Nastran+Femap see nx nastran quick reference guide -> nastran Femap -> txt basic geometry geometry: point, line->points to connect points modify->edit per cambiare coordinate delete per eliminare punti model->coordinate system per sistema di coordinate, anche relativo Title longherone Material 1..alluminio model->material per determinare materiale Color 110 Layer 1 Elem/Property Type... model->property lag_{Moments} of Inertia, I1 or Izz 0, flap I2 or Iyy 0, I12 or Izy 0, property type per tipo di elemento Torsional Constant, J 9.88e5 Y Shear Area 1e10 mass 0 per lumped masses Load... Save... OK Nonstructural mass/length 0, Shape... Copy... Cancel shape per disegnare sezione e proprietà mesh->mesh control->size along curve: scegliere asse elastico e numero di elementi mesh->geometry->select curve to mesh: scegliere curva e proprietà, poi scegliere vettore di orientazione per matrice di rigidezza model->node per creare singoli nodi model->element->rigid type per creare elementi rigidi con nodo indipendente e nodi dipendenti lumped mass model model->property->mass organizzare opportunamenente le masse model->constraint per mettere i vincoli tools->mass properties per verificare correttezza massa analyses->modal analysis->new+edit fino a modal analysis, poi fino a boundary conditions, poi scegliere print and postprocess import per importare i risultati dell'analisi postprocessing per vedere i risultati

0							
MODE NO.	EXTRACTION ORDER	EIGENVALUE	REAL EIGEN RADIANS	V A L U E S CYCLES	GENERALIZED MASS	GENERALIZED STIFFNESS	
1 2	1 2	2.319998E+03 9.145025E+03	4.816636E+01 9.562963E+01	7.665914E+00 1.521993E+01	1.000000E+00 1.000000E+00	2.319998E+03 9.145025E+03	
3 4	3 4	2.437773E+04 5.856992E+04	1.561337E+02 2.420122E+02	2.484945E+01 3.851744E+01	1.000000E+00 1.000000E+00	2.437773E+04 5.856992E+04	
		1.184307E+05 1.879873E+05 3.269323E+05	3.441377E+02 4.335751E+02 5.717799E+02	5.477121E+01 6.900562E+01 9.100160E+01	1.000000E+00 1.000000E+00 1.000000E+00	1.184307E+05 1.879873E+05 3.269323E+05	
8	8 9	5.135756E+05 7.021535E+05	7.166419E+02 8.379460E+02	1.140571E+02 1.333632E+02	1.000000E+00 1.000000E+00	5.135756E+05 7.021535E+05	
10 1 MODAL	10	8.705499E+05	9.330326E+02 **STUDENT	1.484968E+02 EDITION* DECEMBER	1.000000E+00 3, 2023 MSC Nastr	8.705499E+05 ran 3/30/23 PAGE 10	
			Rad/s	Hz			
				112			

analisi flutter/aerodinamica

definire proprietà:model->aeroelasticity->property

scegliere pannelli o volumi a seconda del corpo

creare mesh: model->aeroelasticity->panel/body

create spline: model->aeroelasticity->spline

model->analysis

second screen is ok

third is ok + PRGPST

all ok until modal analysis

use lanczos for real eigs

use complex lanczos for complex eigs

choose number of modes

if we impose a simmetry (ex wing) we use the entire span mach/frequency table

construct a table in excel for the desired mode, for example the torsional one

F=15 Hz $k=F*2*pi*chord/2*(1/U_inf)$

chord=1.829

last important sheet NASTRAN Flutter Parameters √ <mark>≸</mark>xy Modal Damping Table 0..None ✓ Enable Flutter Flutter Parameters Flutter Method 1..PK-Method 0..None √ <mark>/</mark>xy for change in altitude Density Ratios √ <mark>′</mark>xy Mach Numbers 0..None change in mach √ xy Velocity/Reduced Freq 0..None put velocity and k Linear Surface Interpolation method Number Eigenvalues mettere numero di autovalori Convergence 0,001 Prev... Next... OK Cancel select BC print and postprocess output recuperare i risultati da f06, flutter summary tabulare e processare