DM 5 : intégrales impropres

Le sujet se compose de trois problèmes de difficulté progressive. Il vous est demandé de traiter deux des trois problèmes.

Exercice 1. Une expression intégrale de la constante d'Euler (d'après un problème de l'école de l'air)

On note H_n la somme partielle d'ordre n de la série harmonique. On rappelle que la suite $H_n - \ln(n)$ est convergente vers une limite γ appelée constante d'Euler.

On pose pour tout x > 0, $g(x) = \frac{1}{1 - e^{-x}} - \frac{1}{x}$.

- 1. Montrer que g possède une limite fine en 0 et en $+\infty$. En déduire que g est bornée sur $]0, +\infty[$.
- 2. Etablir la convergence de l'intégrale $\int_0^\infty g(x)e^{-x}dx$.
- 3. (a) Pour n>0, calculer après avoir justifié la convergence, l'intégrale $\int_0^\infty e^{-nt}dt$
 - (b) En déduire que $H_{n-1}=\int_0^\infty \frac{e^{-x}-e^{-nx}}{1-e^{-x}}dx$
- 4. On se donne un entier n > 0.
 - (a) Soit y>0 Etablir que $\int_y^\infty \frac{e^{-x}-e^{-nx}}{x}dx$ est bien définie et est égale à $J(y)=\int_y^{ny} \frac{e^{-t}}{t}dt$.
 - (b) En déduire que l'intégrale $\int_0^\infty \frac{e^{-x}-e^{-nx}}{x}dx$ est convergente et vaut $\ln n$ indication : majorer et minorer l'exponentielle dans l'intégrale J(y)
- 5. Déduire des questions précédentes une expression intégrale de $H_{n-1} \ln(n)$ et en déduire que $\gamma = \int_0^\infty g(x)e^{-x}dx$
- 6. Montrer enfin que $\gamma = -\int_0^\infty \ln t e^{-t} dt$ (on fera une intégration par partie et on justifiera que l'intégrale $\int_0^\infty \ln(e^t-1)e^{-t} dt$ est nulle en opérant le changement de variable $u=e^t-1$ puis $v=\frac{1}{u}$).

Exercice 2 : une transformation intégrale (Niveau centrale)

On note C^0 l'espace vectoriel des fonction continues sur $J=[0,+\infty[$, et L(J) le sous espace de C^0 constitué des fonctions continues intégrables sur J (c'est à dire telles que l'intégrale de f soit absolument convergente).

Pour toute fonction $f \in C^0$ on note F la primitive de f qui s'annule en zéro.

On note E l'ensemble des fonctions $f \in C^0$ telles que l'intégrale $\int_0^\infty \frac{F(t)}{(1+t)^2} dt$ soit convergente. Cette intégrale est alors notée I(f).

1

Première partie. Généralités

- 1. Montrer que E est un espace vectoriel.
- 2. On suppose que $f \in L(J)$.
 - (a) Quelle propriété en déduit-on pour la primitive F?
 - (b) Montrer que f est élément de E.
 - (c) L'inclusion entre les espaces E et L(J) est elle stricte?
- 3. Etudier de même les inclusions entre les espaces E et $L^2(J)$ espace des fonctions de carré intégrable.
- 4. (a) Montrer que si $|f| \in E$ alors $f \in E$

(b) Soit f une fonction T-périodique continue . On note $m(f)=\frac{1}{T}\int_0^T f(u)du$ la valeur moyenne de f. Démontrer qu'on a quand t tend vers l'infini le développement :

$$F(t) = m(f)t + 0(1)$$

- (c) Pour f périodique, Etudier l'appartenance à E de f et |f|. Que penser de la réciproque du (a)?
- 5. Continuité de l'opérateur I.
 - (a) Existe t'il une constante C_1 telle que pour tout $f \in L(J)$ on ait $|I(f)| \le C_1 \int_0^\infty |f(t)| dt$?
 - (b) Existe t'il une constante C_2 telle que pour tout $f \in L^2(J)$ on ait $|I(f)| \le C_2 \sqrt{\int_0^\infty |f(t)|^2 dt}$?
- 6. Une propriété des fonctions positives. Dans cette partie, f est une fonction de C^0 vérifiant pour tout x, f(x) > 0.
 - (a) Vérifier $\int_0^A \frac{F(t)}{(1+t)^2} dt = -\frac{F(A)}{1+A} + \int_0^A \frac{f(t)}{(1+t)} dt$
 - (b) Montrer que $f \in E$ si et seulement si $\int_0^\infty \frac{f(t)}{(1+t)} dt$ converge.

on pourra noter que la primitive d'une fonction positive est toujours croissante

(c) Discuter la nécessité de l'hypothèse "f positive" en considérant la fonction $f(x) = (x+1)\cos x + \sin x$

Exercice 3 : intégration des relation de comparaison (d'après un problème de l'X)

- 1. Soient f et g deux fonctions réelles positives définies sur l'intervalle $I=[a,+\infty[$ et équivalentes au voisinage de l'infini Démontrer que :
 - si f est intégrable sur I alors $\int_x^\infty f(t)dt$ et $\int_x^\infty g(t)dt$ sont équivalents quand x tend vers l'infini
 - si f n'est pas intégrable sur I alors $\int_a^x f(t)dt$ et $\int_a^x g(t)dt$ sont équivalents quand x tend vers l'infini
- 2. Soit f une fonction de classe C^1 positive sur I. On suppose que $\lim_{t\to\infty}\frac{xf'(x)}{f(x)}=\alpha$.
 - a) Montrer que $\lim_{+\infty} \frac{\ln f(x)}{\ln x} = \alpha$
 - b) Si $\alpha < -1$ alors f est intégrable sur I et $\int_x^\infty f(t) dt \sim \frac{-x f(x)}{1+\alpha}$
 - c) Si $\alpha > -1$ alors f n'est pas intégrable sur I et $\int_a^x f(t)dt \sim \frac{xf(x)}{1+\alpha}$
 - d) Illustrer par des exemples que si $\alpha=-1$, l'intégrale $\int_a^\infty f(t)dt$ peut diverger ou converger, selon le choix de f.
- 3. On suppose cette fois ci que $\lim_{t\to\infty} \frac{xf(x)}{f'(x)} = \alpha$ ou α est un réel négatif. Démontrer que f est intégrable et trouver un équivalent de $\int_x^\infty f(t)dt$ en fonction de f(x). Donner un exemple explicite d'une telle fonction.
- 4. On considère une suite $(u_n)_n$ positive telle que la série de terme général u_n soit divergente. On pose $s_{-1}=0$ et pour $n\geq 0$, $s_n=\sum_0^n u_k$. On considère également une fonction f continue décroissante et positive sur $[0,+\infty[$. On pose $v_n=u_nf(s_n)$ et $w_n=u_nf(s_{n-1})$
 - a) On suppose que f intégrable sur I, montrer que la série $\sum v_n$ converge.
 - b) On suppose que f n'est pas intégrable sur I. Montrer que la série $\sum w_n$ diverge.
 - c) On suppose dans cette question que la suite $(u_n)_n$ est bornée. Montrer que les séries $\sum v_n$ et $\sum w_n$ sont de même nature.
 - d) On pose $f(x) = \frac{1}{(1+x)^2}$. Construire une suite $(u_n)_n$ non bornée telle que $\sum w_n$ soit divergente.