Advanced Quantum Information Theory (Quantum Master Barcelona)

Homework 1 (19 December 2024, due 12 January 2025)

Solve exercises 1, 2, 3 and 4 and two others of your choice. Justify every step. Each problem is worth 10 points. Your written return is going to be evaluated.

- 1. Prove that the constant channel $\mathcal{P}_{\sigma}: A \to B$, acting as $\mathcal{P}_{\sigma}(\rho) = \sigma(\operatorname{Tr} \rho)$, with a state σ on B, is indeed a cptp linear map.
- 2. Prove that for the constant channel \mathcal{P}_{σ} , its adjoint map is given by $\mathcal{P}_{\sigma}^*(X) = (\operatorname{Tr} \sigma X) \mathbb{1}$.
- 3. Prove that the sequential composition, the tensor product and the convex combination of cptp maps is cptp.
- 4. Prove that for the ideal channel id_A , $C_\epsilon(\mathrm{id}_A) = \log \left| \frac{|A|}{1-\epsilon} \right|$.
- 5. Prove that the hypothesis testing relative entropy is invariant under an isometry applied to both states, i.e. for any isometry $V: A \rightarrow B$ it holds that

$$D_h^{\epsilon}(\mathcal{V}(\rho)||\mathcal{V}(\sigma)) = D_h^{\epsilon}(\rho||\sigma),$$

where $\mathcal{V}: \mathcal{L}(A) \to \mathcal{L}(B)$ with $\mathcal{V}(\rho) = V \rho V^{\dagger}$ is the isometry channel.

6. Recall that we defined the average error probability of a code $\mathcal C$ as $P_e(\mathcal C):=\frac{1}{K}\sum_{m=1}^K\Pr\left\{\widehat M\neq m|M=m\right\}=\Pr\{\widehat M\neq M\}$, with uniformly distributed $M\in[K]$. In contrast, define the worst-case error probability as

$$P_{\max}(\mathcal{C}) := \max_{m \in [K]} \Pr\left\{\widehat{M} \neq m | M = m\right\}.$$

Show that for any code \mathcal{C} with average error $P_e(\mathcal{C}) \leq \epsilon$ and rate R, there exists a code \mathcal{C}' with worst-case error $P_{\max}(\mathcal{C}') \leq 2\epsilon$ and rate at least R-1.

[Hint: Apply Markov inequality to the random variable $p_m := \Pr\left\{\widehat{M} \neq m | M = m\right\}$, which is a function of the random variable M=m corresponding to the message.]

- 7. Find matrices $A, B \ge 0$ such that $A \le B$ and $A^2 \le B^2$, but $A^4 \not\le B^4$. Show that however for [A, B] = 0, it holds $A \le B \Rightarrow A^2 \le B^2$.
- 8. Let $C^{(\text{prod-ass})}_{\epsilon}(\mathcal{N})$ denote the supremum over the rates of entanglement-assisted codes $(\omega^{T_AT_B}, E, D)$ for the channel \mathcal{N} such that the shared state is $\omega^{T_AT_B} = \omega^{T_A} \otimes \omega^{T_B}$, i.e. it is a product state. Show that $C^{(\text{prod-ass})}_{\epsilon}(\mathcal{N}) = C_{\epsilon}(\mathcal{N})$.

[Hint: For the \geq direction modify the proof of Remark 1.14. The \leq direction requires a new proof.]