Fault Modeling

Logical Fault Models

Logical faults represents the <u>effect of physical</u> <u>faults</u> on the behavior of the modeled system

- Faults that affects the logic function
- Delay faults

Logical Fault Models

What do we gain by modeling physical faults as a logical faults?

▶ First

- Fault analysis become logical
- Complexity is greatly reduces

Second

- Some logical faults are technology independent, same faults model is applicable to many technologies.
- Testing & diagnosis method developed for such faults remain valid despite changes in technology

Third

Test derived for the logical faults can be used for physical faults, whose effect on circuit behavior is not completely known.

Explicit & Implicit Faults

Explicit fault

A fault universe in which every fault is individually identified and hence the <u>faults to be analyzed can be explicitly enumerated.</u>

Implicit fault

 A fault universe by collectively identifying the <u>faults</u> of interest – typically by defining their characteristic properties

Structural & Functional Faults

Structural fault

In conjunction with structural model

▶ Functional fault

In conjunction with functional model

Frequent Testing Strategy

- Single fault assumption
- Many physical faults can affect an area containing several components
- Newly manufactured system prior to testing, multiple faults are likely to exist.
- Multiple fault If the testing experiments does not detect the every single faults, then the circuit may contain one of the undetected faults at any time, and the occurrence of a second single faults between two testing experiments creates a multiple fault.

Stuck at Faults

- Faults affecting interconnections are short & open
- Short
 - By connecting points not intended to be connected
- Open
 - Breaking between connections
- A short between ground or supply and a signal line can make the signal remain at a fixed logic value v (v ∈ 0, I) and it is denoted by s-a-v
- A short between two signal lines usually creates a new logic function – Bridging faults

Stuck faults caused by open

Fault Detection

- ▶ Faults detection works by comparing the response of a known-good version of the circuit to that of the actual circuit, for a given stimulus set.
- A fault exists if there is any difference in the responses.
- One common fault detection approach is path sensitization.
- The path sensitization method, which is used by the tool to detect stuck-at faults, starts at the fault site and tries to construct a vector to propagate the fault effect to a primary output

Fault Classes

- Untestable (UT)
- Untestable (UT) faults are faults for which no pattern can exist to detect them. Untestable faults cannot cause functional failures, so the tools exclude them when calculating test coverage.
- ▶ The following are the Untestable Faults.
 - Un-used (UU)
 - The unused fault class includes all faults on circuitry unconnected to any circuit observation point and faults on floating primary outputs.

 Site of "Unused" Fault

Tied (TI)

- The tied fault class includes faults on gates where the point of the fault is tied to a value identical to the fault stuck value.
- In below fig, node A is connected to GND and there assumed to be a s-a-0 fault at A.

Blocked (BL)

The blocked fault class includes faults on circuitry for which tied logic blocks all paths to an observable point

Redundant Fault

- The redundant fault class includes faults that test generator considers undetectable.
- After the test pattern generator exhausts all patterns, it performs a special analysis to verify that the fault is undetectable under any conditions.

Fault Modeling

- The effects of physical defects
- Most commonly used fault model: Single stuck-at fault


```
A s-a-1 B s-a-1 C s-a-1 D s-a-1 A s-a-0 B s-a-0 C s-a-0 D s-a-0 E s-a-1 F s-a-1 G s-a-1 E s-a-0 F s-a-0 G s-a-0 14 faults
```


Fault Coverage (FC)

$$FC = \frac{\text{# faults detected}}{\text{# faults in fault list}}$$

Example:

Test	faults detected	FC
{(0,0)}	C ₁	16.67%
{(0,1)}	a ₁ ,c ₁	33.33%
{(1,1)}	a_0,b_0,c_0	50.00%
{(0,0),(1,1)}	$\mathbf{a_0,b_0,c_0,c_1}$	66.67%
{(1,0),(0,1),(1,1)}	all	100.00%

Fault Modeling

Single stuck at faults

- S @ 0
- > S@I

Bridge fault

Multiple stuck at faults

Single stuck at fault

Fault free expression

$$ZI = xI.x2$$

$$Z2 = x2.x3$$

Single stuck at fault - s@0

Fault free expression

$$ZI = xI.x2$$

$$Z2 = x2.x3$$

Faulty expression

$$ZI = 0$$

$$Z2 = x2.x3$$

Single stuck at fault - s@1

Fault free expression

$$ZI = xI.x2$$

$$Z2 = x2.x3$$

Faulty expression

$$ZI = x2$$

$$Z2 = x2.x3$$

Single stuck at fault - bridge fault

Fault free expression

$$ZI = xI.x2$$

$$Z2 = x2.x3$$

Faulty expression

$$ZI = (xI+x2).x2 = x2$$

 $Z2 = x2.x3$

Fault Simulation Terminologies

a:SA0 propagates

a:SA0 is blocked

a:SA0 is not activated

Fault Detection

- For a single output circuit, a test t that detects a fault f makes Z(t) = 0 and $Z_f(t) = I$ or vice-versa.
- Thus set of all tests that detect f is given by the solutions of the equation

$$\triangleright$$
 Z(x) XOR Z_f(x) = I

Thus any test in which $x_1 = 0$ and $x_4 = 1$ is a test for f. any of the four tests (0001, 0011, 0101, 0111) that detect f.

Fault Equivalence

- Fault equivalence: Two faults fl and f2 are equivalent if all tests that detect fl also detect f2.
- If faults f1 and f2 are equivalent then the corresponding faulty functions are identical.

AND bridging fault of x, y is functionally equivalent to z s-a-0

Fault Collapsing

- With any n input gate we have 2(n+1) stuck at faults
 - For a 2 input nand gate all the input s-a-0 is equivalent to output s-a-1.
- This type of reduction of set of faults to be analyzed based on the equivalence relations is called equivalence fault collapsing

Equivalence Rules

Equivalence Example

Dominance Example

In a tree circuit (without fanouts) PI faults form a dominance collapsed fault set.

A dominance collapsed fault set After equivalence collapsing

Fault Dominance

- If all tests of fault F2 detects another fault F1, then F1 dominates F2.
- Dominance fault collapsing: If fault F2 dominated by F1, then F2 is removed from the fault list.
- When dominance fault collapsing is used, it is sufficient to consider only the input faults of Boolean gates
- If two faults dominate each other then they are equivalent.

Single Stuck-at Fault Model

- Three properties define a single stuck-at fault
 - Only one line is faulty
 - The faulty line is permanently set to 0 or 1
 - The fault can be at an input or output of a gate
- Example: XOR circuit has 12 fault sites () and 24 single stuckat faults

Checkpoints

- Primary inputs and fanout branches of a combinational circuit are called checkpoints.
- Checkpoint theorem: A test set that <u>detects all single</u> (<u>multiple</u>) <u>stuck-at faults</u> on all checkpoints of a combinational circuit, <u>also detects</u> all single (multiple) stuck-at faults in that <u>circuit</u>.

- Input a s-a-0 and b s-a-0 are equivalent remove b s-a-0
- Input d s-a-0 equivalent to h s-a-0, remove it
- g s-a-1 equivalent to f s-a-1, which dominates a s-a-1, so remove it
- *e* s-a-1 equivalent to *i* s-a-1, which dominates *h* s-a-1, so remove it
- Number of faults reduced from 24 to 10

Assignment

Current (or IDDQ) and Very Low-level Voltage (VLV) test