

FACULTY OF ENGINEERING SCIENCES AND TECHNOLOGY

Department: Computer Science Program: BS

DISCRETE STRUCTURES

Announced date: 15/8/2024 Due Date: 22/8/2024 Max Marks:05

ASSIGNMENT# 1					
Mapped CLO	Mapped GA	Mapped Learning Level	SDG		
CLO1	GA 2 (Problem analysis)	C2 (Knowledge for solving computing problems)	4 & 9		

ASSIGNMENT 1

1. Truth table questions.

a.
$$p \land \sim r \leftrightarrow q \lor r$$

b.

Show that the following statement forms are all logically equivalent:

$$p \rightarrow q \lor r$$
, $p \land \sim q \rightarrow r$, and $p \land \sim r \rightarrow q$

2.

Let the symbol \oplus denote *exclusive or*; so $p \oplus q \equiv (p \lor q) \land \sim (p \land q)$. Hence the truth table for $p \oplus q$ is as follows:

p	\boldsymbol{q}	$p \oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

a. Find simpler statement forms that are logically equivalent to $p \oplus p$ and $(p \oplus p) \oplus p$.

Is
$$(p \oplus q) \wedge r \equiv (p \wedge r) \oplus (q \wedge r)$$
? Justify your answer.

FACULTY OF ENGINEERING SCIENCES AND TECHNOLOGY

3.

Question: Proof by applying laws

$$\sim ((\sim p \land q) \lor (\sim p \land \sim q)) \lor (p \land q) \equiv p$$

4.

Let $X = \{1, 3, 5\}$ and $Y = \{s, t, u, v\}$. Define $f: X \rightarrow Y$ by the following arrow diagram.

- **a.** Write the domain of f and the co-domain of f.
- **b.** Find f(1), f(3), and f(5).
- **c.** What is the range of *f*?
- **d.** Is 3 an inverse image of s? Is 1 an inverse image of u?
- **e.** What is the inverse image of s? of u? of v?
- **f.** Represent *f* as a set of ordered pairs.

5.

- a. Define $f: \mathbb{Z} \to \mathbb{Z}$ by the rule f(n) = 2n, for every integer n.
 - (i) Is f one-to-one? Prove or give a counterexample.
 - (ii) Is f onto? Prove or give a counterexample.

6.

- **a.** Define $H: \mathbb{R} \to \mathbb{R}$ by the rule $H(x) = x^2$, for each real number x.
 - Is H one-to-one? Prove or give a counterexample.
 - (ii) Is H onto? Prove or give a counterexample.