Problem Set

MA18Q1-J

mail@kenjisato.jp

2018/5/8

[1] Capital accumulation equation

The capital accumulation equation for the Ramsey model is given by

$$\dot{\hat{k}} = f(\hat{k}) - \hat{c} - (\delta + g + n)\hat{k},$$

where \hat{k} is the capital stock per unit of effective labor, \hat{c} the consumption per unit of effective labor. Parameters δ , g, n are the depreciation rate, technical growth rate, population growth rate, respectively.

- 1. Suppose that the intensive-form production function is of Cobb–Douglas form, $f(\hat{k}) = \hat{k}^{\alpha}$. Draw a locus of (\hat{k}, \hat{c}) on which $\dot{k} = 0$ is met.
- 2. Indicate the golden rule level of capital stock \hat{k}_G^* in the same graph.

[2] Utility

Consider the total utility function

$$\int_0^\infty e^{-\rho t} u\left(\hat{c}(t)\right) dt$$

- 1. Compute the total utility for a steady state level of consumption $\hat{c}(t) \equiv \bar{c}$; i.e. $\int_0^\infty e^{-\rho t} u(\bar{c}) dt$. [Hint: Use the integration by parts formula.]
- 2. Compute the marginal rate of substitution between $\hat{c}(t)$ and $\hat{c}(s)$ for t < s.
- 3. Explain why you can interpret ρ as a measure of impatience. Use the above results.

Integration by parts formula

$$\int_{a}^{b} f(x)g'(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx,$$

where $[f(x)g(x)]_a^b = f(b)g(b) - f(a)g(a)$.

Marginal rate of substitution Let c_i be consumption of good i = 1, 2, ..., N and $U(c_1, ..., c_N)$ a utility function. The marginal rate of substitution between goods i and j is defined by

$$\frac{\partial U/\partial c_i}{\partial U/\partial c_j}$$

1

