Machine Learning Notes

Name: Utkarsh Mishra

INDEX

Sr No.	Practical Name	Page
1	Feature Engineering	
1.1	Data Imputation	3
1.2	Feature Scaling	
	1.Standardization	5
	2. Normalization	9
1.3	Handling Categorical Variable	
	1. One Hot Encoding	13
	2. Label Encoding	16
1.4	Feature Construction	19
1.5	Feature Selection	
	1. Correlation	23
	2. Variance Thresholding	26
1.6	Feature Extraction	
	1. PCA	29
2	Regression	
2.1	Simple Linear Regression	32
2.2	Multiple Linear Regression	36
2.3	Estimation of Linear Regression Parameter using	42
	Gradient Descent	47
2.4	Assumption of Linear Regression	54
2.5	Polynomial Regression	51
3	Regularization	
3.1	Ridge Regression (L2 Regularization)	59
3.2	Lasso Regression (L1 Regularization)	65
4	Classification	
4.1	Logistic Regression	71
4.2	Decision Tree	75

4.3	Random Forest	85
4.4	Naive Bayes	94
4.5	K-nearest neighbors (KNN)	108
4.6	Support Vector Machine	118
5	Clustering	
5.1	K Means	123
5.2	Hierarchical Clustering	125
5.3	Density Based Clustering	127

Practical 1.1 Data Imputation

1. Import Libraries

[Syntax]

```
import pandas as pd
import numpy as np
from sklearn.impute import SimpleImputer
from sklearn.cluster import KMeans
```

A. Handling Missing Values

2. Load Dataset

[Syntax]

```
data_03 = [[12, np.nan, 34], [18, 32, np.nan], [np.nan, 11, 20]]
data_05 = pd.read_csv("Data_02.csv")
```

3. Impute missing values

[Syntax]

```
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
data_04 = imputer.fit_transform(data_03)
print("Imputed Example Data:\n", data_04)
```

4. Mode Imputation

[Syntax]

```
print("Sample Data from Data_02:\n", data_05.sample(5))
data_06 = data_05.fillna(data_05.mode().iloc[0])
print("Mode Imputation Result:\n", data_06.sample(5))
data_07 = data_06.isnull().sum()
print("Remaining Missing Values Count:\n", data_07.sample(5))
```

5. Drop Columns With

5.1 Any Missing Values

[Svntax]

```
data_08 = data_05.dropna(axis=1, how='any')
print("Shape after dropping columns with any missing values:",
data_08.shape)
```

5.2 All Missing Values

[Syntax]

```
data_08 = data_05.dropna(axis=1, how="all")
```

```
print("Shape after dropping columns with any missing values:",
data_08.shape)
```

```
Imputed Example Data:
[[12. 21.5 34.]
[18. 32. 27.]
 [15. 11. 20.]]
3]
0s
print("Sample Data from Data 02:\n", data 05.sample(5))
data 06 = data 05.fillna(data 05.mode().iloc[0])
print("Mode Imputation Result:\n", data 06.sample(5))
data 07 = data 06.isnull().sum()
print("Remaining Missing Values Count:\n", data 07.sample(5))
Sample Data from Data 02:
     ID FieldA FieldB FieldC FieldD FieldE
                                           FieldF FieldG
   1.0 Good Better Best 1024.0
0
                                     NaN 10241.0
9
                                     NaN 21111.0
  10.0 A
               В
                                                     10
                 NaN Best
                             32.0
                                     NaN
                                           32.0
18 10.0
         NaN
                NaN Best
                             8.0
                                            844.0
                                                     19
                                     NaN
20 10.0 A
                  В
                            2.0
                                     NaN
                                           111.0
                                                     21
Mode Imputation Result:
     ID FieldA FieldB FieldC FieldD FieldE FieldF FieldG
    8.0 Good Better Best
                             8.0
                                     NaN 8111.0
20 10.0 A
                  В С
                              2.0
                                          111.0
                                                     21
                                     NaN
18 10.0 Good Better Best
                                          844.0
                              8.0
                                     NaN
                                                    19
8
   9.0 Good Better Best
                              4.0
                                     NaN
                                          41.0
   4.0 Good Better Best
                            2.0
                                     NaN
                                           211.0
Remaining Missing Values Count:
FieldB
FieldD
FieldA
FieldC
FieldG
dtype: int64
Shape after dropping columns with any missing values: (21, 1)
Shape after dropping columns with any missing values: (21, 7)
```

Practical 1.2.1 Standardization

1. Import Libraries

[Syntax]

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
```

2. Load Dataset

[Syntax]

```
df = sns.load_dataset('titanic')
```

3. Exploratory Data Analysis

[Syntax]

```
print("First few rows of the original dataset:")
print(df.head())
print("\nDataset Info:")
print(df.info())
print("\nMissing Values:")
print(df.isnull().sum())
```

4. Select Numerical Features for Standardization

[Syntax]

```
numerical_features = df.select_dtypes(include=['float64',
    'int64']).columns.tolist()
numerical_features.remove('survived')
print("\nNumerical features selected for standardization:")
print(numerical_features)
```

5. Visualize the Distribution of Numerical Features Before Standardization [Syntax]

```
plt.figure(figsize=(12, 8))
for i, feature in enumerate(numerical_features, 1):
    plt.subplot(3, 2, i)
    sns.histplot(df[feature], kde=True)
    plt.title(f'Distribution of {feature}')
plt.tight_layout()
```

```
plt.show()
```

6. Standardization of Numerical Features

[Syntax]

```
scaler = StandardScaler()
df[numerical_features] = scaler.fit_transform(df[numerical_features])
```

7. Visualize

[Syntax]

```
plt.figure(figsize=(12, 8))
for i, feature in enumerate(numerical_features, 1):
    plt.subplot(3, 2, i)
    sns.histplot(df[feature], kde=True)
    plt.title(f'Distribution of Standardized {feature}')
plt.tight_layout()
plt.show()
```

8. Summary

[Syntax]

```
print("\nSummary of the standardized DataFrame:")
print(df[numerical_features].describe())
```

```
First few rows of the original dataset:
  survived pclass
                         age sibsp parch fare embarked class
                    sex
               3 male 22.0
                                       0 7.2500
                                                       S Third
               1 female 38.0
                                       0 71.2833
                                                       C First
               3 female 26.0
                                       0 7.9250
                                                       S Third
               1 female 35.0
                                       0 53.1000
                                                       S First
               3 male 35.0
                                       0 8.0500
                                                       S Third
        adult male deck embark town alive
                                      alone
             True NaN Southampton
                                   no False
            False C Cherbourg
                                   yes False
  woman
            False NaN Southampton yes True
  woman
                   C Southampton yes False
  woman
            False
            True NaN Southampton
                                      True
Dataset Info:
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
     Column
                     Non-Null Count
                                        Dtype
     survived
                     891 non-null
                                        int64
                     891 non-null
                                        int64
     pclass
                     891 non-null
     sex
                                        object
                     714 non-null
                                        float64
     age
     sibsp
                     891 non-null
                                        int64
                     891 non-null
                                        int64
     parch
     fare
                     891 non-null
                                        float64
                     889 non-null
     embarked
                                        object
     class
                     891 non-null
                                        category
                     891 non-null
                                       object
     adult male
                     891 non-null
                                        bool
 11 deck
                     203 non-null
                                       category
 12 embark town 889 non-null
                                        object
 13 alive
                    891 non-null
                                       object
 14 alone
                     891 non-null
                                        bool
dtypes: bool(2), category(2), float64(2), int64(4), object(5)
memory usage: 80.7+ KB
None
             Distribution of pclass
                                               Distribution of age
 400
                                   80
300 com
                                   60 -
                                  Count
                                   40 -
 100
                                   20
       1.25
                    2.25
                        2.50 2.75
              1.75
                 2.00
pclass
             Distribution of sibsp
                                              Distribution of parch
 600
                                   600
                                  400
Cornt
 200
                                   200
                                                  parch
              Distribution of fare
 300
onu 200 -
                              500
```


8

Practical 1.2.2 Normalization

1. Import Libraries

[Syntax]

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
```

2. Load Dataset

[Syntax]

```
df = sns.load_dataset('titanic')
```

3. Exploratory Data Analysis

[Syntax]

```
print("First few rows of the original dataset:")
print(df.head())
print("\nDataset Info:")
print(df.info())
print("\nMissing Values:")
print(df.isnull().sum())
```

4. Select Numerical Features for Standardization

[Syntax]

```
numerical_features = df.select_dtypes(include=['float64',
    'int64']).columns.tolist()
numerical_features.remove('survived')
print("\nNumerical features selected for standardization:")
print(numerical_features)
```

5. Visualize the Distribution of Numerical Features Before Standardization [Syntax]

```
plt.figure(figsize=(12, 8))
for i, feature in enumerate(numerical_features, 1):
    plt.subplot(3, 2, i)
    sns.histplot(df[feature], kde=True)
    plt.title(f'Distribution of {feature}')
plt.tight_layout()
plt.show()
```

6. Normalization of Numerical Features

[Syntax]

```
scaler = MinMaxScaler()
df[numerical_features] = scaler.fit_transform(df[numerical_features])
```

7. Visualize

[Syntax]

```
plt.figure(figsize=(12, 8))
for i, feature in enumerate(numerical_features, 1):
    plt.subplot(3, 2, i)
    sns.histplot(df[feature], kde=True)
    plt.title(f'Distribution of Normalized {feature}')
plt.tight_layout()
plt.show()
```

8. Summary

[Syntax]

```
print("\nSummary of the normalized DataFrame:")
print(df[numerical_features].describe())
```

```
First few rows of the original dataset:
  survived pclass
                         age sibsp parch
                                            fare embarked class
                   male 22.0
                                       0 7.2500
                                                       S Third
               1 female 38.0
                                       0 71.2833
                                                       C First
               3 female 26.0
                                                       S Third
                                       0 7.9250
               1 female 35.0
                                       0 53.1000
                                                       S First
                                                       S Third
               3 male 35.0
                                       0 8.0500
```

```
who
        adult male deck embark town alive alone
0
              True NaN Southampton no False
             False C Cherbourg
                                    yes False
  woman
             False NaN Southampton yes True
  woman
             False C Southampton yes False
  woman
             True NaN Southampton
                                    no True
Dataset Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
               Non-Null Count Dtype
   survived
               891 non-null
                             int64
               891 non-null
    pclass
                             int64
               891 non-null
                             object
    sex
               714 non-null
                             float64
    age
   sibsp
               891 non-null
                             int64
   parch
               891 non-null
                             int64
               891 non-null float64
   fare
   embarked
               889 non-null
                             object
   class
               891 non-null category
               891 non-null
                             object
10 adult male 891 non-null bool
11 deck
               203 non-null
                             category
12 embark town 889 non-null object
13 alive
               891 non-null
                             object
               891 non-null bool
dtypes: bool(2), category(2), float64(2), int64(4), object(5)
memory usage: 80.7+ KB
None
Numerical features selected for normalization:
['pclass', 'age', 'sibsp', 'parch', 'fare']
```


Practical 1.3.1 One Hot Encoding

1. Import Libraries

[Syntax]

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import OneHotEncoder, StandardScaler
```

2. Load Dataset

[Syntax]

```
data_01 = pd.read_csv("/content/customer.csv")
```

3. Exploratory Data Analysis

[Syntax]

```
print(data_01.info())
print(data_01.describe())
print(data_01.isnull().sum())
for col in ["gender", "review", "education", "purchased"]:
    print(f"Unique values in {col}: {data_01[col].unique()}")
```

4. Load Dataset

[Syntax]

```
data_01['gender'].fillna(data_01['gender'].mode()[0], inplace=True)
data_01['education'].fillna(data_01['education'].mode()[0], inplace=True)
data_01['review'].fillna(data_01['review'].mode()[0], inplace=True)
data_01['purchased'].fillna(data_01['purchased'].mode()[0], inplace=True)
```

5. One-Hot Encoding of Categorical Features

[Syntax]

```
data_encoded = pd.get_dummies(data_01, columns=["gender", "education"],
drop_first=True)
encoder = OneHotEncoder(sparse_output=False)
categorical_columns = ["review", "purchased"]
encoded_categories = encoder.fit_transform(data_01[categorical_columns])
```

6. Combine Encoded Features

[Syntax]

```
encoded_df = pd.DataFrame(encoded_categories,
columns=encoder.get_feature_names_out(categorical_columns))
data_final = pd.concat([data_encoded.drop(columns=categorical_columns),
encoded_df], axis=1)
print(data_final.head())
print(data_final.info())
```

```
age gender review education purchased
   30 Female Average
   68 Female
              Poor
   70 Female
                           PG
   72 Female Good
                           PG
 16 Female Average
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):
            50 non-null
                           object
2 review 50 non-null
3 education 50 non-null
                            object
4 purchased 50 non-null
                            object
dtypes: int64(1), object(4)
memory usage: 2.1+ KB
None
           age
count 50.000000
```

```
54.160000
mean
std
     25.658161
min
     15.000000
25%
     30.250000
50%
     57.000000
     74.000000
75%
max 98.000000
age
gender
review
education
purchased 0
dtype: int64
Unique values in gender: ['Female' 'Male']
Unique values in review: ['Average' 'Poor' 'Good']
Unique values in education: ['School' 'UG' 'PG']
Unique values in purchased: ['No' 'Yes']
  age gender Male education School education UG review Average \
            False
                             True
                                         False
           False
                             False
                                         True
           False
                            False
                                         False
           False
                             False
                                         False
                                                          0.0
                                                          1.0
 16
           False
                             False
                                          True
  review Good review Poor purchased No purchased Yes
         0.0
                     0.0
                                  1.0
                                                0.0
         0.0
                     1.0
                                  1.0
                                                0.0
         1.0
                     0.0
                                  1.0
                                                0.0
         1.0
                     0.0
                                  1.0
                                                0.0
         0.0
                     0.0
                                  1.0
                                                0.0
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 9 columns):
# Column
                    Non-Null Count Dtype
    age
                    50 non-null int64
    gender Male
                                  bool
    education School 50 non-null
                                  bool
                    50 non-null
                                   bool
    review Average 50 non-null float64
```

```
5 review_Good 50 non-null float64
6 review_Poor 50 non-null float64
7 purchased_No 50 non-null float64
8 purchased_Yes 50 non-null float64
dtypes: bool(3), float64(5), int64(1)
memory usage: 2.6 KB
None
```

Practical 1.3.2 Label Encoding

1. Import Libraries

[Syntax]

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
```

2. Load Dataset

[Syntax]

```
data_01 = pd.read_csv("/content/customer.csv")
```

3. Exploratory Data Analysis

[Syntax]

```
print(data_01.info())
print(data_01.describe())
print(data_01.isnull().sum())
for col in ["gender", "review", "education", "purchased"]:
    print(f"Unique values in {col}: {data_01[col].unique()}")
```

4. Load Dataset

[Syntax]

```
data_01['gender'].fillna(data_01['gender'].mode()[0], inplace=True)
data_01['education'].fillna(data_01['education'].mode()[0], inplace=True)
data_01['review'].fillna(data_01['review'].mode()[0], inplace=True)
data_01['purchased'].fillna(data_01['purchased'].mode()[0], inplace=True)
```

5. Initialization Label Encoding

[Syntax]

```
label_encoder = LabelEncoder()
```

6. Apply Label Encoding

[Syntax]

```
label_mappings = {}
for col in ["gender", "education", "review", "purchased"]:
   data_01[col + '_encoded'] = label_encoder.fit_transform(data_01[col])
   label_mappings[col] = dict(enumerate(label_encoder.classes_))
```

7. Display Label Mappings

[Syntax]

```
for col, mapping in label_mappings.items():
    print(f"\nLabel encoding for {col}:")
    for label, encoded in mapping.items():
        print(f"{encoded} -> {label}")
```

8.Combine Encoded Features

[Syntax]

```
print(data_01.head())
print(data_01.info())
```

```
age gender
               review education purchased
   30 Female Average School
   68 Female Poor
                           UG
   70 Female
                           PG
   72 Female Good
                           ΡG
                           UG
 16 Female Average
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):
    age
            50 non-null int64
            50 non-null
                            object
   review 50 non-null
                            object
                            object
    purchased 50 non-null
                            object
dtypes: int64(1), object(4)
```

```
memory usage: 2.1+ KB
None
           age
count 50.000000
     54.160000
mean
std
     25.658161
min
     15.000000
     30.250000
25%
50% 57.000000
     74.000000
75%
max 98.000000
age
gender
review
education
purchased 0
dtype: int64
Unique values in gender: ['Female' 'Male']
Unique values in review: ['Average' 'Poor' 'Good']
Unique values in education: ['School' 'UG' 'PG']
Unique values in purchased: ['No' 'Yes']
  age gender review education purchased
  70 0 1
 16 0 0
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):
            50 non-null
                           int64
0 age
1 gender
            50 non-null
                           int64
2 review 50 non-null
3 education 50 non-null
                           int64
4 purchased 50 non-null int64
dtypes: int64(5)
memory usage: 2.1 KB
```

Practical 1.4 Feature Construction

1. Import Libraries

[Syntax]

```
import pandas as pd
import seaborn as sns
```

2. Load Dataset

[Syntax]

```
data_01 = sns.load_dataset('titanic')
```

3. Exploratory Data Analysis

[Syntax]

```
print("First few rows of the original dataset:")
print(data_01.head())
print("\nDataset Info:")
print(data_01.info())
print("\nMissing Values:")
print(data_01.isnull().sum())
```

4. Construct a New Feature 'Family'

[Syntax]

```
data_01['Family'] = data_01['sibsp'] + data_01['parch']
```

5. Create a New Feature 'Alone'

[Syntax]

```
data_01['Alone'] = data_01['Family'] == 0
```

6. Drop Unnecessary Columns

[Syntax]

```
data_02= data_01.drop(columns=['sibsp', 'parch'])
```

7. Select Relevant Features

[Syntax]

8. Display the DataFrame

[Syntax]

```
print("\nFinal DataFrame after feature construction:")
print(data 01.head())
```

9. Summary

Syntax]

```
print("\nSummary of the final DataFrame:")
print(data 01.describe())
```

```
First few rows of the original dataset:
  survived pclass sex age sibsp parch fare embarked class
               3 male 22.0
                                        0 7.2500
                                                        S Third
               1 female 38.0
                                        0 71.2833
                                                        C First
               3 female 26.0
                                        0 7.9250
                                                        S Third
               1 female 35.0
                                        0 53.1000
                                                        S First
                   male 35.0
                                        0 8.0500
                                                        S Third
        adult male deck embark town alive alone
                                    no False
             True NaN Southampton
             False C Cherbourg
                                   yes False
  woman
             False NaN Southampton yes True
  woman
             False C Southampton yes False
  woman
             True NaN Southampton
                                   no True
Dataset Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
 # Column
               Non-Null Count Dtype
    survived
               891 non-null int64
   pclass
               891 non-null
                             int64
               891 non-null object
               714 non-null
                            float64
    sibsp
               891 non-null
                            int64
               891 non-null
                             int64
    parch
    fare
               891 non-null
                            float64
    embarked
               889 non-null
                             object
               891 non-null
    class
                             category
```

```
9
    who
              891 non-null
                             object
                            bool
11 deck
          203 non-null category
                            object
13 alive
               891 non-null object
 14 alone
              891 non-null
                           bool
dtypes: bool(2), category(2), float64(2), int64(4), object(5)
memory usage: 80.7+ KB
None
Missing Values:
survived
pclass
sex
            177
age
sibsp
parch
fare
embarked
class
who
adult male
deck
             688
embark_town
alive
alone
dtype: int64
Final DataFrame after feature construction:
     sex embarked Alone pclass survived Family
 male
             S False
 female
             C False
2 female
             S True
 female
             S False
4 male S True 3
Summary of the final DataFrame:
         pclass
                 survived
                             Family
count 891.000000 891.000000 891.000000
mean 2.308642 0.383838 0.904602
```

std	0.836071	0.486592	1.613459	
min	1.000000	0.000000	0.00000	
25%	2.000000	0.000000	0.000000	
50%	3.000000	0.000000	0.000000	
75%	3.000000	1.000000	1.000000	
max	3.000000	1.000000	10.000000	
#	С			

22

Practical 1.5.1 Correlation

1. Import Libraries

[Syntax]

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_diabetes
```

2. Load Dataset

[Syntax]

```
df = load_diabetes()
x = pd.DataFrame(df.data, columns=df.feature_names)
y = df.target
```

3. Sample data and display statistics

[Syntax]

```
print("Feature names:")
print(x.columns.tolist())
print("\nFirst few rows of the dataset:")
print(x.head())
```

4. Correlation Matrix

[Syntax]

```
correlation_matrix = x.corr()
```

5. Visualize the Correlation Matrix

[Svntax]

6. Threshold for Feature Selection

[Syntax]

```
threshold = 0.5
print(f"\nFeatures with correlation greater than {threshold} with
target:")
correlation_with_target = x.corrwith(pd.Series(y))
high_corr_features = correlation_with_target[abs(correlation_with_target)
> threshold].index
print(high_corr_features)
```

7. Select Features with High Correlation to Target Variable

[Syntax]

```
selected_features = x[high_corr_features]
print("\nSelected features based on correlation threshold:")
print(selected_features.columns.tolist())
```

8. Summary

[Syntax]

```
summary = pd.DataFrame({
    'Feature': high_corr_features,
    'Correlation with Target': correlation_with_target[high_corr_features]
})
print("\nSummary of selected features:")
print(summary)
```

```
Feature names:
['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']

First few rows of the dataset:

age sex bmi bp s1 s2 s3 \
0 0.038076 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401
1 -0.001882 -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412
2 0.085299 0.050680 0.044451 -0.005670 -0.045599 -0.034194 -0.032356
3 -0.089063 -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038
4 0.005383 -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142

s4 s5 s6
0 -0.002592 0.019907 -0.017646
1 -0.039493 -0.068332 -0.092204
```


Practical 1.5.2 Variance Thresholding

1. Import Libraries

[Syntax]

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.feature_selection import VarianceThreshold
```

2. Load Dataset

[Syntax]

```
data = {
    'F1': [1, 2, 3, 4, 1, 5],
    'F2': [4, 1, 5, 2, 6, 8],
    'F3': [0, 0, 0, 0, 0],
    'F4': [1, 1, 1, 1, 1]
}
df = pd.DataFrame(data)
print("Original DataFrame:")
print(df)
```

3. Calculate Variance

[Syntax]

```
variance = df.var()
print("\nVariance of each feature:")
print(variance)
```

4. Visualize the Variance

[Syntax]

```
plt.bar(df.columns, variance, color='skyblue')
plt.axhline(y=0, color='gray', linestyle='--')
plt.title('Feature Variance')
plt.xlabel('Features')
plt.ylabel('Variance')
plt.show()
```

5. Apply Variance Threshold

[Syntax]

```
threshold = 0.1
var_thre = VarianceThreshold(threshold=threshold)
var_thre.fit(df)
```

6. Get Support Mask and Select Features

[Syntax]

```
df_reduced = df[features_to_keep]
print("\nReduced DataFrame:")
print(df_reduced)
```

7. Summary of Selected Features

[Syntax]

```
print("\nSummary of selected features:")
summary = pd.DataFrame({
    'Feature': features_to_keep,
    'Variance': variance[features_to_keep]
})
print(summary)
```

```
Original DataFrame:

F1 F2 F3 F4

0 1 4 0 1

1 2 1 0 1

2 3 5 0 1

3 4 2 0 1

4 1 6 0 1

5 5 8 0 1

Variance of each feature:
F1 2.666667
F2 6.666667
F3 0.000000
F4 0.000000
dtype: float64
```


Practical 1.6.1 PCA

1. Import Libraries

[Syntax]

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
```

2. Load Dataset

[Syntax]

```
data_01 = pd.read_csv("Data.csv")
y = data_01.iloc[:, 0]
X = data_01.iloc[:, 1:]
```

3. Standardize Data

[Syntax]

```
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

4. Principal Component Analysis

[Syntax]

```
pca = PCA(n_components=100)
```

5. Fit PCA and Transform Data

[Syntax]

```
X_pca = pca.fit_transform(X_scaled)
```

6. DataFrame

[Syntax]

```
pca_df = pd.DataFrame(data=X_pca, columns=[f'PC{i+1}' for i in
range(100)])
pca_df['target'] = y
```

6. Visualization

[Syntax]

```
plt.figure(figsize=(8, 6))
```

```
unique targets = np.unique(y)
for target in unique targets:
  plt.scatter(pca df[pca df['target'] == target]['PC1'],
               pca df[pca df['target'] == target]['PC2'],
               label=target)
plt.title('PCA of Dataset')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend()
plt.grid()
plt.show()
```

6. Explained Variance

[Syntax]

```
explained variance = pca.explained variance ratio
print("Explained variance by each component:", explained variance)
print("Total explained variance:", np.sum(explained variance))
```



```
0.01135736 0.0111309 0.01050311 0.01012326 0.00951303 0.00934514
0.00907259 0.00885327 0.00838907 0.00812027 0.00775161 0.00752312
0.0072769 0.00698756 0.00690455 0.00664924 0.00630675 0.00616301
0.00610922 \ 0.00597037 \ 0.00577284 \ 0.00573682 \ 0.00564822 \ 0.00546322
0.0053943 0.00524361 0.00504843 0.0048853 0.00482244 0.00475901
0.00460008\ 0.00457629\ 0.00449584\ 0.00446722\ 0.00443837\ 0.00436837
0.00432713 0.00427027 0.00419269 0.0041218 0.00402461 0.00399434
0.00394891 \ 0.00390805 \ 0.00379899 \ 0.00372454 \ 0.00368413 \ 0.00365723
0.00353278 0.00351088 0.00345414 0.00341394 0.00337784 0.00336477
0.0033171 0.00329725 0.00320016 0.00316776 0.00312695 0.00311861
0.00308212 0.00303276 0.00301509 0.0029714 0.00294849 0.00293629
0.00287848 \ 0.00286906 \ 0.00283171 \ 0.00282885 \ 0.00281701 \ 0.00279215
0.00276842 0.00276316 0.00273923 0.0027181 0.00268141 0.00265443
0.00262072 0.00260164 0.00258196 0.00254877 0.00253504 0.00252401
0.00250074 0.00245803 0.0024436 0.00241387]
Total explained variance: 0.7145018867909934
```

31

Practical 2.1 Simple Linear Regression

1. Import Libraries

[Syntax]

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error,
r2_score
from sklearn.linear_model import LinearRegression
```

2. Load Dataset

[Syntax]

```
data_01 = pd.read_csv("Data.csv")
```

3. Sample data and display statistics

[Syntax]

```
print(data_01.sample(5))
print(data_01.describe(include="all").T)
```

4. Correlation analysis

[Syntax]

```
correlation_matrix = data_01.corr()
sns.heatmap(correlation_matrix, annot=True)
plt.show()
```

5. Features and target variable

[Syntax]

```
X = data_01["Temperature"].values.reshape(-1, 1)
Y = data_01["Revenue"].values.reshape(-1, 1)
```

6. Train-Test Split

[Syntax]

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,
random_state=25)
```

7. Model Fitting

[Syntax]

```
regression = LinearRegression()
regression.fit(X_train, Y_train)
```

8. Model coefficients

[Syntax]

```
print("Coefficients:", regression.coef_)
print("Intercept:", regression.intercept_)
```

9. Predictions

[Syntax]

```
Y_estimate = regression.predict(X_test)
print("Predicted Values:", Y_estimate.flatten())
```

10. Compare real and estimated values

[Syntax]

```
data_02 = pd.DataFrame()
data_02["Real_Value"] = Y_test.flatten()
data_02["Estimated_Value"] = Y_estimate.flatten()
data_02['Error'] = data_02["Real_Value"] - data_02["Estimated_Value"]
print(data_02)
```

11. Performance

[Syntax]

```
print("Mean Squared Error:", mean_squared_error(Y_test, Y_estimate))
print("Mean Absolute Error:", mean_absolute_error(Y_test, Y_estimate))
print("Root Mean Squared Error:", np.sqrt(mean_squared_error(Y_test,
Y_estimate)))
print("R-Squared:", r2_score(Y_test, Y_estimate))
```

12. Visualize

[Syntax]

```
plt.scatter(X, Y, label="Actual Data")
plt.scatter(X_test, Y_estimate, color="r", label="Predicted Data")
plt.xlabel("Temperature")
plt.ylabel("Revenue")
plt.title("Temperature vs Revenue")
plt.legend()
plt.show()
```

[Output]

Temper	ature	Revenue						
380	20.5	514						
285	26.4	575						
60	16.4	382						
34	35.7	810						
109	27.8	652						
	count	mean	std	min	25%	50%	75%	
max								
Temperature	500.0	22.2816	8.097597	0.0	17.175	22.4	27.8	
45.0								
Revenue	500.0	522.0580	175.410399	10.0	406.000	530.0	643.0	
1000.0								

Coefficients: [[21.50681768]]

Intercept: [42.22043519]

Predicted Values: [442.24724397 483.11019756 726.1372373 653.0140572

455.15133458

199.22020423409.98701746683.12360195392.78156332476.65815226437.94588044575.58951357685.27428372308.90497438235.78179428504.61701523747.64405498339.01451912792.8083721427.1924716399.23360862216.42565837450.84997104728.28791907571.28815003513.21974231640.1099666605.69905831859.4795069420.7404263158.35725064280.9461114769.15087266547.63065059635.80860306612.15110362491.71292463209.97361306414.28838099893.89041518605.69905831569.13746826440.0965622530.42519645433.6445169

```
360.5213368 508.91837877 805.71246271 696.02769256 147.6038418
 364.82270034 523.97315114 422.89110806 805.71246271 457.30201635
 605.69905831 435.79519867 394.93224508 306.75429261 291.69952024
 390.63088155 321.80906498 704.63041963 397.08292685 590.64428594
 674.52087488 511.06906054 605.69905831 280.9461114 485.26087933
 566.9867865 429.34315337 536.87724175 453.00065281 592.79496771
 252.98724842 586.34292241 590.64428594 874.53427927 450.84997104
 491.71292463 687.42496549 614.30178539 356.21997327 590.64428594
 519.67178761 569.13746826 582.04155887 605.69905831 237.93247604
 760.54814559 173.41202301 569.13746826 440.0965622 801.41109917
 534.72655998 603.54837655 483.11019756 502.46633347 476.65815226]
   Real Value Estimated Value
                                    Error
                    442.247244 1.752756
           444
          514
                    483.110198 30.889802
          741
                    726.137237 14.862763
                    653.014057 -20.014057
          633
                    455.151335 19.848665
          475
95
                    534.726560 -17.726560
                    603.548377 -3.548377
96
          600
97
          452
                    483.110198 -31.110198
98
          521
                    502.466333 18.533667
99
          478
                    476.658152 1.341848
[100 rows x 3 columns]
Mean Squared Error: 704.5829007363823
Mean Absolute Error: 20.149691942088634
Root Mean Squared Error: 26.543980499095877
R-Squared: 0.9746596552577004
```


[Insights]

- 1. Mean Squared Error (MSE): 704.58
- → Indicates the average squared error; lower values signify better performance.
- 2. Mean Absolute Error (MAE): 20.15
- → Average absolute deviation of predictions; a lower value suggests more accurate predictions.
- 3. Root Mean Squared Error (RMSE): 26.54
- \rightarrow Average error in the same units as the data; indicates predictions are off by about 26.54 units on average.
- 4. R-Squared: 0.97
- → About 97% of the variance in the data is explained by the model, indicating a strong fit.

Practical 2.2 Multiple Linear Regression

1. Import Libraries

[Syntax]

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error,
r2_score
from sklearn.linear_model import LinearRegression
```

2. Load Dataset

[Syntax]

```
data_01 = pd.read_csv("Data.csv")
```

3. Sample data and display statistics

[Syntax]

```
print(data_01.sample(5))
print(data_01.describe(include="all").T)
```

4. Correlation analysis

[Syntax]

```
correlation_matrix = data_01.corr()
sns.heatmap(correlation_matrix, annot=True)
plt.show()
```

5. Features and target variable

[Syntax]

```
X = data_01["Temperature"].values.reshape(-1, 1)
Y = data_01["Revenue"].values.reshape(-1, 1)
```

6. Train-Test Split

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=25)
```

7. Model Fitting

[Syntax]

```
regression = LinearRegression()
regression.fit(X_train, Y_train)
```

8. Model coefficients

[Syntax]

```
print("Coefficients:", regression.coef_)
print("Intercept:", regression.intercept_)
```

9. Predictions

[Syntax]

```
Y_estimate = regression.predict(X_test)
print("Predicted Values:", Y_estimate.flatten())
```

10. Compare real and estimated values

[Syntax]

```
data_02 = pd.DataFrame()
data_02["Real_Value"] = Y_test.values
data_02["Estimated_Value"] = Y_estimate.flatten()
data_02['Error'] = data_02["Real_Value"] - data_02["Estimated_Value"]
print(data_02)
```

11. Performance

[Syntax]

```
print("Mean Squared Error:", mean_squared_error(Y_test, Y_estimate))
print("Mean Absolute Error:", mean_absolute_error(Y_test, Y_estimate))
print("Root Mean Squared Error:", np.sqrt(mean_squared_error(Y_test,
Y_estimate)))
print("R-Squared:", r2_score(Y_test, Y_estimate))
```

[Output]

	Serial No	GRE Score	TOEFL Score	University Rating	SOP	LOR
CGPA						
373	374	321	109	3	3.0	3.0
8.54						
282	283	312	106	3	4.0	3.5
8.79						

	328	295	10	1	2	2.5	2.0
7.86							
4	5	314	10	3	2	2.0	3.0
8.21							
91	92	299	9	7	3	5.0	3.5
7.66							
Resear	ch Chai	nce of 2					
373	1		0.79				
282	1		0.81				
327	0		0.69				
4	0		0.65				
91	0		0.38				
		count	mean	std	min	25%	50%
\							
Serial No		400.0	200.500000	115.614301	1.00	100.75	200.50
GRE Score		400.0	316.807500	11.473646	290.00	308.00	317.00
TOEFL Score		400.0	107.410000	6.069514	92.00	103.00	107.00
University Rating		400.0	3.087500	1.143728	1.00	2.00	3.00
SOP		400.0	3.400000	1.006869	1.00	2.50	3.50
LOR		400.0	3.452500	0.898478	1.00	3.00	3.50
CGPA		400.0	8.598925	0.596317	6.80	8.17	8.61
Research		400.0	0.547500	0.498362	0.00	0.00	1.00
Chance of A	dmit	400.0	0.724350	0.142609	0.34	0.64	0.73
		7.	5% max				
Serial No		300.25	00 400.00				
GRE Score		325.000	340.00				
TOEFL Score		112.000	00 120.00				
University Rating		4.000	5.00				
SOP		4.000	5.00				
LOR		4.000	5.00				
CGPA		9.062	25 9.92				
Research		1.000	1.00				
Chance of A	dmit	0.830	0.97				

```
- 1.0
     Serial No - 1 -0.098 -0.15 -0.17 -0.17 -0.088-0.046-0.063 0.042
    GRE Score --0.098 1 0.84 0.67 0.61 0.56 0.83 0.58 0.8
                                                - 0.8
   TOEFL Score - -0.15 0.84 1
                       0.7 0.66 0.57 0.83 0.49 0.79
                                                - 0.6
 University Rating -- 0.17 0.67 0.7 1
                          0.73 0.66 0.75 0.45 0.71
        SOP -- 0.17 0.61 0.66 0.73 1 0.73 0.72
                                     0.44 0.68
                                               - 0.4
        LOR --0.088 0.56 0.57 0.66 0.73
                               1
                                                0.2
                                  1
       CGPA --0.046 0.83 0.83 0.75 0.72 0.67
                                     0.52 0.87
     Research -- 0.063 0.58 0.49 0.45 0.44 0.4 0.52 1
                                                - 0.0
 Chance of Admit -0.042 0.8 0.79 0.71 0.68 0.67 0.87 0.55
                                          1
                Score
                    TOEFL Score
                       Jniversity Rating
                                      Research
                               LOR
                                          Chance of Admit
             Serial
                GRE
Coefficients: [ 0.00131371    0.00305671    0.00591875    -0.00379069    0.02444273
0.11631008
  0.02921256]
Intercept: -1.1251812847533555
Predicted Values: [0.93170562 0.69410721 0.78723557 0.53921174 0.69597836
0.88532504
 0.99423997 0.59402473 0.70461353 0.95539849 0.73493312 0.58606356
 0.49904286 0.89701047 0.7734923 0.78127291 0.51015202 0.90787748
 0.60303696 0.58983954 0.88268014 0.90597726 0.82641168 0.82562877
 0.72126662 0.86581365 0.61877191 0.71586698 0.61373614 0.67934741
 0.87422112 \ 0.7168106 \ 0.43523487 \ 0.53770338 \ 0.67549947 \ 0.5869583
 0.78381129 0.80334423 0.81610664 0.72776697 0.70928186 0.61651905
 0.87141532 0.58675855 0.82961041 0.68564994 0.69456296 0.47386422
 0.80739219 0.83011621 0.53043787 0.7747675 0.84817643 0.72813481
 0.79430402 0.7061743 0.77247994 0.92793553 0.87846364 0.58083578
 0.94900488 \ 0.6538332 \ 0.89436181 \ 0.71021358 \ 0.68658971 \ 0.81801625
 0.63150815 \ 0.69968124 \ 0.66920576 \ 0.84171404 \ 0.65110929 \ 0.88199909
 0.7268228  0.93785713  0.63692464  0.51856542  0.85420518  0.65311665
 0.54593246 0.82183928]
    Real Value Estimated Value
                                          Error
            0.94
                           0.931706 0.008294
                           0.694107 -0.024107
            0.67
            0.81
                           0.787236 0.022764
                           0.539212 -0.159212
            0.70
                           0.695978 0.004022
```

```
0.518565 -0.068565
76
                       0.854205 -0.074205
77
          0.62
                       0.653117 -0.033117
78
          0.64
                       0.545932 0.094068
79
          0.87
                       0.821839 0.048161
[80 rows x 3 columns]
Mean Squared Error: 0.004173399997535151
Mean Absolute Error: 0.049130925846978285
Root Mean Squared Error: 0.06460185753935525
R-Squared: 0.8289825620561656
```

[Insights]

- 1. Mean Squared Error (MSE): 0.0042
- \rightarrow This low value indicates that the average squared error is minimal, suggesting good model performance.
- 2. Mean Absolute Error (MAE): 0.0491
- \rightarrow The average absolute difference between predictions and actual values is approximately 0.0491, indicating that predictions are quite close to the actual values.
- 3. Root Mean Squared Error (RMSE): 0.0646
- → This value, in the same units as the data, shows that predictions are, on average, off by about 0.0646 units, reinforcing the model's accuracy.
- 4. R-Squared: 0.83
- → About 83% of the variance in the dependent variable is explained by the independent variables, indicating a relatively strong fit.

Practical 2.3

Estimation of Linear Regression Parameter using Gradient Descent

1. Import Libraries

[Syntax]

```
import numpy as np
import matplotlib.pyplot as plt
```

2. Generate Dataset

[Syntax]

```
np.random.seed(0)
x = np.random.randn(100, 1)
y = 14 * x + np.random.randn(100, 1)
```

3. Scatter Plot

[Syntax]

```
plt.scatter(x, y, alpha=0.6)
plt.title("Scatter Plot of Generated Data")
plt.xlabel("x")
plt.ylabel("y")
plt.show()
```

4. Gradient Function

```
def Gradient_Descent(x, y, m, b, lr):
    """
    Perform gradient descent for a single iteration to learn parameters m
(slope) and b (intercept).

Parameters:
    x (numpy.ndarray): Independent variable values.
    y (numpy.ndarray): Dependent variable values.
    m (float): Current value of the slope.
    b (float): Current value of the intercept.
    lr (float): Learning rate.

Returns:
    tuple: Updated values of m and b.
    """
```

```
N = x.shape[0]
dm = 0.0
db = 0.0
for xi, yi in zip(x, y):
    prediction = m * xi + b
    dm += -2 * xi * (yi - prediction)
    db += -2 * (yi - prediction)

dm /= N
db /= N
m -= lr * dm
b -= lr * db
return m, b
```

5. Initialize Parameters

[Syntax]

```
m = np.array([0.0])
b = np.array([0.0])
learning_rate = 0.1
epochs = 20
```

6. Store losses

[Syntax]

```
losses = []
m_values = []
b_values = []
```

7. Gradient Descent Loop

[Syntax]

```
for epoch in range(epochs):
    m, b = Gradient_Descent(x, y, m, b, learning_rate)
    y_hat = m * x + b
    loss = np.mean((y - y_hat) ** 2)
    losses.append(loss)
    m_values.append(m[0])
    b_values.append(b[0])

    print(f"At epoch {epoch + 1}, loss is {loss:.4f} with parameter m =
{m[0]:.4f} and b = {b[0]:.4f}")
```

8. Plot loss over epochs

[Syntax]

```
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(range(1, epochs + 1), losses, marker='o')
plt.title("Loss over Epochs")
plt.xlabel("Epoch")
plt.ylabel("Loss (Mean Squared Error)")
plt.grid()
```

9. Plot of the regression line

[Syntax]

```
plt.subplot(1, 2, 2)
plt.scatter(x, y, label='Data points', alpha=0.6)
plt.plot(x, y_hat, color='red', label='Fitted line')
plt.title("Linear Regression Fit")
plt.xlabel("x")
plt.ylabel("y")
plt.ylabel("y")
plt.legend()
```

10. Plot parameter values over epochs

[Syntax]

```
plt.figure(figsize=(8, 5))
plt.plot(range(1, epochs + 1), m_values, label='Slope (m)', marker='o')
plt.plot(range(1, epochs + 1), b_values, label='Intercept (b)',
marker='o')
plt.title("Parameter Values over Epochs")
plt.xlabel("Epoch")
plt.ylabel("Parameter Value")
plt.legend()
plt.legend()
plt.show()
```

[Output]

Practical 2.4 Assumption of Linear Regression

1. Import Libraries

[Syntax]

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import scipy.stats as stats
from statsmodels.stats.outliers_influence import variance_inflation_factor
```

2. Load Dataset

[Syntax]

```
housing = fetch_california_housing()
data_01 = pd.DataFrame(housing.data, columns=housing.feature_names)
data_01['MEDV'] = housing.target
```

3. Sample data and display statistics

[Syntax]

```
print(data_01.head())
print(data_01.describe(include="all").T)=
```

4. Features and target variable

[Syntax]

```
X = data_01.drop('MEDV', axis=1).values
y = data_01['MEDV'].values
```

5. Train-Test Split

[Syntax]

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=1)
```

6. Model Fitting

```
model = LinearRegression()
```

```
model.fit(X_train, y_train)
```

7. Predictions & Residuals

[Syntax]

```
y_pred = model.predict(X_test)
residual = y_test - y_pred
```

A. Linearity

[Syntax]

```
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.scatter(y_pred, y_test)
plt.plot([y.min(), y.max()], [y.min(), y.max()], 'r--')
plt.title("Predicted vs Actual")
plt.xlabel("Predicted Values")
plt.ylabel("Actual Values")
data_01.corr()
```

B. Multicollinearity

[Syntax]

```
vif = []

for i in range(X_train.shape[1]):
    vif.append(variance_inflation_factor(X_train, i))

pd.DataFrame({'vif': vif}, index=data_01.columns[0:8]).T

correlation_matrix = data_01.corr()

plt.figure(figsize=(12, 8))

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")

plt.title("Correlation Matrix")

plt.show()
```

C. Normality of Residuals

```
plt.figure(figsize=(6, 4))
sns.histplot(residual, kde=True)
plt.title("Residuals Distribution")
```

```
plt.xlabel("Residuals")
plt.show()

plt.figure(figsize=(6, 4))
stats.probplot(residual, dist="norm", plot=plt)
plt.title("QQ Plot of Residuals")
plt.show()
```

D. Homoscedasticity

[Syntax]

```
plt.figure(figsize=(6, 4))
plt.scatter(y_pred, residual)
plt.axhline(0, color='red', linestyle='--')
plt.title("Residuals vs Predicted")
plt.xlabel("Predicted Values")
plt.ylabel("Residuals")
plt.ylabel("Residuals")
plt.tight_layout()
plt.show()
```

E. Auto Correlation of Residuals

[Svntax]

```
dw statistic = durbin watson(residual)
print("Durbin-Watson Statistic:", dw statistic)
if dw statistic < 1:
  print("Positive autocorrelation detected.")
elif dw statistic > 3:
  print("Negative autocorrelation detected.")
else:
   print("No autocorrelation detected.")
plt.figure(figsize=(10, 5))
plt.plot(residual, marker='o', linestyle='none', color='blue')
plt.axhline(0, color='red', linestyle='--', linewidth=2)
plt.title("Residuals Plot")
plt.xlabel("Observation Index")
plt.ylabel("Residuals")
plt.grid(True)
plt.show()
```

[Output]

\	MedInc	HouseAge	AveRooms	AveBe	drms Pop	ulation	AveOcc	up Latitu	de
0	8.3252	41.0	6.984127	1.02	3810	322.0	2.5555	56 37.	88
1	8.3014	21.0	6.238137	0.97		2401.0			
2	7.2574	52.0	8.288136	1.07		496.0			
- 3	5.6431	52.0	5.817352	1.07		558.0			
4	3.8462	52.0	6.281853			565.0			
-									
	Longitud	e MEDV							
0	-122.2	3 4.526							
1	-122.2	2 3.585							
2	-122.2	4 3.521							
3	-122.2	5 3.413							
4	-122.2	5 3.422							
		count	me	an	std		min	25%	\
Med	dInc	20640.0	3.8706	71	1.899822	0.49	9900	2.563400	
Нοι	ıseAge	20640.0	28.6394	86	12.585558	1.00	0000	18.000000	
Ave	eRooms	20640.0	5.4290	00	2.474173	0.84	6154	4.440716	
Ave	eBedrms	20640.0	1.0966	75	0.473911	0.33	3333	1.006079	
Pop	oulation	20640.0	1425.4767	44 11	32.462122	3.00	0000 7	87.000000	
Ave	eOccup	20640.0	3.0706	55	10.386050	0.69	2308	2.429741	
Lat	titude	20640.0	35.6318	61	2.135952	32.54	0000	33.930000	
Lor	ngitude	20640.0	-119.5697	04	2.003532	-124.35	0000 -1	21.800000	
MEI	ΟV	20640.0	2.0685	58	1.153956	0.14	9990	1.196000	
			50%	75%		max			
Med	dInc	3.534	800 4.	743250	15.0	00100			
Нοι	ıseAge	29.000	000 37.	000000	52.0	00000			
Ave	eRooms	5.229	129 6.	052381	141.9	09091			
Ave	eBedrms	1.048	780 1.	099526	34.0	66667			
_	oulation	1166.000		000000					
	e0ccup	2.818		282261	1243.3				
	titude	34.260		710000		50000			
	ngitude	-118.490		010000					
MEI	V	1.797	000 2.	647250	5.0	00010			

Practical 2.5 Polynomial Regression

1. Import Libraries

[Syntax]

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error,
r2_score
from sklearn.linear_model import LinearRegression
```

2. Load Dataset

[Syntax]

```
data_01 = pd.read_csv("Data.csv")
```

3. Sample data and display statistics

[Syntax]

```
print(data_01.sample(5))
print(data_01.describe(include="all").T)
```

4. Features and target variable

[Syntax]

```
X = data_01["Temperature"].values.reshape(-1, 1)
Y = data_01["Revenue"].values.reshape(-1, 1)
```

5. Transform features for polynomial regression

[Syntax]

```
regression_polynomial = PolynomialFeatures(degree=2)
X_poly = regression_polynomial.fit_transform(X)
```

6. Train-Test Split

[Syntax]

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,
random_state=25)
```

7. Model Fitting

[Syntax]

```
regression = LinearRegression()
regression.fit(X_train, Y_train)
```

8. Model coefficients

[Syntax]

```
print("Coefficients:", regression.coef_)
print("Intercept:", regression.intercept_)
```

9. Predictions

[Syntax]

```
Y_estimate = regression.predict(X_test)
print("Predicted Values:", Y_estimate.flatten())
```

10. Compare real and estimated values

[Syntax]

```
data_02 = pd.DataFrame()
data_02["Real_Value"] = Y_test.values
data_02["Estimated_Value"] = Y_estimate.flatten()
data_02['Error'] = data_02["Real_Value"] - data_02["Estimated_Value"]
print(data_02)
```

11. Performance

[Syntax]

```
print("Mean Squared Error:", mean_squared_error(Y_test, Y_estimate))
print("Mean Absolute Error:", mean_absolute_error(Y_test, Y_estimate))
print("Root Mean Squared Error:", np.sqrt(mean_squared_error(Y_test,
Y_estimate)))
print("R-Squared:", r2_score(Y_test, Y_estimate))
```

[Output]

	Serial No	GRE Score	TOEFL Score	University Rating	SOP	LOR
CGPA						
373	374	321	109	3	3.0	3.0
8.54						
282	283	312	106	3	4.0	3.5
8.79						

327 32 7.86	8	295	10)1	2	2.5	2.0		
	5	314	10)3	2	2.0	3.0		
	2	299	g	37	3	5.0	3.5		
Research Chance of Admit									
373 1			0.79						
282 1			0.81						
327 0			0.69						
4 0			0.65						
91 0			0.38						
\		count	mean	std	min	25%	50%		
Serial No		400.0	200.500000	115.614301	1.00	100.75	200.50		
GRE Score		400.0	316.807500	11.473646	290.00	308.00	317.00		
TOEFL Score		400.0	107.410000	6.069514	92.00	103.00	107.00		
University Ra	ting	400.0	3.087500	1.143728	1.00	2.00	3.00		
SOP		400.0	3.400000	1.006869	1.00	2.50	3.50		
LOR		400.0	3.452500	0.898478	1.00	3.00	3.50		
CGPA		400.0	8.598925	0.596317	6.80	8.17	8.61		
Research		400.0	0.547500	0.498362	0.00	0.00	1.00		
Chance of Adm	it	400.0	0.724350	0.142609	0.34	0.64	0.73		
			5% max						
Serial No		300.250							
GRE Score			340.00						
TOEFL Score		112.000							
University Ra	ting	4.000							
SOP		4.000							
LOR		4.000							
CGPA		9.062							
Research		1.000							
Chance of Adm	it	0.830	0.97						

```
- 1.0
     Serial No - 1 -0.098 -0.15 -0.17 -0.17 -0.088-0.046-0.063 0.042
    GRE Score --0.098 1 0.84 0.67 0.61 0.56 0.83 0.58 0.8
                                            - 0.8
   TOEFL Score - -0.15 0.84 1
                      - 0.6
University Rating -- 0.17 0.67 0.7
                        0.73 0.66 0.75 0.45
       SOP -- 0.17 0.61 0.66 0.73
                         1
                                   0.44 0.68
                                            - 0.4
       LOR --0.088 0.56 0.57 0.66 0.73
                             1
                                             0.2
                                1
       CGPA --0.046 0.83 0.83 0.75 0.72 0.67
                                   0.52 0.87
     Research -- 0.063 0.58 0.49 0.45 0.44 0.4 0.52
                                   1
                                             - 0.0
Chance of Admit - 0.042 0.8 0.79 0.71 0.68 0.67 0.87
                                       1
               Score
                  TOEFL Score
                      Jniversity Rating
                                CGPA
                            LOR
                                    Research
                                       Chance of Admit
            Serial
Coefficients: [-4.61204926e+08 9.63841115e-03 8.48802370e-02
3.49333180e-02
 -3.57735087e-01 2.41868538e-01 1.14172908e-01 -2.41421089e-01
 1.48331642e-05 -1.29377743e-04 -6.36452530e-04 5.43715810e-04
 1.50061060e-05 -5.98257741e-04 9.53952741e-04 -7.85099274e-05
 2.20904430e-03 4.97761510e-03 -1.71752976e-03 -4.52522183e-03
 -3.97233863e-03 -1.67979412e-02 3.24909602e-02 -4.48949870e-03
 -6.89314586e-03 6.90820769e-03 -1.78899911e-02 2.37966525e-03
 -3.84182374e-02 -5.19501774e-03 1.25778015e-02 -1.53001399e-02
 1.70435373e-02 4.91040830e-02 6.76016906e-02 -2.41421089e-01]
Intercept: 461204919.68414897
Predicted Values: [0.92182332 0.69911849 0.76735204 0.55700815 0.71707332
0.88450819
0.94533765 0.61021364 0.69978797 0.96659875 0.74417287 0.63984334
0.53913128 0.92391634 0.76869786 0.7174592 0.52616566 0.90170252
0.63663942 0.59746063 0.85731584 0.91891223 0.8373552 0.85190469
0.71863109 \ 0.88326538 \ 0.6361379 \ 0.73554766 \ 0.63859326 \ 0.62970573
0.89019692 0.71184933 0.46898484 0.52312809 0.68243605 0.60161269
0.77754545 0.82546753 0.84736818 0.6968922 0.67864412 0.59458458
 0.86340594 0.58457166 0.86349487 0.68412906 0.73205972 0.47605819
0.82050544 0.84421331 0.54516119 0.78876597 0.81420588 0.73109299
0.79874343 0.67475927 0.78017986 0.89402753 0.85176897 0.56221783
0.92983812 0.67036545 0.8965041 0.71689111 0.69456911 0.84982622
0.63354081 0.73174614 0.64363354 0.81190324 0.64653605 0.89398277
0.75714785 0.94957292 0.64813936 0.51450735 0.86549544 0.63142854
 0.54087317 0.81810719]
```

```
0.94
                     0.699118 -0.029118
         0.67
                     0.767352 0.042648
                     0.557008 -0.177008
75
         0.45
                     0.514507 -0.064507
76
                     0.865495 -0.085495
77
         0.62
                     0.631429 -0.011429
         0.64
78
                     0.540873 0.099127
79
         0.87
                     0.818107 0.051893
[80 rows x 3 columns]
Mean Squared Error: 0.0049331992127593215
Mean Absolute Error: 0.05381584253907203
Root Mean Squared Error: 0.07023673691708152
R-Squared: 0.797847536605426
```

58

Practical 3.1 Ridge Regression (L2 Regularization)

1. Import Libraries

[Syntax]

```
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score, mean_absolute_error,
mean_squared_error
import matplotlib.pyplot as plt
```

A. Single Feature

2. Generate Synthetic Data

[Syntax]

```
X, y = make_regression(n_samples=100, n_features=1, noise=0.1,
random_state=42)
```

3. Scatter Plot

```
plt.scatter(X, y)
plt.xlabel("Feature 1")
```

```
plt.ylabel("Target")
plt.title("Scatter Plot of Feature 1 vs Target")
plt.show()
```

4. Train-Test Split

[Syntax]

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
```

5. Model Fitting

[Syntax]

```
ridge = Ridge(alpha=0)
ridge.fit(X_train, y_train)
```

6. Predictions

[Syntax]

```
y_pred = ridge.predict(X_test)
```

7. Performance

[Syntax]

```
print(f"R2 Score: {r2_score(y_test, y_pred)}")
print(f"Mean Absolute Error: {mean_absolute_error(y_test, y_pred)}")
print(f"Mean Squared Error: {mean_squared_error(y_test, y_pred)}")
print(f"Coefficients: {ridge.coef_}")
print(f"Intercept: {ridge.intercept_}")
```

8. Visualize

[Syntax]

```
plt.figure(figsize=(8, 6))
plt.scatter(X_test, y_test, color='blue', label='Actual')
plt.plot(X_test, y_pred, linewidth=2, label='Model')
plt.title('Ridge Regression')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.legend()
plt.grid(True)
plt.show()
```

B. Multiple Feature

2. Generate Synthetic Data

[Syntax]

```
X, y = make_regression(n_samples=100, n_features=10, noise=0.1,
random_state=42)
```

3. Scatter Plot

[Syntax]

```
num_features = X.shape[1]
fig, axs = plt.subplots(4, 3, figsize=(15, 12))
axs = axs.flatten()
for i in range(num_features):
    axs[i].scatter(X[:, i], y)
    axs[i].set_xlabel(f"Feature {i}")
    axs[i].set_ylabel("Target")
    axs[i].set_title(f"Scatter Plot of Feature {i} vs Target")

for j in range(num_features, len(axs)):
    axs[j].axis('off')

plt.tight_layout()
plt.show()
```

4. Train-Test Split

[Syntax]

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
```

5. Model Fitting

[Syntax]

```
ridge_models = {
    'Model 01': Ridge(alpha=0),
    'Model 02': Ridge(alpha=10),
    'Model 03': Ridge(alpha=100),
    'Model 04': Ridge(alpha=1000)
}
```

6. Predictions

```
predictions = {}
for name, model in ridge_models.items():
    model.fit(X_train, y_train)
    predictions[name] = model.predict(X_test)
    print(f"{name} - R2 Score: {r2_score(y_test, predictions[name])}")
    print(f"{name} - Mean Absolute Error: {mean_absolute_error(y_test, predictions[name])}")
    print(f"{name} - Mean Squared Error: {mean_squared_error(y_test, predictions[name])}")
    print(f"{name} - Coefficients: {model.coef_}")
    print(f"{name} - Intercept: {model.intercept_}\n")
```

8. Visualize

[Syntax]

```
num features = X test.shape[1]
fig, axs = plt.subplots(4, 3, figsize=(15, 12))
axs = axs.flatten()
for i in range(num features):
   axs[i].scatter(X test[:, i], y test, color='blue', label='Actual',
alpha=0.5)
   for name, pred in predictions.items():
      axs[i].scatter(X test[:, i], pred, linewidth=2, label=name,
alpha=0.7)
   axs[i].set title(f'Ridge Regression - Feature {i}')
  axs[i].set xlabel(f'Feature {i}')
  axs[i].set ylabel('y')
  axs[i].legend()
  axs[i].grid(True)
for j in range(num features, len(axs)):
  axs[j].axis('off')
plt.tight layout()
plt.show()
```

[Output]

R2 Score: 0.9999925261586983

Mean Absolute Error: 0.08416659922208973 Mean Squared Error: 0.010420222653186813

Coefficients: [41.76613113]
Intercept: 0.000992222142259358


```
Model 01 - R2 Score: 0.9999998282331861
Model 01 - Mean Absolute Error: 0.07556674834423119
Model 01 - Mean Squared Error: 0.010265673458289933
Model 01 - Coefficients: [16.7712358 54.13782324 5.18097686 63.64362199
93.61309994 70.63686589
87.0713662 10.43882574 3.15690876 70.90887261]
Model 01 - Intercept: 0.017550255465828002
Model 02 - R2 Score: 0.9847661835848986
Model 02 - Mean Absolute Error: 25.997196039460448
Model 02 - Mean Squared Error: 910.4516831231938
Model 02 - Coefficients: [17.88856321 46.40514956 4.89279765 55.50587225
80.80473461 62.39518869
77.68820784 6.06125249 3.8243928 60.04934268]
Model 02 - Intercept: 0.862136232402575
Model 03 - R2 Score: 0.6691558494864291
Model 03 - Mean Absolute Error: 122.1797251420646
Model 03 - Mean Squared Error: 19772.95810050228
Model 03 - Coefficients: [13.45753426 19.76892349 3.55530702 26.6822633
36.85627286 30.42172633
40.49841771 -3.25683516 3.4735336 25.7645111 ]
Model 03 - Intercept: 5.204682254676274
Model 04 - R2 Score: 0.13676508085065853
Model 04 - Mean Absolute Error: 198.827578913156
```


Practical 3.2
Lasso Regression (L1 Regularization)

1. Import Libraries

[Syntax]

```
import numpy as np
from sklearn.linear_model import Lasso
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score, mean_absolute_error,
mean_squared_error
import matplotlib.pyplot as plt
```

A. Single Feature

2. Generate Synthetic Data

[Syntax]

```
X, y = make_regression(n_samples=100, n_features=1, noise=0.1,
random_state=42)
```

3. Scatter Plot

[Syntax]

```
plt.scatter(X, y)
plt.xlabel("Feature 1")
plt.ylabel("Target")
plt.title("Scatter Plot of Feature 1 vs Target")
plt.show()
```

4. Train-Test Split

[Syntax]

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
```

5. Model Fitting

[Syntax]

```
lasso = Lasso(alpha=0)
lasso.fit(X_train, y_train)
```

6. Predictions

[Syntax]

```
y_pred = lasso.predict(X_test)
```

7. Performance

[Syntax]

```
print(f"R2 Score: {r2_score(y_test, y_pred)}")
print(f"Mean Absolute Error: {mean_absolute_error(y_test, y_pred)}")
print(f"Mean Squared Error: {mean_squared_error(y_test, y_pred)}")
print(f"Coefficients: {ridge.coef_}")
print(f"Intercept: {ridge.intercept_}")
```

8. Visualize

```
plt.figure(figsize=(8, 6))
plt.scatter(X_test, y_test, color='blue', label='Actual')
plt.plot(X_test, y_pred, linewidth=2, label='Model')
```

```
plt.title('Lasso Regression')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.grid(True)
plt.show()
```

B. Multiple Feature

2. Generate Synthetic Data

[Syntax]

```
X, y = make_regression(n_samples=100, n_features=10, noise=0.1,
random_state=42)
```

3. Scatter Plot

[Syntax]

```
num_features = X.shape[1]
fig, axs = plt.subplots(4, 3, figsize=(15, 12))
axs = axs.flatten()
for i in range(num_features):
    axs[i].scatter(X[:, i], y)
    axs[i].set_xlabel(f"Feature {i}")
    axs[i].set_ylabel("Target")
    axs[i].set_title(f"Scatter Plot of Feature {i} vs Target")

for j in range(num_features, len(axs)):
    axs[j].axis('off')

plt.tight_layout()
plt.show()
```

4. Train-Test Split

[Syntax]

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
```

5. Model Fitting

```
lasso_models = {
   'Model 01': Lasso(alpha=0),
```

```
'Model 02': Lasso(alpha=10),

'Model 03': Lasso(alpha=100),

'Model 04': Lasso(alpha=1000)
}
```

6. Predictions

[Syntax]

```
predictions = {}
for name, model in ridge_models.items():
    model.fit(X_train, y_train)
    predictions[name] = model.predict(X_test)
    print(f"{name} - R2 Score: {r2_score(y_test, predictions[name])}")
    print(f"{name} - Mean Absolute Error: {mean_absolute_error(y_test, predictions[name])}")
    print(f"{name} - Mean Squared Error: {mean_squared_error(y_test, predictions[name])}")
    print(f"{name} - Coefficients: {model.coef_}")
    print(f"{name} - Intercept: {model.intercept_}\n")
```

8. Visualize

```
num features = X test.shape[1]
fig, axs = plt.subplots(4, 3, figsize=(15, 12))
axs = axs.flatten()
for i in range(num features):
  axs[i].scatter(X test[:, i], y test, color='blue', label='Actual',
alpha=0.5)
   for name, pred in predictions.items():
      axs[i].scatter(X test[:, i], pred, linewidth=2, label=name,
alpha=0.7)
   axs[i].set title(f'Lasso Regression - Feature {i}')
  axs[i].set xlabel(f'Feature {i}')
  axs[i].set ylabel('y')
  axs[i].legend()
  axs[i].grid(True)
for j in range(num features, len(axs)):
   axs[j].axis('off')
```

```
plt.tight_layout()
plt.show()
```

[Output]

R2 Score: 0.9999925261586983

Mean Absolute Error: 0.08416659922208973 Mean Squared Error: 0.010420222653186813

Coefficients: [41.76613113] Intercept: 0.000992222142259358


```
Model 01 - R2 Score: 0.9999998248721161
Model 01 - Mean Absolute Error: 0.07658870727765103
Model 01 - Mean Squared Error: 0.010466548388298226
Model 01 - Coefficients: [16.77220561 54.14087025 5.17899466 63.64494836
93.61215072 70.63803909
87.06972731 10.43763963 3.15682746 70.90827124]
Model 01 - Intercept: 0.01688401228563663
Model 02 - R2 Score: 0.9759087693486258
Model 02 - Mean Absolute Error: 30.870482861284188
Model 02 - Mean Squared Error: 1439.8165828826345
Model 02 - Coefficients: [ 7.88357416 41.43085042 0. 52.6042667
80.53726745 59.91064109
77.47428958 0.
                       0. 58.55025218]
Model 02 - Intercept: 3.0425193637953054
Model 03 - R2 Score: -0.00030940031275816793
Model 03 - Mean Absolute Error: 214.31953802951338
Model 03 - Mean Squared Error: 59783.66499519361
Model 03 - Coefficients: [ 0. 0. 0. 0. 0. 0. 0. -0. 0. 0.]
Model 03 - Intercept: 10.153184707338482
Model 04 - R2 Score: -0.00030940031275816793
Model 04 - Mean Absolute Error: 214.31953802951338
Model 04 - Mean Squared Error: 59783.66499519361
Model 04 - Coefficients: [ 0. 0. 0. 0. 0. 0. 0. -0. 0.]
```


71

Practical 4.1 Logistic Regression

1. Import Libraries

[Syntax]

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
```

2. Load Dataset

[Syntax]

```
data = pd.read_csv("insurance_data.csv")
```

3. Sample data and display statistics

[Syntax]

```
data_01.sample(5)
data.info()
data.describe().T
```

4. Data Visualization

[Syntax]

```
plt.figure(figsize=(10, 6))
sns.scatterplot(x='age', y='bought_insurance', hue='bought_insurance',
data=data, palette='viridis')
plt.xlabel('Age')
plt.ylabel('Bought Insurance')
plt.title('Scatter Plot of Age vs Bought Insurance')
plt.legend(title='Category')
plt.show()
```

5. Features and target variable

[Syntax]

```
X = data['age'].values.reshape(-1, 1)
y = data['bought_insurance'].values.reshape(-1, 1)
```

6. Linear Regression

[Syntax]

```
linear_model = LinearRegression()
linear_model.fit(X, y)
```

7. Linear Regression Plot

[Syntax]

```
plt.figure(figsize=(10, 6))
sns.scatterplot(x='age', y='bought_insurance', hue='bought_insurance',
data=data, palette='viridis')
plt.plot(X, linear_model.predict(X), color='blue', linewidth=2,
label='Linear Regression')
plt.xlabel('Age')
plt.xlabel('Age')
plt.ylabel('Bought Insurance')
plt.title('Linear Regression of Age vs Bought Insurance')
plt.legend(title='Category')
plt.show()
```

8. Logistic Regression

[Syntax]

```
logistic_model = LogisticRegression()
logistic_model.fit(X, y.ravel())
```

9. Probability Predictions for Logistic Model

[Syntax]

```
x_values = np.linspace(X.min(), X.max(), 100).reshape(-1, 1)
predictions = logistic_model.predict_proba(x_values)[:, 1]
```

10. Logistic Regression Plot

[Syntax]

```
x_values = np.linspace(X.min(), X.max(), 100).reshape(-1, 1)
predictions = logistic_model.predict_proba(x_values)[:, 1]
```

11. Prediction for a 25-Year-Old

[Syntax]

```
prob_25 = logistic_model.predict_proba([[25]])[0, 1]
print(f"Probability of a 25-year-old buying insurance: {prob_25:.2f}")
```

[Output]

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27 entries, 0 to 26
```

```
Data columns (total 2 columns):
      Column
                               Non-Null Count Dtype
                               27 non-null
                                                      int64
      bought_insurance 27 non-null
                                                      int64
dtypes: int64(2)
memory usage: 560.0 bytes
                   Scatter Plot of Age vs Bought Insurance
  0.8
0.0
Bought 1
  0.2
                 Linear Regression of Age vs Bought Insurance
  1.0
 urance
9.0
                                                Category
Bought I
  0.2
                Logistic Regression of Age vs Bought Insurance
  0.2
```

Probability of a 25-year-old buying insurance: 0.13

Practical 4.2 Decision Tree

1. Import Libraries

[Syntax]

```
import math
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, KFold,
cross_val_score
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.metrics import accuracy_score, classification_report
```

2. Function for Entropy

[Syntax]

```
def entropy(proportion):
    if proportion in [0, 1]:
        return 0
    negative = 1 - proportion
    return -((proportion) * math.log2(proportion)) - ((negative) *
math.log2(negative))
```

3. Calculate Information Gain

[Syntax]

```
parent = entropy(9 / 14)
outlook = (5 / 14) * entropy(2 / 5) + (5 / 14) * entropy(3 / 5)
temperature = (4 / 14) * entropy(2 / 4) + (6 / 14) * entropy(4 / 6) + (4 /
14) * entropy(3 / 4)
humidity = (7 / 14) * entropy(3 / 7) + (7 / 14) * entropy(6 / 7)
wind = (8 / 14) * entropy(6 / 8) + (6 / 14) * entropy(3 / 6)
print(f"IG(S, Outlook) = {parent - outlook}")
print(f"IG(S, Temperature) = {parent - temperature}")
print(f"IG(S, Humidity) = {parent - humidity}")
print(f"IG(S, Wind) = {parent - wind}")
```

4. Function to Remove Outliers Using IQR

[Syntax]

```
def remove_outliers_iqr(df):
    df_no_outliers = df.copy()
    for col in df.select_dtypes(include=[np.number]).columns:
        Q1 = df[col].quantile(0.25)
        Q3 = df[col].quantile(0.75)
        IQR = Q3 - Q1
        lower_bound = Q1 - 1.5 * IQR
        upper_bound = Q3 + 1.5 * IQR
        df_no_outliers = df_no_outliers[(df_no_outliers[col] >=
lower_bound) & (df_no_outliers[col] <= upper_bound)]
    return df_no_outliers</pre>
```

5. Load Dataset

[Syntax]

```
data =
pd.read_csv("https://raw.githubusercontent.com/kishan0725/Breast-Cancer-Wi
sconsin-Diagnostic/master/data.csv")
df = remove_outliers_iqr(data)
```

6. Data Exploration

[Syntax]

```
print(df.shape)
print(df.sample(10))
print(df.info())
print(df.isna().sum())
print(df.describe(include="all"))
```

7. Standardization

[Syntax]

```
numeric_cols = df.select_dtypes(include=['number']).columns
scaler = StandardScaler()
df[numeric_cols] = scaler.fit_transform(df[numeric_cols])
```

8. Features and target variable

[Syntax]

```
X = df.drop(['id','diagnosis','Unnamed: 32'], axis=1)
y = df['diagnosis'].astype('category')
```

9. Train-Test Split

[Syntax]

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=14)
```

10. Cross-Validation Setup

[Syntax]

```
kf = KFold(n_splits=10, shuffle=True, random_state=42)
```

11. Decision Tree Classifier

[Syntax]

```
model = DecisionTreeClassifier(criterion="entropy", random_state=42)
model.fit(X_train, y_train)
```

12. Predictions and Evaluation

[Syntax]

```
y_pred = model.predict(X_test)
print(f"Accuracy of Decision Tree: {accuracy_score(y_test, y_pred)}")
print(f"Classification Report of Decision
Tree:\n{classification_report(y_test, y_pred)}")
```

13. Cross-Validation Scores

[Syntax]

```
scores = cross_val_score(model, X, y, cv=kf, scoring='accuracy')
print(f"Accuracy scores for each fold of Decision Tree: {scores}")
print(f"Mean accuracy for folds of Decision Tree: {np.mean(scores)}")
print(f"Standard deviation for folds of Decision Tree: {np.std(scores)}")
```

14. Decision Tree Visualization

[Syntax]

```
plt.figure(figsize=(14, 10))
plot_tree(model, filled=True, feature_names=X.columns,
    class_names=["Malignant", "Benign"])
plt.title("Decision Tree Visualization", fontsize=18)
plt.show()
```

[Output]

```
IG(S, Outlook) = 0.24674981977443933
IG(S, Temperature) = 0.02922256565895487
IG(S, Humidity) = 0.15183550136234159
```

	= 0.04812703	3040826949		
(569, 33)	diagnosis :	radius mean tex	ture mean per	rimeter mean
area mean		radius_mean cex	care_mean per	inecei_mean
_		16.14	14.86	104.30
800.0				
120 865137	В	11.41	10.82	73.34
403.3				
158 871122	В	12.06	12.74	76.84
448.6				
385 90291	М	14.60	23.29	93.97
664.7				
492 914062	М	18.01	20.56	118.40
1007.0				
		ompactness_mean	concavity_mea	n concave
points_mean		0 00501	0 0550	
	0.09495	0.08501	0.0550	10
0.04528	0 00272	0.06685	0.0351	2
0.02623	0.09373	0.0000	0.0331	
158	0 09311	0.05241	0.0197	12
0.01963	0.03311	0.03211	0.0197	-
385	0.08682	0.06636	0.0839	00
0.05271				
492	0.10010	0.12890	0.1170	0
0.07762				
t	exture_worst	perimeter_wors	t area_worst	smoothness_worst \
406	19.58	115.9	947.9	0.1206
120	15.97	83.7	510.5	0.1548
158	18.41	84.0	532.8	0.1275
385	31.71		758.2	
492	26.06	143.4	1426.0	0.1309
_	_	concavity_worst	concave poin	its_worst
symmetry_wo		0.001		0 11000
406	0.1722	0.23100		0.11290
0.2778				

120 0.3016	0.2390	0.21020		0.08958
158	0.1232	0.08636		0.07025
0.2514	0.1232	0.00030		0.07025
385	0.1581	0.26750		0.13590
0.2477	0.1301	0.20750		0.13330
492	0.2327	0.25440		0.14890
0.3251	0.2027	0.20110		0.11030
0.0201				
fractal (dimension worst	Unnamed: 32		
406	0.07012			
120	0.08523	NaN		
158	0.07898	NaN		
385	0.06836	NaN		
492	0.07625	NaN		
[5 rows x 33 d	columns]			
<class 'pandas<="" td=""><td>s.core.frame.Dat</td><td>aFrame'></td><td></td><td></td></class>	s.core.frame.Dat	aFrame'>		
RangeIndex: 50	69 entries, 0 to	568		
Data columns	(total 33 column	s):		
# Column		Non-Null Count	Dtype	
# Column			Dtype 	
# Column 0 id		569 non-null	 int64	
 0 id 1 diagnosis			 int64	
0 id 1 diagnosis 2 radius_me	ean	569 non-null 569 non-null 569 non-null	int64 object float64	
0 id 1 diagnosis 2 radius_me 3 texture_r	ean mean	569 non-null 569 non-null 569 non-null 569 non-null	int64 object float64 float64	
0 id 1 diagnosis 2 radius_me 3 texture_r 4 perimeter	ean mean	569 non-null 569 non-null 569 non-null 569 non-null 569 non-null	int64 object float64 float64 float64	
0 id 1 diagnosis 2 radius_me 3 texture_r 4 perimeter 5 area_mean	ean mean r_mean n	569 non-null 569 non-null 569 non-null 569 non-null 569 non-null 569 non-null	int64 object float64 float64 float64 float64	
o id 1 diagnosis 2 radius_me 3 texture_r 4 perimeter 5 area_mean 6 smoothnes	ean mean r_mean n ss_mean	569 non-null 569 non-null 569 non-null 569 non-null 569 non-null 569 non-null 569 non-null	int64 object float64 float64 float64 float64 float64	
o id lagnosis radius_me texture_r perimeter area_mean smoothnes compactne	ean mean r_mean n ss_mean ess_mean	569 non-null	int64 object float64 float64 float64 float64 float64 float64	
o id 1 diagnosis 2 radius_me 3 texture_r 4 perimeter 5 area_mean 6 smoothnes 7 compactnes 8 concavity	ean mean r_mean n ss_mean ess_mean y_mean	569 non-null	int64 object float64 float64 float64 float64 float64 float64 float64	
o id diagnosis radius_me texture_r perimeter area_mean smoothnes compactnes concavity concave r	ean mean r_mean n ss_mean ess_mean y_mean points_mean	569 non-null	int64 object float64 float64 float64 float64 float64 float64 float64 float64	
0 id 1 diagnosis 2 radius_me 3 texture_r 4 perimeter 5 area_mean 6 smoothnes 7 compactne 8 concavity 9 concave r 10 symmetry	ean mean r_mean n ss_mean ess_mean y_mean points_mean mean	569 non-null	int64 object float64 float64 float64 float64 float64 float64 float64 float64 float64	
o id lagnosis radius_me texture_r leagnosis radius_me texture_r leagnosis radius_me leagnosis_me leagnosis_m	ean mean r_mean n ss_mean ess_mean y_mean points_mean mean dimension_mean	569 non-null	int64 object float64	
o id diagnosis radius_me texture_r perimeter area_mean smoothnes compactnes concavity concave r symmetry fractal_c radius_se	ean mean r_mean n ss_mean ess_mean y_mean points_mean mean dimension_mean	569 non-null	int64 object float64	
o id diagnosis radius_me texture_r perimeter area_mean smoothnes compactnes concavity symmetry fractal_c radius_se texture_s	ean mean r_mean n ss_mean ess_mean y_mean points_mean mean dimension_mean esse	569 non-null	int64 object float64	
o id diagnosis radius_me texture_r perimeter area_mear smoothnes compactnes concavity concave r fractal_c radius_se texture_s perimeter	ean mean r_mean n ss_mean ess_mean y_mean points_mean mean dimension_mean esse	569 non-null	int64 object float64	
o id lagnosis radius_me lagnosis radius_se lagnosis radius_me lagnosis_me lagnosis	ean mean r_mean n ss_mean ess_mean y_mean points_mean dimension_mean esse	569 non-null	int64 object float64	
o id diagnosis radius_me texture_r perimeter area_mear smoothnes compactnes concavity concave r fractal_c radius_se texture_s perimeter	ean mean r_mean n ss_mean ess_mean y_mean points_mean dimension_mean esse r_se	569 non-null	int64 object float64	

```
18 concavity se
                           569 non-null
                                          float64
19 concave points se 569 non-null
                                          float64
20 symmetry se
21 fractal dimension se 569 non-null
                                         float64
22 radius worst
                           569 non-null float64
23 texture worst
                          569 non-null
                                        float64
24 perimeter_worst 569 non-null float64
25 area worst
                          569 non-null float64
27 compactness worst
29 concave points_worst 569 non-null float64
30 symmetry_worst 569 non-null float64
                           0 non-null float64
31 fractal dimension worst 569 non-null
32 Unnamed: 32
dtypes: float64(31), int64(1), object(1)
memory usage: 146.8+ KB
None
id
diagnosis
radius mean
texture mean
perimeter mean
area mean
smoothness mean
compactness mean
concavity mean
concave points mean
symmetry mean
fractal dimension mean
radius se
texture se
perimeter se
area se
smoothness se
compactness se
concavity se
concave points se
symmetry se
fractal dimension se
```

radius	worst	0						
- texture	worst	0						
perimet	- er worst	0						
- area_wo	_	0						
smoothn	ess_worst	0						
compact	ness_worst	0						
concavi	ty_worst	0						
concave	points_worst	0						
symmetr	y_worst	0						
fractal	_dimension_wor	est 0						
Unnamed	: 32	569						
dtype:	int64							
	id	diagnosis	radiu	s_mean	texture_me	ean	perimeter_mea	an
\								
count	5.690000e+02	569	569.	000000	569.0000	000	569.00000	00
unique	NaN	2		NaN	1	NaN	Na	aN
top	NaN	В		NaN	1	NaN	Na	aN
freq	NaN	357		NaN	1	NaN	Na	aN
mean	3.037183e+07	NaN	14.	127292	19.2896	549	91.96903	33
std	1.250206e+08	NaN	3.	524049	4.3010	36	24.29898	81
min	8.670000e+03	NaN	6.	981000	9.7100	000	43.79000	00
25%	8.692180e+05	NaN	11.	700000	16.1700	000	75.17000	00
50%	9.060240e+05	NaN	13.	370000	18.8400	000	86.24000	00
75%	8.813129e+06	NaN	15.	780000	21.8000	000	104.10000	00
max	9.113205e+08	NaN	28.	110000	39.2800	000	188.50000	00
	area_mean	smoothness	s_mean	compac	ctness_mean	cor	ncavity_mean	\
count	569.000000	569.0	00000		569.000000		569.000000	
unique	NaN		NaN		NaN		NaN	
top	NaN		NaN		NaN		NaN	
freq	NaN		NaN		NaN		NaN	
mean	654.889104	0.0	096360		0.104341		0.088799	
std	351.914129	0.0	014064		0.052813		0.079720	
min	143.500000	0.0	052630		0.019380		0.000000	
25%	420.300000	0.0	086370		0.064920		0.029560	
50%	551.100000	0.0	095870		0.092630		0.061540	
75%	782.700000	0.1	105300		0.130400		0.130700	
max	2501.000000	0.0	163400		0.345400		0.426800	

	concave poi	ints_mean		texture_wo	rst	perimeter_wor	st
area_wors	st \						
count	5 (59.000000		569.000	000	569.0000	00
569.00000	00						
unique		NaN			NaN	N	aN
NaN							
top		NaN			NaN	N	aN
NaN							
freq		NaN			NaN	N	aN
NaN							
mean		0.048919		25.677	223	107.2612	13
880.58312	28						
std		0.038803		6.146	258	33.6025	42
569.35699	93						
min		0.000000		12.020	000	50.4100	00
185.20000	00						
25%		0.020310		21.080	000	84.1100	00
515.30000	00						
50%		0.033500		25.410	000	97.6600	00
686.50000	00						
75%		0.074000		29.720	000	125.4000	00
1084.0000	000						
max		0.201200		49.540	000	251.2000	00
4254.0000	000						
S	${\tt smoothness}_{\tt l}$	_worst co	ompact	ness_worst	con	cavity_worst	\
count	569.0	00000		569.000000		569.000000	
unique		NaN		NaN		NaN	
top		NaN		NaN		NaN	
freq		NaN		NaN		NaN	
mean	0.1	132369		0.254265		0.272188	
std	0.0	022832		0.157336		0.208624	
min	0.0	071170		0.027290		0.000000	
25%		116600		0.147200		0.114500	
50%	0.1	131300		0.211900		0.226700	
75%		146000		0.339100		0.382900	
max	0.2	222600		1.058000		1.252000	
		_		_		actal_dimensio	_
count		569.000000)	569.000000		569	.000000

unique	Nal	N	NaN		NaN
top	Nal	N	NaN		NaN
freq	Nal	N	NaN		NaN
mean	0.11460	6	0.290076		0.083946
std	0.06573	2	0.061867		0.018061
min	0.00000	О	0.156500		0.055040
25%	0.06493	О	0.250400		0.071460
50%	0.09993	O	0.282200		0.080040
75%	0.16140	0	0.317900		0.092080
max	0.29100	0	0.663800		0.207500
Unnamed	: 32				
count	0.0				
unique	NaN				
top	NaN				
freq	NaN				
mean	NaN				
std	NaN				
min	NaN				
25%	NaN				
50%	NaN				
75%	NaN				
max	NaN				
[11 rows x 33 c					
Accuracy of Ran				9	
Classification :					
p	recision	recall	f1-score	support	
	0.01	0 0		1.00	
0	0.94	0.92			
1	0.86	0.90	0.88	63	
20017201			0.91	171	
accuracy	0 00	0.91			
<pre>macro avg weighted avg</pre>	0.90 0.91	0.91		171 171	
weighted avg	0.91	- U.9I		1/1	
/usr/local/lib/j	nython3 10/d	ist-pac	rkanes/sklos	arn/utils/o	ytmath py:1137.
RuntimeWarning:					Zemacii.py.113/.
updated mean					count
		- 110 w _5	ani, / apaat		55 411 5

```
/usr/local/lib/python3.10/dist-packages/sklearn/utils/extmath.py:1142:
RuntimeWarning: invalid value encountered in divide
 T = new sum / new sample count
/usr/local/lib/python3.10/dist-packages/sklearn/utils/extmath.py:1162:
RuntimeWarning: invalid value encountered in divide
 new unnormalized variance -= correction**2 / new sample count
Accuracy scores for each fold of Random Forest: [0.94736842 0.9122807
0.92982456 0.96491228 0.92982456 0.92982456
0.96491228 0.96491228 0.94736842 0.92857143]
Mean accuracy for folds of Random Forest: 0.9419799498746867
Standard deviation for folds of Random Forest: 0.01772241750965193
Feature ranking:
1. feature perimeter worst (0.6177222195454725)
2. feature concave points worst (0.17302969054802153)
3. feature texture worst (0.07063304280903168)
4. feature concave points se (0.02542004910012378)
5. feature concave points mean (0.023220454975018)
6. feature concavity worst (0.022100342780427273)
7. feature area se (0.0187860604874988)
8. feature concavity mean (0.016999135428820842)
9. feature compactness worst (0.015912989483805783)
10. feature area worst (0.010908421194353549)
11. feature perimeter se (0.005267593647426239)
12. feature fractal dimension worst (0.0)
13. feature compactness mean (0.0)
14. feature perimeter mean (0.0)
15. feature smoothness mean (0.0)
16. feature area mean (0.0)
17. feature fractal dimension mean (0.0)
18. feature texture mean (0.0)
19. feature symmetry mean (0.0)
20. feature smoothness se (0.0)
21. feature radius se (0.0)
22. feature texture se (0.0)
23. feature symmetry worst (0.0)
24. feature compactness se (0.0)
25. feature concavity se (0.0)
26. feature symmetry se (0.0)
27. feature fractal dimension se (0.0)
28. feature radius worst (0.0)
```


Practical 4.3 Random Forest

1. Import Libraries

[Syntax]

```
import math
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, KFold,
cross_val_score
from sklearn.tree import plot_tree
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
```

2. Function to Remove Outliers Using IQR

[Syntax]

```
def remove_outliers_iqr(df):
    df_no_outliers = df.copy()
    for col in df.select_dtypes(include=[np.number]).columns:
        Q1 = df[col].quantile(0.25)
        Q3 = df[col].quantile(0.75)
        IQR = Q3 - Q1
        lower_bound = Q1 - 1.5 * IQR
        upper_bound = Q3 + 1.5 * IQR
        df_no_outliers = df_no_outliers[(df_no_outliers[col] >=
lower_bound) & (df_no_outliers[col] <= upper_bound)]
    return df_no_outliers</pre>
```

3. Load Dataset

[Syntax]

```
data =
pd.read_csv("https://raw.githubusercontent.com/kishan0725/Breast-Cancer-Wi
sconsin-Diagnostic/master/data.csv")
df = remove_outliers_iqr(data)
```

4. Data Exploration

[Syntax]

```
print(df.shape)
print(df.sample(10))
print(df.info())
print(df.isna().sum())
print(df.describe(include="all"))
```

5. Standardization

[Syntax]

```
numeric_cols = df.select_dtypes(include=['number']).columns
scaler = StandardScaler()
df[numeric_cols] = scaler.fit_transform(df[numeric_cols])
```

6. Features and target variable

[Syntax]

```
X = df.drop(['id','diagnosis','Unnamed: 32'], axis=1)
y = df['diagnosis'].astype('category')
```

7. Train-Test Split

[Syntax]

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=14)
```

8. Cross-Validation Setup

[Syntax]

```
kf = KFold(n_splits=10, shuffle=True, random_state=42)
```

9. Random Forest Classifier

[Syntax]

```
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
```

10. Predictions and Evaluation

[Syntax]

```
y_pred = model.predict(X_test)
print(f"Accuracy of Decision Tree: {accuracy_score(y_test, y_pred)}")
print(f"Classification Report of Decision
Tree:\n{classification_report(y_test, y_pred)}")
```

11. Cross-Validation Scores

[Syntax]

```
scores = cross_val_score(model, X, y, cv=kf, scoring='accuracy')
print(f"Accuracy scores for each fold of Decision Tree: {scores}")
print(f"Mean accuracy for folds of Decision Tree: {np.mean(scores)}")
print(f"Standard deviation for folds of Decision Tree: {np.std(scores)}")
```

12. Decision Tree Visualization

[Syntax]

```
plt.figure(figsize=(14, 10))
plot_tree(model, filled=True, feature_names=X.columns,
    class_names=["Malignant", "Benign"])
plt.title("Random Forest Visualization", fontsize=18)
plt.show()
```

[Output]

լԾաւթա	•					
		lagnosis rad	dius_mean tex	ture_mean peri	meter_mean	
area_m	ean \					
280	8912049	M	19.16	26.60	126.20	
1138.0						
488	913512	В	11.68	16.17	75.49	
420.5						
30	853401	M	18.63	25.11	124.80	
1088.0						
247	884626	В	12.89	14.11	84.95	
512.2						
506 9	1544001	В	12.22	20.04	79.47	
453.1						
s	moothness_	_mean compac	ctness_mean c	oncavity_mean	concave	
points	_mean \					
280	0.	.1020	0.14530	0.19210		
0.0966	4					
488	0.	.1128	0.09263	0.04279		
0.0313	2					
30	0.	.1064	0.18870	0.23190		
0.1244	0					
247	0.	.0876	0.13460	0.13740		
0.0398	0					
506	0.	.1096	0.11520	0.08175		
0.0216	6					

```
... texture worst perimeter worst area worst smoothness worst
280
                             159.80
                                        1724.0
                                                        0.1782
488 ...
                             86.57
                                        549.8
                                                        0.1526
30
               34.01
                                                        0.1491
247 ...
               17.70
                                       639.1
                                                        0.1254
                             105.00
506 ...
               24.17
                             85.13
                                         515.3
                                                        0.1402
   compactness worst concavity worst concave points worst
symmetry worst \
280
                            0.5754
                                               0.18720
0.3258
488
                            0.1490
                                               0.09815
             0.1477
0.2804
30
                            0.6133
             0.4257
                                               0.18480
0.3444
                                               0.15610
247
             0.5849
0.2639
506
             0.2315
                            0.3535
                                               0.08088
0.2709
    fractal dimension worst Unnamed: 32
280
                  0.09720
                                 NaN
488
                  0.08024
30
                 0.09782
                                 NaN
247
                  0.11780
                 0.08839
506
[5 rows x 33 columns]
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):
# Column
                          Non-Null Count Dtype
1 diagnosis
                          569 non-null
                                       object
2 radius mean
3 texture mean
                          569 non-null
                                       float64
    perimeter mean
    area mean
                          569 non-null float64
```

```
smoothness mean
                          569 non-null
                                         float64
    compactness mean 569 non-null
                                         float64
    concavity mean
                          569 non-null
                                        float64
9 concave points mean
                          569 non-null
                                        float64
10 symmetry mean
                          569 non-null
                                        float64
11 fractal dimension mean
                          569 non-null
                                        float64
                          569 non-null
12 radius se
                                        float64
                                        float64
13 texture se
                          569 non-null
                                        float64
14 perimeter se
                          569 non-null
15 area se
                                       float64
                          569 non-null float64
16 smoothness se
17 compactness se
                          569 non-null
                                       float64
18 concavity se
                          569 non-null
                                       float64
19 concave points se
20 symmetry se
                         569 non-null
                                       float64
22 radius worst
                          569 non-null
                                        float64
23 texture worst
24 perimeter worst
                         569 non-null
                                        float64
25 area worst
26 smoothness worst
                         569 non-null
                                        float64
27 compactness worst
28 concavity worst
                         569 non-null
                                       float64
29 concave points worst 569 non-null float64
30 symmetry worst
                         569 non-null
                                        float64
31 fractal dimension worst 569 non-null
                                        float64
32 Unnamed: 32
                          0 non-null
                                         float64
dtypes: float64(31), int64(1), object(1)
memory usage: 146.8+ KB
None
id
diagnosis
radius mean
texture mean
perimeter mean
area mean
smoothness mean
compactness mean
concavity mean
concave points mean
```

symmetr	y_mean	0			
fractal	_dimension_mea	an 0			
radius_	se	0			
texture	_se	0			
perimet	er_se	0			
area_se		0			
smoothn	ess_se	0			
compact	ness_se	0			
concavi	ty_se	0			
concave	points_se	0			
symmetr	y_se	0			
fractal	_dimension_se	0			
radius_	worst	0			
texture	_worst	0			
perimet	er_worst	0			
area_wo	rst	0			
smoothn	ess_worst	0			
compact	ness_worst	0			
concavi	ty_worst	0			
concave	points_worst	0			
symmetr	y_worst	0			
fractal	_dimension_wor	est 0			
Unnamed	: 32	569			
dtype:	int64				
\	id	diagnosis	radius_mean	texture_mean	perimeter_mean
count	5.690000e+02	569	569.000000	569.000000	569.000000
unique		2		NaN	
top	NaN	В	NaN	NaN	NaN
freq	NaN	357	NaN		NaN
mean	3.037183e+07	NaN	14.127292		
std	1.250206e+08	NaN	3.524049		24.298981
min	8.670000e+03	NaN	6.981000		43.790000
25%	8.692180e+05	NaN	11.700000	16.170000	75.170000
50%	9.060240e+05	NaN	13.370000	18.840000	86.240000
75%	8.813129e+06	NaN	15.780000	21.800000	104.100000
max	9.113205e+08	NaN	28.110000	39.280000	188.500000
	area mean	smoothness	s_mean compa	ctness_mean co	ncavity_mean \
count	_ 569.000000			569.000000	_

unique	NaN	NaN		NaN	NaN
top	NaN	NaN		NaN	NaN
freq	NaN	NaN		NaN	NaN
mean	654.889104	0.096360	0.	104341 0	.088799
std	351.914129	0.014064	0.	052813 0	.079720
min	143.500000	0.052630	0.	019380 0	.000000
25%	420.300000	0.086370	0.	064920 0	.029560
50%	551.100000	0.095870	0.	092630 0	.061540
75%	782.700000	0.105300	0.	130400 0	.130700
max	2501.000000	0.163400	0.	345400 0	.426800
	concave points_mear	te	xture_worst	perimeter_wors	t
area_wo	rst \				
count	569.000000		569.000000	569.00000	0
569.000	000				
unique	NaN	· · · ·	NaN	Nal	N
NaN					
top	NaN	·	NaN	Nal	N
NaN					
freq	NaN	· · · ·	NaN	Nal	N
NaN					
mean	0.048919		25.677223	107.26121	3
880.583					
std	0.038803		6.146258	33.60254	2
569.356					
min	0.000000)	12.020000	50.41000	0
185.200					
25%	0.020310)	21.080000	84.11000	0
515.300			05 410000	07 66000	
50%	0.033500)	25.410000	97.66000	O
686.500			00 70000	105 40000	0
75%	0.074000)	29.720000	125.40000	U
1084.00			49.540000	251.20000	0
max 4254.00	0.201200		49.540000	251.20000	U
4234.00					
	smoothness worst	compagings	s worst	ocavity warst	
count	569.00000		.000000	569.00000	
unique	000000 NaN		NaN	NaN	
unique top	NaN		nan NaN	NaN	
cob.			Ivalv	- Nan	

freq	NaN	NaN	NaN	
mean	0.132369	0.254265	0.272188	
std	0.022832	0.157336	0.208624	
min	0.071170	0.027290	0.00000	
25%	0.116600	0.147200	0.114500	
50%	0.131300	0.211900	0.226700	
75%	0.146000	0.339100	0.382900	
max	0.222600	1.058000	1.252000	
	concave points_worst	symmetry_worst	fractal_dimension_worst	\
count	569.000000	569.000000	569.000000	
unique	NaN	NaN	NaN	
top	NaN	NaN	NaN	
freq	NaN	NaN	NaN	
mean	0.114606	0.290076	0.083946	
std	0.065732	0.061867	0.018061	
min	0.000000	0.156500	0.055040	
25%	0.064930	0.250400	0.071460	
50%	0.099930	0.282200	0.080040	
75%	0.161400	0.317900	0.092080	
max	0.291000	0.663800	0.207500	
	Unnamed: 32			
count	0.0			
unique	NaN			
top	NaN			
freq	NaN			
mean	NaN			
std	NaN			
min	NaN			
25%	NaN			
50%	NaN			
75%	NaN			
max	NaN			
F 1 1				
	x 33 columns]	1 / 1 3	1408	
			arn/utils/extmath.py:1137:	
	Warning: invalid value			
- update	ed_mean = (last_sum +	new_sum) / updat	.ed_sample_count	

/usr/local/lib/python3.10/dist-packages/sklearn/utils/extmath.py:1142: RuntimeWarning: invalid value encountered in divide T = new sum / new sample count /usr/local/lib/python3.10/dist-packages/sklearn/utils/extmath.py:1162: RuntimeWarning: invalid value encountered in divide new unnormalized variance -= correction**2 / new sample count Accuracy of Random Forest: 0.9415204678362573 Classification Report of Random Forest: precision recall f1-score support 0.92 0.99 0.96 108 0.98 0.86 0.92 63 0.94 171 accuracy 0.94 macro avg 0.95 0.92 171 weighted avg 0.94 0.94 0.94 171 Accuracy scores for each fold of Random Forest: [0.96491228 0.96491228 0.98245614 0.96491228 0.96491228 0.94736842 0.96491228 0.94736842 0.96491228 0.96428571] Mean accuracy for folds of Random Forest: 0.9630952380952381 Standard deviation for folds of Random Forest: 0.00943788737641594 Feature ranking: 1. feature concave points worst (0.15202612945430058) 2. feature area worst (0.12874743014382417) 3. feature concave points mean (0.11558042945096265) 4. feature perimeter worst (0.095172929513616) 5. feature concavity mean (0.07926403687338594) 6. feature radius worst (0.07230949427019451) 7. feature perimeter mean (0.0567948037815623) 8. feature radius mean (0.04517994200466907) 9. feature concavity worst (0.03718781740954586) 10. feature area se (0.03335379510191234) 11. feature area mean (0.03199930818344027) 12. feature texture worst (0.020205821758160873) 13. feature compactness worst (0.016559985905535996) 14. feature compactness mean (0.01352094018268543) 15. feature smoothness worst (0.013254669523309223) 16. feature texture mean (0.012202057674059808) 17. feature radius se (0.011990737544406547)

```
18. feature perimeter se (0.01173956823059628)
19. feature compactness se (0.00827237997567464)
20. feature symmetry worst (0.006434536557988434)
21. feature smoothness mean (0.006333239097768517)
22. feature fractal dimension worst (0.005492701210970268)
23. feature concave points se (0.004031995407528327)
24. feature concavity se (0.003747836797594058)
25. feature fractal dimension se (0.003546927506014493)
26. feature smoothness se (0.0033568950281843172)
27. feature texture se (0.003207292053706029)
28. feature fractal dimension mean (0.0031850855165253115)
29. feature symmetry mean (0.0030875415692903268)
30. feature symmetry se (0.0022136722725872387)
                   Random Forest
```

Practical 4.4 Naive Bayes

1. Import Libraries

[Syntax]

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import BernoulliNB, GaussianNB
from sklearn.metrics import accuracy_score, classification_report,
confusion_matrix
```

2. Load Dataset

[Syntax]

```
data = load_breast_cancer()
X = data.data
y = data.target
feature_names = data.feature_names
data_01 = pd.DataFrame(X, columns=feature_names)
data_01['Target'] = y
```

3. Data Exploration

[Syntax]

```
print(f"Sample 5 rows of the dataset: {data_01.sample(5)}")
print(f"\nDataset Summary: {data_01.describe()}")
```

4. Visualizations

[Syntax]

```
sns.set(style='whitegrid')
plt.figure(figsize=(8, 5))
sns.countplot(x='target', data=df, palette='pastel')
plt.title('Distribution of Target Variable', fontsize=16)
plt.xlabel('Target', fontsize=14)
plt.ylabel('Count', fontsize=14)
plt.xticks([0, 1], ['Malignant', 'Benign'], fontsize=12)
counts = df['target'].value_counts()
for index, value in enumerate(counts):
```

```
plt.text(index, value, str(value), ha='center', va='bottom',
fontsize=12)
plt.tight_layout()
plt.show()

sns.pairplot(data_01, hue='Target', vars=feature_names[:5])
plt.title('Pairplot of First 5 Features')
plt.show()
```

5. Train-Test Split

[Syntax]

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=42)
```

7. Function

[Syntax]

```
def evaluate_model(model):
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)
    conf_matrix = confusion_matrix(y_test, y_pred)
    class_report = classification_report(y_test, y_pred)

    print(f"Accuracy: {accuracy:.2f}")
    print("Confusion Matrix:")
    print(conf_matrix)
    print("Classification Report:")
    print(class_report)

print()
```

A. Gaussian Naive Bayes

[Syntax]

```
print("Gaussian Naive Bayes Results:")
evaluate_model(GaussianNB())
```

B. Bernoulli Naive Bayes

[Syntax]

```
print("Bernoulli Naive Bayes Results:")
evaluate_model(BernoulliNB())
```

C. Multinomial Naive Bayes

[Syntax]

```
print("Multinomial Naive Bayes Results:")
evaluate_model(MultinomialNB())
```

[Output]

լԾաւրաւյ					
Sample 5 1	rows of the d	lataset:	mean radius	mean texture	mean
perimeter	mean area	mean smooth	ness \		
535	20.55	20.86	137.80	1308.0	0.10460
472	14.92	14.93	96.45	686.9	0.08098
502	12.54	16.32	81.25	476.3	0.11580
508	16.30	15.70	104.70	819.8	0.09427
401	11.93	10.91	76.14	442.7	0.08872
mean	compactness	mean conca	vity mean cor	ncave points m	ean symmetry
\					
535	0.17390	0.2	0850	0.13220	0.2127
472	0.08549	0.0	5539	0.03221	0.1687
502	0.10850	0.0	5928	0.03279	0.1943
508	0.06712	0.0	5526	0.04563	0.1711
401	0.05242	0.0	2606	0.01796	0.1601
mean	fractal dime	ension	worst texture	e worst perime	ter worst
area \					
535	0.	06251	25.48	160	.20
1809.0					
472	0.	05669	18.22	2 112	.00
906.6					
502	0.	06612	21.40	86	.67
552.0					
508	0.	05657	17.76	5 109	.80
928.2					
401	0.	05541	20.14	1 87	.64
589.5					
worst	smoothness	worst comp	actness worst	concavity \	
535	0.1268		0.3135	0.4433	
472	0.1065		0.2791	0.3151	
502	0.1580		0.1751	0.1889	

508	0.1354		0.1361		0.1947		
401	0.1374		0.1575		0.1514		
WO	rst concave poi	nts worst	symmetry	worst	fractal d	imension	Target
535	0.21	480	0.3077			0.07569	0
472	0.11	470	0.2688			0.08273	1
502	0.08	411	0.3155			0.07538	1
508	0.13	570	0.2300			0.07230	1
401	0.06	376	0.2460			0.07262	1
[5 rows	x 31 columns]						
Dataset	Summary:	mean radi	ius mean	texture	mean pe	rimeter	mean
area \							
count	569.000000	569.000000	569	.000000	569.000	000	
mean	14.127292	19.289649	91	.969033	654.889	104	
std	3.524049	4.301036	24	.298981	351.914	129	
min	6.981000	9.710000	43	.790000	143.500	000	
25%	11.700000	16.170000	75	.170000	420.300	000	
50%	13.370000	18.840000	86	.240000	551.100	000	
75%	15.780000	21.800000	104	.100000	782.700	000	
max	28.110000	39.280000	188	.500000	2501.000	000	
I	mean smoothness	mean comp	pactness	mean co	ncavity n	mean conc	ave
points							
count	569.000000	569	9.000000	569	.000000		
569.000	000						
mean	0.096360	(0.104341	0	.088799		
0.04891	9						
std	0.014064	(0.052813	0	.079720		
0.03880	3						
min	0.052630	(0.019380	0	.000000		
0.00000	0						
25%	0.086370	(0.064920	0	.029560		
0.02031	0						
50%	0.095870	(0.092630	0	.061540		
0.03350	0						
75%	0.105300	(0.130400	0	.130700		
0.07400	0						

max	0.163400	0.34	15400	0.4268	00	
0.2012	00					
	mean symmetry m	ean fractal o	dimension	wor	st texture	e \
count	569.000000	56	59.000000		569.000000	
mean	0.181162		0.062798		25.677223	3
std	0.027414		0.007060		6.146258	3
min	0.106000		0.049960		12.020000)
25%	0.161900		0.057700		21.080000	
50%	0.179200		0.061540		25.410000	
75%	0.195700		0.066120		29.720000	
max	0.304000		0.097440		49.540000	
	worst perimeter	worst area	worst sm	noothness	worst cor	npactness
\						
count	569.000000	569.000000	56	59.000000	56	59.000000
mean	107.261213	880.583128		0.132369		0.254265
std	33.602542	569.356993		0.022832		0.157336
min	50.410000	185.200000		0.071170		0.027290
25%	84.110000	515.300000		0.116600		0.147200
50%	97.660000	686.500000		0.131300		0.211900
75%	125.400000	1084.000000		0.146000		0.339100
max	251.200000	4254.000000		0.222600		1.058000
	worst concavity	worst concar	ve points	worst sy	mmetry \	
count	569.000000	56	59.000000	569.	000000	
mean	0.272188		0.114606	0.	290076	
std	0.208624		0.065732	0.	061867	
min	0.000000		0.000000	0.	156500	
25%	0.114500		0.064930	0.	250400	
50%	0.226700		0.099930		282200	
75%	0.382900		0.161400		317900	
max	1.252000		0.291000	0.	663800	
	worst fractal di		Target			
count			.000000			
mean			.627417			
std			.483918			
min			.000000			
25%	0	.071460 0.	.000000			

```
50%
                          0.080040
                                        1.000000
75%
                          0.092080
                                        1.000000
max
                          0.207500
                                        1.000000
[8 rows x 31 columns]
               Distribution of Target Variable
  250
                                    212
 Count
  150
  100
             Malignant
                                    Benign
                        Target
 175
150
125
100
75
50
 1500
Gaussian Naive Bayes Results:
Accuracy: 0.94
Confusion Matrix:
[[ 57 6]
 [ 4 104]]
Classification Report:
                precision
                                recall
                                          f1-score
                                                       support
                                              0.92
                      0.93
                                   0.90
                                                             63
```

1	0.95	0.96	0.95	108	
accuracy			0.94	171	
macro avg	0.94	0.93	0.94	171	
weighted avg	0.94	0.94	0.94	171	
Bernoulli Nai	_	sults:			
Accuracy: 0.6					
Confusion Mat	crix:				
[[0 63]					
[0 108]]					
Classificatio					
	precision	recall	f1-score	support	
0	0.00				
1	0.63	1.00	0.77	108	
			0 (2	171	
accuracy	0.22	0 50	0.63		
macro avg		0.50			
weighted avg	0.40	0.63	0.49	171	
Multinomial N	Jaiva Bavas	Pagulte.			
Accuracy: 0.9		Results.			
Confusion Mat					
[[50 13]	, <u>, , , , , , , , , , , , , , , , , , </u>				
[2 106]]					
Classification	on Report:				
		recall	f1-score	support	
0	0.96	0.79	0.87	63	
1					
accuracy			0.91	171	
macro avg	0.93	0.89			
weighted avg					

D. Text Classification

1. Import Libraries

[Syntax]

```
import pandas as pd
from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import BernoulliNB, MultinomialNB, GaussianNB
from sklearn.metrics import accuracy_score, confusion_matrix,
classification_report
```

2. Load Dataset

[Syntax]

```
data_01 = fetch_20newsgroups(subset='all')
X = data_01.data
y = data_01.target
```

3. Function

[Syntax]

```
def evaluate_model(model):
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
    print("Confusion Matrix:")
    print(confusion_matrix(y_test, y_pred))
    print("Classification Report:")
    print(classification_report(y_test, y_pred))
```

4. Vectorization

[Svntax]

```
vectorizers = {
    "binary": CountVectorizer(binary=True),
    "count": CountVectorizer(binary=False),
    "binary_stop_words": CountVectorizer(binary=True,
stop_words='english'),
    "count_stop_words": CountVectorizer(binary=False, stop_words='english')
}
```

5. Models Building

[Syntax]

```
for key, vectorizer in vectorizers.items():
    X_transformed = vectorizer.fit_transform(X)
```

```
X_train, X_test, y_train, y_test = train_test_split(X_transformed, y,
test_size=0.33, random_state=1)

print(f"Evaluating BernoulliNB with {key} vectorizer:")
evaluate_model(BernoulliNB())

print(f"Evaluating MultinomialNB with {key} vectorizer:")
evaluate_model(MultinomialNB())

print(f"Evaluating Gaussian with {key} vectorizer:")
evaluate_model(GaussianNB())
```

[Output]

Output	11'270 '				
Evaluating Be			vectorize	r:	
Accuracy: 0.6	5586816720257	235			
Classificatio	on Report:				
	precision	recall	f1-score	support	
0	0.94	0.23	0.36	274	
1	0.83	0.55	0.66	321	
2	0.67	0.02	0.03	351	
3	0.51	0.75	0.61	324	
4	0.36	0.89	0.51	304	
5	0.92	0.56	0.70	319	
6	0.39	0.89	0.54	329	
7	0.89	0.77	0.83	333	
8	0.80	0.92	0.85	325	
9	0.70	0.89	0.78	314	
10	0.99	0.88	0.93	345	
11	0.92	0.76	0.83	341	
12	0.47	0.85	0.60	313	
13	0.90	0.69	0.78	329	
14	0.95	0.68	0.79	342	
15	0.54	0.83	0.66	317	
16	0.81	0.69	0.74	301	
17	0.93	0.71	0.81	289	
18	0.89	0.24	0.38	263	
19	0.00	0.00	0.00	186	
accuracy			0.66	6220	

macro avg	0.72	0.64	0.62	6220	
weighted avg	0.74	0.66	0.64	6220	
Evaluating Mu	ltinomialNB	with bina	rv vectoriz	zer:	
Accuracy: 0.8			-		
Classificatio					
	precision	recall	f1-score	support	
	-			1 1	
0	0.88	0.84	0.86	274	
1	0.75	0.84	0.79	321	
2	0.95	0.23	0.37	351	
3	0.58	0.87	0.70	324	
4	0.90	0.85	0.88	304	
5	0.76	0.86	0.81	319	
6	0.95	0.68	0.79	329	
7	0.87	0.88	0.87	333	
8	0.94	0.94	0.94	325	
9	0.96	0.97	0.97	314	
10	0.98	0.97	0.97	345	
11	0.78	0.97	0.86	341	
12	0.83	0.81	0.82	313	
13	0.92	0.94	0.93	329	
14	0.91	0.96	0.94	342	
15	0.73	0.96	0.83	317	
16	0.78	0.96	0.86	301	
17	0.88	0.99	0.93	289	
18	0.96	0.77	0.85	263	
19	0.96	0.38	0.54	186	
accuracy			0.84	6220	
macro avg	0.86	0.83	0.83	6220	
weighted avg	0.86	0.84	0.83	6220	
Evaluating Be			vectorizer:		
Accuracy: 0.6	586816720257	235			
Classificatio	n Report:				
	precision	recall	f1-score	support	
0		0.23			
1	0.83	0.55	0.66	321	

2	0.67	0.02		351	
3	0.51	0.75	0.61	324	
4	0.36	0.89	0.51	304	
5	0.92	0.56	0.70	319	
6	0.39	0.89	0.54	329	
7	0.89	0.77	0.83	333	
8	0.80	0.92	0.85	325	
9	0.70	0.89	0.78	314	
10	0.99	0.88	0.93	345	
11	0.92	0.76	0.83	341	
12	0.47	0.85	0.60	313	
13	0.90	0.69	0.78	329	
14	0.95	0.68	0.79	342	
15	0.54	0.83	0.66	317	
16	0.81	0.69	0.74	301	
17	0.93	0.71	0.81	289	
18	0.89	0.24	0.38	263	
19	0.00	0.00	0.00	186	
accuracy			0.66	6220	
macro avg	0.72	0.64	0.62	6220	
weighted avg	0.74	0.66	0.64	6220	
Evaluating Mu	ıltinomialNB	with coun	t vectoriz	er:	
Accuracy: 0.8	331189710610	932			
Classificatio	n Report:				
	precision	recall	f1-score	support	
0	0.89	0.86	0.87	274	
1	0.63	0.90	0.74	321	
2	0.91	0.09	0.16	351	
3	0.61	0.84	0.71	324	
4	0.89	0.84	0.86	304	
5	0.70	0.87	0.78	319	
6	0.93	0.62	0.75	329	
7	0.87	0.86	0.87	333	
8	0.92	0.93	0.92	325	
9	0.95	0.97	0.96	314	
10	0.98	0.97	0.97	345	

0.87

341

11

12	0.86	0.80	0.83	313	
13	0.96	0.93	0.94	329	
14	0.93	0.95	0.94	342	
15	0.77	0.96	0.85	317	
16	0.82	0.94	0.88	301	
17	0.87	0.98	0.93	289	
18	0.82	0.84	0.83	263	
19	0.96	0.47	0.63	186	
accuracy			0.83	6220	
macro avg	0.85	0.83	0.82	6220	
weighted avg	0.85	0.83	0.82	6220	
Evaluating Be	rnoulliNB w	ith binary	_stop_words	vectorizer:	
Accuracy: 0.6	77652733118	971			
Classificatio	n Report:				
	precision	recall	f1-score	support	
0	0.94	0.22		274	
1	0.82	0.54	0.65	321	
2	0.67			351	
3	0.50			324	
4	0.33	0.95	0.49	304	
5	0.93	0.55	0.69	319	
			0.03	219	
6	0.65			329	
6 7		0.89	0.75		
	0.65	0.89	0.75	329	
7	0.65 0.87	0.89 0.80	0.75 0.83	329 333	
7 8	0.65 0.87 0.77	0.89 0.80 0.94	0.75 0.83 0.85	329 333 325	
7 8 9	0.65 0.87 0.77 0.69	0.89 0.80 0.94 0.96	0.75 0.83 0.85 0.80	329 333 325 314	
7 8 9 10	0.65 0.87 0.77 0.69 0.99	0.89 0.80 0.94 0.96 0.88	0.75 0.83 0.85 0.80 0.93	329 333 325 314 345	
7 8 9 10 11	0.65 0.87 0.77 0.69 0.99	0.89 0.80 0.94 0.96 0.88	0.75 0.83 0.85 0.80 0.93 0.87	329 333 325 314 345 341	
7 8 9 10 11 12	0.65 0.87 0.77 0.69 0.99 0.94 0.45	0.89 0.80 0.94 0.96 0.88 0.80	0.75 0.83 0.85 0.80 0.93 0.87 0.60	329 333 325 314 345 341 313	
7 8 9 10 11 12 13	0.65 0.87 0.77 0.69 0.99 0.94 0.45 0.92	0.89 0.80 0.94 0.96 0.88 0.80 0.90	0.75 0.83 0.85 0.80 0.93 0.87 0.60 0.80	329 333 325 314 345 341 313 329	
7 8 9 10 11 12 13	0.65 0.87 0.77 0.69 0.99 0.94 0.45 0.92	0.89 0.80 0.94 0.96 0.88 0.80 0.90 0.71	0.75 0.83 0.85 0.80 0.93 0.87 0.60 0.80	329 333 325 314 345 341 313 329 342	
7 8 9 10 11 12 13 14	0.65 0.87 0.77 0.69 0.99 0.94 0.45 0.92 0.96 0.54	0.89 0.80 0.94 0.96 0.88 0.80 0.90 0.71 0.70 0.88	0.75 0.83 0.85 0.80 0.93 0.87 0.60 0.80 0.81	329 333 325 314 345 341 313 329 342 317	
7 8 9 10 11 12 13 14 15	0.65 0.87 0.77 0.69 0.99 0.94 0.45 0.92 0.96 0.54	0.89 0.80 0.94 0.96 0.88 0.80 0.90 0.71 0.70 0.88	0.75 0.83 0.85 0.80 0.93 0.87 0.60 0.80 0.81 0.67	329 333 325 314 345 341 313 329 342 317 301	

macro	ava	0.73	0.66	0.64	6220	
weighted						
weighted	avy	0.75	0.00	0.05	0220	
Evaluatin	ng Mul	ltinomialNB w	ith bina	ry stop wor	rds vectorizer:	
		6173633440514				
Classific	cation	n Report:				
		precision	recall	f1-score	support	
	0	0.89	0.88	0.89	274	
	1	0.70	0.87	0.77	321	
	2	0.96	0.38	0.54	351	
	3	0.65	0.87	0.74	324	
	4	0.91	0.86	0.89	304	
	5	0.76	0.88	0.82	319	
	6	0.94	0.76	0.84	329	
	7	0.90	0.88	0.89	333	
	8	0.95	0.94	0.95	325	
	9	0.96	0.98	0.97	314	
	10	0.97	0.97	0.97	345	
	11	0.85	0.96	0.90	341	
	12	0.86	0.81	0.83	313	
	13	0.95	0.94	0.95	329	
	14	0.90	0.96	0.93	342	
	15	0.79	0.94	0.86	317	
	16	0.81	0.95	0.87	301	
	17	0.90	0.99	0.94	289	
	18	0.93	0.81	0.86	263	
	19	0.95	0.46	0.62	186	
accur	acy			0.86	6220	
macro	avg	0.88	0.86	0.85	6220	
weighted	avg	0.88	0.86	0.86	6220	
Evaluatin	ng Bei	rnoulliNB wit	h count_	stop_words	vectorizer:	
_		7765273311897	1			
Classific	cation	Report:				
		precision	recall	f1-score	support	
	0	0.94	0.22	0.36	274	
	1	0.82	0.54	0.65	321	

	2	0.67	0.02	0.03	351
	3	0.50	0.77	0.60	324
	4	0.33	0.95	0.49	304
	5	0.93	0.55	0.69	319
	6	0.65	0.89	0.75	329
	7	0.87	0.80	0.83	333
	8	0.77	0.94	0.85	325
	9	0.69	0.96	0.80	314
	10	0.99	0.88	0.93	345
	11	0.94	0.80	0.87	341
	12	0.45	0.90	0.60	313
	13	0.92	0.71	0.80	329
	14	0.96	0.70	0.81	342
	15	0.54	0.88	0.67	317
	16	0.82	0.71	0.76	301
	17	0.95	0.73	0.83	289
	18	0.91	0.24	0.38	263
	19	0.00	0.00	0.00	186
accura	су			0.68	6220
macro a	vg	0.73	0.66	0.64	6220
weighted a	vg	0.75	0.68	0.65	6220
Evaluating	Multino	mialNB wit	h count_st	op_words ve	ectorizer:
Accuracy:	0.858520	9003215434			
Classifica	tion Rep	ort:			
	prec	ision r	ecall f1-	score sur	pport
	0	0.89	0.89	0.89	274
	1	0.65	0.91	0.75	321
	2	0.96	0.23	0.36	351
	3	0.64	0.85	0.73	324
	4	0.87	0.88	0.87	304
	5	0.71	0.87	0.78	319
	6	0.92	0.74	0.82	329
	7	0.90	0.90	0.90	333
	8	0.92	0.96	0.94	325
	9	0.96	0.97	0.97	314
	10	0.97	0.97	0.97	345

11

341

	12	0.88	0.81	0.84	313
	13	0.97	0.93	0.95	329
	14	0.94	0.95	0.95	342
	15	0.83	0.96	0.89	317
	16	0.82	0.96	0.88	301
	17	0.93	0.99	0.96	289
	18	0.89	0.84	0.86	263
	19	0.93	0.54	0.68	186
accur	racy			0.86	6220
macro	avg	0.87	0.85	0.85	6220
weighted	avg	0.87	0.86	0.85	6220

111

Practical 4.5 K-nearest neighbors (KNN)

1. Import Libraries

[Syntax]

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split, RepeatedKFold,
GridSearchCV
from sklearn.metrics import accuracy_score, confusion_matrix,
classification_report
```

A. Pima Indians Diabetes Dataset

2. Load Dataset

[Syntax]

```
data_01 = pd.read_csv("Data.csv",names=["Pregnancies", "Glucose",
    "BloodPressure", "SkinThickness",Insulin", "BMI",
    "DiabetesPedigreeFunction", "Age", "Outcome"],header=None)
```

3. Exploratory Data Analysis (EDA)

[Syntax]

```
print(data_01.sample(5))
print(f"Missing values in each column: {data_01.isnull().sum()}")
print(f"Basic statistics of the dataset: {data_01.describe()}")
print(f"Data types of each column: {data_01.dtypes}")
data_01["Outcome"].value_counts()
```

4. Visualization

```
sns.set(style="whitegrid")
plt.figure(figsize=(8, 5))
sns.countplot(x=data_01['Outcome'], palette='pastel')
plt.title("Distribution of Diabetes Cases", fontsize=16,
fontweight='bold')
plt.xlabel("Diabetes Status", fontsize=14)
```

```
plt.ylabel("Count", fontsize=14)
for p in plt.gca().patches:
    plt.annotate(f'{int(p.get_height())}', (p.get_x() + p.get_width() / 2.,
p.get_height()),ha='center', va='bottom', fontsize=12)
plt.show()

sns.set(style="white")
plt.figure(figsize=(8, 5))
sns.heatmap(data_01.corr(), annot=True, fmt=".2f", cmap='coolwarm',
square=True,cbar_kws={"shrink": .8}, linewidths=0.5, linecolor='gray')
plt.title("Correlation Heatmap", fontsize=18, fontweight='bold')
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.show()
```

5. Split Data into Features and Target

[Syntax]

```
X = data_01.iloc[:, :-1]
Y = data_01.iloc[:, -1]
```

6. Train-Test Split

[Syntax]

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state=1,
test_size=0.25)
print("Shape of training and test data:", X.shape, Y.shape)
```

7. Hyperparameter Tuning for K-Neighbors Classifier

[Syntax]

```
parameters = {"n_neighbors": list(range(15, 26))}
K_Classifier = KNeighborsClassifier()
K_fold = RepeatedKFold(n_splits=10, n_repeats=5, random_state=15)
Grid_Search = GridSearchCV(K_Classifier, parameters, cv=K_fold)
```

8. Fit Grid Search

```
Grid_Search.fit(X, Y)
best_params = Grid_Search.best_params_
```

```
print("Best parameters for KNN:", best_params)
```

9. Train Classifier with Best Parameters

[Syntax]

```
K_Classifer_02 =
KNeighborsClassifier(n_neighbors=best_params['n_neighbors'])
K_Classifer_02.fit(X_train,Y_train)
```

10. Predictions and Evaluation

[Syntax]

```
Y_prediction = K_Classifer_02.predict(X_test)
print(f"Accuracy : {accuracy_score(Y_test,Y_prediction)}")
print(f"Confusion Matrix : \n {confusion_matrix(Y_test,Y_prediction)}")
print("Classisficatin report: \n")
print(classification_report(Y_test,Y_prediction))
```

լԾաւ	putj							
	Pregnancies	Glucose Blo	odPre	ssure	SkinThickness	Insulin	BMI	\
348	3	99		62	19	74	21.8	
658	11	127		106	0	0	39.0	
672	10	68		106	23	49	35.5	
702	1	168		88	29	0	35.0	
186	8	181		68	36	495	30.1	
	DiabetesPedi	greeFunction	Age	Outcom	ie			
348		0.279	26		0			
658		0.190	51		0			
672		0.285	47		0			
702		0.905	52		1			
186		0.615	60		1			
Miss	ing values in	each column:	: Preg	nancies		0		
Gluc	ose	0						
Bloo	dPressure	0						
Skin	Thickness	0						
Insu	lin	0						
BMI		0						
Diab	etesPedigreeF	unction 0						
Age		0						

Outcom	e	0				
dtype:	int64					
Basic	statistics of	the dataset	: Preg	nancies	Gluco	se
BloodP	ressure Skin	Thickness	Insulin \			
count	768.000000	768.000000	768.00000	0 768.00	0000	768.000000
mean	3.845052	120.894531	69.10546	9 20.53	86458	79.799479
std	3.369578	31.972618	19.35580	7 15.95	52218	115.244002
min	0.000000	0.000000	0.00000	0.00	0000	0.000000
25%	1.000000	99.000000	62.00000	0.00	0000	0.000000
50%	3.000000	117.000000	72.00000	0 23.00	0000	30.500000
75%	6.000000	140.250000	80.0000	0 32.00	0000	127.250000
max	17.000000	199.000000	122.00000	0 99.00	0000	846.000000
	BMI	DiabetesPedi	greeFunction	Age	0.	utcome
count	768.000000		768.000000	768.000000	768.	000000
mean	31.992578		0.471876	33.240885	0.	348958
std	7.884160		0.331329	11.760232	0.	476951
min	0.000000		0.078000	21.000000	0.	000000
25%	27.300000		0.243750	24.000000	0.	000000
50%	32.000000		0.372500	29.000000	0.	000000
75%	36.600000		0.626250	41.000000	1.	000000
max	67.100000		2.420000	81.000000	1.	000000
Data t	ypes of each	column: Pred	gnancies		int6	4
Glucos	е	i	nt64			
BloodP	ressure	i	nt64			
SkinTh	ickness	i	nt64			
Insuli	n	i	nt64			
BMI		flo	pat64			
Diabet	esPedigreeFun	ction flo	pat64			
Age		i	nt64			
Outcom	е	i	nt64			
dtype:	object					
	count					
Outcom						
	500					
	268					
dtype:	int64					

accuracy			0.79	192	
macro avg	0.79	0.73	0.75	192	
weighted avg	0.79	0.79	0.77	192	

[Insights]

- 1. The outcome shows a dataset with two classes, where class 0 has 500 instances and class 1 has 268 instances. This indicates a class imbalance, with class 0 being the majority class.
- 2. The model demonstrates a reasonably good performance overall, with an accuracy of approximately 78.65%.
- 3. Confusion Matrix Analysis:
 - True Negatives (TN): 114
 - False Positives (FP): 9
 - False Negatives (FN): 32
 - True Positives (TP): 37

This indicates that the model is more effective at correctly predicting class 0 (with a high true negative rate) than class 1, as shown by the lower true positive count.

- 4. Precision and Recall:
 - For class 0:
 - Precision: 0.78 (indicates the proportion of predicted positives that are actually positive)
 - Recall: 0.93 (indicates the proportion of actual positives that were correctly identified)
 - For class 1:
 - o Precision: 0.80
 - Recall: 0.54 (the model struggles to identify all actual positive cases)

5. F1-Score:

• The F1-score for class 0 (0.85) is higher than that for class 1 (0.64), reflecting better balance between precision and recall for the majority class.

B. Iris Dataset

2. Load Dataset

```
iris = load iris()
```

```
data_01 = pd.DataFrame(data=iris.data, columns=iris.feature_names)
data_01['target'] = iris.target
```

3. Exploratory Data Analysis (EDA)

[Syntax]

```
print(data_01.sample(5))
print("Basic statistics of the iris dataset:")
print(data_01.describe())
print(f"Data types of each column: {data_01.dtypes}")
data_01["target"].value_counts()
```

4. Visualization

[Syntax]

```
sns.pairplot(iris_df, hue='target', palette='viridis')
plt.title("Pairplot of Iris Features")
plt.show()
```

5. Split Data into Features and Target

[Syntax]

```
X = data_01.iloc[:, :-1]
Y = data_01.iloc[:, -1]
```

6. Train-Test Split

[Syntax]

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state=1,
test_size=0.25)
print("Shape of training and test data:", X.shape, Y.shape)
```

7. Accuracy Evaluation for K-Neighbors Classifier on Iris Dataset [Syntax]

```
data_03 = {}

for i in range(1, round((len(X) + 1)**(1/2))):
    K_Classifier = KNeighborsClassifier(n_neighbors=i)
    K_Classifier.fit(X_train, Y_train)
    Y_prediction = K_Classifier.predict(X_test)
    accuracy = accuracy_score(Y_test, Y_prediction)
    data_03[i] = accuracy
```

8. Results for Different Values of k

[Syntax]

```
print("Accuracy for different values of k:")
data_03
```

լԾաւթ	•								
:	sepal le	ength (cm)	sepal width	(cm)	petal	length	(cm)	petal	width
(cm)									
138		6.0		3.0			4.8		
1.8									
77		6.7		3.0			5.0		
1.7									
148		6.2		3.4			5.4		
2.3									
47		4.6		3.2			1.4		
0.2									
82		5.8		2.7			3.9		
1.2									
	target								
138	2								
77	1								
148	2								
47	0								
82	1								
Doois	a+a+:a+	tics of the	::	. .					
Dasic		length (cm)			nota	l langt	h (am	, ,	
count		150.000000					00000		
mean		5.843333		.057333			75800		
std		0.828066		.435866			76529		
min		4.300000		.000000			00000		
25%		5.100000		.800000			60000		
50%		5.800000		.000000			35000		
75%		6.400000		.300000			10000		
max		7.900000		.400000			90000		
211025			1			0.			
	petal	width (cm)	target						
count		150.000000	150.000000						
oounc									

```
mean
                      1.199333
                                        1.000000
std
                      0.762238
                                        0.819232
min
                      0.100000
                                        0.000000
25%
                      0.300000
                                        0.000000
50%
                      1.300000
                                        1.000000
75%
                      1.800000
                                        2.000000
                      2.500000
                                        2.000000
max
Data types of each column: sepal length (cm)
                                                                       float64
sepal width (cm)
                               float64
petal length (cm)
                               float64
petal width (cm)
                               float64
target
                                  int64
dtype: object
count
target
        50
        50
        50
dtype: int64
  sepal l
  4.5
                                      (0)
(0)
(0)
(0)
sepal width (cm) 3.5 3.0 2.5
  2.0
 petal length (cm)
                                                      Pairplot of Iris Features
  2.5
 0.5 betal width (cm)
1.5 0.5 0.5
  0.0
       6 8
sepal length (cm)
                       2 3 4
sepal width (cm)
                                       2 4 6
petal length (cm)
                                                       1 2
petal width (cm)
```

```
Shape of training and test data: (150, 4) (150,)

Accuracy for different values of k:
{1: 1.0,
2: 1.0,
3: 1.0,
4: 1.0,
5: 1.0,
6: 1.0,
7: 0.9736842105263158,
8: 1.0,
9: 0.9736842105263158,
11: 0.9736842105263158)
```

[Insights]

- 1. The outcome shows a dataset with three classes, where class 0 has 50 instances, class 1 has 50 instances and class 2 has 50 instances. This indicates a class completely balance.
- 2. Accuracy by k Perfect Accuracy:
 - For k=1 to k=6 and k=8, the accuracy is 1.0. This indicates that the model perfectly classifies all instances for these values of kkk.

Slight Decrease in Accuracy:

• For k=7, k=9, k=10, and k=11, the accuracy drops slightly to approximately 97.37%. While this is still a strong performance, it suggests that increasing kkk beyond 6 starts to impact the model's ability to generalize, potentially introducing some noise from neighboring points.

Practical 4.6 Support Vector Machine

1. Import Libraries

[Syntax]

```
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report,
f1_score, precision_score
import matplotlib.pyplot as plt
import seaborn as sns
```

2. Load Dataset

[Syntax]

```
cancer = load_breast_cancer()
data_01 = pd.DataFrame(cancer.data,columns = cancer.feature_names)
data_01["Target"] = cancer.target
```

3. Data Exploration

[Syntax]

```
data_01.columns
data_01["Target"].value_counts()
```

4. Split Data into Features and Target

[Syntax]

```
X = data_01.drop(columns=['Target'])
Y = data_01['Target']
```

5. Feature Scaling

[Syntax]

```
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

6. Train-Test Split

```
X_train, X_test, Y_train, Y_test = train_test_split(X_scaled, Y, test_size=0.3, random_state=42)
```

7. Model Training and Evaluation

[Syntax]

```
list = ["linear", "poly", "rbf"]
for i in list:
  print("For Kernal : ",i)
  svm = SVC(kernel=i)
  Y prediction svm = svm.predict(X test)
  print(f"F1 Score : {f1 score(Y test, Y prediction svm,
average='weighted')}")
  print(f"Precision Score : {precision score(Y test, Y prediction svm,
average='weighted')}")
  print("Confusion Matrix")
  plt.figure(figsize=(7, 7))
  sns.heatmap(confusion matrix(Y test, Y prediction svm), annot=True,
fmt='d', cmap='Blues')
  plt.xlabel('Predicted')
  plt.ylabel('True')
  plt.title('Confusion Matrix')
  plt.show()
  print()
```

1 357 0 212

dtype: int64

For Kernal : linear

F1 Score : 0.9766081871345029

Precision Score : 0.9766081871345029

Confusion Matrix

For Kernal : poly

F1 Score : 0.8900134952766531

Precision Score : 0.9097744360902255

Confusion Matrix

For Kernal: rbf

F1 Score: 0.970807351651423

Precision Score: 0.9709250491883916

Confusion Matrix

[Insights]

1. The outcome shows a dataset with two classes, where class 0 has 212 instances and class 1 has 357 instances. This indicates a class imbalance, with class 1 being the majority class.

2. Performance Analysis for Different Kernels:

A. Linear Kernel

• F1 Score: 0.9766

• Precision: 0.9766

• Confusion Matrix:

- a) True Positives (TP): 106 (correctly predicted Target 1)
- b) True Negatives (TN): 61 (correctly predicted Target 0)
- c} False Positives (FP): 2 (incorrectly predicted Target 1)
- d} False Negatives (FN): 2 (incorrectly predicted Target 0)

The **linear kernel** is the most effective, achieving the highest F1 score and precision while maintaining a low number of misclassifications.

B. Polynomial Kernel

• F1 Score: 0.8900

Precision: 0.9098

• Confusion Matrix:

- a) True Positives (TP): 108 (correctly predicted Target 1)
- b) True Negatives (TN): 45 (correctly predicted Target 0)

- c} False Positives (FP): 18 (incorrectly predicted Target 1)
- d} False Negatives (FN): 0 (incorrectly predicted Target 0)

The **polynomial kernel** struggles with the false positive rate and does not generalize well for Target 0, even though it identifies all instances of Target 1.

C. RBF Kernel

• F1 Score: 0.9708

• Precision: 0.9709

• Confusion Matrix:

- a) True Positives (TP): 105 (correctly predicted Target 1)
- b) True Negatives (TN): 61 (correctly predicted Target 0)
- c} False Positives (FP): 2 (incorrectly predicted Target 1)
- d} False Negatives (FN): 3 (incorrectly predicted Target 0)

The **RBF kernel** is also strong, performing similarly to the linear kernel, making it a viable alternative if non-linearity is expected in the data.

Practical 5.1 K Means

1. Import Libraries

[Syntax]

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
```

2. Load Dataset

[Syntax]

```
data_01 = pd.read_excel("student_clustering.xlsx")
X = data_01[['cgpa', 'ML']]
```

3. Standardization

[Syntax]

```
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

4. K Means Clustering

[Syntax]

```
kmeans = KMeans(n_clusters=4, random_state=42)
clusters = kmeans.fit_predict(X_scaled)
```

5. Silhouette Score

[Syntax]

```
print(f'Silhouette Score: {silhouette_score(X_scaled, clusters):.2f}')
```

6. Create a DataFrame

```
df = pd.DataFrame(X, columns=['cgpa', 'ML'])
df['Cluster'] = clusters
cluster_names = {0: 'Low Performer', 1: 'Average Performer', 2: 'High
Performer', 3: 'Excellent Performer'}
df['Cluster Name'] = df['Cluster'].map(cluster_names)
df_plot = df.copy()
df_plot['Cluster Name'] = df_plot['Cluster Name'].astype(str)
```

7. Visualize

[Syntax]

```
plt.figure(figsize=(10, 6))
sns.scatterplot(data=df_plot, x='cgpa', y='ML',
              hue='Cluster Name', palette='viridis', s=100, alpha=0.6)
plt.title('Clusters in CGPA and ML Scores')
plt.xlabel('CGPA')
plt.ylabel('ML Score')
plt.legend(title='Cluster')
plt.grid(True)
plt.show()
```


Practical 5.2

Hierarchical Clustering

1. Import Libraries

[Syntax]

```
import pandas as pd
import matplotlib.pyplot as plt
from scipy.cluster import hierarchy as SCH
from sklearn.cluster import AgglomerativeClustering
```

2. Load Dataset

[Syntax]

```
df = pd.read_csv("Mall_Customers.csv")
X = df[['Annual Income (k$)', 'Spending Score (1-100)']]
```

3. Dendrogram Visualization

[Syntax]

```
plt.figure(figsize=(8, 8))
plt.title('Dendrogram for Hierarchical Clustering')
dendrogram = SCH.dendrogram(SCH.linkage(X, method='ward'))
plt.xlabel('Customers')
plt.ylabel('Euclidean distances')
plt.show()
```

4. Agglomerative Clustering

[Syntax]

```
ac = AgglomerativeClustering(n_clusters=5)
labels = ac.fit_predict(X)
```

5. Visualizing the Clusters

[Syntax]

```
plt.figure(figsize=(6, 6))
plt.scatter(X['Annual Income (k$)'], X['Spending Score (1-100)'],
c=labels, cmap='rainbow')
plt.title('Agglomerative Clustering of Customers')
plt.xlabel('Annual Income')
plt.ylabel('Spending Score')
plt.show()
```


Practical 5.3 Density Based Clustering

1. Import Libraries

[Syntax]

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN
```

2. Load Dataset

[Syntax]

```
df = pd.read_csv('DBSCAN.csv')
print(df.head())
x = df.iloc[:, 1:]
```

3. Visualize

[Syntax]

```
plt.figure(figsize=(10, 8))
plt.scatter(df['A'], df['B'])
plt.title('Data Scatter Plot')
plt.xlabel('Feature A')
plt.ylabel('Feature B')
plt.show()
```

4.Elbow Method for Optimal Clusters

```
wcss_list = []

for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-means++', random_state=42)
    kmeans.fit(x)
    wcss_list.append(kmeans.inertia_)

plt.plot(range(1, 11), wcss_list)
plt.title('The Elbow Method Graph')
plt.xlabel('Number of clusters (k)')
plt.ylabel('WCSS')
plt.show()
```

5. KMeans Clustering

[Syntax]

```
X = df.iloc[:, 1:].values
km = KMeans(n clusters=4)
y means = km.fit predict(X)
plt.figure(figsize=(10, 8))
plt.scatter(X[y means == 0, 0], X[y means == 0, 1], color='blue',
label='Cluster 1')
plt.scatter(X[y means == 1, 0], X[y means == 1, 1], color='red',
label='Cluster 2')
plt.scatter(X[y means == 2, 0], X[y means == 2, 1], color='green',
label='Cluster 3')
plt.scatter(X[y means == 3, 0], X[y means == 3, 1], color='yellow',
label='Cluster 4')
plt.title('KMeans Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
plt.show()
```

6. Agglomerative Clustering

[Syntax]

```
cluster = AgglomerativeClustering(n_clusters=5, linkage='ward')
labels_ = cluster.fit_predict(X)

plt.figure(figsize=(10, 8))
plt.scatter(X[:, 0], X[:, 1], c=cluster.labels_, cmap='rainbow')
plt.title('Agglomerative Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
```

7. Agglomerative Clustering

```
DB = DBSCAN(eps=30, min_samples=5)
DB.fit(df[['A', 'B']])
df['DBSCAN_labels'] = DB.labels_
plt.figure(figsize=(10, 8))
```

```
plt.scatter(df['A'], df['B'], c=df['DBSCAN_labels'], cmap='rainbow', s=15)
plt.title('DBSCAN Clustering', fontsize=20)
plt.xlabel('Feature 1', fontsize=14)
plt.ylabel('Feature 2', fontsize=14)
plt.show()
```


