

Capstone Project - 4

Online Retail Customer Segmentation

Content

PROBLEM STATEMENT

DATA SUMMARY

ANALYSIS

CHALLENGES

CONCLUSION

Q & A

Problem Statement

Given a dataset related to a online retailer based out of the UK, we need to analyse and identify major customer segments using K Means algorithm and also using different verification method to confirm the result.

What is Customer Segmentation?

- Practice of dividing a customer base into groups of individuals that are similar in specific ways relevant to marketing, such as age, gender, interests and spending habits.
- Allows us to better understand our customers helping us target these customers in a more efficient manner and improve the customer experience.

Data Summary

- A transnational data set with transactions occurring between 1st December 2010 and 9th
 December 2011 for a UK-based online retailer.
- The company mainly sells unique all-occasion gifts.
- Many customers of the company are wholesalers.

InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom
536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom
536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom

Cleaning Data Finding the most Purchased Products

Description_Name	Count
WHITE HANGING HEART T-LIGHT HOLDER	2369
REGENCY CAKESTAND 3 TIER	2200
JUMBO BAG RED RETROSPOT	2159
PARTY BUNTING	1727
LUNCH BAG RED RETROSPOT	1638

Top 5 vs Bottom 5 countries

Analysis

UK Saudi

Source obtained from Statista comparing online purchases from 2011 to 2016

Log Distribution of Quantity

Month-wise analysis

November and December could be the months with highest sales in anticipation of Christmas

Daywise analysis

Hourwise analysis

Working hours witnessing the highest sales could be attributed to the fact that a large part of the dataset is Wholesalers' data

Recency, Frequency, Monetary values

RFM Metrics

The freshness of the customer activity, be it purchases or visits

RECENCY

E.g. Time since last order or last engaged with the product

FREQUENCY

The frequency of the customer transactions or visits

E.g. Total number of transactions or average time between transactions/ engaged visits

MONETARY

The intention of customer to spend or purchasing power of customer

E.g. Total or average transactions value

Recency

Frequency

Monetary

Silhouette score and Elbow method on R&M

```
For n_clusters = 2, silhouette score is 0.4216081125935063
For n_clusters = 3, silhouette score is 0.3432957775914936
For n_clusters = 4, silhouette score is 0.36494104664274657
For n_clusters = 5, silhouette score is 0.33668503688485785
For n_clusters = 6, silhouette score is 0.34397809419193187
For n_clusters = 7, silhouette score is 0.345867202377316
For n_clusters = 8, silhouette score is 0.33919727934627264
For n_clusters = 9, silhouette score is 0.3458423886312394
For n_clusters = 10, silhouette score is 0.34850666375861195
For n_clusters = 11, silhouette score is 0.3385166366909024
For n_clusters = 12, silhouette score is 0.3427649471441594
For n_clusters = 13, silhouette score is 0.34083950250492523
For n_clusters = 14, silhouette score is 0.3406096956008792
For n_clusters = 15, silhouette score is 0.34223526314989594
```


Silhouette score and Elbow method on F&M

For n_clusters = 2, silhouette score is 0.478535709506603
For n_clusters = 3, silhouette score is 0.40764120562174455
For n_clusters = 4, silhouette score is 0.3713782596510203
For n_clusters = 5, silhouette score is 0.34479733808079405
For n_clusters = 6, silhouette score is 0.35974563779013946
For n_clusters = 7, silhouette score is 0.33835032540639154
For n_clusters = 8, silhouette score is 0.3519892091800133
For n_clusters = 9, silhouette score is 0.3460160650521864
For n_clusters = 10, silhouette score is 0.3619887930235607
For n_clusters = 11, silhouette score is 0.36822618560766546
For n_clusters = 12, silhouette score is 0.3640489785135785
For n_clusters = 13, silhouette score is 0.3624674157300161
For n_clusters = 14, silhouette score is 0.36520616987776316
For n_clusters = 15, silhouette score is 0.36101570873847355

Silhouette analysis on R, F and M

```
For n clusters = 2 The average silhouette score is : 0.395423791756615
For n clusters = 3 The average silhouette score is : 0.3031065868149085
For n clusters = 4 The average silhouette score is : 0.30272551749681986
For n clusters = 5 The average silhouette score is : 0.2788034616608947
For n clusters = 6 The average silhouette score is : 0.27854318607070516
For n clusters = 7 The average silhouette score is : 0.2623613650755882
For n clusters = 8 The average silhouette score is : 0.2638608672365028
For n clusters = 9 The average silhouette score is : 0.25878886517568883
For n_clusters = 10 The average silhouette_score is : 0.25947712786853405
For n clusters = 11 The average silhouette score is : 0.2594602425001122
For n clusters = 12 The average silhouette score is : 0.26359981003963245
For n clusters = 13 The average silhouette score is : 0.26216905448550776
For n clusters = 14 The average silhouette score is : 0.2610200890360579
For n clusters = 15 The average silhouette score is : 0.2549657732066674
```


Silhouette analysis on RFM

Elbow method and Cluster chart on RFM

RFM Analysis

	Recency	Frequency	Monetary	R	F	M	RFMGroup	RFMScore	Recency_log	Frequency_log	Monetary_log	Cluster
CustomerID												
12346.0	325	1	77183.60	4	4	1	441	9	5.783825	0.000000	11.253942	1
12347.0	2	182	4310.00	1	1	1	111	3	0.693147	5.204007	8.368693	0
12348.0	75	31	1797.24	3	3	1	331	7	4.317488	3.433987	7.494007	1
12349.0	18	73	1757.55	2	2	1	221	5	2.890372	4.290459	7.471676	0
12350.0	310	17	334.40	4	4	3	443	11	5.736572	2.833213	5.812338	1
12352.0	36	85	2506.04	2	2	1	221	5	3.583519	4.442651	7.826459	0
12353.0	204	4	89.00	4	4	4	444	12	5.318120	1.386294	4.488636	1
12354.0	232	58	1079.40	4	2	2	422	8	5.446737	4.060443	6.984161	1
12355.0	214	13	459.40	4	4	3	443	11	5.365976	2.564949	6.129921	1
12356.0	22	59	2811.43	2	2	1	221	5	3.091042	4.077537	7.941449	0

Dendrogram

DBSCAN

Challenges

- Tackling refunds
- Right number of 'k' for clusters

Conclusion

Model Name	Data	Optimal Number of Clusters			
K-Means with Silhouette Score	RM	2			
K-Means with Elbow method	RM	2			
DBSCAN	RM	2			
K-Means with Silhouette Score	FM	2			
K-Means with Elbow method	FM	2			
DBSCAN	FM	2			
K-Means with Silhouette Score	RFM	2			
K-Means with Elbow method	RFM	2			
Hierarchical Clustering	RFM	2			
DBSCAN	RFM	3			

Q & A