AIP Project: Computer Vision for Underwater Top Plan Automation

By Daniel Milton

The goal of this project was to create a program to scan underwater digital terrain of archaeology sites and return a map of all significant objects, also known as a top plan

Introduction

- Archeologists used 3d Photogrammetry technology to stitch together GoPro footage of underwater sites
- Used this to create a high definition 3d terrain model
- An archeologist would look at this model and circle all significant points to be referenced to later (Top Plan)

Recording terrain with GoPros

Project Plan

Automate the top plan using software

Top Plan

Image Thresholding

- Can change a colorful image to a binary image
- Uses a threshold value
- If above the value, pixel is set to 1
- If below the value, pixel is set to 0

Edge Detection

- Applied a gaussian blur beforehand to reduce noise
- Made many tweaks
- Results did not turn out good

Combination of several techniques

1st

Applied a Gaussian blur

0

2nd

Converted the image from RGB color scale to HSV

4th

Then Inverse the Image

Thresholded the image

Combination of several techniques

1st

Applied a Gaussian blur

0

2nd

Converted the image from RGB color scale to HSV

4th

Then Inverse the Image

Thresholded the image

Results

Results

