Machine Learning is Fun!

Reference

- 1. https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a0824886
- 2. https://omdena.com/blog/supervised-and-uns
- 3. https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf

4.

What is Machine Learning?

"Learning is any process by which a system improves performance from experience."

- Herbert Simon

Traditional Programming

Machine Learning

Sample Applications

- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration
- Robotics
- Information extraction
- Social networks
- Debugging software
- [Your favorite area]

Types of Learning

- Supervised (inductive) learning
 Given: training data + desired outputs (labels)
- Unsupervised learning
 Given: training data (without desired outputs)
- Semi-supervised learning
 Given: training data + a few desired outputs
- Reinforcement learning
 Rewards from sequence of actions

Supervised Learning: Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

Supervised Learning: Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

29

Supervised Learning

- x can be multi-dimensional
 - Each dimension corresponds to an attribute

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

•••

Supervised Learning: Regression

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is real-valued == regression

Unsupervised Learning

- Given $x_1, x_2, ..., x_n$ (without labels)
- Output hidden structure behind the x's
 - E.g., clustering

Unsupervised Learning

Organize computing clusters

Market segmentation

Astronomical data analysis

Metrics to Evaluate your Machine Learning Algorithm

Classification Accuracy

Logarithmic Loss

Confusion Matrix

Area under Curve

F1 Score

Mean Absolute Error

Mean Squared Error

n=165	Predicted: NO	Predicted: YES
Actual: NO	50	10
Actual: YES	5	100

Confusion Matrix

There are 4 important terms:

- True Positives: The cases in which we predicted YES and the actual output was also YES.
- True Negatives: The cases in which we predicted NO and the actual output was NO.
- False Positives: The cases in which we predicted YES and the actual output was NO.
- False Negatives: The cases in which we predicted NO and the actual output was YES.

Terminology: Data table

ID	INPUT				LABEL
Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes

What is the difference between supervised and unsupervised learning techniques?

Terminology: Data table

Data Science Lifecycle

Data Analytics: Step by Step Approach

The Most Important Thing: Define Your Questions !!!!

Let's explore the exercises!

+

BILITY TO EXECUTE

Data Mining Tools

https://i0.wp.com/r4stats.com/wp-content/uploads/2018/02/Gartner-2018.p

Rapid Miner

+

What is Rapid Miner?

One Platform. Does Everything.

RapidMiner's unified data science platform accelerates the building of complete analytical workflows – **from data prep to machine learning to model validation to deployment** – in a single environment, dramatically improving efficiency and shortening the time to value for data science projects.

Visual workflow designer for data science teams

Share, reuse, and deploy predictive models from RapidMiner Studio

Run data science workflows directly inside Hadoop

Process and Operators

- An analytical workflow is called "Process"
- Each process consists of one or more "Operators"
- Connect output of an operator to input of the next operator

Operators

X

Examples of Operators

- Data accessing
 - o e.g. file, cassandra, mongoDB, Amazon S3
- Data blending
 - o e.g. mapping, filter, select, aggregate, split
- Data cleansing
 - o e.g. normalize, deduplication, outlier
- Data modeling
 - o e.g. Bayesian, decision tree, neural net

+

Anatomy of Operators in RapidMiner

- "inp" Input
- "out" Output
- "thr" Through
- "fil" File
- "exp" Example
- "ori" Original
- "lab" Label
- "tra" Training
- "mod" Model
- "wei" -Weight

Extensions in Rapid Miner: Marketplace

Machine Learning Exercises using RapidMiner

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

Lab1: Classification Lab | Pima Indians Diabetes

Lab2: Customer Churn

Exercise: Student Grade

	Name	├ · Type	Missing
>	Id ID	Integer	0
>	Label IsFail	Binominal	3
>	GPAX	Real	3
>	Gender	Binominal	0
>	Department	Polynominal	0
~	AttendScore	Real	5

