(60 min, Hilfsmittel: vorgegebene Formelsammlung, Taucheurechner)

L	Einem mit Biomasse behetzten Dampferzeuger wird ein Bremstoffenergiestrom von #g=2##W zugeführt, der energetische Wirkungsgrad des Dampferzeugers Begt bei
	1/4 = 989, the Dampferzeugung erfolge bei konstanter Temperatur von tw = 200°C die
6P 2P	Abgassassiritistemperatur betrage t = 250°C
	 a) Berechnen Sie den exergetischen Wirkungsgrad η_{es} des Dampferzeugers. (T) 233 K)
	 b) Aus welchen (zwei) über den Abgasverlust hinnes gehenden Verlustarten remiltiert der
	gegenüber Ng geringere Wirkungsgrad Ver?
2.	Skizzieren Sie das Schaltbild für eine reine Gegendruckturbine.
2P	In einer Anlag, deren Turbine eine maximale elektrische Leistung von Pet = 25 MW hat,
	kann von folgenden. Werten der spezifischen Enthalpie ausgegangen werden:
	Frischdampf: h ₁ = 3500 kJ/kg, Turbinenabdampf: h ₂ = 2500 kJ/kg,
	Kondensat: h ₁ = 400 kJ/kg.
	Oberprüfen Sie, ob der Bedarf eines Verbrauchers von $\dot{Q}_{max} = 100$ MW, $P_{nl} = 20$ MW mit
	dieser Schaltung vollständig gedeckt werden kann.
4P 4P	a) Berechnen Sie dafür den benötigten Frischdampfmassenstrom.
	b) Nennen Sie ggf, eine Maßnahme, die für die vollständige Anpassung an den
	Verbraucherbedarf nötig ist.
3.	Hat der CO-Gehalt im Abgas eines Heizkessels neben seiner Schadstoff-Wirkung auch
	Einfluss auf den energetischen Wirkungsgrad des Kessels?
P	a) Begründen Sie ihre Antwort.
P	b) Geben Sie eine Gleichung für die Beeinflussung des Wirkungsgrades au.
4. (P	Durch welche (zwei) Randbedingungen wird die Gesamteffizienz uiner netzgekoppelten
	Kompressions- Wärmepumpe entscheidend beeinflum?
	Geben Sie eine Gleichung für den Primärenergiefaktor der Heizwärmebereitstellung mit
	der Wärmepumpe unter Verwendung eines Primärenergiefaktors fs für den Strom an.
	Bezeichnen Sie die Größen.

5. Aufgabe auf der Rückseite!

5. Mit einer Absorptionskältemaschine soll Kaltwasser für die Klimatisierung von 14 °C auf 10 °C abgekühlt werden. Das Kühlwasser steht mit einer Eintrittstemperatur von terwe = 35 °C zur Verfügung. Als Heizmedium wird kondensierender Dumpf mit einer Temperatur von to = 115 °C eingesetzt. Die minimalen Temperaturdiffereneen in allen Apparaten sollen mit jeweils AT_{mi} = 5 K berücksichtigt werden. Die AKM arbeitet mit dem Arbeitsmittelgemisch H₂O – LiBr. Um Kristallisationsgefahr zu vermeiden, soll ein Wasseranteil von 35 % in der Lösung nicht unterschritten werden.

a) Tragen Sie den Prozess im untenstehenden Dampfdruckdiagramm ein.

4P

2P

2P

3P

b) Welcher Lösungsumlauf f ergibt sich für den von Ihnen entworfenen Prozess?

e) Welcher Wärmestrom muss durch das Kühlwasser abgeführt werden, wenn eine Kälteleistung von Q_a = 30 kW erbracht wird und die Kältezahl a= 0.65 beträgt?

Zusatz) Wäre auch ein Prozess mit einer anderen Entgasungsbreite möglich und welche Vor- oder Nachteile ergäben sich daraus?

