Design Principles In Biology: A Dynamical Systems Approach

Biplab Bose

Indian Institute of Technology Guwahati

We Looked Up And Asked Why

There are "Worlds Hidden in Plain Sight" with unanswered questions

But How To Ask The Question?

Teaching How To Answer 'Why' Questions About Biology

Tom Shellberg

Can a biologist fix a radio?—Or, what I learned while studying apoptosis

As a freshly minted Assistant Professor, I feared that everything in my field would be discovered before I even had a chance to set up my laboratory. Indeed, the field of apoptosis, which I had recently joined, was developing at a mind-boggling speed. Components of the previously mysterious process were being discovered almost weekly, frequent scientific meetings had little overlap in their contents, and it seemed that every issue of *Cell*,

The meaning of Why/How differs:

Case specific 'mechanistic' explanation

Generalized explanation

Oh! It's Complex

The System:

Heterogenous (Multi-components)

Non-linear interactions

Dynamical

Open

Non-equilibrium

Limited information

Uncertainties

Understanding Design Principles

Biological Clocks

Circadian clock: Primary clock in our body

It is synchronized with environmental light

Similar clocks are present in other organisms, including plants and microbes.

How Will You Study The Clock?

Jeffrey C. Hall

M. Rosbash

M. W. Young

- Mutant Analysis
- Identifying homologous molecules
- Over-expression/under-expression systems
- Biochemical studies
- Structural analysis

What Makes A Clock?

What Makes A Clock?

- Has a robust periodic oscillator
- Ability to synchronisation with another clock
- Suitable read-out

All biological clocks must have these three properties

Which Molecular Circuit Generates Oscillation?

Negative Feedback in Circadian Clock

Oscillation with Negative Feedback

Goodwin Model (1965)

$$\frac{dx}{dt} = \frac{a}{k_m + k_i y} - \delta_x$$

$$\frac{d\mathbf{y}}{dt} = k_{\mathbf{y}}\mathbf{x} - \delta_{\mathbf{y}}$$

Linear Cascade

Positive Feedback

Negative Feedback

Incoherent Feedforward

Numerical Simulation of the Model

Algorithms: Euler, Runge-Kutta etc

Write your own program: C, Python, Julia, MATLAB

Simulation software: Copasi, DBSolveOptimum, KINSOLVER, GEPASI, JigCell, **JSim**

https://www.imagwiki.nibib.nih.gov/physiome/jsim

Oscillation with Negative Feedback

Modified Goodwin Model:

$$\frac{dx}{dt} = \frac{a}{k_m + k_i \mathbf{z}^n} - \delta_{x} \mathbf{x}$$

$$\frac{dy}{dt} = k_y x - \delta_y y$$

$$\frac{dz}{dt} = k_z y - \delta_z z$$

Understanding Design Principles

Resources

https://www.youtube.com/@sysbio

https://github.com/biplabbose/Systems_Biology_Textbook

NPTEL Course
Data Analysis For Biologists

8 weeks 20th January 2025

