Transformar Problemas Geofísicos em Problemas sosıənuj

Estrutura

- Exemplos
 - Exemplo em Sísmica
 - Exemplo em Gravimetria
 - Exemplo em SEV
 - Exemplo em GPR

É de se esperar que o embasamento tenha relevo suave nessa região

A Sísmica é um método geofísico que investiga a subsuperfície por meio de um fenômeno físico governado pela Teoria da Elasticidade

subsuperfície

$$t = f(V_1, h)$$

Sendo assim, o problema inverso consiste em encontrar V_1 e h que produzem os tempos de chegada preditos mais próximos aos tempos de chegada observados de acordo com uma norma preestabelecida

$$\mathbf{t} = f(V_1, h)$$

R2

R1

deslocamento

A Gravimetria é um método geofísico que investiga a subsuperfície por meio de um fenômeno físico governado pela Teoria do Potencial

subsuperfície

Uma distribuição de densidade produz uma anomalia na aceleração da gravidade, que pode ser detectada na superfície

Contorno do corpo

verdadeiro

Sabe-se que, sobre o embasamento, há uma camada de arenito que possui água em sua base

A SEV é um método geofísico que investiga a subsuperfície por meio de um fenômeno físico governado pela difusão de correntes elétricas

subsuperfície

eletrodos induz
correntes elétricas,
que difundem em
subsuperfície e
causam uma diferença
de potencial que é
medida por
outro par de
eletrodos

Na área de estudo, é de se esperar a presença de canos e tambores metálicos

subsuperfície

Uma fonte
é colocada em um
poço, emite ondas
eletromagnéticas, que
se propagam em
subsuperfície e são
detectadas em
receptores localizados
em outro poço

A função f do problema direto calcula, dada a velocidade v em cada segmento retangular, os tempos de chegada preditos para as primeiras ondas

Sendo assim, o problema inverso consiste em encontrar a velocidade v em cada segmento retangular, de forma que os dados preditos sejam os mais próximos possíveis aos dados observados de acordo com uma norma preestabelecida

Contorno dos corpos verdadeiros

