TEMĂ LABORATOR 3

Prof. Luigi-Ionuț Catana

Grupele 231; 232

1.

Efectuăm aruncări succesive a două zaruri echilibrate și suntem interesați in găsirea probabilității evenimentului ca suma 5 (a fețelor celor două zaruri) să apară inaintea sumei 7. Pentru aceasta presupunem că aruncările sunt *independente*.

- 1. Calculați pentru inceput probabilitatea evenimentului E_n : in primele n-1 aruncări nu a apărut nici suma 5 și nici suma 7 iar in a n-a aruncare a apărut suma 5. Concluzionați.
- 2. Aceeași intrebare, dar inlocuind 5 cu 2.

2.

Fie variablia aleatoare $X \sim \begin{pmatrix} -1 & 0 & 1 \\ 0.3 & 0.2 & 0.5 \end{pmatrix}$. Calculați $\mathbb{P}\left(X > -\frac{1}{3}\right)$ și $\mathbb{P}\left(X < \frac{1}{4} \mid X \ge -\frac{1}{2}\right)$.

3.

Fie X o variabilă aleatoare cu valori în \mathbb{N} , așa încat $p_n = \mathbb{P}(X = n) > 0$ pentru toți $n \in \mathbb{N}$.

- a) Arătați că pentru $\lambda>0$ următoarele afirmații sunt echivalente:
 - i) Xeste o variabilă Poisson de parametru λ
 - ii) Pentru toți $n \geq 1$ ave
m $\frac{p_n}{p_{n-1}} = \frac{\lambda}{n}$
- b) Dacă $X \sim \mathcal{P}(\lambda)$ determinați
 - i) Valoarea k pentru care $\mathbb{P}(X = k)$ este maximă.
 - ii) Valoarea lui λ care maximizează $\mathbb{P}(X=k)$, pentru k fixat.

4.

Se consideră v.a. X cu densitatea de probabilitate

$$f(x) = \left\{ \begin{array}{ll} \alpha x^2 e^{-kx}, & x \geq 0 \\ 0, & x < 0 \end{array}, k > 0. \right.$$

- a) Să se determine constanta α .
 - b) Să se afle funcția de repartiție.
 - c) Să se calculeze $\mathbb{P}(0 < X < k^{-1})$.

5.

Fie X o variabilă discretă astfel încât $\mathbb{P}(X=k)=\frac{(1-p)^k}{-k\log(p)}$ dacă $k\geq 1$ și $\mathbb{P}(X=0)=0$, cu 0< p<1. Să se calculeze $\mathbb{E}[X],\,\mathbb{E}[X^2]$ și Var[X].

6.

Arătați că:

a) Dacă X este o variabilă aleatoare cu valori in $\mathbb N$ atunci

$$\mathbb{E}[X] = \sum_{n \ge 1} \mathbb{P}(X \ge n).$$

b) Dacă X este o variabilă aleatoare cu valori pozitive atunci

$$\mathbb{E}[X] = \int_0^{+\infty} \mathbb{P}(X \ge x) \, dx.$$

a) Fie X o variabilă repartizată exponențial (de parametru α). Arătați că are loc următoarea relație (proprietatea lipsei de memorie):

$$\mathbb{P}(X > s + t | X > s) = \mathbb{P}(X > t) \tag{1}$$

b) Fie X o variabilă aleatoare care verifică relația (1). Arătați că X este repartizată exponențial.

8. Programare în R

Să presupunem că am înregistrat în fiecare zi, pe parcursul a 4 săptămâni (de Luni până Duminică), numărul de minute petrecute la telefonul mobil (convorbiri + utilizare) și am obținut următoarele valori: 106, 123, 123, 111, 125, 113, 130, 113, 114, 100, 120, 130, 118, 114, 127, 112, 121, 114, 120, 119, 127, 114, 108, 127, 131, 157, 102, 133. Ne întrebăm: care sunt zilele din săptămână în care am vorbit cel mai mult? dar cel mai puțin? dar zilele în care am vorbit mai mult de 120 de minute?

9. Programare în R

Considerați setul de date mtcars. Calculați:

- a) Greutatea medie în funcție de tipul de transmisie
- b) Greutatea medie în funcție de numărul de cilindrii
- c) Consumul mediu în funcție de numărul de cilindrii și tipul de transmisie

10. Programare în R

Construiți următoarele matrice de dimensiune 10×10 : $M_{i,j} = \frac{1}{\sqrt{|i-j|+1}}$ și $N_{i,j} = \frac{i}{j^2}$. Puteți construi matricea M și matricea N fără a folosi bucle for? (*Hint:* ce face comanda outer?)