

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Mid-Autumn Semester 2019-20

Date of Examination: 20-09-2019 Session: AN Duration 2 hrs Full Marks: 60

Subject No.: EC21103 Subject: Introduction to Electronics

Department/Center/School:

Department of Electronics and Electrical Communication Engineering

Specific charts, graph paper, log book etc., required: No

Instructions

- Answer all questions (Question no. 1 to 6). Answers must be brief and to the point.
- Avoid writing answers of the various parts of a single question at different locations in your answer-script. For every Question No., start your answer from a new page.
- The final answers (numerical values with unit) should be underlined or enclosed within box with unit.
- Show the necessary steps in your answers with high clarity and supported explanation.
- All waveform sketches / diagrams must be neatly drawn and clearly labeled.
- For any value related to any device parameter or circuit parameter, which you may find not given with a problem, assume suitable value for such parameter and write your assumptions.

<u>Note:</u> Assume, V_Y (cut-in voltage for Silicon diodes) = 0.7 V and $V_{BE(ON)}$ = 0.7 V for n-p-n BJT unless otherwise mentioned.

1. Multiple choice questions (Only one correct answer)

10x1=10

- I. The peak inverse voltage of the Silicon diode in a half-wave rectifier circuit with capacitor filter is
 - (a) V_m

(b) $2 V_m$

(c) $V_m - V_\gamma$

(d) $2V_m - V_{\gamma}$

Where V_m is the maximum amplitude of input sinusoid signal.

- II. Proper DC biasing is required in a CE amplifier to
 - (a) set the transistor gain

(b) set the transistor in active regime

(c) both (a) and (b)

(d) none of (a) and (b)

- III. Forward-bias voltage across a silicon p-n junction diode is increased by 60 mV, the diode current is expected to increase by
 - (a) 2 times

(b) 4 times

(c) 6 times

(d) 10 times

- IV. Reverse saturation current of a p-n junction diode becomes double with
 - (a) every 10 °C fall in temperature

(b) every 10 °C rise in temperature

(c) every 2 °C fall in temperature

(d) every 100 °C rise in temperature

	in a p-type silicon sample the hole concentration is $2.25 \times 10^{13}/cm^3$. The intrinsic carrier concentration is $1.5 \times 10^{10}/cm^3$, the electron concentration is (a) 1.5×10^{10} cm ⁻³ (b) 2.25×10^{15} cm ⁻³ (c) 10^5 cm ⁻³ (d) Zero
VI.	The input to a half-wave rectifier without a filter is v_i = 18.84 sin 314.2t. The dc component at the output will be
	(a) 4.25 V (b) 6 V (c) 9.42 V (d) 13.3 V
VII.	A 4 V DC voltage source is connected to a voltage regulator using a Zener diode with V _z = 6 V. The load voltage is (a) 0 (b) 4 V (c) 6 V (d) depends on the load resistance value
\/III	
VIII.	Magnitude of ripple factor for a simple half-wave rectifier (without any filter circuit) is (a) 1.21 (b) 0.48 (c) 0.81 (d) 0.99
IX.	In a silicon npn BJT, the base to emitter voltage (V_{BE}) is 0.7 V and collector
	to base voltage (V_{CB}) is 0.2 V. The transistor is operating in the (a) Cut – off mode (b) Saturation mode (c) Forward active mode (d) Inverse active mode
Χ.	In a bipolar junction transistor Early – effect is caused by
	 (a) Fast turn – off. (b) Fast turn – on. (c) Large collector–base reverse bias. (d) Large emitter–base forward bias
	(d) Large contector—base reverse blas. (d) Large emitter—base forward blas
2.(a) (i) Why does Semiconductors display/exhibit an electronic bandgap? Explain with suitable diagrams. (ii) How can you modulate the conductivity of a semiconductor? [3+2]	
suital Note	
Note askin	ble diagrams. (ii) How can you modulate the conductivity of a semiconductor? [3+2]: Remember, NO marks will be given if you write WHAT a Bandgap is? We are
Note askin 2.(b) and a 3.(a) chara	ble diagrams. (ii) How can you modulate the conductivity of a semiconductor? [3+2]: Remember, NO marks will be given if you write WHAT a Bandgap is? We are g WHY Bandgap exists? What are the fundamental differences between the working principles of a Diode
suitale Note askin 2.(b) and a 3.(a) chara (ii) He 3.(b)	ble diagrams. (ii) How can you modulate the conductivity of a semiconductor? [3+2]: Remember, NO marks will be given if you write WHAT a Bandgap is? We are go WHY Bandgap exists? What are the fundamental differences between the working principles of a Diode a Bipolar Junction Transistor (BJT)? Give at least five differences. [5] (i) With suitable circuits, diagrams and plots/graphs explain the Input and Output acteristics of a PNP bipolar junction transistor in common emitter (CE) configuration.

4. For the Circuit shown in Figure 2 the following information are available. The transformer has a turns ration of 8:1 and the input rms voltage varies from 110 V to 120 V at 60 Hz. All diodes in the bridge rectifier at made up of silicon. The Zener voltage is fixed at 12 V and the Zener resistance in 2 Ω . The Zener diode could operate over the range of 10 mA to 100 mA.

It is expected that output load current (I_L) should vary between 25 mA and 50 mA and the output voltage (V_o) remains within 12 to 12.20 V.

Determine the appropriate values of the Resistors (R_i and R_L) and Capacitor (C) that will allow you to produce such output voltage and currents. (10)

Figure 1 Figure 2

5.(a) (i) In the circuit shown in Figure 3 if the voltage source (V_{in}) provides a sinusoidal signal of 12 V_{p-p} (+6 0 -6 V), estimate the maximum output voltage (V_{out}). (ii) Plot the output (V_{out}) waveform for at least 2T, where, T is the time period of the input signal.

For this question assume $V_{\gamma} = 0$. (2+3)

5.(b) In the circuit shown in Figure 4, the Zener breakdown voltage is 3 V. Plot the V_{out} vs V_{in} and I vs V_{in} if the input voltage (V_{in}) is varied from -10 V to +10 V. For this question assume $V_{\gamma} = 0$. (2.5+2.5)

6.(a) (i) In the circuit shown in Figure 5 determine the range of V_1 such that $2 \text{ V} \le V_{CE} \le 4 \text{ V}$. **(ii)** Sketch the load line with clear leveling and show the range of the *Q*-point values. Given that $\beta = 25$. **(3+1)**

6.(b) In the CE amplifier circuit shown in Figure 6 assume V_{CC} = 15 V, β = 150, V_{BE} = 0.7 V, R_E = 1 k Ω , R_C = 4.7 k Ω , R_1 = 47 k Ω , R_2 = 10 k Ω , R_L = 47 k Ω , R_S = 100 Ω .

(i) Determine the Q-point. (ii) Draw the AC equivalent circuit and determine the AC model parameters. (iii) Estimate small-signal voltage gain. (2+2+2)

----- End of Question Paper -----