Tubular Handling of K⁺ by the Renal Tubule

The normal rate of k^+ filtration is about 756 mEq/day (GFR x plasma K^+ level = 180 x 4.2). Fig. (4-14) illustrates the fate of the filtered K^+

Fig. (4-14): Renal tubular sites of K^+ reabsorption and

- ◆ K⁺ is both reabsorbed and secreted by the renal tubule
- ♦ K⁺ Reabsorption:
 - 1) PCT: Reabsorption of 65% of the filtered K+
 - 2) Thick ascending limb of the Loop of Henle:

25% of the filtered load of K^+ are actively co-transported with Na^+ and Cl^- .

3) Distal tubule and Collecting Tubule:

Reabsorb or secrete K⁺ depending on dietary intake.

Reabsorption of K+: involves H+-K+ ATPase in the luminal

membrane of intercalated cells.

5% of the filtered load of K^+ is actively reabsorbed by intercalated cells by ATP dependent K^+ - H^+ antiporter in the luminal membrane and exits through K^+ channels in the basolateral membrane. Occurs only on a low K^+ (K^+ depletion). (Fig 4-15).

Fig. (4-15): Mechanism of K⁺ reabsorption by intercalated cells.

★ K⁺ Secretion: Occurs in principal cells.

Principal cells in the late distal tubule and cortical collecting tubule secrete K⁺ into the tubular lumen.

- ◆ Is variable and depends on dietary K⁺, aldosterone level, acidbase status and urine flow rate.
- ♦ Mechanism of K⁺ secretion: (Fig. 4-16).
- ◆ At the basolateral membrane:

 Na^+ - k^+ moves Na^+ into the interstitium, while K^+ moves into the interior of the cell.

Fig. (4-16)

At the luminal membrane:

K⁺ diffuses through the luminal membrane from the interior of the cell into the tubular fluid in view of electrochemical gradient.

K⁺ diffuses through K⁺ - channels and via K⁺ - Cl⁻ co-transporter.

Tubular secretion of K⁺ is under effect of aldosterone, acting on P cells of late distal tubule and collecting duct.

 <u>Regulation of Tubular Potassium Secretion:</u> (Distal tubule and collecting duct).

1. Plasma Potassium Concentration

The rate of K⁺ secretion increases as plasma K⁺ concentration increases.

* Mechanism:

- **a)** Increased activity of Na⁺ K⁺ ATPase by:
 - i. Direct effect of extracellular K⁺ level.
 - **ii.** ii) Increased aldosterone secretion (by rise of K⁺ level).
- **b)** Increased number of K+ channels in the luminal membrane by aldosterone.

2. Flow rate in the distal tubule:

A rise in distal tubular flow rate stimulates K^+ secretion: With increased tubular flow rate, the secreted K^+ is flushed down the tubule, so K^+ does not rise in the tubule \rightarrow enhance the diffusion gradient of K^+ from the cells. This is one of several

reasons why diuretic therapy can lead to K⁺ depletion.

3. Aldosterone: increase K⁺ secretion. Hyperaldosteronism increases K⁺ secretion and causes hypokalemia.

Hypoaldosteronism decreases K⁺ secretion and causes hyperkalemia.

4. Acid - Base Status:

a) Acidosis: Reduce K⁺ secretion.

* Mechanism:

- Inhibition of Na⁺ K⁺ ATPase→ decrease intracellular K⁺ concentration.
 - In acidosis, there is efflux of K⁺ and uptake of H⁺ from ECF →decrease intracellular K⁺ concentration in the cortical and collecting duct cells (P-cells).
 - The decreased intracellular K⁺ concentration leads to decreased cell to lumen K⁺ concentration gradient → decrease K⁺ secretion.
- b) Alkalosis increases K⁺ secretion.

Secretion of Hydrogen & Reabsorption of Bicarbonate

Site: H⁺ is secreted in all parts of the renal tubule except the descending and ascending thin limbs of the loop of Henle.

Fig. (4-18): HCO₃ reabsorption by renal tubule.

For each H⁺ secreted, one bicarbonate is reabsorbed. Bicarbonate is reabsorbed mainly by the proximal tubule (85%), thick ascending loop of Henle (10%) and collecting duct (4.8%) (Fig. 4-18).

The renal tubules are poorly permeable to HCO_3^- . However HCO_3^- which is reabsorbed is formed by the tubular epithelium from CO_2 as follows:

- ◆ CO₂ either diffuses into the tubular cell from the blood or is formed by metabolism in tubular epithelial cell.
- ◆ CO₂ combines with H₂O under the influence of carbonic anhydrase to form H₂CO₃.
- ◆ H₂CO₃ dissociates into H⁺ and HCO₃⁻.
- ◆ H⁺ are secreted from the tubular cell into the tubular fluid, where it is buffered by :
 - 1) Bicarbonate buffer in the tubular fluid.
 - 2) Phosphate buffer in the tubular fluid.
 - 3) Ammonia synthesized by tubular epithelium.
- ◆ HCO₃ generated in the cell moves into the renal interstitium by diffusion.

Mechanism of H⁺ secretion:

1. Secondary active transport:

Occurs in the proximal tubule, loop of Henle and initial part of distal tubule.

The secondary active transport of H⁺ occurs by countertransport mechanism utilizing an antiport carrier at the luminal borders of the tubular cells. This carrier binds H⁺ and Na⁺. Na⁺ diffuses into the tubular cell while H⁺ into the tubular lumen. (Fig. 4-19).

Fig. (4-19)

2. Primary active secretion:

- Occurs in the late distal tubule and collecting ducts.
- It is Na⁺ independent.
- It is stimulated by aldosterone, which can be increased up to 900 folds.
- H⁺ is transported actively by H⁺-ATPase pump at the luminal membrane of the intercalated cells. (Fig. 4-21).

Fate of H⁺ secreted:

The secreted H⁺ is buffered by the buffers in the tubular fluid.

1-In the PCT:

Buffering by the NaHCO₃ in the tubular fluid.

 $H^+ + HCO_3^- \rightarrow H_2CO_3$ (in the lumen)

Na⁺ is reabsorbed in exchange with H⁺.

 H_2CO_3 dissociate into H_2O and CO_2 by carbonic anhydrase at the luminal borders of the tubular cells of the proximal tubule only.

pH of tubular fluid in PCT is changed very little since most H⁺ is removed from the tubule by binding with HCO₋₃.

2. In the Distal tubule and collecting duct:

a) **Buffering by phosphate buffer**: . 30 - 40 mEq of Na₂HPO₄.are available per day.

It is concentrated by time it reaches distal tubule and collecting duct.

H⁺ is buffered as follows:

$$H^+ + Na_2HPO_4 \rightarrow NaH_2PO_4 + Na^+$$

 NaH_2PO_4 is excreted accounting for most of the titratable acidity in urine Na^+ is reabsorbed together with intracellular HCO_3^- . (Fig. 4-21)

This process results in secretion of H+ and net reabsorption of newly synthesized HCO₃⁻

b) Buffering by ammonia (NH₃). (Fig. 4-22):

 NH_3 is formed in most parts of the renal tubule specially the distal tubule and collecting duct from glutamine.

Glutamine
$$-\frac{Glutaminas}{}e \rightarrow Glutamic$$
 acid + NH $_3$

 NH_3 is lipid-soluble and diffuses into the tubular fluid. H^+ combines with NH_3 to form NH_4^+ , which is then excreted in urine together with Cl_- (from NaCl) forming $NH_4Cl_ Na^+$ are reabsorbed into the renal interstitium together with the HCO3 from the tubular cells.

Importance of H⁺ buffering:

H⁺ secretion in the distal tubule and collecting ducts occurs as

long as the pH of the fluid in these segments is above 4.5 which is the limiting pH for H⁺ secretion. If the secreted H⁺ is not buffered, this pH would be reached rapidly leading to stoppage of further H⁺ secretion.

Factors affecting acid secretion:

- 1) Aldosterone: increase H⁺ and K⁺ secretion.
- 2) Intracellular PCO₂: when PCO₂ is high (respiratory acidosis) more intracellular H₂CO₃is available and H⁺ secretion is enhanced.
- 3) K⁺ concentration in the cells:
 - a) K⁺ depletion in the cells enhances H⁺ secretion.
 - b) K⁺ excess in the cells inhibits acid secretion.

Summary of Hormones that Act on the Kidney				
Hormone	Stimulus for Secretion	Time Cours e	Mechanism of Action	Actions on Kidneys
PTH	V plasma [Ca²+]	Fast	Basolateral receptor Adenylate cyclase→ cAMP urine	 Phosphate reabsorption (proximal tubule) ↑Ca²⁺ reabsorption (distal tubule) Stimulates 1α hydroxylase (proximal tubule)
ADH	↑ Plasma osmolarity ↓ Blood volume	Fast	Basolateral V ₂ receptor Adenylate cyclase cAMP	↑ H₂O permeability (late distal tubule and collecting duct principal cells).
Aldosterone	 ◆blood volume (via rennin- angiotensi n II) ♠ plasma [K+] 	Slow	New protein synthesis	↑Na+ reabsorption (distal tubule principal cells). ↑K+ secretion (distal tubule principal cells).
ANP	↑atrial prsessure	Fast	Guanylate cyclase cGMP.	↑ GFR • Na ⁺ reabsorption
Angiotensin II	♦blood volume (via renin)	Fast		↑Na ⁺ -H ⁺ exchange & HCO ₃ reabsorption (proximal tubule).
