I wear a chain complex now. Chain complexes are cool

27.01.2017

27 January 2017

Kristin Krogh Arnesen

Oystein Skartsaeterhagen

Kamal Saleh

Kristin Krogh Arnesen

Email: kristink@math.ntnu.no

Homepage: http://www.math.ntnu.no/~kristink

Address: Trondheim

Oystein Skartsaeterhagen

Email: oysteini@math.ntnu.no

Homepage: http://www.math.ntnu.no/~oysteini

Address: Trondheim

Kamal Saleh

Email: kamal.saleh@uni-siegen.de

Homepage: https://github.com/kamalsaleh/complex

Address: Siegen

Contents

1	Complexes categories					
	1.1	Constructing chain and cochain categories	3			
2	Complexes					
	2.1	Categories and filters	5			
	2.2	Creating chain and cochain complexes	7			
	2.3	Attributes	8			
	2.4	Operations	9			
	2.5	Truncations	11			
	2.6	Examples	12			
3	Complexes morphisms 1					
	3.1	Categories and filters	15			
	3.2	Creating chain and cochain morphisms	17			
	3.3	Attributes	18			
	3.4	Properties	18			
	3.5	Operations	18			
	3.6	Examples	20			
4	Functors 2					
	4.1	Basic functors for complex categories	22			
	4.2	Examples	23			
In	dex		26			

Chapter 1

Complexes categories

1.1 Constructing chain and cochain categories

1.1.1 IsChainOrCochainComplexCategory (for IsCapCategory)

▷ IsChainOrCochainComplexCategory(arg)

(filter)

Returns: true or false

bla bla

1.1.2 IsChainComplexCategory (for IsChainOrCochainComplexCategory)

▷ IsChainComplexCategory(arg)

(filter)

Returns: true or false

bla bla

1.1.3 IsCochainComplexCategory (for IsChainOrCochainComplexCategory)

▷ IsCochainComplexCategory(arg)

(filter)

Returns: true or false

bla bla

1.1.4 ChainComplexCategory (for IsCapCategory)

▷ ChainComplexCategory(A)

(attribute)

Returns: a CAP category

Creates the chain complex category Ch(A) an Abelian category A.

1.1.5 CochainComplexCategory (for IsCapCategory)

▷ CochainComplexCategory(A)

(attribute)

Returns: a CAP category

Creates the cochain complex category Coch (A) an Abelian category A.

1.1.6 UnderlyingCategory (for IsChainOrCochainComplexCategory)

▷ UnderlyingCategory(B)

(attribute)

Returns: a CAP category

The input is a chain or cochain complex category B=C(A) constructed by one of the previous commands. The outout is A.

Let $\mathbb Q$ be the field of rationals and let $\text{Vec}_{\mathbb Q}$ be the category of $\mathbb Q$ -vector spaces. The cochain complex category of $\text{Vec}_{\mathbb Q}$ can be constructed as follows

```
gap> LoadPackage( "LinearAlgebraForCap" );;
gap> LoadPackage( "complex" );;
gap> Q := HomalgFieldOfRationals();;
gap> matrix_category := MatrixCategory( Q );
Category of matrices over Q
gap> cochain_cat := CochainComplexCategory( matrix_category );
Cochain complexes category over category of matrices over Q
```

Chapter 2

Complexes

2.1 Categories and filters

2.1.1 IsChainOrCochainComplex (for IsCapCategoryObject)

▷ IsChainOrCochainComplex(arg)

(filter)

Returns: true or false

bla bla

2.1.2 IsChainComplex (for IsChainOrCochainComplex)

▷ IsChainComplex(arg)

(filter)

Returns: true or false

bla bla

2.1.3 IsCochainComplex (for IsChainOrCochainComplex)

▷ IsCochainComplex(arg)

(filter)

Returns: true or false

bla bla

2.1.4 IsBoundedBelowChainOrCochainComplex (for IsChainOrCochainComplex)

▷ IsBoundedBelowChainOrCochainComplex(arg)

(filter)

Returns: true or false

bla bla

2.1.5 IsBoundedAboveChainOrCochainComplex (for IsChainOrCochainComplex)

▷ IsBoundedAboveChainOrCochainComplex(arg)

(filter)

Returns: true or false

bla bla

2.1.6 IsBoundedChainOrCochainComplex (for IsBoundedBelowChainOrCochainComplex and IsBoundedAboveChainOrCochainComplex)

▷ IsBoundedChainOrCochainComplex(arg)

(filter)

Returns: true or false

bla bla

2.1.7 IsBoundedBelowChainComplex (for IsBoundedBelowChainOrCochainComplex and IsChainComplex)

▷ IsBoundedBelowChainComplex(arg)

(filter)

Returns: true or false

bla bla

2.1.8 IsBoundedBelowCochainComplex (for IsBoundedBelowChainOrCochainComplex and IsCochainComplex)

▷ IsBoundedBelowCochainComplex(arg)

(filter)

Returns: true or false

bla bla

2.1.9 IsBoundedAboveChainComplex (for IsBoundedAboveChainOrCochainComplex and IsChainComplex)

▷ IsBoundedAboveChainComplex(arg)

(filter)

Returns: true or false

bla bla

2.1.10 IsBoundedAboveCochainComplex (for IsBoundedAboveChainOrCochain-Complex and IsCochainComplex)

▷ IsBoundedAboveCochainComplex(arg)

(filter)

Returns: true or false

bla bla

2.1.11 IsBoundedChainComplex (for IsBoundedChainOrCochainComplex and Is-ChainComplex)

▷ IsBoundedChainComplex(arg)

(filter)

Returns: true or false

bla bla

2.1.12 IsBoundedCochainComplex (for IsBoundedChainOrCochainComplex and Is-CochainComplex)

▷ IsBoundedCochainComplex(arg)

(filter)

Returns: true or false

bla bla

2.2 Creating chain and cochain complexes

2.2.1 ChainComplex (for IsCapCategory, IsZList)

▷ ChainComplex(A, diffs)

(operation)

▷ CochainComplex(A, diffs)

(operation)

Returns: a chain complex

The input is category A and an infinite list diffs. The output is the chain (resp. cochain) complex $M_{\bullet} \in \operatorname{Ch}(A)$ ($M^{\bullet} \in \operatorname{CoCh}(A)$) where $d_i^M = \operatorname{diffs}[i](d_M^i = \operatorname{diffs}[i])$.

2.2.2 ChainComplex (for IsDenseList, IsInt)

▷ ChainComplex(diffs, n)

(operation)

▷ CochainComplex(diffs, n)

(operation)

Returns: a (co)chain complex

The input is a finite dense list diffs and an integer n. The output is the chain (resp. cochain) complex $M_{\bullet} \in \operatorname{Ch}(A)$ ($M^{\bullet} \in \operatorname{CoCh}(A)$) where $d_n^M := \operatorname{diffs}[1](d_M^n := \operatorname{diffs}[1]), d_{n+1}^M = \operatorname{diffs}[2](d_M^{n+1} := \operatorname{diffs}[2])$, etc.

2.2.3 ChainComplex (for IsDenseList)

▷ ChainComplex(diffs)

(operation)

▷ CochainComplex(diffs)

(operation)

Returns: a (co)chain complex

The same as the previous operations but with n = 0.

2.2.4 StalkChainComplex (for IsCapCategoryObject, IsInt)

▷ StalkChainComplex(diffs, n)

(operation)

▷ StalkCochainComplex(diffs, n)

(operation)

Returns: a (co)chain complex

The input is an object $M \in A$. The output is chain (resp. cochain) complex $M_{\bullet} \in Ch(A)(M^{\bullet} \in CoCh(A))$ where $M_n = M(M^n = M)$ and $M_i = 0(M^i = 0)$ whenever $i \neq n$.

2.2.5 ChainComplexWithInductiveSides (for IsCapCategoryMorphism, IsFunction, IsFunction)

▷ ChainComplexWithInductiveSides(d, G, F)

(operation)

Returns: a chain complex

The input is a morphism $d \in A$ and two functions F, G. The output is chain complex $M_{\bullet} \in \operatorname{Ch}(A)$ where $d_0^M = d$ and $d_i^M = G^i(d)$ for all $i \leq -1$ and $d_i^M = F^i(d)$ for all $i \geq 1$.

2.2.6 CochainComplexWithInductiveSides (for IsCapCategoryMorphism, IsFunction, IsFunction)

▷ CochainComplexWithInductiveSides(d, G, F)

(operation)

Returns: a cochain complex

The input is a morphism $d \in A$ and two functions F,G. The output is cochain complex $M^{\bullet} \in \text{CoCh}(A)$ where $d_M^0 = d$ and $d_M^i = G^i(d)$ for all $i \le -1$ and $d_M^i = F^i(d)$ for all $i \ge 1$.

2.2.7 ChainComplexWithInductiveNegativeSide (for IsCapCategoryMorphism, Is-Function)

▷ ChainComplexWithInductiveNegativeSide(d, G)

(operation)

Returns: a chain complex

The input is a morphism $d \in A$ and a functions G. The output is chain complex $M_{\bullet} \in \operatorname{Ch}(A)$ where $d_0^M = d$ and $d_i^M = G^i(d)$ for all $i \leq -1$ and $d_i^M = 0$ for all $i \geq 1$.

2.2.8 ChainComplexWithInductivePositiveSide (for IsCapCategoryMorphism, IsFunction)

▷ ChainComplexWithInductivePositiveSide(d, F)

(operation)

Returns: a chain complex

The input is a morphism $d \in A$ and a functions F. The output is chain complex $M_{\bullet} \in \operatorname{Ch}(A)$ where $d_0^M = d$ and $d_i^M = F^i(d)$ for all $i \ge 1$ and $d_i^M = 0$ for all $i \le 1$.

2.2.9 CochainComplexWithInductiveNegativeSide (for IsCapCategoryMorphism, IsFunction)

▷ CochainComplexWithInductiveNegativeSide(d, G)

(operation)

Returns: a cochain complex

The input is a morphism $d \in A$ and a functions G. The output is cochain complex $M^{\bullet} \in \operatorname{CoCh}(A)$ where $d_M^0 = d$ and $d_M^i = G^i(d)$ for all $i \le -1$ and $d_M^i = 0$ for all $i \ge 1$.

2.2.10 CochainComplexWithInductivePositiveSide (for IsCapCategoryMorphism, IsFunction)

▷ CochainComplexWithInductivePositiveSide(d, F)

(operation)

Returns: a cochain complex

The input is a morphism $d \in A$ and a functions F. The output is cochain complex $M^{\bullet} \in \operatorname{CoCh}(A)$ where $d_M^0 = d$ and $d_M^i = F^i(d)$ for all $i \ge 1$ and $d_M^i = 0$ for all $i \le 1$.

2.3 Attributes

2.3.1 Differentials (for IsChainOrCochainComplex)

▷ Differentials(C)

(attribute)

Returns: an infinite list

The command returns the differentials of the chain or cochain complex as an infinite list.

2.3.2 Objects (for IsChainOrCochainComplex)

▷ Objects(C)

(attribute)

Returns: an infinite list

The command returns the objects of the chain or cochain complex as an infinite list.

2.3.3 CatOfComplex (for IsChainOrCochainComplex)

 \triangleright CatOfComplex(C) (attribute)

Returns: a Cap category

The command returns the category in which all objects and differentials of C live.

2.4 Operations

2.4.1 \[\] (for IsChainOrCochainComplex, IsInt)

 $\triangleright \setminus [\setminus] (C, i)$ (operation)

Returns: an object

The command returns the object of the chain or cochain complex in index i.

2.4.2 \^ (for IsChainOrCochainComplex, IsInt)

Returns: a morphism

The command returns the differential of the chain or cochain complex in index i.

2.4.3 CertainCycle (for IsChainOrCochainComplex, IsInt)

▷ CertainCycle(C, n)

Returns: a morphism

The input is a chain or cochain complex C and an integer n. The output is the kernel embedding of the differential in index n.

2.4.4 CertainBoundary (for IsChainOrCochainComplex, IsInt)

▷ CertainBoundary(C, n)

Returns: a morphism

The input is a chain (resp. cochain) complex C and an integer n. The output is the image embeddin of i + 1'th (resp. i - 1'th) differential of C.

2.4.5 DefectOfExactness (for IsChainOrCochainComplex, IsInt)

▷ DefectOfExactness(C, n)

(operation)

(operation)

(operation)

Returns: a object

The input is a chain (resp. cochain) complex C and an integer n. The outout is the homology (resp. cohomology) object of C in index n.

2.4.6 IsExactInIndex (for IsChainOrCochainComplex, IsInt)

▷ IsExactInIndex(C, n)

(operation)

Returns: true or false

The input is a chain or cochain complex C and an integer n. The outout is true if C is exact in i. Otherwise the output is false.

2.4.7 SetUpperBound (for IsChainOrCochainComplex, IsInt)

▷ SetUpperBound(C, n)

(operation)

Returns: Side effect

The command sets an upper bound n to the chain (resp. cochain) complex C. This means $C_{i \ge n} = 0$ ($C^{\ge n} = 0$). This upper bound will be called *active* upper bound of C. If C already has an active upper bound m, then m will be replaced by n only if n is better upper bound than m, i.e., $n \le m$. If C has an active lower bound l and $n \le l$ then the upper bound will set to equal l and as a consequence C will be set to zero.

2.4.8 SetLowerBound (for IsChainOrCochainComplex, IsInt)

▷ SetLowerBound(C, n)

(operation)

Returns: Side effect

The command sets an lower bound n to the chain (resp. cochain) complex C. This means $C_{i \le n} = 0$ ($C^{\le n} = 0$). This lower bound will be called *active* lower bound of C. If C already has an active lower bound m, then m will be replaced by n only if n is better lower bound than m, i.e., $n \ge m$. If C has an active upper bound u and $n \ge u$ then the lower bound will set to equal u and as a consequence C will be set to zero.

2.4.9 HasActiveUpperBound (for IsChainOrCochainComplex)

(operation)

Returns: true or false

The input is chain or cochain complex. The output is *true* if an upper bound has been set to *C* and *false* otherwise.

2.4.10 HasActiveLowerBound (for IsChainOrCochainComplex)

(operation)

Returns: true or false

The input is chain or cochain complex. The output is *true* if a lower bound has been set to *C* and *false* otherwise.

2.4.11 ActiveUpperBound (for IsChainOrCochainComplex)

▷ ActiveUpperBound(C)

(operation)

Returns: an integer

The input is chain or cochain complex. The output is its active upper bound if such has been set to *C*. Otherwise we get error.

2.4.12 ActiveLowerBound (for IsChainOrCochainComplex)

▷ ActiveLowerBound(C)

(operation)

Returns: an integer

The input is chain or cochain complex. The output is its active lower bound if such has been set to *C*. Otherwise we get error.

2.4.13 Display (for IsChainOrCochainComplex, IsInt, IsInt)

Returns: nothing

The input is chain or cochain complex C and two integers m and n. The command displays all components of C between the indices m, n.

2.5 Truncations

2.5.1 GoodTruncationBelow (for IsChainComplex, IsInt)

Let C_{\bullet} be chain complex. A good truncation of C_{\bullet} below n is the chain complex $\tau_{\geq n}C_{\bullet}$ whose differentials are defined by

$$d_i^{\tau_{\geq n}C_{\bullet}} = \begin{cases} 0: 0 \leftarrow 0 & \text{if} \quad i < n, \\ 0: 0 \leftarrow Z_n & \text{if} \quad i = n, \\ \text{KernelLift}(d_n^C, d_{n+1}^C): Z_n \leftarrow C_{n+1} & \text{if} \quad i = n+1, \\ d_i^C: C_{i-1} \leftarrow C_i & \text{if} \quad i > n+1. \end{cases}$$

where Z_n is the cycle in index n. It can be shown that $H_i(\tau_{\geq n}C_{\bullet}) = 0$ for i < n and $H_i(\tau_{\geq n}C_{\bullet}) = H_i(C_{\bullet})$ for $i \geq n$.

$$C_{\bullet}$$
 $\cdots \leftarrow C_{n-1} \leftarrow C_n \leftarrow C_{n+1} \leftarrow C_{n+2} \leftarrow \cdots$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

2.5.2 GoodTruncationAbove (for IsChainComplex, IsInt)

▷ GoodTruncationAbove(C, n)

(operation)

(operation)

Returns: chain complex

Let C_{\bullet} be chain complex. A good truncation of C_{\bullet} above n is the quotient chain complex $\tau_{< n}C_{\bullet} = C_{\bullet}/\tau_{\geq n}C_{\bullet}$. It can be shown that $H_i(\tau_{< n}C_{\bullet}) = 0$ for $i \geq n$ and $H_i(\tau_{< n}C_{\bullet}) = H_i(C_{\bullet})$ for i < n.

2.5.3 GoodTruncationAbove (for IsCochainComplex, IsInt)

▷ GoodTruncationAbove(C, n)

(operation)

Returns:

Let C^{\bullet} be cochain complex. A good truncation of C^{\bullet} above n is the cochain complex $\tau^{\leq n}C^{\bullet}$ whose differentials are defined by

$$d_{\tau^{\leq n}C^{\bullet}}^{i} = \begin{cases} 0: 0 \to 0 & \text{if} \quad i > n, \\ 0: Z_{n} \to 0 & \text{if} \quad i = n, \\ \text{KernelLift}(d_{C}^{n}, d_{C}^{n-1}): C_{n-1} \to Z_{n} & \text{if} \quad i = n-1, \\ d_{C}^{i}: C_{i} \to C_{i+1} & \text{if} \quad i < n-1. \end{cases}$$

where Z_n is the cycle in index n. It can be shown that $H^i(\tau^{\leq n}C^{\bullet}) = 0$ for i > n and $H^i(\tau^{\leq n}C^{\bullet}) = H_i(C^{\bullet})$ for $i \leq n$.

2.5.4 GoodTruncationBelow (for IsCochainComplex, IsInt)

▷ GoodTruncationBelow(C, n)

(operation)

Returns: cochain complex

Let C^{\bullet} be cochain complex. A good truncation of C^{\bullet} above n is the quotient cochain complex $\tau^{>n}C^{\bullet} = C^{\bullet}/\tau^{\leq n}C^{\bullet}$. It can be shown that $H^{i}(\tau^{>n}C^{\bullet}) = 0$ for $i \leq n$ and $H^{i}(\tau^{>n}C^{\bullet}) = H_{i}(C^{\bullet})$ for i > n.

2.5.5 BrutalTruncationBelow (for IsChainComplex, IsInt)

▷ BrutalTruncationBelow(C, n)

(operation)

Returns: chain complex

Let C_{\bullet} be chain complex. A brutal truncation of C_{\bullet} below n is the chain complex $\sigma_{\geq n}C_{\bullet}$ where $(\sigma_{\geq n}C_{\bullet})_i = C_i$ when $i \geq n$ and $(\sigma_{\geq n}C_{\bullet})_i = 0$ otherwise.

2.5.6 BrutalTruncationAbove (for IsChainComplex, IsInt)

▷ BrutalTruncationAbove(C, n)

(operation)

Returns: chain complex

Let C_{\bullet} be chain complex. A brutal truncation of C_{\bullet} above n is the chain quotient chain complex $\sigma_{< n} C_{\bullet} := C_{\bullet} / \sigma_{> n} C_{\bullet}$. Hence $(\sigma_{< n} C_{\bullet})_i = C_i$ when i < n and $(\sigma_{< n} C_{\bullet})_i = 0$ otherwise.

2.5.7 BrutalTruncationAbove (for IsCochainComplex, IsInt)

▷ BrutalTruncationAbove(C, n)

(operation)

Returns: chain complex

Let C^{\bullet} be cochain complex. A brutal truncation of C_{\bullet} above n is the cochain complex $\sigma^{\leq n}C^{\bullet}$ where $(\sigma^{\leq n}C^{\bullet})_i = C_i$ when $i \leq n$ and $(\sigma^{\leq n}C^{\bullet})_i = 0$ otherwise.

2.5.8 BrutalTruncationBelow (for IsCochainComplex, IsInt)

▷ BrutalTruncationBelow(C, n)

(operation)

Returns: chain complex

Let C^{\bullet} be cochain complex. A brutal truncation of C^{\bullet} bellow n is the quotient cochain complex $\sigma^{>n}C^{\bullet} := C^{\bullet}/\sigma^{\leq n}C_{\bullet}$. Hence $(\sigma^{>n}C^{\bullet})_i = C_i$ when i > n and $(\sigma^{< n}C^{\bullet})_i = 0$ otherwise.

2.6 Examples

Below we define the complex

$$\cdots \qquad \qquad 2 \qquad \qquad 3 \qquad \qquad 4 \qquad \qquad 5 \qquad \qquad 6 \qquad \qquad 7 \qquad \cdots$$

$$\cdots \longrightarrow \qquad 0 \longrightarrow \mathbb{Q}^{1\times 1} \xrightarrow{\left(\begin{array}{c} 1 & 3 \end{array}\right)} \mathbb{Q}^{1\times 2} \xrightarrow{\left(\begin{array}{c} 0 \\ 0 \end{array}\right)} \mathbb{Q}^{1\times 1} \xrightarrow{\left(\begin{array}{c} 2 & 6 \end{array}\right)} \mathbb{Q}^{1\times 2} \longrightarrow \qquad 0 \longrightarrow \cdots$$

```
_{-} Example \_{-}
gap> A := VectorSpaceObject( 1, Q );
<A vector space object over Q of dimension 1>
gap> B := VectorSpaceObject( 2, Q );
<A vector space object over Q of dimension 2>
gap> f := VectorSpaceMorphism( A, HomalgMatrix( [ [ 1, 3 ] ], 1, 2, Q ), B );
<A morphism in Category of matrices over Q>
gap> g := VectorSpaceMorphism( B, HomalgMatrix( [ [ 0 ], [ 0 ] ], 2, 1, Q ), A );
<A morphism in Category of matrices over Q>
gap> C := CochainComplex([f, g, 2*f], 3);
{	imes} A bounded object in cochain complexes category over category of matrices over {	imes}
with active lower bound 2 and active upper bound 7.>
gap> ActiveUpperBound( C );
gap> ActiveLowerBound( C );
gap> C[ 1 ];
<A vector space object over Q of dimension 0>
gap> C[ 3 ];
<A vector space object over Q of dimension 1>
gap> C^3;
<A morphism in Category of matrices over Q>
gap> C^3 = f;
true
gap> Display( CertainCycle( C, 4 ) );
[[1, 0],
  [ 0, 1 ] ]
A split monomorphism in Category of matrices over Q
gap> diffs := Differentials( C );
<An infinite list>
gap> diffs[ 1 ];
<A zero, isomorphism in Category of matrices over Q>
gap> diffs[ 10000 ];
<A zero, isomorphism in Category of matrices over Q>
gap> objs := Objects( C );
<An infinite list>
gap> DefectOfExactness( C, 4 );
<A vector space object over Q of dimension 1>
gap> DefectOfExactness( C, 3 );
<A vector space object over Q of dimension 0>
gap> IsExactInIndex( C, 4 );
false
gap> IsExactInIndex( C, 3 );
true
gap> C;
```

```
<A not cyclic, bounded object in cochain complexes category over category of
matrices over Q with active lower bound 2 and active upper bound 7.>
gap> P := CochainComplex( matrix_category, diffs );
{\mbox{\sc An}} object in Cochain complexes category over category of matrices over {\mbox{\sc Q}}{>}
gap> SetUpperBound( P, 15 );
<A bounded from above object in cochain complexes category over category of</pre>
matrices over Q with active upper bound 15.>
gap> SetUpperBound( P, 20 );
gap> P;
<A bounded from above object in cochain complexes category over category of</pre>
matrices over Q with active upper bound 15.>
gap> ActiveUpperBound( P );
gap> SetUpperBound( P, 7 );
gap> P;
<A bounded from above object in cochain complexes category over category of
matrices over Q with active upper bound 7.>
gap> ActiveUpperBound( P );
```

Chapter 3

Complexes morphisms

3.1 Categories and filters

3.1.1 IsChainOrCochainMorphism (for IsCapCategoryMorphism)

▷ IsChainOrCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

3.1.2 IsBoundedBelowChainOrCochainMorphism (for IsChainOrCochainMorphism)

▷ IsBoundedBelowChainOrCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

3.1.3 IsBoundedAboveChainOrCochainMorphism (for IsChainOrCochainMorphism)

▷ IsBoundedAboveChainOrCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

3.1.4 IsBoundedChainOrCochainMorphism (for IsBoundedBelowChainOrCochain-Morphism and IsBoundedAboveChainOrCochainMorphism)

▷ IsBoundedChainOrCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

3.1.5 IsChainMorphism (for IsChainOrCochainMorphism)

▷ IsChainMorphism(phi)

(filter)

Returns: true or false

bla bla

3.1.6 IsBoundedBelowChainMorphism (for IsBoundedBelowChainOrCochainMorphism and IsChainMorphism)

▷ IsBoundedBelowChainMorphism(phi)

(filter)

Returns: true or false

bla bla

3.1.7 IsBoundedAboveChainMorphism (for IsBoundedAboveChainOrCochainMorphism and IsChainMorphism)

▷ IsBoundedAboveChainMorphism(phi)

(filter)

Returns: true or false

bla bla

3.1.8 IsBoundedChainMorphism (for IsBoundedChainOrCochainMorphism and Is-ChainMorphism)

▷ IsBoundedChainMorphism(phi)

(filter)

Returns: true or false

bla bla

3.1.9 IsCochainMorphism (for IsChainOrCochainMorphism)

▷ IsCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

3.1.10 IsBoundedBelowCochainMorphism (for IsBoundedBelowChainOrCochain-Morphism and IsCochainMorphism)

▷ IsBoundedBelowCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

3.1.11 IsBoundedAboveCochainMorphism (for IsBoundedAboveChainOrCochain-Morphism and IsCochainMorphism)

▷ IsBoundedAboveCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

3.1.12 IsBoundedCochainMorphism (for IsBoundedChainOrCochainMorphism and IsCochainMorphism)

▷ IsBoundedCochainMorphism(phi)

(filter)

Returns: true or false

bla bla

3.2 Creating chain and cochain morphisms

3.2.1 ChainMorphism (for IsChainComplex, IsChainComplex, IsZList)

▷ ChainMorphism(C, D, 1)

(operation)

Returns: a chain morphism

The input is two chain complexes C,D and an infinite list l. The output is the chain morphism $\phi: C \to D$ defined by $\phi_i := l[i]$.

3.2.2 ChainMorphism (for IsChainComplex, IsChainComplex, IsDenseList, IsInt)

 \triangleright ChainMorphism(C, D, 1, k)

(operation)

Returns: a chain morphism

The input is two chain complexes C,D, dense list l and an integer k. The output is the chain morphism $\phi: C \to D$ such that $\phi_k = l[1], \phi_{k+1} = l[2]$, etc.

3.2.3 ChainMorphism (for IsDenseList, IsInt, IsDenseList, IsInt, IsDenseList, IsInt)

▷ ChainMorphism(c, m, d, n, 1, k)

(operation)

Returns: a chain morphism

The output is the chain morphism $\phi : C \to D$, where $C_m = c[1], C_{m+1} = c[2]$, etc. $D_n = d[1], D_{n+1} = d[2]$, etc. and $\phi_k = l[1], \phi_{k+1} = l[2]$, etc.

3.2.4 CochainMorphism (for IsCochainComplex, IsCochainComplex, IsZList)

 \triangleright CochainMorphism(C, D, 1)

(operation)

Returns: a cochain morphism

The input is two cochain complexes C, D and an infinite list l. The output is the cochain morphism $\phi: C \to D$ defined by $\phi_i := l[i]$.

3.2.5 CochainMorphism (for IsCochainComplex, IsCochainComplex, IsDenseList, IsInt)

 \triangleright CochainMorphism(C, D, 1, k)

(operation)

Returns: a chain morphism

The input is two cochain complexes C,D, dense list l and an integer k. The output is the cochain morphism $\phi: C \to D$ such that $\phi^k = l[1]$, $\phi^{k+1} = l[2]$, etc.

3.2.6 CochainMorphism (for IsDenseList, IsInt, IsDenseList, IsInt, IsDenseList, IsInt)

 \triangleright CochainMorphism(c, m, d, n, l, k)

(operation)

Returns: a cochain morphism

The output is the cochain morphism $\phi: C \to D$, where $C^m = c[1], C^{m+1} = c[2]$, etc. $D^n = d[1], D^{n+1} = d[2]$, etc. and $\phi^k = l[1], \phi^{k+1} = l[2]$, etc.

3.3 Attributes

▷ Morphisms(phi)

3.3.1 Morphisms (for IsChainOrCochainMorphism)

Returns: infinite list

(attribute)

The output is morphisms of the chain or cochain morphism as an infinite list.

3.3.2 MappingCone (for IsChainOrCochainMorphism)

▷ MappingCone(phi)

(attribute)

Returns: complex

The input a chain (resp. cochain) morphism $\phi : C \to D$. The output is its mapping cone chain (resp. cochain) complex Cone (ϕ) .

3.3.3 NaturalInjectionInMappingCone (for IsChainOrCochainMorphism)

▷ NaturalInjectionInMappingCone(phi)

(attribute)

Returns: chain (resp. cochain) morphism

The input a chain (resp. cochain) morphism $\phi: C \to D$. The output is the natural injection $i: D \to \operatorname{Cone} \phi$).

3.3.4 NaturalProjectionFromMappingCone (for IsChainOrCochainMorphism)

NaturalProjectionFromMappingCone(phi)

(attribute)

Returns: chain (resp. cochain) morphism

The input a chain (resp. cochain) morphism $\phi: C \to D$. The output is the natural projection $\pi: \operatorname{Cone}(\phi) \to C[u]$ where u = -1 if ϕ is chain morphism and u = 1 if ϕ is cochain morphism.

3.4 Properties

3.4.1 IsQuasiIsomorphism_ (for IsChainOrCochainMorphism)

▷ IsQuasiIsomorphism_(phi)

(property)

Returns: true or false

The input a chain (resp. cochain) morphism $\phi : C \to D$. The output is *true* if ϕ is quasi-isomorphism and *false* otherwise. If ϕ is not bounded an error is raised.

3.5 Operations

3.5.1 SetUpperBound (for IsChainOrCochainMorphism, IsInt)

▷ SetUpperBound(phi, n)

(operation)

Returns: a side effect

The command sets an upper bound to the morphism ϕ . An upper bound of ϕ is an integer u with $\phi_{i\geq u}=0$. The integer u will be called *active* upper bound of ϕ . If ϕ already has an active upper bound, say u', then u' will be replaced by u only if $u\leq u'$.

3.5.2 SetLowerBound (for IsChainOrCochainMorphism, IsInt)

▷ SetLowerBound(phi, n)

(operation)

Returns: a side effect

The command sets an lower bound to the morphism ϕ . A lower bound of ϕ is an integer l with $\phi_{i \le l} = 0$. The integer l will be called *active* lower bound of ϕ . If ϕ already has an active lower bound, say l', then l' will be replaced by l only if $l \ge l'$.

3.5.3 HasActiveUpperBound (for IsChainOrCochainMorphism)

(operation)

Returns: true or false

The input is chain or cochain morphism ϕ . The output is true if an upper bound has been set to ϕ and false otherwise.

3.5.4 HasActiveLowerBound (for IsChainOrCochainMorphism)

▷ HasActiveLowerBound(phi)

(operation)

Returns: true or false

The input is chain or cochain morphism ϕ . The output is *true* if a lower bound has been set to ϕ and *false* otherwise.

3.5.5 ActiveUpperBound (for IsChainOrCochainMorphism)

▷ ActiveUpperBound(phi)

(operation)

Returns: an integer

The input is chain or cochain morphism. The output is its active upper bound if such has been set to ϕ . Otherwise we get error.

3.5.6 ActiveLowerBound (for IsChainOrCochainMorphism)

▷ ActiveLowerBound(phi)

(operation)

Returns: an integer

The input is chain or cochain morphism. The output is its active lower bound if such has been set to ϕ . Otherwise we get error.

3.5.7 \[\] (for IsChainOrCochainMorphism, IsInt)

▷ \[\](phi, n)

(operation)

Returns: an integer

The input is chain (resp. cochain) morphism and an integer n. The output is the component of ϕ in index n, i.e., $\phi_n(\text{resp. }\phi^n)$.

3.5.8 Display (for IsChainOrCochainMorphism, IsInt, IsInt)

▷ Display(phi, m, n)

(operation)

Returns:

The command displays the components of the morphism between m and n.

3.6 Examples

Let us define a morphism


```
gap> h := VectorSpaceMorphism( A, HomalgMatrix( [ [ 5 ] ], 1, 1, Q ), A );
<A morphism in Category of matrices over Q>
gap> phi4 := g;
<A morphism in Category of matrices over Q>
gap> phi5 := 2*h;
<A morphism in Category of matrices over Q>
gap> D := CochainComplex([h], 4);
<A bounded object in cochain complexes category over category of matrices
over Q with active lower bound 3 and active upper bound 6.>
gap> phi := CochainMorphism( C, D, [ phi4, phi5 ], 4 );
<A bounded morphism in cochain complexes category over category of matrices
 over Q with active lower bound 3 and active upper bound 6.>
gap> Display( phi[ 5 ] );
[ [ 10 ] ]
A morphism in Category of matrices over Q
gap> ActiveLowerBound( phi );
gap> IsZeroForMorphisms( phi );
false
gap> IsExact( D );
true
gap> IsExact( C );
false
```

Now lets define the previous morphism using the command CochainMorphism(c, m, d, n, l, k).

```
Example

gap> psi := CochainMorphism([f,g,2*f],3,[h],4,[phi4,phi5],4);

<A bounded morphism in cochain complexes category over category of matrices over Q with active lower bound 3 and active upper bound 6.>
```

In some cases the morphism can change its lower bound when we apply the function ${\tt IsZeroForMorphisms}$.

```
gap> IsZeroForMorphisms( psi );
false
gap> psi;
<A bounded morphism in cochain complexes category over category of matrices
over Q with active lower bound 4 and active upper bound 6.>
```

In the following we compute the mapping come of ψ and its natural injection and projection.

```
gap> cone := MappingCone( psi );
<A bounded object in cochain complexes category over category of matrices over
Q with active lower bound 1 and active upper bound 6.>
gap> cone^4;
<A morphism in Category of matrices over Q>
gap> Display( cone^4 );
[ [ -2, -6, -10 ],
 Γ
   0,
         0, 5]]
A morphism in Category of matrices over Q
gap> i := NaturalInjectionInMappingCone( psi );
<A bounded morphism in cochain complexes category over category of matrices over</p>
Q with active lower bound 3 and active upper bound 6.>
gap> p := NaturalProjectionFromMappingCone( psi );
<A bounded morphism in cochain complexes category over category of matrices over
Q with active lower bound 1 and active upper bound 6.>
```

Chapter 4

Functors

4.1 Basic functors for complex categories.

4.1.1 HomologyFunctor (for IsChainComplexCategory, IsCapCategory, IsInt)

```
    ▶ HomologyFunctor(Ch(A), A, n) (operation)
    ▶ CohomologyFunctor(Coch(A), A, n) (operation)
    Returns: a functor
```

The first argument in the input must be the chain (resp. cochain) complex category of an abelian category A, the second argument is A and the third argument is an integer n. The output is the n'th homology (resp. cohomology) functor : $Ch(A) \rightarrow A$.

4.1.2 ShiftFunctor (for IsChainOrCochainComplexCategory, IsInt)

```
\triangleright ShiftFunctor(Comp(A), n) (operation)
```

Returns: a functor

The inputs are complex category Comp(A) and an integer. The output is a the endofunctor T[n] that sends any complex C to C[n] and any complex morphism $\phi: C \to D$ to $\phi[n]: C[n] \to D[n]$. The shift chain complex C[n] of a chain complex C is defined by $C[n]_i = C_{n+i}, d_i^{C[n]} = (-1)^n d_{n+i}^C$ and the same for chain complex morphisms, i.e., $\phi[n]_i = \phi_{n+i}$. The same holds for cochain complexes and morphisms.

4.1.3 UnsignedShiftFunctor (for IsChainOrCochainComplexCategory, IsInt)

The inputs are complex category $\operatorname{Comp}(A)$ and an integer. The output is a the endofunctor T[n] that sends any complex C to C[n] and any complex morphism $\phi: C \to D$ to $\phi[n]: C[n] \to D[n]$. The shift chain complex C[n] of a chain complex C is defined by $C[n]_i = C_{n+i}, d_i^{C[n]} = d_{n+i}^C$ and the same for chain complex morphisms, i.e., $\phi[n]_i = \phi_{n+i}$. The same holds for cochain complexes and morphisms.

4.1.4 ChainToCochainComplexFunctor (for IsCapCategory)

The input is a category A. The output is the functor $F : Ch(A) \to Coch(A)$ defined by $C_{\bullet} \mapsto C^{\bullet}$ for any for any chain complex $C_{\bullet} \in Ch(A)$ and by $\phi_{\bullet} \mapsto \phi^{\bullet}$ for any map ϕ where $C^{i} = C_{-i}$ and $\phi^{i} = \phi_{-i}$.

4.1.5 CochainToChainComplexFunctor (for IsCapCategory)

```
▷ CochainToChainComplexFunctor(A)
```

(operation)

Returns: a functor

The input is a category A. The output is the functor $F : \operatorname{Coch}(A) \to \operatorname{Ch}(A)$ defined by $C^{\bullet} \mapsto C_{\bullet}$ for any cochain complex $C^{\bullet} \in \operatorname{Coch}(A)$ and by $\phi^{\bullet} \mapsto \phi_{\bullet}$ for any map ϕ where $C_i = C^{-i}$ and $\phi_i = \phi^{-i}$.

4.1.6 ExtendFunctorToChainComplexCategoryFunctor (for IsCapFunctor)

(operation)

Returns: a functor

The input is a functor $F: A \to B$. The output is its extention functor $F: Ch(A) \to Ch(B)$.

4.1.7 ExtendFunctorToCochainComplexCategoryFunctor (for IsCapFunctor)

▷ ExtendFunctorToCochainComplexCategoryFunctor(F)

(operation)

Returns: a functor

The input is a functor $F: A \to B$. The output is its extention functor $F: \operatorname{Coch}(A) \to \operatorname{Coch}(B)$.

4.2 Examples

The theory tells us that the composition $i\psi$ is null-homotopic. That implies that the morphisms induced on cohomologies are all zero.

```
Example
gap> i_o_psi := PreCompose( psi, i );
<A bounded morphism in cochain complexes category over category of matrices
over Q with active lower bound 4 and active upper bound 6.>
gap> H5 := CohomologyFunctor( cochain_cat, matrix_category, 5 );
5-th cohomology functor in category of matrices over Q
gap> IsZeroForMorphisms( ApplyFunctor( H5, i_o_psi ) );
true
```

Next we define a functor $\mathbf{F}: \operatorname{Vec}_{\mathbb{Q}} \to \operatorname{Vec}_{\mathbb{Q}}$ that maps every \mathbb{Q} -vector space A to $A \oplus A$ and every morphism $f: A \to B$ to $f \oplus f$. Then we extend it to the functor $\operatorname{\mathbf{Coch}}_{\mathbf{F}}: \operatorname{\mathbf{Coch}}(\operatorname{Vec}_{\mathbb{Q}}) \to \operatorname{\mathbf{Coch}}(\operatorname{Vec}_{\mathbb{Q}})$ that maps each cochain complex C to the cochain complex we get after applying the functor \mathbf{F} on every object and differential in C and maps any morphism $\phi: C \to D$ to the morphism we get after applying the functor \mathbf{F} on every object, differential or morphism in C,D and C.

```
gap> F := CapFunctor( "double functor", matrix_category, matrix_category );
double functor
gap> u := function( obj ) return DirectSum( [ obj, obj ] ); end;;
gap> AddObjectFunction( F, u );
gap> v := function( s, mor, r ) return DirectSumFunctorial( [ mor, mor ] ); end;;
gap> AddMorphismFunction( F, v );
gap> Display( f );
[ [ 1, 3 ] ]
```

```
A morphism in Category of matrices over Q
gap> Display( ApplyFunctor( F, f ) );
[[1, 3, 0, 0],
  [ 0, 0, 1, 3 ] ]
A morphism in Category of matrices over Q
gap> Coch_F := ExtendFunctorToCochainComplexCategoryFunctor( F );
Extended version of double functor from cochain complexes category over category
of matrices over \mathbb Q to cochain complexes category over category of matrices over \mathbb Q
gap> psi;
<A bounded morphism in cochain complexes category over category of matrices
over Q with active lower bound 4 and active upper bound 6.>
gap> Coch_F_psi := ApplyFunctor( Coch_F, psi );
<A bounded morphism in cochain complexes category over category of matrices
over Q with active lower bound 4 and active upper bound 6.>
gap> Display( psi[ 5 ] );
[[10]]
A morphism in Category of matrices over Q
gap> Display( Coch_F_psi[ 5 ] );
[[10, 0],
     0, 10]
A morphism in Category of matrices over Q
```

Next we will compute the shift C[3]. As we know the standard shift functor may change the sign of the differentials since $d_{C[n]}^i = (-1)^n d_C^{i+n}$. Hence if we don't want the signs to be changed we may use the unsigned shift functor.

```
_ Example _
gap> T := ShiftFunctor( cochain_cat, 3 );
Shift (3 times to the left) functor in cochain complexes category over category
 of matrices over Q
<A not cyclic, bounded object in cochain complexes category over category of
matrices over Q with active lower bound 2 and active upper bound 7.>
gap> C_3 := ApplyFunctor( T, C );
<A not cyclic, bounded object in cochain complexes category over category of
matrices over \mathbb Q with active lower bound -1 and active upper bound 4.>
gap> Display( C^3 );
[[1, 3]]
A morphism in Category of matrices over Q
gap> Display( C_3^0 );
[[ -1, -3]]
A morphism in Category of matrices over Q
gap> S := UnsignedShiftFunctor( cochain_cat, 3 );
Unsigned shift (3 times to the left) functor in cochain complexes category over
category of matrices over Q
gap> C_3_unsigned := ApplyFunctor( S, C );
<A bounded object in cochain complexes category over category of matrices over
Q with active lower bound -1 and active upper bound 4.>
```

```
gap> Display( C_3_unsigned^0 );
[ [ 1, 3 ] ]

A morphism in Category of matrices over Q
```

Index

\[\]	for IsChainComplex, IsChainComplex, Is-
for IsChainOrCochainComplex, IsInt, 9	DenseList, IsInt, 17
for IsChainOrCochainMorphism, IsInt, 19	for IsChainComplex, IsChainComplex, Is- ZList, 17
for IsChainOrCochainComplex, IsInt, 9	for IsDenseList, IsInt, IsDenseList, IsInt, Is-
	DenseList, IsInt, 17
ActiveLowerBound	ChainToCochainComplexFunctor
for IsChainOrCochainComplex, 10	for IsCapCategory, 22
for IsChainOrCochainMorphism, 19	CochainComplex
ActiveUpperBound	for IsCapCategory, IsZList, 7
for IsChainOrCochainComplex, 10	for IsDenseList, 7
for IsChainOrCochainMorphism, 19	for IsDenseList, IsInt, 7
Dt. 3 T a. t Ab	CochainComplexCategory
BrutalTruncationAbove	for IsCapCategory, 3
for IsChainComplex, IsInt, 12	CochainComplexWithInductiveNegative-
for IsCochainComplex, IsInt, 12	Side
BrutalTruncationBelow	for IsCapCategoryMorphism, IsFunction, 8
for IsChainComplex, IsInt, 12	CochainComplexWithInductivePositive-
for IsCochainComplex, IsInt, 12	Side
CatOfComplex	for IsCapCategoryMorphism, IsFunction, 8
for IsChainOrCochainComplex, 9	CochainComplexWithInductiveSides
CertainBoundary	for IsCapCategoryMorphism, IsFunction, Is-
for IsChainOrCochainComplex, IsInt, 9	Function, 7
CertainCycle	CochainMorphism
for IsChainOrCochainComplex, IsInt, 9	for IsCochainComplex, IsCochainComplex,
ChainComplex	IsDenseList, IsInt, 17
for IsCapCategory, IsZList, 7	for IsCochainComplex, IsCochainComplex,
for IsDenseList, 7	IsZList, 17
for IsDenseList, IsInt, 7	for IsDenseList, IsInt, IsDenseList, IsInt, Is-
ChainComplexCategory	DenseList, IsInt, 17
for IsCapCategory, 3	${\tt CochainToChainComplexFunctor}$
ChainComplexWithInductiveNegativeSide	for IsCapCategory, 23
for IsCapCategoryMorphism, IsFunction, 8	CohomologyFunctor
ChainComplexWithInductivePositiveSide	for IsCochainComplexCategory, IsCapCate-
for IsCapCategoryMorphism, IsFunction, 8	gory, IsInt, 22
ChainComplexWithInductiveSides	D (100E 1
for IsCapCategoryMorphism, IsFunction, Is-	DefectOfExactness
Function, 7	for IsChainOrCochainComplex, IsInt, 9
ChainMorphism	Differentials

for IsChainOrCochainComplex, 8	${\tt Is Bounded Below Chain Complex}$
Display	for IsBoundedBelowChainOrCochainCom-
for IsChainOrCochainComplex, IsInt, IsInt,	plex and IsChainComplex, 6
11	${\tt IsBoundedBelowChainMorphism}$
for IsChainOrCochainMorphism, IsInt, IsInt,	for IsBoundedBelowChainOrCochainMor-
19	phism and IsChainMorphism, 16
	IsBoundedBelowChainOrCochainComplex
ExtendFunctorToChainComplexCategory-	for IsChainOrCochainComplex, 5
Functor	IsBoundedBelowChainOrCochainMorphism
for IsCapFunctor, 23	for IsChainOrCochainMorphism, 15
${\tt ExtendFunctorToCochainComplexCategory-}$	IsBoundedBelowCochainComplex
Functor	for IsBoundedBelowChainOrCochainCom-
for IsCapFunctor, 23	plex and IsCochainComplex, 6
	IsBoundedBelowCochainMorphism
GoodTruncationAbove	for IsBoundedBelowChainOrCochain-
for IsChainComplex, IsInt, 11	Morphism and IsCochainMorphism,
for IsCochainComplex, IsInt, 11	16
GoodTruncationBelow	IsBoundedChainComplex
for IsChainComplex, IsInt, 11	for IsBoundedChainOrCochainComplex and
for IsCochainComplex, IsInt, 12	IsChainComplex, 6
	IsBoundedChainMorphism
HasActiveLowerBound	-
for IsChainOrCochainComplex, 10	-
for IsChainOrCochainMorphism, 19	and IsChainMorphism, 16
HasActiveUpperBound	IsBoundedChainOrCochainComplex
for IsChainOrCochainComplex, 10	for IsBoundedBelowChainOrCochainCom-
for IsChainOrCochainMorphism, 19	plex and IsBoundedAboveChainOr-
HomologyFunctor	CochainComplex, 6
for IsChainComplexCategory, IsCapCate-	IsBoundedChainOrCochainMorphism
gory, IsInt, 22	for IsBoundedBelowChainOrCochainMor-
	phism and IsBoundedAboveChainOr-
IsBoundedAboveChainComplex	CochainMorphism, 15
for IsBoundedAboveChainOrCochainCom-	${\tt IsBoundedCochainComplex}$
plex and IsChainComplex, 6	for IsBoundedChainOrCochainComplex and
${\tt IsBoundedAboveChainMorphism}$	IsCochainComplex, 6
for IsBoundedAboveChainOrCochainMor-	${\tt IsBoundedCochainMorphism}$
phism and IsChainMorphism, 16	for IsBoundedChainOrCochainMorphism
IsBoundedAboveChainOrCochainComplex	and IsCochainMorphism, 16
for IsChainOrCochainComplex, 5	IsChainComplex
${\tt IsBoundedAboveChainOrCochainMorphism}$	for IsChainOrCochainComplex, 5
for IsChainOrCochainMorphism, 15	IsChainComplexCategory
${\tt Is Bounded Above Cochain Complex}$	for IsChainOrCochainComplexCategory, 3
for IsBoundedAboveChainOrCochainCom-	IsChainMorphism
plex and IsCochainComplex, 6	for IsChainOrCochainMorphism, 15
IsBoundedAboveCochainMorphism	IsChainOrCochainComplex
for IsBoundedAboveChainOrCochain-	for IsCapCategoryObject, 5
Morphism and IsCochainMorphism,	IsChainOrCochainComplexCategory
16	for IsCapCategory, 3

IsChainOrCochainMorphism
for IsCapCategoryMorphism, 15
IsCochainComplex
for IsChainOrCochainComplex, 5
IsCochainComplexCategory -
for IsChainOrCochainComplexCategory, 3
IsCochainMorphism
for IsChainOrCochainMorphism, 16
IsExactInIndex
for IsChainOrCochainComplex, IsInt, 9
<pre>IsQuasiIsomorphism_</pre>
for IsChainOrCochainMorphism, 18
MappingCone
for IsChainOrCochainMorphism, 18
Morphisms
for IsChainOrCochainMorphism, 18
NaturalInjectionInMappingCone
for IsChainOrCochainMorphism, 18
NaturalProjectionFromMappingCone
for IsChainOrCochainMorphism, 18
Objects
for IsChainOrCochainComplex, 8
SetLowerBound
for IsChainOrCochainComplex, IsInt, 10
for IsChainOrCochainMorphism, IsInt, 19
SetUpperBound
for IsChainOrCochainComplex, IsInt, 10
for IsChainOrCochainMorphism, IsInt, 18
ShiftFunctor
for IsChainOrCochainComplexCategory,
IsInt, 22
StalkChainComplex
for IsCapCategoryObject, IsInt, 7
StalkCochainComplex
for IsCapCategoryObject, IsInt, 7
UnderlyingCategory
for IsChainOrCochainComplexCategory, 4
UnsignedShiftFunctor
for IsChainOrCochainComplexCategory,
IsInt, 22