# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-114584

(43) Date of publication of application: 02.05.1997

(51)Int.CI.

G06F G06F

3/033 3/033

(21)Application number: 07-273878

(71)Applicant: NEC ENG LTD

(22)Date of filing:

23.10.1995

(72)Inventor: NAKANO KAZUNOBU

# (54) LIQUID CRYSTAL DISPLAY DEVICE

# (57)Abstract:

PROBLEM TO BE SOLVED: To reduce the thickness of a device by including a sense line leading through each output of photodetectors which belong to the same string and connecting each photodetector between a corresponding row selecting line and a corresponding sense line.

SOLUTION: Photodetectors for position detection Q11S and Q12S are turned on in a case when light from a pen shines upon them but they are in an off state in the other cases. Consequently when a transistor Q11S is on and a transistor Q12S is off, the voltage of Y1 is outputted to a sense line S1 but not to a sense line S2. Then if detecting the voltage of the sense lines S1 to Sn by repeating the scanning of successively turning row selection lines Y1, Y2...Yn to be in a selecting state, the position of the pen is discriminated. Then a coordinate arithmetic part specifies the coordinates X and Y of the position of the pen through the use of the output signal by way of the photodetector receiver of the sense lines S1 to Sn and the row selection signal.



## **LEGAL STATUS**

[Date of request for examination]

Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

Date of extinction of right

Copyright (C); 1998,2003 Japan Patent Office

# (19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

# (11)特許出願公開番号

# 特開平9-114584

(43)公開日 平成9年(1997)5月2日

| (51) Int.Cl. <sup>6</sup> |       | 識別記号 | 庁内整理番号 | FΙ   |       |      | 技術表示箇所 |
|---------------------------|-------|------|--------|------|-------|------|--------|
| G06F                      | 3/033 | 320  |        | G06F | 3/033 | 320  |        |
|                           |       | 350  |        |      |       | 350A |        |
|                           |       |      |        |      |       | 350C |        |

|                    | 審査請求    | 未請求 請求項の数4 OL (全 5 頁)                                                       |  |  |  |  |
|--------------------|---------|-----------------------------------------------------------------------------|--|--|--|--|
| <b>特顧平7-273878</b> | (71)出願人 | 000232047<br>日本電気エンジニアリング株式会社                                               |  |  |  |  |
| 平成7年(1995)10月23日   | (72)発明者 | 東京都港区芝浦三丁目18番21号<br>(72)発明者 中野 和延<br>東京都港区芝浦三丁目18番21号 日本電気<br>エンジニアリング株式会社内 |  |  |  |  |
|                    | (74)代理人 | 弁理士 京本 直樹 (外2名)                                                             |  |  |  |  |
|                    |         |                                                                             |  |  |  |  |
|                    |         | 特願平7-273878 (71)出願人<br>平成7年(1995)10月23日 (72)発明者                             |  |  |  |  |

## (54)【発明の名称】 液晶ディスプレイ装置

## (57)【要約】

【課題】 座標位置検出機能を有するアクティブマトリ クス型液晶ディスプレイにおいて、装置の小型化と、装 置の個体差や視差による位置ずれの無い座標位置検出を 可能とする。

【解決手段】 表示画素D11毎に受光素子R11を夫 々設ける。ペンの光が当った受光素子のフォトトランジ スタはオンするので、そのときの行選択線Yにハイレベ ルを印加すれば、センス線Sにはこの行選択線Yの電圧 が出力される。よって、YとSとの電圧を検出すること で、ペン位置が検出できる。



#### 【特許請求の範囲】

【請求項1】 液晶ディスプレイの1画素に相当する表 示素子が複数マトリックス状に配列された液晶ディスプ レイマトリックス部と、この液晶ディスプレイマトリッ クス部の各表示素子を選択するための行選択線と、前記 表示素子の各々に夫々対応して設けられライトペンから の光を受光する複数の位置検出用の受光素子と、同一列 に属する前記受光素子の各出力を共通に導出するセンス 線とを含み、対応する行選択線と対応するセンス線との 間に前記受光素子の各々が接続されていることを特徴と 10 に開示されているものである。 する液晶ディスプレイ装置。

【請求項2】 前記行選択線を択一的に順次選択制御す る制御手段と、この選択制御時の前記センス線の各出力 と前記行選択線の選択状態とに従って前記ライトペンの 位置検出を行う位置検出手段とを含むことを特徴とする 請求項1記載の液晶ディスプレイ装置。

【請求項3】 バックライト照射手段を更に含み、前記 ライトペンに代えて、前記バックライト照射手段からの 光を反射する反射板を内部に有するペンを使用すること を特徴とする請求項1または2記載の液晶ディスプレイ 装置。

【請求項4】 前記受光素子の各々の前記バックライト が照射される位置に遮光板を有することを特徴とする請 求項3記載の液晶ディスプレイ装置。

#### 【発明の詳細な説明】

# [0001]

【発明の属する技術分野】本発明は液晶ディスプレイ装 置に関し、特にアクティブマトリックス型液晶ディスプ レイ装置における座標位置検出機能に関するものであ

#### [0002]

【従来の技術】従来のとの種の座標位置検出機能につい て図5を参照して説明する。図5において、偏光板11 上にガラス12, 共通電極15, 液晶14, ガラス, 偏 光板17がこの順に積層されており、液晶ディスプレイ パネル10が形成されている。

【0003】そして、先端部に高電圧を発生する機能を 有するペン8によって、アクティブマトリクス型液晶デ ィスプレイをトレースして、表示状態にない画素 P 1, P2を強制的に表示状態とし、そのデータと、ペンでト レースする以前に記憶しておいた表示データとを比較す ることによって、トレース以前のデータと異なっている 画素 P1, P2の位置を検出することで、ペンの位置を 検出する方法がある。

【0004】この方法は、特開平5-250093号公 報に開示されている。

【0005】また、図6に示す如く、液晶ディスプレイ 10の所定座標を示す制御信号を制御部25より生成し て駆動部24を制御し、同期信号に同期しつつ液晶ディ スプレイ10の表示画面を順次白黒反転させる。そし

て、そのとき反射板19を有する液晶ディスプレイ10 へ、入力ペン9の発光素子20より第一の光学機構21 を介して光を照射する。

【0006】このときの反射板19による反射光を入力 ベン9内の第二の光学機構23を介して受光素子22に て受光し、検出ポート26にて受光量の変化と制御部2 5からの同期信号とに従ってペン9の座標位置を検出す る方式がある。

【0007】との方式は特開昭62-92021号公報

【0008】また、実開昭63-41197号公報に は、透過型液晶ディスプレイを用い、バックライトの光 をベン内の受光素子で受光し、液晶の所定座標を制御部 の同期信号に同期して順次液晶の画素を白黒反転させる ことにより、検出ボートで受光量の変化と同期信号とか らペンの座標位置を検出する技術が示されている。

【0009】また一般的にはデジタイザと呼ばれる座標 位置検出装置を液晶ディスプレイパネルの前面もしくは 背面に位置し、特殊なペンを画面に接触させて座標位置 20 を検出する方法もある。

#### [0010]

【発明が解決しようとする課題】従来画面上に置かれた ペンの座標を検出する場合、液晶ディスプレイの前面、 または背面にデジタイザを配置する必要があり、装置の 厚さが大となってしまう欠点があったり、また前面に配 置した場合には表示画面の視認性を低下させる欠点があ

【0011】更に、液晶ディスプレイパネルとデジタイ ザの取り付けにより、個体差やペンと表示面の視差によ 30 り位置ずれが生じてしまうため使用前に位置合わせをす る必要がある。

【0012】更に、従来の技術で説明した特開平5-2 50093号公報の技術については、液晶の画素が非表 示のときに高電圧により強制的に表示状態にし、その画 素の表示状態の差を求めることにより座標位置を検出す るため、表示状態座標にペンがあった場合ペンの位置を 検出することができない。また、周囲のデータから推測 できる機能があっても、正確な位置が判らず、分解能が 低くなる。更にペンをトレースすると表示が乱れる。

【0013】特開昭62-92021号公報や実開昭6 3-41197号公報の各技術においては、液晶ディス プレイの各画素を順次白黒反転しなければいけないた め、画面表示がちらついてしまうという欠点がある。

【0014】本発明の目的は、簡単な構成でかつ装置の 厚さの増大をもたらすことなく表示画面に何等影響を与 えることのない座標位置検出機能付きの液晶ディスプレ イ装置を提供することである。

### [0015]

【課題を解決するための手段】本発明による液晶ディス 50 プレイ装置は、液晶ディスプレイの1画素に相当する表

30

示素子が複数マトリックス状に配列された液晶ディスプレイマトリックス部と、この液晶ディスプレイマトリックス部の各表示素子を選択するための行及び列選択線と、前記表示素子の各々に夫々対応して設けられライトペンからの光を受光する複数の位置検出用の受光素子と、同一列に属する前記受光素子の各出力を共通に導出するセンス線とを含み、対応する行選択線と対応するセンス線との間に前記受光素子の各々が接続されていることを特徴としている。

【0016】本発明による他の液晶ディスプレイ装置は、前記行選択線を択一的に順次選択制御する制御手段と、この選択制御時の前記センス線の各出力と前記行選択線の選択状態とに従って前記ライトペンの位置検出を行う位置検出手段とを含むことを特徴としている。

【0017】本発明による更に他の液晶ディスプレイ装置は、バックライト照射手段を更に含み、前記ライトベンに代えて、前記バックライト照射手段からの光を反射する反射板を内部に有するペンを使用することを特徴としている。

### [0018]

【発明の実施の形態】本発明の作用を述べる。ライトベンからの光を受光する受光素子を、マトリックス配置された液晶表示素子の各々に夫々対応して設けておき、この受光素子出力により座標位置検出を行う。

【0019】また、バックライトの光を利用するため に、ペン内部に光源の代りにこのバックライトを反射する反射板を設けてこの反射板による反射光を各受光素子 にて受光するようにしている。

【0020】以下に本発明の実施例について図面を用いて説明する。

【0021】図1は本発明の実施例の全体ブロック図であり、この図1を説明する前に図2を参照して本発明の液晶ディスプレイパネル(図1の10)の等価回路を説明する。

【0022】液晶ディスプレイパネル10は行(ゲート)選択線Y1, Y2, …, Ynと、列(信号)線X1, X2, …, Xmと、これら両線の各交点に夫々配置された一画素相当の表示セルP11, P12, …, Pnmとからなる。

【0023】各表示セルは同一構成であるので、表示セ 40 ルP11についてのみ説明する。表示セルP11は表示 画素D11と受光素子R11とからなっている。表示画 素D11はトランジスタQ11と液晶部L11とからな り、トランジスタQ11のソースに列線X1が、ゲート に行選択線Y1が夫々接続されている。液晶部L11は トランジスタQ11のドレインと共通電極Gとの間に設けられる。

【0024】受光素子R11はフォトトランジスタQ11Sからなっており、このフォトトランジスタQ11Sは行選択線Y1とセンス線S1との間に設けられている。

【0025】尚、このセンス線S1は列線X1に対応して設けられているものであり、S1、S2、…、SmはX1、X2、…、Xmに夫々対応して設けられているものとする。このセンス線S1はその列(第1列)に属す

のとする。このセンス線S1はその列(第1列)に属する受光素子R11、R21、…、Rn1に対して共通であり、よってその列(第1列)の各受光素子の出力をセンスするための線となっている。

[0026]図1はこの図2に示した構成の液晶ディスプレイパネル10の周辺回路を含むブロック図である。 10 図1において、表示コントローラ1は表示制御の機能を有しており、表示メモリ4に対してアドレス選択信号と表示データとを書込み、ゲートドライバ2に対して行選択信号を供給すると共に、座標演算部7に対しても行選

択信号を供給する。

【0027】表示メモリ4のアドレス選択信号及び表示データはソースドライバ5へ供給されており、これ等情報に従って液晶ディスプレイパネル10に表示するデータが選択され、ソースドライバ5を経由して液晶ディスプレイパネル10の列線X1~Xmが駆動されるように20 なっている。

【0028】行選択信号はゲートドライバ2へ供給されて液晶でディスプレイパネル10の行選択線Y1~Ynが駆動される。こうして液晶ディスプレイパネル10へ表示メモリ4の内容が表示可能となる。

【0029】この行選択信号は液晶ディスプレイパネル10内の受光素子の選択信号としても用いられており(図2参照)、更には座標位置演算回路7へも入力されて、ペン8の座標のY軸成分として用いられる。尚、このペン8の座標のX軸成分には、センス線S1~Smの受光素子レシーバ6による出力が用いられることになる。

【0030】表示を行う場合には、行選択線Y1に対して、トランジスタQ11、Q12をオンとするに充分な電圧(例えば、ハイレベル)を印加し、他の行選択線に対してはオフとするに充分な電圧(例えば、ローレベル)を印加する。

【0031】そして、列線X1, X2に対して表示すべきデータ(例えば、ハイレベルで白、ローレベルで黒)を夫々供給し、トランジスタQ11, Q12を介して液晶L11, L12を夫々駆動することで、白や黒の表示が可能となる。

【0032】位置検出用の受光素子Q115, Q125 は、ペン8からの光が当った場合オンとなり、それ以外はオフとなる。従って、トランジスタQ115がオン、トランジスタQ125がオフであれば、センスラインS1 にY1の電圧が出力され、S2 には何等出力されないことになる。

[0033] そこで、行選択線Y1, Y2, …, Ynを 順欠選択状態 (例えば、ハイレベル状態) とする走査を 50 繰返し行うことで、センスラインS1~Snからの電圧 を検出すれば、ペン8の位置が判別できることになる。 座標演算部7では、センスラインS1~Snの受光素子 レシーバ6を経た出力信号と、行選択信号とを用いると とにより、ペン8の位置の座標(X, Y)が特定可能と なるものである。

【0034】図3は液晶ディスプレイパネル10の断面 図の一例を示すものであり、偏光板11, ガラス12, 行列線 (X, Y) やトランジスタを集積化した層 13, 液晶素材14,共通電極15(G),ガラス16,偏光 板17が、との順に積層されたものである。

【0035】偏光板11の背面にバックライト部18が 設けられており、ペン8からの光9は偏光板17の面か ら内部の受光素子トランジスタQ11S, トランジスタQ 12Sへ夫々照射される。

【0036】尚、20は遮光板を示しており、受光素子 トランジスタQ11S 、Q12S へのバックライト部18か らの光を遮光するために設けられている。

【0037】図4は液晶ディスプレイパネル10の断面 図の他の例を示すものであり、図3と同等部分は同一符 号を示してその説明は省略する。本例では、バックライ 20 ト部18からの光を利用するものであり、ペン8´の内 部に光源の代りに反射板81を設け、この反射板81に よりバックライト部18の光を反射して受光素子へ照射 するようにしている。

#### [0038]

【発明の効果】以上の如く、本発明によれば、表示用の ディスプレイ素子と位置検出用の受光素子とを一体化し たので、装置の厚さを抑えて視差についても改善すると とができるという効果がある。

【0039】また、ペンには高電圧発生機能を付加する 30 S1 センス線 必要がないので、ペンによる表示画像の乱れがなく、更 にバックライトを用いない反射型のみならず、バックラ イトを用いる透過型にも座標位置検出ができる効果もあ\*

**\*る。** 

【図面の簡単な説明】

【図1】本発明の実施例のブロック図である。

【図2】図1の液晶ディスプレイパネル10の等価回路 図である。

6

【図3】図1の液晶ディスプレイパネル10の断面の一 例を示す図である。

【図4】図1の液晶ディスプレイバネル10の断面の他 の例を示す図である。

【図5】従来の座標位置検出機能付きのアクティブマト 10 リクス型液晶ディスプレイの断面図である。

【図6】従来の座標位置検出機能付きのアクティブマト リクス型液晶ディスプレイの原理を説明する図である。 【符号の説明】

- 1 表示コントローラ
- 2 ゲートドライバ
- 4 表示メモリ
- 5 ソースドライバ
- 6 受光素子レシーバ
- 7 座標位置演算部
  - 8 ペン
    - 9 光

10 液晶ディスプレイパネル

Q11, Q12 トランジスタ

Q115 , Q12S フォトトランジスタ

L11, L12 液晶部

D11 表示画素

G 共通電極

P11 表示セル

X1, X2 列線

Y1, Y2 行選択線

【図2】



[図3]



(5)





【図4】



【図5】



【図6】

