Suites numériques

Exercice 1. En utilisant la définition de limite, montrer que

$$\lim_{n\to\infty} \frac{2n-1}{3n+1} = \frac{2}{3} \qquad \lim_{n\to\infty} \sqrt{n-1} - n = -\infty$$
$$\lim_{n\to\infty} (n^2 - n\sin n) = +\infty \qquad \lim_{n\to\infty} \sqrt{n^2 - 1} - n = 0$$

Exercice 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=(-1)^n+\frac{1}{n}$ n'est pas convergente.

Exercice 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et $\ell\in\mathbb{R}$. Montrer que

- 1. Si $u_n \to \ell$, alors $|u_n| \to |\ell|$.
- 2. Si $|u_n| \to 0$, alors $u_n \to 0$.
- 3. La réciproque du 1 est-elle vraie?

Exercice 4. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Les propositions suivantes sont-elles vraies ou fausses?

- 1. Si $(u_n)_n$ converge vers $\ell \in \mathbb{R}$, alors $(u_{2n})_n$ et $(u_{2n+1})_n$ convergent vers ℓ .
- 2. Si $(u_{2n})_n$ et $(u_{2n+1})_n$ sont convergentes alors $(u_n)_n$ est convergente.
- 3. Si $(u_{2n})_n$ et $(u_{2n+1})_n$ sont convergentes vers $\ell \in \mathbb{R}$ alors $(u_n)_n$ converge vers ℓ .

Exercice 5. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente.

- 1. Montrer que si la suite (v_n) est bornée, alors $(u_n v_n)$ est bornée.
- 2. Montrer que si pour toute suite bornée (v_n) la suite (u_nv_n) est convergente, alors (u_n) converge vers 0.

Exercice 6. Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que $u_n\geq 0$ pour tout $n\in\mathbb{N}$. Supposons que

$$\lim_{n\to\infty} \sqrt[n]{u_n} = \ell \in \mathbb{R}.$$

Montrer que

- 1. si $\ell < 1$ alors $\lim u_n = 0$.
- 2. si $\ell > 1$ alors $\lim u_n = +\infty$

Montrer que, si $\ell = 1$, les deux cas $\lim u_n = 0$ et $\lim u_n = +\infty$ sont possibles.

Exercice 7. Calculer la limite des suites suivantes

- 1. $3n^2 2n$
- 2. $-2n^3 + n 3$
- 3. $\frac{n-1}{n^2+2}$
- 4. $\sqrt{n^2 + an + b} n$
- 5. $n\left(\sqrt{\frac{n+1}{n-1}}-1\right)$

Exercice 8 (Nombre d'Euler e). Le but de cet exercice est de montrer qu'il existe

$$e := \lim_{n \to \infty} u_n, \qquad u_n = \left(1 + \frac{1}{n}\right)^n, \qquad n \ge 1.$$

1. Montrer préliminairement que

$$u_n = 1 + \sum_{k=1}^{n} \frac{1}{k!} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right), \quad n \ge 1,$$

- 2. Montrer que $u_n < u_{n+1}$ pour tout $n \ge 1$.
- 3. Montrer que (u_n) est bornée, plus précisément $2 < u_n < 3$ pour tout n > 1. [Indication : utiliser l'inégalité $k! \ge 2^{k-1}$]. Conclure.

Exercice 9. Soient a > 1, b > 0. Calculer les limites des suites suivantes :

$$\frac{a^n}{n^b}$$
 $\frac{a^n}{n!}$ $\frac{n^b}{n!}$ $\frac{n^n}{n!}$

Exercice 10. Calculer les limites des suites suivantes (où a>0) :

$$\left(1+\frac{a}{n}\right)^n$$
, $\left(1-\frac{1}{n}\right)^n$, $\left(1+\frac{1}{n^2}\right)^n$

Exercice 11. Soit a > 1. Calculer les limites des suites suivantes :

$$\frac{\ln n}{n}$$
 $\frac{\ln n}{n^a}$ $\frac{\ln n!}{n}$

Exercice 12. Soient a, b > 0. Montrer que la suite $u_n = \sqrt[n]{a^n + b^n}$ est convergente et calculer sa limite.

Exercice 13. Soit $x \in \mathbb{R}, x > 0$. On considère la suite définie par récurrence

$$u_0 = 1,$$
 $u_{n+1} = \frac{1}{2} \left(u_n + \frac{x}{u_n} \right)$

- 1. Montrer que $u_n \ge \sqrt{x}$ pour tout $n \ge 1$.
- 2. Montrer que u_n est décroissante.
- 3. Calculer $\lim u_n$.

Exercice 14. Soit (u_n) une suite réelle telle que

- (i) la suite (u_{2n}) est monotone croissante
- (ii) la suite (u_{2n+1}) est monotone décroissante

Montrer que (u_n) est convergente si et seulement si $u_{2n} \le u_{2n+1}$ pour tout $n \in \mathbb{N}$ et $u_{2n+1} - u_{2n} \to 0$ pour $n \to \infty$.

Exercice 15. On considère les suites réelles (u_n) et (v_n) définies par

$$u_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}, \quad \text{et} \quad v_n = u_n + \frac{1}{n!}, \quad n \in \mathbb{N}.$$

Montrer que les suites (u_n) et (v_n) sont convergentes et ont la même limite.

Exercice 16. Soient 0 < a < b. Montrer préliminairement les inégalités suivantes

$$a < \sqrt{ab} < \tfrac{a+b}{2} < b.$$

On considère maintenant les suites définies par récurrence

$$u_1 = a,$$
 $v_1 = b.$
 $u_{n+1} = \sqrt{u_n v_n},$ $v_{n+1} = \frac{u_n + v_n}{2}$

Montrer que

- 1. $u_n < u_{n+1} < v_{n+1} < v_n$ pour tout $n \ge 1$.
- 2. les suites u_n et v_n ont même limite.

Exercice 17. Soient u_n et v_n deux suites telles que :

- $-u_n > 0$ et $\lim u_n = 1$
- $|v_n| < 1$

Les propositions suivantes sont-elles vraies ou fausses?

- 1. Il existe $N \in \mathbb{N}$ tel que $2u_n v_n > 0$ pour tout n > N.
- 2. La suite $(u_n + v_n)$ a une limite quand $n \to +\infty$.
- 3. Il existe $N \in \mathbb{N}$ tel que $u_n + v_n > 0$ pour tout n > N.
- 4. La suite $\left(\frac{nu_n+v_n}{n+1}\right)$ a une limite quand $n\to +\infty$.
- 5. Il existe K > 0 tel que $Ku_n + v_n > 0$ pour tout $n \in \mathbb{N}$.

Exercice 18. Soit $\alpha \geq 0$ et (u_n) la suite définie par récurrence

$$u_0 = \alpha, \qquad u_{n+1} = \sqrt{2 + u_n}$$

Montrer que (u_n) est convergente et calculer sa limite. [Indication : commencer par $\alpha = 2$.]

Exercice 19. Soit (u_n) une suite réelle et on considère la suite (a_n) définie par

$$a_n = \frac{u_1 + \dots + u_n}{n}$$

Montrer que si $\lim u_n = \ell$ alors $\lim a_n = \ell$. [Indication : commencer par $\ell = 0$.]