RELÁTORIO TP4
GUILHERME MARTINS SPECHT (20102977 - 4)
LUCAS DIAS NARDINO (21101052 - 5)
4646B-04 - Fundamentos de Sistemas Digitais - Turma 010 - 2021/2 - Prof. Rafael
Fraga Garibotti
ESPECIFICAÇÃO 3

PSEUDOCÓDIGO EM C++
main.cpp

```
#include <iostream>
using namespace std;
int main()
int n = 6, k = 0;
int A[6] = {810, 100, 560, 380, 600, 87};
int B[6] = {800, 555, 817, 124, 890, 456};
                                                 Vetores
int C[6] = {345, 200, 700, 180, 600, 490};
int D[6];
int S1 = 0, S2 = 0, S3 = 0, i;
double MA, MB, MC;
for(i = 0; i < n; i++){
S1 = S1 + A[i];
MA = S1/n;
for(i = 0; i < n; i++){
S2 = S2 + B[i];
                            Calcula o valor das médias
MB = S2/n;
for(i = 0; i < n; i++){
S3 = S3 + C[i];
MC = S3/n;
```

```
if(MA < MB \&\& MA < MC){
for(i = 0; i < n; i++){
if(MA < A[i]){
D[k] = A[i];
k++;
if(MA < B[i])
D[k] = B[i];
k++;
if(MA < C[i]){
D[k] = C[i];
k++;
```

```
if(MB < MA && MB < MC){
for(i = 0; i < n; i++){
if(MB < A[i]){
D[k] = A[i];
k++:
if(MB < B[i])
D[k] = B[i];
k++;
if(MB < C[i]){
D[k] = C[i];
k++;
```

```
if(MC < MB \&\& MC < MA){
for(i = 0; i < n; i++){
if(MC < A[i]){
D[k] = A[i];
k++:
if(MC < B[i]){
D[k] = B[i];
k++;
if(MC < C[i]){
D[k] = C[i];
k++;
}return 0}
```

Analisa se a média A é a menor das três médias.

Analisa se a média B é a menor das três médias.

Analisa se a média C é a menor das três médias.

Para a análise de C++ para Assembly consideraremos os laços "for" serem laços "while".

Ex:

```
i = 0;
for(i = 0; i < n; i++){
    S1 = S1 + A[i];
}
MA = S1/n;
i = 0;
while(i < n){
    S1 = S1 + A[i];
    i++;
}
MA = S1/n;</pre>
```

CÓDIGO C++: **CÓDIGO MIPS:** int n; ______ \$s0 int i; _______ \$t2 int A[]; → \$t3 int B[]; \$t4 int C[]; — \$t5 int D[]; — → \$t0 double MA; double MB; double MV; \$t9 double MC;

- n = Número de elementos dos vetores A, B e C.
- **k** = Número de elementos do vetor D.
- Vetor A
- Vetor B
- Vetor C

- n = Número de elementos dos vetores A, B e C.
- k = Número de elementos do vetor D.
- Vetor A
- Vetor B
- Vetor C
- Vetor D

.data

n: .word 4

k: .word 0

A: .word 255 801 198 433

B: .word 100 200 300 400

C: .word 450 666 20 780

D: .word 0

- Leitura do Primeiro Vetor e Média 1
- **Leitura do Segundo Vetor e Média 2**

♦ mem0	4 (4
♦ mem1	0 0
→ mem2	255 (255
→ mem3	801 (801
♦ mem4	198 (198
♦ mem5	433 (433
♦ mem6	100 (100
♦ mem7	200 (200
♦ mem8	300 (300
♦ mem9	400 (400
mem 10	450 (450
mem11	666 (666
mem12	20 (20
mem13	780 (780
mem14	450 (450
mem 15	450 ()) 450
♦ mem 16	450 (0 ,450
♦ mem17	450 0 450
mem 18	450 (0 (450
mem 19	450 (0) 450

Final da Simulação