BERTopic with RAPIDS

Topic Modeling gives us an opportunity to perform analysis quickly while deriving valuable insights

- Topic modeling extracts meaning from text by identifying recurring themes
- Generally, we either use a pre-trained BERT which isn't trained on the domain-specific task, or we perform a trivial task like sentimental analysis to train a model, resulting in sub-optimal situations
- We can leverage the widespread applications of topic modeling to generate actionable insights quickly

BERTopic Solution

- BERTopic is a topic modeling technique that leverages (2) transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions.
- BERTopic supports guided, (semi-) supervised, and dynamic topic modeling. It even supports visualizations similar to LDAvis!
- Research Paper: https://arxiv.org/pdf/2008.09470.pdf
- Python Package: https://github.com/MaartenGr/BERTopic

BERTopic package stats:

- #stars 2,924
- #Issues 604
- #Downloads last week 12,756
- #Downloads last month 60,093

BERTopic RAPIDS acceleration

Advantages of integrating BERTopic with RAPIDS

- Allows us to increase library interoperability by integrating ML framework of BERTopic with RAPIDS
- Due to the compartmentalized nature of BERTopic, we can use UMAP and HDBSCAN in isolation for various ML applications. So, any speedup in these individual pieces can be applied to a host of dimensionality reduction and clustering applications

Repo Link:

https://github.com/rapidsai/rapids-examples/tree/main/cuBERT topic modelling

Example Notebook:

https://github.com/rapidsai/rapids-examples/blob/main/cuBERT topic modelling/berttopic example.ipynb

RAPIDS integration benchmarks

Wikidata dataset

Time on 500K rows of Wikidata Dataset (in s)							
Stage	CPU	GPU	GPU with RAPIDS	Speedup (vs CPU)	RAPIDS Speedup (vs GPU)		
UMAP	N/A	790	71	N/A	11.1		
HDBSCAN	N/A	65	17	N/A	3.8		

News dataset

	Time o	Speedup due to RAPIDS			
Stage	CPU	GPU	GPU with RAPIDS	Speedup (vs CPU)	Speedup (vs GPU)
UMAP	21	10	1	21.0	10.0
HDBSCAN	3	3	1	3.0	3.0

AN4 dataset

	Time on	Speedup due to RAPIDS			
Stage	CPU	GPU	GPU with RAPIDS	Speedup (vs CPU)	Speedup (vs GPU)
UMAP	2350	1660	19	123.7	87.4
HDBSCAN	65	57.8	7	9.3	8.3

Topic modeling results

