Teorema Fundamental de la Teoría de Galois aplicado a nuestro ejemplo del 29/10/19

- 1. Sea $f(x) = x^3 2 \in \mathbb{Q}[x]$.
 - a) Calcula $E = \mathbb{Q}(f)$.
 - **b)** Calcula el grado de E/\mathbb{Q} .
 - c) Calcula la clase de isomorfía de $G = Gal(E/\mathbb{Q})$.
 - d) Describe explícitamente los elementos de G, indicando sus órdenes.
 - e) Escribe G como un producto semidirecto $C_3 \times C_2$ donde $C_2 = \operatorname{Aut}(C_3)$.
- f) Describe todas las subextensiones de E/\mathbb{Q} indicando cuáles de ellas definen extensiones normales sobre \mathbb{Q} .

Solución.

- (a) Las raíces de $x^3 2$ en \mathbb{C} son $\{\sqrt[3]{2}\omega, \sqrt[3]{2}\omega\}$, donde ω es una raíz primitiva cúbica de la unidad. Por tanto, el cuerpo de escisión de $x^3 2$ sobre \mathbb{Q} es es $E = \mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2) = \mathbb{Q}(\sqrt[3]{2}, \omega)$. Como $\omega = \frac{1}{2}(-1 + \sqrt{3}i)$, también tenemos que $E = \mathbb{Q}(\sqrt[3]{2}, \sqrt{3}i)$.
- (b) Notamos que $\operatorname{Irr}(\mathbb{Q}, \sqrt[3]{2}) = x^3 2$ por Einsestein para p = 2 y que $\operatorname{Irr}(\mathbb{Q}, \omega) = x^2 + x + 1$ es el polinomio ciclotómico cúbico. Entonces $|\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}| = 3$ y $|\mathbb{Q}(\omega) : \mathbb{Q}| = 2$ por el Teorema del Elemento Algebraico. Por el ejercicio 12.b) de la Hoja 2, tenemos que $|E : \mathbb{Q}| = 6$. También podríamos haber notado que $x^2 + x + 1$ es irreducible sobre $\mathbb{Q}(\sqrt[3]{2})$ por no tener raíces, y haber aplicado el Teorema de Transitividad de Grados para hallar el grado de la extensión. En particular, obtenemos que $\operatorname{Irr}(\mathbb{Q}(\omega), \sqrt[3]{2}) = x^3 2$.
- (c) Como E/\mathbb{Q} es de Galois (normal en característica 0), por el Corolario 3.4.6 tenemos que $|G| = |E| : \mathbb{Q}| = 6$. Sea $M = \mathbb{Q}(\sqrt[3]{2}) \subseteq E$, la extensión M/\mathbb{Q} no es normal, por el Teorema Fundamenta de la Teoría de Galois, se corresponde con un subgrupo no normal de G. Podemos concluir, por tanto, que G no es abeliano. Ahora, G es un grupo de orden 6 no abeliano, por tanto, $G \cong S_3$. Recordemos en este punto que, como consecuencia del Teorema 3.11.(d) también sabíamos que G es isomorfo a algún subgrupo de S_3 , y la igualdad de órdenes en este caso, también nos permite concluir $G \cong S_3$.
- (d) Sea $L=\mathbb{Q}(\omega)$, tenemos que L/\mathbb{Q} es normal por ser L el cuerpo de escisión de x^2+x+1 . Podemos empezar calculando $H=\operatorname{Gal}(L/\mathbb{Q})$ ya que por el Corolario 3.12 todo elemento de G restringe a un elemento de H, y por el Teorema 3.4.5 todo $\sigma\in H$ se extiende de exactamente |E:L|=3 formas distintas a G. Como L/\mathbb{Q} es de Galois $|H|=|L:\mathbb{Q}|=2$, así pues, $H\cong \mathbb{C}_2$, de hecho, $H=\langle\sigma\rangle$, donde $\sigma(\omega)=\omega^2$, pues σ debe permutar las raíces de x^2+x+1 . Ahora usamos que x^3-2 es irreducible en L[x] y el Teorema 2.5 con respecto a los dos \mathbb{Q} -automorfismos de H, la identidad y σ y obtenemos que cada uno de ellos se puede extender de 3 maneras distintas a G, pues podemos enviar $\sqrt[3]{2}$ a cualquiera de las tres raíces de x^3-2 en E. (La clave es que los elementos de H fijan el polinomio x^3-2 .) Denotamos por τ_i con i=1,2,3 a las tres extensiones de la identidad de L y por τ_i con i=4,5,6 a las tres extensiones de σ a E. Como cada τ_i queda determinado por las imgenes de $\sqrt[3]{2}$ y ω podemos recoger toda la información de los automorfismos de G en la siguiente tabla. También, como comentamos en clase, siguiendo la prueba del Teorema 3.5, vemos que para cada elemento H y cada raíz α de x^3-2 , existe una extensión del elemento de H a G que lleva $\sqrt[3]{2}$ en α .

	$\sqrt[3]{2}$	ω
$ au_1$	$\sqrt[3]{2}$	ω
$ au_2$	$\sqrt[3]{2}\omega$	3
$ au_3$	$\sqrt[3]{2}\omega^2$	ω
$ au_4$	$\sqrt[3]{2}$	ω^2
$ au_5$	$\sqrt[3]{2}\omega$	ω^2
$ au_6$	$\sqrt[3]{2}\omega$	ω^2

¿Cómo calculamos lo órdenes en G? La identidad de G es la identidad 1: $E \to E$. Notamos que $\tau_1 = 1 \in G$. Ahora $\tau_2^2(\sqrt[3]{2}) = \tau_2(\sqrt[3]{2}\omega) = \tau_2(\sqrt[3]{2})\tau_2(\omega) = \sqrt[3]{2}\omega^2$, además τ_2^2 fija a ω porque τ_2 lo fija. Como cualquier elemento $\tau \in G$ queda determinado por las imágenes en $\sqrt[3]{2}$ y ω (esto se puede ver escribiendo una \mathbb{Q} -base de E, como vimos en clase, o simplemente por la forma de los elementos de $E = \mathbb{Q}(\sqrt[3]{2},\omega)$), tenemos que $\tau_2^2 = \tau_3$. Se puede comprobar que $\tau_2^3 = \tau_1 = 1$, así que tenemos que $o(\tau_2) = 3$ en G. Es conveniente calcular los órdenes (como ejercicio para el lector) de todos los elementos, que podemos incluir en la tabla anterior.

	$\sqrt[3]{2}$	ω	orden
τ_1	$\sqrt[3]{2}$	ω	1
τ_2	$\sqrt[3]{2}\omega$	ω	3
τ_3	$\sqrt[3]{2}\omega^2$	ω	3
τ_4	$\sqrt[3]{2}$	ω^2	2
$ au_5$	$\sqrt[3]{2}\omega$	ω^2	2
τ_6	$\sqrt[3]{2}\omega$	ω^2	2

(e) Sabemos que $S_3 = \langle (123), (23) \rangle = \langle (123) \rangle \rtimes \langle (23) \rangle$ es un producto semidirecto de modo que $(123)^{(23)} = (132) = (123)^{-1}$. Como $G \cong S_3$, se tiene que G es el producto semidirecto de un automorfismo de E de orden 3 y uno de orden 2, además, el conjugado del elemento de orden 3 por el elemento de orden 2 resulta el inverso del elemento de orden 3. (La única acción posible sobre un grupo cíclico de orden 3 es enviar cada elemento a su inverso.) Sabemos que $\tau_4^2 = 1$. En particular, $\tau_4^{-1} = \tau_4$. Ahora $\tau_2^{\tau_4} = \tau_4 \tau_2 \tau_4$ fija ω y $\tau_2^{\tau_4} (\sqrt[3]{2}) = \tau_4 (\tau_2 (\sqrt[3]{2})) = \tau_4 (\sqrt[3]{2}\omega) = \sqrt[3]{2}\omega^2$. Es decir, $\tau_2^{\tau_4} = \tau_3 = \tau_2^{-1}$. Por tanto, $G = \operatorname{Gal}(E/\mathbb{Q}) = \langle \tau_2 \rangle \rtimes \langle \tau_4 \rangle$. Por el Teorema Fundamental de la Teoría de Galois, esta expresión tiene sentido porque $\langle \tau_2 \rangle = \{\tau_1, \tau_2, \tau_3\} = \operatorname{Gal}(E/L) \rtimes G$ pues L/\mathbb{Q} es una extensión normal. Si escribimos $N = \operatorname{Gal}(E/L)$, por el Teorema 3.11(c) (o por el Corolario 3.12(b) o por el TFTG) se tiene que $G/N \cong H = \operatorname{Gal}(L/\mathbb{Q})$ y el isomorfismo está dado por la restricción de automorfismos a L. Vemos que esto tiene sentido pues $G/N = \{1N, \tau_4N\}$ y $\tau_4|_L = \sigma$ con $H = \{1, \sigma\}$.

También es interesante entender un isomorfismo $G \cong S_3$. Basta numerar el conjunto $\Omega = \{\sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\overline{\omega}\}$ de raíces de $x^3 - 2$, escribimos $a_1 = \sqrt[3]{2}$, $a_2 = \sqrt[3]{2}\omega$ y $a_3 = \sqrt[3]{2}\overline{\omega}$. Notamos que τ_2 se corresponde con la permutación $(a_1, a_2, a_3) = (123)$ y τ_4 se corresponde con la permutación $(a_2, a_3) = (23)$.

(e) Por el Teorema Fundamental de la Teoría de Galois

$$\{\mathbb{Q}\subseteq M\subseteq E\} \stackrel{\text{1:1}}{\longleftrightarrow} \{H\leq G\}$$

correspondencia bajo la cual $\mathbb{Q} \leftrightarrow G$ y $E \leftrightarrow 1$ (ya que las subextensiones de E/\mathbb{Q} se corresponden con los cuerpos fijados por los distintos subgrupos de G). Como |G|=6, los únicos subgrupos propios de G tienen orden 2 o 3. Si $P \leq G$ con |P|=3, entonces |G:P|=2 y esto implica que $Q \triangleleft G$. Además P es un 3-subgrupo de Sylow de G, y por Teoría de Sylow sabemos que los subgrupos de

G de orden 3 son todos conjugados de P. Como $P \triangleleft G$, tenemos que G tiene un único subgrupo de orden 3 que es $P = N = \langle \tau_2 \rangle$. Ahora, si $Q \leq G$ con |Q| = 2, entonces es un 2-subgrupo de Sylow de G. Tenemos que $P \cap Q = 1$, luego PQ = G. Si Q fuera normal, entonces $G = P \times Q$ sería abeliano. Por tanto, Q no es normal. Como |G:Q| = 3 y $Q \subseteq \mathbf{N}_G(Q) < G$, concluimos que $\mathbf{N}_G(Q) = Q$ (pues $|\mathbf{N}_G(Q):Q|$ divide |G:Q| = 3 y es escrictamente menor que 3). Por Teoría de Sylow, Q tiene 3 conjugados, que son todos los subgrupos de orden 2 de G. Podemos tomar $Q = \langle \tau_4 \rangle$. Entonces 3 los conjugados distintos de Q son concretamente Q, Q^{τ_2} y Q^{τ_3} . ¿Por qué? Como $\tau_2, \tau_3 \notin \mathbf{N}_G(Q) = Q$ (pues tiene orden 3), entonces $Q^{\tau_2} \neq Q \neq Q^{\tau_3}$. Además, si $Q^{\tau_2} = Q^{\tau_3}$ obtendríamos que $Q = Q^{\tau_2 \tau_3^{-1}} = Q^{\tau_2^2} = Q^{\tau_3} \neq Q$, lo que es absurdo.

Además, $\mathbb{Q} \subseteq L \subseteq E$ con L/\mathbb{Q} normal si, y solo si, $\operatorname{Gal}(L/\mathbb{Q})$ es un subgrupo normal de G. Como L/\mathbb{Q} es normal de grado 2, y por el Teorema Fundamental Teoría de Galois E/\mathbb{Q} tiene una única subextensión normal de grado 2 sobre \mathbb{Q} necesariamente $L=E^P=E^N=E^{\tau_2}$. (El lector puede hacer las comprobaciones a mano.) Las subextensiones de grado 3 se van a corresponder con subcuerpos fijados por los 3-subgrupos de Sylow, así que podemos usar el Lema de conjugación 4.5 para calcularlas. Es decir, si calculamos $M_1=E^Q=E^{\langle \tau_4\rangle}=E^{\tau_4}$, tendremos que $M_2=E^{Q^{\tau_2}}=\tau_2(L_1)$ y $M_3=E^{Q\tau_3}=\tau_3(L_2)$.

Vamos a calcular $M_1 = E^{\tau_4}$. Para ello, primero calculamos una \mathbb{Q} -base de E. Por lo dicho en el apartado (b) y el Teorema de Transitividad de Grados tenemos que $\mathcal{B} = \{1, \sqrt[3]{2}, \sqrt[3]{4}, \omega, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega\}$ es una \mathbb{Q} -base de E. Podemos escribir $\alpha = \sqrt[3]{2}$, entonces $\mathcal{B} = \{1, \alpha, \alpha^2, \omega, \alpha\omega, \alpha^2\omega\}$. Queremos calcular la forma de los elementos de E fijados por τ_4 . Un elemento genérico de E tiene la forma $x = a + b\alpha + c\alpha^2 + d\omega + e\alpha\omega + f\alpha^2\omega$. Ahora, $\tau_4(x) = x$ si, y solo si,

$$a + b\alpha + c\alpha^2 + d\omega + e\alpha\omega + f\alpha^2\omega = a + b\alpha + c\alpha^2 + d\omega^2 + e\alpha\omega^2 + f\alpha^2\omega^2$$
.

Usando que $\omega^2 = -\omega - 1$, la igualdad arriba ocurre si y solo si,

$$d\omega + e\alpha\omega + f\alpha^2\omega = d(-\omega - 1) + e\alpha(-\omega - 1) + f\alpha^2(-\omega - 1),$$

de donde

$$d + 2d\omega + e\alpha + 2e\alpha\omega + f\alpha^2 + 2f\alpha^2\omega = 0.$$

Usando que \mathcal{B} es base (independencia lineal), la igualdad arriba ocurre, si y solo, si d=e=f=0. Por tanto, $x \in E^{\tau_4} = M_1$ si, y solo si, $x=a+b\alpha+c\alpha^2 \in \mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt[3]{2})$. Hemos probado que $M_1=\mathbb{Q}(\sqrt[3]{2})$. Usando el Lema 4.5, tenemos que $M_2=\tau_2(M_1)=\mathbb{Q}(\sqrt[3]{2}\omega)$ y $M_3=\tau_3(\mathbb{Q}(\sqrt[3]{2}))=\mathbb{Q}(\sqrt[3]{2}\omega^2)$. También podríais haber calculado M_2 y M_3 como lo hemos hecho con M_1 (y es un buen ejercicio para familiarizarse con este tipo de ejercicios y aprender a no cometer errores de cálculo).