## Classical Cryptography

Thierry Sans

# Example and definitions of a cryptosystem

#### Caesar Cipher - the oldest cryptosystem

A shift cipher – attributed to Julius Caesar (100-44 BC)

MEET ME AFTER THE TOGA PARTY

PHHW PH DIWHU WKH WRJD SDUWB

Shift the alphabet 3 places further down and substitute letters

```
abcdefghijklmnopqrstuvwxyz
```

DEFGHIJKLMNOPQRSTUVWXYZABC

#### Communication over an insecure medium



#### Threat | - Interception



• Interception : an attacker can <u>read</u> messages

#### Threat 2 - Modification



Modification : an attacker can modify messages

#### Threat 3 - Fabrication



• Fabrication : an attacker can inject messages

### Threat 4 - Interruption



• Interruption : an attacker can block messages

#### Confidentiality and Integrity of communications



→ Implement a virtual trusted channel over an insecure medium

#### Definitions

#### **Plaintext**

The message in its clear form (the original message)

#### Ciphertext

The message in its ciphered form (the encrypted message)

#### **Encryption**

Transform a plaintext into ciphertext

#### **Decryption**

Transform a ciphertext into a plaintext

#### Definitions

#### Cryptographic algorithm

The method to do encryption and decryption

#### Cryptographic key

An input variable used by the algorithm for the transformation

N-bit security entropy (a.k.a. the key space)
The number of bits necessary to encode the number of possible keys (could be different than the key length)

#### Representing data as numbers

Cryptographic algorithms are mathematical operations

→ messages and keys must be represented as numbers for instance : ASCII encoding

### Back to Caesar Cipher

Algorithm: shift the alphabet of a certain number of positions

Key: the number of positions to shift

**Key space :** 25 possible rotations (~ 5 bits security)

#### **Encoding:**

```
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
```

Encrypting and decrypting one character is obtained as follows:

$$c = E(k,p) = (p + k) \mod 26$$

$$p = D(k,c) = (c - k) \mod 26$$

## The big picture



## Breaking the cipher

#### The Kerckhoffs' principle (1883)

"The enemy knows the system" - the security of a communication should not rely on the fact that the algorithms are secrets

→ A cryptosystem should be secure even if everything about the system, except the key, is public knowledge

No security by obscurity

#### Breaking the cipher - the attacker's model

- Exhaustive Search (a.k.a brute force)
  Try all possible n keys (in average it takes n/2 tries)
- Ciphertext only
   You know one or several <u>random ciphertexts</u>
- Known plaintext
   You know one or several pairs of <u>random plaintext</u> and their corresponding ciphertexts
- Chosen plaintext
  You know one or several pairs of chosen plaintext and their corresponding ciphertexts
- Chosen ciphertext
  You know one or several pairs of plaintext and their corresponding chosen ciphertexts
- **→** A good crypto system resists all attacks

## Breaking Caesar cipher

| Exhaustive search | Yes                                        |
|-------------------|--------------------------------------------|
| ciphertext only   | Statistical Analysis                       |
| known plaintext   | Look at the first letter and get the shift |
| chosen plaintext  | Choose "A" and get the shift               |
| chosen ciphertext | Choose "A" and get the shift               |

## Statistical Cryptanalysis

→ Monoalphabetic ciphers do not change the relative frequency of letters in a message

## Evolution of cryptosystems

## A brief history of cryptography

| ~ 2000 years ago    | Substitution ciphers  (a.k.a mono alphabetic ciphers) |
|---------------------|-------------------------------------------------------|
| few centuries later | Transposition ciphers                                 |
| Renaissance         | Polyalphabetic ciphers                                |
| 1844                | Mechanization                                         |
| 1976                | Public key cryptography                               |

## Substitution ciphers (a.k.a mono alphabetic ciphers)

→ Improvement over Caesar cipher

Algorithm: allow an arbitrary permutation of the alphabet

**Key:** set of substitutions

**Key space:** 26! possible substitutions ( $4 \times 10^{26} \sim 89$  bits)

```
abcdefghijklmnopqrstuvwxyz
DKVQFIBJWPESCXHTMYAUOLRGZN
```

if we wish to replace letters WI RF RWAJ UH YFTSDVF SFUUFYA

## Breaking substitution ciphers

| Exhaustive search | Doable with a computer         |
|-------------------|--------------------------------|
| ciphertext only   | Statistical analysis           |
| known plaintext   | Match letters together         |
| chosen plaintext  | Choose ABCDE and match letters |
| chosen ciphertext | Choose ABCDE and match letters |

## Polyalphabetic ciphers (a.k.a Renaissance Cipher)

→ Vigenere cipher

Algorithm: combine the message and the key

Key: a word

Key space: the length of the word

wearediscoveredsaveyourself

+ deceptivedeceptive (mod 26)
ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Advantage: Encryption of a letter is context dependent

## Breaking Polyalphabetic Ciphers

| exhaustive search | Small key length only                                                          |
|-------------------|--------------------------------------------------------------------------------|
| ciphertext only   | Statistical analysis for small key length and significant amount of ciphertext |
| known plaintext   | Subtract plaintext from ciphertext                                             |
| chosen plaintext  | Choose AAAAA and match letters                                                 |
| chosen ciphertext | Choose AAAAA and match letters                                                 |

#### OTP - One Time Pad

→ Improvement over Vigenere cipher

Algorithm: combine the message and the key

Key: an infinite random string

Key space: infinite

whatanicedaytoday

yksuftgoarfwpfwel

ZZZJUCLUDTUNNWGQS

Advantage: this is the perfect cipher!

Disadvantage: hard to use in practice, how to transmit the key?

## The impossibility of breaking OTP

The ciphertext bears no statistical relationship to the plaintext

→ No statistical analysis

For any plaintext and ciphertext, there exists a key mapping one to the other, and all keys are equally probable

→ A ciphertext can be decrypted to any plaintext of the same length

### Transposition Cipher

Algorithm: switch letters around a permutation

Key: a set of permutation

Key space: the set of permutations

helloworld LOLHERDLWO

## Breaking Transposition ciphers

| brute force       | Small key length only          |
|-------------------|--------------------------------|
| ciphertext only   | Hard for large permutations    |
| known plaintext   | Match letters together         |
| chosen plaintext  | Choose ABCDE and match letters |
| chosen ciphertext | Choose ABCDE and match letters |

## The seeds of modern cryptography

#### . Diffusion

Mix-up symbols
Transposition Cipher

#### 2. Confusion

Replace a symbol with another Polyaphabetic Cipher

#### 3. Randomization

Repeated encryption of the same text are different OTP

## Mechanization

#### Mechanization



## The cryptography toolbox

## Cryptography is not just a about confidentiality

#### Integrity

digital signatures, hash functions

#### Non-repudiation

contract-signing

#### **Anonymity**

electronic cash, electronic voting

. . .

**Availability** 

## The crypto toolbox

- Symmetric cryptography schemes
- Asymmetric cryptography schemes
- Message digests
- Digital signatures
- Certificates

#### Symmetric encryption

The same key is used for encryption and decryption



## Asymmetric encryption a.k.a Public Key Cryptography

- → The public key for encryption
- → The private key for decryption



## Message digests

Message digests are meant for creating fingerprints of messages

- Un-keyed message digest: hashes, checksum
- Keyed message digests : MACs

### Digital Signature

- → The private key for encryption
- → The public key for decryption



#### Certificates - Public Key Infrastructure

Certificates are meant for verifying someone's identity

- Binding between a public key and an owner
- Certified by a certification authority