MANUFACTURE OF MOUTHPIECE FOR TEETH SET CORRECTION

Patent number:

JP4028359

Publication date:

1992-01-30

Inventor:

SHIMADA TAKEO; CHIHARA SHOICHI

Applicant:

MITSUBISHI PETROCHEMICAL CO

Classification:

- international:

A61C7/08

- european:

Application number:

JP19900134984 19900524

Priority number(s):

JP19900134984 19900524

Report a data error here

Abstract of JP4028359

PURPOSE:To permit easy installation of the title mouthpiece and prevent a specific tooth from being damaged, by using the mouthpiece in covering state on the whole teeth by preparing a plaster model for teeth set correction by correcting a teeth set plaster model which is prepared according to a patient's palate, and closely attaching and solidifying a softened thermoplastic polymer sheet on the model, and then demounting the solidified sheet. CONSTITUTION:A recessed teeth set model is made from a seal material according to a patient' s palate, and plaster is introduced into the recessed model, and a projecting teeth set plaster model is prepared, and correction is applied up to a corrected form on the basis of the plaster model, and a plaster model for teeth set correction is prepared. Then, a sheetshaped thermoplastic polymer which possesses the superior strength and the elastomer characteristic such as ethylene-vinyl acetate copolymer is heat-softened and attached on the plaster model for teeth set correction, and further closely attached through heat shaping, and the teeth set of the model is correctly printed, and the thermoplastic polymer sheet is cooling-solidified to the normal temperature and demounted, thus a mouthpiece is obtained. Since the mouthpiece possesses rubber elasticity and is not so hard, the mouthpiece can be installed reasonably on the patient's teeth set, and since the compatibility to the tooth other than the corrected tooth is superior, the force applied onto the corrected tooth can be received in dispersion by the whole of the teeth.

Data supplied from the **esp@cenet** database - Worldwide

⑲ 日本国特許庁(JP)

⑪特許出願公開

@ 公 開 特 許 公 報 (A) 平4-28359

fint. Cl. 5

識別記号

庁内整理番号

❸公開 平成4年(1992)1月30日

A 61 C 7/08

. 7108-4C A 61 C 7/00

M

審査請求 有 請求項の数 2 (全4頁)

❷発明の名称 歯列矯正用マウスピースの製造法

②特 頭 平2-134984

20出 願 平2(1990)5月24日

の発明者 島田

武 雄

東京都千代田区丸の内2丁目5番2号 三菱油化株式会社

内

⑩発明者 千原 彰一

.

三重県四日市市東邦町1番地 三菱油化株式会社四日市総

合研究所内

⑪出 願 人 三菱油化株式会社

東京都千代田区丸の内2丁目5番2号

個代 理 人 弁理士 佐藤 一雄

外2名

明 細 書

1. 発明の名称

幽列矯正用マウスピースの製造法

2. 特許請求の範囲

- 1. 趨列不正患者より採取した協列石資模型 を修正して趨列矯正用石資模型を製作し、該齒列 矯正用石資模型に軟化した熱可塑性重合体シート を密碧した後固化させて取り外すことを特徴とす る齒列矯正用マウスピースの製造法。
- 2. 熱可塑性重合体が、曲げ弾性率 (ASTM-D747) 800kg/cd以下のものである筋水項1に記載の歯列場正用マウスピースの製造法。

3. 発明の詳細な説明

(発明の背景)

<遊糞上の利用分野>

本発明は、幽牙に傷を付けることなく簡易に歯

列の矯正を行なうことができる歯列矯正用マウス ピースの製造法に関する。

<従来の技術>

従来、歯列の矯正は、一般に矯正を行なう歯牙 に力を加えるために、他の正常な歯牙にワイヤー 掛のための支具を装着して行なう方法が採用され ている。

<発明が解決しようとする課題>

しかし、このような方法では、他の正常な歯牙をも傷を付け易いばかりか、一部の歯牙にのみ特に力が加わり易いことから、ワイヤー掛された歯牙が痛むといった欠点があった。

(発明の概要)

<要旨>

本発明者らは上記課題を解決するために鋭意研究を重ねた結果、従来の歯列矯正方法と全く異なる特殊なマウスピースを用いることによって他の正常な歯牙を傷付けること無く、歯牙に加える力を歯牙全体でこれを保持して、矯正する歯牙のみに特に力を加えることができるので、従来の矯正

_ 1 _

法と異なり簡易に矯正を行なうことができるとの 知見を得て本発明を完成するに至った。

すなわち、本発明の趨列総正用マウスピースの 製造法は、歯列不正患者より採取した歯列石音模 型を修正して歯列矯正用石膏模型を製作し、該歯 列類正用石膏模型に軟化した熱可塑性重合体シートを密着した後間化させて取り外すことを特徴と するものである。

<効果>

本発明の歯列矯正用マウスピースの製造法によって製作された歯列矯正用マウスピースは、軟質材料を用いているので装御が容易であり、かつ歯牙全体に低せて使用するので特定な歯牙を痛めることもない。また、はずして歯牙や口腔の中を滑めることも容易に出来るといった者しい効果を変する。

[発明の具体的説明]

- 〔1〕歯列矯正用石膏模型の製作
- (1) 患者の歯列模型の製作工程

本発明の歯列矯正用マウスピースの製造法にお

- 3 -

出来れば何を使用してもよいが、一般に技工用バーやハンドピースを用いて行なわれる。また肉盛りはコンポジットレジンやエポキシ樹脂等で行う。 又肉盛りに使用する材料もその後の操作に耐えるだけの接着強度及び引張り強度があれば、どのようなものを使ってもよい。

- [1] 歯列矯正用マウスピースの塑作
- (1) 熱可塑性重合体シートの熱成形

・ 前紀方法によって製作された歯列矯正用石育模型に加熱によって軟化されたシート状の熱可塑性重合体を貼着し、さらに熱成形にて密着させて歯列矯正用石質模型の歯列を正確に転写する。

ここで用いる熱可塑性重合体は、エラストマー 特性及び強度の優れたもの、更には装着感の優れ たものを用いる必要がある。

上記の条件を満足させる為に、使用する熱可塑性理合体は、曲げ弾性率(ASTM D747)が800kg/dd以下、好ましくは50~500kg/ddのものであることが望ましい。

このような条件を満足する材料としては、エチ

いては、先ず、歯列矯正を行なう患者の口蓋より、 印象材を用いて凹型の歯列模型を製作し、この凹 型の歯列模型に石膏を流し込んで患者の正確な歯 列の凸型の歯列石膏模型を製作する。

この時凹型の歯列模型の作成に使用する印象材は、一般に歯科分野で用いられるものが使用でき、シリコーン印象材、寒天印象材、アルジネート印象材等が用いられる。また、凸型の歯列石脊模型に使用する石脊は、硬質石膏、又は短硬質石膏を用いるのがよい。

(2) 幽列矯正用石膏模型の製作工程

上記方法によって製作された患者の歯列の凸型の石貨模型をベースにして、最終的に、あるいは 段階的に矯正されるべき形にまで修正を加えて歯 列矯正用石資模型を製作する。

このような歯列矯正用石脊模型は、患者の歯列 石脊模型の矯正する歯牙の矯正するべき方向の力 を加えたくない部所に内盛りし、その反対側の力 を加えたい部所を切削して修正を行なう。

切削に使用する道具は、石膏を切削することが

- 4 -

レン・酢酸ビニル共重合体、エチレン・アクリル酸エステル共重合体、エチレン・α・オレフィン共 重合体、ポリエチレン等のエチレン系樹脂のほか エチレン・プロピレンエラストマー、エチレン・ プロピレン・ジェン化合物系エラストマー、スチ レン・ブタジエン系 (水添物も含む) エラストマー ー、ポリエステルエラストマー、ウレタンエラストマー、ポリブタジェン等がある。

これらの中でもエチレン系樹脂 (特にエチレン・酢酸ピニル共産合体、エチレン・α-オレフィン共重合体、ポリエチレン)、スチレン・ブタジエン系エラストマーを用いることが好ましい。

これらは、単独で用いても或いは他の重合体と 混合したり、稜層して用いても、また、各種の添 加剤を添加して用いてもよい。

このような添加剤としては、顔料、老化防止剤、 成形改良剤、安定剤、無外線防止剤、酸化防止剤、 取耗改良剤等がある。

また、該熱可塑性重合体シートの厚みは、一般

に $0.25\sim3$ m、好ましくは $0.3\sim1.5$ m、 特に $0.3\sim1$ mであることが好ましい。

前記熱成形の具体的な成形法としては、<u>東空成</u>形や圧空成形を行なうことが好ましいが、プロー成形やスラッシュモールド成形を行なうこともできる。

技熱成形の成形条件は熱成形の方法及び熱可塑 性重合体の種類によって異る。

型ましい熱成形である真空成形や圧空成形の場合には、前記熱可塑性低合体シートを軟化させる必要があるので、該シートを構成する業材のピカット軟化点(JIS-K7206)以上、股点以下の温度にまで加熱される。

前記熱成形によって爆正された歯列の形状を正確に転写した熱可塑性重合体シートをそのまま常温附近の温度にまで冷却して固化し、歯型石膏模型より取り外し、歯周部分を自安に切断して形状を整えることによる凹型の歯列矯正用マウスピースが得られる。この場合の切断は歯周より3 mu程度内側でも外側でも良いが歯周に直接当たらない

- 7 -

校例の実験例を示す。 実施例 1

歯列石脊模型の製作

上前他2本の場正を行う歯列不正患者の印象を、 アルジネート印象材(スターミックス、日本歯研 工業料製)を用いて作成し、そこに硬質石脊(ダ イヤストーン、三菱鉱業セメント辨製)を流して 歯型石脊模型を作成した。

幽列矯正用石膏模型の製作

前記協列石資模型の前歯を技工用バーで1mの原さで切削すると共に、切削した個所の反対側を、エポキシ樹脂系接着剤(コニシボンド、コニシ株式会社製)にて1mの原さで内盛りして歯列矯正用石管模型を製作した。

熱可觀性重合体シートの製作

エチレン・酢酸ビニル共重合体樹脂 (三菱ポリエチ-EVA「V501H」、三菱油化㈱製、曲 げ弾性率400kg/cd、ビカット軟化点5.4℃、 融点91℃)の厚さ0.5mm、縦15cm、横15 cmのプレスシートを吸収精密圧接器 (スターバッ ガがよい。

このようにして製作された凹型の歯列矯正用マウスピースは矯正する歯の部分だけが嵌合し難くなっているが、接マウスピースは50~800程度のゴム弾性を有しており、それほど硬くないので患者の歯列に無理なく装着することができる。また、矯正する歯牙以外の部分は各々の歯牙への適合性が良いので、矯正する歯牙へ与える力を歯牙全体で分散して受け止めることができる。

また、該マウスピースはそれほど硬度が高くないので、歯列矯正用石膏模型を傷つけることが無く、同一形状の歯列矯正用マウスピースを複数個製作できるし、この矯正歯列石膏模型をベースにして更に切削、肉盛りして修正を加えて、次の段階の矯正を行なうこともでき、このような操作を複数回線り返してより正常な歯列に矯正することができる。

[实験例]

本発明の歯列矯正用マウスピースについて、更に具体的に説明するため、以下に実施例および比

- 8 -

ク三金工業構製)上に製置し、該プレスシートが 85℃の温度になる迄昇温した時に、前記幽列矯 正用石膏模型に密着させて転写を行った。

上記の如く転写して成形した転写成形体をドライヤーの冷風で5分間冷却して固化させた。この 転写成形体は石資模型より容易にとり外せた。

マスウピースの製作

この凹状部分2と凸状部分3とを形成した転写成形体を幽列矯正用石膏模型の歯周部位より2mm 上部に合わせてハサミで切削して第1図に示すような上顎の歯列と下顎の歯列に分離して接着することができる上顎の歯列の歯列矯正用マウスピース1を下顎の歯列矯正用マウスピース1を作成した。この歯列矯正用マウスピース1を上記の矯正を行なう歯列不正患者に凹状部分2を歯列に被せてはしたところ、容易に接着出來かつ、前歯2本に歯列の表面を覆う部分4の矯正の力が加わっていた。

前記幽列不正思者にこの幽列矯正用マウスピー

特開平 4-28359(4)

スを1ヶ月間装容した後に取り外し、上記幽列総正用石脊模型を更に1mm切削し、その反対側の部位を1mm内盛して修正を行ない、第2段階の歯列矯正用石脊模型を製作した。

そして、この第2段階の歯列場正用石骸模型をベースにして再度熱可塑性重合体シートを密着させて、第2段階の歯列矯正用マウスピースを製作した。

そして、この第2段階の協列矯正用マウスピースを前記第1段階の協列矯正を行なった協列不正 患者に装着したところ、装着が可能であった。これは前記第1段階の協列矯正が十分に行なわれた ことを示すもので、第2段階の歯列矯正に入った ことを意味するものである。

4. 図面の簡単な説明

第1図は本発明実施例の歯列矯正用マウスピースの斜視図を表す。

. 1… 歯列矯正用マウスピース、1a…上顎の歯列の歯列矯正用マウスピース、1b…下顎の歯列

の協列総正用マウスピース、2…凹状部分、3… 凸状部分、4…協列の表面を覆う部分、5…協肉 の表面を覆う部分。

出願人代理人 佐 鬺 一 雄

- 11 -

Appln. 11-504890

Align's Ref: AT-00003JP

Townsend's File No.: 018563-000120JP

(Translation)

Japanese Laid-Open Publication No. 4-28359

Laid-Open Publication Date: January 30, 1992

Japanese Application No. 2-134984

Filing Date: May 24, 1990

Inventors: T. SHIMADA, et al.

Applicant: Mitsubishi Yuka Kabushiki Keisha

Specification

Title of the Invention
 Method for producing an orthodontic mouthpiece

2. Claims

- 1. A method for producing an orthodontic mouthpiece, by which a dentition plaster cast taken from a patient having a malaligned dentition is modified to produce an orthodontic plaster cast, softened thermoplastic polymer sheet is adhered to the orthodontic plaster cast, and then the softened thermoplastic polymer sheet is solidified and removed.
- 2. A method for producing an orthodontic mouthpiece according to claim 1, wherein the thermoplastic polymer has a flexure elasticity (ASTM-D747) of 800 kg/cm² or less.

Appln. 11-504890 Align's Ref: AT-00003JP Townsend's File No.: 018563-000120JP

3. Detailed Description of the Invention [Background of the Invention]

<Field of the Invention>

The present invention relates to a method for producing an orthodontic mouthpiece for easily performing orthodontic treatment without damaging the teeth.

<Prior Art>

Conventionally, for orthodontic treatment, a method for attaching a tool for wiring normal teeth in order to apply a force to a tooth to be orthodontically-treated is generally used.

<Problems to be Solved by the Invention>

Such a method has problems in that the other normal teeth are likely to be damaged and the patient feels a pain in the wired teeth since a force is likely to be applied to a part of the teeth that are wired.

[Overview of the Invention]

<Summary>

The present inventors accumulated active studies in order to solve the above-described problems. As a result, the present inventors obtained the following knowledge and completed the present invention. By using a special mouthpiece which is completely different from that of conventional orthodontic methods, orthodontic treatment can be easily performed unlike conventional orthodontic

Appln. 11-504890

Align's Ref: AT-00003JP

Townsend's File No.: 018563-000120JP

methods. With the special mouthpiece, the force to be applied to the tooth to be orthodontically-treated can be held by all the teeth without damaging the other normal teeth, and the force can be especially applied only to the tooth to be orthodontically-treated.

According to the method for producing orthodontic mouthpiece of the present invention, dentition plaster cast taken from a patient having a malaligned dentition is modified to produce orthodontic plaster cast, a softened thermoplastic polymer sheet is adhered to the orthodontic plaster cast, and the softened thermoplastic polymer sheet is solidified and removed.

<Effect>

The orthodontic mouthpiece produced by the method according to the present invention provides the following significant effects: the mouthpiece is formed of a soft material and thus is easily attached; the mouthpiece is applied to all the teeth and thus does not cause pain to a specific tooth; and in addition, the mouthpiece can be easily removed for washing the teeth and the palate.

[Specific Description of the Invention]

- [I] Production of an orthodontic plaster cast
- (1) Production process of a dentition model of a patient According to a method for producing an orthodontic mouthpiece of the present invention, a concave dentition

Appln. 11-504890 Align's Ref: AT-00003JP Townsend's File No.: 018563-000120JP

model is first produced from the palate of the patient for the orthodontic treatment using an impression material, and plaster is poured into the concave dentition model. Thus, an accurate convex dentition plaster cast of the patient is produced.

For producing the concave dentition model, any impression material generally used in dentistry is usable. For example, silicone impression materials, agar impression materials, and arginate impression materials are used. For the convex dentition plaster cast, it is preferable to use plaster, hard plaster or super-hard plaster.

(2) Production process of an orthodontic plaster cast

The convex dentition plaster cast of the patient
produced by the above-mentioned method is used as a base
and is modified into a final form or into an
intermediate form to be further modified. Thus, an
orthodontic plaster cast is produced.

The convex dentition plaster cast of the patient is modified to produce such an orthodontic plaster cast as follows: A portion to which a correcting force is not to be placed is bulged; and plaster is cut off from a portion on the opposite side, i.e., the portion to which a correcting force is to be placed.

For cutting, any tool which can cut plaster is usable. Generally, a bar or a hand piece used by dental technicians is used. For bulging, a composite resin, an

Appln. 11-504890

Align's Ref: AT-00003JP

Townsend's File No.: 018563-000120JP

epoxy resin or the like is used. For bulging, any material which has sufficient adhesive strength and tensile strength for withstanding the subsequent operations is usable.

- [II] Production of an orthodontic mouthpiece
- (1) Thermal molding of a thermoplastic polymer sheet

A thermoplastic polymer sheet which has been softened by heating is adhered to the orthodontic plaster cast produced by the above-described method, and more closely adhered thereto by thermal molding to accurately transfer the dentition of the orthodontic plaster cast.

The thermoplastic polymer used here needs to be superb in elastomer characteristics and in strength and also should be easily attachable.

In order to fulfill these conditions, the thermoplastic polymer used desirably has a flexure elasticity of 800 kg/cm^2 (ATSM D747) or less, preferably 50 to 500 kg/cm².

Materials fulfilling such conditions are: ethylene-based resins such as, for example, ethylene-vinyl acetate copolymer, ethylene acrylic acid ester copolymer, ethylene methacrylic acid ester copolymer, ethylene-acolefin copolymer, and polyethylene; ethylene-propylene elastomer; ethylene-propylene-diene compound-based elastomer; styrene-butadiene-based elastomer (including materials with water added thereto); polyester

Appln. 11-504890 Align's Ref: AT-00003JP Townsend's File No.: 018563-000120JP

elastomer; urethane elastomer, polybutadiene; and the like.

Among these materials, it is preferable to use ethylene-based resins (especially, ethylene-vinyl acetate copolymer, ethylene- α -olefin copolymer, polyethylene) or styrene-butadiene-based elastomer.

These materials may be used independently, or mixed or laminated with other polymers. Various additives may also be used.

Such additives include, for example, pigments, entiaging agents, agents to enhance the molding, stabilizers,
ultraviolet-preventive agents, anti-oxidants, and
abrasion-preventive agents.

The thickness of the thermoplastic polymer sheet is generally 0.25 to 3 mm, preferably 0.3 to 1.5 mm, and especially preferably 0.3 to 1 mm.

Preferable specific thermal molding methods include vacuum molding and air pressure molding, but blow molding and slash molding may also be used.

The conditions for the thermal molding vary in accordance with the method of thermal molding and the type of thermoplastic polymer.

In the case where the preferable vacuum molding or air pressure molding is used, it is necessary to soften

Appln. 11-504890

Align's Ref: AT-00003JP

Townsend's File No.: 018563-000120JP

the thermoplastic polymer sheet. Therefore, the sheet is heated to a temperature which is higher than or equal to the vicat softening point (JIS-K7206) of the material forming the sheet and lower than or equal to the melting point of the material forming the sheet.

The thermoplastic polymer sheet having the orthodontically-treated dentition shape accurately transferred thereon by the above-described | thermal molding is cooled to room temperature or to the vicinity thereof and solidified. The sheet is removed from the dentition plaster cast. The sheet is cut along the gum line and properly shaped. Thus, a concave orthodontic mouthpiece is obtained. The sheet may be cut along about 3 mm inner to or outer to the gum line, but it is preferable that the cutting line is not in direct contact with the gum line.

In the concave orthodontic mouthpiece produced in this way, only the teeth to be orthodontically-treated are difficult to fit. However, the mouthpiece has a rubber elasticity of about 50 to 800 and is not very hard, and therefore is easily attachable to the dentition of the patient. The portions other than the tooth to be orthodontically-treated are easily fit to the respective teeth. Thus, the force to be applied to the tooth to be orthodontically-treated can be dispersed and received by all the teeth.

The mouthpiece does not have a very high hardness, and thus does not damage the orthodontic plaster cast.

Appln. 11-504890 Align's Ref: AT-00003JP Townsend's File No.: 018563-000120JP

Therefore, a plurality of orthodontic mouthpieces of the same shape can be produced. It is also possible to perform the next orthodontic process, using such an orthodontic plaster cast as a base, by further modifying the cast with cutting and bulging. Such an operation can be repeated a plurality of times for straightening teeth into more normal dentition.

[Experimental examples]

The orthodontic mouthpiece according to the present invention will be more specifically described by way of experiments of examples and comparative examples.

Example 1

Production of a dentition plaster cast

An impression of a patient with malaligned dentition, whose two upper front teeth are to be orthodontically-treated, was produced using an alginate impression material (Starmix, produced by Nihon Shiken Corporation). Hard plaster (Diastone, produced by Mitsubishi Kogyo Cement Kabushiki Kaisha) was poured into the impression. Thus, a dentition plaster cast was produced.

Production of an orthodontic plaster cast

The upper front teeth of the dentition plaster cast were cut off by a thickness of 1 mm using a bar used by dental technicians, and a portion opposite to the portion which has been cut off was bulged by a thickness of 1 mm with an epoxy resin-based adhesive (Konishi Bond,

Appln. 11-504890

Align's Ref: AT-00003JP

Townsend's File No.: 018563-000120JP

produced by Konishi Co., Ltd.). Thus, an orthodontic plaster cast was produced.

Production of a thermoplastic polymer sheet

A pressed sheet having a thickness of 0.5 mm, a length of 15 cm and a width of 15 cm of an ethylene-vinyl acetate copolymer resin (Mitsubishi Polyethy-EVA "V501H", Mitsubishi Yuka Kabushiki Kaisha; flexure elasticity: 400 kg/cm², vicat softening point: 54°C, melting point: 91°C) was placed on an absorptive precision pressure-contact device (Starback, produced by Mitsugane Kogyo Kabushiki Kaisha). When the pressed sheet was heated to a temperature of 85°C, the pressed sheet was adhered to the orthodontic plaster cast for transference.

The transferred molded body obtained by the above-mentioned transference and molding was cooled for 5 minutes by cool air from a dryer and solidified. The transferred molded body was easily removed from the plaster cast.

Production of a mouthpiece

The transferred molded body having a concave portion 2 and a convex portion 3 was cut along a line 2 mm away from the gum line of the orthodontic plaster cast by sciesors. Thus, as shown in Figure 1, an orthodontic mouthpiece 1 including an upper dentition orthodontic mouthpiece la and a lower dentition orthodontic mouthpiece 1b, which can be separately attached to the upper teeth and the lower teeth, was

Appln. 11-504890

Align's Ref: AT-00003JP

Townsend's File No.: 018563-000120JP

produced. The orthodontic mouthpiece 1 was tested for the above-mentioned patient with malaligned dentition for orthodontic treatment, such that the concave portion 2 covers the patient's dentition. The orthodontic mouthpiece 1 was easily attached, and the correcting force of a portion 4 covering the surface of the dentition was applied to the two front teeth.

After the patient with malaligned dentition wore the orthodontic mouthpiece for 1 month, the orthodontic mouthpiece was removed. The orthodontic plaster cast was modified by cutting it off by another 1 mm and bulging the opposite portion by 1 mm. Thus, a second stage orthodontic plaster cast was produced.

The second stage orthodontic plaster cest was used as a base, and another thermoplastic polymer sheet was adhered thereto. Thus, a second stage orthodontic mouthpiece was produced.

The second stage orthodontic mouthpiece was tested to the patient with malaligned dentition who had finished the first stage orthodontic treatment. The second stage orthodontic mouthpiece was attachable. This indicates that the first stage orthodontic treatment was fully performed, and that the patient was now in the second stage of orthodontic treatment.

Appln. 11-504890

Align's Ref: AT-00003JP

Townsend's File No.: 018563-000120JP

4. Brief Description of the Drawings

Figure 1 represents a perspective view of an orthodontic mouthpiece according to an example of the present invention.

1 ... orthodontic mouthpiece; la ... upper dentition orthodontic mouthpiece; lb ... lower dentition orthodontic mouthpiece; 2 ... concave portion; 3 ... donvex portion; 4 ... portion covering the surface of the dentition; 5 ... portion covering the surface of gums.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.