Datos Anómalos

Paúl Arévalo

2024-07-04

Datos Atípicos

Ejemplo

```
datos_bivariados <- read.csv("DatosBivariados.csv")
mean_pesos <- mean(datos_bivariados$Peso)
sd_pesos <- sd(datos_bivariados$Peso)
mean_alturas <- mean(datos_bivariados$Altura)
sd_alturas <- sd(datos_bivariados$Altura)</pre>
```

A continuación se genera un conjunto de datos con valores atípicos

```
# set.seed(12345)
# Generar distribución normal con media 50 y desviación estándar 10
pesos <- rnorm(10000, mean = mean_pesos, sd = sd_pesos)</pre>
alturas <- rnorm(10000, mean = mean_alturas, sd = sd_alturas)</pre>
# Introducir valores atípicos
for (i in 1:100) {
  index <- sample.int(length(pesos), 1)</pre>
  pesos[index] <- pesos[index] + round(runif(</pre>
    min = -min(pesos[index] - sd_pesos, sd_pesos + mean_pesos / 2),
    max = sd_pesos + mean_pesos / 2
  ), 0)
for (i in 1:100) {
  index <- sample.int(length(alturas), 1)</pre>
  alturas[index] <- alturas[index] + round(runif(</pre>
    n = 1,
    min = -min(alturas[index] - sd_alturas, sd_alturas + mean_alturas / 2),
    max = sd_alturas + mean_alturas / 2
  ), 0)
}
```

Realizamos una análisis exploratorio de datos:

Pesos:

```
# Observar la distribución de los datos summary(pesos)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
```

28.03 63.59 68.43 68.44 73.22 112.30

hist(pesos)

Histogram of pesos

boxplot(pesos)

Alturas

Observar la distribución de los datos summary(alturas)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 70.92 163.42 167.92 167.84 172.36 252.10

hist(alturas)

Histogram of alturas

boxplot(alturas)

Procedemos a detectar valores atípicos

Pesos

```
# Utilizar el método IQR (Rango intercuartílico)
iqr <- IQR(pesos)
limite_superior <- median(pesos) + 1.5 * iqr
limite_inferior <- median(pesos) - 1.5 * iqr</pre>
```

```
outliers <- pesos[pesos > limite_superior | pesos < limite_inferior]
# Identificar outliers en el histograma
hist(pesos, col = ifelse(is.na(outliers), "lightblue", "red"))</pre>
```

Histogram of pesos


```
plot(pesos, main = "Diagrama de dispersión con outliers")
points(outliers, col = "red", pch = 16, cex = 2)
```

Diagrama de dispersión con outliers

Alturas

```
# Utilizar el método IQR (Rango intercuartílico)
iqr <- IQR(alturas)
limite_superior <- median(alturas) + 1.5 * iqr
limite_inferior <- median(alturas) - 1.5 * iqr
outliers <- alturas[alturas > limite_superior | alturas < limite_inferior]
# Identificar outliers en el histograma
hist(alturas, col = ifelse(is.na(outliers), "lightblue", "red"))</pre>
```

Histogram of alturas

plot(alturas, main = "Diagrama de dispersión con outliers")
points(outliers, col = "red", pch = 16, cex = 2)

Diagrama de dispersión con outliers

