Учреждение образования «Гомельский государственный медицинский университет»

Кафедра биологической химии

Формулы, реакции, метаболические пути и схемы по биологической химии

Учебное пособие

1. Энзимология и биологическое окисление

Введение

Формулы аминокислот

	Незаменим	ные аминокислоты	
H ₂ N-CH-COOH CH ₂	H ₂ N-CH-COOH CH ₂ CH ₂ S CH ₃	H ₂ N-CH-COOH CH-OH CH ₃	H ₂ N-CH-COOH CH ₂ HN
Фенилаланин	Метионин	Треонин	Триптофан
H ₂ N-CH-COOH CH ₂ CH ₂ CH ₂ CH ₂	H ₂ N-CH-COOH CH-CH ₃ CH ₃	H ₂ N-CH-COOH CH ₂ CH-CH ₃ CH ₃	!
ĊH ₂ NH ₂	Валин	Лейцин	Изолейцин
Лизин	1	вветвленной углеводородн	ой цепью, АКРУЦ (BCAA)

Частично заменимые			
H ₂ N-CH-COOH CH ₂ CH ₂ CH ₂ CH ₂ NH C=NH NH ₂	H ₂ N-CH-COOH CH ₂ N NH	H ₂ N-CH-COOH CH ₂ OH	H ₂ N-CH-COOH CH ₂ SH
Аргинин	Гистидин	Тирозин	Цистеин

Заменимые аминокислоты			
H ₂ N-CH-COOH H	H ₂ N-CH-COOH CH ₃	COOH	H ₂ N-CH-COOH CH ₂ OH
Глицин	Аланин	Пролин	Серин
H ₂ N-CH-COOH CH ₂ C=O OH	H_2N -CH-COOH CH_2 CH_2 CH_2 $C=O$ OH	H_2N -CH-COOH $ \stackrel{C}{C}H_2 \stackrel{C}{C}=O $ $ \stackrel{N}{N}H_2$	$\begin{array}{c} \text{H}_2\text{N}\text{-}\text{CH}\text{-}\text{COOH} \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{C} \text{H}_2 \\ \text{C} \text{=} \text{O} \\ \text{NH}_2 \end{array}$
Аспарагиновая кислота	Глутаминовая кислота	Аспарагин	Глутамин

Ферменты-1

Значения рКа аминокислот

В формировании заряда принимают участие радикалы следующих аминокислот:

- а. заряженных положительно (аргинин (Арг), гистидин (Гис), лизин (Лиз)),
- б. заряженных отрицательно (аспарагиновая (Асп) и глутаминовая (Глу)),
- в. незаряженных полярных (цистеин (Цис) и тирозин (Тир)).
- г. концевых α -амино- (-NH $_3$ +) и карбоксильных (-COO-) групп олигопептидов.

Для этих структур учитываются показатели константы кислотности pK_a (Табл. 1).

Величины pK_a при этом играют роль критических точек функции, так как при соответствующих значениях pH происходит изменение заряда.

Таблица 1

Примерные величины <i>pKa</i> для радикалов аминокислот и структур, которые могут нести заряды:			
положит	положительный отрицательный		
Гуга	6,5	-COO-	2,5
Гис		Асп	3,9
-NH ₃ +	9,0	Глу	4,1
Лиз	10,5	Цис	8,2
Арг	12,5	Тир	10,1

Ферменты-2

Витамины: водорастворимые

$$\begin{array}{c} CH_3 \\ HO\text{-}CH_2\text{-}\overset{!}{C} - CH\text{-}C\text{-}NH\text{-}CH_2\text{-}CH_2\text{-}COOH} \\ CH_3\overset{!}{O}H\overset{!}{O} \end{array}$$

Пантотеновая кислота (В₃)

Витамин B_5 (PP)

$$CH_2OH$$
 H_2C NH_2 H_3C N H_3 H_3

Витамин В₆

$$O = \bigvee_{N}^{H} \bigvee_{COOH}$$
 Биотин (H)

Витамины: жирорастворимые

$$CH_2$$
 НО Эргокальциферол (D_2) CH_2 НО Холекальциферол (D_3)

HOOC 9 10 12 13 15 16 18 ω-3

Линолевая кислота ω-3

Линоленовая кислота

НООС 9 10 12 13 15 16 18

Линоленовая кислота

НООС 5 6 8 9 11 12 14 15 17 18 20

Эйкозапентаеновая кислота

НООС 4 5 7 8 10 11 13 14 16 17 19 20 22

Докозагексаеновая кислота

Витамин F

Витамин А

Витамин D

$$HO$$
 CH_3 C

Витамин К

Коферменты:

$$O = P - O - CH_{2} O$$

$$O = P - O - CH_{2}O$$

$$O = P - O - CH_{2} O$$

$$\begin{array}{c|c} H_3C & H & O \\ H_3C & N & NH \\ H_3C & N & NH \\ N & NH & NH \\ H_2C-CH-CH-CH-CH_2 & H \\ O & OH & OH & OH \\ O=P-OH & FMNH_2 & OH \\ \end{array}$$

$$\begin{array}{c|c} CH_3 \\ OH & OH \\ OH & P-O-P-OH \\ NH_2 & O & O \\ \end{array}$$

Тиаминпирофосфат

$$\begin{array}{c} H \\ C \\ O \\ O \\ CH_2 - O - P - OH \\ OH \\ \end{array}$$

Пиридоксальфосфат

$$\begin{array}{c|c} OH & H \\ N & N \\ N & N \\ N & H \end{array}$$
 СН2-NH — С-NH-CH-СООН СН2 СН2 ССООН СООН

$$\begin{array}{c} H_3C \\ H_3C \\ O \\ O \\ \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} H \\ 6\text{-}10 \\ \end{array}$$

Коэнзим Q (убихинон)

Кальцидиол, 25-ОН D_3

Кальцитриол, 1,25-(OH) $_2$ D $_3$

Ферменты-3 Реакции, катализируемые ферментами АСТ, АЛТ, ЛДГ, КФК:

СООН
$$HC-OH$$
 CH_3 NAD^+ $NADH+H^+$ $IIBK$

Изоферменты ЛДГ, КФК:

HHH	H H M	H H M	$ \begin{array}{c} H \\ M \end{array} $	
ЛД Γ_1	ЛД Γ_2	ЛД Γ_3	ЛД Γ_4	ЛД Γ_5
(сердце)	(сердце/почки)	(почки)	(мышцы/печень)	(мышцы/печень)

BB	B M	M M
KK-1	KK-2	KK-3
мозг	миокард	мышцы

Биологическое окисление-1

Цикл трикарбоновых кислот (ЦТК) Кребса

В виде последовательности реакций

[ТПФ, липоамид, ФАД]

Схема образования АФК. Реакции, катализируемые каталазой, СОД, глутатионпероксидазой; реакции Фентона, Хабера-Вайса

Образование супероксид-анион-радикала

$$O_2 + e^- \longrightarrow O_2^{\bullet}$$

Ферменты антиоксидантной защиты (АОЗ)

Каталаза

$$H_2O_2 \xrightarrow{\kappa amaлaзa (Fe^{2^+})} HOH + O$$

Глутатионпероксидаза

$$2GSH + H_2O_2 \xrightarrow{GPx (Se)} GS-SG + 2H_2O.$$

Реакции образования гидроксил-радикала

Реакция Фентона

$$Fe^{2+}$$
 + H_2O_2 — Fe^{3+} + OH^- + OH^- Реакция Хабера-Вайса $t_{1/2}=10^{-9}c$ $O_2^{\bullet-}$ + H_2O_2 — O_2 + OH^- + OH^-

Биохимия углеводов

Углеводы-1

Строение углеводов

Изомальтоза

Участок молекулы амилозы

Участок молекулы амилопектина

Нейраминовая кислота

N-ацетилнейраминовая кислота (сиаловая кислота)

Метаболизм гликогена: Синтез гликогена

Мобилизация гликогена

Аденилатциклазный путь регуляции метаболизма

Инозитол-3-фосфатный путь регуляции

Превращения фруктозы и галактозы Метаболизм галактозы

Метаболизм фруктозы

Углеводы-2 Метаболизм этанола

Гликолиз

Анаэробный гликолиз

Молочнокислое брожение

$$O_{C}$$
 ОН O_{C} О

Спиртовое брожение

Аэробный гликолиз

Обмен глюкозо-6-фосфата

Углеводы-3 ПВК дегидрогеназный комплекс

Ферменты:

Суммарная реакция:

- 1. Пируват
дегидрогеназа (1). 2. Дигидролипоилацетилтрансфераза (2).
 Пируват + НАД $^+$ + **HS-КоА = Ацетил-КоА + НАДН + H** $^+$ + **CO** 2
- 3. Дигидролипоилацетилтрансфераза (2).
- 4. Дигидролипоилдегидрогеназа (1).
- 5. Дигидролипоилдегидрогеназа (1).

Глюконеогенез

Углеводы-4

Пентозофосфатный путь

Синтез основных классов ГАГ

Примеры субстратов для синтеза некоторых ГАГ:

- УДФ-глюкуроновая кислота + УДФ-N-ацетил-глюкозамин = гиалуроновая кислота + 2 УДФ
- УДФ-глюкуроновая кислота + УДФ-N-ацетил-галактозамин + ФАФС = Хондроитин-4(/б)-сульфат + 2 УДФ + ФАФ

Цикл Кори

Цикл Фелига

Биохимия липидов

Липиды-1

Жирные кислоты: насыщенные

_	4
Масляная	HOOC
Валериановая	HOOC 5
Капроновая	HOOC
Каприловая	HOOC 8
Каприновая	HOOC 10
Лауриновая	HOOC 12
Миристиновая	HOOC 14
Пальмитиновая	
Стеариновая	HOOC 18

Жирные кислоты: ненасыщенные

Глицерофосфолипиды, сфингозин и воска

цетиловый спирт (цетол)

Синтез триглицеридов и фосфолипидов

Липиды-2 Схема метаболизма ацетил-КоА (синтез и утилизация)

Катаболизм триацилгицеролов (ТАГ), глицерола. Энергетический баланс

Катаболизм триацилглицеролов

Окисление глицерола (по аэробному гликолизу)

Баланс окисления ТАГ = Баланс окисления глицерола + баланс окисления ЖК

Глицерол: -1+3+3+1+1+3+12=22 АТФ

Если все 3 ЖК= C_{16} , то прибавляем 3×130=390. Общий баланс: 22+390=412 АТФ

Метаболизм (синтез и утилизация) кетоновых тел:

Утилизация

β-Окисление жирных кислот

Липиды-3 Биосинтез ЖК

Насыщенные

Синтез холестерола

Биохимия белков и нуклеиновых кислот

Белки-1 Эндогенный пул аминокислот, его образование и утилизация

Схема Мейстера

Синтез соляной кислоты и его регуляция

Регуляция:

Гниение белков, обезвреживание продуктов гниения:

Переваривание белков Ферменты, переваривающие белки

Цикл синтеза мочевины:

Белки-3 Синтез катехоламинов

Метаболизм SAM и креатина

Цикл Мейстера и цикл Робертса (ГАМК-шунт)

Интеграция обмена белков, липидов, углеводов

Белки-4 Репликационная вилка (По Березову и Коровкину, 1998)

Синтез пуринов Схема синтеза пуринового кольца

Синтез пиримидинов:

Белки-5 Распад пуринов

Распад пиримидинов:

изомасляная к-та

Биохимия гормонов и витаминов

Гормоны-1 Обмен Са/Р

Метаболизм витамина D

Гормоны-2 Формулы гормонов

Синтез серотонина

Биохимия органов и систем

Кровь-1 Основные биохимические константы

I. Азотсодержащие соединения				
1.	Общий белок	65-80 г/л		
2.	Альбумины	40-50 г/л		
3.	Глобулины	20-35 г/л		
4.	Фибриноген	2-4 г/л		
5.	Остаточный азот	14,3-28,5 ммоль/л		
6.	Количество гемоглобина	м: 130-160 г/л		
		ж: 115-145 г/л		
7.	Аминокислоты	4 ммоль/л		
8.	Мочевина	2,5-8,3 ммоль/л		
9.	Мочевая кислота	м: 262-452 мкмоль/л,		
		ж: 137-393 мкмоль/л		
10.	Общий билирубин	8,5-20,5 мкмоль/л		
11.	Прямой билирубин	0-5,1 мкмоль/л		
12.	Непрямой билирубин	до 16,5 мкмоль/л		
II. Электролиты, показатели рН				
13.	Калий (плазмы)	3,6-6,3 ммоль/л		
14.	Натрий	135-152 ммоль/л		
15.	Кальций общий	2,2-2,75 ммоль/л		
16.	Кальций свободный	1-1,15 ммоль/л		
17.	Магний	0,8-1,0 ммоль/л		
18.	Железо	9-31 мкмоль/л		
19.	Хлориды	95-100 ммоль/л		
20.	Гидрокарбонат ион	19-25 ммоль/л		
21.	Неорганические фосфаты	0,81-1,55 ммоль/л		
22.	рН крови артериальной	7,40		
23.	рН крови венозной	7,35		
24.	Крайние пределы рН, совместимые с жизнью	7,0-7,8		
	III. Ферментативная активность, гормоны			
25.	АСТ (аспартатаминотрансфераза)	0,1-0,45 ммоль/ (л × ч)		
26.	АЛТ (аланинаминотрансфераза)	0,1-0,68 ммоль/ (л × ч)		
27.	ЛДГ (лактатдегидрогеназа)	< 7 ммоль/ (л \times ч)		
28.	Альфа-амилаза	24-151 Ед/л		
29.	Кислая фосфатаза	3-10 Ед/л		
30.	Щелочная фосфатаза	30-90 Ед/л		
31.	Холинэстераза	5-12 Ед/мл		
32.	Альдостерон	<220 нмоль/л		
33.	Ангиотензин II	10-30 нмоль/л		
34.	Кальцитонин	<50 нг/л		
35.	T ₃	1,1-2,9 нмоль/л		
36.	T ₄	64-154 нмоль/л		
37.	B ₁₂	180-900 пг/мл		
20	IV. Углеводный и липидный обмен			
38.	Глюкоза	3,3-5,5 ммоль/л		
39.	Общие липиды	3,5-8 г/л		
40.	Триглицериды	0,5-2,1 ммоль/л		
41.	Общий холестерин	менее 5,2 ммоль/л		
42.	ЛПВП	0,9-1,9 ммоль/л		
43.	ЛПНП	менее 2,2 ммоль/л		
44.	Жирные кислоты	0,5 ммоль/л		
45.	Кетоновые тела	0,5 ммоль/л		
46.	Лактат	0,9-1,7 ммоль/л		
V. Физико-химические показатели				
47.	Осмотическое давление	7,6-8,1 атм		
48.	Онкотическое давление	0,03-0,04 атм		
49.	Вязкость крови	5 Γ / (cм×c)		
50.	Относительная плотность	1,05-1,06		

Кровь-2 Синтез гема

Транспорт железа

Почки Ацидо- и аммониогенез

Синтез креатинина

Печень

Детоксикация ксенобиотиков

Два механизма обезвреживания

Ксенобиотики

(лекарства, желчные пигменты, пестициды и др.) Реакции трансформации -

Образование конъюгатов (глюкуронидирование, сульфатирование, аминирование)

(окисление, восстановление, гидролиз, дезаминирование, десульфирование, дезалкилирование)

1. Деацетилирование (при гидролизе лекарств)

2. Дезаминирование

$${
m H_2N}$$
 NH2 ${
m NH_2}$ ${
m NH_3}$ ${
m H_2O_2}$ ${
m NH_2}$ ${
m NH_2}$ ${
m NH_2}$ аминопентаналь

2. Конъюгация с глицином

3. Сульфатирование

4. Метилирование гормонов/нейротрансмиттеров

Пример детоксикации фенобарбитала в печени (в 2 стадии)

Мышечная ткань Электромеханическое сопряжение

Синтез ансерина и карнозина

Гипокинетический синдром

Нервная и соединительная ткань

Строение десмозина

$$\begin{array}{c} -\text{NH OC} - \\ \text{CH} \\ (\text{CH}_2)_3 \\ -\text{N} \\ \text{CH-}(\text{CH}_2)_2 - \text{CH} \\ \text{CO} \\ \text{N} \\ (\text{CH}_2)_4 \\ \text{CH} \\ -\text{CO} \\ \text{N} - \\ \text{H} \end{array}$$

Гидроксилирование пролина и лизина

Содержание

1. Энзимология и биологическое окисление	2
Введение	2
Формулы аминокислот	2
. <i>,</i> Ферменты-1	3
Значения <i>pKa</i> аминокислот	3
Ферменты-2	
Витамины: водорастворимые	
Витамины: жирорастворимые	
Коферменты:	
Ферменты-3	
Реакции, катализируемые ферментами АСТ, АЛТ, ЛДГ, КФК:	8
Изоферменты ЛДГ, КФК:	
Биологическое окисление-1	
Цикл трикарбоновых кислот (ЦТК) Кребса	10
В виде последовательности реакций	
В виде цикла	11
Схема субстратов БО	
Биологическое окисление-2	
Схема образования АФК. Реакции, катализируемые каталазой, СОД, глутатионперокс	
реакции Фентона, Хабера-Вайса	
Биохимия углеводов	
углеводы-1	
Строение углеводов	
Метаболизм гликогена: Синтез гликогена	
Мобилизация гликогена	
Аденилатциклазный путь регуляции метаболизма	
Инозитол-3-фосфатный путь регуляции	
Превращения фруктозы и галактозы	
Углеводы-2	
Метаболизм этанола	
Гликолиз	
Обмен глюкозо-6-фосфата	
Углеводы-3	
ПВК дегидрогеназный комплекс	
Глюконеогенез	
Углеводы-4	
Пентозофосфатный путь	
Синтез основных классов ГАГ	
Схема TIGAR	
Цикл Кори, цикл Фелига	
Биохимия липидов	
Липиды-1	
Синтез триглицеридов и фосфолипидов	
Синтез эйкозаноидов	
Липиды-2	
Схема метаболизма ацетил-КоА (синтез и утилизация)	
Катаболизм триацилгицеролов (ТАГ), глицерола. Энергетический баланс	
Метаболизм (синтез и утилизация) кетоновых тел:	
Пипипы 2	25

Биосинтез ЖК	35
Ненасыщенные	36
Синтез холестерола	37
Биохимия белков и нуклеиновых кислот	39
Белки-1	39
Эндогенный пул аминокислот, его образование и утилизация	39
Схема Мейстера	39
Гниение белков, обезвреживание продуктов гниения:	41
Переваривание белков	42
Белки-2:	43
Вступление АК в ЦТК	43
Цикл синтеза мочевины:	44
Белки-3	45
Синтез катехоламинов	45
Метаболизм SAM и креатина	46
Цикл Мейстера и цикл Робертса (ГАМК-шунт)	46
Интеграция обмена белков, липидов, углеводов	47
Белки-4	47
Репликационная вилка (По Березову и Коровкину, 1998)	47
Синтез пуринов	48
Схема синтеза пуринового кольца	48
Синтез пиримидинов:	50
Белки-5	51
Распад пуринов	51
Распад пиримидинов:	52
Схема биосинтеза белка (прокариотическая клетка)	53
Биохимия гормонов и витаминов	54
Гормоны-1	54
Обмен Са/Р	54
Метаболизм витамина D	54
Принципы организации НЭС	55
Гормоны-2	56
Формулы гормонов	56
Синтез серотонина	56
Синтез тиреоидных гормонов	57
Биохимия органов и систем	58
Кровь-1	58
Основные биохимические константы	58
Кровь-2	59
Синтез гема	59
Распад гема	60
Транспорт железа	61
Почки	61
Ацидо- и аммониогенез	61
Синтез креатинина	62
Печень	
Детоксикация ксенобиотиков	63
Мышечная ткань	
Электромеханическое сопряжение	64
Синтез ансерина и карнозина	64

Гипокинетический синдром	65
Нервная и соединительная ткань	
Строение десмозина	65
Гидроксилирование пролина и лизина	66
Механизм электрогенеза	66
Синтез ацетилхолина	