Lecture 4.2: Phrase-based SMT

Phrase based SMT: history

1990s Most researchers focus on interlingua / syntax 2000-2001
Darpa/TIDES/
GALE
programs.
Increase of
computer
power

2002
Publication
Statistical
Phrase-Based
Translation

2002+ Language Weaver, Google Translate, IBM, Microsoft,...

2007 Moses open source 2016+
PBSMT in
use in
production
in many
places

Introduction to Statistical Machine Translation

SMT: how does it work?

Learning from data (sentence-aligned translated texts)

 \Rightarrow p(banklBank) = 0.75, p(benchlBank) = 0.25

New machine translation systems can be built automatically

Extract lexical translations

- Collect statistics
- Estimate a (lexical) probability distribution
- Alignments
- Learning lexical translation models

Word-based MT

- One English word must be translate to one foreign word
- It just does not work!

- => Phrase translation is needed
 - [en] I am => [es] soy
 - [en] the day before yesterday => [hi] परसों (parson)
 - [en] headache => [fr] mal de tête

When it all started

- Statistical Phrase-Based Translation (2002)
 Philipp Koehn, Franz Josef Och, Daniel Marcu
 - Philipp Hoehn built Moses
 - Franz Josef Och built Google Translate
 - Daniel Marcu created LanguageWeaver company (now SDL Language Weaver)

Phrase-based translation in a nutshell

Phrase-Based Translation

- Foreign input is segmented in phrases
 - any sequence of words, not necessarily linguistically motivated
- Each phrase is translated into English
- Phrases are reordered

Theory behind PBSMT

- Translating from language f to language e (french foreign into english)
- Find the best English sentence out of a French one
- $\tilde{e} = arg \max_{e \in e^*} p(e|f)$

English translation is the translation having the highest probability "English knowing French"

- $p(e|f) = \frac{p(f|e)p(e)}{p(f)}$ (Bayes' rule)
- $\tilde{e} = arg \max_{e \in e^*} p(f|e)p(e)$
 - ⇒Replace it by: finding the best English sentence knowing the probability of French to be translated as such combined with "best fluent English"

- $\tilde{e} = \arg \max_{e \in e^*} p(f|e)p(e)$
- p(f|e) Phrase table (phrase translation probabilities)
- $p(e) \rightarrow$ Language model (probability of being "good" English)

Lexical translation (word)

- How to translate a word → look up in dictionary
 - Haus \rightarrow house, building, home, household, shell
- Multiple translations
 - some more frequent than others
 - for instance: house, and building most common
 - special cases: Haus of a snail is its shell

From aligned words to aligned phrases

Preparing the data: word alignment

Extracting Phrases from Data

Given a word alignment: extract phrase pairs, estimate probabilities

From parallel phrases to probabilities

Phrase Translation Table

Phrase Translations for "den Vorschlag"

English	ϕ (e f)	English	ϕ (e f)
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal ,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159		

Language model

Language Model

- Language models answer the question: How likely is a string of English words good English?
 - the house is big \rightarrow good
 - the house is $xxl \rightarrow worse$
 - house big is the \rightarrow bad
- Given: English words $W = w_1, w_2, w_3, ..., w_n$ what is p(W)?
- Limited history: only previous k words matter (here: k=2) $p(w_1,w_2,w_3,...,w_n) = p(w_1) \ p(w_2|w_1) \ p(w_3|w_2)...p(w_n|w_{n-1}) \blacksquare$
- Models trained on large amounts of monolingual text (billions of words)

SMT: how does it work?

Translation Options

• Task: find the right output phrases, put them in the right order

SMT: how does it work?

Decoding

Different open-source software

- Moses: SMT (PBSMT+tree-based), C++ Perl/Unix
- Joshua: SMT (tree-based) Java
- Cdec: SMT (tree-based) C++/Unix
- Jane: (PBSMT+tree-based), RWTH Aachen University, C++/Unix
- Phrasal: PBSMT, Standford, Java
- Apertium: rule-based machine translation platform, C++/Windows-Unix
- Nematus: Neural MT open source, Python

See http://fosmt.org/, https://en.wikipedia.org/wiki/Comparison of machine translation applications