Finding Clarity in the Madness An Introductory Look at Sports Analytics

Jonathan Ashbrock

Vanderbilt University

April 3, 2018

Outline

- Problem Statement
- Initial Data and Creating Meaningful Data
- The Models We Will Use
- 4 Analysis and Model Performance

The Setting

Problem Statement

We want to answer the following questions:

- How well does a team's seed predict their performance?
- Using 'more advanced' data, can we make a better predictor than a team's seed?
- Is the tournament any more unpredictable than the regular season?
- Can statistics help you win your bracket pool?

Outline

- Problem Statement
- Initial Data and Creating Meaningful Data
- The Models We Will Use
- 4 Analysis and Model Performance

The Given Data

The data is from Kaggle: https://www.kaggle.com/c/mens-machine-learning-competition-2018/data We are provided:

- 1 Score, location, teams, and date for every game since 1984
- Results from tournament games including seeds, scores, and locations for every game since 1984

What the file Looks Like

150,685 rows which look like this:

Computing Meaningful Data

We start with this:

							A CONTRACTOR OF THE PROPERTY O			
G9		- : >	< ~	fx N						
	A	В	C	D	E	F	G	Н		
1	Season	ason Daynum		Wscore	Lteam	Lscore	Wloc	Numot		
2	1985	20	1228	81	1328	64	N	0		
3	1985	25	1106	77	1354	70	Н	0		
4	1985	25	1112	63	1223	56	Н	0		
5	1985	25	1165	70	1432	54	Н	0		
6	1985	25	1192	86	1447	74	Н	0		

COLL

And get to this:

Augunten

Computing Meaningful Data

The full data set:

010)	*	× ✓ f	r										
1	А	В	С	D	E	F	G	Н	I	J	K	L	M	N
1	Wscore	Lscore	Winning_team	Team1	Team2	Game_num1	.Game_num2	Avg_score1	Avg_score2	Avg_allow1	Avg_allow2	dif	Team1_wins	Team2_wins
2	70	53	2	1157	1104	1	1	0	0	0	(-17	C	0
3	87	81	2	1336	1107	1	. 1	0	0	0	() -6	C	0
4	65	63	1	1112	1277	1	1	0	0	0	() 2	C	0
5	88	70	2	1340	1113	1	1	0	0	0	(-18	C	0
6	92	83	2	1236	1116	1	1	0	0	0	(9-9	C	0
538 538			50	2 110										
538	7 5	6 5	53	2 110	7 143	6 3	3 3	3 71.5937	73.9375	66.5625	63.1562	5 -3	20	27
538			18	1 145										
539		3	71	1 146				6 73.730769		70.7692308				
539	1 8	32 6	55	2 111	6 124	6 3	4 3	4 80.242424	86.0606061	73.7575758	71.7878787	9 -17	25	28
539	2 7	1 5	56	2 145	8 127	6 3	4 3	5 72.424242	74.9117647	61.1212121	65.8235294	1 -15	25	23
539	3 7	1 9	59	2 146	3 134	3 2	8 2	8 73.703703	70.8148148	70.777778	62.1481481	5 -12	17	21
539	4 7	0 6	53	2 143	3 134	8 3	4 3	3 75.03030	73.46875	66.3030303	64.937	5 -7	26	23
539	5 7	1 5	56	2 115	3 137	4 3	4 3	4 75.03030	74.6363636	60.5151515	59.9393939	4 -15	29	29
539	6 5	9 5	53	2 140	2 140	7 3	1 3	4 67.133333	76.2424242	65.0666667	72.696969	7 -6	18	19

Why were these changes made?

Visualizing the Noise

Outline

- Problem Statement
- Initial Data and Creating Meaningful Data
- 3 The Models We Will Use
- 4 Analysis and Model Performance

Recall: Want to predict game winners. There are two approaches

• Predict game winner (Categorical or Discrete, "Team1" or "Team2")

Recall: Want to predict game winners. There are two approaches

- Predict game winner (Categorical or Discrete, "Team1" or "Team2")
- $oldsymbol{0}$ Predict difference (Continuous, Team1 Score-Team2 Score=dif $\in \mathbb{R}$)

Recall: Want to predict game winners. There are two approaches

- Predict game winner (Categorical or Discrete, "Team1" or "Team2")
- **2** Predict difference (Continuous, Team1 Score-Team2 Score=dif $\in \mathbb{R}$) Using:
 - Team1 average scored/allowed (Continuous)
 - Team2 average scored/allowed (Continuous)

Recall: Want to predict game winners. There are two approaches

- Predict game winner (Categorical or Discrete, "Team1" or "Team2")
- ${f 2}$ Predict difference (Continuous, Team1 Score-Team2 Score=dif ${\bf \in \mathbb{R}}$) Using:
 - Team1 average scored/allowed (Continuous)
 - Team2 average scored/allowed (Continuous)
 - Mome team (Discrete)
 - Seeding of Team (Discrete)

- Used for continuous variables predicting continuous variables
- The so-called "line of best fit"

- Used for continuous variables predicting continuous variables
- The so-called "line of best fit"
- The line minimizes the vertical distance between points and the line

- Used for continuous variables predicting continuous variables
- The so-called "line of best fit"
- The line minimizes the vertical distance between points and the line
- If we have points $\{(x_i, y_i)\}_{i=1}^n$ and a line y = mx + b, the regression line solves the minimization problem:

- Used for continuous variables predicting continuous variables
- The so-called "line of best fit"
- The line minimizes the vertical distance between points and the line
- If we have points $\{(x_i, y_i)\}_{i=1}^n$ and a line y = mx + b, the regression line solves the minimization problem:

$$\min_{m,b} \sum_{i=1}^{n} (y_i - (m * x_i + b))^2$$

- Used for continuous variables predicting continuous variables
- The so-called "line of best fit"
- The line minimizes the vertical distance between points and the line
- If we have points $\{(x_i, y_i)\}_{i=1}^n$ and a line y = mx + b, the regression line solves the minimization problem:

$$\min_{m,b} \sum_{i=1}^{n} (y_i - (m * x_i + b))^2$$

• Can also do multivariable regression when x_i contains more than 1 variable. The "line" then is: $y = m_1x_1 + m_2x_2 + \cdots + m_kx_k + b$.

Decision Trees

 Used for continuous and/or discrete variables predicting discrete variables

- If we notice, decision trees consider one variable at a time
- Consider the following classification example: Points in the plane with y > x are called "blue" and those with $x \le y$ are called "red":

• The following is the classification we get when classifying points into red/blue using a decision tree:

- The following is the classification we get when classifying points into red/blue using a decision tree:
- Since Decision trees only consider one variable at a time, we only "split" the data parallel to one of the two axes

- The following is the classification we get when classifying points into red/blue using a decision tree:
- Since Decision trees only consider one variable at a time, we only "split" the data parallel to one of the two axes

• And here is the decision tree:

Rattle 2018-Apr-03 11:45:52 Jon

Pre-Processing Makes Decision Trees Better

 Doing one pre-processing step makes our tree simpler and 100% accurate.

Pre-Processing Makes Decision Trees Better

 Doing one pre-processing step makes our tree simpler and 100% accurate.

Rattle 2018-Apr-03 16:04:09 Jon

Taking into account the limitations of decision trees, our Predictor will do 2 things:

• Use a regression model on the continuous variables to predict the point differential (Team1-Team2=dif)

- Use a regression model on the continuous variables to predict the point differential (Team1-Team2=dif)
 - This takes care of the problem discussed in decision trees. This "combines" the continuous variables into 1 value.

- Use a regression model on the continuous variables to predict the point differential (Team1-Team2=dif)
 - This takes care of the problem discussed in decision trees. This "combines" the continuous variables into 1 value.
- 2 Use a decision tree to predict the winner using:

- Use a regression model on the continuous variables to predict the point differential (Team1-Team2=dif)
 - This takes care of the problem discussed in decision trees. This "combines" the continuous variables into 1 value.
- ② Use a decision tree to predict the winner using:
 - The output of the regression

- Use a regression model on the continuous variables to predict the point differential (Team1-Team2=dif)
 - This takes care of the problem discussed in decision trees. This "combines" the continuous variables into 1 value.
- ② Use a decision tree to predict the winner using:
 - The output of the regression
 - 2 Location of game

Regression Model Summary

The computed regression model to predict the point differential is:

Regression Model Summary

The computed regression model to predict the point differential is:

$$dif = 0.725(x_1) - 0.693(x_2) - 0.627(x_3) + 0.710(x_4) - 8.332$$

Where,

The computed regression model to predict the point differential is:

$$dif = 0.725(x_1) - 0.693(x_2) - 0.627(x_3) + 0.710(x_4) - 8.332$$

Where,

- dif = Team1 Score Team2 Score
- x₁ is Team1 average points scored
- x₂ is Team1 average points allowed

The computed regression model to predict the point differential is:

$$dif = 0.725(x_1) - 0.693(x_2) - 0.627(x_3) + 0.710(x_4) - 8.332$$

Where,

- dif = Team1 Score Team2 Score
- x₁ is Team1 average points scored
- x2 is Team1 average points allowed
- x_3 is Team2 average points scored
- x₄ is Team2 average points allowed

The computed regression model to predict the point differential is:

$$dif = 0.725(x_1) - 0.693(x_2) - 0.627(x_3) + 0.710(x_4) - 8.332$$

Where,

- dif = Team1 Score Team2 Score
- x₁ is Team1 average points scored
- x₂ is Team1 average points allowed
- x₃ is Team2 average points scored
- x₄ is Team2 average points allowed

Whenever you get a model, stop and think:

Do we think this model makes sense?

The computed regression model to predict the point differential is:

$$dif = 0.725(x_1) - 0.693(x_2) - 0.627(x_3) + 0.710(x_4) - 8.332$$

Where,

- dif = Team1 Score Team2 Score
- x₁ is Team1 average points scored
- x₂ is Team1 average points allowed
- x₃ is Team2 average points scored
- x₄ is Team2 average points allowed

Whenever you get a model, stop and think:

Do we think this model makes sense?

Are there any problems here?

The computed regression model to predict the point differential is:

$$dif = 0.725(x_1) - 0.693(x_2) - 0.627(x_3) + 0.710(x_4) - 8.332$$

Where,

- dif = Team1 Score Team2 Score
- x₁ is Team1 average points scored
- x₂ is Team1 average points allowed
- x₃ is Team2 average points scored
- x₄ is Team2 average points allowed

Whenever you get a model, stop and think:

Do we think this model makes sense?

Are there any problems here? Symmetry?

Computed Decision Tree

Decision tree is computed allowing the tree to use: Home Team, Predicted Difference (output of regression), both team's winning percentages, and both team's scoring statistics

Rattle 2018-Apr-02 16:34:48 Jon

Why didn't the tree use the other variables?

Outline

- Problem Statement
- Initial Data and Creating Meaningful Data
- The Models We Will Use
- 4 Analysis and Model Performance

 We want to see not only how accurate our model is, but whether or not the "added complexity" of using both regression and a decision tree made for a better model.

- We want to see not only how accurate our model is, but whether or not the "added complexity" of using both regression and a decision tree made for a better model.
- Therefore we test the accuracy of "predicted difference" as a model

- We want to see not only how accurate our model is, but whether or not the "added complexity" of using both regression and a decision tree made for a better model.
- Therefore we test the accuracy of "predicted difference" as a model

Model: If "predicted difference" is positive, predict team 1 to win. Otherwise, "predicted difference" is negative, predict team 2 to win

- We want to see not only how accurate our model is, but whether or not the "added complexity" of using both regression and a decision tree made for a better model.
- Therefore we test the accuracy of "predicted difference" as a model

Model: If "predicted difference" is positive, predict team 1 to win. Otherwise, "predicted difference" is negative, predict team 2 to win

• Predicted Difference Accuracy: 68%

• Now we test the "full model" accuracy

- Now we test the "full model" accuracy
- That is, use the set of rules defined by the decision tree to predict which team will win the game.

- Now we test the "full model" accuracy
- That is, use the set of rules defined by the decision tree to predict which team will win the game.

Decision Tree Accuracy: 71%

- Now we test the "full model" accuracy
- That is, use the set of rules defined by the decision tree to predict which team will win the game.

- Decision Tree Accuracy: 71%
- Is a 3% improvement worth it?

Problem Statement

Recall our questions:

- How well does a team's seed predict their performance?
- Using "more advanced" data, can we make a better predictor than a team's seed?
- Is the tournament any more unpredictable than the regular season?
- Can statistics help you win your bracket pool?

• We want to compare our "prediction accuracy" to the accuracy generated by picking the higher seed to win

- We want to compare our "prediction accuracy" to the accuracy generated by picking the higher seed to win
- Going back to 1984, how often does the higher seed win?
- When two teams have the same seed we choose randomly between the two

- We want to compare our "prediction accuracy" to the accuracy generated by picking the higher seed to win
- Going back to 1984, how often does the higher seed win?
- When two teams have the same seed we choose randomly between the two
- Guesses?

- We want to compare our "prediction accuracy" to the accuracy generated by picking the higher seed to win
- Going back to 1984, how often does the higher seed win?
- When two teams have the same seed we choose randomly between the two
- Guesses?

66% of games were won by the higher seed

- We want to compare our "prediction accuracy" to the accuracy generated by picking the higher seed to win
- Going back to 1984, how often does the higher seed win?
- When two teams have the same seed we choose randomly between the two
- Guesses?

- 66% of games were won by the higher seed
- Our model performs "5%" better...

- We want to compare our "prediction accuracy" to the accuracy generated by picking the higher seed to win
- Going back to 1984, how often does the higher seed win?
- When two teams have the same seed we choose randomly between the two
- Guesses?

- 66% of games were won by the higher seed
- Our model performs "5%" better...
- Our model performs **ONLY** "5%" better???

Summary of Model Accuracies

- Predicted difference accuracy: 68%
- Decision tree accuracy: 71%
- Higher seed accuracy: 66%

Summary of Model Accuracies

- Predicted difference accuracy: 68%
- Decision tree accuracy: 71%
- Higher seed accuracy: 66%
- Other methods I tried which I didn't present:
 - Support Vector Machine Accuracy: 69%

Summary of Model Accuracies

- Predicted difference accuracy: 68%
- Decision tree accuracy: 71%
- Higher seed accuracy: 66%
- Other methods I tried which I didn't present:
 - Support Vector Machine Accuracy: 69%
 - Random forest accuracy: 69% accuracy

Problem Statement

Recall our questions:

- How well does a team's seed predict their performance?
- Using "more advanced" data, can we make a better predictor than a team's seed?
- Is the tournament any more unpredictable than the regular season?
- Can statistics help you win your bracket pool?

 I pose the following method to determine whether or not the tournament is any more unpredictable than the regular season

Method: Compare the percentage accuracy of picking the "higher seed" method to the accuracy of picking the team who has the better record in the regular season

• Recall, higher seed accuracy: 66%

 I pose the following method to determine whether or not the tournament is any more unpredictable than the regular season

Method: Compare the percentage accuracy of picking the "higher seed" method to the accuracy of picking the team who has the better record in the regular season

- Recall, higher seed accuracy: 66%
- Guess how often the better record wins?

 I pose the following method to determine whether or not the tournament is any more unpredictable than the regular season

Method: Compare the percentage accuracy of picking the "higher seed" method to the accuracy of picking the team who has the better record in the regular season

- Recall, higher seed accuracy: 66%
- Guess how often the better record wins?
- Better record accuracy: 67%

 I pose the following method to determine whether or not the tournament is any more unpredictable than the regular season

Method: Compare the percentage accuracy of picking the "higher seed" method to the accuracy of picking the team who has the better record in the regular season

- Recall, higher seed accuracy: 66%
- Guess how often the better record wins?
- Better record accuracy: 67%
- Conclusion: March Madness is not that mad

- It is likely that our 5% improvement is not a result of overfitting:
 - The model was trained on regular season data and tested on tournament data.

- It is likely that our 5% improvement is not a result of overfitting:
 - The model was trained on regular season data and tested on tournament data.
- We could have used more advanced data (shooting percentages, rebounding statistics, etc.) to perhaps come up with a better predictor

- It is likely that our 5% improvement is not a result of overfitting:
 - The model was trained on regular season data and tested on tournament data.
- We could have used more advanced data (shooting percentages, rebounding statistics, etc.) to perhaps come up with a better predictor
 - It could be interesting to use "expert rankings" as a predictor.

- It is likely that our 5% improvement is not a result of overfitting:
 - The model was trained on regular season data and tested on tournament data.
- We could have used more advanced data (shooting percentages, rebounding statistics, etc.) to perhaps come up with a better predictor
 - It could be interesting to use "expert rankings" as a predictor.
- We have one unanswered question still:

Problem Statement

Recall our questions:

- How well does a team's seed predict their performance?
- Using "more advanced" data, can we make a better predictor than a team's seed?
- Is the tournament any more unpredictable than the regular season?
- Can statistics help you win your bracket pool?

Can Statistics Help you Win your Bracket Pool?

Figure 1: Taken from Stephen Pettigrew's Blog

• The red line labeled "Chalk" is our "higher seed" bracket.

Can Statistics Help you Win your Bracket Pool?

Figure 1: Taken from Stephen Pettigrew's Blog

- The red line labeled "Chalk" is our "higher seed" bracket.
- What do we think? If we add an additional "5%" accuracy to our bracket we will be even further up the curve
- Can Statistics help you win your bracket pool?

Can Statistics Help you Win your Bracket Pool?

Figure 1: Taken from Stephen Pettigrew's Blog

- The red line labeled "Chalk" is our "higher seed" bracket.
- What do we think? If we add an additional "5%" accuracy to our bracket we will be even further up the curve
- Can Statistics help you win your bracket pool? Maybe