

NPTEL » Machine Learning for Engineering and Science Applications

Announcements

About the Course

Ask a Question

Progress

Mentor

Meek a

e outline	A a a i a va a a ta t	
	Assignment 9	
access the	The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. Due on 2019-10-02, 23:5	59 IST.
sites nent	1) Which of the following distance metric can be used in k-NN?	1 point
nd Learning	Manhattan	
a Learning	Jaccard	
	Mahalanobis Minkowski	
	All of the Above	
	No, the answer is incorrect.	
	Score: 0 Accepted Answers:	
	All of the Above	
	2) Which of the following will be true about k in k-NN in terms of Bias and Variance?	1 point
	With increase in k bias will increase and variance will not change.	
	With increase in k bias will increase and variance will increase	
	Bias will increase with increase in k and variance will increase with decrease in k	
	None of the above	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: Bias will increase with increase in k and variance will increase with decrease in k	
	3) Stopping Criteria for Binary Decision Tree would be	1 point
		2 point
n trees	Leaf nodes are pure Maximum depth is reached	
ssion	A performance metric is achieved	
31011	All of the above	
	No, the answer is incorrect.	
est	Score: 0 Accepted Answers:	
	All of the above	
osting	4) Bootstrap Sampling has been performed on a given dataset. Let say number of bootstrap sampling is n and n is	1 point
sed	being very large number. What fraction of dataset is contained in each bootstrap sample approximately?	
neans		
9	$\overline{\underline{1}}$	
gnment 9	\overline{n}	
arning for	$1-\frac{1}{-}$	
and	$1-\frac{1}{n}$	
ations back	1	
	$\frac{\overline{3}}{3}$	
	$\frac{\circ}{2}$	
	$\frac{2}{3}$	
	No, the answer is incorrect.	
	Score: 0 Accepted Answers:	
	$\frac{2}{3}$	
EOS	5) Consider the following statements: 5	1 point
	of consider the following statements.	2 point
	Statement 1 (S1): Random forest reduces the correlation between trees Statement 2 (S2): For every tree at every split, a random subset of features are considered.	
6	Statement 2 (S2): For every tree at every split, a random subset of features are considered.	
	S1 and S2 are correct and S2 is correct explanation of S1	
	S1 and S2 are correct and S2 is not the correct explanation of S1 S1 is correct and S2 is incorrect	
	S1 is correct and S2 is incorrect S1 is in correct and S2 is correct	
	No, the answer is incorrect.	
	Score: 0 Accepted Answers:	
	· · · · · · · · · · · · · · · · · · ·	
	S1 and S2 are correct and S2 is correct explanation of S1	
	S1 and S2 are correct and S2 is correct explanation of S1 6) Which of the following statements is/are True?	1 point

Any classifier/regression model can be used as a weak learner

Any differentiable function can be used as a loss for gradient boosting

The weak learner typically used is a decision tree

No, the answer is incorrect.

Accepted Answers:

Score: 0