Networks

René Serral-Gracià¹

¹Universitat Politècnica de Catalunya (UPC)

February 11, 2022

Introduction Servers Service Brokers Pure services Network file Sharing Monitoring Net

Lectures

- System administration introduction
- Operating System installation
- User management
- Application management
- System monitoring
- Filesystem Maintenance
- Local services
- Network services
- Security and Protection
- Virtualization

Introduction Servers Service Brokers occorded to the control of the control occorded to the control o

Outline

- Introduction
 - Goals
 - Previous Considerations
 - Network Address Translation
 - Firewall
- 2 Servers
- 3 Service Brokers
- 4 Pure services
- Network file Sharing

Goals

Knowledge

- Main services and networking protocols
 - Superserver, portmapper, DNS, FTP, WWW, e-mail

Abilities

- Service configurations
 - Superserver
 - DNS
 - FTP
 - WWW
 - E-Mail

Network admin considerations (I)

Security measures

- Never execute services with superuser privileges
- Expose only necessary services firewalls
- Configure carefully all the offered services
 - Never leave default configurations
 - Disable/Remove unused services
- Monitor the service's logs
- Check for security issues be up to date

Network admin considerations (and II)

Port classification

- Privileged ports: 0 1023
 - Controlled and assigned by IANA
 - Only privileged users (root) mai install services to those ports
- Registered ports: 1024 49151
 - Not controlled but registered by IANA
 - Registry about services using those ports /etc/services
- Dynamic ports: 49152 65535
 - Used for temporary connections

/etc/services

Servers

Service Brokers

Introduction

00000000000000

- Relates services with corresponding port number
 - various applications use it (netstat,...)

```
servicename
              port/protocol alias list
```

```
echo
                 7/tcp
echo
                 7/udp
                 11/tcp
systat
                                  users
svstat
                 11/udp
                                  users
ftp-data
                 20/tcp
ftp-data
                 20/udp
# 21 is registered to ftp, but also used by fsp
ftp
                 21/tcp
ftp
                 21/udp
                                 fsp fspd
ssh
                 22/tcp
ssh
                 22/udp
telnet
                 23/tcp
telnet.
                 23/udp
# 24 - private mail system
smtp
                 25/tcp
                                  mail
                 25/udp
                                  mail
smtp
domain
                 53/tcp
domain
                 53/udp
                 80/tcp
http
                                  www www-http
http
                 80/udp
                                  www www-http
```


Network Address Translation - NAT

Servers

- Router translates internal addresses by one (or various) of its own
 - Allows using a reserved IP (pool) and keep connectivity to the outside
- The router remembers the output connections to identify its answers
 - Output connection:
 - 192.168.1.25 (port 1085) \rightarrow 212.106.192.142 (1085)
 - Reply connection:
 - ullet 212.106.192.142 (1085) o 192.168.1.25 (1085)

Tools: iptables (SNAT, MASQUERADE), dnsmasq

NAT collateral effects

Service Brokers

- Private addresses are not visible from the outside
 - Attacks may only fall to the router except over ongoing connections
- Network security depednds on router security
- Internal machines cannot offer services to the outside
 - Except when using Destination Network Address Translation (DNAT)
- Important performance penalty for the network
 - All external connections go through a single router
 - Each packet requires some CPU time for processing
- Some services do not behave properly when using NAT
 - Those establishing connections to the inside
 - FTP, IRC, Netmeeting, . . .

Destination Address Translation (DNAT)

- Indicate to the NAT router it must forward some input connections to a particular machine
- Map router ports to some internal machine

Eines: iptables (DNAT)

Firewall

Server that determines which connections may be established between two networks

- It typically works at network and transport layers
 - In general application details are not known
- It can keep connection status (Connection Tracking)
 - It allows related connections: "replies"

Firewall == Security?

- A firewall is another piece of the overall security of a system
- Its use can potentially offer a false sense of security
- Other aspects cannot be neglected
 - Correct application configuration
 - Perform regular security updates on installed software
 - Limit concurrent connections
- Other security tools in the private network and servers are still necessary

Outline

- Introduction
- ServersServer types
- Service Brokers
- Pure services
- Network file Sharing
- 6 Monitoring
- Networking Example

Server types

- Connection oriented
 - The server keeps status about the different sessions
 - Better performance
 - Less error resilience
- Connectionless
 - There is no status about the client connections
 - There are no sessions
 - Requests must be self contained
 - Client request must contain all the required information
 - Better failure resilience and recovery

troduction Servers Service Brokers Pure services Network file Sharing Monitoring Net

Server types – Depending authority

Primary

- They keep a copy of all the information
- If there is mismatch in the stored information the primary takes precedence
- There is one per service

Secondary

- Keep copies of the information
- Performing periodic updates with the primary
- There can be more than one per service
- Load balancing
- Are an implicit backup of the primary
- Cache (and/or proxies)
 - Keep –partial– copies of the most used information
 - More than one per service
 - Better performance
 - They can add security checks, filtering, log, . .

Outline

- Introduction
- Servers
- Service Brokers
 - Superserver
 - Remote Procedure Calls (RPC)
 - Portmapper
- Pure services
- Metwork file Sharing
- 6 Monitoring

Superserver

- A service even when idle uses resources
 - Many services are requested only from time to time: telnet, ftp, ssh, ...
- Superserver listens to all the ports and activates the service only when needed
 - It detects the request
 - Initiates the service
 - Passes the message
- Limitations
 - Between connections it is not possible to keep information in memory
 - Overhead caused by process creation

Implementations: inetd, xinetd

/etc/xinetd.conf,/etc/xinetd.d

Introduction

0000000000 000

00000

Indicates the services offered by the superserver

Service, Protocol, User/group, Server, Parameters

```
$ cat /etc/xined.conf
includedir /etc/xinetd.d
```

```
$ cat /etc/xined.d/ftp
service ftp
        socket type
                                  = stream
        wait
                                  = n \cap
        user
                                  = root
                                  = /usr/sbin/vsftpd
        server
        log on success
                                 += HOST DURATION
        log on failure
                                 += HOST
        disable
                                  = no
```


Remote Procedure Calls (RPC)

- Remote subroutine invokation
 - Identified by a service number ID
- RPC Servers
 - They implement a set of remote connections
 - Listen in a dynamic port
- Portmapper
- Registers the RPC servers
 - Maps the port with the subroutines
- Needed by other services
 - NFS, . . .

Portmapper

- All the status is kept on memory
 - If the process fails, is not enough restarting it
 - All RPC servers must be restarted
- All services must be registered upon portmapper start

Outline

- Introduction
- 2 Servers
- Service Brokers
- Pure services
 - Domain Name System (DNS)
 - Dynamic Host Configuration Protocol (DHCP)
 - Hypertext Transfer Protocol (HTTP)
 - File Transfer Protocol (FTP)
 - The E-Mail system
 - Secure Shell
 - Lightweight Directory Access Protocol (LDAP)

Networks

Virtual Private Networks (VPN)

Domain Name System (DNS)

- Name resolution service
 - Hostname → IP address
 - IP Address → hostname
- Issues
 - Large amount of machines
 - Large number of changes
- Solution
 - Hierarchical distribution of the information (domains)
 - Authority delegation

DNS Internals

Authority delegation

- Each domain administers its own server
- Everybody knows the higher servers in the hierarchy (root)
- Everybody knows the server for their domain
- Name resolution is iterative

DNS: RFCs 1034/1035

Introduction Servers Service Brokers Pure services Network file Sharing Monitoring Net 0000000000 000

Service performance

Using "caches" is convenient

- High temporal locality
 - Avoids repeating the same guery
- High spacial locality
 - Avoids going up to the root servers too often
 - Avoids some steps of the iterative search

DNS can be used for load balancing

- We can have several IPs for the same name
 - Each query returns different values: Round Robin or "geographical" criteria

```
$ nslookup www.google.com
Name .
        www.google.com
Address: 212.106.221.23
Name:
        www.google.com
Address: 212.106.221.27
Name:
      www.google.com
Address: 212.106.221.25
```


DNS client configuration

- /etc/host.conf
 - Where a name is searched and its order
- /etc/hosts
 - Locally translated machines
- /etc/resolv.conf
 - Automatic domains to be searched
 - IP addresses of the DNS servers.

DNS Server configuration

- /etc/bind/named.conf
 - What are we administering?
 - DNS Domains
 - IP addresses ranges
 - Indicates primary, secondary, or cache
- Direct translation files
 - Name.domain → IP address
 - 1 file for each administered domain
- Inverse translation file
 - IP Address → name.domain
 - 1 file for each administered IP range

DNS type of registers

- SOA (Start of Authority)
 - Serial number
 - Refresh time and retries
 - Expiration times
 - Minimum TTL
- A Direct translation
 - Name → IP address

```
romeu IN A 147.83.32.4
```

- CNAME synonyms
 - Name \rightarrow name

```
romeu IN CNAME lp_romeu
```


DNS type of registers

- PTR inverse translation
 - IP Address → DNS name

```
4 IN PTR romeu.ac.upc.edu.
```

- NS Domain delegation
 - DNS Domain→ server

```
ac IN NS 147.83.32.3
```

- MX mail exchanger
 - DNS Domain → server

```
ac IN MX 147.83.33.10
```

- I altres...
 - HINFO, WKS, . . .

DNS configuration example

Zone "cluster.mygroup.upc.edu", as primary.

```
$ cat /etc/bind/named.conf
options
        directory "/var/cache/bind";
        forwarders
                147.83.159.217;
        };
        auth-nxdomain no;
                              # conform to RFC1035
        listen-on-v6 { any; };
};
zone "cluster.craax.upc.edu" {
  type master;
  file "/etc/bind/cluster.zone";
};
zone "1.1.10.in-addr.arpa"
 type master;
  file "/etc/bind/cluster.rev";
```


DNS configuration example

```
$ cat /etc/bind/cluster.zone
$TTL
        604800
       TN
                SOA
                       cluster. cluster.craax.upc.edu. (
                       20101220
                                       ; Serial
                         604800
                                       : Refresh
                         86400
                                       : Retry
                        2419200
                                       ; Expire
                         604800 )
                                       ; Negative Cache TTL
       ΤN
               NS
                       gandalf
SORTGIN
                       cluster.craax.upc.edu.
gandalf
               IN
                       A 10.1.1.1
horomir-1
               TN
                               10 1 1 2
```

```
$ cat /etc/bind/cluster.rev
STTI.
        604800
        TN
                SOA
                        cluster. cluster.craax.upc.edu. (
                        20101220
                                         : Serial
                          604800
                                         : Refresh
                           86400
                                         ; Retry
                         2419200
                                         ; Expire
                          604800 )
                                         ; Negative Cache TTL
        TN
                NS
                         gandalf
SORTGIN
                         cluster.craax.upc.edu.
                         gandalf.cluster.craax.upc.edu.
        TN
                PTR
        ΙN
                PTR
                         boromir-1.cluster.craax.upc.edu.
```


Net

Exercise

We have 3 services at (server1, server2 i server3)
 with these registers

```
server1 IN A 123.123.123.1
server2 IN A 123.123.123.2
server3 IN A 123.123.123.3
```

- We want to add the following services
 - www at server1 (server2 is the backup server)
 - ftp at server1 and server2
 - incoming/outgoing mail at server3

Which registries would you add?

DNS Related tools

- whois domain
 - Provides contact information for a domain
- dig [@server] query
 - Performs a DNS query
 - It allows controlling different resources
 - Server, type of register, iterative/recursive resolution, . . .
 - Returns the registers corresponding to the query
 - It supports debugging

Dynamic Host Configuration Protocol (DHCP)

- It delivers automatically the network configuration to a host
 - IP assignation, Gateway and DNS
- Machine trustfulness is not verified
 - By default it is assumed that if the host can reach connectivity then it is legitimate
 - It can provide MAC address verification
- IP addresses are assigned from a predefined range

Dynamic Host Configuration Protocol (DHCP)

Remote boot support through BOOTP and PXE

- Preboot Execution Environment (PXE)
- Network card uses BIOS to get network information
- It allows to decide the kernel image to boot
 - Downloaded through TFTP
 - A remote root system can be mounted


```
ddns-update-style none;
                           option domain-name-servers 192.168.1.1;
For /etc/resolv.conf
                          allow booting;
For PXE —
                          allow bootp;
                           default-lease-time 600;
                           max-lease-time 7200;
                           authoritative:
                           subnet 192.168.1.0 netmask 255.255.255.0 {
                            range dynamic-bootp 192.168.1.172 192.168.1.254;
For ifconfig >
                            range 192.168.1.2 192.168.1.171;
                            filename "pxelinux.0";
For route \
                            option subnet-mask 255.255.255.0;
                            option broadcast-address 192.168.1.255;
                            option routers 192.168.1.1;
```


Dynamic Host Configuration (DHCP)

DHCP and DNS can work together

/etc/dhcpd/dhcpd.conf

```
ddns-update-style interim;
key DHCP_UPDATER {
   algorithm HMAC-MD5.SIG-ALG.REG.INT;
   secret pRP5FapFoJ95JEL06sv4PQ==;
};
zone ac.upc.edu. {
   primary 192.168.1.1;
   key DHCP_UPDATER;
}
```

/etc/bind/named.conf

```
key DHCP_UPDATER {
    algorithm HMAC-MD5.SIG-ALG.REG.INT;
    secret pRP5FapFoJ95JEL06sv4PQ==;
};
zone ac.upc.edu. {
    type master;
    file "ac.zone";
    allow-update { key DHCP_UPDATER; };
};
...
```


Exercise

In group

- Which potential problem can be caused by a DHCP server crash?
- Propose an implementation to solve it

Hypertext Transfer Protocol (HTTP)

- Data transfer service
- Connectionless
 - There is no state between connections
 - Each petition is self-contained
- Nevertheless it uses TCP

Apache Web Server

- Implements support for HTTP
- /etc/apache/httpd.conf

Main features

- Unprivileged user execution
- Queries are served using memory separated processes/threads
 - Memory sharing configurable by the administrator
 - Maximum concurrent processes limit
- Configuration options in a per directory basis
- Virtual Host configuration
 - By IP address
 - By DNS name

File Transfer Protocol (FTP)

- Data transfer service
- Connection oriented
- Control connection
 - There is state between connections: cwd
- Data connection
 - active: does not support NAT
 - passive: NAT is supported
 - There is a new data connection per transfer

FTP Configuration

- There are many server implementations
 - wu-ftpd, proftpd, vsftpd, ...
- User level based authorization: /etc/ftpusers
 - List of the users that CAN'T access FTP
- Use chroot for security in Aonymous FTP
 - Changes the root of the process
 - Extra configuration
 - Requires install basic commands and configuration files
 - /etc/passwd, /etc/shadow
 - /bin/ls, /lib/libc.so, ...
 - Use it even for regular users

Service Brokers Pure services Network file Sharing Monitoring

Simple Mail Transfer Protocol (SMTP)

Parts composing the mail system

- MUA Mail User Agent
 - User application to read/write e-mails
- MSA Mail Submission Agent
 - Application to transmit the mail from the client to the MTA
 - It make all previous error checking
- MTA Mail Transport Agent
 - It sends the e-mail between servers
- Delivery Agent
 - Application to store mails into the user's mailbox
 - Sometimes the mails are stored into a database
- Access Agent
 - Application allowing the user to access its e-mail

Mail system components

Internals of an e-mail

- Envelope
 - Message destination
 - Source
 - Not received by the clients only for servers
- Headers
 - Set of message properties
 - Sending date
 - Source and destination (shown by the e-mail clients)
 - · List of servers the message has crossed
- Message body
 - Uses 7 bits ASCII
 - Attachments use Base-64

Mail client configuration

Mail reception

- Access to local mailbox
 - Mailbox/maildir format interpreter
- Remote mailbox access
 - POP3
 - IMAP

Mail sending

Using an SMTP server

E-Mail server configuration

Mail sending – sendmail/postfix

- Sending direct to the destination
 - Search for MX record in DNS local destination
- Sending through a Relay
 - No direct access to the destination

Mail reception

- Store the mails locally
 - POP3, DIMAP
- Store the mails in the remote server
 - IMAP

E-mail reception

Post Office Protocol (POP)

- It allows users to access their mailbox
- It downloads the messages to the local machine
- Authentication without encryption
 - pop3s secure alternative using SSL

Internet Message Access (IMAP)

- It allows users to manage their mailbox
- Management is performed remotely
- User authentication
 - Allowing encryption
- imaps even more secure alternative using SSL

Security considerations

User authentication

- By default the server does not ask for credentials
 - SASL can be used
- Envelope can be forged SPAM . . .
- Trust mail relays
 - The server always tries to send the message
 - Even if the headers do not belong to the domain (Open Relays)

Security considerations

Mail privacy

- Mail is sent in plain text
 - Use of TLS (SSL) only between MUA and MTA
- PGP Pretty Good Privacy
 - Message cyphering and signing
 - Based in public key cryptography
- S/MIME

Filter installation

- Anti-spam
 - Spamassasin, gray lists, black lists, ...
- Anti-virus
 - Clam AV, Amavis, f-prot,...

Exercise – In group

We just set up a filter to control spam

- Which action would you take as a server when you detect a spam message?
- And if the filter is an anti-virus?

Secure Shell

- It substitutes rsh/rlogin and telnet
- Adding security
 - It performs authentication based on RSA, DSA, ECDSA
 - Session key is signed by the client's private key
 - The server uses the public key as stored in (.ssh/authorized_keys) to check if the signature is correct
 - password based authentication is also supported
 - Connection is fully encrypted
 - Confidentiality: 3DES, Blowfish, ...
 - Integrity: hmac-md5, ...
- The server runs the specified command or offer a shell
- Transparent session
 - Whenever a pseudo-terminal is not requested
 - It can be used to transfer binary files

51

Lightweight Directory Access Protocol (LDAP)

- It provides access to users database
 - Directory format (X.500)
- It offers user authentication methods
 - /etc/passwd, /etc/shadow, /etc/group, ...
 - ... they can be dumped to the LDAP database
- Besides regular files, login can also be controlled through the database
- It is used extensively on Windows Server Active Directory

Networks

Virtual Private Networks (VPN)

- Server and client negotiate a secure connection
- An internal IP is offered through a secure tunnel
 - It grants access to all the internal services

Introduction Servers Service Brokers Occoologooo

Outline

- Introduction
- 2 Servers
- 3 Service Brokers
- Pure services
- Network file Sharing
 - Network File System (NFS)
 - Samba (SMB)
- 6 Monitoring

Network File System (NFS)

- File access in a remote server
 - Keeping the semantics (privilege wise) of the local filesystem
- It is transparent to the user
 - Implemented using RPC's

Introduction Servers Service Brokers Occoologooo Occoologooo Occoologooo Occoologooo Occoologooo Occoologoo Occoologo Occoolo

Remote mounting for NFS

The mounted directory is presented as local

Access privileges

- UIDs in the remote machines must be the same as used in local
 - Filesystems store UID rather than usernames
 - This can be adapted by using idmapd
- UID automatic translation (idmapd)
 - root, nobody
- Options
 - no_root_squash, root can su to any user!
 - all_squash, all users become nobody
 - We can decide who nobody is

anonuid=UID, anongid=GID

NFS Configuration

- Determine which resources to export
- Hosts to export to
- Configuration flags

/etc/exports

```
/ master(rw) trusty(rw,no_root_squash)
/projects proj*.local.domain(rw)
/usr *.local.domain(ro) @trustedgroup(rw)
/home/joe pc001(rw,all_squash,anonuid=150,anongid=100)
/pub (ro,insecure,all_squash)
```


SMB — Samba

- It allows sharing files and printers
- User level access control
 - Authentication using login and password
 - Based on username not UID
 - Encripted and plaintext password transmission
 - Machine based access restriction
 - It does not allow to change permissions depending on the source
 - One must use different share names

Introduction Servers Service Brokers occools of the Service Brokers occools oc

Outline

- Introduction
- 2 Servers
- 3 Service Brokers
- Pure services
- Network file Sharing
- 6 Monitoring
- Networking Example

Packet Sniffing — tcpdump

Introduction

```
40:53.818471 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto ICMP (1), length 84)
  192.168.55.17 > 192.168.55.1: ICMP echo request, id 15864, seq 1, length 64
       0x0000: 4500 0054 0000 4000 4001 4b46 c0a8 3711
      0x0010: c0a8 3701 0800 0dce 3df8 0001 055e ab53
      0x0020: 0000 0000 31b4 0b00 0000 0000 1011 1213
      0x0030: 1415 1617 1819 lalb 1cld lelf 2021 2223
      0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233
      0x0050: 3435 3637
00:40:53.818507 IP (tos 0x0, ttl 64, id 3655, offset 0, flags [none], proto ICMP (1), length 84)
  192.168.55.1 > 192.168.55.17: ICMP echo reply, id 15864, seg 1, length 64
      0x0000: 4500 0054 0e47 0000 4001 7cff c0a8 3701
      0x0010: c0a8 3711 0000 15ce 3df8 0001 055e ab53
      0x0020: 0000 0000 31b4 0b00 0000 0000 1011 1213
      0x0030: 1415 1617 1819 lalb 1cld lelf 2021 2223
      0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233
       0x0050: 3435 3637
0:40:53.821141 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto ICMP (1), length 84)
  192.168.55.17 > 192.168.77.1: ICMP echo request, id 15866, seq 1, length 64
       0x0000: 4500 0054 0000 4000 4001 3546 c0a8 3711
      0x0010: c0a8 4d01 0800 becl 3dfa 0001 055e ab53
      0x0020: 0000 0000 80be 0b00 0000 0000 1011 1213
      0x0030: 1415 1617 1819 lalb 1cld lelf 2021 2223
      0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233
      0x0050: 3435 3637
0:40:53.821851 IP (tos 0x0, ttl 62, id 4565, offset 0, flags [none], proto ICMP (1), length 84)
```


Monitoring

00000

Net

Service Detection—ss

Syntax

- ss [options]
- -a Display both listening and non-listening (for TCP this means established connections) sockets.

```
aso@localhost:~$ ss -a
Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port Process
u_str_ESTAB 0 0 /run/systemd/journal/stdout 40159 * 38282
tcp LISTEN 0 50 0.0.0.0:bacula-fd 0.0.0.0:*
```


Service Detection—nmap

Syntax

Introduction

• nmap [options] IP_list

```
aso@localhost:~$ nmap 192.168.1.2
Starting Nmap 6.47 (http://nmap.org) at 2014-11-19 00:18 CET
Nmap scan report for 192.168.1.2
Host is up (0.057s latency).
Not shown: 988 closed ports
PORT
       STATE SERVICE
22/tcp open ssh
53/tcp open domain
80/tcp open http
111/tcp open rpcbind
143/tcp open
              imap
443/tcp open https
514/tcp open shell
993/tcp open imaps
2049/tcp open
              nfs
6566/tcp open sane-port
9101/tcp open jetdirect
9103/tcp open jetdirect
Nmap done: 1 IP address (1 host up) scanned in 3.36 seconds
```


Net

Other Applications

- snort Intrusion detection system
- logwatch Log Watcher
- ntop Network Top

Pure services Network file Sharing Monitoring occoording to the services occording to the services occ

Outline

Introduction

Introduction

Servers

Service Brokers

- 2 Servers
- 3 Service Brokers
- 4 Pure services
- Network file Sharing
- 6 Monitoring
- Networking Example

Introduction Servers Service Brokers Occoording to the Company of the Company of

Task

A company has the following characteristics

- Company Executive Management has 5 PC.
- Administration department has 10 PC.
- Available IP addresses: 180.45.23.0/28
- The company needs the following services:
 - Web General to the whole company
 - E-Mail General to the whole company
 - File Sharing using NFS Per department
 - VPN General to the whole company

- SSH Present in all servers
- DHCP
- DNS Server for the employees
- Printing Service
- HTTPS Intranet

Introduction Servers Service Brokers Occasional Servers Service Brokers Occasional Servers Occasional Server

Task

Service Load

- Web Very High
- E-Mail High
- File Sharing using NFS Very High
- VPN Very Low

- SSH Very Low
- DHCP Low
- DNS Normal
- Printing Service Very Low
- HTTPS Intranet Normal

Introduction Servers Service Brokers occools of the Service Brokers occools oc

Task

Add all the necessary servers and network equipment

Introduction Servers Service Brokers occools of the control of the control occools of the control occools occo

Task

Questions

- Would you buy more hardware
- Distribute all the services among the different servers
- Specify where would you install the firewall and its basic configuration (This will be done in lesson 9)

69

