Pierre Kawak, Ph.D.

८ +1 (801) 762-7999 **■** pskawak@gmail.com **%** linktr.ee/pkawak

Professional Summary

Computational polymer scientist with 11+ years advancing materials and drug delivery through high-impact modeling, simulation, and cross-functional collaboration — delivering scalable tools, 50+ TB HPC workflows, and award-winning insights across academia and industry. Passionate about accelerating discovery at the intersection of polymers, computation, and applied research.

Technical Skills

- **Programming & Automation:** Python, C++, CUDA, MATLAB, Bash, R, Julia
- **Simulation & Modeling:** LAMMPS, GROMACS, Gaussian, AMBER, OPLS, Molecular Dynamics, Monte Carlo, Free Energy Calculations
- Analysis & Visualization: VMD, OVITO, NumPy, Pandas, scikit-learn, Matplotlib
- High-Performance Computing: Slurm, MPI, Parallelism, Automation, 50TB+ Data
- Experimental Techniques: Drug Encapsulation, DLS, NMR, Liposomal Formulations
- Communication & Leadership: Scientific Writing, Mentorship, Advocacy, 27+ Conference Talks, 5 Publications

Research Experience

Postdoctoral Researcher, University of South Florida

2022 - Present

Advisor: Prof. David Simmons

- Simulated polymer deformation to inform composite design strategies at the nanoscale.
- Enhanced copolymer glass transition temperature via sequence-specific simulations; improving thermal stability without altering feedstock or processing.
- Developed rheology tools and extended internal analysis codebase; accelerating workflows and boosting team efficiency.
- Streamlined HPC pipelines processing 50+ TB datasets; cut analysis time by 90% and earned NSF ACCESS grant.
- Mentored 11 researchers in simulations, Git, and HPC; named APS Mentoring Fellow.
- Delivered 17 conference talks; earned awards at GRC (2024) and USF Symp. (2023).

Ph.D. Researcher, Brigham Young University

2017 - 2022

Advisor: Prof. Douglas Tree

• Developed two GPU-accelerated Monte Carlo simulation codes in C++/CUDA; accelerated crystallization research by 100×.

- Generated 3D free energy landscapes & phase diagrams using novel order parameters.
- Analyzed large 3D datasets with OVITO to uncover kinetic and structural transitions.
- Mentored 4 undergraduates; co-authored 2 papers and 6 conference abstracts.
- Won APS Distinguished Student Award and BYU Research Presentation Award.
- Contributed key data to a successful \$500K NSF CAREER proposal.

Graduate Researcher, American University of Sharjah *Advisor: Prof. Ghaleb Husseini*

2015 - 2017

- Synthesized estrone-functionalized drug nanocarriers; enhanced release control for chemotherapy applications.
- Validated drug stability & kinetics with DLS/NMR; optimized ultrasonic parameters.
- Standardized lab protocols; boosted reproducibility and cross-lab collaboration.
- Presented at 3 conferences; awarded Best Talk at AUS Biomedical Symposium.

Leadership & Community Engagement

- **President**, Early Career Researchers in Polymer Physics (2022–Present): Led 550+ member global network, organized 150+ attendee virtual symposium.
- Founder & President, USF Postdoctoral Scholar Association (2023–Present): Launched NPA-funded ELEVATE Talk Series and DEI programs for 200+ postdocs.
- Founder & President, BYU Chem. Eng. Graduate Council (2019–2022): Shaped department policies and spearheaded outreach and recruitment.

Selected Peer-Reviewed Publications

- [4] **P. Kawak**, H. Bhapkar, and D. Simmons. "On the origin of heating-induced stiffening and enthalpic reinforcement in elastomeric nanocomposites". In: (2025). arXiv: 2501.06971.
- [3] **P. Kawak**, H. Bhapkar, and D. Simmons. "Central role of filler-polymer interplay in non-linear reinforcement of elastomeric nanocomposites". In: *Macromolecules* 57 (2024). DOI: 10.1021/acs.macromol.4c00489.
- [2] **P. Kawak**, C. Akiki, and D. Tree. "Effect of local chain stiffness on oligomer crystallization from a melt". In: *Phys. Rev. Mater.* 8 (2024). DOI: 10.1103/PhysRevMaterials.8.075606.
- [1] **P. Kawak**, D. Banks, and D. Tree. "Semiflexible oligomers crystallize via a cooperative phase transition". In: *J. Chem. Phys.* 155 (2021). DOI: 10.1063/5.0067788.

Education

Ph.D. in Chemical Engineering, Brigham Young University	2022
M.S. in Chemical Engineering, American University of Sharjah	2017
B.S. in Chemical Engineering (Econ. Minor), American University of Sharjah	2015

Full list of publications and presentations available at linktr.ee/pkawak