Ex. Find the work done in moving a particle once around a eizele C in the πy plane, if the eizele that centre of the origin and radius 3 and if the force field is given by $\vec{F} = (2\pi - y + z)\hat{i} + (\pi + y - z^2)\hat{j} + (3\pi - 2y + 4z)\hat{k}.$

Solini for the plane z=0, $\vec{F}=(2x-y)\hat{i}+(x+y)\hat{j}+(3x-2y)\hat{k}$ and $d\vec{n}=d\hat{n}\hat{i}+dy\hat{j}$ to that the work done is

$$\int_{e}^{\vec{F}\cdot\vec{dn}} = \int_{e}^{\pi} \left[(2x-y)\hat{i} + (x+y)\hat{j} + (3x-2y)\hat{k} \right] \cdot \left[dx \hat{i} + dy \hat{j} \right]$$

$$= \int_{e} \left[(2x - y) dx + (x + y) dy \right]$$

chorse the parametrie equations of the circle as $x = 3 \cos t$, $y = 3 \sin t$ where t varies from 0 to 2π . Then the line integral equals

 $\overrightarrow{R} = \chi \widehat{i} + y \widehat{j}$ $= 3 \cosh \widehat{i} + 3 \sinh \widehat{j}$

[2(3(0st)-35int][-35int] dt + [3 (0st+35int)][3 (0st)] dt t=0

$$= \int_{0}^{2\pi} \left(9 - 9 \sin t \cdot 60 s t \right) dt$$

$$= \int_{0}^{2\pi} (9 - \frac{2}{2} \sin 2t) dt$$

$$= \left[(9 + \frac{2}{2}, \frac{(0.24)}{2} \right]_{0}^{2\pi} = \left[(18\pi + \frac{9}{4}, (0.64\pi) - (0 + \frac{9}{4}) \right]$$

In Inaversing (we have chosen the counterclockwise direction indicated in the adjoining figure. We call this the positive direction, on say that (has been topoversed in the positive sense off (were traversed in the clockwise (negative) direction the value of the integral would be -1075

15 5 - 0001-1- 1 1 1 1 1 move a

Solly Since the integration is performed in the my plane (z=0), we can take $R = \chi \hat{i} + y\hat{j}$. Then

$$\int_{e}^{\vec{F}\cdot\vec{dR}} = \int_{e}^{1} \left(37y\hat{i} - y\hat{j}\right) \cdot \left(dx\hat{i} + dy\hat{j}\right)$$

$$= \int_{e}^{1} \left(37y\,dx - y\hat{j}\right) \cdot \left(dx\hat{i} + dy\hat{j}\right)$$

Now substitute $y=2\pi^{2}$ directly, where x goes from o to 1. Then $\int_{e}^{1} F \cdot d\vec{r} = \int_{e}^{1} \left[3x(2\pi^{2}) dx - (2x^{2})^{2} d(2x^{2}) \right]^{2}$

$$= \int_{0}^{1} \left\{ 6x^{3}dx - 4x^{4} \cdot 2 \cdot 2x \, dx \right\}$$

$$= \int_{0}^{L} \left(6x^{3} - 16x^{5} \right) dx$$

$$= 6 \left[\frac{x^{4}}{4} \right]_{0}^{1} - 16 \left[\frac{x^{6}}{6} \right]_{0}^{1}$$

$$=\frac{3}{2}(1-0)-\frac{8}{3}(1-0)$$

$$=\frac{3}{3}-\frac{8}{3}=\frac{9-16}{6}=-\frac{7}{6}$$
 (Ans)