Međuispit iz Matematike 3R 25.11.2015.

- 1. (5 bodova) Funkciju $f(x) = |x \pi|$ razvijte u Fourierov red na intervalu $[-\pi/3, \pi/3]$. Skicirajte graf dobivenog reda.
- 2. (5 bodova) Izvedite Fourierovu integralnu formulu.
- 3. (5 bodova)
 - (a) Prikažite funkciju

$$f(x) = \begin{cases} -1/2, & -2 \le x < 0, \\ 1/2, & 0 \le x \le 2, \\ 0, & \text{inače.} \end{cases}$$

pomoću Fourierovog integrala.

(b) Izračunajte

$$\int_0^\infty \frac{\sin^3 t}{t} dt.$$

- 4. (5 bodova) Iskažite i dokažite teorem o Laplaceovoj transformaciji prigušenja originala.
- 5. (5 bodova) Koristeći Laplaceovu transformaciju izračunajte integral

$$\int_0^\infty \frac{e^{-2t} \sin t \cos t}{t} \mathrm{d}t.$$

6. (5 bodova) Pomoću Laplaceove transformacije odredite struju i(t) električnog kruga zadanog slikom, uz priključeni napon $e(t) = \sin(t/2)u(t-\pi)$.

- 7. (5 bodova) Konstruirajte bijekciju sa skupa $\langle -1, 1 \rangle$ na skup $\langle 0, \infty \rangle$. Detaljno objasnite zašto je konstruirana funkcija bijekcija!
- 8. (5 bodova) Neka su ρ_1 i ρ_2 relacije ekvivalencije na skupu X.
 - (a) Mora li $\rho_1 \cap \rho_2$ biti relacija ekvivalencije?
 - (b) Mora li $\rho_1 \cup \rho_2$ biti relacija ekvivalencije?

Za svaku tvrdnju dokažite da vrijedi ili konstruirajte kontraprimjer.

Ispit se piše 120 minuta. Dozvoljena je upotreba službenog podsjetnika. Sretno!

Rješenja međuispita iz Matematike 3R 25.11.2015.

1. (5 bodova) Funkcija nije ni parna ni neparna, $T = 2\pi/3$.

$$S(x) = \pi + \frac{2}{3} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin(3nx).$$

- 2. (5 bodova) Knjižica, str. 43.
- 3. (5 bodova) Funkcija je neparna pa je $A(\lambda) = 0$. Vrijedi $B(\lambda) = \frac{2\sin^2(\lambda)}{\lambda\pi}$ pa je

$$\tilde{f}(x) = \int_0^\infty \frac{2\sin^2(\lambda)}{\lambda \pi} \sin(\lambda x) d\lambda.$$

Uvrstimo x = 1 i dobivamo $\int_0^\infty \frac{\sin^3 t}{t} dt = \frac{\pi}{4}$.

- 4. (5 bodova) Knjižica, str. 70.
- 5. **(5 bodova)** Tražimo F(2), gdje je $f(t) = \frac{\sin t \cos t}{t} = \frac{1}{2} \frac{\sin 2t}{t} \circ \frac{1}{2} (\frac{\pi}{2} \operatorname{arctg} \frac{s}{2}) = F(s)$. Dakle, $F(2) = \pi/8$.
- 6. (5 bodova)

$$Z(s) = \frac{4s^2 + 1}{s}, \ E(s) = e^{-\pi s} \frac{s}{s^2 + \frac{1}{4}}, \ I(s) = \frac{E(s)}{Z(s)} = \frac{1}{4} e^{-\pi s} \frac{s}{s^2 + \frac{1}{4}} \frac{s}{s^2 + \frac{1}{4}}.$$

Kako je $\frac{s}{s^2+\frac{1}{4}}\frac{s}{s^2+\frac{1}{4}}\frac{s}{s^2+\frac{1}{4}}$ •— $\cos\frac{t}{2}*\cos\frac{t}{2}=\frac{t}{2}\cos\frac{t}{2}+\sin\frac{t}{2}$, zaključujemo da je

$$i(t) = \frac{1}{8}(t - \pi)\cos\frac{t - \pi}{2}u(t - \pi) + \frac{1}{4}\sin\frac{t - \pi}{2}u(t - \pi).$$

- 7. **(5 bodova)** Npr. definiramo $f: \langle -1, 1 \rangle \to \langle 0, \infty \rangle$, $f(x) := \operatorname{tg}(\frac{\pi}{4}x + \frac{\pi}{4})$.
- 8. (5 bodova)
 - (a) Da, presjek relacija ekvivalencije je relacija ekvivalencije.
 - (b) Ne, uzmimo npr.

$$X = \{1, 2, 3\},\$$

$$\rho_1 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\},\$$

$$\rho_2 = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}.$$

Uočimo, $(1,2),(2,3)\in\rho_1\cup\rho_2$, ali $(1,3)\notin\rho_1\cup\rho_2$ pa $\rho_1\cup\rho_2$ nije tranzitivna relacija.