CSIE5410 Optimization algorithms

Lecture 7: Convergence of the proximal gradient method

Yen-Huan Li (yenhuan.li@csie.ntu.edu.tw)

08.11.2018

Department of Computer Science and Information Engineering National Taiwan University

Abstract

We have seen the proximal gradient method. This lecture addresses the following questions.

- Under what conditions does the algorithm provably converge?
- How fast does it converge?

Recommended reading

- A. Beck and M. Teboulle. 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
- Yu. Nesterov and A. Nemirovski. 2013. On first-order algorithms for $\ell_1/\text{nuclear}$ norm minimization.
- H. Lu et al. 2018. Relatively smooth convex optimization by first-order methods, and applications.
- M. Teboulle. 2018. A simplified view of first order methods for optimization.

Table of contents

- 1. Smooth case
- 2. Acceleration for the smoothness case
- 3. Relatively smooth case
- 4. Conclusions

Smooth case

Recap: Proximal gradient method

Consider the optimization problem

$$\varphi^{\star} = \min_{x} \left\{ f(x) + g(x) \mid x \in \mathbb{R}^{p} \right\},\,$$

for some L-smooth convex function f and proper closed convex function g.

Proximal gradient method

$$x_{t+1} \leftarrow (I + \eta_t \partial g)^{-1} (I - \eta_t \nabla f) x_t$$
$$= \operatorname{prox}_{\eta_t g} (x_t - \eta_t \nabla f(x_t))$$

Equivalent formulation

$$x_{t+1} \leftarrow \operatorname{prox}_{\eta_t g} (x_t - \eta_t \nabla f(x_t)).$$

Proposition. Equivalently, we write

$$x_{t+1} = \underset{x}{\operatorname{arg\,min}} \left\{ \left\langle \nabla f(x_t), x - x_t \right\rangle + g(x) + \frac{1}{2\eta_t} \|x - x_t\|_2^2 \mid x \in \mathbb{R}^p \right\}.$$

Proof. Plug in the definition of a proximal mapping.

Remark. Recall that when g is the indicator function of a closed convex set \mathcal{X} , the iteration rule of the projected gradient method becomes a special case.

Proximal set-up (1/3)

Consider the problem

$$\varphi^{\star} = \min_{x} \left\{ f(x) + g(x) \mid x \in \mathcal{X} \right\},\,$$

for some convex function f that is L-smooth on \mathcal{X} , proper closed convex function g, and closed convex set $\mathcal{X} \subseteq \mathbb{R}^p$.

Consider the Banach space $(\mathbb{R}^p, \|\cdot\|)$.

Proximal set-up (2/3)

Definition. We say that a function $h: \mathcal{X} \to \mathbb{R}$ is a *distance* generating function (DGF), if and only if the following are satisfied.

- The function h is continuous and convex on \mathcal{X} .
- There exists a function h' that is continuous on $\mathcal{X}^{\circ} := \mathcal{X} \cap \mathrm{dom}(\partial h)$ and satisfies

$$h'(x) \in \partial h(x), \quad \forall x \in \mathcal{X}^{\circ}.$$

ullet The function h is 1-strongly convex on \mathcal{X}° , i.e.,

$$\langle h'(x) - h'(y), x - y \rangle \ge ||x - y||^2, \quad \forall x, y \in \mathcal{X}^{\circ}.$$

Proximal set-up (3/3)

Definition. The *Bregman divergence* is given by

$$D_h(y,x) := h(y) - h(x) - \langle h'(x), y - x \rangle, \quad \forall x \in \mathcal{X}^{\circ}, y \in \mathcal{X}.$$

Definition. The *(composite)* prox-mapping is given by

$$T_L(x) := \underset{y \in \mathcal{X}}{\operatorname{arg\,min}} \left\{ \left\langle \nabla f(x), y - x \right\rangle + g(y) + LD_h(y, x) \mid y \in \mathcal{X} \right\}.$$

Bregman proximal gradient method.

$$x_t \leftarrow T_L(x_{t-1}).$$

Interpretation of the Bregman proximal gradient method (1/3)

Recall the derivation of the proximal point method:

$$0 \in \partial f(x^*) \Leftrightarrow x^* \in (I + \partial f)x^*$$
$$\Leftrightarrow x^* = (I + \partial f)^{-1}x^*$$

How about the following derivation? Let h be a differentiable μ -strongly convex function (w.r.t. the 2-norm).

$$0 \in \partial f(x^*) \Leftrightarrow \nabla h(x^*) \in (\nabla h + \partial f)x^*$$
$$\Leftrightarrow x^* = (\nabla h + \partial f)^{-1}(\nabla h(x^*))$$

J. Eckstein. 1993. Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming.

H. H. Bauschke et al. 2003. Bregman monotone optimization algorithms.

Interpretation of the Bregman proximal gradient method (2/3)

Consider the algorithm:

$$x_{t+1} \leftarrow (\nabla h + \partial f)^{-1} (\nabla h(x_t)).$$

Then, we write

$$\nabla h(x_t) \in (\nabla h + \partial f)x_{t+1} \Leftrightarrow 0 \in \partial f(x_{t+1}) + \nabla h(x_{t+1}) - \nabla h(x_t),$$

which is equivalent to

$$x_{t+1} \in \underset{x}{\operatorname{arg\,min}} \left\{ f(x) + D_h(x, x_t) \mid x \in \mathbb{R}^p \right\}.$$

J. Eckstein. 1993. Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming.

H. H. Bauschke et al. 2003. Bregman monotone optimization algorithms.

Interpretation of the Bregman proximal gradient method (3/3)

Similarly, consider the monotone inclusion problem

$$0 \in \nabla f(x^*) + \partial g(x^*).$$

We may write

$$(\nabla h - \nabla f)(x^*) \in (\nabla h + \partial g)(x^*)$$

$$\Leftrightarrow x^* = (\nabla h + \partial g)^{-1}(\nabla h - \nabla f)(x^*),$$

which motivates the algorithm:

$$x_{t+1} \leftarrow (\nabla h + \partial g)^{-1} (\nabla h - \nabla f)(x_t)$$

$$= \arg \min_{x} \left\{ \langle \nabla f(x_t), x - x_t \rangle + g(x) + D_h(x, x_t) \mid x \in \mathbb{R}^p \right\}.$$

Convergence of the Bregman proximal gradient method

Algorithm Bregman proximal gradient method

- 1: Set $x_0 \in \mathcal{X}^{\circ}$.
- 2: **for** t = 0, 1, ..., T **do**
- 3: $x_{t+1} \leftarrow \arg\min_{x \in \mathcal{X}} \left\{ \langle \nabla f(x_t), x x_t \rangle + LD(x, x_t) + g(x) \right\}$
- 4: end for

Theorem. Suppose that g is finite on $\operatorname{ri} \mathcal{X}$. Then, for all $t \geq 1$, it holds that $x_t \in \mathcal{X}^{\circ}$, and

$$\varphi(x_t) - \varphi(x) \le \frac{LD_h(x, x_0)}{t}, \quad \forall x \in \mathcal{X}.$$

Yu. Nesterov and A. Nemirovski. 2013. On first-order algorithms for $\ell_1/\text{nuclear}$ norm minimization.

Proof of the theorem (1/5)

Lemma. Let ψ be a proper closed convex function that is finite on $\mathrm{ri}\,\mathcal{X}$. Define

$$x_{\psi}^{\star} \in \operatorname*{arg\,min}_{x} \left\{ \right. \psi(x) + h(x) \mid x \in \mathcal{X} \left. \right\}.$$

Then, $x_\psi^\star \in \mathcal{X}^\circ$, and there exists some $\xi \in \partial \psi(x_\psi^\star)$, such that

$$\langle \xi + h'(x_{\psi}^{\star}), x - x_{\psi}^{\star} \rangle \ge 0, \quad \forall x \in \mathcal{X}.$$

Proof. See the reference.

Yu. Nesterov and A. Nemirovski. 2013. On first-order algorithms for $\ell_1/\text{nuclear}$ norm minimization.

Proof of the theorem (2/5)

Lemma. Suppose that $\tilde{\psi}:=\psi-Lh$ is convex. Let $x_{\psi}^{\star}\in\arg\min_{x\in\mathcal{X}}\psi(x)$. Then $x_{\psi}^{\star}\in\mathcal{X}^{\circ}$, and

$$\psi(x) \ge \psi(x_{\psi}^{\star}) + LD_h(x, x_{\psi}^{\star}), \quad \forall x \in \mathcal{X}.$$

Proof. By the previous lemma, $x^\star_\psi \in \mathcal{X}^\circ$, and there exists some $\eta \in \partial \tilde{\psi}(x^\star_\psi)$ such that

$$\langle \eta + Lh'(x_{\psi}^{\star}), x - x_{\psi}^{\star} \rangle \ge 0, \quad \forall x \in \mathcal{X}.$$

Proof of the theorem (3/5)

Proof (of the lemma) continued. We write

$$\psi(x) = \tilde{\psi}(x) + Lh(x)
\geq \tilde{\psi}(x_{\psi}^{\star}) + \langle \eta, x - x_{\psi}^{\star} \rangle + Lh(x)
\geq \tilde{\psi}(x_{\psi}^{\star}) - \langle Lh'(x_{\psi}^{\star}), x - x_{\psi}^{\star} \rangle + Lh(x)
= \tilde{\psi}(x_{\psi}^{\star}) + Lh(x_{\psi}^{\star}) + Lh(x) - \left(Lh(x_{\psi}^{\star}) + \langle Lh'(x_{\psi}^{\star}), x - x_{\psi}^{\star} \rangle\right)
= \psi(x_{\psi}^{\star}) + LD_h(x, x_{\psi}^{\star}).$$

Proof of the theorem (4/5)

Proof of the theorem. Define

$$m_L(x) := f(x_t) + \langle \nabla f(x_t), x - x_t \rangle + g(x) + LD_h(x, x_t).$$

By smoothness of f and strong convexity of h,

$$m_L(x) \ge \varphi(x) \coloneqq f(x) + g(x).$$

By the previous lemma, $x_{t+1} \in \mathcal{X}^{\circ}$, and

$$m_L(x) \ge m_L(x_{t+1}) + LD_h(x, x_{t+1}), \quad \forall x \in \mathcal{X}.$$

Then, by smoothness of f,

$$\varphi(x_t) = m_L(x_t) \ge m_L(x_{t+1}) + LD_h(x_t, x_{t+1})$$

$$\ge \varphi(x_{t+1}),$$

showing that the sequence $(\varphi(x_t))_{t\in\mathbb{N}}$ is non-increasing.

Proof of the theorem (5/5)

Proof of the theorem continued.

Moreover, we have

$$\varphi(x) + LD_h(x, x_t) \ge m_L(x) \ge m_L(x_{t+1}) + LD_h(x, x_{t+1})$$

 $\ge \varphi(x_{t+1}) + LD_h(x, x_{t+1}).$

Summing up the inequalities over t, we obtain

$$t(\varphi(x_t) - \varphi(x)) \le \sum_{\tau=0}^{t-1} (\varphi(x_\tau) - \varphi(x))$$

$$\le L(D_h(x, x_0) - D_h(x, x_t)).$$

Acceleration for the smoothness case

Estimate sequence approach (1/2)

Estimate sequence approach. Consider an iterative algorithm that maintains three sequences:

- 1. A sequence of iterates $(y_t)_{t>0}$.
- 2. A sequence of increasing numbers $(A_t)_{t\geq 0}$ such that

$$A_0 = 0$$
, $A_t := A_{t-1} + a_t$, $\forall t \in \mathbb{N}$.

3. A sequence of *estimate functions*

$$\psi_t := \langle \xi_k, \cdot \rangle + A_k g(x) + \frac{1}{2} \| \cdot -x_0 \|^2, \quad \forall t \ge 0.$$

Estimate sequence approach (2/2)

Conditions. The algorithm has to satisfy for all t:

- 1. $A_t \varphi(y_t) \leq \psi_t^* := \min_x \psi_t(x)$.
- 2. $\psi_t(x) \leq A_t \varphi(x) + LD_h(x, y_0)$ for all $x \in \mathbb{R}^p$.

Theorem. If the conditions are satisfied, then it holds that

$$\varphi(y_t) - \varphi(x) \le \frac{LD_h(x, y_0)}{A_t}, \quad \forall x \in \mathcal{X}.$$

Yu. Nesterov. 2008. Accelerating the cubic regularization of Newton's method on convex problems.

Accelerated Bregman proximal gradient method

Algorithm Accelerated Bregman proximal gradient method

- 1: Set $y_0 = \arg\min_{x \in \mathcal{X}} h(x)$ and $\psi_0(x) = LD_h(x, y_0)$.
- 2: **for** t = 0, 1, ..., T **do**
- 3: $z_t \leftarrow \arg\min_{x \in \mathcal{X}} \psi_t(x)$.
- 4: $\gamma_t \leftarrow \frac{2(t+2)}{(t+1)(t+4)}$.
- 5: $x_{t+1} \leftarrow \gamma_t z_t + (1 \gamma_t) y_t$.
- 6: $\hat{x}_{t+1} \leftarrow T_{\frac{2L}{t+2}}(x_{t+1}).$
- 7: $y_{t+1} \leftarrow \gamma_t \hat{x}_{t+1} + (1 \gamma_t) y_t$.
- 8: $\psi_{t+1} \leftarrow \psi_t + \frac{t+2}{2} \left[f(x_{t+1}) + \langle \nabla f(x_{t+1}), x x_{t+1} \rangle + g(x) \right]$
- 9: end for

Yu. Nesterov. 2013. On first-order algorithms for $\ell_1/\text{nuclear}$ norm minimization.

Yu. Nesterov. 2013. Gradient methods for minimizing composite functions.

Iteration complexity

Theorem. It holds that for all t, $y_t \in \mathcal{X}$, and

$$\varphi(y_t) - \varphi^* \le \frac{4LD_h(x^*, y_0)}{t(t+3)}.$$

Remark. The algorithm requires evaluating two prox-mappings per iteration.

Remark. A similar algorithm for the case where $g \equiv 0$ can be found in the first reference below.

Yu. Nesterov. 2005. Smooth minimization of non-smooth functions.

Yu. Nesterov. 2013. Gradient methods for minimizing composite functions.

Yu. Nesterov. 2013. On first-order algorithms for $\ell_1/\text{nuclear}$ norm minimization.

Proof of the theorem (1/5)

Lemma. It holds that $y_t \in \mathcal{X}$ for all t.

Proof. Notice that $\hat{x}_{t+1} \in \mathcal{X}$ as the output of a prox-mapping.

The lemma follows by induction.

Define
$$a_{t+1} \coloneqq \frac{t+2}{2}$$
. Then, $A_t = \frac{t(t+3)}{4}$.

Lemma. It holds that

$$\psi_t(x) \le A_t \varphi(x) + LD(x, y_0), \quad \forall x \in \mathcal{X}.$$

Proof. The lemma follows by induction with the observation that

$$\psi_{t+1} = \psi_t + a_{t+1} \left[f(x_{t+1}) + \langle \nabla f(x_{t+1}), x - x_{t+1} \rangle + g(x) \right]$$

$$\leq \psi_t + a_{t+1} \left[f(x) + g(x) \right].$$

Proof of the theorem (2/5)

Lemma. It holds that

$$A_t \varphi(y_t) \le \psi_t^* \coloneqq \min_x \psi_t(x).$$

Proof. We prove by induction. The inequality obvious holds for t=0. Suppose now that the inequality holds for some $t\geq 0$.

Since $\psi_t - Lh$ is obviously convex, we have

$$\psi_t(x) \ge \psi_t^* + LD_h(x, z_t).$$

By the convexity of f, we write

$$\psi_t(x) \ge A_t \varphi(y_t) + LD_h(x, z_t) \ge A_t \left[f(x_{t+1}) + \langle \nabla f(x_{t+1}), y_t - x_{t+1} \rangle + g(y_t) \right] + LD_h(x, z_t).$$

Proof of the theorem (3/5)

Proof continued. Then, by the algorithm, we obtain for every $x \in \mathcal{X}$,

$$\psi_{t+1}(x) \ge A_t \left[f(x_{t+1}) + \langle \nabla f(x_{t+1}), y_t - x_{t+1} \rangle + g(y_t) \right] + LD_h(x, z_t) + a_{t+1} \left[f(x_{t+1}) + \langle \nabla f(x_{t+1}), x - x_{t+1} \rangle + g(x) \right].$$

Also by the algorithm, we have

$$A_t(y_t - x_{t+1}) - a_{t+1}x_{t+1} = -a_{t+1}z_t.$$

Therefore, we obtain

$$\psi_{t+1}(x) \ge a_{t+1} \left[\langle \nabla f(x_{t+1}), x - z_t \rangle + g(x) \right] + A_{t+1} f(x_{t+1}) + A_t g(y_t) + L D_h(x, z_t).$$

Proof of the theorem (4/5)

Proof continued. Then, we write

$$\begin{split} \psi_{t+1}^{\star} &\geq \min_{x \in \mathcal{X}} \left\{ a_{t+1} \left[\left\langle \nabla f(x_{t+1}), x - z_{t} \right\rangle + g(x) \right] + \\ &A_{t+1} f(x_{t+1}) + A_{t} g(y_{t}) + L D_{h}(x, z_{t}) \right\} \\ &\geq a_{t+1} \left[\left\langle \nabla f(x_{t+1}), \hat{x}_{t+1} - z_{t} \right\rangle + g(\hat{x}_{t+1}) \right] + \\ &A_{t+1} f(x_{t+1}) + A_{t} g(y_{t}) + L D_{h}(\hat{x}_{t+1}, z_{t}) \\ &\geq a_{t+1} \left\langle \nabla f(x_{t+1}), \hat{x}_{t+1} - z_{t} \right\rangle + A_{t+1} g(y_{t+1}) + A_{t+1} f(x_{t+1}) + \\ &\frac{L}{2} \|\hat{x}_{t+1} - z_{t}\|^{2}, \end{split}$$

where we have exploited the definition of \hat{x}_{t+1} , strong convexity of h, convexity of g, and the definition of y_{t+1} .

Proof of the theorem (5/5)

Proof continued. Notice that

$$\hat{x}_{t+1} - z_t = \frac{y_{t+1} - x_{t+1}}{\gamma_t} = \frac{A_{t+1}}{a_{t+1}} (y_{t+1} - x_{t+1}).$$

Then, we obtain

$$\psi_{t+1}^{\star} \ge A_{t+1} \left\langle \nabla f(x_{t+1}), y_{t+1} - x_{t+1} \right\rangle + A_{t+1} g(y_{t+1}) + A_{t+1} f(x_{t+1}) + A_{t+1} \frac{L}{2} \|y_{t+1} - x_{t+1}\|^2$$

$$\ge A_{t+1} \left[f(y_{t+1}) + g(y_{t+1}) \right].$$

The lemma follows.

Proof of the theorem. Directly apply the estimation sequence result.

FISTA

Remark. Arguably, FISTA looks more natural, but its proof is even less principled.

Assumption. Set $\mathcal{X} = \mathbb{R}^p$. The function f is L-smooth (w.r.t the 2-norm) on \mathbb{R}^p .

Algorithm Fast iterative shrinkage thresholding algorithm (FISTA)

- 1: Set $y_1 = x_0 \in \mathbb{R}^p$, $\gamma_1 = 1$, and $\eta = 1/L$.
- 2: for $t = 1, \ldots, T$ do
- 3: $x_t \leftarrow (I + \eta \partial g)^{-1} (I \eta \nabla f) y_t$.
- 4: $\gamma_{t+1} \leftarrow \frac{1+\sqrt{1+4\gamma_t^2}}{2}$.
- 5: $y_{t+1} = x_t + \frac{\gamma_t 1}{\gamma_{t+1}} (x_t x_{t-1}).$
- 6: end for

A. Beck and M. Teboulle. 2009. A fast iterative shrinkage thresholding algorithm for linear inverse problems.

Relatively smooth case

Problem formulation

Consider the optimization problem

$$\varphi^{\star} = \min_{x} \left\{ f(x) + g(x) \mid x \in \mathcal{X} \right\},\,$$

where f is convex and L-smooth relative to a proper closed convex function h on $\operatorname{int}(\operatorname{dom} h)$, g is a proper closed convex function, and $\mathcal X$ is a closed convex set.

Definition. We say that f is L-smooth relative to a convex function h on a set \mathcal{X} , if and only if

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + LD_h(y, x), \quad \forall x, y \in \mathcal{X}.$$

Another prox set-up (1/3)

Definition. We say that h is *essentially smooth*, if and only if $\operatorname{int}(\operatorname{dom} h) \neq \emptyset$, h is differentiable on $\operatorname{int}(\operatorname{dom} h)$, and $\|\nabla h(x_k)\| \to +\infty$ for any sequence $(x_k)_{k\in\mathbb{N}}$ in $\operatorname{int}(\operatorname{dom} h)$ converging to a point on the boundary of $\operatorname{dom} h$.

Theorem. The function h is essentially smooth, if and only if $\operatorname{dom} \partial h = \operatorname{int}(\operatorname{dom} h) \neq \emptyset$.

Definition. We say that h is *strictly convex*, if and only if

$$h(\alpha x + (1 - \alpha)y) < \alpha h(x) + (1 - \alpha)h(y), \quad \forall \alpha \in]0, 1[, x, y].$$

Definition. We say that h is *Legendre*, if and only if it is essentially smooth and strictly convex.

Another prox set-up (2/3)

$$\varphi^* = \min_{x} \left\{ f(x) + g(x) \mid x \in \mathcal{X} \right\},\,$$

Assumptions.

- 1. h is Legendre with $cl(dom h) = \mathcal{X}$.
- 2. $\operatorname{dom} f \supset \operatorname{dom} h$ and f is differentiable on $\operatorname{int}(\operatorname{dom} h)$.
- 3. $\operatorname{dom} g \cap \operatorname{int}(\operatorname{dom} h) \neq \emptyset$.

Question. How do we specialize the set-up for entropic mirror descent?

Another prox set-up (3/3)

Theorem. Let $x \in \operatorname{int}(\operatorname{dom} h)$. Let ψ be a proper closed convex function. Consider the optimization problem

$$x_{+} = \operatorname*{arg\,min}_{y} \left\{ \ \psi(y) + D_{h}(y,x) \mid y \in \mathcal{X} \ \right\}.$$

- 1. If $\psi(x) > -\infty$ on \mathcal{X} , then x_+ exists and is unique.
- 2. If in addition, $\operatorname{ri}(\operatorname{dom}\psi\cap\mathcal{X})\subset\operatorname{int}(\operatorname{dom}h)$, then $x^+\in\operatorname{dom}\psi\cap\operatorname{int}(\operatorname{dom}h)$, and

$$0 \in \partial \psi(x_+) + \nabla h(x_+) - \nabla h(x).$$

M. Teboulle. 2018. A simplified view of first order methods for optimization.

Bregman proximal inequality

This is indeed the "key lemma" in Lecture 4.

Theorem. Let $x \in \operatorname{int}(\operatorname{dom} h)$. Let ψ be proper closed convex.

Define

$$x_{+} = \underset{y}{\operatorname{arg min}} \left\{ \psi(y) + D_{h}(y, x) \mid y \in \mathcal{X} \right\}.$$

Then $x_+ \in \operatorname{dom} \psi \cap \operatorname{int}(\operatorname{dom} h)$, and

$$\psi(x_+) - \psi(u) \le D_h(u, x) - D_h(u, x_+) - D_h(x_+, x), \quad \forall u \in \text{dom } h.$$

Convergence guarantee

Algorithm Bregman proximal gradient method

- 1: Set $x_0 \in \mathcal{X}^{\circ}$.
- 2: **for** t = 0, 1, ..., T **do**
- 3: $x_{t+1} \leftarrow \arg\min_{x \in \mathcal{X}} \left\{ \langle \nabla f(x_t), x x_t \rangle + LD(x, x_t) + g(x) \right\}$
- 4: end for

Theorem. Define $\varphi \coloneqq f+g$. For all $t \ge 1$, it holds that $x_t \in \operatorname{dom} g \cap \operatorname{int}(\operatorname{dom} h)$, and

$$\varphi(x_t) - \varphi(u) \le \frac{LD_h(u, x_0)}{t}, \quad \forall u \in \text{dom } h.$$

M. Teboulle. 2018. A simplified view of first order methods for optimization.

Proof of the theorem (1/2)

Proof. We write, by *L*-relative smoothness,

$$f(x_t) \le f(x_{t-1}) + \langle \nabla f(x_{t-1}), x_t - x_{t-1} \rangle + LD_h(x_t, x_{t-1}).$$

By the Bregman proximal inequality, we write, for any $x \in \operatorname{dom} h$,

$$LD_h(x_t, x_{t-1}) \le \langle \nabla f(x_{t-1}), x - x_t \rangle + g(x) - g(x_t) + L(D_h(x, x_{t-1}) - D_h(x, x_t)).$$

Then, we obtain

$$\varphi(x_t) \le f(x_{t-1}) + \langle \nabla f(x_{t-1}), x - x_{t-1} \rangle + g(x) + L(D_h(x, x_{t-1}) - D_h(x, x_t))$$

$$\le \varphi(x) + L(D_h(x, x_{t-1}) - D_h(x, x_t)).$$

Proof of the theorem (2/2)

Proof continued. Notice that then the sequence $(\varphi(x_t))_{t\in\mathbb{N}}$ is non-increasing.

Summing over all t, we obtain

$$\sum_{\tau=1}^{t} \varphi(x_{\tau}) \le t\varphi(x) + LD_h(x, x_0) - LD_h(x, x_t).$$

Since $(\varphi(x_t))_{t\in\mathbb{N}}$ is non-increasing, we have

$$t(\varphi(x_t) - \varphi(x)) \le LD_h(x, x_0).$$

Remark. The proof strategy is exact the same as that for the "mirror descent".

Is the proof easy?

Below is a slightly earlier convergence guarantee due to Nesterov.

Theorem. Suppose that f is L-smooth on \mathcal{X} . Suppose that

$$\|x-x^\star\| \leq R, \quad \forall x \in \mathcal{X} \text{ such that } \varphi(x) \leq \varphi(x_0).$$

If $\varphi(x_0) - \varphi(x^*) \ge LR^2$, then

$$\varphi(x_1) - \varphi^* \le \frac{LR^2}{2}.$$

Otherwise, for every $t \in \mathbb{N}$,

$$\varphi(x_t) - \varphi^* \le \frac{2LR^2}{t+2}.$$

Yu. Nesterov. 2013. Gradient methods for minimizing composite functions.

Conclusions

Summary

Two new notions:

- 1. Prox-mapping.
- 2. Estimate sequence approach.

Two algorithms:

- 1. Bregman proximal gradient algorithm.
- 2. Accelerated Bregman proximal gradient algorithm.

Two things to notice:

- 1. Subtle difference between the two proximal set-ups.
- 2. Similarity of the proof strategies.

Next lecture

• Frank-Wolfe algorithm.