UNIVERSIDADE DE FORTALEZA

MBA Ciência de Dados

Nome: DiegoTeixeira Marques E-mail: diegoteixeira1996@gmail.com Matrícula: 1924526

1. Introdução

Com o objetivo de praticar o que foi visto em sala, este trabalho visa desenvolver um modelo de Machine Learning capaz de fazer previsões. Os dados utilizados são de jogadores da NBA, cujas informações contidas são referentes a seus rendimentos em quadra. Assim, o desafio é chegar num modelo capaz de prever os salários dos jogadores, verificando também, se seu ganho é justo em relação aos demais.

2. Metodologia

Os primeiros passos, após a importação dos módulos e carga dos dados, será analisar todo o DataFrame e fazer uma higienização nos valores que não têm significância para as análises. Será verificado, os dados nulos, valores em branco e/ou zerados, os tipos de dados e se há informações repetidas

Em seguida, será analisada as correlações existentes do "SALARIO" (variável alvo) com os demais atributos através de gráficos e números aprasentados a partir do módulo SEABORN e da fórmula de PEARSON.

Por fim, será criado um modelo de Regressão Linear com os atribudos de maior correlação. Os testes e validações também ocorrerão, assim como os ajustes em prol de um modelo mais apropriado para previsões.

In [271]:

```
# Importando os módulos necessários

import pandas as pd
import seaborn as sb
from sklearn import linear_model
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
import numpy as np
import matplotlib.pyplot as plt

%matplotlib inline
```

In [272]:

```
# Carregando o DATAFRAME

df_nba = pd.read_csv('NBA_Players.csv')
```

3. Higienização do DataFrame

3.1 Conhecendo os dados

Os comandos a seguir permitem ter uma análise geral dos dados e identificar pontos que venham dificultar a continuidade do desenvolvimento do modelo.

In [273]:

```
# Visualizando os dados

df_nba.head(5)
```

Out[273]:

	TEAM	NAME	EXPERIENCE		URL	POSITION	AGE	
0	Boston Celtics	Aron Baynes	6	http://www	w.espn.com/nba/player/_/id/2968439	SF	31	208
1	Boston Celtics	Justin Bibbs	0	http://www	w.espn.com/nba/player/_/id/3147500	G	22	19!
2	Boston Celtics	Jabari Bird	1	http://www	w.espn.com/nba/player/_/id/3064308	SG	24	19ŧ
3	Boston Celtics	Jaylen Brown	2	http://www	w.espn.com/nba/player/_/id/3917376	F	21	200
4	Boston Celtics	PJ Dozier	1	http://www	w.espn.com/nba/player/_/id/3923250	PG	21	198
5 r	ows × 30) column	S					
4								•

In [274]:

```
# Verificando quantidade de Linhas e Colunas
df_nba.shape
```

Out[274]:

(550, 30)

In [275]:

```
# Visualizando as colunas
# Verifica-se um espaço desnecessário no nome da coluna
df_nba.columns
```

Out[275]:

In [276]:

```
# Verificando os tipos dos dados
```

Algumas colunas estão como object, embora apresente dados que normalmente são números, co

Verificaremos cada dado dentro destas colunas para saber qual deles foge do contexto numé

df_nba.dtypes

Out[276]:

TEAM	object
NAME	object
EXPERIENCE	int64
URL	object
POSITION	object
AGE	object
HT	float64
WT	float64
COLLEGE	object
SALARY	object
PPG_LAST_SEASON	float64
APG_LAST_SEASON	float64
RPG_LAST_SEASON	float64
PER_LAST_SEASON	float64
PPG_CAREER	float64
APG_CAREER	float64
RGP_CAREER	float64
GP	int64
MPG	float64
FGM_FGA	object
FGP	float64
THM_THA	object
THP	float64
FTM_FTA	object
FTP	float64
APG	float64
BLKPG	float64
STLPG	float64
TOPG	float64
PPG	float64

dtype: object

In [277]:

```
# Identificando onde há valores nulos
# Observa-se 12 linhas com valores nulos. Serão analisadas e possivelmente excluídas do moa
df_nba.isnull().sum()
```

Out[277]:

TEAM	0
NAME	0
EXPERIENCE	0
URL	0
POSITION	0
AGE	0
HT	0
WT	0
COLLEGE	0
SALARY	0
PPG_LAST_SEASON	12
APG_LAST_SEASON	12
RPG LAST SEASON	12
PER LAST SEASON	12
PPG CAREER	0
APG_CAREER	0
RGP_CAREER	0
GP	0
MPG	0
FGM FGA	0
FGP T	0
THM THA	0
THP	0
FTM FTA	0
FTP	0
APG	0
BLKPG	0
STLPG	0
TOPG	0
PPG	0

dtype: int64

In [278]:

```
# Verificando informações das colunas que são do tipo Object
```

Apenas AGE e SALARY será usada para o modelo

TEAM, NAME, URL e POSITION não apresentam valor número, por isso, serão desconsiderados,

FGM_FGA, THM_THA, FTM_FTA são uma relação de tentativa e acerto, por exemplo, lances livr # Há colunas que representam esta relação em formato númerico: FGP, THP, FTP. Estas ser

•

df_nba.select_dtypes('object').head(5)

Out[278]:

	TEAM	NAME	URL	POSITION	AGE	COLLEGE	SAL
0	Boston Celtics	Aron Baynes	http://www.espn.com/nba/player/_/id/2968439	SF	31	Washington State	5,193
1	Boston Celtics	Justin Bibbs	http://www.espn.com/nba/player/_/id/3147500	G	22	Virginia Tech	siç
2	Boston Celtics	Jabari Bird	http://www.espn.com/nba/player/_/id/3064308	SG	24	California	1,349
3	Boston Celtics	Jaylen Brown	http://www.espn.com/nba/player/_/id/3917376	F	21	California	5,169
4	Boston Celtics	PJ Dozier	http://www.espn.com/nba/player/_/id/3923250	PG	21	South Carolina	siç

4

```
# Analisando os dados únicos das colunas do tipo Object que serão consideradas no modelo
# Será retirado as idades com '-'
# Será retirado os salários com 'Not signed'
idades = df_nba[' AGE'].unique()
salarios = df_nba[' SALARY'].unique()
print(idades, '\n', '\n', salarios)
['31' '22' '24' '21' '28' '32' '26' '23' '29' '20' '25' '33' '27' '19' '-'
 '30' '34' '18' '36' '37' '35' '40' '38' '41']
 ['5,193,600' 'Not signed' '1,349,464' '5,169,960' '31,214,295'
 '28,928,709' '20,099,189' '5,375,000' '1,378,242' '3,050,390'
 '11,660,716' '6,700,800' '838,464' '2,667,600' '2,034,120' '15,400,000'
 '18,500,000' '4,449,000' '1,656,092' '9,530,000' '13,764,045' '1,512,601'
 '8,000,000' '2,470,357' '1,618,320' '1,702,800' '1,632,240' '1,942,422'
 '7,019,698' '5,000,000' '4,544,000' '1,795,015' '17,325,000' '6,500,000'
 '18,622,514' '3,739,920' '1,619,260' '12,253,780' '4,294,480' '4,155,720'
 '5,697,054' '1,485,440' '7,119,650' '8,575,916' '12,800,562' '10,464,092'
 '25,467,250' '8,339,880' '1,740,000' '1,600,520' '12,250,000' '2,526,840'
 '1,703,649' '6,434,520' '10,000,000' '21,666,667' '23,114,067'
 '31,200,000' '8,333,333' '1,826,300' '9,367,200' '1,569,360' '1,544,951'
 '16,539,326' '8,653,847' '2,536,898' '5,337,000' '37,457,154' '30,000,000' '1,644,240' '17,469,565' '16,000,000' '8,307,692'
 '18,988,725' '5,027,028' '12,000,000' '21,587,579' '3,375,360'
 '13,565,218' '6,000,000' '14,800,000' '6,134,520' '7,000,000' '4,320,500'
 '3,046,200' '6,300,000' '1,349,383' '7,461,960' '3,500,000' '1,000,000'
 '1,655,160' '5,757,120' '35,654,150' '1,689,840' '1,487,694' '9,000,000'
 '1,762,080' '20,421,546' '15,000,000' '7,464,912' '8,165,160' '4,661,280'
 '3,314,365' '3,552,960' '13,585,000' '3,258,539' '6,041,520' '949,000'
 '1,238,464' '11,750,000' '7,305,600' '4,696,875' '3,000,000' '5,470,920'
 '2,207,040' '3,844,760' '2,807,880' '8,739,500' '5,460,000' '11,692,308'
 '11,011,234' '11,286,516' '4,441,200' '4,221,000' '8,740,980' '4,384,616'
 '1,990,520' '19,500,000' '14,357,750' '4,536,120' '20,000,000'
 '3,263,294' '2,494,346' '2,280,600' '12,500,000' '2,760,095' '19,000,000'
 '3,472,887' '7,560,000' '24,119,025' '2,272,391' '2,775,000' '4,068,600'
 '14,720,000' '1,952,760' '2,500,000' '25,434,263' '1,857,480'
 '32,088,932' '17,043,478' '3,940,402' '3,275,280' '10,002,681'
 '4,075,000' '10,500,000' '12,400,000' '1,911,960' '7,945,000' '2,407,560'
 '7,333,333' '21,000,000' '2,659,800' '3,410,284' '13,964,045'
 '24,157,303' '1,641,000' '9,607,500' '2,481,000' '11,327,466' '3,382,000'
 '2,799,720' '13,000,000' '10,607,143' '2,534,280' '3,710,850'
 '24,107,258' '1,230,000' '6,560,640' '22,897,200' '9,631,250' '3,819,960'
 '15,293,104' '3,206,160' '1,621,415' '13,500,375' '35,650,150'
 '3,651,480' '14,631,250' '7,969,537' '8,641,000' '30,521,115' '7,666,667'
 '5,915,040' '5,285,394' '12,252,928' '25,976,111' '2,205,000' '8,808,685'
 '1,567,707' '22,347,015' '6,153,846' '2,487,000' '27,739,975' '3,125,000'
 '16,800,000' '10,087,200' '11,571,429' '2,947,320' '2,357,160'
 '1,667,160' '2,516,048' '18,089,887' '1,634,640' '2,299,080' '7,200,000'
 '2,250,960' '4,350,000' '13,766,421' '1,620,480' '5,356,440' '24,000,000'
 '17,000,000' '3,206,640' '988,464' '3,627,842' '7,488,372' '3,447,480'
 '14,087,500' '13,528,090' '2,955,840' '18,109,175' '6,270,000'
 '14,651,700' '19,245,370' '12,537,527' '11,550,000' '25,434,262'
 '3,448,926' '7,250,000' '4,865,040' '1,050,000' '21,590,909' '2,639,314'
 '4,969,080' '2,416,222' '12,750,000' '2,749,080' '15,944,154' '3,454,500'
 '8,600,000' '3,208,630' '26,011,913' '12,650,000' '3,129,187' '5,450,000'
 '19,169,800' '11,830,358' '1,773,840' '2,000,000' '16,517,857'
 '2,166,360' '24,605,181' '1,874,640' '3,364,249' '29,230,769' '3,499,800'
```

```
'12,917,808' '2,894,160' '20,445,779' '15,170,787' '14,000,000' '2,444,053' '2,160,746' '4,750,000' '7,839,435' '5,455,236' '2,118,840' '30,560,700' '1,757,429' '5,451,600' '15,500,000' '6,957,105' '3,628,920' '2,795,000' '10,837,079' '10,595,506' '27,977,689' '25,759,766' '11,111,111' '1,760,520' '17,868,853' '2,074,320' '1,679,520' '11,536,515' '7,305,825' '9,600,000' '16,900,000' '23,241,573' '13,045,455' '3,111,480' '2,150,000' '14,975,000' '5,250,000' '3,360,000']
```

In [280]:

```
# Verificando se a coluna NAME contém somente valores únicos
# Contando os nomes e comparando com a quantidade de linhas
len(df_nba[' NAME'].unique()) == df_nba.shape[0]
```

Out[280]:

True

In [281]:

```
# Analisando todas as correlações
# Verifica-se que PPG tem correlação 1 em relação a PPG_CAREER, portanto, são colunas com a
# PPG será desconsiderada

plt.figure(figsize=(16,10))
correlação = df_nba.corr()
sb.heatmap(correlação, annot=True, cmap=plt.cm.Reds)
plt.show()
```


3.2 Tratando os dados

Nesta etapa faremos as ações de limpeza referente os problemas vistos acima.

- Colunas com espaços em branco: ' NAME', ' EXPERIENCE', ' URL' ...
- Algumas colunas tem o tipo Object enquanto precisamos de um Int ou Float: 'AGE', 'THM_THA', 'FTM_FTA', 'FGM_FGA'
- · Existem 12 linhas com valores nulos

In [282]:

```
# Criando uma cópia do DATAFRAME

df = df_nba.copy()
```

In [283]:

```
# Removendo espaços da descrição das colunas

df.columns = df_nba.columns.str.replace(' ', '')

df.columns
```

Out[283]:

In [284]:

```
# Excluindo colunas que não entrarão para o modelo
# Optou-se por não rotular TEAM, POSITION, que pode conter uma correlação com SALARY
# Contudo esta correlação será vista mais adiante

df.drop(columns=['THM_THA', 'FTM_FTA', 'FGM_FGA', 'URL', 'TEAM', 'PPG', 'COLLEGE'], inplace
df.columns
```

Out[284]:

In [285]:

```
# Encontrando jogadores com valores nulos

df_nulos = df.filter(['PPG_LAST_SEASON', 'APG_LAST_SEASON', 'RPG_LAST_SEASON', 'PER_LAST_SE
df_nulos = df_nulos[df_nulos.PPG_LAST_SEASON == True]
df_nulos
```

Out[285]:

PPG_LAST_SEASON APG_LAST_SEASON PER_LAST_SEASON

50	True	True	True	True
257	True	True	True	True
276	True	True	True	True
309	True	True	True	True
332	True	True	True	True
335	True	True	True	True
347	True	True	True	True
448	True	True	True	True
473	True	True	True	True
482	True	True	True	True
484	True	True	True	True
514	True	True	True	True

In [286]:

Extraindo os índices e verificando quem são os jogadores

indicesNulos = list(df_nulos.index)
df.loc[indicesNulos]

Out[286]:

	NAME	EXPERIENCE	POSITION	AGE	нт	WT	SALARY	PPG_LAST_SEASON
50	John Jenkins	5	SG	27	193.04	97.29	Not signed	NaN
257	CJ Wilcox	3	SG	27	195.58	88.24	Not signed	NaN
276	Christian Wood	2	PF	23	208.28	96.83	Not signed	NaN
309	Brandon Knight	6	PG	26	190.50	88.24	14,631,250	NaN
332	DJ Stephens	1	SG	27	195.58	85.07	Not signed	NaN
335	Alexis Ajinca	7	С	30	218.44	112.22	5,285,394	NaN
347	Darius Morris	4	PG	27	193.04	88.24	Not signed	NaN
448	Jordan McRae	2	SG	27	195.58	81.00	Not signed	NaN
473	Donald Sloan	5	PG	30	190.50	92.76	Not signed	NaN
482	Darius Johnson- Odom	2	SG	29	187.96	92.31	Not signed	NaN
484	James Nunnally	1	SF	28	200.66	94.12	1,349,383	NaN
514	Seth Curry	4	SG	28	187.96	83.71	2,795,000	NaN
12 ro	ws × 23 cc	olumns						

In [287]:

```
# Excluindo jogadores com informações nulas e conferindo se há mais alguma

df.drop(indicesNulos, axis=0, inplace=True)

df.isnull().sum()
```

Out[287]:

NAME	0
EXPERIENCE	0
POSITION	0
AGE	0
HT	0
WT	0
SALARY	0
PPG_LAST_SEASON	0
APG_LAST_SEASON	0
RPG_LAST_SEASON	0
PER_LAST_SEASON	0
PPG_CAREER	0
APG_CAREER	0
RGP_CAREER	0
GP	0
MPG	0
FGP	0
THP	0
FTP	0
APG	0
BLKPG	0
STLPG	0
TOPG	0
dtype: int64	

In [290]:

```
# Verificando quais jogadores não têm idade informada

df[df.AGE == '-']
```

Out[290]:

	NAME	EXPERIENCE	POSITION	AGE	нт	WT	SALARY	PPG_LAST_SEASON	APG
44	Phillip Carr	0	F	-	205.74	92.76	Not signed	0.0	
296	Tim Bond	0	G	-	198.12	76.92	Not signed	0.0	
2 row	rs × 23 c	columns							

In [291]:

```
# Verificando quais jogadores não têm salário informado
df[df.SALARY == 'Not signed']
```

Out[291]:

	NAME	EXPERIENCE	POSITION	AGE	нт	WT	SALARY	PPG_LAST_SEASO	1
1	Justin Bibbs	0	G	22	195.58	99.55	Not signed	0	<u> </u>
4	PJ Dozier	1	PG	21	198.12	92.76	Not signed	1	.(
5	Marcus Georges- Hunt	2	SG	24	195.58	102.26	Not signed	1	.4
9	Nick King	0	F	23	200.66	101.81	Not signed	0).(
10	Walt Lemon Jr.	1	PG	26	190.50	81.45	Not signed	3	.4
		•••							
533	Isaiah Cousins	0	PG	24	193.04	86.43	Not signed	0).(
538	Isaac Haas	0	С	22	218.44	131.22	Not signed	0	.(
540	Trey Lewis	0	PG	25	187.96	83.71	Not signed	0	.(
541	Jairus Lyles	0	PG	23	187.96	79.19	Not signed	0).(
543	Naz Mitrou- Long	1	SG	25	193.04	98.64	Not signed	3	.(
102 r	ows × 23 c	columns							~
4								•	

In [292]:

```
# Excluindo os jogadores sem salário informado garante também a exclusão dos que estão sem # Faremos isso abaixo e ficaremos com 436 linhas e 23 colunas no novo DATAFRAME tratado indicesColunasSemInformacao = list(df[df.SALARY == 'Not signed'].index) df.drop(indicesColunasSemInformacao, axis=0, inplace=True) df.shape
```

Out[292]:

(436, 23)

In [293]:

```
# Convertendo AGE e SALARY para float após retirar as linhas com valores do tipo object
# Convertendo também EXPERIENCE e GP que estavam como int64 para pradonizar os tipos numéri

df.SALARY = df.SALARY.str.replace(',', '').astype(float)

df.AGE = df.AGE.astype(float)

df.EXPERIENCE = df.EXPERIENCE.astype(float)

df.GP = df.GP.astype(float)

df.dtypes
```

Out[293]:

NAME	object
EXPERIENCE	float64
POSITION	object
AGE	float64
HT	float64
WT	float64
SALARY	float64
PPG_LAST_SEASON	float64
APG_LAST_SEASON	float64
RPG_LAST_SEASON	float64
PER_LAST_SEASON	float64
PPG_CAREER	float64
APG_CAREER	float64
RGP_CAREER	float64
GP	float64
MPG	float64
FGP	float64
THP	float64
FTP	float64
APG	float64
BLKPG	float64
STLPG	float64
TOPG	float64

dtype: object

4. Correlações

4.1 Visualizando os dados em gráficos

Os gráficos a seguir fazem parte da fase de encontrar correlações. Como a variável TARGET é a SALARY, vamos relacioná-la com todas as outras colunas. Será usado o SEABORN do python que nos fornece uma visualização prática e eficiente.

In [294]:

```
# Visualizando as correlações com SALARY

X = ['EXPERIENCE', 'AGE', 'HT', 'WT']
Y = ['SALARY']
sb.pairplot(df, x_vars=X, y_vars=Y, kind="reg", height=5)
```

Out[294]:

<seaborn.axisgrid.PairGrid at 0x17c941b0>

In [295]:

```
# Visualizando as correlações com SALARY

X = ['PPG_LAST_SEASON', 'APG_LAST_SEASON', 'RPG_LAST_SEASON', 'PER_LAST_SEASON']
Y = ['SALARY']
sb.pairplot(df, x_vars=X, y_vars=Y, kind="reg", height=5)
```

Out[295]:

<seaborn.axisgrid.PairGrid at 0x16485290>

In [296]:

```
# Visualizando as correlações com SALARY

X = ['PPG_CAREER', 'APG_CAREER', 'RGP_CAREER', 'GP']
Y = ['SALARY']
sb.pairplot(df, x_vars=X, y_vars=Y, kind="reg", height=5)
```

Out[296]:

<seaborn.axisgrid.PairGrid at 0x178d8cf0>

In [297]:

```
# Visualizando as correlações com SALARY

X = ['MPG', 'FGP', 'THP', 'FTP']
Y = ['SALARY']
sb.pairplot(df, x_vars=X, y_vars=Y, kind="reg", height=5)
```

Out[297]:

<seaborn.axisgrid.PairGrid at 0x17c74110>

In [298]:

```
# Visualizando as correlações com SALARY

X = ['BLKPG', 'STLPG', 'TOPG']
Y = ['SALARY']

sb.pairplot(df, x_vars=X, y_vars=Y, kind="reg", height=5)
```

Out[298]:

<seaborn.axisgrid.PairGrid at 0x17aa08f0>

In [299]:

```
# Visualizando as correlações com SALARY
# Com exceção do F e G, as demais posições apresentam salários bem variados, limitando uma
sb.pairplot(df, x_vars=['POSITION'], y_vars=['SALARY'], height=5)
```

Out[299]:

<seaborn.axisgrid.PairGrid at 0x14df7cd0>

4.2 Analisando correlação em números (PEARSON)

Através da fórmula de PEARSON é possível descobrir o grau de correlação entre dois vetores de dados. Quanto mais próximo de 1 ou -1 maior a correlação. Para nossa análise, observa-se que a maior correlação atingiu 0.655 (PPG_LAST_SEASON), desconsideramos quando a análise é feita entre vetores de dados iguais.

In [300]:

```
# Verificando as correlações através da fórmula de PEARSON

correlacoes = []
df_correlacao = df.drop(columns=['NAME', 'POSITION'])
for i in df_correlacao.columns:
    correlacoes.append((df_correlacao['SALARY'].corr(df_correlacao[i]), i))

correlacoes.sort(reverse=True)
correlacoes
```

Out[300]:

```
[(0.9999999999999, 'SALARY'),
 (0.655676397969779, 'PPG_LAST_SEASON'),
 (0.6372256737551588, 'PPG_CAREER'),
 (0.5849923238560933, 'MPG'),
 (0.5515693862593791, 'TOPG'),
 (0.5329677147941675, 'STLPG'),
 (0.5229449344237321, 'APG_LAST_SEASON'), (0.5047945352497611, 'PER_LAST_SEASON'),
 (0.4958263491929498, 'APG_CAREER'),
 (0.49027986931276785, 'GP'),
 (0.463271151100996, 'APG'),
 (0.45959857080706235, 'EXPERIENCE'),
 (0.3660154087928164, 'AGE'),
 (0.36047370428740527, 'RPG_LAST_SEASON'),
 (0.3562143720211878, 'RGP_CAREER'), (0.3523585623035294, 'BLKPG'),
 (0.2967581310929169, 'FGP'),
 (0.2931791234233112, 'FTP'),
 (0.2625040860060568, 'THP'),
 (0.12767084347920352, 'WT'),
 (0.04574213043579767, 'HT')]
```

5. Modelo de Machine Learning

5.1 Criando modelos

O modelo será baseado em regressão linear. Os dados serão divididos em teste e treinamento, em seguida será analisado o erro do modelo.

```
In [301]:
```

```
# Primeiro modelo: utilizaremos as 3 colunas com maior correlação
modelo = linear_model.LinearRegression()
# Target
y = df['SALARY']
# Colunas com maiores correlações
x = df[['PPG_LAST_SEASON', 'PPG_CAREER', 'MPG']]
# Dividindo os dados em 70% treino e 30% teste
x_treino, x_teste, y_treino, y_teste = train_test_split(x, y, test_size=0.30, random_state=
# Treinando o modelo
modelo.fit(x_treino, y_treino)
# Aplicando a base de teste
previsao = modelo.predict(x_teste)
# Verificando erro
r2_score(y_teste,previsao)
```

Out[301]:

0.49100586670558277

In [302]:

```
# Segundo modelo: utilizaremos as 2 colunas com maior correlação e as 2 com menor
modelo = linear_model.LinearRegression()

# Target
y = df['SALARY']

# Colunas com maiores e menores correlações
x = df[['PPG_LAST_SEASON', 'PPG_CAREER', 'WT', 'HT']]

# Dividindo os dados em 70% treino e 30% teste
x_treino, x_teste, y_treino, y_teste = train_test_split(x, y, test_size=0.30, random_state=
# Treinando o modelo
modelo.fit(x_treino, y_treino)

# Aplicando a base de teste
previsao = modelo.predict(x_teste)

# Verificando erro
r2_score(y_teste,previsao)
```

Out[302]:

0.5164612334369536

```
In [303]:
```

```
# Terceiro modelo: utilizaremos todas as colunas
modelo = linear_model.LinearRegression()
# Target
y = df['SALARY']
# Todas as colunas númericas
x = df[['EXPERIENCE', 'AGE', 'HT', 'WT', 'PPG_LAST_SEASON',
       'APG_LAST_SEASON', 'RPG_LAST_SEASON', 'PER_LAST_SEASON', 'PPG_CAREER', 'APG CAREER',
       'RGP_CAREER', 'GP', 'MPG', 'FGP', 'THP', 'FTP', 'APG', 'BLKPG', 'STLPG', 'TOPG']]
# Dividindo os dados em 70% treino e 30% teste
x_treino, x_teste, y_treino, y_teste = train_test_split(x, y, test_size=0.30, random_state=
# Treinando o modelo
modelo.fit(x_treino, y_treino)
# Aplicando a base de teste
previsao = modelo.predict(x_teste)
# Verificando erro
r2_score(y_teste,previsao)
```

Out[303]:

0.4981273218942057

In [304]:

```
# Quarto modelo: 5 colunas com maior correlação
modelo = linear_model.LinearRegression()
# Target
y = df['SALARY']
# 5 colunas númericas com maior correlação
x = df[['PPG_LAST_SEASON', 'PPG_CAREER', 'MPG', 'TOPG', 'STLPG']]
# Dividindo os dados em 70% treino e 30% teste
x_treino, x_teste, y_treino, y_teste = train_test_split(x, y, test_size=0.30, random_state=
# Treinando o modelo
modelo.fit(x_treino, y_treino)
# Aplicando a base de teste
previsao = modelo.predict(x_teste)
# Verificando erro
r2_score(y_teste,previsao)
```

Out[304]:

0.5062617294839165

5.2 Escolhendo o modelo

Apesar de ser um erro ainda muito alto, o primeiro modelo apresentou um erro de 0.491, o menor dentre os analisados. Aplicaremos um caso prático a ele e tentaremos deduzir se o salário de um jogador é compatível ao que o modelo prever para ele.

In [305]:

```
# Primeiro modelo: utilizaremos as 3 colunas com maior correlação

modelo = linear_model.LinearRegression()

# Target
y = df['SALARY']

# Colunas com maiores correlações
x = df[['PPG_LAST_SEASON', 'PPG_CAREER', 'MPG']]

# Dividindo os dados em 70% treino e 30% teste
x_treino, x_teste, y_treino, y_teste = train_test_split(x, y, test_size=0.30, random_state=
# Treinando o modelo
modelo.fit(x_treino, y_treino)
```

Out[305]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fal
se)

In [306]:

```
# Pegando informações de Stephen Curry para prever seu salário

stephen = df[df.NAME == 'Stephen Curry']
stephen = stephen.loc[:,['PPG_LAST_SEASON', 'PPG_CAREER', 'MPG']]
stephen
```

Out[306]:

PPG_LAST_SEASON PPG_CAREER MPG 103 26.4 23.1 34.4

In [307]:

```
# Prevendo salário

previsao = round(modelo.predict(stephen)[0],0)
previsao
```

Out[307]:

20789870.0

In [308]: # Pegando salário Real salario = df[df.NAME == 'Stephen Curry'].SALARY salario Out[308]: 103 37457154.0 Name: SALARY, dtype: float64 In [309]: # Erro de \$ 16.667.284 ERRO = previsao - salario **ERRO** Out[309]: 103 -16667284.0 Name: SALARY, dtype: float64 In [310]: # A previsão foi 44% menor do que o real ErroPercente = round(ERRO / salario * 100,0) ErroPercente

Out[310]:

103 -44.0

Name: SALARY, dtype: float64

6. Conclusão

O modelo ainda não apresenta números precisos em suas previsões. Contudo, com esta análise é possível deduzir que Stephen Curry recebe um valor acima do que seria ideal. Por fim, é preciso continuar o trabalho no modelo, aplicando um treinamento maior, analisando outras correlações, como a posição e o time que joga, por exemplo, até atingir um erro menor. Sendo possível ter informações mais precisas