Lecture 17

Steady-State Markov Chain

Manju M. Johny

STAT 330 - Iowa State University

1/9

Steady-State

Steady-State Distribution

Definition

Ph = Pop(h)

For a Markov chain $\{X_t : t \in \mathcal{T}\}$, if a collection of limiting probabilities

$$\pi_{\mathsf{x}} = \lim_{h \to \infty} P_h(\mathsf{x}), \ \ \mathsf{x} \in \mathcal{X},$$

exists, then π_x is called a *steady-state distribution* of the Markov chain. (Note: π is a distribution not the value 3.14...)

• This is the distribution of X_t after many, many transitions! (the long run probability)

many Muny step s ahead.

2/9

About the Steady-State Distribution

1. Obtaining the steady-state distribution: $\pi = (\pi_1, \pi_2, \dots, \pi_n)$ is the solution to the following set of linear equations

$$\pi P = \pi, \qquad \sum_{\mathsf{x} \in \mathcal{X}} \pi_{\mathsf{x}} = 1.$$

 $(\sum_{x \in \mathcal{X}} \pi_x = 1$ since each of the states should be in $\mathcal{X})$

- 2. What is meant by the "steady state" of a Markov chain?
 - Suppose the system has reached its steady state, so that the distribution of the states is $P_t = \pi$.
 - The state after one more transitions is:

$$P_{t+1} = P_t P = \pi P = \pi$$

 Thus, if a chain is in a steady state, the distribution stays the same ("steady") after any subsequent transitions.

Steady-State Distribution Cont.

3. The limit for P^h (the h-step transition matrix) is

$$\begin{array}{ccc}
(\pi_1)^{n} & \pi_1 \\
\downarrow & \pi_1 \\
\Pi = \lim_{h \to \infty} P^h = \begin{pmatrix} \pi_1 & \pi_2 & \cdots & \pi_n \\
\pi_1 & \pi_2 & \cdots & \pi_n \\
\vdots & \vdots & \ddots & \vdots \\
\pi_1 & \pi_2 & \cdots & \pi_n \end{pmatrix}.$$
The proof of the steady states are also as a second state of the steady states.

All the rows are equal and consist of the steady state probabilities π_{\times} .

- 4. The steady-state distribution is not guaranteed to exist.
 - Steady-state distribution may or may not exist.
 - If a Markov chain is *regular*, then it has a steady state distribution. (This is what we will check).

4/9

Example

Example

Example 1: Ames weather problem: Suppose the state space is $\overline{("sunny","}$ rainy") = (1,2), with initial probability $P_0=(p,1-p)$

• Can approximate the steady state distribution (π) , by

$$P = \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix}, P^{(2)} = \begin{pmatrix} 0.61 & 0.39 \\ 0.52 & 0.48 \end{pmatrix}, P^{(3)} = \begin{pmatrix} 0.583 & 0.417 \\ 0.556 & 0.444 \end{pmatrix}$$

$$P^{(15)} \approx \ldots \approx P^{(30)} \approx \begin{pmatrix} 0.5714 & 0.4286 \\ 0.5714 & 0.4286 \end{pmatrix} = \begin{pmatrix} 4/7 & 3/7 \\ 4/7 & 3/7 \end{pmatrix} = \begin{pmatrix} \pi_1 & \pi_2 \\ \pi_1 & \pi_2 \end{pmatrix}$$

• For any given starting state distribution $P_0 = (p, 1 - p)$,

$$P_0\pi = (p, 1-p) \begin{pmatrix} 4/7 & 3/7 \\ 4/7 & 3/7 \end{pmatrix} = (4/7, 3/7)$$

5/9

Example

• Alternatively, we can obtain steady state distribution (π) by solving the system of equations:

1.
$$\pi P = \pi$$
2. $\sum_{x \in \mathcal{X}} \pi_x = 1$

olving the system of equations:
1.
$$\pi P = \pi$$
 \longrightarrow $(\Pi_1 \ \Pi_2) \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix} = \begin{pmatrix} \Pi_1 \ \Pi_2 \end{pmatrix}$
2. $\sum_{x \in \mathcal{X}} \pi_x = 1$

$$\begin{cases} 0.7 \Pi_1 + 0.4 \Pi_2 = \Pi_1 \\ 0.3 \Pi_1 + 0.6 \Pi_2 = \Pi_2 \end{cases}$$

$$\frac{1}{2} \begin{cases} 0.4 \Pi_2 = 0.3 \Pi_1 \\ 0.3 \Pi_1 = 0.4 \Pi_2 \end{cases}$$

One equation will always reduce to be same as another equation. Ex: If I had 3 equations here, then I'd end up with 2 unique equations, and 1 repeat

$$\Rightarrow 0.4 \Pi_2 = 0.3 \Pi_1 \\ \Rightarrow \Pi_2 = \frac{3}{4} \Pi_1$$

6/9

Example

$$2\pi = 1 = 0\pi_1 + \pi_2 = 1$$
 We have system of Equations $2\pi_2 = \frac{3}{4}\pi_1$ $2\pi_2 = \frac{3}{4}\pi_1$ $2\pi_3 = \frac{3}{4}\pi_1$

Pluq (2) Into (1)

$$\Pi_1 + \Pi_2 = 1$$
 $\Rightarrow \Pi_1 + 34\Pi_1 = 1$
 $\Rightarrow \frac{1}{7} + \Pi_2 = 1$
 $\Rightarrow \frac{1}{7}$

Main Idea: No matter what initial distribution P_0 we start with, after a large number of steps, the probability distribution converges to approximately (4/7, 3/7). This (4/7, 3/7) is called the "steady-state distribution" or π

- D Multiply P by itself many many times until pcn) converges (doesn't change). The rows of Pch) = IT
- Solve System Eq's

 D II P = IT

 Z Z ITz = 1

Regular Markov Chain

Regular MC

Definition

A Markov Chain $\{X_t\}$ with transition matrix P is said to be *regular* if, for some n, all entries of $P^{(n)}$ are positive (>0).

Any regular Markov chain has a steady-state distribution.

1. Not every Markov chain has a steady-state distribution. Why? Consider the following transition matrix:

then Even Transition odd transition
$$P^{2k} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad P^{2k-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \forall k \in \mathbb{N}$$

$$P^{(N)} \text{ will keep oscillating blue these two matrices } \text{forever:}$$

Checking Regular MC

As long as we find some n such that all entries of P⁽ⁿ⁾ are
 positive, then the chain is regular. This does not mean that a regular Markov chain has to possess this property for all n.
 Consider the following transition matrix,

$$P = \begin{pmatrix} 0 & 0 & 1 \\ 2/3 & 0 & 1/3 \\ 1/2 & 1/4 & 1/4 \end{pmatrix},$$

then

$$P^2 = \begin{pmatrix} .500 & .250 & .250 \\ .167 & .083 & .750 \\ .292 & .063 & .646 \end{pmatrix}$$

This Markov chain is regular since $P^{(2)}$ contains all positive elements even though the one-step transition matrix P contain non-positive elements.