

Winning Space Race with Data Science

Aleksei Trubin 22 November 2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection through API
 - Data Collection with Web Scraping
 - Data Wrangling
 - Exploratory Data Analysis with SQL
 - Exploratory Data Analysis with Data Visualization
 - Interactive Visual Analytics with Folium
 - Machine Learning Prediction
- Summary of all results
 - Exploratory Data Analysis result
 - Interactive analytics in screenshots
 - Predictive Analytics result

Introduction

Project background and context

The project aims to develop a machine learning pipeline capable of predicting the successful landing of SpaceX's Falcon 9 rocket's first stage. SpaceX, known for its cost-effective space missions, offers Falcon 9 launches at approximately \$62 million on its website, significantly lower than other providers who charge upwards of \$165 million. This price difference is largely attributed to SpaceX's ability to reuse the first stage of the rocket. By accurately forecasting the landing outcomes, this project could provide crucial cost estimation insights, especially for alternate companies competing with SpaceX in bidding for rocket launches.

Problems you want to find answers

- 1. Which variables are crucial for a rocket's successful touchdown?
- 2. How do the different variables interplay to affect the success rate of landing?
- 3. What are the essential operational conditions for a consistent and successful rocket landing strategy?

Methodology

Executive Summary

- Data collection methodology:
 - DatafromSpaceXwasobtainedfrom2sources:
 - SpaceXAPI(https://api.spacexdata.com/v4/rockets/)
 - WebScraping (https://en.wikipedia.org/wiki/List_of_Falcon/_9/_and_Falcon_Heavy_launches)
- Perform data wrangling
 - The gathered data was enhanced by developing a label for the landing outcome, which was derived from the post-mission results following a comprehensive summary and analysis of the features.

Methodology

Executive Summary

- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - The collected data was standardized, segregated into training and test datasets, and then assessed using four distinct classification models. The performance of each model was gauged by experimenting with various parameter configurations.

Data Collection

- Describe how data sets were collected.
- Datasets were collected from SpaceX API
 (https://api.spacexdata.com/v4/rockets/) and from Wikipedia
 (https://en.wikipedia.org/wiki/List_of_Falcon/_9/_and_Falcon_Heavy
 _launches), using web scraping technics.

Data Collection – SpaceX API

- SpaceX offers a public API from where data can be obtained and then used;
- This API was used according to the flowchart beside and then data is persisted.
- Source code:
- https://github.com/bassballs/Data-Scienceand-Machine-Learning-Capstone-Project/blob/main/Data%20Collection%20AP I.ipynb

Data Collection - Scraping

- Data from SpaceX launches can also be obtained from Wikipedia;
- Data are downloaded from Wikipedia according to the flowchart and then persisted.
- Source code: https://github.com/bassballs/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/Data%20Collection% 20with%20Web%20Scraping.ipynb

Data Wrangling

- Initially some Exploratory Data Analysis (EDA) was performed on the dataset.
- Then the summary launches per site, occurrences of each orbit and occurrences of mission outcome per orbit type were calculated.
- Finally, the landing outcome label was created from Outcome column.

• Source code: https://github.com/bassballs/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/Data%20Wrangling.ipynb

EDA with Data Visualization

- The following SQL queries were performed:
 - Names of the unique launch sites in the space mission;
 - Top 5 launch sites whose name begins with the string 'CCA';
 - Total pay load mass carried by boosters launched by NASA (CRS);
 - Average payload mass carried by booster version F9 v1.1;
 - Date when the first successful landing outcome in ground pad was achieved;
 - Names of the boosters which have success in drone ship and have payload mass between 4000 and 6000 kg;
 - Total number of successful and failure mission outcomes;
 - Names of the booster versions which have carried the maximum payload mass;
 - Failed landing out comes in droneship, their booster versions, and launch site names for in year 2015; and
 - Rank of the count of landing outcomes (such as Failure (droneship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20.
- Source code: https://github.com/bassballs/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/EDA%20with%20Data%20Visualization.ipynb

EDA with SQL

- To explore data, scatterplots and bar plots were used to visualize the relationship between pair of features:
- Payload Mass X Flight Number, Launch Site X Flight Number, Launch Site X Payload Mass, Orbit and Flight Number, Payload and Orbit

• Source code: https://github.com/bassballs/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/EDA%20with%20SQL.ipynb

Build an Interactive Map with Folium

- Markers, circles, lines and marker clusters were used with Folium Maps
- Markers indicate points like launch sites;
- Circles indicate highlighted areas around specific coordinates, like NASA Johnson Space Center;
- Marker clusters indicates groups of events in each coordinate, like launches in a launch site; and
- Lines are used to indicate distances between two coordinates.
- Source code: https://github.com/bassballs/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/Interactive%20Visual%20Analytics%20with%20Folium.ipynb

Build a Dashboard with Plotly Dash

- We built an interactive dashboard with Plotly dash
- We plotted pie charts showing the total launches by a certain sites
- We plotted scatter graph showing the relationship with Outcome and Payload Mass (Kg) for the different booster version.
- The link to the notebook is https://github.com/bassballs/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/app.py

Predictive Analysis (Classification)

- We loaded the data using numpy and pandas, transformed the data, split our data into training and testing.
- We built different machine learning models and tune different hyperparameters using GridSearchCV.
- We used accuracy as the metric for our model, improved the model using feature engineering and algorithm tuning.
- We found the best performing classification model.
- The link to the notebook is https://github.com/bassballs/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/Machine%20Learning%20Prediction.ipynb

Results

- Exploratory data analysis results:
 - Space X uses 4 different launch sites;
 - The first launches were done to Space X itself and NASA;
 - The average payload of F9 v1.1 booster is 2,928 kg;
 - The first success landing outcome happened in 2015 fiver year after the first launch;
 - Many Falcon 9 booster versions were successful at landing in drone ships having payload above the average;
 - Almost 100% of mission outcomes were successful;
 - Two booster versions failed at landing in drone ships in 2015: F9 v1.1 B1012 and F9 v1.1 B1015;
 - The number of landing outcomes became as better as years passed.

Results

• Interactive analytics revealed that launch sites are typically situated in safe locations, such as near the sea, and are surrounded by robust logistical infrastructure. Additionally, the majority of launches tend to occur at launch sites on the east coast.

Flight Number vs. Launch Site

• From the plot, we found that the larger the flight amount at a launch site, the greater the success rate at a launch site.

Payload vs. Launch Site

Payload vs. Launch Site

The greater the payload mass for launch site CCAFS SLC 40 the higher the success rate for the rocket.

Success Rate vs. Orbit Type

 From the plot, we can see that ES-L1, GEO, HEO, SSO, VLEO had the most success rate.

Flight Number vs. Orbit Type

• The plot below shows the Flight Number vs. Orbit type. We observe that in the LEO orbit, success is related to the number of flights whereas in the GTO orbit, there is no relationship between flight number and the orbit.

Payload vs. Orbit Type

 We can observe that with heavy payloads, the successful landing are more for PO, LEO and ISS orbits.

Launch Success Yearly Trend

 From the plot, we can observe that success rate since 2013 kept on increasing till 2020.

All Launch Site Names

We used the key word
 DISTINCT to show only unique launch sites from the SpaceX data.

Launch Site Names Begin with 'CCA'

	Disp	splay 5 records where launch sites begin with the string 'CCA'									
In [11]:	<pre>task_2 = '''</pre>										
Out[11]:		date	time	boosterversion	launchsite	payload	payloadmasskg	orbit	customer	missionoutcome	landingoutcome
	0	2010-04- 06	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	1	2010-08- 12	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2	2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	3	2012-08- 10	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	4	2013-01-	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

• We used the query above to display 5 records where launch sites begin with `CCA`

Total Payload Mass

 We calculated the total payload carried by boosters from NASA as 45596 using the query below

```
Display the total payload mass carried by boosters launched by NASA (CRS)

In [12]: 

task_3 = '''

SELECT SUM(PayloadMassKG) AS Total_PayloadMass
FROM SpaceX
WHERE Customer LIKE 'NASA (CRS)'

""

create_pandas_df(task_3, database=conn)

Out[12]: 

total_payloadmass

0     45596
```

Average Payload Mass by F9 v1.1

 We calculated the average payload mass carried by booster version F9 v1.1 as 2928.4

Display average payload mass carried by booster version F9 v1.1

First Successful Ground Landing Date

 We observed that the dates of the first successful landing outcome on ground pad was 22nd December 2015

Successful Drone Ship Landing with Payload between 4000 and 6000

```
In [15]:
          task 6 = '''
                   SELECT BoosterVersion
                   FROM SpaceX
                   WHERE LandingOutcome = 'Success (drone ship)'
                       AND PayloadMassKG > 4000
                       AND PayloadMassKG < 6000
           create pandas df(task 6, database=conn)
Out[15]:
             boosterversion
                F9 FT B1022
                F9 FT B1026
              F9 FT B1021.2
              F9 FT B1031.2
```

 We used the WHERE clause to filter for boosters which have successfully landed on drone ship and applied the AND condition to determine successful landing with payload mass greater than 4000 but less than 6000

Total Number of Successful and Failure Mission Outcomes

```
List the total number of successful and failure mission outcomes
In [16]:
          task 7a = '''
                  SELECT COUNT(MissionOutcome) AS SuccessOutcome
                  FROM SpaceX
                  WHERE MissionOutcome LIKE 'Success%'
          task_7b = '''
                  SELECT COUNT(MissionOutcome) AS FailureOutcome
                  FROM SpaceX
                  WHERE MissionOutcome LIKE 'Failure%'
          print('The total number of successful mission outcome is:')
          display(create pandas df(task 7a, database=conn))
          print()
          print('The total number of failed mission outcome is:')
          create pandas df(task 7b, database=conn)
         The total number of successful mission outcome is:
            successoutcome
         0
                      100
         The total number of failed mission outcome is:
Out[16]:
            failureoutcome
```

 We used wildcard like '%' to filter for WHERE MissionOutcome was a success or a failure.

Boosters Carried Maximum Payload

We determined the booster that have carried the maximum payload using a subquery in the WHERE clause and the MAX() function.

```
List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
In [17]:
           task 8 = '''
                    SELECT BoosterVersion, PayloadMassKG
                    FROM SpaceX
                    WHERE PayloadMassKG = (
                                              SELECT MAX(PayloadMassKG)
                                              FROM SpaceX
                    ORDER BY BoosterVersion
           create_pandas_df(task_8, database=conn)
Out[17]:
              boosterversion payloadmasskg
               F9 B5 B1048.4
                                     15600
               F9 B5 B1048.5
                                     15600
               F9 B5 B1049.4
                                     15600
              F9 B5 B1049.5
                                     15600
                F9 B5 B1049.7
                                     15600
               F9 B5 B1051.3
                                     15600
                                     15600
               F9 B5 B1051.4
               F9 B5 B1051.6
                                     15600
                F9 B5 B1056.4
                                     15600
               F9 B5 B1058.3
                                     15600
                F9 B5 B1060.2
                                     15600
          11 F9 B5 B1060.3
                                     15600
```

2015 Launch Records

We used a combinations of the WHERE clause, LIKE, AND, and BETWEEN conditions to filter for failed landing outcomes in drone ship, their booster versions, and launch site names for year 2015.

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad))
In [19]:
           task 10 = '''
                    SELECT LandingOutcome, COUNT(LandingOutcome)
                    FROM SpaceX
                    WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20'
                    GROUP BY LandingOutcome
                    ORDER BY COUNT(LandingOutcome) DESC
           create pandas df(task 10, database=conn)
                  landingoutcome count
Out[19]:
                      No attempt
                                     10
               Success (drone ship)
                Failure (drone ship)
              Success (ground pad)
                 Controlled (ocean)
              Uncontrolled (ocean)
           6 Precluded (drone ship)
                 Failure (parachute)
```

- We selected Landing outcomes and the COUNT of landing outcomes from the data and used the WHERE clause to filter for landing outcomes BETWEEN 2010-06-04 to 2010-03-20.
- We applied the GROUP BY clause to group the landing outcomes and the ORDER BY clause to order the grouped landing outcome in descending order.

All launch sites global map markers

Markers showing launch sites with color labels

Launch Site distance to landmarks

Pie chart showing the success percentage achieved by each launch site

Pie chart showing the Launch site with the highest launch success ratio

Scatter plot of Payload vs Launch Outcome for all sites, with different payload selected in the range slider

Classification Accuracy

The Decision Tree classifier has emerged as the model with the highest classification accuracy.

```
models = {'KNeighbors':knn cv.best score ,
               'DecisionTree':tree cv.best score ,
               'LogisticRegression':logreg cv.best score ,
               'SupportVector': svm_cv.best_score_}
bestalgorithm = max(models, key=models.get)
print('Best model is', bestalgorithm,'with a score of', models[bestalgorithm])
if bestalgorithm == 'DecisionTree':
    print('Best params is :', tree_cv.best_params_)
if bestalgorithm == 'KNeighbors':
    print('Best params is :', knn cv.best params )
if bestalgorithm == 'LogisticRegression':
     print('Best params is :', logreg cv.best params )
if bestalgorithm == 'SupportVector':
    print('Best params is :', svm cv.best params )
Best model is DecisionTree with a score of 0.8732142857142856
Best params is : {'criterion': 'gini', 'max_depth': 6, 'max_features': 'auto', 'min_samples_leaf': 2, 'min_samples_split': 5, 'splitter': 'random'}
```

Confusion Matrix

 The confusion matrix of the Decision Tree classifier indicates its capability to differentiate between the various classes. However, the primary issue lies in the occurrence of false positives, where the classifier incorrectly labels unsuccessful landings as successful.

Conclusions

- 1. A higher number of flights conducted at a launch site correlates with an increased success rate at that site.
- 2. The overall success rate of launches has been on an upward trend from 2013 through 2020.
- 3. The orbits ES-L1, GEO, HEO, SSO, and VLEO have recorded the highest success rates.
- 4. KSC LC-39A outperformed all other launch sites in terms of successful launches.
- 5. For this particular task, the Decision Tree classifier emerged as the most effective machine learning algorithm.

