Грамматики и синтаксический анализ

Евгений Борисов

Уровни сложности при автоматической обработке текстов

Прагматика (Дискурс) - смысловые контексты

Семантика - смыслы последовательностей слов

Синтаксис - последовательности слов

Лексика - отдельные слова и устойчивые словосочетания

Задача автоматического синтаксического разбора

Применение:

- машинный перевод
- извлечение информации
- диалоговые системы

Грамматика — способ описания языка

- грамматика зависимостей
- грамматика составляющих

Грамматика зависимостей (Dependency grammar)

Главные члены предложения

Подлежащее — предмет. кто? что?

Сказуемое — что делать? что сделать? каков?

inventory DET P-ATTR Of COMP-P functions ATTR syntactic An inventory of syntactic functions is taken to be primitive.

Второстепенные члены предложения

Определение — признак предмета. какой? чей? который?

Обстоятельство — время, место, способ действия. где? когда? куда? откуда? почему? зачем? как?

Дополнение — предмет. кого? чего? кому? чему? кого? что? кем? чем? о ком? о чём?

Образец разбора предложения

Это предложение – повествовательное, невосклицательное. Основа предложения – розы (подлежащее) расцвели (сказуемое). В предложении есть второстепенные члены, поэтому оно распространённое. Розы (какие?) красные и белые – однородные определения, произносятся с интонацией перечисления. Расцвели (где?) в саду – обстоятельство.

Грамматика составляющих (Constituency grammar)

предложение (П; sentence, S).

<u>именная группа</u> (группа существительного, ИГ; noun phrase, NP) — возглавляется существительным;

группа прилагательного (ГПрил; adjectival phrase, AP) — возглавляется прилагательным;

наречная группа (НарГ; adverbial phrase, AdvP) — возглавляется наречием;

предложная группа (ПрГ; prepositional phrase, PP) — возглавляется предлогом;

<u>глагольная группа</u> (ГГ; verb phrase, VP) — возглавляется глаголом;

[s[NP Эти школьники] скоро[VP будут писать][NP диктант[PP по [NP русскому языку]]]]

грамматика составляющих

грамматика зависимостей

Грамматика составляющих

грамматика составляющих (constituency grammar)

— разметка (вложенных) групп

именная группа (группа существительного, ИГ; англ. noun phrase, NP) — возглавляется существительным; группа прилагательного (ГПрил; adjectival phrase, AP) — возглавляется прилагательным; наречная группа (НарГ; adverbial phrase, AdvP) — возглавляется наречием; предложная группа (ПрГ; prepositional phrase, PP) — возглавляется предлогом; глагольная группа (ГГ; verb phrase, VP) — возглавляется глаголом; предложение (П; sentence, S).

Эти школьники скоро будут писать диктант по русскому языку

Формальная грамматика - способ описания языка

$$G=(N,\Sigma,R,s); V=N\cup\Sigma$$

N — множество (алфавит) нетерминальных символов (синтаксические переменные или понятия)

Σ - множество (алфавит) терминальных символов (не пересекается с N)

V - словарь грамматики G

s - начальный нетерминал (принадлежит алфавиту нетерминалов N)

R - конечное множество правил вывода (продукции), вида $A \to b$, где A, b — последовательности символов из алфавита V грамматики G

Нетерминальные символы

- объекты, обозначающие какую-либо сущность языка (предложение, формула и т.д.).

Терминальные символы

- объекты непосредственно присутствующие в языке.

Форма Бэкуса-Наура (БНФ) - способ представления КС-грамматик

Lex/Yacc калькулятор:

%token INTEGER

```
expr: INTEGER
| "-" expr
| "(" expr ")"
| expr "-" expr
| expr "+" expr
| expr "*" expr
```

expr — нетерминальный символ (объект, обозначающий сущность языка)

- + () * / число — терминальные символы (объекты непосредственно присутствующие в языке)

(пример описывает только INT)

БНФ и диаграммы Вирта

классификация формальных грамматик по Хомскому

неограниченные

 $R: B \rightarrow \beta$

В — любая непустая последовательность из V содержащая нетерминалы

β — любая (в т.ч. пустая) последовательность из V

$$G=(N,\Sigma,R,s); V=N\cup\Sigma$$

Avram Noam Chomsky

классификация формальных грамматик по Хомскому

неограниченные

 $R: B \rightarrow \beta$

В — любая непустая последовательность из V содержащая нетерминалы

β — любая (в т.ч. пустая) последовательность из V

контекстно-зависимые

 $R: \alpha A\beta \rightarrow \alpha \gamma \beta$

А — нетерминал из N

 α, β — любые (в т.ч. пустые) последовательности из V

у — любая непустая последовательность из V

$G=(N,\Sigma,R,s); V=N\cup\Sigma$

Avram Noam Chomsky

классификация формальных грамматик по Хомскому

неограниченные

 $R: B \rightarrow \beta$

В — любая непустая последовательность из V содержащая нетерминалы

β — любая (в т.ч. пустая) последовательность из V

контекстно-зависимые

 $R: \alpha A\beta \rightarrow \alpha \gamma \beta$

А — нетерминал из N

 α, β — любые (в т.ч. пустые) последовательности из V

у — любая непустая последовательность из V

$G=(N,\Sigma,R,s); V=N\cup\Sigma$

Avram Noam Chomsky

контекстно-свободные

 $R:A \rightarrow \beta$

А — нетерминал из N

 β — любая (в т.ч. пустая) последовательность из V

применяются для описания компьютерных языков

классификация формальных грамматик по Хомскому

неограниченные

 $R: B \rightarrow \beta$

В — любая непустая последовательность из V содержащая нетерминалы

β — любая (в т.ч. пустая) последовательность из V

контекстно-зависимые

 $R: \alpha A\beta \rightarrow \alpha \gamma \beta$

А — нетерминал из N

 α, β — любые (в т.ч. пустые) последовательности из V

ү — любая непустая последовательность из V

$G=(N,\Sigma,R,s); V=N\cup\Sigma$

Avram Noam Chomsky

контекстно-свободные

 $R: A \rightarrow \beta$

А — нетерминал из N

 β — любая (в т.ч. пустая) последовательность из V

применяются для описания компьютерных языков

регулярные

 $R: A \rightarrow A\beta$, $A \rightarrow \beta$ (леворекурсивные)

 $R : A \rightarrow \beta A$, $A \rightarrow \beta$ (праворекурсивные)

А — нетерминал из N

 β — последовательность (в т.ч. пустая) терминалов из Σ

применяются для описания простых конструкций

Нормальная форма грамматики по Хомскому (CNF)

продукции имеют вид: $A \rightarrow BC$, $A \rightarrow \alpha$, $s \rightarrow \epsilon$,

где

А, В, С - нетерминалы (В и С не могут являться начальными символами),

α - терминальный символ,

s - начальный символ,

ε – пустая строка (грамматика может порождать пустую строку)

Эквивалентность грамматик

- сильная (совпадает язык и дерево разбора)
- слабая (совпадает язык, деревья разбора могут отличаться)

Теорема:

любая КС-грамматика может быть преобразована в эквивалентную CNF-грамматику.

Методы синтаксического разбора

- рекурсивный спуск (top-down parsing)
- восходящий анализ (bottom-up parsing)
- алгоритм Кока-Янгера-Касами (CKY parsing)
- алгоритм Эрли (Earley parser)

. . .

S → NP VP S → Aux NP VP S → VP NP → Pronoun NP → Proper-Noun NP → Det Nominal Nominal → Noun Nominal → Nominal Noun Nominal → Nominal PP VP → Verb VP → Verb VP → Verb NP VP → Verb PP

 $VP \rightarrow VP PP$

PP → Preposition NP

Det → that | this | a

Noun → book | flight | meal | money

Verb → book | include | prefer

Pronoun → | | she | me

Proper-Noun → Houston | TWA

Aux → does

Preposition → from | to | on | near | through

Анализ рекурсивным спуском (top-down parsing)

правила формальной грамматики раскрываются, начиная со стартового символа, до получения требуемой последовательности токенов.

Восходящий анализ (bottom-up parsing)

сначала распознает мелкие детали самого низкого уровня текста, а затем его структуры среднего уровня, и оставляет общую структуру самого высокого уровня на потом.

Частичный разбор (группировка, применение группы правил)

Применяется для извлечения именованных сущностей

- Partial parsing, Shallow parsing
- Chunking, фрагментирование
 - -[NP The morning flight][PP from][NP Denver][VP has arrived]
 - -[NP The morning flight] from [NP Denver] has arrived

Группировка на основе машинного обучения

- Классы BIO (begin, inside, outside)
- Тренировочное множество Treebank

Признаки: The, DT, B_NP, morning, NN, I_NP, flight, NN, from, IN, Denver, NNP

Статистические КС-грамматики

$$G=(N,\Sigma,R,s); V=N\cup\Sigma$$

N — множество (алфавит) нетерминальных символов (синтаксические переменные или понятия)

Σ - множество (алфавит) терминальных символов (не пересекается с N)

V - словарь грамматики G

s - начальный нетерминал (принадлежит алфавиту нетерминалов N)

R - конечное множество правил вывода (продукции), вида $\mathbf{A} \to \mathbf{\beta}[\mathbf{p}]$

где

А — нетерминал из N

β — последовательности символов из алфавита V грамматики G

р — вероятность правила P(β|A) (сумма вероятностей всех правил вида $A \to *$ равна 1)

Нетерминальные символы

- объекты, обозначающие какую-либо сущность языка (предложение, формула и т.д.).

Терминальные символы

- объекты непосредственно присутствующие в языке.

Статистические КС-грамматики

Грамматика	Вероятность	Лексикон	
$S \rightarrow NP VP$	0.8	Det → the a that this	
$S \rightarrow Aux NP VP$	0.1 + 1.0	0.6 0.2 0.1 0.1	
$S \rightarrow VP$	0.1	Noun → book flight meal money	
NP → Pronoun	0.2	0.1 0.5 0.2 0.2	
NP → Proper-Noun	0.2 + 1.0	Verb → book include prefer	
NP → Det Nominal	0.6	0.5 0.2 0.3	
Nominal → Noun	0.3	Pronoun \rightarrow I he she me	
Nominal → Nominal Noun 0.2 + 1.0		0.5 0.1 0.1 0.3	
Nominal → Nominal PP	0.5	Proper-Noun → Houston NWA	
VP → Verb	0.2	0.8 0.2	
VP → Verb NP	0.5 + 1.0	Aux → does	
$VP \rightarrow VP PP$	0.3	1.0	
PP → Prep NP	1.0	Prep → from to on near through	
		0.25 0.25 0.1 0.2 0.2	

Статистические КС-грамматики

Разрешение многозначности

• Вероятность разбора

$$P(T,S) = \prod_{i=1}^{n} P(RHS_i|LHS_i)$$

- Вероятность P(T,S) = P(T)P(S|T) = P(T)
- Выбор наиболее вероятного дерева разбора $\hat{T}(S) = \arg \max P(T|S)$

$$\hat{T}(S) = \operatorname*{arg\,max}_{T} \frac{P(T,S)}{P(S)}$$

$$\hat{T}(S) = \operatorname*{arg\,max}_{T} P(T, S)$$

$$\hat{T}(S) = \operatorname*{arg\,max}_{T} P(T)$$

Статистические КС-грамматики

Разрешение многозначности

 $P(T-left) = .05^*.20^*.20^*.20^*.75^*.30^*.60^*.10^*.40 = 2.2^*10^{-6}$ $P(T-right) = .05^*.10^*.20^*.15^*.75^*.30^*.60^*.10^*.40 = 6.1^*10^{-7}$

Статистические КС-грамматики

Обучение СКС

 Вычисление вероятности на основе банка деревьев

$$P(\alpha \to \beta | \alpha) = \frac{Count(\alpha \to \beta)}{\sum_{\alpha} Count(\alpha \to \beta)} = \frac{Count(\alpha \to \beta)}{Count(\alpha)}$$

- Вывод без тренировочного множества (ЕМ)
 - На основе множества предложений построить множество наиболее вероятных синтаксических разборов
 - Обновить значения вероятностей на основе полученных данных
 - -(Manning and Schutze 1999)

Оценка качества алгоритма

- Метрика PARSEVAL: пусть Р дерево разбора, созданное алгоритмом, Т дерево разбора, созданное экспертами
 - -Точность = (# правильных компонент в P) / (# компонент в T)
 - **—Полнота** = (# правильных компонент в P) / (# компонент в P)
 - -F-mepa = 2PR / (P + R)
- Современные алгоритмы показывают точность и полноту более 90%

Грамматика зависимостей

грамматика составляющих

грамматика зависимостей

Грамматика зависимостей (Dependency grammar)

Главные члены предложения

Подлежащее — предмет. кто? что?

Сказуемое — что делать? что сделать? каков?

Образец разбора предложения

В саду расцвели красные и белые розы.

Это предложение – повествовательное, невосклицательное. Основа предложения – розы (подлежащее) расцвели (сказуемое). В предложении есть второстепенные члены, поэтому оно распространённое. Розы (какие?) красные и белые – однородные определения, произносятся с интонацией перечисления. Расцвели (где?) в саду – обстоятельство.

Второстепенные члены предложения

Определение — признак предмета. какой? чей? который?

Обстоятельство — время, место, способ действия. где? когда? куда? откуда? почему? зачем? как?

Дополнение — предмет. кого? чего? кому? чему? кого? что? кем? чем? о ком? о чём?

Разбор в грамматику зависимостей

- Dependency parser
 - -Malt parser (2006)
 - -Stanford Neural Network Dependency Parser (2014)

строим ориентированный граф зависимостей на упорядоченном множестве слов

Разбор в грамматику зависимостей

- Остановка
 - -стек содержит один узел *ROOT*
 - -и буфер пуст

- Итеративный алгоритм разбора предложения w_1, w_2, \dots, w_n
- Состояние парсера c = (s, b, A):
 - -стек s = [Root]
 - -буфер $b = [w_1, w_2, \dots, w_n]$
 - -множество дуг зависимостей $A=\emptyset$
- На каждой итерации происходит выбор одного из трех правил (для выбора используется классификатор)
 - –LEFT-ARC(label): добавление дуги $s_1 \to s_2$ с меткой label и удаление s_2 из стека. Предусловие: $|s| \ge 2$
 - -RIGHT-ARC(label): добавление дуги $s_2 \to s_1$ с меткой label и удаление s_1 из стека. Предусловие: $|s| \ge 2$
 - –SHIFT: перенос b_1 из буфера в стек. $|b| \geq 1$

используем ML классификатор для выбора правила на каждом шаге

Пример

Transition	Stack	Buffer	A
	[ROOT]	[He has good control .]	Ø
SHIFT	[ROOT He]	[has good control .]	
SHIFT	[ROOT He has]	[good control .]	
LEFT-ARC(nsubj)	[ROOT has]	[good control .]	$A \cup \text{nsubj(has,He)}$
SHIFT	[ROOT has good]	[control .]	
SHIFT	[ROOT has good control]	[.]	
LEFT-ARC (amod)	[ROOT has control]	[.]	$A \cup \text{amod(control,good)}$
RIGHT-ARC (dobj)	[ROOT has]	[.]	A∪ dobj(has,control)
RIGHT-ARC (root)	[ROOT]		$A \cup \text{root}(\text{ROOT},\text{has})$

Литература

Борисов E.C. Методы машинного обучения. 2024 https://github.com/mechanoid5/ml_lectorium_2024_I

Борисов E.C. Методы обработки текстов на естественном языке. 2024 https://github.com/mechanoid5/ml_nlp_2024_I

Турдаков Д.Ю. Основы обработки текстов. Лекция 7. Формальные грамматики и синтаксический анализ. ИСП РАН, 2017 https://www.youtube.com/watch?v=TkMtUm-D6aE

Steven Bird, Ewan Klein, and Edward Loper Analyzing Text with the Natural Language Toolkit https://www.nltk.org/book/

D.Jurafsky, J.H. Martin Speech and Language Processing. third edition, 2020

А. Ахо, Дж. Ульман. Теория синтаксического анализа, перевода и компиляции. М.: Мир, 1978.

Д.Кук, Г.Бейз Компьютерная математика - Москва: Наука, 1990

В.С.Проценко, П.Й.Чаленко Элементы компиляции - Киев: УМК ВО, 1988

E.С.Борисов Методы и средства построения грамматических анализаторов. http://mechanoid.su/programming-grammar-analysis.html