EE 112 (MBP): HW 5 (February 17, 2017)

1. An input voltage $V_i(t) = V_1 + V_m \sin \omega t$ is applied to the circuits shown in the figure. If $V_{\rm on} = 0.7 \, {\rm V}$ for the diode, $V_1 = 2 \, {\rm V}$, and $V_m = 5 \, {\rm V}$, plot $V_o(t)$.

- 2. In the circuit shown in the figure, assume the diode to be ideal, with $V_{\rm on} = 0 \, \text{V}$. The capacitor voltage V_c is initially $0 \, \text{V}$.
 - (a) Sketch $V_c(t)$ and $V_o(t)$ for the first two cycles (i.e., 0 < t < 2T).
 - (b) Repeat for $V_{\rm on} = 0.7 \,\rm V.$ [5]

3. In the circuit shown in the figure, $V_s=24\,\sin\omega t\,\mathrm{V},\ V_Z=6\,\mathrm{V},\ V_\mathrm{on}=0.7\,\mathrm{V},$ and $RC\gg T.$

