Лекція №4. Монотонні послідовності: означення, властивості, умови збіжності. Теорема про збіжність монотонної обмеженої послідовності. Лема про вкладені відрізки. Число *е*. Теорема Штольця.

1. Означення і властивості монотонних послідовностей. Приклади монотонних послідовностей.

Означення. Послідовність $\{x_n\}$ називається **неспадною (незростаючою),** якщо $x_{n+1} \ge x_n (x_{n+1} \le x_n)$ при $n=1,2,\ldots$

Неспадні і незростаючі послідовності називаються монотонними.

Означення. Послідовність $\{x_n\}$ називається **зростаючою (спадною),** якщо $x_{n+1} > x_n (x_{n+1} < x_n)$ при $n = 1, 2, \dots$

Спадні і зростаючі послідовності називаються строго монотонними

Приклади монотонних послідовностей.

- **1.** Послідовність $\{x_n\} = \{1,1,\frac{1}{2},\frac{1}{2},...,\frac{1}{n},\frac{1}{n},...\}$ є незростаючою. Вона обмежена зверху своїм першим членом, який дорівнює одиниці, а знизу числом нуль.
- **2.** Послідовність $\{x_n\} = \{1,1,2,2,...,n,n,...\}$ є неспадною. Вона обмежена знизу своїм першим членом, рівним одиниці, а зверху необмежена.
- **3.** Послідовність $\{x_n\} = \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots\right\}$ є зростаючою. Вона обмежена з обох сторін: знизу своїм першим членом $\frac{1}{2}$, а зверху, наприклад, числом одиниця.

Вище (в Лекції №3) було показано, що із збіжності будь-якої послідовності $\{x_n\}$ з необхідністю слідує її обмеженість. Тому обмеженість є необхідною умовою збіжності. В цій лекції ми з'ясуємо достатні умови збіжності монотонної послідовності.

2. Достатні умови збіжності монотонної послідовності.

Основна Теорема 5. Якщо неспадна (незростаюча) послідовність $\{x_n\}$ обмежена зверху (знизу), то вона ϵ збіжною.

У відповідності з умовою цієї Теореми послідовність $\{x_n\}$ є обмеженою. Тому **Теорему 5** можна сформулювати так:

Якщо **монотонна** послідовність $\{x_n\}$ **обмежена з обох сторін**, то вона ϵ **збіжною**.

Доведення. Через те, що послідовність $\{x_n\}$ обмежена, то множина її елементів X має точні верхню і нижню грані $\overline{x} = \sup X$ і $\underline{x} = \inf X$ (**Лекція 2**). Доведемо, що якщо $\{x_n\}$ —неспадна послідовність, то її границею буде згадана точна верхня грань \overline{x} множини X; якщо ж $\{x_n\}$ — незростаюча послідовність, то її границею буде зазначена точна нижня грань \underline{x} множини X. Не втрачаючи загальності, обмежимося випадком неспадної послідовності, оскільки для незростаючої послідовності міркування аналогічні.

Отже, оскільки \overline{x} — точна верхня грань множини X, то для довільного $\varepsilon>0$ можна знайти такий елемент x_N , що $x_N>\overline{x}-\varepsilon$ і $x_N\le\overline{x}$ (за означенням \overline{x} будь-який елемент x_n з множини X не більше її точної верхньої грані $x_n\le\overline{x}$). Співвідносячи записані нерівності, дістанемо: $0\le\overline{x}-x_N<\varepsilon$. Тепер згадаємо про те, що послідовність $\{x_n\}$ є неспадною. Тому при $n\ge N(\varepsilon)$ справедливі нерівності $x_N\le x_n\le\overline{x}$. Звідси випливає, що при $n\ge N(\varepsilon)$ виконуються нерівності $0\le\overline{x}-x_n\le\overline{x}-x_N$. Вище ми вже зазначили, що $\overline{x}-x_N<\varepsilon$, тому при $n\ge N(\varepsilon)$ справедливі нерівності $0\le\overline{x}-x_n<\varepsilon$, з яких випливає, що $|\overline{x}-x_n|<\varepsilon$. Отже, встановлено, що \overline{x} —це границя неспадної послідовності $\{x_n\}$, тобто $\lim_{n\to\infty}x_n=\overline{x}=\sup X$. Аналогічний результат отримаємо для випадку незростаючої послідовності, тільки вже в цьому разі буде: $\lim_{n\to\infty}x_n=\underline{x}=\inf X$. **Теорему 5 доведено**.

Зауваження 1. Умова обмеженості монотонної послідовності представляє собою необхідну і достатню умову її збіжності.

Дійсно, якщо монотонна послідовність обмежена, то вона є збіжною в силу попередньої **Теореми 5**; якщо ж будь-яка послідовність (в тому числі і монотонна) є збіжною, то вона є обмеженою (в силу **Теореми про обмеженість збіжної послідовності**).

Зауваження 2. Збіжна послідовність може і не бути монотонною. Наприклад, послідовність $x_n = \frac{(-1)^n}{n}$ є збіжною і її границя дорівнює нулю. Проте вона не є монотонною.

Зауваження 3. Якщо послідовність $\{x_n\}$ є неспадною і обмеженою та величина \overline{x} – її границя, то для всіх номерів n справедлива нерівність $x_n \leq \overline{x}$. Елементи незростаючої та обмеженої послідовності $\{x_n\}$, збіжної до \underline{x} , задовольняють нерівність $x_n \geq \underline{x}$. Справедливість цих нерівностей була встановлена в процесі доведення попередньої Теореми.

3. Лема (допоміжна Теорема) про вкладені відрізки.

Лема. Нехай задано нескінченну систему відрізків $[a_1,b_1], [a_2,b_2], [a_3,b_3],...,$ $[a_n,b_n],...,$ кожен наступний з яких міститься в попередньому $(a_{n-1} \le a_n \le b_n \le b_{n-1}), i$ нехай різниця $\Delta_n = b_n - a_n$ прямує до нуля при $n \to \infty$. Тоді існує і при тому однаєдина точка c, яка належить **одразу всім відрізкам зазначеної системи**.

Цю **Лему** можна розглядати як наслідок **Теореми 5**. Величину $\Delta_n = b_n - a_n$ будемо називати **довжиною відрізка** $[a_n, b_n]$, а систему відрізків, наділену такими властивостями, будемо називати такою, що «**стягується**».

Доведення. Спочатку зазначимо, що точка c, яка належить одразу всім відрізкам зазначеної системи, може бути тільки одна. Дійсно, якщо б знайшлась ще одна точка d (для визначеності тут вважаємо, що d>c), яка належить одразу всім відрізкам, то весь відрізок [c,d] повинен належати всім відрізкам $[a_n,b_n]$. Але тоді для довільного номера n виконувалися б нерівності $b_n-a_n\geq d-c>0$, а це неможливо, бо $\Delta_n=b_n-a_n\to 0$, якщо $n\to\infty$.

Доведемо тепер, що існує точка c, яка належить одразу всім відрізкам. Через те, що система відрізків $[a_1,b_1],[a_2,b_2],[a_3,b_3],...,[a_n,b_n],...$ є такою, що стягується, то послідовність лівих кінців $\{a_n\}$ є неспадною, а послідовність правих кінців $\{b_n\}$ є незростаючою. Оскільки обидві ці послідовності **монотонні і обмежені** (бо всі елементи послідовностей $\{a_n\}$ і $\{b_n\}$ знаходяться на відрізку $[a_1,b_1]$), то за попередньою **Теоремою 5** обидві вони є збіжними. Через те, що різниця

 $\Delta_n = b_n - a_n \to 0$ є нескінченно малою, то зазначені послідовності мають **спільну границю**. Позначимо її літерою c. Із **Зауваження 3** випливає, що для довільного номера n справедливі нерівності $a_n \le c \le b_n$, тобто точка c належить одразу всім відрізкам $[a_n, b_n]$.

4. Число e. Застосування Теореми 5 до доведення існування границі послідовності $\{x_n\} = \left(1 + \frac{1}{n}\right)^n$.

Використаємо граничний перехід для визначення нового, дуже важливого в математиці, числа.

Доведемо, що послідовність $\{x_n\}$: а) **зростає і б) є обмеженою**.

а). Покажемо, що послідовність $\{x_n\}$ є **зростаючою**. Застосуємо формулу бінома Ньютона до правої частини:

$$x_n = 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^2} + \frac{n(n-1)(n-2)}{3!} \cdot \frac{1}{n^3} + \dots + \frac{n(n-1)(n-2) \dots [n-(n-1)]}{n!} \cdot \frac{1}{n^n}.$$

Представимо цей вираз у наступній формі:

$$x_n = 2 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{n-1}{n} \right).$$

Аналогічно запишемо наступний елемент x_{n+1} послідовності $\{x_n\}$:

$$x_{n+1} = 2 + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) + \dots$$
$$\dots + \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n}{n+1} \right).$$

Порівнюючи два записаних вище вирази, безпосередньо пересвідчимося в тому, що $x_n < x_{n+1}$. Дійсно, через те, що $\left(1 - \frac{k}{n}\right) < \left(1 - \frac{k}{n+1}\right)$ для довільного 0 < k < n та, крім того, x_{n+1} містить порівняно із x_n додатковий додатній член з (n+1)! у знаменнику, вказана нерівність має місце. Отже, послідовність $\{x_n\}$ є зростаючою.

б). Обмеженість. Очевидно, що послідовність $\{x_n\}$ є обмеженою знизу числом 2, бо $x_1 = 2$. Для доведення обмеженості $\{x_n\}$ зверху зазначимо, що кожний вираз у

круглих дужках у співвідношенні для x_n менше одиниці. Враховуючи те, що $\frac{1}{k!} \leq \frac{1}{2^{k-1}} \ (\text{при } k \geq 2, \text{перевірте за індукцією!}) \, \text{дістанемо:}$

$$x_n = 2 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}} = 3 - \frac{1}{2^{n-1}} < 3.$$

Отже, послідовність $\{x_n\}$ зростає і обмежена зверху. За Теоремою 5 про існування границі монотонної обмеженої послідовності ця послідовність має границю. За пропозицією Ейлера (L.Euler) цю границю називають числом e. Таким чином, за означенням маємо:

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e.$$

Зауваження. В подальшому буде встановлено, що число e відіграє важливу роль в математиці. Тут ми тільки зафіксували факт існування цього числа, проте не вказали способу його обчислення з довільним степенем точності. Це буде зроблено далі. Лише зазначимо, що оскільки $x_n < 3$ і з виразу для x_n безпосередньо випливає, що $x_n > 2$, то число e лежить в наступних межах: $2 \le e \le 3$.

Приклад монотонної обмеженої послідовності. Розглянемо приклад послідовності, для знаходження границі якої буде використана Теорема 5 про існування границі монотонної обмеженої послідовності. Крім того, в цьому пункті ми познайомимося з одним загальним методом знаходження границь послідовностей, заданих **рекурентним способом**.

Означення. Рекурентна формула — це формула, яка дозволяє виразити (n+1) — й елемент послідовності через значення її перших n елементів.

Приклад 1. Розглянемо послідовність $\{x_n\}$, елемент x_n якої дорівнює

$$x_n = \sqrt{a + \sqrt{a + \sqrt{a + \dots + \sqrt{a}}}}, \quad a > 0.$$

Цю ж послідовність можна, очевидно, задати наступною рекурентною формулою:

$$x_1 = \sqrt{a}$$
, $x_n = \sqrt{a + x_{n-1}}$.

Для того, щоб встановити існування границі послідовності $\{x_n\}$, доведемо, що ця послідовність є зростаючою і обмеженою. Перше достатньо очевидно. Доведемо,

що послідовність $\{x_n\}$ обмежена зверху числом A, де $A=\max(a,2)$ — найбільше з двох чисел: 2 і a . Якщо $x_n \leq a$, то потрібне твердження доведене. Якщо ж $x_n > a$, то замінивши у правій частині нерівності $x_n^2 = a + x_{n-1} \leq a + x_n$ число a більшим за нього числом x_n , ми отримаємо $x_n^2 < 2x_n$, звідки дістанемо: $x_n < 2$. Отже, ми довели, що послідовність $\{x_n\}$ обмежена зверху. За **Теоремою 5** вона має границю. Позначимо цю границю через c . Очевидно, що c > 0 . З рекурентної формули маємо таке співвідношення: $x_n^2 = a + x_{n-1}$, яке означає, що послідовності $\{x_n^2\}$ і $\{a + x_{n-1}\}$ тотожні. Тому їхні границі рівні. Через те, що перша послідовність має границю c^2 , а друга — a + c , то $c^2 = a + c$. Звідси при c > 0 маємо: $c = \frac{1 + \sqrt{1 + 4a}}{2}$.

Зауваження 1. В розглянутому прикладі використовувався наступний метод знаходження границі послідовностей. Спочатку встановлюють існування границі, а потім знаходять його числове значення з рівняння, яке дістають з рекурентної формули шляхом заміни в ній x_n і x_{n+1} шуканим значенням c границі послідовності.

Зауваження 2. Рекурентні формули часто використовують у сучасній обчислювальній математиці, оскільки їхнє застосування зводиться до багаторазового повторювання однотипних обчислювальних операцій, що особливо зручно при проведенні обчислень на ПК.

5. Теорема Штольця.

В багатьох випадках для дослідження збіжності відношення $\left\{\frac{x_n}{y_n}\right\}$ двох послідовностей $\left\{x_n\right\}$ і $\left\{y_n\right\}$ (яке породжує класичну невизначеність $\left\{\frac{\infty}{\infty}\right\}$), буває корисним таке твердження, сформульоване Штольцем (O.Stolz). Для частинного випадку при $y_n=n$ його довів ще Коші (A.L.Cauchy).

Теорема Штольця. $Hexaŭ \left\{ y_n \right\} - зростаюча нескінченно велика послідовність,
 і нехай послідовність <math>\left\{ \frac{x_n - x_{n-1}}{y_n - y_{n-1}} \right\}$ ϵ збіжною та має границею число a. Тоді

послідовність $\left\{ \frac{x_n}{y_n} \right\}$ є також збіжною і має границею число a. Отже, має місце така рівність:

$$\lim_{n\to\infty} \left\{ \frac{x_n}{y_n} \right\} = \lim_{n\to\infty} \left\{ \frac{x_n - x_{n-1}}{y_n - y_{n-1}} \right\}.$$

Доведення. Оскільки послідовність $\left\{ \frac{x_n - x_{n-1}}{y_n - y_{n-1}} \right\}$ є збіжною та має границею

число a, то послідовність $\{\alpha_n\}$, де $\alpha_n = \left\{\frac{x_n - x_{n-1}}{y_n - y_{n-1}} - a\right\}$, буде нескінченно малою

(Доведіть!). Нехай \overline{N} – довільний фіксований номер і $n > \overline{N}$. Використовуючи вираз для α_n , розглянемо низку рівностей:

Додамо вищенаведені рівності. В результаті дістанемо:

$$x_{n} - x_{\bar{N}} = ay_{n} - ay_{\bar{N}} + \alpha_{\bar{N}+1}(y_{\bar{N}+1} - y_{\bar{N}}) + \alpha_{\bar{N}+2}(y_{\bar{N}+2} - y_{\bar{N}+1}) + \dots$$
$$\dots + \alpha_{n-1}(y_{n-1} - y_{n-2}) + \alpha_{n}(y_{n} - y_{n-1}).$$

Через те, що $\{y_n\}$ — зростаюча нескінченно велика послідовність, то починаючи з певного номера її елементи будуть додатними. Будемо вважати, що при $n \ge \overline{N}$ $y_n > 0$. Тоді з останньої рівності маємо:

$$\frac{x_n}{y_n} - a = \frac{x_{\bar{N}} - ay_{\bar{N}}}{y_n} + \frac{\alpha_{\bar{N}+1}(y_{\bar{N}+1} - y_{\bar{N}}) + \alpha_{\bar{N}+2}(y_{\bar{N}+2} - y_{\bar{N}+1}) + \dots + \alpha_n(y_n - y_{n-1})}{y_n}.$$

Оскільки послідовність $\{y_n\}$ є зростаючою, то всі різниці $y_{k+1}-y_k$, $k=\bar{N},\bar{N}+1,\dots,n-1$, є додатними. Тому з останнього співвідношення маємо:

$$\left| \frac{x_n}{y_n} - a \right| \le \left| \frac{x_{\bar{N}} - ay_{\bar{N}}}{y_n} \right| + \frac{\left| \alpha_{\bar{N}+1} \right| (y_{\bar{N}+1} - y_{\bar{N}}) + \left| \alpha_{\bar{N}+2} \right| (y_{\bar{N}+2} - y_{\bar{N}+1}) + \dots + \left| \alpha_n \right| (y_n - y_{n-1})}{y_n}. \tag{1}$$

Доведемо тепер, що послідовність $\left\{\frac{x_n}{y_n}\right\}$ є збіжною та має границею a. Для цього потрібно довести, що для довільного $\varepsilon > 0$ можна вказати такий номер $N(\varepsilon)$, що при $n \geq N$ виконується нерівність

$$\left|\frac{x_n}{y_n} - a\right| < \varepsilon.$$

По-перше, для довільного $\varepsilon>0$ виберемо номер $N_1>\bar{N}$ так, щоби при $n>N_1$ виконувалась би нерівність $|\alpha_n|<\frac{\varepsilon}{2}$ (це можливо, оскільки послідовність $\{\alpha_n\}$ є нескінченно малою). Далі виберемо номер $N_2\geq \bar{N}$ так, щоби при $n\geq N_2$ мала місце нерівність: $\left|\frac{x_{\bar{N}}-ay_{\bar{N}}}{y_n}\right|<\frac{\varepsilon}{2}$. Такий вибір номера N_2 можливий, оскільки число $x_{\bar{N}}-ay_{\bar{N}}$ є фіксованим, а послідовність $\{y_n\}$ є нескінченно великою, а тому послідовність $\left\{\frac{x_{\bar{N}}-ay_{\bar{N}}}{y_n}\right\}$ є нескінченно малою. Нехай тепер $n\geq N$, де $N=\max(N_1,N_2)$. Тоді із нерівності (1) маємо:

$$\left| \frac{x_n}{y_n} - a \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \frac{(y_{\bar{N}+1} - y_{\bar{N}}) + (y_{\bar{N}+2} - y_{\bar{N}+1}) + \dots + (y_n - y_{n-1})}{y_n},$$

або $\left| \frac{x_n}{y_n} - a \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \frac{(y_n - y_{\overline{N}})}{y_n}$. Через те, що при $n \ge N$ має місце нерівність

 $y_n - y_{\bar{N}} \le y_n$ і $y_n > 0$, то $\frac{y_n - y_{\bar{N}}}{y_n} \le 1$. Тому при $n \ge N$ з останньої нерівності маємо:

$$\left|\frac{x_n}{y_n} - a\right| < \varepsilon.$$

Теорему доведено.

Зауваження. Якщо $\{y_n\}$ —зростаюча нескінченно велика послідовність, а послідовність $\left\{\frac{x_n-x_{n-1}}{y_n-y_{n-1}}\right\}$ також нескінченно велика і прямує до нескінченності визначеного знаку, то послідовність $\left\{\frac{x_n}{y_n}\right\}$ нескінченно велика.

Дійсно, нехай $\frac{x_n - x_{n-1}}{y_n - y_{n-1}} = A_n$. Послідовність $\{A_n\}$ є нескінченно великою за

умовою Теореми. Нехай \bar{N} – певний фіксований номер. Тоді при $n \geq \bar{N}$ маємо:

Додамо вищенаведені рівності. В результаті маємо:

$$x_n - x_{\bar{N}} = A_{\bar{N}+1}(y_{\bar{N}+1} - y_{\bar{N}}) + A_{\bar{N}+2}(y_{\bar{N}+2} - y_{\bar{N}+1}) + \dots + A_n(y_n - y_{n-1}).$$

Звідси дістанемо:

$$\frac{x_n}{y_n} = \frac{A_{\bar{N}+1}(y_{\bar{N}+1} - y_{\bar{N}}) + A_{\bar{N}+2}(y_{\bar{N}+2} - y_{\bar{N}+1}) + \dots + A_n(y_n - y_{n-1})}{y_n} + \frac{x_{\bar{N}}}{y_n}.$$

3 цього співвідношення отримаємо таку нерівність:

$$\left| \frac{x_n}{y_n} \right| \ge \left| \frac{A_{\bar{N}+1}(y_{\bar{N}+1} - y_{\bar{N}}) + A_{\bar{N}+2}(y_{\bar{N}+2} - y_{\bar{N}+1}) + \dots + A_n(y_n - y_{n-1})}{y_n} \right| - \left| \frac{x_{\bar{N}}}{y_n} \right|. \tag{2}$$

Будемо для визначеності вважати, що при $n \geq \overline{N}$ елементи послідовностей $\{A_n\},\ \{y_n\}$ додатні. Оберемо за заданим додатним числом A такий номер \overline{N} , щоб при $n \geq \overline{N}$ виконувалась нерівність $A_n > 4A$, потім такий номер $N \geq \overline{N}$, що при $n \geq N$

$$\left|\frac{x_{\bar{N}}}{y_n}\right| < A, \quad \frac{y_{\bar{N}}}{y_n} < \frac{1}{2}.$$

Можливість вибору такого номеру N забезпечується тим, що послідовності $\{A_n\}$, $\{y_n\}$ нескінченно великі і їхні члени, починаючи з певного номера, додатні. Очевидно, що при $n \ge N$ з нерівності (2) маємо

$$\left| \frac{x_n}{y_n} \right| > 4A \frac{(y_{\bar{N}+1} - y_{\bar{N}}) + (y_{\bar{N}+2} - y_{\bar{N}+1}) + \dots + (y_n - y_{n-1})}{y_n} - \left| \frac{x_{\bar{N}}}{y_n} \right|, \text{ afo}$$

$$\left| \frac{x_n}{y_n} \right| > 4A \left(1 - \frac{y_{\bar{N}}}{y_n} \right) - A > 4A \left(1 - \frac{1}{2} \right) - A > A.$$

Таким чином, послідовність $\left\{ \frac{x_n}{y_n} \right\}$ є нескінченно великою.

Розглянемо декілька прикладів на застосування Теореми Штольця.

Приклад 1. Довести такий факт (**Коші**): якщо послідовність $\{a_n\}$ є збіжною до числа a, то послідовність $\left\{\frac{a_1+a_2+\ldots+a_n}{n}\right\}$ середніх арифметичних значень елементів послідовності $\{a_n\}$ також є збіжною і її границя дорівнює a.

Дійсно, якщо покласти $x_n=a_1+a_2+\ldots+a_n$, а $y_n=n$, то $\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=a_n$. Через те,

що $\lim_{n\to\infty} \left(\frac{x_n-x_{n-1}}{y_n-y_{n-1}}\right) = \lim_{n\to\infty} a_n$ існує, то за Теоремою Штольця

$$\lim_{n\to\infty}\frac{a_1+a_2+\ldots+a_n}{n}=\lim_{n\to\infty}a_n=a.$$

Приклад 2. Розглянемо послідовність $\{a_n\}$, де

$$a_n = \frac{1^k + 2^k + 3^k + \ldots + n^k}{n^{k+1}}, k \in \mathbb{N}.$$

Позначимо вираз $1^k + 2^k + 3^k + \ldots + n^k$ через x_n , а n^{k+1} через y_n . Тоді послідовність $\left\{a_n\right\}$ набуває вигляду $\left\{\frac{x_n}{v_n}\right\}$. Дослідимо збіжність послідовності $\left\{\frac{x_n - x_{n-1}}{v_n - v_n}\right\}$.

Використовуючи біном Ньютона, отримаємо:

$$\frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \frac{n^k}{n^{k+1} - (n-1)^{k+1}} = \frac{n^k}{(k+1)n^k - \frac{(k+1)k}{2}n^{k-1} + \dots + (-1)^{k+1}}.$$

Поділимо чисельник і знаменник останнього виразу на n^k , в результаті дістанемо:

$$\frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \frac{1}{k+1+\frac{1}{n}[\ldots]},$$

де в знаменнику в квадратних дужках крапками позначено вираз, границя якого при $n \to \infty$ дорівнює $\left[-\frac{(k+1)k}{2}\right]$. З останньої формули знаходимо

$$\lim_{n \to \infty} \left(\frac{x_n - x_{n-1}}{y_n - y_{n-1}} \right) = \frac{1}{k+1}.$$

Отже, за Теоремою Штольця маємо:

$$\lim_{n\to\infty}\frac{1^k+2^k+3^k+\ldots+n^k}{n^{k+1}}=\frac{1}{k+1}.$$

Приклад 3. Розглянемо послідовність $\left\{\frac{a^n}{n}\right\}, a > 1$. Покладемо $x_n = a^n$ і $y_n = n$

та дослідимо послідовність $\left\{ \frac{x_n - x_{n-1}}{y_n - y_{n-1}} \right\}$. Маємо

$$\lim_{n \to \infty} \left(\frac{x_n - x_{n-1}}{y_n - y_{n-1}} \right) = \lim_{n \to \infty} \left(a^n - a^{n-1} \right) = \lim_{n \to \infty} a^n \left(1 - \frac{1}{a} \right) = +\infty.$$

Тому в силу Зауваження до Теореми Штольця маємо

$$\lim_{n\to\infty}\left(\frac{a^n}{n}\right)=+\infty.$$