Практикум

Лоскутова Софья, 615 группа, химический факультет

https://colab.research.google.com/drive/1iluXPpJPdqZJ9KTewgowWVNEIw2Gj72d?usp=sharing

Обзор данных

Общий размер датасета = 8154

Количество молекул, для которых дана активность по отношению к hERG гену = 8153 Распределение по активности (1 — молекула активна, 0 — молекула неактивна)

Из графика видно, что классы не сбалансированы.

Выбор модели и дескриптора

Сначала будем сравнивать модели по метрике accuracy score

	GetAvalonFP	GetHashedAtomPairFingerprint	GetMACCSKeysFingerprint
GaussianNB	0.6309	0.4304	0.4727
ComplementNB	0.7376	0.7223	0.6891
RandomForestClassifier	0.8921	0.9007	0.8847
BaggingClassifier	0.8743	0.8811	0.8780
XGBClassifier	0.8614	0.8872	0.8565

Hauбольшее значение соответсвует дескриптору GetHashedAtomPairFingerprint и модели RandomForestClassifier, остановимся на них и будем варьировать параметры.

Параметры

Cpasy зададим class_weight='balanced_subsample', так как данные несбалансированные

Проверялись следующие значения гиперпараметров:

```
criterion=«entropy» / default="gini"
n_estimators=50, 100, 200, 500, 1000, 1500
max_features='log2' / default="auto"
```

Для всех случаев метрики отличались на сотые доли, например:

class_weight='balanced'				
accuracy_score	f1_score	matthews_corrcoef		
0.8976	0.7951	0.7342		

class_weight='balanced_subsample',criterion="entropy",n_estimators=500, max_features='log2'				
accuracy_score	fl_score	matthews_corrcoef		
0.8958	0.7870	0.7289		

class_weight='balanced_subsample',criterion="entropy",n_estimators=500, warm_start=True				
accuracy_score	fl_score	matthews_corrcoef		
0.9037	0.8088	0.7508		

Кажется, что значение $n_estimators$ больше 100 и $warm_start=True$, дает чуть лучше результат. Остановимся на модели

RandomForestClassifier(class_weight='balanced_subsample',criterion
="entropy",n estimators=500, warm start=True)

Посчитанные метрики для нее:

```
accuracy_score = 0.9031
precision_score = 0.8898
recall_score = 0.7388
f1_score = 0.8073
matthews corrcoef = 0.7491
```

Confusion_matrix и гос-кривая

Тепловая карта confusion matrix:

Roc-кривая:

