$\Pi \Lambda H30 - TE\Sigma T14$

ΘΕΜΑ 1: ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Να ταξινομηθούν οι ακόλουθες συναρτήσεις κατά αύξουσα τάξη μεγέθους:

$$f_1(n) = \frac{n + n \log n}{\log \log n}$$

$$f_2(n) = (1,01)^n + \log(50^n)$$

$$f_3(n) = n^2 \log n + \log^2 3^n$$

Ο συμβολισμός $\log \pi$ αριστάνει λογάριθμο με βάση το 2. . Η συνάρτηση f έχει την ίδια τάξη μεγέθους (ίδιο ρυθμό αύξησης) με την g (f $\equiv g$), αν $f = \Theta(g)$ (ισοδύναμα $\Theta(f) = \Theta(g)$). Η συνάρτηση f έχει μικρότερη τάξη μεγέθους (μικρότερο ρυθμό αύξησης) από την g (f < g), αν f = o(g).

(Β) Να λύσετε τις αναδρομές:

(1)
$$T(n) = T\left(\frac{7n}{8}\right) + T\left(\frac{n}{15}\right) + n^2$$

(2)
$$T(n) = 16T\left(\frac{n}{128}\right) + \sqrt[7]{n^4}$$

(3)
$$T(n) = 33T\left(\frac{n}{5}\right) + \sqrt[3]{n}$$

(4)
$$T(n) = T(n-1) + 2n^2 + 3n$$

Στη συνέχεια, να διαταχθούν οι λύσεις τους κατά αύξουσα τάξη μεγέθους.

Θεώρημα Κυριαρχίας: Έστω η αναδρομική εξίσωση T(n) = aT(n/b) + f(n), όπου $a \ge 1$, b > 1 είναι σταθερές, και f(n) είναι μια ασυμπτωτικά θετική συνάρτηση. Τότε διακρίνονται οι ακόλουθες τρεις περιπτώσεις:

- $(1) \ \text{av} f(n) = O(n^{\log_b a \varepsilon}), \ \text{για κάποια σταθερά ε>0, τότε } T(n) = \Theta(n^{\log_b a})$
- (2) $\alpha v f(n) = \Theta(n^{\log_b a}), \ \tau \acute{o} \tau \varepsilon \ T(n) = \Theta(n^{\log_b a} \log n)$
- $(3) \ av \ f(n) = \Omega(n^{\log_b a + \varepsilon}), \ \gamma \text{ia κάποια σταθερά ε>0, και αν υπάρχει σταθερά n_0, τέτοια$ $ώστε, για κάθε <math>n \ge n_0$, $af\left(\frac{n}{b}\right) \le cf(n)$ για κάποια σταθερά c < 1, τότε $T(n) = \Theta(f(n))$.

Υπόδειξη: Θεωρείστε γνωστό ότι:
$$\sum_{i=1}^n i^2 = \Theta(n^3)$$
 και $\sum_{i=1}^n i = \Theta(n^2)$

ΘΕΜΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ

Ώ	σ	KI	าด	กา	1	
\vdash	O	ĸı	IL	,,,	- 1	

Κατασκευάστε Κανονικές Εκφράσεις για τις Γλώσσες του αλφαβήτου {0,1}:
L ₁ ={ w w τελειώνει με 101 }
L ₂ ={ w w αρχίζει με 001 }
L ₃ ={ w w περιέχει το 0101 }
L ₄ ={ w w έχει μήκος 2 }
$L_5 = \{ \ w \ \ w \ έχει μήκος το πολύ 2 \}$
L ₆ ={ w w έχει μήκος που είναι πολλαπλάσιο του 3 }
L ₇ ={ w w έχει περιττό μήκος ή τελειώνει με 01}
L ₈ ={ w w δεν τελειώνει με 10}
L ₉ ={ w w δεν περιέχει το 1}

Άσκηση 2: Κατασκευάστε ΜΠΑ για τις κανονικές εκφράσεις:

$$L_1 = 1*110*110*111* \\$$

$$L_2 = (0101 + 111 + 0)*$$

$$L_3 = 0(0+1)*+(0+1)*11$$

$$L_4 = 1*0*1*0*$$

$$L_5 = (0*1*01)*$$

(Ε) Απλοποιήστε το ΝΠΑ του ερωτήματος (Δ)

Δίδονται οι γλώσσες του αλφαβήτου {0,1}: L ₁ ={w w τελειώνει με 11} και L ₂ ={w w περιέχει το 0} (Α) Δώστε κανονικές εκφράσεις των L ₁ και L ₂ (Β) Δώστε Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο (ΜΠΑ) των L ₁ και L ₂ (Γ) Δώστε τα ισοδύναμα ΝΠΑ των L ₁ και L ₂ (Δ) Δώστε το ΝΠΑ της τομής των δύο γλωσσών (Εφαρμόζοντας τον αλγόριθμο κλειστότητας της τομής)	Άσκηση 3:
(Β) Δώστε Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο (ΜΠΑ) των L ₁ και L ₂ (Γ) Δώστε τα ισοδύναμα ΝΠΑ των L ₁ και L ₂	Δ ίδονται οι γλώσσες του αλφαβήτου $\{0,1\}$: $L_1=\{w w$ τελειώνει με $11\}$ και $L_2=\{w w$ περιέχει το $0\}$
(Γ) Δώστε τα ισοδύναμα ΝΠΑ των L ₁ και L ₂	(Α) Δώστε κανονικές εκφράσεις των L_1 και L_2
	(Β) Δώστε Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο (ΜΠΑ) των L ₁ και L ₂
(Δ) Δώστε το ΝΠΑ της τομής των δύο γλωσσών (Εφαρμόζοντας τον αλγόριθμο κλειστότητας της τομής)	(Γ) Δώστε τα ισοδύναμα ΝΠΑ των L ₁ και L ₂
	(Δ) Δώστε το ΝΠΑ της τομής των δύο γλωσσών (Εφαρμόζοντας τον αλγόριθμο κλειστότητας της τομής

ΘΕΜΑ 4: ΓΛΩΣΣΕΣ ΧΩΡΙΣ ΣΥΜΦΡΑΖΟΜΕΝΑ

Να δείξετε ότι η γλώσσα: $\{wcw^R: w \in \{a,b\}^*\}$ δεν είναι κανονική.