

Group 10
Neel Shah, Owen Goebel, Zhixiang Teoh, Peter Ly
https://github.com/neel-one/nocap

Application+Motivation

Video game graphics: trig functions

Neural networks: sigmoid function

"[Logarithms,] by shortening the labors, doubled the life of an astronomer"

men	Singe	Lagaribash		lagarithmi	I . Since	
0	1990	SINASSSI.	81425680	.0	10300000	1
1 2	- 581X D	74124111	74494311	,21		
3 1	87376	79939504	79439460	41	9999996	1
4	11636	67562745	67961739	- 7	2222223	١
5	14544	65331315	65331304	11	0000080	L
6 1	17453	63508009	63508083	16	9999986,	l
3	20353	61966595	61966573	28	9999980	ŀ
8	23,271	00631284	60631256			1
9	3 70,189	139413413	59453418	35	9999967	5
10	29088	58399857	57446707	52	5299250	4
11	3-1997	57446759		42	9999949	1
12	. 34995	\$65,76646	56576584		9999928	1
13	3.7815	55776122	55035064	84	9999917	1
14	40724		154345129	96	1 9999995	i
15	43632	54345125	51699734	100	2222821	1
16	40541	51091600	53993577	123	0222878	Į.
18		1 51522019	52521881	138 [9999863	i
18	55268	51981356	51981202	154	9999847	ı
19	58177	51468431	51468361	170	9999831	Į.
21	610861	150080517	150980450	1871	1 9999813	i
22	63995	50515342	50515157	105	9999795	1
23	66904	50070827	50070603	224	9999776	L
24	69813	49645139	49644995	244 (9999756	1
25	72721	49137030	49236765	265	9999736	
26	75630	48844826	48844539	287	9999714	ı
27	78539	148467411	48467122	309	9999692	1
28	81448	48,108063	48103431	1332	9999668	1
20	84357	47752859	47752593	1356	9999644	L
		4741385 2	1 47413471	1 181	1 2999619	1

Laplace (maybe)

Input: code, sample inputs, and a C function f: double \rightarrow double

```
nocap -bucketsFill -numBuckets 1000
    -testName blackscholes
    -func log
    -args "1 test/blackscholes/in_10M.txt /dev/null"
    build
```

Output: code with calls to f replaced with **lookup table** queries for f based on the inputs

Description of the Process

Profiling Functions

 Programmer inputs target function(s) and provides inputs to profile the functions on

NOCAP uses an LLVM pass to profile the functions and estimate the distribution of operands

Building Tables

sqrt will probably be called on inputs in the range [0.00, 340]

"Please make a table with X space"

3. NOCAP **estimates good intervals** to include in the table based on the distribution of inputs

4. NOCAP builds a table of function values for the good intervals

Interval	[0,0.5]	[0.5,1.0]	 [339.5, 340]
Value	sqrt(0.25)	sqrt(0.75)	 sqrt(339.75)

Using Tables

NOCAP modifies the source to include the table of function values

6. NOCAP modifies functions to perform table lookups if the input value is within the table and resolve normally otherwise

```
// nocap sqrt.c
double nocap sqrt table[] = { ... };
double nocap sqrt(double x) {
   if (x in table range) {
       table index = ...
       return nocap_sqrt_table[table_index];
   return sqrt(x);
// target program.c
#define sqrt(x) nocap sqrt(x)
```

Demo

Benchmarks & Statistics

60%

Average speed up on a toy example

```
#include <math.h>
#include <stdio.h>

int main() {
    for (int j = 0; j < 1e7; j++) {
        for (int i = 0; i <= 20; i++) {
            double x = i;
            double y = exp(-x);
        }
        return 0;
}</pre>
```

Benchmarks

$$C=N(d_1)S_t-N(d_2)Ke^{-rt} \ ext{where } d_1=rac{\lnrac{S_t}{K}+(r+rac{\sigma^2}{2})t}{\sigma\sqrt{t}} \ ext{and } d_2=d_1-\sigma\sqrt{t}$$

C = call option price

N = CDF of the normal distribution

 S_t = spot price of an asset

K = strike price

r = risk-free interest rate

t = time to maturity

 σ = volatility of the asset

Black-Scholes is a financial model to estimate options pricing

uses <math.h> functions

 also used as a benchmark by ACCEPT framework¹

¹https://github.com/uwsampa/accept-apps

Mean runtime for each program version

Average normalized difference vs. Number of buckets

.5-60% tunable memory

Dominated by profiling compilation time

0.036

avg normalized error

Q&A