

Abschlussarbeit

zur Erlangung des akademischen Grades B. Sc.

EINE MATHEMATISCHE ANALYSE DES KICKELHAHNTURMES

vorgelegt dem Institut für Mathematik der Technischen Universität Ilmenau von

Joe Mama

betreut von

Univ.-Prof. Dr. rer. nat. habil. Charles Xavier

22. April 2021

ZUSAMMENFASSUNG

Zu jeder anständigen Arbeit gehört eine deutsche und englische Zusammenfassung! Außerdem freut sich der gebildete Leser immer über hübsche Bildchen.

 $F\"{a}rbungen\ eines\ Graphen,\ gerichteten\ Graphen,\ und\ eines\ Hypergraphen.$

Abstract

And now in englisch please.

 $Colorings\ of\ a\ graph,\ a\ digraph,\ and\ a\ hypergraph.$

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig verfasst und nur die angegebenen Quellen und Hilfsmittel verwendet habe. Die Arbeit wurde bisher keiner Prüfungsbehörde vorgelegt.

Ilmenau, 22. April 2021

Inhaltsverzeichnis

Ei	nleitung: Worum geht's und warum sollte mich das interessieren?	1	
I.	Meine Arbeit ist so fundamental, dass sie sogar aus zwei Teilen besteht!	3	
1.	Grundlagen: Graphen	4	
	1.1. Terminologie	4	
	1.2. Aufbau der folgenden Kapitel	4	
II.	Wie versprochen: Ein superber zweiter Teil!	6	
2.	Grundlagen: Digraphen	7	
	2.1. Terminologie gerichteter Graphen	7	
Lit	teraturverzeichnis	8	
Sv	Symbolverzeichnis		

Einleitung

WORUM GEHT'S UND WARUM SOLLTE MICH DAS INTERESSIEREN?

Willkommen zu meiner nicen Abschlussarbeit. Wer möchte, kann jetzt bis zum Symbolverzeichnis vorspulen.

Look at the very nice Kopfzeile!

Teil I

Meine Arbeit ist so fundamental, dass sie sogar aus zwei Teilen besteht!

Kapitel 1

GRUNDLAGEN: GRAPHEN

1.1. Terminologie

As usual, \mathbb{N} denotes the set of positive integers and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ is the set of non-negative integers. For $k, \ell \in \mathbb{N}_0$ let $[k, \ell] = \{h \in \mathbb{N}_0 \mid k \leq h \leq \ell\}$. Given a set V, we denote the **cardinality** of V by |V| and the **power set** of V by 2^V . The empty set is denoted by \emptyset .

1.2. Aufbau der folgenden Kapitel

In Chapter blabla we will do blablubb. Then, ...

 \dots und noch eine Überraschungsseite :)

Teil II

WIE VERSPROCHEN: EIN SUPERBER
ZWEITER TEIL!

Kapitel 2

GRUNDLAGEN: DIGRAPHEN

2.1. Terminologie gerichteter Graphen

The digraph terminology used in this thesis is mostly based on the book of Bang-Jensen and Gutin [2]. A digraph D = (V(D), A(D)) consists of a finite set V(D) of so called **vertices** and a finite set A(D) of ordered pairs of distinct vertices of D, so called **arcs** of the digraph D.

At this point, we would like to cite the following material, which—with certainty—is very enjoyable to read: [1, 3, 3, 4, 6, 5, 7]

LITERATURVERZEICHNIS

- [1] Bang-Jensen, J., Bellitto, T., Schweser, T. und Stiebitz, M.: Hajós and Ore constructions for digraphs. *Electron. J. Combin.* **27** (2020), #P1.63 (siehe S. 7).
- [2] Bang-Jensen, J. und Gutin, G. Z.: Digraphs: Theory, Algorithms and Applications (Second Edition). Springer, 2009 (siehe S. 7).
- [3] BORODIN, O. V.: Criterion of chromaticity of a degree prescription (in Russian). In: Abstracts of IV All-Union Conf. on Theoretical Cybernetics (Novosibirsk). 1977, 127–128 (siehe S. 7).
- [4] DIRAC, G. A.: On the Colouring of Graphs. Diss. University of London, 1951 (siehe S. 7).
- [5] Schweser, T., Stehlik, M. und Stiebitz, M.: Critical digraphs with few arcs and few vertices. work in progress (siehe S. 7).
- [6] Schweser, T., Stiebitz, M. und Toft, B.: Coloring hypergraphs of low connectivity. 2018. arXiv: 1806.08567 (siehe S. 7).
- [7] STIEBITZ, M. und TOFT, B.: Brooks's Theorem. In: *Topics in Chromatic Graph Theory*. Edited by L. W. Beineke and R. J. Wilson, with Academic Consultant B. Toft. Cambridge University Press, 2015, 36–55 (siehe S. 7).

Symbolverzeichnis

Die Zahl am Ende jeder Zeile verweist auf die Seite, auf der das Symbol definiert wurde. The Symbole sind weitestgehend möglich nach inhaltlichen Überschneidungen sortiert.

Basic Terminology

N	set of positive integers, 4	Ø	empty set, 4
\mathbb{N}_0	set of non-negative integers, 4	2^{V}	power set of V, 4
[k, ℓ	all $h \in \mathbb{N}_0$ with $k \le h \le \ell$, 4	V	cardinality of the set $V, 4$

More Fancy Terminology

```
D,D',\tilde{D} digraphs, 7  A(D) \quad \text{arc set of a digraph } D, 7  V(D) vertex set of a digraph D, 7
```