EES 2110
Introduction to Climate Change
Jonathan Gilligan

Class #5: Friday, January 20 2023

Layer model was too simple:

- Emissivity ε , varies with wavelength
- Temperature varies with altitude

Temperature in the Atmosphere

Longwave Light in the Atmosphere

- Brightness: Stefan-Boltzmann law:
 - \blacksquare $I = \varepsilon \sigma T^4$
 - $\epsilon = 1$

- Brighter = Hotter
- Hotter = closer to ground
 - Satellite can see through atmosphere to low altitude (hot, bright) in "window" region.
 - Satellite can see to middle-troposphere (cold, dimmer) in "water vapor" region
 - Satellite can't see past top of troposphere (very cold, very dim) in CO₂ region.

Earth Seen by Satellites

Visible

$6.8~\mu m$ (Water Vapor)

$12.0~\mu m$ (Window)

Water, Window, Visible

CO₂ peak vs. Window

All Wavelengths

Understanding Greenhouse Gases

Molecular Structure

- Electromagnetic radiation is produced by asymmetric motion of positive and negative electric charges in atoms.
- Single atoms & two-atom molecules with the same atom (O_2, N_2) have little or no longwave absorption
- Molecules with:
 - two different atoms (CO, NO) absorb (simple stretch)
 - three or more atoms (CO₂, O₃, H₂O) absorb strongly (multiple stretching & bending modes)
 - More atoms, more different kinds →
 stronger absorption (CH₄, C₂F₃Cl₃ aka CFC
 113)

Models and Observations

Models and Observations

Checking MODTRAN model: It looks very similar to real life.

MODTRAN Computer Model

What is MODTRAN?

- Pure radiative calculation
 - Air does not move:
 - No wind or convection
- Only calculates infrared heat flux
 - Does not give equilibrium ground temperature
- Only calculates one spot
 - Does not give global averages
- You specify:
 - Ground temperature
 - Composition of atmosphere
- Modtran computes:
 - Longwave radiation at different altitudes
 - Total radiation to space

Running MODTRAN

- Go to http://climatemodels.uchicago.edu/modtran/
- Next

Exercise: Double CO₂

- Set Locality to "Tropical Atmosphere"
- Click "Save This Run to Background"
- Note the Upward IR heat flux
- Double the amount of CO₂
- Adjust T offset until new heat flux = background flux
- What is the new ground temperature?

Exercise: Double CO₂

Different Gases

Different Gases

Measuring Greenhouse Effect:

Measuring Greenhouse Effect:

- Go to MODTRAN, set CO₂ to 0 ppm, and set all other gases to zero.
- Set altitude to 70 km and location to "Tropical Atmosphere".
- Press "Save this run to background"
- Note I_{out}
- Set CO_2 to 400 ppm and note the change in I_{out}
- Adjust the temperature offset to make the difference in $I_{out}(New BG)$ equal zero.

400 ppm

Adjust temperature

