Dynamic Programming

Dr Timothy Kimber

February 2018

Back To Solving Problems

The Rod Cutting Problem

- A business buys steel rods in a variety of lengths
- They will cut the rods into smaller pieces to sell on
- Each rod size has a different market value
- What is the maximum revenue R(N) for a rod of length N?

Is
$$p(3) + p(3) + p(3) + p(1) > p(4) + p(4) + p(2)$$
?

Instance of The Problem

If the selling prices for each size of rod up to 10 are

size	1	2	3	4	5	6	7	8	9	10
price	3	4	6	9	16	20	22	24	26	30

Then the answer for N=10 is 32 $(1 \times 6 + 4 \times 1, \text{ or } 2 \times 5)$

Rod Cutting

size	1	2	3	4	5	6	7	8	9	10
price	3	4	6	9	16	20	22	24	26	30

Question

Given an array of prices $P = [P_1, ..., P_k]$ and an integer N between 1 and k, how can R(N) be computed?

size	1	2	3	4	5	6	7	8	9	10
price	3	4	6	9	16	20	22	24	26	30

Possible outline:

- Choose some sizes $s = \langle s_1, \dots, s_i \rangle$ that sum to N
- (Values can repeat in s)
- Compute $R_s = P[s_1] + \cdots + P[s_j]$
- For all possible s
- Update current best R(N) as you go

size	1	2	3	4	5	6	7	8	9	10
price	3	4	6	9	16	20	22	24	26	30

Question

How do you generate (only) sequences s that sum to N?

At this point it will be useful to think about reducing the problem to solving one or more smaller subproblems.

size	1	2	3	4	5	6	7	8	9	10
price	3	4	6	9	16	20	22	24	26	30

Choosing sizes:

- Pick an s₁
- Then s is s_1 followed by $\langle s_2, \dots \rangle$ that sum to $N-s_1$

Can now see the structure of the problem:

- For each possible s₁
- Find all solutions for $N s_1$, and combine with s_1
- Base case: only sequence that sums to 0 is ()

size	1	2	3	4	5	6	7	8	9	10
price	3	4	6	9	16	20	22	24	26	30

Re-evaluate overall design:

- Pick an s₁
- Max revenue using s_1 is $P[s_1] + R(N s_1)$
- $R(N-s_1)$ is overall solution for rod length $(N-s_1)$
- One option per value for s_1

A Simple Recursive Solution

```
SimpleRodCut(Input: N, P = [P_1, ..., P_k])

if N == 0

return 0

else

for i = 1 to N

choices[i] = P[i] + SimpleRodCut(N-i, P)

return max(choices)
```

- choices collects total for each s₁
- max finds the maximum of the choices

How does this run?

Simple Rod Cut — Reflection

WOW that was sloooooowww.

Question

Solving R(0) takes $\Theta(1)$ time. What about R(N)?

Time for Simple Solution

The time taken by SimpleRodCut is

$$T(0) = \Theta(1)$$
 $T(N) = 2T(N-1) + \Theta(1)$, for $N > 0$

or

$$T(N) = 2^{N-1}T(0) + \Theta(1)$$

so
$$T(N) = \Theta(2^N)$$
.

- The running time grows exponentially.
- This is not a practical solution.

Divide & Conquer?

• Can we divide the problem? (and conquer?)

size	1	2	3	4	5	6	7	8	9	10
price	3	4	6	9	16	20	22	24	26	30

New Strategy

What is there that we can take advantage of?

The subproblems overlap

New Strategy

What is there that we can take advantage of?

The subproblems overlap

Dynamic Programming

Dynamic Programming makes a space-time tradeoff

- Do not want to recompute the answer to R(i) every time
- Compute it once and save the answer in a table
- Check the table before computing each subproblem

This is called memoisation (we are making a note for later)

```
MemoisedRodCut(Input: N, P = [P_1, ..., P_k])

for i = 0 to N

R[i] = 0

return MemoiseAux(N, P, R)
```

R is the table to be filled in

Memoisation

```
MemoiseAux(Input: N, P = [P_1, \ldots, P_k], R = [R_0, \ldots, R_{N'}])

if N == 0
  return 0

if R[N] > 0
  return R[N]

for i = 1 to N
  choices[i] = P[i] + MemoiseAux(N-i, P, R)

R[N] = max(choices)
  return R[N]
```

- If R[N] was already computed (R[N] > 0) it is returned immediately
- Otherwise we compute it, save it, and then return it
- Also called Top Down (set out to solve the biggest problem)

The 'Bottom Up' Method

We know which problems depend on which others

- so we can just complete the table in order
- this will be more efficient than recursion

```
BottomUpRodCut(Input: N, P = [P1,..., Pk])

R[0] = 0
for i = 1 to N
    choices = [0,...,0]
    for j = 1 to i
        choices[j] = P[j] + R[i-j]
    R[i] = max(choices)
    return R[N]
```

• What is the running time?

Dynamic Programming

Dynamic programming can be applied to a problem if

- The problem has optimal substructure
- The problem has overlapping subproblems

A problem has optimal substructure if

- the problem can be decomposed into subproblems
- an optimal solution uses optimal solutions to the subproblems

In rod cutting the optimal solution for N was one of

• P[i] + R[N - i], where $1 \le i < N$

and each R[N-i] was an optimal solution for N-i.

Optimal Substructure

Problems may appear to have optimal substructure when they do not

Problem (Unweighted Shortest Path)

Input: graph G = (V, E).

Input: vertices $u, v \in V$.

Output: the simple path from u to v containing the fewest edges

Problem (Unweighted Longest Path)

Input: graph G = (V, E).

Input: vertices $u, v \in V$.

Output: the simple path from u to v containing the most edges

Optimal Substructure

A shortest path is composed of optimal solutions to subproblems

The shortest path from 1 to 2 (via x) is

- shortest path from 1 to x
- plus the shortest path from x to 2

Optimal Substructure

How about a longest path?

- Independent subproblem solutions do not make an optimal solution
- In an optimal solution the subproblems will interfere

Overlapping Subproblems

The second property we need when applying dynamic programming is overlapping subproblems

- The same problems are generated over and over
- The subproblems must still be independent
- The set of all subproblems is the subproblem space
- The smaller the subproblem space the quicker the (dynamic) algorithm