1 Introduzione

probabilità \rightarrow misurare l'incertezza statistica:

- descrittiva
- \bullet differenziale \to campione casuale per $\underline{\rm stimare}$ un esito

probabilità:

$$\frac{casifavorevoli}{casitotali}$$
 $\underline{\mathbf{SE}}$ equiprobabili

per contare i casi ci si appoggia alla combinatoria

partizione: separazione di A in sottoinsiemi senza elementi comuni

NB:

$$\bullet \ \land \text{- and} \to A \cap B = \{x | x \in A \land x \in B\}$$

•
$$\vee$$
 - or $\rightarrow A \cup B = \{x | x \in A \lor x \in B\}$

Principi della combinatoria:

- 1. A insieme, {E_i}_{i=1}^n partizione di A $\rightarrow \# {\bf A} = \sum_{i=1}^n \# {\bf E}_{\bf i}$
 - A,B insiemi, AxB è l'insieme di coppie ordinate (a,b)

2.
$$\#(AxB) = \#A \cdot \#B \to \{A_i\}_{i=1}^n = \bigotimes_{i=1}^n A_i$$

3. A,B, #(A
$$\cup$$
B) = #A + #B - #(A \cap B) (non perfetto) \rightarrow

$$\cup_{i=1}^{n} A_{i} = \sum_{i=1}^{n} \#A_{i} - \sum_{i < j} \#(A_{i} \cap A_{j}) + \sum_{i < j < k} \#(A_{i} \cap A_{j} \cap A_{k}) + \dots$$

$$\downarrow$$

$$+(-1)^{n+1} \# \cap_{i=1}^{n} A_{i}$$

2 Permutazioni e anagrammi

Fattoriale $\rightarrow x! = 9! = 9.8.7.6....2.1$

NB: 0! = 1

- "prendiamo" ha 9! anagrammi
- "anagramma" ha tre ripetizioni di a e due ripetizioni di m, quindi per calcolare i casi unici:

$$\frac{9!}{3! \cdot 2!}$$

 \downarrow

per calcolare la probabilità degli elementi n, ma mi interessano solo k elementi allora:

$$\frac{n!}{(n-k)!}$$

se non sono interessato all'ordine, allora:

$$\frac{n!}{(n-k)!k!} \Rightarrow \binom{n}{k}$$

chiamato anche coefficente binominiale

Proprietà:

- $\bullet \ \binom{n}{k} = \binom{n}{n-k}$
- $\bullet \ \binom{n}{0} = \binom{n}{n} = 1$
- $\bullet \ \sum_{k=0}^{n} \binom{n}{k} = 2^{n}$
- $\bullet \ \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$

3 Esperimenti aliatori

Un esperimento si definisce aliatorio o casuale se con i dati iniziali il risultato è incerto. I risultati a 2 a2 incompatibili di un esperimento aliatorio sono chiamati esiti. Ω denota lo spazio degli esiti. Un evento è un osservabile di un esperimento aliatorio.

Una parte di Ω può essere considerata come famiglia:

$$\mathcal{F} \subseteq P(\Omega)$$

Questa è definita come algebra se:

- $\Omega \in \mathcal{F}$
- se $A \in \mathcal{F}$ allora $A^c \in \mathcal{F}$
- se $A,B \in \mathcal{F}$, allora $A \cup B \in \mathcal{F}$ potremmo scrivere anche $\{A_i\}_{i=1}^n \subseteq \mathcal{F}$ allora $\cup_{i=1}^n A_i \in \mathcal{F}$

Proprietà

- $\bullet \ \emptyset \in \mathcal{F}$
- se $A,B \in \mathcal{F}$ allora $A \cap B \in \mathcal{F}$
- $\bullet \ \mathrm{se} \ \{A_i\}_{i=1}^n \subseteq \mathcal{F} \ \mathrm{allora} \ \cap_{i=1}^n A_i \in \mathcal{F}$
- se $A,B \in \mathcal{F}$, allora $A \cdot B \in \mathcal{F}$
- se $A,B \in \mathcal{F}$, allora $A \triangle B \in \mathcal{F}$

 $\mathcal{F} \subseteq \! \mathrm{P}(\Omega)$ è una **tribù** se:

- $\Omega \in \mathcal{F}$
- $A \in \mathcal{F} \Rightarrow A^C \in \mathcal{F}$
- per ogni famiglia <u>numerabile</u> $\{A_i\}_{i=1}^{+\infty} \subseteq P(\Omega)$, allora $\cup_{i=1}^{+\infty} A_i \in \mathcal{F}$

NB: generalmente una tribù è un'algebra se hanno elementi finiti

 \mathcal{F} tribù su Ω . Ogni $E \in \mathcal{F}$ (E è sottoinsieme di Ω) si dice **Evento**. I singoletti si chiamano **eventi elementari**. E si verifica se il risultato dell'esperimento appartiene ad $E \mathcal{F}$ tribù su Ω (Ω , \mathcal{F})

Dati Ω , \mathcal{F} tribù su Ω (Ω , \mathcal{F}) si chiama **spazio probabilizzabile**.

 (Ω,\mathcal{F}) , una funzione P: $\mathcal{F} \to \mathcal{R}$ si dice funzione di probabilità se:

- per ogni evento $E P(E) \ge 0$
- $P(\Omega)=1$
- data una famiglia numerabile $\{E_i\}_{i=1}^{+\infty}$ di eventi a 2 a 2 disgiunti:

$$P(\cup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$$
 (additività)

Proprietà delle probabilità

- $P(\emptyset) = 0$
- $E \in \mathcal{F}$ allora $P(E^c) = 1 P(E)$
- E,F $\in \mathcal{F}$, E \subseteq F \Rightarrow P(E) \leq P(F) E $\in \mathcal{F}$ P(E) \leq 1
- $E,F \in \mathcal{F} \ P(E \cup F) = P(E) + P(F) P(E \cap F)$ $P(E \cup F) \leq P(E) + P(F)$ $(E_i)_{i=1}^n i \mathcal{F}, \ P(\cup_{i=1}^n E_i) = \sum_{k \in \mathcal{P}(\{1-n\})} (-1)^{\#k+1} \ P(\cap_{j \in k} E_j)$ $(E_i)_{i=1}^{+\infty} \subset \mathcal{F}, \ P(\cup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} \ P(E_i)$
- (disuguaglianza di bonferrow) $\textstyle \sum_{i=1}^{+\infty} P(E_i) \sum_{i < j} P(E_i \cap E_j) \leq P(\cup_{i=1}^{+\infty} E_i) \leq \sum_{i=1}^{\infty} P(E_i)$

4 Probabilità condizionata

 (Ω, \mathcal{F}, P) , $E,F \in \mathcal{F}$ con $P(F) \neq 0$, allora la probabilità di E condizionale a F è:

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

Dato (Ω, \mathcal{F}, P) e due sotto tribù $\mathcal{F}_1, \mathcal{F}_2$ di \mathcal{F} allora $\mathcal{F}_1 e \mathcal{F}_2$ sono indipendenti se se ogni elemento di \mathcal{F}_1 è indipendente da ogni elemento di \mathcal{F}_2

$$P(E_1{\cap}E_2 \mid \mathcal{F}) = P(E_1|\mathcal{F}) \cdot P(E_2|\mathcal{F})$$

5 funzione di probabilità (Ω, \mathcal{F}, P)

1. Ω finito o numerabile

 Ω è dato

$$\mathcal{F} = \mathcal{P}(\Omega)$$

P: assegnamo ad ogni singoletto ($\omega \in \Omega$) un probabilità tale che:

$$P(\omega) \ge 0$$

$$\sum P(\omega) = 1$$

A questo punto $\forall E \in \mathcal{F} P(E) := \sum_{\omega \in E} P(\omega)$

2. Spazi prodotto

considerando più ripetizioni di un esperimento o l'unione di più esperimenti: data una famiglia di sottoinsiemi di Ω dette \mathcal{A} . La tribù di $\mathcal{F}_{\mathcal{A}}$ generata da \mathcal{A} come la più piccola tribù contenente \mathcal{A}

$$\mathcal{F}_{\mathcal{A}} = \sigma(\mathcal{A}) = \bigcap \{ \mathcal{G} : \mathcal{G} \text{ è tribù in } \Omega \in \mathcal{A} \subseteq \mathcal{G} \}$$

quindi il prodotto $\Omega_1 \times \Omega_2$, la tribù sarà:

Quindi:

con un numero finito di esperimenti $\{(\Omega_i, \mathcal{F}_i, P_i)\}_{i \in I}$ allora lo spazio prodotto ha forma:

$$\Omega = \bigotimes_{i \in I} \Omega_i$$

$$\mathcal{F} = \bigotimes_{i \in I} \mathcal{F}_i = \sigma(\Pi_{i \in I} \ E_i : E_i \in \mathcal{F}_i \text{ e } \exists \text{n tc } \forall j \geq n \ E_j = \Omega_i)$$

$$P = \bigotimes_{i \in I} P_i \operatorname{cio\acute{e}} P(\Pi_{i \in I} E_i) = \Pi_{i \in I} P_i(E_i)$$

6 Trasformazioni lineari di variabili aleatorie

07/04/21

X variabile aleatoria con legge F_X . Se X è variabile aleatoria discreta:

$$\varphi_Y(y) = \sum_{x \in g^{-1}(\{y\})} \varphi_X(x)$$

Se X è variabile aleatoria assolutamente continua abbiamo 2 strategia:

- 1. Ricaviamo la legge di Y usando la forma di X e della funzione g
- 2. usiamo il teorema generale

Teorema del cambio di variabile

Sia X variabile aleatoria continua di densità f_X , sia Y = g(x) con $g : \mathbb{R} \to \mathbb{R}$ continua a tratti t.c. P(g(x) = 0) = 0. Allora:

$$f_Y(y) = \sum_{x \in g^{-1}(\{y\})} \frac{f_X(x)}{|g^1(x)|}$$

7 Vettori aleatori

Dato uno spazio probabilizzabile (Ω, \mathcal{F}, P) consideriamo 2 variabili aliatorie $X, Y : \Omega \to \mathbb{R}^2$

Def: dati (Ω, \mathcal{F}, P) e X, Y variabili aleatorie su di esso si chiama **coppia di variabili** aleatorie o **variabile aleatoria doppia** o **2-vettore aleatorio**. La funzione $V: \Omega \to \mathbb{R}^2: V(\omega) = (X(\omega/Y(\omega)))$. Il supporto del vettore aleatorio V:

$$\mathcal{R}_V = \mathcal{R}_{X,Y} = \mathcal{R}_X \times \mathcal{R}_Y = \{(x,y) \in \mathbb{R}^2 : x \in \mathcal{R}_X, y \in \mathcal{R}_Y\}$$

Def: Data (X,Y) coppia di variabili aleatorie, la sua funzione di ripartizione è:

$$F_{X,Y}((x,y)) = F_{X,Y}(x,y) = P(X \le x, Y \le y)$$

 $F_{X,Y}$ si chiama anche funzione di ripartizione congiunta di X e Y

Def: Data (X, Y) coppia di variabili aleatorie, chiameremo funzione di ripartizione di X condizionata a Y la funzione:

$$F_{X|Y}(x|y) := \frac{F_{X,Y}(x,y)}{F_Y(y)}$$

Def: Dato (Ω, \mathcal{F}, P) e due tribù $\mathcal{F}_1, \mathcal{F}_2 \subset \mathcal{F}, \mathcal{F}_1, \mathcal{F}_2$ sono indipendenti se lo sono le tribù $\sigma(x)$ e $\sigma(y)$ da esse generate

Prop
:X,Ysono indipendenti se e solo se:

$$\forall (x,y) \in \mathbb{R}^2 \ F_{X|Y}(x|y) = F_X(x)F_Y(y)$$

Prop: X, Y sono indipendenti se e solo se:

$$\forall (x,y) \in \mathbb{R}^2 \ F_{X|Y}(x|y) = F_X(x) \ e \ F_{Y|X}(y|x) = F_Y(y)$$

8 Vettori aleatori discreti

Def: Siano X, Y variabili aleatorie discrete su (Ω, \mathcal{F}, P) chiamiamo **densità discrete congiunte** la funzione $\varphi_{X,Y} : \mathbb{R}^2 \to [0,1]$ definita:

$$\varphi_{X,Y}(x,y) = P(X=x,Y=y)$$

la densità discreta di X condizionata a Y è $\varphi_{X,Y}$ definità:

9 Vettori aleatori misti

caso speciale di va discreta e va continua

Modelli di variabili aleatorie discrete

10 Bernoulliane

Def:

Una variabile aleatoria di dice bernoulliana di parametro $p \in [0, 1]$ se la densità discreta è:

$$X \sim bin(1,p)$$

$$\varphi_x(x) = \begin{cases} p & x = 1\\ 1 - p & x = 0\\ 0 & altrimenti \end{cases}$$

la cdf di una bernoulliana (p) è
$$F_x(x) = \begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

11 Binominale

Def:

una variabile aleatoria discreta X è binominale di parametri n e p se è la somma di n bernulliane(p) indipendenti

$$X \sim bin(n, p)$$

$$\varphi_x(k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & k \in \{0, ..., n\} \\ 0 & altrimenti \end{cases}$$

12 Schema o processo di Bernoulli

21/04/21

Dati infiniti esperimenti indipendenti e identicamente distribuiti

$$(X_i)_i \in \mathbb{N} \ iid \ X_i \sim bin(1,p)$$

$$\Omega = \{0,1\}^{\mathbb{N}/\{0\}}$$

Tribù \mathcal{F} generata dai cilindri

P uguale al prodotto delle probabilità delle componenti

12.1 Cilindri

I cilindri sono sottoinsiemi $c \subseteq \Omega$ tali che esiste un $n \in \mathbb{N}/\{0\}$ e un vettore $v \in \{0,1\}^n$:

$$C = \{ \omega \in \Omega : \omega_i = v_i \ 1 \le i \le n \}$$

Es:

• un successo seguito da due insuccessi:

Cilindro:
$$n = 3 \ v = (1, 0, 0) \Rightarrow prob = p(1 - p)^2$$

• primo successo al k-esimo lancio:

Cilindro:
$$(0, 0, ..., 0_{k-1}, 1_k) \Rightarrow prob = (1-p)^{k-1}p$$

• prob 3° lancio sia un successo:

$$(\cdot \cdot \cdot 1*) = (001) \cup (101) \cup (011) \cup (111)$$

$$P(\cdot \cdot \cdot 1*) = \sum P(...) = (1-p)^2 p + 2(1-p)p^2 + p^3 = P(p+(1-p))^2$$

13 Geometriche

Una varibile aleatoria $(T_1 := \inf\{i \geq 1 : \omega_i = 1\})$ è una geometrica di parametro p $X \sim geom(p)$ se è l'istante precedente al primo successo in un processo di Bernoulli di parametro p

cdf di una geometria:

$$F_X(x) \begin{cases} 0 & x < 0 \\ \sum_{k=0}^x \varphi_x(k) = 1 - (1-p)^x & x \ge 0 \end{cases}$$
 (1)

Assenza di memoria: $\forall n,k\in\mathbb{N} \quad P(x\geq n+k|X\geq n)=P(X\geq k)$ es:

$$(Y \ge 60 + 30|Y \ge 60) = (Y \ge 30) = (1 - p)^{30}$$

14 Binominali negative

 T_n = istante dell'n-esimo successo

$$T_1 := \inf\{i \ge 1 : \omega_i = 1\}$$

 $T_{n+1} := \inf\{i \ge T_n : \omega_i = 1\} \ n \ge 1$

X è una variabile aleatoria binominale negativa (o di pascal) di parametri n e p se è il numero di insuccessi precedenti all'n-ennesimo successo di uno schema di bernoulli di parametro p $X \sim NB(n,p)$

$$pnk \in \mathbb{N}\varphi_x(k) \begin{cases} = P(x=k) = P(T_n = k+n) \\ = P(\omega_{n+k} = 1, \sum_{j=1} \omega_j = n-1) \\ = p\binom{k+n-1}{n-1} p^{n-1} (1-p)^k \end{cases} \Rightarrow \binom{k+n-1}{n-1} p^n (1-p)^k \tag{2}$$

15 Riproducibilità

22/04/21

Una famiglia di variabili aleatorie si dice riproducibile se sommando 2 variabili aleatorie indipendenti appartenenti a quella famiglia abbiano ancora una variabile aleatoria della medesima famiglia

Prop: La famiglia delle binominali a parametro p fissato è riproducibile. Se $X \sim bin(n, p), Y \sim bin(m, p), X$ e Y indipendenti allora:

$$X + Y \sim bin(n + m, p)$$

16 Ipergeometriche

Data un urna con n biglie bianche e n biglie nere, contiamo le bianche:

- con reimmissione abbiamo $bin(k, \frac{n}{m+n})$
- senza reimmissione usiamo un'ipergeometrica

Def: Si chiama ipergeometrica di parametri k, n, m la variabile aleatoria che conta il numero di bianche tra le estratte senza reimmissione

$$X \sim hyp(k, n, m)$$

$$\varphi_x(b): \begin{cases} \frac{\binom{m}{b}\binom{n}{k-b}}{\binom{n+m}{k}} \\ 0 \quad altrimenti \end{cases}$$

28/04/2021

Prop: Siano $\{a_i\}_{i\in\mathbb{N}}$, $\{b_i\}_{i\in\mathbb{N}}$ interi non negativi che tendono in modo monotono a $+\infty$, $\lim_{i\to\infty}a_i=\lim_{i\to\infty}b_i=+\infty$ o tali che $\lim_{i\to\infty}\frac{a_i}{b_i+a_i}=\alpha,\ \alpha\in[0,1]$, allora:

$$\frac{\binom{a_i}{k}\binom{b_i}{n-k}}{\binom{a_i+b_i}{n-k}} \to_{i\to\infty} \binom{n}{k}\alpha^k (1-\alpha)^{n-k}$$

17 Poisson

Def: X è variabile aleatoria di Poisson di parametro $\lambda > 0$ se:

$$\varphi_x(k) \begin{cases} \frac{\lambda^k}{k!} \cdot e^{-\lambda} & k \in \mathbb{N} \\ 0 & altrimenti \end{cases}$$

e si denota come $X \sim Pois(\lambda)$

Es:

in una partita di calcio vengono segnati 2.5 gol di media. X determina la probabilità di fare gol in un intervallo:

- \Rightarrow dividiamo 90' in 5 intervalli: $X \sim bin(5, 1/2)$
- \Rightarrow dividiamo in 20 intervalli: $X \sim bin(20, 1/8)$
- \Rightarrow dividiamo in 90 intervalli: $X \sim bin(90, 1/36)$

Questa successione tende a una variabile aleatoria di Poisson

Oss: Poisson viene a volte utilizzato come descrizione di una binomiale con n, p piccoli o grandi, non precisi

Prop: $\{p_n\}_n$ successione di numeri in [0,1] tale che $\lim_{x\to\infty} n \cdot p_n = \lambda \in \mathbb{R}^+$ allora $\forall k \in \mathbb{N}$:

$$\lim_{n\to\infty} \binom{n}{k} p_n^k (1-p_n)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda}$$

Prop: Le variabili aleatorie di Poisson sono riproducibili. $X \sim Pois(\lambda_1), Y \sim Pois(\lambda_2)$:

$$X + Y \sim Pois(\lambda_1 + \lambda_2)$$

18 Speranza/Valore atteso/Media

Caso variabile aleatoria discreta

Def:

La speranza di una variabile aleatoria discreta è il baricentro della sua distribuzione

$$E[X] = \sum_{x \in \mathcal{R}_x} x \cdot \varphi_x(x)$$

Oss: se prendo un esito Y=y nella mia tribù e considerò P(.|Y)

$$E[X|Y] = \sum_{x \in \mathcal{R}_x} x \cdot P(X = x|Y = y) = \sum_{x \in \mathcal{R}_x} x \cdot \varphi_{x|y}(X|Y)$$

Teorema

Sia X una variabile aleatoria discreta con densità discreta φ_x e sia Y = g(x), allora:

$$E[Y] = \sum_{k \in \mathcal{R}_x} g(k) \cdot \varphi_x(x)$$

Teorema

Sia (X,Y) un vettore aleatorio discreto con densità congiunta $\varphi_{x,y}$ e sia $Z=g(x,y),\,g:\mathbb{R}^2\to\mathbb{R}$, allora:

$$E[Z] = \sum_{j \in \mathcal{R}_y} \sum_{k \in \mathcal{R}_x} g(k, j) \cdot \varphi_{xy}(k, j)$$

Prop 29/04/2021

il valore atteso possiede le seguenti proprietà:

• Linearità: Siano X, Y variabili aleatorie discrete e $a, b \in \mathbb{R}$, allora:

$$E[aX + bY] = aE[X] + bE[Y]$$

• Prodotto di variabili aleatorie indipendenti: Siano X, Y variabili aleatorie discrete e indipendenti, allora:

$$E[XY] = E[X] \cdot E[Y]$$

• Monotonia: X variabile aleatoria discreta, se $X \geq 0$ allora $E[X] \geq 0$. L'uguaglianza vale solo se $X \equiv 0$

Corollario: Se X, Y variabili aleatorie discrete tali che $P((X \ge Y) = 1)$ allora $E[X] \ge E[Y]$. In più se E[X] = E[Y] Allora X = Y

Speranza di variabili aleatorie discrete note

 $\begin{array}{llll} \text{Bernoulliane} & X \sim bin(1,p) & \Rightarrow & E[X] = p \\ \text{Binomiali} & X \sim bin(n,p) & \Rightarrow & E[X] = n \cdot p \\ \text{Poisson} & X \sim pois(\lambda) & \Rightarrow & E[X] = \lambda \\ \text{Ipergeometriche} & X \sim hyp(k,m,n) & \Rightarrow & E[X] = k \cdot \frac{m}{n+m} \\ \text{Geometriche} & X \sim geom(p) & \Rightarrow & E[X] = \frac{1-p}{p} \\ \text{Binomiali Negative} & X \sim NB(n,p) & \Rightarrow & E[X] = n \cdot \frac{1-p}{p} \end{array}$

19 Variabile aleatoria assolutamente continua

X è variabile aleatoria assolutamente continua P(X=a)=0

$$P(X \in [a,b]) = \int_a^b f_x(x) dx$$

Def

X variabile aleatoria assolutamente continua allora $E[X] = \int_{-\infty}^{+\infty} x \cdot f_x(x) dx$

Teorema

X variabile aleatoria assolutamente continua e Y=g(x) allora:

$$E[Y] = \int_{\mathbb{R}} g(x) f_x(x) dx$$

Teorema

(X,Y)vettl
re aleatorio assolutamente continuo e $g:\mathbb{R}^2\to\mathbb{R}$ allora se
 Z=g(x,y):

$$E[Z] = \int \int_{\mathcal{R}^2} g(x, y) f_{X,Y}(x, y) dx dy$$

Teorema

(X,Y) vettl
re aleatorio misto con X discreta e Y assolutamente continua e densità ibrida (
o mista) $f_{X,Y}$. Se $g: \mathbb{R}^2 \to \mathbb{R}$ e Z = g(X,Y) allora:

$$E[Z] = \sum_{x \in \mathcal{R}_T} \int_{-\infty}^{+\infty} g(x, y) f_{X,Y}(x, y) dx dy$$

Proprietà

Il valore atteso gode delle seguenti proprietà:

- Linearità
- prodotto di variabili aleatorie indipendenti
- Monotonia

20 momenti di una variabile aleatoria

Def

per ogni $n \in \mathbb{N}/\{0\}$ si dice momento n-esimo di X variabile aleatoria il numero reale $E[X^n]$. Si dice momento centrale di X il numero reale $E[(X - E[X])^n]$ Il momento secondo centrale di X prende il nome di varianza di X: Var[X]

NB: la varianza misura la larghezza della distribuzione, al quadrato

Prop

$$Var[X] = E[X^2] - (E[X])^2$$

Proprietà della varianza

 $\bullet \ Var[X] \geq 0, \ Var[X] = 0 \Leftrightarrow X \equiv const$

•
$$a, b \in \mathbb{R}, \ Var[aX + b] = a^2Var[X]$$

Prop

Siano X,Y variabili aleatorie indipendeti, allora Var[X+Y] = Var[X] + Var[Y]

21 Deviazione standard

Chiamiamo deviazione standard σ_x di una variabile aleatoria X, il numero $\sigma_x = \sqrt{Var[X]}$ Sia $Y = \alpha X$ allora $\sigma_Y = \alpha \cdot \sigma_X$

Varianza di modelli discreti noti

 $\begin{array}{lll} \text{Bernoulliane} & X \sim bin(1,p) & \Rightarrow & Var[X] = p(1-p) \\ \text{Binomiali} & X \sim bin(n,p) & \Rightarrow & Var[X] = n \cdot p(1-p) \\ \text{Geometriche} & X \sim geom(p) & \Rightarrow & Var[X] = \frac{(1-p)}{p^2} \\ \text{Binomiali neagative} & X \sim NB(p) & \Rightarrow & Var[X] = n \cdot \frac{(1-p)}{p^2} \\ \text{Poisson} & X \sim pois(\lambda) & \Rightarrow & Var[X] = \lambda \end{array}$

22 Diseguaglianze

Disuguaglianza di Markov

Sia X una variabile aleatoria non negativa, allora $\forall a > 0$:

$$P(X \ge a) \le \frac{E[X]}{a}$$

Disuguaglianza di Chebychev

Sia X variabile aleatoria. Per ogni a > 0:

$$P(|X - E[X]| \ge a) \le \frac{Var[X]}{a^2}$$

Oss: posso prendere $a\sigma_x$ al posto di a e la funzione diventa:

$$P(|X - E[X]| \ge a\sigma_x) \le \frac{\sigma_x^2}{a^2\sigma_x^2}$$

23 Covarianza e correlazione

Date X, Y variabili aleatorie, chiamiamo covarianza di X e Y il numero:

$$Cpv[X,Y] = E[(X - E[X])(Y - E[Y])]$$

Oss: Se X = Y Allora

$$Cov[X,Y] = E[(X-E[X])^2] = Var[X]$$

$$Conv[X, Y] = E[X \cdot Y] - E[X] \cdot E[Y]$$

Proprietà

- Se X e Y sono indipendenti allora Cov[X,Y]=0
- La covarianza è simmetrica: Cov[X, Y] = Cov[Y, X]

Def

Date X e Y variabili aleatorie tali che Cov[X,Y]=0, allora si defininiscono scorrelate

Proprietà

- $Var[X + Y] = Var[X] + Var[Y] + 2 \cdot Conv[X, Y]$
- $\bullet\,$ In ogni componente la Cov è lineare:

$$Cov[aX + bY, Z] = a \cdot Cov[X, Z] + b \cdot Cov[Y, Z]$$

• La convarianza è bilineare:

Dati
$$(a_i)_{i=1}^n, (b_j)_{j=1}^m$$
 vettori reali, $(X_i)_{i=1}^n, (Y_j)_{j=1}^m$ vettori aleatori: $Cov[\sum_{i=1}^n a_i X_i, \sum_{j=1}^m b_j Y_j] = \sum_{i,j} a_i b_j \ Conv[X_i, Y_j]$

Def

La matrice $Cov[X_i, Y_i]$ si chiama matrice di covarianza (\sum)

$$Cov[\vec{a}\cdot\vec{X},\vec{b}\cdot\vec{Y}]=\vec{a}^t\sum\vec{b}$$

Prop

$$-\sqrt{Var[X]Var[Y]} \le Cov[X,Y] \le \sqrt{Var[X]Var[Y]}$$

Def

Date X e Y variabili aleatorie, chiamiamo Correlazione il numero:

$$\mathcal{P}(X,Y) = Corr[X,Y] = \frac{Cov[X,Y]}{\sqrt{Var[X]Var[Y]}}$$

24 Mediane

06/05/21

Si dice Mediane di una variabile aleatoria X un numero mx tale che:

$$P(X \le mx) = P(X \ge mx)$$

Oss:

$$P(X \le mx) = F_X(mx)$$

$$P(X \ge mx) = 1 - F_X(mx) - P(X = mx)$$

cioé, per X assolutamente continua mx tale che:

$$F_X(mx) = 1 - F_X(mx)$$
 ossia $F_X(mx) = 1/2$ $mx \in F_X^{-1}(\{1/2\})$

Per X assolutamente continua esiste una mediana, ma può essere non unica

Oss: Se X è una variabile aleatoria discreat, la mediana può non essere unica o non esistere

Def

Chiamiamo mediana impropria un reale $\tilde{m}x$ tale che:

$$P(X \le \widetilde{m}x) \ge 1/2$$
 e $P(X \ge \widetilde{m}x) \ge 1/2$

25 Quantile

Dato X con legge F_X e $p \in (1,0)$, chiamiamo p-quantile il numero reale $Q_X(p)$:

$$Q_X(p) = \inf\{x \in \mathbb{R} : F_X(x) \ge p\}$$

Oss: la funzione quantile $Q_X:p\to Q_x(p)$ $((0,1)\to\mathbb{R})$ è qualcosa di simile all'inversa della F_X

26 Moda

Chiamiamo modadi una variabile aleatoria X un numero $x \in \mathcal{R}_x$ tale che:

- Se X è discreta, φ_x è massima in x, cio
é $x \in argmax \ \varphi_x(y)$
- Se X è continua, fx è massima in x, cioé $x \in argmax \ f_x(y)$

Se la moda è unica X è unimodale. Se ha 2 mode è bimodale. Se ha più di 2 mode è multimodale

Modelli assolutamente continui

27 Uniformi

Dati due numeri reali a < b chiamiamo un variabile aleatoria X uniforme su [a,b] se la sua densità f_X è costante in (a,b) e nulla altrove

$$X \sim unif(a,b)$$
 o $X \sim unif[a,b]$
$$\frac{1}{b-a}$$

Indicatori:

- $E[X] = \frac{a+b}{2}$
- $Var[X] = \frac{(b-a)^2}{12}$

la mediana coincide con la media e la moda coincide con qualunque valore in (a, b)

28 Esponenziali

X è esponenziale di parametro $\lambda > 0$ se

$$f_x(x) = \begin{cases} c \cdot e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$c = \lambda$$
, $F_X(x) = 1 - e^{-\lambda x}$

Indicatori

- $E[X] = \frac{1}{\lambda}$
- $Var[X] = \frac{1}{\lambda^2}$
- la moda è 0
- la mediana è $\frac{log(2)}{\lambda}$

Le esponenziali hanno assenza di memoria, cioé per s, t > 0:

$$P(X > s + t \mid X > s) = P(X > t)$$

29 Gaussiane o Normali

X è normale standard se ha densità:

$$X \sim \mathcal{N}(0,1) \Rightarrow f_x(x) = \frac{1}{\sqrt{2\pi}} {}^{(1)} \cdot e^{\frac{-x^2}{2}} {}^{(2)}$$

(1) è costante di normalizzazione, mentre (2) da la forma a campana

Proprietà

- f_X è simmetrica rispetto a x = 0, $f_X(x) = f_X(-x)$
- f_x ha massimo in x=0. Tale massimo è $\frac{1}{\sqrt{2\pi}}$
- ha punti di flesso in ± 1
- in ± 2 ha valore ≈ 0.05 e in ± 3 vale ≈ 0.004

Funzione di ripartizione

$$\Phi(x) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \cdot e^{\frac{-x^2}{2}} dt$$

Proprietà

- in 0 vale $\frac{1}{2}$
- è simmetrica rispetto a $(0, \frac{1}{2}) \to \Phi(x) = 1 \Phi(x)$
- in -3 vale ≈ 0.0013 , in 3 vale ≈ 0.9987
- $\Phi(-2) \approx 0.0228, \ \Phi(2) \approx 0.9772$
- è monotona strettamente crescente

 Φ^{-1} è funzione quantile

$$\Phi^{-1}(p) = x \Leftrightarrow \Phi(x) = p \Leftrightarrow P(X \le x) = p$$

La funzione quantile è simmetrica rispetto a $(\frac{1}{2},p)$, cioé $\Phi^{-1}(p)=-\Phi^{-1}(1-p)$

Indicatori

$$\bullet \ E[X] = 0$$

•
$$Var[X] = 1$$

Def

Sia $Z \sim \mathcal{N}(0,1)$ allora X è una variabile aleatoria normale di parametri $\mu \in \mathbb{R}, \sigma > 0$ se $X = \sigma Z + \mu$, e scriveremo $X \sim \mathcal{N}(\mu, \sigma)$

$$F_X(x) = P(z \le \frac{x-\mu}{\sigma}) = \Phi(\frac{x-\mu}{\sigma})$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

- $E[X] = \mu$
- $Var[X] = \sigma^2$

Proprietà

 $X \sim \mathcal{N}(\mu, \sigma)$ eredità le proprietà di $Z \sim \mathcal{N}(0, 1)$ tenendo conto di trasformazioni e deviazione

Prop: la famiglia Gaussiana è riproducibile. Dati $X_1 \sim \mathcal{N}(\mu_1, \sigma_1)$ e $X_2 \sim \mathcal{N}(\mu_2, \sigma_2)$, allora:

$$X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2})$$

30 Chi quadro

Se X è una somma di n quadrati di guassiane standard indipendenti, diciamo che X è una chi quadro con n gradi di libertà, e scriveremo $X \sim X_n^2$ oppure $X \sim \mathcal{X}^2(n)$

$$(Y_i)_{i=1}^n$$
 iid $Y_i \sim \mathcal{N}(0,1)$ $X = \sum_{i=1}^n Y_i^2$

Oss: Se sommiamo 2 quadrati, la distribuzione che otteniamo è una esponenziale con $\lambda=\frac{1}{2}$

Oss: le chi quadro sono riproducibili

La densità $f_X(x) = c_n \cdot x^{\frac{n}{2}-1} \cdot e^{\frac{-x}{2}}$ con c_n opportuna rinormalizzazione

Indicatori:

- \bullet E[X] = n
- Var[X] = 2n

31 T (di Student)

Data $Z \sim \mathcal{N}(0,1), \ W \sim \mathcal{X}^2(n)$ indipendenti, X è una t di student a n gradi di libertà se $X = \frac{Z}{\sqrt{w/n}}$ e scriviamo $X \sim t(n)$ o $X \sim t_n$

Proprietà

- $\bullet \ f_X(x) = f_X(-x)$
- $F_X(-x) = 1 F_X(x)$
- $F_X^{-1}(p) = -F_X^{-1}(1-p)$

Indicatori

- $E[X] = 0 \quad \forall n$
- $Var[X] = \begin{cases} \text{non definita} & n = 1 \\ +\infty & n = 2 \\ \frac{n}{n-2} & n > 2 \end{cases}$

Oss: $Var[X] \to 1$ con lim $n \to \infty$

- $E[\frac{W}{n}] = 1$
- $Var\left[\frac{W}{n}\right] = \frac{2}{n}$ $n \to \infty = 0$

17/05/21

32 Convergenza variabili aleatorie

32.1 convergenza quasi certa

 (Ω, \mathcal{F}, P) spazio di probabilità e X variabile aleatoria su di esso e $(X_n)_{n \in \mathbb{N}}$ una successione di variabili aleatorie sullo spazio di probabilità. Diciamo che $(X_n)_n$ converge quasi certamente o puntualmente a X e scriviamo $X_n \xrightarrow[n \to \infty]{\operatorname{qc}}$ se esiste $E \in \mathcal{F}$ con P(E) = 1 tale che $\forall w \in E$:

$$\lim_{n\to\infty} X_n(w) = X(w)$$

32.2 Convergenza in probabilità

 $(\lambda_n)_n$ successione di variabili aleatorie e X variabile aleatoria su (Ω, \mathcal{F}, P) . Diciamo che $(X_n)_n$ converge in probabilità a X e scriviamo $X_n \xrightarrow[n \to \infty]{p} X$ se $\forall \varepsilon > 0$:

$$\lim_{n\to\infty} P(|X_n - X| > \varepsilon) = 0$$

32.3 Convergenza in media quadratica

Diciamo che $(X_n)_n$ converge in *media quadratica* on in \mathcal{L}^2 a X e scriviamo $X_n \xrightarrow[n \to \infty]{\mathcal{L}^2} X$ se:

$$\lim_{n \to \infty} \quad E[|X_n - X|^2] = 0$$

Prop: la convergenza in media quadratica implica la convergenza in probabilità, cioé

$$X_n \xrightarrow[n \to \infty]{\mathcal{L}^2} X$$
 allora $X_n \xrightarrow[n \to \infty]{p} X$

32.4 Convergenza in distribuzione

Sia $(X_n)_{n\in\mathbb{N}}$ successione su (Ω, \mathcal{F}, P) e X variabile aleatoria su $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$. Diciamo che $(X_n)_n$ converge in distribuzione o in legge o debolmente a X $(X_n \xrightarrow[n \to \infty]{\mathfrak{L}} X, X_n \xrightarrow[n \to \infty]{d} X$ o $X_n \xrightarrow[n \to \infty]{w} X)$ se $\forall x \in \mathbb{R}$:

$$\lim_{n\to\infty} P(X_n \le x) = P(X \le x)$$

ossia
 $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$

Prop: Le convergenze quasi certe implicano la convergenza in probabilità

$$X_n \xrightarrow{\alpha} X \Leftarrow X_n \xrightarrow{p} X \Leftarrow \begin{cases} X_n \xrightarrow{qc} X \\ X_n \xrightarrow{\mathcal{L}^2} X \end{cases}$$

Oss: La convergenza in \mathcal{L}^2 e qc non sono confrontabili

Prop: la convergenza in probabilità implica la convergenza debolmente

33 Teoremi limite

Sia $(X_{1} - X_{n})$ un vettore aleatorio con componenti indipendenti, di media comune μ e varianza comune σ^{2} . Sia $S_{n} = \sum_{i=1}^{n} X$ la variabile aleatoria somma. Allora:

$$E\left[\frac{S_n}{n}\right] = \mu$$
 e $Var\left[\frac{-S_n}{n}\right] = \frac{\sigma^2}{n}$

34 Teorema della legge debole dei grandi numeri

Sia $(X_n)_{n\in\mathbb{N}}$ variabile aleatoria ciascuna di media μ e varianza σ^2 . Sia inoltre $S_n=\sum_{i=1}^n X_i$. Allora $\frac{S_n}{n}$ converge in probabilità a μ , cioé $\forall \varepsilon>0$:

$$\lim_{n\to\infty} P(|\frac{S_n}{n} - \mu| > \varepsilon) = 0$$

35 Teorema centrale del limite

$$\lim_{n \to \infty} \frac{S_n - n\mu}{\sigma \sqrt{n}} \xrightarrow{\mathfrak{L}} \mathcal{N}(0, 1)$$

$$\lim_{n \to \infty} P(\frac{S - n\mu}{\sigma \sqrt{n}} \le x) = \Phi(x)$$

Oss: $\frac{S_n - n\mu}{\sigma}$ è nell'ordine di \sqrt{n} per $n \to \infty$

Oss: il modo in cui usiamo il TLC se n è sufficientemente grande, allora:

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \sim \mathcal{N}(0, 1) \qquad \frac{S_n}{2} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$$
$$S_n \sim \mathcal{N}(n\mu, \sigma\sqrt{n})$$

n è sufficientemente grande quando:

- $X_i \sim \mathcal{N} \rightarrow n \geq 1$
- $X_i \sim Unif \rightarrow n > 5$
- $X_i simgeom \circ X_i \sim exp \rightarrow n \geq 15$
- $X_i \sim X^2 \rightarrow n \ge 25$

35.1 Correzione di continuità

Se le X_i sono discrete nella versione approssimata usiamo la correzione di continuita, ossia:

$$F_{S_n}(x) \simeq \Phi\left(\frac{x+1/2-n\cdot E[X_i]}{\sqrt{n\cdot Var[X_i]}}\right)$$

Oss: $bin(n,p) \sim \mathcal{N}(np,\sqrt{np(1-p)})$ purché p sia lontano da 0 e 1. Cioé se $np(1-p) \gtrsim 3$:

$$Pois(\lambda) \sim \mathcal{N}(\lambda, \sqrt{\lambda})$$
 per $\lambda \ge 30$

Statistica

36 Popolazione di riferiento

La popolazione di riferimento è un insieme di elementi sui quali conduciamo un'indagine. Gli elementi si chiamano individui, esemplari o unità statistiche.

Il Campione è un sottoinsieme della popolazione

37 Campionamento

Esistono dievrsi tipi di campionamento: campionamento casuale semplice, campionamento stratificato, campionamento a grappoli

38 Variabili

Le caratteristiche che misuriamo sono definite variabili. I loro valori si chiamano modalità o livelli:

- qualitative o categoriche nominali (senza un ordine naturale)
 ordinali (con ordine naturale)
- quantitative o numeriche discrete

continue

Le variabili quantitative possono essere quantificate in scale per intervallo o rapporto

39 Statistica

Chiamiamo statistica una funzione calcolabile dalle misurazioni del campione.

Si dice *stimatore* di un parametro di una variabile aleatoria discreta che sia una statistica e il cui valore sia "spesso vicino" al parametro d'interesse.

Il valore deterministico assunto dallo stimatore usando la realizzazione del campione si chiama stima del parametro

Notazione: Se θ è uno stimatore di ϑ , possiamo scrivere θ_n per evidenziare la numerosità del campione e $\hat{\vartheta} = \theta$.

Chiedere che θ sia vicino a ϑ significa che l'errore di stima sia piccolo

Def

Uno stimatote θ di ϑ è:

- corretto o non distorto se $E[\theta] = \vartheta$
- distorto se $E[\theta] \neq \vartheta$. Chiameremo allora bias $E[\theta] \vartheta$

Se $Lim_{n\to\infty}$ $E[\theta_n]=\vartheta$ allora θ è asintoticamente non distorto

40 Errore quadratico medio

Si dice Errore quadratrico medio, o MSE, di θ la quantità $MSE[\theta] = E[(\theta - \vartheta)^2]$:

$$MSE[\theta] = Var[\theta] + bias^2$$

Def

 θ è consistente se $\theta_n \xrightarrow{p} \theta$. θ è consistente in media quadratica se $\theta_n \xrightarrow{\mathcal{L}^2} \theta$

Prop

Se θ è asintoticamente non distorto e $\lim_{n\to\infty} Var[\theta_n] = 0$ allora θ è consistente in media quadratica e quindi consistente

Oss

Stimatori corretti ma non consistenti $(X_1,...,X_n)$. Allora una qualunque X_i è stimatore della media $\mu \Rightarrow E[X_i] = \mu$. Se $\sigma^2 = Var[X_i] \neq 0$ allora $P(|X_i - \mu| > \varepsilon) > 0$ e rimane tale per $n \to \infty \Rightarrow$ non conv in P