DATA STRUCTURES & ALGORITHMS 11: GRAPH SEARCHING - BFS

Dr Ram Prasad Krishnamoorthy

Associate Professor School of Computing and Data Science

ram.krish@saiuniversity.edu.in

Graph Representations

Given graph G = (V, E).

In pseudocode, represent vertex set by **G.V** and edge set by **G.E**.

G may be either **directed** or **undirected**.

Two common ways to represent graphs for algorithms:

- 1. Adjacency Lists.
- 2. Adjacency Matrix.

Adjacency List

Adjacency Matrix

Adjacency List

Adjacency Matrix

Adjacency lists

Array *Adj* of **V** lists, one per *vertex*.

Vertex u's list has all vertices v such that $(u, v) \in E$.

(Works for both directed and undirected graphs.)

In pseudocode, denote the array as attribute *G.Adj*.

We will see notation such as *G.Adj[u]*

Adjacency matrix

$$|V| \times |V| \text{ matrix } A = (a_{ij})$$

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E, \\ 0 & \text{otherwise}. \end{cases}$$

GRAPH SEARCHING

Graph Searching

Searching a graph means systematically following the edges of the graph so as to visit the vertices of the graph.

Graph searching algorithms discovers the structure of the graph.

Two prominent Graph Searching

- Breadth First Search(BFS)
- Depth First Search (DFS)

BREADTH FIRST SEARCH (BFS)

Breadth First Search (BFS)

BFS, from a given source vertex **s**, finds the shortest simple path to vertices.

- \Rightarrow discovers every vertex **v** reachable from **s** through a *shortest path*.
 - → **shortest path** is the path containing *smallest number of edges*.

BFS on a graph with source vertex **s**, generate a **Breadth First Tree** with **s** as root.

Breadth First \Rightarrow A wave (also mentioned as frontiers) emanating from source \mathbf{s} , visiting vertices at **distance 1**, then **distance 2** etc until it has discovered every vertex reachable from \mathbf{s} .

Breadth First Search (BFS)

To keep track of the wave, BFS uses a Queue.

 \Rightarrow Queue contains **some vertices** at distance **k** and, possibly **some vertices** at distance **k+1**.

Queue contains vertices belonging to *portions* of **two consecutive waves** at any time.

Breadth First Search (BFS)

Colouring scheme in BFS:

BFS colors vertices WHITE, GRAY and BLACK.

- **WHITE** → not visited, and not reachable from s
- **GRAY** → discovered first time a vertex is reachable from s. (*contained in queue*)
- **BLACK** \rightarrow once all of the vertex's edges are explored.

Breadth First Search (BFS)

Additional attributes in to each vertex v:

- v.color is the color of v: WHITE, GRAY, or BLACK.
- v.d holds the distance from the source vertex s to v, as computed by the algorithm.
- $v.\pi$ is v's predecessor in the breadth-first tree. If v has no predecessor because it is the source vertex or is undiscovered, then $v.\pi = NIL$.


```
BFS(G,s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
        u.d = \infty
        u.\pi = NIL
    s.color = GRAY
    s.d = 0
    s.\pi = NIL
    Q = \emptyset
    ENQUEUE(Q, s)
```

```
while Q \neq \emptyset
    u = \text{DEQUEUE}(Q)
    for each vertex v in G.Adj[u]
        if v.color == WHITE
             v.color = GRAY
             v.d = u.d + 1
             v.\pi = u
             ENQUEUE(Q, v)
    u.color = BLACK
```



```
BFS(G,s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
        u.d = \infty
        u.\pi = NIL
    s.color = GRAY
    s.d = 0
    s.\pi = NIL
    Q = \emptyset
    ENQUEUE(Q, s)
```

while
$$Q \neq \emptyset$$
 $u = \text{DEQUEUE}(Q)$
for each vertex v in $G.Adj[u]$
if $v.color == \text{WHITE}$
 $v.color = \text{GRAY}$
 $v.d = u.d + 1$
 $v.\pi = u$
 $\text{ENQUEUE}(Q, v)$
 $u.color = \text{BLACK}$


```
BFS(G, s)
```

```
for each vertex u \in G.V - \{s\}
    u.color = WHITE
    u.d = \infty
    u.\pi = NIL
s.color = GRAY
s.d = 0
s.\pi = NIL
Q = \emptyset
ENQUEUE(Q, s)
```

while
$$Q \neq \emptyset$$
 $u = \text{DeQueue}(Q)$
for each vertex v in $G.Adj[u]$
if $v.color == \text{WHITE}$
 $v.color = \text{GRAY}$
 $v.d = u.d + 1$
 $v.\pi = u$
 $\text{ENQUEUe}(Q, v)$
 $u.color = \text{BLACK}$

