WHAT IS CLAIMED IS:

1	1.	A superconducting rotor assembly comprising:
2		an axial shaft;
3		a winding support structure;
4		a torque tube connected to said winding support structure; and
5		an interconnection assembly for mechanically coupling said torque tube to
6		said axial shaft, said interconnection assembly being configured to convert a torsional
7		torque load experienced by said torque tube to a tangential torque load which is
В		provided to said axial shaft.
1	2.	The superconducting rotor assembly of claim 1 wherein said interconnection
2	assem	ably is configured to receive a tangential torque load which is a compression load.
1	3.	The superconducting rotor assembly of claim 1 wherein said interconnection
2	assem	ably is configured to receive a tangential torque load which is a tension load.
1	4.	The superconducting rotor assembly of claim 1 wherein said interconnection
2	assem	ably includes:
3		a torque tube flange for connecting said interconnection assembly to said
4		torque tube;
5		an axial flange for connecting said interconnection assembly to said axial
6		shaft; and
7		at least one thermally-insulating tangential load-bearing member for
3		connecting said torque tube flange to said axial flange.
1	5.	The superconducting rotor assembly of claim 4 wherein said axial flange is a collar.
1	6.	The superconducting rotor assembly of claim 4 wherein said torque tube flange
2	includ	les at least one protruding bracket assembly positioned radially about said torque tube

F&R Docket No.: 05770-150002 / ASC-528

- flange, said at least one protruding bracket assembly being configured to connect said torque
- tube flange to said at least one thermally-insulating tangential load-bearing member.
- The superconducting rotor assembly of claim 4 wherein said axial flange includes at
- least one protruding bracket assembly positioned radially about said axial flange, said at least
- one protruding bracket assembly being configured to connect said axial flange to said at least
- 4 one thermally-insulating tangential load-bearing member.
- 1 8. The superconducting rotor assembly of claim 4 wherein said at least one thermally-
- 2 insulating tangential load bearing member is constructed of a high-strength low thermal
- 3 conductivity composite material.
- 1 9. The superconducting rotor assembly of claim 8 wherein said high-strength, low
- thermal conductivity composite material is a G-10 phenolic material.
- 1 10. The superconducting rotor assembly of claim 1 wherein said torque tube is
- 2 constructed of a high-strength, low thermal conductivity metallic material.
- 1 11. The superconducting rotor assembly of claim 10 wherein said high-strength, low
- thermal conductivity metallic material is Inconel.
- 1 12. The superconducting rotor assembly of claim 1 wherein a superconducting winding
- 2 assembly is mounted to said winding support structure, wherein said superconducting
- winding assembly is constructed using a high-temperature superconducting material.
- 1 13. The superconducting rotor assembly of claim 12 wherein said high temperature
- 2 superconducting material is chosen from the group consisting of: thallium-barium-calcium-
- copper-oxide; bismuth-strontium-calcium-copper-oxide; mercury-barium-calcium-copper-
- 4 oxide; and yttrium-barium-copper-oxide.

7

8

1	14.	The superconducting rotor assembly of claim 1 further comprising a refrigeration
2	system	for cooling said superconducting winding assembly.

- 1 15. The superconducting rotor assembly of claim 1 wherein an endplate is rigidly
 2 attached to said axial shaft and said interconnection assembly is rigidly attached to said end
 3 plate, whereby said interconnection assembly mechanically couples said torque tube to said
 4 axial shaft through said end plate.
- 1 16. The superconducting rotor assembly of claim 15 wherein said interconnection assembly includes:
- a torque tube flange for connecting said interconnection assembly to said torque tube;
- an axial flange for connecting said interconnection assembly to said end plate; and
 - at least one thermally-insulating tangential load-bearing member for connecting said torque tube flange to said axial flange.

- 1 17. An interconnection assembly for converting a torsional torque load experienced by a torque tube to a tangential torque load which is provided to an axial shaft comprising:
- a torque tube flange for connecting said interconnection assembly to said torque tube;
- an axial flange for connecting said interconnection assembly to said axial shaft; and
- at least one thermally-insulating tangential load-bearing member for connecting said torque tube flange to said axial flange.
- 1 18. The interconnection assembly of claim 17 wherein said interconnection assembly is configured to receive a tangential torque load which is a compression load.
- 1 19. The interconnection assembly of claim 17 wherein said interconnection assembly is configured to receive a tangential torque load which is a tension load.
- 1 20. The interconnection assembly of claim 17 wherein said axial flange is a collar.
- 1 21. The interconnection assembly of claim 17 wherein said torque tube flange includes at
- 2 least one protruding bracket assembly positioned radially about said torque tube flange, said
- at least one protruding bracket assembly being configured to connect said torque tube flange
- 4 to said at least one thermally-insulating tangential load-bearing member.
- 1 22. The interconnection assembly of claim 17 wherein said axial flange includes at least
- one protruding bracket assembly positioned radially about said axial flange, said at least one
- 3 protruding bracket assembly being configured to connect said axial flange to said at least one
- 4 thermally-insulating tangential load-bearing member.
- 1 23. The insulating interconnection assembly of claim 17 wherein said at least one
- thermally-insulating tangential load bearing member is constructed of a high-strength low
- 3 thermal conductivity composite material.

- 1 24. The interconnection assembly of claim 23 wherein said high-strength low thermal
- 2 conductivity composite material is a G-10 phenolic material.
- 1 25. The interconnection assembly of claim 17 wherein said torque tube is constructed of a
- 2 high-strength, low thermal conductivity metallic material.
- 1 26. The interconnection assembly of claim 25 wherein said high-strength, low thermal
- 2 conductivity metallic material is Inconel.
- 1 27. The interconnection assembly of claim 17 wherein an endplate is rigidly attached to
- said axial shaft and said axial flange is rigidly attached to said end plate, whereby said axial
- flange is mechanically coupled to said axial shaft through said end plate.
- 1 28. The interconnection assembly of claim 27 wherein said axial flange includes at least
- one protruding bracket assembly positioned radially about said axial flange, said at least one
- protruding bracket assembly being configured to connect said axial flange to said at least one
- 4 thermally-insulating tangential load-bearing member.

1	29.	A superconducting rotor assembly comprising:
2		an axial shaft;
3		a winding support structure;
4		an asynchronous field filtering shield which surrounds said winding support
5		structure, said asynchronous field filtering shield being connected to said axial shaft
6	٠	via one or more end plates positioned on distal ends of said shield; and
7		an interconnection assembly for mechanically coupling said winding support
8		structure to said asynchronous field filtering shield, said interconnection assembly
9		being configured to convert a torsional torque load experienced by said winding
10		support structure to a tangential torque load which is provided to said asynchronous
11		field filtering shield.
1	30.	The superconducting rotor assembly of claim 29 wherein said interconnection
2	assen	ably is configured to receive a tangential torque load which is a compression load.
1	31.	The superconducting rotor assembly of claim 29 wherein said interconnection
2	assen	ably is configured to receive a tangential torque load which is a tension load.
1	32.	The superconducting rotor assembly of claim 29 wherein said thermally-insulating
2	interd	connection assembly includes one or more discrete torque transfer assemblies.
1	33.	The superconducting rotor assembly of claim 32 wherein each said discrete torque
2	transi	fer assembly includes:
3		at least one support structure bracket assembly rigidly attached to said
4		winding support structure;
5		at least one shield bracket assembly rigidly attached to said asynchronous
6		field filtering shield and positioned proximate said at least one support structure
7		bracket assembly; and
8		at least one thermally-insulating tangential load-bearing member, positioned
9		between said at least one support structure bracket assembly and said at least one

- shield bracket assembly, for connecting said at least one support structure bracket assembly to said at least one shield bracket assembly.
- 1 34. The superconducting rotor assembly of claim 33 wherein said at least one thermally-
- 2 insulating tangential load bearing member is constructed of a high-strength low thermal
- 3 conductivity composite material.
- 1 35. The superconducting rotor assembly of claim 34 wherein said high-strength low
- thermal conductivity composite material is a G-10 phenolic material.
- 1 36. The superconducting rotor assembly of claim 33 wherein said at least one shield
- bracket assembly and said at least one support structure bracket assembly are constructed of a
- 3 high-strength, low thermal conductivity metallic material.
- 1 37. The superconducting rotor assembly of claim 36 wherein said high-strength, low
- thermal conductivity metallic material is Inconel.
- 1 38. The superconducting rotor assembly of claim 29 wherein a superconducting winding
- 2 assembly is mounted to said winding support structure, wherein said superconducting
- winding assembly is constructed using a high-temperature superconducting material.
- 1 39. The superconducting rotor assembly of claim 29 further comprising a refrigeration
- 2 system for cooling said superconducting winding assembly.

1	40. An interconnection assembly for converting a torsional torque load experienced by a		
2	winding support structure to a tangential torque load which is provided to an asynchronous		
3	field filtering shield comprising:		
4	one or more discrete torque transfer assemblies, each said discrete torque		
5	transfer assembly including:		
6	at least one support structure bracket assembly rigidly attached to said		
7	winding support structure;		
8	at least one shield bracket assembly rigidly attached to said		
9	asynchronous field filtering shield and positioned proximate said at least one		
10	support structure bracket assembly; and		
11	at least one thermally-insulating tangential load-bearing member,		
12	positioned between said at least one support structure bracket assembly and		
13	said at least one shield bracket assembly, for mechanically coupling said at		
14	least one support structure bracket assembly to said at least one shield bracket		
15	assembly.		
1	41. The thermally-insulating interconnection assembly of claim 40 wherein said		
2	interconnection assembly is configured to receive a tangential torque load which is a		
3	compression load.		
1	42. The thermally-insulating interconnection assembly of claim 40 wherein said		
2	interconnection assembly is configured to receive a tangential torque load which is a tension		
3	load.		
Ū	Avaa.		
1	43. The thermally-insulating interconnection assembly of claim 40 wherein said at least		
2	one thermally-insulating tangential load bearing member is constructed of a high-strength		
3	low thermal conductivity composite material.		
1	44. The thermally-insulating interconnection assembly of claim 43 wherein said high-		
2	strength low thermal conductivity composite material is a G-10 phenolic material.		

- 1 45. The thermally-insulating interconnection assembly of claim 40 wherein said at least
- one shield bracket assembly and said at least one support structure bracket assembly are
- 3 constructed of a high-strength, low thermal conductivity metallic material.
- 1 46. The thermally-insulating interconnection assembly of claim 45 wherein said high-
- 2 strength, low thermal conductivity metallic material is Inconel.

1	47.	A superconducting rotor assembly comprising:
2		an axial shaft;
3		a winding support structure;
4		at least one end plate rigidly attached to said axial shaft at a distal end of said
5		winding support structure; and
6		an interconnection assembly for mechanically coupling said winding support
7		structure to said at least one end plate, said interconnection assembly being
8		configured to convert a torsional torque load experienced by said winding support
9		structure to a tangential torque load which is provided to said at least one end plate.
1	48.	The superconducting rotor assembly of claim 47 wherein said interconnection
2	assen	nbly is configured to receive a tangential torque load which is a compression load.
1	49.	The superconducting rotor assembly of claim 47 wherein said interconnection
2	assen	nbly is configured to receive a tangential torque load which is a tension load.
1	50.	The superconducting rotor assembly of claim 47 wherein said thermally-insulating
2	interd	connection assembly includes one or more discrete torque transfer assemblies.
1	51.	The superconducting rotor assembly of claim 50 wherein each said discrete torque
2	trans	fer assembly includes:
3		at least one support structure bracket assembly rigidly attached to said
4		winding support structure;
5		at least one end plate bracket assembly rigidly attached to said at least one end
6		plate and positioned proximate said at least one support structure bracket assembly;
7		and
8		at least one thermally-insulating tangential load-bearing member, positioned
9		between said at least one support structure bracket assembly and said at least one end
10		plate bracket assembly, for connecting said at least one support structure bracket
11		assembly and said at least one end plate bracket assembly.

- 1 52. The superconducting rotor assembly of claim 51 wherein said at least one thermally-
- 2 insulating tangential load bearing member is constructed of a high-strength low thermal
- 3 conductivity composite material.
- 1 53. The superconducting rotor assembly of claim 52 wherein said high-strength low
- thermal conductivity composite material is a G-10 phenolic material.
- 1 54. The superconducting rotor assembly of claim 51 wherein said at least one end plate
- bracket assembly and said at least one support structure bracket assembly are constructed of a
- 3 high-strength, low thermal conductivity metallic material.
- 1 55. The superconducting rotor assembly of claim 54 wherein said high-strength, low
- thermal conductivity metallic material is Inconel.
- 1 56. The superconducting rotor assembly of claim 47 wherein a superconducting winding
- 2 assembly is mounted to said winding support structure, wherein said superconducting
- winding assembly is constructed using a high-temperature superconducting material.
- 1 57. The superconducting rotor assembly of claim 47 further comprising a refrigeration
- 2 system for cooling said superconducting winding assembly.

1	58.	An interconnection assembly for converting a torsional torque load experienced by a	
2	winding support structure to a tangential torque load which is provided to at least one end		
3	plate comprising:		
4		one or more discrete torque transfer assemblies, each said discrete torque	
5		transfer assembly including:	
6		at least one support structure bracket assembly rigidly attached to said	
7		winding support structure;	
8		at least one end plate bracket assembly rigidly attached to said at least	
9		one end plate and positioned proximate said at least one support structure	
10		bracket assembly; and	
11		at least one thermally-insulating tangential load-bearing member,	
12		positioned between said at least one support structure bracket assembly and	
13		said at least one end plate bracket assembly, for connecting said at least one	
14		support structure bracket assembly and said at least one end plate bracket	
15		assembly.	
1	59.	The thermally-insulating interconnection assembly of claim 58 wherein said	
2		onnection assembly is configured to receive a tangential torque load which is a	
3	compi	ression load.	
1	60.	The thermally-insulating interconnection assembly of claim 58 wherein said	
2		onnection assembly is configured to receive a tangential torque load which is a tension	
3	load.	omicetion assembly is configured to receive a tangential torque load which is a tension	
Ū	iouu.		
1	61.	The thermally-insulating interconnection assembly of claim 58 wherein said at least	
2	one th	ermally-insulating tangential load bearing member is constructed of a high-strength	
3	low th	low thermal conductivity composite material.	
1	62.	The thermally-insulating interconnection assembly of claim 61 wherein said high-	
2	strength low thermal conductivity composite material is a G-10 phenolic material.		

F&R Docket No.: 05770-150002 / ASC-528

- 1 63. The thermally-insulating interconnection assembly of claim 58 wherein said at least
- one end plate bracket assembly and said at least one support structure bracket assembly are
- 3 constructed of a high-strength, low thermal conductivity metallic material.
- 1 64. The thermally-insulating interconnection assembly of claim 63 wherein said high-
- 2 strength, low thermal conductivity metallic material is Inconel.