problem statement:To Predict the bestfit and to predict the online retail based on the given features

1)Data collection

```
In [1]: #importing libraries
    import pandas as pd
    from matplotlib import pyplot as plt
    %matplotlib inline
```

In [2]: #Reading data
 df=pd.read_csv(r"C:\Users\Jayadeep\Documents\online retail1.csv")
 df

Out[2]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
					•••			•••
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	France
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	France
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	France
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	France
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	France

541909 rows × 8 columns

2)Data cleaning and processing

In [3]: df.head()

Out[3]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom

In [4]: df.tail()

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	France
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	France
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	France
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	France
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	France

```
In [5]: df['InvoiceNo'].value_counts()
Out[5]: 573585
                   1114
        581219
                    749
        581492
                    731
        580729
                    721
        558475
                    705
        554023
                      1
        554022
                      1
        554021
                      1
        554020
                      1
        C558901
                      1
        Name: InvoiceNo, Length: 25900, dtype: int64
In [6]: df['CustomerID'].value_counts()
Out[6]: 17841.0
                   7983
        14911.0
                   5903
        14096.0
                   5128
        12748.0
                   4642
        14606.0
                   2782
                    . . .
        15070.0
                      1
        15753.0
                      1
        17065.0
                      1
        16881.0
                      1
        16995.0
                      1
        Name: CustomerID, Length: 4372, dtype: int64
```

```
In [7]: df['Quantity'].value counts()
Out[7]: 1
                  148227
         2
                   81829
         12
                   61063
                   40868
         6
         4
                   38484
                   . . .
        -472
                       1
        -161
                       1
        -1206
                       1
        -272
                       1
        -80995
                       1
        Name: Quantity, Length: 722, dtype: int64
In [8]: | df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 541909 entries, 0 to 541908
        Data columns (total 8 columns):
            Column
                          Non-Null Count
                                           Dtype
                          541909 non-null object
             InvoiceNo
            StockCode
                          541909 non-null object
             Description 540455 non-null object
             Quantity
                          541909 non-null int64
           InvoiceDate 541909 non-null object
                          541909 non-null float64
             UnitPrice
            CustomerID 406829 non-null float64
             Country
                          541909 non-null object
        dtypes: float64(2), int64(1), object(5)
        memory usage: 33.1+ MB
```

```
In [9]: df.isnull().sum()
 Out[9]: InvoiceNo
                              0
         StockCode
                              0
         Description
                          1454
         Quantity
                              0
         InvoiceDate
                              0
         UnitPrice
                              0
         CustomerID
                        135080
         Country
                              0
         dtype: int64
In [10]: df.fillna(method='ffill',inplace=True)
In [11]: df.isnull().sum()
Out[11]: InvoiceNo
                        0
         StockCode
                        0
         Description
                         0
         Quantity
                        0
         InvoiceDate
                        0
         UnitPrice
                        0
         CustomerID
                        0
         Country
                        0
         dtype: int64
```

3)Exploratory data analysis

```
In [12]: plt.scatter(df["CustomerID"],df["UnitPrice"])
    plt.xlabel("CustomerID")
    plt.ylabel("UnitPrice")
    plt.show()
```


4)Training our model

Out[15]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	cluster	
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom	7	
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	7	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom	7	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	7	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	7	

```
In [16]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["CustomerID"],df1["UnitPrice"],color='green')
    plt.scatter(df2["CustomerID"],df2["UnitPrice"],color='blue')
    plt.scatter(df3["CustomerID"],df3["UnitPrice"],color='red')
    plt.xlabel("CustomerID")
    plt.ylabel("UnitPrice")
```

Out[16]: Text(0, 0.5, 'UnitPrice')

Out[17]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	cluster
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	01-12-2010 08:26	2.55	0.926443	United Kingdom	7
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	0.926443	United Kingdom	7
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	0.926443	United Kingdom	7
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	0.926443	United Kingdom	7
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	0.926443	United Kingdom	7

```
In [18]: scaler=MinMaxScaler()
    scaler.fit(df[["UnitPrice"]])
    df["UnitPrice"]=scaler.transform(df[["UnitPrice"]])
    df.head()
```

Out[18]:

_	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	cluster
(536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	01-12-2010 08:26	0.221150	0.926443	United Kingdom	7
•	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	0.221167	0.926443	United Kingdom	7
:	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	0.221154	0.926443	United Kingdom	7
;	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	0.221167	0.926443	United Kingdom	7
•	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	0.221167	0.926443	United Kingdom	7

In [19]: km=KMeans()

```
In [20]: y_predicted=km.fit_predict(df[["CustomerID","UnitPrice"]])
y_predicted
```

Out[20]: array([1, 1, 1, ..., 5, 5, 5])

In [21]: df["New Cluster"]=y_predicted
 df.head()

Out[21]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	cluster	New Cluster
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	01-12-2010 08:26	0.221150	0.926443	United Kingdom	7	1
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	0.221167	0.926443	United Kingdom	7	1
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	0.221154	0.926443	United Kingdom	7	1
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	0.221167	0.926443	United Kingdom	7	1
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	0.221167	0.926443	United Kingdom	7	1

```
In [22]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["CustomerID"],df1["UnitPrice"],color='green')
    plt.scatter(df2["CustomerID"],df2["UnitPrice"],color='blue')
    plt.scatter(df3["CustomerID"],df3["UnitPrice"],color='red')
    plt.xlabel("CustomerID")
    plt.ylabel("UnitPrice")
```

Out[22]: Text(0, 0.5, 'UnitPrice')


```
In [24]:
    df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["CustomerID"],df1["UnitPrice"],color='green')
    plt.scatter(df2["CustomerID"],df2["UnitPrice"],color='blue')
    plt.scatter(df3["CustomerID"],df3["UnitPrice"],color='red')
    plt.xlabel("CustomerID")
    plt.ylabel("UnitPrice")
```

Out[24]: Text(0, 0.5, 'UnitPrice')


```
In [25]: k_rng=range(1,10)
         sse=[]
In [28]: for k in k rng:
             km=KMeans(n clusters=k)
             km.fit(df[["CustomerID","UnitPrice"]])
             sse.append(km.inertia )
          sse
Out[28]: [46375.89020547945,
          11337.10998161026,
          4916.917350291193,
           2724.563781877091,
           1696.1222875898384,
           1179.518375472868,
           903.5755836413746,
           678.5741459311167,
           529.7715143287168,
           46375.89020547945,
           11337.11049629344,
           4922.75156740312,
           2724.5637818770924,
           1696.560227864234,
           1179.4708386922298,
           913.7776872660106,
           678.3061613175081,
           529.8266116978539]
```

Elbow Graph

```
In [27]: plt.plot(k rng,sse)
          plt.xlabel("k")
          plt.vlabel("sum of squared error")
Out[27]: Text(0, 0.5, 'sum of squared error')
               40000
            sum of squared error
               30000
               20000
               10000
                    0
                                                          5
                                                                   6
                                                                                           9
```

conclusion: The given data is "Online retail". For this data set we have used K-means dataset and done Clustering based on given data set. If the k value is low the error rate is more, if k value is high the error is low. Therefore KMeans Clustering is the Bestfit for this Dataset