Capstone-Cheatsheet Statistics 1 by Blechturm, Page 1 of 2	4 Distances between distributions 4.1 Total variation distance The total variation distance TV bet-	6 Quantiles of a Distribution Let α in (0,1). The quantile of order	Sample Variance:	One-sided tests: $H_1: \theta > \Theta_0$	independent of Y . $\hat{p}_x = 1/n \sum_{i=1}^n X_i$ and $\hat{p}_x = 1/n \sum_{i=1}^n Y_i$	sided):
1 Statistical models	ween the propability measures P and Q with a sample space E is defined as:	$1 - \alpha$ of a random variable <i>X</i> is the number q_{α} such that:	$S_n = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2$ = $\frac{1}{n} (\sum_{i=1}^{n} X_i^2) - \overline{X}_n^2$	$1(T_n < -q_\alpha)H_1 \qquad : \theta < \Theta_0$ $1(T_n > q_\alpha)$	$H_0: p_x = p_y; H_1: p_x \neq p_y$ To get the asymptotic Variance use	Let $X_1,,X_n \stackrel{iid}{\sim} N(\mu_X,\sigma_X^2)$ and $Y_1,,Y_n \stackrel{iid}{\sim} N(\mu_Y,\sigma_Y^2)$, suppose we want to test $H_0: \mu_X = \mu_Y$ vs
$E, \{P_{\theta}\}_{\theta \in \Theta}$	$TV(\mathbf{P}, \mathbf{Q}) = \max_{A \subset E} \mathbf{P}(A) - \mathbf{Q}(A) ,$ Calculation with f and g :	$\mathbb{P}(X \le q_{\alpha}) = q_{\alpha} = 1 - \alpha$	Unbiased estimator of semula va		multivariate Delta-method. Consider $\hat{p}_x - \hat{p}_y = g(\hat{p}_x, \hat{p}_y); g(x, y) = x - y$, then	we want to test $H_0: \mu_X = \mu_Y$ vs $H_1: \mu_X \neq \mu_Y$.
E is a sample space for X i.e. a set that	$TV(\mathbf{P}, \mathbf{Q}) =$	$\mathbb{P}(X \ge q_{\alpha}) = \alpha$	Unbiased estimator of sample variance:	Type1 Error: Test rejects null hypothesis $\psi = 1$ but		$\mu_1 \cdot \mu_2 + \mu_1$
contains all possible outcomes of X $\{\mathbb{P}_{\theta}\}_{\theta\in\Theta}$ is a family of probability distributions on E .	$\begin{cases} \frac{1}{2} \sum_{x \in E} f(x) - g(x) , \text{discr} \\ \frac{1}{2} \int_{x \in E} f(x) - g(x) dx, \text{cont} \end{cases}$	$F_X(q_\alpha) = 1 - \alpha$ $F_X^{-1}(1 - \alpha) = \alpha$	$\tilde{S}_n = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_n \right)^2$	it is actually true $H_0 = TRUE$ also known as the level of a test. Type2 Error:	$ \sqrt{(n)(g(\hat{p}_x, \hat{p}_y) - g(p_x - p_y))} \xrightarrow[n \to \infty]{(d)} $ $ N(0, \nabla g(p_x - p_y)^T \Sigma \nabla g(p_x - p_y)) $	$T_{n,m} = \frac{\overline{X}_n - \overline{Y}_m}{\sqrt{\hat{\sigma}^2 X_+ + \hat{\sigma}^2 Y}}$
Θ is a parameter set, i.e. a set consisting of some possible values of Θ . θ is the true parameter and unknown.	Symmetry: $TV(\mathbf{P}, \mathbf{Q}) = TV(\mathbf{Q}, \mathbf{P})$ Positive: $TV(\mathbf{P}, \mathbf{Q}) \ge 0$	If the distribution is standard normal $X \sim N(0, 1)$:	$= \frac{n}{n-1} S_n$ 7.3 Delta Method	Test does not reject null hypothesis $\psi = 0$ but alternative hypothesis is true $H_1 = TRUE$	$\Rightarrow N(0, p_x(1-px) + p_y(1-py))$ 9 Non-asymptotic Hypothesis tests 9.1 Chi squared	$\sqrt{\frac{n}{n} + \frac{1}{m}}$ Welch-Satterthwaite formula:
In a parametric model we assume that $\Theta \subset \mathbb{R}^d$, for some $d \ge 1$. 1.1 Identifiability	Definite: $TV(\mathbf{P}, \mathbf{Q}) = 0 \iff \mathbf{P} = \mathbf{Q}$ Triangle inequality: $TV(\mathbf{P}, \mathbf{V}) \le TV(\mathbf{P}, \mathbf{Q}) + TV(\mathbf{Q}, \mathbf{V})$	$\mathbb{P}(X > q_{\alpha}) = \alpha$ $= 2\mathbf{\Phi}(q_{\alpha/2})$	To find the asymptotic CI if the estimator is a function of the mean. Goal is to find an expression that converges a function of the mean using the CLT.	Example: Let $X_1,, X_n \stackrel{i.i.d.}{\sim} Ber(p^*)$. Question: is $p^* = 1/2$. $H_0: p^* = 1/2; H_1: p^* \neq 1/2$	freedom is given by the distribution	When samples are different sizes we need to finde the Student's T distribution of: $T_{n,m} \sim t_N$
$\theta \neq \theta' \Rightarrow \mathbb{P}_{\theta} \neq \mathbb{P}_{\theta'}$	If the support of P and Q is disjoint: $TV(\mathbf{P}, \mathbf{V}) = 1$	Use standardization if a gaussian has unknown mean and variance	Let Z_n be a sequence of r.v. $(n)(Z_n -$	If asymptotic level α then we need to standardize the estimated parameter $\hat{p} = \overline{X}_n$ first.	of $Z_1^2 + Z_2^2 + \dots + Z_d^2$, where $Z_1, \dots, Z_d \stackrel{iid}{\sim} \mathcal{N}(0, 1)$ If $V \sim \chi_k^2$:	Calculate the degrees of freedom for t_N with:
$\mathbb{P}_{\theta} = \mathbb{P}_{\theta'} \Rightarrow \theta = \theta'$	TV between continuous and discrete	$X \sim N(\mu, \sigma^2)$ to get the quantiles by using Z-tables (standard normal	θ) $\xrightarrow[n\to\infty]{(d)} N(0,\sigma^2)$ and let $g:R\to R$, "		**
A M- d-1:11: G- d: G	r.v:	tables).	be continuously differentiable at θ , then:	$T_n = \sqrt{n} \frac{ \overline{X}_n - 0.5 }{\sqrt{0.5(1 - 0.5)}}$	$\mathbb{E} = \mathbb{E}[Z_1^2] + \mathbb{E}[Z_2^2] + \dots + \mathbb{E}[Z_d^2] = d$	$\left(\frac{\hat{\sigma}_X^2}{2} + \frac{\hat{\sigma}_X^2}{2}\right)^2$
A Model is well specified if:	$TV(\mathbf{P}, \mathbf{V}) = 1$		(4)	·	$\mathbb{E} = \mathbb{E}[Z_1^2] + \mathbb{E}[Z_2^2] + \dots + \mathbb{E}[Z_d^2] = d$ $Var(V) = Var(Z_1^2) + Var(Z_2^2) + \dots + Var(Z_d^2) = 2d$ Cock area Theorem	$N = \frac{\binom{n}{n} + \binom{m}{j}}{\binom{n^2}{2}} \ge \min(n, m)$
$\exists \theta \ s.t. \ \mathbb{P} = \mathbb{P}_{\theta}$	4.2 KL divergence The KL divergence (aka relative entropy) KL between between probability	$\mathbf{P}(X \le t) = \mathbf{P}\left(Z \le \frac{t - \mu}{\sigma}\right)$	$\sqrt{n}(g(Z_n) - g(\theta)) \xrightarrow[n \to \infty]{(d)}$ $\mathcal{N}(0, g'(\theta)^2 \sigma^2)$	$\psi_n = 1 (T_n > q_{\alpha/2})$ where $q_{\alpha/2}$ denotes the $q_{\alpha/2}$ quantile	$Var(Z_d^z) = 2d$ Cochranes Theorem: If $X_1,,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$, then sample	
2 Estimators A statistic is any measurable function	measures P and Q with the common	$=\mathbf{\Phi}\left(rac{t-\mu}{\sigma} ight)$		of a standard Gaussian, and α is determined by the required level of ψ .	mean \overline{X}_n and the sample variance S_n	N should be rounded down. 9.3 Walds Test
calculated with the data $(\overline{X_n}, max(X_i),$ etc).	sample space E and pmf/pdf functions f and g is defined as:	$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$	Example: let $X_1,,X_n$ $exp(\lambda)$ where $\lambda > 0$. Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ denote the	Note the absolute value in T_n for this two sided test.	are independent. The sum of squares of <i>n</i> variables follows a chi squared distribution with (n-1) degrees of free-	Squared distance of $\widehat{\theta}_n^{MLE}$ to true θ_0 using the fisher information $I(\widehat{\theta}_n^{MLE})$
An estimator $\hat{\theta}_n$ of θ is any statistic	$KL(\mathbf{P}, \mathbf{Q}) =$	$q_{\alpha} = \frac{t-\mu}{\sigma}$	sample mean. By the CLT, we know	Pivot: Let T_n be a function of the random	distribution with (n-1) degrees of free- dom:	as metric.
which does not depend on $ heta$. Estimators are random variables	$\begin{cases} \sum_{x \in E} p(x) \ln \left(\frac{p(x)}{q(x)} \right), & \text{discr} \\ \int_{x \in E} p(x) \ln \left(\frac{p(x)}{q(x)} \right) dx, & \text{cont} \end{cases}$	7 Confidence intervals Confidence Intervals follow the form:	that $\sqrt{n}(\overline{X}_n - \frac{1}{\lambda}) \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$ for some value of σ^2 that depends on λ .	samples $X_1,,X_n,\theta$. Let $g(T_n)$ be a random variable whose distribution is the same for all θ . Then, g is called	$\frac{nS_n}{\sigma^2} \sim \chi_{n-1}^2$	Let $X_1,,X_n \stackrel{iid}{\sim} \mathbf{P}_{\theta^*}$ for some true parameter $\theta^* \in \mathbb{R}^d$ and the maximum
if they depend on the data (= realizations of random variables).	The KL divergence is not a distance measure! Always sum over the	(statistic) ± (critical value)(estimated standard deviation of statistic)	If we set $g : \mathbb{R} \to \mathbb{R}$ and $\hat{x} \mapsto 1/x$, then by the Delta method:	a pivotal quantity or a pivot. Example: let <i>X</i> be a random variable	If formula for unbiased sample variance is used:	likelihood estimator $\widehat{\theta}_n^{MLE}$ for θ^* . Test $H_0: \theta^* = 0$ vs $H_1: \theta^* \neq 0$
An estimator $\hat{\theta}_n$ is weakly consistent	support of <i>P</i> ! Asymetric in general:	Let $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ be a statistical model	- (- (1))	with mean μ and variance σ^2 . Let	(n=1)S 2	-
if: $\lim_{n\to\infty} \hat{\theta}_n = \theta$ or $\hat{\theta}_n \xrightarrow[n\to\infty]{P} \mathbb{E}[g(X)]$.	$KL(\mathbf{P}, \mathbf{Q}) \neq KL(\mathbf{Q}, \mathbf{P})$	based on observations X_1, X_n and assume $\Theta \subseteq \mathbb{R}$. Let $\alpha \in (0, 1)$.	$\sqrt{n}\left(g(\overline{X}_n) - g\left(\frac{1}{\lambda}\right)\right)$	X_1, \ldots, X_n be iid samples of X . Then,	$\frac{(n-1)S_n}{\sigma^2} \sim \chi_{n-1}^2$	Under H_0 , the asymptotic normality of the MLE $\widehat{\theta}_n^{MLE}$ implies that:
If the convergence is almost surely it is strongly consistent .	Nonnegative: $KL(P, Q) \ge 0$ Definite: if $P = Q$ then $KL(P, Q) = 0$ Does not satisfy trian-	Non asymptotic confidence interval of level $1 - \alpha$ for θ :	$\xrightarrow[n\to\infty]{(d)} N(0,g'(E[X])^2 \text{Var}X)$	$g_n \triangleq \frac{\overline{X_n} - \mu}{\sigma}$	9.2 Student's T Test Non-asymptotic hypothesis test	of the MLE θ_n^{MLE} implies that: $\ \sqrt{n}\mathcal{I}(0)^{1/2}(\widehat{\theta}_n^{\text{MLE}} - 0)\ ^2 \xrightarrow[n \to \infty]{(d)} \chi_d^2$
Asymptotic normality of an estimator:	gle inequality in general: $KL(P,V) \not\leq KL(P,Q) + KL(Q,V)$	Any random interval \mathcal{I} , depending on the sample $X_1,, X_n$ but not at θ and such that:	$\xrightarrow[n\to\infty]{(d)} N(0,g'\left(\frac{1}{\lambda}\right)^2 \frac{1}{\lambda^2})$	is a pivot with $\theta = \left[\mu \ \sigma^2\right]^T$ being the parameter vector (not the same set of	for small samples (works on large samples too), data must be gaussian.	$\ \sqrt{n}\mathcal{L}(0)^{1/2}(\theta_n^{MLL} - 0)\ \xrightarrow[n \to \infty]{} \chi_d^2$ Test statistic:
$\sqrt(n)(\hat{\theta}_n - \theta) \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$	Estimator of KL divergence:	$\mathbb{P}_{\theta}[\mathcal{I} \ni \theta] \ge 1 - \alpha$, $\forall \theta \in \Theta$ Confidence interval of asymptotic level $1 - \alpha$ for θ :	$\xrightarrow[n\to\infty]{(d)} N(0,\lambda^2)$	paramaters that we use to define a statistical model).	Student's T distribution with <i>d</i> degrees of freedom: $t_d := \frac{Z}{\sqrt{V/n}}$	$T_n = n(\widehat{\theta}_n^{MLE} - \theta_0)^{\top} I(\widehat{\theta}_n^{MLE}) (\widehat{\theta}_n^{MLE} - \theta_0)$
σ^2 is called the Asymptotic Variance	$KL(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta}) = \mathbb{E}_{\theta^*} \left[\ln \left(\frac{p_{\theta^*}(X)}{p_{\theta}(X)} \right) \right]$ $\widehat{KL}(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta}) = \text{const.} \sum_{i=1}^{n} \log(p_i(X))$	Any random interval <i>I</i> whose bounda-	8 Asymptotic Hypothesis tests Two hypotheses (Θ_0 disjoint set from	8.1 P-Value The (asymptotic) p-value of a test ψ_{α} is the smallest (asymptotic) level α	where $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_k^2$ are independent.	$\xrightarrow[n\to\infty]{(d)} \chi_d^2$
of the estimator $\hat{\theta}_n$. In the case of the sample mean it is the same variance	$\widehat{KL}(\mathbf{P}_{\theta_*}, \mathbf{P}_{\theta}) = const - \frac{1}{n} \sum_{i=1}^{n} log(p_{\theta}(X_i))$ 5 LLN and CLT	$\lim_{n\to\infty} \mathbb{P}_{\theta}[\mathcal{I}\ni\theta] \geq 1-\alpha, \ \forall \theta\in\Theta$ 7.1 Two-sided asymptotic CI		at which ψ_{α} rejects H_0 . It is random since it depends on the sample. It can	Student's T test (one sample +	Wald test of level α :
as as the single X_i . If the estimator is a function of the			Θ_1): $\begin{cases} H_0 : \theta \epsilon \Theta_0 \\ H_1 : \theta \epsilon \Theta_1 \end{cases}$. Goal is to reject	also interpreted as the probability	two-sided):	value test of level a.
sample mean the Delta Method is needed to compute the asymptotic	and $Var(X_i) = \sigma^2$ for all $i = 1, 2,, n$	Let $X_1,, X_n = \tilde{X}$ and $\tilde{X} \stackrel{iid}{\sim} P_{\theta}$. A two-sided CI is a function depending on	H_0 using a test statistic.	that the test-statistic T_n is realized given the null hypothesis.	Let $X_1,,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$ and suppose we want to test $H_0: \mu = \mu_0 = 0$ vs.	$\psi_{\alpha} = 1\{T_n > q_{\alpha}(\chi_d^2)\}\$
variance. Asymptotic Variance ≠ Variance of an estimator.	and $\overline{X_n} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Law of large numbers:	\tilde{X} giving an upper and lower bound in which the estimated parameter lies $\mathcal{I} = [l(\tilde{X}, u(\tilde{X}))]$ with a certain probabi-	A test ψ has level α if $\alpha_{\psi}(\theta) \leq \alpha, \forall \theta \in \Theta_0$ and asymptotic	If $pvalue \le \alpha$, H_0 is rejected by ψ_{α} at the (asymptotic) level α	we want to test $H_0: \mu = \mu_0 = 0$ vs. $H_1: \mu \neq 0$.	9.4 Likelihood Ratio Test Parameter space $\Theta \subseteq \mathbb{R}^d$ and H_0 is
Bias of an estimator:	$\overline{X_n} \xrightarrow[n \to \infty]{P,a.s.} \mu$	lity $\mathbb{P}(\theta \in \mathcal{I}) \ge 1 - q_{\alpha}$ and conversely	level α if $\lim_{n\to\infty} P_{\theta}(\psi=1) \leq \alpha$.	The smaller the p-value, the more con-	Test statistic follows Student's T distribution:	that parameters θ_{r+1} through θ_d have values θ_c^{r+1} through θ_d^c leaving the
$Bias(\hat{ heta}_n) = \mathbb{E}[\hat{ heta}_n] - heta$	$\frac{1}{n} \sum_{i=1}^{n} g(X_i) \frac{P_{i,a.s.}}{n \to \infty} \mathbb{E}[g(X)]$	$\mathbb{P}(\theta \notin \mathcal{I}) \le \alpha$ Since the estimator is a r.v. depending on \tilde{X} it has a variance $Var(\hat{\theta}_n)$ and a	A hypothesis-test has the form	fine smaller the p-value, the more confidently one can reject H_0 . Left-tailed p-values:	$T_n = \frac{Z}{\bar{\varsigma}}$	values θ_c^r through θ_d^r leaving the other r unspecified. That is: $H_0: (\theta_{r+1},,\theta_d)^T = \theta_{r+1}d = \theta_0$
Quadratic risk of an estimator	Control Limit Theorem for Mann	mean $\mathbb{E}[\hat{\theta}_n]$. Since the CLT is valid for	$\psi = 1\{T_n \ge c\}$	$pvalue = \mathbb{P}(X \le x H_0)$		Construct two estimators:
$R(\hat{\theta}_n) = \mathbb{E}[(\hat{\theta}_n - \theta)^2]$ $= Bias^2 + Variance$	$\sqrt{(n)} \frac{\overline{X_n} - \mu}{\sqrt{(\sigma^2)}} \xrightarrow[n \to \infty]{(d)} N(0, 1)$	every distribution standardizing the distributions and massaging the expression yields an an asymptotic CI:	for some test statistic T_n and threshold $c \in \mathbb{R}$. Threshold c is usually $q_{\alpha/2}$	$= \mathbf{P}(Z < T_{n,\theta_0}(\overline{X}_n)))$	$=\frac{\overline{X}-\mu}{\frac{\partial}{\sqrt{n}}}$	Construct two estimators: $\widehat{\theta}_n^{MLE} = argmax_{\theta \in \Theta}(\ell_n(\theta))$
3 Slutsky theorem and CMT	$\sqrt{(n)}(\overline{X_n} - \mu) \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$	$\mathcal{I} = [\hat{\theta}_n - \frac{q_{\alpha/2}\sqrt{Var(X_i)}}{\sqrt{n}}],$	Rejection region: $R_{\psi} = \{T_n > c\}$	$=\Phi(T_{n,\theta_0}(\overline{X}_n))$ $Z \sim \mathcal{N}(0,1)$	$=\frac{\sqrt{n}\frac{X_n-\mu_0}{\sigma}}{\sqrt{\frac{\tilde{S}_n}{2}}}$	$\widehat{\theta}_n^c = argmax_{\theta \in \Theta_0}(\ell_n(\theta))$
3.1 CMT Let g be continuous on a set B such that $\P(X \in B) = 1$ then	n→∞ Central Limit Theorem for Sums:	$\hat{\theta}_n + \frac{q_{\alpha/2}\sqrt{Var(X_i)}}{\sqrt{n}}]$	Symmetric about zero and acceptan-	Right-tailed p-values:	$\sqrt{\sqrt{\sigma^2}}$ $\sim \frac{N(0,1)}{\sqrt{2}}$	Test statistic:
$X_n \xrightarrow{p} X \Rightarrow g(X_n) \xrightarrow{p} g(X)$	$\sum X_{i=1}^n \xrightarrow[n\to\infty]{(d)} N(n\mu, \sqrt(n)\sqrt(\sigma^2))$	This expression depends on the real	ce Region interval:	$pvalue = \mathbb{P}(X \ge x H_0)$	$\sqrt{\frac{\chi_{n-1}^2}{n-1}}$ $\sim t_{n-1}$	$T_n = 2(\ell(X_1, X_n \widehat{\theta}_n^{MLE}) - \ell(X_1, X_n \widehat{\theta}_n^c))$
$X_n \xrightarrow{as} X \Rightarrow g(X_n) \xrightarrow{as} g(X)$ $X_n \xrightarrow{d} X \Rightarrow g(X_n) \xrightarrow{d} g(X)$	$\frac{\sum X_{i=1}^{n} - n\mu}{\sqrt{(n)\sqrt{(\sigma^{2})}}} \xrightarrow[n \to \infty]{} N(0,1)$	variance $Var(X_i)$ of the r.vs, the variance has to be estimated. Three possible methods: plugin (use	$\psi = 1\{ T_n - c > 0\}.$ Power of the test:	Two-sided p-values: If asymptotic, create normalized T_n using parameters from H_0 . Then use T_n to get to	Works bc. under H_0 the numerator	Wilk's Theorem: under H_0 , if the MLE conditions are satisfied:
3.2 Slutsky's Theorem: Let c is constant and X_n and Y_n are	*****	sample mean or empirical variance), solve (solve quadratic inequality), con-		probabilities.	$N(0,1)$ and the denominator $\frac{\tilde{S}_n}{\sigma^2} \sim \frac{1}{n-1} \chi_{n-1}^2$ are independent by Cochran's Theorem.	$T_n \xrightarrow[n \to \infty]{(d)} \chi^2_{d-r}$
Let c is constant and X_n and Y_n are seq. of random elements. If $X_n \stackrel{d}{\to} X$	Variance of the Mean:	servative (use the theoretical maximum of the variance).	$\pi_{\psi} = \inf_{\theta \in \Theta_1} (1 - \beta_{\psi}(\theta))$	$\mathbb{P}(Z > T_{n,\theta_0}(\overline{X}_n) = 2(1 - \Phi(T_n))$	"Cochran's Theorem.	
seq. of random elements. If $X_n \to X$ and $Y_n \xrightarrow{p} c$ then	$Var(\overline{X_n}) = (\frac{\sigma^2}{n})^2 Var(X_1 + X_2,, X_n)$	7.2 Sample Mean and Sample Va-	Where β_{ψ} is the probability of making	$\mathbb{P}(\mathcal{Z} > I_{n,\theta_0}(X_n) = 2(1 - \Phi(I_n))$ $Z \sim N(0,1)$	Student's T test at level α :	Tile-like danking and 1
(1) $X_n + Y_n \xrightarrow{d} X + c$	$=\frac{\sigma^2}{n}$	riance Let $X_1,,X_n \stackrel{iid}{\sim} P_{\mu}$, where $E(X_i) = \mu$	a Type2 Error and <i>inf</i> is the maximum.		$\psi_\alpha=1\{ T_n >q_{\alpha/2}(t_{n-1})\}$	Likelihood ratio test at level α :
$(1) X_n + Y_n \to X + C$ $(2) X_n \cdot Y_n \xrightarrow{d} X \cdot C$	Expectation of the mean:	and $Var(X_i) = \sigma^2$ for all $i = 1, 2,, n$	Two-sided test:	8.2 Comparisons of two proporti- ons	Student's T test (one sample, one-	$\psi_{\alpha} = 1\{T_n > q_{\alpha}(\chi_{d-r}^2)\}\$
$(2) X_n \cdot Y_n \to X \cdot C$ $(3) \frac{X_n}{Y_n} \xrightarrow{d} \frac{X}{C}$	$E[\overline{X_n}] = \frac{1}{n}E[X_1 + X_2,, X_n]$	Sample Mean:	$H_1:\theta\neq\Theta_0$	Let $X_1,, X_n \stackrel{iid}{\sim} Bern(p_x)$ and	sided):	9.5 Implicit Testing
$(J) \xrightarrow{\overline{Y_n}} \overline{J} \xrightarrow{c}$	$=\mu$.	$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$	$1(T_n > q_{\alpha/2})$	$Y_1, \dots, Y_n \stackrel{iid}{\sim} Bern(p_y)$ and be X	$\psi_\alpha=1\{T_n>q_\alpha(t_{n-1})\}$	Todo

Capstone-Cheatsheet Statistics 1 10.1 Fisher Information

by Blechturm, Page 2 of 2

Example: against the uniform

distribution $p^0 = (1/K, ..., 1/K)^\top$.

 $T_n = n \sum_{k=1}^K \tfrac{(\hat{p}_k - p_k^0)^2}{p_k^0} \xrightarrow[n \to \infty]{(d)} \chi_{K-1}^2$

 $\psi_{\alpha} = \mathbb{I}\{T_n > q_{\alpha}(\chi_{K-1}^2)\}\$

 $T_n = \sqrt{n} \max_{i} (\max_{\delta \in \{-1,0\}} | \frac{i+\delta}{n} - F^0(X_{(i)}) |)$

test Heavier tails: below > above the

Lighter tails: above > below the

Right-skewed: above > below >

Left-skewed: below > above > below

10 Maximum likelihood estimation

Let $\{E, (P_{\theta})_{\theta \in \Theta}\}$ be a statistical mo-

del associated with a sample of i.i.d.

random variables $X_1, X_2, ..., X_n$. Assume that there exists $\theta^* \in \Theta$ such that

 $X_i \sim \mathbf{P}_{\theta^*}$. The **likelihood** of the model is the

product of the n samples of the

 $\begin{cases} \prod_{i=1}^{n} p_{\theta}(x_i) & \text{if } E \text{ is discrete} \\ \prod_{i=1}^{n} f_{\theta}(x_i) & \text{if } E \text{ is continous} \end{cases}$

The maximum likelihood estimator

is the (unique) θ that minimizes

 $\widehat{KL}(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta})$ over the parameter space.

(The minimizer of the KL divergence

is unique due to it being strictly con-

vex in the space of distributions once

 $= \operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ln p_{\theta}(X_i)$

Since taking derivatives of products

is hard but easy for sums and exp() is

very common in pdfs we usually ta-

Cookbook: set up the likelihood func-

tion, take log of likelihood function.

Take the partial derivative of the lo-

glikelihood function wrt. the parame-

ter(s). Set the partial derivative(s) to

If an indicator function on the

pdf/pmf does not depend on the para-

meter, it can be ignored. If it depends

on the parameter it can't be ignored

because there is an discontinuity in

the loglikelihood function. The maxi-

mum/minimum of the X_i is then the

maximum likelihood estimator.

zero and solve for the parameter.

before maximizing it.

= $\operatorname{argmax}_{\theta \in \Theta} \ln \left(\prod_{i=1}^{n} p_{\theta}(X_i) \right)$

 $=\sum_{i=1}^{n} ln(L_i(X_i, \theta))$

 $\widehat{\theta}_{n}^{MLE} = \operatorname{argmin}_{\theta \in \Theta} \widehat{KL}_{n} (\mathbf{P}_{\theta^{*}}, \mathbf{P}_{\theta})$

 $L_n(X_1, X_2, \ldots, X_n, \theta) =$

9.7 Kolmogorov-Smirnov test

9.8 Kolmogorov-Lilliefors test

 $T_n = \sup(|F_n(t) - \Phi_{\hat{\mu},\hat{\sigma}^2}(t)|)$

9.9 QQ plots

above the diagonal.

diagonal.

diagonal.

the diagonal.

pdf/pmf:

Test statistic under H_0 :

Test at level alpha:

butions

The Fisher information is the covariance matrix of the gradient of the loglikelihood function. It is equal to the negative expectation 9.6 Goodness of Fit Discrete Distriof the Hessian of the loglikelihood function and captures the negative Let $X_1,...,X_n$ be iid samples from of the expected curvature of the a categorical distribution. Test loglikelihood function. $H_0: p = p^0 \text{ against } H_1: p \neq p^0.$

Let $\theta \in \Theta \subset \mathbb{R}^d$ and let $(E, \{\mathbf{P}_{\theta}\}_{\theta \in \Theta})$ be a statistical model. Let $f_{\theta}(\mathbf{x})$ be the pdf of the distribution P_{θ} . Then, the Fisher information of the statistical $\mathcal{I}(\theta) = Cov(\nabla \ell(\theta)) =$

$$\begin{split} &\mathbf{E}(\theta) = \mathbf{C}\theta V \ell(\theta)) = \\ &= &\mathbf{E}[\nabla \ell(\theta)] \nabla \ell(\theta)^{\mathrm{T}}] \\ &\mathbf{E}[\nabla \ell(\theta)] \mathbf{E}[\nabla \ell(\theta)] = \\ &= &-\mathbf{E}[\mathbf{H}\ell(\theta)] \end{split}$$

Where $\ell(\theta) = \ln f_{\theta}(\mathbf{X})$. If $\nabla \ell(\theta) \in \mathbb{R}^d$ it is a $d \times d$ matrix. The definition when the distribution has a pmf $p_{\theta}(\mathbf{x})$ is also the same, with the expectation taken with respect to the pmf. Let $(\mathbb{R}, \{\mathbf{P}_{\theta}\}_{\theta \in \mathbb{R}})$ denote a continuous

pdf (probability density function) of the continuous distribution P_{θ} . Assume that $f_{\theta}(x)$ is twice-differentiable as a function of the parameter θ . Formula for the calculation of Fisher

statistical model. Let $f_{\theta}(x)$ denote the

Information of X:

$$\mathcal{I}(\theta) = \int_{-\infty}^{\infty} \frac{\left(\frac{\partial f_{\theta}(x)}{\partial \theta}\right)^{2}}{f_{\theta}(x)} dx$$

Bernulli): $\mathcal{I}(\theta) = Var(\ell'(\theta))$

$$\mathcal{I}(\theta) = -\mathbf{E}(\ell''(\theta))$$

$$\mathcal{I}(\theta) = -\mathbf{E}(\ell''(\theta))$$

Models with multiple parameters (ie. Gaussians): $\mathcal{I}(\theta) = -\mathbb{E}\left[\mathbf{H}\ell(\theta)\right]$

$$\mathcal{L}(0) = -\mathbb{L}[\mathbf{H}(0)]$$

Cookbook:

Better to use 2nd derivative.

- · Find loglikelihood
- · Take second derivative (=Hessian if multivariate)
- · Massage second derivative or
- Hessian (isolate functions of X_i to use with $-\mathbf{E}(\ell''(\theta))$ or $-\mathbb{E}[\mathbf{H}\ell(\theta)].$ · Find the expectation of the
- functions of X_i and subsitute them back into the Hessian or the second derivative. Be extra careful to subsitute the right power back. $\mathbb{E}[X_i] \neq \mathbb{E}[X_i^2].$
- · Don't forget the minus sign!

ke the log of the likelihood function 10.2 Asymptotic normality of the maximum likelihood estimator $\ell((X_1, X_2, ..., X_n, \theta)) = ln(L_n(X_1, X_2, ..., X_n, \theta))$ estimator

asymptotically normal and consistent. This applies even if the MLE is not the sample average.

Let the true parameter $\theta^* \in \Theta$. Necessary assumptions: · The parameter is identifiable

- For all $\theta \in \Theta$, the support \mathbb{P}_{θ}
- does not depend on θ (e.g. like in $Unif(0,\theta)$);
- θ* is not on the boundary of
- Fisher information $\mathcal{I}(\theta)$ is invertible in the neighborhood

· A few more technical condi-We can often use an **improper prior**,

The asymptotic variance of the MLE is the inverse of the fisher information. $\sqrt{(n)}(\widehat{\theta}_n^{\text{MLE}} - \theta^*) \xrightarrow[n \to \infty]{(d)} N_d(0, \mathcal{I}(\theta^*)^{-1})$ 11 Method of Moments

Let $X_1, \dots, X_n \overset{iid}{\sim} \mathbf{P}_{\theta^*}$ associated with model $(\mathbb{E}, \{\mathbf{P}_{\theta}\}_{\theta \in \Theta})$, with $\mathbb{E} \subseteq \mathbb{R}$ and $\Theta \subseteq \mathbb{R}$, for some $d \ge 1$ Population moments: $m_k(\theta) = \mathbb{E}_{\theta}[X_1^k], 1 \le k \le d$

$$\widehat{m_k}(\theta) = X_n^k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

Convergence of empirical moments:

$$\widehat{m_k} \frac{P.a.s.}{n \to \infty} m_k \\
(\widehat{m_1}, \dots, \widehat{m_d}) \frac{P.a.s.}{n \to \infty} (m_1, \dots, m_d)$$

MOM Estimator
$$M$$
 is a map from the parameters of a model to the mo-

ments of its distribution. This map is invertible, (ie. it results into a system of equations that can be solved for the true parameter vector θ^*). Find the moments (as many as parameters), set up system of equations, solve for parâméters, use empirical moments to estimate. $\psi:\Theta\to\mathbb{R}^d$

$$\mathcal{I}(\theta) = \int_{-\infty}^{\infty} \frac{\int_{\theta}^{\theta} \int_{\theta}^{1} dx}{\int_{\theta}(x)} dx \qquad \theta \mapsto (m_{1}(\theta), m_{2}(\theta), \dots, m_{d}(\theta))$$
Models with one parameter (ie. $M^{-1}(m_{1}(\theta^{*}), m_{2}(\theta^{*}), \dots, m_{d}(\theta^{*}))$

The MOM estimator uses the empirical moments:

$$M^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i},\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2},\ldots,\frac{1}{n}\sum_{i=1}^{n}X_{i}^{d}\right)$$
 posterior mean:
Assuming M^{-1} is continuously diffe-

rentiable at M(0), the asymptotical variance of the MOM estimator is:

$$\sqrt(n)(\widehat{\theta_n^{MM}} - \theta) \xrightarrow[n \to \infty]{(d)} N(0, \Gamma)$$

 $\Gamma(\theta)$ $\left[\frac{\partial M^{-1}}{\partial \theta}(M(\theta))\right]^T \Sigma(\theta) \left[\frac{\partial M^{-1}}{\partial \theta}(M(\theta))\right]$ $\Gamma(\theta) = \nabla_{\theta} (M^{-1})^T \Sigma \nabla_{\theta} (M^{-1})$

 Σ_{θ} is the covariance matrix of the random vector of the moments $(X_1^1, X_1^2, \dots, X_1^d).$ 12 Bayesian Statistics

Bayesian inference conceptually

amounts to weighting the likelihood $L_n(\theta)$ by a prior knowledge we might have on θ . Given a statistical model we technically model our parameter θ as if it were a random variable. We therefore define the prior distribution (PDF):

$$\pi(\theta)$$

Let $X_1,...,X_n$. We note $L_n(X_1,...,X_n|\theta)$ the joint probability distribution of $X_1,...,X_n$ conditioned on θ where $\theta \sim$ This is exactly the likelihood from the frequentist approach. 12.1 Bayes' formula

. The posterior distribution verifies:

 $\forall \theta \in \Theta, \pi(\theta|X_1,...,X_n) \propto$

$$\pi(\theta)L_n(X_1,...,X_n|\theta)$$

The constant is the normalization factor to ensure the result is a proper distribution, and does not depend on $\pi(\theta|X_1,...,X_n) = \frac{\pi(\theta)L_n(X_1,...,X_n|\theta)}{\prod_{\pi(\theta)L_n(X_1,...,X_n|\theta)}(X_1,...,X_n|\theta)}$

$$f: x \mapsto a + bx$$

i.e. a prior that is not a proper pro-X.Y be two random variables with bability distribution (whose integral two moments such as V[X] > 0. The theoretical linear regression of Y on diverges), and still get a proper posterior. For example, the improper prior X is the line $a^* + b^*x$ where

Theoretical linear regression: let

 $\mathbb{E}[\varepsilon] = 0$, $Cov(X, \varepsilon) = 0$

We have to estimate a^* and b^* from the data. We have n random pairs

 $(X_1, Y_1), ..., (X_n, Y_n) \sim_{iid} (X, Y)$ such

 $Y_i = a^* + b^* X_i + \varepsilon_i$

The Least Squares Estimator (LSE)

The estimators are given by:

of (a^*, b^*) is the minimizer of the squa-

 $\hat{b}_n = \frac{\overline{XY} - \overline{XY}}{\overline{Y^2} - \overline{Y}^2}, \quad \hat{a}_n = \overline{Y} - \hat{b}_n \overline{X}$

The Multivariate Regression is given

 $Y_i = \sum_{j=1}^p X_i^{(j)} \beta_j^* + \varepsilon_i = \underbrace{X_i^\top}_{1 \times p} \underbrace{\beta^*}_{p \times 1} + \varepsilon_i$

We can assuming that the $X_i^{(1)}$ are 1

the intercept.

 $Cov(X_i, \varepsilon_i) = 0$

the sum of square errors:

and $\epsilon = (\epsilon_1, \dots, \epsilon_n)^{\top}$.

regression is given by:

and the LSE is given by:

If we write:

The Multivariate Least Squares Esti-

mator (LSE) of β^* is the minimizer of

 $\hat{\beta} = argmin_{\beta \in \mathbb{R}^p} \sum_{i=1}^n (Y_i - X_i^\top \beta)^2$

Matrix form: we can rewrite these ex-

pressions. Let $Y = (Y_1, ..., Y_n)^{\top} \in \mathbb{R}^n$,

 $X = \begin{pmatrix} X_1 \\ \vdots \\ X_{-} \end{pmatrix} \in \mathbb{R}^{n \times p}$

X is called the **design matrix**. The

 $Y = X\beta^* + \epsilon$

 $\hat{\beta} = argmin_{\beta \in \mathbb{R}^p} ||Y - X\beta||_2^2$

Let us suppose $n \ge p$ and rank(X) = p.

• If $\beta^* = (a^*, b^* \top)^\top$, $\beta_1^* = a^*$ is

• the ε_i is the noise, satisfying

for the intercept.

 $\pi(\theta) = 1$ on Θ gives the likelihood as

a posterior.

rifying:

12.2 Jeffreys Prior

 $(a^*, b^*) = argmin_{(a,b) \in \mathbb{R}^2} \mathbb{E} [(Y - a - bX)^2]$

$$\pi_I(\theta) \propto \sqrt{det I(\theta)}$$

Which gives: $b^* = \frac{Cov(X,Y)}{\mathbb{V}[X]}, \quad a^* = \mathbb{E}[Y] - b^*\mathbb{E}[X]$ where $I(\theta)$ is the Fisher information.

This prior is invariant by reparameterization, which means that if we ha-Noise: we model the noise of Y ve $\eta = \phi(\theta)$, then the same prior gives around the regression line by a ranus a probability distribution for η vedom variable $\varepsilon = Y - a^* - b^*X$, such

$$\tilde{\pi}_I(\eta) \propto \sqrt{\det\! \tilde{I}(\eta)}$$
 The change of parameter follows the following formula:

 $\tilde{\pi}_I(\eta) = det(\nabla \phi^{-1}(\eta)) \pi_I(\phi^{-1}(\eta))$ 12.3 Bayesian confidence region Let $\alpha \in (0,1)$. A *Bayesian confidence region with level α^* is a random sub-

set
$$\mathcal{R} \subset \Theta$$
 depending on $X_1,...,X_n$ (and the prior π) such that:
$$P[\theta \in \mathcal{R}|X_1,...,X_n] \geq 1-\alpha$$

(and the prior π) such that:

Bayesian confidence region and confidence interval are distinct notions. The Bayesian framework can be used to estimate the true underlying parameter. In that case, it is used to build a new class of estimators, based on the posterior distribution.

(MAP):

$$\hat{\theta}_{(\pi)} = \int_{\Theta} \theta \pi(\theta|X_1,...,X_n) d\theta$$

 Maximum a posteriori estimator

 $\hat{\theta}_{(\pi)}^{MAP} = argmax_{\theta \in \Theta} \pi(\theta|X_1,...,X_n)$

the prior is uniform. 13 OLS Given two random variables X and Y,

how can we predict the values of Y consider $(X_1, Y_1), \dots, (X_n, Y_n)$ \sim^{iid} \mathbb{P} where P is an unknown joint distribution. P can be described entirely by:

$$h(Y|X=x) = \frac{f(x,Y)}{g(x)}$$
 where f is the joint PDF, g the margi-

 $g(X) = \int f(X, y) dy$

nal density of X and h the conditional density. What we are interested in is Regression function: For a partial de-

scription, we can consider instead the conditional expection of Y given X =

$$x \mapsto f(x) = \mathbb{E}[Y|X = x] = \int yh(y|x)dy$$

We can also consider different descriptions of the distribution, like the median, quantiles or the variance. Linear regression: trying to fit any

function to $\mathbb{E}[Y|X=x]$ is a nonparametric problem; therefore, we restrict the problem to the tractable one of linear function:

 $F(\beta) = ||Y - X\beta||_2^2 = (Y - X\beta)^{\top} (Y - X\beta)$

$$\nabla F(\beta) = 2X^{\top}(Y - X\beta)$$

Geometric interpretation: $X\hat{\beta}$ is

the orthogonal projection of Y onto

the subspace spanned by the columns

 $X\hat{\beta} = PY$

therefore is the union of all rejection Least squares estimator: setting $\nabla F(\beta) = 0$ gives us the expression of

$$R_{\alpha}^{(\sigma)} = \bigcup_{j \in S} R_{\alpha/K}^{(j)}$$

 $\psi_{\alpha}^{(S)} = \max_{i \in S} \psi_{\alpha/K}^{(j)}$

where K = |S|. The rejection region

$$\P_{II}\left[R_{i}^{(S)}\right] < \nabla$$

 $\P_{H_0}\left[R_\alpha^{(S)}\right] \leq \sum_{i \in S} \P_{H_0}\left[R_{\alpha/K}^{(j)}\right] = \alpha$

where $P = X(X^{\top}X)^{-1}X^{\top}$ is the expres-

sion of the projector.
Statistic inference: let us suppose

* The design matrix X is deterministic and rank(X) = p. * The model is **homoscedastic**: $\varepsilon_1, ..., \varepsilon_n$ are i.i.d.

* and the same finite variance. * The noise is Gaussian: $\epsilon \sim N_n(0, \sigma^2 I_n)$.

 $Y \sim N_n(X\beta^*, \sigma^2 I_n)$ Properties of the LSE:

We therefore have:

$$\hat{\beta} \sim N_p(\beta^*, \sigma^2(X^\top X)^{-1})$$

 $(\hat{a}_n, \hat{b}_n) = argmin_{(a,b) \in \mathbb{R}^2} \sum_{i=1}^n (Y_i - a - bX_i)^2$ the quadratic risk of $\hat{\beta}$ is given by:

 $\mathbb{E}\left[\|\hat{\beta} - \beta^*\|_2^2\right] = \sigma^2 Tr\left((X^\top X)^{-1}\right)$

The prediction error is given by:
$$\mathbb{E} \Big[\| Y - X \hat{\beta} \|_2^2 \Big] = \sigma^2 (n-p)$$

The unbiased estimator of σ^2 is:

$$\hat{\sigma^2} = \frac{1}{n-p} \|Y - X\hat{\beta}\|_2^2 = \frac{1}{n-p} \sum_{i=1}^n \hat{\varepsilon}_i^2$$
By **Cochran's Theorem**:

 $(n-p)\frac{\hat{\sigma^2}}{2} \sim \chi^2_{n-p}, \quad \hat{\beta} \perp \hat{\sigma^2}$

Significance test: let us test
$$H_0: \beta_j = 0$$
 against $H_1: \beta_j \neq 0$. Let us call

$$\frac{\hat{\beta}_j - \beta_j}{\sqrt{\hat{\sigma^2}\gamma_j}} \sim t_{n-p}$$

 $\gamma_i = ((X^T X)^{-1})_{::} > 0$

We can define the test statistic for our

$$T_n^{(j)} = \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}_j^2}}$$

The test with non-asymptotic level α is given by:

$$\psi_{\alpha}^{(j)} = \mathbf{1}\{|T_n^{(j)}| > q_{\alpha/2}(t_{n-p})\}$$

use a stricter test for each of them. Let

Bonferroni's test: if we want to test the significance level of multiple tests

Loglikelihood n trials:
$$\ell_n(p) =$$

 $R_{\alpha}^{(S)} = \bigcup R_{\alpha/K}^{(j)}$ $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$ This test has nonasymptotic level at

$$j \in S$$

t has nonasympto

$$\P_{H_0}\left[R_\alpha^{(S)}\right] \le \sum_{j \in S} \P_{H_0}\left[R_\alpha^{(S)}\right] \le \sum_{j \in S$$

This test also works for implicit testing (for example, $\beta_1 \ge \beta_2$). 14 Generalized Linear Models

We relax the assumption that μ is linear. Instead, we assume that $g \circ \mu$ is linear, for some function *g*: $g(\mu(\mathbf{x})) = \mathbf{x}^T \boldsymbol{\beta}$

it has to be strictly increasing, it has to be continuously differentiable and its range is all of \mathbb{R} 14.1 The Exponential Family

A family of distribution $\{P_{\theta}: \theta \in \Theta\}$ where the parameter space $\Theta \subset \mathbb{R}^{k}$ is -k dimensional, is called a k-parameter exponential family on $\mathbb{R}^{\hat{1}}$ if the pmf or pdf $f_{\theta}: \mathbb{R}^q \to \mathbb{R}$ of

 $: \mathbb{R}^k \to \mathbb{R}^k$

 $: \mathbb{R}^q \to \mathbb{R}^k$ $: \mathbb{R}^k \to \mathbb{R}$

Parameter $p \in [0, 1]$, discrete

Var(X) = p(1-p)

at the same time, we cannot use the same level α for each of them. We must $\left(n-\sum_{i=1}^{n}X_{i}\right)\ln\left(1-p\right)$ us consider $S \subseteq \{1, ..., p\}$. Let us consi-

Fisher Information:

The function g is assumed to be known, and is referred to as the link function. It maps the domain of the dependent variable to the entire real

 P_{θ} can be written in the form:

 $h(\mathbf{y}) \exp (\eta(\theta) \cdot \mathbf{T}(\mathbf{y}) - B(\theta))$ where

 $\{\eta_k(\boldsymbol{\theta})\}$ $(T_1(\mathbf{y}))$

T(y) =

 $h(\mathbf{y})$ if k = 1 it reduces to:

 $f_{\theta}(y) = h(y) \exp(\eta(\theta)T(y) - B(\theta))$ 15 Important probability distributi-

 $p_x(k) = \begin{cases} p, & \text{if } k = 1\\ (1-p), & \text{if } k = 0 \end{cases}$

Likelihood n trials:

 $L_n(X_1,\ldots,X_n,p) =$ $= p^{\sum_{i=1}^{n} X_i} (1-p)^{n-\sum_{i=1}^{n} X_i}$

 $B(\boldsymbol{\theta})$

 $\mathbb{E}[X] = p$

The *Bonferroni's test* with signifi- $I(p) = \frac{1}{p(1-p)}$

cance level α is given by:

Loglikelihood n trials:

 $ln(p)\sum_{i=1}^{n} X_i$

 $H_0: \forall j \in S, \beta_i = 0, \quad H_1: \exists j \in S, \beta_j \neq 0$

 $: \mathbb{R}^q \to \mathbb{R}.$

Bernoulli

Capstone-Cheatsheet Statistics 1 by Blechturm, Page 3 of 2	Poisson		MLE:	Differentiate w.r.t x to get the pdf of	17 Variance Variance is the squared distance from	$\mathbf{x} \mapsto \mathbf{P}(X^{(1)} \le x^{(1)}, \dots, X^{(d)} \le x^{(d)}).$
	Parameter λ . discrete, approximates the binomial PMF when n is large, p is small, and $\lambda = np$.	heads up, the arrival is sent to the first process $(N_1(t))$, otherwise – to second. The coin tosses are independent	$\widehat{\mu}_M LE = \overline{X}_n$	$min_i(Xi)$:	the mean.	The sequence $X_1, X_2,$ converges in probability to X if and only if
Canonical exponential form:	$\mathbf{p}_{\mathbf{x}}(k) = exp(-\lambda) \frac{\lambda^{k}}{k!} \text{ for } k = 0, 1, \dots,$	of each other and are independent of $N(t)$. Then, $N_1(t)$ is a Poisson process	$\widehat{\sigma^2}_M LE = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$ Fisher Information:	$f_{\min}(x) = (n\lambda)e^{-(n\lambda)x}$	$Var(X) = \mathbb{E}[(X - \mathbb{E}(X))^2]$	each component of the sequence $X_1^{(k)}, X_2^{(k)}, \dots$ converges in probability
$f_{\theta}(y) = \exp(y\theta - \ln(1 + e^{\theta}) + 0)$	$\mathbb{E}[X] = \lambda$	with rate λp ; $N_2(t)$ is a Poisson pro-	$I(\mu, \sigma^2) = \begin{pmatrix} \frac{1}{\sigma^2} & 0\\ 0 & \frac{1}{2\sigma^4} \end{pmatrix}$	15.1.2 Counting Commitees	$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$	to $X^{(k)}$.
$b(\theta)$ $c(y,\phi)$	$Var(X) = \lambda$	cess with rate $\lambda(1-p)$; $N_1(t)$ and $N_2(t)$ are independent.	Canonical exponential form:	Out of $2n$ people, we want to choose a	Variance of a product with constant <i>a</i> :	Expectation of a random vector The expectation of a random vector is
$ \theta = \ln\left(\frac{p}{1-p}\right) \\ \phi = 1 $	Likelihood:	Exponential Parameter λ , continuous	Gaussians are invariant under affine	committee of <i>n</i> people, one of whom will be its chair. In how many diffe-	$Var(aX) = a^2 Var(X)$ Variance of sum of two dependent	the elementwise expectation. Let X be a random vector of dimension $d \times 1$.
φ – 1 Binomial	$L_n(x_1,,x_n,\lambda) = \prod_{i=1}^n \frac{\lambda^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!} e^{-n\lambda}$	$f_x(x) = \begin{cases} \lambda exp(-\lambda x), & \text{if } x >= 0 \\ 0, & \text{o.w.} \end{cases}$	transformation:	rent ways can this be done?"	r.v.:	$\left(\mathbb{E}[X^{(1)}]\right)$
Parameters <i>p</i> and <i>n</i> , discrete. Describes the number of successes in	Loglikelihood: $\ell_n(\lambda) =$	$P(X > a) = exp(-\lambda a)$	$aX + b \sim N(X + b, a^2\sigma^2)$ Sum of independent gaussians:	$n\binom{2n}{n} = 2n\binom{2n-1}{n-1}.$	Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)	$\mathbb{E}[\mathbf{X}] = $
n independent Bernoulli trials.	$= -n\lambda + \log(\lambda)(\sum_{i=1}^{n} x_i)) - \log(\prod_{i=1}^{n} x_i!)$	$F_x(x) = \begin{cases} 1 - exp(-\lambda x), & \text{if } x >= 0 \\ 0, & \text{o.w.} \end{cases}$	Let $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$	"In a group of 2n people, consisting of	Variance of sum/difference of two	$\mathbb{E}[X^{(d)}]$
$p_x(k) = \binom{n}{k} p^k (1-p)^{n-k}, k = 0,, n$	MLE:	$\mathbb{E}[X] = \frac{1}{1}$	If $Y = X + Z$, then	"In a group of 2n people, consisting of n boys and n girls, we want to select a committee of n people. In how many	independent r.v.:	The expectation of a random matrix is the expected value of each of its
$\mathbb{E}[X] = np$	$\hat{\lambda}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} (X_i)$	$\mathbb{E}[X^2] = \frac{2}{1^2}$	$Y \sim N(\mu_X + \mu_Y, \sigma_X + \sigma_Y)$	ways can this be done?"	Var(X + Y) = Var(X) + Var(Y)	elements. Let $X = \{X_{ij}\}$ be an $n \times p$ random matrix. Then $\mathbb{E}[X]$, is the
Var(X) = np(1-p)	Fisher Information: $I(\lambda) = \frac{1}{\lambda}$	$Var(X) = \frac{1}{\lambda^2}$	If $U = X - Y$, then $U \sim N(\mu_X - \mu_Y, \sigma_X + \sigma_Y)$	$\binom{2n}{n} = \sum_{i=0}^{n} \binom{n}{i} \binom{n}{n-i}$	Var(X - Y) = Var(X) + Var(Y) 18 Covariance	$n \times p$ matrix of numbers (if they exist):
Likelihood:	$\frac{\Gamma(\lambda) - \frac{1}{\lambda}}{\text{Canonical exponential form:}}$	Likelihood: $L(X_1X_n; \lambda) = \lambda^n \exp(-\lambda \sum_{i=1}^n X_i)$	Symmetry:	1=0	The Covariance is a measure of how much the values of each of	$\mathbb{E}[X] = \mathbb{E}[X_{11}] \mathbb{E}[X_{12}] \dots \mathbb{E}[X_{1p}]$
$L_n(X_1,, X_n, \theta) = \\ = \left(\prod_{i=1}^n {K \choose X_i}\right) \theta^{\sum_{i=1}^n X_i} (1 - \theta)^{nK - \sum_{i=1}^n X_i}$	$f_{\theta}(y) = \exp(y\theta - e^{\theta} - \ln y!)$	Loglikelihood: $\angle Loglikelihood$	If $X \sim N(0, \sigma^2)$, then $-X \sim N(0, \sigma^2)$	"How many subsets does a set with 2n elements have?"	two correlated random variables determine each other	$\mathbb{E}[X_{21}]$ $\mathbb{E}[X_{22}]$ $\mathbb{E}[X_{2p}]$
Loglikelihood:	$b(\theta) = cxp(y) = \underbrace{b(\theta)}_{c(y,\phi)}$	$\ell_n(\lambda) = nln(\lambda) - \lambda \sum_{i=1}^n (X_i)$	$\mathbb{P}(X > x) = 2\mathbb{P}(X > x)$	$\frac{2n}{\sqrt{2n}}$ $\left(2n\right)$	$Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$	$\begin{bmatrix} \vdots & \vdots & \ddots & \vdots \\ \mathbb{E}[X_{n1}] & \mathbb{E}[X_{n2}] & \dots & \mathbb{E}[X_{np}] \end{bmatrix}$
$\ell_n(\theta) = C + \left(\sum_{i=1}^n X_i\right) \log \theta +$	$\theta = \ln \lambda$ $\phi = 1$	MLE:	Standardization:	$2^{2n} = \sum_{i=0}^{2n} \binom{2n}{i}$	$Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$	Let X and Y be random matrices of
$\left(nK - \sum_{i=1}^{n} X_i\right) \log(1-\theta)$	Poisson process:	$\hat{\lambda}_{MLE} = \frac{n}{\sum_{i=1}^{n} (X_i)}$	$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$	"Out of <i>n</i> people, we want to form a	$Cov(X,Y) = \mathbb{E}[(X)(Y - \mu_Y)]$	the same dimension, and let <i>A</i> and <i>B</i> be conformable matrices of constants.
MLE:	k arrivals in t slots $\mathbf{p}_{\mathbf{x}}(k,t) = \mathbb{P}(N_t = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$	Fisher Information:	$\mathbf{P}(X \le t) = \mathbf{P}\left(Z \le \frac{t-\mu}{\sigma}\right)$ Higher moments:	committee consisting of a chair and other members. We allow the committee size to be any integer in the range	Possible notations:	$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$ $\mathbb{E}[AXB] = A\mathbb{E}[X]B$
Fisher Information:	$\mathbb{E}[N_t] = \lambda t$	$I(\lambda) = \frac{1}{\lambda^2}$	$\mathbb{E}[X^2] = \mu^2 + \sigma^2$	1,2,,n. How many choices do we have in selecting a committee-chair	$Cov(X,Y) = \sigma(X,Y) = \sigma_{(X,Y)}$	Covariance Matrix
$I(p) = \frac{n}{p(1-p)}$	$Var(N_t) = \lambda t$	Canonical exponential form:	$\mathbb{E}[X^3] = \mu^3 + 3\mu\sigma^2$ $\mathbb{E}[X^4] = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$	combination?"	Covariance is commutative:	Let X be a random vector of dimensi- on $d \times 1$ with expectation μ_X .
Canonical exponential form:	Memoryless property: The distance between two consecutive points of a	$f_{\theta}(y) = \exp\left(y\theta - (-\ln(-\theta)) + \underbrace{0}\right)$	Quantiles:	$n2^{n-1} = \sum_{i=1}^{n} \binom{n}{i} i.$	Cov(X,Y) = Cov(Y,X)	Matrix outer products!
$f_p(y) = exp(y(\ln(p) - \ln(1-p)) + n \ln(1-p) + \ln(0)$	point process on the real line will be an exponential random variable with parameter λ (or equivalently,	$b(\theta) \qquad c(y,\phi)$ $\theta = -\lambda = -\frac{1}{u}$	Uniform	i=0 (* /	Covariance with of r.v. with itself is variance:	$\Sigma = \mathbb{E}[(X - \mu_X)(X - \mu_X)^T] =$
θ $-b(\theta)$ $c(v)$	mean $\frac{1}{\lambda}$. This implies that the points	$\phi = 1$	Parameters a and b, continuous.	15.2 Finding Joint PDFS $f_{X,Y}(x,y) = f_X(x)f_{Y X}(y \mid x)$	$Cov(X,X) = \mathbb{E}[(X - \mu_X)^2] = Var(X)$	$\mathbb{E}\left[\begin{bmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \end{bmatrix} X_1 - \mu_1, X_2 - \mu_2, \dots, X_d - \mu_d \end{bmatrix}$
Geometric	have the memoryless property: the existence of one point existing in	Shifted Exponential Parameters λ , $a \in \mathbb{R}$, continuous	$\mathbf{f}_{\mathbf{x}}(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a < x < b \\ 0, & \text{o.w.} \end{cases}$	16 Expectation	Useful properties:	$\mathbb{E}\left(\begin{bmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \\ \vdots \\ X_d - \mu_d \end{bmatrix} [X_1 - \mu_1, X_2 - \mu_2, \dots, X_d - \mu_d] \right)$
Number of <i>T</i> trials up to (and including) the first success.	a finite interval does not affect the probability (distribution) of other	$f_x(x) = \begin{cases} \lambda exp(-\lambda(x-a)), & x >= a \\ 0, & x <= a \end{cases}$	$\mathbf{F}_{\mathbf{x}}(x) = \begin{cases} 0, & for x \leq a \\ \frac{x-a}{b-a}, & x \in [a,b) \\ 1, & x \geq b \end{cases}$ $\mathbf{F}[X] = \frac{a \pm b}{a}$	$\mathbb{E}[X] = \int_{-inf}^{+inf} x \cdot f_X(x) \ dx$	Cov(aX + h, bY + c) = abCov(X, Y)	$\Sigma = Cov(X) = [\sigma_{11} \sigma_{12} \dots \sigma_{1d}]$
$p_T(t) = (1-p)^{t-1} \cdot p, t = 1, 2,$ $\mathbb{E}[T] = \frac{1}{p}$	points existing Interarrival Times for Poisson	$F_{x}(x) = $	$\begin{bmatrix} 1, & x \ge b \\ \mathbb{E}[X] = \frac{a+b}{2} \end{bmatrix}$	$\mathbb{E}\left[g\left(X\right)\right] = \int_{-inf}^{+inf} g\left(x\right) \cdot f_X\left(x\right) dx$	Cov(X, X + Y) = Var(X) + cov(X, Y) Cov(aX + bY, Z) = aCov(X, Z) +	σ_{21} σ_{22} σ_{2d}
$var(T) = \frac{1-p}{p^2}$	Processes	$\begin{cases} 1 - exp(-\lambda(x-a)), & if x >= a \\ 0, & x <= a \end{cases}$	$Var(X) = \frac{(b-a)^2}{12}$	$\mathbb{E}[X Y=y] = \int_{-inf}^{+inf} x \cdot f_{X Y}(x y) dx$	bCov(Y,Z) = uCov(X,Z) + bCov(Y,Z)	$\begin{bmatrix} \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{dd} \end{bmatrix}$
Pascal The negative binomial or Pascal distri-	If $N(t)$ is a Poisson process with rate λ , then the interarrival times X1, X2,	$\mathbb{E}[X] = a + \frac{1}{\lambda}$	Likelihood:	Integration limits only have to be over the support of the pdf. Discrete r.v. same as continuous but with sums	If $Cov(X, Y) = 0$, we say that X and Y are uncorrelated. If X and Y are in-	The covariance matrix Σ is a $d \times d$ matrix. It is a table of the pairwise
bution is a generalization of the geo- metric distribution. It relates to the	are independent and	$Var(X) = \frac{1}{\lambda^2}$	$L(x_1 \dots x_n; b) = \frac{1(\max_i (x_i \le b))}{b^n}$	r.v. same as continuous but with sums and pmfs.	dependent, their Covariance is zero. The converse is not always true. It is	covariances of the elements of the random vector. Its diagonal elements
random experiment of repeated inde- pendent trials until observing <i>m</i> suc-	$X_i \sim Exponential(\lambda)$, for $i = 1, 2, 3, \cdots$.	Likelihood:	Loglikelihood:	Total expectation theorem:	only true if X and Y form a gaussi- an vector, ie. any linear combination	are the variances of the elements of the random vector, the off-diagonal
cesses. I.e. the time of the kth arrival. $Y_k = T_1 + T_k$	Now that we know the distribution of the interarrival times, we can find the	$L(X_1 X_n; \lambda, \theta) = \lambda^n \exp\left(-\lambda \sum_{i=1}^n (X_i - a)\right) 1_{\min_{i=1,,n}(X_i) \ge a}.$	Chi squared The χ_d^2 distribution with <i>d</i> degrees of	$\mathbb{E}[X] = \int_{-inf}^{+inf} f_Y(y) \cdot \mathbb{E}[X Y = y] dy$	$\alpha X + \beta Y$ is gaussian for all $(\alpha, \beta) \in \mathbb{R}^2$ without $\{0, 0\}$.	elements are its covariances. Note that the covariance is commutative
$T_i \sim iidGeometric(p)$	distribution of arrival times	Loglikelihood:	freedom is given by the distribution of $Z_1^2 + Z_2^2 + \cdots + Z_d^2$, where $Z_1, \ldots, Z_d \stackrel{iid}{\sim}$	Law of iterated expectation:	19 correlation coefficient $\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{V_X - V_X} V_X - V_X}$	e.g. $\sigma_{12} = \sigma_{21}$ Alternative forms:
$\mathbb{E}[Y_k] = \frac{k}{p}$	$T_1 = X_1$,	$\ell(\lambda, a) := n \ln \lambda - \lambda \sum_{i=1}^{n} X_i + n \lambda a$ MLE:	$\mathcal{N}(0,1)$	$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y X]]$	$\rho(X, Y) = \frac{1}{\sqrt{Var(XVar(Y))}}$ 20 Random Vectors	$\Sigma = \mathbb{E}[XX^T] - \mathbb{E}[X]\mathbb{E}[X]^T =$
$Var(Y_k) = \frac{k(1-p)}{p^2}$	$T_2 = X_1 + X_2,$	$\hat{\lambda}_{MLE} = \frac{1}{\overline{X}_n - \hat{a}}$	If $V \sim \chi_k^2$: $\mathbb{E} = \mathbb{E}[Z_1^2] + \mathbb{E}[Z_2^2] + \dots + \mathbb{E}[Z_d^2] = d$	Expectation of constant a:	A random vector $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})^T$	$= \mathbb{E}[XX^T] - \mu_X \mu_X^T$
$p_{Y_k}(t) = {t-1 \choose k-1} p^k (1-p)^{t-k}$	$T_n = X_1 + X_2 + \dots + X_n$	$\hat{a}_{MLE} = \min_{i=1,,n}(X_i)$ Univariate Gaussians	$Var(V) = Var(Z_1^2) + Var(Z_2^2) + \dots + Var(Z_2^2^2) + \dots + Var(Z_2^2^2) + \dots + Var(Z_2^2^2^2^2^2^2^2^2^2^2^2^2^2^2^2^2^2^2^$	$\mathbb{E}[a] = a$	of dimension $d \times 1$ is a vector-valued function from a probability space ω	Let the random vector $X \in \mathbb{R}^d$ and A and B be conformable matrices of
t = k, k + 1, Multinomial	$T_n \sim Erlang(n, \lambda) = Gamma(n, \lambda),$	Parameters μ and $\sigma^2 > 0$, continuous	$Var(Z_d^2) = 2d$	Product of independent r.vs X and Y:	to \mathbb{R}^d :	constants.
Parameters $n > 0$ and $p_1,, p_r$. $p_x(x) = \frac{n!}{x_1!,,x_n!} p_1,, p_r$	for $n = 1, 2, 3, \cdots$.	$f(x) = \frac{1}{\sqrt{(2\pi\sigma^2)}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$	Student's T Distribution $T_n := \frac{Z}{\sqrt{V/n}}$ where $Z \sim \mathcal{N}(0,1)$, and Z	$\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$	$\mathbf{X}: \Omega \longrightarrow \mathbb{R}^d$	$Cov(AX + B) = Cov(AX) = ACov(X)A^{T} = A\Sigma A^{T}$
$\mathbb{E}[X_i] = n * p_i$	Merging Independent Poisson Proces- ses	$\mathbb{E}[X] = \mu$ $Var(X) = \sigma^2$	and V are independent 15.1 Useful to know	Product of dependent r.vs <i>X</i> and <i>Y</i> :	$\begin{pmatrix} X^{(1)}(\omega) \\ X^{(2)}(\omega) \end{pmatrix}$	Every Covariance matrix is positive definite.
$Var(X_i) = np_i(1 - p_i)$	Let N1(t), N2(t),, Nm(t) be m independent Poisson processes with rates	CDF of standard gaussian:	15.1.1 Min of iid exponential r.v	$\mathbb{E}[X \cdot Y] \neq \mathbb{E}[X] \cdot \mathbb{E}[Y]$	$\omega \longrightarrow$:	$\Sigma < 0$
Likelihood:	$\lambda_1, \lambda_2,, \lambda_m$. Let also $N(t) = N_1(t) + N_2(t) + +$	$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$	Let $X_1,, X_n n$ be i.i.d. $Exp(\lambda)$ ran-	$\mathbb{E}[X \cdot Y] = \mathbb{E}[\mathbb{E}[Y \cdot X Y]] = \mathbb{E}[Y \cdot \mathbb{E}[X Y]]$	$(X^{(d)}(\omega))$	Gaussian Random Vectors A random vector $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})^T$
$p_x(x) = \prod_{j=1}^n p_j^{T_j}, \text{ where}$	$N_m(t)$, for all $t \in [0, \infty)$. Then, $N(t)$ is a Poisson process with	Likelihood:	dom variables. Distribution of $min_i(Xi)$	Linearity of Expectation where <i>a</i> and <i>c</i> are given scalars:	where each $X^{(k)}$, is a (scalar) random variable on Ω .	A random vector $\mathbf{X} = (X^{(*)},, X^{(*)})^{*}$ is a Gaussian vector, or multivariate Gaussian or normal variable, if any li-
$T^j = \mathbb{1}(X_i = j)$ is the count how often an outcome is seen in	rate $\lambda_1 + \lambda_2 + + \lambda_m$ Splitting a Poisson Proces-	$L(x_1 X_n; \mu, \sigma^2) =$ $= \frac{1}{(\sigma \sqrt{2\pi})^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right)$	$\mathbf{P}(\min_i(X_i) \le t) =$	$\mathbb{E}[aX + cY] = a\mathbb{E}[X] + c\mathbb{E}[Y]$	PDF of X : joint distribution of its components $X^{(1)}, \ldots, X^{(d)}$.	near combination of its components
trials.	ses(example!) Let $N(t)$ be a Poisson process with ra-	$(\sigma\sqrt{2\pi})^n$ or $P(-2\sigma^2 - 2I = 1)^{n-1}$ Loglikelihood:	$= 1 - \mathbf{P}(\min_{i}(X_{i}) \ge t)$ $= 1 - \mathbf{P}(\min_{i}(X_{i}) \ge t)$	If Variance of X is known:	components $X^{(*)},, X^{(*)}$. CDF of X :	is a (univariate) Gaussian variable or a constant (a "Gaussian" variable with
Loglikelihood: $\ell_n = \sum_{j=2}^n T_j \ln(p_j)$	te λ . Here, we divide $N(t)$ to two processes $N_1(t)$ and $N_2(t)$ in the followi-	$\ell_n(\mu, \sigma^2) =$	$=1-(\mathbf{P}(X_1\geq t))(\mathbf{P}(X_2\geq$	$(\mathbf{P}(X_n \ge t)) \dots (\mathbf{P}(X_n \ge t))$ $\mathbb{E}[X^2] = var(X) - \mathbb{E}[X]$	$\mathbb{R}^d \to [0,1]$	zero variance), i.e., if $\alpha^T \mathbf{X}$ is (univariate) Gaussian or constant for any con-
~n	ng way:for each arrival, a coin with	$= -nlog(\sigma\sqrt{2\pi}) - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$	$= 1 - (1 - F_X(t))^n = 1 - \epsilon$	$e^{-\overline{n}\lambda x}$	[64-1	stant non-zero vector $\alpha \in \mathbb{R}^d$.

Capstone-Cheatsheet Statistics 1 by Blechturm, Page 4 of 2

Multivariate Gaussians

The distribution of, X the d-dimensional Gaussian or normal distribution, is completely specified by the vector mean $\mu = \mathbb{E}[\mathbf{X}] = (\mathbb{E}[X^{(1)}], \dots, \mathbb{E}[X^{(d)}])^T$ and the $d \times d$ covariance matrix Σ . If Σ is invertible, then the pdf of X is:

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)},$$

$$\mathbf{x} \in \mathbb{R}^d$$

Where $det(\Sigma)$ is the determinant of Σ , which is positive when Σ is invertible. If $\mu = 0$ and Σ is the identity matrix, then X is called a standard normal random vector .

If the covariant matrix Σ is diagonal, the pdf factors into pdfs of univariate Gaussians, and hence the components are independent.

The linear transform of a gaussian $X \sim N_d(\mu, \Sigma)$ with conformable matrices \overline{A} and \overline{B} is a gaussian:

$$AX + B = N_d(A\mu + b, A\Sigma A^T)$$

Multivariate CLT

Let $X_1, ..., X_d \in \mathbb{R}^d$ be independent copies of a random vector X such that $\mathbb{E}[x] = \mu \ (d \times 1 \text{ vector of expectations})$ and $Cov(X) = \Sigma$

$$\sqrt{(n)}(\overline{X_n} - \mu) \xrightarrow[n \to \infty]{(d)} N(0, \Sigma)$$

$$\sqrt{(n)} \Sigma^{-1/2} \overline{X_n} - \mu \xrightarrow[n \to \infty]{(d)} N(0, I_d)$$

Where $\Sigma^{-1/2}$ is the $d \times d$ matrix such that $\Sigma^{-1/2}\Sigma^{-1/2}=\Sigma^1$ and I_d is the identity matrix.

Multivariate Delta Method 21 Algebra

Absolute Value Inequalities:

$$|f(x)| < a \Rightarrow -a < f(x) < a$$

 $|f(x)| > a \Rightarrow f(x) > a \text{ or } f(x) < -a$

22 Matrixalgebra

 $\|\mathbf{A}\mathbf{x}\|^2 = (\mathbf{A}\mathbf{x})^T(\mathbf{A}\mathbf{x}) = \mathbf{x}^T\mathbf{A}^T\mathbf{A}\mathbf{x} =$ $\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}$ 23 Calculus

Differentiation under the integral sign

 $\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{a(x)}^{b(x)} f(x,t) \mathrm{d}t \right) = f(x,b(x))b'(x) -$

$$f(x,a(x))a'(x) + \int_{a(x)}^{b(x)} f_x(x,t)dt.$$

Concavity in 1 dimension If $g: I \to \mathbb{R}$ is twice differentiable in the interval I:

concave: if and only if $g''(x) \le 0$ for all $x \in I$

strictly concave: if
$$g''(x) < 0$$
 for all $x \in I$

convex: if and only if $g''(x) \ge 0$ for all $x \in I$

g''(x) > 0 for all $x \in I$ Multivariate Calculus

The Gradient ∇ of a twice differntiable function f is defined as:

 $\nabla f : \mathbb{R}^d \to \mathbb{R}^d$

$$\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_d \end{pmatrix} \mapsto \begin{pmatrix} \frac{\partial f}{\partial \theta_1} \\ \frac{\partial f}{\partial \theta_2} \\ \vdots \\ \frac{\partial f}{\partial \theta_d} \end{pmatrix} \Big|_{\theta}$$
Hessian

The Hessian of f is a symmetric matrix of second partial derivatives

$$\begin{split} \mathbf{H}h(\theta) &= \nabla^2 h(\theta) = \\ \left(\begin{array}{ccc} \frac{\partial^2 h}{\partial \theta_1 \partial \theta_1}(\theta) & \cdots & \frac{\partial^2 h}{\partial \theta_1 \partial \theta_d}(\theta) \\ & \vdots & & \\ \frac{\partial^2 h}{\partial \theta_d \partial \theta_1}(\theta) & \cdots & \frac{\partial^2 h}{\partial \theta_d \partial \theta_d}(\theta) \end{array} \right) \\ \mathbb{R}^{d \times d} \end{split}$$

A symmetric (real-valued) $d \times d$

Positive semi-definite:
$$\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$$
 for all $\mathbf{x} \in \mathbb{R}^d$.

Positive definite: $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all non-zero vectors $\mathbf{x} \in \mathbb{R}^d$

Negative semi-definite (resp. negative

$$\mathbf{x}^T \mathbf{A} \mathbf{x}$$
 is negative for all $\mathbf{x} \in \mathbb{R}^d - \{\mathbf{0}\}$.

Positive (or negative) definiteness implies positive (or negative)

If the Hessian is positive definite then f attains a local minimum at a(convex).

If the Hessian is negative definite at a, then f attains a local maximum at a (concave).

If the Hessian has both positive and negative eigenvalues then a is a saddle point for f.

24 Covariance Matrix

Let X be a random vector of dimension $d \times 1$ with expectation μ_X .

Matrix outer products!

$$\Sigma = \mathbb{E}[(X - \mu_X)(X - \mu_X)^T]$$

$$= \mathbb{E}[XX^T] - \mathbb{E}[X]\mathbb{E}[X]^T$$

$$= \mathbb{E}[XX^T] - \mu_X \mu_X^T$$

25 Inequalities

25.0.1 Markov's Inequality

Markov's Inequality. For a nonnegative random variable X and positive t,

$$Pr[X \ge \lambda] \le \frac{E[X]}{\lambda}$$

25.0.2 Chebyshev's Inequality

We can use Markov's Inequality to derive Chebyshev's Inequality.

$$Pr[|X - \mathbb{E}(X)| \ge \lambda] \le \frac{Var[X]}{\lambda^2}$$