

BASES DE DADOS

Engenharia Informática regimes Diurno e Pós-Laboral

2º Ano 1.º Semestre 2018/19

Exercícios de treino

Normalização de Bases de Dados Relacionais

Objetivos

- Desenhar Diagramas de Dependências Funcionais.
- Normalizar bases de dados relacionais
- Transpor dados em formatos não relacionais para tabelas de bases de dados relacionais.
- Identificar os conceitos do Modelo Relacional em tabelas de dados.

Nota: os exercícios aqui apresentados devem ser realizados na modalidade de estudo autónomo.

Exercícios de conceitos

1. Analise a seguinte tabela, formada pelas colunas a, b, c e d.

a	b	C	d
101	505	202	you
101	505	202	must
404	505	202	study
606	707	303	hard

Escolha o diagrama de dependências funcionais que respeita os relacionamentos de dados da tabela (escolha uma resposta):

2. Considere o seguinte diagrama de dependências funcionais:

Escolha a tabela a partir da qual foi criado o diagrama (escolha uma resposta):

a)

a	b	С	d
101	606	303	data
101	707	606	is
404	808	202	gold
404	909	303	!

b)

a	b	С	d
101	505	303	data
101	505	303	data
404	909	202	scientist
404	909	202	scientist

c)

а	b	С	d
101	505	909	bad
404	909	606	data
101	505	808	bad
404	909	606	decisions

d)

а	b	U	d
101	505	303	data
101	505	202	data
404	909	303	security
404	909	404	security

3. Considere a seguinte tabela QUIZ, já com duas linhas de dados e formada pelas colunas col1, col2, col3 e col4. Nas duas linhas já inseridas ocorrem campos em branco.

col1	col2	col3	col4
	john		
jimmy			

Usando <u>apenas</u> os valores james, jimmy, john e josh, <u>complete</u> as linhas em falta e <u>adicione</u> o maior número possível de novas linhas na tabela QUIZ respeitando as seguintes regras:

- col1 -> col2
- col1 -> col3
- col3 -> col4
- Em cada linha tem que usar todos os quatro valores (james, jimmy, john e josh);
- Não podem existir linhas iguais na tabela;
- Todos os campos têm que estar preenchidos (inclusive os que estão neste momento vazios).

- **4.** Observe os seguintes diagrama de dependências funcionais. Para cada um, encontre a(s) dependência(s) que podem ser eliminadas por aplicação da regra de *transitividade*.
 - 4.1.

4.2.

5. No diagrama seguinte, a dependência *d3* pode ser eliminada por simplificação do diagrama. Mostre como.

6. Observe a seguinte tabela, formada pelas colunas col1, col2, col3 e col4.

col1	col2	col3	col4
101	505	404	101
202	707	404	606
303	808	505	202
606	909	505	101
101	303	404	505

Possíveis chaves primárias para a tabela poderiam ser (escolha duas respostas):

a) col1

d) (col1, col3)

b) col2

e) (col3, col4)

c) (col3, col1)

- 7. Considere a tabela DADOS1 (não representada) composta pelos atributos id1, data e nome. A chave primária da tabela DADOS1 é <id1, data>. Considere ainda a existência de uma tabela DADOS2 (não representada) que possui uma chave estrangeira para a tabela DADOS1. Esta chave estrangeira poderá ser (escolha uma resposta):
 - **a)** <id1, data>

c) Só data

b) Sóid1

d) id1 ou data

8. Observe a seguintes tabelas T1 e T2:

Т1

a	b	U	d
101	505	404	101
202	707	404	303
303	808	505	202
606	909	404	101
808	303	404	303

Т2

<u>a</u>	b	С
101	303	202
202	303	202
303	606	101
404	606	707

- **8.1.** De acordo com a estrutura e dados apresentados, qual das colunas a, b ou c da tabela T2 pode ser usada como chave estrangeira para a tabela T1?
 - a) Coluna a

c) Coluna c

b) Coluna b

- d) Nenhuma das colunas.
- **8.2.** De acordo com a estrutura e dados apresentados, qual das colunas a, b, c ou d da tabela $\mathbb{T}1$ pode ser usada como chave estrangeira para a tabela $\mathbb{T}2$?
 - a) Coluna a

d) Coluna d

b) Coluna b

e) Nenhuma das colunas.

c) Coluna c

9. Observe o seguinte diagrama de dependências funcionais obtido por análise da tabela TESTES (não representada).

Quantas tabelas resultarão da aplicação da 2ª Forma Normal à tabela TESTES? (escolha uma resposta)

a) 1

c) 3

b) 2

- **d)** 4
- **10.** Se determinada tabela não respeitar a 3ª Forma Normal (FN), isso significará que (escolha uma resposta):
 - a) A tabela não respeitará a 1ª FN.
 - b) A tabela não respeitará a 2ª FN.
 - c) A tabela não respeitará nem a 1ª FN nem a 2ª FN.
 - d) A tabela respeitará a 4ª FN.
 - e) Nenhuma das respostas anteriores.
- **11.** Se determinada tabela respeitar a 1ª Forma Normal (FN), poderá dizer-se que (escolha todas as respostas corretas):
 - a) A tabela provavelmente respeitará a 2ª FN.
 - **b)** A tabela provavelmente respeitará a 3ª FN.
 - c) A tabela poderá não respeitar a 2ª FN.
 - d) A tabela não contém redundância.
 - e) A tabela contém redundância.

- **12.** Observe a tabela PRODUCTS, que armazena dados de produtos e o preço de cada um (que variará consoante a marca). Sabe-se que:
 - Cada produto é identificado através da coluna prod id;
 - Cada produto pertencerá a uma ou mais categorias;
 - Cada marca é identificada através da coluna brand id;
 - Não existem marcas diferentes utilizando o mesmo nome;
 - Poderão existir produtos diferentes com nomes iguais.

PRODUCTS

prod_id	prod_name	prod_category	brand_id	brand_name	prod_price
10	Apple	Fruit; Bio	101	Jolygood	1.05
10	Apple	Fruit; Bio	606	Fruties	1.20
20	Nut	Dry fruits; Bio; Autumn	202	Greenfields	3.20
40	Pork meat	Fresh meat	101	Jolygood	3.45
20	Nut	Dry fruits; Bio; Autumn	303	Treelovers	3.20
30	Pork meat	Frozen meat; Fat meat	101	Jolygood	3.45

2.1.	Possíveis	chaves	primárias	para a	a tabela	serão	(escolha d	asut	respostas)	:
------	-----------	--------	-----------	--------	----------	-------	------------	------	------------	---

- a) prod id
- **b)** brand id
- c) (prod id, brand id)

- d) (prod_id, prod_category)
- e) (prod_name, brand_id)
- f) (prod id, brand name)
- **12.2.** Quais os possíveis resultados da aplicação da 1ª Forma Normal à tabela PRODUCTS (escolha duas respostas):
 - a) Tabela PRODUCTS (com menos colunas) e tabela PRODUCTS CATEGORIES
 - b) Só tabela PRODUCTS (com mais linhas)
 - c) Tabela PRODUCTS (com menos colunas), tabela PRODUCTS CATEGORIES e tabela BRANDS
 - d) Tabela PRODUCTS (com menos colunas) e tabela BRANDS
 - e) Só tabela PRODUCTS (com mais colunas)
 - f) Tabela PRODUCTS (com mais colunas) e tabela BRANDS
- **12.3.** Considere que é aplicada a 1ª Forma Normal à tabela (apenas às 6 linhas visíveis). Se for escolhida <u>a abordagem de normalização que gera redundância de informação</u>, com quantas linhas ficará a tabela (escolha uma resposta):
 - a) As mesmas 6 linhas;

d) 12

b) 7

e) 13

c) 10

13. Observe a tabela WEATHER, que armazena medições diárias por cada distrito de Portugal relativamente à temperatura média e da força/direção do vento. É possível ainda conhecer se determinado dia é feriado por consulta da coluna day_is_holiday.

WEATHER

district	day	day_is_holiday	avg_temperature	wind
Lisbon	2017-11-29	no	15°	strong, Northeast
Lisbon	2017-11-30	no	15°	weak, Northeast
Lisbon	2017-11-31	no	16°	weak, Northeast
Lisbon	2017-12-01	yes	15°	strong, Northeast
Coimbra	2017-11-29	no	18°	strong, West
Coimbra	2017-11-30	no	20°	strong, North
Coimbra	2017-11-31	no	21°	none
Coimbra	2017-12-01	yes	18°	weak, North
		• • •	•••	• • •

A estrutura da tabela WEATHER será modificada por aplicação (escolha uma resposta):

- a) Da 1ª Forma Normal;
- **b)** Da 1^a e da 2^a Formas Normais;
- c) Da 1ª e da 3ª Formas Normais;

- d) Da 2ª Forma Normal;
- e) Da 2ª e da 3ª Formas Normais.

Exercícios de aplicação

1. Observe o seguinte extrato de uma fatura simplificada relativa ao pagamento de refeições num restaurante. O restaurante regista as refeições e emite as faturas utilizando o sistema de informação Sage GesRestII, suportado por uma base de dados MySQL.

Figura 1 - Extrato de fatura do restaurante.

- **1.1.** Desenhe o Diagrama de Dependências Funcionais que melhor representa os relacionamentos de dados no sistema de informação. Considere para o diagrama apenas os dados indicados como relevantes na Figura 1.
- 1.2. Coloque numa só tabela os dados relevantes visíveis no talão.
- **1.3.** Descubra uma chave candidata na tabela da alínea anterior.
- **1.4.** Normalize a tabela da alínea 1.2. até à 3ª Forma Normal

2. Em Portugal, a instituição Santa Casa da Misericórdia é a gestora das apostas no jogo de azar Euromilhões. O sistema de informação utilizado permite armazenar todas as apostas dos jogadores em cada um dos sorteios. Informação sobre os dados armazenados pode ser consultada nos talões apresentados de seguida.

Em cada registo um jogador pode registar até 5 apostas (numeradas de 1 a 5). Em cada aposta o jogador escolherá 5 números e um 2 estrelas (cenário simplificado para este caso de estudo). Cada aposta tem um custo de 2 euros.

Em cada sorteio um jogador pode realizar vários registos.

Figura 2 - Talões de registo de apostas no jogo Euromilhões.

- **2.1.** Desenhe o Diagrama de Dependências Funcionais que melhor representa os relacionamentos de dados no sistema de informação.
- 2.2. Coloque numa tabela os dados visíveis de ambos os talões apresentados.
- 2.3. Descubra uma chave candidata na tabela da alínea anterior.
- 2.4. Normalize a tabela da alínea 2.2 até à 3ª Forma Normal.

3. Pretende-se uma base de dados para armazenar informação sobre as requisições de livros numa biblioteca.

A informação a armazenar é a seguinte:

- Número, nome, morada e telefone dos leitores;
- Cota, título, autores, ISBN e descrição dos livros;
- Número, data da requisição e data limite de entrega das requisições;
- Data real de entrega de cada livro requisitado.

Assuma os seguintes pressupostos:

- Numa requisição podem ser requisitados vários livros, por um só leitor, durante um período máximo de 10 dias úteis;
- Um leitor pode efectuar várias requisições e pode requisitar livros que já tenha requisitado anteriormente;
- 3.1. Desenhe o Diagrama de Dependências Funcionais.
- **3.2.** Coloque numa só tabela os dados de uma requisição com dois livros.
- 3.3. Descubra uma chave candidata na tabela da alínea anterior.
- **3.4.** Normalize a tabela até à 3^a Forma Normal.

4. A Cruz Vermelha Portuguesa tem, na sua base de dados, uma tabela denominada Apoios.

Apoios

família	data_inic	data_fim	ajudas_prestadas	contacto	filho1	filho2	filho3
F1234	25-02-2014	25-03-2015	Comida; Roupa	960034777	João Carmo	Rita Carmo	Susana Carmo
F2020	27-02-2014	27-02-2015	Comida		Rui Silva		
F3030	3-03-2014	3-02-2015	Comida; Roupa	244203495			
F1234	12-08-2015	12-11-2015	Comida; Medicamentos	960034777	Rita Carmo	Susana Carmo	
F2020	12-09-2015		Medicamentos; Educação	931230098	Rui Silva	Pedro Silva	

A tabela *Apoios* armazena dados acerca dos apoios mensais previstos para cada família durante o período de tempo que o apoio durar. Cada família não pode ter dois apoios ao mesmo tempo. Os dados dos contactos apresentados são os existente no período que durou o apoio e podem variar.

Observando a tabela conclui-se que, por exemplo:

- A família com identificador *F1234* recebeu apoio desde *25-02-2014* até *25-03-2015*, tendo nesse período 3 filhos ao seu encargo;
- A mesma família, com identificador *F1234*, recebeu apoio desde *12-08-2015* até *12-11-2015*, tendo nesse período 2 filhos ao seu encargo;
- A família F2020 já recebeu dois apoios, o último dos quais ainda está em vigor. No primeiro apoio a família não tinha contacto telefónico e tinha apenas um filho.
- **4.1.** Desenhe o Diagrama de Dependências Funcionais que melhor representa os relacionamentos de dados na tabela *Apoios*.
- **4.2.** Descubra uma chave candidata na tabela *Apoios*.
- **4.3.** Normalize a tabela *Apoios* até à 3^a Forma Normal.
- **5.** Considere o seguinte Diagrama que representa as relações entre dados da tabela T (a tabela já respeita a 1ª Forma Normal).

- **5.1.** Identifique a chave primária da tabela ${\mathbb T}$.
- **5.2.** Normalize a tabela T até à 3.ª Forma Normal.