(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 7. Februar 2002 (07.02.2002) (10) Internationale Veröffentlichungsnummer

(51) Internationale Patentklassifikation?: C08G 77/46, A61K 7/48, D06M 15/647

PCT WO 02/10256 A1

(21) Internationales Aktenzeichen:

PCT/EP01/08698

(22) Internationales Anmeldedatum:

27. Juli 2001 (27.07.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

he: Deutsch

(30) Angaben zur Priorität:

100 36 524.8

27. Juli 2000 (27.07.2000) D

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): GE BAYER SILICONES GMBH & CO. KG [DE/DE]; Falkenberg 1, 40699 Erkrath (DE).
- (72) Erfinder; und
- (75) Erfinder/A nmelder (nur für US): LANGE, Horst [DE/DE]; Tiebauweg 34, 44879 Bochum (DE). WAGNER, Roland [DE/DE]; Gisbertstrasse 47, 51061 Köln (DE). WITOSSEK, Anita [DE/DE]; Im Ohrenbusch 3, 40764 Langenfeld (DE). STACHULLA, Kar-Heinz (DE/DE]; Reuschenberger Strasse 45, 51379 Leverkusen (DE). TEUBER, Siegfried (DE/DE); Luisenstrasse 36, 47799 Krefeld (DE). KROPFGANS, Martin [DE/DE]; Auf dem Broich 22, 51519 Odenhal (DE). SOCKEL, Kar-Heinz (—/DE); Bilsenstrasse 13, 51373 Leverkusen

(DE). FIRSTENBERG, Don [DE/DE]; c/o GE Bayer Silicones GmbH & Co. KG, Falkenberg 1, 40699 Erkrath (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, YB, ZC, AC, ACI, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, EL, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, TI, FK, GB, GR, IE, TI, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der f\(\tilde{u}\)r \(\tilde{A}\)nderungen der Anspr\(\tilde{u}\)che geltenden
 Frist; \(\tilde{V}\)er\(\tilde{G}\)flentlichung wird wiederholt, falls \(\tilde{A}\)nderungen
 eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen

🙎 (54) Bezeichnung: EIN- ODER MEHRFACHQUARTÄRE POLYSILOXANE

(5) Abstract: The invention relates to mono- or poly-quaternary polysiloxane derivatives, in which two siloxane units are linked to each other by means of amino or ammonium units. The invention further relates to a method of the production thereof and the use thereof for the modification of surfaces.

(57) Zusammenfassung: Die Erfindung betrifft ein- oder mehrfachquartäre Polysiloxanderivate, in denen zwei Siloxaneinheiten über Amino- oder Ammoniumeinheiten miteinander verbunden sind sowie Verfahren zu ihrer Herstellung und ihre Verwendung zur Modifizierung von Oberflächen.

Ein oder mehrfachquartäre Polysiloxane

5

10

15

25

35

Die Erfindung betrifft ein- oder mehrfachquartäre Polysiloxanen deren Herstellung und Verwendung als Oberflächenausrüstungskomponente.

20 EP-A-0 441 530 offenbart textile Weichmacher aus Polysiloxane, die die tertiären Aminogruppen in Seitenketten enthalten. Es ist ebenfalls die Reaktion von α,ω-epoxymodifizierten Siloxanen mit Piperazin beschrieben worden, die in Abhängigkeit von der eingesetzten Piperazinmenge zu oligomeren bis polymeren Strukturen mit tertiären Aminofunktionen in der Hauptkette führt, wie in der US 4 847 154 offenbart.

Die zusätzliche Einführung von Ethylenoxid-/Propylenoxideinheiten als hydrophilierender Komponente führt zu einer Verbesserung des Effekts. Hierzu ist einerseits vorgeschlagen worden, in Seitenketten Alkylenoxideinheiten und tertiäre Aminogruppen zu positionieren, die über Esterstrukturen mit der Siloxanhauptkette verbunden sind, wie in der US 5 591 880 und US 5 650 529 beschrieben. Der Nachteil des Konzept ist die komplizierte Veresterung in Gegenwart tertiärer Aminogruppen. Alternativ hierzu ist bekannt, α,ω-epoyxmodifizierte Siloxane mit sekundäre Aminofunktionen aufweisenden Polyalkylenoxiden zur Reaktion zu bringen, wie in der US 5 981 681 beschrieben.

Verzweigte alkylenoxidmodifizierte quarternäre Polysiloxane werden aus α,ω-OH terminierten Polysiloxanen und Trialkoxysilanen mittels Kondensation synthetisiert. US 5 602 224 offenbart quarternäre Ammoniumstrukturen, in denen über das Silan

2

eingenbracht werden, worin das quarternäre Stickstoffatom durch Alkylenoxideinheiten substituiert ist.

Streng kammartige alkylenoxidmodifizierte Polysiloxanquats sind ebenfalls in der US 5 098 979 beschrieben worden. Die Hydroxylgruppen von kammartig substituierten Polyethersiloxanen werden mit Epichlorhydrin in die entsprechenden Chlorhydrinderivate überführt. Hieran schließt sich eine Quaternierung mit tertiären Aminen an. Nachteilig an dieser Strategie ist der notwendige Umgang mit Epichlorhydrin und die relativ geringe Reaktivität der Chlorhydrin-Gruppierung während der Quaternierung.

10

15

30

35

Aus diesem Grund heraus sind die Hydroxylgruppen kammartig substituierter-Polyethersiloxane alternativ mit Chloressigsäure verestert worden. Durch die Carbonylaktivierung kann die abschließende Quaternierung erleichtert vollzogen werden, wie in der US 5 153 294 und der US 5 166 297 offenbart.

Die nach dem Prioritätstag dieser Anmeldung veröffentlichten WO 01/41719 und WO 01/41720 beschreiben quartäre Polysiloxanverbindungen zur Verwendung in kosmetischen Zusammensetzungen.

20 α,ω-Diquarternäre Polysiloxane werden in US 4 891 166 beschrieben. Die Synthese erfolgt durch Reaktion von α,ω-Diepoxiden mit tertiären Aminen in Gegenwart von Säuren.

US 4 833 225 offenbart lineare polyquarternäre Polysiloxane, die durch Reaktion von α,ω-Diepoxiden mit di-tertiären Aminen in Gegenwart von Säuren dargestellt werden. Alternativ können α,ω-halogenalkylmodifizierte Siloxane mit di-tertiären Aminen in polymere Polyquats überführt werden, wie in der US 4 587 321 beschrieben.

Die Substanzen gemäß der US 4 891 166, US 4 833 225 und der US 4 587 321 besitzen eine ausgeprägte Tendenz, auf Festkörperoberflächen aufzuziehen. Bei den vorstehend beschriebenen Verbindungen handelt es sich dem Wesen nach entweder um α,ω-difunktionelle Polysiloxane, entsprechende kettenförmige (AB)_n Copolymere, kammartig funktionalisierte Siloxane oder aber Produkte mit einem Anteil an Verzweigungsstellen in der Siloxankette.

In der DE-OS 43 18 536, DE-OS 44 37 886 und den Veröffentlichungen von R.Wagner, L.Richter, B.Weiland, J.Reiners, J.Weißmüller, Appl. Organomet. Chem. 10(1996), 437 sowie R.Wagner, L.Richter, Y.Wu, J.Weißmüller, A.Kleewein,

E.Hengge, Appl. Organomet. Chem. 12(1998), 265 werden saccharidmodifizierte Siloxanderivate beschrieben, die über zwei voneinander unabhängig bewegliche siliciumhaltige Einheiten verfügen. Hinsichtlich der Eignung als textile Weichmacher oder für die Ausrüstung anderer Oberflächen sind keine Angaben gemacht worden. Es wird weiterhin als nachteilig empfunden, daß der Schritt der Saccharidaddition in den synthetische Prozeß einzeschlossen werden muß.

Es ist deshalb Aufgabe der vorliegenden Erfindung gewesen, Strukturen zur Verfügung zu stellen, die die Nachteile des Standes der Technik nicht aufweisen.

Die Aufgabe wird durch Verbindungen gelöst, die sich aus zwei unabhängig voneinander beweglichen Siloxaneinheiten und einem verbindenden Amin- oder Ammoniumelement zusammengesetzt werden.

15 Die Aufgabe wird erfindungsgemäß durch ein oder mehrfachquartäre Polysiloxanderivate der allgemeinen Formel (I) gelöst;

worin

S

25

20

10

30

35

n 0 bis 1000,

–Ņ− Ḥ

10

15

20

25

4

oder tertiäre Aminostruktur

R² -N-

oder quarternäre Ammoniumstruktur

- R² ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C₁-C₃₀-Kohlenwasserstoffrest, der durch -O-, -NH--C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann oder eine Einfachbindung zu dem Rest K darstellt,
 - R³ ein einwertiger geradkettiger, cyclischer oder verzweigter C₁-C₃₀-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann oder einer Struktur -A-E-, mit
 - A $-CH_2C(O)O$ -, $-CH_2CH_2C(O)O$ oder $-CH_2CH_2CH_2C(O)O$ und
 - E einer Polyalkylenoxideinheit der Struktur

-[CH2CH2O]a-[CH2CH(CH3)O]r-R4

- q 1 bis 200,
 - r 0 bis 200,
 - R⁴ H, geradkettiger, cyclischer oder verzweigter C₁-C₂₀-Kohlen-wasserstoffrest, der durch -O- oder -C(O)- unterbrochen und mit -OH substituiert und acetylenisch, olefinisch oder aromatisch sein kann, entspricht,

wobei, wenn eine Mehrzahl von Resten R³ im Molekül vorliegt, diese gleich oder verschieden sein können, sowie

35

30

5

K ein zweiwertigen oder dreiwertiger geradkettiger, cyclischer oder verzweigter C₂-C₄₀-Kohlenwasserstoffrest darstellt, der durch -O-, -NH-, -NR¹-, -C(O)-, -C(S)unterbrochen und mit -OH substituiert sein kann oder eine Einheit O² enthält, mit

Q² sekundäre Aminostruktur

-N-

oder tertiäre Aminostruktur

P.5

oder quarternäre Ammoniumstruktur

R⁵ -N-R³

R⁵ ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C₁-C₂₀-Kohlenwasserstoffrest ist, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, wobei die freie Valenz des zweiwertigen Restes R⁵ an Q¹ binden kann,

und wenn eine Mehrzahl von Resten K in den Polysiloxanen vorliegt, diese gleich oder verschieden voneinander sein können.

25 bedeutet.

5

10 .

15

20

30

35

In einer Ausführungsform der Erfindung werden Polysiloxanverbindungen der Formel (I') bereitgestellt:

S-K-Q¹-K-S (I')

besitzen, worin

R1 C1-C22-Alkyl, C1-C22-Fluoralkyl oder Aryl,

n 0 bis 1000 bedeuten,

5 Q¹ eine sekundäre Aminostruktur

H -N-

oder tertiäre Aminostruktur

R²

10

oder quarternäre Ammoniumstruktur

15

R² ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigten C₁-C₃₀-Kohlenwasserstoffrest, der durch -O-, -NH, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann oder eine Einfachbindung zu K darstellt,

20

R³ ein einwertiger geradkettiger, cyclischer oder verzweigter C₁-C₃₀-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)unterbrochen und mit -OH substituiert sein kann oder einer Struktur -A-B-, mit

25

A -CH2C(O)O-, -CH2CH2C(O)O- oder -CH2CH2CH2C(O)O- und

E

einer Polyalkylenoxideinheit der Struktur

 $-[CH_{2}CH_{2}O]_{q}-[CH_{2}CH(CH_{3})O]_{r}-R^{4}$

30

q 1 bis 200,

0 bis 200,

r R⁴

35

H, geradkettiger, cyclischer oder verzweigter C₁-C₂₀-Kohlenwasserstoffrest, der durch -O- oder -C(O)- unterbrochen und mit -OH substituiert und acetylenisch, olefinisch oder aromatisch sein kann, entspricht, sowie

K ein zweiwertiger oder dreiwertiger geradkettiger, cyclischer oder verzweigter C₂-C₄₀-Kohlenwasserstoffrest, der durch -O-, -NH-, -NR¹-, -N-, -C(O)-, -C(S)- unterbrochen und mit -OH und substituiert sein kann oder eine Einheit Q² enthält, mit

Q² sekundäre Aminostruktur

-N− H

oder tertiäre Aminostruktur

R⁵ --N--

oder quarternäre Ammoniumstruktur

R⁵ -N+ R³

15

10

5

R⁵ ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C₁-C₂₀-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann oder eine Einfachbindung zu O¹ darstellt, oder

20

R² und R⁵ -CH₃, -CH₂CH₃, -(CH₂)₂CH₃, -(CH₂)₃CH₃, -(CH₂)₅CH₅, -CH₂CH₂OH,

25

einen geradkettigen, cyclischen oder verzweigten C_1 - C_{18} -Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)-unterbrochen und mit -OH substituiert sein kann.

30

bedeutet.

 R^6

Die Möglichkeit einer dreiwertigen Substruktur für K bedeutet, daß K verzweigt sein kann und somit mit zwei Bindungen an der Quaternierung von Q^1 über den zweiwertigen Rest R^2 beteiligt ist.

35

Die Möglichkeit einer zweiwertigen Substruktur für \mathbb{R}^2 bedeutet, daß es sich in diesen Fällen um eine cyclische Systeme bildende Struktur handelt, wobei \mathbb{R}^2 dann eine

.

Einfachbindung zu K, speziell zu einer eine tertiäre Aminostruktur aufweisenden Struktur oder aber zur Ouatstruktur O² über R⁵ ist.

In einer weiteren Ausführungsform der vorliegenden Anmeldung bedeutet R¹ C₁-C₁₈-5

Alkyl, C₁-C₁₈-Fluoralkyl und Aryl, und die Reste n, R², R³, R⁴, R⁵, R⁶, K, A, E, Q¹, Q², q und r haben die obengenannte Bedeutung.

In einer weiteren Ausführungsform der vorliegenden Anmeldung bedeutet R^1 C_1 - C_{18} -Alkyl, C_1 - C_6 -Fluoralkyl und Aryl, und die Reste n, R^2 , R^3 , R^4 , R^5 , R^6 , K, A, E, Q^1 , Q^2 , q und r haben die obengenannte Bedeutung.

In einer weiteren Ausführungsform der vorliegenden Anmeldung bedeutet R^1 C_1 - C_6 -Alkyl, C_1 - C_4 -Fluoralkyl und Phenyl, und die Reste n, R^2 , R^3 , R^4 , R^5 , R^6 , K, A, E, Q^1 , Q^2 , q und r haben die obengenannte Bedeutung.

In einer weiteren Ausführungsform der vorliegenden Anmeldung bedeutet R^1 Methyl, Ethyl, Triluorpropyl und Phenyl, und die Reste n, R^2 , R^3 , R^4 , R^5 , R^6 , K, A, E, Q^1 , Q^2 , q und r haben die obengenannte Bedeutung.

20 In einer weiteren Ausführungsform der vorliegenden Anmeldung bedeutet K ein zweiwertiger oder dreiwertiger geradkettiger, cyclischer oder verzweigter C₃-C₃₀-Kohlenwasserstoffrest, der durch -O-, -NH-, -NR¹-, -C(O)-, -C(S)-

15

35

unterbrochen und mit -OH substituiert sein kann oder eine Einheit Q²enthält, und die Reste n, R¹, R², R³, R⁴, R⁵, R⁶, A, E, Q¹, Q², q und r haben die obengenannte Bedeutung.

In einer weiteren Ausführungsform der vorliegenden Anmeldung, bedeutet n 0 bis 100, bevorzugt 0 bis 80 und besonders bevorzugt 10 bis 80, und die Reste R¹, R², R³, R⁴, R⁵, R⁶, K, A, E, Q¹, Q², q und r haben die obengenannte Bedeutung.

In einer weiteren Ausführungsform der vorliegenden Anmeldung, bedeutet q 1 bis 50, bevorzugt 2 bis 50 und die Reste R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , K, A, E, Q^1 , Q^2 , q und r haben die obengenannte Bedeutung.

In einer bevorzugten Ausführungsform der vorliegenden Anmeldung, bedeutet q 2 bis 20 und besonders bevorzugt 2 bis 10 und die Reste R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , K, A, E, Q^1 , Q^2 , n und r haben die obengenannte Bedeutung.

15

25

30

9

In einer weiteren Ausführungsform der vorliegenden Anmeldung, bedeutet r 0 bis 100 und bevorzugt 0 bis 50, und die Reste R¹, R², R³, R⁴, R⁵, R⁶, K, A, E, Q¹, Q², q und n haben die obengenannte Bedeutung.

In einer weiteren bevorzugten Ausführungsform der vorliegenden Anmeldung, bedeutet r 0 bis 20, und besonders bevorzugt 0 bis 10, und die Reste R¹, R², R³, R⁴, R⁵, R⁶, K, A, E, O¹, O², q und n haben die obengenannte Bedeutung.

10 In einer weiteren Ausführungsform der vorliegenden Erfindung bedeutet R² und R⁵ - CH₃, -CH₂CH₃, -(CH₂)₂CH₃, -(CH₂)₃CH₃, -(CH₂)₅CH₃, -CH₂CH₂OH,

$$\begin{array}{ccc} & & & \text{H} \\ \text{-CH}_2\text{CH}_2\text{NC-R}^6 & & \text{-CH}_2\text{CH}_2\text{CH}_2\text{NC-R}^6 \end{array}$$

mit R^6 einen geradkettigen, cyclischen oder verzweigten C_1 - C_{18} Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit OH substituiert sein kann.

20 In einer weiteren Ausführungsform der vorliegenden Erfindung bedeutet R³ -CH₃, -CH₂CH₃, -(CH₂)₂CH₃, -(CH₂)₂CH₃, -(CH₂)₃CH₃, -(CH₂)₂CH₃, -(CH₂)₃CH₃

worin R⁶ ein geradkettiger, cyclischer oder verzweigter C₁-C₁₈-Kohlenwasserstoffrest ist, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann.

In einer weiteren Ausführungsform der vorliegenden Anmeldung bedeutet R⁴ ein zweiwertiger oder dreiwertiger geradkettiger, cyclischer oder verzweigter C₁-C₁₈-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann oder eine Einfachbindung zu Q¹ enthält, und die Reste n, R¹, R², R³, R⁵, R⁶, K, A, E, Q¹, Q², q und r haben die obengenamnte Bedeutung.

10

In einer weitern bevorzugten Ausführungsform bedeutet R^4 C_1 - C_6 -Alkyl, -CH₂CH=CH₂, -CH₂CH(OH)CH₂OCH₂CH=CH₂, -CH₂C=CH, -C(O)CH₃, -C(O)CH₂CH₃ und die Reste n, R^1 , R^2 , R^3 , R^5 , R^6 , K, A, E, Q^1 , Q^2 , q und r haben die obengenannte Bedeutung.

In einer weiteren bevorzugten Ausführungsform der vorleigenden Erfindung bedeutet K

5

10

15

20

25

30

35

und die Reste n, R¹, R², R³, R⁵, R⁶, A, E, Q¹, Q², q und r haben die obengenannte Bedeutung.

In einer weiteren Ausführungsform der vorliegenden Erfindung bedeutet R⁶ unsubstitutierte C₅-C₁₇-Kohlenwasserstoffreste, die sich von den entsprechenden gesättigten oder ungesättigten Fettäuren ableiten, und die Reste n, R¹, R², R³, R⁵, A, E, Q¹, Q², q und r haben die obengenannte Bedeutung.

Der Begriff " C_1 – C_2 -Alkyl oder C_1 – C_3 0-Kohlenwasserstoffrest" bedeutet im Rahmen der vorliegenden Erfindung aliphatische Kohlenstoffwasserstoffverbindungen mit 1 bis 22 Kohlenstoffatomen bzw. 1 bis 30 Kohlenstoffatomen die geradkettig oder verzweigt sein können. Beispielhaft seien Methyl, Ethyl, Propyl, n-Butyl, Pentyl, Hexyl, Heptyl, Nonyl, Decyl, Undecyl, iso-Propyl, Neopentyl, und 1,2,3 Trimethylhexyl aufgeführt.

Der Begriff "C₁-C₂₂-Fluoralkyl" bedeutet im Ramen der vorliegenden Erfindung aliphatische Kohlenstoffwasserstoffverbindungen mit 1 bis 22 Kohlenstoffatomen die geradkettig oder verzweigt sein können und mit mindestens einem Fluoratom substituiert sind. Beispielhaft seien Monofluormethyl, Monofluorethyl, 1,1,1-Trifluorethyl, Perflourethyl, 1,1,1-Trifluorpropyl, 1,2,2-Triflourbutyl aufgeführt.

- 5 Der Begriff "Aryl" bedeutet im Rahmen der vorliegenden Erfindung unsubstituierte oder ein oder mehrfach mit OH, F, Cl, CF₃ C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₃-C₇-Cycloalkyl C₂-C₆-Alkenyl oder Phenyl substituiertes Phenyl. Der Ausdruck kann gegebenenfalls auch Naphthyl bedeuten.
- 10 Ein weiterer Gegenstand der vorliegenden Erfindung ist es gewesen ein Verfahren zur Herstellung der Verbindungen der allgemeinen Formel (I) bzw. (I') zur Verfügung zu stellen.

Ausgangspunkt für die Synthesen der erfindungsgemäßen Verbindungen sind
15 monofunktionelle H-Siloxane der allgemeinen Strukturen

20

30

worin R¹ und n die oben angegebenen Bedeutungen haben. Sofern diese Verbindungen nicht kommerziell erhältlich sind, können diese Siloxane, besonders längerkettige Derivate, nach bekannten Verfahren hergestellt werden werden 25 (Silicone, Chemie und Technologie, Vulkan-Verlag, Essen 1989, S. 82-84).

Die sauer katalysierte Äquilibrierung von trimethylsilylterminierten Siloxanen, beispielsweise Hexamethyldisiloxan (MM), mit dimethylsiloxyreichen Verbindungen, beispielsweise Octamethylcyclotetrasiloxan (D₄) in Gegenwart entsprechender Mengen SiH haltiger, aber nicht SiH-endständiger Siloxane liefert Produkte, in denen die SiH-Funktion im Ketteninneren positioniert ist. Im Äquilibrierungsgleichgewicht werden zusätzlich Produkte gebildet, die pro Molekul über keine bzw. mehr als eine SiH-Funktion verfügen.

Die sauer katalysierte Äquilibrierung von α-SiH Verbindungen, von zum Beispiel Pentamethyldisiloxan (MM^H) mit dimethylsiloxyreichen Verbindungen, oder beispielsweise Octamethylcyclotetrasiloxan (D4) liefert monofunktionelle Produkte mit terminaler SiH-Funktion. Das Pentamethyldisiloxan kann zum Beispiel durch

äquimolare Mengen Hexamethyldisiloxan (MM) und Tetramethyldisiloxan (MHMH) ersetzt werden. Im Äquilibrierungsgleichgewicht werden zusätzlich Produkte gebildet. die pro Molekül über keine bzw. zwei terminale SiH-Funktion verfügen.

Die Äquilibrierung von cyclischen Siloxanen, wie Hexamethylcyclotrisiloxan (D3) oder Octamethylcyclotetrasiloxan (D4) mit Alkalitrimethylsilanolaten, z.B. Kaliumtrimethylsilanolat, liefert Oligosiloxanolate, die mit Dimethylchlorsilan zu den entsprechenden monofunktionellen Verbindungen mit terminaler SiH-Funktion reagieren. Im Äquilibrierungsgleichgewicht werden zusätzlich Produkte gebildet, die pro Molekül über keine bzw. zwei terminale Silanolatfunktionen verfügen. In der Konsequenz liegen ebenfalls Produkte vor, die über keine bzw. zwei terminale SiH-Funktion verfügen.

Im Rahmen der Erfindung werden neben streng definierten monofunktionellen 15 Verbindungen auch Mischungen der vorstehend beschriebenen Art als monofunktionelle SiH-Verbindungen behandelt.

Reaktive, alkylierende, monofunktionelle Siloxanverbindungen werden durch Hydrosilylierung von beispielsweise halogenierten Alkenen, speziell Allylchlorid und Allylbromid, ungesättigten Halogencarbonsäureestern, bevorzugt Chloressigsäureallylester, Chloressigsäurepropargylester, 3-Chlorpropionsäureallylester und 3-Chlorpropionsäurepropargylester und epoxyfunktionellen Alkenen, beispielsweise Vinylcyclohexenoxid und Allylglycidether, mit den vorstehend beschriebenen monofunktionellen SiH-Verbindungen synthetisiert. Die allgemeine Durchführung von Hydrosilvlierungen mit Vertretern der genannten Stoffgruppen ist ebenfalls bekannt (B.Marciniec, Comprehensive Handbook on Hydrosilvlation, Pergamon Press, Oxford 1992, S. 116-121, 127-130, 134-137, 151-155). Die sich anschließende Synthese sekundäre Aminofunktionen tragender Verbindungen des Typs ABA (ABA meint, das zwei Polysiloxaneinheiten über eine verbrückende Amin- bzw. Ammoniumstruktur verbunden sind) der allgemeinen Struktur

worin

20

30

35

S-K-Q¹-K-S Q¹ H

K und S die oben angegebenen Bedeutungen haben, erfolgt bevorzugt durch Alkylierung von zwei primären Aminogruppen aufweisenden Aminen, bespielsweise

13

α, ω-Alkylendiaminen, bevorzugt Ethylendiamin, 1,3-Propylendiamin, 1,6-Hexylendiamin, kurzkettige Ethylenoxid/Propylenoxideinheiten enthaltende diprimäre Amine, speziell Jeffamine[®] (Huntsman Corp.) der Typen Jeffamin EDR 148, Jeffamin ED 600, Jeffamin D 230, Jeffamin D 400, mit reaktiven, alkylierenden, im Sinne der Erfindung monofunktionellen Siloxanzwischenprodukten. Die Stöchiometrie der Reaktion zwischen dem di-primären Amin zu dem monofunktionelles Siloxan hat ein Verhältnis von 1:2.

Die Synthese tertiäre Aminofunktionen tragender Verbindungen des Typs ABA der 10 allgemeinen Struktur

S-K-Q¹-K-S worin
$$Q^1 \qquad \qquad \stackrel{R^2}{\stackrel{}{\downarrow}{}_{T}}$$

15

30

35

K und S die oben angegebenen Bedeutungen haben, erfolgt bevorzugt auf zwei Wegen. Einerseits ist es möglich, zunächst sekundäre Aminofunktionen tragende ungesättigte Strukturen, beispielsweise N-Methylallylamin oder CH₂=CHCH₂OCH₂CH(OH)CH₂NHCH₃, durch Hydrosilylierung direkt an das monfonktionelle Si-H Siloxan zu binden. Dieser Prozeß ist allgemein bekannt, und zum Beispiel von B.Marciniec, Comprehensive Handbook on Hydrosilylation, Pergamon Press, Oxford 1992, S. 122-124, beschrieben.

25 Diese gewonnenen sekundären Aminostrukturen können mit den reaktiven, alkylierenden Siloxanzwischenprodukten in einem nachfolgenden Schritt in tertiäre-Aminostrukturen tragende Polymere umgewandelt werden. Die Stöchiometrie dieser Reaktion hat ein Verhältnis von Aminosiloxan zu dem monofunktionellen Siloxan von etwa 1:1.

Alternativ zu der weiter oben ausgeführten schrittweisen Synthese können die tertiär aminofunktionalisierten Polymeren in einem Reaktionsschritt synthetisiert werden. Ausgangspunkt hierfür sind die behandelten reaktiven, alkylierenden Siloxanzwischenstufen, bevorzugt die Epoxidderivate, speziell die Allylglycidetherspezies. Diese können durch Reaktion mit primären Aminen, beispielsweise Methylamin, in einem molaren Verhältnis von vorzugsweise 2:1 in tertiäre Amine überführt werden.

14

Es können auch difunktionelle sekundäre Amine, zum Beispiel Piperazin, für die Reaktion verwendet werden. Hierbei beträgt das molare Verhältnis von sekundärer Aminogruppe zu der alkylierenden Gruppe, bevorzugt zu einer Epoxygruppe, vorzugsweise 1:1. Im Ergebnis einer derartigen Reaktionsführung werden Produkte erhalten, bei denen sich zwei tertiäre Aminogruppen zwischen den beiden Siloxanblöcken befinden.

Die Synthese von ein – oder mehrfachquarternärer Polsiloxanen des Typs ABA der allgemeinen Struktur

10

15

20

worin

bedeutet, erfolgt ausgehend von tertiären Aminofunktionen enthaltenden Siloxanderivaten auf verschiedenen Wegen. Es ist einerseits bevorzugt, die oben beschriebenen reaktiven, monofunktionellen Siloxanderivate, bevorzugt die epoxyfunktionellen Derivate, mit sekundären Aminen, beispielsweise Dimethylamin oder Morpholin, in tertiäre Amine zu überführen, welche dann in einem nachfolgenden Schritt mit einem zweiten Mol reaktiver, monofunktioneller Siloxanverbindung zu den quartemären Produkten reagieren. Für beide Reaktionsschritte sind molare Verhältnisse von 1: 1 bevorzugt.

- 25 Die Verwendung sekundär-tertiärer Diamine eröffnet die Möglichkeit, regioselektiv Kombinationen von tertiären Aminen und quaternären Strukturen zu erzeugen. Die Alkylierung von Aminen des Typs N-Methylpiperazin mit bevorzugt einem Mol epoxyfunktionellem Siloxan liefert di-tertiäre Aminosiloxane, die von einem zweiten Mol reaktiver, monofunktioneller Siloxankomponente, beispielsweise einem 30 Halogencarbonsäureesterderivat, am methylierten Stickstoffatom quaterniert werden. Ein Überschuß an der reaktiven, monofunktionellen Siloxankomponente bzw. der Zuführung eines weiteren Alkylierungsagenz führt zu einer beginnenden Alkylierung des zweiten Stickstoffatoms.
 - 5 Die durch Alkylierung von sekundären Aminen, beispielsweise Dimethylamin, oder sekundär-tertiären Diaminen, beispielsweise N-Methylpiperazin, mit bevorzugt einem Mol epoxyfunktionellem Siloxan zugänglichen tertiären bzw. di-tertiären Aminosiloxane können in einer bevorzugten Ausführungsform mit difunktionellen

15

Alkylierungsagenzien im molaren Verhältnis 2:1 umgesetzt werden. Im Ergebnis einer solchen Reaktion werden zwei quarternäre Ammoniumgruppen oder zwei quarternäre Ammoniumgruppen in Nachbarschaft zu jeweils einer tertiären Aminogruppe über einen einkettigen Spacer miteinander verbunden. Geeignete Alkylierungsmittel für diesen Zweck sind Dihalogenalkane, Diepoxyverbindungen in Gegenwart von Säuren, α,ω-Dihalogenoligoalkylenoxide oder Dihalogencarbonsäureesster von Alkylenoxiden.

Bevorzugte Ausgangsmaterialien für α,ω-Dihalogenalkylenoxide und
10 Dihalogencarbonsäureester sind niedermolekulare, oligomere und polymere
Alkylenoxide der allgemeinen Zusammensetzung

HO[CH2CH2O],-JCH2CH(CH1)O],H

worin q und r die oben angegebenen Bedeutungen aufweisen. Bevorzugte Vertreter sind Diethylenglycol, Triethylenglycol, Tetraethylenglycol, die Oligoethylenglycole mit Molgewichten von 300 bis 1000 g/mol, bevorzugt 400, 600 und 800, sowie Dipropylenglycol. α,ω-Dihalogenalkylenoxide können in an sich bekannter Weise z.B. durch Halogenierung mit Thionylchlorid erzeugt werden.

20

Die Versterung erfolgt in an sich bekannter Weise (Organikum, Organischchemisches Grundpraktikum, 17. Auflage, VEB Deutscher Verlag der Wissenschaften, Berlin 1988, S. 402-408) durch Reaktion mit den C₂-C₄-Halogencarbonsäuren, deren Anhydriden oder Säurechloriden.

25

Die vorstehend beschriebenen, bevorzugt auf Piperazin beruhenden, Derivate mit zwei tertiären Aminogruppen zwischen den beiden Siloxanblöcken können ebenfalls in quarternäre Ammoniumsalze überführt werden. Über das molare Verhältnis der beiden tertiären Aminogruppen, die zwischen den zwei Siloxanblöcken eingebunden sind, zu den Alkylierungsagenzien wird der Quaternierungsgrad gesteuert. Es wird bevorzugt, bei äquimolarer Arbeitsweise Produkte zu synthetisieren, in denen alle tertiären Amine in quarternäre Ammoniumfunktionen überführt werden. Andererseits kann es von Vorteil sein, durch einen gezielten Unterschuß an Alkylierungsagenz einen Teil der tertiären Aminofunktionen zu erhalten.

35

Vorteilhafte Alkylierungsagenzien sind beispielsweise Epoxydrivate in Gegenwart von Säuren, Alkylhalogenide oder Halogenearbonsäureester, bevorzugt Halogenearbonsäureester der Alkylenoxide.

16

Bevorzugte Ausgangsmaterialien für diese Alkylierungsmittel sind niedermolekulare, oligomere und polymere Alkylenoxide der allgemeinen Zusammensetzung

HO[CH2CH2O]o-[CH2CH(CH3)O],R4

5

15

25

30

35

worin q, r und R⁴ die oben angegebene Bedeutung aufweisen. Bevorzugte Vertreter sind die entsprechend monosubstituierten Derivate von Diethylenglycol, Triethylenglycol, Tetraethylenglycol, der Oligoethylenglycole mit Molgewichten von 300 bis 1000 g/mol, bevorzugt 400, 600 und 800, sowie Dipropylenglycol. Die Herstellung dieser Ether und Ester erfolgt in bekannter Weise durch sauer oder alkalisch katalysierte Addition von Ethylenoxid und/oder Propylenoxid an die entsprechenden Alkohole (Organikum, Organisch-chemisches Grundpraktikum, 17. Auflage, VEB Deutscher Verlag der Wissenschaften, Berlin 1988, S. 259; US 5625024) oder Carbonsäuren (E.Sung, W. Umbach, H. Baumann, Fette Seifen Anstrichmittel 73, 88 [1971]).

Die nachfolgende Synthese der Halogencarbonsäureester erfolgt in an sich bekannter Weise (Organikum, Organisch-chemisches Grundpraktikum, 17. Auflage, VEB Deutscher Verlag der Wissenschaften, Berlin 1988, S. 402-408) durch Reaktion mit den C₂-C₄-Halogencarbonsäuren, deren Anhydriden oder Säurechloriden. Die selektive Synthese hydroxyfunktioneller Halogencarbonsäureester, in denen R⁴ Wasserstoff entspricht, gelingt durch Addition von Ethylenoxid und/oder Propylenoxid an die entsprechenden Halogencarbonsäuren unter sauren Bedingungen.

Mit der Einführung von mehr als einer tertiären Aminofunktion zwischen den Siloxanblöcken, z.B. durch Piperazinstrukturen, ergibt sich in der Folge die Möglichkeit, die Hydrophilie und das Aufziehverhalten auf Oberflächen in erweiterten Grenzen durch das Verhältnis des tertiären Amins zu der quaternären Struktur einzustellen. Es liegt im Rahmen der Erfindung, mehrere Siloxankomponenten und/oder Alkylierungsagenzien unter Beibehaltung der gewünschten Gesamtstöchiometrie zur Reaktion zu bringen. Es folgt hieraus z.B.die Möglichkeit, eine gewünschte Siloxankettenlänge durch Einsatz einer einzigen Siloxankomponente oder aber durch Mischung gezielte mehrerer Siloxankomponenten einzustellen.

Als Anionen kommen bevorzugt die während der Quaternierung gebildeten Halogenidionen, speziell Chloridionen, in Betracht. Durch Ionenaustauschreaktionen

17

können auch andere Anionen verwendet werden. Beispielhaft seien organische Anionen, wie Carboxylate, Sulfonate, Sulfate, Polyethercarboxylate und Polyethersulfate aufgeführt.

5 Die Alkylierungsreaktionen werden bevorzugt in polaren organischen Lösungsmitteln ausgeführt. Geeignet sind zum Beispiel Alkohole aus der Gruppe bestehend aus Methanol, Ethanol, i-Propanol und n-Butanol; Giycole aus der Gruppe bestehend aus Ethylenglycol, Diethylenglycol, Triethylenglycol, die Methyl-, Ethyl- und Butylether der genannten Glycole, 1,2-Propylenglycol und 1,3-Propylenglycol, Ketone, wie 10 Aceton und Methylethylketon, Ester, wie Ethylacetat, Butylacetat und 2-Ethylhexylacetat, Ether, wie Tetrahydrofuran und Nitroverbindungen, wie Nitromethan. Die Wahl des Lösungsmittels richtet sich im Wesentlichen nach der Löslichkeit der Reaktionspartner und der angestrebten Reaktionstemperatur. Die Reaktionen werden im Bereich von 20 °C bis 130 °C, vorzugsweise 40 °C bis 100 °C ausgeführt.

15

20

25

Die erfindungsgemäßen Produkte, welche in sich die weichmachenden Eigenschaften von Siloxanstrukturen und die Tendenz von Aminostrukturen bzw. quarternären Ammoniumgruppen zur Adsorption an negativ geladenen Festkörperoberflächen vereinen, können mit Erfolg eingesetzt werden in kosmetischen Formulierungen für die Haut- und Haarpflege, in Polituren für die Behandlung und Ausrüstung harter Oberflächen, in Formulierungen zum Trocknen von Automobilen und anderen harten Oberflächen nach maschinellen Wäschen, zur Ausrüstung von Textilen und Textilfäsern, als separate Weichmacher nach dem Waschen von Textilien mit nichtionogenen oder anionischen/nichtionogen Detergenzienformulierungen, als Weichmacher in auf nichtionischen oder anionischen/nichtionischen Tensiden beruhenden Formulierungen zur Textilwäsche.

Aminoderivate können hierbei in Abhängigkeit vom pH-Wert in Form der Amine oder Aminsalze eingesetzt werden.

30

Die Erfindung betrifft des weiteren die Verwendung der vorstehend beschriebenen Polysiloxanverbindungen in kosmetischen Formulierungen für die Haut- und Haarpflege, in Polituren für die Behandlung und Ausrüstung harter Oberflächen, in Formulierungen zum Trocknen von Automobilen und anderen harten Oberflächen, zum Beispiel nach maschinellen Wäschen, zur Ausrüstung von Textilien und Textilfasern, als separate Weichmacher nach dem Waschen von Textilien mit nichtionogenen oder anionischen/nichtionogen Detergenzienformulierungen, als

18

Weichmacher in auf nichtionischen oder anionischen/nichtionischen Tensiden beruhenden Formulierungen zur Textilwäsche, sowie als Mittel zur Verhinderung bzw. Rückgängigmachung von Textilverknitterungen.

5 Die Erfindung betrifft des weiteren die Verwendung der vorstehend beschriebenen Polysiloxanverbindungen als waschbeständige hydrophile Weichmacher für die textile Erstausrüstung.

Ferner betrifft die Erfindung Zusammensetzungen, die mindestens eine der 10 Polysiloxanverbindungen zusammen mit mindestens einem weiteren für die Zusammensetzung üblichen Inhaltistoff enthält.

Im folgenden sind einige typische Beispiele für derartige Zusammensetzungen gegeben, in denen die Polysiloxanverbindungen der Erfindung vorteilhaft verwendet werden können.

Typische Hilfsstoffe in derartigen Zusammensetzungen sind z.B. diejenigen Stoffe, die in A. Domsch: Die kosmetischen Präparate Bd. I u. II 4. Aufl. Verl. für chem. Industrie, H. Ziolkowsky KG, Augsburg sowie International Cosmetic Ingredient Dictionary and Handbook 7th Ed. 1997 by J.A. Wenniger, G.N. McEwen Vol. 1-4 by The Cosmetic, Toiletry and Fragrance Association Washington DC bzw. unter http://www.cosmetic-world.com/inci/Incialf.htm beschrieben sind.

Anionisches Shampoo

15

Das Formulierungsbeispiel ist als Rahmenrezeptur gedacht. <u>Anionisches Shampoo</u> enthalten üblicherweise die folgenden Komponenten, ohne auf diese beschränkt zu sein:

Alkylsulfate, Alkylethersulfate, Natriumlaurylsulfat, Natriumlauryl-ethersulfat, Ammoniumlaurylsulfat, Ammoniumlauryl-ethersulfat, TEA-laurylsulfat, TEA-lau

19

	Komponente	%
	Ammoniumlaurylsulfat	10.00 - 30.00
	Ammoniumlauryl-ethersulfat	5.00 - 20.00
5	Cocamidopropyl Betaine	0.00 - 15.00
	Lauramid DEA	0.00 - 5.00
	Cocamid Mea	0.00 - 5.00
	Dimethicone Copolyol (Dimethylsiloxanglykolcopolymer)	0.00 - 5.00
	Cyclopentasiloxane	0.00 - 5.00
10	Erfindungsgemäße Polysiloxanverbindung	0.50 - 5.00
	Polyquaternium-10	0.00 - 2.00
	Konservierungsmittel	0.00 - 0.50
	Duftstoffe	0.00 - 5.00
	Entionisiertes Wasser	q.s. 100%
15	Natriumchlorid	q.s.

Nichtionisches Shampoo

Das Formulierungsbeispiel ist als Rahmenrezeptur gedacht. <u>Nichtionische Shampoos</u> enthalten üblicherweise die folgenden Komponenten, ohne auf diese beschränkt zu

20 sein:

Monoalkanolamide, Monoethanolamide, Monoisopropanolamide, Polyhydroxyderivative, Sucrosemonolaurat, Polyglycerinether, Aminoxide, Polyethoxylierte Derivative, Sorbitanderivative, Silicone, etc.

25	Komponente		%
	Lauramid DEA		10.00 - 30.00
	Lauramid-Oxid		5.00 - 20.00
	Cocamid Mea		0.00 - 5.00
	Dimethicone Copolyol		0.00 - 5.00
30	Erfindungsgemäße Polysiloxanverbindung		0.50 - 5.00
	Konservierungsmittel		0.00 - 0.50
	Duftstoffe	•	0.00 - 5.00
	Entionisiertes Wasser		q.s. 100%

20

Natriumchlorid

10

q.s.

Amphoteres Shampoo

Das Formulierungsbeispiel ist als Rahmenrezeptur gedacht. Formulierungen dieser

Kategorie enthalten üblicherweise die folgenden Komponenten, ohne auf diese
beschränkt zu sein:

N-Alkyl-iminodipropionate, N-Alkyl-iminopropionate, Aminosäuren, Aminosäurederivative, Amidobetaine, Imidazoliniumderivative, Sulfobetaine, Sultaine, Betaine, Silicone etc.

	Komponente	%
	PEG-80-sorbitanlaurat	10.00 - 30.00
	Lauroamphoglycinat	0.00 - 10.00
15	Cocamidopropyl-Hydroxysultain	0.00 - 15.00
	PEG-150-distearat	0.00 - 5.00
	Laurylether-13-carboxylat	0.00 - 5.00
	Erfindungsgemäße Polysiloxanverbindung	0.50 - 5.00
	Duftstoffe	0.00 - 5.00
20	Entionisiertes Wasser	q.s. 100%
	Natriumchlorid	a.s.

Kationisches Shampoo

Das Formulierungsbeispiel ist nur als Rahmenrezeptur gedacht. Formulierungen 25 dieser Kategorie enthalten die folgenden Komponenten, ohne auf diese beschränkt zu sein:

Bis-Quartäre Ammoniumverbindungen, Bis-(trialkylammoniumacetyl)diamine, Amidoamine, Ammonioalkylester, Silicone etc.

30	Komponente	%
	Laurylether-13-carboxylat	10.00 - 30.00
	Isopropylmyristat	5.00 - 20.00
	Cocamidopropyl-Betaine	0.00 - 15.00

21

	Lauramid DEA	0.00 - 5.00
	Cocamid MEA	0.00 - 5.00
	Erfindungsgemäße Polysiloxanverbindung	0.50 - 5.00
	Konservierungsmittel	0.00 - 0.50
5	Duftstoffe	0.00 - 5.00
	Entionisiertes Wasser	q.s. 100%
	Natriumchlorid	q.s.

Festiger

15

10 Das Formulierungsbeispiel ist nur als Rahmenrezeptur gedacht. Formulierungen dieser Kategorie enthalten üblicherweise die folgenden Komponenten, ohne auf diese beschränkt zu sein:

Fettsäuren, Fettsäureester, Ethoxylierte Fettsäuren, Ethoxylierte Fettsäureester, Fettalkohole, Ethoxylierte Fettalkohole, Glycole, Glycolester, Glycerin, Glycerinester, Lanolin, Lanolinderivative, Mineralöl, Petrolatum, Lecithin, Lecithinderivative, Wachse, Wachsderivative, Kationische Polymere, Proteine, Proteinderivative, Aminosäuren, Aminosäurederivative, Feuchthaltemittel, Verdickungsmittel, Silicone etc.

20	Komponente	%
	Ceteareth-20	0.10 - 10.00
	Steareth-20	0.10 - 10.00
	Stearyl-Alkohol	0.10 - 10.00
	Stearamidopropyl-Dimethylamin	0.00 - 10.00
25	Dicetyldimonium-Chlorid .	0.00 - 10.00
	Erfindungsgemäße Polysiloxanverbindung	0.50 - 5.00
	Cyclopentasiloxan	0.00 - 5.00
	Dimethicone	0.00 - 5.00
	Konservierungsmittel	0.00 - 0.50
30	Duftstoffe	0.00 - 5.00
	Entionisiertes Wasser	q.s. 100%

22

"Clear Rinse -Off"-Festiger

Das Formulierungsbeispiel ist als Rahmenrezeptur gedacht. Formulierungen dieser Kategorie enthalten üblicherweise die folgenden Komponenten, ohne auf diese beschränkt zu sein:

5 Fettsäuren, Fettsäureester, Ethoxylierte Fettsäuren, Ethoxylierte Fettsäureester, Fettalkohole, Ethoxylierte Fettalkohole, Glycole, Glycolester, Glycerin, Glycerinester, Lanolin, Lanolinderivative, Mineralöl, Petrolatum, Lecithin, Lecithinderivative, Wachse, Wachsderivative, Kationische Polymere, Proteine, Proteinderivative, Aminosäuren, Aminosäurederivative, Feuchthaltemittel,
10 Verdickungsmittel, Silicone etc.

 Komponente
 %

 Glycerin
 0.10 - 10.00

 Cetrimonium-Chlorid
 0.00 - 10.00

 Erfindungsgemäße Polysiloxanverbindung
 0.50 - 5.00

 Hydroxyethylcellulose
 0.00 - 5.00

 Konservierungsmittel
 0.00 - 0.50

 Duftstoffe
 0.00 - 5.00

20

25

30

15

Schaumfestiger für Haare

Entionisiertes Wasser

Das Formulierungsbeispiel ist als Rahmenrezeptur gedacht. Formulierungen dieser Kategorie enthalten die folgenden Komponenten, ohne auf diese beschränkt zu sein: Fettsäuren, Fettsäureester, Ethoxylierte Fettsäuren, Ethoxylierte Fettsäureester, Fettalkohole. Ethoxylierte Fettalkohole, Glycole, Glycolester, Glycerinester, Lanolin, Lanolinderivative, Mineralöl, Petrolatum, Lecithin, Lecithinderivative. Wachse, Wachsderivative, Kationische Polymere, Proteine, Proteinderivative. Aminosäuren. Aminosäurederivative. Feuchthaltemittel, Verdickungsmittel. Silicone Lösungsmittel. Ethanol. Isopropanol. Isoparaffinlösungsmittel, Butan, Propan, Isobutan, CFCs. Fluorierte

Aereosoltreibmittel, Dimethylether, komprimierte Gase, etc.

a.s. 100%

23

	Komponente	%
	Erfindungsgemäße Polysiloxanverbindung	0.50 - 5.00
	Nonoxynol-15	0.00 - 2.00
	Nonoxynol-20	0.00 - 2.00
5	Duftstoffe	0.00 - 5.00
	Aereosoltreibmittel	0.00 - 20.00
	Konservierungsmittel	0.00 - 0.50
	Entionisiertes Wasser	q.s. 100%

10 Pumpspray (Festiger) für Haare

Das Formulierungsbeispiel ist nur als Rahmenrezeptur gedacht. Formulierungen dieser Kategorie enthalten üblicherweise die folgenden Komponenten, ohne auf diese beschränkt zu sein:

Fettsäuren, Fettsäureester, Ethoxylierte Fettsäuren, Ethoxylierte Fettsäureester, Ethoxylierte Fettalkohole, Glycole. Glycolester, Glycerin, Glycerinester, Lanolin, Lanolinderivative, Mineralöl, Petrolatum, Lecithin, Lecithinderivative, Wachse, Wachsderivative, Kationische Polymere, Proteine, Proteinderivative. Aminosäuren. Aminosäurederivative, Feuchthaltemittel. Verdickungsmittel. Silicone Lösungsmittel, Ethanol, Isopropanol,

20 Isoparaffinlösungsmittel, etc.

15

	Komponente	%
	Erfindungsgemäße Polysiloxanverbindung	0.50 - 5.00
	Cyclomethicone	0.00 - 80.00
25	Ethanol	0.00 - 80.00
	Konservierungsmittel	0.00 - 0.50
	Duftstoffe	0.00 - 5.00
	Entionisiertes Wasser	q.s. 100%

30 Festigerspray für Haare

Das Formulierungsbeispiel ist als Rahmenrezeptur gedacht. Formulierungen dieser Kategorie enthalten üblicherweise die folgenden Komponenten, ohne auf diese beschränkt zu sein:

24

Fettsäuren, Fettsäureester, Ethoxylierte Fettsäuren, Ethoxylierte Fettsäureester. Ethoxylier\(\text{e} Fettalkohole, Glycole, Glycolester, Glycerin, Glycerinester, Lanolin, Lanolinderivative, Mineralöl, Petrolatum, Lecithin, Lecithinderivative, Wachse, Wachsderivative, Kationische Polymere, Proteine, Proteinderivative. Aminosäuren. Aminosäurederivative. Feuchthaltemittel. Verdickungsmittel. Silicone Lösungsmittel, Ethanol. Isopropanol. Isoparaffinlösungsmittel, Butan. Propan. Isobutan. CFCs, Fluorierte Aereosoltreibmittel, Dimethylether, Komprimierte Gase, etc.

10	Komponente	%
	Erfindungsgemäße Polysiloxanverbindung	0.50 - 5.00
	Cyclomethicone	0.00 - 80.00
	Ethanol	0.00 - 50.00
	Aereosoltreibmittel	0.00 - 50.00
15	Konservierungsmittel	0.00 - 0.50
	Duftstoffe	0.00 - 5.00
	Entionisiertes Wasser	g.s. 100%

Gelfestiger für Haare

25

20 Das Formulierungsbeispiel ist als Rahmenrezeptur gedacht. Formulierungen dieser Kategorie enthalten üblichwerweise die folgenden Komponenten, ohne auf diese beschränkt zu sein:

Verdickungsmittel, Cellulosederivative, Acrylsäurederivative, Fixativ-Polymere, Konditionierungschemikalien, Glykole, Glykolester, Glycerin , Glycerinester, Lanolin, Lanolinderivative, Mineralöl, Petrolatum, Lecithin, Lecithinderivative, Wachse, Wachsderivative, Kationische Polymere, Proteine, Proteinderivative, Aminosäuren, Aminosäurederivative, Feuchthaltemittel, Silicone, Lösungsmittel, Ethanol, Isopropanol, Isoparaffin-Lösungsmittel etc.

30	Komponente	%
	Erfindungsgemäße Polysiloxanverbindung	0.50 - 5.00
	Hydroxyethylcellulose	0.00 - 2.00
	Duftstoffe	0.00 - 5.00

25

Konservierungsmittel	0.00 - 0.50
Zitronensäure	0.00 - 2.00
Entionisiertes Wasser	q.s. 100%

5 Styling Gel für Haare

Das Formulierungsbeispiel ist als Rahmenrezeptur gedacht. Formulierungen dieser Kategorie enthalten üblicherweise die folgenden Komponenten, ohne auf diese beschränkt zu sein:

Fixativ-Polymere, Lacke, Acrylisäurederivative, Cellulosederivative, Vinylderivative,

Konditionierungschemikalien, Glykole, Glykolester, Glycerin , Glycerinester,

Lanolin, Lanolinderivative, Mineralöl, Petrolatum, Lecithin, Lecithinderivative,

Wachse, Wachsderivative, Kationische Polymere, Proteine, Proteinderivative,

Aminosäuren, Aminosäurederivative, Feuchthaltemittel, Verdickungsmittel, Silicone,

Lösungsmittel, Ethanol, Isopropanol, Isoparaffin-Lösungsmittel etc.

15

20

Komponente	%
Erfindungsgemäße Polysiloxanverbindung	0.50 - 5.00
Fixative	0.10-10.00
Hydroxyethylcellulose	0.00 - 2.00
Duftstoffe	0.00 - 5.00
Zitronensäure	0.00 - 2.00
Entionisiertes Wasser	a.s. 100%

Styling Spray für Haare

25 Das Formulierungsbeispiel ist als Rahmenrezeptur gedacht. Formulierungen dieser Kategorie enthalten üblicherweise die folgenden Komponenten, ohne auf diese beschränkt zu sein:

Fixativ-Polymere, Lacke, Vinylderivative, Fettsäuren, Fettsäureester, Ethoxylierte
Fettsäuren, Ethoxylierte Fettsäureester, Fettalkohole, Ethoxylierte Fettalkohole,
Glykole, Glykolester, Glycerin , Glycerin-Ester, Lanolin, Lanolinderivative, Mineral
öl, Petrolatum, Lecithin, Lecithinderivative, Wachse, Wachsderivative, Kationische
Polymere, Proteine, Proteinderivative, Aminosäuren, Aminosäurederivative,
Feuchthaltemittel, Verdickungsmittel, Silicone, Lösungsmittel, Ethanol, Isopropanol,

26

Isoparaffinlösungsmittel, Butan, Propan, Isobutan, CFCs, Fluorierte Aerosoltreibmittel, Dimethylether, Komprimierte Gase, etc.

	Komponente	%
5	Erfindungsgemäße Polysiloxanverbindung	0.50 - 5.00
	Cyclomethicone	0.00 - 80.00
	Fixative	0.10 - 10.00
	Ethanol	0.00 - 50.00
	Aerosoltreibmittel	0.00 - 50.00
10	Konservierungsmittel	0.00 - 0.50
	Duftstoffe	0.00 - 5.00
	Entionisiertes Wasser	q.s. 100%

Pumpspray (Styling) für Haare

Das Formulierungsbeispiel ist als Rahmenrezeptur gedacht. Formulierungen dieser Kategorie enthalten üblicherweise die folgenden Komponenten, ohne auf diese beschränkt zu sein:

Vinylderivative, Fixativ-Polymere, Lacke, Fettsäuren, Fettsäureester, Ethoxylierte
Fettsäuren, Ethoxylierte Fettsäureester, Fettalkohole, Ethoxylierte Fettalkohol,

Glykole, Glykolester, Glycerin , Glycerinester, Lanolin, Lanolinderivative, Mineralöl,
Petrolatum, Lecithin, Lecithinderivative, Wachse, Wachsderivative, Kationische
Polymere, Proteine, Proteinderivative, Aminosäuren, Aminosäurederivative,
Feuchthaltemittel, Verdickungsmittel, Silicone, Lösungsmittel, Ethanol, Isopropanol,
Isoparaffinlösungsmittel, Butan, Propan, Isobutan, CFCs, Fluorierte

25 Aerosoltreibmittel, Dimethylether, komprimierte Gase, etc.

	Komponente	%
	Erfindungsgemäße Polysiloxanverbindung	0.50 - 5.00
	Fixative	0.10-10.00
30	Cyclomethicone	0.00 - 80.00
	Ethanol	0.00 - 50.00
	Konservierungsmittel	0.00 - 0.50
	Duftstoffe	0.00 - 5.00

27

Entionisiertes Wasser

q.s. 100%

Die Verwendung der erfindungsgemäßen Polysiloxanderivate führt bei Anwendung im Haarkosmetikbereich zu günstigen Effekten hinsichtlich Festigung, Glanz, Fixierung (Halt), Körper, Volumen, Feuchtigkeitsregulierung, Farbretention, Schutz vor Umwelteinflüssen (UV, Salzwasser u.s.w.), Wiederformbarkeit, Antistatischen Eigenschaften, Färbbarkeit etc.

28

Beispiele

Die nachfolgenden Beispiele dienen der näheren Erläuterung der vorliegenden Erfindung, ohne sie jedoch einzuschränken

5

10

Beispiel 1

1a) 33,7 g (0,1 mol) eines Epoxysiloxans der Formel

15

20

und 10,1g (0,1 mol) N-Methylpiperazin wurden in 40 ml i-Propanol gelöst und 7 Stunden auf Rückflußtemperatur erhitzt. Das Lösemittel destillierte man nach dem Reaktionsende im Wasserstrahl- und anschließend im Ölpumpenvakuum ab. Es wurden 39 g einer klaren, hellbraunen Flüssigkeit der Struktur

25

30

erhalten. Gemäß einer gaschromatographischen Analyse wurde das Epoxid quantitativ in das Piperazinderivat überführt.

1b) 497 g (8,87 mol) CH CCH₂OH wurden unter Stickstoff bei Raumtemperatur vorgelegt. Unter intensiven Rühren wurden innerhalb 1 Stunde 955 g (8,45 mol) Chloressigsäurechlorid zugetropft. Während des Zutropfens stieg die Temperatur auf 60 °C an und eine intensive HCl-Entwicklung setzte ein. Der Ansatz färbte sich schwarz. Nach Beendigung des Zutropfens wurde der Ansatz 1 Stunde auf 130 °C erhitzt. Eine fraktionierte Destillation ergab als Hauptlauf 891g eines leicht gelblichen

Öls der Struktur CH CCH₂OC(O)CH₂Cl mit einem Siedepunkt von 179-181 °C. Die gaschromatographisch bestimmte Reinheit des Esters betrug 99%.

13C-NMR:

Substruktur	shift (ppm)
Cl <u>C</u> H ₂ C(O)OCH ₂ C CH	40,4
ClCH ₂ C(O)OCH ₂ C CH	166,5
ClCH ₂ C(O)O <u>C</u> H ₂ C CH	53,1
ClCH ₂ C(O)OCH ₂ C CH	76,4
ClCH ₂ C(O)OCH ₂ C <u>C</u> H	75,6

5

10

1c) 26,5 g (0,2 mol) des Chloressigsäureesters gemäß Beispiel 1b und 44 mg einer 3,43 % Pt enthaltenden Lamoreaux-Katalysatorlösung gemäß US 3 220 972 wurden bei Raumtemperatur unter Stickstoff vorgelegt. Innerhalb 30 Minuten wurden 48,8 g (0,22 mol) 1,1,1,3,5,5,5-Heptamethyltrisiloxan (M₂D^H) zugetropft und die Temperatur auf 60 °C erhöht. Im Anschluß wurde der Ansatz 4 Stunden auf 100 °C erhitzt. Nach dem Abdestillieren aller bis 120 °C und bei 2hPa siedenden Bestandteile wurden 64,5 g einer gelblichen Filüssigkeit erhalten. Gemäß einer gaschromatographischen Analyse enthielt das Produkt zu 85 % das Zielprodukt

15

20 und 15 % des Heptamethyltrisiloxanylesters der Chloressigsäure.

¹³C-NMR des Si-C verknüpften Zielproduktes

Substruktur	shift (ppm)
Cl <u>C</u> H ₂ C(O)OCH ₂ CH=CH-Si	40,3
ClCH ₂ C(O)OCH ₂ CH=CH-Si	166,7
ClCH ₂ C(O)O <u>C</u> H ₂ CH=CH-Si	67,8
ClCH ₂ C(O)OCH ₂ CH=CH-Si	144,4
ClCH ₂ C(O)OCH ₂ CH=CH-Si	126,6

1d) 21,8 g (0,05 mol) des siloxanylmodifizierten Piperazinderivates gemäß Beispiel
1a) und 17,7 g (0,05 mol) des Chloressigsäureesterderivates gemäß Beispiel 1c)
wurden unter Stickstoff in 50 ml Methylpropylketon aufgenommen und 6 Stunden auf
Rückflußtemperatur erhitzt. Nach Beendigung der Reaktion wurden alle bis 100 °C

und bei 4 hPa siedenden Bestandteile im Vakuum entfernt. Es wurden 35,7 g einer zähen, braunen Masse der Struktur

10

5

erhalten.

¹³C-NMR des Si-C verknüpften Zielproduktes

Substruktur	shift (ppm)
-CH(OH)CH2NCH2CH2N [†] (CH3)CH2C(O)OCH2CH=CH-Si	65,7
-CH(OH)CH2NCH2CH2N [†] (CH3)CH2C(O)OCH2CH=CH-Si	51,2
-CH(OH)CH ₂ NCH ₂ CH ₂ N ⁺ (CH ₃)CH ₂ C(O)OCH ₂ CH=CH-Si	46,4
-CH(OH)CH2NCH2CH2N [†] (CH3)CH2C(O)OCH2CH=CH-Si	60,3
-CH(OH)CH2NCH2CH2N [†] (CH3)CH2C(O)OCH2CH=CH-Si	52,8
-CH(OH)CH ₂ NCH ₂ CH ₂ N [*] (CH ₃) <u>C</u> H ₂ C(O)OCH ₂ CH=CH-Si	61,0
-CH(OH)CH2NCH2CH2N [†] (CH3)CH2 <u>C(</u> O)OCH2CH=CH-Si	169,0
-CH(OH)CH ₂ NCH ₂ CH ₂ N † (CH ₃)CH ₂ C(O)OCH ₂ CH=CH-Si	66,5
-CH(OH)CH2NCH2CH2N [†] (CH3)CH2C(O)OCH2CH=CH-Si	144,1
-CH(OH)CH2NCH2CH2N ¹ (CH3)CH2C(O)OCH2CH= <u>C</u> H-Si	126,0

Beispiel 2

15

2a) 238 g (2,24 mol) Diethylenglycol wurden unter Stickstoff bei Raumtemperatur vorgelegt. Unter intensiven Rühren tropfte man innerhalb einer Stunde 558 g (4,93 mol) Chloressigsäurechlorid zu. Während des Zutropfens stieg die Temperatur auf 82 °C an und eine starke HCl-Entwicklung setzte ein. Nach Beendigung des Zutropfens wurde der Ansatz 30 Minuten auf 130 °C erhitzt. Abschließend wurden alle bis 130 °C und bei 20 hPa siedenden Bestandteile abdestilliert. Man erhielt 566g eines hellgelben Öls der Zusammensetzung

CICH2C(O)OCH2CH2OCH2CH2OC(O)CH2CI

CICH2-C(O)-OCH2CH2-

68.6

¹³ C-NMR:	
Substruktur	shift (ppm)
Cl <u>C</u> H₂-	40,7
ClCH ₂ - <u>C(</u> O)-	167,1
ClCH2-C(O)-OCH2-	65.2

2b) 21,8 g (0,05 mol) der siloxanylmodifizierten Piperazinverbindung gemäß Beispiel 5 la) und 6,46 g (0,025 mol) des Chloressigsäureesterderivates gemäß Beispiel 2a) wurden unter Stickstoff in 100 ml i-Propanol gelöst und 10 Stunden auf Rückflußtemperatur erhitzt. Nach Beendigung der Reaktion wurden alle Bestandteile die bis 70 °C und bei 20 hPa siedeten entfernt. Man erhielt 26,1 g einer harten, amorphen, gelb-braunen Masse der Formel

(Die Verbindung entspricht folgender Definition des Anspruchs:

$$R^1 = Methyl$$

n = 0

10

15

20

25

30

K (linksseitig) =

Mit R3 = Methyl und R2= Bindung an K

K (rechtsseitig) =

Q2<K'

5 Mit Q2 =

10 Mit R3 = Methyl

Und R5 = $-CH_2-CO-O-CH_2CH_2OCH_2CH_2O-CO-CH_2-$

K' =

15

20

25

13C-NMR

Substruktur	shift (ppm)
- <u>C</u> H(OH)-CH ₂ -N-CH ₂ -CH ₂ -N ⁺ -CH ₂ -C(O)-	66,0
-CH(OH)- <u>C</u> H ₂ -N-CH ₂ -CH ₂ -N ⁺ -CH ₂ -C(O)-	52,5
-CH(OH)-CH ₂ -N- <u>C</u> H ₂ -CH ₂ -N ⁺ -CH ₂ -C(O)-	45,6
-CH(OH)-CH ₂ -N-CH ₂ - <u>C</u> H ₂ -N ⁺ -CH ₂ -C(O)-	60,4
-CH(OH)-CH ₂ -N-CH ₂ -CH ₂ -N ⁺ -CH ₂ -C(O)-	61,3
-CH(OH)-CH ₂ -N-CH ₂ -CH ₂ -N ⁺ -CH ₂ - <u>C(</u> O)-	169,2/169,8
CH ₃ -N ⁺	52.9

Beispiel 3

110 g (0,03 mol) eines epoxymodifizierten Siloxans der statistischen Zusammensetzung

CH₃ CH₃

und 1,3 g (0,015 mol) Piperazin wurden in 120 ml i-Propanol aufgenommen und 5 Stunden auf Rückflußtemperatur erhitzt. Nach Beendigung der Reaktion wurden alle bis 100 °C und bei 4 hPa flüchtigen Bestandteile im Vakuum entfernt. Es wurden 109,7 g eines hellgelben Öls der Struktur

5

10

erhalten.

15

C-INIVIR	
Substruktur	shift (ppm)
-CH(OH)CH2NCH2	66,0
-CH(OH) <u>C</u> H ₂ NCH ₂	60,5
-CH(OH)CH ₂ N <u>C</u> H ₂	53,2

Beispiel 4

20

25

Zum Nachweis der weichmachenden Eigenschaften als interner Weichmacher während des Waschprozesses wurden gebleichte und an der Oberfläche nicht weiter ausgerüstete Baumwollstreifen einem Waschprozeß in Gegenwart von Ariel Futur[®], bentonithaltigem Dash 2 in 1[®] sowie des in Beispiel 2 beschriebenen Aminosiloxans unterworfen. Es wurden folgende Randbedingungen eingehalten.

	Streifen 1	Streifen 2	Streifen 3
Streifengewicht (g)	13,40	13,55	13,29
Wassermenge (ml)	669	679	665
Detergenz	0,66g Ariel Futur®	0,68g Ariel Futur®	0,64g Dash 2 in 1®
Siloxan Bsp. 2	0,2 g		
Note Ø	1,5	2,8	1,7

34

Das Wasser wurde auf 60 °C erhitzt, die Detergenzien und im Falle des Baumwollstreifens 1 zusätzlich das Aminosiloxan gemäß Beispiel 2 gelöst. Anschließend wurden die Baumwollstreifen in diesen Lösungen für 30 Minuten gewaschen. Nachfolgend wurden die Streifen fünfinal mit jeweils 600 ml Wasser gespült und abschließend 30 Minuten bei 120°C getrocknet.

14 Testpersonen bewerteten die drei Baumwollstreifen auf die Weichheit des Griffs hin, wobei die Note 1 dem weichesten Streifen und die Note 3 dem als am härtesten empfundenen Streifen zugeteilt wurde.

Im Ergebnis der Bewertung erhielt der Baumwollstreifen 1 die Durchschnittsnote 1,5. Der Baumwollstreifen 2 wurde durchschnittlich mit 2,8 und der bentonitbehandelte Streifen 3 mit 1,7 bewertet.

10

30

35

Patentansprüche

(I)

1. Ein- oder mehrfachquarternäre Polysiloxane der allgemeinen Formel (I),

S-K-Q1-K-S

oder tertiäre Aminostruktur – N
oder quarternäre Ammoniumstruktur

R² ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C₁-C₃₀-Kohlenwasserstoffrest, der durch -O-, -NH--C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann oder eine Einfachbindung zu dem Rest K darstellt,

36

 \mathbb{R}^3 ein einwertiger geradkettiger, cyclischer oder verzweigter C1-C30-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann oder einer Struktur -A-E-, mit 5 Α -CH2C(O)O-, -CH2CH2C(O)O- oder -CH2CH2CH2C(O)O- und E einer Polyalkylenoxideinheit der Struktur -[CH2CH2O]a-[CH2CH(CH3)O]r-R4 10 1 bis 200, q 0 bis 200, r 15 R^4 H. geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest, der durch -O- oder -C(O)- unterbrochen und mit -OH substituiert und acetylenisch olefinisch oder aromatisch sein kann, entspricht. 20 wobei, wenn eine Mehrzahl von Resten R3 im Molekül vorliegt. diese gleich oder verschieden sein können, sowie K ein zweiwertigen oder dreiwertiger geradkettiger, cyclischer oder verzweigter C_2 - C_{40} -Kohlenwasserstoffrest darstellt, der durch -O-, -NH-, -NR 1 -, , -C(O)-, -C(S)-25 unterbrochen und mit -OH substituiert sein kann oder eine Einheit O2 enthält, mit Q^2 30 sekundäre Aminostruktur oder tertiäre Aminostruktur oder quarternäre Ammoniumstruktur 35

R⁵ ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C₁-C₂₀-Kohlenwasserstofftest ist, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substitutiert sein kann, wobei die freie Valenz des zweiwertigen Restes R⁵ an O¹ binden kann.

und wenn eine Mehrzahl von Resten K in den Polysiloxanen vorliegt, diese gleich oder verschieden voneinander sein können,

10 bedeutet.

5

15

25

30

- Ein- oder mehrfachquarternäre Polysiloxane gemäß Anspruch 1, dadurch gekennzeichnet, daß n 0 bis 100, bevorzugt 0 bis 80 und besonders bevorzugt 10 bis 80 ist.
- Ein- oder mehrfachquarternäre Polysiloxane gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß q 1 bis 50 ist.
- Ein- oder mehrfachquartemäre Polysiloxane gemäß einem der vorhergehenden
 Ansprüche, dadurch gekennzeichnet, daß r 0 bis 100 und bevorzugt 0 bis 50 ist.
 - Ein- oder mehrfachquarternäre Polysiloxane gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß R² und R⁵ -CH₃, -CH₂CH₃, -(CH₂)₂CH₃, -(CH₂)₃CH₃, -(CH₂)₅CH₃, -CH₂CH₂OH,

- sind, worin R^6 ein geradkettiger, cyclischer oder verzweigter C_1 - C_1 s-Kohlenwasserstofftest ist, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann.
- Ein- oder mehrfachquarternäre Polysiloxane gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß R³ -CH₃, -CH₂CH₃, -(CH₂)₂CH₃, -(CH₂)₃CH₃, -(CH₂)₅CH₃, -CH₂CH₂OH,

5

15

20

ist, worin R^6 ein geradkettiger, cyclischer oder verzweigter C_1 - C_{18} -Kohlenwasserstoffrest ist, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann.

Ein- oder mehrfachquarternäre Polysiloxane gemäß einem der vorhergehenden
Ansprüche, dadurch gekennzeichnet, dass K einen zweiwertigen oder
dreiwertigen geradkettigen, cyclischen oder verzweigten C₃-C₃₀Kohlenwasserstoffrest darstellt, der durch -O-, -NH-, -NR¹-,

—N—
, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann und/oder eine Einheit O² enthält.

 Verfahren zur Herstellung von ein- oder mehrfachquarternären Polysiloxanen gemäß irgend einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zur Herstellung quarternäre Ammoniumgruppen enthaltender Verbindungen der allgemeinen Struktur

25

worin

$$Q^1$$
 R^2
 Q^1

30

35

ist, tertiäre Aminofunktionen enthaltende, monofunktionelle Siloxanderivate mit reaktiven, monofunktionellen Siloxanderivaten alkyliert werden, die durch Hydrosilylierung von beispielsweise halogenierten Alkenen, ungesättigten Halogencarbonsäureestern, und epoxy-funktionellen Alkenen, mit monofunktionellen SiH-Verbindungen der allgemeinen Strukturen

10

synthetisiert werden, worin das molare Verhältnis der tertiären : Aminofunktionen zu den reaktiven, alkylierenden Gruppen zweckmäßig 100 : 1 bis 1 : 1 ist.

9.

- Verfahren zur Herstellung von ein- oder mehrfachquarternären Polysiloxanen nach Anspruch 8, dadurch gekennzeichnet, daß als halogenierte Alkene bevorzugt Allylchlorid und Allylbromid verwendet werden.
- 15 10. Verfahren zur Herstellung von ein- oder mehrfachquarternären Polysiloxanen gemäß Anspruch 8, dadurch gekennzeichnet, daß als ungesättigten Halogencarbonsäureestern bevorzugt solche aus der Gruppe bestehend aus Chloressigsäureallylester, Chloressigsäurepropargylester, 3-Chlorpropionsäureallylester und 3-Chlorpropionsäurepropargylester verwendet werden.
 - Verfahren zur Herstellung von ein- oder mehrfachquarternären Polysiloxanen gemäß Anspruch 8, dadurch gekennzeichnet, daß als epoxy-funktionellen Alkenen bevorzugt Vinylcyclohexenoxid und Allylglycidether verwendet werden.
 - 12. Verfahren zur Herstellung von ein oder mehrfachquarternären Polysiloxanengemäß irgend einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zur Herstellung tertiäre Aminofunktionen tragender Verbindungen der allgemeinen Struktur

S-K-O1-K-S

worin

$$Q^1$$
 $\stackrel{R}{\longrightarrow}$ N

35

25

30

ist, und K und S die Bedeutungen gemäß Anspruch 1 haben, sekundäre Aminofunktionen tragende ungesättigte Strukturen, durch Hydrosilylierung

10

15

20

25

35

direkt an das monofunktionelle Si-H-Siloxan gebunden werden und reaktiven. nachfolgend mit monofunktionellen. alkylierenden Siloxanzwischenprodukten in tertiäre Aminostrukturen tragende Verbindungen umgewandelt werden, worin die Stöchiometrie des sekundären Amins zu dem reaktiven, alkylierenden Siloxan zweckmäßig 1:1 beträgt.

- Verfahren zur Herstellung von ein- oder mehrfachquarternären Polysijoxanen 13. gemäß Anspruch 12, dadurch gekennzeichnet, daß als sekundäre tragende ungesättigte Strukturen, Aminofunktionen bevorzugt Methylallylamin oder CH-=CHCH-OCH-CH(OH)CH-NHCH: verwendet werden.
- 14. Verfahren zur Herstellung von ein- oder mehrfachquarternären Polysiloxanen gemäß irgend einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zur Herstellung tertiäre Aminofunktionen tragender Verbindungen der allgemeinen Struktur

worin

ist und K und S die Bedeutung gemäß Anspruch 1 haben, di-sekundäre Amine, bevorzugt Piperazin, mit monofunktionellen, reaktiven, alkylierenden Siloxanzwischenprodukten in tertiäre Aminostrukturen tragende Verbindungen umgewandelt werden, wobei die Stöchiometrie des di-sekundären Amins zu dem reaktiven, alkylierenden Siloxan zweckmäßig etwa 1:2 beträgt.

15. Verfahren zur Herstellung von ein- oder mehrfachquarternären Polysiloxanen gemäß irgend einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zur 30 Herstellung von äquimolare Mengen an tertiären Aminofunktionen und quarternären Ammoniumgruppen enthaltenden Verbindungen der allgemeinen Struktur

sekundär-tertiäre Diamine. bevorzugt N-Methylpiperazin, mit monofunktionellen, reaktiven, alkylierenden Siloxanzwischenprodukten,

41

5

15

20

25

30

35

bevorzugt Epoxyderivaten, in di-tertiäre Aminosiloxanstrukturen tragende Verbindungen umgewandelt werden, wobei die Stöchiometrie des sekundärtertiären Diamins zu dem monofunktionellen, reaktiven, alkylierenden Siloxan zweckmäßig etwa 1 : 1 beträgt, und nachfolgend die di-tertiären Aminosiloxanstrukturen mit einem Mol einer monofunktionellen, reaktiven, alkylierenden Siloxanverbindung zu den tertiäre Aminogruppen und quarternäre Ammoniumgruppen enthaltenden Siloxanderivaten umgesetzt werden.

16. Verfahren zur Herstellung von ein- oder mehrfachquarternären Polysiloxanen gemäß irgend einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß zur Herstellung tertiäre Aminofunktionen und quarternäre Ammoniumgruppen tragender Verbindungen der allgemeinen Struktur

S-K-O1-K-S

di-sekundäre Amine, bevorzugt Piperazin, mit monofunktionellen, reaktiven, alkylierenden Siloxanzwischenprodukten in tertiäre Aminostrukturen tragende Verbindungen umgewandelt werden, worin die Stöchiometrie des disekundären Amins zu dem reaktiven, alkylierenden Siloxan 1:2 beträgt und nachfolgend eine Alkylierung, mit Epoxiden in Gegenwart von Säuren, Alkylhalogeniden oder Halogencarbonsäureestern, bevorzugt mit Halogencarbonsäureestern, bevorzugt mit Verhältnis der tertiären Aminogruppen zu den Alkylierungsagenzien zweckmäßig 100:1 bis 1:1 beträgt.

17. Verfahren zur Herstellung von Polysiloxanderivaten gemäß irgend einem der Ansprüchen 1 bis 16, dadurch gekennzeichnet, daß zur Herstellung von quarternäre Ammoniumgruppen und tertiären Aminofunktionen enthaltenden Verbindungen der allgemeinen Struktur

S-K-O1-K-S

sekundäre Amine, bevorzugt Dimethylamin, oder sekundär-tertiäre Diamine, bevorzugt N-Methylpiperazin, mit monofunktionellen, reaktiven, alkylierenden Siloxanzwischenprodukten, bevorzugt Epoxyderivaten, in tertiäre oder di-tertiäre Aminosiloxanstrukturen tragende Verbindungen umgewandelt werden, wobei die Stöchiometrie des sekundärem Aminos oder

42

des sekundär-tertiären Diamins zu dem monofunktionellen, reaktiven, alkylierenden Siloxan zweckmäßig etwa 1:1 beträgt, und nachfolgend die gebildeten tertiären bzw. di-tertiären Aminosiloxanstrukturen mit einem difunktionellen Alkylierungsagenz bevorzugt im molaren Verhältnis 2:1 zu quarternären Ammoniumgruppen oder quarternären Ammoniumgruppen und gleichzeitig tertiäre Aminostrukturen enthaltenden Siloxanderivaten umgesetzt werden.

18. Verfahren zur Herstellung von Siloxanderivaten vom gemäß irgend einem der Ansprüche 8 bis 17, dadurch gekennzeichnet, daß die Halogencarbonsäureester auf niedermolekularen, oligomeren und polymeren Alkylenoxiden der allgemeinen Zusammensetzung

HO[CH2CH2O]4-[CH2CH(CH3)O],R4

15

20

25

30

35

5

worin q, r und R⁴ die Bedeutungen gemäß Anspruch 1 aufweisen, und bevorzugt monosubstituierten Derivate aus der Gruppe bestehend aus Diethylenglycol, Triethylenglycol, Tetraethylenglycol, oder Oligoethylenglycole mit Molgewichten von 300 bis 1000g/mol, und Dipropylenglycol verwendet werden.

- 19. Verfahren zur Herstellung von Siloxanderivaten gemäß einem der Ansprüche 8 bis 18, dadurch gekennzeichnet, daß als Halogencarbonsäureester auf niedermolekularen, oligomeren und polymeren Alkylenoxiden bevorzugt solche aus der Gruppe der Oligoethylengiycole mit Molgewichten von 400, 600 und 800 g/mol verwendet werden.
- 20. Verwendung von ein- oder mehrfach quarternären Polysiloxanen, in denen zwei Siloxaneinheiten über Amino- oder Ammoniumeinheiten miteinander verbunden sind, gemäß Ansprüchen 1 bis 7 oder die nach einem der Ansprüche 8 bis 19 erhältlich sind, in kosmetischen Formulierungen für die Haut- und Haarpflege, in Polituren für die Behandlung und Ausrüstung harter Oberflächen, in Formulierungen zum Trocknen von Automobilen und anderen harten Oberflächen nach maschinellen Wäschen, zur Ausrüstung von Textilen und Textilfasern, als separate Weichmacher nach dem Waschen von Textillen mit nichtionogenen oder anionischen/nicht-ionogen Detergenzienformulierungen, als Weichmacher in auf nichtionischen oder anionischen/nichtionischen

Textilwäsche, wobei Aminogruppen in Abhängigkeit vom pH-Wert in Form der Amine oder Aminsalze eingesetzt werden.