Projet 10 : Détection de faux billets de banque

NATHAN KELIBY

Sommaire

- I) Préparation des données
- A) Valeurs manquantes
- B) Outliers
- II) Statistiques descriptives
- A) Analyses univariées et bivariées
- B) Analyse en composantes principales (ACP)
- III) Modélisation
- A) Clustering (k-means)
- B) Classifications (KNN)
- C) Régression (Logistique)
- IV) Choix et test de l'algorithme finale

Présentation des données

1) Préparation des données

A) Valeurs manquantes

'margin_low': 37 nan

	columns	nb_null	%_null
0	is_genuine	0	0.000000
1	diagonal	0	0.000000
2	height_left	0	0.000000
3	height_right	0	0.000000
4	margin_low	37	2.466667
5	margin_up	0	0.000000
6	length	0	0.000000

A) Analyse bivariée

Comparaison de la distribution entre les vrais et faux billets

1) Préparation des données

A) Valeurs manquantes : Régression linéaire

R²: 45%

Variables explicatives choisies : length , margin_up (voir corrélations, test de Levene et test de Shapiro)

La performance du modèle sur la base dapprentissage

L'erreur quadratique moyenne est 0.49152318343013973 le score R2 est 0.45355759760662573

La performance du modèle sur la base de test

L'erreur quadratique moyenne est 0.4850710768524728 le score R2 est 0.4554738163367009

Remarque : Le R²(carré du coefficient de corrélation linéaire) correspond au pourcentage de détermination de la distribution des points par l'equtation de la droite

1) Préparation des données

A) Outliers et standardisation

Méthode de détections des outliers :

Interquartiles

IsolationForest (contamination = 0.02)

Standardisation des valeurs : RobustScaler()

Remarque : Les outliers ne sont pas des valeurs aberrantes et sont tous de faux billets

Bilan: Conservation des outliers

A) Analyse univariée

Entrée [6]: data.describe()

Out[6]:

	diagonal	height_left	height_right	margin_low	margin_up	length
count	1500.000000	1500.000000	1500.000000	1463.000000	1500.000000	1500.00000
mean	171.958440	104.029533	103.920307	4.485967	3.151473	112.67850
std	0.305195	0.299462	0.325627	0.663813	0.231813	0.87273
min	171.040000	103.140000	102.820000	2.980000	2.270000	109.49000
25%	171.750000	103.820000	103.710000	4.015000	2.990000	112.03000
50%	171.960000	104.040000	103.920000	4.310000	3.140000	112.96000
75%	172.170000	104.230000	104.150000	4.870000	3.310000	113.34000
max	173.010000	104.880000	104.950000	6.900000	3.910000	114.44000

Remarques:

- Les données sont très précises(au centième de mm près)
- Les écart-types sont faibles (<0.9)

B) Analyse en composantes principales (ACP)

	Dimension	Variance expliquée	% variance expliquée	% cum. var. expliquée
0	F1	2.594392	43.0	43.0
1	F2	1.018153	17.0	60.0
2	F3	0.781630	13.0	73.0
3	F4	0.709942	12.0	85.0
4	F5	0.580198	10.0	95.0
5	F6	0.319688	5.0	100.0

On arrive à environ 95% de variance expliquée pour 5 dimensions

B) Analyse en composantes principales (ACP)

B) Train-test split

Train-test split:

```
# X : Data
# X_norm : Data standardisé

# Variable à expliquer
y = data.is_genuine

# Partition aléatoire du jeu de données en 80% pour créer le modèle, 20% pour tester le modèle
X_train, X_test, y_train, y_test = train_test_split(X_norm, y, test_size=0.20)

print('Train Set :',X_train.shape)
print('Train Test :',X_test.shape)

Train Set : (1200, 6)
Train Test : (300, 6)
```

B) Apprentissage non-supervisé : Classification k-means

B) Apprentissage supervisé : KN-Neighboors

Score = 99,3%

Cross validation : 5 split

• Validation curve : jusqu'à 50 voisins

GridSearchCV:

Bestparams : metric = 'manhattan' n_neighboors = 8

B) Apprentissage supervisé : Régression logistique

Coefficients:

Logit Regression Results								
Dep. Variable:		is_g	is_genuine No. (o. Observations:		1500	
	Model: Logit		Logit	Df Residuals:		1494		
	Met	thod:		MLE	Df Model:		lel:	5
	ı	Date: W	/ed, 22 De	c 2021	Pse	udo R-so	u.:	0.6957
	1	Time:	13	3:17:09	Log-	Likeliho	od:	-290.53
	conve	rged:		True		LL-N	ull:	-954.77
Co	variance 1	Гуре:	nor	robust	L	LR p-val	ue:	4.319e-285
		-4-1	_	Dylet	10 005	0.0751		
	соет	std err	Z	P> z	[0.025	0.975]		
x1	0.4180	0.144	2.894	0.004	0.135	0.701		
x2	-0.7560	0.148	-5.118	0.000	-1.045	-0.466		
х3	-1.1284	0.171	-6.595	0.000	-1.464	-0.793		
x4	-3.4943	0.325	-10.758	0.000	-4.131	-2.858		
х5	-1.8066	0.198	-9.116	0.000	-2.195	-1.418		
x 6	5.1831	0.449	11.534	0.000	4.302	6.064		

Possibly complete quasi-separation: A fraction 0.23 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Score = 99%

Cross validation : 5 split

• GridSearchCV:

Bestparams : solver = 'newton-cg'

Bilan: Choix du model final pour les tests

	K-means	KNN	Régression logistique
Score:	98.4%	99,3%	99%

Choix de la régression logistique car l'objectif étais d'opposer celle-ci avec le k-means, mais le modèle à privilégier est le KNN