Nome:_____ Matrícula:____ Turma:____

AULA 4 - ROTEIRO DE AULA PRÁTICA - SIMULAÇÃO

Amplificador Diferencial

Objetivos - Após completar estas atividades, o aluno deverá ser capaz de analisar e entender o funcionamento de um amplificador diferencial, funcionando com entrada simples ou diferencial e saída simples ou diferencial.

Material Utilizado

03 resistores de $100k\Omega$ 02 transistores 2N2222A

Prática - Parte 1 -SIMULAÇÃO

- 1 Monte o circuito do Par Diferencial da Figura 1. Ligue o sistema e ajuste as tensões de alimentação Vcc= +12V e -Vcc= -12V.
- 2- **Aterre** as entradas **V**_{i1} **e V**_{i2} e meça as tensões de polarização nos coletores e nos emissores de Q1 e Q2. Anote os resultados na tabela.

Vcc	Vc1	VRc1	VE1	
- Vcc	Vc2	VRc2	VE2	

Amplificação de sinais - entrada simples / saída simples

FIGURA 2 FIGURA 3

- 3- (FIGURA 2) <u>Desligue</u> a entrada $\underline{V_{i1}}$ do terra e aplique nela um **sinal senoidal de 100mV** de pico a pico, frequência de 1kHz. Mantenha a entrada $\underline{V_{i2}}$ **aterrada** e a saída V_{o1} em aberto. Esboce as formas de onda de tensão de entrada, e a saída observada em $\underline{V_{o2}}$.
- OBS: Verifique a defasagem entre os dois sinais.
- 4- Passe o Canal 2 do osciloscópio para a **saída V_{01}**. Mantenha o **Canal 1 em V_{i1}** e esboce a forma de onda de V_{01} juntamente com a tensão V_{02} (mesmo gráfico). Observe a defasagem e os valores de pico-a-pico de ambas as ondas.
- 5- Calcule o ganho teórico e compare com o ganho experimental observado nesta situação. Os resultados estão coerentes? O ganho experimental está próximo do esperado?

Amplificação de sinais - entrada simples / saída diferencial

- 6- Com o mesmo circuito em funcionamento, meça a **tensão diferencial** de saída. Para tanto, conecte o Canal 1 do osciloscópio na **saída V**₀₂ e o Canal 2 do osciloscópio na **saída V**₀₁ e faça a leitura da saída diferencial (o osciloscópio deverá estar no modo diferencial de leitura, fornecendo: $V_{02} V_{01}$). Esboce a forma de onda.
- 7- Analise os resultados, o ganho experimental está próximo do esperado?
- 8- Coloque os resultados da simulação: (Esquema elétrico Diagramas nos principais pontos Explique detalhadamente os resultados da simulação e seus valores.)
- 9- Conclua seus resultados e observações.

Análise modo comum – Saída simples

Parte 2 -SIMULAÇÃO

- 1 Monte o circuito do Par Diferencial da Figura 3. Ligue o sistema e ajuste as tensões de alimentação Vcc= +12V e -VEE= -12V.
- 2 Conecte as duas entradas do amplificador diferencial no gerador, ajustando as entradas para que $V_{i1} = V_{i2}$ com 300 mVp, frequência 1kHz, senoidal. Esboce as formas de onda de tensão de entrada, e saídas observadas em V_{o1} e V_{o2} .
- 3- <u>Com o mesmo circuito em funcionamento</u>, meça a tensão diferencial de saída. Qual foi o resultado obtido nesta situação? Este resultado era o esperado?
- 4- Analise o resultado do ganho observado nesta situação. Os resultados estão coerentes? O ganho experimental está próximo do esperado?
- 5- Coloque os resultados da simulação: (Esquema elétrico Diagramas nos principais pontos Explique detalhadamente os resultados da simulação e seus valores.)
- 6- Conclua seus resultados e observações.

Conclusão