ALFABETO, PALABRA, LENGUAJE

Preguntas:

Pregunta 1

Dado $L = \{ax : x \in \{a,b\}^*\}$, proporcione el conjunto de palabras de longitud 3 sobre L.

Solución:

aaa, aab, aba, abb

Pregunta 2

Dado $L = \{axa : x \in \{a,b\}^*\}$, enumere el conjunto de las palabras de L de longitud menor o igual que 4.

Solución:

aa, aaa, aba, aaaa, aaba, abaa, abba

Pregunta 3

Dado $L = \{axa : x \in \{a,b\}^*\}$, obtenga las diez primeras palabras de L en orden canónico.

Solución:

aa, aaa, aba, aaaa, aaba, abaa, abba, aaaaa, aaaba, aabaa

Pregunta 4

Dado $L = \{xayaz : x, y, z \in \{a, b\}^*\}$, obtenga las diez primeras palabras de L en orden canónico.

Solución:

aa, aaa, aab, aba, baa, aaaa, aaab, aaba, aabb, abaa

Pregunta 5

Dado $L=\{x\in\{a,b\}^*: |x|\equiv 1\pmod 2\}$, obtenga las diez primeras palabras de L en orden canónico.

Solución:

a, b, aaa, aab, aba, abb, baa, bab, bba, bbb

Pregunta 6

Dado $L = \{xx^r : x \in \{a,b\}^*\}$, obtenga las diez primeras palabras de L en orden canónico.

Solución:

 λ , aa, bb, aaaa, abba, baab, bbbb, aaaaaa, aabbaa

Pregunta 7

Dados $L_1 = \{xaay : x, y \in \{a, b\}^*\}$ y $L_2 = \{xayaz : x, y, z \in \{a, b\}^*\}$, ¿es L_1 igual a L_2 ?

Solución:

El enunciado es falso. Téngase en cuenta que $aba \in L_2$ y que sin embargo $aba \notin L_1$

Pregunta 8

Dados $L_1=\{ax:x\in\{a,b\}^*\}$ y $L_2=\{axa:x\in\{a,b\}^*\}$, ¿qué relación existe entre L_1 y L_2 ?

Solución:

El lenguaje L_1 contiene todas las palabras que comienzan con el símbolo a. El lenguaje L_2 contiene todas las palabras que comienzan y acaban con el símbolo a.

Por una parte, consideremos x=ab. Obviamente, $x\in L_1$ y $x\not\in L_2$. Por otra parte, todas las palabras de L_2 pertenecen a L_1 (todas ellas comienzan por a). Por lo que $L_2\subseteq L_1$

Pregunta 9

Dado $L = \{x \in \{a, b\}^* : |x| > 2\}$, obtenga un conjunto D tal que $L = \{a, b\}^* - D$.

 $D = \{\lambda, a, b, aa, ab, ba, bb\}$

Pregunta 10

Obtenga el conjunto de segmentos de la palabra abccbb.

Solución:

 $Seg(abccbb) = \{\lambda, a, b, c, ab, bb, bc, cb, cc, abc, bcc, cbb, ccb, abcc, bccb, abccb, bccbb, abccbb\}$

Pregunta 11

Obtenga el conjunto de prefijos de la palabra baccbb.

Solución:

 $Pref(baccbb) = \{\lambda, b, ba, bac, bacc, baccb, baccbb\}$

Pregunta 12

Obtenga el conjunto de sufijos de la palabra bcacba.

Solución:

 $Suf(bcacba) = \{\lambda, a, ba, cba, acba, cacba, bcacba\}$

Pregunta 13

Dado $L = \{axa : x \in \{a,b\}^*\}$, obtener el conjunto de segmentos de longitud 3 correspondientes a todas las palabras de longitud 4 de L.

Solución:

aaa, aab, aba, abb, baa, bba

Pregunta 14

Sabiendo que $y \in Pref(x^r)$, ¿es necesariamente cierto que $y^r \in Suf(x)$?

Recordamos primero que, si x = yz entonces $x^r = z^r y^r$.

Si $y \in Pref(x^r)$ entonces existe alguna palabra z tal que $x^r = yz$. Aplicando la propiedad mencionada, $x = z^r y^r$ donde se puede ver que, en efecto, $y^r \in Suf(x)$.

Pregunta 15

Sabiendo que $y \in Pref(x)$, ¿es necesariamente cierto que $y^r \in Suf(x^r)$?

Solución:

Recordamos primero que, si x = yz entonces $x^r = z^r y^r$.

Si $y \in Pref(x)$ entonces existe alguna palabra z tal que x = yz. Aplicando la propiedad mencionada, $x^r = z^r y^r$ donde se puede ver que, en efecto, $y^r \in Suf(x^r)$.

Pregunta 16

Sabiendo que $y \in Pref(x)$ y $z \in Suf(y)$, ¿es necesariamente cierto que $z \in Seg(x)$?

Solución:

Si $z \in Suf(y)$, entonces existe una palabra w tal que y = wz.

Si $y \in Pref(x)$, existe una palabra v tal que x = yv. Sustituyendo el valor de y obtenido antes, vemos que x = wzv, y que en efecto $z \in Seq(x)$

Pregunta 17

Describa informalmente el lenguaje $L = \{x \in \{a, b\}^* : a \in Pref(x) \land b \in Suf(x)\}.$

Solución:

El lenguaje contiene las palabras sobre el alfabeto que empiezan por a y acaban con b.

Pregunta 18

Describa informalmente el el lenguaje $L = \{x \in \{a,b\}^* : ab \notin Seg(x) \land ba \notin Seg(x)\}.$

Si las palabras del lenguaje no contienen el segmento ab ni el segmento ba, el lenguaje L contiene la palabra λ junto con todas las palabras formadas exclusivamente por símbolos a o por símbolos b.

Pregunta 19

Proporcione una descripción formal del lenguaje formado por las palabras sobre el alfabeto a, b tales que son palíndromos de longitud impar.

Solución:

$$L = \{xux^r : x \in \Sigma^*, u \in \Sigma\}$$

Pregunta 20

Proporcione una descripción formal para el lenguaje formado por las palabras sobre el alfabeto $\{a,b\}$ tales que están formadas por una secuencia de as seguida de otra de bs de la misma longitud.

Solución:

$$L = \{a^n b^n : n \ge 0\}$$

Pregunta 21

Dados
$$L_1 = \{x \in \{a,b\}^* : |x| \equiv 1 \pmod{2}\}$$
 y $L_2 = \{x \in \{a,b\}^* : |x|_a \equiv 1 \pmod{2} \text{ sii } |x|_b \not\equiv 1 \pmod{2}\}$, ¿es L_1 igual a L_2 ?

Solución:

Las palabras de L_2 tienen un número impar de símbolos a (resp. de símbolos b) si tienen un número par de símbolos b (resp. de símbolos a), por lo que el lenguaje es el de palabras de longitud impar, esto es, L_1 .

Pregunta 22

```
Dados L_1 = \{xaybz : x, y, z \in \{a, b\}^*\} y L_2 = \{xaby : x, y \in \{a, b\}^*\}, ¿es L_1 igual a L_2?
```

El lenguaje L_2 es el de aquellas palabras que contienen el segmento ab.

El lenguaje L_1 es el de aquellas palabras que cumplen que a un símbolo a le sigue un símbolo b.

Tomemos $\omega = xaybz$ como una palabra cualquiera del lenguaje del lenguaje, donde $x,y,z\in\{a,b\}^*$. Por una parte, si y contiene al menos un símbolo b, entonces $ab\in Seg(ay)$ y por lo tanto ab es un segmento de la palabra. Por otra parte, si y es una palabra formada exclusivamente por símbolos a, entonces $ab\in Seg(ayb)$, y por lo tanto, ab también es un segmento de la palabra.

Con lo que ambos lenguajes descritos son el mismo.