

10. Transistoreak.

- Ezaugarriak eta sinboloa
- Transistoreen sailkapena
- Transistore bipolarrak

Ezaugarriak eta sinboloa (I)

- Hiru muturreko osagaia. Mutur bat: kontrol-terminala.
- Kontrol-magnitudea: tentsioa edo korrontea.
- Egitura: bi PN juntura.
- Guk egoera egonkorrean analizatuko ditugu. Badira beste erabilerak ere.

Ezaugarriak eta sinboloa (II)

Transistoreen sailkapena

Transistore bipolarrak: BJT

- Korrontea: elektroiak eta hutsuneak mugitzen dira.
- Kontrol-magnitudea: korrontea.
- Bi motakoak: NPN eta PNP.

Transistore unipolarrak edo eremu-efektuzkoak: FET

- Eremu elektrikoak eragina du portaeran.
- Korrontea: elektroiak soilik edo hutsuneak soilik, motaren arabera.
- Kontrol-magnitudea: potentzial-diferentzia.
- Bi mota: JFET eta FETMOS.
- FETMOS: N kanalekoak (e⁻) eta P kanalekoak (e⁺).

Juntura bakarreko transistoreak: UJT

Bereziak: ez ditugu aztertuko.

Transistore bipolarrak

- Kontrol-magnitudea: korrontea; $i = f(V_{AB}, i_{KT})$.
- Bi aukera junturak egiteko.

- Erdiko muturra: kontrolekoa. Oinarria deritzo, B (base)
- Ezkerrekoa: igorlea, E (emitter)
- Eskuinekoa: kolektorea, C (collector)

Transistore bipolarrak: motak

NPN transistorea

PNP transistorea

- Gezia beti igorlean
- Geziaren noranzkoa: P-tik N-rantz

Transistore bipolarrak: magnitudeak

- Sei magnitude erlazionatuta
- Terminal bakoitzeko korrontea: I_C, I_B, I_E
- Terminalen arteko potentzial-diferentziak: V_{BE}, V_{BC}, V_{CE}
- Bi portaera-ekuazio
- AKORDIOA: Korr. noranzkoak eta tentsioen zeinuak

Transistore bipolarrak: ekuazioak (I)

Transistore bipolarren portaera-ekuazioak (II)

KTL:
$$V_{BB} = R_B I_B + V_{BE}$$
 KTL: $V_{BC} = V_{BE} - V_{CE}$

$$I_C = f(V_{CE}, I_B)$$
 $I_B = g(V_{BE}, V_{CE})$

- 2 portaera-ekuazioak: esperimentalki, osagaia analizatuz
- Sinplifikatuz: transistorearen operazio-puntua

$$Q(I_B, I_C, V_{BE}, V_{CE})$$

Bi portaera-ekuazioak

$$I_B = g(V_{BE}, V_{CE})$$

• V_{CE} tentsioak ez du ia influentziarik. Sinplifikatzen da.

$I_C = f(V_{CE}, I_B)$

Funtzionamendu-zonak: hurbilk. linealak (I)

• Bi PN juntura izanik, 4 dira polarizazio posibleak.

BE juntura AP AP ZP ZP BC juntura AP ZP AP ZP

Nola desberdindu E eta C artean?

Zeinek funtzionatzen duen E moduan, eta zeinek C moduan, junturen polarizazio erlatiboak zehazten du, nahiz eta, fisikoki, bi mutur horiek ez diren guztiz berdinak

Zuzeneko funtzionamendua edo arrunta, NPN transistorean:

$$V_{BE} > V_{BC}$$

• Alderantzizko funtzionamendua NPN transistorean:

$$V_{BE} < V_{BC}$$

Funtzionamendu-zonak: hurbilk. linealak (II)

- Guk zuzeneko funtzionamendua analizatuko dugu, soilik.
 Beraz, NPN transistorean: V_{BE}> V_{BC} baldintza, beti betetzen dela onartuko dugu
- Zuzeneko funtzionamendua posible da aurreko lau aukeretatik hirutan, bestean ez
- Hiru funtzionamendu-zona:

Kortea
Zona Aktibo Arrunta (ZAA)
Asetasuna

1. Korteko zona

- BE eta BC, alderantzizko polarizazioan, AP-an
- Beraz: $V_{BE} \le 0.7 \text{ V}$ eta $V_{BC} \le 0.7 \text{ V}$

(egiaztatzen ohi da soilik $V_{BE} \le 0.7 \text{ V}$; zuzeneko funtzionamendua)

- AP-an ez dago korronterik: $I_C = 0$ A, $I_B = 0$ A (ondorioz, $I_E = 0$ A)
- Honez gero, baditugu falta genituen bi ekuazioak
- Laburbilduz:

baldintza ekuazioak $V_{BF} \le 0.7 \text{ V} \Rightarrow I_C = 0, I_B = 0$

2. Zona Aktibo Arrunta (ZAA)

- BE juntura ZP-an; BC juntura AP-an.
- Korrontea bi junturetan, baina $I_B << I_C$
- BE juntura ZP-an: $V_{BE} = 0.7 \text{ V}$ (1. ekuazioa)
- Beste ekuazioa: transistorearen ezaugarri grafikoa analizatuz
- Analisiaren ondorioz: $I_C/I_B = I_S$ (2. ekuazioa)
- ß "korronte-irabazia". Balio zehatza aldatzen da transistore batetik bestera. Askotan, 100 balioa.

2. Zona Aktibo Arrunta (ZAA)

ZAA egiaztatzeko konprobatu behar da BC juntura AP-an dagoela, hau da: $V_{BC} \le 0.5 \text{ V}$ (ez 0,7 V juntura isolatuan bezala).

Baliokidea da konprobatzea: V_{CE}≥ 0,2 V

(zeren
$$V_{BC} = V_{BE} + V_{EC} = V_{BE} - V_{CE} \rightarrow V_{CE} = V_{BE} - V_{BC}$$
)

baldintza ekuazioak

$$V_{CE} \ge 0.2 \text{ V} \implies V_{BE} = 0.7 \text{ V}$$

$$\frac{I_C}{I_D} = \beta$$

3. Asetasuna

- BE eta BC, ZP-an
- Korrontea bi junturetan. I_B , aurrekoan baino handiagoa
- Bi junturak ZP-an daudenez: $V_{BE} = 0.7 \text{ V}$ eta $V_{CE} = 0.2 \text{ V}$
- Ez dago erlazio konstantea bi korronteen artean.
- Zona hau egiaztatzeko konprobatu behar da: $I_C/I_B \le I_S$

baldintza ekuazioak $\frac{I_C}{I_B} \leq \beta \Rightarrow V_{BE} = 0.7 \text{ V}$ $V_{CE} = 0.2 \text{ V}$

Funtzionamendu-zonak ezaugarri grafikoan

Egiten den hurbilketa

Ebazpen grafikoa transistoreekin

Sarrerako zirkuitua

$$V_{BB} = R_B I_B + V_{BE}$$

$$I_B = \frac{V_{BB}}{R_B} - \frac{1}{R_B} \cdot V_{BE}$$
 Sarrerako KARGA-ZUZENA

• (I_B, V_{BE}) grafikaren plano berean margotuko dugu zuzen hori

• Sarrerako operazio-puntua lortzen dugu horrela: (I_{BQ}, V_{BEQ})

• Irteerako zirkuitua

$$V_{CC} = R_C I_C + V_{CE}$$

$$I_C = \frac{V_{CC}}{R_C} - \frac{1}{R_C} \cdot V_{CE}$$
 Irteerako KARGA-ZUZENA

• (I_C, V_{CE}) grafikaren plano berean margotuko dugu zuzen hori

- I_B ezagutzen badugu, irteerako operazio-puntua lortuko dugu: (I_{CQ}, V_{CEQ})
- Transistorearen operazio-puntua: $Q(I_B, I_C, V_{BE}, V_{CE})$