Математика

Содержание

1	Тригонометрия	
	1.1 Начало геометрической тригонометрии	
	1.2 Теорема синусов, косинусов и связанные формулы	
	1.3 Тригонометрия в алгебре	
	1.4 Тригонометрические функции	
	1.5 Доказательства геометрической тригонометрии	
2	Классы	
	2.1 Алгебра 9 класс	
	2.2 9 нестандартных уравнений	
	2.3 Уравнения с модулями	
3	Распечатки	

1 Тригонометрия

1.1 Начало геометрической тригонометрии

$$\sin \alpha = \frac{a}{c}, \cos \alpha = \frac{b}{c}, \operatorname{tg} \alpha = \frac{a}{b}, \operatorname{ctg} \alpha = \frac{b}{a}$$

$$\begin{array}{|c|c|c|c|c|c|}\hline & 30^{\circ} & 45^{\circ} & 60^{\circ} \\\hline & \sin \alpha & \frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{2} \\\hline & \cos \alpha & \frac{\sqrt{3}}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2} \\\hline & \operatorname{tg} \alpha & \frac{\sqrt{3}}{3} & 1 & \sqrt{3} \\\hline & \operatorname{ctg} \alpha & \sqrt{3} & 1 & \frac{\sqrt{3}}{3} \\\hline & a = c \cdot \sin \alpha = c \cdot \cos \beta \end{array}$$

 $\sin(90^{\circ} - \alpha) = \cos \alpha$, $\cos(90^{\circ} - \alpha) = \sin \alpha$, $\tan(90^{\circ} - \alpha) = \cot \alpha$, $\cot(90^{\circ} - \alpha) = \tan \alpha$

Первые формулы

$$\sin^{2} \alpha + \cos^{2} \alpha = 1$$

$$\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha = 1$$

$$\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}, \operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$$

$$1 + \operatorname{tg}^{2} \alpha = \frac{1}{\cos^{2} \alpha}, 1 + \operatorname{ctg}^{2} \alpha = \frac{1}{\sin^{2} \alpha}$$

Тригонаметрические выражения для тупых углов

До этого мы рассматривали синус, косинус, тангенс и котангенс через прямоугольный треугольник. Для тупых углов нам понадобиться новое определение. Рассмотрим единичную окружность с радиусом R=1 и центром в начале координат, а также точку M(x;y). Синусом угла α (угол между радиусом и положительным направлением Ox) называется отношение y точки M(x;y) к радиусу. То есть $\sin \alpha = \frac{y}{1} = y$. Аналогично $\cos \alpha = x$,

 $\operatorname{tg} \alpha = \frac{y}{x}, \operatorname{ctg} \alpha = \frac{x}{y}.$

Формулы приведения: $\sin(180^\circ - \alpha) = \sin\alpha, \cos(180^\circ - \alpha) = -\cos\alpha, \\ \tan(180^\circ - \alpha) = -\tan\alpha, \\ \cot(180^\circ - \alpha) = -\cot\alpha, \\ \cot($

Теорема синусов, косинусов и связанные формулы

Теорема синусов

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

Теорема косинусов

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$
$$\cos \alpha = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

Связанные формулы

Формула площади треугольника: $S=\frac{1}{2}ab\sin\gamma$ Формула площади параллелограмма: $S=ab\sin\gamma$

Формула площади выпуклого четырехугольника: $S = \frac{1}{2}d_1d_2\sin\phi$ Среднее геометрическое (пропорциональное): $h_c = \sqrt{a_cb_c}, a = \sqrt{ca_a}, b = \sqrt{cb_c}$. Работает только с высотой, проведенной из прямого угла.

Связь сторон параллелограмма и его диагоналей: $2a^2 + 2b^2 = d_1^2 + d_2^2$

Формула медианы: $m_c = \frac{1}{2}\sqrt{2a^2+2b^2-c^2}$. Но лучше достраивать треугольник до параллелограмма и находить медиану как половину диагонали.

2

Формула Герона: $S = \sqrt{p(p-a)(p-b)(p-c)}$, где $p = \frac{a+b+c}{2}$

1.3 Тригонометрия в алгебре

Радианы

Про единичную окружность уже было, так что не будем останавливаться. Только вспомним, что $\sin \alpha = y, \cos \alpha = x, \operatorname{tg} \alpha = \frac{y}{x}, \operatorname{ctg} \alpha = \frac{x}{y}$. Теперь добавляются радианы: $180^\circ = \pi$ радиан. 1 рад $= \frac{180^\circ}{\pi} \approx 57^\circ$. Для того, чтобы перевести градусы в радианы нужно умножить на $\frac{\pi}{180^\circ}$ (градусы сокращаются). Для перевода из радиан в градусы домножаем на $\frac{180^\circ}{\pi}$. Углы могут быть отрицательные.

Значения для определенных углов

Благодаря окружности мы можем вычислить значения для 0° , 90° , 180° и 270° . Важно, что для тангенса не существует значения при 0° и 180° . А для котангенса — при 90° и 270° .

Четверти

Есть 4 четверти: I: $0<\alpha<\frac{\pi}{2},$ II: $\frac{\pi}{2}<\alpha<\pi,$ III: $\pi<\alpha<\frac{3\pi}{2},$ IV: $\frac{3\pi}{4}<\alpha<2\pi.$ На рисунке в зависимости от четверти показан знак косинуса и синуса соответственно. У тангенса и котангенса знак положителен, только если знаки косинуса и синуса совпадают.

1.4 Тригонометрические функции

Функция синуса

1.5 Доказательства геометрической тригонометрии

Нахождение катета через угол и гипотинузу

Если
$$\sin \alpha = \frac{a}{c}$$
, то $a = c \cdot \sin \alpha$

Доказательство формул приведения для углов $90^{\circ} - \alpha$

Если первый острый угол равен α , то второй равен $90^{\circ} - \alpha$. Тогда:

$$\sin(90^\circ - \alpha) = \frac{b}{c} = \cos\alpha, \cos(90^\circ - \alpha) = \frac{a}{c} = \sin\alpha, \ \tan(90^\circ - \alpha) = \frac{b}{a} = \cot\alpha, \ \cot(90^\circ - \alpha) = \frac{a}{b} = \tan\alpha$$

Заполнение таблицы

 30° : Так как катет, лежащий против угла в 30° , равен половине гипотенузы, то пусть a=1. Тогда c=2. По теореме Пифагора $b=\sqrt{2^2-1^2}=\sqrt{3}$. $\sin 30^{\circ}=\frac{1}{2}$, $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$, $\tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$, $\cot 30^{\circ}=\frac{\sqrt{3}}{1}=\sqrt{3}$.

45°: Так как прямоугольный треугольник с углом 45° равнобедренный, то пусть a=b=1. Тогда $c=\sqrt{1^2+1^2}=\sqrt{2}$. $\sin 45^\circ=\cos 45^\circ=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$, $\operatorname{tg} 45^\circ=\operatorname{ctg} 45^\circ=\frac{1}{1}=1$.

60°: По формулам приведения $\sin 60^\circ = \cos 30^\circ = \frac{\sqrt{3}}{2}$, $\cos 60^\circ = \sin 30^\circ = \frac{1}{2}$, $\tan 60^\circ = \cot 30^\circ = \sqrt{3}$, $\cot 60^\circ = \tan 30^\circ = \frac{1}{2}$. Можно находить и аналогично 30° .

Доказательство первых формул

$$\sin^2 \alpha + \cos^2 \alpha = \left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = \frac{a^2}{c^2} + \frac{b^2}{c^2} = \frac{a^2 + b^2}{c^2} = \frac{c^2}{c^2} = 1$$

Отсюда можем выразить синус и косинус:

$$\sin \alpha = \sqrt{1 - \cos^2 \alpha}, \cos \alpha = \sqrt{1 - \sin^2 \alpha}$$

Разделив обе части тождества на $\cos^2\alpha$ получим

$$\frac{\sin^2 \alpha}{\cos^2 \alpha} + \frac{\cos^2 \alpha}{\cos^2 \alpha} = \frac{1}{\cos^2 \alpha}, 1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$$

Разделив обе части тождества на $\sin^2\alpha$ получим

$$\frac{\sin^2 \alpha}{\sin^2 \alpha} + \frac{\cos^2 \alpha}{\sin^2 \alpha} = \frac{1}{\sin^2 \alpha}, 1 + \operatorname{ctg}^2 \alpha = \frac{1}{\sin^2 \alpha}$$

Доказательство формул тангенса и котангенса:

$$\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{a}{c}}{\frac{b}{c}} = \frac{a}{b}, \operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha} = \frac{\frac{b}{c}}{\frac{a}{c}} = \frac{b}{a}$$

$$\operatorname{tg}\alpha\cdot\operatorname{ctg}\alpha = \frac{a}{b}\cdot\frac{b}{a} = 1$$

Из $\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha = 1$ получаем:

2R.

$$tg \alpha = \frac{1}{ctg \alpha}, ctg \alpha = \frac{1}{tg \alpha}$$

Синус, косинус, тангенс и котангенс тупого угла

Рассмотрим единичную окружность с радиусом R=1 и центром в начале координат, а также точку M(x;y). Синусом угла α (угол между радиусом и положительным направлением Ox) называется отношение y точки M(x;y) к радиусу. То есть $\sin\alpha=\frac{y}{1}=y$. Аналогично $\cos\alpha=\frac{x}{1}=x$, $\operatorname{tg}\alpha=\frac{y}{x}=\frac{\cos x}{\sin x}$, $\operatorname{ctg}\alpha=\frac{x}{y}=\frac{\sin x}{\cos x}$. Тут 1— это c,y— это a,ax— это b. От сюда и следует, что x— это косинус, а y— это синус. Основное тригонометрическое тождество верно, так как $x^2+y^2=1$ (уравнение окружности). Верны и другие формулы.

Формулы приведения тупых углов

Из равенства прямоугольных треугольников: $\sin(180^\circ - \alpha) = \sin \alpha$ (равные y), а также $\cos(180^\circ - \alpha) = -\cos(\alpha)$ (противоположные x и -x). $\tan(180^\circ - \alpha) = \frac{\sin(180^\circ - \alpha)}{\cos(180^\circ - \alpha)} = \frac{\sin \alpha}{-\cos \alpha} = -\tan \alpha$. Аналогично $\tan(180^\circ - \alpha) = -\cot \alpha$. Благодаря этому можем вычислить значения для $\tan(120^\circ)$, $\tan(120^\circ)$, $\tan(120^\circ)$, $\tan(120^\circ)$.

Доказательство теоремы синусов

Дан треугольник со стороной a и противолежащим углом α . Опишем около треугольника окружность. Из конца хорды a проведем диаметр AB. Так как угол, опирающийся на диаметр, — прямой, то получим прямоугольный треугольник с гипотенузой AB и острым углом α (углы, опирающиеся на одну и ту же дугу, равны). $\frac{a}{AB} = \sin \alpha, \frac{a}{\sin \alpha} = AB = 2R.$ Аналогично доказываем $\frac{b}{\sin \beta} = 2R, \frac{c}{\sin \gamma} = 2R.$ Следовательно, $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = \frac{c}{\sin \gamma}$

Доказательство теоремы косинусов

Проекция стороны b на сторону c равна $b\cos\alpha$. Проекция стороны a на сторону c равна $c-b\cos\alpha$. Из левого прямоугольного треугольника $h^2=b^2-(b\cos\alpha)^2$, из правого $h^2=a^2-(c-b\cos\alpha)^2$. Приравняем правые части раввенств: $b^2-(b\cos\alpha)^2=a^2-c^2+2bc\cos\alpha-(b\cos\alpha)^2$, откуда $a^2=b^2+c^2-2bc\cos\alpha$. Остюда можно выразить и косинус: $\cos\alpha=\frac{b^2+c^2-a^2}{2bc}$.

Связанные формулы

Формула площади треугольника и параллелограмма через две стороны $(a\ u\ b)$ и синус угла между ними $(\sin\gamma)$: проведем высоту h на сторону a. Из полученного треугольника $h=b\sin\gamma$. Значит $S=\frac{1}{2}ah_a=\frac{1}{2}ab\sin\gamma$. Так как диагональ параллелограмма разбивает его на два треугольника, площадь которых $S=\frac{1}{2}ab\sin\gamma$, то площадь всего параллелограмма $S=ab\sin\gamma$. Работает и для тупых углов.

Формула для выпуклого четырехугольника: пусть в четырех угольники диагонали равны d_1 и d_2 , а угол между ними ϕ . Обозначим части диагоналей m, n и x, y. Тогда площадь четырехугольника будет равна сумме треугольников: $S = \frac{1}{2} x m \sin \phi + \frac{1}{2} y m \sin (180^\circ - \phi) + \frac{1}{2} y n \sin \phi + \frac{1}{2} x n \sin (180^\circ - \phi) = \frac{1}{2} m \sin \phi (x+y) + \frac{1}{2} n \sin \phi (x+y) = \frac{1}{2} (x+y)(m+n) \sin \phi = \frac{1}{2} d_1 d_2 \sin \phi.$

2 Классы

2.1 Алгебра 9 класс

Геометрическая прогрессия

$$b_{n+1}=b_n\cdot q$$
, где q – знаменатель $b_n=b_1\cdot q^{n-1}; \quad b_n=b_k\cdot q^{n-k}$ $b_n^2=b_{n-1}\cdot b_{n+1}; \quad b_n^2=b_{n-k}\cdot b_{n+k}$ $S_n=rac{b_1(q^n-1)}{q-1}=rac{b_1(1-q^n)}{1-q}$ $S=rac{b_1}{1-q}, \; ext{если}\; |q|<1$ $b_n\cdot b_m=b_k\cdot b_p,\; ext{если}\; n+m=k+p$

Четные и нечетные функции

D(f) симметрична относительно нуля Четная функция: f(x) = f(-x)Нечетная функция: f(-x) = -f(x)

Арифметическая прогрессия

$$a_{n+1}=a_n+d,$$
 где d – разность прогрессии $a_n=a_1+d(n-1); \quad a_n=a_k+d(n-k)$ $a_n=rac{a_{n-1}+a_{n+1}}{2}; \quad a_n=rac{a_{n-k}+a_{n+k}}{2}$ $S_n=rac{2a_1+(n-1)d}{2}\cdot n=rac{a_1+a_n}{2}\cdot n$ $a_n+a_m=a_k+a_p,$ если $n+m=k+p$

Преобразование графиков функции

 $f(x \pm a)$ – перенос графика на a влево/вправо $f(x) \pm b$ — перенос графика на b вверх/вниз

Дробно-рациональные уравнения

$$\frac{A}{B} = 0$$
, если $\begin{cases} A = 0 \\ B \neq 0 \end{cases}$

Формула длины отрезка с заданными координатами его концов

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Уравнение окружности

$$(x-x_0)^2 + (y-y_0)^2 = R^2,$$
 где $(x_0; y_0)$ координата центра окружности с радиусом R

Функции

D(f) – область определения (все x) E(f) – множества значений (все y) Hули функции (f(x) = 0)Промежутки знакопостоянства (f(x) > 0, f(x) < 0)Промежутки монотонности $(f(x) \uparrow, f(x) \downarrow)$

Точки пересечения с осями (x = 0, y = 0)

Примечание: каждому x единственное y

Метод интервалов

Привести неравенство Отметить нули функции на схеме Записать ответ в соответствии со знаком Примечания: х должны быть без минуса При строгом неравенстве или нуле в знаменателе точки незакрашенные При нуле четной степени знаки повторяются

2.2 9 нестандартных уравнений

- 1. (x+3)(x+1)(x+5)(x+7) = -16 $(x^2+8x+15)(x^2+8x+7)=-16$ $(3+5=1+7),\ t=x^2+8x+11$ (или $x^2+8x+7),\ (t-4)(t+4)=-16,$ $t^2 - 16 = -16, t = 0, x^2 + 8x + 11 = 0 \dots$ Примеры: x(x+3)(x+5)(x+8) = 100, $(x^2-6x+8)(x^2-4x+3) = 24$, (12x-1)(6x-1)(4x-1)(3x-1) = 5.
- 2. $(x-4)(x+5)(x+10)(x-2) = 18x^2$ $(x^2+x-20)(x^2+8x-20)=18x^2$ $(-4\cdot 5=-2\cdot 10),$ $x^2(x-\frac{20}{x}+1)(x-\frac{20}{x}+8)=18x^2,$ t(t+7)=18 ... Примеры: $(2x-1)(x-2)(2x^2+7x+2)=-20x^2;$ $4(x+5)(x+6)(x+10)(x+12)-3x^2=0.$
- 3. $x^2 + x + \frac{1}{x} + \frac{1}{x^2} = 28$ $\left(x+\frac{1}{x}\right)+\left(x^2+\frac{1}{x^2}\right)=28,\,x+\frac{1}{x}=t,\,x^2+\frac{1}{x^2}=t^2-2,\,t^2+t-30=0\,\ldots$ Примеры: $7\left(x+\frac{1}{x}\right)-2\left(x^2+\frac{1}{x^2}\right)=9$; $3x^2+5x+\frac{5}{x}+\frac{3}{x^2}=16$, $x^4-2x^3-13x^2-2x+1=0$.
- Примечание: Уравнение $x^4 3x^3 8x^2 + 12x + 16 = 0$ тоже относится к этому типу: $x^2 3x 8 + \frac{12}{x} + \frac{16}{x^2} = 0$.
- 4. $2(x^2+x+1)^2-7(x-1)^2=13(x^3-1)$ $2(x^2+x+1)^2-7(x-1)^2-13(x-1)(x^2+x+1)=0, (x-1)=t, (x^2+x+1)=m, 2m^2-13tm-7t^2=0,$ $D=169t^2+56t^2=225t^2, m=\frac{13t\pm15t}{4}\begin{bmatrix} m=7t\\ m=-\frac{t}{2} & \cdots \end{bmatrix}$ Примеры: $(2x-1)^2+(2x-1)(x+2)-2(x+2)^2=0, (3x^2+7x-2)^2+5x^2(3x^2+7x-2)-24x^4=0$
- 5. $\frac{2x}{x^2 4x + 2} + \frac{3x}{x^2 + x + 2} = -\frac{5}{4}$ $\frac{2x}{x(x + \frac{2}{x} 4)} + \frac{3x}{x(x + \frac{2}{x} + 1)} + \frac{5}{4} = 0, \quad \frac{2}{t 4} + \frac{3}{t + 1} + \frac{5}{4} = 0, \quad \frac{8(t + 1) + 12(t 4) + 5(t^2 3t 4)}{4(t 4)(t + 1)} = 0$ $\begin{cases} t^2 + t - 12 = 0 \\ t \neq 4; \ t \neq -1 \end{cases} \begin{cases} \begin{bmatrix} t = -4 \\ t = 3 \\ t \neq 4; t \neq -1 \end{bmatrix} \begin{cases} x + \frac{2}{x} + 4 = 0 \\ x + \frac{2}{x} - 3 = 0 \end{cases} \dots$ Примеры: $\frac{x^2 - 10x + 15}{x^2 - 6x + 15} = \frac{4x}{x^2 - 12x + 15}$, $\frac{x^2 - 6x - 9}{x} = \frac{x^2 - 4x - 9}{x^2 - 6x - 9}$, $\frac{x^2 + 5x + 4}{x^2 - 7x + 4} + \frac{x^2 - x + 4}{x^2 + x + 4} + \frac{13}{3} = 0$
- 6. $(x+3)^4+(x+1)^4=20$ $(t+1)^4+(t-1)^4=20,\ 2t^4+12t^2+2=20,\ m^2+6m-9=0$... Складываем в столбик $(a+b)^n$ и $(a-b)^n$ Примеры: $(x-2)^6+(x-4)^6=64,\ x^5+(6-x)^5=1056,\ (x-3)^4+(x-2)^4-(2x-5)^4=0$
- 7. $x^2 + \left(\frac{x}{x-1}\right)^2 = 8$ $\left(x+\frac{x}{x-1}\right)^2-2\frac{x^2}{x-1}=8, \ \left(\frac{x^2-x+x}{x-1}\right)^2-2\frac{x^2}{x-1}=8, \ t=\frac{x^2}{x-1}, \ t^2-2t-8=0 \ \dots$ Пользуемся $a^2+b^2=(a^2\pm b^2)\mp 2ab$ (рассматриваем 2 варианта). Примеры: $\left(\frac{x}{x-1}\right)^2+\left(\frac{x}{x+1}\right)^2=90, \ \left(\frac{x-1}{x}\right)^2+\left(\frac{x-1}{x+2}\right)^2=\frac{40}{9}, \ x^2+\frac{25x^2}{(5+2x)^2}=\frac{74}{49}$

- $8. \frac{2x-1}{x+1} + \frac{3x-1}{x+2} = \frac{x-7}{x-1} + 4$ $\frac{(2x+2)-3}{x+1} + \frac{(3x+6)-7}{x+2} = \frac{(x-1)-6}{x-1} + 4, \frac{2(x+1)}{x+1} \frac{3}{x+1} + \frac{3(x+2)}{x+2} \frac{7}{x+2} = \frac{x-1}{x-1} \frac{6}{x-1} + 4,$ $\frac{7}{x+2} = \frac{6}{x-1} \frac{3}{x+1}, \frac{7}{x+2} = \frac{3x+9}{x^2-1}, 7(x^2-1) = 3(x+2)(x+3) \dots$ Примеры: $\frac{x+2}{x+1} - \frac{x+1}{x+2} - \frac{x+2}{x+2} = \frac{x-3}{x+3} - \frac{x-4}{x+4}$, $\frac{x^2+2x+2}{x+1} + \frac{x^2+8x+20}{x+4} = \frac{x^2+4x+6}{x+2} + \frac{x^2+6x+12}{x+3}$
- 9. $\frac{x^2 + x + 2}{3x^2 + 5x 14} = \frac{x^2 + x + 6}{3x^2 + 5x 10}$ $\frac{y}{t} = \frac{y + 4}{t + 4}, ty + 4y + ty + 4t = 0, t = -y \dots$

Делить или сокращать на x мы можем только в том случае, если $x \neq 0$. Подставяем в уравнение и проверяем.

2.3 Уравнения с модулями

1.
$$|f(x)| = a$$
:
 $a < 0 \Rightarrow x \in \emptyset$

$$a = 0 \Rightarrow f(x) = 0$$

 $a > 0 \Rightarrow f(x) = \pm a$

Если |f(x)| = g(x) то решение очень схоже. Мы устанавлеваем ограничения x через $g(x) \geqslant 00$. Потом решаем f(x) = g(x) и f(x) = -g(x).

2.
$$|f(x)| = |g(x)|$$
:
$$\begin{cases} f(x) = g(x) \\ f(x) = -g(x) \end{cases}$$
 или $f^2(x) = g^2(x)$

3.
$$|f(x)| = f(x) \Rightarrow f(x) \ge 0$$
. $|f(x)| = -f(x) \Rightarrow f(x) \le 0$

4. Метод нулей модулей:

|f(x)| + |g(x)| = n(x). Находим нули подмодульных выражений (f(x) = 0, g(x) = 0). Отмечаем эти нули на числовой оси. Эти точки разбивают числовую ось на интервалы. Раскрываем модули на каждом интервале в соответствии со знаком подмодульного выражения (берем любое число на интервале). Решаем получившееся уравнение без модулей на каждом интервале. Проверяем, принадлежат ли найденные решения соответствующим интервалам. Объединяем решения.

3 Распечатки

	0	1	2	3	4	5	6	7	8	9
1	100	121	144	169	196	225	256	289	324	361
2	400	441	484	529	576	625	676	729	784	841
3	900	961	1024	1089	1156	1225	1296	1369	1444	1521
4	1600	1681	1764	1849	1936	2025	2116	2209	2304	2401
5	2500	2601	2704	2809	2916	3025	3136	3249	3364	3481
6	3600	3721	3844	3969	4096	4225	4356	4489	4624	4761
7	4900	5041	5184	5329	5476	5625	5776	5929	6084	6241
8	6400	6561	6724	6889	7056	7225	7396	7569	7744	7921
9	8100	8281	8464	8649	8836	9025	9216	9409	9604	9801

