计算机系统结构 1.9 计算机系统评价

冯 丹

武汉光电国家研究中心 华中科技大学计算机科学与技术学院

1. 计算机系统设计的四个要素

• (1) 性能 (快!)

(2) 成本

(3) 能耗

(4) 可靠性

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Figure 6: Bill of Materials for a Typical Desktop PC (Estimated)

Component	Cost R	ange	% of T	otal
Monitor	\$61 -	\$113	16.1% -	15.0%
CPU	40 -	164	10.7% -	21.7%
Hard Disk Drive	54 -	95	14.3% -	12.6%
DRAM	14 -	25	3.6% -	3.4%
Power source / casing	33 -	54	8.7% -	7.1%
Chipset (data processing / ASP)	25 -	44	6.7% -	5.8%
Connectors	19 -	26	4.9% -	3.4%
Circuit Board	6 -	7	1.6% -	1.0%
Optical drive	21 -	79	5.6% -	10.5%
Keyboard	4 -	6	1.1% -	0.8%
Others	5 -	16	1.5%	2.2%
Software	75 -	75	19.9% -	9.9%
Warranty	20 -	50	5.3% -	6.6%
Total	\$376 -	\$754		

2. 性能

- 1. 性能评价指标:响应时间、吞吐率
- (1) 响应时间 (response time) : 完成一个任务的全部时间

用户角度

• (2) 吞吐率 (throughput): 单位时间内完成的任务数

管理员角度

2. 性能

• 2. 其他性能评价指标

• (1)
$$MIPS = \frac{\text{指令条数}}{\text{执行时间} \times 10^6} = \frac{f}{CPI \times 10^6}$$

- (2) 程序执行时间 $Te = \frac{指令条数}{MIPS \times 10^6}$
- (3) $MFLOPS = \frac{程序中的浮点操作数}{执行时间 \times 10^6}$

The only consistent and reliable measure of performance is the execution time of real programs!----D.A.Patterson

2. 性能

- 3. 基准测试程序 (Benchmark)
- (1) 实际应用程序
- (2) 修正(或脚本化)的应用程序
- (3) 核心测试程序
- (4) 小测试程序
- (5) 合成测试程序
- · 4. 基准测试程序套件 (Benchmark Suites)
- SPEC89, SPEC92, SPEC2006, SPEC2017

Short Tag	Suite	Contents	Metrics	How many copies? What do Higher Scores Mean?	
intspeed	SPECspeed®2017 Integer ♂	10 integer benchmarks	SPECspeed2017_int_base SPECspeed2017_int_peak	SPECspeed suites always run one copy of each benchmark.	
fpspeed	SPECspeed®2017 Floating Point ♂	10 floating point benchmarks	SPECspeed2017_fp_base SPECspeed2017_fp_peak	Higher scores indicate that less time is needed.	
intrate	SPECrate®2017 Integer ₽	10 integer benchmarks	SPECrate2017_int_base SPECrate2017_int_peak	SPECrate suites run multiple concurrent copies of each benchmark.	
fprate	SPECrate®2017 Floating Point™	13 floating point benchmarks	SPECrate2017_fp_base SPECrate2017_fp_peak	The tester selects how many. Higher scores indicate more throughput (work per unit of time).	

3. 成本

- 售价构成
- (1) 部件成本 (Component Costs)
- (2) 直接成本 (Direct Costs) 经常性费用
- (3) 毛利润 (Gross Margin) 非经常性费用
- (4) 平均折扣 (Average Discount)

平均折扣

25%~40%

毛利润

34%~39%%

直接成本

6%~ 8%

部件成本

15%~33%

4. 功耗

• 从两个层面考虑功耗

- (1) 云端: 电力成本
- (2) 终端: 待机时间
- 节能降耗:
 - 绿色计算 (Green Computing)
 - 绿色数据中心
 - 绿色存储

4. 功耗

• 功耗问题的解决办法

(1) 减小IT设备的功耗

处理器 (发热严重1/3左右): 自适应调频, 用低电压器件

存储器(内存刷新,硬盘转动1/3):优化刷新,用非易失器件

不同时关闭存储, 采用离线存储

传输网络(数据传输1/3):用光互联代替电互联

- (2) 减少冷却装置的能耗
- (3) 采用新能源: 太阳能、风能

5. 可靠性和可用性

- (1) 可靠性Reliability——MTTF
- (2) 可用性Availability = $\frac{MTTF}{MTTF+MTTR}$
- (3) 云中心需要99.9999%以上的可用性

Nines, and amount of downtime

This table shows the amount of time *annually* that a system is down (or unavailable) given the number of nines availability that system has.

We see here that even a 5-nines system has on average, over five minutes of downtime annually.

% Availability	Time unavailable, annually
99%	88 hours
99.9%	8.8 hours
99.99%	53 minutes
99.999%	5.3 minutes
99.9999%	32 seconds
	99% 99.9% 99.99% 99.999%