1.

First define the polynomial $f_S(x)$ is called the minimal polynomial of S (over F).

Then consider the unique map $\phi_S: F[x] \to E$ which is the identity on F and sends x to S. As ϕ_S is a ring homomorphism, it send a polynomial f(x) to f(S). The image of ϕ_S contains F and S and is the smallest. Thus $F[S] \cong F[x]/\ker(\varphi_S)$. Now, S is algebraic iff ϕ_S has a non-trivial kernel and the kernel is generated by a polynomiala $f_S(x)$ of positive degree that we may simply choose to be monic. If $f_S(x) = f(x)g(x)$ is a proper factorization of $f_S(x)$, then by CRT, $F[x]/(f_S(x)) \cong F[x]/(f(x)) \times F[x]/(g(x))$. The RHS the product of non-zero rings can not be a field. Thus $f_S(x)$ is irreducible and F[x] is a PID, the ideal $((f_S(x)))$ is maximal, so $F[S] \cong F[x]/(f_S(x))$ is a field. Thus F[S] = F(S).

But not for infinite S, because let E/F, E=F(u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, $[E:F]=\deg f_u$.

Proof. If u is transcendental, then $1, u, u^2, \ldots$ are linearly independent because otherwise we would obtain a polynomial $f \in F[x], f \neq 0$, with f(u) = 0.

If u is algebraic and $n=\deg f_u$, then I claim that $1,u,\ldots,u^{n-1}$ is a basis of E as an F-vector space. To confirm this, observe first of all that these elements are linearly independent, by the argument from the previous paragraph: if we had a linear relation $a_0+a_1u+\ldots+a_{n-1}u^{n-1}=0$ with coefficients $a_j\in F$, not all equal to zero, then we would obtain a (monic, after division by the highest non-zero coefficient) polynomial $g\in F[x], g\neq 0$, with $g(u)=0,\deg g< n$ but this contradicts the definition of the minimal polynomial as the polynomial of smallest possible degree for which this happens.

To see that $1,u,\ldots,u^{n-1}$ span E, recall that E=F[u], so any element of E is a linear combination of powers $u^j, j \geq 0$. Now from $f_u(u)=0$, we obtain a formula of the type $u^n=b_{n-1}u^{n-1}+\ldots+b_0$. So powers u^j with $j \geq n$ may be expressed in terms of powers with smaller exponents, and by applying this repeatedly, we can completely eliminate powers u^j with $j \geq n$ from the linear combination.

2.

 \mathbb{Q} has characteristic 0 and is countable by a famous spiral argument.

A field K has characteristic 0 if and only if $\mathbb Q$ is a subfield of K

So, the way I have approached this is by first assuming that K has characteristic 0 and then we know that there is an embedding of $\mathbb Z$

into K and since n.1 is in K, then, their inverses will also be in K and

hence the subfield that we get is the one generated by 1 and this is the prime subfield of K and this is isomorphic to \mathbb{Q} . So K contains

Q. But I am not sure how to progress the other way.

As $|\mathbb{Q}| \leq |\mathbb{Z} \times \mathbb{Z}|$ and the latter is countable, \mathbb{Q} is countable.

3.

Let E/F be a field extension. Define $A=\{a\in E: a \text{ is algebraic over } F\}$ Then A is a field, and $F\subseteq A\subseteq E$.

Proof. The inclusions are clear because every $a \in F$ is algebraic, with minimal polynomial $f_a = x - a$. So we must show that A is a subfield of E. Let $a, b \in A$. We must show that then a - b and ab^{-1} (if $b \neq 0$) are in A as well.

Now F(a,b)/F is a finite extension, by the same arguments as in the previous proof (adjoin a,b separately and successively and observe that each individual extension is finite). Moreover, $a-b,ab^{-1}\in F(a,b)$, so $F(a-b)\subseteq F(a,b)$ also is a finite extension of F, and thus a-b is algebraic by **1.but** (and similarly for ab^{-1}).

4.

Proof. We know from above that if $\phi:E\to L$ extends σ , then $\phi(\alpha)$ must be a root of $f^\sigma_\alpha(x)$ showing that the number of ϕ is at most the number of distinct roots of $f_\alpha(x)$. On the other hand, given a root β of f^σ in Ω , there is a unique homomorphism $F[x]\to L$ that agrees with σ on F and sends x to β (this is the freeness property of the polynomial algebra composed with the isomorphism $F[x]\cong F^\sigma[x]$). Since $K=F(\alpha)\cong F[x]/(f_\alpha(x))\cong F^\sigma[x]$ ($f^\sigma_\alpha(x)$) and $f^\sigma_\alpha(\beta)=0$ (i.e. the kernel of the map $F[x]\to\Omega$ is contained in $(f_\alpha(x))$), the universal property of quotients yields a unique homomorphism $\phi:E\to L$ agreeing with σ on F and sending α to β .