Arquitectura de computadores II Aritmética del computador

Febrero de 2022

Representación de numéricos

0,1 bingrio + 0,1,2 Ternario 0, 1, 3, 3 base 4 0, 1, 2, 3, 4, 5, 6, 7, 6, 8 0, 2, 2, 3, 4, 5, 6, 7,8,9 695 P 10 ← 0,1,2,3,4,5,6,7,8,9, H, B,S,D,E,F Hox

The ASCII code

American Standard Code for Information Interchange

ASCII control characters				ASCII printable characters								
DEC	HEX	Simbolo ASCII		DE	с нех	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo
00	00h	NULL	(carácter nulo)	32		espacio	64	40h	@	96	60h	•
01	01h	SOH	(inicio encabezado)	33		11	65	41h	Α	97	61h	(a)
02	02h	STX	(inicio texto)	34			66	42h	В	98	62h	b
03	03h	ETX	(fin de texto)	35		#	67	43h	C	99	63h	c
04	04h	EOT	(fin transmisión)	36	24h	\$	68	44h	D	100	64h	d
05	05h	ENQ	(enquiry)	37		%	69	45h	E	101	65h	e
06	06h	ACK	(acknowledgement)	38		&	70	46h	F	102	66h	f
07	07h	BEL	(timbre)	39			71	47h	G	103	67h	g
08	08h	BS	(retroceso)	40	28h	(72	48h	H	104	68h	h
09	09h	HT	(tab horizontal)	41	29h)	73	49h	- 1	105	69h	i
10	0Ah	LF	(salto de linea)	42		*	74	4Ah	J	106	6Ah	j
11	0Bh	VT	(tab vertical)	43		+	75	4Bh	K	107	6Bh	k
12	0Ch	FF	(form feed)	44			76	4Ch	L	108	6Ch	1
13	0Dh	CR	(retorno de carro)	45		-	77	4Dh	M	109	6Dh	m
14	0Eh	SO	(shift Out)	46			78	4Eh	N	110	6Eh	n
15	0Fh	SI	(shift In)	47	2Fh	1	79	4Fh	0	111	6Fh	0
16	10h	DLE	(data link escape)	48	30h	0	80	50h	P	112	70h	р
17	11h	DC1	(device control 1)	49		1	81	51h	Q	113	71h	q
18	12h	DC2	(device control 2)	50		2	82	52h	R	114	72h	ŕ
19	13h	DC3	(device control 3)	51		3	83	53h	S	115	73h	s
20	14h	DC4	(device control 4)	52	34h	4	84	54h	T	116	74h	t
21	15h	NAK	(negative acknowle.)	53		5	85	55h	U	117	75h	u
22	16h	SYN	(synchronous idle)	54		6	86	56h	V	118	76h	v
23	17h	ETB	(end of trans, block)	55		7	87	57h	w	119	77h	w
24	18h	CAN	(cancel)	56		8	88	58h	X	120	78h	x
25	19h	EM	(end of medium)	57	39h	9	89	59h	Υ	121	79h	У
26	1Ah	SUB	(substitute)	58	3Ah		90	5Ah	Z	122	7Ah	ź
27	1Bh	ESC	(escape)	59	38h	;	91	5Bh	1	123	7Bh	{
28	1Ch	FS	(file separator)	60		<	92	5Ch	Ĭ	124	7Ch	i
29	1Dh	GS	(group separator)	61	3Dh	-	93	5Dh	1	125	7Dh	}
30	1Eh	RS	(record separator)	62	3Eh	>	94	5Eh	*	126	7Eh	2
31	1Fh	US	(unit separator)	63	3Fh	?	95	5Fh		١		
127	20h	DEL	(delete)						-	theA	SCilco	de.com.ar

DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo
128	80h	Ç	160	A0h	á	192	C0h	L	224	E0h	Ó
129	81h	ü	161	A1h	ĺ	193	C1h	1	225	E1h	ß
130	82h	é	162	A2h	ó	194	C2h	Ţ	226	E2h	Ó
131	83h 84h	å	163 164	A3h A4h	ú	195 196	C3h C4h	F	227	E3h F4h	
132		ä	165	A4n A5h	Ñ	196		7	228		ő
134		à	166	A6h	N	198		+ ã Ă	230		
135			167			199		ă	231		μ b
136		ç	168			200		î	232		þ
137		ě	169		ė	201			233		Ü
138		è	170		Š	202		1	234		ň
139		ř	171		1/2	203		=	235		Ů
140	8Ch	i	172	ACh	1/4	204	CCh	Ī	236	ECh	ý
141	8Dh	i	173		ï	205	CDh	i i	237		Ý
142	8Eh	Ä	174	AEh	e e	206	CEh	+	238	EEh	_
143	8Fh	Α	175	AFh	30	207	CFh	ü	239		
144	90h	Ê	176	B0h	33	208	D0h	ð	240	F0h	
145	91h	æ	177	B1h	#	209	D1h	Ð	241	F1h	±
146	92h	Æ	178	82h		210	D2h	Đ È È	242	F2h	_
147	93h	ô	179	B3h		211	D3h	É	243	F3h	%
148	94h	ò	180	B4h	+	212	D4h	E	244	F4h	1
149	95h	ò	181	B5h	Ą	213	D5h	!	245	F5h	§
150	96h	û	182		A A	214		ļ	246	F6h	÷
151	97h	ù	183 184	B7h		215 216		į.	247	F7h F8h	2
152 153		ý O	184		©	217			248		
154		ŭ	185		1	217		-	250		
155			187			218		•	251		- 1
156		£	188]	220		•	252		
157		ø	189		¢	221		7	252		
158		×	190		ž.	222		İ	254		- 1
159		Î	191		- 1	223		±	255		•

$$595 = 5x10^{3} + 9x10^{3} + 5x10^{8}$$
10' 10' 10'
A1 2.316

Ax16 + 162+

2x 161 + 3x16

$$6, 2 3_{8}$$

$$6 \times 8^{2} + 2 \times 8^{2} + 3 \times 8^{9}$$

$$1010$$

$$2^{3} + 2^{2} = 10$$

numero x 6950 = 5750 6. 23 ×10-9 = 0,00,0623 1010 12-5 10102x23 101000

$$1010, 1101$$
 $2^{3} + 2^{1} + 2^{1} + 2^{1} + 2^{1}$

$$123_8 \rightarrow 16$$

$$1 \times 8^2 + 2 \times 8^4 + 3 \times 8^0 = 83$$

$$64 \quad 16 \quad 3$$

2357= 124 2x72+3x71+5x7°= 249+21+5=98+21+5

576E16 = 22382 SX63+7×162+6×162+14×160 1010102= 42 683,729 = 561,802 6x92+8x91+3x9+7x9-1+2x92

0.45736694335937

7x1 + Sx1 + 2x1 + 6x1 = 0, 270 13 =0. 78189

13P3 5075₆-

721610 1300300₄ 72161 46+3×48+3×42

3AE147A 0, <u>23</u>×16 2048,2310-16 0,68x 16 0. 28×16=4148 1.08x 16 0.48×16=968 O. 66× 16 7 10 88

2048, 23,00 = 800. BAE147A 107.42,0->2 0.42×2=0 84 0,88x2-{1].76 89 E = 1 68 0. 76x2 \$1. S2 0. Sext 104 0.68x2=[1,36 110 10 11 800=Sx400 036x2=10172 110 1011, 01 10 10 111 0.72x2 1744

O. 44×2 0 88

223

8 = 2³ 16=2⁴

 $37_8 \longrightarrow 2$

$$37_{16} \rightarrow 2$$
 $110111 = 10100001$
 $42.21_{8} \rightarrow 2$

100010.010001

1 Unidad lógica aritmética (ALU)

2 Representación de enteros

3 Aritmética con enteros

Contenido

1 Unidad lógica aritmética (ALU)

2 Representación de enteros

3 Aritmética con enteros

Unidad lógica aritmética

Definiciones

- Realiza cálculos aritméticos y lógicos
- Los elementos del computador suministra datos a la ALU
- Se basan en dispositivos lógicos digitales

Unidad lógica aritmética

Figura 1: Entradas y salidas ALU

Contenido

1 Unidad lógica aritmética (ALU)

2 Representación de enteros

3 Aritmética con enteros

Definiciones

- Cualquier número entero decimal puede representar en base binaria
- La base decimal consta de los dígitos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- La base binaria consta de los dígitos 0,1

Ejemplo

$$4_{10} = 100_2$$

Representación de números reales

Definiciones

- Cualquier número real decimal se puede representar en binario
- Se debe tomar en cuenta la coma de la base

Ejemplo

$$10,025_{10} = 1010,01_{2}$$

$$2^{3} 2^{3} 2^{3} 2^{5} 2^{5} 2^{5} 2^{5} 2^{5}$$

Definiciones

- Este tipo de representación sirve para que pueda ser procesada por el computador
- Si limitamos la representación a **número enteros no negativos** su representación es inmediata, si esta tiene n bits se pueden representar números desde 0 hasta $2^n 1$

Ejemplo

Una palabra de 8 bits puede representar números entre 0 y 255 ejemplo:

```
\begin{array}{l} 00000000_2 = 0_{10} \\ 00010000_2 = 16_{10} \\ 10000000_2 = 128_{10} \\ 11111111_2 = 255_{10} \end{array}
```

Transformación decimal a binario

- Para realizar la transformación de binario a decimal se realizan divisiones sucesivas por 2 y se toma el residuo
- Cuando se termina el proceso, el número en binario resultante es el orden inverso de los residuos

Ejemplo

Figura 2: Conversión decimal a binario

Ejercicio en clase

Transformar de decimal a binario los siguientes números:

- 1000₁₀
- **2432**₁₀
- 175₁₀

Ejercicio en clase

Respuestas:

- 1111101000₂
- 100110000000₂
- 10101111₂

Transformación binario a decimal

- Se toma en cuenta el valor de cada posición en base 2 y se multiplica por 0 o 1 según el caso
- Se suman estos valores para obtener el número en base decimal

Ejemplo

Figura 3: Conversión binario a decimal

Ejercicio en clase

Transformar de binario a decimal los siguientes números:

- 10001011₂
- **101101011011**₂
- **11101000110**₂

Ejercicio en clase

Respuestas:

- **139**₁₀
- **2907**₁₀
- 1862₁₀

Representación en suma magnitud

Definición

- Se utiliza para presentar enteros negativos y positivos
- El bit más a la izquierda (más significativo) es:
 - 1 1 si el número es negativo
 - 2 0 si el número es positivo
- Para esta representación se establece el tamaño de n bits, donde se utilizan n-1 bits para representar el número deseado
- El rango de representación en signo magnitud es $-2^{n-1} 1$ a $2^{n-1} 1$ para n bits

Representación en suma magnitud

Ejemplo

Para el caso de n=8 se tiene por ejemplo:

$$\begin{array}{l}
 18_{10} = 00010010_2 \\
 -18_{10} = 10010010_2
 \end{array}$$

Representación en suma magnitud

Limitaciones

- Existen dos representaciones del cero:
 - $0_{10} = 00000000_2$
 - $0_{10} = 10000000_2$

Esto es inconveniente ya que se tiene que tomar en cuenta las dos representaciones del cero

 Debido a la limitación de la representación en signo magnitud esta no es utilizada

Definición

- Se utiliza para presentar enteros negativos y positivos
- El bit más a la izquierda (más significativo) es:
 - 1 1 si el número es negativo
 - 2 0 si el número es positivo
- Difiere en la forma de representar los bits restantes.
- El rango de la representación es: -2^{n-1} hasta $2^{n-1} 1$

Definición

Para calcular el complemento a dos de un número binario, se realiza el siguiente proceso:

- Si es positivo: Es la misma representación que signo magnitud
- **Si es negativo:** Aplique el siguiente procedimiento:
 - Cambie 0 por 1 y 1 por 0 a un número en representación de signo magnitud, excepto el bit más significativo
 - 2 Sume 1 al este número

Ejemplo

Transforme 4 y -4 a signo magnitud, en una representación binaria de 4 bits.

- Para 4, en signo magnitud es: 0100, por lo que su representación en complemento a dos es 0100.
- 2 Para -4, en signo magnitud es 100, su complemento 1011 y lo sumamos 1, se obtiene 1100

$$m_{in}$$
 - 2^{31}

$$max 2^{31}$$

Ejercicio en clase

Transforme a complemento a dos los siguientes números decimales:

00 1 1 0 0 1 1 bits.

Ejercicio en clase

Respuestas:

- **0000111011**₂
- **1110001011**₂
- **0011001111**₂

Enlace

Una herramienta útil: http:

//www.exploringbinary.com/twos-complement-converter/

Contenido

1 Unidad lógica aritmética (ALU)

2 Representación de enteros

Negación

Para obtener el opuesto a un entero, se debe invertir los bits y sumarle 1.

Ejemplo

```
18_{10} = 00010010_2 Complemento bit a bit: 11101101_2 Sumandole 1: 11101110_2 = -18_{10}
```


La suma se realiza en la misma forma como si los números fueran enteros sin signo.

signo.	1
	$ \begin{array}{rcl} 1100 & = & -4 \\ +0100 & = & 4 \end{array} $
$ \begin{array}{rcl} 1 & 1 & 1 & 0 & 0 & 0 \\ & & & & & & & & & \\ & & & & & & & &$	10000 = 0 (b) (-4) + (+4)
$\begin{array}{rcl} 0011 & = & 3 \\ +0100 & = & 4 \\ \hline 0111 & = & 7 \end{array}$	$ \begin{array}{rcl} 1100 &=& -4 \\ +1111 &=& -1 \\ 11011 &=& -5 \end{array} $
(c) (+3) + (+4)	(d) (-4) + (-1)
0 01 = 5 0 00 = 4 0 001 = Overflow	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(e) (+5) + (+4)	(f)(-7) + (-6)

0100(-4

Figura 4: Suma de números en complemento a dos

Regla de desbordamiento

Al sumar dos números, y ambos son o bien positivos o negativos, se produce desbordamiento si y sólo si el resultado tiene signo opuesto

Regla de la resta

Para substraer un número (el substraendo) de otro (minuendo) se obtiene la negación del substraendo y se le suma al minuendo

Figura 5: Resta de números en complemento a dos

Figura 6: Representación suma y resta de números en complemento a dos

Multiplicación

La multiplicación es una operación compleja en hardware o software. En este caso se va discriminar la multiplicación entre enteros con y sin signo

Multiplicación enteros sin signo

Es similar a la multiplicación clásica.

Figura 7: Multiplicacion enteros sin signo

Multiplicación enteros con signo

Para los enteros con signo se utiliza la notación de complemento a dos. Debido a que esta no es sencilla se utiliza la representación de un número binario en potencias de dos:

$$1101 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= $2^3 + 2^2 + 2^0$

Figura 8: Representación de un número como suma de potencias

Por lo que se puede realizar la multiplicación en complemento a dos como sumas de multiplicaciones parciales.

Multiplicación enteros con signo

```
0 1011

0×1101

00001011 1011 × 1 × 2<sup>n</sup>

00000000 1011 × 0 × 2<sup>1</sup>

0(101)00 1011 × 1 × 2<sup>2</sup>

01011000 1011 × 1 × 2<sup>3</sup>

10001111 112
```

Figura 9: Ejemplo multiplicación en complemento a dos

Para los num negativo (positivos)

Ejercicio en clase

Realiza las siguientes multiplicaciones.

$$5_{10} \times 5_{10}$$
 $4_{10} \times -16_{10}$
 $-15_{10} \times -3_{10}$

32 16 8. 421

Suponga en todos los casos que se utiliza una representación de 8 bits.

$$-3^{\times}-1$$

1100+

100

4x-16

División

La división es una operación altamente costosa, en nuestro caso se realiza de igual forma que la división clásica.

Figura 10: Ejemplo división enteros sin signo

8645 20 4 10100 100 -0000101 -100 -100 -100 -100

0

Preguntas

¿Preguntas?

Siguiente tema: Aritmética del computador: Representación y aritmética en coma flotante