ADVANCEMENTS IN ESTIMATING DIFFERENTIAL PISTONS FOR

THE EXTREMELY LARGE TELESCOPE USING DEEP LEARNING

JANIN-POTIRON, P. (a), GRAY, M. (a), NEICHEL, B. (a), DUMONT, M. (b,c,a), SAUVAGE, J.-F. (b,a), FETICK, R. JL. (b,a), FUSCO, T. (d,a) (a) Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France (b) DOTA, ONERA, F-13661 Salon Cedex Air - France (c) Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465Porto, Portugal

Our previous study (Chauvet et al. 23) demonstrated

that the network achieves high performances (RMSE

< 10nm @ 2.2µm) when using single frames

Aix*Marseille

PETALING BASICS

DIFFERENTIAL PISTON (OR PETALING) ARISES FROM VARIOUS SOURCES

e.g. atmosphere, thermal or mechanical effects, control loop properties.

(d) DOTA, ONERA, Université Paris Saclay, 91123 Palaiseau, France

PETALING HAS A DISTINCTIVE PATTERN

Strong effect at low frequencies and ranges along a preferential direction perpendicular to the spider.

NEURAL NETWORK

RESNET ARCHITECTURE

Suited for our image application with a residual unit based architecture. The pupil rotation angle θ is integrated in the first dense layer.

ONE NETWORK PER DIFFERENTIAL PISTON

Each differential piston has its own personal network as it clearly improve the performances.

THE MODEL HAS 610K PARAMETERS AND IS TRAINED ON 300K IMAGES

We perform a hyper-parameter search on the scheduler defining the learning rate values for each configuration.

—— JQ2 UR

containing only turbulence residuals.

AO RESIDUALS SIGNIFICANTLY DEGRADE **PERFORMANCES**

Introducing AO residuals (e.g., fitting errors or temporal errors) into the simulation leads to a decline in performance on single frames.

AVERAGING RESTORE PERFORMANCES

Averaging the results across 10 images (uncorrelated realizations of the turbulence) significantly improves the network's performance over all conditions.

UL TYPES SUB PUPILS PERFORMANCE

Differential piston estimation is in the same range as the UR case. Anisotropy in the PSD causes the asymmetry between the UL1 and UL2

CPHILOSOPHY

WE MEASURE DIFFERENTIAL PISTON FROM FOCAL PLANE **IMAGES**

Harmoni will integrate a 2x2 Shack-Hartmann WFS dedicated to the measure of low-order aberrations. The PSF produce by the sensor contains information on the differential piston.

TO ESTIMATE PISTON FROM THESE PSF

Each of the four sub-apertures produces a PSF that encodes the information on differential piston. The network learns the relation between the differential piston value and the PSF.

THE SYMMETRIES OF THE PUPIL REDUCE THE CASES TO BE TESTED We only have to study the two upper sub pupils UL and UR. **DIFFERENTIAL NEURAL** NETWORK ' **PISTONS** (see NEURAL **NETWORK** PSFs at the SH focal plane section)

-IN THE FUTURE

TAKING A STEP FURTHER TOWARD **REAL WORLD APPLICATION**

We will include noise, polychromatism and use correlated turbulence phase screens in the coming simulations.

BUILDING MORE INSIGHTS ON THE IMAGE FORMATION **PROCESS**

We will try to better understand the behavior of the speckles created by the petaling to propose ameliorations to our algorithm.

- [1] Chauvet, C. et al., "Estimating the elt's differential pistons with deep learning," in [Adaptive Optics for Extremely Large Telescopes7th Edition], ONERA, Avignon, France (2023).
- [2] Gray, M. et al., "DEEPLOOP: DEEP Learning for an Optimized adaptive Optics Psf estimation," in [Proceedings SPIE Adaptive OpticsSystems VIII], 2024). 117, SPIE, Montréal, Canada (July 2022).
- [3] Neichel, B. et al., "Tiptop: a new tool to efficiently predict your favorite ao psf," (2021).
- [4] Beltramo, Olivier, "P3 fourier psf," (2020) https://github.com/astro-tiptop/P3. [5] Bertrou-Cantou, A., Analyse de front d'onde et commande en optique adaptative pour la pupille fragmentée de l'ELT, PhD thesis (2021).
- [6] Rossi, F. et al., "Machine learning techniques for piston sensing," in [Adaptive Optics Systems VIII], International Society for Optics and Photonics, SPIE (2022). [7] Dumont, M. et al., "Phasing segmented telescopes via deep learning methods: application to a deployable cubesat," J. Opt. Soc. Am. A41, 489-499 (Mar
- [8] Neichel, B. et al., "Tomographic reconstruction for wide-field adaptive optics systems: Fourier domain analysis and fundamental limitations," J. Opt. Soc. Am. A26, 219-235 (Jan 2009).
- [9] Levraud, N. et al., "A strategy for sensing the petal mode in the presence of ao residual turbulence with the pyramid wavefront sensor," Astronomy & Astrophysics 682, A84 (02 2024)