A= 240, 46= B 90d(240,46) : extended_euclid (240,46) = ?

	& Index i	Quotient Qi	R	24448	9 i =9i-3 → 0;×3i-1
2495/45	0			1-1/2	Oy2_
	1			o ×1	151
240,40	2_	240/46=5	10	½	0 - 5×1 5 = - 5
46,10	3	46/10 = 4	G	0-1×4 =-4	1 # + 5×4 = 2421
10, 6	ધ	10/6 = 1	Ч	- - - - - - - - - - - - - - - - - - -	2445 -5 0x -21X1 =-26
6,4	5	614=1	2 200	-4-5×1 = (-9)*	71 +2L×1 = (17)7
4,2	C	4/2=2	(0)	5+18 = 23	-26-47×2 120
			when n=0 stops		******************

Pesudocode

extended_ euclid (int A, int B, int *X, int +y)

int
$$x_1 = 0$$
, $x_2 = 1$;
int $y_1 = 1$, $y_2 = 0$;

$$\frac{X_{i}=\frac{X_{i-2}}{X}}{\frac{1}{X}} = \frac{Q(x_{i-1})}{Q(x_{i-1})}$$

int x, y, n, e, n, nz ',

(E= 1E

$$AX = XZ;$$

$$0x+0y = 9cd(a,b)$$

$$AY = JZ;$$

	Mogo	lan moltin	vicative using ex			
		1 (mod m		Of A	modulo	
		Y = 1 wehave to fi		В	Α	
		by=1: th				
A n ₂	B	Reminder, r	Quotient Q	У <u>2</u> О	۶ _۱ ۵	y 3=32-0×31
5	3	5 y.3 =	5/3 = 1	0 V51	<u>(1)</u>	1×1-0=
3	2	31.2 = 1	312 = 1	1	-1	= 1 - (-1) x = 2
2	1	2:1.1=0	2/1=2,	-1	2	=-1\=-2×2, =-5
1	O RI=0 100P Whiteaks	8 ×	*	ualue ofyz is our ans M1	-5	
			Cal-D®			Reef-D

A		J+ 5y = 1		W 2 .	A	
3	5	734.5= 3	315 = O	X2_	×1	× = 1-0 = 1
5	3	2_	1	0	1	
		100 i	t has become some so		37 = 1	
			50	betten du	with	

Chinese Reminden theorem (weakform X = a mod m, X = a mod m2 $m_1, m_2 \dots m_n$ all pain wise copnime Xo = an mod ma ged (m, m2) = ged (m2, mn) = ged (m, mn) = . Find value of X P100 suppose, X= a1 mod m1 XE az mod mz m, , mz pairwise coprime Bezout' Identity using extended euclid, we can find now we can say X = (a1m2a + a2m1&p) & mod m1m2 गरें। जाजार existing धूरा प्रधान राष्ट्री प्रधान कर्मणी प्र Rocal-DX=0, modm,
Calcium 500 mg & Vitamin-D; 200 IU X = a2 mod m20(12) Tarar

$$X = a_1 m_2 q + a_2 m_1 p$$

$$= a_1 (1 - m_1 p) + a_2 m_1 p$$

$$= a_1 - a_1 m_1 p + a_2 m_1 p$$

$$X = a_1 + (a_2 - a_1) p m_1$$

$$\therefore X = a_1 \mod m_1$$

$$X = a_1 \mod m_1$$

$$X = a_1 \mod m_1$$

$$X = a_2 \mod m_2$$

$$X = a_2 \mod m_2$$

$$X = a_3 \mod m_2$$

why mod with mimz?

to find the (smallest solution and unique)
among Infinite
solutions

How	to sure solution is unique?	
	se we have two solution of X is	$\left[\chi_{1},\chi_{2}\right]$
	XI = aimodmi XJ = aimod mj	
cansay	$X_1 \equiv X_3 \mod m_1$	
	- x1 - x2 = 0 mod m, (x1-x2) is d	ivisible by m2
Same	x1-x2 = 0 mod m2 11 11	lı ıı m2
and	-x2) is divisbly by both m, ar m, m2 copnime	
th	at means X1-X2 is allodivisble by	m1 X m 2_
	:X1-X2 = 0 mod mim	
	∴ X1 = X2 mod m1 m2	
	thence there exist only one solution	\
	x is unique to modulo m, m,	(pnove ()
Healthcare	RoCal-D®	Reef-D*

PsidoCode

pair zint, int) chinese meminden theorem (vector zint > A, vector zint > m)=

if (A. size () != m. size ())
{ Invalid Input y

: in+ n = A-bize();

int a1 =A[0]

·-int m1 = m[0]

for (int 1 = 1 ; iLn ! itt ~ int az = A [i], mz = M [i];

.. int p, q:

extended - euclid (m, m2, &p. (4);

: int = x = (a1 pqm2 + a2pm1) y. m1m2

 $a_1 = X$

: m1 = m1m2

- if (a120) a1 = a, + m1

.. netonn < a, mij

Chinese Reminden Theorem - Strong
X = 91 modm.
$X \equiv a_2 \mod m_2$ $m, m, \dots m_n$
not copnime
$x \cdot \equiv a_n \mod m_n$
(8) How to supe there a solution exists?
$\therefore 9cd(m_1, m_2) = q$
we know, x = aimodmi
$x-a_1 \equiv 0 \mod m_1 \pmod m_1 \text{ divide } x-a_1$ $divisor also divides x-a_1 \pmod m_1 like(g) \therefore x-a_1 \equiv 0 \mod g$
same X-a2 = 0 mod g
$\therefore x-a_1 \equiv x-a_2 \pmod{9}$
91 = 92 mod g
if sta satisfig this condition then there exist
RoCal-D® Reef-D® Reef-D®

Now Solution

$$=\frac{m_1}{9}p + \frac{m_2}{9}q = 1 - 0$$

using ext-god we can find P. 9

$$X = 91 \frac{m^2}{9} + 42 \frac{m_1}{9} p$$

now same stylphoof

proved

a, m2 a + a 2 mp p) mod (cm (m, m2) Pseduccade some changes Same G(CD(m1, m2) 1 = 927.9 ext-ged (m1/g, m2/g, &p, &q) :in+ mods = m1 / 9 * m2

