Ульяновский государственный технический университет Факультет информационных систем и технологий Кафедра «Измерительно-вычислительные комплексы»

Дисциплина «Алгоритмы и структуры данных»

Лабораторная работа №5

Вариант №7

Выполнил: студентка группы ИСТбд-13

Кузнецова Е. Ю.

Проверил: преподаватель

Шишкин В. В.

Задача:

Задана рекуррентная функция. Область определения функции — натуральные числа. Написать программу сравнительного вычисления данной функции рекурсивно и итерационно. Определить границы применимости рекурсивного и итерационного подхода. Результаты сравнительного исследования времени вычисления представить в табличной и графической форме.

Сравнительный график от 1 до 32 с шагом 5:

Уже при n > 32 время работы рекурсивной функции начинает превышать секунду. А предел глубины рекурсии наступает на 1 000. Тем временем итерационный подход справляется за меньше чем за секунду при значениях n > 95 000. И ограничен лишь временем. Поэтому итерационный подход эффективен как по времени работы, так и по пределу вводимых значений.

Таким образом, границы применения рекурсивного подхода ограничиваются не только характеристиками вычислительной машины, но и временем работы, если оно ограниченно. Для n > 32 рекурсивный подход не целесообразен, но тем не менее возможен. Для n > 999 не работает на тестируемом компьютере.

Итерационный подход, ограничен характеристиками вычислительной машины и временем в меньшей степени, так как сохраняет эффективность и работу при больших числах. Программа не перестает работать, так как пространственная сложность константа, но начинает замедляться, соответственно время и является главным ограничением по применимости. Если наше время не ограничено, то программа может работать настолько долго, сколько ей требуется для расчета результата.

График итерационного подхода для п от 1 до 100000 (шаг 1000)

Скачки в графике можно объяснить непропорциональной нагрузкой на компьютер в разные моменты времени.

Сравнительная таблица для п от 1 до 32

n	Значение итерации	Значение рекурсии	I	Время итерации(с)		Время рекурсии(с)
1	19	19		0.0		0.0
2	-19	-19	- 1	0.0	- 1	0.0
3	95	95	- 1	0.0	- 1	0.0
4	-323	-323	- 1	0.0	- 1	0.0
5	1159	1159	- 1	0.0	- 1	0.0
6	-4123	-4123	1	0.0	- 1	0.0
7	14687	14687	1	0.0	1	0.0
8	-52307	-52307	- 1	0.0	- 1	0.0
9	186295	186295	- 1	0.0	1	0.0
10	-663499	-663499	1	0.0	1	0.0
11	2363087	2363087	1	0.0	1	0.0
12	-8416259	-8416259	i i	0.0	Ĺ	0.0
13	29974951	29974951	İ	0.0	i	0.0
14	-106757371	-106757371	Ĺ	0.0	Ĺ	0.0
15	380222015	380222015	1	0.0	1	0.0
16	-1354180787	-1354180787	1	0.0	1	0.0
17	4822986391	4822986391	1	0.0	1	0.0
18	-17177320747	-17177320747	1	0.0		0.0
19	61177935023	61177935023	Ĺ	0.0	Ĺ	0.0
20	-217888446563	-217888446563	1	0.0	1	0.016788721084594727
21	776021209735	776021209735	1	0.0	1	0.0
22	-2763840522331	-2763840522331	Ĺ	0.0	Ĺ	0.016556978225708008
23	9843563986463	9843563986463	1	0.0		0.01673269271850586
24	-35058373004051	-35058373004051	İ	0.0	İ	0.03318595886230469
25	124862246985079	124862246985079	1	0.0	1	0.050028085708618164
26	-444703486963339	-444703486963339	1	0.0	1	0.08342885971069336
27	1583834954860175	1583834954860175	1	0.0	1	0.15009570121765137
28	-5640911838507203	-5640911838507203	1	0.0	1	0.18331408500671387
29	20090405425241959	20090405425241959	1	0.0	1	0.33362460136413574
30	-71553039952740283	-71553039952740283	İ	0.0	İ	0.49990129470825195
31	254839930708704767	254839930708704767	i	0.0	i	0.8002545833587646
32	-907625872031594867	-907625872031594867	i	0.0	i	1.3041517734527588

Вывод: итерационный подход справляется быстро и при больших значениях n и ограничен лишь временем. А границы применения рекурсивного подхода ограничиваются не только характеристиками вычислительной машины, но и временем работы. Поэтому итерационный подход эффективнее как по времени работы, так и по пределу вводимых значений.