

CLAIMS

1	1. A method of fabricating a microelectromechanical system, said method comprising:
2	providing a substrate comprising a handle layer of silicon, a device layer of silicon
3	and a sacrificial layer of silicon disposed between said handle layer and said device layer;
4	forming a micromechanical structure in said device layer; and
5	removing at least a portion of said sacrificial layer of silicon underlying said
6	micromechanical structure to release said micromechanical structure for movement
1	2. A method of fabricating a microelectromechanical system, as per claim 1, wherein said
2	silicon of said sacrificial layer is single crystal silicon.
1 .	3. A method of fabricating a microelectromechanical system, as per claim 1, wherein said
2	forming step further comprises:
3	forming an isolation trench that extends through at least said device layer.
1	4. A method of fabricating a microelectromechanical system, as per claim 1, wherein said
2	handle layer is separated from said sacrificial layer by a first dielectric layer, said sacrificial layer
3	is separated from said device layer by a second dielectric layer, and said forming step further
4	comprises:
5	forming an isolation trench that extends through at least said sacrificial layer, said
6	isolation trench defining a release area in said sacrificial layer; and
7	etching said silicon of said device layer to form said micromechanical structure

- 1 5. A method of fabricating a microelectromechanical system, as per claim 4, wherein said
- 2 silicon of said device layer is polysilicon.
- 1 6. A method of fabricating a microelectromechanical system, as per claim 4, wherein said
- 2 silicon of said device layer is single crystal silicon.
- 7. A method of fabricating a microelectromechanical system, as per claim 4, wherein said
- 2 isolation trench additionally extends through said device layer.
- 1 8. A method of fabricating a microelectromechanical system, as per claim 4, said removing
- 2 step further comprising:
- placing a photoresist layer on top of said device layer over at least said
- 4 micromechanical structure;
- forming release etch holes through said photoresist layer and said second
- 6 dielectric layer; and
- 7 etching said sacrificial layer of silicon underlying said micromechanical structure.
- 1 9. A method of fabricating a microelectromechanical system, as per claim 8, wherein said
- 2 first dielectric layer is used as an etch stop for said etching of said sacrificial layer.
- 1 10. A method of fabricating a microelectromechanical system, as per claim 8, wherein said
- 2 second dielectric layer is used as an etch stop for said etching of said sacrificial layer.
- 1 11. A method of fabricating a microelectromechanical system, as per claim 8, wherein said
- 2 isolation trench is used as an etch stop for said etching of said sacrificial layer.

- 1 12. A method of fabricating a microelectromechanical system, as per claim 4, wherein said
- 2 handle layer has actuation electrodes formed thereon.
- 1 13. A method of fabricating a microelectromechanical system, as per claim 12, said forming
- 2 step further comprising:
- forming via posts extending through at least said sacrificial layer to contact said
- 4 actuation electrodes.
- 1 14. A method of fabricating a microelectromechanical system, as per claim 13, wherein said
- 2 via posts additionally extend through said device layer.
 - 15. A method of fabricating a microelectromechanical system, as per claim 4, wherein
- 2 actuation electrodes are formed on the bottom of said sacrificial layer.
- 16. A method of fabricating a microelectromechanical system, as per claim 1, said method
- 2 further comprising:
- bonding a silicon-on-insulator wafer to a handle wafer of silicon to create said
- 4 substrate.
- 1 17. A method of fabricating a microelectromechanical system, as per claim 1, said method
- 2 further comprising:
- bonding a first silicon-on-insulator wafer to a handle wafer of silicon and
- 4 removing a handle layer of said first silicon on insulator wafer to create said sacrificial layer; and

- bonding a first wafer of silicon to a second wafer of silicon; 3
- bonding a third wafer of silicon to said first wafer of silicon; and 4
- 5 whereby said substrate is created.

further comprising:

2

- 19. A method of fabricating a microelectromechanical system, as per claim 1, wherein said micromechanical structure is any one of: a micro-optical device, an inertial sensor, or an actuator.
 - 20. A method of fabricating a microelectromechanical system, as per claim 19, wherein said micro-optical device is a micromirror.
- 21. A method of releasing a micromechanical structure for movement, said micromechanical structure etched in a silicon device layer, said method comprising: 2
 - etching a silicon sacrificial layer disposed between said micromechanical 3
 - structure and a silicon handle layer. 4
 - 22. A method of releasing a micromechanical structure for movement, as per claim 21, 1
 - wherein said micromechanical structure is a micromirror. 2
 - 23. A microfabricated device comprising: 1

3

a substrate having a device layer; 2 a least one micro-optical device etched on said device layer and released for 3 movement by removal of an underlying sacrificial layer of silicon; and 4 active electronics formed on said device layer. 5 A microfabricated device as per claim 23, wherein said micro-optical device is a 24. 1 micromirror. 2 25. A microfabricated device as per claim 23, wherein said active electronics are formed via 1 CMOS fabrication techniques. 26. A microfabricated device as per claim 23, wherein said silicon of said device layer is single crystal silicon. 27. A microelectromechanical device comprising: a handle layer of silicon having actuation electrodes formed thereon; a device layer of silicon having a micromechanical structure formed thereon; and a sacrificial layer of silicon disposed between said handle layer and said device 4 5 layer of silicon, said sacrificial layer of silicon having a portion underlying said micromechanical structure removed to form an actuation cavity below said micromechanical structure. 6 28. A microelectromechanical device as per claim 27, further comprising: 1 at least one isolation trench extending through said device layer and said 2

sacrificial layer and enclosing said cavity and micromechanical structure.

- 1 29. A microelectromechanical device as per claim 28, wherein said isolation trench is lined
- with a dielectric and filled with a conductive material.
- 1 30. A microelectromechanical device as per claim 29, wherein said dielectric is an oxide and
- 2 said conductive material is doped polysilicon.
- 1 31. A microelectromechanical device as per claim 27, further comprising:
- at least one via post extending through said device and said sacrificial layer for
- 3 electrical connection to said actuation electrodes.
- 32. A microelectromechanical device as per claim 27, wherein said silicon of said device
- 2 layer is polysilicon.
- A microelectromechanical device as per claim 27, wherein said silicon of said device
- 2 layer is single crystal silicon.
- 34. A microelectromechanical device as per claim 33, said device further comprising:
- 2 integrated electronics formed on said device layer.
- 1 35. A microelectromechanical device as per claim 34, wherein said integrated electronics
- 2 electrically connected to said actuation electrodes by at least one via post extending through said
- 3 device layer and said sacrificial layer.
- 1 36. A microelectromechanical device as per claim 27, wherein said micromechanical
- 2 structure is a micromirror.

1	37. A micromirror device comprising:
2	a substrate having a device layer, a handle layer and a sacrificial layer made of
3	silicon disposed between said device layer and said handle layer;
4	an isolation trench extending through said device layer and said sacrificial layer,
5	said isolation trench defining a mirror region and electrically isolating said mirror region;
6	a mirror formed from said device layer in said mirror region above actuation
7	electrodes formed on said handle layer; and
8	a cavity formed below said mirror by removing a portion of said sacrificial layer
9	of silicon.
1	38. A micromirror device as per claim 37, wherein said device layer is single crystal silicon
1	39. A micromirror device as per claim 38, said micromirror device further comprising:
2	active electronics formed on said substrate in said device layer.
1	40. A micromirror device as per claim 39, wherein said active electronics are connected to
2	said actuation electrodes through a via post extending through said device layer and said
3	sacrificial layer.

- 1 41. A micromirror device as per claim 37, wherein said mirror comprises:
- a central mirror plate;
- a concentric suspension ring connected to said central mirror plate;
- a frame formed from said device layer in said mirror region; and

- wherein said mirror is connected to said frame via flexures, said flexures comprise
- a first set of flexures connected between said central mirror plate and said concentric suspension
- 7 ring and a second set of orthogonally oriented flexures connected between said concentric
- 8 suspension ring and said frame.
- 42. A micromirror device as per claim 41, wherein said central mirror plate has a coating of
- 2 reflective material thereon.