臺北市立松山高級中學 107 學年度第二學期高二社會組數學科第一次段考試卷

一、單選題 (每題 5 分,共 10 分)

說明:第1題至第2題,每題有5個選項,其中只有一個是正確或最適當的選項,請書記在答案卡之「選擇 (填)題答案區」。各題答對者,得5分;答錯、未作答或畫記多於一個選項者,該題以零分計 算。

- 求雨平面 $E_1: x-y+2z-4=0$ 和平面 $E_2: x+y+\sqrt{6}z-1=0$ 之銳夾角為 1.
 - $(1) 15^{\circ}$

- ② 30° ③ 45° ④ 60° ⑤ 75°
- 設一長方體之長、寬、高分別為6,4,4,則任意兩頂點間的最長距離為

- (1) $3\sqrt{6}$ (2) $4\sqrt{3}$ (3) $4\sqrt{5}$ (4) $5\sqrt{2}$ (5) $2\sqrt{17}$

二、多選題 (每題8分,共40分)

說明:第3題至第7題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫記在答案卡之 「選擇(填)題答案區」。各題之選項獨立判定,所有選項均答對者,得8分;答錯1個選項者, 得5分;答錯2個選項者,得2分;答錯多於2個選項或所有選項均未作答者,該題以零分計算。

- 下列有關空間幾何的敘述,那些是正確的?
 - (1) 平面上,若兩相異直線不相交,則它們必平行
 - ②) 空間中,若兩相異直線不相交,則它們必平行
 - ③) 空間中,過平面外一點,恰有一直線與此平面垂直
 - (4) 空間中,會有兩個相異平面只交一個點
 - (5) 空間中,通過直線外一點,恰有一直線與此直線垂直
- 如圖,四面體 D-ABC中,M、N分別為 \overline{AB} 與 \overline{CD} 之中點,試問下列哪些直線互為歪斜? 4.
 - (1) 直線 AD與直線 BC 互為歪斜
 - ②) 直線 AB 與直線 CD 互為歪斜
 - ③) 直線 AC 與直線 BD 互為歪斜
 - (4) 直線 BC與直線 MN 互為歪斜
 - (5) 直線 BC與直線 DN 互為歪斜
- 5. 平行於平面 2x+v+2z=1,且與三坐標平面圍成之四面體體積為 9,則此平面方程式為

- (2) 2x + y + 2z = 0
- (3) 2x + y + 2z = 3
- (4) 2x + y + 2z = 6
- (5) 2x + y + 2z = 9
- 設 \overline{a} , \overline{b} 為空間中兩不平行之非零向量,且 \overline{a} , \overline{b} 的夾角為 θ ,則下列何者正確?
 - (1) $\overrightarrow{a} \times \overrightarrow{a} = \overrightarrow{a}^2$

 - (3) $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{a}$
 - (4) $\overrightarrow{a} \cdot (\overrightarrow{a} \times \overrightarrow{b}) = 0$
 - (5) $\overrightarrow{a} // (\overrightarrow{a} \times \overrightarrow{b})$

- 7. 設平面 E: 2x 6y + 3z = 8, A(1,0,2), B(0,1,0), $\overrightarrow{PQ} = (-6,18,-9)$, 則下列敘述那些是正確的?
 - (1) A在平面 E上
 - ②) B到平面E的距離為 $\frac{2}{7}$
 - ③) PO為平面 E的一個法向量
 - (4) 平面 y-2z=3與平面 E垂直
 - ⑤) 若C,D為平面E上之二相異點,則 $\overrightarrow{CD} \cdot \overrightarrow{PO} < 0$

三、填充題(每格5分,共50分)

說明:第A至E題為選填題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(8-32)。每題完全答對給5分,答錯不倒扣,未完全答對不給分。

- A. 在空間中,有一平行四邊形 ABCD,已知 A(1,2,3)、 B(2,3,4)、 C(4,6,8), 試求:
 - (1) $\overrightarrow{AB} \cdot \overrightarrow{AC} = 89$
 - ② D點的坐標為⑩,⑪,⑫)
 - ③) 若向量 \overrightarrow{AB} 與向量 \overrightarrow{AC} 的夾角度數為 θ ,則 $\cos\theta = \frac{\text{(3)}\sqrt{\text{(4)}}}{\text{(3)}}$
 - (4) 向量 \overrightarrow{AB} 在 \overrightarrow{AC} 的正射影長為 $(6)\sqrt{(1)}$ (8)
 - ⑤) ΔABC 的面積為 $\frac{\sqrt{\textcircled{19}}}{\textcircled{20}}$
 - ⑥) 平行四邊形 ABCD所在的平面方程式為__② x-② y+② z=0__
- B. 一矩形紙板 ABCD沿 \overline{AC} 上摺至 ACD'之位置,由 D'作平面 ABC之垂足 H在 \overline{AB} 上,如圖, $\overline{AB}=2$, $\overline{BC}=1$,則 $\overline{BD}'=\sqrt{24}$ D'

- C. 空間四點 A,B,C,D的連線,其中 $\overline{AB}=6,\overline{BC}=4,\overline{CD}=2$,且 $\angle ABC=120^\circ$, $\angle BCD=120^\circ$,又 \overline{AB} 和 \overline{CD} 的夾角為 60° ,則 $\overline{AD}=\underline{\textcircled{5}\textcircled{5}}$
- D. 已知三實數 x , y , z 滿足 $4x^2+y^2+z^2=9$,則 2x-3y+6z的最小值為 ② ② $\sqrt{②}$ ③
- E. 如圖所示,ABCD-EFGH為邊長等於1之正立方體。若P點在立方體之內部且滿足

$$\overrightarrow{AP} = \frac{3}{4} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AD} + \frac{2}{3} \overrightarrow{AE}$$
,則 P 點到直線 AB 之距離為 $\frac{\textcircled{3}}{\textcircled{3}}$

臺北市立松山高級中學 107 學年度第二學期高二社會組數學科第一次段考答案

一、單選題 (每題5分,共10分)

1.	2.
3	5

二、多選題 (每題8分,共40分)

3. 4. 5.	6.	7.
135 1234 14	24	13

三、填充題(每格5分,共50分)

A (1)	A (2)	A (3)	A (4)	A (5)
12	(3,5,7)	$\frac{2\sqrt{6}}{5}$	$\frac{6\sqrt{2}}{5}$	$\frac{\sqrt{6}}{2}$
A (6)	В	С	D	Е
x - 2y + z = 0	$\sqrt{3}$	10	$-3\sqrt{46}$	$\frac{5}{6}$