	 	_						
Reg. No.								
9	1			 		_	 	_

B.Tech/ M.Tech (Integrated) DEGREE EXAMINATION, MAY 2024

Fourth Semester

21CSC204J – DESIGN AND ANALYSIS OF ALGORITHMS

(For the candidates admitted from the academic year 2022-2023 onwards)

(i) (ii)		over	 A should be answered in OMR sh to hall invigilator at the end of 40th m B and Part - C should be answered 	inute.		t shoul	d be	hand	ded
	3 F	lours				Max.	Ma	rks:	75
						Marks	BL	со	PO
			$PART - A (20 \times 1 =$			11241			
			Answer ALL Qu	iestio	ns	1	1	1	1
	1.		of the algorithm is the function	n dei	ined by the minimum number of				
			s taken on any instance of size n.	(D)	Best-case complexity				
		(A)	Worst-case complexity		Average-best case complexity				
		(C)	Average-case complexity	(D)	Average-best case complexity				
	2.	Com	pute the time complexity for the	follov	wing code:	1	3	1	2
			a=0;						
			(i = 0; i < n; i++)						
			for $(j = 0; j < n; j++)$						
			sum ++;	(D)	O(n 100 n)				
		` '	O(n)	` '	$O(n \log n)$				
		(C)	$O(\log n)$	(D)	$O(n^2)$				
	3	Whi	ch of the following is linear asyn	ntoti	c notations?	1	1	1	1
	<i>5</i>		O(1)	(B)	O(log n)				
		` ′	O (n)	` '	$O(n \log n)$				
		(0)		` '					
	4.	The	master theorem			1	1	1	1
		(A)	Assumes the subproblems are	(B)	Can be used if the subproblems				
		. ,	unequal sizes		are of equal sizes				
		(C)	Cannot be used for divide and conquer algorithms	(D)	Cannot be used for asymptotic complexity analysis				
	5	Mar	ero gort uses which of the following	no teo	chnique to implement sorting?	1	1	2	2
	J.		Back tracking	(B)	Greedy algorithm				
		(C)	Divide and conquer	(D)	Dynamic partitioning				
		` /		,		. 1	1	2	2
	6.		at is the recurrence relation used	in Str	assen's matrix multiplication?			_	
		(A)	$7T(n/2) + \theta(n^2)$	(B)	$8T(n/2) + \theta(n^2)$				
		(C)	$7T(n/2) + 0(n^2)$	(D)	$8T(n/2) + 0(n^2)$				
	7	Ein	d the maximum sub-array sum fo	r the	given elements.	1	3	2	2
	7.	L III ($\{2, -1, 3, -4, 1, -2, -1, 5, -4\}$		2 0. The Value of the Control				
		(A)		(B)	5		4		
		(C)		(D)					
		(0)	Č	()		16MA	4-21C	SC204	IJ

Page 1 of 4

8.	(A) (C)	` _	(B)	lie in a convex hull is O(n log n) O(log n)	1	1	2	1
9.	tree	2. 100 1 4 3 0 a	code	word for character 'a' in the given	1	3	3	3
	(A) (C)	010 011	(B) (D)					
10.	Wh: (A) (C)	It is tree that spans G	(B)	of a spanning tree of a graph G? It can be either cyclic or acyclic It includes every vertex of G	1	2	3	2
11.	(A)	ich of the following can be solved Merge sort Longest common subsequence	(B)	Binary search	1	2	3	2
12.	mati requ	sider the matrices P, Q and R rices respectively. What is the fired to multiple the three matrices 12000 24000	minii es?	n are 10×20, 20×30 and 30×40 mum number of multiplications 18000 32000	1	3	3	2
13.	What (A)	It happens when a backtracking a It backtracks to the root It traverses from a different route	(B)	hm reaches a complete solution? It continues searching for the other possible solutions Recursively traverses through the same route	1	2	4	2
14.	(A)	elling salesman problem is an ex Divide and conquer Dynamic algorithm	(B)	e of Recursive approach Greedy algorithm	1	1	4	1
15.	to vi shou (A)	sit every place connected to this ld use? Breadth first search	verte. (B)	arts from a vertex and then wants x and so on. What algorithm the Depth first search	I	4	4	1
	In wl progi (A)	ramming? O(N)	prob	Kruskal's algorithm lem can be solved using dynamic $O(N^2)$	1	1	4	1
		$O(N^2 2^N)$		O(N log N)				
	(A)	is the purpose of using randomiz To avoid worst case time complexity	(B)	To avoid worst case space complexity	1	2	5	1
	(C)	To improve average case time complexity	(D)	To improve accuracy of output				

	18			rect basic principle in	Rabin K	Carp algorithm.	1	1	5	2
			Sorting		(B)	Augmenting				
		(C)	Dynan	nic programming	(D)	Hashing				
	19		is	the class of decision	problem	ng that can be asked by	1	1	5	1
	17		is rministi	c polynomial algorithm	n problei	ms that can be solved by non-	1	1	J	1
		(A)		To-June-com wigorium	(B)	P				
		(C)	NP-ha	rd	` /	NP-Complete				
	•	1				•				
	20.	. Unde	er what	condition any set A w	ill be a s	subset of B?	1	1	5	1
		(A)	ir all e	t in set A	so (B)	If all elements of set A are also				
		(C)	-		ate (D)	present in set B If B contains more elements than				
		(0)	than B	ontains more ciemer	113 (D)	A				
				DADE DE						
				PART – B (5 × 8			Marks	BL	co	PO
				Answer ALL	Questic	ons				
21	. a.	Solve	e the fol	llowing recurrence rela	ation and	d compute the time complexity		3	1	3
				n) = 2T(n 2) + cn		The same completing	4			
		(ii)	T(z)	n)=2T(n-1)+c			4			
	1.	XX7		(OR	3)					
	D.	eleme	e the alg	gorithm of insertion s ed below.	ort and t	trace the algorithm for the array	8	3 =	1	2
				{21, 7, 12, 10, 6, 16, 1	243					
			[]	(=1, 7, 1=, 10, 0, 10, .	2.,					
22	. a.	Apply	y maste	red theorem and find t	he time	complexity for the following		4	2	2
		(i)	T(r)	$n)=3T(n 2)+n^2$	•		2			
		(ii)	T(r)	$n)=4T(n 2)+n^2$			2			
		(iii	T(r)	n)=16T(n 4)+n			2			
		(iv)	T(r)	$n) = 2^n T(n 2) + n^5$						
				(07			2			
	h	Illust	rata ani	(OR			o	4	2	7
	υ.	time o	complex	kity for best case, aver	ne exam	ple given below and explain the	8	4	2	3
		a	a[]={:	56, 26, 93, 17, 77, 31,	44, 55, 2	20}				
23	. a.						o	2	2	2
<u> </u>	. а.	proble	em usin	g knapsack algorithm,	ack aigo	orithm and solve the following	8	3	3	2
		_		of items: 5						
		S	Sack cap	pacity: 100						
			Value	20 30 66 40	60					
		1	Weight	- 			20			
	h	Const	must the	(OR)		11.0 4	0	2	2	
	b.			B, C, B, D, A, B} and		table for the sequence	8	3	3	2
		2	~ (11,	~, ~, D, D, A, D, and	$\mathbf{L} = \mathbf{D}$	$, \nu, \iota, \Lambda, \nu, \Lambda$				
24.	a.	Write	the alg	gorithm for N-queen's	proble	m and illustrate the same with	8	2	4	1
				xample for 4×4 board.						
				(OR)						

16MA4-21CSC204J

Page 3 of 4

b. Obtain the transitive closure for the following digraph using Floyd-Warshall algorithm.

25. a. Discuss the following terms with suitable example

- (i) P
- (ii) NP
- (iii) NP-complete (iv) NP-Hard problems

(OR)

b. What is Hamiltonian cycle? Explain the algorithm to find the Hamiltonian cycle in a given connected graph.

$PART - C (1 \times 15 = 15 Marks)$ Answer ANY ONE Question

26. Consider the following cityscape challenge. Imagine a miniature archipelago of seven islands (lets name them A thro G). The local government want to build bridges between there islands to ensure connectivity. However, the cost of bridge construction varies based on the distance and the terrain between each pair of islands. Apply minimum spanning tree (Prim's /Kruskal's) algorithms and device a optimal solution for the problem.

Island connections	Cost
A-B	7
A-D	5
B-C	8
B-D	9
B-E	7
C-E	5
D-E	15
D-F	6
E-F	8
E-G	9
F-G	11

27. A fruit seller visited a street in a city. He started selling various fruits to people who live there. A buyer bought 1 kg of apple and 2 kgs of oranges for rupees 90 and 70 respectively. The buyer gave 200 rupees to the fruit seller. And he is waiting for the seller to give the remaining amount to him. Seller is having the following denomination of coins with him. Device a subset sum algorithm to help the fruit seller to reader the exact change to the buyer.

Denomination of coins	Count of coins
1	7
2	5
5	3
10	2