Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Lista M 9

10 grudnia 2015 r.

M9.1. I punkt Obliczamy wartość całki $I(f) = \int_a^b f(x) dx$ stosując kwadraturę Newtona-Cotesa, czyli kwadraturę interpolacyjną z węzłami równoodległymi $x_k := a + kh$ (k = 0, 1, ..., n), gdzie h := (b-a)/n:

$$Q_n^{NC}(f) := \sum_{k=0}^n A_k f(a + kh).$$

Wykazać, że

(1)
$$A_k = h(-1)^{n-k} \frac{1}{k!(n-k)!} \int_0^n \prod_{j=0, j \neq k}^n (t-j) dt \qquad (k=0,1,\ldots,n).$$

- **M9.2.** 1 punkt Niech A_0, A_1, \ldots, A_n będą podane wzorem (1) i niech będzie $B_k := A_k/(b-a)$ $(k = 0, 1, \ldots, n)$. Sprawdzić, że
 - a) wielkości B_k są liczbami wymiernymi;
 - b) $B_k = B_{n-k} \ (k = 0, 1, ..., n)$
- **M9.3.** I punkt (Włączyć komputer!) Czy liczby B_k z poprzedniego zadania zawsze są dodatnie? Jeśli nie, to podać minimalną wartość n, dla której nie wszystkie współczynniki B_k są dodatnie. Sprawdzić, czy $\sigma_n := \sum_{k=0}^n |B_k|$ rośnie wraz ze wzrostem n. Podać wartość n dla której $\sigma_n > 1000$.
- **M9.4.** 1 punkt Obliczyć $Q_n^{NC}(f)$ dla n=2,4,6,8,10 dla całki

$$\int_{-4}^{4} \frac{\mathrm{d}x}{1+x^2} = 2 \arctan 4.$$

Który wynik jest najdokładniejszy? Jak to skomentować?

M9.5. 1,5 punktu Niech $f \in C^4[a,b]$. Obliczamy wartość całki $I(f) = \int_a^b f(x) \, dx$ za pomocą kwadratury Newtona-Cotesa dla n=2, tj. za pomocą wzoru Simpsona. Udowodnić, że istnieje taka liczba $\eta \in [a,b]$, dla której

$$I(f) - Q_2^{NC}(f) = -\frac{f^{(4)}(\eta)}{90} h^5 \qquad (h \coloneqq (b-a)/2).$$

M9.6. 1,5 punktu Niech $f \in C^4[a,b]$. Obliczamy wartość całki $I(f) = \int_a^b f(x) dx$ za pomocą kwadratury Newtona-Cotesa dla n=3. Udowodnić, że istnieje taka liczba $\xi \in [a,b]$, dla której

$$I(f) - Q_3^{NC}(f) = -\frac{3f^{(4)}(\xi)}{80}h^5$$
 $(h := (b-a)/3).$

- **M9.7.** 1 punkt Wykazać, że dla dowolnej funkcji f ciągłej w przedziale [a, b] ciąg złożonych wzorów trapezów $\{T_n(f)\}$ jest zbieżny do wartości całki $\int_a^b f(x) dx$, gdy $n \to \infty$.
- **M9.8.** 1 punkt
 - a) Stosując złożony wzór Simpsona S_n z odpowiednio dobranym n obliczyć przybliżoną wartość całki $\int_0^\pi \sin x \, dx$ z błędem $\leq 2 \cdot 10^{-5}$.
 - b) Jaka wartość n gwarantuje uzyskanie tak dokładnego wyniku, jeśli zamiast wzoru S_n użyjemy złożonego wzoru trapezów T_n ?