模线性方程的应用

——用数论方法解决整数问题

一引言

- 数论是数学的一支
- 它的研究对象是整数的性质

模线性方程

- 表现形式:
 - $ax \equiv c \pmod{b}$ 或 ax+by=c
- 定理:
 - 模线性方程有解的充要条件是 gcd(a,b) c
 - 若模线性方程有解,从模的意义上讲有且 只有一解。
- 实现:
 - Extended-Euclid 算法

例题 —— ball

- 小球从棋盘左侧或下侧的某格出发,斜向上运动
- 碰到棋盘的边规则反弹,碰到角落沿原路返回
- 问小球第一次回到起点时,有几个格子滚过奇数次?

		, ^ ` .		, ^ \ .					
	, '				, ,				1
w (/		, , ,		, , ,		1	
ď,		, ,				`, (,		,,'	
	` ` `		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		,		,,,		, ^ \
		ζ,		`./				, ,	

分析

- 设转化后的棋盘边长分别为 L、H,则小球将会作周期为 2Lcm(L,H)的周期运动。
- 小球的运动有两种:
 - 撞到角上,沿原线路返回,以和出发相反的方向回到起点。
 - ▶ 没有撞到角上,以和出发相同的方向回到起点。

情况1:撞到角上

■ 条件: gcd(L,H)|a。

- 水平方向运动距离: qL
- 竖直方向运动距离: pH-a
- qL=pH-a 即 pH-qL=a

结论: 只有 两个点经过 了奇数次。

情况2:没有撞到角上

■ 问题: 小球滚过一个点至多几次?

■ 结论:滚过四边上的点至多一次,滚过中间的点至多两次。

情况2:没有撞到角上

■ 小球经过奇数次的点的个数 =2Lcm(L,H)-小球经过偶数次的点的个数 *2

情况2:没有撞到角上

- 经过一个点两次时
 - 子情况1: 水平方向相反, 竖直方向相同;
 - 子情况2: 水平方向相同, 竖直方向相反。

- 水平向 左运动
 - 距离: 2k₂L+x 0≪k½≤H/g

- 假设这个点在水 平方向的投影为

水平方向相反,竖直方向相同

- $(2k_1L+x)-(2k_2L-x)$ $\equiv 0 \pmod{2H}$
- $(k_1-k_2)L+x \equiv 0 \pmod{H}$ $0 \le k_1 \le H/g$ $0 \le k_2 \le H/g$
- 条件: gcd(L,H)|x
- 结论: x 共有 L/gcd(L,H)-1 个

对于任意的x

- $(k_1-k_2)L+x \equiv 0 \pmod{H} \quad 0 \le k_1 \le H/g$ $0 \le k_2 \le H/g$
- $(k_1-k_2) \equiv V \pmod{H/g}$ 只有一解。
- 无论 V 为何值, 方程有且仅有 H/g 组
- 5
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 <p

上水平方向相同,竖直方向相反

- 类似的可以得到:
 - 水平方向相同,竖直方向相反的情况下共有 (H/g-1)*L/g 组解

结论

■ 所以问题的解为: 当g|a, 答案为2; 否则为 2LH/g-2((L/g-1)*H/g+(H/g-1)*L/g)。

小结

- ■简化复杂的问题
- 模线性方程的解的判定定理
- 分类讨论的思想

■ 从反面思考问题

总结

- 数论问题的特点
 - 和整数有关
 - 数据量大,无法用一般方法解决
- 数论问题解决方法
 - 建立数论模型
 - 对定理的熟练掌握
 - 各种思维方法

#