

TOC

01	Problem Statement
02	Overview
03	Analysis
05	Evaluation
06	Conclusion

Pollution

- Industrial processes
- Motor vehicles
- Wildfires
- Biogenic emissions
 - Mold and spores

Household / Indoor Pollution

- Asbestos
- Toxic home cleaning products
- Radon
- Tobacco smoke
- Wood fires and heating appliances
- Biological pollutants
 - Mold, bacteria, etc.
- Varnishes and paints
- Synthetic fragrances and candles
- Pesticides

Particulate matter (PM)

Ambient air pollutant

PM2.5

- Particles 2.5µm or smaller
- Bi-product of combustion

PM10

- ⊃ Particles 10µm or smaller
- Mechanically generated dusts

Worldwide PM2.5 Exposure

Pollution Mortality

- Not as simple as acute death by pollution.
 - Only 1.4% of pollution mortality is acute.
 - Most occur on days with extreme temperature flux.

- Defined by the World Health Organization (WHO) as a death that is premature due to pollution ¹.
 - Stroke
 - Heart Disease
 - Pulmonary Disease
 - Lung Cancer
 - Acute Respiratory Infection

- 8 million annual deaths ¹
 - Ambient: 4.2 mil
 - Household: 3.8 mil
 - 1 in 8 deaths worldwide est.
 - Some researchers estimate as high as 40% of deaths caused by some form of pollution ⁴

Leading Causes of Mortality

Yearly CO2 vs Pollution Mortality

Summary of PM10 forecast

- one line explain
- o maybe two

PM10 Forecasting GRAPH

HERE

Summary of PM2.5 forecast

- one line explain
- o maybe two

PM2.5 Forecasting GRAPH

HERE

Summary of Ozone forecast

- one line explain
- maybe two

Forecasting Ozone Depletion

Ozone Forecasting GRAPH HERE

Predicting pollution deaths

Final Variables

- Annual CO₂ emissions
- National health spending
 - to account for other factors of disease
- Life expectancy
 - to balance other means of mortality
- Ozone depleting emissions
- Mean daily ozone
- Population
 - Greatly correlated with mortality, therefore results will be reported with and without population.

Predicting pollution deaths

Final Variables

- Total pollution mortality
 - Explored utilizing a crude rate.
 - Ultimately, it was more appropriate to predict based on total deaths, due to the other variables being based on summed values.
 - The option to convert to a rate is available post-analysis.

Predicting pollution deaths

LassoLARS

- Highest performing regression
 - Compared to many other regressions, including neural network.
- Pre-processing:
 - Standard scaling
 - Imputing by mean
 - Polynomial features
 - PCA yielded ~ the same results
- Best parameters:
 - Alpha val = 3
 - Normalization = True

Predicting pollution deaths

LassoLARS

Without population:

r²: **0.82**

■ RMSE: **43k**

With population:

■ r²: **0.99**

RMSE: 7424

Null Hypothesis

■ RMSE: 104k

Lag

 Pollution causes acute death in extreme cases only

Source: The Distributed Lag between Air Pollution and Daily Deaths

Lag

- Subject matter
 experts have yet to
 agree on a
 standard for
 calculating lag.
- Most reports ignore lag.

Source: The Distributed Lag between Air Pollution and Daily Deaths

Complicated disease mechanism

Complicated disease mechanism ³

- PM10
 - Oxidative stress
 - Inflammation
- PM2.5
 - Oxidative stress
 - Inflammation
 - Autonomous nervous system activation
 - Changes lung microbiome
 - Specific intracellular pathways still being discovered

Complicated disease mechanism ³

- Decreasing ozone
 - Higher rates of skin cancer

Healthcare and Quality of Life

Pollution is highly correlated with

population.

Population is directly correlated with mortality.

Year

Conclusion

- Pollution is one of the leading influencers of premature mortality.
- Pollution mortality is rising with population, and can be predicted with high confidence.
- The per capita rate is offset by an increase in life-expectancy.
- The intertwined relationship between pollution metrics and population makes analysis complex and leads to indeterminate conclusions.

Recommendations

- Standardize a mathematical approach to represent lag.
- Separate analysis into groups by a metric such as GDP.
- Focus on disease mechanisms, and more targeted predictions.

Pollution Mortality

Forecasting Pollution Metrics with Machine Learning

Sources

- Word Health Organization: https://www.who.int/health-topics/air-pollution#tab=tab_1
- 2. The Distributed Lag between Air Pollution and Deaths.

 https://www.researchgate.net/publication/12533027 The Distributed Lag between Air Pollution and Daily Deaths
- 3. The Mechanism of Air Pollution and Particulate Matter in Cardiovascular Diseases. https://pubmed.ncbi.nlm.nih.gov/28303426/
- Pollution Causes 40 Percent of Deaths Worldwide: https://www.sciencedaily.com/releases/2007/08/070813162438.htm
- 5. National Particle Component Toxicity (NPACT) Initiative: integrated epidemiologic and toxicologic studies of health effects or particulate matter components: https://pubmed.ncbi.nlm.nih.gov/24377209/