ЛАБОРАТОРНАЯ РАБОТА №6.9.1

Закон Кюри-Вейсса и обменное взаимодействие в ферромагнетиках

Автор работы: Хоружий Кирилл

От: 14 февраля 2022 г.

Цель работы

- 1. Исследовать температурную зависимость магнитной восприимчивости ферромагнетика в парамагнитной области выше точки Кюри.
- 2. По полученной в работе температуре Кюри оценить энергия обменного взаимодействия.

Оборудование

Капсула с образцом гадолиния; катушка самоиндукции; медный цилиндр; пенопластовый корпус; шток; цанговый зажим; измерительный спай термопары; электронагреватель; вольтметр; сосуд Дьюара; измеритель частоты RLC-контура.

Теоретичекий минимум

Закон Кюри-Вейсса. Намагниченностью называется магнитный момент I единицы объёма, который связан с внешним магнитным полем H, под действием которого он возникает, соотношением:

$$I = \varkappa H$$

где χ – магнитная восприимчивость вещества.

Закон Кюри для парамагнетиков:

$$\varkappa = \frac{Ng^2 \mu_{\rm B}^2 S(S+1)}{3k_{\rm B}T},$$

где g – фактор Ланде, N – количество непаренных электронов в единице объема.

Закон Кюри-Вейсса для ферромагнетиков:

$$\varkappa = \frac{I}{H} = N \frac{g^2 \mu_{\rm B}^2 S(S+1)}{3k_{\rm B}(T-\Theta)} \propto \frac{1}{T-\Theta}, \qquad \Theta = N \frac{\lambda g^2 \mu_{\rm B}^2 S(S+1)}{3k_{\rm B}},$$

где Θ – температура Кьюри, λ – константа Вейса. Закон носит приближенный характер и позволяет описать параагнитную фазу.

Связь эффективного поля Вейсса с обменным интегралом. В теории Гейзенберга-Френкеля энергия $U_{\text{обм}}$ обменного взаимодейтвия атомов i и j выражается соотношением

$$U_{\text{обм}} = -2JS_iS_j$$

Энергия U представляет собой разность между средними значениями кулоновской энергии для параллельных и антипараллельных спинов S_i и S_j , а J – коэффициент пропорциональности, называемый обменным интегралом, величина которого зависит от степени перекрытия распределённых зарядов атомов i и j (от степени перекрытия волновых функций электронов).

Можем приближенно установить связь между обменным интегралом J и константой Вейсса λ . Получаем для константы Вейсса λ следующее выражение:

$$\lambda = \frac{2nJV}{g^2\mu_{\rm B}^2}.$$

Так как объём, занимаемый одним атомом, равен V=1/N, где N – концентрация атомов, то мы окончательно получаем:

$$J = \frac{3k_{\rm B}\Theta}{2nS(S+1)}.$$

Гадолинй. Для гадолиния $n=12,\,J=7/2,\,\mu_{
m s d d}=7.94\mu_{
m B},$ обусловлен 4f-оболочкой, а значит

$$J = \frac{2k_{\rm B}\Theta}{21n} = \frac{k_{\rm B}\Theta}{126}.$$

Экспериментальная установка

Установка состоит из LC-контура, в катушку которого вставляется образец - гадолиниевые гранулы, помещённые в капсулу, соединённую с нагревателем и сосудом Дьюара. Температура образца измеряется с помощью термопары, соединяющей капсулу с сосудом Дьюара. Коэффициент термопары равен 41 мкВ/°С.

В цепь контура встроен измеритель резонансной частоты

$$\omega = \frac{1}{\sqrt{LC}}, \quad L \sim \mu, \quad \Rightarrow \quad \frac{f_0^2 - f^2}{f^2} = \frac{L - L_0}{L_0} = \mu - 1 = 4\pi\varkappa, \quad \Rightarrow \quad \frac{1}{\varkappa} \sim \frac{f^2}{f_0^2 - f^2} \sim T - \Theta,$$

где f и f_0 – резонансные частоты контура с образцом и без.

Экспериментальные данные

Зафиксируем показания термопары: $V_0=0.05$ мВ, $T_0=25$ °С. Снимем зависимость f(V) и $f_0(V)$, данные занесем в таблицу 1. Погрешность измерения V можно положить порядка 0.02 мВ, $\sigma_f=0.2$ к Γ ц, $\sigma_{f_0}=0.2$ к Γ ц. Тогда $\sigma_T=0.5$ °С. Погрешность φ :

$$\varphi = \frac{f^2}{f_0^2 - f^2}, \qquad \sigma_{\varphi(f, f_0)} = \left(2\sigma_f + 2\frac{\sigma_f + \sigma_{f_0}}{f_0^2 - f^2}\right)\varphi(f, f_0),$$

данные также занесены в таблицу 1.

Построим зависимость $\varphi_{\text{эксп}}(T)$, зависимость отображена на графике 1.

Рис. 1: Лианеризуемая зависимость $\varphi(T)$

Зависимость $\varphi_{\text{эксп}}(T)$ аппроксимируем по МНК $f_{\text{лин}}(T)=a(T-T_{\text{K}}),$ откуда находим $T_{\text{K}}=291.5\pm1.0$ K,

что в пределах погрешности совпадает с табличным значением (292 К). Обменный интеграл тогда может быть найден, как

$$J = \frac{k_{
m b}T_{
m K}}{126} = (0.199 \pm 0.001)$$
 мэВ.

Выводы

Измерена зависимость поведения магнитной восприимчивости гадолния от температуры образца. Таким образом была определена температура Кьюри для гадолиня $T_{\rm K}=291.5\pm1.0~{\rm K},$ совпадающая в пределах погрешности с табличным значением (292 K).

При температура ниже $T_{\rm K}$ закон Кьюри-Вейса, как и ожидалось, не работает, однако при температурах выше $T_{\rm K}$ (в парамагнитной фазе) описывает поведение системы в пределах погрешности на всём диапазоне измерений.

Приложение

Таблица 1: Экспериментальная зависимость параметров системы от температуры

V, MB	f , к Γ ц	f_0 , к Γ ц	t, °C	φ	σ_{arphi}
-0.89	905.3	954.0	4.5	9.1	0.1
-0.77	905.4	953.7	7.4	9.1	0.1
-0.63	905.3	953.8	10.8	9.1	0.1
-0.52	906.3	954.0	13.5	9.3	0.1
-0.44	907.9	954.0	15.5	9.6	0.1
-0.37	910.5	954.0	17.2	10.2	0.1
-0.32	914.7	954.1	18.4	11.4	0.1
-0.27	920.0	953.9	19.6	13.4	0.1
-0.21	929.2	954.0	21.1	18.5	0.2
-0.16	935.6	954.2	22.3	24.8	0.4
-0.08	942.4	953.8	24.3	41.2	1.1
0.01	946.0	954.4	26.5	56.3	2.0
0.11	947.8	954.4	28.9	71.4	3.3
0.22	949.0	954.4	31.6	88.0	4.9
0.30	949.8	954.4	33.5	102.8	6.7
0.40	950.0	954.4	36.0	108.0	7.4
0.52	950.5	954.4	38.9	121.6	9.4
0.54	950.6	954.4	39.4	123.3	9.6
0.60	950.9	954.2	40.8	143.7	13.1
0.63	950.8	954.4	41.6	132.2	11.1
0.65	950.8	954.3	42.1	133.8	11.3
0.75	951.1	953.9	44.5	165.7	17.5
0.80	951.2	954.2	45.7	159.1	16.0
0.90	951.4	954.0	48.2	178.3	20.2