Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

akysibiei inpopiatrika ta oo meshobasibiloi texilika

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 1 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант 30

Виконав студент	III-13 Симотюк Денис Андрійович		
·	(шифр, прізвище, ім'я, по батькові)		
Перевірив			
	(прізвище, ім'я, по батькові)		

Лабораторна робота 3 Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 30

Обчислити $x = \sqrt[p]{a}$, використовуючи формулу:

$$x_{n+1} = \frac{x_n}{p^2} \cdot \left[\left(p^2 - 1 \right) + \frac{1}{2} \cdot \left(p + 1 \right) \cdot \frac{a}{x_n^p} - \frac{1}{2} \cdot \left(p + 1 \right) \cdot \frac{x_n^p}{p} \right], \ x_0 = 1$$

з точністю, заданою користувачем ($p \ne 1, p \ne 2$).

Постановка задачі

Для початку хочу звернути увагу, що після декількох ітерацій один з доданків в дужках буде наближатися до безкінечності (залежно від значення а), відповідно увесь вираз також буде прямувати до безкінечності. Отже формула недійсна і в подальшому користуватися будемо цією:

$$x_{k+1} = rac{1}{\mathsf{p}} \left((\mathsf{p}-1) x_k + rac{\mathsf{a}}{x_k^{\mathsf{p}-1}}
ight)$$

Для вирішення необхідно створити цикл, в якому умова буде виконуватися, поки модуль різниці $x = \sqrt[p]{a}$ та x_k більша за якесь мале додатнє epsilon.

Побудова математичної моделі

Побудуємо таблицю змінних:

Змінна	Тип	Призначення
Точність ерѕ	Дійсна	Вхідні дані
Підкореневе число а	Дійсна	Вхідні дані
Показник кореня р	Дійсна	Вхідні дані
Точне значення $\sqrt[p]{a}$ con	Дійсна	Проміжні дані
Перша частина x_k xp1	Дійсна	Проміжні дані
Друга частина x_k хр2	Дійсна	Проміжні дані
Третя частина x_k хр3	Дійсна	Проміжні дані
Шукане х	Дійсна	Вихідні дані

- Крок 1. Визначимо основні дії.
- Крок 2. Вводимо дані та декларуємо змінні.
- Крок 3. Деталізуємо перевірку значення р.
- Крок 4. Визначимо константу соп.
- Крок 5. Деталізуємо дію перевірки умови циклу для обчислення х.
- Крок 6. Деталізуємо дію знаходження хр1.
- Крок 7. Деталізуємо дію знаходження хр2.
- Крок 8. Деталізуємо дію знаходження хр3.
- Крок 8. Деталізуємо дію обчислення х.

Псевдокод алгоритму

Крок 1.

Початок

Введення р, а, ерѕ

Перевірка значення р

Обчислення соп

Знаходження х

Виведення х

Кінець

Крок 2.

Початок

введення р, а, ерѕ

```
повторити
           введення р
     все повторити
     обчислення соп
     знаходження х
     виведення х
Кінець
Крок 3.
Початок
     введення p, a, eps,
     поки p == 1 або p == 2
     повторити
           введення р
     все повторити
     con = pow (a, 1/p)
     знаходження х
     виведення х
Кінець
Крок 4.
Початок
     введення р, а, ерѕ
     поки p == 1 або p == 2
     повторити
           введення р
     все повторити
     con = pow (a, 1/p)
     x = 1
     поки abs(con - x) > eps
      повторити
           обчислення хр1
           обчислення хр2
           обчислення хр3
           обчислення х
     все повторити
```

```
виведення х
Кінець
Крок 5.
Початок
      введення р, а, ерѕ
     поки p == 1 або p == 2
      повторити
           введення р
      все повторити
     con = pow(a, 1/p)
      x = 1
     поки abs(con - x) > eps
      повторити
           xp1 = 1 / n
           обчислення хр2
           обчислення хр3
           обчислення х
      все повторити
     виведення х
Кінець
Крок 6.
Початок
      введення р, а, ерѕ
     поки p == 1 або p == 2
      повторити
           введення р
      все повторити
     con = pow(a, 1/p)
      x = 1
     поки abs(con - x) > eps
      повторити
           xp1 = 1 / n
```

xp2 = (n - 1) * xобчислення xp3

```
обчислення х
      все повторити
      виведення х
Кінець
Крок 7.
Початок
      введення р, а, ерѕ
     поки p == 1 або p == 2
      повторити
           введення р
      все повторити
      con = pow (a, 1/p)
      x = 1
      поки abs(con - x) > eps
      повторити
           xp1 = 1 / n
           xp2 = (p - 1) * x
           xp3 = a / pow(x, p - 1)
           обчислення х
      все повторити
      виведення х
Кінець
Крок 8.
Початок
      введення p, a, eps
     поки p == 1 або p == 2
      повторити
           введення р
      все повторити
     con = pow (a, 1/p)
     x = 1
     поки abs(con - x) > eps
```

повторити

xp1 = 1 / n

$$xp2 = (p-1) * x$$

 $xp3 = a / pow (x, p-1)$
 $x = xp1 * (xp2 + xp3)$

все повторити

виведення х

Кінець

Блок-схема алгоритму

Висновки

Під час виконання лабораторної роботи я дослідив подання операторів повторення дій та набув практичних навичок їх використання під час складання циклічних програмних специфікацій.