Национальный исследовательский университет ИТМО Факультет систем управления и робототехники

Расчетная работа

по дисциплине «Электрические машины» на тему:
«Трансформатор»

Подготовил: Марухленко Даниил Сергеевич

Группа: R33352

Преподаватель: Маматов Александр Геннадьевич

1 Исходные данные

Общие данные:

f = 50Гц частота сети

 $U_1 = 230 {\rm B}$ - напряжение первичной обмотки

 $B_m = 1.5$ Тл - максимальная индукция в стержне

 $\iota = 2.5 \mathrm{A/mm^2}$ - плотность тока

 K_{Fe} - Коэффициент заполнения стали - 0.9

 $k_{\omega d} = 0.25$ - коэффициент заполнения окна

ЭЗ20 - Материал сердечника

 $\delta = 0.05$ мм - Зазор в сердечнике

Тип трансформатора - броневой

Обмотки концентрические

Данные из варианта(13):

H = 105.5 mm

 $L=123 \ {
m mm}$

a = 35 mm

b = 22 mm

c = 52 mm

h = 61.5 mm

 $U_2 = 50 \text{ B}$

2 Задание 1

По исходным данным определить:

- Магнитные напряжения в зазоре, стержнях и в ярме магнитопровода
- Ток намагничивания (холостого хода) трансформатора при условии, что он не превышает 40 % номинального тока обмотки.

Решение:

Расчет недостающих размеров:

$$d = \frac{L - a - 2b}{2} = 22 (\text{mm})$$

$$e = \frac{H - d}{2} = 21,9750 (\text{mm})$$

$$l_e = \frac{L - d}{2} + e = 72.475 (\text{mm})$$

Расчет площади поперечного сечения отверстия:

$$S_b = b \cdot h = 1353 (\text{mm}^2)$$

Расчет площадей сечения трансформатора:

$$S_d = d \cdot c \cdot K_{Fe} = 1029.6 (\text{mm}^2)$$

 $S_{Fe} = a \cdot c \cdot K_{Fe} = 1638 (\text{mm}^2)$
 $S_{\delta} = a \cdot c = 1820 (\text{mm}^2)$
 $S_{\delta 2} = d \cdot c = 1144 (\text{mm}^2)$
 $S_e = e \cdot c \cdot K_{Fe} = 1028.4 (\text{mm}^2)$

Расчет индукции магнитного поля:

Сталь электротехническая Э320; 0,35; f=50 Γ ц

B_m [T π]	0,5	1,0	1,25	1,5	1,6	1,7	1,8	1,9	2,0
<i>H</i> [А/см]	0,3	0,6	1,6	4,8	7,2	8,6	14,2	24,0	40,0
<i>p</i> [Вт/кГ]	0,1	0,5	0,9	1,4	1,7	2,0	2,45	3,0	4,0
$q [Bap/\kappa\Gamma]$	0,43	1,7	5,7	20,5	32,5	41,5	73,0	110	180

 B_m — максимальная индукция; H — напряжённость; p — удельная мощность потерь в стали; q — удельная реактивная мощность (намагничивания).

Пусть $B_0 = B_{max} = 1.5$ Тл. Проведем расчёт:

• Магнитное напряжение бокового стержня

$$B_d = \frac{S_{Fe}}{2S_d} \cdot B_0 = 1.1931(\text{T}\pi)$$

 $H_d = 137.2409(\text{A/M})$
 $U_d = H_d \cdot h \cdot 10^{-3} = 8.4403(\text{A})$

• Магнитное напряжение бокового зазора

$$H_{\delta} = \frac{B_0}{\sqrt{2} \cdot 4 \cdot \pi \cdot 10^{-7}} = 8.4399 \cdot 10^5 (\text{A/m})$$
$$U_{\delta} = H_{\delta} \cdot \delta \cdot 10^{-3} = 42.1995 (\text{A})$$

• Магнитное напряжение главного стержня

$$B_a = B_0 = 1.5(\text{Tm})$$

 $H_a = 479.8720(\text{A/m})$
 $U_a = H_a \cdot h \cdot 10^{-3} = 29.5121(\text{A})$

• Магнитное главного зазора

$$H_{\delta 2} = \frac{B_d}{\sqrt{2} \cdot 4 \cdot \pi \cdot 10^{-7}} = 6.7136 \cdot 10^5 (\text{A/m})$$
$$U_{\delta 2} = H_{\delta 2} \cdot \delta \cdot 10^{-3} = 33.5678(\text{A})$$

• Магнитное напряжение ярма

$$B_e = \frac{S_{Fe}}{2S_e} \cdot B_0 = 1.1945 ($$
Тл $)$
 $H_e = 137.7838 ($ A $)$ м $)$
 $U_e = H_e \cdot l_e \cdot 2 \cdot 10^{-3} = 19.9718 ($ A $)$

Суммарный ток намагничивания:

$$I_{\mu} = U_{\delta} + U_{\delta 2} + U_{a} + U_{e} + U_{d} = 133.6915(A)$$

Номинальный ток обмотки:

$$I_p = S_b \cdot K_b/2 \cdot \iota = 422.8125(A)$$

Отношение токов:

$$\frac{I_{\mu}}{I_{n}} = 0.3162 < 0.4$$

В случае, если $\frac{I_\mu}{I_p}>0.4$ нужно было бы уменьшать B_0 и производить расчёты повторно до тех пор, пока I_μ/I_p не будет меньше или равно 0.4.

3 Задание 2

Используя расчётные данные задания 1, определить:

- Мощность трансформатора
- Числа витков первичной и вторичной обмоток
- Номинальные токи первичной и вторичной обмоток
- Сопротивления первичной и вторичной обмоток

Решение:

Мощность трансформатора:

$$S = 2.22 \cdot f \cdot B_0 \cdot S_{Fe} \cdot 10^{(-6)} \cdot S_b \cdot K_b \cdot \iota = 230.6094(BT)$$

Коэффициент трансформации:

$$k = U_1/U_2 = 4.6$$

Число витков первичной и вторичной обмотки:

$$w_1 = \frac{U_1}{4.44 \cdot f \cdot B_0 \cdot S_{Fe} \cdot 10^{-6}} = 422$$
$$w_2 = w_1/k = 92$$

Номинальный ток первичной и вторичной обмотки:

$$I_{1n} = I_p/w_1 = 1.0026(A)$$

 $I_{2n} = I_p/w_2 4.6122(A)$

Минимальная площадь проводников:

$$s_1 = I_{n1}/\iota = 0.4011 (\text{mm}^2)$$

 $s_2 = I_{n1}/\iota = 1.8449 (\text{mm}^2)$

Данные обмоточных проводов

Сечение	Сопрот.	Сечение	Сопрот.	Сечение	Сопрот.
[MM ²]	[O _M / _M]	[MM ²]	[O _M / _M]	[MM ²]	[O _M / _M]
0,00502	3,63	0,09621	0,182	0,58088	0,0302
0,00636	2,86	0,11341	0,155	0,63617	0,0275
0,00785	2,24	0,13202	0,133	0,67929	0,0258
0,00850	1,85	0,15205	0,115	0,72382	0,0242
0,01131	1,55	0,17349	0,101	0,78540	0,0224
0,01327	1,32	0,18848	0,0931	0,84950	0,0206
0,01539	1,14	0,20428	0,0859	0,91610	0,0192
0,01767	0,994	0,22051	0,0793	0,98520	0,0177
0,02011	0,873	0,23578	0,0739	1,0568	0,0166
0,02270	0,773	0,25565	0,0687	1,1310	0,0155
0,02545	0,688	0,27340	0,0643	1,2272	0,0143
0,02835	0,618	0,30191	0,0579	1,3273	0,0132
0,03142	0,558	0,32170	0,0546	1,4314	0,0122
0,03464	0,507	0,35256	0,0497	1,5394	0,0114
0,04155	0,423	0,37393	0,0469	1,6513	0,0106
0,04909	0,357	0,40715	0,0430	1,7670	0,00989
0,05726	0,306	0,43008	0,0408	1,9113	0,00918
0,06605	0,266	0,46556	0,0376	2,0612	0,00850
0,07548	0,233	0,50265	0,0349	2,2167	0,00792
0,08553	0,205	0,54060	0,0324	2,3780	0,00736

Удельное сопротивление используемых проводников (из таблицы):

$$s_1 = 0.43008 (\mathrm{Mm}^2)$$

 $s_2 = 1.9113 (\mathrm{Mm}^2)$
 $p_1 = 0.0408 (\mathrm{Om/m})$
 $p_2 = 0.00918 (\mathrm{Om/m})$

Сопротивление обмоток:

$$R_1 = 2 \cdot (a + c + 3 \cdot b) \cdot 10^{-3} \cdot p_1 \cdot w_1 = 5.2648(OM)$$

 $R_2 = 2 \cdot (a + c + b) \cdot 10^{-3} \cdot p_2 \cdot w_2 = 0.1835(OM)$

4 Задание 3

Используя расчётные данные заданий 1 и 2, определить:

- Потери в обмотках трансформатора при номинальных токах:
- Потери в сердечнике трансформатора
- Коэффициент мощности трансформатора в режиме холостого хода
- Оптимальный коэффициент нагрузки
- Номинальный и максимальный КПД

Решение: Потери в обмотках трансформатора при номинальных токах:

$$P_{Cu} = R_1 \cdot I_{1n}^2 + R_2 \cdot I_{2n}^2 = 9.1953(B_T)$$

По значениям индукции найдем параметры p и q (удельную мощность потерь в стали и удельную реактивную мощность):

$$B_a = 1.5; \quad q_a = 20.4941; \quad p_a = 1.3998$$

 $B_d = 1.1931; \quad q_d = 4.7896; \quad p_d = 0.8090$
 $B_e = 1.1945; \quad q_e = 4.8114; \quad p_e = 0.8111$

Плотность стали:

$$y = 7.8$$
кг/дм 3

Масса элементов сердечника трансформатора:

$$V_a = a \cdot h \cdot c \cdot 10^{-6} = 0.1119 (\text{дм}^3);$$
 $G_a = V_a \cdot y = 0.8731 (\text{Kr})$
 $V_d = d \cdot h \cdot c \cdot 10^{-6} = 0.0704 (\text{дм}^3);$ $G_d = V_d \cdot y = 0.5488 (\text{Kr})$
 $V_e = e \cdot c \cdot l_e \cdot 10^{-6} = 0.0828 (\text{дм}^3);$ $G_e = V_e \cdot y = 0.6460 (\text{Kr})$

Потери в сердечнике трансформатора:

$$P_{Fe} = G_a \cdot p_a + 2G_e \cdot p_e + 2G_d \cdot p_d = 3.1579(B_T)$$

 $Q_{Fe} = G_a \cdot q_a + 2G_e \cdot q_e + 2G_d \cdot q_d = 29.3653(B_T)$

$$I_0 = I_{\mu}/w_1 = 0.3170(A)$$

 $P = R_1 \cdot I_0^2 + P_{Fe} = 3.6871(B_T)$

Коэффициент мощности трансформатора в режиме холостого хода:

$$\cos \phi = \frac{1}{\sqrt{1 + (\frac{Q_{Fe}}{P})^2}} = 0.1246$$

Оптимальный коэффициент нагрузки:

$$\beta_{max} = \sqrt{\frac{P_{Fe}}{P_{Cu}}} = 0.5860$$

Номинальный и максимальный КПД:

$$\mu_n = \frac{U_1 \cdot I_{1n}}{U_1 \cdot I_{1n} + P_{Fe} + P_{Cu}} = 0.9492$$

$$\mu_{max} = \frac{\beta_{max} \cdot U_1 \cdot I_{1n}}{\beta_{max} \cdot U_1 \cdot I_{1n} + P_{Fe} + P_{Cu} \cdot \beta_{max}^2} = 0.9554$$