НАВЧАЛЬНО-НАУКОВИЙ КОМПЛЕКС "ІНСТИТУТ ПРИКЛАДНОГО СИСТЕМНОГО АНАЛІЗУ" НАЦІОНАЛЬНОГО ТЕХНІЧНОГО УНІВЕРСИТЕТУ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО"

КАФЕДРА МАТЕМАТИЧНИХ МЕТОДІВ СИСТЕМНОГО АНАЛІЗУ

РОЗРАХУНКОВА РОБОТА з предмету "Математична статистика"

Виконав студент групи КА-81 Фордуй Нікіта

1 Завдання

Дана конкретна реалізація вибірки об'ємом n = 100:

2	0	8	0	15	1	1	1	7	1	0	0	3	1	1	1	0	0	3	1
2	4	10	6	1	0	1	0	0	2	0	1	5	0	1	9	4	2	11	3
2	0	8	1	6	3	0	1	1	4	0	9	5	3	3	0	0	10	2	0
3	11	0	9	0	1	4	1	0	2	0	1	1	3	4	7	1	3	3	0
4	7	6	0	3	0	1	15	11	1	2	4	0	2	0	0	0	26	4	0

2 Побудова варіаційного ряду вибірки

Маємо невелику кількість різних значень - тому побудуємо дискретний варіаційний ряд. Підрахувавши кількість варіант (14) та їх частоти і знаючи об'єм вибірки отримаємо дискретний варіаційний ряд :

x_i^*	0	1	2	3	4	5	6	7	8	9	10	11	15	26
n_i	29	22	9	11	8	2	3	3	2	3	2	3	2	1
$\omega_i = \frac{n_i}{n}$	$\frac{29}{100}$	$\frac{22}{100}$	$\frac{9}{100}$	$\frac{11}{100}$	$\frac{8}{100}$	$\frac{2}{100}$	$\frac{3}{100}$	$\frac{3}{100}$	$\frac{2}{100}$	$\frac{3}{100}$	$\frac{2}{100}$	$\frac{3}{100}$	$\frac{2}{100}$	$\frac{1}{100}$

де x_i^* - варіанти реалізації вибірки, n_i - частота варіанти, $\omega_i = \frac{n_i}{n}$ - частість варіанти або відносна частота.

Далі літерою ξ будемо позначати генеральну сукупність, реалізацію вибірки якої ми маємо.

За дискретним варіаційним рядом побудуємо його геометричну інтерпретацію - полігон відносних частот (частостей):

Порівняємо полігон частостей нашої реалізації виборки із полігоном ймовірностей закону Паскаля при різних значеннях його параметра.

Можна побачити, що полігон ймовірностей закону Паскаля при певних значеннях його параметра $(a=1,\ 2,\ 3,\ 4)$ дуже схожий на полігон частостей нашої реалізації вибірки.

3 Емпірична функція розподілу

Побудуємо емпіричну функцію розподілу за вже побудованим дискретним варіаційним рядом:

$$F_n^*(x) = \begin{cases} 0, & x \le 0 \\ \frac{29}{100}, & 0 < x \le 1 \\ \frac{29+22}{100} = \frac{51}{100}, & 1 < x \le 2 \\ \frac{51}{100} + \frac{9}{100} = \frac{60}{100}, & 2 < x \le 3 \\ \frac{60}{100} + \frac{11}{100} = \frac{71}{100}, & 3 < x \le 4 \\ \frac{71}{100} + \frac{8}{100} = \frac{79}{100}, & 4 < x \le 5 \\ \frac{79}{100} + \frac{2}{100} = \frac{81}{100}, & 5 < x \le 6 \\ \frac{81}{100} + \frac{3}{100} = \frac{87}{100}, & 6 < x \le 7 \\ \frac{84}{100} + \frac{3}{100} = \frac{87}{100}, & 7 < x \le 8 \\ \frac{87}{100} + \frac{2}{100} = \frac{89}{100}, & 8 < x \le 9 \\ \frac{89}{100} + \frac{3}{100} = \frac{92}{100}, & 9 < x \le 10 \\ \frac{92}{100} + \frac{2}{100} = \frac{94}{100}, & 10 < x \le 11 \\ \frac{94}{100} + \frac{3}{100} = \frac{97}{100}, & 11 < x \le 15 \\ \frac{97}{100} + \frac{2}{100} = \frac{99}{100}, & 15 < x \le 26 \\ \frac{99}{100} + \frac{1}{100} = 1, & x > 26 \end{cases}$$

Зобразимо емпіричну функцію розподілу геометрично:

Порівняємо графік емпіричної функції розподілу варіаційного ряду з графіком функції розподілу закону Паскаля при різних параметрах $(a=1,\,2,\,3)$:

З рисунків вище можна побачити що графік емпіричної функції розподілу нашої реалізації вибірки схожий при певних значеннях параметра а на функцію розподілу закону Паскаля.

4 Обчислення вибіркових характеристик генеральної сукупності (медіана, мода, ассиметрія)

Для початку знайдемо $(Mo_{\xi}^*)_{\text{знач.}}$ - значення вибіркової моди (тієї варіанти, якій відповідає найбільша частість). Для знаходження цієї варіанти використаємо вже побудований дискретний варіаційний ряд (див. ст. 1 пункт 2). Проаналізувавши варіаційний ряд побачимо, що:

$$(Mo_{\xi}^*)_{\text{знач.}} = x_1^* = 0$$

Зауважимо, що випадкова величина μ , розподілена за законом Паскаля при будь-яких значеннях параметра а має моду $Mo_{\mu}=0$.

Знайдемо значення вибіркової медіани $(Me_{\xi}^*)_{\text{знач.}}$ для нашої реалізації виборки. З варіаційного ряду (див. ст. 1 пункт 2), враховуючи те, що кількість варіант - парна, знайдемо:

$$(Me_{\xi}^*)_{\text{3Haq.}} = \frac{x_7^* + x_8^*}{2} = 6.5$$

Для знаходження значення вибіркової ассиметрія спочатку потрібно знайти значення вибіркової дисперсії, а тому й вибіркового середнього:

$$\overline{x} = (E_{\xi}^*)_{\text{3Haq.}} = \frac{1}{100} \sum_{k=1}^{14} x_k^* n_k = 3.06$$

За допомогою цього знайдемо значення вибіркової дисперсії:

$$(D_{\xi}^*)_{\text{3Haq.}} = \frac{1}{100} \sum_{k=1}^{100} (x_k - 3.06)^2 = 17.136400000000002$$

Отримавши значення вибіркової дисперсії, можна отримати значення вибіркової ассиметрії для даної реалізації вибірки:

$$(As_{\xi}^*)_{\text{\tiny 3Haq.}} = \frac{\frac{1}{100} \sum_{k=1}^{100} (x_k - 3.06)^3}{(17.1364000000000000)^{\frac{3}{2}}} = 2.504088773053977$$

5 Незміщені оцінки математичного сподівання та дисперсії

 ξ - генеральна сукупність, $\vec{\xi} = (\xi_1, \xi_2, \dots, \xi_n)$ - випадкова вибірка, n = 100 - об'єм вибірки.

За точкову оцінку математичного сподівання візьмемо вибіркове середнє:

$$E_{\xi}^* = \frac{1}{n} \sum_{k=1}^{n} \xi_k$$

Перевіримо незміщенність цієї точкової оцінки:

$$E(E_{\xi}^*) = E(\frac{1}{n} \sum_{k=1}^n \xi_k) = \frac{1}{n} \sum_{k=1}^n E_{\xi_k} = \frac{1}{n} n E_{\xi} = E_{\xi}$$

Відповідно, ця точкова оцінка матсподівання є незміщеною. За точкову оцінку дисперсії візьмемо:

$$D_{\xi}^* = \frac{1}{n} \sum_{k=1}^n (\xi_k - \overline{\xi})^2 = \frac{1}{n} \sum_{k=1}^n ((\xi_k - E_{\xi}) - (\overline{\xi} - E_{\xi}))^2 =$$

$$= \frac{1}{n} \sum_{k=1}^n (\xi_k - E_{\xi})^2 - 2(\overline{\xi} - E_{\xi}) \frac{1}{n} \sum_{k=1}^n (\xi_k - E_{\xi}) + (\overline{\xi} - E_{\xi})^2 =$$

$$= \frac{1}{n} \sum_{k=1}^n (\xi_k - E_{\xi})^2 - (\overline{\xi} - E_{\xi})^2$$

Порахуємо матсподівання цієї оцінки:

$$E(D_{\xi}^*) = \frac{1}{n} \sum_{k=1}^n E(\xi_k - E_{\xi})^2 - E(\overline{\xi} - E_{\xi})^2 = D_{\xi} - D_{\overline{\xi}}$$

Бачимо, що ця оцінка - зміщена. Знайдемо $D_{\overline{\xi}} = \frac{1}{n} \sum_{k=1}^n D_{\xi_k} = \frac{D_{\xi}}{n}$.

$$E(D_{\xi}^*) = D_{\xi} - \frac{D_{\xi}}{n} = \frac{n-1}{n}D_{\xi}$$

Тоді оцінка $D_{\xi}^{**} = \frac{n}{n-1} D_{\xi}^{*}$ буде незміщеною оцінкою дисперсії.

$$D_{\xi}^{**} = \frac{n}{n-1} \frac{1}{n} \sum_{k=1}^{n} (\xi_k - \overline{\xi})^2 = \frac{1}{n-1} \sum_{k=1}^{n} (\xi_k - \overline{\xi})^2$$

Обчислимо значення цих точкових оцінок на данній реалізації виборки:

$$(E_{\xi}^*)_{{}_{3\mathrm{Haq.}}} = \frac{1}{100} \sum_{k=1}^{14} x_k^* n_k = 3.06$$

де x_k^* - к-та варіанта, n_k - частота вибірки.

$$(D_{\xi}^{**})_{\text{3HaV.}} = \frac{1}{99} \sum_{k=1}^{100} (x_k - 3.06)^2 = 17.30949494949495$$

6 Гіпотеза про розподіл, за яким отримано вибірку

Виходячи з того що:

- полігон частостей реалізації вибірки схожий на полігон ймовірностей закону Паскаля (див. с. 3-4)
- емпірична функцію розподілу реалізації вибірки схожа на функцію розподілу закону Паскаля (див. с. 6-7)
- при значенні параметра закона Паскаля a=3 матсподівання випадкової величини $\psi \sim Pas(a)$ матиме значення $E_{\psi}=a=3$, а дисперсія $D_{\psi}=a+a^2=12$. При цьому значення оцінок матсподівання та дисперсії достатньо близькі:

$$(E_{\xi}^*)_{\text{3Haq.}} = 3.06$$

 $(D_{\xi}^{**})_{\text{3Haq.}} = 17.31$

Таким чином висувається гіпотеза H_0 - генеральна сукупність, якою породжена данна вибірка, розподілена за законом Паскаля.