Target : JEE (Main + Advanced) Indefinite Integration

CONTENT

INDEFINITE INTEGRATION

		Page No.
		01 – 17
Part - I	: Subjective Question	18 – 25
Part - II	: Only one option correct type	
Part – III	: Match the column	
Part - I	: Only one option correct type	25 – 33
Part - II	: Single and double value integer type	
Part - III	: One or More than one options correct type	
Part - IV	: Comprehension	
		33 – 36
Part - I : Part - II :	JEE(Advanced) / IIT-JEE Problems (Previous	Years)
	JEE(Main) / AIEEE Problems (Previous Years	S)
		36 – 39
blems (HLP)		40 – 41
ILP)		42 – 42
	Part - II Part - III Part - I Part - II Part - III Part - IV Part - I : Part - II :	Part - II : Only one option correct type Part - III : Match the column Part - I : Only one option correct type Part - II : Single and double value integer type Part - III : One or More than one options correct type Part - IV : Comprehension Part - I : JEE(Advanced) / IIT-JEE Problems (Previous Part - II : JEE(Main) / AIEEE Problems (Previous Years) blems (HLP)

JEE (ADVANCED) SYLLABUS

Integration as the inverse process of differentiation, indefinite integrals of standard functions. Integration by parts, integration by the methods of substitution and partial fractions.

JEE (MAIN) SYLLABUS

Integral as an anti - derivative. Fundamental integrals involving algebraic, trigonometric, exponential and logarithmic functions. Integration by substitution, by parts and by partial fractions. Integration using trigonometric identities

All rights reserved. Any photocopying, publishing or reproduction of full or any part of this study material is strictly prohibited. This material belongs to only the enrolled student of RESONANCE. Any sale/resale of this material is punishable under law. Subject to Kota Jurisdiction only.

Copyright reserved.

Indefinite Integration

But just as much as it is easy to find the differential of a given quantity, so it is difficult to find the integral of a given differential. Moreover, sometimes we cannot say with certainty whether the integral of a given quantity can be found or not.

Bernoulli, Johan

If f & g are functions of x such that g'(x) = f(x), then indefinite integration of f(x) with respect to x is defined and denoted as $\int f(x) dx = g(x) + C$, where C is called the **constant of integration**.

Standard Formula:

(i)
$$\int (ax + b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C, n \neq -1$$

(ii)
$$\int \frac{dx}{ax+b} = \frac{1}{a} \ln |ax+b| + C$$

(iii)
$$\int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + C$$

(iv)
$$\int a^{px+q} dx = \frac{1}{p} \frac{a^{px+q}}{\ell na} + C; a > 0$$

(v)
$$\int \sin(ax + b) dx = -\frac{1}{a} \cos(ax + b) + C$$

(vi)
$$\int \cos(ax + b) dx = \frac{1}{a} \sin(ax + b) + C$$

(vii)
$$\int \tan(ax + b) dx = \frac{1}{a} \ln|\sec(ax + b)| + C$$

(viii)
$$\int \cot(ax+b) dx = \frac{1}{a} \ln |\sin(ax+b)| + C$$

(ix)
$$\int \sec^2 (ax + b) dx = \frac{1}{a} \tan(ax + b) + C$$

(x)
$$\int \csc^2(ax + b) dx = -\frac{1}{a} \cot(ax + b) + C$$

(xi)
$$\int \sec{(ax + b)} \cdot \tan{(ax + b)} dx = \frac{1}{a} \sec{(ax + b)} + C$$

(xii)
$$\int \operatorname{cosec} (ax + b) \cdot \cot (ax + b) dx = -\frac{1}{a} \operatorname{cosec} (ax + b) + C$$

(xiii)
$$\int \sec x \, dx = \ln |\sec x + \tan x| + C$$
 OR $\ln \left| \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right| + C$

(xiv)
$$\int \csc x \, dx = \ln|\csc x - \cot x| + C \, \mathbf{OR} \, \ln \left| \tan \frac{x}{2} \right| + C \, \mathbf{OR} - \ln|\csc x + \cot x| + C$$

(xv)
$$\int \frac{dx}{\sqrt{a^2-x^2}} = \sin^{-1}\frac{x}{a} + C$$

(xvi)
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

(xvii)
$$\int \frac{dx}{x\sqrt{x^2-a^2}} = \frac{1}{a} \sec^{-1} \frac{x}{a} + C$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail : contact@resonance.ac.in

(xviii)
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln |x + \sqrt{x^2 + a^2}| + C$$
 OR $\sinh^{-1} \frac{x}{a} + C$

(xix)
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ell n \left| x + \sqrt{x^2 - a^2} \right| + C$$
 OR $\cosh^{-1} \frac{x}{a} + C$

(xx)
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

(xxi)
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

(xxii)
$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C$$

(xxiii)
$$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \, \ln \left| \frac{x + \sqrt{x^2 + a^2}}{a} \right| + C$$

(xxiv)
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln \left| \frac{x + \sqrt{x^2 - a^2}}{a} \right| + C$$

(xxv)
$$\int e^{ax} \cdot \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C$$

(xxvi)
$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2}$$
 (a cos bx + b sin bx) + C

Theorems on integration

(i)
$$\int C f(x).dx = C \int f(x).dx$$

(ii)
$$\int (f(x) \pm g(x)) dx = \int f(x)dx \pm \int g(x) dx$$

(iii)
$$\int f(x)dx = g(x) + C_1 \implies \int f(ax+b)dx = \frac{g(ax+b)}{a} + C_2$$

Example # 1 Evaluate :
$$\int 3x^6 dx$$

Solution:
$$\int 3x^6 dx = \frac{3}{7} x^7 + C$$

Example # 2 Evaluate :
$$\int \left(x^3 + 5x^2 - 4 + \frac{7}{x} + \frac{2}{\sqrt{x}} \right) dx$$

$$\begin{aligned} &\text{Solution:} \qquad \int \left(x^3 + 5x^2 - 4 + \frac{7}{x} + \frac{2}{\sqrt{x}} \right) \, dx \\ &= \int x^3 \, dx \, + \int 5x^2 \, dx \, - \int 4dx \, + \int \frac{7}{x} dx \, + \int \frac{2}{\sqrt{x}} dx \\ &= \int x^3 \, dx \, + 5 \int x^2 \, dx \, . \, - 4 \, . \, \int 1 \, . \, dx \, + \, 7 \, . \, \int \frac{1}{x} dx \, + 2 \, . \, \int x^{-1/2} dx \\ &= \frac{x^4}{4} + 5 \, . \, \frac{x^3}{3} \, - 4x + 7 \, \ln |x| + 2 \left(\frac{x^{1/2}}{1/2} \right) \, + C = \frac{x^4}{4} \, + \frac{5}{3} \, x^3 \, - 4x + 7 \, \ln |x| + 4 \, \sqrt{x} \, + C \end{aligned}$$

Example # 3 Evaluate :
$$\int 2^{x \log_2 3} dx$$

Solution : We have,
$$\int 2^{x \log_2 3} dx = \int 3^x dx = \frac{3^x}{\ln 3} + C$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail : contact@resonance.ac.in

Example # 4 Evaluate : $\int \frac{4^x + 5^x}{7^x} dx$

Solution:
$$\int \frac{4^{x} + 5^{x}}{7^{x}} dx = \int \left[\frac{4^{x}}{7^{x}} + \frac{5^{x}}{7^{x}} \right] dx = \int \left[\left(\frac{4}{7} \right)^{x} + \left(\frac{5}{7} \right)^{x} \right] dx = \frac{(4/7)^{x}}{\ell n} + \frac{(5/7)^{x}}{\ell n} + C$$

Example # 5 Evaluate : $\int \frac{\cos 7x - \cos 8x}{1 + 2\cos 5x} dx$

Solution : We have,
$$\int \frac{\cos 7x - \cos 8x}{1 + 2\cos 5x} dx = \frac{1}{2} \int \frac{2\sin \frac{5x}{2} \cos 7x - 2\sin \frac{5x}{2} \cos 8x}{\sin \frac{5x}{2} + 2\cos 5x \sin \frac{5x}{2}} dx$$

$$= \frac{1}{2} \int \frac{\left(\sin\frac{19x}{2} - \sin\frac{9x}{2}\right) - \left(\sin\frac{21x}{2} - \sin\frac{11x}{2}\right)}{\sin\frac{5x}{2} + \sin\frac{15x}{2} - \sin\frac{5x}{2}} dx$$

$$= \frac{1}{2} \int \frac{\left(\sin\frac{19x}{2} + \sin\frac{11x}{2}\right) - \left(\sin\frac{21x}{2} + \sin\frac{9x}{2}\right)}{\sin\frac{15x}{2}} dx$$

$$= \frac{1}{2} \int \frac{2\sin\frac{15x}{2}\cos 2x - 2\sin\frac{15x}{2}\cos 3x}{\sin\frac{15x}{2}} dx = \int \cos 2x - \cos 3x dx = \frac{1}{2}\sin 2x - \frac{1}{3}\sin 3x + C$$

Example # 6 Evaluate : $\int \frac{x^3}{(x+1)^2} dx$

$$\begin{split} \text{Solution:} \qquad & \int \frac{x^3}{(x+1)^2} dx = \int \frac{x^3+1-1}{(x+1)^2} dx = \int \frac{x^3+1}{(x+1)^2} dx - \int \frac{1}{(x+1)^2} dx \\ & = \int \frac{(x+1)(x^2-x+1)}{(x+1)^2} dx - \int \frac{1}{(x+1)^2} dx = \int \frac{x^2-x+1}{(x+1)} dx - \int \frac{1}{(x+1)^2} dx \\ & = \int \left(x-2+\frac{3}{x+1}\right) dx - \int \frac{1}{(x+1)^2} dx = \frac{x^2}{2} - 2x + 3 \ln(x+1) + \frac{1}{x+1} + C \end{split}$$

Example #7: Evaluate : $\int \frac{1}{4+9x^2} dx$

Solution: We have

$$\int \frac{1}{4+9x^2} dx = dx \frac{1}{9} \int \frac{1}{\frac{4}{9}+x^2} = \frac{1}{9} \int \frac{1}{(2/3)^2+x^2} dx$$
$$= \frac{1}{9} \cdot \frac{1}{(2/3)} \tan^{-1} \left(\frac{x}{2/3}\right) + C = \frac{1}{6} \tan^{-1} \left(\frac{3x}{2}\right) + C$$

Example #8: Evaluate: $\int \cos x \cos 2x \, dx$

Solution:
$$\int \cos x \cos 2x \ dx = \frac{1}{2} \int 2\cos x \ \cos 2x \ dx = \frac{1}{2} \int (\cos 3x + \cos x) \ dx = \frac{1}{2} \left(\frac{\sin 3x}{3} + \sin x \right) + C$$

Self Practice Problems:

(1) Evaluate: $\int \tan^2 x \, dx$ (2) Evaluate: $\int \frac{1}{1+\sin x} \, dx$

Ans. (1) tanx - x + C(2) tanx - sec x + C

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail : contact@resonance.ac.in

Integration by Substitution

If we substitute $\phi(x) = t$ in an integral then

- (i) everywhere x will be replaced in terms of new variable t.
- (ii) dx also gets converted in terms of dt.

Example #9: Evaluate : $\int \frac{\cos x + x \sin x}{x(x + \cos x)} dx$

Solution: We have,

$$\begin{split} &\int \frac{\cos x + x \sin x}{x(x + \cos x)} \quad dx \\ &= \int \frac{(x + \cos x) - x + x \sin x}{x(x + \cos x)} \quad dx \quad = \int \left(\frac{1}{x} - \frac{1 - \sin x}{x + \cos x}\right) \quad dx = \int \frac{1}{x} \quad dx - \int \frac{1 - \sin x}{x + \cos x} dx \\ &= \int \frac{1}{x} \quad dx - \int \frac{1}{x + \cos x} d(x + \cos x) = \ln|x| - \ln|x + \cos x| + C. \end{split}$$

Example # 10 : Evaluate : $\int \frac{(\ell nx)^n}{x} dx$

Solution: We have $\int \frac{(\ell nx)^n}{x} dx = \int (\ell nx)^n \frac{1}{x} dx = \int (\ell nx)^n d(\ell nx) = \frac{(\ell nx)^{n+1}}{n+1} + C$

Example # 11 : Evaluate : $\int \frac{(\sin^{-1} x)^3}{\sqrt{1-x^2}} dx$

Solution : We have , $\int \frac{(\sin^{-1} x)^3}{\sqrt{1-x^2}} dx = \int (\sin^{-1} x)^3 d(\sin^{-1} x) = \frac{(\sin^{-1} x)^4}{4} + C$

Example # 12 : Evaluate : $\int \frac{x}{x^4 + 2x^2 + 2} dx$

Solution: We have,

$$I = \int \frac{x}{x^4 + 2x^2 + 2} dx = \int \frac{x}{(x^2)^2 + 2x^2 + 2} dx \qquad \{ \text{Put } x^2 = t \implies x. dx = \frac{dt}{2} \}$$

$$\Rightarrow \qquad I = \frac{1}{2} \int \frac{1}{t^2 + 2t + 2} dt = \frac{1}{2} \int \frac{1}{(t+1)^2 + 1} dt = \frac{1}{2} \tan^{-1} (t+1) + C$$

$$= \frac{1}{2} \tan^{-1} (x^2 + 1) + C$$

Note: (i) $\int [f(x)]^n f'(x) dx = \frac{(f(x))^{n+1}}{n+1} + C$

(ii)
$$\int \frac{f'(x)}{\lceil f(x) \rceil^n} dx = \frac{(f(x))^{1-n}}{1-n} + C, n \neq 1$$

- (iii) $\int \frac{dx}{x(x^n+1)}; n \in N \quad \text{Take } x^n \text{ common \& put } 1+x^{-n}=t.$
- (iv) $\int \frac{dx}{x^2 (x^n + 1)^{(n-1)/n}} ; n \in N, \text{ take } x^n \text{ common \& put } 1 + x^{-n} = t^n$
- (v) $\int \ \frac{dx}{x^n \left(1+x^n\right)^{1/n}} \ ; \ take \ x^n \ common \ as \ x \ and \ put \ 1+x^{-n}=t.$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail : contact@resonance.ac.in

Self Practice Problems:

- - Evaluate: $\int \frac{\sec^2 x}{1 + \tan x} dx$ (4) Evaluate: $\int \frac{\sin(\ln x)}{x} dx$

Ans.

(3)
$$\ell n |1 + \tan x| + C$$

(4)
$$-\cos(\ell n x) + C$$

Integration by Parts: Product of two functions f(x) and g(x) can be integrated using formula:

$$\int (f(x) g(x)) dx = f(x) \int (g(x)) dx - \int \left(\frac{d}{dx} (f(x)) \int (g(x)) dx\right) dx$$

- (i) when you find integral $\int g(x) dx$ then it will **not** contain arbitrary constant.
- (ii) $\int g(x) dx$ should be taken as same at both places.
- (iii) The choice of f(x) and g(x) can be decided by ILATE guideline. the function will come later is taken an integral function (g(x)).

Inverse function

Logarithmic function

A → Algebraic function
T → Trigonometric func Trigonometric function

Exponential function

Example # 13 : Evaluate : $\int \sec^{-1} x \ dx$

Put $\sec^{-1} x = t$ so that $x = \sec t$ and $dx = \sec t$ tan t dt Solution:

$$\therefore \int \sec^{-1} x \ dx = \int t(\sec t \ \tan t) dt = t(\sec t) - \int 1.\sec t \ dt$$

=
$$t \sec t - \ell n |\sec t + \tan t| + C$$

= t sec t -
$$\ell$$
n | sec t + $\sqrt{\sec^2 t - 1}$ | + C = x (sec⁻¹x) - ℓ n |x + $\sqrt{x^2 - 1}$ | + C

Example # 14 : Evaluate : $\int x \, \ell n(1+x) \, dx$

Let I = $\int x \, \ell n(1+x) \, dx = \frac{x^2}{2} . \ell n(x+1) - \int \frac{1}{x+1} . \frac{x^2}{2} \, dx$ Solution:

$$= \frac{x^2}{2} \ \ell n \ (x+1) - \frac{1}{2} \int \frac{x^2}{x+1} \ dx = \frac{x^2}{2} \ \ell n \ (x+1) - \frac{1}{2} \int \frac{x^2-1+1}{x+1} \ dx$$

$$=\frac{x^2}{2} \quad \ell n \; (x+1) - \; \frac{1}{2} \; \int \!\! \left(\frac{x^2-1}{x+1} + \frac{1}{x+1} \right) \; dx = \frac{x^2}{2} \; \ell n \; (x+1) - \; \frac{1}{2} \; \int \!\! \left((x-1) + \frac{1}{x+1} \right) \; dx$$

$$= \frac{x^2}{2} \ \ell n \ (x+1) - \frac{1}{2} \left\lceil \frac{x^2}{2} - x + \ell n \ | \ x+1 \ | \right\rceil + C$$

Example # 15 : Evaluate : $\int e^{2x} \sin 3x \, dx$

Let $I = \int e^{2x} \sin 3x \, dx$ Solution:

$$= e^{2x} \left(-\frac{cos3x}{3} \right) \ - \ \int\! 2e^{2x} \left(-\frac{cos3x}{3} \right) dx \ = - \ \frac{1}{3} \, e^{2x} \ \cos 3x + \frac{2}{3} \, \int\! e^{2x} \cos 3x \, dx$$

$$= -\frac{1}{3} e^{2x} \cos 3x + \frac{2}{3} \left[e^{2x} \frac{\sin 3x}{3} - \int 2e^{2x} \frac{\sin 3x}{3} dx \right]$$

$$= -\frac{1}{3}e^{2x}\cos 3x + \frac{2}{9}e^{2x}\sin 3x - \frac{4}{9}\int e^{2x}\sin 3x \, dx$$

$$\Rightarrow I = -\frac{1}{3} e^{2x} \cos 3x + \frac{2}{9} e^{2x} \sin 3x - \frac{4}{9} I \Rightarrow I + \frac{4}{9} I = \frac{e^{2x}}{9} (2 \sin 3x - 3 \cos 3x)$$

$$\Rightarrow \frac{13}{9}$$
 I = $\frac{e^{2x}}{9}$ (2 sin 3x - 3 cos 3x) \Rightarrow I = $\frac{e^{2x}}{13}$ (2 sin 3x - 3 cos 3x) + C

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail : contact@resonance.ac.in

Note:

Example # 16 : Evaluate :
$$\int e^{x} \frac{\left(x^{2}-2x+2\right)}{\left(x^{2}+2\right)^{2}} dx$$

Solution : Given integral =
$$\int e^{x} \frac{\left(x^{2}-2x+2\right)}{\left(x^{2}+2\right)^{2}} dx = \int e^{x} \left\{\frac{1}{x^{2}+2} + \frac{\left(-2x\right)}{\left(x^{2}+2\right)^{2}}\right\} = \frac{e^{x}}{x^{2}+2} + C$$

Example # 17 : Evaluate :
$$\int e^x \left(\frac{1 - \sin x}{1 - \cos x} \right) dx$$

Solution: Given integral =
$$\int e^x \left(\frac{1 - 2\sin\frac{x}{2}\cos\frac{x}{2}}{2\sin^2\frac{x}{2}} \right) dx$$

= $\int e^x \left(\frac{1}{2}\csc^2\frac{x}{2} - \cot\frac{x}{2} \right) dx = -e^x\cot\frac{x}{2} + C$

Example # 18 : Evaluate :
$$\int \left[\ell n \left(\ell n x \right) + \frac{1}{\left(\ell n x \right)^2} \right] dx$$

Self Practice Problems:

(5) Evaluate:
$$\int x \sin x \, dx$$
 (6) Evaluate: $\int x^2 e^x \, dx$

Ans. (5)
$$-x \cos x + \sin x + C$$
 (6) $x^2 e^x - 2xe^x + 2e^x + C$

Integration of type
$$\int \frac{dx}{ax^2 + bx + c}$$
, $\int \frac{dx}{\sqrt{ax^2 + bx + c}}$, $\int \sqrt{ax^2 + bx + c}$ dx

Express $ax^2 + bx + c$ in the form of perfect square & then apply the standard results.

Example # 19 : Evaluate :
$$\int \sqrt{x^2 + 2x + 5} dx$$

Solution: We have,
$$\int \sqrt{x^2 + 2x + 5} = \int \sqrt{x^2 + 2x + 1 + 4} \ dx = \int \sqrt{(x+1)^2 + 2^2}$$

$$= \frac{1}{2} (x+1) \sqrt{(x+1)^2 + 2^2} + \frac{1}{2} \cdot (2)^2 \ln |(x+1)| + \sqrt{(x+1)^2 + 2^2} | + C$$

$$= \frac{1}{2} (x+1) \sqrt{x^2 + 2x + 5} + 2 \ln |(x+1)| + \sqrt{x^2 + 2x + 5} | + C$$

Example # 20 : Evaluate :
$$\int \frac{dx}{\sqrt{2-6x-9x^2}} dx$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail : contact@resonance.ac.in

Solution:
$$\int \frac{dx}{\sqrt{2-6x-9x^2}} dx = \int \frac{1}{\sqrt{3-(3x+1)^2}} dx = \frac{1}{3} \sin^{-1} \left(\frac{3x+1}{\sqrt{3}} \right) + C$$

Self Practice Problems:

(7) Evaluate :
$$\int \frac{1}{2x^2 + x - 1} dx$$

(8) Evaluate :
$$\int \frac{8x - 11}{\sqrt{5 + 2x - x^2}} dx$$

Ans. (7)
$$\frac{1}{3} \ell n \left| \frac{2x-1}{2x+2} \right| + C$$

(8)
$$-8 \sqrt{5+2x-x^2} - 3\sin^{-1} \frac{x-1}{\sqrt{6}} + C$$

Integration of type

$$\int \frac{px+q}{ax^2+bx+c} \, dx, \ \int \frac{px+q}{\sqrt{ax^2+bx+c}} \, dx, \ \int (px+q)\sqrt{ax^2+bx+c} \ dx$$

Express px + q = A (differential co-efficient of denominator) + B.

Example # 21 : Evaluate :
$$\int \frac{2x-3}{x^2+3x-18} dx$$

Solution : Let
$$2x - 3 = \lambda \frac{d}{dx} (x^2 + 3x - 18) + \mu$$

Then
$$2x - 3 = \lambda (2x + 3) + \mu$$

Comparing the coefficients of like power of x, we get.

$$2\lambda = 2$$
, and $3\lambda + \mu = -3$ $\Rightarrow \lambda = 1$ and $\mu = -6$

So,
$$\int \frac{2x-3}{x^2+3x-18} dx = \int \frac{2x+3-6}{x^2+3x-18} dx = \int \frac{2x+3}{x^2+3x-18} dx - 6 \int \frac{1}{x^2+3x-18} dx$$

$$= \ln|x^2+3x-18| - 6 \int \frac{1}{x^2+3x+\frac{9}{4}-\frac{9}{4}-18} dx = \ln|x^2+3x-18| - 6 \int \frac{1}{\left(x+\frac{3}{2}\right)^2-\left(\frac{9}{2}\right)^2} dx$$

$$= \ell n |x^2 + 3x - 18| - 6. \ \frac{1}{2 \left(\frac{9}{2}\right)} \ \ell n \ \left| \frac{x + \frac{3}{2} - \frac{9}{2}}{x + \frac{3}{2} + \frac{9}{2}} \right| + C \ = \ell n |x^2 + 3x - 18| - \frac{2}{3} \ \ell n \ \left| \frac{x - 3}{x + 6} \right| + C$$

Example # 22 : Evaluate :
$$\int \frac{2x+3}{\sqrt{x^2+4x+1}} dx$$

Solution:
$$\int \frac{2x+3}{\sqrt{x^2+4x+1}} dx = \int \frac{(2x+4)-1}{\sqrt{x^2+4x+1}} dx = \int \frac{2x+4}{\sqrt{x^2+4x+1}} dx - \int \frac{1}{\sqrt{x^2+4x+1}} dx$$
$$= \int \frac{dt}{\sqrt{t}} - \int \frac{1}{\sqrt{(x+2)^2-(\sqrt{3})^2}} dx, \quad \text{where } t = (x^2+4x+1) \text{ for } l^{\text{st}} \text{ integral}$$
$$= 2\sqrt{t} - \ln |(x+2) + \sqrt{x^2+4x+1}| + C = 2\sqrt{x^2+4x+1} - \ln |x+2| + \sqrt{x^2+4x+1}| + C$$

Example # 23 : Evaluate :
$$\int x\sqrt{1+x-x^2}dx$$

Solution : Let
$$x = \lambda$$
. $\frac{d}{dx}(1+x-x^2) + \mu$.

$$\Rightarrow$$
 x = λ (1–2x) + μ

Comparing the coefficients of like powers of x, we get

$$1 = -2\lambda \text{ and } \lambda + \mu = 0 \Rightarrow \lambda = -\frac{1}{2} \text{ and } \mu = \frac{1}{2} \therefore x = -\frac{1}{2} (1-2x) + \frac{1}{2}$$

so,
$$\int x\sqrt{1+x-x^2}dx$$

$$\begin{split} &= \int \left\{ -\frac{1}{2} (1-2x) + \frac{1}{2} \right\} \sqrt{1+x-x^2 dx} = -\frac{1}{2} \int (1-2x) \sqrt{1+x-x^2} \ dx + \frac{1}{2} \int \sqrt{1+x-x^2} \ dx \\ &= -\frac{1}{2} \int \sqrt{1+x-x^2} \ d(1+x-x^2) + \frac{1}{2} \int \sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - \left(x-\frac{1}{2}\right)^2} \ dx, \\ &= -\frac{1}{3} \left(1+x-x^2\right)^{3/2} + \frac{1}{2} \left[\frac{1}{2} \left(x-\frac{1}{2}\right) \sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - \left(x-\frac{1}{2}\right)^2} + \frac{1}{2} \left(\frac{\sqrt{5}}{2}\right)^2 \sin^{-1} \frac{x-1/2}{\sqrt{5}/2} \right] + C \\ &= -\frac{1}{3} \left(1+x-x^2\right)^{3/2} + \frac{1}{2} \left[\left(x-\frac{1}{2}\right) \sqrt{1+x-x^2} + \frac{5}{8} \sin^{-1} \left(\frac{2x-1}{\sqrt{5}}\right) \right] + C \end{split}$$

Self Practice Problems:

(9) Evaluate:
$$\int \frac{3-4x}{2x^2-3x+1} dx$$
 (10) Evaluate: $\int \frac{6x-5}{\sqrt{3x^2-5x+1}} dx$

(11) Evaluate:
$$\int (x-1)\sqrt{1+x+x^2} dx$$

Ans. (9)
$$-\ell n|2x^2 - 3x + 1| + C$$
 (10) $2\sqrt{3x^2 - 5x + 1} + C$ (11) $\frac{1}{3}(x^2 + x + 1)^{3/2} - \frac{3}{8}(2x + 1)\sqrt{1 + x + x^2} - \frac{9}{16}\log(2x + 1 + 2\sqrt{x^2 + x + 1}) + C$

Integration of Rational Algebraic Functions by using Partial Fractions:

PARTIAL FRACTIONS:

If f(x) and g(x) are two polynomials, then $\frac{f(x)}{g(x)}$ defines a rational algebraic function of x.

If degree of f(x) < degree of g(x), then $\frac{f(x)}{g(x)}$ is called a proper rational function.

If degree of $f(x) \ge$ degree of g(x) then $\frac{f(x)}{g(x)}$ is called an improper rational function.

If $\frac{f(x)}{g(x)}$ is an improper rational function, we divide f(x) by g(x) so that the rational function $\frac{f(x)}{g(x)}$ is

expressed in the form $\phi(x) + \frac{\Psi(x)}{g(x)}$, where $\phi(x)$ and $\Psi(x)$ are polynomials such that the degree of $\Psi(x)$

is less than that of g(x). Thus, $\frac{f(x)}{g(x)}$ is expressible as the sum of a polynomial and a proper rational function.

CASE-I
$$\frac{ax^2 + bx + c}{(x - \alpha)(x - \beta)(x - \gamma)} = \frac{A}{x - \alpha} + \frac{B}{x - \beta} + \frac{C}{x - \gamma}$$

$$\textbf{CASE-II} \frac{ax^2 + bx + c}{(x - \alpha)(x - \beta)^2} = \frac{A}{x - \alpha} + \frac{B}{x - \beta} + \frac{C}{(x - \beta)^2}$$

CASE-III
$$\frac{ax^2 + bx + c}{(x - \alpha)(x^2 + \beta^2)} = \frac{A}{x - \alpha} + \frac{Bx + C}{x^2 + \beta^2}$$

where A, B, C can be evaluated by substitution or by comparing coefficients.

Example # 24 : Resolve $\frac{1}{2x^3 + 3x^2 - 3x - 2}$ into partial fractions.

Solution : We have,
$$\frac{1}{2x^3 + 3x^2 - 3x - 2} = \frac{1}{(x-1)(x+2)(2x+1)}$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail : contact@resonance.ac.in

Let
$$\frac{1}{2x^3 + 3x^2 - 3x - 2} = \frac{A}{x - 1} + \frac{B}{x + 2} + \frac{C}{2x + 1}$$
. Then,
 $\Rightarrow 1 = A(x + 2)(2x + 1) + B(x - 1)(2x + 1) + C(x - 1)(x + 2)$...(i)
Putting $x - 1 = 0$ or $x = 1$ in (i), we get $\Rightarrow A = \frac{1}{9}$,
Putting $x = -2$ in (i), we obtain $B = \frac{1}{9}$
Putting $x = -\frac{1}{2}$ in (i), we obtain $C = -\frac{4}{9}$
 $\therefore \frac{1}{2x^3 + 3x^2 - 3x - 2} = \frac{1}{(x - 1)(x + 2)(2x + 1)} = \frac{1}{9(x - 1)} + \frac{1}{9(x + 2)} - \frac{4}{9(2x + 1)}$

Example # 25 : Resolve $\frac{x^3 - 6x^2 + 10x - 2}{x^2 - 5x + 6}$ into partial fractions.

Solution : Here the given function is an improper rational function. On dividing we get

There the given function is an improper fational function. On dividing we get
$$\frac{x^3 - 6x^2 + 10x - 2}{x^2 - 5x + 6} = x - 1 + \frac{(-x + 4)}{(x^2 - 5x + 6)}$$
we have,
$$\frac{-x + 4}{x^2 - 5x + 6} = \frac{-x + 4}{(x - 2)(x - 3)}$$
So, let
$$\frac{-x + 4}{(x - 2)(x - 3)} = \frac{A}{x - 2} + \frac{B}{x - 3}$$
, then
$$-x + 4 = A(x - 3) + B(x - 2)$$
...........(ii)
Putting $x - 3 = 0$ or $x = 3$ in (ii), we get
$$1 = B(1) \qquad \Rightarrow \qquad B = 1.$$
Putting $x - 2 = 0$ or $x = 2$ in (ii), we get
$$2 = A(2 - 3) \Rightarrow A = -2$$

$$\therefore \frac{-x + 4}{(x - 2)(x - 3)} = \frac{-2}{x - 2} + \frac{1}{x - 3}$$
Hence
$$\frac{x^3 - 6x^2 + 10x - 2}{x^2 - 5x + 6} = x - 1 - \frac{2}{x - 2} + \frac{1}{x - 3}$$

Example # 26 : Evaluate : $\int \frac{3x+1}{(x-1)^3(x+1)} dx$

Solution : Let
$$\frac{3x+1}{(x-1)^3(x+1)} = \frac{A}{x+1} + \frac{B}{(x-1)} + \frac{C}{(x-1)^2} + \frac{D}{(x-1)^3}$$
 (i) Multiplying both sides by $(x+1)$ and then putting $x=-1$, we get $A = \frac{-2}{(-2)^3} = \frac{1}{4}$ Multiplying both sides by $(x-1)^3$ and then putting $x=1$, we get

$$\begin{split} D &= \frac{4}{2} = 2 \\ From \ (i) \ , \ we \ get \\ 3x + 1 &= A \ (x-1)^3 + B \ (x-1)^2 \ (x+1) + C \ (x-1) \ (x+1) + D \ (x+1) \\ putting \ x &= 0, \ we \ get \\ 1 &= -A + B - C + D \\ \Rightarrow \qquad 1 &= -\frac{1}{4} + B - C + 2 \qquad \Rightarrow B - C = \frac{-3}{4} \end{split}$$

Putting
$$x = 2$$
, we get $7 = A + 3B + 3C + 3D$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

$$\Rightarrow 7 = \frac{1}{4} + 3B + 3C + 6 \Rightarrow 3B + 3C = \frac{3}{4} \Rightarrow B + C = \frac{1}{4}$$

Solving B + C =
$$\frac{1}{4}$$
 and B - C = $\frac{-3}{4}$, we get B = $-\frac{1}{4}$, C = $\frac{1}{2}$

Substituting the values of A, B, C and D in (i), we get

$$\Rightarrow \frac{3x+1}{(x-1)^3(x+1)} = \frac{1}{4} \cdot \frac{1}{x+1} - \frac{1}{4(x-1)} + \frac{1}{2(x-1)^2} + \frac{2}{(x-1)^3}$$

Example # 27 : Evaluate : $\int \frac{1}{\sin x (2\cos^2 x - 1)} dx$

Solution : Putting cosx = t, we get

$$I = \int \frac{1}{\sin x (2\cos^2 x - 1)} dx = \int \frac{1}{\sin x (2t^2 - 1)} \times -\frac{dt}{\sin x} = -\int \frac{1}{(1 - t^2)(2t^2 - 1)} dt$$

$$I = -\int \left(\frac{1}{1 - t^2} + \frac{2}{2t^2 - 1}\right) dt = -\int \frac{1}{1 - t^2} dt - 2\int \frac{1}{2t^2 - 1} dt$$

$$= -\frac{1}{2} \; \ell n \; \left| \frac{1+t}{1-t} \right| \; - \; \frac{\sqrt{2}}{2} \; \ell n \; \left| \frac{\sqrt{2}t-1}{\sqrt{2}t+1} \right| + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \left| \frac{\sqrt{2}\cos x-1}{\sqrt{2}\cos x+1} \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \left| \frac{\sqrt{2}\cos x-1}{\sqrt{2}\cos x+1} \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \left| \frac{\sqrt{2}\cos x-1}{\sqrt{2}\cos x+1} \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \left| \frac{\sqrt{2}\cos x-1}{\sqrt{2}\cos x+1} \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \left| \frac{\sqrt{2}\cos x-1}{\sqrt{2}\cos x+1} \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \left| \frac{\sqrt{2}\cos x-1}{\sqrt{2}\cos x+1} \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \left| \frac{\sqrt{2}\cos x-1}{\sqrt{2}\cos x+1} \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \left| \frac{\sqrt{2}\cos x-1}{\sqrt{2}\cos x+1} \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; - \; \frac{1}{\sqrt{2}} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \left| \frac{1+\cos x}{1-\cos x} \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \right| \; + \; C \; = \; -\frac{1}{2} \; \ell n \; \right| \; + \; C \; = \;$$

Example # 28 : Resolve $\frac{2x-3}{(x-1)(x^2+1)^2}$ into partial fractions.

Solution: Let
$$\frac{2x-3}{(x-1)(x^2+1)^2} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1} + \frac{Dx+E}{(x^2+1)^2}$$
. Then,

$$2x-3 = A(x^2+1)^2 + (Bx+C)(x-1)(x^2+1) + (Dx+E)(x-1)$$
(i

Putting x = 1 in (i), we get $-1 = A (1 + 1)^2 \Rightarrow A = -$

Comparing coefficients of like powers of x on both side of (i), we have

$$A + B = 0$$
, $C - B = 0$, $2A + B - C + D = 0$, $C + E - B - D = 2$ and $A - C - E = -3$.

Putting A = $-\frac{1}{4}$ and solving these equations, we get

$$B = \frac{1}{4} = C, \ D = \frac{1}{4} \text{ and } E = \frac{5}{2} \ \therefore \frac{2x-3}{(x-1)(x^2+1)^2} = \frac{-1}{4(x-1)} \ + \ \frac{x+1}{4(x^2+1)} \ + \ \frac{x+5}{2(x^2+1)^2}$$

Example # 29 : Resolve $\frac{2x}{x^3-1}$ into partial fractions.

Solution : We have,
$$\frac{2x}{x^3 - 1} = \frac{2x}{(x - 1)(x^2 + x + 1)}$$

So, let
$$\frac{2x}{(x-1)(x^2+x+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$$
.

Then,
$$2x = A(x^2 + x + 1) + (Bx + C)(x - 1)...(i)$$

Putting
$$x - 1 = 0$$
 or, $x = 1$ in (i), we get $2 = 3$ A \Rightarrow A = $\frac{2}{3}$

Putting x = 0 in (i), we get
$$A - C = 0 \Rightarrow C = A = \frac{2}{3}$$

Putting x = -1 in (i), we get -2 = A + 2B - 2 C.
$$\Rightarrow$$
 -2 = $\frac{2}{3}$ + 2B - $\frac{4}{3}$ \Rightarrow B = - $\frac{2}{3}$

$$\therefore \frac{2x}{x^3 - 1} = \frac{2}{3} \cdot \frac{1}{x - 1} + \frac{(-2/3) x + 2/3}{x^2 + x + 1} \text{ or } \frac{2x}{x^3 - 1} = \frac{2}{3} \cdot \frac{1}{x - 1} + \frac{2}{3} \cdot \frac{1 - x}{x^2 + x + 1}$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail : contact@resonance.ac.in

Self Practice Problems:

(12) (i) Evaluate :
$$\int \frac{1}{(x+2)(x+3)} dx$$
 (ii) Evaluate : $\int \frac{dx}{(x+1)(x^2+1)}$

Ans. (12) (i)
$$\ln \left| \frac{x+2}{x+3} \right| + C$$
 (ii) $\frac{1}{2} \ln |x+1| - \ln (x^2+1) + \frac{1}{2} \tan^{-1}(x) + C$

Integration of type

$$\int \ \frac{x^2 \pm 1}{x^4 + Kx^2 + 1} \ dx \ where \ K \ is \ any \ constant.$$

Divide Nr & Dr by
$$x^2$$
 & put $x \mp \frac{1}{x} = t$.

Example # 30 : Evaluate
$$\int \frac{x^2 + 4}{x^4 + 16} dx$$

Solution:
$$\int \frac{x^2 + 4}{x^4 + 16} dx = \int \frac{1 + \frac{4}{x^2}}{x^2 + \frac{16}{x^2}} dx = \int \frac{1}{\left(x - \frac{4}{x}\right)^2 + 8} d\left(x - \frac{4}{x}\right) = \int \frac{dt}{t^2 + (2\sqrt{2})^2},$$
 where $t = x - \frac{4}{x} = \frac{1}{2\sqrt{2}} tan^{-1} \left(\frac{t}{2\sqrt{2}}\right) + C = \frac{1}{2\sqrt{2}} tan^{-1} \left(\frac{x^2 - 4}{2\sqrt{2}x}\right) + C$

Example # 31 : Evaluate :
$$\int \frac{x-1}{(x+1)\sqrt{x^3+x^2+x}} dx$$

$$\begin{aligned} \text{Solution:} & \Rightarrow I = \int \frac{x^2 - 1}{(x+1)^2 \sqrt{x^3 + x^2 + x}} dx & \left[\begin{array}{c} \text{Multiplying the} \\ N^r & \text{and } D^r & \text{by } (x+1) \end{array} \right] \\ & \Rightarrow I = \int \frac{(x^2 - 1)}{(x^2 + 2x + 1)\sqrt{x^3 + x^2 + x}} dx \\ & \Rightarrow I = \int \frac{1 - \frac{1}{x^2}}{\left(x + \frac{1}{x} + 2\right)\sqrt{x + \frac{1}{x} + 1}} dx & \left[\text{Dividing N}^r \text{ and D}^r \text{ by } x^2 \right) \\ & \Rightarrow I = \int \frac{2t & dt}{(t^2 + 1)\sqrt{t^2}} & \text{where, } x + \frac{1}{x} + 1 = t^2 \Rightarrow I = 2 & \int \frac{1}{t^2 + 1} dt \Rightarrow I = 2tan^{-1} (t) + C \\ & \Rightarrow I = 2 tan^{-1} \sqrt{x + \frac{1}{x} + 1} + C \end{aligned}$$

Self Practice Problems:

(13) Evaluate :
$$\int \frac{x^2 - 1}{x^4 - 7x^2 + 1} dx$$
 (14) Evaluate : $\int \sqrt{\tan x} dx$

Ans. (13)
$$\frac{1}{6} \ln \left| \frac{x + \frac{1}{x} - 3}{x + \frac{1}{x} + 3} \right| + C$$
 (14) $\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{y}{\sqrt{2}} \right) + \frac{1}{2\sqrt{2}} \ln \left| \frac{y - \sqrt{2}}{y + \sqrt{2}} \right| + C$ where $y = \sqrt{\tan x} - \frac{1}{\sqrt{\tan x}}$

Integration of type

$$\int_{\displaystyle (ax-b)\; px \sqrt{-q+}}^{\displaystyle dx} \; OR \; \int_{\displaystyle \left(ax^2+bx+c\right) \; \sqrt{px+q}}^{\displaystyle dx}.$$

Put
$$px + q = t^2$$
.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail : contact@resonance.ac.in

Example # 32 : Evaluate :
$$\int \frac{dx}{(x-4)\sqrt{x+5}}$$

Solution : Let
$$I = \int \frac{dx}{(x-4)\sqrt{x+5}}$$
 {Put $x + 5 = t^2 \implies dx = 2t dt$ }

$$\therefore \qquad I = \int \! \frac{2dt}{\left(t^2 - 9\right)} \ = \frac{2}{6} \ \ell n \ \left| \frac{t - 3}{t + 3} \right| \ + \ C = \frac{1}{3} \ ln \ \left| \frac{\sqrt{x + 5} - 3}{\sqrt{x + 5} + 3} \right| \ + \ C$$

Example # 33 : Evaluate :
$$\int \frac{dx}{(x^2 + 3x + 2)\sqrt{x + 4}}$$

Solution: Let
$$I = \int \frac{dx}{(x^2 + 3x + 2)\sqrt{x + 4}}$$

Putting x + 4 = t², and dx = 2t dt, we get I =
$$\int \frac{2t \, dt}{\{(t^2 - 4)^2 + 3(t^2 - 4) + 2\}\sqrt{t^2}}$$

$$\Rightarrow 2 \int \frac{dt}{t^4 - 5t^2 + 6} \, dt = 2 \int \frac{dt}{(t^2 - 2)(t^2 - 3)} \, dt = 2 \int \left[\frac{1}{t^2 - 3} - \frac{1}{t^2 - 2} \right] dt$$

$$= \frac{1}{\sqrt{3}} \ln \left| \frac{t - \sqrt{3}}{t + \sqrt{3}} \right| - \frac{1}{\sqrt{2}} \ln \left| \frac{t - \sqrt{2}}{t + \sqrt{2}} \right| + C \text{ where } t = \sqrt{x + 4}$$

Integration of type

$$\int \frac{dx}{(ax-b) \ px\sqrt{-^2\!qx-r+}} \ , \ put \ ax+b = \frac{1}{t} \ ; \qquad \int \frac{dx}{(ax^{-2}-b) \ px\sqrt{-^2\!q+}} \ , \ put \ x = \frac{1}{t}$$

Example # 34 : Evaluate
$$\int \frac{dx}{(x - 1)x \sqrt{2x - 1}}$$

Solution: Let
$$I = \int \frac{dx}{(x - 1)x \sqrt{2x - 1}}$$
 {put $x - 1 = \frac{1}{t} \Rightarrow dx = -\frac{1}{t^2} dt$ }

$$\Rightarrow I = \int \frac{-\frac{1}{t^2} dt}{\frac{1}{t} \sqrt{\left(\frac{1}{t} + 1\right)^2 - \left(\frac{1}{t} + 1\right) - 1}} = \int -\frac{dt}{\sqrt{-t^2 + t + 1}} = \int -\frac{dt}{\sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - \left(t - \frac{1}{2}\right)^2}}$$

$$= -\sin^{-1}\left(\frac{t - \frac{1}{2}}{\frac{\sqrt{5}}{2}}\right) + C = -\sin^{-1}\left(\frac{2t - 1}{\sqrt{5}}\right) + C \text{ , where } t = \frac{1}{x - 1}$$

Example # 35 : Evaluate
$$\int \frac{dx}{(1+x^2)\sqrt{1-x^2}}$$

Solution : Put
$$x = \frac{1}{t} \Rightarrow dx = -\frac{1}{t^2} dt \Rightarrow I = -\int \frac{tdt}{(t^2 + 1)\sqrt{t^2 - 1}}$$
 {put $t^2 - 1 = y^2 \Rightarrow tdt = ydy$ }

$$\Rightarrow I = -\int \frac{y \ dy}{(y^2 + 2) \ y} = -\int \frac{1}{\sqrt{2}} tan^{-1} \left(\frac{y}{\sqrt{2}}\right) + C$$
$$= -\frac{1}{\sqrt{2}} tan^{-1} \left(\frac{\sqrt{1 - x^2}}{\sqrt{2}x}\right) + C$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail : contact@resonance.ac.in

Self Practice Problems:

(15) Evaluate:
$$\int \frac{dx}{(x+2)\sqrt{x+1}}$$
 (16) Evaluate:
$$\int \frac{dx}{(x^2+5x+6)\sqrt{x+1}}$$

(17) Evaluate:
$$\int \frac{dx}{(x+1)\sqrt{1+x-x^2}}$$
 (18) Evaluate:
$$\int \frac{dx}{(2x^2+1)\sqrt{1-x^2}}$$

(19) Evaluate:
$$\int \frac{dx}{(x^2 + 2x + 2)\sqrt{x^2 + 2x - 4}}$$

Ans. (15)
$$2 \tan^{-1} \left(\sqrt{x+1} \right) + C$$
 (16) $2 \tan^{-1} \left(\sqrt{x+1} \right) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{x+1}}{\sqrt{2}} \right) + C$

(17)
$$\sin^{-1}\left(\frac{\frac{3}{2} - \frac{1}{x+1}}{\frac{\sqrt{5}}{2}}\right) + C$$
 (18) $-\frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{\sqrt{1-x^2}}{\sqrt{3} + x}\right) + C$

(19)
$$-\frac{1}{2\sqrt{6}} \ell n \left(\frac{\sqrt{x^2 + 2x - 4} - \sqrt{6} (x + 1)}{\sqrt{x^2 + 2x - 4} + \sqrt{6} (x + 1)} \right) + C$$

Integration of type

$$\begin{split} &\int \sqrt{\frac{x-\alpha}{\beta-x}} \ dx \ or \int \sqrt{(x-\alpha) \left(\beta-x\right)} \ dx; \ put \ x = \alpha \ cos^2 \theta + \beta \ sin^2 \theta \\ &\int \sqrt{\frac{x-\alpha}{x-\beta}} \ dx \ or \int \sqrt{(x-\alpha) \left(x-\beta\right)} \ dx; \ put \ x = \alpha \ sec^2 \theta - \beta \ tan^2 \theta \\ &\int \frac{dx}{\sqrt{(x-\alpha) \left(x-\beta\right)}} \ ; \ put \ x - \alpha = t^2 \ or \ x - \beta = t^2. \end{split}$$

Self Practice Problems

(20) Evaluate:
$$\int \sqrt{\frac{x-3}{x-4}} dx$$
 (21) Evaluate: $\int \frac{dx}{[(x-1)(2-x)]^{3/2}}$

(22) Evaluate :
$$\int \frac{dx}{[(x+2)^8(x-1)^6]^{1/7}}$$

Ans. (20)
$$\sqrt{(x-3)(x-4)} + \ell n \left(\sqrt{x-3} + \sqrt{x-4}\right) + C$$
 (21) $2\left(\sqrt{\frac{x-1}{2-x}} - \sqrt{\frac{2-x}{x-1}}\right) + C$ (22) $\frac{7}{3}\left(\frac{x-1}{x+2}\right)^{1/7} + C$

Integration of trigonometric functions

(i)
$$\int \frac{dx}{a+b\sin^2x} OR \int \frac{dx}{a+b\cos^2x} OR \int \frac{dx}{a\sin^2x+b\sin x\cos x+c\cos^2x}$$
Multiply Nr & Dr by $\sec^2 x$ & put $\tan x = t$.

(ii)
$$\int \frac{dx}{a+b \ sinx}$$
 OR $\int \frac{dx}{a+b \ cosx}$ OR $\int \frac{dx}{a+b \ sinx + c \ cosx}$

Convert sines & cosines into their respective tangents of half the angles and then, put tan $\frac{x}{2}$ = t

(iii)
$$\int \frac{a.\cos x + b.\sin x + c}{\ell.\cos x + m.\sin x + n} dx.$$

Express $Nr \equiv A(Dr) + B(Dr) + C \& proceed$.

Example # 36 : Evaluate:
$$\int \frac{1+\sin x}{\sin x(1+\cos x)} dx$$

Solution : Let
$$I = \int \frac{1 + \sin x}{\sin x (1 + \cos x)} dx$$

Putting sinx =
$$\frac{2 \tan x/2}{1 + \tan^2 x/2}$$
 and , cos x = $\frac{1 - \tan^2 x/2}{1 + \tan^2 x/2}$

we get

$$\begin{split} & I = \int \frac{1 + \frac{2 \tan x/2}{1 + \tan^2 x/2}}{\left(\frac{2 \tan x/2}{1 + \tan^2 x/2}\right) \left(1 + \frac{1 - \tan^2 x/2}{1 + \tan^2 x/2}\right)} dx = \int \frac{(1 + \tan^2 x/2 + 2 \tan x/2)(1 + \tan^2 x/2)}{2 \tan x/2(1 + \tan^2 x/2 + 1 - \tan^2 x/2)} dx \\ & = \int \frac{(1 + \tan^2 x/2)^2 \sec^2 x/2}{4 \tan x/2} dx = \int \frac{1 + t^2 + 2t}{2t} dt \,, \, \text{where } t = \tan^2 \frac{x}{2} \end{split}$$

$$= \frac{1}{2} \int \left(\frac{1}{t} + t + 2\right) dt = \frac{1}{2} \left[\ln |t| + \frac{t^2}{2} + 2t \right] + C = \frac{1}{2} \left[\ln |\tan x/2| + \frac{\tan^2 x/2}{2} + 2\tan x/2 \right] + C$$

Example # 37 : Evaluate :
$$\int \frac{dx}{\sin x + \sqrt{3}\cos x}$$

Solution : Let
$$1 = r\cos\theta$$
 and $\sqrt{3} = r\sin\theta \Rightarrow r = \sqrt{(1)^2 + (\sqrt{3})^2} = 2$

$$\tan\theta = \sqrt{3} \Rightarrow \theta = \pi/3$$

$$\therefore \int \frac{dx}{\sin x + \sqrt{3}\cos x} = \frac{1}{r} \int \frac{dx}{\sin x \cos \theta + \cos x \sin \theta} = \frac{1}{r} \int \frac{dx}{\sin (x + \theta)}$$

$$= \frac{1}{r} \int cos \, ec(x+\theta) dx \, = \frac{1}{r} \quad \ell \, n \left| tan \left(\frac{x}{2} + \frac{\theta}{2} \right) \right| + C \, = \frac{1}{2} \quad \ell \, n \left| tan \left(\frac{x}{2} + \frac{\pi}{6} \right) \right| + C$$

Example # 38 : Evaluate :
$$\int \frac{3\cos x + 2}{\sin x + 2\cos x + 3} dx$$

Solution: We have,

$$I = \int \frac{3\cos x + 2}{\sin x + 2\cos x + 3} dx$$

Let
$$3 \cos x + 2 = \lambda (\sin x + 2 \cos x + 3) + \mu (\cos x - 2 \sin x) + \nu$$

Comparing the coefficients of sin x, cos x and constant term on both sides, we get

$$\lambda-\ 2\mu=0,\,2\lambda+\mu=3,\,3\lambda+\nu=2$$

$$\Rightarrow$$
 $\lambda = \frac{6}{5}$, $\mu = \frac{3}{5}$ and $\nu = -\frac{8}{5}$

$$\therefore I = \int \frac{\lambda(\sin x + 2\cos x + 3) + \mu(\cos x - 2\sin x) + \nu}{\sin x + 2\cos x + 3} dx$$

$$\Rightarrow \qquad I = \lambda \quad \int\! dx + \mu \ \int\! \frac{\cos x - 2\sin x}{\sin x + 2\cos x + 3} \, dx + \nu \ \int\! \frac{1}{\sin x + 2\cos x + 3} \, dx$$

$$\Rightarrow I = \lambda x + \mu \log |\sin x + 2\cos x + 3| + \nu I_1$$

where
$$I_1 = \int \frac{1}{\sin x + 2\cos x + 3} dx$$

Putting,
$$\sin x = \frac{2 \tan x/2}{1 + \tan^2 x/2}$$
, $\cos x = \frac{1 - \tan^2 x/2}{1 + \tan^2 x/2}$, we get

$$\begin{split} I_1 &= \int \frac{1}{\frac{2\tan x/2}{1+\tan^2 x/2} + \frac{2(1-\tan^2 x/2)}{1+\tan^2 x/2} + 3} \ dx &= \int \frac{1+\tan^2 x/2}{2\tan x/2 + 2-2\tan^2 x/2 + 3(1+\tan^2 x/2)} \ dx \\ &= \int \frac{\sec^2 x/2}{\tan^2 x/2 + 2\tan x/2 + 5} \ dx \end{split}$$

Putting
$$\tan \frac{x}{2} = t$$
 and $\frac{1}{2} \sec^2 \frac{x}{2} = dt$ or $\sec^2 \frac{x}{2} dx = 2 dt$, we get

$$I_{1} = \int \frac{2dt}{t^{2} + 2t + 5} = 2 \int \frac{dt}{(t+1)^{2} + 2^{2}} = \frac{2}{2} \tan^{-1} \left(\frac{t+1}{2} \right) = \tan^{-1} \left(\frac{\tan \frac{x}{2} + 1}{2} \right)$$

Hence, I =
$$\lambda x + \mu \log |\sin x + 2\cos x + 3| + \nu \tan^{-1} \left(\frac{\tan \frac{x}{2} + 1}{2}\right) + C$$

where
$$\lambda=\frac{6}{5}\,,\,\mu=\frac{3}{5}\,$$
 and $\nu=-\;\frac{8}{5}$

Example # 39 : Evaluate :
$$\int \frac{dx}{1+3\cos^2 x}$$

Solution : Multiply Nr. & Dr. of given integral by
$$\sec^2 x$$
, we get

$$I = \int \frac{\sec^2 x \, dx}{\tan^2 x + 4} = \frac{1}{2} \tan^{-1} \left(\frac{\tan x}{2} \right) + C$$

Self Practice Problems:

(23) Evaluate:
$$\int \frac{4\sin x + 5\cos x}{5\sin x + 4\cos x} dx$$

Ans. (23)
$$\frac{40}{41} \times + \frac{9}{41} \log |5\sin x + 4\cos x| + C$$

Integration of type ∫sin^mx. cosⁿx dx

Case - I

If m and n are even natural number then converts higher power into higher angles.

Case - II

If at least one of m or n is odd natural number then if m is odd put cosx = t and vice-versa.

Case - III

When m + n is a negative even integer then put $\tan x = t$.

Example # 40 : Evaluate :
$$\int \cos^5 x \sin^4 x dx$$

Solution: Let
$$I = \int \cos^5 x \sin^4 x dx$$
 put $\sin x = t$ \Rightarrow $\cos x dx = dt$
$$\Rightarrow \qquad I = \int (1-t^2)^2 \cdot t^4 \cdot dt = \int (t^4 - 2t^2 + 1) \ t^4 dt = \int (t^8 - 2t^6 + t^4) \ dt$$

$$= \frac{t^9}{9} - \frac{2t^7}{7} + \frac{t^5}{5} + C \ , \text{ where } t = \sin x$$

Example #41: Evaluate :
$$\int \sec^{4/3} x \cos e c^{8/3} x dx$$

Solution: We have,

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail : contact@resonance.ac.in

$$\begin{split} &I = \int\! sec^{4/3} \, x \, cos\, ec^{8/3} x dx \, = \, \int\! \frac{1}{\cos^{4/3} \, x \, sin^{8/3} \, x} dx \, = \, \int\! cos^{-4/3} \, x \, - \, sin^{-8/3} \, x dx \\ & \text{divide Nr and Dr by } \cos^4 x \\ &= \, \int\! \frac{sec^4 \, x}{\tan^{8/3} \, x} dx \, = \, \int\! \frac{(1 + \tan^2 x)}{\tan^{8/3} \, x} sec^2 \, x dx \, = \, \int\! \frac{1 + \tan^2 x}{\tan^{8/3} \, x} d(\tan x) \, = \int\! \frac{1 + t^2}{t^{8/3}} dt \quad \text{where } t = \tan x \\ &= \int\! (t^{-8/3} + t^{-2/3}) dt \, = \, \frac{-3}{5} \, t^{-5/3} + 3t^{1/3} + C = \, \frac{-3}{5} \, tan^{-5/3} \, x + 3 \, tan^{1/3} \, x + C \end{split}$$

Example # 42 : Evaluate : $\int \sin^4 x \cos^2 x dx$

Solution:
$$\int \sin^4 x \cos^2 x \, dx = \frac{1}{8} \int 4 \sin^2 x \cos^2 x. 2 \sin^2 x dx = \frac{1}{8} \int \sin^2 2x \ (1 - \cos 2x) dx$$
$$= \frac{1}{8} \int \sin^2 2x dx - \frac{1}{8} \int \sin^2 2x \ \cos 2x \ dx = \frac{1}{16} \int (1 - \cos 4x) \ dx - \frac{1}{48} \ (\sin 2x)^3$$
$$= \frac{x}{16} - \frac{\sin 4x}{64} - \frac{1}{48} \ (\sin 2x)^3 + C$$

Reduction formula of $\int tan^n x \ dx$, $\int cot^n x \ dx$, $\int sec^n x \ dx$, $\int cosec^n x \ dx$

$$I_n = \int tan^n \, x \ dx = \int tan^2 \, x \ tan^{n-2} \, x \ dx = \int (sec^2 \, x - 1) \ tan^{n-2} x \ dx$$

$$\Rightarrow \qquad I_n = \int sec^2 \, x \, tan^{n-2} \ x \ dx \ - I_{n-2} \ \Rightarrow \qquad I_n = \frac{tan^{n-1} \, x}{n-1} \ - I_{n-2} \ , \ n \geq 2$$

$$I_n = \int \cot^n x \ dx = \int \cot^2 x \ . \ \cot^{n-2} x \ dx = \int (\cos ec^2 x - 1) \cot^{n-2} x \ dx$$

$$\Rightarrow I_n = \int \cos ec^2 x \cot^{n-2} x \ dx - I_{n-2} \qquad \Rightarrow \qquad I_n = -\frac{\cot^{n-1} x}{n-1} - I_{n-2} \ , \ n \ge 2$$

$$\begin{split} \textbf{3.} & \qquad I_n = \int\! sec^n\,x \;\; dx \, = \int\! sec^2\,x \;\; sec^{n-2}\,x \;\; dx \\ & \qquad \Rightarrow \qquad I_n = tanx\; sec^{n-2}x - \int(tan\,x)(n-2)\;\; sec^{n-3}\,\,x.\; secx\; tanx\; dx. \\ & \qquad \Rightarrow \qquad I_n = tanx\; sec^{n-2}\,x - (n-2)\;(sec^2\,x - 1)\; sec^{n-2}x\; dx \\ & \qquad \Rightarrow \qquad (n-1)\;I_n = tanx\; sec^{n-2}x + (n-2)\;I_{n-2} \qquad \Rightarrow \; I_n = \; \frac{tan\,x\, sec^{n-2}\,x}{n-1} + \frac{n-2}{n-1}\;\; I_{n-2} \end{split}$$

$$I_n = \int \cos e c^n x \ dx = \int \csc^2 x \ \csc^{n-2} x \ dx$$

$$\Rightarrow \qquad I_n = -\cot x \ \csc^{n-2} x + \int (\cot x)(n-2) \ (-\csc^{n-3} x \ \csc x \ \cot x) \ dx$$

$$\Rightarrow \qquad -\cot x \ \csc^{n-2} x - (n-2) \int \cot^2 x \ \csc^{n-2} x \ dx$$

$$\Rightarrow \qquad I_n = -\cot x \ \csc^{n-2} x - (n-2) \int (\cos e c^2 x - 1) \ \csc^{n-2} x \ dx$$

$$\Rightarrow \qquad (n-1) \ I_n = -\cot x \ \csc^{n-2} x + (n-2) \ I_{n-2}$$

$$\Rightarrow \qquad I_n = \frac{\cot x \ \csc^{n-2} x}{-(n-1)} + \frac{n-2}{n-1} \ I_{n-2}$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail : contact@resonance.ac.in

Example # 43 : Obtain the reduction formula for $\int \cos^n x dx$

Solution: Let
$$I_n = \int \cos^n x dx$$

$$I_n = \int \cos x \ (\cos x)^{n-1} \ dx$$

$$I_n = (\sin x)(\cos x)^{n-1} - \int (n-1)(\cos x)^{n-2}(-\sin x)\sin x dx$$

$$I_n = (\sin x)(\cos x)^{n-1} + (n-1) \int (\cos x)^{n-2} (1-\cos^2 x) dx$$

$$I_{n} = (\sin x)(\cos x)^{n-1} + (n-1) \int (\cos x)^{n-2} dx - (n-1) \int (\cos x)^{n} dx$$

$$I_n = (\sin x)(\cos x)^{n-1} + (n-1) I_{n-2} - (n-1) I_n$$

$$I_n + (n-1)I_n = (\sin x)(\cos x)^{n-1} + (n-1)I_{n-2}$$

$$I_n = \frac{(\sin x)(\cos x)^{n-1}}{n} + \frac{(n-1)}{n}I_{n-2}$$
, $n \ge 2$

Self Practice Problems:

(24) Deduce the reduction formula for
$$I_n = \int \frac{dx}{(1+x^4)^n}$$
 and Hence evaluate $I_2 = \int \frac{dx}{(1+x^4)^2}$.

(25) If
$$I_{m,n} = \int (\sin x)^m (\cos x)^n dx$$
 then prove that

$$I_{m,n} = \frac{(\sin x)^{m+1}(\cos x)^{n-1}}{m+n} \ + \ \frac{n-1}{m+n} \ . \ I_{m,n-2}$$

(24)
$$I_n = \frac{x}{4(n-1)(1+x^4)^{n-1}} + \frac{4n-5}{4(n-1)} I_{n-1}$$

$$I_{2} = \frac{x}{4 (1+x^{4})} + \left(\frac{1}{2\sqrt{2}} tan^{-1} \left(\frac{x-\frac{1}{x}}{\sqrt{2}}\right) - \frac{1}{4\sqrt{2}} \ell n \left(\frac{x+\frac{1}{x}-\sqrt{2}}{x+\frac{1}{x}+\sqrt{2}}\right)\right) + C$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail : contact@resonance.ac.in

Exercise-1

Marked questions are recommended for Revision.

PART - I: SUBJECTIVE QUESTIONS

Section (A): Integration using Standard Integral:

A-1. Integrate with respect to x:

(i)
$$(2x + 3)^5$$

(iii)
$$\sec^2 (4x + 5)$$

(iv)
$$\sec (3x + 2)$$

(v)
$$\tan (2x + 1)$$

(vi)
$$2^{3x+4}$$

(vii)
$$\frac{1}{2x+1}$$

A-2. Integrate with respect to x:

(i)
$$\sin^2 x$$
 (ii) $\cos^3 x$ (iv) $4\sin x \cos \frac{x}{2} \cos \frac{3x}{2}$ (v) $\frac{1}{\sqrt{x+3} - \sqrt{x+2}}$

$$\frac{1}{\sqrt{x+3}-\sqrt{x+2}}$$

Section (B): Integration using Substitution:

B-1. Integrate with respect to x:

(i)
$$x \sin x^2$$

$$\frac{x}{x^2+1}$$

(iv)
$$\frac{e^x + e^x}{e^x + e^x}$$

$$(v) \qquad \frac{1-\sin x}{x+\cos x}$$

(vi)
$$\frac{e^{2x}}{e^{2x}-2}$$

$$(vii) \qquad \frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} \quad (v$$

(i)
$$x \sin x^2$$
 (ii) $\frac{x}{x^2 + 1}$ (iii) $\sec^2 x \tan x$ (iv) $\frac{e^x + 1}{e^x + x}$ (v) $\frac{1 - \sin x}{x + \cos x}$ (vi) $\frac{e^{2x}}{e^{2x} - 2}$ (vii) $\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x}$ (viii) $\frac{\sec x}{\ell n \ (\sec x + \tan x)}$ (ix) $\frac{x}{\sqrt{x + 2}}$ (x) $\left(e^x + \frac{1}{e^x}\right)^2$ (xi) $(e^x + 1)^2 e^x$ (xii) $\frac{1}{x(x^5 + 1)}$

(ix)
$$\frac{x}{\sqrt{x+2}}$$

(x)
$$\left(e^x + \frac{1}{e^x}\right)^2$$

$$(e^x + 1)^2 e^x$$

$$(xii) > \frac{1}{x(x^5+1)}$$

(xiii)
$$= \frac{1}{x^5(1+x^5)^{\frac{1}{5}}}$$
 (xiv) $= \frac{\sqrt{x^2-8}}{x^4}$

$$(xiv) \ge \frac{\sqrt{x^2 - 8}}{x^4}$$

- Find the value of $\int \frac{d(x^2+1)}{\sqrt{(x^2+2)}}$. B-2.
- **B-3.** Evaluate the following:

(i)
$$\int \left(\frac{x \cos x - \sin x}{x \sin x} \right) dx$$

(ii)
$$\int \left(\frac{\frac{x}{x+1} - \ln(x+1)}{x(\ln(x+1))} \right) dx$$

Section (C): Integration by parts:

- C-1. Integrate with respect to x:
 - (i) $x \ell n x$
- (ii) x sin²x
- (iii) x tan⁻¹ x

- (v) sec3x
- $2x^3 e^{x^2}$ (vi)
- (vii) $\sin^{-1} \sqrt{x}$ (viii) $\frac{x^2 \tan^{-1} x}{1 + x^2}$

- (ix) ex sin x
- e^x (sec²x + tan x) (x)
- C-2. Find the antiderivative of $f(x) = \ln (\ln x) + (\ln x)^{-2}$ whose graph passes through (e, e).

Section (D): Algebraic integral:

D-1. Integrate with respect to x:

$$(i) \qquad \frac{1}{x^2 + 4}$$

(ii)
$$\frac{1}{x^2 + 5}$$

(ii)
$$\frac{1}{x^2 + 5}$$
 (iii) $\frac{1}{x^2 + 2x + 5}$ (v) $\frac{x^3 - 1}{x^3 + x}$ (vi) $\frac{1}{\sqrt{x^2 - 4}}$

(iv)
$$\frac{2x+1}{x^2+3x+4}$$

$$(v) \qquad \frac{x^3 - 1}{x^3 + x}$$

$$\frac{1}{\sqrt{x^2 - 4}}$$

(vii)
$$\sqrt{x^2+4}$$

(viii)
$$\sqrt{x^2 + 2x + 3}$$

(viii)
$$\sqrt{x^2 + 2x + 5}$$
 (ix) $(x - 1) \sqrt{1 - x - x^2}$

(x)
$$x^5 \sqrt{a^3 + x^3}$$

D-2. Integrate with respect to x:

$$(i) \qquad \frac{1}{(x+1)(x+2)}$$

(ii)
$$\frac{1}{(x^2+1)(x+3)}$$

(iii)
$$\frac{3x+2}{(x+1)^2(x+2)}$$

(iv)
$$\frac{1}{(x+1)(x+2)(x+3)}$$

D-3. Integrate with respect to x:

(i)
$$\frac{1}{x^4 + x^2 + 1}$$

(ii)
$$\frac{1+x^2}{1+x^4}$$

(ii)
$$\frac{1+x^2}{1+x^4}$$
 (iii) $\frac{1-x^2}{1-x^2+x^4}$

D-4. Integrate with respect to x:

$$(i) \qquad \frac{1}{(x+1)\sqrt{x+2}}$$

$$\frac{1}{(x^2-4)\sqrt{x+1}}$$

(iii)
$$\frac{1}{(x+1)\sqrt{x^2+2}}$$

(ii)
$$\frac{1}{(x^2 - 4)\sqrt{x + 1}}$$
(iv)
$$\frac{1}{(x^2 + 1)\sqrt{x^2 + 2}}$$

Evaluate the following: D-5.

(i)
$$\int \sqrt{\frac{1+x}{x}} dx$$

(ii)
$$\sum \int \sqrt{\frac{x-1}{x+1}} dx$$

(ii)
$$\sum \int \sqrt{\frac{x-1}{x+1}} dx$$
 (iii) $\sum \int \left(\frac{x\sqrt{1+x}}{\sqrt{1-x}}\right) dx$

Section (E): Integration of trigonometric functions:

E-1. Integrate with respect to x:

(i)
$$\frac{1}{2+\cos x}$$

(ii)
$$\frac{1}{2-\cos x}$$

(iii)
$$\frac{2\sin x + 2\cos x}{3\cos x + 2\sin x}$$

$$(iv) \qquad \frac{1}{1+\sin x + \cos x}$$

$$(v) \qquad \frac{1}{2 + \sin^2 y}$$

$$(vi) \qquad \frac{\cos ec^2 x. \sin x}{(\sin x - \cos x)}$$

(vii)
$$\frac{\sin^4 x}{\cos^2 x}$$

E-2. Evaluate the following

(i)
$$\int \left(\frac{\sin x + \cos x}{9 + 16 \sin 2x} \right) dx$$

$$\int \left(\frac{\sin x + \cos x}{9 + 16\sin 2x}\right) dx \qquad (ii) \Rightarrow \qquad \int \left(\frac{\cos x - \sin x}{\sqrt{8 - \sin 2x}}\right) dx$$

E-3. If
$$\int \sqrt{\frac{\cos^3 x}{\sin^{11} x}} dx = -2 \left(A \tan^{\frac{-9}{2}} x + B \tan^{\frac{-5}{2}} x \right) + C$$
, then find A and B.

Section (F): Reduction formulae

$$\textbf{F-1.2s.} \quad \text{If } I_n = \int \frac{1}{\left(x^2 + a^2\right)^n} dx \ \, \text{then prove that } I_n = \frac{x}{2a^2(n-1)(x^2 + a^2)^{n-1}} + \frac{2n-3}{2(n-1)a^2} \, I_{n-1}$$

F-2. If
$$I_n = \int x^n \ (a-x)^{1/2} dx$$
 then prove that $I_n = \frac{2an}{2n+3} \ I_{n-1} - \frac{2x^n (a-x)^{3/2}}{2n+3}$

PART - II: ONLY ONE OPTION CORRECT TYPE

- * In each question C is arbitrary constant Section (A): Integration using Standard Integral:
- A-1. Integrate with respect to $x : \sqrt{x+1}$

(A)
$$\frac{(x+1)^{3/2}}{2} + 0$$

(B)
$$\frac{3(x+1)^{3/2}}{2} + 6$$

(C)
$$\frac{(x+1)^{3/2}}{3} + 0$$

- (A) $\frac{(x+1)^{3/2}}{2} + C$ (B) $\frac{3(x+1)^{3/2}}{2} + C$ (C) $\frac{(x+1)^{3/2}}{3} + C$ (D) $\frac{2(x+1)^{3/2}}{3} + C$
- Integrate with respect to x : $\frac{1}{\sqrt{2x+1}}$ A-2

(A)
$$\sqrt{2x+1} + C$$

(B)
$$(2x+1)^{3/2}+0$$

(C)
$$-\sqrt{2x+1} + 0$$

(A)
$$\sqrt{2x+1} + C$$
 (B) $(2x+1)^{3/2} + C$ (C) $-\sqrt{2x+1} + C$ (D) $\frac{1}{(2x+1)^{3/2}} + C$

A-3. If $\int \frac{1}{1+\sin x} dx = \tan \left(\frac{x}{2} + a\right) + C$, then

(A)
$$a = -\frac{\pi}{4}$$
, $C \in F$

(B)
$$a = \frac{\pi}{4}$$
, $C \in F$

(C)
$$a = \frac{5\pi}{4}$$
, $C \in F$

(A)
$$a = -\frac{\pi}{4}$$
, $C \in R$ (B) $a = \frac{\pi}{4}$, $C \in R$ (C) $a = \frac{5\pi}{4}$, $C \in R$ (D) $a = \frac{\pi}{3}$, $C \in R$

A-4. If $\int (\sin 2x - \cos 2x) dx = \frac{1}{\sqrt{2}} \sin (2x - a) + C$, then

(A)
$$a = \frac{5\pi}{4}$$
, $C \in F$

(A)
$$a = \frac{5\pi}{4}$$
, $C \in R$ (B) $a = -\frac{5\pi}{4}$, $C \in R$ (C) $a = \frac{\pi}{4}$, $C \in R$ (D) $a = \frac{\pi}{2}$, $C \in R$

(C)
$$a = \frac{\pi}{4}$$
, $C \in F$

(D)
$$a = \frac{\pi}{2}$$
, $C \in R$

The value of $\int \frac{\cos 2x}{\cos x} dx$ is equal to A-5.

(A)
$$2 \sin x - \ell n |\sec x + \tan x| + C$$

(B)
$$2 \sin x - \ell n |\sec x - \tan x| + C$$

(C)
$$2 \sin x + \ln |\sec x + \tan x| + C$$

(D)
$$\sin x - \ell n |\sec x - \tan x| + C$$

- If $\int \frac{\cos 4x + 1}{\cot x + \tan x} dx = A \cos 4x + B$; where A & B are constants, then A-6.
 - (A) A = -1/4 & B may have any value
- (B) A = -1/8 & B may have any value

(C) A = -1/2 & B = -1/4

- (D) A = B = 1/2
- Section (B): Integration using Substitution:
- The value of $\int \frac{a^{\sqrt{x}}}{\sqrt{x}} dx$ is equal to

(A)
$$\frac{a^{\sqrt{x}}}{\sqrt{x}} + C$$

(B)
$$\frac{2a^{\sqrt{x}}}{\ell n \ a} + C$$

(A)
$$\frac{a^{\sqrt{x}}}{\sqrt{x}} + C$$
 (B) $\frac{2a^{\sqrt{x}}}{\ln a} + C$ (C) $2a^{\sqrt{x}} \cdot \ln a + C$ (D) $2a^{\sqrt{x}} + C$

(D)
$$2a^{\sqrt{x}} + C$$

The value of $\int 5^{5^x}$. 5^x . 5^x dx is equal to B-2.

(A)
$$\frac{5^{5^x}}{(\ln 5)^3} + 0$$

(B)
$$5^{5^{5^{x}}} (\ell n \ 5)^{3} + 0$$

(A)
$$\frac{5^{5^x}}{(\ln 5)^3} + C$$
 (B) 5^{5^x} $(\ln 5)^3 + C$ (C) $\frac{5^{5^{5^x}}}{(\ln 5)^3} + C$ (D) $\frac{5^{5^{5^x}}}{(\ln 5)^2} + C$

(D)
$$\frac{5^{5^{5^x}}}{(\ell n \ 5)^2} + C$$

The value of $\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx$ is equal to B-3.

(A)
$$2\sqrt{\tan x} + C$$

(B)
$$2\sqrt{\cot x} + C$$

(A)
$$2\sqrt{\tan x} + C$$
 (B) $2\sqrt{\cot x} + C$ (C) $\frac{\sqrt{\tan x}}{2} + C$ (D) $\sqrt{\tan x} + C$

If $\int \frac{2^x}{\sqrt{1-4^x}} dx = K \sin^{-1}(2^x) + C$, then the value of K is equal to

(B)
$$\frac{1}{2} \ln 2$$

(C)
$$\frac{1}{2}$$

$$(D) \frac{1}{\ell n \ 2}$$

If $y = \int \frac{dx}{\left(1 + x^2\right)^{3/2}}$ and y = 0 when x = 0, then value of y when x = 1, is:

(A)
$$\sqrt{\frac{2}{3}}$$

(D)
$$\frac{1}{\sqrt{2}}$$

The value of $\int \tan^3 2x \sec 2x dx$ is equal to : B-6.

(A)
$$\frac{1}{3} \sec^3 2x - \frac{1}{2} \sec 2x + C$$

(B)
$$-\frac{1}{6}\sec^3 2x - \frac{1}{2}\sec 2x + C$$

(C)
$$\frac{1}{6} \sec^3 2x - \frac{1}{2} \sec 2x + C$$

(D)
$$\frac{1}{3} \sec^3 2x + \frac{1}{2} \sec 2x + C$$

B-7. If $\int x^{13/2}$. $(1+x^{5/2})^{1/2} dx = P(1+x^{5/2})^{7/2} + Q(1+x^{5/2})^{5/2} + R(1+x^{5/2})^{3/2} + C$, then P,Q and R are

(A)
$$P = \frac{4}{35}$$
, $Q = -\frac{8}{25}$, $R = \frac{4}{15}$

(B)
$$P = \frac{4}{35}$$
, $Q = \frac{8}{25}$, $R = \frac{4}{15}$

(C)
$$P = -\frac{4}{35}$$
, $Q = -\frac{8}{25}$, $R = \frac{4}{15}$

(D)
$$P = \frac{4}{35}$$
, $Q = -\frac{8}{25}$, $R = -\frac{4}{15}$

The value of $\int \frac{1-x^7}{x(1+x^7)} dx$ is equal to

(A)
$$\ell n |x| + \frac{2}{7} \ell n |1 + x^7| + C$$

(B)
$$\ln |x| - \frac{2}{7} \ln |1 - x^7| + C$$

(C)
$$\ell n |x| - \frac{2}{7} \ell n |1 + x^7| + C$$

(D)
$$\ell n |x| + \frac{2}{7} \ell n |1 - x^7| + C$$

Section (C): Integration by parts:

The value of $\int (x-1) e^{-x} dx$ is equal to C-1.

$$(A) -xe^x + C$$

(B)
$$xe^x + C$$

$$(C) - xe^{-x} + C$$

C-2.2. The value of $\int e^{tan^{-1}x} \left(\frac{1+x+x^2}{1+x^2}\right) dx$ is equal to

(A)
$$x e^{\tan^{-1} x} + C$$

(B)
$$x^2 e^{tan^{-1}x} + C$$

(A)
$$x e^{tan^{-1}x} + C$$
 (B) $x^2 e^{tan^{-1}x} + C$ (C) $\frac{1}{x} e^{tan^{-1}x} + C$ (D) $x e^{cot^{-1}x} + C$

(D)
$$x e^{\cot^{-1} x} + C$$

C-3. The value of $\int [f(x)g''(x) - f''(x)g(x)] dx$ is equal to

(A)
$$\frac{f(x)}{g'(x)} + C$$

(B)
$$f'(x) g(x) - f(x) g'(x) + C$$

(C)
$$f(x) g'(x) - f'(x) g(x) + C$$

(D)
$$f(x) g'(x) + f'(x) g'(x) + C$$

C-4.2.
$$\int \frac{x \ln x}{\left(x^2 - 1\right)^{3/2}} dx equals$$

(A)
$$\operatorname{arc} \sec x - \frac{\ln x}{\sqrt{x^2 - 1}} + C$$

(B)
$$\sec^{-1} x + \frac{\ell n x}{\sqrt{x^2 - 1}} + C$$

(C)
$$\cos^{-1} x - \frac{\ell n x}{\sqrt{x^2 - 1}} + C$$

(D)
$$\sec x - \frac{\ell n x}{\sqrt{x^2 - 1}} + C$$

C-5. The value of $\int (x e^{\ln \sin x} - \cos x) dx$ is equal to:

(A)
$$x \cos x + C$$

(B)
$$\sin x - x \cos x + C$$
 (C) $-e^{\sin x} \cos x + C$ (D) $\sin x + x \cos x + C$

$$(C) - e^{\ln x} \cos x + C$$

(D)
$$\sin x + x \cos x + C$$

Section (D): Algebraic integral:

The value of $\int \frac{dx}{x^2 + x + 1}$ is equal to D-1.

(A)
$$\frac{\sqrt{3}}{2} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) + C$$

(B)
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) + C$$

(C)
$$\frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) + C$$

(D)
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2x-1}{\sqrt{3}} \right) + C$$

The value of $\int \frac{1}{x^2(x^4+1)^{3/4}} dx$ is equal to D-2.

(A)
$$\left(1 + \frac{1}{x^4}\right)^{1/4} + C$$
 (B) $(x^4 + 1)^{1/4} + C$

(B)
$$(x^4 + 1)^{1/4} + C$$

(C)
$$\left(1-\frac{1}{x^4}\right)^{1/4} + C$$

(C)
$$\left(1 - \frac{1}{x^4}\right)^{1/4} + C$$
 (D) $-\left(1 + \frac{1}{x^4}\right)^{1/4} + C$

D-3. The value of $\int \frac{dx}{\sqrt{1-x^3}}$ is equal to

(A)
$$\frac{1}{3} \ln \left| \frac{\sqrt{1-x^3}-1}{\sqrt{1-x^3}+1} \right| + C$$

(B)
$$\frac{1}{3} \ln \left| \frac{\sqrt{1-x^2}+1}{\sqrt{1-x^2}-1} \right| + C$$

(C)
$$\frac{1}{3} \ell n \left| \frac{1}{\sqrt{1-x^3}} \right| + C$$

(D)
$$\frac{1}{3} \ell n |1 - x^3| + C$$

D-4. The value of $\int \sqrt{\frac{e^x - 1}{e^x + 1}} dx$ is equal to

(A)
$$\ell n \left(e^x + \sqrt{e^{2x} - 1} \right) - sec^{-1} \left(e^x \right) + C$$

(B)
$$\ell n \left(e^x + \sqrt{e^{2x} - 1} \right) + sec^{-1} \left(e^x \right) + C$$

(C)
$$\ln \left(e^x - \sqrt{e^{2x} - 1} \right) - \sec^{-1} (e^x) + C$$

(D)
$$\ell n \left(e^x + \sqrt{e^{2x} - 1} \right) - \sin^{-1} \left(e^x \right) + C$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

D-5. If
$$\int \frac{dx}{x^4 + x^3} = \frac{A}{x^2} + \frac{B}{x} + \ln \left| \frac{x}{x+1} \right| + C$$
, then

(A)
$$A = \frac{1}{2}$$
, $B = \frac{1}{2}$

(B) A = 1, B =
$$-\frac{1}{2}$$

(C)
$$A = -\frac{1}{2}$$
, $B =$

(A)
$$A = \frac{1}{2}$$
, $B = 1$ (B) $A = 1$, $B = -\frac{1}{2}$ (C) $A = -\frac{1}{2}$, $B = 1$ (D) $A = -\frac{1}{2}$, $B = \frac{1}{2}$

Section (E): Integration of trigonometric functions:

E-1. The value of
$$\int \frac{\cos 2x}{(\sin x + \cos x)^2} dx$$
 is equal to

(A)
$$\frac{-1}{\sin x + \cos x} + C$$

(B)
$$\ell$$
n (sin x + cos x) + C

(C)
$$\ell$$
n (sin x – cos x) + C

(D)
$$\ell n (\sin x + \cos x)^2 + C$$

E-2 The value of
$$\int [1 + \tan x \cdot \tan(x + \alpha)] dx$$
 is equal to

(A)
$$\cos \alpha \cdot \ell n \left| \frac{\sin x}{\sin(x+\alpha)} \right| + C$$

(B)
$$\tan \alpha \cdot \ell n \left| \frac{\sin x}{\sin(x + \alpha)} \right| + C$$

(C)
$$\cot \alpha \cdot \ell n \left| \frac{\sec(x+\alpha)}{\sec x} \right| + C$$

(D)
$$\cot \alpha \cdot \ell n \left| \frac{\cos(x+\alpha)}{\cos x} \right| + C$$

E-3 The value of
$$\int \sqrt{\sec x - 1} dx$$
 is equal to

(A)
$$2 \ln \left(\cos \frac{x}{2} + \sqrt{\cos^2 \frac{x}{2} - \frac{1}{2}} \right) + C$$

(B)
$$\ell n \left(\cos \frac{x}{2} + \sqrt{\cos^2 \frac{x}{2} - \frac{1}{2}} \right) + C$$

(C)
$$-2 \ln \left(\cos \frac{x}{2} + \sqrt{\cos^2 \frac{x}{2} - \frac{1}{2}} \right) + C$$

(D)
$$-2 \ln \left(\sin \frac{x}{2} + \sqrt{\cos^2 \frac{x}{2} - \frac{1}{2}} \right) + C$$

E-4. The value of
$$\int \frac{dx}{\cos^3 x \sqrt{\sin 2x}}$$
 is equal to

(A)
$$\sqrt{2} \left(\sqrt{\cos x} + \frac{1}{5} \tan^{5/2} x \right) + C$$

(B)
$$\sqrt{2} \left(\sqrt{\tan x} + \frac{1}{5} \tan^{5/2} x \right) + C$$

(C)
$$\sqrt{2} \left(\sqrt{\tan x} - \frac{1}{5} \tan^{5/2} x \right) + C$$

(D)
$$\sqrt{2} \left(\sqrt{\cos x} - \frac{1}{5} \tan^{5/2} x \right) + C$$

E-5. Antiderivative of
$$\frac{\sin^2 x}{1 + \sin^2 x}$$
 w.r.t. x is :

(A)
$$x - \frac{\sqrt{2}}{2} \arctan \left(\sqrt{2} \tan x \right) + C$$

(B)
$$x - \frac{1}{\sqrt{2}} \arctan\left(\frac{\tan x}{\sqrt{2}}\right) + C$$

(C)
$$x - \sqrt{2} \arctan (\sqrt{2} \tan x) + C$$

(D)
$$x - \sqrt{2} \arctan \left(\frac{\tan x}{\sqrt{2}} \right) + C$$

E-6. Integrate
$$\frac{1}{1-\cot x}$$

(A)
$$\frac{1}{2}\log|\sin x - \cos x| + \frac{1}{2}x + C$$

(B)
$$\frac{1}{2}\log|\sin x + \cos x| + \frac{1}{2}x + C$$

(C)
$$\frac{1}{2}\log|\sin x + \cos x| - \frac{1}{2}x + C$$

(D)
$$\frac{1}{2}\log|\sin x - \cos x| - \frac{1}{2}x + C$$

E-7.
$$= \int \frac{dx}{\sin x + \sec x}$$
 is equal to

(A)
$$\frac{1}{2\sqrt{3}} log \left| \frac{\sqrt{3} + sinx - cosx}{\sqrt{3} - (sinx - cosx)} \right| + tan^{-1} (sinx + cosx) + C$$

(B)
$$\frac{1}{2\sqrt{3}} \log \left| \frac{\sqrt{3} + \sin x - \cos x}{\sqrt{3} - (\sin x - \cos x)} \right| + \tan^{-1} (\sin x - \cos x) + C$$

(C)
$$\frac{1}{2\sqrt{3}}\log\left|\frac{\sqrt{3}+\sin x+\cos x}{\sqrt{3}-(\sin x-\cos x)}\right|+\tan^{-1}(\sin x+\cos x)+C$$

(D)
$$\frac{1}{2\sqrt{3}} log \left| \frac{\sqrt{3} + sinx - cosx}{\sqrt{3} - (sinx + cosx)} \right| + tan^{-1} (sinx + cosx) + C$$

Section (F): Reduction formulae

F-1. If
$$I_n = \int \frac{e^x}{x^n} dx$$
 and $I_n = \frac{-e^x}{k_1 x^{n-1}} + \frac{1}{k_2 - 1}$ I_{n-1} , then $(k_2 - k_1)$ is equal to:

(A) 0 (B) 1 (C) 2 (D) 3

F-2. If
$$I_n = \int \cot^n x \, dx \, and \, I_0 + I_1 + 2 \, (I_2 + + I_8) + I_9 + I_{10} = A \left(u + \frac{u^2}{2} + + \frac{u^9}{9} \right) + C$$
, where $u = \cot x$ and C is an arbitrary constant, then (A) $A = 2$ (B) $A = -1$ (C) $A = 1$ (D) A is dependent on x

PART - III: MATCH THE COLUMN

1. Column – I Column – II

(A) If
$$F(x) = \int \frac{x + \sin x}{1 + \cos x} dx$$
 and $F(0) = 0$, then the value of $F(\pi/2)$ is (p) $\frac{\pi}{2}$

(B) Let
$$F(x) = \int e^{\sin^{-1}x} \left(1 - \frac{x}{\sqrt{1 - x^2}}\right) dx$$
 and $F(0) = 1$, (q) $\frac{\pi}{3}$

If
$$F(1/2) = \frac{k\sqrt{3} e^{\pi/6}}{\pi}$$
, then the value of k is

(C) Let
$$F(x) = \int \frac{dx}{(x^2+1) (x^2+9)}$$
 and $F(0) = 0$, (r) $\frac{\pi}{4}$ if $F(\sqrt{3}) = \frac{5}{36}$ k, then the value of k is

(D) Let
$$F(x) = \int \frac{\sqrt{\tan x}}{\sin x \cos x} dx$$
 and $F(0) = 0$ (s) π if $F(\pi/4) = \frac{2k}{\pi}$, then the value of k is

2. If
$$I = \int \frac{dx}{a+b \cos x}$$
, where a, b > 0 and a + b = u, a - b = v, then match the following column

Column - I

(p)
$$I = \frac{1}{\sqrt{uv}} \quad \ell n \quad \left| \frac{\sqrt{u} + \sqrt{v} + \tan \frac{x}{2}}{\sqrt{u} - \sqrt{v} + \tan \frac{x}{2}} \right| + C$$

(B)
$$v > 0$$

(q)
$$I = \frac{2}{\sqrt{uv}} \tan^{-1} \left(\sqrt{\frac{v}{u}} - \tan \frac{x}{2} \right) + C$$

(r)
$$I = \frac{1}{\sqrt{-u + v}} \ell n \left| \frac{\sqrt{u} + \sqrt{-v} + \tan \frac{x}{2}}{\sqrt{u} - \sqrt{-v} + \tan \frac{x}{2}} \right| + C$$

(s)
$$\frac{2}{u} \tan \frac{x}{2} + C$$

Exercise-2

Marked questions are recommended for Revision.

PART - I: ONLY ONE OPTION CORRECT TYPE

* In each question C is arbitrary constant

1.2. Value of
$$\int \frac{1}{\sin(x-a)\cos(x-b)} dx$$
 is equal to

(A)
$$\frac{1}{\cos{(a-b)}} \ell n \left| \frac{\sin{(x-a)}}{\cos{(x-b)}} \right| + C$$

(A)
$$\frac{1}{\cos{(a-b)}} \ell n \left| \frac{\sin{(x-a)}}{\cos{(x-b)}} \right| + C$$
 (B) $\frac{1}{\cos{(a-b)}} \ell n \left| \frac{\cos{(x-b)}}{\sin{(x-a)}} \right| + C$

(C)
$$\frac{1}{\sin{(a-b)}} \ell n \left| \frac{\sin{(x-a)}}{\cos{(x-b)}} \right| + C$$

$$(C) \ \frac{1}{\sin{(a-b)}} \ \ell n \ \left| \frac{\sin{(x-a)}}{\cos{(x-b)}} \right| \ + C \\ \qquad (D) \ \frac{1}{\sin{(a+b)}} \ell n \ \left| \frac{\cos{(x-a)}}{\sin{(x-b)}} \right| \ + C$$

2.
$$\int \tan x \cdot \tan 2x \cdot \tan 3x \, dx =$$

(A)
$$-\ell n |\cos x| - \frac{1}{2}\ell n |\sec 2x| + \frac{1}{3}\ell n |\sec 3x| + C$$

(B)
$$-\ell n \mid \sec x \mid -\frac{1}{2}\ell n \mid \sec 2x \mid +\frac{1}{3}\ell n \mid \sec 3x \mid + C$$

(C)
$$\ell n |\cos x| + \ell n |\cos 2x| + \ell n |\cos 3x| + C$$

(D)
$$\ell n |\sec x| + \frac{1}{2} \ell n |\sec 2x| + \frac{1}{3} |\sec 3x| + C$$

3. The value of $\int (\sin x \cdot \cos x \cdot \cos 2x \cdot \cos 4x \cdot \cos 8x \cdot \cos 16x) dx$ is equal to

(A)
$$\frac{\sin 16x}{1024} + C$$

(B)
$$-\frac{\cos 32x}{1024} + 0$$

(C)
$$\frac{\cos 32x}{1096} + C$$

(A)
$$\frac{\sin 16x}{1024} + C$$
 (B) $-\frac{\cos 32x}{1024} + C$ (C) $\frac{\cos 32x}{1096} + C$ (D) $-\frac{\cos 32x}{1096} + C$

4.2a.
$$\int x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx =$$

(A)
$$\frac{1}{2} a^2 \cos^{-1} \left(\frac{x^2}{a^2} \right) + \frac{1}{2} \sqrt{a^4 + x^4} + C$$

$$(C)\frac{1}{2} a^2 sin^{-1} \left(\frac{x^2}{a^2}\right) + \frac{1}{2} \sqrt{a^4 - x^4} + C$$

(B)
$$\frac{1}{2} \sin^{-1} \left(\frac{x^2}{a^2} \right) + \sqrt{a^4 + x^4} + C$$

(D)
$$\frac{1}{2} \cos^{-1} \left(\frac{x^2}{a^2} \right) + \frac{1}{2} \sqrt{a^4 - x^4} + C$$

5. The value of
$$\int \sqrt{\frac{x-1}{x+1}} \cdot \frac{1}{x^2} dx$$
 is equal to

(A)
$$\sin^{-1}\frac{1}{x} + \frac{\sqrt{x^2 - 1}}{x} + C$$

(C)
$$\sec^{-1} x - \frac{\sqrt{x^2 - 1}}{x} + C$$

(B)
$$\frac{\sqrt{x^2-1}}{x} + \cos^{-1}\frac{1}{x} + C$$

(D)
$$\tan^{-1} \sqrt{x^2 + 1} - \frac{\sqrt{x^2 - 1}}{x} + C$$

6. The value of
$$\int \frac{\ell n |x|}{x \sqrt{1 + \ell n |x|}} dx$$
 equals :

(A)
$$\frac{2}{3}\sqrt{1+\ell n|x|} (\ell n|x|-2) + C$$

(C)
$$\frac{1}{3}\sqrt{1+\ell n|x|}$$
 $(\ell n|x|-2)+C$

(B)
$$\frac{2}{3}\sqrt{1+\ell n|x|} (\ell n|x|+2) + C$$

(D) 2
$$\sqrt{1 + \ell n |x|}$$
 (3 $\ell n |x| - 2$) + C

7. The value of
$$\int \frac{1}{[(x-1)^3(x+2)^5]^{1/4}} dx$$
 is equal to

(A)
$$\frac{4}{3} \left(\frac{x-1}{x+2} \right)^{1/4} + C$$

(B)
$$\frac{4}{3} \left(\frac{x+2}{x-1} \right)^{1/4} + C$$

(C)
$$\frac{1}{3} \left(\frac{x-1}{x+2} \right)^{1/4} + 0$$

(A)
$$\frac{4}{3} \left(\frac{x-1}{x+2} \right)^{1/4} + C$$
 (B) $\frac{4}{3} \left(\frac{x+2}{x-1} \right)^{1/4} + C$ (C) $\frac{1}{3} \left(\frac{x-1}{x+2} \right)^{1/4} + C$ (D) $\frac{1}{3} \left(\frac{x+1}{x-1} \right)^{1/4} + C$

8.2. The value of
$$\int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} dx$$
 is equal to

(A)
$$\sqrt{x} \sqrt{1-x} - 2 \sqrt{1-x} + \cos^{-1}(\sqrt{x}) + C$$
 (B) $\sqrt{x} \sqrt{1-x} + 2\sqrt{1-x} + \cos^{-1}(\sqrt{x}) + C$

(B)
$$\sqrt{x} \sqrt{1-x} + 2\sqrt{1-x} + c$$

(C)
$$\sqrt{x} \sqrt{1-x} - 2\sqrt{1-x} - \cos^{-1}(\sqrt{x}) + C$$

(C)
$$\sqrt{x} \sqrt{1-x} - 2\sqrt{1-x} - \cos^{-1}(\sqrt{x}) + C$$
 (D) $\sqrt{x} \sqrt{1-x} + 2\sqrt{1-x} - \cos^{-1}(\sqrt{x}) + C$

9.3.
$$\int \sin^{-1} \sqrt{\frac{x}{a+x}} dx \text{ is equal to}$$

(A)
$$(a + x)$$
 arc $tan \sqrt{\frac{x}{a}} - \sqrt{ax} + C$

(C)
$$(a - x)$$
 arc $\tan \sqrt{\frac{x}{a}} - \sqrt{ax} + C$

(B)
$$(a + x)$$
 arc $\tan \sqrt{\frac{x}{a}} + \sqrt{ax} + C$

(D)
$$(a + x)$$
 arc $\cot \sqrt{\frac{x}{a}} - \sqrt{ax} + C$

10. The value of
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} (x + \sqrt{x}) dx$$
 is equal to :

(A)
$$2e^{\sqrt{x}} [\sqrt{x} - x + 1] + C$$

(C)
$$2e^{\sqrt{x}} [x - \sqrt{x} + 1] + C$$

(B)
$$2e^{\sqrt{x}} [x-2\sqrt{x}+1]+C$$

(D)
$$2e^{\sqrt{x}} (x + \sqrt{x} + 1) + C$$

- If I = $\int \frac{2}{y} (x^{\ell n x}) (\ell n x)^3 dx = Ax^{\ell n x} (\ell n x)^2 B x^{\ell n x} + C$, then $\frac{A}{B}$ is equal to :

(D) -2

- 12. The value of $\int e^{\tan \theta} (\sec \theta - \sin \theta) d\theta$ is equal to
 - $(A) e^{\tan \theta} \sin \theta + C$
- (B) $e^{\tan \theta} \sin \theta + C$
- (C) $e^{tan \theta} sec \theta + C$
- (D) $e^{\tan \theta} \cos \theta + C$
- The value of $\int \left\{ \ln(1+\sin x) + x \tan\left(\frac{\pi}{4} \frac{x}{2}\right) \right\} dx$ is equal to: 13.3
 - (A) $x \ln (1 + \sin x) + C$

(B) $\ell n (1 + \sin x) + C$

(C) $- x \ell n (1 + \sin x) + C$

- (D) ℓ n (1 sin x) + C
- The value of $\int x \cdot \frac{\ln \left(x + \sqrt{1 + x^2}\right)}{\sqrt{1 + x^2}} dx$ equals: 14.

(A)
$$\sqrt{1+x^2}$$
 $\ell n \left(x + \sqrt{1+x^2}\right) - x + C$

$$(A) \sqrt{1 + x^2} \ \ell n \left(x + \sqrt{1 + x^2} \right) - x + C$$

$$(B) \ \frac{x}{2} \cdot \ell n^2 \left(x + \sqrt{1 + x^2} \right) - \frac{x}{\sqrt{1 + x^2}} + C$$

(C)
$$\frac{x}{2} \cdot \ell n^2 \left(x + \sqrt{1 + x^2} \right) + \frac{x}{\sqrt{1 + x^2}} + C$$
 (D) $\sqrt{1 + x^2} \ell n \left(x + \sqrt{1 + x^2} \right) + x + C$

(D)
$$\sqrt{1+x^2} \ \ell n \left(x + \sqrt{1+x^2} \right) + x + C$$

- If $\int \frac{x \tan^{-1} x}{\sqrt{1 + x^2}} dx = \sqrt{1 + x^2}$ $f(x) + A \ln |x + \sqrt{x^2 + 1}| + C$, then 15.

(B) $f(x) = tan^{-1} x$, A = 1

(A) $f(x) = tan^{-1} x$, A = -1(C) $f(x) = 2 tan^{-1} x$, A = -1

(D) $f(x) = 2 \tan^{-1} x$, A = 1

- $\int \frac{x + \sqrt{x+1}}{x+2} dx$ is equal to 16.
 - (A) $(x+1) 2\sqrt{x+1} + 2 \ln |x+2| 2\tan^{-1} \sqrt{x+1} + C$
 - (B) $(x+1) + 2\sqrt{x+2} 2 \ln |x+2| 2 \tan^{-1} \sqrt{x+2} + C$
 - (C) $(x+1) + 2\sqrt{x+1} 2 \ln |x+2| 2 \tan^{-1} \sqrt{x+1} + C$
 - (D) $(x+1) + 2\sqrt{x+2} 2 \ln |x+1| + 2 \tan^{-1} \sqrt{x+2} + C$
- The value of $\int \sqrt{\frac{1-\cos x}{\cos \alpha-\cos x}} dx$, where $0 < \alpha < x < \pi$, is equal to 17.
 - (A) $2 \ln \left(\cos \frac{\alpha}{2} \cos \frac{x}{2} \right) + C$

- (B) $\sqrt{2} \ln \left(\cos \frac{\alpha}{2} \cos \frac{x}{2} \right) + C$
- (C) $2\sqrt{2} \ln \left(\cos \frac{\alpha}{2} \cos \frac{x}{2}\right) + C$
- $(D) -2\sin^{-1}\left(\frac{\cos\frac{x}{2}}{\cos\frac{\alpha}{2}}\right) + C$
- If $I = \int \frac{\sin x + \sin^3 x}{\cos^2 x} dx = A \cos x + B \ln |f(x)| + C$, then 18.

 - (A) $A = \frac{1}{4}$, $B = \frac{-1}{\sqrt{2}}$, $f(x) = \frac{\sqrt{2}\cos x 1}{\sqrt{2}\cos x + 1}$ (B) $A = -\frac{1}{2}$, $B = \frac{-3}{4\sqrt{2}}$, $f(x) = \frac{\sqrt{2}\cos x 1}{\sqrt{2}\cos x + 1}$

 - (C) $A = -\frac{1}{2}$, $B = \frac{3}{\sqrt{2}}$, $f(x) = \frac{\sqrt{2}\cos x + 1}{\sqrt{2}\cos x 1}$ (D) $A = \frac{1}{2}$, $B = \frac{-3}{4\sqrt{2}}$, $f(x) = \frac{\sqrt{2}\cos x 1}{\sqrt{2}\cos x + 1}$

- The value of $\int \frac{1}{\cos^6 x + \sin^6 x} dx$ is equal to 19.
 - (A) $tan^{-1} (tan x + cot x) + C$

(B) $- \tan^{-1} (\tan x + \cot x) + C$

(C) $tan^{-1} (tan x - cot x) + C$

- (D) $\tan^{-1} (\tan x \cot x) + C$
- 20. Consider the following statements:

The antiderivative of every even function is an odd function.

S₂: Primitive of
$$\frac{3x^4 - 1}{(x^4 + x + 1)^2}$$
 w.r.t. x is $\frac{x}{x^4 + x + 1} + C$.

$$S_3:$$

$$\int \frac{1}{\sqrt{\sin^3 x \cos x}} dx = \frac{-2}{\sqrt{\tan x}} + C.$$

$$\mathbf{S_4}$$
: The value of $\int \left(\sqrt{\frac{a+x}{a-x}} - \sqrt{\frac{a-x}{a+x}} \right) dx$ is equal to $-2\sqrt{a^2-x^2} + C$

State, in order, whether S_1 , S_2 , S_3 , S_4 are true or false (A) FFTT (B) TTTT (C) F

- (D) TFTF

21. If
$$I_n = \int (\sin x + \cos x)^n dx$$
, $\operatorname{snd} I_n = \frac{1}{n} (\sin x + \cos x)^{n-1} (\sin x - \cos x) + \frac{2k}{n} I_{n-2}$ then $k = (A) (n+1)$ (B) $(n-1)$ (C) $(2n+1)$ (A) $(2n-1)$

PART - II: SINGLE AND DOUBLE VALUE INTEGER TYPE

* In each question C is arbitrary constant

- If $f(x) = \int \frac{2\sin x \sin 2x}{x^3} dx$, where $x \ne 0$, then Limit f'(x) has the value 1.
- If $\int \sin^4 x \cos^4 x \, dx = \frac{1}{128} \left[ax \sin 4x + \frac{1}{8} \cdot \sin 8x \right] + C$ then value of 'a' equal to: 2.
- Let f(x) be the primitive of $\frac{3x+2}{\sqrt{x-9}}$ w.r. to x. If f(10) = 60 then twice of sum of digits of the value of f(13) 3. is.
- If $\int \frac{\sqrt{4+x^2}}{v^6} dx = \frac{\left(a+x^2\right)^{3/2} \cdot \left(x^2-b\right)}{120 \cdot v^5} + C \text{ then } a+b \text{ equals to } :$
- If $\int \sqrt{\frac{x}{a^3 x^3}} dx = \frac{d}{b} \sin^{-1} \left(\frac{x^{3/2}}{a^{3/2}} \right) + C$, (where b & d are coprime integer) then b + d equals to. 5.39
- If $\int \frac{x \, dx}{\sqrt{1 + x^2 + \sqrt{(1 + x^2)^3}}} = k \sqrt{1 + \sqrt{1 + x^2}} + C$ then k equals to :
- If $\int e^{\sin x} \cdot \frac{x \cos^3 x \sin x}{\cos^2 x} dx = e^{\sin x} f(x) + C$ such that f(0) = -1 then $\frac{\pi}{3} f\left(\frac{\pi}{3}\right)$ is equal to : 7.3
- Let $g(x) = \int \frac{1 + 2\cos x}{(\cos x + 2)^2} dx$ and g(0) = 0 then value of 32 $g\left(\frac{\pi}{2}\right)$ is. 8.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

9. If
$$f(x) = \sqrt{x-1}$$
; $g(x) = e^x$ and $\int fog(x)dx = Afog(x) + Btan^{-1} (fog(x)) + C$ then $A^3 + B^2$ equals

10. If
$$\int \frac{2 \sin 2 \phi - \cos \phi}{6 - \cos^2 \phi - 4 \sin \phi} d\phi = p \ln \left| \sin^2 \phi - 4 \sin \phi + 5 \right| + q \tan^{-1}(\sin \phi - r) + C$$
 then $p + q + r$ equal to :

11. If
$$\int \frac{(x-1)^2}{x^4+x^2+1} dx = \frac{1}{\sqrt{a}} \tan^{-1} \left(\frac{x^2-1}{x\sqrt{3}} \right) - \frac{b}{\sqrt{a}} \tan^{-1} \left(\frac{2x^2+1}{\sqrt{3}} \right) + C$$
 then $a^2 + b^2$ equals to :

12.2 If
$$\int \frac{1 + x \cos x}{x \left(1 - x^2 e^{2 \sin x}\right)} dx = k \ln \sqrt{\frac{x^2 e^{2 \sin x}}{1 - x^2 e^{2 \sin x}}} + C$$
 then k is equal to :

13.2. If
$$\int \frac{x^4 + 1}{x(x^2 + 1)^2} dx = A \ln |x| + \frac{B}{1 + x^2} + C$$
, then A + B equals to :

14. If
$$\int \frac{1}{1-\sin^4 x} dx = \frac{1}{a\sqrt{b}} \tan^{-1} \left(\sqrt{a} \tan x\right) + \frac{1}{b} \tan x + C$$
 then $\frac{a}{b}$ is equal to :

15. If
$$\int \frac{\cos^3 x + \cos^5 x}{\sin^2 x + \sin^4 x} dx = p \sin x - \frac{q}{\sin x} - r \tan^{-1} (\sin x) + C$$
 then $p + 2q + r$ is equal to :

If $\int \frac{dx}{\sqrt{\sin^3 x \cos^5 x}} = a \sqrt{\cot x} + b \sqrt{\tan^3 x} + C$, where C is an arbitrary constant of integration, then the 16. values of a² + 9b equals to:

PART - III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

* In each question C is arbitrary constant

1. The value of $\int 2^{mx} \cdot 3^{nx} dx$ (when $m, n \in N$) is equal to :

$$(A) \ \frac{2^{mx} + 3^{nx}}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \quad (B) \ \ \frac{e^{(m \, \ell n \, 2 + n \, \ell n \, 3) \, x}}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ (C) \ \ \frac{2^{mx} \, . \, 3^{nx}}{\ell \, n \, \left(2^m \, . \, 3^n\right)} \ + \ C \qquad \qquad (D) \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, . \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, n \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, n \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, n \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, n \, 2^x \, . \, 3^x}{m \, \ell n \, 2 + n \, \ell n \, 3} \ + \ C \ \ \frac{\left(mn\right) \, n \, 2^x \, . \, 3^x}{m \, \ell n \, 2} \ + \ C \ \ \frac{\left(mn\right) \, n \, 2^x \, . \, 3^x}{m \, \ell n \,$$

(D)
$$\frac{(mn) \cdot 2^x \cdot 3^x}{m \ln 2 + n \ln 3} + C$$

2. If
$$f\left(\frac{1-x}{1+x}\right) = x$$
 and $g(x) = \int f(x) dx$ then

- (A) g(x) is continuous in domain
- (B) g(x) is discontinuous at two points in its domain
- (C) $\lim_{x\to\infty} g'(x) = -1$

(D)
$$\int g(x)dx = -\frac{x^2}{2} + (2x+1) \lambda n \left(\frac{1+x}{e}\right) + C$$

- If = $\int \tan^5 x dx = A \tan^4 x \frac{1}{2} \tan^2 x + B \ell n |\sec x| + C then$ 3.
 - (A) A = $\frac{1}{4}$
- (B) A = $\frac{1}{2}$
- (C) B = 1
- (D) B = -1

- The value of $\int \{1+2\tan x(\tan x + \sec x)\}^{1/2} dx$ is equal to 4.
 - (A) $\ell n |\sec x (\sec x \tan x)| + C$
- (B) $\ell n | cosec x (sec x + tan x) | + C$
- (C) $\ell n |\sec x (\sec x + \tan x)| + C$
- (D) $-\ell n |\cos x(\sec x \tan x)| + C$
- The value of $\int \frac{\ln \left(\frac{x-1}{x+1}\right)}{x^2-1} dx$ is equal to 5.3
 - (A) $\frac{1}{2} \ell n^2 \frac{x-1}{x+1} + C$ (B) $\frac{1}{4} \ell n^2 \frac{x-1}{x+1} + C$ (C) $\frac{1}{2} \ell n^2 \frac{x+1}{x+1} + C$ (D) $\frac{1}{4} \ell n^2 \frac{x+1}{x+1} + C$

- The value of $\int \frac{\ln (\tan x)}{\sin x \cos x} dx$ is equal to 6.
 - (A) $\frac{1}{2} \ln^2 (\cot x) + C$

(B) $\frac{1}{2} \ell n^2 (\sec x) + C$

(C) $\frac{1}{2} \ell n^2 (\sin x \sec x) + C$

- (D) $\frac{1}{2} \ell n^2 (\cos x \csc x) + C$
- The value of $\int \frac{\cos^3 x}{\sin^2 x + \sin x} dx$ is equal to : 7.
 - (A) $\ell n | \sin x | + \sin x + C$

- (B) $\ell n | \sin x | \sin x + C$
- (C) $\ell n \mid \csc x \mid -\sin x + C$
- (D) $\ell n \mid \sin x \mid + \sin x + C$
- If $\int \frac{(x-1) dx}{x^2 \sqrt{2x^2 2x + 1}} = \frac{\sqrt{f(x)}}{g(x)} + C$, where f(x) is a quadratic expression and g(x) is a monic linear 8.
 - (A) $f(x) = 2x^2 2x + 1$
 - (C) g(x) = x

- (B) g(x) = x + 1(D) $f(x) = 2x^2 2x$
- 9. If $\int e^{3x} \cos 4x \, dx = e^{3x} (A \sin 4x + B \cos 4x) + C \text{ then}$:
 - (A) 4A = 3B
- (B) 2A = 3B
- (C) 3A = 4B
- (D) 4A + 3B = 1

- $I = \int \frac{\sin^{-1} \sqrt{x} \cos^{-1} \sqrt{x}}{\sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x}} dx \text{ equals to}$ 10.
 - (A) $-x + \frac{2}{\pi} (2x 1)\sin^{-1} \sqrt{x} + \frac{2}{\pi} \sqrt{x x^2} + C$
 - (B) $x \frac{4x}{\pi} \cos^{-1} \sqrt{x} \frac{2}{\pi} \sin^{-1} \sqrt{x} + \frac{2}{\pi} \sqrt{x} \sqrt{1-x} + C$
 - (C) $-x + \frac{2}{\pi} (2x + 1)\cos^{-1} \sqrt{x} + \frac{2}{\pi} \sqrt{x} \sqrt{1-x} + C$
 - (D) $x \frac{4x}{\pi} \sin^{-1} \sqrt{x} + C$
- 11.2a If $\int \frac{x^2 x + 1}{(1 + x^2)^{3/2}} e^x dx = e^x f(x) + C$ then
 - (A) f(x) is a an even function

(B) f(x) is a bounded function

(C) Range of f(x) is (0, 1]

(D) f(x) has two points of exterma.

12. If
$$\int \frac{4e^x + 6e^{-x}}{9e^x - 4e^{-x}} dx = Ax + B \ln |9e^{2x} - 4| + C$$
, then

$$(A) A + 18B = 16$$

(B)
$$18B - A = 19$$

$$(C) A - 18B = 17$$

$$(D) A + 18B = 32$$

13. The value of
$$\int \frac{x^2 + \cos^2 x}{1 + x^2} \csc^2 x \, dx$$
 is equal to:

(A)
$$\cot x - \cot^{-1} x + C$$

(B)
$$C - \cot x + \cot^{-1} x$$

$$(C) - tan^{-1}x - \frac{\cos ecx}{\sec x} + C$$

(D)
$$\frac{1}{\tan^{-1} x} - \cot x + C$$

14. The value of
$$\int \frac{dx}{\sqrt{x-x^2}}$$
; $\left(x > \frac{1}{2}\right)$ is equal to

(A)
$$2 \sin^{-1} \sqrt{x} + C$$

(B)
$$\sin^{-1}(2x-1) + C$$

(C)
$$C - 2 \cos^{-1} (2x - 1)$$

(D)
$$\cos^{-1} 2\sqrt{x-x^2} + C$$

15.
$$\int \frac{x^3 - 1}{x^3 + x} dx \text{ is equal to}$$

(A)
$$x - \ell n |x| + \ell n (x^2 + 1) - tan^{-1}x + C$$

(B)
$$x - \ell n |x| + \frac{1}{2} \ell n (x^2 + 1) - \tan^{-1}x + C$$

(C)
$$x + \ln |x| + \frac{1}{2} \ln (x^2 + 1) + \tan^{-1}x + C$$

(D)
$$x + \ell n \sqrt{\frac{x^2 + 1}{x^2}} + \cot^{-1}x + C$$

16. The value of $2 \int \sin x$. $\cos ec4x dx$ is equal to

$$\text{(A)} \ \ \frac{1}{2\sqrt{2}} \, \ell n \left| \frac{1+\sqrt{2} \sin x}{1-\sqrt{2} \sin x} \right| \ - \ \frac{1}{4} \ \ell n \left| \frac{1+\sin x}{1-\sin x} \right| \ + \ C \ \ \text{(B)} \ \ \frac{1}{2\sqrt{2}} \ \ell n \ \ \left| \frac{1+\sqrt{2} \sin x}{1-\sqrt{2} \sin x} \right| \ - \ \frac{1}{2} \, \ell n \ \left| \frac{1+\sin x}{\cos x} \right| \ + \ C \ \ \text{(B)} \ \ \frac{1}{2\sqrt{2}} \ \ell n \ \ \left| \frac{1+\sqrt{2} \sin x}{1-\sqrt{2} \sin x} \right| \ - \ \frac{1}{2} \, \ell n \ \left| \frac{1+\sin x}{\cos x} \right| \ + \ C \ \ \text{(B)} \ \ \frac{1}{2\sqrt{2}} \ \ell n \ \ \left| \frac{1+\sqrt{2} \sin x}{1-\sqrt{2} \sin x} \right| \ - \ \frac{1}{2} \, \ell n \ \ \left| \frac{1+\sin x}{\cos x} \right| \ + \ C \ \ \text{(B)} \ \ \frac{1}{2\sqrt{2}} \ \ell n \ \ \left| \frac{1+\sqrt{2} \sin x}{1-\sqrt{2} \sin x} \right| \ - \ \frac{1}{2} \, \ell n \ \ \left| \frac{1+\sin x}{\cos x} \right| \ + \ C \ \ \text{(B)} \ \ \frac{1}{2\sqrt{2}} \ \ell n \ \ \left| \frac{1+\sqrt{2} \sin x}{1-\sqrt{2} \sin x} \right| \ - \ \frac{1}{2} \, \ell n \ \ \left| \frac{1+\sin x}{\cos x} \right| \ + \ C \ \ \text{(B)} \ \ \frac{1}{2\sqrt{2}} \ \ell n \ \ \left| \frac{1+\sqrt{2} \sin x}{1-\sqrt{2} \sin x} \right| \ - \ \frac{1}{2} \, \ell n \ \ \left| \frac{1+\sin x}{\cos x} \right| \ + \ C \ \ \text{(B)} \ \ \frac{1}{2\sqrt{2}} \ \ell n \ \ \left| \frac{1+\sqrt{2} \sin x}{1-\sqrt{2} \sin x} \right| \ - \ \frac{1}{2} \, \ell n \ \ \left| \frac{1+\sin x}{\cos x} \right| \ + \ C \ \ \text{(B)} \ \ \frac{1}{2\sqrt{2}} \ \ell n \ \ \left| \frac{1+\sqrt{2} \sin x}{1-\sqrt{2} \sin x} \right| \ - \ \frac{1}{2} \, \ell n \ \ \left| \frac{1+\sin x}{\cos x} \right| \ + \ C \ \ \text{(B)} \ \ \frac{1}{2\sqrt{2}} \ \ell n \ \ \left| \frac{1+\sqrt{2} \sin x}{1-\sqrt{2} \sin x} \right| \ - \ \frac{1}{2} \, \ell n \ \ \left| \frac{1+\sin x}{\cos x} \right| \ + \ C \ \ \text{(B)} \ \ \frac{1}{2\sqrt{2}} \ \ell n \ \ \left| \frac{1+\sqrt{2} \sin x}{1-\sqrt{2} \sin x} \right| \ + \ C \ \ \left| \frac{1+\sin x}{1-\sqrt{2} \sin x} \right$$

$$(C) \quad \frac{1}{2\sqrt{2}} \ \ell n \ \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ - \ \frac{1}{4} \ \ell n \ \left| \frac{1+\sin x}{1-\sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ \frac{1}{4} \ell n \left| \frac{1-\sin x}{1+\sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ \frac{1}{4} \ell n \left| \frac{1-\sin x}{1+\sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ \frac{1}{4} \ell n \left| \frac{1-\sin x}{1+\sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ \frac{1}{4} \ell n \left| \frac{1-\sin x}{1+\sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ \frac{1}{4} \ell n \left| \frac{1-\sin x}{1+\sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ \frac{1}{4} \ell n \left| \frac{1-\sin x}{1+\sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ \frac{1}{4} \ell n \left| \frac{1-\sin x}{1+\sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ \frac{1}{4} \ell n \left| \frac{1-\sin x}{1+\sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ \frac{1}{4} \ell n \left| \frac{1-\sin x}{1+\sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ \frac{1}{4} \ell n \left| \frac{1-\sin x}{1+\sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ C \ (D) \ - \frac{1}{2\sqrt{2}} \ell n \left| \frac{1-\sqrt{2} \sin x}{1+\sqrt{2} \sin x} \right| \ + \ C \ (D) \ - \frac{1}{2$$

17.2. If $\int \frac{3\cot 3x - \cot x}{\tan x - 3\tan 3x} dx = p f(x) + q g(x) + C$, then which of the following may be correct?

(A)
$$p = 1$$
; $q = \frac{1}{\sqrt{3}}$; $f(x) = x$; $g(x) = \ell n \left| \frac{\sqrt{3} - \tan x}{\sqrt{3} + \tan x} \right|$

(B)
$$p = 1$$
; $q = -\frac{1}{\sqrt{3}}$; $f(x) = x$; $g(x) = \ell n \left| \frac{\sqrt{3} - \tan x}{\sqrt{3} + \tan x} \right|$

(C)
$$p = 1$$
; $q = -\frac{2}{\sqrt{3}}$; $f(x) = x$; $g(x) = \ell n \left| \frac{\sqrt{3} + \tan x}{\sqrt{3} - \tan x} \right|$

(D)
$$p = 1$$
; $q = -\frac{1}{\sqrt{3}}$; $f(x) = x$; $g(x) = \ell n \left| \frac{\sqrt{3} + \tan x}{\sqrt{3} - \tan x} \right|$

18. If
$$\int \frac{dx}{5 + 4\cos x} = P \tan^{-1} \left(m \tan \frac{x}{2} \right) + C \text{ then } :$$

(A)
$$P = 2/3$$

(B)
$$m = 1/3$$

(C)
$$P = 1/3$$

(D)
$$m = 2/3$$

19. The value of
$$\int \frac{\sin 2x}{\sin^4 x + \cos^4 x} dx$$
 is equal to:

(A)
$$\cot^{-1}(\cot^2 x) + C$$

(B)
$$-\cot^{-1}(\tan^2 x) + C$$

(C)
$$tan^{-1}(tan^2x) + C$$

(D)
$$-\tan^{-1}(\cos 2x) + C$$

PART - IV : COMPREHENSION

Comprehension # 1 (Q.No. 1 to 3)

Let $I_{n,m} = \int \sin^n x \cos^m x. dx$. Then we can relate $I_{n,m}$ with each of the following

$$(i) I_{n-2, m}$$

$$I_{n+2,m}$$

$$P(x) = \sin^{n+1}x \cos^{m-1}x$$
(1)

In $I_{n,m}$ and $I_{n,m-2}$ the exponent of cosx is m and m - 2 respectively, the minimum of the two is m - 2, adding 1 to the minimum we get m - 2 + 1 = m - 1. Now choose the exponent m-1 of cosx in P(x). Similarly choose the exponent of sin x for P(x)

Now differentiating both sides of (1), we get

$$P'(x) = (n + 1) \sin^{n}x \cos^{m}x - (m - 1) \sin^{n+2}x \cos^{m-2}x$$

$$= (n + 1) \sin^{n}x \cos^{m}x - (m - 1) \sin^{n}x (1 - \cos^{2}x) \cos^{m-2}x$$

$$= (n + 1) \sin^{n}x \cos^{m}x - (m - 1) \sin^{n}x \cos^{m-2}x + (m - 1) \sin^{n}x \cos^{m}x$$

$$= (n + m) \sin^{n}x \cos^{m}x - (m - 1) \sin^{n}x \cos^{m-2}x$$

Now integrating both sides, we get

$$\sin^{n+1}x \cos^{m-1}x = (n+m) I_{n,m} - (m-1) I_{n,m-2}.$$

Similarly we can establish the other relations.

The relation between $I_{4,2}$ and $I_{2,2}$ is 1.3

(A)
$$I_{4,2} = \frac{1}{6} \left(-\sin^3 x \cos^3 x + 3I_{2,2} \right)$$

(B)
$$I_{4,2} = \frac{1}{6} (\sin^3 x \cos^3 x + 3I_{2,2})$$

(C)
$$I_{4,2} = \frac{1}{6} (\sin^3 x \cos^3 x - 3I_{2,2})$$

(D)
$$I_{4,2} = \frac{1}{6} \left(-\sin^3 x \cos^3 x + 2I_{2,2} \right)$$

The relation between $I_{4,2}$ and $I_{6,2}$ is 2.3

(A)
$$I_{4,2} = \frac{1}{5} (\sin^5 x \cos^3 x + 8I_{6,2})$$

(B)
$$I_{4,2} = \frac{1}{5} \left(-\sin^5 x \cos^3 x + 8I_{6,2} \right)$$

(C)
$$I_{4,2} = \frac{1}{5} (\sin^5 x \cos^3 x - 8I_{6,2})$$

(D)
$$I_{4,2} = \frac{1}{5} \left(\sin^5 x \cos^3 x + 8I_{6,2} \right)$$

The relation between $I_{4,2}$ and $I_{4,4}$ is 3.3

(A)
$$I_{4,2} = \frac{1}{3} (\sin^5 x \cos^3 x + 8 I_{4,4})$$

(B)
$$I_{4,2} = \frac{1}{3} \left(-\sin^5 x \cos^3 x + 8 I_{4,4} \right)$$

(C)
$$I_{4,2} = \frac{1}{3} (\sin^5 x \cos^3 x - 8 I_{4,4})$$

(D)
$$I_{4,2} = \frac{1}{3} (\sin^5 x \cos^3 x + 6 I_{4,4})$$

Comprehension # 2 (Q. No. 4 to 6)

It is known that

$$\sqrt{tanx} + \sqrt{cotx} = \begin{cases} \frac{\sqrt{sinx}}{\sqrt{cosx}} + \frac{\sqrt{cosx}}{\sqrt{sinx}} & \text{if} \quad 0 < x < \frac{\pi}{2} \\ \frac{\sqrt{-sinx}}{\sqrt{-cosx}} + \frac{\sqrt{-cosx}}{\sqrt{-sinx}} & \text{if} \quad \pi < x < \frac{3\pi}{2} \end{cases},$$

$$\begin{split} &\frac{d}{dx}\left(\sqrt{tanx}-\sqrt{cot\,x}\right) \;=\; \frac{1}{2}\;\left(\sqrt{tanx}+\sqrt{cot\,x}\right)\;\left(tan\,x+cot\,x\right)\,,\;\forall\;\;x\in\left(0,\;\;\frac{\pi}{2}\right)\;\cup\left(\pi\;\;,\;\;\frac{3\pi}{2}\right)\\ &\text{and}\;\;\frac{d}{dx}\left(\sqrt{tanx}+\sqrt{cot\,x}\right) =\; \frac{1}{2}\;\;\left(\sqrt{tanx}-\sqrt{cot\,x}\right)\;\left(tan\,x+cot\,x\right)\,,\;\forall\;\;x\in\left(0,\;\;\frac{\pi}{2}\right)\;\cup\left(\pi\;\;,\;\;\frac{3\pi}{2}\right). \end{split}$$

4. Value of integral
$$I = \int (\sqrt{\tan x} + \sqrt{\cot x})$$
 dx, where $x \in \left(0, \frac{\pi}{2}\right) \cup \left(\pi, \frac{3\pi}{2}\right)$ is

(A)
$$\sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) + C$$

(A)
$$\sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) + C$$
 (B) $\sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} + \sqrt{\cot x}}{\sqrt{2}} \right) + C$

$$(C) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) + C$$

$$(C) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) + C \qquad \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} + \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \cot^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) \\ + C \qquad (D) - \sqrt{2} \cot^{-1} \left(\frac{\sqrt{\tan$$

5. Value of the integral
$$I = \int (\sqrt{\tan x} + \sqrt{\cot x}) dx$$
, where $x \in \left(0, \frac{\pi}{2}\right)$, is

(A)
$$\sqrt{2} \sin^{-1} (\cos x - \sin x) + C$$

(B)
$$\sqrt{2} \sin^{-1} (\sin x - \cos x) + C$$

(C)
$$\sqrt{2} \sin^{-1} (\sin x + \cos x) + C$$

(B)
$$\sqrt{2} \sin^{-1} (\sin x - \cos x) + C$$

(D) $-\sqrt{2} \sin^{-1} (\sin x + \cos x) + C$

6. Value of the integral
$$I = \int (\sqrt{\tan x} + \sqrt{\cot x}) dx$$
, where $x \in \left(\pi, \frac{3\pi}{2}\right)$, is

(A)
$$\sqrt{2} \sin^{-1} (\cos x - \sin x) + C$$

(B)
$$\sqrt{2} \sin^{-1} (\sin x - \cos x) + C$$

(C)
$$\sqrt{2} \sin^{-1} (\sin x + \cos x) + C$$

(D)
$$-\sqrt{2} \sin^{-1} (\sin x + \cos x) + C$$

Exercise-3

- Marked questions are recommended for Revision.
- * Marked Questions may have more than one correct option.

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

1.3. Integrate,
$$\int \frac{x^3 + 3x + 2}{(x^2 + 1)^2 (x + 1)} dx$$
.

[IIT-JEE 1999, Part-2, (7, 0), 120]

- Let $f(x) = \int e^x (x-1) (x-2) dx$ then f decreases in the interval :[IIT-JEE 2000, Scr, (1, 0), 35] 2. (B) (-2, -1)(D) $(2, +\infty)$ $(A) (-\infty, 2)$ (C)(1,2)
- Evaluate, $\int \sin^{-1} \left(\frac{2x+2}{\sqrt{4x^2+8x+13}} \right) dx$. 3.

[IIT-JEE 2001, Main, (5, 0), 100]

4. For any natural number m, evaluate,

$$\int \left(x^{3m} + x^{2m} + x^m\right) \left(2x^{2m} + 3x^m + 6\right)^{1/m} \, dx, \, x > 0.$$

[IIT-JEE 2002, Main, (5, 0), 60]

5. $\int \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}} dx$ is equal to

[IIT-JEE 2006, (3, -1), 184]

(A) $\frac{\sqrt{2x^4-2x^2+1}}{x^2}$ + C

(B) $\frac{\sqrt{2x^4-2x^2+1}}{x^3}$ + C

(C) $\frac{\sqrt{2x^4-2x^2+1}}{x}$ + C

- (D) $\frac{\sqrt{2x^4-2x^2+1}}{2x^2}$ + C
- **6.28.** Let $f(x) = \frac{x}{(1+x^n)^{1/n}}$ for $n \ge 2$ and $g(x) = \underbrace{(f \circ f \circ \circ f)}_{\text{f occurs n times}}$ (x). Then $\int x^{n-2}g(x) \ dx$ equals

[IIT-JEE 2007, Paper-2, (3, -1), 81]

(A) $\frac{1}{n(n-1)} (1+nx^n)^{1-\frac{1}{n}} + K$

(B) $\frac{1}{(n-1)} (1+nx^n)^{1-\frac{1}{n}} + K$

(C) $\frac{1}{n(n+1)} (1+nx^n)^{1+\frac{1}{n}} + K$

- (D) $\frac{1}{(n+1)} \left(1 + nx^n\right)^{1+\frac{1}{n}} + K$
- 7. Let F(x) be an indefinite integral of $\sin^2 x$.

[IIT-JEE 2007, Paper-1, (3, -1), 81]

STATEMENT-1 : The function F(x) satisfies $F(x + \pi) = F(x)$ for all real x.

because

STATEMENT-2 : $\sin^2(x + \pi) = \sin^2 x$ for all real x.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- (B)Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- 8. Let $I = \int \frac{e^x}{e^{4x} + e^{2x} + 1} dx$, $J = \int \frac{e^{-x}}{e^{-4x} + e^{-2x} + 1} dx$. Then, for an arbitrary constant C, the value of J I is

equal to:

[IIT-JEE 2008, Paper-2, (3, -1), 81]

(A) $\frac{1}{2} \ln \left| \frac{e^{4x} - e^{2x} + 1}{e^{4x} + e^{2x} + 1} \right| + C$

- (B) $\frac{1}{2} \ln \left| \frac{e^{2x} + e^x + 1}{e^{2x} e^x + 1} \right| + C$
- (C) $\frac{1}{2} \ln \left| \frac{e^{2x} e^x + 1}{e^{2x} + e^x + 1} \right| + C$
- (D) $\frac{1}{2} \ln \left| \frac{e^{4x} + e^{2x} + 1}{e^{4x} e^{2x} + 1} \right| + C$
- 9. The integral $\int \frac{\sec^2 x}{(\sec x + \tan x)^{9/2}} dx$ equals (for some arbitrary constant K)
 - (A) $\frac{-1}{(\sec x + \tan x)^{11/2}} \left\{ \frac{1}{11} \frac{1}{7} (\sec x + \tan x)^2 \right\} + K$

[IIT-JEE 2012, Paper-1, (3, -1), 70]

- (B) $\frac{1}{(\sec x + \tan x)^{11/2}} \left\{ \frac{1}{11} \frac{1}{7} (\sec x + \tan x)^2 \right\} + K$
- (C) $\frac{-1}{(\sec x + \tan x)^{11/2}} \left\{ \frac{1}{11} + \frac{1}{7} (\sec x + \tan x)^2 \right\} + K$
- (D) $\frac{1}{(\sec x + \tan x)^{11/2}} \left\{ \frac{1}{11} + \frac{1}{7} (\sec x + \tan x)^2 \right\} + K$

PART - II : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

- If the integral $\int \frac{5 \tan x}{\tan x 2} dx = x + a \ln |\sin x 2 \cos x| + k$, then a is equal to : 1.
- (3) 1
- [AIEEE-2012, (4, -1)/120] (4) 2

- If $\int f(x) dx = \psi(x)$, then $\int x^5 f(x^3) dx$ is equal to 2.
- [AIEEE 2013, (4, -1),360]

- (1) $\frac{1}{2} \left[x^3 \psi(x^3) \int x^2 \psi(x^3) \right] dx + C$
- (2) $\frac{1}{3}x^3\psi(x^3) 3\int x^3\psi(x^3) dx + C$
- (3) $\frac{1}{2}x^3\psi(x^3) \int x^2\psi(x^3) dx + C$
- (4) $\frac{1}{3} \left[x^3 \psi(x^3) \int x^3 \psi(x^3) \right] + C$
- The integral $\int \left(1+x-\frac{1}{x}\right)e^{x+\frac{1}{x}}dx$ is equal to : 3.≥

- [JEE(Main) 2014, (4, -1), 120]
- (1) $(x + 1) e^{x + \frac{1}{x}} + c$ (2) $-x e^{x + \frac{1}{x}} + c$ (3) $(x 1) e^{x + \frac{1}{x}} + c$ (4) $x e^{x + \frac{1}{x}} + c$

The integral $\int \frac{dx}{x^2(x^4+1)^{3/4}}$ equals 4.

[JEE(Main) 2015, (4, -1), 120]

- $(1) \left(\frac{x^4 + 1}{x^4} \right)^{1/4} + c \qquad (2) (x^4 + 1)^{1/4} + c \qquad (3) -(x^4 + 1)^{1/4} + c \qquad (4) -\left(\frac{x^4 + 1}{x^4} \right)^{1/4} + c$
- The integral $\int \frac{2x^{12}+5x^9}{(x^5+x^3+1)^3} dx$ is equal to 5.

- [JEE(Main) 2016, (4, -1), 120]
- (1) $\frac{x^{10}}{2(x^5 + x^3 + 1)^2} + C$ (2) $\frac{x^5}{2(x^5 + x^3 + 1)^2} + C$ (3) $\frac{-x^{10}}{2(x^5 + x^3 + 1)^2} + C$ (4) $\frac{-x^5}{(x^5 + x^3 + 1)^2} + C$

- where C is an arbitrary constant
- Let $I_n = \int tan^n x dx$, (n > 1). If $I_4 + I_6 = a tan^5x + bx^5 + C$, where C is a constant of integration, then the 6. [JEE(Main) 2017, (4, -1), 120] (3) $\left(\frac{1}{5}, -1\right)$ (4) $\left(-\frac{1}{5}, 0\right)$ ordered pair (a, b) is equal to
 - $(1)\left(-\frac{1}{5},1\right)$
- $(2)\left(\frac{1}{5},0\right)$

- The integral $\int \frac{\sin^2 x \cos^2 x}{(\sin^5 x + \cos^3 x \sin^2 x + \sin^3 x \cos^2 x + \cos^5 x)^2} dx$ is equal to : 7.3
 - [JEE(Main) 2018, (4, -1), 120]

- (1) $\frac{1}{1+\cot^3 x} + C$ (2) $\frac{-1}{1+\cot^3 x} + C$ (3) $\frac{1}{3(1+\tan^3 x)} + C$ (4) $\frac{-1}{3(1+\tan^3 x)} + C$
- (where C is a constant of integration)
- Let $n \geq 2$ be a natural number and $0 < \theta < \pi / 2$. Then $\int \frac{(sin^n \theta sin \theta)^{\frac{1}{n}} cos \theta}{sin^{n+1} \theta} d\theta$ is equal to : 8.3
 - (where C is a constant of integration)
- [JEE(Main) 2019, Online (10-01-19),P-1 (4, -1), 120]

 $(1) \frac{n}{n^2 - 1} \left(1 - \frac{1}{\sin^{n+1} \Omega} \right)^{\frac{n+1}{n}} + C$

 $(2)\frac{n}{n^2-1}\left(1-\frac{1}{\sin^{n-1}\Omega}\right)^{\frac{n+1}{n}}+C$

(3) $\frac{n}{n^2+1}\left(1-\frac{1}{\sin^{n-1}\theta}\right)^{\frac{1}{n}}+C$

(4) $\frac{n}{n^2-1}\left(1+\frac{1}{\sin^{n-1}\theta}\right)^{\frac{1}{n}}+C$

9. The integral $\int \cos(\log_e x) dx$ is equal to : (where C is a constant of integration

[JEE(Main) 2019, Online (12-01-19), P-1 (4, -1), 120]

(1)
$$x \left[\cos(\log_e x) - \sin(\log_e x) \right] + C$$

(2)
$$\frac{x}{2} \left[\sin(\log_e x) - \cos(\log_e x) \right] + C$$

(3)
$$x[cos(log_e x) + sin(log_e x)] + C$$

(4)
$$\frac{x}{2} \left[\cos(\log_e x) + \sin(\log_e x) \right] + C$$

Answers

EXERCISE - 1

PART - I

Section (A):

A-1. (i)
$$\frac{(2x+3)^6}{12} + C$$

$$\frac{(2x+3)^6}{12} + C$$
 (ii) $-\frac{\cos 2x}{2} + C$

(iii)
$$\frac{\tan(4x+5)}{4} + C$$

(iv)
$$\frac{1}{3} \ln |\sec (3x + 2) + \tan (3x + 2)| + C$$

(v)
$$\frac{1}{2} \ln |\sec(2x + 1)| + C$$

(vi)
$$\frac{2^{3x+4}}{3 \ln 2} + C$$
 (vii) $\frac{1}{2} \ln |2x+1| + C$ (viii) $\frac{e^{4x+5}}{4} + C$

(vii)
$$\frac{1}{2} \ell n |2x + 1| + C$$

(viii)
$$\frac{e^{4x+5}}{4} + 0$$

A-2. (i)
$$\frac{x}{2} - \frac{1}{4}\sin 2x + C$$

(ii)
$$\frac{\sin 3x}{12} + \frac{3}{4}\sin x + C$$

(iii)
$$-\frac{1}{10}\cos 5x + \frac{1}{2}\cos x + C$$
 (iv) $\cos x - \frac{1}{2}\cos 2x - \frac{1}{3}\cos 3x + C$

$$\cos x - \frac{1}{2} \cos 2x - \frac{1}{3} \cos 3x + C$$

(v)
$$\frac{2}{3} ((x+3)^{3/2} + (x+2)^{3/2}) + C$$

Section (B):

B-1. (i)
$$-\frac{1}{2}\cos^2 x + C$$

(ii)
$$\frac{1}{2} \ln |x^2 + 1| + C$$

(iii)
$$\frac{1}{2} (\tan x)^2 + C \text{ or } \frac{\sec^2 x}{2} + C$$

(iv)
$$\ell n |e^x + x| + C$$

(v)
$$\ell n |x + \cos x| + C$$

(vi)
$$\frac{1}{2} \ln |e^{2x} - 2| + C$$

(vii)
$$\frac{1}{2} \ln |x^2 + \sin 2x + 2x| + C$$

(viii)
$$\ell n \mid \ell n (\text{secx} + \text{tanx}) \mid + C$$

(vii)
$$\frac{1}{2} \ln |x^2 + \sin 2x + 2x| + C$$
 (viii) $\ln |\ln |\sin x + \tan x| + C$ (ix) $\frac{2}{3} (x+2)^{3/2} - 4(x+2)^{1/2} + C$ (x) $\frac{1}{2} (e^{2x} - e^{-2x}) + 2x + C$

(x)
$$\frac{1}{2} (e^{2x} - e^{-2x}) + 2x + C$$

(xi)
$$\frac{1}{3} e^{3x} + e^{2x} + e^{x} + C$$

$$(xii) \qquad -\frac{1}{5} \ell n \left| 1 + \frac{1}{x^5} \right| + C$$

(xiii)
$$-\frac{1}{4}\left(1+\frac{1}{x^5}\right)^{4/5}+C$$

(xiv)
$$\frac{(x^2 - 8)^{3/2}}{24 x^3} + C$$

B-2.
$$2\sqrt{(x^2+2)}+C$$

$$\ln\left(\frac{\sin x}{x}\right) + C$$
 (iii

$$\ln \left(\frac{\sin x}{x}\right) + C$$
 (ii) $\ln \left(\frac{\ln(x+1)}{x}\right) + C$

Section (C):

C-1. (i)
$$\frac{x^2}{2} \ln x - \frac{x^2}{4} + C$$

(ii)
$$\frac{x^2}{4} - \frac{x}{4} \sin 2x - \frac{1}{8} \cos 2x + C$$

(iii)
$$\frac{x^2}{2} \tan^{-1}x - \frac{x}{2} + \frac{1}{2} \tan^{-1}x + C$$

(iv)
$$x (\ell nx - 1) + C$$

(v)
$$\frac{\sec x \tan x}{2}$$
 + $\frac{1}{2} \ln |\sec x + \tan x| + C$

(vi)
$$(x^2 - 1) e^{x^2} + C$$

(vii)
$$x \sin^{-1} \sqrt{x} + \frac{\sqrt{x}\sqrt{1-x}}{2} - \frac{1}{2} \sin^{-1} \sqrt{x} + C$$

(viii)
$$x \tan^{-1}x - \frac{1}{2} \ln(1 + x^2) - \frac{(\tan^{-1}x)^2}{2} + C$$

(ix)
$$\frac{e^x}{2}$$
 (sinx – cosx) + C

(x)
$$e^x \tan x + C$$

C-2.
$$y = x \left[\ell n(\ell n x) - \frac{1}{\ell n x} \right] + 2e^{-t}$$

Section (D):

D-1. (i)
$$\frac{1}{2} \tan^{-1} \frac{x}{2} + C$$
 (ii)

$$\frac{1}{\sqrt{5}} \tan^{-1} \frac{x}{\sqrt{5}} + C$$
 (iii)

$$\frac{1}{2} \tan^{-1} \frac{x}{2} + C$$
 (ii) $\frac{1}{\sqrt{5}} \tan^{-1} \frac{x}{\sqrt{5}} + C$ (iii) $\frac{1}{2} \tan^{-1} \left(\frac{(x+1)}{2} \right) + C$

(iv)
$$\ell n |x^2 + 3x + 4| - \frac{4}{\sqrt{7}} tan^{-1} \frac{2x + 3}{\sqrt{7}} + C$$
 (v) $x - \arctan x + \ell n \frac{\sqrt{1 + x^2}}{x} + C$

(v)
$$x - \arctan x + \ell n \frac{\sqrt{1 + x^2}}{x} + C$$

(vi)
$$\ell n |x + \sqrt{x^2 - 4}| + C$$

(vii)
$$\frac{x}{2} \sqrt{x^2 + 4} + 2 \ln |x + \sqrt{x^2 + 4}| + C$$

(viii)
$$\frac{x+1}{2} \sqrt{x^2 + 2x + 5} + 2 \ln |x+1| + \sqrt{x^2 + 2x + 5} + C$$

(ix)
$$-\frac{(1-x-x^2)^{3/2}}{3} - \frac{3}{8} (2x+1) \sqrt{1-x-x^2} - \frac{15}{16} \sin^{-1}\left(\frac{2x+1}{\sqrt{5}}\right) + C$$

(x)
$$\frac{2}{15} (a^3 + x^3)^{5/2} - \frac{2a^3}{9} (a^3 + x^3)^{3/2} + C$$

D-2. (i)
$$\ell n \left| \frac{x+1}{x+2} \right| + C$$

(ii)
$$\frac{1}{10} \ln |x + 3| - \frac{1}{20} \ln |x^2 + 1| + \frac{3}{10} \tan^{-1} x + C$$

(iii)
$$4\ell n|x+1| + \frac{1}{(x+1)} - 4\ell n|x+2| + C$$

(iii)
$$4\ell n|x+1| + \frac{1}{(x+1)} - 4\ell n|x+2| + C \qquad \text{(iv)} \qquad \frac{1}{2} \ \ell n \ |x+1| \ - \ell n \ |x+2| + \frac{1}{2} \ \ell n \ |x+3| + C$$

D-3. (i)
$$\frac{1}{2\sqrt{3}} \tan^{-1} \left(\frac{x^2 - 1}{\sqrt{3}x} \right) - \frac{1}{4} \ln \left| \frac{x + \frac{1}{x} - 1}{x + \frac{1}{x} + 1} \right| + C$$
 (ii) $\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x^2 - 1}{\sqrt{2} x} \right) + C$

$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x^2 - 1}{\sqrt{2} x} \right) + C$$

(iii)
$$-\frac{1}{2\sqrt{3}} \ln \left| \frac{x + \frac{1}{x} - \sqrt{3}}{x + \frac{1}{x} + \sqrt{3}} \right| + C$$

D-4. (i)
$$\ell n \left| \frac{\sqrt{x+2}-1}{\sqrt{x+2}+1} \right| + C$$
 (ii) $\frac{1}{4\sqrt{3}} \ell n \left| \frac{t-\sqrt{3}}{t+\sqrt{3}} \right| - \frac{1}{2} \tan^{-1}(t) + C$, where $t = \sqrt{x+1}$

(iii)
$$-\frac{1}{\sqrt{3}} \ell n \left| \left(t - \frac{1}{3} \right) + \sqrt{\left(t - \frac{1}{3} \right)^2 + \frac{2}{9}} \right| + C$$
, where $t = \frac{1}{x+1}$

(iv)
$$-\tan^{-1}\sqrt{\frac{x^2+2}{y^2}} + C$$

D-5. (i)
$$\frac{1}{2} \ln \left| \left(x + \frac{1}{2} \right) + \sqrt{x^2 + x} \right| + \sqrt{x^2 + x} + C$$

(ii)
$$\sqrt{x^2-1} - \ln |x + \sqrt{x^2-1}| + C$$

(iii)
$$\frac{1}{2}\sin^{-1}x - \frac{x}{2}\sqrt{1-x^2} - \sqrt{1-x^2} + C$$

Section (E):

E-1. (i)
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{\tan x/2}{\sqrt{3}} \right) + C$$

(ii)
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\sqrt{3} \tan \frac{x}{2} \right) + C$$

(iii)
$$\frac{10}{13}x - \frac{2}{13} \ln |3\cos x + 2\sin x| + C$$
 (iv) $\ln |1 + \tan \frac{x}{2}| + C$

(iv)
$$\ell n \left| 1 + \tan \frac{x}{2} \right| + C$$

$$(v) \qquad \frac{1}{\sqrt{6}} \tan^{-1} \left(\frac{\sqrt{3} \tan x}{\sqrt{2}} \right) + C$$

(vi)
$$\ell n | 1 - \cot x | + C$$

(vii)
$$\tan x + \frac{1}{4} \sin 2x - \frac{3x}{2} + C$$

E-2. (i)
$$\frac{1}{40} \ell \ln \left(\frac{4(\sin x - \cos x) + 5}{4(\sin x + \cos x) - 5} \right) + C$$

(ii)
$$\sin^{-1}\left(\frac{\sin x + \cos x}{3}\right) + C$$

E-3.
$$A = \frac{1}{9}$$
, $B = \frac{1}{5}$

PART - II

Section (A):

Section (B):

Section (C):

Section (D):

Section (E):

E-1. (B) E-2 (C) E-3. (C) (B) E-5. (A) E-6. (A) E-7. (A) E-4.

Section (F):

PART - III

1. (A)
$$\rightarrow$$
 (p), (B) \rightarrow (p), (C) \rightarrow (r), (D) \rightarrow (s) **2.** (A) \rightarrow (s) ; (B) \rightarrow (q) ; (C) \rightarrow (r)

EXERCISE - 2

PART - I

- (B) (A)
- 1. (A) (B) (C) (C) (A) 7. 6.
- 8. (A) (A) 10. (C) (A) 12. (D) 13. (A) 14. (A) 11.
- (D) 15. (A) 16. (C) 17. 18. (D) 19. (C) 20. (A) 21. (B)

PART - II

- 1. 1 a = 33. 12 10 5. 5 6. 2 7. 2
- 8. 16 12 10. 11 12. 13. 2 14. 1 11. 13
- 15. 11 16. 10

PART - III

- 1. (BC) 2. (AC) 3. (AC) (CD) 5. (BD) (ACD) 7. (BC) 6.
- 8. (AC) (CD) 10. (AB) 11. (ABC) 12. (AB) 13. (BC) 14. (ABD)
- (ABD) 17. 15. (BD) 16. (AD) 18. (AB) 19. (ABCD)

PART-IV

1. (A) (A) 3. (A) 5. (A) 2. (B) (B) 6.

EXERCISE - 3

PART - I

- $\frac{3}{2} \tan^{-1} x \frac{1}{2} \ln (1 + x) + \frac{1}{4} \ln (1 + x^2) + \frac{x}{1 + x^2} + C$ (C)
- $\frac{(2x^{3m} + 3x^{2m} + 6x^m)^{\frac{m+1}{m}}}{6(m+1)} + C$ $(x + 1)\tan^{-1}\left(\frac{2x + 2}{3}\right) - \frac{3}{4} \ln(4x^2 + 8x + 13) + C$ 3.
- (D) (A) (D) (C) (C) 5. 6. 7. 8.

PART - II

- 1. (4) 2. (3)3. (4) (4) 5. (1) 6. (2) 7. (4)
- 8. (2) (4)

High Level Problems (HLP)

1. Evaluate :
$$\int \frac{\sin^8 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x} dx$$

2. Evaluate :
$$\int \frac{\cos 5x + \cos 4x}{1 - 2\cos 3x} dx$$

3. Evaluate :
$$\int \sqrt{x + \sqrt{x^2 + 2}} dx$$

4. Evaluate :
$$\int \frac{dx}{(x^3 + 3x^2 + 3x + 1) \sqrt{x^2 + 2x - 3}}$$

5. Evaluate:
$$\int \frac{(\cos 2x - 3)}{\cos^4 x \sqrt{4 - \cot^2 x}} dx$$

6. Evaluate :
$$\left[\frac{\sqrt{x^2+1}\,\left\{\ell n(x^2+1)-2\ell nx\right\}}{x^4}\right]\,dx$$

7. Evaluate :
$$\int \frac{x}{(7x-10-x^2)^{3/2}} dx$$

8. If
$$\int \frac{x\cos\alpha+1}{\left(x^2+2x\cos\alpha+1\right)^{3/2}} \ dx = \frac{f(x)}{\sqrt{g(x)}} + C \text{ then find } f(x) \text{ and } g(x).$$

10. Evaluate :
$$\int e^{x} \left(\frac{x^3 - x + 2}{(x^2 + 1)^2} \right) dx$$

11. Evaluate:
$$\int \frac{x^2}{(x \sin x + \cos x)^2} dx$$

12. Evaluate :
$$\int \sin 4x \cdot e^{\tan^2 x} dx$$

13. Evaluate :
$$\int \tan^{-1} x \cdot \ell n (1 + x^2) dx$$
.

14. Evaluate :
$$\int e^x \frac{1 + nx^{n-1} - x^{2n}}{(1 - x^n) \sqrt{1 - x^{2n}}} dx$$

15. Evaluate :
$$\int \cos 2x \, \ell n \, (1 + \tan x) \, dx$$

16. Evaluate:
$$\int \frac{dx}{(a+b\cos x)^2}, (a>b)$$

- 17. Evaluate : $\int \frac{\sqrt{2-x-x^2}}{x^2} dx$
- 18. Integrate: $\int \frac{(5x^2 12) dx}{(x^2 6x + 13)^2}$
- 19. If $\int \frac{3x^2 + 2x}{x^6 + 2x^5 + x^4 + 2x^3 + 2x^2 + 5} dx = F(x)$, then find the value of [F(1) F(0)], where [.] represents greatest integer function.
- **20.** Evaluate : $\int \frac{\ln (1 + \sin^2 x)}{\cos^2 x} dx$
- 21. Evaluate : $\int \frac{1 + \cos \alpha \cos x}{\cos \alpha + \cos x} dx$
- 22. Evaluate : $\int \frac{a + b \sin x}{(b + a \sin x)^2} dx$
- 23. Evaluate : $\int \frac{dx}{(x-\alpha)\sqrt{(x-\alpha)(x-\beta)}}$
- 24. Evaluate $\int \frac{(\cos 2x)^{1/2}}{\sin x} dx$
- 25. Evaluate $\int \frac{\sin^3 \frac{x}{2}}{\cos \frac{x}{2} \sqrt{\cos^3 x + \cos^2 x + \cos x}} dx$
- 26. If $\int \frac{x^2}{x^4 + 3x^2 + 9} dx = A \tan^{-1} \left(\frac{x^2 3}{3x} \right) + \frac{B}{\sqrt{3}} \ell n \left| \frac{x^2 \sqrt{3} + x + 3}{x^2 + \sqrt{3} + x + 3} \right| + c$, then find the value of 12(A + B).
- 27. Evaluate $\int \frac{3\cos x + 2}{\sin x + 2\cos x + 3} dx$
- **28.** Evaluate ∫³√tanxdx
- 29. Evaluate: $\int \sqrt{\frac{\csc x \cot x}{\csc x + \cot x}} \cdot \frac{\sec x}{\sqrt{1 + 2\sec x}} dx$

Answers

1.
$$-\frac{1}{2} \sin 2x + C$$
 2.
$$-\left(\sin x + \frac{\sin 2x}{2}\right) + C$$
 3.
$$\frac{1}{3} \left(x + \sqrt{x^2 + 2}\right)^{3/2} - \frac{2}{\left(x + \sqrt{x^2 + 2}\right)^{1/2}} + C$$

4.
$$\frac{\sqrt{x^2 + 2x - 3}}{8(x + 1)^2} + \frac{1}{16} \cdot \cos^{-1}\left(\frac{2}{x + 1}\right) + C$$
 5.
$$C - \frac{1}{3} \tan x \cdot (2 + \tan^2 x) \cdot \sqrt{4 - \cot^2 x}$$

6.
$$\frac{2(x^2+1)\sqrt{x^2+1}}{9x^3} \cdot \left[1 - \frac{3}{2}\ln\left(1 + \frac{1}{x^2}\right)\right] + C$$
 7.
$$\frac{2(7x-20)}{9\sqrt{7x-10-x^2}} + C$$

8.
$$x; x^2 + 2x \cos \alpha + 1$$
 9. $\frac{1}{2} e^x [(x^2 - 1) \cos x + (x - 1)^2 \cdot \sin x] + C$ 10. $e^x \left(\frac{x + 1}{x^2 + 1}\right) + C$

11.
$$\frac{\sin x - x \cos x}{x \sin x + \cos x} + C$$
 12. $-2 \cos^4 x$. $e^{\tan^2 x} + C$

13.
$$x \tan^{-1} x$$
. $\ln (1 + x^2) + (\tan^{-1} x)^2 - 2x \tan^{-1} x + \ln (1 + x^2) - (\ln \sqrt{1 + x^2})^2 + C$

14.
$$e^{x} \sqrt{\frac{1+x^{n}}{1-x^{n}}} + C$$
 15. $\frac{1}{2} [\sin 2x. \ln(1+\tan x) - x + \ln |\sin x + \cos x|] + C$

16.
$$-\frac{b\sin x}{(a^2-b^2)(a+b\cos x)} + \frac{2a}{(a^2-b^2)^{3/2}} \tan^{-1} \sqrt{\frac{a-b}{a+b}} \tan \frac{x}{2} + C$$

17.
$$-\frac{\sqrt{2-x-x^2}}{x} + \frac{\sqrt{2}}{4} \ln \left| \frac{4-x+2\sqrt{2}\sqrt{2-x-x^2}}{x} \right| - \sin^{-1}\left(\frac{2x+1}{3}\right) + K$$

18.
$$\frac{13x-159}{8(x^2-6x+13)} + \frac{53}{16} \tan^{-1} \frac{x-3}{2} + C$$
 19. 0

20.
$$\tan x \ln (1 + \sin^2 x) - 2x + \sqrt{2} \tan^{-1} (\sqrt{2} \cdot \tan x) + C.$$

21.
$$x \cos \alpha + \sin \alpha \ell n \left| \frac{\cos \frac{1}{2} (\alpha - x)}{\cos \frac{1}{2} (\alpha + x)} \right| + C$$
 22. $-\frac{\cos x}{b + a \sin x} + C$

$$23. \qquad \frac{-2}{\alpha-\beta} \cdot \sqrt{\frac{x-\beta}{x-\alpha}} + C \qquad \qquad 24. \qquad \sqrt{2} \log \left[\frac{\sqrt{\cot^2 x - 1} + \sqrt{2\cot^2 x}}{\sqrt{\cot^2 x + 1}} \right] - \log \left[\cot x + \sqrt{\cot^2 x - 1} \right] + c$$

25.
$$\sec^{-1}\left(\sqrt{\cos x} + \frac{1}{\sqrt{\cos x}}\right) + c.$$
 26. 5

27.
$$\frac{6}{5}x + \frac{3}{5}\log|\sin x + 2\cos x + 3| - \frac{8}{5}\tan^{-1}\left(\frac{\tan\frac{x}{2} + 1}{2}\right) + C$$

28.
$$-\frac{1}{2}log(1+tan^{2/3}x)+\frac{1}{4}log(tan^{4/3}x-tan^{2/3}x+1)+\frac{\sqrt{3}}{2}tan^{-1}\frac{2tan^{2/3}x-1}{\sqrt{3}}+c$$

29.
$$\sin^{-1}\left(\frac{1}{2}\sec^2\frac{x}{2}\right) + C$$

