2000 N3

Ezra Guerrero Alvarez

January 26, 2022

2000 N3

2000 N3

Does there exist a positive integer n such that n has exactly 2000 prime divisors and n divides $2^n + 1$?

We show more generally that there exists a positive integer n with exactly k prime divisors such that $n \mid 2^n + 1$. We proceed by induction on k. For our base case, note that $9 \mid 513$. Now, assume for our inductive hypothesis that $n = 9 \prod_{i=2}^{k} p_i \mid 2^n + 1$ and $p_j \mid 2^{n/p_j \cdots p_k} + 1$. By Zsigmondy, there exists a primitive prime divisor $p_{k+1} > 2$ of $2^n + 1$. If $p_{k+1} \in \{3, p_2, \dots, p_k\}$, then it is not primitive, as it would divide

prime divisor $p_{k+1}>2$ of 2^n+1 . If $p_{k+1}\in\{3,p_2,\ldots,p_k\}$, then it is not primitive, as it would divide $2^{n/p_k}+1$. Thus, $p_{k+1}\nmid n$. Now, we show $N=np_{k+1}\mid 2^N+1$. Indeed, since $n\perp p_{k+1}$ it suffices to show $n,p_{k+1}\mid 2^N+1$. We have

$$2^N + 1 \equiv (2^n)^{p_{k+1}} + 1 \equiv (-1)^{p_{k+1}} + 1 \equiv 0 \pmod{n, p_{k+1}},$$

so $N \mid 2^N + 1$, as desired. \blacksquare