

TEHNICI CAD

Circuit pentru controlul presiunii într-o cameră hiperbară

Student: Beşa Vasile

Grupa: 2122

Anul II - Seria A

Coordonator: Prof. dr. ing. Ovidiu Pop

CUPRINS

1.Date de proiectare	3
2.Schemă bloc	4
3.Schemă electrică	5
4.Dimensionare componente	6
5.Analize de simulare	2
6.Referințe componente 1	6
7.Bibliografie 1	7

1.DATE DE PROIECTARE

Domeniul de presiune măsurabil [mBar] : 1030-1480

Presiunea în camera hiperbară [mBar]: 1080-1400

Rezistența senzorului $[\Omega]$: 1k-11k

Vcc [V]: 12V

Culoare LED de semnalizare : albastru

2.SCHEMĂ BLOC

3.SCHEMA ELECTRICĂ

4.DIMENSIONARE COMPONENTE

4.1 Sursă de curent (Oglinda de current)

Figura 1.Oglinda de curent

$$Imax = \frac{Vcc-Vce3}{Rsmax} = \frac{12V-2V}{11k\Omega} = 909\mu A = 0.909mA$$

$$Vm = Rs * I$$

$$Vmmax = Rsmin * I = 1k\Omega * 909\mu A = 0.909V$$

$$Vmmin = 2V => Vce3min > 2V$$

 $Vm \in [2V; 11,091V]$

$$R1 = \frac{Vcc - Vbe4}{I} = \frac{12V - 0.7V}{909\mu A} = 12,4k\Omega \cong 12k\Omega$$

$$RsBar = \frac{11k\Omega - 1k\Omega}{1480 - 1030} = 22 \Omega / Bar$$

Figura1.1 Domeniul de variație a rezistenței senzor

$$Rs1 = Rsmax - 50 * RsBar = 11k\Omega - 50 * 22 \Omega / Bar = 9.9k\Omega$$

$$Rs2 = Rsmin + 80 * RsBar = 1k\Omega - 80 * 22 \frac{\Omega}{Bar} = 2.76k\Omega$$

 $Rs \in [2.76k\Omega; 9.9k\Omega]$ (Variația sezorului la domeniul de presiune in camera hiperbară)

Acum puteam afla tensiunile de prag ale comparatorului :

$$Vmin = Vpj = Vcc - Rsmax * I = 12V - 9.9k\Omega * 909\mu A = 3.001V \approx 3V$$

$$Vmax = Vps = Vcc - Rsmin * I = 12V - 2.76k\Omega * 909\mu A = 9.422V$$

4.2 Repetor de tensiune

Figura 2.Repetor de tensiune

Repetorul de tensiune face adaptare de impedanta, adică semnalul de intrare este egal cu cel de iesire. Are ca scop transmiterea semnalului, conservandu-i valoarea, mai departe in circuitul intreg.

$$V+=V-=>Vm=V$$
repetor

$$Vrepetor \in [3V, 9.42V]$$

4.3 Amplificator diferențial

Figura 3. Circuit de amplificare diferentiala

Tensiunea de iesire a amplificatorului diferențial trebuie convertită intr-o variație de tensiune in domeniul :

$$[0 - (Vcc - 2V)] = Vout \in [0; 10V]$$

$$Vout = \frac{R5}{R4}(Vrepetor - VrefAD)$$

 $Pentru\ Vout = 0$:

$$0 = \frac{R5}{R4} (3V - VrefAD) => VrefAD = 3V$$

 $Pentru\ Vout = 10:$

$$10 = \frac{R5}{R4}(9.42 - 3V) = \frac{R5}{R4} = \frac{10}{6.42} = \frac{R5}{R4} = 1.55k\Omega = R4 = 1k\Omega = R5 = 1.5k\Omega$$

$$R2 = R4 = 1k\Omega$$

$$R3 = R5 = 1.5k\Omega$$

Figura 3.1 Circuit pentru tensiunea de referință a amplificatorului diferențial

$$VrefAD = \frac{R7}{R7 + R6} * Vcc < = > \frac{R7}{R7 + R6} * 12V = 3V < = > \frac{R7}{R7 + R6} = 0.25$$

$$R7 + R6 = 1K\Omega$$

$$R7 = 250\Omega \implies R6 = 1K\Omega - 250\Omega \implies R6 = 750\Omega$$

4.4 Circuit de comparare

Figura 4. Comparator inversor

$$Vpj = \frac{R8}{R8 + R9} * (-Vcc) + \frac{R9}{R8 + R9} * VrefC => not (1)$$

$$Vps = \frac{R8}{R8 + R9} * (+Vcc) + \frac{R9}{R8 + R9} * VrefC => not(2)$$

$$Vpj = 3V$$
; $Vps = 9.42V$

$$(1) - (2) = > \frac{R8}{R8 + R9} * Vcc - (-Vcc) * \frac{R8}{R8 + R9} < = > 6.42 = \frac{2R8}{R8 + R9} * Vcc < = >$$

$$\frac{R8}{R8 + R9} = \frac{6.42}{24} <=> \frac{R8}{R8 + R9} = 0.267$$

$$R8 = 0.267(R8 + R9) <=> 1 * R8 - 0.267 * R8 = 0.267 * R9 <=>$$

$$0.733 * R8 = 0.267 * R9 <=> R8 = \frac{0.267 * R9}{0.733} => R8 = 0.3R9$$

$$Dacă R9 = 1k => R8 = 0.3 * 1k\Omega = 300\Omega$$

$$(2) + (1) => 12.42 = \frac{2 * R9}{R8 + R9} * VrefC <=> \frac{2k\Omega}{1.3k\Omega} * VrefC = 12.42 <=>$$

$$1.53VrefC = 12.42 => VrefC = \frac{12.42}{1.53} = 8.11V$$

Figura 4.1 Circuit pentru tensiunea de referință a comparatorului

$$VrefC = \frac{R11}{R11 + R10} * Vcc <=> 8.11V = \frac{R11}{R11 + R10} * 12V <=>$$

$$\frac{R11}{R11 + R10} = \frac{8.11V}{12V} <=> \frac{R11}{R11 + R10} = 0.67$$

$$R11 + R10 = 1K\Omega \implies R11 = 0.67 * 1k\Omega \implies R11 = 670\Omega$$

$$R10 = 1000\Omega - 670\Omega = 330\Omega$$

4.5 Circuit de semnalizare LED și ansamblu releu

Figura 5. Circuit de semnalizare LED și ansamblu releu

$$Vled = 2.6V \quad Iled = 20mA$$

$$R12 = \frac{Vcc - Vled}{Iled} = \frac{12V - 2.6V}{20 * 10^3} = 470\Omega$$

$$Pentru \ BC547A => Vce_{sat} = 0.2V => RL = \frac{Vcc - Vce_{sat}}{I} = \frac{12V - 0.2V}{909 \mu A} = 12.96 k\Omega$$

$$12.96k\Omega \cong 12k\Omega => RL = 12k\Omega$$

5.ANALIZE DE SIMULARE

5.1 Analiza DC Sweep

Variația rezistenței senzorului [$1k\Omega$ - $11k\Omega$]:

Variația rezistenței senzorului [$2.76k\Omega$; $9.9k\Omega$] convertită pentru domeniul de presiune măsurabil în camera hiberbară :

Variația tensiunii de iesire a circuitului de comparare ce compară tensiunea de ieșire a circuitului de conversie cu o valoare de referință :

Caracteristica curent tensiune (Modelarea Led-ului albastru):

5.2 Analiza MonteCarlo

Se poate observa că comportarea circuitului cand valorile compontelor (rezitențelor sunt modificate în domeniul lor de tolerante) se menține in domeniul valorilor senzorului de presiune, ce aici rezultand că semnalul de intrare al comparatorului se mentine in domeniul de variație corvertit, releul electromagnetic comandă pornirea și oprirea pompei..

5.2 Analiza Worst-case/Senzitivity

Se poate observa că această analiză care evaluează sensibilitatea circuitului la variațiile parametrilor componentelor în condiții extreme (worst case) se afla aproape de parametrii domeniului de presiune măsurabil cu o mica neidealitate, scopul acestei analize este de a determina cum variațiile extreme ale valorilor componentelor pot afecta performanța circuitului.

6.REFEINȚE COMPONENTE

6.1 Tranzistorii

- Sursa de curent (oglinda de curent) este formată din doi tranzistori BF550 PNP . Tranzistorul BF550 are curentul de colector max de 25mA , Vce_sat intre 0.2-0.4V și tensiunea maxima de 40V , pentru curentul meu de 909 μ A tranzistorul functionează in condiții normale și la curenți mici.
- Tranzistoarele PNP au avantajul unei tensiuni de pornire mai mici, ceea ce le face ideale pentru utilizarea în aplicații de mare viteză. Rezistența rezorului de presiune este crescătoare si pentru o sursă de curent ideală, adică pentru a furniza același curent continuu prin nod de ieșire indiferent de tensiunea aplicată.
- La ansamblul pompă-releu am ales un transistor NPN BC547A ce are un current maxim de 100mA și un releu electromagnetic G5LE-1A ce la 12V suporta un current de 33.3mA . Releul electromagnetic controlează de semnalul de ieșire al comparatorului, releul electromagnetic comandă pornirea și oprirea pompei. Când este activat, permite alimentarea pompei, iar când este dezactivat, întrerupe alimentarea.
- Pompa este responsabilă de menținerea presiunii în intervalul specificat în camera hiperbară. Este alimentată sau întreruptă de către releul electromagnetic în funcție de semnalele de control.

6.2 Amplificatoarele operațioanale

- Am folosit in amplificatory LM741A , ce are tensiunea de alimentare la $\pm 22V$ si functionează in parametrii normali pană la temperatura de 150 °C.
- LM741A are o impedanță de intrare ridicată, ceea ce înseamnă că poate accepta semnale cu o impedanță relativ mare de la sursele de intrare.
- LM741A poate amplifica semnalele de la intrare la ieșire într-un mod controlat și precis, oferind o amplificare mare (de obicei, de ordinul zecilor de mii sau mai mult).

7.BIBLIOGRAFIE

- Led albastru: https://www.arduino.cc/documents/datasheets/LEDRGB-L-154A4SURK.pdf
- Tranzistor BF550: https://pdf1.alldatasheet.com/datasheet-pdf/view/44489/SIEMENS/BF550.html
- Tranzistor BC547A: https://pdf1.alldatasheet.com/datasheet-pdf/view/1439707/ONSEMI/BC547A.html
- Releu https://pdf1.alldatasheet.com/datasheet-pdf/view/87998/OMRON/G5LE-1A.html
- AO LM741A: https://pdf1.alldatasheet.com/datasheet-pdf/view/784646/TI1/LM741.html
- http://www.bel.utcluj.ro/dce/didactic/de/DE_Curs6.pdf