Machine Learning Applications

Winter semester 2019/2020 Simon Mehringskötter

Structure and content of the lecture

VW	Date	Content	Lead
1	18 th Oct 2019	Introduction, Motivation and Organizational Information	FSR
2	25 th Oct 2019	Introduction to Machine Learning I	CS
3	1 st Nov 2019	Introduction to Machine Learning II	CS
4	8 th Nov 2019	Introduction to Machine Learning III	CS
5	15 th Nov 2019	Introduction to and Application of Machine Learning	CS
6	22 nd Nov 2019	Presentation of Industrial Partner and Introduction of Practical Exam (Hackathon)	FSR/EXT
7	29 th Nov 2019	Data Understanding: Data Acquisition, Preprocessing and Feature Engineering	FSR
8	6 th Dec 2019	Diagnostics: Feature Engineering, Regression, Health Assessment	FSR
9	13 th Dec 2019	Prognostics: Prediction, Remaining Useful Life, Uncertainty	FSR
10	20 th Dec 2019	System of Systems: System Level, Systemwide Predictions, Decision Support, IoT	FSR
11	17 th Jan 2020	Predictive Maintenance: Band Saw Application, Neural Networks for Condition Monitoring and Prediction	PTW
12	24 th Jan 2020	Predictive Quality: Prediction of Product Quality during Machining Process	PTW
13	31 st Jan 2020	Energy Forecasting: Electric Load Forecasting by the Example of a Machine Tool	PTW
14	7 th Feb 2020	Operational Control: Optimized Control of Cross-Linked Energy Systems by Means of Reinforcement Learning	PTW
15	14 th Feb 2020	Recap on Lecture for Written Exam	FSR

Structure and content of the lecture

VW	Date	Content	Lead
1	18 th Oct 2019	Introduction, Motivation and Organizational Information	FSR
2	25 th Oct 2019	Introduction to Machine Learning I	CS
3	1 st Nov 2019	Introduction to Machine Learning II	CS
4	8 th Nov 2019	Introduction to Machine Learning III	CS
5	15 th Nov 2019	Introduction to and Application of Machine Learning	CS
6	22 nd Nov 2019	Presentation of Industrial Partner and Introduction of Practical Exam (Hackathon)	FSR/EXT
7	29 th Nov 2019	Data Understanding: Data Acquisition, Preprocessing and Feature Engineering	FSR
8	6 th Dec 2019	Diagnostics: Feature Engineering, Regression, Health Assessment	FSR
9	13 th Dec 2019	Prognostics: Prediction, Remaining Useful Life, Uncertainty	FSR
10	20 th Dec 2019	System of Systems: System Level, Systemwide Predictions, Decision Support, IoT	FSR
11	17 th Jan 2020	Predictive Maintenance: Band Saw Application, Neural Networks for Condition Monitoring and Prediction	PTW
12	24 th Jan 2020	Predictive Quality: Prediction of Product Quality during Machining Process	PTW
13	31 st Jan 2020	Energy Forecasting: Electric Load Forecasting by the Example of a Machine Tool	PTW
14	7 th Feb 2020	Recap on Lecture for Written Exam	FSR
15	14 th Feb 2020	Operational Control: Optimized Control of Cross-Linked Energy Systems by Means of Reinforcement Learning	PTW

What should you be able to take out of the lecture today?

- What is prognosis and when does it make sense?
- Determine health of a component and transfer curve into prognosis
- What is remaining useful life (RUL)?
- How to do a prognosis with Gaussian Process Regression?
- Can I trust in my prognosis?
- How to evaluate the prognosis performance?
- What are the challenges in real world application?

The prognosis is one of the last steps in OSA-CBM

- PA (typically) completely relies on previous steps 1.1 till 2.3
- PA aims to predict future behavior of investigated component How will the health of my component develop in the future?
- HA describes the health of a component (e.g. Health Index)
 What is the health status of my component?
- AG combines result of PA with system/expert knowledge Which actions and when should I take for the component?

THE GOAL OF PROGNOSIS

Maintenance can benefit from component's health prognosis

Condition-based maintenance can optimize the maintenance costs

- Model solely considers maintenance costs
- Development costs of value-based maintenance not covered
- Resulting costs from breakdown not covered → Revenue loss

→ Each component needs to be analyzed individually

- Repair costs increases with higher number of failures
- Abatement costs increase for lower number of failures
- → Optimum in the addition of both costs

Maintenance is not the only reason for prognosis approaches

- Safety related components
 - Demand for high reliability
 - Alternative to conventional redundancy concepts
- Optimized resource planning
 - Know in advance when assets are not available
 - Know future demand for resources
- Prediction of process output
- Load prognosis
- Stock market

Prognosis of component's health is not always technical feasible

Early Failure

- Production quality
- Wrong design
- → Any component

Wear Out Failure

- Aging of a component
- Degradation of component
- → Typically mechanical components

Constant (Random) Failure

- **Unpredictable** cause
- → Typically electronic components

HOW TO ASSES A COMPONENT'S HEALTH

A test rig can be used to generate run-to-failure curves

Bearing degradation

- Rotation from induction machine
- Current through bearing to accelerate degradation

Gearbox degradation

- Motor for rotation
- Hysteresis brake to apply different loads

Different values of a feature may indicate a component's break down

- Operation time until breakdown differs between components
- RMS value of acceleration might differ when component actually fails
- RMS values might decrease again→ pseudo repair
- → Determine a component specific feature value baseline
- →Normalize values to predefined range (e.g. [0,1])

Source: Anger 2018

Health index or degradation value can be used to describe wear-out

HOW TO PREDICT A COMPONENT'S REMAINING USEFUL LIFE

There are four assumptions that are ideally considered for prognosis

- The monitored system degrades as a function of use, time and environmental conditions
- The aging and damage accumulation is a monotonic process
- Signs of aging are visible before the failure of the system occurs
- 4. Signs of **aging** can be **fitted** to a **model** to estimate the remaining useful life

Remaining Useful Life describes the remaining wear out/time/... reserve

- Remaining Useful Life (RUL) can be interpreted in different ways
 - t_{RUL} remaining useful life-time
 - W_{RUL} remaining useful life-wear-out
- Use case dependent what to predict
 - t_{RUL} if you want to know the time until a component fails → most cases
 - $w_{\text{pred}}(t)$ if you want to know how the wear-out will develop over the time

Regression that maps degradation solely over time is no prediction

- Simple regression when each component behaves in the same way
- $x_1(t) = x_2(t) = \dots = x_n(t)$
- It does not matter which type of function x(t) represents (linear, exponential,...)
- → Since all functions are the same, there is no real prediction model

Prognosis algorithm copes with different behavior of components

- Each gearbox degrades differently
- $x_1(t) \neq x_2(t) \neq \cdots \neq x_n(t)$
- Prognosis algorithm has to incorporate further information
 - Component's degradation history
 - Further sensor values

→ Since all functions differ, a complex model is necessary for prediction

Prognosis learns behavior of components and predicts at different time steps

- Typically predictions are not accurate
- Typically later predictions tend to be closer to real end of life

Different approaches according to available (historic) system data

Let's have a look on Gaussian Process Regression (GPR) mathematics

- Gaussian Distribution $N(\mu, \Sigma)$ \longleftrightarrow Gaussian Process GP(m(x), k(x, x'))
- k is covariance function that is represented by a so called kernel function

$$k_{SE}(x, x') = e^{-1/2|x-x'|^2}$$

- → Gaussian Process is a random distribution of functions
- → Gaussian Process is non-parametric: inputs are compared to training data

$$f(x) \coloneqq \text{observation}$$
 $f_*(x_*) \coloneqq \text{unknown}$

$$\binom{f}{f_*} \sim N \left(0, \begin{pmatrix} k(x, x) & k(x, x_*) \\ k(x_*, x) & k(x_*, x_*) \end{pmatrix} \right)$$

Let's see a demonstration of GPR fitting process

http://www.tmpl.fi/gp/

The GPR is applied to a simple degradation prognosis

- Random exponential degradation curves with noise
- Fit a gaussian process regression that has as input:
 - Current degradation: $x(t_k)$
 - Last degradation: x(t_{k-1})
 - Second last degradation: $x(t_{k-2})$

and outputs:

• Next degradation: $x(t_{k+1})$

In MATALB you need only one command to train a GPR

→ Let's have a look into MATLAB

Exemplary results of an iterative GPR prediction until threshold is reached

UNCERTAINTY IN PREDICTION

A look into the future never gives a certain answer

- Phenomena of any prognosis like weather forecasts, stock forecasts, etc.
- Input uncertainty
 - Material properties → the reason to test more than one component
 - Initial or boundary conditions → the environment has an influence
 - Sensor uncertainty → the reason for sensor calibration
- Discretization uncertainty
 - Time steps (sample rate) → real world is continuous information between samples is lost
 - Floating-point number precision → conversion of analog values to discretized values
- Model uncertainty
 - Representation of the real world problem → algorithm output vs. real world output

Each prognosis needs to be expressed as a probability

- Each prognosed degradation at time t_k is a probability distribution for $x(t_k)$
- The probability of failure is expressed as a cumulative distribution function (CDF)
- \rightarrow Reaching the threshold at time t_k is given with a probability
- → How to calculate the RUL?
 - → Mean of CDF reflects the expectation value of discrete distribution
 - → Median of CDF reflects a probability of 50 % that a component will have failed until that time
 - → Specify a distinct probability value for the CDF

GPR inherently outputs an uncertainty boundary, but not all methods do

- Covariance function delivers uncertainty $\binom{f}{f_*} \sim N\left(0, \binom{k(x,x)}{k(x_*,x)}, \frac{k(x,x_*)}{k(x_*,x_*)}\right)$
- Not all methods output uncertainty
- → Use additional methods: Bootstrapping, Particle Filter, Monte Carlo,...

The same degradation curves as previously but with uncertainty

HOW TO EVALUATE THE PROGNOSTIC PERFORMANCE

The dataset is split into training, validation and testing

- Training: the data that is used to train an algorithm (e.g. Neural Network)
- Validation: the data that is used to optimize the parameters
- **Test:** the data that is used to test the trained model never seen by the algorithm before

Test data is used to predict from different time steps

 For simplification and comparison reason normalized time steps are used

$$\lambda = {^t_P}/{_{t_{EoL}}}$$

- Normalization equalizes the different lifetimes
- Typical values are

$$\lambda = 0.1, 0.2, ..., 0.9$$

Different performance metrics exist to compare prognostic's accuracy and precision

Accuracy based metrics

- Error $\Delta(i) = r_*(i) r(i)$
 - r(i): RUL estimate at time t_i
 - $r_*(i)$: True RUL at time t_i
 - → represents the deviation
- Mean absolute percentage error

$$MAPE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{100\Delta(i)}{r_*(i)} \right|$$

- → unit free metric
- → weighs small errors differently to big errors
- → heavier penalty on forecasts that exceed the actual than on those that are less

Precision based metrics

Sample standard deviation

$$SSD = \sqrt{\frac{\sum_{i=1}^{N} (\Delta(i) - \mu_{\Delta})}{N-1}}$$
 with μ_{Δ} : mean of errors

- → measures dispersion/spread of the error
- > normal distribution is assumed
- Mean absolute deviation

$$MAD = \frac{1}{N} \sum_{i=1}^{N} |\Delta(i) - \text{median}(\Delta(i))|$$

- → estimator of dispersion/spread of the error
- → can be used for small number of data

Different performance metrics exist to compare prognosis results

Prognostic Horizon

- False Positive: unacceptable early predictions
- False Negative: unacceptable late predictions

- → Similar to Prognostic Horizon metric
- → Cone shape penalizes big errors for later predictions
- → Cone shape considers convergence

The performance of predictions can vary between test

Good result

runs

- Prediction is inaccurate (PH = 0.1)
- Bad result
- Safe result (False Positive)

The function *predict* in MATLAB performs a prediction step

→ Let's have a look into MATLAB

CHALLENGES IN REAL WORLD APPLICATION

Prediction in laboratory environment is easier than in real world application

Laboratory environment

- Run-to-failure → accelerated degradation
- Controlled environment
- Different algorithms developed and approved

Real environment

- No run-to-failure → limited data
- Environmental influences (vibration, weather,...)
- Algorithm transfer from labor is challenging

The higher the load, the higher the wear and vice versa

- Applied load determines the maximum number of cycles
- Well known from typical robustness models
 - Wöhler curve
 - Miner's rule

• ...

There is a wide range of parameters that can effect degradation

- Parameter's relevance depends on usage scenario
- In case influence of parameter variation should be considered, additional measurement is required
- Planned conditions need to be known for a degradation prediction

What to take with you?

LEARNING OUTCOMES

Key Findings

- Prognosis only makes sense for components that show degradation behavior
- Creating a Health Indicator can be challenging
- RUL is typically interpreted as a time
- Different approaches are available to predict the RUL / degradation
- Consideration of the uncertainty is essential
- There are common metrics that can be used to evaluate the prognosis performance
- Application of prognosis algorithms in real world environment is challenging

References

- ISO-13374-1 Condition monitoring and diagnostics of machines Data processing, communication and presentation Part 1: General guidelines
- http://www.mimosa.org/mimosa-osa-cbm/
- DIN EN 13306 Instandhaltung Begriffe der Instandhaltung
- DIN 31051 Grundlagen der Instandhaltung
- Carl Edward Rasmussen and Christopher K. I. Williams, The MIT Press, 2006 (http://www.gaussianprocess.org/gpml/)
- Dewey, H. Heath and DeVries, Derek R. and Hyde, Scott R.: Uncertainty Quantification in Prognostic Health Management Systems; 2019 IEEE
 Aerospace Conference
- A. Saxena and J. Celaya and E. Balaban and K. Goebel and B. Saha and S. Saha and M. Schwabacher: Metrics for evaluating performance of prognostic techniques; 2008 International Conference on Prognostics and Health Management
- A. Saxena and J. Celaya and B. Saha and S. Saha and K. Goebel: Evaluating algorithm performance metrics tailored for prognostics; 2009 IEEE
 Aerospace conference
- Christoph Anger: Hidden semi-Markov Models for Predictive Maintenance of Rotating Elements; PhdThesis 2018; TU Darmstadt
- I. Burhan and H. S. Kim, "S-N Curve Models for Composite Materials Characterisation: An Evaluative Review," Journal of Composites Science, vol. 2, no. 3, 2018.
- S. Uckun, K. Goebel, and P. J. Lucas, "Standardizing research methods for prognostics," International Conference on Prognostics and Health Management, 2008.

