Problema 31. Determineu tots els subgrups de $\mathbb{Z}/4\mathbb{Z}$, els de $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ i els de $\mathbb{Z}/6\mathbb{Z}$.

Observació 1. L'ordre dels subgrups d'un grup és divisor de l'ordre del grup.

Observació 2. Tot grup G d'ordre finit n té com a subgrups $\{e\}$, on e és el neutre (d'ara endavant l'anomenarem 0), i el total, G. Aquests són, respectivament, els únics subgrups d'ordres 1 i n.

Observació 3. Sigui G un grup, $H \subset G$ subgrup d'ordre 2; els seus elements són el neutre de G, 0, i un element $x \neq 0$ tal que -x = x. En efecte, $\forall x \in H$, per ser H un grup, $-x \in H$, però com $\#H = 2 \not\exists y \neq 0, x$ tal que $y \in H$. A més, -0 = 0 i $x \neq 0$; com l'invers d'un element d'un grup és únic, -x = x. Es compleix, doncs, la propietat enunciada.

Observació 4. Sigui $H \subset G$ un subgrup del grup G, amb #H = 3. Sigui $H = \{0, x, y\}$, amb $x \neq y$ i $x, y \neq 0$. Veiem com són aquests x, y.

 $\forall x \in H, -x \in H$. Si -x = x, aleshores $\{0, x\}$ és subgrup de H, i pel teorema de Lagrange, #H|#G, és a dir, 2|3, que és impossible. Per tant, $-x \neq x$. Considerant aquest resultat, y = -x i ja tenim el grup. En aquest cas, com $x + x \in H$ i $x + x \neq 0, x$ (altrament, x = -x, 0, respectivament), veiem que x + x = -x.

Per tant, donat un subgrup H d'ordre 3, $H = \{0, x, -x\}$, amb x + x = -x.

Solució. $\mathbb{Z}/4\mathbb{Z}$:

	$\bar{0}$	Ī	$\bar{2}$	$\bar{3}$
$\bar{0}$	$\bar{0}$	$\bar{1}$	$\bar{2}$	3
$\bar{1}$	1	$\bar{2}$	$\frac{\bar{2}}{\bar{3}}$	$\bar{0}$
$\bar{2}$	$\bar{2}$	3	$\bar{0}$	$\bar{1}$
3	3	Ō	$\bar{1}$	$\bar{2}$

Donat que l'ordre del grup és 4, els únics subgrups possibles són d'ordres 1, 2 i 4. Sabem quins són els d'ordre 1 i 4 (Observació 2), per tant només cal analitzar els d'ordre 2.

Per l'Observació 3, sabem com són els possibles grups a buscar. Només cal trobar un element $x \neq 0$ tal que -x = x. Si mirem a la taula, veiem que només el $\bar{2}$ compleix la propietat. Ja hem acabat.

Subgrups: $\{\bar{0}\}, \{\bar{0}, \bar{2}\}, \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}.$

$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$:

	$(\bar{0},\bar{0})$	$(\bar{0},\bar{1})$	$(\bar{1},\bar{0})$	$(\bar{1},\bar{1})$
$(\bar{0},\bar{0})$	$(\bar{0},\bar{0})$	$(\bar{0},\bar{1})$	$(\bar{1},\bar{0})$	$(\bar{1},\bar{1})$
$(\bar{0},\bar{1})$	$(\bar{0},\bar{1})$	$(\bar{0},\bar{0})$	$(\bar{1},\bar{1})$	$(\bar{1},\bar{0})$
$(\bar{1},\bar{0})$	$(\bar{1},\bar{0})$	$(\bar{1},\bar{1})$	$(\bar{0},\bar{0})$	$(\bar{0},\bar{1})$
$(\bar{1},\bar{1})$	$(\bar{1},\bar{1})$	$(\bar{1},\bar{0})$	$(\bar{0},\bar{1})$	$(\bar{0},\bar{0})$

Com abans, ja sabem els grups d'ordres 1 i 4. Només cal trobar els d'ordre 2, és a dir, trobar quins elements tenen com a invers a si mateixos. Aquests elements, junt amb el neutre, formaran els diferents subgrups d'ordre 2.

Si mirem a la taula, és clar que tot element és invers de si mateix. Amb això ja ho tenim.

Subgrups: $\{(\bar{0},\bar{0})\},\{(\bar{0},\bar{0}),(\bar{0},\bar{1})\},\{(\bar{0},\bar{0}),(\bar{1},\bar{0})\},\{(\bar{0},\bar{0}),(\bar{1},\bar{1})\},\{(\bar{0},\bar{0}),(\bar{0},\bar{1}),(\bar{1},\bar{0}),(\bar{1},\bar{1})\}.$

 $\mathbb{Z}/6\mathbb{Z}$:

	$\bar{0}$	$\bar{1}$	$\bar{2}$	3	$\bar{4}$	$\bar{5}$
$\bar{0}$	$\bar{0}$	$\bar{1}$	$\frac{\bar{2}}{\bar{3}}$	$\bar{3}$	$\bar{4}$	$\bar{5}$
$\bar{1}$	$\bar{1}$	$\bar{2}$	3	$\bar{4}$	5	Ō
$\frac{\bar{2}}{\bar{3}}$	$\bar{2}$	3	$\bar{4}$	5	$\bar{0}$	$\bar{1}$
	3	$\bar{4}$	5	$\bar{0}$	1	$\frac{1}{2}$
$\bar{4}$	$\bar{4}$	5	$\bar{0}$	$\bar{1}$	$\bar{2}$	1 1
5	5	$\bar{0}$	$\bar{1}$	$\bar{2}$	3	$\bar{4}$

Ja sabem trobar els subgrups d'ordres 1 i 6. Pels d'ordre 2, cal trobar un terme que tingui com a invers a si mateix. Si ho comprovem a la taula, veiem que només el $\bar{3}$ compleix la propietat. Ja sabem, per tant, com són tots els grups d'ordre 2.

Utilitzant ara la Observació 4, podem trobar els d'ordre 3. Només cal utilitzar els elements $x \neq 0, -x$ amb x + x = -x. A la taula es veu clarament que només el 2 i el 4 satisfan la propietat. Ja ho hem trobat tot.

Subgrups: $\{\bar{0}\}, \{\bar{0}, \bar{3}\}, \{\bar{0}, \bar{2}, \bar{4}\}, \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}\}.$