<u>Ajuste linear – fitting</u>

Mínimos Quadrados

Este o nome que se da ao ajuste ou *fitting* de uma função (polinômio) a um conjunto de dados.

Se (X_i,Y_i) com i=1,N representam o conjunto de dados (N) obtidos de um experimento (instrumento) ou de uma observação (por exemplo, em pesquisa de opinião ou censo) ou de uma simulação numérica. E se suspeitamos que existe uma correlação entre os X (variável independente ou de entrada, controlada pelo experimento) e os Y (cuja dependência com X queremos testar), primeiro colocamos os pontos num gráfico para ver se o conjunto forma uma nuvem dispersa (quando não existe correlação aparente, isto é X e Y não conformam uma função), ou se existe correlação (os pontos parecem estar sobre alguma curva).

Equação linear

Exemplo de ajuste linear para um conjunto de pontos.

Sendo que um experimento foi realizado e temos N pontos, como descrito acima, e consideramos que um ajuste linear é coerente, uma reta deve ser construída para melhor representar estes pontos. Como mostrado na figura a baixo, para cada ponto, teremos um erro ϵ_i , que é definido como a distância entre o ponto experimental e a curva (reta neste caso) teórica que desejamos ajustar, ou seja,

$$\epsilon_i = Y_i - f(X_i)$$

onde

$$f(x) = \alpha_0 + \alpha_1 x$$

é a função que representa a curva de melhor ajuste.

Para encontrar a reta que melhor se ajusta aos dados experimentais, desejamos minimizar o erro ϵ . Como o erro pode ter tanto valores negativos quanto positivos, o que importa ϵ minimizar o valor absoluto de ϵ_i . Isto poderia ser feito minimizando módulo de ϵ_i , mas como a função módulo tem uma descontinuidade, ϵ mais fácil minimizar o quadrado do erro. Para isto, definimos:

$$S = \sum_{i=1}^{N} \epsilon_i^2$$

assim

$$S = \sum_{i=1}^{N} [Y_i - f(X_i)]^2 = \sum_{i=1}^{N} [Y_i - f(X_i; \alpha_0, \alpha_1)]^2$$

Para obter a melhor reta que se ajusta aos dados experimentais, temos que minimizar S em relação às constantes da função (α_0, α_1) :

$$\frac{\partial S}{\partial \alpha_i} = 0 \quad .$$

Como a reta possui apenas dois coeficientes, para o ajuste linear temos duas equações:

$$\frac{\partial S}{\partial \alpha_0} = \frac{\partial}{\partial \alpha_0} \sum_{i=1}^{N} [Y_i - (\alpha_0 + \alpha_1 X_i)]^2 = 0$$

е

$$\frac{\partial S}{\partial \alpha_1} = \frac{\partial}{\partial \alpha_1} \sum_{i=1}^{N} [Y_i - (\alpha_0 + \alpha_1 X_i)]^2 = 0$$

Derivando as equações acima, temos que

 $\sum_{i=1}^{N} Y_i - \sum_{i=1}^{N} \alpha_0 - \sum_{i=1}^{N} \alpha_1 X_i = 0$

е

$$\sum_{i=1}^{N} Y_i X_i - \sum_{i=1}^{N} \alpha_0 X_i - \sum_{i=1}^{N} \alpha_1 X_i^2 = 0$$

Assim,

$$\alpha_0 \underbrace{\sum_{i=1}^{N} 1}_{N} + \alpha_1 \underbrace{\sum_{i=1}^{N} X_i}_{X} = \underbrace{\sum_{i=1}^{N} Y_i}_{Y}$$

е

$$\alpha_0 \underbrace{\sum_{i=1}^{N} X_i}_{X} + \alpha_1 \underbrace{\sum_{i=1}^{N} X_i^2}_{X^2} = \underbrace{\sum_{i=1}^{N} Y_i X_i}_{YX}$$

Lembre-se de que os valores X_i e Y_i são conhecidos (são dados do problema). Desse modo, terminamos com um sistema linear para resolver, que na notação matricial fica

$$\begin{pmatrix} N & X \\ X & X^2 \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = \begin{pmatrix} Y \\ YX \end{pmatrix}$$

Cuidado com o fato que $(X^2 \neq X * X)$ e $(YX \neq Y * X)$. Após construir a matriz, resolva com o método que mais lhe agrade (ha diversos métodos de solução de sistemas lineares, tais como a Regra de Cramer ou a eliminação Gaussiana).

Equação quadrática

Utilizando o mesmo método descrito para um ajuste linear, considerando que o melhor ajuste para um conjunto de pontos seja uma curva proveniente de função quadrática, temos que a função é dada por

$$f(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2.$$

Desse modo, a soma do quadrado do erro fica

$$S = \sum_{i=1}^{N} \epsilon_i^2 = \sum_{i=1}^{N} [Y_i - (\alpha_0 + \alpha_1 X_i + \alpha_2 X_i^2)]^2$$

Após algumas contas, como feito na seção anterior, temos o sistema linear de 3 equações e 3 incógnitas para resolver:

$$\begin{pmatrix} N & X & X^2 \\ X & X^2 & X^3 \\ X^2 & X^3 & X^4 \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} Y \\ YX \\ YX^2 \end{pmatrix}$$

Fique atento ao fato de que

$$X = \sum_{i=1}^{N} X_i, Y = \sum_{i=1}^{N} Y_i, X^2 = \sum_{i=1}^{N} X_i^2, X^3 = \sum_{i=1}^{N} X_i^3, X^4 = \sum_{i=1}^{N} X_i^4, YX = \sum_{i=1}^{N} Y_i X_i \ e \ YX^2 = \sum_{i=1}^{N} Y_i X_i^2$$

Polinômio de grau n

Generalizando o procedimento acima, apresentado para polinômios de grau 1 e 2, podemos ajustar um conjunto de pontos com um polinômio de um grau específico n. Assim, a função será descrita por

$$f(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + ... + \alpha_n x^n$$

e a soma dos quadrados do erro é dada por

$$S = \sum_{i=1}^{N} [Y_i - f(X_i)]^2 = \sum_{i=1}^{N} [Y_i - f(X_i; \alpha_0, \alpha_1)]^2$$

Ao final do procedimento, teremos um sistema linear de n equações e n incógnitas para resolver. O resultado deste sistema são os coeficientes : $\alpha_0, \alpha_1, \alpha_2...\alpha_n$ que compõem o polinômio que melhor se ajusta aos dados experimentais.

$$\begin{pmatrix} N & X & X^2 & \dots & X^n \\ X & X^2 & X^3 & \dots & X^{n+1} \\ X^2 & X^3 & X^4 & \dots & X^{n+2} \\ \vdots & \vdots & \vdots & & \vdots \\ X^n & X^{n+1} & X^{n+2} & \dots & X^{2n} \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} Y \\ YX \\ YX^2 \\ \vdots \\ YX^n \end{pmatrix}$$

Exponencial 1

Se os dados de um experimento se ajustarem bem a uma função exponencial do tipo:

$$f(x) = \alpha_1 e^{-\alpha_2 x} , \quad \alpha_1 , \alpha_2 > 0$$

definimos uma nova função:

$$f_2(x) = \ln(f(x)) = \ln(\alpha_1 e^{-\alpha_2 x}) = \ln(\alpha_1) - \alpha_2 x$$

Assim, recaímos no problema do ajuste linear recém visto:

$$f_2(x) = c_1 + c_2 x$$
, com $c_1 = \ln(\alpha_1) e c_2 = -\alpha_2$.

Exponencial 2

Se a função exponencial for do tipo:

$$f(x) = \alpha_1 \alpha_2^x$$

supondo f(x) > 0, definimos:

$$f_2(x) = \ln(f(x)) = \ln(\alpha_1) + x \ln(\alpha_2).$$

Assim, como no caso anterior, voltamos para o problema de ajuste linear:

$$f_2(x) = c_1 + c_2 x$$

com $c_1 = ln(\alpha_1) e c_2 = ln(\alpha_2)$.

Algébrica

Se a função for do tipo:

$$f(x) = \alpha_1 x^{\alpha_2}$$

com f(x) > 0 e x > 0, definimos:

$$f_2(x) = \ln(f(x)) = \ln(\alpha_1) + \alpha_2 \ln(x)$$
.

e assim

$$f_2(x) = c_1 + c_2 \ln(x)$$
,

onde $c_1 = ln(\alpha_1)$ e $c_2 = \alpha_2$. Note também que os valores de x devem ser transformados em ln(x) para ajustar os pontos.