L1ノルム正則化

-ADMMによる解法-

問題説明

Total Variationで画像の滑らかさを評価

TV正則化(L1正則化)

$$||b - Ax||_2^2 + \lambda ||Dx||_1$$

隣り合うピクセルの差を求める行列

式変形

$$min||b - Ax||_{2}^{2} + \lambda ||Dx||_{1}$$

$$= min||b - Ax||_{2}^{2} + \lambda ||y||_{1} \quad s.t. \quad Dx = y$$

拡張ラグランジュ

更新アルゴリズム

$$x \leftarrow \underset{x}{argmin} L(x, y, z)$$
$$y \leftarrow \underset{y}{argmin} L(x, y, z)$$
$$z \leftarrow z + \rho(Dx - y)$$

xの更新

Lをxについて整理

$$L = \frac{1}{2}x^T(2A^TA + \rho D^TD)x - x^T(2A^Tb - D^Tz + \rho D^Ty) + const$$
 $H = 2A^TA + \rho D^TD$, $g = 2A^Tb - D^Tz + \rho D^Ty$ とおく
 $\frac{\partial L}{\partial x} = \frac{1}{2}(H + H^T)x - g = 0$ を解く
 $x = H^{-1}g$

yの更新

Lをyについて整理

実装

- 2. A, λ, D, ρ を定義
- 3. x, y, z を初期化
- 4. x, y, z を規定回数更新
- 5. PSNRや収束度合いグラフを出力

PSNR

画像がどれだけ復元されたかの尺度

$$PSNR = 10 \log_{10} \frac{255^{2}}{\|x_ori - b\|^{2}/len(x_ori)} [dB]$$

PSNR1	x_ori	b
PSNR2	x_ori	X

実験結果

原画像:x_ori

ノイズ入り画像:b

PSNR1=70.03

ノイズ除去画像: x λ=0.1, ρ=10, repeat=200, PSNR2=76.82

実験結果(収束グラフ)

0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 0.1 - 0.0 - 0.0 - 0.5 - 0.1 - 0.0 - 0.5 - 0.5 - 0.1 - 0.0 - 0.5 -

 λ =0.05, ρ =10, repeat=400

- xはある程度収束する
- zはxとyに影響受ける \rightarrow Dx-yの符号が変わる \rightarrow 急激に変わる $z \leftarrow z + \rho(Dx y)$

実験結果(PSNRの差)

λ	ρ	repeat	PSNR1	PSNR2	PSNR2 - PSNR1
0.05	1	100	70.07	75.61	5.54
0.05	10	200	70.07	76.17	6.1
0.05	10	400	70.07	76.18	6.11
0.1	10	200	70.03	76.82	<mark>6.79</mark>
0.1	20	300	70.05	76.86	<mark>6.81</mark>
0.1	20	600	70.10	76.90	<mark>6.8</mark>
0.1	100	600	70.06	76.92	<mark>6.86</mark>
0.2	10	200	70.06	75.71	5.65

考察

$$L(x, y, z) := \|b - Ax\|_{2}^{2} + \lambda \|y\|_{1} + z^{T}(Dx - y) + \frac{\rho}{2} \|Dx - y\|^{2}$$

- λ:大 → TV項の影響:大 → 画像は滑らかに(ぼける)
- ρ: 大 → 制約条件の影響: 大 → 更新回数: 大
 - → 原画像に近づく
- λは0.1、ρは理論上収束するならできるだけ大きいほうが良い

まとめ

- ADMMはL1ノルム正則化を解く手法
- PSNRはノイズ除去度合いの指標
- $\lambda = 0.1$, $\rho = 10$, repeat=200最適
- ρ:10 → 100 は ρ:1 → 10に比べ、PSNRが大きくならない
- λ: 0.1 → 0.2 はPSNRが減少