Respostas

- 1- Apresente os cálculos completos e os valores referentes às seguintes conversões entre bases binária (inteiros não negativos), decimal e hexadecimal:
 - a) $101101_2 = (?)_{10}$ = $2^5 + 2^3 + 2^2 + 2^0$ = 32+8+4+1= $(45)_{10}$
 - b) $110110_2 = (?)_{16}$ = 0011_{10} 0110 = $(36)_{16}$

$$=(100101)_2$$

d) $110_{10} = (?)_{16}$

Opção 1: converter para binário e depois para hexadecimal

$$= 6.14 = (6E)_{16}$$

 $=(01010001)_2$

e)
$$cb03_{16} = (?)_{10}$$

= $1100\ 1011\ 0000\ 0011$
= $2^{15} + 2^{14} + 2^{11} + 2^{9} + 2^{8} + 2^{1} + 2^{0}$
= $32768 + 16384 + 2048 + 512 + 256 + 2 + 1$
= $(51971)_{10}$
f) $51_{16} = (?)_{2}$
= $0101\ 0001$

2- Para a lista de valores [6, -17, -76, 23, -3] (representados em 8 bits), apresente a conversão destes valores para as notações de sinal magnitude e complemento de dois. Apresente cálculos completos.

	Sinal Magnitude	Complemento de 2
6	00000110	00000110
-17	10010001	11101111
-76	11001100	10110100
23	00010111	00010111
-3	10000011	11111101

3- Realize as seguintes somas em binário em complemento de dois com 8 bits. Indique se as operações apresentam estouro de representação:

c)
$$00001110 + 00001110 = 00011100$$

4- Converta os valores abaixo para a base indicada considerando uma representação de 12 bits, com 8 bits para a parte inteira e 4 bits para a parte fracionária. Considere que os números estão representados em complemento de dois. Apresente os cálculos completos:

a)
$$(00100010,1100)_2 = (?)_{10}$$

• Parte inteira:
$$00100010 = 2^5 + 2^1 = 32 + 2 = 34$$

• Parte fracionária:
$$1100 = 2^{-1} + 2^{-2} = 0.5 + 0.25 = 0.75$$

• Resultado: (34,75)₁₀

b)
$$(-8,375)_{10} = (?)_2$$

Como o número é negativo, primeiro faz-se o complemento de 2 do número positivo:

• 8,375: 00001000,0110

• Resultado: (11110111,1010)₂ em complemento de 2

5- Realize as seguintes conversões e após operações em binário com 10 bits (6 bits representando a parte inteira e 4 bits a parte fracionária):

a)
$$3.5 + 7.625$$

Passo 1: converter o número 3,5 para binário

Parte inteira: 000011Parte fracionária: 0,1000

Resultado: 000011,1000

Passo 2: converter o número 7,625 para binário

Parte inteira: 000111Parte fracionária: 0,1010

Resultado: 000111,1010

Passo 3: realizar a adição

Resultado: 11,125

Lembrar: A - B = A + (-B)

Passo 1: converter o número 1,125 para binário

- Parte inteira: 000001

- Parte fracionária: 0,0010

Resultado: 000001,0010

Passo 2: Como o número é negativo, primeiro faz-se o complemento de 2 do número positivo:

8,25: 001000 = 001000,0100
Resultado: (110111,1100)₂

Passo 3: realizar a adição de A + (-B)

000001,0010
110111,1100

111000,1110

o resultado está em complemento de 2 (negativo). Se complementarmos por 2 novamente, teremos o resultado, lembrando que este resultado é negativo $(111000,1110)_2 = (000111,0010)_2$ $= (7,125)_{10}$

Resultado: -7,125 (lembrar que o resultado é negativo)

c) 5,0 + 3,375

Passo 1: converter o número 5,0 para binário: 000101,0000

Passo 2: converter o número 3,375 para binário

- Parte inteira: 000011- Parte fracionária: 0,0110

Resultado: 000011,0110

Passo 3: realizar a adição

000101,0000
000011,0110
001000,0110
$$\longrightarrow$$
 (001000)₂ = (8)₁₀
(0,0110)₂ = 2⁻² + 2⁻³ = (0,375)₁₀

Resultado: 8,375

d)
$$-7,125 - 2,5$$

Lembrar: -A - B = (-A) + (-B)

Passo 1: converter o número -7,125 para binário. Como o número é negativo, primeiro faz-se o complemento de 2 do número positivo:

• 7,125: 000111,0010 = 111000,1110

Passo 2: converter o número -2,5 para binário. Como o número é negativo, primeiro fazse o complemento de 2 do número positivo:

• 2,50: 000010,1000 = 111101,1000

Passo 3: realizar a operação de (-A) + (-B)

111000,1110
111101,1000

110110,0110

o resultado está em complemento de 2 (negativo). Se complementarmos por 2 novamente, teremos o resultado, lembrando que este resultado é negativo $(110100,0110)_2 = (-9,625)_{10}$