Московский Физико-Технический Институт

Кафедра общей физики

Отчет о выполнении лабораторной работы №2.1.1

Измерение удельной теплоёмкости воздуха при постоянном давлении

Автор: Алексей Домрачев 615 группа

Преподаватель: Александр Дмитриевич Калашников

20 марта 2017 г.

Цель работы: измерение повышения температуры воздуха в результате подвода тепла при стационарном течении через трубу и вычисление по результатам измерений теплоём-кости C_P воздуха при постоянном давлении.

1. Постановка эксперимента

Данная лабораторная работа предусматривает следующую методику измерений: воздух продувается через калориметр, внутри которого установлен нагревательный элемент; проводятся измерения мощности нагревателя W=IU, объёмного расхода Q и изменения температуры ΔT потока воздуха.

Вакуум Вакуум Термопара (1-й спай) Вольтметр универсальный пиф-тым вакуум шфровой в 6 0 3 в 3 в 3-23

Обозначения:

K — кран регулировки расхода;

ГС — газовый счётчик.

Рис. 1: Схема экспериментальной установки

Нетрудно показать, что в ходе эксперимента вследствие стационарности процесса измеряется именно C_P , причём

$$C_P = \frac{\mu}{\rho} \frac{W - W'}{Q\Delta T},$$
 где $\rho \simeq \frac{\mu P}{RT},$ (1)

W' — мощность тепловых потерь. Логично предположить, что $W' \simeq \beta \Delta T,$ тогда

$$\frac{W}{\Delta T} = \frac{\rho}{\mu} C_P \cdot Q + \beta. \tag{2}$$

Из уравнения (2) видно, что построение зависимости $\frac{W}{\Delta T}(Q)$ позволяет найти C_P и оценить долю теплопотерь

$$\eta \equiv \frac{\mu\beta}{\rho C_P Q}.\tag{3}$$

2. Проведение измерений

Начальные условия. До начала и по окончании работы были записаны значения температуры и давления в лаборатории, а также определена относительная влажность воздуха:

Время	t_0 , °C	Р, гПа	χ, %
14:00	22.6	987.7	70
16:50	22.2	989.5	73
	22.4	988,6	

По этим данным можно рассчитать плотность воздуха, которая в дальнейшем будет полагаться постоянной:

$$\rho = \frac{\mu P}{RT} = 1.17 \text{ KF/M}^3. \tag{4}$$

Прикидка. При заданном расходе Q и известном сопротивлении нагревательного элемента r=35 Ом оценим силу тока I_0 , при протекании которого температура потока увеличивается на $\Delta T_0=1$ °C:

$$\frac{7}{2}R \approx \frac{\mu \cdot I_0^2 r}{\rho Q \Delta T_0} \implies I_0 = \sqrt{\frac{7R\rho \Delta T_0 \cdot Q}{2\mu r}} \simeq 183 \text{ MA} \cdot \sqrt{Q \text{ [II/c]}}.$$
 (5)

Величина сопротивления, измеренная непосредственно, составила

$$r_e = \frac{5.275 \text{ B}}{151.68 \text{ MA}} = 34.8 \text{ Om}.$$
 (6)

Следует отметить, что постоянная термопары $\Xi=42.3~{\rm mkB/^{\circ}C}$, а значит, для покрытия диапазона в 9 °C необходимо достигать значений термоЭДС $\mathcal{E}_{b}\sim380~{\rm mkB}$.

При этом одному обороту стрелки газового счётчика соответствует объём прокачки 5 л.

Основные измерения. Данные измерений при различных значениях Q_i приведены в таблице 2, сведения о самих величинах Q_i сведены в таблицу 1.

N, об.	τ, c	Q_i , л/с
3	165	0.090909
1	130	0.038462

Таблица 1: Объёмный расход воздуха

\overline{i}	<i>I</i> , мА	U, B	\mathscr{E} , мкВ	<i>W</i> , мВт	ΔT , °C	Q_i , л/с	$\frac{W}{\Delta T}$, MBT/°C
1	77.17	2.682	72	206.96994	1.702128	0.090909	121.594840
1	99.83	3.470	103	346.41010	2.434988	0.090909	142.263565
1	123.14	4.282	149	527.28548	3.522459	0.090909	149.692455
1	141.25	4.914	200	694.10250	4.728132	0.090909	146.802679
1	160.09	5.571	263	891.86139	6.217494	0.090909	143.443866
1	177.02	6.163	322	1090.97426	7.612293	0.090909	143.317426
1	183.83	6.401	354	1176.69583	8.368794	0.090909	140.605180
2	49.23	1.714	52	84.38022	1.229314	0.038462	68.640064
2	80.01	2.788	126	223.06788	2.978723	0.038462	74.887074
2	99.19	3.457	192	342.89983	4.539007	0.038462	75.545119
2	112.75	3.931	253	443.22025	5.981087	0.038462	74.103623
2	124.49	4.342	322	540.53558	7.612293	0.038462	71.008245
2	131.72	4.594	364	605.12168	8.605201	0.038462	70.320459
2	138.06	4.817	412	665.03502	9.739953	0.038462	68.279081

Таблица 2: Основные данные измерений и расчёты

Рис. 2: График зависимости $\frac{W}{\Delta T}$ от Q

3. Итоги

Обрабатывая точки исследуемой зависимости по МНК, получаем значения коэффициентов зависимости (2):

$$\frac{\rho}{\mu}C_P = (1.38 \pm 0.03) \text{ кДж/(K·м³)} \Longrightarrow \tag{7}$$

$$C_P = (33.6 \pm 0.6) \text{ Дж/(моль · K)} = \boxed{(4.0 \pm 0.1)R;}$$
 (8)

$$\beta \approx 20 \text{ MBT/K} \implies \eta \sim (15 \div 40) \%.$$
 (9)

Комментарий. Полученная в результате выполнения настоящей лабораторной работы зависимость имеет «хороший», линейный вид ($\mathfrak{R}=0.9965$), однако итоговое значение C_P завышено на $15\,\%$ по сравнению с теоретическим, что на порядок превышает оценку погрешности косвенного измерения.