Ames Housing Challenge

- Antony Paulson Chazhoor

Problem Statement

- Create a regression model based on the Ames Housing Dataset which will predict the price of a house at sale
 - Models are primarily Linear Regression Models, Lasso & Ridge
 - Evaluation Parameter : RMSE

- Why is this analysis important?
 - An analyst can help prospective buyers to understand in cost estimation
 - Overpriced or Underpriced (Mega Deals!!) Houses can be spotted

Exploratory Analysis

Predictors that are highly correlated with Target(Sale Price)

Exploratory Analysis(Contd)

Extremely correlated variables: Garage Area, Garage Cars

Right Skewed Data

These can be brought to the normal distribution form through log transformations

Extreme Outliers in the Data

Removing these greatly improved RMSE Values

Handling Missing Values

- The Most tricky part in the EDA process
- I used three values to fill my null values:
 - '0': For numeric data that was missing
 - 'Appropriate String' for categorical predictors
 - 'Forward Fill': Single missing value.
- Dropped columns with more than 1000 missing values

Preprocessing & Modelling Steps

- One hot encoding of categorical variables was absolutely crucial
- Log transformation of the predicted column SalePrice
- The next step would entail splitting and testing the model
- Scaling the data is necessary for application into Ridge, Lasso models
- First assessment based of the linear regression RMSE
- Cross Validation scores compared across Ridge, Lasso and Linear regression models
- Application of Lasso Model to the Scaled Test data

Creation of Dummy Variables

	MS Zoning_C (all)	MS Zoning_FV	MS Zoning_I (all)	MS Zoning_RH	MS Zoning_RL	MS Zoning_RM	Street_Pave	Lot Shape_IR2	Lot Shape_IR3
0	0	0	0	0	1	0	1	0	0
1	0	0	0	0	1	0	1	0	0
2	0	0	0	0	1	0	1	0	0
3	0	0	0	0	1	0	1	0	0
4	0	0	0	0	1	0	1	0	0

- The number of categorical variables: 37
- Number of dummy columns created : 214

Comparison of Cross validation Scores

```
1 #Checking the cross val score for Lasso
            2 cross_val_score(lasso, X_train_sc, y_train, cv = 5).mean()
Out[1947]: 0.9108505557495308
In [1948]:
           1 ##Checking the cross val score for LR
            2 cross_val_score(lr, X train, y train, cv =5).mean()
Out[1948]: 0.9019243802868859
In [1949]:
           1 ##Checking the cross val score for Ridge
            2 cross val score(ridge, X train sc, y train, cv =5).mean()
Out[1949]: 0.9022538595296308
```

Results

- The Lasso model from sklearn provided the best accuracy among models
- About 91% of change in the Sales Price could be accounted for by the variables in my model.
- The most correlated columns to sales price were quality & Living area
- The lowest RMSE obtained by the model was approx. 19243.

Future Improvements

- The model can be improved further by implementing inferences from the EDA:
 - Log transformations
 - Dropping highly inter correlated columns
 - Excluding more outliers
 - Eliminating predictors which have very little effect on sale Price

Results of Predictions

1 DTrichter 18630.727 46	21m
2 Laura Luo 18682.682 10	9h
3 Nick Minaie 18860.115 52	8h
4 minion_of_boom 19059.306 10	1d
5 Joey Romness 19075.814 55	14h
6 Tony 19243.121 19	now

Your Best Entry ↑

Your submission scored 19545.28111, which is not an improvement of your best score. Keep trying!