МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

Борщагівський С. Є.

3BIT

ОПЕРАЦІЙНІ ПІДСИЛЮВАЧІ З НЕГАТИВНИМ ЗВОРОТНИМ ЗВ'ЯЗКОМ

Київ. КНУ ім. Т. Шевченка, 2021

УДК 001.002 (008.21)ББК 73Ц

I-72

Укладачі: Білінський І. О.

I-72 Звіт. Операційні підсилювачі зі зворотним негативним зворотним зв'язком./ укл. С. Є. Борщагівський. — К. : КНУ ім. Т. Шевченка, 2021.-17 с. (Укр. мов.)

Наведено загальний звіт виконання роботи з моделювання електронних схем у програмі NI MultisimTM.

УДК 001.008 (002.21)

ББК 73Ц

© Київський Національний Університет імені Тараса Шевченка, 2021

РЕФЕРАТ

Звіт про дослідження операційних підсилювачів зі зворотним негативним зворотним зв'язком: 17 с., 15 рис.

Об'єкт дослідження: операційні підсилювачі зі зворотним негативним зворотним зв'язком.

Мета роботи: ознайомитися з властивостями операційних підсилювачів, опанувати способи підсилення електричних сигналів схемами з ОП, охопленим негативним зворотним зв'язком та способи виконання математичних операцій за допомогою схем з ОП.

Метод вимірювання: метод співставлення – одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

В роботі використано програмне забезпечення для моделювання електронних схем NI Multisim $^{\text{TM}}$.

Ключові слова: ІМ – інтегральна мікросхема; НЗЗ – негативний зворотній зв'язок; ПЗЗ – позитивний зворотній зв'язок

3MICT

ВСТУ	/П. ТЕОРЕТИЧНІ ВІДОМОСТІ	5
ПРАК	ТИЧНА ЧАСТИНА	6
1.	Випрямляючий діод	7
	Стабілітрон	
3.	Світлодіод	8
4.	Фотодіод	8
ВИСН	ЮВКИ	9
вілпо	ОВІЛІ НА ТЕОРЕТИЧНІ ПИТАННЯ	9

ВСТУП. ТЕОРЕТИЧНІ ВІДОМОСТІ

Операційний підсилювач (англ. operational amplifier) — це диференціальний підсилювач постійного струму, який в ідеалі має нескінченний коефіцієнт підсилення за напругою і нульову вихідну напругу за відсутності сигналу на вході, великий вхідний опір і малий вихідний, а також необмежену смугу частот підсилюваних сигналів. Раніше такі високоякісні підсилювачі використовувалися виключно в аналогових обчислювальних пристроях для виконання математичних операцій, наприклад, складання та інтегрування. Звідси і походить їх назва — операційні підсилювачі (ОП). Створення зворотного зв'язку полягає в тому, що частина вихідного

сигналу підсилювача повертається через ланку зворотного зв'язку (33) на його вхід. Якщо сигнал зворотного зв'язку подається на вхід у протифазі до вхідного

сигналу (різниця фаз $\Phi = 180$ $_0$), то зворотний зв'язок називають *негативним* (Н33). Якщо ж він подається на вхід у фазі до вхідного сигналу ($\Phi = 0$ $_0$), то такий зворотний зв'язок називають *позитивним* (П33)

3MICT

ПРАКТИЧНА ЧАСТИНА

Рис 1 – Схема Неінвертувальний підсилювача.

Рис 2 – з ліва в праворуч : джерело, 5 сторонній дисциплювачь, Осцилограф.

Рис 3 - Дані спостережень для гармонічного сигналу .

Ріс 5 - Дані досліджень інвертувального підилювача .

Рис 6 - . Схема інтегратора на базі інвертуючого підсилювача .

Рис 7 - Дані з осцилографа та його та його параметри .

Рис 8 -. Дані дослідження інтегратора .

Рис 9 – Диференціатора .

Рис 10 - Дія диференціатору на гармонічний сигнал .

Ріс 11 - Дія диференціатору на трикутні сигнали

Рис 12 - Дія диференціатору на послідовність прямокутних імпульсів .

ВИСНОВКИ

В ході роботи ми дослідили операційні підсилювачі зі зворотним негативним зворотним зв'язком, оцінили характер поведінки сигналу після проходження крізь них. При роботі був використаний метод співставлення — метод одночасного спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів. Як результат, ми наочно пересвідчились у дії інтегратора та диференціатора, результати схожі до описаних теоретично.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- 1. Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк,
- 2. Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с.
- 3. Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян "Вивчення радіоелектронних схем методом комп'ютерного моделювання": Методичне видання. К.: 2006.- с.