

LD1117 SERIES

LOW DROP FIXED AND ADJUSTABLE POSITIVE VOLTAGE REGULATORS

- LOW DROPOUT VOLTAGE (1V TYP)
- 2.85V DEVICE PERFORMANCES ARE SUITABLE FOR SCSI-2 ACTIVE TERMINATION
- OUTPUT CURRENT UP TO 800mA
- FIXED OUTPUT VOLTAGE OF: 2.5V, 2.85V, 3.0V, 3.3V, 5.0V
- ADJUSTABLE VERSION AVAILABILITY (V_{ref}=1.25V)
- INTERNAL CURRENT AND THERMAL LIMIT
- AVAILABLE IN ± 1% (AT 25°C) AND 2% IN ALL TEMPERATURE RANGE
- SUPPLY VOLTAGE REJECTION: 75 dB (TYP)
- TEMPERATURE RANGE: 0°C TO 125°C

The LD1117 is a LOW DROP Voltage Regulator able to provide up to 800mA of Output Current, available even in adjustable version (V_{ref}=1.25V). Concerning fixed versions, are offered the following Output Voltages: 2.5V, 2.85V, 3.0V 3.3V and 5.0V. The 2.85V type is ideal for SCSI-2 lines active termination. The device is supplied in: SOT-223, DPAK, SO-8 and TO-220. The SOT-223 and DPAK surface mount packages optimize the thermal characteristics even offering a relevant space saving effect. High efficency is assured by NPN

pass transistor. In fact in this case, unlike than PNP one, the Quiescent Current flows mostly into the load. Only a very common $10\mu F$ minimum capacitor is needed for stability. On chip trimming allows the regulator to reach a very tight output voltage tolerance, within $\pm~1\%$ at 25 $^{\circ}C$. The ADJUSTABLE LD1117 is pin to pin compatible with the other standard Adjustable voltage regulators maintaining the better performances in terms of Drop and Tolerance.

BLOCK DIAGRAM

April 1998 1/17

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
VIN	DC Input Voltage	15	V
P _{tot}	Power Dissipation	12	W
T _{stg}	Storage Temperature Range	-40 to 150	°C
Top	Operating Junction Temperature Range	0 to 125	°C

Absolute Maximum Ratings are those value beyond which damage to the device may occur. Functional operation under these condition is not implied. Over the above suggested Max Power Dissipation a Short Circuit could define

THERMAL DATA

Symbol	Parameter	SOT-223	SO-8	DPAK	TO-220	Unit
R _{thj-case}	Thermal Resistance Junction-case	15	20	8	3	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient				50	°C/W

APPLICATION CIRCUIT

SOT-223	SO-8	DPAK	TO-220	Output Voltage
LD1117S25	LD1117D25	LD1117DT25	LD1117V25	2.5V
LD1117S25C	LD1117D25C	LD1117DT25C	LD1117V25C	2.5V
LD1117S28	LD1117D28	LD1117DT28	LD1117V28	2.85V
LD1117S30	LD1117D30	LD1117DT30	LD1117V30	3V
LD1117S30C	LD1117D30C	LD1117DT30C	LD1117V30C	3V
LD1117S33	LD1117D33	LD1117DT33	LD1117V33	3.3V
LD1117S33C	LD1117D33C	LD1117DT33C	LD1117V33C	3.3V
LD1117S50	LD1117D50	LD1117DT50	LD1117V50	5V
LD1117S50C	LD1117D50C	LD1117DT50C	LD1117V50C	5V
LD1117S	LD1117D	LD1117DT	LD1117V	ADJUSTABLE FROM 1.25 TO 15V

ELECTRICAL CHARACTERISTICS FOR LD1117#25 (refer to the test circuits,

 $T_i = 0$ to 125 °C, $C_o = 10 \mu F$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$V_{in} = 4.5 \text{ V}$ $I_{o} = 10 \text{ mA}$ $T_{j} = 25 ^{\circ}\text{C}$	2.475	2.5	2.525	V
Vo	Output Voltage	$I_0 = 0 \text{ to } 800 \text{ mA}$ $V_{in} = 3.9 \text{ to } 10 \text{ V}$	2.45		2.55	V
ΔV_o	Line Regulation	$V_{in} = 3.9 \text{ to } 10 \text{ V}$ $I_{o} = 0 \text{ mA}$		1	6	mV
ΔV_o	Load Regulation	$V_{in} = 3.9 \text{ V}$ $I_o = 0 \text{ to } 800 \text{ mA}$		1	10	m۷
ΔV_o	Temperature Stability			0.5		%
ΔV_o	Long Term Stability	1000 hrs T _j = 125 °C		0.3		%
V _{in}	Operating Input Voltage	I _o = 100 mA			15	V
Id	Quiescent Current	V _{in} ≤ 10 V		5	10	mΑ
Io	Output Current	V _{in} = 7.5 V T _j = 25 °C	800	950	1200	mΑ
eN	Output Noise Voltage	B = 10Hz to 10KHz $T_j = 25$ °C		100		μV
SVR	Supply Voltage Rejection	$I_0 = 40 \text{ mA}$ f = 120 Hz $T_j = 25$ °C $V_{in} = 5.5 \text{ V}$ $V_{ripple} = 1 \text{ Vpp}$	60	75		dB
V _d	Dropout Voltage	I _o = 100 mA I _o = 500 mA I _o = 800 mA		1 1.05 1.10	1.1 1.15 1.2	V V V
	Thermal Regulation	T _a = 25 °C 30ms Pulse		0.01	0.1	%/W

ELECTRICAL CHARACTERISTICS FOR LD1117#28 (refer to the test circuits,

 $T_j = 0$ to 125 °C, $C_o = 10 \mu F$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$V_{in} = 4.85 \text{ V}$ $I_o = 10 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$	2.82	2.85	2.88	V
Vo	Output Voltage	$I_0 = 0 \text{ to } 800 \text{ mA}$ $V_{in} = 4.25 \text{ to } 10 \text{ V}$	2.79		2.91	V
ΔV _o	Line Regulation	$V_{in} = 4.25 \text{ to } 10 \text{ V}$ $I_0 = 0 \text{ mA}$		1	6	mV
ΔVo	Load Regulation	$V_{in} = 4.25 \text{ V}$ $I_0 = 0 \text{ to } 800 \text{ mA}$		1	10	mV
ΔVo	Temperature Stability			0.5		%
ΔVo	Long Term Stability	1000 hrs T _j = 125 °C		0.3		%
Vin	Operating Input Voltage	I _o = 100 mA			15	V
I _d	Quiescent Current	V _{in} ≤ 10 V		5	10	mΑ
Io	Output Current	$V_{in} = 7.85 \text{ V} T_j = 25 ^{\circ}\text{C}$	800	950	1200	mΑ
eN	Output Noise Voltage	B = 10Hz to 10KHz $T_j = 25$ °C		100		μV
SVR	Supply Voltage Rejection	$I_o = 40 \text{ mA}$ f = 120 Hz $T_j = 25$ °C $V_{in} = 5.85 \text{ V}$ $V_{ripple} = 1 \text{ Vpp}$	60	75		dB
V _d	Dropout Voltage	I _o = 100 mA I _o = 500 mA I _o = 800 mA		1 1.05 1.1	1.1 1.15 1.2	V V V
	Thermal Regulation	T _a = 25 °C 30ms Pulse		0.01	0.1	%/W

ELECTRICAL CHARACTERISTICS FOR LD1117#30 (refer to the test circuits,

 $T_j = 0$ to 125 °C, $C_o = 10 \mu F$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$V_{in} = 5 \text{ V}$ $I_o = 10 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$	2.97	3	3.03	V
Vo	Output Voltage	$I_0 = 0 \text{ to } 800 \text{ mA}$ $V_{in} = 4.5 \text{ to } 10 \text{ V}$	2.94		3.06	V
ΔV_o	Line Regulation	$V_{in} = 4.5 \text{ to } 12 \text{ V}$ $I_{o} = 0 \text{ mA}$		1	6	mV
ΔV_o	Load Regulation	$V_{in} = 4.5 \text{ V}$ $I_o = 0 \text{ to } 800 \text{ mA}$		1	10	mV
ΔV_o	Temperature Stability			0.5		%
ΔV_o	Long Term Stability	1000 hrs T _j = 125 °C		0.3		%
V _{in}	Operating Input Voltage	I _o = 100 mA			15	V
ld	Quiescent Current	V _{in} ≤ 12 V		5	10	mA
Io	Output Current	V _{in} = 8 V T _j = 25 °C	800	950	1200	mΑ
eN	Output Noise Voltage	B = 10Hz to 10KHz T _j = 25 °C		100		μV
SVR	Supply Voltage Rejection	$I_0 = 40 \text{ mA}$ f = 120 Hz $T_j = 25$ °C $V_{in} = 6 \text{ V}$ $V_{ripple} = 1 \text{ Vpp}$	60	75		dB
V _d	Dropout Voltage	I _o = 100 mA I _o = 500 mA I _o = 800 mA		1 1.05 1.1	1.1 1.15 1.2	V V V
	Thermal Regulation	T _a = 25 °C 30ms Pulse		0.01	0.1	%/W

ELECTRICAL CHARACTERISTICS FOR LD1117#33 (refer to the test circuits,

 $T_j = 0$ to 125 °C, $C_o = 10 \mu F$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$V_{in} = 5.3 \text{ V}$ $I_o = 10 \text{ mA}$ $T_j = 25 \text{ °C}$	3.267	3.3	3.333	V
Vo	Output Voltage	$I_0 = 0 \text{ to } 800 \text{ mA}$ $V_{in} = 4.75 \text{ to } 10 \text{ V}$	3.235		3.365	V
ΔV _o	Line Regulation	$V_{in} = 4.75 \text{ to } 15 \text{ V}$ $I_0 = 0 \text{ mA}$		1	6	mV
ΔV _o	Load Regulation	$V_{in} = 4.75 \text{ V}$ $I_o = 0 \text{ to } 800 \text{ mA}$		1	10	mV
ΔVo	Temperature Stability			0.5		%
ΔVo	Long Term Stability	1000 hrs $T_j = 125$ °C		0.3		%
Vin	Operating Input Voltage	I _o = 100 mA			15	V
I _d	Quiescent Current	V _{in} ≤ 15 V		5	10	mA
Io	Output Current	$V_{in} = 8.3 \text{ V}$ $T_j = 25 \text{ °C}$	800	950	1200	mA
eN	Output Noise Voltage	B = 10Hz to 10KHz $T_j = 25$ °C		100		μV
SVR	Supply Voltage Rejection	$I_{o} = 40 \text{ mA}$ f = 120 Hz $T_{j} = 25$ °C $V_{in} = 6.3 \text{ V}$ $V_{ripple} = 1 \text{ Vpp}$	60	75		dB
V _d	Dropout Voltage	I _o = 100 mA I _o = 500 mA I _o = 800 mA		1 1.05 1.1	1.1 1.15 1.2	V V V
	Thermal Regulation	T _a = 25 °C 30ms Pulse		0.01	0.1	%/W

ELECTRICAL CHARACTERISTICS FOR LD1117#50 (refer to the test circuits,

 $T_i = 0$ to 125 °C, $C_o = 10 \mu F$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$V_{in} = 7 \text{ V}$ $I_{o} = 10 \text{ mA}$ $T_{j} = 25 ^{\circ}\text{C}$	4.95	5	5.05	V
Vo	Output Voltage	$I_0 = 0 \text{ to } 800 \text{ mA}$ $V_{in} = 6.5 \text{ to } 15 \text{ V}$	4.9		5.1	V
ΔVo	Line Regulation	$V_{in} = 6.5 \text{ to } 15 \text{ V}$ $I_{o} = 0 \text{ mA}$		1	10	mV
ΔV _o	Load Regulation	$V_{in} = 6.5 \text{ V}$ $I_o = 0 \text{ to } 800 \text{ mA}$		1	15	mV
ΔV _o	Temperature Stability			0.5		%
ΔV _o	Long Term Stability	1000 hrs T _j = 125 °C		0.3		%
V _{in}	Operating Input Voltage	I _o = 100 mA			15	V
Id	Quiescent Current	V _{in} ≤ 15 V		5	10	mA
Io	Output Current	$V_{in} = 10 \text{ V} T_j = 25 ^{\circ}\text{C}$	800	950	1200	mA
eN	Output Noise Voltage	B = 10Hz to 10KHz $T_j = 25$ °C		100		μV
SVR	Supply Voltage Rejection	$I_0 = 40 \text{ mA}$ f = 120 Hz $T_j = 25$ °C $V_{in} = 8 \text{ V}$ $V_{ripple} = 1 \text{ Vpp}$	60	75		dB
V _d	Dropout Voltage	I _o = 100 mA I _o = 500 mA I _o = 800 mA		1 1.05 1.1	1.1 1.15 1.2	V V V
	Thermal Regulation	T _a = 25 °C 30ms Pulse		0.01	0.1	%/W

ELECTRICAL CHARACTERISTICS FOR LD1117(ADJUSTABLE) (refer to the test circuits,

 $T_j = 0$ to 125 °C, $C_o = 10 \mu F$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{ref}	Reference Voltage	$V_{in} - V_{o} = 2 \text{ V}$ $V_{o} = 10 \text{ mA}$ $V_{ij} = 25 \text{ °C}$	1.238	1.25	1.262	V
V _{ref}	Reference Voltage	$I_0 = 10 \text{ to } 800 \text{ mA}$ $V_{in} - V_0 = 1.4 \text{ to } 10 \text{ V}$	1.225		1.275	V
ΔV_{o}	Line Regulation	$V_{in} - V_o = 1.5 \text{ to } 13.75 \text{ V}$ $I_o = 10 \text{ mA}$		0.035	0.2	%
ΔV_o	Load Regulation	$V_{in} - V_o = 3 \text{ V}$ $I_o = 10 \text{ to } 800 \text{ mA}$		0.1	0.4	%
ΔV_o	Temperature Stability			0.5		%
ΔVo	Long Term Stability	1000 hrs $T_j = 125$ °C		0.3		%
Vin	Operating Input Voltage				15	V
l _{adj}	Adjustment Pin Current	V _{in} ≤ 15 V		60	120	μΑ
ΔI_{adj}	Adjustment Pin Current Change	V _{in} - V _o = 1.4 to 10 V I _o = 10 to 800 mA		1	5	μА
I _{o(min)}	Minimum Load Current	V _{in} = 15 V		2	5	mA
Ιο	Output Current	$V_{in} - V_{o} = 5 \text{ V} T_{j} = 25 ^{\circ}\text{C}$	800	950	1200	mA
eN	Output Noise (%V _O)	B = 10Hz to 10KHz $T_j = 25$ °C		0.003		%
SVR	Supply Voltage Rejection	$I_0 = 40 \text{ mA}$ f = 120 Hz $T_j = 25$ °C $V_{in} - V_o = 3 \text{ V}$ $V_{ripple} = 1 \text{ Vpp}$	60	75		dB
V _d	Dropout Voltage	I _o = 100 mA I _o = 500 mA I _o = 800 mA		1 1.05 1.1	1.1 1.15 1.2	V V V
	Thermal Regulation	T _a = 25 °C 30ms Pulse		0.01	0.1	%/W

ELECTRICAL CHARACTERISTICS FOR LD1117#25C (refer to the test circuits,

 $T_j = 0$ to 125 °C, $C_o = 10 \mu F$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$V_{in} = 4.5 \text{ V}$ $I_o = 10 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$	2.45	2.5	2.55	V
Vo	Output Voltage	$I_0 = 0 \text{ to } 800 \text{ mA}$ $V_{in} = 3.9 \text{ to } 10 \text{ V}$	2.4		2.6	V
ΔVo	Line Regulation	$V_{in} = 3.9 \text{ to } 10 \text{ V}$ $I_{o} = 0 \text{ mA}$		1	30	mV
ΔV _o	Load Regulation	$V_{in} = 3.9 \text{ V}$ $I_o = 0 \text{ to } 800 \text{ mA}$		1	30	mV
ΔV _o	Temperature Stability			0.5		%
ΔV _o	Long Term Stability	1000 hrs T _j = 125 °C		0.3		%
Vin	Operating Input Voltage	I _o = 100 mA			15	V
Id	Quiescent Current	V _{in} ≤ 10 V		5	10	mA
Io	Output Current	V _{in} = 7.5 V T _j = 25 °C	800	950	1200	mA
eN	Output Noise Voltage	B = 10Hz to 10KHz $T_j = 25$ °C		100		μV
SVR	Supply Voltage Rejection	$I_0 = 40 \text{ mA}$ f = 120 Hz T _j = 25 °C V _{in} = 5.5 V V _{ripple} = 1 Vpp	60	75		dB
V _d	Dropout Voltage	I _o = 100 mA I _o = 500 mA I _o = 800 mA		1 1.05 1.1	1.1 1.15 1.2	V V V
	Thermal Regulation	T _a = 25 °C 30ms Pulse		0.01	0.1	%/W

ELECTRICAL CHARACTERISTICS FOR LD1117#30C (refer to the test circuits,

 T_{j} = 0 to 125 $^{o}C,\,C_{o}$ = 10 μF unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$V_{in} = 5 \text{ V}$ $I_{o} = 10 \text{ mA}$ $T_{j} = 25 ^{\circ}\text{C}$	2.94	3	3.06	V
Vo	Output Voltage	$I_0 = 0 \text{ to } 800 \text{ mA}$ $V_{in} = 4.5 \text{ to } 10 \text{ V}$	2.88		3.12	V
ΔV _o	Line Regulation	$V_{in} = 4.5 \text{ to } 12 \text{ V} I_{o} = 0 \text{ mA}$		1	30	mV
ΔV_o	Load Regulation	$V_{in} = 4.5 \text{ V}$ $I_o = 0 \text{ to } 800 \text{ mA}$		1	30	m۷
ΔV_0	Temperature Stability			0.5		%
ΔVo	Long Term Stability	1000 hrs $T_j = 125$ °C		0.3		%
Vin	Operating Input Voltage	I _o = 100 mA			15	V
I _d	Quiescent Current	$V_{in} \le 12 \text{ V}$		5	10	mΑ
Io	Output Current	$V_{in} = 8 \text{ V} T_j = 25 \text{ °C}$	800	950	1200	mΑ
eN	Output Noise Voltage	B = 10Hz to 10KHz $T_j = 25$ °C		100		μV
SVR	Supply Voltage Rejection	$I_{o} = 40 \text{ mA}$ f = 120 Hz $T_{j} = 25$ °C $V_{in} = 6 \text{ V}$ $V_{ripple} = 1 \text{ Vpp}$	60	75		dB
V _d	Dropout Voltage	I _o = 100 mA I _o = 500 mA I _o = 800 mA		1 1.05 1.1	1.1 1.15 1.2	V V V
	Thermal Regulation	T _a = 25 °C 30ms Pulse		0.01	0.1	%/W

ELECTRICAL CHARACTERISTICS FOR LD1117#33C (refer to the test circuits,

 $T_j = 0$ to 125 °C, $C_o = 10 \mu F$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$V_{in} = 5.3 \text{ V}$ $I_0 = 10 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$	3.24	3.3	3.36	V
Vo	Output Voltage	$I_0 = 0 \text{ to } 800 \text{ mA}$ $V_{in} = 4.75 \text{ to } 10 \text{ V}$	3.16		3.44	V
ΔV_{o}	Line Regulation	$V_{in} = 4.75 \text{ to } 15 \text{ V}$ $I_0 = 0 \text{ mA}$		1	30	mV
ΔV_o	Load Regulation	$V_{in} = 4.75 \text{ V}$ $I_o = 0 \text{ to } 800 \text{ mA}$		1	30	mV
ΔV_o	Temperature Stability			0.5		%
ΔV_o	Long Term Stability	1000 hrs T _j = 125 °C		0.3		%
V _{in}	Operating Input Voltage	I _o = 100 mA			15	V
ld	Quiescent Current	V _{in} ≤ 15 V		5	10	mΑ
Io	Output Current	$V_{in} = 8.3 \text{ V} T_j = 25 ^{\circ}\text{C}$	800	950	1200	mΑ
eN	Output Noise Voltage	B = 10Hz to 10KHz $T_j = 25$ °C		100		μV
SVR	Supply Voltage Rejection	$I_0 = 40 \text{ mA}$ f = 120 Hz $T_j = 25$ °C $V_{in} = 6.3 \text{ V}$ $V_{ripple} = 1 \text{ Vpp}$	60	75		dB
V _d	Dropout Voltage	I _o = 100 mA I _o = 500 mA I _o = 800 mA		1 1.05 1.1	1.1 1.15 1.2	V V V
	Thermal Regulation	T _a = 25 °C 30ms Pulse		0.01	0.1	%/W

ELECTRICAL CHARACTERISTICS FOR LD1117#50C (refer to the test circuits,

 $T_j = 0$ to 125 °C, $C_o = 10 \mu F$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$V_{in} = 7 \text{ V}$ $I_o = 10 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$	4.9	5	5.1	V
Vo	Output Voltage	$I_0 = 0 \text{ to } 800 \text{ mA}$ $V_{in} = 6.5 \text{ to } 15 \text{ V}$	4.8		5.2	V
ΔVo	Line Regulation	$V_{in} = 6.5 \text{ to } 15 \text{ V}$ $I_{o} = 0 \text{ mA}$		1	50	mV
ΔV _o	Load Regulation	$V_{in} = 6.5 \text{ V}$ $I_o = 0 \text{ to } 800 \text{ mA}$		1	50	mV
ΔVo	Temperature Stability			0.5		%
ΔVo	Long Term Stability	1000 hrs $T_j = 125$ °C		0.3		%
Vin	Operating Input Voltage	I _o = 100 mA			15	V
I _d	Quiescent Current	V _{in} ≤ 15 V		5	10	mΑ
Io	Output Current	$V_{in} = 10 \text{ V} T_j = 25 ^{\circ}\text{C}$	800	950	1200	mA
eN	Output Noise Voltage	B = 10Hz to 10KHz $T_j = 25$ °C		100		μV
SVR	Supply Voltage Rejection	$I_o = 40 \text{ mA}$ f = 120 Hz $T_j = 25$ °C $V_{in} = 8 \text{ V}$ $V_{ripple} = 1 \text{ Vpp}$	60	75		dB
V _d	Dropout Voltage	I _o = 100 mA I _o = 500 mA I _o = 800 mA		1 1.05 1.1	1.1 1.15 1.2	V V V
	Thermal Regulation	T _a = 25 °C 30ms Pulse		0.01	0.1	%/W

TYPICAL APPLICATIONS:

FIGURE 1: Negative Supply

FIGURE 2: Active Terminator for SCSI-2 BUS

FIGURE 3: Circuit for Increasing Output Voltage

TYPICAL APPLICATIONS (continued):

FIGURE 4: Voltage Regulator With Reference

FIGURE 5: Battery Backed-up Regulated Supply

577

TYPICAL APPLICATIONS (continued):

FIGURE 6: Post-Regulated Dual Supply

LD1117 ADJUSTABLE: APPLICATION NOTE

The LD1117 ADJUSTABLE has a thermal stabilized 1.25 \pm 0.012V reference voltage between the OUT and ADJ pins. I_{ADJ} is 60 μ A typ. (120 μ A max.) and Δ I_{ADJ} is 1 μ A typ. (5 μ A max.).

R1 is normally fixed to 120Ω . From figure 7 we obtain:

 $V_{OUT} = V_{REF} + R2 (I_{ADJ} + I_{R1}) = V_{REF} + R2 (I_{ADJ} + V_{REF} / R1) = V_{REF} (1 + R2 / R1) + R2 x I_{ADJ}$

In normal application R2 value is in the range of few Kohm, so the R2 x I_{DJ} product could not be considered in the V_{OUT} calculation; then the above expression becomes:

 $V_{OUT} = V_{REF} (1 + R2 / R1).$

In order to have the better load regulation it is important to realize a good Kelvin connection of R1 and R2 resistors. In particular R1 connection must be realized very close to OUT and ADJ pin, while R2 ground connection must be placed as near as possible to the negative Load pin. Ripple rejection can be improved by introducing a $10\mu F$ electrolitic capacitor placed in parallel to the R2 resistor (see Fig.8)

FIGURE 7: Adjustable Output Voltage Application Circuit

FIGURE 8: Adjustable Output Voltage Application with improved Ripple Rejection

SOT-223 MECHANICAL DATA

DIM.	mm			mils		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
а	2.27	2.3	2.33	89.4	90.6	91.7
b	4.57	4.6	4.63	179.9	181.1	182.3
С	0.2	0.4	0.6	7.9	15.7	23.6
d	0.63	0.65	0.67	24.8	25.6	26.4
e1	1.5	1.6	1.7	59.1	63	66.9
e4			0.32			12.6
f	2.9	3	3.1	114.2	118.1	122.1
g	0.67	0.7	0.73	26.4	27.6	28.7
l1	6.7	7	7.3	263.8	275.6	287.4
12	3.5	3.5	3.7	137.8	137.8	145.7
L	6.3	6.5	6.7	248	255.9	263.8

577

SO-8 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1	45 (typ.)					
D	4.8		5.0	0.188		0.196
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S	8 (max.)					

TO-252 (DPAK) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.9	0.025		0.035
B2	5.2		5.4	0.204		0.212
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
Е	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
Н	9.35		10.1	0.368		0.397
L2		0.8			0.031	
L4	0.6		1	0.023		0.039

TO-220 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1998 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A