NACA

RESEARCH MEMORANDUM

THEORETICAL PERFORMANCE OF JP-4 FUEL AND LIQUID

OXYGEN AS A ROCKET PROPELLANT

II - EQUILIBRIUM COMPOSITION

By Vearl N. Huff, Anthony Fortini, and Sanford Gordon

Lewis Flight Propulsion Laboratory Cleveland, Ohio

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

September 7, 1956

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

THEORETICAL PERFORMANCE OF JP-4 FUEL AND LIQUID

OXYGEN AS A ROCKET PROPELLANT

II - EQUILIBRIUM COMPOSITION

By Vearl N. Huff, Anthony Fortini, and Sanford Gordon

SUMMARY

Theoretical rocket performance for equilibrium composition during expansion was calculated for the propellant combination JP-4 fuel and liquid oxygen at two chamber pressures and several pressure ratios and oxidant-fuel ratios.

The parameters included are specific impulse, combustion-chamber temperature, nozzle-exit temperature, molecular weight, molecular-weight derivative, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, and thermal conductivity. A correlation is given for the effect of chamber pressure on several of the parameters.

INTRODUCTION

A continuing interest in hydrocarbon fuels and liquid oxygen as rocket propellants is assured by favorable logistics and relatively high specific impulse. Theoretical performance of several hydrocarbons with liquid oxygen is reported in the literature, for example, in references 1 to 3.

Additional computations were made for the propellant combination JP-4 fuel and liquid oxygen at the NACA Lewis laboratory between 1953 and 1955 as required for theoretical and experimental programs. These data were computed for both frozen and equilibrium composition during expansion.

The data for frozen composition during expansion are reported in reference 4. The subject report presents the data for equilibrium composition during expansion for two chamber pressures and a wide range of

oxidant-fuel ratios and pressure ratios. A correlation is given that permits the determination of specific impulse, characteristic velocity, ratio of nozzle-exit area to throat area, combustion-chamber temperature, and nozzle-exit temperature for a wide range of chamber pressure. An equation is given that permits estimation of specific impulse for a change in heat of reaction of the propellant.

SYMBOLS

The following symbols are used in this report:

Α nozzle area, sq in. local velocity of sound (velocity of flow at throat), ft/sec a coefficient of thrust; $C_F = g_c I/c^* = F/P_c A_t$ molar specific heat at constant pressure, cal/(mole)(°K) specific heat at constant pressure, $(\partial h/\partial T)_p$, $cal/(g)(^{O}K)$ c_{p} c* characteristic velocity, $g_c P_c A_t / w$, ft/sec F thrust, lb f_1, f_2, \dots functions gravitational conversion factor, 32.174 $\left(\frac{\text{lb mass}}{\text{lb force}}\right) \left(\frac{\text{ft}}{\text{sec}^2}\right)$ g_c H_{O}^{L} sum of sensible enthalpy and chemical energy, cal/mole h sum of sensible enthalpy and chemical energy per unit mass $\frac{\sum_{i} n_{i}(H_{I}^{0})_{i}}{M(1-n_{i})}, \operatorname{cal/g}$ specific impulse, lb force-sec/lb mass I coefficient of thermal conductivity, cal/(sec)(cm)(OK) k $\frac{\sum_{i} n_{i} M_{i}}{1 - n_{k}}, \text{ g/g-mole or lb/lb-mole}$ М

404:

CW-1 back

n mole fraction

 n_{c*} characteristic-velocity exponent, $\frac{\partial \ln c^*}{\partial \ln P_c}$

 $n_{\rm T}$ temperature exponent for fixed pressure ratio, $\left(\frac{\partial \ln T}{\partial \ln P_c}\right)_{P_c/P}$

 n_g area-ratio exponent for fixed pressure ratio, $\left(\frac{\partial \ln \epsilon}{\partial \ln P_c}\right)_{P_c/P}$

o/f oxidant-to-fuel weight ratio

P pressure, lb/sq in.

p partial pressure, lb/sq in.

R universal gas constant (consistent units)

equivalence ratio, ratio of four times the number of carbon atoms plus the number of hydrogen atoms to two times the number of oxygen atoms in propellant, $\frac{4(C) + (H)}{2(O)}$

 $S_{\mathrm{T}}^{\mathrm{O}}$ entropy at pressure of 1 atmosphere, cal/(mole)(${}^{\mathrm{O}}$ K)

s entropy per unit mass, $\frac{\sum_{i} n_{i}(S_{T}^{o})_{i}}{M(1-n_{k})} = \frac{R\sum_{j} p_{j} \ln(p_{j}/14.696)}{PM},$ $cal/(g)(^{O}K)$

T temperature, OK

V velocity, ft/sec

v specific volume

w mass-flow rate, lb/sec

 γ isentropic exponent, $\left(\frac{\partial \ln P}{\partial \ln \rho}\right)_s$

NACA RM E56D23

8	ratio of nozzle area to throat area, $A/A_{ m t}$
μ	absolute viscosity, poises = g/(cm)(sec)
ξ	$\left(\frac{\partial \ln M}{\partial \ln T}\right)_{S}$, derivative of logarithm of molecular weight with respect to logarithm of temperature at constant entropy
ρ	density, lb/cu in.
Subscripts:	
С	combustion chamber
е	nozzle exit
i	product of combustion including both gaseous and solid phases
inj	injector face
j	gaseous product of combustion
k	solid product of combustion (graphite)
0	conditions at 0° K
P	constant pressure
P_{c}/P	constant pressure ratio
s	constant entropy
t	nozzle throat
1	reference point

CALCULATION OF PERFORMANCE DATA

Performance data were obtained for two chamber pressures for a range of equivalence ratios and pressure ratios. Equilibrium composition during expansion was assumed.

The computations were carried out by means of the method described in reference 5 with modifications to adapt it for use with an IBM card-programmed electronic calculator. The machine was operated with

floating-decimal-point notation and eight significant figures. The successive approximation process used in the calculations was continued until seven-figure accuracy was reached in the desired values of the assigned parameters (mass balance and pressure or entropy).

Assumptions

The calculations were based on the following usual assumptions: perfect gas law, adiabatic combustion at constant pressure, isentropic expansion, no friction, homogeneous mixing, and one-dimensional flow. The products of combustion were assumed to be graphite and the following ideal gases: atomic carbon C, methane CH₄, carbon monoxide CO, carbon dioxide CO₂, atomic hydrogen H, hydrogen H₂, water H₂O, atomic oxygen O, oxygen O₂, and the hydroxyl radical OH. The combustion products are assumed to be completely expanded within the exit nozzle; that is, ambient pressure equals exit pressure. Chemical equilibrium is assumed during the expansion process.

The graphite was assumed to be finely divided and to have the temperature and velocity of the gases during the flow process.

Initial Data

Thermodynamic data. - The thermodynamic data for all combustion products except graphite, methane, and water were taken from reference 5. Data for graphite were taken from reference 6, and for water from reference 7. Data for methane were determined by the rigid-rotator - harmonic-oscillator approximation using spectroscopic data from reference 8. The base used in this report for assigning absolute values to enthalpy is the same as in reference 5.

The heat of sublimation of graphite at 298.16° K was taken to be 171.698 kilocalories per mole (ref. 9).

Physical and thermochemical data. - The properties of the fuel used in these calculations are typical of the JP-4 fuel delivered to this laboratory over a period of 2 years. The JP-4 fuel was assumed to have a hydrogen-to-carbon weight ratio of 0.163 (atom ratio of 1.942), a lower heat of combustion value of 18,640 Btu per pound, and a specific gravity of 0.769. Additional properties of jet fuels may be found in reference 10.

Several properties of the oxidant taken from references 5, 9, and 11 are listed in table I.

<u>Viscosity data</u>. - The viscosity data for the individual combustion products were either taken from the literature when available or estimated.

The viscosity data for CO, $\rm CO_2$, $\rm CH_4$, $\rm H_2$, and $\rm O_2$ were calculated by the method of reference 12 using the values of the constants from table 1A of that reference.

The viscosities of C, O, H, and OH were calculated by the method of reference 13, which assumes that the logarithm of viscosity is a linear function of the logarithm of the temperature.

The viscosity of H2O was calculated from the modified Sutherland equation given in reference 14.

Computation of Combustion Conditions

A combustion pressure was assigned (300 or 600 lb/sq in. abs). At this assigned pressure, the equilibrium composition $\mathbf{n_i}$, enthalpy h (including both chemical and sensible energy), and entropy s were determined for three temperatures at 100° K intervals. The temperatures were chosen to band the value of enthalpy for the propellant mixture h. The formulas used to calculate h and s are

$$h = \frac{\sum_{i} n_{i}(H_{T}^{O})_{i}}{M(1 - n_{k})}$$
 (1)

$$s = \frac{\sum_{\hat{1}} n_{\hat{1}} (s_{\hat{T}}^{o})_{\hat{1}}}{M(1 - n_{k})} - \frac{1.98718 \sum_{\hat{j}} p_{\hat{j}} ln(p_{\hat{j}}/14.696)}{PM}$$
 (2)

Combustion composition corresponding to $h_{\rm c}$ was obtained by ordinary three-point interpolation of composition as a function of $h_{\rm c}$. Entropy $s_{\rm c}$ corresponding to $h_{\rm c}$ was obtained by means of a three-point three-slope interpolation of s as a function of $h_{\rm c}$. The slope was obtained by means of the thermodynamic relation

$$\left(\frac{\partial \mathbf{s}}{\partial \mathbf{h}}\right)_{\mathbf{P}} = \frac{1}{\mathbf{T}} \tag{3}$$

It is convenient to treat the products of combustion (sometimes a mixture of solid graphite and ideal gases) as a single homogeneous

fluid. Therefore, the molecular weight of the combustion products M is defined as the weight of a sample (including gases and solid graphite) divided by the number of moles of gas and was computed by

$$M = \frac{\sum_{i} n_{i}M_{i}}{1 - n_{k}} \tag{4}$$

This value of M is suitable for use in the gas law

$$P = \frac{\rho RT}{M} \tag{5}$$

provided the solid phase is included in the density. Such a fluid will exhibit ideal properties as long as the volume of the gases is large with respect to the volume of the solid phase. The procedure is also consistent with the assumption that the solid particles are small enough to be considered gas molecules of extremely large molecular weight.

Computation of Exit Conditions

Calculation of parameters at assigned temperatures. - Exit temperatures were selected at 200°, 300°, or 400° K intervals to cover the range of pressure ratios from 1 to 1500. At these selected temperatures, the following data were computed assuming isentropic expansion and equilibrium composition: pressure, enthalpy, molecular weight, molecular-weight derivative, isentropic exponent, specific heat at constant pressure, absolute viscosity, thermal conductivity, nozzle-area ratio, coefficient of thrust, and specific impulse.

Interpolation of throat pressure. - A cubic equation in terms of ln P was derived from the following function and its first derivative using the data at two assigned temperatures:

function,
$$f_1 = \ln f_2 = \ln \left(\frac{h}{R} + \frac{\gamma T}{2M} - \frac{h_0}{R} \right)$$

first derivative,
$$\frac{df_1}{d \ln P} = \frac{T}{2Mf_2} \left(\gamma + 1 + \frac{d\gamma}{d \ln P} \right)$$

(Values for $d\gamma/d$ ln P were found by a numerical method.)

The two temperatures were selected to band the throat temperature. The pressure at the throat was found by interpolating $\, \ln \, P \,$ as a function of $\, f_1 \,$ for the point $\, f_1 = \ln \, \left(h_c / R \, - \, h_o / R \right) . \,$ At this point the velocity of flow equals the velocity of sound.

Interpolation of enthalpy. - Enthalpies were interpolated for a series of pressures including the throat pressure by means of quartic equations in terms of ln P. Each of the quartic equations used was derived from data at two successive assigned temperatures and used to interpolate those points within the temperature interval. The data used in forming each quartic were the following function at one of the assigned temperatures and its first and second derivatives at both assigned temperatures:

function,
$$f_3 = \frac{h}{R}$$

8

first derivative,
$$\frac{df_3}{d \ln P} = \frac{T}{M}$$

second derivative,
$$\frac{d^2f_3}{(d \ln P)^2} = \frac{T}{M} \left(\frac{\gamma - 1}{\gamma}\right)$$

Interpolation of temperature. - Temperatures were interpolated for a series of pressures including the throat pressure by means of cubic equations in terms of ln P. Each of the cubic equations used was derived from data at two successive assigned temperatures and used to interpolate those points within the temperature interval. The data used in forming each cubic were the following function and its derivative at both assigned temperatures:

function, $f_4 = ln T$

first derivative,
$$f_5 = \frac{df_4}{d \ln P} = \left(\frac{\gamma - 1}{\gamma}\right)\left(\frac{1}{1 - \xi}\right)$$

<u>Interpolation of molecular weight</u>. - Molecular weights were interpolated similarly to temperatures using the following function and derivative:

function, $f_6 = \ln M$

first derivative,
$$\frac{df_6}{d \ln P} = \xi f_5 = \left(\frac{\gamma - 1}{\gamma}\right)\left(\frac{\xi}{1 - \xi}\right)$$

Interpolation of specific heat, isentropic exponent, and molecular-weight derivative. - Specific heats were interpolated for a series of pressures including the throat pressure by means of cubic equations in terms of ln P. Each of the cubic equations used was derived from values of specific heat for four successive temperatures and used to

NACA RM E56D23 9

interpolate those points within the interval of the two middle temperatures. Isentropic exponents and molecular-weight derivatives were interpolated in a manner similar to that for specific heats.

Accuracy of interpolation. - The errors due to interpolation were checked for several cases. The values presented for enthalpy, entropy, and specific impulse appear to be correctly computed to all figures tabulated. The temperature and molecular weight may in some cases be in error by a few figures in the last place tabulated. The derivatives may, in regions where they are changing rapidly, be in error by a few percent. However, because of uncertainties in thermodynamic data used, all values are probably tabulated to more places than are entirely significant.

Formulas

The formulas used in computing the various performance parameters as are follows:

Specific impulse, lb force-sec/lb mass

$$I = 294.98 \sqrt{\frac{h_c - h_e}{1000}}$$
 (6)

Throat area per unit mass-flow rate, (sq in.)(sec)/lb

$$\frac{A_{t}}{w} = \frac{2781.6 T_{t}}{P_{t}M_{t}a} \tag{7}$$

Characteristic velocity, ft/sec

$$c^* = g_c P_c \left(\frac{A_t}{w}\right) = 32.174 P_c \left(\frac{A_t}{w}\right)$$
 (8)

Coefficient of thrust

$$C_{F} = \frac{g_{c}^{I}}{c^{*}} = \frac{32.174 I}{c^{*}}$$
 (9)

Nozzle area per unit mass-flow rate, (sq in.)(sec)/lb

$$\frac{A}{W} = \frac{86.455 \text{ T}}{PMT} \tag{10}$$

Ratio of nozzle area to throat area

$$\varepsilon = \frac{A/w}{A_{t}/w} \tag{11}$$

Specific heat at constant pressure, cal/(g)(OK)

$$c_{p} = \left(\frac{\partial h}{\partial T}\right)_{P} = \frac{C_{p}^{O}}{M(1 - n_{k})}$$
 (12)

where $\ensuremath{\mathtt{C}_p^o}$ is given by equation (37) of reference 5.

Isentropic exponent

$$\Upsilon = \left(\frac{\partial \ln P}{\partial \ln \rho}\right)_{S} = \frac{a^{2}M}{RT}$$
(13)

where a^2 is given by equation (32) of reference 5.

Absolute viscosity, poises

$$\mu = \frac{PM}{\sum_{j} \frac{P_{j}}{\mu_{j}/M_{j}}} \tag{14}$$

Molecular-weight derivative

$$\xi = \left(\frac{\partial \ln M}{\partial \ln T}\right)_{S} = D_{A} - \frac{\sum_{i} p_{i} D_{i}}{P}$$
(15)

where D_A and D_i have the definitions of ref. 5.

Coefficient of thermal conductivity, cal/(sec)(cm)(°K)

$$k = \mu \left(c_p + \frac{5}{4} \frac{R}{M} \right) \tag{16}$$

The values of viscosity and thermal conductivity for mixtures of combustion gases calculated by means of equations (14) and (16) are only approximate. When more reliable transport properties for the various products of combustion become available, a more rigorous procedure for computing the properties of mixtures may also be justified. When solid graphite was present among the combustion products, it was omitted from equation (14).

404

THEORETICAL PERFORMANCE DATA

Tables. - The calculated values of the performance parameters and equilibrium composition of the combustion products are given in tables II to VII. The properties of gases in the combustion chamber and the characteristic velocity are given in table II for each chamber pressure and equivalence ratio. Table III presents the values of performance parameters at assigned temperatures and constant entropy. These values were computed directly and used to interpolate properties for assigned pressure ratios. The values of viscosity and thermal conductivity of the mixture are also given in this table as a function of temperature.

The performance parameters for small pressure ratios from 1 to 8 are given in table IV. These properties permit computations within the rocket nozzle and for finite combustion-chamber diameters. Properties at the throat may be found where $\varepsilon = 1.000$. The values adjacent to the throat correspond to pressures 1.2 and 0.8 times the throat pressure.

The performance parameters for pressure ratios from 10 to 1500 are given in table V. This table gives sufficient data to permit interpolation of complete data for any pressure ratio within the range tabulated.

The performance parameters are summarized in table VI for expansion from chamber pressure to 1 atmosphere. The maximum values calculated for specific impulse for chamber pressures of 600 and 300 pounds per square inch absolute are 284.9 and 260.8, respectively.

Table VII presents the composition of the combustion products at the combustion temperature and various assigned temperatures at constant entropy.

Curves. - The performance parameters are plotted in figures 1 to 6 for chamber pressures of 600 and 300 pounds per square inch absolute.

Curves of specific impulse are presented in figure 1 for pressure ratios from 10 to 1500 as functions of weight percent fuel. The location of the maximum values shifts from about 31 percent fuel at the low pressure ratios to about 26 percent fuel at the higher pressure ratios. The exponent n_{T} is also shown.

Curves of combustion-chamber temperature and nozzle-exit temperature for pressure ratios from 10 to 1500 are plotted in figure 2 as functions of weight percent fuel. The exponent $n_{\rm TP}$ is also shown.

Curves of the ratio of nozzle area to throat area are plotted in figure 3 for pressure ratios from 10 to 1500 as functions of weight percent fuel. The exponent $n_{\rm E}$ is also shown.

Figures 4 and 5 give the curves for coefficient of thrust and molecular weight, respectively, for pressure ratios from 10 to 1500 as functions of weight percent fuel.

Figure 6 presents curves of characteristic velocity as functions of weight percent fuel. Also shown is the exponent n_{c*} .

Effect of solid graphite. - The theoretical calculations of equilibrium composition in the combustion chamber showed that solid graphite was not present for the equivalence ratios of 1 to 2 (weight percent fuel, 22.71 to 37.01) and was present for an equivalence ratio of 3. The appearance of solid graphite affected the values of the thermodynamic parameters and resulted in a break in the performance data in the region of equivalence ratios between 2 and 3. The performance at an equivalence ratio of 3 was not plotted in figures 1 to 6 but is presented in tables II to VII.

Effect of assuming frozen or equilibrium composition. - The assumption of whether the composition remains constant during the expansion process (frozen) or is in continuous equilibrium affects the values of the performance parameters. Figure 7 compares the values of specific impulse assuming equilibrium composition (this report) and frozen composition (ref. 4). The maximum value of specific impulse for a chamber pressure of 600 pounds per square inch absolute and a pressure ratio of 40.83 is 284.9 for equilibrium composition and 271.8 for frozen composition, a difference of 4.8 percent. The maximum specific impulse occurs at about 29 and 32 percent fuel for equilibrium and frozen composition, respectively.

An example of the large effect of change of composition on specific heat and isentropic exponent is given in figures 8(a) and (b). For the stoichiometric equivalence ratio, the value for specific heat assuming equilibrium composition is, at the higher temperatures, almost four times the value assuming frozen composition. This large difference in specific heat is due primarily to the chemical energy associated with the change of composition with temperature. The value for isentropic exponent at the higher temperatures is about 5 to 10 percent greater for frozen composition than for equilibrium composition.

Chamber-pressure effect. - By use of suitable derivatives, performance parameters can be estimated with good accuracy at chamber pressures other than those given in this report. Derivatives which permit the calculation of I, T, ϵ , and c* at various chamber pressures for fixed pressure ratios and equivalence ratios were obtained from the following equations:

$$n_{I} = \left(\frac{\partial \ln I}{\partial \ln P_{c}}\right)_{P_{c}/P} = 86.4554 \frac{T}{I^{2}} \left(\frac{1}{M_{c}} - \frac{1}{M}\right)$$
(17)

4045

$$n_{T} = \left(\frac{\partial \ln T}{\partial \ln P_{c}}\right)_{P_{c}/P} = \left(\frac{\gamma - 1}{\gamma}\right)\left(\frac{1}{1 - \xi}\right) - \frac{R}{M_{c}c_{p}}$$
(18)

$$n_{\varepsilon} = \left(\frac{\partial \ln \varepsilon}{\partial \ln P_{c}}\right)_{P_{c}/P} = (n_{A/w})_{e} - (n_{A/w})_{t}$$
 (19)

where $n_{A/w} = \left(\frac{\partial \ln A/w}{\partial \ln P_c}\right)_{P_c/P} = -\left(\frac{M}{M_c}\right)\left(\frac{\gamma - 1}{\gamma}\right)\left(\frac{1}{1 - \xi}\right) - \frac{1}{\gamma} - n_T$

$$n_{c*} = \frac{\partial \ln c^*}{\partial \ln P_c} = 1 + (n_A/w)_t$$
 (20)

These equations, which were derived analytically from thermodynamic relations, are valid only for chemical equilibrium during expansion. The equations may be written in the approximate form:

$$I = I_1 \left(\frac{P_c}{P_{c,1}}\right)^{n_{I,1}} \tag{21}$$

$$T = T_1 \left(\frac{P_c}{P_{c,1}}\right)^{n_T,1} \tag{22}$$

$$\varepsilon = \varepsilon_1 \left(\frac{P_c}{P_{c,1}}\right)^n \varepsilon, 1 \tag{23}$$

$$c^* = c_1^* \left(\frac{P_c}{P_{c,1}}\right)^n c^*, 1$$
 (24)

where $P_{c,1}$ may be selected to be either 300 or 600 pounds per square inch absolute provided that I_1 , T_1 , ϵ_1 , c_1^* , and their derivatives are the corresponding values for the chamber pressure selected.

The derivatives obtained by means of equations (17) to (20) are shown in tables II to V and are plotted in figures 1, 2, 3, and 6.

To illustrate the use of these derivatives, suppose it is desired to obtain the value of specific impulse for a chamber pressure of 450 pounds per square inch absolute and a pressure ratio of 30.62 (exit pressure, 1 atm) for an equivalence ratio r of 1.4 (29.15 weight

percent fuel). From figure 1(b) and table V, the value of I at this pressure ratio and equivalence ratio (but for a chamber pressure of 300 lb/sq in. abs) is 274.5 and the value of $n_{\rm I}$ is 0.0084. From equation (21),

$$I = 274.5 \left(\frac{450}{300}\right)^{0.0084}$$
$$= 274.5 (1.0034)$$
$$= 275.4$$

A comparison of the parameters obtained by means of the chamber-pressure correlation and by a direct calculation for two examples is given in the following table (r = 1.4 (29.15 weight percent fuel)):

Parameter	$P_{c} = 450$ $P_{e} = 1 a$	lb/sq in	. abs	$P_{c} = 1200$ $P_{e} = 1 a$	O lb/sq i: tm	n. abs				
	Estimated by corre- lation	Direct calcu- lation	Error	Estimated by corre- lation	Direct calcu- lation	Error				
I	275.44	275.43	0.01	304.98 304.91 0.07						
$\mathtt{T}_{\mathbf{c}}$	3537.6	3536.8	.8	3672.2 3670.5 1.7						
T _e	2472.9	2470.6	2.3	2111.9	2112.8	.9				
ε	5.383	5.374	.009	10.900	10.894	.006				
c*	5886.1	5885.3	.8	5948.9	5946.3	2.6				

It is expected that values estimated for other equivalence ratios and pressure ratios for any chamber pressure from about 150 to 1200 pounds per square inch absolute will have small errors of the order of magnitude shown in the previous table. A possible exception might occur when the value of the exponent is changing rapidly, such as in the region where solid graphite first appears.

Estimated performance of JP-4 fuel with ozone or oxygen-ozone mixtures. - The change in specific impulse due to a change in the heat content of the propellants or combustion products may be estimated from the following equation:

$$I^2 = I_1^2 + B \Delta h_c + C(\Delta h_c)^2$$
 (25)

where Δh_C is the change in the heat content,

$$B = 87.0132 \left(1 - \frac{T_e}{T_c} \right)_1$$

$$C = \frac{87.0132}{2} \left(\frac{T_e}{T_c^2} \right) \left[\frac{1}{(c_p)_c} - \frac{1}{(c_p)_e} \right]_1$$

and the subscript 1 indicates the values of the parameters before the change is made. For example, assume that the performance is desired for JP-4 fuel and a mixture of 20 percent liquid ozone and 80 percent liquid oxygen by weight at an equivalence ratio of 1.4, a combustion pressure of 600 pounds per square inch absolute, and a pressure ratio of 40. The reaction may be written

$$CH_{1.942} + 0.8489 O_2 + 0.1415 O_3$$
 (26)

From reference 5, the difference in heat content between oxygen and ozone is 34,853 calories per mole of ozone. Therefore, Δh_c is 102.9 calories per gram of propellant (fuel plus oxidant).

From tables II and V(a) or figures 1(a) and 2(a), the values of the parameters are

$$I_1 = 284.3$$

$$T_{c,1} = 3576$$

$$T_{e,1} = 2378$$

$$(c_p)_{c,1} = 1.520$$

$$(c_p)_{e,1} = 0.580$$

These values yield the following:

$$I_1^2 = 80,826$$

$$B = 29.15$$

$$C = -0.00863$$

By equation (25),

$$I^2 = 80,826 + 29.15(102.9) + (-0.00863)(10,588)$$

= 80,826 + 3000 - 91 = 83,735
 $I = 289.37$

This compares to a value of 289.39 obtained by a direct calculation. It is expected that estimates made for higher percentages of ozone in the oxidant mixture will have somewhat higher errors.

Equation (25) was used to obtain the variation of specific impulse with percent ozone in the oxidant for an equivalence ratio of 1.4, a chamber pressure of 600 pounds per square inch absolute, and an exit pressure of 1 atmosphere. The results are shown in figure 9.

<u>Use of derivatives</u>. - The derivatives of the fundamental thermodynamic quantities have many useful applications. Equations (21) to (25) are examples of these applications.

All the relations between the first derivatives may be expressed in terms of three arbitrary first derivatives in addition to the fundamental quantities (ref. 15). Reference 15 presents a convenient scheme for expressing all first derivatives in terms of $(\partial v/\partial T)_P$, $(\partial v/\partial P)_T$, and $(\partial h/\partial T)_P = c_P$. In order to make use of the tables in reference 15, $(\partial v/\partial T)_P$ and $(\partial v/\partial P)_T$ can be obtained from the data in this report by means of the following equations:

$$\begin{pmatrix} \frac{\partial \mathbf{v}}{\partial \mathbf{T}} \end{pmatrix}_{\mathbf{P}} = \begin{pmatrix} \frac{\mathbf{c} \cdot \mathbf{p}}{\mathbf{P}} \end{pmatrix} \begin{pmatrix} \frac{\mathbf{r} - \mathbf{1}}{\mathbf{r}} \end{pmatrix} \begin{pmatrix} \frac{1}{1 - \xi} \end{pmatrix}$$
(27)

$$\left(\frac{\partial \mathbf{v}}{\partial \mathbf{P}}\right)_{\mathbf{T}} = -\frac{\mathbf{T}}{\mathbf{c}_{\mathbf{p}}} \left(\frac{\partial \mathbf{v}}{\partial \mathbf{T}}\right)_{\mathbf{P}}^{2} - \frac{\mathbf{v}}{\gamma \mathbf{P}}$$
(28)

The dimensions of specific volume v in equations (27) and (28) which result from using the dimensions assigned to the other variables in this report are (cal)(sq in.)/(g)(lb force). For certain applications involving these derivatives, the dimensions of v are unimportant inasmuch as they will cancel. However, a conversion factor may be used, when desired, to obtain any dimension for v. For example, l(cal)(sq in.)/(g)(lb force) equals 606.84 cu cm/g.

Effect of finite chamber area. - The use of a combustion chamber of finite cross-sectional area leads to a pressure change across the combustion process. For a cylindrical chamber, the injector face pressure $P_{\mbox{inj}}$ may be found from the following equation for conservation of momentum.

$$P_{inj} = P_{l} + \frac{w}{A_{l}g_{c}} (V_{l} - V_{inj})$$
 (29)

where P_1 and V_1 are the static pressure and velocity at the nozzle entrance, respectively, and $V_{\mbox{inj}}$ is the average velocity of propellant (liquid or gas) in the axial direction when injected. Equation (29) may be written

$$P_{inj} = P_c \left(\frac{P_l}{P_c}\right) + \frac{P_c}{c^* \epsilon} \left(I_{lg_c} - V_{inj}\right)$$
 (30)

where Pc is the stagnation pressure in the nozzle.

The data tabulated in tables II and IV may be used to evaluate this expression. For example, the pressure at the face of the injector of a rocket operating at the stoichiometric ratio with a nozzle stagnation pressure of 600 pounds per square inch absolute and a chamber-to-throat area ratio of 1.24 with V_{inj} equal to 100 feet per second is

$$P_{inj} = 600 \frac{1}{1.2} + \frac{600}{5622(1.24)} (66.5 \times 32.2 - 100)$$

$$= 500 + 0.0861 (2041)$$

$$= 500 + 175.7$$

$$= 675.7 \text{ lb/sq in. abs}$$

SUMMARY OF RESULTS

A theoretical investigation of the performance of JP-4 fuel with liquid oxygen as an oxidant was made for the following conditions: (1) equivalence ratios from 1 to 3, (2) chamber pressures of 300 and 600 pounds per square inch, (3) pressure ratios from 1 to 1500, and (4) equilibrium composition during expansion.

The results of the investigation are as follows:

- 1. The maximum values of specific impulse for chamber pressures of 600 and 300 pounds per square inch absolute (40.83 and 20.41 atm) and an exit pressure of 1 atmosphere were 284.9 and 260.8, respectively.
- 2. The data presented in this report permit interpolation of complete performance data for equivalence ratios from 1 to 2, chamber pressures from 150 to 1200 pounds per square inch absolute, and pressure ratios up to 1500.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, May 17, 1956

REFERENCES

- Weissbluth, Mitchel: Investigation of Jet Units Utilizing the Liquid Oxygen-Gasoline Propellant Combinations. GALCIT Proj. No. 1, Prog. Rep. No. 9, AAF Materiel Center Aircraft Lab., GALCIT, Nov. 11, 1943.
- 2. Morgan, M. S., Silverman, J., and Webber, W. T.: Generalized Solution of the Theoretical Specific Thrust in a Rocket Motor for the C-H-N-O-F Atomic System. Paper presented at meeting Am. Rocket Soc., Los Angeles (Calif.), Sept. 18-21, 1955.
- 3. Bollo, F. G., et al.: Acetylenic Compounds for Rocket Fuels. Final Rep. No. S-13353, Apr. 1951 to Jan. 1952, Shell Dev. Co. (Emeryville, Calif.). (Dept. Navy, Bur. Aero. Contract No. NOas-51-709-c.)
- 4. Huff, Vearl N., and Fortini, Anthony: Theoretical Performance of JP-4 Fuel and Liquid Oxygen as a Rocket Propellant. I Frozen Composition. NACA RM E56A27, 1956.
- 5. Huff, Vearl N., Gordon, Sanford, and Morrell, Virginia E.: General Method and Thermodynamic Tables for Computation of Equilibrium Composition and Temperature of Chemical Reactions. NACA Rep. 1037, 1951. (Supersedes NACA TN's 2113 and 2161.)
- 6. Anon.: Tables of Selected Values of Chemical Thermodynamic Properties Table 23, Substance C, Ser. III (C, graphite), Nat. Bur. Standards, Mar. 31, 1947 and June 30, 1948.

4045

NACA RM E56D23

7. Glatt, Leonard, Adams, Joan H., and Johnston, Herrick L.: Thermodynamic Properties of the H2O Molecule from Spectroscopic Data.

Tech. Rep. 316-8, Cryogenic Lab., Dept. Chem., Ohio State Univ.,
June 1, 1953. (Navy Contract N6onr-225, Task Order XII, ONR Proj.

NR 085-005.)

- 8. Herzberg, Gerhard: Infrared and Raman Spectra of Polyatomic Molecules. D. Van Nostrand Co., Inc., 1945, p. 308.
- Rossini, Frederick D., et. al.: Selected Values of Chemical Thermodynamic Properties. Circular 500, Nat. Bur. Standards, Feb. 1952.
- 10. Barnett, Henry C., and Hibbard, R. R.: Fuel Characteristics Pertinent to the Design of Aircraft Fuel Systems. NACA RM E53A21, 1953.
- ll. Washburn, Edward W., ed.: International Critical Tables. Vol. III. McGraw-Hill Book Co., Inc., 1928.
- 12. Hirschfelder, Joseph O., Bird, R. Byron, and Spotz, Ellen L.: The Transport Properties of Non-Polar Gases. Jour. Chem. Phys., vol. 16, no. 10, Oct. 1948, pp. 968-981.
- 13. Gilbert, Mitchell: Estimation of the Viscosity, Conductivity, and Diffusion Coefficients of O, H, N, and OH. Memo. No. 4-51, Power Plant Lab., Proj. No. MX527, Jet Prop. Lab., C.I.T., July 6, 1949. (AMC Contract No. W33-O38-ac-4320, Ord. Dept. Contract No. W-O4-200-ORD-455.)
- 14. Keyes, Frederick G.: Thermal Conductivities for Several Gases with a Description of New Means for Obtaining Data at Low Temperatures and Above 500° C. Tech. Memo. No. 1, Proj. Squid, M.I.T., Oct. 1, 1952. (Contract N5-ori-07855.)
- 15. Bridgman, P. W.: A Complete Collection of Thermodynamic Formulas. Phy. Rev., 2nd. ser., vol. III, no. 4, Apr. 1914, pp. 273-281.

TABLE I. - PROPERTIES OF LIQUID OXYGEN

Molecular weight, M	32.00
Density, g/cc	⁸ 1.1415
Freezing point, OC	^b -218.76
Boiling point, OC	b-182.97
Enthalpy required to convert	
liquid at boiling point to gas at 25°C, kcal/mole	^c 3.080
Enthalpy of vaporization, kcal/mole	^d l.630
Enthalpy of fusion, kcal/mole	^e 0.106

^aAt -182.0° C; ref. 11. ^bRef. 9.

cRef. 5.

 $^{^{\}rm d}$ At -182.97 $^{\rm o}$ C; ref. 9.

eAt -218.76° C; ref. 9.

TABLE 11		THERMODYNAMIC	PROPERTIES	OF	COMPOSITON	GASES	FOR JP-4	RORP	AND	TTGOTD	OXYGEN	ĺ
	 -											

	Equiva- lence ratio, r, 4(C) + (H) 2(O)	Percent fuel by weight	Oxidant to fuel weight ratio, o/f	pera-	Temper- ature exponent, n _T	Molecular weight, M	Enthalpy, h, cal/g	Entropy, s, cal (g)(OK)	Specific heat, cp, cal (g)(°K)	Isen- tropic ex- ponent,	Character- istic velocity exponent, n _c *	Characteris- tic veloc- ity, c*, ft/sec (b)
ŀ					Combugation	n-chamber p		500 1h/aa	L	(6)	(6)	(6)
ļ					COMPUBLICA	i-cusminer l	Tessure,	Padar oog	III. abs			
	1.00	22.71	3.403	3612	0.0426	25.48	2531.6	2.5729	1.845	1.128	0.0127	5622
	1.20	26.07	2.838	3628	.0422	24.03	2901.1	2.6815	1.818	1.131	.0125	5795
	1.30	27.64	2.618	3612	.0408	23.36	3074.1	2.7297	1.700	1.134	.0119	5859
	1.40	29.15	2.431	3576	.0382	22.70	3239.9	2.7740	1.520	1.139	.0110	5904
	1.50	30.59	2.269	3518	.0344	22.05	3399.0	2.8146	1.283	1.145	.0092	5924
	1.60	31.98	2.127	3436	.0290	21.41	3551.6	2.8515	1.089	1.156	.0069	5918
	1.80	34.59	1.891	3205	.0187	20.17	3839.4	2.9142	.798	1.184	.0031	5832
	2.00	37.01	1.702	2923	.0099	19.03	4105.8	2.9627	.653	1.215	.0009	5679
	3.00	46.85	1.134	1657	.0264	15.49	5188.4	3.0102	.701	1.285	.0114	4674
		-			Combustior	ı-chamber p	ressure, 3	000 lb/sq	in. abs	•		
	1.00	22.71	3.403	3507	0.0432	25.24	2531.6	2.6273	2.012	1.124	0.0129	5572
	1.20	26.07	2.836	3523	.0425	23.80	2901.1	2.7391	1.996	1.127	.0128	5745
	1.30	27.64	2.618	3511	.0418	23.14	3074.1	2.7889	1.887	1.131	.0124	5810
	1.40	29.15	2.431	3482	.0396	22.50	3239.9	2.8349	1.707	1.135	.0116	5859
	1.50	30.59	2.269	`3433	.0360	21.88	3399.0	2.8773	1.472	1.140	.0100	5886
	1.60	31.98	2.127	3363	.0315	21.27	3551.6	2.9160	1.233	1.149	.0080	5888
	1.80	34.59	1.891	3160	.0215	20.09	3839.4	2.9826	.880	1.176	.0040	5818
	2.00	37.01	1.702	2900	.0123	18.99	4105.8	3.0351	.696	1.207	.0014	5674

aThe base used for enthalpy is given in ref. 5.

bParameter includes energy due to change in composition.

TABLE III. - THEORETICAL ROCKET PERFORMANCE AT ASSIGNED TEMPERATURES FOR JP-4 FUEL AND LIQUID OXYGEN

[Equilibrium composition during isentropic expansion or compression from combustion conditions.]

(a) Combustion-chamber pressure, 600 pounds per square inch absolute

	T					,					
Temper-	Pressure,	Enthalpy,	Molecular weight,	Partial deriva-	Isentropic	Specific	Abso-	Thermal	Area	Thrust	Specific
T.	P, lb/sq in.	h, cal/g	Merkir,	tive,	exponent,	heat,	lute vis-	conduc- tivity,	ratio,	coeffi-	impulse, I,
T,	abs				(3 In P)	o _p ,	COS→	k,		C _p	1b-sec
				((o in i)	(0 In p),	(<u>g)(ok)</u>	ity,	cal/(5ec) (cm)(°K)		1 1	_1ь
	}			1		10/1 -/	migro-	(cm)(-k)			ļ
	İ						poises		!		ĺ
—	<u> </u>		L	20.00			<u> </u>				
					= 3.403; per						
3600	1898.3 576.23	2878.7 2520.2	24.649 25.513	3198 3333	1.1389	1.7578	997 921	0.00185	2.312	0 100	
3200	1 134.29	2142.8	26.547	3397	1.1158	1.8910	843	.00167	1.449	0.180	31.4
2800	22.297	1749.4	27.769	3307	1.1057	1.8293	763	.00146	5.146	1.493	260.9
8400	2.497	1352.6	29.139	2870	1.0992	1.5619	680	.00118	30.570	1.833	320.3
2000	.211	990.5	30.482	1753	1.1055	1.0305	596	.00066	258.02	2.096	366.2
1600	.033	728.9	31.029	0376	1.1498	.5328	504	.00031	1718.1	2.267	396.0
800	.001	444,4	31.304	0000	1,8171	.3571	339	.00015	33282.	8.439	486.8
<u> </u>					= 2.836; per						i
4000	1755.7	3244.6	23.302	3133	1.1413	1.7758	981	0.00185			
3600	548.54 135.33	2874.4 2489.9	24.095 25.017	3206 3139	1.1302	1.8191	907 831	.00174	1.686	0.268 1.050	48.3
8800	25.883	2104.0	26.026	2687	1.1150	1.4847	753	.00119	4.545	1.468	863.4
3400	4.562	1764.7	26.866	1390	1.1324	.8586	675	.00064	17.934	1.746	314.5
2000	1.102	1534.3	27.150	~.0160	1.1820	.4929	597	.00035	55.823	1.915	344.9
1600	.276	1352.3	27.183	0009	1.1995	.4405	514	.00027	167.59	2.038	367.1
1200	-049	1177.6	27.184	0000	1.3007	.4373	431	.00033	664.14	2.150	387.3
900	.009	1044.5	27.184	0000	1.1924	. 4530	342	.00019	2757.3	8.231	401.9
100	14 8 0 8 1				= 2.618; parc			·			
3600	1787.0 578.52	3432.6 3063.0	22.646	3015	1.1438	1.7138		0.00177			
3200	153.69	8686.9	24.194	2759	1.1337	1.6977 1.5375	901 827	.00162	2.431 1.335	0.171	31.2
2800	35.125	2329.3	84.985	1949	1.1295	1.1272	751	.00092	3.570	1.398	254.6
2400	8.693	2043.0	25.478	0654	1.1610	.6547	676	.00050	10.305	1.645	299.5
2000	2.543	1832.7	25.617	0097	1.1959	.4840	599	.00035	26.609	1.805	328.7
1600	.676	1648.3	25.637	0007	1.2075	.4517	511	.00028	74.711	1.934	358.8
900	.127	1467.8	25.638 25.638	0000	1.2050	.4557	418 343	.00023	281.81	3.053	272.9
300	.082	1381.3						.00020	1154.1	2.141	389.8
1-22					= 2.431; perc						
3600	642.97	3261.7	22.655 23.338	2714 2265	1.1391	1.5265	897	0.00147	1.197		
2800	52.357	2578.4	23.912	1320	1.1482	.8869	751	:00074	2.635	0.934	171.5
2400	15.960	2323.1	84.212	0410	1.1806	.5898	678	00047	6.217	1.539	288.4
8000	5.113	2118.2	24.298	0070	1.2066	.4852	601	.00035	14.567	1.703	318.4
1600	1.425	1930.8		0005	1.2154	.4617	517	.00089	38.681	1.839	337.5
1200	.279 .050	1745.5		0000	1.2104	.4702	483	.00024	138.72	1.965	360.6
300	.030	1599.7		0000	1.1917	.5082	345	.00021	551.39	2.059	377.8
					= 2.127; perc						
3600	906.91 328.53	3687.1		2007	1.1554	1.1842	893	0.00116			
2800	118.890	3089.4	21.653	1407	1.1613	.9387 .7005	823 753	.00087	1.001	0.689	126.7
2400	44.037	2856.5	22.104	0238	1.8062	.5547	680	.00045	2.827	1.337	245.9
2000	15.629	2652.2	22.151	0043	1.2248	.4936	603	.00037	5.883	1.581	279.8
1800	8.837	2555.1		0014	1.2294	.4822	562	.00033	8.804	1.601	894.5
1600	4.710	2459.3	22.159	0003	1.2312	.4780	517	.00030	14.082	1.676	308.3
1400	2.310 1.005	2363.6	32.160 22.160	0001	1.2297	4801	474	.00028	33.985	1.748	321.5
1000	1.003	2166.4	22.160	-:0000	1.8104	.4907 .5159	374	.00026	45.468 101.28	1.818	334.4
					1.891; perc					_,,,,	
3600	1413.2	4138.5		1437	1.1748	0.9704		5.00098			
3200	593.32	3835.8	20.170	0941	1.1847	.7954	824	.00076		0.097	17.7
2800	245.81	3576.7	20.3571	0468	1.2033	.6452	754	.00058	1.059	.834	151.2
2400	100.02 37.910	3349.2		0160 0031	1.2249	.5488	682	.00046	1.686	1.139	806.5
1 1		1	1	I	· I				F		846.3
1600	12.164	2944.6		0008	1.2466	.4906	521	.00038	6.585	1.539	279.0
1200	2.808 .594	2746.9 2590.2		0000	1.2388	.5032	428 350	.00027	19.363	1.701	308.3
 		-370+4		·				. 00084	64.211	1.819	289.7
1800	007 40	#004 A !			1.134; perc			***			
1800	883.10 506.25	5274.3	15.429	0384	1.2932	0.6508	567 C	.00046	1.309	0.382	
1400	247.22	5016.7	15.527	1491	1.2385	1.0099	484	.00056	1.050	. 8 4 1	55.5
	82.492	4840.6	10.278	2808	1.1771	1.8389	443	.00088	1.834	1.197	174.0
	40 404										
1000	18.191	4593.8	17.350	4051	1.1270	3.5681	407	.00151	7.431	1.566	827.5
	18.191	4593.8	· 1	4051	1.1870	4.4190	389	.00151			854.8

TABLE III. - Concluded. THEORETICAL ROCKET PERFORMANCE AT ASSIGNED TEMPERATURES FOR JP-4 FUEL AND LIQUID OXYGEN

[Equilibrium composition during isentropic expansion or compression from combustion conditions.]

(b) Combustion-chamber pressure, 300 pounds per square inch absolute

Temper- ature, T,	Pressure, P, 1b/sq in. abs	Enthalpy, h, cai/g	Holecular weight, M	Partiel derivative, (a ln M)	Isentropic exponent, \(\frac{\delta \ln P}{\delta \ln P} \)_{\delta}	Specific heat, cp, cal (g)(ok)	Absolute vis- cos- ity, micro- poises	Thermal conduc- tivity, k, cal/(sec) (cm)(°K)	Area ratio,	Thrust coeffi- cient, Cp	Specific impulse, I, lb-sec lb
			r	= 1.0; o/f	3.403; perce	ent fuel =	22.71				
3600 3800 2800 8600 8400	411.50 93.808 14.956 5.088 1.547	8620.4 8389.9 1820.8 1618.1 1404.2	25.006 26.072 27.345 28.057 28.804	3494 3579 3526 3397 3150	1.1272 1.1153 1.1044 1.0999 1.0966	1.9919 2.0566 2.0155 1.9216 1.7550	927 847 766 725 682	0.00193 .00188 .00161 .00146 .00185	1.209 4.123 9.644 25.752	0.936 1.436 1.633 1.808	162.0 248.7 282.9 313.2
2200 2000 1800	.427 .112 .031	1208.6 1016.4 857.5	29.553 30.239 30.767	2722 2062 1283	1.0958	1.5029 1.1757 .8327	640 597 554	.00102 .00075 .00051	76.793 242.59 736.55	1.964 2.097 2.204	363.1
3600	386.48	2976.7	23.630	= 1.2; o/f ·	2.836; perce	nt fuel = 1.9913		0.00191			
3200 3000 2600 2600	98.217 40.364 16.420 6.328	2575.8 2371.2 2167.4 1970.4	24.598 25.134 25.692 86.240	3386 3284 3056 2599	1.1187 1.1148 1.1112 1.1116	1.9710 1.8919 1.7317 1.4551	834 795 755 716	.00173 .00158 .00138 .00111	1.218 2.000 3.816 7.993	0.948 1.203 1.415 1.594	214.7 252.7 284.6
2400 2200 2000 1800 1600	3.451 1.058 .518 .258 .126	1792.3 1648.4 1537.3 1442.0 1352.4	26.711 27.009 27.133 27.171 27.182	1785 0810 0847 0064 0014	1.1206 1.1456 1.1753 1.1919 1.1990	1.0620 .6975 .5191 .4608 .4419	676 637 597 556 509	.00078 .00050 .00036 .00031	17.147 34.054 60.727 104.66 185.65	1.740 1.849 1.929 1.996 2.056	330.8 344.5 356.3
			r	= 1.3; o/f	2.618; perce				,		
3600 3200 2800 2400 2200	399.84 101.18 20.851 4.404 2.853	3162.8 8765.8 2378.5 2057.8 1937.5	22.953 23.832 24.744 25.402 25.546	3846 3090 8419 0959 0405	1.1384 1.1834 1.1219 1.1484 1.1789	1.8925 1.7702 1.3671 .7576 .5788	753	0.00181 .00156 .00111 .00057	1.164 3.168 10.361 17.454	1.741	246.0 397.4 314.5
2000 1800 1600 1200	1.198 .630 .315 .059	1834.5 1739.7 1648.4 1467.8	25.630 25.637 25.638	0009	1.1919 1.2024 1.2071 1.2049	.4978 .4650 .4527 .4557	599 558 511 418	.00036 .00031 .00028 .00023	28.501 47.007 80.848 305.17	1.819 1.887 1.950 2.070	340.8
					2.451; perce			(8 884-22			
3600 3800 2800 2400 2000	438.87 118.87 89.320 7.971 8.446	3354.7 3970.2 2613.7 2332.5 2119.5	22.278 23.045 23.751 24.166 34.293	2670 1753 0592	1.1366 1.1307 1.1376 1.1705 1.2036	1.7397 1.5171 1.0658 .6475 .4947	827	0.00166 .00134 .00088 .00050	1.086 2.454 6.316 15.355	0.841 1.282 1.543 1.715	233.4
1800 1600 1400 1800	1.322 .676 .318 .132	2023.9 1930.9 1838.6 1745.5	34.307 24.312 24.313 24.313	0001	1.2116 1.2151 1.2149 1.2104	.4714 .4625 .4621 .4702	517 471 420	.00032 .00039 .00037 .00034	84.529 41.059 73.793 147.33	1.786 1.853 1.918 1.980	337.5
3600	487.38	3554.9	21.607	= 1.5; o/f	2.269; perce	ent fuel = 1.5605		0.00150		I	
3200 2800 8400 2000	147.83 43.040 13.644 4.498	3187.6 2861.0 2601.9 2392.1	22.258 82.780 23.061 83.149	2810 1870 0423	1.1407 1.1545 1.1866 1.2136	1.2820 .8860 .6041 .4963	825 753 679	.00115 .00075 .00048 .00036	1.017 1.871 4.106 9.202	0.741 1.183 1.440 1.618	816.4 263.4
1800 1600 1400 1200 900	2.486 1.399 .624 .365 .050	2295.5 2200.9 2106.8 2011.6 1861.7	23.160 23.164 23.165 23.165 23.165	0006 0001 0000	1.2203 1.2231 1.2222 1.2167 1.1956	.4779 .4710 .4719 .4817	518 473 425	.00033 .00030 .00037 .00025	14.305 23.352 40.935 79.651 304.18	1.694 1.765 1.833 1.899 1.999	328.9 335.3 347.4
7.600	860 97	3761.9	80.948	= 1.6; o/f	2.127; pero	ent fuel =		0.00135			T
3600 3200 2800 2400 2000	569.87 190.72 63.150 22.043 7.647	3413.4 3109.5 2862.0 2653.0	31.477 21.876 22.081 23.148	1799 0965 0327	1.1531 1.1696 1.1993 1.3287	1.1045 .7889 .5842 .4996	625 753 680	.00101	1.010 1.465 2.653 5.985	11.339	196.1
1800 1600 1400 1200	4.309 2.394 1.125 .489 .095	2555.3 2459.3 2363.6 2266.7 2113.9	83.156 23.159 82.160 32.160 33.160	0004 0001 0000	1.2386 1.2309 1.2297 1.2236 1,3013	.4842 .4785 .4802 .4907	519 474 426	.00034 .00031 .00028 .00026	9.076 14.471 24.759 46.938 171.22	4 405	308.3 321.5 334.4
<u> </u>	700	7060 5			= 1.891; perc			10.00005			T=
3800 8800 8400 2000 1800	329.31 128.46 50.322 18.767 10.924	3868.7 3590.7 3353.8 3148.9 3043.1	20.307	0823 0044 0014	1.1939 1.2193 1.2390 1.2443	0.9029 .7008 .5690 .5079 .4957	755 682 605 564	0.00085 .00063 .00047 .00038	1.047	1.138	305.7 246.2 263.2
1600 1400 1300 900	6.009 3.056 1.387 .394	2944.6 2846.3 2746.9 2590.5		0001 0000 0017	1.8464 1.8451 1.2388 1.2158 = 1.702; perc	.4910 .4928 .5032 .5489	476 428 350	.00032 .00029 .00027 .00023	10.913	1.543 1.626 1.705 1.823	279.0 293.9 308.3 329.6
3200	564.28	4308.2	18.852	0908	1 1942	0.8085	824	0.00078		T	
2800 8400 2300 2000	242.31 101.88 64.740 40.098	4048.2 3807.6 3699.2 3594.8	19.023 19.110 19.130 19.140	0468 0165 0079 0038	1.2128 1.2357 1.2458 1.2536	.6643 .5659 .5359 .5169	756 684 645 606	.00060 .00048 .00043 .00039	1.817	1.066 1.196	161.1 188.1 310.9
1600 1400 1200 900	13.512 7.093 3.348 .765	3398.3 3898.1 3191.0 3031.7	19.145 19.145 19.145 19.166	0001	1.2613 1.2607 1.2552 1.2214	.5012 .5020 .5106 .6071	478 428	.00033 .00030 .00027 .00026	3.650 5.698 9.758 29.541	1.413 1.509 1.600 1.733	249.2 266.1 282.1 305.7

404

TABLE IV. - THEORETICAL ROCKET PERFORMANCE AT ASSIGNED PRESSURE RATIOS FROM 1 TO 8 FOR JP-4 FUEL AND LIQUID OXYGEN

[Equilibrium composition during isentropic expansion.]

(a) Combustion-chamber pressure, 600 pounds per square inch absolute

Pressure ratio, P _Q /P	Pressure, P, lb/sq in. abs	Tem- per- ature,	Temperature exponent, "T' (a in T) (a in Pa) Po	Enthalpy, h, cal/g	Molec- ular weight, N	Partial derivative,	Isen- tropic expo- nent, \(\frac{\partial \text{in F}}{\partial \text{in P}}\)	Spe- cific heat, cp, cal (g)(°K)	Area ratio,	Area-ratio exponent, ne, (a in F ₀)P ₀	Thrust coeffi- cient, Cp	Specific- impulse exponent, n _I , (a in I) (a in P _o) P _o	Spe- cific im- pulse, I, lb-sec
				r	= 1.0; q/	f = 3.403;	percent	fuel = 22	.71	÷ •			
1.000 1.020 1.040 1.200 1.437	600.00 588.24 576.92 500.00 417.60	3612 3606 3600 3557 3504	0.0426 .0425 .0424 .0418 .0410	2531.6 2526.0 2520.5 2480.7 2431.5	25.48 25.50 25.51 25.62 25.74	333 334 333 335 336	1.127	1.845 1.846 1.847 1.855 1.863	3.242 2.345 1.840 1.037	.0013 .0009 .0004	0.126 .177 .381 .534	0.0141 .0141 .0140 .0138	22.0 31.0 66.5 93.3
81.724 2.155 4.000 8.000	348.00 278.40 150.00 75.00	3452 3390 3228 3061	.0402 .0393 .0367 .0339	2382.7 2324.3 2169.4 2007.3	26.47	339	1.123 1.121 1.117 1.112	1.871 1.879 1.890 1.886	1.000 1.034 1.359 2.105	0006 0081 0039	.651 .769 1.016 1.222	.0135	113.8 134.3 177.5 213.6
				r	= 1.2; o/	f = 2.836;	percent	fuel = 26			,		
1.000 1.020 1.040 1.200 1.439	600.00 588.24 576.92 500.00 417.07	3628 3622 3616 3571 3516	0.0488 .0481 .0420 .0413 .0404	2901.1 2895.2 2889.4 2847.0 2794.3	24.03 24.05 24.06 24.16 24.28	321 320 321 321	1.188	1.819	3.845 2.347 1.241 1.037	.000	0.136 .177 .381 .535	0.0140 .0140 .0139 .0137	29.7 32.0 68.6 96.4
81.726 2.158 4.000 8.000	347.56 878.05 150.00 75.00	3461 3397 3287 3051	.0395 .0384 .0354 .0314	2344.5	85.39	320 316 305	1.117	1.030	1.000 1.034 1.357 2.096	0007	.653 .770 1.016 1.223	.0133	117.5 138.6 183.0 220.1
	600 00	7410	0.400	3074.1	= 1.3; o/ 23.36	f = 2.618;	1.134	1.700	.64	·	I		
1.000 1.020 1.040 1.200 1.441	600.00 588.24 576.92 500.00 416.51	3612 3605 3599 3553 3495	0.0408 .0407 .0406 .0397 .0386	3068.1 3068.1 3068.1 3018.7 2964.3	23.37 23.38 23.47	l 301	1.134	1.699 1.698 1.688 1.674	3.249 2.350 1.242 1.037	0.0018 .0017 .0018 .0005	0.126 .178 .381 .537	0.0136 .0136 .0135 .0133	83.0 38.3 69.5 97.7
a1.729 3.161 4.000 8.000	347.09 277.68 150.00 75.00	3439 3371 3193 3003	.0375 .0362 .0324 .0269	2911.2 2847.7 2680.5 2505.7	23.84 24.21 24.60	296 291 276 244 T = 2.451;	1.129 1.126 1.125			0000 0007 0031 0063	.654 .771 1.016 1.221	·0128	119.1 140.4 185.1 233.4
1.000	600.00	3576	0.0382	3239.9	22.70	271	1.139	1.520					
1.020 1.040 1.200 1.444	588.24 576.92 500.00 415.57	3569 3563 3514 3453	.0356	3233.7 3227.7 3183.5 3127.4	22.71 22.72 28.80 22.91	271 268 864	1:137	1.497	3.254 8.353 1.243 1.036	0.0020 .0019 .0015 .0008	0 · 1 2 7 • 1 7 8 • 3 8 2 • 5 3 9	0.0189 .0189 .0187 .0185	83.2 33.7 70.1 98.9
a1.733 2.166 4.000 8.000	346.31 877.05 150.00 75.00	3393 3321 3128 2913	.0343 .0326 .0274 .0200	3073.4 3008.9 2840.2 2664.0	23.13 23.45 23.77	258 248 212 161 f = 2.127	1.143	1.383 1.216 .999	1.000 1.033 1.348 2.064	0009	.656 .773 1.016 1.220	.0128 .0119 .0111 .0100	180.4 141.8 186.5 223.9
1.000	600.00	3436	0.0290				1.156	1.089					
1.020 1.040 1.200 1.457	588.84 576.92 500.00 411.91	3428 3480 3364 3288	.0288 .0286 .0271 .0252	3551.6 3545.3 3539.2 3494.2 3434.7	21.42 21.43 21.49 21.57	-:157	1.156 1.156 1.157 1.159	1.084 1.079 1.044 .996	3.875 8.368 1.849 1.035	0.0033 .0033 .0024 .0012	0 · 1 2 7 · 1 7 9 · 3 8 4 · 5 4 8	k 1	83.4 38.9 70.7 100.9
a1.748 8.185 4.000 8.000	343.27 274.61 150.00 75.00	3217 3130 2892 2615	.0233 .0210 .0135 .0051	3380.1 3315.2 3149.3 2976.7	21.64 21.72 21.90 22.04	144 128 086 045 f = 1.891;	1.161 1.164 1.175 1.192	.894 .750 .622	1.000 1.032 1.327 1.994	.0001 0015 0058 0106	.664 .780 1.017 1.216	.0092 .0088 .0075 .0061	133.8 143.4 187.1 233.7
1.000	600.00	3205	0.0187	3839.4	20.17	095	1.184	0.798					
1.020 1.040 1.200 1.475	588.24 576.92 500.00 406.86	3196 3187 3188 3088	.0185 .0183 .0167 .0144	3833.1 3827.0 3782.6 3720.4	20 · 17 20 · 18 20 · 21 20 · 26	093 093 083 078	1.185 1.185 1.188 1.192	.794 .790 .763 .726	3.307 2.390 1.258 1.033	0.0036 .0035 .0035	0 · 1 2 9 • 1 8 1 • 3 8 8 • 5 6 1	0.0067 .0067 .0063 .0059	33.3 32.8 70.3 101.8
a1.770 2.212 4.000 8.000	339.05 271.24 150.00 75.00	2946 2845 2578 2277	.0124 .0098 .0042 0004		~ 7 7	010	*	.660 .585 .530	1.000 1.031 1.304 1.931	0000 0013 0044 0069	.676 .790 1.019 1.813	.0051 .0040	132.5 143.8 184.7 219.9
1.000	600.00	1657	0.0264	E100 4	15.40	r = 1.134;	4 005	0.701					
1.030 1.040 1.300 1.504	588.24 576.98 500.00 399.00	1650 1644 1596 1536	.0267	5184.2 5180.1 5150.4 5105.4	15.50 15.50 15.53 15.59	061 063 075 096	1.285 1.284 1.278 1.267	.705 .709 .741 .807	3.381 2.442 1.276 1.031	0036	0 · 1 3 2 · 1 8 5 · 3 9 6 · 5 8 5	0 • 0064 • 0064 • 0068 • 0074	19.1 86.9 57.5 85.0
a1.805 2.256 4.000 8.000	338.50 266.00 150.00 75.00	1475 1418 1296 1187	.0365 .0397 .0475 .0478	5070.6 5029.7 4932.4 4826.7	15.65 15.78 15.97 16.33	115 141 210 290	1.257 1.843 1.210 1.173	.874 .973 1.341 1.923	1.000 1.030 1.294 1.950	0001 .0017 .0045 .0047	.697 .809 1.027 1.221	·0085	101.8 117.5 149.8 177.4

^{*}At throat.

TABLE IV. - Concluded. THEORETICAL ROCKET PERFORMANCE AT ASSIGNED PRESSURE RATIOS FROM 1 TO 8 FOR JP-4 FUEL AND LIQUID OXYGEN

Equilibrium composition during isentropic expansion.

(b) Combustion-chamber pressure, 300 pounds per square inch absolute

Pres- sure ratio, Po/P	Pressure, P, 1b/sq in. abs	ture,	Temper- ature exponent, n _q , (à ln T) (à ln P _Q)	Enthalpy, h, cal/g	Holec- ular weight,	Partial derivative,	Isentropic exponent, \(\frac{\partial \text{In P}}{\partial \text{In P}} \)	Spe- cific hest, cp, csl (g)(°K)	Area ratio,	Area-ratio exponent, ng, (3 in e) 3 in Pc) Pc	Thrust coeffi- cient, Cp		cific in- pulse,
				r	1.0; 0/	c = 3.403;	percent f	uel = 22.	71				
1.435	300.00 294.11 888.47 250.00 209.04	3501 3496 3456 3406	.0426 .0425 .0419	2531.6 2526.1 2520.8 2481.7 2433.8	25. 25 25. 26 25. 37	352 352 353	1.123	2.014 2.015 8.023	1.839	.0004	0. 126 . 177 . 380 . 533	0.0144 .0144 .0148 .0141	21.8 30.7 65.9 92.3
a1.728 8.153 4.000 8.000	174.19 139.35 75.00 37.50	31,46	.0404 .0395 .0369 .0342		25. 79 26. 23 26. 72	356 358 358	1.118 1.114 1.109	8.047 8.059 8.054	1.034	0000 0006 0039	.650 .768 1.016 1.223	.0139 .0137 .0132 .0187	118.6 133.0 175.9 311.7
1.000	300.00	3583	0.0485			2.836;						T	
1.030 1.040 1.800 1.437	294.11 288.47 250.00 208.79	3517 3512 3470 3418		2901.1 2895.3 2889.6 2848.1 2796.7							• 177 • 381 • 534	.0143 .0148 .0140	95.3
a1.784 8.155 4.000 8.000	173.99 139.19 75.00 37.50	3368 3307 3148 2983		r ·	• 1.3: o/	f = 2.618t	percent f	uel = 27.	64	0000 0005 0025 0044	. 769 1. 016 1. 282	· 0139 · 0136 · 0131 · 0184	137.2 181.4 218.2
1.200	300.00 294.11 288.47 250.00 208.55	3504 3499	0.0418 .0418 .0417 .0410	3074.1 3068.2 3062.3 3019.7 2966.8	23. 14 23. 15 23. 17 23. 26 23. 38	323 322 323 321 320	1.131 1.131 1.130 1.129 1.128	1.887 1.886 1.885 1.878 1.864	3.245 2.347 1.241 1.037	0.0018 .0017 .0010 .0006	0·186 ·177 ·381 ·535	0.0141 .0140 .0139 .0137	23.8 32.0 68.8 96.7
1.736 2.158 4.000 8.000	173.79 139.03 75.00 37.50	3350 3887 3121 2945	.0389 .0375 .0333 .0285	2914.6 2852.1 2687.2 2514.8	23. 49 23. 63 24. 02 24. 48	318 314 301 275 f = 2.431;	1.137 1.135 1.123 1.120	1.846 1.819 1.714 1.546	1.000 1.034 1.356 2.093	.0001 0008 0030 0057	.652 .770 1.016 1.882	·0135 ·0133 ·0126 ·0119	117.8 139.0 183.5 880.6
1.000	300.00	3481	0.0396	3839.9	28.50	299	1.135	1.707	T			(=====	[
1.020 1.040 1.200 1.441	894.11 288.47 850.00 208.14	3469 3424 3367	.0394 .0385 .0373	3129.9	22.53 22.61 22.72	298 297 294 289	1.134 1.134 1.134 1.133	1.704 1.702 1.680 1.648	3.250 2.350 1.242 1.037	0.0080 .0019 .0015 .0009	0: 126 : 178 : 381 : 537	·0135 ·0133 ·0130	23.0 38.4 69.5 97.8
81.730 3.168 4.000 8.000	173.46 138.76 75.00 37.50	13067	.0360 .0343 .0292 .0826	3076.8 3013.3 2846.4 2672.2	22.83 22.96 23.30 23.64	283 274 248 194 f = 2.269;	1.132 1.131 1.135 percent 1	1.610 1.557 1.382 1.151	1.000 1.033 1.351 8.075	.0000 0010 0040 0081	.654 .771 1.016 1.821	* 0128 * 0125 * 0117 * 0108	119.1 140.4 185.0 282.3
1.000	300.00	3433	0.0360	3300 0	31.88	- 250	1 140	1 470					[
1.030 1.040 1.300 1.446	394.11 388.47 350.00 307.48	3420 3372 3310	.0357 .0345 .0330	3398.8 3386.8 3348.7 3286.6	1000	271	14.140	1.380	11.030	.0009	0.127 178 388 541	·0125 ·0120	23.2 52.6 69.9 98.9
1.735 2.169 4.000 8.000	172.90 138.32 75.00 37.50	1 2982	.0296	3232.8 3168.7 3001.7 2827.6	22.28 22.83 22.83	217 178 116 f = 2.127;	1.140 1.141 1.146 1.158	1.389 1.862 1.064 .846	1.000 1.033 1.343 8.046	.0001 0012 0051 0103	657 774 1.016 1.819	.0117 .0114 .0103 .0091	180.2 141.5 185.9 223.0
1.000	300.00	3363	0.0315	3551.6	21-27	810	1.149	1.233					
1.020 1.040 1.800 1.453	294.11 288.47 250.00 206.53	3356 3349 3297 3229	.0312 .0299 .0281	3545.4 3539.3 3495.0 3437.1	21:44	185	1.151	1.188	1.035	.0030	0.187 179 384 545	0.0112 .0112 .0109 .0105	70.2 99.8
8.179 4.000 8.000	178.10 137.68 75.00 37.50	2863	.0240	3319.0 3153.8 2981.9	21.61 21.83 22.00	172 156 109 062 f = 1.891;	1.155 1.156 1.166 1.184	1.074 1.009 .835 .674	1.052 1.332 2.009	0000 0015 0059 0111	.777 1.017 1.217	*0103 *0098 *0085 *0071	121.0 142.3 186.1 828.7
1.000	300.00	3161	0.0215	3839.4	30.09	116	1.176	0.880	T				J
1.200	294.11 288.47 250.00 204.04	3144 3083 3997	.0700	,,,,,,	00.00	096	11.102	1 . 1 7 5	14.033	1	(*558	-0070	1 1
1.764 2.205 4.000 8.000	170.03 136.03 75.00 37.50	2824	.0145 .0121 .0059 .0000	3669.3 3606.5 3449.7 3286.3	20 · 30 20 · 39 20 · 45	081 067 038 014	1.187 1.198 1.809 1.886	.754 .711 .616 .544	1.000 1.031 1.309 1.941	.0001 0015 0051 0082	.673 .787 1.018 1.213	*0066 *0061 *0049 *0036	181.6 148.4 184.1 819.4
1.200	300.00 394.11 388.47 250.00 201.53	2891 2882 2815		4105.8 4099.8 4093.9 4051.3 3989.1	18.99 18.99 18.99 19.02 19.05	057 056 055 049 038	1.207 1.808 1.208 1.218 1.218	0.696 .693 .690 .669		0.0032 .0039 .0038 .0010	0:130 :182 :390 :571	0.0046 .0046 .0043	32.9 32.1 68.9 100.8
1.786 3.233 4.000 8.000	37.50	2526		3938.4 3878.5 3733.3						.0000 0011 0030 0039			180.7 140.7 180.0 213.7

TABLE V. - THEORETICAL ROCKET PERFORMANCE AT ASSIGNED PRESSURE RATIOS FROM 10 TO 1500 FOR JP-4 FUEL WITH LIQUID OXYGEN

Equilibrium composition during isentropic expansion.

(a) Combustion-chamber pressure, 600 pounds per square inch absolute

Pres- sure ratio, P _O /P	Pres- sure, P, 1b/sq in. abs	Ten- pera- ture,	Temper- ature exponent, nr, (3 ln T) (3 ln Pc) Pc	Enthalpy, h, cal/g	Molec- ular weight,	Partial deriva- tive, \$ ln H a ln T	Isen- tropic expo- nent, \(\frac{\delta \ln P}{\delta \ln P} \)	Spe- cific heat, cp, cal (g)(ox)	Area ratio,	Area-ratio exponent, n _e , (a in F ₀) P _a	coeffi-	Specific- impulse exponent, nr (3 ln I) 3 in Po	Spe- oific im- pulse, I, lb-sec lb
			L	·	= 1.0; q	/r = 3.403	; percent	fuel = 2	2.71				<u></u>
10 15 20 30 40	60.00 40.00 30.00 20.00 15.00	3010 3921 3861 3778 8738	0.0330 .0314 .0303 .0287 .0276	1957.5 1869.8 1809.7 1727.7 1671.4	27.10 27.38 27.57 27.84 28.03	339 336 334 329 326	1.111 1.109 1.107 1.105 1.104	1.880 1.864 1.849 1.821 1.796	2.46 3.30 4.10 5.60 7.03	0054	1.879 1.373 1.434 1.514 1.566	.0119	283.5 340.0 250.6 264.5 373.6
60 80 100 150 200	10.00 7.50 6.00 4.00 3.00	2645 3592 2552 2480 2431	.0259 .0247 .0238 .0221 .0209	1594.6 1541.9 1501.9 1431.4 1382.9	28.89 28.47 28.61 28.86 29.03	320 315 310 301 298	1.102 1.101 1.101 1.100 1.099	1.755 1.783 1.693 1.636 1.592	9.78 12.28 14.74 30.63 26.21	0131	1.634 1.679 1.713 1.771 1.809	.0103	285.5 893.5 299.3 309.4 316.1
300 400 600 800 1000 1500	2.00 1.50 1.00 .75 .60	2316 2316 2250 2203 2168 2103	.0190 .0173 .0150 .0133 .0120		30.13	239 230 209	1.101	1.178	36.86 47.01 66.38 84.87 102.75 145.56	0157 0167 0176	1.861 1.895 1.942 1.973 1.996 2.037	.0098	325.1 331.2 339.3 344.7 348.8 355.8
						/f = 2.836							
10 15 80 30 40	60.00 40.00 30.00 20.00	2996 2900 2634 2742 2677	0.0301 .0279 .0264 .0237 .0213	2291.8 2199.2 2135.8 2049.6 1990.6	25.53 25.77 25.94 26.17 26.33	300 288 275 251 230	1.116 1.115 1.115 1.115 1.117	1.661 1.585 1.521 1.400 1.298	3.45 3.28 4.06 5.54 6.94	0053 0067 0079 0099 0116	1.278 1.372 1.433 1.511 1.563	.0115	230.3 247.1 258.1 272.2 281.5
80 100 150 200	10.00 7.50 6.00 4.00 3.00	2586 2520 2467 3367 2291	.0175 .0143 .0114 .0064 .0040	1910.4 1855.5 1814.2 1741.6 1692.2	26.53 26.67 26.76 26.91 26.99	~.153	1.180 1.184 1.127 1.137 1.147	1.148 1.040 .957 .816 .728	9.56 12.03 14.39 19.93 25.12	0182	1.630 1.675 1.707 1.763 1.801	.0096	293.6 301.6 307.5 317.6 324.3
300 400 600 800 1000	1.00 .75	2177 2093 1971 1884 1818 1702	0019 0081 0180 0223 0241 0842	1625.6 1580.5 1520.2 1479.6 1449.4 1397.3	27.12 27.16 27.17 27.18	003	1.162 1.178 1.184 1.189 1.193 1.197	.618 .551 .482 .458 .447	34.74 43.70 60.89 75.72 90.36 124.68	0333	1.850 1.882 1.924 1.953 1.973	.0075	333.8 339.0 346.6 351.7 355.4
						r = 2.618	; percent		.64				
10 15 20 30 40	60.00 40.00 30.00 20.00	2943 2835 2757 2646 2564	0.0251 .0216 .0194 .0156 .0117	2452.3 2358.5 8294.5 2207.9 2149.0	24.72 84.92 25.06 25.23 25.33	179	1.126 1.128 1.132 1.140 1.147	1.295 1.169 1.070 .924 .824	2.43 3.25 4.01 5.44 6.78	0095 0116 0151	1.277 1.370 1.430 1.508 1.558	.0106	232.6 249.5 260.5 274.5 283.7
60 80 100 150 200	7.50 6.00 4.00	2443 2353 2282 2148 2054	.0037 0019 0050 0098 0184	2069.5 2015.7 1975.4 1905.6 1858.7	25.45 25.51 25.54 25.59 25.61	043	1.157 1.165 1.172 1.184 1.192	.694 .624 .584 .536 .497	9.25 11.55 13.71 18.75 23.42	0246 0266 0395	1.624 1.666 1.698 1.751 1.786	.0000	295.7 303.5 309.2 318.9 325.2
300 400 600 800 1000	1.50 1.00 .75	1923 1833 1711 1629 1568 1462	0157 0173 0177 0170 0168 0172	1796.2 1754.3 1698.6 1661.4 1633.8 1586.2	25.63 25.64 25.64 25.64 25.64	003	1.200 1.203 1.206 1.207 1.208 1.208	.470 .459 .458 .451 .451	32.05 40.07 54.96 68.83 82.00	0329 0331 0329 0327	1.831 1.861 1.900 1.925 1.944	.0052	333.5 338.9 346.0 350.6 354.0
L					= 1.4; Q	f = 2.431	percent						
10 15 20 30 40	40.00 30.00 20.00	2843 2713 2618 2479 2378	0.0172 .0126 .0091 .0027	2610.4 2516.9 2453.5 2368.4 2311.0	23.86 24.00 24.08 24.17 24.22	109 085 055	1.146 1.155 1.162 1.174 1.188	0.929 .809 .731 .635 .580	2.40 3.18 3.91 5.26 6.51	0138 0164 0199	1.275 1.367 1.426 1.501 1.549	.0089	234 · 0 250 · 8 261 · 6 275 · 4 284 · 3
60 80 100 150 200	7.50 6.00 4.00	2234 2133 2055 1918 1824	0070 0091 0101 0118 0127	2234.3 2182.9 2144.7 2078.9 2034.9	24.26 24.28 24.29 24.30 24.31	014	1.193 1.199 1.204 1.210 1.218	.531 .507 .493 .475	8.80 10.91 12.91 17.54 21.84	0259 0267 0273	1.612 1.653 1.682 1.732 1.765	.0058 .0054	895.8 303.3 308.7 317.8 323.8
300 400 600 800 1000 1500	1.50 1.00 .75	1699 1615 1503 1428 1373 1278	- 01201	1976.5 1937.6 1885.9 1851.5 1825.9 1782.0	24.31 24.31 24.31 24.31 24.31 24.31	001	1.215 1.215 1.215 1.215 1.215 1.215	.462 .462 .460 .461 .462	29.79 37.18 50.90 63.69 75.83 104.30	0270 0269 0866 0864	1.807 1.835 1.871 1.894 1.912 1.941	.0039 .0036 .0032 .0030 .0038	331 · 6 336 · 6 343 · 2 347 · 6 350 · 8 356 · 2

1

NACA RM E56D23 27

TABLE V. - Continued. THEORETICAL ROCKET PERFORMANCE AT ASSIGNED PRESSURE RATIOS FROM 10 TO 1500 FOR JP-4 FUEL WITH LIQUID OXYGEN

Equilibrium composition during isentropic expansion.

(a) Concluded. Combustion-chamber pressure, 600 pounds per square inch absolute

Pres- sure ratio, Po/P	Pres- sure, P, 1b/sq in. abs	Tem- pera- ture, T,	Temper- ature exponent, n _T ,	Enthalpy, h, cal/g	Holec- ular weight,	Partial derivative,	Isen- tropic expo- nent, \(\gamma\),	Spe- cific heat, cp, cal	Area ratio,	Area-ratio exponent, n _s ,	coeffi- cient, Cp	Specific- impulse exponent, n _I , /a ln I	Spe- cific im- pulse, I, lb-sec
			(a in T _c) _{P_c}		= 1.6: 6	√r = 2.127	a in p/s	(g)(°K)	.98	- 		(a in i Po Po	1b
	T					, 							
10 15 20 30 40	60.00 40.00 30.00 20.00	2525 2362 2248 2092 1985	0048	2925.0 2835.9 2776.4 2697.4 2644.8	22.07 22.11 82.13 22.15 22.15	020 013 007	1.198 1.208 1.214 1.231 1.825	0.591 .546 .584 .508 .492	3.30 3.02 3.68 4.88 6.00	0118 0139 0149 0158 0158	1.269 1.357 1.412 1.482 1.527	.0038	233.5 249.5 859.7 272.6 280.9
60 80 100 150 200	10.00 7.50 6.00 4.00 3.00	1842 1746 1674 1558 1470	0061 0063 0065 0066	2575.3 2529.0 2494.8 2436.2 2397.2	32.16 32.16 22.16 22.16 22.16	001 001 000	1.229 1.230 1.231 1.231 1.231	.484 .480 .479 .478	8.04 9.93 11.71 15.85 19.68	0161 0160 0158 0157 0155	1.585 1.632 1.649 1.694 1.723	.0027 .0025 .0022	891.5 298.3 303.2 311.5 316.9
300 400 600 800 1000 1500	2.00 1.50 1.00 .75 .60	1363 1292 1199 1138 1093 1018	0063	2345.7 2311.5 2866.8 2236.1 2213.8 8175.4	22.16 22.16 22.16 22.16 22.16	000 000 000	1.239 1.337 1.224 1.220 1.218 1.212	.481 .484 .491 .497 .502	36.77 33.37 45.62 57.07 67.96 93.56	0153 0150 0149 0146 0145	1.761 1.786 1.818 1.839 1.855	.0018 .0016 .0015 .0014 .0013	323.9 528.5 334.4 538.3 341.2 346.0
						r = 1.891						.0012	340.0
10 15 20 30 40	60.00 40.00 30.00 30.00 15.00	2184 2021 1911 1765 1668	0037	3235.4 3152.8 3097.9 3025.7 2977.8	20.47 20.48 20.48 20.48 20.48	003 003 001	1.234 1.240 1.243 1.246 1.246	0.519 .505 .498 .493 .491	2.23 2.89 3.50 4.63 5.67	0071 0076 0076 0076 0077	1.265 1.348 1.401 1.468 1.511	0.0026 .0022 .0019 .0017 .0015	229.2 244.4 254.0 266.1 273.8
60 80 100 150 200	10.00 7.50 6.00 4.00 3.00	1539 1454 1392 1285 1215	0035	2914.7 2873.0 2842.2 2789.6 2754.7	20.48 20.48 20.49 20.49 20.49	000 000	1.247 1.246 1.245 1.242 1.242	.490 .491 .492 .497	7.58 9.34 11.00 14.85 18.42	0075 0073 0073 0071 0071	1.565 1.600 1.625 1.667	.0011 .0011 .0009	283.6 290.0 294.6 302.2 307.2
300 400 600 800 1000	2.00 1.50 1.00 .75 .60	1124 1065 988 938 902 841	0017 0012 0010	2708.6 2678.0 2637.6 2610.8 2591.1 2557.3	20.48 20.48 20.48 20.49 20.49 20.51	008 004 005		.513 .521 .556 .550 .561	25.04 31.20 42.68 53.43 63.68 87.88	0067 0063 0058 0055 0053	1.730 1.754 1.784 1.804 1.818	.0006	313.7 317.9 323.4 327.0 329.6 334.0
1200	<u> </u>					/f = 1.134				0040	1.045	.0003	334.0
10 15 20 30 40	60.00 40.00 30.00 20.00 15.00	1158 1110 1080 1043 1017	.0469 .0463 .0453	4795.0 4739.9 4702.5 4652.1 4617.8	16.45 16.68 16.84 17.07 17.23	310 341 360 383	1.165	2.125 2.501 2.770 3.142 3.395	2.26 3.01 3.71 5.04 6.30	0.0044 .0033 .0025 .0012 .0004	1.273 1.360 1.415 1.487 1.534	.0113 .0114 .0115	185.0 197.5 205.6 216.0 222.8
60 80 100 150 200	10.00 7.50 6.00 4.00 3.00	984 963 947 920 901	.0438 .0432 .0426 .0413 .0400	4571.3 4539.6 4515.7 4473.6 4444.8	17.46 17.62 17.75 17.97 18.13	421 426 434	1.124 1.121 1.118 1.114 1.110	3.785 3.935 4.081 4.299 4.412	8.69 10.95 13.13 18.32 23.26	0007 0014 0022 0033 0044	1.595 1.635 1.665 1.717 1.751	.0115 .0115 .0114	231.7 237.6 241.9 249.4 254.4
300	3.00	877	.0376	4405.5	18.35	438	1.105	4.502	33.69	0059	1.796	.0113	261.0

}

TABLE V. - Continued. THEORETICAL ROCKET PERFORMANCE AT ASSIGNED PRESSURE RATIOS FROM 10 TO 1500 FOR JP-4 FUEL WITH LIQUID OXYGEN

Equilibrium composition during isentropic expansion.]

(b) Combustion-chamber pressure, 300 pounds per square inch absolute

Pres- sure ratio, P/P	Pres- sure, P, 1b/sq in. abs	Tem- pera- ture,	Temper- ature, exponent, nr, (a in T) a in Pc) Po	Enthalpy, h, cal/g	Molec- ular weight,	Partial derivative,	Isen- tropic expo- nent, \(\frac{\partial \ln p}{\partial \ln p}\right)_{\partial}	Spe- cific heat, cp, cal (g)(°K)	Area ratio,	Area-ratio	coeffi- cient, Cp	Specific- impulse exponent, n_I, (\frac{\partial \ln I}{\partial \ln P_Q})_{P_Q} F	Spe- cific im- pulse, I, lb-sec lb
ŀ				1	= 1.0; c	/r = 3.40	5; percent	fuel = 23	2.71		<u></u>	l	
10	30.00	2942	0.0334	1967.3	26.87						T		I
15 20 30 40	20.00 15.00 10.00 7.50	2858 2801 2723 2670	.0319 .0308 .0393 .0382	1880.8 1821.4 1740.5 1684.8	27.15 27.34 27.61 27.80	355 353 349 345	1.108 1.106 1.104 1.103 1.101	2.032 2.016 1.987 1.963	3.47 3.31 4.11 5.63 7.06	0054 0061 0071 0078	1.379 1.374 1.435 1.515 1.567	.0188 .0120 .0117 .0115	331.6 338.0 248.6 363.4 271.4
60 80 100 150 200	5.00 3.75 3.00 2.00 1.50	2597 2547 2509 2442 2395	.0256 .0247 .0232 .0220	1608.9 1556.7 1517.1 1447.2 1399.1	28.25 28.35 28.39 28.65 28.82	331 322 314	1.097	1.920 1.885 1.856 1.796 1.750	9.78 12.36 14.85 20.78 26.43	0099 0110 0118	1.636 1.682 1.716 1.774 1.813	.0110 .0108 .0106 .0104	283.3 291.3 397.1 307.8 313.9
300 400 600 800 1000 1500	1.00 .75 .50 .37 .30	2331 2286 2224 2180 2147 2086	.0171	1333.3 1288.0 1226.1 1183.5 1151.2 1094.0	29.07 29.83 29.47 29.62 29.74 29.96	267 257	1.096 1.096 1.096 1.096 1.096	1.677 1.622 1.538 1.473 1.421	37.19 47.47 67.07 85.82 103.96 147.45	0189 0137 0149 0159 0168 0184	1.864 1.899 1.946 1.978 3.001 2.042	.0101 .0099 .0096 .0094 .0093	322.9 328.9 337.0 342.5 346.6 353.7
				r	= 1.2; 0,	/f = 2.836	; percent						
10 15 20 30 40	30.00 20.00 15.00 10.00 7.50	2932 2843 2781 2695 2635	0.0316 .0295 .0279 .0254 .0235	2301.9 2210.5 2147.9 2062.6 8004.1	25.32 25.57 25.75 25.98 26.15	323 312 302 285 270	1.113 1.118 1.111 1.111	1.848 1.774 1.710 1.602 1.513	2.46 3.29 4.09 5.58 6.99	0050 0064 0075 0090 0103	1.279 1.373 1.434 1.513 1.565	.0119 .0116 .0113	228.3 245.1 256.0 270.1 279.4
80 100 150 200	5.00 3.75 3.00 2.00 1.50	2551 2491 2444 2355 2288	.0202 .0174 .0150 .0103 .0057	1924.5 1870.0 1828.8 1756.5 1707.0	26.37 26.51 26.62 26.80 26.90	243 319 198 155 120	1.115	1.150	9.64 12.15 14.55 20.22 25.55	0123 0142 0159 0196 0231	1.633 1.678 1.711 1.768 1.805	.0103	891.5 899.5 305.5 315.6 328.3
300 400 600 800 1000 1500	1.00 .75 .50 .37 .30	2187 2109 1993 1909 1844 1728	0030 0082 -,0156 0193 0208 0214	1640.1 1594.7 1533.8 1492.7 1462.1 1409.1	27.02 27.08 27.14 27.16 27.17 27.18	024	1.148 1.160 1.176 1.184 1.189 1.195	- 468	35.49 44.73 61.87 77.78 92.86	0373	1.855 1.888 1.932 1.961 1.983 2.018	.0088 .0075 .0070	331.8 337.8 344.9 350.1 353.9
							; percent	fuel = 27.	.64				
10 15 20 30 40	30.00 20.00 15.00 10.00 7.50	2889 2790 2719 2618 2545	0.0271 .0243 .0218 .0175 .0137	2462.0 2369.2 2305.8 2219.8 2161.1	24.55 24.77 24.91 25.10 25.22	264 239 213 174 146	1.123	1.483 1.351 1.235 1.069 .953	2.44 3.27 4.04 5.50 6.86	0107	1.378 1.371 1.438 1.510 1.561	.0111 .0108 .0103	230.8 247.7 258.6 272.7 881.9
60 80 100 150 200	5.00 3.75 3.00 2.00 1.50	2436 2354 2288 2163 2071	0084	2081.8 2027.9 1987.5 1917.3 1870.0	25.36 25.45 25.50 25.56 25.59	108 080 061 034 021	1.145 1.154 1.163 1.177 1.186	.645	9.39 11.74 13.97 19.15 23.94	0234 0862 0302	1.637 1.671 1.703 1.757 1.798	.0087	893.8 301.7 307.5 317.3 383.7
300 400 600 800 1000 1500	.50 .37	1943 1853 1731 1649 1587 1480	0178	1806.8 1764.5 1708.1 1670.4 1642.5 1594.3	25.63 25.63 25.63 25.64 25.64	010 006 003 001 001	1.196 1.200 1.205 1.206 1.207 1.208	.471 .459 .454	38.80 41.08 56.28 70.48 83.96	0355 0355 0354	1.839 1.869 1.909 1.935 1.954 1.987	.0064 .0059 .0053 .0049	332.1 337.6 344.8 349.5 353.0
					= 1.4; 0/	r = 2.431	; percent :		15				
30 40	30.00 15.00 10.00	2807 2688 2601 2474 2380	.0167	2619.1 2526.1		177 138 112 077 055		1.073 .930 .833 .708 .635	3.41 3.21 3.96 5.34 6.61	0128 0154 0195	1.276 1.369 1.428 1.504 1.553	.0092	332.4 349.8 360.0 373.9 382.8
60 80 100 150 200	3.75 3.00 2.00 1.50	2243 2145 2069 1933 1840	0098	2243.6 2191.9 2153.4 2087.1 2042.7	24.28	015	1.185 1.193 1.199 1.207 1.210	.510	8.95 11.12 13.16 17.89 22.27	0271 0288 0894	1.617 1.658 1.689 1.739 1.773	.0066	394.4 303.0 507.5 516.7 522.8
300 400 600 800 1000 1500	.75 .50 .37	1714 1629 1517 1441 1385 1290	0140 0142 0143 0143	1857.6 1831.9	24.31 24.31 24.31 24.31	001	1.214 1.215 1.216 1.215 1.215 1.215	.463 .461 .462	30.38 37.91 51.90 64.92 77.29	0297 0294 0292 0290	1.816 1.844 1.881 1.905 1.923 1.953	.0041 2 .0037 3 .0034 2	30.6 35.7 42.4 46.8 50.0

TABLE V. - Concluded. THEORETICAL ROCKET PERFORMANCE AT ASSIGNED PRESSURE RATIOS FROM 10 TO 1500 FOR JP-4 FUEL WITH LIQUID OXYGEN

Equilibrium composition during isentropic expansion.

(b) Concluded. Combustion-chamber pressure, 300 pounds per square inch absolute

Pres- sure ratio, Po/P	Pres- sure, P, 1b/sq in. abs	Tem- pera- ture, Tr	Temper- ature expensent, n T (a in T 3 in P P	Enthalpy, h,, cal/g	Holec- ular weight, H	Partial derivative, tive, (3 ln M)	Isen- tropic expo- nent, \(\frac{\delta \ln P}{\delta \ln \rho} \)_s	Spe- cific heat, op, cal (g)(ok)	Area ratio,	Area-ratio exponent, n , (3 in r) Pc	coeffi-	Specific- impulse exponent, n 1, (a ln I o ln P P P	Spe- cific im- pulse, I, lb-sec lb
				r	= 1.5;	/r = 2.26	; percent	fuel = 3	0.59				
10 15 20 30 40	30.00 20.00 15.00 10.00 7.50	2678 2537 2434 2287 2182	.0069	2774.9 2683.3 2621.6 2539.2 2483.9	22.89 22.99 23.05 23.10 23.12	048	1.164 1.175 1.184 1.195 1.203	0.784 .683 .628 .561 .531	2.37 3.13 3.84 5.13 6.32	0181 0156 0182 0807 0280	1.874 1.364 1.488 1.495 1.543	.0078 .0072 .0064	233.0 249.5 260.1 273.5 282.2
60 80 100 150 200	5.00 3.75 3.00 2.00 1.50	2037 1937 1862 1731 1643	0080 0091 0097 0103 0105	2410.4 2361.4 2325.0 2262.5 2262.9	23.15 23.15 23.16 23.16 23.16	006 003 001	1.212 1.216 1.219 1.222 1.223	.502 .489 .482 .474 .472	8.51 10.53 12.43 16.84 20.93	0835 0839 0843 0841 0841	1.603 1.643 1.671 1.719 1.750	.0051 .0047 .0043 .0038	893.3 300.5 305.7 314.5 320.2
300 400 600 800 1000 1500	1.00 .75 .50 .37 .30	1525 1448 1345 1277 1227 1141	0107 0107 0106 0106 0105	2165.8 2129.2 2080.6 2048.3 2024.3	23.16 23.16 23.16 23.16 23.16 23.16	000 000 000	1.223 1.223 1.221 1.219 1.218 1.214	.470 .471 .474 .477 .480	28.50 35.54 48.60 60.78 72.36 99.52	0238	1.791 1.817 1.851 1.874 1.891	.0022	327.6 332.4 338.7 342.8 345.8 351.0
				r			7; percent					.0000	1231.0
10 15 20 30 40	30.00 20.00 15.00 10.00 7.50	2519 2362 2252 2099 1993	0.0049 0001 0027 0051 0061	2930.3 2841.2 2781.5 2702.3 2649.5	83.04 22.09 23.12 22.14 22.15	029 019 010	1.190 1.202 1.209 1.218 1.223	0.633 .572 .542 .513 .499	2.32 3.05 3.72 4.94 6.07	0153	1.871 1.359 1.415 1.486 1.531	.0058	232.5 248.6 258.9 271.8 280.2
60 80 100 150 200	5.00 3.75 3.00 2.00	1850 1754 1682 1559 1477	0071 0074 0076 0078 0078	2579.7 2533.2 2498.8 2439.9 2400.7	82.15 32.16 22.16 22.16 22.16	002 001 000	1.227 1.229 1.230 1.231 1.231	.487 .482 .480 .478 .479	5.14 10.05 11.85 16.03 19.91	0187 0186 0186 0185 0183	1.589 1.687 1.654 1.700 1.789	.0030	290.8 297.7 302.7 311.0 316.5
300 400 600 800 1000 1500	1.00 .75 .50 .37 .30	1370 1298 1205 1143 1099 1032	0078 0078 0076 0075 0074 0073	2349.0 2314.6 2369.1 2238.8 2216.4 2177.9	23.16 23.16 23.16 23.16 23.16 23.16	000 000 000	1.229 1.224 1.224 1.221 1.218 1.213	.481 .484 .490 .496 .501	27.08 33.75 46.14 57.70 68.71 94.57	0179 0177 0175 0172 0170 0167	1.768 1.793 1.826 1.847 1.863	.0021 .0020 .0018 .0016 .0015	323.5 328.1 334.1 338.0 340.9
						/f = 1.89	l; percent	fuel = 3					
10 15 20 30 40	30.00 20.00 15.00 10.00 7.50	2185 2024 1915 1769 1678		3238.0 3155.1 3100.2 3027.8 2979.7	30.48 30.48 30.48 20.48 30.48	005	1.231 1.238 1.242 1.245 1.246	0.529 .510 .502 .494 .492	3.23 2.91 3.53 4.66 5.71	0096 0097 0097	1.265 1.349 1.403 1.470 1.513	.0028	928.8 944.0 253.6 265.7 273.5
60 80 100 150 200	5.00 3.75 3.00 2.00	1543 1458 1395 1288 1218		2916.6 2874.7 2843.8 2791.1 2756.1	20.48 30.48 30.48 20.49 20.49	000 000 000	1.246 1.246 1.245 1.242 1.240	.491 .492 .493 .497	7.63 9.39 11.06 14.93 18.52	0091	1.567 1.602 1.628 1.670 1.698	.0016 .0014 .0013 .0018 .0011	283.4 289.7 294.3 302.0 307.0
300 400 600 800 1000 1500	1.00 .75 .50 .37 .30	1127 1068 990 940 903 841	0037 0036 0034 0033 0031	2710.0 2679.4 2639.0 2612.1 2592.2 2557.9	20.48 20.48 20.49 20.49 20.49	001 001 008 008	1.235 1.231 1.225 1.220 1.216 1.209	.510 .517 .530 .540 .548	25.18 31.37 42.91 53.70 63.97 88.18	0081 0080 0078	1.734 1.757 1.787 1.807 1.828 1.847	.0010 .0009 .0008 .0007 .0007	313.5 317.7 323.8 326.8 329.4 333.9
	T	400 -					2; percent						
10- 15- 20- 30- 40-	30.00 30.00 15.00 10.00	1886 1735 1635 1503 1416	0013 0016 0017 0017 0017	3536.3 3460.1 3409.8 3343.8 3300.3	19.14 19.14 19.14 19.15 19.15	001	1.857 1.860 1.861 1.261	0.510 .503 .502 .501 .508	2.17 2.81 3.40 4.48 5.48	0039 0039 0040 0039	1.868 1.344 1.395 1.460 1.501	.0011 .0010 .0008	228.6 237.0 246.1 257.5 264.8
60 80 100 150 200	5.00 3.75 3.00 2.00	1303 1228 1174 1081 1021	0004	3243.1 3205.3 3177.5 3130.1 3098.7	19.15 19.15 19.15 19.14 19.14	000 000 001 004 008	1.259 1.256 1.254 1.247 1.241	.504 .508 .513 .589	7.30 8.99 10.57 14.85 17.67	0037 0037 0035 0026 0017	1.553 1.587 1.611 1.658 1.678	.0006	274.0 279.9 284.2 291.4 296.0
300 400 600	1.00 .75 .50	945 897 838	.0031 .0047 .0063	3057.4 3029.9 2993.5	19.15 19.17 19.22	017 025 039	1.230 1.221 1.204	.578 .609 .667	24.03 29.99 41.82	.0009	1.713 1.735 1.764	.0004 .0004 .0005	302.0 306.0 311.1

4045

TABLE VI. - THEORETICAL ROCKET PERFORMANCE FOR COMPLETE EXPANSION TO EXIT PRESSURE OF 1 ATMOSPHERE FOR JP-4 FUEL AND LIQUID OXYGEN

[Equilibrium composition during isentropic expansion.]

Equiva- lence ratio, r, 4(C) + (H) 2(O)	Percent fuel by weight	weight		Exit temper- ature, Te, oK	Charac- teris- tic veloc- ity, c*, ft/sec		Area ratio, &	Specific impulse, I, lb-sec lb
	Combu	stion-ch	amber pr	essure,	600 1ъ/я	sq in. e	bs	
1.00 1.20 1.30 1.40 1.50 1.60 1.80 2.00 3.00	22.71 26.07 27.64 29.15 30.59 31.98 34.59 37.01 46.85	3.403 2.836 2.618 2.431 2.269 2.127 1.891 1.702 1.134	3612 3628 3612 3576 3518 3436 3205 2923 1657	2718 2673 2558 2371 2167 1978 1661 1409 1015	5622 5795 5859 5904 5924 5918 5832 5679 4674	1.569 1.566 1.561 1.553 1.541 1.530 1.513 1.503	7.14 7.05 6.88 6.61 6.32 6.09 5.76 5.55 6.42	274.2 282.1 284.4 284.9 283.8 281.5 274.3 265.4 223.3
1.00 1.20 1.30 1.40	22.71 26.07 27.64 29.15	3.403 2.836 2.618 2.431	3507 3523 3511 3482	2797 2776 2714 2595	5572 5745	1.440 1.438 1.436 1.432	4.18 4.15 4.10 4.02	249.3 256.8 259.3 260.7
1.50 1.60 1.80 2.00	30.59 31.98 34.59 37.01	2.269 2.127 1.891 1.702	3433 3363 3160 2900	2427 2244 1907 1628	5886 5888 5818	1.426 1.418 1.406 1.399	3.90 3.77 3.57 3.45	260.8 259.6 254.3 246.7

2,

TABLE VII. - EQUILIBRIUM COMPOSITION OF PRODUCTS OF REACTION AT ASSIGNED TEMPERATURES FOR JP-4 FUEL AND LIQUID OXYGEN

Isentropic expansion or compression from combustion conditions.

(a) Combustion-chamber pressure, 600 pounds per square inch absolute

Hole fraction [®] at temperature T, ♥X											
r = 1.0; o/f = 3.403; percent fuel = 22.71											
T, °K	4000	⁵ 3618	3600	3200	2800	2400	2000	1600	900		
ထ္ခ	0.23473	0.21540	0.21467	0.18574	0.14517	0.09229	0.03652	0.00482	0.50734		
н	.02986	.02369	.02349	.01701	.01069	.00505	.00180	.00005	2.30.37		
H ₂	.04573	-04043	.04025	.03374	.08609	.01723	.00790	.00151		į.	
H ₂ 0	.27686	.30785	.30892	.34566	.38672	.43007	.46877	.48919	.49865		
62 0H	.04324	.09681	.09603	.08726	.07187	.04842	.02055	.00303		i i	
OH	.10389	.08444	.08380	.06846	.04055	.03046	.00607	.00056		L	
T, OK	1000	D-100		= 1.2; o/f =	2800	2400	2000	. 1600	1800	900	
	4000	p2638	3600				<u> </u>				
ω ₂ α	0.29586	0.28284	0.28163	0.26076	0.23308	0.20684	0.19393	0.17833	0.14424	0.09103	
н	.03879	.03185	.03067	1 .02235	.01406	1 .00636	.00141	.00011			
H ₂	.07136	.06578	.06534	.05869		.04993	.05688	.07284	.10698	.16019	
H - 0	.28698 .03105	.31844	.32097	.35902	.39859	.43933	.43399	.41973	.38568	.33846	
Õ ₂	.04783	.04189	.04132	.03088	.01634	.00315	.00007				
ой	.08912	.07146	.07004	.04900	.02739	88800.	.00092	.00008		<u> </u>	
- 0*	4000	b3612	3600	= 1.3; o/f :	2.618; pero	ant fuel = 2	2000	1600	1200	900	
r, °x	4000										
ಜ್ಞ	0.32446	0.31453	0.31416	0.29939	0.28220	0.26944	0.25858	.26862	.31059	0.13234	
н	.04264	.14764	.03350	.02399	.01432	1.00574	.00116	80000.			
H ₂	.08777	.08240	.08223	.07682	.07374	.07736	.08865	.10909	.15109	.21551	
н ₂ о	. 28633	.31891	.31995	.35615	.38953	.40691	.40280	.38349	.34157	.27714	
o ₂	.02475	.02480	.02458	.01562	.00579	.00062	.00001				
OH	.07947	.06119	.06060	.03987	.01936	.00490	.00045	.00001			
- 0-		base 6		= 1.4; o/f :				4000			
T, °K	3600	^b 3576	3200	2800	2400	3000	1600	1200	900		
co ⁵	0.34489	0.34444	0.33630	0.32751	0.31995	0.30849	.28626	0.24044	0.17069		
. н	.12785	.12914	.15070	.17146	.00501	.00096	.00007			[
H ₂	.10270	.10247	.09966	.10074	.10824	.12157	.14436	.19023	.25998		
H ₂ 0	.31341	.31534	. 34559	.37047	.37843	.37018	.34824	.30243	.23268	(!	
02	.01165	.01124	.00535	.00133	.00011						
<u>он</u>	.05038	.04923	.03064	.01290	.00284	.00025	.00001		<u> </u>		
		76	r r		2.127; perc		1.98		,		
T, °K	3600	¹⁵ 3436	3200	2800	2400	8000	1600	1200			
œ	0.39683	0.39669	0.39624	0.39430	0.38899	0.37740	0.35488	0.30879	Ì	}	
H CO ²	.08894	.09344	.09949	.10838	.00383	:00068	.00004	.19856			
н ₂	.15384	.15462	.15681	.16359	.17355	.18735	.21034	.25647	ļ		
H ₂ 0	. 28388	.29328	.30468	.31587	.31540	.30473	.28228	.23619	1]	
o	.00499	.00343	.00172	.00031	.00002				}		
04 02	.03139	.02488	.01633	.00573	.00113	.00009			l		
	 -	- b		- 1.8; o/f							
T, CK	3600	b3205	3200	3800	2400	2000	1600	1200	900	<u> </u>	
OL4		. (75.15	0.43545		2 47042	1		0.75060	0.00016	1	
ω΄ (ω ₂	0.43331	0.43518	0.43519	0.43472	0.43042	0.42044	0.40078	0.35968	.29689	1	
H	.03447	.02080	.02064	.00952	.00296	.00050	.00003	.31024	.37862	ĺ	
H ₂							l i				
H ² O	.23949	.25101	.25111	.85566	.25293	.24317	.82351	.18241	.11987		
02 04	.00084	.00025	.00025	.00004					- -	·	
OH	04 .01805 .00857 .00847 .00273 .00051 .00004										
T, °K	2000	01657	1600	1300	900				T		
	- 2000-								l		
CRAPHITE CH.	0.00838	0.00130	0.00213	0.03684	0.14454				ĺ	ļ	
ب (a	.50682	.50434	.50303	.45006	.27290				Į	l l	
co₂	.00062	.00187	.00236	.03072	.09009					}	
. . !	.00011	.00001	.00001	.44478	.41695				Į į	ļ Į	
H ₂ 0	.48128	.00588	.00695	.02932	.06247] :	l	
							e omitted if				

*Hole fractions were computed for all 11 substances considered in this report but are omitted if less than 5x10-6. *Combustion temperature.

TABLE VII. - Concluded. EQUILIBRIUM COMPOSITION OF PRODUCTS OF REACTION AT ASSIGNED TEMPERATURES FOR JP-4 FUEL AND LIQUID OXYGEN

[Isentropic expansion or compression from combustion conditions.]

(b) Combustion-chamber pressure, 300 pounds per square inch absolute

Mole fractions at temperature T, °K										
r = 1.0; q/f = 3.403; percent fuel = 22.71 T, q 3600 53507 3200 2800 2400 2000										
	0.28541	0.82000	0.19815	0.15861	0.10488	0.04436				
ũ₂ H	.18116	.19031	.22575	.88599	.36345	.44730				
Н ₂	.03908	.04262	.03740	.02944	.02005	.00971	i			
H ₂ O	. 29149	. 29989	. 32967	.37288	.41950	.46309				
0 0 ₂	.03947	.03664	.02738	.01604	.00675	.00138				
OĤ	.08943	.08455	.06771	.04494	.02351	.00742				
T, ok	3600	b3523	3200 S	2; o/f = 2.83 2800	2400	2000	1600			
			0.26864							
æ₂	0.28836	0.28519	.19043	0.24059	0.20999	0.19390 .31249	0.17831			
H ₂	.03763	.03578	.08790	.01813	.00877 .05097	.00207	.00016			
H ₂ 0	.30201	.30933	.34204	.38516	.42381	.43320	.41969		l i	
0	.02768	.03566	.01733	.00804	.00169	.00005				
OH O ₂	.04615	.04466	.03643	.03161	.01181	.00014	.00003			
				$s_i = 2.61$						
T, ok	3600	b3511	3200	3800	2400	8000	1600	1300		
82	0.31832	0.31559	0.30401	0.28536	.23298	0.25844	0.23869	0.19676		
н	.04114	.14233 .03872 .08436	.03012	.01879	.00806	.00169	.00012	.15109		
H ²			\ \							
H ₂ 0	.30117	.30962	.01338	.37869	.40334	.40236	.38347	.34157	!	
OH O'S	.03901	.02789	.02008	.00885	.00120	.00008	.00001			
				; o/f = 2.43						
T, OK	3600	D3482	3300	2800	2400	2000	1600	1200		
8	0.34658	0.34485	0.33787	0.32782	0.31953	0.30836	0.28625	0.24044		
H CO ²	.11836	.12532	.14308	.16778	.18474	.19854	.33107	.26690		
H2	.10516	.10383	.10126	.10090	.10781	.13144	.14435	.19023		
H ₂ 0	.29570 .01597	.30638	.33166	.36276	.37632	.36991	.34823	.30243		
O ₂	.01718	.01521	.01008	.00388	.00030	0.007.7	00001			
<u> </u>	.05729	.05134	r = 1.5	.01687 ; o/f = 2.26	.00401	.00036	.00001			
T, °K	3600	b3433	3200	2800	2400	2000	1600	1300	900	
œ	0.37224	0.37083	0.36848	0.36410	0.35847	0.34705	0.38480	0.27730	0.20618	
H CO3	.10099	10840	.11887	.13481	.14659	.15994	.18312	.23005	.30117	
H ₂	.12777	.12700	.12684	.13055	.14014	.15459	.17819	.22515	.29627	
H ₂ 0	.28539	.29886	.31662	.33957	.34599	.33705	.31440	.26751	.19639	
03	.00961	.00838	.00471	.00115	.00009					
<u> </u>	.04734	.03926	.02813	.01146 s; o/f = 2.12	.00247	.00081		l		
T, OK	3600	b3363	3300	8800	2400	2000	1600	1200	900	
co	0.39489	0.39483	0.39460	0.39314	0.38851	0.37730	0.35487	0.30879	0.23894	
H CO ²	.08470	.09814	.09711	.10769	.11703	.12976	.15246	.19856	.26841	
Ha	.15330	.15414	.15553	.16327	.17893	18722	.81034	.85647	.38631	
H ₂ 0	.27055	.28642	.29617	.31334	.31448	.30461	.28227	.23619	.16634	
02	.00761	.00326	.00391	.00058	.00004					
OH	.03782	.02764	.02092	.00780 s; o/f = 1.89	li percent fi	00013		1		
T, OK	3200	b3160	2800	2400	2000	1600	1200	900		
CH ₄								0.00004		
l co	0.43311	0.43328	0.43364	0.43006	0.42038	0.40078	0.35968	.29702		
CO₂ H	.02752	.02595	.01311	.00417	.08677	.10656	.14766	.21033		
H ₂	.21661	.21747	.22611	.23652	.24896	.26912	.31025	.37281		
H ₂ O	.84643	.24753	.25383	.25248	.84311	.22350	.18241	.11980		
0-3 OH	.00044	.00038	.00007	,00072	.00006					
		L		0 = 1.70		iel = 37.01				
T, OK	3200	p3 8 0 0	2800	2400	3000	1600	1200	900		
оц.								0.00055		
က်	0.45790	.45896	0.45891	0.45629	0.44872	0.43299	0.39898	.34609		
Н	.02373	.01351	.01073	.00327	.00054	.00003	.35469	.40630	ļ	
H ₂		i				1			•	
H ₂ 0	.19433	.19729	.19758	.19539	.18775	.17198	.13797	.08589	Į	
OH OH	.00010	.00003	.00001	.00035	.00003					
		ana committed								

SHole fractions were computed for all 11 substances considered in this report but are omitted if less than 5×10⁻⁶.

(a) Chamber pressure, 600 pounds per square inch absolute.

Exponent n_{I} for use in equation $I = I_{600} \left(\frac{P_{c}}{600}\right)^{n_{I}}$.

Figure 1. - Theoretical specific impulse of JP-4 fuel with liquid oxygen. Equilibrium composition during isentropic expansion to pressure ratio indicated.

(b) Chamber pressure, 300 pounds per square inch absolute.

Exponent n_{I} for use in equation $I = I_{300} \left(\frac{P_{c}}{300}\right)^{n_{I}}$.

Figure 1. - Concluded. Theoretical specific impulse of JP-4 fuel with liquid oxygen. Equilibrium composition during isentropic expansion to pressure ratio indicated.

(a) Chamber pressure, 600 pounds per square inch absolute.

Exponent n_T for use in equation $T = T_{600} \left(\frac{P_c}{600}\right)$

Figure 2. - Theoretical combustion-chamber temperature and nozzle-exit temperature of JP-4 fuel with liquid oxygen. Equilibrium composition during isentropic expansion to pressure ratio indicated.

ERRATA

NACA Research Memorandum E56D23

By Vearl N. Huff, Anthony Fortini, and Sanford Gordon September 7, 1956

Figure 2, page 37: The ordinate should be 400, 800, 1200, 1600, 2000, 2400, 2800, 3200, and 3600 instead of 800, 1200, 1600, 2000, 2400, 2800, 3200, 3600, and 4000.

Issued 1-18-57.

(b) Chamber pressure, 300 pounds per square inch absolute.

Exponent n_T for use in equation $T = T_{300} \left(\frac{P_c}{300}\right)^{n_T}$.

Figure 2. - Concluded. Theoretical combustion-chamber temperature and nozzle-exit temperature of JP-4 fuel with oxygen. Equilibrium composition during isentropic expansion to pressure ratio indicated.

(a) Chamber pressure, 600 pounds per square inch absolute.

Exponent n_{ϵ} for use on equation $\epsilon = \epsilon_{600} \left(\frac{P_c}{600}\right)^n \epsilon$.

Figure 3. - Theoretical ratio of nozzle area to throat area for JP-4 fuel with liquid oxygen. Equilibrium composition during isentropic expansion to pressure ratio indicated.

(b) Chamber pressure, 300 pounds per square inch absolute.

Exponent n_{ϵ} for use in equation $\epsilon = \epsilon_{300} \left(\frac{P_c}{300}\right)^{n_{\epsilon}}$.

Figure 3. - Concluded. Theoretical ratio of nozzle area to throat area for JP-4 fuel with liquid oxygen. Equilibrium composition during isentropic expansion to pressure ratio indicated.

#U#G

Oxidant-to-fuel ratio, o/f
(a) Chamber pressure, 600 pounds per square inch absolute.

Figure 4. - Theoretical coefficient of thrust for JP-4 fuel with liquid oxygen. Equilibrium composition during isentropic expansion to pressure ratio indicated.

(b) Chamber pressure, 300 pounds per square inch absolute.

Figure 4. - Concluded. Theoretical coefficient of thrust for JP-4 fuel with liquid oxygen. Equilibrium composition during isentropic expansion to pressure ratio indicated.

(a) Chamber pressure, 600 pounds per square inch absolute.

Figure 5. - Theoretical molecular weight for JP-4 fuel with liquid oxygen. Equilibrium composition during isentropic expansion to pressure ratio indicated.

--- .. _____

(b) Chamber pressure, 300 pounds per square inch absolute.

Figure 5. - Concluded. Theoretical molecular weight for JP-4 fuel with liquid oxygen. Equilibrium composition during isentropic expansion to pressure ratio indicated.

Figure 6. - Theoretical characteristic velocity and characteristic-velocity exponent for JP-4 fuel and liquid oxygen. Exponent n_{c*} for use in equation $c^* = c_1^* \left(\frac{P_c}{P_{c,1}}\right)^{n_{c*}}$. Equilibrium composition during isentropic expansion from chamber pressure indicated.

Figure 7. - Comparison of theoretical specific impulse assuming frozen and equilibrium composition for JP-4 fuel with liquid oxygen. Chamber pressure, 600 pounds per square inch absolute; isentropic expansion to 1 atmosphere; pressure ratio, 40.83.

(b) Theoretical isentropic exponent.

Figure 8. - Variation of theoretical specific heat and isentropic exponent with temperature for both frozen and equilibrium composition. Isentropic expansion; combustion pressure 600 pounds per square inch absolute; stoichiometric equivalence ratio for JP-4 fuel with liquid oxygen.

Figure 9. - Estimated equilibrium specific impulse of JP-4 fuel with mixtures of liquid oxygen and ozone as oxidant. Percent fuel by weight, 29.15; chamber pressure, 600 pounds per square inch absolute; exit pressure, 1 atmosphere.