60Int.Cl. C 03 c

69日本分類 21 B 5

21 B 3 21 B 51 日本国特許庁

⑪実用新案出願公告

昭47-3165

⑩実用新案公報

昭和47年(1972) 2月2日 60公告

(全3頁)

64熱線反射積層ガラス

願 昭44-77883 21)実

願 昭44(1969)8月15日 22)出

案 者 櫛橋昭 (72)考

西宮市小松西町2の6の6の8

藤原健司 同

西宮市甲子園口4の14の4

願 人 日本板硝子株式会社 勿出

大阪市東区道修町4の8

代 理 人 弁理士 大野精市

図面の簡単な説明

第1図は本考案に係る一実施例である熱線反射 実施例である熱線反射複層ガラスの部分断面図、 第3図は本考案に係る熱線反射合せガラスの光学 特性を示す。

考案の詳細な説明

本考案は銅薄膜を有する熱線反射積層ガラス、 特に熱線反射合せガラス及び熱線反射複層ガラス に関する。

近時、建築物のみならず自動車その他一般車輛 の窓面積が大きくなり、明るく視界の大きい室内 環境になる一方、入射する太陽光線の必要部のみ 25 を透過させるような窓ガラスが要求されるように なつて来た。本考案の目的は太陽光線の可視部を 透過するが赤外部は反射する望視用積層ガラスを 提供することにある。

金、銅、アルミニウム等の金属膜は熱線をよく 30 反射することが知られている。しかし之等をガラ ス表面に適用して目的の望視用ガラスを作ろうと する場合、種々の欠点があることを見出した。

すなわち、アルミニウム膜は太陽光線の赤外部 のみならず可視部もよく反射するので、透明な熱 35 線反射がラスとするには膜厚を極めて小にしなけ ればならない。而してそのような膜厚では熱線反 射率も極めて低く、実用に適しない。金はアルミ ニウムに比べると可視部の透過率が大であるので

2

膜厚を可成り大にすることができる。

膜厚を大にすると熱線反射率は大になるが、透 過光の主波長が変わるのでガラスの色調がずれる 金膜は膜厚の差が色調の大きな差となつて現われ る性質があり、このような膜厚による色むらが出 来ないように金膜を付着せしめることは可成り厄 介である。

銅膜は上記のような欠しが殆んど無く、従つて 製造が容易であつて、本考案の目的に最も良く適 10 することがわかつたのである。また銅は金に比べ て極めて安価であるという利点も有している。

然し乍ら、銅の半透明膜をカラスに付着せしめ たものは、常湿常温の大気中に放置すると先ず大 気中の水分を吸収して水酸化物となり、次いで大 合せガラスの断面図、第2図は本考案に係る他の 15 気中の酸素と化合して酸化銅になり、変色及び熱 線反射率の低下乃至消失を来たす。また銅膜は熱 的にも不安定で60℃以上の加熱によつて酸化が 著しく促進されるので銅膜を有する熱線反射ガラ スを合せガラス又は複層ガラスに加工することは 極めて困難であつた。以上の欠点を補うために金 属酸化物の透明膜を介して銅の半透明膜を付휲せ しめ、さらに金属酸化物の透明膜を保護膜とした 熱線反射ガラスが実願昭41―84642号で提 案されている。

> 本考案は前記熱線反射ガラスの改良に関するも ので熱線反射積層ガラス、特に熱線反射合せガラ ス又は熱線反射複層ガラスに関する。すなわち本 考案はガラス板面に鍋の半透明膜を有し、該半透 明膜上に透明な酸化物又は弗化物からなる保護膜 を有する熱線反射ガラス板を該膜を内面として他 の透明板とを積層した熱線反射積層ガラスである 一般にガラス板と銅薄膜との付着強度を大ならし めるためにガラス板と銅薄膜の間に透明な酸化膜 を介在することを行つていた。

本考案者はガラスと銅膜との付着はガラス板面 の清浄さと銅膜の付着方法を適正にすることによ つて比較的強固にすることができ、且つ該鋼膜上 に酸化物又は弗化物の緻密な保護膜を形成するこ / とによつて該ガラス板の二次加工を容易にするこ

(2)

実公 昭47-3165

とができることを見出した。

すなわち、ガラス板表面を清浄にするためにア ルコール洗滌、重クロム混酸洗滌などで脱脂した 後ガラス板面の吸着水分を除くために真空中で加 熱して、更にガラス板表面を清浄にするためにイ オンボンバートを併用した後、そのガラス板面に 銅の真空蒸着法又はスパツター法によつて、特に スパツター法によつて高エネルギーの銅粒子を付 着せしめることによつてガラス板に接着強度の比 ラ・と銅膜の間に人為的に金属酸化物の薄膜を介 在させる必要がないことがわかつた。

一方大気中の水分、有害ガスによる銅の腐蝕は いかに銅をガラスに強くつけても防ぎえないので 緻密で連続した透明保護膜が必要である。

保護膜は真空蒸着法又はスパツター法により銅 膜上に形成しうる。

銅膜の厚さは120~500A程度でよく、あ まり薄くする と熱 線反 射率が 低下しあまり厚く 以下特に300~600A程度が最適であまり厚 くすると干渉色を示すようになる。本考案におけ る保護膜としてはアルミニウム、錫、ビスマス、 カドミウム、珪素、マグネシウム、セリウム、チ シウム及びこれらの組合わせによる薄膜が適して いる。ガラス板に銅膜のみを付着させた熱線反射 ガラスは60℃の加熱1時間で銅膜表面に酸化物 の生成が認められまた湿気を含む外気に露出した 場合数日で変色が認められたが本考案によるもの 30 透過率T及び反射率Rを第3図に示す。 は前記した保護薄膜を有するために(例えばアル ミナで保護薄膜を構成した場合) 250℃1時間 の加熱によつても、前記薄膜に変化はなく大気中 で半年間放置しても変色は全く認められなかつた ラスとして長期間使用するには付着強度及び化学 的耐久性が不十分であるので前記熱線反射ガラス を前記半透明膜を内面としたガラス板と前記半透 明膜を有しないガラス板とをポリビニルブチラー ルで接着した合せガラス又は前記半透明膜を内面 40 にしたガラス板と半透明膜を有しない通常のガラ ス板を空間部をもつて対向させ該二枚のガラス板 の周囲をスペーサを介して接着剤で接着して複層

ガラスに加工することが好ましく、加工時の熱又 はハンドリングに耐えるだけの強度を有するので 非常に好都合である。また合せガラス又は複層ガ ラスに加工された後に前記半透明膜は変質するこ 5 とはない。これらの熱線反射積層ガラスは車輛用 窓ガラス及び建築用窓ガラスとして有用である。 以下本考案の実施例について説明する。

実施例 1

第1図に示す5mm厚のガラス板1の表面を予 較的大なる銅の半透明膜が得られる。従つて、ガ 10 めアルコールで脱脂し、ガラス板1を乾燥し、真 空室に挿入し、真空に引きながら約200℃に加 熱した。その後薄膜を付着するガラス板1の面を 3分間イオンボンバードしてその面を清浄した。 この清浄されたガラス板!を対向するスパツタ 15 一電極のアノード側に移した。カソード側には銅 板が取付けられており、2×10-2 mmHgの アルゴン雰囲気中で30秒間スパツターしてガラ ス板 1 上に 銅膜 2 を付着させた。次に 5 × 1 0 -⁵ mmHgまで減圧して電子銃を用いて酸化珪素 すると透明性を失う。保護膜の厚みは1000 $ilde{A}$ 20 膜3 を銅膜2上に付着させた。付着した銅膜2の 厚みは150Åであり、酸化珪素膜3の厚みは6 00Åであつた。このガラス板と通常のガラス板 6とで前記被膜2,3を内側にしてポリビニルブ チラール4 をはさんで約80℃に加熱し予備プレ タン、ジルコニウム等の酸化物並びに弗化マグネ 25 スをした。予備プレス後15気圧のオートクレー プ中で140℃加熱し合せガラスを得た。このよ うにして得られた熱線反射合せガラスの熱線反射 被膜は合せガラスに加工中の熱に対して劣化する ことはなかつた。この熱線反射合せガラスの分光

実施例1で得られた被膜2,3を有するガラス 板1を被膜2,3を内面にして通常のガラス板6 を対向させ二枚のガラス板1,6の周囲をスペー しかしながら保護薄膜をつけた半透明銅膜は窓が 35 サ7を介して接着材8,8で接着して複層ガラス に加工した。この複層ガラスの光学特性は実施例 1で得られた合せガラスとほぼ同様であり、且つ 耐候性も優れていた。

実用新案登録請求の範囲

ガラス板面に銅の半透明膜を有し、該半透明膜 上に透明な酸化物又は弗化物からなる保護膜を有 する熱線反射ガラス板を該膜を内面として他の透 明板とを積層した熱線反射積層ガラス。

(3)

実公 昭47-3165

第 | 図

第 2 図

第 3 図

