

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

ALGEBRA.

Conducted by J. M. COLAW, Monterey, Va. All contributions to this department should be sent to him.

SOLUTIONS OF PROBLEMS.

58. Proposed by D. G. DORRANCE, Jr., Camden, Oneida County, New York.

Sum the series 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, etc., to n terms; also what is the nth term?

Solution by COOPER D. SCHMITT, A. M., Professor of Mathematics, University of Tennessee, Knoxville, Tennessee, and Prof. P. S. BERG, Larimore, North Dakota.

The series is evidently made up as follows from the different rows in Pascal's Triangle, beginning three farther to the right every time; thus,

The n^{th} term of (a) is 1; the $(n-3)^{th}$ term of (b) is n-3; the $(n-6)^{th}$ term

of (c) is
$$\frac{(n-5)(n-6)}{2}$$
; the $(n-9)^{th}$ term of (d) is $\frac{(n-7)(n-8)(n-9)}{3}$; and the

$$(n-12)^{th}$$
 term of (e) is $\frac{(n-9)(n-10)(n-11)(n-12)}{|4|}$; and so on. Hence the n^{th}

term of the original series is composed of the sum of the above different terms; i. e.

$$1 + (n-3) + \frac{(n-5)(n-6)}{\mid 2} + \frac{(n-7)(n-8)(n-9)}{\mid 3} + \frac{(n-9)(-10)(n-11)(n-12)}{\mid 4}$$

+..... Also, the sum of n terms of (a) is n; of (n-3) terms of (b) is

$$\frac{(n-3)(n-2)}{2}$$
; of $(n-6)$ terms of (c) is $\frac{(n-6)(n-5)(n-4)}{2}$; and the sum of

$$(n-9)$$
 terms of (d) is $\frac{(n-9)(n-8)(n-7)(n-6)}{|4|}$ and hence $S=n+$

$$\frac{(n-3)(n-2)}{|2|} + \frac{(n-6)(n-5)(n-4)}{|3|} + \frac{(n-9)(n-8)(n-7)(n-6)}{|4|} + \cdots$$

Also solved by B. F. YANNEY and G. B. M. ZERR.