The Diagonal Argument, Clarified and Generalized

poypoyan

3 Nov 2021

Abstract

The diagonal argument is a key ingredient in proving both the uncountability of 2^{ω} (which is a celebrated Cantor's usage of the argument) and the same-named diagonal lemma (which is used in proving Gödel's first incompleteness theorem). In this short note we present a simple formulation of the diagonal argument that is applicable to both results, and hopefully to a lot more.

1 Introduction

Well the abstract introduced already. We think that doing this formulation "exercise" provided us with a clearer understanding of the concepts surrounding diagonal lemma and Cantor's diagonal argument. Now let's get into the main thing!

2 Diagonal Argument

Lemma 2.1. Let A, B, C be sets such that:

- 1. C is a set of functions from $A \to B$.
- 2. There exists a bijection $f: A \to C$.

Then there exists a function $d: A \to B$ such that d(x) = (f(x))(x).

Proof. Trivial! For every $x \in A$, f(x) is unique in C. Letting c = f(x), c(x) is unique in B because $c: A \to B$. \square

3 Cantor's Diagonal Argument

We follow Cantor's original diagonal argument for the uncountability of 2^{ω} in [1], which he further used to show the uncountability of the set of real numbers \mathbb{R} . We'll interpret 2^{ω} as the set of all functions from $\omega \to 2$.

The proof starts by assuming that there is a bijection $f:\omega\to 2^\omega$. This f is actually the indexing of elements of 2^ω , more commonly shown as the "listing" of infinite binary sequences. Applying Lemma 2.1 to $A=\omega$, B=2, $C=2^\omega$, and f gives the diagonal function $d:\omega\to 2$. What we really need is $d':\omega\to 2$ such that d'(x)=1-d(x); d' is more commonly shown as the "diagonal" sequence constructed from the one's complement of the diagonal bits in the list. Now one may notice that for all $c\in 2^\omega$, $c\neq d'$ because $c(f^{-1}(c))\neq d'(f^{-1}(c))$. Hence $d'\notin 2^\omega$, but this is in contradiction to the definition of 2^ω . Therefore the initial assumption of existence of bijection $f:\omega\to 2^\omega$ is false, and this completes the proof.

One may notice that a variant of the more general Cantor's theorem, $2^A > A$ for any set A, can be proven similarly.

4 Gödel-Carnap Diagonal Lemma

We'll just do an informal sketch. Setup first: let Γ be a logic on a language \mathcal{L} , $N \subset \mathcal{L}$ be the set of all "objects of study" of Γ , $P \subset \mathcal{L}$ be the set of all "definable" propositions, and $C \subset \mathcal{L}$ be the set of all definable predicates with only one free variable x. For example, if $\Gamma = \mathsf{PA}$, (Classical) Peano Arithmetic, then the strings "S0", "SS0" $\in N$, and " $x + \mathsf{S0} = \mathsf{SS0}$ " $\in C$. In an abuse of notation, while $c \in C$ is a string, it can also be treated as a function $c : N \to P$. For example in PA , " $x + \mathsf{S0} = \mathsf{SS0}$ " ("S0") = "S0 + S0 = SS0".

One requirement of the lemma is the existence of the so-called Gödel numbering which is an injective (total) function $g: \mathcal{L} \to N$. We can now apply the diagonal argument: applying Lemma 2.1 to $A = \{x \in N \mid g^{-1}(x) \in C\}$, B = P, C is itself, and $f = g^{-1}$ restricted to A, gives the diagonal function $d: A \to B$ such that $d(x) = (g^{-1}(x))(x)$. We can now present a strong variant of the lemma:

Lemma 4.1. If d is definable in \mathcal{L} (in short, $d \in C$) and for all $c_1, c_2 \in C$, $c_1 \circ g \circ c_2 \in C$, then for every $c \in C$, there exists a predicate $x \in C$ such that $x = c \circ g \circ x$.

Proof. Define a new predicate $h = c \circ g \circ d$. This is in C because both $c, d \in C$. We can now define $x = h \circ g \circ h$. This works because $h \circ g \circ h = c \circ g \circ d \circ (g \circ h) = c \circ g \circ (g^{-1}(g \circ h))(g \circ h) = c \circ g \circ (h \circ g \circ h)$.

This proof is based from Section 2.2 of [3] ¹ which ultimately came from [2]. The name of lemma is not due to the resemblance to the statement, but to the usage of a diagonal function in its proof!

Lastly, the reason we say that the presented lemma is "strong" is that the more commonly presented property of x is something like $\Gamma \vdash \forall n : x(n) \leftrightarrow (c \circ g \circ x)(n)$ ², and surely that is weaker than $x = c \circ g \circ x$.

References

- [1] Georg Cantor. Ueber eine elementare frage der mannigfaltigketislehre. Jahresbericht der Deutschen Mathematiker-Vereinigung, 1:75–78, 1891.
- [2] R. G. Jeroslow. Redundancies in the hilbert-bernays derivability conditions for gödel's second incompleteness theorem. *The Journal of Symbolic Logic*, 38(3):359–367, 1973.
- [3] Saeed Salehi. On the diagonal lemma of gödel and carnap. The Bulletin of Symbolic Logic, 26(1):80-88, 2020.

 $^{^1 \}text{The} ``\varrho"$ there is defined as $g \circ d$ here.

²Note though that the weaker property requires that " \forall ", " \leftrightarrow " $\in \mathcal{L}$.