PSALTer results panel $S = \iiint \left(\frac{1}{8} \left(-4a_{0} \cdot \mathcal{A}_{\alpha_{N}} \mathcal{A}_{\beta_{N}} \mathcal{A}_{\beta_{N}} + 8 \cdot \mathcal{A}_{\alpha_{N}} \mathcal{A}_{\beta_{N}} \mathcal{A}_{\beta_{N}$

Saturated propagator

	$\overset{0}{\cdot}^{+}\mathcal{T}^{\perp}$	$^{0,^{+}}\mathcal{T}^{\parallel}$	${}^{0,^{+}}\mathcal{W}_{s}^{\perp t}$	$^{0,+}W_{s}^{\parallel}$	${}^{0,^{+}}\mathcal{W}_{s}{}^{\perph}$										
^{0,+} <i>T</i> ^{-⊥} †	$-\frac{4 k^2 (a8 k^2 h.)}{3 a.^2 (4+k^2)^2}$	- 0 -	$\frac{8ik(a8k^2h.)}{3a.^2(4+k^2)^2}$	$\frac{10 i k}{12 a. +3 a. k^2}$	$\frac{4i \sqrt{2} k}{12a.+3a.k^2}$										
$^{0,^{+}}\mathcal{T}^{\parallel}$	0	$\frac{4}{a_0 k^2}$	0	$-\frac{2i}{\sqrt{3}}a_{0}k$	$\frac{4 i \sqrt{\frac{2}{3}}}{a \cdot k}$										
$0.^{+}W_{S}^{\perp t}$	$\frac{8 i k (a8 k^2 h.)}{3 a.^2 (4+k^2)^2}$. 0	$-\frac{16(a8k^2h.)}{3a.^2(4+k^2)^2}$	$\frac{20}{12 a_0 + 3 a_0 k^2}$	$\frac{8\sqrt{2}}{12a_0+3a_0k^2}$										
	$-\frac{10 i k}{12 a. +3 a. k^2}$			0	0										
0.+W _s +h	$-\frac{4 i \sqrt{2} k}{12 a + 3 a k^{2}}$	$-\frac{4i\sqrt{\frac{2}{3}}}{a.k}$	$\frac{8 \sqrt{2}}{12 a + 3 a k^{2}}$	0	0	1 ⁺ W _S ¹ αβ	1 . $\mathcal{T}^{\perp}{}_{lpha}$	${}^{1}\mathcal{W}_{S}{}^{\mathtt{Lt}}{}_{\alpha}$	${}^{1}\mathcal{W}_{S}{}^{\parallelt}{}_{\alpha}$	1 ⁻ . W _S μh α	$^{1}\mathcal{M}_{S}^{\parallel h}{}_{lpha}$				
					$\overset{1^+}{\cdot} W_{S}{}^{\scriptscriptstyle \perp} \dagger^{\alpha\beta}$	$\frac{16}{4 ak^2 h.}$	0	0	0	0	0				
					¹ -τ' † ^α	0	$\frac{4 (6 a.^{2} k^{2} + a. k^{4} h8 k^{6} h.^{2})}{a. (2+k^{2})^{2} (12 a.^{2} -10 a. k^{2} h.^{5} k^{4} h.^{2})}$	$\frac{4i\sqrt{\frac{2}{3}}k(-6a.^{2}(1+k^{2})+a.k^{2}(19+9k^{2})h8k^{4}h.^{2})}{a.(2+k^{2})^{2}(12a.^{2}-10a.k^{2}h5k^{4}h.^{2})}$	$\frac{2 i \sqrt{\frac{10}{3}} k (6 a.^{2} - 3 a. k^{2} h 2 k^{4} h.^{2})}{a. (2+k^{2}) (12 a.^{2} - 10 a. k^{2} h 5 k^{4} h.^{2})}$	$-\frac{4 i k (-6 a.^{2} (4+k^{2})+a. k^{2} (16+9 k^{2}) h.+16 k^{4} h.^{2})}{\sqrt{3} a. (2+k^{2})^{2} (12 a.^{2}-10 a. k^{2} h.^{3} 5 k^{4} h.^{2})}$	$\frac{4i\sqrt{\frac{2}{3}}k(-12a.^{2}+9a.k^{2}h.+10k^{4}h.^{2})}{a.(2+k^{2})(12a.^{2}-10a.k^{2}h.^{5}+5k^{4}h.^{2})}$				
					¹ ⁻ Ws ^{±t} † ^α	0		$\frac{8 \left(-2 a_{.0}^{2} \left(13+10 k^{2}+k^{4}\right)+a_{.0} k^{2} \left(57+38 k^{2}+5 k^{4}\right) h_{.0}-8 k^{4} h_{.0}^{2}\right)}{3 a_{.0} \left(2+k^{2}\right)^{2} \left(12 a_{.0}^{2}-10 a_{.0} k^{2} h_{.0}-5 k^{4} h_{.0}^{2}\right)}$		$\frac{4\sqrt{2}(2a_{0}^{2}(4+k^{2}+k^{4})-a_{0}k^{4}(11+5k^{2})h_{0}-16k^{4}h_{0}^{2})}{3a_{0}(2+k^{2})^{2}(12a_{0}^{2}-10a_{0}k^{2}h_{0}-5k^{4}h_{0}^{2})}$	$\frac{8(a.^{2}(4+8k^{2})-a.k^{2}(1+5k^{2})h.+10k^{4}h.^{2})}{3a.(2+k^{2})(12a.^{2}-10a.k^{2}h5k^{4}h.^{2})}$				
					¹ ⁻ W _s " ^t †	0	$\frac{2 i \sqrt{\frac{10}{3}} k (-6 a.^{2} + 3 a. k^{2} h. + 2 k^{4} h.^{2})}{a. (2+k^{2}) (12 a.^{2} - 10 a. k^{2} h5 k^{4} h.^{2})}$	$\frac{4\sqrt{5}\left(2a_{.0}^{2}(5+k^{2})+a_{.0}k^{2}(-1+k^{2})h_{.3}-2k^{4}h_{.2}^{2}\right)}{3a_{.0}\left(2+k^{2}\right)\left(12a_{.0}^{2}-10a_{.0}k^{2}h_{.3}-5k^{4}h_{.2}^{2}\right)}$	$\frac{1}{-\frac{3k^2n_3^2}{2} + \frac{6}{5}a_0(1 + \frac{a_0}{14a_0 + 5k^2n_3})}$	$-\frac{2\sqrt{10}\left(2a.^{2}\left(-4+k^{2}\right)+a.k^{2}\left(8+k^{2}\right)h.+4k^{4}h.^{2}\right)}{3a.\left(2+k^{2}\right)\left(12a.^{2}-10a.k^{2}h.^{2}-5k^{4}h.^{2}\right)}$	$\frac{4 \sqrt{5} (4 a. + k^{2} h.)}{36 a.^{2} - 30 a. k^{2} h.^{3} - 15 k^{4} h.^{2}}$				
					¹¯Ws ^{⊥h} † ^α	0	$\frac{4 i k (-6 a.^{2} (4+k^{2})+a. k^{2} (16+9 k^{2}) h.^{1} +16 k^{4} h.^{2})}{\sqrt{3} a. (2+k^{2})^{2} (12 a.^{2}-10 a. k^{2} h.^{5} 5 k^{4} h.^{3})}$	$\frac{4\sqrt{2}(2a.^{2}(4+k^{2}+k^{4})-a.k^{4}(11+5k^{2})h16k^{4}h.^{2})}{3a.(2+k^{2})^{2}(12a.^{2}-10a.k^{2}h5k^{4}h.^{2})}$		$-\frac{4 \left(2 a.^{2} \left(-32-8 k^{2}+k^{4}\right)+a. k^{2} \left(48+16 k^{2}-5 k^{4}\right) h.+32 k^{4} h.^{2}\right)}{3 a. \left(2+k^{2}\right)^{2} \left(12 a.^{2} \left(-10 a. k^{2} h.^{2} 5 k^{4} h.^{2}\right)\right)}$					
					$^{1}W_{s}^{\parallel h}\dagger^{\alpha}$	0	$\frac{4 i \sqrt{\frac{2}{3}} k (12 a.^{2} - 9 a. k^{2} h.^{-10} k^{4} h.^{2})}{a. (2+k^{2}) (12 a.^{2} - 10 a. k^{2} h.^{-5} k^{4} h.^{2})}$	$\frac{8 \left(a_0^2 (4+8 k^2)-a_0 k^2 (1+5 k^2) h_0+10 k^4 h_0^2\right)}{3 a_0 (2+k^2) (12 a_0^2-10 a_0 k^2 h_0-5 k^4 h_0^2)}$	$\frac{4 \sqrt{5} (4 a_0 + k^2 h_3)}{36 a_0^2 - 30 a_0 k^2 h_3 - 15 k^4 h_3^2}$	$\frac{4\sqrt{2}(-8a_0^2(5+k^2)+a_0k^2(28+5k^2)h_0+20k^4h_0^2)}{3a_0(2+k^2)(12a_0^2-10a_0k^2h_0-5k^4h_0^2)}$	$\frac{16 (a5 k^2 h.)}{0.0000000000000000000000000000000000$	$2^+\mathcal{T}^{\parallel}{}_{\alpha\beta}$ $2^+\mathcal{W}_{s}^{\parallel}$	$_{lphaeta}$ 2 ⁺ $W_{S}^{\perp}{}_{lphaeta}$	$^{2}W_{s}^{\parallel}_{\alpha\beta\chi}$	
											$^{2^{+}}\mathcal{T}^{\parallel}$ † lphaeta	$-\frac{8}{a_0 k^2} \qquad \frac{4i}{\sqrt{3}} a_0$	[2	0	
											$^{2^{+}}\mathcal{W}_{S}{}^{\parallel}\dagger^{lphaeta}$	$-\frac{4i}{\sqrt{3}} \frac{32}{a_0 k} - \frac{32}{12a_0 + 3i}$		0	
											$^{2^{+}}\mathcal{W}_{S}{}^{\perp}\dagger^{lphaeta}$	$\frac{8i\sqrt{\frac{2}{3}}}{a.k} \frac{16\sqrt{2}}{12a.+3k}$	$\frac{16}{12 a. +3 k^2 h}$	0	
											$2^{-}W_{s}^{\parallel} + \alpha^{\alpha \beta \chi}$	0 0	0	$\frac{4}{a}$	$3^{-}W_{s}^{\parallel}_{\alpha\beta\chi}$
														$3 W_s + \alpha \beta \chi$	$-\frac{2}{a}$

Source constraints

Spin-parity form	Covariant form	Multiplicities		
$k^{0^{+}}W_{s}^{\perp t} + 2i^{0^{+}}\mathcal{T}^{\perp} == 0$	$2\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} = \partial_{\chi}\partial_{\beta}\partial_{\alpha}\mathcal{W}^{\alpha\beta\chi}$	1		
$2k ! W_s^{\perp h^{\alpha}} + k ! W_s^{\perp t^{\alpha}} + 6i ! \mathcal{T}^{\perp^{\alpha}} == 0$	$2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \mathcal{W}^{\beta \alpha \chi} = 2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi \delta}$	3		
Total expected gauge generators:				

Massive spectrum

Massive particle

Pole residue:	$-\frac{16}{h_{\cdot 3}} > 0$
Square mass:	$-\frac{4a}{h} > 0$
Spin:	2
Parity:	Even

Massless spectrum

Massless particle

Pole residue:	$-\frac{p^{-}}{a_{\cdot 0}} > 0$
Polarisations:	2

Unitarity conditions

(Demonstrably impossible)