Assignment 2 MAT 257

$$"\Longrightarrow"^{\mathrm{Q7:}}$$

Suppose that C is compact. Let O be an open cover of C such that O is closed under union of pairs of its elements. Since C is compact, there exists some finite set of covers $U_1 \dots U_n$ where $C \subset \bigcup_{i=1}^n U_i$. O is closed under unions, so we have that $\bigcup_{i=1}^n U_i \in O$. Take $T = \bigcup_{i=1}^n U_i$ and the result follows.

Suppose that O is an open cover of the set C. We construct a new open cover O' in the following way. Let $O' = \{$ finite unions of $u \in O \}$. O' is closed under pairwise union, since when we take the union of 2 sets, $u_1, u_2 \in O'$, there are some finitely many sets in O which have unions of u_1 and u_2 , and their union will also be a finite union of sets in O. By assumption, there is some $T \in O'$ with $C \subset T$. Therefore, T is the finite union of some open sets in O. And so for any open cover O, we can find a finite subcover which also covers C. Thus C is compact.