Entrepôts de données Data Warehouse

Collecter, intégrer, manipuler

Dr. Aymen GAMMOUDI

Contenu du cours (1)

Définition et architectures fonctionnelles d'un ED

- Data Warehouses versus Data Marts
- Différentes architectures

Modélisation d'un ED

- Approche multidimensionnelle
- Cube de données

Implémentation d'un ED

- ROLAP, MOLAP, HOLAP
- Schéma en étoile ou flocon

Contenu du cours (2)

Alimentation d'un ED

- Processus ETL (Extraction, Transformation, Load)
 - Extraction des données
 - Nettoyage et transformation des données
 - Chargement des données

Exploitation d'un ED

- Reporting et dashboards
- Analyse en ligne OLAP
- Langage MDX

Ressources

Quelques ressources utilisées

- Cours de Ludovic Denoyer (LIP6 Paris)
- Cours de Bernard Espinasse (EPU de Marseille)
- Cours de Jérôme Darmont (ERIC Lyon 2)
- Livre de Wilfried Grossmann and Stefanie Rinderle-Ma
 - « Fundamentals of Business Intelligence » (Springer)

Entrepôts de données Data Warehouse

Définition et architectures fonctionnelles

Dr. Aymen GAMMOUDI

Data Warehouse (1)

Définition de Inmon (1992)

« Une collection de données thématiques, intégrées, non volatiles et historisées, organisées pour le support d'un processus d'aide à la décision»

Data Warehouse (2)

Caractéristiques principales

- Données thématiques / orientées sujets : données pertinentes pour un sujet ou thème et nécessaires aux besoins d'analyse
- Intégrées : données résultant de l'intégration de données provenant de différentes sources pouvant être hétérogènes
- Historisées : données représentent l'activité d'une entreprise durant une certaine période (plusieurs années)
- Non-volatiles : données essentiellement utilisées en interrogation (consultation), ne pouvant pas être modifiées

De l'entrepôt à l'aide à la décision (1)

Avant l'entreposage des données

- Avant d'être chargées, les données sélectionnées doivent être :
 - Extraites de sources
 - Internes (BD opérationnelles) ou
 - Externes (données notamment issus du Web)
 - Netoyées
 - Afin d'éliminer des erreurs
 - Intégrées
 - Afin de réconcilier les sémantiques associées aux différentes sources

De l'entrepôt à l'aide à la décision (2)

Après – Quelle exploitation des données de l'ED ?

- A partir des données d'un ED diverses analyses peuvent être faites, notamment par :
 - Des techniques OLAP (On-Line Analytical Processing)
 - Des techniques de fouille de données (Data Mining)
 - De techniques de **visualisation de données** multi-dimensionnelles
- Notons que les informations et connaissances obtenues par exploitation d'un entrepôt ont généralement pour objectif
 - Un impact direct sur les résultats d'une entreprise ou d'un établissement (augmentation des ventes par un marketing plus ciblé, amélioration de la rotation des stocks, amélioration des résultats des étudiants, etc.)

Entrepôts vs Magasins de données (1)

L'entrepôt de données (Data Warehouse)

- Collecte l'ensemble de l'information utile aux décideurs à partir des sources de données (BD opérationnelle, BD externes, Web ...)
- Centralise l'information décisionnelle en assurant l'intégration des données extraites et leur pérennité dans le temps

Les magasins de données (Data Marts)

- Sont (davantage) orientés sujet en extrayant pour chaque data mart une partie de l'information décisionnelle de l'entrepôt à partir d'une partie des données utiles
- Sont conçus pour une classe d'utilisateurs ou pour un besoin d'analyse spécifique

Entrepôts vs Magasins de données (2)

L'entrepôt de données (Data Warehouse)

- Nécessitent de puissantes machines pour gérer de très grandes bases de données contenant des données de détail historisées
- L'organisation des données privilégie une gestion efficace des données et de leur historisation

Les magasins de données (Data Marts)

- Sont de petits entrepôts nécessitant une infrastructure plus légère et peuvent être mis en œuvre plus rapidement
- L'organisation des données privilégie les traitements décisionnels

Différentes architectures (1)

En général, l'extraction des données est uniquement périodique, et les données dans l'entrepôts ne représentent pas l'état courant de l'entreprise

Différentes architectures (2)

Avec des Data Marts indépendants

Implique un processus ETL par Data Mart

Peut rendre complexe l'accès aux données par les décideurs

Différentes architectures (3)

Avec des Data Marts dépendants

Nécessite un seul processus ETL

Facilite l'accès aux données par les décideurs

Modélisation d'un entrepôts de données

Modélisation multidimensionnelle, cubes de données

Dr. Aymen GAMMOUDI

Modélisation multidimensionnelle (1)

Objectif

- Proposer une modélisation des données proche de la perception qu'en a un analyste
- Basée sur une vision multidimensionnelle des données

Principe de base

- Un sujet analysé (ventes) est considéré comme un point dans un espace à plusieurs dimensions (quoi, quand, où)
- Ces dimensions offrent différentes perspectives d'analyse
 - Comment les ventes se répartissent par catégorie de produit ?
 - Comment les ventes ont évolué dans le temps ?
 - Comment les ventes se répartissent dans les différentes régions ?

Modélisation multidimensionnelle (2)

• Exemple: ventes en 2000 d'une entreprise de distribution

Catégorie de produit	Régions	Montant des ventes
Electroménager	Centre – Val de Loire	50
Electroménager	Nouvelle Aquitaine	30
Electroménager	Pays de La Loire	40
Alimentation	Centre – Val de Loire	10
Alimentation	Nouvelle Aquitaine	20
Alimentation	Pays de La Loire	30
Bricolage	Centre – Val de Loire	10
Bricolage	Nouvelle Aquitaine	40
Bricolage	Pays de La Loire	20
	Υ	

Deux dimensions d'analyse

Sujet étudié

Autre représentation

Sous la forme d'un tableau croisé

Cube de données

Poursuite de l'exemple

 Avec le temps comme dimension d'analyse supplémentaire, ajout d'une troisième dimension d'analyse

Note : le contenu des cellules à l'intérieur du cube n'est pas visible

Autre représentation

Sous la forme d'un tableau avec imbrication

		Centre – Val de Loire	Nouvelle Aquitaine	Pays de la Loire
	Electroménager	30	20	100
2000	Alimentation	10	20	30
	Bricolage	10	40	20
	Electroménager	20	10	30
2001	Alimentation	10	20	30
	Bricolage	10	40	20

Faits, mesures et dimensions

Notion de fait

- Un fait modélise le sujet d'analyse (les ventes)
- Un fait est formé de mesures généralement numériques (montant des ventes, quantités de produits vendues, etc.)
- Les mesures peuvent généralement être agrégées (sum, avg, etc.)

Notion de dimension

- Une dimension modélise un axe d'analyse (temps, lieu, catégorie, etc.)
- Une dimension est généralement organisée en une ou plusieurs hiérarchies correspondant à différents niveaux de détail
 - Dimension temps: H1 (jour → mois → trimestre → année), H2 (jour → semaine → année)
 - Dimension lieu : ville → département → région → pays
 - **Dimension catégorie :** produit → gamme → catégorie

Hiérarchies multiples

Exemple sur la dimension Temps

 Permet d'avoir les montants totaux des ventes à différents niveaux de détail / différents niveaux de granularité

Implémentation d'un entrepôts de données

Schémas en étoile ou flocons, ROLAP, MOLAP, HOLAP

Dr. Aymen GAMMOUDI

Stratégie d'implémentation

Trois stratégies au niveau physique

- Usage d'un SGBD Relationnel (systèmes ROLAP)
 - Avantages : faible coût de mise en œuvre
 - Inconvénients: performance (pour le calcul des jointures & agrégats)
- Usage d'un SGBD Multidimensionnel (systèmes MOLAP)
 - Avantages : adapté aux analyses multidimensionnelles
 - Inconvénients : difficulté de mise en œuvre (systèmes propriétaires), problème d'éparsité des cubes, etc.
- Usage d'un SGBD Hybride (systèmes HOLAP)
 - Pour tirer profit des avantages des technologies ROLAP et MOLAP :
 - Un système ROLAP pour stocker, gérer les données détaillées ET
 - Un système MOLAP pour stocker, gérer les données agrégées

Schéma d'un entrepôt

- Niveau logique : dans un système ROLAP
 - Trois grands types de schémas
 - Schémas en étoiles (star schema)
 - Schémas en flocon (snowflake schema)
 - Schémas en constellation (fact constellation)
 - Le schéma en étoile est souvent celui qui est aussi utilisé au niveau physique

Schéma en étoile

Caractéristiques

 Une table centrale, i.e. la table de faits, en général de taille très volumineuse

Des tables périphériques, i.e. les tables de dimensions, de tailles peu

Schéma en flocon

Objectifs

 Normaliser les tables de dimensions, ce qui peut induire de calculs plus coûteux (jointures nombreuses), mais rendre plus facile l'évolution des hiérarchies

Schéma en constellation

Caractéristique

 Fusionne plusieurs schémas en étoile, (ex : Ordonnances et Ventes), avec plusieurs tables de faits qui partagent des dimensions communes (ex : Temps et Localisation)

Alimentation d'un entrepôts de données

Processus ETL (Extraction, Transformation, Load)

Dr. Aymen GAMMOUDI

Processus d'alimentation

Objectif principal

- Rassembler des données sources multiples et hétérogènes
- Homogénéiser (intégrer) ces données selon des règles précises
 - En général, ces règles sont mémorisées sous forme de métadonnées stockées dans des dictionnaires de données
 - Afin de faciliter le travail d'administration et gestion des entrepôts

Un processus ETL en quatre étapes

- Sélection des données sources
- Extraction des données sources
- Nettoyage et Transformation des données sources
- Chargement / Loading

1 - Sélection des données sources

Quelles données faut-il intégrer dans l'entrepôt ?

- Des données internes (bases de production) ou externes (données du web)
- Toutes les données ne sont pas forcément utiles
- Par contres, l'intégration de données de sources différentes est essentielle pour permettre de nouveaux croisements

2 – Extraction des données sources

• Un extracteur (wrapper) est associé à chaque source

- Il sélectionne et extrait des données de types variés : fichiers Excel, logs, BD opérationnelles, tweets, ...
- Il les formate dans un format cible commun
- Via l'utilisation d'interfaces comme ODBC, JDBC, ...
- Le format cible est souvent le modèle relationnel

Avec deux stratégies de rafraichissements

- Push : ce sont les sources qui déclenchent une nouvelle extraction
- Pull : les sources sont interrogées par les extracteurs
- Et une contrainte essentielle : ne pas trop perturber les opérations OLTP (des bases sources)

3a – Nettoyage des données

Constat

- 5% à 30% des données dans des BD opérationnelles peuvent être erronées
- Impossible de conduire de bonnes analyses à partir de données de mauvaises qualité

Plusieurs sous-tâches

- Suppression des doublons
- Traitement des valeurs manquantes
- Détection des valeurs erronées (ex : à partir de dictionnaire) ou incohérentes

3b – Transformation des données

Pour l'intégration des schémas

- En identifiant que des noms d'attributs différents représentent le même type d'entité
- En identifiant des niveaux d'abstraction / de granularités qui sont différents

Pour l'intégration des données

- Par l'application de fonctions de normalisation, de conversion
 - **Exemple** : valeurs dans des unités de mesure différentes
- Via des dictionnaires de synonymes et/ou abréviations
 - Exemple: pour associer la même valeur M. à Mr, Monsieur, etc.)

4 – Chargement des données

Objectif

 Charger les données nettoyées et transformées dans l'entrepôt

Différentes politiques

- Complet ou incrémental
- En ligne ou hors ligne

Quelques problèmes posés

- Coût de rafraichissement des structures d'indexation
- Evolution des dimensions au cours du temps
 (ex : changement de nom d'un produit ; nouveau niveau d'analyse dans une dimension)

Exploitation d'un entrepôts de données

Reporting, analyse OLAP, langage de requêtes MDX, etc.

Dr. Aymen GAMMOUDI

A partir d'un entrepôt

Différentes exploitations possibles

- Réalisation de rapports (reporting)
- Réalisation de tableaux de bords (dashboards)
- Analyse en ligne OLAP (OnLine Analytical Processing)
- Fouille de données (data mining)
- Visualisations de données
- Etc.

OLAP: On Line Analytical Processing

Objectif

 Permettre une navigation / exploration interactive des données dans un cube de données

Algèbre OLAP

- Opérateurs ensemblistes : sélection classiques
- Opérateurs de restructuration : pour changer de point de vue sur les données
- Opérateurs liés à la granularité : pour « zoomer » ou « de-zoomer »

Visualisation de résultats

En 2D sous la forme de tableaux croisés

Opérateur : slice (tranche)

		2000	2001	2002
	Bricolage	20	20	10
Centre	Alimentation	20	20	20
	Electroménager	30	20	30
Aquitaine	Bricolage	20	20	20
	Alimentation	20	20	20
	Electroménager	20	20	20

		2000
	Bricolage	20
Centre	Alimentation	20
	Electroménager	30
	Bricolage	20
Aquitaine	Alimentation	20
	Electroménager	20

Opérateur : rotate

		2000	2001	2002
	Bricolage	20	20	10
Centre	Alimentation	20	20	20
	Electroménager	30	20	30
Aquitaine	Bricolage	20	20	20
	Alimentation	20	20	20
	Electroménager	20	20	20

		Brico.	Alim.	Electro
Centre	2000	20	20	30
	2001	20	20	20
	2002	10	20	20
Aquitaine	2000	20	20	20
	2001	20	20	20
	2002	20	20	20

Opérateur : rollup / drill down

Drill down sur la dimension « **Produit** »

	95	96
Alimentation	100	130

Rollup sur la dimension « Temps » avec somme

	95	96
Laitage	20	20
Légume	20	30
Viande	60	80

	S1-95	S2-95	S1-96	S2-96
Laitage	10	10	5	15
Légume	8	12	15	15
Viande	30	30	30	50

Drill down sur la dimension « **Temps** »

Langage de requêtes OLAP

- MDX: Multi Dimensional eXpression
 - Un standard de fait développé en 1997 par M. Pasumansky au sein de Microsoft
 - Fait pour naviguer dans les bases multidimensionnelles
 - En définissant des requêtes sur tous leurs objets (dimensions, hiérarchies, niveaux, membres et cellules)
 - Une requête MDX retourne
 - Un rapport à plusieurs dimensions consistant en un ou plusieurs tableaux 2D imbriqués
 - Utilisé aujourd'hui par de nombreux outils de BI commerciaux ou non
 - Langage assez complexe permettant des requêtes souvent plus compactes que les requêtes SQL « équivalentes »

Exemple de requête MDX

Construction d'un tableau croisé

- Avec en colonne les familles de produit (de la dimension Product)
- Avec en ligne les villes (de la dimension Customer) croisés avec les trimestres (de la dimension Time)
- Et dans les cellules le nombre d'unité de produit vendu (Unit Sales : une des mesures du cube Sales)
- La fonction d'agrégat utilisée est par défaut la somme