Белорусский государственный университет Факультет прикладной математики и информатики

ИЗБРАННЫЕ РАЗДЕЛЫ МЕТОДОВ ОПТИМИЗАЦИИ

канд. физ.-мат. наук Войделевич А.С.

КОНСПЕКТ ЛЕКЦИЙ

СОДЕРЖАНИЕ

31	Выпуклые множества	3
$\S 2$	Выпуклые функции	8
$\S 3$	Задача выпуклой оптимизации	12
$\S 4$	Линейное программирование	19
$\S 5$	Теория двойственности	25
§6	Целочисленное линейное программирование	30
§7	Метод спуска	34
§8	Метод проекции градиента	41

§1 ВЫПУКЛЫЕ МНОЖЕСТВА

Пусть \mathbb{A}^n-n -мерное аффинное пространство над полем \mathbb{R} , $n\in\mathbb{N}$. Зафиксируем некоторую точку $O\in\mathbb{A}^n$ в качестве начала координат. Далее будет отождествлять произвольную точку $P\in\mathbb{A}^n$ с её радиусом вектором \overrightarrow{OP} , а само пространство \mathbb{A}^n- с вещественным n-мерным векторным пространством \mathbb{R}^n . Для обозначения векторов и точек будем использовать строчные буквы, а для обозначения множеств — заглавные.

Опр. 1.1. Точка $\alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_m p_m \in \mathbb{R}^n$, где $p_i \in \mathbb{R}^n$, $\alpha_i \geqslant 0$ и $\sum_{i=1}^m \alpha_i = 1$, называется выпуклой комбинацией точек p_1, p_2, \ldots, p_m .

Опр. 1.2. Для произвольных точек $x, y \in \mathbb{R}^n$ множество

$$[x,y] \stackrel{\text{def}}{=} \{\alpha x + (1-\alpha)y \colon \alpha \in [0,1]\},$$

состоящее из всех возможных выпуклых комбинаций точек x и y, называется отрезком (c концами x, y).

Опр. 1.3. Множество $X \subset \mathbb{R}^n$ называется выпуклым, если для произвольных двух точек $x, y \in X$ оно содержит весь отрезок [x, y].

Отметим, что согласно определению 1.3 пустое множество \emptyset и произвольное одноточечное множество $\{p\}, p \in \mathbb{R}^n$, являются выпуклыми.

Лемма 1.1. Множество X является выпуклым, если и только если X содержит любую выпуклую комбинацию своих точек.

ightharpoonup Если множество X содержит любую выпуклую комбинацию своих точек, то, в частности, для любых двух точек $x,\,y\in X$ имеем $[x,y]\subset X$, а значит, X — выпуклое множество.

Обратное утверждение доказывается индукцией по количеству m точек $p_1, p_2, \ldots, p_m \in X$, входящих в выпуклую комбинацию $\alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_m p_m$. База индукции m=2 следует из определения 1.3. Предположим теперь, что множество X содержит всевозможные выпуклые комбинации своих точек размера $m\geq 2$. Докажем, что X также содержит любую выпуклую комбинацию размера m+1. Действительно, пусть $p_1, p_2, \ldots, p_{m+1} \in X$ и числа $\alpha_1, \alpha_2, \ldots, \alpha_{m+1} \geq 0$, такие что $\sum_{i=1}^{m+1} \alpha_i = 1$. Без нарушения общности будем считать, что $\alpha_1 < 1$ (иначе это выпуклая комбинация, состоящая из одной точки). Тогда

$$p = \alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_{m+1} p_{m+1} = \alpha_1 p_1 + (1 - \alpha_1) q_1$$

где
$$q=\frac{\alpha_2}{1-\alpha_1}p_2+\frac{\alpha_3}{1-\alpha_1}p_3+\ldots+\frac{\alpha_{m+1}}{1-\alpha_1}p_{m+1}$$
. Так как $\sum\limits_{i=2}^{m+1}\frac{\alpha_i}{1-\alpha_1}=1$, то согласно предположению индукции $q\in X$, а значит, $p\in X$. \lhd

Рассмотрим операции над выпуклыми множествами, которые сохраняют выпуклость.

Лемма 1.2. Пусть I — некоторое множество индексов произвольной мощности, а $\{X_i \subset \mathbb{R}^n : i \in I\}$ — семейство выпуклых множеств. Тогда множество $X = \bigcap_{i \in I} X_i$ является выпуклым.

ightharpoonup Действительно, пусть $x, y \in X$. Тогда $x, y \in X_i$ для всех $i \in I$, а значит, $[x,y] \subset X_i$. Таким образом, $[x,y] \subset X$, т.е. множество X является выпуклым. \lhd

Выпуклой оболочкой Conv X произвольного множества $X\subset\mathbb{R}^n$ называется наименьшее (по вложению) выпуклое множество, содержащее X. Из леммы 1.2 следует, в частности, что Conv X — это пересечение всех выпуклых множеств, содержащих X.

Лемма 1.3. Пусть $F \colon \mathbb{R}^n \to \mathbb{R}^m$ — аффинное преобразование, т.е. преобразование, действующее по правилу $F \colon x \mapsto Ax + b$, где $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Тогда для произвольных выпуклых множеств $X \subset \mathbb{R}^n$ и $Y \subset \mathbb{R}^m$ множества $F(X) \stackrel{\mathrm{def}}{=} \{Fx \colon x \in X\} \subset \mathbb{R}^m$ и $F^{-1}(Y) \stackrel{\mathrm{def}}{=} \{x \colon Fx \in Y\} \subset \mathbb{R}^n$ также являются выпуклыми.

ightharpoonup Пусть $y_1 = Fx_1$, $y_2 = Fx_2$ и $\alpha \in [0,1]$. Тогда утверждение леммы следует из равенства $\alpha y_1 + (1-\alpha)y_2 = \alpha Fx_1 + (1-\alpha)Fx_2 = F(\alpha x_1 + (1-\alpha)x_2)$, которое выполнено для любого аффинного преобразования F. ightharpoonup

Лемма 1.4. Пусть $\{X_i \subset \mathbb{R}^{n_i} \colon 1 \leq i \leq m\}$ — семейство выпуклых множеств. Тогда прямое произведение

$$X_1 \times X_2 \times \ldots \times X_m \stackrel{\text{def}}{=} \{(x_1, x_2, \ldots, x_m) : x_i \in X_i, 1 \le i \le m\}$$

является выпуклым множеством в пространстве $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \times \ldots \times \mathbb{R}^{n_m}$.

 \triangleright Пусть x_i , $\widetilde{x}_i \in X_i$, $1 \le i \le m$, и $\alpha \in [0,1]$. Тогда

$$\alpha(x_1, x_2, \dots, x_m) + (1 - \alpha)(\widetilde{x}_1, \widetilde{x}_2, \dots \widetilde{x}_m) =$$

$$= (\alpha x_1 + (1 - \alpha)\widetilde{x}_1, \dots, \alpha x_m + (1 - \alpha)\widetilde{x}_m) \in X_1 \times X_2 \times \dots X_m, \quad (1.1)$$

так как $\alpha x_i + (1 - \alpha)\widetilde{x}_i \in X_i$, 1 < i < m. \triangleleft

Композиция операций, сохраняющих выпуклость, также, очевидно, сохраняет выпуклость. Следовательно, для произвольных выпуклых множеств $X_1, X_2, \ldots, X_m \in \mathbb{R}^n$ и вещественных чисел $\alpha_1, \alpha_2, \ldots, \alpha_m \in \mathbb{R}$ множество

$$\alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_m X_m \stackrel{\text{def}}{=} \{ \sum_{i=1}^m \alpha_i x_i \colon x_i \in X_i, 1 \le i \le m \}$$

является выпуклым. Действительно, эту линейную комбинацию множеств можно представить как композицию прямого произведения и аффинного преобразования. Отметим, что линейную композицию вида A+B называют суммой Минковского множеств $A,B\subset\mathbb{R}^n$.

Лемма 1.5. Замыкание \overline{X} выпуклого множества $X \subset \mathbb{R}^n$ выпукло.

ightharpoonup Выберем произвольные точки $a, b \in \overline{X}$ и число $\alpha \in [0,1]$. Необходимо доказать, что $c \stackrel{\mathrm{def}}{=} \alpha a + (1-\alpha)b \in \overline{X}$. Существуют такие две последовательности точек $(a_k)_{k \in \mathbb{N}}$ и $(b_k)_{k \in \mathbb{N}} \subset X$, что $a_k \to a$ и $b_k \to b$. Тогда последовательность точек $(c_k)_{k \in \mathbb{N}} \subset X$, где $c_k = \alpha a_k + (1-\alpha)b_k$, сходится к c, а значит, $c \in \overline{X}$. \lhd

Опр. 1.4. Множества $X, Y \subset \mathbb{R}^n$ называются отделимыми, если существуют ненулевой вектор c и число d, такие что $c^\mathsf{T} x \geq d \geq c^\mathsf{T} y$ для любых $x \in X$ и $y \in Y$. Если известно, что неравенства строгие $c^\mathsf{T} x > d > c^\mathsf{T} y$, то говорят, что множества X и Y строго отделимы. Гиперплоскость, заданная уравнением $c^\mathsf{T} x = d$, называется разделяющей гиперплоскостью.

Отметим, что согласно определению, вектор c из уравнения гиперплоскости $c^\mathsf{T} x = d$ ненулевой.

Теорема 1.1. Если непересекающиеся множества X и $Y \subset \mathbb{R}^n$ выпуклы, замкнуты и одно из них ограничено, то они строго отделимы.

ho Пусть X — ограниченное множество и $d_X \stackrel{\text{def}}{=} \sup_{x_1,x_2 \in X} \|x_1 - x_2\|$ — его диаметр. Докажем, что найдутся точки $x_0 \in X$ и $y_0 \in Y$, для которых $\|x_0 - y_0\| = \inf_{x \in X, y \in Y} \|x - y\|$. Действительно, выберем произвольные две точки $x_1 \in X$ и $y_1 \in Y$. Пусть $\widetilde{Y} = Y \cap B_r(x_1)$, где $B_r(x_1)$ — шар радиуса $r = d_X + \|x_1 - y_1\|$ с центром в x_1 . Множества X и \widetilde{Y} являются компактными, а функция f, действующая по правилу $f \colon (x,y) \in X \times \widetilde{Y} \mapsto \|x-y\|$, — непрерывной. Так как декартово произведение компактных множеств компактно, то функция f достигает свое минимальное значение в некоторых точках $x_0 \in X$ и $y_0 \in \widetilde{Y}$. Если $y \in Y \setminus \widetilde{Y}$ и $x \in X$, то $\|x-y\| \geq \|x_1-y\| - \|x_1-x\| \geq d_X + \|x_1-y_1\| - d_X = \|x_1-y_1\|$, а значит, точки x_0, y_0 искомые.

Пусть $\Pi \stackrel{\mathrm{def}}{=} \{x \in \mathbb{R}^n \colon c^\mathsf{T} x = d\}$ — гиперплоскость, проходящая через середину отрезка $[x_0, y_0]$, перпендикулярно ему. Выберем $c = x_0 - y_0$ и $d = (\|x_0\|^2 - \|y_0\|^2)/2$. Докажем, что множества X и Y не пересекаются c указанной гиперплоскостью, а значит, лежат в разных открытых полупространствах относительно её. Предположим противное, а именно, что некоторая точка $y \in Y$ принадлежит плоскости Π . Треугольник c вершинами c0, c0, c0 является равнобедренным c0 основанием c0, c0, c0 и острым углом при вершине c0, так как c0, c0, c0 условию c0 — выпуклое множество, а значит, c0, c0, c0, c0. Пусть c0 — основание перпендикуляра, опущенного из вершины c0 на сторону c0, c0, c0. Тогда c0, c

Опр. 1.5. Гиперплоскость $\Pi \stackrel{\text{def}}{=} \{x \in \mathbb{R}^n : c^{\mathsf{T}}x = d\}$ называется опорной к множеству X в точке x_0 , если $x_0 \in \Pi \cap \overline{X}$ и для всех $x \in X$ одновременно выполняется одно из неравенств: $c^{\mathsf{T}}x \geq d$ или $c^{\mathsf{T}}x \leq d$.

Напомним, что точка x называется граничной для множества X, если любая её окрестность содержит как точки, принадлежащие данному множеству, так и

не принадлежащие ему.

Лемма 1.6. Выпуклое множество $X \subset \mathbb{R}^n$ в каждой граничной точке имеет опорную гиперплоскость.

ightharpoonup Пусть x_0 — граничная точка множества X. Так как X — выпуклое множество, то x_0 — граничная точка замыкания \overline{X} . Следовательно, найдётся такая последовательность точек $(y_k)_{k\in\mathbb{N}}\subset\mathbb{R}^n\setminus\overline{X}$, что $y_k\to x_0$. Согласно, теореме 1.1 для множеств $\{y_k\}$ и \overline{X} (выпуклость \overline{X} следует из леммы 1.5) найдётся такая гиперплоскость, заданная уравнением $c_k^\mathsf{T} x = d_k$, что $c_k^\mathsf{T} x > d_k > c_k^\mathsf{T} y_k$, $x\in\overline{X}$. Без нарушения общности будем считать, что $\|c_k\|=1$. Тогда, в силу построения, последовательность $(d_k)_{k\in\mathbb{N}}$ является ограниченной. Наконец, без нарушения общности будем считать, что $c_k\to c$ и $d_k\to d$. Тогда $c^\mathsf{T} x\geq d$, $x\in X$, и $c^\mathsf{T} x_0=d$. \lhd

Теорема 1.2. Произвольное выпуклое множество $X \subset \mathbb{R}^n$ можно отделить от точки y, ему не принадлежащей.

ightharpoonup Действительно, если $y \not\in \overline{X}$, то доказательство следует из теоремы 1.1, иначе — из леммы 1.6. \lhd

Теорема 1.3. Множества X и $Y \subset \mathbb{R}^n$ отделимы тогда и только тогда, когда множество X-Y и точка $\{\mathbf{0}\}$ отделимы.

ightharpoonup Пусть множества X и Y отделимы. Тогда существуют такие $c \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ и $d \in \mathbb{R}$, что $c^\mathsf{T} y \le d \le c^\mathsf{T} x$ для всех $x \in X, \ y \in Y$. Следовательно, $c^\mathsf{T} (x-y) \ge 0$, а значит, гиперплоскость $\Pi = \{x \colon c^\mathsf{T} x = 0\}$ отделяет множество X - Y от нуля.

Предположим теперь, что множества X-Y и $\{{\bf 0}\}$ отделимы. Тогда существуют такие $c\in\mathbb{R}^n\setminus\{{\bf 0}\}$ и $d\in\mathbb{R}$, что $0\leq d\leq c^{\sf T}z$ для всех $z\in X-Y$. Следовательно, $c^{\sf T}y\leq c^{\sf T}x$ для всех $x\in X,\ y\in Y$, а значит, $\sup_{y\in Y}c^{\sf T}y\leq \inf_{x\in X}c^{\sf T}x$. Выберем такое

число $\widetilde{d} \in \mathbb{R}$, что $\sup_{y \in Y} c^\mathsf{T} y \leq \widetilde{d} \leq \inf_{x \in X} c^\mathsf{T} x$. Тогда гиперплоскость $\Pi = \{x \colon c^\mathsf{T} x = \widetilde{d}\}$ отделяет множества X и Y. \lhd

Следствие 1.1. Пусть X, Y — непустые выпуклые непересекающиеся множества. Тогда X и Y отделимы.

Через $\operatorname{Int} X$ обозначим внутренность множества $X\subset \mathbb{R}^n$, т.е. множество всех внутренних точек X. Не сложно видеть, что, если X — выпуклое множество, то $\operatorname{Int} X$ также выпукло.

Следствие 1.2. Пусть $X, Y - выпуклые множества с непустой внутренностью, при этом <math>\operatorname{Int} X \cap \operatorname{Int} Y = \varnothing$. Тогда X и Y отделимы.

Упражнения

- 1. Пусть $X \subset \mathbb{R}^n$ непустое множество. Докажите, что любую точку p, принадлежащую выпуклой оболочке множества X, можно представить в виде выпуклой линейной комбинации не более чем n+1 точек множества X.
- 2. Пусть в \mathbb{R}^n заданы точки p_1, p_2, \ldots, p_s , где $s \ge n+2$. Докажите, что точки можно разбить на два непересекающихся множества так, что выпуклые оболочки этих двух множеств будут иметь непустое пересечение.

- 3. (Теорема Хелли) Пусть I произвольное семейство индексов и $\{X_i\}_{i\in I}$ семейство замкнутых выпуклых множеств в \mathbb{R}^n , из которых хотя бы одно компактно. Докажите, что если любое подсемейство из n+1 множеств имеет непустое пересечение, то и всё семейство имеет непустое пересечение.
- 4. Озеро имеет форму невыпуклого n-угольника. Докажите, что множество точек озера, из которых видны все его берега, либо пусто, либо заполняет внутренность выпуклого m-угольника, где $m \le n$.

§2 ВЫПУКЛЫЕ ФУНКЦИИ

- Опр. 2.1. Функция $f: X \to \mathbb{R}$, заданная на выпуклом множестве $X \subset \mathbb{R}^n$, называется выпуклой, если для любых $x, y \in X$ и любого $\alpha \in [0,1]$ выполнено неравенство $f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y)$. Если последнее неравенство строгое при $\alpha \in (0,1)$, то функция f называется строго выпуклой.
- **Лемма 2.1.** Для того, чтобы функция $f: X \to \mathbb{R}$, определённая на выпуклом множестве X, была выпуклой, необходимо и достаточно, чтобы было выпуклым множество ері $f \stackrel{\mathrm{def}}{=} \{(x,y): x \in X, y \geq f(x)\} \subset X \times \mathbb{R}$. (Множество ері f называется надграфиком функции f.)

ightharpoonup Пусть $f\colon X \to \mathbb{R}$ — выпуклая функция. Выбрав произвольные две точки $z_1=(x_1,y_1),\, z_2=(x_2,y_2)\in {\rm epi}\, f$ и число $\alpha\in[0,1]$, докажем, что $\alpha z_1+(1-\alpha)z_2\in {\rm epi}\, f$, т.е. что $f\left(\alpha x_1+(1-\alpha)x_2\right)\leq \alpha y_1+(1-\alpha)y_2$. Так как $f(x_1)\leq y_1$ и $f(x_2)\leq y_2$, то необходимое неравенство следует из выпуклости функции f.

Предположим теперь, что ері f — выпуклое множество. Очевидно, что для произвольных двух точек $x_1, x_2 \in X$ пары $z_1 = (x_1, f(x_1)), z_2 = (x_2, f(x_2))$ принадлежат надграфику функции f. Следовательно, для произвольного числа $\alpha \in [0,1]$ имеем $\alpha z_1 + (1-\alpha)z_2 \in \operatorname{epi} f$, а значит, $f(\alpha x_1 + (1-\alpha)x_2) \leq \alpha f(x_1) + (1-\alpha)f(x_2)$. Другими словами, функция f выпукла. \triangleleft

Лемма 2.2 (Неравенство Йенсена). Пусть $f: X \to \mathbb{R}$ — выпуклая функция. Тогда для произвольных точек $x_1, x_2, \ldots, x_m \in X$ и чисел $\alpha_1, \alpha_2, \ldots, \alpha_m \geq 0$, таких что $\sum_{i=1}^m \alpha_i = 1$, справедливо неравенство

$$f(\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_m x_m) \le \alpha_1 f(x_1) + \alpha_2 f(x_2) + \ldots + \alpha_m f(x_m). \tag{2.1}$$

ightharpoonup Докажем неравенство (2.1) индукцией по количеству точек m. База индукции m=2 следует из определения выпуклой функции. Предположим, что неравенство (2.1) верно при $m\geq 2$. Пусть $x_1,\,x_2,\,\ldots,\,x_{m+1}\in X$ и числа $\alpha_1,\,\alpha_2,\,\ldots,\,\alpha_{m+1}\geq 0$, такие что $\sum_{i=1}^{m+1}\alpha_i=1$. Без нарушения общности будем считать, что $\alpha_1<1$. Так как $\sum_{i=2}^{m+1}\frac{\alpha_i}{1-\alpha_1}=1$, то верна цепочка неравенств

$$f\left(\sum_{i=1}^{m+1} \alpha_i x_i\right) \le \alpha_1 f(x_1) + (1 - \alpha_1) f\left(\sum_{i=2}^{m+1} \frac{\alpha_i}{1 - \alpha_1} x_i\right) \le \sum_{i=1}^{m+1} \alpha_i f(x_i). \quad \triangleleft$$

Напомним, что точка x называется внутренней для множества X, если найдётся такое r>0, что $B_r(x)\subset X$.

Лемма 2.3. Выпуклая функция $f\colon X\to\mathbb{R}$ непрерывна во всех внутренних точках множества $X\subset\mathbb{R}^n$.

ightharpoonup Пусть x_0 — внутренняя точка множества X, а значит, $B_r(x_0) \subset X$ для некоторого r>0. Пусть $\{e_1,e_2,\ldots,e_n\}$ — стандартный базис пространства \mathbb{R}^n . Тогда для любого $\alpha \in [0,1)$ справедливо неравенство

$$f(x_0 \pm \alpha r e_i) \le (1 - \alpha)f(x_0) + \alpha f(x_0 \pm r e_i).$$

Следовательно, $\varlimsup_{t\to +0} f(x_0\pm te_i) \le f(x_0)$, поэтому, $\varlimsup_{x\to x_0} f(x) \le f(x_0)$. Так как $f(x_0) \le \frac12 f(x_0+h) + \frac12 f(x_0-h)$ для любого $h\in B_r(\mathbf{0})$, то

$$f(x_0) \le \frac{1}{2} \lim_{x \to x_0} f(x) + \frac{1}{2} \lim_{x \to x_0} f(x).$$

Следовательно, $f(x_0)=\varinjlim_{x\to x_0}f(x)=\varlimsup_{x\to x_0}f(x)$, т.е. функция f непрерывна в x_0 . \lhd

Опр. 2.2. Вектор $c \in \mathbb{R}^n$ называется субградиентом функции $f: X \to \mathbb{R}$ в точке $x_0 \in X \subset \mathbb{R}^n$, если $f(x) \geq f(x_0) + c^\mathsf{T}(x - x_0)$ для всех $x \in X$. Множество всевозможных субградиентов функции f в точке x_0 называется субдифференциалом функции f в точке x_0 и обозначается $\partial f(x_0)$.

Лемма 2.4. Пусть $f: X \to \mathbb{R}$ — выпуклая функция, а x_0 — внутренняя точка множества X. Тогда множество $\partial f(x_0)$ непусто.

ightharpoonup Пусть $c^{\mathsf{T}}x+by=d$ — уравнение опорной гиперплоскости к множеству ері f в точке $(x_0,f(x_0))$. Тогда $c^{\mathsf{T}}x+by\geq d$ при $(x,y)\in$ ері f и $c^{\mathsf{T}}x_0+bf(x_0)=d$. Докажем, что b>0. Так как $(x_0,f(x_0)+1)\in$ ері f, то $c^{\mathsf{T}}x_0+bf(x_0)+b\geq d$, т.е. $b\geq 0$. Если b=0, то $c^{\mathsf{T}}x\geq d$, $x\in X$, а значит, $c^{\mathsf{T}}(x-x_0)\geq 0$. Так как x_0 — внутренняя точка, то $x_0-tc\in X$ для некоторого положительного числа t>0. Следовательно, $-t\|c\|^2\geq 0$, т.е. c=0. Получено противоречие. Таким образом, b>0, а значит,

$$f(x) \ge -\frac{c^\mathsf{T} x}{b} + \frac{d}{b} \quad \text{if} \quad f(x_0) = -\frac{c^\mathsf{T} x_0}{b} + \frac{d}{b}.$$

Наконец, отнимая последнее равенство от неравенства, получаем, что

$$f(x) - f(x_0) \ge (\widetilde{c}, x - x_0),$$
 где $\widetilde{c} = -\frac{c}{b}.$ <

Имеет место следующее обобщение неравенства Йенсена.

Лемма 2.5. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ — выпуклая функция, а $\xi: \Omega \to \mathbb{R}^n$ — случайный вектор. Тогда справедливо неравенство $f(E\xi) \leq Ef(\xi)$, при условии, что соответствующие математические ожидания существуют.

ightharpoonup Так как $f(x)-f(y)\geq c_y^\mathsf{T}(x-y)$, где $c_y\in\partial f(y)$, то $f(x)=\max_{y\in\mathbb{R}^n}(c_y^\mathsf{T}x+d_y)$. Следовательно,

$$f(E\xi) = \max_{y \in \mathbb{R}^n} (c_y^\mathsf{T} E \xi + d_y) = \max_{y \in \mathbb{R}^n} E(c_y^\mathsf{T} \xi + d_y) \leq E \max_{y \in \mathbb{R}^n} (c_y^\mathsf{T} \xi + d_y) = Ef(\xi). \quad \lhd$$

Лемма 2.6. Если в точке $x_0 \in X$ выпуклая функция $f: X \to \mathbb{R} - \partial u \phi \phi$ еренцируема, то $\nabla f(x_0) \in \partial f(x_0)$.

ightarrow Пусть $x\in X$ и $t\in (0,1].$ Тогда $fig(x_0+t(x-x_0)ig)\le (1-t)f(x_0)+tf(x),$ а значит, $\dfrac{fig(x_0+t(x-x_0)ig)-f(x_0)}{t}\le f(x)-f(x_0).$ Устремляя t к 0, получаем, что

$$f(x) \ge f(x_0) + \nabla f(x_0)^{\mathsf{T}} (x - x_0). \quad \triangleleft$$

Лемма 2.7. Если $f \in C^2(X)$, где X — открытое выпуклое множество, то для выпуклости функции f необходимо и достаточно, чтобы матрица $\nabla^2 f(x)$ была неотрицательно определённой ($\nabla^2 f(x) \succeq 0$). Если матрица $\nabla^2 f(x)$ положительно определена ($\nabla^2 f(x) \succ 0$), то f — строго выпуклая функция.

ightharpoonup Выберем произвольные точку $x_0 \in X$ и направление $\ell \neq \mathbf{0}$. Рассмотрим функцию $g(t) = f(x_0 + t\ell)$, заданную на интервале $T \stackrel{\mathrm{def}}{=} \{t \colon x_0 + t\ell \in X\}$. Очевидно, что функция f (строго) выпукла тогда и только тогда, когда (строго) выпуклы скалярные функции g при всевозможных $x_0 \in X$ и $\ell \in \mathbb{R}^n \setminus \{\mathbf{0}\}$. Имеем $g'(t) = \ell^\mathsf{T} \nabla f(x_0 + t\ell)$ и $g''(t) = \ell^\mathsf{T} \nabla^2 f(x_0 + t\ell)\ell$. Функция g выпукла тогда и только тогда, когда $g''(t) \geq 0$, что равносильно неотрицательной определённости матрицы $\nabla^2 f(x)$. Если $\nabla^2 f(x) \succ 0$, то g''(t) > 0, а значит, g — строго выпуклая функция. \lhd

В заключении рассмотрим операции над функциями, сохраняющие выпуклость. Будем писать, что $x \leq y$ для векторов $x, y \in \mathbb{R}^n$, если выполнены неравенства $x_i \leq y_i, 1 \leq i \leq n$.

Лемма 2.8. Пусть f, f_1, f_2, \ldots, f_m — выпуклые функции. Тогда следующие функции также являются выпуклыми:

- a) $g(x) = \sum_{i=1}^{m} c_i f_i(x)$, $\epsilon de \ c_i \ge 0$, $1 \le i \le m$;
- f(Fx), f(Fx), f(Fx), f(Fx) f(Fx)
- c) $g(x) = \max_{1 \le i \le m} f_i(x);$
- d) $g(x) = h(f_1(x), f_2(x), \dots, f_m(x))$, где h выпуклая монотонно неубывающая функция, т.е. $h(y) \le h(\widetilde{y})$ для всех y и \widetilde{y} , таких что $y \le \widetilde{y}$.

ightarrow Доказательства утверждений тривиальным образом следуют из определения выпуклости. Для примера докажем выпуклость функции g из пункта d). Пусть $x, y \in X$ и $\alpha \in [0,1]$. Так как функции $f_i, 1 \leq i \leq m$, выпуклы по условию, то $f_i(\alpha x + (1-\alpha)y) \leq \alpha f_i(x) + (1-\alpha)f_i(y)$. Положим $u = (f_1(x), \dots, f_m(x))$ и $v = (f_1(y), \dots, f_m(y))$, тогда в силу монотонности функции h верно неравенство

$$h\Big(f_1(\alpha x + (1-\alpha)y), \dots, f_m(\alpha x + (1-\alpha)y)\Big) \le h(\alpha u + (1-\alpha)v).$$

Так как функция h выпукла, то $h\bigl(\alpha u+(1-\alpha)v\bigr)\leq \alpha h(u)+(1-\alpha)h(v)$. Наконец, в силу определения функции g имеем

$$g(\alpha x + (1 - \alpha)y) = h(f_1(\alpha x + (1 - \alpha)y), \dots, f_m(\alpha x + (1 - \alpha)y)),$$

g(x) = h(u) и g(y) = h(v), а значит, $g(\alpha x + (1-\alpha)y) \le \alpha g(x) + (1-\alpha)g(y)$. Следовательно, g — выпуклая функция. \lhd

Упражнения

5. Докажите, что непрерывная выпуклая функция $f\colon [a,b] o \mathbb{R}$ удовлетворяет неравенству

$$f\left(\frac{a+b}{2}\right)(b-a) \le \int_{a}^{b} f(x) dx \le \frac{f(a)+f(b)}{2}(b-a).$$

- 6. Докажите, что субдифференциал $\partial f(x_0)$ произвольной выпуклой функции f в точке x_0 является замкнутым выпуклым множеством.
- 7. Пусть $f(x) \stackrel{\text{def}}{=} \max_{1 \le i \le m} f_i(x)$, где $f_i(x)$ выпуклые функции, и пусть c_i субградиент функции f_i в точке x_0 . Докажите, что вектор $c \stackrel{\text{def}}{=} \sum_{i=1}^m \alpha_i c_i$, $\sum_{i=1}^m \alpha_i = 1$, где $\alpha_i \ge 0$ и $\alpha_i = 0$, если $f_i(x_0) < f(x_0)$, является субградиентом функции f(x).
- 8. (Неравенство Караматы) Пусть даны два упорядоченных по невозрастанию набора из n действительных чисел $\mathbf{a}=(a_1,a_2,\ldots,a_n)$ и $\mathbf{b}=(b_1,b_2,\ldots,b_n)$. Говорят, что набор \mathbf{a} мажсорирует набор \mathbf{b} , и пишут $\mathbf{a}\succ\mathbf{b}$, если $a_1\geqslant b_1,\ a_1+a_2\geqslant b_1+b_2,\ \ldots,\ a_1+a_2+\ldots+a_{n-1}\geqslant b_1+b_2+\ldots+b_{n-1},\ a_1+a_2+\ldots+a_n=b_1+b_2+\ldots+b_n.$ Докажите, что для любой выпуклой функции y=f(x), определённой на некотором промежутке I, и любых двух наборов $\mathbf{a}=(a_1,a_2,\ldots,a_n),\ \mathbf{b}=(b_1,b_2,\ldots,b_n)$ из этого промежутка, удовлетворяющих условию $\mathbf{a}\succ\mathbf{b}$, справедливо неравенство

$$f(a_1) + f(a_2) + \ldots + f(a_n) \ge f(b_1) + f(b_2) + \ldots + f(b_n).$$

9. Пусть f(x) и g(x) — выпуклая и вогнутая функции соответственно, определённые на выпуклом множестве X, причём для любого $x \in X$ выполняется неравенство $f(x) \ge g(x)$. Докажите, что существует линейная функция h(x), такая что

$$f(x) \ge h(x) \ge g(x)$$
 для каждого $x \in X$.

§3 ЗАДАЧА ВЫПУКЛОЙ ОПТИМИЗАЦИИ

Рассмотрим следующую задачу условной оптимизации

$$\begin{cases} f_0(x) \to \min; \\ f_i(x) \le 0, \quad 1 \le i \le m; \\ x \in X; \end{cases}$$
 (3.1)

где $f_j\colon\mathbb{R}^n\to\mathbb{R}$ — выпуклые функции, $0\leq j\leq m,$ а $X\subset\mathbb{R}^n$ — произвольное выпуклое множество. Задача (3.1) называется задачей выпуклой оптимизации (выпуклого программирования), а функция $f_0(x)$ — целевой функцией задачи (3.1). Множество $Y\stackrel{\mathrm{def}}{=} X\cap\{x\colon f_i(x)\leq 0,1\leq i\leq m\}\subset\mathbb{R}^n$ будем называть множеством допустимых векторов (точек). Очевидно, что Y — выпуклое множество. Допустимую точку $x\in Y$, для которой выполнены неравенства $f_i(x)<0,1\leq i\leq m,$ будем называться строго допустимой. Ограничение $f_j(x)\leq 0$ называется активным в допустимой точке $x\in Y$, если $f_j(x)=0$. Множество индексов активных ограничений обозначим через $I(x)\stackrel{\mathrm{def}}{=} \{j\colon f_j(x)=0,1\leq j\leq m\}.$

Опр. 3.1. Допустимый вектор $x^* \in Y$ называется решением задачи (3.1), если $f_0(x^*) \leq f_0(x)$ при $x \in Y$.

В общем случае, когда функции f_j не обязательно выпуклы, приводят определения локального и глобального экстремумов. Однако, очевидно, что для выпуклых задач эти понятия совпадают. Более того, если дополнительно известно, что f_0 — строго выпуклая функция, то задача (3.1) имеет не более одного решения.

Иногда к ограничением задачи (3.1) добавляют следующее Ax=b, где $A\in \mathbb{R}^{k\times n},\ b\in \mathbb{R}^k$ (отметим, что поверхность уровня $\{x\colon f(x)=c\}$ произвольной выпуклой функции f(x), вообще говоря, не является выпуклым множеством). Пусть \widetilde{x} — какое-либо решение линейного уравнения Ax=b и $K\in \mathbb{R}^{n\times d}$ — матрица, столбцы которой образуют базис $\ker A$, $\dim \ker A=d$. Тогда, $\{\widetilde{x}+Ky\colon y\in \mathbb{R}^d\}$ — множество всех решений системы Ax=b. Таким образом, исходная задача равносильна задаче (3.1) для функций $\widetilde{f}_i(y)\stackrel{\mathrm{def}}{=} f_i(\widetilde{x}+Ky),\ 0\leq i\leq m$, и множества $\widetilde{X}=K^{-1}(X-\widetilde{x})$.

Лемма 3.1. Пусть функция f_0 из задачи (3.1) является дифференцируемой, тогда точка $x^* \in Y$ — решение задачи (3.1), если и только если для любой точки $x \in Y$ справедливо неравенство

$$\nabla f_0(x^*)^{\mathsf{T}}(x - x^*) \ge 0. \tag{3.2}$$

ightharpoonup Пусть x^* — решение задачи (3.1), докажем, что верно неравенство (3.2). Предположим противное, т.е., что нашлась такая допустимая точка $\widetilde{x} \in Y$, что $\nabla f(x^*)^\mathsf{T}(\widetilde{x}-x^*) < 0$. Так как f_0 — дифференцируемая функция, то имеет место равенство $f_0(x^*+t(\widetilde{x}-x^*)) = f_0(x^*) + t \nabla f_0(x^*)^\mathsf{T}(\widetilde{x}-x^*) + o(t), \ t \in [0,1]$. При

достаточно малом t > 0 слагаемое $t(\nabla f_0(x^*)^\mathsf{T}(\widetilde{x} - x^*) + o(t)/t)$ отрицательное, а значит, $f_0(x^* + t(\widetilde{x} - x^*)) < f_0(x^*)$, что противоречит выбору x^* .

Предположим, что для некоторой точки $x^* \in Y$ выполнено неравенство (3.2). Так как $f_0(x) \ge f_0(x^*) + \nabla f_0(x^*)^\mathsf{T}(x-x^*), x \in Y$, то $f_0(x) \ge f_0(x^*)$, а значит, x^* — решение задачи (3.1). \lhd

Опр. 3.2. Говорят, что для задачи (3.1) выполнено условие Слейтера, если множество строго допустимых точек задачи (3.1) не пусто.

Следуя [1, с. 52–58], перейдём к доказательству фундаментального результата, который является прямым аналогом метода множителей Лагранжа. Напомним, что функция $\mathcal{L}(x;\lambda_0,\lambda) \stackrel{\text{def}}{=} \sum_{j=0}^m \lambda_j f_j(x)$, где $\lambda = (\lambda_1,\lambda_2,\ldots,\lambda_m)$, называется функцией Лагранжа задачи (3.1), а числа $\lambda_0,\lambda_1,\ldots,\lambda_m$ — множителями Лагранжа.

Теорема 3.1 (Кун, Таккер). Пусть $f_j \colon \mathbb{R}^n \to \mathbb{R}$, $0 \le j \le m$, — выпуклые функции, а X — выпуклое множество. Если x^* является решением задачи (3.1), то найдутся такие множители Лагранжа λ_0^* и $\lambda^* = (\lambda_1^*, \lambda_2^*, \dots, \lambda_m^*)$, что

- а) (условие невырожденности) числа $\lambda_0^*, \lambda_1^*, \dots, \lambda_m^*$ не равны 0 одновременно;
- b) (условие неотрицательности) $\lambda_i^* \geq 0, \ 0 \leq j \leq m;$
- c) (условия дополняющей нежёсткости) $\lambda_i^* f_i(x^*) = 0, 1 \le i \le m.$
- $d) \ (npuнuun минимума) \min_{x \in X} \mathcal{L}(x; \lambda_0^*, \lambda^*) = \mathcal{L}(x^*; \lambda_0^*, \lambda^*);$

Пусть для некоторых множителей λ_0^* , λ^* и допустимой точки $x^* \in Y$ выполнены условия a)-d), тогда

- A) x^* решение задачи (3.1), если $\lambda_0^* \neq 0$;
- В) $\lambda_0^* \neq 0$, если для задачи (3.1) справедливо условие Слейтера.

ightharpoonup Пусть x^* — решение задачи (3.1). Без нарушения общности будем считать, что $f_0(x^*)=0$. Действительно, если это не так, то определим новую функцию $\widetilde{f}_0(x)=f_0(x)-f_0(x^*)$. Рассмотрим множество $C\subset \mathbb{R}^{m+1}$, состоящее из таких векторов $\mu=(\mu_0,\mu_1,\ldots,\mu_m)^\mathsf{T}$, для которых найдётся точка $x_\mu\in X$, такая что выполнены неравенства

$$f_0(x_\mu) < \mu_0, \quad f_1(x_\mu) \le \mu_1, \quad \dots, \quad f_m(x_\mu) \le \mu_m.$$
 (3.3)

Установим ряд свойств множества C. Сперва докажем, что множество C непусто и выпукло. Действительно, любой вектор $\mu \in \mathbb{R}^{m+1}$ с положительными компонентами принадлежит C, так как в (3.3) для такого вектора достаточно положить $x=x^*$. Выпуклость множества C устанавливается аналогично доказательству выпуклости надграфика ері f произвольной выпуклой функции f.

Докажем, что нулевой вектор $\mathbf{0} \in \mathbb{R}^{m+1}$ не принадлежит C. Предположим противное. Тогда существует такая точка $\widetilde{x} \in X$, что $f_0(\widetilde{x}) < 0$ и $f_i(\widetilde{x}) \leq 0$, $1 \leq i \leq m$, а значит, x^* не является решением задачи (3.1).

Поскольку C — выпуклое множество и $\mathbf{0} \notin C$, то из теоремы 1.2 отделимости следует, что найдутся такие числа $\lambda_0^*, \lambda_1^*, \ldots, \lambda_m^*$, неравные одновременно нулю,

что $\sum\limits_{i=0}^m \lambda_j^* \mu_j \geq 0, \, \mu \in C$. Докажем, что $\lambda_0^*, \, \lambda^*$ — искомые множители Лагранжа.

Множители $\lambda_j^*,\ 0 \leq j \leq m$, неотрицательны. Действительно, очевидно, что вектор $(\delta,\ldots,\delta,1,\delta,\ldots\delta)^\mathsf{T}$, где $\delta>0$ и 1 стоит на j_0 -м месте, принадлежит C, а значит, $\lambda_{j_0}^*\geq -\delta\sum\limits_{j\neq j_0}\lambda_j^*$. Так как $\delta>0$ выбрано произвольно, то $\lambda_{j_0}^*\geq 0$.

Множители λ_i^* , $1 \leq i \leq m$, удовлетворяют условиям дополняющей нежёсткости. Выберем индекс i_0 . Если $f_{i_0}(x^*)=0$, то $\lambda_{i_0}^*f_{i_0}(x^*)=0$. Предположим, что $f_{i_0}(x^*)<0$. Очевидно, что вектор $(\delta,0,\ldots,0,f_{i_0}(x^*),0,\ldots,0)^\mathsf{T}$, где $\delta>0$ и число $f_{i_0}(x^*)$ стоит на i_0 -м месте, принадлежит C. Следовательно, $\lambda_{i_0}^*f_{i_0}(x^*)\geq -\lambda_{i_0}^*\delta$. Таким образом, $\lambda_{i_0}^*f_{i_0}(x^*)\geq 0$, а значит, $\lambda_{i_0}^*=0$, т.е. $\lambda_{i_0}^*f_{i_0}(x^*)=0$.

В точке x^* выполнен принцип минимума. Действительно, пусть $x \in X$. Тогда вектор $(f_0(x) + \delta, f_1(x), \dots, f_m(x))^\mathsf{T}$, где $\delta > 0$, принадлежит множеству C. Следовательно, $\lambda_0^* f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) \ge -\lambda_0^* \delta$, а значит, $\mathcal{L}(x; \lambda_0^*, \lambda^*) \ge 0$. С другой стороны, $f_0(x^*) = 0$ и выполнены условия дополняющей нежёсткости, поэтому $\mathcal{L}(x^*; \lambda_0^*, \lambda^*) = 0$. Таким образом, $\mathcal{L}(x; \lambda_0^*, \lambda^*) \ge \mathcal{L}(x^*; \lambda_0^*, \lambda^*)$ для любого $x \in X$.

Пусть теперь для некоторых множителей λ_0^* , λ^* и допустимой точки $x^* \in Y$ выполнены условия а) – d). Предположим, что $\lambda_0^* \neq 0$. Без нарушения общности будем считать, что $\lambda_0^* = 1$. Тогда для любой допустимой точки $x \in Y$ получаем

$$f_0(x) \ge f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) = \mathcal{L}(x; 1, \lambda^*) \ge \mathcal{L}(x^*; 1, \lambda^*).$$

Так как $\mathcal{L}(x^*; 1, \lambda^*) = f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) = f_0(x^*)$, то x^* — решение задачи (3.1).

Предположим, что для задачи (3.1) выполнено условие Слейтера. Следовательно, существует точка $\widetilde{x} \in Y$, такая что $f_i(\widetilde{x}) < 0, \ 1 \leq i \leq m$. Докажем, что $\lambda_0^* \neq 0$. Предположим противное. Тогда $\mathcal{L}(\widetilde{x};0,\lambda^*) = \sum\limits_{i=1}^m \lambda_i^* f_i(\widetilde{x}) < 0$, так как не все множители $\lambda_i^*, \ 1 \leq i \leq m$, равны нулю. С другой стороны, $\mathcal{L}(x^*;0,\lambda^*) = 0$, а значит, $\mathcal{L}(\widetilde{x};0,\lambda^*) < \mathcal{L}(x^*;0,\lambda^*)$. Получено противоречие. \lhd

Функция $\mathcal{L}(x;\lambda) \stackrel{\text{def}}{=} f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$, заданная на множестве $X \times \mathbb{R}^m_+$, где $\mathbb{R}^m_+ \stackrel{\text{def}}{=} \{\lambda \in \mathbb{R}^m \colon \lambda_i \geq 0\}$, называется нормальной функцией Лагранжа.

Лемма 3.2. Пусть $(x^*,\lambda^*)\in X\times\mathbb{R}^m_+$. Тогда точка x^* допустимая, т.е. $x^*\in Y$, и для пары (x^*,λ^*) выполнены условия a)-d) теоремы Куна — Таккера, если и только если (x^*,λ^*) — седловая точка нормальной функции Лагранжа, т.е.

$$\min_{x \in X} \mathcal{L}(x; \lambda^*) = \mathcal{L}(x^*; \lambda^*) = \max_{\lambda \in \mathbb{R}^m_+} \mathcal{L}(x^*; \lambda). \tag{3.4}$$

ightharpoonup Действительно, пусть для пары $(x^*, \lambda^*) \in Y \times \mathbb{R}^m_+$ выполнены условия а) — d). Необходимо доказать только правое неравенство в (3.4). Для произвольных

множителей $\lambda \in \mathbb{R}^m_+$ в силу условий b) и c) имеем

$$\mathcal{L}(x^*; \lambda^*) = f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) = f_0(x^*) \ge f_0(x^*) + \sum_{i=1}^m \lambda_i f_i(x^*) = \mathcal{L}(x^*; \lambda).$$

Пусть теперь пара $(x^*, \lambda^*) \in X \times \mathbb{R}^m_+$ — седловая точка функции $\mathcal{L}(x; \lambda)$. Докажем, только что $x^* \in Y$ и справедливо условие c), так как остальные условия, очевидно, выполнены. Если $f_{i_0}(x^*) > 0$ для некоторого $i_0 \geq 1$, то имеет место неравенство $\mathcal{L}(x^*; \lambda^*) < \mathcal{L}(x^*; \widetilde{\lambda})$, где $\widetilde{\lambda} \stackrel{\mathrm{def}}{=} (\lambda_1^*, \dots, \lambda_{i_0}^* + \delta, \dots, \lambda_m^*)^\mathsf{T}$ и $\delta > 0$, которое противоречит (3.4). Следовательно, x^* — допустимая точка задачи (3.1). Так как $\mathcal{L}(x^*; \lambda^*) \geq \mathcal{L}(x^*; 0)$, то $\sum_{i=1}^m \lambda_i^* f_i(x^*) \geq 0$, а значит, $\lambda_i^* f_i(x^*) = 0$, $1 \leq i \leq m$. \lhd

Приведём критерий существования седловой точки, из доказательства которого, в частности, будет следовать способ её построения.

Теорема 3.2. Пусть $f(x,y): X \times Y \to \mathbb{R}$ — непрерывная функция, заданная на произведении компактных множеств X и Y. Тогда

$$\min_{x} \max_{y} f(x, y) \ge \max_{y} \min_{x} f(x, y). \tag{3.5}$$

При этом равенство в (3.5) достигается тогда и только тогда, когда существует седловая точка (x_0, y_0) функции f:

$$f(x_0, y) \le f(x_0, y_0) \le f(x, y_0), \quad x \in X, y \in Y.$$

ightharpoonup Выберем произвольную точку $\widetilde{y} \in Y$. Так как $\max_{y} f(x,y) \geq f(x,\widetilde{y}), \, x \in X$, то $\min_{x} \max_{y} f(x,y) \geq \min_{x} f(x,\widetilde{y})$, а значит, в силу произвольного выбора \widetilde{y} выполнено неравенство (3.5).

Предположим, что $\min_x \max_y f(x,y) = \max_y \min_x f(x,y)$. Выберем точки $x_0 \in X$ и $y_0 \in Y$ из условий $\max_y f(x_0,y) = \min_x \max_y f(x,y)$ и $\min_x f(x,y_0) = \max_y \min_x f(x,y)$. Тогда $f(x_0,y_0) \geq \min_x f(x,y_0) = \max_y \min_x f(x,y) = \min_x \max_y f(x,y)$. Поэтому, справедливо неравенство $f(x_0,y_0) \geq \max_x f(x_0,y)$. Аналогично, получаем

$$f(x_0, y_0) \le \max_y f(x_0, y) = \min_x \max_y f(x, y) = \max_y \min_x f(x, y) = \min_x f(x, y_0).$$

Таким образом, (x_0, y_0) — седловая точка.

Пусть теперь известно, что (x_0, y_0) — седловая точка. Тогда

$$\max_{y} \min_{x} f(x, y) \ge \min_{x} f(x, y_0) \ge f(x_0, y_0),$$

$$\min_{x} \max_{y} f(x, y) \le \max_{y} f(x_0, y) \le f(x_0, y_0).$$

Следовательно, $\max_y \min_x f(x,y) \ge \min_x \max_y f(x,y)$ и неравенство (3.5) обращается в равенство. \lhd

Отметим, что в доказательстве теоремы 3.2 условия компактности множеств X, Y и непрерывности функции f(x,y) мы неявно использовали лишь для существования векторов x_0, y_0 при построении седловой точки.

Пример 3.1 (Метод опорных векторов, SVM). Сформулируем задачу обучения с учителем. Пусть $f\colon X\to Y$ — отображение из пространства объектов X в множество ответов Y. Отображение f, вообще говоря, не известно, однако, дана обучающая выборка $S=\{(x_i,y_i)\}_{i=1}^N$ размера N, где $x_i\in X$ и $y_i=f(x_i)\in Y, 1\leq i\leq N$. Требуется построить отображение $\widehat{f}\colon X\to Y$, аппроксимирующее f на всём пространстве X.

Рассмотрим частный случай задачи обучения с учителем — задачу бинарной классификации, в которой $Y=\{-1,1\}$ и объекты описываются n-мерными вещественными векторами, т.е. $X=\mathbb{R}^n$. Далее будем считать, что в обучающей выборе содержатся объекты двух классов, а искомое отображение \widetilde{f} будем строить в форме линейного порогового классификатора $\widetilde{f}(x)=\mathrm{sign}(\omega^\mathsf{T} x-\omega_0)$, где $\omega\in\mathbb{R}^n\setminus\{\mathbf{0}\}$ и $\omega_0\in\mathbb{R}$ — параметры, которые необходимо определить.

Предположим, что выборка S строго линейно разделима, т.е. существуют такие значения параметров ω и ω_0 , при которых справедливы неравенства $y_i(\omega^{\mathsf{T}}x_i-\omega_0)>0$, $1\leq i\leq N$. В этом случае разделяющая гиперплоскость, вообще говоря, не единственна. Идея метода опорных векторов (support vector machine) состоит в выборе такой разделяющей гиперплоскости, которая максимально далеко отстоит от ближайших к ней точек обоих классов.

Заметим, что параметры ω и ω_0 линейного порогового классификатора \widetilde{f} определяются с точностью до умножения на одну и ту же ненулевую константу. Поэтому, без ограничения общности будем считать, что $\min_{1 \le i \le N} y_i(\omega^T x_i - \omega_0) = 1$. Ориентированное расстояние от точки x_i до гиперплоскости, заданной уравнением $\omega^T x = \omega_0$, равно $(\omega^T x_i - \omega_0)/||\omega||$. Поэтому для определения параметров ω и ω_0 необходимо решить задачу

$$\begin{cases} \|\omega\| \to \min; \\ \min_{1 \le i \le N} y_i(\omega^\mathsf{T} x_i - \omega_0) = 1; \end{cases}$$

которая эквивалентна следующей

$$\begin{cases} \frac{1}{2} \|\omega\|^2 \to \min; \\ y_i(\omega^\mathsf{T} x_i - \omega_0) \ge 1, \quad 1 \le i \le N. \end{cases}$$
 (3.6)

В силу предположения о строгой линейной разделимости множество строго допустимых точек задачи (3.6) не пусто, а значит, выполнено условие Слейтера. Несложно показать, что задача (3.6) имеет решение. Действуя согласно теореме Куна – Таккера и лемме 3.2, найдём седловую точку нормальной функции Лагранжа:

$$\mathcal{L}(\omega, \omega_0; \lambda) = \frac{1}{2} \|\omega\|^2 - \sum_{i=1}^N \lambda_i (y_i(\omega^\mathsf{T} x_i - \omega_0) - 1) \to \min_{\omega, \omega_0} \max_{\lambda}.$$
 (3.7)

Фиксируя $\lambda \in \mathbb{R}^N_+$, решим задачу $\mathcal{L}(\omega,\omega_0;\lambda) o \min_{\omega,\omega_0}$. Из условия стационарности имеем

$$\frac{\partial \mathcal{L}}{\partial \omega} = \omega - \sum_{i=1}^{N} \lambda_i y_i x_i = 0, \quad \text{r.e.} \quad \omega = \sum_{i=1}^{N} \lambda_i y_i x_i; \quad \frac{\partial \mathcal{L}}{\partial \omega_0} = \sum_{i=1}^{N} \lambda_i y_i = 0.$$
 (3.8)

Из (3.8), в частности, следует, что вектор ω является линейной комбинацией тех векторов обучающей выборки, для которых $\lambda_i \neq 0$. Согласно условиям дополняющей нежёсткости для этих векторов справедливы равенства $\omega^{\mathsf{T}} x_i - \omega_0 = y_i$. Такие векторы называются опорными. Используя равенства (3.8), преобразуем задачу (3.7) к задаче квадратичного программирования, содержащую только двойственные переменные:

$$\begin{cases}
-\mathcal{L}(\lambda) \stackrel{\text{def}}{=} -\min_{\omega,\omega_0} \mathcal{L}(\omega,\omega_0;\lambda) = -\sum_{i=1}^N \lambda_i + \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \lambda_i \lambda_j y_i y_j x_i^\mathsf{T} x_j \to \min_{\lambda}; \\
\sum_{i=1}^N \lambda_i y_i = 0; \\
\lambda \ge 0.
\end{cases} (3.9)$$

Пусть λ — решение задачи (3.9). Тогда вектор ω вычисляется согласно (3.8). Для определения порога ω_0 достаточно взять произвольный опорный вектор x_i и положить $\omega_0 = \omega^\mathsf{T} x_i - y_i$. Однако, из-за возможных погрешностей вычислений рекомендуется брать такой опорный вектор x_i при определении ω_0 , для которого двойственная переменная λ_i максимальна.

Рассмотрим общий случай, не делая предположений о линейной разделимости выборки. При любом выборе параметров ω и ω_0 линейный классификатор \widetilde{f} может ошибаться на объектах выборки. Введём набор дополнительных переменных $\xi_i \geq 0$, характеризующих величину ошибки на объектах x_i , $1 \leq i \leq N$. Уточним задачу (3.6):

$$\begin{cases} \frac{1}{2} \|\omega\|^2 + C \sum_{i=1}^{N} \xi_i \to \min_{\omega, \omega_0, \xi}; \\ y_i(\omega^\mathsf{T} x_i - \omega_0) \ge 1 - \xi_i, \quad 1 \le i \le N; \\ \xi \ge 0; \end{cases}$$
 (3.10)

где C>0— некоторый заданный гиперпараметр, определяющий компромисс между максимизацией ширины разделяющей полосы и минимизацией суммарной ошибки. Очевидно, что задача (3.10) имеет решение и множество строго допустимых точек не пусто, а значит, выполнено условие Слейтера. Рассмотрим функцию Лагранжа для задачи (3.10):

$$\mathcal{L}(\omega, \omega_0, \xi; \lambda, \eta) = \frac{1}{2} \|\omega\|^2 - \sum_{i=1}^{N} \lambda_i (y_i (\omega^{\mathsf{T}} x_i - \omega_0) - 1) - \sum_{i=1}^{N} \xi_i (\lambda_i + \eta_i - C),$$

где $\eta=(\eta_1,\eta_2,\ldots,\eta_N)^\mathsf{T}$ — вектор переменных, двойственных к вектору переменных $\xi=(\xi_1,\xi_2,\ldots,\xi_N)^\mathsf{T}$. Согласно теореме Куна – Таккера и лемме 3.2 задача (3.10) сводится к поиску седловой точки функции Лагрнажа: $\mathcal{L}(\omega,\omega_0,\xi;\lambda,\eta) \to \min_{\omega,\omega_0,\xi} \max_{\lambda,\eta}$. Зафиксируем произвольные векторы λ и η . Из условия стационарности по аргументам ω и ω_0 получаем

$$\frac{\partial \mathcal{L}}{\partial \omega} = \omega - \sum_{i=1}^{N} \lambda_i y_i x_i = 0, \quad \text{r.e.} \quad \omega = \sum_{i=1}^{N} \lambda_i y_i x_i; \quad \frac{\partial \mathcal{L}}{\partial \omega_0} = \sum_{i=1}^{N} \lambda_i y_i = 0; \quad (3.11)$$

Если для некоторого индекса $1 \leq i \leq N$ верно неравенство $\lambda_i + \eta_i > C$, то, очевидно, $\min_{\omega,\omega_0,\xi} \mathcal{L}(\omega,\omega_0,\xi;\lambda,\eta) = -\infty$, а значит, такие множители Лагранжа λ и η не могут

быть компонентами седловой точки. Поэтому будем предполагать, что $\lambda_i + \eta_i \leq C$. При этом, выполнено равенство $\xi_i(\lambda_i + \eta_i - C) = 0$, а именно, если $\lambda_i + \eta_i < C$, то мы должны положить $\xi_i = 0$. Используя (3.11), сведём задачу поиска седловой точки к задаче квадратичного программирования:

$$\begin{cases}
-\mathcal{L}(\lambda) \stackrel{\text{def}}{=} - \min_{\omega, \omega_0, \xi} \mathcal{L}(\omega, \omega_0, \xi; \lambda, \eta) = -\sum_{i=1}^{N} \lambda_i + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y_i y_j x_i^{\mathsf{T}} x_j \to \min_{\lambda}; \\
\sum_{i=1}^{N} \lambda_i y_i = 0; \\
0 \le \lambda_i \le C, \quad 1 \le i \le N.
\end{cases} (3.12)$$

Пусть λ — решение задачи (3.12). Аналогично случаю линейной разделимой выборки, вектор ω вычисляется согласно (3.11). Порог ω_0 определим как $\omega_0 = \arg\min_{\omega_0} \sum_{i=1}^N \xi_i(\omega_0)$, где $\xi_i(\omega_0) = \max(0, 1-y_i(\omega^\mathsf{T} x_i-\omega_0))$. Несложно показать, что решение имеет вид $\omega_0 = \omega^\mathsf{T} x_i - y_i$ для некоторого i, а значит, ω_0 может быть найдено за не более чем $O(N\log N)$ арифметических операций. Однако, как правило, ω_0 удаётся определить гораздо быстрее следующим образом. Без нарушения общности будем считать, что $\eta_i = C - \lambda_i, 1 \le i \le N$. Если для некоторого индекса i выполнено двойное неравенство $0 < \lambda_i < C$, то $\eta_i > 0$. Из теоремы Куна – Таккера следует, что $\xi_i = 0$ и $y_i(w^\mathsf{T} x_i - \omega_0) = 1$, а значит, $\omega_0 = \omega^\mathsf{T} x_i - y_i$.

Упражнения

- 10. Постройте эффективный алгоритм решения задачи $\sum_{i=1}^n \max(0, a_i x + b_i) \to \min_x$, где a_i и b_i , $1 \le i \le n$, заданные действительные числа.
- 11. Докажите, что квадратичная функция $f(x) = x^{\mathsf{T}} A x + b^{\mathsf{T}} x$ либо достигает своей нижней грани на \mathbb{R}^n , либо не ограничена снизу.
- 12. Докажите, что для того, чтобы точка $x^* \in X$ была решением задачи выпуклого программирования (3.1), достаточно, чтобы для любого вектора v, удовлетворяющего системе неравенств $v^\mathsf{T} \nabla f_j(x^*) \leq 0, j \in I(x^*)$, было верно $v^\mathsf{T} \nabla f_0(x^*) \geq 0$.

Литература

1. Алексеев В.М., Тихомиров В.М., Фомин С.В. *Оптимальное управление* – М.: Наука, 1979. – 432 с.

§4 ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

Пусть $n, m \in \mathbb{N}$ и $I = \{1, 2, \dots, n\}, J = \{1, 2, \dots, m\}$. Задачей линейного программирования в общей форме называется следующая задача

$$\begin{cases} \sum_{i=1}^{n} c_{i}x_{i} \to \min; \\ \sum_{i=1}^{n} a_{ij}x_{i} \geq b_{j}, \quad j \in J_{1}; \\ \sum_{i=1}^{n} a_{ij}x_{i} = b_{j}, \quad j \in J_{2}; \\ x_{i} \geq 0, i \in I_{1}; \end{cases}$$
(4.1)

где $c=(c_1,c_2,\ldots,c_n)^{\sf T}\in\mathbb{R}^n,\ b=(b_1,b_2,\ldots,b_m)^{\sf T}\in\mathbb{R}^m,\ A=(a_{ij})_{i,j=1}^{n,m}\in\mathbb{R}^{n\times m},\ a$ $I=I_1\sqcup I_2$ и $J=J_1\sqcup J_2$ — некоторые разбиения множеств I и J, соответственно. Очевидно, что задача (4.1)— частный случай задачи выпуклого программирования. Если $J_1=J$ (а значит, $J_2=\varnothing$) и $I_1=I$, то задача (4.1) называется нормальной, если же $J_2=J$ и $I_1=I$, то задача (4.1)— канонической.

Пример 4.1 (Расстояние землекопа). Пусть дано два конечных множества $A = \{a_i\}_{i=1}^m$ и $B = \{b_j\}_{j=1}^k \subset \mathbb{R}^n$ точек. Требуется каким-либо разумным образом измерить расстояние (меру схожести) между этими множествами. Рассмотрим так называемое расстояние землекопа (Earth mover's distance). В каждую точку $a_i \in A$ поместим кучу песка объёма 1/|A|, а в каждой точке $b_j \in B$ выкопаем яму объёма 1/|B| (очевидно, что общий объём песка в точках множества A равен общему объёму выкопанных ям в точках множества B). Будем считать, что стоимость перемещения песка объёма v из точки a_i в точку b_j равна $vd(a_i,b_j)$, где $d(a_i,b_j)$ — расстояние между точками a_i и b_j . Расстояние землекопа между множествами a_i и a_i равно минимальной стоимости, за которую можно засыпать ямы в точках множества a_i песком из точек множества a_i . Расстояние землекопа может быть найдено решением следующей задачи линейного программирования:

$$\begin{cases} \sum_{i=1}^{m} \sum_{j=1}^{k} v_{ij} d(a_i, b_j) \to \min; \\ \sum_{j=1}^{k} v_{ij} = \frac{1}{m}, & 1 \le i \le m; \\ \sum_{i=1}^{m} v_{ij} = \frac{1}{k}, & 1 \le j \le k; \\ v_{ij} \ge 0, & 1 \le i \le m, \ 1 \le j \le k. \end{cases}$$

Пример 4.2 (Линейная регрессия). Пусть дана обучающая выборка $S = \{(x_i, y_i\}_{i=1}^N.$ Задача линейной регрессии заключается в том, чтобы найти вектор $a \in \mathbb{R}^n$ и число b, такие что $y \approx a^\mathsf{T} x + b$. Как правило, поиск параметров a и b сводится к решению задачи

$$\sum_{i=1}^{N} (y_i - a^{\mathsf{T}} x_i - b_i)^2 \to \min_{a,b}.$$

Однако, при таком подходе даже единственный выброс может существенно исказить искомые параметры. Для уменьшения влияния выбросов переходят к следующей задаче

$$\sum_{i=1}^{N} |y_i - a^{\mathsf{T}} x_i - b_i| \to \min_{a,b},$$

которая, очевидно, равносильна задаче линейного программирования

$$\begin{cases} \sum_{i=1}^{N} \xi_i \to \min; \\ \xi_i \ge y_i - a^{\mathsf{T}} x_i - b_i \ge -\xi_i, \quad 1 \le i \le N; \\ \xi \ge \mathbf{0}. \end{cases}$$

Каждой задаче (4.1) соответствуют так называемая двойственная задача. Мотивировкой введения двойственной задачи являются следующие рассуждения. Пусть $x \in \mathbb{R}^n$ — произвольный допустимый вектор задачи (4.1). Рассмотрим произвольный вектор $y = (y_1, y_2, \dots, y_m)^\mathsf{T} \in \mathbb{R}^m$, такой что $y_j \ge 0$, если $j \in J_1$. Умножим каждое ограничение задачи (4.1) на соответствующую компоненту вектора и и сложим их. В итоге получаем, что

$$\sum_{j=1}^{m} b_j y_j \le \sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij} x_i y_j = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij} y_j \right) x_i.$$

Потребуем, чтобы $\sum\limits_{j=1}^m a_{ij}y_j \leq c_i$ при $i\in I_1$ и $\sum\limits_{j=1}^m a_{ij}y_j = c_i$ при $i\in I_2$. Тогда справедливо неравенство $\sum\limits_{i=1}^n c_ix_i \geq \sum\limits_{j=1}^m b_jy_j$. Другими словами, чем больше величина

 $\sum_{j=1}^{m} b_j y_j$, тем точнее оценка снизу оптимального значения целевой функции $c^{\mathsf{T}} x$.

Таким образом, рассмотрим следующую задачу линейного программирования

$$\begin{cases} \sum_{j=1}^{m} b_{j}y_{j} \to \max; \\ \sum_{j=1}^{m} a_{ij}y_{j} \leq c_{i}, & i \in I_{1}; \\ \sum_{j=1}^{m} a_{ij}y_{j} = c_{i}, & i \in I_{2}; \\ y_{j} \geq 0, & j \in J_{1}. \end{cases}$$

$$(4.2)$$

Задача (4.2) называется двойственной, а задача (4.1) — прямой (или исходной). Сведём воедино правила составления двойственной задачи:

1. Каждому j-му ограничению исходной задачи соответствует переменная y_i двойственной задачи и, наоборот, каждому i-му ограничению двойственной задачи соответствует переменная x_i исходной задачи.

- 2. Матрица ограничений A заменяется на транспонированную $A^\mathsf{T}.$
- 3. Свободные члены ограничений одной из задач являются коэффициентами при соответствующих переменных в целевой функции другой задачи. При этом поиск минимума заменяется на поиск максимума и наоборот.
- 4. В каждой из задач ограничения-неравенства следует записывать со знаком ">" при поиске минимума и со знаком "<" при поиске максимума.
- 5. Каждому j-му ограничению-неравенству прямой задачи в двойственной задаче соответствует условие неотрицательности $(y_j \ge 0)$, а равенству переменная y_j без ограничение на знак. Наоборот, неотрицательной переменной $x_i \ge 0$ соответствует в двойственной задаче i-е ограничение-неравенство, а произвольной переменной-равенство.

Нетрудно видеть, что двойственной задачей для задачи (4.2) является задача (4.1). Между решениями задач (4.1) и (4.2) имеется ряд нетривиальных связей, образующих теорию двойственности. Для доказательства некоторых утверждений этой теории нам понадобится лемма Фаркаша. Но сперва установим, что всякий конечно порождённый выпуклый конус в пространстве \mathbb{R}^n является замкнутым множеством.

Опр. 4.1. Подмножество C векторного пространства V называется выпуклым конусом, если $\alpha x + \beta y \in C$ для любых неотрицательных чисел α , β и любых векторов x, $y \in C$. Другими словами, выпуклый конус — это подмножество векторного пространства, замкнутое относительно сложения и умножения на неотрицательные числа. Конус C называется конечно порождённым, если найдутся такие векторы v_1, v_2, \ldots, v_m , что

$$C = \{\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_m v_m : \alpha_i > 0, 1 < i < m\}.$$

Лемма 4.1. Пусть F и $H \subset \mathbb{R}^n$ — замкнутые подмножества, такие что $f \perp h$ для любых $f \in F$ и $h \in H$. Тогда множество $F + H \stackrel{\mathrm{def}}{=} \{f + h \colon f \in F, h \in H\}$ замкнуто.

ightarrow Пусть $(f_k)_{k\in\mathbb{N}}\subset F$ и $(h_k)_{k\in\mathbb{N}}\subset H$ — две последовательности, такие что $\lim_{k\to+\infty}(f_k+h_k)=x.$ Так как

$$\|f_m+h_m-(f_k+h_k)\|^2=\|(f_m-f_k)+(h_m-h_k)\|^2=\|f_m-f_k\|^2+\|h_m-h_k\|^2\to 0,$$
 то $\|f_m-f_k\|^2\to 0$ и $\|h_m-h_k\|^2\to 0$. Следовательно,

$$\lim_{k\to +\infty} f_k = f \in F \quad \text{if} \quad \lim_{k\to +\infty} h_k = h \in H,$$

а значит, $x=f+h\in F+H$. \lhd

Лемма 4.2. Пусть $a_1, a_2, \ldots, a_m \in \mathbb{R}^n$ — столбцы матрицы $A \in \mathbb{R}^{n \times m}$. Тогда конус $C \stackrel{\text{def}}{=} \{Ax : x \in \mathbb{R}^m_{\perp}\}$ замкнут.

ightharpoonup Докажем замкнутость конуса $C_s \stackrel{\mathrm{def}}{=} \{\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_s a_s \colon \lambda_i \geq 0\}$ индукцией по s. Очевидно, что $C_1 = \{\lambda_1 a_1 \colon \lambda_1 \geq 0\}$ — замкнутое множество. Предположим, что мы доказали, что конус C_s замкнут для любых векторов $a_1, a_2, \ldots, a_s \in \mathbb{R}^n$. Покажем, что тогда замкнут конус C_{s+1} . Рассмотрим произвольную последовательность $(c_k)_{k \in \mathbb{N}} \subset C_{s+1}$,

$$c_k = \lambda_1^k a_1 + \lambda_2^k a_2 + \ldots + \lambda_{s+1}^k a_{s+1},$$

такую что $\lim_{k\to +\infty} c_k = c$, и докажем, что $c\in C_{s+1}$. Если все последовательности чисел $(\lambda_i^k)_{k\in\mathbb{N}}$ ограничены, то без нарушения общности будем считать, что они сходятся: $\lim_{k\to +\infty} \lambda_i^k = \lambda_i$. Следовательно, имеет место равенство

$$c = \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_{s+1} a_{s+1} \in C_{s+1}.$$

Рассмотрим случай, когда хотя бы одна из последовательностей чисел $(\lambda_i^k)_{k\in\mathbb{N}}$ неограничена, например, с номером s+1. Без нарушения общности будем считать, что $\lambda_{s+1}^k\uparrow+\infty$ и $\lambda_{s+1}^k\geq\lambda_i^k,\,1\leq i\leq s$. Но тогда последовательности $(\lambda_i^k/\lambda_{s+1}^k)_{k\in\mathbb{N}}$ ограничены, а значит, без нарушения общности будем считать, что они сходятся: $\lim_{k\to+\infty}\lambda_i^k/\lambda_{s+1}^k=\lambda_i,\,1\leq i\leq s$. Следовательно, $\lambda_1a_1+\lambda_2a_2+\ldots+a_{s+1}=\mathbf{0}$, т.е.

$$-a_{s+1} = \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_s a_s \in C_s \subset C_{s+1}.$$

Пусть $P: \mathbb{R}^n \to (a_{s+1})^{\perp}$ — проекция на ортогональное дополнение к одномерному подпространству, натянутому на вектор a_{s+1} . Тогда

$$PC_{s+1} = \{\lambda_1 Pa_1 + \lambda_2 Pa_2 + \ldots + \lambda_s Pa_s \colon \lambda_i \ge 0\}$$

в силу равенства $P(\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_{s+1} a_{s+1}) = \lambda_1 P a_1 + \lambda_2 P a_2 + \ldots + \lambda_s P a_s$. Более того, $PC_{s+1} \subset C_{s+1}$, так как $Pa_i = a_i - \frac{(a_i, a_{s+1})}{\|a_{s+1}\|^2} a_{s+1}$. Согласно предположению индукции PC_{s+1} — замкнутое множество. Наконец, так как $C_{s+1} = PC_{s+1} + \mathbb{R} a_{s+1}$, то согласно лемме 4.1 множество C_{s+1} замкнуто. \lhd

Лемма 4.3 (Фаркаш). Пусть $A \in \mathbb{R}^{n \times m}$ и $b \in \mathbb{R}^n$. Тогда либо Ax = b, для некоторого $x \in \mathbb{R}^m_+$, либо найдётся такой вектор $y \in \mathbb{R}^n$, что $y^\mathsf{T} A \leq \mathbf{0}$ и $y^\mathsf{T} b > 0$.

ightharpoonup Пусть выполнена первая из альтернатив, т.е. существует вектор $x \in \mathbb{R}^m_+,$ такой что Ax = b. Предположим, что $y^\mathsf{T} A \leq 0$ для некоторого вектора $y \in \mathbb{R}^n,$ тогда $y^\mathsf{T} b = y^\mathsf{T} A x \leq 0.$

Предположим теперь, что такого $x \in \mathbb{R}^m_+$ не существует. Рассмотрим выпуклый конус $C = \{Ax \colon x \in \mathbb{R}^m_+\}$, который согласно лемме 4.2 является замкнутым множеством. По предположению $b \notin C$, а значит, точка b строго отделима от C, т.е. существуют ненулевой вектор $y \in \mathbb{R}^n$ и число d, такие что $y^\mathsf{T}b > d > y^\mathsf{T}c$, $c \in C$. Так как $\mathbf{0} \in C$, то $y^\mathsf{T}b > d > 0$. С другой стороны $d \geq y^\mathsf{T}Ax = (A^\mathsf{T}y)^\mathsf{T}x$. Так как компоненты вектора x могут быть сколь угодно большими, то $y^\mathsf{T}A \leq \mathbf{0}$. Таким образом, выполнена вторая альтернатива. \lhd

Следствие 4.1. Если векторы $b, a_1, a_2, \ldots, a_m \in \mathbb{R}^n$, такие что для каждого вектора $x \in \mathbb{R}^n$ из неравенств $x^{\mathsf{T}} a_i \geq 0, 1 \leq i \leq m$, следует $x^{\mathsf{T}} b \geq 0$, то найдутся такие числа $\lambda_i \geq 0$, что $b = \sum_{i=1}^m \lambda_i a_i$.

Следствие 4.2. Пусть $\mathbb{R}^n = V \oplus V^{\perp}$. Если векторы $b, a_1, a_2, \ldots, a_s \in \mathbb{R}^n,$ такие что для каждого вектора $x \in V^{\perp}$ из неравенств $x^{\mathsf{T}} a_i \geq 0, \ 1 \leq i \leq m,$ следует неравенство $x^{\mathsf{T}} b \geq 0,$ то найдутся такие числа $\lambda_i \geq 0$ и вектор $v \in V,$ что $b = v + \sum_{i=1}^m \lambda_i a_i$.

ightharpoonup Пусть $b', a'_1, a'_2, \ldots, a'_m \in V^{\perp}$ — проекция векторов b, a_1, a_2, \ldots, a_m на подпространство V^{\perp} . Тогда для любого вектора $x \in \mathbb{R}^n$ из неравенств $x^{\mathsf{T}}a'_i \geq 0$ следует $x^{\mathsf{T}}b' \geq 0$, а значит, найдутся такие числа $\lambda_i \geq 0$, что $b' = \sum_{i=1}^m \lambda_i a'_i$. Возвращаясь к исходным векторам, получаем, что $b = v + \sum_{i=1}^m \lambda_i a_i$, где $v \in V$. \lhd

Пример 4.3 (Арбитраж). Предположим, что имеется две биржи, на которых продаются и покупаются товары n различных видов. Торговец хочет заработать, покупая товары на одной бирже и продавая их на второй. В зависимости от конъюнктуры возможны m ситуаций. Через c_{ij} обозначим разницу цен за единицу товара i при наступлении ситуации j (от цены на второй бирже отнимается цена на первой). Произвольный вектор $y = (y_1, y_2, \dots, y_n)^\mathsf{T} \in \mathbb{R}^n$ назовём стратегией торговца, где через y_i обозначено количество товара i, которое покупает и продаёт торговец. Доход торговца для стратегии y в ситуации j, очевидно, равен $\sum_{i=1}^n c_{ij}y_i$.

Теорема 4.1 (Де Финетти). Верно ровно одно из следующих утверждений:

- 1. существует такое распределение $p = (p_1, p_2, \dots, p_m), p_j \ge 0$ и $\sum_{j=1}^m p_j = 1$, на множестве ситуаций, что математическое ожидание дохода торговца для любого товара равно нулю, т.е. $\sum_{j=1}^m c_{ij}p_j = 0, 1 \le i \le n;$
- 2. существует такая стратегия y, что доход торговца положительный вне зависимости от ситуации, т.е. $\sum_{i=1}^{n} c_{ij}y_i > 0, \ 1 \leq j \leq m.$
- ho Рассмотрим вектор $b=(0,0,\dots,0,-1)^{\sf T}$ $\in \mathbb{R}^{n+1}$ и матрицу размера $(n+1) \times m$

$$A = \left(\begin{array}{ccc} c_{11} & \dots & c_{1m} \\ \vdots & \ddots & \vdots \\ c_{n1} & \dots & c_{nm} \\ -1 & \dots & -1 \end{array}\right)$$

Если какой-либо вектор $p \in \mathbb{R}_+^m$ удовлетворяет системе Ap = b, то справедливы равенства $\sum_{j=1}^m c_{ij} p_j = 0, \ 1 \le i \le n, \ \text{и} \ \sum_{j=1}^m -p_j = -1, \ \text{т.е.} \ p$ — искомое распределение. Согласно лемме Фаркаша либо такой вектор p существует, либо для некоторого $\widetilde{y} \in \mathbb{R}^{n+1}$ верно $\widetilde{y}^\mathsf{T} A \ge \mathbf{0}$,

 $\widetilde{\boldsymbol{y}}^\mathsf{T} \boldsymbol{b} < 0.$ Согласно определению матрицы A и вектора \boldsymbol{b} имеем

$$\sum_{i=1}^{n} c_{ij} \widetilde{y}_i \ge \widetilde{y}_{n+1}, \quad 1 \le j \le m, \quad \mathbf{u} \quad -\widetilde{y}_{n+1} < 0.$$

Другими словами, стратегия $y = (\widetilde{y}_1, \widetilde{y}_2, \dots, \widetilde{y}_n)^\mathsf{T}$ искомая. \triangleleft

Упражнения

13. Решите следующую задачу линейного программирования

$$\begin{cases} c^{\mathsf{T}}x \to \max; \\ x_1 + x_2 + \dots + x_n = 1; \\ 0 \le x_i \le 1, \quad 1 \le i \le n. \end{cases}$$

- 14. (Гордон) Докажите, что для произвольной матрицы $A \in \mathbb{R}^{n \times m}$ выполнена ровно одна из альтернатив:
 - (a) существует такой вектор $x \in \mathbb{R}^m$, что $Ax < \mathbf{0}$;
 - (b) существует такой ненулевой вектор $y \in \mathbb{R}^n$, что $A^\mathsf{T} y = \mathbf{0}$ и $y \geq \mathbf{0}$.
- 15. Пусть $P=(p_{ij})_{i,j=1}^n$ стохастическая (слева) матрица, т.е. матрица с неотрицательными элементами $p_{ij} \geq 0$ и для всех j от 1 до n выполнено равенство $\sum\limits_{i=1}^n p_{ij}=1$ (другими словами, в каждом столбце сумма стоящих в нём элементов равна 1). Используя лемму Фаркаша, докажите, что существует такой вектор $y=(y_1,y_2,\ldots,y_n)^{\sf T}\in\mathbb{R}^n_+$, что Py=y и $\sum\limits_{i=1}^n y_i=1$.
- 16. Докажите, что для того чтобы точка $x^* \in X$ была точкой минимума выпуклой дифференцируемой функции f на множестве $X = \{x : a_j^\mathsf{T} x \leq b_j\}$ необходимо и достаточно существование таких чисел $y_i \geq 0$, что

$$-\nabla f(x^*) = \sum_{j \in I(x^*)} y_j a_j.$$

§5 ТЕОРИЯ ДВОЙСТВЕННОСТИ

Перейдём к формулировке и доказательству основных утверждений теории двойственности линейного программирования.

Теорема 5.1. Пусть $x \in \mathbb{R}^n$ и $y \in \mathbb{R}^m$ — допустимые векторы задач (4.1) и (4.2), соответственно. Тогда $b^\mathsf{T} y \leq c^\mathsf{T} x$.

ightharpoonup Рассмотрим сумму $S \stackrel{\mathrm{def}}{=} \sum_{i=1}^n \sum_{j=1}^m a_{ij} x_i y_j$. С одной стороны

$$S = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij} y_j \right) x_i \le \sum_{i=1}^{n} c_i x_i = c^{\mathsf{T}} x,$$

а с другой —

$$S = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_{ij} x_i \right) y_j \ge \sum_{j=1}^{m} b_j y_j = b^{\mathsf{T}} y. \quad \triangleleft$$

Следствие 5.1. Если для допустимых векторов x и y задач (4.1) и (4.2), соответственно, верно равенство $c^{\mathsf{T}}x = b^{\mathsf{T}}y$, то x и y — решения.

Лемма 5.1. Пусть x и y — допустимые векторы задач (4.1) и (4.2), соответственно, удовлетворяющие условиям дополняющей нежёсткости, m.e.

$$x_i\left(c_i-\sum_{j=1}^m a_{ij}y_j\right)=0 \quad npu \quad i\in I_1 \quad u \quad y_j\left(b_j-\sum_{i=1}^n a_{ij}x_i\right)=0 \quad npu \quad j\in J_1.$$

Тогда $c^{\mathsf{T}} x = b^{\mathsf{T}} y$, а значит, x и y — решения соответствующих задач. \triangleright Действительно,

$$c^{\mathsf{T}}x = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}x_{i}y_{j} + \sum_{i=1}^{n} \left(c_{i} - \sum_{j=1}^{m} a_{ij}y_{j}\right)x_{i} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}x_{i}y_{j}.$$

Аналогично доказывается равенство $b^\mathsf{T} y = \sum_{j=1}^m \sum_{i=1}^n a_{ij} x_i y_j$. Поэтому, $c^\mathsf{T} x = b^\mathsf{T} y$. \lhd

Теорема 5.2. Если существует решение x^* задачи (4.1), то у задачи (4.2) также есть решение y^* , при этом $c^\mathsf{T} x^* = b^\mathsf{T} y^*$.

ightharpoonup Пусть $V \stackrel{\mathrm{def}}{=} \{v \in \mathbb{R}^n \colon \sum_{i=1}^n a_{ij} v_i = 0, j \in J_2\}$. Через $\widetilde{I}_1 \subset I_1$ обозначим такое подмножество индексов, что $x_i^* = 0, i \in \widetilde{I}_1$, а через $\widetilde{J}_1 \subset J_1$ — такое подмножество индексов, что $\sum_{i=1}^n a_{ij} x_i^* = b_j, j \in \widetilde{J}_1$. Пусть a_1, a_2, \ldots, a_m — столбцы матрицы A, а e_1, e_2, \ldots, e_n — стандартный базис \mathbb{R}^n . Тогда для произвольного $v \in V$, такого что

 $e_i^{\mathsf{T}}v \geq 0, \ i \in \widetilde{I}_1$ и $a_j^{\mathsf{T}}v \geq 0, \ j \in \widetilde{J}_1$, вектор $x^* + tv$ допустимый для задачи (4.1) при всех достаточно малых t>0. Так как x^* — решение задачи, то $c^{\mathsf{T}}v \geq 0$. Поэтому, согласно следствию 4.2 справедливо равенство

$$c = \sum_{j \in \widetilde{J}_1 \sqcup J_2} y_j^* a_j + \sum_{i \in \widetilde{I}_1} z_i e_i,$$

где $y_j^* \geq 0$ при $j \in \widetilde{J}_1$ и $z_i \geq 0$ при $i \in \widetilde{I}_1$. Доопределим $y_j^* = 0$ при $j \in J_1 \setminus \widetilde{J}_1$, $z_i = 0$, $i \in I \setminus \widetilde{I}_1$ и покажем, что вектор $y^* \stackrel{\mathrm{def}}{=} (y_1^*, y_2^*, \dots, y_m^*)^\mathsf{T}$ — решение задачи (4.2). Так как $c_i = \sum_{j=1}^m a_{ij} y_j^* + z_i, \ i \in I$, и $y_j^* \geq 0$ при $j \in J_1$, то y^* — допустимый вектор задачи (4.2). Нетрудно видеть, что для векторов x^* и y^* выполнены условия дополняющей нежёсткости: $x_i^* \left(c_i - \sum_{j=1}^m a_{ij} y_j^* \right) = 0$ при $i \in I_1$ и $y_j^* \left(b_j - \sum_{i=1}^n a_{ij} x_i^* \right) = 0$ при $j \in J_1$, а значит, y^* — решение задачи (4.2) и $c^\mathsf{T} x^* = b^\mathsf{T} y^*$. \lhd

Лемма 5.2. Если векторы x и y — решения, соответственно, задач (4.1) и (4.2), то выполнены условиям дополняющей нежейсткости.

ightharpoonup Через y^* обозначим решение задачи (4.2), построенное по x в доказательстве теоремы 5.2. Тогда $c^{\mathsf{T}}x = b^{\mathsf{T}}y^* = b^{\mathsf{T}}y$. Следовательно, $c^{\mathsf{T}}x = \sum_{i=1}^n \sum_{j=1}^m a_{ij}x_iy_j$, а значит,

$$\sum_{i=1}^{n} \left(c_i - \sum_{j=1}^{m} a_{ij} y_j \right) x_i = \sum_{i \in I_1} \left(c_i - \sum_{j=1}^{m} a_{ij} y_j \right) x_i = 0.$$

Так как $c_i - \sum\limits_{j=1}^m a_{ij}y_j \geq 0$ и $x_i \geq 0$ при $i \in I_1$, то $x_i \left(c_i - \sum\limits_{j=1}^m a_{ij}y_j\right) = 0$ при $i \in I_1$.

Равенство $y_j (b_j - \sum\limits_{i=1}^n a_{ij} x_i) = 0$ при $j \in J_1$ доказывается аналогично. \lhd

Пример 5.1 (Матричные игры). Матричной игрой называют конечную антагонистическую игру. Антагонистическая игра — это игра двух лиц с нулевой суммой, т.е. выигрыш одного игрока равен проигрышу второго. Игра называется конечной, если конечно множество стратегий игроков. Пусть n, m — количества стратегий первого и второго игроков, соответственно. Вез нарушения общности будем считать, что $X = \{1, 2, \ldots, n\}$ — множество стратегий первого игрока, а $Y = \{1, 2, \ldots, m\}$ — второго. Через a_{ij} обозначим выигрыш первого игрока, если он воспользуется стратегией $i \in X$, а его оппонент — стратегией $j \in Y$. Соответственно, $-a_{ij}$ — выигрыш второго игрока в этой ситуации. Таким образом, матричная игра задаётся матрицей $A \in \mathbb{R}^{n \times m}$ выигрышей первого игрока. Далее будем отождествлять игру и её матрицу A. Решением матричной игры в чистых стратегиях называется пара чистых стратегий $(i_0, j_0) \in X \times Y$, которые образуют седловую точку матрицы $A : a_{ij0} \le a_{i0j0} \le a_{i0j}, i \in X$ и $j \in Y$ (стратегии i_0, j_0 называются оптимальными чистыми стратегиями). Из этого определения, в частности, следует, что ни одному из игроков в отдельности невыгодно отходить от своей оптимальной стратегии.

Седловая точка матрицы A существует тогда и только тогда, когда нижняя цена игры $\alpha(A) \stackrel{\text{def}}{=} \max_{i \in X} \min_{j \in Y} a_{ij}$ равна верхней чистой цене игры $\beta(A) \stackrel{\text{def}}{=} \min_{j \in Y} \max_{i \in X} a_{ij}$ (доказательство этого утверждения практически дословно повторяет доказательство теоремы 3.2). Таким образом, решение матричной игры в чистых стратегиях не всегда существует.

Расширим множество стратегий смешанными. Смешанной стратегией первого игрока называется вектор вероятностей $p=(p_1,p_2,\ldots,p_n)^\mathsf{T}$, где $p_i\geq 0$ и $\sum_{i=1}^n p_i=1$. Число p_i — вероятность того, что первый игрок будет использовать стратегию $i\in X$. Аналогично определяется смешанная стратегия $q=(q_1,q_2,\ldots,q_m)^\mathsf{T}$ второго игрока. Множество смешанных стратегий первого игрока образуют стандартный (n-1)-мерный симплекс $S^{n-1}\stackrel{\mathrm{def}}{=}\{p\in\mathbb{R}^n\colon p_i\geq 0\ \mathrm{iff}\ \sum_{i=1}^n p_i=1\}$, а множество смешанных стратегий второго игрока — стандартный (m-1)-мерный симплекс S^{m-1} .

Выигрыш первого игрока при фиксированных смешанных стратегиях p и q определяется как математическое ожидание его выигрыша:

$$F(p,q) \stackrel{\text{def}}{=} \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} p_i q_j = p^{\mathsf{T}} A q.$$

Соответственно, -F(p,q) — выигрыш второго игрока. Решением матричной игры в смешанных стратегиях называют пару смешанных стратегий $(p^0,q^0) \in S^{n-1} \times S^{m-1}$, которая является седловой точкой функции $F:F(p,q^0) \leq F(p^0,q^0) \leq F(p^0,q), \ p \in S^{n-1}$ и $q \in S^{m-1}$. Число $v(A) \stackrel{\mathrm{def}}{=} F(p^0,q^0)$ называется ценной матричной игры A. Оказывается, что решение матричной игры в смешанных стратегиях существует всегда. Пусть $e_i = (0,\dots,0,1,0,\dots,0)^\mathsf{T}$ — вектор, у которого 1 стоит на i-м месте, а все остальные компоненты равны нулю (размер вектора не фиксируем).

Теорема 5.3 (фон Нейман). Для произвольной матрицы $A \in \mathbb{R}^{n \times m}$ имеют место равенства

$$v(A) = \max_{p \in S^{n-1}} \min_{1 \le j \le m} p^{\mathsf{T}} A e_j = \min_{q \in S^{m-1}} \max_{1 \le i \le n} e_i^{\mathsf{T}} A q.$$

Для любых $p^0 \in \arg\max_{p \in S^{n-1}} \min_{1 \leq j \leq m} p^\mathsf{T} A e_j, \ q^0 \in \arg\min_{q \in S^{m-1}} \max_{1 \leq i \leq n} e_i^\mathsf{T} A q \ napa \ (p^0, q^0)$ является решением в смешанных стратегиях матричной игры A.

ightarrow Вычисление величин $\max_{p} \min_{j} p^{\mathsf{T}} A e_{j}$ и $\min_{q} \max_{i} e_{i}^{\mathsf{T}} A q$ равносильно решению задач

$$\begin{cases} u \to \max; \\ u - \sum_{i=1}^{n} a_{ij} p_{i} \le 0, & 1 \le j \le m; \\ \sum_{i=1}^{n} p_{i} = 1; \\ p_{i} \ge 0, & 1 \le i \le n. \end{cases}$$

$$(5.1)$$

$$\begin{cases} v \to \min; \\ v - \sum_{i=1}^{m} a_{ij} q_{j} \ge 0, & 1 \le i \le n; \\ \sum_{j=1}^{m} q_{j} = 1; \\ q_{j} \ge 0, & 1 \le j \le m. \end{cases}$$

$$(5.2)$$

линейного программирования (5.1) и (5.2), соответственно, которые двойствены друг другу, и, как не трудно видеть, имеют решения. Поэтому,

$$\max_{p} \min_{j} p^{\mathsf{T}} A e_{j} = \min_{q} \max_{i} e_{i}^{\mathsf{T}} A q.$$

Так как F(p,q) — билинейная функция, то очевидно, выполнены равенства

$$\max_{p} F(p,q) = \max_{i} e_{i}^{\mathsf{T}} A q \quad \mathsf{u} \quad \min_{q} F(p,q) = \min_{j} p^{\mathsf{T}} A e_{j},$$

а значит, $\max_p \min_q p^\mathsf{T} A q = \min_q \max_p p^\mathsf{T} A q$. Из доказательства теоремы 3.2, в частности, следует, что (p^0,q^0) — седловая точка функции F(p,q). \lhd

Отметим, что некоторая задача может быть сведена к решению матричной игры, хотя в исходной постановке игроки и множества их стратегий явно не заданы. Рассмотрим пример такой задачи.

Пусть компьютерная сеть из n узлов, представлена связным неориентированным графом G=(V,E), каждому ребру которого приписана его длина. В одной из вершин графа G располагается клиент, отправляющий запрос к серверу, который также следует расположить в одной из вершин графа G. Вудем считать, что задержка запроса от клиента к серверу равна расстоянию между вершинами, в которых находятся клиент и сервер (расстояние между вершинами u и v графа G определяется, как наименьшая из длин путей с концами u и v). Необходимо расположить сервер так, чтобы задержка была минимальной. Если вершина, в которой находится клиент, заранее известна, то, очевидно, следует расположить сервер в той же вершине. Поэтому далее будем считать, что расположение клиента неизвестно. Чтобы минимизировать задержку в худшем случае сервер следует расположить в центре графа G, т.е. в такой вершине, для которой максимальное расстояние до других вершин минимально.

Предположим теперь, что клиент располагается в вершинах согласно некоторому закону распределения и наша цель определить смешанную стратегию расположения сервера так, чтобы минимизировать математическое ожидание задержки запроса. Пусть $A=(a_{ij})_{i,j=1}^n$ — матрица попарных расстояний между вершинами графа G. Если известен вектор y вероятностей, согласно которым выбирается вершина для клиента, то оптимальный вектор x вероятностей для расположения сервера выберем как решение задачи $\min_{x \in S^{n-1}} y^{\mathsf{T}} A x$. В частности, сервер можно разместить в любой вершине v, такой что $v \in \arg\min_{1 \le i \le n} y^{\mathsf{T}} A e_i$. Наконец, если вектор y неизвестен, то определим x как оптимальную стратегию второго игрока в матричной игре с матрицей A.

Лемма 5.3. Если целевая функция $c^{\mathsf{T}}x$ задачи (5.3) ограничена снизу на

$$\begin{cases} c^{\mathsf{T}}x \to \min; \\ A^{\mathsf{T}}x \le b, \quad x \in \mathbb{R}^n; \end{cases}$$
 (5.3)

непустом множестве допустимых векторов $X = \{x \in \mathbb{R}^n : A^\mathsf{T} x \leq b\}$, то задача (5.3) имеет решение.

 \triangleright Пусть a_1, a_2, \ldots, a_m — столбцы матрицы $A \in \mathbb{R}^{n \times m}$. Через S обозначим семейство подмножеств множества $\{1, 2, \ldots, m\}$, такое что для любого $J \in S$ верно:

- 1. J = I(x) для некоторого допустимого вектора $x \in X$;
- 2. вектор c представим в виде линейной комбинации векторов $a_j,\, j\in J$.

То, что семейство S не пусто показано ниже. Выберем какое-либо подмножество $J \in S$ и соответствующий допустимый вектор $x \in X$. Тогда

$$c^{\mathsf{T}}x = \sum_{j \in J} \alpha_j a_j^{\mathsf{T}}x = \sum_{j \in J} \alpha_j b_j.$$

Фиксируя для каждого $J \in S$ единственный набор коэффициентов $(\alpha_j)_{j \in J}$ из линейного разложения, рассмотрим конечное множество $U = \{\sum_{j \in J} \alpha_j b_j \colon J \in S\}.$

Докажем, что $\min_{x\in X}c^{\mathsf{T}}x=\min U$. Пусть $x\in X$ — какой-либо допустимый вектор. Пусть $V_x=\mathrm{span}\,\{a_i\colon i\in I(X)\}$. Если $c\in V_x$, то $c=\sum_{i\in I(x)}\alpha_ia_i$, а значит, $I(x)\in S$

и $c^{\mathsf{T}}x \in U$. Если же $c \notin V_x$, то выберем такой вектор $v \in V_x^{\perp}$, что $c^{\mathsf{T}}v < 0$. Так как функция $c^{\mathsf{T}}x$ ограничена снизу на множестве X, то существуют t > 0 и индекс $i \notin I(x)$, такие что $I(x) \cup \{i\} \subset I(x+tv)$. При этом $c^{\mathsf{T}}x > c^{\mathsf{T}}(x+tv)$. Заменяя x на x+tv, повторим приведённые рассуждения. Через не более m шагов мы придём к такому допустимому вектору x, что $I(x) \in S$. \lhd

Аналогичным образом доказывается следующее утверждение

Лемма 5.4. Если целевая функция задачи (4.1) ограничена снизу на непустом множестве допустимых векторов, то задача (4.1) имеет решение.

Следствие 5.2. Если множества допустимых векторов задач (4.1) и (4.2) не пусты, то эти задачи имеют решения.

Упражнения

17. Матричная игра называется симметричной, если её матрица кососимметрическая. Докажите, что значение симметричной игры равно нулю. Кроме того, если p — оптимальная стратегия для первого игрока, то q=p — оптимальная стратегия для второго игрока.

§6 ЦЕЛОЧИСЛЕННОЕ ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

Задача линейного программирования, в которой некоторые или все переменные должны быть целыми, называется задачей целочисленного линейного программирования (ЦЛП). Эффективный алгоритм решения задач ЦЛП в общем случае до сих пор не известен. Один из подходов приближённого решения таких задач заключается в сведении (релаксации) их к задачам линейного программирования, в которых отсутствуют условия целочисленности. После решения релаксированной задачи полученное решение покомпонентно округляют (согласно выбранной процедуре) для удовлетворения условия целочисленности. Отметим, что найденный вектор, вообще говоря, может не быть допустимым.

Пример 6.1 (Задача о покрытии множества). Пусть $S = \{S_1, S_2, \ldots, S_n\}$ — семейство подмножеств конечного множества $V = \{v_1, v_2, \ldots, v_m\}$, при этом для каждого подмножества S_i определён его вес $\omega_i \geq 0$. Набор подмножеств $T \subset S$ называется покрывающим, если $V = \bigcup_{S_i \in T} S_i$. Необходимо построить покрывающий набор T минимального

веса $\omega(T) \stackrel{\text{def}}{=} \sum_{S_i \in T} \omega_i$. Без нарушения общности будем считать, что само семейство S является покрывающим, иначе рассматриваемая задача не имеет смысла.

Рассмотрим произвольный покрывающий набор T. Каждому подмножеству $S_i \in S$ поставим в соответствие переменную $x_i \in \{0,1\}$, такую что $x_i = 1$, если и только если S_i входит в набор T. Так как набор T покрывающих, то для любого элемента $v_j \in V$ найдётся подмножество $S_i \in T$, такое что $v_j \in S_i$, а значит, справедливо неравенство $\sum_{v_j \in S_i} x_i \geq 1$. Таким образом, для построения оптимального набора T необходимо решить задачу целочисленного линейного программирования (6.1).

$$\begin{cases} \sum_{i=1}^{n} \omega_{i} x_{i} \to \min; \\ \sum_{v_{j} \in S_{i}} x_{i} \geq 1, \quad 1 \leq j \leq m; \\ x_{i} \in \{0, 1\}, \quad 1 \leq i \leq n. \end{cases}$$

$$(6.1)$$

$$\begin{cases} \sum_{i=1}^{n} \omega_{i} y_{i} \to \min; \\ \sum_{v_{j} \in S_{i}} y_{i} \geq 1, \quad 1 \leq j \leq m; \\ 0 \leq y_{j} \leq 1, \quad 1 \leq i \leq n. \end{cases}$$

$$(6.2)$$

Для произвольного вектора $x\in\mathbb{R}^n$ обозначим $\omega(x)\stackrel{\mathrm{def}}{=}\sum_{i=1}^n\omega_ix_i$. Если x — бинарный вектор, то $\omega(x)$ равно весу соответствующего набора. Пусть x^* и y^* — решения задачи (6.1) и (6.2), соответственно. Справедливо неравенство $\omega(x^*)\geq \omega(y^*)$, так как x^* — допустимый вектор задачи (6.2). Предположим, что для каждого элемента $v_j\in V$ количество подмножеств S_i , его содержащих, не больше k. Используя решение y^* , определим бинарный вектор $z\in\{0,1\}^n$, такой что $z_i=1$, если и только если $y_i^*\geq\frac{1}{k}$. Тогда набор, соответствующий вектору z является покрывающим. Действительно, выберем произвольный элемент $v_j\in V$. Так как k $\max_{v_j\in S_i}y_i^*\geq \sum_{v_j\in S_i}y_i^*\geq 1$, то $\sum_{v_j\in S_i}z_i\geq 1$. Более того, так как $z_i\leq ky_i^*$, то справедлива цепочка неравенств

$$\omega(z) = \sum_{i=1}^{n} \omega_i z_i \le \sum_{i=1}^{n} k \omega_i y_i^* = k \omega(y^*) \le k \omega(x^*).$$

Оказывается, что в некоторых случаях можно гарантировать существование целочисленного решения у релаксированной задачи. Рассмотрим один из таких случаев, в котором используется понятие вполне унимодулярной матрицы.

Опр. 6.1. Квадратная матрица с целыми коэффициентами называется унимодулярной, если её определитель равен ± 1 . Прямоугольная матрица с целыми коэффициентами называется вполне унимодулярной, если все её миноры принимают значения из множества $\{-1,0,1\}$.

Пусть матрица A вполне унимодулярная. Очевидно, что матрица полученная из A перестановкой строк (столбцов) также является вполне унимодулярной. Если из матрицы A вычеркнуть строку (столбец), то матрица останется вполне унимодулярной. Более того, если к матрице A добавить строку (столбец), все элементы которой нулевые за исключением быть может одного, равного ± 1 , то полученная матрица будет вполне унимодулярной.

Рассмотрим произвольный граф G=(V,E), где $V=\{v_1,v_2,\ldots,v_n\}$ — множество вершин, а $E=\{e_1,e_2,\ldots,e_m\}$ — множество рёбер. Напомним, что матрицей инцидентности неориентированного графа G называется такая матрица $A=(a_{i,j})_{i,j=1}^{n,m}$, состоящая из 0 и 1, у которой элемент a_{ij} , стоящий на пересечении строки i и столбца j, равен 1 тогда и только тогда, когда вершина v_i инцидентна ребру e_j .

Лемма 6.1. Матрица инцидентности A произвольного двудольного графа G вполне унимодулярна.

ightharpoonup Рассмотрим произвольную квадратную подматрицу A' матрицы A порядка k и докажем индукцией по k, что $\det A' \in \{-1,0,1\}$. База индукции k=1 следует из определения матрицы инцидентности. Предположим, что утверждение доказано для всех подматриц размера $k \times k$. Пусть B — квадратная подматрица порядка k+1. Если некоторый столбец матрицы B состоит, полностью из 0, то $\det B = 0$. Если же некоторый столбец содержит ровно одну единицу, то, раскладывая определитель по этому столбцу, получим $\det B \in \{-1,0,1\}$ (по предположению индукции). Предположим теперь, что каждый столбец матрицы B содержит ровно две единицы. Без нарушения общности будем считать, что первые $r, 1 \le r \le k$, строк матрицы B соответствуют вершинам первой доли графа G, а остальные строки — вершинам второй доли. Сумма первых r строк матрицы B равна строке, полностью состоящей из единиц. Аналогично, сумма строк, соответствующих вершинам второй доли, также равна этой строке. Следовательно, $\det B = 0$. \lhd

Пусть G — ориентированный граф. Элементы матрицы инцидентности A определяются следующим образом: $a_{ij}=0$, если $v_i \notin e_j$, $a_{ij}=1$, если $e_j=(v_k,v_i)$ для некоторой вершины v_k , и $a_{ij}=-1$ иначе, т.е. $e_j=(v_i,v_k)$. Аналогично лемме 6.1 доказывается следующее утверждение.

Лемма 6.2. Матрица инцидентности произвольного ориентированного графа унимодулярна.

Для доказательства того, что произвольная разрешимая задача линейного

программирования с вполне унимодулярной матрицей ограничений и целочисленным вектором из правой части имеет целочисленное решение, нам понадобится следующая лемма.

Пемма 6.3. Для разрешимой задачи линейного программирования

$$\begin{cases} c^{\mathsf{T}}x \to \min; \\ A^{\mathsf{T}}x \ge b, \end{cases} \tag{6.3}$$

существует такой набор столбцов $\{a_i \colon i \in I\}$ матрицы ограничений A, что множество $\{x \colon a_i^\mathsf{T} x = b_i, i \in I\}$ не пусто и произвольный его элемент является решением задачи (6.3).

ightharpoonup Пусть x^* — решение задачи (6.3), $I=I(x^*)$ — множество индексов активных ограничений, т.е. множество индексов всех тех столбцов матрицы A, для которых $a_i^\mathsf{T} x^* = b_i$ при $i \in I$. Рассмотрим подпространство $V = \{v \colon a_i^\mathsf{T} v = 0, i \in I\}$. Так как $x^* + tv$, $v \in V$, — допустимый вектор для задачи (6.3) при достаточно малом $t \geq 0$, то $c \in V^\perp$ и $x^* + tv$ — решение задачи (6.3). Если все столбцы матрицы A принадлежат V^\perp , то набор $\{a_i \colon i \in I\}$, очевидно, искомый. Предположим обратное, тогда найдётся такой вектор $v \in V$ и индекс $j \notin I$, что $\widetilde{x} = x^* + v$ — решение задачи (6.3) и $a_j^\mathsf{T} \widetilde{x} = b_j$ при $i \in I \cup \{j\}$. Добавим индекс j в множество I. Продолжая описанный процесс, построим искомый набор столбцов. \lhd

Аналогичным образом доказывается следующая теорема.

Теорема 6.1. Пусть разрешима задача (4.1). Тогда существует такие подмножества индексов $\widetilde{J}_1 \subset J_1$ и $\widetilde{I}_1 \subset I_1$, что множество

$$\{x : \sum_{i=1}^{n} a_{ij} x_i = b_j, j \in \widetilde{J}_1 \sqcup J_2\} \cap \{x : x_i = 0, i \in \widetilde{I}_1\}$$
(6.4)

не пусто и состоит из решений задачи (4.1).

Если система линейных уравнений Ax=b совместна, матрица A является вполне унимодулярной, а вектор b целочисленный, то решая эту систему стандартным методом выделения наибольшего ненулевого минора, несложно отыскать у неё целочисленное решение. Таким образом, если в задаче (4.1) матрица ограничений A вполне унимодулярна и вектор b целочисленный, то множество (6.4) содержит целочисленное решение.

Пример 6.2 (Теорема Кёнига). Рассмотрим двудольный граф G=(V,E) и пусть даны два целочисленных вектора $b\in\mathbb{N}_0^{|V|},\ c\in\mathbb{N}_0^{|E|}.$ Через A обозначим матрицу инцидентности графа G.

Опр. 6.2. Произвольное отображение $x\colon E\to \mathbb{N}_0$ называется b-паросочетанием, если $\sum\limits_{e\colon v\in e} x(e)\le b_v$ для любой вершины $v\in V$.

Опр. 6.3. Произвольное отображение $y: V \to \mathbb{N}_0$ называется с-вершиным покрытием, если $y_u + y_v \ge c_e$ для любого ребра $e = (u, v) \in E$.

Задача максимального c-взвешенного b-паросочетания состоит в отыскании такого b-паросочетания x, для которого сумма $\sum_{e \in E} c_e x(e)$ максимальна. Так как согласно лемме 6.1 матрица A вполне унимодулярна, то решение этой задачи содержится во множестве решений задачи (6.5).

$$\begin{cases} c^{\mathsf{T}}x \to \max; \\ Ax \le b; \\ x \ge \mathbf{0}. \end{cases}$$
 (6.5)
$$\begin{cases} b^{\mathsf{T}}y \to \min; \\ A^{\mathsf{T}}y \ge c; \\ y \ge \mathbf{0}. \end{cases}$$
 (6.6)

Задача минимального b-взвешенного c-вершиного покрытия состоит в отыскании такого c-вершиного покрытия y, для которого сумма $\sum_{v \in V} b_v y(v)$ минимальна. Очевидно, что решение этой задачи является решением задачи (6.6). Так как задачи (6.5) и (6.6) двойствены, то справедлива следующая обобщённая теорема Кёнига.

Теорема 6.2. Для произвольных целочисленных векторов $b \in \mathbb{N}_0^{|V|}$, $c \in \mathbb{N}_0^{|E|}$ и двудольного графа G = (V, E) максимальное с-взвешенное b-паросочетание равно минимальному b-взвешенному с-вершиному покрытию.

Пример 6.3 (Максимальный поток). Пусть G=(V,E) — взвешенный ориентированный граф с неотрицательными весами $c_e \geq 0, e \in E$, которые будем называть пропускными способностями рёбер. Выберем две вершины s, называемую «источник», и t, называемую «сток». Для произвольной вершины $v \in V$ через $E_{out}^v \stackrel{\text{def}}{=} \{e \colon e = (v,u) \in E\}$ обозначим множество выходящих рёбер, а через $E_{in}^v \stackrel{\text{def}}{=} \{e \colon e = (u,v) \in E\}$ — множество входящих рёбер.

Опр. 6.4. Потоком в ориентированном графе G называется функция $x \colon E \to \mathbb{R}$, такая что $0 \le x(e) \le c_e$ для любого ребра $e \in E$, и для любого вершины $v \in V \setminus \{s,t\}$ верно равенство $\sum_{e \in E_{in}^v} x(e) = \sum_{e \in E_{out}^v} x(e)$. Величиной потока называется число

$$\sum_{e \in E^s_{out}} x(e) - \sum_{e \in E^s_{in}} x(e) = \sum_{e \in E^t_{in}} x(e) - \sum_{e \in E^t_{out}} x(e).$$

Задача максимального потока заключается в отыскании потока максимальной величины. Пусть A — матрица инцидентности графа G. Через \widetilde{A} обозначим матрицу, полученную из A вычёркиванием строк, соответствующих вершинам s и t. Пусть a — строка матрицы A, которая соответствует вершине t. Не сложно видеть, что задача максимального потока равносильна следующей задачи линейного программирования

$$\begin{cases}
ax \to \max; \\
\widetilde{A}x = \mathbf{0}; \\
\mathbf{0} \le x \le c.
\end{cases}$$
(6.7)

Из леммы 6.2 следует, что задача (6.7) имеет целочисленное решение, если вектор пропускных способностей c целочисленный.

Упражнения

18. Матрица A называется интервальной, если любая её строка имеет следующий вид

$$(0,0,\ldots 0,1,1,\ldots,1,0,0,\ldots,0).$$

Докажите, что произвольная интервальная матрица вполне унимодулярна.

§7 МЕТОД СПУСКА

Пусть $f: X \to \mathbb{R}$ — дифференцируемая выпуклая функция, а значит, для всех $x, y \in X$ выполнено неравенство $f(y) \ge f(x) + \nabla f(x)^\mathsf{T} (y-x)$. Для численного определения минимального значения функции f используют так называемый метод

Алгоритм 7.1. Общий метод спуска

Input: начальное приближение $x \in X$ **Output:** приближённое решение

- ${f 1}$ while не выполнен критерий останова ${f do}$
- определить направление спуска Δx
- 3 выбрать размер шага t 4 $x \leftarrow x + t\Delta x$
- 5 return x

спуска, который заключается в построении последовательностей векторов $(x^k)_{k\in\mathbb{N}_0}, \ (\Delta x^k)_{k\in\mathbb{N}_0}$ и действительных чисел $(t_k)_{k\in\mathbb{N}_0},$ таких что $x^{k+1}=x^k+t^k\Delta x^k\in X$ и $f(x^{k+1})\leq f(x^k)$, где $x^0\in X$ — заданный начальный вектор.

На практике, элементы последовательности $(x^k)_{k\in\mathbb{N}_0}$ вычисляются до тех пор пока не будет выполнен критерий остано-

ва. Например, для заданного $\varepsilon>0$, таким условием является выполнение одно из неравенств: $\|x^{k+1}-x^k\|\leq \varepsilon, \ |f(x^{k+1})-f(x^k)|<\varepsilon, \ \|\nabla f(x^k)\|\leq \varepsilon.$

Так как f — выпуклая функция, то из неравенства $\nabla f(x^k)^\mathsf{T}(y-x^k) > 0$ следует, что $f(y) > f(x^k)$. Таким образом, в методе спуска необходимо выполнение неравенства $\nabla f(x^k)^\mathsf{T} \Delta x^k \leq 0$. Будем говорить, что вектор Δx является направлением спуска в точке x, если $\nabla f(x)^\mathsf{T} \Delta x \leq 0$. Последовательность $(t^k)_{k \in \mathbb{N}_0}$ называется последовательностью размеров шагов. Метод спуска имеет множество вариаций, которые различаются способом вычисления направлений спуска $(\Delta x^k)_{k \in \mathbb{N}_0}$ и размеров шагов $(t_k)_{k \in \mathbb{N}_0}$.

Далее будем предполагать, что $X=\mathbb{R}^n$. Пусть Δx — направление спуска в точке x. Рассмотрим два способа определения размера шага t. Первый способ заключается в решении следующей задачи

$$t^* = \arg\min_{t \ge 0} f(x + t\Delta x)$$

и называется методом наискорейшего спуска (Exact Line Search, ELS). Второй

Алгоритм 7.2. Backtracking Line Search

Input: направление спуска Δx , $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$

 ${f Output:}$ размер шага t

- $1 \ t \leftarrow 1$
- 2 while $f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^{\mathsf{T}} \Delta x$ do
- $t \leftarrow \beta t$
- $_{4}$ return $_{t}$

способ называется Backtracking Line Search (BLS) и зависит от двух параметров $\alpha \in \left(0, \frac{1}{2}\right), \, \beta \in (0, 1)$. Начиная с t = 1, будем уменьшать t, умножением на β , до тех пор пока не будет выполнено неравенство $f(x + t\Delta x) \leq f(x) + \alpha t \nabla f(x)^\mathsf{T} \Delta x$. Нетрудно показать, что если выполнено неравенство $\nabla f(x)^\mathsf{T} \Delta x < 0$, то искомое t будет найдено за конечное число итераций. Действительно,

$$f(x + t\Delta x) = f(x) + t\nabla f(x)^{\mathsf{T}} \Delta x + o(t) = f(x) + \alpha t \nabla f(x)^{\mathsf{T}} \Delta x + th(t),$$

где $h(t) = \left(\frac{o(t)}{t} + (1-\alpha)\nabla f(x)^\mathsf{T} \Delta x\right)$. При достаточно малом t>0 функция h(t) принимает отрицательные значения.

Зафиксируем точку x и определим направление ℓ^* , $\|\ell^*\| = 1$, наибольшего убывания, т.е. $\ell^* = \arg\min_{\ell \in \mathbb{S}^{n-1}} \frac{\partial f(x)}{\partial \ell}$, где $\mathbb{S}^{n-1} \stackrel{\mathrm{def}}{=} \{x \colon \|x\| = 1\}$ — сфера единичного радиуса с центром в начале координат. Так как $\frac{\partial f(x)}{\partial \ell} = \nabla f(x)^\mathsf{T} \ell \geq -\|\nabla f(x)\|$, то направление наибольшего убывания ℓ^* сонаправлено с $-\nabla f(x)$. Метод спуска, в котором $\Delta x = -\nabla f(x)$, называется методом градиентного спуска. Перед тем, как провести анализ сходимости метода градиентного спуска, докажем ряд вспомогательных утверждений [1].

Пусть $A, B \in \mathbb{R}^{n \times n}$ — квадратные матрицы порядка n с вещественными элементами. Если матрица C = A - B является неотрицательно определённой, т.е. для любого $x \in \mathbb{R}^n$ выполнено неравенство $x^\mathsf{T} C x \geq 0$, то будем писать $A \succeq B$. Для векторов будем использовать евклидову норму, а для матриц — спектральную.

Лемма 7.1. Пусть $f \in C^2(\mathbb{R}^n)$ и нашлось такое положительное число m, что $\nabla^2 f(x) \succeq mI$, $x \in \mathbb{R}^n$. Тогда для всех x, y справедливы неравенства

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x) + \frac{m}{2} ||y - x||^2;$$
 (7.1)

$$\min_{y \in \mathbb{R}^n} f(y) \ge f(x) - \frac{1}{2m} \|\nabla f(x)\|^2; \tag{7.2}$$

$$||x - x^*|| \le \frac{2}{m} ||\nabla f(x)||, \quad \ell \partial e \quad x^* = \arg\min_{x \in \mathbb{R}^n} f(x).$$
 (7.3)

ightharpoonup Согласно формуле Тейлора существует такая точка z, принадлежащая отрезку [x,y], что $f(y)=f(x)+\nabla f(x)^\mathsf{T}(y-x)+rac{1}{2}(y-x)^\mathsf{T}\nabla^2 f(z)(y-x).$

Так как $abla^2 f(z) - mI$ — неотрицательно определённая матрица, то

$$(y-x)^{\mathsf{T}} (\nabla^2 f(z) - mI)(y-x) \ge 0,$$

т.е. $(y-x)^{\mathsf{T}} \nabla^2 f(z) (y-x) \ge m \|y-x\|^2$, а значит, имеет место неравенство (7.1).

§7 Метод спуска 36

При фиксированном x функция $g(y)=f(x)+\nabla f(x)^{\mathsf{T}}(y-x)+\frac{m}{2}\|y-x\|^2$ является строго выпуклой. Нетрудно видеть, что $\widetilde{y}=x-\frac{1}{m}\nabla f(x)$ — стационарная точка функции g, а значит, в этой точке функция g принимает минимальное значение. Другими словами, $g(y)\geq g(\widetilde{y})=f(x)-\frac{1}{2m}\|\nabla^2 f(x)\|,\ y\in X.$ То, что $\min_{x\in\mathbb{R}^n}f(x)$ существует и достигается в единственной точке $x^*\in\mathbb{R}^n$ следует из неравенства (7.1) и строгой выпуклости функции f. Так как $f(y)\geq g(y)$, то выполнено неравенство (7.2).

В силу (7.2) имеем

$$0 \ge f(x^*) - f(x) \ge \nabla f(x)^{\mathsf{T}} (x^* - x) + \frac{m}{2} ||x^* - x||^2 \ge$$
$$\ge -||\nabla f(x)|| ||x^* - x|| + \frac{m}{2} ||x^* - x||^2.$$

Из последнего, в частности, следует неравенство (7.3). ⊲

Лемма 7.2. Пусть $f \in C^2(\mathbb{R}^n)$ и нашлось такое положительное число M, что $\nabla^2 f(x) \leq MI$. Тогда для всех $x, y \in \mathbb{R}^n$ справедливы неравенства:

$$f(y) \le f(x) + \nabla f(x)^{\mathsf{T}} (y - x) + \frac{M}{2} \|y - x\|^{2},$$

$$\inf_{y \in X} f(y) \le f(x) - \frac{1}{2M} \|\nabla f(x)\|^{2}.$$
(7.4)

⊳ Доказательство аналогично доказательству леммы 7.1.

Наконец, перейдём к анализу сходимости метода градиентного спуска.

Теорема 7.1. Пусть $f \in C^2(\mathbb{R}^n)$ и существуют такие положительные числа $m,\ M>0,\$ что $mI \preceq \nabla^2 f(x) \preceq MI,\ x\in \mathbb{R}^n.$ Обозначим $x^*=\arg\min_{x\in \mathbb{R}^n} f(x),\$ а через $(x^k)_{k\in \mathbb{N}_0}$ — последовательность, построенную методом градиентного спуска. Тогда $f(x^k)-f(x^*)\leq c^k\big(f(x^0)-f(x^*)\big),\$ где $c=1-m/M,\$ если последовательность $(t^k)_{k\in \mathbb{N}_0}$ строится согласно процедуре ELS, и $c=1-2\alpha m\min(1,\beta/M),\$ если последовательность $(t^k)_{k\in \mathbb{N}_0}$ строится согласно процедуре BLS.

ightarrow Зафиксируем точку x и пусть $g(t)=f\left(x-t\nabla f(x)\right)$. Из неравенства (7.4) следует, что $g(t)\leq f(x)+\left(\dfrac{Mt^2}{2}-t\right)\|\nabla f(x)\|^2$. Пусть t_E — размер шага, полученный согласно ELS. Тогда

$$g(t_E) \le g\left(\frac{1}{M}\right) \le f(x) - \frac{1}{2M} \|\nabla f(x)\|^2$$

(мы сравниваем со значением функции g в точке M^{-1} , так как функция $Mt^2/2-t$ принимает там минимальное значение). Из (7.2) следует, что

$$\|\nabla f(x)\|^2 \ge 2m(f(x) - f(x^*)).$$

Таким образом, $f(x - t_E \nabla f(x)) - f(x^*) \le (1 - m/M)(f(x) - f(x^*)).$

Пусть t_B — размер шага, который полученный согласно процедуре BLS. Покажем, что $t_B=1$ или $t_B\geq \beta/M$. Действительно, при $0\leq t\leq M^{-1}$ справедлива цепочка неравенств

$$g(t) \le f(x) - t \|\nabla f(x)\|^2 + \frac{Mt^2}{2} \|\nabla f(x)\|^2 \le f(x) - \frac{t}{2} \|\nabla f(x)\|^2 \le f(x) - \alpha t \|\nabla f(x)\|^2.$$

Если $t_B = 1$, то $f(x - t_B \nabla f(x)) \le f(x) - \alpha \|\nabla f(x)\|^2$, а если $t_B \ge \beta/M$, то верно $f(x - t_B \nabla f(x)) \le f(x) - \frac{\alpha \beta}{M} \|\nabla f(x)\|^2$. Таким образом,

$$f(x - t_B \nabla f(x)) - f(x^*) \le f(x) - f(x^*) - \alpha \min\left(1, \frac{\beta}{M}\right) \|\nabla f(x)\|^2.$$

А значит, в силу неравенства (7.2) имеем

$$f(x - t_B \nabla f(x)) \le (1 - 2\alpha m \min(1, \beta/M)) (f(x) - f(x^*)).$$

Предположение о том, что $\nabla^2 f(x) \succeq mI$, $x \in \mathbb{R}^n$, является достаточно сильным. Оказывается, что сходимость имеет место и без этого предположения. Мы не будем приводить формулировку и доказательство этого результата, так как он будет следовать из анализа, проведённого в §8 при обсуждении метода проекций градиента.

В зависимости от максимального порядка смешанных производных целевой функции f, которые участвуют в методе оптимизации, различают прямые методы поиска (или метод нулевого порядка), методы первого порядка, методы второго порядка и т.д. В прямых методах поиска используется информация только о самой функции и не используется информация о её производных. Как правило, такие методы применяются, когда аналитическое представление функции f не известно. Методы первого порядка при поиске решения используют информацию как о самой функции, так и о её производных первого порядка. Рассмотренный метод градиентного спуска является методом первого порядка. Далее будет рассмотрен метод Ньютона, который является методом второго порядка, так как в этом методе используются информация о самой функции и о её производных первого и второго порядков.

Пусть $f \in C^2(\mathbb{R}^n)$ — выпуклая функция, гессиан $\nabla^2 f(x)$ которой обратим в каждой точке $x \in \mathbb{R}^n$. Из последнего, в частности, следует, что $\nabla^2 f(x)$ — положительно определённая матрица для любого $x \in \mathbb{R}^n$. Выпишем формулу Тейлора второго порядка для функции f в окрестности некоторой фиксированной точки x:

$$f(x+v) = f(x) + \nabla f(x)^{\mathsf{T}} v + \frac{1}{2} v^{\mathsf{T}} \nabla^2 f(x) v + o(\|v\|^2).$$

Функция $h(v) = f(x) + \nabla f(x)^\mathsf{T} v + \frac{1}{2} v^\mathsf{T} \nabla^2 f(x) v$ принимает минимальное значение в точке $v^* = -\nabla^2 f(x)^{-1} \nabla f(x)$. Направление $\Delta x = v^*$ называется шагом Ньютона.

§7 Метод спуска 38

Минимальное значение функции h равно

$$h(\Delta x) = f(x) - \frac{1}{2} \nabla f(x)^{\mathsf{T}} \nabla^2 f(x)^{-1} \nabla f(x) = f(x) - \frac{1}{2} \lambda(x)^2 \approx f(x + \Delta x),$$

где $\lambda(x) \stackrel{\text{def}}{=} (\nabla f(x)^{\mathsf{T}} \nabla^2 f(x)^{-1} \nabla f(x))^{\frac{1}{2}}$. Непосредственно проверяется, что

$$\lambda(x)^{2} = -\nabla f(x)^{\mathsf{T}} \Delta x = \Delta x^{\mathsf{T}} \nabla^{2} f(x) \Delta x.$$

Метод спуска, в котором направление спуска равно шагу Ньютона, называется

Алгоритм 7.3. Метод Ньютона

Input: начальное приближение $x \in \mathbb{R}^n$, $\varepsilon > 0$

Output: приближённое решение

- 1 repeat
- $\mathbf{z} \mid \Delta x \leftarrow -\nabla^2 f(x)^{-1} \nabla f(x)$
- $\lambda(x)^2 \leftarrow \nabla f(x)^\mathsf{T} \nabla^2 f(x)^{-1} \nabla f(x)$
- 4 Определить размер шага t согласно BLS
- $x \leftarrow x + t\Delta x$
- 6 until $\lambda(x)^2/2 > \varepsilon$
- 7 return x

методом Ньютона. Для определённости будем считать, что размер шага $t=t_B$ в этом методе выбирается согласно BLS.

Для анализа метода Ньютона докажем вспомогательные леммы.

Лемма 7.3. Если для выпуклой функции $f \in C^2(\mathbb{R}^n)$ существуют такие числа $m,\ M>0,\$ что $mI \preceq \nabla^2 f(x) \preceq MI,\$ то $f(x+t_B\Delta x)-f(x) \leq -\frac{\alpha\beta m}{M^2}\|\nabla f(x)\|^2.$ \rhd Согласно условию леммы справедливы неравенства

$$\lambda(x)^2 = \Delta x^\mathsf{T} \nabla^2 f(x) \Delta x \ge m \|\Delta x\|^2,$$

$$\lambda(x)^2 = \nabla f(x)^\mathsf{T} \nabla^2 f(x)^{-1} \nabla f(x) \ge \frac{\|\nabla f(x)\|^2}{M}.$$

Из неравенства (7.4) следует, что $f(x+t\Delta x) \leq f(x)-t\lambda(x)^2+\frac{M}{2m}t^2\lambda(x)^2$. Полагая в последнем неравенстве t=m/M, получаем, что

$$f(x + t\Delta x) \le f(x) - \frac{m}{2M}\lambda(x)^2 \le f(x) - \alpha t\lambda(x)^2.$$

Следовательно, $t_B \ge \beta m/M$. Таким образом,

$$f(x + t_B \Delta x) - f(x) \le -\alpha t_B \lambda(x)^2 \le -\alpha \beta \frac{m}{M} \lambda(x)^2 \le -\frac{\alpha \beta m}{M^2} \|\nabla f(x)\|^2. \quad \triangleleft$$

Лемма 7.4. Пусть для функции $f \in C^2(\mathbb{R}^n)$ и чисел m, M, L > 0 верно, что

$$mI \preceq \nabla^2 f(x) \preceq MI \quad u \quad \|\nabla^2 f(x) - \nabla^2 f(y)\| \leq L\|x-y\|, \quad x,y \in \mathbb{R}^n.$$

Тогда $\|\nabla f(x + \Delta x)\| \le \frac{L}{2m^2} \|\nabla f(x)\|^2$ и если $\|\nabla f(x)\| \le 3(1 - 2\alpha) \frac{m^2}{L}$, то $t_B = 1$. \triangleright Докажем первую часть утверждения леммы.

$$\|\nabla f(x + \Delta x)\| = \|\nabla f(x + \Delta x) - \nabla f(x) - \nabla^2 f(x) \Delta x\| =$$

$$= \|\int_0^1 (\nabla^2 f(x + t\Delta x) - \nabla^2 f(x)) \Delta x \, dt\| \le \frac{L}{2} \|\Delta x\|^2 =$$

$$= \frac{L}{2} \|\nabla^2 f(x)^{-1} \nabla f(x)\|^2 \le \frac{L}{2m^2} \|\nabla f(x)\|^2.$$

Пусть $g(t) \stackrel{\text{def}}{=} f(x + t\Delta x)$, тогда получаем $g''(t) = \Delta x^{\mathsf{T}} \nabla^2 f(x + t\Delta x) \Delta x$. В силу условия леммы справедливы неравенства:

$$|g''(t) - g''(0)| = |\Delta x^{\mathsf{T}} (\nabla^2 f(x + t\Delta x) - \nabla^2 f(x)) \Delta x| \le tL ||\Delta x||^3$$

и $g''(0) = \lambda(x)^2 \geq m \|\Delta x\|^2$. Тогда $g''(t) \leq g''(0) + tL \|\Delta x\|^3 \leq \lambda(x)^2 + \frac{tL}{m^{3/2}} \lambda(x)^3$. Проинтегрировав дважды последнюю цепочку неравенств, учитывая равенство $g'(0) = -\lambda(x)^2$, и положив t=1, получаем $f(x+\Delta x) \leq f(x) - \frac{1}{2} \lambda(x)^2 + \frac{L}{6m^{3/2}} \lambda(x)^3$. Так как $\|\nabla f(x)\| \leq 3(1-2\alpha)\frac{m^2}{L}$, то $\lambda(x) \leq 3(1-2\alpha)\frac{m^{3/2}}{L}$. Следовательно,

$$f(x+\Delta x) \leq f(x) - \lambda(x)^2 \left(\frac{1}{2} - \frac{L\lambda(x)}{6m^{3/2}}\right) \leq f(x) - \alpha\lambda(x)^2 = f(x) + \alpha\nabla f(x)^\mathsf{T}\Delta x.$$

Таким образом, $t_B = 1$. \triangleleft

Теорема 7.2. Пусть для функции $f \in C^2(\mathbb{R}^n)$ и чисел m, M, L > 0 верно, что $mI \preceq \nabla^2 f(x) \preceq MI$ и $\|\nabla^2 f(x) - \nabla^2 f(y)\| \le L\|x-y\|$, $x,y \in \mathbb{R}^n$. Обозначим $x^* = \arg\min_{x \in \mathbb{R}^n} f(x)$, а через $(x^k)_{k \in \mathbb{N}_0}$ — последовательность, построенную методом Ньютона. Тогда для любого $\varepsilon > 0$ верно неравенство $f(x^k) - f(x^*) < \varepsilon$ при

$$k \geq N_\varepsilon \stackrel{\text{def}}{=} \frac{f(x^0) - f(x^*)}{\gamma} + \log_2 \log_2 \left(\frac{m^3}{L^2\varepsilon}\right), \quad \textit{ide} \quad \gamma = \gamma(m, M, L).$$

ho Пусть $\eta \stackrel{\mathrm{def}}{=} \min (1, 3(1-2\alpha)) \frac{m^2}{L}$. Если $\|\nabla f(x)\| \leq \eta$, то из леммы 7.4, в частности, следует, что $\|\nabla f(x+\Delta x)\| \leq \frac{\eta}{2}$. Действительно, так как $\frac{L}{m^2} \leq \eta^{-1}$, то

§7 Метод спуска 40

 $\|\nabla f(x+\Delta x)\| \leq \frac{L}{2m^2} \|\nabla f(x)\|^2 \leq \frac{\eta}{2}.$ Через s обозначим наименьшее натуральное число, такое что $\|\nabla f(x^s)\| \leq \eta.$ Из леммы 7.3 следует, что $s \leq \frac{f(x^0) - f(x^*)}{\gamma}$, где $\gamma \stackrel{\text{def}}{=} \alpha \beta \eta^2 \frac{m}{M^2}.$ Тогда при k > s справедливо неравенство $\|\nabla f(x^k)\| < \eta$, а значит,

$$\frac{L}{2m^2} \|\nabla f(x^k)\| \leq \left(\frac{L}{2m^2} \|\nabla f(x^{k-1})\|\right)^2 \leq \left(\frac{L}{2m^2} \|\nabla f(x^s)\|\right)^{2^{k-s}} \leq \left(\frac{1}{2}\right)^{2^{k-s}}.$$

Из неравенства (7.2) следует, что $f(x^k) - f(x^*) \le \frac{1}{2m} \|\nabla f(x^k)\| \le \frac{m^3}{L^2} 2^{-2^{k-s}} < \varepsilon$. \lhd

Упражнения

- 19. (Метод сопряжённых направлений) Пусть A положительно определённая матрица и $f(x) = \frac{1}{2} x^\mathsf{T} A x b^\mathsf{T} x + c$. Векторы (направления) p и q назовём A-сопряжёнными, если $p^\mathsf{T} A q = 0$. Для данного начального приближения x^0 и последовательности ненулевых сопряжённых направлений $(p^k)_{k=0}^{n-1}$ определим последовательность точек $(x^k)_{k=1}^n$ равенством $x^{k+1} = x^k + t^k p^k$, где $t^k = \arg\min_{t \in \mathbb{R}} f(x^k + tp^k)$. Докажите, что
 - (a) $t^k = -(p^k, \nabla f(x^k))/(p^k, Ap^k);$
 - (b) вектор $\nabla f(x^{k+1})$ ортогонален направлениям p^0, p^1, \ldots, p^k ;
 - (c) $\nabla f(x^n) = 0$, а значит, x^n минимум функции f(x);
 - (d) последовательность направлений $(p^k)_{k=0}^{n-1}$ может быть определена как

$$\begin{cases} p^0 = -\nabla f(x^0), \\ p^k = -\nabla f(x^k) + \frac{\|\nabla f(x^k)\|^2}{\|\nabla f(x^{k-1})\|^2} p^{k-1}, & 1 \le k < n. \end{cases}$$

Указание: Пусть $L_k \stackrel{\text{def}}{=} \operatorname{Span}(p^0, Ap^0, \dots, A^k p^0)$. Индукцией по k докажите, что p^k и $\nabla f(x^k) \in L^k$, при этом Ap^k и $\nabla f(x^k) \in L^k_{k-1}$.

Литература

Boyd S., Vandenberghe L. Convex Optimization – Cambridge University Press, 2004.
 730 c.

§8 МЕТОД ПРОЕКЦИИ ГРАДИЕНТА

Пусть $X\subset\mathbb{R}^n$ — непустое выпуклое замкнутое множество. Для произвольной точки $a\in\mathbb{R}^n$ через $\Pi_X a$ обозначим проекцию точки a на множество X, т.е. такую точку $b\in X$, что $\|a-b\|=\inf_{x\in X}\|a-x\|$. Так как X — замкнутое множество, то такая точка b действительно существует. Единственность проекции следует из выпуклости множества X. Действительно, если $a\in X$, то в силу определения имеем $\Pi_X a=a$. Предположим, что $a\notin X$ и нашлись две различные ближайшие точки b_1 и $b_2\in X$. Тогда несложно видеть, что $\dfrac{b_1+b_2}{2}\in X$ и

$$||a - (b_1 + b_2)/2|| = ||(a - b_1)/2 + (a - b_2)/2|| < \frac{||a - b_1|| + ||a - b_2||}{2},$$

где последнее неравенство строгое, так как a не принадлежит прямой, проходящей через точки b_1 и b_2 . Далее, если это не вызывает разночтений, нижний индекс у отображения Π_X будем опускать, т.е. будем писать Π вместо Π_X .

Пусть $f: \mathbb{R}^n \to \mathbb{R}$ — дважды непрерывно дифференцируемая выпуклая функция. Рассмотрим следующую задачу выпуклой оптимизации

$$f(x) \to \inf_X$$
 (8.1)

Будем предполагать, что f(x) достигает минимума на X (последнее, например, будет следовать из теоремы Вейерштрасса, если множество X ограничено). Для решения задачи (8.1) в некоторых частных случаях множества X может быть применён метод проекции градиента, к описанию и анализу которого мы сейчас перейдём.

Пусть $x^0 \in X$ — заданное начальное приближение. Последовательность точек $(x^k)_{k \in \mathbb{N}_0}$ строится рекуррентным образом: $x^{k+1} = \Pi \big(x^k - t^k \nabla f(x^k) \big)$, где $(t^k)_{k \in \mathbb{N}_0}$ — некоторая последовательность положительных чисел.

Через $x^*=\arg\min_{x\in X}f(x)$ обозначим решение задачи (8.1). Вообще говоря, не для всякой последовательность $(t^k)_{k\in\mathbb{N}_0}$ будет иметь место сходимость $x^k\to x^*$ (или $f(x^k)\to f(x^*)$). Для построения последовательности $(t^k)_{k\in\mathbb{N}_0}$ будем использовать следующую модификацию процедуры BLS. Пусть $x\in X$ и $\beta\in(0,1)$. Для действительного числа t положим $x^+=\Pi\big(x-t\nabla f(x)\big)$ и $\Delta x^+=(x^+-x)/t$, т.е. $x^+=x+t\Delta x^+$. Начиная с t=1, будем последовательно уменьшать t, умножением на β , до тех пор пока не будет выполнено неравенство:

$$f(x + t\Delta x^{+}) \le f(x) + t\nabla f(x)^{\mathsf{T}} \Delta x^{+} + \frac{t}{2} ||\Delta x^{+}||^{2}.$$
 (8.2)

Покажем, что t, удовлетворяющее неравенству (8.2), будет найдено за конечное число итераций. Действительно, пусть $K \stackrel{\text{def}}{=} \max\{\|\nabla^2 f(y)\| \colon y \in \overline{B}_1(x)\}$, где через $\overline{B}_1(x)$ обозначен единичный замкнутый шар с центром в x. При $t \in (0, \|\nabla f(x)\|^{-1})$

справедливо включение $x-t\nabla f(x)\in \overline{B}_1(x)$, а значит, и $x^+\in \overline{B}_1(x)$. Следовательно, верно неравенство

$$f(x + t\Delta x^{+}) \le f(x) + t\nabla f(x)^{\mathsf{T}} \Delta x^{+} + \frac{t^{2}K}{2} \|\Delta x^{+}\|^{2}.$$

Таким образом, неравенство (8.2) будет выполнено при $t \leq \min(\|\nabla f(x)\|^{-1}, K^{-1})$.

Предположим, что существуют такие неотрицательные числа m и M, что для всех $x \in X$ верно $mI \preceq \nabla^2 f(x) \preceq MI$. Так как матрица $\nabla^2 f(x)$ неотрицательно определена, то левая часть неравенства выполнена, например, при m=0. Если X — ограниченное множество, то существование постоянной M следует из непрерывности $\nabla^2 f$. Из проведённых рассуждений, в частности, следует, что t, найденное согласно BLS, удовлетворяет неравенству $t \geq \min(1, \beta/M)$. В силу сделанных предположений при $x_1, x_2 \in X$ справедливы неравенства

$$f(x_2) \ge f(x_1) + \nabla f(x_1)^{\mathsf{T}} (x_2 - x_1) + \frac{m}{2} ||x_2 - x_1||^2,$$
 (8.3)

$$f(x_2) \le f(x_1) + \nabla f(x_1)^{\mathsf{T}} (x_2 - x_1) + \frac{M}{2} ||x_2 - x_1||^2.$$
 (8.4)

Для произвольных $z \in X$ и $t \in \mathbb{R}$ имеет место неравенство

$$0 \ge (z - x^+, x - t\nabla f(x) - x^+). \tag{8.5}$$

Действительно, если $x-t\nabla f(x)\in X$, т.е. $x^+=x-t\nabla f(x)$, то скалярное произведение в (8.5) равно 0. В противном случае точки z и $x-t\nabla f(x)$ находятся по разные стороны от опорной гиперплоскости, проходящей через x^+ перпендикулярно вектору $x-t\nabla f(x)-x^+$. Следовательно угол между векторами $z-x^+$ и $x-t\nabla f(x)-x^+$ не меньше 90°.

Преобразуем неравенство (8.5), подставив $x^+ = x + t\Delta x^+$. После подстановки получаем $0 \ge (z - x - t\Delta x^+, -t\Delta x^+ - t\nabla f(x))$. Сокращая на -t, имеем

$$0 \le (z - x, \Delta x^{+}) + \nabla f(x)^{\mathsf{T}} (z - x) - t \|\Delta x^{+}\|^{2} - t \nabla f(x)^{\mathsf{T}} \Delta x^{+}. \tag{8.6}$$

Перейдём к оценке с верху значения $f(x^+)$:

$$f(x+t\Delta x^{+}) \stackrel{(8.2)}{\leq} f(x) + t\nabla f(x)^{\mathsf{T}} \Delta x^{+} + \frac{t}{2} \|\Delta x^{+}\|^{2} \leq$$

$$\stackrel{(8.3)}{\leq} f(z) - \nabla f(x)^{\mathsf{T}} (z-x) - \frac{m}{2} \|z-x\|^{2} + t\nabla f(x)^{\mathsf{T}} \Delta x^{+} + \frac{t}{2} \|\Delta x^{+}\|^{2} \leq$$

$$\stackrel{(8.6)}{\leq} f(z) + (z-x, \Delta x^{+}) - \frac{t}{2} \|\Delta x^{+}\|^{2} - \frac{m}{2} \|z-x\|^{2}.$$

$$(8.7)$$

При z=x из (8.7) следует, что $f(x^+) \leq f(x) - \frac{t}{2} \|\Delta x^+\|^2$. При $z=x^*$ из (8.7) следует, что

$$f(x^+) - f(x^*) \le (x^* - x, \Delta x^+) - \frac{t}{2} ||\Delta x^+||^2 - \frac{m}{2} ||x^* - x||^2.$$

Так как
$$(x^* - x, \Delta x^+) - \frac{t}{2} \|\Delta x^+\|^2 = \frac{1}{2t} (\|x - x^*\|^2 - \|x^+ - x^*\|^2)$$
. То
$$f(x^+) - f(x^*) \le \frac{1}{2t} \cdot (\|x - x^*\|^2 - \|x^+ - x^*\|^2) - \frac{m}{2} \|x - x^*\|^2,$$

где $t_{\min} = \min(1, \beta/M)$. Если m > 0, то в силу того, что $0 \le f(x^+) - f(x^*)$, следует неравенство $\|x^+ - x^*\|^2 \le (1 - mt_{\min}) \|x - x^*\|^2$. Поэтому для элементов последовательности $(x^k)_{k \in \mathbb{N}_0}$ справедлива оценка:

$$||x^k - x^*|| \le c^k ||x^0 - x^*||$$
, где $c = \sqrt{1 - mt_{\min}}$,

из которой следует, что $x^k \to x^*$.

Если же m = 0, то имеют место неравенства:

$$f(x^k) - f(x^*) \le \frac{1}{2t_{\min}} (\|x^{k-1} - x^*\|^2 - \|x^k - x^*\|^2),$$

 $f(x^1) - f(x^*) \le \frac{1}{2t} (\|x^0 - x^*\|^2 - \|x^1 - x^*\|^2).$

Таким образом, $f(x^k) - f(x^*) \le \frac{1}{k} \sum_{i=1}^k \left(f(x^i) - f(x^*) \right) \le \frac{\|x^0 - x^*\|^2}{2t_{\min}k}$, а значит, $f(x^k) \to f(x^*)$.

Вообще говоря, нахождение проекций точек на выпуклое множество является сложной задачей. К счастью, для некоторых выпуклых множеств, которые часто встречаются на практике, эта задача может быть решена эффективно и даже аналитически. Рассмотрим такие множества.

Пример 8.1 (Шар). Пусть $X = \{x \colon \|x - a\| \le R\}$, тогда

$$\Pi y = \begin{cases} y, & \text{если} \quad y \in X, \\ a + \frac{R}{\|y - a\|} (y - a) & \text{иначе.} \end{cases}$$
 (8.8)

Пример 8.2 (Параллелепипед). Пусть $X = \{x : a_i \le x_i \le b_i, 1 \le i \le n\}$, тогда i-я координата вектора Πy , которую обозначим как $[\Pi y]_i$, определяется равенством:

$$[\Pi y]_i = \begin{cases} a_i, & \text{если} \quad y_i < a_i; \\ y_i, & \text{если} \quad a_i \leq y_i \leq b_i; \\ b_i & \text{иначе.} \end{cases}$$

Пример 8.3 (Симплекс). Пусть $X=\{x\colon x_i\geq 0, \sum\limits_{i=1}^n x_i\leq 1\}$. Нетрудно видеть, что если $y_i<0$, то $[\Pi y]_i=0$, а значит, $\Pi y=\Pi\widetilde{y}$, где вектор \widetilde{y} получен из y обнулением

отрицательных компонент. Если $\sum\limits_{i=1}^n \widetilde{y}_i \leq 1$, то $\Pi\widetilde{y}=\widetilde{y}$. Предположим, что $\sum\limits_{i=1}^n \widetilde{y}_i > 1$. Тогда $x=\Pi\widetilde{y}$ — решение следующей задачи выпуклой оптимизации:

$$\begin{cases}
\frac{1}{2} \|x - \widetilde{y}\|^2 \to \min, \\
\sum_{i=1}^{n} x_i \le 1, \\
x_i \ge 0, \quad 1 \le i \le n.
\end{cases}$$
(8.9)

Для задачи (8.9) рассмотрим функцию Лагранжа $\mathcal{L}(x;\lambda,\mu)=\frac{1}{2}\|x-\widetilde{y}\|^2+\lambda^\mathsf{T}(-x)+\mu\left(\sum\limits_{i=1}^n x_i-1\right)$. Подберём такие $x,\,\lambda$ и $\mu\geq 0,\,$ что

$$x_i - \widetilde{y}_i - \lambda_i + \mu = 0, \quad 1 \le i \le n; \quad \lambda^{\mathsf{T}} x = 0;$$

$$\mu\left(\sum_{i=1}^n x_i - 1\right) = 0; \quad \sum_{i=1}^n x_i \le 1.$$
(8.10)

Тогда из теоремы Куна - Таккера будет следовать, что x — решение задачи (8.9). Выберем μ как решение уравнения $\sum\limits_{i=1}^n (\widetilde{y}_i - \mu)_+ = 1$, где $(z)_+ \stackrel{\mathrm{def}}{=} \max(0,z)$. Указанное уравнение может быть решено бинарным поиском. Положим $x_i = (\widetilde{y}_i - \mu)_+$ и $\lambda_i = x_i - (\widetilde{y}_i - \mu)$. Нетрудно видеть, что тройка $(x; \lambda, \mu)$ удовлетворяет уравнениям (8.10). Таким образом,

$$\Pi y = \begin{cases} (y)_+, & \text{если} \quad (y)_+ \in X; \\ (y-\mu)_+ & \text{иначе}. \end{cases}$$

Упражнения

- 20. Пусть $X \subset \mathbb{R}^n$ выпуклое замкнутое множество, а $f\colon X \to \mathbb{R}$ непрерывно дифференцируемая функция. Докажите, что
 - (a) если $x^* \in X$ локальный минимум фукнции f, то для произвольного $\alpha \ge 0$ справедливо равенство $x^* = \Pi(x^* \alpha \nabla f(x^*));$
 - (b) если фукнция f выпуклая, то точка $x^* \in X$ локальный минимум функции f тогда и только тогда, когда для произвольного $\alpha \geq 0$ справедливо равенство $x^* = \Pi(x^* \alpha \nabla f(x^*))$.
- 21. Пусть Λ множество допустимых точек задачи (3.11). Разработайте алгоритм вычисления проекции $\Pi_{\Lambda}\lambda$ для произвольной точки $\lambda \in \mathbb{R}^N$, использующий не более $O(N\log N)$ арифметических операций.