Вычислительная геометрия

Борис Золотов Матвей Магин

14 июня 2022 г.

Летняя школа МКН СП6ГУ

Содержание

Algorithms to get a feeling

Выпуклая оболочка

Algorithms to get a feeling

Выпуклое множество

Определение

Множество S — выпуклое, если оно вместе с любыми двумя точками содержит отрезок между ними.

Выпуклая оболочка

Определение

Выпуклая оболочка $\mathcal{CH}(S)$ множества S — наименьшее выпуклое множество, содержащее S.

Вычисление выпуклой оболочки

Задача

Дано множество $S\subset \mathbb{R}^2$, |S|=n. Требуется найти координаты вершин его выпуклой оболочки $\mathcal{CH}(S)$.

Вычисление выпуклой оболочки

Есть много алгоритмов вычисления выпуклой оболочки на плоскости. Большиство из них напоминают алгоритмы сортировок, к примеру

- Алгоритм Джарвиса Selectiont Sort.
- Quick Hull Quick Sort.
- Алгоритм «Разделяй и властвуй» Merge Sort.

Мы рассмотрим алгоритм «Devide-and-Conquer» из них.

Все алгоритмы «Devide-and-Conquer» имеют одну идею:

- Разбить задачу на подзадачи, от них вызываться рекурсивно.
- Научиться быстро сливать подзадачи.

Алгоритм D&C для \mathcal{CH} : описание

- $n \le 3 \Rightarrow$ «brute force».
- $n \ge 4 \Rightarrow$ разбиваем S на два примерно равных подмножества по x-координате, вызываемся на них рекурсивно.

Алгоритм D&C для \mathcal{CH} : слияние подзадач

Для слияния поздадач будем считать верхнюю и нижнюю касательные.

Алгоритм $D\&\overline{C}$ для \mathcal{CH} : верхняя и нижняя касательные

Идея вычисления: поднимаем тот конец,отрезка который можем поднять.

Алгоритм D&C для \mathcal{CH} : верхняя и нижняя касательные

Идея вычисления: поднимаем тот конец отрезка, который можем поднять.

Алгоритм $D\&\overline{C}$ для \mathcal{CH} : верхняя и нижня касательные

Идея вычисления: поднимаем тот конец отрезка, который можем поднять.

Алгоритм $D\&\overline{C}$ для \mathcal{CH} : верхняя и нижняя касательные

Идея вычисления: поднимаем тот конец отрезка, который можем поднять.

Алгоритм D&C для \mathcal{CH} : оценка времени работы

Количество точек в подзадаче сокращается хотя бы в два раза, на слияние мы тратим линейное время

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

Алгоритм D&C для \mathcal{CH} : оценка времени работы

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

Распишем это

$$T(n) = O\left(n \cdot \left(\frac{2}{2} + \left(\frac{2}{2}\right)^2 + \ldots + \left(\frac{2}{2}\right)^{\log_2(n)}\right)\right) = O\left(n \cdot \sum_{k=1}^{\log_2 n} 1\right) = O(n \log_2(n))$$

Касательная к выпуклому многоугольнику

Задача

Дан выпуклый многоугольник $\mathcal{P}\subset\mathbb{R}^2$ и точка $X_0(x_0,y_0)\in\mathbb{R}^2$. Найти касательную к \mathcal{P} из точки $X(x_0,y_0)$.

Касательная к выпуклому многоугольнику: алгоритм

Каждой вершине сопоставим *аргумент* – угол, под которым она видна их точки X_0 .

Касательная к выпуклому многоугольнику: алгоритм

У нужной вершины v_i аргументы будут расположены так:

Как понять, с какой стороны нужная вершина:

