

Lunes 25 de octubre 2021 Docente: Yaritza Maita. 3er Año "B"

Área de formación: Matemática

Proceso social del trabajo.

Con alegría retornamos de forma segura a nuestros liceos.

Número Racionales Q.

- ✓ Definición
- ✓ Representación Gráfica.
- ✓ Operaciones en Q.
- ✓ Potenciación en Q.

Números racionales "Q".

Un número racional es un número que representa el conjunto de todas las fracciones equivalentes a una dad. El conjunto de los números racionales se denomina con la letra Q.

Los números racionales positivos se denotan con la letra Q+ y los racionales negativos con Q⁻.

$$Q^{-} = \left\{ \dots \frac{-5}{2}, \frac{-1}{2}, \frac{-1}{3}, \frac{-1}{5} \dots \right\}$$

$$Q^+$$
 $\left\{ ... \frac{5}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{5} ... \right\}$

Un número racional es positivo si los términos de las fracciones que los representan tienen signos iguales. Ejemplos: $\frac{-2}{-3}$, $\frac{-5}{-4}$, $\frac{+1}{+2}$, $\frac{+2}{+4}$; es negativo si los signos que lo representan son diferentes. Ejemplos: $\frac{+2}{-4}$, $\frac{-1}{+2}$, $\frac{-3}{+7}$

Es decir:
$$Q^- \subset Q$$
 $Q^+ \subset Q$

El conjunto de los números racionales está formado también por el conjunto de los números enteros. Esto indica que los números racionales es una extensión de los números enteros y estos a la ve son extensión de los números naturales.

De manera que:

$$N \subset Z$$
 $Z \subset Q$

Es decir:
$$N \subseteq Z \subseteq Q$$

Q* representa todos los números racionales distinto de cero.

$$Q^* = \left\{ \cdots \frac{-5}{2}, \frac{1}{-2}, \frac{1}{2}, \frac{-5}{2} \cdots \right\}$$

Estos números racionales también lo podemos representar en la recta numérica.

Representación gráfica en Q.

Ejemplo:

1) Representa las siguientes fracciones en la recta numérica.

Ubicamos primero los números naturales luego dividimos la fracción y su resultado decimal lo ubicamos en la recta numérica.

También podemos establecer una relación de orden en el conjunto Q.

❖ Adición y sustracción de fracciones con igual denominador

Para sumar o restar dos o más fracciones con igual denominador, sumamos o restamos los numeradores y dejamos el mismo denominador.

Ejemplo:

a)
$$\frac{2}{5} - \frac{1}{5} + \frac{3}{5}$$

 $\frac{2-1}{5} = \frac{1}{5} + \frac{3}{5} = \frac{4}{5}$

Adición y sustracción de fracciones con distinto denominador.

Para sumar o restar dos o más fraccione con diferentes denominadores, primero se convierten las fracciones dadas en fracciones equivalentes con igual denominador usando el m.c.m y luego se suman o restan las fracciones obtenidas.

Ejemplo:

1) Realiza las siguientes operaciones de fracciones.

a)
$$\frac{4}{3} - \frac{1}{4} + \frac{5}{9}$$

Pasos:

1) Se calcula el m.c.m de:

Quedando así.

Luego calculamos los numeradores

2) Se divide el m.c.m entre cada denominador y su resultado se multiplica por cada numerador de la fracción original, luego este representará el valor del numerador.

$$36 \div 3 = 12 \times 4 = 48$$
 $36 \div 4 = 9 \times 1 = 9$
 $36 \div 9 = 4 \times 5 = 20$
Resultados de los numeradores

Entonces sustituimos los numeradores

$$\frac{48}{36} - \frac{9}{36} + \frac{20}{36}$$

3) Luego aplicamos la operación de fracción con igual denominador.

$$\frac{48-9+20}{36} = \frac{39+20}{36} = \frac{59}{36}$$

$$\frac{12}{4} + \frac{3}{5}$$

Se calcula el m.c.m de:

Quedando así.

$$\frac{?}{20} + \frac{?}{20}$$

Luego calculamos los numeradores

$$20 \div 4 = 5 \times 12 = 60$$

$$20 \div 5 = 4 \times 3 = 12$$
Resultados de los numeradores

Entonces sustituimos los numeradores

$$\frac{60}{20} + \frac{12}{20} = \frac{60 + 12}{20} = \frac{72}{20}$$

• Propiedades de la adición.

1) Conmutativa: El orden de los sumando no altera la suma.

Ejemplo:

a)
$$\frac{12}{2} + \frac{1}{2} = \frac{13}{2}$$
$$\frac{1}{2} + \frac{12}{2} = \frac{13}{2}$$

2) **Asociativa**: Al agrupar dos o más sumando de diferentes formas, se obtiene la misma suma

misma suma.
Ejemplo:
$$\frac{2}{3} + \frac{4}{3} + \frac{5}{3} = \frac{2}{3} + \frac{4}{3} + \frac{5}{3}$$

$$\frac{6}{3} + \frac{5}{3} = \frac{2}{3} + \frac{9}{3}$$

$$\frac{11}{3} = \frac{11}{3}$$

3) **Elemento neutro**: Cualquier número sumado con cero da como resultado el mismo número.

Ejemplo:
$$\frac{50}{3} + 0 = \frac{50}{3}$$

Multiplicación de fracciones

Para multiplicar dos o más fracciones tiene como numerador el producto de los numeradores y como denominador el producto de los denominadores.

Ejemplo:

Resolver las siguientes operaciones.

a)
$$\frac{1}{4} \times \frac{5}{3} = \frac{1 \times 5}{4 \times 3} = \frac{5}{12}$$

- Propiedades de la multiplicación.
 - 1) Conmutativa: El orden de los factores no altera el producto.

Ejemplo:
$$\frac{2}{4} \times \frac{3}{5} = \frac{3}{5} \times \frac{2}{4}$$
$$\frac{6}{20} = \frac{6}{20}$$

2) Asociativa: Al agrupar dos o más factores de diferentes formas, se obtiene el mismo producto.

Ejemplo:
$$\left(\frac{4}{3} \times \frac{5}{2}\right) \times \frac{6}{7} = \frac{4}{3} \times \left(\frac{5}{2} \times \frac{6}{7}\right)$$

 $\frac{20}{6} \times \frac{6}{7} = \frac{4}{3} \times \frac{30}{14}$
 $\frac{120}{42} = \frac{120}{42}$

3) Elemento neutro: Todo los números multiplicados por uno, da como resultado el mismo número.

Ejemplo:
$$\frac{5}{2} \times 1 = \frac{5}{2}$$

4) Factor cero: todo número multiplicado por cero da como resultado cero.

Ejemplo:
$$\frac{2}{3} \times 0 = 0$$

5) Propiedad distributiva de la multiplicación con respecto a la adición.

Se aplica cuando uno de los factores es una suma, consiste en multiplicar cada uno de ellos por el factor, luego se suman estos productos.

Ejemplo:

$$\frac{2}{3}x\left(\frac{7}{2} + \frac{5}{2}\right) = \frac{2}{3}x\frac{7}{2} + \frac{2}{3}x\frac{5}{2}$$
$$\frac{14}{6} + \frac{10}{6}$$
$$\frac{24}{6}$$

División de fracciones

Para dividir una fracción entre otra, se multiplica la primera fracción por la inversa de la segunda fracción.

Ejemplo:

Realiza las siguientes operaciones

a)
$$\frac{6}{17} \div \frac{5}{3} = \frac{6}{17} \times \frac{3}{5} = \frac{6 \times 3}{17 \times 5} = \frac{18}{85}$$

b)
$$\frac{7}{3} \div \frac{8}{9} = \frac{7}{3} \times \frac{9}{8} = \frac{7 \times 9}{3 \times 8} = \frac{63}{24}$$
Inversa

Potenciación:

El producto de una fracción por si misma n veces es una potencia cuya base es la fracción y n es el exponente. Es decir, para elevar una fracción a una potencia de exponente n > 0, se elevan tanto el numerador como el denominador a dicha potencia.

Esto es
$$=$$
 $\frac{a}{b}$ $=$ $\frac{a^n}{b^n}$ $=$ $\frac{a^n}{b^n}$ Base

Ejemplos:

a)
$$\left[\frac{2}{4}\right]^2 = \frac{2^2}{4^2} = \frac{4}{16}$$

Se multiplica la base tantas veces indique el exponente

b)
$$\left[\frac{-1}{3}\right]^2 = \frac{(-1)^2}{3^2} = \frac{+1}{9}$$

Cuando la base es negativa se aplica regla de signos de la multiplicación

c)
$$\left[\frac{3}{4}\right]^{-2} = \left[\frac{4}{3}\right]^{2} = \frac{4^{2}}{3^{2}} = \frac{16}{9}$$

Para resolver una potencia con exponente negativo se aplica inverso para luego cambiar el signo del exponente y así poder resolver la potencia

d) (2)
$$^{-2} = \left[\frac{2}{1}\right]^{-2} = \left[\frac{1}{2}\right]^{2} = \frac{1^{2}}{2^{2}} = \frac{1}{4}$$

Se aplica inverso. Se sobre entiende que debajo del 2 está como denominador un 1.

e)
$$\left[\frac{4}{-5}\right]^2 = \frac{4^2}{(5)^2} = \frac{16}{25}$$

Observemos la siguiente tabla.

Multiplicación	Potencia	Base	Exponente	Lo leemos	Producto
2/4 X 2/4 X 2/4	$\left[\frac{2}{4}\right]^3$	2 4	3	Dos cuarto elevados al cubo.	<u>8</u> 64
$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$	$\left[\frac{1}{2}\right]^4$	1 2	4	Un medio elevado a la cuarta	1 16
$\frac{1}{3}$ $\times \frac{1}{3}$	$\left[\frac{1}{3}\right]^2$	3	2	Un tercio elevado a la dos	1 9

* Propiedades de Potenciación.

 Multiplicación de potencias de base iguales: Es cuando se tiene un producto de factores iguales. Para aplicar esta propiedad se deja una sola base y se suman todos sus exponentes.

a)
$$\left[\frac{7}{2}\right]^4 \times \left[\frac{7}{2}\right] \times \left[\frac{7}{2}\right]^2 = \left[\frac{7}{2}\right]^{4+1+2} = \left[\frac{7}{2}\right]^7$$

b)
$$\left[\frac{3}{5}\right] \times \left[\frac{3}{5}\right] \times \left[\frac{3}{5}\right]^{-2} = \frac{3}{5}^{1+1-2} = \frac{3}{5}^{0} = 1$$

c)
$$\left[\frac{-1}{2}\right]^{0} \times \left[\frac{-1}{2}\right]^{4} \times \left[\frac{-1}{2}\right]^{5} = \left[\frac{-1}{2}\right]^{0+4+5} = \left[\frac{-1}{2}\right]^{9}$$

2. <u>División de potencias de bases iguales</u>: Es cuando se tiene una división donde el dividendo y el divisor son iguales. Para aplicar esta propiedad se deja una sola base y se restan sus exponentes. (Dividendo menos divisor).

Ejemplos:

a)
$$\left[\frac{6}{7}\right]^{8} \div \left[\frac{6}{7}\right] = \left[\frac{6}{7}\right]^{8-1} = \left[\frac{6}{7}\right]^{7}$$

b)
$$\left[\frac{3}{4}\right] \div \left[\frac{3}{4}\right]^2 = \left[\frac{3}{4}\right]^{1-2} = \left[\frac{3}{4}\right]^{-1} = \left[\frac{4}{3}\right]^1$$

3. <u>Potencia de una potencia</u>: Es cuando existe una base y varios exponentes. Para aplicar esta propiedad se deja la misma base y se multiplican sus exponentes.

4. Potencia de un producto: Se eleva cada factor al exponente dado.

Ejemplo:

$$\left(\frac{1}{2} \times \frac{3}{2}\right)^2 = \left(\frac{1}{2}\right)^2 \times \left(\frac{3}{2}\right)^2 = \frac{3^2}{(2x^2)^2} = \frac{9}{4^2} = \frac{9}{16}$$

* Casos Particulares.

> Todo número elevado a la unidad es igual a la misma base.

Ejemplo:

$$\left(\frac{a}{b}\right)^1 = \frac{a}{b}, \quad con b \neq 0$$

> Todo número elevado a la cero es igual a uno.

$$\left(\frac{a}{b}\right)^0 = 1$$

Actividades de Evaluación

1) Representa en la recta numérica los siguientes números racionales. (1 pto c / u)

$$\frac{8}{3}$$
, $\frac{4}{-2}$, $\frac{5}{3}$, $\frac{2}{5}$

2) Realiza las siguientes operaciones dadas. (1 pto c / u)

a)
$$\frac{6}{7} + \frac{4}{3} =$$

b)
$$\frac{6}{8} + \frac{3}{8} + \frac{5}{8} - \frac{2}{8} =$$

c)
$$\frac{5}{7} \times \frac{8}{3} =$$

d)
$$\frac{7}{8} \div \frac{15}{8} =$$

3) Resolver las siguientes potencias: (1 pto c/u)

a)
$$\left[\frac{2}{3}\right]^3$$

b)
$$\left(\frac{4}{1}\right)^{-3} =$$

c)
$$\left[\frac{-6}{8}\right]^2 =$$

d)
$$\left[\frac{-4}{6}\right]^3 =$$

4) Aplica la propiedad de potenciación según corresponda

a)
$$\left[\frac{2}{5}\right]^{-2} \cdot \left[\frac{2}{5}\right]^{2} \cdot \left[\frac{2}{5}\right]^{2} \cdot \left[\frac{2}{5}\right]^{3} =$$

b)
$$\left[\frac{8}{6}\right]^{-2} \div \left[\frac{8}{6}\right]^{4} =$$

C)
$$\sqrt{\left[\frac{2}{3}\right]^{-1}}^{-2} =$$

Instrumento de evaluación:

- Guía de evaluación :15 pts
- Presentación de la actividad (Pulcritud, ortografía, foto legible) : 2 pts
- Identificación de la actividad al ser enviada al correo: 1 pto (Nombre, apellido, año y sección del estudiante)
- Puntualidad de entrega: 2 pts

NOTA:

Enviar evidencia al siguiente correo <u>varitzamaita@Gmail.com</u>
(Tomar y enviar foto nada más a la parte de la actividad a evaluar)
Fecha de entrega de la actividad a evaluar el 19/11/2021
Si tienen alguna inquietud o duda pueden comunicarse con mi persona:
04120913435 (Llamadas y mensajes de textos).