Appl. No. 10/667,056 AmdtF dated December 22, 2005 Reply to Final Office Action of August 26, 2005

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

1-12. (Canceled)

13. (Currently Amended) A single lumen microcatheter, comprising:

an elongate shaft having a distal end and a proximal end, the elongate shaft having an outer surface and an inner surface, the inner surface defining a lumen extending through the elongate shaft;

an elongate [[a]] guidewire port positioned proximal of the distal end of the elongate shaft, the elongate guidewire port extending from the inner surface of the elongate shaft to the outer surface of the elongate shaft; and

a polymer sheath disposed over the <u>elongate</u> guidewire port, the polymer sheath having an inner surface and an outer surface, the polymer sheath including a passage comprising an angled slit extending radially through the polymer sheath at an angle such that the slit has a depth that is greater than a thickness of the polymer sheath, the slit disposed along a longitudinal axis of the elongate shaft, the passage in communication with the <u>elongate</u> guidewire port, wherein the passage is configured to permit guidewire access through the <u>elongate</u> guidewire port while remaining substantially fluid tight in use when no guidewire is provided through the passage.

14. (Cancelled)

15. (Previously Presented) The single lumen microcatheter of claim 13, wherein the angled slit extends radially through the polymer sheath at an angle substantially less than 90 degrees to the outer surface of the polymer sheath.

P.06/09

Appl. No. 10/667,056 AmdıF dated December 22, 2005 Reply to Final Office Action of August 26, 2005

16. (Previously Presented) The single lumen microcatheter of claim 13, wherein the angled slit extends from the outer surface of the polymer sheath to the inner surface of the polymer sheath.

CROMPTON SEAGER TUFTE

- 17. (Previously Presented) The single lumen microcatheter of claim 13, wherein the angled slit is configured to accept both a guidewire and a sheath wherein the sheath is configured to accept the guidewire therein.
- 18. (Original) A method of delivering a therapeutic element through a single lumen microcatheter, the single lumen microcatheter comprising an elongate shaft, a guidewire port, and a control valve disposed proximate the guidewire port, the method comprising:

advancing a guidewire sheath through the control valve and through the guidewire port; advancing a guidewire through the guidewire sheath;

advancing the microcatheter over the guidewire to a treatment site;

removing the guidewire and the guidewire sheath, thereby closing the guidewire port; and advancing the therapeutic element through the shaft, past the closed guidewire port, to the treatment site.

- 19. (Original) The method of claim 18, wherein the therapeutic element comprises embolic fluid.
- 20. (Original) The method of claim 18, wherein the therapeutic element comprises a mechanical device selected from the group consisting of stents, embolic coils, or other embolic material.