		Date/
_		Stimulated Annealing Algorithm
_		
_		Set current state: untial state
_		choose ca withal temperature
_	3	Set Sest State = correct state
+		set correct Energy = evaluate (correct state)
1	out i	while temp > 0 & interation & max-iteration
T		For iteration = 1 to max Iteration 20
1		new state = generate Neighbour Cerrent state
1		new Energy = engluste (new state)
1		energy sillerene = new Energy - Current Energy of energy Difference Lo then
1		if energy Difference Lo then
1		coment state = new state
		ennet Energy = new energy.
		if current Evergy & Seit Evergy then
		Gest Stell = Corrent stell
		Sest Energy = Correct Lorray
-		Else
-		1. Accept with a certain probability
+		2 - Accept Probability = exp(- Enorgy Difference / kmg
		3: If rendom (0,1) & acceptance Probles, by
3		3: It rendom (0,1) = only
		1. Current Stek = new Stell
		1. CULINA SACK TRUE ENERGY.
_		2. Curent Energy = new Energy.
		11 1001 down temperature cooling Roke temperature = temperature cooling Roke
		femperature - tempe
		Return Sest Stetr.
	1	

)

Output Enter un tral state: 50 initial temperature: 20 looling rate (of 1) :0:5 the no. of iterations: 58° 13 6T 599 Prevation 1: (urrent Stelf = 49.0489; (-) Energy = 2401.7898 = 2905.7898 = 5.00 2: 49.0487 = 2387.9069 = 2.5 3: 48.8662 = 2351.2721 = 1.25 48.8900 4: . = 21067922 = 0.625 48.0291 best state = 48.0291, Best Energy= 2306.797