Тренировочная работа в формате ОГЭ по МАТЕМАТИКЕ

9 КЛАСС

Д	ата: 2023 г.
	Вариант №:
Выполнена: ФИО_	

Инструкция по выполнению работы

Работа состоит из двух частей, включающих в себя 25 заданий. Часть 1 содержит 19 заданий, часть 2 содержит 6 заданий с развёрнутым ответом. На выполнение работы по математике отводится 3 часа 55 минут (235 минут). Ответы к заданиям 7 и 13 запишите в виде одной цифры, которая соответствует номеру правильного ответа. Для остальных заданий части 1 ответом является число или последовательность цифр. Если получилась обыкновенная дробь, ответ запишите в виде десятичной. Решения заданий части 2 и ответы к ним запишите на отдельном листе бумаги. Задания можно выполнять в любом порядке. Текст задания переписывать не надо, необходимо только указать его номер. Сначала выполняйте задания части 1. Начать советуем с тех заданий, которые вызывают у вас меньше затруднений, затем переходите к другим заданиям. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если у вас останется время, вы сможете вернуться к пропущенным заданиям. При выполнении части 1 все необходимые вычисления, преобразования выполняйте в черновике. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы. Если задание содержит рисунок, то на нём непосредственно в тексте работы можно выполнять необходимые вам построения. Рекомендуем внимательно читать условие и проводить проверку полученного ответа. При выполнении работы вы можете воспользоваться справочными материалами, выданными вместе с вариантом КИМ, и линейкой. Баллы, полученные вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов. После завершения работы проверьте, чтобы ответ на каждое задание был записан под правильным номером.

Желаем успеха!

В треугольнике ABC угол C равен 90° , AB = 10,

BC = $\sqrt{19}$. Найдите $\cos A$.

1

2

3

4-5

6

8

Ответ: 0.9

Впишите правильный ответ.

Даны векторы \overrightarrow{a} (25; 0) и \overrightarrow{b} (1; -5). Найдите длину вектора \overrightarrow{a} - 4 \overrightarrow{b} .

Ответ: 11а→(4-1

Впишите правильный ответ.

Найдите объём многогранника, вершинами которого являются вершины $A,\,B,\,C,\,C_1$ правильной треугольной призмы $ABCA_1B_1C_1$, площадь основания которой равна 6, а боковое ребро равно 9.

Ответ: 18

Впишите правильный ответ.

На олимпиаде по математике 550 участников разместили в четырёх аудиториях. В первых трёх удалось разместить по 110 человек, оставшихся перевели в запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.

Ответ: 0.4

Впишите правильный ответ.

Найдите корень уравнения $(\frac{1}{7})^{x+4} = 49.$

Ответ: -8

Впишите правильный ответ.

Найдите значение выражения $\frac{2 \sin 136^{\circ}}{\sin 68^{\circ} \cdot \sin 22^{\circ}}$

Ответ: 4

Впишите правильный ответ.

На рисунке изображён график функции y = f(x). На оси абсцисс отмечено девять точек: $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9$. Найдите количество отмеченных точек, в которых производная функции f(x) отрицательна.

Ответ: 4		
Впишите правильный ответ.		9
При адиабатическом процессе дл	ля идеального газа выполняется закон pV $^{\rm k} = 6.4 \cdot 10^6 {\rm \Pia \cdot m}^5$, где p —	
давление в газе в паскалях, V —		
газа (в м ³), $k = \frac{5}{3}$. Найдите, какоі	й объём V (в м 3) будет занимать газ	
при давлении p, равном $2 \cdot 10^5 \Pi$	a.	
Ответ: 8		
Впишите правильный ответ.		10
•	ы по математике стали 6 учеников, что составило 5% от числа участников.	
Сколько человек участвовало в о		
Ответ: 120		
Впишите правильный ответ.		11
На рисунке изображён график фу	ункции вида $f(x) = \log_a x$. Найдите	
значение f (8).		
	, y , , , , , , , , , , , , , , , , , , ,	
	 	
	1 1 1 1 1 1 1 1 1	
	v = f(x)	
	++++++++++	

Впишите правильный ответ.

Найдите точку минимума функции $y = x^2 - 28x + 96 \cdot \ln x + 31$.

Ответ: 8

Дайте развернутый ответ

- а) Решите уравнение $\frac{9^{\sin 2x} 3^{2\sqrt{2}\sin x}}{\sqrt{11\sin x}} = 0.$
- б) Найдите все корни этого уравнения, принадлежащие отрезку [$\frac{7\pi}{2}$; 5π].

Ответ: Находим ОДЗ:Для знаменателя принимаем условие, что он больше 0, так как он под корнем и так как на корень делить нельзя. Тогда sinx больше 0 в I и II четверти, то есть 11sinx > $0 \Rightarrow 2\pi k$ < $x + 2\pi k$, $k \in Z$ Тогда получается знаменатель равен $09\sin 2x - 32\sqrt{2}\sin x = 09\sin 2x - 322\sin x = 09^{\sin 2x} - 3^{2}\sin x = 03^{\sin 2x} - 3^{2}\sin x = 03^{\sin$

Дайте развернутый ответ.

14-17

12

13

Окружность проходит через вершины B и C треугольника ABC и пересекает AB и AC в точках C_1 и B_1 соответственно.

а) Докажите, что треугольник ABC подобен треугольнику AB_1C_1 .

б) Вычислите длину стороны BC и радиус данной окружности, если \angle A= 30°, B_1C_1 = 5 и площадь треугольника AB_1C_1 в пять раз меньше площади четырёхугольника BCB_1C_1 .

Ответ: a) Заметим, что ∠AB1C1+∠C1B1C=180° ∠AB1C1+∠C1B1C=180° ∠AB 1C 1+∠C 1B 1C = 180°Четырехугольник ВСВ1С1 вписан в окружность, отсюда: ∠C1BC=∠C1B1C=180° ∠C1BC=∠C1B1C=180° ∠C 1BC=∠C 1B 1C=180°3начит, ∠AB1C1=∠C1BC=∠ABC∠AB1C1=∠C1BC=∠ABC∠AB 1C 1=∠C 1BC=∠ABC.Следовательно, треугольники АВСАВСАВС и АВ1С1АВ1С1АВ 1С 1 подобны.б) Пусть коэффициент подобия треугольников ABCABCABC и AB1C1AB1C1AB 1C 1 равен kkk. Тогда имеем:Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.SABC:SAB1C1=S+5SS=k2SABC:SAB1C1=S+5SS=k2S (ABC): S (AB 1C 1) = (S+5S)/S= $k^2k = \sqrt{6}k = sqrt6$ Из подобия получаемВС= $\sqrt{6}B1C1 = 5\sqrt{6}BC = 6B1C1 = 56$ ВС = sqrt6B1C1 = 15sqrt6Пусть AB1=xAB1=xAB 1=x, тогда AB=x√6AB=x6AB=xsqrt6По теореме косинусов для $\triangle ABB1\triangle ABB1\triangle ABB$ 1:B1B2=AB21+AB2-2AB1 · cosAB1B2=AB12+AB2-2AB1 · cosAB 1B^2 = x^2 sqrt18BB1= $x\sqrt{7}$ -3 $\sqrt{2}$ BB1=x7-32BB 1 = xsqrt(7-3sqrt2)По теореме синусов для $\triangle ABB1\triangle ABB1\triangle ABB$ 1: $ABsin_{\angle}AB1B=BB1sin_{\angle}AABsin_{\angle}AB1B=BB1sin_{\angle}A(AB)/(sin_{\angle}AB$ 1B) = $(BB_1)/(sin \angle A)sin AB1B = ABsin \angle ABB1sin AB1B = ABsin \angle ABB1sin AB_1B = (ABsin \angle A)/(BB_1) + (ABsin \angle A)/(BB_1$ sin∠AB1B= sin∠BB1Csin∠AB1B= sin∠BB1Csin∠AB 1B = sin∠BB 1C, поскольку синусы смежных углов равны.

ПолучаемsinBB1C=ABsin \angle ABB1= $x\sqrt{6} \cdot 12x\sqrt{7}-3\sqrt{2}$ sinBB1C=ABsin \angle ABB1= $x6 \cdot 12x7-32$ sinBB_1C=(AB sin \angle A)/(BB_1)=(xsqrt6*1/2)/(xsqrt(7-3sqrt2))sinBB1C= $\sqrt{62}$ (7-3 $\sqrt{2}$)sinBB1C=62(7-32)sinBB1C= (sqrt6)/(2(7-3sqrt2))Тогда радиус окружности, описанной около треугольника BB1C:2R=BCsin \angle BB1C2R=BCsin \angle BB1C2R= (BC)/(sin \angle BB1C)R=BCsin \angle BB1C:2= $5\sqrt{6} \cdot 2\sqrt{7}-3\sqrt{22} \cdot \sqrt{6}=5\sqrt{7}-3\sqrt{2}$ R=BCsin \angle BB1C:2= $56 \cdot 27-322 \cdot 6=57-32$ R=(BC)/(sin \angle BB_1C): 2= (5sqrt6*2 sqrt (7-3sqrt2))/(2*sqrt6)=5sqrt(7-3sqrt2) Oтвет:6) $5\sqrt{6565}$ sqrt(6; $5\sqrt{7}-3\sqrt{257}-325$ sqrt(7-3sqrt2)

Дайте развернутый ответ.

Решите неравенство $\log_{49}(x+4) + \log_{(x^2+8x+16)}\sqrt{7} \le -\frac{3}{4}$.

Otbet: $x \in \langle -4, -277] \cup [\sqrt{77} -4, -3\rangle x \in \langle -4, -277] \cup [77 -4, -3\rangle x \in \langle -4, -27/7] \cup [sqrt7/7] \cup [sqrt7/7$

Дайте развернутый ответ.

В июле 2016 года планируется взять кредит в банке на три года

в размере S млн рублей, где S — **целое** число. Условия его возврата таковы:

- каждый январь долг увеличивается на 15 % по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
- в июле каждого года долг должен составлять часть кредита в соответствии

со следующей таблицей.

Месяц и год	Июль 2016	Июль 2017	Июль 2018	Июль 2019	
Долг (в млн рублей)	S	0,88	0,5S	0	

Найдите наибольшее значение S, при котором каждая из выплат будет меньше 4 млн рублей.

Ответ: :	
Дайте развернутый ответ.	1
Найдите все значения a , для каждого из которых уравнение $4^x + (a-6)2^x = (2+3 a)2^x + (a-6)(3 a +2)$	L
имеет единственное решение.	

Дайте развернутый ответ.

Ответ: :

15

16

В школах №1 и №2 учащиеся писали тест. Из каждой школы тест писали по крайней мере 2 учащихся, а суммарно тест писал 51 учащийся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешёл из школы №1 в школу №2, а средние баллы за тест были пересчитаны в обеих школах.

- а) Мог ли средний балл в школе №1 вырасти в 2 раза?
- б) Средний балл в школе №1 вырос на 10%, средний балл в школе №2 также вырос на 10%. Мог ли первоначальный средний балл в школе №2 равняться 1?
- в) Средний балл в школе №1 вырос на 10%, средний балл в школе №2 также вырос на 10%. Найдите наименьшее значение первоначального среднего балла в школе №2.

Ответ:	a)	нет			
--------	----	-----	--	--	--