Bioinformatics Scientist (4263) Programming test

January 28, 2023

1 1) Read in datasets

```
import libraries
```

```
[]: library(ggplot2)
    library(readxl)
    library(dplyr)
```

read in files as dataframes

New names:

- `` -> `...3`
- `` -> `...4`
- `` -> `...6`
- `` -> `...7`
- `` -> `...9`
- `` -> `...10`
- `` -> `...12`
- `` -> `...13`

preprocess hustedt df

```
[]: # make new df with columns 1-4
hustedt_subset_azd6738 <- hustedt[,c(1, 2, 3, 4)]
```

```
# make 2nd row the headers
colnames(hustedt_subset_azd6738) <- hustedt_subset_azd6738[1, ]

# remove 2nd row
hustedt_subset_azd6738 <- hustedt_subset_azd6738[-1, ]

# add cell_line column equal to RPE1-hTER
hustedt_subset_azd6738$cell_line <- "RPE1-hTERT"

# add treatment column equal to AZD6738
hustedt_subset_azd6738$treatment <- "AZD6738"

# rename column 1 to GENE
colnames(hustedt_subset_azd6738)[1] <- "GENE"
head(hustedt_subset_azd6738)</pre>
```

	GENE	normZ	p-value	FDR	cell_line
	<chr $>$	<chr $>$	<chr $>$	<chr></chr>	<chr $>$
_	A1BG	-0.46	0.324000000000000001	1.120000000000000001	RPE1-hTERT
A tibble: 6×6	A1CF	0.54	0.70699999999999999	0.98399999999999999	RPE1-hTERT
A tiddle, 0 \ 0	A2M	0.13	0.5500000000000000004	1.02	RPE1-hTERT
	A2ML1	-0.25	0.4020000000000000002	1.090000000000000001	RPE1-hTERT
	A4GALT	-1.1299999999999999	0.129	1.27	RPE1-hTERT
	A4GNT	1.35	0.912000000000000003	0.9709999999999997	RPE1-hTERT

preprocess 2nd subset from Hustedt et al. 2019

```
[]: # make new df with columns 1, 5, 6 and 7
hustedt_subset_rpe1htert_ve821 <- hustedt[, c(1, 5, 6, 7)]

# make 2nd row the headers
colnames(hustedt_subset_rpe1htert_ve821) <- hustedt_subset_rpe1htert_ve821[1, ]

# remove 2nd row
hustedt_subset_rpe1htert_ve821 <- hustedt_subset_rpe1htert_ve821[-1, ]

# add cell_line column equal to RPE1-hTER
hustedt_subset_rpe1htert_ve821$cell_line <- "RPE1-hTERT"

# add treatment column equal to AZD6738
hustedt_subset_rpe1htert_ve821$treatment <- "VE821"

# rename column 1 to GENE
colnames(hustedt_subset_rpe1htert_ve821)[1] <- "GENE"
head(hustedt_subset_rpe1htert_ve821)</pre>
```

```
GENE
                                                               FDR
                       \operatorname{norm} Z
                                           p-value
                                                                                   cell line
             <chr>
                       < chr >
                                           < chr >
                                                               < chr >
                                                                                   < chr >
             A1BG
                       0.32
                                           0.626
                                                                                   RPE1-hTERT
             A1CF
                       -1.10000000000000001
                                           0.136000000000000001
                                                               1.26
                                                                                   RPE1-hTERT
A tibble: 6 \times 6
             A2M
                       0.2
                                                                                   RPE1-hTERT
                                           0.5789999999999999
                                                               1.02
             A2ML1
                       -0.97
                                           0.1650000000000000001
                                                              1.26
                                                                                   RPE1-hTERT
             A4GALT
                      -0.11
                                           0.455000000000000002
                                                                                   RPE1-hTERT
                                                              1.07
             A4GNT
                       0.39
                                           RPE1-hTERT
```

preprocess 3rd subset Hustedt et al. 2019

```
[]: # make new df with columns 1, 8, 9 and 10
hustedt_subset_hela_ve821 <- hustedt[, c(1, 8, 9, 10)]

# make 2nd row the headers
colnames(hustedt_subset_hela_ve821) <- hustedt_subset_hela_ve821[1, ]

# remove 2nd row
hustedt_subset_hela_ve821 <- hustedt_subset_hela_ve821[-1, ]

# add cell_line column equal to RPE1-hTER
hustedt_subset_hela_ve821$cell_line <- "HeLa"

# add treatment column equal to AZD6738
hustedt_subset_hela_ve821$treatment <- "VE821"

# rename column 1 to GENE
colnames(hustedt_subset_hela_ve821)[1] <- "GENE"
head(hustedt_subset_hela_ve821)</pre>
```

	GENE	$\operatorname{norm} Z$	p-value	FDR	$\operatorname{cell_line}$	treatment
	<chr $>$	<chr $>$	<chr></chr>	<chr $>$	<chr $>$	<chr $>$
-	A1BG	0.03	0.511000000000000001	1.02	HeLa	VE821
A tibble: 6×6	A1CF	-0.64	0.261000000000000001	1.05	HeLa	VE821
	A2M	1.05	0.85299999999999998	0.99299999999999999	HeLa	VE821
	A2ML1	0.03	0.511000000000000001	1.02	HeLa	VE821
	A4GALT	-1.9	2.889999999999999E-2	0.83699999999999997	HeLa	VE821
	A4GNT	-0.4	0.343000000000000003	1.04	HeLa	VE821

preprocess 4th subset Hustedt et al. 2019

```
[]: # make new df with columns 1, 11, 12 and 13
hustedt_subset_hct116_ve821 <- hustedt[, c(1, 11, 12, 13)]

# make 2nd row the headers
colnames(hustedt_subset_hct116_ve821) <- hustedt_subset_hct116_ve821[1, ]
# remove 2nd row
hustedt_subset_hct116_ve821 <- hustedt_subset_hct116_ve821[-1, ]
```

```
# add cell_line column equal to RPE1-hTER
hustedt_subset_hct116_ve821$cell_line <- "HCT116"

# add treatment column equal to AZD6738
hustedt_subset_hct116_ve821$treatment <- "VE821"

# rename column 1 to GENE
colnames(hustedt_subset_hct116_ve821)[1] <- "GENE"
head(hustedt_subset_hct116_ve821)</pre>
```

```
GENE
                        normZ
                                                                   FDR
                                                                           cell line
                                            p-value
                                                                                    treatment
              <chr>
                        <chr>
                                                                   <chr>
                                                                           <chr>
                                                                                     <chr>
                                             < chr >
              A1BG
                        1.87
                                            0.96899999999999997
                                                                   0.998
                                                                           HCT116
                                                                                     VE821
             A1CF
                        -0.21
                                                                           HCT116
                                                                                    VE821
                                            0.4149999999999998
                                                                   1.02
A tibble: 6 \times 6
              A2M
                        0.5699999999999999
                                            0.713999999999999997
                                                                   0.999
                                                                           HCT116
                                                                                    VE821
              A2ML1
                                                                           HCT116
                                                                                    VE821
                        -1.3
                                            9.6000000000000002E-2
                                                                   0.997
              A4GALT 0.560000000000000005
                                            0.7109999999999997
                                                                   0.999
                                                                           HCT116
                                                                                     VE821
             A4GNT
                                            0.4650000000000000002
                                                                           HCT116 VE821
                        -0.09
                                                                   1.02
```

merge the four subsets

```
view files
[]: head(olivieri_nonan)
```

		gene	cell_line	treatment	normz	fdr
		<chr></chr>	<chr $>$	<chr $>$	<dbl $>$	<dbl $>$
•	1	A1BG	RPE1-hTERT	Cisplatin1	-2.20	0.880
A data.frame: 6×5	2	A1BG	RPE1-hTERT	IR	0.03	1.020
A data.frame. 0 × 5	3	A1BG	RPE1-hTERT	UV	-1.14	1.320
	4	A1BG	RPE1-hTERT	Olaparib	1.27	0.991
	5	A1BG	RPE1-hTERT	AZD6738	-0.46	1.120
	6	A1BG	RPE1-hTERT	Cisplatin2	0.83	0.922

[]: head(hustedt_nonan)

	gene	$\operatorname{cell_line}$	treatment	normz	fdr
	<chr $>$	<chr $>$	<chr $>$	<dbl $>$	<dbl $>$
·	A1BG	RPE1-hTERT	AZD6738	-0.46	1.120
A tibble 6 v 5	A1CF	RPE1-hTERT	AZD6738	0.54	0.984
A tibble: 6×5	A2M	RPE1-hTERT	AZD6738	0.13	1.020
	A2ML1	RPE1-hTERT	AZD6738	-0.25	1.090
	A4GALT	RPE1-hTERT	AZD6738	-1.13	1.270
	A4GNT	RPE1-hTERT	AZD6738	1.35	0.971

2 2) Explore both datasets

In the Olivieri dataset, not all genes are present in each treatment

[]: # get number of unique genes in each treatment and cell line for each paper olivieri_nonan %>% count(treatment, cell_line)

	${ m treatment}$	cell_line	n
	<chr $>$	<chr $>$	<int $>$
	AZD6738	RPE1-hTERT	17272
	Cisplatin1	RPE1-hTERT	17382
	Cisplatin2	RPE1-hTERT	17249
A data.frame: 9×3	Cisplatin3	RPE1-hTERT	17272
	Formaldehyde	RPE1-hTERT	17293
	IR	RPE1-hTERT	17315
	KBrO3	RPE1-hTERT	17380
	Olaparib	RPE1-hTERT	17277
	UV	RPE1-hTERT	17361

In the Hustedt dataset, all treatments have an equal number (15910) of genes present. The are approximately 1400 fewer genes in the Hustedt dataset compared to the Olivieri dataset

[]: # get number of unique genes in each treatment and cell line for each paper hustedt_nonan %>% count(treatment, cell_line)

```
treatment cell line
                                          n
                < chr >
                           <chr>
                                          <int>
               AZD6738
                           RPE1-hTERT
                                          15910
A tibble: 4 \times 3
               VE821
                           HCT116
                                          15910
                VE821
                           HeLa
                                          15910
                           RPE1-hTERT
                VE821
                                          15910
```

2.1 2a)

The shape of the plots of normZ values vs FDR in each cell line/treatment are roughly the same although Cisplatin2, Cisplatin3 and KBrO3 treatments have larger peaks with higher FDR scores between 0 and 2 normZ. AZD6738, Cisplatin2, Cisplatin3 and UV cause the most lethality, with many normZ scores under -15.

```
[]: # plot the normZ values vs FDR for each cell line and treatment
plotting(olivieri_nonan, "cell_line", "treatment", "normZ", "FDR", "Olivieri etu
al. 2020 DrugZ-calculated normZ scores vs FDR")

# save plot as pdf
ggsave("../data/Olivieri_normZ_FDR.pdf", width = 10, height = 10)
```


Again, the shape of the plots of normZ values vs FDR in each cell line/treatment in the Hustedt dataset are roughly the same although the RPE1-hTERT cell lines have larger peaks with higher FDR scores between 0 and 2 normZ. There are not many significantly lethal genes with normZ scores of -2.5 or under and FDR under 0.1 with the VE821 treatments

```
[]: # plot the normZ values vs FDR for each cell line and treatment, hustedt data plotting(hustedt_nonan, "cell_line", "treatment", "normZ", "FDR", "Hustedt et of al. 2019 DrugZ-calculated normZ scores vs FDR")
# save plot as pdf
ggsave("../data/Hustedt_normZ_FDR.pdf", width = 10, height = 10)
```

Hustedt et al. 2019 DrugZ-calculated normZ scores vs FDR

There is a slight negative skew, with a wider range of negative normZ scores than positive

```
[]: # plot the distribution of the normZ values for each cell line and treatment
ggplot(data = olivieri_nonan, aes(x = normz, fill = treatment)) +
geom_histogram(bins = 50) +

facet_wrap(~cell_line) +
labs(x = "normZ", y = "Count", title = "Distribution of normZ scores of
→various treatments with the \nRPE1-hTERT cell line in the Olivieri dataset")
```

Distribution of normZ scores of various treatments with the RPE1-hTERT cell line in the Olivieri dataset


```
[]: # plot the distribution of the normZ values for each cell line and treatment
ggplot(data = hustedt_nonan, aes(x = normz, fill = treatment)) + # Construct_

aesthetic mappings of variables to plot

# display histogram
geom_histogram(bins = 50) +

# add subplot titles
facet_wrap(~cell_line) +

# add axis labels and title
labs(x = "normZ", y = "Count", title = "Distribution of normZ scores of_

treatments and cell lines in the Hustedt dataset")
```

Distribution of normZ scores of treatments and cell lines in the Hustedt dataset

plot RPE1-hTERT cell_line, AZD6738 treatment from olivieri_nonan with AZD6738 treatment from hustedt nonan

```
[]: # merge the dfs, creating a column for the paper
  olivieri_nonan$paper <- "Olivieri"
  hustedt_nonan$paper <- "Hustedt"
  merged <- merge(olivieri_nonan, hustedt_nonan, by = c("gene", "cell_line", usteatment", "normz", "fdr", "paper"), all = TRUE)

# remove duplicates from merged based on gene, cell_line, treatment, normz, fdr
  merged_nodups <- merged[!duplicated(merged[, 1:5]), ]
  merged_dups = merged[duplicated(merged[, 1:5]), ]</pre>
```

```
# compare RPE1-hTERT cell_line and AZD6738 treatment
merged_rpe1htert_azd6738 <- merged_nodups[merged_nodups$cell_line ==_

"RPE1-hTERT" & merged_nodups$treatment == "AZD6738", ]
```

There are 15725 duplicate values between the two datasets!

```
[]: # number of genes in merged_dups
nrow(merged_dups)
```

15725

Using only non-duplicated values, the distribution of normZ scores between the two papers is similar, although the Hustedt dataset has a larger peak around 0. Ignoring the slight negative skew, the data look normally distributed

Distribution of normZ scores for RPE1-hTERT cell line and AZD6738 treatment between Hustedt and Olivieri datasets

[]: merged_rpe1htert_azd6738 %>% count(treatment, cell_line, paper)

	treatment	cell_line	paper	n
A data.frame: 2×4	<chr $>$	<chr $>$	<chr $>$	<int $>$
	AZD6738	RPE1-hTERT	Hustedt	15910
	AZD6738	RPE1-hTERT	Olivieri	1547

- 2.2 2b) the datasets will be comparable if the intersect is taken based on genes present (so both datasets contain the same genes) since they are both normalised using DrugZ. This is assuming similar experimental conditions were used. The RPE1-hTERT cell lines are more comparable than the other cell lines, since they are present in both datasets. Note some data points are present in both datasets so duplicates should be removed.
- 3 3)
- 3.1 3a) there are 3 cell lines in the two datasets (RPE1-hTERT, HeLa, HCT116)
- 3.2 3b) There are 10 treatments. i) AZD6738 and VE821 are most similar based on their distributions
- 3.3 3c) See the table below for the number of hits for each treatment/cell line per dataset

```
[]: # filter merged to include normZ values <= -2.5 and FDR < 0.1
merged_filtered <- merged[merged$normz <= -2.5 & merged$fdr < 0.1, ]

# Count the number of genes in each treatment and cell line for each paper
merged_filtered %>% count(treatment, cell_line, paper)
```

paper

n

cell line

	or coordinate	con_mic	Paper	
	<chr $>$	<chr $>$	<chr $>$	<int $>$
•	AZD6738	RPE1-hTERT	Hustedt	76
	AZD6738	RPE1-hTERT	Olivieri	84
	Cisplatin1	RPE1-hTERT	Olivieri	52
	Cisplatin2	RPE1-hTERT	Olivieri	104
	Cisplatin3	RPE1-hTERT	Olivieri	124
A data.frame: 13×4	Formaldehyde	RPE1-hTERT	Olivieri	39
	IR	RPE1-hTERT	Olivieri	18
	KBrO3	RPE1-hTERT	Olivieri	162
	Olaparib	RPE1-hTERT	Olivieri	21
	UV	RPE1-hTERT	Olivieri	114
	VE821	HCT116	Hustedt	13
	VE821	HeLa	Hustedt	7
	VE821	RPE1-hTERT	Hustedt	125

treatment

- 3.4 3d) I would prioritise genes which have lower normZ scores and which are present in the most treatments. I would also prioritise those genes with low normZ scores which were similar between cell lines.
- 3.5 3e) I would visualise top synthetic lethal genes using a heatmap of gene vs treatment coloured by normZ score
- 4 4) You could explore the genes with the highest norm scores (resistant genes). You could test which genes were most stably synthetic lethal or resistant across different treatments, and look at which genes were synthetic lethal or resistant with only certain treatments. You could also check whether the same genes were found to be most synthetic lethal/resistance between the two datasets.

5 5)

- 5.1 5a) no the ATRi treatments are not more similar to each other compared to other non-ATRi treatments (looking at the distributions). Differences between cell lines are larger.
- 5.2 5b) top 5 scoring genes are POLE3/4, RAD1, ATG9A and LCMT1

		gene	cell_line	treatment	normz	fdr	paper
		<chr></chr>	<chr $>$	<chr $>$	<dbl $>$	<dbl $>$	<chr $>$
	145163	POLE4	RPE1-hTERT	AZD6738	-18.70	4.48e-74	Hustedt
A data.frame: 6×6	145150	POLE3	RPE1-hTERT	AZD6738	-14.53	3.64e-44	Hustedt
A data. Hame: 0×0	154350	RAD1	RPE1-hTERT	AZD6738	-13.28	8.40e-37	Olivieri
	14036	ATG9A	RPE1-hTERT	VE821	-12.52	4.57e-32	Hustedt
	145160	POLE3	RPE1-hTERT	VE821	-11.57	2.30e-27	Hustedt
	102051	LCMT1	RPE1-hTERT	AZD6738	-10.72	1.81e-23	Hustedt

- []: #get unique cell lines merged_filtered_atri
 unique(merged_filtered_atri\$cell_line)
 - 1. 'RPE1-hTERT' 2. 'HCT116' 3. 'HeLa'
 - 5.3 5c) consensus genes would be those that are the top ranked in both ATRi treatments i) I would expect cell line specific effects too, which might be due to batch or biological effects specific to each cell line
 - 5.4 5d) You could check whether genes were enriched in a certain molecular pathway using a Gene Ontology / pathway enrichment analysis