A Web of Hate: Tackling Hateful Speech in Online Social Spaces

Processamento de Linguagem Natural

Integrantes

Caique de Camargo	11091312
caique.camargo@aluno.ufabc.edu.br	
Jean Augusto	21025614
jean.a@aluno.ufabc.edu.br	
July Anne Pinheiro	11094013
july.pinheiro@aluno.ufabc.edu.br	
Marcela Yamashita	21083913
marcela.a@aluno.ufabc.edu.br	

Introdução

Artigo: A Web of Hate: Tackling Hateful Speech in Online Social Spaces

Autores: H. M. Saleem, K. P. Dillon, S. Benesch, D. Ruths

46 citações. Apresentado no First Workshop on Text Analytics for Cybersecurity and Online Safety at LREC (2016)

Proposta do artigo:

- Comparar abordagens diferentes para definição de discurso de ódio
- Propor uma nova abordagem para detecção de discurso de ódio

Community based x Keyword based

Community based x Keyword based

Community based: utilização da linguagem que emerge de grupos que se auto-organizam (como Reddit). Grupos se formam através de práticas linguísticas comuns. "the group is defined by speech and the speech comes to define the group"

Keyword based: classificação baseada em palavras-chave

Proposta do grupo: keyword-based

Inabilidade de encontrar datasets de grupos fechados

Testar a performance de diferentes classificadores (Naive Bayes, SVM e LR) no dataset do Twitter

Twitter: ~8 milhões de usuários no Brasil (julho/2019)

Grande influência no cenário social e político.

Organização

Base de dados

Original

- Stuck_In_The_Matrix Reddit Dataset (250GB compress.)
- Voat
- Web forums

Adaptação

 "Hate Speech Identification" (Twitter Dataset) - Data World (cerca de 15mil tweets)

Implementação e comparação de resultados de três algoritmos de classificação:

- Naive Bayes
- Support Vector Machine (SVM)
- Logistic Regression (LR)

Naive Bayes

$$p(C_k \mid \mathbf{x}) = \frac{p(C_k) \ p(\mathbf{x} \mid C_k)}{p(\mathbf{x})}$$

SVM

Obs: Utilização do kernel linear do SVM.

Logistic Regression

SVM X LR

Complexidade

O(11w + 14c + 7d + 14(w*d) + 8(c*d) + 9(d*D))

Medidas:

- Accuracy
- Precision
- Recall
- F_measure

Termos utilizados:

- Black
- Plus
- Female

Obrigado!