AG2 - Actividad Guiada 2 03MIAR - Algoritmos de Optimización

Abrir el cuaderno de google colab:

https://colab.research.google.com/drive/1UOJ4d-M3HvQSxtSGPNzlq5sFzg8Q18wA

Viu Universidad Internacional de Valencia

Agenda

- Nuevo tema en el Foro
- Desarrollo de algoritmo con Programación dinámica(Viaje por el rio).
- Teoría: Ramificación y Poda.
- Desarrollo de algoritmo de búsqueda en grafos con Ramificación y poda(asignación de tareas).
- Desarrollo de algoritmo con Descenso del gradiente.

Foro. Nuevo tema

Problemas Tipo

Raul Reyero Diez 🌸 **Problemas Tipo**

Ahora mismo

Quisiera proponer para esta semana la siguiente contribución al foro.

Se trata de recopilar problemas tipo de optimización matemática.

Hay muchos pero quisiera que investigaras un poco sobre uno de ellos. El que tu elijas. No se trata de resolver ningun caso sino de conocer algo de información.

Inicio vo a modo de ejemplo con el problema del agente viajero:

Nombre: Problema del agente viajero (travelling salesman problem - TSP)

Descripción: Búsqueda optima del camino más corto que debe recorrer un agente por una serie de ciudades pasando por todas, una y sólo una vez y volviendo a la ciudad de partida.

Modelización: A través de grafos, con programación lineal entera.

Resolución: Exactos (Ramificación y poda, Programación dinámica) y Heurísticos (colonia de hormigas, genéticos)

Recursos:

- Wikipedia(para empezar)
- Técnicas heurísticas aplicadas al problema del cartero viajante (tsp.) Ricardo Alberto Hincapié
- Lin-Kernighan heuristic
- TSPLIB (recurso con diferentes datos de prueba para probar nuestros diseños)

Responder

AG2 - Actividad Guiada 2 Programación Dinámica

Viu Universidad Internacional de Valencia

Agenda

- Nuevo tema en el Foro
- Práctica: Programación dinámica(Viaje por el rio).
- Teoría: Ramificación y Poda
- Práctica: Búsqueda en grafos, ramificación y poda(asignación de tareas).
- Practica: Descenso del gradiente.

Google Colab

https://colab.research.google.com/drive/1UOJ4d-M3HvQSxtSGPNzlq5sFzg8Q18wA?usp=sharing

importante

Programación dinámica (I)

- Definición: Es posible dividir el problema en subproblemas más pequeños, guardando las soluciones para ser utilizadas más adelante.
- Características que permiten identificar problemas aplicables:
 - ✓ Es posible almacenar soluciones de los subproblemas para ser reutilizadas.
 - ✓ Debe verificar el **principio de optimalidad** de Bellman: "en una secuencia optima de decisiones, toda sub-secuencia también es óptima" (*)
 - ✓ La necesidad de guardar la información acerca de las soluciones parciales unido a la recursividad provoca la necesidad de preocuparnos por la complejidad espacial (cuantos recursos de espacio usaremos)

Programación dinámica (II)

Problema: Viaje por el rio

- Consideramos una tabla T(i,j) para almacenar todos los precios que nos ofrecen los embarcaderos
- Si no es posible ir desde i a j daremos un valor alto para garantizar que ese trayecto no se va a elegir en la ruta óptima(modelado habitual para restricciones)
- Establecer una tabla intermedia(P(i,j)) para guardar soluciones óptimas parciales para ir desde i a j.

$$P(i,j) = min \{T(i,j), P(i,k)+T(k,j) \text{ para todo } i < k < = j \}$$

Programación dinámica (III)

Problema: Viaje por el rio

Establecemos las tarifas:

```
#Viaje por el rio - Programación dinámica
TARIFAS = [
[0.5.4.3.999.999.999].
[999,0,999,2,3,999,11],
[999,999, 0,1,999,4,10],
[999,999,999, 0,5,6,9],
[999,999, 999,999,0,999,4],
[999,999, 999,999,999,0,3],
[999,999,999,999,999,0]
#999 se puede sustituir por float("inf")
```


Programación dinámica (IV)

Programación dinámica (V)

RUTA contiene la mejor opción intermedia para ir de un nodo a otro

```
RUTA
   ['', 0, 0, 0, 1, 2, 5]
def calcular ruta(RUTA, desde, hasta):
 if desde == hasta:
   #print("Ir a :" + str(desde))
                                       Recursivida
    return desde
  else:
    return str(calcular ruta(RUTA_desde, RUTA[desde][hasta]) ) + ',' + str(RUTA[desde][hasta])
print("\nLa ruta es:")
calcular ruta(RUTA, 0,6)
```

AG2 – Actividad Guiada 2 Ramificación y Poda

Viu Universidad Internacional de Valencia

Agenda

- Nuevo tema en el Foro
- Práctica: Programación dinámica(Viaje por el rio).
- Teoría: Ramificación y Poda
- Práctica: Búsqueda en grafos, ramificación y poda(asignación de tareas).
- Practica: Descenso del gradiente.

Ramificación y Poda.

Problema: Asignación de tareas

El problema consiste en maximizar el rendimiento (o minimizar los costes) en cuanto a la asignación de N tareas a N agentes. Cada tarea solo puede ser asignado a un agente.

Los beneficios que se obtienen al realizar la tarea 1 por el agente A es 9

La matriz de beneficios es la que se muestra en la figura

Aplicando Ramificación y Poda, obtener la asignación que maximice los

beneficios.

	Job 1	Job 2	Job 3	Job 4
Α	9	2	7	8
В	6	4	3	7
С	5	8	1	8
D	7	6	9	4

Algoritmos de Búsqueda. Técnicas de Ramificación y Poda(V)

Estrategia de poda: Poda i si CS(i) ≤ CI(j) Para algún j ya generado

C.Superior

CI(j) CS(j)

C.Inferior

C=12(max. de las cotas inferiores)

El nodo 2 no puede mejoran(valor 9) las peores predicciones de 4(valor 12 = max{todo Cl//})

El nodo 5 quizá pueda mejorar al nodo 4

Revision

Ramificación y Poda.

Problema: Asignación de tareas

- P.ej. Si asignamos el agente A a la tarea
 - Cota Inferior para la tarea2 es 4 ▼
 - Cota Superior para la tarea2 es 8√

Ramificación y Poda.

Problema: Asignación de tareas

- ¿Cómo diseñamos un estado?
- ¿Como expandimos nodos (ramificación)?
- ¿Como podamos?
- ¿Como recorremos el árbol completo de estados?
- ¿Qué complejidad tiene? (*)

(*) es difícil calcular el número de operaciones exacto. Calcular el **mejor** caso y el **peor** caso.

Peor caso = tengo que expandir todos los niveles.

Mejor caso = puedo podar todos los nodos de un nivel menos uno.

En general podemos asumir una complejidad exponencial


```
#Del libro Fundamentos de algoritmia - G. Brassard & P. Bratley pg 349, sec. 9.7.1
'''Hay que asignar n tareas a n agentes, de forma que a cada agente le corresponda una tarea.
Se dispone de una tabla de costes: el coste para el agente i al realizar la tarea j es cij>=0.
Se busca la asignación que reduzca el coste total.
Diferentes aplicaciones,
```



```
Ejemplo de tabla de costes para n=4. Agentes: a, b, c y d . Tareas: 1,2,3 y 4
```

La tupla: (1, 0, 3, 2) representa la solución :

Función objetivo

- S es una solución parcial P.ej (1,0,)
- C es la matriz de costes(o beneficios)

```
def valor(S,COSTES):
    VALOR = 0
    for i in range(len(S)):
        VALOR += COSTES[i][S[i]]
    return VALOR

valor((0, 1, 2, 3),COSTES)
```

Fuerza Bruta:

```
@calcular tiempo
 def fuerza bruta(COSTES):
   #Representacion de la solucion será una tupla donde cada valor en la cordenada i-sima es la tarea asignado al agente i
   # Ejemplo (1,2,3,4) Tiene valor 11+15+19+28=73
   #; Cuantas posibilidades hav? n! -> Complejidad factorial(exponecial)
   #Con dimension 11 se va a 1 minuto de ejecucion
   mejor\ valor = 10e10
   meior solucion = ()
                                                                                                       TAREAS
   for s in list(itertools.permutations(range(len(COSTES))));
     #print(s,valor(s,COSTES))
     valor tmp = valor(s,COSTES)
     if valor tmp < mejor valor:</pre>
                                                                                                   # E
         mejor valor = valor tmp
                                                                                                   # 5
         meior solucion = s
                                                                                                   COSTES = [[11, 12, 18, 40],
   print("La mejor solucion es :", mejor solucion, " con valor:", mejor valor )
                                                                                                           [14,15,13,22],
                                                                                                           [11,17,19,23],
                                                                                                           [17,14,20,28]]
Universidad
Internacional
```

de Valencia

Función para estimar una cota inferior para una solución parcial:

Ej. La tupla (2,0,)

Representa un nodo intermedio con :

- Agente 0 asignado a 2
- Agente 1 asignado a 0

Función para ramificar:

```
#Genera tantos hijos como como posibilidades haya para la siguiente elemento de
#(0,) -> (0,1), (0,2), (0,3)
def crear_hijos(NODO, N):
    HIJOS = []
    for i in range(N ):
        if i not in NODO:
            HIJOS.append({'s':NODO +(i,) })
    return HIJOS
```

```
Proceso principal (I): @calcular tiempo
```

```
@calcular tiempo
def ramificacion y poda(COSTES):
#Construccion iterativa de soluciones(arbol). En cada etapa asignamos un agente(ramas).
#Nodos del grafo { s:(1,2),CI:3,CS:5 }
                                                                Inicializamos con una
 #print(COSTES)
                                                                solución
  DIMENSION = len(COSTES)
                                                                cualquiera(opcional)
 MEJOR SOLUCION=tuple( i for i in range(len(COSTES))) )
  CotaSup = valor(MEJOR SOLUCION, COSTES)
  #print("Cota Superior:", CotaSup)
                                                                 NODOS guarda los nodos
                                                                 que debemos
 NODOS=[]
                                                               → explorar(ramificación)
  NODOS.append({'s':(), 'ci':CI((),COSTES)
 iteracion = 0
```

```
Proceso principal (II):
                                                                                                     De entre los nodos
                       while( len(NODOS) > 0):
                         iteracion +=1
                                                                                                     pendientes a explorar,
                                                                                                     elegimos el mas prometedor
                         nodo prometedor = [ min(NODOS, key=lambda x:x['ci']) ][0]['s']
                         #print("Nodo prometedor:", nodo prometedor)
                         #Ramificacion
                         #Se generan los hijos
                         HIJOS = [ {'s':x['s'], 'ci':CI(x['s'], COSTES) } for x in crear hijos(nodo prometedor, DIMENSION) ]
                         #Revisamos la cota superior y nos quedamos con la mejor solucion si llegamos a una solucion final
                         NODO FINAL = [x \text{ for } x \text{ in HIJOS if len}(x['s']) == DIMENSION]
                         if len(NODO FINAL ) >0:
                           #print("\n*******Soluciones:", [x for x in HIJOS if len(x['s']) == DIMENSION ] )
                           if NODO FINAL[0]['ci'] < CotaSup:</pre>
                             CotaSup = NODO FINAL[0]['ci']
                            MEJOR SOLUCION = NODO FINAL
                         #Poda
                         HIJOS = [x for x in HIJOS if x['ci'] < CotaSup ]
                         #Añadimos los hijos
                         NODOS.extend(HIJOS)
                         #Eliminamos el nodo ramificado
                  6
     Universidad
                         NODOS = [ x for x in NODOS if x['s'] != nodo prometedor
     de Valencia
                       print("La solucion final es:" ,MEJOR SOLUCION , " en " , iteracion , " iteraciones" , " para dimension: " ,DIMENSION
Pg.: 22
```

Ramificación y Poda. Practica Análisis para mejorar nota:

- Generar matrices con valores aleatorios de mayores dimensiones (5,6,7,...) y ejecutar ambos algoritmos.
- ¿A partir de que dimensión el algoritmo por fuerza bruta deja de ser una opción?
- ¿Hay algún valor de la dimensión a partir de la cual el algoritmo de ramificación y poda también deja de ser una opción válida?

+1 para mejoar (9/10)

AG2 - Actividad Guiada 2 Descenso del Gradiente

Viu Universidad Internacional de Valencia

Agenda

- · Nuevo tema en el Foro
- Práctica: Programación dinámica(Viaje por el rio).
- Teoría: Ramificación y Poda
- Práctica: Búsqueda en grafos, ramificación y poda(asignación de tareas).
- Practica: Descenso del gradiente.

4

• El procedimiento parte de un punto p como solución aproximada y da pasos en el sentido opuesto al gradiente (si minimizamos) de la función en dicho punto.

$$p_{t+1} = p_t - \alpha_t \nabla f(p_t)$$

Donde el parámetro $lpha_t$ se selecciona para que p_{t+1} sea solución

$$\forall \quad f(p_t) \geq f(p_{t+1})$$

- En general se va reduciendo el valor det dinámicamente a medida que nos aproximamos a la solución que podemos deducir por:
 - la magnitud del gradiente
 - cantidad de iteraciones que hemos realizado

$$p_{t+1} = p_t - \alpha_t \nabla f(p_t)$$

- Dependiendo del Volumen de Datos
 - ✓ Descenso del gradiente por lotes (batch gradient descent)
 Calcula la desviación para todos los puntos en cada iteración!!!
 - ✓ Descenso del gradiente estocástico(stochastic gradient descent)

 Calcula la desviación para un punto en cada iteración!!!
 - ✓ Descenso del gradiente por lotes reducido(mini-batch gradient descent)
 Mezcla de ambos conceptos

Dependiendo del Volumen de Datos

Preparar entorno

La función a minimizar. Paraboloide

```
f = lambda X: X[0]**2+X[1]**2 #Funcion df = lambda X: [2*X[0] , 2*X[1]] #Gradiente
```


http://al-roomi.org/3DPlot/index.html

Prepara los datos para el gráfico

```
#Prepara los datos para dibujar mapa de niveles de Z
resolucion = 100
rango=2.5
X=np.linspace(-rango, rango, resolucion)
Y=np.linspace(-rango, rango, resolucion)
Z=np.zeros((resolucion, resolucion))
for ix,x in enumerate(X):
  for iy, y in enumerate(Y):
    Z[iy,ix] = f([x,y])
#Pinta el mapa de niveles de Z
plt.contourf(X,Y,Z,resolucion)
plt.colorbar()
```


Generamos un Punto aleatorio

```
#Generamos un punto aleatorio
P=[random.uniform(-2,2 ),random.uniform(-2,2 ) ]
plt.plot(P[0],P[1],"o",c="white")
```


Iteramos el algoritmo

Pintamos el gráfico con las iteraciones

```
plt.plot(P[0],P[1],"o",c="green")
plt.show()
print("Solucion:" , P , f(P))
```


Otra función a minimizar.

```
#Definimos la funcion #\sin(1/2 * x^2 - 1/4 * y^2 + 3) * \cos(2*x + 1 - E^y) f = lambda X: np.\sin(1/2 * X[0]**2 - 1/4 * X[1]**2 + 3) * np.\cos(2 * X[0] + 1 - np.e**X[1])
```


jupyter

Descenso del gradiente. Práctica

¿Y el gradiente?!!

#Definimos la funcion


```
\#\sin(1/2 * x^2 - 1/4 * y^2 + 3) * \cos(2*x + 1 - E^y)
f = lambda X: np.sin(1/2 * X[0]**2 - 1/4 * X[1]**2 + 3) * np.cos(2 * X[0] + 1 - np.e**X[1])
```

```
#Aproximamos el valor del gradiente en un punto por su definición
def df(PUNTO):
  h = 0.01
  T = np.copy(PUNT0)
                                                                       importante
  qrad = np.zeros(2)
  for it, th in enumerate(PUNTO):
    T[it] = T[it] + h
    grad[it] = (f(T) - f(PUNTO)) / h
                                                                  +1 para mejoar
  return grad
```


Finalizar la actividad. Grabar, subir a GitHub, Generar pdf (I)

Guardar en GitHub
 Repositorio: 03MIAR ---Algoritmos de Optimizacion
 Ruta de Archivo con AG2

Generar pdf (con https://pdfcrowd.com)

Descargar pdf y adjuntar el documento generado a la actividad en la plataforma

- Adjuntar .pdf en la actividad

- URL GitHub en el texto del mensaje de la activida

Pg.: 37

Actividades Guiadas.

- Si hay aportaciones, añadir explicación
- Si es la 2ª entrega, **añadir explicación**
- Si tienes dudas de que la 2ª entrega sea valida, enviame un correo.

Ramificación y Poda. Practica Análisis para mejorar nota:

- ¿Que complejidad tiene el algoritmo por fuerza bruta?
- Generar matrices con valores aleatorios de mayores dimensiones (5,6,7,...) y ejecutar ambos algoritmos.
- ¿A partir de que dimensión el algoritmo por fuerza bruta deja de ser una opción?
- ¿Hay algún valor de la dimensión a partir de la cual el algoritmo de ramificación y poda deja de ser una opción válida?

Descenso del gradiente. Practica Práctica para mejorar nota:

- Minimizar la función por descenso del gradiente

¿Te atreves a optimizar la función?:

$$f(x) = \sin(1/2 * x^2 - 1/4 * y^2 + 3) * \cos(2 * x + 1 - e^y)$$

8/10

+1 para mejoar

Manual de la asignatura

Ampliación de conocimientos y habilidades

- Bibliografía
 - -Brassard, G., y Bratley, P. (1997). Fundamentos de algoritmia. ISBN 13: 9788489660007
 - -Guerequeta, R., y Vallecillo, A. (2000). Técnicas de diseño de algoritmos.(http://www.lcc.uma.es/~av/Libro/indice.html)
 - -Lee, R. C. T., Tseng, S. S., Chang, R. C., y Tsai, Y. T. (2005). Introducción al diseño y análisis de algoritmos. *ISBN 13: 9789701061244*
 - -Abraham Duarte,.. Metaheurísticas. ISBN 13: 9788498490169
- Practicar

Próxima clase. VC4

Introducción a las metaheurísticas

- 1. Búsqueda aleatoria
- 2. Búsqueda basada en trayectorias
- 3. Métodos basados en trayectorias. Búsqueda Tabú
- 4. Métodos basados en trayectorias. Recocido Simulado
- 5. Métodos constructivos. Multiarranque
- 6. Métodos constructivos. GRASP
- 7. Métodos poblacionales. Colonia de hormigas

Gracias

raul.reyero@campusviu.es

Viu Universidad Internacional de Valencia