Движение фронта испарения Айрат Валиуллин, 836 18 апреля 2022

1 Постановка задачи

На поверхность металла (в нашем случае — медь) падает поток излучения q_0 , которое частично отражается и поглощается с коэффициентами отражения r и поглощения μ . Необходимо установить зависимость скорости v_f фронта испарения от теплового потока, а также распределение температуры T(x) по мере удаления от металла.

2 Ключевые уравнения и их решения

Сперва введем и опишем все фигурирующие в уравнениях переменные и константы.

Таблица 1: Параметры и переменные задачи

Обозначение	Описание	Значение
ρ	Плотность металла	$8.9 \cdot 10^3 \ { m kg/m}^3$
λ	Теплопроводность металла	390 Вт/(м·К)
c	Удельная теплоемкость металла	360 Дж/(кг∙К)
v_f	Скорость фронта испарения	
T_f	Параметр размерности температуры	
L	Удельная теплота испарения	$5.4 \cdot 10^6 \; Дж/кг$
q_0	Плотность потока излучения	$10^6 \div 10^9 \; \mathrm{Br/m^2}$
r	Коэффициент отражения	0.1
μ	Коэффициент поглощения	$1 \cdot 10^7 \; \mathrm{cm}^{-1}$
R	Газовая постоянная	8.31 Дж/(моль·К)
χ	Коэффициент температуропроводности	$1.22 \cdot 10^{-4} \text{ м}^2/\text{c}$

2.1 Уравнение теплопроводности

Выпишем уравнение теплопроводности в общем виде:

$$\rho c \left(\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T \right) = \nabla \cdot (\lambda \nabla T) - \nabla \cdot \vec{q}_R - \nabla \cdot \vec{q}_{\text{ext}}. \tag{1}$$

Здесь вторым слагаемым правой части — учетом радиации — будем пренебрегать.

Перейдем к одномерному случаю:

$$ec{v} = \left(-v_f, \ 0, \ 0\right)^T,$$
 $\dfrac{\partial}{\partial t} = \hat{0}, \quad ext{так как задача стационарная}$ $\nabla = \left(\dfrac{\partial}{\partial x}, \ 0, \ 0\right)^T,$ $q_{\mathrm{ext}} = q_0(1-r) \exp\left(-\mu x\right)$

Тогда уравнение (1) в одномерном виде примет вид:

$$-\rho c v_f \frac{dT}{dx} = \lambda \frac{d^2 T}{dx^2} - \frac{dq_{\text{ext}}}{dx}.$$
 (2)

Продифференцируем q_{ext} :

$$\frac{dq_{\text{ext}}}{dx} = -\mu q_0 (1 - r)e^{-\mu x}.$$

Окончательно, дифференциальное уравнение второго порядка с постоянными коэффициентами:

$$\lambda \frac{d^2T}{dx^2} + \rho c v_f \frac{dT}{dx} = -\mu q_0 (1 - r) e^{-\mu x}; \tag{3}$$

а граничные условия:

$$T(+\infty) = 0, \quad T(0) = T_f.$$

Введя коэффициент температуропроводности $\chi=\lambda/\rho c,$ запишем решение этого уравнения:

$$T(x) = C_1 e^{-\frac{v_f}{\chi}x} + C_2 - \frac{q_0(1-r)}{\rho c (\chi \mu - v_f)} e^{-\mu x}.$$

Используя граничные условия, определим константы $C_{1,2}$. Тогда

$$T(x) = (T_f + T_*) e^{-\frac{v_f}{\chi}x} - T_* e^{-\mu x}, \tag{4}$$

где обозначено

$$T_* = \frac{q_0(1-r)}{\rho c \left(\chi \mu - v_f\right)}.$$

2.2 Вычисление v_f и T_f

Профиль температуры содержит два неизвестных параметра: v_f и T_f , которые мы можем достать из дополнительных условий на фронте (второе уравнение здесь — условие Зельдовича):

$$\begin{cases} v_f = v_s \exp\left(-\frac{U}{T_f}\right), \\ \rho L v_f = \lambda \left. \frac{dT}{dx} \right|_{x=0}. \end{cases}$$
 (5)

Выразим из первого уравнения T_f , возьмем производную температуры по координате и получим таким образом трансцендентную связь между двумя указанными параметрами:

$$T_f = \frac{U}{\ln(v_s/v_f)}, \quad v_f = \frac{q_0(1-r)}{\rho(L+cT_f)},$$
 (6)

где U = 3L/4R. Заметим также, что правое выражение в (6) можно с точностью до множителя (1-r) получить и из закона сохранения энергии:

$$q_0 S dt = \rho \left(L + c T_f \right) S dx,$$
$$v_f = \frac{dx}{dt} = \frac{q_0}{\rho (L + c T_f)}.$$

В качестве начальных приближений для итерационного процесса возьмем следующие значения:

$$v_f^{(0)} = \frac{q_0(1-r)}{\rho L} = v_f|_{T_f=0}, \quad T_f^{(0)} = \frac{U}{\ln\left(v_s/v_f^{(0)}\right)}.$$

3 Графики и выводы

С помощью программы на языке Python проведем итерационный процесс и выведем в виде графиков следующие зависимости: скорости фронта v_f и параметра T_f от теплового потока (рис. 1), профиля температуры T(x) от координаты, вдоль которой движется фронт (рис. 2).

Рис. 1: Зависимость скорости фронта v_f и параметра T_f от мощности теплового потока

Рис. 2: Вид профиля температуры T(x) для $q_0=10^8~{\rm Br/m^2}$