大筋資料作成(第1~5回まで) 大筋資料作成(第6~12回) 8/21 8/2X 7/17 8/7 8/14 第5回 - 大筋 第1回 - 大筋 第2回-大筋 第3回 - 大筋 第4回 - 大筋 第3回 - 詳細 6~12回 第4回 - 詳細 大筋、詳細資料作成 2~12回 リハ 第1回 – リハ 7/24 OJT実施中作業 OJT実施準備 MI講習会 OJT受講者 <u>Aシリーズ</u> 講義 ヒアリングシート 参加意向確認 毎週Teamsで実施 データ提出 アンケート 毎週実施 DX解析担当者 ・データ確認、テーマ確認 出席確認録画 ・データを解析できる形にする (クレンジング) Steamに上げ直す ・解析テーマと現実で出来る事の、乖離や課題を見つける 宿題 ・最終目標のプランを考える メールでFBする OJT講師 定例開始週の決定、日程決定 宿題フォルダ、AWSアカウント発行

OJT講義のスケジュール

#	Before	After
1	✓ 解析OJTの位置付けと準備 (OJT内容、全体スケジュール)✓ MI解析の手順(CRISP-DM)✓ データセットの作成方法●✓ MI解析ツール・AWS環境の説明●	✓ 解析OJTの位置付けと準備 (OJT内容、全体スケジュール)✓ MI解析の手順(CRISP-DM)✓ GUIツールの一連の流れを紹介✓ 解析設計書の作成方法
2	✓ 解析設計書の作成方法●✓ 実験データの確認方法●	✓ GUIツールのStep1,2,3でのポイント説明(MI解析セミナー風) ✓ データセットの作成方法●
3	✓ 特徴量エンジニアリングの行い方●✓ 機械学習モデルの構築(回帰・分類・時系列)●	✓ 実験データの確認方法●✓ 特徴量エンジニアリングの行い方●✓ MI解析ツール・AWS環境の説明●
4	✓ 機械学習モデルのオーバーフィッティングの考え方✓ 機械学習モデルにおける特徴量選択	✓ 機械学習モデルの構築(回帰・分類・時系列)●✓ 機械学習モデルのオーバーフィッティングの考え方
5	・ 1級似子自 ヒナルにもの お行政重選派 ✓ モデル評価指標 ✓ モデル解釈(ステムプロット、SHAP値)	✓ 機械学習モデルにおける特徴量選択✓ モデル評価指標✓ モデル解釈(ステムプロット、SHAP値)
6	✓ モデル適用範囲、外れ値の考え方✓ 実験パラメータ探索の方法✓ 実験パラメータの選択✓ 実験結果の解釈のポイント	✓ 実験パラメータ探索の方法✓ 実験パラメータの選択✓ 実験結果の解釈のポイント✓ モデル適用範囲、外れ値の考え方●
7	✓ 機械学習モデルの見直し	✓ 機械学習モデルの見直し
8	✓ 質疑応答、✓ 補足説明事項✓ 復習	✓ 質疑応答、✓ 補足説明事項✓ 復習
9	✓ 解析報告書の作成	✓ 解析報告書の作成
10	✓ テーマ毎の報告・議論(1)	✓ テーマ毎の報告・議論(1)
11	✓ テーマ毎の報告・議論(2)	✓ テーマ毎の報告・議論(2)
12	✓ 全体まとめ、質疑応答	✓ 全体まとめ、質疑応答

OJT全体像の説明と - GUIツールの簡単な紹介の 時間としたい

じっくり教える時間としたい 次回の為の準備 データ加工技術を じっくり教える時間としたい

次回の為の準備

GUIツール全体像を

MLモデル構築の基本と モデルの解釈方法の基本を 教える時間としたい

4回:特徴エンジのFB

5回:モデル解釈の情報共有

パラメータ探索を じっくり教える時間としたい

▶ これまでの取組を情報共有

講義資料を分かり易く編集したい理由(目的)

講義内容が膨大である

- 12回のスライド数は400枚を超える
 - 講義の構成を再検討して、分かり易くしたい
 - スライドに優先順位を付けて、効率的に学習できるようにする

講義資料の表現が難解である

- 抽象的な表現や、専門的なスタイルの図が多い
 - 平易な表現に置き換える事で分かり易くする

実施内容自体が複雑である

- GUIツールの使い方を覚えるだけでも難しい
 - AWSにアクセスせず、GUIツールだけで解析できるよう簡潔にしたい
- 解析プロセス、理論、コツ、等が受講者にとっては新しい分野である
 - 優先順位を付けて講義を行う

講義資料作りのポイント

実践に必要な説明を優先

- 大筋を書いて、そこから詳細を派生させていく
 - GUIツールを動かす為に最低限必要な情報→解析を進める為に重要なポイント→詳細な理論

理論と実践が紐づき易い構成

• 説明している事は、GUIツールのどの部分の話か、常に分かる様に資料を描く

理解し易い表現

- 想像しにくい表現は簡易化する
 - 文字だらけの説明 → 想像できる図示にする
 - 細かすぎる説明 → 説明する上で必要な説明のみに削ぐ
 - 難解な図
- → 別の例えを使う等で想像しやすくする

資料の組立て方(まず大筋 → 詳細を派生)

①データを入力して、GUIツールでStep3まで実行できる事

- 解析の大筋を理解すること
 - CRISP-DMの流れを理解できたか
 - GUIツールを使った解析の流れを理解できたか

②GUIツールに沿って解析を行う為の最低限な理論を理解できる事

- 具体的な理論
 - Step1:解析設計書を作成できたか
 - Step1:自身のデータを解析できる形式に変換する必要が理解できたか
 - Step1:データを確認する方法が理解できたか(散歩図、ヒートマップ、ヒストグラム)
 - Step2:機械学習モデルの特徴が理解できたか(過学習)
 - Step2: SHAP値の見方を理解できたか
 - Step2:特徴量エンジニアリングの基本を理解できたか(不要列削除、多重共線性、異なるモードのデータが混入、欠損値補完、正規化)
 - Step3:パラメータ探索の仕組みが理解できたか

③GUIツールを使って自身のテーマに②を適用できる事

具体的なアクション

•

.

•

•

•

④GUIツールでは不要な、少し高度な理論を理解できる事

- 具体的な理論
 - LASSO正則化をロジックを理解する
 - 機械学習モデル作成の裏で起こっている事や、構造を理解する(様々な機械学習モデルの紹介、交差検証法の紹介)
 - 分子構造組込みの活用方法を理解する

OJT未受講でも満たせるレベル

OJT聞いたら満たせるレベル

OJT聞いて実践したら満たせるレベル

OJTの範疇を超えたアドバンスレベル

MI解析セミナーみたいに ダイジェストで説明する

Step1

- 解析設計書を作成方法
- 自身のデータを解析できる形式に変換する方法
- データを確認する方法
 - 散歩図、ヒートマップ、ヒストグラム…

Step2

- 機械学習モデルの特徴の理解
- SHAP値の見方の理解
- 特徴量エンジニアリングの基本理解
 - 不要列削除、多重共線性、異なるモードのデータが混入、欠損値補完、正規化

Step3

• パラメータ探索の仕組み理解