1.

a. Define half adder.

Ans: A form of combinational logic circuit known as the Half Adder adds two 1-bit binary digits.

b. Draw a truth table for the sum and carry of half adder.

|   |   | J |   |
|---|---|---|---|
| A | В | С | S |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

c. Write the sop expression from the truth table.

Ans: 
$$S = x'y + xy'$$
,  $C = xy$ 

d. Draw the circuit using logsim.



2.

| a  | Draw the ti | ruth table | for the  | outputs | of the | full adder |
|----|-------------|------------|----------|---------|--------|------------|
| а. | Diaw uic u  | uui tabic  | ioi tiic | Outputs | or the | rum auuci. |

| A | В | C-IN | S | C-OUT |
|---|---|------|---|-------|
| 0 | 0 | 0    | 0 | 0     |
| 0 | 0 | 1    | 1 | 0     |
| 0 | 1 | 0    | 1 | 0     |
| 0 | 1 | 1    | 0 | 1     |
| 1 | 0 | 0    | 1 | 0     |
| 1 | 0 | 1    | 0 | 1     |
| 1 | 1 | 0    | 0 | 1     |
| 1 | 1 | 1    | 1 | 1     |

b. Write the corresponding sop expression for sum and carry of full adder and simplify the expression

Ans:

$$SUM = (A XOR B) XOR Cin = (A \oplus B) \oplus Cin$$

$$CARRY-OUT = A \ AND \ B \ OR \ Cin(A \ XOR \ B) = A.B + Cin(A \ \bigoplus \ B)$$

c. Draw a full adder using two half adders and an OR gate.



3. Using the three stages of design, construct the circuits for the following input /output values. Here A, B, and C are the inputs whereas D, E, F, G, H

and I are the outputs. *Note: Draw a circuit diagram using logsim* corresponding to the simplified expression of outputs D, E, F, G, H, and I.

| Α | В | С | D | E | F | G | Н | I |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |

## Ans:

$$= A'B'(C'+C) + B(A'C'+AC') + AC(B+B') + AB'C'$$

$$=A'B+C'(B+A)AC$$



$$E = ABC + ABC' + AB'C$$

$$=AB(C+C')+AB'C$$

$$=A(B+B'C)$$

$$=A(B+C)$$



$$=A'(B'+C')+AC$$



## G=A'B'C+A'BC'+AB'C'+ABC+ABC'+AB'C+A'BC

$$=A'C(B'+B)+BC'(A'+A)+AC(B'+B)+AB'C'$$

$$=C(A'+A)+C'(B+AB')$$

$$=C+C'(B+A)$$

$$=C+C'B+AC'$$



alan shah

$$=AC(B'+B)+A'C'(B'+B)+A'BC$$

$$=C(A'B+A)+A'C'$$

$$=C(A+B)+A'C'$$



**I=A'B'C'+A'B'C+A'BC'+AB'C'+ABC+ABC'+A'BC** 

$$=B'C'(A'+A)+AB(C'+C)+A'B(C'+C)+A'B'C$$

$$=B(A+A')+B'(A'C+C')$$



alan shah