Introduction - AEMR

Agenda

Problem Context

Key Insights & Energy Outages & Forced outages

outage reason

Outage

duration and recovery tim.

American Energy Market Regulator (AEMR) Executive Presentation

By Bart Teeuwen

Date: 1/20/2020

Introduction - AEMR

Agenda

Problem Context

Key Insights & Energy Outages & Forced outages

Outage
duration and
recovery tim...

Topics of Discussion:

- Client introduction
- Problem context
- Key insights & recommendations
- Energy outages & outage reasons
- Forced outages
- Outage duration & recovery time
- Energy outages by energy provider
- Energy outage recovery time by energy provider
- MW Loss and outage duration by energy provider
- Q&A

Introduction - AEMR	Agenda	Problem Context	Key Insights & Recommendations	Energy Outages & outage reason	Forced outages	Outage duration and recovery tim
---------------------	--------	-----------------	--------------------------------	--------------------------------	----------------	--

The client:

- The American Energy Market Regulator (AEMR)
- Responsible for America's energy network reliability

The problem:

- Increase of outages from 2016/2017
- Primarily forced outages
- Threat to energy network

To avoid this, AEMR's management wants the consultant to look into

- A) Energy Stability and Market Outages
- B) Energy Losses and Market Reliability

The solution:

Analyze the US energy market to find out what is causing the increase in outages, who is responsible, and how the AEMR can take action to preserve the energy market stability & reliability.

Introduct AEMR	ion -	Agenda	Problem Context	Key Insights & Recommendations	Energy Outages & outage reason	Forced outages	Outage duration and recovery times
-------------------	-------	--------	-----------------	--------------------------------	--------------------------------	----------------	------------------------------------

Key insights & recommendations

- outages as a means to prevent outages or limit the MW loss
- 2. Establish SLAs for minimum energy supply & quality control measure to force energy providers to organize their energy supply for minimum supply, regardless of outages
- 3. Bi-annual review of energy provider performance rate energy provider performance every 6 months if the number of outages are above average
- 4. Establish energy backup requirement for energy providers require energy providers to have a backup in case outages force the energy supply to drop

Agenda	Problem Context	Key Insights & Recommendations	Energy Outages & outage reason	Forced outages	Outage duration and recovery times	Energy outages by energy provider

2017 saw 17% more outages than in 2016, with the majority as "Forced" outage type.

Problem Context Key Insights & Energy Outages & Forced outages
Recommendations Outage reason Forced outages
Outage duration and recovery times Energy provider

Energy outage

recovery time by energy provider

Reason Consequential
Forced
Opportunistic Maint.. The forced outages mostly stayed below the average of 120/month in 2016, but has increasingly risen throughout 2017 Scheduled (Planned) Status Forced Outages by Month Accepted ✓ Approved 220 Cancelled By Market.. 210 207 Average Cancelled By System.. Not Accepted 200 Rejected 183 180 173 168 160 152 149 Count of AEMR_OUTAGE_TABLE 146 127 133 134 Average 113 109 80 60 40 20 December 2015 April 2016 August 2016 April 2017 December 2016 August 2017 December 2017

Month of Start Time

Key Insights & Re commendations

Energy Outages & outage reason

Forced outages

Outage duration and recovery times

Energy outages by energy provider

Energy outage recovery time by energy provider

MW loss and outage duration by energy provider

On average the duration of outages was less than 1 day (0.69) with longer outages in Q3 and Q4 2016

Most outages were resolved in less than a minute, with the exeption of some outages in months that took up to 11 days

Energy Outages & Forced outages outage reason

Outage duration and recovery times

Energy outages by energy provider

Energy outage recovery time by energy provider

MW loss and outage duration by energy provider

Concluding summary

As we drill down to the energy provider level, we can see that AURICON, GW, MELK, AUXC, and TRMOS account for the majority of outages

Outages provider	•	ergy	Outages provider	•	ergy	Outages Participa	-	Delta	% of Total Count of AEMR_OUTAGE_TABLE 0.06% 30.21%
	Start 1	Time		Start	Time		Start	Time	Reason
Participant	2016	2017	Participant	2016	2017	Participant	2016	2017	Consequential Forced
AURICON	208	490	AURICON	16.46%	30.21%	PUG		234.0%	Opportunistic Maintenance (Planned)
GW	317	227	GW	25.08%	14.00%	MCG		137.5%	Scheduled (Planned)
MELK	157	177	MELK	12.42%	10.91%	TRMOS		135.9%	
AUXC	206	120	AUXC	16.30%	7.40%	AURICON		105.9%	
TRMOS	65	172	TRMOS	5.14%	10.60%	WGUTD		50.0%	Status
PUG	24	135	PUG	1.90%	8.32%	KORL		34.5%	Accepted
PJRH	81	72	PJRH	6.41%	4.44%	COLLGAR		14.1%	Approved
KORL	53	76	KORL	4.19%	4.69%	DNHR		8.3%	Cancelled By Market Participant Cancelled By System Management
PMC	69	40	PMC	5.46%	2.47%	PJRH		3.9%	Not Accepted
COLLGAR	29	45	COLLGAR	2.29%	2.77%	MELK		1.3%	Rejected
STHRNCRS	13	18	STHRNCRS	1.03%	1.11%	MUND		0.0%	
ENRG	21	7	ENRG	1.66%	0.43%	TSLA_MGT		-1.6%	
MUND	4	15	MUND	0.32%	0.92%	STHRNCRS		-14.6%	Year of Start Time
EUCT	11	3	EUCT	0.87%	0.18%	ENRG		-20.7%	2016
MCG	1	12	MCG	0.08%	0.74%	GW		-31.3%	√ 2017
WGUTD	2	8	WGUTD	0.16%	0.49%	PMC		-34.2%	
TSLA_MGT	2	4	TSLA_MGT	0.16%	0.25%	AUXC		-39.6%	
DNHR	1	1	DNHR	0.08%	0.06%	EUCT		-48.6%	
Grand Total	1,264	1,622	Grand Total	100.00%	100.00%				

Forced outages

Outage duration and recovery times

Energy outages by energy provider

Energy outage recovery time by energy provider

MW loss and outage duration by energy provider

Concluding summary

Q&A

Energy providers with the biggest recovery time are ENERG, MELK, and KORL

Forced Outage duration and recovery times Energy outages by energy provider Energy outage MW loss and outage duration by energy energy provider Provider Concluding summary duration by energy provider

Conclusion

AEMR Problem

- Increase of energy outages from 2016/2017
- · Focus on forced outages due to impact on the energy network and reliability
- Analysis of energy outages to find cause and solutions

- The number of outages increased in 2017, in particular forced outages
- · Outages typically last from several hours to multiple days a hazard for the energy supply
- · Outages mostly different by provider and year, but only a few providers had the most outages

Q&A

- Most energy providers recovered quickly from outages, with a select few taking longer than expected
- Outages and slow recovery time made up about 82K in MW loss over 2017
- The MW loss isn't dependent on outage duration only
- Energy provider MELK was the #1 most unreliable overall based on outages, MW loss, and recovery time

- 1. Design energy outage forecasting model
- 2. Establish SLAs for minimum energy supply & quality control
- 3. Bi-annual review of energy provider performance
- 4. Establish energy backup requirement for energy providers

Forced outages	Outage duration and recovery times	Energy outages by energy provider	Energy outage recovery time by energy provider	MW loss and outage duration by energy provider	Concluding summary	Q&A
-------------------	------------------------------------	-----------------------------------	--	--	--------------------	-----

THANK YOU!