- **53.** Contiene a (1, 0, 0), (0, 1, 0) y (0, 0, 1)
- **54.** Contiene a (-7, -2, -4), (2, 2, 2) y (-5, -5, -4)
- **55.** (7, 2, 1), (9, -4, 5), (5, -3, 1)

Dos planos son **ortogonales** si sus vectores normales son ortogonales. De los problemas 56 al 62 determine si los planos dados son paralelos, ortogonales, coincidentes (es decir, el mismo) o ninguno de los anteriores.

Planos ortogonales

56.
$$\pi_1$$
: $x + y + z = 2$; π_2 : $2x + 2y + 2z = 4$

57.
$$\pi_1$$
: $6x - 3y + 4z = 4$; π_2 : $x - 6y + 3z = 0$

58.
$$\pi_1$$
: $9x + 9y - z = 143$; π_2 : $x - y - 10z = -56$

59.
$$\pi_1$$
: $2x - y + z = 3$; π_2 : $x + y - z = 7$

60.
$$\pi_1$$
: $8x - 2y - 2z = 0$; π_2 : $4x - y - z = 0$

61.
$$\pi_1$$
: $4x - y + 7z = 34$; π_2 : $4x + 5y - z = -75$

62.
$$\pi_1$$
: $6x - 3y + 4z = 4$; π_2 : $12x - 6y + 8z = 10$

De los problemas 63 al 66, encuentre la ecuación del conjunto de todos los puntos de intersección de los dos planos.

63.
$$\pi_1$$
: $3x + 3y + 8z = 4$; π_2 : $3x + 3y - 6z = -5$

64.
$$\pi_1$$
: $3x - y + 4z = 3$; π_2 : $-4x - 2y + 7z = 8$

65.
$$\pi_1$$
: $3y = -7$; π_2 : $2x - 5y + 3z = -2$

66.
$$\pi_1$$
: $-2x - y + 17z = 4$; π_2 : $2x - y - z = -7$

*67. Sea π un plano, P un punto sobre el plano, \mathbf{n} un vector normal al plano y Q un punto fuera del plano (vea la figura 4.42). Demuestre que la distancia perpendicular D de Q al plano está dada por

$$D = |\operatorname{proy}_{\mathbf{n}} \overrightarrow{PQ}| = \frac{|\overrightarrow{PQ} \cdot \mathbf{n}|}{|\mathbf{n}|}$$

Figura 4.42

De los problemas 68 al 71 encuentre la distancia del punto dado al plano dado.

68.
$$(-7, -5, -7)$$
; $9x + 2y + 5z = 97$

69.
$$(-1, 1, 2)$$
; $3y - 6z = 4$

70.
$$(-3, 5, -1)$$
; $-3x + 6z = -5$