МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П.О. СУХОГО»

Машиностроительный факультет

Кафедра «Металлорежущие станки и инструменты»

Дисциплина: «Конструирование и расчет станков»

Отчёт по лабораторной работе №6 По теме: «Программирование станков с ЧПУ»

Выполнил студент группы ТМ-31

Принял преподаватель Кириленко В.П. **Цель работы**: изучить систему управления и конструкцию токарного станка с ЧПУ.

Порядок выполнения работы:

- 1.Изучить конструкцию станка.
- 2.Изучить кинематическую схему станка.
- 3. Изучить органы управления станка.
- 4. Произвести наладку станка на обработку детали.
- 5.Составить отчёт.

Теоретическая часть

Для реализации технологического процесса необходимы чертежи операционной обработки, карта наладки и управляющая программа.

Карта наладки включает в себя следующие основные сведения: модель станка с ЧПУ; модель УЧПУ; номер и материал обрабатываемой детали; данные о приспособлении для крепления детали; типоразмеры зажимных кулачков и заднего центра; типоразмеры режущего инструмента и порядок расположения его в позициях револьверной головки; номера корректоров положения инструмента по координатным осям х и (если это предусмотрено в УЧПУ).

Управляющую программу (УП) разрабатывают согласно инструкции по программированию, прилагаемой к каждому станку. Разработка УП - наиболее важный этап технологической подготовки станка к обработке конкретной детали.

Типовые циклы. В памяти современных УЧПУ постоянно хранится ряд типовых технологических циклов, что значительно упрощает подготовку УП.

В качестве примера рассмотрим подготовку УП для обработки валика (рис. 61) на станке модели 16К20Т1, оснащенном УЧПУ модели «Электроника НЦ-31», в памяти которого хранятся типовые технологические циклы, имеющие код G. Ввод G-циклов в диалоговом режиме позволяет автоматизировать этот процесс и уменьшить число ошибок.

G-цикл состоит ИЗ последовательности кадров: первый кадр буквенный (G) является заголовком цикла И содержит адрес характеризуют форму номер последующие кадры цикла; цикла.

Для примера рассмотрим следующие циклы:

- G 12 и G 13 (обтачивание радиусов соответственно по часовой и против часовой стрелки; задаются координаты начала и конца дуги и ее радиус);
- G 77 (многопроходное продольное обтачивание и растачивание; задаются: конечный диаметр по оси х; величина полного припуска; координата z конечной точки прохода на конечном диаметре; длина съема припуска; глубина резания в проходе);
- G 78 (многопроходное поперечное обтачивание наружных и внутренних поверхностей; задаются: длина рабочего хода по оси х; диаметр, ограничивающий длину прохода; полный припуск по оси z; координата z с

учетом снятия припуска; глубина резания в проходе; перепад диаметра, ограничивающего длину прохода);

G 31 (многопроходное нарезание резьбы резцом; задаются: наружный диаметр резьбы; расстояние между исходной точкой по оси х и наружным диаметром резьбы; координата z конечной точки резьбы; длина резьбы по оси z; шаг резьбы в дискретах, мм; глубина резьбы; глубина прохода; перепад диаметров и некоторые другие параметры). Имеются также циклы G 33 (нарезание резьбы плашкой или метчиком), G 73 (глубокое сверление), G 75 (прорезание канавок) и др.

Практическая часть

Рисунок 1 — Чертеж обрабатываемой детали Управляющая программа для обработки валика приведена в табл. 1.

Таблица 1

Порядковый номер кадра	Команда	Элементы выполняемой УП
1	2	3
0	M39	Выбор диапазона скоростей
1	M3	Включение вращения шпинделя
2	S5	500 об/мин
3	F35	Подача 0,35 мм/об
4	T1	Вызов резца 1 продольного контурного
5	Z17400	Выход по оси z в исходную точку цикла
6	X4200	Выход по оси х в исходную точку цикла
7	G77	Многопроходный цикл продольного точения
8	X3100	Координата по оси х последнего рабочего хода
9	Z6300	Длина каждого рабочего хода цикла

Продолжение таблицы 1

	T	Продолжение таблицы 1
1	2	3
10	P300	Глубина рабочего хода
11	X2500	Выход по оси х
12	Z1870	Проточить Ф25 на длину 18 мм по чертежу
13	X3200	Выход по оси х
14	Z1300	Выход по оси z на предварительную обточку
		конуса
15	Z1120	Обточка конуса предварительно с учетом
		погрешности на радиус инструмента R=1 мм
16	X2500	Обточка Ф24 до Ф 25 предварительно на длину
17	Z11030	62,8 мм
18	X4500	Отход по оси х
19	Z17400	Отход по оси z
20	X2000	Выход на фаску по оси х
21	S7	1000 об/мин
22	F25	Подача 0,25 мм/об
23	Z100	Подход к торцу детали на рабочей подаче
24	X2360-45°	Снять фаску 2×45°
25	Z15500	Проточить \$\phi\$23,6 окончательно на длину 18 мм
26	X2998	Выход на размер по оси х
27	Z1300	Проточить \$\phi 30 \h8 окончательно
28	X2398	
	 	Проточить конус окончательно
29	Z1120	
30	Z11000	Проточить Ø24h8 окончательно на длину 63 мм
31	X3600	Выход на размер по оси х
32	Z520	1
	_	Снять фаску 30° на 42
33	X4200	
34	X10000	Выход по оси х в точку смены инструмента
35	Z25000	Выход по оси z в точку смены инструмента
36	F15	Подача 0,15 мм/об
37	T2	Вызов резца 2
38	Z15500	Выход по оси z на прорезку канавки I
39	X3100	Подход по оси х
40	S5	500 об/мин
41	X2030	Прорезка канавки ϕ 20,4 × 3
42	X3800	Отход по оси х
43	Z11000	Выход по оси z на прорезку канавки 2
44	X2290	Прорезка канавки Ф23×3
45	X10000	Выход по оси х в точку смены инструмента
46	Z25000	Выход по оси z в точку смены инструмента
47	Т3	Вызов резца 3 для резьбонарезания 710 об/мин
48	S6	710 об/мин

Продолжение таблицы 1

_	1	продолжение такинды т
1	2	3
49	Z18300	Выход в исходную точку по оси z
50	X2700	Выход по оси х в исходную точку цикла
51	G31	Функция цикла резьбонарезания
52	X2400	Наружный диаметр резьбы
53	Z15700	Координата z конечной точки резьбы
54	F15000	Шаг резьбы (0,0001 мм)
55	P96	Глубина резьбы
56	P30	Глубина первого рабочего хода
57	X10000	Выход по оси х в точку смены инструмента
58	Z25000	Выход по оси z в точку смены инструмента
59	M30	Конец программы

Наладку токарного станка с ЧПУ рекомендуется выполнять следующим образом:

- 1. В начале смены проверяют основные функции, выполняемые станком. Кроме того, в целях тепловой стабилизации станка и УЧПУ включают вращение шпинделя на средней частоте и питание УЧПУ на 20...25 мин; при этом прогревают станок.
- 2. Подбирают согласно карте наладки режущий инструмент и оснастку для крепления обрабатываемой детали. Проверяют состояние инструмента.
- 3. Устанавливают инструмент в соответствующие позиции револьверной головки, указанные в карте наладки.
- 4. Налаживают кулачки, ограничивающие перемещение суппорта и его нулевое (исходное) положение.

Вывод: в ходе данной работы были получены навыки по анализу коробок передач по использованию в конструкции стандартизированных элементов.