

Clustering Comparación de métodos

Christian Oliva Moya

Dpto. de Ingeniería Informática, Escuela Politécnica Superior

Universidad Autónoma de Madrid

28049 Madrid, Spain

Consideraciones finales (1)

 Cuidado con la alta dimensionalidad. Cada nuevo atributo hace que los elementos estén más alejados. Las medidas de distancia acaban siendo inútiles

Alternativas:

- Preprocesamiento de los datos
- Aplicar algún algoritmo de reducción de dimensionalidad (PCA)
- Realizar una fase de selección de características o atributos significativos

Consideraciones finales (2)

- No hay un método cerrado. Encontrar la solución óptima con un algoritmo de clustering es realmente difícil.
- Seamos creativos. Hemos visto que podemos implementar cualquier heurística o estrategia para resolver un problema en particular.

Consideraciones finales (3)

- Compara los resultados de diferentes algoritmos. No todos los algoritmos de clustering funcionan bien para todos los problemas.
- ¿Cómo comparamos los algoritmos de clustering?

Comparación de Clustering (1)

Comparación de Clustering (2)

- Tenemos que basarnos en las siguientes propiedades:
 - Cohesión intra-cluster: un buen algoritmo de clustering tiene puntos agrupados (zonas con alta densidad)
 - Separación inter-cluster: un buen algoritmo de clustering separa mucho los clusters
- Ejemplo con K-Means:
 - ¿Cómo de cerca están los puntos de un cluster a su centroide?
 - o ¿Cómo de lejos están los centroides unos de otros?

Comparación de Clustering (3)

- Si para un punto x definimos:
 - o intra(x) como el promedio de la distancia de x a los miembros de su propio cluster
 - o inter(x) como el promedio de la distancia de x a los miembros del cluster diferente más cercano
- Podemos medir la similitud intra- y inter-cluster para ese punto x como:

$$s(x) = \frac{inter(x) - intra(x)}{max\{inter(x), intra(x)\}}$$

Comparación de Clustering (4)

$$s(x) = \frac{inter(x) - intra(x)}{max\{inter(x), intra(x)\}}$$

• Índice de Silhouette: Media de s(x) para todos los puntos

$$sil = \frac{\sum_{i=1}^{n} s(x_i)}{n}$$

- El promedio proporciona una medida de coherencia general de los clusters.
 - Valores cercanos a +1 indican que los clusters están bien definidos.
 - Valores cercanos a 0 indican superposición de clusters.
 - Valores cercanos a -1 indican un clustering malo.

Comparación de Clustering (5)

• Notebook 06_dbscan.ipynb

