Math 111

Chapter 2.8: Derivatives as functions

(DEFINITION) Given a function f, we may define the **derivative function** f' by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The definition is the same as f'(a) but we now take the point of view that a is an input and f'(a) is an output.

(NOTATIONS) If we use y = f(x) to represent a function, we may use y', $\frac{dy}{dx}$, $\frac{df}{dx}$, $\frac{d}{dx}[f(x)]$ all to mean f'(x).

(EXAMPLE) Find f'(x) if $f(x) = 2x^2 + 5x - 3$. Sketch the graph of f and f'.

(DEFINITION) We say that a function f is **differentiable at** a if f'(a) exists.

(EXAMPLE) $f(x) = 2x^2 + 5x - 3$ is differentiable at all numbers since f'(a) exists for any a.

(EXAMPLE) Find g'(x) if $g(x) = \frac{1}{\sqrt{x}}$. Sketch the graph of g and g'. Where is g differentiable?

(EXAMPLE) Find p'(x) if $p(x) = \frac{3-x}{x+1}$. Sketch the graph of p and p'. Where is g differentiable?

(EXAMPLE) Find $f'(x)$ if $f(x) = x $. Sketch the graph of f and f' . Where is f differentiable?
A function is not differentiable at a if any of the following are true:
1.
2.
3.
(THEOREM) If f is differentiable at a , then it is continuous at a .