

COPULA FUNCTIONS FOR REGULAR VINES USAGE

Christian Lamberty

INHALTSVERZEICHNIS

1	COI	PULAE
	1.1	Independence Copula
	1.2	Gauss Copula
	1.3	Student t Copula
	1.4	Clayton Copula
	1.5	Frank Copula
	1.6	Gumbel Copula
	1.7	Farlie-Gumbel-Morgenstern Copula
		Galambos Copula
A	SYN	MBOLS
LI	TERA	ATURVERZEICHNIS

1 Copulae

Copulae in general

Probability Function	C(x,y)
Density Function	$c(x,y) = \frac{\partial C(x,y)}{\partial x \partial y}$
Conditional Probability Function	$h(x,y) = \frac{\partial C(x,y)}{\partial y}$
Inverse h Function	$h^{-1}(x,y)$
Kendall's Tau Function	$\tau = \iint_{[0,1]^2} C(x,y) dC(x,y)$

1.1 Independence Copula

Probability Function	C(x,y) = xy
Density Function	c(x,y)=1
Conditional Probability Function	h(x,y) = x
Inverse h Function	$h^{-1}(x,y) = x$
Kendall's Tau Function	$\tau = 0$

1.2 Gauss Copula

Let $p \in (-1,1)$ be probability parameter. Let $\tilde{x} = \Phi^{-1}(x)$ and $\tilde{y} = \Phi^{-1}(y)$.

Probability Function	$C(x,y) = \Phi_2(\tilde{x}, \tilde{y}, p) [1]$
Density Function	$c(x,y) = \frac{1}{\sqrt{1-p^2}} exp\left(-\frac{p^2(\tilde{x}^2 + \tilde{y}^2) - 2p\tilde{x}\tilde{y}}{2(1-p^2)}\right) [2]$
Conditional Probability Function	$h(x,y) = \Phi\left(\frac{\tilde{x} - p\tilde{y}}{\sqrt{1 - p^2}}\right) [2]$
Inverse h Function	$h^{-1}(x,y) = \Phi(\tilde{x}\sqrt{1-p^2} - p\tilde{y}\sqrt{1-p^2})$ [2]
Kendall's Tau Function	$\tau = \frac{2}{\pi} \arcsin(\mathfrak{p}) [3]$

1.3 Student t Copula

Let $\mathfrak{p}\in (-1,1)$ be probability parameter and $\nu\in \mathbb{N}\setminus 0$ be degree of freedom. Let $\tilde{x}=t_{\nu}^{-1}(x)$ and $\tilde{y}=t_{\nu}^{-1}(y)$.

Probability Function	$C(x,y) = t_{2_{\nu}}(\tilde{x}, \tilde{y}, p) [1]$
Density Function	$c(x,y) = \frac{1}{2\pi dt_{\nu}(\tilde{x}) dt_{\nu}(\tilde{y}) \sqrt{1-p^2}} \left(1 + \frac{\tilde{x}^2 + \tilde{y}^2 - 2p\tilde{x}\tilde{y}}{\nu(1-p^2)}\right)^{-\frac{\nu+1}{2}} [2]$
Conditional Probability Function	$h(x,y) = t_{\nu+1} \left(\frac{\tilde{x} - p\tilde{y}}{\sqrt{\frac{(\nu+\tilde{y}^2)(1-p^2)}{\nu+1}}} \right) [2]$
Inverse h Function	$h^{-1}(x,y) = t_{\nu} \left(t_{\nu+1}^{-1}(x) \sqrt{\frac{(\nu+\tilde{y}^2)(1-p^2)}{\nu+1}} + p\tilde{y} \right) [2]$
Kendall's Tau Function	$\tau = \frac{2}{\pi}\arcsin(\mathfrak{p})$ [3]

Archimedean Copulae

Induced by a function $\varphi:[0,1]\to [0,\infty]$ continual and monotonically decreasing. Probability function is defined by $C(x,y)=\varphi^{-1}(\varphi(x)+\varphi(y))$.

Kendall's tau for archimedean copulae is given by $\tau=1+4\int\limits_0^1\frac{\varphi(\nu)}{\varphi'(\nu)}d\nu.$ [4]

1.4 Clayton Copula

Let
$$\delta \in [-1, \infty)$$
.
Let $\phi(x) = \frac{1}{\delta}(x^{-\delta} - 1)$. [5]

Probability Function	$C(x,y) = (x^{-\delta} + y^{-\delta} - 1)^{-\frac{1}{\delta}}$ [2]
Density Function	$c(x,y) = (1+\delta)(xy)^{-1-\delta}(x^{-\delta} + y^{-\delta} - 1)^{-\frac{1}{\delta}-2}$ [2]
Conditional Probability Function	$h(x,y) = y^{-\delta-1}(x^{-\delta} + y^{-\delta} - 1)^{-1-\frac{1}{\delta}}[2]$
Inverse h Function	$h^{-1}(x,y) = \left((x \cdot y^{\delta+1})^{-\frac{\delta}{\delta+1}} + 1 - y^{-\delta} \right)^{-\frac{1}{\delta}} [2]$
Kendall's Tau Function	$\tau = \frac{\delta}{\delta + 2}[6]$

1.5 Frank Copula

Let
$$\delta \in (-\infty, \infty)$$
.
Let $\phi(x) = -log\left(\frac{e^{-\delta x}-1}{e^{-\delta}-1}\right)$.[5]

Probability Function	$C(x,y) = -\frac{1}{\delta} \log \left(1 + \frac{(e^{-\delta x} - 1)(e^{-\delta y} - 1)}{e^{-\delta} - 1} \right) [6]$
Density Function	via Wavelet estimation[7]
Conditional Probability Function	$h(x,y) = \frac{e^{-\delta y}}{\frac{1-e^{-\delta}}{1-e^{-\delta x}} + e^{-\delta y} - 1}$
Inverse h Function	$h^{-1}(x,y) = -\log\left(1 - \frac{1 - e^{-\delta}}{(x^{-1} - 1)e^{-\delta y} + 1}\right) \frac{1}{\delta}$
Kendall's Tau Function	$\tau = 1 - \frac{4}{\delta} + 4 \frac{D_1(\delta)}{\delta} [6]$

1.6 Gumbel Copula

Let
$$\delta \in [1, \infty)$$
.
Let $\varphi(x) = (-\log(x))^{\delta}$. [5]

Probability Function	$C(x,y) = e^{(-((-\log(u_1))^{\delta} + (-\log(u_2))^{\delta})^{\frac{1}{\delta}})}[2]$
Density Function	$c(x,y) = \frac{1}{C(x,y)} (-((-\log(x))^{\delta} + (-\log(y))^{\delta})^{\frac{2}{\delta} - 2})$ $\cdot (\log(x)\log(y))^{\delta - 1}$ $\cdot (1 + (\delta - 1)((-\log(x))^{\delta} + (-\log(y))^{\delta})^{\frac{1}{\delta}}) [2]$
	$ \cdot (\log(x)\log(y))^{\delta-1} $
	$\cdot (1 + (\delta - 1)((-\log(x))^{\delta} + (-\log(y))^{\delta})^{\frac{1}{\delta}})$ [2]
Conditional Probability Function	$h(x,y) = C(x,y) \cdot \frac{1}{y} \cdot (-\log(y))^{\delta-1}$
	$h(x,y) = C(x,y) \cdot \frac{1}{y} \cdot (-\log(y))^{\delta - 1}$ $\cdot \left((-\log(x))^{\delta} + (-\log(y))^{\delta} \right)^{\frac{1}{\delta - 1}} [2]$
Inverse h Function	via Gauss-Raphson method[2]
Kendall's Tau Function	$\tau = 1 - \frac{1}{\delta}[6]$

1.7 Farlie-Gumbel-Morgenstern Copula

Let $\delta \in [-1,1]$.

Probability Function	$C(x,y) = xy + \delta xy(1-x)(1-y)[5]$
Density Function	$c(x,y) = 1 + \delta(1-2x)(1-2y)[5]$
Conditional Probability Function	$h(x,y) = x(1 + \delta(1-x)(1-2y))[5]$
Inverse h Function	via Gauss-Raphson method
Kendall's Tau Function	$\tau = \frac{2}{9}\delta[5]$

Extreme-Value Copulae

Induced by a function $A:[0,1]\to [1/2,1]$, the Pickands dependence function, which is convex and $\max(t,1-t)\leqslant A(t)\leqslant 1\quad \forall t\in[0,1].$

4 COPULAE

Probability function is defined by $C(x,y) = exp\Big(log(uv)A\Big(\frac{log(v)}{log(uv)}\Big)\Big)$. Kendall's tau for extreme-value copulae is given by $\tau = \int\limits_0^1 \frac{t(1-t)}{A(t)} dA'(t)$. [8]

1.8 Galambos Copula

Let
$$A(t)=1-(t^{-\delta}+(1-t)^{-\delta})^{-1/\delta}$$
 where $\delta\in[0,\infty).$ [9] Let c_{Gu} be density of Gumbel Copula.

Probability Function	$C(x,y) = xy \exp(((-\log(x))^{-\delta} + (-\log(y))^{-\delta})^{-\frac{1}{\delta}}) [10]$
Density Function	$c(x,y) = c_{Gu}(1-x)(1-y)$ [11]
Conditional Probability Function	$h(x,y) = \frac{C(x,y)}{y} \left(1 - \left(1 + \left(\frac{-\log(x)}{-\log(y)} \right)^{\delta} \right)^{-1 - \frac{1}{\delta}} \right) [10]$
Inverse h Function	via Gauss-Raphson method
Kendall's Tau Function	Use numerical integration (e.g. Simpson's rule)

A Symbols

τ	Kendall's tau function.
C(x,y)	Copula probability function.
c(x,y)	Copula density function.
h(x,y)	Copula conditional probability function.
$\Phi(x)$	Standard normal distribution.
$\Phi_2(x,y,p)$	Bivariate standard normal distribution.
$t_{\nu}(x)$	Student t distribution with v degrees of freedom.
$t_{2_{\nu}}(x,y,p)$	Bivariate student t distribution with v degrees of freedom.
$\varphi(x)$	Generator function for archimedean copulae.
A(x)	Generator function for extreme-value copulae.

LITERATURVERZEICHNIS

- [1] Song, P. X.-K. Multivariate dispersion models generated from gaussian copula. *Scandinavian Journal of Statistics*, 27(2):305–320, **2000**.
- [2] Aas, K., Czado, C., Frigessi, A. and Bakken, H. Pair-copula constructions of multiple dependence. *Insurance Mathematics and Economics*, 44(2):182–198, 2009.
- [3] Fang, H. B., Fang, K. T., and Kotz, S. The meta-elliptical distributions with given marginals. *Journal of Multivariate Analysis*, 82(1):1–16, **2002**.
- [4] Genest, C., and MacKay, J. The joy of copulas: bivariate distributions with uniform marginals. *The American Statistician*, 40(4):280–283, **1986**.
- [5] Genest, C., and Favre, A. C. Everything you always wanted to know about copula modeling but were afraid to ask. *Journal of hydrologic engineering*, 12(4):347–368, **2007**.
- [6] Mahfoud, M., and Michael, M. Bivariate archimedean copulas: an application to two stock market indices. *BMI Paper*, **2012**.
- [7] Genest, C., Masiello, E., Tribouley, K. Estimating copula densities through wavelets. *Insurance: Mathematics and Economics*, 44(2):170–181, **2009**.
- [8] Genest, C., Kojadinovic, I., NeÅąlehovÃą, J., and Yan, J. A goodness-of-fit test for bivariate extreme-value copulas. *Bernoulli*, 17(1):253–275, **2011**.
- [9] HU Berlin. Multivariate Time Series. http://fedc.wiwi.hu-berlin.de/xplore/tutorials/stfhtmlnode13.html. [Online; accessed 05-March-2017].
- [10] Schirmacher, D., and Schirmacher, E. Multivariate dependence modeling using pair-copulas. *Technical report*, pages 14–16, **2008**.
- [11] Doyon, G. On densities of extreme value copulas. M.Sc. Thesis, ETH Zurich, **2013**.