

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчёт по лабораторной работе №1 по курсу "Моделирование"

Тема Решение задачи Коши методами Пикара, Эйлера и Рунге-Кутта

Студент Ковалец К. Э.

Группа ИУ7-63Б

Преподаватель Градов В. М.

1 Задание

1.1 Тема работы

Программная реализация приближенного аналитического метода и численных алгоритмов первого и второго порядков точности при решении задачи Коши для ОДУ.

1.2 Цель работы

Получение навыков решения задачи Коши для ОДУ методами Пикара и явными методами первого порядка точности (Эйлера) и второго порядка точности (Рунге-Кутта).

1.3 Исходные данные

ОДУ, не имеющее аналитического решения

$$\begin{cases} u'(x) = x^2 + u^2 \\ u(0) = 0 \end{cases}$$
 (1.1)

1.4 Результат работы программы

- Таблица, содержащая значения аргумента с заданным шагом в интервале $[0, x_{max}]$ и результаты расчета функции u(x) в приближениях Пикара (от 1-го до 4-го), а также численными методами. Границу интервала x_{max} выбирать максимально возможной из условия, чтобы численные методы обеспечивали точность вычисления решения уравнения u(x) до второго знака после запятой.
- График функции в диапазоне $[-x_{max}, x_{max}]$.

2 Теоретические сведение

Имеем ОДУ, у которого отсутствует аналитическое решение:

$$\begin{cases} u'(x) = f(x, u) \\ u(\xi) = \eta \end{cases}$$
 (2.1)

Для решения данного ОДУ были использованы 3 алгоритма.

2.1 Метод Пикара

Имеем:

$$u(x) = \eta + \int_{\xi}^{x} f(t, u(t)) dt$$
(2.2)

Строим ряд функций:

$$y^{(s)} = \eta + \int_{\xi}^{x} f(t, y^{(s-1)}(t)) dt, \qquad y^{(0)} = \eta$$
 (2.3)

Построим 4 приближения для уравнения (2.2):

$$y^{(1)}(x) = 0 + \int_0^x t^2 dt = \frac{x^3}{3}$$
 (2.4)

$$y^{(2)}(x) = 0 + \int_0^x (t^2 + \left(\frac{t^3}{3}\right)^2) dt = \frac{x^3}{3} + \frac{x^7}{63}$$
 (2.5)

$$y^{(3)}(x) = 0 + \int_0^x \left(t^2 + \left(\frac{t^3}{3} + \frac{t^7}{63}\right)^2\right) dt = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}$$
 (2.6)

$$y^{(4)}(x) = 0 + \int_0^x \left(t^2 + \left(\frac{t^3}{3} + \frac{t^7}{63} + \frac{2t^{11}}{2079} + \frac{t^{15}}{59535}\right)^2\right) dt = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{13x^{15}}{218295} + \frac{82x^{19}}{37328445} + \frac{662x^{23}}{10438212015} + \frac{4x^{27}}{3341878155} + \frac{x^{31}}{109876903975}$$
(2.7)

2.2 Метод Эйлера

$$y^{(n+1)}(x) = y^{(n)}(x) + h \cdot f(x_n, y^{(n)})$$
(2.8)

Порядок точности: O(h).

2.3 Метод Рунге-Кутта

$$y^{n+1}(x) = y^n(x) + h((1-\alpha)R_1 + \alpha R_2)$$
(2.9)

где
$$R1=f(x_n,y^n),\,R2=f(x_n+rac{h}{2lpha},y^n+rac{h}{2lpha}R_1),\,lpha=rac{1}{2}$$
 или 1

Порядок точности: $O(h^2)$.

3 Исходный код алгоритмов

Листинг 3.1 – Исходный код алгоритмов

```
import matplotlib.pyplot as plt
 from color import *
 MAX_X = 1
6 \mid STEP = 1e-4
9 def f(x, y):
      return pow(x, 2) + pow(y, 2)
11
12
 def PicarApprox1(x):
      return pow(x, 3) / 3
14
15
  def PicarApprox2(x):
17
      return PicarApprox1(x) + \
18
           pow(x, 7) / 63
20
21
  def PicarApprox3(x):
      return PicarApprox2(x)
23
           2 * pow(x, 11) / 2079 + 
24
               pow(x, 15) / 59535
26
27
  def PicarApprox4(x):
      return PicarApprox2(x)
29
               * pow(x, 11) / 2079
30
           13 * pow(x, 15) / 218295
31
              * pow(x, 19) / 37328445
32
           662 * pow(x, 23) / 10438212015 + \
33
               * pow(x, 27) / 3341878155
                    pow(x, 31) / 109876903975
35
36
37
  def Picar(x_max, h, PicarApprox):
38
      result = []
39
      x, y = 0, 0
40
      while abs(x) < abs(x_max):</pre>
42
          result.append(y)
          x += h
44
```

```
y = PicarApprox(x)
45
46
      return result
48
49
  def Euler(x_max, h):
      result = []
51
      x, y = 0, 0
52
53
      while abs(x) < abs(x_max):
54
           result.append(y)
55
           y = y + h * f(x, y)
56
           x += h
57
58
      return result
59
60
61
  def RungeKutta(x_max, h):
      result = []
63
      coeff = h / 2
64
      x, y = 0, 0
66
      while abs(x) < abs(x_max):</pre>
67
           result.append(y)
           y = y + h * f(x + coeff, y + coeff * f(x, y))
69
           x += h
70
71
      return result
72
73
74
  def generate_x(x_max, step):
75
      result = []
76
      x = 0
77
78
      while abs(x) < abs(x_max):</pre>
79
           result.append(round(x, 3))
80
           x += step
81
82
      return result
83
84
85
  def print_res_table(x_arr, picar_approx1_arr, picar_approx2_arr,
                        picar_approx3_arr, picar_approx4_arr,
87
                        euler_arr, runge_kutta):
88
89
      print("\n%s X | PicarApprox1 | PicarApprox2 | PicarApprox3 |
          PicarApprox4 | Euler | RungeKutta \n"
```

```
91
                           -----%s"
       %(PURPLE, BASE))
92
93
94
      for i in range(len(x_arr)):
95
           if i % 500 == 0:
96
               print("%5.2f %s|%s%12.5f %s|%s%12.5f %s|%s%12.5f %s|%s%12.5f
97
                    %s|%s%12.5f %s|%s%12.5f " \
                                         PURPLE, BASE,
               %(x_arr[i],
98
                   picar_approx1_arr[i], PURPLE, BASE,
90
                   picar_approx2_arr[i], PURPLE, BASE,
100
                   picar_approx3_arr[i], PURPLE, BASE,
101
                   picar_approx4_arr[i], PURPLE, BASE,
102
                    euler_arr[i],
                                           PURPLE, BASE,
103
                   runge_kutta[i]
104
               ))
105
106
       print()
107
108
109
  def build_graph(x_arr, picar_approx1_arr, picar_approx2_arr,
110
                   picar_approx3_arr, picar_approx4_arr,
111
                   euler_arr, runge_kutta):
112
113
       fig1 = plt.figure(figsize = (10, 7))
114
       plot = fig1.add_subplot()
115
       plot.plot(x_arr, picar_approx1_arr,
                                              label = "PicarApprox1")
116
       plot.plot(x_arr, picar_approx2_arr,
                                              label = "PicarApprox2")
117
       plot.plot(x_arr, picar_approx3_arr,
                                              label = "PicarApprox3")
118
       plot.plot(x_arr, picar_approx4_arr,
                                              label = "PicarApprox4")
119
                                              label = "Euler")
      plot.plot(x_arr, euler_arr,
120
                                              label = "RungeKutta")
       plot.plot(x_arr, runge_kutta,
121
122
      plt.legend()
123
      plt.grid()
124
      plt.title("Сравнение алгоритмом")
125
126
      plt.show()
127
128
129
  def main():
130
131
                          = generate_x(MAX_X, STEP)
       x arr
132
       picar_approx1_arr = Picar(MAX_X, STEP, PicarApprox1)
133
       picar_approx2_arr = Picar(MAX_X, STEP, PicarApprox2)
      picar_approx3_arr = Picar(MAX_X, STEP, PicarApprox3)
135
       picar_approx4_arr = Picar(MAX_X, STEP, PicarApprox4)
136
```

```
= Euler (MAX_X, STEP)
       euler_arr
137
       runge_kutta
                          = RungeKutta(MAX_X, STEP)
138
139
       print_res_table(x_arr, picar_approx1_arr, picar_approx2_arr,
140
                        picar_approx3_arr, picar_approx4_arr,
141
                        euler_arr, runge_kutta)
142
143
       x_arr = generate_x(-MAX_X, -STEP)
144
       x_arr.reverse()
145
       x_arr.extend(generate_x(MAX_X, STEP))
146
147
       picar_approx1_arr = Picar(-MAX_X, -STEP, PicarApprox1)
148
       picar_approx1_arr.reverse()
149
       picar_approx1_arr.extend(Picar(MAX_X, STEP, PicarApprox1))
150
151
       picar_approx2_arr = Picar(-MAX_X, -STEP, PicarApprox2)
152
       picar_approx2_arr.reverse()
153
       picar_approx2_arr.extend(Picar(MAX_X, STEP, PicarApprox2))
155
       picar_approx3_arr = Picar(-MAX_X, -STEP, PicarApprox3)
156
       picar_approx3_arr.reverse()
       picar_approx3_arr.extend(Picar(MAX_X, STEP, PicarApprox3))
158
159
       picar_approx4_arr = Picar(-MAX_X, -STEP, PicarApprox4)
160
       picar_approx4_arr.reverse()
161
       picar_approx4_arr.extend(Picar(MAX_X, STEP, PicarApprox4))
162
163
       euler_arr = Euler(-MAX_X, -STEP)
164
       euler_arr.reverse()
165
       euler_arr.extend(Euler(MAX_X, STEP))
167
       runge_kutta = RungeKutta(-MAX_X, -STEP)
168
       runge_kutta.reverse()
169
       runge_kutta.extend(RungeKutta(MAX_X, STEP))
170
171
       build_graph(x_arr, picar_approx1_arr, picar_approx2_arr,
172
                    picar_approx3_arr, picar_approx4_arr,
173
                    euler_arr, runge_kutta)
174
175
176
  if __name__ == "__main__":
177
       main()
178
```

4 Результаты работы программы

X	PicarApprox1	PicarApprox2	PicarApprox3	PicarApprox4	Euler	RungeKutta
0.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.05	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004
0.10	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033
0.15	0.00112	0.00113	0.00113	0.00113	0.00112	0.00113
0.20	0.00267	0.00267	0.00267	0.00267	0.00266	0.00267
0.25	0.00521	0.00521	0.00521	0.00521	0.00521	0.00521
0.30	0.00900	0.00900	0.00900	0.00900	0.00900	0.00900
0.35	0.01429	0.01430	0.01430	0.01430	0.01430	0.01430
0.40	0.02133	0.02136	0.02136	0.02136	0.02135	0.02136
0.45	0.03037	0.03043	0.03043	0.03043	0.03042	0.03043
0.50	0.04167	0.04179	0.04179	0.04179	0.04178	0.04179
0.55	0.05546	0.05570	0.05570	0.05570	0.05569	0.05570
0.60	0.07200	0.07244	0.07245	0.07245	0.07243	0.07245
0.65	0.09154	0.09232	0.09233	0.09233	0.09231	0.09233
0.70	0.11433	0.11564	0.11566	0.11566	0.11563	0.11566
0.75	0.14062	0.14274	0.14278	0.14279	0.14276	0.14279
0.80	0.17067	0.17400	0.17408	0.17408	0.17405	0.17408
0.85	0.20471	0.20980	0.20996	0.20996	0.20992	0.20996
0.90	0.24300	0.25059	0.25090	0.25091	0.25086	0.25091
0.95	0.28579	0.29688	0.29743	0.29745	0.29740	0.29745
1.00	0.33333	0.34921	0.35019	0.35023	0.35017	0.35023

Рисунок 4.1 – Демонстрация работы программы

Рисунок 4.2 – График функции

5 Ответы на контрольные вопросы

5.1 Вопрос 1

5.1.1 Задание

Укажите интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара, т.е. для каждого приближения указать свои границы применимости. Точность результата оценивать до второй цифры после запятой. Объяснить свой ответ.

5.1.2 Ответ

Для того, чтобы указать интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений проанализируем полученные значения. Так как нам дано начальное приближение, то левой границей будет 0. Для определения правой границы границы мы будем анализировать полученные решения методом Пикара для конкретного приближения и сравнивать со значениями более высоких порядков приближения и с результатами численных методов при определенном шаге.

- Для 1-го приближения искомым интервалом будет [0, 0.89].
- Для 2-го приближения искомым интервалом будет [0, 1.12].
- Для 3-го приближения искомым интервалом будет [0, 1.34].
- Для 4-го приближения искомым интервалом будет [0, 1.4].

5.2 Вопрос 2

5.2.1 Задание

Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах.

5.2.2 Ответ

В численных методах правильность полученного результата, при фикси рованном значении аргумента, доказывается путем уменьшения шага. Правильно полученный результат — это когда при уменьшение шага значение аргумента незна чительно (или вообще) не меняется.

5.3 Вопрос 3

5.3.1 Задание

Каково значение решения уравнения в точке x=2, т.е. привести значение u(2).

5.3.2 Ответ

Примерно 317.490

5.4 Вопрос 4

5.4.1 Задание

Дайте оценку точки разрыва решения уравнения.

5.5 Вопрос 5

5.5.1 Задание

Покажите, что метод Пикара сходится к точному аналитическому решению уравнения

$$\begin{cases} u'(x) = x^2 + u \\ u(0) = 0 \end{cases}$$

$$(5.1)$$