Advanced Topics in Computational Complexity

Exercise Session 5

Due 16.11.2015.

Exercise 1

Prove Proposition 14 in the lecture notes. (Induction for cases p, \vee , and \Diamond suffices.)

Exercise 2

Prove direction $(2) \rightarrow (1)$ of Theorem 12 in the lecture notes.

Exercise 3

Let K = (W, R, V) be a Kripke model such that $W = \{1, 2, 3, 4, 5\}$, $R = \{(i, j) \in W^2 \mid i + j \le 5\}$, $V(p) = \{1, 2, 4\}$, and $V(q) = \{4, 5, 6\}$. Which of the following claims hold?

- 1. $K, \emptyset \models (p \land \neg p)$
- 2. $K, \{1, 2, 4, 6\} \models \operatorname{dep}(\Diamond p) \vee \operatorname{dep}(\Diamond p)$
- 3. $K, \{1\} \models dep(q, p)$
- 4. $K, \{3, 5\} \models dep(q, p)$
- 5. $K, \{1, 2, 4\} \models dep(q, p)$
- 6. $K, \{1, 3, 5\} \models dep(\Diamond q, p)$

Which of the teams of K satisfy the formula dep(p) or the formula $(p \wedge dep(\Diamond q))$?

Exercise 4

Give the smallest generated submodels $K_1 = (W_1, R_1, V_1)$ and $K_2 = (W_2, R_2, V_2)$ of K (of Exercise 3) such that $3 \in W_1$ and $1, 5 \in W_2$. Give the disjoint union of the models K_1 and K_2 .