

 Atomes ionisés, les électrons de valence (gaz) se déplacent (participent à la conduction)

Electrons par atome

T Flectrons

Electrons de valence (conduction)

 $\sim \frac{\rho^{N_A}}{M}$

Densité atomique

I)1) Hypothèses, cadre d'étude : électrons

FIG. 1.2 – Trajectoire d'un électron de conduction diffusé par les ions, selon l'image naïve de Drude.

TAB. 1.1 – Densités d'électrons libres de quelques éléments métalliques^a.

Élément	Z	n $(10^{22} \text{ cm}^{-3})$
Li (78 K)	-	4,70
Na (5 K)	-	2,65
K (5 K)	-	1,40
Rb (5 K)		1,15
Cs (5 K)	Н	0,91
Cu	-	8,47
Ag	-	5,86
Au	_	5,90

- Electrons indépendants : pas d'interaction électron-électron, et entre deux chocs, pas d'interaction électron-ion
- Entre deux chocs, électron en mouvement rectiligne uniforme en l'absence de champ extérieur appliqué
- Seules interactions: collisions avec les ions

1)1) Hypothèses, cadre d'étude : collisions

FIG. 1.2 – Trajectoire d'un électron de conduction diffusé par les ions, selon l'image naïve de Drude.

- Electrons indépendants : pas d'interaction électron-électron, et entre deux chocs, pas d'interaction électron-ion
- Entre deux chocs, électron en mouvement rectiligne uniforme en l'absence de champ extérieur appliqué
- Seules interactions: collisions avec les ions
- Collisions instantanées, abruptes, aléatoires

1)1) Hypothèses, cadre d'étude : collisions

Entre deux chocs :

$$\overrightarrow{v} = \sqrt{\frac{3k_bT}{m}}$$

 Probabilité de collision entre t et t+dt

$$P(t) = \frac{1}{\tau}$$

I)1) Hypothèses, cadre d'étude : collisions

TAB. 1.3 – Temps de relaxation de Drude en unités de 10^{-14} s^a.

FIEITIGHT	77 K	273 K	373 K
ı	7,3	0,88	0,61
Na	17	3,2	
K	18	4,1	
$\mathbf{R}\mathbf{b}$	7	2,8	
S	9,8	2,1	
$C_{\mathbf{II}}$	21	2,7	1,9
Ag	20	4,0	2,8
$A_{\mathbf{u}}$	12	3,0	2,1

- Electrons indépendants : pas d'interaction électron-électron, et entre de chocs, pas d'interaction électron ion
- Entre deux chocs, électron en mouvement rectiligne uniforme en l'absence de champ extérieur appliqué
- Seules interactions: collisions avec les ions
- Collisions instantanées, abruptes, aléatoires

- Electrons indépendants : pas d'interaction électron-électron, et entre de chocs, pas d'interaction électron ion
- Entre deux chocs, électron en mouvement rectiligne uniforme en l'absence de champ extérieur appliqué
- Seules interactions : collisions avec les ions
- Collisions instantanées, abruptes, aléatoires
- Electrons en équilibre thermique avec l'environnement (via les collisions)