

THE SEARCH FOR THE PERFECT ASSOCIATION RULE!

# NULL INVARIANCE MEASURE

**DATA MINING** 



# **Contents**

- 1 ALL Conf
- 2 Kulczynski
- 3 Max Conf
- 4 Cosine
- 5 Jaccard



The need for Mr. Perfect Association factor

## **RECAP**

NULL Invariance -Value does not change with the # of NULL transactions

|                | play-basketball | not play-basketball | sum (row) |  |
|----------------|-----------------|---------------------|-----------|--|
| eat-cereal     | 400             | 350                 | 750       |  |
| not eat-cereal | 200             | 50                  | 250       |  |
| sum(col.)      | 600             | 400                 | 1000      |  |



#### Lift is more telling than s & c

|                    | В   | ¬В  | $\Sigma_{row}$ |
|--------------------|-----|-----|----------------|
| С                  | 400 | 350 | 750            |
| ¬C                 | 200 | 50  | 250            |
| Σ <sub>col</sub> . | 600 | 400 | 1000           |





| Measure         | Definition                                                                       | Range        | Null-Invariant |
|-----------------|----------------------------------------------------------------------------------|--------------|----------------|
| $\chi^2 (A, B)$ | $\sum_{i,j=0,1} \frac{(e(a_i b_j) - o(a_i b_j))^2}{e(a_i b_j)}$                  | $[0,\infty]$ | No             |
| Lift(A,B)       | $\frac{s(A \cup B)}{s(A) \times s(B)}$                                           | $[0,\infty]$ | No             |
| AllConf(A, B)   | $\frac{s(A \cup B)}{max\{s(A), s(B)\}}$                                          | [0, 1]       | Yes            |
| Jaccard(A,B)    | $\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$                                  | [0, 1]       | Yes            |
| Cosine(A,B)     | $\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$                                    | [0, 1]       | Yes            |
| Kulczynski(A,B) | $\frac{1}{2} \left( \frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$ | [0, 1]       | Yes            |
| MaxConf(A, B)   | $max\{\frac{s(A)}{s(A \cup B)}, \frac{s(B)}{s(A \cup B)}\}$                      | [0, 1]       | Yes            |



|                | milk       | $\neg milk$     | $\Sigma_{row}$ |
|----------------|------------|-----------------|----------------|
| coffee         | mc         | $\neg mc$       | c              |
| $\neg coffee$  | $m \neg c$ | $\neg m \neg c$ | $\neg c$       |
| $\Sigma_{col}$ | m          | $\neg m$        | Σ              |



| Data set | mc       | $\neg mc$ | $m \neg c$ | $\neg m \neg c$ | $\chi^2$ | Lift  |
|----------|----------|-----------|------------|-----------------|----------|-------|
| $D_1$    | ▶ 10,000 | 1,000     | 1,000      | 100,000         | 90557    | 9.26  |
| $D_2$    | 10,000   | 1,000     | 1,000      | 100             | 0        | 1     |
| $D_3$    | 100      | 1,000     | 1,000      | 100,000         | 670      | 8.44  |
| $D_4$    | 1,000    | 1,000     | 1,000      | 100,000         | 24740    | 25.75 |
| $D_5$    | 1,000    | 100       | 10,000     | 100,000         | 8173     | 9.18  |
| $D_6$    | 1,000    | 10        | 100,000    | 100,000         | 965      | 1.97  |



#### Confidence

MAX conf - Piking the biggest value of confidence.

ALL conf - Minimum value of confidence

#### Cosine

Lift function in disguise, but is null invariant.

Overcomes the deficiency of Lift function.

C

#### **Jaccard**

Does not consider the NULL Values.

The formula is such that, it only considers the used area and eliminates the unused area. K

#### Kulczynski

The approach of averaging the 2 confidence together

A -> B (&) B -> A



# Confidence & Kulczynski

Variation of native Confidence

Conf (A->B) =

S(A inter B) / S (A)

| Confidence Measure | Definition                               |
|--------------------|------------------------------------------|
| All Confidence     | $\frac{s(A \cap B)}{\max\{s(A), s(B)\}}$ |
| Kulczynski         | $\frac{P(A B) + P(B A)}{2}$              |
| Max Confidence     | $\max\{P(A B), P(B A)\}$                 |

"Biggest value of confidence between the 2 ways of looking at it"

**MAX Confidence** 

"Average of 2 confidences"

Kulczynski

" By dividing by the maximum value of the support for A int B and B int A,

We're really just finding the minimum value of confidence between the 2 options."

**ALL Confidence** 





| Confidence Measure | Definition                                    |
|--------------------|-----------------------------------------------|
| Lift               | $\frac{s(A \cap B)}{s(A) \times s(B)}$        |
| Cosine             | $\frac{s(A \cap B)}{\sqrt{s(A) \times s(B)}}$ |

| Confidence<br>Measure | Fraction Explanation                                                                                                                                                                                                  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lift                  | $\frac{\textit{Count of records with A\&B}/\textit{grand total}}{\left(\textit{count of records with A}/\textit{grand total}\right)x\left(\textit{count of records with B}/\textit{grand total}\right)}$              |
| Cosine                | $\frac{\textit{Count of records with A\&B}_{\textit{grand total}}}{\sqrt{\left(\textit{count of records with A}_{\textit{grand total}}\right)x\left(\textit{count of records with B}_{\textit{grand total}}\right)}}$ |





### **Jaccard**

The Jaccard function is defined as:-|A int B|/|A union B|

- The numerator of the Jaccard is the Orange area
- The denominator is the area of the yellow-orange-red area
- It doesn't use any data from the blank space



#### **NULL Invariance Measures**

# **Metrics**

D4 is neutral and balanced; D5 is neutral but imbalanced; D6 is neutral but very imbalanced.

| Data set | mc     | $\neg mc$ | $m \neg c$ | $\neg m \neg c$ | AllConf | Jaccard | Cosine | Kulc | MaxConf |
|----------|--------|-----------|------------|-----------------|---------|---------|--------|------|---------|
| $D_1$    | 10,000 | 1,000     | 1,000      | 100,000         | 0.91    | 0.83    | 0.91   | 0.91 | 0.91    |
| $D_2$    | 10,000 | 1,000     | 1,000      | 100             | 0.91    | 0.83    | 0.91   | 0.91 | 0.91    |
| $D_3$    | 100    | 1,000     | 1,000      | 100,000         | 0.09    | 0.05    | 0.09   | 0.09 | 0.09    |
| $D_4$    | 1,000  | 1,000     | 1,000      | 100,000         | 0.5     | 0.33    | 0.5    | 0.5  | 0.5     |
| $D_5$    | 1,000  | 100       | 10,000     | 100,000         | 0.09    | 0.09    | 0.29   | 0.5  | 0.91    |
| $D_6$    | 1,000  | 10        | 100,000    | 100,000         | 0.01    | 0.01    | 0.10   | 0.5  | 0.99    |



# Comparison of measures

Neutral but very imbalanced

Max Conf - Always shows max!



# Case Study

| ID | Author $A$           | Author $B$           | $s(A \cup B)$ | s(A) | s(B) | Jaccard    | Cosine     | Kulc       |
|----|----------------------|----------------------|---------------|------|------|------------|------------|------------|
| 1  | Hans-Peter Kriegel   | Martin Ester         | 28            | 146  | 54   | 0.163(2)   | 0.315 (7)  | 0.355(9)   |
| 2  | Michael Carey        | Miron Livny          | 26            | 104  | 58   | 0.191(1)   | 0.335 (4)  | 0.349 (10) |
| 3  | Hans-Peter Kriegel   | Joerg Sander         | 24            | 146  | 36   | 0.152(3)   | 0.331(5)   | 0.416 (8)  |
| 4  | Christos Faloutsos   | Spiros Papadimitriou | 20            | 162  | 26   | 0.119 (7)  | 0.308 (10) | 0.446(7)   |
| 5  | Hans-Peter Kriegel   | Martin Pfeifle       | 18            | 146  | 18   | 0.123 (6)  | 0.351(2)   | 0.562(2)   |
| 6  | Hector Garcia-Molina | Wilburt Labio        | 16            | 144  | 18   | 0.110 (9)  | 0.314 (8)  | 0.500(4)   |
| 7  | Divyakant Agrawal    | Wang Hsiung          | 16            | 120  | 16   | 0.133 (5)  | 0.365(1)   | 0.567(1)   |
| 8  | Elke Rundensteiner   | Murali Mani          | 16            | 104  | 20   | 0.148 (4)  | 0.351(3)   | 0.477 (6)  |
| 9  | Divyakant Agrawal    | Oliver Po            | 12            | 120  | 12   | 0.100 (10) | 0.316 (6)  | 0.550(3)   |
| 10 | Gerhard Weikum       | Martin Theobald      | 12            | 106  | 14   | 0.111 (8)  | 0.312(9)   | 0.485(5)   |









