CV 510⁹ Modeling, Uncertainty, and Data for Engineers (July – Nov 2025)

Dr. Prakash S Badal

1

Flow

- Musings on Assignment-5
- Least-square errors
- Parameter estimation

3

3

Example

• If $Y = \ln X$, what are expectation and variance of Y? Use Taylor series approximations.

```
\operatorname{E}[Y]\cong \ln \mu_X first order mean approximation \operatorname{E}[Y]\cong \ln \mu_X - \frac{\delta_X^2}{2} second order mean approximation \operatorname{Var}[Y]\cong \delta_X^2 first order variance approximation
```

 $\mathrm{E}[Y]\cong g(\mu_X)+rac{1}{2}\Big(rac{ar{\partial}^2 g}{\partial x^2}\Big)_{\mu_X}\sigma_X^2$ Second-order mean approximation

 $\operatorname{Var}[Y] = \operatorname{E}[(Y - \mu_Y)^2] \cong \left(\left(\frac{\partial g}{\partial x}\right)_{\mu_X}\right)^2 \sigma_X^2$ First-order var. approx.

4

Monty Hall

- Repeated trials
 - "right action" only if taken repeatedly yields the "right outcome"
 - luck (transient-state) versus probability (stable-state)
 - *n* increases \rightarrow variance reduces, $\sigma_n^2 = \sigma_1^2/n$ (prove!)
 - PMF of Bernoulli, $p(X) = \begin{cases} p, & \text{when } x = 1 \\ q = 1 p, & \text{when } x = 0 \end{cases}$
 - E[X] = p, Var[X] = pq
 - Repeated Bernoulli trials, $\sigma_{bernoulli,n}^2 = pq/n$
- Sampling always works!

5

Central moments:

```
First: E[(X - \mu)] zero
Second: E[(X - \mu)^2] Variance
Third: E[(X - \mu)^3] scaled Skewness (divide by \sigma^3 to get Skewness)
Fourth: E[(X - \mu)^4] scaled Kurtosis (divide by \sigma^4 to get Kurtosis)
skewness = E\left[\left(\frac{X - \mu}{\sigma}\right)^3\right] = \frac{E[X^3] - 3\mu\sigma^2 - \mu^3}{\sigma^3}
```

Exploiting central moments

S. No.	Distribution	Skewness	Kurtosis (excess)	#param.
1	Normal $\mathcal{N}(\mu,\sigma)$	0	3 (0)	2
2	Uniform $[a, b]$	0	1.8 (-1.2)	2
3	Exponential $\text{Exp}(\lambda)$	2	9 (+6)	1
4	Lognormal $\mathcal{LN}(\lambda,\zeta)$	Bad-looking fun of ζ	Bad-looking fun of ζ (above -3)	2
5	Gumbel type-1 (largest)	≈ 1.14	5.4 (+2.4)	2
6	Gumbel type-2 (smallest)	≈ −1.14	5.4 (+2.4)	2
7	t-distribution	0	$\frac{3(n-2)}{n-4}$; excess of $\frac{6}{n-4}$	2, #dof
8	Weibull	Param- dependent	Param-dependent	3
9	Beta	Param- dependent	Param-dependent	4 (2 shape, loc, scale)

7

Linear models: intro

• Linear function relationship

For a linear functional relationship,

$$E[Y \mid X = x] = Ax$$

A: deterministic constant

In other words,

$$Y = Ax + \epsilon$$

such that

$$E[\epsilon] = 0$$

 $\varepsilon \equiv \text{random error}$: zero mean, finite variance

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ In a deterministic linear model, x is given:

$$\sigma_{Y} = \sigma_{e}$$

Linear models: example

• Linear function relationship

$$E[Y_i] = x_1 + x_2 t_i$$

 t_i : observation time; epoch; given; deterministic

 x_1 : intercept

 x_2 : rate of change

Linear functional model is

$$E\begin{pmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$A \qquad \mathbf{X}$$

9

Linear models: example

• Is this a linear model

$$E[Y_i] = x_1 + x_2t_i + x_3t_i^2$$

Write its linear functional relationship

$$E\left(\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}\right) = \begin{bmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ \vdots & \vdots & \vdots \\ 1 & t_n & t_n^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

A linear model in x

Linear models: example

• Is this a linear model

Write its linear functional relationship

$$E\left(\begin{bmatrix} Y_1 \\ \vdots \\ Y_{i-1} \\ Y_i \\ \vdots \\ Y_n \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$X$$
A linear model in X

A linear model in x

11

Linear models: example

• Is this a linear model

Step function, $s = x_2 - x_1$

Write its linear functional relationship

$$E\left(\begin{bmatrix}Y_1\\\vdots\\Y_{i-1}\\Y_i\\\vdots\\Y_n\end{bmatrix}\right) = \begin{bmatrix}1&0\\\vdots&\vdots\\1&0\\1&1\\\vdots&\vdots\\1&1\end{bmatrix}\begin{bmatrix}x_1\\s\end{bmatrix}\\x$$
A linear model in x

12

Questions, comments, or concerns?

15