Assignment-1

EE24BTECH11020 - Ellanti Rohith

1)	If, for positive integer n , the q	uadratic equation,
	x(x+1)+(x+1)(x+2)+(x+n)	$\overline{n-1})(x+n) = 10n$
	has two consecutive integral	solutions, then n
	is equal to:	[JEE M 2017]

a) 11

c) 9

b) 12

d) 10

2) For any three positive real number
$$a, b$$
 and c $9(25a^2 + b^2) + 25(c^2 - 3ac) = 15b(3a + c)$. Then: [JEE M 2017]

- a) a, b and c are in A.P c) b, c and a are in A.P
- b) b, c and a are in G.P d) a, b and c are in G.P
- 3) Let $a, b, c \in R$. If $f(x) = ax^2 + bx + c$ is such that a + b + c = 3 and $f(x + y) = f(x) + f(y) \forall x, y \in R$, then $\sum_{n=1}^{10} f(n)$ is equal to [2017]
 - (a)255
- (b)330
- (c)165
- (d)190

4) Let
$$a_1, a_2, a_3, ..., a_{49}$$
 be an A.P such that $\sum_{k=0}^{12} a_{4k+1} = 416$ and $a_9 + a_{43} = 66$. If $a_1^2 + a_2^2 + ... + a_{17}^2 = 140m$, then m is equal to: [JEE M 2018]

a) 68

c) 33

b) 34

d) 66

5) Let A be the sum of the first 20 terms and B be the sum of the first 40 terms of the series
$$\begin{bmatrix} 1^2 + 2 \cdot 2^2 + 3^2 + 2 \cdot 4^2 + 5^2 + 2 \cdot 6^2 + ... \end{bmatrix}$$
 If $B - 2A = 100 \lambda$, then λ can be [2018]

- a) 248
- c) 496
- b) 464
- d) 232

6) If
$$a, b$$
 and c be three distinct real numbers in GP. and $a + b + c = xb$, then x cannot be:

[JEE M 2019]

a) -2

c) -3

b) 4

d) 2

7) Let a_1, a_2, a_{30} be an A.P, $S = \sum_{i=1}^{30} a_i$ and $T = \sum_{i=2}^{15} a_{(2i-1)}$. If $a_5 = 27$ and S - 2T = 75, then a_{10} is equal to [JEE M 2019]

a) 52

c) 47

b) 57

d) 42

8) Three circles of radii a, b, c (a < b < c) touch each other externally. If they have x-axis as a common tangent, then: [JEE M 2019]

a)
$$\frac{1}{\sqrt{a}} = \frac{1}{\sqrt{b}} + \frac{1}{\sqrt{c}}$$

- b) $\frac{1}{\sqrt{b}} = \frac{1}{\sqrt{c}} + \frac{1}{\sqrt{a}}$
- c) a, b and c are in A.P

d)
$$\sqrt{a} = \sqrt{b} + \sqrt{c}$$

9) Let the sum of the first n terms of a non-constant A.P a_1, a_2, a_3 ... be $50n + \frac{n(n-7)}{2}A$, where A is a constant. If d is the common difference of this A.P, then ordered pair (d, a_{50}) is equal to [JEE M 2019]

- a) (50, 50 + 46A)
- b) (50, 50 + 45A)
- c) (A, 50 + 45A)
- d) (A, 50 + 46A)