Gradient Descent y = 90 + 912 .... ( $90, 91 = \text{Regr}^{n}$  parameters.)

It is used to estimate Regren parameters. Why GD over OLS

OLS is expensive in terms of complexity (it involved matrix inversion)

OLS fails on non linear trends.











## Minimum of fun $f(x) = x^4 - 10x^2 + 9$ — ① Slep 2 find derivative of given fun' $\frac{d(F(x))}{dx} = \frac{d(x^4 - 10x^2 + 9)}{dx}$ $d(f(x)) = 4x^3 - 20x$ to find minima we need to earnate its 0 $4x^3 - 20x = 0$

$$4x^{3} - 20x = 0$$
 $4x^{3} = 26x$ 

$$4x^{2} = 5$$

$$x^{2} = \sqrt{5}$$

$$x = 1$$

$$x = 1$$

$$x = 2.25$$



## Iterative method -> G.D $f(x) = x^4 - 10x^2 + 9$ consider initial value of 2 = 5 prodient of any fur is given by $d(f(n)) = d(x^4-10n^2+9)$ $= 4x^3 - 20x$

18t iteration

$$x=5$$
 gradient =  $4(5)^3 - 20(5)$ 

=  $4(125) - 100$ 

=  $50.400$ 

We need be decrease  $x$  by of times gradient

New  $X = \text{Prev}(X) - d(4x^3 - 20x)$ 

=  $5 - 0.001(400)$ 

New  $X = 4.6$ 

and iteration  $= pxer(x) - d(4x^2 - 20x)$ New value of x  $= 4.6 - 0.001 \left(4 \left(4.6\right)^3 - 20 \left(4.6\right)\right)$ =4.6-0.001(389.34-92)=4.6-0.101(297.34)New value 9 = J5=2.24