Programación Orientada a Objetos Interacción entre objetos

CEIS

2019-01

Agenda

0.0

Visión

Desarrollo POOB

Requisitos Diseño Construcción + Pruebas Refactorización Un error en producción

Principios POOB

MDD BDD SOLID

Fuentes POOB

Agenda

O.O Visión

Desarrollo POOB
Requisitos
Diseño
Construcción + Pruebas
Refactorización

Principios POOE MDD BDD SOUD

Fuentes POOE

SRS

STUDENT REGISTRATION SYSTEM (SRS) CASE STUDY: SRS REQUIREMENTS SPECIFICATION

We have been asked to develop an automated Student Registration System (SRS). This system will enable students to register online for courses each semester, as well as track a student's progress toward completion of his or her degree.

Descomposición funcional

¿QUÉ DEBE HACER?

Descomposición funcional

¿QUÉ DEBE HACER?

Orientado por objetos

Orientado por objetos

¿QUÉ DEBE CONOCER?

Orientado por objetos

¿Qué debe hacer?

Orientado por objetos

¿Qué debe hacer?

Agenda

0.0

Visión

Desarrollo POOB

Requisitos

Diseno Construcción + Pruebas Refactorización

Un error en producción

Principios POOE MDD BDD

Fuentes POOE

Requisitos

CONOCER. Modelo de conceptos.

hacer. Modelo de casos de uso.

Requisitos

CONOCER

hacer

¿Ciclos?

- ▶ ¿Qué modelo sirve para dividir?
- ¿Cuáles son los posibles ciclos?
- ¿En qué orden se abordarían?

Requisitos

CONOCER

hacer

¿Ciclos?

- ¿Qué modelo sirve para dividir?
- ¿Cuáles son los posibles ciclos?
- ¿En qué orden se abordarían?

Primer ciclo: un estudiante se registra en un curso

Agenda

0.0

Visión

Desarrollo POOB

Requisito

Diseño

Construcción + Pruebas Refactorización Un error en producción

Principios POOE MDD BDD SOUD

Fuentes POOF

Un estudiante se registra en un curso

Preguntas de diseño

- 1. ¿Quién puede ser el responsable?
- 2. ¿Quiénes le deben colaborar?
- 3. ¿Cómo lo podrían hacer?

Registrarse

- ; ?
 - 1. ¿Quién es el responsable?
 - 2. ¿Quiénes le colaboran?
 - 3. ¿Cómo lo hacen?

Jackie

Visibilidad

¿Cómo un objeto puede ver a otro?

Visibilidad

¿Cómo un objeto puede ver a otro?

- 1. Lo tiene como atributo De Atributo
- 2. Le llega como parámetro en un método De Parametro
- 3. El lo crea o lo pide a otro objeto que conoce
- Es un objeto que todos pueden ver (es global)
 Global

Registrarse

;?

- 1. ¿Qué conoce el Course? ¿Cómo?
- 2. ¿Qué conoce el Student? ¿Cómo?

A Clases

¿Qué clases tenemos en el diseño?
 EN ZONA 1

2. ¿Qué atributos tenemos?

EN ZONA 2 - EN RELACIONES

3. ¿Qué métodos tenemos?

EN ZONA 3

Modelos de diseño

UML. Diagrama de secuencia

UML. Diagrama de clases

Para cada clase

► Naturaleza, información e invariante Comentario inicial

Para cada clase

Naturaleza, información e invariante
 Comentario inicial

Curso

¿Especificación de Curso?

- 1. Naturaleza:
 - ¿A quién representa?
- 2. Información:
 - ¿ Qué información tiene?
- 3. Invariante:
 - ¿Qué condición debe cumplir siempre?

Documentación

Class Curso java.lang.Object

public class Curso

Representa un curso

(prerrequisitos, cupoMaximo, estudiantesInscritos)

CUPOMAXIMO > 0 y cupoMaximo >=#estudiantesInscritos

Field Summary

static int CUPOMAXIMO

Código

import java.util.ArrayList;

Representa un curso

public class Curso {

public static final int CUPOMAXIMO=30; private ArrayList<Curso> prerrequisitos;

private ArrayList<Curso> prerrequisitos; private ArrayList<Estudiante> estudiantesInscritos;

Para cada método

- ObjetivoComentario inicial
- Parámetros
 - @param
- Retorno (Si retorna)
 - @return

Para cada método

- ObjetivoComentario inicial
- Parámetros
 - @param
- Retorno (Si retorna)
 - @return

Curso

¿Especificación de registre?

Precondición:

¿Condiciones para poder registrar a un estudiante?

Poscondición:

¿Condición después de hacer el registro ?
 INVARIANTE DE CLASE

Código

```
/**
Si es posible, registra un nuevo estudiante al curso.
@param s es el estudiante a adicionar
@return Si el estudiante se logró registrar o no.
Las condiciones de registro son: col>
Existe cupo en el curso
El estudiante no se ha registrado al curso
El estudiante cumple con los requisitos

//ol>
// public boolean registre(Estudiante s) {
    return false;
```

Documentación

registre

public boolean registre(Estudiante s)

Si es posible, registra un nuevo estudiante al curso.

Parameters:

s - es el estudiante a adicionar

Returns:

Si el estudiante se logró registrar o no. Las condiciones de registro son:

- 1. Existe cupo en el curso
- 2. El estudiante no se ha registrado al curso
- 3. El estudiante cumple con los requisitos

Agenda

0.0

Visión

Desarrollo POOB

Requisit

 ${\sf Construcci\'on} + {\sf Pruebas}$

Refactorización Un error en producción

Principios POOB MDD BDD SOLID

Fuentes POOF

Probando en java

Documentación

registre

public boolean registre(Estudiante s)

Si es posible, registra un nuevo estudiante al curso.

Parameters:

s - es el estudiante a adicionar

Returns:

Si el estudiante se logró registrar o no. Las condiciones de registro son:

- 1. Existe cupo en el curso
 - 2. El estudiante no se ha registrado al curso
 - El estudiante cumple con los requisitos.

Probando en java

Documentación

registre

public boolean registre(Estudiante s)

Si es posible, registra un nuevo estudiante al curso.

Parameters:

s - es el estudiante a adicionar

Returns:

- Si el estudiante se logró registrar o no. Las condiciones de registro son:
 - 1. Existe cupo en el curso
 - 2. El estudiante no se ha registrado al curso
 - 3. El estudiante cumple con los requisitos

vs Fallos

Modelado UML - JAVA

Clases

Colaboración

Documentación

registre

public boolean registre(Estudiante s)

Si es posible, registra un nuevo estudiante al curso.

Parameters:

s - es el estudiante a adicionar

Returns:

Si el estudiante se logró registrar o no. Las condiciones de registro son:

- 1. Existe cupo en el curso
- 2. El estudiante no se ha registrado al curso
- 3. El estudiante cumple con los requisitos

ArrayList

Method Summary		
boolean	add(€ o) Appends the specified element to the end of this list.	
boolean	sentains(%) ject o) Returns true if this list contains the specified element.	
E	get(int index) Returns the element at the specified position in this list.	
int	size() Returns the number of elements in this list.	

Probando en java

Documentación

registre

public boolean registre(Estudiante s)

Si es posible, registra un nuevo estudiante al curso.

Parameters:

s - es el estudiante a adicionar

Returns:

Si el estudiante se logró registrar o no. Las condiciones de registro son:

- Existe cupo en el curso
 - 2. El estudiante no se ha registrado al curso
 - 3. El estudiante cumple con los requisitos

Agenda

0.0 Visión

Desarrollo POOB

Requisitos
Diseño
Construcción + Pruebas
Refactorización

Principios POOE MDD BDD SOUD

Fuentes POOF

Modelado UML - JAVA

Clases

Colaboración

: (No es un buen diseño

Alto acoplamiento

- Le ¿Cuál sería un mejor diseño?
- ¿Cuáles son los cambios en código?
- ¿Qué pasa con las pruebas?

Probando en java

Documentación

registre

public boolean registre(Estudiante s)

Si es posible, registra un nuevo estudiante al curso.

Parameters:

s - es el estudiante a adicionar

Returns:

Si el estudiante se logró registrar o no. Las condiciones de registro son:

- 1. Existe cupo en el curso
 - 2. El estudiante no se ha registrado al curso
 - 3. El estudiante cumple con los requisitos

O.O Visión

Desarrollo POOB

Requisitos
Diseño
Construcción + Pruebas
Refactorización
Un error en producción

Principios POOE MDD BDD SOLID

Fuentes POOF

Modelado UML - JAVA

Clases

Colaboración

Documentación

Inscribió un estudiante que ya la había aprobado. ¿QUÉ HACER?

- Ajustar la especificación
- Escribir nuevas pruebas
- Revisar el diseño
- Modificar el código
- Ejecutar todas las pruebas.

Principios POOB

MDD

MDD-Desarrollo Dirigido Por Modelos

O.O Visión

Desarrollo POOB

Requisitos Diseño Construcción + Pruebas Refactorización Un error en producción

Principios POOB

MDF

BDD

SOLID

Fuentes POOF

BDD-Desarrollo Dirigido Por Comportamiento

O.O Visión

Desarrollo POOB

Requisitos Diseño Construcción + Pruebas Refactorización Un error en producción

Principios POOB

MDL

SOLID

Fuentes POOE

SOLID- Principios básicos

S : Primer tercio

O : Segundo tercio

LID: CVDS

Fuentes POOB

```
/**

* Draw a given shape onto the canvas.

* @param referenceObject an object to define identity for this shape

* @param color the color of the shape

* @param shape the shape object to be drawn on the canvas

*/

// Note: this is a slightly backwards way of maintaining the shape

// objects. It is carefully designed to keep the visible shape interfaces

// in this project clean and simple for educational purposes.

public void draw(Object referenceObject, String color, Shape shape){

objects.remove(referenceObject); // just in case it was already there objects.add(referenceObject); // add at the end shapes.put(referenceObject, new ShapeDescription(shape, color)); redraw();

}
```

"Code is more often read than written"

- ¿Es verdad? ¿Por qué?
- ▶ ¿Qué es el código? ¿Qué son las fuentes?

Fuentes POOB

```
* Draw a given shape onto the canvas.

* @param referenceObject an object to define identity for this shape

* @param color the color of the shape

* @param shape the shape object to be drawn on the canvas

*/

// Note: this is a slightly backwards way of maintaining the shape

// objects. It is carefully designed to keep the visible shape interfaces

// in this project clean and simple for educational purposes.

public void draw(Object referenceObject, String color, Shape shape){

objects.remove(referenceObject); // just in case it was already there
objects.add(referenceObject); // add at the end
shapes.put(referenceObject, new ShapeDescription(shape, color));
redraw();
}
```

"Code is more often read than written"

Elementos

Documentación: ¿qué?

Código: ¿cómo?

En lenguajes imperativos

► Comentarios: ¿por qué?

