PAT-NO: JP02002319726A

DOCUMENT-IDENTIFIER: JP 2002319726 A

TITLE: OPTICAL AMPLIFIER

PUBN-DATE: October 31, 2002

INVENTOR - INFORMATION:

NAME COUNTRY
HOTTA, MASAKATSU N/A
SUDO, TOMOMI N/A
NODA, YUKIO N/A
MIMURA, HIDENORI N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY
HOTTA MASAKATSU N/A
SUDO TOMOMI N/A

APPL-NO: JP2001123385

APPL-DATE: April 20, 2001

INT-CL (IPC): H01S003/10, H01S003/06, H04B010/02, H04B010/16,

H04B010/17

, H04B010/18

ABSTRACT:

PROBLEM TO BE SOLVED: To efficiently amplify a ${\color{red} \underline{\textbf{C}}}$ band and ${\color{red} \underline{\textbf{L}}}$ band.

SOLUTION: A $\underline{C\text{-band}}$ signal light SC and an $\underline{L\text{-band}}$ signal light SL are input

to an input terminal 10. An EDF 16 is excited strongly by an excitation light

20a from an LD 20, the signal light SC is amplified, a <u>C-band ASE</u> light is

generated, and the signal light SL is slightly amplified. An optical circulator 18 outputs the light from the EDF 16 to the fiber grating 22 of 90%

<u>C-band</u> reflection from a port B. The reflected light of the grating 22 is

incident to fiber grating 32 of 100% $\underline{\text{C-band}}$ reflection via the optical

circulator 18, an optical fiber 36 and an optical circulator 34, is reflected

here, and is arrived at an output terminal 39 via the ports B, C of the

circulator 34. An EDF 26 amplifies the signal light SL by the <u>C-band</u> light

passed through the grating 22 and an excitation light 38a. The amplified

signal light SL reaches an output terminal 39 via a WDM optical coupler 38, an

optical isolator 30, the grating 32 and the circulator 34.

COPYRIGHT: (C) 2002, JPO

(19)日本国特許庁 (JP)

政別記号

(51) Int.CL7

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-319726 (P2002-319726A)

(43)公開日 平成14年10月31日(2002.10.31)

H01S	3/10		H01S	3/10	Z	5 F O 7 2	
	3/06			3/06	В	5 K O O 2	
H04B	10/02		H 0 4 B	9/00	M		
	10/16				J		
	10/17						
		審查請求	未請求請求	℟項の数20 (OL (全 14 頁) 最終質に続く	
(21)出願番号		特額2001-123385(P2001-123385)	(71)出顧	(71) 出願人 501432933			
				塚田 昌	克		
(22)出願日		平成13年4月20日(2001.4.20)		埼玉県入	間郡大井町大井!	514-5コスモふ	
		•		じみ野S	-717		
			(71)出顧	人 50143292	2		
				須藤 智	美		
				埼玉県朝 一ポ408	度市東弁財2丁	目12番19号昌和コ	
			(72)発明	者 堀田 昌	克		
				埼玉県上	福岡市大原2丁	目1番15号株式会	
				社ケイデ	ィディファイバ	ラポ内	
			(74)代理	人 10009028	14		
				弁理士	田中 常雄		
			}			最終頁に続く	

FΙ

(54) 【発明の名称】 光増幅器

(57)【要約】

【課題】 CバンドとLバンドを効率良く増幅する。 【解決手段】 Cバンド信号光Sc とLバンド信号光S Lが入力端子10に入力する。EDF16は、LD20 からの励起光20aにより強く励起されて、信号光Sc を増幅し、CバンドASE光を発生し、信号光SLを僅 かに増幅する。光サーキュレータ18はEDF16から の光をポートBから90%Cバンド反射のファイバグレ ーティング22に出力する。グレーティング22の反射 光は、光サーキュレータ18、光ファイバ36及び光サ ーキュレータ34を介して100%Cバンド反射のファ イバグレーティング32に入射し、ここで反射され、光 サーキュレータ34のポートB、Cを介して出力端子3 9に到達する。EDF26は、グレーティング22を透 過したCバンド光とLD38からの励起光38aとによ り信号光SLを増幅する。増幅された信号光SLは、W DM光カップラ28、光アイソレータ30、グレーディ ング32と光サーキュレータ34を介して出力端子39 に到達する。

(2)

2

【特許請求の範囲】

【請求項1】 第1バンド(C)の信号光(Sc)と第 2バンド(L)の信号光(SL)を含む信号光が入力 し、当該第1バンド(C)の信号光(Sc)を増幅する 第1の光増幅媒体(16)と、

1

当該第1の光増幅媒体から出力される光の内、当該第1 バンドの光のほとんどを第1の光パス(36)に供給 し、残りを第2の光パスに供給する分波器(18,2 2)と、

当該第2の光パス上にあって、当該第2バンド(L)の 10 信号光(SL)を増幅する第2の光増幅媒体(26)と、

当該第1の光パスを伝搬する光と、当該第2の光増幅媒体で増幅された当該第2パンド(L)の信号光(SL)を合波し、出力端子に供給する合波器(32,34)とを具備することを特徴とする光増幅器。

【請求項2】 当該分波器が、当該第2の光パスの入力端に接続し当該第1バンドの光を100%未満の反射率で反射する第1反射器(22)と、当該第1の光増幅媒体(16)から出力される光を当該第1反射器(22)に転送し、当該第1反射器(22)からの光を当該第1の光パス(36)に転送する第1光サーキュレータ(18)とを具備する請求項1に記載の光増幅器。

【請求項3】 当該合波器が、当該第2の光パスの出力端に接続し当該第1バンド(C)の光を実質的に100%反射する第2反射器(32)と、当該第1の光パスからの光を当該第2反射器(32)に転送し、当該第2反射器(32)からの光を当該出力端子に転送する第2光サーキュレータ(34)とを具備する請求項1又は2に記載の光増幅器。

【請求項4】 更に、当該第1の光増幅媒体(16)に 第1の励起光を供給する第1の励起光供給装置(12, 20)を具備する請求項1に記載の光増幅器。

【請求項5】 当該第1の励起光供給装置(12,20)は、当該第1の光増幅媒体(16)の全長に亘り当該第1の励起光が存在するほどの光パワーで当該第1の励起光を出力する請求項4に記載の光増幅器。

【請求項6】 当該第1の光増幅媒体(16)が、当該第1の励起光の下で当該第2バンド(L)に対して正の利得を具備する請求項4に記載の光増幅器。

【請求項7】 更に、当該第2の光増幅媒体(26)に 第2の励起光を供給する第2の励起光供給装置(28, 38)を具備する請求項1に記載の光増幅器。

【請求項8】 当該第1の光パスが、当該第2バンド (L)における当該第2の光パスの遅延を補償する光伝 送媒体(36)を具備する請求項1に記載の光増幅器。 【請求項9】 当該第1バンドがCバンドであり、当該 第2バンドがLバンドである請求項1に記載の光増幅 器。

【請求項10】 当該第2の光増輻媒体がフッ化物ファ 50 の励起光を透過する請求項14に記載の光増幅器。

イバからなる請求項9に記載の光増幅器。

【請求項11】 第1バンド(C)の信号光(Sc)と 第2バンド(L)の信号光(SL)を含む信号光が入力 し、当該第1バンド(C)の信号光(Sc)を増幅する 第1の光増幅媒体(16)と、

第1、第2、第3及び第4ポートを具備し、第1ポートの入力光を第2ポートから出力し、第2ポートの入力光を第3ポートの入力光を第4ポートから出力する光サーキュレータであって、当該第1ポートに当該第1の光増幅媒体(16)からの光が入力する光サーキュレータと、

当該第2バンド(L)の信号光(S_L)を増幅する第2 の光増幅媒体(26)を有する光伝送路と、

当該光伝送路と当該光サーキュレータの第2ポートとの間に配置され、第2バンドの光を100%未満の反射率で反射する第1反射器(22)と、

当該光伝送路と当該光サーキュレータの第3ポートとの間に配置され、第2バンドの信号光を実質的に100%の反射率で反射する第2反射器(32)とを具備するこ20とを特徴とする光増幅器。

【請求項12】 当該光サーキュレータが、第1、第2及び第3ポートを具備し、第1ポートの入力光を第2ポートから出力し、第2ポートの入力光を第3ポートから出力する第2及び第3光サーキュレータからなり、当該第2光サーキュレータの第1ポートであり、当該第2光サーキュレータの第2ポートであり、当該第2光サーキュレータの第3ポートが当該第3光サーキュレータの第1ポートに接続し、当該第3光サーキュレータの第2ポートが当該第3光サーキュレータの第3ポートが当該光サーキュレータの第3ポートが当該光サーキュレータの第4ポートである請求項11に記載の光増幅器。

【請求項13】 更に、当該第2光サーキュレータの第 3ポートと当該第3光サーキュレータの第1ポートとの 間に配置され、当該第2バンド(L)における当該光伝 送路の遅延を補償する光伝送媒体(36)を具備する請 求項12に記載の光増幅器。

【請求項14】 更に、当該第1の光増幅媒体(16)) に第1の励起光を供給する第1の励起光供給装置(1 2.20)を具備する請求項11に記載の光増幅器。

【請求項15】 当該第1の励起光供給装置(12,20)は、当該第1の光増幅媒体(16)の全長に亘り当該第1の励起光が存在するほどの光パワーで当該第1の励起光を出力する請求項14に記載の光増幅器。

【請求項16】 当該第1の光増幅媒体(16)が、当該第1の励起光の下で当該第2バンド(L)に対して正の利得を具備する請求項14に記載の光増幅器。

【請求項17】 当該第1反射器(22)が、当該第1 の励起光を透過する請求項14に記載の光増幅器。

3

【請求項18】 更に、当該第2の光増幅媒体(26) に第2の励起光を供給する第2の励起光供給装置(2 8,38)を具備する請求項11に記載の光増幅器。 【請求項19】 当該第1バンドがCバンドであり、当 該第2バンドがレバンドである請求項11に記載の光増

【請求項20】 当該第2の光増幅媒体がフッ化物ファ イバからなる請求項19に記載の光増幅器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光増幅器に関し、 より具体的には、Cバンド及びLバンドのように2つの バンドを光増幅する光増幅器に関する。

[0002]

【従来の技術】波長多重光伝送の分野では、従来のCバ ンド (1.52~1.57µm帯) に加えて、Lバンド (1.57~1.60µm帯)の利用が検討されてい る。そのような広帯域光増幅器として、Cバンド光増幅 器とレバンド光増幅器を並列に配置する構成が、米国特 許第6049417号公報及び第6049418号公報 20 に記載されている。即ち、その広帯域光増幅器では、光 サーキュレータ及びCバンドの反射器により、入射光を CバンドとLバンドに分け、それぞれを別個に光増幅し た後に、光サーキュレータ及びCバンドの反射器により 合波する。また、光サーキュレータ及び反射器の代わり に、CバンドとLバンドを分離する分波フィルタを使用 する構成も知られている。

【0003】また、Cバンド増幅用のエルビウム添加光 ファイバ(EDF)、Cパンドの100%反射器、Lバ %反射器をシリアルに配置し、Cバンドの信号光にCバ ンド増幅用EDFを往復させ、Lバンドの信号光にCバ ンド増幅用EDF及びLバンド増幅用EDFを往復させ るようにした反射型の構成も、知られている(特開20 00-58953公報)。

【0004】現在、一般的に使用されているLバンド光 増幅器の構成は、EDF長が一桁程度、長いのを除き、 Cバンド光増幅器と同じである。すなわち、Lバンド光 増幅器は、Cバンドの場合よりも長いEDF、1480 nm又は980nm帯励起LD、励起光を合波するため 40 のWDMカップラ、及び戻り光を防ぐための光アイソレ

【0005】初期には、励起光源として1550nm帯 LDを使用するLバンド光増幅器が提案された(例え ば、J. F. Massicott, J. Arm itage, R. Wyatt, B. J. Ai nslie and S. P. Craig-Rya n," High gain, broadband, 1.6 µm Er³⁺ doped Silica f iber amplifier", Electron.

Lett., 1990, 26, No. 20, 1645 -1646).

【0006】また、雑音指数を改善する目的で、155 Onmと1480nmの2波長で励起する構成も提案さ れた(例えば、J. F. Massicott, R. Wyatt, and B. J. Ainsli e, "Low noise operation of Er³⁺ doped Silica fiberam plifier around 1.6 μ m", Ele ctron. Lett., 1992, 28, No. 2 0, 1924-1925).

【0007】1550 nm帯LDを使用するLバンド光 増幅器では、以下の問題点がある。 すなわち、 1550 nm励起は、1480nm又は980nm励起より利得 効率が高い反面、雑音指数が大きいという問題がある。 コスト及び信頼性の面でも、Cバンド光増幅器の励起光 源として普及している1480nm又は980nm帯L Dを使う方が有利である。これらの観点から、1550 nm帯LDを励起光源とするLバンド光増幅器は、現在 では使用されていない。

【0008】2波長励起の構成では、1480nm励起 と同程度まで雑音指数を改善できる。しかし、一般に市 販されていない1550nmLDが必要なこと、2種類 のLDを使用するので構造が複雑化し、高コストになる ことから、単一波長励起に代わる程のメリットがないと 評価され、実用化されていない。

【0009】また、2波長励起の実験は石英EDF(以 下、EDSFと称す。) では行われているが、フッ化物 EDF(以下EDFFと称す。)では行われていない。 ンド増幅用EDF、及びCバンド及びLバンドの100 30 フッ化物EDFについては、H. Ono, M. Y amada and Y. Ohishi, "Gainflattened Er³⁺-doped fibe r amplifier for a WDM sig nal in the 1.57-1.60 μm w avelength region", IEEE Ph otonics Techn. Lett., 199 7, 9, No. 5, 596-598、及び、H. On o, M. Yamada T. Kanamri, Sudo and Y. Ohishi, "1. 58µmban fluoride-based Er 3+-doped fiberamplifier f or WDM transmission syste ms", Electron. Lett., 1997, 33, No. 17, 1471-1472を参照された

> 【0010】EDFFを使用する場合、帯域が5nm拡 がって1565~1600 nmとなることが報告されて เหอ (H. Ono, M. Yamada, T. K anamori, S. Sudo and Y. 50 hishi," 1.58 µmband fluorid

e-based Er^{3+} -doped fiber amplifier for WDM transmi ssion systems", Electron. Lett., 1997, 33, No. 17, 1471-1472).

【0011】980nm励起では、1480nm励起より0.3dB程度、雑音指数が改善し、結果として雑音指数5.0dBを実現したとする報告がある(H. Ono, M. Yamada, S. Sudo and Y. Ohishi, 1.58 μ m band Er^3+- doped fiber amplifier pumped in the 0.98 and 1.48 μ m bands", Electron. Lett., 1997, 33, No. 10, 876-877)。

【0012】2段の光増幅器をシリアルに接続して低雑 音化及び広帯域化する構成も提案されている。例えば、 前段の光増幅器として980 nm励起のEDSFを使用 し、後段の光増幅器として1480nm励起のEDSF を使用する場合で、ゲイン32.8dB、雑音指数5. 0dB及び増幅帯域30mnが実現されている。前段の 光増幅器として980nm励起のEDSFを使用し、後 段の光増幅器として1480 nm励起のEDFFを使用 する場合で、ゲイン25.0、雑音指数5.1dB及び 増幅帯域35 nmが実現されている。また、前段の光増 幅器として980 nm励起のEDSFを使用し、後段の 光増幅器として1480nm励起のEDSFを使用する 場合で、各EDSFの長さを最適に調節することによ り、ゲイン20dB、雑音指数5dB及び増幅帯域70 amada, H. Ono and Y. Ohish i, "low-noise, broadband E r³⁺-doped silica fiber am plifiers", Electron. let t., 1998, 34, No. 15, 1490-149 1を参照されたい。

【0013】更に、光アイソレータを介して2本のED SFを接続し、その2つのEDSFを双方向励起する構成で、ゲイン30dB、雑音指数6dB以上及び増幅帯域47nmが得られている(H. Sawada, M.

Yoshida, K. Imamura and Y. Imada, "Broadband and gain-flattened erbiumu-doped fiber amplifier with + 20 dBm output power for 1 580 nm band amplification", ECOC' 99, 26-30 September, 1999, Nice, France).
[0014]

【発明が解決しようとする課題】Cバンドの光増幅パス 50 増幅する第2の光増幅媒体と、当該第1の光パスを伝搬

とLバンドの光増幅パスを個別に設ける従来例では、多くの光素子が必要になるだけでなく、装置規模も大きくなってしまう。それは、CバンドとLバンドの違いがあるものの、各光増幅パス毎に同じ構成の光増幅器を配置する必要があるからである。

【0015】原理的に、Lバンド増幅用のEDFは、C バンド増幅用のEDFに比べて3乃至4倍、長くする必 要がある。それは、Lバンド増幅用EDFでは、0.9 8μm又は1.48μm帯の励起光がCバンドを励起 し、そのCバンドがLバンドを励起し、その結果として Lバンド信号光が光増幅されるという2段階の励起構造 をとるからである。EDFはその構造上、非線形効果、 波長分散及び偏波モード分散の何れについて高い値を有 するので、伝送特性を悪化させる大きな要因ともなる。 この点で、EDFは可能な限り短いのが望ましい。しか し、Cバンドの光増幅バスとLバンドの光増幅パスを個 別に設ける従来例では、光増幅ファイバの短縮化は困難 である。また、励起効率の改善が難しい。

【0016】Cバンド増幅用EDFとLバンド増幅用EDFをシリアルに配置し、反射式でCバンドとLバンドを光増幅する従来例では、励起光源をCバンド光増幅ファイバとLバンド光増幅ファイバに対して共用できる。しかし、1ライン上に2つの反射器があり、複数の接続点が存在するので、それらの間のラウンドトリップによりレーザ発振が起こりやすい。これは、利得を上げにくいことを意味する。換言すると、信号光が一方向にのみ進行するワンパス型の光増幅器は、利得を上げてもレーザ発振しにくいことになり、信頼性が高い。

【0018】本発明は、より少ない部品点数で実現できる広帯域の光増幅器を提示することを目的とする。

【0019】本発明はまた、より高い効率でCバンド及びLバンドを増幅できる光増幅器を提示することを目的とする。

) 【0020】本発明はまた、高利得・低雑音・広増幅帯 域の広帯域光増幅器を提示することを目的とする。 【0021】

【課題を解決するための手段】本発明に係る光増幅器は、第1バンドの信号光と第2バンドの信号光を含む信号光が入力し、当該第1バンドの信号光を増幅する第1の光増幅媒体と、当該第1の光増幅媒体から出力される光の内、当該第1バンドの光のほとんどを第1の光パスに供給し、残りを第2の光パスに供給する分波器と、当該第2の光パス上にあって、当該第2バンドの信号光を増幅する第2の光増幅媒体と、当該第1の米パスを伝播

する光と、当該第2の光増幅媒体で増幅された当該第2 バンドの信号光を合波し、出力端子に供給する合波器と を具備することを特徴とする。

7

【0022】このような構成により、第1の光増福媒体は、第1バンドの光を低雑音で光増福する。分波器は、第1の光増福媒体から出力される第1バンド光の一部を第2の光増福媒体に供給する。第2の光増福媒体は、この第1バンド光の一部を補助光とすることにより、第2バンドの信号光を低雑音で増幅する。このようにして、低雑音で第1バンドの信号光及び第2バンドの信号光を10増福できる。

【0023】好ましくは、当該分波器が、当該第2の光パスの入力端に接続し当該第1バンドの光を100%未満の反射率で反射する第1反射器と、当該第1の光増幅媒体から出力される光を当該第1反射器に転送し、当該第1反射器からの光を当該第1の光パスに転送する第1光サーキュレータとを具備する。これにより、簡単な構成で、当該第1の光増幅媒体から出力される光の内、当該第1バンドの光のほとんどを第1の光パスに供給でき、残りを第2の光パスに供給できる。

【0024】好ましくは、当該合波器が、当該第2の光パスの出力端に接続し当該第1バンドの光を実質的に100%反射する第2反射器と、当該第1の光パスからの光を当該第2反射器に転送し、当該第2反射器からの光を当該出力端子に転送する第2光サーキュレータとを具備する。これにより、簡単な構成で、増幅された第1バンド及び第2バンドの信号光を合波できる。

【0025】本発明に係る光増幅器は更に、当該第1の 光増幅媒体に第1の励起光を供給する第1の励起光供給 装置を具備する。第1の励起光は、好ましくは、当該第 1の光増幅媒体に前方から供給される。これにより、低 雑音で第1バンドの信号光を増幅できる。

【0026】好ましくは、当該第1の励起光供給装置は、当該第1の光増幅媒体の全長に亘り当該第1の励起光が存在するほどの光パワーで当該第1の励起光を出力する。これにより、第1の光増幅媒体は、第2バンドの信号光を低口ス又は正の利得で透過する。

【0027】好ましくは、当該第1の光増幅媒体が、当該第1の励起光の下で当該第2バンド(L)に対して正の利得を具備する。これにより、全体としての第2バン 40ドの利得特性で低雑音及び広帯域を実現できる。

【0028】本発明に係る光増幅器は更に、当該第2の 光増幅媒体に第2の励起光を供給する第2の励起光供給 装置を具備する。これにより、第2バンドの多くの信号 光を増幅できる。

【0029】当該第1の光パスが、当該第2バンドにおける当該第2の光パスの遅延を補償する光伝送媒体を具備することで、第1パスを透過する第2バンド成分が存在する場合でも、第2バンドの良好な増幅特性を得ることができ。

【0030】例えば、当該第1バンドがCバンドであり、当該第2バンドがLバンドである。この場合、第2の光増福媒体がフッ化物ファイバからなるのが好ましい。これにより、短い光ファイバでLバンド増幅の高い利得が得られる。

8

【0031】本発明に係る光増幅器はまた、第1バンド の信号光と第2バンドの信号光を含む信号光が入力し、 当該第1バンドの信号光を増幅する第1の光増幅媒体 と、第1、第2、第3及び第4ポートを具備し、第1ポ ートの入力光を第2ポートから出力し、第2ポートの入 力光を第3ポートから出力し、第3ポートの入力光を第 4ポートから出力する光サーキュレータであって、当該 第1ポートに当該第1の光増幅媒体からの光が入力する 光サーキュレータと、当該第2バンドの信号光を増幅す る第2の光増幅媒体を有する光伝送路と、当該光伝送路 と当該光サーキュレータの第2ポートとの間に配置さ れ、第2バンドの光を100%未満の反射率で反射する 第1反射器と、当該光伝送路と当該光サーキュレータの 第3ポートとの間に配置され、第2バンドの信号光を実 20 質的に100%の反射率で反射する第2反射器とを具備 することを特徴とする。

【0032】このような構成により、第1の光増幅媒体は、第1バンドの光を低雑音で光増幅し、第2の光増幅 媒体は、この第1バンド光の一部を補助光とすることに より、第2バンドの信号光を低雑音で増幅する。この結 果、低雑音で第1バンドの信号光及び第2バンドの信号 光を増幅できる。

【0033】好ましくは、当該光サーキュレータが、第 1、第2及び第3ポートを具備し、第1ポートの入力光 を第2ポートから出力し、第2ポートの入力光を第3ポ ートから出力する第2及び第3光サーキュレータからな り、当該第2光サーキュレータの第1ポートが当該光サ ーキュレータの第1ポートであり、当該第2光サーキュ レータの第2ポートが当該光サーキュレータの第2ポー トであり、当該第2光サーキュレータの第3ポートが当 該第3光サーキュレータの第1ポートに接続し、当該第 3光サーキュレータの第2ポートが当該光サーキュレー タの第3ポートであり、当該第3光サーキュレータの第 3ポートが当該光サーキュレータの第4ポートである。 【0034】本発明に係る光増幅器は更に、当該第2光 サーキュレータの第3ポートと当該第3光サーキュレー タの第1ポートとの間に配置され、当該第2バンド (L) における当該光伝送路の遅延を補償する光伝送媒 体(36)を具備する。これにより、当該第2光サーキ ュレータの第3ポートと当該第3光サーキュレータの第 1ポートとの間を第2バンド成分が伝送する場合でも、 第2バンドの良好な増幅特性を得ることができ。

【0035】本発明に係る光増幅器は更に、当該第1の 光増幅媒体に第1の励起光を供給する第1の励起光供給 50 装置を具備する。第1の励起光は、好ましくは、当該第

1の光増幅媒体に前方から供給される。これにより、低 雑音で第1バンドの信号光を増幅できる。

【0036】好ましくは、当該第1の励起光供給装置 は、当該第1の光増福媒体の全長に亘り当該第1の励起 光が存在するほどの光パワーで当該第1の励起光を出力 する。これにより、第1の光増幅媒体は、第2バンドの 信号光を低ロス又は正の利得で透過する。

【0037】好ましくは、当該第1の光増幅媒体が、当 該第1の励起光の下で当該第2バンド(L)に対して正 の利得を具備する。これにより、全体としての第2バン 10 ドの利得特性で低雑音及び広帯域を実現できる。

【0038】好ましくは、当該第1反射器が、当該第1 の励起光を透過する。これにより、第1の励起光の余り を第2の光増幅媒体の励起に利用でき、全体の励起効率 が向上する。

【0039】本発明に係る光増幅器は更に、当該第2の 光増幅媒体に第2の励起光を供給する第2の励起光供給 装置を具備する。これにより、第2バンドの多くの信号 光を増幅できる。

【0040】例えば、当該第1バンドがCバンドであ り、当該第2バンドがレバンドである。この場合、第2 の光増幅媒体がフッ化物ファイバからなるのが好まし い。これにより、短い光ファイバでレバンド増幅の高い 利得が得られる。

[0041]

【実施例】以下、図面を参照して、本発明の実施例を詳 細に説明する。

【0042】図1は、本発明の一実施例の概略構成ブロ ック図を示す。光増幅すべきCバンドの信号光Sc 及び Lバンドの信号光SLが、入力端子10に入力する。入 力端子10はWDM光カップラ12、光アイソレータ1 4、Cバンド増幅用のエルビウム添加光ファイバ(ED F) 16を介して光サーキュレータ18のボートAに接 続する。光サーキュレータ18は3ポートA、B、Cを 具備し、ポートAの入力光をポートBから出力し、ポー トBの入力光をポートCから出力する光素子である。

【0043】光アイソレータ14は、EDF16からW DM光カップラ12に向かう光を阻止する方向で配置さ れている。

【0044】レーザダイオード (LD) 20は、EDF 16を励起してCバンド光を増幅させる励起光20aを 発生し、WDM光カップラ12に供給する。EDF16 は、その長さ及びエルビウム添加量が、Cバンド信号光 Scを増幅するのに適したものに調節されている。

【0045】光サーキュレータ18のポートBは、Cバ ンドを100%未満の反射率で反射するファイバグレー ティング22、光アイソレータ24、Lバンド増幅用E DF26、WDM光カップラ28、光アイソレータ30 及びCバンド信号光を反射する反射率100%のファイ バグレーティング32を介して、光サーキュレータ34 50 は、LD20から出力される励起光20aを入力端子1

のポートBに接続する。光サーキュレータ34は光サー キュレータ18と同じ機能の光素子である。光サーキュ レータ18のポートCと光サーキュレータ34のポート Aの間に、位相調整用のファイバ36が接続する。

10

【0046】光アイソレータ24,30は、不要なレー ザ発振を防ぐために、光サーキュレータ34のボートB から光サーキュレータ18のポートBに向かう方向の光 を阻止する方向で配置されている。

【0047】レーザダイオード(LD)38は、EDF 26を励起してLバンド光を増幅させる励起光38aを 発生し、WDM光カップラ28に供給する。WDM光カ ップラ28は、LD38からの励起光38aを、信号光 SLの伝搬方向とは逆方向でEDF26に供給する。E DF26は、その長さ及びエルビウム添加量が、Lバン ド信号光Sェ を増幅するのに適したものに調節されてい る。

【0048】光サーキュレータ34のボートCは出力端 子39に接続する。本実施例により増幅された信号光8 c, Stは、光サーキュレータ34のポートC、即ち、 20 出力端子39から出力される。

【0049】レーザダイオード20の出力パワーは、E DF16が吸収しきれない程に大きく、換言すると、励 起光20aがEDF16の全域にわたって十分な強さで 存在するように、設定されている。詳細は後述するが、 EDF16で吸収されなかった励起光成分は、光サーキ ュレータ18、ファイバグレーティング22及び光アイ ソレータ24を介してEDF26に入射する。また、E DF16はLD20からの励起光20aによりCバンド ASE光を発生する。このCバンドASE光も、光サー キュレータ18、ファイバグレーティング22及び光ア イソレータ24を介してEDF26に入射する。これら の、LD20の出力する励起光20aとEDF16で発 生するCバンドASE光が、EDF26におけるLバン ド増幅を補助し、Lバンド増幅利得の向上及び/又はノ イズ指数の低減に役立つ。EDF14で発生するCバン ドASE光をEDF26に導入するために、ファイバグ レーティング22のCバンド反射率を100%未満とす る。実験では、ファイバグレーティング22のCバンド 反射率を90%程度としても、良好な結果が得られた。

【0050】LD20の出力波長は、EDF16のベー スとなる光ファイバが石英ファイバの場合、980 nm 又は1480nmであり、フッ化物光ファイバである場 合、1480 n mである。同様に、LD38の出力波長 は、EDF26のベースとなる光ファイバが石英ファイ バの場合、980mm又は1480mmであり、フッ化 物光ファイバである場合、1480 nmである。

【0051】本実施例におけるCバンド信号光Scの増 幅動作を説明する。信号光Sc は入力端子10からWD M光カップラ12に入射する。WDM光カップラ12

Oからの信号光Sc に合波し、その合波光を光アイソレ ータ14を介してEDF16に供給する。EDF16 は、LD20からの励起光20aにより励起されて、信 号光Scを光増幅する。その際、EDF16はCバンド のASE光を発生する。LD20の出力パワーは、ED F16で吸収し切れない程に大きく設定されているの で、EDF16は、光増幅した信号光Scと、Cバンド ASE光と、吸収しきれなかった励起光20aを光サー キュレータ18のボートAに供給する。

ポートAに入力する光をポートBから出力するので、E DF16から出力される信号光Sc、CバンドASE光 及び励起光20aは、ファイバグレーティング22に入 射する。ファイバグレーティング22のCバンド反射率 は100%未満、好ましくは90%程度であるので、フ ァイバグレーティング22は、信号光Sc 及びCバンド ASE光のほとんどを光サーキュレータ18のポートB に向けて反射し、信号光Sc 及びCバンドASE光の残 りと励起光20aを光アイソレータ24に供給する。 【0053】ファイバグレーティング22で反射された 20 信号光Sc 及びCバンドASE光は、光サーキュレータ 18のポートBからポートCに転送され、光ファイバ3 6を介して光サーキュレータ34のポートAに入射す る。ここでのCバンドASE光は、信号光Scにとって 雑音光となる。光サーキュレータ34は、ポートAに入 力する信号光Sc 及びCバンドASE光をポートBから ファイバグレーティング32に供給する。ファイバグレ ーティング32はCバンドに対して100%反射率を具 備するので、その信号光Sc及びCバンドASE光は、 再び光サーキュレータ34のポートBに戻り、ポートC 30 から出力端子39に供給される。

【0054】本実施例におけるLバンド信号光SLの増 幅動作を説明する。信号光SLは入力端子10からWD M光カップラ12、光アイソレータ14及びEDF16 を介して、光サーキュレータ18のポートAに入力す る。LD20からの励起光20aがEDF16の全域に わたり存在する程に強いものである場合、EDF16 は、後述するように、Lバンド信号光Sェを僅かに増幅 する。EDF16は、Lバンド信号光SLを減衰させな ければよいが、後述するように、Lバンド信号光SLを 僅かに増幅することで、レバンド増幅の雑音指数を低減 できる。

【0055】先に述べたように、光サーキュレータ18 は、EDF16からポートAに入力する光をポートBか ら出力するので、信号光SLは、光サーキュレータ18 のポートBからファイバグレーティング22に入射す る。ファイバグレーティング22はCバンドを反射する ように設計されているが、Lバンドの一部を僅かに反射 する。 図2は、ファイバグレーティング22の反射特性 を示す。CバンドとLバンドが十分に離れている場合、

例えば、10 nm程度、離れている場合には、このよう なファイバグレーティング22の反射特性のすそ部分は 影響無いが、CバンドとLバンドの間の間隔が2nm程 度と非常に少なく、CバンドとLバンドが実質的に連続 しているような場合には、ファイバグレーティング22 の反射特性のすそ部分がLバンド信号光SL にも影響す る。光ファイバ36は、この影響を軽減するために設け られている。

【0056】従って、光サーキュレータ18のポートB 【0052】光サーキュレータ18は、EDF16から 10 から出力されるLバンド信号光SLは、ファイバグレー ティング22及び光アイソレータ24を透過し、EDF 26に入射する。先に説明したように、EDF16で増 幅されたCバンド信号光Scの一部、EDF14で生成 されるCバンドASE光の一部及び励起光20aの残り が、ファイバグレーティング22を透過し、光アイソレ ータ24を介してEDF26に入射する。EDF26 は、これら、Cバンド信号光Sc 及びCバンドASE光 補助の下で励起光38aにより励起されて、効率的にL バンド信号光SLを増幅する。励起光20aの波長とE DF26の組成によっては、励起光20aも、EDF2 6におけるLバンド信号光SLの励起光となりうる。L バンド増幅の補助光としてEDF26が必要とするCバ ンド光のパワーは、後述するように、一30dBm以 上、せいぜい-1dBmでよいので、ファイバグレーテ ィング22のCバンド反射率は90%程度でよい。補助 光として弱いCバンド光をEDF26に入力することに より、EDF26のLバンド増幅で、広帯域、高利得及 び低雑音を達成できる。

> 【0057】EDF26はLバンド信号光SLを増幅す る過程でCバンドASE光を発生する。EDF26で発 生するCバンドASE光と、EDF26で増幅されたし バンド信号光SLは、WDM光カップラ28及び光アイ ソレータ30を無損失又は低損失で透過し、ファイバグ レーティング32に入射する。 ファイバグレーティング 32はCバンド光を100%反射するので、増幅された Lバンド信号光SL のみを透過し、CバンドASE光を 反射する。反射されたCバンドASE光は光アイソレー タ30で吸収又は外部に放出される。

【0058】ファイバグレーティング32を透過した増 幅されたLバンド信号光SLは光アイソレータ34のポ ートBに入射し、そのポートCから出力端子39に出力 される。

【0059】ファイバグレーティング22で僅かに反射 されたLバンド信号光SLは、光サーキュレータ18の ポートB、C、光ファイバ36、及び光サーキュレータ 34のポートA, Bを介してファイバグレーティング3 2に入射する。反射率が異なるものの、ファイバグレー ティング32の反射特性は、Lバンド帯に延びているの で、光サーキュレータ34のボートBから出力されるL 50 バンド信号光SLの一部がファイバグレーティング32 で反射され、再び光サーキュレータ34のボートBに入射し、ボートCから出力端子39に供給される。

【0060】このようにして、出力端子39から外部に、EDF14で光増幅されたCバンド信号光Scと、EDF26で光増幅されたLバンド信号光SLが出力される。

【0061】Cバンドに近いLバンド信号成分は、その ほとんどが、EDF26を経由するものの、極く一部が 光ファイバ36を経由する。これは、図2に示すよう に、ファイバグレーティング22の反射特性の遮断性能 10 が悪いからである。本実施例では、2つの光パスの光路 差を補償するために、光サーキュレータ18のポートC と光サーキュレータ34のポートAの間に、両パスのL バンド光の光路長を一致させる光ファイバ36を接続し ている。従って、ファイバグレーティング22,32の 反射特性のすそ引きが気にならないほど、CバンドとL バンドが離れている場合、又は、ファイバグレーティン グ22,32の代わりに十分に急峻な遮断性能の反射特 性を有する反射器を使用できる場合には、光サーキュレ ータ18のボートCを光サーキュレータのボートAに直 20 接、接続できる。この場合、2つの3ポート光サーキュ レータ18、34の代わりに、1つの4ポート光サーキ ュレータを使用できる。

【0062】本出願の発明者は、Cバンド増幅に適した 短いEDFでも、十分に強い励起光を入力した場合に は、Lバンドでの光増幅が生じ得ること、及び、Lバン ド増幅には、Cバンド光をシード光又は補助光としてE DFに入力するのが有益であることを発見した。その内 容を簡単に説明する。

【0063】Lバンド増幅のメカニズムは、図3に示す 30ように、1.48μm又は0.98μm励起によって発生する1.5μm帯ASE光を再吸収することにより、Lバンドに対応する反転分布が形成されるからであると考えられている。Lバンド増幅用EDFは、長尺(例えば150m)であり、吸収係数の大きな波長の光は入射後に急速に減衰する。長尺のEDFの吸収波長特性から、1.5μm帯ASE光の再吸収がLバンドの増幅をもたらすと考えられる。しかし、このメカニズムでは、Lバンド帯に対し十分な反転分布が形成されないので、雑音が大きくなる。 40

【0064】これに対し、励起光強度を十分大きくして 観測した結果、図4に示すように、Cバンド増幅と同様 に、励起光の直接励起により、Lバンド増幅が生じてい ることを確認した。このメカニズムでは、Cバンド増幅 器に劣らない雑音でLバンド増幅を実現できる可能性が ある。具体的に、EDF全長に亘って励起レーザ光が十 分に強い15m長のEDFと、励起レーザ光が途中で減 衰消失してしまう150m長のEDFについて、ゲイン と雑音指数の違いを調べた。図5は、その測定結果を示 す。縦軸は利得及び雑音指数であり、横軸は波長を示 す。使用したEDFは石英ファイバにErを1000p pmドープしたものである。短尺(15m)のEDFに ついては、励起レーザ光ができるだけ長い距離、伝搬す るように、コア径を小さくし、MFDとコア径の比を大

るように、コア径を小さくし、MFDとコア径の比を大きく設計した。コア径が小さいと、コア内の吸収体も少なくなり、励起光の吸収が飽和しやすくなる。その結

14

果、励起光が遠くまで伝搬できる。

【0065】実験例では、コア径2.4μmの15mE DFを使用した。そのEDFの1480nmにおけるM FD/コア径比は1.93である。励起光の波長を1480nmとした。15m長EDFに対し、入射励起パワーを80mW、出射励起パワーを48mWとした。150m長EDFに対し、入射励起パワーを190mW、出射励起パワーを0mWとした。即ち、15m長EDFでは、その全長が48mW以上で強く励起されており、一方、150m長EDFでは、1480nm光は途中で減衰消失するようになっている。

【0066】図5から分かるように、15m長EDFでは、1480nm励起にもかかわらず、1540nmから1620nmの広い波長範囲に亘り5dBを切る低雑音が得られた。また、Cバンドとの比較では、小さいながら、1625nm以下の波長でゲインがプラスである。すなわち、1480nm励起であっても、EDFの全長に亘って強く励起すれば、5dB以下の低雑音で、Lバンドのプラスゲインが得られている。一方、150m長EDFでは、ゲインは大きいが、雑音指数も6dB以上と大きくなる。これは、励起光が消失するほどに長いEDFでは、図3に示すLバンド増幅のメカニズムが機能するからであると思われる。

30 【0067】このような測定結果に基づき、本実施例では、LD20の出力パワーをEDF16の全域にわたり、励起光が存在し得る程度以上に強くした。これにより、EDF16は、Lバンド信号光に対してプラスのゲインを具備すると共に、低雑音(5dB以下の雑音)となる。EDF16で吸収されなかった励起光成分は、光アイソレータ18、ファイバグレーティング22及び光アイソレータ24を通過して、EDF26に入射し、ここで吸収されてLバンド信号光の増幅のための励起光として利用される。

40 【0068】また、EDF14が発生する-30dBm以上のCバンドASE光をEDF26に導入するのが、EDF26におけるLバンド増幅利得の増加と雑音の低下に有効である。Lバンドの利得係数はCバンドのそれより低い。低ゲインであることが高雑音の一因になっている。Lバンド増幅の主要メカニズムが図3に示すように1.55μm帯ASE光の再吸収によるものであれば、1.55μm帯ASE光をより効率的に発光させればよい。そうすれば、励起効率が向上し、それがゲインを増大させると共に雑音を少なくする。1.55μm帯50 光をより効率的に発光させるためには、発光のための刺

激として外部から1.55 µm帯光を導入すればよい。 【0069】外部から導入する光の波長に対する利得の 依存性を調べた。図6は、その測定結果を示す。横軸は 波長、縦軸は利得を示す。25m長の、エルビウムを添 加したフッ化物ファイバを使用し、励起波長を1480 nmとした。励起光と一緒に入射するCバンド光の波長 として1530nm、1540nm、1545nm、1 550 nm、及び1560 nmの各場合についての利得 特性と、比較のために、励起光のみの利得特性を測定し た。図6から容易に理解できるように、何れの波長で も、Cバンドの補助光を外部から入射することで利得が 増大している。特に、波長1530nm~1550nm が、利得の増大に有効である。

【0070】EDFの基本組成の相違、具体的には、エ ルビウム添加フッ化物光ファイバ (EDFF) とエルビ ウム添加石英光ファイバ (EDSF) の相違を確認し た。図7は、EDFFを使用した場合の、雑音指数NF と利得を示す。図8は、EDSFを使用した場合の、雑 音指数NFと利得を示す。何れも、波長1540nmの 光を補助光としてEDFに入射した。比較のため、補助 20 光を入射しない場合の測定結果を破線で図示してある。 図7及び図8において、縦軸は利得及び雑音指数NFを 示し、横軸は波長を示す。

【0071】図7で、特性曲線40は、Cバンド補助光 を入射した場合の利得特性を示し、特性曲線42は、C バンド補助光を入射した場合の雑音指数を示す。また、 特性曲線44は、Cバンド補助光を入射しない場合の利 得特性を示し、特性曲線46は、Cバンド補助光を入射 しない場合の雑音指数を示す。図7から、Cバンド補助 光を入射する場合、Cバンド補助光を入射しない場合に 比べて、利得が大幅に増加し、雑音指数は、1560~ 1570 nmの波長域で増大するものの、Lバンドであ る1570~1600nmの波長域では、ほとんど異な らないことが分かる。

【0072】図8で、特性曲線50は、Cバンド補助光 を入射する場合の利得特性を示し、特性曲線52は、C バンド補助光を入射する場合の雑音指数を示す。また、 特性曲線54は、Cバンド補助光を入射しない場合の利 得特性を示し、特性曲線56は、Cバンド補助光を入射 しない場合の雑音指数を示す。図8から、Cバンド補助 光を入射する場合、Cバンド補助光を入射しない場合に 比べて、利得及び雑音指数が共に、改善されることが分 かる。

【0073】EDFFとEDSFを比較すると、次のよ うなことがいえる。即ち、EDSFを使用する場合、C バンド補助光の存在下でも、1580 n m以下の短波長 域で雑音指数が増加するので、利得が向上しても、増幅 帯域を1570nm以下に拡張することが難しい。一 方、EDFFを使用する場合、1570nm~1600 nmの範囲で雑音指数の顕著な増加が無い。従って、1 50 2としてそのようなファイバグレーティングを使用する

560~1570nmにおける雑音増加を抑制できれ ば、1560~1600 n mの広帯域Lバンド増幅器を 実現できる可能性がある。従って、EDF26として は、フッ化物光ファイバをベースとするものが好まし

【0074】EDFFを使用する場合で、1560~1 570 nmで雑音指数が増加する要因を調べたところ、 それは、目的の波長帯を抽出する光フィルタの特性が不 十分であり、中心波長からずれた1550~1570 n 10 mにも無視できない強さの光が存在したせいであった。 【0075】補助光として必要なパワーを測定した。そ の測定結果を図9に示す。補助光の波長は1545nm である。補助光パワーが-30dBmというごく低いパ ワーのときでも、利得増大効果を確認できた。補助光パ ワーが-1 d B m以上では、利得増大効果が飽和する。 即ち、-1 dBmという低パワーでも、最大限の効果が 得られる。

【0076】EDF26は、EDF16で生成されるC バンドASE光による誘導放出光によってCバンドAS E光を効率よく発生する。すなわち、EDF26は、L D38の出力する励起光38aと、EDF16の発生す るCバンドASE光からなる2波長により励起されるこ とになる。2波長励起によって発生するCバンドASE 光の再吸収により、EDF26は、Lバンドの信号光を 高い利得及び低雑音で光増幅する。ファイバグレーティ ング22が励起光20aを無損失又は低損失で透過でき る場合、EDF16で吸収されなかった励起光20aの 成分を、EDF26の励起に利用できる。これもまた、 励起効率の改善に寄与する。

【0077】光サーキュレータ18及びファイバグレー ティング22からなる部分は、基本的にCバンド信号光 Sc とLバンド信号光SL を分離する波長分波器として 機能する。但し、本実施例では、特に、Cバンド成分 (Cバンド信号光Sc 及びEDF14で発生するCバン ドASE光)の一部をレバンド信号光SLの出力側に意 図的にリークさせている点が、通常の波長分波器とは異 なる。

【0078】ファイバグレーティング22の反射率を波 長に対して所望形状で変化させることは容易である。E DF16のCバンド利得が波長依存性を有する場合、そ の波長依存性を平坦化するように、ファイバグレーティ ング22の反射率の波長依存性を設定することで、Cバ ンド内の複数の信号光に対して一定の利得の増幅特性を 得ることができる。

【0079】更に、ファイバグレーティングは、光軸方 向のグレーティング・ピッチを調節することにより、C バンド内で波長分割多重されている複数の信号光のそれ ぞれのみを反射し、隣接信号光間のASE光をほぼ10 0%透過するようにできる。ファイバグレーティング2

ことにより、Cバンドの増幅された信号光Sc を高いS N比で取り出すことができる。上述したように、EDF 26におけるLバンド増幅性能を向上するには、Cバン ドASE光のみで十分であり、Cバンド信号光は無くて も良い。

【0080】ファイバグレーティング32及び光サーキ ュレータ34からなる部分は、光増幅されたCバンド信 号光Sc と光増幅されたLバンド信号光SL を合波する 合波器として機能する。従って、ファイバグレーティン グ32及び光サーキュレータ34の部分を、より単純な 10 構成の光カップラ又はWDM光カップラで代替できるこ とは明らかである。

【0081】LD20、38の代わりに、単一のLDの 出力光又は複数のLDの出力光を合波した光を2分割 し、それぞれWDM光カップラ12,38に供給する構 成を採用することができる。勿論、各LDの発振波長 は、励起対象のEDFに応じたものでなければならな

【0082】図1に示す実施例では、EDF26の励起 光を後方から導入している。図1に示す実施例とは異な 20 り、EDF26を前方から励起してもよい。その場合、 LD38の出力する励起光をEDF26に導入するため のWDM光カップラがEDF26と光アイソレータ24 の間に配置されるので、励起効率の点で、励起光20 a は、そのWDM光カップラを通過できるのが好ましいも のの、励起光20aの波長とそのWDM光カップラの透 過特性が制限される。図1に示す実施例では、そのよう な制限が生じない。

【0083】EDF26に入射する励起光20aが、L バンド増幅に十分なパワーを具備する場合、WDM光カ 30 ップラ28及びLD38は省略できる。この構成は、L バンドに含まれる信号光数が少ない場合に有効である。 【0084】EDF16を後方からも励起する双方向励 起状態にしたい場合には、例えば、3ポートの光サーキ ュレータ18の代わりに4ポートの光サーキュレータを 配置し、その第4のボートに第3の励起光を入力すれば よい。

【0085】光サーキュレータ18及び34の部分を4 ポートの光サーキュレータで代替できる。この場合に は、Lバンド信号光SLの遅延を補償する光ファイバ3 40 6を配置できず、Lバンド信号光SLの挿入損失が僅か に増加するが、Cバンド信号光Sc の挿入損失が少なく なる。総合的には、Lバンドの挿入損失の増加よりも、 Cバンド信号光Sc の挿入損失の減少が大きい。従っ て、Cバンド信号光光Sc の挿入損失を低減できるメリ ットが、レバンド信号光に対するデメリットを上回る。 【0086】図10は、そのような変更実施例の概略構・ 成ブロック図を示す。 図1と同じ構成要素には同じ符号 を付してある。60は、光サーキュレータ18及び34 の部分を代替する4ポートA, B, C, Dの光サーキュ 50 光を効率良く光増幅できる。しかも、高効率、高利得及

レータである。すなわち、光サーキュレータ60のポー トAにEDF16が接続し、ポートBにファイバグレー ティング22が接続し、ポートCにファイバグレーティ ング32が接続する。光サーキュレータ60のポートD は、光アイソレータ62を介して出力端子64に接続す る。 光アイソレータ62は、 光サーキュレータ60のポ ートDから出力される光を出力端子64に通す方向に配 置される。

【0087】図10に示す構成では、光サーキュレータ 60は、EDF16からポートAに入力する光をポート Bからファイバグレーティング22に供給する。ファイ バグレーティング22で反射されたCバンド成分は、再 び光サーキュレータ60のポートBに入力し、ポートC からファイバグレーティング32に向けて出力される。 ファイバグレーティング32は、光サーキュレータ60 のポートCからのCバンド光を全反射する。ファイバグ レーティング32で反射されたCバンド光は、再び光サ ーキュレータ60のポートCに入射する。

【0088】ファイバグレーティング22は、光サーキ ュレータ60のポートBからの光の内、Lバンド信号光 SL、Cバンド信号光SCの一部、EDF16で発生す るCバンドASE光の一部及び励起光20aを透過す る。その透過光は、光アイソレータ24を介してEDF 26に入力する。EDF26は図1に示す実施例と同様 の作用でLバンド信号光SLを増幅する。EDF26で 増幅されたLバンド信号光SLは、WDM光カップラ2 8、光アイソレータ30及びファイバグレーティング3 2を透過して光サーキュレータ60のポートCに入力す る。

【0089】このように、光サーキュレータ60のポー トCに、EDF14で増幅されたCバンド信号光Scと EDF26で増幅されたLバンド信号光SL が入力す る。光サーキュレータ60はポートCの入力光をポート Dから出力する。従って、増幅されたCバンド信号光S c 及びLバンド信号光SLが、光アイソレータ62を介 して出力端子64に供給される。

【0090】光サーキュレータ60がポートDの入力光 をポートAに転送する機能を具備する場合、光サーキュ レータ60のポートDにEDF16の励起光を入力して も良い。そのためには、光サーキュレータ60のポート Dと光アイソレータ62の間に、励起光を光サーキュレ ータ60のポートDに供給するWDM光カップラを配置 する.

・【0091】添加材としてエルビウムを使用する実施例 を説明したが、勿論、その他の希土類金属を添加しても よい。

[0092]

【発明の効果】以上の説明から容易に理解できるよう に、本発明によれば、簡単な構成で2つのバンドの信号

び低雑音指数を実現でき、更には、広増幅帯域をも実現できる。

【図面の簡単な説明】

【図1】 本発明の第1実施例の概略構成図である。

【図2】 ファイバグレーティング22,30の反射特性図である。

【図3】 長尺EDFに対するLバンド増幅の原理を説明する図である。

【図4】 ハイパワー励起に対するLバンド増幅の原理を説明する図である。

【図5】 EDFの利得特性及び雑音指数の、長さによる相違の測定結果例である。

【図6】 補助光の波長と利得特性との関係の測定例である。

【図7】 EDFFを使用する場合の、利得と雑音指数の波長特性である。

【図8】 EDSFを使用する場合の、利得と雑音指数の波長特性である。

【図9】 補助光パワーと利得の関係を示す図である。

【図10】 本発明の第2実施例の概略構成ブロック図 20 である。

【符号の説明】

10:入力端子

12:WDM光カップラ

14: 光アイソレータ

16:エルビウム添加光ファイバ (EDF)

18: 光サーキュレータ

20:レーザダイオード

20a:励起光

22:ファイバグレーティング

24:光アイソレータ

26:エルビウム添加光ファイバ(EDF)

20

28:WDM光カップラ

30: 光アイソレータ

32:ファイバグレーティング

10 34: 光サーキュレータ

36:光ファイバ

38: レーザダイオード

38a:励起光

39: 出力端子

40: Cバンド補助光が入力する場合の利得特性

42: Cバンド補助光が入力する場合の雑音指数

44: Cバンド補助光が入力しない場合の利得特性

46: Cバンド補助光が入力しない場合の雑音指数

50:Cバンド補助光が入力する場合の利得特性

0 52: Cバンド補助光が入力する場合の雑音指数

54: Cバンド補助光が入力しない場合の利得特性

56: Cバンド補助光が入力しない場合の雑音指数

60:光サーキュレータ

62: 光アイソレータ

64:出力端子

フロントページの続き

(51) Int. Cl.⁷

識別記号

FΙ

テーマコード(参考)

(72)発明者 須藤 智美

H O 4 B 10/18

埼玉県上福岡市大原2丁目1番15号株式会 社ケイディディファイバラボ内 (72)発明者 野田 行雄

埼玉県上福岡市大原2丁目1番15号株式会 社ケイディディファイバラボ内 (72)発明者 三村 **榮紀** 埼玉県上福岡市大原2丁目1番15号株式会 社ケイディディファイバラボ内 F ターム(参考) 5F072 AB09 AK06 JJ02 KK07 KK30 PP07 RR01 YY17 5K002 BA00 BA05 BA13 BA21 CA13 DA02 FA01