

Dostępna pamięć: 256MB

Odcinki 2

Dane jest n punktów na prostej skierowanej, które zostały ponumerowane liczbami całkowitymi od 1 do n zgodnie ze zwrotem prostej. Niektóre z punktów są punktami początkowymi, a pozostałe końcowymi.

Twoim zadaniem jest obliczenie, ile wektorów można narysować, tak żeby początek wektora był w punkcie początkowym, koniec wektora w punkcie końcowym oraz zwrot wektora był zgodny ze zwrotem prostej oraz cały wektor zawierał się w pewnym przedziale.

Żeby nie było za łatwo, to ten przedział może się zmieniać.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite n oraz q ($1 \le n \le 200\,000$, $1 \le q \le 200\,000$) oznaczające liczbę punktów oraz liczbę zapytań. W drugim wierszu znajduje się początkowy stan punktów. Jest on zapisany jako słowo złożone z n liter. i-ta litera tego słowa to P, to i-ty punkt jest punktem początkowym, a K, jeśli i-ty punkt jest punktem końcowym.

 ${\bf W}$ qkolejnych wierszach znajdują się opisy zapytań. Każde zapytanie ma jedną z dwóch postaci:

- X x oznacza zmianę litery z pozycji $x (1 \le x \le n)$;
- ? p k oznacza pytanie o liczbę wektorów w przedziale [p, k].

Wyjście

Na wyjście należy wypisać odpowiedź na każde zaptanie typu ?.

Przykład

Wejście	Wyjście
5 7	4
PPKKK	0
? 1 4	2
Х 3	3
? 1 3	
X 1	
? 3 5	
X 4	
? 1 5	