

Preliminary reconstructions of the 3D structure of electron bunches based on COTR using two methods

Ze Ouyang

Jan 16th, 2025

Content

- Overview of the inverse COTR problem
- Gradient-descent & Generative-neural-network reconstruction
- Several comparison
- Robustness of these two method
- Conclusion & Discussion

Overview

ARTICLE

Electro-optic 3D snapshot of a laser wakefield

Electron bunch $\rho(x_s, y_s, z_s)$ to COTR $C(i, j, \lambda_0)$

$$C(i,j,\lambda_0) = \widehat{\mathcal{R}}\big(\rho(x_s,y_s,z_s)\big)$$

Open Access

Description of $\rho(x_s, y_s, z_s)$

Task: Find a parameter set (grid charge)

that minimizes the lost function

- 3D space: $L_x \times L_y \times L_z$ (10 μ m × 10 μ m × 1 μ m)
- Grids uniformly distributed in this space $(30 \times 30 \times 30 = 27k)$
- Each grid has certain number of electrons, 5.4e9 in total (865pC)

GD-based reconstruction from uniform $\rho(x_s, y_s, z_s)$

GD-based reconstruction from Gaussian $\rho(x_s, y_s, z_s)$

Uniqueness discussion on GD

We start with quasi-uniformly distributed electron bunches!

Uniqueness discussion on GD

We start with Gaussian distributed electron bunches!

Generative Neural Network

Noise (array of 50 random numbers between 0 to 1)

Grid charge (array of 27k numbers)

Universal function approximator

- Rather than directly tune the grid charge in the GD method, here we tune the parameters of NN.
- Parameters of NN: Weights, Biases,
 # of layers, # of neurons per layer,
 activation function, et al.
- For the case here, we have
 ~200k parameters of the NN.

PHYSICAL REVIEW LETTERS 130, 145001 (2023)

Phase Space Reconstruction from Accelerator Beam Measurements Using Neural Networks and Differentiable Simulations

R. Roussel[®], A. Edelen, C. Mayes[®], and D. Ratner[®] SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

PHYSICAL REVIEW ACCELERATORS AND BEAMS 27, 094601 (2024)

Editors' Suggestion

Efficient six-dimensional phase space reconstructions from experimental measurements using generative machine learning

Ryan Roussel[®], ¹ Juan Pablo Gonzalez-Aguilera[®], ² Eric Wisniewski, ³ Alexander Ody[®], ³ Wanming Liu[®], ³ John Power[®], ³ Young-Kee Kim[®], ² and Auralee Edelen[®] ¹ SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA ² Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA ³ Argonne National Laboratory, Lemont, Illinois 60439, USA

PHYSICAL REVIEW ACCELERATORS AND BEAMS 27, 074601 (2024)

Four-dimensional phase-space reconstruction of flat and magnetized beams using neural networks and differentiable simulations

Seongyeol Kim[®], ^{1,*} Juan Pablo Gonzalez-Aguilera[®], ^{2,†} Philippe Piot[®], ^{1,3} Gongxiaohui Chen, ¹ Scott Doran, ¹ Young-Kee Kim, ² Wanming Liu, ¹ Charles Whiteford, ¹ Eric Wisniewski, ¹ Auralee Edelen, ⁴ Ryan Roussel[®], ⁴ and John Power¹

This recent paper from our friends at AAC appears relevant to our discussion on Tuesday. MD From: ResearchGate <no-reply@researchgatemail.net> Date: Saturday, September 14, 2024 at 3:22 AM To: Downer, Michael <downer@physics.utexas.edu> Subject: M.C., a recent article cited your research M.C., we found a recent citation of your research: Efficient six-dimensional phase space reconstructions from experimental measurements using generative machine learning Citing article Sep 2024

Initial electron bunches from random noise & initialized GNN

Uniqueness discussion on GNN from seed (71)

Uniqueness discussion on GNN from seed (51)

Robustness of GD & GNN, shot 228

Robustness of GD & GNN, shot 237

Experimental COTR - 0.25 Reconstructed COTR by **Gradient Descent** - 0.50 - 0.25 Reconstructed COTR by Generative Neural Network - 0.50 - 0.25

Robustness of GD & GNN, shot 526

Conclusion & Discussion

Conclusion

- 1. In both methods, same seed leads to same reconstructed electron bunches; but different seeds lead to different reconstructed electron bunches.
- Our methods show robustness on multiple shots.
- 3. Two-wavelength-figures don't match well in all situations.

Discussion

- 1. Why loss stuck at a certain level? Model, initial condition, fine-tuned parameters
- 2. Other ways to describe electron bunches
- 3. Other use of NN: reduction of parameters, Physics-informed NN,
- 4. dataset generation
- 5. Initial parameters of electron bunches
- 6. Physically-reasonable converged electron bunches
- 7. Combination with prior knowledge of electron bunches, i.e. z- distribution