Dynamic Host Configuration Protocol

Richard T. B. Ma

School of Computing
National University of Singapore

CS 3103: Compute Networks and Protocols

IP addresses: how to get one?

Q: How does a *host* get its IP address?

- □ hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- □ DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"
 - * RFC 2131

Bootstrap a host

- When a host is booted, it needs
 - An IP address
 - Its subnet mask
 - The IP address of default gateway
 - The IP address of domain name server
- □ DHCP provides all the above automatically
 - It is a client/server program
 - It runs as an application level protocol

Before DHCP

- □ Reverse Address Resolution Protocol (RARP)
 - Used broadcast service in the data link layer
 - > Each subnet needs a server
 - Provide only the IP address
- Bootstrap Protocol (BOOTP)
 - * Application level client/server program
 - > Could provide multiple pieces of information
 - However, it uses a table to do static mapping
 - > Binding is predetermined

DHCP: Dynamic Use Cases

Mobile users

- A student who carries a laptop from a dormitory room to a library to a classroom.
- In each location, the student will be connecting into a new subnet and need a new IP address.

Residential ISP

- has 2,000 customers, but no more than 400 customers are ever online at the same time.
- rather than 2,048 addresses, a DHCP server that assigns addresses dynamically needs only a block of 512 addresses (e.g., a.b.c.d/23).

DHCP: Dynamic Host Configuration Protocol

<u>Goal</u>: allow host to <u>dynamically</u> obtain its IP address from network server when it joins network

- Allows reuse of addresses (static binding, BOOTP compatible)
- Can renew its lease on address in use
- Support for mobile users who want to join network (more shortly)

DHCP overview:

- host broadcasts "DHCP discover" msg [optional]
- DHCP server responds with "DHCP offer" msg [optional]
- * host requests IP address: "DHCP request" msg
- * DHCP server sends address: "DHCP ack" msg

DHCP Request-Response (BOOTP compatible)

- connecting laptop needs its IP address, addr of first-hop router, addr of DNS server
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

DHCP Request-Response (BOOTP compatible)

- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- encapsulation of DHCP server, frame forwarded to client, demuxing up to DHCP at client
- client now knows its IP address, name and IP address of DSN server, IP address of its first-hop router

16 bits

15 zero-bits

0 unicast
1 broadcast

0		8	16	24 3			
	Operation code	Hardware type	Hardware length	Hop count			
	Transaction ID						
	Number o	of seconds	F.	lags			
	Client IP address						
L	Your IP address						
L	Server IP address						
L	Gateway IP address						
	Client hardware address (16 bytes)						
	Server name (64 bytes)						
	Boot file name (128 bytes)						
	Options (Variable length)						

DHCP client-server scenario

DHCP client-server scenario

Discussions

- Why is DHCP implemented at the application layer?
- Why does DHCP use UDP instead of TCP?
- Why does DHCP use a well-known port number 68 at the client side?
- Why is Transaction ID useful in DHCP?
- □ How about the cases when the server is in a different subnet?

DHCP: Client and server on two different networks

DHCP options

- Options are only used in reply DHCP reply
- □ Starts with a *magic cookie** 99.130.83.99
- □ Followed by 1 byte Tag + 1 byte Length

Length in byted defined in the length field.

The Dynamic Aspect of DHCP

- □ A DHCP server has a static database that binds physical addresses to IP addresses.
 - Compatible with BOOTP
- It has a second database with a pool of available IP addresses
 - Lease to hosts for temporary uses
 - Possible renewal upon expirations
 - Uses the Options field

Options for DHCP

Tag	Length	Value	Description
0			Padding
1	4	Subnet mask	Subnet mask
2	4	Time of the day	Time offset
3	Variable	IP addresses	Default router
4	Variable	IP addresses	Time server
5	Variable	IP addresses	IEN 16 server
6	Variable	IP addresses	DNS server
7	Variable	IP addresses	Log server
8	Variable	IP addresses	Quote server
9	Variable	IP addresses	Print server
10	Variable	IP addresses	Impress
11	Variable	IP addresses	RLP server
12	Variable	DNS name	Host name
13	2	Integer	Boot file size
53	1	Discussed later	Used for dynamic configuration
128-254	Variable	Specific information	Vendor specific
255			End of list

DHCP: dynamic configuration

Option with tag 53

DHCP client transition diagram

DHCP Message Exchange

DHCP: Wireshark output (home LAN)

Message type: **Boot Request (1)**

Hardware type: Ethernet Hardware address length: 6

Hops: 0 request

Transaction ID: 0x6b3a11b7

Seconds elapsed: 0

Bootp flags: 0x0000 (Unicast)
Client IP address: 0.0.0.0 (0.0.0.0)
Your (client) IP address: 0.0.0.0 (0.0.0.0)
Next server IP address: 0.0.0.0 (0.0.0.0)
Relay agent IP address: 0.0.0.0 (0.0.0.0)

Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)

Server host name not given Boot file name not given

Magic cookie: (OK)

Option: (t=53,l=1) **DHCP Message Type = DHCP Request**

Option: (61) Client identifier

Length: 7; Value: 010016D323688A;

Hardware type: Ethernet

Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)

Option: (t=50,l=4) Requested IP Address = 192.168.1.101

Option: (t=12,l=5) Host Name = "nomad"
Option: (55) Parameter Request List

Length: 11; Value: 010F03062C2E2F1F21F92B

1 = Subnet Mask; 15 = Domain Name 3 = Router; 6 = Domain Name Server 44 = NetBIOS over TCP/IP Name Server

.

Message type: Boot Reply (2)
Hardware type: Ethernet
Hardware address length: 6
Hops: 0
Transaction ID: 0x6b3a11b7
Seconds elapsed: 0
Bootp flags: 0x0000 (Unicast)
Client IP address: 192 168 1 101 (192 168 1 101)

Client IP address: 192.168.1.101 (192.168.1.101)

Your (client) IP address: 0.0.0.0 (0.0.0.0)

Next server IP address: 192.168.1.1 (192.168.1.1)

Relay agent IP address: 0.0.0.0 (0.0.0.0)

Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)

Server host name not given Boot file name not given

Magic cookie: (OK)

Option: (t=53,l=1) DHCP Message Type = DHCP ACK Option: (t=54,l=4) Server Identifier = 192.168.1.1

Option: (t=1,l=4) Subnet Mask = 255.255.255.0

Option: (t=3,l=4) Router = 192.168.1.1

Option: (6) Domain Name Server

Length: 12; Value: 445747E2445749F244574092;

IP Address: 68.87.71.226; IP Address: 68.87.73.242; IP Address: 68.87.64.146

Option: (t=15,l=20) Domain Name = "hsd1.ma.comcast.net."