

CLAIMS

What is claimed is:

- 1 1. A method for execution by a microprocessor in response to receiving a single instruction, the method comprising:
 - 2 receiving a string of bits;
 - 3 generating a plurality of indices using a plurality of segments of bits in the string of bits;
 - 4 looking up simultaneously a plurality of entries from a plurality of look-up tables using the plurality of indices; and
 - 5 combining the plurality of entries into a first result;
 - 6 wherein the above operations are performed in response to the
 - 7 microprocessor receiving the single instruction.
- 1 2. A method as in claim 1 further comprising:
 - 2 receiving a plurality of data elements specifying the plurality of segments in the string of bits.
- 1 3. A method as in claim 2 wherein the plurality of data elements are received from an entry in a register file; and wherein the microprocessor is a media processor integrated with a memory controller on a single integrated circuit.

1 4. A method as in claim 3 wherein the single instruction specifies an index of
2 the entry in the register file.

1 5. A method as in claim 2 further comprising:
2 receiving a bit pointer, wherein the plurality of segments in the string of bits
3 are determined using the bit pointer and the plurality of data elements.

1 6. A method as in claim 5 further comprising:
2 generating a new bit pointer using the first result.

1 7. A method as in claim 1 further comprising:
2 receiving an offset, wherein the plurality of indices are determined using the
3 offset and the plurality of segments of bits.

1 8. A method as in claim 1 further comprising:
2 partitioning look-up memory into the plurality of look-up tables before said
3 looking-up;
4 wherein the microprocessor is a media processor formed on a monolithic
5 integrated circuit.

1 9. A method as in claim 8 wherein the look-up memory comprises a plurality of
2 look-up units, and wherein said partitioning look-up memory comprises:

3 configuring the plurality of look-up units into the plurality of look-up tables.

1 10. A method as in claim 23 wherein each of the plurality of look-up units
2 comprises 256 8-bit entries.

1 11. A method as in claim 1 wherein the single instruction specifies a total
2 number of entries contained in each of the plurality of look-up tables.

1 12. A method as in claim 11 wherein the total number of entries is one of:
2 a) 256;
3 b) 512; and
4 c) 1024.

1 13. A method as in claim 1 wherein the single instruction specifies a total
2 number of bits used by each entry contained in the plurality of look-up tables.

1 14. A method as in claim 13 wherein the total number of bits is one of:
2 a) 8;
3 b) 16; and
4 c) 24.

1 15. A method as in claim 8 wherein the plurality of look-up tables are configured
2 according to an indicator in an entry in a register file.

1 16. A method as in claim 15 wherein the single instruction specifies an index of
2 the entry in the register file.

1 17. A method as in claim 1 wherein said combining the plurality of entries
2 comprises:
3 selecting a valid data from the plurality of entries.

1 18. A method as in claim 17 further comprising:
2 generating an indicator indicating whether none of the plurality of entries is
3 valid.

1 19. A method as in claim 17 wherein the valid data is selected according to
2 priorities of the look-up tables from which the plurality of entries are looked
3 up.

1 20. A method as in claim 17 wherein said combining the plurality of entries
2 further comprises:
3 formatting the valid data according to a type of the valid data.

1 21. A method as in claim 20 wherein the type of the valid data is one of:
2 a) zero fill;
3 b) sign magnitude; and

- 4 c) two complement.
- 1 22. A method as in claim 21 further comprising:
2 retrieving a sign bit from the string of bits for the valid data, wherein the first
3 result is obtained by formatting the valid data using the sign bit when
4 the type of the valid data is sign magnitude.
- 1 23. A method as in claim 1 wherein an entry in the plurality of entries contains:
2 a) information indicating whether the entry is valid;
3 b) information indicating a type of the entry; and
4 c) information indicating a number of bits of a code word to be decoded.
- 1 24. A method as in claim 1 wherein the string is received from an entry in a
2 register file.
- 1 25. A method as in claim 24 wherein the single instruction specifies an index of
2 the entry in the register file.
- 1 26. A method as in claim 1 further comprising:
2 receiving a first number indicating a position of a last bit of input in the
3 string of bit.
- 1 27. A method as in claim 26 further comprising:

2 generating an indicator indicating whether any bit after the last bit of input is
3 used in obtaining the first result.

1 28. A method as in claim 12 further comprising:
2 generating an indicator indicating whether one of the plurality of segments of
3 bits contains a predetermined code.

1 29. A method as in claim 28 wherein the predetermined code represents an end
2 of block condition.

1 30. A method as in claim 1 further comprising:
2 receiving at least one format;
3 formatting the string of bits into at least one escape data according to the at
4 least one format; and
5 combining the at least one escape data and the first result into a second result.

1 31. A method as in claim 30 wherein one of the at least one format is for data of
2 a type which is one of:
3 a) zero fill;
4 b) sign magnitude; and
5 c) two complement.

1 32. A method as in claim 30 wherein the at least one format is received from an
2 entry of a register file.

1 33. A method as in claim 32 wherein the single instruction specifies an index of
2 the entry in the register file.

1 34. A machine readable media containing an executable computer program
2 instruction which when executed by a digital processing system causes said
3 system to perform a method comprising:
4 receiving a string of bits;
5 generating a plurality of indices using a plurality of segments of bits in the
6 string of bits;
7 looking up simultaneously a plurality of entries from a plurality of look-up
8 tables using the plurality of indices; and
9 combining the plurality of entries into a first result;
10 wherein the above operations are performed in response to the
11 microprocessor receiving the single instruction.

1 35. A media as in claim 34 wherein the method further comprises:
2 receiving a plurality of data elements specifying the plurality of segments in
3 the string of bits.

- 1 36. A media as in claim 35 wherein the plurality of data elements are received
2 from an entry in a register file.
- 1 37. A media as in claim 36 wherein the single instruction specifies an index of
2 the entry in the register file.
- 1 38. A media as in claim 35 wherein the method further comprises:
2 receiving a bit pointer, wherein the plurality of segments in the string of bits
3 are determined using the bit pointer and the plurality of data elements.
- 1 39. A media as in claim 38 wherein the method further comprises:
2 generating a new bit pointer using the first result.
- 1 40. A media as in claim 34 wherein the method further comprises:
2 receiving an offset, wherein the plurality of indices are determined using the
3 offset and the plurality of segments of bits.
- 1 41. A media as in claim 34 wherein the method further comprises:
2 partitioning look-up memory into the plurality of look-up tables before said
3 looking-up.

- 1 42. A media as in claim 41 wherein the look-up memory comprises a plurality of
2 look-up units, and wherein said partitioning look-up memory comprises:
3 configuring the plurality of look-up units into the plurality of look-up tables.
- 1 43. A media as in claim 56 wherein each of the plurality of look-up units
2 comprises 256 8-bit entries.
- 1 44. A media as in claim 34 wherein the single instruction specifies a total
2 number of entries contained in each of the plurality of look-up tables.
- 1 45. A media as in claim 44 wherein the total number of entries is one of:
2 a) 256;
3 b) 512; and
4 c) 1024.
- 1 46. A media as in claim 34 wherein the single instruction specifies a total
2 number of bits used by each entry contained in the plurality of look-up tables.
- 1 47. A media as in claim 46 wherein the total number of bits is one of:
2 a) 8;
3 b) 16; and
4 c) 24.

1 48. A media as in claim 41 wherein the plurality of look-up tables are configured
2 according to an indicator in an entry in a register file.

1 49. A media as in claim 48 wherein the single instruction specifies an index of
2 the entry in the register file.

1 50. A media as in claim 34 wherein said combining the plurality of entries
2 comprises:
3 selecting a valid data from the plurality of entries.

1 51. A media as in claim 50 wherein the method further comprises:
2 generating an indicator indicating whether none of the plurality of entries is
3 valid.

1 52. A media as in claim 50 wherein the valid data is selected according to
2 priorities of the look-up tables from which the plurality of entries are looked
3 up.

1 53. A media as in claim 50 wherein said combining the plurality of entries
2 further comprises:
3 formatting the valid data according to a type of the valid data.

- 1 54. A media as in claim 53 wherein the type of the valid data is one of:
- 2 a) zero fill;
- 3 b) sign magnitude; and
- 4 c) two complement.
- 1 55. A media as in claim 54 wherein the method further comprises:
2 retrieving a sign bit from the string of bits for the valid data, wherein the first
3 result is obtained by formatting the valid data using the sign bit when
4 the type of the valid data is sign magnitude.
- 1 56. A media as in claim 34 wherein an entry in the plurality of entries contains:
2 a) information indicating whether the entry is valid;
3 b) information indicating a type of the entry; and
4 c) information indicating a number of bits of a code word to be decoded.
- 1 57. A media as in claim 34 wherein the string is received from an entry in a
2 register file.
- 1 58. A media as in claim 57 wherein the single instruction specifies an index of
2 the entry in the register file.
- 1 59. A media as in claim 34 wherein the method further comprises:

2 receiving a first number indicating a position of a last bit of input in the
3 string of bit.

1 60. A media as in claim 59 wherein the method further comprises:
2 generating an indicator indicating whether any bit after the last bit of input is
3 used in obtaining the first result.

1 61. A media as in claim 45 wherein the method further comprises:
2 generating an indicator indicating whether one of the plurality of segments of
3 bits contains a predetermined code.

1 62. A media as in claim 61 wherein the predetermined code represents an end of
2 block condition.

1 63. A media as in claim 34 wherein the method further comprises:
2 receiving at least one format;
3 formatting the string of bits into at least one escape data according to the at
4 least one format; and
5 combining the at least one escape data and the first result into a second result.

1 64. A media as in claim 63 wherein one of the at least one format is for data of a
2 type which is one of:
3 a) zero fill;

- 4 b) sign magnitude; and
5 c) two complement.

1 65. A media as in claim 63 wherein the at least one format is received from an
2 entry of a register file.

1 66. A media as in claim 65 wherein the single instruction specifies an index of
2 the entry in the register file.