

Finite Fields

Figure 5.1 Groups, Rings, and Fields

Groups

- A set of elements with a binary operation denoted by that associates to each ordered pair (a,b) of elements in G an element (a
 b) in G, such that the following axioms are obeyed:
 - (A1) Closure:
 - If a and b belong to G, then a b is also in G
 - (A2) Associative:
 - $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all a, b, c in G
 - (A₃) Identity element:
 - There is an element e in G such that $a \cdot e = e \cdot a = a$ for all a in G
 - (A4) Inverse element:
 - For each a in G, there is an element a^1 in G such that $a \cdot a^1 = a^1 \cdot a = e$
 - (A5) Commutative:
 - $a \cdot b = b \cdot a$ for all a, b in G

Cyclic Group

- Exponentiation is defined within a group as a repeated application of the group operator, so that $a^3 = a \cdot a$
- We define $a^o = e$ as the identity element, and $a^{-n} = (a')^n$, where a' is the inverse element of a within the group
- A group G is cyclic if every element of G is a power a^k (k is an integer) of a fixed element a ∈ G
- The element a is said to generate the group G or to be a generator of G
- A cyclic group is always abelian and may be finite or infinite

Rings

A ring R, sometimes denoted by $\{R, +, *\}$, is a set of elements with two binary operations, called addition and multiplication, such that for all a, b, c in R the following axioms are obeyed:

$(A_{1}-A_{5})$

R is an abelian group with respect to addition; that is, R satisfies axioms A1 through A5. For the case of an additive group, we denote the identity element as o and the inverse of a as -a

(M₁) Closure under multiplication:

If a and b belong to R, then ab is also in R

(M₂) Associativity of multiplication:

$$a(bc) = (ab)c$$
 for all a, b, c in R

(M₃) Distributive laws:

$$a(b+c) = ab + ac$$
 for all a, b, c in R
 $(a+b)c = ac + bc$ for all a, b, c in R

• In essence, a ring is a set in which we can do addition, subtraction [a - b = a + (-b)], and multiplication without leaving the set

Rings (cont.)

 A ring is said to be commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication:

ab = ba for all a, b in R

 An integral domain is a commutative ring that obeys the following axioms.

(M₅) Multiplicative identity:

There is an element 1 in R such that $a_1 = 1a = a$ for all a in R

(M6) No zero divisors:

If a, b in R and ab = o, then either a = o or b = o

Fields

A field F, sometimes denoted by {F, +,* }, is a set of elements with two binary operations, called addition and multiplication, such that for all a, b, c in F the following axioms are obeyed:

(A1-M6)

F is an **integral domain**; that is, F satisfies axioms A1 through A5 and M1 through M6

(M7) Multiplicative inverse:

For each a in F, except o, there is an element a^{-1} in F such that $aa^{-1} = (a^{-1})a = 1$

In essence, a field is a set in which we can do addition, subtraction, multiplication, and division without leaving the set. Division is defined with the following rule: $a/b = a(b^{-1})$

Familiar examples of fields are the rational numbers, the real numbers, and the complex numbers. Note that the set of all integers is not a field, because not every element of the set has a multiplicative inverse.

Figure 5.2 Properties of Groups, Rings, and Fields

Figure 5.3 Types of Fields

Finite Fields of the Form GF(p)

- Finite fields play a crucial role in many cryptographic algorithms
- It can be shown that the order of a finite field must be a power of a prime pⁿ, where n is a positive integer
 - The finite field of order p^n is generally written $GF(p^n)$
 - GF stands for Galois field, in honor of the mathematician who first studied finite fields

Table 5.1(a)

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

(a) Addition modulo 8

Table 5.1(b)

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

(b) Multiplication modulo 8

Table 5.1(c)

w	-w	w^{-1}
0	0	-
1	7	1
2	6	
3	5	3
4	4	_
5	3	5
6	2	
7	1	7

(c) Additive and multiplicative inverses modulo 8

Table 5.1(d)

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

(d) Addition modulo 7

Table 5.1(e)

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

(e) Multiplication modulo 7

Table 5.1(f)

w	-w	w^{-1}
0	0	_
1	6	1
2	5	4
3	4	5
4	3	2
5	2	3
6	1	6

(f) Additive and multiplicative inverses modulo 7

In this section, we have shown how to construct a finite field of order p, where p is prime.

GF(p) is defined with the following properties:

- 1. GF(p) consists of p elements
- 2. The binary operations + and * are defined over the set. The operations of addition, subtraction, multiplication, and division can be performed without leaving the set. Each element of the set other than o has a multiplicative inverse
- We have shown that the elements of GF(p) are the integers {0, 1, ..., p 1} and that the arithmetic operations are addition and multiplication mod p

Figure 5.4 Treatment of Polynomials

$$x^{3} + x^{2} + 2$$

$$+ (x^{2} - x + 1)$$

$$x^{3} + 2x^{2} - x + 3$$

(a) Addition

$$x^{3} + x^{2} + 2$$

$$- (x^{2} - x + 1)$$

$$x^{3} + x + 1$$

(b) Subtraction

(c) Multiplication

$$\begin{array}{r}
 x + 2 \\
 x^{2} - x + 1 \overline{\smash)x^{3} + x^{2}} + 2 \\
 \underline{x^{3} - x^{2} + x} \\
 \underline{x^{2} - x + 2} \\
 \underline{2x^{2} - 2x + 2} \\
 x
 \end{array}$$

(d) Division

Figure 5.5 Examples of Polynomial Arithmetic

Polynomial Arithmetic With Coefficients in Z_p

- If each distinct polynomial is considered to be an element of the set, then that set is a ring
- When polynomial arithmetic is performed on polynomials over a field, then division is possible
 - Note: this does not mean that exact division is possible
- If we attempt to perform polynomial division over a coefficient set that is not a field, we find that division is not always defined
 - Even if the coefficient set is a field, polynomial division is not necessarily exact
 - With the understanding that remainders are allowed, we can say that polynomial division is possible if the coefficient set is a field

Polynomial Division

We can write any polynomial in the form:

$$f(x) = q(x) g(x) + r(x)$$

- r(x) can be interpreted as being a remainder
- So $r(x) = f(x) \mod g(x)$
- If there is no remainder we can say g(x) divides f(x)
 - Written as g(x) | f(x)
 - We can say that g(x) is a **factor** of f(x)
 - Or g(x) is a **divisor** of f(x)
- A polynomial f(x) over a field F is called **irreducible** if and only if f(x) cannot be expressed as a product of two polynomials, both over F, and both of degree lower than that of f(x)
 - An irreducible polynomial is also called a prime polynomial

Example of Polynomial Arithmetic Over GF(2)

(Figure 5.6 can be found on page 137 in the textbook)

$$x^{7} + x^{5} + x^{4} + x^{3} + x + 1$$

$$+ (x^{3} + x + 1)$$

$$x^{7} + x^{5} + x^{4}$$

(a) Addition

$$x^{7} + x^{5} + x^{4} + x^{3} + x + 1$$

$$-(x^{3} + x + 1)$$

$$x^{7} + x^{5} + x^{4}$$

(b) Subtraction

(c) Multiplication

(d) Division

Figure 5.6 Examples of Polynomial Arithmetic over GF(2)

Polynomial GCD

- The polynomial c(x) is said to be the greatest common divisor of a(x) and b(x) if the following are true:
 - c(x) divides both a(x) and b(x)
 - Any divisor of a(x) and b(x) is a divisor of c(x)
- An equivalent definition is:
 - gcd[a(x), b(x)] is the **polynomial of maximum degree** that divides both a(x) and b(x)
- The Euclidean algorithm can be extended to find the greatest common divisor of two polynomials whose coefficients are elements of a field

Table 5.2(a) Arithmetic in GF(2³)

		000	001	010	011	100	101	110	111
	+	0	1	2	3	4	5	6	7
000	0	0	1	2	3	4	5	6	7
001	1	1	0	3	2	5	4	7	6
010	2	2	3	0	1	6	7	4	5
011	3	3	2	1	0	7	6	5	4
100	4	4	5	6	7	0	1	2	3
101	5	5	4	7	6	1	0	3	2
110	6	6	7	4	5	2	3	0	1
111	7	7	6	5	4	3	2	1	0

Table 5.2(b) Arithmetic in GF(2³)

		000	001	010	011	100	101	110	111
	×	0	1	2	3	4	5	6	7
000	0	0	0	0	0	0	0	0	0
001	1	0	1	2	3	4	5	6	7
010	2	0	2	4	6	3	1	7	5
011	3	0	3	6	5	7	4	1	2
100	4	0	4	3	7	6	2	5	1
101	5	0	5	1	4	2	7	3	6
110	6	0	6	7	1	5	3	2	4
111	7	0	7	5	2	1	6	4	3

(b) Multiplication

Table 5.2(c)

Arithmetic in GF(2³)

w	-w	w^{-1}
0	0	_
-1	1	1
2	2	5
3	3	6
4	4	7
5	5	2
6	6	3
7	7	4

(c) Additive and multiplicative inverses

Table 5.3 (page 144 in textbook)

Polynomial Arithmetic Modulo $(x^3 + x + 1)$

		000	001	010	011	100	101	110	111
	+	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	x	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	x	х	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x + 1	X	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	x + 1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	х
110	$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	X	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x + 1	x	1	0

(a) Addition

		000	001	010	011	100	101	110	111
	×	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	x	0	x	x^2	$x^2 + x$	<i>x</i> + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	х
100	x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	X	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	x	x^2
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	Х	1	$x^2 + x$	x^2	x + 1

(b) Multiplication

Table 5.4 Extended Euclid $[(x^8 + x^4 + x^3 + x + 1), (x^7 + x + 1)]$

Initialization	$a(x) = x^8 + x^4 + x^3 + x + 1; v_{-1}(x) = 1; w_{-1}(x) = 0$
	$b(x) = x^7 + x + 1; v_0(x) = 0; w_0(x) = 1$
Iteration 1	$q_1(x) = x$; $r_1(x) = x^4 + x^3 + x^2 + 1$
	$v_1(x) = 1; w_1(x) = x$
Iteration 2	$q_2(x) = x^3 + x^2 + 1; r_2(x) = x$
	$v_2(x) = x^3 + x^2 + 1; w_2(x) = x^4 + x^3 + x + 1$
Iteration 3	$q_3(x) = x^3 + x^2 + x; r_3(x) = 1$
	$v_3(x) = x^6 + x^2 + x + 1; w_3(x) = x^7$
Iteration 4	$q_4(x) = x; r_4(x) = 0$
	$v_4(x) = x^7 + x + 1; w_4(x) = x^8 + x^4 + x^3 + x + 1$
Result	$d(x) = r_3(x) = \gcd(a(x), b(x)) = 1$
	$w(x) = w_3(x) = (x^7 + x + 1)^{-1} \bmod (x^8 + x^4 + x^3 + x + 1) = x^7$

(Table 5.4 can be found on page 146 in textbook)

Computational Considerations

- Since coefficients are o or 1, they can represent any such polynomial as a bit string
- Addition becomes XOR of these bit strings
- Multiplication is shift and XOR
 - cf long-hand multiplication
- Modulo reduction is done by repeatedly substituting highest power with remainder of irreducible polynomial (also shift and XOR)

Using a Generator

- A generator g of a finite field F of order q
 (contains q elements) is an element whose first q-1
 powers generate all the nonzero elements of F
 - The elements of F consist of $0, g^0, g^1, \ldots, g^{q-2}$
- Consider a field F defined by a polynomial fx
 - An element b contained in F is called a **root** of the polynomial if f(b) = 0
- Finally, it can be shown that a root g of an irreducible polynomial is a generator of the finite field defined on that polynomial

Table 5.5

Generator for GF(23) using x3 + x + 1

Power Representation	Polynomial Representation	Binary Representation	Decimal (Hex) Representation		
0	0	000	0		
$g^0 (= g^7)$	1	001	1		
g^1	g	010	2		
g^2	g^2	100	4		
g^3	g + 1	011	3		
g^4	$g^2 + g$	110	6		
g^5	g^5 $g^2 + g + 1$		7		
g^6 $g^2 + 1$		101	5		

Table 5.6 (page 150 in textbook)

GF(23) Arithmetic Using Generator for the Polynomial $(x^3 + x + 1)$

		000	001	010	100	011	110	111	101
	+	0	1	G	g^2	g^3	g^4	g^5	g^6
000	0	0	1	G	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$
001	1	1	0	g + 1	$g^2 + 1$	g	$g^2 + g + 1$	$g^2 + g$	g^2
010	g	g	g + 1	0	$g^2 + g$	1	g^2	$g^2 + 1$	$g^2 + g + 1$
100	g^2	g^2	$g^2 + 1$	$g^2 + g$	0	$g^2 + g + 1$	g	g + 1	1
011	g^3	g+1	g	1	$g^2 + g + 1$	0	$g^2 + 1$	g^2	$g^2 + g$
110	g^4	$g^2 + g$	$g^2 + g + 1$	g^2	g	$g^2 + 1$	0	1	g + 1
111	g^5	$g^2 + g + 1$	$g^2 + g$	$g^2 + 1$	<i>g</i> + 1	g^2	1	0	g
101	g^6	$g^2 + 1$	g^2	$g^2 + g + 1$	1	$g^2 + g$	g + 1	g	0

(a) Addition

		000	001	010	100	011	110	111	101
	×	0	1	G	g^2	g^3	g^4	g^{5}	g^6
000	0	0	0	0	0	0	0	0	0
001	1	0	1	G	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$
010	g	0	g	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1
100	g^2	0	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g
011	g^3	0	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g	g^2
110	g^4	0	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g	g^2	g + 1
111	g^5	0	$g^2 + g + 1$	$g^2 + 1$	1	g	g^2	g + 1	$g^2 + g$
101	g^6	0	$g^2 + 1$	1	g	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$

(b) Multiplication

Summary

- Groups
 - Abelian group
 - Cyclic group
- Finite fields of the form GF(p)
 - Finite fields of Order p
 - Finding the multiplicative inverse in GF(p)
- Polynomial arithmetic
 - Ordinary polynomial arithmetic
 - Polynomial arithmetic with coefficients in Z_p
 - Finding the greatest common divisor

- Rings
- fields
- Finite fields of the form $GF(2^n)$
 - Motivation
 - Modular polynomial arithmetic
 - Finding the multiplicative inverse
 - Computational considerations
 - Using a generator