K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS Diode Applications

Numerical 1: Simulate a half wave rectifier circuit with input Amplitude = 220V peak, f = 50 Hz and $R_L = 50$ using LT spice. Select diode as IN4148. Use 10:1 step down transformer. Plot the following using LTspice:

- a) Primary peak voltage
- b) Secondary peak voltage
- c) Output voltage across resistor
- d) Output voltage across diode
- e) Current flowing through the circuit

Also, calculate the efficiency of the Half wave rectifier circuit.

Solution:

Figure 1: Circuit 1

Given: $R_L = 50 \Omega$, $R_f = 0.01 m\Omega$, f = 50 Hz, $V_1 = 220 \text{ V}$ Due to 10:1 step down transformer:

$$V_m = \frac{V_1}{10} = \frac{220}{10} = 22 \text{ V}$$

$$I_m = \frac{V_m}{R_f + R_L} = \frac{22}{0.01 \times 10^{-3} + 50} = 0.439999 \text{ } A = 439.999 \text{ } mA$$

DC Power Output:

$$P_{DC} = \frac{(V_{DC})^2}{R_L} = \frac{(V_m)^2}{(\pi)^2} \times \frac{1}{R_L}$$
$$= \frac{(22)^2}{(\pi)^2} \times \frac{1}{50} = 0.9807 \text{ W}$$

AC Power Input:

$$P_{AC} = \frac{(V_{rms})^2}{R_f + R_L} = \frac{(V_m)^2}{4 \times (R_f + R_L)}$$
$$= \frac{(22)^2}{4 \times (0.01 \times 10^{-3} + 50)}$$
$$= 2.4199 \text{ W}$$

Efficiency of half wave rectifier:

$$\% \ \eta_{HWR} = \frac{\text{DC Power Output}}{\text{AC Power Input}} \times 100$$

$$= \frac{P_{DC}}{P_{AC}} \times 100 = \frac{0.9807}{2.4199} \times 100 = 40.5248 \ \%$$

PIV rating of $D_1 = -V_m = -22 \text{ V}$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 2: Circuit Schematic for P_{DC} , P_{AC} , Efficiency, and PIV rating of D_1

Figure 3: Simulated Results for V_1 , V_m , Output voltage across resistor, Output voltage across diode and Current flowing through the circuit

Comparison of Theoretical and Simulated Values:-

Parameters	Theoretical Values	Simulated Values
Output Peak Voltage (V_m)	22 V	21.9884 V
Output Peak Current (I_m)	$439.999 \ mA$	$417.8764 \ mA$
DC Power $Output(P_{DC})$	0.9807 W	0.9797 W
AC Power $Output(P_{AC})$	2.4199 W	2.4174 W
Efficiency	40.5248 %	40.5284 %
PIV rating	-22 V	-21.9884 V

Table 1: Numerical 1

Numerical 2: Simulate a Full wave rectifier circuit with input Amplitude = 180 V peak, f = 50 Hz and $R_1 = 80 \Omega$ using LT spice. Select diode as IN4148. Use 10:1 step down center tap transformer. Plot the following using LTspice:

- a) Primary peak voltage
- b) Secondary peak voltage
- c) Output voltage across resistor
- d) Output voltage across diodes
- e) Current flowing through the circuit

Also, calculate the efficiency of the Full Wave Center tapped rectifier circuit.

Solution:

Figure 4: Circuit 2

Given: $R_L = 80 \ \Omega$, $R_f = 0.01 \ m\Omega$, $f = 50 \ Hz$, $V_1 = 180 \ V$

Due to 10:1 step down transformer:

$$V_m = \frac{V_1}{10} = \frac{180}{10} = 18 \text{ V}$$

$$I_m = \frac{V_m}{R_f + R_L} = \frac{18}{0.01 \times 10^{-3} + 80} = 224.999 mA$$

Voltage across diode:

$$V_D = V_{D1} = V_{D2} = -2 \times V_m = -36 \text{ V}$$

DC Power Output:

$$P_{DC} = (I_{DC})^2 \times R_L = \frac{(2I_m)^2}{(\pi)^2} \times R_L$$
$$= \frac{(2 \times 224.999 \times 10^{-3})^2}{(\pi)^2} \times 80 = 1.6399 \text{ W}$$

AC Power Input:

$$P_{AC} = (I_{rms})^2 \times (R_f + R_L) = \frac{(I_m)^2 \times (R_f + R_L)}{2}$$
$$= \frac{(224.999 \times 10^{-3})^2 \times (0.01 \times 10^{-3} + 80)}{2} = 2.0232 \text{ W}$$

Efficiency of full wave rectifier:

%
$$\eta_{HWR} = \frac{\text{DC Power Output}}{\text{AC Power Input}} \times 100$$

$$= \frac{P_{DC}}{P_{AC}} \times 100 = \frac{1.6599}{2.0232} \times 100 = 81.0569 \%$$

PIV rating of $D_1 = -2V_m = -36V$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 5: Circuit Schematic for P_{DC} , P_{AC} , Efficiency, and PIV rating of D_1

Figure 6: Simulated Results for V_1 , V_m , Output voltage across resistor, Output voltage across diode D_1 , Output voltage across diode D_2 , Current flowing through the diode D_1 , Current flowing through the diode D_2 and Current flowing through the circuit

Comparison of Theoretical and Simulated Values:-

Parameters	Theoretical Values	Simulated Values
Output Peak Voltage (V_m)	18 V	17.9937 V
Output Peak Current (I_m)	$224.999 \ mA$	$213.0713 \ mA$
DC Power Output(P_{DC})	1.6399 W	1.4719 W
AC Power Output(P_{AC})	2.0232 W	1.8159 W
Efficiency	81.0569 %	81.0562 %
PIV rating	-36 V	-35.0409 V

Table 2: Numerical 2
