Remote Sensing 1: GEOG 4/585 Lecture 8.1.

Uncrewed aerial vehicles

Johnny Ryan (he/him/his) jryan4@uoregon.edu

Office hours: Monday 15:00-17:00

in 165 Condon Hall

Required reading: Fonstad et al. (2013)

Overview

- Today drones
 - Platforms
 - o Sensors
 - Operations
- Wednesday stereophotogrammetry
 - Image acquisition
 - o 3D models
 - Mapping
 - Applications

Platforms

Platforms

	Spark I	Phantom 3 Std	Phantom 4 Adv	Phantom 4 Pro	Mavic	Inspire
	****	100		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Flight time	16 mins	25 mins	30 mins	30 mins	27 mins	27 mins
Top Speed	31 mph (50 km/h)	36 mph (58 km/h)	45 mph (72 km/h)	45 mph (72 km/h)	40 mph (65 km/h)	58 mph (94 km/h)
Range	1.2 miles (2 km)	0.6 miles (1 km)	4.3 miles (7 km)	4.3 miles (7 km)	4.3 miles (7 km)	4.3 miles (7 km)
Camera	12-MP stills 1080p video	12-MP stills 2704 x 1520p video	20-MP stills 4K 60fps video	20-MP stills 4K 60fps video	12-MP stills 4K video	20.8-MP stills 4K/5K video
Size	5.6 x 5.6 x 2.1 in (14.3 x 14.3 x 5.5 cm)	13.8 in diagonal (350 mm)	13.8 in diagonal (350 mm)	13.8 in diagonal (350 mm)	13.2 in diagonal (350 mm)	16.8 x 12.5 x 16.7 in (42.7 x 31.7 x 42.5 cm)
Takeoff weight	11.6 oz (330 g)	2.6 lb (1.2 kg)	3 lb (1.4 kg)	3 lb (1.4 kg)	1.6 lb (743 kg)	8.8 lb (4 kg)
Other features	Follow me, Return home, Obstacle avoidance, FPV	Follow me, Return home	Follow me, Return home, Obstacle avoidance	Follow me, Return home, 3 Direction Obstacle avoidance	Follow me, Return home, Obstacle avoid- ance, folding arms	Obstacle avoidance, Spotlight Pro/Broadcast/ Composition mode
Price	US\$499	US\$499	US\$1,349	US\$1,499	US\$999	US\$2,999 (\$6,198 with camera/gimbal)

How does a quadcopter actually work?

Platforms

X8 drone

- Skywalker X8 airframe
 - O Expanded polypropylene (EPP) foam
- Wingspan of 2.12 m
- Pixhawk autopilot module uses an L1 GPS, two inertial measurement units (IMUs), a compass, and a barometer.
- A 30 Ah 14.4V lithium-ion battery pack provides power for the 715W electromagnetic motor, two servos, the receiver and the autopilot module.
- Cruising speed is regulated by a digital differential airspeed sensor and targets 54 km h⁻¹.
- The weight of the UAV without the sensor package was 4.79 kg. The sensor package weighs 0.715 kg

X8 drone internals

Battery power

- Electric most popular
 - O Clean, simple, predictable

5000 mAh LiPo battery 4C

Battery power

- Electric most popular
 - O Clean, simple, predictable

5000 mAh LiPo battery 4C

Batteries

Gas power

• Gas has 100x the fuel density of lithium-ion battery

10 cc gas engine

X8-Gas drone internals

X8-Gas in action

Test flights in West Wales

X8-Gas in action

Test flights in West Wales

Fixed-wing drone surveys over Greenland Ice Sheet

Fixed-wing drone surveys over Greenland Ice Sheet

Hand launching

Convenient but dangerous

Bungee launching

Consistent but more equipment required

Bungee launching

Consistent but more equipment required

Bungee launching

Consistent but more equipment required

Crashes

Crashes

Sensors: framing camera

Sony NEX-5N camera triggered by an infrared shutter.

Store Glacier

Surface velocity of 20 m per day at the terminus

Calving front is 100m above and over 500m below the water surface

UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet

J. C. Ryan¹, A. L. Hubbard², J. E. Box³, J. Todd⁴, P. Christoffersen⁴, J. R. Carr¹, T. O. Holt¹, and N. Snooke⁵

Correspondence to: J. C. Ryan (jor44@aber.ac.uk)

Received: 29 March 2014 – Published in The Cryosphere Discuss.: 28 April 2014

Revised: 25 August 2014 - Accepted: 25 November 2014 - Published: 6 January 2015

¹Centre for Glaciology, Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK

²Department of Geology, University of Tromsø, 9037 Tromsø, Norway

³Geological Survey of Denmark and Greenland, Copenhagen, Denmark

⁴Scott Polar Research Institute, University of Cambridge, Cambridge, UK

⁵Department of Computer Science, Aberystwyth University, Aberystwyth, SY23 3DB, UK

Russell Glacier and Isunguata Sermia: two relatively accessible land-terminating glaciers in West Greenland

Isunguata Sermia

Feature tracking to produce velcity fields

Structural mapping of crevasses

Combining the two to predict crevassing and determine threshold strain rates for fracture

