SkyHack 3.0: United Airlines

Flight Difficulty Score Analysis

Divash Krishnam Ashutosh Verma (2K22/PE/22) (2K22/PE/14) DTU DTU

Problem Statement

Frontline teams at United Airlines are responsible for ensuring every flight departs on time and is operationally ready. However, not all flights are equally easy to manage. Certain flights pose greater complexity due to factors such as limited ground time, higher volumes of checked or carry-on baggage, and specific customer service needs that often increase with passenger load.

Currently, identifying these high-difficulty flights relies heavily on personal experience and local team knowledge. This manual approach is inconsistent, non-scalable, and risks missing opportunities for proactive resource planning across the airport.

To address this, you are tasked with developing a Flight Difficulty Score that systematically quantifies the relative complexity of each flight using the datasets provided, which span two weeks of departures from Chicago O'Hare International Airport (ORD).

Objective

 Calculates a Flight Difficulty Score for each flight using flight-level, customer, and station-level data.

• Identifies the primary operational drivers contributing to flight difficulty to enable proactive planning and optimized resource allocation.

Data Dictionary

Flight Level Information

Column Name	Description				
company_id	IATA code of the airline operating the flight				
flight_number	Unique identifier assigned to a specific				
	flight				
scheduled_departure_date_local	Local date of the flight's scheduled				
	departure				
scheduled_departure_station_code	IATA airport code of the scheduled				
	departure airport (e.g., "JFK", "LAX")				
scheduled_arrival_station_code	IATA airport code of the scheduled arrival				
	airport (e.g., "JFK", "LAX")				
scheduled_departure_datetime_local	Scheduled local date and time of				
	departure from the origin airport				
scheduled_arrival_datetime_local	Scheduled local date and time of arrival at				
	the destination airport				
actual_departure_datetime_local	Actual local date and time when the flight				
	departed from the origin airport				
actual_arrival_datetime_local	Actual local date and time when the flight				
	arrived at the destination airport				
total_seats	Total number of passenger seats available				
	on the aircraft for the flight				
fleet_type	Type model of aircraft used for the flight				
carrier	Distinction between Mainline and Express				
scheduled_ground_time_minutes	Planned duration (in minutes) the aircraft				
	is scheduled to spend on the ground				
	between flights				
actual_ground_time_minutes	Actual time available (in minutes) for				
	ground operations between flights				
minimum_turn_minutes	Minimum required turnaround time (in				
	minutes) for the aircraft between flights				

PNR Flight Level Information

Column Name	Description			
company_id	IATA code of the airline operating the flight			
flight_number	Unique identifier of the flight associated			
30.000 (30.00) (30.00)	with the PNR			
scheduled_departure_date_local	Local date of the flight's scheduled			
	departure			
scheduled_departure_station_code	IATA airport code of the scheduled			
	departure airport (e.g., "JFK", "LAX")			
scheduled_arrival_station_code	IATA airport code of the scheduled arrival			
	airport (e.g., "JFK", "LAX")			
record_locator	Unique identifier for the PNR, used to			
	reference a passenger booking			
pnr_creation_date	Date when the PNR was created			
total_pax	Total number of passengers associated			
	with the PNR on this flight			
lap_child_count	Number of lap children (infants not			
	occupying a seat) included in the PNR			
is_child	Indicates whether the passenger is			
	classified as a child			
basic_economy_pax	Number of passengers in the PNR booked			
	in basic economy fare class			
is_stroller_user	Indicates whether the passenger is a			
	stroller user			

Data Dictionary

PNR Remarks Information

Column Name	Description				
record_locator	Unique identifier for the PNR, used to				
	reference a passenger booking				
pnr_creation_date	Date when the PNR was created.				
flight_number	Unique identifier of the flight associated				
	with the PNR				
special_service_request	Description of the requested special				
	service (e.g., wheelchair assistance)				

Airports Information

Column Name	Description		
airport_iata_code	Three-letter IATA code representing the airport (e.g., "LAX", "JFK").		
iso_country_code	Two-letter country code where the airport is located (e.g., "US", "CA").		

Bag Level Information

Column Name	Description				
company_id	IATA code of the airline operating the flight				
flight_number	Unique identifier assigned to a specific				
	flight				
scheduled_departure_date_local	Local date of the flight's scheduled				
	departure				
scheduled_departure_station_code	IATA airport code of the scheduled				
	departure airport (e.g., "JFK", "LAX")				
scheduled_arrival_station_code	IATA airport code of the scheduled arrival				
	airport (e.g., "JFK", "LAX")				
bag_tag_unique_number	Unique identifier for the bag tag				
bag_tag_issue_date	Date the bag tag was issued				
bag_type	Type of bag (e.g., "Checked", "Transfer")				
	*Hot transfer bags are transfer bags with a				
	connection time of less than 30 minutes				

Summary of approach

- Do EDA to measure delays, ground-time risk, bag volumes, passenger load, and SSRs.
- Engineer flight-level features that capture turn-time pressure, bag handling, passenger service complexity, and historical on-time performance.
- Compute a daily Flight Difficulty Score (resets each day) as a weighted sum of standardized features (weights from domain judgment or learned from regression).
- Rank flights within each day, assign classes (Difficult / Medium / Easy) by rank quantiles.
- Provide operational insights and prioritized actions.

Exploratory Data Analysis

Average departure delay and percent leaving late

Average departure delay (minutes): ≈ 23.03 minutes (average of actual -scheduled).

```
.
SELECT
  AVG(EXTRACT(EPOCH FROM (actual_departure_datetime_local - scheduled_departure_datetime_local))/60) AS
avg_departure_delay_min,
  100.0 * SUM(CASE WHEN actual_departure_datetime_local > scheduled_departure_datetime_local THEN 1
ELSE 0 END) / COUNT(*) AS pct_departed_late
FROM flights
WHERE scheduled_departure_station_code = 'ORD';
```

Flights scheduled ground time close to min turn mins

- I defined close or below as scheduled_ground_time_minutes <= minimum_turn_minutes + 5.
- Number of flights meeting that rule and percent of dataset: computed and included in the output CSV as ground_time_deficit (scheduled_ground_time - minimum_turn_minutes). Use ground_time_deficit <= 5 to flag these

```
SELECT
COUNT(*) AS flights_total,
SUM(CASE WHEN scheduled_ground_time_minutes <= minimum_turn_minutes THEN 1 ELSE 0 END) AS
at_or_below_min_turn,
SUM(CASE WHEN scheduled_ground_time_minutes <= minimum_turn_minutes + 10 THEN 1 ELSE 0 END) AS
within_10min_of_min_turn
FROM flights
WHERE scheduled_departure_station_code = 'ORD';
```

Average ratio transfer vs checked bags per flight

- I computed per-flight counts of checked_bags and transfer_bags (and transfer_to_checked_ratio).
- Median transfer_to_checked_ratio across flights (ignoring NaNs where checked=0)

```
SELECT
  f.company_id, f.flight_number, f.scheduled_departure_date_local,
  SUM(CASE WHEN b.bag_type = 'Transfer' THEN 1 ELSE 0 END) AS transfer_bags,
  SUM(CASE WHEN b.bag_type = 'Checked' THEN 1 ELSE 0 END) AS checked_bags,
  SUM(CASE WHEN b.bag_type = 'Transfer' THEN 1 ELSE 0 END)::float /
    NULLIF(SUM(CASE WHEN b.bag_type = 'Checked' THEN 1 ELSE 0 END), 0) AS transfer_to_checked_ratio
FROM flights f
LEFT JOIN bags b
  ON f.company_id = b.company_id
  AND f.flight_number = b.flight_number
  AND f.scheduled_departure_date_local = b.scheduled_departure_date_local
WHERE f.scheduled departure station code = 'ORD'
GROUP BY 1,2,3;
```

Passenger loads

• I aggregated PNR-level total_pax to flight level as total_pax_flight and computed passenger_load_pct = total_pax_flight / total_seats.

• Summary stats for total_pax_flight are included in the notebook output and in CSV. We can filter or show distributions on slides.

```
WITH pax_per_flight AS (
  SELECT company_id, flight_number, scheduled_departure_date_local,
         SUM(total_pax) AS total_pax
  FROM pnr
  GROUP BY 1,2,3
SELECT
  f.company_id, f.flight_number, f.scheduled_departure_date_local,
  f.total_seats,
  p.total_pax,
  p.total_pax::float / NULLIF(f.total_seats,0) AS load_factor,
  EXTRACT(EPOCH FROM (f.actual_departure_datetime_local - f.scheduled_departure_datetime_local))/60 AS
departure_delay_min
FROM flights f
LEFT JOIN pax_per_flight p
  ON f.company_id = p.company_id
  AND f.flight_number = p.flight_number
  AND f.scheduled_departure_date_local = p.scheduled_departure_date_local;
```

Are high SSR flights high-delay after controlling load?

• Ran a simple OLS regression: departure_delay_minutes ~ ssr_count + total_pax_flight

- Results (OLS summary):
 - ossr_count coefficient $\approx +1.586$ minutes per SSR (p < 0.001). This means, holding passenger count constant, each extra SSR is associated with ~ 1.6 additional minutes of departure delay on average in this data.
 - total_pax_flight coefficient ≈ -0.041 minutes per passenger (p < 0.001) small but statistically significant (this negative sign may reflect operational patterns where larger flights get prioritized resources, or other confounding effects).
 - \circ R² is small (\approx 0.003) SSRs/total_pax explain only a small fraction of delay variability, but SSRs do show a clear positive association with delay controlling for load

```
• • •
WITH ssr_per_flight AS (
  SELECT flight_number, scheduled_departure_date_local, COUNT(*) AS ssr_count
  FROM pnr_remarks
 GROUP BY flight number, scheduled departure date local
pax_per_flight AS (
  SELECT company id, flight number, scheduled departure date local, SUM(total pax) AS total pax
  FROM pnr GROUP BY 1,2,3
SELECT
  f.flight_number,
  f.scheduled_departure_date_local,
  EXTRACT(EPOCH FROM (f.actual_departure_datetime_local - f.scheduled_departure_datetime_local))/60 AS
departure_delay_min,
  p.total_pax,
 s.ssr_count
FROM flights f
LEFT JOIN pax_per_flight p
  ON f.company id = p.company id AND f.flight number = p.flight number AND
f.scheduled_departure_date_local = p.scheduled_departure_date_local
LEFT JOIN ssr_per_flight s
  ON f.flight number = s.flight number AND f.scheduled departure date local =
s.scheduled_departure_date_local;
```

Representations

Average delay: check CSV. Used distribution to choose thresholds for interventions.

Difficulty VS Delay

Top destinations VS Average difficulty

Delay by Class

Flight Difficulty Score

Feature set used (per-flight)

- ground_time_deficit = scheduled_ground_time_minutes minimum_turn_minutes
 (less ground time → more difficult)
- total_pax_flight (absolute passenger count)
- passenger_load_pct (load relative to seats)
- checked_bags, transfer_bags, transfer_to_checked_ratio
- hot_transfer_bags (bags flagged as "hot" transfers)
- ssr_count (number of special service requests)
- basic_economy_pax (sum of PNR indicator)
- lap_child_count

Weighting approach

- Computed Pearson correlation between each engineered feature and departure_delay_minutes to get an indication of which features are most associated with delay (used as a proxy for operational difficulty).
- Converted these correlations to non-negative weights: weight_feature = |corr(feature, delay)| with a small floor for features with no correlation data so they remain represented.
- Scaled weights to sum to 1 (so the score is a weighted combination of features).
- For each feature, applied robust scaling ((x median) / IQR) to reduce influence of outliers, and inverted features where a higher raw value means easier (for example a larger ground_time_deficit is easier so I invert that feature).
- Computed a weighted sum of scaled features \rightarrow difficulty_score_raw.

Daily normalization and classification

- For interpretability and your requirement that scoring resets daily, I standardized the raw score within each scheduled_departure_date_local (z score) and then min-max scaled to 0-100 for that day.
- Ranking: flights within a day are ranked by difficulty_score descending (100 = most difficult).
- Classification: per-day percentiles:
 - \circ Top 20% \rightarrow Difficult
 - Middle 60% → Medium
 - $\circ \qquad \mathsf{Bottom}\ \mathsf{20\%} \to \mathsf{Easy}$

Main operational drivers

Based on correlations with delay and the weights derived from them, the main drivers that increased the difficulty score were:

- Low scheduled ground time relative to minimum turn (ground_time_deficit small or negative) short turn windows strongly increase difficulty.
- Special Service Requests (SSR) SSRs are positively associated with delay after controlling for load (≈ 1.6 minutes delay per SSR).
- Transfer baggage complexity (transfer_bags & hot transfer bags) flights with larger transfer counts (especially hot transfers) add complexity to ground operations.
- High passenger counts & load contributes but its raw correlation to delay can be mixed in the data (sometimes larger flights are prioritized operationally).
- Bag transfer-to-checked ratio a high ratio (many transfers relative to checked) can indicate more connection complexity.

```
OLS Regression Results
Dep. Variable:
                 departure delay minutes
                                        R-squared:
                                                                      0.003
Model:
                                   OLS.
                                        Adj. R-squared:
                                                                      0.003
Method:
                         Least Squares F-statistic:
                                                                      11.41
                       Sun, 05 Oct 2025 Prob (F-statistic):
Date:
                                                                   1.13e-05
Time:
                                        Log-Likelihood:
                              15:27:35
                                                                    -44928.
No. Observations:
                                        AIC:
                                  8099
                                                                  8.986e+04
Df Residuals:
                                  8096
                                        BIC:
                                                                  8.988e+04
Df Model:
Covariance Type:
                             nonrobust
                           std err
                                                 P>|t|
                                                           [0.025
                    coef
                                                                      0.975]
const
                 23.0271 1.339 17.193
                                                 0.000
                                                           20.402
                                                                      25.653
ssr count
             1.5858 0.369 4.292
                                                 0.000
                                                            0.862
                                                                      2.310
total pax flight -0.0405
                             0.010
                                      -3.954
                                                 0.000
                                                           -0.061
                                                                      -0.020
Omnibus:
                                   Durbin-Watson:
                          9707.880
                                                                 2.010
Prob(Omnibus):
                            0.000
                                   Jarque-Bera (JB): 1442950.054
Skew:
                            6.357
                                   Prob(JB):
                                                                  0.00
Kurtosis:
                           67.143
                                   Cond. No.
                                                                  292.
```

OLS Regression

OLS Regression	Results	
----------------	---------	--

Model: Method: Date: Time:	-	delay minute: OL: Least Square: 15:27:3	Adj. F s F-stat 5 Prob (5 Log-Li	======================================	:	0.003 0.003 11.41 1.13e-05 -44928.
No. Observations: Df Residuals:		809! 809				8.986e+04 8.988e+04
DI RESIGUAIS.	Df Model Covariar		o bic.	2 nonrobust		0.9000704
	======= coef 	======== std err 	======== t 	======= P> t 	======== [0.025 	0.975]
const ssr_count total_pax_flight	1.5858	1.339 0.369 0.010		0.000 0.000 0.000	20.402 0.862 -0.061	25.653 2.310 -0.020
========= Omnibus: Prob(Omnibus): Skew: Kurtosis: =========		======== 9707.880 0.000 6.357 67.143	-	era (JB): :	1442 	2.010 2950.054 0.00 292.

Metric	Value
Dependent Variable	departure_delay_minutes
Model	Ordinary Least Squares (OLS)
Method	Least Squares
No. of Observations	8,099
Df Model	2
Df Residuals	8,096
R-squared	0.003
Adjusted R-squared	0.003
F-statistic	11.41
Prob (F-statistic)	1.13e-05
Log-Likelihood	-44,928
AIC	89,860
BIC	89,880
Durbin-Watson	2.010
Omnibus	9707.880
Prob(Omnibus)	0.000
Jarque-Bera (JB)	1,442,950.054
Prob(JB)	0.000
Skew	6.357
Kurtosis	67.143
Cond. No.	292

Regression Coefficients

Variable	Coefficient	Std. Error	t-Statistic	P > t	[0.025]	[0.975]
const (Intercept)	23.0271	1.339	17.193	0.000	20.402	25.653
ssr_count	1.5858	0.369	4.292	0.000	0.862	2.310
total_pax_flight	-0.0405	0.010	-3.954	0.000	-0.061	-0.020

Remarks

- Flag top 20% daily as Difficult and pre-assign resources.
- Add dedicated CSR/agent for flights with high SSR counts.
- Prioritize baggage handling for flights with hot-transfer bags.
- Consider schedule buffers for flights with ground_time_deficit <= 5.

Thank You