forthright48

/cpps

- Home
- Blog
- Problem Creation
- Gateway
- CPPS
- Login/Register

Mobius Function

Mobius Function is a function $\mu()$, where:

- $\mu(x) = 0$, if x is divisible by some perfect square (except 1).
- $\mu(x) = 1$, if it is square free and contains even number of prime factors.
- $\mu(x) = -1$, if it is square free and contains odd number of prime factors.

It is mostly used in problems that require inclusion-exclusion. In fact, the function is simply a tool to make inclusion-exclusion simpler to apply.

Generating Mobius Function

Suppose we want to generate mobius function till n. Then do the following:

- Generate prime numbers till \sqrt{n} .
- Declare an array of size n, let assign 1 to every position. Let this array be mu[].
- For every prime number p, mark every multiple of p^2 as 0 in mu[].
- Then for every prime p multiply its multiple with -1.

```
vector<int> prime; ///Already generated using sieve
int mu[SIZE];
void calculateMobiusFunction( int n ) {
  for ( int i = 1; i \le n; i++ ) mu[i] = 1;
  int sqrtn = sqrt ( SIZE );
  /*Remove the numbers with squares*/
  for ( int i = 0; i < prime.size(); i++){
    if ( prime[i] > sqrtn ) break;
    int x = prime[i] * prime[i];
    /*Mark every multiple of x as 0, cause they are divisible by prime^2*/
    for ( int j = x; j \leftarrow n; j += x ) mobius[j] = 0;
  for ( int i = 0; i < prime.size(); i++ ){</pre>
    /*Multiply every multiple of prime[i] with -1*/
    for ( int j = prime[i]; j <= SIZE; j += prime[i] ) {</pre>
      mobius[j] *= -1;
    }
  }
}
```

When to Use Mobius Function?

Whenever we have to do sion-exclusion using the first k primes, using mobius function makes things easier for us.

Application

Counting numbers that cannot be expressed as exponent

Given the value N, find count of number x, where $x \leq N$ and it cannot be expressed as a^b (where b>1).

We can use inclusion-exclusion augmented with mobius function to solve the problem.

Initially, let res = N. From the result, let us exclude all numbers that can be written as a^2 . Let such numbers be $x_2 = \sqrt[3]{N}$. Similarly, let us exclude $x_3 = \sqrt[3]{N}$, since they can be written as a^3 . We don't need to exclude x_4 since they were removed by x_2 . Next we exclude x_5 . Next comes x_6 . Now notice that numbers in x_6 were removed twice: once by x_2 and once by x_3 . Hence, we add x_6 .

What gets added, removed or ignored is decided my mobius function here.

© 2016 Mohammad Samiul Islam All Rights Reserved.