GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA

Autómatas y Lenguajes Formales

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Cuarto Semestre	20401	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante conocimiento sobre los fundamentos de la computación haciendo preciso el significado de los Lenguajes formales y sus problemas, de lo que es un programa, una máquina y cómputos. Se estudiarán varios modelos de máquinas, su potencia y varias representaciones de lenguajes usando gramáticas.

TEMAS Y SUBTEMAS

1. Conceptos matemáticos básicos

- 1.1 Conjuntos, relaciones, funciones, sucesiones.
- 1.2 Grafos, árboles.
- 1.3 Demostración por construcción, por inducción.
- 1.4 Definición por inducción y recursión.

2. Conceptos básicos de lenguajes formales

- 2.1 Alfabeto, palabra, sentencia.
- 2.2 Concatenación, Unión, estrella de Kleene.
- 2.3 Lenguaje, cardinalidad de los lenguajes.
- 2.4 Representaciones finitas de los lenguajes.

3. Autómatas y Conjuntos Regulares

- 3.1 Definición formal de autómata finito determinístico.
- 3.2 Ejemplos
- 3.3 Definición formal de cómputo.
- 3.4 Diseño de Autómatas finitos.
- 3.5 Operaciones regulares.
- 3.6 Definición formal de autómata finito no determinístico.
- 3.7 Equivalencia entre los autómatas finitos determinísticos y no determinísticos.
- 3.8 Cerradura bajo operaciones regulares.
- 3.9 Lema de bombeo para autómatas.

4. Autómatas de Pila y Lenguajes libres de contexto

- 4.1 Definición formal de gramáticas libres de contexto.
- 4.2 Ejemplos de gramáticas libres de contexto.
- 4.3 Diseño de gramáticas libres de contexto.
- 4.4 Ambigüedad.
- 4.5 Forma Normal de Chomsky.
- 4.6 Definición formal de Autómatas de Pila.
- 4.7 Ejemplos de Autómatas de Pila.
- 4.8 Equivalencia entre los Autómatas de Pila y las Gramáticas Libres de Contexto.
- 4.9 Lenguajes no libres de contexto.
- 4.10 El lema del bombeo para lenguajes libres de contexto.

5. Máquinas de Turing y Computabilidad Efectiva

- 5.1 La Tesis de Turing-Church.
- 5.2 Definición formal de Máquina de Turing.

COORDINACIÓN
GENERAL DE EDUCACIÓN

MEDIA SUPERIOR Y SUPERIOR

E.P.

- 5.3 Ejemplos de Máquinas de Turing.
- 5.4 Variantes de Máquinas de Turing.
- 5.5 Enumeradores.
- 5.6 Equivalencia con otros modelos.
- 5.7 Definición de Algoritmos.
- 5.8 Los problemas de Hilbert.
- 5.9 Terminología para describir las diferentes Máquinas de Turing

6. Decibilidad

- 6.1 Lenguajes Decidibles.
- 6.2 El problema de paro.
- 6.3 Algunos otros problemas indecidibles.
- 6.4 Funciones computables.
- 6.5 Mapeos para reducibilidad.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora portátil, dispositivos de plataformas de ejemplo y el proyector de video. Asimismo, se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprenderá tres evaluaciones parciales y un examen final.

Las evaluaciones serán escritas. Además se considerará el trabajo extraclase, la participación durante las sesiones del curso y la asistencia a las asesorías.

La suma de todos los criterios y procedimientos de evaluación y acreditación deberán integrar el 100% de la calificación.

BIBLIOGRAFÍA

Bibliografía básica:

- Introduction to the theory of computation, Sipser, Michael, Course Technology, 2006, 2^a ed.
- Automata theory with modern applications, Anderson, James A., Cambridge University Press;
 2006
- Automata and computability, Dexter C. Kozen, Springer; 1997.
- Computability, complexity, and languages, Davis, M. D.; Sigal, R., Weyuker, Elaine; Morgan Kaufmann, Academic press professional, 1994.

Bibliografía de consulta:

- Introduction to automata theory, languages, and computation, Hopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D., Addison Wesley, 2000, 2^a ed.
- Introduction to Algorithms, Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford, The Mit press, 2001, 2^a ed.
- Autómatas Compiladores: Principios, técnicas y herrramientas, Aho; Alfred V., Sethi; Ravi, Ullman; Jeffrey D., Pearson, 1998.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero en computación o en Sistemas computacionales con Maestría en computación o Doctorado en computación

