BÀI 2. GIỚI HẠN CỦA HÀM SỐ

A. LÝ THUYẾT

I. GIỚI HẠN HỮU HẠN CỦA HÀM SỐ TẠI MỘT ĐIỂM

1. Định nghĩa

Định nghĩa 1

Cho khoảng K chứa điểm x_0 và hàm số y = f(x) xác định trên K hoặc trên $K \setminus \{x_0\}$.

Ta nói hàm số y = f(x) có giới hạn là số L khi x dần tới x_0 nếu với dãy số (x_n) bất kì, $x_n \in K \setminus \{x_0\}$ và $x_n \to x_0$, ta có $f(x_n) \to L$.

Kí hiệu:
$$\lim_{x\to\infty} f(x) = L \text{ hay } f(x) \to L \text{ khi } x \to x_0.$$

Nhận xét: $\lim_{x\to\infty} x = x_0$, $\lim_{x\to\infty} c = c$ với c là hằng số.

Ví dụ 1. Cho hàm số f $x = \frac{x^3 - 8}{x - 2}$. Chứng minh rằng $\lim_{x \to 2} x = 12$.

Giải

Hàm số xác định trên $\mathbb{R} \setminus 2$

Giả sử (x_n) là một dãy số bất kì, thỏa mãn $\,x_{_n} \neq 2\,$ và $\,x_{_n} \to 2\,$ khi $\,n \to +\infty$.

Ta có:

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{x_n^3 - 8}{x_n - 2} = \lim_{n \to \infty} \frac{x_n - 2}{x_n - 2} = \lim_{n \to \infty} \frac{x_n^2 + 2x_n + 4}{x_n - 2} = \lim_{n \to \infty} x_n^2 + 2x_n + 4 = 12.$$

Vậy
$$\lim_{x\to 2} f(x) = 12$$
.

2. Định lí về giới hạn hữu hạn

Định lí 1

a) Giả sử
$$\lim_{x\to x_0} f \ x \ = L\, v \grave{a} \ \lim_{x\to x_0} g \ x \ = M\,.$$
 Khi đó:

$$\lim_{x \to x_0} [f \ x + g \ x] = L + M;$$

$$\lim_{x\to x_0} [f \ x \ -g \ x \] = L - M;$$

 $\lim_{x\to x_0}f\ x\ .g\ x\ =L.M;$

$$\lim_{x\to x_0} \frac{f~x}{g~x} = \frac{L}{M}~M \neq 0~;$$

b) Nếu f
$$x \ge 0$$
 và $\lim_{x \to x_0} f \ x = L$ thì $L \ge 0$ và $\lim_{x \to x_0} \sqrt{f \ x} = \sqrt{L}$.

(Dấu của f(x) được xét trên khoảng đang tìm giới hạn với $x \neq x_0$).

Ví dụ 2. Cho hàm số f
$$x = \frac{1-x}{x-4^2}$$
. Tính $\lim_{x\to 4} f x$.

Giải

Ta có:
$$\lim_{x\to 4} 1-x = -3 < 0$$
, $\lim_{x\to 4} x-4^2 = 0$

$$\Rightarrow \lim_{x \to 4} f \quad x = \lim_{x \to 4} \frac{1 - x}{x - 4^2} = -\infty$$

3. Giới hạn một bên

Định nghĩa 2

- Cho hàm số y = f(x) xác định trên $(x_0; b)$.

Số L được gọi là giới hạn bên phải của hàm số y = f(x) khi $x \to x_0$ nếu với dãy số (x_n) bất kì, $x_0 < x_n < b$ và $x_n \to x_0$, ta có $f(x_n) \to L$.

Kí hiệu:
$$\lim_{x \to x_0^+} f(x) = L$$
.

- Cho hàm số y = f(x) xác định trên (a; x_0).

Số L được gọi là giới hạn bên trái của hàm số y = f(x) khi $x \to x_0$ nếu với dãy số (x_n) bất kì, $a < x_n < x_0$ và $x_n \to x_0$, ta có $f(x_n) \to L$.

Kí hiệu:
$$\lim_{x \to x_0^-} f x = L$$
.

Định lí 2

$$\lim_{x \to x_0^-} f \ x \ = L \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f \ x \ = L$$

Ví dụ 3. Cho hàm số f $x = \begin{cases} \sqrt{x} + 1 & \text{khi } x \ge 0 \\ 2x & \text{khi } x < 0 \end{cases}$. Tìm $\lim_{x \to 0^+} f(x)$; $\lim_{x \to 0^-} f(x)$ và $\lim_{x \to 0} f(x)$ (nếu có).

Giải

Ta có:
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \sqrt{x} + 1 = 0; \lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} 2x = 0;$$

$$\Rightarrow \lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = 0$$

Do đó
$$\lim_{x\to 0} f(x) = 0$$
.

Vậy
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = 0$$
 và $\lim_{x\to 0} f(x) = 0$.

II. GIỚI HẠN HỮU HẠN CỦA HÀM SỐ TẠI VÔ CỰC

Định nghĩa 3

a) Cho hàm số y = f(x) xác định trên $(a; +\infty)$.

Ta nói hàm số y = f(x) có giới hạn là số L khi $x \to +\infty$ nếu với dãy số (x_n) bất kì, $x_n > a$ và $x_n \to +\infty$, ta có $f(x_n) \to L$.

Kí hiệu:
$$\lim_{x \to +\infty} f(x) = L$$

b) Cho hàm số y = f(x) xác định trên $(-\infty; a)$.

Ta nói hàm số y = f(x) có giới hạn là số L khi $x \to -\infty$ nếu với dãy số (x_n) bất kì, $x_n < a$ và $x_n \to -\infty$, ta có $f(x_n) \to L$.

Kí hiệu:
$$\lim_{x \to -\infty} f \ x = L$$

Chú ý:

a) Với c, k là hằng số và k nguyên dương, ta luôn có:

$$\lim_{x\to +\infty} c = c; \lim_{x\to -\infty} c = c; \lim_{x\to +\infty} \frac{c}{x^k} = 0; \lim_{x\to -\infty} \frac{c}{x^k} = 0.$$

b) Định lí 1 về giới hạn hữu hạn của hàm số khi $x\to x_0$ vẫn còn đúng khi $x_n\to +\infty$ hoặc $x\to -\infty$

III. GIỚI HẠN VÔ CỰC CỦA HÀM SỐ

1. Giới hạn vô cực

Định nghĩa 4

Cho hàm số y = f(x) xác định trên (a; $+\infty$).

Ta nói hàm số y = f(x) có giới hạn là $-\infty$ khi $x \to +\infty$ nếu với dãy số (x_n) bất kì, $x_n > a$ và $x_n \to +\infty$, ta có $f(x_n) \to -\infty$

Kí hiệu:
$$\lim_{\mathbf{x} \to \infty} \mathbf{f} \ \mathbf{x} \ = -\infty$$

Nhận xét:
$$\lim_{x \to +\infty} f \ x = +\infty \Leftrightarrow \lim_{x \to +\infty} \ -f \ x = -\infty$$
.

2. Một vài giới hạn đặc biệt

- a) $\lim_{x \to +\infty} x^k = +\infty$ với k nguyên dương.
- b) Nếu k chẵn thì $\lim_{x\to -\infty} x^k = +\infty$;

Nếu k lẻ thì
$$\lim_{x\to -\infty} x^k = -\infty$$
 .

3. Một vài quy tắc về giới hạn vô cực

a) Quy tắc tìm giới hạn của tích f(x).g(x)

$\lim_{\mathrm{x} \to \mathrm{x}_0} \mathrm{f} \ \ \mathrm{x}$	$\lim_{x \to x_0} g x$	$\lim_{x \to x_0} f \cdot x \cdot g \cdot x$
L > 0	$+\infty$	$+\infty$
	$-\infty$	$-\infty$
L < 0	$+\infty$	$-\infty$
	$-\infty$	$+\infty$

b) Quy tắc tìm giới hạn của thương $\frac{f}{g} \frac{x}{x}$

$\lim_{x \to x_0} f x$	$\lim_{x \to x_0} g x$	Dấu của g(x)	$\lim_{x\to x_0}\frac{f}{g}\frac{x}{x}$
L	$\pm\infty$	Tùy ý	0
L > 0	0	+	$+\infty$
		_	$-\infty$
L < 0		+	$+\infty$
		_	$-\infty$

(Dấu của g(x) xét trên một khoảng K nào đó đang tính giới hạn, với $x \neq x_0$)

Chú ý: Các quy tắc trên vẫn đúng cho các trường hợp:

$$\mathbf{x} \to \mathbf{x}_0^+, \mathbf{x} \to \mathbf{x}_0^-; \mathbf{x} \to +\infty; \mathbf{x} \to -\infty.$$

Ví dụ 4. Tính các giới hạn sau:

a)
$$\lim_{x\to\infty} x^4 - 3x + 8$$
;

b)
$$\lim_{x\to 1^{-}} \frac{5x-6}{2x-2}$$
;

c)
$$\lim_{x \to -3^+} \frac{x}{x+3}$$
;

Giải

a)
$$\lim_{x \to +\infty} x^4 - 3x + 8 = \lim_{x \to \infty} x^4 \left(1 - \frac{3}{x^3} + \frac{8}{x^4} \right) = \lim_{x \to +\infty} x^4 \cdot \lim_{x \to +\infty} \left(1 - \frac{3}{x^3} + \frac{8}{x^4} \right) = +\infty$$

(Vì
$$\lim_{x \to +\infty} x^4 = +\infty; \lim_{x \to +\infty} \left(1 - \frac{3}{x^3} + \frac{8}{x^4} \right) = 1$$
).

b)
$$\lim_{x \to 1^{-}} \frac{5x - 6}{2x - 2} = \lim_{x \to 1^{-}} 5x - 6 : \lim_{x \to 1^{-}} 2x - 2 = +\infty$$

(Vì
$$\lim_{x \to 1^{-}} 5x - 6 = -1 < 0$$
; $\lim_{x \to 1^{-}} 2x - 2 = 0$ và $2x - 2 < 0$ với mọi $x < 1$).

c)
$$\lim_{x \to -3^+} \frac{x}{x+3} = \lim_{x \to -3^+} x : \lim_{x \to -3^+} x + 3 = -\infty$$

(Vì
$$\lim_{x \to -3^+} x = -3 < 0$$
; $\lim_{x \to -3^+} x + 3 = 0$ và $x + 3 > 0$ với mọi $x > -3$).

B. BÀI TÂP

Bài 1. Tính giới hạn các hàm số sau:

a)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt{x + 3} - 2}$$
;

b)
$$\lim_{x \to +\infty} \frac{1 - 2x + 3x^3}{x^3 - 9}$$
;

c)
$$\lim_{x\to 0} \frac{1}{x^2} \left(\frac{1}{x^2 + 1} - 1 \right);$$

d)
$$\lim_{x\to -\infty} \frac{x^2-1 \ 1-2x^5}{x^3-9}$$
;

Lời giải

a)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt{x + 3} - 2} = \lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt{x + 3} - 2} \frac{\sqrt{x + 3} + 2}{\sqrt{x + 3} - 2}$$

$$= \lim_{x \to 1} \frac{\sqrt{x-1} \sqrt{x+3} + 2}{x-1} = \lim_{x \to 1} \frac{\sqrt{x+3} + 2}{\sqrt{x} + 1} = \frac{4}{2} = 2.$$

b)
$$\lim_{x \to +\infty} \frac{1 - 2x + 3x^3}{x^3 - 9} = \lim_{x \to +\infty} \frac{\frac{1}{x^3} - \frac{2}{x^2} + 3}{1 - \frac{9}{x^3}} = \frac{3}{1} = 3.$$

c)
$$\lim_{x\to 0} \frac{1}{x^2} \left(\frac{1}{x^2 + 1} - 1 \right) = \lim_{x\to 0} \frac{1}{x^2} \cdot \lim_{x\to 0} \left(\frac{1}{x^2 + 1} - 1 \right) = 0$$

(Vì
$$\lim_{x\to 0} \frac{1}{x^2} = \infty; \lim_{x\to 0} \left(\frac{1}{x^2 + 1} - 1 \right) = 0$$
).

d)
$$\lim_{x \to -\infty} \frac{x^2 - 1}{x^7 + x + 3} = \lim_{x \to -\infty} \frac{\left(1 - \frac{1}{x^2}\right)\left(\frac{1}{x} - 2\right)^5}{1 + \frac{1}{x^6} + \frac{3}{x^7}} = \frac{-2}{1} = -2.$$

Bài 2. Dùng định nghĩa tìm các giới hạn sau:

a)
$$\lim_{x\to 2} \frac{1-2x}{4x+1}$$
;

b)
$$\lim_{x \to -\infty} \frac{3x^2 + 4}{x^2 - 2}$$
.

Lời giải

a) Xét hàm số
$$f(x) = \frac{1-2x}{4x+1}$$

Tập xác định của hàm số: $\mathbb{R} \setminus \left\{ -\frac{1}{4} \right\}$.

Giả sử (x_n) là một dãy số bất kì, thỏa mãn $x_n \neq -\frac{1}{4}$ và $x_n \to 2$ khi $n \to +\infty$. Ta có:

$$\lim_{x_n \to 2} f(x_n) = \lim_{x_n \to 2} \frac{1 - 2x_n}{4x_n + 1} = \frac{-3}{9} = -\frac{1}{3}.$$

Do đó
$$\lim_{x\to 2} \frac{1-2x}{4x+1} = -\frac{1}{3}$$
.

b) Xét g x =
$$\frac{3x^2 + 4}{x^2 - 2}$$

Tập xác định của hàm số: $\mathbb{R}\setminus\pm\sqrt{2}$.

Giả sử (x_n) là một dãy số bất kì, thỏa mãn $x_n \neq \pm \sqrt{2} \ \text{và} \ x_n \to -\infty$ khi $n \to +\infty$. Ta có:

$$\lim_{x \to -\infty} g x_n = \lim_{x \to -\infty} \frac{3x_n^2 + 4}{x_n^2 - 2} = 3$$

$$\Rightarrow \lim_{x \to -\infty} \frac{3x^2 + 4}{x^2 - 2} = 3.$$

Bài 3. Cho hàm số: f x =
$$\begin{cases} \frac{1}{x-1} - \frac{3}{x^3 - 1} & \text{thi } x > 1 \\ mx + 2 & \text{thi } x \le 1 \end{cases}$$

Với giá trị nào của m thì hàm số f(x) có giới hạn khi $x \rightarrow 1$? Tìm giới hạn này.

Lời giải

Ta có:
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \left(\frac{1}{x-1} - \frac{3}{x^3 - 1} \right) = \lim_{x \to 1^+} \left(\frac{x^2 + x + 1 - 3}{x - 1 + x^2 + x + 1} \right)$$

$$= \lim_{x \to 1^+} \frac{x^2 + x - 2}{x - 1 - x^2 + x + 1} = \lim_{x \to 1^+} \frac{x - 1 - x + 2}{x - 1 - x^2 + x + 1} = \lim_{x \to 1^+} \frac{x + 2}{x^2 + x + 1} = \frac{3}{3} = 1$$

$$\lim_{x\to l^-}f~x~=\lim_{x\to l^-}~mx+2~=m+2$$

Để hàm số f(x) có giới hạn khi $x \rightarrow 1$ thì $\lim_{x \rightarrow 1^+} f \ x \ = \lim_{x \rightarrow 1^-} f \ x$

$$\Leftrightarrow$$
 m + 2 = 1

$$\Leftrightarrow$$
 m = -1

Khi đó:
$$\lim_{x \to 1} f \ x = \lim_{x \to 1^{+}} f \ x = \lim_{x \to 1^{-}} f \ x = 1.$$

Vậy m = -1 thì hàm số f(x) có giới hạn khi $x \rightarrow 1$ và giới hạn đó bằng 1.