Teoria da computação

Rodrigo Santos

April 6, 2024

1 Problem set 3

Exercise 1. Para cada uma das linguagens abaixo descreva um AFD que a reconhece através do seu diagrama de estados e de uma definição formal

Problem 1. $L = \{0^{2n} \mid n \in \mathbb{N}\}$

A descrição formal do AFD é:

$$M_1 = (\{q_{even}, q_{odd}\}, \{0\}, \delta, q_{even}, \{q_{even}\})$$

onde δ é representado da seguinte maneira:

$$egin{array}{c|c} \delta & 0 \\ \hline q_{even} & q_{odd} \\ q_{odd} & q_{even} \\ \hline \end{array}$$

Problem 2. $L = \{(01)^n \mid n \in \mathbb{N}\}$

A descrição formal do AFD é:

$$M_2 = (\{q_{01}, q_1, q_{final}\}, \{0, 1\}, \delta, q_{01}, \{q_{final}\})$$

onde δ é representado da seguinte maneira:

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_{01} & q_1 & \bot \\ q_1 & \bot & q_{final} \\ q_{final} & q_1 & \bot \\ \end{array}$$

Problem 3. A linguagem L das strings sobre $\{0,1\}$ que contêm pelos menos dois 0's e pelo menos um 1.

A descrição formal do AFD é:

$$M_3 = (\{q_{001}, q_{01}, q_{00}, q_1, q_0, q_{final}\}, \{0, 1\}, \delta, q_{001}, \{q_{final}\})$$

onde δ é representado da seguinte maneira:

δ	0	1
q_{001}	q_{01}	q_{00}
q_{00}	q_0	q_{00}
q_{01}	q_1	q_0
q_1	q_1	q_{final}
q_0	q_{final}	q_0
q_{final}	q_{final}	q_{final}

Problem 4. A linguagem L das strings sobre $\{0,1\}$ que contêm exatamente dois 0's e pelo menos dois 1's.

A descrição formal do AFD é:

 $M_4 = (\{q_{0011}, q_{011}, q_{001}, q_{11}, q_{01}, q_{00}, q_1, q_0, q_{final}\}, \{0, 1\}, \delta, q_{0011}, \{q_{final}\})$ onde δ é representado da seguinte maneira:

δ	0	1
q_{0011}	q_{011}	q_{001}
q_{001}	q_{01}	q_{00}
q_{011}	q_{11}	q_{01}
q_{01}	q_0	q_1
q_{00}	q_0	q_{00}
q_{11}		q_1
q_0	q_{final}	q_0
q_1		q_{final}
q_{final}		q_{final}

Problem 5. A linguagem L das strings sobre $\{0,1\}$ com um número par de 0's e um número ímpar de 1's.

A descrição formal do AFD é:

$$M_5 = (\{q_{00}, q_{10}, q_{01}, q_{11}\}, \{0, 1\}, \delta, q_{00}, \{q_{01}\})$$

onde δ é representado da seguinte maneira:

δ	0	1
q_{00}	q_{10}	q_{01}
q_{10}	q_{00}	q_{11}
q_{01}	q_{11}	q_{00}
q_{11}	q_{01}	q_{10}

Problem 6. A linguagem L das strings sobre $\{0,1\}$ que não contêm a substring 010.

A descrição formal do AFD é:

$$M_6 = (\{q_{010}, q_{10}, q_0, q_{final}\}, \{0, 1\}, \delta, q_{010}, \{q_{010}, q_{10}, q_0\})$$

onde δ é representado da seguinte maneira:

δ	0	1
q_{010}	q_{10}	q_{010}
q_{10}	q_{10}	q_0
q_0	q_{final}	q_{010}
q_{final}	q_{final}	q_{final}

Problem 7. A linguagem L das strings sobre $\{0,1\}$ com um número par de 0's e em que cada 0 é sempre seguido de pelo menos um 1.

A descrição formal do AFD é:

$$M_7 = (\{q_{001}, q_{01}, q_0, q, q_{final}\}, \{0, 1\}, \delta, q_{001}, \{q_{final}\})$$

onde δ é representado da seguinte maneira:

δ	0	1
q_{001}	q_{01}	q_{001}
q_{01}	1	q_0
q_0	q	q_0
q	1	q_{final}
q_{final}	q_{01}	q_{final}

Problem 8. A linguagem L das strings sobre $\{0\}$ com tamanho divisível por 2 ou por 3. q_{ij} onde i=n%2 e j=n%3.

A descrição formal do AFD é:

$$M_8 = (\{q_{00}, q_{11}, q_{02}, q_{10}, q_{01}, q_{12}\}, \{0\}, \delta, q_{00}, \{q_{00}, q_{02}, q_{10}, q_{01}\})$$

onde δ é representado da seguinte maneira:

δ	0
q_{00}	q_{11}
q_{11}	q_{02}
q_{02}	q_{10}
q_{10}	q_{01}
q_{01}	q_{12}
q_{12}	q_{00}

Problem 9. A linguagem L das strings sobre $\{A,C,G,T\}$ que contêm pelo menos uma ocorrência da substring ACT.

A descrição formal do AFD é:

$$M_9 = (\{q_{ACT}, q_{CT}, q_T, q_{final}\}, \{A, C, G, T\}, \delta, q_{ACT}, \{q_{final}\})$$

onde δ é representado da seguinte maneira:

δ	A	\mathbf{C}	G	T
q_{ACT}	q_{CT}	q_{ACT}	q_{ACT}	q_{ACT}
q_{CT}	q_{CT}	q_T	q_{ACT}	q_{ACT}
q_T	q_{CT}	q_{ACT}	q_{ACT}	q_{final}
q_{final}	q_{final}	q_{final}	q_{final}	q_{final}

Problem 10. $L = \emptyset$

$$\rightarrow q_0$$

A descrição formal do AFD é:

$$M_{10} = (\{q_0\}, \varnothing, \varnothing, q_0, \{\varnothing\})$$

Problem 11. $L = \varepsilon$

A descrição formal do AFD é:

$$M_{11} = (\{q_0\}, \varnothing, \varnothing, q_0, \{q_0\})$$

Problem 12. $L = \{0,1\}^* \setminus \{\varepsilon\}$