Lecture Notes: Orthogonal and Symmetric Matrices

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

1 Orthogonal Matrix

Definition 1. An $n \times n$ matrix \mathbf{A} is orthogonal if (i) its inverse \mathbf{A}^{-1} exists, and (ii) $\mathbf{A}^T = \mathbf{A}^{-1}$.

Example 1. Consider $\mathbf{A} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. It is orthogonal because $\mathbf{A}^T = \mathbf{A}^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$. The following is a 3×3 orthogonal matrix:

$$\begin{bmatrix}
2/3 & 1/3 & 2/3 \\
-2/3 & 2/3 & 1/3 \\
1/3 & 2/3 & -2/3
\end{bmatrix}$$

Lemma 1. If A is orthogonal, then A^T is also orthogonal.

Proof.

$$(\mathbf{A}^T)^T = (\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1}$$

The lemma thus follows.

To explain the next property of orthogonal matrices, we need to define two new concepts. Let S be a set of non-zero vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ of the same dimensionality. We say that S is orthogonal if $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ for any $i \neq j$. Furthermore, we say that S is orthogonal if (i) S is orthogonal, and (ii) $|\mathbf{v}_i| = \mathbf{v}_i \cdot \mathbf{v}_i = 1$ for any $i \in [1, k]$. For example,

$$\left\{ \left[\begin{array}{c} -1\\1\\0 \end{array} \right], \left[\begin{array}{c} 1\\1\\2 \end{array} \right], \left[\begin{array}{c} -1\\-1\\1 \end{array} \right] \right\}$$

is orthogonal but not orthonormal. If, however, we scale each of the above vectors to have length 1, then the resulting vector set becomes orthonormal:

$$\left\{ \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ 2/\sqrt{6} \end{bmatrix}, \begin{bmatrix} -1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix} \right\}$$

Lemma 2. An orthogonal set of vectors must be linearly independent.

Proof. Suppose that $S = \{v_1, v_2, ..., v_k\}$. Assume, on the contrary, that S is not linearly independent. Hence, there exist real values $c_1, c_2, ..., c_k$ that are not all zero, and make the following hold:

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k = \mathbf{0}.$$

Suppose, without loss of generality, that $c_i \neq 0$ for some $i \in [1, k]$. Then, we multiply both sides of the above equation by v_i , and obtain:

$$c_1 \mathbf{v}_1 \cdot \mathbf{v}_i + c_2 \mathbf{v}_2 \cdot \mathbf{v}_i + \dots + c_k \mathbf{v}_k \cdot \mathbf{v}_i = \mathbf{0} \Rightarrow c_i \mathbf{v}_i \cdot \mathbf{v}_i = \mathbf{0}.$$

The above equation contradicts the fact that $c_i \neq 0$ and v_i is a non-zero vector.

We are now ready to reveal another way to define orthogonal matrix:

Lemma 3. Let A be an $n \times n$ matrix with row vectors \mathbf{r}_1 , \mathbf{r}_2 , ..., \mathbf{r}_n , and column vectors \mathbf{c}_1 , \mathbf{c}_2 , ..., \mathbf{c}_n . Both the following statements are true:

- A is orthogonal if and only if $\{r_1, r_2, ..., r_n\}$ is orthonormal.
- A is orthogonal if and only if $\{c_1, c_2, ..., c_n\}$ is orthonormal.

Proof. We will prove only the first statement because applying the same argument on \mathbf{A}^T proves the second. Let $\mathbf{B} = \mathbf{A}\mathbf{A}^T$. Denote by b_{ij} the element of B at the i-th row and j-th column. We know that $b_{ij} = \mathbf{r}_i \cdot \mathbf{r}_j$ (note that the j-th column of \mathbf{A}^T has the same components as \mathbf{r}_j). \mathbf{A} is orthogonal if and only if \mathbf{B} is an identity matrix, which in turn is true if and only if $b_{ij} = 1$ when i = j, and $b_{ij} = 0$ otherwise. The lemma thus follows.

Lemma 4. The determinant of an orthogonal matrix A can only be 1 or -1.

Proof. From $\mathbf{A}^T = \mathbf{A}^{-1}$, we know that $\mathbf{A}\mathbf{A}^T = \mathbf{I}$ where \mathbf{I} is an identity matrix. Hence, $det(\mathbf{A}\mathbf{A}^T) = det(\mathbf{A})det(\mathbf{A}^T) = (det(\mathbf{A}))^2 = 1$. The lemma thus follows.

2 Symmetric Matrix

Recall that an $n \times n$ matrix \boldsymbol{A} is symmetric if $\boldsymbol{A} = \boldsymbol{A}^T$. Next, we give several nice properties of such matrices.

Lemma 5. All the eigenvalues of a symmetric matrix must be real values (i.e., they cannot be complex numbers).

We omit the proof of the lemma. Note that the above lemma is *not* true for general square matrices (i.e., it is possible for an eigenvalue to be a complex number).

Lemma 6. Let λ_1 and λ_2 be two different eigenvalues of a symmetric matrix \mathbf{A} . Also, suppose that $\mathbf{x_1}$ is an eigenvector of \mathbf{A} corresponding to λ_1 , and $\mathbf{x_2}$ is an eigenvector of \mathbf{A} corresponding to λ_2 . It must holds that $\mathbf{x_1} \cdot \mathbf{x_2} = 0$.

Proof. By definition of eigenvalue and eigenvector, we know:

$$Ax_1 = \lambda_1 x_1 \tag{1}$$

$$Ax_2 = \lambda_2 x_2 \tag{2}$$

From (1), we have

$$\mathbf{x_1}^T \mathbf{A}^T = \lambda_1 \mathbf{x_1}^T \Rightarrow \\
\mathbf{x_1}^T \mathbf{A} = \lambda_1 \mathbf{x_1}^T \Rightarrow \\
\mathbf{x_1}^T \mathbf{A} \mathbf{x_2} = \lambda_1 \mathbf{x_1}^T \mathbf{x_2} \Rightarrow (\text{by (2)}) \\
\mathbf{x_1}^T \lambda_2 \mathbf{x_2} = \lambda_1 \mathbf{x_1}^T \mathbf{x_2} \Rightarrow \\
\mathbf{x_1}^T \mathbf{x_2} (\lambda_1 - \lambda_2) = 0 \Rightarrow (\text{by } \lambda_1 \neq \lambda_2) \\
\mathbf{x_1}^T \mathbf{x_2} = 0.$$

The lemma then follows from the fact that $x_1 \cdot x_2 = x_1^T x_2$.

Example 2. Consider

$$\mathbf{A} = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

We know that **A** has two eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -2$.

For eigenvalue $\lambda_1 = 1$, all the eigenvectors can be represented as $\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfying:

$$x_1 = v - u, x_2 = u, x_3 = v$$

with $u, v \in \mathbb{R}$. Setting (u, v) to (1, 0) and (0, 1) respectively gives us two linearly independent eigenvectors:

$$oldsymbol{x}_1 = \left[egin{array}{c} -1 \ 1 \ 0 \end{array}
ight], oldsymbol{x}_2 = \left[egin{array}{c} 1 \ 0 \ 1 \end{array}
ight]$$

For eigenvalue $\lambda_2 = -2$, all the eigenvectors can be represented as $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfying:

$$x_1 = -t, x_2 = -t, x_3 = t$$

with $t \in \mathbb{R}$. Setting t = 1 gives us another eigenvector:

$$oldsymbol{x}_3 = \left[egin{array}{c} -1 \ -1 \ 1 \end{array}
ight]$$

Vectors x_1 , x_2 , and x_3 are linearly independent. According to Lemma 6, both $x_1 \cdot x_3$ and $x_2 \cdot x_3$ must be 0. You can verify that this is indeed the case.

From an earlier lecture, we already know that every symmetric matrix can be diagonalized because it definitely has n linearly independent eigenvectors. The next lemma strengthens this fact:

Lemma 7. Every $n \times n$ symmetric matrix has an orthogonal set of n eigenvectors.

We omit the proof of the lemma (which is rather non-trivial). Note that n eigenvectors in the lemma must be linearly independent, according to Lemma 2.

Example 3. Let us consider again the matrix A in Example 2. We have obtained eigenvectors x_1, x_2, x_3 . Clearly, they do not constitute an orthogonal set because x_1, x_2 are not orthogonal. We will replace x_2 with a different x_2' that is still an eigenvector of A for eigenvalue $\lambda_1 = 1$, and is orthogonal to x_1 .

From Example 2, we know that all eigenvectors corresponding to λ_1 have the form $\begin{bmatrix} v-u \\ u \\ v \end{bmatrix}$.

For such a vector to be orthogonal to $\boldsymbol{x_1} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, we need:

$$(-1)(v-u) + u = 0 \Rightarrow v = 2u$$

As you can see, there are infinitely many such vectors, any of which can be x_2' except $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. To

produce one, we can choose u=1, v=2, which gives $\boldsymbol{x_2}'=\begin{bmatrix} 1\\1\\2 \end{bmatrix}$.

 $\{x_1, x_2', x_3\}$ is thus an orthogonal set of eigenvectors of A.

Corollary 1. Every $n \times n$ symmetric matrix has an orthonormal set of n eigenvectors.

Proof. The orthonormal set can be obtained by scaling all vectors in the orthogonal set of Lemma 7 to have length 1. \Box

Now we prove an important lemma about symmetric matrices.

Lemma 8. Let A be an $n \times n$ symmetric matrix. There exist an orthogonal matrix Q such that $A = Q \operatorname{diag}[\lambda_1, \lambda_2, ..., \lambda_n] Q^{-1}$, where $\lambda_1, \lambda_2, ..., \lambda_n$ are eigenvalues of A.

Proof. From an earlier lecture, we know that given a set of linearly independent eigenvectors $v_1, v_2, ..., v_n$ corresponding to eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ respectively, we can produce Q by placing v_i as the i-th column of Q, for each $i \in [1, n]$, such that $A = Q \operatorname{diag}[\lambda_1, \lambda_2, ..., \lambda_n] Q^{-1}$. From Corollary 1, we know that we can find an orthonormal set of $v_1, v_2, ..., v_n$. By Lemma 3, it follows that Q is an orthogonal matrix.

Example 4. Consider once again the matrix \boldsymbol{A} in Example 2. In Example 3, we have obtained an orthogonal set of eigenvectors:

$$\left[\begin{array}{c} -1\\1\\0\end{array}\right], \left[\begin{array}{c} 1\\1\\2\end{array}\right], \left[\begin{array}{c} -1\\-1\\1\end{array}\right]$$

By scaling, we obtain the following orthonormal set of eigenvectors:

$$\begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ 2/\sqrt{6} \end{bmatrix}, \begin{bmatrix} -1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}$$

Recall that these eigenvectors correspond to eigenvalues 1, 1, and -2, respectively. We thus produce:

$$\mathbf{Q} = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$$

such that $\mathbf{A} = \mathbf{Q} \operatorname{diag}[1, 1, -2] \mathbf{Q}^{-1}$.