SBOL 2.0: Vision and Structure

Nicholas Roehner, Chris J. Myers
University of Utah

SBOL Workshop 10: UC Berkeley

Current Capabilities of SBOL 1.0

Specification of DNA components

Current Capabilities of SBOL 1.0

- Specification of DNA components
- Hierarchical composition of DNA components

Goals for SBOL 2.0

- Increase the range of biological structure and function that we may specify.
- Provide an extensible basis for composition of functional modules with structural components and other functional modules.

RNA components (mRNA, tRNA, siRNA)

- RNA components
- Protein components (TFs, enzymes)

- RNA components
- Protein components
- Other Components (small molecules, complexes, light, pressure, pH, temp)

Increasing Functional Range

 Modules (logic gates, latches, oscillators, sensors, transducers, pathways, cascades)

Increasing Functional Range

- Modules
- Interactions (activation, repression, complexation, transcription, translation, phosphorylation)

Basis for Composition

Ports

Basis for Composition

- Ports
- Instantiation

Basis for Functional Composition

- Ports
- Instantiation
- Port Mapping and Mixed Hierarchy

Data Model: Sequenced Component

Data Model: Instantiation

Example: Components

DnaComponent

-displayId : "BBa_R0010"
-sequenceType : promoter

DnaComponent

-displayId : "BBa_J61120" -sequenceType : RBS

DnaComponent

-displayId : "BBa_C0040" -sequenceType : CDS

DnaComponent

-displayId: "ECK120033736" -sequenceType: terminator

DnaComponent

-displayId : "Lacl_Inverter"
-sequenceType : gene

ProteinComponent

-displayId : "Lacl"

-sequenceType : transcription factor

Component

-displayId : "IPTG"

-type: small molecule

ProteinComponent

-displayId: "TetR"

-sequenceType: transcription factor

RnaComponent

-displayId : "TetR_mRNA"
-sequenceType : mRNA

Component

-displayId : "IPTG_Lacl_Complex"

-type : complex

Example: Sequence Instantiation

-type : complex

Data Model: Module

Example: Module

Component

-displayId : "IPTG_Lacl_Complex"

-type : complex

ProteinComponent

-displayId: "TetR"

-sequenceType: transcription factor

RnaComponent

-displayId : "TetR_mRNA"

-sequenceType : mRNA

Module

-displayId : "Lacl_Inverter"

Component

-displayId : "IPTG" -type : small molecule

ProteinComponent

-displayId : "Lacl"

-sequenceType: transcription factor

DnaComponent

-displayId : "BBa_R0010"
-sequenceType : promoter

DnaComponent

-displayId: "BBa_C0040"

-sequenceType : coding sequence

Example: Signal Instantiation

Data Model: Interactions

Example: Interactions

Example: Interactions

Data Model: Ports and PortMaps

Composing Inverter Component with Module

Example: Component Ports

Example: Signal Instantiation

Example: Port Mapping

Composing Inverter Module with Toggle Module

Example: Module Ports

Example: Module Instantiation

Example: Port Mapping

Toggle Module Composed

Dark Sensor (Tabor et al. 2009)

Dark Sensor (Tabor et al. 2009)

Dark Sensor: Instantiation

Dark Sensor: Interactions

Extension Status: Modeling

Extension Status: Context

Canonical EX: Repressilator

Measurement Device Zeiss Axiovert 135TV microscope

Environment

The temperature of the samples was maintained at

30–32 °C by using Peltier devices (Melcor)

Container

coverslip and microscope slide

Medium

minimal media

1 ml of liquid 2% SeaPlaque low-melt agarose

(FMC) in media

100 uM IPTG inducer

antibiotic 20 g ml-1 kanamycin or 20 g ml -1

ampicillin)

minimum initial cell density OD = 0.1

Host

E. coli lac- strain MC4100

Composition

Genome, Repressilator and Reporter plasmids

Summary UML

