Задача А. Мячик

 Имя входного файла:
 ball.in

 Имя выходного файла:
 ball.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

На вершине лесенки, содержащей N ступенек, находится мячик, который начинает прыгать по ним вниз, к основанию. Мячик может прыгнуть на следующую ступеньку, на ступеньку через одну или через 2. (То есть, если мячик лежит на 8-ой ступеньке, то он может переместиться на 5-ую, 6-ую или 7-ую.) Определить число всевозможных маршрутов мячика с вершины на землю.

Формат входного файла

Во входном файле находится одно число $1 \le N \le 35$.

Формат выходного файла

В выходной файл выведите одно число — количество маршрутов.

Пример

ball.in	ball.out
4	7

Задача В. Биномиальные коэффициенты

Имя входного файла: coeff.in
Имя выходного файла: coeff.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

В прямоугольной таблице $N \times M$ в начале игрок находится в левой верхней клетке. За один ход ему разрешается перемещаться в соседнюю клетку либо вправо, либо вниз (влево и вверх перемещаться запрещено). Посчитайте, сколько есть способов у игрока попасть в правую нижнюю клетку.

Формат входного файла

Во входном файле находится два числа NM $(1 \leqslant N, M \leqslant 10).$

Формат выходного файла

В выходной файл выведите одно число — количество маршрутов.

Пример

. 1	r·······cp		
	coeff.in	coeff.out	
	2 3	3	
	3 3	6	

Задача С. Наибольшая последовательнократная подпоследовательность

Имя входного файла: sequence.in Имя выходного файла: sequence.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Для заданной числовой последовательности a_1, a_2, \ldots, a_n требуется найти длину максимальной последовательнократной подпоследовательности.

Для последовательнократной подпоследовательности $a_{k_1}, a_{k_2}, \ldots, a_{k_t}$ $(k_1 < k_2 < \cdots < k_t)$ верно, что $a_{k_i}|a_{k_j}$ при $1 \leqslant i < j \leqslant t$ (утверждение «a|b» эквивалентно «b кратно a»). Подпоследовательность из одного элемента полагается последовательнократной по определению.

Формат входного файла

В первой строке входного файла записано одно натуральное число N ($1 \le N \le 1000$) — количество чиел в исходной последовательности. Далее следует N натуральных чисел, не превосходящих 10^9 — сама последовательность.

Формат выходного файла

Вывести единственное число, равное искомому количеству.

Пример

sequence.in	sequence.out
4	3
3 6 5 12	