Departamento de Matemática da Universidade de Aveiro

Cálculo II - Agrupamento 4

Folha de exercícios

Ano letivo 2016/2017 (2º Semestre)

1.3 Derivadas, gradientes e diferenciais - parte 3

1. Suponha que o potencial numa lâmina plana é dado por

$$V(x,y) = 80 - 20xe^{-\frac{x^2 + y^2}{20}}$$

em volts, com $x \in y$ em cm.

- (a) Qual é a taxa máxima de variação do potencial no ponto (1, 2)?
- (b) Em que direção e sentidos, a partir da origem, o potencial aumenta mais e diminui mais?
- 2. Admita que $T(x,y)=x^2+3y^2$ representa a distribuição da temperatura num plano x0y (T em $^{\rm o}C$, x e y em cm).
 - (a) A partir de $(2, \frac{1}{2})$, qual é a direção e sentido de maior crescimento da temperatura? Qual é a taxa de crescimento nessa direção e sentido?
 - (b) A partir de $(2, \frac{1}{2})$, qual é a direção e sentido de menor crescimento da temperatura? Qual é a taxa de crescimento nessa direção e sentido?
- 3. Em que direção e sentido a função dada cresce mais rapidamente no ponto dado? E em que direção e sentido decresce mais rapidamente?
 - (a) $f(x,y) = \ln(\|(x,y)\|)$ em (1,-1);
 - (b) $f(x,y) = \sqrt{4 x^2 2y^2}$ em $(1, \frac{1}{2})$.
- 4. Determine a equação da reta tangente à curva $x^2-y=1$ no ponto $(\sqrt{2},1)$.
- 5. Sejam $f(x,y) = x\sqrt{x^2 + y^2}$ e C a curva de nível 3 de f. Determine as equações da reta perpendicular e da reta tangente a C no ponto $(1,2\sqrt{2})$.
- 6. Seja $f(x,y) = 3x^3y x^2$. Determine as equações do plano tangente e da reta normal ao gráfico de f no ponto (1,1,f(1,1)).
- 7. Determine o plano tangente e a reta normal às superfícies no ponto P_0 :

1

(a)
$$(x^2 + y^2 + 1) e^{-(x^2 + y^2)} - z = 0$$
, $P_0 = (0, 0, 1)$;

(b)
$$x^2 + xy^2 + y^3 + z + 1 = 0$$
, $P_0 = (2, -3, 4)$;

(c)
$$e^{x-y} + xy^2 - z = 0$$
, $P_0 = (1, 1, 2)$;

(d)
$$x^2 + 2xy + y^2 + z - 7 = 0$$
, $P_0 = (1, 1, 2)$;

(e)
$$x^2 - y^2 - z^2 = 1$$
, $P_0 = (3, 2, 2)$;

(f)
$$x^2 + y^2 - z^2 = 25$$
, $P_0 = (5, 5, 5)$;

(g)
$$x - y - z^2 = 3$$
, $P_0 = (3, 4, 2)$.

8. Determine a reta normal e o plano tangente ao cone

$$\{(x, y, z) \in \mathbb{R}^3 : z = 3 - \sqrt{x^2 + y^2}\}$$

no ponto (3, 4, -2).

9. Determine um vetor unitário normal a $5x^2+y^2-\frac{2z^2}{5}=10$ no ponto $(1,\sqrt{5},0).$