Cálculo Diferencial e Integral III

Resumo

Rafael Rodrigues

LEIC Instituto Superior Técnico 2023/2024

Contents

1	\mathbf{Equ}	ações Diferenciais Ordinárias	2	
	1.1	Equações Escalares de 1 ^a Ordem	2	
		1.1.1 Equações Lineares	2	
		1.1.2 Equações Separáveis	2	
		1.1.3 Equações Exatas	2	
		1.1.4 Equações Redutíveis a Exatas	2	
	1.2	Equações Diferenciais Ordinárias de Ordem n	3	
		1.2.1 Equações Lineares de Ordem n — Caso Homogéneo	3	
	1.3	Equações Vetoriais de 1 ^a Ordem	3	
		1.3.1 Equações Vetoriais Lineares — Caso Homogéneo	3	
		1.3.2 Equações Vetoriais Lineares — Caso não Homogéneo	3	
		1.3.3 Exponencial de uma Matriz	3	
	1.4	Equações Lineares de Ordem n — Caso não Homogéneo	3	
	1.5	Existência, Unicidade, Prolongamento de Soluções	3	
2	Teo	remas da Divergência e de Stokes	4	
	2.1	Superfícies em \mathbb{R}^3	4	
		2.1.1 Definição de Superfície	4	
		2.1.2 Reta Normal	4	
		2.1.3 Plano Tangente	4	
	2.2	Integrais de Superfície	4	
	2.3	Operadores Diferenciais	4	
		2.3.1 Divergência	4	
		2.3.2 Rotacional	4	
	2.4	Fluxo de um Campo Vetorial	5	
		2.4.1 Teorema de Divergência	5	
	2.5		5	
		2.5.1 Trabalho	5	
		2.5.2 Potencial Vetorial	5	
3	Séries de Fourier			
	3.1	Teorema da Convergência Pontual	6	
	3.2	Série de Senos	6	
	3.3	Série de Cossenos	6	
4	Intr	rodução às Equações Diferenciais Parciais	7	
	4.1		7	
5	Ext	ras	8	
	5.1		8	
			8	
			8	
			8	

1 Equações Diferenciais Ordinárias

1.1 Equações Escalares de 1^a Ordem

1.1.1 Equações Lineares

$$\frac{dy}{dt} + a(t)y = b(t)$$

- 1. Verificar que está escrita na forma linear
- 2. Determinar o fator integrante: $\mu(t) = \exp\left(\int a(t) dt\right)$
- 3. Determinar y: $y(t) = \frac{1}{\mu(t)} \int \mu(t)b(t) dt + C$

1.1.2 Equações Separáveis

$$f(y)\frac{dy}{dt} = g(t) \Leftrightarrow f(y) dy = g(t) dt$$

- 1. Verificar que está escrita na forma separável
- 2. Integrar ambos os membros da igualdade: $\int f(y) dy = \int g(t) dt + C$

1.1.3 Equações Exatas

$$M(t,y) + N(t,y)\frac{dy}{dt} = 0 \Leftrightarrow M(t,y) dt + N(t,y) dy = 0$$

- 1. Verificar se a equação é exata: $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial t} \Rightarrow \exists \ \Phi : \mathbb{R}^2 \to \mathbb{R} \ \text{tal que} \ \nabla \Phi(t,y) = (M,N)$
- 2. Encontrar um potencial para $\Phi(t, y)$:

$$\begin{cases} \Phi = \int M \, dx \\ \Phi = \int N \, dy \end{cases} \Rightarrow \Phi = C$$

3. Isolar o y

1.1.4 Equações Redutíveis a Exatas

$$M(t,y) + N(t,y)\frac{dy}{dt} = 0$$

- 1. Quando a equação não é exata: $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$
- 2. Calcular as razões:

$$\frac{M_y - N_t}{N}$$
 e $\frac{N_t - M_y}{M}$

3. Escolher a razão que depender apenas de uma variável e calcular o fator integrante:

$$\mu = \exp\left(\int \operatorname{razão} \operatorname{escolhida}\right)$$

2

4. Resolver a equação exata: $\mu M(t,y) + \mu N(t,y) \frac{dy}{dt} = 0$

- 1.2 Equações Diferenciais Ordinárias de Ordem n
- 1.2.1 Equações Lineares de Ordem n Caso Homogéneo TODO
 - 1. Colocar na
- 1.3 Equações Vetoriais de 1^a Ordem
- 1.3.1 Equações Vetoriais Lineares Caso Homogéneo

1.3.2 Equações Vetoriais Lineares — Caso não Homogéneo

TODO

TODO

Exercício 1 e 2 da Aula Prática 5

1.3.3 Exponencial de uma Matriz

TODO

Exercício 1 da Aula Prática 4 Verificação:

- $\bullet \ e^{At}|_{t=0} = I$
- $\bullet \ \frac{d}{dt}e^{At}|_{t=0} = A$

1.4 Equações Lineares de Ordem n — Caso não Homogéneo

TODO

Exercícios 1 e 2 da Aula Prática 5

1.5 Existência, Unicidade, Prolongamento de Soluções

TODO

Exercícios 3, 4 e 5 da Aula Prática 5

Exercícios 1 e 2 da Aula Prática 6 (Ficha 5b)

2 Teoremas da Divergência e de Stokes

2.1 Superfícies em \mathbb{R}^3

2.1.1 Definição de Superfície

TODO

2.1.2 Reta Normal

• No caso de uma parametrização g(u, v):

$$\vec{N} = \frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v} = \begin{vmatrix} e_1 & e_2 & e_3 \\ \frac{\partial g_1}{\partial u} & \frac{\partial g_2}{\partial u} & \frac{\partial g_3}{\partial u} \\ \frac{\partial g_1}{\partial v} & \frac{\partial g_2}{\partial v} & \frac{\partial g_3}{\partial v} \end{vmatrix}$$

• No caso de um conjunto de nível G(x, y, z) = 0:

$$\vec{N} = \vec{\nabla}G$$

O vetor normal unitário é dado por:

$$\vec{n} = \frac{\vec{N}}{||\vec{N}||}$$

2.1.3 Plano Tangente

A equação de um plano tangente a uma superfície num ponto $P=(x_0,y_0,z_0)$ é dada por:

$$\vec{N} \cdot (x - x_0, \ y - y_0, \ z - z_0) = 0$$

2.2 Integrais de Superfície

$$\iint_{S} f(x, y, z) \ dS = \iint_{D} f(g(u, v)) \left\| \frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v} \right\| \ du \ dv$$

• Área

$$A = \iint_{S} dS$$

• Massa

$$M = \iint_S \sigma \, dS$$

• Centro de Massa:

$$\bar{x} = \frac{1}{M} \iint_{S} x(g(u, v)) \sigma dS$$
 (coordenada x)

2.3 Operadores Diferenciais

2.3.1 Divergência

$$\operatorname{div} F = \vec{\nabla} \cdot F = \left(\frac{\partial}{\partial x}, \ \frac{\partial}{\partial y}, \ \frac{\partial}{\partial z}\right) \cdot (F_1, \ F_2, \ F_3) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

2.3.2 Rotacional

$$\operatorname{rot} F = \vec{\nabla} \times F = \begin{vmatrix} e_1 & e_2 & e_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right)$$

4

2.4 Fluxo de um Campo Vetorial

$$\iint_S F \cdot \vec{n} \, dS = \iint_D F(g(u, v)) \cdot \left(\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v} \right) \, du \, dv$$

1. Parametrizar a superfície

2.4.1 Teorema de Divergência

Seja S a superfície fechada, orientada positivamente (p/ fora), fronteira de uma região sólida E.

$$\iint_{S} \vec{F} \cdot \vec{n} \, dS = \iiint_{E} \operatorname{div} \vec{F} \, dV$$

2.5 Teorema de Stokes

Seja S uma **superfície orientada**, cuja fronteira é formada por uma curva C fechada e com orientação positiva.

$$\oint_C \vec{F} \ dg = \iint_S \operatorname{rot} \vec{F} \ dS = \iint_D \operatorname{rot} \vec{F} \cdot \vec{N} \ du \ dv$$

2.5.1 Trabalho

$$W = \oint_C F \, dg = \int_a^b F(g(t)) \cdot g'(t) \, dt$$

2.5.2 Potencial Vetorial

Diz-se que \vec{G} é potencial vetorial de \vec{F} se $\vec{F} = \operatorname{rot} \vec{G}$

- 1. Verificar que div $\vec{F} = 0$
- 2. Resolver a equação $\vec{F} = \operatorname{rot} \vec{G}$:

$$\begin{split} \left(\vec{F}_{1}, \ \vec{F}_{2}, \ \vec{F}_{3}\right) &= \operatorname{rot} \vec{G} \\ \Leftrightarrow \left(\vec{F}_{1}, \ \vec{F}_{2}, \ \vec{F}_{3}\right) &= \left(\frac{\partial G_{3}}{\partial y} - \frac{\partial G_{2}}{\partial z}, \ \frac{\partial G_{1}}{\partial z} - \frac{\partial G_{3}}{\partial x}, \ \frac{\partial G_{2}}{\partial x} - \frac{\partial G_{1}}{\partial y}\right) \end{split}$$

3. Assumir que uma das componentes de G é nulo, (ex. G_2):

$$(\vec{F_1}, \vec{F_2}, \vec{F_3}) = \left(\frac{\partial G_3}{\partial y}, \frac{\partial G_1}{\partial z} - \frac{\partial G_3}{\partial x}, -\frac{\partial G_1}{\partial y}\right)$$

4. Integrar as outras componente em ordem à variável corresponde ao componente anulado (ex. y):

$$\int \vec{F_1} \, dy = \int \frac{\partial G_3}{\partial y} \, dy$$
$$\int \vec{F_3} \, dy = \int -\frac{\partial G_1}{\partial y} \, dy$$

3 Séries de Fourier

Sendo f(x) uma função f com extensão periódica \bar{f} com período 2L:

$$SFf(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} \left(a_n \cdot \cos\left(\frac{n\pi x}{L}\right) + b_n \cdot \sin\left(\frac{n\pi x}{L}\right) \right)$$
$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cdot \cos\left(\frac{n\pi x}{L}\right) dx \quad \Rightarrow \quad a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$
$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \cdot \sin\left(\frac{n\pi x}{L}\right) dx$$

$$\cos(x) = -\cos(x) \text{ (par)} \qquad \cos(n\pi) = (-1)^n \qquad \int_a^b \cos(*x) = \left[\frac{\sin(*x)}{*}\right]_a^b$$
$$\sin(x) = -\sin(-x) \text{ (impar)} \qquad \sin(n\pi) = 0 \qquad \int_a^b \sin(*x) = \left[-\frac{\cos(*x)}{*}\right]_a^b$$

3.1 Teorema da Convergência Pontual

$$SFf(x) = \begin{cases} f(x) & \text{se } x \text{ \'e um ponto de continuidade de } f \\ \frac{f(x^+) + f(x^-)}{2} & \text{se } x \text{ \'e um ponto de descontinuidade de } f \\ \frac{f(-L^+) + f(L^-)}{2} & \text{se } x = -L \text{ ou } x = L \end{cases}$$

3.2 Série de Senos

Quando a função f(x) é **ímpar**:

$$S_{\sin}f(x) = \sum_{n=1}^{+\infty} b_n \cdot \sin\left(\frac{n\pi x}{L}\right)$$
$$b_n = \frac{2}{L} \int_0^L f(x) \cdot \sin\left(\frac{n\pi x}{L}\right) dx$$

3.3 Série de Cossenos

Quando a função f(x) é par:

$$S_{\cos}f(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cdot \cos\left(\frac{n\pi x}{L}\right)$$
$$a_n = \frac{2}{L} \int_0^L f(x) \cdot \cos\left(\frac{n\pi x}{L}\right) dx \quad \Rightarrow \quad a_0 = \frac{2}{L} \int_0^L f(x) dx$$

Integral por partes

$$\int_a^b uv' = [uv]_a^b - \int_a^b u'v$$

6

4 Introdução às Equações Diferenciais Parciais

4.1 Método de Separação de Variáveis

$$u(t,x)=T(t)X(x)$$
 Condição de fronteira (CF): $u(t,0)=u(t,\pi)=0$ (t variável)
 Condição inicial (CI): $u(0,x)=f(x)$ (t fixo $=0$)

- 1. Substituir u(t,x) na equação diferencial por T(t)X(x)
- 2. Separar as variáveis dos dois lados da igualdade:

$$\frac{T'}{T} = \frac{X''}{X}$$

3. Igualar os dois lados da equação a lambda (λ):

$$\frac{T'}{T} = \lambda$$
 e $\frac{X''}{X} = \lambda$

4. Analisar as condições de fronteira, sabendo que $T(t) \neq 0$:

$$u(t,0) = u(t,\pi) = 0 \implies X(0) = X(\pi) = 0$$

5. Construir os dois problemas (EDOs)a resolver:

P1:
$$\begin{cases} X'' - \lambda X = 0 \\ X(0) = X(\pi) = 0 \end{cases} \text{ se } x \in]0, \pi[$$

P2:
$$\frac{T'}{T} = \lambda \Leftrightarrow T' = \lambda T \Leftrightarrow T' - \lambda T = 0 \Rightarrow P(R) = R - \lambda = 0$$

- 6. Resolver P1 testando as várias possibilidades para λ :
 - $\lambda = 0$
 - $\lambda > 0$
 - $\lambda < 0$
- 7. Resolver P2 para os valores de λ obtidos anteriormente
- 8. Combinar os resultados obtidos, obtendo a solução do PVF:

$$u_k(t,x) = T_k(t)X_k(t) \Rightarrow u(t,x) = \sum_{k=1}^{\infty} c_k T_k X_k$$

9. Calcular as constantes c_k utilizando a condição inicial:

$$u(0,x) = \sum_{k=1}^{\infty} c_k X_k = \text{CI}$$

7

10. Substituir os valores obtidos em u(t,x)

5 Extras

- 5.1 Mudança de Variáveis de Integração
- 5.1.1 Coordenadas Polares

$$\iint f(r\cos\theta, r\sin\theta) \cdot r \, dr \, d\theta$$

5.1.2 Coordenadas Cilíndricas

$$\iiint f(r\cos\theta,r\sin\theta,z)\cdot r\,dz\,dr\,d\theta$$

5.1.3 Coordenadas Esféricas

$$\iiint f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) \cdot r^2\sin\varphi\,dr\,d\varphi\,d\theta$$