Namma_Y

August 18, 2024

0.1 Step 1: Data Understanding and Preprocessing

```
[]: import pandas as pd
     import numpy as np
     # Load the dataset
     file_path = "E:/4TH_sem/ADA/ADA_PROJECT/NammaYatri/namma_yatri_all_reviews.csv"u
      → # Adjust the file path if needed
     df = pd.read_csv(file_path)
     # Inspect the dataset
     print("Dataset Overview:")
     print(df.head())
    Dataset Overview:
                                                     userName
                                    reviewId
    0 16e752d0-1492-4f91-8459-5a62ec74b979
                                                  Anil Valoor
    1 3fe2af72-c7ab-4a04-a560-a6295849ddc3
                                               Lingaraj Sahoo
    2 1809510c-9382-43c5-a930-18e3fbdd217a
                                                  Arif Hammad
    3 64435b81-5fb8-4536-a0a1-68262b22decf
                                                 parvez ahmed
    4 f2988ca6-34a9-4bc6-8290-04ffe7262f24 Manikant Gadade
                                                userImage \
    0 https://play-lh.googleusercontent.com/a-/ALV-U...
    1 https://play-lh.googleusercontent.com/a-/ALV-U...
    2 https://play-lh.googleusercontent.com/a-/ALV-U...
    3 https://play-lh.googleusercontent.com/a-/ALV-U...
    4 https://play-lh.googleusercontent.com/a/ACg8oc...
                                                           score thumbsUpCount
                                                  content
       This service claims that the driver will not c...
                                                             1
                                                                             0
                                                               5
                                                                               0
    1
                                                 Good App
    2
                                            price is more
                                                               3
                                                                               0
       Pathetic app, no option to reach customer care...
    3
                                                             3
                                                               5
                                                                               0
                                                     Good
      reviewCreatedVersion
                                           at.
                     2.5.7 15-08-2024 17:28
```

```
2
                        NaN 15-08-2024 17:08
    3
                      2.5.8 15-08-2024 14:51
    4
                      2.5.8 15-08-2024 13:47
                                              replyContent
                                                                    repliedAt
    0
                                                                          NaN
       Hi Lingaraj, we appreciate your rating and tha... 15-08-2024 18:23
    1
    2
                                                       NaN
    3 Hi Parvez, we apologize for the inconvenience... 15-08-2024 15:46
       Hi Manikant, we're delighted to hear that you ... 15-08-2024 18:33
      appVersion
    0
           2.5.7
           2.5.8
    1
    2
             NaN
    3
           2.5.8
    4
           2.5.8
[]: print("\nData Types:")
     print(df.dtypes)
    Data Types:
    reviewId
                             object
    userName
                             object
    userImage
                             object
    content
                             object
                              int64
    score
    thumbsUpCount
                              int64
    reviewCreatedVersion
                             object
    at
                             object
    replyContent
                             object
    repliedAt
                             object
    appVersion
                             object
    dtype: object
[]: print("\nMissing Values:")
     print(df.isnull().sum())
    Missing Values:
    reviewId
                                0
    userName
                                0
                                0
    userImage
                                0
    content
                                0
    score
    thumbsUpCount
                                0
    reviewCreatedVersion
                              877
```

2.5.8 15-08-2024 17:25

1

```
at 0
replyContent 1532
repliedAt 1532
appVersion 877
dtype: int64
```

```
[]: # Display basic information about the dataset
print("\nBasic information about the dataset:")
print(df.info())

# Display descriptive statistics
print("\nDescriptive statistics of the dataset:")
print(df.describe(include='all'))
```

Basic information about the dataset: <class 'pandas.core.frame.DataFrame'> RangeIndex: 11174 entries, 0 to 11173 Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	reviewId	11174 non-null	object
1	userName	11174 non-null	object
2	userImage	11174 non-null	object
3	content	11174 non-null	object
4	score	11174 non-null	int64
5	${\tt thumbsUpCount}$	11174 non-null	int64
6	${\tt reviewCreatedVersion}$	10297 non-null	object
7	at	11174 non-null	object
8	replyContent	9642 non-null	object
9	repliedAt	9642 non-null	object
10	appVersion	10297 non-null	object
• .		`	

dtypes: int64(2), object(9)
memory usage: 960.4+ KB

 ${\tt None}$

Descriptive statistics of the dataset:

	reviewId	userName	\
count	11174	11174	
unique	11174	10868	
top	16e752d0-1492-4f91-8459-5a62ec74b979	Arun Kumar	
freq	1	8	
mean	NaN	NaN	
std	NaN	NaN	
min	NaN	NaN	
25%	NaN	NaN	
50%	NaN	NaN	
75%	NaN	NaN	

max NaN NaN

	userImage			content	\	
count			11174			
unique	11172			8159		
top	https://play-	lh.googleuserc	ontent.com/a-/ALV-U	good		
freq	2			999		
mean	NaN			NaN		
std			NaN	NaN		
min			NaN	NaN		
25%			NaN	NaN		
50%			NaN	NaN		
75%			NaN	NaN		
			NaN	NaN		
max			IValv	IValv		
	score	thumbsUpCount	reviewCreatedVersion		at	\
count	11174.000000	11174.000000	10297		11174	•
unique	NaN	NaN	27		11020	
top	NaN	NaN	1.4.16	08-02-202		
freq	NaN	NaN	1952	00 02 202	11	
mean	3.557007	1.371308	NaN		NaN	
std	1.786741	17.416727	NaN		NaN	
min	1.000000	0.000000	NaN		NaN	
25%	1.000000	0.000000	NaN		NaN	
50%	5.000000	0.000000	NaN		NaN	
75%	5.000000	0.000000	NaN		NaN N-N	
max	5.000000	717.000000	NaN		NaN	
			replyContent	r	epliedAt	\
count			9642	_	9642	`
unique			4488		7767	
top	Hi there. gla	d to hear that		06-02-2023		
freq	, 8		485		14	
mean			NaN		NaN	
std			NaN		NaN	
min			NaN		NaN	
25%			NaN		NaN	
50%			NaN		NaN	
75%			NaN		NaN	
max			NaN		NaN	
max			Nan		Nan	
	appVersion					
count	10297					
unique	27					
top	1.4.16					
freq	1952					
mean	NaN					
std	NaN					
	-					

```
NaN
    min
    25%
                  NaN
    50%
                  NaN
    75%
                  NaN
                  NaN
    max
[]: # Handle Missing Values
     # Drop rows with missing 'content' (review text) as they're crucial for analysis
     df = df.dropna(subset=['content'])
     # Fill missing values in 'reviewCreatedVersion' and 'appVersion' with a
      \hookrightarrowplaceholder
     df['reviewCreatedVersion'] = df['reviewCreatedVersion'].fillna('Unknown')
     df['appVersion'] = df['appVersion'].fillna('Unknown')
     # Transform Data: Convert date columns to datetime format
     df['at'] = pd.to_datetime(df['at'], format='%d-%m-%Y %H:%M', errors='coerce')
     df['repliedAt'] = pd.to_datetime(df['repliedAt'], format='%d-%m-%Y %H:%M',__
      ⇔errors='coerce')
     # Feature Engineering: Calculate the time delay between review and reply
     df['reply_delay'] = (df['repliedAt'] - df['at']).dt.days
     # Feature Engineering: Calculate review length
     df['review length'] = df['content'].apply(lambda x: len(x.split()))
     # Outlier Detection in 'score' and 'thumbsUpCount'
     print("\nOutliers in 'score':")
     print(df['score'].describe())
     print("\nOutliers in 'thumbsUpCount':")
     print(df['thumbsUpCount'].describe())
     # (Optional) Handle outliers: Cap 'thumbsUpCount' at the 99th percentile to_{\sqcup}
      →remove extreme values
     df['thumbsUpCount'] = np.clip(df['thumbsUpCount'], None, df['thumbsUpCount'].
      \rightarrowquantile(0.99))
     print("Preprocessing complete.")
```

```
      Outliers
      in 'score':

      count
      11174.000000

      mean
      3.557007

      std
      1.786741

      min
      1.000000

      25%
      1.000000

      50%
      5.000000

      75%
      5.000000
```

```
5.000000
    max
    Name: score, dtype: float64
    Outliers in 'thumbsUpCount':
    count 11174.000000
    mean
                 1.371308
    std
                17.416727
    min
                 0.000000
    25%
                 0.000000
    50%
                 0.000000
    75%
                 0.000000
               717.000000
    max
    Name: thumbsUpCount, dtype: float64
    Preprocessing complete.
[]: # Handling missing values in 'reviewCreatedVersion' and 'appVersion'
     # Fill with "Unknown"
     df['reviewCreatedVersion'] = df['reviewCreatedVersion'].fillna('Unknown')
     df['appVersion'] = df['appVersion'].fillna('Unknown')
     # Handling missing values in 'replyContent'
     df['replyContent'] = df['replyContent'].fillna('No Reply')
     # Create a binary indicator for whether a reply was received
     df['replyReceived'] = df['replyContent'].notna().astype(int)
     #Option 2: Impute with a specific value
     df['repliedAt'] = df['repliedAt'].fillna('Not Replied')
     # Verify that missing values are handled
     print("\nMissing Values After Handling:")
     print(df.isnull().sum())
    Missing Values After Handling:
```

reviewId 0 userName 0 userImage 0 0 content score 0 thumbsUpCount0 reviewCreatedVersion 0 0 at replyContent 0 repliedAt 0 appVersion 0 replyReceived 0 dtype: int64

```
[]: from textblob import TextBlob
     import matplotlib.pyplot as plt
     try:
         # Apply sentiment analysis
         df['sentiment'] = df['content'].apply(lambda x: TextBlob(x).sentiment.
         print("\nSentiment analysis successfully added.")
     except Exception as e:
         print(f"Error in sentiment analysis: {e}")
     # Check if the sentiment column exists
     if 'sentiment' in df.columns:
         # Classify sentiment as positive, negative, or neutral
         df['sentiment label'] = df['sentiment'].apply(lambda polarity: 'Positive'
      →if polarity > 0 else 'Negative' if polarity < 0 else 'Neutral')</pre>
         # Sentiment Distribution
         sentiment_distribution = df['sentiment_label'].value_counts()
         # Visualize Sentiment Distribution as a pie chart
         plt.figure(figsize=(8, 8))
         plt.pie(sentiment_distribution, labels=sentiment_distribution.index,_
      →autopct='%1.1f\\\\\', colors=['green', 'red', 'blue'])
         plt.title('Sentiment Distribution of Namma Yatri App Reviews')
         plt.show()
         print("Sentiment distribution:")
        print(sentiment_distribution)
     else:
         print("Sentiment column not found. Please check the previous steps.")
```

Sentiment analysis successfully added.

Sentiment Distribution of Namma Yatri App Reviews


```
Sentiment distribution:
sentiment_label
Positive 7387
Negative 2161
Neutral 1626
Name: count, dtype: int64

[]: from textblob import TextBlob import matplotlib.pyplot as plt

try:
# Apply sentiment analysis
```

```
df['sentiment'] = df['content'].apply(lambda x: TextBlob(x).sentiment.
 →polarity)
   print("\nSentiment analysis successfully added.")
except Exception as e:
   print(f"Error in sentiment analysis: {e}")
# Check if the sentiment and score columns exist
if 'sentiment' in df.columns and 'score' in df.columns:
   # Classify sentiment as positive, negative, or neutral
   df['sentiment label'] = df['sentiment'].apply(lambda polarity: 'Positive'
 # Group by rating and calculate sentiment distribution
   rating_sentiment = df.groupby('score')['sentiment_label'].value_counts().

unstack().fillna(0)

   # Plot sentiment distribution based on app ratings
   ax = rating_sentiment.plot(kind='bar', stacked=True, figsize=(12, 8),__

color=['red', 'blue', 'green'])
   plt.title('Sentiment Distribution Based on App Ratings')
   plt.xlabel('App Rating')
   plt.ylabel('Number of Reviews')
   plt.xticks(rotation=0)
   plt.legend(title='Sentiment')
   plt.show()
   print("Sentiment distribution by rating:")
   print(rating_sentiment)
else:
   print("Required columns not found. Please check the previous steps.")
```

Sentiment analysis successfully added.


```
Sentiment distribution by rating:
sentiment_label Negative Neutral Positive
score
1
                      1747
                                586
                                           942
                       165
2
                                 88
                                           174
3
                        91
                                139
                                           245
4
                        77
                                133
                                           583
5
                        81
                                680
                                          5443
```

```
sentiment_distribution.plot(kind='bar', color=['green', 'red', 'blue'])
plt.title('Sentiment Distribution of Namma Yatri App Reviews')
plt.xlabel('Sentiment')
plt.ylabel('Number of Reviews')
plt.xticks(rotation=0)
plt.show()

print("Sentiment distribution:")
print(sentiment_distribution)
```

```
<>:6: SyntaxWarning: invalid decimal literal
<>:6: SyntaxWarning: invalid decimal literal
<>:6: SyntaxWarning: invalid decimal literal
C:\Users\Pratham.m\AppData\Local\Temp\ipykernel_27812\310177961.py:6:
SyntaxWarning: invalid decimal literal
    df['sentiment_label'] = df['sentiment'].apply(lambda polarity: 'Positive'if
polarity > Oelse'Negative'if polarity < Oelse'Neutral')
C:\Users\Pratham.m\AppData\Local\Temp\ipykernel_27812\310177961.py:6:
SyntaxWarning: invalid decimal literal
    df['sentiment_label'] = df['sentiment'].apply(lambda polarity: 'Positive'if
polarity > Oelse'Negative'if polarity < Oelse'Neutral')</pre>
```

<>:6: SyntaxWarning: invalid decimal literal

Sentiment Distribution of Namma Yatri App Reviews

Sentiment distribution:

0

Positive

Negative

Sentiment

Neutral

```
Positive
                7387
    Negative
                2161
    Neutral
                1626
    Name: count, dtype: int64
[]: import seaborn as sns
     import matplotlib.pyplot as plt
     # Group by app version and calculate the average rating
     app_version_ratings = df.groupby('appVersion')['score'].mean().reset_index()
     # Filter out unknown versions or versions with few reviews for clarity
     app_version_ratings = app_version_ratings[app_version_ratings['appVersion'] !=_
      # Sort by app version for better visualization
     app_version_ratings = app_version_ratings.sort_values(by='appVersion')
     # Create a figure with two subplots: one for the line plot and one for the
      \hookrightarrow histogram
     fig, ax1 = plt.subplots(figsize=(12, 6))
     # Plot a line plot for the average rating per app version
     sns.lineplot(data=app_version_ratings, x='appVersion', y='score', ax=ax1,__
      →marker='o', color='b')
     ax1.set xlabel('App Version')
     ax1.set_ylabel('Average Rating (1-5)')
     ax1.set_title('Average Rating Across App Versions')
     ax1.tick_params(axis='x', rotation=90)
     # Create a twin axis to overlay a histogram of ratings
     ax2 = ax1.twinx()
     sns.histplot(df, x='appVersion', y='score', bins=50, kde=False, color='orange', u
      \Rightarrowalpha=0.3, ax=ax2)
     ax2.set_ylabel('Rating Distribution')
     plt.show()
     # Interpretation: Average rating per app versionprint("Average rating per appu
      →version:")
     print(app_version_ratings)
```

sentiment_label

appVersion	score
1.1.2	5.000000
1.1.3	3.321429
1.1.4	4.000000
1.1.5	3.986928
1.1.6	4.133758
1.2.0	3.708995
1.2.1	3.802885
1.2.2	4.166667
1.2.3	3.876712
1.2.4	3.902913
1.3.0	3.740385
1.3.1	3.629562
1.3.10	3.760719
1.3.11	3.707483
1.3.12	3.597748
1.3.2	3.784114
1.3.3	3.989637
1.3.4	3.935528
1.3.5	3.591876
1.3.6	3.000000
1.3.7	3.062147
1.3.8	3.407153
1.3.9	3.715356
1.4.14	3.545679
1.4.16	3.654201
2.5.7	3.708885
	1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.2.0 1.2.1 1.2.2 1.2.3 1.2.4 1.3.0 1.3.1 1.3.10 1.3.11 1.3.12 1.3.2 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6 1.3.7 1.3.8 1.3.9 1.4.14 1.4.16

```
[]: import pandas as pd
     import matplotlib.pyplot as plt
     # Load the dataset
     file_path = "E:/4TH_sem/ADA/ADA_PROJECT/NammaYatri/namma_yatri_all_reviews.csv"
     df = pd.read_csv(file_path)
     # Ensure 'reviewCreatedVersion' is a string and handle missing values
     df['reviewCreatedVersion'] = df['reviewCreatedVersion'].astype(str).

→fillna('Unknown')
     # Ensure the correct data types
     df['reviewCreatedVersion'] = pd.Categorical(df['reviewCreatedVersion'], __
      →categories=sorted(df['reviewCreatedVersion'].unique()), ordered=True)
     # Create a figure for all plots
     plt.figure(figsize=(14, 10))
     # Bar Chart: Average Score by App Version
     plt.subplot(2, 2, 1)
     avg_score_by_version = df.groupby('appVersion')['score'].mean()
     avg_score_by_version.plot(kind='bar', color='skyblue')
     plt.title('Average Score by App Version')
     plt.xlabel('App Version')
     plt.ylabel('Average Score')
     # Histogram: Score Distribution
     plt.subplot(2, 2, 2)
     df['score'].plot(kind='hist', bins=5, color='lightgreen')
     plt.title('Score Distribution')
     plt.xlabel('Score')
     plt.ylabel('Count')
     # Line Chart: Thumbs Up Count Over Review Created Version
     plt.subplot(2, 2, 3)
     thumbs_up_by_version = df.groupby('reviewCreatedVersion')['thumbsUpCount'].sum()
     thumbs_up_by_version.plot(kind='line', marker='o', color='coral')
     plt.title('Thumbs Up Count Over Review Created Version')
     plt.xlabel('Review Created Version')
     plt.ylabel('Sum of Thumbs Up Count')
     # Pie Chart: Proportion of Reviews by Top Users
     plt.subplot(2, 2, 4)
     top_users = df['userName'].value_counts().head(10) # Get top 10 users
```

```
top_users.plot(kind='pie', autopct='%1.1f%%', colors=plt.cm.

→Paired(range(len(top_users))))

plt.title('Proportion of Reviews by Top Users')

# Adjust layout to ensure everything fits without overlap

plt.tight_layout()

# Show all plots

plt.show()
```

C:\Users\Pratham.m\AppData\Local\Temp\ipykernel_10736\1315138.py:34:
FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning. thumbs_up_by_version =

0.2 Step 2: Sentiment Analysis of Overall Reviews

A) VADER Sentiment Analysis

```
[]: from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
    # Initialize VADER sentiment analyzer
    analyzer = SentimentIntensityAnalyzer()
    # Apply VADER to classify sentiment
    df['vader_sentiment'] = df['content'].apply(lambda x: analyzer.
     →polarity_scores(x)['compound'])
    # Define sentiment categories based on VADER score
    df['vader_sentiment_category'] = df['vader_sentiment'].apply(lambda score:

¬'positive' if score > 0.05 else ('negative' if score < -0.05 else 'neutral'))</pre>
    # Sentiment Distribution
    vader_sentiment_distribution = df['vader_sentiment_category'].
     →value_counts(normalize=True) * 100
    print("\nVADER Sentiment Distribution:")
    print(vader_sentiment_distribution)
    VADER Sentiment Distribution:
    vader_sentiment_category
    positive
               60.909254
               23.912654
    negative
    neutral
               15.178092
    Name: proportion, dtype: float64
     B) TextBlob Sentiment Analysis
[]: from textblob import TextBlob
    # Apply TextBlob for sentiment analysis
    df['textblob polarity'] = df['content'].apply(lambda x: TextBlob(x).sentiment.
      →polarity)
    df['textblob_subjectivity'] = df['content'].apply(lambda x: TextBlob(x).
      ⇒sentiment.subjectivity)
    # Define sentiment categories based on TextBlob polarity
    df['textblob_sentiment_category'] = df['textblob_polarity'].apply(lambda score:__
     # Sentiment Distribution
    textblob_sentiment_distribution = df['textblob_sentiment_category'].
     ⇔value_counts(normalize=True) * 100
    print("\nTextBlob Sentiment Distribution:")
    print(textblob_sentiment_distribution)
```

```
textblob_sentiment_category
    positive
                66.108824
    negative
                19.339538
    neutral
                14.551638
    Name: proportion, dtype: float64
    Custom Sentiment Analysis Model:
[]: import pandas as pd
     from sklearn.model_selection import train_test_split
     from sklearn.feature_extraction.text import TfidfVectorizer
     from sklearn.linear_model import LogisticRegression
     # Assuming you have labeled data for sentiment analysis in a column 'label'
     # If you don't have a label column, you need to create one or use an\Box
      ⇔unsupervised method
     df['label'] = df['score'].apply(lambda x: 'positive' if x > 3 else ('negative'_

→if x < 3 else 'neutral'))</pre>
     # Vectorize the text data using TF-IDF
     vectorizer = TfidfVectorizer(max_features=5000)
     X = vectorizer.fit_transform(df['content'])
     y = df['label'] # Using the newly created 'label' column
     # Split the data into training and testing sets
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
      →random_state=42)
     # Train a logistic regression model
     model = LogisticRegression(max_iter=1000)
     model.fit(X_train, y_train)
     # Predict sentiments
     df['custom_model_sentiment'] = model.predict(X)
     # Sentiment Distribution
     custom_model_sentiment_distribution = df['custom_model_sentiment'].
      ⇒value counts(normalize=True) * 100
     print("\nCustom Model Sentiment Distribution:")
     print(custom_model_sentiment_distribution)
    Custom Model Sentiment Distribution:
    custom_model_sentiment
    positive
              64.596384
    negative 35.269375
    neutral
               0.134240
```

TextBlob Sentiment Distribution:

Name: proportion, dtype: float64

0.3 Step 3: Identify Key Features Mentioned in Reviews

TF-IDF Vectorization

```
[]: import pandas as pd
     from sklearn.feature_extraction.text import TfidfVectorizer
     # Initialize TF-IDF Vectorizer
     tfidf_vectorizer = TfidfVectorizer(max_df=0.9, min_df=0.01,__
      ⇔stop_words='english')
     # Fit and transform the content to extract features
     tfidf_matrix = tfidf_vectorizer.fit_transform(df['content'])
     # Get feature names and their corresponding scores
     tfidf_feature_names = tfidf_vectorizer.get_feature_names_out()
     tfidf_scores = tfidf_matrix.sum(axis=0).A1
     # Calculate total score to compute percentage
     total_score = tfidf_scores.sum()
     # Create a DataFrame for the features, scores, and percentages
     tfidf_features = pd.DataFrame({
         'feature': tfidf_feature_names,
         'score': tfidf_scores,
         'percentage': (tfidf_scores / total_score) * 100
     })
     # Sort by score in descending order
     tfidf_features = tfidf_features.sort_values(by='score', ascending=False)
     print("\nTop TF-IDF Features with Percentages:")
     print(tfidf_features.head(10))
```

```
Top TF-IDF Features with Percentages:
   feature
                score percentage
47
      good 2353.639987
                      13.432397
3
       app 1146.917416
                       6.545542
62
      nice
           579.036303 3.304603
85 service 556.937358 3.178483
79
      ride 464.618249 2.651611
      auto 464.348621
                       2.650072
8
35 driver 445.060293 2.539992
36 drivers 402.257586 2.295714
    super 327.972376
                       1.871763
89
```

```
94 time 305.829590 1.745392
LDA Topic Modeling
```

```
from sklearn.decomposition import LatentDirichletAllocation

# Initialize LDA Model

lda = LatentDirichletAllocation(n_components=5, random_state=42)

# Fit LDA model to TF-IDF matrix

lda.fit(tfidf_matrix)

# Get the topics
n_top_words = 10

tf_feature_names = tfidf_vectorizer.get_feature_names_out()

def display_topics(model, feature_names, n_top_words):
    for topic_idx, topic in enumerate(model.components_):
        print("Topic #%d:" % topic_idx)
        print(" ".join([feature_names[i] for i in topic.argsort()[:-n_top_words_uot])

-- 1:-1]]))

display_topics(lda, tf_feature_names, n_top_words)
```

```
Topic #0:
driver auto drivers app super worst ride don customer time
Topic #1:
good service great quick experience easy response app use ride
Topic #2:
nice app fast ride ok working thank work bad doesn
Topic #3:
ola namma uber yatri excellent best price app better high
Topic #4:
app time location need otp use friendly option getting really
```

0.4 Step 4: Analyze the Impact of App Versions on User Satisfaction

0.5 Step 5: Detect Common Issues or Complaints

```
[]: from sklearn.cluster import KMeans

# Use KMeans Clustering to find common themes
n_clusters = 5  # Number of clusters to form
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
kmeans.fit(tfidf_matrix)

# Assign each review to a cluster
df['cluster'] = kmeans.labels_

# Display top terms per cluster
for i in range(n_clusters):
    print(f"\nCluster {i}:")
```

```
Cluster 0:
nice, super, service, ride, driver, auto, time, drivers, excellent, good

Cluster 1:
good, service, app, experience, driver, ride, time, drivers, auto, work

Cluster 2:
ola, namma, yatri, uber, app, better, auto, good, drivers, rapido

Cluster 3:
app, auto, worst, drivers, nice, ride, use, driver, good, don

Cluster 4:
location, driver, app, drop, ride, drivers, auto, cancel, worst, different
```

print(", ".join([tfidf_feature_names[ind] for ind in kmeans.

0.6 Step 6: Evaluate the Effectiveness of Developer Responses

```
[]: # Compare sentiment and ratings for reviews with and without developer responses
    df['has_response'] = df['repliedAt'].notnull()

# Compare average sentiment and rating
    response_analysis = df.groupby('has_response').agg({
        'vader_sentiment': 'mean',
        'score': 'mean',
        'content': 'count'
    }).reset_index()

print("\nEffectiveness of Developer Responses:")
    print(response_analysis)
```

Effectiveness of Developer Responses:

```
        has_response
        vader_sentiment
        score
        content

        0
        False
        0.208668
        3.614230
        1532

        1
        True
        0.179314
        3.547915
        9642
```

0.7 Step 7: Implement and Evaluate Machine Learning Models

Naive Bayes

```
[]: from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score, precision_score, recall_score,

of1_score, roc_auc_score
```

```
# Split the data
     X = tfidf_matrix
     y = df['vader_sentiment_category'].map({'positive': 1, 'neutral': 0, 'negative':
      → -1})
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
     →random_state=42)
     # Train Naive Bayes
     nb_model = MultinomialNB()
     nb model.fit(X train, y train)
     # Predict and evaluate
     y_pred = nb_model.predict(X_test)
     nb_accuracy = accuracy_score(y_test, y_pred)
     nb_precision = precision_score(y_test, y_pred, average='weighted')
     nb_recall = recall_score(y_test, y_pred, average='weighted')
     nb f1 = f1_score(y_test, y_pred, average='weighted')
     nb_roc_auc = roc_auc_score(y_test, nb_model.predict_proba(X_test),_
     →multi_class='ovr')
     print(f"Naive Bayes Accuracy: {nb accuracy}")
     print(f"Naive Bayes Precision: {nb_precision}")
     print(f"Naive Bayes Recall: {nb recall}")
     print(f"Naive Bayes F1 Score: {nb_f1}")
     print(f"Naive Bayes ROC AUC Score: {nb_roc_auc}")
    Naive Bayes Accuracy: 0.7449664429530202
    Naive Bayes Precision: 0.7189043112365663
    Naive Bayes Recall: 0.7449664429530202
    Naive Bayes F1 Score: 0.7193953263318831
    Naive Bayes ROC AUC Score: 0.895247160523204
    Support Vector Machine (SVM)
[]: from sklearn.svm import SVC
     # Train SVM
     svm_model = SVC(kernel='linear', probability=True, random_state=42)
     svm_model.fit(X_train, y_train)
     # Predict and evaluate
     y_pred_svm = svm_model.predict(X_test)
     svm_accuracy = accuracy_score(y_test, y_pred_svm)
     svm_precision = precision_score(y_test, y_pred_svm, average='weighted')
     svm_recall = recall_score(y_test, y_pred_svm, average='weighted')
     svm_f1 = f1_score(y_test, y_pred_svm, average='weighted')
```

```
svm_roc_auc = roc_auc_score(y_test, svm_model.predict_proba(X_test),_u
      →multi_class='ovr')
     print(f"SVM Accuracy: {svm accuracy}")
     print(f"SVM Precision: {svm_precision}")
     print(f"SVM Recall: {svm recall}")
     print(f"SVM F1 Score: {svm f1}")
     print(f"SVM ROC AUC Score: {svm roc auc}")
    SVM Accuracy: 0.7861297539149888
    SVM Precision: 0.7983830464682234
    SVM Recall: 0.7861297539149888
    SVM F1 Score: 0.7900538077850788
    SVM ROC AUC Score: 0.9201762581859806
    Random Forest
[]: from sklearn.ensemble import RandomForestClassifier
     # Train Random Forest
     rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
     rf_model.fit(X_train, y_train)
     # Predict and evaluate
     y_pred_rf = rf_model.predict(X_test)
     rf_accuracy = accuracy_score(y_test, y_pred_rf)
     rf_precision = precision_score(y_test, y_pred_rf, average='weighted')
     rf_recall = recall_score(y_test, y_pred_rf, average='weighted')
     rf_f1 = f1_score(y_test, y_pred_rf, average='weighted')
     rf_roc_auc = roc_auc_score(y_test, rf_model.predict_proba(X_test),_

→multi class='ovr')
     print(f"Random Forest Accuracy: {rf accuracy}")
     print(f"Random Forest Precision: {rf_precision}")
     print(f"Random Forest Recall: {rf_recall}")
     print(f"Random Forest F1 Score: {rf_f1}")
     print(f"Random Forest ROC AUC Score: {rf_roc_auc}")
    Random Forest Accuracy: 0.7914988814317674
    Random Forest Precision: 0.8042353070592833
    Random Forest Recall: 0.7914988814317674
    Random Forest F1 Score: 0.7957801053843914
    Random Forest ROC AUC Score: 0.9247867213701472
    Neural Networks
[]: # Mapping your sentiment labels to integers
```

label_mapping = {'negative': 0, 'neutral': 1, 'positive': 2}

```
# Apply this mapping to your labels
df['label'] = df['label'].map(label_mapping)

# If the mapping process introduces any NaNs, remove those rows
df = df.dropna(subset=['label'])

# Convert labels to integers
df['label'] = df['label'].astype(int)

# Ensure that there are no invalid labels
assert df['label'].min() >= 0 and df['label'].max() < 3</pre>
```

```
[]: import tensorflow as tf
     from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import Dense, Dropout
     import numpy as np
     from sklearn.metrics import accuracy_score, precision_score, recall_score,
      ⊶f1_score
     # Prepare the data
     X = vectorizer.fit_transform(df['content'])
     y = df['label'].values # Use the newly encoded labels
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
      →random_state=42)
     # Define a simple neural network
     nn model = Sequential([
         Dense(128, input_shape=(X_train.shape[1],), activation='relu'),
         Dropout(0.5),
         Dense(64, activation='relu'),
         Dropout(0.5),
        Dense(3, activation='softmax') # 3 output classes: positive, neutral, __
      \rightarrownegative
     ])
     # Compile the model
     nn_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', u
      →metrics=['accuracy'])
     # Train the model
     nn_model.fit(X_train.toarray(), y_train, epochs=10, batch_size=32,__
      ⇔validation_split=0.2)
     # Predict and evaluate
     y_pred_nn = nn_model.predict(X_test.toarray())
     y_pred_nn_classes = np.argmax(y_pred_nn, axis=1)
```

```
nn_accuracy = accuracy_score(y_test, y_pred_nn_classes)
nn_precision = precision_score(y_test, y_pred_nn_classes, average='weighted')
nn_recall = recall_score(y_test, y_pred_nn_classes, average='weighted')
nn_f1 = f1_score(y_test, y_pred_nn_classes, average='weighted')
print(f"Neural Network Accuracy: {nn_accuracy}")
print(f"Neural Network Precision: {nn_precision}")
print(f"Neural Network Recall: {nn recall}")
print(f"Neural Network F1 Score: {nn_f1}")
Epoch 1/10
224/224
                   4s 11ms/step -
accuracy: 0.7000 - loss: 0.7562 - val accuracy: 0.8932 - val loss: 0.3328
Epoch 2/10
224/224
                   2s 11ms/step -
accuracy: 0.9019 - loss: 0.3174 - val_accuracy: 0.9027 - val_loss: 0.3179
Epoch 3/10
224/224
                   2s 10ms/step -
accuracy: 0.9176 - loss: 0.2545 - val_accuracy: 0.8999 - val_loss: 0.3348
Epoch 4/10
224/224
                   2s 10ms/step -
accuracy: 0.9352 - loss: 0.2083 - val_accuracy: 0.8993 - val_loss: 0.3636
Epoch 5/10
224/224
                   2s 9ms/step -
accuracy: 0.9485 - loss: 0.1700 - val_accuracy: 0.8960 - val_loss: 0.3964
Epoch 6/10
224/224
                   2s 9ms/step -
accuracy: 0.9617 - loss: 0.1376 - val accuracy: 0.8932 - val loss: 0.4246
Epoch 7/10
224/224
                   2s 8ms/step -
accuracy: 0.9692 - loss: 0.1304 - val_accuracy: 0.8876 - val_loss: 0.4512
Epoch 8/10
224/224
                   2s 8ms/step -
accuracy: 0.9702 - loss: 0.1148 - val_accuracy: 0.8887 - val_loss: 0.5105
Epoch 9/10
224/224
                   2s 8ms/step -
accuracy: 0.9778 - loss: 0.0991 - val_accuracy: 0.8870 - val_loss: 0.5443
Epoch 10/10
224/224
                   2s 8ms/step -
accuracy: 0.9772 - loss: 0.1036 - val_accuracy: 0.8853 - val_loss: 0.5790
70/70
                 Os 3ms/step
Neural Network Accuracy: 0.8702460850111857
Neural Network Precision: 0.8543803078309226
Neural Network Recall: 0.8702460850111857
Neural Network F1 Score: 0.861309956445785
```

```
[]: print(df.columns)
    Index(['reviewId', 'userName', 'userImage', 'content', 'score',
           'thumbsUpCount', 'reviewCreatedVersion', 'at', 'replyContent',
           'repliedAt', 'appVersion', 'cleaned_content', 'tokens'],
          dtype='object')
[]: print(df['content'].head(10))
    0
         This service claims that the driver will not c...
    1
                                                   Good App
    2
                                              price is more
    3
         Pathetic app, no option to reach customer care...
    4
    5
                         reasonable price and good service
    6
                                          Will not opening
    7
         The Namma Yatri public transport app is a user...
                            Need services like.. bike Ride
    8
         I just love namma yatri..it's far better than ...
    Name: content, dtype: object
[]: import numpy as np
     import pandas as pd
     from sklearn.feature_extraction.text import TfidfVectorizer
     from sklearn.linear_model import LogisticRegression
     from sklearn.metrics import accuracy_score, precision_score, recall_score,
      →f1_score
     from sklearn.model_selection import train_test_split
     # Assuming 'score' is the label column you want to predict
     label_column_name = 'score' # Update this if 'score' is not your label column
     # Vectorize the text data using TF-IDF on 'content' or 'cleaned_content'
     vectorizer = TfidfVectorizer(max_features=5000) # You can adjust the_
      \rightarrow max_features
     X = vectorizer.fit_transform(df['content']) # or df['cleaned_content'] ifu
      →that's what you want to use
     # Split the data into train and test sets
     X_train, X_test, y_train, y_test = train_test_split(X, df[label_column_name],_
      →test_size=0.2, random_state=42)
     # Train a logistic regression model
     logistic_model = LogisticRegression(max_iter=1000)
     logistic_model.fit(X_train, y_train)
     # Predict on the test set
     y_pred_logistic = logistic_model.predict(X_test)
```

```
# Evaluate the model
    logistic_accuracy = accuracy_score(y_test, y_pred_logistic)
    logistic_precision = precision_score(y_test, y_pred_logistic,__
      →average='weighted')
    logistic recall = recall score(y test, y pred logistic, average='weighted')
    logistic_f1 = f1_score(y_test, y_pred_logistic, average='weighted')
    print(f"Logistic Regression Accuracy: {logistic_accuracy}")
    print(f"Logistic Regression Precision: {logistic_precision}")
    print(f"Logistic Regression Recall: {logistic_recall}")
    print(f"Logistic Regression F1 Score: {logistic_f1}")
    Logistic Regression Accuracy: 0.7937360178970917
    Logistic Regression Precision: 0.7161382243437344
    Logistic Regression Recall: 0.7937360178970917
    Logistic Regression F1 Score: 0.7341763629942996
    c:\Users\Pratham.m\AppData\Local\Programs\Python\Python312\Lib\site-
    packages\sklearn\metrics\_classification.py:1517: UndefinedMetricWarning:
    Precision is ill-defined and being set to 0.0 in labels with no predicted
    samples. Use `zero_division` parameter to control this behavior.
      _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
[]: import pandas as pd
     # Compile results into a DataFrame for easy comparison
    results = pd.DataFrame({
         'Model': ['Naive Bayes', 'SVM', 'Random Forest', 'Neural Network', 'Logistic⊔
      →Regression'],
         'Accuracy': [nb_accuracy, svm_accuracy, rf_accuracy, __
      →nn_accuracy,logistic_accuracy],
         'Precision': [nb_precision, svm_precision, rf_precision, ⊔
      →nn_precision,logistic_precision],
         'Recall': [nb_recall, svm_recall, rf_recall, nn_recall,logistic_recall],
         'F1 Score': [nb_f1, svm_f1, rf_f1, nn_f1,logistic_f1],
         'ROC AUC': [nb_roc_auc, svm_roc_auc, rf_roc_auc, None, None]
    })
    print("Model Performance Comparison:")
    print(results)
    Model Performance Comparison:
                     Model Accuracy Precision Recall F1 Score ROC AUC
    0
               Naive Bayes 0.744966 0.718904 0.744966 0.719395 0.895247
    1
                       SVM 0.786130 0.798383 0.786130 0.790054 0.920176
    2
             Random Forest 0.791499
                                       0.804235 0.791499 0.795780 0.924787
    3
            Neural Network 0.870246
                                       0.854380 0.870246 0.861310
                                                                          NaN
```

1 TOPIC MODELING LDA ANALYSIS

```
[]: import pandas as pd
     import re
     import gensim
     from gensim import corpora
     from nltk.corpus import stopwords
     from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
     import pyLDAvis
     import pyLDAvis.gensim_models
     import warnings
     import nltk
     # Suppress warnings
     warnings.filterwarnings("ignore")
[]: # Load the Namma Yatri dataset
     file_path = "E:/4TH_sem/ADA/ADA_PROJECT/NammaYatri/namma_yatri_all_reviews.csv"_
     → # Adjust the file path if needed
     df = pd.read_csv(file_path)
     # Check the structure of the dataset
     df.head()
[]:
                                    reviewId
                                                      userName
     0 16e752d0-1492-4f91-8459-5a62ec74b979
                                                  Anil Valoor
     1 3fe2af72-c7ab-4a04-a560-a6295849ddc3
                                               Lingaraj Sahoo
     2 1809510c-9382-43c5-a930-18e3fbdd217a
                                                  Arif Hammad
     3 64435b81-5fb8-4536-a0a1-68262b22decf
                                                 parvez ahmed
     4 f2988ca6-34a9-4bc6-8290-04ffe7262f24
                                              Manikant Gadade
                                                userImage \
     0 https://play-lh.googleusercontent.com/a-/ALV-U...
     1 https://play-lh.googleusercontent.com/a-/ALV-U...
     2 https://play-lh.googleusercontent.com/a-/ALV-U...
     3 https://play-lh.googleusercontent.com/a-/ALV-U...
     4 https://play-lh.googleusercontent.com/a/ACg8oc...
                                                            score
                                                                  thumbsUpCount
        This service claims that the driver will not c...
     0
     1
                                                  Good App
                                                                5
                                                                               0
     2
                                            price is more
                                                                3
                                                                               0
                                                              3
                                                                             0
     3 Pathetic app, no option to reach customer care...
                                                                5
                                                      Good
                                                                               0
```

```
2.5.7 15-08-2024 17:28
     0
     1
                      2.5.8 15-08-2024 17:25
     2
                        NaN 15-08-2024 17:08
     3
                      2.5.8 15-08-2024 14:51
                      2.5.8 15-08-2024 13:47
                                              replyContent
                                                                   repliedAt \
     0
                                                       NaN
                                                                         NaN
       Hi Lingaraj, we appreciate your rating and tha... 15-08-2024 18:23
                                                       NaN
                                                                         NaN
     3 Hi Parvez, we apologize for the inconvenience... 15-08-2024 15:46
     4 Hi Manikant, we're delighted to hear that you ... 15-08-2024 18:33
       appVersion
            2.5.7
     0
            2.5.8
     1
              NaN
     3
            2.5.8
            2.5.8
[]: # Preprocessing function
     def preprocess_text_manual(text):
         # Convert to lowercase
         text = text.lower()
         # Remove special characters and digits
         text = re.sub(r'[^a-zA-Z\s]', '', text)
         # Remove stopwords and single characters, then join the words back
         stop_words = set(stopwords.words('english')).union(ENGLISH_STOP_WORDS)
         words = [word for word in text.split() if word not in stop_words and_
      \rightarrowlen(word) > 1]
         return ' '.join(words)
     # Apply preprocessing to the 'content' column
     df['cleaned_content'] = df['content'].apply(preprocess_text_manual)
     # Display the first few cleaned reviews
     df[['content', 'cleaned_content']].head()
[]:
                                                   content \
     O This service claims that the driver will not c...
     1
                                                  Good App
     3 Pathetic app, no option to reach customer care...
                                                      Good
                                           cleaned_content
```

reviewCreatedVersion

```
service claims driver cancel trips like ola ub...
     1
                                                  good app
     2
                                                     price
     3
       pathetic app option reach customer care emerge...
[]: # Tokenize the cleaned content
     def tokenize(text):
         return text.split()
     # Apply tokenization
     a=df['tokens'] = df['cleaned_content'].apply(tokenize)
     print("Tokenization",a)
     # Create a dictionary representation of the documents
     dictionary = corpora.Dictionary(df['tokens'])
     # Filter out extremes to limit the number of features
     dictionary.filter_extremes(no_below=15, no_above=0.5, keep_n=100000)
     print(dictionary)
     # Create a corpus: Term Document Frequency
     corpus = [dictionary.doc2bow(tokens) for tokens in df['tokens']]
     # Display a sample of the corpus
     print(corpus[:1][0][:30])
    Tokenization 0
                           [service, claims, driver, cancel, trips, like,...
                                                     [good, app]
    2
                                                         [price]
    3
              [pathetic, app, option, reach, customer, care,...
                                                          [good]
    11169
                                                  [high, price]
    11170
                                            [come, tamil, nadu]
    11171
                                                          [good]
    11172
                                                       [awesome]
    11173
                      [convenient, user, friendly, application]
    Name: cleaned_content, Length: 11174, dtype: object
    Dictionary<673 unique tokens: ['booking', 'cancel', 'cancellation', 'cancelled',
    'charged']...>
    [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 2), (6, 1), (7, 1), (8, 1), (9, 1),
    (10, 1), (11, 3)
[]: from gensim.models import CoherenceModel
     # Function to compute coherence scores for different numbers of topics
```

```
def compute_coherence_values(dictionary, corpus, texts, start, limit, step):
        coherence_values = []
        model_list = []
        for num_topics in range(start, limit, step):
             model = gensim.models.LdaMulticore(corpus=corpus, id2word=dictionary,_
      num_topics=num_topics, random_state=42, passes=10, workers=2)
            model list.append(model)
             coherencemodel = CoherenceModel(model=model, texts=texts,

dictionary=dictionary, coherence='c_v')
             coherence_values.append(coherencemodel.get_coherence())
        return model_list, coherence_values
     # Compute coherence values
     start, limit, step = 5, 15, 1
     model_list, coherence_values = compute_coherence_values(dictionary, corpus,_
     ⇔df['tokens'], start, limit, step)
     # Display coherence scores
     for m, cv in zip(range(start, limit, step), coherence_values):
        print(f"Num Topics = {m}, Coherence Score = {cv:.4f}")
    Num Topics = 5, Coherence Score = 0.6432
    Num Topics = 6, Coherence Score = 0.5757
    Num Topics = 7, Coherence Score = 0.5911
    Num Topics = 8, Coherence Score = 0.5813
    Num Topics = 9, Coherence Score = 0.6015
    Num Topics = 10, Coherence Score = 0.5931
    Num Topics = 11, Coherence Score = 0.5773
    Num Topics = 12, Coherence Score = 0.6076
    Num Topics = 13, Coherence Score = 0.5712
    Num Topics = 14, Coherence Score = 0.5843
[]: import gensim
     # Set parameters for the LDA model with the optimal number of topics
     num_topics = 5  # Based on the highest coherence score
     lda_model = gensim.models.LdaMulticore(corpus=corpus, id2word=dictionary,_
     onum_topics=num_topics, random_state=42, passes=10, workers=2)
     # Print the topics
     for idx, topic in lda_model.print_topics(-1):
        print(f"Topic: {idx + 1}\nWords: {topic}\n")
    Topic: 1
    Words: 0.083*"app" + 0.054*"ride" + 0.054*"auto" + 0.042*"drivers" +
    0.027*"time" + 0.025*"worst" + 0.021*"dont" + 0.019*"cancel" + 0.018*"booking" +
    0.017*"rides"
```

```
Topic: 2
            Words: 0.104*"service" + 0.086*"good" + 0.059*"namma" + 0.058*"app" +
            0.056*"yatri" + 0.036*"super" + 0.030*"best" + 0.029*"excellent" + 0.026*"great"
            + 0.022*"experience"
            Topic: 3
            Words: 0.047*"driver" + 0.042*"app" + 0.031*"location" + 0.031*"drivers" +
            0.026*"auto" + 0.022*"extra" + 0.017*"fare" + 0.016*"bad" + 0.016*"money" +
            0.015*"ride"
            Topic: 4
            Words: 0.085*"nice" + 0.081*"app" + 0.037*"customer" + 0.028*"support" +
            0.027*"high" + 0.021*"otp" + 0.017*"driver" + 0.015*"response" + 0.014*"issue" + 0.014**"issue" + 0.014***issue" + 0.0
            0.013*"ok"
            Topic: 5
            Words: 0.283*"good" + 0.074*"ola" + 0.067*"uber" + 0.058*"app" + 0.033*"price" +
            0.024*"better" + 0.021*"compared" + 0.017*"apps" + 0.015*"fare" + 0.014*"higher"
[]: import pyLDAvis.gensim_models as gensimvis
             import pyLDAvis
              # Prepare the LDA visualization
             lda_vis_data = gensimvis.prepare(lda_model, corpus, dictionary)
              # Save the visualization as an HTML file
             output path = "E:/4TH sem/ADA/ADA PROJECT/NammaYatri/lda namma yatri reviews.
                 ⇔html"
             pyLDAvis.save_html(lda_vis_data, output_path)
              # To display the visualization in Jupyter Notebook:
             pyLDAvis.display(lda_vis_data)
```

[]: <IPython.core.display.HTML object>

1.0.1 Interpretaion

Topic Distance: The circles on the left show how similar or different the topics are. Closer circles mean more similar topics. Topic 5 is far from the others, meaning it is quite different.

Topic Importance: The size of the circles represents how important each topic is. A bigger circle, like Topic 5, means that it appears frequently in the text.

Shared Themes: Topics 1, 2, and 4 are close to each other, meaning they share similar themes or words.

Key Words for Topic 5: On the right, the most relevant words for Topic 5 include "good," "ola," "uber," and "app." These words suggest that this topic is about comparing ride-hailing services like Ola and Uber.

1.1 Understanding Topic 1 to 5

1.1.1 Topic 1:

Top Words: "app", "ride", "auto", "drivers", "time", "worst", "cancel" Possible Name: App Functionality and Ride Experience (focuses on app issues, driver experiences, and ride cancellations)

1.1.2 Topic 2:

Top Words: "service", "good", "namma", "app", "yatri", "super", "best" Possible Name: Positive Reviews and Service Quality (emphasizes good service and positive feedback about the Namma Yatri app)

1.1.3 Topic 3:

Top Words: "driver", "app", "location", "drivers", "auto", "extra", "fare" Possible Name: Driver and Fare Issues (focuses on driver behavior, location issues, and fare concerns)

1.1.4 Topic 4:

Top Words: "nice", "app", "customer", "support", "high", "otp", "response" Possible Name: Customer Support and App Issues (centers around customer service, app issues, and high charges)

1.1.5 Topic 5:

Top Words: "good", "ola", "uber", "app", "price", "better", "compared" Possible Name: Comparison of Ride-Hailing Services (focuses on comparisons between different services like Ola and Uber, with an emphasis on price and quality)

[]: