Institut für Informatik

Priv.-Doz. Dr. W. Kössler

Aufgaben zur

"Stochastik für Informatiker"

Aufg. 18) (3 P.) (Mittelwerte von unabhängigen, identisch verteilten Zufallsvariablen)

Seien X_1, \dots, X_n unabhängige, identisch verteilte (stetige) Zufallsvariablen. Sei

$$\bar{X} = \frac{1}{n} \cdot (X_1 + \dots + X_n)$$

Bestimmen Sie Erwartungswert und Varianz von \bar{X} , wenn die

- a) X_i auf (0,1) gleichverteilt sind, $X_i \sim R(0,1)$
- **b)** X_i exponential verteilt sind, $X_i \sim E(\lambda)$
- c) X_i normalverteilt sind, $X_i \sim N(\mu, \sigma^2)$

Aufg. 19) (3 P.)

Seien X_1, \ldots, X_n unabhängige, identisch verteilte (stetige) Zufallsvariablen und

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

Zeigen Sie:

$$\mathbf{E}(s_n^2) = V(X_1) = \sigma^2$$

- **Aufg. 20)** Eine Maschine prodiziert Schrauben so, daß die Länge X der Schrauben $X \sim \mathcal{N}(\mu, \sigma^2)$, wobei $\mu = 70mm$ und $\sigma = 2mm$.
 - a) (2 P.) Wieviel Prozent der Schrauben sind kürzer als 69mm, wieviel Prozent der Schrauben sind länger als 73mm?
 - **b)** (2 P.) Wie groß müßte μ bei gleichem σ sein, damit nur 10% der Schrauben kürzer als 70mm sind?