Option Pricing Under 'Normal' Model Applied Stochastic Processes (FIN 514)

Instructor: Jaehyuk Choi

Peking University HSBC Business School, Shenzhen, China

2018-19 Module 1 (Fall 2018)

Bachelier vs Black-Scholes-Merton model

• Let F_t be the forward price of stock price S_t :

$$F_t = e^{(r-q)(T-t)} S_t \quad (F_T = S_T),$$

where r is interest rate, q is dividend rate and T is the expiry of the forward contract.

- \bullet Then, F_t is a martingale. (However, you may safely assume r=q=0, so $F_t=S_t.)$
- Under Bachelier model, stock price follows an arithmetic Brownian motion (BM) with volatility σ_n :

$$F_t = F_0 + \sigma_n B_t$$
 (SDE: $dF_t = \sigma_n dB_t$).

Under Black-Scholes-Merton (BSM) model, stock follows an geometric BM:

$$F_t = F_0 \exp \left(-\frac{1}{2} \sigma_{bsm}^2 \, t + \sigma_{bsm} B_t \right) \quad \left(\text{SDE:} \quad \frac{dF_t}{F_t} = \sigma_{bsm} dB_t \right).$$

• The two models are approximately same if the two volatilities are related by

$$\sigma_n = F_0 \; \sigma_{bsm}.$$

 Jaehyuk Choi (PHBS)
 ASP: Normal Model
 2018-19 M1 2 /

Normal model

Different names

- Normal process (vs Log-normal process)
- Arithmetic BM (vs Geometric BM)
- Bachelier model (vs Black-Scholes-Merton model)

Why normal model?

- Better dynamics for some underlying assets: interest rate
 - Price can be negative,
 - Daily changes are independent of the level of the price level
- More intuitive than Black-Scholes-Merton

2018-19 M1

Call Option Price

Underlying asset price at maturity T:

$$S_T = F + \sigma \sqrt{T}z$$
, where $F = e^{(r-q)T} S_0$, $z \sim N(0,1)$

Payoff:

$$\max(S_T - K, 0) = (S_T - K)^+ = (F - K + \sigma\sqrt{T}z)^+$$
$$S_T = K \quad \Rightarrow \quad z = -d = \frac{K - F}{\sigma\sqrt{T}} \quad \left(d = \frac{F - K}{\sigma\sqrt{T}}\right)$$

Forward option value (undiscounted):

$$C(K) = \int_{-d}^{\infty} (F - K + \sigma \sqrt{T}z) n(z) dz$$
$$= (F - K)(1 - N(-d)) + \sigma \sqrt{T} n(-d)$$
$$= (F - K)N(d) + \sigma \sqrt{T} n(d)$$

Here we used

$$\int z \, n(z) dz = \frac{z}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = -n(z) + C.$$

Present option value (discounted):

Put Option Price

Payoff:

$$(K-S_T)^+ = (K-F-\sigma\sqrt{T}z)^+$$
 The root of $S_T=K \quad \Rightarrow \quad z=-d=\frac{K-F}{\sigma\sqrt{T}} \quad \left(d=\frac{F-K}{\sigma\sqrt{T}}\right)$

Forward option value (undiscounted):

$$P(K) = \int_{-\infty}^{-d} (K - F - \sigma\sqrt{T}z) n(z) dz$$
$$= (K - F)N(-d) - \sigma\sqrt{T} n(-d)$$
$$= (K - F)N(-d) + \sigma\sqrt{T} n(d)$$

Present option value (discounted):

$$P_0(K) = e^{-rT}P(K)$$

Put-Call parity holds!

$$C(K) - P(K) = (F - K)N(d) - (K - F)N(-d) = (F - K)(N(d) + N(-d)) = F - K$$

Jaehyuk Choi (PHBS) ASP: Normal Model 2018-19 M1 5

Option Price (At-The-Money)

If K = F (at-the-money), d = 0 and the option prices are

$$C(K=F) = P(K=F) = \sigma\sqrt{T}n(0) = \frac{\sigma\sqrt{T}}{\sqrt{2\pi}} \approx 0.4\,\sigma\sqrt{T}$$
 Straddle = $C + P \approx 0.8\,\sigma\sqrt{T}$
$$C_0(K=F) = P_0(K=F) = \frac{e^{-rT}\sigma\sqrt{T}}{\sqrt{2\pi}} \approx e^{-rT}\,0.4\,\sigma\sqrt{T}$$

Therefore the option price is proportional to the width (or stdev) of the distribution of the future price, $\sigma\sqrt{T}$, which is consistent with the intuition. Before we derive Black-Scholes formula, let's keep this relation between the volatility and the option price in mind. Even without the Black-Scholes formula (which is somewhat complicated), this relation should give you a very good intuition.

Greeks (risks of option)

Delta: sensitivity on the underlying price

$$\begin{split} \frac{\partial C}{\partial F} &= N(d), \quad \frac{\partial P}{\partial F} &= -N(-d) \quad \left(d = \frac{F - K}{\sigma \sqrt{T}}\right) \\ &\left(\frac{\partial C}{\partial F} - \frac{\partial P}{\partial F} = 1\right) \end{split}$$

N(d) measures how closely the call option price moves with the underlying stock, i.e., how much the option is in-the-money.

Gamma: convexity on the underlying price

$$\frac{\partial^2 C}{\partial F^2} = \frac{\partial^2 P}{\partial F^2} = \frac{n(d)}{\sigma \sqrt{T}}$$

Vega: sensitivity on the volatility

$$\frac{\partial C}{\partial \sigma} = \frac{\partial P}{\partial \sigma} = \sqrt{T} \, n(d)$$

Previous Homework (solution available)

- Derive the (forward) price of the digital(binary) call/put option struck at K at maturity T. The digital(binary) call/put option pays \$1 if S_T is above/below the strike K, i.e. $1_{S_T \geq K}/1_{S_T \leq K}$.
- ② The payoff of the call option, $\max(S_T K, 0)$ can be decomposed into two parts,

$$S_T \cdot 1_{S_T \geq K} - K \cdot 1_{S_T \geq K}$$
.

The first payout is the payout of the **asset-or-nothing** call option and the second payout if the binary call option multiplied with -K. What is the price of the asset-or-nothing call option?

① Using the joint distribution of B_t and B_t^* , derive the price of the call option struck at K and knock-out at K_1 (> K). First, generalize the joint CDF function $P(u < B_t, v < B_t^*)$ to σB_t . Next, derive the PDF on u by taking derivative on u. Then, integrate the payoff $(S_T - K)^+$ from K to K_1 . (Assume that the risk-free rate is zero, r = 0, so that $S_0 = F$. Otherwise the problem is too complicated.)