Homework 4 (2023) — SOLUTIONS

 ${
m JAIST-School}$ of Information Science — I232 Information Theory

1. Consider the following random variable distribution:

$$p_{\mathsf{X}}(x) = (\frac{1}{21}, \frac{1}{21}, \frac{2}{21}, \frac{4}{21}, \frac{6}{21}, \frac{7}{21}).$$

(a) Find a binary Huffman code

(b) Find a ternary Huffman code

Solution: Note that it is necessary to add a "dummy symbol" for the first step of the tree-generation. The number of dummy symbols can be calculated by $(1-|\mathcal{X}|) \mod (D-1) = -5 \mod 2 = 1$. There are many possible solutions. One is:

(c) Calculate $L = \sum_{i} p_{\mathsf{X}}(x) \ell_{i}$ for each case.

Solution: (a)
$$L = 2 \cdot \frac{7}{21} + 2 \cdot \frac{6}{21} + 2 \cdot \frac{4}{21} + 3 \cdot \frac{2}{21} + 4 \cdot \frac{1}{21} + 4 \cdot \frac{1}{21} = \frac{16}{7} \approx 2.2857$$
 (b) $L = 1 \cdot \frac{6}{21} + 1 \cdot \frac{5}{21} + 2 \cdot \frac{4}{21} + 2 \cdot \frac{3}{21} + 3 \cdot \frac{1}{21} = \frac{31}{21} \approx 1.4762$

2. KL divergence D(p||q) is the cost of miscoding. Consider a source X distributed as p. The optimal code has expected length H(X). If instead of the optimal code, we used the code optimal for q, then the expected length increases to H(X) + D(p||q). Thus, D(p||q) is the cost of miscoding.

Let the random variable X have $\mathcal{X} = \{1, 2, 3, 4, 5\}$. Consider two distributions p_i and q_i on X:

Symbol	p_i	q_i
1	$\frac{1}{2}$	$\frac{1}{2}$
2	$\frac{I}{4}$	$\frac{I}{8}$
$\frac{2}{3}$	$\frac{1}{2}$	$\frac{1}{8}$
4	$\frac{1}{16}$	$\frac{1}{8}$
5	$ \begin{array}{c c} \frac{1}{2} \\ \frac{1}{4} \\ \frac{1}{8} \\ \frac{1}{16} \\ \frac{1}{16} \end{array} $	1 1 8 1 8 1 8 1 8 1 8

- (a) Calculate h(p), h(q), D(p||q) and D(q||p).
- (b) Find a Huffman code C_1 and its expected length $L(C_1)$ for source p.
- (c) Find a Huffman code C_2 and its expected length $L(C_2)$ for source q.
- (d) Show that $L(C_1)$ and $L(C_2)$ from the previous step satisfy the entropy bound.
- (e) Now assume that we use code C_2 when the distribution is p. What is the average length of the codeword? By how much does it exceed the entropy p?
- (f) What is the loss if we use code C_1 when the distribution is q?

Solution:

(a)
$$H(X_p) = \sum_{i=1}^5 p_i \log \frac{1}{p_i} = 1.875$$
. $H(X_q) = \sum_{i=1}^5 q_i \log \frac{1}{q_i} = 2$. $D(p||q) = D(q||p) = 0.125$

(b) We give an example of Huffman code \mathcal{C}_1 from source p as

Symbol	$p_{X}(x)$	code
1	$\frac{1}{2}$	0
2	$\frac{1}{4}$	10
3	$\frac{1}{8}$	110
4	$\frac{1}{16}$	1110
5	$\frac{1}{16}$	1111

The expected length is

$$L(C_1) = \sum_{i} \ell_1(i)p_i$$

= $1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + 4 \cdot \frac{1}{16} + 4 \cdot \frac{1}{16} = 1.875.$

(c) We give an example of Huffman code C_2 from source q as

Symbol	$p_{X}(x)$	code
1	$\frac{1}{2}$	0
2	$\frac{1}{8}$	110
3	$\frac{1}{8}$	111
4	$\frac{1}{8}$	100
5	$\frac{1}{8}$	101

The expected length is

$$L(C_2) = \sum_{i} \ell_2(i)q_i$$

= $1 \cdot \frac{1}{2} + 3 \cdot \frac{1}{8} + 3 \cdot \frac{1}{8} + 3 \cdot \frac{1}{8} + 3 \cdot \frac{1}{8} = 2.$

- (d) Compute H(p)=1.875 and H(q)=2. The entropy bound is satisfied that $H(p)\leq L(C_1)\leq H(p)+1$ and $H(q)\leq L(C_2)\leq H(q)+1$. Since distribution p and q are 2-adic, $H(p)=L(C_1)$ and $H(q)=L(C_2)$ are achieved.
- (e) Using C_2 with distribution p gives average length 2. It exceeds the entropy by 0.125 (which is exactly the divergence D(p||q)).

$$L(C_2, p) = \sum_{i} \ell_2(i) p_i$$

= $1 \cdot \frac{1}{2} + 3 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + 3 \cdot \frac{1}{16} + 3 \cdot \frac{1}{16} = 2.$

(f) Using C_1 with distribution q gives average length 2.125. It exceeds the entropy by 0.125 (which is exactly the divergence D(q||p)).

3. Let source X be distributed according p_x for x = 1, 2, ..., m. C is a D-ary code for X with lengths ℓ_x for x = 1, 2, ..., m. Minimize L(C) using Lagrange multipliers. That is, find $\ell_1, ..., \ell_m$ that minimize:

$$\min_{\ell_1, \dots, \ell_m} \sum_{x=1}^m p_x \ell_x$$

subject to the restriction that the codes are a prefix code:

$$\sum_{x=1}^{m} D^{-\ell_x} \le 1.$$

To use Lagrange multipliers, ignore the restriction that ℓ_x are integers and assume ℓ_x are non-negative real numbers.

Solution: Minimize $L(C) = \sum_x p_x \ell_x$ over integers ℓ_1, ℓ_2, \dots subject to $\sum D^{-\ell_x} \leq 1$. Hard to perform minimization over integers. Instead, treat $\ell_1, \ell_2, \dots, \ell_m$ as real numbers. Assume equality on constraint.

Form Lagrangian:

$$J = \sum p_x \ell_x + \lambda \left(\sum D^{-\ell_x}\right)$$

Take the m partial derivatives with respect to ℓ_x :

$$\frac{\partial J}{\partial \ell_x} = p_x - \lambda D^{-\ell_x} \log_e D$$

set equal to 0:

$$D^{-\ell_x} = \frac{p_x}{\lambda \log_e D}$$

To find λ , substitute into the constraint

$$\sum D^{-\ell_x} \Big|_{D^{-\ell_x} = \frac{p_x}{\lambda \log_e D}} = 1$$

$$\sum \frac{p_x}{\lambda \log_e D} = 1$$

$$\lambda = \frac{1}{\log_e D}$$

Now find $D^{-\ell_x}$ using λ :

$$D^{-\ell_x} = \frac{p_x}{\lambda \log_e D} \Big|_{\lambda = \frac{1}{\log_e D}}$$

$$D^{-\ell_x} = p_x \text{ or }$$

$$\ell_x = -\log_D p_x$$

(Note: These non-integer ℓ_x give $L = \sum_{x \in \mathcal{X}} p_x \ell_x = -\sum_{x \in \mathcal{X}} p_x \log p_{\mathsf{X}}(x) = H(\mathsf{X})$. But since the lengths must be integers, we cannot achieve $L = H(\mathsf{X})$ unless p_x is D-adic.)