

Formula di Taylor Problema: Data una funzione f derivabile in un $I(x_0)$, qual e il polinomio di I° grado che meglio approssima f? In altre perole, ho una funzione che non so trattare, e quindi al posto di questa, considero una funzione ad essa vicina, che la approssima. ES: log 2 = ? Boh! Posso approssimore questa f con un polinomio di I° grado? Come troviomo una funzione che approssima bene una curva?

La retta che ben approssima una curva in un punto xo e proprio la tougente calcolata in xo. Sappiono che fe deriv in xo=D $= D = \begin{cases} f_{\text{inito}} & \lim_{x \to \infty} \frac{f(x) - f(x - x_0)}{x - x_0} = f'(x_0) \end{cases} = f'(x_0) \qquad \text{Portions } f'(x_0) = f'(x_0) = f'(x_0)$ $\lim_{x\to\infty} \frac{f(x)-f(x_0)}{x-x_0} - f'(x_0) = 0 \quad ; \quad \lim_{x\to\infty} \frac{f(x)-\left[f(x_0)+f'(x_0)(x-x_0)\right]}{(x-x_0)} = 0$ La (a) e un polinomio di Iº grado, che Chiemiamo P1(x). =0 lim $f(x) - P_1(x)$ = 0 =0 La distanza tra f(x) ed il polinomio, f(x) x-xo, e zero. Se pero il rapporto Tenda a zero, significa che il Numeratore Tende a zero, quinoli esso, ouvero $f(x) - P_1(x)$, e un $o(x-x_0)$ (o piccolo old denominatore), ouvero e un Infinitesimo di ordine superiore a $(x-x_0)$. Inoltre, $f(x) - P_1(x)$ viene detto ERRORE, o resto primo di f. Quinoli l'errore che commetto nell'approssimare f con P_1 , e^- dato proprio da $f(x) - P_2$. Osservazione Se f e derivabile in xo, il miglior polinomio di \mathbb{T}^o grado che la approssima $e^ y = f(x_0) + f'(x_0)(x - x_0)$ e il resto $R_1(x) = f(x) - Lf(x_0) + f'(x_0)(x - x_0)$] e un infinitesimo di ordine sup. a $(x - x_0)$, evero e^- una buona approssimazione. 1:47

Problema: Se fe derivabile n volte in I (xo) qual e il polinomio di grado n che approssima "meglio" f in I (xo)? Teorema sulla formula di Taylor. $f(x) = \sum_{n=0}^{n} f(x_0) (x - x_0) + R_n$ Sia f derivabile n volte in xo, allora dave (Rn si dice resto n-esimo e si ha: Polinomio di Taylor $\lim_{x\to x_0} \frac{R_n(x)}{(x-x_0)^n} = 0$ Cosa vuol dire? Il polinomio $f(x_0) + f'(x_0)(x-x_0)$ e un polinomio di grado n, detto polinomio di taylor di punto iniziale x_0 . Questa formula ha resto Rn nella forma di Peano, ovvero $R_n = o((x-x_0)^n)$, cio e Rn Tende a θ piu' velo cemente di $(x-x_0)^n$. Di consequenza se $x = 10^{-1}$, ovviamente esso e maggiore di $x^5 = 10^5 = \frac{1}{100000} < \frac{1}{10}$. Se ho quindi una quantità che Tende a zero, se la elevo ad n, questa Tendero: a zero oncora più velo cem ente. = D Piv' l'ordine e grande, piv' l'errore sara' piccolo. Se ho xo=0, la formula di Taylor diventa: $f(x) = \sum_{n=0}^{\infty} f(0) \times n + R_n(x) \quad \text{che prende il nome di Mac-Laurin. (punto iniziole 0)}$ Es: $f(x) = e^{x}$ in $x_0 = 0$ 1) Derivoite $f(e^{x}) = e^{x}$... $f(x) = e^{x}$ f(x) = 0 f(0) = 1 f(0) = 1 $e^{x} = \frac{1}{1!} + x + \frac{1}{2!} x^{2} + \frac{1}{3!} x^{3} + \dots + \frac{1}{n!} x^{n} + o(x^{n}) = \sum_{n=0}^{n} \frac{x^{n}}{k!} + o(x^{n})$ Es: $f(x) = \sin x$ in $x_0 = 0$ $\int_0^{\pi} \int_0^{\pi} \cos x \, f = -\cos x \int_0^{\pi} \sin x \, ...$ $= 0 + x - \frac{x^3}{31} + \frac{x^5}{5!} - \frac{x^7}{71} \dots$ $\cos x = \sum_{n=0}^{n} (-1)^{n} = \frac{x^{n}}{(2n)!} + o(x^{n})$ Sin x = $\sum_{n=0}^{n} (-1)^n \frac{x^{2n+1}}{(2+1)!} + o(x^n)$ $\log (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{x}$

