Contents

1	Scie	entific, Technical, and Management Section	1
	1.1	Executive Summary	1
	1.2		1
	1.3		2
		1.3.1 The Primordial Universe and Cosmic Inflation	2
		C	4
		1.3.3 Neutrino Mass	6
			6
	1.4		7
		1.4.1 Foregrounds	8
		1.4.2 Systematic Errors	9
	1.5	The CMB Probe in Context	0
		1.5.1 Current and Forthcoming Sub-Orbital Efforts	0
		1.5.2 Proposed Efforts: LiteBIRD, COrE, and CMB-S4	1
		1.5.3 Why Study a CMB Probe?	1
		1.5.4 Does the CMB Probe Fit Within the Cost Window?	2
		1.5.5 This Study in the Context of Previous Mission Studies	2
	1.6	State of Technologies	3
	1.7	Mission Study and Management Plan	3
		1.7.1 Study Plan	3
		1.7.2 Study Team	5
2	Cur	riculum Vitae 2	7
3	Sum	nmary of Work Effort 3	6
4	Cur	rent and Pending Support 3	6
5	Lett	ters of Support 50	0
6	Bud	lget Details - Narrative 5-	4
	6.1	Team, and Work Effort	4
		6.1.1 Funded Team Members	4
		6.1.2 Non-Funded Team Members	4
	6.2	Costing Principles	4
	6.3	University of Minnesota Budget	4
		6.3.1 Direct Labor	4
		6.3.2 Supplies	4
			4
		6.3.3 Travel	4
		11	
		6.3.3 Travel	4

1 Scientific, Technical, and Management Section

1.1 Executive Summary

We are proposing to study a probe-scale mission to extract the wealth of physical, cosmological, and astrophysical information contained in the spectrum and polarization of the cosmic microwave background (CMB). The CMB Probe will search for the signature of inflationary gravity waves from the big bang and thus probe quantum gravity. It will constrain the effective number of light particle species, with precision only available to CMB measurements. With its full sky coverage, it will measure the sum of the neutrino masses doubling the significance of detection relative to experiments that measure only smaller portions of the sky. It will probe the nature of dark matter and the existence of new forms of matter at the early universe. It will give new insights on the star-formation history across cosmic times, and it will provide information about the processes that control structure formation. With high sensitivity, access to the entire sky, and the ability to implement broad frequency coverage and exquisite control of systematic effects the Probe is best poised to realize the fidelity of measurements necessary to extract these science goals.

The last US CMB community's consensus assessment of the case for, and design of a space mission took place 10 years from the time this study will conclude. Since then theoretical considerations, available data from *Planck* and sub-orbital measurements, technology advances, and plans for new sub-orbital experiments have changed the landscape considerably. We propose to provide the 2020 decadal panel with a fresh expert assessment.

The scope of science we envision for the Probe is achievable within the approximate technical envelope of our 2010 baseline mission, which was near \$900M. This scope of science is also targeted by a recently submitted proposal for a European-based mission that has a similar cost. Both of these missions have a broader science reach than a cheaper Japanese-led mission, which is near the \$400M limit. We thus assess that the CMB mission is in the Probe cost window.

The mission study is led by Steering and Executive Committees made up of scientists who built COBE, WMAP, *Planck*, and the leading sub-orbital experiments in the world; processed, analyzed, and simulated data from these experiments; and who interpreted the results and put them in a physics and cosmology context. It is open to all member of the CMB community, and will represent hundreds of person years of accumulated knowledge, expertise, and experience.

1.2 Observables and Baselines

Thomson scattering at the surface of last scattering is the source of the polarization of the CMB. It is useful to decompose the polarization field to two modes that are independent over the full sky, E and B modes. Together with the pattern of temperature anisotropy T, the CMB thus gives three auto- and three cross-spectra. The *Planck* satellite and larger aperture ground-based instruments measured the T spectrum to cosmic variance limit for $\ell \leq 1500$. Much information remains encoded in the E and B spectra, whose full exploration has just begun [7, 8, 9, 10].

The best measurements of the CMB spectrum – made by COBE/FIRAS approximately 25 years ago – show that the average CMB spectrum is consistent with that of a blackbody to an accuracy of 5 parts in 10^5 [3, 4]. Distortions in this spectrum encode a wealth of new information. The distortion shapes are commonly denoted as μ - and y-types [5, 6]. The μ -distortion arises from energy release in the early universe and can only be produced in the hot and dense environment present at high redshifts. This makes μ -distortions a novel messenger from a redshift range $z \ge 5 \times 10^4$. The y distortions are caused by energy exchange between CMB photons and free electrons

through inverse Compton scattering. These originate at lower redshifts and are sensitive to the evolution of the large scale structure of the universe.

Quantitative predictions in this proposal are based on two current-decade space missions, EPIC-IM and Super-PIXIE [1, 2]. EPIC-IM was presented to the 2010 decadal panel as a candidate CMB imaging polarization mission. It was based on a 1.4 m effective aperture telescope and 11,094 bolometric transition edge sensors. PIXIE is a proposed Explorer-scale mission focused on a measurement of the spectrum and polarization of the CMB on large angular scales. Super-PIXIE is envisioned to be a scaled up, more capable version of PIXIE. It consists of 4 spectrometers, each operating between 30 and 6000 GHz with $400 \sim 15$ GHz-wide bands. Improvements in technology by the next decade will enable the design of a mission that is more capable compared to EPIC-IM and Super-PIXIE. Therefore, all quantitative predictions presented in this proposal, which are based on EPIC-IM and Super-PIXIE, represent *minimum* capabilities for the CMB Probe.

1.3 Science Objectives

1.3.1 The Primordial Universe and Cosmic Inflation

The observed temperature and E-mode polarization of the CMB imply the existence of primordial density perturbations that were generated long before recombination, providing a remarkable observational link to the dynamics of the universe near the big bang. In the context of general relativity, these primordial density perturbations can be generated causally either during a contracting phase followed by a bounce or during inflation, a primordial era of accelerated expansion. Unlike bouncing cosmologies, the simplest models of inflation predict as yet unobserved primordial gravitational waves with a nearly scale-invariant spectrum, sourced directly by quantum fluctuations of the tensor component of the metric. These gravitational waves leave a distinct B-mode imprint on the polarization of the CMB. Any detection of primordial B-mode polarization, whether generated by the primordial gravitational waves of inflation [16, 17] or any other source of vector or tensor perturbations, such as primordial magnetic fields [18, 19, 20, 21] and cosmic strings [22, 23, 24? would reveal completely new information about the early Universe. The results would either provide additional confirmation for current models or could overturn them. A detection would also have implications for fundamental physics by providing evidence for a new energy scale near the GUT scale. For example, in single-field inflation the potential energy density V of the inflaton is related to the tensor-to-scalar ratio r by $V^{1/4} = 3.7 \times 10^{16} \ r^{1/4} \ \mathrm{GeV}$.

To test inflation, the largest scales $\ell \leq 10$ are particularly important because they reveal the presence of B-mode correlations on scales that were super-horizon at the time of recombination [25], and because on large scales the signal is strongest relative to the lensing B mode and instrumental noise. In its recent report New Worlds New Horizons (NWNH), the decadal survey committee strongly endorsed searches for B modes from inflation saying, "The convincing detection of B-mode polarization in the CMB produced in the epoch of reionization would represent a watershed discovery." [26]. Figure 1 shows current CMB data, B modes from vacuum fluctuations of the metric during an inflationary era for two representative values of r, forecasts for the determination of the CMB spectra for EPIC-IM as well as the lensing residual and noise. No sub-orbital platform has yet produced B-mode measurements at $\ell < 40$, and a satellite is by far the most suitable platform for the all-sky observations necessary to reach the lowest modes, $\ell < 20$.

In slow-roll inflation there are only two classes of models that naturally explain the measured value of the spectral index $n_{\rm s}$. One is the set of potentials $V(\phi) \propto \phi^p$, which contains many of the canonical inflation models. This set is already under significant observational pressure. If the error bars on the spectral index tighten by a factor of about 2, and the 95% C.L. upper limit on r

Figure 1: Predicted determination of the CMB power spectra for EPIC-IM (grey boxes) after foreground removal for r=0 (left) and after foreground removal and delensing for r=0.001 (right) overlaid on theoretical predictions (solid lines) and including Planck measurements of the temperature and E modes (dark blue) and of several ground-based measurements of the lensing B modes. The tensor B-mode predictions (blue) are shown for two representative values of the tensor-to-scalar ratio: r=0.001 and r=0.05.

is pushed to even ~ 0.01 , all such models would be ruled out. The most recent constraint on the tensor-to-scalar ratio is r < 0.07 (95%); see Figure 2 [27].

Figure 2: Current 1 and 2σ limits on r and $n_{\rm s}$ (blue) [27] and forecasted constraints for a fiducial model with r=0.001 for EPIC-IM. Also shown are predictions for the models of the inflaton potential discussed in the text: Chaotic inflation (blue lines); Higgs and R^2 (large and small dots, respectively); quartic hilltop (green band); and a sub-class of α -attractor models [28]

The other class of models includes Starobinsky and Higgs inflation, which both have $r \sim 0.003$. A future mission capable of reaching $\sigma_r \sim \mathcal{O}(10^{-4})$ would provide significant constraints on virtually all models that naturally explain $n_{\rm s}$. For a simple foreground model with spatially uniform spectral dependence assuming synchrotron emission that is well described by a power law and dust emission well characterized by a two-component model, EPIC-IM would achieve $\sigma(r) \sim 1.3 \times 10^{-4}$ assuming r = 0.001 and delensing with data from EPIC-IM itself.

A detection of B modes consistent with a primordial spectrum of vacuum fluctuations would be the first observation of a phenomenon directly related to quantum gravity. In addition, any detection with a next generation satellite would be evidence for *large-field* inflation [29], in which a smooth potential that supports inflation extends over a distance in field space $\Delta \phi \gtrsim M_{\rm P}$. Studies of inflation in the context of quantum gravity give a generic expectation $\Delta \phi \lesssim M_{\rm P}$ [30, 31, 32, 33], although there are some mechanisms to realize large-field inflation [34, 35, 36, 37]. A detection of r would therefore provide strong motivation to better understand how large-field inflation can be naturally incorporated into quantum gravity.

Inflation predicts a B-mode spectrum with the shape shown in Figure 1, but there may be additional sources of B-mode polarization either during or after inflation. To be confident of the implications of a detection, the shape and Gaussianity of the B mode spectrum must be characterized. The vast majority of inflation scenarios predict an extremely Gaussian and nearly scale-invariant spectrum for gravitational waves. A target constraint of $\sigma(n_t) < 1$ at r = 0.01, easily achievable with a Probe mission, would significantly constrain non-vacuum inflationary sources [41, 42].

Deeper mapping of E-mode polarization will also test inflationary models. Large scale E modes will provide new tests of isotropy, a prediction of most models of inflation; for example, observations with a CMB Probe could reject at 99% confidence models designed to explain the alignment of low multipoles in the temperature maps [43]. Together with continued improvements at high ℓ from the ground, these modes will also improve constraints on the scalar spectral index, its changes with scale, and on primordial non-Gaussianity by factors of about two.

Figure 3: Anticipated y and μ spectral distortions (solid), the signature of resonant recombination lines (solid), and anticipated foreground signal levels relevant for spectral distortion measurements (grey bands). The simplest extension of a proposed Explorer class mission (Probe, dash grey) gives approximately 10 times the Explorer sensitivity (PIXIE). A better optimized Probe may give detections of all anticipated distortions.

Spectral distortion measurements give additional tests of inflation. The dissipation of small-scale perturbations through Silk-damping leads to μ -distortions [44, 45, 46, 47]. In Λ CDM the distortions are predicted at a level of $\mu=(2.0\pm0.14)\times10^{-8}$, a level that is readily accessible to a Probe class mission, see Fig. 3 [47, 48]. A Probe may also give the sensitivity to detect the signature of recombination radiation imprinted by recombination of hydrogen and helium at redshift $z\simeq10^3-10^4$; see Fig. 3 [49, 50]. The detailed physics is sensitive to the values of $n_{\rm s}$, which is a direct probe of inflation.

1.3.2 Light Relics and Dark Matter

After inflation, the universe was reheated to temperatures of at least 10 MeV and perhaps as high as 10^{10} GeV. At these high temperatures, even very weakly interacting or very massive particles, such as those arising in extensions of the Standard model of particle physics, can be produced in large abundances [51, 52]. As the universe expands and cools, the particles fall out of equilibrium, leaving observable signatures in the CMB power spectra. Through these effects the CMB is a sensitive probe of neutrino and of other particles' properties.

One particularly compelling target is the effective number of light relic particle species $N_{\rm eff}$, also called the effective number of neutrinos. The canonical value with three neutrino families is $N_{\rm eff}=3.046$. Additional light particles contribute a change to $N_{\rm eff}$ of $\Delta N_{\rm eff}\geq 0.027\,g$ where $g\geq 1$ is the number of degrees of freedom of the new particle [53, 54]. This defines a target of $\sigma(N_{\rm eff})<0.027$ for future CMB observations. Either a limit or detection of $\Delta N_{\rm eff}$ at this level would provide powerful insights into the basic constituents of matter.

Forecasts for $N_{\rm eff}$ are shown in Figure 4. The two most important parameters for improving constraints are the fraction of sky observed $f_{\rm sky}$ and the noise. Achieving both larger $f_{\rm sky}$ and lower

Figure 4: $N_{\rm eff}$ as a function of noise and sky fraction (left) and Neutrino mass constraints as a function of uncertainties in measurement of τ , noise, and sky fraction of $f_{\rm sky}=0.7$. The resolution assumed is 5'. Vertical lines denote the expected performance of EPIC-IM. The blue dashed line is the current *Planck* limit; the grey dashed line is the limit from cosmic variance measurement of τ . All forecasts assume internal delensing of the T and E-maps [55], including residual non-Gaussian covariances. The $\sum m_{\nu}$ forecasts include DESI BAO.

noise are strengths of the CMB Probe compared to other platforms. Our baseline mission nearly reaches the target constraint with g=1, already exceeding constraints from other astrophysical probes and planned CMB observations. A newly designed mission is could reach $\sigma(N_{\rm eff}) < 0.027$ and provide a window back to the time of reheating.

Many light relics of the early universe are not stable. They decay, leaving faint evidence of their past existence on other tracers. The relics with sufficiently long lifetime to survive few minutes, past the epoch of light element synthesis, leave a signature on the helium fraction Y_p . If they decay by the time of recombination, their existence through this period is best measured through the ratio of $N_{\rm eff}$ to Y_p . The Probe's cosmic variance limited determination of the E-mode power spectra will improve current limits for these quantities by a factor of five thus eliminating sub-MeV mass thermal relics. Spectrum distortion measurements give additional constraints on the lifetime and abundance of such relics [56, 57, 58, 59]. A future Probe's μ -distortion constraint gives a two orders of magnitude improvement on the abundance and lifetime of early universe relics [60, 61] compared to current constraints derived from measurements of light element abundances [62, 63].

Cosmological measurements have already confirmed the existence of one relic that lies beyond the Standard Model: dark matter. For a conventional WIMP candidate, the CMB places very stringent constraints on its properties through the signature of its annihilation on the T and E spectra [64, 65, 66]. Planck currently excludes WIMPs with mass $m_{\rm dm} < 16$ GeV and a future CMB mission could reach $m_{\rm dm} < 45$ GeV for $f_{\rm sky} = 0.8$. The CMB provides the most stringent constraints on the dark matter annihilation cross section for dark matter in this mass range. The CMB is complimentary to direct detection experiments which probe the scattering cross-section of dark matter with Standard model particles.

A particle-independent approach is to constrain dark matter interactions that would affect the evolution of the effective dark matter fluid and its interactions with baryons or photons. The simplest example is to constrain the baryon-dark matter cross section through its effective coupling of the two fluids [67]. These couplings affect the evolution of fluctuations and ultimately the T and E spectra. The current limits of $\sigma \gtrsim 10^{-31}-10^{-34}\,\mathrm{cm}^2\times(m_{\mathrm{dm}}/\mathrm{MeV})$ can be competitive

with direct detection for sub-GeV masses. More exotic dark sectors that include long-range forces can produce an even richer phenomenology in the CMB and in the large-scale structure without necessarily producing an associated signature in direct detection experiments or indirect searches (e.g. [68, 69, 70]).

Interactions of dark matter with standard model particles can also be constrained through measurements of spectral distortions [71]. Current constraints from FIRAS are most sensitive to small dark matter mass, $m_{\rm X} \lesssim 0.2\,{\rm MeV}$, but these could be extended to $m_{\rm X} \lesssim 1\,{\rm GeV}$ with a Probe-class mission, testing DM interaction down to cross-sections $\sigma \simeq 10^{-39}-10^{-35}\,{\rm cm}^2$ [71]. This provides new constraints on the low mass end, $m_{\rm X} \lesssim 10\,{\rm MeV}$ and improve existing limits [72, 73] by up to a factor of $\simeq 50$. Distortion measurements furthermore open a new avenue for testing dark matter-proton interactions [71].

A host of other physical phenomena including the existence and properties of axions, primordial magnetic fields, and superconducting strings, leave signatures on the spectrum of the CMB and can therefore be constrained by the sensitive measurements of a future Probe [e.g., 74, 75, 76, 77, 78].

1.3.3 Neutrino Mass

One of the last unknowns of the Standard model of particle physics is the absolute mass scale of the neutrinos. Cosmology presents a unique opportunity to measure the sum of neutrino masses $\sum m_{\nu}$ through the suppression of the growth of structures in the universe on small scales. The sensitivity to $\sum m_{\nu}$ from suppression of power is limited by our knowledge of the primordial amplitude of fluctuations A_s , which is strongly degenerate with the optical depth τ . The current limit on τ from Planck of $\sigma(\tau)=0.009$ [79] limits $\sigma(\sum m_{\nu})\gtrsim 25$ meV. For casts for an internal CMB measurement of $\sum m_{\nu}$ via CMB lensing [80] are shown Figure 4 but the conclusion is the same for any proposed cosmological probe. Therefore, a cosmological detection of the minimum value expected from particle physics $\sum m_{\nu}=58$ meV at more than 2σ will require a better measurement of τ . The best constraints on τ come from E modes with $\ell<20$ which require measurements over the largest angular scales. To date, the only proven method for such a measurement is from space. The CMB Probe will reach the cosmic variance limit of $\tau\sim0.002$ and will therefore reach $\sigma(\sum m_{\nu})<15$ meV when combined with DESI's measurements of baryon acoustic oscillations [81]. A detection of $\sum m_{\nu}$ at this level is not possible with any other existing survey.

1.3.4 Cosmological structure formation

Understanding the evolution of cosmological structures from small density perturbations through the formation of the first stars to present day galaxies and clusters is a key goal of cosmology [82]. Cosmological reionization, the transition of the universe from dominated by neutral to ionized hydrogen, is a cornerstone of this evolution because it encodes information about star formation history and the physical processes that formed galaxies of various luminosities and masses. But when did the epoch of reionization start? How long did it last? Are early galaxies enough to reionize the entire universe or is another source required?

Measurements of the CMB E-mode power spectrum over large angular scales are sensitive to the optical depth to reionization τ , a key parameter for all reionization models that attempt to answer these questions. The Planck team reported recently a value of $\tau=0.055\pm0.009$ [79, 83]. The level is lower than previous estimates and reduces the tension between CMB-based analyses and constraints from other astrophysical sources. The CMB Probe's cosmic variance limited measurement of E-mode polarization will improve the 1σ error by a factor of 4.5 to reach a cosmic variance limited measurement of τ , thus setting stringent constraints on models of the

reionization epoch.

The anisotropy in the cosmic infrared background (CIB) produced by dusty star-forming galaxies in a wide redshift range, are an excellent probe of both the history of star formation and the link between galaxies and dark matter across cosmic time. The *Planck* collaboration derived values of the star formation rate that, at redshifts $z\sim 3$, are three times larger than constraints from number counts measurements ([84, 85, 86]). By measuring CIB anisotropy with 100 times higher signal-to-noise ratio the CMB Probe will shed light on this intriguing discrepancy. Specifically, it will constrain the star formation rate with one tenth of *Planck*'s uncertainty.

A key parameter in simulations of the angular power spectrum of the CIB is $M_{\rm eff}$, the galaxy halo mass that is most efficient in producing star formation activity. Comparing measurements of the power spectrum to simulations constrains this parameter, which informs structure formation models. Current models and measurements find $M_{\rm eff} \sim 10^{12}$ solar masses with about 10% uncertainty. The CMB Probe will constrain this parameter at the percent level.

Reionization of the universe and the onset of structure formation inject energy into the sea of CMB photons. This injection is detectable through a distinct spectral distortion. This is the largest expected distortion – marked 'y Groups/Clusters' in Figure 3 – and will be clearly detected by the CMB Probe. A detection will give information about the total energy output of the first stars, AGNs, and galaxy clusters, an important parameter in structure formation models.

Group-size clusters that have masses $M \simeq 10^{13}\,M_\odot$ contribute significantly to the signal. With temperature $kT_{\rm e} \simeq 1\,{\rm keV}$ these are sufficiently hot to create a relativistic temperature correction to the large y-distortion. This relativistic correction, denoted 'y relativistic' in Figure 3, will also be detected with high signal-to-noise ratio by the CMB Probe, and will be used to constrain the currently uncertain feedback mechanisms used in hydrodynamical simulations of cosmic structure formation [87].

The CMB spectrum varies spatially across the sky. One source of such anisotropic distortion is due to the spatial distribution clusters of galaxies and has already been measured by Planck [88]. A combination of precise CMB imaging and spectroscopic measurements will allow observing the relativistic temperature correction of individual SZ clusters [89, 90, 91], which will calibrate cluster scaling relations and inform our knowledge of the dynamical state of the cluster atmosphere.

Resonant scattering of the CMB photons during and post last scattering leads to spectral-spatial signals that can be used to constrain the abundance of metals in the dark ages and therefore the make-up of the first, and subsequent generations of stars [92, 93, 94, 95, 96].

1.4 The Challenges: Foregrounds and Systematics

The search for primordial B modes poses the most stringent requirements on foreground removal and control of systematic effects. A tentative target for the CMB Probe is to constrain the tensor-to-scalar ratio with an uncertainty that is a factor of 50-100 smaller than the current upper limit r < 0.07 at 95% CL, that is, to reach $\sigma(r) \lesssim 0.0005$. According to data from Planck and sub-orbital experiments, foregrounds already dominate the signal. The large reduction in the size of the final error will require exquisite measurements and modeling of foregrounds.

To ascertain that the uncertainty on the measurement of r is dominated by statistical rather than systematic error, the mission design, execution, and data analysis will have to be dominated by the need to control systematic uncertainties to unprecedented, not yet demonstrated levels.

Figure 5: Left: Brightness temperature as function of frequency for the polarized CMB (cyan, purple, blue) and Galactic foreground signals: dust (red) and synchrotron (green). The darker bands correspond to sky fractions between 73% and 93%; the lighter bands to the cleanest 13%, with the width indicating the uncertainty. Right: Angular power spectrum for E and B-mode polarization for two values of r, and for foreground emission between 70 and 220 GHz.

1.4.1 Foregrounds

Whereas the CMB temperature anisotropy signal dominates Galactic sources of emission over much of the sky, this is not the case for polarization. Figure 5 compares the expected RMS brightness temperature of polarized emission from Galactic sources to E and B modes as a function of frequency and gives the expected signal levels as a function of angular scale ℓ .

The conclusions are that:

- over the largest angular scales (lowest ℓ s), which are crucial for a range of science goals and where inflationary B modes would be largest relative to those from lensing and instrument noise, foreground sources of confusion will need to be measured and subtracted to a level better than 1 part in 10 for E and in 100 for B;
- foregrounds dominate the potential inflationary B mode signal on all angular scales by an order of magnitude or more.

Known signals can be accounted for and removed with multi-frequency observations even if their amplitude is large. But the best measurements to date, from *Planck*, fall far short of the fidelity envisioned for the Probe. This is visually demonstrated by Figure 6, which compares the level of B modes at low ℓ for r=0.001 to the *Planck* 353 GHz noise, extrapolated to 150 GHz, a frequency band in which the inflationary signal is among the strongest.

Figure 6: Left: Stokes Q for inflationary B modes for $\ell < 12$ and r = 0.001. Right: Noise in the Planck 353 GHz map of Stokes Q for $\ell < 12$ extrapolated to 150 GHz assuming the (sky average) spectral properties of dust. Note the color scales.

Removal of foregrounds based on multi-frequency data in a number of frequency bands relies on extrapolations between frequencies based on an assumed spectral dependence. At the current level of precision a power law dependence for synchrotron radiation and a modified black body spectrum for dust emission provide a reasonable fit to CMB data. At the level of precision required for a probe mission, this description will no longer be sufficient. The complex composition of dust

leads to departures from a simple modified black body spectrum because different components may emit at different temperatures. The different components are in general not perfectly correlated with each other, leading to decorrelation between frequency bands. Furthermore, the spectral dependence of synchrotron and dust emission is spatially varying. The spectral dependence must ultimately be measured with the Probe mission. The challenge is to design the frequency coverage to do so optimally.

While the search for primordial B modes leads to the strictest constraints on foreground residuals, exquisite control of foregrounds is also necessary for the other science objectives. Detailed information about the reionization history, available by a cosmic variance limited measurement of the E power spectrum, is buried below the foregrounds at $\ell < 10$. In addition, one must understand the foreground requirements to successfully delens the data at the required level. Recovering *all* of the spectral distortions signals from the raw data will require proper accounting for emission by dust grains, synchrotron emission from electrons spiraling in the Galactic magnetic field, Coulomb scattering of charged particles ('free-free') (see Figure 3), as well as anomalous microwave emission and CO emission.

1.4.2 Systematic Errors

The latest experience with *Planck* points to the following systematic error categories likely to be important for the CMB Probe, or for that matter, for any instrument striving to map the polarization over large portions of the sky to the levels targeted by the CMB Probe [79]: 1. Intensity-to-polarization leakage, 2. stability, and 3. straylight. Each of these is considered in light of polarimetry measurements through differencing the signals of two detectors that are sensitive to orthogonal polarization states.

Leakage The CMB anisotropy signal is a factor of 1000 larger than the strongest possible inflationary B modes (see for example Fig. 1). Therefore instrumental effects that can leak even a small fraction of an intensity fluctuation into spurious polarization and must be understood and controlled. The main effects are differences between gains of detectors, their frequency bandpass mismatch, their differential pointing on the sky, and their differential antenna patterns. Currently, the most sensitive sub-orbital experiments have shown control of systematics at a level of $r \lesssim 0.006$; approximately half of the contribution was from intensity to polarization leakage [97]. These differential effects need to be controlled, through instrument design, characterization, and data analysis to levels that are another factor of 10-100 more stringent so that the contributions of systematic uncertainties to the Probe's total error budget is negligible.

Leakage-related effects will drive: requirements on the optical system, and the uniformity of the bandpass of each polarimeter; calibration requirements on the level of cross-polar leakage and its angle; and measurements of the beam shape as a function of source spectrum. These systematic effects can potentially be mitigated by modulation of the sky signal in such a way that allows complete reconstruction of the polarized sky signal using each photometer, for example, using a half-wave plate.

Stability. The reconstruction of deep, full sky polarization maps involves a combination of measurements made at times separated by months, requiring stability of the response of the instrument on corresponding time scales. Random deviations from stability are a source of noise; systematic deviations are a source of systematic error. This type of systematic error puts requirements on control of thermal drifts of spacecraft temperatures, to mitigate thermal emissivity changes and thermoelastic deformation of telescope structures. The cryogenic operating temperatures of detectors or reference calibration loads must be controlled adequately as well. Careful design of the

scan strategy can shorten the time scales needed for stringent stability, for example Planck's scan strategy traced out great circles which overlapped on 1 minute timescales, giving a shorter effective time scale for stability requirements.

The spacecraft's ambient radiation environment is modulated by the solar activity and can introduce temperature drifts in the cryogenic stages and lead to correlated transients in detectors and readout electronics. For example, cosmic ray energy deposition in the Planck/HFI focal plane was a source of correlated noise between detectors and created a factor \sim 5 additional noise at ℓ =2 [79]. The design of the instrument must account for these effects.

Straylight. When the brightest sources in the sky – the Sun, Moon, planets, and Galaxy – are passing through the far sidelobes of the telescope they create a spurious polarization signal. If they are passing in repeated, scan synchronous pattern, the spurious signal becomes a source of systematic error. This far sidelobe response can be reduced through careful optical design and baffling, but will always be present at a non-trivial level. Detailed modeling of the *Planck* telescope, convolved with sky sources, gave a predicted sidelobe contamination at a detectable level of tens of micro-Kelvin in the 30 GHz maps. This contamination has been observed in *Planck* difference maps. As a result an estimate of the sidelobe contamination was removed from some of the *Planck* time ordered data as part of the mapmaking process. The more stringent requirements for CMB-probe will necessitate at least this level of mitigation.

1.5 The CMB Probe in Context

1.5.1 Current and Forthcoming Sub-Orbital Efforts

The remarkable forthcoming scientific yield has motivated significant agency investments in current and future sub-orbital experiments which are designed to realize the full potential of this unique probe of fundamental physics and astrophysics. These experiments are designed to exploit the comparative advantages of the sub-orbital platforms, while providing the design heritage and experience necessary to maximize the probability of success of an orbital mission.

For the ground-based efforts, these include combinations of i) provision for large apertures and therefore high angular resolution, ii) flexibility to rapidly deploy new technologies, and iii) allowance for detector formats that are relatively unconstrained by mass and power limitations. To date, these have demonstrated low noise measurements of small and intermediate angular scale E and B polarization structures over less than 2% fractional areas of the sky.

The balloon-borne missions *i*) extend the frequency reach of the ground based telescopes, *ii*) enable high fidelity measurements on larger angular scales than can be probed from the ground, and *iii*) grant access to an environment with similar requirements and constraints as in orbit, providing heritage for future space missions as well as experience in dealing with the analysis of data that are representative of a space mission. In this way, the sub-orbital programs complement and multiply the scientific return of the proposed orbital mission, while reinforcing its technical preparedness.

The 2010 Decadal Panel strongly recommended supporting sub-orbital efforts in preparation for a possible space mission to follow sub-orbital detections of inflationary gravity waves. As a result, the US has clear leadership in the field, both in terms of ground- and balloon-based experiments and results.

This leadership will continue into the foreseeable future. In aggregate, funded, now-being-built 'Stage 3' CMB experiments will deploy approximately 100,000 detectors on various sub-orbital experiments within the next 3-5 years. Ground-based experiments plan to extend measurements from few percent of the sky to few tens, although in a limited frequency range between 30 and

300 GHz. Balloon-borne payloads operating at even higher frequencies strive to cover even larger fractions.

1.5.2 Proposed Efforts: LiteBIRD, COrE, and CMB-S4

Japan, in collaboration with NASA, is now considering whether to proceed with LiteBIRD, a space mission designed to search for B modes from inflation. The US Team has submitted its Phase A report to NASA; Phase A in Japan will conclude in about a year check. LiteBIRD is a smaller, more focused mission compared to the CMB Probe. It is an imager based on a 0.4 m aperture telescope. Therefore it has a resolution 3.5 times lower compared to the 1.4 m aperture of EPIC-IM. Its reach in ℓ space is correspondingly 3.5 times lower making the science available at ℓ 's above few hundred in both E and E modes unreachable. It has no spectroscopic capabilities and thus not sensitive to any of the spectral distortion science goals.

For the Japanese space agency JAXA, LiteBIRD is meant to fit within the \$300M class of missions. Although there are uncertainties about comparing JAXA's cost calculations to NASA's, LiteBIRD's overall size and more limited science reach is commensurate with it being below, or just at the lower margin of the Probe's cost window.

A collaboration of scientists in Europe has just recently proposed COrE to ESA as part of the M5 round of space mission proposals. The team includes a number of US collaborators; the PI of this proposal is a member of COrE's Executive Board. COrE is a CMB polarization imager that is based on a 1.2 m aperture telescope and thus intended to reach 3 times the resolution of LiteBIRD. It will reach a resolution of 5-10 arcmin in the 100-200 GHz bands. ESA has capped the M5 proposals to EU550M, the equivalent of \$610M. Member countries are expected to contribute an additional ~\$150M making the total cost close to \$750M. Selection of missions for Phase A studies is expected in June 2017, and end of Phase A in summer 2019.

The US CMB community has proposed, and the Particle Physics Project Prioritization Panel (P5) has recommended to the DOE, the establishment of a 4th generation CMB experiment called CMB-S4. This is an ambitious program to field approximately 5 times the number of detectors fielded by Stage 3 experiments. If and when funded, CMB-S4 will enable unprecedented sensitivity at frequency bands accessible from the ground, and with telescopes that enable high resolution.

1.5.3 Why Study a CMB Probe?

Learning from the successes of COBE/FIRAS, COBE/DMR, WMAP, and *Planck*, a CMB Probe is the single most suitable vehicle to deliver complete sky coverage and therefore information on the largest angular scales, comprehensive frequency coverage, and exquisite control of systematic effects. Some of the science goals described in Section 1.3 are reachable only through mapping of the largest angular scales. No sub-orbital experiment has yet produced any polarization results on more than 2% of the sky, let alone on scales requiring 70% of the sky. The broad frequency coverage of the space mission is best suited to mitigate the foregrounds expected on a broad range of angular scales, including those important for removing the effects of B-modes from lensing. The mission will provide a single self-consistent and self-calibrated data set; and it will provide legacy maps at many frequency bands that will become the basis for hundreds of new papers.

If the inflationary signal is detected by sub-orbital experiments any time soon, a space mission to characterize the signal in full detail is equally compelling. The existence of ambitious sub-orbital programs is a complementary strength. How to make the best use of this complementarity is an explicit goal of our study; see Section 1.7.

1.5.4 Does the CMB Probe Fit Within the Cost Window?

The total cost estimate for the EPIC-IM mission, as generated by JPL's Team X, was \$920M in 2009 []. The mission had a 1.4 m effective entrance aperture, a telescope that was maintained at 4 K, and focal plane with 11,000 TES detectors operating at 0.1 K. The CORE mission, that had just been proposed to ESA, has an aperture of 1.2 m, a telescope operating between 40 and 77 K, and a focal plane with few thousand bolometric detectors operating at 0.1 K. It was estimated by the proposing team to have a total cost of \$773M. LiteBIRD has a 0.4 m aperture telescope feeding one of two focal planes. The second focal plane is coupled to the sky without reflectors. Both focal planes are cooled to 0.1 K and contain few thousand detectors. LiteBIRD is within JAXA's \$300M class and the US contribution is \$65M.

Recently NASA initiated studies for the next-decade's flagship missions. The cost minimum for this class was \$1B. When plans for these studies were announced there was consensus within the CMB community that a compelling CMB mission can be constructed for less than this amount.

The effective aperture size, between 1 and 1.5 m, and science goals we are envisioning for the CMB Probe are most akin to EPIC-IM and CORE. While the relation between aperture size, telescope temperature, focal plane temperature, and cost will be analyzed during the this mission study, these past exercises suggest that an imager fits within the \$400M - \$1000M class.

PIXIE, which consists of a single spectrometer, is being proposed as an Explorer class mission. Super-PIXIE, consisting of three spectrometers, but sharing the same spacecraft should fit within the Probe cost bracket. Whether a scientifically compelling mission that has a combined imager/spectrometer instruments can be constructed within the Probe cost cap is one of the questions we would address during the mission study.

1.5.5 This Study in the Context of Previous Mission Studies

The EPIC-IM summary paper and a report to the decadal panel from a NASA mission study, both from 2009, represent the US community's most recent view of the anticipated science reach and the path to implementation of a possible future US space mission. The landscape has changed since. There is a need to present an updated view to the next decadal panel.

Theoretical advances and progress in physics and astrophysics gave updated goals for the fidelity of measurements of E and E modes, including measurements of inflationary gravitational waves, the properties of light relics, and structure formation in the universe. A slew of sub-orbital experiments together with the Planck mission have transformed our view of the mm-wave polarized sky, highlighting the requirement on thorough understanding of the foregrounds. Advances in detector technologies, multiplexed readouts, and optical components now enable a significantly more capable mission than the one envisioned ten years ago. And the community has vastly more experience with designs of polarimeters and the control of their systematic uncertainties. A new study, based on this accumulated information and experience, is timely; this is the study we are proposing here.

The US LiteBIRD team has proposed participation in LiteBIRD and recently generated its Phase A report. The proposal and report were conducted by a subset of the community for the purpose of supporting a specific mission design, within specific cost caps, that match JAXA plans.

Work on our proposal, and the subsequent mission study, represent a collaborative effort by all interested members of the CMB community, including US members of the LiteBIRD team. We have also reached out to our international partners and invited them to participate. The final report will present a consensus view of the US CMB community. This would be the proper input for the deliberations of the next US decadal panel.

1.6 State of Technologies

The imager version of the probe consists of the following main technical elements: a telescope with an effective aperture size of $\lesssim 1.5$ m, a focal plane consisting of thousands of detectors, coolers that provide a focal plane temperature between 0.1 and 0.3 K, and a multiplexed readout system with which a handful of wires are used to readout hundreds or thousands of detectors. Additional elements include filters and potentially lenses and polarization modulators. The spectrometer version is also a cryogenic mission, and has two main elements: the spectrometer, and the cold load that provides its absolute calibration. Both versions have the standard complement of spacecraft bus features to provide pointing control and sensing, telemetry, and power.

Relative to *Planck*, which was the last CMB imaging cryogenic mission, the most significant advances have been made in developing detector and readout technologies, and in optical components. While *Planck* had 54 polarization sensitive detectors, sub-orbital experiments now routinely implement thousands. Aided by large throughput optical systems, and large lenses Stage3 experiments will implement tens of thousands. By the time the Probe flies a focal plane with tens of thousands of detectors, in which few electrical lines readout thousands of detectors will be standard, well-tested technology. A key technical question for the implementation of the probe is whether the need to reject systematic uncertainties will require the implementation of an active polarization modulator.

Arrays of Detectors Currently bolometric transition edge sensor detectors have the highest TRL. Arrays with thousands of elements have flown on balloon-borne instruments. Ground-based instruments using this technology have generated the highest measurement sensitivities to date. New technologies (multi-chroic)

Readouts

Optical Components and Polarization Modulators

Both the imager and the spectrometer are cryogenic

1.7 Mission Study and Management Plan

1.7.1 Study Plan

The mission study is open to the entire CMB community and includes more than 50 scientists. To gain maximum benefit from *Planck*, LiteBIRD, and CORE we invited international members to participate. The work is organized into Working Groups (WG) that represent each of the main themes of the study; see Figure 7. Working groups are led by members of the study's Executive Committee, as listed in the Figure. Although Figure 7 suggests distinct boundaries between the WGs we expect and encourage significant overlap and feedback. It is not practical to enumerate all the interdependencies.

The study will be carried out through intra- and inter-WG teleconferences; mission design teleconference with JPL engineers; mission design meetings at JPL; and a community workshop that is described in more detail below under the 'Space / Sub-Orbital Synergy' WG. We now describe the planned work for each of the WG.

• Theory (Knox) This WG will survey, summarize, and prioritize the set of science goals for the Probe. Given input on target frequency bands, assumptions about foregrounds, instrument systematics, and instrument noise levels the group will generate forecasts for the impact of the Probes products and their ultimate significance for physics and astrophysics. This group will also investigate how to optimally combine and cross-correlate the Probe's data with other data sets. This is an area of strong overlap with the Data and Foreground WGs.

Figure 7: Management structure of the CMB Probe. A steering committee advises the PI. The study is led by the PI through an Executive Committee. Each member of the committee is in charge of a specific Working Group (blue boxes). Significant overlap and feedback is expected between the working groups. Participation in the Working Groups is open to all members of the CMB community.

- Mission (Hanany) and connection with JPL (Lawrence) The Mission WG is responsible for defining the overall mission architecture including telescope implementation, cooling, telemetry, mass, power, and cost. The WG will work closely with the JPL lead scientist (Lawrence) and JPL mission engineers.
- Imager (Hanany) and Spectrometer (Kogut) The imager and spectrometer WGs will translate the science goals to mission requirements and to a set of optional designs. The designs will include telescopes of various configurations, focal planes with several candidate detector technologies and readout schemes, optical elements, and cooling strategies. These groups will similarly consider the options for spectrometers. Both groups will interact frequency and work closely with the Mission WG and with the JPL team to assess the relative merits of the designs. The WG will consider an imager-only design, a spectrometer-only design, and a combined instrument.
 - Technology (McMahon)
- Space / Sub-Orbital Synergy (Devlin, Jones) By the time the CMB probe is likely to fly, significant advances will have been made on the ground. This is true regardless of the state of the proposed CMB-S4 effort, and even more so should funding for S4 becomes available soon. This WG will assess and recommend the most appropriate design parameters such that the data sets from the Probe and sub-orbital measurements complement each other. Pertinent questions include: to what extent should the aperture size of the Imaging Probe rely on delensing capabilities provided by high resolution measurements from the ground? What is the optimal resolution of a space-based mission from the point of view of providing foreground subtraction capabilities to sub-orbital missions? What is an optimal overlap in ℓ -space coverage? Does the design of a spectrometer depend on the specifics of data available from sub-orbital measurements?

We are planning a community workshop to address these question, including forming a community consensus on the question of the need for a space mission if CMB-S4 is funded.

• Data Analysis and Exploitation (Pryke) The full sky nature, the broad frequency coverage, and the high sensitivity of the CMB-Probe will generate a legacy data set surpassing that of *Planck*. This WG will plan for the extraction of cosmological and astrophysical products from the Probe's data. This includes exploring component separation techniques and the resulting core science analysis performance, as well as exploring synergies with sub-orbital measurements at CMB frequencies and cross-correlations with orbital and sub-orbital data at other wavelengths. It will assess whether specific synergies suggest preferring some mission parameter values over others. Examples include adjusting the resolution, and frequency coverage.

- Systematics (Crill) This WG plans to build an end-to-end simulation pipeline that will generate simulated measurements at an instrumental level, and feed them into the notional analysis pipeline, including foreground/CMB component separation and power spectral analysis. With this simulation pipeline the WG will explore mitigation of systematic errors by design, for example implementing modulation schemes and modulator technologies, and mitigation of systematic errors by analysis techniques. This pipeline will be used to define requirements for a notional mission, and would be helpful in prioritizing the Probe's technology development needs.
- High fidelity measurement and subtraction of foregrounds will • Foregrounds (Flauger) permeate all aspects of the study plan. This WG will construct foregrounds models that encompass all the known and expected emission complexities. The models will be informed by physical inputs [98?] and measurements, for example the spatial variations of the spectral dependence, decorrelation between frequencies, and departures from a simple modified black body law for galactic dust [99, 100, 101?]. The models will be inputs for the process of instrument optimization and for tests of algorithms for foreground removal. During instrument optimization they will inform an optimal selection for the number of frequency bands, their central frequencies and bandwidths, all subject to the constraint of finite focal plane area. This optimization is also informed by choices of detector technology. To carry out exercises in foreground subtraction, we will implement a simulation pipeline that will test the efficacy of different component separation methods including Commander, SMICA, SEVEM and NILC, which have been used with the Planck data [102]. The WG will extract cosmological and astrophysical information from the component maps and their power spectra, and compare to the input values to assess the residual errors. During this stage too, we will benefit from the experience of the *Planck* data including its use of specific power spectral and parameter estimation approaches (e.g. Master [], XFaster [], and CosmoMC []).
- Simulations (Borrill) Simulations play critical roles in the design and development of the mission. To determine ultimate signal-to-noise ratio and to identify systematic biases we will build a simulation pipeline that is based on the massively parallel tools built for the Planck Full Focal Plane simulations [?]. We will take as inputs the characterization of the instrument and observations provided by the Mission and Systematics groups, and the model of the sky provided by the Foregrounds group. We will generate detector timestreams including sources of systematic effects such as frequency band mismatch, and detector noise correlations. Using candidate sky scan patterns, the timestreams will be reduced to maps at each observing frequency. The maps will already include the effects of non-uniform sky coverage, and systematic effects such as intensity to polarization leakage due to gain and antenna pattern differences. The maps including both a fiducial dataset and supporting suites of Monte Carlo realizations will be delivered to the Foregrounds, Data and Theory groups for analysis. To meet the computational requirements of generating and reducing these simulations we will use the HPC resources available to the CMB community at the DOE's National Energy Research Scientific Computing (NERSC) Center.

1.7.2 Study Team

The study consists of more than 50 scientists representing hundreds of years of experience with CMB theory, data analysis, and measurements on all platforms including satellite missions that have already flown (COBE, WMAP, and *Planck*) and the two proposed (LiteBIRD and CORE). The PI Hanany, who has more than 20 years of CMB ballooning experience, co-led MAXIMA and Archeops, was the PI of MAXIPOL and EBEX, and is a member of CORE's Executive Board, will have ultimate responsibility for the study. He is advised by a Steering Committee – Bennett (Johns Hopkins), Dodelson (Chicago), and Page (Princeton) – and assisted by a business office at

the University of Minnesota. An Executive Committee (EC) is in charge of the daily operation of the collaboration. The members of the Steering and Executive Committees led and are leading operating CMB experiments that have produced the most compelling CMB polarization results. They include leaders and members of the WMAP, US *Planck*, US LiteBIRD, and US CORE teams. They include initiators and implementors of new millimeter-wave technologies, and of recognized experts in data analysis and theory.

References

- [1] J. Bock, A. Aljabri, A. Amblard, D. Baumann, M. Betoule, T. Chui, L. Colombo, A. Cooray, D. Crumb, P. Day, C. Dickinson, D. Dowell, M. Dragovan, S. Golwala, K. Gorski, S. Hanany, W. Holmes, K. Irwin, B. Johnson, B. Keating, C.-L. Kuo, A. Lee, A. Lange, C. Lawrence, S. Meyer, N. Miller, H. Nguyen, E. Pierpaoli, N. Ponthieu, J.-L. Puget, J. Raab, P. Richards, C. Satter, M. Seiffert, M. Shimon, H. Tran, B. Williams, and J. Zmuidzinas. Study of the Experimental Probe of Inflationary Cosmology (EPIC)-Intemediate Mission for NASA's Einstein Inflation Probe. *ArXiv e-prints*, June 2009.
- [2] A. Kogut, D. J. Fixsen, D. T. Chuss, J. Dotson, E. Dwek, M. Halpern, G. F. Hinshaw, S. M. Meyer, S. H. Moseley, M. D. Seiffert, D. N. Spergel, and E. J. Wollack. The Primordial Inflation Explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations. *JCAP*, 7:25–+, July 2011.
- [3] J. C. Mather, E. S. Cheng, D. A. Cottingham, R. E. Eplee, Jr., D. J. Fixsen, T. Hewagama, R. B. Isaacman, K. A. Jensen, S. S. Meyer, P. D. Noerdlinger, S. M. Read, and L. P. Rosen. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. *Ap. J.*, 420:439–444, January 1994.
- [4] D. J. Fixsen, E. S. Cheng, J. M. Gales, J. C. Mather, R. A. Shafer, and E. L. Wright. The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set. *Ap. J.*, 473:576–+, December 1996.
- [5] Y. B. Zeldovich and R. A. Sunyaev. The Interaction of Matter and Radiation in a Hot-Model Universe. *ApSS*, 4:301–316, July 1969.
- [6] R. A. Sunyaev and Y. B. Zeldovich. The interaction of matter and radiation in the hot model of the Universe, II. *ApSS*, 7:20–30, April 1970.
- [7] D. Hanson, S. Hoover, A. Crites, P. A. R. Ade, K. A. Aird, J. E. Austermann, J. A. Beall, A. N. Bender, B. A. Benson, L. E. Bleem, J. J. Bock, J. E. Carlstrom, C. L. Chang, H. C. Chiang, H.-M. Cho, A. Conley, T. M. Crawford, T. de Haan, M. A. Dobbs, W. Everett, J. Gallicchio, J. Gao, E. M. George, N. W. Halverson, N. Harrington, J. W. Henning, G. C. Hilton, G. P. Holder, W. L. Holzapfel, J. D. Hrubes, N. Huang, J. Hubmayr, K. D. Irwin, R. Keisler, L. Knox, A. T. Lee, E. Leitch, D. Li, C. Liang, D. Luong-Van, G. Marsden, J. J. McMahon, J. Mehl, S. S. Meyer, L. Mocanu, T. E. Montroy, T. Natoli, J. P. Nibarger, V. Novosad, S. Padin, C. Pryke, C. L. Reichardt, J. E. Ruhl, B. R. Saliwanchik, J. T. Sayre, K. K. Schaffer, B. Schulz, G. Smecher, A. A. Stark, K. T. Story, C. Tucker, K. Vanderlinde, J. D. Vieira, M. P. Viero, G. Wang, V. Yefremenko, O. Zahn, and M. Zemcov. Detection of B-Mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope. *Physical Review Letters*, 111(14):141301, October 2013.
- [8] The Polarbear Collaboration: P. A. R. Ade, Y. Akiba, A. E. Anthony, K. Arnold, M. Atlas, D. Barron, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian, C. Feng, D. Flanigan, A. Gilbert, W. Grainger, N. W. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. L. Holzapfel, Y. Hori, J. Howard, P. Hyland, Y. Inoue, G. C. Jaehnig, A. H. Jaffe, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner,

- M. Le Jeune, A. T. Lee, E. M. Leitch, E. Linder, M. Lungu, F. Matsuda, T. Matsumura, X. Meng, N. J. Miller, H. Morii, S. Moyerman, M. J. Myers, M. Navaroli, H. Nishino, A. Orlando, H. Paar, J. Peloton, D. Poletti, E. Quealy, G. Rebeiz, C. L. Reichardt, P. L. Richards, C. Ross, I. Schanning, D. E. Schenck, B. D. Sherwin, A. Shimizu, C. Shimmin, M. Shimon, P. Siritanasak, G. Smecher, H. Spieler, N. Stebor, B. Steinbach, R. Stompor, A. Suzuki, S. Takakura, T. Tomaru, B. Wilson, A. Yadav, and O. Zahn. A Measurement of the Cosmic Microwave Background B-mode Polarization Power Spectrum at Sub-degree Scales with POLARBEAR. *Ap. J.*, 794:171, October 2014.
- [9] P. A. R. Ade, R. W. Aikin, D. Barkats, S. J. Benton, C. A. Bischoff, J. J. Bock, J. A. Brevik, I. Buder, E. Bullock, C. D. Dowell, L. Duband, J. P. Filippini, S. Fliescher, S. R. Golwala, M. Halpern, M. Hasselfield, S. R. Hildebrandt, G. C. Hilton, V. V. Hristov, K. D. Irwin, K. S. Karkare, J. P. Kaufman, B. G. Keating, S. A. Kernasovskiy, J. M. Kovac, C. L. Kuo, E. M. Leitch, M. Lueker, P. Mason, C. B. Netterfield, H. T. Nguyen, R. O'Brient, R. W. Ogburn, A. Orlando, C. Pryke, C. D. Reintsema, S. Richter, R. Schwarz, C. D. Sheehy, Z. K. Staniszewski, R. V. Sudiwala, G. P. Teply, J. E. Tolan, A. D. Turner, A. G. Vieregg, C. L. Wong, K. W. Yoon, and Bicep2 Collaboration. Detection of B-Mode Polarization at Degree Angular Scales by BICEP2. *Physical Review Letters*, 112(24):241101, June 2014.
- [10] BICEP2/Keck, Planck Collaborations, :, P. A. R. Ade, N. Aghanim, Z. Ahmed, R. W. Aikin, K. D. Alexander, M. Arnaud, J. Aumont, and et al. A Joint Analysis of BICEP2/Keck Array and Planck Data. *ArXiv e-prints*, February 2015.
- [11] A. H. Guth. Inflationary universe: A possible solution to the horizon and flatness problems. *Phys. Rev. D.*, 23:347–356, January 1981.
- [12] A. D. Linde. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. *Phys. Lett.*, B108:389–393, 1982.
- [13] A. Albrecht and P. J. Steinhardt. Cosmology for grand unified theories with radiatively induced symmetry breaking. *Phys. Rev. Lett.*, 48:1220–1223, 1982.
- [14] K. Sato. First-order phase transition of a vacuum and the expansion of the Universe. *MN-RAS*, 195:467–479, May 1981.
- [15] E. W. Kolb and M. S. Turner. *The Early Universe*. Addison-Wesley, Redwood City, CA, 2nd. edition, 1994.
- [16] M. Kamionkowski, A. Kosowsky, and A. Stebbins. A Probe of Primordial Gravity Waves and Vorticity. *Phys. Rev. Lett.*, 78:2058–2061, March 1997. astro-ph/9609132.
- [17] M. Zaldarriaga and U. Seljak. All-sky analysis of polarization in the microwave background. *Phys. Rev. D.*, 55:1830–1840, 1997.
- [18] T. R. Seshadri and Kandaswamy Subramanian. CMBR polarization signals from tangled magnetic fields. *Phys. Rev. Lett.*, 87:101301, 2001.
- [19] Antony Lewis. CMB anisotropies from primordial inhomogeneous magnetic fields. *Phys. Rev.*, D70:043011, 2004.

- [20] Peter A. R. Ade et al. POLARBEAR Constraints on Cosmic Birefringence and Primordial Magnetic Fields. *Phys. Rev.*, D92:123509, 2015.
- [21] Alex Zucca, Yun Li, and Levon Pogosian. Constraints on Primordial Magnetic Fields from Planck combined with the South Pole Telescope CMB B-mode polarization measurements. *ArXiv e-prints*, 2016.
- [22] Neil Turok, Ue-Li Pen, and Uros Seljak. The Scalar, vector and tensor contributions to CMB anisotropies from cosmic defects. *Phys. Rev.*, D58:023506, 1998.
- [23] Uros Seljak and Anze Slosar. B polarization of cosmic microwave background as a tracer of strings. *Phys. Rev.*, D74:063523, 2006.
- [24] A. Avgoustidis, E. J. Copeland, A. Moss, L. Pogosian, A. Pourtsidou, and Daniele A. Steer. Constraints on the fundamental string coupling from B-mode experiments. *Phys. Rev. Lett.*, 107:121301, 2011.
- [25] Hayden Lee, S. C. Su, and Daniel Baumann. The Superhorizon Test of Future B-mode Experiments. *JCAP*, 1502(02):036, 2015.
- [26] Committee for a Decadal Survey of Astronomy and Astrophysics. *New Worlds, New Horizons in Astronomy and Astrophysics*. National Academy Press, 2010.
- [27] P. A. R. Ade et al. Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. *Phys. Rev. Lett.*, 116:031302, 2016.
- [28] Renata Kallosh and Andrei Linde. Universality Class in Conformal Inflation. *JCAP*, 1307:002, 2013.
- [29] David H. Lyth. What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy? *Phys.Rev.Lett.*, 78:1861–1863, 1997.
- [30] Tom Banks, Michael Dine, Patrick J. Fox, and Elie Gorbatov. On the possibility of large axion decay constants. *JCAP*, 0306:001, 2003.
- [31] Daniel Baumann and Liam McAllister. *Inflation and String Theory*. Cambridge University Press, 2015.
- [32] Jon Brown, William Cottrell, Gary Shiu, and Pablo Soler. Fencing in the Swampland: Quantum Gravity Constraints on Large Field Inflation. *JHEP*, 10:023, 2015.
- [33] Tom Rudelius. Constraints on Axion Inflation from the Weak Gravity Conjecture. *JCAP*, 1509(09):020, 2015.
- [34] Eva Silverstein and Alexander Westphal. Monodromy in the CMB: Gravity Waves and String Inflation. *Phys.Rev.*, D78:106003, 2008.
- [35] Nemanja Kaloper and Lorenzo Sorbo. A Natural Framework for Chaotic Inflation. *Phys. Rev. Lett.*, 102:121301, 2009.

- [36] Fernando Marchesano, Gary Shiu, and Angel M. Uranga. F-term Axion Monodromy Inflation. *JHEP*, 09:184, 2014.
- [37] R. Blumenhagen, C. Damian, A. Font, D. Herschmann, and R. Sun. The Flux-Scaling scenario: De sitter uplift and axion inflation. *Fortschritte der Physik*, 64:536–550, June 2016.
- [38] Justin Khoury, Burt A. Ovrut, Nathan Seiberg, Paul J. Steinhardt, and Neil Turok. From big crunch to big bang. *Phys. Rev.*, D65:086007, 2002.
- [39] Robert H. Brandenberger. The Matter Bounce Alternative to Inflationary Cosmology. *ArXiv e-prints*, 2012.
- [40] Anna Ijjas and Paul J. Steinhardt. Implications of Planck2015 for inflationary, ekpyrotic and anamorphic bouncing cosmologies. *Class. Quant. Grav.*, 33(4):044001, 2016.
- [41] Ryo Namba, Marco Peloso, Maresuke Shiraishi, Lorenzo Sorbo, and Caner Unal. Scale-dependent gravitational waves from a rolling axion. *JCAP*, 1601(01):041, 2016.
- [42] M. Peloso, L. Sorbo, and C. Unal. Rolling axions during inflation: perturbativity and signatures. *JCAP*, 9:001, September 2016.
- [43] Cora Dvorkin, Hiranya V. Peiris, and Wayne Hu. Testable polarization predictions for models of CMB isotropy anomalies. *Phys. Rev.*, D77:063008, 2008.
- [44] R. A. Sunyaev and Y. B. Zeldovich. Small scale entropy and adiabatic density perturbations Antimatter in the Universe. *ApSS*, 9:368–382, December 1970.
- [45] R. A. Daly. Spectral distortions of the microwave background radiation resulting from the damping of pressure waves. *Ap. J.*, 371:14–28, April 1991.
- [46] W. Hu, D. Scott, and J. Silk. Power spectrum constraints from spectral distortions in the cosmic microwave background. *Ap. J. Lett.*, 430:L5–L8, July 1994.
- [47] J. Chluba, R. Khatri, and R. A. Sunyaev. CMB at 2 x 2 order: the dissipation of primordial acoustic waves and the observable part of the associated energy release. *MNRAS*, 425:1129–1169, September 2012.
- [48] J. Chluba. Which spectral distortions does ΛCDM actually predict? *MNRAS*, 460:227–239, July 2016.
- [49] R. A. Sunyaev and J. Chluba. Signals from the epoch of cosmological recombination (Karl Schwarzschild Award Lecture 2008). *Astronomische Nachrichten*, 330:657–+, 2009.
- [50] J. Chluba and Y. Ali-Haïmoud. COSMOSPEC: fast and detailed computation of the cosmological recombination radiation from hydrogen and helium. *MNRAS*, 456:3494–3508, March 2016.
- [51] G. Steigman. Cosmology confronts particle physics. *Annual Review of Nuclear and Particle Science*, 29:313–338, 1979.

- [52] M. Bolz, A. Brandenburg, and W. Buchmuller. Thermal production of gravitinos. *Nucl. Phys.*, B606:518–544, 2001. [Erratum: Nucl. Phys.B790,336(2008)].
- [53] Christopher Brust, David E. Kaplan, and Matthew T. Walters. New Light Species and the CMB. *JHEP*, 12:058, 2013.
- [54] Daniel Baumann, Daniel Green, and Benjamin Wallisch. A New Target for Cosmic Axion Searches. *Phys. Rev. Lett.*, 117(17):171301, 2016.
- [55] Daniel Green, Joel Meyers, and Alexander van Engelen. CMB Delensing Beyond the B Modes. *ArXiv e-prints*, 2016.
- [56] S. Sarkar and A. M. Cooper. Cosmological and experimental constraints on the tau neutrino. *Physics Letters B*, 148:347–354, November 1984.
- [57] M. Kawasaki and K. Sato. The effect of radiative decay of massive particles on the spectrum of the microwave background radiation. *Physics Letters B*, 169:280–284, March 1986.
- [58] W. Hu and J. Silk. Thermalization constraints and spectral distortions for massive unstable relic particles. *Physical Review Letters*, 70:2661–2664, May 1993.
- [59] J. Chluba and R. A. Sunyaev. The evolution of CMB spectral distortions in the early Universe. *MNRAS*, 419:1294–1314, January 2012.
- [60] J. Chluba. Distinguishing different scenarios of early energy release with spectral distortions of the cosmic microwave background. *MNRAS*, 436:2232–2243, December 2013.
- [61] J. Chluba and D. Jeong. Teasing bits of information out of the CMB energy spectrum. *MNRAS*, 438:2065–2082, March 2014.
- [62] M. Kawasaki, K. Kohri, and T. Moroi. Big-bang nucleosynthesis and hadronic decay of long-lived massive particles. *Phys. Rev. D.*, 71(8):083502, April 2005.
- [63] K. Jedamzik. Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles. *Phys. Rev. D.*, 74(10):103509, November 2006.
- [64] P. J. E. Peebles, S. Seager, and W. Hu. Delayed Recombination. *Ap. J. Lett.*, 539:L1–L4, August 2000.
- [65] X. Chen and M. Kamionkowski. Particle decays during the cosmic dark ages. *Phys. Rev. D.*, 70(4):043502–+, August 2004.
- [66] N. Padmanabhan and D. P. Finkbeiner. Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects. *Phys. Rev. D.*, 72(2):023508–+, July 2005.
- [67] Cora Dvorkin, Kfir Blum, and Marc Kamionkowski. Constraining Dark Matter-Baryon Scattering with Linear Cosmology. *Phys. Rev.*, D89(2):023519, 2014.
- [68] Francis-Yan Cyr-Racine, Roland de Putter, Alvise Raccanelli, and Kris Sigurdson. Constraints on Large-Scale Dark Acoustic Oscillations from Cosmology. *Phys. Rev.*, D89(6):063517, 2014.

- [69] Manuel A. Buen-Abad, Gustavo Marques-Tavares, and Martin Schmaltz. Non-Abelian dark matter and dark radiation. *Phys. Rev.*, D92(2):023531, 2015.
- [70] Julien Lesgourgues, Gustavo Marques-Tavares, and Martin Schmaltz. Evidence for dark matter interactions in cosmological precision data? *JCAP*, 1602(02):037, 2016.
- [71] Y. Ali-Haïmoud, J. Chluba, and M. Kamionkowski. Constraints on Dark Matter Interactions with Standard Model Particles from Cosmic Microwave Background Spectral Distortions. *Physical Review Letters*, 115(7):071304, August 2015.
- [72] R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, and T. Volansky. First Direct Detection Limits on Sub-GeV Dark Matter from XENON10. *Physical Review Letters*, 109(2):021301, July 2012.
- [73] C. Bœhm, J. A. Schewtschenko, R. J. Wilkinson, C. M. Baugh, and S. Pascoli. Using the Milky Way satellites to study interactions between cold dark matter and radiation. *MNRAS*, 445:L31–L35, November 2014.
- [74] K. Jedamzik, V. Katalinić, and A. V. Olinto. Limit on Primordial Small-Scale Magnetic Fields from Cosmic Microwave Background Distortions. *PRL*, 85:700–703, July 2000.
- [75] H. Tashiro, E. Sabancilar, and T. Vachaspati. CMB distortions from superconducting cosmic strings. *Phys. Rev. D.*, 85(10):103522, May 2012.
- [76] A. D. Dolgov and D. Ejlli. Resonant high energy graviton to photon conversion at the post-recombination epoch. *Phys. Rev. D.*, 87(10):104007, May 2013.
- [77] H. Tashiro, J. Silk, and D. J. E. Marsh. Constraints on primordial magnetic fields from CMB distortions in the axiverse. *Phys. Rev. D.*, 88(12):125024, December 2013.
- [78] R. R. Caldwell and N. A. Maksimova. Spectral distortion in a radially inhomogeneous cosmology. *Phys. Rev. D.*, 88(10):103502, November 2013.
- [79] Planck Collaboration, N. Aghanim, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, S. Basak, R. Battye, K. Benabed, J.-P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, A. Bonaldi, L. Bonavera, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, R. C. Butler, E. Calabrese, J.-F. Cardoso, J. Carron, A. Challinor, H. C. Chiang, L. P. L. Colombo, C. Combet, B. Comis, A. Coulais, B. P. Crill, A. Curto, F. Cuttaia, R. J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, J. Delabrouille, J.-M. Delouis, E. Di Valentino, C. Dickinson, J. M. Diego, O. Doré, M. Douspis, A. Ducout, X. Dupac, G. Efstathiou, F. Elsner, T. A. Enßlin, H. K. Eriksen, E. Falgarone, Y. Fantaye, F. Finelli, F. Forastieri, M. Frailis, A. A. Fraisse, E. Franceschi, A. Frolov, S. Galeotta, S. Galli, K. Ganga, R. T. Génova-Santos, M. Gerbino, T. Ghosh, J. González-Nuevo, K. M. Górski, S. Gratton, A. Gruppuso, J. E. Gudmundsson, F. K. Hansen, G. Helou, S. Henrot-Versillé, D. Herranz, E. Hivon, Z. Huang, S. Ilic, A. H. Jaffe, W. C. Jones, E. Keihänen, R. Keskitalo, T. S. Kisner, L. Knox, N. Krachmalnicoff, M. Kunz, H. Kurki-Suonio, G. Lagache, J.-M. Lamarre, M. Langer, A. Lasenby, M. Lattanzi, C. R. Lawrence, M. Le Jeune, J. P. Leahy, F. Levrier, M. Liguori, P. B. Lilje, M. López-Caniego, Y.-Z. Ma, J. F. Macías-Pérez, G. Maggio, A. Mangilli, M. Maris, P. G. Martin,

- E. Martínez-González, S. Matarrese, N. Mauri, J. D. McEwen, P. R. Meinhold, A. Melchiorri, A. Mennella, M. Migliaccio, M.-A. Miville-Deschênes, D. Molinari, A. Moneti, L. Montier, G. Morgante, A. Moss, S. Mottet, P. Naselsky, P. Natoli, C. A. Oxborrow, L. Pagano, D. Paoletti, B. Partridge, G. Patanchon, L. Patrizii, O. Perdereau, L. Perotto, V. Pettorino, F. Piacentini, S. Plaszczynski, L. Polastri, G. Polenta, J.-L. Puget, J. P. Rachen, B. Racine, M. Reinecke, M. Remazeilles, A. Renzi, G. Rocha, M. Rossetti, G. Roudier, J. A. Rubiño-Martín, B. Ruiz-Granados, L. Salvati, M. Sandri, M. Savelainen, D. Scott, G. Sirri, R. Sunyaev, A.-S. Suur-Uski, J. A. Tauber, M. Tenti, L. Toffolatti, M. Tomasi, M. Tristram, T. Trombetti, J. Valiviita, F. Van Tent, L. Vibert, P. Vielva, F. Villa, N. Vittorio, B. D. Wandelt, R. Watson, I. K. Wehus, M. White, A. Zacchei, and A. Zonca. Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth. *ArXiv e-prints*, May 2016.
- [80] Manoj Kaplinghat, Lloyd Knox, and Yong-Seon Song. Determining neutrino mass from the CMB alone. *Phys. Rev. Lett.*, 91:241301, 2003.
- [81] Michael Levi et al. The DESI Experiment, a whitepaper for Snowmass 2013. *ArXiv e-prints*, 2013.
- [82] J. S. Dunlop. The Cosmic History of Star Formation. Science, 333:178, July 2011.
- [83] Planck Collaboration, Arnaud, M., Ashdown, M., Atrio-Barandela, F., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Battaner, E., Benabed, K., Benoit-Lvy, A., Bernard, J.-P., Bersanelli, M., Bielewicz, P., Bobin, J., Bond, J. R., Borrill, J., Bouchet, F. R., Brogan, C. L., Burigana, C., Cardoso, J.-F., Catalano, A., Chamballu, A., Chiang, H. C., Christensen, P. R., Colombi, S., Colombo, L. P. L., Crill, B. P., Curto, A., Cuttaia, F., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Dsert, F.-X., Dickinson, C., Diego, J. M., Donzelli, S., Dor, O., Dupac, X., Enlin, T. A., Eriksen, H. K., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Galeotta, S., Ganga, K., Giard, M., Giraud-Hraud, Y., Gonzlez-Nuevo, J., Grski, K. M., Gregorio, A., Gruppuso, A., Hansen, F. K., Harrison, D. L., Hernndez-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hobson, M., Holmes, W. A., Huffenberger, K. M., Jaffe, A. H., Jaffe, T. R., Keihnen, E., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche, J., Kunz, M., Kurki-Suonio, H., Lhteenmki, A., Lamarre, J.-M., Lasenby, A., Lawrence, C. R., Leonardi, R., Liguori, M., Lilje, P. B., Linden-Vrnle, M., Lpez-Caniego, M., Lubin, P. M., Maino, D., Maris, M., Marshall, D. J., Martin, P. G., Martnez-Gonzlez, E., Masi, S., Matarrese, S., Mazzotta, P., Melchiorri, A., Mendes, L., Mennella, A., Migliaccio, M., Miville-Deschlaes, M.-A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Noviello, F., Novikov, D., Novikov, I., Oppermann, N., Oxborrow, C. A., Pagano, L., Pajot, F., Paladini, R., Pasian, F., Peel, M., Perdereau, O., Perrotta, F., Piacentini, F., Piat, M., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Popa, L., Pratt, G. W., Puget, J.-L., Rachen, J. P., Reach, W. T., Reich, W., Reinecke, M., Remazeilles, M., Renault, C., Rho, J., Ricciardi, S., Riller, T., Ristorcelli, I., Rocha, G., Rosset, C., Roudier, G., Rusholme, B., Sandri, M., Savini, G., Scott, D., Stolyarov, V., Sutton, D., Suur-Uski, A.-S., Sygnet, J.-F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Wade, L. A., Yvon, D.,

- Zacchei, A., and Zonca, A. Planck intermediate results xxxi. microwave survey of galactic supernova remnants. *A&A*, 586:A134, 2016.
- [84] Planck Collaboration, R. Adam, P. A. R. Ade, N. Aghanim, M. Arnaud, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, and et al. Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes. *ArXiv e-prints*, September 2014.
- [85] Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, and et al. Planck 2013 results. XVIII. The gravitational lensing-infrared background correlation. *Astrophys.*, 571:A18, November 2014.
- [86] P. Madau and M. Dickinson. Cosmic Star-Formation History. *ARA&A*, 52:415–486, August 2014.
- [87] J. C. Hill, N. Battaglia, J. Chluba, S. Ferraro, E. Schaan, and D. N. Spergel. Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background. *Physical Review Letters*, 115(26):261301, December 2015.
- [88] Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, and et al. Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts. *Astron. Astrophys.*, 571:A20, November 2014.
- [89] S. Y. Sazonov and R. A. Sunyaev. Cosmic Microwave Background Radiation in the Direction of a Moving Cluster of Galaxies with Hot Gas: Relativistic Corrections. *Ap. J.*, 508:1–5, November 1998.
- [90] N. Itoh, Y. Kohyama, and S. Nozawa. Relativistic corrections to the sunyaev-zeldovich effect for clusters of galaxies. *Ap. J.*, 502:7, July 1998.
- [91] A. Challinor and A. Lasenby. Relativistic corrections to the sunyaev-zeldovich effect. *Ap. J.*, 499:1, May 1998.
- [92] J. A. Rubiño-Martín, C. Hernández-Monteagudo, and R. A. Sunyaev. The imprint of cosmological hydrogen recombination lines on the power spectrum of the CMB. *Astron. Astro-phys.*, 438:461–473, August 2005.
- [93] C. Hernández-Monteagudo, J. A. Rubiño-Martín, and R. A. Sunyaev. On the influence of resonant scattering on cosmic microwave background polarization anisotropies. *MNRAS*, 380:1656–1668, October 2007.
- [94] A. Lewis. Rayleigh scattering: blue sky thinking for future CMB observations. *JCAP*, 8:053, August 2013.
- [95] K. Basu, C. Hernández-Monteagudo, and R. A. Sunyaev. CMB observations and the production of chemical elements at the end of the dark ages. *Astron. Astrophys.*, 416:447–466, March 2004.

- [96] D. R. G. Schleicher, D. Galli, F. Palla, M. Camenzind, R. S. Klessen, M. Bartelmann, and S. C. O. Glover. Effects of primordial chemistry on the cosmic microwave background. *Astron. Astrophys.*, 490:521–535, November 2008.
- [97] BICEP2 Collaboration, P. A. R. Ade, R. W. Aikin, D. Barkats, S. J. Benton, C. A. Bischoff, J. J. Bock, J. A. Brevik, I. Buder, E. Bullock, C. D. Dowell, L. Duband, J. P. Filippini, S. Fliescher, S. R. Golwala, M. Halpern, M. Hasselfield, S. R. Hildebrandt, G. C. Hilton, K. D. Irwin, K. S. Karkare, J. P. Kaufman, B. G. Keating, S. A. Kernasovskiy, J. M. Kovac, C. L. Kuo, E. M. Leitch, M. Lueker, C. B. Netterfield, H. T. Nguyen, R. O'Brient, R. W. Ogburn, IV, A. Orlando, C. Pryke, S. Richter, R. Schwarz, C. D. Sheehy, Z. K. Staniszewski, R. V. Sudiwala, G. P. Teply, J. E. Tolan, A. D. Turner, A. G. Vieregg, C. L. Wong, and K. W. Yoon. BICEP2 III: Instrumental Systematics. Ap. J., 814:110, December 2015.
- [98] B. T. Draine and A. A. Fraisse. Polarized Far-Infrared and Submillimeter Emission from Interstellar Dust. *Ap. J.*, 696:1–11, May 2009.
- [99] Planck Collaboration, R. Adam, P. A. R. Ade, N. Aghanim, M. I. R. Alves, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, and et al. Planck 2015 results. X. Diffuse component separation: Foreground maps. *ArXiv e-prints*, February 2015.
- [100] Planck Collaboration, N. Aghanim, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, S. Basak, K. Benabed, J.-P. Bernard, M. Bersanelli, P. Bielewicz, A. Bonaldi, L. Bonavera, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, A. Bracco, C. Burigana, E. Calabrese, J.-F. Cardoso, H. C. Chiang, L. P. L. Colombo, C. Combet, B. Comis, B. P. Crill, A. Curto, F. Cuttaia, R. J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, J. Delabrouille, J.-M. Delouis, E. Di Valentino, C. Dickinson, J. M. Diego, O. Doré, M. Douspis, A. Ducout, X. Dupac, S. Dusini, G. Efstathiou, F. Elsner, T. A. Enßlin, H. K. Eriksen, E. Falgarone, Y. Fantaye, F. Finelli, M. Frailis, A. A. Fraisse, E. Franceschi, A. Frolov, S. Galeotta, S. Galli, K. Ganga, R. T. Génova-Santos, M. Gerbino, T. Ghosh, M. Giard, J. González-Nuevo, K. M. Górski, A. Gregorio, A. Gruppuso, J. E. Gudmundsson, F. K. Hansen, G. Helou, D. Herranz, E. Hivon, Z. Huang, A. H. Jaffe, W. C. Jones, E. Keihänen, R. Keskitalo, T. S. Kisner, N. Krachmalnicoff, M. Kunz, H. Kurki-Suonio, G. Lagache, A. Lähteenmäki, J.-M. Lamarre, A. Lasenby, M. Lattanzi, C. R. Lawrence, M. Le Jeune, F. Levrier, M. Liguori, P. B. Lilje, M. López-Caniego, P. M. Lubin, J. F. Macías-Pérez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli, M. Maris, P. G. Martin, E. Martínez-González, S. Matarrese, N. Mauri, J. D. McEwen, A. Melchiorri, A. Mennella, M. Migliaccio, S. Mitra, M.-A. Miville-Deschênes, D. Molinari, A. Moneti, L. Montier, G. Morgante, A. Moss, P. Naselsky, H. U. Nørgaard-Nielsen, C. A. Oxborrow, L. Pagano, D. Paoletti, B. Partridge, L. Patrizii, O. Perdereau, L. Perotto, V. Pettorino, F. Piacentini, S. Plaszczynski, G. Polenta, J.-L. Puget, J. P. Rachen, M. Reinecke, M. Remazeilles, A. Renzi, G. Rocha, M. Rossetti, G. Roudier, J. A. Rubiño-Martín, B. Ruiz-Granados, L. Salvati, M. Sandri, M. Savelainen, D. Scott, C. Sirignano, G. Sirri, L. Stanco, A.-S. Suur-Uski, J. A. Tauber, M. Tenti, L. Toffolatti, M. Tomasi, M. Tristram, T. Trombetti, J. Valiviita, J. Vansyngel, F. Van Tent, P. Vielva, B. D. Wandelt, I. K. Wehus, A. Zacchei, and A. Zonca. Planck intermediate results, L. Evidence for spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis. ArXiv e-prints, June 2016.

- [101] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. I. R. Alves, G. Aniano, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, N. Bartolo, E. Battaner, K. Benabed, A. Benoit-Lévy, J.-P. Bernard, M. Bersanelli, P. Bielewicz, A. Bonaldi, L. Bonavera, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, C. Burigana, R. C. Butler, E. Calabrese, J.-F. Cardoso, A. Catalano, A. Chamballu, H. C. Chiang, P. R. Christensen, D. L. Clements, S. Colombi, L. P. L. Colombo, F. Couchot, B. P. Crill, A. Curto, F. Cuttaia, L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, J. Delabrouille, C. Dickinson, J. M. Diego, H. Dole, S. Donzelli, O. Doré, M. Douspis, B. T. Draine, A. Ducout, X. Dupac, G. Efstathiou, F. Elsner, T. A. Enßlin, H. K. Eriksen, E. Falgarone, F. Finelli, O. Forni, M. Frailis, A. A. Fraisse, E. Franceschi, A. Frejsel, S. Galeotta, S. Galli, K. Ganga, T. Ghosh, M. Giard, E. Gjerløw, J. González-Nuevo, K. M. Górski, A. Gregorio, A. Gruppuso, V. Guillet, F. K. Hansen, D. Hanson, D. L. Harrison, S. Henrot-Versillé, C. Hernández-Monteagudo, D. Herranz, S. R. Hildebrandt, E. Hivon, W. A. Holmes, W. Hovest, K. M. Huffenberger, G. Hurier, A. H. Jaffe, T. R. Jaffe, W. C. Jones, E. Keihänen, R. Keskitalo, T. S. Kisner, R. Kneissl, J. Knoche, M. Kunz, H. Kurki-Suonio, G. Lagache, J.-M. Lamarre, A. Lasenby, M. Lattanzi, C. R. Lawrence, R. Leonardi, F. Levrier, M. Liguori, P. B. Lilje, M. Linden-Vørnle, M. López-Caniego, P. M. Lubin, J. F. Macías-Pérez, B. Maffei, D. Maino, N. Mandolesi, M. Maris, D. J. Marshall, P. G. Martin, E. Martínez-González, S. Masi, S. Matarrese, P. Mazzotta, A. Melchiorri, L. Mendes, A. Mennella, M. Migliaccio, M.-A. Miville-Deschênes, A. Moneti, L. Montier, G. Morgante, D. Mortlock, D. Munshi, J. A. Murphy, P. Naselsky, P. Natoli, H. U. Nørgaard-Nielsen, D. Novikov, I. Novikov, C. A. Oxborrow, L. Pagano, F. Pajot, R. Paladini, D. Paoletti, F. Pasian, O. Perdereau, L. Perotto, F. Perrotta, V. Pettorino, F. Piacentini, M. Piat, S. Plaszczynski, E. Pointecouteau, G. Polenta, N. Ponthieu, L. Popa, G. W. Pratt, S. Prunet, J.-L. Puget, J. P. Rachen, W. T. Reach, R. Rebolo, M. Reinecke, M. Remazeilles, C. Renault, I. Ristorcelli, G. Rocha, G. Roudier, J. A. Rubiño-Martín, B. Rusholme, M. Sandri, D. Santos, D. Scott, L. D. Spencer, V. Stolyarov, R. Sudiwala, R. Sunyaev, D. Sutton, A.-S. Suur-Uski, J.-F. Sygnet, J. A. Tauber, L. Terenzi, L. Toffolatti, M. Tomasi, M. Tristram, M. Tucci, G. Umana, L. Valenziano, J. Valiviita, B. Van Tent, P. Vielva, F. Villa, L. A. Wade, B. D. Wandelt, I. K. Wehus, N. Ysard, D. Yvon, A. Zacchei, and A. Zonca. Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations. Astron. Astrophys., 586:A132, February 2016.
- [102] Planck Collaboration, R. Adam, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, and et al. Planck 2015 results. IX. Diffuse component separation: CMB maps. *ArXiv e-prints*, February 2015.

2 Curriculum Vitae

- 3 Summary of Work Effort
- 4 Current and Pending Support

Letters of Support

6 Budget Details - Narrative

- 6.1 Team, and Work Effort
- **6.1.1 Funded Team Members**
- **6.1.2** Non-Funded Team Members
- **6.2** Costing Principles
- Summer Salaries:
 - Workshop:
- 6.3 University of Minnesota Budget
- 6.3.1 Direct Labor
- **6.3.2** Supplies
- **6.3.3** Travel
- **6.3.4** Other Direct Costs

Publications and Teleconferencing Other Subcontracts

6.3.5 Facilities and Administrative Costs

7 Budget Sheets

ACS attitude control system

ADC analog-to-digital converters

ADS attitude determination software

AHWP achromatic half-wave plate

AMC Advanced Motion Controls

ARC anti-reflection coatings

ATA advanced technology attachment

BRC bolometer readout crates

BLAST Balloon-borne Large-Aperture Submillimeter Telescope

CANbus controller area network bus

CIB cosmic infrared background

CMB cosmic microwave background

CMM coordinate measurement machine

CSBF Columbia Scientific Balloon Facility

CCD charge coupled device

DAC digital-to-analog converters

DASI Degree Angular Scale Interferometer

dGPS differential global positioning system

DfMUX digital frequency domain multiplexer

DLFOV diffraction limited field of view

DSP digital signal processing

EBEX E and B Experiment

EBEX2013 EBEX2013

ELIS EBEX low inductance striplines

ETC EBEX test cryostat

FDM frequency domain multiplexing

FPGA field programmable gate array

FCP flight control program

FOV field of view

FWHM full width half maximum

GPS global positioning system

HDPE high density polyethylene

HIM high index materials

HWP half-wave plate

IA integrated attitude

IP instrumental polarization

JSON JavaScript Object Notation

LDB long duration balloon

LED light emitting diode

LCS liquid cooling system

LC inductor and capacitor

LZH Lazer Zentrum Hannover

MCP multi-color pixel

MSM millimeter and sub-millimeter

MLR multilayer reflective

MAXIMA Millimeter Anisotropy eXperiment IMaging Array

NASA National Aeronautics and Space Administration

NDF neutral density filter

PCB printed circuit board

PE polyethylene

PME polarization modulation efficiency

PSF point spread function

PV pressure vessel

PWM pulse width modulation

RMS root mean square

SLR single layer reflective

SMB superconducting magnetic bearing

SQUID superconducting quantum interference device

SQL structured query language

STARS star tracking attitude reconstruction software

SWS sub-wavelength structures

TES transition edge sensor

TDRSS tracking and data relay satellites

TM transformation matrix

UHMWPE ultra high molecular weight polyethylene

UMN University of Minnesota