FPGA Logic

Nachiket Kapre nachiket@uwaterloo.ca

Lecture Outline

- ▶ PLAs and LUTs Beginning of programmable logic fabrics
- ▶ LUT Clusters Need for packing multiple LUTs together

Properties of Circuits

- Expressed as collection of boolean gates connected by wires
 - Arithmetic operations typically not expressed at gate-level
- ► Flexibility in choices of gate + pattern of wire connections
- Reconvergent fanout
- Pipelining (periodic insertion of registers)

Early Configurable Logic

- ► PLAs (programmable logic arrays) provide some configurability
- ► Each crosspoint is programmable
 - Visualize a truth table overlayed on top of the AND crosspoints
- The number if pterms is often $<< 2^{inputs}$.
 - A *k*-LUT, in contrast can support 2^{*k*} pterms with no extra cost
- PLAs are cheaper/simpler starting points

Implement poly on a PLA

► Logic equation to map:

$$a \cdot x \cdot x + b \cdot x + c = a \cdot x + b \cdot x + c$$

- Problem has 4 Inputs, 3 Product Terms, One Output
- Map two expression to the AND plane
 - ightharpoonup and $0=a\cdot x\cdot x=a\cdot x$
 - ightharpoonup and $1=b \cdot x$
 - ► and2=c
- ► Map the final result to the OR plane
 - \triangleright y0=and0 + and1 + and2

Logic Elements

- Boolean table mapped to Configuration cells (SRAMs, or fuses).
- ightharpoonup k-input table has 2^k cells.
- Actel FPGAs have cheaper one-time use fuses.
- ► Tabula failed at using deeper configuration memories (circuit changes per cycle)
- Samsung/Stanford DRAM-based FPGAs (must worry about refresh)

Logic Elements (Pass gates)

7/17

Area/Delay Estimates

$$A_{LUT} = A_{Config} * 2^k + A_{Mux} * (2^k - 1) + A_{FF}$$

$$\approx 2^k * (A_{Config} + A_{Mux}) + A_{FF}$$

- \triangleright 2^k cells are configured as RAMs
- Need $2^k 1$ muxes as well
- ► An SRAM cell typically needs 6–8 transistors
- ▶ A pass-gate implementation of 2:1 Mux takes 2 transistors
- A DFF takes 16 transistors
- Depending on load, larger transistors needed
- $ightharpoonup T_{LUT} = k \cdot T_{Mux}$
 - k levels of multiplexer hierarchy

How to choose k?

- ightharpoonup If k is too small, a large gate must be split across multiple LUTs.
 - Increases area used by circuit
 - Adds delay due to composition of multiple LUTs
 - Interconnect is expensive, absorb wires where you can
- ▶ If k is too large, need to allocate silicon area for 2^k SRAM cells.
 - Logic synthesis may generate gates that are at most 7 or 8-input
 - Most gates may be 2-input (distribution varies with application, logic synthesis optimizations)
 - Underutilization of silicon area due to over-provisioning of LUT capacity

Mapping poly to LUTs for different goals

$$k=3 \rightarrow two LUTs$$

$$A_{k=3} = 2 \cdot A_{3LUT} = 2 \cdot (A_{Config} * 2^3 + A_{Mux} * (2^3 - 1) + A_{FF}) = 16 * A_{Config} + 14 * A_{Mux} + 2 * A_{FF}$$

$$T_{k=3} = 2 \cdot T_{3IIIT} = 2 \cdot 3 \cdot T_{Mux} = 6 \cdot T_{Mux}$$

$$k=4 \rightarrow \text{one LUT}$$

$$A_{k=4} = A_{4LUT} = A_{Config} * 2^4 + A_{Mux} * (2^4 - 1) + A_{FF} = 16 * A_{Config} + 15 * A_{Mux} + A_{FF}$$

$$T_{k=4} = T_{4LUT} = 4 \cdot T_{Mux}$$

$$A_{k=3} - A_{k=4} = A_{FF} - A_{Mux}$$

$$T_{k=3} - T_{k=4} = 2 \cdot T_{Mux}$$

Clustering FPGA LUTs into Logic Blocks

- ightharpoonup Exposing k LUTs creates k+1 connections between logic and routing.
 - ► Can we reduce this without sacrificing connectivity?
 - Real-world circuits exhibit locality anyway. Can we exploit this?
- ▶ Increasing k costs us FPGA area (2^k SRAM cells).
- Clusters are small collections of N LUTs with separate local interconnect
 - ▶ Pay $N \cdot 2_{small}^k$ area cost instead of 2_{large}^k .
 - Assume some inputs are common to the N k_{small} LUTs. Thus we do not need $N \cdot k_{small}$ IOs from cluster.
 - Intra-cluster wires as faster, and can be richer
 - ► CAD is faster as it can be split into global and local phases

Clustering FPGA LUTs into Logic Blocks

Clustering FPGA LUTs into Logic Blocks

Area Estimates

- $ightharpoonup A_{Cluster} = N * A_{kLUT} + A_{Green} + A_{Red}$
- $A_{Green} = N * k * (N k + 1) * A_{sw}$
 - Output needs to connect to any one input of k-LUT
 - LUT inputs are all equivalent, sufficient to provide connection to single LUT pin
- $A_{Red} = k * N * M * A_{sw}$
 - Internal routing block (Red) is a crossbar.
 - ▶ In the worse case. M = k * N
 - ▶ Typical value $M = \frac{k}{2} * (N+1)$
- $A_{sw} = A_{config} + A_{Mux}$

Putting it all together A_{Cluster}

 $A_{Cluster}$

$$= N * A_{kLUT} + A_{Green} + A_{Red}$$

$$= N \cdot (2^k \cdot A_{\textit{Config}} + 2^k \cdot A_{\textit{mux}} + A_{\textit{FF}}) + N \cdot k \cdot (N - k + 1) \cdot (A_{\textit{Config}} + A_{\textit{Mux}})$$

$$+ k \cdot N \cdot M \cdot (A_{Config} + A_{mux})$$

$$= N \cdot (2^k \cdot A_{Config} + 2^k \cdot A_{mux} + A_{FF}) + N \cdot k \cdot (N - k + 1) \cdot (A_{Config} + A_{Mux})$$

$$+ k \cdot N \cdot \frac{k}{2} \cdot (N+1) \cdot (A_{Config} + A_{mux})$$

$$= N \cdot (2^k + k \cdot (N - k + 1) + \frac{(N+1) \cdot k^2}{2}) \cdot A_{Config}$$

$$+ N \cdot (2^k + k \cdot (N - k + 1) + \frac{(N+1) \cdot k^2}{2}) \cdot A_{mux} + N \cdot A_{FF}$$

- Area of the cluster scales as a function of k, N and M
- Substituting terms from previous slides, we get a result that grows as $O(N^2 \cdot k^2)$

External Interconnect (Peek)

- ▶ Area of Grey region will be covered in detail in the Interconnect lecture.
- $A_{Gray} = M * W * F_{cin} * A_{sw} + N * W * F_{cout} * A_{sw}$
- \triangleright External routing block (cbox) is partially connected with F_{cin} and F_{cout} parameters
- ▶ *W* is the global channel width of the FPGA *i.e.* number of wires in the global interconnect channel beside the cluster

How to choose cluster size N?

- ▶ If *N* is too small, we do not offload sufficient wiring costs in the global interconnect.
 - If connectivity between cluster to routing tracks is poor, we will waste LUTs that are unreachable
- \triangleright If N is too large, the intra-cluster routing area can become prohibitively expensive
- ▶ How do we choose *N* to balance these effects?

Class Wrapup

- Underling FPGA resources can be modeled using a simple analytical approach
- ► Heuristic/Experimental technique to determine best balance between *N* and *k* parameters of the resource model
- ► Example of engineering tradeoff → more compute, or more interconnect?