W05D5

Midterm Project Kickoff

Instructor: Simon Dawkins

Outline for today

- Project descriptions
 - Predicting flight delays
 - Clustering NYC neighborhoods
- Project skeleton
 - How to plan the project
 - How to divide tasks
- GitHub essentials
- Evaluation criteria

Project descriptions

Predicting flight delays

- Supervised Learning:
 - Regression Problem: Predict delay of flights 1 week in advance
 - (Stretch) Multiclass Classification: Predict type of delay it will be
 - (Stretch) Binary Classification: Predict if the flight will be cancelled.
- Feature Engineering
- Model comparisons
- Connection to a Postgres database
- Future role as **Data Scientist** or **Machine Learning Engineer**
- Repository

Predicting flight delays: the data

- 4 separate tables:
 - flights: Departure and arrival information for flights in US from 2018 and 2019
 - fuel_comsumption: Consumption of different airlines from 2015-2019 aggregated per month
 - passengers: Total passengers on different routes from 2015-2019 aggregated per month
 - flights_test: Departure and arrival information for flights in US from January 2020. *Use this as* your test set. When you submit, this is how it should look: <u>sample_submission.csv</u>
- Other APIs you find (e.g. a weather API)
- Postgres database (credentials in <u>compass activity</u>):
 - Don't: SELECT * FROM aviation without a WHERE clause
 - Do: Save result of query as CSV

Predicting flight delays: workflow

- 1. Pull a subset of the database and save as csv
- Do some data exploration (guidance from this <u>notebook</u>)
- 3. Engineer features and train models (guidance from this <u>notebook</u>)
- 4. Submit results in the form of <u>sample submission.csv</u>

Clustering NYC neighborhoods

- Unsupervised Learning
 - Clustering Problem: Cluster using cultural, geographic, and transport features
 - **Insights**: See if clusters are predictive of economic indicators and/or demographics
- Data Visualization
- Using APIs for data enhancements
- JSON parsing
- Future role as Data Analyst
- Repository

Clustering NYC neighborhoods: the data

- Parse nyc_geo.json into dataframe with:
 - Borough
 - Neighborhood
 - Latitude
 - Longitude
- Join data with features from APIs:
 - Cultural: Foursquare, Yelp, Google, Meetups
 - Transport: Uber
 - Other: NYC Open Data
 - Any others you think of

Clustering NYC neighborhoods: where to start

- 1. Parse neighbourhood JSON data
- 2. Explore APIs and join features to dataframe
- 3. Do some data exploration (guidance from this <u>notebook</u>)
- 4. Engineer features and train models (guidance from this <u>notebook</u>)
- 5. Visualize clusters and relationships to economic/demographic variables
- 6. Submit results as submission.csv with columns "neighborhood", "cluster_id"

Project skeleton

Workflow

- No exact recipe, every project is different
- Don't to exploratory analysis just for the sake of it; use it to inform decisions
- Model selection through cross-validation on the training set.
- Test set untouched until submission

Model selection

Find the best model+hyperparameters All Data through cross-validation on the train set Training data Test data Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Split 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Report how well your best Split 2 Fold 1 Fold 2 Fold 3 Fold 4 model does on the test set Fold 5 Fair estimate of how well Split 3 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 your selected model would Split 4 perform on unseen data Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 once deployed Split 5 Fold 2 Fold 3 Fold 1 Fold 4 Fold 5

Iterative progress and difficulty

- Make a minimum viable product (MVP) early
- Dataset difficulty (e.g. one data source before merging many)
- Model complexity (e.g. linear regression before xgboost)

How to collaborate

- Use GitHub to have 1 unified remote copy with all past versions
 - Dropbox etc. will not have a list of past working milestones to roll back to
 - Dropbox etc. will cause issues if one person is making changes to code that another person is using (due to constant syncing)
- Try to parallelize, not pipeline (don't want anyone to be blocked)
- Ideas for parallelizing between team members:
 - Multiple tables/data sources. Can split EDA of each and come up with interesting insights
 - Can work on different ML models and/or feature engineering strategies
 - One works on data/features, other works on modeling/evaluation, but quick MVP!
- Meet frequently to discuss insights/next steps and maintain accountability

GitHub essentials

Git steps

- 1. 1 person creates a repository on GitHub (with README.md)
- 2. Clone the repository

```
cd [directory you want to work in]
git clone [repository url]
cd [repository name]
```

3. Make changes (e.g. create jupyter notebooks, add code, etc.)

```
git add [file path] # add any new files to version control
git commit -a -m "[your commit message]" # register changes as a new version
```

4. Sync with the remote (cloud) copy. Pull others' changes, push your own

GitHub conflicts

- Git does not constantly sync local+remote automatically like Google Docs.
 It syncs when you pull/push
- What if you and a teammate were modifying the same code?
 - Example: you both worked on the same function, they pushed first, and you pull
- Git will throw an error when you try to pull and will ask you to resolve conflicts
 - You'll have to pick which changes to keep: yours, your teammate's, or a mixture
 - Can be very difficult to resolve conflicts

GitHub best practices

- Commit+push working copies (milestone achieved, no errors)
- Add useful commit messages (in case you need to roll back)
- Work on separate features/files to avoid conflicts
- Git pull frequently to avoid conflicts (local version very out of sync)
- If data not too large, add to version control as well
- In README, provide all details a new team member would need to navigate and modify the project

Evaluation criteria

Presentation

- Present as if to a client (who has some data science knowledge)
- Make it a story
 - What is the problem?
 - What is the dataset?
 - How did you analyze the dataset?
 - What were the findings?
- You can walk through code, but only as a chronological reference for explaining how you analyzed the data
 - However, I recommend having no code at all
- 5 minutes

Presentation: structure

- **Motivation**: What is the problem? Why is it important (either business, public good, or research perspective)?
- Task: Problem from a technical perspective. Description of the dataset, features and targets, data exploration
- Modeling: Important aspects of your approach. How did you process the data or engineer features? What model did you use? Use schematics!
- Results: Visuals! Show metrics and experiments. Demo (if any)
- Conclusions: What worked? What didn't (and why)? How are we better off?
 Where could the project go next?

Presentation: draw.io figures

- Good for schematics, model diagrams, shapes, math typesetting, etc.

Presentation: python plotting libraries

- Good for displaying information about your dataset and results

Code quality

Modularization

- Different files for different steps of the ML pipeline (e.g. data processing, model training, etc.)
- Functions for unified code (if it has a short english description, it's probably a function)

Readability

- Meaningful variable names
- Comments for code blocks, docstrings for functions
- Periodically refactor code (e.g. remove old commented out code)

Robustness

- Test your functions
- Efficiency
 - Save processed data/trained model, only recreate when needed

Code quality: modularization

```
repo/
 — data
                                                      # data_preprocessing.py
     — raw_data.csv
    preprocessed_data.csv
                                                      def load_preprocessed_data():
  - src
     — modules
                                                          . . .
                                                          return X, y
       data_preprocessing.py
       └─ modeling.py
       └─ figure_generation.py
     — tests
       test_data_preprocessing.py
                                                      # experiments.ipynb
       └─ test_modeling.py
                                                      from modules.data_preprocessing import load_preprocessed_data
    - experiments.ipynb
                                                      from modules.modeling import train_models
   output
     — predictions.csv
                                                      X, y = load_preprocessed_data()
     — figures
                                                      best_model, cv_performance = train_models(X, y)
       process_schematic.jpg
   L cluster_visualizations.jpg
  - README.md
```

Code quality: docstrings

```
def add_binary(a, b):
    1.1.1
    Returns the sum of two decimal numbers in binary digits.
            Parameters:
                    a (int): A decimal integer
                     b (int): Another decimal integer
            Returns:
                     binary_sum (str): Binary string of the sum of a and b
    1.1.1
    binary_sum = bin(a+b)[2:]
    return binary_sum
```

Other docstring conventions

Code quality: testing

```
def sum(x, y):
    z=x+y
    return z

def test_sum():
    assert sum(x=3, y=1) == 4
```

Code quality: avoid retraining model

```
def train_model(X, y, force_refit=False):
    . . .
    if os.path.exists(model_filepath) and not force_refit:
        model = pickle.load(open(model_filepath, 'rb'))
    else:
        model = SVM()
        model.fit(X_train, y_train)
        pickle.dump(model, open(model_filepath, 'wb'))
    y_pred = model.predict(X_test)
                                                        Pickle tutorial
    . . .
```