1 (i) $x^{\frac{1}{3}} = 2$ (allow embedded values that question 1) 8 (ii) $10^{7} = 1$ (allow embedded values that question 1) 1 $t = 0$ (iii) $(v^{-2})^{2} = \frac{1}{81}$ (b) $v^{-4} = \frac{1}{81}$ (allow embedded values that question 1) 2 (i) $(3x+1)^{2} - 2(2x-3)^{2}$ (b) $(3x+1)^{2} - 2(2x-3)^{2}$ (c) $(3x+1)^{2} - 2(2x-3)^{2}$ (c) $(3x+1)^{2} - 2(2x-3)^{2}$ (c) $(3x+1)^{2} - 2(2x-3)^{2}$ (d) $(3x+1)^{2} - 2(2x-3)^{2}$ (e) $(3x+1)^{2} - 2(2x-3)^{2}$ (f) $(3x+1)^$	4 term quadratic
(ii) $10^{t} = 1$ $t = 0$ B1 1 0 (iii) $(y^{-2})^{2} = \frac{1}{81}$ $y = \pm 3$ B1 2 $y = 3$ $y = -3$ 2 (i) $(3x+1)^{2} - 2(2x-3)^{2}$ $= (9x^{2} + 6x + 1) - 2(4x^{2} - 12x + 9)$ A1 Square to get at least one 3 or $-9x^{2} + 6x + 1$ or $4x^{2} - 12x + 9$ so	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$y^{4} = \frac{1}{81}$ $y = \pm 3$ B1 $y = 3$ $y = -3$ 2 (i) $(3x+1)^{2} - 2(2x-3)^{2}$ $= (9x^{2} + 6x + 1) - 2(4x^{2} - 12x + 9)$ A1 $y = 3$ $y = -3$ Square to get at least one 3 or -3 $9x^{2} + 6x + 1 \text{ or } 4x^{2} - 12x + 9 \text{ so}$	
$y = \pm 3$ B1 B1 y = 3 y = -3 Square to get at least one 3 or -3 = (9x^2 + 6x + 1) - 2(4x^2 - 12x + 9) A1	
$y = \pm 3$ B1 B1 y = 3 y = -3 Square to get at least one 3 or -3 = (9x^2 + 6x + 1) - 2(4x^2 - 12x + 9) A1	
$ y = \pm 3 $ B1 2 $y = -3 $ 2 (i) $(3x+1)^2 - 2(2x-3)^2$ M1 Square to get at least one 3 or $-4 = (9x^2 + 6x + 1) - 2(4x^2 - 12x + 9)$ A1 $9x^2 + 6x + 1$ or $4x^2 - 12x + 9$ so	
2 (i) $(3x+1)^2 - 2(2x-3)^2$ M1 Square to get at least one 3 or $(9x^2 + 6x + 1) - 2(4x^2 - 12x + 9)$ A1 $(9x^2 + 6x + 1)$ or $(4x^2 - 12x + 9)$ so	
$= (9x^2 + 6x + 1) - 2(4x^2 - 12x + 9) $ A1 $9x^2 + 6x + 1 \text{ or } 4x^2 - 12x + 9 \text{ so}$	
, , , , , , , , , , , , , , , , , , , ,	Al .
= x + 30x - 1/ $A = x + 30x - 1/$	
(ii) $2x^3 + 6x^3 + 4x^3 = 12x^3$ B1 $2 \text{ of } 2x^3, 6x^3, 4x^3 \text{ soi}$	
N.B. www for these terms, m	ust be positive
$B1$ 2 12 or 12 x^3	
$\begin{vmatrix} 3 & (i) & \frac{dy}{dx} = 15x^4 - \frac{1}{2}x^4 \end{vmatrix}$ $\begin{vmatrix} B1 & 15x^4 \\ D1 & 15x^4 \end{vmatrix}$	
$\frac{dx}{dx}$ 2 $\frac{dx}{dx}$ $\frac{dx}{dx}$	
B1 3 $cx^4 - \frac{1}{2}x^{-1}$ only	
	J
(ii) $\frac{d^2y}{dx^2} = 60x^3 + \frac{1}{4}x^{-5}$ M1 Attempt to differentiate their 2	term $\frac{dv}{dx}$ and
get one correctly differentiated	l term
A1 2 $60x^3 + \frac{1}{4}x^{-2}$!
4 (i) B1 Correct curve in one quadrant	
B1 2 Completely correct	
Will Town to the state of the s	
(ii) MI Translate (i) horizontally	
A1V 2 (3)	
$\begin{vmatrix} A1 & 2 \\ 0 \end{vmatrix}$ Translates all of their (i) $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$	
3 3 must be labelled or stated	
(iii (One-way) stretch, sf 2, parallel B1 Stretch	
b to the y-axis B1 (Scale) factor 2 B1 3 Parallel to y-axis o.e.	
B1 3 Parallel to y-axis o.e.	
SR	
Stretch B1	
Sf $\sqrt{2}$ parallel to x-axis B	,2

5	(i)	$x^2 + 3x = \left(x + \frac{3}{2}\right)^2 - \frac{9}{4}$	BI		$a=\frac{3}{2}$
		(2 <i>)</i> 4	BI		$b = -\frac{9}{4} \text{o.e}$ $p = -2$
	(ii)	$y^2 - 4y - \frac{11}{4} = (y - 2)^2 - \frac{27}{4}$	BI		
		4 ` 4	BI		$q = -\frac{27}{4} \text{o.e.}$
	(iii)	Centre $\left(-\frac{3}{2},2\right)$	BIV	1	$\left(-\frac{3}{2},2\right)$
		,	:		N.B. If question is restarted in this part, ft from part (iii) working only
	(iv)	$Radius = \sqrt{\frac{27}{4} + \frac{9}{4}}$	Ml		$\sqrt{-their'b'-their'q'}$ or use $\sqrt{(f^2+g^2-c)}$
		$= \sqrt{9}$			
		= 3	Αl	2	3 (±3 scores A0)
6	(i)	$y = x^3 - 3x^2 + 4$	_		$3x^2 - 6x$
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 6x$	BI		1 term correct
	:	$\frac{1}{dx} = 3x - 6x$	B1		Completely correct
		$3x^2 - 6x = 0$	Ml		$\frac{\mathrm{d}y}{\mathrm{dx}} = 0$
		3x(x-2)=0	MI		Correct method to solve quadratic
	1	x = 0 $x = 2$	A1		x = 0, 2
		y = 4 y = 0	Al√		y = 4, 0
				ļ	SR one correct (x,y) pair www B1
	(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 6$	Ml		Correct method to find nature of stationary points (can be a sketch)
		$x = 0 y'' = -6 \qquad -\text{ve max}$	BI		x = 0 max
		$x = 2 y'' = 6 \qquad + \text{ve min}$	Ві	3	x = 2 min (N.B. If no method shown but both min and max correctly stated, award all 3 marks)
	(iii	Increasing	MI		Any inequality (or inequalities) involving
)	x < 0 $x > 2$	Al	2	both their x values from part (1) Allow $x \le 0$ $x \ge 2$
L		<u> </u>	L	<u> </u>	

7	(i)	$x = \frac{8 \pm \sqrt{64 - 44}}{}$	MI		Correct use of formula
		$x = \frac{2}{2}$ $= \frac{8 \pm \sqrt{20}}{2}$	A1		$\frac{8 \pm \sqrt{20}}{2} \text{ aef}$
			Bl		$\sqrt{20} = 2\sqrt{5} \text{soi}$
		$=4\pm\sqrt{5}$	Al	4	$4\pm\sqrt{5}$
					Alternative method $(x-4)^{2}-16+11=0 M1$ $(x-4)^{2}=5 A1$ $x=4+\sqrt{5} A1$ or $4-\sqrt{5}$ A1
	(ii)	11 (B1		+ve parabola
			ві√		Root(s) in correct places
		4-5^0.5	B1	3	Completely correct curve with roots and (0, 11) labelled or referenced
	(iii)	$y = x^2 = \left(4 \pm \sqrt{5}\right)^2$	MI MI		$y = x^2$ sor Attempt to square at least one answer from part (j)
		$=16+5\pm 8\sqrt{5}$	Alv		Correct evaluation of $(a + b\sqrt{c})^2$ $(a.b.c \pm 0)$
		$=21\pm8\sqrt{5}$	Al	4	21±8√5

8 (i)	$y = x^2 - 5x + 15$	Ml		Attempt to eliminate y
	y = 5x - 10			
	$x^2 - 5x + 15 = 5x - 10$			$x^2 - 10x + 25 = 0$ AG
	$x^2 - 10x + 25 = 0$	A1	2	Obtained with no wrong working seen
(ii)	$b^2 - 4ac = 100 - 100$			
	= 0	В1	1	0 Do not allow $\sqrt{(h^2 - 4ac)}$
(iii	Line is a tangent to the curve	BIV	1	Tangent or 'touches'
)				N.B. Strict ft from their discriminant
(iv)	$x^2 - 10x + 25 = 0$	M1		Correct method to solve 3 term quadratic
	$\left(x-5\right)^2=0$			
	x = 5 y = 15	Al		<i>x</i> = 5
-		Αl	3	<i>y</i> = 15
(v)	Gradient of tangent = 5	В1		Gradient of tangent = 5
	Gradient of normal = $-\frac{1}{z}$	B1√		Gradient of normal = $-\frac{1}{2}$
	5			2
	$y-15=-\frac{1}{5}(x-5)$	Ml		Correct equation of straight line, any gradient, passing through (5, 15)
	x + 5y = 80	Al	4	x + 5y = 80
L			l	

9	(i)	Length AC = $ \sqrt{(8-5)^2 + (2-1)^2} $ = $\sqrt{3^2 + 1^2}$ = $\sqrt{10}$	MI AI		Uses $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $\sqrt{10}$ ($\pm \sqrt{10}$ scores A0)
		Length AB = $\sqrt{(p-5)^2 + (7-1)^2}$ = $\sqrt{(p-5)^2 + 36}$	Al	ENDOCRETERA TOPOGRAFIA EN ESTA ANTA PROTESSA DA LOS ALABASAS ANTA ANTA ANTA ANTA ANTA ANTA ANTA	$\sqrt{(p-5)^2 + (7-1)^2}$
		$\sqrt{(p-5)^2 + 36} = 2\sqrt{10}$ $p^2 - 10p + 25 + 36 = 40$	MI		AB = 2AC (with algebraic expression) used
		$p^{2} - 10p + 21 = 0$ $(p-7)(p-3) = 0$	MI		Obtains 3 term quadratic = 0 suitable for solving or $(p-5)^2 = 4$ _
		p = 7,3	AI AI	7	$ \begin{array}{l} p = 7 \\ p = 3 \end{array} $
					SR If no working seen, and one correct value found, award B2 in place of the final 4 marks in part (i)
	(ii)	7 = 3x - 14 $x = 7$	MI Al		Correct method to find x x = 7
		(5, 1) (7, 7)	MI		Use $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
		Mid-point (6, 4)	A1V	4	(6, 4) or correct midpoint for their AB
					Alternative method y coordinate of midpoint = 4 M1 A1 sub 4 into equation of line M1 obtains $x = 6$ A1