Dualety and Sensitivity Analysis

Let w consider a lenear programing problem

Max $z = 6z_1 + 5z_2$

5. $\frac{1}{3}x_{1} + 2x_{2} \leq 12$, $x_{11}x_{12} \leq 0$

Let us assume that we do not know the optimum salve it?.

Solution. Let 7* se the optimum value it?.

Let us they to find a value higher than

2* without solving the problem. We wish

to find as small a value as possible

to find as small a value as possible

but it should be more than 7.

1. The obtions value is infinity.

2. Let us multiply the second constraints by 3, then we have

921+622 436

This implies = 621+52 = 9x1+6x2 = 36.

21, 20, A20

33. multiply first constrain by 6 $7=6x_1+5x_2 \leq 6x_1+6x_2 \leq 30$

4. Mulliply find by 1 and se cond by 2 $2 \le 7x_1 + 5x_2 \le 29$

The lowest value that can be achieved will have a centerin constant y, and Y2 multiplied to the little and Second constrains quip.

In Drider to get the upper Sound for 2*

$$y_1 + 3y_2 \ge 6$$

 $y_1 + 2y_2 \ge 5$, $y_1, y_2 \ge 0$

Then 541+1242 is an upper bound by 2*. The lowest on minimum valual of 541+1242 hor such 41,42 Satistyng

is a best upper estimate bit. Z*.

The above problem is called the dual of the given problem.

Dual of the primal problem It the primal problem is $Max Z = C_1 x_1 + C_2 x_2 + \cdots + C_n x_n$ AX & b www A= Taist. Sit b = [bir bn]T Then its dual problem i Min W= by S. E ATY Z C who C= TC1, C2-Cm) Y=[>1,- Ym]T > 0 Problem Warite the dual of the problem Max Z = 3x1+4x2

Max $Z = 3x_1 + 4x_2$ 3-t $x_1+x_2 \le 12$ $2x_1 + 3x_2 \le 30$ $x_1 + 4x_2 \le 36$ $x_1, x_2 \ge 0$

 $\frac{1}{2}$ $\frac{1}$

$\mathcal{A}_1 + \mathcal{A}_2 \leq 3$, $\mathcal{A}_1, \mathcal{A}_2 \neq \delta$

Relationship between the primal and dual problem

Primal	Dual
Maximization Minimization Number of variable (n)	Munimization Maximization Number of Constrains (n)
Nymber at constraints (m)	Number at variable (m)
RHS (b)	Objective function Co-efficient
Objectme function Co-efficients (C)	RHS
constraint co-efficient (A)	constraint co-lifemt (AT)

Weak duality theorem

For a maximization primal, every featible solution to the dual has a objective hundren value greater than or equal to every feasible solution to the primal.

proof Let [xi,nx, -. xn] be a feasible solution to the primal problem and [yi, y, -- yn] be a feasible solution to the dual problem.

By the construction of the dual problem we get

b191+b292+ -- +bm you ie an upper bound hon zx

 $\frac{1}{2} = C_1 \chi_1 + C_2 \chi_2 + \cdots + C_n \chi_n \leq Z^* \leq b_1 \chi_1 + \cdots + c_n \chi_n \leq Z^* \leq b_1 \chi_1 + \cdots +$

Note i 21 the primal is unbounded, what can you say about dual?

Let (91742- 9m) be a feorible Solution to the dual.

Let $W = b_1 y_1 + - - + b_m y_m$ $Z \leq Z^{\times} \leq W = b_1 y_1 + - - + b_m y_m$ the primal seconds bounded which lead us to a contra diction.

The dual does not have a feasible soln.

Note 2. what happens if the primal is its self inheasible? can you say dual is unbounded. The answer is no. The dual is unbounded on inheasible.