计算机组成原理考试模拟试题-05

一、选择题(每小题 1 分,共 15 分)

1 冯•诺依曼机工作的基本方式的特点是()。
A 多指令流单数据流
B 按地址访问并顺序执行指令
C 堆栈操作
D 存贮器按内容选择地址
2 在机器数()中,零的表示形式是唯一的。
A 原码 B 补码 C 移码 D 反码
3 在定点二进制运算器中,减法运算一般通过()来实现。
A 原码运算的二进制减法器
B 补码运算的二进制减法器
C 原码运算的十进制加法器
D 补码运算的二进制加法器
4 某计算机字长 32 位,其存储容量为 256MB,若按单字编址,它的寻址范围 是()。
A 0—64MB B 0—32MB C 0—32M D 0—64M
5 主存贮器和 CPU 之间增加 cache 的目的是()。
A 解决 CPU 和主存之间的速度匹配问题
B 扩大主存贮器容量
C 扩大 CPU 中通用寄存器的数量
D 既扩大主存贮器容量,又扩大 CPU 中通用寄存器的数量
6 单地址指令中为了完成两个数的算术运算,除地址码指明的一个操作数外,另一个常需采用()。

A 堆栈寻址方式 B 立即寻址方式
C 隐含寻址方式 D 间接寻址方式
7 同步控制是()。
A 只适用于 CPU 控制的方式
B 只适用于外围设备控制的方式
C 由统一时序信号控制的方式
D 所有指令执行时间都相同的方式
8 描述 PCI 总线中基本概念不正确的句子是()。
A PCI 总线是一个与处理器无关的高速外围设备
B PCI 总线的基本传输机制是猝发式传送
C PCI 设备一定是主设备
D 系统中只允许有一条 PCI 总线
9 CRT 的分辨率为 1024×1024 像素, 像素的颜色数为 256, 则刷新存储器的容量为()。
A 512KB B 1MB C 256KB D 2MB
10 为了便于实现多级中断,保存现场信息最有效的办法是采用()。
A 通用寄存器 B 堆栈 C 存储器 D 外存
11 特权指令是由()执行的机器指令。
A 中断程序 B 用户程序 C 操作系统核心程序 D I/O 程序
12 虚拟存储技术主要解决存储器的()问题。
A 速度 B 扩大存储容量 C 成本 D 前三者兼顾
13 引入多道程序的目的在于()。
A 充分利用 CPU,减少等待 CPU 时间
B 提高实时响应速度

C 有利于代码共享,减少主辅存信息交换量
D 充分利用存储器
14 64 位双核安腾处理机采用了()技术。
A 流水 B 时间并行 C 资源重复 D 流水+资源重复
15 在安腾处理机中,控制推测技术主要用于解决()问题。
A 中断服务
B 与取数指令有关的控制相关
C 与转移指令有关的控制相关
D 与存数指令有关的控制相关
二、填空题(每小题 2 分,共 20 分)
1 在计算机术语中,将 ALU 控制器和 () 存储器合在一起称为 ()。
2 数的真值变成机器码可采用原码表示法,反码表示法,()表示法,()表示法。
3 广泛使用的()和()都是半导体随机读写存储器。前者的速度比后者快,但集成度不如后者高。
4 反映主存速度指标的三个术语是存取时间、()和()。
5 形成指令地址的方法称为指令寻址,通常是()寻址,遇到转移指令时()寻址。
6 CPU 从()取出一条指令并执行这条指令的时间和称为()。
7 RISC 指令系统的最大特点是:只有()指令和()指令访问存储器, 其余指令的操作均在寄存器之间进行。
8 微型机的标准总线,从带宽 132MB/S 的 32 位()总线发展到 64 位的() 总线。
9 IA-32 表示()公司的()位处理机体系结构。
10 安腾体系机构采用显示并行指令计算技术,在指令中设计了()字段,用以指明哪些指令可以()执行。

三、简答题 (每小题 8 分, 共 16 分)

- 1 简述 64 位安腾处理机的体系结构主要特点。
- 2 画出分布式仲裁器的逻辑示意图。

四、计算题(10分)

已知 x=-0.01111, y=+0.11001, 求:

- ① $[x]_{*}, [-x]_{*}, [y]_{*}, [-y]_{*};$
- ② x+y, x-y, 判断加减运算是否溢出。

五、设计题(12分)

用 2M×8 位的 SRAM 芯片,设计 8M×32 位的 SRAM 存储器。

六、分析题(12分)

参见图 1, 这是一个二维中断系统, 请问:

- ① 在中断情况下, CPU 和设备的优先级如何考虑?请按降序排列各设备的中断优先级。
- ② 若 CPU 现执行设备 C 的中断服务程序, IM₂, IM₁, IM₄的状态是什么?如果 CPU 执行设备 H 的中断服务程序, IM₂, IM₁, IM₆的状态又是什么?
- ③ 每一级的 IM 能否对某个优先级的个别设备单独进行屏蔽?如果不能, 采取什么方法可达到目的?
- ④ 若设备 C 一提出中断请求,CPU 立即进行响应,如何调整才能满足此要求?

七、设计题(15分)

图 2 所示为双总线结构机器的数据通路,IR 为指令寄存器,PC 为程序计数器(具有自增功能),M 为主存(受 R/W#信号控制),AR 为地址寄存器,DR 为数据缓冲寄存器,ALU 由加、减控制信号决定完成何种操作,控制信号 G 控制的是一个门电路。另外,线上标注有小圈表示有控制信号,例中 y_i 表示 y 寄存器的输入控制信号, R_i 。为寄存器 R_i 的输出控制信号,未标字符的线为直通线,不受控制。

- ① "ADD R2, R0"指令完成 $(R_0)+(R_2) \rightarrow R_0$ 的功能操作,画出其指令周期流程图,假设该指令的地址已放入 PC 中。并在流程图每一个 CPU 周期右边列出相应的微操作控制信号序列。
- ② 若将(取指周期)缩短为一个 CPU 周期,请先画出修改数据通路,然后画出指令周期流程图。

图 2