# Circuit Linéaire du Second Ordre

## I. Oscillations libres du circuit L, C

### 1) Circuit (L, C)

On utilise le circuit:



On commence avec C chargé par une tension.

C est en convention générateur, L est en convention récépteur.

On a:

$$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$i = -C\frac{\mathrm{d}u}{\mathrm{d}t}$$

On remplace pour obtenir une équation différentielle en une seule variable:

$$u = -LC \frac{\mathrm{d}^2 u}{\mathrm{d}t}$$

$$i = -LC \frac{\mathrm{d}^2 i}{\mathrm{d}t}$$

On peut les écrires sous la forme:

$$\frac{\mathrm{d}^2 u}{\mathrm{d}t} + \omega_0^2 u = 0, \text{avec } \omega_0 = \frac{1}{\sqrt{LC}}$$

## 2) Solution d'un oscillateur harmonique

#### !! Caution:

Le plus et le carré dans l'équation sont essentiels pour dire qu'il s'agit d'un oscillateur harmonique.

Lorsqu'on est face à un oscillateur harmonique, on peut parachuter la forme de la solution, qui sera:

$$u(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$
$$= U\cos(\omega_0 t + \varphi)$$

## 3) Conditions initiales

On a deux constantes à déterminer: (A, B) ou  $(U, \varphi)$ , en utilisant les conditions initiales u(0) et u'(0) (solution d'un problème de Cauchy)

Pour obtenir les conditions initiales, on utilisera toujours les conditions de continuité.

Ici, comme on a deux conditions initiales à déterminer, il nous faudra deux conditions de continuité:

- La continuité de la tension aux bornes de  ${\cal C}$
- La continuité de l'intensité traversant I

### 4) Bilan énergétique

On repart des l'équadiffs originales:

$$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$$
$$i = -C \frac{\mathrm{d}u}{\mathrm{d}t}$$

Pour obtenir une puissance, on peut soit multiplier la première par i, soit la deuxième par u:

$$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$ui = Li \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$-C \frac{\mathrm{d}u}{\mathrm{d}t} u = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2}Li^2\right)$$

$$-\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2}Cu^2\right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2}Li^2\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2}Cu^2 + \frac{1}{2}Li^2\right) = 0$$

Donc échange d'énergie sans perte.

## II. Circuit linéaires du second ordre

## 1) Circuit R, L, C en série



 $\Phi$  Note:

On obtient un résultat similaire avec un circuit R, L, C en parallèle

On utilise un signal échelon:

$$e(t) = \begin{cases} 0 \text{ si } t < 0 \\ E \text{ si } t > 0 \end{cases}$$

On a:

$$\begin{split} e &= u + u_R + u_L \\ &= u + Ri + L\frac{\mathrm{d}i}{\mathrm{d}t} \\ &= u + RC\frac{\mathrm{d}u}{\mathrm{d}t} + L\frac{\mathrm{d}t}{\mathrm{d}t} \\ &= u + RC\frac{\mathrm{d}u}{\mathrm{d}t} + LC\frac{\mathrm{d}^2u}{\mathrm{d}t^2} \end{split}$$

On peut le laisser sous cette forme, ou tout diviser par LC:

$$\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{R}{L} \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{1}{LC} u = \frac{1}{LC} e$$

On pose:  $\omega_0^2=\frac{1}{LC}, \omega_0=\frac{1}{\sqrt{LC}}.$  On obtient cette forme:

$$\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}u}{\mathrm{d}t} + \omega_0^2 u = \omega_0^2 e$$

Pour trouver Q, on identifie:

$$\frac{R}{L} = \frac{\omega_0}{Q} = \frac{1}{Q\sqrt{LC}} \Leftrightarrow Q = \frac{L}{R\sqrt{LC}} = \frac{1}{R}\sqrt{\frac{L}{C}}$$

#### 2) Regime libre ou régime propre

**Régime libre ou régime propre**: régime se mettant en place en l'absence de source, c'est à dire quand e=0, on s'intéressera donc uniquement à la description du régime transitoire.

## 3) Équation caractérisique - Trois types de régimes

Pour résoudre l'équadiff du second ordre qu'on obtient, on utilise l'équation caractéristique:

$$r^2 + \frac{\omega_0}{Q}r + \omega_0^2 = 0$$

$$\Delta = \left(\frac{\omega_0}{Q}\right)^2 - 4\omega_0^2 = \omega_0^2 \left(\frac{1}{Q^2} - 4\right)$$

• Si  $\Delta > 0$ :

On trouve deux solutions réelles à l'équation caractéristique.

$$r_{1}=-\frac{\omega_{0}}{2Q}+\frac{\omega_{0}}{2}\sqrt{\frac{1}{Q^{2}}-4}$$

$$r_2 = -\frac{\omega_0}{2Q} - \frac{\omega_0}{2} \sqrt{\frac{1}{Q^2} - 4}$$

On a u(t) de la forme  $u(t) = A e^{r_1 t} + B e^{r_2 t}$ 

√ Tip

Le régime transitoire fini par disparaître: les exponentielles doivent tendre vers  $\mathbf{0}$ 

 $r_2<0$  de manière évidente. Pour  $r_1\colon$ 

$$-\frac{\omega_0}{2Q} + \frac{\omega_0}{2Q} \underbrace{\sqrt{1-4Q^2}}_{<1}$$

$$\sqrt{1-4Q^2<1},\,\mathrm{donc}\;r_1<0.$$

On appellera ce régime le régime apériodique.

Comme  $\Delta > 0$ ,  $\frac{1}{Q^2} - 4 > 0$ , donc:

$$\frac{1}{Q^2} > 4 \Leftrightarrow \frac{1}{Q} > 2 \Leftrightarrow Q < \frac{1}{2}$$

Ainsi:

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} < \frac{1}{2} \Leftrightarrow R > 2 \sqrt{\frac{L}{C}}$$

On verra ce régime avec un fort amortissement (grande résistance).



• Si 
$$\Delta=0, Q=\frac{1}{2} \Leftrightarrow R=2\sqrt{\frac{L}{C}}$$

Cette situation sera peu commune, car l'égalite doît être rigoureuse.

Dans ces conditions, on parlera de régime critique.

C'est la limite entre les deux autres régimes.

On a une solution réelle double:

$$r_0 = -\frac{\omega_0}{2Q}$$

La solution est alors de la forme:

$$u(t) = Ae^{r_0t} + Bte^{-r_0t} = (A + Bt)e^{-r_0t}$$

Le régime critique est le plus rapide dans le retour à zéro.



• Si  $\Delta < 0$ ,

$$Q > \frac{1}{2} \Leftrightarrow R < 2\sqrt{\frac{L}{C}}$$

On a deux solutions complexes conjuguées:

$$r_{1,2} = -\frac{\omega_0}{2Q} \pm j \frac{\omega_0}{2} \sqrt{4 - \frac{1}{Q^2}}$$

$$u(t) = Ae^{-t\frac{\omega_0}{2Q}}e^{jt\frac{\omega_0}{2}\sqrt{4-\frac{1}{Q^2}}} + Be^{-t\frac{\omega_0}{2Q}}e^{-jt\frac{\omega_0}{2}\sqrt{4-\frac{1}{Q^2}}}$$

#### Φ Note:

On cherche des solutions réelles. On va donc directement écrire u(t) avec des cos et des sin

$$\begin{split} u(t) &= (U_1\cos(\omega t) + U_2\sin(\omega t))e^{-t\frac{\omega_0}{2Q}}\\ \text{avec}\ \omega &= \frac{\omega_0}{2}\sqrt{4-\frac{1}{Q^2}} = \frac{\omega_0\sqrt{4Q^2-1}}{2Q}\\ \text{ou}\ u(t) &= U\cos(\omega t + \varphi)e^{-t\frac{\omega_0}{2Q}} \end{split}$$

On appellera  $\omega$  la **pseudo-pulsation**, et ce régime **pseudo-périodique**.



On peut ainsi calculer la pseudo-période:

$$T = \frac{2\pi}{\omega} = \frac{4\pi Q}{\omega_0 \sqrt{4Q^2 - 1}}$$

Pour qualifier la baisse d'amplitude avec le temps, on définit le décrément logarithmique:

$$\delta = \ln\left(\frac{u(t+nT)}{u(t+(n+1)T)}\right) = \frac{1}{N}\ln\left(\frac{u(t+nT)}{u(t+(n+N)t)}\right)$$

#### Φ Note:

On calcule la valeur d'avant sur la valeur d'après: on mesure la décroissance.

On reprend la forme  $u(t) = U\cos(\omega t + \varphi)e^{-t\frac{\omega_0}{2Q}}$ :

$$\delta = \ln\left(\frac{u(t+nT)}{u(t+(n+1)T)}\right)$$

$$= \ln\left(\frac{U\cos(\omega(t+nT)+\varphi)e^{-(t+nT)\frac{\omega_0}{2Q}}}{U\cos(\omega(t+(n+1)T))e^{-(t+(n+1)T)\frac{\omega_0}{2Q}}}\right)$$

Les cosinus sont pris à une période d'écart, et sont donc égaux:

$$\begin{split} \delta &= \ln \Biggl( \frac{\exp \Bigl( -(t+nT) \frac{\omega_0}{2Q} \Bigr)}{\exp \Bigl( -(t+(n+1)T) \frac{\omega_0}{2Q} \Bigr)} \Biggr) \\ &= \ln \Biggl( \exp \Bigl( -(t+nT) \frac{\omega_0}{2Q} + (t+(n+1)T) \frac{\omega_0}{2Q} \Bigr) \Bigr) \\ &= \frac{\omega_0}{2Q} (-t-nT+t+nT+T) \\ &= \frac{\omega_0}{2Q} T = \frac{\omega_0}{2Q} \frac{4\pi Q}{\omega_0 \sqrt{4Q^2-1}} \\ &= \frac{2\pi}{\sqrt{4Q^2-1}} \end{split}$$

Le régime pseudo-périodique est obtenu dans le cas d'un faible amortissement, soit quand  $R < 2\sqrt{\frac{L}{C}}$ .

Si 
$$R \ll 2\sqrt{\frac{L}{C}} \Leftrightarrow Q \gg \frac{1}{2}$$

Quand  $Q \to \infty$ ,  $\delta \to 0$  et  $T \approx T_0$ . Plus l'amortissement est petit, plus on s'approche d'un vrai régime périodique.

### 4) Réponse à un échelon de tension

On a pour l'instant résolu l'équadiff dans le régime libre.

Si on applique un échelon de tension, on tend uste vers un régime permanent de tension différente.

## 5) Aspects énergétiques

On repart de l'équation différentielle:

$$\begin{split} e &= u + u_R + u_L \\ ei &= ui + Rii + L\frac{\mathrm{d}i}{\mathrm{d}t}i \\ ei &= uC\frac{\mathrm{d}u}{\mathrm{d}t} + Ri^2 + \frac{\mathrm{d}}{\mathrm{d}u}\left(\frac{1}{2}Li^2\right) \\ ei &= \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{2}Cu^2\right) + \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{2}Li^2\right) + Ri^2 \end{split}$$

Une partie est stockée dans la capacité, une partie est stockée dans la bobine, et une partie part en effet Joule dans la résistance.

#### 6) Un exemple: le pont de Wien



a) Établir l'équation différentielle vérifiée par la tension u

$$\begin{split} i &= i_1 + i_2 \\ i_1 &= C \frac{\mathrm{d} u}{\mathrm{d} t} \\ i_2 &= \frac{u}{R} \\ i &= C \frac{\mathrm{d} u_C}{\mathrm{d} t} \Leftrightarrow \frac{\mathrm{d} u_C}{\mathrm{d} t} = \frac{i}{c} \\ e &= u + Ri + u_C \end{split}$$

On dérive:

$$\begin{split} \frac{\mathrm{d}e}{\mathrm{d}t} &= \frac{\mathrm{d}u}{\mathrm{d}t} + R\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{\mathrm{d}u_C}{\mathrm{d}t} \\ &= \frac{\mathrm{d}u}{\mathrm{d}t} + R\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{i}{C} \\ &= \frac{\mathrm{d}u}{\mathrm{d}t} + R\frac{\mathrm{d}}{\mathrm{d}t}(i_1 + i_2) + \frac{i_1 + i_2}{C} \\ &= \frac{\mathrm{d}u}{\mathrm{d}t} + R\frac{\mathrm{d}}{\mathrm{d}t}\left(C\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{u}{R}\right) + \frac{1}{C}\left(C\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{u}{R}\right) \\ &= \frac{\mathrm{d}u}{\mathrm{d}t} + RC\frac{\mathrm{d}^2u}{\mathrm{d}t^2} + \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{u}{RC} \end{split}$$

Donc:

$$RC\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + 3\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{u}{RC} = \frac{\mathrm{d}e}{\mathrm{d}t}$$

b) L'écrire sous forme canonique. Donner les expressions de  $\omega_0$  et Q en fonction de R,C

On met sous forme canonique:

$$\begin{split} \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{3}{RC} \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{1}{R^2 C^2} u &= \frac{1}{RC} \frac{\mathrm{d}e}{\mathrm{d}t} \\ \omega_0^2 &= \frac{1}{R^2 C^2} \Leftrightarrow \omega_0 = \frac{1}{RC} \\ \frac{\omega_0}{Q} &= \frac{3}{RC} \Leftrightarrow Q = \frac{1}{3} \end{split}$$

Le circuit sera toujours apériodique car  $Q<\frac{1}{2}$ , on a donc un fort amortissement (logique car dans un RLC série,  $Q=\frac{1}{R}\sqrt{\frac{L}{C}}$ ).