Teoría de la información

Tarea 3 (Entrega: Miércoles 9 Abril)

1. Para la siguiente fuente de información:

Símbolo	p(s _i)	Código A	Código B		
S ₁	0.3	01	00		
S ₂	0.25	10	01		
S ₃	0.2	011	02		
S ₄	0.1	1000	10		
S ₅	0.1	1100	11		
S ₆	0.05	0111	12		

- a. Calcular la eficiencia del código binario A
- b. Calcular la eficiencia del código ternario B
- c. Es posible diseñar un código binario instantáneo más eficiente que los 2 anteriores? De ser posible, aplicar el algoritmo de Huffman para encontrar dichos códigos
- d. Calcular la eficiencia del código de Huffman anterior

2. Para la siguiente fuente de información

Sí	ímbolo	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈
p((S _i)	0.07	0.4	0.05	0.2	80.0	0.05	0.12	0.03

- a. Encontrar los códigos binarios de Huffman
- b. Calcular su longitud promedio
- c. Calcular su eficiencia

3. Para la siguiente fuente de información:

Símbolo	p(s _i)		
Α	0.2		
В	0.4		
С	0.3		
D	0.1		

Proponer un mensaje tamaño 4 o mayor en donde aparezcan todos los símbolos al menos una vez en cualquier orden.

Obtener la representación en bits de dicho mensaje aplicando el algoritmo del código aritmético.