CS663 Assignment 3

Saksham Rathi, Kavya Gupta, Shravan Srinivasa Raghavan September 2024

Question 1

Note: All the Fourier Transform and Frequency Response figures are shown in logarithm absolute format.

Original Image

(a) Original Image

(b) Fourier Transform of Original Image

Ideal Low Pass Filter
Cutoff Frequency = 40

(a) Filtered Image

(b) Fourier Transform of Filtered Image

Figure 3: Frequency Response of Filter

Cutoff Frequency = 80

10

DFT of Ideal LP Filtered Image (f = 80)

- (a) Filtered Image
- (b) Fourier Transform of Filtered Image

Figure 5: Frequency Response of Filter

Gaussian Low Pass Filter

Sigma = 40

- (a) Filtered Image
- (b) Fourier Transform of Filtered Image

Figure 7: Frequency Response of Filter

Sigma = 80

- (a) Filtered Image
- (b) Fourier Transform of Filtered Image

Figure 9: Frequency Response of Filter

Observations

- From the obtained results we can easily see that as the cut-off frequency (for ideal low pass filter) / sigma (for Gaussian low pass filter) is increased, the higher frequency components which correspond to finer details in the image start becoming clearly visible.
- Also we can see that for ideal low pass filter there is a presence of **ringing artifacts** that appear as spurious signals near sharp transitions in the images. These ringing artifacts are quite undesirable and are a result of the complete elimination of high frequencies higher than the cut-off frequency by the ideal low pass filter.
- When a Gaussian low pass filter is used these ringing artifacts are absent. This is because the Gaussian low pass filter does not completely eliminate the higher frequencies and rather weakens them.