Math 357 Expositional homework 07

Assigned: 2024–04–12 (F) Due: 2024–04–19 (F)

The goal of this homework is to work with elementary theory and examples in galois theory to better understand the essential building blocks.

(a) Let $K: K_0$ be a field extension; and let $Aut(K: K_0)$ be the automorphisms of K that fix K_0 , a group under composition of functions. Let K_i be an intermediate field of $K: K_0$, let H_i be a subgroup of $Aut(K: K_0)$, and let $\mathcal{F}(H_i)$ denote the fixed field of H_i :

$$\mathcal{F}(H_i) = \{ \alpha \in K \mid \forall \sigma \in H_i, \sigma(\alpha) = \alpha \}$$

Prove that the associations

$$K_i \mapsto Aut(K:K_i)$$
 $H_i \mapsto \mathcal{F}(H_i)$

are inclusion-reversing, that is, if $K_1 \subseteq K_2$ and $H_1 \subseteq H_2$, then

$$Aut(K : K_1) \supseteq Aut(K : K_2)$$
 $\mathfrak{F}(H_1) \supseteq \mathfrak{F}(H_2)$

(b) Prove Proposition 14.5:¹ Let K_0 be a field, let $f \in K_0[t]$, and let $\tilde{K}_{0,f} : K_0$ be a splitting field for f over K_0 . Then

$$\# \operatorname{Aut}(\tilde{K}_{0,f}:K_0) \leq [\tilde{K}_{0,f}:K_0]$$

with equality if f is separable. You may take as your starting point our diagram from class (see Classes 35 and 36).

- (c) Let $\alpha = \sqrt{2} + \sqrt{5} \in \mathbf{C}$.
 - (i) Find the minimal polynomial $\mathfrak{m}_{\alpha,\mathbf{Q}}$ for α over \mathbf{Q} .
 - (ii) Prove that $\mathbf{Q}(\alpha) = \mathbf{Q}(\sqrt{2}, \sqrt{5})$.
 - (iii) Prove that $\mathfrak{m}_{\alpha,\mathbf{Q}}$ splits completely in $\mathbf{Q}(\alpha)$. *Hint:* Use part (ii).
 - (iv) Specify all automorphisms in the galois group $Gal(\mathbf{Q}(\alpha) : \mathbf{Q})$. State a (more common) group isomorphic to $Gal(\mathbf{Q}(\alpha) : \mathbf{Q})$, and draw its subgroup lattice.
 - (v) Use part (iv) and the fundamental theorem of galois theory to draw the lattice of intermediate fields for $\mathbf{Q}(\alpha)$: \mathbf{Q} .

¹See DF3e, pp 561–2.