Neural Word Embeddings from Scratch

Xin Li^{1,2}

¹NLP Center, Tencent AI Lab

²Dept. of System Engineering & Engineering Management, The Chinese University of Hong Kong

2018-04-09

- What is Word Embedding?
- Neural Word Embeddings Revisit
 - Classifical NLM
 - Word2Vec
 - GloVe
- Bridging Skip-Gram and Matrix Factorization
 - SG-NS as Implicit Matrix Factorization
 - SVD over shifted PPMI matrix
- 4 Advanced Techniques for Learning Word Representations
 - General-Purpose Word Representations—By Ziyi
 - Task-Specific Word Representations—By Deng

What is Word Embedding?

- Word Embedding refers to low dimensional, real-valued dense vectors encoding the semantic information of word.
- Generally, the concepts Word Embeddings, Distributed Word Representations and Dense Word Vectors can be used interchangeably.

John Rupert Firth (linguist)

"You shall know a word by the company it keeps".

Karl Marx (philosopher)

"The human essence is no abstraction inherent in each single individual. In its reality it is the ensemble of the social relations".

What is Word Embedding?

Word Embedding is the by-product of neural language model.

• Definition of language model:

$$p(\mathbf{w}_{1:T}) = \prod_{t=1}^{T} p(\mathbf{w}_t | \mathbf{w}_{1:t-1})$$

 Neural Language Model (NLM) is the language model where the conditional probability is modeled by neural networks.

- What is Word Embedding?
- Neural Word Embeddings Revisit
 - Classifical NLM
 - Word2Vec
 - GloVe
- Bridging Skip-Gram and Matrix Factorization
 - SG-NS as Implicit Matrix Factorization
 - SVD over shifted PPMI matrix
- 4 Advanced Techniques for Learning Word Representations
 - General-Purpose Word Representations-By Ziyi
 - Task-Specific Word Representations—By Deng

MLP-LM

Bengio et al., JMLR 2003

Figure: MLP-LM. n is set to 3.

Training objective is to maximize the log-likelihood:

$$L = \frac{1}{T} \sum \log[p(\mathbf{w}_t | \mathbf{w}_{1:t-n+1})]$$

Conv-LM

Collobert and Weston., ICML 2008

Figure: Conv-LM. \mathbf{x}_t denotes the middle word of \mathbf{S} . $\mathbf{S}^{\mathbf{x}'}$ is obtained by replacing middle word of \mathbf{S} with \mathbf{x}'

Training objective is to minimize the rank-type loss:

$$\begin{split} L &= \sum_{\boldsymbol{\mathsf{S}} \in \mathcal{D}} \sum_{\boldsymbol{\mathsf{x}}' \in \mathcal{V}} \max(0, 1 - p(\boldsymbol{\mathsf{y}} = 1 | \boldsymbol{\mathsf{S}}) + \\ p(\boldsymbol{\mathsf{y}} = 1 | \boldsymbol{\mathsf{S}}^{\boldsymbol{\mathsf{x}}'})) \end{split}$$

RNN-LM

Mikolov et al., INTERSPEECH 2010

Training objective is same to MLP-LM (i.e., maximum likelihood).

Figure: RNN-LM.

- What is Word Embedding?
- Neural Word Embeddings Revisit
 - Classifical NLM
 - Word2Vec
 - GloVe
- Bridging Skip-Gram and Matrix Factorization
 - SG-NS as Implicit Matrix Factorization
 - SVD over shifted PPMI matrix
- 4 Advanced Techniques for Learning Word Representations
 - General-Purpose Word Representations-By Ziyi
 - Task-Specific Word Representations-By Deng

(Mikolov et al., ICLR 2013 & NIPS 2013)

Word2Vec involves two different models, namely, CBOW and SG:

- CBOW (Continuous Bag-of-Words): Using context words to predict the middle word.
- **SG** (Skip-Gram): Using middle word to predict the context words.

(Mikolov et al., ICLR 2013 & NIPS 2013)

The main feature of Word2Vec (IMO) is that it is a non-MLE framework, i.e., its aim is not to model the joint probability of the input words.

CBOW:
$$L = \frac{1}{T} \sum_{t=1}^{T} \log[p(\mathbf{w}_t | \mathbf{w}_{t-c:t-1}, \mathbf{w}_{t+1:t+c})]$$

$$\mathbf{SG}: \ L = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq j \leq c} \log[p(\mathbf{w}_{t+j}|\mathbf{w}_t)]$$

Word2Vec is the first model for learning word embeddings from unlabeled data!!!

(Mikolov et al., ICLR 2013 & NIPS 2013)

Some extensions for improving Word2Vec:

- HSoftmax (Hierarchical Softmax)
 - Full softmax layer is too "fat" since it needs to evaluate $|\mathcal{V}|$ (generally more than 1M in the large corpus) output nodes.
 - **4 HSoftmax** takes advantage of binary tree representation of output layer and only needs to evaluate $\log_2(|\mathcal{V}|)$ nodes.

Figure: Binary Tree

$$p(w_2|w_i) = \prod_{j=1}^{3} \sigma(\mathbb{I}(n(w_2, j+1) = ch(n(w_2, j)))\mathbf{v}_{n(w_2, j)}^{\top}\mathbf{x}_i)$$

Figure: Huffman Tree example Mikolov uses **Huffman Tree** to construct the hierarchical structure.

(Mikolov et al., ICLR 2013 & NIPS 2013)

- **NS** (Negative Sampling) is another alternative for speeding up training.
 - $\begin{tabular}{ll} \hline \bullet & Formulating $|\mathcal{V}|$-class classification problem as a binary classification problem. ("word prediction" <math>\Longrightarrow$ "co-occurrence relation prediction")
 - ② Training with k additional corrupted samples for each positive sample.

$$L = \log \sigma(\mathbf{x}_{O}^{* \top} \mathbf{x}_{I}) + \sum_{i=1}^{k} \mathbb{E}_{w_{i}^{*} \sim P_{n}(w)}[\log \sigma(-\mathbf{x}_{i}^{* \top} \mathbf{x}_{I})]$$

 Subsampling: Most frequent words usually provide less information and randomly discarding them should speedup training and improve performance.

2018-04-09

- What is Word Embedding?
- Neural Word Embeddings Revisit
 - Classifical NLM
 - Word2Vec
 - GloVe
- Bridging Skip-Gram and Matrix Factorization
 - SG-NS as Implicit Matrix Factorization
 - SVD over shifted PPMI matrix
- 4 Advanced Techniques for Learning Word Representations
 - General-Purpose Word Representations-By Ziyi
 - Task-Specific Word Representations-By Deng

Pennington et al., EMNLP 2014

Motivations of GloVe:

- Global co-occurrence count is the primary information for generating word embeddings. (Word2Vec ignores this kind of information)
- Only using co-occurrence information is not enough to distinguish relevant words from irrelevant words.

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

The appropriate starting point for learning word vectors should be ratios of co-occurrence probabilities!!!

Pennington et al., EMNLP 2014

$$F(\mathbf{x}_{i}, \mathbf{x}_{j}, \hat{\mathbf{x}}_{k}) = p_{ik}/p_{jk}$$

$$\Longrightarrow F(\mathbf{x}_{i} - \mathbf{x}_{j}, \hat{\mathbf{x}}_{k}) = p_{ik}/p_{jk}$$

$$\Longrightarrow F((\mathbf{x}_{i} - \mathbf{x}_{j})^{\top} \hat{\mathbf{x}}_{k}) = p_{ik}/p_{jk}$$
(1)

The roles of word and context word should be exchangeable, thus:

$$F((\mathbf{x}_i - \mathbf{x}_j)^{\top} \hat{\mathbf{x}}_k) = F(\mathbf{x}_i^{\top} \hat{\mathbf{x}}_k) / F(\mathbf{x}_j^{\top} \hat{\mathbf{x}}_k)$$
 (2)

According to (1) and (2):
$$F(\mathbf{x}_i^{\top} \hat{\mathbf{x}}_k) = \mathbf{p}_{ik} \Longrightarrow \mathbf{x}_i^{\top} \hat{\mathbf{x}}_k = \log(C_{ik}) - \log(C_i)$$

$$\Longrightarrow \mathbf{x}_i^{\top} \hat{\mathbf{x}}_k + b_i + \hat{b}_k = \log(C_{ik})$$
(3)

Training objective:
$$J = \sum_{i,k=1}^{|\mathcal{V}|} f(C_{ik})(\hat{\mathbf{x}}_k + b_i + \hat{b}_k - \log(C_{ik}))^2$$
 (4)

where $f(C_{ik})$ is a weight function to filter the noise from rare co-occurrences.

- What is Word Embedding?
- 2 Neural Word Embeddings Revisit
 - Classifical NLM
 - Word2Vec
 - GloVe
- Bridging Skip-Gram and Matrix Factorization
 - SG-NS as Implicit Matrix Factorization
 - SVD over shifted PPMI matrix
- 4 Advanced Techniques for Learning Word Representations
 - General-Purpose Word Representations—By Ziyi
 - Task-Specific Word Representations—By Deng

SG-NS as Implicit Matrix Factorization

Levy and Goldberg, NIPS 2014 & TACL 2015

- Skip-Gram with Negative Sampling (SG-NS) can be efficiently trained and achieve state-of-the-art results.
- The outputs of SG-NS are word embeddings X^w and context word embeddings X^c (ignored).

Figure: SG-NS Figure: SVD for *d*-rank factorization

2018-04-09

SG-NS as Implicit Matrix Factorization

Levy and Goldberg, NIPS 2014 & TACL 2015

Training objective of SG-NS:

$$\ell(I, O) = \log \sigma(\mathbf{x}_{O}^{* \top} \mathbf{x}_{I}) + \sum_{i=1}^{k} \mathbb{E}_{w_{i}^{*} \sim P_{n}(w)} [\log \sigma(-\mathbf{x}_{i}^{* \top} \mathbf{x}_{I})]$$

$$L = \sum_{I \in \mathcal{V}^{w}} \sum_{O \in \mathcal{V}^{c}} C_{IO} \ell(I, O)$$

The optimal value is attained at:

$$y = \mathbf{x}_O^* \mathbf{x}_I = \log(\frac{C_{IO} * |\mathcal{D}|}{C_I * C_O}) - \log k$$

The first item is the point-wise mutual information (PMI) of word pair (I, O).

SG-NS as Implicit Matrix Factorization

Levy and Goldberg, NIPS 2014 & TACL 2015

 The matrix M^{PMI_k}, called "shifted PMI Matrix", emerges as the optimal solution for SG-NS's objective. Each cell of the matrix is defined below:

$$\mathbf{M}_{ij}^{\mathsf{PMI}_k} = \mathbf{X}_i^w \cdot \mathbf{X}_j^c = \mathbf{x}_i \cdot \mathbf{x}_j^* = \mathsf{PMI}(i,j) - \log k$$

- The objective of SG-NS can be regarded as a weighted matrix factorization problem over M^{PMI_k}.
- The matrices $\mathbf{M}_0^{\mathsf{PMI}_k}$ and $\mathbf{M}^{\mathsf{PPMI}_k}$ can be better alternatives of $\mathbf{M}^{\mathsf{PMI}_k}$.

$$(\mathbf{M}_0^{\mathsf{PMI}_k})_{ij} = egin{cases} 0 & \text{if } C_{ij} = 0 \ \mathbf{M}_{ij}^{\mathsf{PMI}_k} & \text{Otherwise} \end{cases}$$

$$\mathbf{M}_{ij}^{\mathsf{PPMI}_k} = \mathsf{PPMI}(i,j) - \log k$$
 $\mathsf{PPMI}(i,j) = \max(\mathsf{PMI}(i,j),0)$

- What is Word Embedding?
- 2 Neural Word Embeddings Revisit
 - Classifical NLM
 - Word2Vec
 - GloVe
- Bridging Skip-Gram and Matrix Factorization
 - SG-NS as Implicit Matrix Factorization
 - SVD over shifted PPMI matrix
- 4 Advanced Techniques for Learning Word Representations
 - General-Purpose Word Representations—By Ziyi
 - Task-Specific Word Representations—By Deng

SVD over shifted PPMI matrix

Levy and Goldberg, NIPS 2014 & TACL 2015

shifted PPMI matrix:

$$\mathbf{M}^{\mathsf{SPPMI}_k} = \mathsf{SPPMI}_k(i,j)$$
, where $\mathsf{SPPMI}_k(i,j) = \mathsf{max}(\mathsf{PMI}(i,j) - \mathsf{log}\ k,0)$

- Performing SVD over $\mathbf{M}^{\mathsf{SPPMI}_k}$ and $\mathbf{U} \cdot \sqrt{\mathbf{\Sigma}}$ is treated as word representations \mathbf{X}^w .
 - This method outperforms SG-NS on word similarity task!!!

- What is Word Embedding?
- 2 Neural Word Embeddings Revisit
 - Classifical NLM
 - Word2Vec
 - GloVe
- Bridging Skip-Gram and Matrix Factorization
 - SG-NS as Implicit Matrix Factorization
 - SVD over shifted PPMI matrix
- 4 Advanced Techniques for Learning Word Representations
 - General-Purpose Word Representations-By Ziyi
 - Task-Specific Word Representations—By Deng

- What is Word Embedding?
- 2 Neural Word Embeddings Revisit
 - Classifical NLM
 - Word2Vec
 - GloVe
- Bridging Skip-Gram and Matrix Factorization
 - SG-NS as Implicit Matrix Factorization
 - SVD over shifted PPMI matrix
- 4 Advanced Techniques for Learning Word Representations
 - General-Purpose Word Representations-By Ziyi
 - Task-Specific Word Representations—By Deng

