

1.1. CAPACIDAD DE INFORMACIÓN Y CAUDAL DE DATOS

Por Alberto Prieto Espinosa

Profesor Emérito del Departamento de Arquitectura y Tecnología de los Computadores de la LIGR

Módulo 1 Información y datos digitales

Información Digital

- M1 Información y datos digitales.
 - 1.1 Capacidad de información y caudal de datos.
 - 1.2 Patrones de bits y códigos binarios.
 - 1.3 Detección automática de errores.
 - 1.4 Tipos de Información y archivos.
 - 1.5 Concepto de compresión de datos.

Información y datos digitales

1.1 CAPACIDAD DE INFORMACIÓN Y CAUDAL DE DATOS.

La información dentro de un sistema digital se codifica con un código binario; es decir, con dos símbolos que frecuentemente se representan por cero y uno.

En las unidades de entrada:

- Se transforma la información en señales eléctricas.
- Se digitaliza la información (codifica en binario).

En las unidades de salida:

 Se transforma la información digitalizada en información inteligible de acuerdo con un determinado formato.

Unidades de información en sistemas digitales

- Bit →
 - Unidad más elemental o capacidad mínima de información.
 - Es una posición o variable que toma el valor 0 ó 1.
- Byte →
 - En la actualidad se considera sinónimo de grupo de 8 bits.
 - (Históricamente: nº de bits necesarios para almacenar un carácter)

Ejemplos de bit y byte • Texto: Hay 24 H → 0100 1000 a → 0110 0001 y → 0111 1001 SP → 0010 0000 2 → 0011 0010 4 → 0011 0100 Código ASCI

Múltiplos para capacidad de información (Bytes o bits) según la IEC - International Electrotechnical Commission

Prefijo	Prefijos binarios (IEC)		
Exa (E)	2 ⁶⁰		
Peta (P)	2^{50}		
Tera (T)	2^{40}		
Giga (G)	2^{30}		
Mega (M)	2^{20}		
Kilo (K)	2 ¹⁰ =1.024		

Múltiplos según la SI (International System of Units)

Prefijo	Valor (SI)	Prefijos binarios (IEC)	
Exa (E)	10^{18}	2^{60}	Exbi (Ei)
Peta (P)	10^{15}	2^{50}	Pebi (Ei)
Tera (T)	10^{12}	2 ⁴⁰	Tebi (Ei)
Giga (G)	109	2^{30}	Gibi (Ei)
Mega (M)	10^{6}	2^{20}	Mebi (Ei)
Kilo (K)	10^{3}	2 ¹⁰ =1.024	Kibi (Ki)

- Kilo byte binario (bi: binario): KibiByte

Ejemplos de capacidades (usuales)

- Capacidad de la memoria principal
 - Decenas de GB.
- Capacidad de discos magnéticos y de estado sólido (SSD)
 - Cientos GB, TB.
- Tarjetas de memoria flash:
 - Decenas y cientos de GB.
 - Tarjetas SD (foto/video)
 - MicroSD (dispositivos móviles)
 - CompactFlash (porfesionales foto/video)
- Flash USB
 - Decenas y cientos de GB.

La información se transmite a través de "canales" de comunicación

- Usualmente (conexiones alámbricas) un canal esta constituido por un conjunto de líneas (cables) o pistas conductoras de la electricidad que se denomina genéricamente bus.
- Los buses interconectan las distintas unidades del sistema.

Un bus paralelo está compuesto de varias líneas conductoras que transmiten simultáneamente varios bits

- Usualmente los buses paralelos son de 8, 16, 32, 64 o 128 líneas.
 - Es decir, transmiten a la vez, 1, 2, 4, 8 o 16 Bytes.
 - El nº de líneas de un bus se conoce como "ancho del bus"

Un bus serie transmite la información a través de una única línea, transfiriéndose los bits uno a uno.

- Hay buses serie que, en realidad contienen dos líneas con las que se transmiten los bits, uno a uno, en modo diferencial.
 - Con este modo se reducen considerablemente los efectos de las interferencias (ruido electromagnético)
- Ejemplo: Bus USB
 - Contiene 4 conexiones. Dos para la alimentación (5 voltios, y tierra), y dos para transmitir la información (bits) >> transmisión half-duplex.

¿Cómo se mide la rapidez en la transmisión?

- Ancho de banda, caudal, tasa o velocidad de transferencia:
 - Cantidad de información que discurre en un determinado lugar por unidad de tiempo.
 - Ejemplos:
 - El ancho de banda del bus es de 8 MB/s.
 - Mi línea ADSL es de 50Mbits/s
 - En las conexiones serie se suele dar en bits/segundo
- El nombre más riguroso en español sería: caudal de transferencia

Conceptos a aprender en esta lección:

- Código binario
- Funciones de un sistema digital:
 - Almacenar, procesar y transferir información en un código binario.
- Funciones de las unidades de entrada/salida
- Unidades de información:
 - Bit y Byte
- Múltiplos de capacidad de información:
 - Kilo, Mega, Giga, Tera, etc.
- Canal de información y bus.
- Ancho de banda, caudal de datos o tasa de transferencia

