بسم الله الرحمن الرحيم

Semantic Analysis, Type checking

Where We Are

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Machine Code

```
class MyClass implements MyInterface
    { string myInteger;
    void doSomething() {
         int[] x;
         x = new string;
         x[5] = myInteger * y;
    void doSomething() {
     int fibonacci(int n) {
         return doSomething() + fibonacci(n - 1);
```

```
class MyClass implements MyInterface
            string myInteger;
                                                       Interface not
                                                         declared
          void doSomething() {
                int[] x;
                                                      Wrong type
                x = new string;
Can't multiply
   strings
                x[5] myInteger * y;
                                                      Variable not
                                                        declared
           void doSomething()
                                       Can't redefine
                                          functions
           int fibonacci(int n) {
                return doSomething() + fibonacci(n - 1);
                                                 Can't add void
                                             No main function
```

```
class MyClass implements MyInterface {
           string myInteger;
           void doSomething() {
                int[] x;
                                                     Wrong type
               x = new string;
Can't multiply
   strings
               x[5] myInteger * y;
                                                     Variable not
                                                      declared
          void doSomething()
                                      Can't redefine
                                         functions
          int fibonacci(int n) {
                return doSomething() + fibonacci(n - 1);
                                                Can't add void
                                            No main function
```

```
class MyClass implements MyInterface {
           string myInteger;
          void doSomething() {
                int[] x;
                                                    Wrong type
               x = new string;
Can't multiply
   strings
               x[5] myInteger *
                                       у;
                                                    Variable not
                                                     declared
          void doSomething() {
          int fibonacci(int n) {
                return doSomething() + fibonacci(n - 1);
                                               Can't add void
                                           No main function
```

```
class MyClass implements MyInterface {
           string myInteger;
          void doSomething() {
               int[] x;
                                                  Wrong type
               x = new string;
Can't multiply
   strings
               x[5] myInteger * y;
          void doSomething() {
          int fibonacci(int n) {
               return doSomething() + fibonacci(n - 1);
                                             Can't add void
                                          No main function
```

```
class MyClass implements MyInterface {
          string myInteger;
          void doSomething() {
               int[] x;
                                                 Wrong type
              x = new string;
Can't multiply
   strings
              x[5] myInteger * y;
         void doSomething() {
          int fibonacci(int n) {
               return doSomething() + fibonacci(n - 1);
                                            Can't add void
```

What Remains to Check?

- Type errors.
- Today:
 - What are types?
 - What is type-checking?
 - · A type system for Decaf.

What is a Type?

- This is the subject of some debate.
- To quote Alex Aiken:
 - "The notion varies from language to language.
 - The consensus:
 - A set of values.
 - A set of operations on those values"
- **Type errors** arise when operations are performed on values that do not support that operation.

Types of Type-Checking

Static type checking.

 Analyze the program during compile-time to prove the absence of type errors.

Dynamic type checking.

- Check operations at runtime before performing them.
- More precise than static type checking, but usually less efficient.
- (Why?)

No type checking.

Throw caution to the wind!

Type Systems

- The rules governing permissible operations on types forms a type system.
- Strong type systems are systems that never allow for a type error.
 - · Java, Python, JavaScript, LISP, Haskell, etc.
- Weak type systems can allow type errors at runtime.
 - · C, C++

Static vs Dynamic

• Static Pros:

- Static checking catches many programming errors at compile time
- Guarantees that all executions will be safe but it may reject some type-safe programs!
- Avoids overhead of runtime type checks

Dynamic Advantage

- Static type systems are restrictive
- Rapid prototyping difficult within a static type system

Type Wars

- *Endless* debate about what the "right" system is.
- Dynamic type systems make it easier to prototype; static type systems have fewer bugs.
- Strongly-typed languages are more robust, weakly-typed systems are often faster.
- . I'm staying out of this!

Our Focus

- Decaf is typed statically and weakly:
 - Type-checking occurs at compile-time.
 - Runtime errors like dereferencing **null** or an invalid object are allowed.
- Decaf uses class-based inheritance.
- Decaf distinguishes primitive types and classes.

Typing in Decaf

Static Typing in Decaf

- Static type checking in Decaf consists of two separate processes:
 - Inferring the type of each expression from the types of its *components*.
 - . Confirming that the types of expressions in certain contexts matches what is expected.
- Logically two steps, but you will probably combine into one pass.

```
while (numBitsSet(x + 5) \le 10) {
    if (1.0 + 4.0) {
       /* ... */
    while (5 == null) {
         /* ... */
```

```
while (numBitsSet(x + 5) <= 10) {
    if (1.0 + 4.0) {
      /* ... */
    while (5 == null) {
        /* ... */
```

```
while (numBitsSet(x + 5) \le 10) {
    if (1.0 + 4.0) {
       /* ... */
    while (5 == null) {
         /* ... */
```

```
while (numBitsSet(x + 5) <= 10) {
      if (1.0 + 4.0) 	{
/* ... */
                                        Well-typed
                                      expression with
     while (5 == null) {
                                       wrong type.
           /* ... */
```

```
while (numBitsSet(x + 5) \le 10) {
    if (1.0 + 4.0) {
       /* ... */
    while (5 == null) {
         /* ... */
```

```
while (numBitsSet(x + 5) \le 10) {
     if (1.0 + 4.0) {
        /* ... */
     while (5 == null) {
          /* ... */
                            Expression with
                             type error
```

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

- How do we determine the type of an expression?
- Think of process as logical inference.

Type Checking as Proofs

- We can think of semantic analysis as proving claims about the types of expressions.
- We begin with a set of axioms, then apply our inference rules to determine the types of expressions.
- Many type systems can be thought of as proof systems.

Sample Inference Rules

- "If ${\bf x}$ is an identifier that refers to an object of type ${\bf t}$, the expression ${\bf x}$ has type ${\bf t}$."
- "If e is an integer constant, e has type int."
- . "If the operands \mathbf{e}_1 and \mathbf{e}_2 of $\mathbf{e}_1 + \mathbf{e}_2$ are known to have types int and int, then $\mathbf{e}_1 + \mathbf{e}_2$ has type int."

Formalizing our Notation

. We will encode our axioms and inference rules using this syntax:

• This is read "if *preconditions* are true, we can infer *postconditions*."

Examples of Formal Notation

 $\mathbf{A} \rightarrow \mathbf{t} \boldsymbol{\omega}$ is a production.

 $t \in FIRST(A)$

 $\mathbf{A} \rightarrow \mathbf{\epsilon}$ is a production.

 $\varepsilon \in FIRST(A)$

 $\mathbf{A} \rightarrow \boldsymbol{\omega}$ is a production. $\mathbf{t} \in \text{FIRST*}(\boldsymbol{\omega})$

 $t \in FIRST(A)$

 $\mathbf{A} \rightarrow \boldsymbol{\omega}$ is a production. $\boldsymbol{\varepsilon} \in \text{FIRST*}(\boldsymbol{\omega})$

 $\varepsilon \in FIRST(A)$

Formal Notation for Type Systems

We write

$$\vdash \mathbf{e} : \mathbf{T}$$

if the expression **e** has type **T**.

. The symbol \vdash means "we can infer..."

Our Starting Axioms

Our Starting Axioms

⊢ true: bool

⊢ false: bool

Some Simple Inference Rules

Some Simple Inference Rules

i is an integer constant

s is a string constant

 $\vdash i$: int

 $\vdash s: string$

d is a double constant

 $\vdash d$: double

 $\vdash e_1 : int$

 $\vdash e_{2} : int$

 $\vdash e_1 + e_2 : int$

 $\vdash e_1 : double$

 $\vdash e_2 : double$

 $\vdash e_1 + e_2 : double$

 $\vdash e_1 : T$

 $\vdash e_2 : T$

T is a primitive type

 $\vdash e_1 == e_2 : bool$

 $\vdash e_1 : T$

 $\vdash e_2 : T$

T is a primitive type

 $\vdash e_1 != e_2 : bool$

Why Specify Types this Way?

- Gives a **rigorous definition of types** independent of any particular implementation.
 - No need to say "you should have the same type rules as my reference compiler."
- Gives maximum flexibility in implementation.
 - Can implement type-checking however you want, as long as you obey the rules.
- Allows formal verification of program properties.
 - Can do inductive proofs on the structure of the program.
- This is what's used in the literature.
 - Good practice if you want to study types.

A Problem

A Problem

x is an identifier.

⊢ *x* : ?? ◀

How do we know the type of x if we don't know what it refers to?

An Incorrect Solution

x is an identifier.x is in scope with type T.

```
\vdash x : \mathsf{T}
```

```
\vdash e_1:T
\vdash e_2:T
T is a primitive type
```

$$\vdash e_1 == e_2 : bool$$

Facts

 $\vdash x : double$

 $\vdash x:$ int

 \vdash 1.5: double

 $\vdash x == 1.5 : bool$

Strengthening our Inference Rules

- The facts we're proving have no context.
- We need to strengthen our inference rules to remember under what circumstances the results are valid.

Adding Scope

We write

 $S \vdash e : T$

if, in scope **S**, expression **e** has type **T**.

• Types are now proven relative to the scope they are in.

What is the Scope?

Recall scope contains variables' definition.

$$S = \{(i, int), (j, float)\}$$

Old Rules Revisited

S ⊢ true : bool

S ⊢ false: bool

i is an integer constant

s is a string constant

 $S \vdash i : int$

 $S \vdash s : string$

d is a double constant

 $S \vdash d : double$

 $S \vdash e_1 : double$

 $S \vdash e_1 : int$

 $S \vdash e_2 : double$

 $S \vdash e_2 : int$

 $S \vdash e_1 + e_2 : double$

 $S \vdash e_1 + e_2 : int$

A Correct Rule

x is an identifier.x is a variable in scope S with type T.

 $S \vdash x : T$

A Correct Rule

x is an identifier.

x is a variable in scope S with type T.

 $S \vdash x : T$

f is an identifier.

$$S \vdash f(e_1, ..., e_n) : ??$$

f is an identifier.
f is a non-member function in scope S.

$$S \vdash f(e_1, ..., e_n) : ??$$

f is an identifier. f is a non-member function in scope S. f has type $(T_1, ..., T_n) \rightarrow U$

$$S \vdash f(e_1, ..., e_n) : ??$$

```
f is an identifier.

f is a non-member function in scope S.

f has type (T_1, ..., T_n) \rightarrow U

S \vdash e_i : T_i \text{ for } 1 \leq i \leq n
```

 $S \vdash f(e_1, ..., e_n) : ??$

```
f is an identifier.

f is a non-member function in scope S.

f has type (T_1, ..., T_n) \rightarrow U

S \vdash e_i : T_i \text{ for } 1 \leq i \leq n

S \vdash f(e_1, ..., e_n) :
```

f is an identifier. f is a non-member function in scope S. f has type $(T_1, ..., T_n) \rightarrow U$ $S \vdash e_i : T_i \text{ for } 1 \leq i \leq n$ $S \vdash f(e_1, ..., e_n) : U$

Rules for Arrays

 $S \vdash e_1 : T[]$

 $\mathsf{S} \vdash \mathsf{e}_{_{\!2}} : \mathtt{int}$

 $S \vdash e_1[e_2] : T$

Rule for Assignment

$$S \vdash e_1 : T$$

$$S \vdash e_2:T$$

$$S \vdash e_1 = e_2 : T$$

Rule for Assignment

$$S \vdash e_1 : T$$

 $S \vdash e_2 : T$
 $S \vdash e_1 = e_2 : T$

If **Derived** extends **Base**, will this rule work for this code?

```
Base myBase;
Derived myDerived;

myBase = myDerived;
```

Rule for Comparison

 $S \vdash e_1$: int

 $S \vdash e_2$: int

 $S \vdash e_1 < e_2 : bool$

Example

- Assume we know that *i* and *j* are defined integers within scope S.
- What is the type of i + 1 < j?

Example

- Assume we know that i and j are defined integers within scope S.
- What is the type of i + 1 < j?

More Rules-simplified

$$S \vdash x: T S \vdash e: T$$

$$S \vdash x = e$$
; : void

$$S \vdash \{\}$$
: void

$$S \vdash e$$
: bool $S \vdash s$: void

$$S \vdash while (e) s : void$$

$$S \vdash s$$
: void

$$S \vdash \{s\}$$
: void

$$S \vdash e$$
: bool $S \vdash s_1$: void $S \vdash s_2$: void

$$S \vdash if (e) s_1 else s_2 : void$$

$$S \vdash s_1$$
: void $S \vdash s_2$: void

$$S \vdash s_1 s_2 : void$$

Example

• Assume we know that *i* and *j* are defined integers within scope S.

Example

• Assume we know that *i* and *j* are defined integers within scope S.

 $\frac{S \vdash j = 0; \mathbf{if}(i == 0)j = 1; : \mathbf{void}}{S \vdash \{j = 0; \mathbf{if}(i == 0)j = 1; \}: \mathbf{void}}$ Block-Rule

$$\frac{S \vdash j = 0 \colon \mathbf{void} \qquad S \vdash \mathbf{if}(i == 0)j = 1; \colon \mathbf{void}}{S \vdash j = 0; \mathbf{if}(i == 0)j = 1; \colon \mathbf{void}}$$
 Composition-Rule
$$\frac{S \vdash j = 0; \mathbf{if}(i == 0)j = 1; \colon \mathbf{void}}{S \vdash \{j = 0; \mathbf{if}(i == 0)j = 1; \} \colon \mathbf{void}}$$
 Block-Rule

 $\frac{(i, \text{ int}) \in S}{S \vdash j : \text{ int}} \text{ ASS}$ $\frac{S \vdash i = 0 : \text{ bool} \qquad S \vdash j = 1 : \text{ void}}{S \vdash \text{ if } (i == 0)j = 1; : \text{ void}} \text{ IF-Rule}$ $\frac{S \vdash j = 0; \text{ if } (i == 0)j = 1; : \text{ void}}{S \vdash \{j = 0; \text{ if } (i == 0)j = 1; \} : \text{ void}} \text{ Block-Rule}$

 $\frac{S \vdash j = 0; \mathbf{if}(i == 0)j = 1; : \mathbf{void}}{S \vdash \{j = 0; \mathbf{if}(i == 0)j = 1; \}: \mathbf{void}}$ Block-Rule

Typing with Classes

- How do we factor inheritance into our inference rules?
- We need to consider the shape of class hierarchies.

Single Inheritance

Multiple Inheritance

Properties of Inheritance Structures

- Any type is convertible to itself. (reflexivity)
- If A is convertible to B and B is convertible to C, then A is convertible to C. (transitivity)
- If A is convertible to B and B is convertible to A, then A and B are the same type.

 (antisymmetry)
- This defines a partial order over types.

Types and Partial Orders

- . We say that $A \leq B$ if A is convertible to B.
- We have that
 - $\cdot A \leq A$
 - $A \le B$ and $B \le C$ implies $A \le C$
 - $A \le B$ and $B \le A$ implies A = B

 $S \vdash e_1 = e_2 : ??$

$$S \vdash e_1 : T_1$$

 $S \vdash e_2 : T_2$

$$S \vdash e_1 = e_2 : ??$$

$$S \vdash e_1 : T_1$$

$$S \vdash e_2 : T_2$$

$$T_2 \leq T_1$$

 $S \vdash e_1 = e_2 : ??$

T2 inherits T1

$$S \vdash e_1 : T_1$$

$$S \vdash e_2 : T_2$$

$$T_2 \leq T_1$$

 $S \vdash e_1 = e_2 : T_1$

T2 inherits T1

$$S \vdash e_1 : T$$

 $S \vdash e_2 : T$

T is a primitive type

$$S \vdash e_1 == e_2 : bool$$

$$S \vdash e_1 : T$$

 $S \vdash e_2 : T$
T is a primitive type

$$S \vdash e_1 == e_2 : bool$$

$$S \vdash e_1 : T_1$$

 $S \vdash e_2 : T_2$
 T_1 and T_2 are of class type.
 $T_1 \le T_2$ or $T_2 \le T_1$

$$S \vdash e_1 == e_2 : bool$$

Can we unify

these rules?

$$S \vdash e_1 : T$$

$$S \vdash e_2:T$$

T is a primitive type

$$S \vdash e_1 == e_2 : bool$$

$$S \vdash e_1 : T_1$$

 $S \vdash e_2 : T_2$
 T_2 are of class type.

 T_1 and T_2 are of class type.

$$T_1 \le T_2 \text{ or } T_2 \le T_1$$

$$S \vdash e_1 == e_2 : bool$$

The Shape of Types

The Shape of Types

The Shape of Types

Extending Convertibility

- . If A is a primitive or array type, A is only convertible to itself.
- . More formally, if A and B are types and A is a primitive or array type:
 - . $A \leq B$ implies A = B
 - $B \le A \text{ implies } A = B$

$$S \vdash e_{1} : T$$

 $S \vdash e_{2} : T$
T is a primitive type

$$S \vdash e_1 == e_2 : bool$$

$$S \vdash e_1 : T_1$$

 $S \vdash e_2 : T_2$
and T are of class type

 T_1 and T_2 are of class type.

$$T_1 \le T_2 \text{ or } T_2 \le T_1$$

$$S \vdash e_1 == e_2 : bool$$

$$S \vdash e_1 : T$$

 $S \vdash e_2 : T$
T is a primitive type

$$S \vdash e_1 == e_2 : bool$$

$$S \vdash e_1 : T_1$$

 $S \vdash e_2 : T_2$
 T_1 and T_2 are of class type.
 $T_1 \le T_2$ or $T_2 \le T_1$
 $S \vdash e_1 == e_2 : bool$

$$S \vdash e_1 : T_1$$

$$S \vdash e_2 : T_2$$

$$T_1 \leq T_2 \text{ or } T_2 \leq T_1$$

$$S \vdash e_1 == e_2 : \text{bool}$$

Updated Rule for Function Calls

```
f is an identifier.

f is a non-member function in scope S.

f has type (T_1, ..., T_n) \rightarrow U

S \vdash e_i : R_i \text{ for } 1 \le i \le n

R_i \le T_i \text{ for } 1 \le i \le n

S \vdash f(e_1, ..., e_n) : U
```

 $S \vdash null : ??$

Back to the Drawing Board

Back to the Drawing Board

Handling null

- Define a new type corresponding to the type of the literal null; call it "null type."
- Define **null** type \leq A for any class type A.
- The null type is (typically) not accessible to programmers; it's only used internally.
- Many programming languages have types like these.

 $S \vdash null : ??$

 $S \vdash null : null type$

 $S \vdash null : null type$

Object-Oriented Considerations

S is in scope of class T.

 $S \vdash \mathtt{this} : \mathsf{T}$

T is a class type.

 $S \vdash new T : T$

 $S \vdash e : int$

 $S \vdash NewArray(e, T) : T[]$

What's Left?

- We're missing a few language constructs:
 - Member functions.
 - Field accesses.
 - . Miscellaneous operators.
- Good practice to fill these in on your own.

Typing is Nuanced

- The ternary conditional operator?: evaluates an expression, then produces one of two values.
- . Works for primitive types:
 - int x = random() > 1? 137 : 42;
- Works with inheritance:
 - Base b = isB? new Base : new Derived;
- What might the typing rules look like?

S ⊢ cond:bool

```
S \vdash cond : bool

S \vdash e_1 : T_1

S \vdash e_2 : T_2
```

```
S \vdash cond : bool

S \vdash e_1 : T_1

S \vdash e_2 : T_2

T_1 \leq T_2 \text{ or } T_2 \leq T_1
```

```
S \vdash cond : bool

S \vdash e_1 : T_1

S \vdash e_2 : T_2

T_1 \leq T_2 \text{ or } T_2 \leq T_1
```

 $S \vdash cond ? e_1 : e_2 : max(T_1, T_2)$

```
S \vdash cond : bool

S \vdash e_1 : T_1

S \vdash e_2 : T_2

T_1 \leq T_2 \text{ or } T_2 \leq T_1
```

 $S \vdash cond ? e_1 : e_2 : max(T_1, T_2)$

```
S ⊢ cond:bool
                S \vdash e_1 : T_1
                S \vdash e_2 : T_2
            T_1 \le T_2 \text{ or } T_2 \le T_1
S \vdash cond ? e_1 : e_2 : max(T_1, T_2)
```

Super

Base

Derived2

Derived1

$$S \vdash cond : bool$$

$$S \vdash e_1 : T_1$$

$$S \vdash e_2 : T_2$$

$$T_1 \leq T_2 \text{ or } T_2 \leq T_1$$

$$S \vdash cond ? e_1 : e_2 : max(T_1, T_2)$$

$$Super$$

A Small Problem

$$S \vdash cond : bool$$

$$S \vdash e_1 : T_1$$

$$S \vdash e_2 : T_2$$

$$T_1 \leq T_2 \text{ or } T_2 \leq T_1$$

$$S \vdash cond ? e_1 : e_2 : max(T_1, T_2)$$

A Small Problem

$$S \vdash cond : bool$$

$$S \vdash e_1 : T_1$$

$$S \vdash e_2 : T_2$$

$$T_1 \leq T_2 \text{ or } T_2 \leq T_1$$

$$S \vdash cond ? e_1 : e_2 : max(T_1, T_2)$$

Base = isB?
 new Derived1 : new Derived2;

A Small Problem

$$S \vdash cond : bool$$

$$S \vdash e_1 : T_1$$

$$S \vdash e_2 : T_2$$

$$T_1 \leq T_2 \text{ or } T_2 \leq T_1$$

$$S \vdash cond ? e_1 : e_2 : max(T_1, T_2)$$

Least Upper Bounds

- . An **upper bound** of two types A and B is a type C such that $A \le C$ and $B \le C$.
- The **least upper bound** of two types A and B is a type C such that:
 - C is an upper bound of A and B.
 - . If C' is an upper bound of A and B, then $C \le C'$.
- When the least upper bound of A and B exists, we denote it A v B.
 - (When might it not exist?)

A Better Rule

$$S \vdash cond : bool$$
 $S \vdash e_1 : T_1$
 $S \vdash e_2 : T_2$
 $T = T_1 \lor T_2$
 $S \vdash cond ? e_1 : e_2 : T$

Base = isB?
 new Derived1 : new Derived2;

... that still has problems

$$S \vdash cond : bool$$
 $S \vdash e_1 : T_1$
 $S \vdash e_2 : T_2$
 $T = T_1 \lor T_2$
 $S \vdash cond ? e_1 : e_2 : T$

Base = isB?
 new Derived1 : new Derived2;

... that still has problems

$$S \vdash cond : bool$$
 $S \vdash e_1 : T_1$
 $S \vdash e_2 : T_2$
 $T = T_1 \lor T_2$
 $S \vdash cond ? e_1 : e_2 : T$

```
Base = isB?
    new Derived1 : new Derived2;
```

Multiple Inheritance is Messy

- Type hierarchy is no longer a tree.
- Two classes might not have a least upper bound.
- Occurs C++ because of multiple inheritance and in Java due to interfaces.
- Not a problem in Decaf; there is no ternary conditional operator.
- How to fix?

Minimal Upper Bounds

- An **upper bound** of two types A and B is a type C such that $A \le C$ and $B \le C$.
- A minimal upper bound of two types A and B is a type C such that:
 - C is an upper bound of A and B.
 - If C' is an upper bound of C, then it is not true that C' < C.
- Minimal upper bounds are not necessarily unique.
- A least upper bound must be a minimal upper bound, but not the other way around.

A Correct Rule

Base1

Base2

S ⊢ cond:bool

 $S \vdash e_1 : T_1$

 $S \vdash e_2 : T_2$

T is a minimal upper bound of T₁ and T₂

$$S \vdash cond ? e_1 : e_2 : T$$

Base = isB?

new Derived1 : new Derived2;

A Correct Rule

Base1

Base2

 $S \vdash cond:bool$

 $S \vdash e_1 : T_1$

 $S \vdash e_2 : T_2$

T is a minimal upper bound of T_1 and T_2

 $S \vdash cond ? e_1 : e_2 : T$

Can prove both that expression has type Base1 and that expression has type Base2.

Base = isB?

new Derived1 : new Derived2;

So What?

- Type-checking can be tricky.
- Strongly influenced by the choice of operators in the language.
- Strongly influenced by the legal type conversions in a language.
- In C++, the previous example doesn't compile.
- In Java, the previous example does compile, but <u>the</u> language spec is *enormously* complicated.
 - See §15.12.2.7 of the Java Language Specification.

Next Time

Checking Statement Validity

- . When are statements legal?
- When are they illegal?

Practical Concerns

- How does function overloading work?
- How do functions interact with inheritance?