School of Mathematical and **Computational Sciences**

Abstract Algebra

Prof. Pablo Rosero & Christian Chávez Lesson 6

Quotient Groups and Homomorphisms

1.1. Cosets and counting

Let (G, \cdot) be a group.

Definition 1.1. Let $H \leq G$ and $a, b \in G$. Define \cong_r over G by

$$a \cong_r b \iff ab^{-1} \in H$$
.

Whenever $a \cong_r b$ we say a right is congruent to b module H. Define \cong_l over G by

$$a \cong_{l} b \iff a^{-1}b \in H.$$

Whenever $a \cong_l b$ we say a is left congruent to b module H.

Remark 1.1.1. If *G* is Abelian,

$$ab^{-1} \in H \iff a^{-1}b \in H$$

for any $a, b \in G$.

Theorem 1.2. *Let* $H \leq G$.

Remark 1.2.1. *Ha* is a right coset of *H* in *G*

Proof.

Corollary 1.3.

Definition 1.4 (Index).

Theorem 1.5. If K, H, G are groups with k < H < G then

$$[G:k] = [G:H] \cdot [H:k]$$

If any two of these indices are finite, so is the third.

Proof.

Corollary 1.6 (Lagrange's theorem). *If* $H \leq G$, then |G| = [G:H]|H|. *In particular, if* G *is finite,* the order of any $a \in G$ divides |G|.

Proof. Theorem 1.7.

Proposition 1.8.

Proof.

Proposition 1.9.