Leçon 2

Les grandeurs fondamentales

Définitions

Grandeurs relatives à l'émission

Flux, luminance,

intensité, exitance (ou émittance)

Grandeurs relatives à la réception

Eclairement

Loi de LAMBERT

1.1 Domaine spectral

• Grandeur monochromatique : $dG = g(\lambda)d\lambda$

pour la valeur λ sur un intervalle $d\lambda$

$$\frac{\lambda_1}{\lambda_1}$$

 G_{12}

• Grandeur spectrique :

$$G = \int_0^\infty g(\lambda) d\lambda$$

Densité spectrale
$$G_{12} = \int_{\lambda_1}^{\lambda_2} g(\lambda) d\lambda$$
$$g(\lambda) = \frac{dG}{d\lambda}$$

Remarques

Relation avec la fréquence v :

$$F = \int_{0}^{\lambda} g(\lambda) d\lambda = \int_{0}^{\nu} f(\nu) d\nu$$

$$\lambda = \frac{c}{v} \Rightarrow f(v) = \frac{c}{v^2} g(\lambda)$$

Dimensions : cas ou $G = \Phi$ (flux) :

$$d\Phi = \Phi(\lambda) d\lambda$$
 et $\phi = \int \phi(\lambda) d\lambda$ en Watts

$$\rightarrow$$
 ϕ $(\lambda) = W / m$

Rappel sur la notion d'angle solide

Le cône intercepte sur la sphère Σ de rayon r une calotte sphérique d'aire A

L'angle solide associé à ce cône vaut:

$$\Omega = \frac{A}{r^2}$$

Application:

Tout l'espace $A = 4\pi r^2$, $donc \Omega = 4\pi$

Demi espace : $\Omega = 2\pi$

Angle solide sous lequel, depuis O, on voit la surface élémentaire dS

Couronne sphérique

$$dS = rd\theta \times 2\pi r' = 2\pi r^2 \sin\theta d\theta$$

$$d\Omega = \frac{dS\cos 90^{\circ}}{r^2} = 2\pi \sin \theta d\theta$$

 $d\Omega = 2\pi \sin\theta \, d\theta$

Calotte sphérique

Intégrer:

$$S = \int_{0}^{\theta} 2\pi r^2 \sin\theta \, d\theta = 2\pi r^2 (1 - \cos\theta)$$

$$\Omega = \frac{S}{r^2} = 2\pi (1 - \cos \theta)$$

1.2 Domaine directionnel

• densité h, dans la direction θ

. dans «l'espace »
$$\,d\Omega,$$
 elle vaut:
$$h(\theta)\,d\Omega$$
 densité

• Intégration sur l'hémisphère

$$H = \int_{2 \pi} h(\theta) d \Omega$$
grandeur hémisphérique

Cas d'une symétrie azimuthale:

$$H = \int_{0}^{\pi/2} h(\theta) 2\pi \sin \theta d\theta$$

Remarques

R1) Rôle du milieu traversé

milieu opaque:

ne transmet pas : Φ_t =0

transparent:

n'absorbe pas : Φ_a =0

semi transparent:

absorbe et transmet λ_1 λ_2

Flux

Incident Φ_i

Réfléchi Φ_r

Absorbé Φ_a

Transmis Φ_t

R2) La réflexion

diffuse

ϕ i \overrightarrow{n}

spéculaire

1 seul rayon réfléchi

1 seul rayon réfléchi

2. GRANDEURS RELATIVES À L'ÉMISSION

Flux
Luminance
Intensité
Emittance ou Exitance

2.1 Grandeurs monochromatiques

Flux monochromatique directionnel issu de dS, dans la direction θ , pour la longueur d'onde λ

Le Flux Φ

Flux monochromatique directionnel issu de dS, dans la direction θ , pour la longueur d'onde λ

$$d^{3}\Phi_{\lambda}(M,\lambda,\theta,T) = L_{\lambda}dS\cos\theta d\Omega d\lambda$$

Flux émis de dS, dans l'élément d Ω autour de θ , sur l'intervalle d λ centré sur λ

En Watt

L Luminance monochromatique directionnelle

Flux émis

- dS_a
- par unité de surface apparente,
- dans la direction θ
- par unité d'angle solide,

$$L_{\lambda} = \frac{d^3 \Phi_{\lambda}}{dS_a d\Omega d\lambda}$$

$$L_{\lambda}(\lambda,\theta,M,T)$$

$$\mathbf{R} \ \mathbf{2} : \ [L_{\lambda}] = W / m^3 \text{ sr}$$

$$\text{mais aussi} \ W/m^2 \mu \text{ sr}$$

I Intensité monochromatique directionnelle

dI: flux émis

dS!

- par la surface dS
- par unité d'angle solide autour de θ
- par unité de $d\lambda$ autour de λ

D'où:

$$dI_{\lambda} = \frac{d^3 \Phi_{\lambda}}{d\Omega d\lambda} = L_{\lambda} \cos \theta dS$$

dimensions: W/m sr ou W/μ sr

H Emittance (ou Exitance)

Flux émis:

- par unité de surface (dS)
- dans le demi espace (2π) surplombant la source
- -Par unité de d λ autour de λ

$$H_{\lambda} = \frac{\int d^{3} \Phi_{\lambda}}{dS d\lambda} = \int_{\Omega} L_{\lambda} \cos \theta d\Omega$$

En W/ m^3 ou en W / m^2/μ

2.2 Grandeurs totales

$$G = \int_{0}^{\infty} g(\lambda) d\lambda$$

Retenir:

$$[L] = W / m^2 sr$$

$$\left[d^2 \phi\right] = \mathbf{W}$$

$$[d \ I] = W / sr$$

$$[H] = W / m^2$$

3 - GRANDEURS RELATIVES À LA RECEPTION

Une source : dS

ECLAIREMENT de dS'

3-1. Formule de BOUGUER

dS: émetteur

dS': récepteur

$$d^{2}\Phi = LdS \cos\theta d\Omega$$

$$dS' \cos\theta'$$

$$r^{2}$$

$$d^{2}\Phi = L \frac{dSdS' \cos\theta \cos\theta'}{r^{2}}$$

- Monochromatique ou total
- Symétrie de la formule

3-2. Eclairement

Monochromatique:

Flux incident par unité de dS'

$$E_{\lambda} = \frac{d^{3}\Phi_{\lambda}}{dS'd\lambda}$$
 par unité de d\(\lambda\) en W / m3

Total

Flux incident par unité de dS'

$$d^2\Phi = \int_0^\infty d^3\Phi_{\lambda} \qquad E = \frac{d^2\Phi}{dS'} \qquad \text{en W / m}^2$$

Expression

dS envoie sur dS':

$$d^2\Phi = L\frac{dSdS'\cos\theta\cos\theta'}{r^2}$$

et provoque l'éclairement:

$$dE = \frac{d^2\Phi}{dS'} = L\frac{dS\cos\theta\cos\theta'}{r^2}$$

Cas d'une surface source finie, S et d'un récepteur dS'

$$E = \int_{S} dE = \int_{S} \frac{LdS \cos \theta \cos \theta'}{r^2}$$

4. Loi de LAMBERT

Une source est lambertienne (= obéit à la loi de LAMBERT) si sa luminance monochromatique directionnelle est indépendante de la direction d'émission.

$$L_{\lambda}(\lambda,\theta,T) = L_{\lambda}(\lambda,T)$$

 $I(\theta)$?

Conséquences

1- Relation H / L pour une surface lambertienne

D'où:
$$H_{\lambda} = \pi L_{\lambda}$$

Même relation entre grandeurs totales:

$$H = \pi L$$

2 – Diffuseur parfait

Définition:

Un objet est dit à réflexion diffuse parfaite lorsqu'il se comporte, pour le rayonnement réfléchi, comme une source dont la luminance apparente obéit à la loi de Lambert

Remarques:

R1 Le flux réfléchi présente alors une répartition en $\cos \theta$, quelle que soit l'orientation du flux incident

R2 Réflexion spéculaire et réflexion diffuse parfaite sont deux cas extrêmes

3 – Eclairement d'un récepteur par une source lambertienne,

$$dE_{\lambda} = \frac{L_{\lambda,\theta}(\lambda,\theta,T)dS\cos\theta d\Omega}{dS'} = \frac{L_{\lambda,\theta}dS\cos\theta}{dS'} \frac{dS'\cos\theta'}{r^2}$$

$$= L_{\lambda}dS_{a} \frac{\cos\theta'}{r^2}$$

$$Vers le$$

récepteur

$$dE_{\lambda} = \frac{L_{\lambda,\theta}(\lambda,\theta,T)dS\cos\theta d\Omega}{dS'} = \frac{L_{\lambda,\theta}dS\cos\theta}{dS'} \frac{dS'\cos\theta'}{r^2}$$
$$= L_{\lambda}dS_{a} \frac{\cos\theta'}{r^2}$$

 $dS_a = dS \cos \theta$

D'où:

$$E_{\lambda} = \int_{S} L_{\lambda,\theta}(\lambda,\theta,T) dS_{a} \frac{\cos \theta'}{r^{2}}$$

Exploitons les caractéristiques de la source

Éloignée : θ ' et r sont sensiblement constant

Lambertienne: $L_{\lambda,\theta}$ indépendant de q (sur S!) $L_{\lambda,\theta} \equiv L_{\lambda}$

Uniforme: L_{λ} indépendant du choix de dS sur S

Donc
$$E_{\lambda} = \int_{S} L_{\lambda,\theta}(\lambda,\theta,T) dS_{a} \frac{\cos \theta'}{r^{2}}$$

s'intègre selon:

$$E_{\lambda} = L_{\lambda} \frac{\cos \theta'}{r^2} \int_{S} dS_a = L_{\lambda} \frac{\cos \theta'}{r^2} S_a$$

En conséquence, l'éclairement dépend de la surface apparente S_a de la source, vue du récepteur

En conséquence, l'éclairement dépend de la surface apparente S_a de la source, vue du récepteur.

Le récepteur n'a donc pas d'information sur:

- •L'inclinaison,
- •Le relief,
- •La forme exacte de la source

Exemple: le soleil

•Récepteur: œil

•Source : soleil

Le soleil apparaît comme un disque!