2. Система структуры внутренних соединений для интерфейсов с распределением в памяти Перевод: Егоров А.В., 2010 г.

В

Арбитраж систем мультимастер

Система структуры внутренних соединений поддерживает системы с несколькими мастер компонентами. В системе с несколькими мастер компонентами, например система на рис. 2-1 на странице 2-2, система структуры внутренних соединений предоставляет расширенный доступ к слейвам, используя технологию, называемую арбитраж на стороне слейва. Арбитраж на стороне слейва перемещает арбитражную логику ближе к слейву, например, это алгоритм, определяющий то, как мастер получает доступ к определённому слейву в момент, когда несколько мастеров запрашивают доступ к этому же слейву в это время.

Архитектура мультимастера используется системой структуры внутренних соединений для получения следующих преимуществ:

- Исключает необходимость создавать аппаратную часть арбитража вручную.
- Позволяет нескольким мастерам последовательно передавать данные. В отличие от традиционной архитектуры арбитража на стороне хоста, когда каждый мастер должен ждать, пока ему выделят доступ к общей шине, несколько мастеров Avalon-MM могут последовательно выполнять обмен с независимыми слейвами. Арбитражная логика приостанавливает мастер только тогда, когда несколько мастеров одновременно запрашивают доступ к одному слейву.
- Исключает ненужные соединения мастер-слейв. Соединения между мастером и слейвом существуют только, если они заданы в SOPC Builder. Если мастер никогда не инициализирует трансферт к определённому слейву, не требуется их соединение, и поэтому SOPC Builder не расходует ресурсы логики для подключения двух портов.

2. Система структуры внутренних соединений для интерфейсов с распределением в памяти Перевод: Егоров А.В., 2010 г.

- Предоставляет конфигурируемые настройки арбитража, а арбитраж для каждого слейва может быть задан независимо. Например, вы можете выделить одному мастеру больше арбитража, чем другим, позволяя ему больше циклов доступа к слейву. Общие настройки арбитража определяются для каждого слейва независимо.
- Упрощает разработку мастер компонента. Подробность арбитража скрыты внутри системы структуры внутренних соединений. Каждый Avalon-MM мастер подключен к системе структуры внутренних соединений так, как будто он единственный мастер в системе. В результате, вы можете использовать компонент в системе с одним мастером и в системе мультимастер, без изменений в проекте компонента.

Традиционная архитектура общей шины

В этой секции описывается архитектура системы структуры внутренних соединений, генерируемая SOPC Builder для систем мультимастер. В связи с обсуждением мультимастера и арбитража, в этой секции описывается традиционная архитектура шины.

В традиционной архитектуре шины, один или более мастеров шины и слейвов шины подключены к общей шине, состоящей из проводников на печатной плате или внутри чипа. Один арбитр контролирует шину (т.е., путь между мастерами и слейвами на шине), так что несколько мастеров шины не могут последовательно управлять шиной. Каждый мастер шины запрашивает контроль над шиной от арбитра, и арбитр предоставляет временный доступ одному мастеру. После того, как мастер начинает контролировать шину, он инициализирует трансферт с одним из слейвов шины. Когда несколько мастеров одновременно запрашивают доступ к шине, арбитр выделяет ресурсы шины одному мастеру, принуждая остальных мастеров ждать.

На рис. 2-6 показана архитектура шины для традиционной процессорной системы. Доступ к общей шине системы — узкое место для параметра пропускной способности: только один мастер имеет доступ к шине, заставляя остальных мастеров ждать, и только один слейв может передавать в это время данные.

Figure 2-6. Bus Architecture in a Traditional Microprocessor System

2. Система структуры внутренних соединений для интерфейсов с распределением в памяти Перевод: Егоров А.В., 2010 г.

Арбитраж на стороне слейва

Система структуры внутренних соединений использует архитектуру мультимастера для исключения узкого места при доступе по общей шине. Несколько мастеров могут быть активными одновременно, последовательно обмениваясь данными с независимыми слейвами. Например, на рис. 2-1 на стр. 2-2 показана система с двумя мастерами (CPU и DMA контроллер) и общим слейвом (SDRAM контроллер). Арбитраж выполняется для SDRAM слейва; арбитр выбирает одному мастеру право обращаться к слейву, если они оба одновременно инициировали обмен.

На рис. 2-7 изображены два мастера и общий слейв, а также показаны дополнительно пути данных, адреса и контроля. Арбитражная логика мультиплексирует все сигналы данных, адреса и контроля от мастера к общему слейву.

Figure 2–7. Detailed View of Multimaster Connections

Подробнее об арбитре

SOPC Builder генерирует арбитр для каждого слейва, основываясь на параметрах арбитража, заданных в SOPC Builder. Арбитражная логика выполняет следующие функции для своего слейва:

- Вычисляет сигналы адреса и контроля от каждого мастера и определяет, какой мастер получит следующим доступ к слейву.
- Предоставляет доступ выбранному мастеру и приостанавливает других запрашивающих мастеров.
- Использует мультиплексор для подключения путей адреса, контроля и данных между несколькими мастерами и слейвом.

На рис. 2-8 показана арбитражная логика на примере системы мультимастер с двумя мастерами, каждый из которых подключен к двум слейвам.

2. Система структуры внутренних соединений для интерфейсов с распределением в памяти Перевод: Егоров А.В., 2010 г.

Figure 2-8. Block Diagram of Arbiter Logic

Правила арбитража

В этой секции описываются правила, по которым арбитр предоставляет доступ мастерам, когда они конфликтуют.

Установка параметров арбитража в SOPC Builder

Вы можете задать общий арбитраж для каждого мастера, используя панель соединений на вкладке **System Contents** SOPC Builder, как показано на рис. 2-9.

Figure 2–9. Arbitration Settings on the System Contents Tab

Настройки арбитража по умолчанию скрыты. Чтобы увидеть их, в меню View кликните **Show Arbitration** (Показать арбитраж).

2. Система структуры внутренних соединений для интерфейсов с распределением в памяти Перевод: Егоров А.В., 2010 г.

Равноправные части

Арбитражная логика использует равноправную (fairness-based) арбитражную схему. В этой схеме, каждая пара мастера имеет целое значение трансфертов *частей*, по отношению к слейву.

Одна часть является разрешением для выполнения одного трасферта.

Например, представим, что два мастера непрерывно обращаются к слейву для выполнения непрерывных трансфертов. Мастеру 1 назначено три части, а мастеру 2 — четыре части. В этом случае, арбитр предоставляет мастеру 1 доступ к трём трансфертам, а мастеру 2 — четыре трансферта. Этот цикл повторяется бесконечно. На рис. 2-10 показан этот случай, показаны выход запроса каждого трансферта мастера, ожидание входа запроса (который управляется арбитражной логикой), и текущий мастер, контролирующий слейв.

Figure 2–10. Arbitration of Continuous Transfer Requests from Two Masters

Если мастер останавливает трансферты запроса, он пропускает свои части, он теряет все свои оставшиеся части, а арбитр предоставляет доступ другому запрашивающему мастеру. Посмотрите на рис. 2-11. После выполнения одного трансферта, мастер 2 останавливает запрос на один тактовый цикл. В результате, арбитр предоставляет доступ снова мастеру 1, который полностью получает свои части.

Figure 2–11. Arbitration of Two Masters with a Gap in Transfer Requests

Циклическое планирование

Когда несколько мастеров имеют доступ к слейву, арбитр выделяет части в циклическом порядке. Циклическое планирование управляет интерфейсом запросов в зависимости с доступным пространством и доступными данными, разрешёнными для передачи по интерфейсу. Для каждого слейв трансферта, только запрашивающие мастера включены в арбитраж.

2. Система структуры внутренних соединений для интерфейсов с распределением в памяти Перевод: Егоров А.В., 2010 г.

Трансферты пакетов

Трансферты пакетов Avalon-MM предоставляют непрерывный мастер доступ к слейву для заданного количества трансфертов. Мастер определяет количество трансфертов, когда инициализирует пакет. Когда пакет передаётся по каналу мастерслейв, арбитражная логика не позволяет другим мастерам доступ к слейву, пока пакет не закончится. Для мастер пакетов, размер пакета определяется количеством циклов, когда мастер имеет доступ к слейву, а выбор частей арбитража (см. "Равноправные части") не учитывается.