南京理工大学

2009 年硕士学位研究生入学考试试题

试题编号: 200901003

.、(15分)

考试科目: 机械原理 (满分 150 分)

考生注意: 所有答案(包括填空题)按试题序号写在答题纸上,写在试卷上不给分

、计算下列机构的自由度下;指出机构中存在的复合铰链、局部自由度、虚约束; 指出机构具有确定运动应符合的条件

1、图示机构中,已知a=145mm,d=290mm,求: 1)图 a 中摆动导杆机构的极位 夹角 θ 及摇杆DC 的摆角 ψ 。2)图 b 曲柄摇块机构的极位夹角 θ 及从动杆BE 的摆角 ψ 。

5′、5 为齿轮副

- 第 1 页 - 10 4 0

2、设计一铰链四杆机构,已知摇杆 CD 的行程速比系数 K=1.5 ,机架的长度 $L_{AD}=120$ 毫米,摇杆的长度 $L_{CD}=85$ 毫米,摇杆的一个极限位置与机架之间的夹角 $\psi_1=45^\circ$,求曲柄长度 L_{AB} 和连杆长度 L_{BC} (用图解法解)作图过程的图线保留。

三、(20分)

1、有一对标准齿轮,齿数 $z_1 = z_2$,模数 $m_1 = m_2 = 6mm$,压力角 $\alpha_1 = \alpha_2 = 20^\circ$,当它们正确安装啮合时,齿顶正好彼此通过对方的极限啮合点,其重合度系数 $\varepsilon = 1.39$,求这对齿轮的齿数及齿顶圆直径。

2、一对斜齿轮传动,其法面模数 $m_n=8mm$,法面压力角 $\alpha_n=20^\circ$, $h_{an}^*=1, c_n^*=0.25$, $|\pmb\beta|=30^\circ, \pmb z_1=20, \pmb z_2=40, \pmb b=30mm$,求这对齿轮的齿项圆直径 $\pmb d_a$,齿根圆直径 $\pmb d_f$ 、中心距 $\pmb a$ 及重选系数 $\pmb s$ 。

四、图示轮系中,各齿轮均为标准齿轮,并且模数相等,若已知各齿轮的齿数分别为 $z_1 = 40, z_2 = 60, z_3 = 70, z_4' = z_5 = z_5' = z_6 = 25$,试求传动比 i_{H6} 及齿轮 6 转向。

(15分)

五、图示机构中,杆 $L_{AB}=10mm$, $L_{BC}=60mm$, $l_{CD}=20mm$ 其余尺寸均如图所示。 构件 AB 与水平线夹角为 45 度,并以顺时针方向等速转动,转速 $n_1=50$ 转/分,试求① F 点的速度 V_f 和加速度 a_f ;②滑块 4 的角速度 ω_4 和角加速度 ε_4 。(比例尺取: $\mu_1=0.001m/mm$, $\mu_v=0.001m/s$, $\mu_a=0.005m/s^2$,用图解法求解)(20 分)

六、图示行星轮系中已知齿数为 $z_1=z_2=20, z_3=60$,各构件重心均在其相对回转轴线上,它们的转动惯量为 $J_1=J_2=0.01KG\cdot m^2$, $J_H=0.16KG\cdot m^2$, 行星轮对 0_H 轴的转动惯量 $J_{2H}=0.24KG\cdot m^2$, 作用系杆 H 上的力矩 $M_H=40N\cdot m$ 。

七、图示凸轮机构,已知:凸轮圆盘中心为 A,半径 R=100mm,0A=20mm,e=10mm,滚 子半径 $r_{T}=10mm$,试用图解法①画出凸轮基圆半径 r_{0} , $r_{0}=?$ (图中标出),②作出该凸 轮机构从动件的运动规律 $s-\varphi$ 曲线(取 12 等份),③在图中标出最大的从动件压力角 $\alpha_{\max},\alpha_{\max}=?$,④在图中标出从动件最大上升距离 s_{\max} 。(上述所有用反转法图解求得,其余方法不得分)(20 分)

八、图示升降机构,已知 $L_{BB'}=200mm, L_{AB'}=40mm, L_{AB}=1500mm, x_c=y_c=800mm$ 载 $\overline{q}_{AB}=3000N, \varphi=30^\circ \text{求}: 应加于活塞上的平衡力 p_b$

(15分)

九、一重量为 G 的楔形滑块在水平力 F=1000N 的作用下沿斜面导路等速上升,若滑块与斜面间的摩擦力 f=0.13,滑块的楔面半角 $\beta=60^\circ$,导路的倾角 $\alpha=8^\circ$,求滑块的重量 G。(15 分)

