Generating uniform unit random vectors in \mathbb{R}^n

Andersen Ang

Mathématique et recherche opérationnelle UMONS, Belgium

manshun.ang@umons.ac.be Homepage: angms.science

First draft : December 24, 2018 Last update : June 21, 2019

Generating uniform distributed random unit vector in \mathbb{R}^2

Generating a random unit vector \mathbf{x} in \mathbb{R}^2 is the same as randomly picking a point on the circumference of a circle centred at the origin.

With the expression $\mathbf{x} = [\cos\theta \ \sin\theta]$, we can sample $\theta \sim \mathcal{U}[0,2\pi]$, where \mathcal{U} stands for uniform distribution.

The points are uniformly distributed on the circumference.

Random unit vector in \mathbb{R}^3

In \mathbb{R}^3 , the same idea holds : generating a unit vector in \mathbb{R}^3 is the same as randomly picking a point on the surface of a 2-sphere¹.

¹A *n*-shpere is defined as $S^n = \{\mathbf{x} \in \mathbb{R}^{n+1} \mid ||\mathbf{x}|| = r\}.$

Expression of points on the surface of 2-sphere

The point on the surface of unit 2-sphere in \mathbb{R}^3 can be expressed as

$$\mathbf{x} = [\sin \phi \cos \theta \quad \sin \phi \sin \theta \quad \cos \phi],$$

where

- ullet θ is the azimuthal angle ranged in $[0\ 2\pi]$
- \bullet ϕ is the polar angle ranged in $[0~\pi]$
- ullet for unit 2-shpere the radius r=1

Wrong way to generate uniform random unit vector in \mathbb{R}^3

As $\mathbf{x} = [\sin\phi\cos\theta \quad \sin\phi\sin\theta \quad \cos\phi], \ \theta \in [0,2\pi], \phi \in [0,\pi].$ At first glance, to generate \mathbf{x} , one may pick $\phi \sim \mathcal{U}[0,\pi]$ and $\theta \sim \mathcal{U}[0,2\pi].$ This method does not work : the resulting points will not be uniform on the surface of the sphere, there will be more points at the two poles.

See also http://mathworld.wolfram.com/SpherePointPicking.html.

Wrong way to generate uniform random unit vector in \mathbb{R}^3

One may also generate ${\bf x}$ by the *cube method* : randomly pick a point in $[-1,1]^3$, then normalize it to have unit norm.

This method does not work : there will be more points on the diagonals.

3D view Top view

Interesting fact : for $\mathbf{x}=[x\,y\,z]$, if \mathbf{x} is uniformly generated on the surface of the unit sphere, then (x,y,z) are all uniform in [-1,1], but the converse here is not true.

The modified cube method in \mathbb{R}^3 using rejection sampling

We can modify the cube method to generate ${\bf x}$:

- $\textbf{ 0} \ \ \text{Generate 3 random number} \ x,y,z \sim \mathcal{U}[-1,1] \ \text{(the cube method)}$
- ② What's new : if $x^2+y^2+z^2 \le 1$, let $\mathbf{x}=\frac{[x\ y\ z]}{\sqrt{x^2+y^2+z^2}}$. Otherwise, reject the point and re-sample again.

The distribution of x would be uniform on surface of the unit 2-sphere.

Why it works: only the points inside of unit ball are normalized, the points outside the sphere are rejected. This technique is called *Rejection sampling*.

Drawback of this approach : inefficient/slow, which is the fundamental disadvantage of all methods that use rejection sampling.

Why the modified cube method is inefficient

There are 2 step to generate x:

- $\textbf{ 0} \ \ \text{Generate random number} \ x,y,z \sim \mathcal{U}[-1,1]$
- $\textbf{ Rejection}: \text{ if } x^2+y^2+z^2>1, \text{ re-sample again}$

Rejecting sampled point means some computer resources are wasted to generate a useless point. That is, this method requires some random number generations before $x^2+y^2+z^2\leq 1$ is true.

In fact, step 1 has to be run on average 2 to 3 time to generate a feasible point :

$$\mathbb{P}(x^2+y^2+z^2\leq 1) = \frac{\text{Volume of the sphere}}{\text{Volume of the cube}} = \frac{4\pi r^3}{3\over (2r)^3} = \frac{\pi}{6} \in \left[\frac{1}{3},\frac{1}{2}\right].$$

The modified cube method is very inefficient in high dimension

The modified cube method works even worse when dimensions n is large. As the volume of unit ball shrinks fast in high dimension, it will require many random number generations before $x_1^2 + x_2^2 + \cdots + x_n^2 \leq 1$ is true.

For example, when n=8, we have volume of the unit 7-sphere as $4.06r^8$. Then

$$\mathbb{P}(x_1^2 + \dots + x_n^2 \le 1) = \frac{4.06r^8}{(2r)^8} \approx \frac{1}{2^6} = \frac{1}{64}.$$

It takes roughly 64 random generations to form a feasible point.

If n = 11:

$$\mathbb{P}(x_1^2 + \dots + x_n^2 \le 1) = \frac{1.884r^{11}}{(2r)^{11}} \approx \frac{1}{2^{10}} = \frac{1}{1024}.$$

It takes about 1000 generations to form a feasible point.

Efficient and simple way to pick random unit vector in \mathbb{R}^3

The following is an efficient and simple way to generate x by using Gaussian random variable²: generate 3 independent Gaussian random variables $x, y, z \sim \mathcal{N}(0, 1)$. Then the distribution of

$$\mathbf{x} = \frac{\begin{bmatrix} x & y & z \end{bmatrix}}{\sqrt{x^2 + y^2 + z^2}}$$

will be uniform over the surface of the sphere.

This works as multivariate normal distribution is spherical

- Further more, multivariate normal distribution is *symmetric*: it is invariant under rotation, so such approach is not the same as the cube method, points will not be concentrated on the diagonals
- ullet Also, this method works for any dimension n

 $^{^2}$ M. E. Muller "A Note on a Method for Generating Points Uniformly on N-Dimensional Spheres." 1959.

Other ways to pick random unit vector in \mathbb{R}^3

There are other (more complicated) methods to generate ${\bf x}$ in \mathbb{R}^3 :

Using equal-area projection of sphere onto rectangle surface of the bounding cylinder, we have

$$\mathbf{x} = \left[\sqrt{1 - z^2} \cos \theta \ \sqrt{1 - z^2} \sin \theta \ z \right],$$

where $z\sim \mathcal{U}[-1,1]$, $\theta\sim \mathcal{U}[0,2\pi]$ and here $z=\cos\phi$ for the azimuthal angle ϕ .

On spherical coordinate, we can set

$$\theta \sim \mathcal{U}[0, 2\pi], \quad \phi = \cos^{-1} a,$$

where $a \sim \mathcal{U}[-1,1]$. Then we set $\mathbf{x} = [\sin \phi \cos \theta \ \sin \phi \sin \theta \ \cos \phi]$. Note that $\phi = \cos^{-1} a, a \sim \mathcal{U}[-1,1]$ is different from directly picking $\phi \sim \mathcal{U}[0,\pi]$.

Generating uniform random unit vector in \mathbb{R}^n

To generate unit vector $\mathbf{x} = [x_1, x_2, \dots, x_n] \in \mathbb{R}^n$ such that \mathbf{x} is uniformly distributed on the surface of the unit (n-1)-sphere :

- Generate n i.i.d. Gaussian random variable : $x_i \sim \mathcal{N}(0,1)$.
- **2** Form $\mathbf{x} = [x_1, x_2, \dots, x_n].$
- **3** Normalize \mathbf{x} to have unit l_2 norm.

Generating random unit vector in \mathbb{R}^3 within a cone

"Generating random unit vector in \mathbb{R}^n inside a cone" is the same as "picking a point on the partial surface of a (n-1)-sphere defined by the solid angle of the cone".

Points on the surface of 2-sphere inside a cone

The points on the surface of 2-sphere are

$$\mathbf{x} = [\sin\phi\cos\theta \quad \sin\phi\sin\theta \quad \cos\phi],$$

where

- θ is the azimuthal angle ranged in $[\theta_1, \theta_2] \subseteq [0, 2\pi]$
- ϕ is the polar angle ranged in $[\phi_1, \phi_2] \subseteq [0, \pi]$
- $\theta_1, \theta_2, \phi_1, \phi_2$ are all unknown value yet to be determined based on the information on the circular cone C

The characterization of circular cone $C(\mathbf{p}, \mathbf{d}, \psi)$

A circular cone C is completely determined by three parameters :

- ullet the origin of the cone $\mathbf{p} \in \mathbb{R}^n$
- ullet the direction of the cone $\mathbf{d} \in \mathbb{R}^n$
- ullet the side angle of the cone $\psi \in [0,\pi]$

An example in \mathbb{R}^3 : $\mathbf{p}=[0,0,0]$ (the black dot), $\mathbf{d}=[0,0,1]$ (the blue arrow), $\psi=\frac{\pi}{4}$ (the angles between all the line on the yellow circle and \mathbf{d} are all equal to 45°)

Unit vector inside a cone

Now consider n=3 and $\mathbf{p}=[0,0,0]$. (If the cone is not centred at origin, we can just translate it by adding \mathbf{p}). We are given a cone $C(\mathbf{d},\psi)$, we want to generate unit vector such that these vectors are uniformly distributed inside the cone C.

How to generate these vectors:

$$\mathbf{x} = \left[\sqrt{1 - z^2} \cos \theta \ \sqrt{1 - z^2} \sin \theta \ z \right],$$

where $\theta \sim \mathcal{U}[0,2\pi]$ and $z \sim \mathcal{U}[\cos\phi,1]$, the polar angle ϕ is obtained by the z-component of the direction vector \mathbf{d} of the cone C, that is :

$$\phi = \cos^{-1}\langle [0, 0, 1], \hat{\mathbf{d}} \rangle = \cos^{-1}\left(\frac{\mathbf{d}_z}{\|\mathbf{d}\|_2}\right).$$

Last page - summary

- ullet Generating random unit vector in \mathbb{R}^n is the same as picking a point randomly on the surface of a unit (n-1)-sphere
- ullet Wrong ways to generating random unit vector in \mathbb{R}^n
- Inefficient rejection sampling based method to generating random unit vector in \mathbb{R}^n
- ullet Efficient way to generating random unit vector in \mathbb{R}^n
- ullet A way to generating random unit vector within a cone in \mathbb{R}^3

Not discussed : how to generate random unit vector within a cone in \mathbb{R}^n End of document