Excitation Table:

In electronics design, an excitation table shows the minimum inputs that are necessary to generate a particular next state (in other words, to "excite" it to the next state) when the current state is known.

Q	Q [†]	J	K
0	0	0	Х
0	1	1	X
1	0	X	1
1	1	X	0

1	Х	(
JK FI	ip-flop	

-	Q	Q [†]	D
-	0	0	0
	0	1	1
	1	0	0
	1	1	1
-	D	lin fl	20

D	Flip-flop
---	-----------

Q	Q [†]	S	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	X	0

SR Flip-flop

Q	Q ⁺	T
0	0	0
0	1	1
1	0	1
1	1	0

T Flip-flop