

Escuela Técnica Superior de Ingeniería Universidad de Huelva

Grado en Ingeniería Informática

Trabajo Fin de Grado

Aplicaciones de estrategias de Deep Learning para la detección de animales en imágenes de foto-trampeo

Carlos García Silva

Resumen

La importancia de un futuro sostenible se refleja cada día con mayor claridad en nuestra sociedad. Es por ello por lo que los estudios de biodiversidad han cobrado un papel fundamental en la compresión, conservación y valoración de la vida en la Tierra.

La importancia de un futuro sostenible se refleja cada día con mayor claridad en nuestra sociedad. Es por ello por lo que los estudios de biodiversidad han cobrado un papel fundamental en la compresión, conservación y valoración de la vida en la Tierra.

Resumen

Abstract de ejemplo	
Párrafo de Motivación	
Párrafo de Objetivo del trabajo	
Párrafo de Propuesta Metodológica	
Párrafo de Resultados	
Párrafo final de conclusiones y Valoración	

Capitu	lo 1: Propuesta del Trabajo9		
1.1	Motivación9		
1.2	Objetivos9		
1.3	Competencias9		
1.4	Hardware y Software9		
1.5	Organización de la memoria9		
Capítu	lo 2: Introducción y Estado del arte 10		
Capítu	lo 3: Materiales 11		
3.1 Ba	ase de datos11		
3.2 C	onjuntos de datos11		
3.3 M	étricas de evaluación11		
Capítu	lo 4: Metodología 12		
4.1 Arquitecturas de la red12			
4.2 Hiperparámetros12			
4.3 Fase de entrenamiento12			
Capítulo 5: Resultados y Discusión			
5.1 Resultados en el conjunto de test13			
5.2 Análisis y Discusión13			
Capítu	lo 6: Conclusiones y Trabajos Futuros14		
6.1 Conclusiones técnicas14			
6.2 Trabajos futuros14			
6.3 Valoración personal14			

Anexo

1 Introducción al Deep-Learning	16
2 Redes Neuronales	17
2.1 Fundamentos	17
2.2 Desarrollo de redes neuronales	17
2.2.1- Etapa de desarrollo	17
2.2.2 Etapa de entrenamiento: aspectos generales	17
2.2.3 Etapa de entrenamiento: Hiperparámetros	17
2.2.4 Etapa de entrenamiento: Control y seguimiento	17
2.2.5 Etapa de inferencia	17
3 Redes Neuronales Convolucionales	18
3.1 Introducción	18
3.2 Tipos de capas	18
3.3 Arquitecturas populares	18
3.4 Arquitectura utilizada en este trabajo	18
4 MegaDetector	19

Capitulo 1: Propuesta del Trabajo

1.1 Motivación

1.2 Objetivos

1.3 Competencias

1.4 Hardware y Software

1.5 Organización de la memoria

Capítulo 2: Introducción y Estado del arte

Capítulo 3: Materiales

3.1 Base de datos

3.2 Conjuntos de datos

3.3 Métricas de evaluación

Capítulo 4: Metodología

4.1 Arquitecturas de la red

4.2 Hiperparámetros

4.3 Fase de entrenamiento

Capítulo 5: Resultados y Discusión

5.1 Resultados en el conjunto de test

5.2 Análisis y Discusión

Capítulo 6: Conclusiones y Trabajos Futuros

6.1 Conclusiones técnicas

6.2 Trabajos futuros

6.3 Valoración personal

Bibliografía

Anexo Teórico

1.- Introducción al Deep-Learning

2.- Redes Neuronales

2.1.- Fundamentos

2.2.- Desarrollo de redes neuronales

2.2.1- Etapa de desarrollo

2.2.2.- Etapa de entrenamiento: aspectos generales

2.2.3.- Etapa de entrenamiento: Hiperparámetros

2.2.4.- Etapa de entrenamiento: Control y seguimiento

2.2.5.- Etapa de inferencia

3.- Redes Neuronales Convolucionales

3.1.- Introducción

3.2.- Tipos de capas

3.3.- Arquitecturas populares

3.4.- Arquitectura utilizada en este trabajo

4.- MegaDetector