First Year Maths and Further Maths combined Test B3 Surds and straight lines 24 minutes

Throughout the entire test **all working must be shown** and solutions based entirely on graphical or numerical methods may not be acceptable **(this means you can't just stick it in your calculator).**

1.		
(a)	Simplify $(3\sqrt{5})^2$.	
		[1 mark]
	Express $\frac{\left(3\sqrt{5}\right)^2+\sqrt{5}}{7+3\sqrt{5}}$ in the form $m+n\sqrt{5}$, where m and n are integers.	
(b)	Express $\frac{1}{7+3\sqrt{5}}$ in the form $m+n\sqrt{5}$, where m and n are integers.	
		[4 marks]

_	
\boldsymbol{n}	
•	

(a) Simplify

$$\sqrt{50} - \sqrt{18}$$

giving your answer in the form $a\sqrt{2}$, where a is an integer.

(2)

(b) Hence, or otherwise, simplify

$$\frac{12\sqrt{3}}{\sqrt{50}-\sqrt{18}}$$

giving your answer in the form $b\sqrt{c}$, where b and c are integers and $b\neq 1$

(3)

A line L is parallel to y = 4x + 5 and passes through the point (-1,6). Find the equation of the line L in the form y = ax + b. Find also the coordinates of its intersections with the axes. [5]

1	
4	

The point P has coordinates $(\sqrt{3}, 2\sqrt{3})$ and the point Q has coordinates $(\sqrt{5}, 4\sqrt{5})$. Show that the gradient of PQ can be expressed as $n+\sqrt{15}$, stating the value of the integer n.

[5 marks]