Cálculo Numérico - BCC760 2020/1	Nome Completo:	Marcus Vinícius Souza Fernandes.
Avaliação 1 - Turma 6 14/07/2021		
Limite de Tempo: 120 minutos	Matrícula:	19.1.40.46

Esta prova contém 5 páginas (incluindo esta capa) e 4 questões. Confira se há páginas faltando. Preencha toda a informação no topo desta página e coloque suas iniciais no topo de cada página, caso as páginas se separem.

Você deve demonstrar o seu raciocínio em cada problema deste teste. As seguintes regras se aplicam:

- Retenha os cálculos em 4 casas decimais caso aproximações sejam necessárias.
- Organize seu arquivo de maneira razoavelmente clara e coerente. O formato entregue deve ser $PrimeiroNome_matricula.pdf$.
- Envie o arquivo pelo formulário google: https://forms.gle/bZZULpLaSJ3ji9dy7
- Respostas misteriosas não receberão crédito total. Uma resposta correta sem cálculos que a suporte, explicação, ou desenvolvimento algébrico não receberão crédito. Uma resposta incorreta apoiada por cálculos substancialmente corretos e explicações pode receber crédito parcial.

Problema	Pontos	Nota
1	2	
2	2	
3	3	
4	3	
Total:	10	

Valores: M:6 S:4

Suponha como valor M e S o último e penúltimo número do seu número de matrícula. Por exemplo, M=4 e S=3 para número de matrícula 15.1.1234.

1. Considere o sistema a seguir;

$$\begin{cases}
(S+1)x_1 - x_2 - x_3 &= M+2 \\
-2x_1 - (S+1)x_2 - x_3 &= M+3 \\
-4x_1 + 2x_2 - (S+1)x_3 &= M+1
\end{cases}$$

(a) | 1 ponto | O sistema possui uma única solução?

Print aqui os cálculos para chegar na solução.

(b) | 1 ponto | Resolva o seguinte sistema de equações pelo método de Gauss, sem pivotação. Calcule também o resíduo da solução encontrada.

Print aqui os cálculos para chegar na solução.

	Sistema 3x3									
Sistema original										
5,0000	x1	-1,0000	x2	-1,0000	x3		=	8,0000		
-2,0000	x1	-5,0000	x2	-1,0000	x3		=	9,0000		
-4.0000	x1	2.0000	x2	-5.0000	х3		=	7.0000		

	M	ult		Coefic.	Coefic.		Transf.
L1			5,0000	-1,0000	-1,0000	8,0000	
L2	M21	0,4000	-2,0000	-5,0000	-1,0000	9,0000	
L3	M31	0,8000	-4,0000	2,0000	-5,0000	7,0000	
L21			0,0000	-5,4000	-1,4000	12,2000	L2+(L1*M21)
L31	M32	0,2222	0,0000	1,2000	-5,8000	13,4000	L3+(L1*M31)
L32			0,0000	0,0001	-6,1111	16,1108	L31+(L21*M32)

Sistema triangular superior final									
5,0000	x1	-1,0000	x2	-1,0000	х3		=	8,0000	
		-5,4000	x2	-1,4000	х3		=	12,2000	
				-6,1111	x3		=	16,1108	

	x1	0,7576			
X	x2	-1,5758			
	х3	-2,6363			
Solução					

	r1	-0,0001			
R	r2	-0,0001			
	r3	0,0005			
Resíduo					

2. Considere o sistema a seguir;

$$\begin{cases} \alpha x_1 + 3x_2 + 1x_3 &= S+2\\ \alpha x_1 + 11x_2 + (\frac{M}{10} + 1)x_3 &= S+3\\ (\frac{M}{10} + 1)x_1 + \alpha x_2 - 7x_3 &= S+1 \end{cases}$$

(a) $\boxed{1 \text{ ponto}}$ para quais valores de α haverá convergência se aplicarmos o método de Jacobi? Print aqui os cálculos para chegar na solução.

$$(2)$$
 × 1 + 3 × 2 + × 3 = 6
 (2) × 1 + 11 × 2 + 1,6 × 5 = 7
1,6 × 1 + (3) × 2 - 7 × 3 = 5

4 4 d 4 5,4 A condição é falsa.

(b) 1 ponto Tomando o menor inteiro para α , pertencente ao intervalo determinado na letra a), resolva o sistema utilizando 4 iterações do método de Jacobi com a estimativa inicial $x_0 = [0\ 0\ 0]$. Print aqui os cálculos para chegar na solução.

	JACOBI								
x1	3,0000	x2	1,0000	x3	=	6,0000			
x1	11,0000	x2	1,6000	х3	=	7,0000			
x1	4,0000	x2	-7,0000	х3	=	5,0000			

Função de iteração							
6,0000		-3,0000	x2		-1,0000	x3)	0,2500
7,0000		-4,0000	x1		-1,6000	x3)	0,0909
5,0000		-1,6000	x1		-4,0000	x2)	-0,1429

k	x1	x2	х3	max
0	0,0000	0,0000	0,0000	
1	1,5000	0,6363	-0,7145	1,5000
2	1,2014	0,1948	-0,0078	0,7067
3	1,3559	0,2006	-0,3285	0,3207
4	1,4317	0,1911	-0,2898	0,0758

3. Considere o conjunto de pontos abaixo, tal que y = f(x).

NCD= 4

i	x	y
0	1,0	(1.02 + S/10)
1	1,4	0,6096
2	1,8	-1,9984
3	2,2	-3,5184

(a) $1\frac{1}{2}$ pontos Estime o valor de y para x=1,1 utilizando o polinômio interpolador de Lagrange de grau 1. Print aqui os cálculos para chegar na solução.

i x y

0 1,0 1,8000
$$10 = 1,1 - 1,4 = -0,3 = 0,7600$$

1 1,4 0,6096 $1,0 - 1,4 = 0,4$

2 1,8 -1,9984

3 2,2 -3,5184 $11 = 1,1 - 1,0 = 0,1 = 0,2500$
 $1,4 - 1,0 = 0,4$
 $1(x) = 1,8000,0,7500 + 0,6096,0,2500$
 $1(x) = 1,5024$

(b) $1\frac{1}{2}$ pontos Estime o valor de y para x=1,1 utilizando um polinômio interpolador de Lagrange de grau 2. Print aqui os cálculos para chegar na solução.

Lagrange - Polinômio de grau 2

	i	X	у			
i	0	1	1,8000	L0(x) =	2,40630	
0	1	1,4	0,6096	L1(x) =	-2,06250	
1	2	1,8	-1,9984	L2(x) =	0,65620	
2	3	2,2	-3,5184		L(x) =	3,2798

X = |1,1|

4. Um veículo de fabricação nacional, após vários testes, apresentou os seguintes resultados quando analisado o consumo de combustível de acordo com a velocidade média imposta ao veículo. Os testes foram realizados em rodovia em operação normal de tráfego, numa distância de 72 km.

Velocidade (km/h)	70	85	100	115	130
Consumo (km/l)	13,56	13,28	12,27	11,30	10,40

Verifique o consumo aproximado para o caso de ser desenvolvida a velocidade de (80 + 2M) km/h.

(a) 1½ pontos utilizando polinômio interpolador de diferença dividida de grau 1, Print aqui os cálculos para chegar na solução.

(b) $1\frac{1}{2}$ pontos utilizando polinômio interpolador de diferença dividida de grau 2.