

16.10: Entropy Changes in Gaseous Reactions

Knowing what factors affect the magnitude of the entropy often enables us to predict whether the entropy of the products will be greater or less than that of the reactants in a given chemical reaction. This is particularly true for gaseous reactions. In a dissociation reaction like

$${\rm N_2O_4(g) \to NO_2 + NO_2} \qquad \Delta S_m\,^{\circ}(298{\rm K}) = +176{\rm J}{\rm K}^{-1}{\rm mol}^{-1}$$

for instance, it is easy to see that ΔS should be positive. The two halves of the N_2O_4 molecule are forced to move around together before dissociation, but they can move around independently as NO_2 molecules once dissociation has occurred. A similar argument applies to reactions like

$$2\,{
m O}_3
ightarrow 3\,{
m O}_2 \qquad \Delta S^{\circ}{}_m(298{
m K}) = +137{
m J}{
m K}^{-1}{
m mol}^{-1}$$

In the form of O_3 , O atoms are constrained to move around in groups of three, but in the form of O_2 , only two atoms need move around together, a lesser restriction. Accordingly we expect ΔS to be positive for this reaction.

A further extension of this argument leads us to the general conclusion that in any reaction involving gases if the amount of substance in the gaseous phase increases, ΔS will be positive, while if it decreases, so will ΔS . For example, in the reaction

$$2\operatorname{CO}(g) + \operatorname{O}_2(g) \to 2\operatorname{CO}_2(g)$$

The amount of gas decreases from 3 to 2 mol (i.e., $\Delta n = -1$ mol). The entropy change should thus be negative for this reaction. From the Table of Standard Molar Entropies we can readily find that ΔS_m° (298 K) has the value -173 J K⁻¹ mol⁻¹.

Table of Standard Molar Entropies

Compound	S_m^o /J K ⁻¹ mol ⁻¹	Compound	S_m^o /J K ⁻¹ mol ⁻¹	
Solids		Diatomic Gases		
C (diamond)	2.377			
C (graphite)	5.74	H ₂	130.7	
Si	18.8	D_2	145.0	
Ge	31.1	HCl	186.9	
Sn (gray)	44.1	HBr	198.7	
Pb	64.8	HI	206.6	
Li	29.1	N_2	191.6	
Na	51.2	O ₂	205.1	
K	64.2	F ₂	202.8	
Rb	69.5	Cl_2	223.1	
Cs	85.2	Br ₂	245.5	
NaF	51.5	I_2	260.7	
MgO	26.9	CO	197.7	
AlN	20.2	Triatomic Gases		
NaCl	72.1	H ₂ O	188.8	
KCl	82.6	NO ₂	240.1	
Mg	32.7	H ₂ S	205.8	
Ag	42.6	CO ₂	213.7	
I_2	116.1	SO ₂	248.2	

MgH_2	31.1	N ₂ O	219.9	
AgN ₃	99.2	O ₃	238.9	
Liquids		Polyatomic Gases(> 3)		
Нg	76.0	CH ₄	186.3	
Br ₂	152.2	C_2H_6	229.6	
H ₂ O	69.9	C ₃ H ₈	269.9	
H ₂ O ₂	109.6	C_4H_{10}	310.2	
CH₃OH	126.8	C ₅ H ₁₂	348.9	
C ₂ H ₅ OH	160.7	C_2H_4	219.6	
C ₆ H ₆	172.8	N_2O_4	304.3	
BCl ₃	206.3	B_2H_6	232.0	
Monatomic Gases		BF ₃	254.0	
Не	126.0	NH ₃	192.5	
Ne	146.2			
Ar	154.8			
Kr	164.0			
Xe	169.6			

This table shows molar entropies for the standard conditions of 298.15 K (25°C) and 101.3 kPa. Such conditions need to be specificed, since entropy is proportional to substance amount, and dependent on temperature, pressure. Entropy is also dependent upon volume, but since the amount, n, temperature, and pressure are given, volume is implicitly defined. This table is taken from CoreChem:Standard Molar Entropies, and is also used on CoreChem:Dependence of S on Molecular Structure as well as CoreChem:Some Trends In Entropy Values.

This page titled 16.10: Entropy Changes in Gaseous Reactions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Ed Vitz, John W. Moore, Justin Shorb, Xavier Prat-Resina, Tim Wendorff, & Adam Hahn.