

CLAIMS

- 1 1. A method for providing a dynamic multi-dimensional
2 commodity modeling process, comprising:
3 creating a commodity hierarchy data structure
4 comprising:
5 at least one top level node; and
6 at least one leaf node dependent upon said at
7 least one top level node;
8 assigning attributes to nodes in said hierarchy, said
9 attributes sharing uniform characteristics; and
10 selectively assigning at least one dimensional
11 attribute to a node operable for invoking an analysis based
12 upon said at least one dimensional attribute;
13 wherein dependent nodes inherit dimensional
14 attributes assigned to corresponding upper level nodes.

- 1 2. The method of claim 1, further comprising:
2 at least one secondary level node dependent on said at
3 least one top level node; and
4 at least one leaf node dependent on said at least one
5 secondary level node.

- 1 3. The method of claim 1, wherein said attributes are
2 dynamically alterable during instantiation of said multi-
3 dimensional commodity modeling process.

1 4. The method of claim 1, wherein said dimensional
2 attributes are dynamically alterable during instantiation of
3 said multi-dimensional commodity modeling process.

1 5. The method of claim 1, wherein said invoking an analysis
2 based upon said at least one dimensional attribute includes
3 determining performance patterns related to a constituent.

1 6. The method of claim 2, wherein said at least one
2 secondary level node comprises at least one nested sub-
3 commodity.

1 7. The method of claim 1, wherein said at least one
2 dimensional attribute is selectively assignable to at least
3 one of:

4 a top level node; and
5 a leaf level node.

1 8. The method of claim 2, wherein said at least one
2 dimensional attribute is selectively assignable to at least
3 one secondary level node.

1 9. A dynamic multi-dimensional commodity model, comprising:
2 a commodity hierarchical structure comprising:
3 at least one top level node; and
4 at least one leaf level node;
5 uniform attributes associated with nodes in said
6 commodity hierarchical structure; and
7 at least one dimensional attribute selectively assigned
8 to at least one node in said commodity hierarchical
9 structure, said at least one dimensional attribute operable
10 for invoking an analysis;
11 wherein said at least one dimensional
12 attribute is inherited down to corresponding nodes in said
13 commodity hierarchical structure.

1 10. The dynamic multi-dimensional commodity model of claim
2 9, further comprising:
3 at least one secondary level node dependent on said at
4 least one top level node; and
5 at least one leaf node dependent on said at least one
6 secondary level node.

1 11. The dynamic multi-dimensional commodity model of claim
2 9, wherein said uniform attributes are dynamically alterable
3 during instantiation of said multi-dimensional commodity
4 model.

1 12. The dynamic multi-dimensional commodity model of claim
2 9, wherein said at least one dimensional attribute is
3 dynamically alterable during instantiation of said multi-
4 dimensional commodity model.

1 13. The dynamic multi-dimensional commodity model of claim
2 9, wherein said analysis includes determining performance
3 patterns related to a constituent.

1 14. The dynamic multi-dimensional commodity model of claim
2 10, wherein said at least one secondary level node comprises
3 at least one nested sub-commodity.

1 15. The dynamic multi-dimensional commodity model of claim
2 9, wherein said at least one dimensional attribute is
3 selectively assignable to at least one of:
4 a top level node; and
5 a leaf level node.

1 16. The dynamic multi-dimensional commodity model of claim
2 10, wherein said at least one dimensional attribute is
3 selectively assignable to said at least one secondary level
4 node.

1 17. The dynamic multi-dimensional commodity model of claim
2 9, wherein said uniform attributes comprise at least one of:
3 sampling criteria;
4 period definition;
5 history definition; and
6 type of measure.

1 18. The dynamic multi-dimensional commodity model of claim
2 17, wherein said sampling criteria includes at least one of:
3 a product type;
4 an operations;
5 a step; and
6 a source.

1 19. The dynamic multi-dimensional commodity model of claim
2 17, wherein said period definition includes a unit of time
3 to apply a specified analytic.

1 20. The dynamic multi-dimensional commodity model of claim
2 17, wherein said history definition includes a number of
3 periods to be applied to a specified analytic.

1 21. The dynamic multi-dimensional commodity model of claim
2 17, wherein said type of measure includes a type of analytic
3 to be applied, said type of analytic including a Shewhart
4 Control Chart.

1 22. The dynamic multi-dimensional commodity model of claim
2 9, wherein said dimensional attributes includes at least one
3 of:

4 a performance tolerance;
5 a noise filter;
6 an oscillation thresholds or trends;
7 consecutive trending; and
8 negative performance threshold.

1 23. The dynamic multi-dimensional commodity model of claim
2 22, wherein said performance tolerance defines a standard
3 deviation from a mean.

1 24. The dynamic multi-dimensional commodity model of claim
2 22, wherein said noise filter defines a statistically
3 significant sample size for a period.

1 25. The dynamic multi-dimensional commodity model of claim
2 22, wherein said oscillation thresholds or trends define
3 unwanted change oscillating around a mean within limits.

1 26. The dynamic multi-dimensional commodity model of claim
2 22, wherein said negative performance threshold defines
3 absolute value limits.

1 27. A quality management system for utilizing dynamic
2 multi-dimensional commodity modeling, comprising:

3 a data collection component operable for collecting raw
4 data;

5 a dynamic multi-dimensional commodity model component;

6 a commodity constituent model generated by said dynamic
7 multi-dimensional commodity model component;

8 a closed loop/corrective action component operable for
9 resolving nonconformance issues resulting from analysis;

10 an analytic engine in communication with said data
11 collection component, said multi-dimensional commodity model
12 component, and said closed loop/corrective action component;

13 wherein said analytic engine performs:

14 receiving said raw data from said data
15 collection component;

16 receiving said commodity constituent model;

17 performing analytics on said raw data
18 according to rules defined by said commodity constituent
19 model; and

20 if said performing analytics results in a
21 nonconformance, transmitting nonconformance data to said
22 closed loop/corrective action component.

1 28. The quality management system of claim 27, wherein said
2 dynamic multi-dimensional commodity model component
3 performs:

4 creating a commodity hierarchy data structure
5 comprising:

6 at least one top level node; and

7 at least one leaf node dependent upon said at
8 least one top level node;

9 assigning attributes to nodes in said hierarchy, said
10 attributes sharing uniform characteristics; and

11 selectively assigning at least one dimensional
12 attribute to a node operable for invoking an analysis based
13 upon said at least one dimensional attribute;

14 wherein dependent nodes inherit dimensional
15 attributes assigned to corresponding upper level nodes.

1 29. A storage medium encoded with machine-readable computer
2 program code for providing a dynamic multi-dimensional
3 commodity modeling process, the storage medium including
4 instructions for causing a computer to implement a method,
5 comprising:

6 creating a commodity hierarchy data structure
7 comprising:

8 at least one top level node; and

9 at least one leaf node dependent upon said at
10 least one top level node;

11 assigning attributes to nodes in said hierarchy, said
12 attributes sharing uniform characteristics; and

13 selectively assigning at least one dimensional
14 attribute to a node operable for invoking an analysis based
15 upon said at least one dimensional attribute;

16 wherein dependent nodes inherit dimensional
17 attributes assigned to corresponding upper level nodes.

1 30. The storage medium of claim 29, further comprising
2 instructions for causing said computer to implement:

3 at least one secondary level node dependent on said at
4 least one top level node; and

5 at least one leaf node dependent on said at least one
6 secondary level node.

1 31. The storage medium of claim 29, wherein said attributes
2 are dynamically alterable during instantiation of said
3 multi-dimensional commodity modeling process.

1 32. The storage medium of claim 29, wherein said
2 dimensional attributes are dynamically alterable during
3 instantiation of said multi-dimensional commodity modeling
4 process.

1 33. The storage medium of claim 29, wherein said invoking an
2 analysis based upon said at least one dimensional attribute
3 includes determining performance patterns related to a
4 constituent.

1 34. The storage medium of claim 30, wherein said at least
2 one secondary level node comprises at least one nested sub-
3 commodity.

1 35. The storage medium of claim 29, wherein said at least
2 one dimensional attribute is selectively assignable to at
3 least one of:

4 a top level node; and
5 a leaf level node.

1 36. The storage medium of claim 30, wherein said at least
2 one dimensional attribute is selectively assignable to at
3 least one secondary level node.