If and only if

If and only if statements

A theorem that asserts that two statements P and Q are equivalent requires you to prove both $P \implies Q$ and $Q \implies P$.

Chapter 7 exercise 3.

Proposition: If a is an integer, then a is even if and only if $a^3 + a^2 + a$ is even.

There are two claims:

a even implies $a^3 + a^2 + a$ is even.

 $a^3 + a^2 + a$ is even implies a is even.

Each requires proof.

Proof: First we show that, if a is even, then $a^3 + a^2 + a$ is even.

Now we show that, if $a^3 + a^2 + a$ is even, then a is even.

Chapter 7, exercise 9.

Proposition: Suppose that a is an integer. Then 14|a if and only if 7|a and 2|a.

Proof: First we suppose that 14|a and show that both 7 and 2 divide a.

Now we show that, if both 7 and 2 divide a, then 14 divides a.

Equivalence

Theorem Suppose *A* is an $n \times n$ matrix. The following statements are equivalent:

- (a) The matrix *A* is invertible.
- (b) The equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^n$.
- (c) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (d) The reduced row echelon form of A is I_n .
- (e) $det(A) \neq 0$.
- (f) The matrix *A* does not have 0 as an eigenvalue.

Figure 1: Theorem from page 149

Cycle proofs

If each step in the circle of implications:

$$P_1 \Longrightarrow P_2 \Longrightarrow P_3 \Longrightarrow \cdots \Longrightarrow P_n \Longrightarrow P_1$$

is true, then all of the statements are equivalent – that is, all true or all false together.