$\Lambda_b \to J/\Psi p \, K$ Production Correction Run2 {'16, '17, '18}

M. Ferrillo UZH

NOVELTY

- ♦ Enforced a cut on mu_P, mu_PT > 2 GeV
- ♦ Repeat the analysis chain for 2016, 2017, 2018
 - ◇ Run PIDCorr to retrieve PID vars correlations ({p, K}ProbNN, DLL)
 - ♦ Apply preselection
 - ♦ Build MC/Data samples for MVA to tackle MisID/comb bkg
 - ♦ Optimise hyperparams MVA
 - ♦ Train MVA. Post training checks on Lb_M correlation with MVA score
 - ♦ Apply MVA cut and design a MisID selection (cut on reflection backgrounds)
 - ♦ Pre-fit MC Lb_M to extract the shape parameters of signal (extended unbinned ML fit with Double Crystal Ball)
 - ♦ Extended unbinned ML fit data Lb M with DCB (sig) + exp (bkg)
 - Extract sWeights for signal Data
 - ♦ Calculate the Data/MC correction in bins of Lb_P, Lb_PT. Check pre-post correction distributions

MVA TRAINING SET VARIABLES

Taken from the Pentaquark analysis [PRL122(2019)222001]

- $K_{\rm PT} + p_{\rm PT}$
- $\ln p_{\rm P}$
- $\ln IPCHI2_{\Lambda_h}$
- $\Lambda_{b\,\mathrm{PT}}$
- $\ln \text{FD}_{\Lambda_b}$
- $\ln \text{CHI2OWNPV}_{\Lambda_b}$
- $ln(1 DIRA_{\Lambda_b})$
- ♦ ln MINIPCHI2_h
- $\min DLL(\mu \pi)$ PIDCorr sampled
- $p_{\text{probNN}p}$ PIDCorr sampled
- $K_{\text{probNN}K}$ PIDCorr sampled

I have had a quick look at the efficiency curves. No fitting to extract the yields.

Signal: peak region

Background: lower and upper

sidebands

I have had a quick look at the efficiency curves. No fitting to extract the yields.

Signal: peak region

Background: lower and upper

sidebands

I have had a quick look at the efficiency curves. No fitting to extract the yields.

Signal: peak region

Background: lower and upper

sidebands

MISID COMPONENTS

- \diamond The three main contributions to MisID of $\Lambda_b^0 \to J/\Psi p K^$
 - a) $\bar{B}_s^0 \to J/\Psi(\Phi \to K^+K^-)$
 - **b)** $B^0 \to J/\Psi \pi^+ K^-$
 - c) $\bar{\Lambda}_b^0 \to J/\Psi \bar{p} K^+$

I have checked the following:

- The reconstructed mass distribution in the replaced mass hypothesis for each MisID channel, after the MVA selection
 - \diamond Case I: MVA score > best cut
 - ♦ Case II: MVA score > 0.50 (tighter cut)
- \diamond The reconstructed Λ_b mass after a $1\,\sigma, 2\,\sigma, 3\,\sigma$ Veto cut on the MisID reconstructed mass for each contribution ($\sigma = 20~\text{MeV}$):
 - ♦ Singularly (cut on a, b or c separately)
 - ♦ Combined cut

MISID COMPONENTS

 \diamond The three main contributions to MisID of $\Lambda_b^0 \to J/\Psi p \, K^-$

a)
$$\bar{B}_s^0 \to J/\Psi(\Phi \to K^+K^-)$$

b)
$$B^0 \to J/\Psi \pi^+ K^-$$

c)
$$\bar{\Lambda}_b^0 \to J/\Psi \bar{p} K^+$$

I have checked the following:

- The reconstructed mass distribution in the replaced mass hypothesis for each
 MisID channel, after the MVA selection
 - \diamond Case I: MVA score > best cut
 - \diamond <u>Case II</u>: MVA score > 0.50 (tighter cut)

why: probNN distributions show less contamination

- \diamond The reconstructed Λ_b mass after a $1\sigma, 2\sigma, 3\sigma$ Veto cut on the MisID reconstructed mass for each contribution ($\sigma = 20 \text{ MeV}$):
 - ♦ Singularly (cut on a, b or c separately)
 - ♦ Combined cut

MISID COMPONENTS: PROBNN

LBM FIT (MC)

LBM FIT (DATA)

EVALUATE THE CORRECTION: STRATEGY

• Option 1:

- Define a regular-sized binning scheme (Nbins = 15*15 = 225);
- Retrieve the corrections as the ratio of the normalised Data/MC 2D (Lb P, Lb PT) distributions;
- Save to ROOT file;
- Get the MC reweighed P and PT distributions and compare them to data.

• Option 2:

- Define a rectangular binning scheme (Nbins = 15*30 = 450);
- Retrieve the corrections as the ratio of the normalised Data/MC 2D (Lb_P, Lb_PT) distributions;
- Save to ROOT file;
- Get the MC reweighed P and PT distributions and compare them to data.

STRATEGY

• Option 3:

- Define a polygonal binning scheme by optimising for the number of MC entries per bin (Nentries = $10^3 \Rightarrow \text{Nbins} \sim 250$);
- Optimisation performed with a KDTreeBinning algorithm (ROOT);
- The binning structure of MC is adopted also for Data. TH2Poly histograms are used;
- Retrieve the corrections as the ratio of the normalised Data/MC 2D (Lb P, Lb PT) distributions;
- Save to ROOT file;
- Get the MC reweighed P and PT distributions and compare them to data.

REGULAR BINNING

RECTANGULAR BINNING

OPTION 1: DATA/MC COMPARISON 2017

REGULAR BINNING

OPTION 2: DATA/MC COMPARISON 2017

RECTANGULAR BINNING

OPTION 3: DATA/MC COMPARISON 2017

ADAPTIVE BINNING

RECTANGULAR BINNING

ADAPTIVE BINNING

