SUITES (Partie 2)

I. Comportement à l'infini d'une suite géométrique

1) Rappel

<u>Définition</u>: Une suite (u_n) est une <u>suite géométrique</u> s'il existe un nombre q tel que pour tout entier n, on a : $u_{n+1} = q \times u_n$.

Le nombre *q* est appelé <u>raison</u> de la suite.

<u>Exemple</u>: La suite (u_n) définie par $u_{n+1} = -3u_n$ et $u_0 = 5$ est une suite géométrique de raison -3 et de premier terme 5.

<u>Propriété</u> : (u_n) est une suite géométrique de raison q et de premier terme u_0 . Pour tout entier naturel n, on a : $u_n = u_0 \times q^n$.

Exemple: Pour la suite précédente, on a pour tout $n: u_n = 5 \times (-3)^n$

2) Limites

q	$q \le -1$	-1 < q < 1	q = 1	q > 1
$\lim_{n \to +\infty} q^n$	pas de limite	0	1	+∞

<u>Démonstration dans le cas q > 1 (exigible BAC)</u>:

<u>Prérequis</u>: Pour tout entier naturel n, on a : $(1+a)^n \ge 1+na$ (inégalité de Bernoulli), démontrée dans le chapitre « SUITES (Partie 1) Paragraphe I. ».

On suppose que q > 1, alors on peut poser q = a + 1 avec a > 0.

$$q^n = (1+a)^n \ge 1+na.$$

Or
$$\lim_{n\to+\infty} (1+na) = +\infty$$
 car $a>0$.

Donc d'après le théorème de comparaison $\lim_{n\to+\infty}q^n=+\infty$.

Exemple:

La suite de terme général -5×4^n a pour limite $-\infty$ car $\lim_{n \to +\infty} 4^n = +\infty$.

3) Somme des termes d'une suite géométrique

Propriété : n est un entier naturel non nul et q un réel différent de 1 alors on a :

$$1+q+q^2+...+q^n=\frac{1-q^{n+1}}{1-q}$$

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr

Méthode: Utiliser la limite d'une suite géométrique

Vidéo https://voutu.be/XTftGHfnYMw

Déterminer les limites suivantes :

a)
$$\lim_{n\to+\infty} \frac{\left(-2\right)^n}{3}$$

b)
$$\lim_{n\to+\infty} \left(2^n - 3^n\right)$$

a)
$$\lim_{n \to +\infty} \frac{(-2)^n}{3}$$
 b) $\lim_{n \to +\infty} (2^n - 3^n)$ c) $\lim_{n \to +\infty} \left(1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^n\right)$

a) $(-2)^n$ est une suite géométrique de raison -2 et $-2 \le -1$.

Donc $(-2)^n$ ne possède pas de limite.

Et donc $\lim_{n \to +\infty} \frac{(-2)^n}{3}$ n'existe pas.

b)
$$2^n - 3^n = 3^n \left(\left(\frac{2}{3} \right)^n - 1 \right)$$
.

Or $\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0$ car $\left(\frac{2}{3}\right)^n$ est une suite géométrique de raison $\frac{2}{3}$ et $-1 < \frac{2}{3} < 1$.

Donc:
$$\lim_{n\to+\infty} \left(\left(\frac{2}{3} \right)^n - 1 \right) = -1.$$

Or $\lim_{n\to+\infty} 3^n = +\infty$ car 3^n est une suite géométrique de raison 3 et 3 > 1.

Donc par limite d'un produit $\lim_{n \to +\infty} 3^n \left(\left(\frac{2}{3} \right)^n - 1 \right) = -\infty$

Et donc
$$\lim_{n\to+\infty} (2^n - 3^n) = -\infty$$
.

c) On reconnaît les n premiers termes d'une suite géométrique de raison $\frac{1}{2}$ et de premier terme 1.

Donc
$$1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^n = \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = 2\left(1 - \left(\frac{1}{2}\right)^{n+1}\right).$$

Or
$$\lim_{n\to+\infty} \left(\frac{1}{2}\right)^{n+1} = 0$$
 comme limite d'une suite géométrique de raison $\frac{1}{2}$.

Donc
$$\lim_{n \to +\infty} \left(1 - \left(\frac{1}{2} \right)^{n+1} \right) = 1$$
 et $\lim_{n \to +\infty} 2 \left(1 - \left(\frac{1}{2} \right)^{n+1} \right) = 2$.

D'où
$$\lim_{n \to +\infty} \left(1 + \frac{1}{2} + \left(\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^3 + \dots + \left(\frac{1}{2} \right)^n \right) = 2.$$

Méthode : Etudier une suite arithmético-géométrique

Vidéo https://youtu.be/6-vFnQ6TghM

Vidéo https://youtu.be/0CNt_fUuwEY

Un investisseur dépose $5000 \in \text{sur}$ un compte rémunéré à 3% par an. Chaque année suivante, il dépose $300 \in \text{de plus}$. On note (u_n) la somme épargnée à l'année n.

On a alors:
$$u_{n+1} = 1{,}03u_n + 300$$
 et $u_0 = 5000$

- 1) Calculer u_1 et u_2 .
- 2) Prouver que la suite (v_n) définie pour tout entier n par $v_n = u_n + 10000$ est géométrique et donner sa raison et son premier terme.
- 3) Exprimer v_n en fonction de n.
- 4) En déduire u_n en fonction de n.
- 5) Etudier les variations de (u_n) .

1)
$$u_1 = 1,03u_0 + 300 = 5450$$

 $u_2 = 1,03u_1 + 300 = 5913,5$

2)

$$v_{n+1} = u_{n+1} + 10000$$

$$= 1,03u_n + 300 + 10000$$

$$= 1,03u_n + 10300$$

$$= 1,03(u_n + 10000)$$

$$= 1,03v_n$$

Donc (v_n) est une suite géométrique de raison 1,03 et de premier terme $v_0 = u_0 + 10000 = 5000 + 10000 = 15000$.

- 3) Pour tout n, $v_n = 15000 \times 1,03^n$.
- 4) Pour tout n, $u_n = 15000 \times 1,03^n 10000$.

On a alors : $u_{10} = 15000 \times 1,03^{10} - 10000 \approx 10158,75$

5) Pour tout n,

$$u_{n+1} - u_n = 15000 \times 1,03^{n+1} - 10000 - (15000 \times 1,03^n - 10000)$$

$$= 15000 \times (1,03^{n+1} - 1,03^n)$$

$$= 15000 \times 1,03^n \times (1,03-1)$$

$$= 450 \times 1,03^n > 0$$

Donc la suite (u_n) est strictement croissante.

II. Limites et comparaison

1) Théorèmes de comparaison

Théorème 1:

Soit (u_n) et (v_n) deux suites définies sur \mathbb{N} .

Si, à partir d'un certain rang, $u_n \le v_n$ et $\lim_{n \to +\infty} u_n = +\infty$ alors $\lim_{n \to +\infty} v_n = +\infty$.

Par abus de langage, on pourrait dire que la suite (u_n) pousse la suite (v_n) vers $+\infty$ à partir d'un certain rang.

<u>Démonstration (exigible BAC)</u>:

Soit un nombre réel a.

- $\lim_{n\to+\infty} u_n = +\infty$, donc l'intervalle a;+ ∞ contient tous les termes de la suite à partir d'un certain rang que l'on note n_1 .

On a donc pour tout $n \ge n_1$, $a < u_n$.

- A partir d'un certain rang, que l'on note n_2 , on a $u_n \le v_n$.
- Ainsi pour tout $n \ge \max(n_1; n_2)$, on a $a < u_n \le v_n$.

On en déduit que l'intervalle $a;+\infty$ contient tous les termes de la suite (v_n) à partir du rang $\max(n_1;n_2)$.

Et donc
$$\lim_{n\to+\infty} v_n = +\infty$$
.

Théorème 2:

Soit (u_n) et (v_n) deux suites définies sur \mathbb{N} .

Si, à partir d'un certain rang, $u_n \ge v_n$ et $\lim_{n \to +\infty} u_n = -\infty$ alors $\lim_{n \to +\infty} v_n = -\infty$.

Méthode: Déterminer une limite par comparaison

Vidéo https://youtu.be/iQhh46LupN4

Déterminer la limite suivante $\lim_{n\to+\infty} \left(n^2 + (-1)^n\right)$

$$(-1)^n \ge -1$$
 donc $n^2 + (-1)^n \ge n^2 -1$.

Or
$$\lim_{n\to+\infty} (n^2-1) = +\infty$$
 donc $\lim_{n\to+\infty} (n^2+(-1)^n) = +\infty$.

2) Théorème d'encadrement

Théorème des gendarmes :

Soit (u_n) , (v_n) et (w_n) trois suites définies sur \mathbb{N} .

Si, à partir d'un certain rang, $u_n \le v_n = \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = L$ alors $\lim_{n \to +\infty} v_n = L$.

Par abus de langage, on pourrait dire que les suites (u_n) et (w_n) (les gendarmes) se resserrent autour de la suite (v_n) à partir d'un certain rang pour la faire converger vers la même limite.

Ce théorème est également appelé le théorème du sandwich.

Démonstration:

Soit un intervalle ouvert I contenant L.

- $\lim_{n\to+\infty}u_n=L$, donc l'intervalle I contient tous les termes de la suite à partir d'un certain rang que l'on note n_1 .
- $\lim_{n\to+\infty} w_n = L$, donc l'intervalle I contient tous les termes de la suite à partir d'un certain rang que l'on note n_2 .
- A partir d'un certain rang, que l'on note n_3 , on a $u_n \le v_n \le w_n$.
- Ainsi pour tout $n \ge \max(n_1; n_2; n_3)$, l'intervalle I contient tous les termes de la suite (v_n) .

Et donc $\lim_{n\to+\infty} v_n = L$.

Méthode : Déterminer une limite par encadrement

Vidéo https://youtu.be/OdzYjz_vQbw

Déterminer la limite suivante : $\lim_{n\to+\infty} \left(1 + \frac{\sin n}{n}\right)$

On a: $-1 \le \sin n \le 1$ donc $-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$.

Or $\lim_{n\to+\infty} \left(-\frac{1}{n}\right) = \lim_{n\to+\infty} \frac{1}{n} = 0$ donc d'après le théorème des gendarmes $\lim_{n\to+\infty} \frac{\sin n}{n} = 0$

Et donc $\lim_{n \to +\infty} \left(1 + \frac{\sin n}{n} \right) = 1$

III. Suites majorées, minorées, bornées

1) Définitions :

<u>Définitions</u>: - La suite (u_n) est <u>majorée</u> s'il existe un réel M tel que pour tout entier $n \in \mathbb{N}, u_n \leq M$.

- La suite (u_n) est minorée s'il existe un réel m tel que pour tout entier $n \in \mathbb{N}, u_n \ge m$.
- La suite (u_n) est bornée si elle est à la fois majorée et minorée.

Exemples:

- Les suites de terme général cos n ou (-1)ⁿ sont bornées.
- La suite de terme général n^2 est minorée par 0.

Méthode : Démontrer qu'une suite est majorée ou minorée

Vidéo https://youtu.be/F1u_BVwiW8E

On considère la suite (u_n) définie pour tout entier naturel n par $u_{n+1} = \frac{1}{3}u_n + 2$ et $u_0 = 2$. Démontrer par récurrence que la suite (u_n) est majorée par 3.

Initialisation :

$$u_0 = 2 < 3$$

La propriété est donc vraie pour n = 0.

Hérédité :

- Hypothèse de récurrence :

Supposons qu'il existe un entier k tel que la propriété soit vraie : $u_k \le 3$.

- <u>Démontrons que</u> : La propriété est vraie au rang k+1 : $u_{k+1} \le 3$.

On a:
$$u_k \le 3$$
 donc $\frac{1}{3}u_k \le \frac{3}{3} = 1$ et donc $\frac{1}{3}u_k + 2 \le 1 + 2 = 3$.

On a donc: $u_{k+1} \le 3$

• Conclusion:

La propriété est vraie pour n = 0 et héréditaire à partir de ce rang. D'après le principe de récurrence, elle est vraie pour tout entier naturel n, soit : $u_n \le 3$.

2) Convergence des suites monotones

<u>Propriété</u>: Soit (u_n) une suite croissante définie sur \mathbb{N} . Si $\lim u_n = L$ alors la suite (u_n) est majorée par L.

Démonstration par l'absurde :

Démontrons par l'absurde en supposant le contraire, soit : « Il existe un entier p, tel que $u_{_p} > L$. »

- L'intervalle ouvert $]L-1;u_p[$ contient L.

Or, par hypothèse, $\lim_{n\to +\infty} u_n = L$. Donc l'intervalle $]L-1;u_p[$ contient tous les termes de la suite (u_n) à partir d'un certain rang (1).

- Comme (u_n) est croissante : $u_n \ge u_p$ pour n > p .

Donc si
$$n > p$$
, alors $u_n \notin \left] L - 1; u_p \right[$ (2).

(1) et (2) sont contradictoires, on en déduit qu'il n'existe pas $p \in \mathbb{N}$, tel que $u_p > L$. Et donc la suite (u_n) est majorée par L.

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Théorème de convergence monotone :

- Si une suite croissante est majorée alors elle est convergente.
- Si une suite décroissante est minorée alors elle est convergente.

- Admis -

Remarque:

Ce théorème permet de s'assurer de la convergence mais ne donne pas la limite. Dans l'exemple ci-dessous, la suite décroissante est minorée par 2. Cela prouve que la limite de la suite est supérieure à 2 mais n'est pas nécessairement égale à 2.

Méthode : Utiliser le théorème de convergence monotone

Vidéo https://youtu.be/gO-MQUIBAfo

On considère la suite (u_n) définie pour tout entier naturel n par $u_{n+1} = \frac{1}{3}u_n + 2$ et $u_0 = 2$.

Démontrer que la suite (u_n) est convergente et calculer sa limite.

- On a démontré dans le paragraphe I. que la suite (u_n) est croissante. On a démontré dans la méthode précédente que la suite (u_n) est majorée par 3. D'après le théorème de convergence monotone, on en déduit que la suite (u_n) est convergente.
- On pose $\lim_{n\to+\infty} u_{n+1} = \lim_{n\to+\infty} u_n = L$.

Or $u_{n+1} = \frac{1}{3}u_n + 2$, donc $\lim_{n \to +\infty} u_{n+1} = \frac{1}{3}L + 2$ par produit et somme de limites.

Une limite étant unique, on en déduit que $L = \frac{1}{3}L + 2$, soit L = 3.

La suite (u_n) converge donc vers 3.

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Corollaire:

- Si une suite croissante est non majorée alors elle tend vers +∞.
- Si une suite décroissante est non minorée alors elle tend vers $-\infty$.

Démonstration :

1) Soit un réel a.

Comme (u_n) n'est pas majorée, il existe un entier p tel que $u_p > a$.

La suite (u_n) est croissante donc pour tout n > p, on a $u_n \ge u_p$.

Donc pour tout n > p, on a $u_n > a$.

Et donc à partir d'un certain rang p, tous les termes de la suite appartiennent à l'intervalle $a;+\infty$.

On en déduit que $\lim_{n\to+\infty} u_n = +\infty$.

2) Démonstration analogue.

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales

| Www.maths-et-tiques.fr/index.php/mentions-legales**