1. (1 point) Let
$$\begin{bmatrix} 1 & 2 & -2 \\ -2 & -2 & 6 \\ 2 & 1 & -2 \end{bmatrix}$$
. Find $adj(A)$.

Hint: A is invertible so you don't have to compute the cofactor matrix because $adj(A) = \det(A)A^{-1}$. Notice that you don't even need to compute $\det A$ separately because it will be naturally obtained in the process of finding A^{-1} via row transformations.

A	1 =	-1 -2 2	2 -2 1	-2 6 -2	1 0 0	0 1 0	0 0 1	() - ()	2,1, 	2 -2	100	2 2 -3	-2 2 2	1 2 -2	010	001	d	2, 2	7	1 0 0	2 1 -3	-1 1 2	1 -2	0 12	000			
1 0 0	2 1 0	0 0 1	415-415-415	6 10 15 3 10	als 15		ري ح ر ₁ ,	3,3,- 3,2	. 1 - 2	100	210	-2 1 1	1 1 15	012 20	,0011;		ی کے	, 1 5	<i>p</i>	[1 0 0	2 1 0	-2 1 5	_	3,2	00			
				2, 1515910					15 15 15																			
1A		1	•	2	•	5	5	1	D			1	./	. 1														
			45 15	1515910	-15-15	=	-2 8 2	23	-2 2.	5	O	راج)(,	A)														

2. (0.5 + 0.5 + 1 points) Let A be invertible $n \times n$ matrix. Find

- (a) $adj(A^T)$;
- (b) $adj(\lambda A)$ for all $\lambda \in \mathbb{R}$;
- (c) $\det(adj(A))$.

o) adj(A)'b) $\lambda^{n-1}adj(A)$ c) $(det(A))^{n-1}$ **3.** (2 points) Let A and B be invertible matrices. Prove that adj(AB) = adj(B)adj(A). Hint: $(AB)^{-1} = \dots$

Remark: it is true for non-invertible matrices as well but the proof of it is much harder and is not required.

4. (1 points) Find all $x \in \mathbb{R}$ such that $\det(A - x \cdot I_3) = 0$ for $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & -1 & 0 \end{bmatrix}$

$$\begin{bmatrix}
1 & 2 & 1 \\
0 & 2 & 1 \\
0 & -1 & 0
\end{bmatrix} - X \cdot \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix} - \begin{bmatrix}
1 & x & 2 & 1 \\
0 & 2 - x & 1 \\
0 & -1 & -x
\end{bmatrix} - 0$$

$$(1 - x) \cdot (-1)^{2} \cdot \begin{bmatrix}
2 - x & 1 \\
-1 & -x
\end{bmatrix} - (1 - x) \cdot (2x - x^{2}) - (1 \cdot (-1)) = 0$$

$$= -x^{3} + 3x^{2} + 1 - 3x = -3x(1 - x) + 1 - x^{3} = 0$$

$$= -3x(1 - x) + (1 - x)(1 + x + x^{2}) = -(1 - x)(3x - (1 + x + x^{2})) = 0$$

$$= -(1 - x)(2x - 1 - x^{2}) = (1 - x)(x^{2} - 2x + 1) = 0$$

$$= -(1 - x)(x - 1)^{2} = 0 \Rightarrow \begin{cases}
1 - x = 0 \\
(x - 1)^{2} = 0
\end{cases} \Rightarrow x = 1$$

5. (2 points) For all
$$a_1, a_2, a_3, x \in \mathbb{R}$$
 compute $\det(A)$, where $A = \begin{bmatrix} x + a_1 & x & x \\ x & x + a_2 & x \\ x & x & x + a_3 \end{bmatrix}$.

Assume
$$x' = \begin{bmatrix} x \\ x \end{bmatrix} a_1' = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} a_2' = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} a_3' + \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} a_3' +$$

6. (2 point) Let $Mat_n(\mathbb{Z})$ be the set of all $n \times n$ matrices with integer coefficients and $A \in Mat_n(\mathbb{Z})$. Prove that (a) If A is invertible and $A^{-1} \in Mat_n(\mathbb{Z})$ then $\det(A) = \pm 1$; (b) If $\det(A) = \pm 1$ then $A^{-1} \in Mat_n(\mathbb{Z})$.

O) By def.
$$|A^{-1}| = \frac{1}{|A|}$$
, so def $(A^{-1} \cdot A) = \det(I) = 1$. If $A \in Mat_n(I)$ and $A^{-1} \in Mat_n(I)$, the only possible values of $|A| = \pm 1$

b) def(A)=±1, then det(A)·det(A⁻¹) = det(A·A⁻¹) = det(I)=1

Which is only possible if $det(A) = det(A^{-1}) = t = t = t$ =) if $A \in Matn(I)$ then $A \in Matn(I)$