

Stereo using Rectified Images

Prateep Mukherjee Praful Agrawal

Bigger picture ...

Overview of a stereo vision system

Stefano Mattoccia

What we are doing ...

Stefano Mattoccia

What we are doing ...

Project overview ...

Goal

- Improve disparity map quality using image cues, intensity information.
- Improve brute-force search over every pixel by using faster techniques based on edge information.
- Handle occlusions.

Contributions

- Find good correspondences between two images.
 - Discuss algorithms!!
- Good disparity maps for depth reconstruction Image Processing for noise removal
- Evaluation

Brute Force

Input:

Reference (R)

Target (T)

Search in patches around reference pixel for correspondence.

Output:

Reference (R)

Target (T)

Cost(I_1,I_2):

- squared difference
- normalized crosscorrelation

With Post-processing ...

Mean Shift Segmentation[3] ...

- For each i=1...n, compute the mean shift procedure for x_i and store convergence result in z_i (a) For pixel x_i , look around its neighbors and assign the same intensity of z_i to all the members.
- Identify clusters $\{C_p\}$, $p = 1 \dots$ m of convergence points by linking together all z_i which are **close.**
- For i=1... n assign $L_i = \{ p \mid z_i \in C_p \}$
- For better output, eliminate spatial regions < M.

Disparity map: before smoothing

Disparity map: after smoothing

Input

Output

<u>Sequential Matching of scan-lines</u>(Miller et al. 1979)

Broken segment matcher...

<u>Sequential Matching of scan-lines</u>(Miller et al. 1979)

 λ is the set of parameters describing the optimal transformation. Consider NO noise.

PRO: Separates occluded pixels(infeasible λ).

Broken segment matcher...

Dynamic Programming (Ohta & Kanade, 1985)

Intra-scanline search: Path finding using DP

Dynamic Programming (Ohta & Kanade, 1985)

Intra-scanline search: Path finding using DP

Experimental Setup ...

- Middlebury datasets(http://vision.middlebury.edu/stereo/data/)
- Ground-truth(GT) and camera calibration values provided.
- Images rectified using given parameters.
- Experiments evaluated for "tsukuba" and "bear" datasets.

cam0=[3979.911 0 1244.772; 0 3979.911 1019.507; 0 0 1]
cam1=[3979.911 0 1369.115; 0 3979.911 1019.507; 0 0 1]
doffs=124.343
baseline=193.001
width=2964
height=2000
ndisp=270
isint=0
vmin=23
vmax=245
dyavg=0
dymax=0
Calibration Matrix

Evaluation ...

Segmentation

Ours

Ground-Truth

Effect of Window-sizes

Total Accuracy

References

- [1] Hirschmuller, H., and Scharstein, D., "Evaluation of cost functions for stereo matching", In IEEE Conference on Computer Vision and Pattern Recognition (2007), pp. 1–8.
- [2] Ohta, Y., and Kanade, T., "Stereo by intra- and inter- scanline search using dynamic programming", IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-7, 2 (1985), 139–154.
- [3] http://luthuli.cs.uiuc.edu/~daf/courses/CS-498-DAF-PS/Segmentation.pdf
- [4] Robert L. Henderson; Walter J. Miller; C. B. Grosch; "Automatic Stereo Reconstruction Of Man-Made Targets", Proc. SPIE 0186, Digital Processing of Aerial Images, 240 (September 4, 1979); doi:10.1117/12.957520.