Direct Proofs in-class Exercises

- Identify the hypothesis and the conclusion.
- Isolate any relevant definitions.
- Given an example illustrating the truth of the statement.
- Write a proof of the statement.
- Verify that all hypotheses were used (or not).
- 1. Suppose $x, y \in \mathbb{Z}$. If x and y are odd, then xy is odd.
- 2. Suppose $x, y \in \mathbb{Z}$. If x is even, then xy is even.
- 3. If $x \in \mathbb{R}$ and 0 < x < 4 then $\frac{4}{x(4-x)} \ge 1$.
- 4. If a is an integer and $a^2|a$, then $a \in \{-1, 0, 1\}$

Analyze the following proof along the given lines.

Proposition If $a, b, c \in \mathbb{N}$, then $lcm(ca, cb) = c \cdot lcm(a, b)$.

Proof. Assume $a,b,c \in \mathbb{N}$. Let $m = \operatorname{lcm}(ca,cb)$ and $n = c \cdot \operatorname{lcm}(a,b)$. We will show m = n. By definition, $\operatorname{lcm}(a,b)$ is a positive multiple of both a and b, so $\operatorname{lcm}(a,b) = ax = by$ for some $x,y \in \mathbb{N}$. From this we see that $n = c \cdot \operatorname{lcm}(a,b) = cax = cby$ is a positive multiple of both ca and cb. But $m = \operatorname{lcm}(ca,cb)$ is the *smallest* positive multiple of both ca and cb. Thus $m \le n$.

On the other hand, as $m = \operatorname{lcm}(ca, cb)$ is a multiple of both ca and cb, we have m = cax = cby for some $x, y \in \mathbb{Z}$. Then $\frac{1}{c}m = ax = by$ is a multiple of both a and b. Therefore $\operatorname{lcm}(a, b) \le \frac{1}{c}m$, so $c \cdot \operatorname{lcm}(a, b) \le m$, that is, $n \le m$.

We've shown $m \le n$ and $n \le m$, so m = n. The proof is complete.

Figure 1: LCM theorem