Communities

Question 1:

For the following graph:

Write the adjacency matrix A, the degree matrix D, and the Laplacian matrix L. For each, find the sum of all entries and the number of nonzero entries.

1) Adjacency matrix:

1 2 3 4 5 6 7 8

1 0 1 0 0 0 0 0 0 1

2 1 0 1 0 0 0 0 0 1

3 0 1 0 1 0 0 0 0 0 1

4 0 0 1 0 1 1 0 0

5 0 0 0 1 1 0 0 0

6 0 0 0 1 1 0 0 0

7 0 0 1 0 0 0 1 0 1

8 1 1 0 0 0 0 1 0

sum of all entries = 22

Degree mabrix :.

1 2 3 4 5 6 7 8

1 2 0 0 0 0 0 0 0 0

2 0 3 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 3 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 3

8 0 0 0 0 0 0 0 3

No of non-zoro entries = 8

Sum of all entries = 8

Question 2:

Consider the following undirected graph (i.e., edges may be considered bidirectional):

Run the "trawling" algorithm for finding dense communities on this graph and find all complete bipartite subgraphs of types $K_{3,2}$ and $K_{2,2}$. Note: In the case of $K_{2,2}$, we consider $\{\{W, X\}, \{Y, Z\}\}\}$ and $\{\{Y, Z\}, \{W, X\}\}$ to be identical.

Question 3:

We fit AGM to the network on the left, and found the parameters on the right:

Find the optimal values for p_A and p_B .