(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 23. August 2001 (23.08.2001)

(10) Internationale Veröffentlichungsnummer WO 01/61071 A2

(51)	Internationale Patentklassifikation7:	C23C 16/448,	(7
	16/46, 16/52		(7

- 72) Erfinder; und
- (21) Internationales Aktenzeichen: PCT/EP01/01698
- 75) Erfinder/Anmelder (nur für US): JÜRGENSEN, Holger [DE/DE]; Rathausstrasse 43d, 52072 Aachen (DE). KAP-PELER, Johannes [DE/DE]; Zeisigweg 47, 52146 Würselen (DE). STRAUCH, Gert [DE/DE]; Schönauer Friede 80, 52072 Aachen (DE). SCHMITZ, Dietmar [DE/DE]: Lonweg 41, 52072 Aachen (DE).

(22) Internationales Anmeldedatum:

(25) Einreichungssprache:

- (74) Anwälte: GRUNDMANN, Dirk usw.: Rieder & Partner. Corneliusstrasse 45, 42329 Wuppertal (DE).
- 15. Februar 2001 (15.02.2001)
 - Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU,
- (30) Angaben zur Priorität: 100 07 059.0 16. Februar 2000 (16.02.2000)
- CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): AIXTRON AG [DE/DE]; Kackertstrasse 15-17, 52072 Aachen (DE).

[Fortsetzung auf der nächsten Seite]

(54) Title: CONDENSATION COATING METHOD

(54) Bezeichnung: KONDENSATIONSBESCHICHTUNGSVERFAHREN

(57) Abstract: A method and device for the production of coated substrates, such as OLEDs is disclosed, whereby at least one layer is deposited on the at least one substrate, by means of a condensation method and a solid and/or fluid precursor and, in particular, at least one sublimate source is used for at least one part of the reaction gases. The invention is characterised in that, by means of a temperature control of the reaction gases between precursor source(s) and substrate, a condensation of the reaction gases before the substrate(s) is avoided.

[Fortsetzung auf der nächsten Seite]

(84) Bestimmungsstaaten (regional): ARIPO-Pationt (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), curasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, TI, LU, MC, NL, FT, SE, TR, OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts
- Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

⁽⁵⁷⁾ Zusammenfassung: Beschrieben wird ein Verfahren und eine Vorrichtung zur Herstellung von beschichten Substraten, wie bepw. von 'OLLE's', bei dem wenigstens eine Schicht mittels eines Kondensationsverfahrens auf das wenigstens eines Bubstrat aufgebracht wird, und bei dem für wenigstens einen Teil der Reaktionsgase feste und/oder flüssige Vorläufer und insbesonders intgistens eine Sublimationsquelle verwendet werden. Die Erfindung zeichnet sich furch eine Temperaturstotenum gede zwischen Vorläufer-Quelle(n) und Substrat aus, durch die eine Kondensation der Reaktionsgase vor dem oder den Substraten vermieden wird.

00001	Kondensationsbeschichtungsverfahren
00002	
00003	Technisches Gebiet
00004	
00005	Die Erfindung bezieht sich auf ein Verfahren und eine
00006	Vorrichtung zur Herstellung von Schichtsystemen, wie
00007	z.B. für Dünnfilmbauelemente wie OLED's oder ähnliche
80000	Schichtstrukturen mittels Kondensationsbeschichtung.
00009	Diese Schichtsysteme bestehen insbesondere aus organi-
00010	schen Materialien, wie z.B. "small molecules" (z.B.
00011	Alq,) oder Polymeren (z.B. PPV).
00012	•
00013	Stand der Technik
00014	
00015	Kondensationsbeschichtungsverfahren zur Herstellung von
00016	Bauelementen insbesondere aus organischen Materialien
00017	sind bekannt. Bei diesem Verfahren werden die Bestand-
00018	teile der herzustellenden Schicht mittels gasförmigen
00019	und/oder organischen Verbindungen (Salze) in die Be-
00020	schichtungskammern (im Folgenden als Reaktionskammer
00021	bezeichnet) transportiert.
00022	
00023	Die Beschichtung des Substrates (meist Glas, Folie oder
00024	Kunststoffe) erfolgt auf der Basis des Kondensationspro-
00025	zesses, wobei die Substrate auf einer Temperatur gehal-
00026	ten werden, die niedriger ist, als die Temperatur der
00027	sich in der Gasphase befindlichen Moleküle.
00028	
00029	VPD-Verfahren (Vapor Phase Deposition) werden zur Ab-
00030	scheidung unterschiedlicher Materialien aus der Gaspha-
00031	se verwendet. Auch im Bereich der Abscheidung von orga-
00032	nischen Schichten hat sich dieses Verfahren durchge-
00033	setzt. Das VPD-Verfahren wird mit unterschiedlichen
00034	Reaktorkonzepten kontrolliert, z.B.:
00025	

0003 <i>6</i> .	Horizontale Rohrreaktoren, in denen die Gasströmung		
00037	horizontal und parallel zur Beschichtungsoberfläche		
88000	verläuft, (den klassischen VPE Reaktoren entlehnt). Zur		
00039	Vermeidung von Effizienz reduzierender Wandkondensation		
00040	werden die Reaktoren als Heißwandsystem ausgelegt.		
00041			
00042	Dieses Verfahren bzw. diese bekannte Vorrichtung wird		
00043	zur Beschichtung von meist flachen und nicht variablen		
00044	Substratgeometrien eingesetzt.		
00045			
00046	Die Nachteile liegen in		
00047	a) der verfahrenstechnischen und geometrischen Verkop-		
00048	pelung der Prekursor-Sublimation und deren Einlei-		
00049	tung,		
00050	b) der Verwendung von Reaktorgeometrien mit großer		
00051	Systemoberfläche im Verhältnis zur Beschichtungs-		
00052	oberfläche, d.h. hydrodynamisch geht eine große		
00053	Menge von Prekursoren der Beschichtung auf dem		
00054	Substrat verloren		
00055	c) aus b) folgend teuerer Heißwandtechnik.		
00056			
00057	In Aufdampfanlagen, deren Verfahrensprinzip der Konden-		
00058	sation entspricht, sind die Quellmaterialien im System		
00059	integriert, d.h. der Quellenstrom ist zeitlich nicht		
00060	kontrollierbar. Er kann nicht schlagartig an- oder		
00061	abgeschaltet werden. Die zeitliche Kontrolle geschieht		
00062	hier über die Steuerung der Verdampfungsenergie (E-Beam		
00063	oder Widerstandsheizung). Ferner sind die Systeme nicht		
00064	als Heißwandsystemé ausgebildet, so dass ein wesentli-		
00065	cher Anteil der Materialien an den Systemwänden und		
00066	Komponenten Effizienz mindernd kondensiert.		
00067	'		
00068	Die Nachteile dieser Technik liegen auch in der schlech-		
00069	ten Kontrollierbarkeit von Stöchiometrie oder von schar-		
00070	fen Übergängen für Mehrschichtanforderungen.		

00071	Im CVD System sind die Quellen individuell zeitlich und
00072	in der Menge präzise kontrollierbar, jedoch ist der
00073	Transport aus einer Quelle nicht das Prinzip der Subli-
00074	mation, sondern das der Verdampfung. In diesen CVD-Sys-
00075	temen ist das Beschichtungsverfahren nicht Kondensati-
00076	on, sondern kinetisch oder diffusionslimitiertes Wachs-
00077	tum (chemische Reaktion). Diese Verfahren und Vorrich-
00078	tungen werden zur Beschichtung von meist flachen und
00079	nicht variablen Substratgeometrien eingesetzt.
08000	
00081	Alternative Verfahren sind Spin on oder CMBD.
00082	
00083	Die oben beschriebenen Verfahren und Vorrichtungen
00084	erfüllen in einer oder mehreren Eigenschaften nicht die
00085	Anforderung zur Herstellung der beispielhaft aufgeführ-
00086	ten Schichtsysteme im Hinblick auf präzise Kontrolle
00087	der Stöichiometrie und Mehrschichtanforderung sowie der
88000	Wirtschaftlichkeit.
00089	
00090	Der Erfindung liegt die Aufgabe zugrunde, das gattungs-
00091	gemäße Verfahren dahingehend zu verbessern, dass die
00092	Parameter individualisierter vorgebbar sind, dass die
00093	Effizienz erhöht ist, und die Qualität der auf dem Sub-
00094	strat kondensierten Schichten zu erhöhen.
00095	
00096	Gelöst wird die Aufgabe durch die in den Ansprüchen
00097	angegebene Erfindung. Die Unteransprüche stellen vor-
8e000	teilhafte Weiterbildungen der Erfindung dar.
00099	
00100	Die Verwendung einer Kombination von spezieller Prekur-
00101	sorsublimation, Verdampfung, Gaseinlassgeometrie und
00102	Reaktorgeometrie für das Beschichtungsverfahren verbes-
00103	sert die Kontrolle und Wirtschaftlichkeit des Verfah-
00104	rens zur Kondensationsbeschichtung ausgehend von festen
00105	Prekursoren. Dabei werden die Prekursoren individuell

00106	and successfully des Doubtionslands and initial
00106 00107	und außerhalb der Reaktionskammer sublimiert bzw. ver-
00107	dampft. Diese Ausgangsstoffe können auf dem Substrat
	selektiv kondensieren. Mittels einer dem Substrat zuge-
00109	ordneten Maske kann eine Strukturierung erfolgen. Die
00110	Maske kann auf dem Substrat befestigt werden.
00111	
00112	Allen Reaktorkonzepten gemein ist, dass die Art der
00113	Prekursor-Sublimation nach deren Gaseinspeisung in das
00114	Reaktionsgefäß dabei maßgeblich die Gasphasenchemie der
00115	Elementsubstanzen als auch deren Transportverhalten
00116	bestimmt und damit die Eigenschaften der abgeschiedenen
00117	Schichten, d.h. die Art der Gaseinspeisung dominiert
00118	die Verfahrenskontrolle.
00119	
00120	Diese Eigenschaften sind z.B. (d.h. frei von Fremdato-
00121	men/Stoffen), Partikel und/oder Defektdichte, Zusammen-
00122	setzung im Mehrstoffsystem, optische und elektrische
00123	Eigenschaften der Schichten sowie Effizienz der Deposi-
00124	tion. Die nach Stand der Technik eingesetzten Gasein-
00125	lassgeometrien erfüllen entweder nur die hydrodynami-
00126	sche oder die thermodynamische Aufgabenstellung.
00127	
00128	Oft erfolgt eine ungewollte Deposition im Bereich der
00129	Einlassgeometrie. Diese entsteht dann, wenn im Ein-
00130	lassbereich entweder zu hohe (d.h. kinetisch limitierte
00131	Deposition) oder zu kalte Oberflächentemperaturen (d.h.
00132	Kondensation oder Thermophorese) sich einstellen, oder
00133	eine Durchmischung der Gase innerhalb der Zone der
00134	Einleitung oder innerhalb der Kammer durch Strömung
00135	und/oder Diffusion auftritt (Nukleation = homogene
00136	Gasphasenreaktion). Die parasitäre Belegung hat dann
00137	zur Folge, dass sich die Eigenschaften (thermisch
00138	und/oder chemisch) des Gaseinlasses im Laufe des Prozes-
00139	ses ändern, so dass die Kontrolle über eine kontinuier-
00140	liche und gleichmäßige Abscheidung nicht gewährleistet

00141	ist. Die parasitären Ablagerungen führen zu einer Ver-
00142	schleppung einzelner Komponenten in die nachfolgenden
00143	Schichten hinein. Ferner reduziert diese Belegung die
00144	Effizienz der Elemente, besonders wenn die Einlassgeo-
00145	metrie eine im Vergleich zur Nutzfläche und große Ober-
00146	fläche aufweist.
00147	
00148	Weiterhin ist die Gaseinlasseinheit typisch so gestal-
00149	tet, dass die effektive Trennung der Gase, die die
00150	thermisch unterschiedlichen Eigenschaften der Prekurso-
00151	ren erfordert, nicht gewährleistet ist. Die Folge sind
00152	unerwünschte Reaktionen einiger Gase in der Gasphase
00153	miteinander (d.h. Nukleation), welche die Eigenschaft
00154	der abzuscheidenden Schicht negativ beeinflusst, z.B.
00155	Partikel oder Kontamination. Die Nukleation reduziert
00156	die Materialeffizienz und führt zur Kontamination der
00157	Schicht mit diesen Verbindungen.
00158	
00159	Um die oben aufgeführten Nachteile zu reduzieren, wer-
00160	den heutige Gaseinlässe typischerweise prozesstechnisch
00161	weit von den zu beschichtenden Oberflächen entfernt
00162	angeordnet, d.h. entweder räumlich oder durch Wahl der
00163	Prozessparameter (z.B. sehr niedrigen Druck bzw. große
00164	Reynold Zahlen). Die derzeit bekannten Reaktoren zeich-
00165	nen sich daher durch eine niedrige Effizienz (deutlich
00166	kleiner als 25%), d.h. nur ein geringer Anteil der
00167	eingeleiteten Elemente deponieren in der brauchbaren
00168	funktionalen Schicht.
00169	
00170	Somit sind die Schichteigenschaften, hergestellt mit
00171	solchen Systemen, nicht optimal und auch die Wirtschaft-
00172	lichkeit solcher Systeme ist nur gering.
00173	
00174	Zur Sublimation der festen Prekursoren werden überlich-
00175	erweise Verdampferquellen verwendet, die durch die Wahl

_

00176	des Behälterdrucks und Temperatur das Quellenmaterial
00177	aus der festen Phase direkt gasförmig zur Verfügung
00178	stellen, d.h. sublimieren. Ist der Dampfdruck des Quel-
00179	lenmaterials sehr niedrig, werden hohe Temperaturen
00180	erforderlich. Nach heutigem Stand der Technik werden
00181	daher einige Prekursoren in Booten in den Reaktor einge-
00182	führt. In den verwendeten Heißwandsystemen wird die
00183	Temperatur der Reaktoren so über die Baulänge profi-
00184	liert, dass die erforderliche Sublimationstemperatur je
00185	Prekursor in je einer Zone eingestellt wird. Nachteil
00186	dieses Aufbaus sind ungenaue Einstellung der optimalen
00187	Sublimationstemperatur, große Volumina der Verdampfer-
00188	Einrichtung, nicht getrennte Druckeinstellung je Prekur-
00189	sor verschieden und unabhängig vom Reaktor-Prozess-
00190	druck, nicht flexible und individuelle Temperaturen-
00191	einstellung je Prekursor. Gravierendster Nachteil je-
00192	doch ist der zeitlich nicht gesteuerte Quellenstrom, da
00193	diese Verdampferquellen offen zur Beschichtungszone
00194	wirken.
00195	
00196	Die hier vorgestellte technische Lehre soll alle oben
00197	genannten Nachteile beheben und stellt je nach Anwen-
00198	dungsanforderung die geeigneten Verfahren und Vorrich-
00199	tungen zur Verfügung.
00200	
00201	Die Sublimationsvorrichtung der Ausgangsstoffe (Prekur-
00202	soren) ist geometrisch vom Reaktor getrennt und je
00203	Prekursor einzeln ausgeführt. Damit kann flexible und
00204	optimiert die Transportmenge je Prekursor kontrolliert
00205	und gesteuert werden. Jeder Prekursor ist individuell,
00206	zeitlich präzise steuerbar, und zudem unabhängig von
00207	Reaktorparametern.
00208	
00209	Die Einlassgeometrie sichert minimale Kammeroberfläche
00210	im Verhältnis zur Beschichtungsoberfläche (nahe 1:1)

00211	und damit maximierte Effizienz des Verfahrens. Die			
00212	Ausgestaltung der Geometrie des Einlasses vermeidet im			
00213	Grundsatz Reaktionen zwischen den Prekursoren als auch			
00214	parasitäre Belegung an der Oberfläche des Einlasses			
00215	selber.			
00216				
00217	Die Ausgestaltung der Einlassgeometrie der Prekursoren			
00218	in Verbindung mit der Reaktorgeometrie sichert homogene			
00219	Verteilung aller Materialien mit zeitlich präziser			
00220	Kontrolle.			
00221				
00222	Die erzielten Beschichtungen zeichnen sich dabei durch			
00223	eine Homogenität der Zusammensetzung, Sichtdicke und			
00224	Dotierung im Bereich von 1% aus. Weiterhin können mit			
00225	der Apparatur und dem Verfahren Übergänge im Material			
00226	und Dotierstoffprofile präzise und reproduzierbar einge-			
00227	stellt werden. Die Bildung von Partikel ist durch die			
00228	Erfindung vermieden.			
00229				
00230	Der Ort der Sublimation der Ausgangsstoffe (Prekurso-			
00231	ren) ist getrennt von der Reaktorkammer ausgeführt.			
00232	Dabei ist die Anordnung so gewählt, dass der Ausgangs-			
00233	stoff mit minimaler Transiente in den Gaseinlass ge-			
00234	führt wird. Hierzu wird in einem Beschichtungssystem			
00235	der Ausgangsstoff-Behälter in unmittelbarer Nähe z.B.			
00236	auf den Reaktordeckel platziert. Ein kurzer Rohrweg			
00237	leitet das Material unmittelbar in die Gaseinlassein-			
00238	heit.			
00239				
00240	Der Tank für die Ausgangsstoffe wird eigens und unabhän-			
00241	gig von der Reaktortemperatur geheizt. Dazu wird entwe-			
00242	der eine Widerstandsheizung um den Tank genutzt, oder			
00243	in einem Hohlmantel um den Tank thermostatisierte Flüs-			
00244	sigkeit gepumpt.			
00245	·			

00246	Der Druck im Tank kann mit einem Regelventil an der
00247	Ausgangsseite des Tanks einzeln und unabhängig vom
00248	Reaktor geregelt werden. Das Regelventil ist beheizt
00249	und stellt im Verlauf des Materialweges einen positiven
00250	Temperaturgradienten zur Vermeidung von lokaler Konden-
00251	sation sicher.
00252	
00253	Der Transport des sublimierten Ausgangsstoffes zum Reak-
00254	tor wird mittels eines Gasflusses unterstützt. Dieses
00255	Gas wird auch zur Einstellung einer Prekursorkonzentra-
00256	tion in der Zuleitung verwendet.
00257	
00258	Zur zeitlichen Kontrolle der Leitung der Ausgangsstoffe
00259	in den Reaktor wird das Druckventil und der Massenfluss-
00260	regler geregelt, d.h. schließt das Drosselventil voll-
00261	ståndig, wird der Massenfluss auf 0 gesetzt.
00262	
00263	Diese Anordnung kann auf dem Reaktor in vielfacher
00264	Weise wiederholt werden, so dass jedes Material unabhän-
00265	gig voneinander geregelt wird.
00266	
00267	Der Gaseinlass wird gegenüber dem Substrat im Reaktor
00268	als eine Anordnung von vielen Düsen (im Folgenden Show-
00269	erhead) aus einer Fläche ausgeführt, im Folgenden Ple-
00270	num benannt. Die Düsen sind so dimensioniert, dass sie
00271	entsprechend der Prekursoreigenschaft, wie Viskosität,
00272	Masse und Konzentration eine turbulenzfreie Injektion
00273	in die Kammer gewährleisten.
00274	` <i>`</i>
00275	Der Abstand von Düse zu Düse ist im Verhältnis des
00276	Abstands zum Gaseinlass optimiert, d.h. die aus den
00277	Düsen austretende "Strahlen" (Jets) sind von der Sub-
00278	stratoberfläche abgeklungen und bilden im Gesamten eine
00279	homogene Strömungsebene.
00280	

00281	Die Düsen können einzeln oder gesamt in beliebigem
00282	Winkel in der Gaseinlassoberfläche ausgeführt werden,
00283	um die Transportverteilung der Ausgangsstoffe homogen
00284	für die Form des Substrats zu kontrollieren.
00285	•
00286	Die Ebene in der die Düsen zur Injektion der Ausgangs-
00287	stoffe eingebracht sind, kann plan sein für die Be-
00288	schichtung von planen Substraten und auch Folien oder
00289	gewölbt für nicht ebene, d.h. vorgeformte Substrate.
00290	• .
00291	Das gesamte Plenum wird aktiv mittels Kühlmittel in
00292	einem Hohlwandaufbau oder mittels einer elektrischen
00293	Heizung (Widerstandsheizung, Peltier), so thermisch
00294	kontrolliert, dass ein positiver Temperaturgradient
00295	gegenüber der Sublimationstemperatur eingestellt wird.
00296	
00297	In das Innenvolumen des Plenums wird der sublimierte
00298	Ausgangsstoff über eine sehr kurze temperierte Leitung
00299	injiziert.
00300	
00301	Zur Einstellung der optimierten hydrodynamischen Bedin-
00302	gungen an den Düsen wird zusätzlich zu den Ausgangsstof-
00303	fen über eine weitere Zuleitung Trägergas eingestellt.
00304	
00305	Dieses Gas sichert ferner eine schnelle Spülung des
00306	Plenums zum zeitlich kontrollierten An- und Abschalten
00307	des Prekursors in die Kammer.
00308	
00309	Die beschriebene Anordnung wird für die Mehrstoffanwen-
00310	dung konsequent je Prekursor ausgeführt. Dabei wird
00311	unter Nutzung der "closed coupled showerhead"-Technik
00312	die separate Injektion je Prekursor gesichert. Durch
00313	eine individuelle Heizung jedes Plenums wird jeder
00314	Ausgangsstoff entlang eines positiven Temperaturgradien-
00215	ton my Vermeidung room namedation. Verdenstein benne

00370	riert. Die Dusen sind so dimensioniert und zueinander		
00317	angeordnet, dass keine lokale Mischung der Prekursor an		
00318	den Düsen entsteht. Die Anordnung der Pleni in Ebenen		
00319	wird so gewählt, dass die längeren Düsen im thermischen		
00320	Kontakt mit den folgenden Pleni einen positiven Tempera-		
00321	turgradienten zur Vermeidung der Kondensation dieses		
00322	Prekursors erhält.		
00323			
00324	Als Ausgangsstoffe kommen insbesondere solche Salze in		
00325	Betracht, die das US-Patent 5,554,220 beschreibt. Diese		
00326	Salze werden in Verdampfern sublimiert. Die Verdampfer		
00327	können dabei insbesondere eine Gestalt aufweisen, wie		
00328	sie die deutsche Patentanmeldung DE 100 48 759 be-		
00329	schreibt. Dort wird das Gas unterhalb einer Fritte, auf		
00330	der sich das Salz in Form einer Schüttung befindet, dem		
00331	Verdampfer zugeleitet. Oberhalb der Fritte bzw. der		
00332	Schüttung wird das mit dem gasförmigen Ausgangsstoff		
00333	gesättigte Gas abgeleitet. Durch eine entsprechend		
00334	höhere Temperatur der stromabwärts liegenden Rohre oder		
00335	durch Verdünnung wird der Partialdruck des Ausgangsstof-		
00336	fes unterhalb seines Sättigungspartialdruckes gehalten,		
00337	so dass eine Kondensation vermieden ist.		
00338			
00339	Ausführungsbeispiele der Erfindung werden nachfolgend		
00340	anhand beigefügter Zeichnungen erläutert. Es zeigen:		
00341			
00342	Figur 1 in grobschematischer Darstellung eine Vorrich-		
00343	tung gemäß der Erfindung,		
00344			
00345	Figur 2 ebenfalls in grobschematischer Darstellung		
00346	eine Gaseinlasseinheit, welche in einer Vor-		
00347	richtung gemäß Figur 1 Verwendung finden kann,		
00348			
00349	Figur 3 einen Schnitt gemäß der Linie III-III durch		
00350	dio Cassinlassoinhoit		

00351	Figur 4	einen Schnitt gemäß der Linie IV-IV durch die		
00352		Gaseinlasseinheit,		
00353				
00354	Figur 5	ein zweites Ausführungsbeispiel einer Vorrich-		
00355		tung in einer grobschematischen Darstellung,		
00356				
00357	Figur 6	ein zweites Ausführungsbeispiel der Gaseinlass-		
00358		einheit,		
00359				
00360	Figur 7	eine Erläuterungshilfe für die Prozessparame-		
00361		ter, und		
00362		4		
00363	Figur 8	in schematischer Darstellung eine Quelle für		
00364		einen Ausgangsstoff.		
00365				
00366	Die in de	en Figuren 1 und 5 dargestellten Vorrichtungen		
00367	besitzen jeweils zwei temperierte Behälter 5, 5'. Bei			
00368	der in Figur 1 dargestellten Vorrichtung sind diese			
00369	Behälter unmittelbar auf dem Deckel 14 des Reaktors 10			
00370	angeordnet. Bei dem in Figur 5 dargestellten Ausfüh-			
00371	rungsbei	rungsbeispiel sind die beiden Behälter 5, 5' etwas		
00372	entfernt	entfernt vom Reaktor 10 angeordnet. In den Behältern 5,		
00373	5' befinden sich Tanks 1, 3. Diese Tanks wirken als			
00374	Quelle f	ür die Ausgangsstoffe. In den Tanks 1, 3 befin-		
00375	den sich	den sich flüssige Ausgangsstoffe 2, 4. Die Ausgangsstof-		
00376	fe können auch fest sein. Im Innern der temperierten			
00377	Behälter 5, 5' herrscht eine derartige Temperatur, dass			
00378	die in den Tanks 1, 3 befindlichen Ausgangsstoffe 2, 4			
00379	verdampfen. Die Verdampfungsrate lässt sich über die			
08800	Temperatur beeinflussen. In dem Behälter 5 sind im			
00381	Ausführungsbeispiel drei Quellen und im Behälter 5'			
00382	sind ebenfalls drei Quellen angeordnet. Die beiden			
00383	Behälter 5, 5' können auf unterschiedlichen Temperatu-			
00384	ren geha	lten werden.		
00285				

00386	In jeden der beiden Behälter 5, 5' führt eine Trägergas-					
00387	leitung, um ein Trägergas 35 zu leiten. In die Träger-					
88200	gasleitung münden je Quelle eine Ableitung für die aus					
00389	den Tanks 1, 3 heraustretenden gasförmigen Ausgangsstof-					
00390	fe. Die Tanks 1, 3 sind mittels hitzebeständiger Venti-					
00391	le, insbesondere Regelventile 34, die auch selbst be-					
00392	heizt sein können, verschließbar und öffenbar. Die					
00393	Leitungen 6, 7, durch welche das Trägergas und die vom					
00394	Trägergas transportierten Reaktionsgase strömen, münden					
00395	beim Ausführungsbeispiel der Figur 1 direkt in den					
00396	Reaktor. Beim Ausführungsbeispiel gemäß der Figur 5					
00397	verlaufen die beiden Leitungen 6, 7 über eine freie					
00398	Strecke, wo sie mittels temperierter Mäntel 8, 9 auf					
00399	einer Temperatur gehalten werden, die gleich oder grö-					
00400	ßer ist, als die Temperatur in den Behältern 5, 5'. Die					
00401	Leitungen 6, 7 münden in den Reaktor. Die Dosierung der					
00402	Reaktionsgase erfolgt über die Temperatur der Behälter					
00403	5, 5' bzw. die Regelventile 34.					
00404						
00405	Im Bereich der Mündung der Leitungen 6, 7 besitzt der					
00406	Reaktordeckel 14 eine Temperatur, die größer ist, als					
00407	die Temperatur in den temperierten Behältern 5, 5'. Die					
00408	Leitungen 6, 7 münden nicht unmittelbar in die Reakti-					
00409	onskammer 11, sondern zunächst in eine in der Reaktions-					
00410	kammer, um einen Spalt 29 vom Reaktordeckel 14 beabstan-					
00411	dete Gaseinlasseinheit 15. Eine typisch gestaltete					
00412	Gaseinlasseinheit zeigen die Figur 2 und 6.					
00413						
00414	Die Gaseinlasseinheit 15 befindet sich unmittelbar					
00415	oberhalb des Substrates 12. Zwischen dem Substrat 12					
00416	und der Bodenplatte 17 der Gaseinlasseinheit 15 befin-					
00417	det sich die Reaktionskammer. Das Substrat 12 liegt auf					
00418	einem Suszeptor 13, welcher gekühlt ist. Die Temperatur					
00419	des Suszeptors wird geregelt. Hierzu kann der Suszeptor					
00420	mit Pelletierelementen versehen sein. Es ist aber auch					

00421	möglich, wie in Figur 1 dargestellt, dass der Suszeptor
00422	13 innen eine Hohlkammer 41 besitzt, die mittels Spül-
00423	leitungen 40 mit einer Kühlflüssigkeit gespült wird, so
00424	dass damit die Temperatur des Suszeptors 13 auf einer
00425	Temperatur gehalten werden kann, die geringer ist, als
00426	die Temperatur der Gaseinlasseinheit 15.
00427	
00428	Diese Temperatur ist auch geringer, als die Temperatur
00429	der Reaktorwände 37. Die Temperatur der Gaseinlassein-
00430	heit 15 liegt oberhalb der Kondensationstemperatur der
00431	gasförmig in die Gaseinlasseinheit 15 gebrachten Aus-
00432	gangsstoffe 2, 4. Da auch die Temperatur der Reaktorwän-
00433	de 37 höher ist, als die Kondensationstemperatur, kon-
00434	densieren die aus der Gaseinlasseinheit 15 austretenden
00435	Moleküle ausschließlich auf dem auf dem Suszeptor 13
00436	aufliegenden Substrat 12.
00437	
00438	Bei den in den Figuren 2 bzw. 6 dargestellten Gaseinlas-
00439	seinheiten 15 handelt es sich jeweils um einen sogenann-
00440	ten, an sich bekannten "Showerhead". Das Ausführungsbei-
00441	spiel der Figur 2 zeigt einen Showerhead mit insgesamt
00442	zwei voneinander getrennten Volumen 22, 23. Die Volumen
00443	sind mittels einer Zwischenplatte 18 gegeneinander und
00444	mittels einer Deckplatte 16 bzw. einer Bodenplatte 17
00445	gegenüber der Reaktionskammer 11 abgegrenzt. Der "Show-
00446	erhead" gemäß Figur 6 besitzt dagegen nur eine Kammer.
00447	Dieses Volumen 22 wird begrenzt von der Bodenplatte 17,
00448	einem Ring 33 und der Deckplatte 16. In die Deckplatte
00449	16 münden die bereits erwähnten Rohrleitungen 6, 7 für
00450	die beiden Ausgangsstoffe. Beim Ausführungsbeispiel
00451	gemäß Figur 6 ist nur eine Rohrleitung 6 erforderlich.
00452	Die Rohrleitungen 6 bzw. 7 münden in sternförmig radial
00453	verlaufende Kanäle 21 bzw. 20, die in der Deckplatte 16
00454	angeordnet sind. Nach einer Umleitung im Randbereich
00455	des im Wesentlichen zylinderförmigen Körpers der Gasein-

00456	lasseinheit 15 münden die Kanäle 20 bzw. 21 in radial
00457	außen liegende Mündungstrichter 27 bzw. 28, die sich an
00458	der äußeren Peripherie der zylinderförmigen Volumina
00459	22, 23 befinden. Die aus den Mündungstrichtern 27, 28
00460	austretenden Gase verteilen sich in den Volumina 22, 23
00461	gleichmäßig.
00462	
00463	Die in einem Mehrkammer-Showerhead vorgesehene Zwischen-
00464	platte 18 besitzt Öffnungen, von welchen Röhrchen 24
00465	ausgehen, die das Volumen 23 durchragen und mit der
00466	Bodenplatte 17 derart verbunden sind, dass das im Volu-
00467	men 22 befindliche Gas nicht in Kontakt tritt, mit dem
00468	im Volumen 23 befindlichen Gas. In der Bodenplatte 17
00469	befinden sich abwechselnd zu den Öffnungen 26 der Röhr-
00470	chen 24 Öffnungen 25, aus welchen das in dem Volumen 23
00471	befindliche Gas austreten kann.
00472	
00473	Die in den Volumen 22, 23 befindlichen Gase treten
00474	durch die düsenartig ausgebildeten Öffnungen 25, 26 in
00475	einem homogenen Strömungsfeld aus.
00476	
00477	Aus den Öffnungen 25, 26 treten die Gase turbulent aus.
00478	Sie formen jeweils einen Strahl, so dass sich die aus
00479	nebeneinander liegenden Öffnungen 25, 26 austretenden
00480	Gasströme erst unmittelbar oberhalb des Substrates 12
00481	innerhalb der in der Figur 6 mit d bezeichneten Grenz-
00482	schicht mischen. Oberhalb der Grenzschicht d verlaufen
00483	die Strahlen 36 im Wesentlichen parallel zueinander,
00484	ohne dass zwischen ihnen eine nennenswerte Durchmischung
00485	stattfindet. Im Abstand d ist eine nahezu homogene
00486	Gasfront ausgebildet.
00487	÷
00488	Bei dem in Figur 2 dargestellten Ausführungsbeispiel
00489	sind die beiden Volumina 22, 23 unabhängig voneinander

00490 thermostatierbar. Bei dem in Figur 6 dargestellten

00491	Ausführungsbeispiel ist das einzige Volumen 22 thermos-
00492	tatierbar. Um die Volumina 22, 23 auf eine voreinge-
00493	stellte Temperatur zu regeln, die größer ist, als die
00494	Temperatur der Behälter 5, 5' und erheblich größer, als
00495	die Temperatur des Suszeptors 13, sind Heizwendel 30,
00496	32 vorgesehen. Anstelle der Heizwendel 30, 32 ist es
00497	aber auch denkbar, Kanāle in die Platten 17, 18, 16
00498	einzubringen, und diese von einer temperierten Flüssig-
00499	keit durchströmen zu lassen.
00500	
00501	Der Ring 33 kann in einer ähnlichen Weise beheizt wer-
00502	den. Dem Ring können in geeigneter Weise Heizwendel
00503	angeordnet sein. Er kann aber auch mit entsprechend
00504	temperierten Flüssigkeiten auf Temperatur gehalten
00505	werden.
00506	
00507	Beim Ausführungsbeispiel befindet sich unterhalb der
00508	Deckplatte 16 eine Heizplatte 31. Der Figur 3 ist zu
00509	entnehmen, dass in der Heizplatte 31 mäanderförmig eine
00510	Heizwendel 33 eingebracht ist. Auch die Deckplatte der
00511	Gaseinlasseinheit 15 der Figur 6 kann beheizt sein.
00512	
00513	Auch in die Bodenplatte 17 ist eine Heizwendel 33 mäan-
00514	derförmig eingebracht. (vgl. Fig. 4)
00515	
00516	Als Ausgangsstoffe für die Beschichtung können solche
00517	Salze verwendet werden, wie das US-Patent 5,554,220
00518	beschreibt. Diese Salze werden in Tanks sublimiert,
00519	indem den Tanks ein Trägergas zugeleitet wird, welches
00520	durch eine Schüttung der Salze strömt. Ein derartiger
00521	Verdampfer wird in der DE 100 48 759.9 beschrieben.
00522	
00523	Die Figur 8 zeigt ferner exemplarisch einen Verdampfer
00524	für eine Flüssigkeit. Ein Trägergas 42 wird durch ein
00525	Droitegersentil Characian Relations to 3. 63.

BNSDOCID: <WO___

00526	oder festen Ausgangsstoff 2 eingeleitet. Es durchströmt
00527	dann den Ausgangsstoff 2, um durch die Austrittsleitung
00528	und das geheizte Ventil 34 den Tank 1 zu verlassen.
00529	Über eine Rohrleitung 6. wird es mittels des Trägergases
00530	35 der Gaseinlasseinheit 15 zugeführt. Die Spülung des
00531	Tanks mit dem Trägergas 42 kann mittels des Dreiwegeven-
00532	tiles an- und abgeschaltet werden. Im abgeschalteten
00533	Zustand strömt das Trägergas 42 durch eine Bypasslei-
00534	tung 44 direkt in die Ableitung bzw. die Rohrleitung 6.
00535	Der Gasfluss 42 und der Gasfluss 35 sind massenflussge-
00536	regelt. Um den Massenfluss 42 beim Umschalten des Drei-
00537	wegeventiles 43 nicht zu beeinflussen, kann die Bypass-
00538	leitung 44 den selben Strömungswiderstand besitzen, wie
00539	der gesamte Tank 1.
00540	
00541	Jeder der in den Figuren 1 bzw. 5 angedeutete Tank 1, 3
00542	kann eine Gestaltung und eine Beschaltung haben, wie
00543	sie in Figur 8 dargestellt ist oder wie sie in der
00544	DE 100 48 759.9 beschrieben wird.
00545	
00546	Zufolge der Verdünnung die durch das Trägergas 35 er-
00547	zielt ist, sinkt der Partialdruck des Ausgangsstoffes 2
00548	bzw. des Ausgangsstoffes 3 innerhalb des den Tanks 1, 3
00549	folgenden Rohrleitungssystems bzw. der Gaseinlassein-
00550	heit 15. Diese Verdünnung hat zur Folge, dass die Tempe-
00551	ratur in diesen nachfolgenden Rohrabschnitten 6, 7 bzw.
00552	in der Gaseinlasseinheit 15 geringer sein kann, als die
00553	Temperatur in den Behältern 5, 5', ohne dass eine Kon-
00554	densation eintritt, da die Temperatur immer noch so
0055 5	hoch ist, dass der Partialdruck der einzelnen Ausgangs-
00556	stoffe unterhalb ihres Sättigungsdampfdruckes liegt.
00557	₹.
00558	Mittels eines oder mehrerer Sensoren 38; die insbesonde-
00559	re außerhalb der Reaktorwand angeordnet sind und die

00560	über einen Kanal 39 mit der Reaktionskammer 11 verbun-
00561	den sind, kann die Substrattemperatur gemessen werden.
00562	
00563	Das in dem Spalt 29 eingeleitete Gas kann durch Wahl
00564	einer geeigneten Zusammensetzung in seiner Wärmeleitfä-
00565	higkeit variiert werden. Durch die Wahl der Gaszusammen-
00566	setzung kann demnach der Wärmetransport von oder zur
00567	Gaseinlasseinheit 15 eingestellt werden. Auch auf diese
00568	Weise lässt sich die Temperatur beeinflussen.
00569	
00570	Alle offenbarten Merkmale sind (für sich) erfindungswe-
00571	sentlich. In die Offenbarung der Anmeldung wird hiermit
00572	auch der Offenbarungsinhalt der zugehörigen/beigefügten
00573	Prioritätsunterlagen (Abschrift der Voranmeldung) voll-
00574	inhaltlich mit einbezogen, auch zu dem Zweck, Merkmale
00575	dieser Unterlagen in Ansprüche vorliegender Anmeldung
00576	mit aufzunehmen.

00577 <u>ANSPRÜCHE</u>

00578

- 00579 1. Verfahren zum Beschichten von Substraten, bei dem
- 00580 wenigstens eine Schicht mittels eines Kondensationsver-
- 00581 fahrens auf das wenigstens eine Substrat aufgebracht
- 00582 wird, und bei dem für wenigstens einen Teil der Reakti-
- 00583 onsgase feste und/oder flüssige Ausgangsstoffe und
- 00584 insbesondere wenigstens eine Sublimationsquelle verwen-
- 00585 det werden, gekennzeichnet durch eine Konzentrations-/
- 00586 und/oder Temperatursteuerung der Reaktionsgase zwischen
- 00587 der Quelle (1, 3) und dem Substrat (12), durch die eine
- 00588 Kondensation der Reaktionsgase vor dem oder den Substra-
- 00589 ten vermieden wird.

00590

- 00591 2. Verfahren nach Anspruch 1 oder insbesondere danach,
- 00592 dadurch gekennzeichnet, dass eine Gaseinlasseinheit 00593 (15) mit einer Einlassgeometrie verwendet wird, die für
- 00594 eine Trennung der Gase zur Unterdrückung einer paras-
- 00595 itären Gasphasenreaktion sorgt.

00596

- 00597 3. Verfahren nach einem oder mehreren der vorhergehen-
- 00598 den Ansprüche oder insbesondere danach, dadurch gekenn-
- 00599 zeichnet, dass die Quellen (1, 3) auf unterschiedlichen
- 00600 Temperaturen gehalten werden.

00601

- 00602 4. Verfahren nach einem oder mehreren der vorhergehen-
- 00603 den Ansprüche oder insbesondere danach, gekennzeichnet
- 00604 durch die Verwendung mehrerer Injektionsanordnungen
- 00605 (25, 26).

- 00607 5. Verfahren nach einem oder mehreren der vorhergehen-
- 00608 den Ansprüche oder insbesondere danach, dadurch gekenn-
- 00609 zeichnet, dass zur Minimierung der parasitären Deposi-
- 00610 tion und damit der Verluste aus der Gasphase die einzel-

00611 nen Reaktionsgase ohne Strömungsüberlappung injiziert 00612 werden. 00613 00614 6. Verfahren nach einem oder mehreren der vorhergehen-00615 den Ansprüche oder insbesondere danach, dadurch gekenn-00616 zeichnet, dass die Austrittsgeschwindigkeit der Gase 00617 aus den einzelnen Injektionsdüsen sowie Injektionsberei-00618 chen so gewählt sind, dass lokale Bernoulli-Effekte 00619 vermieden werden. 00620 00621 7. Verfahren nach einem oder mehreren der vorhergehen-00622 den Ansprüche oder insbesondere danach, dadurch gekenn-00623 zeichnet, dass der Druck in dem oder den Tanks (1. 3) 00624 der Ausgangsstoffe jeweils mittels Inertgasspülung (35) 00625 und Regelventil (34) unabhängig vom Druck in der Reak-00626 torkammer (11) geregelt wird. 00627 00628 8. Vorrichtung zur Kondensationsbeschichtung mit einer Reaktionskammer (11). 00629 -00630 wenigstens einem Suszeptor (13) und 00631 einem Gaszuführungssystem (5, 5') mit wenigstens 00632 einer Quelle (1, 3) für die Ausgangsstoffe, 00633 dadurch gekennzeichnet, dass die Quellen (1, 3) Reser-00634 voire, der oder die Suszeptoren (13), die Reaktorwände 00635 und die Gaseinlasseinheit separat derart thermostati-00636 sierbar sind, dass die Reaktorwände (37) die Gaseinlasseinheit (15) und die Prekursorreservoire (1, 3) auf 00637 00638 jeweils höhere Temperaturen als ein Substrat (12) auf 00639 dem Suszeptor (13) regelbar sind. 00640 00641 9. Vorrichtung nach einem oder mehreren der vorhergehen-00642 den Ansprüche oder insbesondere danach, dadurch gekenn-00643 zeichnet, dass die Quellen (1, 3) getrennt thermostati-00644 sierbar sind, so dass ein positiver Temperaturgradient 00645 zu allen Kammer-, und Einlass-Oberflächen einstellbar

ist, und dass über Druck und Temperatur die Transport-00646 00647 menge der gasförmigen Ausgangsstoffe kontrollierbar ist. 00648 00649 10. Vorrichtung nach einem oder mehreren der vorherge-00650 henden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Thermostatisierung eines oder 00651 aller Reservoire (1, 3) mittels einer Flüssigkeit oder 00652 00653 elektrisch aktiven Komponenten ausgeführt ist. 00654 00655 11. Vorrichtung nach einem oder mehreren der vorherge-00656 henden Ansprüche oder insbesondere danach, dadurch 00657 gekennzeichnet, dass die Heizung derart ausgelegt ist, 00658 dass eine Reinigung eines Reservoirs durch gegenüber 00659 Prozesstemperatur erhöhte Temperatur möglich ist. 00660 00661 12. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch 00662 00663 gekennzeichnet, dass die Gaseinlasseinheit (15) als Ein- oder Mehrkammer-Showerhead mit einem oder mehreren 00664 separaten Pleni (Volumen 22, 23) ausgebildet ist. 00665 00666 00667 13. Vorrichtung nach einem oder mehreren der vorherge-00668 henden Ansprüche oder insbesondere danach, dadurch 00669 gekennzeichnet, dass als Trägergas Ar, H, N, He ein-00670 zeln oder gemischt eingesetzt wird. 00671 14. Vorrichtung nach einem oder mehreren der vorherge-00672 00673 henden Ansprüche oder insbesondere danach, dadurch 00674 gekennzeichnet, dass ein gasförmiger Ausgangsstoff je 00675 Plenum (22, 23) separat über Düsen (25, 26) in die 00676 Reaktorkammer (11) einleitbar ist, so dass sich die 00677 Quellmaterialien erst nach Austritt aus dem Gaseinlass 00678 insbesondere kurz vor dem Substrat (12) vermischen 00679 können.

00681 15. Vorrichtung nach einem oder mehreren der vorherge-00682 henden Ansprüche oder insbesondere danach, dadurch 00683 gekennzeichnet, dass zwei oder mehr gasförmige Ausgangs-00684 stoffe je Plenum (22, 23) separat über Düsen (25, 26) 00685 in die Reaktionskammer eingeleitet werden. 00686 00687 16. Vorrichtung nach einem oder mehreren der vorherge-00688 henden Ansprüche oder insbesondere danach, dadurch 00689 gekennzeichnet, dass die Düsen (25, 26) je Plenum gegen-00690 über dem Substrat (12) in einem beliebigen Winkel ange-00691 ordnet sind. 00692 00693 17. Vorrichtung nach einem oder mehreren der vorherge-00694 henden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Düsen (25, 26) je Plenum (22, 23) 00695 00696 gleichen oder unterschiedlichen Durchmessern ausgeführt 00697 sind, so dass gleich oder unterschiedlich viskose Massenflüsse der Ausgangsstoffe eine homogene Injektions-00698 00699 verteilung sicherstellen. 00700 00701 18. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch 00702 00703 gekennzeichnet, dass die Düsen (25, 26) je Plenum in 00704 gleichem oder unterschiedlichem Abstand zueinander in 00705 einer Verteilung so ausgeführt sind, dass sich eine 00706 homogene geschlossene Injektionsverteilung ergibt. 00707 00708 19. Vorrichtung nach einem oder mehreren der vorherge-00709 henden Ansprüche oder insbesondere danach, dadurch ge-00710 kennzeichnet, dass jedes Plenum 22, 23 separat thermos-00711 tatisierbar ist, so dass stark unterschiedliche subli-00712 mierende Ausgangsstoffe eingesetzt werden können. 00713 00714 20. Vorrichtung nach einem oder mehreren der vorherge-

00715 henden Ansprüche oder insbesondere danach, dadurch

00716	gekennzeichnet, dass die Thermostatisierung eines oder
00717	aller Pleni (22, 23) mittels Flüssigkeit oder elek-
00718	trisch aktiven Komponenten (30, 32) erfolgt, und dass
00719	die Kondensation der Ausgangsstoffe in jedem Plenum
00720	(22, 23) vermieden wird.
00721	I
00722	21. Vorrichtung nach einem oder mehreren der vorherge-
00723	henden Ansprüche oder insbesondere danach, dadurch
00724	gekennzeichnet, dass Sensoren (38) und zugehörige Kanä-
00725	le (39) in der Reaktorwandung vorgesehen sind, die
00726	Bemessung von Eigenschaften der Schichten und/oder auf
00727	der Oberfläche der Substrate (12) erlauben.
00728	
00729	22. Vorrichtung nach einem oder mehreren der vorherge-
00730	henden Ansprüche oder insbesondere danach, dadurch
00731	gekennzeichnet, dass der oder die Suszeptoren (13) zur
00732	Aufnahme von Substraten (12) mit runder, eckiger, fla-
00733	cher, gewölbter Form oder von Folien ausgebildet sind.
00734	
00735	23. Vorrichtung nach einem oder mehreren der vorherge-
00736	henden Ansprüche oder insbesondere danach, dadurch ge-
00737	kennzeichnet, dass der Suszeptor mittels einer Flüssig-
00738	keit in einem Hohlmantel (41) oder elektrisch aktiven
00739	Komponenten (Peltier/Widerstandsheizung) thermisch so
00740	steuerbar ist, dass zwischen der die Suszeptoroberfläche
00741	und allen anderen Wänden (37) sowie der Gasphase einen
00742	negativen Temperaturgradienten besteht, so dass die
00743	Beschichtung des Substrats über Kondensation kontrol-
00744	lierbar werden kann.
00745	•
00746	24. Vorrichtung nach einem oder mehreren der vorherge-
00747	henden Ansprüche oder insbesondere danach, dadurch
00748	gekennzeichnet, dass eine Heizung für den Suszeptor

00749 (13) derart ausgelegt ist, dass eine Reinigung des 00750 Suszeptors (13) und der Reaktionskammer. (11) durch

00751	gegenüber der Prozesstemperatur	erhöhte	Temperatur
00752	durchgeführt werden kann.		
00753			

00754 25. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch

00756 gekennzeichnet, dass durch Verdünnung des aus den Tanks

00757 (1, 3) austretenden Gas mit einem Trägergas (35) die 00758 Konzentration des Ausgangsstoffes in der Rohrleitung

00759 (6) bzw. der Gaseinlasseinheit (15) derartig herabge-

00760 setzt wird, dass die Kondensationstemperatur unterhalb

00761 der Ouellentemperatur liegt.

00762

00763 26. Vorrichtung nach einem oder mehreren des vorherge-

00764 henden Ansprüche oder insbesondere danach, dadurch

00765 gekennzeichnet, dass das Substrat während des Beschich-00766 tungsvorganges maskiert ist, bspw. mit einer Schatten-

00767 maske versehen ist.

00768

27. Vorrichtung nach einem oder mehreren der vorherge-00769

00770 henden Ansprüche oder insbesondere danach, dadurch

00771 gekennzeichnet, dass zur Vermeidung abrupter Massen-

00772 stromveränderung die geregelten Massenflüsse zu den

Tanks in eine Bypassleitung (44) umgelenkt werden kön-00773

00774 nen.

Fig. 1

Fig: B