GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-I & II (NEW) EXAMINATION - WINTER 2020

•		Code:3110014 Date:16/03/Name:Mathematics – I	/2021
Time	Fime:10:30 AM TO 12:30 PM Total Marks		
Instru	1. 2. 3.	Attempt any THREE questions from Q1 to Q6. Q7 is compulsory. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
			Marks
Q.1	(a)	Expand $\sin x$ in powers of $(x - \pi/2)$.	03
	(b)	Evaluate $\lim_{x \to 0} \frac{\tan^2 x - x^2}{x^2 \tan^2 x}.$	04
	(c)	(i) Check the convergence of $\int_{4}^{\infty} \frac{3x+5}{x^4+7} dx$.	03
		(ii) The region between the curve $y = \sqrt{x}$, $0 \le x \le 4$ and the line $x = 4$ is revolved about the x – axis to generate a solid. Find its volume.	04
Q.2	(a)	If $u = \cos ec^{-1}\left(\frac{x+y}{x^2+y^2}\right)$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u$.	03
	(b)	Check the convergence of the series $\sum_{n=1}^{\infty} \frac{2^n + 5}{3^n}$.	04
	(c)	(i) Test the convergence of the series $\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n})$.	03
		(ii) Test the convergence of $\sum_{n=1}^{\infty} \frac{2^n}{n^3 + 1}$.	04
Q.3	(a)	Solve the following equations by Gauss' elimination method: $x + y + z = 6$, $x + 2y + 3z = 14$, $2x + 4y + 7z = 30$.	03
	(b)	If $u = f(x - y, y - z, z - x)$, prove that $\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} = 0$.	04
	(c)	(i) Find the equation of the tangent plane and normal line to the surface $x^2 + 2y^2 + 3z^2 = 12$ at $(1, 2, -1)$.	03
		(ii) For $f(x, y) = x^3 + y^3 - 3xy$, find the maximum and minimum values.	04
Q.4	(a)	Find the rank of the matrix $\begin{bmatrix} 8 & 0 & 0 & 16 \\ 0 & 0 & 0 & 6 \\ 0 & 9 & 9 & 9 \end{bmatrix}$.	03

 $\begin{bmatrix} 0 & 9 & 9 & 9 \end{bmatrix}$ (b) If u = f(x + at) + g(x - at), prove that $\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$.

1

(c) (i) Show that the function $f(x, y) = \begin{cases} \frac{2x^2y}{x^3 + y^3}, (x, y) \neq (0, 0) \\ 0, (x, y) = (0, 0) \end{cases}$ is not

continuous at the origin.

- (ii) Find the shortest distance from the point (1,2,2) to the sphere $x^2 + y^2 + z^2 = 16$.
- Q.5 (a) Use Gauss-Jordan method to find A^{-1} , if $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$.
 - Using Caley-Hamilton theorem find A^2 , if $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$. Also find A^{-1} .
 - (c) Find the Fourier cosine series for $f(x) = x^2, 0 < x < \pi$. Hence show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}.$
- **Q.6** (a) Evaluate $\iint_R e^{2x+3y} dA$, where R is the triangle bounded by x = 0, y = 0, x + y = 1.
 - (b) Find the eigen values and eigen vectors for the matrix $\begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.
 - (c) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dA$ by changing the order of integration.
- Q.7 OR

 Find the area enclosed within the curves y = 2 x and $y^2 = 2(2 x)$.