

Deep Learning

Dr. Mehran Safayani safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/deep_learning_course

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Basics of Neural Network Programming

Binary Classification

Binary classification

• Notation

$$(\vec{x}, y)$$
 $x \in R^{n_x}, y \in \{0,1\}$

Binary classification

• m training example: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}, ..., (x^{(m)}, y^{(m)})\}$

Logistic Regression

• Given x, output $\hat{y} = P(y=1|x)$ $0 \le \hat{y} \le 1$

 $x \in \mathbb{R}^{n_x}$ parameters: $w \in \mathbb{R}^{n_x}$, $b \in \mathbb{R}$

$$\hat{y} = w^T x + b$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

if z large $\sigma(z) \approx 1$

if z large negative $\sigma(z) \approx 0$

Logistic Regression

•
$$\hat{y} = \sigma(\underbrace{w^T x + b})$$

$$x_0 = 1, x \in \mathbb{R}^{n_x + 1}$$

$$\hat{y} = w^T x$$

$$W = \begin{bmatrix} b = w_0 \\ w_1 \\ w_2 \\ w_3 \\ \vdots \\ w_{nx} \end{bmatrix}$$

Logistic Regression cost function

- Loss (error) function: $L(\hat{y}, y) = \frac{1}{2}(\hat{y} y)^2 = \frac{1}{2}(\sigma(w^Tx + b) y)^2$ SE: Square Error
- Non-convex graph:

https://mlstory.org/optimization.html

• In mathematics, a real-valued function is called **convex** if the line segment between any two distinct points on the graph of the function lies above the graph between the two points.

For all
$$0 \leq t \leq 1$$
 and all $x_1, x_2 \in X$: $f\left(tx_1 + (1-t)x_2\right) \leq tf\left(x_1\right) + (1-t)f\left(x_2\right)$

Cross Entropy

• $L(\hat{y}, y) = -(y \log \hat{y} + (1-y)\log(1-\hat{y}))$

if
$$y=1$$
: $L(\hat{y}, y) = -\log \hat{y}$

if
$$y=0$$
: $L(\hat{y}, y) = -\log(1-\hat{y})$

• Cost function:
$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(y^{(i)}, \hat{y}^{(i)})$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}) \right]$$