COMP 3721 Introduction to Data Communications

01b. Week 1 - Part 2

Learning Outcomes

- By the end of this lecture, you will be able to:
 - Describe the concept of protocol layering in network design.
 - Describe two network models
 - TCP/IP protocol suite
 - OSI Model

Introduction

- Networks are complex, with many "pieces":
 - hosts
 - routers
 - links of various media
 - applications
 - protocols
 - hardware, software

Is there any hope of organizing structure of a network?

Analogy: Organization of Air Travel

ticket (purchase)

baggage (check)

gates (load)

runway takeoff

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway landing

airplane routing

airplane routing

airline travel: a series of steps, involving many services

Analogy: Organization of Air Travel

ticket (purchase)	Ticketing service	ticket (complain)
baggage (check)	Baggage service	baggage (claim)
gates (load)	Gate service	gates (unload)
runway takeoff	Runway service	runway landing
airplane routing	Routing service	airplane routing

layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

What is a Protocol?

- A protocol defines what is communicated, how and when. This
 provides accurate and timely transfer of information between
 different devices on a network.
- In other words, a protocol defines the format and the order of messages exchanged between two or more communicating entities as well as the actions taken on the transmission and/or receipt of a message or other event.

Principles of Protocol Layering

First Principle:

• For having bidirectional communication, each layer must be able to perform two opposite tasks.

Second Principle:

• The two objects under each layer at both sites should be identical.

Protocol Layering

- Protocol layering enables us to divide the complex task of communication into multiple smaller and simpler tasks.
- Network designers organize protocols and the network hardware and software that implement the protocols in layers.
- Service model of a layer in protocol layering is the services that a layer offers to the layer above.
- Each layer provides its service by performing certain actions within that layer and by using the services of the layer directly below it.

Protocol Layering Benefits

- Advantages of protocol layering:
 - 1. Separating the services from the implementation
 - 2. Simpler and less expensive intermediate systems
 - 3. Modularity (independent layers) → black box
 - ease of maintenance and updating of the system, change in a layer's service implementation is **transparent** to rest of system.

Two Models for Computer Network Operations

- TCP/IP protocol suite
- OSI model

• Protocol Suite (Stack): a set of protocols organized in different layers (designed to work together).

TCP/IP Protocol Suite

- TCP/IP (Transmission Control Protocol/Internet Protocol) Protocol Suite
 - used in the Internet today (the Internet protocol stack)
 - a five-layer hierarchical model

TCP/IP Protocol Suite – Physical Layer

- Carries individual bits across the link (from one node to the next)
- Actually, the bits received in a frame from the data-link layer are transformed to signals and sent through the transmission medium.
 - physical layer protocols are link dependent and they rely on the actual transmission medium of the link.

TCP/IP Protocol Suite – Data Link Layer

 Data transfer between neighboring network elements/devices (without errors)

• PDU name: frame

• protocols: Ethernet, 802.11 (WiFi), ...

PDU

- Protocol Data Unit
 - a unit of data that is passed between different layers of a protocol stack

An Example – Frame

TCP/IP Protocol Suite - Network Layer

- Routing of datagrams from source to destination (host-to-host communication)
 - PDU name: datagram/packet
 - also called IP layer
 - protocols: IP (Internet Protocol), ICMP, DHCP, ARP, routing protocols,...

TCP/IP Protocol Suite – Transport Layer

- Logical communication between application processes running on different hosts (process-to-process delivery of the entire message)
 - PDU name: segment/user datagram
 - protocols: TCP, UDP, SCTP
 - transport layer protocols almost always implemented in software in the end systems.

TCP/IP Protocol Suite - Application Layer

- Communication for a network application takes place between end systems at the application layer.
 - PDU name: message
 - protocols: IMAP, SMTP, HTTP, FTP, Telnet, DNS, ...
 - application layer protocols are implemented in software in the end systems.

Communication through an internet

Encapsulation and Decapsulation

Encapsulation

Decapsulation

Example

Good to Know

- Physical layer and data-link layer typically implemented in a NIC (Network Interface Card) and they handle communication over a specific link.
- Hosts (end systems) implement all 5 layers of the TCP/IP protocol stack.

The OSI Model

- Open Systems Interconnection (OSI) model
 - an ISO standard for network communications
 - a layered framework (7 layers)
 - Application, Presentation, and Session layers
 → combined into Application layer in TCP/IP suite
 - Presentation layer: allows communicating applications to interpret the meaning of data exchanged
 - data compression, data encryption, ...
 - Session layer:
 - session management, synchronization of data exchange, ...

Summary

- Protocol layering and its benefits.
- Network models, including TCP/IP protocol suite and OSI model.

References

- [1] Behrouz A.Forouzan, Data Communications & Networking with TCP/IP Protocol Suite, 6th Ed, 2022, McGraw-Hill companies.
- [2] J.F. Kurose, K.W. Ross, Computer Networking: A Top-Down Approach, 7th Ed, 2017, Pearson Education, Inc.

Reading

- Chapter 1 of the textbook, sections 1.4 1.6 (inclusive)
- Chapter 1 of the textbook, section 1.8 (Practice Test)