.2500E+00 10 0.1000E+01 0.2500E+00 11 0.000E+01 0.2500E+00 12 0.2500E+00 0.5000E+00 13 0.5000E+00 0.5000E+00 14 0.7500E+00 0.5000E+00 15 0.1000E+01 0.5000E+00 16 0.0000E+00 0.7500E+00	0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	ory DOF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 9 0.7500E+00 0.2500E+00 10 0.1000E+01 0.2500E+00 11 0.000E+01 0.2500E+00 12 0.2500E+00 0.5000E+00 13 0.5000E+00 0.5000E+00 14 0.7500E+00 0.5000E+00 15 0.1000E+01 0.5000E+00 16 0.000E+01 0.5000E+00 17 0.2500E+00 0.7500E+00	0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	ory DOF O O O O O O O O O O O O	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 9 0.7500E+00 0.2500E+00 10 0.1000E+01 0.2500E+00 11 0.000E+01 0.2500E+00 12 0.2500E+00 0.5000E+00 13 0.5000E+00 0.5000E+00 14 0.7500E+00 0.5000E+00 15 0.1000E+01 0.5000E+00 16 0.000E+01 0.5000E+00 17 0.2500E+00 0.7500E+00 18 0.5000E+00 0.7500E+00	0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	ory DOF O O O O O O O O O O O O	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 9 0.7500E+00 0.2500E+00 10 0.1000E+01 0.2500E+00 11 0.000E+01 0.2500E+00 12 0.2500E+00 0.5000E+00 13 0.5000E+00 0.5000E+00 14 0.7500E+00 0.5000E+00 15 0.1000E+01 0.5000E+00 16 0.000E+01 0.5000E+00 17 0.2500E+00 0.7500E+00 18 0.5000E+00 0.7500E+00 19 0.7500E+00 0.7500E+00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ory DOF O O O O O O O O O O O O	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 9 0.7500E+00 0.2500E+00 10 0.1000E+01 0.2500E+00 11 0.000E+01 0.2500E+00 12 0.2500E+00 0.5000E+00 13 0.5000E+00 0.5000E+00 14 0.7500E+00 0.5000E+00 15 0.1000E+01 0.5000E+00 16 0.000E+00 0.7500E+00 17 0.2500E+00 0.7500E+00 18 0.5000E+00 0.7500E+00 19 0.7500E+00 0.7500E+00 20 0.1000E+01 0.7500E+00	0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	ory DOF O O O O O O O O O O O O	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 9 0.7500E+00 0.2500E+00 10 0.1000E+01 0.2500E+00 11 0.0000E+00 0.5000E+00 12 0.2500E+00 0.5000E+00 13 0.5000E+00 0.5000E+00 14 0.7500E+00 0.5000E+00 15 0.1000E+01 0.5000E+00 16 0.0000E+00 0.7500E+00 17 0.2500E+00 0.7500E+00 18 0.5000E+00 0.7500E+00 19 0.7500E+00 0.7500E+00 20 0.1000E+01 0.7500E+00 21 0.000E+01 0.7500E+00 22 0.2500E+00 0.1000E+01	0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ory DOF O O O O O O O O O O O O	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 9 0.7500E+00 0.2500E+00 10 0.1000E+01 0.2500E+00 11 0.0000E+00 0.5000E+00 12 0.2500E+00 0.5000E+00 13 0.5000E+00 0.5000E+00 14 0.7500E+00 0.5000E+00 15 0.1000E+01 0.5000E+00 16 0.0000E+00 0.7500E+00 17 0.2500E+00 0.7500E+00 18 0.5000E+00 0.7500E+00 19 0.7500E+00 0.7500E+00 20 0.1000E+01 0.7500E+00 21 0.000E+01 0.7500E+00	0; >0, specific Secondaria	ory DOF O O O O O O O O O O O O	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 9 0.7500E+00 0.2500E+00 10 0.1000E+01 0.2500E+00 11 0.0000E+00 0.5000E+00 12 0.2500E+00 0.5000E+00 13 0.5000E+00 0.5000E+00 14 0.7500E+00 0.5000E+00 15 0.1000E+01 0.5000E+00 16 0.0000E+00 0.7500E+00 17 0.2500E+00 0.7500E+00 18 0.5000E+00 0.7500E+00 19 0.7500E+00 0.7500E+00 20 0.1000E+01 0.7500E+00 21 0.000E+01 0.7500E+00 22 0.2500E+00 0.1000E+01 23 0.5000E+00 0.1000E+01	0; >0, specific Secondaria 0	ory DOF O O O O O O O O O O O O	dary variables	
(0, unspecified Primary DOF 1 0.0000E+00 0.0000E+00 2 0.2500E+00 0.0000E+00 3 0.5000E+00 0.0000E+00 4 0.7500E+00 0.0000E+00 5 0.1000E+01 0.0000E+00 6 0.0000E+00 0.2500E+00 7 0.2500E+00 0.2500E+00 9 0.7500E+00 0.2500E+00 10 0.1000E+01 0.2500E+00 11 0.0000E+00 0.5000E+00 12 0.2500E+00 0.5000E+00 13 0.5000E+00 0.5000E+00 14 0.7500E+00 0.5000E+00 15 0.1000E+01 0.5000E+00 16 0.0000E+00 0.7500E+00 17 0.2500E+00 0.7500E+00 18 0.5000E+00 0.7500E+00 19 0.7500E+00 0.7500E+00 20 0.1000E+01 0.7500E+00 21 0.000E+01 0.7500E+00 22 0.2500E+00 0.1000E+01 23 0.5000E+00 0.1000E+01 24 0.7500E+00 0.1000E+01 24 0.7500E+00 0.1000E+01	0; >0, specific Secondaria 0	ory DOF O O O O O O O O O O O O	dary variables	

NUMERICAL INTEGRATION DATA: Full quadrature (IPDF x IPDF) rule, IPDF = 2

```
Reduced quadrature (IPDR x IPDR), IPDR = 1
   Quadrature rule used in postproc., ISTR = 1
 SOLUTION:
 Node x-coord. y-coord. Primary DOF
  1 0.00000E+00 0.00000E+00 0.29839E+00
  2 0.25000E+00 0.00000E+00 0.28239E+00
  3 0.50000E+00 0.00000E+00 0.23220E+00
  4 0.75000E+00 0.00000E+00 0.14137E+00
  5 0.10000E+01 0.00000E+00 0.00000E+00
  6 0.00000E+00 0.25000E+00 0.28239E+00
  7 0.25000E+00 0.25000E+00 0.26752E+00
  8 0.50000E+00 0.25000E+00 0.22062E+00
  9 0.75000E+00 0.25000E+00 0.13501E+00
  10 0.10000E+01 0.25000E+00 0.00000E+00
  11 0.00000E+00 0.50000E+00 0.23220E+00
  12  0.25000E+00  0.50000E+00  0.22062E+00
  13  0.50000E+00  0.50000E+00  0.18381E+00
  14 0.75000E+00 0.50000E+00 0.11457E+00
  15  0.10000E+01  0.50000E+00  0.00000E+00
  16  0.00000E+00  0.75000E+00  0.14137E+00
  17  0.25000E+00  0.75000E+00  0.13501E+00
  18  0.50000E+00  0.75000E+00  0.11457E+00
  19 0.75000E+00 0.75000E+00 0.75057E-01
  20 0.10000E+01 0.75000E+00 0.00000E+00
  21 0.00000E+00 0.10000E+01 0.00000E+00
  22 0.25000E+00 0.10000E+01 0.00000E+00
  24 0.75000E+00 0.10000E+01 0.00000E+00
  25  0.10000E+01  0.10000E+01  0.00000E+00
 The orientation of gradient vector is measured from the positive x-axis
 x-coord. y-coord. -a11(du/dx) -a22(du/dy) Flux Mgntd Orientation
 0.1250E+00 0.1250E+00 0.6175E-01 0.6175E-01 0.8733E-01 45.00
 0.3750E+00 0.1250E+00 0.1942E+00 0.5290E-01 0.2013E+00 15.24
 0.6250E+00 0.1250E+00 0.3529E+00 0.3587E-01 0.3547E+00 5.80
 0.8750E+00 0.1250E+00 0.5528E+00 0.1272E-01 0.5529E+00 1.32
 0.1250E+00 0.3750E+00 0.5290E-01 0.1942E+00 0.2013E+00 74.76
 0.3750E+00 0.3750E+00 0.1674E+00 0.1674E+00 0.2368E+00
                                                    45.00
 0.6250E+00 0.3750E+00 0.3097E+00 0.1145E+00 0.3302E+00 20.29
 0.8750E+00 0.3750E+00 0.4992E+00 0.4088E-01 0.5008E+00 4.68
 0.3750E+00 0.6250E+00 0.1145E+00 0.3097E+00 0.3302E+00 69.71
 0.8750E+00 0.6250E+00 0.3793E+00 0.7903E-01 0.3874E+00 11.77
0.3750E+00 0.8750E+00 0.4088E-01 0.4992E+00 0.5008E+00 85.32
 0.6250E+00 0.8750E+00 0.7903E-01 0.3793E+00 0.3874E+00 78.23
 0.8750E+00 0.8750E+00 0.1501E+00 0.1501E+00 0.2123E+00 45.00
Stop - Program terminated.
```