

TITAN INSURANCE A GROUP ASSIGNMENT

GROUP 1 — CHN-BABI-JAN2017 Abishek | K S Suraj | Mithran | Suryaprakash | Santhosh

THE HYPOTHESIS

There are 2 Schemes, One is Old Scheme and Other is New Scheme. If the Average Sales of the Scheme is better than the old scheme, Firm will continue with New scheme, else status quo. [There is a breakeven expected in 6 months to count for success]

NULL HYPOTESIS – H ₀	Average Sales of Old Scheme is same as Average Sales of New Scheme i.e., $\mu_0 = \mu_1$
ALTERNATE HYPOTHESIS - HA	Average Sales of New Scheme is greater than Average Sales of Old Scheme

DATA

Sales.Person	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Old.Scheme	57	103	59	75	84	73	35	110	44	82	67	64	78	53	41	39	80	87	73	65	28	62	49	84	63	77	67	101	91	50
New.Scheme	62	122	54	82	84	86	32	104	38	107	84	85	99	39	34	58	73	53	66	78	41	71	38	95	81	58	75	94	100	68

Exploratory Analysis

2	New Schme	?
68.03333333	Mean	72.03333333
3.734733933	Standard Error	4.393172167
67	Median	74
84	Mode	84
20.45598021	Standard Deviation	24.06239495
418.4471264	Sample Variance	578.9988506
-0.419684789	Kurtosis	-0.76387692
0.040164666	Skewness	-0.023559279
82	Range	90
28	Minimum	32
110	Maximum	122
2041	Sum	2161
30	Count	30
7.638388545	Confidence Level(95.0%)	8.985045938
	3.734733933 67 84 20.45598021 418.4471264 -0.419684789 0.040164666 82 28 110 2041 30	68.03333333

Box Plot

- No Outliers
- New Scheme is little Skewed towards right with in IQR

IDENTIFY THE HYPOTHESIS AND TEST STATISTIC

Mean of \$1 (Old Scheme): $\mu_0 = 68.033333333$

Mean of S2 (new Scheme): $\mu_1 = 72.033333333$

Difference = 4, prove alternate hypothesis.

What test statistic to be used?

As the Sample is Size is 30, We will use paired t test statistic

$$T = \frac{\overline{D}}{S/\sqrt{n}}$$
 , Where, $D = X_1 - X_2$

QUESTION 1 — SIGNIFICANT TEST

From the problem, we understand that, significance of the test depends on 2 sample data sets, old and new schemes. The question is to determine whether new scheme has significantly raised outputs. Significant levels is set as 5%, or Zstat as -1.64485.

$$\overline{D} = X_1 - X_2$$

$$X_1 = 68.0333333333 \mid X_2 = 72.033333333 \mid \overline{D} = 4$$

$$S/\sqrt{n} = 2.571$$

$$T = -1.55591$$

QUESTION 1 & 2 — SIGNIFICANT TEST

From the problem, we understand that, significance of the test depends on 2 sample data sets, old and new schemes. The question is to determine whether new scheme has significantly raised outputs. Significant levels is set as 5%, or Zstat as -1.64485.

$$\overline{D} = X_1 - X_2$$

$$X_1 = 68.033333333 \mid X_2 = 72.03333333 \mid \overline{D} = 4$$

$$S/\sqrt{n} = 2.571$$

$$T = -1.55591$$

5% of Significant level is expected, Alternatively, we can also say, 95% of Confidence level is expected

P-val = 0.06529, 6% of significant level, alternatively, This implies that there is no significant increase in the average output after implementation of the new scheme. Hence the Titan Insurance company can stick to the older scheme which would be less expensive than the new scheme.

QUESTION 1 & 2 — SIGNIFICANT TEST — R & EXCEL PROOF

R Paired t-test

data: Old.Scheme and New.Scheme
t = -1.5559, df = 29, p-value = 0.06529
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:
 -Inf 0.3681762
sample estimates:
mean of the differences

Excel

t-Test: Paired Two Sample for Means		
	Variable 1	Variable 2
Mean	68.03333333	72.03333333
Variance	418.4471264	578.9988506
Observations	30	30
Pearson Correlation	0.811801957	
Hypothesized Mean Difference	0	
df	29	
t Stat	-1.555914382	
P(T<=t) one-tail	0.06528777	
t Critical one-tail	1.699127027	
P(T<=t) two-tail	0.13057554	
t Critical two-tail	2.045229642	

QUESTION 3 - RESERVATIONS

Taking advantage if Central Limit Theorem, we Assume Population is Distributed Normally.

Coefficient Variable of New Scheme is 33% versus old Scheme which is 30%, that says, More risk is involved in New Scheme

Both the samples are random continuous Variable

Observations are mutually independent to each other.

Population Size or Population mean is not given.

Looking at the box-plot, we can infer there are no outliers.

New Scheme is little Skewed towards right with in IQR

QUESTION - 4

Suppose it has been calculated that in order for Titan to break even, the average output must increase by £5000. If this figure is alternative hypothesis, what is:

- (i) The probability of a type 1 error?
- (ii) The probability of a type 2 error?
- (iii)The power of the test?

QUESTION — 4: THE PROBABILITY OF A TYPE 1 ERROR

From the previous discussion and generally accepted criteria for Type I error being 5%, here also it is same 5%

To Find Power of Test

- Step 1 : Find the Standard Deviation of Samples
- S1 Standard Deviation of Old Scheme = 20.46
- S2 Standard Deviation of New Scheme = 24.06

```
R > 51 = sd(old.scheme)
> 51
[1] 20.45598
> 52 = sd(New.scheme)
> 52
[1] 24.06239
```

Step 2 : Calculate Combined Standard Deviation or Pooled Standard Deviation

Pooled Standard Deviation =
$$\sqrt{((S_1^2 + S_2^2)/2)}$$

R

```
> PooledStdev = sqrt((S1^2 + S2^2)/2)
> PooledStdev
[1] 22.33211
```

Step 3 : To Calculate β (Power)

Stated: Average mean has to be increased by \$5000 in the new scheme to achieve breakeven, So \$5000 needs to be added to \$4000(mean diff of existing sample)

R

To Find Type II Error (β)

Power (POT) = 0.4592797

1 - 0.4592797 = 0.5407203

 $\beta = 0.5407203$

```
Actually, Power Of Test (POT) = 1 - \beta POT = 1 - \beta 1- \beta = POT - \beta = POT - \beta = POT - \beta = POT - \beta = 1-POT
```

QUESTION — 5: SAMPLE SIZE THAT MAKES THE PROBABILITIES OF TYPE I AND TYPE II ERRORS EQUAL

R Code

We Need 133.948, or 134 samples approximately that will make the probabilities of TYPE I error and TYPE II errors Equal

THANK YOU