

Boat or Bullet: Prior Parameter Set Shapes and Posterior Imprecision

Gero Walter, Frank Coolen & Mik Bickis

Gero Walter, Department of Statistics Ludwig-Maximilians-Universität München (LMU) gero.walter@stat.uni-muenchen.de

June 29th, 2012

Introduction

▶ Bernoulli observations: 0/1 observations (team wins no/yes)

- ▶ Bernoulli observations: 0/1 observations (team wins no/yes)
- ▶ given: a set of observations (team won 12 out of 16 matches)

- ▶ Bernoulli observations: 0/1 observations (team wins no/yes)
- given: a set of observations (team won 12 out of 16 matches)
- ightharpoonup additional to observations, we have strong prior information (we are convinced that P(win) should be around 0.75)

- ▶ Bernoulli observations: 0/1 observations (team wins no/yes)
- ▶ given: a set of observations (team won 12 out of 16 matches)
- ▶ additional to observations, we have strong prior information (we are convinced that P(win) should be around 0.75)
- ▶ we are, e.g., interested in (predictive) probability P that team wins in the next match

- ▶ Bernoulli observations: 0/1 observations (team wins no/yes)
- ▶ given: a set of observations (team won 12 out of 16 matches)
- ▶ additional to observations, we have strong prior information (we are convinced that P(win) should be around 0.75)
- we are, e.g., interested in (predictive) probability P that team wins in the next match
- standard statistical model for this situation: Beta-Bernoulli/Binomial Model

Introduction

- ▶ Bernoulli observations: 0/1 observations (team wins no/yes)
- ▶ given: a set of observations (team won 12 out of 16 matches)
- ▶ additional to observations, we have strong prior information (we are convinced that P(win) should be around 0.75)
- we are, e.g., interested in (predictive) probability P that team wins in the next match
- standard statistical model for this situation: Beta-Bernoulli/Binomial Model
- prior-data conflict: if P(win) is actually very different from our prior guess (prior information and data are in conflict), this should show up in the predictive inferences (probability P and, e.g., credibility intervals)

- ▶ Beta prior on p = P(win)
- ▶ here in parameterization used, e.g., by Walley (1991):

- ▶ Beta prior on p = P(win)
- ▶ here in parameterization used, e.g., by Walley (1991):

Data:
$$s \sim \mathsf{Binom}(p, n)$$

conjugate prior: $p \sim \mathsf{Beta}(n^{(0)}, y^{(0)})$
posterior: $p \mid s \sim \mathsf{Beta}(n^{(n)}, y^{(n)})$

$$y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}, \qquad n^{(n)} = n^{(0)} + n$$

- ▶ Beta prior on p = P(win)
- ▶ here in parameterization used, e.g., by Walley (1991):

Data :
$$s \sim \mathsf{Binom}(p, n)$$

conjugate prior: $p \sim \mathsf{Beta}(n^{(0)}, y^{(0)})$
posterior: $p \mid s \sim \mathsf{Beta}(n^{(n)}, y^{(n)})$

$$y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}, \qquad n^{(n)} = n^{(0)} + n$$
$$y^{(n)} = E[p \mid s] \qquad Var(p \mid s) = \frac{y^{(n)}(1 - y^{(n)})}{n^{(n)} + 1}$$

- ▶ Beta prior on p = P(win)
- ▶ here in parameterization used, e.g., by Walley (1991):

Data:
$$s \sim \mathsf{Binom}(p, n)$$

conjugate prior: $p \sim \mathsf{Beta}(n^{(0)}, y^{(0)})$
posterior: $p \mid s \sim \mathsf{Beta}(n^{(n)}, y^{(n)})$

$$y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}, \qquad n^{(n)} = n^{(0)} + n$$
$$y^{(n)} = E[p \mid s] = P \qquad Var(p \mid s) = \frac{y^{(n)}(1 - y^{(n)})}{n^{(n)} + 1}$$

no conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} = 0.75$ data $s/n = 12/16 = 0.75$

no conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} = 0.75$ data $s/n = 12/16 = 0.75$

$$n^{(n)} = 24, \ v^{(n)} = 0.75$$

no conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} = 0.75$ data $s/n = 12/16 = 0.75$

$$n^{(n)} = 24, y^{(n)} = 0.75$$

prior-data conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} = 0.25$ data $s/n = 16/16 = 1$

no conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} = 0.75$ data $s/n = 12/16 = 0.75$

$$n^{(n)} = 24, y^{(n)} = 0.75$$

prior-data conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} = 0.25$
data $s/n = 16/16 = 1$

Imprecise BBM (IBBM) $\hat{=}$ IDM with prior information

no conflict:

prior $n^{(0)} = 8$, $y^{(0)} \in [0.7, 0.8]$ data s/n = 12/16 = 0.75

Imprecise BBM (IBBM) \(\hat{=}\) IDM with prior information

no conflict:

prior $n^{(0)} = 8$, $v^{(0)} \in [0.7, 0.8]$ data s/n = 12/16 = 0.75

$$n^{(n)} = 24, \ y^{(n)} \in [0.73, 0.77]$$

Imprecise BBM (IBBM) \(\hat{=}\) IDM with prior information

no conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} \in [0.7, 0.8]$ data $s/n = 12/16 = 0.75$

$$n^{(n)} = 24, \ y^{(n)} \in [0.73, 0.77]$$

prior-data conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} \in [0.2, 0.3]$ data $s/n = 16/16 = 1$

Imprecise BBM (IBBM) \(\hat{1}\) IDM with prior information

no conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} \in [0.7, 0.8]$ data $s/n = 12/16 = 0.75$

$$n^{(n)} = 24, \ y^{(n)} \in [0.73, 0.77]$$

prior-data conflict:

prior
$$n^{(0)} = 8$$
, $y^{(0)} \in [0.2, 0.3]$ data $s/n = 16/16 = 1$

no conflict:

prior $n^{(0)} \in [4,8]$, $y^{(0)} \in [0.7,0.8]$ data s/n = 12/16 = 0.75

no conflict:

prior $n^{(0)} \in [4,8]$, $y^{(0)} \in [0.7,0.8]$ data s/n = 12/16 = 0.75

"spotlight" shape

no conflict:

prior $n^{(0)} \in [4,8]$, $y^{(0)} \in [0.7,0.8]$ data s/n = 12/16 = 0.75

"spotlight" shape

prior-data conflict:

prior $n^{(0)} \in [4,8]$, $y^{(0)} \in [0.2,0.3]$ data s/n = 16/16 = 1

no conflict:

prior $n^{(0)} \in [4, 8], y^{(0)} \in [0.7, 0.8]$ data s/n = 12/16 = 0.75

"spotlight" shape

prior-data conflict:

prior $n^{(0)} \in [4, 8], y^{(0)} \in [0.2, 0.3]$ data s/n = 16/16 = 1

"banana" shape

What are the Credal Sets?

- sets of distributions are induced by sets of parameters (parameter sets need not be convex)

- sets of distributions are induced by sets of parameters (parameter sets need not be convex)
- inferences should be linear in posterior distributions: then min/max are attained at the parametric distributions (these are the extreme points of the credal set)

What are the Credal Sets?

- sets of distributions are induced by sets of parameters (parameter sets need not be convex)
- inferences should be linear in posterior distributions: then min/max are attained at the parametric distributions (these are the extreme points of the credal set)
- ► E, Var are linear in the parametric distributions

 additional imprecision in case of pdc due to "banana" shape

- additional imprecision in case of pdc due to "banana" shape
- y⁽ⁿ⁾'s move faster for low n⁽⁰⁾, and overtake y⁽ⁿ⁾'s at high n⁽⁰⁾ (flexible weights n⁽⁰⁾ for the prior information encoded in y⁽ⁿ⁾)

- additional imprecision in case of pdc due to "banana" shape
- y⁽ⁿ⁾'s move faster for low n⁽⁰⁾, and overtake y⁽ⁿ⁾'s at high n⁽⁰⁾ (flexible weights n⁽⁰⁾ for the prior information encoded in y⁽ⁿ⁾)
- ► $y^{(0)}$ stretch \wedge \longrightarrow $y^{(n)}$ stretch \wedge

- additional imprecision in case of pdc due to "banana" shape
- y⁽ⁿ⁾'s move faster for low n⁽⁰⁾, and overtake y⁽ⁿ⁾'s at high n⁽⁰⁾ (flexible weights n⁽⁰⁾ for the prior information encoded in y⁽ⁿ⁾)
- $\triangleright y^{(0)}$ stretch $\blacktriangle \longleftrightarrow y^{(n)}$ stretch \blacktriangle

- additional imprecision in case of pdc due to "banana" shape
- y⁽ⁿ⁾'s move faster for low n⁽⁰⁾, and overtake y⁽ⁿ⁾'s at high n⁽⁰⁾ (flexible weights n⁽⁰⁾ for the prior information encoded in y⁽ⁿ⁾)
- ► $y^{(0)}$ stretch \blacktriangle \longleftrightarrow $y^{(n)}$ stretch \blacktriangle
- ▶ $n^{(0)}$ stretch ▲ ⇒ stronger reaction to prior-data conflict

- additional imprecision in case of pdc due to "banana" shape
- $\triangleright v^{(n)}$'s move faster for low $n^{(0)}$. and overtake $v^{(n)}$'s at high $n^{(0)}$ (flexible weights $n^{(0)}$ for the prior information encoded in $v^{(n)}$
- $\triangleright y^{(0)}$ stretch $\land \longleftrightarrow y^{(n)}$ stretch \land
- $ightharpoonup n^{(0)}
 ightharpoonup recision
 ightharpoonup recisionup recis$ $(n^{(0)})$ governs size of posterior set!)
- ▶ $n^{(0)}$ stretch ▲ → stronger reaction to prior-data conflict
- \triangleright contrary effect of $n^{(0)}$ on imprecision and variance: high $n^{(0)}$ gives a highly imprecise posterior set, but with low variance distributions within the set

rectangular prior set $[\underline{n}^{(0)}, \overline{n}^{(0)}] \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$ adds distributions with higher variance to the prior/posterior credal set as compared to the imprecise BBM $(\overline{n}^{(0)} \times [\underline{y}^{(0)}, \overline{y}^{(0)}])$

Parameter Set Shapes

- rectangular prior set $[\underline{n}^{(0)}, \overline{n}^{(0)}] \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$ adds distributions with higher variance to the prior/posterior credal set as compared to the imprecise BBM $(\overline{n}^{(0)} \times [\underline{y}^{(0)}, \overline{y}^{(0)}])$
- rectangular prior set (two-dimensional interval) seems natural, but for the model, generally any shape is possible

- rectangular prior set $[\underline{n}^{(0)}, \overline{n}^{(0)}] \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$ adds distributions with higher variance to the prior/posterior credal set as compared to the imprecise BBM $(\overline{n}^{(0)} \times [\underline{y}^{(0)}, \overline{y}^{(0)}])$
- rectangular prior set (two-dimensional interval) seems natural, but for the model, generally any shape is possible
- posterior parameter sets are not rectangular anyway (but can be fully described by the four 'corners')

- rectangular prior set $[\underline{n}^{(0)}, \overline{n}^{(0)}] \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$ adds distributions with higher variance to the prior/posterior credal set as compared to the imprecise BBM $(\overline{n}^{(0)} \times [\underline{y}^{(0)}, \overline{y}^{(0)}])$
- rectangular prior set (two-dimensional interval) seems natural, but for the model, generally any shape is possible
- posterior parameter sets are not rectangular anyway (but can be fully described by the four 'corners')
- ▶ actual prior shape influences the posterior inferences (position of $\max / \min y^{(n)}$, other objective functions)

the shape matters!

- the shape matters!
- shape could be tailored to enable desired inference properties

- the shape matters!
- shape could be tailored to enable desired inference properties
- however, difficult to elicit

- the shape matters!
- shape could be tailored to enable desired inference properties
- however, difficult to elicit
- shape updating is quite difficult to grasp

- the shape matters!
- shape could be tailored to enable desired inference properties
- however, difficult to elicit
- shape updating is quite difficult to grasp
- shape that has easy description for posterior set? (set description that's invariant under updating?)

Strong Prior-Data Agreement

desired inference property: bonus precision if prior and data agree especially well

Strong Prior-Data Agreement

- desired inference property: bonus precision if prior and data agree especially well
- ▶ ideally also with high $n^{(n)}$ values at max / min $y^{(n)}$ (small variances!)

- desired inference property: bonus precision if prior and data agree especially well
- ▶ ideally also with high n⁽ⁿ⁾ values at max / min y⁽ⁿ⁾ (small variances!)
- deus ex machina: Mik Bickis & his approach to imprec. BBM: change parametrization $(n^{(0)}, y^{(0)})$ to (η_0, η_1) (WPMSIIP'11)
 - the parameter sets do not change shape during updating!

Mik's Parametrization

- $(\eta_0, \eta_1) \in \mathbb{R}^2$ such that $\eta_0 > 2$, $-1 \frac{1}{2}\eta_0 < \eta_1 < 1 + \frac{1}{2}\eta_0$
- $\eta_0 = n^{(0)} 2$
- ▶ Updating: win $\hat{=} + (1, \frac{1}{2})$, not win $\hat{=} + (1, -\frac{1}{2})$
- ▶ Distributions with the same expectation (= P) lie along equidistant rays emanating from (-2,0)

Our suggestion for a (η_0, η_1) shape that leads to

- additional imprecision in case of prior-data conflict
- bonus precision in case of strong prior-data agreement

looks like a bullet, or a boat with a so-called transom stern.

- interactive graph by Mik Bickis
- contours are exponential curves (mirrored at central ray)
- "touching rays" / "shadow" must be determined numerically
- detailed properties still to be explored
- suggestions?