PH 354: hw 3, problem 10

Alankar Dutta

February 17, 2019

$$E = \frac{1}{2} \left(\frac{dx}{dt} \right)^2 + V(x)$$

For mass m=1

At maximum displacement $x=a,\,\frac{dx}{dt}=0$ and total Energy E=V(a) and the oscillator travels for a quarter of its time period T

$$\therefore T = 4 \left| \int_0^a \frac{dx}{\sqrt{\frac{2}{m} [E - V(x)]}} \right| = 4 \left| \int_0^a \frac{dx}{\sqrt{\frac{2}{m} [V(a) - V(x)]}} \right|$$

Oscillator getting faster meaning time period T decreases. For potential $V(x)=x^4$, as a increases, E=V(a) increases. So for all x, oscillator becomes fast (large $\frac{dx}{dt}$) to keep the total energy constant and hence its time period decreases. Going in the opposite direction, as $a\to 0$, the time period $T\to \infty$ which implies the particle doesn't swing at all.