

Verification in HOL of an algorithm for computing SCCs

Vincent Trélat

École Nationale Supérieure des Mines de Nancy Département Informatique

January 14, 2022

Introduction

Definition
Motivation
Example of the proof process

2 Correctness of the SCC algorithm

Description of the algorithm

☐ Definition

☐ Definition

Definition 1

Let $\mathcal{G} := (\mathcal{V}, \mathcal{E})$ be a directed graph and $\mathcal{C} \subseteq \mathcal{V}$. \mathcal{C} is a SCC of \mathcal{G} if:

$$\forall x, y \in \mathcal{C}, (x \Rightarrow y) \land (y \Rightarrow x)$$

Definition 1

Let $\mathcal{G} := (\mathcal{V}, \mathcal{E})$ be a directed graph and $\mathcal{C} \subseteq \mathcal{V}$. \mathcal{C} is a SCC of \mathcal{G} if:

$$\forall x, y \in \mathcal{C}, (x \Rightarrow y) \land (y \Rightarrow x)$$

Motivation

- Networks: connection and data sharing
- Model checking: counter-examples finding

- Networks: connection and data sharing
- Model checking: counter-examples finding

Efficient algorithms (ex: Tarjan)

- Formal verification of correctness is worthwhile
- Parallelization is another challenge

Isabelle / HOL

- Generic proof assistant
- Formalisation of mathematical proofs
- Higher-Order Logic theorem proving environment
- Powerful proof tools and language (Isar)
- Mutual induction, recursion and datatypes, complex pattern matching

Introduction

Example proof

Example

Simple proofs on a basic data structure

Example proof

(Type definition)

```
datatype 'a list = Empty | Cons 'a "'a list"
```

- Generic / polymorphic and static type
- Implicit constructor definition
- Recursive structure giving an induction principle for that type

(Function definition)

```
fun concat :: "'a list ⇒ 'a list ⇒ 'a list" where
  "concat Empty xs = xs"
| "concat (Cons x xs) ys = Cons x (concat xs ys)"
```

```
fun rev :: "'a list ⇒ 'a list" where
  "rev Empty = Empty"
| "rev (Cons x xs) = concat (rev xs) (Cons x Empty)"
```

Introduction

Example proof

(Theorem statement)

```
theorem rev_rev [simp]: "rev (rev x) = x"
```

Introduction

Example proof

(Theorem statement)

```
theorem rev_rev [simp]: "rev (rev x) = x"
apply (induction x)
apply auto
```

(Theorem statement)

```
theorem rev_rev [simp]: "rev (rev x) = x"
apply (induction x)
apply auto
```

(Subgoal)

```
\bigwedge x1 x.

rev (rev x) = x \Longrightarrow

rev (concat (rev x) (Cons x1 Empty) = Cons x1 x
```

(Adding a first lemma)

```
lemma rev_concat [simp]:
"rev (concat xs ys) = concat (rev ys) (rev xs)"
   apply (induction xs)
   apply auto
```

(Adding a first lemma)

```
lemma rev_concat [simp]:
"rev (concat xs ys) = concat (rev ys) (rev xs)"
    apply (induction xs)
    apply auto
```

(Subgoals)

- 1. rev ys = concat (rev ys) Empty
- 2. \bigwedge x1 xs.

```
rev (concat xs ys) = concat (rev ys) (rev xs) \Longrightarrow rev (concat (Cons x1 xs) ys) = concat (rev ys) (rev (Cons x1 xs))
```

apply auto

```
Introduction
```

Example proof

```
(Adding a second lemma)
lemma concat_empty [simp]: "concat xs Empty = xs"
apply (induction xs)
```

```
(Adding a third lemma: associative property)
```

```
lemma concat_assoc [simp]: "concat (concat xs ys) zs =
concat xs (concat ys zs)"
   apply (induction xs)
   apply auto
```

Example proof

```
theorem rev_rev [simp]: "rev (rev x) = x"
  apply (induction x)
  apply auto
```

No subgoals!

A sequential set-based SCC algorithm

```
Data: A graph \mathcal{G} = (\mathcal{V}, \mathcal{E}), a starting node v_0;
Initialize an empty set DEAD;
Initialize an empty set VISITED;
Initialize an empty stack R;
 setBased(v_0);
```


$$R = \{\}$$

$$VISITED = \{$$

$$DEAD = \{\}$$

```
function setBased: v \in V \rightarrow None
         VISITED := VISITED \cup \{v\};
         R.push(v);
         foreach w \in POST(v) do
                if w \in DEAD then
                       continue;
10
                else if w \notin VISITED then
                       setBased(w);
12
                else
13
                      while S(v) \neq S(w) do
14
                             r := R.pop();
15
                             UNITE(S, r, R.top());
17
         if v = R. top() then
                report SCC S(v);
18
                DEAD := DEAD \cup S(v);
                R.pop();
20
```


$$R = \{H\}$$
$$VISITED = \{H$$
$$DEAD = \{\}$$

```
function setBased: v \in V \rightarrow None
         VISITED := VISITED \cup \{v\};
         R.push(v);
         foreach w \in POST(v) do
                if w \in DEAD then
                       continue;
10
                else if w \notin VISITED then
                       setBased(w);
12
                else
13
                      while S(v) \neq S(w) do
14
                             r := R.pop();
15
                             UNITE(S, r, R.top());
17
         if v = R. top() then
                report SCC S(v);
18
                DEAD := DEAD \cup S(v);
                R.pop();
20
```


$$VISITED = \{H, E\}$$

$$DEAD = \{\}$$

```
function setBased: v \in V \rightarrow None
         VISITED := VISITED \cup \{v\};
         R.push(v);
         foreach w \in POST(v) do
                if w \in DEAD then
                       continue;
10
                else if w \notin VISITED then
                       setBased(w);
12
                else
13
                      while S(v) \neq S(w) do
14
                             r := R.pop();
15
                             UNITE(S, r, R.top());
17
         if v = R. top() then
                report SCC S(v);
18
                DEAD := DEAD \cup S(v);
                R.pop();
20
```



```
function setBased: v \in V \rightarrow None
         VISITED := VISITED \cup \{v\};
         R.push(v);
         foreach w \in POST(v) do
                if w \in DEAD then
                       continue;
10
                else if w \notin VISITED then
                       setBased(w);
12
                else
13
                      while S(v) \neq S(w) do
14
                             r := R.pop();
15
                             UNITE(S, r, R.top());
17
         if v = R. top() then
                report SCC S(v);
18
                DEAD := DEAD \cup S(v);
                R.pop();
20
```


$$R = \{H, E, A, B\}$$

$$VISITED = \{H, E, A, B\}$$

$$DEAD = \{\}$$

```
function setBased: v \in V \rightarrow None
         VISITED := VISITED \cup \{v\};
         R.push(v);
         foreach w \in POST(v) do
                if w \in DEAD then
                       continue;
10
                else if w \notin VISITED then
                       setBased(w);
12
                else
13
                      while S(v) \neq S(w) do
14
                             r := R.pop();
15
                             UNITE(S, r, R.top());
17
         if v = R. top() then
                report SCC S(v);
18
                DEAD := DEAD \cup S(v);
                R.pop();
20
```


$$R = \{H, E, A, B, C\}$$
 $VISITED = \{H, E, A, B, C\}$
 $DEAD = \{\}$

```
function setBased: v \in V \rightarrow None
         VISITED := VISITED \cup \{v\};
         R.push(v);
         foreach w \in POST(v) do
                if w \in DEAD then
                       continue;
10
                else if w \notin VISITED then
                       setBased(w);
12
                else
13
                      while S(v) \neq S(w) do
14
                             r := R.pop();
15
                             UNITE(S, r, R.top());
17
         if v = R. top() then
                report SCC S(v);
18
                DEAD := DEAD \cup S(v);
                R.pop();
20
```


$$R = \{H, E, A, B, C, D\}$$

$$VISITED = \{H, E, A, B, C, D\}$$

$$DEAD = \{\}$$

$$S = \{A\} \cup \{B\} \cup \{C\} \cup \{D\} \cup \{E\} \cup \{F\} \cup \{G\} \cup \{H\}\}$$

```
function setBased: v \in V \rightarrow None
         VISITED := VISITED \cup \{v\};
         R.push(v);
         foreach w \in POST(v) do
                if w \in DEAD then
                      continue:
                else if w \notin VISITED then
11
                      setBased(w);
12
                else
13
                      while S(v) \neq S(w) do
                             r := R.pop();
                             UNITE(S, r, R.top());
         if v = R. top() then
17
                report SCC S(v);
                DEAD := DEAD \cup S(v);
                R.pop();
20
```



```
function setBased: v \in V \rightarrow None
         VISITED := VISITED \cup \{v\};
         R.push(v);
         foreach w \in POST(v) do
                if w \in DEAD then
                      continue:
                else if w \notin VISITED then
11
                      setBased(w);
12
                else
13
                      while S(v) \neq S(w) do
                             r := R.pop();
                             UNITE(S, r, R.top());
         if v = R. top() then
17
                report SCC S(v);
                DEAD := DEAD \cup S(v);
                R.pop();
20
```



```
function setBased: v \in V \rightarrow None
         VISITED := VISITED \cup \{v\};
         R.push(v);
         foreach w \in POST(v) do
                if w \in DEAD then
                      continue;
10
                else if w \notin VISITED then
                      setBased(w);
12
                else
13
                      while S(v) \neq S(w) do
                             r := R.pop();
15
                             UNITE(S, r, R.top());
17
         if v = R. top() then
                report SCC S(v);
                DEAD := DEAD \cup S(v);
                R.pop();
20
```



```
function setBased: v \in V \rightarrow None
         VISITED := VISITED \cup \{v\};
         R.push(v);
         foreach w \in POST(v) do
                if w \in DEAD then
                      continue;
10
                else if w \notin VISITED then
                      setBased(w);
12
                else
13
                      while S(v) \neq S(w) do
                             r := R.pop();
15
                             UNITE(S, r, R.top());
17
         if v = R. top() then
                report SCC S(v);
                DEAD := DEAD \cup S(v);
                R.pop();
20
```



```
Data: A graph \mathcal{G} = (\mathcal{V}, \mathcal{E}), a starting node v_0;
   Initialize an empty set DEAD;
  Initialize an empty set VISITED:
  Initialize an empty stack R;
   setBased(v_0);
   function setBased: v \in V \rightarrow None
          VISITED := VISITED \cup \{v\};
          R.push(v);
          foreach w \in POST(v) do
                 if w \in DEAD then
                        continue;
10
                 else if w \notin VISITED then
                        setBased(w);
12
                 else
13
                        while S(v) \neq S(w) do
                               r := \mathbb{R}.pop();
15
                               UNITE(S, r, R.top());
17
          if v = R. top() then
                 report SCC S(v);
                 DEAD := DEAD \cup S(v);
                 R.pop();
20
```


☐ Description of the algorithm