

SEQUENCE LISTING

<110> Michael Moore
Yen Choo
Aaron Klug

<120> ENGINEERED ZINC FINGER PROTEINS FOR REGULATION OF GENE EXPRESSION

<130> 8325-0038 (S38-US1)

<140> 10/572,886
<141> 2006-10-03

<150> PCT/US2004/030606
<151> 2004-09-17

<150> 60/504,502
<151> 2003-09-19

<160> 53

<170> PatentIn version 3.3

<210> 1
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind with target mammalian sequences

<400> 1

Arg Ser Asp His Leu Ser Arg
1 5

<210> 2
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind with target mammalian sequences

<400> 2

Asp Asn Arg Asp Arg Thr Lys
1 5

<210> 3
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 3

Asp Arg Lys Thr Leu Ile Glu
1 5

<210> 4
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 4

Thr Ser Ser Gly Leu Ser Arg
1 5

<210> 5
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 5

Arg Ser Asp His Leu Ser Glu
1 5

<210> 6
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 6

Thr Ser Ser Asp Arg Thr Lys
1 5

<210> 7

<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 7

Arg Asp His Arg
1

<210> 8
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 8

Asp Arg Asp Lys
1

<210> 9
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 9

Asp Lys Thr Glu
1

<210> 10
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 10

Thr Ser Gly Arg
1

<210> 11
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 11

Arg Asp His Glu
1

<210> 12
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered portion of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 12

Thr Ser Asp Lys
1

<210> 13
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered linker sequence of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 13

Thr Gly Glu Lys Pro
1 5

<210> 14
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered linker sequence of a zinc finger peptide designed to bind
with target mammalian sequences

<400> 14

Thr Gly Gly Gln Arg Pro
1 5

<210> 15
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered linker sequence of a zinc finger peptide designed to bind with target mammalian sequences

<400> 15

Thr Gly Gln Lys Pro
1 5

<210> 16
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered linker sequence of a zinc finger peptide designed to bind with target mammalian sequences

<400> 16

Thr Gly Ser Gln Lys Pro
1 5

<210> 17
<211> 18
<212> DNA
<213> Homo sapiens

<400> 17
acccgggttc ccctcggg 18

<210> 18
<211> 25
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<222> (2)..(5)
<223> Xaa can be any naturally occurring amino acid and up to 2 residues may be absent

<220>

<221> misc_feature
<222> (7)..(18)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> misc_feature
<222> (20)..(24)
<223> Xaa can be any naturally occurring amino acid and up to 2 residues may be absent

<400> 18

Cys Xaa Xaa Xaa Xaa Cys Xaa
1 5 10 15

Xaa Xaa His Xaa Xaa Xaa Xaa Xaa His
20 25

<210> 19
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered linker sequence of a zinc finger peptide designed to bind with target mammalian sequences

<400> 19

Thr Gly Glu Lys Pro
1 5

<210> 20
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Engineered linker sequence of a zinc finger peptide designed to bind with target mammalian sequences

<400> 20

Leu Arg Gln Lys Asp Gly Glu Arg Pro
1 5

<210> 21
<211> 4
<212> PRT
<213> Artificial Sequence

<220>

<223> Engineered linker sequence of a zinc finger peptide designed to bind with target mammalian sequences

<400> 21

Gly Gly Arg Arg
1

<210> 22

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Engineered linker sequence of a zinc finger peptide designed to bind with target mammalian sequences

<400> 22

Gly Gly Gly Gly Ser
1 5

<210> 23

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Engineered linker sequence of a zinc finger peptide designed to bind with target mammalian sequences

<400> 23

Gly Gly Arg Arg Gly Gly Ser
1 5

<210> 24

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Engineered linker sequence of a zinc finger peptide designed to bind with target mammalian sequences

<400> 24

Leu Arg Gln Arg Asp Gly Glu Arg Pro
1 5

<210> 25

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Engineered linker sequence of a zinc finger peptide designed to bind with target mammalian sequences

<400> 25

Leu Arg Gln Lys Asp Gly Gly Ser Glu Arg Pro
1 5 10

<210> 26

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> Engineered linker sequence of a zinc finger peptide designed to bind with target mammalian sequences

<400> 26

Leu Arg Gln Lys Asp Gly Gly Ser Gly Gly Ser Glu Arg Pro
1 5 10 15

<210> 27

<211> 181

<212> PRT

<213> Artificial Sequence

<220>

<223> Zinc finger protein designed to bind to a target sequence in the human CHK2 gene

<400> 27

Met Ala Glu Arg Pro Phe Gln Cys Arg Ile Cys Met Arg Asn Phe Ser
1 5 10 15

Arg Ser Asp His Leu Ser Arg His Ile Arg Thr His Thr Gly Glu Lys
20 25 30

Pro Phe Ala Cys Asp Ile Cys Gly Arg Lys Phe Ala Asp Asn Arg Asp
35 40 45

Arg Thr Lys His Thr Lys Ile His Thr Gly Gly Gln Arg Pro Tyr Ala
50 55 60

Cys Pro Val Glu Ser Cys Asp Arg Arg Phe Ser Asp Arg Lys Thr Leu
65 70 75 80

Ile Glu His Ile Arg Ile His Thr Gly Gln Lys Pro Phe Gln Cys Arg
85 90 95

Ile Cys Met Arg Asn Phe Ser Thr Ser Ser Gly Leu Ser Arg His Ile
100 105 110

Arg Thr His Thr Gly Ser Gln Lys Pro Phe Gln Cys Arg Ile Cys Met
115 120 125

Arg Asn Phe Ser Arg Ser Asp His Leu Ser Glu His Ile Arg Thr His
130 135 140

Thr Gly Glu Lys Pro Phe Ala Cys Asp Ile Cys Gly Arg Lys Phe Ala
145 150 155 160

Thr Ser Ser Asp Arg Thr Lys His Thr Lys Ile His Leu Arg Gln Lys
165 170 175

Asp Ala Ala Arg Asn
180

<210> 28
<211> 6308
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(6308)
<223> Double stranded DNA sequence

<220>
<221> CDS
<222> (956)..(1849)

<400> 28
gacggatcg gagatctccc gatcccstat ggtcgactct cagtacaatc tgctctgatg 60
ccgcatagtt aagccagtt ctgctccctg ctttgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatt aagaatctgc 180
ttagggttag gcgtttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240
gattattgac tagtattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300
tggagttccg cgttacataa cttacggtaa atggccccgc tggctgaccg cccaacgacc 360

cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggacttcc	420
attgacgtca atgggtggac tatttacggt aaactgccc cttggcagta catcaagtgt	480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt	540
atgcccagta catgacccta tggacttgc ctacttgca gtacatctac gtattagtca	600
tcgctattac catggtgatg cggtttggc agtacatcaa tggcgtgga tagcggttg	660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tggagtttgc tttggcacc	720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcgc	780
gtaggcgtgt acgggtggag gtcttatataa gcagagctct ctggctaact agagaaccca	840
ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc	900
gtttaaactt aagctgatcc actagtccag tgtggtggaa ttgcgttagcg ccacc atg Met 1	958
 gcc ccc aag aag aag agg aag gtg gga atc gat ggg gta ccc ttc cag Ala Pro Lys Lys Lys Arg Lys Val Gly Ile Asp Gly Val Pro Phe Gln 5 10 15	1006
 tgt cga atc tgc atg cgt aac ttc agt cgt agt gac cac ctg agc cg Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser Asp His Leu Ser Arg 20 25 30	1054
 cac atc cgc acc cac aca ggc gag aag cct ttt gcc tgt gac att tgt His Ile Arg Thr His Thr Gly Glu Lys Pro Phe Ala Cys Asp Ile Cys 35 40 45	1102
 ggg agg aaa ttt gcc gac aac cgg gac cgc aca aag cat acc aag ata Gly Arg Lys Phe Ala Asp Asn Arg Asp Arg Thr Lys His Thr Lys Ile 50 55 60 65	1150
 cac acg ggc gga cag cgg ccg tac gca tgc cct gtc gag tcc tgc gat His Thr Gly Gly Gln Arg Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp 70 75 80	1198
 cgc cgc ttt tct gac agg aag aca ctt atc gag cat atc cgc atc cac Arg Arg Phe Ser Asp Arg Lys Thr Leu Ile Glu His Ile Arg Ile His 85 90 95	1246
 acc ggt cag aag ccc ttc cag tgt cga atc tgc atg cgt aac ttc agt Thr Gly Gln Lys Pro Phe Gln Cys Arg Ile Cys Met Arg Asn Phe Ser 100 105 110	1294
 acc agc agc ggg ctg agc cgc cac atc cgc acc cac aca gga tct cag Thr Ser Ser Gly Leu Ser Arg His Ile Arg Thr His Thr Gly Ser Gln 115 120 125	1342
 aag ccc ttc cag tgt cga atc tgc atg cgt aac ttc agt cgt agt gac Lys Pro Phe Gln Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser Asp 130 135 140 145	1390

cac ctg agc gaa cac att cgc acc cac aca ggc gag aag cct ttt gcc His Leu Ser Glu His Ile Arg Thr His Thr Gly Glu Lys Pro Phe Ala 150 155 160	1438
tgt gac att tgt ggg agg aaa ttt gcc acc agc agc gac cgc aca aag Cys Asp Ile Cys Gly Arg Lys Phe Ala Thr Ser Ser Asp Arg Thr Lys 165 170 175	1486
cat acc aag ata cac ctg cgc caa aaa gat gcg gcc cg gga tcc ggc His Thr Lys Ile His Leu Arg Gln Lys Asp Ala Ala Arg Gly Ser Gly 180 185 190	1534
atg gat gct aag tca cta act gcc tgg tcc cg aca ctg gtg acc ttc Met Asp Ala Lys Ser Leu Thr Ala Trp Ser Arg Thr Leu Val Thr Phe 195 200 205	1582
aag gat gta ttt gtg gac ttc acc agg gag gag tgg aag ctg ctg gac Lys Asp Val Phe Val Asp Phe Thr Arg Glu Glu Trp Lys Leu Leu Asp 210 215 220 225	1630
act gct cag cag atc gtg tac aga aat gtg atg ctg gag aac tat aag Thr Ala Gln Gln Ile Val Tyr Arg Asn Val Met Leu Glu Asn Tyr Lys 230 235 240	1678
aac ctg gtt tcc ttg ggt tat cag ctt act aag cca gat gtg atc ctc Asn Leu Val Ser Leu Gly Tyr Gln Leu Thr Lys Pro Asp Val Ile Leu 245 250 255	1726
cgg ttg gag aag gga gaa gag ccc tgg ctg gtg gag aga gaa att cac Arg Leu Glu Lys Gly Glu Pro Trp Leu Val Glu Arg Glu Ile His 260 265 270	1774
caa gag acc cat cct gat tca gag act gca ttt gaa atc aaa tca tca Gln Glu Thr His Pro Asp Ser Glu Thr Ala Phe Glu Ile Lys Ser Ser 275 280 285	1822
gtt gac tac aag gac gac gat gac aag taagcttctc gagtctagct Val Asp Tyr Lys Asp Asp Asp Asp Lys 290 295	1869
agagggccccg tttaaaccccg ctgatcagcc tcgactgtgc cttctagttg ccagccatct	1929
gttgtttgcc cctccccgt gccttccttg accctggaag gtgccactcc cactgtcctt	1989
tcctaataaa atgagggaaat tgcatcgcat tgtctgagta ggtgtcattc tattctgggg	2049
ggtggggtgg ggcaggacag caagggggag gattgggaag acaatagcag gcatgctggg	2109
gatgcggtgg gctctatggc ttctgaggcg gaaagaacca gctggggctc taggggtat	2169
ccccacgcgc cctgtacgcgg cgcattaagc gcggcgggtg tggtggttac gcgcagcgtg	2229
accgctacac ttgccagcgc cctagcgccc gtcctttcg ctttcttccc ttcccttctc	2289
gccacgttcg ccggcttcc ccgtcaagct ctaaatcggg gcatccctt agggttccga	2349

ttagtgctt tacggcacct cgacccaaa aaacttgatt agggtgatgg ttcacgtagt	2409
ggccatcg cctgatacgc gttttcgc ctttgcgt tggagtccac gttcttaat	2469
agtggactct tttccaaac tggacaaca ctaacccta tctcggtcta ttctttgat	2529
ttataaggga tttgggat ttcggcctat tggtaaaaa atgagctgat ttaacaaaaa	2589
tttaacgcga attaattctg tggaatgtgt gtcagttagg gtgtggaaag tccccaggct	2649
ccccaggcag gcagaagtat gcaaagcatg catctcaatt agtcagcaac caggtgtgga	2709
aagtccccag gctcccagc aggcagaagt atgcaaagca tgcatactcaa ttagtcagca	2769
accatagtcc cggcccta ac tccgcccata cggccctaa ctccgcccag ttccgcccata	2829
tctccgcccc atggctgact aattttttt atttatgcag aggccgaggc cgcctctgcc	2889
tctgagctat tccagaagta gtgaggaggc tttttggag gcctaggctt ttgcaaaaag	2949
ctcccgggag cttgtatatac cattttcgga tctgatcaag agacaggatg aggatcgaaa	3009
cgcattgtt aacaagatgg attgcacgca ggttctccgg ccgcttgggt ggagaggcta	3069
ttcggctatg actgggcaca acagacaatc ggctgctctg atgcccgggt gttccggctg	3129
tcagcgcagg ggcccgggt tcttttgc aagaccgacc tgcgttgtc cctgaatgaa	3189
ctgcaggacg aggcagcgcg gctatcggtt ctggccacga cggcggttcc ttgcgcagct	3249
gtgctcgacg ttgtcactga agcgggaagg gactggctgc tattggcga agtgcgggg	3309
caggatctcc tgtcatctca cttgtctcct gccgagaaag tatccatcat ggctgatgca	3369
atgcggcggc tgcatcgct tgatccggct acctgcccatt tcgaccacca agcggaaacat	3429
cgcattcgagc gagcacgtac tcggatggaa gccggctttc tcgatcagga tgatctggac	3489
gaagagcatc aggggctcgc gccagccgaa ctgttcgcca ggctcaaggc gcgcattgccc	3549
gacggcgagg atctcgctgt gacccatggc gatgcctgtc tgccgaatat catggggaa	3609
aatggccgct tttctggatt catcgactgt ggccggctgg gtgtggcgga ccgcattcag	3669
gacatagcgt tggctacccg tgatattgct gaagagcttgc gcggcgaatg ggctgaccgc	3729
ttcctcggtc tttacggat cggcgctccc gattcgacgc gcatgcctt ctatgcctt	3789
cttgcacgagt tcttctgagc gggactctgg ggttcgaaat gaccgaccaa gcgcacgccc	3849
acctgcccattc acgagatttc gattccaccg ccgccttcta taaaagggttgg ggcttcggaa	3909
tcgtttccg ggacgcccggc tggatgatcc tccagcgcgg gatctcatg ctggagttct	3969
tcgcccaccc caacttgcattt attgcagctt ataatggta caaataaagc aatagcatca	4029
caaatttcac aaataaagca ttttttcac tgcattctag ttgtggtttgc tccaaactca	4089

tcaatgtatc ttatcatgtc tgtataccgt cgacctctag ctagagcttg gcgtaatcat	4149
ggtcatacgct gtttcctgtg tgaattgtt atccgctcac aattccacac aacatac gag	4209
ccggaagcat aaagtgtaaa gcctggggtg cctaattgactt gagctaactc acattaattt	4269
cgttgcgctc actgcccgtt ttccagtcgg gaaacctgtc gtgccagctg catatatgaa	4329
tcggccaacg cgccccggaga ggcgggttgc gtattggcg ctcttcgct tcctcgctca	4389
ctgactcgct ggcgtcggtc gttcggctgc ggcgagcggt atcagctcac tcaaaggcg	4449
taatacggtt atccacagaa tcagggata acgcaggaaa gaacatgtga gcaaaaggcc	4509
agcaaaaggc caggaaccgt aaaaaggccg cgttgctggc gttttccat aggctccgccc	4569
cccctgacga gcatcacaaa aatcgacgct caagtcagag gtggcgaaac ccgacaggac	4629
tataaagata ccaggcgaaa cccctggaa gctccctcggt ggcgtctcct gttccgacccc	4689
tgccgcttac cgatcacctg tccgccttc tcccttcggg aagcgtggcg ctttctcaat	4749
gctcacgctg taggtatctc agttcggtgt aggtcggtcg ctccaagctg ggctgtgtgc	4809
acgaacccccc cggtcagccg gaccgctgctg ctttatccgg taactatcgat ttgagtc	4869
acccggtaag acacgactta tcgcccactgg cagcagccac tggtaacagg attagcagag	4929
cgaggtatgt aggcggtgct acagagttct tgaagtgggt gcctaactac ggctacacta	4989
gaaggacagt atttggtatac tgcgtctgc tgaagccagt taccttcgggaaaagatgtt	5049
gtagcttttgc atccggcaaa caaaccaccg ctggtagcgg tggttttttt gtttgc	5109
agcagattac ggcgcagaaaa aaaggatctc aagaagatcc tttgatctt tctacgggg	5169
ctgacgctca gtggAACGAA aactcacgtt aagggatTTT ggtcatgaga ttatcaaaaa	5229
ggatcttcac ctatccctt ttaaattttttt aatgaagttt taaatcaatc taaagtat	5289
atgagtaaac ttgggtctgac agttaccaat gcttaatcag tgaggcacct atctcagcga	5349
tctgtctatt tcgttcatcc atagttgcct gactccccgt cgtgttagata actacgatac	5409
gggaggggctt accatctggc cccagtgtcg caatgatacc gcgagaccca cgctcaccgg	5469
ctccagattt atcagcaata aaccagccag ccggaaaggc cgagcgcaga agtggcctg	5529
caactttatc cgcctccatc cagtcttattt attgtgtccg ggaagctaga gtaagtagtt	5589
cgccagttaa tagttgcgc aacgttggggccatgctac aggcacgtg gtgtcacgt	5649
cgtcgtttgg tatggcttca ttccagtcgg gttcccaacg atcaaggcga gttacatgtat	5709
ccccatgtt gtgcaaaaaaaaa gcggttagct cttcggtcc tccgatcgatgtt gtcagaagta	5769

agtggccgc agtgttatca ctcatggtta tggcagcact gcataattct cttactgtca	5829
tgcacatccgt aagatgcttt tctgtgactg gtgagtactc aaccaagtca ttctgagaat	5889
agtgtatgcg gcgaccgagt tgctcttgcc cggcgtcaat acgggataat accgcgccac	5949
atagcagaac tttaaaagtg ctcatcattt gaaaacgttc ttcggggcga aaactctcaa	6009
ggatcttacc gctgttggaa tccagttcga tgtaacccac tcgtgcaccc aactgatctt	6069
cagcatctt tactttcacc agcgttctg ggtgagcaaa aacaggaagg caaaatgccg	6129
caaaaaaggg aataagggcg acacggaaat gttgaatact catactcttc cttttcaat	6189
attattgaag catttatcag gtttattgtc tcatgagcgg atacatattt gaatgtattt	6249
agaaaaataa acaaataaggg gttccgcgca cattttccccg aaaagtgcaca cctgacgtc	6308

<210> 29	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic oligonucleotide sequence for RNA analysis	
<400> 29	
ccgaacatac agcaagaaac actt	24

<210> 30	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic oligonucleotide sequence for RNA analysis	
<400> 30	
tccattgcua ctgtgatctt cta	23

<210> 31	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic oligonucleotide sequence for RNA analysis	
<400> 31	
cggattttca gggaaagtggg tcctaa	26

<210> 32

<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic oligonucleotide sequence for RNA analysis		
<400> 32		
gctggagtgc agtgggtgat		20
<210> 33		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic oligonucleotide sequence for RNA analysis		
<400> 33		
tgactgttagg ccaagctaat tgg		23
<210> 34		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic oligonucleotide sequence for RNA analysis		
<400> 34		
ttggctcact gcaagctctg ccct		24
<210> 35		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic oligonucleotide sequence for RNA analysis		
<400> 35		
ccagcaaact ggtgctcaag		20
<210> 36		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic oligonucleotide sequence for RNA analysis		
<400> 36		
agtccaatgt ccagcccatg a		21

<210> 37	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic oligonucleotide sequence for RNA analysis	
<400> 37	
caccaagggtg ccggaaactga tcaga	25
<210> 38	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic oligonucleotide sequence for RNA analysis	
<400> 38	
agagaccat cctgattcag a	21
<210> 39	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic oligonucleotide sequence for RNA analysis	
<400> 39	
agctcggtac cttacagatc t	21
<210> 40	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic oligonucleotide sequence for RNA analysis	
<400> 40	
ctgcatttga aatcaaatc	19
<210> 41	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic oligonucleotide sequence for RNA analysis	

<400> 41	
ttccgataac gaacgagact ct	22
<210> 42	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic oligonucleotide sequence for RNA analysis	
<400> 42	
tggctgaacg ccacttgtc	19
<210> 43	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic oligonucleotide sequence for RNA analysis	
<400> 43	
taactatgtta cgcgacccccc gag	23
<210> 44	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic oligonucleotide sequence for RNA analysis	
<400> 44	
cctttgcag accacagtcc a	21
<210> 45	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic oligonucleotide sequence for RNA analysis	
<400> 45	
gcagggatga tggctggag a	21
<210> 46	
<211> 23	
<212> DNA	
<213> Artificial Sequence	

<220>
<223> Synthetic oligonucleotide sequence for RNA analysis

<400> 46
cactgccacc cagaagactg tgg 23

<210> 47
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide sequence for RNA analysis

<400> 47
agcaaagaga gcgtctaacc aga 23

<210> 48
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide sequence for RNA analysis

<400> 48
cctcaatgcc tcctggga 18

<210> 49
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide sequence for RNA analysis

<400> 49
cgggttctaa gttccgctct cccttctaaa 30

<210> 50
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide sequence for RNA analysis

<400> 50
acatcaagaa ggtggtaag 20

<210> 51

```

<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide sequence for RNA analysis

<400> 51
agcttgacaa agtggtcgtt g 21

<210> 52
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide sequence for RNA analysis

<400> 52
cactgagcac caggtggtct cct 23

<210> 53
<211> 180
<212> PRT
<213> Artificial Sequence

<220>
<223> Zinc finger protein designed to bind to a target sequence in the rat phospholamban gene

<400> 53

Met Ala Glu Arg Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Arg
1 5 10 15

Phe Ser Thr Ser Ala Asp Leu Thr Glu His Ile Arg Ile His Thr Gly
20 25 30

Gln Lys Pro Phe Gln Cys Arg Ile Cys Met Arg Asn Phe Ser Ala Ser
35 40 45

Ala Asn Leu Ser Arg His Ile Arg Thr His Thr Gly Gly Glu Arg Pro
50 55 60

Phe Gln Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser Asp Ala Leu
65 70 75 80

Ser Thr His Ile Arg Thr His Thr Gly Glu Lys Pro Phe Ala Cys Asp
85 90 95

```

Ile Cys Gly Arg Lys Phe Ala Asp Arg Ser Thr Arg Thr Lys His Thr
100 105 110

Lys Ile His Thr Gly Ser Gln Lys Pro Phe Gln Cys Arg Ile Cys Met
115 120 125

Arg Asn Phe Ser Arg Ser Asp Val Leu Ser Ala His Ile Arg Thr His
130 135 140

Thr Gly Glu Lys Pro Phe Ala Cys Asp Ile Cys Gly Lys Lys Phe Ala
145 150 155 160

Asp Arg Ser Asn Arg Ile Lys His Thr Lys Ile His Leu Arg Gln Lys
165 170 175

Asp Ala Ala Arg
180