Experimental Physik II Kapitel 16

author email

May 18, 2016

Contents

16 Sta	tische	magnetische I	elder									
16.1	Kräft	e auf bewegte L	adunge	en								
	16.1.1	Lorentzkraft	$ec{F}_L$									
	16.1.2	Bewegungsglei	chung:							•		
Unnun	nmerie	rte Section										
Unn	ummeri	erte subsection										
	Unnur	nmerierte subsu	bsectio	n .								

16 Statische magnetische Felder

Experimente:

- gleichnamige Pole stoßen sich ab
- ungleichnamige Pole ziehen sich an
- Kraftwirkung $\propto \frac{1}{r^2}$ (1750; Coulomb)
- ähnliche Abstandsabhängigkeit für elektrische und für magnetische Kräfte
- zunächst kein Zusammenhang zwischen beiden Kräften erkennbar
- Experiment: Magnetische Pole treten nur paarweise auf. $(\implies$ keine "magnetische Ladung")

Feldlinien sichtbarmachen durch Eisenfeilspitzen:

Magnetische Feldliniens ind stets geschlossen; es gibt keine isolier baren Quellen oder Senkendes magnetische

Erinnerung: Satz von Gauß:

 \vec{E} : elektrische Feldstärke: Gesamtfluss: $\phi_{el} = \oint_A \vec{E} \cdot d\vec{A} = \frac{Q}{\epsilon_0}$

Magnetische Felder:

Gesamtfluss:
$$\phi_{mag} = \oint_A \underbrace{\vec{B} \cdot d\vec{A}}_{\text{magnetischer Fluss}} = 0\vec{B}$$
: magnetische Flussdichte

3

Kräfte auf bewegte Ladungen 16.1

Lorentzkraft \vec{F}_L 16.1.1

$$\vec{F}_L = q \cdot \vec{v} \times \vec{B} \\ (\vec{F}_L \perp \vec{v}; \vec{F} \perp \vec{B})$$

Linkshändiges System

Rechtshändiges System

UVW-Regel: Ursache \rightarrow Vermittler \rightarrow Wirkung Vorsicht!: Elektrische Ladung ist negativ!

$$[|\vec{B}|] = \frac{N}{As \cdot \frac{m}{s}} = \frac{Vs}{m^2} = 1T(Tesla)$$

Kreisbahn: $\vec{F}_L \perp \vec{v}$ $\implies \vec{F}_L$ beeinfluss die Richtung von \vec{v} , aber nicht den Betrag! $\implies \vec{F}_L$ leistet keine Arbeit

Konventionen:

- $\otimes \vec{B}$ zeigt in die Papierebene hinein
- $\odot \vec{B}$ zeigt aus der Papierebene heraus

16.1.2 Bewegungsgleichung:

$$m\ddot{\vec{r}} = \dot{\vec{r}} = \vec{F}_L = q \cdot \vec{v} \times \vec{B}$$

$$\frac{d\vec{v}}{dt} = \dot{\vec{v}} = \frac{\dot{\vec{p}}}{m} = \frac{q}{m} \cdot \vec{v} \times \vec{B}$$

$$d\vec{v} \perp \vec{v}; d\vec{v} \perp \vec{B}$$

 \implies Kreisbahn: \vec{F}_L ist Zentripetalkraft

$$\implies q \cdot v \cdot B = m \cdot \frac{v^2}{r}; v = \omega \cdot r$$

$$\omega = \frac{q}{m} \cdot B$$

$$v = \frac{1}{2\pi} \cdot \frac{q}{m} \cdot B$$

 ω Zyklotronfrequenz (1930, Lawrence)

 \implies unabhängig von Impuls und Energie; nur von $\frac{q}{m}$ und \vec{B} bestimmt!

Radius:

$$r = \frac{m \cdot v}{q \cdot B} = \frac{p}{q \cdot B} = \frac{\sqrt{2mqV}}{q \cdot B}$$

$$E_{kin} = \frac{p^2}{2m} = \frac{1}{2}m \cdot v^2 = q \cdot V$$

Experiment:

$$r_1: V_1 = 200V \implies 2SKT$$

$$r_1V_1 = 300V \implies 2,5SKT$$

$$\frac{r_1}{r_2} \stackrel{!}{=} \sqrt{\frac{V_1}{V_2}}$$

$$\frac{4}{5} \stackrel{!}{=} \sqrt{\frac{2}{3}}$$

 $\frac{16}{25} \stackrel{!}{=} \frac{2}{3} \checkmark$ im Rahmen der Messungenaugikeit!

SECTION

subsection
subsubsection
paragraph z.B. Definition/Exp/Beispiele/Anwendung

Beispiel 1/3, Exp 1/2, Fallunterscheidungen