1. Una macchina di Turing bidimensionale utilizza una griglia bidimensionale infinita di celle come nastro. Ad ogni transizione, la testina può spostarsi dalla cella corrente ad una qualsiasi delle quattro celle adiacenti. La funzione di transizione di tale macchina ha la forma

$$\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{\uparrow, \downarrow, \rightarrow, \leftarrow\},\$$

dove le frecce indicano in quale direzione si muove la testina dopo aver scritto il simbolo sulla cella corrente.

Dimostra che ogni macchina di Turing bidimensionale può essere simulata da una macchina di Turing deterministica a nastro singolo.

Mostriamo come simulare una TM bidimensionale B con una TM deterministica a nastro singolo S. S memorizza il contenuto della griglia bidimensionale sul nastro come una sequenza di stringhe separate da #, ognuna delle quali rappresenta una riga della griglia. Due cancelletti consecutivi ## segnano l'inzio e la fine della rappresentazione della griglia. La posizione della testina di B viene indicata marcando la cella con $\widehat{\ }$. Nelle altre righe, un pallino $\widehat{\ }$ indica che la testina si trova su quella colonna della griglia, ma in una riga diversa. La TM a nastro singolo S funziona come segue:

S = "su input w:

- 1. Sostituisce w con la configurazione iniziale ##w## e marca con $\widehat{}$ il primo simbolo di w
- 2. Scorre il nastro finché non trova la cella marcata con ^.
- 3. Aggiorna il nastro in accordo con la funzione di transizione di B:
 - Se δ(r,a) = (s,b,→), scrive b non marcato sulla cella corrente, sposta ^ sulla cella immediatamente a destra. Poi sposta di una cella a destra tutte le marcature con un pallino. Se in qualsiasi momento S sposta una marcatura sopra un #, S scrive un blank marcato al posto del # e sposta il contenuto del nastro da questa cella fino al ## finale, di una cella più a destra.
 - Se $\delta(r,a) = (s,b,\leftarrow)$, scrive b non marcato sulla cella corrente, sposta $\hat{}$ sulla cella immediatamente a sinistra. Poi sposta di una cella a sinistra tutte le marcature con un pallino. Se in qualsiasi momento S sposta una marcatura sopra un #, S scrive un blank marcato al posto del # e sposta il contenuto del nastro da questa cella fino al ## iniziale, di una cella più a sinistra.
 - Se δ(r, a) = (s, b, ↑), scrive b marcato con un pallino nella cella corrente, e sposta
 [^] sulla prima cella marcata con un pallino posta a sinistra della cella corrente.
 Se questa cella marcata non esiste, aggiunge una nuova riga composta solo da blank all'inizio della configurazione.
 - Se δ(r,a) = (s,b,↓), scrive b marcato con un pallino nella cella corrente, e sposta
 [^] sulla prima cella marcata con un pallino posta a destra della cella corrente.
 Se questa cella non esiste, aggiunge una nuova riga composta solo da blank alla fine della configurazione.
- 4. Se in qualsiasi momento la simulazione raggiunge lo stato di accettazione di B, allora accetta; se la simulazione raggiunge lo stato di rifiuto di B allora rifiuta; altrimenti prosegue con la simulazione dal punto 2."

2. Dimostra che il seguente linguaggio è indecidibile:

$$A_{1010} = \{ \langle M \rangle \mid M \text{ è una TM tale che } 1010 \in L(M) \}.$$

Dimostriamo che A_{1010} è un linguaggio indecidibile mostrando che A_{TM} è riducibile ad A_{1010} . La funzione di riduzione f è calcolata dalla seguente macchina di Turing:

F = "su input $\langle M, w \rangle$, dove M è una TM e w una stringa:

1. Costruisci la seguente macchina M_w :

 $M_w =$ "su input x:

- 1. Se $x \neq 1010$, rifiuta.
- 2. Se x = 1010, esegue M su input w.
- 3. Se M accetta, accetta.
- 4. Se M rifiuta, rifiuta."
- 2. Restituisci $\langle M_w \rangle$."

Dimostriamo che f è una funzione di riduzione da A_{TM} ad A_{1010} .

- Se $\langle M, w \rangle \in A_{TM}$ allora la TM M accetta w. Di conseguenza la macchina M_w costruita dalla funzione accetta la parola 1010. Quindi $f(\langle M, w \rangle) = \langle M_w \rangle \in A_{1010}$.
- Viceversa, se $\langle M, w \rangle \not\in A_{TM}$ allora la computazione di M su w non termina o termina con rifiuto. Di conseguenza la macchina M_w rifiuta 1010 e $f(\langle M, w \rangle) = \langle M_w \rangle \not\in A_{1010}$.

Per concludere, siccome abbiamo dimostrato che $A_{TM} \leq_m A_{1010}$ e sappiamo che A_{TM} è indecidibile, allora possiamo concludere che A_{1010} è indecidibile.

3. Il problema SETPARTITIONING chiede di stabilire se un insieme di numeri interi S può essere suddiviso in due sottoinsiemi disgiunti S_1 e S_2 tali che la somma dei numeri in S_1 è uguale alla somma dei numeri in S_2 . Sappiamo che questo problema è NP-hard.

Il problema RectangleTiling è definito come segue: dato un rettangolo grande e diversi rettangoli più piccoli, determinare se i rettangoli più piccoli possono essere posizionati all'interno del rettangolo grande senza sovrapposizioni e senza lasciare spazi vuoti.

Un'istanza positiva di RectangleTiling.

Dimostra che Rectangle Tiling è NP-hard, usando Set
Partitioning come problema di riferimento.

Dimostriamo che Rectangle Tiling è NP-Hard per riduzione polinomiale da Set Parti-Tioning. La funzione di riduzione polinomiale prende in input un insieme di interi positivi $S = \{s_1, \ldots, s_n\}$ e costruisce un'istanza di Rectangle Tiling come segue:

- i rettangoli piccoli hanno altezza 1 e base uguale ai numeri in S moltiplicati per 3: $(3s_1, 1), \ldots, (3s_n, 1)$;
- il rettangolo grande ha altezza 2 e base $\frac{3}{2}N$, dove $N = \sum_{i=1}^{n} s_i$ è la somma dei numeri in S.

Dimostriamo che esiste un modo per suddividere S in due insiemi S_1 e S_2 tali che la somma dei numeri in S_1 è uguale alla somma dei numeri in S_2 se e solo se esiste un tiling corretto:

- Supponiamo esista un modo per suddividere S nei due insiemi S_1 e S_2 . Posizioniamo i rettangoli che corrispondono ai numeri in S_1 in una fila orizzontale, ed i rettangoli che corrispondono ad S_2 in un'altra fila orizzontale. Le due file hanno altezza 1 e base $\frac{3}{2}N$, quindi formano un tiling corretto.
- Supponiamo che esista un modo per disporre i rettangoli piccoli all'interno del rettangolo grande senza sovrapposizioni né spazi vuoti. Moltiplicare le base dei rettangoli per 3 serve ad impedire che un rettangolo piccolo possa essere disposto in verticale all'interno del rettangolo grande. Quindi il tiling valido è composto da due file di rettangoli disposti in orizzontale. Mettiamo i numeri corrispondenti ai rettangoli in una fila in S_1 e quelli corrispondenti all'altra fila in S_2 . La somma dei numeri in S_1 ed S_2 è pari ad N/2, e quindi rappresenta una soluzione per SetPartitioning.

Per costruire l'istanza di Rectangle Tiling basta scorrere una volta l'insieme S, con un costo polinomiale.