2016 Spring CS300 Homework #6

Due: June 13 AM 10:30

TA in charge of HW6: Heewon Chung

- 1. Another way to perform topological sorting on a directed acyclic graph G = (V, E) is to repeatedly find a vertex of in-degree 0, output it, and remove it and all of its outgoing edges from the graph. Explain how to implement this idea so that it runs in time O(V+E). What happens to this algorithm if G has cycles?
- 2. Suppose that $L_1 <_p L_2$. For each of the following statements, determine whether it is true, false, or an open problem. Justify your answers.
- (a) If $L_1, L_2 \in NP$ and $L_2 \in P$, then $L_1 \in P$.
- (b) If $L_2 \in NP$, then L_2 is either NP-complete or is in P.
- (c) If SAT $<_p L_1$, then L_2 is NP-complete
- (d) If SAT problem is in P, then $co NP \neq P$.
- (e) If a problem in NP can be solved in polynomial time, then all problems in NP can be solved in polynomial time.
- (f) If an NP-complete problem can be solved in linear time, then all NP-complete problems can be solved in linear time
- 3. Prove that if $NP \neq co NP$, then $P \neq NP$.
- 4. Prove that $L <_p \overline{L}$ if and only if $\overline{L} <_p L$.