

Machine Learning

Model representation

Housing Prices (Portland, OR)

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Training set of housing prices (Portland, OR)

Notation:

- > m = Number of training examples
- x's = "input" variable / features
- y's = "output" variable / "target" variable

$$\begin{array}{c} (1) \\ (2) \\ (2) \\ (3) \\ (4) \\$$

Andrew Ng

How do we represent h?

$$h_{\mathbf{g}}(x) = \Theta_{\mathbf{0}} + \Theta_{\mathbf{1}} \times \frac{1}{2}$$

Shorthand: $h(x)$

Linear regression with one variable. Univariate linear regression.

Machine Learning

Cost function

Training Set

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460 7
1416	232 } M= 47
1534	315
852	178
•••	<i>)</i>

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
 θ_i 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

minimize
$$\frac{1}{2m} \approx (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$h_{\theta}(x^{(i)}) = \theta_{\theta} + \theta_{i}x^{(i)}$$

Idea: Choose
$$\theta_0, \theta_1$$
 so that $h_{\theta}(x)$ is close to y for our

training examples (x,y)

Andrew Ng

Machine Learning

Cost function intuition I

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: $\underset{\theta_0,\theta_1}{\operatorname{minimize}} J(\theta_0,\theta_1)$

Simplified

$$h_{\theta}(x) = \underbrace{\theta_{1}x}_{\theta_{1}}$$

$$\theta_{1}$$

$$J(\theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^{2}$$

$$\min_{\theta_{1}} \text{minimize } J(\theta_{1})$$

$\rightarrow h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$\rightarrow J(\theta_1)$$

(function of the parameter θ_1

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1)$$

(function of the parameter θ_1)

$$2(0)=3$$

$$\Theta'=03$$

Andrew Ng

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

Andrew Ng

Machine Learning

Cost function intuition II

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$\underbrace{h_{\theta}(x)}_{\text{(for fixed θ_0, θ_1, this is a function of x)}}$

$$J(heta_0, heta_1)$$
 (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameters θ_0, θ_1)

Machine Learning

Gradient descent

Have some function
$$J(\theta_0,\theta_1)$$
 $\mathcal{J}(\Theta_0,\Theta_1)$ $\mathcal{J}(\Theta_0,\Theta_1)$ $\mathcal{J}(\Theta_0,\Theta_1)$ $\mathcal{J}(\Theta_0,\Theta_1)$ $\mathcal{J}(\Theta_0,\Theta_1)$ $\mathcal{J}(\Theta_0,\Theta_1)$ $\mathcal{J}(\Theta_0,\Theta_1)$ $\mathcal{J}(\Theta_0,\Theta_1)$

Outline:

- Start with some θ_0, θ_1 (Say $\Theta_0 = 0, \Theta_1 = 0$)
- Keep changing $\underline{\theta}_0,\underline{\theta}_1$ to reduce $\underline{J}(\theta_0,\theta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

A:=b A:=a+1

repeat until convergence
$$\{\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\theta_1)\}$$

(for
$$j = 0$$
 and $j = 1$)

Simultaneously update

Correct: Simultaneous update

- temp $0 := \theta_0 \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$
- \rightarrow temp1 := $\theta_1 \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$
- $\rightarrow \theta_0 := \text{temp} 0$
- $\rightarrow \theta_1 := \text{temp1}$

Incorrect:

0,0,

- $\rightarrow \text{temp0} := \theta_0 \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$
- $\rightarrow (\theta_0) := \text{temp} 0$
- $\rightarrow \text{ temp1} := \theta_1 \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$
- $\rightarrow \overline{\theta_1} := \text{temp1}$

Machine Learning

Gradient descent intuition

Gradient descent algorithm

Andrew Ng

$$\theta_1 := \theta_1 - \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Machine Learning

Gradient descent for linear regression

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$

$$(\text{for } j = 1 \text{ and } j = 0)$$

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{2}{30j} \lim_{\substack{i = 1 \ 30j}} \frac{1}{2m} \underbrace{\sum_{i = 1}^{m} \left(h_{0}(x^{(i)}) - y^{(i)} \right)^{2}}_{i = 1}$$

$$= \frac{2}{30j} \lim_{\substack{i = 1 \ 30j}} \frac{1}{2m} \underbrace{\sum_{i = 1}^{m} \left(h_{0}(x^{(i)}) - y^{(i)} \right)^{2}}_{i = 1}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\mathcal{E}}{\leq} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\mathcal{E}}{\leq} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right). \quad \chi^{(i)}$$

Gradient descent algorithm

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

update θ_0 and θ_1 simultaneously

 $h_{\theta}(x)$ $J(\theta_0,\theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 300 400 500 500 0.2 0.1 -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 500 1000 1500 0 2000

Size (feet²)

 $h_{\theta}(x)$ $J(\theta_0,\theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 300 400 500 500 0.2 0.1 -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 500 1000 1500 0 2000 Size (feet²)

 $h_{\theta}(x)$ $J(\theta_0,\theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s)
000
000
000
000 500 0.2 0.1 -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis

1000

2000

Size (feet²)

3000

4000

-0.5 -1000

-500

500

 θ_0

0

1000

1500

2000

 $h_{\theta}(x)$ $J(\theta_0,\theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s)
000
000
000
000 500 0.2 0.1 -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis

1000

2000

Size (feet²)

3000

4000

-0.5 -1000

-500

500

 θ_0

0

1000

1500

2000

 $h_{\theta}(x)$ $J(\theta_0,\theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters $heta_0, heta_1$) 700 0.5 0.4 600 0.3 Price \$ (in 1000s)
000
000
000
000 500 0.2 0.1 -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 500 1000 1500 0 2000 Size (feet²) θ_0

 $h_{\theta}(x)$ $J(\theta_0,\theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 000 000 000 000 000 000 500 0.2 0.1 θ -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500

Size (feet²)

2000

500

 θ_0

0

1000

1500

 $h_{\theta}(x)$ $J(\theta_0,\theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s)
000
000
000
000 500 0.2 0.1 θ -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 500 1000 1500 0 2000 Size (feet²)

 $h_{\theta}(x)$ $J(\theta_0,\theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 000 \$ 000 000 \$ 000 500 0.2 0.1 -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 500 1000 1500 0 2000

1250

Size (feet²)

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.