Instructor: Rotem Oshman

Name: Ishan Pranav

References

Peer-reviewed with Crystal Huang.

Question 1: Huffman codes

1. Consider a file that uses the following list of symbols with the corresponding frequencies:

Letter	A	В	С	D	Е	F	G
Frequency	0.06	0.09	0.10	0.12	0.15	0.16	0.32

Find an optimal prefix code based on Huffman's algorithm (using the symbols 0 and 1 only). Work out the code by drawing the tree and then describing the mapping from symbols to bit strings.

Figure 1: A Huffman tree for the given list of symbols and their frequencies, constructed using Huffman's algorithm.

Solution: We can step through the recursive levels of Huffman's algorithm to construct a Huffman tree and obtain an optimal prefix code.

First. The two lowest-frequency symbols are A and B with $f_A = 0.06$ and $f_B = 0.09$, respectively. We replace them with the pseudo-symbol AB such that $f_{AB} = 0.06 + 0.09 = 0.15$.

Second. The two lowest-frequency symbols are C and D with $f_{\rm C}=0.10$ and $f_{\rm D}=0.12$, respectively. We replace them with the pseudo-symbol CD such that $f_{\rm CD}=0.10+0.12=0.22$.

Third. The two lowest-frequency symbols are AB and E with $f_{\rm AB}=f_{\rm E}=0.15$. We replace them with the pseudo-symbol ABE such that $f_{\rm ABE}=0.15+0.15=0.30$.

Fourth. The two lowest-frequency symbols are F and CD with $f_{\rm F}=0.16$ and $f_{\rm CD}=0.22$. We replace them with the pseudo-symbol CDF such that $f_{\rm CDF}=0.16+0.22=0.38$.

Fifth. The two lowest-frequency symbols are ABE and G with $f_{\rm ABE}=0.30$ and $f_{\rm G}=0.32$. We replace them with the pseudo-symbol ABEG such that $f_{\rm ABEG}=0.30+0.32=0.62$.

Sixth. The two remaining symbols are ABEG and CDF. We construct parent vertex ABCDEFG and take ABEG and CDF to be children of ABCDEFG.

Instructor: Rotem Oshman

Name: Ishan Pranav

Then, we reconstruct the tree by unwinding the recursion and re-attaching the terminal symbols, taking the psuedo-symbols to be their parent vertices. Finally, we can arbitrarily assign all left edges to represent a 0 bit and all right edges to represent a 1 bit. See Figure 1.

We can now construct the optimal prefix code for each symbol by traversing the tree from root to leaf and taking note of the edges followed:

Letter	Encoding
A	0000
В	0001
C	100
D	101
E	001
F	11
G	01

This completes our encoding.

Homework 7

Instructor: Rotem Oshman

Name: Ishan Pranav

2. In general, are Huffman codes unique? That is, for a given set of letters and corresponding frequencies is there a unique Huffman encoding? Note that different letters may have the same frequency in the general case. If yes, justify. Otherwise provide a counterexample.

Solution: No, in general, Huffman codes are not unique.

First, bits are assigned to edges arbitrarily. For a given parent vertex, it is possible to let its left edge represent the 0 bit and the right edge represent the 1 bit, or to let the right represent 1 and the left represent 0. The only constraint on the assignment of bits is that one side must represent 0 and the other must represent 1.

Furthermore, we can show that Huffman codes are not unique even with a consistent constraint on the assignment of the bits.

Without loss of generality, assume that for every parent vertex, we always let its left child represent the 0 bit and the right child represent the 1 bit.

Consider three symbols A, B, and C, with frequencies $f_{\rm A}=f_{\rm B}=f_{\rm C}=0.\overline{3}$. We want to construct an optimal prefix code using Huffman's algorithm. On the first recursive level, we may choose any of A and B, B and C, or C and A to be the two lowest-frequency symbols. Consider two of these cases:

• Suppose we take A and B to be the two lowest-frequency symbols. Then we replace them with parent AB with frequency $f_{AB}=0.\overline{6}$, with A as the left child and B as the right. Now AB and C are joined to a parent to construct the tree, with AB as the left child and C as the right.

In our optimal Huffman code, we represent A with 00, B with 01, and C with 1.

• Suppose instead we take B and C to be the two lowest-frequency symbols. Then we replace them with parent BC with frequency $f_{\rm BC}=0.\overline{6}$, with C as the left child and b as the right. Now A and BC are joined to a parent to construct the tree, with A as the left child and C as the right.

In our optimal Huffman code, we represent A with 0, B with 10 and C with 11.

We have shown that with the same list of symbols and frequencies, Huffman's algorithm may produce entirely different optimal prefix codes. Thus, Huffman codes are not unique.

Instructor: Rotem Oshman

Name: Ishan Pranav

Question 2: Minimizing number of colors

Let X be a set of n intervals $[s_i, f_i)$ on the real line. A *proper coloring* of X assigns a color to each interval so that overlapping intervals are always assigned different colors. In this problem, we want to find a proper coloring of X using a minimum possible number of colors. Let us call this (unknown) number c^* .

1. Given a problem instance $\{[s_i, f_i)\}$ and any point on the real line t, let n_t denote the number of sets that contain t. Also, let $c = \max_t n_t$ (easy to see the maximum is well defined). Argue that $c^* \ge c$.

Solution: Proposition I. Claim. Let X be a set of n real intervals $[s_i, f_i)$ for $1 \le i \le n$. For all $t \in \mathbb{R}$, let n_t denote the number of intervals $x \in X$ where $t \in x$. Let $c = \max_{t \in \mathbb{R}} (n_t)$. Let c^* be the minimum number of colors required to produce a proper of coloring of X. Then $c^* \ge c$.

Proof. Since there exists $c = \max_{t \in \mathbb{R}} (n_t)$, there exists $t^* \in \mathbb{R}$ where $c = n_{t^*}$.

By definition, there are n_{t^*} intervals $x \in X$ where $t^* \in x$. So, n_{t^*} intervals overlap at the point t^* . In a proper coloring of X, each of these n_{t^*} overlapping intervals is assigned a unique color. This implies that there are at least n_{t^*} colors in a proper coloring of X. Since c^* is the minimum number of colors required to produce a proper coloring of X, we know $c^* \geq n_{t^*}$.

Of course, $c = n_{t^*}$. Ergo $c^* \geq c$. \square

Homework 7

2. Consider the following greedy algorithm for solving this problem.

Sort the intervals according to s_i .

Initialize the current number z of defined colors to 0.

for i = 1 to n, perform the following greedy step.

if next interval $a_i = [s_i, f_i]$ cannot be legally colored with any color $1 \le j \le z$

Instructor: Rotem Oshman

Name: Ishan Pranav

then increment z by 1 and assign a_i the new color z.

else color a_i with the smallest "legal" color $j \in \{1, ..., z\}$

Argue that the greedy algorithm above computes a valid coloring, and yet *never uses more than* c *colors*, where c is the quantity from part (a).

Solution:

Algorithm I. Greedy Algorithm (X), where X is a set of n real intervals $[s_i, f_i)$ for $1 \le i \le n$. For all $t \in \mathbb{R}$, let n_t denote the number of intervals $x \in X$ where $t \in x$. Let $c = \max_{t \in \mathbb{R}} (n_t)$.

Let $1 \le j \le (n+1)$ where j=1 denotes the iteration before the loop begins, j=i denotes the iteration before considering interval $[s_i, f_i) \in X$ for $i \le n$, and j=n+1 denotes the step immediately after the loop terminates.

Let z_i denote the number of unique colors used at the beginning of iteration j.

Invariant I. Claim. For every step of the loop $1 \le j \le (n+1)$, we claim that

- there exist no $1 \le (p \ne q) < j \le n$ where $[s_p, f_p), [s_q, f_q) \in X$ are overlapping intervals with the same color;
- $z_j \le c_j$ where $c_j = \max_{t \in \mathbb{R}} (n_{j_t})$ and n_{j_t} denotes the number of intervals $[s_i, f_i) \in X$ with i < j; and,
- $z_j \ge z_i$ for all i < j.

Proof. We can prove this invariant by induction on j.

Basis. Consider j = 1. Note that we are considering the case before the first iteration of the loop.

Since j=1, there are no intervals $[s_i, f_i) \in X$ where i < 1, as no interval has been considered.

It follows that $n_{1t}=0$ for all $t\in\mathbb{R}$, so $c_1=0$. From Algorithm I, before the loop begins, $z_1=0$. So $z_1\leq c_1$.

Thus the loop invariant holds at initialization.

Hypothesis. Consider j = k where $1 \le k \le n$. Assume that at the beginning of iteration k,

- there exist no $1 \le (p \ne q) < k$ where $[s_p, f_p), [s_q, f_q) \in X$ are overlapping intervals with the same color;
- $z_k \leq c_k$; and,

Instructor: Rotem Oshman

Name: Ishan Pranav

• $z_k \ge z_i$ for all i < k.

Inductive step. Consider j = k + 1. Note that this is the iteration immediately after considering interval k and before considering interval k + 1. There are two cases.

• Suppose $[s_k, f_k)$ cannot be legally colored with any color $1 \le y \le z_k$. This implies that for all $1 \le y \le z_k$, there exists an interval with color y that overlaps with $[s_k, f_k)$. That is, there exists some $t^* \in [s_k, f_k)$ where for all $1 \le y \le z_k$, there is an $x \in X$ with color y and $t^* \in x$.

In this case, Algorithm I assigns $[s_k, f_k]$ the incremented color $z_{k+1} = z_k + 1$.

Since t^* exists in at least one interval for each color $1 \le y \le z_k$, we know that t^* is in at least z_k -many intervals. Also, $t^* \in [s_k, f_k)$. Therefore t^* is in at least $z_k + 1 = z_{k+1}$ intervals; that is, $n_{k+1} = z_{k+1}$.

From the second statement of the inductive hypothesis, $z_k \le c_k$. Note that if $n_{k+1_{t^*}} > c_k$, then $c_{k+1} = n_{k+1_{t^*}}$. Otherwise, $c_{k+1} = c_k$. Regardless, $z_{k+1} \le c_{k+1}$.

From the third statement of the inductive hypothesis, $z_k \ge z_i$ for all i < k. Since $z_{k+1} = z_k + 1$, we know $z_{k+1} > z_k \ge z_i$ for all i < k, maintaining this property.

The color z_{k+1} assigned to $[s_k, f_k)$ is strictly greater than, and thus different from, all other colors used thus far. There is no previously-visited interval overlapping with $[s_k, f_k)$ with the same color z_{k+1} .

• Suppose instead $[s_k, f_k]$ can be legally colored with some color $1 \le y \le z_k$.

Since $[s_k, f_k)$ can be legally colored with y, Algorithm I assigns the color y to this interval, respecting the first statement of the claim.

In this case, Algorithm I does not increment the color. We know $z_{k+1} = z_k$, so the second and third statements of inductive hypothesis guarantee that these two properties of z_k are maintained for z_{k+1} .

In all cases, all three statements of the loop invariant hold.

Hence, by the principle of mathematical induction, the loop invariant holds for all iterations $1 \le j \le (n+1)$. The loop invariant holds at initialization, maintenance, and termination.

Proposition II. Claim. Algorithm I produces a proper coloring using no more than c colors.

Proof. Algorithm I terminates when its loop terminates; that is, it terminates when i = n on iteration j = n + 1.

From Invariant I, at termination there is no pair of distinct overlapping intervals with the same color. Therefore, Algorithm I computes a proper coloring of X.

At termination, the number of colors used is $z=z_{n+1}$, and $c=c_{n+1}$. From Invariant I, $z_{n+1} \le c_{n+1}$. Therefore, Algorithm I uses $z \le c$ unique colors.

Ergo, Greedy Algorithm (X) produces a proper coloring of X using $z \leq c$ unique colors. \square

Homework 7

Instructor: Rotem Oshman

Name: Ishan Pranav

3. What is the running time of this algorithm as a function of n and c^* ?

Solution: Proposition III. Claim. Let c^* be the minimum number of colors required to produce a proper of coloring of X. Then Greedy Algorithm (X) has running time $O(n \log n + nc^*)$.

In the worst case, all intervals overlap, so $c^* = n$ and the running time is $O(n^2)$.

Proof. First, GreedyAlgorithm(X) sorts the n intervals in X. This is an $O(n \log n)$ process.

Then, for each of the n intervals in X, the algorithm performs the main loop. In the worst case, the loop body considers all z previously-defined colors from 1 to z before determining that no such color is legal for the current interval. Of course, z=c in the worst case. This is an O(c) process. The loop body always branches, sometimes increments z, and always assigns z to the current interval: these execute in O(1) time. So the loop body is an O(c)+O(1)=O(c) process. Thus, the worst-case running time of the loop is O(nc).

Therefore, the running time of Algorithm I is $O(n \log n) + O(nc) = O(n \log n + nc)$.

From Proposition I, we have $c^* \ge c$. Ergo Algorithm I has running time $O(n \log n + nc^*)$. \square