MATH 7241: Problem Set #2

Due date: Friday October 2

Reading: relevant background material for these problems can be found in the class notes, and in Ross (Chapters 2,3,5) and in Grinstead and Snell (Chapters 1,2 3, 6).

Exercise 1 A typing firm has three typists A,B and C. The number of errors per 100 pages made by typist A is a Poisson random variable with mean 2.6; the number of errors per 100 pages made by typist B is a Poisson random variable with mean 3; the number of errors per 100 pages made by typist C is a Poisson random variable with mean 3.4. A manuscript of 300 pages is sent to the firm. Let X denote the number of errors in the typed manuscript.

- a) Assume that one typist is randomly selected to do all the work. Find the mean and variance of X.
- b) Assume instead that the work is divided into three equal parts which are given to the three typists. Find the mean and variance of X in this case.

Exercise 2 In a variation of the classic Monty Hall game show, the host sets up five doors and hides prizes behind two of the doors. The contestant first guesses a door, and then the host opens one of the other four doors to show that it does not conceal a prize. The contestant is offered the opportunity to switch her guess to a different door. Should she switch or stay with her original choice? [Hint: see notes on the Monty Hall question, and try to imitate the solution provided there].

Exercise 3 A fair die is rolled repeatedly. Let X_n be the result of the n^{th} roll. So X_n takes values $\{1,\ldots,6\}$, each with probability 1/6, and the random variables X_1,X_2,\ldots are all independent. Let

$$N = \min\{n : X_n = X_{n-1}, n \ge 2\}$$

That is, N is the first roll where the result is equal to the previous roll. [e.g., if you roll the sequence $2, 3, 1, 4, 4, 6, \ldots$ then N = 5.] Find E[N].

[Hint: argue that $\mathbb{E}[N|X_1=a]=\mathbb{E}[N|X_1=b]$ for all $a,b=1,\ldots,6$, and conclude that $\mathbb{E}[N]=\mathbb{E}[N|a]$ for any $a=1,\ldots,6$. Then condition on the outcomes of the first two rolls, and imitate the argument we used in class for the 'rat in a maze' problem to derive an equation for $\mathbb{E}[N]$.]

Exercise 4 Suppose that $\{X_i\}$ are IID uniform random variables on the interval [-1,1]. Let Z be a standard normal random variable. Using the CLT, find the number a so that

$$\lim_{n \to \infty} P\left(\sum_{i=1}^{n} X_i \ge \sqrt{n}\right) = P(Z \ge a)$$

[Hint: you will need to find the mean and variance of X, which is uniform on [-1,1]].

Exercise 5 Randomly distribute r balls in n boxes so that the sample space consists of n^r equally likely elements. Let N_n be the number of empty boxes. Suppose that $r, n \to \infty$ in such a way that their ratio r/n converges to a constant value c. Show that $n^{-1} \mathbb{E}[N_n]$ converges as $n \to \infty$ and find the limiting value in terms of c.

[Hint: define $X_i = 1$ if the *i*th box is empty, and $X_i = 0$ if the *i*th box is not empty].

Exercise 6 Suppose X is an exponential random variable. One of the following three formulas is correct:

(a)
$$\mathbb{E}[X^2 | X > 1] = \mathbb{E}[(X+1)^2]$$

(b)
$$\mathbb{E}[X^2 | X > 1] = \mathbb{E}[X^2] + 1$$

(a)
$$\mathbb{E}[X^2 | X > 1] = \mathbb{E}[(X+1)^2]$$

(b) $\mathbb{E}[X^2 | X > 1] = \mathbb{E}[X^2] + 1$
(c) $\mathbb{E}[X^2 | X > 1] = (\mathbb{E}[X] + 1)^2$

Without doing computations, use the memoryless property of the exponential distribution to explain which answer is correct.