硕士学位论文

南方科技大学学位论文 LATEX 模板 (Support English) 使用示例文档 v1.1.0

An Introduction to LATEX Thesis Template of Southern University of Science and Technology v1.1.0

研 究 生: 李子强

指导教师:某某某(Alice Bob)助理教授

国内图书分类号: TM301.2 学校代码: 14325

国际图书分类号: 62-5 密级: 公开

工学硕士学位论文

南方科技大学学位论文 LATEX 模板 (Support English) 使用示例文档 v1.1.0

硕士研究生: 李子强

指导教师:某某某(Alice Bob)助理教授

申请学位:工学硕士

学科专业: 计算机科学与工程

答辩日期: 2010年12月

培养单位: 计算机科学与技术系

学位授予单位: 南方科技大学

Classified Index: TM301.2

U.D.C: 62-5

Thesis for the degree of Master of Engineering

An Introduction to LATEX Thesis Template of Southern University of Science and Technology v1.1.0

Candidate: Li Ziqiang

Supervisor: Assistant Professor Alice Bob

Academic Degree Applied for: Master of Engineering

Speciality: Computer Science and Engineering

Date of Defence: December, 2010

Affiliation: School of System Design and

Intelligent Manufacturing

Degree-Conferring-Institution: Southern University of Science

and Technology

学位论文公开评阅人和答辩委员会名单

公开评阅人名单

刘 XX 陈 XX 杨 XX	教授 副教授 研究员	南方科技大学 XXXX 大学 中国 XXXX 科学院 XXXXXXX 研究所		
	2	答辩委员会名单		
主席	赵 XX	教授	南方科技大学	
委员	刘XX	教授	南方科技大学	
	杨 XX	研究员	中国 XXXX 科学院 XXXXXXX 研究所	
	黄 XX	教授	XXXX 大学	
	周 XX	副教授	XXXX 大学	
秘书	吴 XX	助理研究员	南方科技大学	

摘 要

论文的摘要是对论文研究内容和成果的高度概括。摘要应对论文所研究的问题及其研究目的进行描述,对研究方法和过程进行简单介绍,对研究成果和所得结论进行概括。摘要应具有独立性和自明性,其内容应包含与论文全文同等量的主要信息。使读者即使不阅读全文,通过摘要就能了解论文的总体内容和主要成果。

论文摘要的书写应力求精确、简明。切忌写成对论文书写内容进行提要的形式,尤其要避免"第1章······;第2章·······"这种或类似的陈述方式。

关键词是为了文献标引工作、用以表示全文主要内容信息的单词或术语。关键词不超过5个,每个关键词中间用分号分隔。

关键词: 关键词 1; 关键词 2; 关键词 3; 关键词 4; 关键词 5

Abstract

An abstract of a dissertation is a summary and extraction of research work and contributions. Included in an abstract should be description of research topic and research objective, brief introduction to methodology and research process, and summarization of conclusion and contributions of the research. An abstract should be characterized by independence and clarity and carry identical information with the dissertation. It should be such that the general idea and major contributions of the dissertation are conveyed without reading the dissertation.

An abstract should be concise and to the point. It is a misunderstanding to make an abstract an outline of the dissertation and words "the first chapter", "the second chapter" and the like should be avoided in the abstract.

Keywords are terms used in a dissertation for indexing, reflecting core information of the dissertation. An abstract may contain a maximum of 5 keywords, with semi-colons used in between to separate one another.

Keywords: keyword 1; keyword 2; keyword 3; keyword 4; keyword 5

目 录

摘	要		[
Abs	strac	ct	I
第~	章	· · · · · · · · · · · · · · · · · · ·	Ĺ
1	.1	论文的语言及表述1	
1	.2	论文题目的写法1	
1	.3	摘要的写法1	
1	.4	引言的写法2)
1	.5	正文的写法2)
1	.6	结论的写法2)
第 2	2 章	图表示例 3	3
2	.1	插图	3
2	.2	表格	ļ
第3	音	数学符号和公式	7
• •	•	数学符号	
		数学公式	
3		数学定理	
第4	1 音	引用文献的标注)
- 1-	•	顺序编码制	
·		.1 支持三级目录显示	
4 +			
结			
参考	文	献11	L
附录	₹A	补充内容13	3
致	谢		5
个人	简	历、在学期间完成的相关学术成果17	7

第 1 章 论文主要部分的写法

研究生学位论文撰写,除表达形式上需要符合一定的格式要求外,内容方面上也要遵循一些共性原则。

通常研究生学位论文只能有一个主题 (不能是几块工作拼凑在一起),该主题 应针对某学科领域中的一个具体问题展开深入、系统的研究,并得出有价值的研究结论。学位论文的研究主题切忌过大,例如,"中国国有企业改制问题研究"这样的研究主题过大,因为"国企改制"涉及的问题范围太广,很难在一本研究生学位论文中完全研究透彻。

1.1 论文的语言及表述

除国际研究生外,学位论文一律须用汉语书写。学位论文应当用规范汉字进行撰写,除古汉语研究中涉及的古文字和参考文献中引用的外文文献之外,均采用简体汉字撰写。

国际研究生一般应以中文或英文书写学位论文,格式要求同上。论文须用中文封面。

研究生学位论文是学术作品,因此其表述要严谨简明,重点突出,专业常识应 简写或不写,做到立论正确、数据可靠、说明透彻、推理严谨、文字凝练、层次分 明,避免使用文学性质的或带感情色彩的非学术性语言。

论文中如出现一个非通用性的新名词、新术语或新概念,需随即解释清楚。

1.2 论文题目的写法

论文题目应简明扼要地反映论文工作的主要内容,力求精炼、准确,切忌笼统。论文题目是对研究对象的准确、具体描述,一般要在一定程度上体现研究结论,因此,论文题目不仅应告诉读者这本论文研究了什么问题,更要告诉读者这个研究得出的结论。例如:"在事实与虚构之间:梅乐、卡彭特、沃尔夫的新闻观"就比"三个美国作家的新闻观研究"更专业、更准确。

1.3 摘要的写法

论文摘要是对论文研究内容的高度概括,应具有独立性和自含性,即应是一篇简短但意义完整的文章。通过阅读论文摘要,读者应该能够对论文的研究方法

及结论有一个整体性的了解,因此摘要的写法应力求精确简明。论文摘要应包括对问题及研究目的的描述、对使用的方法和研究过程进行的简要介绍、对研究结论的高度凝练等,重点是结果和结论。

论文摘要切忌写成全文的提纲,尤其要避免"第1章······;第2章······; ······" 这样的陈述方式。

1.4 引言的写法

- 一篇学位论文的引言大致包含如下几个部分: 1、问题的提出; 2、选题背景及意义; 3、文献综述; 4、研究方法; 5、论文结构安排。
 - 问题的提出:要清晰地阐述所要研究的问题"是什么"。
 - 选题背景及意义: 论述清楚为什么选择这个题目来研究,即阐述该研究对学科发展的贡献、对国计民生的理论与现实意义等。
 - 文献综述:对本研究主题范围内的文献进行详尽的综合述评,"述"的同时一定要有"评",指出现有研究状态,仍存在哪些尚待解决的问题,讲出自己的研究有哪些探索性内容。
 - 研究方法: 讲清论文所使用的学术研究方法。
 - 论文结构安排:介绍本论文的写作结构安排。

1.5 正文的写法

本部分是论文作者的研究内容,不能将他人研究成果不加区分地掺和进来。已 经在引言的文献综述部分讲过的内容,这里不需要再重复。各章之间要存在有机 联系,符合逻辑顺序。

1.6 结论的写法

结论是对论文主要研究结果、论点的提炼与概括,应精炼、准确、完整,使读者看后能全面了解论文的意义、目的和工作内容。结论是最终的、总体的结论,不是正文各章小结的简单重复。结论应包括论文的核心观点,主要阐述作者的创造性工作及所取得的研究成果在本领域中的地位、作用和意义,交代研究工作的局限,提出未来工作的意见或建议。同时,要严格区分自己取得的成果与指导教师及他人的学术成果。

在评价自己的研究工作成果时,要实事求是,除非有足够的证据表明自己的研究是"首次"、"领先"、"填补空白"的,否则应避免使用这些或类似词语。

第2章 图表示例

2.1 插图

图片通常在 figure 环境中使用 \includegraphics 插入,如图 2-1 的源代码。建议矢量图片使用 PDF 格式,比如数据可视化的绘图;照片应使用 JPG 格式;其他的栅格图应使用无损的 PNG 格式。注意,LaTeX 不支持 TIFF 格式; EPS 格式已经过时。

图 2-1 示例图片

若图或表中有附注,采用英文小写字母顺序编号,附注写在图或表的下方。如果一个图由两个或两个以上分图组成时,各分图分别以(a)、(b)、(c)......作为图序,并须有分图题。推荐使用 subcaption 宏包来处理,比如图 2-2a) 和图 2-2b)。

图 2-2 多个分图的示例

2.2 表格

表应具有自明性。为使表格简洁易读,尽可能采用三线表,如表 2-1。三条线可以使用 booktabs 宏包提供的命令生成。

表 2-1 三线表示例

文件名	描述		
thuthesis.dtx	模板的源文件,包括文档和注释		
thuthesis.cls	模板文件		
thuthesis-*.bst	BibTeX 参考文献表样式文件		
thuthesis-*.bbx	BibLaTeX 参考文献表样式文件		
thuthesis-*.cbx	BibLaTeX 引用样式文件		

表格如果有附注,尤其是需要在表格中进行标注时,可以使用 threeparttable 宏包。使用英文小写字母 a、b、c······顺序编号。

表 2-2 带附注的表格示例

文件名	描述		
thuthesis.dtx ^a	模板的源文件,包括文档和注释		
thuthesis.cls ^b	模板文件		
thuthesis-*.bst	BibTeX 参考文献表样式文件		
thuthesis-*.bbx	BibLaTeX 参考文献表样式文件		
thuthesis-*.cbx	BibLaTeX 引用样式文件		

^a 可以通过 xelatex 编译生成模板的使用说明文档;使用 xetex 编译 thuthesis.ins 时则会从 .dtx 中去除掉文档和注释,得到精简的 .cls 文件。

如果您要排版的表格长度超过一页,那么推荐使用 longtable 或者 supertabular 宏包,模板对 longtable 进行了相应的设置,所以用起来可能简单一些。表 2-3 就是 longtable 的简单示例。

b 更新模板时,一定要记得编译生成 .cls 文件,否则编译 论文时载入的依然是旧版的模板。

表 2-3 实验数据(超长表格示例)

別試程序 正常运行 同步 检査点 卷回恢复 进程迁移 检査点 时间 (s) 文件 (KB)							
CG.A.2 23.05 0.002 0.116 0.035 0.589 32491 CG.A.4 15.06 0.003 0.067 0.021 0.351 18211 CG.A.8 13.38 0.004 0.072 0.023 0.210 9890 CG.B.2 867.45 0.002 0.864 0.232 3.256 228562 CG.B.4 501.61 0.003 0.438 0.136 2.075 123862 CG.B.8 384.65 0.004 0.457 0.108 1.235 63777 MG.A.2 112.27 0.002 0.846 0.237 3.930 236473 MG.A.4 59.84 0.003 0.442 0.128 2.070 123875 MG.A.8 31.38 0.003 0.476 0.114 1.041 60627 MG.B.2 526.28 0.002 0.821 0.238 4.176 236635 MG.B.8 148.29 0.003 0.442 0.116 0.893 60600 LU.A.2 <t< td=""><td>测试程序</td><td>正常运行</td><td></td><td>检查点</td><td>卷回恢复</td><td>进程迁移</td><td>检查点</td></t<>	测试程序	正常运行		检查点	卷回恢复	进程迁移	检查点
CG.A.4 15.06 0.003 0.067 0.021 0.351 18211 CG.A.8 13.38 0.004 0.072 0.023 0.210 9890 CG.B.2 867.45 0.002 0.864 0.232 3.256 228562 CG.B.4 501.61 0.003 0.438 0.136 2.075 123862 CG.B.8 384.65 0.004 0.457 0.108 1.235 63777 MG.A.2 112.27 0.002 0.846 0.237 3.930 236473 MG.A.4 59.84 0.003 0.442 0.128 2.070 123875 MG.A.8 31.38 0.003 0.476 0.114 1.041 60627 MG.B.2 526.28 0.002 0.821 0.238 4.176 23635 MG.B.4 280.11 0.003 0.432 0.130 1.706 123793 MG.B.8 148.29 0.003 0.442 0.116 0.893 60600 LU.A.2 <		时间 (s)	时间 (s)	时间 (s)	时间 (s)	时间 (s)	文件 (KB)
CG.A.8 13.38 0.004 0.072 0.023 0.210 9890 CG.B.2 867.45 0.002 0.864 0.232 3.256 228562 CG.B.4 501.61 0.003 0.438 0.136 2.075 123862 CG.B.8 384.65 0.004 0.457 0.108 1.235 63777 MG.A.2 112.27 0.002 0.846 0.237 3.930 236473 MG.A.4 59.84 0.003 0.442 0.128 2.070 123875 MG.A.8 31.38 0.003 0.476 0.114 1.041 60627 MG.B.2 526.28 0.002 0.821 0.238 4.176 236635 MG.B.4 280.11 0.003 0.432 0.130 1.706 123793 MG.B.8 148.29 0.003 0.442 0.116 0.893 60600 LU.A.2 2116.54 0.002 0.010 0.030 0.532 28754 LU.A.4	CG.A.2	23.05	0.002	0.116	0.035	0.589	32491
CG.B.2 867.45 0.002 0.864 0.232 3.256 228562 CG.B.4 501.61 0.003 0.438 0.136 2.075 123862 CG.B.8 384.65 0.004 0.457 0.108 1.235 63777 MG.A.2 112.27 0.002 0.846 0.237 3.930 236473 MG.A.4 59.84 0.003 0.442 0.128 2.070 123875 MG.A.8 31.38 0.003 0.476 0.114 1.041 60627 MG.B.2 526.28 0.002 0.821 0.238 4.176 236635 MG.B.4 280.11 0.003 0.432 0.130 1.706 123793 MG.B.8 148.29 0.003 0.442 0.116 0.893 60600 LU.A.2 2116.54 0.002 0.110 0.030 0.532 28754 LU.A.4 1102.50 0.002 0.069 0.017 0.255 14915 LU.A.2	CG.A.4	15.06	0.003	0.067	0.021	0.351	18211
CG.B.4 501.61 0.003 0.438 0.136 2.075 123862 CG.B.8 384.65 0.004 0.457 0.108 1.235 63777 MG.A.2 112.27 0.002 0.846 0.237 3.930 236473 MG.A.4 59.84 0.003 0.442 0.128 2.070 123875 MG.A.8 31.38 0.003 0.476 0.114 1.041 60627 MG.B.2 526.28 0.002 0.821 0.238 4.176 236635 MG.B.4 280.11 0.003 0.432 0.130 1.706 123793 MG.B.8 148.29 0.003 0.442 0.116 0.893 60600 LU.A.2 2116.54 0.002 0.010 0.030 0.532 28754 LU.A.4 1102.50 0.002 0.069 0.017 0.255 14915 LU.B.2 9712.87 0.002 0.357 0.104 1.734 101975 LU.B.4	CG.A.8	13.38	0.004	0.072	0.023	0.210	9890
CG.B.8 384.65 0.004 0.457 0.108 1.235 63777 MG.A.2 112.27 0.002 0.846 0.237 3.930 236473 MG.A.4 59.84 0.003 0.442 0.128 2.070 123875 MG.A.8 31.38 0.003 0.476 0.114 1.041 60627 MG.B.2 526.28 0.002 0.821 0.238 4.176 236635 MG.B.4 280.11 0.003 0.432 0.130 1.706 123793 MG.B.8 148.29 0.003 0.442 0.116 0.893 60600 LU.A.2 2116.54 0.002 0.110 0.030 0.532 28754 LU.A.4 1102.50 0.002 0.069 0.017 0.255 14915 LU.A.8 574.47 0.003 0.067 0.016 0.192 8655 LU.B.4 4757.80 0.003 0.190 0.056 0.808 53522 LU.B.4	CG.B.2	867.45	0.002	0.864	0.232	3.256	228562
MG.A.2 112.27 0.002 0.846 0.237 3.930 236473 MG.A.4 59.84 0.003 0.442 0.128 2.070 123875 MG.A.8 31.38 0.003 0.476 0.114 1.041 60627 MG.B.2 526.28 0.002 0.821 0.238 4.176 236635 MG.B.4 280.11 0.003 0.432 0.130 1.706 123793 MG.B.8 148.29 0.003 0.442 0.116 0.893 60600 LU.A.2 2116.54 0.002 0.110 0.030 0.532 28754 LU.A.4 1102.50 0.002 0.069 0.017 0.255 14915 LU.A.8 574.47 0.003 0.067 0.016 0.192 8655 LU.B.2 9712.87 0.002 0.357 0.104 1.734 101975 LU.B.4 4757.80 0.003 0.190 0.056 0.808 53522 LU.B.8	CG.B.4	501.61	0.003	0.438	0.136	2.075	123862
MG.A.4 59.84 0.003 0.442 0.128 2.070 123875 MG.A.8 31.38 0.003 0.476 0.114 1.041 60627 MG.B.2 526.28 0.002 0.821 0.238 4.176 236635 MG.B.4 280.11 0.003 0.432 0.130 1.706 123793 MG.B.8 148.29 0.003 0.442 0.116 0.893 60600 LU.A.2 2116.54 0.002 0.110 0.030 0.532 28754 LU.A.4 1102.50 0.002 0.069 0.017 0.255 14915 LU.A.8 574.47 0.003 0.067 0.016 0.192 8655 LU.B.2 9712.87 0.002 0.357 0.104 1.734 101975 LU.B.4 4757.80 0.003 0.190 0.056 0.808 53522 LU.B.8 2444.05 0.004 0.222 0.057 0.548 30134 EP.A.2	CG.B.8	384.65	0.004	0.457	0.108	1.235	63777
MG.A.8 31.38 0.003 0.476 0.114 1.041 60627 MG.B.2 526.28 0.002 0.821 0.238 4.176 236635 MG.B.4 280.11 0.003 0.432 0.130 1.706 123793 MG.B.8 148.29 0.003 0.442 0.116 0.893 60600 LU.A.2 2116.54 0.002 0.110 0.030 0.532 28754 LU.A.4 1102.50 0.002 0.069 0.017 0.255 14915 LU.A.8 574.47 0.003 0.067 0.016 0.192 8655 LU.B.2 9712.87 0.002 0.357 0.104 1.734 101975 LU.B.4 4757.80 0.003 0.190 0.056 0.808 53522 LU.B.8 2444.05 0.004 0.222 0.057 0.548 30134 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.B.2	MG.A.2	112.27	0.002	0.846	0.237	3.930	236473
MG.B.2 526.28 0.002 0.821 0.238 4.176 236635 MG.B.4 280.11 0.003 0.432 0.130 1.706 123793 MG.B.8 148.29 0.003 0.442 0.116 0.893 60600 LU.A.2 2116.54 0.002 0.110 0.030 0.532 28754 LU.A.4 1102.50 0.002 0.069 0.017 0.255 14915 LU.A.8 574.47 0.003 0.067 0.016 0.192 8655 LU.B.2 9712.87 0.002 0.357 0.104 1.734 101975 LU.B.4 4757.80 0.003 0.190 0.056 0.808 53522 LU.B.8 2444.05 0.004 0.222 0.057 0.548 30134 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661 EP.B.4	MG.A.4	59.84	0.003	0.442	0.128	2.070	123875
MG.B.4 280.11 0.003 0.432 0.130 1.706 123793 MG.B.8 148.29 0.003 0.442 0.116 0.893 60600 LU.A.2 2116.54 0.002 0.110 0.030 0.532 28754 LU.A.4 1102.50 0.002 0.069 0.017 0.255 14915 LU.A.8 574.47 0.003 0.067 0.016 0.192 8655 LU.B.2 9712.87 0.002 0.357 0.104 1.734 101975 LU.B.4 4757.80 0.003 0.190 0.056 0.808 53522 LU.B.8 2444.05 0.004 0.222 0.057 0.548 30134 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661 EP.B.4 247.69 0.002 0.012 0.004 0.122 1663 EP.B.2	MG.A.8	31.38	0.003	0.476	0.114	1.041	60627
MG.B.8 148.29 0.003 0.442 0.116 0.893 60600 LU.A.2 2116.54 0.002 0.110 0.030 0.532 28754 LU.A.4 1102.50 0.002 0.069 0.017 0.255 14915 LU.A.8 574.47 0.003 0.067 0.016 0.192 8655 LU.B.2 9712.87 0.002 0.357 0.104 1.734 101975 LU.B.4 4757.80 0.003 0.190 0.056 0.808 53522 LU.B.8 2444.05 0.004 0.222 0.057 0.548 30134 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.B.2 495.49 0.001 0.009 0.003 0.196 2011 EP.B.4 247.69 0.002 0.012 0.004 0.122 1663 EP.A.2 <	MG.B.2	526.28	0.002	0.821	0.238	4.176	236635
LU.A.2 2116.54 0.002 0.110 0.030 0.532 28754 LU.A.4 1102.50 0.002 0.069 0.017 0.255 14915 LU.A.8 574.47 0.003 0.067 0.016 0.192 8655 LU.B.2 9712.87 0.002 0.357 0.104 1.734 101975 LU.B.4 4757.80 0.003 0.190 0.056 0.808 53522 LU.B.8 2444.05 0.004 0.222 0.057 0.548 30134 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661 EP.B.2 495.49 0.001 0.009 0.003 0.196 2011 EP.B.4 247.69 0.002 0.012 0.004 0.122 1663 EP.B.8 126.74 0.003 0.017 0.005 0.083 1656 EP.A.2 <t< td=""><td>MG.B.4</td><td>280.11</td><td>0.003</td><td>0.432</td><td>0.130</td><td>1.706</td><td>123793</td></t<>	MG.B.4	280.11	0.003	0.432	0.130	1.706	123793
LU.A.4 1102.50 0.002 0.069 0.017 0.255 14915 LU.A.8 574.47 0.003 0.067 0.016 0.192 8655 LU.B.2 9712.87 0.002 0.357 0.104 1.734 101975 LU.B.4 4757.80 0.003 0.190 0.056 0.808 53522 LU.B.8 2444.05 0.004 0.222 0.057 0.548 30134 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.B.2 495.49 0.001 0.009 0.003 0.196 2011 EP.B.4 247.69 0.002 0.012 0.004 0.122 1663 EP.B.8 126.74 0.003 0.017 0.005 0.083 1656 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4	MG.B.8	148.29	0.003	0.442	0.116	0.893	60600
LU.A.8 574.47 0.003 0.067 0.016 0.192 8655 LU.B.2 9712.87 0.002 0.357 0.104 1.734 101975 LU.B.4 4757.80 0.003 0.190 0.056 0.808 53522 LU.B.8 2444.05 0.004 0.222 0.057 0.548 30134 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661 EP.B.2 495.49 0.001 0.009 0.003 0.196 2011 EP.B.4 247.69 0.002 0.012 0.004 0.122 1663 EP.B.8 126.74 0.003 0.017 0.005 0.083 1656 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.	LU.A.2	2116.54	0.002	0.110	0.030	0.532	28754
LU.B.2 9712.87 0.002 0.357 0.104 1.734 101975 LU.B.4 4757.80 0.003 0.190 0.056 0.808 53522 LU.B.8 2444.05 0.004 0.222 0.057 0.548 30134 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661 EP.B.2 495.49 0.001 0.009 0.003 0.196 2011 EP.B.4 247.69 0.002 0.012 0.004 0.122 1663 EP.B.8 126.74 0.003 0.017 0.005 0.083 1656 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661	LU.A.4	1102.50	0.002	0.069	0.017	0.255	14915
LU.B.4 4757.80 0.003 0.190 0.056 0.808 53522 LU.B.8 2444.05 0.004 0.222 0.057 0.548 30134 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661 EP.B.2 495.49 0.001 0.009 0.003 0.196 2011 EP.B.4 247.69 0.002 0.012 0.004 0.122 1663 EP.B.8 126.74 0.003 0.017 0.005 0.083 1656 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661	LU.A.8	574.47	0.003	0.067	0.016	0.192	8655
LU.B.8 2444.05 0.004 0.222 0.057 0.548 30134 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661 EP.B.2 495.49 0.001 0.009 0.003 0.196 2011 EP.B.4 247.69 0.002 0.012 0.004 0.122 1663 EP.B.8 126.74 0.003 0.017 0.005 0.083 1656 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661	LU.B.2	9712.87	0.002	0.357	0.104	1.734	101975
EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661 EP.B.2 495.49 0.001 0.009 0.003 0.196 2011 EP.B.4 247.69 0.002 0.012 0.004 0.122 1663 EP.B.8 126.74 0.003 0.017 0.005 0.083 1656 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661	LU.B.4	4757.80	0.003	0.190	0.056	0.808	53522
EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661 EP.B.2 495.49 0.001 0.009 0.003 0.196 2011 EP.B.4 247.69 0.002 0.012 0.004 0.122 1663 EP.B.8 126.74 0.003 0.017 0.005 0.083 1656 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661	LU.B.8	2444.05	0.004	0.222	0.057	0.548	30134
EP.A.8 31.06 0.004 0.017 0.005 0.073 1661 EP.B.2 495.49 0.001 0.009 0.003 0.196 2011 EP.B.4 247.69 0.002 0.012 0.004 0.122 1663 EP.B.8 126.74 0.003 0.017 0.005 0.083 1656 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661	EP.A.2	123.81	0.002	0.010	0.003	0.074	1834
EP.B.2 495.49 0.001 0.009 0.003 0.196 2011 EP.B.4 247.69 0.002 0.012 0.004 0.122 1663 EP.B.8 126.74 0.003 0.017 0.005 0.083 1656 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661	EP.A.4	61.92	0.003	0.011	0.004	0.073	1743
EP.B.4 247.69 0.002 0.012 0.004 0.122 1663 EP.B.8 126.74 0.003 0.017 0.005 0.083 1656 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661	EP.A.8	31.06	0.004	0.017	0.005	0.073	1661
EP.B.8 126.74 0.003 0.017 0.005 0.083 1656 EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661	EP.B.2	495.49	0.001	0.009	0.003	0.196	2011
EP.A.2 123.81 0.002 0.010 0.003 0.074 1834 EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661	EP.B.4	247.69	0.002	0.012	0.004	0.122	1663
EP.A.4 61.92 0.003 0.011 0.004 0.073 1743 EP.A.8 31.06 0.004 0.017 0.005 0.073 1661	EP.B.8	126.74	0.003	0.017	0.005	0.083	1656
EP.A.8 31.06 0.004 0.017 0.005 0.073 1661	EP.A.2	123.81	0.002	0.010	0.003	0.074	1834
	EP.A.4	61.92	0.003	0.011	0.004	0.073	1743
EP.B.2 495.49 0.001 0.009 0.003 0.196 2011	EP.A.8	31.06	0.004	0.017	0.005	0.073	1661
	EP.B.2	495.49	0.001	0.009	0.003	0.196	2011

续下页

第2章 图表示例

续表 2-3 实验数据(超长表格示例)

测试程序	正常运行	同步	检查点	卷回恢复	进程迁移	检查点
	时间 (s)	文件 (KB)				
EP.B.4	247.69	0.002	0.012	0.004	0.122	1663
EP.B.8	126.74	0.003	0.017	0.005	0.083	1656
EP.A.2	123.81	0.002	0.010	0.003	0.074	1834
EP.A.4	61.92	0.003	0.011	0.004	0.073	1743
EP.A.8	31.06	0.004	0.017	0.005	0.073	1661
EP.B.2	495.49	0.001	0.009	0.003	0.196	2011
EP.B.4	247.69	0.002	0.012	0.004	0.122	1663
EP.B.8	126.74	0.003	0.017	0.005	0.083	1656
EP.A.2	123.81	0.002	0.010	0.003	0.074	1834
EP.A.4	61.92	0.003	0.011	0.004	0.073	1743
EP.A.8	31.06	0.004	0.017	0.005	0.073	1661
EP.B.2	495.49	0.001	0.009	0.003	0.196	2011
EP.B.4	247.69	0.002	0.012	0.004	0.122	1663
EP.B.8	126.74	0.003	0.017	0.005	0.083	1656

第3章 数学符号和公式

3.1 数学符号

研究生《写作指南》要求量及其单位所使用的符号应符合国家标准《国际单位制及其应用》(GB 3100—1993)、《有关量、单位和符号的一般原则》(GB/T 3101—1993)的规定。模板中使用 unicode-math 宏包来配置数学符号,与 LATEX 默认的英美国家的符号习惯有所差异:

- 1. 大写希腊字母默认为斜体,如\Delta: △。
- 2. 有限增量符号 Δ (U+2206) 应使用 unicode-math 宏包提供的 \increment 命令。
- 3. 向量、矩阵和张量要求粗斜体,应该使用 unicode-math 的 \symbf 命令,如 \symbf{A}、\symbf{\alpha}。
- 4. 数学常数和特殊函数要求用正体,应使用 \symup 命令,如 $\pi = 3.14 \cdots$; $e = 2.718 \cdots$,
- 5. 微分号和积分号使用使用正体,比如 $\int f(x) dx$ 。

关于数学符号更多的用法,参考 unicode-math 宏包的使用说明,全部数学符号命的令参考 unimath-symbols。

关于量和单位推荐使用 siunitx 宏包,可以方便地处理希腊字母以及数字与单位之间的空白,比如: 6.4×10^6 m, $9 \, \mu$ m, $kg \cdot m \cdot s^{-1}$, $10 \, ^{\circ}\text{C} \sim 20 \, ^{\circ}\text{C}$ 。

3.2 数学公式

数学公式可以使用 equation 和 equation* 环境。注意数学公式的引用应前后带括号,建议使用 \eqref 命令,比如式 (3-1)。

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \mathcal{R}(f; a_k)$$
 (3-1)

注意公式编号的引用应含有圆括号,可以使用\eqref命令。

多行公式尽可能在"="处对齐,推荐使用 align 环境。

$$a = b + c + d + e \tag{3-2}$$

$$= f + g \tag{3-3}$$

3.3 数学定理

定理环境的格式可以使用 amsthm 或者 ntheorem 宏包配置。用户在导言区载入这两者之一后,模板会自动配置 thoerem、proof 等环境。

定理 3.1 (Lindeberg–Lévy 中心极限定理): 设随机变量 X_1,X_2,\cdots,X_n 独立同分布,且具有期望 μ 和有限的方差 $\sigma^2 \neq 0$,记 $\bar{X}_n = \frac{1}{n} \sum_{i+1}^n X_i$,则

$$\lim_{n \to \infty} P\left(\frac{\sqrt{n}\left(\bar{X}_n - \mu\right)}{\sigma} \leqslant z\right) = \Phi(z),\tag{3-4}$$

其中 $\Phi(z)$ 是标准正态分布的分布函数。

同时模板还提供了 assumption、definition、proposition、lemma、theorem、axiom、corollary、exercise、example、remar、problem、conjecture 这些相关的环境。

第4章 引用文献的标注

模板支持 BibTeX 和 BibLaTeX 两种方式处理参考文献。下文主要介绍 BibTeX 配合 natbib 宏包的主要使用方法。

4.1 顺序编码制

在顺序编码制下,默认的 \cite 命令同 \citep 一样,序号置于方括号中,引文页码会放在括号外。统一处引用的连续序号会自动用短横线连接。

4.1.1 支持三级目录显示

支持三级目录显示

结论

学位论文的结论作为论文正文的最后一章单独排写, 但不加章标题序号。

结论应是作者在学位论文研究过程中所取得的创新性成果的概要总结,不能与摘要混为一谈。博士学位论文结论应包括论文的主要结果、创新点、展望三部分,在结论中应概括论文的核心观点,明确、客观地指出本研究内容的创新性成果(含新见解、新观点、方法创新、技术创新、理论创新),并指出今后进一步在本研究方向进行研究工作的展望与设想。对所取得的创新性成果应注意从定性和定量两方面给出科学、准确的评价,分(1)、(2)、(3)···条列出,宜用"提出了"、"建立了"等词叙述。

参考文献

- [1] 张昆, 冯立群, 余昌钰, 等. 机器人柔性手腕的球面齿轮设计研究 [J]. 清华大学学报: 自然 科学版, 1994, 34(2): 1-7.
- [2] 竺可桢. 物理学论 [M]. 北京: 科学出版社, 1973: 56-60.
- [3] Dupont B. Bone marrow transplantation in severe combined immunodeficiency with an unrelated mlc compatible donor[C]// White H J, Smith R. Proceedings of the third annual meeting of the International Society for Experimental Hematology. Houston: International Society for Experimental Hematology, 1974: 44-46.
- [4] 郑开青. 通讯系统模拟及软件 [D]. 北京: 清华大学无线电系, 1987.
- [5] 姜锡洲. 一种温热外敷药制备方案: 中国, 88105607.3[P]. 1980-07-26.
- [6] 中华人民共和国国家技术监督局. GB3100-3102. 中华人民共和国国家标准-量与单位 [S]. 北京: 中国标准出版社, 1994.
- [7] Merkt F, Mackenzie S R, Softley T P. Rotational autoionization dynamics in high rydberg states of nitrogen[J]. J Chem Phys, 1995, 103: 4509-4518.
- [8] Mellinger A, Vidal C R, Jungen C. Laser reduced fluorescence study of the carbon monoxide nd triplet rydberg series experimental results and multichannel quantum defect analysis[J]. J Chem Phys, 1996, 104: 8913-8921.
- [9] Bixon M, Jortner J. The dynamics of predissociating high Rydberg states of NO[J]. J Chem Phys, 1996, 105: 1363-1382.
- [10] 马辉, 李俭, 刘耀明, 等. 利用 REMPI 方法测量 BaF 高里德堡系列光谱 [J]. 化学物理学报, 1995, 8: 308-311.
- [11] Carlson N W, Taylor A J, Jones K M, et al. Two-step polarization-labeling spectroscopy of excited states of Na2[J]. Phys Rev A, 1981, 24: 822-834.
- [12] Taylor A J, Jones K M, Schawlow A L. Scanning pulsed-polarization spectrometer applied to Na2[J]. J Opt Soc Am, 1983, 73: 994-998.
- [13] Taylor A J, Jones K M, Schawlow A L. A study of the excited $1\Sigma g^+$ states in Na2[J]. Opt Commun, 1981, 39: 47-50.
- [14] Shimizu K, Shimizu F. Laser induced fluorescence spectra of the a $3\Pi u$ –X $1\Sigma g$ + band of Na2 by molecular beam[J]. J Chem Phys, 1983, 78: 1126-1131.
- [15] Atkinson J B, Becker J, Demtröder W. Experimental observation of the a 3 Π u state of Na2[J]. Chem Phys Lett, 1982, 87: 92-97.
- [16] Kusch P, Hessel M M. Perturbations in the a $1\Sigma u+$ state of Na2[J]. J Chem Phys, 1975, 63: 4087-4088.
- [17] 广西壮族自治区林业厅. 广西自然保护区 [M]. 北京: 中国林业出版社, 1993.
- [18] 霍斯尼. 谷物科学与工艺学原理 [M]. 李庆龙, 译. 2 版. 北京: 中国食品出版社, 1989: 15-20.
- [19] 王夫之. 宋论 [M]. 刻本. 金陵: 曾氏, 1865 (清同治四年).

- [20] 赵耀东. 新时代的工业工程师 [M/OL]. 台北: 天下文化出版社, 1998[1998-09-26]. http://www.ie.nthu.edu.tw/info/ie.newie.htm.
- [21] 全国信息与文献工作标准化技术委员会出版物格式分委员会. GB/T 12450-2001 图书书 名页 [S]. 北京: 中国标准出版社, 2002.
- [22] 全国出版专业职业资格考试办公室. 全国出版专业职业资格考试辅导教材: 出版专业理论与实务•中级 [M]. 2014 版. 上海: 上海辞书出版社, 2004: 299-307.
- [23] World Health Organization. Factors regulating the immune response: Report of WHO Scientific Group[R]. Geneva: WHO, 1970.
- [24] Peebles P Z, Jr. Probability, random variables, and random signal principles[M]. 4th ed. New York: McGraw Hill, 2001.
- [25] 白书农. 植物开花研究 [M]// 李承森. 植物科学进展. 北京: 高等教育出版社, 1998: 146-163.
- [26] Weinstein L, Swertz M N. Pathogenic properties of invading microorganism[M]// Sodeman W A, Jr, Sodeman W A. Pathologic physiology: mechanisms of disease. Philadelphia: Saunders, 1974: 745-772.
- [27] 韩吉人. 论职工教育的特点 [C]// 中国职工教育研究会. 职工教育研究论文集. 北京: 人民教育出版社, 1985: 90-99.
- [28] 中国地质学会. 地质评论 [J]. 1936, 1(1)-. 北京: 地质出版社, 1936-.
- [29] 中国图书馆学会. 图书馆学通讯 [J]. 1957(1)-1990(4). 北京: 北京图书馆, 1957-1990.
- [30] American Association for the Advancement of Science. Science[J]. 1883, 1(1)—. Washington, D.C.: American Association for the Advancement of Science, 1883—.
- [31] 傅刚, 赵承, 李佳路. 大风沙过后的思考 [N/OL]. 北京青年报, 2000-04-12(14)[2002-03-06]. http://www.bjyouth.com.cn/Bqb/20000412/B/4216%5ED0412B1401.htm.
- [32] 萧钰. 出版业信息化迈入快车道 [EB/OL]. (2001-12-19)[2002-04-15]. http://www.creader.com/news/20011219/200112190019.htm.
- [33] Online Computer Library Center, Inc. About OCLC: History of cooperation[EB/OL]. 2000 [2000-01-08]. http://www.oclc.org/about/cooperation.en.htm.
- [34] Scitor Corporation. Project scheduler[CP/DK]. Sunnyvale, Calif.: Scitor Corporation, 1983.

附录 A 补充内容

附录是与论文内容密切相关、但编入正文又影响整篇论文编排的条理和逻辑 性的资料,例如某些重要的数据表格、计算程序、统计表等,是论文主体的补充内 容,可根据需要设置。

A.1 图表示例

A.1.1 图

附录中的图片示例(图 A-1)。

图 A-1 附录中的图片示例

A.1.2 表格

附录中的表格示例(表 A-1)。

A.2 数学公式

附录中的数学公式示例(公式(A-1))。

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \mathcal{R}(f; a_k)$$
 (A-1)

表 A-1 附录中的表格示例

文件名	描述		
thuthesis.dtx	模板的源文件,包括文档和注释		
thuthesis.cls	模板文件		
thuthesis-*.bst	BibTeX 参考文献表样式文件		
thuthesis-*.bbx	BibLaTeX 参考文献表样式文件		
thuthesis-*.cbx	BibLaTeX 引用样式文件		

致 谢

衷心感谢导师 ××× 教授和物理系 ×× 副教授对本人的精心指导。他们的言传身教将使我终生受益。

在美国麻省理工学院化学系进行九个月的合作研究期间,承蒙 Robert Field 教授热心指导与帮助,不胜感激。

感谢××××× 实验室主任××× 教授,以及实验室全体老师和同窗们学的热情帮助和支持!

本课题承蒙国家自然科学基金资助,特此致谢。

独创性声明和学位论文使用权限的声明 学位论文独创性声明

作者签名: 日期: 年 月 日

学位论文使用权限

学位论文是研究生在南方科技大学攻读学位期间完成的成果,知识产权归属南方科技大学。学位论文的使用权限如下:

(1)学校可以采用影印、缩印或其他复制手段保存研究生上交的学位论文,并向国家图书馆报送学位论文;(2)学校可以将学位论文部分或全部内容编入有关数据库进行检索和提供相应阅览服务;(3)研究生毕业后发表与此学位论文研究成果相关的学术论文和其他成果时,应征得导师同意,且第一署名单位为南方科技大学。

保密论文在保密期内遵守有关保密规定,解密后适用于此使用权限规定。 本人知悉学位论文的使用权限,并将遵守有关规定。

 作者签名:
 日期:
 年 月 日

 导师签名:
 日期:
 年 月 日

个人简历、在学期间完成的相关学术成果

Resume

×××× 年 ×× 月 ×× 日出生于 ××××。

×××× 年 ×× 月考入 ×× 大学 ×× 院(系) ×× 专业, ×××× 年 ×× 月本科毕业并获得 ×× 学学士学位。

×××× 年 ×× 月——×××× 年 ×× 月,在 ×× 大学 ×× 院(系) ×× 学科学习并获得 ×× 学硕士学位。

获奖情况:如获三好学生、优秀团干部、×奖学金等(不含科研学术获奖)。 工作经历:·····

Academic Achievements during the Study for an Academic Degree

(—) Academic papers

- [1] Yang Y, Ren T L, Zhang L T, et al. Miniature microphone with silicon-based ferroelectric thin films[J]. Integrated Ferroelectrics, 2003, 52:229-235.
- [2] 杨轶, 张宁欣, 任天令, 等. 硅基铁电微声学器件中薄膜残余应力的研究 [J]. 中国机械工程, 2005, 16(14):1289-1291.
- [3] 杨轶, 张宁欣, 任天令, 等. 集成铁电器件中的关键工艺研究 [J]. 仪器仪表学报, 2003, 24(S4):192-193.
- [4] Yang Y, Ren T L, Zhu Y P, et al. PMUTs for handwriting recognition. In press[J]. (已被 Integrated Ferroelectrics 录用)

(二) Patents

- [5] 任天令, 杨轶, 朱一平, 等. 硅基铁电微声学传感器畴极化区域控制和电极连接的方法: 中国, CN1602118A[P]. 2005-03-30.
- [6] Ren T L, Yang Y, Zhu Y P, et al. Piezoelectric micro acoustic sensor based on ferroelectric materials: USA, No.11/215, 102[P]. (美国发明专利申请号.)