# Deep Reinforcement Learning for Unsupervised Video Summarization with Diversity-Representativeness Reward

Полина Святокум

ниу вшэ

05.03.2018

#### Video summarization

Из видеоряда  $V_i = \{v_t\}_1^T$  выбрать подмножество кадров  $\mathcal{Y}$ , которое будет описывать видео. Более распространен и успешен supervised подход.

# Задача в форме RL

- Unsupervised подход
- ▶ Необходимо получать обратный сигнал для обучения
- ▶ Награда должна определять идеальное summary

### Diversity-representativeness reward

#### Diversity reward

$$R_{DIV} = rac{1}{|\mathcal{Y}|(|\mathcal{Y}|-1)} \sum_{t \in \mathcal{Y}} \sum_{t' \in \mathcal{Y}t' 
eq t} d(x_t, x_{t'})$$

#### Dissimilarity function

$$d(x_t, x_{t'}) = 1 - \frac{x_t^T x_{t'}}{||x_t||_2 ||x_{t'}||_2}$$

\*

$$d(x_t,x_{t'})=1$$
, если  $|t-t'|>\lambda$ 

#### Representativeness reward

$$R_{REP} = \exp(-\frac{1}{T} \sum_{t=1}^{T} \min_{t' \in \mathcal{Y}} ||x_t - x_{t'}||_2)$$

#### Diversity-representativeness reward

$$R = R_{DIV} + R_{REP}$$



### Архитектура сети



- ightharpoonup CNN  $ightharpoonup x_t$  GoogLeNet обученная на ImageNet
- ▶ BiRNN  $\rightarrow h_t$
- ▶ FC  $\rightarrow p_t = \sigma(Wh_t)$
- $ightharpoonup a_t \sim Bernoulli(p_t)$

### Reinforce

$$J(\theta) = \mathbb{E}_{p_{\theta}(a_{1:T})}[R(S)]$$

$$\nabla_{\theta}J(\theta) = \mathbb{E}_{p_{\theta}(a_{1:T})}\left[R(S)\sum_{t=1}^{T}\nabla_{\theta}\log \pi_{\theta}(a_{t}|h_{t})\right]$$

многомерное матожидание

$$abla_{ heta} J( heta) pprox rac{1}{N} \sum_{n=1}^{N} \left[ R_n \sum_{t=1}^{T} 
abla_{ heta} \log \pi_{ heta}(a_t | h_t) 
ight]$$

- большая дисперсия

$$abla_{ heta} J( heta) pprox rac{1}{N} \sum_{n=1}^{N} \left[ (R_n - b) \sum_{t=1}^{T} 
abla_{ heta} \log \pi_{ heta}(a_t | h_t) 
ight]$$

b – baseline, средняя награда



# Регуляризации

$$L_{percentage} = || rac{1}{T} \sum_{t=1}^{T} p_t - arepsilon ||$$
 – минимизируем,  $arepsilon$  – желаемый процент видео в итоговом summary  $L_{weight} = \sum_{i,j} heta_{i,j}^2$  
$$heta = heta - lpha 
abla_{ heta} (-J + eta_1 L_{percentage} + eta_2 L_{weight})$$

# Случай supervised learning

Можно добавить информацию из разметки  $\mathcal{Y}*=y_i*$   $L_{MLE}=\sum_{t\in\mathcal{Y}*}\log p(t,\theta)$  — максимизируем Можно совсем не использовать RL и обучать DSN, используя cross-entropy loss (это неэффективно)

### Эксперименты

#### Датасеты

- ► SumMe 25 видео, разные темы, от 1 до 6 минут
- ► TVSum 50 видео; новости, документальные видео и т.п.; от 2 до 10 минут
- ▶ OVP 50 видео
- ▶ YouTube 39 видео

Асессоры размечали frame-level importance score.

В качестве метрики используется F-score.

$$P=rac{ ext{overlapped duration of A and B}}{ ext{duration of A}}, R=rac{ ext{overlapped duration of A and B}}{ ext{duration of B}}$$
 
$$F=2P imes R/(P+R) imes 100\%$$

### Эксперименты

- ▶ 5FCV, 80% обучающая выборка
- ► 5FCV, 80% + OVP + YouTube- обучающая выборка
- ▶ 5FCV, Остальные три датасета обучающая выборка

# Детали реализации

- ▶ Используются только 2 кадра в секунду
- $\epsilon = 0.5$
- ► *N* = 5
- ▶  $\alpha, \beta_1, \beta_2$  выбираются по CV

## Результаты unsupervised

Table 1: Results (%) of different variants of our method on SumMe and TVSum.

| Method                    | SumMe | TVSum |  |
|---------------------------|-------|-------|--|
| DSN <sub>sup</sub>        | 38.2  | 54.5  |  |
| $D$ - $DSN_{w/o \lambda}$ | 39.3  | 55.7  |  |
| D-DSN                     | 40.5  | 56.2  |  |
| R-DSN                     | 40.7  | 56.9  |  |
| DR-DSN                    | 41.4  | 57.6  |  |
| DR-DSN <sub>sup</sub>     | 42.1  | 58.1  |  |

Table 2: Results (%) of unsupervised approaches on SumMe and TVSum. Our DR-DSN performs the best, especially in TVSum where it exhibits a huge advantage over others.

| Method               | SumMe | TVSum |  |
|----------------------|-------|-------|--|
| Video-MMR            | 26.6  | -     |  |
| Uniform sampling     | 29.3  | 15.5  |  |
| K-medoids            | 33.4  | 28.8  |  |
| Vsumm                | 33.7  | -     |  |
| Web image            | -     | 36.0  |  |
| Dictionary selection | 37.8  | 42.0  |  |
| Online sparse coding | -     | 46.0  |  |
| Co-archetypal        | -     | 50.0  |  |
| GAN <sub>dpp</sub>   | 39.1  | 51.7  |  |
| DR-DSN               | 41.4  | 57.6  |  |

## Результаты supervised

Table 3: Results (%) of supervised approaches on SumMe and TVSum. Our DR-DSN $_{\rm sup}$  performs the best.

| Method                | SumMe | TVSum |  |
|-----------------------|-------|-------|--|
| Interestingness       | 39.4  | -     |  |
| Submodularity         | 39.7  | -     |  |
| Summary transfer      | 40.9  | -     |  |
| Bi-LSTM               | 37.6  | 54.2  |  |
| DPP-LSTM              | 38.6  | 54.7  |  |
| GAN <sub>sup</sub>    | 41.7  | 56.3  |  |
| DR-DSN <sub>sup</sub> | 42.1  | 58.1  |  |

Table 4: Results (%) of the LSTM-based approaches on SumMe and TVSum in the Canonical (C), Augmented (A) and Transfer (T) settings, respectively.

| Method                | SumMe |      |      | TVSum |      |      |
|-----------------------|-------|------|------|-------|------|------|
|                       | С     | A    | T    | С     | A    | T    |
| Bi-LSTM               | 37.6  | 41.6 | 40.7 | 54.2  | 57.9 | 56.9 |
| DPP-LSTM              | 38.6  | 42.9 | 41.8 | 54.7  | 59.6 | 58.7 |
| $GAN_{dpp}$           | 39.1  | 43.4 | -    | 51.7  | 59.5 | -    |
| GAN <sub>sup</sub>    | 41.7  | 43.6 | -    | 56.3  | 61.2 | -    |
| DR-DSN                | 41.4  | 42.8 | 42.4 | 57.6  | 58.4 | 57.8 |
| DR-DSN <sub>sup</sub> | 42.1  | 43.9 | 42.6 | 58.1  | 59.8 | 58.9 |

### Литература

Deep Reinforcement Learning for Unsupervised Video Summarization with Diversity-Representativeness Reward https://arxiv.org/pdf/1801.00054.pdf