

DEC 31 2004

<110> Sun, Jindong
Zobrist, Kimberly
Wu, Jingrui
Fu, Changlin
Dotson, Stanton B.
Lutfiyya, Linda L.

<120> Transgenic Plants

<130> 38-21(52743)B

<150> US 60/449,054

<151> 2003-02-22

<160> 12

<210> 1
<211> 270
<212> PRT
<213> Arabidopsis thaliana

<400> 1

Met Glu Leu Asn Arg Ser Glu Ala Asp Glu Ala Lys Ala Glu Thr Thr
1 5 10 15

Pro Thr Gly Gly Ala Thr Ser Ser Ala Thr Ala Ser Gly Ser Ser Ser
20 25 30

Gly Arg Arg Pro Arg Gly Arg Pro Ala Gly Ser Lys Asn Lys Pro Lys
35 40 45

Pro Pro Thr Ile Ile Thr Arg Asp Ser Pro Asn Val Leu Arg Ser His
50 55 60

Val Leu Glu Val Thr Ser Gly Ser Asp Ile Ser Glu Ala Val Ser Thr
65 70 75 80

Tyr Ala Thr Arg Arg Gly Cys Gly Val Cys Ile Ile Ser Gly Thr Gly
85 90 95

Ala Val Thr Asn Val Thr Ile Arg Gln Pro Ala Ala Pro Ala Gly Gly
100 105 110

Gly Val Ile Thr Leu His Gly Arg Phe Asp Ile Leu Ser Leu Thr Gly
115 120 125

Thr Ala Leu Pro Pro Ala Pro Pro Gly Ala Gly Gly Leu Thr Val
130 135 140

Tyr Leu Ala Gly Gly Gln Gly Gln Val Val Gly Gly Asn Val Ala Gly
145 150 155 160

Ser Leu Ile Ala Ser Gly Pro Val Val Leu Met Ala Ala Ser Phe Ala
165 170 175

Asn Ala Val Tyr Asp Arg Leu Pro Ile Glu Glu Glu Thr Pro Pro
180 185 190

Pro Arg Thr Thr Gly Val Gln Gln Gln Pro Glu Ala Ser Gln Ser
195 200 205

Ser Glu Val Thr Gly Ser Gly Ala Gln Ala Cys Glu Ser Asn Leu Gln
210 215 220

Gly Gly Asn Gly Gly Gly Val Ala Phe Tyr Asn Leu Gly Met Asn
225 230 235 240

Met Asn Asn Phe Gln Phe Ser Gly Gly Asp Ile Tyr Gly Met Ser Gly
245 250 255

Gly Ser Gly Gly Gly Gly Ala Thr Arg Pro Ala Phe
260 265 270

<210> 2

<211> 295

<212> PRT

<213> Oryza sativa

<400> 2

Met Glu His Ser Lys Met Ser Pro Asp Lys Ser Pro Val Gly Glu Gly
1 5 10 15

Asp His Ala Gly Gly Ser Gly Ser Gly Gly Val Gly Gly Asp His Gln
20 25 30

Pro Ser Ser Ser Ala Met Val Pro Val Glu Gly Gly Ser Gly Ser Ala
35 40 45

Gly Gly Ser Gly Ser Gly Gly Pro Thr Arg Arg Pro Arg Gly Arg Pro
50 55 60

Pro Gly Ser Lys Asn Lys Pro Lys Pro Pro Ile Ile Val Thr Arg Asp
65 70 75 80

Ser Pro Asn Ala Leu His Ser His Val Leu Glu Val Ala Gly Gly Ala
85 90 95

Asp Val Val Asp Cys Val Ala Glu Tyr Ala Arg Arg Arg Gly Arg Gly
100 105 110

Val Cys Val Leu Ser Gly Gly Ala Val Val Asn Val Ala Leu Arg
115 120 125

Gln Pro Gly Ala Ser Pro Pro Gly Ser Met Val Ala Thr Leu Arg Gly
130 135 140

Arg Phe Glu Ile Leu Ser Leu Thr Gly Thr Val Leu Pro Pro Pro Ala
145 150 155 160

Pro Pro Gly Ala Ser Gly Leu Thr Val Phe Leu Ser Gly Gly Gln Gly
165 170 175

Gln Val Ile Gly Gly Ser Val Val Gly Pro Leu Val Ala Ala Gly Pro
180 185 190

Val Val Leu Met Ala Ala Ser Phe Ala Asn Ala Val Tyr Glu Arg Leu
195 200 205

Pro Leu Glu Gly Glu Glu Glu Val Ala Ala Pro Ala Ala Gly Gly
210 215 220

Glu Ala Gln Asp Gln Val Ala Gln Ser Ala Gly Pro Pro Gly Gln Gln
225 230 235 240

Pro Ala Ala Ser Gln Ser Ser Gly Val Thr Gly Gly Asp Gly Thr Gly
245 250 255

Gly Ala Gly Gly Met Ser Leu Tyr Asn Leu Ala Gly Asn Val Gly Gly
260 265 270

Tyr Gln Leu Pro Gly Asp Asn Phe Gly Gly Trp Ser Gly Ala Gly Ala
275 280 285

Gly Gly Val Arg Pro Pro Phe
290 295

<210> 3

<211> 230

<212> PRT

<213> *Gossypium hirsutum*

<400> 3

Ala Phe Gly Ser His Tyr Lys Leu Trp Arg Arg Ser Thr Thr Ser Gly
1 5 10 15

Lys Lys Pro Arg Gly Arg Pro Ala Gly Ser Lys Asn Lys Pro Lys Ser
20 25 30

Pro Ile Ile Val Ala Arg Asp Ser Pro Asn Ser Leu Arg Ser His Val
35 40 45

Leu Glu Ile Ser Ser Gly Ser Asp Ile Val Asp Ser Val Trp Gly Tyr
50 55 60

Ala Arg Arg Arg Gly Arg Gly Val Cys Val Leu Ser Gly Thr Gly Ala
65 70 75 80

Val Thr Asn Val Thr Leu Arg Gln Pro Ala Ala Pro Pro Gly Ser Val
85 90 95

Val Thr Leu His Gly Arg Phe Glu Ile Leu Ser Leu Thr Gly Thr Ser
100 105 110

Leu Pro Pro Pro Ala Pro Pro Gly Ala Gly Gly Leu Thr Val Tyr Leu
 115 120 125
 Ala Gly Val Gln Gly Gln Val Val Gly Gly Ser Val Val Gly Pro Leu
 130 135 140
 Met Ala Ser Gly Pro Val Val Leu Met Ala Ala Ser Phe Ala Asn Ala
 145 150 155 160
 Val Tyr Asp Arg Leu Pro Leu Glu Glu Asp Pro Pro Thr Val His
 165 170 175
 Glu Gln Gln Pro Ala Ala Ser Gln Ser Ser Gly Leu Thr Gly Ser Gly
 180 185 190
 Gly Gly Asn Asn Asn Asn Cys Gly Thr Thr Gly Thr Gly Val Gly Gly
 195 200 205
 Gly Gly Gly Val Pro Phe Tyr Asn Leu Gly Pro Asn Met Gly Thr
 210 215 220
 Tyr Pro Phe Pro Gly Leu
 225 230

<210> 4
 <211> 974
 <212> DNA
 <213> Arabidopsis thaliana

<400> 4

```

ccccccgacc tgcctctaca gagacctgaa gattccagaa ccccacctga tcaaaaataa 60
catggactt aacagatctg aagcagacga agcaaaggcc gagaccactc ccaccggtgg 120
agccaccagc tcagccacag cctctggctc ttccctccgga cgtcgccac gtggtcgtcc 180
tgcaggttcc aaaaacaaac ccaaacctcc gacgattata actagagata gtcctaacgt 240
ccttagatca cacgttcttg aagtccacctc cggttccggac atatccgagg cagtctccac 300
ctacgccact cgtcgccggct gcggcggttg cattataagc ggcacgggtg cggtcactaa 360
cgtcacgata cggcaacctg cggctccggc tggtgaggt gtgattaccc tgcattttcg 420
gtttgacatt ttgtctttga ccggtaactgc gcttccaccc cctgcaccac cgggagcagg 480
aggtttgacg gtgttatctag ccggaggtca aggacaagtt gtaggaggga atgtggctgg 540
ttcgttaatt gcttcgggac cggttagtgtt gatggctgct tctttgcaa acgcagttta 600
tgataggtta ccgattgaag aggaagaaac cccaccgccc agaaccaccc gggtgccagca 660
gcagcagccg gaggcgtctc agtcgtccga gtttacgggg agtggggccc aggcgtgtga 720
gtcaaacctc caaggtggaa atggtgagg aggtgttgc ttctacaatc ttggaaatgaa 780
  
```

tatgaacaat ttcaattct ccggggaga tatttacgt atgagcggcg gtagcggagg 840
aggtgtggc ggtgcgacta gaccgcgtt ttagagttt agcgtttgg tgacaccc 900
tgttgcgttt gcgtgtttga cctcaaacta ctaggctact agctatacg gttgcgaaat 960
gcgaatatta gttt 974

<210> 5
<211> 1071
<212> DNA
<213> Oryza sativa

<400> 5

atggccggga tggaccctgg cggggcgccc gcccgcggc gcagtcacg gtacttccac 60
catctgctcc gaccgcagca gccgtcgccg ctgtcaccgc tgtcgccgac atcccatgtc 120
aagatggagc actccaagat gtcacccgac aagagccccg tggcgaggg agatcacgc 180
ggagggagtg gaagcggcgg cgtcggcgt gaccaccagc cgtcgtcgcc ggccatggt 240
cccgtcagggtt gttgcagcgg cagcggcggc ggttagtggct cgggtggcc gacgcggcgc 300
ccgcgcggc gcccgcggc gtccaaagaac aagccgaagc cgcccatcat cgtgacgcgc 360
gacagcccgaa acgcgctgca ctcgcacgtt ctcgagggtcg ccggcggcgc cgacgtcg 420
gactgcgtgg ccgagtacgc ccgcgcggc gggcgccggc tgtgcgtgct gagcggcggc 480
ggcgcgcgtcg tcaacgtggc gctgcggcag ccggcgcgt cgccgcggg cagcatggt 540
gccacgcgtgc gggccgggtt cgagatccta tctctcacgg gcacggtcct gccgcctccc 600
gcccgcaccccg gcgcgagcgg cctcaccgtt ttccctctccg gcggccaggg ccaggtgatc 660
ggcggcagcg tggggccccc gctggcgcc gcggggcccg tcgtcctgat ggcggcctca 720
ttcgcgaacg ccgtgtacga gcggctgccc ctggagggcg aggaagagga ggtcgcgcgc 780
cccgccgcgg gaggcgaagc acaagatcaa gtggcacaat cagctggacc cccagggcag 840
caaccggcgg cgtcacagtc ctccggcgtt acaggaggcg acggcaccgg cggcgcgggt 900
ggcatgtcgcc tctacaacct cggcggaaat gtgggaggct atcagctccc cggagacaac 960
ttcggaggtt ggagcggcgc cggcgcggc ggagtcaggc caccgttctg acccatgtct 1020
tagcatccag ttcaaaaatt ctccaaatta agaattgcgc agtgcagaag c 1071

<210> 6
<211> 693
<212> DNA
<213> *Gossypium hirsutum*

<400> 6

gcgttcggca gccactacaa gctctggagg aggagtagcca cgtcgaaa aaaacctaga 60
ggacgtccag cgggatccaa gaacaagccg aatcacccaa taatcggtgc tcgcgacagt 120
ccgaactcgt ttagatccaa cgtgctcgaa atctcttccg gttcagacat agttgactcg 180
gtgtgggct acgcacggcg gcgcggccgt ggcgttgcgt tactcagcgg gaccgggcc 240
gtcacgaatg tcacgttaag gcaaccggct gtcacccctg gaagtgtcgt aacactacac 300
ggtcggttcg agattttatc tttaaccggg acttctctcc caccgccagc accgcctgga 360
gctgggtggat tgacggttta tctcggccgc gttcaaggc aagtagtcgg aggaaggcgtg 420
gtgggaccgt taatggcttc aggtccagtc gtattaatgg ctgcacgtt cgccaatgca 480
gtttacgata gtttacctct cgaagaagaa gacccaccaa ccgttcacga acaacaacca 540
gcagcttcac aatcatccgg attaaccggc agtggcggcg gaaacaacaa caactgtgga 600
acaaccggaa cggcgttagg cggcggccgc ggcggggttc ctttctataa tttgggacca 660
aacatgggaa cttatccatt tccaggatta tga 693

<210> 7
<211> 99
<212> PRT
<213> *Arabidopsis thaliana*

<400> 7

Ala Lys Pro Pro Ile Ile Val Thr Arg Asp Ser Pro Asn Ala Leu Arg
1 5 10 15

Ser His Val Leu Glu Val Ser Pro Gly Ala Asp Ile Val Glu Ser Val
20 25 30

Ser Thr Tyr Ala Arg Arg Gly Arg Gly Val Ser Val Leu Gly Gly
35 40 45

Asn Gly Thr Val Ser Asn Val Thr Leu Arg Gln Val Val Thr Leu His
50 55 60

Gly Arg Phe Glu Ile Leu Ser Leu Thr Gly Thr Val Leu Pro Pro Pro
65 70 75 80

Ala Pro Pro Gly Ala Gly Gly Leu Ser Ile Phe Leu Ala Gly Gly Gln
85 90 95

Gly Gln Val

<210> 8
<211> 99
<212> PRT
<213> Arabidopsis thaliana

<400> 8

Pro Lys Pro Pro Thr Ile Ile Thr Arg Asp Ser Pro Asn Val Leu Arg
1 5 10 15

Ser His Val Leu Glu Val Thr Ser Gly Ser Asp Ile Ser Glu Ala Val
20 25 30

Ser Thr Tyr Ala Thr Arg Arg Gly Cys Gly Val Cys Ile Ile Ser Gly
35 40 45

Thr Gly Ala Val Thr Asn Val Thr Ile Arg Gln Val Ile Thr Leu His
50 55 60

Gly Arg Phe Asp Ile Leu Ser Leu Thr Gly Thr Ala Leu Pro Pro Pro
65 70 75 80

Ala Pro Pro Gly Ala Gly Gly Leu Thr Val Tyr Leu Ala Gly Gly Gln
85 90 95

Gly Gln Val

<210> 9
<211> 107
<212> PRT
<213> Gossypium hirsutum

<400> 9

Pro Lys Ser Pro Ile Ile Val Ala Arg Asp Ser Pro Asn Ser Leu Arg
1 5 10 15

Ser His Val Leu Glu Ile Ser Ser Gly Ser Asp Ile Val Asp Ser Val
20 25 30

Trp Gly Tyr Ala Arg Arg Gly Arg Gly Val Cys Val Leu Ser Gly
35 40 45

Thr Gly Ala Val Thr Asn Val Thr Leu Arg Gln Pro Ala Ala Pro Pro
50 55 60

Gly Ser Val Val Thr Leu His Gly Arg Phe Glu Ile Leu Ser Leu Thr
65 70 75 80

Gly Thr Ser Leu Pro Pro Pro Ala Pro Pro Gly Ala Gly Gly Leu Thr
85 90 95

Val Tyr Leu Ala Gly Val Gln Gly Gln Val Val
100 105

<210> 10
<211> 109
<212> PRT
<213> Oryza sativa

<400> 10

Pro Lys Pro Pro Ile Ile Val Thr Arg Asp Ser Pro Asn Ala Leu His
1 5 10 15

Ser His Val Leu Glu Val Ala Gly Gly Ala Asp Val Val Asp Cys Val
20 25 30

Ala Glu Tyr Ala Arg Arg Arg Gly Arg Gly Val Cys Val Leu Ser Gly
35 40 45

Gly Gly Ala Val Val Asn Val Ala Leu Arg Gln Pro Gly Ala Ser Pro
50 55 60

Pro Gly Ser Met Val Ala Thr Leu Arg Gly Arg Phe Glu Ile Leu Ser
65 70 75 80

Leu Thr Gly Thr Val Leu Pro Pro Ala Pro Pro Gly Ala Ser Gly
85 90 95

Leu Thr Val Phe Leu Ser Gly Gly Gln Gly Gln Val Ile
100 105

<210> 11
<211> 108
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic construct

<220>
<221> unsure
<222> (1)..(108)
<223> unsure at all Xaa locations

<220>
<221> UNSURE
<222> (3)..(3)
<223> Xaa is Proline or Serine

<220>
<221> UNSURE
<222> (1)..(1)
<223> Xaa is Alanine or Proline

<220>
<221> UNSURE
<222> (5)..(5)
<223> Xaa is Isoleucine or Threonine

<220>
<221> UNSURE
<222> (7)..(7)
<223> Xaa is Valine or Isoleucine

<220>
<221> UNSURE
<222> (8)..(8)
<223> Xaa is Threonine or Alanine

<220>
<221> UNSURE
<222> (14)..(14)
<223> Xaa is Alanine or Valine or Serine

<220>
<221> UNSURE
<222> (16)..(16)
<223> Xaa is Arginine or Histidine

<220>
<221> UNSURE
<222> (22)..(22)
<223> Xaa is Valine or Isoleucine

<220>
<221> UNSURE
<222> (23)..(23)
<223> Xaa is Serine or Threonine or Alanine

<220>
<221> UNSURE
<222> (24)..(24)
<223> Xaa is Proline or Serine or Glycine

<220>
<221> UNSURE
<222> (26)..(26)
<223> Xaa is Alanine or Serine

<220>
<221> UNSURE
<222> (28)..(28)
<223> Xaa is Isoleucine or Valine

<220>
<221> UNSURE
<222> (29)..(29)
<223> Xaa is Valine or Serine

<220>
<221> UNSURE
<222> (30)..(30)
<223> Xaa is Glutamic Acid or Aspartic Acid

<220>
<221> UNSURE
<222> (31)..(31)
<223> Xaa is Serine or Alanine or Cysteine

<220>
<221> UNSURE
<222> (33)..(33)
<223> Xaa is Serine or Tryptophan or Alanine

<220>
<221> UNSURE
<222> (34)..(34)
<223> Xaa is Threonine or Glycine or Glutamic Acid

<220>
<221> UNSURE
<222> (37)..(37)
<223> Xaa is Arginine or Threonine

<220>
<221> UNSURE
<222> (41)..(41)
<223> Xaa is Arginine or Cysteine

<220>
<221> UNSURE
<222> (44)..(44)
<223> Xaa is Serine or Cysteine

<220>
<221> UNSURE
<222> (45)..(45)
<223> Xaa is Valine or Isoleucine

<220>
<221> UNSURE
<222> (46)..(46)
<223> Xaa is Leucine or Isoleucine

<220>
<221> UNSURE
<222> (47)..(47)
<223> Xaa is Glycine or Serine

<220>
<221> UNSURE
<222> (49)..(49)
<223> Xaa is Asparagine or Threonine or Glycine

<220>
<221> UNSURE
<222> (51)..(51)
<223> Xaa is Threonine or Alanine

<220>
<221> UNSURE
<222> (53)..(53)
<223> Xaa is Serine or Threonine or Valine

<220>
<221> UNSURE
<222> (56)..(56)
<223> Xaa is Threonine or Alanine

<220>
<221> UNSURE
<222> (57)..(57)
<223> Xaa is Leucine or Isoleucine

<220>
<221> UNSURE
<222> (60)..(68)
<223> Xaa can be any naturally occurring amino acid or can be none

<220>
<221> UNSURE
<222> (70)..(70)
<223> Xaa is Valine or Isoleucine or Alanine

<220>
<221> UNSURE
<222> (73)..(73)
<223> Xaa is Histidine or Arginine

<220>
<221> UNSURE
<222> (77)..(77)
<223> Xaa is Glutamic Acid or Aspartic Acid

<220>
<221> UNSURE
<222> (85)..(85)
<223> Xaa is Valine or Alanine or Serine

<220>
<221> UNSURE
<222> (95)..(95)
<223> Xaa is Glycine or Serine

<220>
<221> UNSURE
<222> (98)..(98)
<223> Xaa is Serine or Threonine

<220>
<221> UNSURE
<222> (99)..(99)
<223> Xaa is Isoleucine or Valine

<220>
<221> UNSURE
<222> (100)..(100)
<223> Xaa is Phenylalanine or Tyrosine

<220>
<221> UNSURE
<222> (104)..(104)
<223> Xaa is Glycine or Valine

<400> 11

Xaa Lys Xaa Pro Xaa Ile Xaa Xaa Arg Asp Ser Pro Asn Xaa Leu Xaa
1 5 10 15

Ser His Val Leu Glu Xaa Xaa Xaa Gly Xaa Asp Xaa Xaa Xaa Xaa Val
20 25 30

Xaa Xaa Tyr Ala Xaa Arg Arg Gly Xaa Gly Val Xaa Xaa Xaa Xaa Gly
35 40 45

Xaa Gly Xaa Val Xaa Asn Val Xaa Xaa Arg Gln Xaa Xaa Xaa Xaa Xaa
50 55 60

Xaa Xaa Xaa Xaa Val Xaa Thr Leu Xaa Gly Arg Phe Xaa Ile Leu Ser
65 70 75 80

Leu Thr Gly Thr Xaa Leu Pro Pro Ala Pro Pro Gly Ala Xaa Gly
85 90 95

Leu Xaa Xaa Xaa Leu Ala Gly Xaa Gln Gly Gln Val
100 105

<210> 12
<211> 1473
<212> DNA
<213> Arabidopsis thaliana

<400> 12

tctcaagctt ctctctcctt ttttccat agcacatcag aatcgctaaa tacgactcct 60
atgcaaagaa gaagctactt ctttccttg ccctaattaa tctacctaac tagggttcc 120
tcttacctt catgagagag atcatttaac ataagtcacc ttttttatat ctttgcttc 180

gtcttaatt tagttctgtt cttggctgt ttctatattt tgcggcttg cgtaaccgat 240
cacacctaatt tgcttagct attgttcctt caaaatcatg agtttgact tctcgatctg 300
agttttcttt ttctctctt acgctttct tcaccttagct accaatatat gaacgagcag 360
gatcaagaat cgagaaattt atttgagctg gcaataagc agtggggta taggaaatta 420
gtagatgcgg cgccgatgga aggccgttac gagcaaggcg gtggagcttc tagataactc 480
cataacctct ttagaccgga gattcaccac caacagcttc aaccgcaggg cggtatcaat 540
cttatcgacc agcatcatca tcagcaccag caacatcaac aacaacaaca accgtcgat 600
gattcaagag aatctgacca ttcaaacaaa gatcatcatc aacagggtcg acccgattca 660
gaccgcata catcaagctc agcaccggga aaacgtccac gtggacgtcc accaggatct 720
aagaacaaag ccaagccacc gatcatagta actcgtgata gccccaacgc gcttagatct 780
cacgttctt aagtatctcc tggagctgac atagttgaga gtgttccac gtacgctagg 840
aggagagggg gaggcgtctc cgtttagga ggaaacggca ccgtatctaa cgtcactctc 900
cgtcagccag tcactcctgg aaatggcggt ggtgtgtccg gaggaggagg agttgtgact 960
ttacatggaa gtttgagat tcttcgcta acggggactg tttgccacc tcctgcaccc 1020
cctgggtccg gtggtttgtc tatattttta gccggagggc aaggtcaggt ggtcggagga 1080
agcggttgtgg ctccccttat tgcacatcgat ccgttataac taatggccgc ttctgttca 1140
aatgcgttt tcgagagact accgatttag gaggaggaag aagaaggtgg tggggcgga 1200
ggaggaggag gaggaggggcc accgcagatg caacaagctc catcagcatc tccggcgat 1260
ggagtgaccg gtcagggaca gtttaggaggt aatgtgggtg gttatgggtt ttctggat 1320
cctcattgc ttggatgggg agctggaaca cttcaagac cacctttta attgaattt 1380
aatgtccgga aatttatgtt ttttatcat cttgaggagt cgtcttcct ttggatatt 1440
tgggtttaa tggttagttt atatgcataat ttt 1473