

TAPC 22RH953

Service Service Service

/00/15/22/33 /50/65/72/83

/50 = /00 /65 = /15 /72 = /22 /83 = /33

+2LS boxes 22RH443

841

FOR RECORD PLAYER SEE 22GC027/55

Service Manual

Die Sicherheitsvorschriften erfordern, dass das Gerät sich nach der Reparatur in seinem originalen Zustand befindet und dass die benutzten Einzelteile den aufgeführten Teilen identisch sind.

Docu mentationTechnique Service Dokumentation Documentazione di Servizio Huolte-Ohje Manual de Servicio Manua

de Servicio

REMOVING FRONT-PART

REAR PANEL

6136 C

RECORDER KNOBS

REMOVING TOP-PLATE

KNOBS AND SLIDES

Attention: Replacement var. cap. Keep during the replacement of the var.cap. the pointer in the middle of the scale

COUPLING PIECES

R

INSERTING OF CONNECTORS

	T	T	1	T	1	T		·
.SK	8		* }	\mathbb{Z}	[_unit_]	[<u>^</u>		a.
Wave range	signal to			Adjust	11111		=	
	Œ	A		[2] S414				
	via 33 nF	Ľ]	\$413				
Tuner/MW (520-1605 kHz)		min. cap.	\$412	AM-IF	1		max. V∼
				\$411				
		♦		\$410				min. V~
Tuner/LW (150-345 kHz)	147 kHz		max. cap.	S517		1		
Tuner, Em (130-040 KHZ)	352 kHz		min. cap.	C558				
Tuner/MW (520-1605 kHz)	512 kHz		max. cap.	S516				
Tuller/ WW (320-1000 K112)	1635 kHz		min. cap.	C554				
Tuner/SW(5.95-9.78 MHz)	5.83 MHz		max. cap.	S515				
Tuner/ 044(0.00-0.70 Mil 12)	9.97 MHz	•	min. cap.	C552				↑ max. V ~
Tuner/LW (150-345 kHz)	157 kHz			S510c-d		1		
Tuner/ EW (100-040 KHZ)	336 kHz		tune in	C532				
Tuner/MW (520-1605 kHz)	550 kHz		4	S510a-b				
	1500 kHz		\emptyset	C531				·
Tuner/SW (5.95-9.78 MHz)	6.18 MHz			8511				
Tuner/3W (3.95-9.76 MH2)	9.78 MHz			C529				
	3			S415		1		
	10.7 MHz			S416				
Tuner/EM/07 E 104 MILE)	Δf=	•		S417				
Tuner/FM (87.5-104 MHz)	200 kHz (50 Hz) via 5 nF	\$	min. Ind.	S418	FM-tuner	4	◆	
	VIA S IIF			S406	IF-FM	[5]	\$	
	86.5 MHz		max. Ind.	S412		f		◆
Tuner/FM (87.5-104 MHz)	105 MHz	\$	min. Ind.	C453	FM-tuner			max V∼
	96 MHz		tune in	S411				
			\emptyset			ļ		
Tuner/FM (87.5-104 MHz)				R602				[7]
AFC	6		min. Ind.	R617				8

1 Repeat

• only for /32 and /82

CS52611

- Find the frequency of the ceramic resonator by varying the HF generator between 445 kHz and 477 kHz. The frequency at which the meter deflection is maximum, is also the IF to which the set must be adjusted.
- Fully turn out the cores of S412, S413 (AM-IF unit)
- Set the cores of \$415...\$418 in advance to midposition.
- Adjust for maximum height and symmetry of the response curve.
- Connect a supply unit to and connect in parallel to the supplying unit a voltmeter. Adjust supply unit for 9.5 V d.c. to be read on the voltmeter. Adjust for maximum slope and symmetry of the "S" curve.
- Decouple the supply unit and the HF generator. Besides, switch off the HF generator.
- Adjust R602 in such a way that the voltmeter at point \$\ightarrow\$ indicates the same voltage as was measured at point \$\ightarrow\$ (so adjust in combination with the IF-FM adjustment !)
- R428: serves to adjust the input level of the stereo decoder at which this decoder can start operating.
- R429:serves to adjust a field-strength indicator
- F Déterminer la fréquence du résonateur céramique en faisant varier le générateur HF entre les 445 et les 477 kHz.

 La fréquence à laquelle la déviation d'aiguille est la plus forte est en même temps la fréquence intermédiaire sur laquelle il faut ajuster.
 - Extraire complètement les noyeaux de S412, S413 (bloc AM-FI).
 - Placer auparavant les noyaux de S415 à 418 en position médiane
 - Ajuster sur symétrie et hauteur maximale de la courbe de réponse.
 - Brancher sur une unité d'alimentation et par dessus un voltmètre. Ajuster l'unité d'alimentation sur 9,5 V, lire le résultat sur le voltmètre.

 Ajuster sur une pente maximum et sur symétrie de la courbe en "S".
 - Débrancher l'unité d'alimentation et le générateur HF (déclencher aussi le générateur HF).
 - Régler R602 pour que le voltmètre sur le point présente de nouveau la même tension que celle mesurée au 5 (donc, ajustage combiné avec l'ajustage FI-FM).
 - Régler R617 pour que le voltmètre sur le point 6 de SK-N présente de nouveau la même tension que celle mesurée au 🐧 .

R428:sert au réglage du niveau d'entrée du décodeur stéréo, mettant celui-ci en fonctionnement. R429:sert au réglage d'un indicateur d'intensité de

- I Determinare la frequenza del resonatore ceramico facendo variare la frequenza del generatore AF fra i 445 kHz e i 477 kHz. La frequenza alla quale è ottenuta la piena deviazione dello strumento di misura è massimale è anche la F! sulla quilae occorre regolare l'apparecchio.
 - Togliere completamente i nuclei de S412, S413 (unità AM-IF).
 - Quindi, posizionare i nuclei delle bobine S415 a 418 in posizione media.
 - A Regolare per altezza e simmetria della curva di risposta.
 - Collegare su un unità d'alimentazione e sopra di essa un voltmetro. Regolare l'unità di alimentazione su di 9,5 V e leggere il risultato sul voltmetro.

 Regolare per pendenza massima e per simmetria della curva ad "S".

- NL Bepaal de frekwentie van de keramische resonator, door de HF-generator te variëren tussen 445 kHz en 477 kHz. De frekwentie
 - waarbij de uitslag van de meter maximaal is, is dan ook de MF waarop wordt afgeregeld.

 [2] Kernen van S412, S413 (AM-IF unit) geheel
 - 3 Vooraf de kernen van S415 t/m S418 in de
 - middenstand plaatsen

 Regel af op max. hoogte en symmetrie van de
 - doorlaatkromme.

 Sluit op ③ een PSA met daarover een voltmeter aan. PSA regelen op 9,5 V af te
 - lezen op de voltmeter. Afregelen op max. steilheid en symetrie van de "S" - kromme.
 - PSA en HF generator loskoppelen (schakel tevens HF generator uit).
 - R602 dusdanig regelen dat de voltmeter op punt weer dezelfde spanning aangeeft als bij gemeten werd. (Dus afregeling in combinatie met MF-FM afregeling!)
 - B R617 dusdanig regelen dat de voltmeter op punt 6 van SK-N weer dezelfde spanning aangeeft als bij 5 gemeten werd.
 - R428: voor instelling van het ingangsniveau van de stereodecoder waarbij deze kan gaan werken. R429: voor instelling van een veldsterkte-indikator.
- - Drehe die Kerne von S412, S413 (AM/FM-Einheit) ganz heraus.
 - Setze zuerst die Kerne von S415...S418 in Mittelstellung
 - 4 Justiere auf maximale Höhe und Symmetrie der Durchlasskurve.
 - Schliesse an seine Speiseeinheit und parellel zu dieser Einheit ein Voltmeter an. Justiere die Speiseeinheit auf 9,5 V (abzulesen am Voltmeter). Justiere auf maximale Steilheit und Symmetrie der "S"-Kurve
 - Entkopple die Speiseeinheit und den HF-Generator (Schalte ausserdem den HF-Generator ab).
 - Justiere R602 so, dass das Voltmeter an Punkt
 → wieder die gleiche Spannung anzeigt wie bei

 ∫ gemessen wurde (Also justieren in Kombination mit der ZF-FM Justierung).
 - Justiere R617 so, dass das Voltmeter an Punkt 6 von SK-N wieder die gleiche Spannung anzeigt wie bei 5 gemessen wurde
 - R428: dient zum Einstellen des Eingangspegels des Stereodekoders, bei dem dieser Dekoder in Tätigkeit gesetzt wird.
 - R429: dient zum Einstellen eines Feldstärke-Indikators.
 - Scollegare l'unità di alimentazione e il generatore AF (mettere anche il generatore AF fuori servizio).
 - Regolare R602 perchè il voltmetro, sul punto presenti di nuovo la stessa tensione che su (quindi combinare la regolazione con quella di FI-AM).
 - Regolare R617 perchè il voltmetro, sul punto 6 SK-N presenti di nuovo la stessa tensione che su [5]
 - R428: serve alla regolazione del livello d'entrata del decodatore stereofonico mettendolo in funzionamento.
 - R429: serve alla regolazione di un indicatore d'intensià di campo.

TS e = b = c =

R1161 (

73	683	682	585.6	84 721		706	700	698		696 712	711 695	699 697		705
57		002	003 0			710 708			692		719 723 703 72		709 724	725
13	738	737	740 73	39.813	735.798.800.	792.794.778	796.780.782.7	84.806	786.810.81	4 812 770	769.813.809.783.785.811.	781.779.795.793.1	797. 791.777 .79	9
		83	32		747 748		821 + 824.7	52,808.	760.758.756	5.763 ÷ 768.76	1.759.831.757.805.807.75	55.830		834
D504						D66	6 TS659a	TS	54,652,65	9b TS	656,651,655,657b. D6	69,670. TS653,65	7a D671.672,6	65.

MI	SC. TS95	5.956	TS973 D993 D994 TS975 D992.990 TS975.970.977.961-964.969	
MI!	SC T	\$953.954	TS958-952-951-960-957 S1005-1006-TS959 TS965-966	
С	101	7 1018 1013 1014	1021 1022 1019 1061 1059 1060 1070 1058 1064 1069 1024 1023	
C		1067	1011 1016 1015 1019 1009 1049-1052 1046 1030 1043 1029 1044 1031 1032 1057	
С		1040 1068 1028	1026 1012 1025 1027 1010 1034 1045 1039 1033 1036 1041 1035 1042 1066 1065	
R	1077÷1120	1100÷1106 10	77÷1082 1114 1099 1089÷1094 1118 1109 1112 1113 1115 1116 1120 1119 1086÷1088	
R	1121 ÷ 1143	1128	1135 1127 1137 + 1139 1143 1134 1140 1126 1125 1133 1130 1129	
R	1144÷1159		1156 1155 1159 1151 1152 1149 1144 1150 1157 1158 1146 1145	
R	1160÷1182	1165 1177 1165	1178 1174 1176 1180 1160 1136 1162 1161 1175 1179 1169 - 1172	7
R	1183÷1204		1187-1191 1195 1198÷1200 11941202÷1204 1193 1184 1185	-

0

LA40 STEREO

나를 보이 일반을 하고 있는 일반을 가면하는데 되어 없는데 없는데 말을 보고 있었다. 그 사람들은 사람들은 사람들이 되는데 없는데 되어 되었다. 그리고 있다는데 없다는데 없다는데 없다는데 없다는데 그	
MISC. T5969,961-964, 977, 970,976 D 990,992 T5975 D994,993 T5973 T5956,955	
MISC. TS966,965 TS959 S1006,1005 TS957,960,951,952,958 TS954,953	Barbara and the second second
C 1057 1024 1069 1064 1070 1060 1059 1061 1019 1022 1021 1014 1013 1018 1017	
C 1023 1032 1031 1044 1029 1043 1030 1046 1049÷1052 1009 1019 1015 1016 1011 1067	<u> </u>
C 1065 1066 1042 1035 1036 1041 1058 1033 1039 1045 1034 1010 1027 1025 1012 1026 1028 1068 1040	
R 1077÷1120 1086÷1088 1119 1120 1116 1115 1136 1113 1109÷1112 1118 1089÷1094 1099 1114 1077÷1082 1100÷1106	
R 1121 ÷1143 1129 1130 1133 1125 1126 1134 1140 1143 1137÷1139 1127 1135 1128	
R 1144÷1159 1145 1146 1158 1157 1150 1144 1149 1152 1151 1159 1155 1156	
R 1160÷1182 1169÷1172 1179 1175 1161 1162 1160 1180 1176 1174 1178 1165 1177 1165	
R 1183÷1204 1185 1184 1193 1202÷1204 1194 1198÷1200 1195 1187÷1191	

ELEKTRISCHE MESSUNGEN UND ABGLEICHVORGANGE

Kontrolle der Löschoszillatorspannung

- Schalte das Gerät in Stellung "Aufnahme".
- Die Spannung am Löschkopf muss bei einer Frequenz von 50-70 kHz minimal 15 V betragen.

Einstellen des Vormagnetisierungsstroms

Beim Einstellen des Vormagnetisierungsstroms muss man nach einem Kompromis zwischen Frequenzberiech und Verzerrung suchen. Ist der Vormagnetisierungsstrom zu gering, ensteht Verzerrung. Bei zu grossem Vormagnetisierungsstrom werden die Hochtöne zu viel geschwächt:

- Schalte das Gerät in Stellung "Aufnahme".
- Die Spannung an den Messpunkten soll zwischen 30 und 60 mV liegen. Der Wert ist mit den Einstellpotentiometern R1161 (R1162) einzustellen. Für die Mehrzahl der Geräte beträgt der richtige Wert ca. 45 mV.

Uberprüfen der Bandgeschwindigkeit

Die Bandgeschwindigkeit kann gemessen werden:

a. mit einer Testcassette, mit einem nach jeweils 4,76 m auf-modulierten 800 Hz Signal (Code-Nummer 8945 600 13501)

- Lege eine Testcassette in das Gerät.
- Schalte das Gerät in Stellung Wiedergabe.
 Die Zeit zwischen zwei Signalen soll 98...102 s betragen.

b. mit der "Cassette Service Set" (Code-Nummer 4822 395 30052)

Bei zu niedriger Bandgeschwindigkeit ist zunächst zu überprüfen, ob Anpressrolle, Rutschkupplung, Schwungrad usw. schwergängig sind. Hiernach kann die Geschwindigkeit mit R481 auf der Motorregelplatine abgeglichen werden.

Kontrollieren der automatischen Endabschaltung

Bei schlechter Funktion der automatischen Endabschaltung ist zunächst festzustellen, ob der Fehler im elektronischen Teil oder im rotierenden Schalter sein kann. Hierzu misst man die Spannung am Knotenpunkt C1058-R1186. Beträgt die Spannung 3...4 V. sind der Kollektor und der rotierender Schalter einwandfrei und muss der Fehler im elektronischen Teil sein. Bei abweichendem Wert müssen Kollektor und rotierender Schalter überprüft und ggf. ersetzt werden.

MECHANICAL PARTS-LIST RECORDER

1	4822 502 10745	67	4822 532 50268	97	4822 528 10284
2	4822 532 10331	68	4822 403 40039	98	4822 528 10286
3	4822 530 70043	69	4822 249 10059	99	4822 492 61534
4	4822 532 10332	70	4822 532 50043	100	4822 532 50648
5	4822 502 10951	71	4822 532 10544	101	4822 535 90062
_	1000 500 50101		1000 100 -000		
7	4822 530 70121	72	4822 492 50966	102	4822 310 20218
8	4822 502 11053	73	4822 492 50808	103	4822 520 30225
9	4822 530 70124	74	4822 492 30653	104	4822 530 70119
10	4822 530 70115	75	4822 403 50846	105	4822 492 60345
11	4822 530 70174	76	4822 403 50431	106	4822 528 90173
12	4822 530 80081	77	4822 403 50587	107	4822 403 50576
14	4822 502 11249	78	4822 402 60322	109	4822 492 60912
15	4822 502 10909	79	4822 492 40416	111	4822 403 20083
16	4822 532 10215	80	4822 492 40117	112	4822 403 50703
17	4822 530 70122	82	4822 528 80409	115	4822 532 50262
21	4822 502 10813	83	4822 528 10285	116	4822 278 90223
22	4822 530 70114	84	4822 492 30655	117	4822 528 80147
51	4822 249 40068	85	4822 500 10137		
52	4822 492 30655	86	4822 492 30777	120	4822 358 30077
53	4822 403 50584	88	4822 492 30777	121	4822 528 10228
99	4022 403 50504	00	4822 492 40374	122	4822 520 10219
54	4822 492 30654	89	4822 492 60344	123	4822 520 10292
55	4822 492 30836	90	4822 532 50265	124	4822 349 50067
56	4822 403 10115	91	4822 528 90081	125	4822 358 30148
58	4822 411 50261	91a	4822 278 90008	126	4822 532 70078
60	4822 411 50259	92	4822 358 30152	127	4822 361 20063
63	4822 492 50676	93	4822 492 30778	128	4822 403 50751
64	4822 492 61314	93a	4822 403 50591	129	4822 278 90303
	4822 520 40005	94	4822 492 40438	133	4822 528 20179
65a	4822 402 60321	95	4822 462 70867	100	1044 040 40119
66	4822 520 30226	96	4822 403 10118		
30	TODE 020 00220	30	4055 409 INTIO	1	

ELEKTRISCHE MESSUNGEN UND ABGLEICHVORGANGE

Kontrolle der Löschoszillatorspannung

- Schalte das Gerät in Stellung "Aufnahme".
 Die Spannung am Löschkopf muss bei einer Frequenz von 50-70 kHz minimal 15 V betragen.

Einstellen des Vormagnetisierungsstroms

Beim Einstellen des Vormagnetisierungsstroms muss man nach einem Kompromis zwischen Frequenzberiech und Verzerrung suchen. Ist der Vormagnetisierungsstrom zu gering, ensteht Verzerrung. Bei zu grossem Vormagnetisierungs-strom werden die Hochtöne zu viel geschwächt:

- Schalte das Gerät in Stellung "Aufnahme".

 Die Spannung an den Messpunkten soll zwischen 30 und 60 mV liegen, Der Wert ist mit den Einstellpotentiometern R1161 (R1162) einzustellen, Für die Mehrzahl der Geräte beträgt der richtige Wert ca. 45 mV.

Uberprüfen der Bandgeschwindigkeit

Die Bandgeschwindigkeit kann gemessen werden:

a. mit einer Testcassette, mit einem nach jeweils 4,76 m aufmodulierten 800 Hz Signal (Code-Nummer 8945 600 13501)

- Lege eine Testcassette in das Gerät.
 Schalte das Gerät in Stellung Wiedergabe.
 Die Zeit zwischen zwei Signalen soll 98...102 s betragen.

b. mit der "Cassette Service Set"

(Code-Nummer 4822 395 30052)

Bei zu niedriger Bandgeschwindigkeit ist zunächst zu über-prüfen, ob Anpressrolle, Rutschkupplung, Schwungrad usw. schwergängig sind. Hiernach kann die Geschwindigkeit mit R481 auf der Motorregelplatine abgeglichen werden.

Kontrollieren der automatischen Endabschaltung

Bei schlechter Funktion der automatischen Endabschaltung ist zunächst festzustellen, ob der Fehler im elektronischen Teil oder im rotierenden Schalter sein kann. Hierzu misst man die Spannung am Knotenpunkt C1058-R1186. Beträgt die Spannung 3...4 V. sind der Kollektor und der rotierender Schalter einwandfrei und muss der Fehler im elektronischen Teil sein. Bei abweichendem Wert müssen Kollektor und rotierender Schalter überprüft und ggf. ersetzt werden.

MECHANICAL PARTS-LIST RECORDER

1	4822 502 10745	67	4822 532 50268	1 97	4822 528 10284
2	4822 532 10331	68	4822 403 40039	98	4822 528 10286
3	4822 530 70043	69	4822 249 10059	99	4822 492 61534
4	4822 532 10332	70	4822 532 50043	100	4822 532 50648
5	4822 502 10951	71	4822 532 10544	101	4822 535 90062
7	4822 530 70121	72	4822 492 50966	102	4822 310 20218
8	4822 502 11053	73	4822 492 50808	103	4822 520 30225
9	4822 530 70124	74	4822 492 30653	104	4822 530 70119
10	4822 530 70115	75	4822 403 50846	105	4822 492 60345
11	4822 530 70174	76	4822 403 50431	106	4822 528 90173
12	4822 530 80081	77	4822 403 50587	107	4822 403 50576
14	4822 502 11249	78	4822 402 60322	109	4822 492 60912
15	4822 502 10909	79	4822 492 40416	111	4822 403 20083
16	4822 532 10215	80	4822 492 40117	112	4822 403 50703
17	4822 530 70122	82	4822 528 80409	115	4822 532 50262
21	4822 502 10813	83	4822 528 10285	116	4822 278 90223
22	4822 530 70114	84	4822 492 30655	117	4822 528 80147
51	4822 249 40068	85	4822 500 10137	120	4822 358 30077
52	4822 492 30655	86	4822 492 30777	121	4822 528 10228
53	4822 403 50584	88	4822 492 40374	122	4822 520 10219
54	4822 492 30654	89	4822 492 60344	123	4822 520 10292
55	4822 492 30836	90	4822 532 50265	124	4822 349 50067
56	4822 403 10115	91	4822 528 90081	125	4822 358 30148
58	4822 411 50261	91a	4822 278 90008	126	4822 532 70078
60	4822 411 50259	92	4822 358 30152	127	4822 361 20063
63	4822 492 50676	93	4822 492 30778	128	4822 403 50751
64	4822 492 61314	93a	4822 403 50591	129	4822 278 90303
65	4822 520 40005	94	4822 492 40438	133	4822 528 20179
65a	4822 402 60321	95	4822 462 70867		
66	4822 520 30226	96	4822 403 10118	l	

М	ISC.						0405		TS404,4	02			TS403,401	
C		420	418	42	8 427	419 43	1 417	430	414 410 424	41	2 423	422	409 411 421	4 13
R	466			463 47	465	468	462	467 46	1 450 448	438	3 454 436	451 469 453	447	149
R			475	472	476 47	1	434	456	444	438 440	442 446	435 441 445	437 439 443	455

FM-TUNER

VOLTAGES HAVE BEEN MEASURED AT A SUPPLY VOLTAGE OF 15V

4487D/A

MIS	sc.							D	405			TS404,402						TS	403,40	01	
C		420	418		428	427	419	431	417	430		414 410 424	412 4	23		422		409	411 4	. 21	4 13
R	466			463	473	465		468	462	467	461	450 448	438 454	436	451 4	69 45	53			447	149
R			475	472		476 47	1		434	456	5	444 438	440 442	2 446	435	441	445	437 4	39 44	3	455

FM-TUNER

VOLTAGES HAVE BEEN MEASURED AT A SUPPLY VOLTAGE OF 15V

4487D/A

IF-FM UNIT

VOLTAGES HAVE BEEN MEASURED AT A SUPPLY VOLTAGE OF 15V

VOLTAGES HAVE BEEN MEASURED AT A SUPPLY VOLTAGES OF 15V

STEREO DECODER

SK Wave range	Signal to	\Diamond	Adjust	Indication
·			DA	via 1 MΩ
	Pilot 19 kHz ± 20 mV		DB	5 max
		⟨₿⟩	DC	6 max
FM (87.5-104 MHz)	S (L = -R = 5 kHz)	2	DD	♦ 3
	Multiplex (M + S + Pilot) Right 1 kHz		R458	A
	Multiplex (M + S + Pilot) Right 5 kHz		R459	⟨8⟩ min
Repeat - Herhalen - Répéte	r - Wiederholen - Ricomminciare	- Repe	tera - Gentage - Gjentag	else - Toista

(GB)

- [1] If the unit cannot be adjusted in the apparatus, one should simulate with a separate unit the situation in which the apparatus contains the unit. The relevant data have been indicated by dotted lines in the figure.
- 2 Connect point 3 of the stereo decoder to mass and apply a sufficient strong signal to enable the stereo indicator to function.
- Connect an oscilloscope. Adjust the S-signal for maximum (1) and so that a well-defined zero passage is obtained. The envelopes of the L and R signals should intersect on the x-axis (2) See fig. 1.

F

- Si le bloc ne peut être ajusté dans l'appareil, il faudra recréer la situation une fois l'unité extraite de l'appareil. Les données s'y rapportant sont représentées en pointillé dans le schema,
- 2 Brancher le point 3 du décodeur stéréo à la masse et fournir un signal d'une telle intensité que l'indicateur stéréophonique se mette à fonctionner.
- 3 Brancher un oscillographe. Régler le signal S sur maximum (1) pour que le passage du zéro soit précis (2). Les enveloppes du signal L et R doivent s'entrecouper sur l'axe du zéro (2), voir fig. 1.

(I

- 1 Se il blocco non può essere regolato nell'apparecchio, bisognerà ricreare le stesse condizioni con il blocco fuori dell'apparecchio. I dati che vi ci riferiscono vengono riprodotti con linea punteggiata nello schema.
- 2 Collegare il punto 3 del decodatore stereofonico con massa e fornire un segnale di intensità tale da fare funzionare l'indicatore stereofonico.
- [3] Collegare un oscillografo. Regolare gli involucri del segnale S su massimo (1) perchè il passaggio per lo zero sia preciso (2)
 Gli involucri del segnale L e R debbono tagliarsi sull'asse dello zero (2), vedi fig. 1.

- Indien de unit niet in het apparaat afgeregeld kan worden, moet bij de losse unit de situatie in het apparaat nagebootst worden. De gegevens hiervoor zijn gestippeld getekend.
- 2 Punt 3 van de stereodecoder aan massa leggen en een dusdanig sterk signaal toevoeren dat de stereoindicator werkt.
- 3 Sluit een oscillograaf aan. Het S-signaal op maximum (1) afregelen en zo dat een scherpe nuldoorgang verkregen wordt (2). De omhullenden van het L en R signaal moeten elkaar op de nulas snijden (2) (zie fig. 1)

- Wenn die Einheit nicht im Gerät justiert werden kann, muss man in der aus dem Gerät entfernten Einheit, die Situation im Gerät nachgeahnt werden. Die Daten sind in den Schaltbild mit gestrichelten Linien gezeichnet.
- 2 Lege Punkt 3 des Stereodecoders an Masse und führe solch ein Signal zu,dass der Stereoindikator in Tätigkeit gesetzt wird.
- 3 Schliesse einen Oszillografen an. Justiere das S-Signal auf Maximum (1), und so dass ein scharfer Nulldurchgang erhalten wird. Die Umhüllungskurven des L- und R-Signals sollen sich auf der Nullachse schneiden (2) Siehe Abb. 1.

Fig.1

4992A

VOLTAGES HAVE BEEN MEASURED AT A SUPPLY VOLTAGE OF 15V

MISC	C	F
D406 D405		
D407		431 432 430
	417	420
TS 403	414	
	411	421
	416	423
TS 402		425
	424	424
TS401	413	
D408		422
		433 428

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

WARTUNG

Reinigen des Geräts und Schmieren der wichtigsten Schmierstellen empfiehlt sich nach jeweils 500 Betriebsstunden.

Reinigen mit Alkohol oder Spiritus

- LöschkopfAufnahme/Wiedergabekopf
- Antriebspesen
- Bandteller
- Zwischenräder
- Tonrolle - Anpressrolle

Schmierung

- Shell Alvania 2 (4822 389 10001) Dient zum Einfetten der Kugellager, z.B. der Kugellager zwischen Montageplatte und Schieber 53.
- Schmiermittel 10 (4822 390 10003) Zum Schmieren von Gleitflächen, z.B. der Bügel 505, 107
- All Purpose Oil (4822 390 10048) Zum Schmieren von Achsen und Lagern, z.B. Bandtellerachsen, Zwischenscheibenlagern, Tonrollenlager.
- Silikonenfett (4822 390 20023) Zum Schmieren von Kunststoff-Einzelteilen.

Erforderliche Service-Hilfswerkzeuge

- Lehre für Höheneinstellung des A/W-Kopfes

8945 600 13501

- Messcassette für Azimuteinstellung des A/W-Kopfes und für Bandgeschwindigkeitsprüfung

4822 402 60245

REPARATURHINWEISE

Auswechseln der Antriebspese 92

- Entferne Schwungradlagerbugel 123.
- Erneuere Amtriebspese 92.
- Stelle den Schwungradlagerbügel nach Auswechsen der Antriebspese 92 erneut ein, Siehe hierzu "Mechan sche Einstellungen und Prüfungen",

Auswechseln der Drucktasten

- Entferne Feder 63.

Anmerkung:

Beim Auswechseln der Wiedergabetaste sind auch ie Aufnahme- und die Rückspultaste zu entfernen und ist (er umgebogene Teil von Bügel 77 (unter der Drucktaste) geradezubiegen.

- Kippe die Drucktaste nach oben und entferne sie,

Auswechseln des rechten Bandtellers 98

- Baue das Gerät aus.
- Entferne Kappe 97.
- Hebe den Bandteller von der Bandtellerachse.

Auswechseln des linken Bandtellers 83

- Entferne Klemmring 11, Zählwerkpese 125, Peselantriebsscheibe 106 und Klemmring 104.
- Ziehe den Bandteller komplett mit der Bandtellen chse aus dem Lager.

Auswechseln von Schwungrad 121 und Rutschkupplug 133

- Entferne Schwungradlagerbügel 123.
- Entferne Kunststoff-Klemmring 90.
- Entferne Antriebspese 92.
- Entferne Schwungrad und Rutschkupplung gleichzetig.

Anmerkungen:

- 1. Bei Montage ist darauf zu achten, dass der Nocken auf der Rutschkupplung 133 in den Haken von Feder 105 fallt.
- 2. Nach Montage ist der Schwungradbügel erneut einzustellen. Siehe hierzu "Mechanische Einstellungen und Prufungen".

Auswechseln des Kollektors 102

Im Werk wird der Kollektor 102 auf die Montageplatte gefälzt, wobei die beiden Falze ausserdem zum Anschluss der

Zuleitungsdrähte dienen, Für Service ist diese Methode weniger geeignet. Der Concern Service liefert deshalb unter Code-Nummer 4822 310 20218 einen speziellen Kollektor, auf dem bereits 2 Falze mit Isolierring angebracht sind, Dieser Kollektor ist auf die Montageplatte zu kleben, wozu man 2-Komponentenleim, Code-Nummer 4822 390 30014, benutzen kann. Die Zuleitungsdrähte lassen sich nunmehr auf normale Weise an die beiden Falze festlöten.

MECHANISCHE EINSTELLUNGEN UND PRÜFUNGEN, BANDLAUFEINSTELLUNGEN

Einstellen des Aufnahme/Wiedergabe-Kopfes (siehe Abb. 4)

- a. Höheneinstellung (rechte Seite)
- Benutze für diese Einstellung eine Sonderlehre; siehe A in
- Man geht von einer Senkrechtlage der Tonrolle aus. Schalte das Gerät in Stellung "Wiedergabe".

- Schiebe Lehre A über die Tonrolle, während Anpressrolle 68 zurückgezogen wird. Die Lehre ist so weit über die Tonrolle zu schieben, dass sie sich mit den Lösch- und A/W-Kopf-Bandführungen auf einer Linie befindet.
- Bei richtiger Höheneinstellung des A/W-Kopfes, schiebt sich die Lehre genau zwischen die Bandführung vorgenannter Köpfe. Ist dies nicht der Fall (A/W-Kopf steht zu hoch oder zu niedrig), kann der Kopf mit Mutter 66B nachgestellt werden. Mutter 66B hiernach lacksichern.

b. Azimuteinstellung (linke Seite)

- Lege eine Testcassette (6300 Hz), Code-Nummer 8945 600 13501 in das Gerät.
- Schliesse ein Röhrenvoltmeter zwischen die Kontakte 3 und 2 des Diodenausganges an.
- Schalte das Gerät in Stellung "Wiedergabe".
 Stelle mit Mutter 66A den A/W-Kopf so ein, dass maximale Ausgangsspannung gemessen wird. (Notiere den Wert!)
- Schliesse alsdann das Röhrenvoltmeter an die Kontakte 5 und 2.
- Miss auch hier die Ausgangsspannung und justiere mit Mutter 66A auf maximalen Wert. (Notiere den Wert!)
- Stelle den A/W-Kopf auf den Durchschnittswert der beiden notierten Werte ein, so dass die Ausgangsspannung beider Kanale gleich ist. Alsdann Mutter 66A lacksichern.

Die Azimuteinstellung erfordert keinen Ausbau des Laufwerks. Mutter 66A ist nach Entfernen von Zierplatte 19 zugänglich.

Überprüfen der Andruckkraft von Anpressrolle 68 (siehe Abb.1)

Die erforderliche Kraft zum Abheben der Anpressrolle von der Tonrolle in Wiedergabestellung soll 150...190 g betragen. Diese Kraft ist einstellbar, indem man die Torsionsfeder in eine andere Befestigungsöffnung hakt.

Der Abstand zwischen dem Anpressrollenhebel und Nocken A soll in Stellung "Wiedergabe" wenigstens 0,5 mm betragen. Einstellen dieses Abstandes erfolgt durch Biegen von Nocken

Kontrolle der Rutschkupplung 133, Abb. 1

Die Möglichkeit besteht, dass das Band in der Cassette nicht oder unregelmässig auf den rechten Spulenteller gewickelt wird. Dies kann eine Beschädigung des Bandes verursachen.

Dieser Fehler kann entstehen durch:

a. Nicht richtige Andruckkraft des Antriebsrades von Rutschkupplungsbügel 133 gegen den rechten Spulenteller

Diese Kraft soll 70...100 g betragen. Die Einstellung hiervon bezieht sich auf die Aufwickelfriktion.

Diese wird wie folgt gemessen:

- Schalte die automatische Endabschaltung ab, indem man den Kollektor und Emitter von TS973 kurzschliesst.
- Schliesse ein mA-Meter zwischen Punkt 5 von SK T und +1, an Schalte das Gerät ohne Cassette in Stellung "Wiedergabe"

und stelle die Stromaufnahme fest.

- Blockiere den rechten Spulenteller und lies die Stromzunahme
- ab; diese soll 8...16 mA betragen. Beträgt die Stromzunahme weniger als 8 mA, dann ist die Andruckkraft des Antriebrades von Rutschkupplungsbügel 133 gegen den rechten Spulenteller auf mindestens 70 g herabzusetzen (siehe Abb. 2).
- Beträgt die Stromzunahme mehr als 16 mA, dann ist die Andruckkraft bis maximal 100 g zu erhöhen (siehe Abb. 2).

Die Andruckkraft ist durch Biegen der Drahtfeder 105 einstellbar.

Erhält man auf diese Weise beim Blockieren des rechten Spulentellers keine Stromzunahme von 8...16 mA, dann ist der Fehler wahrscheinlich Ursache von:

b. Zu geringer Aufwickelfriktion

In diesem Fall ist Ersetzen der Friktion erforderlich.

c. Zu viel Reibung in der Cassette

Beträgt die Stromzunahme 8...16 mA (siehe Beschreibung unter Punkt a), dann ist das schlechte Aufwickeln des Bandes einer zu grossen Reibung des Bandes in der Cassette zuzuschreiben.

Überprüfen der Anpressfeder 99 (siehe Abb. 3)

Die zum Andrücken der Cassette erforderliche Kraft soll 200...300 g betragen. Messen erfolgt mit einem Federdruckmesser gemäss Abb. 3.

PRÜFUNGEN UND EINSTELLUNGEN DES ANTRIEBSMECHANISMUS

Kontrolle der Umspulstufe (siehe Abb. 5)

- a. In Stellung "Wiedergabe" soll der Abstand zwischen der Schwungscheibe und Zwischenrad 117 1...2 mm betragen. Nachstellen erfolgt durch Biegen von Fahne E.
- b. In Stellung "Rückspulen" sollen die Abstände A und B mindestens 0,2 mm betragen. Nachstellen erfolgt durch Biegen der Fahne F bzw. der Fahne G.
- c. In Stellung "Aufwickeln" sollen die Abstände C und D wenigstens 0,2 mm betragen. Nachstellen erfolgt durch Biegen der Fahne F bzw. der Fahne G.
- d. In den Stellungen "Wiedergabe", "Vorlauf" und "Rücklauf" soll der Bremsbtigel an die beiden Anschlagfahnen auf der Montageplatte anliegen und muss der Abstand Bandteller-Bremsbügel mindestens 0,3 mm betragen.

Einstellen der Schwungscheibe (siehe Abb. 4)

- Stelle das Gerät mit der Unterseite nach oben.
- In dieser Lage soll der Abstand zwischen der Unterseite der Tonrolle und der Lagerplatte 0,1...0,3 mm betragen.
- Nachstellen erfolgt, indem man Bügel 123 mit einem Schraubenzieher verschiebt.

Einstellen des Motors

Die Höheneinstellung des Motors muss so sein, dass die Motorantriebsscheibe sich auf einer Linie mit den Antriebsscheiben von Schwungrad und Friktionskupplung befindet.

Überprüfen der DNL

Die Anschlusspunkte für den rechten Kanal sind zwischen Klammern angegeben.

- Unterbrich die Printspur zum Konnektor Punkt 4 (6).
- Lote zwischen die Konnektorpunkte 4 (6) und 5 einen Widerstand von 100 Ω .
- Schliesse über einen Widerstand von 10 k Ω einen Tongenerator an Punkt 4 (6) an.
- Justiere die Spannung des Tongenerators so, dass zwischen Punkt 4 (6) und Punkt 5 eine Spannung von 2,5 mV liegt (Frequenz 2 kHz).

- (Frequenz 2 knz).

 Erhöhe die Frequenz von 2 kHz auf 8 kHz.

 An Punkt 3 (5) des externen Recorderausganges muss dann eine Spannungsabnahme von 1,5-2 mV zu sehen sein.

 Wenn das DNL-Filter ausgeschaltet ist, darf bei Frequenzerhöhung keine Spannungsabnahme von Bedeutung zu sehen

DYNAMIK-RAUSCHBEGRENZER (DNL)

Rauschunterdrückung ohne hörbare Beeinflussung der Wiedergabeoualitat

Bei leisen Passagen muss das Rauschen besonders unterdrückt werden, da hier das Rauschen am meisten auffällt. Bei lauten Passagen ist keine Begrenzung erforderlich, da dann das Signal/Rauschverhältnis gross ist.

Das Blockschaltbild Abb. 13 stellt die Funktion des DNL dar, Vin wird am Eingang in V1 und V2 getrennt. Der Teil V1 gelangt über ein phasendrehendes Netzwerk (über 18 kHz: 180°) und einen festen Abschwächer an den Ausgang.

V2 wird durch ein Hochpassfilter mit einer Kippfrequenz von

V2 wird durch ein Hochpassiliter mit einer Kippirequenz von 5,5 kHz geführt und danach verstärkt.
Bei einer Eingangsspannung Vin von 7,5 mV - 780 mV wird V2 durch den dynamischen Abschwächer (variable attenuator): auf 0 V zurückgeregelt. Dies bedeutet, dass am Ausgang nur V1, der das gesamte Frequenzspektrum umfasst, vorhanden in 18,5 kies Fiederspannung VI. um 0 V 7, 2 mV mied V0. ist. Bei einer Eingangsspannung Vin von 0 V-7,8 mV wird V2 durch den dynamischen Abschwächer weniger abgeschwächt. Am Ausgang stehen jetzt V1 und V2. Hierbei umfasst V2 alle Frequenzen ab 5,5 kHz, die mit denen von V1 gegenphasig sind, Die hohen Frequenzen erscheinen darum abgeschwächt am Ausgang.

Schaltbildbeschreibung

TS478 bildet zusammen mit R708 und C878 ein Alles-Durch-

Hierbei eilt die Phase von V1 hinsichtlich V_{in} stets mehr nach bis die Phasendrehung bei 10 kHz 1800 beträgt. Das Hochpassfilter besteht aus 3 RC-Netzwerken, nämlich:

Stufenempfindlichkeiten des DNL-Filters bei einem Eingangsniveau von 5 mV, 10 kHz.

Transistor vom linken Kanal	TS478	TS480	TS482	TS484
C B C	- 5 mV 5 mV	- 3,6 mV 5 mV	130 mV 5,1 mV 4,8 mV	0,75 V 130 mV 120 mV
Transistor vom rechten Kanal	TS479	TS481	TS483	TS485

C880 mit R710, C882 mit R714, R716 und dem Eingangswider-

Die Verstärkung von TS480 ist etwas grösser als 1 und wird durch das Verhältnis R718/R712 bestimmt. Das dritte Netzwerk ist C884 zusammen mit Ri von TS484. Die gesamte Abschwächung dieser Filter ist 18 dB/Okt, bei einer Kippfrequenz von

Das Verhältnis R724/R726 bestimmt die Verstärkung von

R722 und R726 sorgen für einen richtigen und stabilisierten Eingangswiderstand, der für das RC-Netzwerk mit C884 erforderlich ist.

R736 und R732 bilden den festen Abschwächer.

V1 wird durch R720 abgeschwächt und gelangt dann an den Ausgang. Um zu verhindern, dass der dynamische Abschwächer auf die niedrigen Frequenzen reagiert, wurde C886 hinzugefügt. Das von TS484 kommende verstärkte Signal ist das Steuersignal für den dynamischen Abschwächer. Um ein Wirken dieses Signals bei sehr hohen Frequenzen (über 10 kHz) zu vermeiden, Signals bet senr nonen Frequenzen (uner 19 Allz), 24 vermewird dieses Signal durch C392 abgeschwächt.

Das Steuersignal wird durch D490 und D494 für beide Phasen

gleichgerichtet, so dass C984 positiv und C896 negativ aufgeladen

wird. Ubersteigt ein Signal V2 das Schaltniveau (Vin ≤ 38 dB unte dem Nullniveau), dann ist die Gleichspannung an C894 und C896 so gross, dass die Dioden D492 und D496 leiten (Abb. 6). Hierdurch findet je nach der Grösse des Leitens, mehr oder

meruren innet je nach der Grosse des Leitens, menr oder weiniger Abschwächung für V2 statt.
Die Dioden stellen nämlich, je nach der Grösse dieser Gleichspannung einen bestimmten Widerstand dar, der in Abb. 7 durch eine Tangeme der Dioden-Charakteristik dargestellt wird. Ohne Gleichspannung an den Punkten A und B leiten die Dioden nicht und geschieht die Abschwächung nur durch R736 und R732.

Fig. 6

Fig. 7 5229A

1764 A

Fig.13

6382B

Item	Code number	
Item		6.00
1	5322 267 64027 (10p)	The second second
2	4822 267 50209 (10p)	5 4832A/8
3	4822 267 50211 (10p)	TARRO GARRAGARARA
4	4822 268 10107	
5	5322 267 64007 (20p)	500
6	5322 264 54017 (strip)	

UNITS	
FM-Tuner + var.cap. 104 MHz	4822 210 10176
FM-IF	4822 212 40017
AM-IF 452 kHz	4822 212 40018
AM-IF 470 kHz	4822 214 50134
AM-IF 460 kHz	4822,214 50122
Stereodecoder	4822 210 30027
MD-Preamplifier	4822 212 40021
DNL	4822 214 30209
Erase oscillator	4822 214 50142

-Div		
S510	Ferroceptor	4822 158 60366
S418	Mains transformer	4822 146 20503
VL673,674	Fuse 1,25A-slow	4822 253 30022
,	Fuse in S418	4822 252 20007
R586	VDR	4822 116 20073
- LA-	⊗	
419,420,421	6 V - 50 mA	4822 134 40003
422,432,424	6,3 V - 250 mA	4822 134 40007
Coil-Panel (c	only for /32)	
S510a.b		4822 156 10414
S510c.d		4822 156 10415

	- 4		_
AF-	PA	LNL	L

AF-FAMEL		
-TS-		
651,652	BC159B	5322 130 40716
653,654	BC148	5322 130 40318
655,656	BC547B	4822 130 40959
657,659	BD262/263	4822 130 41027
-D-	\	
665,666	BAW62	5322 130 30613
669 1 67	BY126	5322 130 30192
-R-		
777,778	NTC	4822 116 30087
783,784	Trimpotm, 470 Ω	4822 100 10038
797: 800 } 809: 812 }	1 Ω - 1/4 W	4822 110 53027
832	360 Ω - 1/4 W	5322 116 54954
-C-	-11-	
686,687	330 pF - 5 %	5322 121 54077
688,689	10 nF - 10 %	4822 121 41134
703,704	2200 pF - 10 %	4822 122 30114
724-725	22 nF	4822 122 30103

TONE CONTROL PANEL

-TS-	€	
401,402	BC549B	4822 130 40936
403,404	BC558A	4822 130 40962
-D-	→	
405	BAX18	5322 130 34121
-R-		
434	Saf. Res. 1 Ω	4822 111 30215
451	Potm. 100 k Ω	4822 105 10151
463,469	Potm. semi-log 47 k Ω	4822 105 10152
473	Potm. spec. semi-log $80+20k\Omega$	4822 105 10153
-C-	-11-	
409,410	820 pF	4822 122 30031
421,422	3900 pF	4822 122 30098
427,428	150 nF	4822 121 40104
431	22 nF	4822 122 30103

DE	CORDI	7D D/	MET

RECORDER PANEL					
-TS-	®				
951,952	BC549B	4822 130 40936			
953: 956	BC148A	5322 130 40317			
957,958	BC549C	5322 130 44216			
050 060 .		1000 100 1000			
970,975,976	BC548B	4822 130 40937			
961,962,973	BC548C	5322 130 44196			
963: 966	BC548A	4822 130 40943			
969	BC548	4822 130 40938			
977	BD136	5322 130 40712			
	20100				
-D-	→				
990,992,993	BA317	4822 130 30847			
994	OA95	5322 130 30191			
-R-					
1087	Trimpotm. 100 kΩ	4822 100 10052			
1118	3.9 MΩ	4822 110 63123			
1161,1162	Trimpotm. 22 kΩ	4822 100 10051			
1194	Trimpotm. 2.2 kΩ	4822 100 10027			
1204	Saf. Res. 15 Ω	4822 111 30422			
-S-					
1005,1006	Coil 7 mH	4822 156 20212			
-C-					
1011,1012)					
1017,1018 }	820 pF	4822 122 30031			
1025,1026	-				
1019	$47 \mu F - 4 V$	4822 124 20582			
1027,1028 1043,1044 }	1000 pF	4822 122 31175			
1043,1044	•	4000 104 00570			
1039,1040	$100 \mu F - 4 V$	4822 124 20578			
1049,1050	1500 pF	4822 122 31221			
1051,1052	2200 pF	4822 122 30114			
1057	3300 pF	4822 122 30099			
1060	22 nF	4822 122 30103			
1065	220 pF	4822 122 31173			
1066	390 pF	4822 121 50418			

RF-PANEL

-TS-	©	
500	BF495	4822 130 40947
502	BD135	5322 130 40645
-D-	→	
504	BZX79/C16	5322 130 34086
-R-		
600	1,8 MΩ - 1/8 W	4822 110 63194
602	Presetpotm. 1 M Ω	4822 100 10089
617	Presetpotm. 2,2 kΩ	4822 100 10029
-S-		
511		4822 156 40613
515		4822 156 30492
516		4822 156 30493
517		4822 156 30494
519		4822 157 40112
-C-	-11-	
523	130 pF - 2 %	4822 121 50533
533	390 pF - 2 %	4822 122 30091
534	2700 pF - 5 %	5322 121 54065
544	2200 pF - 10 %	4822 122 30114
550	100 nF - 10 %	4822 121 41161
551	1800 pF - 2 %	5322 121 54044
556	280 pF - 1 %	4822 121 50573
557	158 pF - 1 %	4822 121 50581
529,531,532 552,554,558	Trimmer 20 pF	4822 125 50045
532 ×	Trimmer 10 pF	4822 125 50062

Note; * Only for -/32

Gramophones 22GC027/00/19/33/55/80

5206A

(GB)

TECHNICAL DATA

Mains voltages Power consumption Turntable speeds P.U.-heads

Stylus pressure Preamplifier Dimensions

: 110-127-220-240 V, 50/60 Hz : 1.7 W : 33 1/3 - 45 r.p.m. : GP213-GP390-GP400-GP401

: 110-127-220-240 V, 50/60 Hz

: 2-4 g (adjustable) : 22GH915 : 270x340x90 mm

CARACTERISTIQUES TECHNIQUES

: 1,7 W

Tensions secteur Consommation Vitesses du plateau

: 33 1/3 - 45 tr/mn : GP213-GP390-GP400-GP401 Têtes P.U.

Pression d'aiguille Préamplificateur : 2-4 g (réglable) · 22GH915 : 270x340x90 mm

DATI TECNICI

Tensione di alimentazione $\,$: 110-127-220-240 V, 50/60 Hz

: 1,7 W : 33 1/3 - 45 giri al minuto : GP213-GP390-GP400-GP401 Velocità del piatto : 2-4 g (regolabile)

Pressione sulla puntina Preamplificatore

: 22GH915 : 270x340x90 mm

TEKNISKA DATA

Nätspänningar : 110-127-220-240 V, 50/60 Hz : 1,7 W Effektförbrukning : 33 1/3 - 45 v/min. : GP213-GP390-GP400-GP401 Hastigheter

Nålmikrofoner : 2-4 g (justerbart) : 22GH915 Nåltryck Förförstärkare Dimensioner : 270x340x90 mm

TEKNISKE DATA

Nettspenninger : 110-127-220-240 V, 59/60 Hz Effektforbruk : 33 1/3 - 45 omdr./min. : GP213-GP390-GP400-GP401 Hastigheter P.U.-hoder

Stifttrykk : 2-4 g (regulerbar) Forforsterker : 22GH915 Dimensjoner : 270x340x90 mm

TECHNISCHE GEGEVENS

Netspanningen : 110-127-220-240 V, 50/60 Hz : 1,7 W : 33 1/3 - 45 omw./min. Opgenomen vermogen Toerentallen P.U. koppen : GP213-GP390-GP400-GP401 Naalddruk

: 2-4 gr. (instelbaar) : 22GH915 Voorversterker Afmetingen : 270x340x90 mm

TECHNISCHE DATEN

: : 110-127-220-240 V, 50/60 Hz

Leistungsaufnahme : 1,7 W Drehzahl des Plattentellers : 33 1/3 - 45 U/min

Tonabnehmer : GP213-GP390-GP400-GP401

Auflagegewicht der Nadel : 2-4 g (einstellbar) : 22GH915 Vorverstärker Abmessungen : 270x340x90 mm

DATOS TECNICOS

: 110-127-220-240 V, 50/60 Hz : 1,7 W : 33 1/3 - 45 rev./min. Tensiones de red

Potencia de consumo

Velocidades de mesa : GP213-GP390-GP400-CP401 : 2-4 gr. (ajustable) : 22GH915 Cabeza fonocaptora

Presión de aguja Pream plificador Dimensiones : 270x340x90 mm

TEKNISKE DATA

Netspændinger : 110-127-220-240 V, 50/60 Hz Strømforbrug : 1,7 W : 33 1/3 - 45 omdr./min. Hastigheder Pick-up's : GP213-GP390-GP400-GP401 Nåletryk : 2-4 gr. (justerbar) Forforstærker : 22GH915 Dimensioner : 270x340x90 mm

Mitat

TEKNISET TIEDOT

Verkkojännitteet : 110-127-220-240 V, 50/60 Hz Tehon kulutus Pyörimisnopeudet : 1.7 W : 33 1/3 - 45 r/min Äänipää : GP213-GP390-GP400-GP401 Neulan paine : 2-4 g (säädettävä) : 22GH915 Esivahvistin

: 270x340x90 mm

DocumentationTechnique Service Dokumentation Documentazione di Servizio Huolte-Ohje Manual de Servicio Mar∎ual de Serviçio

Adjustment automatic stop mechanism

Fig.2

Fig. 4

1 3		4822 502 30085	65	4822 401 10614	94+511	4822 402 60416
3		4822 530 70123	66	4822 492 31141	95	4822 402 60419
4		4822 502 11162	67	4822 402 50118	96	4822 492 51048
5		4822 530 70119	68 (SK	(1) 4822 256 90145	97	
6		5322 532 14463	69	4822 402 50121		4822 402 60472
		4000 500 50114	50	4000 400 40 500	98	4822 290 80265
7		4822 530 70114	70	4822 492 40539	99	4822 492 31139
8 9		4822 530 70115	71	4822 492 31146	100	4822 402 60473
		4822 505 10325	72	4822 520 10239	101	4822 402 60424
10		4822 502 11004	73	4822 535 90946	102	4822 402 60423
11		4822 815 23555	74+76	4822 691 30051	103	4822 492 40541
12		4822 530 70116	75+513+514	4822 402 60466	104	
13		4822 532 10334	77	4822 402 20058		4822 492 31145
50					105+79+515	4822 464 50045
-		4822 532 60579	78	4822 402 60412	106	4822 402 50119
51+52	small. ø 238 mm	4822 466 50097	79	4822 535 90947	107	4822 492 61908
51+52	large. ø 264 mm	4822 466 50101	80	4822 535 70492	108	4822 492 61907
53	small.ø 250 mm	4822 528 10296	81	4822 402 60421	109	4822 418 60036
53	large. ø 265 mm	4822 528 10358	01	1022 102 00421	110	4822 492 31143
54+512	rangery 200 mm	4822 528 10295	83	4822 492 31214	111	
55		4822 358 30122	84	4822 402 20056	111	4822 492 40538
56		4822 411 50313			112+503+2x504+505	4822 290 80221
50		4022 411 90313	85	4822 402 60422	113	4822 444 30169
57		4822 402 60413	86	4822 492 51033	114	4822 492 40435
58		4822 492 40537	87	4822 691 30049	115	4822 402 50132
59		4822 290 60198	88+89+502	4822 251 70138	116	4822 492 51089
60		4822 290 60199	89	4822 462 71013		
61		4822 361 70292	90	4822 402 60411	117	4822 454 30227
				4022 402 00411	118	4822 402 60465
62		4822 462 70913	91	4822 492 31144	119	4822 535 91025
63		4822 492 50845	92	4822 402 60415	120	
64		4822 401 10615	93	4822 413 30668	C1 /0 88 . E . 10 77 400 TD	4000 707 40707
					C1 $(0.22 \mu F + 10 \% 400 V)$	4822 121 40181
					C2 (4700 pF + 20 % 400 V)	4822 122 10113
					R1 (6,8 k Ω 5% 5.5 W)	4822 112 21129
					R2 (1 k Ω , 5%, 1/2 W)	4822 111 50143

A 4822 390 10018

ONLY FOR 22GC027/19

Fig. 5

Switching the gramophone on

When the arm is lifted from the support and moved inwards, closing-plate 82 pushes switching strip 67 out of its stop position. Then, this switching strip is drawn towards the switching contacts 68 by spring 66. As a result, the motor starts running, and with the lift the stylus can be placed on the record.

Stop mechanism

When the "stop" push-button is depressed with spring 96 (on stop rod 95) trip pawl 84 is pushed out of the way (see adjustment - Fig. 1). Consequently, trip pawl 84 moves into the track of the switch-off projection.

Then, the switch-off projection, under the middle of control disc 54, can push away strip pawl 84. Lock 85 which is secured to this pawl, is so turned away; drive strip 102 is released so that this strip is pushed upwards by switch bracket 106. The projection of drive strip 102 moves then into the spiral groove of control disc 54. This drive strip 102 moves then via the upper guide also in spiral groove of the control disc and is pushed outwards; besides, operating strip 100, which abutts against this bracket, is pushed away. This operating strip 100 has two functions: raising - and putting back the PU arm.

Raising is done with lift support 97. Putting back the PU arm is done because closing plate 82 secured to holder 75, is carried along when operating strip 100 moves outwards. On top of holder 75 the PU arm is secured, which is then moving towards the support. Arrived in its outer position, drive strip 102 is gradually pushed out of spiral groove along the outer sloping groove; subsequently, the drive strip is transported by spring 104 to its initial position along its lowermost guide.

Because operating strip 100 is coupled via coupling piece 101 to drive strip 102, this operating strip also returns to its initial position. During this movement, a projection on the side of drive strip 102 pushes bracket 69 out of the way so that switching strip 67, which is coupled to drive strip 102, is no longer connected to the mains voltage. This strip remains disconnected because the switching strip is stopped by projection "x" on V-plate 105.

Stop mechanism (automatic)

When the PU arm moves to the middle, the projection on holder 75 moves backwards in pawl strip 81. When the needle is 65 mm from the centre of the turntable (1/2 critical diameter), this projection abutts against the back of pawl strip 81.

As soon as the stylus reaches the large pitch groove, pawl strip 81 is shifted and pawl 84 moves into the track of the switch-off projection. This switch-off projection pishes the pawl out of the way; thus, the stop mechanism is put in action (see Fig. 2). If the normal groove of the record is partly within the radius of 65 mm, the switch-off projection under the control disc pushes the pawl somewhat away. Only if the large pitch groove is reached by the stylus, does the control disc push the pawl out of the way.

Mechanism for raising the lift by hand

Raising:

When the lift button is set to position "□", lift rod 92 moves forwards. Consequently, tumbler 94 is released and falls on step "Y" of V-plate 105; in this way the step is stopped in one direction. The hook at the end of lift rod 92 moves spring 111 on grease cup 109. This grease cup is coupled to operating strip 100, which, consequently, moves outwards. Along the sloping outer groove of the operating strip, lift support 97 and the PU-arm are pushed upwards. The lift height can be adjusted when plate 107 is screwed upwards or downwards with screw 2. (See adjustment - Fig. 3.)

Lowering:

when the lift button is set to position "\sum ", lift rod 92 moves backwards. As a result, spring 111 on grease cup 109 is released, and tumbler 94 is pushed towards the mounting plate. By means of spring 110 and the damping by the grease cup, the lift is lowered slowly.

Inschakelen van het apparaat

Door de arm van de steun te halen en deze naar binnen te bewegen wordt door sluitplaat 82 de schakelstrip 67 uit zijn arret geduwd en door middel van veer 66 naar de schakelcontacten 68 getrokken. De motor gaat nu draaien en men kan met behulp van de lift de naald op de plaat zetten.

Afslagmechanisme

Door op toets "stop" te drukken wordt door middel van veer 96, bevestigd op stopstang 95, taster 84 verdraaid (zie instelling, fig. 1). Hierdoor komt taster 84 in de baan van de uitschakelnok. Nu kan de uitschakelnok, midden onder de commandoschijf 54, deze taster 84 wegduwen. Grendel 85, welke hieraan vastzit, draait hierdoor weg en aandrijfstrip 102 deblokkeert, zodat deze aandrijfstrip door middel van schakelbeugel 106 naar boven wordt gedrukt. De nok van de aandrijfstrip 102 komt dan in de spiraalgleuf van de commandoschuif 54. Deze aandrijfstrip 102 loopt nu via zijn bovenste geleiding mee in de spiraalgleuf van de commandoschijf en wordt naar buiten geduwd; tevens wordt bedieningsstrip 100, die tegen deze beugel 102 aanligt, weggeduwd. Deze bedieningsstrip 100 heeft twee functies: nl. het liften en terugzetten van de PU-arm. Het liften gebeurt door het naar boven duwen van de liftsteun 97. Het terugzetten van de PU-arm gebeurt doordat bij het naar buiten bewegen van bedieningsstrip 100 de op de houder 75 bevestigde sluitplaat 82 meegenomen wordt.

Aan de bovenzijde van deze houder 75 is de PU-arm bevestigd die dus nu naar de steun wordt bewogen. In zijn buitenste positie aangekomen, wordt aandrijfstrip 102 door middel van een oploop in de commandoschijf geleidelijk uit de spiraalgleuf geduwd en dan door veer 104 langs zijn onderste geleiding in zijn uitgangspositie teruggebracht.

Doordat bedieningsstrip 100 via koppelstuk 101 gekoppeld is met aandrijfstrip 102 komt deze bedieningsstrip eveneens in zijn uitgangspositie terug. Tijdens deze beweging drukt een nok aan de zijkant van deze aandrijfstrip 102 beugel 69 om, waardoor schakelstrip 67 welke hieraan gekoppeld is vrijkomt van de netspanning. Hij blijft vrij omdat de schakelstrip gearreteerd wordt door nok "x" op V-plaat 105.

Afslagmechanisme (automatisch)

Wanneer de PU-arm zich naar het midden beweegt, zal de nok op houder 75 zich naar achteren in tasterstrip 81 bewegen. Als nu de naald 65 mm (1/2 scherpsteldiameter) van het hart van de draaitafel verwijderd is, zal deze nok aanliggen tegen de achterzijde van de tasterstrip 81.

Wanneer nu de naald in de grote spoedgroef komt zal de tasterstrip 81 verschoven worden en komt taster 84 in de baan van de uitschakelnok.

Deze uitschakelnok zal de taster wegduwen en zodoende het afslagmechanisme in werking stellen (zie instelling automatische afslag, fig. 2). Als nu de normale groef van de plaat doorloopt binnen de straal van 65 mm zal de uitschakelnok onder de commandeschijf de taster steeds iets omleggen. Pas als de grote spoedgroef voor de naald komt zal hij de taster wegduwen.

Handliftmechanisme

Heffen:

Door de liftknop in stand " ♥ " te zetten beweegt de liftstang 92 naar voren. Hierdoor komt tuimelaar 94 vrij en valt op de trap "Y" van de V-plaat 105 waardoor deze in één richting wordt geblokkeerd. De haak aan het einde van liftstang 92 brengt veer 111 op vetpot 109 in beweging. Deze vetpot is gekoppeld met bedieningsstrip 100 die hierdoor naar buiten beweegt.

Door middel van de schuine oploop aan het eind van de bedieningsstrip wordt liftsteun 97 en dus ook de PU-arm omhoog geduwd. De lifthoogte kan ingesteld worden door plaatje 107 met schroei 2 omhoog of omlaag te schroeven (zie instelling fig. 3).

Dalen

Door de liftknop in stand "▼" te zetten beweegt de liftstang 92 naar achter. Hierdoor wordt de veer 111 op vetpot 109 losgelaten en tuimelaar 94 richting montageplaat geduwd.

Onder invloed van veertje 110 en de demping van de vetpot daalide lift langzaam.

Mise en marche du tourne-disque

Lorsque le bras de lecture est soulevé de son support et amené vers le centre, la plaque de blocage 82 fait se mouvoir la barrette de commutation 67 de sa position d'arrêt. Ensuite, cette barrette est tirée par le ressort 66 vers le contacts de commutation 68. Le moteur se met alors à tourner et, grâce au dispositif de soulèvement, on pourra placer l'aiguille sur le disque.

Mécanisme d'arrêt

Lorsqu'on enfonce la touche "stop", le ressort 96 fixé à la tige d'arrêt 95 fait dévier le palpeur 84 (voir réglages fig. 1). Par conséquent, le palpeur 84 se place dans la trajectoire de la came de déclenchement.

A présent, la came de déclenchement sous le centre du disque de commande 54, pourra repousser le palpeur 84. Le verrou 85 fixé à ce palpeur est détourné et la barrette d'entraînement 102 en est bloquée. Celle-ci est poussé vers le haut par l'étrier de commutation 106. La came de la barrette d'entraînement 102 se déplace alors dans le sillon de la spirale du disque de commutation 54. Cette barrette d'entraînement 102 se place aussi dans le sillon de la spirale du disque de commande, guidée par la piste supérieure, et est poussée vers l'extérieur. La barrette de commande 100 qui se trouve contre cet étrier est aussi repoussée. La barrette de commande 100 a deux fonctions: le soulèvement et la remise en place du bras de lecture.

Le soulèvement s'effectue en poussant le support de levier 97 vers le haut. La remise en place du bras, se fait parce que la plaque de blocage 82 fixée au support 75 est entraînée lorsque la barrette de commande se déplace vers l'extérieur. Le bras de lecture est fixé à la partie supérieure du support 75; le bras se déplace alors vers ce support. Arrivé dans sa position extrême, la barrette d'entraînement 102 est amenée graduellement dans le sillon externe (en pente) et enfin, en dehors de la spirale et ensuite, par le ressort 104, elle est ramenée à sa position de départ le long de la piste inférieure. Parce que la barrette de commande 100 est couplée à la barrette d'entraînement 102 grâce à la pièce 101, cette barrette de commande revient aussi à sa position de départ. Lors de ce mouvement, une came se trouvant sur le côté de la barrette d'entraînement, repousse l'étrier 67, d'où la barrette de commutation 102 qui est couplée n'est plus sous tension de réseau. Cette barrette reste déclenchée parce que la barrette de commutation est arrêtée par la came "x" sur la plaque en

Mécanisme d'arrêt (automatique)

Lorsque le bras de lecture si déplace vers le centre, la came sur le support 75 retourne dans le cliquet 81.

Lorsque l'aiguille est à 65 mm du centre du plateau tournant (1/2 diamètre critique), cette came se placera contre le côté arrière de ce cliquet 81.

Dès que l'aiguille se place dans le sillon rapide, le cliquet 81 est déplacé et le palpeur 84 se place dans le piste de la came de déclenchement. Cette came repoussera le palpeur et de ce fait, mettra le mécanisme d'arrêt en action (voir fig. 2). Si le sillon normal d'un disque est partiellement dans un rayon de 65 mm, la came de déclenchement sous le disque de commande repousse légèrement le palpeur. Ce n'est que lorsque l'aiguille arrive sur le sillon rapide que, le disque de commande repousse le palpeur.

Mécanisme de soulèvement manuel

Soulèvement:

Lorsque le bouton est placé en position " ∇ ", la tige de levier avance. De ce fait, le tumbler 94 est dégagé et se place au niveau "Y" de la plaque 105, celle-ci étant bloquée dans un sens. Le chrochet à l'extrémité de la tige de levier 92 met le ressort 111 sur le godet graisseur 109 en mouvement. Ce godet graisseur est couplé à la barrette de commande 100, qui, de ce fait, se déplace vers l'extérieur.

Grâce aux sillon externe (en pente) de la barrette de commande, le support de levier 97 et de ce fait, le bras de lecture, sont soulevés.

L'hauteur de soulèvement est réglable par la plaquette 107 que l'on soulève ou abaisse avec la vis 2 (voir réglage fig.3).

Abaissement:

Lorsque le bouton est placé en position "\\mathbf{I}\", la tige de soulèvement 92 recule. Il en résulte que le ressort 111 sur le godet graisseur 109 est libéré et le tumbler 94 est poussé vers la plaque de montage.

Par le ressort 110, et l'amortissement de la chute par le godet graisseur, le levier est abaissé lentement.

Einschalten des Gerätes

Wenn man den Tonarm von der Stütze nimmt und diesen nach innen bewegt, wird Schaltstreifen 67 durch Verschlussplatte 82 aus seine Arretiervorrichtung gedrückt und mittels Feder 66 nach den Schaltkontakten 68 gezogen. Der Motor fängt an zu laufen und mit Hilfe des Liftes kann die Nadel auf die Platte aufgesetzt werden.

Abschaltmechanik

Durch Drücken der Taste "Stop" wird Taster 84 durch die an Stoppstange 95 befindliche Feder 96 gedreht (siehe Einstellung Abb. 1).

Hierdurch gerät Taster 84 in die Bahn des Ausschaltnockens. Der Ausschaltnocken - mitten unter Kommandoscheibe 54 drückt Taster 84 weg. Riegel 85, der sich an Taster 84 befindet, dreht jetzt weg und Antriebsstreifen 102 wird entriegelt, so dass dieser Antriebsstreifen durch Schaltbugel 106 nach oben gedrückt wird. Der Nocken von Antriebsstreifen 102 gerät in die Spiralrille der Kommandoscheibe 54. Dieser Antriebsstreifen 102 läuft jetzt über seine oberste Führung mit in der Spiralrille der Kommandoscheibe und wird nach aussen ge drückt. Auch Bedienungsstreifen 100, der an diesen Bügel grenzt, wird weggedrückt. Der Bedienungsstreifen 100 hat zwei Funktionen, nämlich Heben und Senken des Tonarms. Das Heben geschieht durch Heraufdrücken der Liftstütze 97. Das Senken des Tonarms geschieht dadurch, dass beim Herausschwenken von Bedienungsstreifen 100 die am Halter 75 befestigte Verschlussplatte 82 mitgenommen wird. An der Oberseite des Halters 75 ist der Tonarm befestigt, der jetzt also nach der Stütze bewegt wird. In seiner äussersten Stellung angekommen, wird Antriebsstreifen 102 infolge einer allmählichen Steigung in der Kommandoscheibe langsam aus der Spiralrille gedrückt und durch Feder 104 entlang seiner untersten Führung in seine Ausgangsstellung zurückgebracht. Da Bedienungsstreifen 100 über Kupplungsstück 101 mit Antriebsstreifen 102 gekoppelt ist, gelangt dieser Bedienungsstreifen ebenfalls in seine Ausgangsstellung. Während dieser Bewegung druckt ein Nocken an der Seite des Antriebsstreifens 102 den Bügel 69 zurück, wodurch der hieran gekoppelte Schaltstreifen 67 nicht mehr mit der Netzspannung verbunden

Dieser Zustand bleibt, weil der Schaltstreifen durch Nocken "x" auf V-Platte 105 arretiert wird.

Abschaltmechanik (automatisch)

Wenn sich der Tonarm zur Mitte bewegt, bewegt sichder Nocken von Halter 75 nach hinten in Fühlerstreifen 81. Wenn die Nadel jetzt 65 mm von der Plattentellermitte enternt ist (1/2 kritischer Durchmesser), stösst dieser Nocken gegen die Rückseite von Fühlerstreifen 81.

Sobald die Nadel in die grosse Auslaufrille gerät, verschiebt sich Fühlerstreifen 81 und gelangt Taster 84 in die Bihn des Ausschaltnockens.

Dieser Ausschaltnocken drückt den Taster zurück und stellt auf diese Weise die Abschaltmechanik in Betrieb (siele Einstellung Abschaltautomatik, Abb. 2). Wenn jetzt die normale Rille der Platte innerhalb eines Strahls von 65 mm weiterläuft, stellt der Ausschaltnocken unter der Kommandoscheile den Taster stets etwas mehr um. Erst wenn die Nadel die Auslaufrille erreicht, drückt der Ausschaltnocken den Taster zurück.

Handliftmechanik

Anheben:

Stellt man den Liftknopf in Stellung " ∇ ", bewegt sich Liftstange 92 nach vorne. Hierdurch kommt Wipper 94 fra und fällt auf Stufe "Y" der V-Platte 105, so dass diese in timer Richtung blockiert wird.

Der Haken am Ende von Liftstange 92 bewegt Feder 1/1 von Fettopf 109. Dieser Fettopf ist mit Bedienungsstreife 1100 gekoppelt, der hierdurch nach aussen bewegt.

Durch die allmähliche Steigung am Ende des Bedienungstreifens, werden Liftstutze 97 und also auch der Tonarm ach oben gedruckt.

Die Lifthöhe kann eingestellt werden, indem man Plate 107 mit Schraube 2 höher oder tiefer schraubt (siehe Einse llung Abb. 3).

Senken:

Stellt man den Liftknopf in Stellung "\(\mathbb{I}\)", bewegt sich Liftstange 92 nach hinten. Hierdurch löst sich Feder 111 von Feiopf 109 und drückt Wipper 94 in Richtung der Montageplatte. Unter Einfluss von Feder 110 und durch Dampfung dei Fettopfes sinkt der Lift langsam.

Conectado del aparato

Levantándose el brazo del soporte y moviéndola hacia adentro la tira de conmutación 67 es empujada de su retén por la placa de cierre 82 y movido hacia los contactos de conmutación 68 por el resorte 66. El motor comienza ahora a girar y la aguja puede ser puesta sobre el disco mediante el ascensor.

Mecanismo de paro

Oprimiéndose a la tecla "stop" el palpador 84 es volcado mediante el resorte 96, situado sobre la barra de paro 95 (véase "ajuste", fig. 1).

Debido a esto el palpador 84 entra en la pista de la leva de paro. Ahora esta leva de paro puede, centralmente debajo del disco de mando 54, empujar al palpador 84.

El cerrojo 85 cual se encuentra sujetado a esta es movido a un lado y la tira de accionamiento 102 es debloqueada, de modo que esta es empujada hacia arriba mediante la palanca de conmutación 106

Le leva de la tira de accionamiento 102 entra entonces en la ranura espiral del disco de mando 54.

Esta tira de accionamiento 102 corre ahora a través de su guiador superior también en la ranura espiral del disco de mando y es empujada hacia afuera. Al mismo tiempo es también empujado hacia afuera la tira de manejo 100, cual está apoyada contra la palanca de conmutación 102. Esta tira de manejo 100 tiene dos funciones, a saber: el ascender y descender del brazo fonocaptor. La ascension es efectuada empujando el soporte del ascensor 97 hacia arriba. El reposicionado del brazo fonocaptor es efectuado debido a que al moverse la tira de manejo 100 hacia afuera esta lleva consigo a la placa de cierre 82 fijada sobre el soporte 75. El brazo fonocaptor se encuentra fijado sobre el extremo superior de este soporte 75 de modo que el brazo será movido

Cuando el brazo ha llegado a su posición más extrema la tira de accionamiento 102 es empujada paulatinamente fuera de la ranura espiral mediante un levante en el disco de mando y luego devuelta a la posición inicial a través de su guiador inferior por medio del resorte 104.

Debido a que la tira de manejo 100 es acoplada a la tira de accionamiento 102 mediante la pieza de acoplamiento 101, la tira de manejo vuelve también a su posición inicial. Durante este movimiento un saliente situado en el lado lateral de la tira de accionamiento 102 empuja a la palanca 69 por lo que la tira de commutación 67 acoplada a esta se libra de la tensión de red.

Esta queda libre debido a que la tira de conmutación es retenida por el saliente "x" sobre la placa-V105.

Mecanismo de paro (automático)

entonces hacia su soporte.

Cuando el brazo fonocaptor se mueve hacia el centro del disco la leva sobre el soporte 75 moverá hacia atrás en la tira palpadora 81.

Ahora, cuando la aguja se encuentra a una distancia de 65 mm (1/2 diámetro de aguste fino) del centro de la mesa de giro esta leva se encuentrará justamente contra el lado posterior de la tira palpadora 81.

Si la aguja entra ahora en la ranura espiral al final del disco la tira palpadora 81 se correrá y el palpador 84 entrará en la órbita de la leva de desconectado.

Esta leva de desconectado empujará al palpador por lo que será accionado el mecanismo de paro (véase al ajuste del paro automático, fig. 2). Si la ranura normal del disco sobre pasa el rayo de 65 mm la leva de desconectado debajo del disco de mando volcará cada vez un poco al palpador. Solo cuando la aguja entra en la gran espira final empujará esta al palpador.

Mecanismo ascensor manual

Ascenso

Colocándose el botón del ascensor en la posición " ▽ " la barra del ascensor 92 moverá hacia adelante.

Esto libra a la pieza basculante 94 cual cae sobre la escalera "Y" de la placa-V105 bloqueando a esta en una sola dirección. El gancho en el extramo de la barra del ascensor 92 acciona el resorte 111 sobre el recipiente de grasa 109. Este recipiente de grasa es acopiado con la tira de manejo 100 cual se mueve por ello hacia afuera.

Mediante la pendiente en el final de la tira de manejo el soporte del ascensor 97 y por consiguiente también el brazo fonocaptor es levantado. La altitud del ascensor puede ser ajustada desplazándose a la plaquecilla 107 hacia arriba o hacia abajo mediante el tornillo 2 (véase al ajuste, fig. 3).

Descenso:

Colocándose el botón del ascensor en la posición """ la barra del ascensor 92 moverá hacia atrás. Debido a esto será soltado el resorte 111 sobre el recipiente de grasa 109 y la pieza basculante 94 es empujado en dirección de la placa de montaje. Bajo la influencia del resorte 110 y la amortiguación del recipiente de grasa el ascensor bajará lentamente.

Messa in funzione del giradischi

Quando il braccio di lettura è sollevato dal suo supporto e portato verso il centro, la piastra di bloccaggio 82 fa muovere la barretta di commutazione 67 dalla posizione di arresto. In seguito questa barretta è tirata dalla molla 66 verso i contatti di commutazione. Il motore si mette allora a girare e, grazie al dispositivo di sollevamento, si potrà mettere la puntina sul disco.

Meccanismo d'arresto

Quando si preme il tasto "Stop", la molla 96 fissata alla asta d'arresto 95 fa deviare il perno della barretta 84 (ved. regolazioni fig. 1).

Conseguentemente il perno della barretta 84 si mette nella traiettoria della camma di disinnesto.

Ora, la camma di disinnesto sotto il centro del disco di comando 54, potrà respingere il perno della barretta 84. La staffa 85 fissata a questa barretta è deviata e la piastra di trascinamento 102 ne è bloccata. Questa è spinta verso l'alto dalla staffa di commutazione 106.

La camma della barretta di trascinamento 102 si sposta nel solco della spirale del disco di commutazione 54. Questa barretta di trascinamento 102 si pone così nel solco della spirale del disco di comando, guidata dalla traccia superiore ed è appogiata verso l'inferiore. La barretta di comando 100 che si trova contro la staffa 102 è così respinta.

La barretta di comando 100 ha due funzioni: il sollevamento e la rimessa a posto del braccio di lettura.

Il sollevamento avviene spingendo il supporto della leva 97, verso l'alto. La rimessa a posto del braccio, avviene per mezzo della piastra di bloccaggio 82 fissata al supporto 75 che è trascinata quando la barretta di comando si sposta verso l'esterno.

Il braccio di lettura è fissato sulla parte superiore del supporto 75; il braccio si sposta allora verso questo supporto. Arrivato nella sua posizione estrema, la barretta di trascinamento 102 è portata gradualmente verso il solco esterno (in pendenza) ed infine, in fuori della spirale poi, a causa della molla 104, è riportato nella sua posizione di partenza sulla pista inferiore. Poichè la barretta di comando 100 è abbinata alla barretta di trascinamento 102 grazie alla staffa 101, questa barretta di comando ritorna così alla posizione di partenza. Mentre avvengono questi movimenti, una camma che si trova sul lato della barretta di trascinamento 102 respinge la staffa 69, da cui, la barretta di commutazione 67 che è accoppiata non è più sotto tensione di rete. Questa barretta rimane disinnestata perchè la barretta di commutazione è fermata dalla camma "x" sulla piastra in V-105.

Meccanismo d'arresto (automatico)

Quando il braccio di lettura si porta verso il centro, la camma sul supporto 75 arrestra nella barretta 81.

Quando la puntina è a 65 mm dal centro del giradischi (1/2 diametro circa), questa camma si metterà contro il lato posteriore della barretta 81.

Poichè la puntina si trova nel solco rapido, la barretta 81 è spostata e il perno della staffa 84 si inserisce nella pista della camma di scatto.

Questa camma respingerà il perno della staffa 84 mettendo così in funzione il meccanismo d'arresto (vedi fig. 2). Se il solco normale di un disco è parzialmente nel raggio di 65 mm, la camma di scatto sotto il disco di comando respinge leggermente il perno della staffa 84. Quando si verifica ciò la puntina arriva nel solco rapido e quindi il disco di comando respinge il perno della staffa 84.

Meccanismo di sollevamento manuale

Sollevamento:

Quando il pulsante è posto in positione "□", l'asta della leva avanza. In questo modo, il blocco 94 è liberato e si trova al livello "Y" della piastra 105, quella che è bloccata in un senso. Il gancio all'estremità dell'asta della leva 92 mette in movimento la molla 111 sull'oliatore 109.

Questo oliatore è accoppiato alla barretta di comando 100, che, per questa ragione, si pone verso l'esterno.

Grazie al solco esterno (in pendenza) del disco di comando, il supporto della leva 97 e il braccio di lettura sono sollevati. L'altezza di sollevamento è regolabile dalla piastra 107 che si solleva o si abbassa grazie alla vite 2 (vedere regolazioni fig. 3).

Abbassamento:

Quando il pulsante è posto in positione "\(^\mu\)", l'asta di sollevamento 92 viene portata indietro. Risulta che la molla 111 sull'oliatore 109 è liberata e il blocco 94 è respinto verso la piastra di montaggio.

Grazie alla molla 110, e l'ammortizzamento della caduta provocata dall'oliatore, la leva è abbassata lentamente.

Tillkoppling av grammofonen

När pick-uparmen lyfts från stödet och förs inåt, skjuter låsplatta 82 omkopplingssliden 67 ur sitt stoppläge. Denna omkopplingsslid dras mot omkopplarkontakterna 68 av fjäder 66. Motorn startar och nålmikrofonen kan placeras på skivan.

Stoppmekanism

När stopptangenten nedtrycks med fjäder 96 (på stopparm 95) trycks utlösarspärr 84 iväg (se justeringar - Fig. 1). Därvid förs utlösarspärr 84 in i spåret på frånkopplarmekanismen. Därefter kan frånkopplarmekanismen under centrum på kontrollskiva 54, trycka iväg utlösarspärr 84. Lås 85 som håller denna spärr, är bortvriden; slid 102 utlöses varvid denna slid skjuts uppåt av omkopplararm 106. Tungan på slid 102 flyttas därefter in i spiralspåret på kontrollslid 54. Sliden 102 flyttas sedan via en övre styrning också i spiralspåret på kontrollskivan och trycks utåt; dessutom skjuts manöverslid 100, som trycks mot denna arm iväg. Manöversliden har två funktioner: lyfta och skjuta tillbaka tonarmen. Tonarmen lyfts med tonarmslyft 97. Återföring av tonarmen sker p g a att låsplattan 82, som är fastsatt på hållaren 75 följer med när manöversliden 100 skjuts utåt. Överst på hållare 75 låses tonarmen och förs sedan mot stödet. Framkommen i sitt yttre läge, skjuts drivsliden 102 r gradvis ut av spiralspåret längs det yttre lutande spåret; därefter flyttas drivsliden av fjäder 104 till sitt utgångsläge längs dess undre styrning.

Då manöversliden 100 är sammankopplad via kopplingsstycke 101 till drivslid 102, återgår också denna manöverslid till sitt utgångsläge. Under denna rörelse skjuter en tapp på sidan av drivslid 102 iväg armen 69 så att omkopplarsliden 67, vilken är sammenlänkad med drivslid 102, inte längre ansluts till nätspänningen. Denna slid förblir losskopplad eftersom omkopplarsliden stoppas av tapp "X" på V-platta 105.

Stoppmekanism (automatiskt)

När tonarmen förs mot mitten förs tappen på hållare 75 bakåt i spärrslid 81.

När nålen är 65 mm från skivtallrikens centrum, stöter tappen mot änden på spärrslid 81. Så snart nålen skivans gövre spår skiftar spärrslid 81 och spärr 84 förs in i spåret av frånkopplingstappen. Denna frånkopplingstapp skjuter iväg spärren; alltså är stoppmekanismen i funktion (se justeringar - Fig.2). Om normalspåren på skivan delvis är inom radien på 65 mm, skjuter frånkopplingstappen under kontrollskivan iväg spärren något. Endast när nålen når skivans grövre spår, skjuter kontrollskivan iväg spärren.

Mekanism för manuell lyftning

Lyftning

När lyfttangenten ställs i läge "∑", förs lyftarmen 92 framåt. Följaktligen löses tippningsmekanism 94 ut och faller ett steg "Y" på platta 105; på detta sätt är stegn stoppade i ena riktningen. Haken i änden på lyftarm 92 förflyttar fjäder 111 på smörjkopp 109. Denna smörjkopp är kopplad till manöverslid 100 som alltså flyttas utåt.

Längs det sluttande yttre spåret på manöversliden skjuts lyftstödet 97 och tonarmen uppåt. Lyfthöjden kan justeras genom att platta 107 skruvas uppåt eller nedåt med skruv 2. (se justeringar - Fig. 3.)

Sänkning:

När lyfttangenten ställs i läge "▼" förflyttas lyftarm 92 bakåt. Det betyder att fjäder 111 på smörjkopp 109 är utlöst och att tippningsmekanismen 94 skjuts mot monteringsplattan. Med hjälp av fjäder 110 och smörjkoppens dämpning, sänks lyften sakta.

Start af pladespilleren

Når pick-uparmen løftes op fra støttearmen og bevæges ind mod centrum, skubber låsepladen 82 afbryderarmen 67 væk fra dens stopposition.

På grund af trækket fra fjeder 66 trækkes armen imod afbryderen 68, hvorved motoren starter. Ved hjælp af pick-upløfteren, kan nålen nu placeres på grammofonpladen.

Stop-mekanisme

Når ''STOP''-vippeknappen nedtrykkes, skubbes udløserpalen 84, via fjeder 96 (på stopstangen 95) (se just. - fig. 1) hvorved den fanges af stopprofilen på pos. 54.

Denne profil skubber nu til pos. 84. Låsearmen 85, som er fastgjort til denne pal, drejes herved; drivarm 102 frigøres og bliver trukket op af fjeder 106. Den halvrunde tap på kanten af pos. 102 glider nu ind i kommandoskivens (54) spiralformede rille, hvilket får armen til at bevæge sig i retning af pick-uparmens forankringspunkt. Det, at armen bevæges, får samtidig arm 100 til at bevæge sig i samme retning (via koblingsstykket pos. 101). Pos. 100 har til opgave at hæve og sænke pick-uparmen. Hævningen sker ved hjælp af liften 97. Når pick-uparmen returnerer til udgangspositionen sker dette ved at armen 100, ved sin bevægelse væk fra centrum, skubber til låsepladen 82 (fastgjort til pick-uparmsholderen 75). Idet drivarmen 102 når til sin yderste stilling, skubbes den ud af kommandohjulets rille og trækkes øjeblikkeligt, takket være inertien i fjeder 104, tilbage til sin udgangsposition.

Da armen 100, som tidligere nævnt, er forbundet til pos. 102 via koblingsstykket 101, returnerer også den til sin udgangsposition.

Samtidig med at drivarmen pos. 102 bliver trukket tilbage mod centrum, skubber en profil på denne til bøjlen pos. 69, hvilket igen får afbryderarmen pos. 67 til at fjerne sig fra afbryder 68. Afbryderarmen, som har forbindelse med pos. 102, stoppes af profilen på underchassis 105.

Stop-mekanismen (automatisk)

Samtidig med at pick-uparmen bevæges mod centrum, drejes tappen på pos. 75 mod uret i profilbøjlen pos. 81. Når pick-upnålen er 65 mm fra centrum (1/2 kritisk diameter) rører tappen ved profilbøjlen. Så snart pick-upnålen når ud i grammofonpladens udløbsrille, bliver pos. 81 skubbet mod centeret. Dette får palen 81 til at dreje i "stop-stilling", hvilket aktiverer pos. 84 og processen gentages som beskrevet under den manuelle stopfunktion (se just fig.2)

Hvis grammofonpladens normale informationsrille har en diameter 65 mm, vil afbryderprofilen under kommandoskiven skubbe palen 85 tilbage i normalstillingen. Førsti det øjeblik pick-upnålen når hen til udløbsrillen startes stopproceduren.

Manuel betjening af liften

Hævning:

Når lift-knappen stilles i stilling " " bevæges stangen pos. 92 fremad. Herved frigøres tilholderen pos. 94 og den vipper nu over i hvileposition mod "Y" på underchassis 105. Krogen på stangen 92 støder nu til fjederen 111, hvilket får stæmpelhuset 109 til at dreje. Da stempelhuset har forbindelsem ed armen pos. 100, bevæger denne sig følgeligt udad. Dettefår, på grund af den skrå profil, liften, og hermed pick-uparmen til at bevæge sig opad. Højden af liften kan justeres ved hjælp if skrue 2 på pladen 107 (se just. fig. 3).

Sænkning:

Når lift-knappen sættes i stilling " ▼ ", skubbes st ang 92 tilbage. Fjeder 111 frigøres, stempelhuset 109 drej:s og tilholderen pos.94 vipper op mod chassis'et. Takket være fjederen pos. 110, samt dæmpningeli stempelhuset,

sænkes liften langsomt.

Innkopling av grammofonen

Når PU-armen løftes fra støtten og beveges innover, skyver impulsplate 82 bryterarmen 67 ut av sin stoppstilling. Bryterarmen trekkes så mot bryterkontaktene 68 av fjær 66. Derved starter motoren og stiften kan plasseres på platen ved hjelp av løftearmen.

Stoppmekanismen

Når stoppknappen er trykket inn med fjær 96 (på stopparm 95), skyves fangarm 84 tilside (se justering - fig. 1). Derved beveges fangarm 84 inn i sporet på bryterfremspringet. Bryterfremspringet, under midten på styreskive 54, kan så skyve fangarm 84 tilside.

Låsarm 85, som er festet til denne fangarmen, dreies bort, drivarm 102 frigjøres, slik at denne armen skyves oppover

av bryterbrakett 106.

Fremspringet på drivarm 102 går så inn i spiralsporet på styreskive 54. Drivarm 102 går via øvre fører også i spiralsporet på styreskiven og blir skjøvet utover, dessuten skyves betjeningsarm 100 bort. Betjeningsarm 100 har to funksjoner; løfting og tilbakeføring av PU-armen. Heving skjer ved hjelp av løftearm 97. Tilbakeføring av PU-armen skjer fordi impulsplate 82, festet til holder 75, bringes med når betjeningsarm 100 beveges utover

PU-armen er festet på toppen av holder 75. PU-armen beveger seg mot støtten. Kommet i sin ytterstilling, skyves drivarm 102 gradvis ut av spiralsporet langs det ytre, hellende sporet, hvorved drivarmen føres til sin begynnelsesstilling av fjær

104 langs den nederste fører.

Fordi betjeningsarm 100 er koplet til drivarm 102, via koplingsstykke 101, vil også betjeningsarmen gå tilbake til begynnelsesstilling. Under denne bevegelse skyver et fremspring på siden av drivarm 102 brakett 69 tilside, slik at bryterarm 67, som er koplet til drivarmen, ikke lenger er tilkopler nettspenningen. Denne armen forblir utkoplet p.g.a. at bryterarmen stenges av fremspring "X" på V-plate 105.

Stoppmekanismen (automatisk)

Når PU-armen beveges mot midten, går fremspringet på holder 75 bakover i skinnen 81. Når stiften er 65 mm fra platetallerkenens sentrum (1/2 kritisk diameter), støter dette fremspringet mot baksiden av skinne 81. Så snart stiften når rillen med stort utsving, forskyves skinne 81 og fangarm 84 beveges inn i veien for stopphaken. Stopphaken skyver fangarmen ut av veien, og stoppmekanismen trer i funksjon (se justeringer fig.2). Når platens normale rille er delvis innenfor radien på 65 mm, skyver stopphaken under styreskiven fangarmen lett tilside. Bare når stiften når rillen med stort utsving, vil styreskiven skyve fangarmen ut av veien.

Mekanisme for manuell løfting

Når løfteknappen settes i stilling " ♥ ", beveges løftestang 92 fremover. Følgelig; vippearm 94 frigjøres og faller i trinn "Y" på plate 105. På denne måte stopper trinnet i en retning. Haken på enden av løftestang 92 beveger fjær 11 på smørekopp 109. Smørekoppen er koplet til betjeningsarm 100, som følgelig beveges utover.

Løftearm 97 og PU-armen skyves oppover langsmed det hellende ytre sporet på betjeningsarmen. Løftehøyden kan justeres ved å skru plate 107 opp- eller nedover med skrue 2 (se justeringer

- fig.3).

Senking:

Når løfteknappen settes i stilling "▼" beveges løftestang 92 bakover. Følgelig utløses fjær 111 på smørekopp 109 - og vippearmen 94 skyves mot monteringsplaten. Løftemekanismen senkes langsomt ved hjelp av fjæren 110 og dempningen i smørekoppen.

Virran kytkeminen levysoittimeen

Kun äänivarsi nostetaan pitimestään ja siirretään sisäänpäin, työntää sulkulevy 82 kytkinliuskaa 67 pois pysäytysasennosta. Silloin vetää jousi 66 kytkinliuskaa kytkinjousiin, 68 päin Tämän surauksena moottori alkaa pyöriä ja nostajan avulla voidaan neula laskea levylle.

Pysäytysmekanismi

Painettaessa seis (stop) näppäintä, työntyy käyttöhaka 84 yhdessä jousen 96 (joka on pysäytystangolla 95) kanssa pois (katso säätöjä, kuva 1). Tästä seuraa, että käyttöhaka 84 liikkuu kytkinulokkeen raidetta pitkin.

Sitten kytkinuloke ohjauskiekon 54 keskellä voi työntää pois käyttöhaan 84. Lukko 85, joka on tässä haassa kiinni, kiertyy pois ja ohjausliuska 102 vapautuu, jolloin kytkinvarsi 106

tvontaa tata liuskaa ylöspain.

Ohjausliuskan 102 uloke liikkuu silloin ohjauskiekon 54 spiraaliuraa pitkin. Ohjausliuska 102 liikkuu silloin ylemmän ohjaimen kautta myös ohjauskiekon spiraaliurassa ja työntyy ulospäin; lisäksi käyttöliuska 100, joka työntyy tätä vartta vastaan, työntyy pois. Käyttöliuskalla 100 on kaksi tehtävää: nostaa ja panna takaisin äänivarsi.

Nostaminen tehdään nostotuella 97.

Äänivarren takaisinsiirtyminen johtuu siitä, että sulkulevy 82. joka on kiinni pitimessä 75, ottaa sen mukaansa, kun ohjausliuska 100 liikkuu ulospäin.

Äänivarsi on kiinnitetty pitimen 75 yläpäähän ja se liikku tukea

Saapuessaan ulompaan asentoon ohjausliuska 102 työntyy asteittain spiraaliurasta pitkin ulompaa kaltevaa uraa sen jälkeen ohjausliuska siirtyy jousen 104 vaikutuksesta alkuasentoonsa alempaa ohjainta pitkin.

Koska käyttöliuska 100 on kytketty kytkinkappaleella 101 ohjausliuskaan 102, palaa ohjausliuska myös alkuasentoonsa. Tämän liikkeen aikana ohjausliuskan 102 sivussa oleva uloke työntää kappaletta 69 pois tieltään, jolloin kytkinliuska 67, joka on kytketty ohjausliuskaan 102, ei enää kytke verkkojännitettä. Tama liuska jaa poiskytkettyyn asentoon, koska kytkinliuska pysähtyy V-levyn 105 ulokkeen "X" ansiosta.

Pysäytysmekanismi (automaattisekti)

Kun äänivarsi liikkuu keskelle, liikkuu pitimen 75 uloke taaksepäin hakaliuskassa 81.

Kun neula on 65 mm päässä levylautasen keskeltä (1/2 kriitillinen halkaisija) työntyy tämä uloke hakaliuskan 81 taakse. Heti kun neula saavuttaa katkaisu-uran siirtyy hakaliuska 81 ja haka 84 liikkuu katkaisu-olokkeen raiteessa.

Katkaisu-uloke työtää hakaa ulos paikaltaan; jolloin pysäytysmekanismi alkaa toimia (katso säätöjä - kuva 2). Jos levyn normaali ura on osaksi 65 mm säteen sisäpuolella, työntää katkaisuuloke ohjauskiekon alla hakaa jonkin verran poispäin.

Nostomekanismi

Nosto:

Kun nostonäppäin on asetettu asentoon " ▽ ", liikkuu nostotanko 92 eteenpäin. Tällöin linkku 94 vapautuu ja putoaa levyn 105 "Y" askeleelle; tällä tavalla pysähtyy askel yhdessä suunnassa. Koukku nostajatangon 92 päässä liikuttaa jousta 111 rasvakupissa 109. Rasvakuppi on kytketty käyttöliuskaan 100, joka puolestaan liikkuu ulospäin.

Nostotuki 97 ja äänivarsi työntyvät ylöspäin käyttöliuskan kaltevæ ulompaa uraa pitkin. Nostokorkeutta voidaan säätää siirtämällä levyä 107 alaspäin tai ylöspäin ruuvin 2 avulla. (Katso säätöjä - Kuva3)

Lasku:

hitaasti.

Kun nostonappäin on asetettu asentoon "∑", liikkuu nostotanko 92 taaksepäin. Tällöin jousi 111 rasvakupissa vapautuu ja linkku 94 työntyy kohti asennuslevyä. Jousen 110 ja rasvakupin vaikutuksesta nostaja laskeutuu