Tabela 1: Parametry fizyczne, elektryczne i mechaniczne silnika, enkodera i przekładni^a.

Średnica	37 mm
Długość	68 mm
Masa	215 g
Średnica wału	6 mm
Przełożenie przekładni f	18.75:1
Napięcie znamionowe u_N	12 V
Prędkość znamionowa ω_N	$52.36 \mathrm{rad}\mathrm{s}^{-1}$
Prąd znamionowy i_N	$300\mathrm{mA}$
Prąd zatrzymania silnika i_S	$5000\mathrm{mA}$
Moment zatrzymania silnika T_S	$0.59\mathrm{N}\mathrm{m}$
Rezystancja ^b R	2.4Ω
Stała SEM rotacji $^{\rm b}$ K_e	$0.2154\mathrm{Vrad^{-1}s^{-1}}$
Stała momentu ^b K_t	$0.2154{ m NmA^{-1}}$
Współczynnik tarcia wiskotycznego b β	0.00161
Współczynnik tarcia suchego ^b b	0.019
Moment bezwładności przekładni i wału c J	0.00123

^a opracowanie własne na podstawie ...,

Podstawowe równanie obwodu silnika (przyjęto zerową induktancję, $u_M = u \cdot u_N$ oraz $K = K_e = K_t$):

$$u_M = Ri + K\omega \tag{1}$$

Podstawowe równanie momentu silnika:

$$T = K_t i - J\dot{\omega} - \beta\omega - b\operatorname{sgn}\omega \tag{2}$$

Rezystancja obwodów silnika została obliczona dla sytuacji zatrzymania silnika (równanie 1, $\omega=0$), kiedy mamy:

$$R = \frac{u \cdot u_N}{i_S} = 2, 4[\Omega] \tag{3}$$

Z równania 1 wynika, że przy prędkości jałowej:

$$K = \frac{u \cdot u_N - Ri_N}{\omega_N} \tag{4}$$

co daje wartości $K_e = K_t = 0,2154.$

Współczynniki b oraz β zostały obliczone ze wzoru 2, przy ustalonej wartości prędkości obrotowej wału $(J\dot{\omega}=0)$ oraz przy ominięciu składnika momentu (T=0):

$$Ki = \beta\omega + b\operatorname{sgn}\omega\tag{5}$$

$$\frac{K}{R}(u \cdot u_N - K\omega) = \beta\omega + b\operatorname{sgn}\omega \tag{6}$$

$$\frac{Ku_N}{R}u = (\frac{K^2}{R} + \beta)\omega + b\operatorname{sgn}\omega \tag{7}$$

^b zidentyfikowano analitycznie, szczegóły poniżej,

^b zidentyfikowano eksperymentalnie, szczegóły poniżej.

$$\omega = \frac{Ku_N}{R(\frac{K^2}{R} + \beta)} u - \frac{b}{\frac{K^2}{R} + \beta} \operatorname{sgn} \omega$$
 (8)

Stąd, wyznaczając współczynniki $K_1,\;K_2$ regresji liniowej $y=K_1x+K_2$ możemy otrzymać wzory na β orazb:

$$\beta = \frac{Ku_N - K_1 K^2}{K_1 R} \tag{9}$$

$$b = K_2(\frac{K^2}{R} + \beta) \tag{10}$$

W równaniu 10 pominięto kwestie znaku wynikające z użycia funkcji sgn. Wartości współczynników $K_1,\,K_2$ odczytane z wykresów:

Tabela 2: Współczynniki regresji liniowej.

Parametr	Ujemna prędkość obrotowa	Dodatnia prędkość obrotowa
K_1 K_2	5.0591527273 5.068153533	1.0680286292 -1.0789743494