INTERMEDIATE MICROECONOMICS

Camila Niño Fernández. Session 10: Second Best Mechanisms

Fall 2018

Two flatmates are considering whether to buy a coffee machine that costs c=\$50. They each have private valuation v_i , and report \hat{v}_i , i=1,2. To decide whether they will buy the coffee machine, the flatmates use an incentive compatible mechanism M that outputs the decision $x^M(\hat{v}_1,\hat{v}_2)\in 0,1$ and implements some transfers $t^M(\hat{v})=(t_1^M(\hat{v}),t_2^M(\hat{v}))$, with no deficits.

- 1. What would be the conditions for the mechanism to be:
 - Incentive compatible?
 - Without deficit?
 - Budget balanced?
 - Efficient?

In the following, we just need the decision mechanism to run no deficits and be incentive compatible

Incentive Compatible

Incentive compatibility means that we want agents to reveal their true valuations. That is for every i=1,2, and every report \hat{v}_{-i} , it is better to report v_i than any other \hat{v}_i :

$$v_{i}x^{M}(v_{i},\hat{v}_{-i}) \ - \ t_{i}^{M}(v_{i},\hat{v}_{-i}) \geq v_{i}x^{M}(\hat{v}_{i},\hat{v}_{-i}) \ - \ t_{i}^{M}(\hat{v}_{i},\hat{v}_{-i})$$

Without Deficit

The no deficit constraint is:

$$t_1^M(\hat{v}) + t_2^M(\hat{v}) \ge cx^M(\hat{v})$$

Budget balanced

The no budget balanced constraint is:

$$t_1^M(\hat{v}) + t_2^M(\hat{v}) = cx^M(\hat{v})$$

Efficient

A mechanism is efficient if it maximizes total utility, that is if the coffee machine is bought when the flatmates' sum of valuations is more than \$50. The condition for efficiency is therefore:

$$v_1 + v_2 \ge c \Rightarrow x^M(\hat{v}_1, \hat{v}_2) = 1$$

2. Assume flatmate 1 has private valuation $v_1=25$ and flatmate 2 has $v_2=30$. If the flatmates were to use the VCG mechanism to decide whether to buy the coffee machine, what would be the outcome? Would it be efficient? Would it run a deficit?

• It is a dominant strategy to report truthfully with VCG mechanism, therefore the flatmates report $\hat{v}_1=25$ and $\hat{v}_2=30$. Based on these truthful reports, the VCG mechanism implements the efficient choice $x^M(\hat{v}_1,\hat{v}_2)=1$, since total utility is 55 with the coffee machine and 0 without the coffee machine.

• Flatmates' transfers are:

•
$$F_1 = 30 - 0 = 30$$

•
$$F_2 = 25 - 0 = 25$$

• Flatmates' transfers are:

•
$$F_1 = 30 - 0 = 30$$

•
$$F_2 = 25 - 0 = 25$$

• The VCG mechanism runs a deficit because flatmates do not put money on the table to buy their coffee machine

3. Consider the following mechanism: the coffee machine is bought as soon as $\hat{v}_1 + \hat{v}_2 = c$, and the flatmates make a transfer $t_1 = t_2 = \$25$ each if $x^M(\hat{v}_1, \hat{v}_2) = 1$. What does the decision rule look like on a graph? Will the flatmates report truthfully? Does this mechanism run a deficit?

The provision region is a line:

• The mechanism is not incentive compatible: suppose flatmate 2 reports $\hat{v_2}$ at \$15 as in the graph:

- The mechanism is not incentive compatible: suppose flatmate 2 reports \hat{v}_2 at \$15 as in the graph:
 - If $v_1 \ge 25$ then flatmate 1 is better off reporting $\hat{v_1} = \$35$, paying \$25 and getting positive payoff, whereas if he reports anything different from \$35 the good will not be provided

- The mechanism is not incentive compatible: suppose flatmate 2 reports $\hat{v_2}$ at \$15 as in the graph:
 - If $v_1 \geq 25$ then flatmate 1 is better off reporting $\hat{v_1} = \$35$, paying \$25 and getting positive payoff, whereas if he reports anything different from \$35 the good will not be provided
 - If $\upsilon <$ 25 then flatmate 1 truthfully reports and get utility 0 (the good is not provisioned), instead of negative utility if the good is provisioned.

• The mechanism is budget balanced as flatmates pay each \$25 as soon as $x^{M}(\hat{v_1}, \hat{v_2}) = 1$

4. Consider another mechanism: the coffee machine is bought as soon as $\hat{v}_1 + \hat{v}_2 \geq c$, and the flatmates make a transfer $t_1 = t_2 = \$25$ each if $x^M(\hat{v}_1,\hat{v}_2) = 1$. What does the decision rule look like on a graph? Will the flatmates report truthfully? Does this mechanism run a deficit?

The provision region is now a large area:

- As the previous decision rule, it is not incentive compatible but it is budget balanced
- It is efficient in the sense that $x^M = 1$ as soon as both flatmates' valuations are above \$50.

5. Now consider the mechanism in which flatmate 1 makes payment $t_1 = \$35$ and flatmate 2 makes payment $t_2 = \$15$ each if $x^M(\hat{v}_1,\hat{v}_2) = 1$ if $\hat{v}_1 > t_1$ and $\hat{v}_2 > t_2$. What does the decision rule look like on a graph? Will the flatmates report truthfully? Does this mechanism run a deficit?

The provision region is now a rectangle:

- This mechanism is incentive compatible: from flatmate 1's point of view, either
 - If $v_1 \geq 35$, then the flatmate 1 is better off reporting his true value than reporting $\hat{v_1} < 35$: if flatmate 2 reports below 15, the good is not provisioned no matter what flatmate 1 does, and if flatmate 2 reports above 15, flatmate 1 prefers reporting v_1 to get the good provisioned

- This mechanism is incentive compatible: from flatmate 1's point of view, either
 - If $v_1 \geq 35$, then the flatmate 1 is better off reporting his true value than reporting $\hat{v_1} < 35$: if flatmate 2 reports below 15, the good is not provisioned no matter what flatmate 1 does, and if flatmate 2 reports above 15, flatmate 1 prefers reporting v_1 to get the good provisioned
 - If $v_1 < 35$, then flatmate 1 is better off reporting v_1 so that the good is not provisioned, in which case his payoff is 0, rather than $v_1 35 < 0$

• The mechanism does not run a deficit since the flatmates pay 35 + 15 = 50 if $x^M = 1$

- The mechanism does not run a deficit since the flatmates pay 35 + 15 = 50 if $x^M = 1$
- It can only be second-best efficient since the good is not provisioned every time $v_1+v_2\geq 50$

Assume there are 4 buyers and 4 sellers for a single type of good. Each seller has one unit of this good to sell. Buyers' and sellers' good's valuations are the following: $v_B^1=10$, $v_B^2=10$, $v_B^3=8$, $v_B^4=5$ and $v_S^1=12$, $v_S^2=10$, $v_S^3=9$, $v_S^4=4$.

1. How many trades take place if the market designer arbitrarily sets the price to (a) 12, (b) 10, (c) 8 or (d) 4?

a. No buyer is willing to pay 12, so no trade takes place.

- a. No buyer is willing to pay 12, so no trade takes place.
- b. 2 buyers are ready to buy the good for 10, and 3 sellers are ready to sell it for 10, so 2 exchanges take place

- a. No buyer is willing to pay 12, so no trade takes place.
- b. 2 buyers are ready to buy the good for 10, and 3 sellers are ready to sell it for 10, so 2 exchanges take place
- c. 3 buyers are ready to buy the good for 8, and 1 sellers are ready to sell it for 8, so 1 exchange takes place

- a. No buyer is willing to pay 12, so no trade takes place.
- b. 2 buyers are ready to buy the good for 10, and 3 sellers are ready to sell it for 10, so 2 exchanges take place
- c. 3 buyers are ready to buy the good for 8, and 1 sellers are ready to sell it for 8, so 1 exchange takes place
- d. All buyers are ready to buy the good for 4, and 1 seller is ready to sell it for 4, so 1 exchange takes place

2. Place sellers and buyers values on a graph. What prices result from the adapted second price auction described in the slides for large markets? How many trades are realized?

- Only one trade is realized:
 - Buyer 1 pays 10 and seller 1 pays 9, such that buyer 1 makes a transfer of 1 to buying seller

3. Illustrate why this mechanism is incentive compatible by looking at buyers and sellers' possible deviations from revealing their true valuations.

Let us take the buyers' side

- Buyer 1:
 - If buyer 1 reveals $\hat{v}_1>v_1$, he still gets to trade at the same price, hence he is indifferent
 - If he reveals $\hat{v}_1 < v_1$, then either $\hat{v}_1 > \hat{v}_2$ and he still gets to trade at the same price, or $\hat{v}_1 < \hat{v}_2$ and he misses the trade

- Buyer 2:
 - If buyer 2 reveals $\hat{v}_2 > v_2$, then either $\hat{v_1} > \hat{v_2}$ and he does not get to trade, or $\hat{v_1} < \hat{v_2}$ and he gets to trade at price $\hat{v_1} = v_1 = 10$ but still gets zero payoff.
 - If buyer 2 reveals $\hat{v}_2 < v_2$ he does not get to trade

- Buyer 2:
 - If buyer 2 reveals $\hat{v}_2 > v_2$, then either $\hat{v_1} > \hat{v_2}$ and he does not get to trade, or $\hat{v_1} < \hat{v_2}$ and he gets to trade at price $\hat{v_1} = v_1 = 10$ but still gets zero payoff.
 - If buyer 2 reveals $\hat{v}_2 < v_2$ he does not get to trade
- Buyers 3 and 4 behave identically to buyer 2

