Data Mining: Fundamentals

A.Y. 2024/2025

Group 12

Bruno Barbieri, Noemi Dalmasso, Gaia Federica Francesca Ferrara

The aim of this report is to display an analysis carried out on the IMDb dataset; the analysis has been conducted making use of data mining methodologies. After the data understanding and preparation phase, clustering, classification, regression and pattern mining techniques have been applied.

Contents

1	Dat	a Understanding and Preparation	1
	1.1	Discrete Attributes	1
		1.1.1 Merging and Removal of Discrete Attributes	1
		1.1.2 Discrete Attributes Analysis	2
		1.1.3 Encoding and Transformation of Categorical Attributes	2
	1.2	Continuous Attributes	3
		1.2.1 Removal and Merging of Continuous Attributes	4
	1.3	Data Quality	5
		1.3.1 Missing Values	5
		1.3.2 Semantic Inconsistencies, Feature Transformations and Outlier detection	6
2	Clu	stering	8
	2.1	K-means	9
	2.2	DBSCAN	9
	2.3	Hierarchical clustering	10
	2.4	General considerations	12
3	Cla	ssification	13
	3.1	Binary classification	13
	3.2	Multiclass classification	13
	3.3	General considerations	14
4	Reg	gression 1	15
	4.1	General considerations	15
5	Pat	tern Mining	16
	5.1	Extraction and discussion of frequent patterns	16
	5.2	Extraction of rules	17
	5.3	Exploiting rules for target prediction	17

1. Data Understanding and Preparation

The dataset *train.csv* contains 16431 titles of different forms of visual entertainment that have been rated on IMDb, an online database of information related to films, television series etc. Each record is described by 23 attributes, either discrete or continuous.

1.1 Discrete Attributes

Table 1.1 shows the discrete attributes of the dataset, their types and a brief description of each attribute.

Attribute	Type	Description		
originalTitle	Categorical	Title in its original language		
rating	Ordinal	IMDB title rating class		
		The range is from (0,1] to (9,10]		
worstRating	Ordinal	Worst title rating		
bestRating	Ordinal	Best title rating		
titleType	Categorical	The format of the title		
canHaveEpisodes	Binary	Whether or not the title can have episodes		
		True: can have episodes; False: cannot have episodes		
isRatable	Binary	Whether or not the title can be rated by users		
		True: it can be rated; False: cannot be rated		
isAdult	Binary	Whether or not the title is for adults		
		0: non-adult title; 1: adult title		
countryOfOrigin	List	The country(ies) where the title was produced		
genres	List	The genre(s) associated with the title (3 at most)		

Table 1.1: Description of discrete attributes

1.1.1 Merging and Removal of Discrete Attributes

The following discrete attributes were removed from the dataset:

- originalTitle was removed because it is not relevant for the analysis;
- the isRatable variable was removed because all the titles in the dataset are ratable;
- worstRating and bestRating attributes were removed because they assume the same values for all records (1 and 10 respectively).

Additionally, the isAdult attribute is highly correlated with the presence or absence of Adult in genre (16 records differ in the train set, 1 in the test set), so the two were merged with a logical OR operation. This is

not true for the *short* type in titleType, with 491 records having different values from the obtained feature. For this reason, the two were kept separate.

1.1.2 Discrete Attributes Analysis

This paragraph provides an overview of the discrete attributes in the dataset, focusing on their distributions and statistics. The following figures 1.1a and 1.1b show bar plots of titleType and rating attributes, respectively.

Figure 1.1: Distribution of the titleType and rating attributes

From figure 1.1a it is observed that the classes of the titleType attribute are unbalanced, with *movie* being the most frequent class (5535 records). It was observed that the class *tvShort* is the least frequent in the dataset, with only 40 records (around 0.24% of the dataset). Because of this, these rows were discarded from the dataset, as they were considered irrelevant for the analysis. The decision was not repeated for *tvSpecial* and *tvMiniSeries*, as they cover slightly more than 1% of the dataset each (166, 1.01% and 224, 1.36%, respectively).

As shown in figure 1.1b, the **rating** attribute roughly follows a normal distribution, with a slightly asymmetric peak: a significant number of titles falls within the (6,7] and (7,8] ranges (4565 and 4822 titles, respectively) while only a total amount of 67 titles falls within (0,1] and (1,2].

1.1.3 Encoding and Transformation of Categorical Attributes

The attribute rating was transformed by taking the upper bound of each rating interval's string representation. This approach was chosen because the minimum rating is 1, meaning the lowest interval corresponds only to ratings of 1. For consistency, the same transformation was applied to all other intervals.

Multi-label one-hot encoding was applied to the **genres** column. Each unique genre was represented as a binary feature, allowing records that belong to multiple genres simultaneously to maintain this information; this generated 28 new features. Depending on the task, some were often discarded to avoid overfitting or to reduce the number of features. This will be discussed in the corresponding sections. Rows with no genres were assigned a

vector of all zeros, indicating the absence of any genres.

The attribute countryOfOrigin was represented by grouping the countries by continent. The following variables have been created:

- countryOfOrigin_AF (Africa);
- countryOfOrigin_AS (Asia);
- countryOfOrigin_EU (Europe);
- countryOfOrigin_NA (North America);

- countryOfOrigin_SA (South America);
- countryOfOrigin_OC (Oceania);
- countryOfOrigin_UNK (Unknown country);
- countryOfOrigin_freq_enc (frequency encoding of the original list).

For each record, the first six features provide the number of countries for each continent.

The countryOfOrigin_UNK variable counts the number of countries that are not recognized as belonging to a continent for that record.

Additionally, countryOfOrigin_freq_enc provides the frequency encoding of the original list of countries as a whole, showing how frequently a specific combination of countries appears across the entire dataset. These transformations allow to keep a most of the original information, while limiting the number of new features.

1.2 Continuous Attributes

Table 1.2 shows the continuous attributes of the dataset, their type and a brief description.

Attribute	Type	Description
runtimeMinutes	Integer	Runtime of the title expressed in minutes
startYear	Integer	Release/start year of a title
endYear	Integer	TV Series end year
awardWins	Integer	Number of awards the title won
numVotes	Integer	Number of votes the title has received
totalImages	Integer	Number of Images on the IMDb title page
totalVideos	Integer	Number of Videos on the IMDb title page
totalCredits	Integer	Number of Credits for the title
criticReviewsTotal	Integer	Total Number of Critic Reviews
awardNominationsExcludeWins	Integer	Number of award nominations excluding wins
numRegions	Integer	The regions number for this version of the title
userReviewsTotal	Integer	Number of User Reviews
ratingCount	Integer	The total number of user ratings for the title

Table 1.2: Description of continuous attributes

1.2.1 Removal and Merging of Continuous Attributes

The plot in figure 1.2 is a Pearson's correlation matrix that takes into account the continuous attributes of the dataset.

Figure 1.2: Correlation matrix

The correlation matrix shows that ratingCount and numVotes are perfectly correlated; for their redundancy, ratingCount was discarded.

The attributes awardNominationsExcludeWins and awardWins were combined into totalNominations, due to their strong semantic similarity and high correlation (0.69). The new feature represents the sum of the two original attributes. This transformation also helps mitigate the impact of their heavy right skew (shown in figure 1.3a), resulting in a more meaningful and interpretable feature.

Similarly, the totalVideos and totalImages attributes were combined into a single feature, i.e. totalMedia, representing the total number of media items associated with a title. Although the original attributes are not highly correlated, both exhibit skewed distributions (as in figure 1.3b), totalVideos in particular. Due to this, and to their similar semantic meaning, they were merged to form a more consolidated and interpretable feature.

Figure 1.3: Distribution of the attributes that form the totalNominations and totalMedia features

Although criticReviewsTotal and userReviewsTotal also have a relatively high correlation (0.65), as well as a right-skewed distribution, it was decided that the two attributes should be kept separate because of their relevance in meaning. It is also worth noting that the two have high correlations with numVotes (0.67 and 0.75 respectively), but they were all kept because of the difference between votes and reviews.

1.3 Data Quality

Next, a proper evaluation of the observed data was conducted in preparation for the analysis. Once having checked that there are no duplicates and no incomplete rows in the dataset, attention was given at identifying missing values and outliers.

1.3.1 Missing Values

The following attributes were found to have missing values¹:

- endYear: it is the feature with the highest number of NaN values (15617; about 95%). Although the feature is only relevant for TVSeries and TVMiniSeries titles, it still had approximately 50% missing values within those categories, limiting its usefulness even in the appropriate context. For this reason, the feature was discarded.
- runtimeMinutes: this attribute has 4,852 missing values (29.5%). Two imputation strategies were employed, both based on random sampling within the interquartile range. One strategy used the titleType feature to define the range, while the other imputed values using canHaveEpisodes and the Short genre. The choice of which of the two strategies to use depends on the specific task, and will be specified in the corresponding sections.

¹awardWins was the only feature with missing values marked as NaN, while the other listed columns had missing values marked as "\N", hence they were replaced with NaN.

- awardWins: this feature has 2618 NaN values (about 16%). Since the mode associated with this variable is 0, it has been decided to substitute the missing values with 0.
- genres: it has 382 missing values (2.3%). Having dealt this variable with a multi-label one-hot encoding process (as has been described in the *Encoding and Transformation of categorical attributes* section), a vector of all zeros is assigned to record with missing genres values.

1.3.2 Semantic Inconsistencies, Feature Transformations and Outlier detection

While analyzing the dataset, it was observed that the *Videogame* type of the titleType attribute (259 records - around 1.58% of the dataset) was not consistent with the other values of the same feature, being *Videogame* a fundamentally different titleType. Other then this semantic inconsistency, these rows generated problems for some of the other attributes, such as runtimeMinutes, resulting in most values being missing and difficult to impute. Because of this, the samples were removed from the dataset.

Some features showed a heavy right-skewed distribution, with typical traits of Power-Law Distributions. Their Kernel Density Estimations are shown in figure 1.4.

Figure 1.4: Kernel Density Estimation of the left-skewed attributes

The decay of these features is exponential in linear space (1.4a), while in logarithmic space there is a decline that can be approximated to a linear trend (1.4b). For this reason, a log-transformation was applied to these attributes to reduce the skewness and make them more suitable for analysis. Because of right-skewness (without a power-law distribution), other attributes were also log-transformed:

- numVotes:
- totalCredits;

• totalMedia.

Regarding outliers, the feature that was found to be more problematic was runtimeMinutes. Figures 1.5 report an analysis of the feature through the IQR method. Similarly to missing values imputation (1.3.1), outlier detection was performed using two different strategies. Figure 1.5a shows the first approach, which computes outliers on each titleType separately. Figure 1.5b shows the second, which computes them based on canHaveEpisodes attribute and Short genre. The boxplots show that there are samples that have been misreported, with runtimes of over 1000 minutes for tvSeries; the same can be observed on the second plot on the Has episodes box plot. This might be because of an inconsistency with the understanding of the meaning of the attribute, and it might be possible that in those cases, the value refers to the total runtime of the series, rather than the runtime of a single episode.

Figure 1.5: Outliers in the runtimeMinutes attribute

Another interesting observation regards the presence of a record with a runtime of 0 minutes for the *short* type; although it was not considered an outlier by the first method, the record was removed from the dataset because it was regarded as a mistake.

In this phase, outliers were not removed from the dataset, as it was decided to proceed on a case-by-case basis, depending on the task to be performed.

2. Clustering

This chapter of the report aims at illustrating the clustering analysis performed on the dataset at hand. The employed clustering techniques are K-means (Centroid-based), DBSCAN (density-based) and hierarchical clustering.

The analysis conducted using these methods focused only exclusively on the dataset's numerical attributes, which were appropriately log-transformed (as mentioned in the *Variable Transformation* section) and normalized using MinMaxScaler. For the K-means algorithm, totalNominations and totalMedia were excluded due to their high proportion of zero values, which negatively affected cluster formation.

In addition, an attempt was made to incorporate categorical variables to the analysis with the K-means algorithm by converting them into binary attributes and constructing a mixed-distances matrix. Distances were then calculated using the Euclidean distance for numerical (log-tranformed and scaled) features and the Jaccard similarity for binary ones. However, this approach was computationally expensive and did not lead to any improvement in the results.

RIVEDERE PARTE PCA Principal Component Analysis (PCA) was applied to the preprocessed data just for clusters visualization purposes. Analysis of the numerical attributes reveals that 4 principal components are optimal when excluding variables with many zero values, while 5 components are needed when including all variables. These numbers of components capture the maximum meaningful variance, as shown by the point in the plots where where the line starts to flatten, indicating that adding more components doesn't increase explained variance significantly. The plots in figure 2.1 show the differences between these two approaches. IN REALTA' NON SI VEDE TROPPO LA DIFFERENZA, QUINDI MAGARI NON FARE PCA MA SOLO VISUALIZZAZIONE CON ISTOGRAMMI??? oppure semplicemente tenere solo uno dei due plot?

Figure 2.1: Principal Component Analysis

2.1 K-means

To identify the optimal number of clusters, both the SSE and Silhouette scores were computed. The goal was to find a configuration that minimizes the SSE while maintaining a robust Silhouette score and a proper k. The plots in figure 2.2a demonstrate that k = ??? provides the optimal balance between these metrics. Choosing k = ??? returns a SSE score of ??? and Silhouette score of ???. VALORI TROPPO ALTI, VEDERE SE CAMBIANO CAMBIANDO SCALING E/O TOGLIENDO OUTLIER

The cluster results are presented in figure 2.2b.

Figure 2.2: K-means clustering analysis

The distribution of data points across the four clusters is as follows (shown in percentage of data points per cluster):

2.2 DBSCAN

To determine the optimal DBSCAN parameters, the k^{th} nearest neighbors method was used: this allows to identify eps (the maximum distance between two points for them to be considered neighbors) given the value of Minpts (minimum number of points in a neighborhood for a point to be considered a core point). Initially, Minpts was set to 22, following the rule of setting it above twice the number of dimensions. However, due to the dataset's unbalanced nature and the sparsity of high-dimensional data, reducing Minpts to 11 allowed the formation of smaller clusters while preventing the risk of detecting only one dominant cluster and classifying many minority groups as noise instead of distinct clusters. To determine eps, the k^{th} nearest neighbors plot with k = 11 was analyzed (figure 2.3a). While the "knee" point suggested an eps of around 0.1, this value would have resulted in excessive noise and a single dominant cluster. To address this, eps was set to 1.564, allowing for meaningful connectivity while preserving the detection of smaller clusters without merging them

into a single entity. The algorithm identified 4 groups in the dataset, including one representing noise (1,753 points). The largest cluster contains 13,198 points, while the smaller clusters consist of 733 and 747 points, respectively. The results are shown in figure 2.3b

To conclude, by adjusting *eps* and *Minpts* appropriately, the clustering results achieved a Silhouette score of 0.139 (SIL CONTANDO OUTLIERS), indicating little improved cluster separation and reduced noise, which is considered good enough for an unbalanced, high-dimensional dataset.

Figure 2.3: DBSCAN clustering analysis

2.3 Hierarchical clustering

Hierarchical clustering was performed using all linkages (Ward, Average, Complete, Single), with the Euclidean distance metric. Figure 2.4 shows the results of the analysis, which includes the Silhouette and SSE scores, as well as the maximum and minimum percentage of points per cluster.

Figure 2.4: Hierarchical clustering metrics for different numbers of clusters

From figure 2.4a, it can be observed that Single linkage produces a single cluster which contains basically all data points. This makes it unsuitable for this use case. Average and Complete linkages produce a cluster with a high maximum cluster size (above 90% of the dataset for all the number of clusters tested for Average, and 80% for Complete). These results are likely due to a few different causes:

- High density of points in a certain area of the feature space, which leads to the formation of large clusters;
- Usage of skewed features or presence of outliers (other than the ones that were removed), which can skew the clustering results by pulling the centroids towards them, resulting in larger clusters;
- High dimensionality of the dataset, which makes it more difficult to separate clusters effectively.

These issues are mitigated by Ward linkage, which produces less dominant biggest clusters for all numbers of clusters tested. The minimum cluster size is also consistently more balanced across different numbers of clusters.

Since Ward's method is based on Squared Error, it's not surprising how its SSE is consistently lower than other linkages, as shown in the second graph of figure 2.4b. What's more interesting is that Ward's method has the lowest Silhouette scores for all numbers of clusters tested, which indicates that the clusters are not well separated. This is due to the fact that Ward's method tends to group the data which resides in the high-density area mentioned above into smaller clusters, leading to less well-defined boundaries between them.

Figure 2.5 shows Hierarchical clustering through Ward's method applied to the dataset, visualized using PCA. The plot shows how the higher density area is split among clusters 1, 2 and 4, while cluster 3 has an overall lower density.

Figure 2.5: PCA visualization for hierarchical clustering with Ward's method

2.4 General considerations

3. Classification

Classification was performed on the available training set using three different algorithms: K-NN (K-Nearest Neighbours), Naïve Bayes and Decision Trees. For K-NN and Naïve Bayes, a portion of the training set (referred to as the validation set) was used to select the best hyperparameters each model. The features used in K-NN and Naïve Bayes were normalized, as these models are sensitive to unscaled values. In particular, a log-transformation and SCRIVERE SE StandardScaler O MINMAX were applied to data. After training, the models were evaluated on the test set using standard performance metrics. The target variables chosen for this task are 2: titleType, and has LowEngagement. These will be discussed in more detail in the corresponding sections below.

3.1 Binary classification

The binary target variable used in this task, has_LowEngagement, was specifically defined for this purpose. It identifies records where the numVotes attribute is less than 100.

K-NN

Naïve Bayes

Decision Trees

Table 3.1: Classification report for binary classification (has_LowEngagement)

Class	Precision	Recall	F1-score	Support
Low engagement	0.86	0.91	0.88	3686
High engagement	0.78	0.66	0.72	1698
Macro avg	0.82	0.79	0.80	5384
Weighted avg	0.83	0.83	0.83	5384
Accuracy			0.83	5384

3.2 Multiclass classification

Among the multiclass features of the training set, titleType was chosen as the target variable for this task due to its relevance in the dataset.

An important aspect to highlight is the usage of fill_runtimeMinutes_notitleType as one of the variables to train the models. This feature was created to impute the missing values of the original runtimeMinutes variable, but without using the median value according to the titleType. Instead, the missing values were

imputed using the help of two variables: canHaveEpisodes and is_Short (as one of the resulting variables of the multi-label one-hot encoding process of the genres attribute). In particular, SCRIVERE COME E' STATA IMPUTATA NO_TT - con canhaveepisodes e is_short preso dai generi. This approach prevents a significant error, as it would be methodologically incorrect to use titleType-based imputation for an attribute when titleType itself is the target variable to predict.

K-NN Naïve Bayes Decision Trees

Table 3.2: Classification report for multiclass classification (titleType)

Class	Precision	Recall	F1-score	Support
movie	0.85	0.88	0.87	1877
\mathbf{short}	0.92	0.94	0.93	766
${f tvEpisode}$	0.89	0.92	0.90	1599
tvMiniSeries	0.51	0.35	0.41	81
$\mathbf{tv}\mathbf{Movie}$	0.36	0.29	0.32	299
$\mathbf{tvSeries}$	0.89	0.94	0.91	447
$\mathbf{tvShort}$	0.00	0.00	0.00	16
$\mathbf{tvSpecial}$	0.32	0.12	0.18	49
video	0.55	0.46	0.50	250
Macro avg	0.59	0.54	0.56	5384
Weighted avg	0.82	0.84	0.83	5384
Accuracy			0.84	5384

3.3 General considerations

4. Regression

4.1 General considerations

5. Pattern Mining

To perform this task, continuous attributes were discretized based on their distributions, aiming for bins that were both semantically meaningful and reasonably balanced in size. The selected numerical attributes (not normalized) for the pattern mining task, along with their binning, are:

Attribute	Binning
runtimeMinutes	VeryLowRTM (1-30), LowRTM (31-60), MediumRTM (61-90), HighRTM (91-220)
rating	VeryLowR (1-3), LowR (4-6), MediumR (7), HighR (8), VeryHighR (9-10)
totalCredits	$VeryLowC\ (0\text{-}15),\ LowC\ (16\text{-}35),\ MediumC\ (36\text{-}65),\ HighC\ (66\text{-}15742)$

Table 5.1: Binning of the continuous attributes

Regarding discrete attributes, titleType was considered for this task, kept in its original form. On the other hand, the values of each of the 7 attributes countryOfOrigin_[continent code]¹ were binarized into:

- not_from_[continent code]: when the value of the attribute is 0
- is_from_[continent code]: when the value of the attribute is ≥ 1

An attempt was performed to include genres; however, this did not lead to more interesting results.

5.1 Extraction and discussion of frequent patterns

Figure 5.1: Plots of minimum support and confidence - Apriori algorithm

¹see subsection 1.1.3 for the list of the features

Apriori was the algorithm chosen to extract frequent patterns. Figure 5.1a shows how the number of frequent itemsets changes with support values ranging from 0.01 to 0.18. The curve of the plot begins to flatten between 0.08 and 0.1, so a support value of 0.08 was selected, resulting in 66 frequent patterns.

It is interesting to observe the top frequent itemsets of size 1, 2, and 3, as shown in Table 5.2. From the itemset of size 1 it was noticed that approximately 48.5% of the objects in the dataset are from North America, highlighting the prevalence of this region.

The size-2 itemset reveals that 1/4 of the objects is both from North America and has a very low runtime. This pattern becomes more specific in the top size-3 itemset, where almost 10% of the data corresponds to TV episodes with both characteristics.

Size	Support	Itemsets
1	0.485	(is_from_NA)
2	0.204	(VeryLowRTM, is_from_NA)
3	0.094	$(tvEpisode,VeryLowRTM,is_from_NA)$

Table 5.2: Top itemsets of sizes 1, 2, and 3

5.2 Extraction of rules

After extracting the frequent patterns, association rules were generated. To find a value of *confidence* that balances the number of rules and their strength (measured with *lift*), the plot in Figure 5.1b was analysed. A min_confidence of 0.55 was selected, guaranteeing an average *lift* of 2.3 and a significant number of rules, i.e. 18. The top 10 rules extracted (ranked by lift) are:

Rule	Antecedents	Consequents	Ant. Sup.	Cons. Sup.	Sup.	Conf.	Lift
0	(short)	(VeryLowC, VeryLowRTM)	0.160	0.128	0.093	0.583	4.568
1	(VeryLowC, VeryLowRTM)	(short)	0.128	0.160	0.093	0.731	4.568
2	(HighRTM)	(movie)	0.177	0.319	0.154	0.866	2.719
3	(is_from_NA, short)	(VeryLowRTM)	0.082	0.375	0.082	0.995	2.654
4	(VeryLowC, short)	(VeryLowRTM)	0.094	0.375	0.093	0.994	2.650
5	(short)	(VeryLowRTM)	0.160	0.375	0.159	0.993	2.648
6	(VeryLowRTM, short)	(VeryLowC)	0.159	0.234	0.093	0.588	2.513
7	(short)	(VeryLowC)	0.160	0.234	0.094	0.587	2.511
8	(is_from_NA, LowRTM)	(tvEpisode)	0.121	0.303	0.090	0.742	2.447
9	(MediumRTM)	(movie)	0.229	0.319	0.165	0.720	2.260

Table 5.3: Top 10 rules extracted with *Apriori* (ranked by lift)

5.3 Exploiting rules for target prediction

One way to exploit the previously extracted rules is for target prediction. Firstly, rules with VeryLowC as target (rows 6 and 7 in the Table 5.3), show that short contents with very low runtime are highly likely to be associated with very low credits, probably reflecting the involvement of a limited production or cast. Both rules show a

strong association, with a *lift* greater than 2.5, with the more specific one (VeryLowRTM and short) offering a better potential for targeted prediction.

The target <code>is_from_NA</code> was then analysed to find the antecedents (as shown in Table 5.4), that increase the likelihood of an object of being from North America. Even though the *lift* value of those rules is below average, these rules were still considered, due to their meaningful interpretability. The analysis suggests that North American origin is associated with TV episodes, shorter durations, and high ratings or numerous production credits.

Rule	Antecedents	Consequents	Ant. Sup.	Cons. Sup.	Sup.	Conf.	Lift
12	(HighR, tvEpisode)	(is_from_NA)	0.144	0.485	0.092	0.639	1.317
13	(HighC)	(is_from_NA)	0.152	0.485	0.156	0.627	1.292
14	(tvEpisode, LowRTM)	(is_from_NA)	0.144	0.485	0.090	0.624	1.285
15	(tvEpisode)	(is_from_NA)	0.303	0.485	0.186	0.612	1.261
16	(tvEpisode, VeryLowRTM)	(is_from_NA)	0.153	0.485	0.093	0.611	1.259
17	(LowRTM)	(is_from_NA)	0.219	0.485	0.121	0.553	1.139

Table 5.4: is_from_NA as target