EBU7240 Consended Exhibitor

- Detections: Prodestriemdetection -

Add WeChat powcoder

Semester 1, 2021

Changjae Oh

Outline

- Overview
- Dalal-Triggs (pedestrian detection)
 - Histogram of Oriented Gradients
 - Learning with SVM
 Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Object Detection

- Focus on object search: "Where is it?"
- Build templates that differentiate object patch from background patch

Challenges in modeling the object class

Illumination

https://powsoder.com

'Clutter'

Occlusions

Intra-class appearance

Viewpoint

[K. Grauman, B. Leibe]

Challenges in modeling the non-object class

Object Detection Design challenges

- How to efficiently search for likely objects
 - Even simple models require searching hundreds of thousands of positions and scales.
- Feature design and saggingment Project Exam Help
 - How should appearance be modeled?
 - What features correspond to the object? powcoder.com

Add WeChat powcoder

- How to deal with different viewpoints?
 - Often train different models for a few different viewpoints

General Process of Object Detection

1. Statistical Template in Bounding Box

- Object is some (x,y,w,h) in image
- Features defined with respect to bounding box coordinates

Assignment Project Exam Help

2. Articulated parts model

- Object is configuration of parts
- Each part is detectable

Assignment Project Exam Help

Hybrid template/parts model

coarse resolution

4. 3D-ish model

Object is collection of 3D planar patches under affine transformation

4. Deformable 3D model

Object is a parameterized space of shape/pose/deformation of class of 3D object

Why not just pick the most complex model?

Inference is harder

- More parameters
- Harder to 'fit' (infer / optimize fit)
- Longer computation

Assignment Project Exam Hel

https://powcoder.com

Add WeChat poweode

+ PoseBERT

General Process of Object Detection

Specify Object Model

Assignment Project Exam Help

Generate Hypotheses https://powcoder.com Propose an alignment of the model to the image

Add WeChat powcoder Score Hypotheses

Resolve Detections

Generating hypotheses

1. 2D template model / sliding window

Test patch at each location and scale

Generating hypotheses

2D template model / sliding window

Test patch at each location and scale

Note – Template did not change size

Each window is separately classified

Generating hypotheses

2. Region-based proposal

Arbitrary bounding box + image 'cut' segmentation

General Process of Object Detection

Specify Object Model Assignment Project Exam Help Generate Hypotheses https://powcoder.com Add WeChat powcoder Mainly gradient-based features, usually based Score Hypotheses on summary representation, many classifiers. Resolve Detections

General Process of Object Detection

Resolving detection scores

Non-max suppression

Resolving detection scores

2. Context/reasoning

- Via geometry
- Via known information or prior distributions
- Non-max suppression Assignment Project Ex

(g) Car Detections: Local (h) Ped Detections: Local

Hoiem et al. 2006

Dalal Triggs: Person detection with HOG & linear SVM

Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs, International Conference on Computer Vision & Pattern Recognition - June 2005

Statistical Template

Object model = sum of scores of features at fixed positions!

Assign2nent Project Exans Helps

https://powcoder.comNon-object

Add WeChat powcoder

$$?$$
+4+1+0.5+3+0.5 = 10.5 $>$ 7.5

Object

Example: Dalal-Triggs pedestrian detector

- Extract fixed-sized (64x128 pixel) window at each position and scale https://powcoder.com
 Compute HOG (histogram of gradient) features within each window
- Score the window withdalline Champtassifieter
- Perform non-maxima suppression to remove overlapping detections w ith lower scores

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

Slides by Pete Barnum 27

Tested with

- RGB
 Slightly better performance vs. grayscale
- LAB
 Assignment Project Exam Help
- Grayscale

Gamma Normalization and Compression

- Square root
 Very slightly better performance vs. no adjustment
- Log

Person /

classification

Histogram of Oriented Gradients

Orientation: 9 bins (for un Histograms over signed angles o -180) https://powcoder.com

- Votes weighted by magnitude
- Bilinear interpolation between cells

Normalize with respect to surrounding cells

Rectangular HOG (R-HOG)

$$f = \frac{v}{\sqrt{\|v\|_2^2 + e^2}}$$

Extract responses from cell of interest.

Do this 4x for each neighbor set in 2x2.

e is a small constant (to remove div. by zero on empty bins)

Origin

Margin

Strengths/Weaknesses of Statistical Template Approach

Strengths

- Works very well for non-deformable objects with canonical orientations: faces, cars, p
 edestrians
- Fast detection

Assignment Project Exam Help

Weaknesses

https://powcoder.com

- Not so well for highly deformable which the post of the property of the company of the company
- Not robust to occlusion
- Requires lots of training data

EBU7240 Consender Exmission

- Detection -

Add WeChat powcoder

Semester 1, 2021

Changjae Oh

Outline

- Overview
- Viola-Jones (face detection)
 - Boosting for learning
 - Decision trees

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Consumer application: Apple iPhoto

Things iPhoto thinks are faces

Challenges of face detection

- Sliding window = tens of thousands of location/scale evaluations
 - One megapixel image has ~ 10^6 pixels, and a comparable number of candidate face lo cations

Assignment Project Exam Help

- Faces are rare: o-10 per image
 - For computational efficiency, spend as little time as possible on the non-face windows

Add WeChat powcoder

• For 1 Mpix, to avoid having a false positive in every image, our false positive rate has to be less than 10^{-6}

The Viola/Jones Face Detector

- A seminal approach to real-time object detection.
- Training is slow, but detection is very fast
- Key ideas:

Assignment Project Exam Help

- 1. Integral images for fast feature evaluation thinks. Powcoder.com
- 2. Boosting for feature selection
- 3. Attentional cascade for fast non-race with downered tron

1. Integral images for fast feature evaluation

- The integral image computes a value at each pixel (x,y) that is the sum of all pixel values above and to the left of (x,y) inclusive.

 Assignment Project Exam Help
- This can quickly be computed in $I_{\sum}(x,y) = \sum_{\substack{x' \leq x \\ y' \leq y}} i(x',y')$ one pass through the imaged WeChat powcoder
- 'Summed area table'

Computing the integral image

Image

Computing the integral image

```
Assignment Project Exam Help
```

- Cumulative row sum: s(x, y) = s(x-1, y) + i(x, y)
- Integral image: ii(x, y) = ii(x, y-1) + s(x, y)

```
Python: ii = np.cumsum(i)
```

Computing sum within a rectangle

 Let A,B,C,D be the values of the integra I image at the corners of a rectangle

• The sum of original image walker with the Exam Help the rectangle can be computed as: https://powcoder.com

- sum = A - B - C + D

Add WeChat powcoder

Only 3 additions are required for any size of rectangle!

Integral Images

• ii = cumsum(cumsum(im, 1), 2)

ii(x,y) = Sum of the values in the grey region

Add WeChat powcoder

SUM within Rectangle D is ii(4) - ii(2) - ii(3) + ii(1)

Integral Images- example

 Find the integral image of the figure below and computer the sum of pix els in the grey region based on the integral image.

1	2	3	4	5	As	sigr	ımeı	l			kam Help
1	1	1	2	6		₂ ht	tps:/	/pov	N CS (1 25 .0	om = 42 – 10 – 4 + 1
1	6	0	5	2		3 ^A	d d2V				coder
1	3	6	5	1		4	16	26	42	56	
1	2	0	1	3		5	19	29	46	63	

Features that are fast to compute

"Haar-like features"

- Differences of sums of intensity
- Computed at different positions and scales
 within sliding window
 Assignment Project Exam Help

https://powcoder.com

Image Features

Value = \sum (pixels in white area) - \sum (pixels in black area)

Example

Computing a rectangle feature

But these features are rubbish...!

Yes, individually they are 'weak classifiers'

•Jargon: 'feature' and 'classifier' are used interchangeably here.
Also with 'learner'.

Assignment Project Exam Help

But, what if whetgom/pione thibus ands of them...

Add WeChat powcoder

How many features are there?

 For a 24x24 detection region, the number of possible rectangle features is ~160,000!

How many features are there?

- For a 24x24 detection region, the number of possible rectangle features is ~160,000!
- At test time, it is impraction to the test time, it is impractional to the test time, it is impractional to the test time.

https://powcoder.com

• Can we learn a 'strong classifier' using just a small subset of all possible f eatures?

Add WeChat powcoder

2. Boosting for feature selection

Initially, weight each training example equally.

2. Boosting for feature selection

Round 3: Compute final classifier as linear combination of all weak Assignment Project Ram Help classifier. Weight of each classifier is https://powco directly proportional taits WeChat powcode accuracy.

Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost).

Boosting for face detection

First two features selected by boosting:

The first feature measures the difference in intensity between the region of the eyes a
nd a region across the upper cheeks. The feature capitalizes on the observation that t
he eye region is often darker than the cheeks.

The second feature compares the intensities in the eye regions to the intensity across the bridge of the nose.
 https://powcoder.com

Feature selection with boosting

- Create a large pool of features (18oK)
- Select discriminative features that work well together

• "Weak learner" = feature + threshold + 'polarity' Add WeChat powcoder $h_j(\mathbf{x}) = \begin{cases} -s_j & \text{if } f_j < \theta_j \\ s_i & \text{otherwise} \end{cases}$ value of rectangle feature

'polarity' = black or white region flip $\longrightarrow s_j \in \pm 1$

 Choose weak learner that minimizes error on the weighted training set, then reweight

threshold

Boosting: Pros and Cons

Advantages of boosting

- Integrates classifier training with feature selection
- Complexity of training is linear instead of quadratic in the number of training examples
- Flexibility in the choice of weak learners, boosting scheme Assignment Project Exam Help
- Testing is fast

https://powcoder.com

Disadvantages

Add WeChat powcoder

- Needs many training examples
- Training is slow

Cascade for Fast Detection

Fast classifiers early in cascade which reject many negative examples but detect almost all positive examples.

Slow classifiers later, but most examples don't get there.

Attentional cascade

Chain classifiers that are progressively more complex and have lower false positive rates:

Attentional cascade

- The detection rate and the false positive rate of the cascade are found by multiplying the respective rates of the individual stages
- A detection rate of 0.9 and a false positive rate of about 0.30 (0.310 \approx 6×10⁻⁶)

Add WeChat powcoder

Training the cascade

- Set target detection and false positive rates for each stage
- Keep adding features to the current stage until its target rates have been met
 - Need to lower boosting threshold to maximize detection paying the paying threshold to make the paying threshold threshold to make the paying threshold t
 - Test on a validation set
 https://powcoder.com
- If the overall false positive rate is not low enough, then add another stage
- Use false positives from current stage as the negative training examples f
 or the next stage

The implemented system

Training Data

- 5000 faces
 - All frontal, rescaled to 24x24 pixels
- 300 million non-faces
 - 9500 non-face images
- Faces are normalized
 - Scale, translation

Many variations

- Across individuals
- Illumination
- Pose

Viola-Jones details

- 38 stages with 1, 10, 25, 50 ... features
 - 6061 total used out of 180K candidates
 - 10 features evaluated on average
- Training Examples
 - 4916 positive examples Assignment Project Exam Help
 - 10000 negative examples collected after code stage
- Scanning
 - Scale detector rather than image

 Add WeChat powcoder
 - Scale steps = 1.25 (factor between two consecutive scales)
 - Translation 1*scale (# pixels between two consecutive windows)
- Non-max suppression: average coordinates of overlapping boxes
- Train 3 classifiers and take vote

Viola-Jones Results

Speed = 15 FPS (in 2001)

Add WeChat powcoder										
Auu	W CC	mai f	JOWC							
False detections		_								
Detector	10	31	50	65	78	95	167			
Viola-Jones	76.1%	88.4%	91.4%	92.0%	92.1%	92.9%	93.9%			
Viola-Jones (voting)	81.1%	89.7%	92.1%	93.1%	93.1%	93.2 %	93.7%			
Rowley-Baluja-Kanade	83.2%	86.0%	-	-	-	89.2%	90.1%			
Schneiderman-Kanade	-	-	-	94.4%	-	-	-			
Roth-Yang-Ahuja	-	-	-	-	(94.8%)	-	-			

Boosting for face detection

 A 200-feature classifier can yield 95% detection rat e and a false positive rate of 1 in 14084

Output of Face Detector on Test Images

Summary: Viola/Jones detector

- Rectangle features
- Integral images for fast computation
- Boosting for feature selection
- Attentional cascade for fastneje tion of fregative windows

https://powcoder.com

Add WeChat powcoder