

Announcements

Extension Granted: Assignment #3 is due tomorrow at 3:55 pm

Assignment #4 will be assigned next class

Survey Results

Z-test video: https://www.youtube.com/watch?v=L8QR7wxmmQg

Importance of Statistics

- 1. How to effectively collect data and the types of data
- 2. Using descriptive statistics to assess our data
- 3. Expressing probability using collected samples
- 4. Detecting difference in means of two samples
 - Sample vs. population
 - Sample vs. sample
- 5. Detecting differences in means of more than two samples
 - ANOVA

Our descriptions and tests have mostly assumed normal distributions

Importance of Statistics

- The ability to collect and analyze quantitative data is one of the basic and fundamental tools for a professional geographer.
- Often, the expression of a study's results using proper statistics is the most important deciding factor as to whether the methods are accepted.

Importance of Statistics

- 1. To describe and summarize spatial data.
- 2. To estimate the probability of outcomes for an event at a given location.
- 3. To use samples of geographic data to infer characteristics for a larger set of geographic data (population).
- 4. To determine if the magnitude or frequency of some phenomenon differs from one location to another.
- 5. To learn whether an actual spatial pattern matches some expected pattern.

https://en.wikipedia.org/wiki/Statistical_geography

Hypothesis Testing Parametric Nonparametric Goodness of Wilcoxon Kruskal-Wallis Rank Sum **ANOVA** Z Test t-Test H-Test Test Chi-square

Many More Tests Exist!

Parametric Tests

- Normality Assumption: The two populations are assumed to both follow a normal distribution
- Data Type Assumption: Interval or ratio data
- Variance Assumption: All samples have approximately the same variance
- Population variance: Z test requires that the population variance is well approximated by the sample variance

- Normality Assumption: Don't need to have normal distributions
- Data Type Assumption: Data can be measured on any scale
- Variance Assumption: No strict assumptions about the nature of the data
- BUT are more difficult for large samples and you lose information when data converted to ordinal or nominal

Pros:

- Normality Assumption: Don't need to have normal distributions
- Data Type Assumption: Data can be measured on any scale
- Variance Assumption: No strict assumptions about the nature of the data
- Population Variance: No information about the population is needed

Cons:

- More difficult for large samples
- Lose information when data converted to categorical data (e.g., ordinal or nominal)
- Difficult to compute by hand for Large Samples
- Lookup tables are not readily available

When to use Non-Parametric Tests

In a nutshell: When it is clear your dataset does not have a normal distribution

Specific reasons:

- When the data are nominal or ordinal
- When the data are rankings
- When the dataset suffers from outliers
- When the observed quantity is difficult to detect

Nominal Data

Provides:	Nominal
The "order" of values is known	
"Counts," aka "Frequency of Distribution"	~
Mode	~
Median	
Mean	
Can quantify the difference between each value	
Can add or subtract values	
Can multiple and divide values	
Has "true zero"	

Ordinal Data

Provides:	Ordinal
The "order" of values is known	~
"Counts," aka "Frequency of Distribution"	~
Mode	~
Median	~
Mean	
Can quantify the difference between each value	
Can add or subtract values	
Can multiple and divide values	
Has "true zero"	

When to use Non-Parametric Tests

- When it is clear your dataset does not have a normal distribution
- Relatively normal distribution contains outliers

Provides:	Nominal	Ordinal	Interval	Ratio
The "order" of values is known		~	~	~
"Counts," aka "Frequency of Distribution"	~	~	~	~
Mode	~	~	~	~
Median		~	~	~
Mean			~	~
Can quantify the difference between each value			~	~
Can add or subtract values			~	~
Can multiple and divide values				~
Has "true zero"				~

Outliers

WHAT IS AN OUTLIER?

Never mind what the axes mean...

Loss of Information

Two schools of thought:

- Pro-parametric
 - Because information is discarded, nonparametric procedures can never be as powerful when parametric tests can be used
 - Use parametric testing if a distribution is normal!
- Pro-non-parametric
 - There are too many assumptions needed for parametric tests, which usually are not met in real experiments
 - Use non-parametric testing unless there is strong and compelling evidence that the distribution of errors is normal!

Loss of Information

Data is ranked... (we will get more into this next lecture)

- Example: We have observed values:
 - Group 1: 3.4, 4.9, 6.3, 7.1
 - Group 2: 1.3, 2.1, 1.5, 4.3, 3.2
 - Are the groups significantly different?

Loss of Information

Data is ranked...

- Example: We have observed values:
 - Group 1: 3.4, 4.9, 6.3, 7.1
 - Group 2: 1.3, 2.1, 1.5, 4.3, 3.2
 - Are the groups significantly different?

Rank	Group 1	Group 2
1	1.3	
2	1.5	
3	2.1	
4	3.2	
5		3.4
6	4.3	
7		4.9
8		6.3
9		7.1

Remarks on Non-parametric Statistics

Fewer assumptions

- Pro: More confidence
- Con: More general null hypothesis

Good choice when normality of the data cannot be assumed

- Pro: Reject the null hypothesis with a non-parametric test = pretty sure that your samples are different
- Con: Much more difficult to get significant conclusions

Remarks on Non-parametric Statistics

- 'Distribution-free' may be more appropriate
 - Parametric tests/distributions have fixed numbers of parameters
 - Non-parametric has more parameters as sample(s) grow
 - Explains why often difficult to compute by hand
- Most non-parametric tests about the population center are tests about the median instead of the mean
 - Requires you to modify the null hypotheses
 - Does not answer the same question as the corresponding parametric procedure

Remarks on Non-parametric Statistics

- 'Distribution-free' may be more appropriate
 - Parametric tests/distributions have fixed numbers of parameters
 - Non-parametric has more parameters as sample(s) grow
 - Explains why often difficult to compute by hand

Supplemental Reading

- Good explanation about the differences between and appropriateness of parametric and non-parametric tests:
- Look in Course Materials in eCampus:

Colquhoun, D. (1971). Lectures on biostatistics: an introduction to statistics with applications in biology and medicine. David Colquhoun.

