Frequency Domain Quasi Maximum Likelihood Identification of Low Order Aeroservoelastic Models from Flight-Test Data

Jeffrey Ouellette, Chris J. Miller, Matthew J. Boucher

NASA Armstrong Flight Research Center, Edwards, CA

AIAA SciTech Conference January 23, 2023 National Harbor, MD

Background and Motivation

Low Order Equivalent System (LOES)

- From handling qualities analysis
- Traditionally simplifying complex control law and plant
- More easily understood form
- Extend LOES to a complex model due to aeroelasticity

Maximum likelihood (Filter Error) System Identification

$$Z = H_{loes}(U + W) + V$$

- There are a lot of parameters
 - Estimate noise parameters
 - Extra outputs mean extra parameters to estimate
- Usually assume noise model to simplify
 - Output Error and Equation Error
 - Results in biased estimates of the parameters
- Sensing flexible aircraft have many outputs
 - Quasi maximum likelihood exploits redundancy of outputs

Definition of Model

Low order system

$$\boldsymbol{H}_{loes}(s|\boldsymbol{\vartheta}) = \boldsymbol{C} \frac{\boldsymbol{S}_{6}s^{6} + \dots + \boldsymbol{S}_{1}s + \boldsymbol{S}_{0}}{\prod_{j=1}^{3} \left(s^{2} + 2\zeta_{j}\omega_{n_{j}}s + \omega_{n_{j}}^{2}\right)} \boldsymbol{B}$$

6-th order transfer function

- 2nd order modes (frequency damping)
- 3 modes (pitch, bending, and torsion)
- Relative degree zero

Frequency domain ($s=i\omega$)

Parameters (ϑ)

- Natural frequency
- Damping
- Numerator coefficients
 - matrices with 3 rows
 - one for each mode

Fitting the Model

Low order system

$$H_{loes}(s|\vartheta) = CHB$$

Estimate states and output matrix (C)

- Neglecting the inherent dynamics
 - Only done once
- Averaging over spatially distributed sensors
 - Asymptotically unbiased as the number of outputs is increased
 - · Hence the Quasi maximum likelihood
- Reducing large number of outputs, to a small number with little sensor noise

Estimate transfer function parameters

- Similar to output error frequency domain system identification
- Results have a different interpretation
- Details in the paper

Estimating States and Output Matrix

Outputs by principal factor analysis

$$Z \triangleq VS\widehat{X}$$

- Generalized singular value decomposition of the data
 - \circ Only states (\widehat{X}) are complex numbers
 - Keeping 3 largest singular values
 - \circ State correlation matrix, $\hat{P} = V^{-1}Z(V^{-1}Z)^T$
- Sensor noise

$$\widehat{\mathbf{\Sigma}} = \operatorname{diag}(\mathbf{Z}\mathbf{Z}^T - \mathbf{V}\mathbf{S}\widehat{\mathbf{P}}\mathbf{S}\mathbf{V}^T)$$

- Difference of the signal variance, and the variance from the decomposition
- State estimate
 - Expected value of the state given the measured output

$$\widehat{X} = \left(I + \widehat{P}SV^{T}\widehat{\Sigma}^{-1}VS\right)^{-1}SV^{T}\widehat{\Sigma}Z$$

- Equivalent to Kalman filter as dynamics become infinitely fast
- Least square estimates are shrunk to correct for sensor noise

$$\widehat{X} = \left[\left(SV^T \widehat{\Sigma}^{-1} VS \right)^{-1} + \widehat{P} \right]^{-1} \cdot (\text{least squares})$$

Inputs by least squares

This is the minimum bias approach

Flight Test Results

Case	Airspeed, kn	Fuel, lb	Flight
1	80	62	16
2	110	23	34

Pitch multisines

Maneuver designed for the modes

Above and below flutter speed

Selecting the number of modes

Examining diagonal of singular value matrix

3 modes is a reasonable solution

There could be as many as 11 modes

This required more tuning of the model to flight condition

Low speed frequency response

Frequency and damping

Conclusions

Quasi maximum likelihood estimate of low order system

- Using large number of sensors to "average" out noise
- Consistent with full maximum likelihood as number of measurements is increased

Frequency-domain system identification

Worked very well for open loop unstable aircraft

Method was reliable

 A single model structure was fit to most flight conditions without readjustments