MATHEMATICS-II (MATH F112)

Dr. Krishnendra Shekhawat

BITS PILANI
Department of Mathematics

Section 3.4

Eigenvalues and Eigenvectors

Let A be $n \times n$ matrix.

Let A be $n \times n$ matrix. A real number λ is an eigenvalue of A if and only if

Let A be $n \times n$ matrix. A real number λ is an eigenvalue of A if and only if there is a nonzero n-vector X such that $AX = \lambda X$.

Let A be $n \times n$ matrix. A real number λ is an eigenvalue of A if and only if there is a nonzero n-vector X such that $AX = \lambda X$.

Also, any <u>nonzero</u> vector X for which $AX = \lambda X$,

Let A be $n \times n$ matrix. A real number λ is an eigenvalue of A if and only if there is a nonzero n-vector X such that $AX = \lambda X$.

Also, any <u>nonzero</u> vector X for which $AX = \lambda X$, is an eigenvector corresponding to the eigenvalue λ .

Consider the matrix
$$A = \begin{bmatrix} -4 & 8 & -12 \\ 6 & -6 & 12 \\ 6 & -8 & 14 \end{bmatrix}$$
.

Consider the matrix
$$A = \begin{bmatrix} -4 & 8 & -12 \\ 6 & -6 & 12 \\ 6 & -8 & 14 \end{bmatrix}$$
.

We can see that
$$A \begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix} \Longrightarrow$$

Consider the matrix
$$A = \begin{bmatrix} -4 & 8 & -12 \\ 6 & -6 & 12 \\ 6 & -8 & 14 \end{bmatrix}$$
.

We can see that
$$A \begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix} \implies \lambda = 2$$
 is an eigenvalue

for A and X = [4,3,0] is the corresponding eigenvector.

$$AX = \lambda X$$
,

$$AX = \lambda X$$
,

then for $c \in \mathbb{R}$, we have

$$A(cX) = c(AX) = c(\lambda X) = \lambda(cX).$$

$$AX = \lambda X$$
,

then for $c \in \mathbb{R}$, we have

$$A(cX) = c(AX) = c(\lambda X) = \lambda(cX).$$

Thus, if X is an eigenvector of A corresponding to an eigenvalue λ then, for $c \in \mathbb{R}, c \neq 0$, cX is also an eigenvector corresponding to λ .

$$AX = \lambda X$$
,

then for $c \in \mathbb{R}$, we have

$$A(cX) = c(AX) = c(\lambda X) = \lambda(cX).$$

Thus, if X is an eigenvector of A corresponding to an eigenvalue λ then, for $c \in \mathbb{R}, c \neq 0$, cX is also an eigenvector corresponding to λ . Hence, there are infinitely many eigenvectors corresponding to an eigenvalue.

Sol.
$$AX = \lambda X = \lambda I_n X \Longrightarrow$$

Sol.
$$AX = \lambda X = \lambda I_n X \implies (\lambda I_n - A)X = \mathbf{0}.$$

Sol. $AX = \lambda X = \lambda I_n X \Longrightarrow (\lambda I_n - A)X = \mathbf{0}$. Now X is a nontrivial solution to the homogeneous system whose coefficient matrix is $\lambda I_n - A$.

Sol. $AX = \lambda X = \lambda I_n X \Longrightarrow (\lambda I_n - A)X = \mathbf{0}$. Now X is a nontrivial solution to the homogeneous system whose coefficient matrix is $\lambda I_n - A$. Therefore, $|\lambda I_n - A| = \mathbf{0}$.

Sol. $AX = \lambda X = \lambda I_n X \Longrightarrow (\lambda I_n - A)X = \mathbf{0}$. Now X is a nontrivial solution to the homogeneous system whose coefficient matrix is $\lambda I_n - A$. Therefore, $|\lambda I_n - A| = \mathbf{0}$.

Theorem: Let A be $n \times n$ matrix and λ be a real number. Then λ is an eigenvalue of A if and only if $|\lambda I_n - A| = 0$.

Sol. $AX = \lambda X = \lambda I_n X \Longrightarrow (\lambda I_n - A)X = \mathbf{0}$. Now X is a nontrivial solution to the homogeneous system whose coefficient matrix is $\lambda I_n - A$. Therefore, $|\lambda I_n - A| = \mathbf{0}$.

Theorem: Let A be $n \times n$ matrix and λ be a real number. Then λ is an eigenvalue of A if and only if $|\lambda I_n - A| = \mathbf{0}$. The eigenvectors are the nontrivial solutions of the homogeneous system $(\lambda I_n - A)X = \mathbf{0}$.

The Characteristic Polynomial of a Matrix Let A is a $n \times n$ matrix, then the characteristic

polynomial of A

Let A is a $n \times n$ matrix, then the characteristic polynomial of A is the polynomial $p_A(x) = |xI_n - A|$.

Let A is a $n \times n$ matrix, then the characteristic polynomial of A is the polynomial $p_A(x) = |xI_n - A|$.

Clearly, $p_A(x)$ is a polynomial of degree $n \implies$

Let A is a $n \times n$ matrix, then the characteristic polynomial of A is the polynomial $p_A(x) = |xI_n - A|$.

Clearly, $p_A(x)$ is a polynomial of degree $n \implies$ it has at most n real roots. Hence, from above Theorem we can say that

Let A is a $n \times n$ matrix, then the characteristic polynomial of A is the polynomial $p_A(x) = |xI_n - A|$.

Clearly, $p_A(x)$ is a polynomial of degree $n \Longrightarrow$ it has at most n real roots. Hence, from above Theorem we can say that

The eigenvalues of an $n \times n$ matrix A are precisely the real roots of the characteristic polynomial $p_A(x)$.

Q:. Find the characteristic polynomial and eigenvalues of the matrix.

Q:. Find the characteristic polynomial and eigenvalues of the matrix.

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -3 \\ 0 & 0 & -5 \end{bmatrix}$$

Sol. For
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -3 \\ 0 & 0 & -5 \end{bmatrix}$$
, characteristic polynomial

Sol. For
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -3 \\ 0 & 0 & -5 \end{bmatrix}$$
, characteristic polynomial $p_A(x) = |xI_3 - A| =$

Sol. For
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -3 \\ 0 & 0 & -5 \end{bmatrix}$$
, characteristic polynomial $p_A(x) = |xI_3 - A| = \begin{bmatrix} x-1 & 0 & -1 \\ 0 & x-2 & 3 \\ 0 & 0 & x+5 \end{bmatrix} = (x-1)(x-2)(x+5)$

Sol. For
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -3 \\ 0 & 0 & -5 \end{bmatrix}$$
, characteristic polynomial $p_A(x) = |xI_3 - A| = \begin{bmatrix} x-1 & 0 & -1 \\ 0 & x-2 & 3 \\ 0 & 0 & x+5 \end{bmatrix} = (x-1)(x-2)(x+5)$

Now, eigenvalues of A are the roots of $p_A(x)$.

Sol. For
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -3 \\ 0 & 0 & -5 \end{bmatrix}$$
, characteristic polynomial $p_A(x) = |xI_3 - A| = \begin{bmatrix} x-1 & 0 & -1 \\ 0 & x-2 & 3 \\ 0 & 0 & x+5 \end{bmatrix} = (x-1)(x-2)(x+5)$

Now, eigenvalues of A are the roots of $p_A(x)$. Hence, eigenvalues are $\lambda_1 = 1$, $\lambda_2 = 2$ and $\lambda_3 = -5$.

Let A be an $n \times n$ matrix and λ be an eigenvalue for A.

Let A be an $n \times n$ matrix and λ be an eigenvalue for A. Suppose that $(x - \lambda)^k$ is the highest power of $(x - \lambda)$ that divides $p_A(x)$.

Let A be an $n \times n$ matrix and λ be an eigenvalue for A. Suppose that $(x - \lambda)^k$ is the highest power of $(x - \lambda)$ that divides $p_A(x)$. Then k is called the algebraic multiplicity of λ .

Let A be an $n \times n$ matrix and λ be an eigenvalue for A. Suppose that $(x - \lambda)^k$ is the highest power of $(x - \lambda)$ that divides $p_A(x)$. Then k is called the algebraic multiplicity of λ .

Corresponding to Example 2, the algebraic multiplicities of $\lambda_1 = 1$, $\lambda_2 = 2$ and $\lambda_3 = -5$ are 1, 1, 1 respectively.

Q:. Find all eigenvalues of the given matrix and their corresponding algebraic multiplicities.

Q:. Find all eigenvalues of the given matrix and their corresponding algebraic multiplicities.

$$\begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$

Sol. For
$$A = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$
, characteristic polynomial

Sol. For
$$A = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$
, characteristic polynomial $p_A(x) = |xI_3 - A| =$

Sol. For
$$A = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$
, characteristic polynomial $p_A(x) = |xI_3 - A| = \begin{bmatrix} x - 4 & 0 & 2 \\ -6 & x - 2 & 6 \\ -4 & 0 & x + 2 \end{bmatrix} = x(x - 2)^2$

Sol. For
$$A = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$
, characteristic polynomial $p_A(x) = |xI_3 - A| =$

$$p_A(x) = |xI_3 - A| =$$

$$\begin{vmatrix} x-4 & 0 & 2 \\ -6 & x-2 & 6 \\ -4 & 0 & x+2 \end{vmatrix} = x(x-2)^2$$

Now, the eigenvalues of A are the roots of $p_A(x)$, i.e., eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 2$.

Sol. For
$$A = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$
, characteristic polynomial $p_A(x) = |xI_3 - A| =$

$$\begin{vmatrix} x-4 & 0 & 2 \\ -6 & x-2 & 6 \\ -4 & 0 & x+2 \end{vmatrix} = x(x-2)^2$$

Now, the eigenvalues of A are the roots of $p_A(x)$, i.e., eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 2$. Hence, the algebraic multiplicity of λ_1 is one

Sol. For
$$A = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$
, characteristic polynomial $p_A(x) = |xI_3 - A| =$

$$\begin{vmatrix} x-4 & 0 & 2 \\ -6 & x-2 & 6 \\ -4 & 0 & x+2 \end{vmatrix} = x(x-2)^2$$

Now, the eigenvalues of A are the roots of $p_A(x)$, i.e., eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 2$. Hence, the algebraic multiplicity of λ_1 is one and λ_2 is two.

Q:. Find the characteristic polynomial and eigenvalues of the matrix.

Q:. Find the characteristic polynomial and eigenvalues of the matrix.

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Q:. Find the characteristic polynomial and eigenvalues of the matrix.

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Sol. There are no eigenvalues of A.

Q:. Let

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$

Q:. Let

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$

Verify that

•
$$v = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$$
 is an eigenvector of A .

Q:. Let

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$

Verify that

•
$$v = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$$
 is an eigenvector of A . Find the corresponding eigenvalue.

Q:. Let

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$

Verify that

•
$$v = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$$
 is an eigenvector of A . Find the corresponding eigenvalue.

• 2 is an eigenvalue of A.

Sol. v is an eigenvector if $Av = \lambda v$ for some scalar λ .

Sol. v is an eigenvector if $Av = \lambda v$ for some scalar λ . Now it is easy to verify that $Av = v = 1v \Longrightarrow$

2 is an eigenvalue of A if there exists a non-zero vector v such that $Av = 2v \Longrightarrow$

2 is an eigenvalue of A if there exists a non-zero vector v such that $Av = 2v \implies (A-2I)v = 0$ has a non-zero solution.

2 is an eigenvalue of A if there exists a non-zero vector v such that $Av = 2v \implies (A-2I)v = 0$ has a non-zero solution.

It can be verified that the homogeneous system of equation (A-2I)v=0 has infinitely many solutions.

2 is an eigenvalue of A if there exists a non-zero vector v such that $Av = 2v \implies (A-2I)v = 0$ has a non-zero solution.

It can be verified that the homogeneous system of equation (A-2I)v=0 has infinitely many solutions. Hence, 2 is an eigenvalue of A.

Let A be $n \times n$ matrix and λ be an eigenvalue for A.

Let A be $n \times n$ matrix and λ be an eigenvalue for A. Then the set $E_{\lambda} = \{X | AX = \lambda X\}$ is called the eigenspace of λ ,

Let A be $n \times n$ matrix and λ be an eigenvalue for A. Then the set $E_{\lambda} = \{X | AX = \lambda X\}$ is called the eigenspace of λ , i.e., E_{λ} consists of all set of all eigenvectors for A associated with λ ,

Let A be $n \times n$ matrix and λ be an eigenvalue for A. Then the set $E_{\lambda} = \{X | AX = \lambda X\}$ is called the eigenspace of λ , i.e., E_{λ} consists of all set of all eigenvectors for A associated with λ , together with zero vector $\mathbf{0}$.

Eigenspace

Let A be $n \times n$ matrix and λ be an eigenvalue for A. Then the set $E_{\lambda} = \{X | AX = \lambda X\}$ is called the eigenspace of λ , i.e., E_{λ} consists of all set of all eigenvectors for A associated with λ , together with zero vector $\mathbf{0}$.

Theorem: Let A be an $n \times n$ matrix and λ be an eigenvalue for A having eigenspace E_{λ} .

Eigenspace

Let A be $n \times n$ matrix and λ be an eigenvalue for A. Then the set $E_{\lambda} = \{X | AX = \lambda X\}$ is called the eigenspace of λ , i.e., E_{λ} consists of all set of all eigenvectors for A associated with λ , together with zero vector $\mathbf{0}$.

Theorem: Let A be an $n \times n$ matrix and λ be an eigenvalue for A having eigenspace E_{λ} . Then E_{λ} is a subspace of \mathbb{R}^n .

Q:. Find all eigenvalues and corresponding eigenspace for the given matrix.

Q:. Find all eigenvalues and corresponding eigenspace for the given matrix.

$$\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

Sol. For
$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$
, characteristic polynomial $p_A(x) = |xI_2 - A| = \begin{vmatrix} x - 1 & -3 \\ 0 & x - 1 \end{vmatrix} = (x - 1)^2$.

Sol. For
$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$
, characteristic polynomial $p_A(x) = |xI_2 - A| = \begin{vmatrix} x - 1 & -3 \\ 0 & x - 1 \end{vmatrix} = (x - 1)^2$. Hence, eigenvalues are $\lambda = 1, 1$.

Sol. For
$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$
, characteristic polynomial $p_A(x) = |xI_2 - A| = \begin{vmatrix} x - 1 & -3 \\ 0 & x - 1 \end{vmatrix} = (x - 1)^2$. Hence, eigenvalues are $\lambda = 1, 1$.

To compute eigenspace E_1 for $\lambda = 1$, we need to solve the homogeneous system

Sol. For
$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$
, characteristic polynomial $p_A(x) = |xI_2 - A| = \begin{vmatrix} x - 1 & -3 \\ 0 & x - 1 \end{vmatrix} = (x - 1)^2$. Hence, eigenvalues are $\lambda = 1, 1$.

To compute eigenspace E_1 for $\lambda = 1$, we need to solve the homogeneous system $\lambda I_2 - AX = 0$, i.e., $I_2 - AX = 0$.

The augmented matrix is $[I_2 - A|0]$, i.e., $\begin{bmatrix} 0 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, which reduces to $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

The augmented matrix is $[I_2 - A|0]$, i.e., $\begin{bmatrix} 0 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, which reduces to $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

The associated system is

which reduces to
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
.

The associated system is
$$\begin{cases} x_2 = 0 \\ 0 = 0 \end{cases}$$

which reduces to $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

The associated system is
$$\begin{cases} x_2 = 0 \\ 0 = 0 \end{cases}$$

Since column 1 is not a pivot column, x_1 is an independent variable.

which reduces to $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

The associated system is
$$\begin{cases} x_2 = 0 \\ 0 = 0 \end{cases}$$

Since column 1 is not a pivot column, x_1 is an independent variable. Let $x_1 = a$.

which reduces to $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

The associated system is
$$\begin{cases} x_2 = 0 \\ 0 = 0 \end{cases}$$

Since column 1 is not a pivot column, x_1 is an independent variable. Let $x_1 = a$.

Then
$$E_1 = \{ [a, 0] | a \in \mathbb{R} \} = \{ a[1, 0] | a \in \mathbb{R} \}.$$

Geometric Multiplicity (G.M.) of an Eigenvalue

Geometric Multiplicity (G.M.) of an Eigenvalue

The geometric multiplicity of an eigenvalue λ is the dimension of its corresponding eigenspace E_{λ} i.e.

Geometric Multiplicity (G.M.) of an Eigenvalue

The geometric multiplicity of an eigenvalue λ is the dimension of its corresponding eigenspace E_{λ} i.e.

G.M. of
$$\lambda = \dim(E_{\lambda})$$
.

Q:. Consider

$$A = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$

Q:. Consider

$$A = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$

- ullet Find all the eigenvalue of A and compute their algebraic multiplicity.
- Find eigenspaces corresponding to each of the eigenvalues of A and compute their geometric multiplicity.

For
$$A = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$
, characteristic polynomial
$$p_A(x) = |xI_3 - A| = \begin{vmatrix} x - 4 & 0 & 2 \\ -6 & x - 2 & 6 \\ -4 & 0 & x + 2 \end{vmatrix} = x(x - 2)^2.$$

$$p_A(x) = |xI_3 - A| = \begin{vmatrix} x - 4 & 0 & 2 \\ -6 & x - 2 & 6 \\ -4 & 0 & x + 2 \end{vmatrix} = x(x - 2)^2$$

For
$$A = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$
, characteristic polynomial

$$p_A(x) = |xI_3 - A| = \begin{vmatrix} x - 4 & 0 & 2 \\ -6 & x - 2 & 6 \\ -4 & 0 & x + 2 \end{vmatrix} = x(x - 2)^2$$
. Hence, eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 2$.

eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 2$.

For
$$A = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$
, characteristic polynomial

$$p_A(x) = |xI_3 - A| = \begin{vmatrix} x - 4 & 0 & 2 \\ -6 & x - 2 & 6 \\ -4 & 0 & x + 2 \end{vmatrix} = x(x - 2)^2. \text{ Hence,}$$
 eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 2$.

To compute eigenspace E_0 for $\lambda = 0$, we need to solve the homogeneous system

For
$$A = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$
, characteristic polynomial

$$p_A(x) = |xI_3 - A| = \begin{vmatrix} x - 4 & 0 & 2 \\ -6 & x - 2 & 6 \\ -4 & 0 & x + 2 \end{vmatrix} = x(x - 2)^2$$
. Hence, eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 2$.

To compute eigenspace E_0 for $\lambda = 0$, we need to solve the homogeneous system $\lambda I_3 - AX = 0$, i.e., -AX = 0.

The augmented matrix is
$$[-A|0]$$
, i.e., $\begin{vmatrix} -4 & 0 & 2 & 0 \\ -6 & -2 & 6 & 0 \\ -4 & 0 & 2 & 0 \end{vmatrix}$,

which reduces to

The augmented matrix is
$$[-A|0]$$
, i.e., $\begin{bmatrix} -4 & 0 & 2 & 0 \\ -6 & -2 & 6 & 0 \\ -4 & 0 & 2 & 0 \end{bmatrix}$,

which reduces to
$$\begin{bmatrix} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -3/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

The associated system is

The associated system is
$$\begin{cases} x_1 - \frac{1}{2}x_3 = 0\\ x_2 - \frac{3}{2}x_3 = 0\\ 0 = 0 \end{cases}$$

The associated system is
$$\begin{cases} x_1 - \frac{1}{2}x_3 = 0 \\ x_2 - \frac{3}{2}x_3 = 0 \\ 0 = 0 \end{cases}$$

Since column 3 is not a pivot column, x_3 is an independent variable.

The associated system is
$$\begin{cases} x_1 - \frac{1}{2}x_3 = 0 \\ x_2 - \frac{3}{2}x_3 = 0 \\ 0 = 0 \end{cases}$$

Since column 3 is not a pivot column, x_3 is an independent variable. Let $x_3 = 2c \implies$

The associated system is
$$\begin{cases} x_1 - \frac{1}{2}x_3 = 0 \\ x_2 - \frac{3}{2}x_3 = 0 \\ 0 = 0 \end{cases}$$

Since column 3 is not a pivot column, x_3 is an independent variable. Let $x_3 = 2c \implies x_1 = c, x_2 = 3c$.

The associated system is $\begin{cases} x_1 - \frac{1}{2}x_3 = 0 \\ x_2 - \frac{3}{2}x_3 = 0 \\ 0 = 0 \end{cases}$

Since column 3 is not a pivot column, x_3 is an independent variable. Let $x_3 = 2c \implies x_1 = c, x_2 = 3c$.

Then
$$E_0 = \{[c, 3c, 2c] | c \in \mathbb{R}\} = \{c[1, 3, 2] | c \in \mathbb{R}\}.$$

The associated system is
$$\begin{cases} x_1 - \frac{1}{2}x_3 = 0 \\ x_2 - \frac{3}{2}x_3 = 0 \\ 0 = 0 \end{cases}$$

Since column 3 is not a pivot column, x_3 is an independent variable. Let $x_3 = 2c \implies x_1 = c, x_2 = 3c$.

Then
$$E_0 = \{[c, 3c, 2c] | c \in \mathbb{R}\} = \{c[1, 3, 2] | c \in \mathbb{R}\}.$$

Now
$$E_0 = \text{span}\{[1,3,2]\} = \text{span}(B)$$
.

The associated system is
$$\begin{cases} x_1 - \frac{1}{2}x_3 = 0 \\ x_2 - \frac{3}{2}x_3 = 0 \\ 0 = 0 \end{cases}$$

Since column 3 is not a pivot column, x_3 is an independent variable. Let $x_3 = 2c \implies x_1 = c, x_2 = 3c$.

Then
$$E_0 = \{[c, 3c, 2c] | c \in \mathbb{R}\} = \{c[1, 3, 2] | c \in \mathbb{R}\}.$$

Now $E_0 = \text{span}\{[1,3,2]\} = \text{span}(B)$. Since, B is LI, it is a basis for E_0 . Note that

G.M. of eigenvalue $0 = \dim(E_0) = 1$.

To compute eigenspace E_2 for $\lambda = 2$, we need to solve the homogeneous system

To compute eigenspace E_2 for $\lambda = 2$, we need to solve the homogeneous system $\lambda I_3 - AX = 0$, i.e., $2I_3 - AX = 0$.

To compute eigenspace E_2 for $\lambda = 2$, we need to solve the homogeneous system $\lambda I_3 - AX = 0$, i.e., $2I_3 - AX = 0$.

The augmented matrix is
$$[-A|0]$$
, i.e., $\begin{bmatrix} -2 & 0 & 2 & 0 \\ -6 & 0 & 6 & 0 \\ -4 & 0 & 4 & 0 \end{bmatrix}$,

which reduces to

To compute eigenspace E_2 for $\lambda = 2$, we need to solve the homogeneous system $\lambda I_3 - AX = 0$, i.e., $2I_3 - AX = 0$.

The augmented matrix is
$$[-A|0]$$
, i.e., $\begin{bmatrix} -2 & 0 & 2 & 0 \\ -6 & 0 & 6 & 0 \\ -4 & 0 & 4 & 0 \end{bmatrix}$,

which reduces to
$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
.

The associated system is

The associated system is
$$\begin{cases} x_1 - x_3 = 0 \\ 0 = 0 \\ 0 = 0 \end{cases}$$

The associated system is
$$\begin{cases} x_1 - x_3 = 0 \\ 0 = 0 \\ 0 = 0 \end{cases}$$

Since columns 2 and 3 are not pivot columns, x_2 and x_3 are independent variables.

The associated system is
$$\begin{cases} x_1 - x_3 = 0 \\ 0 = 0 \end{cases}$$
$$0 = 0$$

Since columns 2 and 3 are not pivot columns, x_2 and x_3 are independent variables. Let $x_2 = b$ and $x_3 = c \Longrightarrow$

The associated system is
$$\begin{cases} x_1 - x_3 = 0 \\ 0 = 0 \end{cases}$$
$$0 = 0$$

The associated system is
$$\begin{cases} x_1 - x_3 = 0 \\ 0 = 0 \\ 0 = 0 \end{cases}$$

Then

$$E_2 = \{[c, b, c] | b, c \in \mathbb{R}\} = \{b[0, 1, 0] + c[1, 0, 1] | b, c \in \mathbb{R}\}.$$

The associated system is
$$\begin{cases} x_1 - x_3 = 0 \\ 0 = 0 \\ 0 = 0 \end{cases}$$

Then

$$E_2 = \{[c, b, c] | b, c \in \mathbb{R}\} = \{b[0, 1, 0] + c[1, 0, 1] | b, c \in \mathbb{R}\}.$$

Now
$$E_2 = \text{span}\{[0, 1, 0], [1, 0, 1]\} = \text{span}(B)$$
.

The associated system is
$$\begin{cases} x_1 - x_3 = 0 \\ 0 = 0 \\ 0 = 0 \end{cases}$$

Then

$$E_2 = \{ [c, b, c] | b, c \in \mathbb{R} \} = \{ b[0, 1, 0] + c[1, 0, 1] | b, c \in \mathbb{R} \}.$$

Now $E_2 = \text{span}\{[0, 1, 0], [1, 0, 1]\} = \text{span}(B)$. Since, B is LI, it is a basis for E_2 .

The associated system is
$$\begin{cases} x_1 - x_3 = 0 \\ 0 = 0 \\ 0 = 0 \end{cases}$$

Then

$$E_2 = \{[c,b,c]|b,c \in \mathbb{R}\} = \{b[0,1,0] + c[1,0,1]|b,c \in \mathbb{R}\}.$$

Now $E_2 = \text{span}\{[0, 1, 0], [1, 0, 1]\} = \text{span}(B)$. Since, B is LI, it is a basis for E_2 . Note that

G.M. of eigenvalue $2 = \dim(E_2) = 2$.

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

- Find all the eigenvalue of A and compute their algebraic multiplicity.
- Find eigenspaces corresponding to each of the eigenvalues of A and compute their geometric multiplicity.

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

- ullet Find all the eigenvalue of A and compute their algebraic multiplicity.
- Find eigenspaces corresponding to each of the eigenvalues of A and compute their geometric multiplicity.

Sol.
$$\lambda = -2, 3, 6$$
 where $E_{-2} = \{[-z, 0, z] | z \in \mathbb{R}\},$
 $E_3 = \{[z, -z, z] | z \in \mathbb{R}\} \text{ and } E_6 = \{[z, 2z, z] | z \in \mathbb{R}\}.$

$$A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$

$$A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$

- Find all the eigenvalue of *A* and compute their algebraic multiplicity.
- Find eigenspaces corresponding to each of the eigenvalues of A and compute their geometric multiplicity.

$$A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$

- Find all the eigenvalue of A and compute their algebraic multiplicity.
- Find eigenspaces corresponding to each of the eigenvalues of A and compute their geometric multiplicity.

Sol.
$$\lambda = -1, -1, 3$$
 where $E_{-1} = \{[x, 2x - z, z] | x, z \in \mathbb{R}\}$ and $E_3 = \{[z/2, z/2, z] | z \in \mathbb{R}\}.$

Result: Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be n eigenvalues of a $n \times n$ matrix A.

Result: Let $\lambda_1, \lambda_2, ..., \lambda_n$ be n eigenvalues of a $n \times n$ matrix A. Then

$$\det A = \lambda_1 \lambda_2 \cdots \lambda_n$$

Result: Let $\lambda_1, \lambda_2, ..., \lambda_n$ be n eigenvalues of a $n \times n$ matrix A. Then

$$\det A = \lambda_1 \lambda_2 \cdots \lambda_n$$

Theorem: Let A be a square matrix with eigenvalue λ and corresponding eigenvector X.

• If λ is an eigenvalue of a matrix A, then for any positive integer n, λ^n is an eigenvalue of A^n with corresponding eigenvector X.

Result: Let $\lambda_1, \lambda_2, ..., \lambda_n$ be n eigenvalues of a $n \times n$ matrix A. Then

$$\det A = \lambda_1 \lambda_2 \cdots \lambda_n$$

Theorem: Let A be a square matrix with eigenvalue λ and corresponding eigenvector X.

- If λ is an eigenvalue of a matrix A, then for any positive integer n, λ^n is an eigenvalue of A^n with corresponding eigenvector X.
- If A is nonsingular, then for any integer n, λ^n is an eigenvalue of A^n with corresponding eigenvector X.

Q:. Let A be a 2×2 matrix with eigenvectors $v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

and
$$v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 corresponding to eigenvalues $\lambda_1 = 1, \lambda_2 = 4$.

Q:. Let A be a 2×2 matrix with eigenvectors $v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

and
$$v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 corresponding to eigenvalues $\lambda_1 = 1, \lambda_2 = 4$.

Let
$$X = \begin{pmatrix} -1 \\ -5 \end{pmatrix}$$
.

Q:. Let A be a 2×2 matrix with eigenvectors $v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

and $v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ corresponding to eigenvalues $\lambda_1 = 1, \lambda_2 = 4$.

Let $X = \begin{pmatrix} -1 \\ -5 \end{pmatrix}$. Find A^4X without computing the matrix A.

Q:. Let A be a 2×2 matrix with eigenvectors $v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

and $v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ corresponding to eigenvalues $\lambda_1 = 1, \lambda_2 = 4$.

Let $X = \begin{pmatrix} -1 \\ -5 \end{pmatrix}$. Find A^4X without computing the matrix

A. Sol.
$$\begin{pmatrix} -1021 \\ -515 \end{pmatrix}$$

Q:. Let A be an $n \times n$ matrix and $\lambda \in \mathbb{R}$ is not an eigenvalue for A.

Q:. Let A be an $n \times n$ matrix and $\lambda \in \mathbb{R}$ is not an eigenvalue for A. Determine exactly which vectors are in $S = \{X \in \mathbb{R}^n | AX = \lambda X\}.$

Q:. Let A be an $n \times n$ matrix and $\lambda \in \mathbb{R}$ is not an eigenvalue for A. Determine exactly which vectors are in $S = \{X \in \mathbb{R}^n | AX = \lambda X\}$. Is this set a subspace of \mathbb{R}^n .

Q:. Let A be an $n \times n$ matrix and $\lambda \in \mathbb{R}$ is not an eigenvalue for A. Determine exactly which vectors are in $S = \{X \in \mathbb{R}^n | AX = \lambda X\}$. Is this set a subspace of \mathbb{R}^n .

Sol. If λ is not an eigenvalue for A, then, by the definition of an eigenvalue, there are no nonzero vectors X such that $AX = \lambda X$.

Q:. Let A be an $n \times n$ matrix and $\lambda \in \mathbb{R}$ is not an eigenvalue for A. Determine exactly which vectors are in $S = \{X \in \mathbb{R}^n | AX = \lambda X\}$. Is this set a subspace of \mathbb{R}^n .

Sol. If λ is not an eigenvalue for A, then, by the definition of an eigenvalue, there are no nonzero vectors X such that $AX = \lambda X$. Thus, no nonzero vector can be in S.

Q:. Let A be an $n \times n$ matrix and $\lambda \in \mathbb{R}$ is not an eigenvalue for A. Determine exactly which vectors are in $S = \{X \in \mathbb{R}^n | AX = \lambda X\}$. Is this set a subspace of \mathbb{R}^n .

Sol. If λ is not an eigenvalue for A, then, by the definition of an eigenvalue, there are no nonzero vectors X such that $AX = \lambda X$. Thus, no nonzero vector can be in S. However, $A0 = 0 = \lambda 0$, hence $0 \in S$.

Q:. Let A be an $n \times n$ matrix and $\lambda \in \mathbb{R}$ is not an eigenvalue for A. Determine exactly which vectors are in $S = \{X \in \mathbb{R}^n | AX = \lambda X\}$. Is this set a subspace of \mathbb{R}^n .

Sol. If λ is not an eigenvalue for A, then, by the definition of an eigenvalue, there are no nonzero vectors X such that $AX = \lambda X$. Thus, no nonzero vector can be in S. However, $A0 = 0 = \lambda 0$, hence $0 \in S$. $S = \{0\}$ is a trivial subspace of \mathbb{R}^n .