

CNN – Transfer Learning & Architectures

Transfer Learning

Transfer Learning

"You need a lot of a data if you want to train/use CNNs"

Transfer Learning

"You need a lot of a Nata if you want to train use CNNs"

Transfer Learning with CNNs

1. Train on Imagenet

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 **Image**

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 **Image**

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

3. Bigger dataset

	very similar dataset	very different dataset
very little data	?	?
quite a lot of data	?	?

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Image Captioning: CNN + RNN

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Transfer learning with CNNs is pervasive... But recent results show it might not always be necessary!

He et al, "Rethinking ImageNet Pre-training", arXiv 2018

Takeaway for your projects and beyond:

Have some dataset of interest but it has < ~1M images?

- 1. Find a very large dataset that has similar data, train a big ConvNet there
- 2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own

TensorFlow: https://github.com/tensorflow/models

PyTorch: https://github.com/pytorch/vision

CNN Architectures (Pre-Trained Models)

Examples:

- AlexNet
- VGG
- GoogLeNet
- ResNet
- MobileNet

[Krizhevsky et al. 2012]

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

Max POOL3

FC6

FC7

FC8

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = **35K**

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1=27

[Krizhevsky et al. 2012]

Input: 227x227x3 images

After CONV1: 55x55x96

After POOL1: 27x27x96

• • •

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- -first use of ReLU
- -used Norm layers (not common anymore)
- -heavy data augmentation
- -dropout 0.5
- -batch size 128
- -SGD Momentum 0.9
- -Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

[55x55x48] x 2

Historical note: Trained on GTX 580 GPU with only 3 GB of memory. Network spread across 2 GPUs, half the neurons (feature maps) on each GPU.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ZFNet

[Zeiler and Fergus, 2013]

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet) -> 7.3% top 5 error in ILSVRC'14

Softmax		
FC 1000		
FC 4096		
FC 4096		
Pool		
3x3 conv, 256		
3x3 conv, 384		
Pool		
3x3 conv, 384		
Pool		
5x5 conv, 256		
11x11 conv, 96		
Input		
AlexNet		

	FC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input
VGG16	VGG19

```
(not counting biases)
INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
                                                                                          Note:
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
                                                                                          Most memory is in
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
                                                                                          early CONV
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512=2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
                                                                                          Most params are
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
                                                                                          in late FC
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
```


ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

[Szegedy et al., 2014]

Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!12x less than AlexNet
- ILSVRC'14 classification winner (6.7% top 5 error)

[Szegedy et al., 2014]

"Inception module": design a good local network topology (network within a network) and then stack these modules on top of each other

[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on the input from previous layer:

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together depth-wise

[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on the input from previous layer:

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together depth-wise

Q: What is the problem with this? [Hint: Computational complexity]

[Szegedy et al., 2014]

Example:

Naive Inception module

[Szegedy et al., 2014]

Example: Q1: What is the output size of the 1x1 conv, with 128 filters?

1x1 conv, 128

Module input: Input 28x28x256

Naive Inception module

[Szegedy et al., 2014]

Example: Q1: What is the output size of the 1x1 conv, with 128 filters?

28x28x128

1x1 conv,
128

Module input:
28x28x256

Naive Inception module

[Szegedy et al., 2014]

Example:

Q2: What are the output sizes of all different filter operations?

Naive Inception module

[Szegedy et al., 2014]

Example: Q2: What are the output sizes of all different filter operations?

Naive Inception module

[Szegedy et al., 2014]

Q3:What is output size after Example:

filter concatenation?

Naive Inception module

[Szegedy et al., 2014]

Q3:What is output size after Example:

filter concatenation?

28x28x(128+192+96+256) = 28x28x672

Naive Inception module

[Szegedy et al., 2014]

Example:

Q3:What is output size after

filter concatenation?

28x28x(128+192+96+256) = 28x28x672Filter concatenation 28x28x128 28x28x192 28x28x96 28x28x256 3x3 conv, 5x5 conv, 1x1 conv, 3x3 pool 192 96 Module input: Input 28x28x256

Naive Inception module

Q: What is the problem with this? [Hint: Computational complexity]

Conv Ops:

[1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x256 [5x5 conv, 96] 28x28x96x5x5x256

Total: 854M ops

[Szegedy et al., 2014]

Example: Q3:What is output size after filter concatenation?

Naive Inception module

Q: What is the problem with this? [Hint: Computational complexity]

Conv Ops:

[1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x256 [5x5 conv, 96] 28x28x96x5x5x256

Total: 854M ops

Very expensive compute

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

[He et al., 2015]

Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers

FC 1000

[He et al., 2015]

Training ResNet in practice:

- Batch Normalization after every CONV layer
- Xavier 2/ initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

[He et al., 2015]

Experimental Results

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lowing training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

ILSVRC 2015 classification winner (3.6% top 5 error) -- better than "human performance"! (Russakovsky 2014)

Comparing complexity... Inception-v4: Resnet + Inception!

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

80

75

Top-1 accuracy [%]

60

55

VGG: Highest

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

GoogLeNet: most efficient

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

AlexNet: Smaller compute, still memory heavy, lower accuracy

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

ResNet: Moderate efficiency depending on model, highest accuracy

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

"Good Practices for Deep Feature Fusion"

[Shao et al. 2016]

- Multi-scale ensembling of Inception, Inception-Resnet, Resnet,
 Wide Resnet models
- ILSVRC'16 classification winner

	Inception- v3	Inception- v4	Inception- Resnet-v2		Wrn-68-3	Fusion (Val.)	Fusion (Test)
Err. (%)	4.20	4.01	3.52	4.26	4.65	2.92 (-0.6)	2.99

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Squeeze-and-Excitation Networks (SENet)

[Hu et al. 2017]

- Add a "feature recalibration" module that learns to adaptively reweight feature maps
- Global information (global avg. pooling layer) + 2 FC layers used to determine feature map weights
- ILSVRC'17 classification winner (using ResNeXt-152 as a base architecture)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

But research into CNN architectures is still flourishing

Of historical note...

Network in Network (NiN)

[Lin et al. 2014]

- Mlpconv layer with "micronetwork" within each conv layer to compute more abstract features for local patches
- Micronetwork uses multilayer perceptron
- Precursor to GoogLeNet and ResNet "bottleneck" layers
- Philosophical inspiration for GoogLeNet

Figures copyright Lin et al., 2014. Reproduced with permission.

Identity Mappings in Deep Residual Networks

[He et al. 2016]

- Improved ResNet block design from creators of ResNet
- Creates a more direct path for propagating information throughout network (moves activation to residual mapping pathway)
- Gives better performance

Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the important factor, not depth
- User wider residual blocks (F x k filters instead of F filters in each layer)
- 50-layer wide ResNet outperforms
 152-layer original ResNet
- Increasing width instead of depth more computationally efficient (parallelizable)

Aggregated Residual Transformations for Deep Neural Networks (ResNeXt)

[Xie et al. 2016]

 Also from creators of ResNet

 Increases width of residual block through multiple parallel pathways ("cardinality")

 Parallel pathways similar in spirit to Inception module

Other ideas...

FractalNet: Ultra-Deep Neural Networks without Residuals

[Larsson et al. 2017]

- Argues that key is transitioning effectively from shallow to deep and residual representations are not necessary
- Fractal architecture with both shallow and deep paths to output
- Trained with dropping out sub-paths
- Full network at test time

Figures copyright Larsson et al., 2017. Reproduced with permission.

Other ideas...

Densely Connected Convolutional Networks

[Huang et al. 2017]

- Dense blocks where each layer is connected to every other layer in feedforward fashion
- Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse

Efficient networks...

MobileNets: Efficient Convolutional Neural Networks for Mobile Applications

[Howard et al. 2017]

- Depthwise separable convolutions replace standard convolutions by factorizing them into a depthwise convolution and a 1x1 convolution that is much more efficient
- Much more efficient, with little loss in accuracy
- Follow-up MobileNetV2 work in 2018 (Sandler et al.)
- Other works in this space e.g. ShuffleNet (Zhang et al. 2017)

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

Meta-learning: Learning to learn network architectures...

Neural Architecture Search with Reinforcement Learning (NAS)

[Zoph et al. 2016]

- "Controller" network that learns to design a good network architecture (output a string corresponding to network design)
- Iterate:
 - 1) Sample an architecture from search space
 - Train the architecture to get a "reward" R
 corresponding to accuracy
 - 3) Compute gradient of sample probability, and scale by R to perform controller parameter update (i.e. increase likelihood of good architecture being sampled, decrease likelihood of bad architecture)

Summary: CNN Architectures

Case Studies

- AlexNet
- VGG
- GoogLeNet
- ResNet

Also....

- SENet
- NiN (Network in Network)
- Wide ResNet
- ResNeXT

- DenseNet
- FractalNet
- MobileNets
- NASNet

Summary: CNN Architectures

- Many popular architectures available in model zoos
- ResNet and SENet currently good defaults to use
- Networks have gotten increasingly deep over time
- Many other aspects of network architectures are also continuously being investigated and improved
- Even more recent trend towards meta-learning

Thank You!

Questions?