1. a) [3b] Dokážte matematickou indukciou, že pre ľubovoľné prirodzené číslo

1² - 3² + 5² - ··· + (-1)ⁿ⁻¹(2n - 1)² = (-1)ⁿ⁻¹ ·
$$\frac{(2n-1)(2n+1)}{2}$$
 - $\frac{1}{2}$.
b) [1b] Napíšte výrok $P(4)$ (t.j. pre $n = 4$) k predošlej úlohe.

- 2. [2b] Dokážte alebo na kontrapríklade vyvrátte nasledujúci výrok: pre každé prirodzené číslo n platí, že n je deliteľné siedmimi práve vtedy, keď posledné trojčíslie čísla n (v desiatkovom zápise) je delitelné siedmimi.
- 3. Napíšte, akú podmienku spĺňa binárna relácia ρ na množine M, ak
 - a) [1b] je tranzitívna,
 - b) [1b] NIE JE antisymetrická.
- 4. Je daná relácia $\rho = \{(x, y) \in \mathbb{R}^2 : y^2 = x\}.$
 - a) [2b] Je ρ symetrická? Prečo?
 - b) [2b] Je ρ funkcia? Zdôvodnite.
- 5. a) [2b] Určte trojprvkovú množinu A tak, aby platilo: $\emptyset \in A$, $\emptyset \subset A$, $\{\emptyset\} \in \mathcal{P}(A) \text{ a } \{\{\emptyset\}\} \notin \mathcal{P}(A).$
 - b) [1b] Aká je mohutnosť množiny $\mathcal{P}(A)$, ak |A| = 6?