

Institute of Mathematics and Image Computing

Jan Modersitzki, Caterina Rust

MA1500: Lineare Algebra und Diskrete Strukturen 2

Übungsblatt 11

Abgabe: Freitag, 28.06.2019, 8:30 Uhr

Ab kommenden Montag, den 24.06.2019, 0:00 Uhr, ist der dritte E-Test freigeschaltet. Die Bearbeitungszeit beträgt eine Woche und endet am Sonntag, den 30.06.2019, um 23:59 Uhr.

Die Klausuranmeldung ist ab sofort im Moodle möglich. Tragen Sie sich bitte bis Montag, den 01.07.2019, für einen der beiden Klausurtermine ein.

Aufgabe 1 (5 Punkte)

Sei V ein euklidischer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Zeigen Sie, dass die Determinante der Gramschen Matrix bzgl. $v_1, ..., v_m \in V$ und $\langle \cdot, \cdot \rangle$ genau dann den Wert 0 hat, wenn das Tupel $(v_1, ..., v_m)$ linear abhängig ist.

Aufgabe 2 (8 Punkte)

Gegeben seien

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 3 \\ -2 & 2 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

- a) Berechnen Sie die Eigenwerte von AB und BA und geben Sie deren algebraische Vielfachheiten an.
- b) Es sei $\lambda_{\max} := \max\{\lambda \mid \lambda \text{ ist Eigenwert von } AB\}$. Bestimmen Sie den Eigenraum $E_{\lambda_{\max}}$ und geben Sie die geometrische Vielfachheit von λ_{\max} an.
- c) Es seien $X \in \mathbb{R}^{n,m}$ und $Y \in \mathbb{R}^{m,n}$. Zeigen Sie: Ist $\lambda \neq 0$ ein Eigenwert von XY und v ein zugehöriger Eigenvektor, so ist λ auch Eigenwert von YX und Yv ein zugehöriger Eigenvektor.

Aufgabe 3 (7 Punkte)

- a) Sei $v \in \mathbb{C}^n \setminus \{0\}$ sowohl Eigenvektor von $D \in \mathbb{C}^{n,n}$ als auch von $E \in \mathbb{C}^{n,n}$. Zeigen Sie, dass v ein Eigenvektor von (D+E) ist;
- b) Seien $A, B \in \mathbb{C}^{n,n}$ ähnliche Matrizen. Beweisen Sie, dass det $A = \det B$;
- c) Seien $v_1, v_2, v_3 \in \mathbb{C}^n \setminus \{0\}$ Eigenvektoren von $F \in \mathbb{C}^{n,n}$ zu den Eigenwerten $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$. Beweisen Sie: falls $v_3 = v_1 + v_2$, dann gilt $\lambda_1 = \lambda_2 = \lambda_3$.