# **Op Amp Applications Seminar**









#### Worldwide Headquarters

One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 U.S.A. Tel: 781 329 4700, (1 800 262 5643, U.S.A. only) Fax: 781 326 8703

#### Japan Headquarters New Pier Takeshiba South Tower Building

South Tower Building 1-16-1 Kaigan, Minato-ku, Tokyo 105-6891, Japan Tel: 813 5402 8200 Fax: 813 5402 1063

#### Southeast Asia Headquarters

4501 Nat West Tower Times Square 1 Matheson Street Causeway Bay Hong Kong, PRC Tel: 852 2 506 9336 Fax: 852 2 506 4755

COP ARPLICATIONS SEMINAR

Many of the figures presented in this seminar book have been extracted from the following Analog Devices publication:

# OP AMP APPLICATIONS SEMINAR



© Analog Devices, Inc., 2002 All Rights Reserved Many of the figures presented in this seminar book have been extracted from the following Analog Devices publication:

Op Amp Applications
Walter G. Jung
Analog Devices, 2002

A reference to the appropriate chapters in the above book is given underneath the slides in this book where appropriate.

@ Analog Devices, Inc., 2002

All Rights Reserved

# OP AMP APPLICATIONS SEMINAR

- 1. History, Basics, Design Aids, Filters
- 2. Specialty Amplifiers, Using Op Amps with Data Converters
- 3. Hardware and Housekeeping Design Techniques
- 4. Signal Amplifiers, Sensor Signal Conditioning

#### OP AMP APPLICATIONS SEMINAR

# OP AMP APPLICATIONS SEMINAR

- 1. History, Basics, Design Aids, Filters
- Specialty Amplifiers, Using Op Amps with Data Converters
- 3. Hardware and Housekeeping Design Techniques
  - 4. Signal Amplifiers, Sensor Signal Conditioning

### HAROLD BLACK'S FEEDBACK AMPLIFIER



Harold S. Black, "Stabilized Feedback Amplifiers,"

Bell System Technical Journal, Vol. 13, No. 1, January 1934

Op Amp Applications, Chapter H

### SCHEMATIC DIAGRAM FOR "SUMMING AMPLIFIER" (US PATENT 2,401,779, ASSIGNED TO BELL TELEPHONE LABORATORIES, INC.)



K. D. Swartzel, Jr., "Summing Amplifier," US Patent 2,401,779, filed May 1, 1941, issued July 11, 1946

Op Amp Applications, Chapter H

### SCHEMATIC DIAGRAM OF LATE M9 SYSTEM OP AMP DESIGNED AT BELL TELEPHONE LABORATORIES (1941-1945)



Op Amp Applications, Chapter H

Op 8,1 np Applications, Chapter H

### THE GAP/R K2-W OP AMP, PHOTO AND SCHEMATIC DIAGRAM (COURTESY OF GAP/R ALUMNUS DAN SHEINGOLD)



**RELEASED JANUARY, 1953** 

Op Amp Applications, Chapter H

Op Applications, Chapter H

# THE GAP/R MODEL PP65 POTTED MODULE SOLID-STATE OP AMP (1962)



Op Amp Applications, Chapter H

Op 6.1 applications, Chapter H

# THE ADI HOS-050 HIGH SPEED HYBRID IC OP AMP PHOTO AND SCHEMATIC DIAGRAM (1977)



Op 3,1 op Applications, Chapter H

Op Amp Applications, Chapter H

#### THE μA709 MONOLITHIC IC OP AMP (1965)



Op Amp Applications, Chapter H

#### THE LM101 MONOLITHIC IC OP AMP (1967)



Op Amp Applications, Chapter H

#### THE μA741 MONOLITHIC IC OP AMP (1968)



Op Amp Applications, Chapter H

#### THE OP07 MONOLITHIC IC OP AMP (1975)



Op Amp Applications, Chapter H

# THE AD503 AND AD506 TWO CHIP HYBRID IC OP AMPS (1970)



Op Amp Applications, Chapter H

(gloque VBE of E) 1.11

#### KEY ADI IC FET OP AMP CHRONOLOGY

- ♦ AD542, 1978, Low offset (500μV) trimmed precision JFET
- AD544, 1980, Medium speed (8V/μs) trimmed JFET
- AD547, 1982, High precision JFET trimmed offset (250μV) and drift (1μV/°C)
- ◆ AD711/712/713-family, 1986, low cost, general purpose, medium precision JFET
- ♦ AD515, 1976, two chip electrometer amplifier (75fA)
- ◆ AD545, 1978, two chip electrometer amplifier (1pA)
- ◆ AD549, 1987, monolithic electrometer amplifier (60fA)
- ◆ AD795, 1993, monolithic electrometer amplifier (1pA)
- ♦ AD743/745, 1990, monolithic JFETS, 1.9nV/√Hz voltage noise
- ◆ AD820/822/824, 1993, JFETs, single-supply, rail-to-rail output (3 to 36V supply)
  - AD823, 1995, JFET, single-supply, rail-to-rail output (3 to 36V supply), high speed
  - ◆ AD8610/8620, 2002, precision, low noise, high speed JFET
  - ◆ AD8065/8066/8067, AD8033/8034, 2002, high speed FastFET™

Op Amp Applications, Chapter H

#### KEY ADI HIGH SPEED COMPLEMENTARY BIPOLAR OP AMPS

- ♦ AD840-series, 1988, high speed voltage feedback op amps
- ◆ AD846, 1988, high speed, current feedback op amp
- ♦ AD847, 1988, high speed, capacitive load stable
- ♦ AD829, 1990, high speed, decompensated
- ◆ AD9617/9618, 1990, high speed, low distortion current feedback
- ♦ AD811, 1992, high speed, high speed, low distortion, video line driver
- ◆ AD9631/9632, 1994, high speed, low distortion
- ◆ AD8001, 1994, 800MHz current feedback, first XFCB op amp
- ♦ AD8011, 1994, 1mA, 300mHz, current feedback, low distortion
- ◆ AD8009, 1997, 1GHz current feedback
- ◆ AD8038/8039, 2002, 350MHz, 1mA/amplifier supply
- ◆ AD8021, 2002, 200MHz, 16-bit, low noise (2.1nV/√Hz)

Op Amp Applications, Chapter H

#### **VOLTAGE FEEDBACK (VFB) OP AMP MODEL**



Op Amp Applications, Chapter 1

#### GAIN-BANDWIDTH PRODUCT FOR VOLTAGE FEEDBACK OP AMPS



Op Amp Applications, Chapter 1

#### **CURRENT FEEDBACK (CFB) OP AMP MODEL**



Op Amp Applications, Chapter 1

## FREQUENCY RESPONSE FOR CURRENT FEEDBACK OP AMPS



- Feedback resistor fixed for optimum performance. Larger values reduce bandwidth, smaller values may cause instability.
- ♦ For fixed feedback resistor, changing gain has little effect on bandwidth.
- Current feedback op amps do not have a fixed gain-bandwidth product.

Op Amp Applications, Chapter 1

C71.11p Applications, Chapter 1

### SIMPLIFIED CURRENT FEEDBACK (CFB) OP AMP



Op Amp Applications, Chapter 1

081.1 p Applications, Chapter 1

### A 1937 VACUUM TUBE AMPLIFIER DESIGNED BY FREDERICK E. TERMAN USING CURRENT FEEDBACK TO THE LOW IMPEDANCE INPUT CATHODE



Adapted from: Frederick E. Terman, "Feedback Amplifier Design," *Electronics*, January 1937, pp. 12-15, 50.

Op Amp Applications, Chapter 1

o e1.1 no Applications, Chapter 1

#### MINIST A 1941 VACUUM TUBE AMPLIFIER TMUUDAY TEET A WITH CURRENT FEEDBACK



Op Amp Applications, Chapter 1

# A 1941 CIRCUIT SHOWS CHARACTERISTIC CFB GAIN - BANDWIDTH RELATIONSHIP



Adapted from: Stewart E. Miller, "Sensitive DiC Amplifier with AC Operation," *Electronics*, November 1941, pp. 27-31, 105-109

Op Amp Applications, Chapter 1

#### **BIPOLAR TRANSISTOR INPUT STAGE**



- ♦ Low Offset: As low as 10μV
- Low Offset Drift: As low as 0.1μV/°C
- ♦ Temperature Stable I<sub>B</sub>
- **♦** Well-Matched Bias Currents
- ◆ Low Voltage Noise: As low as 1nV/√Hz

Op Amp Applications, Chapter 1

- High Bias Currents: 50nA 10μA
- (Except Super-Beta: 50pA 5nA, More Complex and Slower)
- ◆ Medium Current Noise: 1pA/√Hz
- Matching source impedances minimize offset error due to bias current

### BIAS-CURRENT COMPENSATED BIPOLAR INPUT STAGE



- Low Offset Voltage: As low as 10μV
- Low Offset Drift: As low as 0.1μV/°C
- ♦ Temperature Stable I<sub>bias</sub>
- ♦ Low Bias Currents: <0.5 10nA
- ◆ Low Voltage Noise: As low as 1nV/√Hz

- Poor Bias Current Match (Currents May Even Flow in Opposite Directions)
- ♦ Higher Current Noise
- Not Very Useful at HF
- Matching source impedances makes offset error due to bias current worse because of additional impedance

Op Amp Applications, Chapter 1

#### **OP497 OP AMP USES SUPER-BETA TRANSISTORS** AND BIAS CURRENT COMPENSATION



Op Amp Applications, Chapter 1

### SINGLE-SUPPLY OP AMPS

- **♦** Single Supply Offers:
  - Lower Power
    - Battery Operated Portable Equipment
    - Requires Only One Voltage
- Design Tradeoffs:
  - Reduced Signal Swing Increases Sensitivity to Errors
     Caused by Offset Voltage, Bias Current, Finite Open-Loop Gain, Noise, etc.
  - Must Usually Share Noisy Digital Supply
  - Rail-to-Rail Input and Output Needed to Increase Signal Swing
  - Precision Less than the best Dual Supply Op Amps
     but not Required for All Applications
  - Many Op Amps Specified for Single Supply, but do not have Rail-to-Rail Inputs or Outputs

Op Amp Applications, Chapter 1

### PNP OR N-CHANNEL JFET STAGES ALLOW INPUT SIGNAL TO GO TO THE NEGATIVE RAIL



Op Amp Applications, Chapter 1

#### TRUE RAIL-TO-RAIL INPUT STAGE



Op Amp Applications, Chapter 1

#### TRADITIONAL OUTPUT STAGES



Op Amp Applications, Chapter 1

#### "ALMOST" RAIL-TO-RAIL OUTPUT STRUCTURES



Op Amp Applications, Chapter 1

#### AD8531/8532/8534 CMOS RAIL-TO-RAIL OP AMP SIMPLIFIED SCHEMATIC



Op Amp Applications, Chapter 1

### AD8602 (1/2) CMOS OP AMP SHOWING DigiTrim™



Op Amp Applications, Chapter 1

#### SUMMARY OF TRIM PROCESSES AT ANALOG DEVICES

| PROCESS        | TRIMMED AT:         | SPECIAL PROCESSING         | RESOLUTION |  |  |
|----------------|---------------------|----------------------------|------------|--|--|
| DigiTrim™      | Wafer or Final Test | None                       | Discrete   |  |  |
| Laser Trim     | Wafer               | Thin Film Resistor         | Continuous |  |  |
| Zener Zap Trim | Wafer               | None                       | Discrete   |  |  |
| Link Trim      | Wafer               | Thin Film or Poly Resistor | Discrete   |  |  |
| EEPROM Trim    | Wafer or Final Test | EEPROM                     | Discrete   |  |  |

**Op Amp Applications, Chapter 1** 

### PRECISION OP AMP (OP177F) DC ERROR BUDGET



Op Amp Applications, Chapter 1

# PRECISION SINGLE-SUPPLY OP AMP PERFORMANCE CHARACTERISTICS

LISTED IN ORDER OF INCREASING SUPPLY CURRENT

| PART NO.       | V <sub>OS</sub> max | V <sub>os</sub> TC | A <sub>VOL</sub> min | NOISE (1kHz) | INPUT | OUTPUT  | I <sub>SY</sub> /AMP<br>MAX |  |
|----------------|---------------------|--------------------|----------------------|--------------|-------|---------|-----------------------------|--|
| OP293          | 250µV               | 2μV/°C             | 200k                 | 5nV/√Hz      | 0, 4V | 5mV, 4V | 20μΑ                        |  |
| OP196/296/496  | 300µV               | 2μV/°C             | 150k                 | 26nV/√Hz     | R/R   | "R/R"   | 60µA                        |  |
| ΟΡ777 100μV    |                     | 1.3µV/°C           | 300k                 | 15nV√Hz      | 0, 4V | "R/R"   | 270μΑ                       |  |
| OP191/291/491  | 700µV               | 5μV/°C             | 25k                  | 35nV/√Hz     | R/R   | "R/R"   | 350µA                       |  |
| *AD820/822/824 | 1000µV              | 20μV/°C            | 500k                 | 16nV/√Hz     | 0, 4V | "R/R"   | 800µA                       |  |
| **AD8601/2/4   | 600µV               | 2μV/°C             | 20k                  | 33nV/√Hz     | R/R   | "R/R"   | 1000μΑ                      |  |
| OP184/284/484  | 150µV               | 2μV/°C             | 50k                  | 3.9nV/√Hz    | R/R   | "R/R"   | 1350μΑ                      |  |
| OP113/213/413  | 175µV               | 4μV/°C             | 2M                   | 4.7nV/√Hz    | 0, 4V | 5mV, 4V | 3000μΑ                      |  |
| OP177F (±15V)  | 25µV                | 0.1µV/°C           | 5M                   | 10nV/√Hz     | N/A   | N/A     | 2000μΑ                      |  |

\*JFET INPUT \*\*CMOS

NOTE: Unless Otherwise Stated Specifications are Typical @ +25°C V<sub>S</sub> = +5V

Op Amp Applications, Chapter 1

### MODERN CHOPPER STABILIZED AMPLIFIER



Op Amp Applications, Chapter 1

# INTERMODULATION PRODUCTS: FIXED VERSUS PSEUDORANDOM CHOPPING FREQUENCY



INPUT SIGNAL = 1mV RMS, 200Hz OUTPUT SIGNAL: 1V RMS, 200Hz GAIN = 60dB

Op Amp Applications, Chapter 1

o 1.36 applications, Chapter 1

### VOLTAGE NOISE SPECTRAL DENSITY COMPARISON: FIXED VERSUS PSEUDORANDOM CHOPPING FREQUENCY



Op Amp Applications, Chapter 1

## NOISE: BIPOLAR VERSUS CHOPPER AMPLIFIER







| NOISE BW           | BIPOLAR (OP177) | CHOPPER (AD8571/72/74) |
|--------------------|-----------------|------------------------|
| 0.1Hz to 10Hz      | 0.238µV p-p     | 1.3 μV p-p             |
| 0.01Hz to 1Hz      | 0.135µV p-p     | 0.41μV p-p             |
| 0.001Hz to 0.1Hz   | 0.120μV p-p     | 0.130μV p-p            |
| 0.0001Hz to 0.01Hz | 0.118µV p-p     | 0.042μV p-p            |

Op Amp Applications, Chapter 1

#### OP AMP PROCESS TECHNOLOGY SUMMARY

- ♦ BIPOLAR (NPN-BASED): This is Where it All Started!!
- ♦ BIPOLAR + JFET (BiFET): High Input Impedance, High Speed
- ◆ COMPLEMENTARY BIPOLAR + JFET (CBFET): High Input Impedance, Rail-to-Rail Output, High Speed
- ◆ DIELECTRICALLY ISOLATED COMPLEME:NTARY BIPOLAR + JFET (XFCB, FastFET™)
- ◆ COMPLEMENTARY MOSFET (CMOS): Low Cost Op Amps

  (ADI DigiTrim™ Minimizes Offset Voltage and Drift in CMOS op amps)
- ◆ BIPOLAR (NPN) + CMOS (BiCMOS): Bipolar Input Stage adds Linearity, Low Power, Rail-to-Rail Output
- ◆ COMPLEMENTARY BIPOLAR + CMOS (CI3CMOS): Rail-to-Rail Inputs, Rail-to-Rail Outputs, Good Linearity, Low Power, Higher Cost

Op Amp Applications, Chapter 1

0.12 Amp Applications, Chapter 1

#### **AMPLIFIER BANDWIDTH VERSUS SUPPLY CURRENT FOR ANALOG DEVICES' PROCESSES**



Op Amp Applications, Chapter 1

### FOLDED CASCODE SIMPLIFIED CIRCUIT



Op Amp Applications, Chapter 1

#### MODEL AND BODE PLOT FOR A VFB OP AMP



Op Amp Applications, Chapter 1

# "QUAD-CORE" VFB gm STAGE FOR CURRENT-ON-DEMAND



Op Amp Applications, Chapter 1

#### AD8061/62/63 SINGLE-SUPPLY 300MHz VOLTAGE FEEDBACK OP AMP



Op Amp Applications, Chapter 1

# AD8061 OUTPUT SETTLING TIME G = +2, $V_S = +5V$



Op Amp Applications, Chapter 1

#### OP AMP APPLICATIONS SEMINAR

### AD8061 OUTPUT RESPONSE $G = +2, V_S = +5V$



Op Amp Applications, Chapter 1

### SIMPLIFIED CURRENT FEEDBACK (CFB) OP AMP



Op Amp Applications, Chapter 1

7.47 Op Amp Applications, Chapter 1

#### OP AMP APPLICATIONS SEMINAR

#### CFB OP AMP MODEL AND BODE PLOT



Op Amp Applications, Chapter 1

### SIMPLIFIED TWO-STAGE CFB OP AMP



NOTE: BIAS CIRCUITRY OMITTED

Op Amp Applications, Chapter 1

# RAY STATA PUBLICATIONS ESTABLISH ADI APPLICATIONS WORK



- 1. Ray Stata, "Operational Amplifiers-Parts I and II," Electromechanical Design, Sept., Nov., 1965.
- Ray Stata, "Operational Integrators," Analog Dialogue, Vol. 1, No. 1, April, 1967.
   See also ADI AN357
- Ray Stata, "User's Guide to Applying and Measuring Operational Amplifier Specifications," Analog Dialogue, Vol. 1, No. 3, September 1967. See also ADI AN356.
- 4. Ray Stata, "Applications Manual for 201, 202, 203 and 210 Chopper Op Amps," ADI, 1967.
- 5. "Ray Stata Speaks Out on 'What's Wrong with Op Amp Specs'," EEE, July 1968.

Op Amp Applications, Chapter 1

# ADI APPLICATIONS: 2002 http://www.analog.com

- Analog Dialogue
- ♦ Application Notes, Article Reprints
- White Papers
- **♦** Tutorials
- ♦ Product Selection Guides
- ◆ CD ROM Catalog
- ♦ Short Form Designers' Guide
- ♦ ADI Technical Library A aO alog stonic isable of
- ♦ Seminar Books on www:
  - Practical Analog Design Techniques
  - Power and Thermal Management
  - High Speed Design Techniques
  - Sensor Signal Conditioning
  - Mixed-Signal and DSP Design Techniques
- ◆ 1-800-ANALOGD

# ADI WEB-BASED INTERACTIVE DESIGN TOOLS http://www.analog.com/techSupport/DesignTools/index.html

- Op Amp
  - Gain/Range Error Calculator
  - Error Budget Analysis
- ♦ In-Amp
  - Gain/Range Error Calculator
  - Error Budget Analysis
- ♦ Differential Amplifiers
  - Gain/Range Error Calculator
- ♦ Ideal Single Pole Op Amp Stability Analysis
- ◆ Log Amp: Output Voltage and Impedance Matching
- ♦ ADC Tools Imple Tingle Tingle And Sollow 9
- ◆ DAC/DDS/PLL Tools Manual Three news 4
- ♦ Accelerometer Tools Trailed beagg doller
- ♦ Transmission Line Matching Tutorial
- ♦ Filter Design @ and Gab bas langta-bextill •

#### OP AMP RANGE/GAIN/ERROR CALCULATOR



## OP AMP RANGE/GAIN/ERROR CALCULATOR CONTINUED



# OP AMP ERROR BUDGET ANALYSIS FOR OP1177

|                                                                                         |                            | Application Parameters                                                                                     |                   |                     | a van               | Error Source                                                                                                            | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Approx. Calculation                                                                                                                                                                                             | Absolute<br>Error | Drift/Gair<br>Error              | n Resolu |     |
|-----------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------|-------------------|---------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|----------|-----|
| Operating Temp., T <sub>A</sub> Supply Variability (ripple+load reg.)                   | 125 °C                     | e p                                                                                                        | Update            | 36                  |                     | Bias Current, I <sub>B</sub> - Source Imbalance Error  Bias Current Drift, I <sub>B</sub> _rc - Source Imbalance Errift | 2 nA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{l} (I_{B} / (V_{IN} \cdot V_{REF})) \times \\ (R_{F}    (R_{\phi} + R_{S}) \cdot (R_{\phi 2} + R_{S+})) \\ (I_{B\_TC} \times (T_{A} \cdot 25) / (V_{IN} \cdot V_{REF})) \\ \times \end{array} $ | 8e-4              | ppm                              | opm      |     |
| Error Source                                                                            | Specification              | Approx. Calculation                                                                                        | Absolute<br>Error | Drift/Gain<br>Error | Resolution<br>Error | - Source Imbalance I riti  Offset Current, I <sub>OS</sub> - Source Imbalance E rror + Source Resistance Error          | pA/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(R_{\rm f}  (R_{\rm o}+R_{\rm s})-(R_{\rm o2}+R_{\rm s+}))$<br>$(I_{\rm OS}/V_{\rm IN}-V_{\rm REF})) \times$<br>$(3^{*}(R_{\rm f}  (R_{\rm o}+R_{\rm s}))-(R_{\rm o2}+R_{\rm s+}))/2$                          | 10                | ppm                              |          |     |
| Resistor Tolerance  Resistor Drift, TC <sub>R</sub> Temp. difference, T <sub>DIFF</sub> | 0.1 %<br>25 ppm/*C<br>5 *c | ~ (1/2 : noniny) TC <sub>R</sub> × T <sub>DIFF</sub>                                                       | 2000              | ppm 125             | ppm                 | Offset Current Drift, I <sub>CS_TC</sub> - Source Imbalance [ rift + Source Resistance   )rift                          | O<br>pA/*C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (I <sub>OS_TC</sub> × (T <sub>A</sub> -25) / (V <sub>IN</sub> -<br>V <sub>REF</sub> )) ×<br>(3*(R <sub>F</sub>   (R <sub>Q</sub> +R <sub>S</sub> )) -<br>(R <sub>Q2</sub> +R <sub>S+</sub> ) //2                |                   | 0                                | ppm      |     |
| Nom. Open Loop Gain, A <sub>OL</sub><br>Min. Open Loop Gain                             | 2000 V/mV                  |                                                                                                            | 2.99              | ppm                 | 3 ppm               | Common Mode Rejection, CMR Power Supply Rejection, PSR                                                                  | 118 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 CMR/20 × (V <sub>+</sub> +V <sub>-</sub> )/2<br>10 PSR/20 × SUP-VAR ×                                                                                                                                        | 3.15e-9           |                                  | 0.213    |     |
| Input Offset Voltage, V <sub>OSI</sub> Input Offset Voltage Drift, V <sub>OSI_TC</sub>  | 0.1 mv<br>0.7              | $V_{OSI}^{J}(V_{IN}^{-}V_{REF})$<br>(2: inv.) $V_{OSI\_TC} \times (T_{A}^{-}25)J$<br>$(V_{IN}^{-}V_{REF})$ | 120               | ppm<br>84           | ppm                 | Differential Gain Error                                                                                                 | 0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (V <sub>S+</sub> -V <sub>S</sub> )                                                                                                                                                                              |                   | 0                                | ppm      | ppm |
| 0.75                                                                                    | PODALF                     |                                                                                                            | Pay A             |                     |                     | Voitage noise  Current noise  Corner freq                                                                               | 8.5<br>nV/root-Hz<br>0.2<br>pA/root-Hz<br>5 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Noise 8W: 0.1 - 100 Hz                                                                                                                                                                                          | SGON              | 14.00<br>19.00<br>19.00<br>19.00 | 3.57     | ppm |
|                                                                                         |                            |                                                                                                            |                   |                     |                     | Total resolution error  Total drift/gain error  Total absolute + drift + resol                                          | ution error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AND DES                                                                                                                                                                                                         | 2350              | 209                              | 6.78     | ppm |
|                                                                                         |                            |                                                                                                            |                   | Α                   | 10 A Maria          | TE ACCURACY                                                                                                             | Brown House State of the State | RESOLUTI                                                                                                                                                                                                        |                   |                                  |          |     |

#### OP AMP APPLICATIONS SEMINAR

# AD623 SINGLE SUPPLY IN AMP RANGE/GAIN/ERROR CALCULATOR EXAMPLE



## AD623 ERROR BUDGET

|                                                      | A             | oplication Parameters                                                      |           | S rapid to                |                                                                                                              |               |                                                                   |              |                           |
|------------------------------------------------------|---------------|----------------------------------------------------------------------------|-----------|---------------------------|--------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------|--------------|---------------------------|
| Differential Amplitude,<br>V <sub>DIFF</sub><br>Gain | 10 m          | Common Mode Voltage, VCOMM Operating Temperature, TA                       | 2.5<br>85 | v<br>•c                   | Error Source                                                                                                 | Specification | Calculation                                                       |              | Effect on<br>y Resolution |
| Source R <sub>S+</sub>                               | 100 oh        | ms R <sub>s</sub> .                                                        | 0         | ohms                      | Bias Current, I <sub>B</sub> - Source Imbalance Error                                                        | 27.5 nA       | IB * (RS+ - RS-) / VDIFF                                          | 275          | ppm                       |
|                                                      |               | Calculate                                                                  | OV 1      | 401                       | Bias Current Drift, I <sub>E_TC</sub> - Source Imbalance Drift                                               | 25<br>pA/*C   | $I_{B\_TC}^*(R_{S+}-R_{S-})^*(T_{A}-25)/V_{DIFF}$                 | 15           | ppm                       |
| Error Source                                         | Specification | Calculation                                                                |           | Effect on<br>y Resolution | Offset Current, I <sub>OS</sub> - Source Resistance + Imbalance Error Offset Current Drift, <sub>OS TC</sub> | 2.5 nA        | IOS * MAX(R <sub>S+</sub> , R <sub>S</sub> ,) / V <sub>DIFF</sub> | 30           | ppm                       |
| Gain Error                                           | 0.35 %        |                                                                            | 3500      | ppm                       | - Source Resistance +<br>Imbalance Drift                                                                     | pA/°C         | (T <sub>A</sub> -25) / V <sub>DIFF</sub>                          | 0            | ppm                       |
| Gain Drift, G <sub>TC</sub>                          | 50<br>ppm/*C  | G <sub>TC</sub> *(T <sub>A</sub> -25)                                      | 3000      | ppm                       | Common Mode Rejection,<br>CMR                                                                                | 77 dB         | 10 CMR/20 + V <sub>COMM</sub>                                     | 353.1        | ppm                       |
| Gain Nonlinearity                                    | 0.0050 %      |                                                                            |           | 50 ppm                    | Noise, RTI (0.1 Hz - 10 Hz)                                                                                  | 3 µv p        | -р                                                                |              | 300                       |
| Input Offset Voltage, V <sub>OSI</sub>               | 160 µ\        | V <sub>OSI</sub> /V <sub>DIFF</sub>                                        | 16000     | ppm                       |                                                                                                              |               | 1,65                                                              | TATAL STREET |                           |
| Input Offset Voltage Drift,<br>Vosi_TC               | 1.0<br>µV/*C  | $(V_{OSI\_TC}/V_{DIFF})*(T_A-25)$                                          | 6000      | ppm                       | TOTALS                                                                                                       |               |                                                                   | 30873        |                           |
| Output Offset Voltage, V <sub>OSO</sub>              | 1.1 m         | V Voso/(GAIN*VDIFF)                                                        | 1100      | ppm                       |                                                                                                              | 8.0           |                                                                   | A            | 350                       |
| Output Offset Voltage Drift,<br>Voso_Tc              | 10<br>μV/*C   | (V <sub>OSO_TC</sub> / (GAIN*V <sub>DIFF</sub> ))<br>*(T <sub>A</sub> -25) | 600       | ppm                       |                                                                                                              |               | /                                                                 |              | 1                         |
|                                                      |               | ar 0 = ,-                                                                  |           |                           | ABSOLU<br>ERROR OVE                                                                                          | TE ACCU       | 100 100 100 100 100 100 100 100 100 100                           | /            |                           |
|                                                      |               |                                                                            |           |                           |                                                                                                              | RE            | SOLUTION /                                                        |              |                           |

#### OP AMP APPLICATIONS SEMINAR

# AD8138 DIFFERENTIAL AMPLIFIER RANGE/GAIN/ERROR CALCULATOR



## SINGLE-POLE OP AMP MODEL GAIN AND PHASE RESPONSE



### KEY FILTER PARAMETERS



Op Amp Applications, Chapter 5

#### ANTIALIASING FILTER DESIGN EXAMPLE

- ♦ An Antialiasing Filter will be Designed
  - F<sub>O</sub> = 8 kHz (3dB cutoff frequency)
  - A<sub>MIN</sub> = 72 dB (equal to a 12 bit system)
  - F<sub>s</sub> = 50 kSPS (stopband frequency)
  - Butterworth Response (Best Combination of Attenuation and Phase Response)
- ♦ The Ratio of  $F_0/F_6 = 6.25$
- ◆ Using the Graph in Figure 5-14, We Can Determine the Required Order of the Filter is 5<sup>th</sup> order.
- ♦ We Then Will Use ADI's Filter Design Tool to Determine the Component Values
- ◆ This is the First Example in Section 5-8 of Op Amp Applications

Op Amp Applications, Chapter 5

#### DETERMINING FILTER ORDER



Op Amp Applications, Chapter 5

### FILTER DESIGN TOOL



Op Amp Applications, Chapter 5

C.63.1 Applications, Chapter 5

### 1ST SECTION DESIGN (SALLEN-KEY)



Op Amp Applications, Chapter 5

### 2<sup>ND</sup> SECTION DESIGN (SALLEN-KEY)



Op Amp Applications, Chapter 5

#### **▶** OP AMP APPLICATIONS SEMINAR

### 3RD SECTION DESIGN (SALLEN-KEY)



Op Amp Applications, Chapter 5

o 1.66 Applications, Chapter 5

### 1ST SECTION WITH CLOSEST STANDARD VALUES



Op Amp Applications, Chapter 5

### MAGNITUDE AND PHASE PLOTS



Op Amp Applications, Chapter 5

#### FILTER DESIGN TOOL CAPABILITIES

- ♦ Up to 8th Order Filters
- ♦ Many Standard All-Pole Responses and Elliptical
  - Butterworth
  - Bessel
  - Chebyshev
  - Equiripple
  - Gaussian
- Lowpass, Highpass, Bandpass now
  - Notch to be added
- Several Possible Topologies
  - Sallen-Key
  - Multiple Feedback
  - State Variable
  - Biquad

Op Amp Applications, Chapter 5

### INDIVIDUAL SECTION RESPONSE



Op Amp Applications, Chapter 5

### **EFFECTS OF STANDARD VERSUS EXACT VALUES**



Op Amp Applications, Chapter 5

#### OP AMP APPLICATIONS SEMINAR

#### EFFECTS OF STANDARD VERSUS EXACT VALUES



Op Amp Applications, Chapter 5

# OP AMP APPLICATIONS SEMINAR

- 1. History, Basics, Design Aids, Filters
- 2. Specialty Amplifiers, Using Op Amps with Data Converters
- 3. Hardware and Housekeeping Design Techniques
- 4. Signal Amplifiers, Sensor Signal Conditioning

# OP AMP APPLICATIONS SEMINAR

- 1. History, Basics, Design Aids, Filters
- Specialty Amplifiers, Using Op Amps with Data Converters
- 3. Hardware and Housekeeping Design Techniques
  - 4. Signal Amplifiers, Sensor Signal Conditioning

## THE GENERIC INSTRUMENTATION AMPLIFIER (IN-AMP)



Op Amp Applications, Chapter 2

## OR DIFFERENCE AMPLIFIER



Op Amp Applications, Chapter 2

## SSM2141/SSM2143 DIFFERENCE AMPLIFIERS (AUDIO LINE RECEIVERS)



Op Amp Applications, Chapter 2

## A CURRENT SENSING CIRCUIT USING THE AD629, A HIGH COMMON-MODE INPUT VOLTAGE DIFFERENCE AMPLIFIER



 $V_{CM}$  =  $\pm 270V$  for  $V_{S}$  =  $\pm 15V$ 

Op Amp Applications, Chapter 2

#### TWO OP AMP INSTRUMENTATION AMPLIFIER



Op Amp Applications, Chapter 2

### SINGLE SUPPLY RESTRICTIONS: $V_S = +5V$ , G = 2



Op Amp Applications, Chapter 2

### SINGLE SUPPLY RESTRICTIONS: $V_S = +5V$ , G = 100



Op Amp Applications, Chapter 2

Op Amp Applications, Chapter 2

### THE AD627 SINGLE-SUPPLY IN-AMP ARCHITECTURE



Op Amp Applications, Chapter 2

### THREE OP AMP INSTRUMENTATION AMPLIFIER



Op Amp Applications, Chapter 2

### ROBERT DEMROW'S 1968 "EVOLUTION FROM OPERATIONAL AMPLIFIER TO DATA AMPLIFIER"



MODEL GOI WIDEBAND DIFFERENTIAL DC AMPLIFIER

Fig. 16 - Wideband differential DC amplifier Model 601 embodies many of the principles outlined in this article. Input circuit based on uA726 temperature compensated monolithic pair provides high voltage & current stability, uses bootstrapping feedback to create 1000 megohms common mode and 10 megohms differential input impedance. Subsequent circuitry preserves uA726's inherently-wide bandwidth by using low-value resistors, which also permit highest resistance stability, hease best long-term CMRR. Single resistor adjusts closed-loop gain from 20 to 2000; fixed first-stage gain of 20:1 reduces second stage's gain-inequality error: CMRRA = A/(A2 - A1), twentyfold.

Op Amp Applications, Chapter 2

### AD524 RELEASED IN 1982 SET THE STANDARD FOR IC IN-AMPS



Scott Wurcer and Lewis Counts, "A Programmable Instrumentation Amplifier for 12-bit Resolution Systems," *IEEE Journal Solid State Circuits*, Vol. SC-17, No. 6 December 1982, pp. 1102-1111.

Op Amp Applications, Chapter 2

## AD620 IN-AMP SIMPLIFIED SCHEMATIC (RELEASED IN 1992)



Op Amp Applications, Chapter 2

## AD620 IN-AMP CMR VERSUS FREQUENCY (1kΩ SOURCE IMBALANCE)



Op Amp Applications, Chapter 2

### AD8225 PRECISION G = 5 IN-AMP SIMPLIFIED SCHEMATIC



Op Amp Applications, Chapter 2

### AD8225 IN-AMP COMMON-MODE REJECTION



Corner Frequency of AD8225 10× Corner Frequency of AD620

Op Amp Applications, Chapter 2

#### **EKG MONITOR FRONT END USING THE AD8225 IN-AMP**



Op Amp Applications, Chapter 2

### GENERALIZED BRIDGE AMPLIFIER USING AN IN-AMP



Op Amp Applications, Chapter 2

### AD620B BRIDGE AMPLIFIER DC ERROR BUDGET



MAXIMUM ERROR CONTRIBUTION, +25°C FULLSCALE: V<sub>IN</sub> = 100mV, V<sub>OUT</sub> = 10V

| IN, -001                   |                                                                                          |
|----------------------------|------------------------------------------------------------------------------------------|
| 55μV ÷ 100mV               | 550ppm                                                                                   |
| 350Ω × 0.5nA ÷ 100mV       | 1.8ppm                                                                                   |
| 0.15%                      | 1500ppm                                                                                  |
| 40ppm                      | 40ppm                                                                                    |
| 120dB<br>1ppm × 5V ÷ 100mV | 50ppm                                                                                    |
| 280nV ÷ 100mV              | 2.8ppm                                                                                   |
| ≈ 9 Bits Accurate          | 2145ppm                                                                                  |
| ≈ 14 Bits Accurate         | 42.8ppm                                                                                  |
|                            | 55μV ÷ 100mV  350Ω × 0.5nA ÷ 100mV  0.15%  40ppm  120dB 1ppm × 5V ÷ 100mV  280nV ÷ 100mV |

Op Amp Applications, Chapter 2

## A PRECISION SINGLE-SUPPLY COMPOSITE IN-AMP WITH RAIL-TO-RAIL OUTPUT



Op Amp Applications, Chapter 2

## THREE OP AMP IN-AMP SINGLE +5V SUPPLY RESTRICTIONS



Op Amp Applications, Chapter 2

## AD623 SINGLE-SUPPLY THREE OP-AMP IN-AMP ARCHITECTURE



Op Amp Applications, Chapter 2

### **PGAs IN DATA ACQUISITION SYSTEMS**



- ♦ Used to increase the dynamic range of the system
- A PGA with a gain of 1 to 2 theoretically increases the dynamic range by 6dB.
- ◆ A gain of 1 to 4 gives a 12dB increase, etc.

Op Amp Applications, Chapter 2

### A POORLY DESIGNED PGA



- $R_{ON}$  typically 100 500 $\Omega$  for CMOS or JFET switch
- Even for  $R_{ON} = 25\Omega$ , there is a 2.4% gain error for G = 16
- R<sub>ON</sub> drift over temperature limits accuracy
- ♦ Must use very low R<sub>ON</sub> switches (relays)

and R<sub>ON</sub> modulation

Op Amp Applications, Chapter 2

## ALTERNATE PGA CONFIGURATION MINIMIZES THE EFFECTS OF RON



- at = 0 101 101 ♦ R<sub>ON</sub> is not in series with gain setting resistors
  - R<sub>ON</sub> is small compared to input impedance
  - Only slight offset errors occur due to bias current flowing through the switches

Op Amp Applications, Chapter 2

### A VERY LOW NOISE PGA USING THE AD797 AND THE ADG412



Op Amp Applications, Chapter 2

### AD7730 SIGMA-DELTA MEASUREMENT ADC WITH ON-CHIP PGA



Op Amp Applications, Chapter 2

## MOTOR CONTROL CURRENT SENSING USING AN ISOLATION AMPLIFIER



Op Amp Applications, Chapter 2

## A TYPICAL SAMPLED DATA SYSTEM SHOWING APPLICATIONS OF OP AMPS



Op Amp Applications, Chapter 3

### GENERAL OP AMP SELECTION CRITERIA FOR USE WITH DATA CONVERTERS

- ◆ The amplifier should not degrade the performance of the ADC/DAC
- ♦ AC specifications are usually the most important
  - Noise
  - Bandwidth
  - Distortion
- Selection based on op amp data sheet specifications difficult due to varying conditions in actual application circuit with ADC/DAC:
  - Power supply voltage
  - Signal range (differential and common-mode)
  - Loading (static and dynamic)
  - Gain
- ◆ Parametric search engines may be useful ↑ NORNE CMR
- ADC/DAC data sheets often recommend op amps (but may not include newly released products)

Op Amp Applications, Chapter 3

C 2.29 Applications, Chapter 3

#### **IDEAL N-BIT ADC QUANTIZATION NOISE**



Op Amp Applications, Chapter 3

## EFFECT OF INPUT-REFERRED NOISE ON ADC "GROUNDED INPUT" HISTOGRAM



Op Amp Applications, Chapter 3

#### NOISE CALCULATIONS FOR AD8038 OP AMP DRIVING AD9225 12-BIT, 25MSPS ADC



Op Amp Applications, Chapter 3

# POSITIONING THE ANTIALIASING FILTER TO REDUCE THE EFFECTS OF THE OP AMP NOISE



Op Amp Applications, Chapter 3

### POPULAR CONVERTER DYNAMIC PERFORMANCE SPECIFICATIONS

- ◆ Signal-to-Noise-and-Distortion Ratio (SINAD, or S/N +D)
- **♦** Effective Number of Bits (ENOB)
- ♦ Signal-to-Noise Ratio (SNR)
  - Analog Bandwidth (Full-Power, Small-Signal)
    - Harmonic Distortion
    - Worst Harmonic
    - ♦ Total Harmonic Distortion (THD)
- ◆ Total Harmonic Distortion Plus Noise (THD + N)
- ◆ Spurious Free Dynamic Range (SFDR)
  - **♦** Two-Tone Intermodulation Distortion
  - Multi-tone Intermodulation Distortion

Op Amp Applications, Chapter 3

## TEST SETUPS FOR MEASURING ADC AND DAC PERFORMANCE



#### SINAD, ENOB, AND SNR DEFINITIONS

- ♦ SINAD (Signal-to-Noise-and-Distortion Ratio):
  - The ratio of the rms signal amplitude to the mean value of the root-sum-squares (RSS) of all other spectral components, including harmonics, but excluding DC.
- **♦ ENOB (Effective Number of Bits):**

$$ENOB = \frac{SINAD - 1.76dB}{6.02}$$

- ♦ SNR (Signal-to-Noise Ratio, or Signal-to-Noise Ratio Without Harmonics:
  - The ratio of the rms signal amplitude to the mean value of the root-sum-squares (RSS) of all other spectral components, excluding the first 5 harmonics and DC

Op Amp Applications, Chapter 3

#### AD9220 12-BIT, 10MSPS ADC SINAD AND ENOB FOR VARIOUS INPUT SIGNAL LEVELS



Op Amp Applications, Chapter 3

# SPURIOUS FREE DYNAMIC RANGE (SFDR)



Op Amp Applications, Chapter 3

### SOME GENERAL OP AMP REQUIREMENTS IN ADC DRIVER APPLICATIONS

- ♦ Minimize degradation of ADC / DAC performance specifications
- ◆ Fast settling to ADC/DAC transient
- ♦ High bandwidth
- Low noise
- Low distortion
- Low power
- Note: Op amp performance must be measured under identical conditions as encountered in ADC / DAC application

  - Input source impedance, output load impedance
  - Input / output signal voltage range
  - Input signal frequency
  - Input / output common-mode level
  - Power supply voltage (single or dual supply)
  - Transient loading

Op Amp Applications, Chapter 3

2.39 O Apolications. Chapter 8

### KEY DC AND AC OP AMP SPECIFICATIONS FOR ADC APPLICATIONS

- Minimize degradation of ABC / DAC performs 20 sections
  - Offset, offset drift a pagloga of politice les?
  - Input bias current
  - Open loop gain
  - Integral linearity
  - 1/f noise (voltage and current)
  - ◆ AC (Highly application dependent!)
    - Wideband noise (voltage and current)
      - Small and Large Signal Bandwidth
    - Harmonic Distortion
      - Total Harmonic Distortion (THD)
      - Total Harmonic Distortion + Noise (THD + N)
      - Spurious Free Dynamic Range (SFDR)
      - Third Order Intermodulation Distortion
      - Third Order Intercept Point | See Incident | S

Op Amp Applications, Chapter 3

# AD8057/8058 OP AMP, G = +1

| $V_S = \pm 5V$                   | V <sub>S</sub> = +5V                                  |
|----------------------------------|-------------------------------------------------------|
| -4.0V to +4.0V<br>-4.0V to +4.0V | +0.9V to +3.4V<br>+0.9V to +4.1V                      |
| 7nV/√Hz<br>325MHz                | 7nV/√Hz<br>300MHz                                     |
| – 85dBc                          | – 75dBc<br>– 54dBc                                    |
|                                  | -4.0V to +4.0V<br>-4.0V to +4.0V<br>7nV/√Hz<br>325MHz |

Op Amp Applications, Chapter 3

# AD8057/8058 OP AMP DISTORTION VS. FREQUENCY FOR G = +1, $V_S = \pm 5V$ , $V_O = 2Vp-p$ , $R_L = 150\Omega$



Op Amp Applications, Chapter 3

# AD8057/8058 OP AMP DISTORTION VS. OUTPUT SIGNAL LEVEL FOR G = +1, $V_S$ = ±5V, $R_L$ = 150 $\Omega$



Op Amp Applications, Chapter 3

### CHARACTERISTICS OF AD77XX-FAMILY HIGH RESOLUTION SIGMA-DELTA MEASUREMENT ADCs

- Resolution: 16 24 bits
- ♦ Input signal bandwidth: <60Hz
- ♦ Effective sampling rate: <100Hz
- **♦** Generally Sigma-Delta architecture
- Designed to interface directly to sensors (< 1 kΩ) such as bridges with no external buffer amplifier (e.g., AD77XX - series)
  - On-chip PGA and high resolution ADC eliminates the need for external amplifier
- ♦ If buffer is used, it should be precision low noise (especially 1/f noise)
  - OP1177
  - OP177
  - AD797

Op Amp Applications, Chapter 3

## DRIVING UNBUFFERED AD77XX-SERIES ΣΔ ADC INPUTS



- R<sub>EXT</sub> Increases C<sub>INT</sub> Charge Time and May Result in Gain Error
- Charge Time Dependent on the Input Sampling Rate and Internal PGA Gain Setting
- Refer to Specific Data Sheet for Allowable Values of R<sub>EXT</sub> to Maintain Desired Accuracy
- Some AD77XX-Series ADCs Have Internal Buffering Which Isolates Input from Switching Circuits

Op Amp Applications, Chapter 3

### MULTIPLEXED DATA ACQUISITION SYSTEM REQUIRES FAST SETTLING OP AMP BUFFER



Op Amp Applications, Chapter 3

# DRIVING SINGLE-SUPPLY DATA ACQUISITION ADCs WITH SCALED INPUTS



Op Amp Applications, Chapter 3

8 reliquidos, Chapter 3

## AD9042 12-BIT, 41MSPS ADC IS DESIGNED TO BE DRIVEN DIRECTLY FROM $50\Omega$ SOURCE WITH NO EXTERNAL OP AMP



Op Amp Applications, Chapter 3

2.48 Applications, Chapter 3

#### **ADCs WITH BUFFERED DIFFERENTIAL INPUTS**



- ♦ Input buffers typical on BiMOS and bipolar processes
- **♦** Difficult on CMOS
- Simplified input interface no transient currents
- ◆ Fixed common-mode level may limit flexibility

Op Amp Applications, Chapter 3

### SIMPLIFIED INPUT CIRCUIT FOR A TYPICAL SWITCHED CAPACITOR CMOS SAMPLE-AND-HOLD



SWITCHES SHOWN IN TRACK MODE

Op Amp Applications, Chapter 3

# SINGLE-ENDED INPUT TRANSIENTS ON THE AD9225 12-BIT, 25MSPS CMOS ADC

- ◆ Hold-to-Sample Mode Transition- C<sub>S</sub> Returned to Source for "recharging". Transient Consists of Linear, Nonlinear, and Common-Mode Components at Sample Rate .
- Sample-to-Hold Mode Transition- Input Signal Sampled when C<sub>s</sub> is disconnected from Source.



Op Amp Applications, Chapter 3

C retain Applications, Chapter 3

## OPTIMIZING A SINGLE-ENDED SWITCHED CAPACITOR ADC INPUT DRIVE CIRCUIT



Op Amp Applications, Chapter 3

C52.5np Applications, Chapter 3

#### DC COUPLED SINGLE-ENDED LEVEL SHIFTER AND DRIVER FOR THE AD9225 12-BIT, 25MSPS CMOS ADC



# DIRECT-COUPLED SINGLE-SUPPLY LEVEL SHIFTER FOR DRIVING AD922X ADC INPUT



Op Amp Applications, Chapter 3

#### SINGLE-ENDED (A) AND DIFFERENTIAL (B) INPUT TRANSIENTS OF AD9225 12-BIT, 25MSPS CMOS SWITCHED CAPACITOR ADC





- Differential charge transient is symmetrical around mid-scale and dominated by linear component
- ♦ Common-mode transients cancel with equal source impedance

Op Amp Applications, Chapter 3

### TRANSFORMER COUPLING INTO A DIFFERENTIAL INPUT ADC



Op Amp Applications, Chapter 3

# OP AMP SINGLE-ENDED TO DIFFERENTIAL DC COUPLED DRIVER WITH LEVEL SHIFTING



Op Amp Applications, Chapter 3

2.57 O Amo Applications, Chapter 3

#### AD813X DIFFERENTIAL ADC DRIVER FUNCTIONAL DIAGRAM AND EQUIVALENT CIRCUIT



Op Amp Applications, Chapter 3

# SINGLE-SUPPLY DIFFERENTIAL DRIVER CIRCUIT USING THE AD8132 AMPLIFIER AND THE AD9203 10-BIT, 40MSPS ADC



Op Amp Applications, Chapter 3

Cetasdo, enoissallaga a 2.590

### AD8138 DRIVING AD9226 12-BIT, 65MSPS CMOS ADC IN DIRECT-COUPLED SINGLE-SUPPLY APPLICATION



Op Amp Applications, Chapter 3

o 00.2 p Applications, Chapter 3

# AD8138 DRIVING AD9226 ADC 1V DIFFERENTIAL INPUT SPAN, $f_s = 65$ MSPS



Op Amp Applications, Chapter 3

#### **AD8351 LOW DISTORTION DIFFERENTIAL** RF/IF AMPLIFIER APPLICATION



- Single resistor programmable gain, 0dB to 30dB
- ♦ Input noise: 2.3nV/√Hz ♦ Single supply: 3.3 to 5.5V
- Op Amp Applications, Chapter 3 ◆ Adjustable output common-mode voltage

Op Amp Applications, Chapter 3

# AD8351 DIFFERENTIAL ADC DRIVER PERFORMANCE WITH AD6645 ADC



Op Amp Applications, Chapter 3

### A TRUE 16-BIT ADC REQUIRES A TRUE 16-BIT DRIVER



Op Amp Applications, Chapter 3

## SAR ADCs PRESENT A DYNAMIC TRANSIENT LOAD TO THE REFERENCE



Op Amp Applications, Chapter 3

#### BUFFERING DAC OUTPUTS USING OP AMPS



Op Amp Applications, Chapter 3

#### GENERALIZED MODEL OF A HIGH SPEED DAC OUTPUT SUCH AS THE AD976X AND AD977X SERIES



- ♦ I<sub>FS</sub> 2 20mA typical
- ♦ Bipolar or BiCMOS DACs sink current,  $R_{OUT} < 500\Omega$
- ♦ CMOS DACs source current,  $R_{OUT} > 100k\Omega$
- ◆ Output compliance voltage < ±1V for best performance

Op Amp Applications, Chapter 3

#### **DIFFERENTIAL TRANSFORMER COUPLING**



◆ Output compliance voltage < ±1√ for best performance</li>

Op Amp Applications, Chapter 3

## DIFFERENTIAL DC COUPLED USING A DUAL SUPPLY OP AMP



Op Amp Applications, Chapter 3

#### DIFFERENTIAL DC COUPLED W/ SINGLE SUPPLY OP AMP



Op Amp Applications, Chapter 3

## SINGLE-ENDED CURRENT-TO-VOLTAGE OP AMP INTERFACE



Op Amp Applications, Chapter 3

## BUFFERING HIGH-SPEED DACS USING AD813X DIFFERENTIAL AMPLIFIER



Op Amp Applications, Chapter 3

## A 75kHz 4-POLE GAUSSIAN ACTIVE FILTER FOR BUFFERING THE OUTPUT OF THE AD1853 STEREO DAC



Op Amp Applications, Chapter 3

### A 75KHZ 4-POLE GAUSSIAN ACTIVE FILTER FOR



# OP AMP APPLICATIONS SEMINAR

- 1. History, Basics, Design Aids, Filters
- 2. Specialty Amplifiers, Using Op Amps with Data Converters
- 3. Hardware and Housekeeping Design Techniques
- 4. Signal Amplifiers, Sensor Signal Conditioning

# OP AMP APPLICATIONS SEMINAR

- 1. History, Basics, Design Aids, Filters
- Specialty Amplifiers, Using Op Amps with Data Converters
- 3. Hardware and Housekeeping Design Techniques
  - 4. Signal Amplifiers, Sensor Signal Conditioning

#### WIRE AND STRIP INDUCTANCE CALCULATIONS



EXAMPLE: 1cm of 0.5mm o.d. wire has an inductance of 7.26nH (2R = 0.5mm, L = 1cm)



STRIP INDUCTANCE = 0.0002L  $\left[ ln \left( \frac{2L}{W+H} \right) + 0.2235 \left( \frac{W+H}{L} \right) + 0.5 \right] \mu H$ 

EXAMPLE: 1cm of 0.25 mm PC track has an inductance of 9.59 nH (H = 0.038mm, W = 0.25mm, L = 1cm)

Op Amp Applications, Chapter 7

#### NONIDEAL AND IMPROVED SIGNAL TRACE ROUTING



Op Amp Applications, Chapter 7

#### BASIC PRINCIPLES OF INDUCTIVE COUPLING



Op Amp Applications, Chapter 7

# PROPER SIGNAL ROUTING AND LAYOUT CAN REDUCE INDUCTIVE COUPLING



Op Amp Applications, Chapter 7

# MUTUAL INDUCTANCE AND COUPLING WITHIN SIGNAL CABLING



FLAT RIBBON CABLE WITH SINGLE RETURN HAS LARGE MUTUAL INDUCTANCE BETWEEN CIRCUITS



 SEPARATE AND ALTERNATE SIGNAL / RETURN LINES FOR EACH CIRCUIT REDUCES MUTUAL INDUCTANCE



♦ TWISTED PAIRS REDUCE MUTUAL INDUCTANCE STILL FURTHER

Op Amp Applications, Chapter 7

## CALCULATION OF SHEET RESISTANCE AND LINEAR RESISTANCE FOR STANDARD COPPER PCB CONDUCTORS





SHEET RESISTANCE CALCULATION FOR 1 OZ. COPPER CONDUCTOR:

 $\rho = 1.724 \times 10^{-6} \Omega \text{cm}, Y = 0.0036 \text{cm}$ 

$$R = 0.48 \frac{Z}{X} \text{ m}\Omega$$

 $\frac{Z}{x}$  = NUMBER OF SQUARES

R = SHEET RESISTANCE OF 1 SQUARE (Z=X) = 0.48m Ω/SQUARE

Op Amp Applications, Chapter 7

## OHM'S LAW PREDICTS >1LSB OF ERROR DUE TO DROP IN PCB CONDUCTOR



Op Amp Applications, Chapter 7

A MORE REALISTIC SOURCE-TO-LOAD GROUNDING SYSTEM VIEW INCLUDES CONSIDERATION OF THE IMPEDANCE BETWEEN G1-G2, PLUS THE EFFECT OF ANY NON-SIGNAL-RELATED CURRENTS



Op Amp Applications, Chapter 7

## ANY CURRENT FLOWING THROUGH A COMMON GROUND IMPEDANCE CAN CAUSE ERRORS



Op Amp Applications, Chapter 7

#### **CHARACTERISTICS OF GROUND PLANES**

- ONE ENTIRE PCB SIDE (OR LAYER) IS A CONTINUOUS GROUNDED CONDUCTOR.
- THIS GIVES MINIMUM GROUND RESISTANCE AND INDUCTANCE, BUT ISN'T ALWAYS SUFFICIENT TO SOLVE ALL GROUNDING PROBLEMS.
- ♦ BREAKS IN GROUND PLANES CAN IMPROVE OR DEGRADE CIRCUIT PERFORMANCE THERE IS NO GENERAL RULE.
- ◆ YEARS AGO GROUND PLANES WERE DIFFICULT TO FABRICATE. TODAY THEY AREN'T.
- ♦ MULTI-LAYER, GROUND AND VOLTAGE PLANE PCB DESIGNS ARE STANDARD

Op Amp Applications, Chapter 7

### UNLESS CARE IS TAKEN, EVEN SMALL COMMON GROUND CURRENTS CAN DEGRADE PRECISION AMPLIFIER ACCURACY



Op Amp Applications, Chapter 7

## A DIFFERENTIAL INPUT GROUND ISOLATING AMPLIFIER ALLOWS HIGH TRANSMISSION ACCURACY BY REJECTING GROUND NOISE VOLTAGE BETWEEN SOURCE (G1) AND MEASUREMENT (G2) GROUNDS



Op Amp Applications, Chapter 7

### A HIGH-IMPEDANCE DIFFERENTIAL INPUT ADC ALSO ALLOWS HIGH TRANSMISSION ACCURACY BETWEEN SOURCE AND LOAD



### INVERTING MODE GUARD ENCLOSES ALL OP AMP INVERTING INPUT CONNECTIONS WITHIN A GROUNDED GUARD RING



Op Amp Applications, Chapter 7

### NON-INVERTING MODE GUARD ENCLOSES ALL OP AMP NON-INVERTING INPUT CONNECTIONS WITHIN A LOW IMPEDANCE, DRIVEN GUARD RING



Op Amp Applications, Chapter 7

### PCB GUARD PATTERNS FOR INVERTING AND NON-INVERTING MODE OP AMPS USING 8 PIN MINIDIP (N) PACKAGE



Op Amp Applications, Chapter 7

### PCB GUARD PATTERNS FOR INVERTING AND NON-INVERTING MODE OP AMPS USING 8 PIN SCIC (R) PACKAGE

NOTE: PINS 1, 5, & 8 ARE OPEN ON MANY "R" PACKAGED DEVICES



Op Amp Applications, Chapter 7

#### CAPACITANCE OF TWO PARALLEL PLATES



$$C = \frac{0.00885 \ E_r \ A}{d} \ pF$$

A = plate area in mm<sup>2</sup>

d = plate separation in mm

E<sub>r</sub> = dielectric constant relative to air

- ♦ Most common PCB type uses 1.5mm glass-fiber epoxy material with E<sub>r</sub> = 4.7
  - ◆ Capacity of PC track over ground plane is roughly 2.8pF/crn<sup>2</sup>

Op Amp Applications, Chapter 7

#### CAPACITIVE COUPLING EQUIVALENT CIRCUIT MODEL



 $Z_1 = CIRCUIT IMPEDANCE$   $Z_2 = 1/j\omega C$ 

$$V_{COUPLED} = V_{N} \left( \frac{Z_{1}}{Z_{1} + Z_{2}} \right)$$

Op Amp Applications, Chapter 7

#### AN OPERATIONAL MODEL OF A FARADAY SHIELD



Op Amp Applications, Chapter 7

3.20

Op Amp Applications, Chapter 7

### REGULATION PRIORITIES FOR A SHIT OF AMP POWER SUPPLY SYSTEMS

- ♦ High performance analog power systems use linear regulators, with primary power derived from:
  - AC line power
  - Battery power systems
  - DC- DC power conversion systems
- Switching regulators should be avoided if at all possible, but if not...
  - Apply noise control techniques
  - Use quality layout and grounding
  - Be aware of EMI

Op Amp Applications, Chapter 7

### THE ADP330X anyCAP™ LDO ARCHITECTURE HAS BOTH DC AND AC PERFORMANCE ADVANTAGES



Op Amp Applications, Chapter 7

#### DUAL-SUPPLY LOW FREQUENCY AND A EMETRY & RAIL BYPASS/DISTRIBUTION FILTER ON BUDGER



Op Amp Applications, Chapter 7

### A CARD-ENTRY FILTER IS USEFUL FOR LOW-MEDIUM FREQUENCY POWER LINE NOISE FILTERING IN ANALOG SYSTEMS



Op Amp Applications, Chapter 7

7 respend Applications, Chapter 7

#### CAPACITOR EQUIVALENT CIRCUIT AND RESPONSE TO INPUT CURRENT PULSE



Op Amp Applications, Chapter 7

# ELECTROLYTIC CAPACITOR IMPEDANCE VERSUS FREQUENCY



Op Amp Applications, Chapter 7

### LOCALIZED HIGH FREQUENCY SUPPLY FILTER(S) PROVIDES OPTIMUM FILTERING AND DECOUPLING VIA SHORT LOW-INDUCTANCE PATH (GROUND PLANE)



### A GENERAL-PURPOSE OP AMP CM OVER-VOLTAGE PROTECTION NETWORK USING SCHOTTKY CLAMP DIODES WITH CURRENT LIMIT RESISTANCE



Op Amp Applications, Chapter 7

#### THE AD629 HIGH VOLTAGE IN-AMP IC OFFERS $\pm$ 500V INPUT OVER-VOLTAGE PROTECTION, ONE-COMPONENT SIMPLICITY, AND FAIL-SAFE POWER OFF OPERATION



Op Amp Applications, Chapter 7

# AN OP AMP INPUT STAGE WITH D1-D2 INPUT DIFFERENTIAL OVER-VOLTAGE PROTECTION NETWORK



Op Amp Applications, Chapter 7

### THE AD620 IN-AMP INPUT INTERNALLY USES D1-D2 AND SERIES RESISTORS Rs FOR PROTECTION (ADDITIONAL PROTECTION CAN BE ADDED EXTERNALLY)



Op Amp Applications, Chapter 7

A GENERALIZED DIODE PROTECTION CIRCUIT FOR THE AD620 AND OTHER IN-AMPS USES D3-D6 FOR CM CLAMPING AND SERIES RESISTORS RLIMIT FOR PROTECTION



Op Amp Applications, Chapter 7

#### SINGLE-SUPPLY IN-AMPS MAY OR MAY NOT REQUIRE EXTERNAL PROTECTION IN THE FORM OF RESISTORS AND CLAMP DIODES — IF SO, THEY CAN BE ADDED AS SHOWN



Op Amp Applications, Chapter 7

#### A SUMMARY OF IN-CIRCUIT OVER-VOLTAGE POINTS

- ♦ INPUT VOLTAGES MUST NOT EXCEED ABSOLUTE MAXIMUM RATINGS
  (Usually Specified With Respect to Supply Voltages)
- ◆Requires V<sub>IN(CM)</sub> Stay Within a Range Extending to ≤0.3V Beyond Rails (-V<sub>S</sub>-0.3V ≥ V<sub>IN</sub> ≤ +V<sub>S</sub>+0.3V)
- **♦IC Input Stage Fault Currents** *Must* Be Limited (≤ 5mA Unless Otherwise Specified)
- ♦ Avoid Reverse-Bias Breakdown in Input Stage Junctions!
- ◆ Differential and Common Mode Ratings Often Differ
- ♦No Two Amplifiers are Exactly the Same
- ♦ Some ICs Contain Internal Input Protection
  - Diode Voltage Clamps, Current Limiting Resistors (or both)
  - Absolute Maximum Ratings Must Still Be Observed

Op Amp Applications, Chapter 7

# GROUND LOOPS IN SHIELDED TWISTED PAIR CABLE CAN CAUSE ERRORS



- ♦ V<sub>N</sub> Causes Current in Shield (Usually 50/60Hz)
- ♦ Differential Error Voltage is Produced at Input of A2 Unless:
  - A1 Output is Perfectly Balanced and
  - A2 Input is Perfectly Balanced and
  - Cable is Perfectly Balanced

Op Amp Applications, Chapter 7

# HYBRID GROUNDING OF SHIELDED CABLE WITH PASSIVE SENSOR



Op Amp Applications, Chapter 7

ONE. Eng. Applications, Chapter 7

### IMPEDANCE-BALANCED DRIVE OF BALANCED SHIELDED CABLE AIDS NOISE-IMMUNITY WITH EITHER BALANCED OR SINGLE-ENDED SOURCE SIGNALS



Op Amp Applications, Chapter 7

# COAXIAL CABLES CAN USE EITHER BALANCED OR SINGLE-ENDED RECEIVERS



Op Amp Applications, Chapter 7

## SOME GENERAL OBSERVATIONS ON OP AMP AND IN-AMP INPUT STAGE RFI RECTIFICATION SENSITIVITY

- **♦BJT** input devices rectify readily
  - Forward-biased B-E junction
  - Exponential I-V Transfer Characteristic
- ♦FET input devices less sensitive to rectifying
  - Reversed-biased p-n junction
  - Square-law I-V Transfer Characteristic
- **♦Low I**<sub>supply</sub> devices versus High I<sub>supply</sub> devices
  - Low I<sub>supply</sub> ⇒ Higher rectification sensitivity
  - High I<sub>supply</sub> ⇒ Lower rectification sensitivity

Op Amp Applications, Chapter 7

#### RELATIVE SENSITIVITY COMPARISON - BJT VERSUS JFET

BJT:

Emitter area = 576µm²

$$I_C = 10\mu A$$

 $V_T = 25.68 \text{mV} @ 25^{\circ}\text{C}$   $I_D = 10 \mu\text{A}$ 

$$\Delta i_C = \left(\frac{V_X}{V_T}\right)^2 \bullet \frac{I_C}{4} \qquad \qquad \Delta i_D = \left(\frac{V_X}{V_P}\right)^2 \bullet \frac{I_{DSS}}{2}$$

$$=\frac{{V_\chi}^2}{264}$$

 $I_{DSS} = 20 \mu A (Z/L=1)$ 

$$V_P = 2V$$

$$I_D = 10 \mu A$$

$$\Delta i_D = \left(\frac{V_X}{V_D}\right)^2 \cdot \frac{I_{DSS}}{2}$$

$$=\frac{{V_\chi}^2}{400\times10^3}$$

♦ Conclusion: BJTs ~1500 more sensitive than JFETs!

Op Amp Applications, Chapter 7

#### SIMPLE EMI/RFI NOISE FILTERS FOR OP AMP CIRCUITS



Op Amp Applications, Chapter 7

#### A GENERAL-PURPOSE COMMON-MODE/DIFFERENTIAL-MODE RC EMI/RFI FILTER FOR IN-AMPS



Op Amp Applications, Chapter 7

### FLEXIBLE COMMON-MODE AND DIFFERENTIAL-MODE RC EMI/RFI FILTERS ARE USEFUL WITH THE AD620 SERIES, THE AD623, AD627, AND OTHER IN-AMPS



Op Amp Applications, Chapter 7

### FOR SIMPLICITY AS WELL AS LOWEST NOISE EMI/RFI FILTER OPERATION, A COMMON-MODE CHOKE IS USEFUL WITH THE AD620 SERIES IN-AMP DEVICES



Op Amp Applications, Chapter 7

### OP AMP AND IN-AMP OUTPUTS SHOULD BE PROTECTED AGAINST EMI/RFI, PARTICULARLY IF THEY DRIVE LONG CABLES



Op Amp Applications, Chapter 7

A MICROSTRIP TRANSMISSION LINE WITH DEFINED IMPEDANCE IS FORMED BY A PCB TRACE OF APPROPRIATE GEOMETRY, SPACED FROM A GROUND PLANE



Op Amp Applications, Chapter 7

A SYMMETRIC STRIPLINE TRANSMISSION LINE WITH DEFINED IMPEDANCE IS FORMED BY A PCB TRACE OF APPROPRIATE GEOMETRY EMBEDDED BETWEEN EQUALLY SPACED GROUND AND/OR POWER PLANES



Op Amp Applications, Chapter 7

### THE PROS AND CONS OF NOT EMBEDDING VS. THE EMBEDDING OF SIGNAL TRACES IN MULTI-LAYER PCB DESIGNS



- **♦** Advantages
  - Signal traces shielded and protected
  - Lower impedance, thus lower emissions and crosstalk
  - Significant improvement > 50MHz
- Disadvantages
  - Difficult prototyping and troubleshooting
  - Decoupling may be more difficult
  - Impedance may be too low for easy matching

Op Amp Applications, Chapter 7

#### USED WISELY, SIMULATION IS A POWERFUL DESIGN TOOL

- **♦ Understand Realistic Simulation Goals**
- ◆ Evaluate Available Models Accordingly
  - ♦ Know the Capabilities for Each Competing Op Amp Model
  - ◆ Following Simulation, Breadboarding is Always Desirable and Necessary
    - Breadboarding / prototyping may require an actual PC board layout

Op Amp Applications, Chapter 7

#### DIFFERENTIATING THE MACROMODEL AND MICROMODEL

|            | METHODOLOGY                          | ADVANTAGES                                  | DISADVANTAGES                                  |
|------------|--------------------------------------|---------------------------------------------|------------------------------------------------|
| MACROMODEL | Ideal Elements Model Device Behavior | Fast Simulation<br>Time,<br>Easily Modified | My Not Model All<br>Characteristics            |
| MICROMODEL | Fully Characterized Transistor Level | Most Complete<br>Model                      | Slow Simulation Possible,                      |
|            | Circuit                              |                                             | Convergence<br>Difficulty,<br>Non-Availability |

Op Amp Applications, Chapter 7

#### INPUT AND GAIN/POLE STAGES OF ADSpice MACROMODEL



Op Amp Applications, Chapter 7

# THE FREQUENCY SHAPING STAGES POSSIBLE WITHIN THE ADSpice MODEL









Op Amp Applications, Chapter 7

#### GENERAL-PURPOSE MACROMODEL OUTPUT STAGE



Op Amp Applications, Chapter 7

#### OP AMP APPLICATIONS SEMINAR

A PULSE RESPONSE COMPARISON OF AN OP249 FOLLOWER (LEFT) MODEL FAVORS THE ADSpice MODEL IN TERMS OF FIDELITY (CENTER), BUT NOT THE BOYLE (RIGHT)



Op Amp Applications, Chapter 7

### TOWARDS ACHIEVING LOW NOISE OPERATION, A FIRST DESIGN STEP IS THE REDUCTION OF POLE/ZERO CELL IMPEDANCES TO LOW VALUES



|                 | C                       | CASE                   |  |  |
|-----------------|-------------------------|------------------------|--|--|
|                 | "Noisy"                 | "Noiseless"            |  |  |
| R9              | 1x10 <sup>6</sup> Ω     | 1Ω                     |  |  |
| gm <sub>2</sub> | 1x10 <sup>-6</sup>      | 1.0                    |  |  |
| C4              | 159x10 <sup>-15</sup> F | 159x10 <sup>-9</sup> F |  |  |
| Nois            | se 129nV/√Hz            | 129pV/√Hz              |  |  |

Op Amp Applications, Chapter 7

# A BASIC SPICE NOISE GENERATOR IS FORMED WITH DIODES, RESISTORS, AND CONTROLLED SOURCES



Op Amp Applications, Chapter 7

#### INPUT AND GAIN STAGES OF CURRENT FEEDBACK OP AMP MACROMODEL



Op Amp Applications, Chapter 7

# COMPARISON OF A REAL AD811 CURRENT FEEDBACK OP AMP (LEFT) WITH MACROMODEL (RIGHT) SHOWS SIMILAR CHARACTERISTICS AS FEEDBACK RESISTANCE IS VARIED





Op Amp Applications, Chapter 7

### WITH CARE AND LOW PARASITIC EFFECTS IN THE PCB LAYOUT, RESULTS OF LAB TESTING (CENTER) AND SIMULATION (RIGHT) CAN CONVERGE



Op Amp Applications, Chapter 7

Trangetto anotheritor or 3.59

# WITHOUT LOW PARASITICS, LAB TESTING RESULTS (CENTER) AND PARALLEL SIMULATION (RIGHT) STILL SHOW CONVERGENCE— WITH A POORLY DAMPED RESPONSE



Op Amp Applications, Chapter 7

3.60 Applications, Chapter 7

# THESE CIRCUITS WERE EASY TO BREADBOARD (EXCEPT FOR THE 300V DC!)



Op Amp Applications, Chapter 7

### SMALL PACKAGE SIZES PRESENT MAJOR DIFFICULTIES IN BREADBOARDING



Op Amp Applications, Chapter 7

### A GENERAL PURPOSE OP AMP EVALUATION BOARD ALLOWS FAST, EASY CONFIGURATION OF LOW FREQUENCY OP AMP CIRCUITS



Op Amp Applications, Chapter 7

#### THE AD8001 EVALUATION BOARD USES A LARGE AREA GROUND PLANE AND MINIMAL PARASITIC CAPACITANCE (TOP VIEW)



Op Amp Applications, Chapter 7

### A HIGH SPEED OP AMP SUCH AS THE AD8001 REQUIRES A DEDICATED EVALUATION BOARD WITH SUITABLE GROUND PLANES AND DECOUPLING (BOTTOM VIEW)



Op Amp Applications, Chapter 7

#### **▶** OP AMP APPLICATIONS SEMINAR

A MICH SPEED OF AMP SUCH AS THE ADMICT REQUIRES A DEDICATED EVALUATION BOARD WITH SUITABLE GROUND PLANES AND DECOUPLING (BOTTOM VIEW)



Op Amp Applications, Chapter 7

# OP AMP APPLICATIONS SEMINAR

- 1. History, Basics, Design Aids, Filters
- 2. Specialty Amplifiers, Using Op Amps with Data Converters
- 3. Hardware and Housekeeping Design Techniques
- 4. Signal Amplifiers, Sensor Signal Conditioning

#### OP AMP APPLICATIONS SEMINAR

# OP AMP APPLICATIONS SEMINAR

- 1. History, Basics, Design Aids, Filters
- Specialty Amplifiers, Using Op Amps with Data Converters
- 3. Hardware and Housekeeping Design Techniques
- 4. Signal Amplifiers, Sensor Signal Conditioning

### **EFFECT OF CAPACITIVE LOADING ON OP AMP STABILITY**



Op Amp Applications, Chapter 6

# RAISING NOISE GAIN (DC OR AC) FOR FOLLOWER (A) OR INVERTER (B) STABILITY

### (A) FOLLOWER



#### Op Amp Applications, Chapter 6

#### (B) INVERTER



Op Amp Applications, Chapter 6

### DRIVING CAPACITIVE LOADS



Op Amp Applications, Chapter 6

#### **VIDEO TRANSMISSION LINE DRIVERS**



Op Amp Applications, Chapter 6

# AD8072/73 DUAL/TRIPLE VIDEO BUFFERS GAIN AND GAIN FLATNESS, G = +2, $R_L = 150\Omega$



Op Amp Applications, Chapter 6

Protection and sold and A of 4.5 of

### PULSE RESPONSE OF AD8001 DRIVING 5 FEET OF LOAD-ONLY TERMINATED $50\Omega$ COAXIAL CABLE



Op Amp Applications, Chapter 6

### PULSE RESPONSE OF AD8001 DRIVING 5 FEET OF SOURCE AND LOAD TERMINATED $50\Omega$ COAXIAL CABLE



Op Amp Applications, Chapter 6

Op**7.4** a Applications, Chapter

## PULSE RESPONSE OF AD8001 DRIVING 5 FEET OF SOURCE-ONLY TERMINATED 50Ω COAXIAL CABLE



Op Amp Applications, Chapter 6

Op8.4 to Applications, Chapter 6

#### TWO APPROACHES TO DIFFERENTIAL LINE DRIVING AND RECEIVING



Op Amp Applications, Chapter 6

### AN INVERTER AND A FOLLOWER



Op Amp Applications, Chapter 6

# AD8138 DIFFERENTIAL DRIVER AMPLIFIER FUNCTIONAL SCHEMATIC (A) AND EQUIVALENT CIRCUIT (B)



Op Amp Applications, Chapter 6

# AD8138 OUTPUT BALANCE ERROR VERSUS FREQUENCY



Op Amp Applications, Chapter 6

# ACTIVE FEEDBACK AMPLIFIER TOPOLOGY



Op Amp Applications, Chapter 6

# AD8130 COMMON-MODE REJECTION VERSUS FREQUENCY FOR $\pm 2.5 \text{V}$ , $\pm 5 \text{V}$ , AND $\pm 12 \text{V}$ SUPPLIES



Op Amp Applications, Chapter 6

### AD8184 4:1 VIDEO MULTIPLEXER



Op Amp Applications, Chapter 6

#### **AD8170/8174/8180/8182 BIPOLAR VIDEO MULTIPLEXERS**



Op Amp Applications, Chapter 6

### AD8116 16×16 200MHZ BUFFERED ON SOME VIDEO CROSSPOINT SWITCH



Op Amp Applications, Chapter 6

# SINGLE-SUPPLY AC COUPLED COMPOSITE VIDEO LINE DRIVER HAS $\Delta G = 0.06\%$ AND $\Delta \varphi = 0.06^\circ$



## WAVEFORM DUTY CYCLE TAXES HEADROOM IN AC COUPLED SINGLE-SUPPLY OP AMPS



Op Amp Applications, Chapter 6

# SECOND AND THIRD ORDER INTERMODULATION DISTORTION PRODUCTS



Op Amp Applications, Chapter 6

4.19

#### INTERCEPT POINTS AND 1dB COMPRESSION POINT



Op Amp Applications, Chapter 6

# THIRD ORDER INTERCEPT POINT (IP3) VERSUS FREQUENCY FOR A LOW DISTORTION AMPLIFIER



Op Amp Applications, Chapter 6

# USING IP3 TO CALCULATE THE THIRD-ORDER IMD PRODUCT AMPLITUDE



Op Amp Applications, Chapter 6

### SPURIOUS FREE DYNAMIC RANGE (SFDR) IN COMMUNICATIONS SYSTEMS



Op Amp Applications, Chapter 6

### **AD8011 OUTPUT NOISE ANALYSIS**



Op Amp Applications, Chapter 6

# AD8011 NOISE FIGURE FOR UNTERMINATED AND TERMINATED INPUT CONDITIONS



Note: Input noise current ( $I_{n+}$ ) flows through 50 $\Omega$  (unterminated case) or 25 $\Omega$  (terminated case), but the overall effect of this is negligible.

Op Amp Applications, Chapter 6

0 62.4 to Applications, Chapter 6

# AD8390 FULLY DIFFERENTIAL ADSL CENTRAL OFFICE LINE DRIVER



Op Amp Applications, Chapter 6

# AD8393 ADAPTIVE LINEAR POWER™ +12V CENTRAL OFFICE ADSL LINE DRIVER



Op Amp Applications, Chapter 6

### AD8393 - ADAPTIVE LINEAR POWER™ DRIVER CIRCUIT WAVEFORMS



Op Amp Applications, Chapter 6

#### A HIGH EFFICIENCY VIDEO LINE DRIVER



Op Amp Applications, Chapter 6

#### A SIMPLE WIDEBAND NOISE GENERATOR



#### PARALLELED AMPLIFIERS DRIVE LOADS QUIETLY



Op Amp Applications, Chapter 6

#### TWO CROSS-COUPLED AND SIMILAR IN-AMP DEVICES FOLLOWED BY A THIRD PROVIDES MUCH INCREASED CMR WITH FREQUENCY



Op Amp Applications, Chapter 6

### LOW NOISE, LOW DRIFT TWO OP AMP COMPOSITE AMPLIFIER



Op Amp Applications, Chapter 6

### CHOPPER-STABILIZED 160dB GAIN, LOW VOLTAGE SINGLE-SUPPLY TO HIGH OUTPUT VOLTAGE COMPOSITE AMPLIFIER



Op Amp Applications, Chapter 6

### OUTPUT COMPOSITE OP AMP



Op Amp Applications, Chapter 6

## BIPOLAR TRANSISTOR GAIN-BOOSTED INPUT COMPOSITE OP AMP



Op Amp Applications, Chapter 6

## GAIN/PHASE VERSUS FREQUENCY FOR GAIN-BOOSTED INPUT COMPOSITE OP AMP



Op Amp Applications, Chapter 6

a reided), Chapter 6

## LOW NOISE JEET GAIN-BOOSTED INPUT COMPOSITE AMPLIFIER



Op Amp Applications, Chapter 6

## "NOSTALGIA" VACUUM TUBE INPUT/OUTPUT COMPOSITE OP AMP



Op Amp Applications, Chapter 6

# TRANSFORMER INPUT MIC PREAMPLIFIER WITH 28 TO 50 dB GAIN



Op Amp Applications, Chapter 6

O 14.410 Applications, Chapter of

#### TRANSFORMER COUPLED MIC PREAMPLIFIER THD+N (%) VERSUS FREQUENCY (Hz) FOR 35dB GAIN, OUTPUTS OF 0.5, 1, 2, AND 5Vrms INTO $600\Omega$



Op Amp Applications, Chapter 6

0 4.42 o Applications, Chapter 6

## LOW NOISE TRANSFORMER INPUT



Op Amp Applications, Chapter 6

#### LOW NOISE TRANSFORMER INPUT MIC PREAMP THD+N (%) VERSUS FREQUENCY (Hz) FOR 35dB GAIN, OUTPUTS OF 0.5, 1, 2, AND 5Vrms INTO $600\Omega$



Op Amp Applications, Chapter 6

#### AN AUDIO BALANCED TRANSMISSION SYSTEM



Op Amp Applications, Chapter 6

## A SIMPLE LINE RECEIVER WITH OPTIONAL HF TRIM AND BUFFERED OUTPUT



Op Amp Applications, Chapter 6

### A CONCEPTUAL DRIVER/RECEIVER DIAGRAM OF A BALANCED LINE AUDIO SYSTEM WITH KEY IMPEDANCES AND CM NOISE



Op Amp Applications, Chapter 6

74.4mp Applications, Chapter's

## USING PUSH-PULL FEEDBACK



Op Amp Applications, Chapter 6

4.48 Applications, Chapter 6

#### A BUFFERED INPUT BALANCED LINE RECEIVER



Op Amp Applications, Chapter 6

### CM ERROR (dB) VS. FREQUENCY (Hz), FOR AD325 AND AD845 PAIRS, NOMINALLY $50\Omega$ SOURCE IMPEDANCES MATCHED/MIS-MATCHED 10%



Op Amp Applications, Chapter 6

#### TEST CIRCUIT FOR AUDIO LINE DRIVER AMPLIFIERS



Op Amp Applications, Chapter 6

Tremail ancheologia on 4.51

FOLLOWER MODE R<sub>S</sub> SENSITIVITY OF OP275 BIPOLAR/JFET INPUT OP AMPTHD+N (%) VS. FREQUENCY (Hz), V<sub>OUT</sub> = 7Vrms, R<sub>L</sub> =  $500\Omega$ , V<sub>S</sub> =  $\pm 18$ V



Op Amp Applications, Chapter 6

C 4.52 Applications, Chapter 6

# C DRIVER GROUP, THD+N (%) VS. FREQUENCY (Hz), FOR $V_{OUT}$ = 7Vrms, $R_S$ = 909 $\Omega$ , $R_L$ = 500 $\Omega$ , $V_S$ = ±13V OR ±18V



Op Amp Applications, Chapter 6

#### COMPOSITE CURRENT BOOSTED LINE DRIVER TWO



Op Amp Applications, Chapter 6

## A BASIC SINGLE-ENDED MIXED FEEDBACK TRANSFORMER DRIVER



Op Amp Applications, Chapter 6

### LUNDAHL LL1517 TRANSFORMER AND DRIVER (WITHOUT FEEDBACK), THD+N (%) VS. FREQUENCY (Hz), FOR $V_{OUT}$ = 0.5, 1, 2, 5Vrms, $R_L$ = 600 $\Omega$



Op Amp Applications, Chapter 6

#### FIG. 6-61 DRIVER WITH LUNDAHL LL2811 TRANSFORMER AND AD845, THD+N (%) VS. FREQUENCY (Hz), FOR $V_{OUT}$ = 0.5, 1, 2, 5Vrms, $R_L$ = 600 $\Omega$



Op Amp Applications, Chapter 6

#### OP AMP APPLICATIONS SEMINAR

#### LUNDAHL LL1517 TRANSFORMER WITH MIXED FEEDBACK AD8610 DRIVER, THD+N (%) VS. FREQUENCY (Hz) FOR VARIOUS NULL ACCURACIES



Op Amp Applications, Chapter 6

8.84 p Applications, Chapter 6

## SENSOR RESISTANCES USED IN BRIDGE CIRCUITS SPAN A WIDE DYNAMIC RANGE

| • | Strain Gages                         |       | <b>120</b> $\Omega$ , <b>350</b> $\Omega$ , <b>3500</b> $\Omega$ |
|---|--------------------------------------|-------|------------------------------------------------------------------|
| • | Weigh-Scale Load Cells               |       | 350Ω - $3500Ω$                                                   |
| • | Pressure Sensors                     |       | 350Ω - 3500Ω                                                     |
| • | Relative Humidity                    |       | 100k $\Omega$ - 10M $\Omega$                                     |
| • | Resistance Temperature Devices (RTDs | s) 19 | 100 $\Omega$ , 1000 $\Omega$                                     |
| • | Thermistors                          |       | 100 $\Omega$ - 10M $\Omega$                                      |

Op Amp Applications, Chapter 4

## A BEAM FORCE SENSOR USING A STRAIN GAGE BRIDGE





Op Amp Applications, Chapter 4

4.60 Amp Applications, Charlet 4

### A LOAD CELL COMPRISED OF 4 STRAIN GAGES IS SHOWN IN PHYSICAL (TOP) AND ELECTRICAL (BOTTOM) REPRESENTATIONS



Op Amp Applications, Chapter 4

- stasto and college 4.61

### A NUMBER OF BRIDGE CONSIDERATIONS IMPACT DESIGN CHOICES

- ♦ Selecting Configuration (1, 2, 4 Element Varying)
- ◆ Selection of Voltage or Current Excitation
- Stability of Excitation Voltage or Current
- Bridge Sensitivity: FS Output / Excitation Voltage
   1mV / V to 10mV / V Typical
- ♦ Fullscale Bridge Outputs: 10mV 100mV Typical
- Precision, Low Noise Amplification / Conditioning
   Techniques Required
- Linearization Techniques May Be Required
- ◆ Remote Sensors Present Challenges

Op Amp Applications, Chapter 4

e ret participations, Charter 4

# KELVIN SENSING SYSTEM WITH A 6-WIRE VOLTAGE-DRIVEN BRIDGE CONNECTION AND PRECISION OP AMPS MINIMIZES ERRORS DUE TO WIRE LEAD RESISTANCE



Op Amp Applications, Chapter 4

#### 4-WIRE CURRENT-DRIVEN BRIDGE SCHEME ALSO MINIMIZES ERRORS DUE TO WIRE LEAD RESISTANCES, PLUS ALLOWS SIMPLER CABLING



Op Amp Applications, Chapter 4

## TYPICAL SOURCES OF OFFSET VOLTAGE WITHIN BRIDGE MEASUREMENT SYSTEMS



Op Amp Applications, Chapter 4

### AC BRIDGE EXCITATION MINIMIZES SYSTEM OFFSET VOLTAGES



Op Amp Applications, Chapter 4

## RATIOMETRIC DC OR AC OPERATION WITH KELVIN SENSING CAN BE IMPLEMENTED USING THE AD7730 ADC





(B) AC excitation (simplified)

Op Amp Applications, Chapter 4

### GENERALIZED MODEL FOR HIGH SPEED PHOTODIODE PREAMP



Op Amp Applications, Chapter 4

#### PHOTODIODE PREAMP USING THE AD8065



#### PHOTODIODE PREAMP USING THE AD8033



Op Amp Applications, Chapter 4

0.07.4 p Applications, Chapter 4

### PHOTODIODE PREAMP USING THE AD8067



# COMPARISON OF OP AMPS FOR PHOTODIODE PREAMPS

|                        | = 0.35pF                          | 52                                        |                                            |                |                                 |
|------------------------|-----------------------------------|-------------------------------------------|--------------------------------------------|----------------|---------------------------------|
|                        | Unity GBW<br>f <sub>u</sub> , MHz | Input Capacitance<br>C <sub>IN</sub> , pF | f <sub>u</sub> /C; <sub>IN</sub><br>MHz/pF | I <sub>b</sub> | V <sub>N</sub> @10kHz<br>nV/√Hz |
| *AD8610/20             | 25                                | 23                                        | 1.1                                        | 2              | 6                               |
| AD8065/66              | 65                                | 6.6                                       | 9.85                                       | 2              | 7                               |
| AD8033/34              | 40                                | 700864                                    | 10                                         | 1.5            | 11                              |
| AD8067<br>G > 9 Stable | 350                               | 4                                         | 87                                         | 2              | 7                               |

<sup>\*</sup> Ideal low frequency precision preamps for large area photodiodes operated in photovoltaic mode (zero volt bias)

Op Amp Applications, Chapter 4

|   | ANA | LOG |
|---|-----|-----|
| ш | DEV | CES |

Generic Part #

### **Precision Single Supply Amps Selection Guide**

Packages\*

| Ochichio | I CHILIT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | oupp  | ly voitage | TXGII.              | m-Ivan                    | GBP    | SY       | - Charles and the second | 1 ackages          |        | Pricet      |
|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------------|---------------------|---------------------------|--------|----------|--------------------------|--------------------|--------|-------------|
| 19811213 | 1×       | 2×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4×    | Min   | Max        | In                  | Out                       | (MHz)  | (mA)     | SOT23                    | MSOP               | TSSOP  | 1k          |
|          |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       |            | Co                  | mmunica                   | tions  |          |                          |                    |        | - diversion |
| AD       | 8541     | 8542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8544  | +2.7  | +5         | X                   | ×                         | 1      | 0.055    | Х                        | Х                  | X      |             |
| AD       | 8565     | 8566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8567  | +4.5  | +16        | X                   | X                         | 4      | 0.85     | X                        | X                  | ×      | 1 75        |
| AD       | 8531     | 8532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8534  | +2.7  | +5         | Х                   | ×                         | 3      | 1.25     | Х                        | Х                  | х      | 1 1/1       |
| AD       | 8591     | 8592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8594  | +2.7  | +5         | Х                   | х                         | 3      | 1.25     | х                        | Х                  | Х      | back to a   |
| AD       | 8601     | 8602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8604  | +2.7  | +5         | Х                   | х                         | 8      | 1,100    | х                        | х                  | х      |             |
| AD       | 8605     | 8606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8608  | +2.7  | +5         | Х                   | ×                         | 10     | 1.2      | X                        | X                  | x      | 511         |
| SSM      | 2211     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | +2.7  | +5         |                     | x                         | HO12 4 | 9.5      |                          |                    |        |             |
| hanwar   | SI.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEAR  | s Min | Max        | Lir                 | CINOS                     | (ue)   | (101415) | (may)                    | FOM                | Hier   | ack to top  |
| Generic  | Part #   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 pa  | Supp  | ly Voltage | Rail-               | to-Rail                   | GBP    | Vos      | IBIAS                    | e <sub>noise</sub> | Slew   | Pricet      |
|          | 1×       | 2×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4×    | Min   | Max        | In                  | Out                       | (MHz)  | (μV)     | (nA)                     | (nV/√Hz)           | (V/µs) | 1k          |
| Сь       | 1 121    | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 721.1 | 1 153 | 115        | T                   | Industri                  | al     | 0.1      | •                        | 1 ×                | 1      |             |
| AD       | 705      | 706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 704   | ±2    | ±18        | 1                   |                           | .8     | 90       | 0.15                     | 15                 | .15    | 3           |
| AD       | 711      | 712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 713   | ±4.5  | ±18        |                     |                           | 4      | 250      | 0.025                    | 22                 | 20     |             |
| AD       | 795      | 1 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | ±5    | ±18        |                     |                           | 1.6    | 250      | 0.002                    | 11                 | 1      |             |
| AD       | 797      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ±5    | ±18        |                     |                           | 30     | 40       | 900                      | .09                | 20     | -           |
| AD       | 820      | 822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 824   | +3.0  | ±18        |                     | х                         | 1.8    | 400      | 0.03                     | 15                 | 3      | -           |
| AD       | 8510     | 8512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8513  | ±5    | ±15        |                     |                           | 8      | 500      | 0.03                     | 8                  | 20     | -           |
| AD       | 8519     | 8529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160   | ±2.7  | ±12        |                     | х                         | 8      | 1100     | 300                      | 10                 | 2.9    | 1 -         |
| AD       | 8551     | 8552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8554  | +2.7  | +5         | Х                   | х                         | 1.5    | 5        | 0.05                     | 42                 | 0.5    |             |
| AD       | 855 i    | 8552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8554  | +4.5  | +16        | Х                   | Х                         | 4      | 10mV     | 600                      | 25                 | 6      | -           |
| AD       | 8571     | 8572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8574  | +2.7  | +5         | X                   | х                         | 1.5    | 5        | 0.05                     | 45                 | 0.5    |             |
| AD       | 8601     | 8602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8604  | ±2.7  | ±5         | Х                   | X                         | 8      | 500      | .06                      | 33                 | 5.2    | 1 15        |
| AD       | 8605     | 8606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8608  | ±2.7  | ±5         | X                   | X                         | 10     | 300      | .06                      | 8                  | 5      | PHS-        |
| AD       | 8614     | A STORY OF THE REAL PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8644  | 5     | ±9         | X                   | Х                         | 5.5    | 2500     | 400                      | 12                 | 7.5    | -           |
| AD       | 8601     | The same of the sa |       | ±2.7  | ±5         | X                   | X                         | 2.2    | 5        | 0.1                      | 22                 | 0.8    | -           |
| OP       | 27       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ±4    | ±18        | ting the control of |                           | 8      | 25       | 40                       | 3                  | 2.8    | -           |
| OP       |          | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 470   | ±4.5  | ±18        |                     |                           | 5      | 75       | 20                       | 3.2                | 2.8    | -           |
| OP       |          | 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 471   | ±4.5  | ±18        |                     | -                         | 5      | 200      | 20                       | 7.6                | 8.5    | -           |
| OP       | 97       | 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 497   | ±2    | ±20        | -                   |                           | 1      | 25       | .05                      | 17                 | 0.2    | -           |
| OP       | 113      | 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 413   | ±5    | ±15        | -                   | the state of the state of | 3.5    | 125      | 600                      | 4.7                | 0.9    |             |
| OP       | 162      | 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 462   | ±3.0  | ±12        | -                   | Х                         | 15     | 325      | 600                      | 9.5                | 13     |             |
| OP       | 184      | 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 484   | ±3.0  | ±15        | Х                   | ×                         | 3.25   | 65       | 350                      | 3.9                | 2.4    | -           |
| OP       | 196      | 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 496   | ±3.0  | ±12        | ×                   | Х                         | 0.35   | 300      | 10                       | 26                 | 0.3    | -           |
| OP       |          | 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | ±4.5  | ±18        |                     | -                         | 4.7    | 300      | .05                      | 17                 | 22     |             |
| OP       | 777      | 727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 747   | ±2.7  | ±30, ±15   | - 1                 | х                         | 0.7    | 100      | 11                       | 15                 | 0.2    | 1 12        |
| OP       | 1177     | 2177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4177  | ±2.5  | ±18        |                     |                           | 1.3    | 60       | 2                        | 8                  | 0.7    | _           |

Rail-to-Rail

Supply Voltage

\* SOIC packages also available

\*\* With VSY=+5V

| C                 | 11777  | Supply | Voltage | Rail   | to -Rail  |                       | CDD          | W:0.2.                        | 60                | 7 5 1       | 9 1                                              | 9.7      | Duines     |  |  |
|-------------------|--------|--------|---------|--------|-----------|-----------------------|--------------|-------------------------------|-------------------|-------------|--------------------------------------------------|----------|------------|--|--|
| Generic<br>Part # |        | Min    | Max     | In     | Out       | l <sub>OUT</sub> (mA) | GBP<br>(MHz) | Killer<br>Application         | ns 400            |             |                                                  |          | Price†     |  |  |
|                   |        | 370    |         | 04 K   | 1/4       | (,,,,,                | Comput       |                               | 360               | Ve          | - 12                                             | 20       |            |  |  |
| AD8614/44         | 144    | +2.7   | +16     | X      | ×         | 100                   | 5.5          | LCD driver VC                 | COM buffers       | - 10        |                                                  | - 00     |            |  |  |
| AD8565/66         |        | +4.5   | +16     | X      | X         | 35                    | 6            |                               | eyscale op buffe  | ers         |                                                  |          |            |  |  |
| AD8568/69         | -      | +4.5   | +16     | X      | ×         | 35                    | 6            |                               | eyscale op buffe  |             |                                                  |          |            |  |  |
| OP162/262         |        | +2.7   | +12     |        | X         | 30                    | 15           |                               | eyscale op buffe  |             | 7.5                                              |          |            |  |  |
| AD8532            |        | +2.7   | +5      | ×      | ×         | 250                   | 3            |                               |                   |             |                                                  |          |            |  |  |
| AD8592            |        | +2.7   | +5      | ×      | ×         | 250                   | 3            |                               | mplifier with shu | tdown       |                                                  | 7.       |            |  |  |
| SSM2211           |        | +2.7   | +5      | 11     | ×         | 350                   | 4            |                               | nto a Mono 8Ω s   |             |                                                  |          |            |  |  |
| SSM2250           |        | +2.8   | +5      |        | ×         | 350                   | 4            |                               | nto a Mono 8Ω s   |             | s Stereo Head                                    | dphones  |            |  |  |
|                   |        |        |         |        |           |                       |              |                               |                   |             |                                                  |          | back to to |  |  |
| Generic I         | Part # | 2000   | pons 1  | Supply | / Voltage | Rail-                 | to-Rail      | I <sub>SY</sub>               | GBP               | F-00        | Packages*                                        |          | Price      |  |  |
| 7                 | 1×     | 2×     | 4×      | Min    | Max       | -In                   | Out          | (µA)                          | (MHz)             | SOT23       | MSOP                                             | TSSOP    | 1k         |  |  |
|                   | 2011   | BOAR   | 0074    | 157    | 40        |                       |              | ow Power                      |                   | mme         | 40 1                                             | 079      | -          |  |  |
| AD                | 8517   | 8527   | 9029    | +1.8   | +6        | X                     | x            | 1200                          | 10117             | x           | ×                                                |          | \$0.88     |  |  |
| AD                | 8541   | 8542   | 8544    | +2.7   | +5        | X                     | ×            | 55                            | 1                 | ×           | ×                                                | o x      | \$0.6      |  |  |
| AD                | 8591   | 8592   | 8594    | +2.7   | +5        | X                     | X            | 1250                          | 1403              | 20'X        | ×                                                | X        | \$1.0      |  |  |
| AD                | 8601   | 8602   | 8604    | +2.7   | +5        | X                     | X            | 1000                          | 8                 | a x         | × X                                              | 50 x     | ψ1.0       |  |  |
| AD                | 8605   | 8606   | 8608    | +2.7   | +5        | X                     | X            | 1200                          | 10                | X           | X                                                | X        |            |  |  |
| AD                | 8628   |        |         | +2.7   | +5        | ×                     | ×            | 1400                          | 2.2               | au x        | 108                                              | 30       |            |  |  |
| AD                | 8631   | 8632   |         | +1.8   | +6        | х                     | x            | 325                           | 4                 | 00 x        | X                                                | 3 1      |            |  |  |
| OP                | 191    | 291    | 140     | +2     | +15       |                       |              | 20                            | .035              | 0.025 1     | 22 }                                             | 50       | -          |  |  |
| OP                | 196    | 296    | 496     | +3.0   | +12       | Х                     | х            | 60                            | 0.35              | 0.15        | 18                                               | x        | \$1.1      |  |  |
| OP                | 777    | 727    | 747     | +2.7   | ÷15       |                       | ×            | 270                           | 0.7               |             | X                                                | ×        | 1 -        |  |  |
|                   | bx I   | 286    | ex I    | pega I | 9873      | 10. 1                 | one          | Invase)                       | (hu)              | (69)        | (UALLES)                                         | (within) | back to to |  |  |
| Part              | nz s   |        | # per   | Supply | / Voltage | Ou                    | itput        | ுடி                           | Max Freq          | Isy         | V <sub>CM</sub>                                  | (V)**    | Price      |  |  |
| Number            |        |        | Device  | Min    | Max       | TTL                   | CMOS         | (ns)                          | (MHz)             | (mA)        | LOW                                              | HIGH     | 1k         |  |  |
| 100               | 2211   |        |         | IVIIII | IVIAX     |                       | Comparat     |                               | 9.6               | ()          | LOW                                              | nigh     |            |  |  |
| AD8561/64         | 8606 1 | BREDE  | 1,4     | +3.0   | +12       | ×                     |              | 7                             | 60                | 5/14        | 0                                                | 3        | \$1.58     |  |  |
| AD8511/12         |        | 2003   | 1,2     | +2.7   | +5        | X                     | X            | 4                             | 100               | 10/20       | 0                                                | 3        | \$1.5      |  |  |
| 7,00011712        | 8284   | 2005   | 1,2     | 12.1   | 42        | ^                     | ^            | 7                             | 100               | 10/20       |                                                  |          | back to to |  |  |
| Generic           | # per  | Supply | Voltage | Rail   | to-Rail   | GBP                   | THD+N        |                               | Slew              | Killer      |                                                  |          | Price      |  |  |
| Part #            | Device | Min    | Max     | In     | Out       | (MHz)                 |              | e <sub>noise</sub><br>(nV√Hz) | (V/µs)            |             | Killer<br>Applications                           |          | 1k         |  |  |
|                   |        |        | OLIV    | -921   |           |                       | Audio        |                               |                   |             |                                                  |          |            |  |  |
| OP275             | 2      | +9     | ±18     |        |           | 9                     | 115          | 6                             | 22                | Professions | al audio equipr                                  | ment     | \$1.0      |  |  |
| SSM2135           | 2      | +5     | ±15     |        | 2577      | 3.5                   | 105          | 5                             | 1                 | 20.00       | Professional audio equipment  DVD and CD players |          | \$1.7      |  |  |
| SSM2167           | 1      | +1.8   | +5      | (HUD)  | ×         | 1                     | 90           | 18                            | 2                 | _           | p + compresso                                    | or       |            |  |  |
| SSM2211           | 1      | +2.7   | +5      |        | ×         | 4                     | 92           | 45                            | e entibul         |             | r for 8Ω speak                                   |          | IDA -      |  |  |
| SSM2250           | 2      | +2.7   | +5      |        | ×         | 4                     | 92           | 45                            | 1                 | Headphone   |                                                  |          | \$1.30     |  |  |

\* SOIC packages also available

\*\* With VSY=+5V

|                |                     | BUILT TO SE         | N - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | Links, Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SECURITY OF SECURI |             |        |               |             | THE RESERVE |        |          | THE REAL PROPERTY. | NAME OF TAXABLE PARTY. |                 |                   |                              |                    |            | 200 12 15 15 15 15 15 |                |                                                 | NALOG<br>DEVICES      |
|----------------|---------------------|---------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|---------------|-------------|-------------|--------|----------|--------------------|------------------------|-----------------|-------------------|------------------------------|--------------------|------------|-----------------------|----------------|-------------------------------------------------|-----------------------|
|                |                     | DADTA               | LIMBER                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ou inn |               |             |             | IL-TO- | MICRO    | (400               | BW @                   | SLEW            |                   | DISTORTI                     |                    | NOISE      | N. I                  |                |                                                 | DRIGE CAS             |
|                | SINGLES             | DUALS               | UMBER<br>TRIPLES                        | QUADS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DISABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 V         | 5 V    | ±5 V          | ±12 V ±1    |             | RAIL   | PKG      | A <sub>CL</sub>    | A <sub>CL</sub>        | RATE<br>[V/μs]  |                   | R <sup>1</sup> @ BW<br>[MHz] | FOR R <sub>L</sub> | [nV/√Hz]   | V <sub>os</sub>       | I <sub>B</sub> | [mA TYP]                                        | PRICE @10             |
|                | Drivers             |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |               |             |             |        |          |                    |                        | [ t · pio]      |                   |                              |                    | [11077112] |                       |                |                                                 |                       |
| 1              | AD8131              |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •           | •      | •             |             |             |        |          | 1 2                | 400                    | 2000            | -77               | 20                           | 800                | 13         | 5                     | 6              | 8                                               | 1.80                  |
|                | AD8132              |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •           | •      | •             |             |             |        |          | 1                  | 350                    | 1200            | -99               | 5                            | 800                | 8          | 4                     | 7              | 10.7                                            | 1.65                  |
| 1              | AD8138              |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •           | •      | •             |             |             |        | •        | 1                  | 310                    | 1150            | -94               | 5                            | 800                | 5          | 3                     | 5              | 20                                              | 3.75                  |
| חוו בוובוגווטר | Receivers           |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |               |             |             |        |          |                    |                        |                 |                   |                              |                    |            |                       |                |                                                 |                       |
|                | AD8129              |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | •      | •             |             |             |        |          | 10                 | 200                    | 1100            | -68               | 5                            | 1k                 | 4.5        | 1                     | 3              | 11                                              | 1.55                  |
|                | AD8130              |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Level gue a | •      | •             | •           | and angle   |        | •        | 1                  | 270                    | 1100            | -74               | 5                            | 1k                 | 12.5       | 2                     | 3              | 11                                              | 1.55                  |
|                | Fast FET™           | - all 100           |                                         | 1/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COIL COIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.0         |        |               |             |             |        |          |                    | 10                     |                 |                   |                              |                    | (1/4)      | 1                     | STATE OF       |                                                 | A COO                 |
|                | AD8033 <sup>3</sup> | AD8034              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100         | •      | •             | •           |             |        |          | 1                  | 80                     | 80              | -81               | 1                            | 1k                 | 11         | 2                     | 10 pA          | 3.3                                             | 1.19/1.5              |
|                | AD8065              | AD8066 <sup>3</sup> |                                         | Company of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | that made by the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gur mor     | •      |               | •           |             |        |          | 1                  | 145                    | 180             | -88               | 1                            | 1k                 | 7          | 1.5                   | 10 pA          | 6.4                                             | 1.59/2.1              |
|                | AD8610              | AD8620              | Single                                  | 120000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |        |               | 0           | N 1         | 31     |          | 1                  | - 25                   | 50              | -106 <sup>2</sup> | 0.02                         | 600                | 6          | 0.25                  | 10 pA          | 3                                               | 3.37/6.7              |
|                | Low Cost            | , High Pe           | rformance                               | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        | 70            | 138 15      | 1           |        | 0        |                    |                        |                 |                   |                              |                    | 700.00     |                       |                |                                                 |                       |
|                | AD8038 <sup>3</sup> | AD8039              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k (m) canci | •      |               | Laure value | -           |        |          | 1                  | 350                    | 425             | -90               | 1                            | 2k                 | 8          | 3                     | 0.75           | 1                                               | 0.85/1.2              |
|                | AD8055              | AD8056              | ejudjs                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100         |        | . •           |             | 1           | 1 39   |          | 1                  | 300                    | 1400            | -85               | 5                            | 1k                 | 6          | 5                     | 1              | 5                                               | 0.85/1.6              |
|                | AD8057              | AD8058              | Disa                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | •      |               |             |             | 1 2    |          | 1                  | 325                    | 1150            | -85 <sup>2</sup>  | 5                            | 1k                 | 7          | 5                     | 2              | 6                                               | 0.85/1.6              |
|                | Rail-to-Ra          | il                  | married to do                           | Statement of the state of the s | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100000      |        | 1,0 m. 200 mm |             |             | -      |          |                    | , v. 1013844           | (-E-2-2-20) (II | - 11-611          | and the second second        | W 101V. W.         |            |                       |                | P 300 - 1 / 1 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / | of the control of the |
|                | AD8031              | AD8032              | Skoole                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7 V       | •      | •             |             |             |        |          | 1                  | 80                     | 32              | -62 <sup>2</sup>  | 1                            | 1k                 | 15         | 2                     | 1.2            | 0.8                                             | 1.30/1.9              |
|                | AD8061/<br>AD8063   | AD8062              | 10,18                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7 V       | 8 V    |               |             | 1           | •      | •        | 1                  | 300                    | 800             | -77               | 5                            | 1k                 | 8.5        | 6                     | 10             | 6.8                                             | 0.85/1.               |
|                | AD8091              | AD8092              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        | 0             |             |             |        |          | 1                  | 110                    | 140             | -75               | 5                            | 2k                 | 16         | 10                    | 2.5            | 4.8                                             | 0.69/0.8              |
|                | Low Nois            | e, Low D            | istortion                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |               |             |             | 718    |          | . /- 7             | 17.14                  | 19              |                   |                              |                    |            |                       |                |                                                 |                       |
|                | AD8021              |                     | 12/1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | •      | •             | 0           |             | -      |          | 1                  | 200                    | 100             | -92               | 1                            | 1k                 | 2.1        | 1                     | 10             | 7                                               | 1.29                  |
|                |                     | AD8022              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | •      |               |             | D           |        | •        | 1                  | 75                     | 100             | -94               | 1                            | 1k                 | 2.5        | 5                     | 2.5            | 3.5                                             | 2.35                  |
|                | AD9631              |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | •      | •             |             |             |        |          | 1                  | 320                    | 1300            | -64               | 20                           | 100                | 7          | 10                    | 7              | 17                                              | 4.28                  |
|                | High Sup            | ply Volta           | ge                                      | TA SHOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WI -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1877        |        |               |             |             |        |          |                    |                        | 1               | UV                | T                            |                    |            |                       | 130 13         |                                                 | E 21 20               |
|                | AD817               | AD826               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        | •             |             |             |        |          | 1                  | 50                     | 350             | -78               | 1                            | 2k                 | 15         | 2                     | 6.6            | 7                                               | 1.58/2.               |
|                | AD818               | AD828               | en Ilsa                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | •      | •             |             | D .         |        |          | 2                  | 130                    | 450             | -78               | 1                            | 2k                 | 10         | 2                     | 6.6            | 7                                               | 1.76/2.               |
|                | Low Cost            | and the same        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3488        |        |               |             |             |        | Par coul |                    |                        |                 |                   |                              |                    |            |                       |                |                                                 | 10 64 69              |
|                | AD8014              |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | •      | •             |             |             |        |          | 1                  | 400                    | 4000            | -70               | 5                            | 1k                 | 3.5        | 5                     | 15             | 1.1                                             | 1.19                  |
|                |                     | AD8072              | AD8073                                  | The said                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T42 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | •      | •             |             |             |        | •        | 1                  | 200                    | 500             | -64               | 5                            | 150                | 3          | 6                     | 12             | 3.5                                             | 1.50/1.9              |
|                | High Perf           | ormance             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |               |             |             |        |          |                    |                        |                 |                   |                              |                    | 40         |                       |                |                                                 |                       |
|                | AD8001              | AD8002              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |               |             |             |        |          | 1                  | 600                    | 1200            | -66               | 5                            | 100                | 2          | 6                     | 25             | 5                                               | 1.35/2.               |
|                |                     |                     |                                         | AD8004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | •      | •             |             |             | 1000   | 100 E    | 1                  | 250                    | 3000            | -78               | 5                            | 1k                 | 1.5        | 4                     | 90             | 3.5                                             | 3.95                  |
|                | AD8005              |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | •      |               |             |             | -      |          | 1                  | 270                    | 1500            | -53               | 5                            | 1k                 | 4          | 30                    | 10             | 0.4                                             | 1.47                  |
|                | AD8007              | AD8008 <sup>3</sup> |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | •      |               |             |             |        | •        | 1                  | 650                    | 1000            | -83               | 20                           | 150                | 2.7        | 4                     | 8              | 9                                               | 1.19/1.9              |
|                | AD8009              |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | •      | •             |             |             |        |          | 1                  | 1000                   | 5500            | -54               | 100                          | 100                | 1.9        | 7                     | 150            | 14                                              | 1.59                  |
|                |                     |                     | AD8013                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | •      | •             |             |             |        |          | 1                  | 140                    | 1000            | -80               | 5                            | 1k                 | 3.5        | 5                     | 15             | 4                                               | 4.38                  |
|                | Water State         |                     | AD8023                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | •      | •             |             |             |        |          | 1                  | 400                    | 1200            | -78               | 5                            | 150                | 2          | 5                     | 45             | 6.2                                             | 4.67                  |
|                | Buffers             |                     |                                         | (380)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.00        | 1      |               | 112110      |             |        |          |                    |                        |                 | hane              |                              | in the same of     | 1,2,912    | 0.0                   |                | 20.01                                           |                       |
| 2              | 00.135              |                     | AD8074                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SULTER OF   |        |               | Colorest .  | S 1         | 1 11/1 |          | 1                  | 500                    | 1400            | -80               | 5                            | 150                | 25         | 27                    | 9              | 7.3                                             | 2.65                  |
| GAIIN          |                     |                     | AD8075                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |               | 200         | 1           |        |          | 2                  | 450                    | 1800            | -74               | 5                            | 150                | 25         | 40                    | 10             | 8.3                                             | 2.65                  |
| -              |                     | AD8079              |                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | -      |               |             |             |        |          | -                  |                        | .500            | 7.3               | -                            | .00                |            | 14                    |                | -10                                             | 2.00                  |

<sup>1</sup>Spurious Free Dynamic Range – Distortion @ Worst Harmonic <sup>2</sup>THD – Total Harmonic Distortion <sup>3</sup>Product Under Development

- June 2002



**In-Amps Selection Guide** 

| Generic<br>Part<br>Number | Supply<br>Current         | Operating<br>Voltage Range                                                                              | Gain<br>Setting<br>Method | CMRR<br>@ 60<br>Hz,<br>G=10 | BW @<br>G=10       | Settling<br>Time to<br>0.01%,<br>G=10 | Input<br>Voltage<br>Offset        | Input<br>Voltage<br>Offset TC | Input<br>Bias<br>Current | Output<br>Offset<br>Voltage           | Input<br>Voltage<br>Noise<br>Density<br>(f=1 kHz) | Gain<br>Range        | Gain<br>Error<br>@<br>G=10 | Price<br>@ 100   | Comments                                                                                                                              |
|---------------------------|---------------------------|---------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|--------------------|---------------------------------------|-----------------------------------|-------------------------------|--------------------------|---------------------------------------|---------------------------------------------------|----------------------|----------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                           | (mA)<br>max               | (V)                                                                                                     |                           | (dB)<br>min                 | (kHz)<br>typ       | (µs)<br>typ                           | (μV)<br>max                       | (µV/°C)<br>max                | (nA)<br>max              | (mV)<br>max                           | (nV/√Hz)<br>max                                   | min to max           | (%)<br>max                 | OEM<br>\$US*     |                                                                                                                                       |
|                           |                           |                                                                                                         | Vapon.                    |                             |                    |                                       | Amps For N<br>Low Cost            | lew Design<br>In-Amps         | S                        | 300                                   |                                                   |                      |                            |                  |                                                                                                                                       |
| AD622                     | 1.3                       | ±2.6 to ±18 Dual                                                                                        | Resistor                  | 86                          | 800                | 10                                    | 125                               | 1                             | 5                        | 1.5                                   | 12<br>(typ)                                       | 1 to 1000            | 0.5                        | \$2.65           |                                                                                                                                       |
| AD623                     | 0.55                      | ±2.5 to ±6 Dual,<br>+2.7 to +12 Single                                                                  | Resistor                  | 90                          | 100                | 20                                    | 200                               | 2                             | 25                       | 1 1 38                                | 35<br>(typ)                                       | 1 to 1000            | 0.35                       | \$1.82           | Lowest Cost Ir<br>Amp, µSOIC<br>Packaging                                                                                             |
| AD8200                    | 1                         | +4.7 to +12                                                                                             | Resistor                  | 80                          | 50                 | na                                    | 1000                              | 15                            | na                       | 1 100                                 | 300<br>(typ)                                      | 0.1 to 50            | 1                          | \$1.50           | Lowest Cost<br>Difference<br>Amplifier                                                                                                |
|                           |                           | VD6USS                                                                                                  |                           |                             | 0 0                | - 10                                  |                                   | 76                            | 100 -04                  | 1 18                                  | 38   8                                            | 10.                  | 3.6                        | 1.54             | back to to                                                                                                                            |
|                           |                           |                                                                                                         |                           |                             |                    | In-A                                  | Amps For Mingle Supp              | lew Design<br>ly In-Amps      | S                        |                                       |                                                   |                      |                            |                  |                                                                                                                                       |
|                           |                           |                                                                                                         |                           |                             |                    |                                       | mgic capp                         | ly III-Allips                 |                          |                                       |                                                   |                      |                            |                  |                                                                                                                                       |
| AD623                     | 0.550                     | ±2.5 to ±6 Dual,<br>+2.7 to +12 Single                                                                  | Resistor                  | 90                          | 100                | 20                                    | 200                               | 2 2 30                        | 25                       | 2 18                                  | 35<br>(typ)                                       | 1 to 1000            | 0.35                       | \$1.82           | Lowest Cost Ir<br>Amp, µSOIC<br>Packaging                                                                                             |
| AD623                     | 0.550<br>2<br><b>0.29</b> | ±2.5 to ±6 Dual,<br>+2.7 to +12 Single<br>±1.2 to ±6 Dual,<br>+2.4 to +12 Single                        | Resistor                  | 90<br>66<br>(f=100<br>Hz)   | 100                |                                       | 9 0                               | 1 300                         | 25<br>ns                 | 1 III                                 |                                                   | 1 to 1000            | 0.35<br>0.5<br>1           | \$1.82<br>\$3.69 | Amp, µSOIC<br>Packaging<br>Excellent for<br>High Side                                                                                 |
|                           | 2                         | +2.7 to +12 Single<br>±1.2 to ±6 Dual,                                                                  |                           | 66<br>(f=100                | 9 9                | 20                                    | 200<br>500                        | 2 2 300                       | 4100 -85, 1              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (typ)                                             |                      | 0.5                        | 0.957.00         | Amp, µSOIC Packaging  Excellent for High Side Current Sensin  Micro Power, Wide Supply                                                |
| AD626                     | 2<br>0.29                 | ±1.2 to ±6 Dual,<br>+2.4 to +12 Single<br>±1.1 to ±18 Dual,                                             | Pin                       | 66<br>(f=100<br>Hz)         | 100                | 20                                    | 200<br>500<br>2500                | 2<br>1<br>(typ)               | <sub>1year</sub> ns      |                                       | 250<br>(typ)                                      | 10, 100              | 0.5                        | \$3.69           | Amp, µSOIC<br>Packaging<br>Excellent for<br>High Side<br>Current Sensin<br>Micro Power,<br>Wide Supply<br>Voltage Range               |
| AD626<br>AD627            | 2<br><b>0.29</b><br>0.085 | +2.7 to +12 Single<br>±1.2 to ±6 Dual,<br>+2.4 to +12 Single<br>±1.1 to ±18 Dual,<br>+2.2 to +36 Single | Pin<br>Resistor           | 66<br>(f=100<br>Hz)<br>77   | 100<br>80<br>(G=5) | 20<br>24<br>135 (G=5)                 | 200<br>500<br>2500<br>200<br>250  | 1<br>(typ)                    | ns 10                    |                                       | (typ)<br>250<br>(typ)<br>38 (typ)                 | 10, 100<br>5 to 1000 | 0.5<br>1<br>0.35           | \$3.69<br>\$2.71 | Amp, µSOIC Packaging  Excellent for High Side Current Sensir  Micro Power, Wide Supply Voltage Rang  Lowest Cost Difference Amplifier |
| AD626<br>AD627            | 2<br><b>0.29</b><br>0.085 | +2.7 to +12 Single<br>±1.2 to ±6 Dual,<br>+2.4 to +12 Single<br>±1.1 to ±18 Dual,<br>+2.2 to +36 Single | Pin<br>Resistor           | 66<br>(f=100<br>Hz)<br>77   | 100<br>80<br>(G=5) | 20<br>24<br>135 (G=5)<br>na           | 200<br>2500<br>200<br>250<br>1000 | 1<br>(typ)                    | ns 10 na                 |                                       | (typ)<br>250<br>(typ)<br>38 (typ)                 | 10, 100<br>5 to 1000 | 0.5<br>1<br>0.35           | \$3.69<br>\$2.71 | Packaging  Excellent for High Side Current Sensin  Micro Power, Wide Supply Voltage Range Lowest Cost Difference                      |
| AD626<br>AD627            | 2<br><b>0.29</b><br>0.085 | +2.7 to +12 Single<br>±1.2 to ±6 Dual,<br>+2.4 to +12 Single<br>±1.1 to ±18 Dual,<br>+2.2 to +36 Single | Pin<br>Resistor           | 66<br>(f=100<br>Hz)<br>77   | 100<br>80<br>(G=5) | 20<br>24<br>135 (G=5)<br>na           | 200<br>2500<br>200<br>250<br>1000 | 2 1 (typ) 3 15                | ns 10 na                 |                                       | (typ)<br>250<br>(typ)<br>38 (typ)                 | 10, 100<br>5 to 1000 | 0.5<br>1<br>0.35           | \$3.69<br>\$2.71 | Amp, µSOIC Packaging  Excellent for High Side Current Sensin Micro Power, Wide Supply Voltage Range Lowest Cost Difference Amplifier  |

In-Amps For New Designs

|        |                  |                                        |          |                     |               | High Co       | mmon-Mod                 | le Voltage | Range |    |                    |                  |                |         |                          |
|--------|------------------|----------------------------------------|----------|---------------------|---------------|---------------|--------------------------|------------|-------|----|--------------------|------------------|----------------|---------|--------------------------|
| AD626  | 2<br><b>0.29</b> | ±1.2 to ±6 Dual,<br>+2.4 to +12 Single | Pin      | 66<br>(f=100<br>Hz) | 100           | 24            | 500<br><b>2500</b>       | 1<br>(typ) | ns    | ns | 250<br>(typ)       | 10, 100          | 0.5<br>1       | \$3.69  | Excel<br>High<br>Current |
| AD629  | 1                | ±2.5 to ±18                            | na       | 77<br>(G=1)         | 500<br>(G=1)  | 15<br>(G=1)   | 1000<br>(Total RTI)      | 20         | na    | na | 550<br>(Total RTO) | 1                | 0.05<br>(G=1)  | \$3.01  | ±250<br>CMV              |
| AD8200 | 1                | +4.7 to +12                            | Resistor | 80                  | 50            | na            | 1000                     | 15         | na    | 1  | 300<br>(typ)       | 0.1 to 50        | 1              | \$1.50  | Lowe<br>Diffe<br>Am      |
|        |                  |                                        |          |                     |               |               |                          |            |       |    |                    |                  |                |         | Ь                        |
|        |                  |                                        |          |                     |               |               | Amps For N<br>de Bandwic |            |       |    |                    | ž.               |                |         |                          |
| AMP03  | 3.5              | ±4.5 to ±18                            | na       | 80                  | 3000          | 1<br>(typ)    | ns                       | ns         | ns    | ns | 750<br>(Total RTO) | 1                | 0.008<br>(G=1) | \$3.03  |                          |
|        |                  |                                        |          |                     |               |               |                          |            |       |    |                    |                  |                |         | ba                       |
|        |                  |                                        |          |                     |               | Hi            | Vintage Ir<br>gh Accurac |            |       |    |                    |                  |                |         |                          |
| AD524  | 5                | ±6 to ±18                              | Pin      | 90                  | 400           | 15            | 250                      | 2          | ±50   | 5  | 7                  | 1 to 1000        | ±0.25          | \$8.55  |                          |
| AMP01  | 4.8              | ±4.5 to ±18                            | Resistor | 95                  | 100           | 13            | 100                      | 1          | 6     | 6  | 59                 | 0.1 to<br>10,000 | 0.8            | \$10.18 |                          |
|        |                  |                                        |          |                     |               |               |                          |            |       |    |                    |                  |                |         | bá                       |
|        |                  |                                        |          |                     |               |               | Vintage Ir<br>Low Noise  |            |       |    |                    |                  |                |         |                          |
| AD624  | 5                | ±6 to ±18                              | Pin      | 90                  | 1000<br>(G=1) | 15            | 200                      | 2          | ±50   | 5  | 4                  | 1 to 1000        | ±0.05<br>(G=1) | \$14.98 |                          |
| AD625  | 5                | ±6 to ±18                              | Resistor | 90                  | 400           | 15            | 200                      | 2          | ±50   | 5  | 4 (Total RTI)      | 1 to<br>10,000   | ±0.05          | \$12.58 |                          |
|        |                  |                                        |          |                     |               |               |                          |            |       |    |                    |                  |                |         | ba                       |
| (3)    |                  |                                        |          |                     |               | Softwa        | Vintage Ir<br>re Program |            | ımps  |    |                    |                  |                |         |                          |
| AD526  | 14               | ±4.5 to ±16.5                          | Software | ns                  | 350<br>(G=16) | 4.1<br>(G=16) | 700                      | 10         | 0.15  | ns | 30 (typ)           | 1,2,4,8,16       | 0.08<br>(G=16) | \$10.39 |                          |

Please note: an HTML version of this Selection Guide is available at <a href="http://www.analog.com/technology/amplifiersLinear/designTools/selectionGuides/inamp.html">http://www.analog.com/technology/amplifiersLinear/designTools/selectionGuides/inamp.html</a>

|  |  |  |     |  |  |  | 00,18 |  |
|--|--|--|-----|--|--|--|-------|--|
|  |  |  |     |  |  |  |       |  |
|  |  |  |     |  |  |  |       |  |
|  |  |  | 9,0 |  |  |  |       |  |
|  |  |  |     |  |  |  |       |  |
|  |  |  |     |  |  |  |       |  |
|  |  |  |     |  |  |  |       |  |
|  |  |  |     |  |  |  |       |  |
|  |  |  |     |  |  |  |       |  |
|  |  |  |     |  |  |  |       |  |
|  |  |  |     |  |  |  |       |  |
|  |  |  |     |  |  |  |       |  |
|  |  |  |     |  |  |  |       |  |
|  |  |  |     |  |  |  |       |  |
|  |  |  |     |  |  |  |       |  |