

Theoretische Informatik

Bearbeitungszeit: 03.06.2024 bis 09.06.2024, 16:00 Uhr Besprechung: 10.06.2024, 10:30 Uhr in Hörsaal 5E

> Abgabe: als PDF über das ILIAS Gruppenabgaben möglich und erwünscht

Aufgabe 1 (Turingmaschine I)7P

- a) Konstruieren Sie eine Turingmaschine $M = (\{0,1\}, \Gamma, Z, \delta, z_0, \Box, F)$, mit $L(M) = \{(01)^n \mid n \ge 1\}$.
- b) Geben Sie für alle Zustände Zustandsbeschreibungen ähnlich wie in dem Beispiel auf Kapitel 5 Folie 18 an.

Lösungsvorschlag: $M = (\{0,1\},\{0,1,\square\},\{z_0,z_1,z_e\},\delta,z_0,\square,\{z_e\})$ mit δ wie folgt:

Aufgabe 2 (Turingmaschine II)13P

Gegeben sei die Sprache $L = \{0^n 1^n 0^n \mid n \ge 0\}.$

- (a) Konstruieren Sie eine Turingmaschine M, die die Sprache L akzeptiert, d.h. L = L(M).
- (b) Geben Sie für alle Zustände Zustandsbeschreibungen ähnlich wie in dem Beispiel auf Kapitel 5 Folie 18 an.
- (c) Geben Sie eine akzeptierende Konfigurationenfolge für die Eingabe $w_1=010$ an.
- (d) Geben Sie eine Konfigurationenfolge für die Eingabe $w_2 = 00110$ an, um zu zeigen, dass w_2 nicht in L(M) liegt.

Lösungsvorschlag:

(a) Die Turingmaschine

$$M = (\{0,1\},\{0,1,\$,\square\},\{z_0,z_1,\ldots,z_5,z_e\},\delta,z_0,\square,\{z_e\})$$

mit den folgenden Turingbefehlen:

$$(z_{0}, \Box) \mapsto (z_{e}, \Box, R) \quad (z_{2}, 0) \mapsto (z_{3}, \$, R) \quad (z_{4}, 0) \mapsto (z_{5}, 0, L)$$

$$(z_{0}, 0) \mapsto (z_{1}, \$, R) \quad (z_{2}, 1) \mapsto (z_{2}, 1, R) \quad (z_{4}, \$) \mapsto (z_{4}, \$, L)$$

$$(z_{0}, \$) \mapsto (z_{0}, \$, R) \quad (z_{2}, \$) \mapsto (z_{2}, \$, R) \quad (z_{5}, 0) \mapsto (z_{5}, 0, L)$$

$$(z_{1}, 0) \mapsto (z_{1}, 0, R) \quad (z_{3}, \Box) \mapsto (z_{4}, \Box, L) \quad (z_{5}, 1) \mapsto (z_{5}, 1, L)$$

$$(z_{1}, 1) \mapsto (z_{2}, \$, R) \quad (z_{3}, 0) \mapsto (z_{3}, 0, R) \quad (z_{5}, \$) \mapsto (z_{5}, \$, L)$$

$$(z_{1}, \$) \mapsto (z_{1}, \$, R) \quad (z_{4}, \Box) \mapsto (z_{e}, \Box, R) \quad (z_{5}, \Box) \mapsto (z_{0}, \Box, R)$$

erkennt die Sprache L.

(b) Interpretation der Zustände:

Z	Bedeutung	Absicht
z_0	Anfangszustand.	Wechsle in Zustand z_1 , nachdem 0 gelesen
		und durch \$ ersetzt wurde.
		Wechsle in Endzustand, wenn das Wort leer ist.
z_1	Eine 0 wurde getilgt.	Die nächste 1 suchen und diese
		durch $\$$ ersetzen und dann in z_2 wechseln.
z_2	Eine 1 wurde getilgt.	Die nächste 0 suchen und diese
		durch $\$$ ersetzen und dann in z_3 wechseln.
z_3	Nach rechts laufen.	Rechten Rand erreichen und in z_4 wechseln
z_4	Nach links laufen,	Überprüfe, ob alle 0en und 1en getilgt wurden.
	solange \$-Symbole	
	gelesen werden.	
z_5	Nach links laufen.	Linken Rand erreichen,
		um neuen Zyklus zu beginnen.
z_e	Endzustand.	Wort akzeptieren.

(c) Die Konfigurationenfolge von M bei Eingabe von 010 ist:

(d) Die Konfigurationenfolge von M bei Eingabe von 00110 ist:

Aufgabe 3 (Turingmaschine III)10P

Gegeben sei die Turingmaschine $M = (\{a\}, \{a, \square, /\}, \{z_0, z_1, z_2, z_3, z_e\}, \delta, z_0, \square, \{z_e\})$ mit folgender Überführungsfunktion δ :

- (a) Ist die angegebene Turingmaschine deterministisch? Begründen Sie.
- (b) Geben Sie eine akzeptierende Konfigurationenfolge für die Eingabe $w_1 = aaaa$ an.
- (c) Geben Sie alle möglichen Konfigurationenfolgen für die Eingabe $w_2 = aaaaa$ an, um zu zeigen, dass w_2 nicht in L(M) liegt.
- (d) Geben Sie für alle Zustände Zustandsbeschreibungen ähnlich wie in dem Beispiel auf Kapitel 5 Folie 18 an.
- (e) Geben Sie die Sprache L(M) wie gewohnt formal als Menge von Wörtern an.

Lösungsvorschlag:

- (a) M ist deterministisch, da jede Konfiguration durch ihre Vorgängerkonfiguration eindeutig bestimmt ist, da δ auf höchstens ein Tupel abbildet.
- (b) $z_0aaaa \vdash_M /z_1aaa \vdash_M /az_0aa \vdash_M /a/z_1a \vdash_M /a/az_0 \Box \vdash_M /a/z_2a \Box \vdash_M /az_2/a \vdash_M /z_2a/a \vdash_M z_2/a/a \vdash_M z_2\Box/a/a \vdash_M \Box z_0/a/a \vdash_M /z_0a/a \vdash_M //z_1/a \vdash_M //z_1a \vdash_M //z_1a \vdash_M //z_2a \Box \vdash_M //z_2/a \vdash_M /z_2//a \vdash_M z_2///a \vdash_M z_2\Box///a \vdash_M \Box z_0///a \vdash_M /z_0/a \vdash_M //z_0a \vdash_M ///z_1\Box \vdash_M //z_3/\Box \vdash_M //z_3// \vdash_M z_3/// \vdash_M z_3/// \vdash_M z_3/// \vdash_M \Box z_e///$
- (c) $z_0aaaaa \vdash_M /z_1aaaa \vdash_M /az_0aaa \vdash_M /az_0aaa \vdash_M /a/z_1aa \vdash_M /a/az_0a \vdash_M /a/a/z_1 \Box \vdash_M /a/az_3/\Box \vdash_M /a/z_3a/\Box$ Es gibt keine definierte Folgekonfiguration und, da M deterministisch ist, auch vorher keine alternative Konfigurationenfolgen.
- (d) Zustandsbeschreibungen:

Zustand	Beschreibung	
$\overline{z_0}$	Start, je erstes a markieren und zu z_1 wechseln oder, falls Wortende	
	(d. h. leeres Wort oder im vorherigen Durchlauf wurde eine gerade	
	Anzahl von as markiert) zu z_2 wechseln	
z_1	Sucht je zweites a , wechselt wieder zu z_0 oder, falls Wortende	
	aber eine ungerade Anzahl von as in diesem Durchlauf gefunden,	
	zu z_3 wechseln	
z_2	Es wurde eine gerade Anzahl von as im letzten Durchlauf gefunden,	
	also zurücklaufen (Ausnahme im letzten Durchlauf); falls das Wort	
	am Anfang leer war, Endlosschleife	
z_3	Überprüft, ob kein unmarkiertes a mehr vorhanden ist.	
z_e	Endzustand, sobald dieser erreicht ist, wird akzeptiert.	
	, , , , , , , , , , , , , , , , , , ,	
(e) $L(M) = L = \{a^{2^n} \mid n \ge 0\} \subseteq \{a\}^*$		

Aufgabe 4 (LBAs)10P

Geben Sie einen LBA M an mit $L(M) = \{a^{2n}b^n \mid n \geq 1\}$. Beschreiben Sie kurz die Funktion der genutzten Zustände.

Lösungsvorschlag:

 $M = (\{a, b, \hat{a}, \hat{b}\}, \{a, b, \hat{a}, \hat{b}, \Box\}, Z, \delta, z_0, \Box, \{z_f\})$ mit $Z = \{z_0, z_1, z_2, z_3, z_4, z_f\}$ und δ wie folgt:

Zustandsbeschreibungen:

Zustand	Beschreibung
$\overline{z_0}$	Start, erstes a mit einem Dach markieren und zu z_1 wechseln
z_1	zweites a mit einem Dach markieren und zu z_2 wechseln
z_2	Es wurden zwei as markiert, laufe nun nach rechts zum
	Wortende, das mit einem \hat{b} markiert sein muss
	(bzw ab dem zweiten Durchlauf bis zum ersten markierten b)
z_3	Markiert nächstes b (von rechts aus) mit einem Dach, das nun für z_2
	als "Wortende" gilt.
	Falls stattdessen ein \hat{a} dort vorgefunden wird,
	ist also das komplette Wort markiert und wird akzeptiert.
z_4	laufe nach links zum letzten markierten a und beginne einen neuen Zyklus
z_f	Endzustand, sobald dieser erreicht ist, wird akzeptiert.