Exercice 1. Calculer ∇f (ou J_f si f est vectorielle) des fonctions suivantes:

- (1) $f: x \in \mathbb{R}^n \mapsto u^T x$.
- (2) $f: x \in \mathbb{R}^n \mapsto Ax + b \in \mathbb{R}^m \text{ avec } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
- (3) $f: x \in \mathbb{R}^n \mapsto \frac{1}{2}(x^T A x) + b^T x + c$, avec $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$ et $c \in \mathbb{R}$. Même question pour $A \in \mathcal{S}^n$.
- (4) $f: \mathbb{R}^n \mapsto ||Ax b||_2^2$
- (5) $f(x) = ||x||_2$.
- (6) $f(x) = \log\left(\sum_{i=1}^{m} \exp(a_i^T x + b_i)\right)$, avec $a_1, \dots, a_m \in \mathbb{R}^n, b_1, \dots, b_m \in \mathbb{R}$.
- (7) $f(X) = \log \det(X)$ avec $X \in \mathcal{S}_{++}^n$.

Exercice 2. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^1 et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$q(x, y) = f(x + y, x^2 + y^2).$$

Exprimer les dérivées partielles de g en (1,2) en fonction de celles de f.

Exercice 3. (1) Soit $A \in \mathcal{S}_{++}^n$. Peut-on dire que les composantes de A sont positives ?

- (2) Soit $A \in \mathcal{S}_{+}^{n}$ (respectivement dans \mathcal{S}_{++}^{n}). Montrer que les éléments diagonaux de A sont positifs (respectivement strictement positifs).
- (3) Soit $A \in \mathcal{S}^n_-$ (respectivement dans \mathcal{S}^n_-). Montrer que les éléments diagonaux de A sont négatifs (respectivement strictement négatifs). Soit $A \in \mathcal{S}^n$. Montrer que si A possède des éléments diagonaux strictement négatifs et positifs, alors A est non-définie.

Exercice 4. (1) Soient $A, B \in \mathcal{S}^n_+$. Montrer que $A + B \in \mathcal{S}^n_+$.

- (2) Soit $A \in \mathbb{R}^{n \times k}$ et posons $B = AA^T$. Montrer que $B \in \mathcal{S}^n_+$. Montrer que $B \in \mathcal{S}^n_{++}$ si et seulement si $\operatorname{rg}(A) = n$.
- (3) Soient $A \in \mathcal{S}^n$ and $B \in \mathcal{S}^m$. Montrer que $A \in \mathcal{S}^n_+$ and $B \in \mathcal{S}^m_+$ si et seulement si $\begin{pmatrix} A & 0_{n \times m} \\ 0_{m \times n} & B \end{pmatrix} \in \mathcal{S}^{n+m}_+$

Exercice 5. Soit $M \in \mathcal{S}_{++}^n$. Montrer que $||x||_M = \sqrt{x^T M x}$ est une norme.