Documentation for FiTABM

Phoebe Pearce 31 March 2017

This document aims to give an overview of the ways in which the key functions in the model can be used (i.e. what their arguments are and what they can do).

Historical simulations

load_data()

Usage:

load_data(start_date, end_date, FiT_end_date, FiT_type, red_frac, init_fit, final_fit, exp_tar, dep_caps, cap)

Required arguments:

None

Default arguments:

- start date = "1apr2010"
- end date = "1sep2016"
- FiT end date = end date
- FiT_type = "real_h"
- red frac = 0.03
- $init_fit = 49.43$
- final fit = 4.18
- $\exp \tan = 4$
- dep caps = F
- cap = no default

Arguments:

- start_date is when the simulation starts. Passed as a string (NOT a date), in the format "1jan2000"
- end date is when the simulation ends. Passed as a string (NOT a date), in the format "1jan2000"
- FiT_end_date is when the feed-in tariffs end (so no new registrations, but existing installations keep receiving their FiTs). Passed as a string (NOT a date), in the format "1jan2000"
- FiT_type is the degression strategy. This can have the following values:
 - "real h" sets the FiTs as they actually were in Great Britain 2010-2016 for < 10kW solar systems.
 - "perc_red" the generation tariff reduces by a fixed % every month from some starting value (export tariff fixed)
 - "ann_perc_red" the generation tariff reduces by a fixed % every year from some starting value (export tariff fixed)
 - "linear" the generation tariff reduces linearly every month between an initial and final value (export tariff fixed)

If you are setting "real_h", you don't need to set anything else, it happens automatically. Has to be passed as a string (so "real_h", not real_h)

- red_frac is the fractional (not percentage!) reduction for FiT types "perc_red" and "ann_perc_red". Don't set for the other FiT types.
- init fit is the initial generation tariff (needed for all FiT types except "real h") in p/kWh

- final_fit is the final generation tariff (only need for FiT type "linear") in p/kWh
- exp_tar is the export tariff in p/kWh. Needed for all FiT types except "real_h" and assumed to be constant.
- dep_caps is a Boolean (TRUE (T) or FALSE (F)). Set to true if you want there to be deployment caps.
- cap is how much you want the deployment cap to be per quarter in MW. Only set if you're using dep_caps = T.

batch run func()

Usage:

batch_run_func(w, t, number_of_agents, number_of_runs, plot_u, plot_cost, plot_prod, save_name)

Required arguments:

None

Default arguments:

- w = c(0.27, 0.25, 0.05, 0.43)
- t = 0.74
- number of agents = 5000
- number of runs = 10
- $plot_u = T$
- plot cost = T
- plot_prod = T
- save name = no default

Arguments:

- w are the partial utility weights, in the order income, social, economical, capital cost. The defaults are the results of calibration.
- t is the adoption threshold, again the result of calibration.
- number_of_agents is how many agents the model generates and uses for each model run.
- number_of_runs is how many times the model is repeated to produce an average results.
- plot_u, plot_cost, and plot_prod accept TRUE or FALSE. They don't affect how the model runs, but do (T) or don't (F) plot the partial utilities, private and subsidy cost, and production over time.
- save_name is how you want any saved results to be identified. If you don't enter anything, your results won't automatically be saved (but they will still be in the workspace after the model is finished running).