

Grundlagen der Mathematik und Informatik

Aufbaukurs: Fit für Psychologie WiSe 2022/23

Belinda Fleischmann

Inhalte basieren auf Einführung in Mathematik und Informatik von Dirk Ostwald, lizenziert unter CC BY-NC-SA 4.0

(2) Summen, Produkte, Potenzen

Selbstkontrollfragen + Lösungen

Selbstkontrollfragen

- 1. Berechnen Sie die Summen $\sum_{i=1}^3 2$, $\sum_{i=1}^3 i^2$, und $\sum_{i=1}^3 \frac{2}{3}i$.
- 2. Schreiben Sie die Summe 1+3+5+7+9+11 mithilfe des Summenzeichens.
- 3. Schreiben Sie die Summe 0+2+4+6+8+10 mithilfe des Summenzeichens.
- 4. Definieren Sie das Produktzeichen.
- 5. Für $a \in \mathbb{R}$, definieren Sie die nte (negative) Potenz von a.
- 6. Berechnen Sie $2^2 \cdot 2^3$ und $(2^5)^{-2}$. Geben Sie die zugehörige Potenzregel an.
- 7. Berechnen Sie 6^2 und $2^2 \cdot 3^2$. Geben Sie die zugehörige Potenzregel an.
- 8. Warum kann die n-te Wurzel von a als $a^{\frac{1}{n}}$ geschrieben werden?
- 9. Berechnen Sie $(\sqrt{2})^{\frac{2}{3}}, 9^{\frac{1}{2}}$, und $4^{-\frac{1}{2}}$.

SKF 1. Summen

Berechnen Sie die Summen $\sum_{i=1}^3 2$, $\sum_{i=1}^3 i^2$, und $\sum_{i=1}^3 \frac{2}{3}i$.

• $\sum_{i=1}^{3} 2 = 2 + 2 + 2 = 6$

alternativ kann man für eine Summe über konstante Summanden c auch folgende Formel verwenden:

$$\sum\nolimits_i^n c = (n-i+1) \cdot c. \text{ In diesem Beispiel ergibt das } \sum\nolimits_{i=1}^3 2 = (3-1+1) \cdot 2 = 3 \cdot 2 = 6$$

- $\sum_{i=1}^{3} i^2 = 1^2 + 2^2 + 3^2 = 11$
- $\sum_{i=1}^{3} \frac{2}{3}i = \frac{2}{3}\sum_{i=1}^{3} i = \frac{2}{3}(1+2+3) = \frac{2}{3} \cdot 6 = 4$

SKF 2. Summen

Schreiben Sie die Summe 1+3+5+7+9+11 mithilfe des Summenzeichens.

$$\sum\nolimits_{i=1}^{6} 2i - 1 \text{ oder } \sum\nolimits_{i \in I} i \text{ mit } I = \{1, 3, 5, 7, 9, 11\}$$

Anmerkung: Es gibt viele Möglichkeiten diese Summe zu schreiben.

SKF 3. Summen

Schreiben Sie die Summe 0+2+4+6+8+10 mithilfe des Summenzeichens.

$$\sum\nolimits_{i=1}^{6} 2i - 2 \text{ oder } \sum\nolimits_{i \in I} i \text{ mit } I = \{0,2,4,6,8,10\}$$

Anmerkung: Es gibt wie bei SKF 2 viele Möglichkeiten diese Summe zu schreiben.

Definieren Sie das Produktzeichen.

Definition (Produktzeichen)

Produkte werden oft mithilfe des Produktzeichens

$$\prod_{i=1}^{n} x_i = x_1 \cdot x_2 \cdot \dots \cdot x_n \tag{1}$$

dargestellt. Dabei stehen

- II für das griechische Pi, mnemonisch für Produkt,
- das Subskript i=1 für den Laufindex der Produkterme und den Startindex,
- das Superskript n für den Endindex,
- $x_1, x_2, ..., x_n$ für die Produktterme.

SKF 5. Potenzen

Für $a \in \mathbb{R}$, definieren Sie die nte (negative) Potenz von a.

Für $a \in \mathbb{R}$ und $n \in \mathbb{N}^0$ ist die n-te Potenz von a definiert durch

$$a^0 := 1 \text{ und } a^{n+1} := a^n \cdot a.$$

Für $a \in \mathbb{R} \setminus 0$ und $n \in \mathbb{N}^0$ die *negative* n-te Potenz von a definiert durch

$$a^{-n} := (a^n)^{-1} := \frac{1}{a^n}.$$

Anmerkung: a wird Basis und n wird Exponent genannt.

SKF 6. Potenzen

Berechnen Sie $2^2 \cdot 2^3$ und $(2^5)^{-2}$. Geben Sie die zugehörige Potenzregel an.

•
$$2^2 \cdot 2^3 = 2^{2+3} = 2^5 = 32$$

 $a^n a^m = a^{n+m}$

$$\begin{array}{l} \bullet \ \ (2^5)^{-2} = 2^{5 \cdot (-2)} = 2^{-10} = (2^{10})^{-1} = \frac{1}{2^{10}} \\ (a^n)^m = a^{nm} \ \text{und} \ a^{-n} := (a^n)^{-1} := \frac{1}{a^n} \end{array}$$

SKF 7. Potenzen

Berechnen Sie 6^2 und $2^2 \cdot 3^2$. Geben Sie die zugehörige Potenzregel an.

- $6^2 = 36$
- $2^2 \cdot 3^2 = (2 \cdot 3)^2 = 36$ $(ab)^n = a^n b^n$

Warum kann die n-te Wurzel von a als $a^{\frac{1}{n}}$ geschrieben werden?

Es gilt

$$\left(a^{\frac{1}{n}}\right)^n = a^{\frac{1}{n}} \cdot a^{\frac{1}{n}} \cdot a^{\frac{1}{n}} \cdot \dots \cdot a^{\frac{1}{n}} = a^{\sum_{i=1}^n \frac{1}{n}} = a^1 = a.$$

Also gilt mit der Definition der n-ten Wurzel, dass $r=a^{\frac{1}{n}}$.

SKF 9. Potenzen

Berechnen Sie $(\sqrt{2})^{\frac{2}{3}}, 9^{\frac{1}{2}}$, und $4^{-\frac{1}{2}}$.

•
$$(\sqrt{2})^{\frac{2}{3}} = (2^{\frac{1}{2}})^{\frac{2}{3}} = 2^{\frac{2}{6}} = 2^{\frac{1}{3}} = \sqrt[3]{2}$$

•
$$9^{\frac{1}{2}} = \sqrt{9} = 3$$

•
$$4^{-\frac{1}{2}} = (4^{\frac{1}{2}})^{-1} = \frac{1}{4^{\frac{1}{2}}} = \frac{1}{\sqrt{4} = \frac{1}{2}}$$