清华大学电子系 马惠敏

http://3dimage.ee.tsinghua.edu.cn

Email: mhmpub@tsinghua.edu.cn

Tel: 62781432

Vision Conception for Semi-Autonomous Driving

Google

Mobileye

Tesla

NVIDIA

Vision Conception for Semi-Autonomous Driving

Google

- LIDAR
- Radar/ Sonar
- Stereo Camera
- Maps

Tesla

- Mobileye EyeQ3
- Forward Radar
- Forward Camera
- 360° Ultrasonic Sonar
- GPS

Mobileye

- EyeQ3 (Now)
- EyeQ4 (2018)
 - 8 cameras

NVIDIA

- Drive PX: 2 Jetson TX1,
 12 cameras
- Drive PX2: 12 CPU cores,
 2 Pascal GPUs
 DriveNet

Vision Conception for Semi-Autonomous Driving

□功能/Functions

- 前向碰撞预警 Forward Collision Warning
- 自适应巡航控制 Adaptive Cruise Control
- 自动变道 Automatic Lane Changing
- 交通拥堵辅助 Traffic Jam Assistance
- 自动泊车 Autonomous parking

□技术/Techniques

- 车道检测
 Line Detection
- 交通标识/灯检测 Traffic Sign/Light Detection
- 驾驶道路标识
 Drivable Space Labeling
- 通用物体检测
 General Object Detection
- 整体路径规划 Holistic Path Planning

Vision Conception for Semi-Autonomous Driving

核心问题: 小目标、强遮挡、高动态

Small objects, Heavy Occlusion, Rapid moving

□ ImageNet:

• 1000 classes, ~2M images

☐ PASCAL VOC:

20 classes, ~20K images

Professional photographs, simple scenes, large objects recall> 95% (1K Prop.)

□ KITTI:

3 classes, ~20K images

□ coco:

80 classes, ~200K images

recall < **40%**

微软152层50%

任务关联实验范式

- 汽车检测
- 行人检测

建立注意关联显著性模型

挖掘任务关联图像检测识别规律

测试验证

建立图像认知网络模型

3D Image Lab

Home Research

Publications

智能+

> 让机器学习人的思考模式

- 显著性物体检测:语义注意认知模型
- 部件与结构认知模型:抵抗遮挡能力
- 3D 场景物体识别:适应复杂环境
- 图像认知心理学:心理特征量化提取

> 代表性文章与专利

PRL: Geodesic Weighted Bayesian Model for Saliency Optimization, 2016

PR: Manifold topological multi-resolution analysis method, 2011

CVPR: Monocular 3D Object Detection for Autonomous Driving, 2016

CVPR: Improving Object Proposals with Multi-Thresholding Straddling Expansion, 2015

NIPS: 3D Object Proposals for Accurate Object Class Detection, 2015

专利: 201310221563.9 一种图像认知心理分析系统

专利: 201310222323.0 基于MMPI心理量表的图像库及其构建方法

(1) 显著性物体检测

- 提出自顶向下的认知模型
- ▶ 利用贝叶斯框架抑制噪声
- ▶ 利用区域空间关系统一标出整个显著目标

图像的Saliency map:

(1) 显著性物体检测

(2) 部件与结构认知模型

对称对结构模型

● 提出通用对称对结构模型

- ▶ 建立了动作图象中的对称对结构模型
- > 降低了结构对部件准确检测的要求

- ▶ 确定部件的空间关系提高动作检测准确性
- > 建立空间结构神经网络和分级分辨神经网络

(3) 3D 场景物体识别

- 提出三维环境认知学习模型
- ▶ 建立人在物体检测中的认知模型
- ▶ 将三维环境先验与深度学习结合
- ▶ 提出3D物体检测、定位方法

Joint box regression and orientation estimation

3D object proposals

- ▶ 高度先验
- ▶ 高度对比度
- ▶ 点云密度
- ▶ 自由空间

3D Proposal

Free Space

Height prior

3D Object Detection Network

[Chen & Ma, et al. NIPS'15 & CVPR'16]

3D Object Detection Network

- 包含上下文信息: Incorporating context information
- 多任务监督: Multi-task supervision
- 多通道特征学习: Multi-stream feature learning

单目三维类目标检测

Monocular 3D Object Proposals - Overview

□ 立体/Stereo

- 3D Sampling
- Road Estimation from 3D
- Point Cloud Features
- Exhaustive Search
- Structured SVM

■ 単目/Monocular

- 3D Sampling
- Road Estimation from 2D
- Semantic Features
- Exhaustive Search
- Structured SVM

Results: Object Detection and Orientation Estimation

Object detection (AP)

Car

	Method	Setting	Code	<u>Moderate</u>	Easy	Hard
1	DenseBox2			89.32 %	93.94 %	79.81 %
2	DJML				91.31 %	77.73 %
3	3DOP	ŏŏ		88.64 %	93.04 %	79.10 %
	en, K. Kundu, Y. Zhu, A.			Fidler and R. Ur		•
4	<u>SubCNN</u>		1 1 1 1 1 1 1 1 1 1	88.55 %	90.74 %	
Anon	ymous submission					
5	CVPR #1408			88.09 %	90.11 %	78.32 %

Pedestrian

	Method	Setting	Code	<u>Moderate</u>	Easy	Hard
1	3DOP	88		67.47 %	81.78 %	64.70 %
A. Chen	, K. Kulluu, T. Zilu, A.	bernesnawi, r	1. /wa, 5. r	iuter and K. Orta	sun. <u>30 Object</u>	Proposats for F
2	CVPR #1408			66.34 %	80.25 %	63.41 %
Anonym	ous submission					
3	<u>SubCNN</u>			66.13 %	79.13 %	61.27 %

Cyclist

Pedestrian

Method

3DOP

SubCNN

CVPR #1408

Anonymous submission

ŏŏ

	.yciist							
	Method	Setting	Code	<u>Moderate</u>	Easy	Hard		
1	3DOP	ăă	2 2 3 4 5 5 6 7 7 8 8 8 8 8 8 8 8 8 8	68.94 %	78.39 %	61.37 %		
	en, K. Kundu, T. Zhu, A.	Bernesnawi, r	1. //\d, 5. I	riuter and K. Orta	isun: <u>30 object</u>	Proposats for A		
2	CVPR #1408		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	67.03 %	77.06 %	59.87 %		
Anonymous submission								
3	<u>SubCNN</u>			61.98 %	74.40 %	54.75 %		

Setting Code Moderate

59.80 %

59.40 %

57.86 %

Easy

72.94 %

72.61 %

71.13 %

H. Ma, S. Fidler and R. Urtasun: 3D Object

Hard

57.03 %

54.78 %

54.94 %

Object detection and orientation estimation (AOS)

Car

	Method	Setting	Code	<u>Moderate</u>	Easy	Hard
1	SubCNN			87.88 %	90.49 %	77.10 %
Anony	mous submission	<u>-</u>			•	
2	<u>DJML</u>			87.51 %	90.67 %	76.33 %
3	<u>3DOP</u>	ďď		86.10 %	91.44 %	76.52 %
X. Che	en, K. Kundu, Y. Zh	nu, A. Bernes	hawi, H.	Ma, S. Fidler a	ınd R. Urtasuı	n: <u>3D Object</u>
4	CVPR #1408			85.66 %	88.31 %	75.89 %

Cyclist

	Method	Setting	Code	<u>Moderate</u>	Easy	Hard		
1	<u>3DOP</u>	ŏŏ		58.68 %	70.13 %	52.35 %		
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: <u>3D Objec</u>								
2	CVPR #1408			55.73 %	66.64 %	49.75 %		
Anonymous submission								
3	SubCNN	1 2 3 4 4 5 6 7		52.06 %	63.74 %	45.93 %		

http://www.cvlibs.net/datasets/kitti/eval_object.php

Car		Object detection (AP)			Object detection and orientation estimation (AOS)			
Method	Easy	Moderate	Hard	Easy	Moderate	Hard		
SubCat [1]	84.14	75.46	59.71	74.42	83.41	58.83		
3DVP [2]	87.46	75.77	65.38	86.92	74.59	64.11		
AOG [3]	84.80	75.94	60.70	-	-	-		
Regionlets [4]	84.75	76.45	59.70	-	-	-		
spLBP [5]	87.19	77.40	60.60	-	-	<u>-</u>		
Faster R-CNN [6]	86.71	81.84	71.12	-	-	-		
3DOP (Ours)	93.04	88.64	79.10	91.44	86.10	76.52		
Mono3D (Ours)	92.33	88.66	78.96	91.01	86.62	76.84		
Pedestrian		Object detection (AP)			Object detection and orientation estimation (AOS)			
Method	Easy	Moderate	Hard	Easy	Moderate	Hard		
DPM-VOC+VP [1]	59.48	44.86	40.37	53.55	39.83	35.73		
FilteredICF [2]	67.65	56.75	51.12	-	-	-		
DeepParts [3]	70.49	58.67	52.78	-	-	-		
CompACT-Deep [4]	70.69	58.74	52.71	-	-	-		
Regionlets [5]	73.14	61.15	55.21	-	-	-		
Faster R-CNN [6]	78.86	65.90	61.18	-	-	-		
Mono3D (Ours)	80.35	66.68	63.44	71.15	58.15	54.94		
3DOP (Ours)	81.78	67.47	64.70	72.94	59.80	57.03		
Cyclist		Object detection	(AP)	Object detection	on and orientation es	timation (AOS)		
Method	Easy	Moderate	Hard	Easy	Moderate	Hard		
DPM-VOC+VP [1]	42.43	31.08	28.23	30.52	23.17	21.58		
Mono3D (Ours)	76.04	66.36	58.87	65.56	54.97	48.77		
3DOP (Ours)	78.39	68.94	61.37	70.13	58.68	52.35		

复杂干扰环境中的三维目标识别

智能++高级认知:多模型&多任务&多视角

Multi-Modal & Multi-Task & Multi-View

Multi-Modal

高级认知:多模型&多任务&多视角

Multi-Modal & Multi-Task & Multi-View

Multi-Task

高级认知:多模型&多任务&多视角

Front view

- LIDAR: Input: depth, height, distance
- RGB

Bird's eye view

- Input representation
- Sparse points
- Extra small objects
- Oriented bounding boxes

应用: 智能驾驶与视觉感知

- ▶ 小目标 ▶ 强遮挡 ▶ 任意姿态 ▶ 人
- 建立了国际上唯一的图像认知心理评测系统
- 2015自动驾驶KITTI国际评测,共六项获四项世界第一
- 复杂环境目标检测识别技术服务于航空、航天、交通

- 国家自然基金:基于 图像认知的心理特征 提取与分析
- 专项重点基金:适应 复杂环境的成像导航
 - **国家重点研发计划:** 智能电动汽车感知、 决策与控制

智能+

http://3dimage.ee.Tsinghua.edu.cn

ICIP 2014: Learning a compact latent reprecentation of the bag-of –parts model ICCVG 2014: Protected Pooling Method Of Sparse Coding In Visual Classication ICIP 2015: Geodesic weighted Bayesian model for salient Object Detection.

CVPR 2015: Improving Object Proposals with Multi-Thresholding Straddling Expansion

NIPS 2015: 3D Object Proposals for Accurate Object Class Detection
 CVPR 2016: Monocular 3D Object Detection for Autonomous Driving
 ICIP 2016: Object Detection Via Fast R-CNN And Low-level Cues
 ICIP 2016: Region Candidate Combination for Action Recognition.
 PRL 2016: Geodesic Weighted Bayesian Model for Saliency Optimization

PRL 2016: Geodesic Weighted Bayesian Model for Saliency Optimization
 PRL 2016: Semantic parts based top-down pyramid for action recognition

PR 2016: Generalized Symmetric Pair Model for Image Recognition, Pattern Recognition (修改中)

A person riding a motorcycle on a dirt road.

Thank You

http://3dimage.ee.Tsinghua.edu.cn

