presentation/演示文稿

hjy

TongJi University

November 10, 2013

目录

幻灯片测试

我的第一张幻灯片。

幻灯片测试

我的第一张幻灯片。

Definition

definition 1...

Proof.

We leave the proof as an exercise to our astute reader. We also suggest that the reader generalize the proof to non-Euclidean geometries.

A sample slide

A displayed formula:

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}$$

An itemized list:

- itemized item 1
- itemized item 2

Theorem

In a right triangle, the square of hypotenuse equals the sum of squares of two other sides.

$$u + iv = a\sin(x + iy) \tag{1}$$

$$u = a\sin x \cosh y,\tag{2}$$

$$v = a\cos x \sinh y \tag{3}$$

Acknowledgment

Fred Gornik, Power+Energy, Inc.

http://powerandenergy.com

If you click here, you will jump to the slide labeled "sample". Clicking will also take you to the "sample" slide.

Hydrogen fuel cells: overview

Hydrogen fuel cells: overview

The Hydrogen-Palladium interface

 Γ_0 = rate of hydrogen molecules impacting a surface Representative value: 10^{19} hits/cm²/sec Γ_0 proportional to pressure

Around 10^{14} surface sites/cm²

The Hydrogen-Palladium interface

 Γ_0 = rate of hydrogen molecules impacting a surface Representative value: 10^{19} hits/cm²/sec Γ_0 proportional to pressure

Around 10¹⁴ surface sites/cm²

Hydrogen fuel cells: overview

Hydrogen fuel cells: overview

Modeling the surface layer

Equilibrium:

$$\Gamma_0 S_0 (1 - \alpha)^2 = k_d \alpha^2 \quad \Rightarrow \quad \left(\frac{1 - \alpha}{\alpha}\right)^2 = \frac{k_d}{\Gamma_0 S_0}$$

Fraction of occupied surface sites on the surface $= \alpha, \quad 0 \le \alpha \le 1$

Solve for
$$P(x)$$
:

$$P(x) = [1 + W(z)]^2$$

$$k_i \alpha (1 - \beta) = k_o \beta (1 - \alpha) \quad \Rightarrow \quad \frac{1 - \alpha}{\alpha} = \frac{k_i}{k_o} \frac{1 - \beta}{\beta}$$
Eliminate α :
$$\frac{\beta}{1 - \beta} = \frac{k_i}{k_o} \sqrt{\frac{\Gamma_0 S_0}{k_d}}$$

Numbers

tube radius	r	$0.3175~\mathrm{cm}$
tube wall thickness	δ	$0.0003~\mathrm{cm}$
flow rate	F	$8330 \text{ cm}^3/\text{sec}$
inlet pressure	P(0)	4.08 atm
ambient pressure	ho	1.36 atm
temperature	T	673 Kelvin
diffusivity	κ	$6.96\ 10^{-8}\ \mathrm{mol/(cm\ sec\ atm^{1/2})}$
gas constant	R	cm ³ atm / (mol Kelvin)

Membrane on porous support

Membrane on porous support

Membrane on porous support

Some text

Some text Uncover me on slide 2 (-)

Some text Uncover me on slide 2 (-) visible from slide 3 on (-)

Some text Uncover me on slide 2 (-) visible from slide 3 on (-) only from slide 4 (-)

Some text Uncover me on slide 2 (-) visible from slide 3 on (-) only from slide 4 (-) on slide 5 and further (-)

Some text Uncover me on slide 2 (-) visible from slide 3 on (-) only from slide 4 (-) on slide 5 and further (-) Uncover me on slide 6

Some text Uncover me on slide 2 (-) visible from slide 3 on (-) only from slide 4 (-) on slide 5 and further (-)

visible on 7 I am not on slide 8

```
Some text
Uncover me on slide 2 (-)
visible from slide 3 on (-)
only from slide 4 (-)
on slide 5 and further (-)
```

only on slide 8 I am on slide 8

Some text Uncover me on slide 2 (-) visible from slide 3 on (-) only from slide 4 (-) on slide 5 and further (-)

I am not on slide 8 on slide 9