HW2

方科晨

2024年3月16日

Problem1.

- (a) A 是凸集,B 不是凸集。f''(x) = -2 ,所以 f 是凹函数,因此 $\forall (x_1,y_1), (x_2,y_2) \in A, \forall 0 \leq \lambda \leq 1$,对于点 $(\lambda x_1 + (1-\lambda)x_2, \lambda y_1 + (1-\lambda)y_2)$ 有 $1 = \lambda \cdot 1 + (1-\lambda) \cdot 1 \leq \lambda x_1 + (1-\lambda)x_2 \leq \lambda \cdot 3 + (1-\lambda) \cdot 3 = 3$ 且 $0 = \lambda \cdot 0 + (1-\lambda) \cdot 0 \leq \lambda y_1 + (1-\lambda)y_2 \leq \lambda f(x_1) + (1-\lambda)f(x_2) \leq f(\lambda x_1 + (1-\lambda)x_2)$,因此 $(\lambda x_1 + (1-\lambda)x_2, \lambda y_1 + (1-\lambda)y_2) \in A$,所以 A 是凸集。
- g''(x) = -2,g 是凸函数,且不等式不取等,因此对于点 $(1,g(1)),(3,g(3)) \in B$,对于 $\forall 0 \le \lambda \le 1$ 都有 $1 \le \lambda \cdot 1 + (1-\lambda) \cdot 3 \le 3$ 且 $\lambda g(1) + (1-\lambda)g(3) > g(\lambda \cdot 1 + (1-\lambda) \cdot 3)$,因此 $(\lambda \cdot 1 + (1-\lambda) \cdot 3, \lambda g(1) + (1-\lambda)g(3)) \notin B$,故 B 不是凸集。
 - **(b)** g 是凸函数 f 不是,由 (1) 中求导可得。

Problem2.

 \Rightarrow : 若 Ω 是一个 convex cone,则 Ω 既是一个锥也是一个凸集。由于 Ω 是锥,所以 $\forall x \in \Omega, \forall \lambda > 0$ 都有 $\lambda x \in \Omega$ 。而且 $\forall x, y \in \Omega, \frac{1}{2}x, \frac{1}{2}y \in \Omega$,由于 $\frac{1}{2} + \frac{1}{2} = 1$ 且 Ω 为凸集,所以 $\frac{1}{2}x + \frac{1}{2}y \in \Omega$,故 $x + y = 2(\frac{1}{2}x + \frac{1}{2}y) \in \Omega$ \Leftrightarrow : 由于 $\forall x \in \Omega, \forall \lambda > 0$ 都有 $\lambda x \in \Omega$,所以 Ω 是一个锥。其次 $\forall x, y \in \Omega, \forall 0 \leq \lambda \leq 1$ 。当 $\lambda = 0, \frac{1}{2}, 1$ 时是 trival 的。当 $0 \leq \lambda < \frac{1}{2}$ 时,有 $\lambda x + (1 - \lambda)y = \lambda(x + y) + (1 - 2\lambda)y$,其中由于 $x, y \in \Omega$ 故

 $x+y\in\Omega$ 故 $\lambda(x+y)\in\Omega$,又 $1-2\lambda>0$ 则 $(1-2\lambda)y\in\Omega$,两者相加可得 $\lambda(x+y)+(1-2\lambda)y\in\Omega$ 。当 $\frac{1}{2}<\lambda<1$ 时同理可得。综上, Ω 是凸集,故 Ω 是 convex cone。

Problem3.

首先证明 $\partial f(\hat{x})$ 是凸集。考虑任意 $g_1, g_2 \in \partial f(\hat{x})$ 以及任意 $0 \le \alpha \le 1$,则有 $f(x) = \alpha f(x) + (1-\alpha)f(x) \ge \alpha (f(\hat{x}) + g_1^T(x-\hat{x})) + (1-\alpha)(f(\hat{x}) + g_2^T(x-\hat{x})) = (\alpha + (1-\alpha))f(\hat{x}) + (\alpha g_1^T + (1-\alpha)g_2^T)(x-\hat{x}) = f(\hat{x}) + (\alpha g_1^T + (1-\alpha)g_2^T)(x-\hat{x})$ 。故有 $\alpha g_1^T + (1-\alpha)g_2^T \in \partial f(\hat{x})$ 。因此 $\partial f(\hat{x})$ 是凸集。由于 $\partial f(\hat{x})$ 中的条件为等号,所以显然 $\partial f(\hat{x})$ 为闭集,任意 $\partial f(\hat{x})$ 中点列的极限仍然在 $\partial f(\hat{x})$ 中。

f 是凸函数,则 epif 是凸集,且 $(\hat{x}, f(\hat{x})) \in \partial$ epif。由支撑超平面,可以找到 $(\boldsymbol{a}, b) \neq \boldsymbol{0}, (\boldsymbol{a}, b) \in \mathbb{R}^{n+1}$ 使得 $(\boldsymbol{a}, b)^T(x, f(x)) \geq (\boldsymbol{a}, b)^T(\hat{x}, f(\hat{x})), \forall x \in \mathbb{R}^n$ 。如果 b = 0,则式子变为 $\boldsymbol{a} \cdot x \geq \boldsymbol{a} \cdot \hat{x}, \forall x \in \mathbb{R}^n$,这显然不可能成立,故 $b \neq 0$ 。则原式两边同除以 b 就有 $(\frac{\boldsymbol{a}}{b}, 1)^T(x, f(x)) \geq (\frac{\boldsymbol{a}}{b}, 1)^T(\hat{x}, f(\hat{x})), \forall x \in \mathbb{R}^n$,由此可见 $(\frac{\boldsymbol{a}}{b}, 1) \in \partial f(\hat{x})$,因此 $\partial f(\hat{x})$ 非空。

综上, $\partial f(\hat{x})$ 为非空闭凸集。

Problem4.

考虑 $x,y \in \bar{C}$,则存在两个点列 $\{x_n\}_{n=1}^{\infty} \subset C, \{y_n\}_{n=1}^{\infty} \subset C$ 使得 $\lim_{n\to\infty} x_n = x, \lim_{n\to\infty} y_n = y$ 。则对于任意 $0 \le \alpha \le 1$ 。由于 C 为凸集,故有 $z_n = \alpha x_n + (1-\alpha)y_n \in C, \forall n \ge 1$,则 $z = \alpha x + (1-\alpha)y = \alpha \lim_{n\to\infty} x_n + (1-\alpha)\lim_{n\to\infty} y_n = \lim_{n\to\infty} (\alpha x_n + (1-\alpha)y_n) \in \bar{C}$ 。因此 \bar{C} 为凸集。

Problem5.

(a) 对于任意的 $0 \le \alpha \le 1$ 和 $x, y \in \mathbb{R}^n$ 有 $h(\alpha x + (1 - \alpha)y) = g(f(\alpha x + \alpha)y)$

 $(1-\alpha)y)$)。由于 $f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y)$ 及 g 为单调非降函数,故 $h(\alpha x + (1-\alpha)y) \le g(\alpha f(x) + (1-\alpha)f(y)) \le \alpha g(f(x)) + (1-\alpha)g(f(y)) = \alpha h(x) + (1-\alpha)h(y)$,所以 h 是凸函数。

(b) 令 $f,g: \mathbb{R} \to \mathbb{R}, f(x) = x^2 - 1, g(x) = x^2, h = g \circ f$ 。 我们有 $h(0) = g(f(0)) = g(-1) = 1, h(1) = g(f(1)) = g(0) = 0, h(\frac{1}{2}) = g(f(\frac{1}{2})) = g(-\frac{3}{4}) = \frac{9}{16}$ 。 可以发现并不满足 $h(\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 1) \leq \frac{1}{2}h(0) + \frac{1}{2}h(1)$,故 h 不为凸函数。

Problem6.

由于 $\lambda_1 > 0$,则有 $-\frac{\lambda_2}{\lambda_1}$, \cdots , $-\frac{\lambda_n}{\lambda_1}$, $\frac{1}{\lambda_1} = \frac{\lambda_1 + \cdots , \lambda_n}{\lambda_1} > 0$,同时 $(-\frac{\lambda_2}{\lambda_1}) + \cdots + (-\frac{\lambda_n}{\lambda_1}) + (\frac{\lambda_1 + \cdots + \lambda_n}{\lambda_1}) = 1$,由于 f 为凸函数,由 Jensen 不等式可得 $f(x_1) = f(\frac{\lambda_1}{\lambda_1}) \le -\frac{\lambda_2}{\lambda_1} f(x_2) + \cdots - \frac{\lambda_n}{\lambda_1} f(x_n) + \frac{1}{\lambda_1} f(\lambda_1 x_1 + \cdots + \lambda_n x_n)$,整理 后即为要证的式子

Problem7.

可以求得 f 的 Hessian 矩阵为:

$$\nabla^{2} f(x) = \left\{ \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \right\} = \begin{pmatrix} \frac{\lambda_{1} e^{-x_{1}}}{1 - e^{-x_{1}}} \frac{\lambda_{1} e^{-x_{1}} - 1}{1 - e^{-x_{1}}} f(x) & \frac{\lambda_{1} e^{-x_{1}}}{1 - e^{-x_{1}}} \frac{\lambda_{2} e^{-x_{2}}}{1 - e^{-x_{2}}} f(x) & \cdots & \frac{\lambda_{1} e^{-x_{1}}}{1 - e^{-x_{1}}} \frac{\lambda_{n} e^{-x_{n}}}{1 - e^{-x_{n}}} f(x) \\ \frac{\lambda_{2} e^{-x_{2}}}{1 - e^{-x_{2}}} \frac{\lambda_{1} e^{-x_{1}}}{1 - e^{-x_{1}}} f(x) & \frac{\lambda_{2} e^{-x_{2}}}{1 - e^{-x_{2}}} \frac{\lambda_{2} e^{-x_{2}} - 1}{1 - e^{-x_{2}}} f(x) & \cdots & \frac{\lambda_{2} e^{-x_{2}}}{1 - e^{-x_{2}}} \frac{\lambda_{n} e^{-x_{n}}}{1 - e^{-x_{n}}} f(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\lambda_{n} e^{-x_{n}}}{1 - e^{-x_{n}}} \frac{\lambda_{1} e^{-x_{1}}}{1 - e^{-x_{1}}} f(x) & \frac{\lambda_{2} e^{-x_{2}}}{1 - e^{-x_{2}}} \frac{\lambda_{n} e^{-x_{n}}}{1 - e^{-x_{n}}} f(x) & \cdots & \frac{\lambda_{n} e^{-x_{n}}}{1 - e^{-x_{n}}} \frac{\lambda_{n} e^{-x_{n}} - 1}{1 - e^{-x_{n}}} f(x) \end{pmatrix}$$

不妨令 $y = (\hat{y}_1, \dots, \hat{y}_n) = ((1 - e^{-x_1})y_1, \dots, (1 - e^{-x_n})y_n) \in \mathbb{R}^n$, 其中 $1 - e^{-x_i} > 0$, $\forall i = 1, \dots, n$ 。 再设 $c_i = \lambda_i e^{-x_i}$,因此 $\hat{y}^T \nabla^2 f(x) \hat{y} = f(x) \cdot (\sum_{i=1}^n c_i (c_i - 1) y_i^2 + 2 \cdot \sum_{i \neq j} c_i c_j y_i y_j) = f(x) \cdot (-\sum_{i=1}^n c_i y_i^2 + (\sum_{i=1}^n c_i y_i)^2)(*)$ 由 Cauchy-Schwarz 不等式以及 f(x) > 0, $\forall x \in \mathbb{R}^n$ 以及题设 $\sum_{i=1}^n c_i \leq 1$, 可得 $(*) \leq f(x) \cdot (-\sum_{i=1}^n c_i y_i^2 + (\sum_{i=1}^n c_i)(\sum_{i=1}^n c_i y_i^2)) \leq f(x) \cdot (-\sum_{i=1}^n c_i y_i^2 + \sum_{i=1}^n c_i y_i^2) = 0$ 。

综上 f 是凹函数。