Devoir à la maison n°01 : corrigé

SOLUTION 1.

- **1. a.** On trouve $f_1: x \mapsto \frac{x}{2}$, $f_2: x \mapsto -\frac{1}{8}x^2 + x$ et $f_3: x \mapsto -\frac{1}{128}x^4 + \frac{1}{8}x^3 \frac{5}{8}x^2 + \frac{3}{2}x$.
 - **b.** f_1 est clairement strictement croissante sur [0,1]. f_2 est polynomiale donc dérivable sur [0,1] et

$$\forall x \in [0,1], f_2'(x) = 1 - \frac{1}{4}x > 0$$

donc f_2 est strictement croissante sur [0, 1].

 f_3 est deux fois dérivable sur [0,1] et pour tout $x \in \mathbb{R}$,

$$f_3'(x) = -\frac{1}{32}x^3 + \frac{3}{8}x^2 - \frac{5}{4}x + \frac{3}{2}$$
$$f_3''(x) = -\frac{3}{32}x^2 + \frac{3}{4}x - \frac{5}{4}$$

Le trinôme $-\frac{3}{32}X^2+\frac{3}{4}X-\frac{5}{4}$ admet pour racines $4-\frac{2\sqrt{6}}{3}$ et $4+\frac{2\sqrt{6}}{3}$. Puisque $4-\frac{2\sqrt{6}}{3}>1$, f_3'' est strictement négative sur [0,1]. Ainsi f_3' est strictement décroissante sur [0,1]. Puisque $f_3'(1)=1/2>0$, f_3' est strictement positive sur [0,1], de sorte que f_3 est strictement croissante sur [0,1].

c. En regardant la suite des questions, on devine les positions respectives des courbes de f_1 , f_2 et f_3 .

2. **a.** Remarquons déjà que $u_0 = 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + \frac{1}{2}(x - u_n^2)$. On raisonne alors par récurrence. **Initialisation :** Tout d'abord, $u_0 = 0 \le u_1 = \frac{x}{2} \le x \le \sqrt{x}$ car $x \in [0, 1]$.

Hérédité : Supposons maintenant qu'il existe $n \in \mathbb{N}$ tel que $0 \le u_n \le u_{n+1} \le \sqrt{x}$. Puisque $0 \le u_{n+1} \le \sqrt{x}$, $x - u_{n+1}^2 \ge 0$ puis $u_{n+2} = u_{n+1} + \frac{1}{2}(x - u_{n+1}^2) \ge u_{n+1}$. Enfin,

$$\sqrt{x} - u_{n+2} = \sqrt{x} - u_{n+1} - \frac{1}{2}(x - u_{n+1}^2) = \left(\sqrt{x} - u_{n+1}\right) \left(1 - \frac{1}{2}(\sqrt{x} + u_{n+1})\right)$$

Or, d'une part, $\sqrt{x} - u_{n+1} \ge 0$ et, d'autre part, $x \le 1$ et $u_{n+1} \le \sqrt{x} \le 1$ donc $1 - \frac{1}{2}(\sqrt{x} + u_{n+1}) \ge 0$. On obtient bien $\sqrt{x} - u_{n+2} \ge 0$. Finalement, on a montré que

$$0 \le u_{n+1} \le u_{n+2} \le \sqrt{x}$$

Conclusion: On peut alors conclure par récurrence que

$$\forall n \in \mathbb{N}, \ 0 \leq u_n \leq u_{n+1} \leq \sqrt{x}$$

- **b.** D'après la question précédente, (u_n) est croissante et majorée. Notons ℓ sa limite. La relation de récurrence vérifiée par (u_n) implique que $\ell = \ell + \frac{1}{2}(x - \ell^2)$ et donc que $\ell^2 = x$. Or (u_n) est positive d'après la question précédente donc $\ell \ge 0$ puis $\ell = \sqrt{x}$.
- **a.** Soit $(n, x) \in \mathbb{N} \times [0, 1]$. On a déjà remarqué que 3.

$$0 \le \sqrt{x} - f_{n+1}(x) = \left(\sqrt{x} - f_n(x)\right) \left(1 - \frac{1}{2}(\sqrt{x} + f_n(x))\right)$$

Or on sait également que $0 \le f_n(x) \le \sqrt{x}$ donc $\sqrt{x} - f_n(x) \ge 0$ et $1 - \frac{1}{2}(\sqrt{x} + f_n(x)) \le 1 - \frac{\sqrt{x}}{2}$. Finalement,

$$0 \leqslant \sqrt{x} - f_{n+1}(x) \leqslant \left(\sqrt{x} - f_n(x)\right) \left(1 - \frac{\sqrt{x}}{2}\right)$$

On montre alors par récurrence que pour tout $n \in \mathbb{N}$

$$0 \le \sqrt{x} - f_n(x) \le \sqrt{x} \left(1 - \frac{\sqrt{x}}{2} \right)^n$$

b. Soit $n \in \mathbb{N}^*$. φ_n est dérivable sur [0,1] et pour tout $t \in [0,1]$,

$$\varphi_n'(t) = \left(1 - \frac{t}{2}\right)^n - \frac{nt}{2}\left(1 - \frac{t}{2}\right)^{n-1} = \left(1 - \frac{t}{2}\right)^{n-1}\left(1 - \frac{n+1}{2}t\right)$$

On en déduit que φ_n est croissante sur $\left[0,\frac{2}{n+1}\right]$ et décroissante sur $\left[\frac{2}{n+1},1\right]$. Notamment, φ_n admet un maximum et celui-ci vaut

$$\varphi_n\left(\frac{2}{n+1}\right) = \frac{2}{n+1} \left(1 - \frac{2}{n+1}\right)^n$$

c. Soit $n \in \mathbb{N}^*$. On a montré précédemment que pour tout $x \in [0,1]$,

$$0 \leqslant \sqrt{x} - f_n(x) \leqslant \varphi_n(\sqrt{x}) \leqslant \frac{2}{n+1} \left(1 - \frac{2}{n+1}\right)^n$$

Or pour $n \in \mathbb{N}^*$, $0 \le 1 - \frac{2}{n+1} \le 1$ donc

$$0 \leqslant \sqrt{x} - f_n(x) \leqslant \frac{2}{n+1}$$

Ceci étant valable pour tout $x \in [0,1]$, $0 \le M_n \le \frac{2}{n+1}$.

Le théorème des gendarmes permet alors d'affirmer que (M_n) converge vers 0.

SOLUTION 2.

On sait que $S_n = \frac{n(n+1)}{2}$. On raisonne alors par récurrence. Il est clair que $T_1 = S_1^2 = 1$.

Supposons que $T_n = S_n^2$ pour un certain $n \in \mathbb{N}^*$. Alors

$$S_{n+1}^{2} = (S_{n} + (n+1))^{2}$$

$$= S_{n}^{2} + 2(n+1)S_{n} + (n+1)^{2}$$

$$= T_{n} + 2(n+1) \cdot \frac{n(n+1)}{2} + (n+1)^{2}$$

$$= T_{n} + n(n+1)^{2} + (n+1)^{2}$$

$$= T_{n} + (n+1)^{3} = T_{n+1}$$

On conclut donc par récurrence que $\mathbf{T}_n = \mathbf{S}_n^2$ pour tout $n \in \mathbb{N}^*$.

SOLUTION 3.

- 1. Il existe $\binom{6}{2}$ issues possibles à ce tirage. La variable aléatoire X est à valeurs dans $\{0,1,2\}$.
 - ▶ L'événement X = 0 correspond à tirer les deux boules parmi les quatre rouges. On en déduit que

$$P(X=0) = \frac{\binom{4}{2}}{\binom{6}{2}} = \frac{2}{5}$$

► L'événement X = 1 correspond à tirer une boule parmi les deux noires et une boule parmi les quatre rouges. On en déduit que

$$P(X=1) = \frac{\binom{2}{1}\binom{4}{1}}{\binom{6}{2}} = \frac{8}{15}$$

▶ L'événement X = 2 correspond à tirer les deux boules parmi les deux noires. On en déduit que

$$P(X=2) = \frac{\binom{2}{2}}{\binom{6}{2}} = \frac{1}{15}$$

2. La variable aléatoire Y est encore à valeurs dans {0,1,2}. D'après la formule des probabilités totales,

$$\begin{split} P(Y=0) &= P(Y=0|X=0)P(X=0) + P(Y=0|X=1)P(X=1) + P(Y=0|X=2)P(X=2) \\ &= \frac{\binom{2}{2}}{\binom{4}{2}} \times \frac{2}{5} + \frac{\binom{3}{2}}{\binom{4}{2}} \times \frac{8}{15} + 1 \times \frac{1}{15} \\ &= \frac{2}{5} \\ P(Y=1) &= P(Y=1|X=0)P(X=0) + P(Y=1|X=1)P(X=1) + P(Y=1|X=2)P(X=2) \\ &= \frac{\binom{2}{1}\binom{2}{1}}{\binom{4}{2}} \times \frac{2}{5} + \frac{\binom{3}{1}\binom{1}{1}}{\binom{4}{2}} \times \frac{8}{15} + 0 \times \frac{1}{15} \\ &= \frac{8}{15} \\ P(Y=2) &= P(Y=2|X=0)P(X=0) + P(Y=2|X=1)P(X=1) + P(Y=2|X=2)P(X=2) \\ &= \frac{\binom{2}{2}}{\binom{4}{2}} \times \frac{2}{5} + 0 \times \frac{8}{15} + 0 \times \frac{1}{15} \\ &= \frac{1}{15} \end{split}$$

3. On utilise la formule de Bayes

$$P(X = 1|Y = 1) = \frac{P(Y = 1|X = 1)P(X = 1)}{P(Y = 1)}$$

Or P(Y = 1) = P(X = 1) et on a vu à la question précédente que

$$P(Y = 1|X = 1) = \frac{\binom{3}{1}\binom{1}{1}}{\binom{4}{2}} = \frac{1}{2}$$

Ainsi la probabilité d'avoir obtenu une seule boule noire au premier tirage sachant que l'on a tiré une seule boule noire au second tirage est $\frac{1}{5}$.

4. La probabilité recherchée est :

$$P(X = 1, Y = 1) + P(X = 0, Y = 2) = P(Y = 1 | X = 1)P(X = 1) + P(Y = 2 | X = 0)P(X = 0) = \frac{\binom{3}{1}\binom{1}{1}}{\binom{4}{2}} \times \frac{8}{15} + \frac{\binom{2}{2}}{\binom{4}{2}} \times \frac{2}{5} = \frac{1}{3}$$