<u>1.</u> Сформулировать определение первообразной

Функцию F(x)называют первообразной функции f(x)в промежутке X, если F(x)дифференцируема в этом промежутке и для любого $x \in X$ значение производной F'(x)совпадает со значением функции f(x), т. е. $F'(x) = f(x) \ \forall x \in X$

Сформулировать определение неопределённого интеграла

Множество всех первообразных функции f(x) в некотором промежутке называют неопределенным интегралом от этой функции в данном промежутке и обозначают $\int f(x)dx$. При этом символ \int называют знаком интеграла, f(x)-подынтегральной функцией, f(x)-подынтегральным выражением, x-переменной интегрирования.

3. Сформулировать определение определенного интеграла

Определённым интегралом функции f(x) на отрезке [a,b] называют предел I интегральных сумм, при стремлении максимального шага разбиения этого отрезка к нулю. Определённый интеграл обозначают $I = \int_a^b f(x) dx$

4. Сформулировать определение интеграла с переменным верхним пределом

Пусть функция f(x) определена на бесконечном полуинтервале $[a, +\infty)$ и интегрируема на любом конечном отрезке [a,b]. Тогда в полуинтервале $[a, +\infty)$ определена функция $\Phi(b) = \int_a^b f(x) dx$ как определенный интеграл с переменным верхним пределом

5. Сформулировать определение несобственного интеграла 1 рода

Предел функции $\Phi(b) = \int_a^b f(x) dx$ при $b \to +\infty$ называют несобственным интегралом от функции f(x) первого рода и обозначают $\int_a^{+\infty} f(x) dx$

6. Сформулировать определение несобственного интеграла 2 рода

Пусть функция f(x) определена в полуинтервале [a,b) и неограничена при $x \to b$. Предел функции $\Phi(\eta) = \int_a^\eta f(x) dx$ при $\eta \to b - 0$ называют несобственным интегралом функции f(x) второго рода и обозначают $\int_a^b f(x) dx = \lim_{\eta \to b - 0} \Phi(\eta) = \lim_{\eta \to b - 0} \int_a^\eta f(x) dx$

7. Сформулировать определение сходящегося несобственного интеграла 1 рода

Если существует и конечен предел функции $\Phi(b) = \int_a^b f(x) dx$ при $b \to +\infty$, то данный несобственный интеграл называют сходящимся

8. Сформулировать определение абсолютно сходящегося несобственного интеграла 1 рода

Если наряду с несобственным интегралом от функции f(x) по бесконечному промежутку $[a, +\infty)$ сходится и интеграл по этому промежутку от функции |f(x)|, то первый интеграл называют сходящимся абсолютно и говорят об абсолютной сходимости несобственного интеграла по бесконечному промежутку.

9. Сформулировать определение условно сходящегося несобственного интеграла 1 рода

Если несобственный интеграл от функции f(x) по промежутку $[a, +\infty)$ сходится, а интеграл от функции |f(x)| по этому промежутку расходится, то первый интеграл называют сходящимся условно.

10. Сформулировать определение сходящегося несобственного интеграла 2 рода

Если существует и конечен предел функции $\Phi(\eta) = \int_a^b f(x) dx$ при $\eta \to b - 0$, то данный несобственный интеграл называют сходящимся

11. Сформулировать определение абсолютно сходящегося несобственного интеграла 2 рода

Если несобственный интеграл от неограниченной при $x \to b - 0$ функции по промежутку [a, b) сходится и сходится интеграл от функции |f(x)| по этому же промежутку, то первый интеграл называют сходящимся абсолютно.

12. Сформулировать определение условно сходящегося несобственного интеграла 2 рода

Если несобственный интеграл от неограниченной при $x \to b - 0$ функции по промежутку [a, b) сходится, а интеграл от функции |f(x)| по этому же промежутку расходится, то первый интеграл называют сходящимся условно.

1. Сформулировать и доказать теорему об оценке определенного интеграла

Теорема: Пусть функции f(x) и g(x) интегрируемы на отрезке [a,b], а также $m \le f(x) \le M$ и $g(x) \ge 0$ $\forall x \in [a,b]$. Тогда $m \int_a^b g(x) dx \le \int_a^b f(x) g(x) dx \le M \int_a^b g(x) dx$.

<u>Доказательство</u>: По условию $m \le f(x) \le M \ \forall x \in [a,b]$. Умножая все части этого неравенства на $g(x) \ge 0$, получаем $mg(x) \le f(x)g(x) \le Mg(x)$. Так как определённый интеграл линеен и при $f(x) \ge g(x)$ $\int_a^b f(x) dx \ge \int_a^b g(x) dx$, то справедливость условия теоремы очевидна.

2. Сформулировать и доказать теорему о среднем

Теорема: Если определенная на отрезке [a,b] функция f(x) имеет на нем первообразную F(x), то существует такая точка $c \in (a,b)$, что $\int_a^b f(x) dx = f(c)(b-a)$.

<u>Доказательство:</u> Согласно определению первообразной, F'(x)=f(x), $x \in [a,b]$, т.е. функция F(x) дифференцируема, а значит и непрерывна на отрезке [a,b]. Поэтому она удовлетворяет условиям теоремы Лагранжа, и можно записать $\int_a^b f(x)dx = F(b) - F(a) = F'(c)(b-a) = f(c)(b-a)$, где $c \in (a,b)$.

3. Сформулировать и доказать теорему о производной интеграла с переменным верхним пределом

<u>Теорема:</u> Пусть функция f(x) интегрируема на отрезке [a,b] и непрерывна в некоторой точке x этого отрезка. Тогда функция $F(x) = \int_a^b f(t)dt$ дифференцируема в точке x и F'(x) = f(x).

дифференцируема в точке x и F'(x) = f(x).

Доказательство: Достаточно доказать что $\lim_{\Delta x \to 0} \left(\frac{F(x + \Delta x) - F(x)}{\Delta x} - f(x) \right) = 0$ (*). Оценим сверху модуль выражения под знаком предела в левой части равенства; имеем $\left| \frac{F(x + \Delta x) - F(x)}{\Delta x} - f(x) \right| = \left| \frac{1}{\Delta x} \left(\int_x^{x + \Delta x} f(t) dt - \int_x^{x + \Delta x} f(x) dt \right) \right| = \left| \frac{1}{\Delta x} \int_x^{x + \Delta x} (f(t) - f(x)) dt \right| \leq \frac{1}{|\Delta x|} * \left| \int_x^{x + \Delta x} |f(t) - f(x)| dt \right|$. Так как по условию функция f непрерывна в точке x, то для любого $\varepsilon > 0$ $\exists \delta > 0$, такое, что при любом t, $|t - x| < \delta$, выполняется неравенство $|f(t) - f(x)| < \varepsilon/2$. Поэтому для указанных $t \left| \int_x^{x + \Delta x} |f(t) - f(x)| dt \right| \leq \frac{\varepsilon}{2} * |\Delta x|$. Окончательно, $\left| \frac{F(x + \Delta x) - F(x)}{\Delta x} - f(x) \right| \leq \frac{1}{|\Delta x|} * \frac{\varepsilon}{2} * |\Delta x| < \varepsilon$, если $|\Delta x| < \delta$. Это означает справедливость (*).

4. Сформулировать и доказать теорему Ньютона - Лейбница

Теорема: Если функция f(x) непрерывна на отрезке [a,b] и $\Phi(x)$ – какая-либо первообразная этой функции на указанном отрезке, то $\int_a^b f(x) dx = \Phi(b) - \Phi(a)$.

<u>Доказательство:</u> Одной из первообразных функции f(x) является $F(x) = \int_a^x f(t)dt$; две первообразные функции f(x) различаются не более чем на константу, т.е. $\Phi(x) - F(x) = C$. Подставляя сюда x = a получаем что $C = \Phi(a)$, поэтому $\int_a^x f(t)dt = \Phi(x) - \Phi(a)$. При x = b получаем требуемую формулу. Теорема доказана.

5. Сформулировать и доказать теорему об интегрировании по частям и определённом интеграле

6. Сформулировать и доказать признак сходимости по неравенству для несобственных интегралов 1 рода

<u>Теорема:</u> Пусть функции f(x) и g(x) интегрируемы на любом отрезке $[a,b] \subset [a,+\infty)$, причём $0 \le f(x) \le g(x) \ \forall x \ge a$. Тогда если сходится несобственный интеграл $\int_a^{+\infty} g(x) dx$, то сходится и интеграл $\int_a^{+\infty} f(x) dx$, а если расходится несобственный интеграл $\int_a^{+\infty} f(x) dx$, то расходится и $\int_a^{+\infty} g(x) dx$

<u>Доказательство:</u> Пусть сходится несобственный интеграл от функции g(x), тогда существует конечный предел $\lim_{b\to+\infty}\int_a^b g(x)dx=c<+\infty$. Поскольку по условию теоремы $g(x)\geq 0$ ∀ $x\in[a,+\infty)$, то $\int_a^b g(x)dx\leq c$ ∀ $b\geq a$. Согласно условию теоремы и свойству 8 определённого интеграла, $0\leq \int_a^b f(x)dx\leq \int_a^b g(x)dx\leq c$. Так как $f(x)\geq 0$ ∀ $x\in[a,+\infty)$, то функция $\Phi(b)\int_a^b f(x)dx$ монотонно возрастает и ограничена сверху значением с. Следовательно, такая функция имеет предел, и $\lim_{b\to+\infty}\Phi(b)=\lim_{b\to+\infty}\int_a^b f(x)dx\leq c$, что означает сходимость несобственного интеграла $\int_a^{+\infty}f(x)dx$.

Второе утверждение теоремы доказывается от противного. Предположим, что интеграл от функции g(x) сходится. Но тогда, как только что было доказано, сходится и интеграл от функции f(x), что противоречит условию теоремы.

Сформулировать и доказать предельный признак сравнения для несобственных интегралов 1 рода

<u>Теорема:</u> Пусть функции f(x) и g(x) интегрируемы на любом отрезке $[a,b] \subset [a,+\infty)$ и положительны при $x \ge a$. Если существует конечный положительный предел $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = A$, то несобственные интегралы $\int_a^{+\infty} f(x) dx$ и $\int_a^{+\infty} g(x) dx$ либо оба сходятся, либо оба расходятся

<u>Локазательство:</u> В теореме содержатся четыре утверждения. Докажем лишь одно из них: если интеграл $\int_a^{+\infty} f(x) dx$ сходится, то сходится и интеграл $\int_a^{+\infty} g(x) dx$. Возьмём $\epsilon = \frac{A}{2} > 0$, тогда при всех $x > \delta(\epsilon)$ выполняется неравенство $\left| \frac{f(x)}{g(x)} - A \right| < \epsilon \Leftrightarrow A - \epsilon < \frac{f(x)}{g(x)} < A + \epsilon$. Так как $A - \epsilon = \frac{A}{2}$, то при всех указанных х выполняется неравенство $\frac{A}{2}g(x) < f(x)$. На основании теоремы о признаке сравнения получаем, что сходится интеграл $\int_{\delta(\epsilon)}^{+\infty} \frac{K}{2}g(x) dx$, а тогда сходится и интеграл $\int_a^{+\infty} g(x) dx$. Остальные утверждения теоремы доказываются аналогично.

8. Сформулировать и доказать признак абсолютной сходимости для несобственных интегралов 1 рода

Теорема: Если интеграл $\int_a^{+\infty} f(x) dx$ сходится абсолютно, тон он сходится.

<u>Локазательство:</u> Для любого $x \ge a \quad 0 \le f(x) + |f(x)| \le 2|f(x)|$. Т. к. $\int_a^{+\infty} |f(x)| dx$ по условию сходится, то сходится и интеграл $\int_a^{+\infty} 2|f(x)| dx$. Следовательно, по признаку сравнения сходится интеграл $\int_a^{+\infty} (f(x) + |f(x)|) dx$. Но тогда сходится и интеграл $\int_a^{+\infty} f(x) dx = \int_a^{+\infty} (f(x) + |f(x)|) dx - \int_a^{+\infty} |f(x)| dx$. Теорема доказана.

9. Вывести формулу для вычисления площади криволинейного сектора, ограниченного лучами $\phi = \alpha, \phi = \beta$ и кривой $r = r(\phi)$.

Для вычисления площади криволинейного сектора рассмотрим разбиение $\alpha=\phi_0<\phi_1<\dots<\phi_n=\beta$ отрезка $[\alpha,\beta]$. Предположив, что $r=r(\phi)$ непрерывна на рассматриваемом отрезке, напишем неравенство $\frac{1}{2}r_i^2(\eta_i)\Delta\phi\leq S_i\leq \frac{1}{2}r^2(\xi_i)\Delta\phi_i$, где Si – площадь криволинейного сектора, отвечающего изменению ϕ на отрезке $[\phi_{i-1},\phi_i]$; $r(\eta_i)$ и $r(\xi_i)$ — соответственно наименьшее и наибольшее значения функции $r(\phi)$ на указанном частичном отрезке разбиения. Предполагаем дополнительно, что $r(\phi)$ непрерывна на отрезке $[\alpha,\beta]$. Суммируя неравенства по $i=1,2,\ldots$ получим, что для площади $\mathrm{Sigmathor}$ рассматриваемого криволинейного сектора справедливо неравенство $\frac{1}{2}\sum_{i=1}^n r_i^2(\eta_i)\Delta\phi\leq S\leq \frac{1}{2}\sum_{i=1}^n r^2(\xi_i)\Delta\phi_i$. Переходя здесь к пределу при $\mathrm{max}_i\Delta\phi_i\to 0$, получаем требуемую формулу: $S=\frac{1}{2}\int_{\alpha}^{\beta} r^2(\phi)d\phi$.

10. Вывести формулу для вычисления длины дуги графика функции y = f(x), отсечённой прямыми x = a и x = b

Производная переменной длины дуги вычисляется по формуле: $S'(t) = \sqrt{\left(x'(t)\right)^2 + \left(y'(t)\right)^2}$. Т.к. одной из первообразных функции из правой части этого равенства является $F(t) = \int_a^t \sqrt{\left(x'(\tau)\right)^2 + \left(y'(\tau)\right)^2} \, d\tau$, то отсюда, поскольку F(a)=0, следует равенство $S(t) = \int_a^t \sqrt{\left(x'(\tau)\right)^2 + \left(y'(\tau)\right)^2} \, d\tau$. Поэтому для длины всей кривой имеем формулу $l(\Gamma) = \int_a^b \sqrt{\left(x'(t)\right)^2 + \left(y'(t)\right)^2} \, dt$. Если кривая Γ задана явно уравнением y = y(x), $a \le x \le b$, то, беря x в качестве параметра, получаем формулу $l(\Gamma) = \int_a^b \sqrt{1 + \left(y'(x)\right)^2} \, dx$.