Chapter 2: Your first R Session

Downloading and Installing R

✓ Base R software for Windows

- → Download the latest R version from http://cran.r-project.org/bin/windows/base/. File name example: R-2.15.3-win.exe [for version 2.15.3]
- Run the .exe file and follow the steps to installation

√ Base R software for Mac

- → Download the latest R version from http://cran.r-project.org/bin/macosx/. File name example: R-2.15.3.pkg [for version 2.15.3]
- Open the .pkg file and follow the steps to installation

✓ R IDE for Windows

- R Studio offers a heavy duty Integrated Development Environment [IDE] for R. Link for download http://rstudio.org/download/desktop
- Run the .exe file and follow the steps to installation

✓ R IDE for Mac

- R Studio offers an R IDE for Mac also.
- Link for download http://rstudio.org/download/desktop
- Open the .dmg file and follow the steps to installation

Finding your way around R

√ Accessing Help

- → Option I:Type ?{keyword} at the command line. For ex., ?sum or ?mean
- → Option 2:Type help({keyword}) at the command line. Ex., help(sum) or help(mean)
- → Option 3: In the IDE menu, click Help > R Help. Then type in the keyword(s)

√ Working Directory

- → Is the directory where all input to and output from R are stored
- **⇒** Function *getwd()* is used to get the current working directory.
 - Usage: Type getwd() at the command line
- Function setwd() is used to assign a desired path as working directory
 - Usage: Type setwd({Path}) at the command line.
 - Example (Mac): setwd("/Users/jagannathrajagopal/Documents")
 - Example (Windows): setwd("C:\Program Files\R")
- ➡ In R Studio, access Tools > Set Working Directory from the menu
 - Three options available. Select "Choose Directory" to assign a desired path

√ Navigation:

- Use arrow keys ↑ or ↓ to recall previous commands
- Depending on R GUI, [Ex. in the R Mac GUI, it is Alt + 3 + L] different key combinations can be used to clear the console

Basic Commands

√ Assignment

- To assign a value or a formula to a variable, the assignment operator [= or < -] is used
 - Usage: a <- {Value} or a <- {Formula}. Example: a <- 3
 - Note: {Value} -> a or {Formula} -> a may also be used

√ Continuation prompt

- In some cases, an assignment needs to be made over a couple of lines. For example, when using two input vectors in the same formula
- In these cases, the Enter key may be used to add a line to the command.

√ Case Sensitivity

- → All function names, variable names, keywords etc in R are case-sensitive
- Example: a <- 3 and A <- 4 will retain their case-specific values

✓ Assignment rules

- Blank spaces are ignored
- No standard names or key words should be used as object names or variables

Basic Commands

√ Comments

- → Comments may be added to a function or assignment using the # key
- → Anything from the # to the end of the line is ignored
- → May be used in conjunction with a Continuation prompt.
- Example: a <- 3 #assign the value of 3 to a

√ Last expression

- The last value or expression returned by R is stored in .Last.value
- This may be used as a variable is a function or in an assignment
- NOTE: if the last expression was a function called, .Last.value will behave like a function
- ➡ Example: a <- .Last.value</p>

Arithmetic Operators

Operator	Description	Example
+	Addition	> 2 + 3 [1] 5
-	Subtraction	> 20 - 13 [1] 7
X	Multiplication	> 2 x 3 [1] 6
1	Division	> 3 / 2 [1] 1.5
٨	Exponentiation	> 2 ^ 3 [1] 8
%%	Modulo	> 87 %% 2 l [1] 3

Logical Operators

Operator	Description	Example
==	Equals	> 2 == 3 [1] FALSE
!=	Not equal to	> 2 != 3 [1] TRUE
<	Less than	> 2 < 3 [1] TRUE
>	Greater than	> 2 > 3 [1] FALSE
<=	Less than or equal to	> 2 <= 3 [1]TRUE
>=	Greater than or equal to	> 2 >= 3 [1] FALSE
&	And	> 2 < 3 & 4 < 6 [1] TRUE
	Or	> 2 > 3 4 < 6 [1] TRUE
!	Not	> a <= 3 [I] 3 > !a > 3 [I] TRUE

Miscellaneous

√ Finding objects

- Function objects() is used to list objects in the current R environment/session
 - Usage: Type objects() at the command line
 - Example: objects() may result in [1] "a" "D" "x" # 3 objects a, D and x

√ Removing objects

- \rightarrow Function rm() is used to remove objects in the current R environment/session
 - Usage: Type $rm(\{object\})$ at the command line
 - Above example: rm(a) will result in object a being removed.

✓ Missing values

- ➡ If there are unknown objects in the R environment, the object may be found but the value may not be known. Code for missing value in R: NA
- Function is.na() can be used to check if the value is missing
 - Usage: Type is.na({object}) at the command line
 - Example: If object D exists and has a value, is.na(D) will result in a FALSE

Miscellaneous

- ✓ Infinite values
 - Infinite values are derived from a division by or taking a log of zero. Code in R: Inf, -Inf
 - → Functions is.finite() or is.infinite() may be used to check this
 - Usage: Type is.finite({object}) or is.infinite({object}) at the command line
 - Example: is.finite(a) where a is set to 5/0 will result in FALSE.
 - Example: is.infinite(b) where b is set to log(0) will result in TRUE.
- ✓ Indefinite values
 - → An example of an indefinite value is 0/0. Code in R: NaN.
 - → Functions is.nan() may be used to check this
 - Usage: Type is.nan({object}) at the command line
 - Example: is.nan(a) where a is set to 0/0 will result in TRUE.

Working with packages

- √ Installing packages
 - → Packages are available to R through the CRAN
 - They can be installed either from the IDE. In R Studio for example, the lower right window in the Workspace has a Packages tab that allows packages to be downloaded from the CRAN
 - Updates to existing packages may also be found here
- √ Loading packages
 - Function library() is used to load a package to the current R environment/session
 - Usage: Type library({package}) at the command line
 - Above example: library("MASS") will result in MASS being loaded
- ✓ Listing loaded packages
 - Function search() can be used to list all loaded packages
 - Usage: Type search() at the command line
- √ Detaching packages
 - ➡ Function detach() is used to detach a package from the current R environment/ session
 - Usage: Type detach("package:{package}") at the command line
 - Above example: detach("package:MASS") will result in MASS being detached

Managing global preferences

- √ Viewing options
 - Function options() is used to load a package to the current R environment/session
 - Usage: Type options({package}) at the command line
- √ Changing preferences
 - Function options() may also be used to modify preferences
 - Usage:Type options({preference} =) at the command line

