AES加密解析

· AES加密过程:

为方便概述,这里以16字节规格的明文为例子。直接开始讲过程。

		_	_
s _{0,0}	$s_{0,1}$	S _{0,2}	s _{0,3}
s _{1,0}	$s_{1,1}$	\$1,2	s _{1,3}
\$2,0	s _{2,1}	\$2,2	S _{2,3}
\$3,0	s _{3,1}	\$3,2	s _{3,3}

这是输入的明文矩阵。矩阵中的一个元素代表一个字节,字节有8个比特。化成16进制就是两位16进制的数。

步骤一

字节代替 (Substitute Bytes) : 用S盒完成;

举例:取明文中的 $S_{0,0}$ 假设值为 $\{A5\}$,那么就找到s盒中的第十行第五列,然后把 $\{A5\}$ 改成s盒中对应的数字。

		y															
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
x	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

这个是s盒,以上述为例,{A5}改成{06}

重点理解S盒构造方法:

- 1. 初始化S盒, 为{00}{01}...{FF}
- 2. 求S盒中对应的值在 $GF(2^8)$ 下的逆元。举例{F5}转化成二级制为11110101. 对应的多项式为: $x^7+x^6+x^5+x^4+x^2+1$ 。也就是设多项式y使得

$$y * (x^7 + x^6 + x^5 + x^4 + x^2 + 1) \equiv 1 \pmod{x^8 + x^4 + x^3 + x + 1}$$

最终可求得 $y = x^6 + x^2 + x$,转化成二级制就是01000110,也就是{46}。

接着根据约定俗成的矩阵相乘得到一个新的二进制数。

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{bmatrix}$$
其中在求得y之后,按低位向高位以此向下排列,与矩阵相乘。
可求得位列向量 $b_0 \sim b_7$ = {10100001}.

在求得位列向量之后,把该向量与{11000110}取异或操作。

$$\begin{bmatrix} b_0' \\ b_1' \\ b_2' \\ b_3' \\ b_4' \\ b_5' \\ b_6' \\ b_7' \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \bigoplus \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

所以得 $b_7^{'}\sim b_0^{'}$ 为{11100110}。也就是{E6}。查S盒的表可得,第F行第5列为{E6}。

构造S盒的难点在于求多项式的逆元,请大家要熟练掌握求多项式的逆元。

步骤二

行移位 (ShiftRows) : 置换

对于已经进行过字节代替的明文,行位移的做法是第0行向左移动0个字节,第1行向左移动1个字节, 把

溢出的字节添在丢失的字节位上。

步骤三

列混淆 (MixColumns) : 利用 $GF(2^8)$

书上的方法可能看起来比较难以理解, 所以我打算用自己的方法来写。

当我们在步骤二完成后,已经求出了一个全新的矩阵,现在我们需要把这个矩阵乘以一个规定的矩阵。

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$
作为其中的一个例子,我们计算一下{03}* $S_{1,0}$ 。

把 $\{03\}$ 转化成16进制, $\{00000011\}$.对应的多项式为x+1.那么现在就是求 $[(x+1)*S_{1,0}] \mod(x^8+x^4+x^3+x+1)$

那么问题就又转化成多项式的乘法与加法,并且在 $GF(2^8)$ 的有限域下进行,即结果都要 $mod(x^8+x^4+x^3+x+1)$

以上方法虽然麻烦点,但是便于理解。当理解上述方法后,就可以看懂书上的方法了。

步骤四

轮密钥加变换

这步骤十分简单,不说了。