Cellular Symphonies

Creating Orchestral Music with Cellular Automata
Jake Looney

Motivation

- Cellular automata are usually represented visually in state-time diagrams or animations.
- Musical representations can be created by dividing cells into various musical instruments and assigning state values to different pitches, volumes, and rhythmic divisions

Method

Cellular automata with 10 states and 54 cells were used

18 instruments were used, each with a cell for pitch, volume, and rhythmic division.

Harmony was determined probabilistically using the seed of the automata.

• Rules in the rule table were successively zeroed out with MIDI generated for each new rule table. Values of λ , λ_T , H, and H_T were calculated.

 Every output was listened to and assigned a "fitness" value in [0, 1] based on how much I liked listening to it.

Results

- 840 rule tables (30 experiments with 28 steps) generated up to 16 bars of music each.
- Fitness appears to peak for certain values of λ , λ_{T} , H, and H_T (cubic fits shown)

Fitness varies considerably across Wolfram Classes.

Conclusion

- While not definitive, there is correlation in how an automata sounds and its class/parameter values
 - Biases in how "fitness" is obtained as well as further experiments will need to be considered
- Could be used as complementary tool for composition and production, but likely to not be used strictly on its own

