MCMT Homework 10

Shun Zhang

Exercise 10.1

 $\mu((1, 2, \dots, k) \to (2, 3, \dots, k, 1)) = \frac{1}{n}.$ $\mu(\cdot) = 0$, for other permutations.

Exercise 10.2

Let $p = 1/(3^2)^3$, and consider the cases when n = 3, $\tau = 3$.

1. When $X_3 = X_0$, we may swap a card with itself at each time, and swap three different cards for t = 1, 2, 3. The probability is 3!p = 6p. We can also swap two cards back and forth for the first two steps, and swap the third card with itself. The probability is $\binom{3}{2}2^2p = 12p$. So $\mathbb{P}(X_3 = X_0, \tau = 3) = 18p$.

When $X_3=(2\ 1\ 3)X_0$, which we stop at swaping two cards on the top. We can swap any card with itself in the first two rounds, but include 3 at least once, and then swap 1 and 2 in the third step. The probability is 5*2p=10p. We can also swap the third card with either of the top cards back and forth for the first two steps, and then swap 1 and 2 in the third step. The probability is $2*2^3p=16p$. We can conclude that $\mathbb{P}(X_3=(2\ 1\ 3)X_0,\tau=3)\geq 26p$.

 π is a uniform distribution, but $\mathbb{P}(X_3 = X_0, \tau = 3) \neq \mathbb{P}(X_3 = (2\ 1\ 3)X_0, \tau = 3)$. So this is not a strong stationary distribution.

2. R_t must be distinct for t = 1, 2, 3. So $P(\tau = 3) = 3! * 3^3 p = 162p$.

When $X_3 = X_0$, we may swap a card with itself at each time, and swap three different cards for t = 1, 2, 3. The probability is 3!p = 6p. We can also swap two cards back and forth for two steps, and swap the third card with itself in the other step. The probability is $\binom{3}{2}\binom{3}{2}2p = 18p$. So $\mathbb{P}(X_3 = X_0, \tau = 3) = 24p$.

There are 6 possible outcomes for $\tau = 3$, but $\mathbb{P}(X_3 = X_0, \tau = 3) \neq 162p/6$. So this is not a strong stationary distribution.