Anne Garcia-Sanchez

M2i cyber dev - CFA CCI Avignon 19 octobre 2023

Chiffrement par substitution mono-alphabétique

lettre de l'alphabet du message ightarrow autre lettre du même alphabet

lettre de l'alphabet du message ightarrow lettre d'un autre alphabet

clair A B C D E F G H I J K L M chiffré
$$\beta$$
 δ ε φ γ η λ ζ κ μ ν ρ π

Chiffrement par substitution mono-alphabétique

- Chiffrement par décalage César
- ROT13, ROT47
- Chiffre Atbash, Atbah
- Chiffre Pigpen
- Carré de Polybe
- Chiffrement affine
- Cas général

Chiffrement affine

clés: a et b entiers compris entre 0 et 25 (avec a premier avec 26)

lettre du texte clair: rang m

$$c \equiv a \times m + b \pmod{26}$$

c: rang de la lettre chiffrée

Rappel: deux nombres entiers sont premiers entre eux s'ils n'ont pas de diviseur commun autre que 1

Nombres premiers

Rappels

nombre premier (*prime number*): entier naturel qui n'admet comme diviseurs que 1 et lui-même.

nombre composé (composite number): entier qui est le produit de deux entiers strictement supérieurs à 1 et possède de ce fait au moins trois diviseurs.

Nombres premiers entre eux

Deux entiers sont **premiers entre eux** ou **copremiers** s'ils n'ont pas de diviseur commun autre que 1 et -1.

Deux entiers a et b sont premiers entre eux si PGCD(a, b)=1.

Remargues:

- les deux nombres ne sont pas forcément premiers:
 9 n'est pas premier mais est premier avec 4
- un nombre premier n'est pas forcément premier avec un autre nombre:
 - 13 est premier mais n'est pas premier avec 26
- deux nombres premiers distincts sont premiers entre eux

Chiffrement affine

a doit être premier avec 26

valeurs possibles pour a?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Chiffrement affine

Exemple: pour chiffrer le message SECRET avec la clé a=3,b=2

clair rang	A 0	В 1	C 2		E F 4 5	G 6	H 7	 8	9 J	K 10	L 11	M 12	N 13
clair rang	O 14	P 15	Q 16	R 17	S 18	T 19	U 20	V 21	W 22	X 23	Y 24	Z 25	
•													
message clair			S		E	C	R	Ε	Т				
rang	S				18	3	4	2	17	4	19)	
calci	32 ايا	r +	2		56	5 i	14	8	53	14	59)	
rédu	ctio	n m	odu	lo 26	4		14	8	1	14	7		
message chiffré				E	:	0	1	В	Ο	Н			

message clair	S	Ε	C	R	Ε	Т
rangs	18	4	2	17	4	19
calcul $3x + 2$	56	14	8	53	14	59
réduction modulo 26	4	14	8	1	14	7
message chiffré	Ε	0	1	В	0	Н

message clair	S	Ε	C	R	Ε	T
rangs	18	4	2	17	4	19
calcul $3x + 2$	56	14	8	53	14	59
réduction modulo 26	4	14	8	1	14	7
message chiffré	Ε	0	l	В	0	Н

$$3x + 2 \equiv 4 \pmod{26}$$
$$3x \equiv 4 - 2 \pmod{26}$$
$$3x \equiv 2 \pmod{26}$$

Que vaut x?

Rappels

message clair	S	Ε	C	R	Ε	Т
rangs	18	4	2	17	4	19
calcul $3x + 2$	56	14	8	53	14	59
réduction modulo 26	4	14	8	1	14	7
message chiffré	Е	0		В	0	Н

$$3x + 2 \equiv 4 \pmod{26}$$

$$3x \equiv 4 - 2 \pmod{26}$$

$$3x \equiv 2 \pmod{26}$$

$$3^{-1}3x \equiv 3^{-1}2 \pmod{26}$$

$$x \equiv 3^{-1}2 \pmod{26}$$

Cherchons une valeur pour 3^{-1} telle que $3 \times 3^{-1} \equiv 1 \pmod{26}$

- 5
- 6

- 8 9
- 10

$$3 \times 9 \equiv 1 \pmod{26}$$

9 est l'inverse de 3 modulo 26.

Déchiffrement affine

000000000000

$$3 \times 9 \equiv 1 \pmod{26}$$

9 est l'inverse de 3 modulo 26.

$$x \equiv 3^{-1}2 \pmod{26}$$

$$x \equiv 9 \times 2 \pmod{26}$$

$$x \equiv 18 \pmod{26}$$

Inverse modulaire

Rappels

L'inverse modulaire d'un entier relatif a modulo n est un entier usatisfaisant l'équation :

$$a \times u \equiv 1 \pmod{n}$$

$$u$$
 peut être noté a^{-1}

L'inverse de a modulo n existe si et seulement si a et n sont premiers entre eux.

Inverse modulaire

Exemple: quel est l'inverse de 2 modulo 7?

Python:

Rappels

on vérifie:

$$2 \times 4 \equiv 1 \pmod{7}$$

Comment calculer l'inverse de a modulo b?

Identité de Bézout:

Soient a et b deux entiers relatifs. Il existe deux entiers relatifs u et v tels que

 $a \times u + b \times v = PGCD(a, b)$.

u et v: coefficients de Bézout

algorithme d'Euclide \rightarrow calcul de PGCD(a,b)

algorithme d'Euclide étendu \rightarrow calcul de u, v et PGCD(a, b)

a et b premiers entre eux donc PGCD(a,b)=1

 $a \times u + b \times v = 1$ donc $a \times u = 1 - b \times v$ donc $a \times u \equiv 1 \pmod{b}$

Algorithme d'Euclide

Rappels

a et b entiers avec a > b, alors PGCD(a, b) = PGCD(b, a) $\mod b$

Exemple: calcul du PGCD de 120 et 23

$$120 = 23 \times 5 + 5$$

$$23 = 5 \times 4 + 3$$

$$5 = 3 \times 1 + 2$$

$$3 = 2 \times 1 + 1$$

$$2 = 1 \times 2 + 0$$

Algorithme d'Euclide étendu

Cherchons l'inverse de 23 modulo 120

$$120 = 23 \times 5 + 5$$

$$23 = 5 \times 4 + 3$$

$$5 = 3 \times 1 + 2$$

$$3 = 2 \times 1 + 1$$

$$2 = 1 \times 2 + 0$$

OII

donc $1 = -9 \times 120 + 47 \times 23$

 $23 \times 47 = \mathbf{1} + 9 \times 120$

donc l'inverse de 23 modulo 120 est 47

Rappels

c: rang de la lettre chiffrée

m: rang de la lettre du message en clair

$$c \equiv a \times m + b \pmod{26}$$

$$a \times m + b \equiv c \pmod{26}$$

$$a \times m \equiv c - b \pmod{26}$$

$$m \equiv a^{-1}(c - b) \pmod{26}$$

$$a^{-1}$$
 inverse modulaire: $a \times a^{-1} \equiv 1 \pmod{26}$

Chiffrement affine

Nombre de clés?

 $a: 1 \ 3 \ 5 \ 7 \ 9 \ 11 \ 15 \ 17 \ 19 \ 21 \ 23 \ 25 : 12 possibilités$

b: 0 1 2 3 4 5 6 7 8 9 10 11 12...25: 26 possibilités

$$12 \times 26 = 312$$

substitution: cas général

permutation des lettres de l'alphabet

Exemple: GTLUMWZVCOKYEQDIFASHBJNXPR

clair ABCDEFGHIJKLMNOPQRSTUVWXYZ chiffré GTLUMWZVCOKYEQDIFASHBJNXPR

substitution: cas général

Nombre de clés?

$$26 \times 25 \times 24... \times 4 \times 3 \times 2$$