Домашнее задание на 03.06 (Алгебра)

Емельянов Владимир, ПМИ гр №247

№1 Пусть

$$g_1 = x^2y + 2z^2, \quad g_2 = y^2 - yz$$

$$L(g_1) = x^2y, \quad L(g_2) = y^2, \quad lcm(x^2y, y^2) = x^2y^2,$$

$$S(g_1, g_2) = \frac{x^2y^2}{x^2y}g_1 - \frac{x^2y^2}{y^2}g_2 = yg_1 - x^2g_2 = y(x^2y + 2z^2) - x^2(y^2 - yz) =$$

$$x^2y^2 + 2yz^2 - x^2y^2 + x^2yz = x^2yz + 2yz^2$$

так как:

$$z \cdot g_1 = z(x^2y + 2z^2) = x^2yz + 2z^3$$

вычтем:

$$(x^2yz + 2yz^2) - (x^2yz + 2z^3) = 2yz^2 - 2z^3$$

Добавляем $g_3 = yz^2 - z^3$

Вычисляем $S(g_1, g_3)$:

$$L(g_1) = x^2 y, \quad L(g_3) = yz^2, \quad lcm(x^2 y, yz^2) = x^2 yz^2,$$

$$S(g_1, g_3) = \frac{x^2 yz^2}{x^2 y} g_1 - \frac{x^2 yz^2}{yz^2} g_3$$

$$= z^2 g_1 - x^2 g_3 = z^2 (x^2 y + 2z^2) - x^2 (yz^2 - z^3) = x^2 yz^2 + 2z^4 - x^2 yz^2 + x^2 z^3 = x^2 z^3 + 2z^4$$

старший моном x^2z^3 не делится ни на один старший моном базиса, поэтому добавляем $g_4=x^2z^3+2z^4$

Теперь базис: $\{g_1, g_2, g_3, g_4\} = \{x^2y + 2z^2, y^2 - yz, yz^2 - z^3, x^2z^3 + 2z^4\}.$

Проверяем остальные S-многочлены:

•
$$S(q_2, q_3) = 0$$
,

- $S(q_2, q_4)$ редуцируется к 0,
- $S(g_3, g_4)$ редуцируется к 0,
- $S(g_1, g_4)$ редуцируется к 0.

Все S-многочлены редуцируются к нулю, поэтому базис Грёбнера идеала I:

$$G = \{x^2y + 2z^2, y^2 - yz, yz^2 - z^3, x^2z^3 + 2z^4\}.$$

Теперь редуцируем $f = x^3y^2z + bxyz^3$ на G:

$$x^3z \cdot g_2 = x^3z(y^2 - yz) = x^3y^2z - x^3yz^2,$$

$$f - x^3 z g_2 = (x^3 y^2 z + b x y z^3) - (x^3 y^2 z - x^3 y z^2) = b x y z^3 + x^3 y z^2.$$

Остаток $r_1 = x^3yz^2 + bxyz^3$.

$$xz^{2} \cdot g_{1} = xz^{2}(x^{2}y + 2z^{2}) = x^{3}yz^{2} + 2xz^{4},$$

$$r_{1} - xz^{2}q_{1} = (x^{3}yz^{2} + bxyz^{3}) - (x^{3}yz^{2} + 2xz^{4}) = bxyz^{3} - 2xz^{4}$$

Остаток $r_2 = bxyz^3 - 2xz^4$.

$$bxz \cdot g_3 = bxz(yz^2 - z^3) = bxyz^3 - bxz^4,$$

$$r_2 - bxzq_3 = (bxyz^3 - 2xz^4) - (bxyz^3 - bxz^4) = (b-2)xz^4$$

Остаток $r_3 = (b-2)xz^4$.

Старший моном $L(r_3) = xz^4$ не делится ни на один старший моном базиса G, так как:

- $L(g_1) = x^2 y$ не делит (степень x выше)
- $L(g_2) = y^2$ не делит (отсутствует y)
- $L(g_3) = yz^2$ не делит (отсутствует y)

• $L(q_4) = x^2 z^3$ не делит (степень x выше)

Поэтому остаток

$$r_3 = (b-2)xz^4$$

Остаток равен нулю тогда и только тогда, когда b-2=0, то есть b=2. При b=2 многочлен f принадлежит идеалу I, так как редуцируется к нулю относительно базиса Грёбнера. При других значениях b остаток ненулевой, поэтому $f \notin I$.

Таким образом, единственное значение параметра b, при котором $f \in I$, это b = 2.

Ответ: b = 2

№2 Пусть

$$f_1 = y^3 + 3xy$$
, $f_2 = xy^2 + 2x^2 + y$, $f_3 = x^2y - y^2$.

Старшие мономы при порядке $x \succ y$:

- $LM(f_1) = xy$ (так как xy содержит x, а y^3 не содержит x, и $x \succ y$).
- LM $(f_2) = x^2$ (моном x^2 старше xy^2 и y).
- $LM(f_3) = x^2y$ (моном x^2y старше y^2).

Вычисляем ѕ-многочлены

• $S(f_1, f_2)$:

$$S(f_1, f_2) = \frac{\operatorname{lcm}(xy, x^2)}{xy} f_1 - \frac{\operatorname{lcm}(xy, x^2)}{x^2} f_2 = xf_1 - yf_2$$

Подставляем:

$$xf_1 = x(y^3 + 3xy) = xy^3 + 3x^2y, \quad yf_2 = y(xy^2 + 2x^2 + y) = xy^3 + 2x^2y + y^2$$

$$S(f_1, f_2) = (xy^3 + 3x^2y) - (xy^3 + 2x^2y + y^2) = x^2y - y^2 = f_3$$

Остаток 0, так как f_3 уже в базисе.

• $S(f_1, f_3)$:

$$S(f_1, f_3) = \frac{\operatorname{lcm}(xy, x^2y)}{xy} f_1 - \frac{\operatorname{lcm}(xy, x^2y)}{x^2y} f_3 = x f_1 - f_3$$

Подставляем:

$$xf_1 = x(y^3 + 3xy) = xy^3 + 3x^2y, \quad f_3 = x^2y - y^2,$$

$$S(f_1, f_3) = (xy^3 + 3x^2y) - (x^2y - y^2) = xy^3 + 2x^2y + y^2$$

Редуцируем по базису $\{f_1, f_2, f_3\}$:

Старший моном $2x^2y$ делится на $LM(f_3) = x^2y$ с частным 2:

$$2f_3 = 2(x^2y - y^2) = 2x^2y - 2y^2,$$

$$(xy^3 + 2x^2y + y^2) - (2x^2y - 2y^2) = xy^3 + 3y^2$$

Старший моном xy^3 делится на $LM(f_1) = xy$ с частным $\frac{1}{3}y^2$:

$$\frac{1}{3}y^2f_1 = \frac{1}{3}y^2(y^3 + 3xy) = \frac{1}{3}y^5 + xy^3,$$

$$(xy^3 + 3y^2) - \left(\frac{1}{3}y^5 + xy^3\right) = -\frac{1}{3}y^5 + 3y^2$$

Моном $-\frac{1}{3}y^5$ не делится на старшие мономы базиса. Добавляем новый многочлен $f_4=y^5-9y^2$ (умножив остаток на -3 для удобства).

Теперь базис: $\{f_1, f_2, f_3, f_4\}$.

• $S(f_2, f_3)$:

$$S(f_2, f_3) = \frac{\operatorname{lcm}(x^2, x^2y)}{x^2} f_2 - \frac{\operatorname{lcm}(x^2, x^2y)}{x^2y} f_3 = y f_2 - f_3$$

Подставляем:

$$yf_2 = y(xy^2 + 2x^2 + y) = xy^3 + 2x^2y + y^2, \quad f_3 = x^2y - y^2,$$

$$S(f_2, f_3) = (xy^3 + 2x^2y + y^2) - (x^2y - y^2) = xy^3 + x^2y + 2y^2$$

Редуцируем по базису $\{f_1, f_2, f_3, f_4\}$:

Старший моном x^2y делится на $LM(f_3) = x^2y$ с частным 1:

$$f_3 = x^2y - y^2$$
, $S - f_3 = (xy^3 + x^2y + 2y^2) - (x^2y - y^2) = xy^3 + 3y^2$

Как и ранее, редуцируется до $-\frac{1}{3}y^5+3y^2$, который редуцируется к 0 с помощью f_4 .

Вычисляем остальные S-многочлены $(S(f_1, f_4), S(f_2, f_4), S(f_3, f_4))$, и все редуцируются к 0. Таким образом, базис Грёбнера: $\{f_1, f_2, f_3, f_4\} = \{y^3 + 3xy, xy^2 + 2x^2 + y, x^2y - y^2, y^5 - 9y^2\}$.

Для получения минимального редуцированного базиса:

- (a) Удаляем многочлены, старшие мономы которых делятся на старшие мономы других многочленов.
- (b) Делаем старшие коэффициенты равными 1.
- (с) Редуцируем каждый многочлен по остальным.

Старшие мономы:

- $LM(f_3) = x^2y$ делится на $LM(f_2) = x^2$, удаляем f_3 .
- $LM(f_4) = y^5$ не делится на другие, оставляем.
- $LM(f_1) = xy$ не делится на x^2 или y^5 , оставляем.
- $LM(f_2) = x^2$ не делится на xy или y^5 , оставляем.

Базис после минимизации: $\{f_1, f_2, f_4\} = \{y^3 + 3xy, xy^2 + 2x^2 + y, y^5 - 9y^2\}.$

Делаем старшие коэффициенты равными 1:

$$g_1 = \frac{1}{3}f_1 = \frac{1}{3}y^3 + xy$$
, $g_2 = \frac{1}{2}f_2 = \frac{1}{2}xy^2 + x^2 + \frac{1}{2}y$, $g_4 = f_4 = y^5 - 9y^2$

Теперь редуцируем каждый полином по остальным

• Редукция g_1 по $\{g_2, g_3\}$

$$g_1 = x y + \frac{1}{3} y^3$$

Ведущий моном xy. x^2 (ведущий моном из g_2) не делит xy. y^5 из g_3 явно не делит ни xy, ни y^3 .

Следовательно, g_1 не изменяется : он уже «редуцирован» относительно g_2 и g_3 .

• Редукция g_2 по $\{g_1, g_3\}$

$$g_2 = x^2 + \frac{1}{2}xy^2 + \frac{1}{2}y$$

Старший моном x^2 . Ни xy (из g_1), ни y^5 (из g_3) не делят x^2 . Потому x^2 остаётся.

Следующий по старшинству моном $\frac{1}{2}xy^2$. Здесь $LM(g_1) = xy$ делит xy^2 .

$$\frac{xy^2}{xy} = y$$

Значит, есть что вычесть:

$$y \cdot g_1 = y \left(x y + \frac{1}{3} y^3 \right) = x y^2 + \frac{1}{3} y^4$$

Чтобы убрать ровно $\frac{1}{2} \, x \, y^2$, нам нужно взять $\frac{1}{2}$ от этого:

$$\frac{1}{2}(y\,g_1) = \frac{1}{2}\,x\,y^2 + \frac{1}{6}\,y^4.$$

Поэтому вычитаем из g_2 именно $\frac{1}{2} y g_1$:

$$g_2 - \frac{1}{2} y g_1 = (x^2 + \frac{1}{2} x y^2 + \frac{1}{2} y) - (\frac{1}{2} x y^2 + \frac{1}{6} y^4) = x^2 + \frac{1}{2} y - \frac{1}{6} y^4$$

После этой вычиталки $\frac{1}{2}\,x\,y^2$ исчез, однако вместо него появился моном $-\frac{1}{6}y^4$. Теперь новое невырожденное сочетание равно

$$\tilde{g}_2 = x^2 + \frac{1}{2}y - \frac{1}{6}y^4$$

Проверим оставшиеся мономы:

 x^2 уже не делится ни на xy (из g_1), ни на y^5 (из g_3).

 $-\frac{1}{6}y^4$. Здесь y^5 не делит y^4 , а xy не делит y^4 .

 $\frac{1}{2}y$ тем более не делится ни на xy, ни на y^5 .

Значит, \tilde{g}_2 больше не редуцируется, и мы присваиваем:

$$g_2' := x^2 - \frac{1}{6}y^4 + \frac{1}{2}y$$

• Редукция g_3 по $\{g_1, g_2'\}$

$$g_3 = y^5 - 9y^2$$

Ведущий моном y^5 . Ни xy (из g_1), ни x^2 (из g_2') не делят y^5 . Обратный моном $-9y^2$ тоже не делится ни на xy, ни на x^2 . Поэтому g_3 остаётся без изменений.

Получаем редуцированный минимальный базис Грёбнера

$$\left\{ g_1, g_2', g_3 \right\} = \left\{ xy + \frac{1}{3}y^3, x^2 - \frac{1}{6}y^4 + \frac{1}{2}y, y^5 - 9y^2 \right\}$$
Other:
$$\left\{ xy + \frac{1}{3}y^3, x^2 - \frac{1}{6}y^4 + \frac{1}{2}y, y^5 - 9y^2 \right\}$$

№3 Для решения задачи построим базис Грёбнера идеала $I=(f_1,f_2),$ где $f_1=x^2y+xz-2z^2,\,f_2=yz-1,$ в кольце $\mathbb{R}[x,y,z].$

Найдем $S(f_1, f_2)$.

Наименьшее общее кратное одночленов:

$$HOK(L(f_1), L(f_2)) = HOK(x^2y, yz) = x^2yz.$$

Коэффициенты:

$$m_1 = \frac{x^2yz}{x^2y} = z, \quad m_2 = \frac{x^2yz}{yz} = x^2.$$

S-многочлен:

$$S(f_1, f_2) = z \cdot f_1 - x^2 \cdot f_2 = z(x^2y + xz - 2z^2) - x^2(yz - 1) =$$

$$= x^2yz + xz^2 - 2z^3 - x^2yz + x^2 = xz^2 - 2z^3 + x^2$$

Многочлен

$$S(f_1, f_2) = x^2 + xz^2 - 2z^3$$

Старший член

$$L(S) = x^2$$

Одночлен x^2 не делится на $L(f_1) = x^2 y$ (так как отсутствует y).

Одночлен x^2 не делится на $L(f_2) = yz$.

Значит, $S(f_1, f_2)$ нередуцируем относительно F. Добавляем его к базису:

$$f_3 = x^2 + xz^2 - 2z^3$$

Теперь

$$F = \{f_1, f_2, f_3\}$$

Проверим все пары:

• $S(f_1, f_3)$:

$$HOK(L(f_1), L(f_3)) = HOK(x^2y, x^2) = x^2y$$

$$S(f_1, f_3) = y \cdot f_3 - 1 \cdot f_1 = y(x^2 + xz^2 - 2z^3) - (x^2y + xz - 2z^2) = xyz^2 - 2yz^3 - xz + 2z^2$$

Редуцируем относительно F:

$$xyz^2 = xz \cdot (yz) \xrightarrow{f_2} xz \cdot 1 = xz, \quad -2yz^3 = -2z^2 \cdot (yz) \xrightarrow{f_2} -2z^2 \cdot 1 = -2z^2.$$

Подставляем:

$$S(f_1, f_3) = (xz - 2z^2) - xz + 2z^2 = 0.$$

Результат: $S(f_1, f_3) \xrightarrow{F} 0$.

• $S(f_2, f_3)$:

$$HOK(L(f_2), L(f_3)) = HOK(yz, x^2) = x^2yz,$$

$$S(f_2, f_3) = x^2 \cdot f_2 - yz \cdot f_3 = x^2(yz - 1) - yz(x^2 + xz^2 - 2z^3) =$$

$$-x^2 + xyz^3 - 2yz^4$$

Редуцируем относительно F:

$$xyz^3 = xz^2 \cdot (yz) \xrightarrow{f_2} xz^2 \cdot 1 = xz^2, \quad -2yz^4 = -2z^3 \cdot (yz) \xrightarrow{f_2} -2z^3 \cdot 1 = -2z^3.$$

Подставляем:

$$S(f_2, f_3) = -x^2 + xz^2 - 2z^3 = -f_3 \xrightarrow{f_3} 0.$$

Результат: $S(f_2, f_3) \xrightarrow{F} 0$.

Так как все S-многочлены редуцируются к $0, F = \{f_1, f_2, f_3\}$ — базис Грёбнера идеала I.

По следствию из свойств базиса Грёбнера:

Если G — базис Грёбнера идеала I относительно лексикографического порядка x>y>z, то $G\cap\mathbb{R}[x,y]$ порожедает идеал $I\cap\mathbb{R}[x,y]$.

В базисе F многочлены, не содержащие z:

- f_1 и f_2 содержат z,
- $f_3 = x^2 + xz^2 2z^3$ содержит z.

Нет ненулевых многочленов без z. Однако заметим, что f_3 можно редуцировать, используя f_2 :

$$f_3 = x^2 + xz^2 - 2z^3 \xrightarrow{f_2} x^2 + x \cdot (z \cdot z) \cdot z - 2z^3 \cdot z = x^2 + x \cdot 1 \cdot z - 2 \cdot 1 \cdot z = x^2 + xz - 2z.$$

Ho это не устраняет z.

Перепишем f_3 , выразив z через y из f_2 :

$$f_2 = yz - 1 = 0 \implies z = \frac{1}{y} \quad (y \neq 0).$$

Подставим в f_3 :

$$f_3 = x^2 + x \left(\frac{1}{y}\right)^2 - 2\left(\frac{1}{y}\right)^3 = x^2 + \frac{x}{y^2} - \frac{2}{y^3}.$$

Умножим на y^3 , чтобы получить многочлен:

$$g = x^2y^3 + xy - 2 \in \mathbb{R}[x, y]$$

Так как g получен из элементов идеала I, то $g \in I \cap \mathbb{R}[x,y]$.

Проверим, что $I \cap \mathbb{R}[x,y] = (g)$

- $g = x^2y^3 + xy 2$ нередуцируем относительно F (так как не содержит z)
- Любой многочлен $h \in I \cap \mathbb{R}[x,y]$ должен делиться на g: если h не делится на g, то остаток от деления h на g лежит в $I \cap \mathbb{R}[x,y]$ и имеет меньшую степень, что противоречит минимальности g.

Таким образом, $I \cap \mathbb{R}[x,y] = (g)$

Ответ:
$$I \cap \mathbb{R}[x,y] = (x^2y^3 + xy - 2)$$

№4