Lecture 15

Jointly Normal R.N.'s

2 T.V.'s X and Y are jointly Normal (or jointly Gaussian) if their joint density is

$$f(x,y) = \frac{1}{x,y} \cdot \exp\left\{-\frac{1}{(x-\mu_1)^2 + (y-\mu_2)^2} \times \frac{2\pi\sigma_1\sigma_2\sqrt{1-\gamma^2}}{2(1-\gamma^2)} \left(\frac{(x-\mu_1)^2 + (y-\mu_2)^2}{\sigma_1^2} - 2\gamma(x-\mu_1)(y-\mu_2)\right)\right\}$$

 $|\gamma| < 1$. $(\gamma \Rightarrow Correlation)$ Coefficient

Marginal densities:

$$f_{X}(x) = \frac{-(x-\mu_{1})^{2}}{\sqrt{2\pi} \sigma_{1}} \cdot f_{Y}(y) = \frac{1}{\sqrt{2\pi} \sigma_{2}} \cdot \frac{-(y-\mu_{2})^{2}}{\sqrt{2\pi} \sigma_{2}}$$

Important Facts:

- 1) If two random variables one jointly normal, they are also marginally normal. The reverse Statement is not true in general.
- 2) Joint normality can also be défined as follows:

X and Y are jointly normal if the sum a X + b Y is normal for every a and b.

Counter-Example:

$$f_{X,Y}(x,y) = \begin{cases} 1 & e^{-(x^2+y^2)} \\ 1 & e^{-(x^2+y^2)} \end{cases}$$

0 24 <0

density.

density

Check if Z=X+Y is a Normal r.v.

Answer > No.

Try this Yourself

	Eg. continued
	Suppose X' and Y are independent
	normal r.v.'s with 0 mean & common
	Variance σ^2 . Find $f_2(z)$ when $z = \chi^2 + \gamma^2$.
	$f_{X,Y}(x,y) = f_X(x) f_Y(y)$ $= 1 \cdot e^{-\frac{x^2}{2\sigma^2}} e^{-\frac{y^2}{2\sigma^2}}$ $= 1 \cdot e^{-\frac{x^2}{2\sigma^2}} e^{-\frac{y^2}{2\sigma^2}}$ From prev. page,
	$f_{X,Y}(\sqrt{z-y^2}, y) = \frac{1}{2\pi\sigma^2} e^{\frac{-(z-y^2)}{2\sigma^2}} e^{\frac{-y^2}{2\sigma^2}}$ $= \frac{-\frac{z}{2\sigma^2}}{2\sigma^2}$
	$ \frac{= e}{2\pi \sigma^{2}} $ $ f_{x,y}(-\sqrt{z-y^{2}}, y) = e^{-\frac{z}{2\pi \sigma^{2}}} $
)	$ \int_{Z} (z) = \int_{Z} \frac{1}{2\sqrt{z-y^2}} \frac{2\pi\sigma^2}{2\pi\sigma^2} dy $ $ -\sqrt{z} = \int_{Z} \frac{1}{2\sqrt{z-y^2}} \frac{2\pi\sigma^2}{2\pi\sigma^2} dy $
	$= \frac{e^{-\frac{z}{R}\sigma^2}}{\pi\sigma^2} \left(\int \frac{dy}{2\sqrt{z-y^2}} \right)$
	$= \begin{pmatrix} \frac{-7}{2\sigma^2} \\ \frac{\theta}{11\sigma^2} \end{pmatrix} \cdot 2 \int \frac{dy}{2\sqrt{z-y^2}} \int \frac{\text{even}}{\text{function } -\frac{7}{2\sigma^2}} \frac{1}{2\sigma^2} 1$
	Exponential T.V

(5)

Worth Remembering

 \times , Y are independent normal τ . v. s.

with 0 mean t variance σ^2 each $z = \chi^2 + \gamma^2 \sim \text{exponential}\left(\frac{1}{2\sigma^2}\right)$

$$Z = \sqrt{\chi^2 + \gamma^2} \sim \text{Rayleigh } \gamma. \gamma.$$

$$f_{z}(z) = \begin{cases} \frac{z}{r^2} e^{-\frac{z^2}{25^2}} \\ 0 & \text{otherwise} \end{cases}$$

W = X + iY X, Y are real, independent normal $\gamma.v.'s$ with D mean, equal variance σ^2 .

Amplitude $\Rightarrow |W| = \sqrt{\chi^2 + \gamma^2} \rightarrow \text{Rayleigh}$ Phase $\Rightarrow 0 = \tan^{-1}(\frac{\chi}{\chi}) \rightarrow \text{Uniform}(-\pi, \pi)$

If $X \ge Y$ do not have zero mean, say $J^{U}X$ and $J^{U}Y$ (Still independent and normal), $\sqrt{X^2+y^2} \sim \text{Rician Yandom Variable.}$

$$F_{Z}(z) = P(\max(X,Y) \le Z)$$
 mutually exclusive
= $P(\max(X,Y) \le Z) \cap \{(X \le Y) \cup (X > Y)\}$
Sample space.

=
$$P(X \leq Y, \max(X,Y) \leq z) + P(X > Y, \max(X,Y) \leq z)$$

(w, w)

If X and Y are independent ...

$$F_{z}(z) = F_{xy}(z, z) = F_{x}(z)F_{y}(z)$$

$$\frac{\partial}{\partial z} \frac{\int_{X} (z) F_{y}(z) + F_{x}(z) f_{y}(z)}{\partial z}$$

$$-) f_{z}(z) = f_{x}(z) F_{y}(z) + F_{x}(z) f_{y}(z).$$

$$W = min(x, Y) \rightarrow$$

$$F_W(w) = 1 - P_W(w > w) -$$

$$= 1 - P(x > \omega, Y > \omega)$$

$$F_{W}(\omega) = F_{x}(\omega) + F_{y}(\omega) - F_{x,y}(\omega,\omega).$$

(1)

Two functions of 2 r. v.'s

Let
$$Z = g(x, Y)$$

 $W = h(x, Y)$

If the functions g(x,y) and h(x,y) are continuous and differentiable, then we can directly obtain the joint density of (Z, W) from the joint density of (Z, W) from the joint density of (X,Y) as follows:

Step 1: Consider the equations g(x, y) = z; $h(x, y) = \omega$

For a given pair (z, w), Let (x_1, y_1) , (x_2, y_2), (x_n, y_n) denote the Simultaneous solutions of the above, i.e $g(x_i, y_i) = z$, $h(x_i, y_i) = w$ for i = 1, 2, ..., n.

Step2: Valle Tacobian

$$J(x_i, y_i) = \begin{vmatrix} \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \\ \frac{\partial h}{\partial x} & \frac{\partial h}{\partial y} \end{vmatrix} x = x_i,$$

$$y = y_i$$

Step3:

$$f_{z,w}(z,w) = \sum_{i} \frac{1}{|J(x_i,y_i)|} \cdot f_{x,y}(x_i,y_i)$$

Eg1:
$$Z = aX + bY$$

 $W = cX + dY$

If $ad-bc \neq 0$, then the above system has only one Solution: x = Az + Bw $\Rightarrow (x, y)$ y = Cz + Dw

$$J(x,y) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = (ad - bc)$$

$$= \int_{Z,W} (z,w) = \int_{[ad-bc]} f_{X,Y}(Az+Bw, Cz+Dw)$$

Eg 2: X, Y are zero mean, independent Gaussian v.v.'s with the same variance o?

Find joint density of (8,0), where

$$\gamma = \sqrt{\chi^2 + \gamma^2}$$

$$f_{X,Y}(x,y) = \frac{1}{2\pi r^2} e^{-\frac{(x^2+y^2)}{2\pi^2}}$$

$$\gamma = g(x,y) = \sqrt{x^2 + y^2} , \text{ only 1 Solution}$$

$$\theta = h(x,y) = \tan^{-1}(y/x) , (x_1, y_1) = (x \cos \theta, y_1)$$

$$\chi(x_1, y_1) = (x \cos \theta, y_2)$$

$$J(x,y) = \frac{x}{\sqrt{x^2 + y^2}} \frac{y}{\sqrt{x^2 + y^2}} = \frac{1}{x^2 + y^2} = \frac{1}{x^2 + y^2}$$

$$\frac{-y}{x^2 + y^2} \frac{x}{x^2 + y^2}$$

$$f_{\gamma,\theta}(\tau,\theta) = \frac{1}{|\mathcal{J}(x_1,y_1)|} \cdot f_{\chi,\gamma}(x_1,y_1)$$

$$= \gamma \frac{1}{2\pi r^2} e^{-\frac{1}{2\sigma^2}} (\tau^2 \cos^2 \theta + \tau^2 \sin^2 \theta)$$

$$f_{\gamma,\theta}(\tau,\theta) = \gamma \frac{1}{2\pi r^2} e^{-\frac{1}{2\sigma^2}} \cdot 0 < \gamma < \infty,$$

$$101 < \pi$$

$$f_{\gamma,\theta} = \frac{\gamma^2}{2\sigma^2}$$

$$f_{\gamma,\theta} = \frac{\gamma}{2\pi\sigma^2} \qquad 0 < \gamma < \infty$$

$$|\theta| < \pi$$

Marginal of
$$\tau$$

$$f_{\gamma}(r) = \int_{0}^{\pi} f_{\gamma,0}(r,0) d\theta = \frac{r}{5^{2}} e^{-\tau/25^{2}}$$

$$Q = -\pi$$

Rayleigh r.v.

Marginal of O

$$\int_{\theta}^{\infty} (\theta) = \int_{\tau, \theta}^{\infty} f_{\tau, \theta}(\tau, \theta) d\tau = \frac{1}{2\pi}, \quad |\theta| < \pi$$

$$= 0$$

$$\Rightarrow f_{\gamma,o}(\gamma,\theta) = f_{\gamma}(\gamma) \cdot f_{O}(\theta)$$

$$\Rightarrow f_{r,o}(r,0) = f_{r}(r) \cdot f_{o}(0)$$

$$\Rightarrow r & o \text{ are independent } r.v.'s$$

$$(magnitude) (phase).$$

IMPORTANT Eg.3 Let X and Y be independent exponential r.v. 's with parameter 2 U = X+Y V = X - Y $f_{x,Y}(x,y) = \left(\frac{1}{\lambda}e^{-\frac{x}{\lambda}}\right)\left(\frac{1}{\lambda}e^{-\frac{y}{\lambda}}\right)$ $= \frac{1}{2}e^{-(x+y)/2}$ u = oc + y \rightarrow one Solution $x_1 = (\underline{u} + v)$ $y_1 = (\underline{u} - v)$ $J(x,y) = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -1 - 1 = -2$ $f_{U,V}(u,v) = \frac{1}{|-2|} f_{X,Y}(x_1,y_1)$ Why?? \Rightarrow x>0, y>0 u=x+y y=x-y \Rightarrow |v|<u.

Marginal of U

$$f_{U}(u) = \int f_{U,V}(u,v) dv = \int_{2\lambda}^{\infty} e^{-u/\lambda} dv$$

$$v = -u$$

$$= \frac{1}{2\lambda^2} \cdot \frac{2u}{2u} = \frac{u}{\lambda^2} e^{-u/\lambda},$$

0< 22 < 00

Marginal of V

$$f_{V}(v) = \int_{V}^{\infty} f_{u,v}(u,v) du = \int_{V}^{\infty} \frac{1}{2\lambda^{2}} e^{-u/\lambda} du$$

$$u = |V|$$
|V|

$$=\frac{-|v|/\lambda}{2\lambda}, \quad -\infty < v < \infty$$

 $f_{u,v}(u,v) \neq f_{u}(w) f_{v}(w)$

7. ve./s

EXPECTED VALUE of A FUNCTION of 2 R.V.S g(X,Y)

$$E(g(x,y)) = \int_{x=-\infty}^{\infty} g(x,y) f(x,y) dx dy$$

$$x=-\infty y=-\infty$$

LINEARITY OF EXPECTATION

$$E\left(a_{1}g_{1}(X,Y) + a_{2}g_{2}(X,Y) + \dots + a_{n}g_{n}(X,Y)\right)$$

$$= \sum_{i=1}^{n} a_{i}Eg_{i}(X,Y)$$

Recall, E(X+Y) = E(X) + E(Y)However, in general $E(XY) \neq E(X)E(Y) \checkmark$

COVARIANCE of 2 RANDOM VARIABLES

$$C_{XY} = E\left[(X - \mu_X)(Y - \mu_Y) \right]$$

$$= E\left[\times Y - \mu_Y \times - \mu_X Y + \mu_X \mu_Y \right]$$

$$C_{XY} = E(XY) - E(X)E(Y)$$

$$Var(X+Y) = E[(X+Y-(\mu_X+\mu_Y))^2]$$
$$= E[((X-\mu_X)+(Y-\mu_Y))^2]$$

$$= E[(X-\mu_X)^2] + E[(Y-\mu_Y)^2] + 2E[(X-\mu_X)(Y-\mu_Y)]$$

$$Var(X) \qquad Var(Y) \qquad Cov(X,Y)$$

$$V(x+Y) = V(x) + V(Y) + 2C_{XY}$$