Double integrals over general regions

If F is integrable over R, then we define the **double integral of** f **over** D by

$$\iint_D f(x, y) dA = \iint_R F(x, y) dA \qquad \text{where } F \text{ is given by Equation 1}$$

A plane region D is said to be of type I if it lies between the graphs of two continuous functions of x, that is,

$$D = \{(x, y) \mid a \le x \le b, \ g_1(x) \le y \le g_2(x)\}$$

where g_1 and g_2 are continuous on [a, b]. Some examples of type I regions are shown in Figure 5.

FIGURE 5 Some type I regions

FIGURE 6

3 If f is continuous on a type I region D such that

$$D = \{(x, y) \mid a \le x \le b, \ g_1(x) \le y \le g_2(x)\}$$

then

$$\iint\limits_{D} f(x, y) \, dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) \, dy \, dx$$

We also consider plane regions of type II, which can be expressed as

$$D = \{(x, y) \mid c \le y \le d, \ h_1(y) \le x \le h_2(y)\}$$

where h_1 and h_2 are continuous. Two such regions are illustrated in Figure 7.

Some type II regions

Using the same methods that were used in establishing $\lfloor 3 \rfloor$, we can show that

$$\iint_D f(x, y) dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) dx dy$$

where D is a type II region given by Equation 4.

EXAMPLE 2 Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$ and above the region D in the xy-plane bounded by the line y = 2x and the parabola $y = x^2$.

216 35

Figure 11 shows the solid whose volume is calculated in Example 2. It lies above the xy-plane, below the paraboloid $z=x^2+y^2$, and between the plane y=2x and the parabolic cylinder $y=x^2$.

FIGURE 11

FIGURE 9

D as a type I region

 $\begin{array}{c} \textbf{FIGURE 10} \\ D \text{ as a type II region} \end{array}$

FIGURE 13

FIGURE 14

Properties of Double Integrals

$$\iint\limits_{D} \left[f(x, y) + g(x, y) \right] dA = \iint\limits_{D} f(x, y) dA + \iint\limits_{D} g(x, y) dA$$

$$\iint c f(x, y) dA = c \iint f(x, y) dA$$

If
$$f(x, y) \ge g(x, y)$$
 for all (x, y) in D , then

$$\iint\limits_{D} f(x,y) \ dA \ge \iint\limits_{D} g(x,y) \ dA$$

The next property of double integrals is similar to the property of single integrals given by the equation $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$.

If $D = D_1 \cup D_2$, where D_1 and D_2 don't overlap except perhaps on their boundaries (see Figure 17), then

$$\iint\limits_{D} f(x, y) \ dA = \iint\limits_{D_1} f(x, y) \ dA + \iint\limits_{D_2} f(x, y) \ dA$$

FIGURE 17

Property 9 can be used to evaluate double integrals over regions D that are neither type I nor type II but can be expressed as a union of regions of type I or type II. Figure 18 illustrates this procedure. (See Exercises 55 and 56.)

FIGURE 18

55-56 Express D as a union of regions of type I or type II and evaluate the integral.

$$55. \iint\limits_D x^2 \, dA$$

56.
$$\iint_D y \, dA$$

55. **1**, 56. **2/15**

The next property of integrals says that if we integrate the constant function f(x, y) = 1 over a region D, we get the area of D:

$$\iint\limits_{D} 1 \, dA = A(D)$$

For instance, if D is a type I region and we put f(x, y) = 1 in Formula 3, we get

$$\iint\limits_{D} 1 \, dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} 1 \, dy \, dx = \int_{a}^{b} \left[g_{2}(x) - g_{1}(x) \right] dx = A(D)$$

by Equation 5.1.2.

Finally, we obtain an analogue of Property 8 of single integrals combining Properties 7, 8, and 10.

by

(11) If
$$m \le f(x, y) \le M$$
 for all (x, y) in D , then

$$mA(D) \le \iint\limits_D f(x, y) dA \le MA(D)$$

Volume Between Two Surfaces

Suppose now that the solid region T lies above the plane region R, as before, but between the surfaces $z=z_1(x,y)$ and $z=z_2(x,y)$, where $z_1(x,y) \le z_2(x,y)$ for all (x,y) in R (Fig. 14.3.11). Then we get the volume V of T by subtracting the volume below $z=z_1(x,y)$ from the volume below $z=z_2(x,y)$, so

$$V = \iint_{R} [z_{2}(x, y) - z_{1}(x, y)] dA.$$
 (5)

FIGURE 14.3.11 The solid *T* has vertical sides and is bounded above and below by surfaces.

EXAMPLE 4 Find the volume V of the solid T bounded by the planes z = 6 and z = 2y and by the parabolic cylinders $y = x^2$ and $y = 2 - x^2$. This solid is sketched in Fig. 14.3.12.

Double integrals in polar coordinates

(a)
$$R = \{(r, \theta) \mid 0 \le r \le 1, 0 \le \theta \le 2\pi\}$$

(b)
$$R = \{(r, \theta) \mid 1 \le r \le 2, 0 \le \theta \le \pi\}$$

$$r^2 = x^2 + y^2 \qquad x = r \cos \theta$$

$$x = r \cos \theta$$

$$y = r \sin \theta$$

FIGURE 3 Polar rectangle

FIGURE 4 Dividing R into polar subrectangles

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(r_i^* \cos \theta_j^*, r_i^* \sin \theta_j^*) \Delta A_i = \sum_{i=1}^{m} \sum_{j=1}^{n} f(r_i^* \cos \theta_j^*, r_i^* \sin \theta_j^*) r_i^* \Delta r \Delta \theta$$

2 Change to Polar Coordinates in a Double Integral If f is continuous on a polar rectangle R given by $0 \le a \le r \le b$, $\alpha \le \theta \le \beta$, where $0 \le \beta - \alpha \le 2\pi$, then

$$\iint\limits_R f(x, y) dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r dr d\theta$$

EXAMPLE 2 Find the volume of the solid bounded by the plane z = 0 and the parabo-

loid
$$z = 1 - x^2 - y^2$$
.

$$\frac{\pi}{2}$$

FIGURE 6

More Complicated Region

FIGURE 7 $D = \{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_1(\theta) \leq r \leq h_2(\theta)\}$

Type I polar region,
$$D = \{(r, \theta) | a \le r \le b, \\ g_1(r) \le \theta \le g_2(r)\}$$

3 If f is continuous on a polar region of the form

$$D = \{ (r, \theta) \mid \alpha \leq \theta \leq \beta, \ h_1(\theta) \leq r \leq h_2(\theta) \}$$

then

$$\iint\limits_{D} f(x, y) dA = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r dr d\theta$$

(4)
$$\iint\limits_D f(x,y) dA = \int_a^b \int_{g_1(r)}^{g_2(r)} f(r\cos\theta, r\sin\theta) r d\theta dr$$

EXAMPLE 4 Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the *xy*-plane, and inside the cylinder $x^2 + y^2 = 2x$.

 $\frac{3\pi}{2}$

FIGURE 9

FIGURE 10

Application of Double integrals

FIGURE 2

Formula for computing mass

Consider a lamina with density function $\rho(x,y)$ that occupies a region D.

$$m = \lim_{k, l \to \infty} \sum_{i=1}^{k} \sum_{j=1}^{l} \rho(x_{ij}^{*}, y_{ij}^{*}) \Delta A = \iint_{D} \rho(x, y) dA$$

Moments and centers of mass

Consider a lamina with density function $\rho(x,y)$ that occupies a region D. Then the moment of the entire lamina about x-axis is

$$M_{x} = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij}^{*} \rho(x_{ij}^{*}, y_{ij}^{*}) \Delta A = \iint_{D} y \rho(x, y) dA$$

Similarly, the moment about the y-axis is

$$M_{y} = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}^{*} \rho(x_{ij}^{*}, y_{ij}^{*}) \Delta A = \iint_{D} x \rho(x, y) dA$$

The coordinates $(\overline{x}, \overline{y})$ of the center of mass of a lamina occupying the region D and having density function $\rho(x, y)$ are

$$\overline{x} = \frac{M_y}{m} = \frac{1}{m} \iint\limits_D x \rho(x, y) dA$$
 $\overline{y} = \frac{M_x}{m} = \frac{1}{m} \iint\limits_D y \rho(x, y) dA$

where the mass m is given by

$$m = \iint\limits_{D} \rho(x, y) \ dA$$

EXAMPLE 2 Find the mass and center of mass of a triangular lamina with vertices (0, 0), (1, 0), and (0, 2) if the density function is $\rho(x, y) = 1 + 3x + y$.

$$m = \frac{8}{3} \qquad \overline{x} = \frac{3}{8} \qquad \overline{y} = \frac{11}{16}$$

FIGURE 5

V EXAMPLE 3 The density at any point on a semicircular lamina is proportional to the distance from the center of the circle. Find the center of mass of the lamina.

Moments of inertia

The moment of inertia (also called the second moment) of a particle of mass m about an axis is defined to be mr^2 , where r is the distance from the particle to the axis. We extend this concept to a lamina with density function $\rho(x, y)$ and occupying a region D by proceeding as we did for ordinary moments. We divide D into small rectangles, approximate the moment of inertia of each subrectangle about the x-axis, and take the limit of the sum as the number of subrectangles becomes large. The result is the **moment of inertia** of the lamina about the x-axis:

$$I_{x} = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} (y_{ij}^{*})^{2} \rho(x_{ij}^{*}, y_{ij}^{*}) \Delta A = \iint_{D} y^{2} \rho(x, y) dA$$

Similarly, the moment of inertia about the y-axis is

$$I_{y} = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij}^{*})^{2} \rho(x_{ij}^{*}, y_{ij}^{*}) \Delta A = \iint_{D} x^{2} \rho(x, y) dA$$

It is also of interest to consider the **moment of inertia about the origin**, also called the **polar moment of inertia**:

$$I_0 = \lim_{m, n \to \infty} \sum_{i=1}^m \sum_{j=1}^n \left[(x_{ij}^*)^2 + (y_{ij}^*)^2 \right] \rho(x_{ij}^*, y_{ij}^*) \Delta A = \iint_D (x^2 + y^2) \rho(x, y) dA$$