Análise Multivariada

Lupércio França Bessegato Dep. Estatística/UFJF

Discriminação e Classificação

Roteiro

- 1. Introdução
- 2. Distribuições de Probabilidade Multivariadas
- 3. Representação de Dados Multivariados
- 4. Testes de Significância c/ Dados Multivariados
- 5. Análise de Componentes Principais
- 6. Análise Fatorial
- 7. Análise de Agrupamentos
- 8. Análise de Correlação Canônica
- 9. Referências

Análise Multivariada - 2022

Roteiro

- 1. Introdução
- 2. Classificação e Discriminação
- 3. Análise Discriminante
- 4. Outras Abordagens
- 5. Referências

Análise Multivariada - 2022

ıda - 2022

Introdução

Conjunto de Dados

- Partição do conjunto de dados:
 - √ Conjunto de treinamento
 - Usado para desenvolver modelo de classificação
 - √ Conjunto de teste
 - Usado para determinar desempenho do modelo
 - $\sqrt{\text{Importante não avaliar desempenho com as mesmas}}$ observações usadas para desenvolver o modelo

Análise Multivariada - 2022

Agrupamento e Classificação

- Agrupar:
 - $\sqrt{\text{Processo}}$ de alocar item em grupo
 - $\sqrt{\text{N}}$ Não há suposições sobre o número de grupos ou sobre a estrutura dos grupos
 - Técnica mais primitiva
- · Classificar:
 - √ Predição de pertinência a grupo
 - √ Número de grupos é conhecido e o objetivo é alocar novas observações a um desses grupos
 - √ Usa status conhecido para encontrar preditores, aplicando-os a uma nova observação

Análise Multivariada - 2022

Passos para Classificação

- 1. Conjunto de dados coletado, com alocações de item em grupo já conhecidas (ou atribuídas)
 - √ Observação, julgamento de especialista, procedimentos de agrupamento
- 2. Dados são divididos em conjunto de treinamento e teste
 - √ Treinamento: de 50% a 80% (comum: 67%)
 - √ Restante atribuído ao conjunto de teste

Análise Multivariada - 2022

- 3. Construção do modelo de predição
 - √ Predizer alocação dos dados de treinamento tão bem quanto possível
- 4. Avaliação do desempenho do modelo usando os dados do conjunto de teste

Análise Multivariada - 2022

Análise de Agrupamento e Análise Discriminante

- Análise de Agrupamentos
 - √ Dividir os elementos da amostra (ou população) em grupos, de maneira que:
 - Elementos de um grupo são similares entre si
 - Elementos de grupos diferentes sejam heterogêneos em relação a essas características

12

Análise Multivariada - 2022

Métodos de Classificação

- Há inúmero métodos de classificação:
 - √ Análise discriminante
 - √ Regressão logística
 - √ Naive Bayes Classification
 - √ Random Forest Classifiers
 - √ Método do vizinho mais próximo
 - √ Classification and Regression Trees CART
 - √ Support Vector Machine SVM
 - √ Método dos núcleos estimadores
 - √ Redes neurais artificiais

Análise Multivariada - 2022

- Análise discriminante:
 - √ Classificação de elementos de amostra (população)
 - Grupos são pré-definidos
 - √ Procedimento:
 - Regra de classificação

Análise Multivariada - 2022

Análise Discriminante

- Caso especial de correlações canônicas
 √ Variáveis dependentes são categóricas por natureza
- Objetivo:
 - $\sqrt{\mbox{Usar}}$ informações das ariáveis independentes para a separação (discriminação) mais clara possível entre os grupos

Análise Multivariada - 2022

Análise Discriminante

- Caso especial de correlações canônicas
 - $\sqrt{\text{Variáveis dependentes são categóricas por natureza}}$
- Objetivo:
 - $\sqrt{\text{Usar}}$ informações das ariáveis independentes para a separação (discriminação) mais clara possível entre os grupos

Análise Multivariada - 2022

· Abordagens:

√ Mahalanobis

√ Fischer

Análise Multivariada - 2022

· Abordagens:

√ Fischer

√ Mahalanobis

Aplicações Potenciais

- Perfil:
 - √ Compreender como cada variável independente (X) influencia a variável dependente (Y: grupo)
 - √ Descrição, em análise de regressão
 - √ Quando os objetivos do estudo são principalmente exploratórios

Análise Multivariada - 2022

- Diferenciação:
 - √ Capacidade de afirmar, com certo nível de confiança, se a relação entre X e Y se deve ao acaso
 - √ Inferência, em análise de regressão
 - √ Traçados os perfis dos grupo, pode ser importante verificar se as diferenças aparentes entre eles dão de fato significativas
 - √ Exemplo:
 - Entender e controlar as variações associadas a certos processos de produção

20

Análise Multivariada - 2022

- √Como os grupos são discriminados pelas variáveis subjacentes?
 - Exame dos perfis de segmentos do mercado para entender como consumidores diferem com relação a variáveis demográficas e psicológicas
 - Diferenças entre usuários de categoria de produto em relação ao tamanho da família, renda, educação, etc.
- √ Como potenciais consumidores de marca diferem da população em geral em relação ao seu envolvimento com a mídia?

Análise Multivariada - 2022

- · Classificação:
 - √ Usar o modelo para avaliar o valor da variável dependente, com observações fora da amostra de treinamento
 - Predizer a pertinência a grupo
 - √ Predição, em análise de regressão
 - √ Exemplos:
 - Credit scoring
 - Traçar o perfil dos clientes de empréstimo e julgar se novos candidatos oferecem risco ao crédito
 - Marketing direto
 - Que perfil de clientes devem receber oferta de mala direta?

Análise Multivariada - 2022

21

Prof. Lupércio F. Bessegato - UFJF

Fisher - Intuição

• Baseia-se na noção de pontuação discriminante

√ Encontrar combinação linear das variáveis independente que produza pontuações discriminantes maximamente diferentes

Análise Multivariada - 2022

• Função objetivo:

√ Quantifica a noção de "maximamente diferente"

√ Função linear que melhor aloca as observações

- Eixo que descreve diferença entre centróides
- Ajusta de acordo com o padrão de covariância

Análise Multivariada - 2022

23

Mahalanobis – Intuição

• Encontrar o 'locus' dos pontos equidistantes das médias dos 2 grupos

- √ 2 variáveis explicativas:
- 'locus' dos pontos é uma linha
- $\sqrt{3}$ variáveis explicativas:
- 'locus' dos pontos é um plano ou hiperplano
- √ 'locus' serve para discriminar os dois grupos

Análise Multivariada - 2022

· Medida de distância ajustada

$$D_i^2 = (\mathbf{x} - \bar{\mathbf{x}}_{(i)})' \mathbf{C}_W^{-1} (\mathbf{x} - \bar{\mathbf{x}}_{(i)}), i = 1, 2.$$

 $\sqrt{\text{Distância}}$ ao quadrado da covariância ajustada de qualquer ponto \mathbf{x} à média do grupo i

√ Dados seguem normal multivariada:

 Distância ajustada reflete com mais precisão a probabilidade de pertinência ao grupo do que a distância euclidiana

Análise Multivariada - 2022

 Por definição, 'locus' dos pontos descritos por Malahanobis é ortogonal ao eixo da função discriminante proposta por Fisher

Análise Multivariada - 2022

Discriminação e Classificação para Duas Populações

Análise Discriminante – Abordagens

• São complementares:

√ Fisher:

 Reduz os dados em uma única dimensão de modo a maximizar a separação entre grupos

√ Mahalanobis:

- Determina linha divisória (ou plano) que separa mais precisamente os dois grupos
- Ortogonal à dimensão discriminante

Análise Multivariada - 2022

Objetivo

- 1. Separar duas classes de objetos
- 2. Atribuir um novo objeto a uma das duas classes
- Classes:

 $\sqrt{\pi_1} e \pi 2$

• Objetos:

√ São separados ordinariamente ou classificados com base em medidas de p variáveis aleatórias associadas

29

Conceitos

• Classes:

 $\sqrt{\pi_1} e \pi 2$

• Objetos:

√ São separados ordinariamente ou classificados com base em medidas de p variáveis aleatórias associadas

$$\mathbf{X}' = [X_1, X_2, \dots, X_p].$$

• Hipótese:

√Os valores observados de X diferem em alguma quantidade de uma classe a outra

Análise Multivariada - 2022

Exemplos

Populações π_1 e π_2	Variáveis X		
Risco de crédito alto/baixo	Renda, Idade, nº de cartões de crédito, tamanho família		
Duas espécies de flor	Comprimento e largura de pétalas e sépalas, diâmetro do pólen, etc.		
Masculino e feminino	Medidas antropológicas tais como: circunferência e volume de crânios antigos		
Seleção a curso de pós-graduação	Histórico escolar, curriculum vitae, cartas de referência, experiência profissional		

Análise Multivariada - 2022

32

• Populações das duas classes:

 $\sqrt{\text{Podem ser descritas por suas funções de densidade}}$ [$f_1(\mathbf{x}) \text{ e } f_2(\mathbf{x})$]

√ Pode-se falar em atribuir:

- Observações a populações ou
- Objetos a classes

Análise Multivariada - 2022

• Outros Exemplos:

√ Agricultura:

 Identificar áreas de maior potencial para plantação de determinadas sementes

√ Marketing:

 Identificar mercados potenciais e não potenciais para determinados produtos e serviços

√ Esporte:

- Identificação de atletas promissores para cada modalidade

 $\sqrt{\text{Estudos de criminalidade:}}$

 Identificação de regiões que necessitam de política de segurança diferenciada

Análise Multivariada - 2022

33

Prof. Lupércio F. Bessegato - UFJF

Regras de Alocação e Classificação

- Em geral, são desenvolvidas de amostras de treinamento:
 - √ Examinadas diferenças das medidas características de objetos selecionados
 - \sqrt{O} conjunto de todos os resultados amostrais possíveis são dividido em duas regiões (R_1 e R_2)
 - Se uma nova observação pertencer à região R_1 ela é alocada à população π_1 .
 - Se uma nova observação pertencer à região R_2 ela é alocada à população π_2 .

Análise Multivariada - 2022

Paradoxos da Classificação

- Informação incompleta sobre desempenho futuro:
 - √ Classificação de candidato como capaz de concluir ou não um mestrado
- Informação perfeita exige destruição objeto:
 - √ Classificação de itens como bons ou defeituosos
- Informação cara ou indisponível:
 - √ Problemas médicos que podem ser identificados conclusivamente apenas com procedimentos caros

Análise Multivariada - 2022

Problema da Classificação

• Como saber se algumas observações pertencem a uma particular população?

√ Incerteza na classificação

Análise Multivariada - 2022

Erros de Classificação

- · Caso médico:
 - √Em geral, deseja-se diagnosticar um mal a partir de sintomas externos facilmente observáveis
- Erro de classificação:
 - √ Pode não ser clara a distinção entre as características medidas das duas populações.

Análise Multivariada - 2022

3/

Exemplo

- Discriminação de proprietários e nãoproprietários de cortador de grama
 - $\sqrt{X_1}$: renda
 - $\sqrt{X_2}$ = tamanho do lote

Análise Multivariada - 2022

• Proprietários e não proprietários: Renda e tamanho lote

- Proprietários tendem a ter rendas e lotes maiores
- Renda aparenta discriminar melhor que tamanho do lote
- Há uma certa sobreposição entre os dois grupos

√Erros de classificação

Ideia:

Criar regra que minimize a chance de erros de classificação

Critérios para Classificação

- Bom procedimento de classificação:
 - √ Poucos erros de classificação
- Regra ótima deveria considerar estas probabilidades a priori
 - √ Pode ser que uma classe (ou população) tenha uma verossimilhança de ocorrência maior que outra
 - $\sqrt{\text{Uma}}$ das classes é relativamente maior que a outra $\sqrt{\text{Ex.:}}$
 - Há muito mais empresas solventes que insolventes

Análise Multivariada - 2022

• Outro aspecto a considerar:

√ Custo associado ao erro de classificação

√ Ex.:

– Classificar um objeto π_1 como π_2 é mais sério que classificar um objeto π_2 como π_1 .

Análise Multivariada - 2022

Prof. Lupércio F. Bessegato - UFJF

Caso de Classificação de Duas Populações Normais Multivariadas

Exemplo

• Processo de seleção de alunos:

√ Fase 1: todos fazem várias provas

 $\sqrt{\text{Fase 2: apenas aprovados na fase 1}}$

• Populações:

√ População 1:

– Alunos que passaram na 1ª. Fase, mas reprovados na 2ª

√ População 2:

 $\,$ – Alunos aprovados em ambas as fases

Análise Multivariada - 2022

Classificação em Duas Populações

• Supondo disponíveis:

 $\sqrt{\text{Conjunto}}$ de observações independentes de duas populações π_1 e π_2

 $\sqrt{\text{Distribuições}}$ de probabilidades do vetor X, associadas às populações π_1 e π_2 .

• Regra de classificação que minimize a chance de se classificar incorretamente elemento amostral:

√ Princípio da máxima verossimilhança

Análise Multivariada - 202

Exemplo

• Objetivo:

√A partir dos dados, construir uma regra de classificação que permita identificar, dentre os aprovados na 1ª. Fase, quais provavelmente serão aprovados na 2ª Fase

• Considere apenas a variável aleatória nota na prova de Matemática dos candidatos na fase 1

Análise Multivariada - 2022

Prof. Lupércio F. Bessegato - UFJF

Exemplo

- · Considere apenas a variável aleatória nota na prova de Matemática dos candidatos na fase 1
- Suponha que X tenha uma distribuição normal
 - √ População 1: média µ₁.
 - √ População 2: média µ₂
 - √ Ambas populações como o mesmo desvio padrão σ.

Análise Multivariada - 2022

· Classificação de 2 populações normais, com mesma variabilidade

Valores de X Gráfico a: nenhuma intersecção

Gráfico c: intersecção moderada

Valores de X Gráfico bi pouca intersecção

Qualidade da discriminação depende do grau de intersecção

- √(a): número de classificações incorretas é 0
- $\sqrt{(b)}$: pequeno número de erros de classificação
- $\sqrt{(c)}$ e (d): número de erros de classificação tende aumentar
- √Intersecção pode chegar a valores que inviabiliza o uso da função discriminante como regra de classificação

Análise Multivariada - 2022

Exemplo

• Razão de verossimilhança entre as 2 populações

$$\lambda(x) = \frac{f_1(x)}{f_2(x)} = \frac{\frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu_1}{\sigma}\right)^2\right\}}{\frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu_2}{\sigma}\right)^2\right\}}$$
$$= \exp\left\{-\frac{1}{2} \left[\left(\frac{x-\mu_1}{\sigma}\right)^2 - \left(\frac{x-\mu_2}{\sigma}\right)^2\right]\right\}$$

• Para uma nota fixa *x*:

 $\sqrt{\lambda(x)}$ > 1: razoável classificar candidato em π_1 (não aprovado da Fase 2)

 $\sqrt{\lambda(x)}$ < 1: provável aprovado Fase 2 (π_2)

 $\sqrt{\lambda(x)} = 1$: candidato poderia ser classificado em π_2 ou π_2 .

- Obter informações adicionais sobre o candidato

Análise Multivariada - 2022

Função Discriminante

$$\lambda(x) = \exp\left\{-\frac{1}{2}\left[\left(\frac{x-\mu_1}{\sigma}\right)^2 - \left(\frac{x-\mu_2}{\sigma}\right)^2\right]\right\}$$
$$-2\ln(\lambda(x)) = \left(\frac{x-\mu_1}{\sigma}\right)^2 - \left(\frac{x-\mu_2}{\sigma}\right)^2$$
$$= \frac{1}{\sigma^2}\left[(x-\mu_1)^2 - (x-\mu_2)^2\right].$$

√ Relacionada com a diferença das distância euclidiana ponderadas ao quadrado

 $\sqrt{\lambda(x)} > 1 \rightarrow -2 \ln(\lambda(x)) < 0$: x está mais próximo de μ_1 .

 $\sqrt{\lambda(x)} < 1 \implies -2 \ln(\lambda(x)) > 0$: x está mais próximo de μ_2 .

Análise Multivariada - 2022

• Regra de classificação:

 $\sqrt{\text{Se }-2\ln(\lambda(x))}$ <0, classifique o elemento amostral em π_1

 $\sqrt{\text{Se }-2\ln(\lambda(x))}>0$, classifique o elemento amostral em π_2 .

 $\sqrt{\text{Se }-2\ln(\lambda(x))}=0$, o elemento amostral poderá ser classificado tanto em π_1 como π_2 .

Análise Multivariada - 2022

Populações Multivariadas – Caso $\Sigma_1 \neq \Sigma_2$

- Populações normais multivariadas, com vetor de médias μ_i e matriz de covariâncias Σ_i , i = 1, 2.
- Função discriminante:

$$-2\ln(\lambda(\mathbf{x})) = -2\ln\left\{\frac{(2\pi)^{\frac{p}{2}}|\mathbf{\Sigma}_{1}|^{-\frac{1}{2}}}{(2\pi)^{\frac{p}{2}}|\mathbf{\Sigma}_{2}|^{-\frac{1}{2}}}\left[\exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_{1})'\mathbf{\Sigma}_{1}^{-1}(\mathbf{x}-\boldsymbol{\mu}_{1})\right\}\right]\right\}$$

$$= \left[(\mathbf{x}-\boldsymbol{\mu}_{1})'\mathbf{\Sigma}_{1}^{-1}(\mathbf{x}-\boldsymbol{\mu}_{1}) - (\mathbf{x}-\boldsymbol{\mu}_{2})'\mathbf{\Sigma}_{2}^{-1}(\mathbf{x}-\boldsymbol{\mu}_{2})\right]$$

$$+ \left[\ln|\mathbf{\Sigma}_{1}| - \ln|\mathbf{\Sigma}_{2}|\right]$$

 $\sqrt{\text{para um vetor de observações: } \mathbf{x}' = (x_1, x_2, ..., x_p)}$.

· Com mesma regra de classificação

Análise Multivariada - 2022

Populações com Variâncias Diferentes

• Função discriminante:

$$\lambda(x) = \frac{f_1(x)}{f_2(x)} = \frac{\frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu_1}{\sigma_1}\right)^2\right\}}{\frac{1}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu_2}{\sigma_2}\right)^2\right\}}$$
$$= \frac{\sigma_2}{\sigma_1} \exp\left\{-\frac{1}{2} \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \left(\frac{x-\mu_2}{\sigma_2}\right)^2\right]\right\}$$

 \sqrt{e} , considerando $-2 \ln(\lambda(x))$:

$$-2\ln(\lambda(x)) = -2\ln\left(\frac{\sigma_2}{\sigma_1}\right) + \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \left(\frac{x-\mu_2}{\sigma_2}\right)^2\right].$$

• Com mesma regra de classificação

Análise Multivariada - 2022

· Função discriminante quadrática

 $\left[(\mathbf{x} - \boldsymbol{\mu}_1)' \boldsymbol{\Sigma}_1^{-1} (\mathbf{x} - \boldsymbol{\mu}_1) - (\mathbf{x} - \boldsymbol{\mu}_2)' \boldsymbol{\Sigma}_2^{-1} (\mathbf{x} - \boldsymbol{\mu}_2) \right] + \left[\ln |\boldsymbol{\Sigma}_1| - \ln |\boldsymbol{\Sigma}_2| \right]$

 $\sqrt{\text{Depende}}$ das distâncias de Mahalanobis do vetor **x** aos vetores de médias μ_1 e μ_2

√ Fator de correção relacionando as variâncias generalizadas das duas populações

Análise Multivariada - 2022

• Quando $\Sigma_1 = \Sigma_2 = \Sigma$

$$-2\ln(\lambda(\mathbf{x})) = \left[(\mathbf{x} - \boldsymbol{\mu}_1)'\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_1) - (\mathbf{x} - \boldsymbol{\mu}_2)'\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_2) \right]$$

√ Pode ser reescrita como

$$-2\ln(\lambda(\mathbf{x})) = -2\left[(\mu_1 - \mu_2)'\Sigma^{-1}\mathbf{x} - \frac{1}{2}(\mu_1 - \mu_2)'\Sigma^{-1}(\mu_1 + \mu_2)\right] \; .$$

Análise Multivariada - 2022

• A função discriminante de Fisher tem a forma

$$(\mu_1 - \mu_2)' \Sigma^{-1} \mathbf{x} = \mathbf{b}' \mathbf{x} = b_1 X_1 + b_2 X_2 + \dots + b_p X_p.$$

- √ Dependendo do valor numérico desta combinação, o elemento amostral é classificado em uma ou outra população
- Constante de delimitação da região de classificação

$$\frac{1}{2}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)' \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2) = \mathbf{b}' \frac{(\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2)}{2} \,.$$

√ Combinação linear dos vetores de médias das populações

Análise Multivariada - 2022

Função Discriminante de Fisher

$$f_d(\mathbf{x}) = \ln(\lambda(\mathbf{x})) = (\mu_1 - \mu_2)' \Sigma^{-1} \mathbf{x} - \frac{1}{2} (\mu_1 - \mu_2)' \Sigma^{-1} (\mu_1 + \mu_2).$$

• Regra de classificação:

 $\sqrt{\mathbf{x}}$ é classificado à π_1 se $f_d(\mathbf{x}) > 0$ ou seja, se

$$(\mu_1 - \mu_2)' \Sigma^{-1} \mathbf{x} > \frac{1}{2} (\mu_1 - \mu_2)' \Sigma^{-1} (\mu_1 + \mu_2).$$

 $\sqrt{\mathbf{x}}$ é classificado à π_2 se $f_d(\mathbf{x}) < 0$ ou seja, se

$$(\mu_1 - \mu_2)' \Sigma^{-1} x < \frac{1}{2} (\mu_1 - \mu_2)' \Sigma^{-1} (\mu_1 + \mu_2) .$$

Análise Multivariada - 202

• Discriminação de duas populações normais:

 $\sqrt{}$ Os valores observados das combinações lineares **b**'**X** na população π_1 são os mais separados possíveis daqueles observados da população π_2 .

Padronização

- O vetor **b** é único $\mathbf{b}' = (\mu_1 \mu_2)' \Sigma^{-1}$.
 - √ Exceto para multiplicações de todos seus componentes pela mesma constante c.
- É recomendável que os componentes do vetor **b** sejam padronizados ou normalizados, como em:

$$\mathbf{b}^* = \frac{\mathbf{b}}{\sqrt{\mathbf{b}'\mathbf{b}}}.$$

 $\sqrt{\text{Componentes de } \mathbf{b}^* \text{ estarão no intervalo } [-1, 1]}$

 $\sqrt{\dot{E}}$ possível comparar os loadings de f_{dn}

Análise Multivariada - 2022

63

Mistura de Duas Normais Multivariadas

- Suponha:
 - $\sqrt{2}$ populações normais p-variadas com vetor de médias μ_i , i = 1,2
 - $\sqrt{\text{Probabilidades de mistura p}_i, j=1,2}$
 - Probabilidade de que uma observação escolhida ao acaso pertença à π_i, j=1,2.
 - $\sqrt{\text{Função de densidade de } \pi_i}$. $f(\mathbf{x}|\pi_j) = f(\mathbf{x}|(\mu_j, \Sigma)$.

Análise Multivariada - 2022

Custos

- Regra de discriminação pelo princípio da máxima verossimilhança minimiza as probabilidades de erros de classificações
 - √ Máxima separação entre as combinações lineares
- Não leva em consideração possíveis diferenças entre os custos associados aos erros de classificação

Análise Multivariada - 2022

√ Dada uma observação x, qual a melhor maneira de distinguir de qual das duas populações ela foi amostrada?

$$f(\mathbf{x} \text{ amostrada de } \pi_j) = p_j f(\mathbf{x} | (\boldsymbol{\mu}_j, \boldsymbol{\Sigma}).$$

√ Densidade de x oriunda de uma população não especificada:

$$f(\mathbf{x}) = p_1 f(\mathbf{x}|(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}) + p_2 f(\mathbf{x}|(\boldsymbol{\mu}_2, \boldsymbol{\Sigma})).$$

√ Densidade posterior de **x** de amostras da população j para uma dada observação **x**

$$f(\pi_j|\mathbf{x}) = \frac{p_j f(\mathbf{x}|(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}))}{p_1 f(\mathbf{x}|(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}) + p_2 f(\mathbf{x}|(\boldsymbol{\mu}_2, \boldsymbol{\Sigma})))}$$

Expressão básica para estimar a população da qual a observação **x** foi amostrada

Análise Multivariada - 2022

• Função discriminante de Fisher:

$$f_d(\mathbf{x}) = \underbrace{\ln\left(\frac{p_1}{p_2}\right) - \frac{1}{2}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)'\boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2)}_{\text{constante}} + (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)'\boldsymbol{\Sigma}^{-1}\mathbf{x}.$$

• Limite entre as populações π_1 e π_2 .

$$f_d(\mathbf{x}) = \text{constante} + (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)' \boldsymbol{\Sigma}^{-1} \mathbf{x} = 0.$$

Análise Multivariada - 2022

• Função discriminante:

$$\begin{split} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)' \boldsymbol{\Sigma}^{-1} \mathbf{x} &= \begin{bmatrix} -1 - 1 & -1 - 1 \end{bmatrix} \begin{bmatrix} 1 & -0, 4 \\ -0, 4 & 1, 2 \end{bmatrix}^{-1} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ &= \begin{bmatrix} -3,0769 & -2,6923 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ &= -3,0769x_1 - 2,6923x_2 \,. \end{split}$$

• Constante de delimitação:

cte =
$$\ln \left(\frac{0,6}{0,4} \right) - \frac{1}{2} \left(\begin{bmatrix} -1 - 1 & -1 - 1 \end{bmatrix} \begin{bmatrix} 1 & -0,4 \\ -0,4 & 1,2 \end{bmatrix}^{-1} \begin{bmatrix} -1+1 \\ -1+1 \end{bmatrix} \right)$$

= 0,40546.

• Fronteira: $-3,0769x_1 - 2,6923x_2 = 0,40546$ $x_2 = 0,1506 - 1,1428x - 1$.

Análise Multivariada - 2022

Exemplo

• Mistura de normais bivariadas com mesma estrutura de variabilidade:

$$\Sigma = \begin{bmatrix} 1 & -0, 4 \\ -0, 4 & 1, 2 \end{bmatrix}.$$

$$\sqrt{\pi_1}: p_1 = 0,6 \text{ e } \boldsymbol{\mu}_1 = (-1, -1).$$

 $\sqrt{\pi_2}$: $p_2 = 0.4 \text{ e } \mu_2 = (1,1)$ '.

Análise Multivariada - 2022

• Fronteira entre as duas populações

 $x_2 = 0,1506 - 1,1428x - 1$.

75

 X_1

√ Linha divisória discriminando as duas populações

Estimação da Regra de Classificação

- Na prática, μ_1 , μ_2 , Σ_1 e Σ_2 não são conhecidos
- Caso 1: $\Sigma_1 = \Sigma_2 = \Sigma$ $\sqrt{\Sigma}$ é estimada por S: $S_{\text{pol}} = \frac{(n_1 - 1)S_1 + (n_2 - 1)S_2}{n_1 + n_2 - 2}$.

√ Função discriminante de Fisher estimada por:

$$\hat{f}_d(\mathbf{x}) = (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)' \mathbf{S}_{\text{pol}}^{-1} \mathbf{x} - \frac{1}{2} (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)' \mathbf{S}_{\text{pol}}^{-1} (\bar{\mathbf{x}}_1 + \bar{\mathbf{x}}_2).$$

Análise Multivariada - 2022

Estrutura de Variabilidades das Populações

- Testes de hipóteses para decidir se as matrizes Σ₁
 e Σ₂ são iguais ou diferentes
- Alternativa prática:
 - $\sqrt{\rm Ajuste}$ aos dados dos dois modelos: linear de Fisher e quadrático
 - √Escolhe-se o modelo que resultar em menores proporções de erros de classificação
 - √ Caso os resultados sejam semelhantes, opta-se pelo modelo linear
 - Matriz de covariâncias estimada com mais observações

Análise Multivariada - 2022

• Caso 2: $\Sigma_1 \neq \Sigma_2$.

√ Função discriminante quadrática estimada por:

$$\begin{aligned} -2\ln(\hat{\lambda}(\mathbf{x})) &= \left[(\mathbf{x} - \bar{\mathbf{x}}_1)'\mathbf{S}_1^{-1}(\mathbf{x} - \bar{\mathbf{x}}_1) - (\mathbf{x} - \bar{\mathbf{x}}_2)'\mathbf{S}_2^{-1}(\mathbf{x} - \bar{\mathbf{x}}_2) \right] \\ &+ \left[\ln|\mathbf{S}_1| - \ln|\mathbf{S}_2| \right] \end{aligned}$$

√ Considera os sistemas de variabilidade das duas populações separadamente.

Análise Multivariada - 2022

Exemplo

• Detecção de portadoras de hemofilia A

√ Grupo 1: mulheres que não têm o gene da hemofilia

– Grupo normal $(n_1 = 30)$

√ Grupo 2: mulheres portadoras do gene da hemofilia

- Filhas de hemofílicos, mães com mais de um filho hemofílico e outros parentes hemofílicos ($n_2 = 45$)

√ Variáveis:

- $-\ V_1\hbox{: grupos}$
- V₂: log(atividade AHF)
- V₃: log(antígeno AHF)

Análise Multivariada - 2022

81

Prof. Lupércio F. Bessegato - UFJF

Erros de Classificação

- Erros a serem avaliados:
 - $\sqrt{\text{Erro 1}}$: Elemento amostral pertence a π_1 , mas é classificado em π_2 .
 - $\sqrt{\text{Erro 2}}$: Elemento amostral pertence a π_2 , mas é classificado em π_1 .
- Notação:
 - $\sqrt{P(Erro\ 1)} = p(2|1)$
 - $\sqrt{P(Erro 2)} = p(1|2)$
- Quanto menores essas probabilidades, melhor será a função de discriminação

Análise Multivariada - 2022

• Tabela de frequência de classificação:

		Classi		
		π_1	π_2	Total
rigem	π_1	\mathbf{n}_{11}	n_{12}	\mathbf{n}_1
0riş	π_2	n_{21}	n ₂₂	n_2

√Estimativa das probabilidades de erros de classificação:

$$\hat{p}(2|1) = \frac{n_{12}}{n_1}$$

$$\hat{p}(1|2) = \frac{n_{21}}{n_2}$$

Análise Multivariada - 2022

Procedimentos de Estimação dos Erros de Classificação

- 1. Método da Ressubstituição:
 - √ Calculado o escore de cada elemento amostral
 - Calculada a frequência das classificações corretas e incorretas
 - √ Estimação da regra de classificação e dos erros de classificação com os mesmos elementos

Análise Multivariada - 2022

Comentários

- Também denominado de estimação do erro aparente de classificação (APER)
- Procedimento viciado, mas consistente.
 - $\sqrt{\text{Vício tende a zero para } n_1 \text{ e } n_2 \text{ grandes}}$
 - $\sqrt{}$ Tende a subestimar os verdadeiros valores de p(1|2) e p(2|1) para elementos que não pertencem à amostra conjunta $n=n_1+n_2$.
 - √ Pode servir como etapa inicial de avaliação
 - Valores elevados indica a necessidade de reformulação da regra de discriminação

Análise Multivariada - 2022

- 2. Método de colocação de elementos à parte para classificação (Hold-out validation)
 - √ Amostra conjunta é repartida em duas partes
 - Amostra de treinamento: construção da regra de discriminação
 - Amostra de validação: para estimação dos erros de classificação
 - √ São selecionados aleatoriamente os elementos amostrais que constituirão cada amostra
 - √ Estimação dos erros de classificação da maneira descrita no método de resubstituição

Análise Multivariada - 2022

- 3. Método de validação cruzada (Método de Lachenbruch)
 - √ Retira-se um elemento amostral da amostra conjunta e constrói-se a função de discriminação
 - √ Utiliza-se a regra de discriminação para classificar o elemento que ficou à parte
 - √ Elemento amostral é retornado à amostra e retirase elemento amostral diferente do anterior, repetindo-se o procedimento.
- Estimação dos erros de classificação: $\hat{p}(2|1) = \frac{n_1}{n_1}$ $\hat{p}(1|2) = \frac{n_{21}}{n_2}$

Análise Multivariada - 2022

Comentários

- Procedimento não é enviesado
- Recomendável:
 - √ Separar de 25% a 50% dos elementos originais para a amostra de validação
- Desvantagem:
 - √ Redução do tamanho da amostra original para estimação da regra de discriminação
 - √ Não pode ser empregado em amostras pequenas
- Para amostras grandes, é melhor que o método 1

Análise Multivariada - 2022

100

102

Comentários

- Estimativas são aproximadamente não viciadas
 - √ Melhores que o método da ressubstituição para populações normais e não-normais

Estimação da Probabilidade Global de Acerto

 Estimação da probabilidade global de acerto da função discriminante:

$$\hat{p}(\text{acerto}) = \frac{n_{11} + n_{22}}{n_1 + n_2}$$
.

- √ Recomendável estimar as probabilidades de ocorrência dos erros de classificação tipo 1 e 2
 - Possível função discriminante com alta probabilidade de acerto global, mas apresentando alta probabilidade de algum dos erros parciais.

Análise Multivariada - 2022

Construção da Regra de Discriminação: Caso de Várias Populações

Regra de Discriminação para Várias Populações

- Classificar unidades amostrais em g>2 populações
 √ f_i(x): função de densidade π_i, i = 1, 2, ... g.
- Objetivo:
 - √ Construir regra de classificação que minimize as probabilidades de erros de classificação

Análise Multivariada - 2022

Procedimento

- Para um vetor de observações x:
 - $\sqrt{\text{Calcula-se o valor de } f_i(x)}$, para cada *i*.
 - $\sqrt{\text{Classifica-se o elemento amostral na população } k}$ correspondente ao maior valor $f_i(x)$.
- No caso de população normal multivariada, corresponde a classificar na população *k*, tal que:

$$d_k^Q(x) = \max\{d_1^Q(x), d_2^Q(x), \dots, d_k^g(x)\}$$

 $\sqrt{\text{Sendo }d_i^Q}$: escore quadrático de discriminação

$$d_i^Q = -\frac{1}{2} \ln \left(|\mathbf{\Sigma}_i| \right) - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)' \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)$$

Análise Multivariada - 2022

discriminação são estimados por:

$$\hat{d}_i^Q = -\frac{1}{2}\ln\left(|\mathbf{S}_i|\right) - \frac{1}{2}(\mathbf{x} - \bar{\mathbf{x}}_i)'\mathbf{S}_i^{-1}(\mathbf{x} - \bar{\mathbf{x}}_i)$$

• Na prática, os escores quadrático

• Se $\Sigma_1 = \Sigma_2 = \dots = \Sigma_g = \Sigma$, usa-se S_{pol} para estimar \hat{d}_i^Q :

$$S_{\text{pol}} = \frac{1}{\sum_{i=1}^{g} n_i - g} \sum_{i=1}^{g} (n_i - 1) S_i$$

Análica Multivariada 2023

Erro de Classificação

- Elemento amostral pertence a π_j, mas a regra de discriminação o classifica em π_k, j, k = 1,2,...,g, j≠k.
- Erros estimados por:

$$\hat{p}(k|j) = \frac{n_{jk}}{n_i}$$

 $\sqrt{n_{ik}}$: número de elementos de π_i classificados em π_k .

Análise Multivariada - 2022

Exemplo

• Cultivares de Vinho: 178 tipos de vinhos

√ Class: cultivares de vinho

√ Variáveis:

- Alcohol

Flav:Nonf

Malic:Ash

- Proan

- Alcal

ColorHue

-Mg

- Abs

- Phenol

- Proline:

Análise Multivariada - 2022

....

Outros Métodos de Discriminação

Métodos de Discriminação

- Método do vizinho mais próximo
- Classification and Regression Tress CART
- Support Vector Machine SVM
- Método dos núcleos estimadores
- Redes neurais artificiais

Análise Multivariada - 2022

Método do Vizinho mais Próximo

- Nearest neighbor discriminant analysis
 - √ Não é um método paramétrico
 - Não depende da suposição de normalidade multivariada
- Procedimento de discriminação:
 - √ Encontra-se vizinho mais próximo
 - (distância de Mahalanobis)
 - √ Classifica-se a observação na população do vizinho
- Variação:
 - √ Método dos k vizinhos mais próximos

Análise Multivariada - 2022

143

Support Vector Machine

- Grupo de algoritmos de classificação, incluem ampla variedade de modelos paramétricos e não paramétricos
 - √ Modelos lineares e métodos de regressão
 - √ Técnicas de suavização por núcleo
- Estimativa de probabilidade de classificação:
 - √ Validação cruzada ou por amostras de treinamento

Análise Multivariada - 2022

147

Árvores de Regressão e Classificação

- CART Classification and Regression Trees
 - √ Trata simultaneamente variáveis contínuas e não contínuas
- Procedimento de classificação:
 - √ Baseado em informações das distribuições isoladas de cada variável
 - √ Resulta numa árvore com vários nós

Referências

Bibliografia Recomendada

- JOHNSON, R. A.; WINCHERN, D. W. Applied Multivariate Statistical Analysis. Prentice Hall, 2007
- EVERITT, B.; HOTHORN, T. An introduction to applied multivariate analysis with R. Springer, 2011
- MINGOTI, S.A. Análise de Dados através de Métodos de Estatística Multivariada. Ed. UFMG, 2005.
- ZELTERMAN, D. Applied Multivariate Statistics with R. Springer, 2015.

.