Deep CNNs

Matthew Engelhard

Many slides created by Tim Dunn

CNNs Take Advantage of Repeated, Hierarchical Structure in Images

Deep Learning for Image Analysis

Diabetic Retinopathy Classification

Healthy Retina

Unhealthy Retina

Consider a Set of "Toy" Images, for illustration of how this structure can be extracted by an algorithm

High-Level Motifs/Structure

Hierarchical Representation of Images

Layer 1: Fundamental Building Blocks

Recall the Data/Images

Convolutional Filter

Convolutional Filter

Convolutional Filter

Multiple Filters, One for Each Building Block

Deep CNN Architecture

Advantage of Hierarchical Features?

- By learning and sharing statistical similarities within high-level motifs, we better leverage all training data
- If we do not use such a hierarchy, top-level motifs would be learned in isolation of each other

2D Spatial Convolution

Image

2D Spatial Convolution

Image

2D Spatial Convolution

Convolved Image (Feature Map)

2D Spatial Convolution

Image

2D Spatial Convolution

Image

2D Spatial Convolution

Filters Operate Over Input Volumes

Filters Operate Over Input Volumes

Filters Operate Over Input

Given Labeled Training Images, How do we <u>Learn</u> the Parameters of the CNN?

Training Set

$$p_i = \sigma(b_0 + b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM})$$

Untrained Logistic Regression Model (or "Network")

$$b=(b_0,\dots b_M)$$

Trained Model (with learned parameters)

Given Labeled Training Images, How do we <u>Learn</u> the Parameters of the CNN?

<u>Architecture (specified)</u> vs <u>Parameters (learned)</u>

Architecture:

- Number of layers
- Layer types (e.g. convolutional, pooling, fully connected)
- Number of filters in each layer
- Shape and size of filters

Use 3x3 filters In layer 1

Parameters:

- Individual Elements of each filter
- Parameters of other layers

Learn values of Each layer 1 filter

Summary

- Convolutional neural networks learn to recognize high-level structure in images by building hierarchical representations of features
- Features are extracted via spatial convolutions with filters
- Filters are learned by minimizing a loss function just like in the other models we've discussed
- Convolutional neural networks have shown capabilities beyond human performance for image analysis

