LA FONCTION CARRÉ

I Définition et étude de la fonction carré

Définition n°1.

La fonction carré est la fonction définie par $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{cases}$

Définition n°2.

Soit f une fonction définie sur D_f . « f est paire » signifie que : Pour tout $x \in D_f$, f(-x)=f(x)

Propriété n°1.

La fonction carré est paire.

preuve :

Notons g la fonction carré. Soit $x \in \mathbb{R}$ (car $D_g = \mathbb{R}$) $g(-x) = (-x)^2 = -x \times (-x) = x^2 = g(x)$ Ainsi g est paire.

Remarque n°1.

Si une fonction est paire alors son domaine de définition est symétrique par rapport à zéro.

Définition n°3.

<u>Croissance</u>, <u>décroissance</u> Soit f une fonction définie sur D_f et $I \subset D_f$ un intervalle.

• « f est strictement croissante sur I » signifie que : Pour tous a et b appartenant à I , $a < b \Rightarrow f(a) < f(b)$

• « f est croissante sur I » signifie que : Pour tous a et b appartenant à I , $a < b \Rightarrow f(a) \leq f(b)$

• « f est strictement décroissante sur I » signifie que : Pour tous a et b appartenant à I , a < b \Rightarrow f(a) > f(b)

• « f est décroissante sur I » signifie que : Pour tous a et b appartenant à I , a < b \Rightarrow f(a) \geqslant f(b)

Remarque n°2.

On dit qu'une fonction croissante conserve l'ordre et qu'une fonction décroissante inverse l'ordre.

Propriété n°2.

Variations de la fonction carré

La fonction carré est strictement décroissante sur $]-\infty$; 0] et strictement croissante sur $[0; +\infty[$. Ce qui donne le tableau de variations suivant :

΄.	L	1		
	\boldsymbol{x}	$-\infty$	0	$+\infty$
	f(x)	/		

preuve:

• Soient $a < b \le 0$

$$f(a)-f(b) = a^2-b^2 = (a+b)(a-b)$$

Or a+b<0 (car a et b sont négatifs) et a-b<0 (car a< b)

Donc (a+b)(a-b) > 0 d'où on déduit que f(a) > f(b)

Ainsi f est strictement décroissante sur $]-\infty$; [0] .

• De la même manière, on démontre que f est strictement croissante sur $[0; +\infty[$. (Cette seconde partie est laissée à titre d'exercice)

Définition n°4. Représentation graphique

La représentation graphique de la fonction carré est une parabole

Le point O, origine du repère est le sommet de la parabole.

Propriété n°3.

La représentation graphique de la fonction carré admet l'axe des ordonnées comme axe de symétrie.

II Équations et inéquations du second degré.

II.1 Encadrements d'un nombre réel et arrondis

Propriété n°4. Équation du type $x^2 = a$

Soit a un nombre réel.

• Si a > 0 alors:

l'équation $x^2 = a$ admet deux solutions : $-\sqrt{a}$ et \sqrt{a} .

• Si a = 0 alors:

l'équation $x^2 = a$ admet une solution : zéro .

• Si a < 0 alors:

l'équation $x^2 = a$ n'admet aucune solution.

preuve:

- Le deuxième point est évident.
- Le troisième découle du fait que le carré d'un nombre réel est toujous positif.
- Pour le premier point :

si a > 0 alors \sqrt{a} existe.

Les équations suivantes sont alors équivalentes :

$$x^{2} = a$$

$$x^{2}-a = 0$$

$$(x+\sqrt{a})(x-\sqrt{a}) = 0$$

Un produit de facteurs est nul si et seulement si l'un au moins de ses facteurs est nul.

On en déduit que cette équation admet deux solutions $-\sqrt{a}$ et \sqrt{a} .

Remarque n°3.

Il est parfois utile de donner des valeurs approchées des solutions quand elles existent. c'est ce qui motive ce la suite de ce paragraphe.

Propriété n°5. (admise)

Soit x un nombre réel et n un nombre entier relatif.

Il existe un unique nombre entier relatif a tel que : $\frac{a}{10^n} \le x < \frac{a+1}{10^n}$

Définition n°5.

Cet encadrement est l'encadrement décimal de $x \ge 10^{-n}$ près .

L'arrondi de $x \ \text{à } 10^{-n} \text{ près}$ est celui des deux nombres $\frac{a}{10^n}$ et $\frac{a+1}{10^n}$ qui est le plus proche de x.

Par convention, lorsque x est à égale distance de $\frac{a}{10^n}$ et de $\frac{a+1}{10^n}$ l'arrondi de x à 10^{-n} près est $\frac{a+1}{10^n}$

Exemple n°1.

 $\frac{16812}{10^3} \le 16,8127 < \frac{16813}{10^3}$ donc l'encadrement de 16,8127 à 10^{-3} est : $16,812 \le 16,8127 < 16,813$ et l'arrondi à 10^{-3} vaut 16,813.

II.2 Inéquations du type $x^2 \le k$ et $x^2 \ge k$

Propriété n°6.

Dans \mathbb{R} , l'inéquation $x^2 \le k$ admet comme ensemble de solutions S:

Si
$$k > 0$$
 alors $S = [-\sqrt{k}; \sqrt{k}]$

Si
$$k=0$$
 alors $S=\{0\}$

Si
$$k < 0$$
 alors $S = \emptyset$

preuve:

Si k=0 c'est évident et si k<0 aussi. On suppose donc k>0.

$$x^2 \leq k$$

$$\Leftrightarrow x^2 - k \leq 0$$

$$\Leftrightarrow (x + \sqrt{k})(x - \sqrt{k}) \leq 0$$

$$\Leftrightarrow ((x+\sqrt{k}\geqslant 0 \text{ et } x-\sqrt{k}\leqslant 0) \text{ ou } (x+\sqrt{k}\leqslant 0 \text{ et } x-\sqrt{k}\geqslant 0))$$

$$\Leftrightarrow ((x \ge -\sqrt{k} \text{ et } x \le \sqrt{k}) \text{ ou } (x \le -\sqrt{k} \text{ et } x \ge \sqrt{k}))$$

$$\Leftrightarrow (x \ge -\sqrt{k} \text{ et } x \le \sqrt{k})$$
 (car l'autre cas est impossible)

Propriété n°7.

Dans \mathbb{R} , l'inéquation $x^2 \ge k$ admet comme ensemble de solutions S:

Si
$$k > 0$$
 alors
 $S = \left[-\infty ; -\sqrt{k} \right] \cup \left[\sqrt{k} ; +\infty \right]$

Si $k \le 0$ alors $S = \mathbb{R}$

preuve:

Si k=0 c'est évident et si k<0 aussi. On suppose donc k>0.

$$x^{2} \geqslant k$$

$$\Leftrightarrow x^{2} - k \geqslant 0$$

$$\Leftrightarrow (x + \sqrt{k})(x - \sqrt{k}) \geqslant 0$$

$$\Leftrightarrow ((x + \sqrt{k}) \geqslant 0 \text{ et } x - \sqrt{k} \geqslant 0) \text{ ou } (x + \sqrt{k} \leqslant 0 \text{ et } x - \sqrt{k} \leqslant 0))$$

$$\Leftrightarrow ((x \geqslant -\sqrt{k} \text{ et } x \geqslant \sqrt{k}) \text{ ou } (x \leqslant -\sqrt{k} \text{ et } x \leqslant \sqrt{k}))$$

$$\Leftrightarrow (x \geqslant \sqrt{k}) \text{ ou } (x \leqslant -\sqrt{k})$$

Remarque n°4.

Dans les deux preuves précédentes, nous avons résolu des inéquations produits. La méthode utilisée peut-être résumée sous forme de tableau de signes. Ce qui motive le dernier paragraphe.

II.3 Inéquations produits.

Exemple n°2.

Résolvons dans R l'inéquation suivante :

$$(4x-7)(5-2x)(3x+2) \leq 0$$

Commençons par résoudre les inéquations suivantes :

$$4x-7>0 \Leftrightarrow 4x>7 \Leftrightarrow x>\frac{7}{4}$$

$$5-2x>0 \Leftrightarrow -2x>-5 \Leftrightarrow x<\frac{5}{2}$$

$$3x+2>0 \Leftrightarrow 3x>-2 \Leftrightarrow x>\frac{-2}{3}$$

« >0 » Nous indique où mettre les « + » dans le tableau de signes

Pour la dernière ligne, on utilise la règle des signes.

Dressons à présent le tableau de signe suivant :

x	- ∞		$-\frac{2}{3}$		<u>7</u>		<u>5</u> 2		+ ∞
4 <i>x</i> –7		_	÷	_	0	+	÷	+	
5-2 <i>x</i>		+	÷	+	÷	+	0	_	
3 <i>x</i> +2		_	0	+	÷	+	÷	+	
(4x-7)(5-2x)(3x+2)		+	0	_	0	+	0	_	

En notant S l'ensemble des solutions :

$$S = \left[-\frac{2}{3} ; \frac{7}{4} \right] \cup \left[\frac{5}{2} ; +\infty \right]$$

Remarque n°5.

La méthode est la même quelque soit le nombre de facteurs.

III Le résumé du cours

La fonction carré

La fonction carré est la fonction définie par $g:\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{cases}$

Elle est paire ce qui signifie que :

pour tout
$$x$$
, $g(-x)=g(x)$

Ses variations se résument par le tableau suivant :

Le point O, origine du repère est le **sommet de la parabole**.

L'axe des ordonnées est l'axe de symétrie de la parabole.

f une fonction et $I \subseteq D_f$ un intervalle, a, b dans I

Stricte croissance sur I	$a < b \Rightarrow f(a) < f(b)$
Stricte décroissance sur I	$a < b \Rightarrow f(a) > f(b)$
Croissance sur I	$a < b \Rightarrow f(a) \leq f(b)$
Décroissance sur I	$a < b \Rightarrow f(a) \geqslant f(b)$

Soit a un nombre réel.

• Si a > 0 alors: l'équation $x^2 = a$ admet deux solutions: $-\sqrt{a}$ et \sqrt{a} .

• Si a = 0 alors: l'équation $x^2 = a$ admet une solution: $z\acute{e}ro$.

• Si a < 0 alors: l'équation $x^2 = a$ n'admet aucune solution.

Soit x un nombre réel et n un nombre entier relatif.

Il existe un unique nombre entier relatif a tel que : $\frac{a}{10^n} \le x < \frac{a+1}{10^n}$

Cet encadrement est l'encadrement décimal de x à 10^{-n} près

L'arrondi de $x \ge 10^{-n}$ près est celui des deux nombres $\frac{a}{10^n}$ et $\frac{a+1}{10^n}$ qui est le plus proche de x.

Par convention, lorsque x est à égale distance de $\frac{a}{10^n}$ et de $\frac{a+1}{10^n}$, l'arrondi de x à 10^{-n} près est $\frac{a+1}{10^n}$

■ Dans \mathbb{R} , l'inéquation $x^2 \le k$ admet comme ensemble de solutions S:

Si k > 0 alors $S = [-\sqrt{k}; \sqrt{k}]$

Si k=0 alors $S=\{0\}$

Si k < 0 alors $S = \emptyset$

■ Dans \mathbb{R} , l'inéquation $x^2 \ge k$ admet comme ensemble de solutions S:

Si k > 0 alors $S =]-\infty$; $-\sqrt{k}$] $\cup [\sqrt{k} ; +\infty[$

Si $k \le 0$ alors $S = \mathbb{R}$