

Closed Loop Response – 2

- Concept of Resonant Peak
- Closed Loop Bandwidth

ω - Domain Physical Parameters

We know that **time domain** is the real **physical** domain in which the **dynamics** of any system **evolves**.

However, s-domain, though synthetic in nature, does involve ' ζ ' and ' ω_d ' which are physically measurable.

ω - domain, a special case of **s-domain**, also contains **closed loop** response **features** e.g. GCO, PCO, GM, PM.

ω - Domain Physical Parameters

Here, it is worth noting that while GCO & PM are related to ' ζ ' and ' ω_n ', and, hence, to time response features, by themselves, these do not have any physical interpretation.

In **view** of the above, we need **features** of closed loop in ω **- domain**, which can have **physical** connotations.

In this regard, we consider **resonant** peak, **bandwidth** as two **possible** features that not only have **physical** meaning but also can be **extracted** from closed loop **response**.

ω - Domain Physical Parameters

Resonant peak is the maximum **amplitude** that a system shows in its **frequency** response and is **indicative** of behaviour in **relation** to time domain **inputs**.

Similarly, **bandwidth** is frequency up to which the **system** will show a **significant** response (i.e. > 70%).

Therefore, we can **extract** these features from **closed loop** response and **assess** the possible **time** domain **behaviour**.

Resonant Frequency and Peak

Resonant Frequency & Amplitude

Closed loop systems, comprising 2nd order factors, exhibit the resonance when subjected to sinusoidal inputs.

This has **given** rise to the concepts of **resonant** frequency & amplitude, which are important **figures of merit** of the closed loop frequency **response.**

The resonant **frequency** is the frequency at which the **closed** loop system gives **maximum** output.

We know that **peak** magnitude directly impacts the peak **overshoot** if resonant **frequency** is present in the **input**.

Amplitude Formulation

We can obtain closed loop frequency response as follows.

$$\frac{C(j\omega)}{R(j\omega)} = \frac{\omega_n^2}{-\omega^2 + j2\zeta\omega_n\omega + \omega_n^2} = Me^{j\alpha}$$

$$M = \frac{1}{\sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\zeta\frac{\omega}{\omega_n}\right)^2}}; \quad \alpha = -\tan^{-1}\left(\frac{2\zeta\frac{\omega}{\omega_n}}{1 - \frac{\omega^2}{\omega_n^2}}\right)$$

Resonance Solution

Maximum value of 'M' is obtained as follows.

$$\frac{d}{d\omega} \left(\left(1 - \frac{\omega^2}{\omega_n^2} \right)^2 + \left(2\zeta \frac{\omega}{\omega_n} \right)^2 \right) = 0 \to 1 - \frac{\omega_r^2}{\omega_n^2} = 2\zeta^2$$

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}; \quad M_r = \frac{1}{2\zeta\sqrt{1 - \zeta^2}}; \quad \alpha_r = -\tan^{-1}\left(\frac{\sqrt{1 - 2\zeta^2}}{\zeta}\right)$$

Resonance Solution Attributes

We note that **resonant peak** is directly related to ' ζ ' while resonant **frequency** is dependent on both ' ζ ' & ' ω_n '.

Hence, we can obtain the **dominant** pole location, so also the time **response** features, from **resonance** condition.

We further see that for $\zeta = 1/\sqrt{2}$, $\omega_r = 0$, indicating that there is **no resonance** beyond this damping **value**.

Lastly, we see that at this damping, phase angle is zero.

Resonance Solution Attributes

We find that we can get the **same** solution by putting $M_r = 1$, indicating **no** resonance.

We also find that as ' ζ ' increases beyond **0.707**, the system shows a **1**st order type frequency **response**, even **though** the poles in **s-domain** are **complex conjugate**.

Above behaviour of ' M_r ' is found to be **correlated** with the variation of ' M_p ' with ' ζ ' and is **commonly** used as **indicator** of the time **response** directly.

$M_r - M_p$ Correlation

Summary

Closed loop response is typically specified through resonant peak, which correlates well with the peak overshoot of time response.

Bandwidth As Response Attribute

In addition to GCO, ω_n and ω_d , bandwidth of closed loop system is also an **important** response feature that is strongly **correlated** to time response.

It is worth noting that **bandwidth** indicates that closed loop **time response** will be **substantial** at all those **frequencies** which are **within** the bandwidth and present in the **input.**

Most physical **systems** are described using a **proper** transfer function so that $|G(j\omega)| \to 0$ as $\omega \to \infty$.

Therefore, it is clear that **high frequency** input will generate **negligible output.**

This behaviour is **commonly** quantified through the concepts of **cut-off** frequency and **bandwidth**.

Bandwidth is actually an **indicator** of the frequencies of input **signals** that the system is **capable** of tracking.

In this context, it is **worth noting** that all inputs in **time domain** can be represented through an **infinite series** of harmonic components, also called the 'Fourier Series'.

Thus, it is clear that a **specific input** will not be tracked **correctly**, unless the system **bandwidth** contains all the frequencies that **comprise** that input.

Cut-off frequency is defined as frequency above which, bode magnitude is below '0' dB by 3 dB or more.

Cut-off frequency indicates that beyond this value, $P_o \le 0.5P_i$ (Half-power point).

Bandwidth is range of **frequencies** up to the **cut-off** frequency.

Bandwidth as Response Feature

We can use closed loop **bandwidth** as a response feature, which is **related** to ' ω_n ', ' ζ ', and is derived **as follows.**

$$20\log_{10}\left|\frac{C(j\omega_{b})}{R(j\omega_{b})}\right| = -3dB \to \overline{\omega}_{b} = \frac{\omega_{b}}{\omega_{n}}; \quad \frac{1}{\sqrt{\left(1-\overline{\omega}_{b}^{2}\right)^{2}+\left(2\zeta\overline{\omega}_{b}\right)^{2}}} = \frac{1}{\sqrt{2}}$$

$$\left(1-\overline{\omega}_{b}^{2}\right)^{2}+\left(2\zeta\overline{\omega}_{b}\right)^{2} = 2 \to \omega_{b} = \omega_{n}\sqrt{\sqrt{\left(1-2\zeta^{2}\right)^{2}+1+\left(1-2\zeta^{2}\right)}}$$

We **note** that for $\zeta = 1/\sqrt{2}$, $\omega_b = \omega_{n}$.

ω-Domain Specification Example

Determine the **frequency domain** equivalent of the following **time domain** specifications.

1. Peak overshoot = 12%, Settling time = $4 \sec (2\%)$

s-Domain Parameters: $\zeta = 0.56$, $\omega_n = 1.786$, $\omega_d = 1.48$

GCO & PM: $\omega_{GCO} = 1.328$, PM = 56.4°

Resonant Frequency & Peak: $\omega_r = 1.09$, $M_r = 1.078$

Bandwidth: $\omega_b = 2.14$

Verification of GCO, PM

Verification of M_r , ω_r and ω_b

Summary

Bandwidth is an important response **attribute** which is closely correlated to **speed** of response in time domain and **undamped** natural frequency in **Laplace** domain.