

Sets Ex 1.6 Q6(i)

Let 
$$A = \{1,2,3\}$$
,  $B = \{2,4,6\}$  and  $C = \{2,5,7\}$ 

Then,

$$A \cap B = \{2\}$$

and 
$$A \wedge C = \{2\}$$

Hence,  $A \cap B = A \cap C$ , but clearly  $B \neq C$ .

Sets Ex 1.6 Q6(ii)

Given  $A \subset B$ 

To show:  $C - B \subset C - A$ 

Let  $x \in C - B$ 

 $\Rightarrow x \in C \text{ and } x \notin B$  [by definition of C - B]

 $\Rightarrow x \in C \text{ and } x \notin A \qquad \left[ \because A \subset B \right]$ 

This can be seen by the venn diagram above

 $\Rightarrow x \in C - A$  [by definition of C - A]

Thus  $x \in C - B \Rightarrow x \in C - A$ . This is true for all  $x \in C - B$ 

 $\therefore C-B \subset C-A$ 

Sets Ex 1.6 Q7

(i)

 $A \cup (A \cap B) = (A \cup A) \cap (A \cup B)$  [ $\vee$  union  $\cup$  is distributive over intersection  $\cap$ ] =  $A \cap (A \cup B)$  [ $\vee$   $A \cup A = A$ ]

 $A \qquad \qquad \begin{bmatrix} \cdots \ A \subset (A \cup B), \text{ as union of two sets is bigger} \\ \text{than each of the individual sets} \end{bmatrix}$ 

Hence,  $A \cup (A \cap B) = A$  Proved.

(ii)

 $A \cap (A \cup B) = (A \cap A) \cup (A \cap B)$  [:  $A \cap A = A$ ] =  $A \cup (A \cap B)$  [using (i)]

Sets Ex 1.6 Q8

To find sets A,B and C such that  $A \cap B \neq \emptyset$ ,  $A \cap C = \emptyset$  and  $B \cap C = \emptyset$  and  $A \cap B \cap C = \emptyset$ 

Take 
$$A = \{1, 2, 3\}$$

$$B = \{2, 4, 6\}$$

and 
$$C = \{3, 4, 7\}$$

Then,

$$A \cap B = \{2\}$$

$$A \wedge C = \{3\}$$

$$A \cap C \neq \emptyset$$

$$B \cap C = \{4\}$$

However A, B and C have no elements in common,

$$A \cap B \cap C = \emptyset$$

\*\*\*\*\*\*\*\*\* END \*\*\*\*\*\*\*