Import Libraries

In [55]: import pandas as pd
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import f_oneway
from scipy.stats import chi2_contingency

Load dataset

In [4]: yulu_data = pd.read_csv("https://d2beiqkhq929f0.cloudfront.net/public_assets/asse
yulu_data

Out[4]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casua
0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0000	
1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0000	
2	2011-01- 01 02:00:00	1	0	0	1	9.02	13.635	80	0.0000	
3	2011-01- 01 03:00:00	1	0	0	1	9.84	14.395	75	0.0000	
4	2011-01- 01 04:00:00	1	0	0	1	9.84	14.395	75	0.0000	
10881	2012-12- 19 19:00:00	4	0	1	1	15.58	19.695	50	26.0027	
10882	2012-12- 19 20:00:00	4	0	1	1	14.76	17.425	57	15.0013	1
10883	2012-12- 19 21:00:00	4	0	1	1	13.94	15.910	61	15.0013	
10884	2012-12- 19 22:00:00	4	0	1	1	13.94	17.425	61	6.0032	1
10885	2012-12- 19 23:00:00	4	0	1	1	13.12	16.665	66	8.9981	

10886 rows × 12 columns

In [50]: yulu_data.shape

Out[50]: (10886, 12)

```
In [5]: yulu_data.nunique()
Out[5]: datetime
                       10886
        season
                           4
        holiday
                           2
                           2
        workingday
        weather
                           4
                          49
        temp
                          60
        atemp
        humidity
                          89
        windspeed
                          28
        casual
                         309
        registered
                         731
        count
                         822
        dtype: int64
```

Outlier detection

In [60]: yulu_data.describe().T

Out[60]:

	count	mean	std	min	25%	50%	75%	max
season	10886.0	2.506614	1.116174	1.00	2.0000	3.000	4.0000	4.0000
holiday	10886.0	0.028569	0.166599	0.00	0.0000	0.000	0.0000	1.0000
workingday	10886.0	0.680875	0.466159	0.00	0.0000	1.000	1.0000	1.0000
weather	10886.0	1.418427	0.633839	1.00	1.0000	1.000	2.0000	4.0000
temp	10886.0	20.230860	7.791590	0.82	13.9400	20.500	26.2400	41.0000
atemp	10886.0	23.655084	8.474601	0.76	16.6650	24.240	31.0600	45.4550
humidity	10886.0	61.886460	19.245033	0.00	47.0000	62.000	77.0000	100.0000
windspeed	10886.0	12.799395	8.164537	0.00	7.0015	12.998	16.9979	56.9969
casual	10886.0	36.021955	49.960477	0.00	4.0000	17.000	49.0000	367.0000
registered	10886.0	155.552177	151.039033	0.00	36.0000	118.000	222.0000	886.0000
count	10886.0	191.574132	181.144454	1.00	42.0000	145.000	284.0000	977.0000

```
In [59]: fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, figsize=(21,7))
    sns.boxplot(x = 'workingday', y = 'count', data=yulu_data, ax=ax1)
    sns.boxplot(x = 'weather', y = 'count', data=yulu_data, ax=ax2)
    sns.boxplot(x = 'season', y = 'count', data=yulu_data, ax=ax3)
    plt.xticks(fontsize= 13)
```


C:\Users\mthiru947\AppData\Local\Programs\Python\Python310\lib\site-packages\se aborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an a xes-level function for histograms).

warnings.warn(msg, FutureWarning)

Correlation among data

In [65]: fig, ax = plt.subplots(figsize=(10,10))
sns.heatmap(yulu_data.corr(), cmap="RdYlGn", center=0, annot=True, linewidths=2,

Out[65]: <AxesSubplot:>


```
In [63]:
         def dist box violin(data):
         # function plots a combined graph for univariate analysis of continous variable
         #to check spread, central tendency , dispersion and outliers
             Name=data.name.upper()
             fig, axes =plt.subplots(1,3,figsize=(17, 7))
             fig.suptitle("SPREAD OF DATA FOR "+ Name , fontsize=18, fontweight='bold')
             sns.distplot(data,kde=False,color='Blue',ax=axes[0])
             axes[0].axvline(data.mean(), color='y', linestyle='--',linewidth=2)
             axes[0].axvline(data.median(), color='r', linestyle='dashed', linewidth=2)
             axes[0].axvline(data.mode()[0],color='g',linestyle='solid',linewidth=2)
             axes[0].legend({'Mean':data.mean(),'Median':data.median(),'Mode':data.mode()]
             sns.boxplot(x=data,showmeans=True, orient='h',color="purple",ax=axes[1])
             #just exploring violin plot
             sns.violinplot(data,ax=axes[2],showmeans=True)
             plt.show()
```

In [64]: dist_box_violin(yulu_data["count"])

C:\Users\mthiru947\AppData\Local\Programs\Python\Python310\lib\site-packages\se aborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an a xes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\mthiru947\AppData\Local\Programs\Python\Python310\lib\site-packages\se aborn_decorators.py:36: FutureWarning: Pass the following variable as a keywor d arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

SPREAD OF DATA FOR COUNT

Analysis data based on category

```
In [67]: fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, figsize=(21,7))
# binnedPopulation = pd.cut(x=df['monthly_salary'], bins=20)
# binnedPopulation.value_counts(normalize=True)

sns.histplot(data=yulu_data, x="count", hue="workingday", multiple="dodge", shrirsns.histplot(data=yulu_data, x="count", hue="season", multiple="dodge", shrink=.8sns.histplot(data=yulu_data, x="count", hue="weather", hue=
```

Out[67]: <AxesSubplot:xlabel='count', ylabel='Count'>


```
In [71]: fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, figsize=(21,7))
    sns.distplot(yulu_data['count'], rug=True, ax=ax1)
    sns.distplot(yulu_data['windspeed'], rug=True, ax=ax2)
    sns.distplot(yulu_data['humidity'], rug=True, ax=ax3)
```

C:\Users\mthiru947\AppData\Local\Programs\Python\Python310\lib\site-packages\se aborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an a xes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\mthiru947\AppData\Local\Programs\Python\Python310\lib\site-packages\se aborn\distributions.py:2103: FutureWarning: The `axis` variable is no longer us ed and will be removed. Instead, assign variables directly to `x` or `y`.

warnings.warn(msg, FutureWarning)

C:\Users\mthiru947\AppData\Local\Programs\Python\Python310\lib\site-packages\se aborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an a xes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\mthiru947\AppData\Local\Programs\Python\Python310\lib\site-packages\se aborn\distributions.py:2103: FutureWarning: The `axis` variable is no longer us ed and will be removed. Instead, assign variables directly to `x` or `y`.

warnings.warn(msg, FutureWarning)

C:\Users\mthiru947\AppData\Local\Programs\Python\Python310\lib\site-packages\se aborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an a xes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\mthiru947\AppData\Local\Programs\Python\Python310\lib\site-packages\se aborn\distributions.py:2103: FutureWarning: The `axis` variable is no longer us ed and will be removed. Instead, assign variables directly to `x` or `y`. warnings.warn(msg, FutureWarning)

Out[71]: <AxesSubplot:xlabel='humidity', ylabel='Density'>

Two- Sample T-Test to check if Working Day has an effect on the number of electric cycles rented

H0-Working days has effect on count of electric cycle rented

Ha-Working days has no effect on count of electric cycle rented

```
In [7]: working_day0 = yulu_data[yulu_data["workingday"] == 0]
working_day1 = yulu_data[yulu_data["workingday"] == 1]
```

In [8]: working_day0

Out[8]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casua
0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0000	
1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0000	
2	2011-01- 01 02:00:00	1	0	0	1	9.02	13.635	80	0.0000	
3	2011-01- 01 03:00:00	1	0	0	1	9.84	14.395	75	0.0000	
4	2011-01- 01 04:00:00	1	0	0	1	9.84	14.395	75	0.0000	
10809	2012-12- 16 19:00:00	4	0	0	1	14.76	17.425	93	8.9981	1
10810	2012-12- 16 20:00:00	4	0	0	2	15.58	19.695	82	0.0000	1
10811	2012-12- 16 21:00:00	4	0	0	2	14.76	18.940	93	0.0000	1
10812	2012-12- 16 22:00:00	4	0	0	2	16.40	20.455	82	12.9980	
10813	2012-12- 16 23:00:00	4	0	0	2	14.76	17.425	93	8.9981	

3474 rows × 12 columns

In [9]: working_day1

Out[9]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casua
47	2011-01- 03 00:00:00	1	0	1	1	9.02	9.850	44	23.9994	
48	2011-01- 03 01:00:00	1	0	1	1	8.20	8.335	44	27.9993	
49	2011-01- 03 04:00:00	1	0	1	1	6.56	6.820	47	26.0027	
50	2011-01- 03 05:00:00	1	0	1	1	6.56	6.820	47	19.0012	
51	2011-01- 03 06:00:00	1	0	1	1	5.74	5.305	50	26.0027	
10881	2012-12- 19 19:00:00	4	0	1	1	15.58	19.695	50	26.0027	
10882	2012-12- 19 20:00:00	4	0	1	1	14.76	17.425	57	15.0013	1
10883	2012-12- 19 21:00:00	4	0	1	1	13.94	15.910	61	15.0013	
10884	2012-12- 19 22:00:00	4	0	1	1	13.94	17.425	61	6.0032	1
10885	2012-12- 19 23:00:00	4	0	1	1	13.12	16.665	66	8.9981	

7412 rows × 12 columns

```
In [13]: #2 Sample T test
stats.ttest_ind(working_day0["count"], working_day1["count"])
```

Out[13]: Ttest_indResult(statistic=-1.2096277376026694, pvalue=0.22644804226361348)

P-Value is less than alpha (0.5), so rejecting Null Hypothesis.

Accepting alternate hypothesis. the result is "Working days has no effect on count of electric cycle rented"

ANNOVA

No. of cycles rented is similar or different in weather

H0-No of cycles rented in all weather is same

Ha-No of cycles rented in all weather are not same

Result

The F statistic and p-value turn out to be equal to 65.53024112793271 and 5.482069475935669e-42 respectively. Since the p-value is less than 0.05 hence we would reject the null hypothesis. This implies that we have sufficient proof to say that there exists a difference in the number of cycles rented in different weather

No. of cycles rented is similar or different in season

H0-No of cycles rented in all season is same

Ha-No of cycles rented in all season are not same

```
In [29]: season1 = yulu_data[yulu_data["season"] == 1]
    season2 = yulu_data[yulu_data["season"] == 2]
    season3 = yulu_data[yulu_data["season"] == 3]
    season4 = yulu_data[yulu_data["season"] == 4]

In [30]: f_oneway(season1['count'], season2['count'], season3['count'], season4['count'])
Out[30]: F_onewayResult(statistic=236.94671081032106, pvalue=6.164843386499654e-149)
```

Result

The F statistic and p-value turn out to be equal to 236.94671081032106 and 6.164843386499654e-149 respectively. Since the p-value is less than 0.05 hence we would reject the null hypothesis. This implies that we have sufficient proof to say that there exists a difference in the number of cycles rented in different season

Chi-square test to check if Weather is dependent on the season

H0: States that there is no relation between weather and season.

Ha: State that there is a significant relation between weather and season.

```
In [45]: observed_data = np.array([yulu_data["weather"], yulu_data["season"]])
    observed_data.size

Out[45]: 21772

In [46]: stat, p, dof, expected = chi2_contingency(observed_data)
    p

Out[46]: 1.0

In [47]: # interpret p-value
    alpha = 0.05
    print("p value is " + str(p))
    if p <= alpha:
        print('Dependent (reject H0)')
    else:
        print('Independent (H0 holds true)')

        p value is 1.0
        Independent (H0 holds true)</pre>
```

Result

Since the p-value is greater than 0.05 hence we would accept the null hypothesis. This implies that

we have sufficient proof to say that there exists a no relation between weather and season

	-	
In I		
±11 [J •	
_	_	