

Low Power Techniques

Author : Dr. Koichiro Ishibashi

Updated by: Hoang Trinh

Reviewed by: Dr. Hai Pham

Renesas Design Vietnam Co., Ltd.

For training class on Aug 08, 2018

Target of this course

- Introduce some popular techniques in Low power design.
- In each technique, we will go through the basic concept, the benefits and issues.

Contents

- Low power SOC requirement
- CMOS device characteristics and power of LSI
- Scheme for Low Power

Contents

- Low power SOC requirement
- CMOS device characteristics and power of LSI
- Scheme for Low Power

Importance of Low Power

Low power has become an important issue in LSI design, due to:

- ☐ The number of Transistor is getting double every 18 months, leading to the increasing power consumption.
- ☐ The operation speed of LSI is higher and higher. The **power** dissipation is proportional to the clock frequency.
- □ Power dissipation in form of heat. Lowering power consumption will help to reduce cost for cooling systems.
- □ Environmental issues have come to be recognized worldwide as extremely important. Every nation, society, and company must collaborate actively to solve these issues.

Semiconductor Application Transition

Power Efficiency of Super H

Contents

- Low power SOC requirement
- CMOS device characteristics and power of LSI
- Scheme for Low Power

Where to apply Low Power?

Power Consumption Calculation

$$P = A Nt C_L V^2 f + Nt I_L V$$

Dynamic power

- During the switching of transistors
- **❖ Depends** on the clock frequency and switching activity

Static power

- * Transistor leakage current that flows whenever power is applied to the device
- **❖Independent** on the clock frequency or switching activity.

where

I_I: Leakage current

A: Activity ratio

C_L: Average capacitance

N_t: Number of total gate

V: supply voltage

f: clock frequency

Explanation - Activity Ratio

Explanation - Activity Ratio

Explanation - Activity Ratio

Activity Ratio : A = # of active gates / # of all gates

Power Consumption

Dynamic power (
$$P_{dynamic} = A N_t C_L V^2 f$$
)

CMOS inverter

Capacitance include:

- Output node capacitance of the logic gate: due to the drain 1) diffusion region.
- 2) **Total interconnects capacitance (wire capacitance):** has higher effect as technology node shrinks.
- Input node capacitance of the driven gate: due to the gate **3**) oxide capacitance.

Power Consumption

$\underline{Static\ power}\left(\mathbf{P}_{static} = \mathbf{N}_{t} \mathbf{I}_{L} \mathbf{V}\right)$

1). Diode reverse bias-I1

2). Sub threshold current – I2

Vgs <~ Vth→ carrier diffusion causes sub threshold leakage.

- $\square Vgs <= 0 \rightarrow accumulation mode.$
- $\square 0 < Vgs << Vth \rightarrow$ depletion mode.
- **□**Vgs ~ Vth → weak inversion.
- $\square Vgs > Vth \rightarrow Inversion.$

3). Gate induced drain leakage - I3

➤ Higher supply voltage.

thinner oxide.

➤ increase in Vdb and Vdg.

Fig 2:leakage currents

4).Gate oxide tunneling – I4

high electric field across a thin gate oxide.

➤ Direct tunneling through the silicon oxide layer if it is less than 3–4 nm thick.

Question 1

Which factor we can adjust in order to reduce the power consumption of a circuit?

$$P = A Nt C_L V^2 f + Nt I_L V$$

Contents

- Low power SOC requirement
- CMOS device characteristics and power of LSI
- Scheme for Low Power

Contents

- Low power SOC requirement
- CMOS device characteristics and power of LSI
- Scheme for Low Power
 - Dynamic Power
 - Leakage Power

Techniques for reducing Dynamic Power

Capacitance

- Fanout
- Wirelength
- Transistor size

Supply Voltage

- Dual Vdd
- DVFS

$$P_{\rm dyn} = C V_{\rm DD}^2 A f$$

Switching Activity

- Encoding
- Clock gating

Clock Frequency

- Frequency scaling

Transistor Scaling

Small feature size (Almost equivalent to gate length) small gate capacitance and small wire capacitance

Moore's law

Gordon Moore, co-founder of Intel Corp.

After 0.35 µm generation, power supply voltage has been reduced to maintain electric field constant in gate oxide.

After 90nm generation, power supply voltage has been saturated not to increase leakage current

Scaling Law

k: scaling factor

	voltage constant (very Old)	electric field Constant (old)	Voltage and Tox Constant (now)
One side of length (X)	1/k	1/k	1/k
Number of gate/unit area	k²	k²	k ²
Gate oxide thickness (tox)	1/k	1/k	1
Power supply voltage (V)	1	1/k	1
Electric field strength (E)	k	1	k
Saturation current (I)	k	1/k	1
Capacity (C)	1/k	1/k	1/k²
Delay time (tpd)	1/k²	1/k	1/k²
Power consumption of one gate (P)	k	1/k²	1
Power density (P/X ²)	k³	1	k²

Scaling Law

k: scaling factor

	voltage constant (very Old)	electric field Constant (old)	Voltage and Tox Constant (now)
One side of length (X)	1/k	1/k	1/k
Number of gate/unit area	k²	k²	k²
Gate oxide thickness (tox)	1/k	1/k	1
Power supply voltage (V)	1	1/k	1
Electric field strength (E)	k	(1)	k
Saturation current (I)	k	1/k	1
Capacity (C)	1/k	1/k	1/k²
Delay time (tpd)	1/k²	1/k	1/k²
Power consumption of one gate (P)	k	1/k²	1
Power density (P/X²)	k³	1	k²

Scaling Law

k: scaling factor

	voltage constant (very Old)	electric field Constant (old)		Voltage and Tox Constant (now)
One side of length (X)	1/k	1/k		1/k
Number of gate/unit area	k²	k²		k ²
Gate oxide thickness (tox)	1/k	1/k		1
Power supply voltage (V)	1		1/k	1
Electric field strength (E)	k	1		1
Saturation current (I)	k	1/k		1
Capacity (C)	1/k	1/k		1/k²
Delay time (tpd)	1/k²	1/k		1/k²
Power consumption of one gate (P)	k	1/k²		1
Power density (P/X²)	k³		1	k²

Success history of semiconductor development!!

Power density becomes serious problem

Issue of Feature Scaling

Question 2

Why don't we continue to reduce Supply voltage?

Clock Gating

$$P=A Nt C_L V^2 f +Nt I_L V$$

Feature: Inhibit clock signal of unused block.

Effect: AC power reduction (Small A)

Status: Representative and inevitable low power technique.

<u>Issue:ineffective to leakage</u>

Clock Gating

RX Family: Efforts to Reduce Power Consumption

The RX600 Series utilizes a 90 nm ultrafine process and a variety of technologies to reduce

Reducing operating current consumption

- 90 nm process
 The 90 nm ultrafine process reduces the load capacitance (gates and wiring).
- Clock gating technology
 Analyzes the operation sequence and dynamically shuts off the clock supply to logic blocks that do not need it.

Reducing standby current consumption

- Optimized use of both low-leak (high-Vth) cells and high-speed (low-Vth) cells for reduced standby current.
- Fine subdivision of power blocks in low-power mode to shut off power to inactive portions.

From http://wwww.renesas.com

CTS - Classification

Tree

- -- low cost (wiring, power, cap)
- -- higher skew, jitter than mesh
- -- widely used in ASIC designs
- -- clock gatir

Clock source

Mesh

- -- excellent for low skew, jitter
- -- high power, area, capacitance
- -- difficult to analyze
- -- clock gating not easy
- -- used in modern processors

Best architecture depends on the application

Hybrid: tree + cross-links

- -- low cost (wiring, power, cap)
- -- smaller skew, jitter than tree
- -- difficult to analyze

Hybrid: mesh + local trees

-- suitable for coarse mesh

Clock Gating - Issues

Remind: Metastability

How does FF output (FF/Q) response while FF is in metastability?

When Φ is rising (and assume that master latch is entering to metastability), slave latch is active. Then, value of \overline{D} is transferred to the inverter loop. So, the FF output (FF/Q) will be also VLT.

FF/Q will keep this potential level for unpredictable time and the final value is also unpredictable as shown on waveform picture.

DVFS

Dynamic Voltage Frequency Scaling -

High Performance

Frequency

Technique: Scale the Supply voltage for each Block based on the operation frequency

Effect: can reduce power significantly; but impact to the complexity

DVFS

Dynamic Voltage Frequency Scaling -

Contents

- Low power SOC requirement
- CMOS device characteristics and power of LSI
- Scheme for Low Power
 - Dynamic Power
 - Leakage Power

Multi VT Technique

Remind: Vth effect

- Vth can be tuned during fabrication by ion implantation.
- ◆Transistor with lower Vth can flow large drain current at Vg=1.2V, but has large leakage at Vg=0V (lleak1 > lleak2)

Multi VT Technique

Technique: Use high and low Vth transistors and optimize the assignment of the Vth of cell.

Effect: Leakage can be reduced on both standby and operation mode.

Static Body Bias Technique

Remind: Body effect

Static Body Bias Technique

Negative body bias is applied at standby mode.

Effect: 1.5 – 3 orders magnitude leakage reduction

Question 3

What is the difference between "Multi Vth" technique and "Static Body bias" technique?

Power Gating - Concept

High Vth PMOS power switch

Vdd

Vssm

Thick oxide NMOS power swich

Vss

Vss

Vss

Sleep transistor (Power switch) shut off the all leakage of the circuit

Effect: To decrease the leakage by 2 to 3 orders of magnitude

Issue: Data retention of FF

Power Gating – Classification

- **□** Hierarchical:
 - > Fine-grain
 - Coarse-grain
- **□** Layout structure:
 - > Column structure
 - > Ring structure

Power Gating – Classification

	Fine-grain	Coarse-grain
Concept	 SW cells are applied to each Logic Gate 	 SW cells are applied to each module
Power consumption reduction	Good effect	Less effect
Area overhead	Large area	 Small area
Implementation	ComplicatedDifficult to re-use	EasyEasy to re-use

Power Gating – Classification

	COLUMN Type PSW	RING Type PSW	
Area efficiency	■Tr size is small	♦Tr size is large	
Routing efficiency	■PSW prevents horizontal routing	No routing restriction inside Power Domain	
Hard IP	■Not applicable ■Need to re-create physical design for power shut-off	◆Easy to re-use for power shut-off	
Wire	Power Supply PSW	Corner Cell PSW Filler Cell	

Summary (1/2) – basic concept

- Low power has become important issue in recent LSI.
- Many techniques have been proposed and developed to reduce the power of LSI.
- Each technique has its own benefits and issues. Designers
 MUST combine many techniques to maximize the benefits and minimize the side effects.
- Formula to calculate power consumption

$$P = A Nt C_L V^2 f + Nt I_L V$$

Summary (2/2) – Low power techniques

Trade-offs for low-power techniques

Techniques, such as dynamic frequency scaling, require a sophisticated methodology

	Leakage power	Dynamic power	Timing	Area penalty	Methodology impact	Methodology change
Low-power optimization	10%	10%	0%	10%	None	None
Multi-V _t	6X	0%	0%	0%	Low	Multi-V _t library needed
Clock gating	0%	20%	0%	<2%	Low	Clock-gating cells needed and extra overhead in STA
Multisupply voltage	2X	40% to 50%	0%	<10%	Medium	Microarchitecture and methodology needs to be domain-aware; Need voltage regulators and level shifters; verification and analysis challenge
Power shutoff	10X to 50X	0%	4% to 8%	5% to 15%	Medium-high	Insertion of switch cells; retention flops; wake-up and shutdown time analysis
Dynamic voltage frequency scaling	2X to 3X	40% to 70%	0%	<10%	High	Multimode optimization and analysis flow needed: Clock synchronization
Substrate biasing	10X	-	10%	<10%	High	Maintain well separation; multiple power rail distribution; timing analysis

Source: Cadence Design Systems

Example – Relationship between

Example - Renesas LP products

ISSCC98	ISSCC02	ISSCC04	ISSCC06	ISSCC07
Bus interface Cache cont CPU CPU cont FGOU CDU CPU cont FGOU CDU CPU cont CDU C	Parphierals Cache Cache Cu Cache Buts Array CPU List DSP CACHE CACHE	3D Graphics By MPEG-4 Engine Video Interface Processor Core URAM	W-CDMA AP-Misc AP-SY CPU BB- Misc JPEG CPU AP-RT CDC Media RAM GSM CPU SRAM	GSM BB-CPU APL-Peripherals 3DG Periph Camera (PU AP-RT CPU AP-RT C
SH-4	SH-Mobile1	SH-Mobile3	SH-MobileG1	SH-MobileG2
Clock Gear Standby Back-bias	Dual Vth µlO On chip SRAM U-standby	Pointer pipeline Activation Control Resume Standby	Hierarchical Power Domain Control	Triple-Vth Core-Standby Dynamic Module Stop for Bus

RENESAS

Renesas Design Vietnam Co., Ltd.

Threshold Voltage of NMOS (Vthn)

<Characteristics of drain current>

Clock Gating - Issues

Clock skew

The deterministic (knowable) difference in clock arrival times at each flip-flop Caused mainly by imperfect balancing of clock tree/mesh

Clock jitter

The random (unknowable) difference in clock arrival times at each flip-flop Caused by on-die process, Vdd, temperature variation, PLL jitter, crosstalk, Static timing analysis (STA) accuracy, layout parameter extraction (LPE) accuracy

Clock uncertainty $\Delta \equiv$ skew \pm jitter

Formula

Dynamic Power
$$P_{switching} = C_{switching} \cdot VDD^2 \cdot f$$

Average Short Circuit Current

$$I_{SC} = \frac{\beta \cdot \tau_{in}}{12 \cdot VDD} \cdot (VDD - 2V_{th})^{3} \cdot f$$

 $gain_factor: \beta_n = \beta_p = \beta,$

Threshold_Voltage: $V_{thn} = |V_{thp}| = V_{th}$

Sub-threshold Leakage Current

$$I_{DS} = \mathbf{K} \cdot e^{(V_{GS} - V_{th}) \cdot q/nkT} \cdot (1 - e^{-V_{DS} \cdot q/kT})$$

K: function of technology, V_{GS} : gate – to – source voltage, V_{DS} : drain – to – source voltage,

 V_{h} : the shold voltage, q: electronic charge, k: Boltzmann constance, T: temperature,

n: nonlinearity constance $1 \sim 2$, $(kT \cong 0.0259)$

Scaling Relationship

Quality	Cons field Scaling	Constant Voltage Scaling
Gate Capacitance	$C_g' = C_g / S$	$C'_{g} = C_{g} / S$
Drain Current	$I_D' = I_D / S$	$I_D' = I_D.S$
Power Dissipation	$P' = P/S^2$	P' = P.S
Power Density	P' / Area' = (P / Area)	$P' / Area' = S^3 P / Area$
Delay	$t_d' = t_d / S$	$t'_d = t_d / S^2$
Energy	$E' = \frac{P}{S^2} \times \frac{t_d}{S} = \frac{P \cdot t_d}{S^3} = \frac{1}{S^3} E$	E'=E/S

Threshold Voltage of NMOS (Vthn)

