

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Métodos Numéricos II

 $Los\ Del\ DGIIM, \ {\tt losdeldgiim.github.io}$

Arturo Olivares Martos

Índice general

	Relaciones de Ejercicios				
	1.1.	Resolu	Resolución numérica de ecuaciones y sistemas		
		1.1.1.	Relación 1	5	
		1.1.2.	Relación 2	Ö	

1. Relaciones de Ejercicios

1.1. Resolución numérica de ecuaciones y sistemas

1.1.1. Relación 1

Ejercicio 1.1.1.1. Se considera el problema de encontrar las soluciones reales de la ecuación $x + \frac{1}{2} - 2\sin(\pi x) = 0$ en el intervalo $[\frac{1}{2}, \frac{3}{2}]$.

- 1. ¿Se puede utilizar el método de bisección para resolver dicho problema tomando [1/2, 3/2] como intervalo inicial? ¿Por qué? En caso afirmativo, calcule las tres primeras iteraciones de dicho método.
- 2. Halle una cota del error que se comete si consideramos la última de las iteraciones del apartado anterior como el valor de la solución del problema dado.
- 3. ¿Cuántas iteraciones del método de bisección son necesarias para garantizar un error menor que 10^{-5} ?

Ejercicio 1.1.1.2. Se quiere calcular el inverso de un número real c > 0 sin efectuar divisiones. Para ello, se elige un valor $x_0 > 0$ y se considera el método iterativo dado por $x_{n+1} = x_n(2 - cx_n)$, $n \ge 0$.

- 1. Demuestre que la sucesión generada por dicho método converge a 1/c si y sólo si $0 < x_0 < 2/c$.
 - Observación. Comience demostrando por inducción que $r_n = r_0^{2^n} \ \forall n \geqslant 0$ siendo $r_n = 1 cx_n$.
- 2. Demuestre que la convergencia referida en a) es al menos cuadrática. ¿Cuál es la constante asintótica del error?
- 3. Compruebe que el método iterativo propuesto es el método de Newton-Raphson aplicado a una cierta ecuación f(x) = 0 cuya única raíz es 1/c.

Ejercicio 1.1.1.3. Demuestre que la ecuación $x^3 - 2x^2 - 5 = 0$ tiene una única solución en el intervalo [1,4]. Elija una semilla x_0 que permita hallar, usando el método de Newton-Raphson, una aproximación a dicha solución y justifique dicha elección. Calcule las dos primeras iteraciones.

Ejercicio 1.1.1.4. Deduzca la fórmula para el cálculo de las iteraciones del método de la secante a partir de su interpretación gráfica.

Ejercicio 1.1.1.5. Dada la ecuación $x - 1/2\cos(x) = 0$, se pide:

- 1. Demuestre que tiene una única solución real en el intervalo $[0, \pi/2]$.
- 2. Describa un método de iteración funcional, distinto del método de Newton-Raphson, que permita aproximar dicha solución, razonando la respuesta.
- 3. Realice las dos primeras iteraciones del método descrito en el apartado anterior.
- 4. ¿Cuántas iteraciones es preciso realizar para garantizar un error menor que 10^{-2} en el método dado en el apartado 2?

Ejercicio 1.1.1.6. Usando algún resultado sobre convergencia para los métodos de iteración funcional, demuestre el teorema de convergencia local para ceros simples del método de Newton-Raphson.

Ejercicio 1.1.1.7. Para resolver la ecuación f(x) = 0 se considera el método $x_{n+1} = x_n - f(x_n)/m$, donde $m \neq 0$.

- 1. Interprete gráficamente el cálculo de las iteraciones según dicho método.
- 2. ¿Qué condiciones para la función f, para la constante m y para el valor inicial x_0 asegurarían unicidad de solución y convergencia a dicha solución del método considerado?

Ejercicio 1.1.1.8. Localice un intervalo [a,b] en el que se encuentren todas las soluciones reales de la ecuación $2x^4-3x^2+3x-4=0$, y sepárelas. Tomando $x_0=-2$ como semilla, calcule las tres primeras iteraciones del método de Newton-Raphson usando el algoritmo de Horner.

Ejercicio 1.1.1.9. Sea $s = \sqrt{3}$. Para calcular s se considera el método de iteración funcional

$$x_{n+1} = g(x_n)$$
 con $g(x) = ax + \frac{x^3}{3} + bx^2$.

Halle los valores de a y b para que, partiendo de una semilla x_0 suficientemente próxima a s, se asegure la convergencia al menos cuadrática. Para tales valores, calcule x_3 para $x_0 = 1$.

Ejercicio 1.1.1.10. Se desea aplicar un método iterativo del siguiente tipo para obtener $\sqrt[3]{7}$.

$$x_{n+1} = p \cdot x_n + q \cdot \frac{7}{x_n^2} + r \cdot \frac{7^2}{x_n^5}$$

Halle los valores de p, q, r para que la convergencia local del método sea al menos cúbica. Realice dos iteraciones partiendo de $x_0 = 2$.

Ejercicio 1.1.1.11. Sea $f(x) = x^5 + x^2 - 1$.

- 1. ¿Cuántas raíces tiene la ecuación f(x) = 0 en el intervalo [0, 1]?
- 2. Pruebe que el método de iteración funcional

$$x_{n+1} = g(x_n) = \sqrt[3]{\frac{1}{x_n^3 + 1}}$$

converge en el intervalo [0,1] a una raíz de f(x)=0.

Figura 1.1: Semilla para el método de Newton-Raphson en el Ejercicio 1.1.1.12.

Figura 1.2: Semilla para el método de la Secante en el Ejercicio 1.1.1.12.

3. Localice todas las raíces reales de f(x).

Ejercicio 1.1.1.12. A partir de la gráfica de y = f(x) que se muestra, determine gráficamente las dos aproximaciones siguientes que generan los métodos de Newton-Raphson y de la secante partiendo de las semillas que aparecen en cada caso. Deduzca si hay convergencia y hacia qué solución de f(x) = 0.

- 1. Método de Newton-Raphson: Figura 1.1.
- 2. Método de la secante: Figura 1.2.

Ejercicio 1.1.1.13. Se considera la ecuación $xe^{-x^3}+1=0$ y los métodos de iteración funcional $x_{n+1}=g(x_n)$ dados por las funciones

$$g_1(x) = -e^{x/3},$$
 $g_2(x) = e^{x/3},$ $g_3(x) = 3\ln(-x),$ $g_4(x) = \frac{x - e^{x/3}}{2}.$

- 1. Encuentre un intervalo de amplitud 1 donde haya una única raíz de la ecuación.
- 2. Averigüe cuáles de los métodos propuestos son compatibles con la ecuación dada; es decir, para cuáles de ellos la solución es punto fijo.

- 3. De entre los métodos compatibles con la ecuación ¿cuáles son convergentes localmente? Justifique la respuesta.
- 4. De entre los métodos convergentes localmente ¿cuál es el más rápido? ¿Por qué?
- 5. Para los métodos que hayan resultado divergentes, aplique Steffensen con $x_0 = -0.5$ hasta que dos iteraciones consecutivas disten menos de 10^{-3} .

Ejercicio 1.1.1.14. Supongamos que se modifica el método de bisección cambiando el punto de división del intervalo por el valor $a + \frac{b-a}{3}$ (porque se cree que la solución está más cerca del extremo a). ¿Es convergente dicho método? ¿Cuál es la cota del error absoluto después de n iteraciones?

Ejercicio 1.1.1.15. Demuestre el teorema de convergencia global de los métodos de iteración funcional para sistemas.

Observaci'on. Generalice al caso k-dimensional la demostraci\'on del teorema de convergencia global de los métodos de iteraci\'on funcional unidimensional.

Ejercicio 1.1.1.16. Sea $D = \prod_{i=1}^k [a_i, b_i]$ y sea $G : D \to \mathbb{R}^k$ con $G = (g_1, \dots, g_k)$ tal que $G \in C^1(D)$. Demuestre que si existe $L \in]0,1[$ tal que $\forall i,j=1,\dots,k$ se verifique

$$\left| \frac{\partial g_i(x)}{\partial x_i} \right| \leqslant \frac{L}{k} \quad \forall x \in D,$$

entonces G es contráctil.

Observación. Considere la norma $\|\cdot\|_1$ o $\|\cdot\|_{\infty}$.

Ejercicio 1.1.1.17. Se considera el sistema de ecuaciones

$$\frac{x^2 - y^2}{2} - x + \frac{7}{24} = 0,$$
$$xy - y + \frac{1}{9} = 0.$$

- 1. Demuestre que tiene una única solución en el rectángulo $D = [0, 0.4] \times [0, 0.4]$.
- 2. Encuentre una sucesión que converja a dicha solución, justificando la respuesta.
- 3. Calcule, tomando $x_0 = (0,1,0,2)$, las dos primeras iteraciones del método de Newton-Raphson para el sistema.

Ejercicio 1.1.1.18. Se considera el sistema de ecuaciones

$$x - xy = \frac{1}{16},$$

$$x^2 - y = -\frac{1}{8}.$$

- 1. Demuestre que tiene una única solución en el rectángulo $D = [0, \frac{1}{8}] \times [0, \frac{1}{4}]$.
- 2. Encuentre una sucesión que converja a dicha solución, justificando la respuesta.
- 3. Calcule, tomando $x_0 = (0,1,0,2)$, las dos primeras iteraciones del método de Newton-Raphson para el sistema.

1.1.2. Relación 2

Ejercicio 1.1.2.1. Sea la función $f(x) = e^x - ax^2$ con $a \in [3, 4]$.

1. Demuestra que tiene una raíz negativa, otra raíz en [0, 1] y otra mayor que 1.

Evaluamos f en los extremos del intervalo [0, 1]:

$$f(0) = e^{0} - a \cdot 0^{2} = 1$$

 $f(1) = e^{1} - a \cdot 1^{2} = e - a < 0 \iff e < a$

Calculamos además los límites de f en $\pm \infty$:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} e^x - ax^2 = \lim_{x \to -\infty} -ax^2 = -\infty$$
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^x - ax^2 = \infty$$

Para demostrar lo pedido, y debido a que f es continua, emplearemos el Teorema de Bolzano.

- Como $\lim_{x\to-\infty} f(x) = -\infty$ y f(0) = 1 > 0, por el Teorema de Bolzano, f tiene una raíz en \mathbb{R}^- .
- Como f(0) = 1 > 0 y f(1) = e a < 0, por el Teorema de Bolzano, f tiene una raíz en [0, 1].
- Como f(1) = e a < 0 y $\lim_{x \to \infty} f(x) = \infty$, por el Teorema de Bolzano, f tiene una raíz en $[1, \infty[$.
- 2. Demuestra que $x=g_1(x)=\sqrt{\frac{e^x}{a}}$ y $x=g_2(x)=-\sqrt{\frac{e^x}{a}}$ son ecuaciones equivalentes a la de partida.

Partiendo de las ecuaciones dadas, elevamos al cuadrado ambos lados, llegando en ambos casos a:

$$x^{2} = \frac{e^{x}}{a} \iff a \cdot x^{2} = e^{x} \iff e^{x} - ax^{2} = 0$$

Por tanto, efectivamente son equivalentes. La ecuación $x = g_1(x)$ tiene sentido para $x \ge 0$ y la ecuación $x = g_2(x)$ para $x \le 0$.

3. Toma a=3. Demuestra la convergencia local hacia la raíz próxima a -0.5 partiendo de $x_0=0$ usando $g_2(x)$ y realiza dos iteraciones.

Trabajaremos en el intervalo [-1,0]. Veamos que $g_2([-1,0]) \subset [-1,0]$. Para ello, como $g_2 \in C^{\infty}(\mathbb{R})$, calculamos su derivada:

$$g_2'(x) = -\frac{1}{2\sqrt{\frac{e^x}{a}}} \cdot \frac{e^x}{a} = -\frac{e^x}{2a\sqrt{\frac{e^x}{a}}} < 0 \qquad \forall x \in \mathbb{R}$$

Por tanto, tenemos que g_2 es continua y estrictamente decreciente en \mathbb{R} . Además, evaluamos g_2 en los extremos del intervalo:

$$g_2(-1) = -\sqrt{\frac{e^{-1}}{3}} = -\frac{1}{\sqrt{3}e} \approx -0.35$$

 $g_2(0) = -\sqrt{\frac{e^0}{3}} = -\frac{1}{\sqrt{3}} \approx -0.58$

Por tanto, $g_2([-1,0]) = \left[-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}e}\right] \subset [-1,0]$. Por tanto, podemos considerar $g_2: [-1,0] \to [-1,0]$. Veamos ahora que g_2 es una contracción en [-1,0]:

$$|g_2'(x)| = \left| \frac{e^x}{6\sqrt{\frac{e^x}{3}}} \right| = \frac{e^x}{6\sqrt{\frac{e^x}{3}}} \leqslant \frac{e^0}{6\sqrt{\frac{e^{-1}}{3}}} \approx 0.47 < 1 \qquad \forall x \in [-1, 0]$$

Por tanto, g_2 es una contracción en [-1,0]. Por el Teorema del Punto Fijo, g_2 tiene un único punto fijo en [-1,0]. Además, la sucesión $x_{n+1} = g_2(x_n)$ converge a dicho punto fijo para cualquier $x_0 \in [-1,0]$.

Veamos ahora las primeras dos iteraciones tomando $x_0 = 0$:

$$\begin{array}{c|ccc}
n & x_n & g_2(x_n) \\
\hline
0 & 0 & -0.57735 \\
1 & -0.57735 & -0.4325829 \\
2 & -0.4325829 & -0.4650559
\end{array}$$

- 4. Toma a=3. Demuestra la convergencia local hacia la raíz próxima a 1 partiendo de $x_0=0$ usando $g_1(x)$ y realiza dos iteraciones.
- 5. Toma a=3. Comprueba que la raíz mayor que 1 está en [3,4]. Demuestra la no convergencia hacia la raíz próxima a 4 partiendo de x_0 muy próximo a ella (pero diferente de ella) usando $g_1(x)$ y encuentra una función para la iteración funcional, alternativa a las anteriores que converja a la raíz cercana a 4. Partiendo de $x_0=3.98$ obtén x_1 y x_2 con el método propuesto.

Evaluamos f en los extremos del intervalo [3, 4]:

$$f(3) = e^3 - 3 \cdot 3^2 = e^3 - 3^3 < 0$$

$$f(4) = e^4 - 3 \cdot 4^2 = e^4 - 3 \cdot 4^2 > 0$$

Por tanto, por el Teorema de Bolzano, f tiene una raíz en [3,4].

Ejercicio 1.1.2.2. Sea la ecuación $p(x) = x^3 - 8x^2 + 20x - 15,2 = 0.$

1. Prueba que no tiene ninguna raíz menor que 1. Como $p \in C^{\infty}(\mathbb{R})$, podemos calcular la derivada de p y estudiar su signo:

$$p'(x) = 3x^{2} - 16x + 20 = 0 \iff x = \frac{16 \pm \sqrt{16^{2} - 4 \cdot 3 \cdot 20}}{2 \cdot 3} \iff x = \frac{16 \pm 4}{6} \iff x \in \{2, \frac{10}{3}\}$$

Por tanto, p es estrictamente creciente en $]-\infty,2[$. Tenemos que:

$$p(1) = 1 - 8 + 20 - 15,2 = -2,2 < 0$$

$$\lim_{x \to -\infty} p(x) = -\infty$$

Por tanto, deducimos que p no tiene raíces menores que 1.

- 2. Prueba que Newton-Raphson converge partiendo de $x_0 = 0$ hacia la raíz más pequeña y realiza dos iteraciones.
- 3. Calcula la sucesión de Sturm y decide si existen raíces múltiples.
- 4. Separa las raíces reales de dicha ecuación.

Ejercicio 1.1.2.3. Sea la ecuación $f(x) = e^{x-1} - ax^3 = 0$ siendo a > 1.

1. Demuestra que tiene al menos una raíz en [0, 1].

Como f es continua, podemos aplicar el Teorema de Bolzano. Evaluamos f en los extremos del intervalo:

$$f(0) = e^{-1} > 0$$

 $f(1) = e^{0} - a = 1 - a < 0$

Por tanto, por el Teorema de Bolzano, f tiene al menos una raíz en [0,1].

2. A partir de ahora considera a=2. Calcula las dos primeras aproximaciones x_1 y x_2 obtenidas con bisección (siendo $x_0=0.5$). Indica el error máximo que se comete con x_2 .

El error máximo que se comete con x_2 es:

$$|e_2| < \frac{1-0}{2^{2+1}} = \frac{1}{8} = 0.125$$

- 3. Realiza dos iteraciones con el método de la secante tomando como valores iniciales (o semillas) $x_0 = 0$, $x_1 = 1$. Debes calcular x_2 y x_3 .
- 4. Evalúa la función en la segunda aproximación x_2 obtenida con bisección e indica, razonadamente con los resultados que se te han pedido, si se puede asegurar, o no, que la segunda aproximación obtenida con bisección está más cerca de la raíz que la segunda aproximación obtenida con la secante.

Ejercicio 1.1.2.4. Considera la ecuación $x^2 = a$ siendo a > 0.

1. Se pretende usar el método de Newton-Raphson en la ecuación anterior para hallar la raíz cuadrada de a. Deduce que el método se puede expresar, en este caso, de la forma

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

Sea la función $f(x) = x^2 - a$. Aplicando el método de Newton-Raphson, tenemos:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - a}{2x_n} = x_n - \frac{x_n}{2} + \frac{a}{2x_n} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

- 2. Demuestra que el método es convergente partiendo de $x_0 = \max\{1, a\}$.
- 3. Apoyándote en la expresión anterior obtén la segunda aproximación x_2 de la raíz cuadrada positiva de 13, partiendo de $x_0 = 13$.
- 4. Determina la expresión del método de Newton-Raphson para la raíz cúbica de un número diferente de cero y aplícalo dos veces para aproximar la raíz cúbica de 13 partiendo de $x_0 = 13$.

Ejercicio 1.1.2.5. Sea S la única solución en el dominio cuadrado $D = [0,1] \times [0,1]$ del sistema no lineal

$$\begin{cases} xy^2 + 4x - 1 = 0\\ 4yx^2 + 6y - 1 = 0 \end{cases}$$

 \mathcal{E} Es convergente a S la sucesión de iteraciones del método de iteración funcional definido por

$$\begin{cases} x_{n+1} = \frac{1}{4+y_n^2} \\ y_{n+1} = \frac{1}{6+4x_n^2} \end{cases}$$

cualquiera que sea la aproximación inicial $(x_0, y_0) \in [0, 1] \times [0, 1]$?

Ejercicio 1.1.2.6. Se sabe que $f(x) : [a, b] \to \mathbb{R}$ es una función continua en [a, b] y posee un único cero en dicho intervalo. ¿Se puede aproximar siempre dicho cero mediante el método de bisección?

Ejercicio 1.1.2.7. Se considera la ecuación $f(x) = x^3 - x - 1 = 0$. Se pide:

- 1. Demuestra que la ecuación anterior tiene una única solución real s.
- 2. Encuentra un intervalo [a, b] en el que al tomar cualquier punto $x_0 \in [a, b]$ como aproximación inicial del método de Newton-Raphson aplicado a f(x) se asegure que la sucesión de iteraciones de dicho método converja a s con convergencia al menos cuadrática y demuestra que eso es así.
- 3. Calcula las dos primeras iteraciones del método de Newton-Raphson para resolver la ecuación dada tomando como aproximación inicial $x_0 = 1$.

Ejercicio 1.1.2.8. Se pretende estimar el valor de $\sqrt[7]{2}$ usando un método iterativo.

- 1. Determina justificadamente una función f y un intervalo [a,b] donde se pueda aplicar el método de bisección. ¿Cuántas iteraciones son necesarias para conseguir un error inferior a 10^{-4} ?
- 2. Determina justificadamente un intervalo [a,b] y un valor inicial x_0 que permita asegurar que el método de Newton-Raphson converge a $\sqrt[7]{2}$ y realiza 3 iteraciones del método.
- 3. Se propone el método iterativo

$$x_{n+1} = \frac{8x_n + 3x_n^8}{6 + 4x_n^7}$$

Realiza 3 iteraciones del método empezando en el mismo valor x_0 del apartado anterior.

4. ¿Cuál de los dos métodos converge más rápidamente a la solución? Justifica la respuesta.

Ejercicio 1.1.2.9. Relacionado con la Sucesión de Sturm:

- 1. Sea $\{f_0(x), f_1(x), \dots, f_m(x)\}$ una sucesión de Sturm en el intervalo [a, b] y $k_i \in \mathbb{R}$ con $k_i > 0$ para $i = 0, \dots, m$. Demuestra que si se define $\tilde{f}_i = k_i f_i$, entonces $\{\tilde{f}_0(x), \tilde{f}_1(x), \dots, \tilde{f}_m(x)\}$ es también una sucesión de Sturm en [a, b].
- 2. Dado el polinomio $p(x) = x^3 x + 1$, determina justificadamente un intervalo en el que estén contenidas todas sus raíces.
- 3. Construye una sucesión de Sturm para el polinomio p y utilízala para determinar el número de raíces reales así como intervalos de amplitud 1 en los que se encuentran.
- 4. Realiza dos iteraciones del método de la secante para calcular de forma aproximada el valor de la raíz positiva más pequeña justificando la convergencia.

Ejercicio 1.1.2.10. Contesta razonadamente a las siguientes preguntas:

- 1. Se pretende resolver la ecuación f(x) = 0 utilizando el método de Newton-Raphson sabiendo que es convergente localmente ¿Qué debe cumplir la función f para que dicho método tenga convergencia local al menos cúbica?
- 2. Si sabemos que f tiene una única raíz real en el intervalo [-1,1], ¿Cuántas iteraciones del método de bisección hay que realizar para conseguir un error menor que 10^{-7} ?
- 3. ¿Es el método de Newton-Raphson para resolver el sistema F(X) = 0 invariante frente a transformaciones lineales de F?

Observación. Que sea invariante frente a transformaciones lineales quiere decir que la secuencia de aproximaciones $\{X_n\}$ es la misma si se aplica el método al sistema F(X) = 0 o si se aplica al sistema AF(X) = 0, siendo A una matriz no singular, partiendo del mismo vector inicial X_0 .

Ejercicio 1.1.2.11. El problema de trisección de un ángulo consiste en hallar las razones trigonométricas de $\alpha/3$, conociendo las de $\alpha \in]0, \pi/2[$.

- 1. Llamando $x = \text{sen}(\alpha/3)$ y $a = \text{sen } \alpha$, demuestra que x es solución de la ecuación $-4x^3 + 3x a = 0$.
- 2. Construye una sucesión de Sturm de polinomios asociada al polinomio $p(x) = -4x^3 + 3x a$ y deduce que p tiene exactamente 3 raíces reales.
- 3. Demuestra que sen $(\alpha/3)$ es la única solución de la ecuación p(x) = 0, en el intervalo]0, a/2[y que, tomando como valores iniciales $x_0 = a/3$ o $x_0 = a/2$, el método de Newton-Raphson converge.
- 4. Para resolver la ecuación anterior, se propone el método iterativo

$$x_{n+1} = \frac{a}{3 - 4x_n^2}$$

Estudia bajo qué condiciones el método converge localmente a la solución. ¿Cuál de los dos métodos converge más rápidamente?

5. Tomando a = 1/2, realiza una iteración del método de Newton-Raphson partiendo de $x_0 = 1/6$ para obtener una aproximación de sen $(\pi/18)$.