



## Regression self study

Akanksha Bharadwaj Asst. Professor, CS/IS



### **Example Scenario**

 Suppose you are a delivery executive and tip is major part of your income. You want to develop a model that will allow you to make prediction about what amount of tip of expect for any given bill amount. So, one day you collect data for 6 deliveries.

| S. No | Tip amount |
|-------|------------|
| 1     | 5          |
| 2     | 10         |
| 3     | 12         |
| 4     | 16         |
| 5     | 15         |
| 6     | 8          |



### Scenario continued

- Later you realize that you forgot to capture the bill amount and have only tip amount for prediction
- What will you predict the tip will be for 7<sup>th</sup> order.



 The only thing we can predict is average 11 and this can be the expected outcome for tip of 7<sup>th</sup> order



### Goodness of fit for the tips

- Measure the distance from best fit line
- This distance is referred to as residual or errors
- The sum of the residuals always equals zero
   (assuming that your line is actually the line of "best fit."

| S. No | Tip amount | Distance from mean/<br>residuals |
|-------|------------|----------------------------------|
| 1     | 5          | 5 - 11 = -6                      |
| 2     | 10         | 10 - 11 = -1                     |
| 3     | 12         | 12 - 11 = 1                      |
| 4     | 16         | 16 - 11 = 5                      |
| 5     | 15         | 15 – 11 = 4                      |
| 6     | 8          | 8 – 11 = -3                      |



## **Squaring the residuals**

- Sum of Residual<sup>2</sup> = 88
- This is referred to as SSE (Sum of squared errors)
- Here SST= SSE= 88

| S. No | Tip<br>amount | Distance from mean/residuals | Residual <sup>2</sup> |
|-------|---------------|------------------------------|-----------------------|
| 1     | 5             | 5 - 11 = -6                  | 36                    |
| 2     | 10            | 10 - 11 = -1                 | 1                     |
| 3     | 12            | 12 - 11 = 1                  | 1                     |
| 4     | 16            | 16 - 11 = 5                  | 25                    |
| 5     | 15            | 15 – 11 = 4                  | 16                    |
| 6     | 8             | 8 – 11 = -3                  | 9                     |

 The goal of simple linear regression is to find the best fit line that minimizes the SSE

# Example: Add Bill amount to sample data



- Suppose we are able to get Bill amount for our previous tip data that was collected.
- Step1- Draw scatter plot



| S.<br>No | Tip amount<br>(y) | Bill amount<br>(x) |
|----------|-------------------|--------------------|
| 1        | 5                 | 34                 |
| 2        | 10                | 60                 |
| 3        | 12                | 69                 |
| 4        | 16                | 103                |
| 5        | 15                | 99                 |
| 6        | 8                 | 50                 |



**Step2-** Look for a visual line Does the data seem following a line?





#### **Step3-** Correlation coefficient (optional step)

|   | S. No   | Tip amount (y) | Bill amount (x) | ху   |
|---|---------|----------------|-----------------|------|
| 1 |         | 5              | 34              | 170  |
| 2 |         | 10             | 60              | 600  |
| 3 |         | 12             | 69              | 828  |
| 4 |         | 16             | 103             | 1648 |
| 5 |         | 15             | 99              | 1485 |
| 6 |         | 8              | 50              | 400  |
|   | sum     | 66             | 415             | 5131 |
|   | sum of  |                |                 |      |
|   | squares | 814            | 32427           |      |

r is coming as 0.988

In this case relationship between x and y is strong and positive



#### Step4: Centroid

- For this take the mean of tip amount (11) and mean of bill amount (69.17)
- The best fit regression line/least squares line has to pass through this centroid





To get the line of equation calculate b<sub>1</sub> and b<sub>0</sub>

b<sub>1</sub> is 0.152

b<sub>0</sub> is 0.486

| S. No          | Tip amount (y) | Bill amount (x) | Bill deviation | Tip deviation | Deviation products |
|----------------|----------------|-----------------|----------------|---------------|--------------------|
| 1              | 5              | 34              | -35.17         | -6            | 211.02             |
| 2              | 10             | 60              | -9.17          | -1            | 9.17               |
| 3              | 12             | 69              | -0.17          | 1             | -0.17              |
| 4              | 16             | 103             | 33.83          | 5             | 169.15             |
| 5              | 15             | 99              | 29.83          | 4             | 119.32             |
| 6              | 8              | 50              | -19.17         | -3            | 57.51              |
| Mean           | 11             | 69.16666667     |                |               | 566                |
| sum of squares |                |                 | 3722.8334      |               |                    |



## Interpretation

- b<sub>1</sub> tells that for every dollar increase in bill amount tip amount increases by 0.15 dollar
- b<sub>0</sub> tells that when bill amount is zero dollar tip expected is 0.486. This may or may not make any sense in real world



Predicted tip residuals/erro

-0.654

0.394

1.026

-0.142

-0.534

-0.086

1.948344

amount

5.654

9.606

10.974

16.142

15.534

8.086

### **Error**

- Earlier with one variable and line through mean as best fit SSE was 88
- For our current model SSE is reduced considerably to

S. No

Observed Tip

amount (y)

10

12

**Observed Bill** 

amount (x)

34

60

69

1.948344

SST= SSE + SSR

SSR is sum of squares due to regression and
 4 16 103
 5 15 99
 6 8 50
 sum of squares

value is 86.051656 (i.e. 88 – SSE)



Note:  $0 \le r^2 \le 1$ 

- For tip example SSR and value is 86.051656
- SST is 88
- So, COD is 0.9778
- We can say that 97.78% of the total sum of squares can be explained by using the estimated regression equation to predict tip amount. The remainder is error.
- We want the SSE to be as small as possible so that model can be a good fit.



## Question

Ten-Year Sales Data for Huntsville Chemicals

| Year | Sales (\$ millions) |
|------|---------------------|
| 2000 | 7.84                |
| 2001 | 12.26               |
| 2002 | 13.11               |
| 2003 | 15.78               |
| 2004 | 21.29               |
| 2005 | 25.68               |
| 2006 | 23.80               |
| 2007 | 26.43               |
| 2008 | 29.16               |
| 2009 | 33.06               |

Find the best fit line

| Year<br>x                                   | Sales<br>y                                                                         | x <sup>2</sup>            | xy                          |
|---------------------------------------------|------------------------------------------------------------------------------------|---------------------------|-----------------------------|
| 2000                                        | 7.84                                                                               | 4,000,000                 | 15,680.00                   |
| 2001                                        | 12.26                                                                              | 4,004,001                 |                             |
| 2001                                        | 13.11                                                                              | 4,008,004                 | 24,532.26<br>26,246.22      |
|                                             |                                                                                    |                           | T.                          |
| 2003                                        | 15.78                                                                              | 4,012,009                 | 31,607.34                   |
| 2004                                        | 21.29                                                                              | 4,016,016                 | 42,665.16                   |
| 2005                                        | 25.68                                                                              | 4,020,025                 | 51,488.40                   |
| 2006                                        | 23.80                                                                              | 4,024,036                 | 47,742.80                   |
| 2007                                        | 26.43                                                                              | 4,028,049                 | 53,045.01                   |
| 2008                                        | 29.16                                                                              | 4,032,064                 | 58,553.28                   |
| 2009                                        | 33.06                                                                              | 4,036,081                 | 66,417.54                   |
| $\Sigma x = 20,045$                         | $\Sigma y = 208.41$                                                                | $\Sigma x^2 = 40,180,285$ | $\Sigma xy = 417,978.01$    |
| $b_1 = \frac{\sum xy - \sum x^2}{\sum x^2}$ | $\frac{(\sum x)(\sum y)}{\frac{n}{-\frac{(\sum x)^2}{n}}} = \frac{(417,978)}{40,}$ | 10 = 220                  | $\frac{0.17}{2.5} = 2.6687$ |
| $b_0 = \frac{\sum y}{n} - b$                | $n \frac{\sum x}{n} = \frac{208.41}{10} - (2.66)$                                  | 20,045                    |                             |
| Equation of the                             | Trend Line: $\hat{y} = -$                                                          | 5,328.57 + 2.6687x        |                             |

 Company want to predict sales for the year 2012 using the equation of the trend line developed from their historical time series data.

$$\hat{y}(2012) = -5,328.57 + 2.6687(2012) = 40.85$$

# STANDARD ERROR OF THE ESTIMATE



 Residuals represent errors of estimation for individual points. With large samples of data, residual computations become laborious.

SUM OF SQUARES OF ERROR 
$$SSE = \sum (y - \hat{y})^{T}$$
 
$$COMPUTATIONAL FORMULA$$
 
$$FOR SSE$$
 
$$SSE = \sum y^{2} - b_{0} \sum y - b_{1} \sum xy$$

• The **standard error of the estimate**, denoted  $s_{\rm e}$ , is a standard deviation of the error of the regression model and has a more practical use than SSE

STANDARD ERROR OF THE ESTIMATE 
$$s_{\rm r} = \sqrt{\frac{\rm SSE}{n-2}}$$

 The reason why we divide by n - 2 and not n - 1 has to do with the degrees of freedom issue.

# innovate achieve lead

# How is the standard error of the estimate used?

- The standard error of the estimate is a standard deviation of error.
- One of the assumptions for regression states that for a given x the error terms are normally distributed.
- Because the error terms are normally distributed,  $s_e$  is the standard deviation of error, and the average error is zero, approximately 68% of the error values (residuals) should be within 0 +- 1 $s_e$  and 95% of the error values (residuals) should be within 0 +- 2 $s_e$ .
- By having knowledge of the variables being studied and by examining the value of s<sub>e</sub>, the researcher can often make a judgment about the fit of the regression model to the data by using s<sub>e</sub>.

- In addition, some researchers use the standard error of the estimate to identify outliers. They do so by looking for data that are outside  $+-2s_e$  or  $+-3s_e$ .
- The standard error of the estimate provides a single measure of error, which, if the researcher has enough background in the area being analyzed, can be used to understand the magnitude of errors in the model.



### **Testing the Overall Model**

 It is common in regression analysis to compute an F test to determine the overall significance of the model.

In the case of simple regression analysis,  $F = t^2$ . Thus, for the airline cost example, the F value is

$$F = t^2 = (9.43)^2 = 88.92$$

The F value is computed directly by

$$F = \frac{\frac{\text{SS}_{\text{reg}}}{\text{df}_{\text{reg}}}}{\frac{\text{df}_{\text{reg}}}{\text{df}_{\text{err}}}} = \frac{\text{MS}_{\text{reg}}}{\text{MS}_{\text{err}}}$$

where

$$\begin{aligned} \operatorname{df_{reg}} &= k \\ \operatorname{df_{err}} &= n-k-1 \\ k &= \text{the number of independent variables} \end{aligned}$$

 The values of the sum of squares (SS), degrees of freedom (df), and mean squares (MS) are obtained from the analysis of variance table



### Airline example

| Analysis of Varia | ance |        |        |       |       |
|-------------------|------|--------|--------|-------|-------|
| Source            | DF   | SS     | MS     | F     | p     |
| Regression        | 1    | 2.7980 | 2.7980 | 89.09 | 0.000 |
| Residual Error    | 10   | 0.3141 | 0.0314 |       |       |
| Total             | 11   | 3.1121 |        |       |       |

The F value for the airline cost example is calculated from the analysis of variance table information as

$$F = \frac{2.7980/1}{.3141/10} = \frac{2.7980}{.03141} = 89.09$$

- The difference between this value (89.09) and the value obtained by squaring the t statistic (88.92) is due to rounding error.
- This output value means it is highly unlikely that the population slope is zero



### **Multiple Linear Regression**

When k = 2, the model becomes  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$ 

The normal equations obtained from least squares principles are

$$\begin{split} &\sum_{i=1}^{n} Y_{i} = n\beta_{0} + \beta_{1} \sum_{i=1}^{n} X_{1i} + \beta_{2} \sum_{i=1}^{n} X_{2i} \\ &\sum_{i=1}^{n} X_{1i} Y_{i} = \beta_{0} \sum_{i=1}^{n} X_{1i} + \beta_{1} \sum_{i=1}^{n} X_{1i}^{2} + \beta_{2} \sum_{i=1}^{n} X_{1i} X_{2i} \\ &\sum_{i=1}^{n} X_{2i} Y_{i} = \beta_{0} \sum_{i=1}^{n} X_{2i} + \beta_{1} \sum_{i=1}^{n} X_{1i} X_{2i} + \beta_{2} \sum_{i=1}^{n} X_{2i}^{2} \end{split}$$



### **Multiple Linear Regression**

- \*For k = 2, based on the sample data the model can be written as  $Y = b_0 + b_1X_1 + b_2X_2 + \varepsilon$
- \*The normal equations obtained from least squares principles are

$$\begin{split} &\sum_{i=1}^{n} \mathbf{Y}_{i} = \mathbf{n} \mathbf{b}_{0} + \mathbf{b}_{1} \sum_{i=1}^{n} \mathbf{X}_{1i} + \mathbf{b}_{2} \sum_{i=1}^{n} \mathbf{X}_{2i} \\ &\sum_{i=1}^{n} \mathbf{X}_{1i} \mathbf{Y}_{i} = \mathbf{b}_{0} \sum_{i=1}^{n} X_{1i} + \mathbf{b}_{1} \sum_{i=1}^{n} \mathbf{X}_{1i}^{2} + \mathbf{b}_{2} \sum_{i=1}^{n} \mathbf{X}_{1i} \mathbf{X}_{2i} \\ &\sum_{i=1}^{n} \mathbf{X}_{2i} \mathbf{Y}_{i} = \mathbf{b}_{0} \sum_{i=1}^{n} X_{2i} + \mathbf{b}_{1} \sum_{i=1}^{n} \mathbf{X}_{1i} \mathbf{X}_{2i} + \mathbf{b}_{2} \sum_{i=1}^{n} \mathbf{X}_{2i}^{2} \end{split}$$



### Question

#### EXAMPLE 12-1 Wire Bond Strength

In Chapter 1, we used data on pull strength of a wire bond in a semiconductor manufacturing process, wire length, and die height to illustrate building an empirical model. We will use the same data, repeated for convenience in Table 12-2, and show the details of estimating the model parameters. A three-dimensional scatter plot of the data is presented in Fig. 1-15. Figure 12-4 shows a matrix of two-dimensional scatter plots of the data. These displays can be helpful in visualizing the relationships among variables in a multivariable data set. For example, the plot indicates that there is a strong linear relationship between strength and wire length.

Table 12-2 Wire Bond Data for Example 12-1

| Observation<br>Number | Pull Strength y | Wire Length x <sub>1</sub> | Die Height $x_2$ | Observation<br>Number | Pull Strength y | Wire Length | Die Heigh |
|-----------------------|-----------------|----------------------------|------------------|-----------------------|-----------------|-------------|-----------|
| 1                     | 9.95            | 2                          | 50               | 14                    | 11.66           | 2           | 360       |
| 2                     | 24.45           | 8                          | 110              | 15                    | 21.65           | 4           | 205       |
| 3                     | 31.75           | 11                         | 120              | 16                    | 17.89           | 4           | 400       |
| 4                     | 35.00           | 10                         | 550              | 17                    | 69.00           | 20          | 600       |
| 5                     | 25.02           | 8                          | 295              | 18                    | 10.30           | 1           | 585       |
| 6                     | 16.86           | 4                          | 200              | 19                    | 34.93           | 10          | 540       |
| 7                     | 14.38           | 2                          | 375              | 20                    | 46.59           | 15          | 250       |
| 8                     | 9.60            | 2                          | 52               | 21                    | 44.88           | 15          | 290       |
| 9                     | 24.35           | 9                          | 100              | 22                    | 54.12           | 16          | 510       |
| 10                    | 27.50           | 8                          | 300              | 23                    | 56.63           | 17          | 590       |
| 11                    | 17.08           | 4                          | 412              | 24                    | 22.13           | 6           | 100       |
| 12                    | 37.00           | 11                         | 400              | 25                    | 21.15           | 5           | 400       |
| 13                    | 41.95           | 12                         | 500              |                       |                 |             |           |



Figure 12-4 Matrix of scatter plots (from Minitab) for the wire bond pull strength data in Table 12-2.

# innovate achieve lead

### **Solution**

Pull strength =  $b_0 + b_1$ Wire length +  $b_2$ Die height +  $\epsilon$ 

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \varepsilon$$

The normal equations are

$$25b_0 + 206b_1 + 8294b_2 = 725.82$$

$$206b_0 + 2396b_1 + 77177b_1 = 8008.47$$

$$8294b_0 + 77177b_1 + 3531848b_2 = 274816.71$$

Solving these normal equations we get

$$b_0 = 2.26379$$
,  $b_1 = 2.74427$ ,  $b_2 = 0.01253$ 

The fitted regression line is

$$Y = 2.26379 + 2.74427 X_1 + 0.01253 X_2$$



- The predicted probabilities can be greater than 1 or less than 0
  - Probabilities, by definition, have max =1; min = 0;
  - This is not a big issue if they are very close to 0 and 1
- The error terms vary based on size of X-variable ("heteroskedastic") –
  - There may be models that have lower variance more "efficient"
- The errors are not normally distributed because Y takes on only two values
  - Creates problems for
  - More of an issue for statistical theorists



## **Logistic Regression**

- The model that describes the S-type curve is as follows
- Let 'p' be the probability that an event 'Y' occurs, ie.,
   P(Y=1)
- Let '1 -p' be the probability that an event 'Y' do not occurs, ie., P(Y=0)



- The solution of the Logistic Regression Model can be obtained from Maximum Likelihood Method.
- However, direct method of estimation may be difficult because of complexity in function and should be solved iteratively using computers.



Odds (Event) = 
$$\frac{\text{Probability (Event)}}{1 - \text{Probability (Event)}}$$

Probability (Event) = 
$$\frac{\text{Odds (Event)}}{1 + \text{Odds (Event)}}$$



- Probability of a success = 0.8
- Probability of a failure = 0.2

#### Odds of success

Odds Ratio = 
$$\frac{\text{Probability of success}}{\text{Probability of failure}} = \frac{0.8}{0.2}$$
  
= 4

Ine propability ranges from U to 1 Odds ranges from o to +∞



# Why to take this trouble transforming from probability to log odds?

 Usually difficult to model a variable which has restricted range such as probability (0≤p≤1)

#### Reason

 This transformation is an attempt to get around this restricted range problem



It maps probability ranging between
 0 and 1 to log odds ranging from -∞ to +∞

### **Another reason**

 Among all of the infinitely many choices of transformation, the log of odds is one of the easiest to understand and interpret.
 This transformation is called Logit transformation.