Outline of the lecture

- Series of real numbers the general case
 - Convergence criteria
 - Absolute convergent series
 - Unconditionally convergent series
- Power series
 - Series of functions. Uniform convergence
 - Power series

October 23, 2017

Series of real numbers – the general case

The alternate harmonic series. $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{n}$:

By noting $x_n := (-1)^{n+1} \frac{1}{n}$, $n \in \mathbb{N}^*$, we have:

$$|x_{n+1} + \dots + x_{n+p}| = \left| (-1)^{n+2} \frac{1}{n+1} + (-1)^{n+3} \frac{1}{n+2} + \dots + (-1)^{n+p+1} \frac{1}{n+p} \right|$$
$$= \frac{1}{n+1} - \frac{1}{n+2} + \dots + (-1)^{p-1} \frac{1}{n+p} \le \frac{1}{n+1}.$$

Since $\lim_{n\to\infty}\frac{1}{n+1}=0$,

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}, \ n \geq n_{\varepsilon}, p \in \mathbb{N}^* : |x_{n+1} + \cdots + x_{n+p}| < \varepsilon.$$

By Cauchy's convergence test, $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{n}$ is convergent.

• A series $\sum x_n$ such that $x_n \cdot x_{n+1} \le 0$, $\forall n \in \mathbb{N}^*$ is called an *alternate series*.

A. Zălinescu (lași) Lecture 4 October 23, 2017

Dirichlet criterion

Theorem

Let $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ be sequences of real numbers. Let $S_n:=x_1+\cdots+x_n$, $n\in \mathbb{N}^*$. If

- the sequence $(S_n)_{n\geq 1}$ is bounded;
- $\textbf{ 1 the sequence } (y_n)_{n\geq 1} \text{ is monotone and } \lim_{n\to\infty} y_n = 0,$

then the series $\sum_{n=1}^{\infty} x_n y_n$ is convergent.

A. Zălinescu (lași)

Example. Let us consider the series $\sum_{n=1}^{\infty} \frac{\cos n}{\sqrt{n}}$. Let

$$S_n := \cos 1 + \cos 2 + \cdots + \cos n.$$

We have:

$$2\sin\frac{1}{2} \cdot S_n = 2\cos 1 \cdot \sin\frac{1}{2} + 2\cos 2 \cdot \sin\frac{1}{2} + \dots + 2\cos n \cdot \sin\frac{1}{2}$$

$$= \left[\sin\left(1 + \frac{1}{2}\right) - \sin\left(1 - \frac{1}{2}\right)\right] + \left[\sin\left(2 + \frac{1}{2}\right) - \sin\left(2 - \frac{1}{2}\right)\right] + \dots$$

$$\dots + \left[\sin\left(n - \frac{1}{2}\right) - \sin\left(n - \frac{3}{2}\right)\right] + \left[\sin\left(n + \frac{1}{2}\right) - \sin\left(n - \frac{1}{2}\right)\right]$$

$$= \sin\left(n + \frac{1}{2}\right) - \sin\left(\frac{1}{2}\right) = 2\sin\frac{n}{2} \cdot \cos\frac{n+1}{2}.$$

Then the sequence $(S_n)_{n\geq 1}$ is bounded, because

$$|S_n| = \left| \frac{\sin \frac{n}{2} \cdot \cos \frac{n+1}{2}}{\sin \frac{1}{2}} \right| \le \frac{1}{\left| \sin \frac{1}{2} \right|}, \ \forall n \in \mathbb{N}^*.$$

The sequence $\left(\frac{1}{\sqrt{n}}\right)_{n\geq 1}$ is decreasing and convergent to 0; by Dirichlet criterion it

follows that the series $\sum_{n=1}^{\infty} \frac{\cos n}{\sqrt{n}}$ is convergent.

Leibniz criterion

Corollary

Let $(x_n)_{n\geq 1}\subseteq \mathbb{R}$ be a monotone sequence with $\lim_{n\to\infty}x_n=0$. Then the alternate series $\sum_{n=0}^{\infty}(-1)^nx_n$ is convergent.

Proof.

In order to apply Dirichlet criterion for the series $\sum_{n=1}^{\infty} (-1)^n x_n$, it is enough to see

that the sequence of the partial sums, $\sum_{n=1}^{\infty} (-1)^n$, is bounded.

A. Zălinescu (lași)

Lecture 4

Abel criterion

Theorem

Let $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ be sequences of real numbers. If

- the series $\sum_{n=1}^{\infty} x_n$ is convergent;
- ② the sequence $(y_n)_{n\geq 1}$ is monotone and bounded,

then the series $\sum_{n=1}^{\infty} x_n y_n$ is convergent.

Proof.

Since (y_n) is monotone and bounded, it is convergent. Let $y \in \mathbb{R}$ be its limit and $\tilde{y}_n := y_n - y$. Then (\tilde{y}_n) is monotone with $\lim_{n \to \infty} \tilde{y}_n = 0$.

By Dirichlet criterion, $\sum_{n=1}^{\infty} x_n \tilde{y}_n$ is convergent. Also, $\sum_{n=1}^{\infty} x_n y$ is also convergent.

We then obtain that $\sum_{n=1}^{\infty} x_n(\tilde{y}_n + y)$ is convergent, i.e. $\sum_{n=1}^{\infty} x_n y_n$ (C).

Absolute convergent series

Definition

We say that a series of real numbers $\sum_{n=1}^{\infty} x_n$ is:

- absolute convergent, if $\sum_{n=1}^{\infty} |x_n|$ is convergent we note: $\sum_{n=1}^{\infty} x_n$ (AC);
- semiconvergent, if $\sum_{n=1}^{\infty} x_n$ is convergent, but $\sum_{n=1}^{\infty} |x_n|$ is divergent we note:

$$\sum_{n=1}^{\infty} x_n \text{ (SC)}.$$

- For series with positive terms, absolute convergence is equivalent with convergence.
- The alternate harmonic series is semiconvergent: it is convergent and $\sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{1}{n} \right|$ is divergent.

Theorem

If a series of real numbers is absolute convergent, then it is convergent.

Proof.

Let $\sum_{n=1}^{\infty} x_n$ be an absolute convergent series.

Let $\varepsilon > 0$; since $\sum_{n=1}^{\infty} |x_n|$ (C), by Cauchy's convergence test, we can find $n_{\varepsilon} \in \mathbb{N}^*$

such that

$$|x_{n+1}| + \cdots + |x_{n+p}| < \varepsilon, \ \forall n \ge n_{\varepsilon}, \ \forall p \in \mathbb{N}^*.$$

But
$$|x_{n+1} + \dots + x_{n+p}| \le |x_{n+1}| + \dots + |x_{n+p}|$$
, so

$$|x_{n+1}+\cdots+x_{n+p}|<\varepsilon, \ \forall n\geq n_{\varepsilon}, \ \forall p\in\mathbb{N}^*.$$

Applying again Cauchy's test, we deduce that $\sum_{n=1}^{\infty} x_n$ is convergent.

A. Zălinescu (lași) Lecture 4 October 23, 2017

The Cauchy product

Definition

Let $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ be two series of real numbers. The series $\sum_{n=1}^{\infty} c_n$, where

$$c_n := x_1 y_n + x_2 y_{n-1} + \cdots + x_n y_1,$$

is called the *Cauchy product* of the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$.

This operation between series is commutative.

Theorem (Mertens)

Let $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ be two series. If $\sum_{n=1}^{\infty} x_n$ (AC) and $\sum_{n=1}^{\infty} y_n$ (C), then the

Cauchy product of $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ is convergent. Moreover, its sum is equal to the product of the sums of the two series.

A. Zălinescu (lasi) Lecture 4 October 23, 2017

Cauchy Theorem

Mertens theorem has a simple consequence:

Theorem

The Cauchy product of two absolute convergent series is absolute convergent.

Remark. The Cauchy product of two convergent series is not necessarely convergent.

For example, set $x_n:=(-1)^n\frac{1}{\sqrt{n+1}}$ and $y_n:=x_n$ for $n\in\mathbb{N}$. By Leibniz criterion,

the alternate series $\sum_{n=0}^{\infty} x_n$ and $\sum_{n=0}^{\infty} y_n$ are convergent. We define, for $n \in \mathbb{N}$,

$$c_n := \sum_{k=0}^n x_k y_{n-k} = \sum_{k=0}^n (-1)^n \frac{1}{\sqrt{(k+1)(n-k+1)}} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}}.$$

Since

$$|c_n| = \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}} \ge \sum_{k=0}^n \frac{2}{n+2} = \frac{2(n+1)}{n+2},$$

we have $c_n \not\to 0$. Hence $\sum_{n=0}^{\infty} c_n$ is not convergent.

A. Zălinescu (lasi) Lecture 4 October 23, 2017

Unconditionally convergent series

Theorem (Riemann)

Let $\sum_{n=1}^{\infty} x_n$ be semiconvergent series. Then, for any $S \in \overline{\mathbb{R}}$ there exists a bijective

function (a permutation) $\varphi: \mathbb{N}^* \to \mathbb{N}^*$ such that $\sum_{n=1}^\infty \mathsf{x}_{\varphi(n)} = \mathsf{S}$.

Letting $S=+\infty$ or $S=-\infty$: we can permute the terms of a semiconvergent series in order to obtain a divergent one.

Definition

We say that a series of real numbers $\sum_{n=1}^{\infty} x_n$ is unconditionally convergent if for

any bijective function $\varphi: \mathbb{N}^* \to \mathbb{N}^*$, the series $\sum_{n=1}^{\infty} x_{\varphi(n)}$ is convergent.

Obviously, an unconditionally convergent series is convergent.

A. Zălinescu (lași) Lecture 4 October 23, 2017

Theorem

A series $\sum_{n=1}^{\infty} x_n$ is unconditionally convergent if and only if it is absolute convergent. In this case, for every bijective function $\varphi: \mathbb{N}^* \to \mathbb{N}^*$ we have

$$\sum_{n=1}^{\infty} x_{\varphi(n)} = \sum_{n=1}^{\infty} x_n.$$

October 23, 2017

Series of functions

Let $(f_n)_{n\geq 1}$ is a sequence of functions from a set E to \mathbb{R} .

By the series of functions $\sum_{n=1}^{\infty} f_n$ we understand the sequence of functions

 $(S_n)_{n\geq 1}$, where the functions $S_n: E \to \mathbb{R}$, $n \in \mathbb{N}^*$ are the *partial sums* of the

series $\sum_{n=1}^{\infty} f_n$, defined by

$$S_n(x) := f_1(x) + \cdots + f_n(x), \ x \in E.$$

A. Zălinescu (lași)

Uniform convergence

Definition

Let $f_n: E \to \mathbb{R}$, $n \in \mathbb{N}^*$ and $D \subseteq E$. Let S_n , $n \in \mathbb{N}^*$ be the partial sums of $\sum_{n=1}^{\infty} f_n$.

• We say that $\sum_{n=1}^{\infty} f_n$ converges pointwise on D if $\sum_{n=1}^{\infty} f_n(x)$ is convergent for every $x \in D$, i.e. $\exists S : D \to \mathbb{R}$ such that $S_n \xrightarrow{p} S$. In this case we will write

$$\sum_{n=1}^{\infty} f_n = S \text{ on } D.$$

• We say that $\sum_{n=1}^{\infty} f_n$ converges uniformly on D if $\exists S: D \to \mathbb{R}$ such that $S_n \xrightarrow{u} S$. In the case we will write

$$\sum_{n=1}^{\infty} f_n(x) = S(x) \text{ (UC)}, \ x \in D.$$

Cauchy test of uniform convergence

As in the case of numeric series, we have a Cauchy test for uniform convergence:

Theorem

Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions from a set E to \mathbb{R} and $D\subseteq E$. Then $\sum_{n=1}^{\infty}f_n \text{ converges uniformly on } D \text{ if and only if}$

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}, \ \forall n \geq n_{\varepsilon}, \ \forall p \in \mathbb{N}^*, \ \forall x \in D: |f_{n+1}(x) + \dots + f_{n+p}(x)| < \varepsilon.$$

Power series

Definition

Let $(a_n) \subseteq \mathbb{R}$ be a sequence and $x_0 \in \mathbb{R}$.

• The series with parameter $x \in \mathbb{R}$,

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

is called the *power series* centered in x_0 , with coefficients a_n , $n \in \mathbb{N}$.

• The set of those $x \in \mathbb{R}$ for which the series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ is convergent (absolute convergent) is called the *domain of convergence* (*domain of absolute convergence*) of the power series, denoted D_c (D_{ac}).

A. Zălinescu (Iași) Lecture 4 October 23, 2017

Theorem (Abel)

Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series. Then there exists a unique $r \in [0, +\infty]$, called

radius of convergence of $\sum_{n=0}^{\infty} a_n x^n$, such that

$$(-r,r)\subseteq D_{ac}\subseteq D_c\subseteq [-r,+r]$$

Moreover, we have:

- $r = \frac{1}{\ell}$, where $\ell := \limsup_{n \to \infty} \sqrt[n]{|a_n|}$ (or $\lim_{n \to +\infty} \sqrt[n]{|a_n|}$, $\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|}$, whenever they exist);
- **1** the series $\sum_{n=0}^{\infty} a_n x^n$ is uniformly convergent with respect to $x \in [a,b] \subseteq D_{ac}$;
- **3** the function $S:D_c \to \mathbb{R}$, defined as

$$S(x) := \sum_{n=0}^{\infty} a_n x^n, \ x \in D_c$$

is continuous.

Examples

- The *null series*: $a_n := 0$, $n \in \mathbb{N}$. We have $r = +\infty$, $D_{ac} = D_c = \mathbb{R}$.
- The geometric series, $\sum_{n=0}^{\infty} x^n$. We have r=1, $D_{ac}=D_c=(-1,1)$.
- The series $\sum_{n=0}^{\infty} n! x^n$: r = 0, $D_{ac} = D_c = \{0\}$.
- The series $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} x^n$, with $\alpha \in \mathbb{R}$. We have r=1 and
 - $D_{ac} = \begin{cases} (-1,1), & \alpha \leq 1; \\ [-1,1], & \alpha > 1; \end{cases}$
 - $D_c = \begin{cases} (-1,1), & \alpha \leq 0; \\ [-1,1), & \alpha \in (0,1]; \\ [-1,1], & \alpha > 1. \end{cases}$
- The exponential series, $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. We have $r=+\infty$, $D_{ac}=D_c=\mathbb{R}$. Also,

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x, \ \forall x \in \mathbb{R}.$$

A. Zălinescu (lași) Lecture 4 October 23, 2017

• The trigonometric series, $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$ and $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$. Again we have $r=+\infty$, $D_{ac}=D_c=\mathbb{R}$. Also,

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = \sin x, \ \forall x \in \mathbb{R};$$
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = \cos x, \ \forall x \in \mathbb{R}.$$

• The binomial series. For $n \in \mathbb{N}$ and $\alpha \in \mathbb{R} \setminus \{n+p \mid p \in \mathbb{N}\}$, we define

$$C_{\alpha}^{n} := \left\{ \begin{array}{ll} \frac{\alpha \cdot \cdots \cdot (\alpha - n + 1)}{n!}, & n > 0; \\ 1, & n = 0 \end{array} \right.$$

(therefore, C_{α}^{n} is now defined for any $n \in \mathbb{N}$ and $\alpha \in \mathbb{R}$).

The series $\sum_{n=0}^{\infty} C_{\alpha}^{n} x^{n}$ is called the *binomial series* (of parameter $\alpha \in \mathbb{R}$). We

- have:
 - if $\alpha \in \mathbb{N}$: $r = +\infty$, $D_{ac} = D_c = \mathbb{R}$;
 - if $\alpha \le -1$: r = 1, $D_{ac} = D_c = (-1, 1)$;
 - if $\alpha \in (-1, 0)$: r = 1, $D_{ac} = (-1, 1)$, $D_c = (-1, 1]$;
 - if $\alpha \in \mathbb{R} \setminus \mathbb{N}$, $\alpha > 0$, then r = 1, $D_{ac} = D_c = [-1, 1]$.

Moreover, for any $\alpha \in \mathbb{R}$,

$$\sum_{n=0}^{\infty} C_{\alpha}^{n} x^{n} = (1+x)^{\alpha}, \ \forall x \in D_{c}.$$

This generalizes the binomial Newton formula, already known for $\alpha \in \mathbb{N}$.

A. Zălinescu (Iași) Lecture 4 October 23, 2017