

gTangle

A Grammar for the Procedural Generation of Tangle Patterns

Lab Team

Aman Goel Ammar Ahmed Aryamaan Jain Jyoti Sunkara

Mentor

Prajwal Krishna Maitin

Tangles are a form of two dimensional structured pen and ink art created by a small set of basic strokes:

- Dots
- Straight Lines
- Curves
- Shapes

The tangles are generated by recursively splitting and combining initial set of polygons, using group grammars that perform operations on the polygons.

Purpose

Artistry

03

01

02

Tangles take artists hours of tedious and time-consuming work which can now happen quicker and with fine control.

Speed

Group grammars can, in few tens of seconds, produce a wide variety of patterns!

Grammar

Shape

Geometric Shape

Grammar Shape

Rules

Regular Split Rule

$$R = O(\lbrace p_o \rbrace) : t_m \to [\langle t_0, g_0 \rangle, \dots, \langle t_k, g_k \rangle]$$

General Production Rule

Operators

Grouping Operators

$$ungroup(): t_m \to \left[\left\langle t', g_0 \right\rangle, \left\langle t', g_1 \right\rangle \dots \left\langle t', g_k \right\rangle \right]$$
$$regroup(k): t_m \to \left[\left\langle t', g_0 \right\rangle \dots \left\langle t', g_0 \right\rangle \dots \left\langle t', g_k \right\rangle \dots \left\langle t', g_k \right\rangle \right]$$

Grouping Operators Geometry

Geometric Operators

Geometric Operators Geometry

Recursive Operators

Iteration

Results

JSON

Constructive Solid Geometry Tree Data Structure

SVG Drawing

Grouping Operators

```
for shape in tangle.shape:
a,b,c =ungroup(tangle,shape,rchoice)
if b > 100:
    a = Type_(str(a),1)
else:
    a = Type_(str(a),0)
```

Challenges

Challenge 1

Collaboration

With the online semester underway the difficulty of communication, debugging, pair programming and explaining code has become manifold.

Challenge 2

SVG Graphics

SVG defines the graphics in XML format.

The intricacies of SVG images, how they are drawn, stored structured and created and how to create them from code are all new problems for us.

Challenge 3

Constructive Solid Geometry Trees

While grammars bring mathematical finesse to the tangles on paper. The representation and manipulation of shapes using a graph in code is a hard problem to solve.

Progress

- Grammar tree data structure to store shapes and take tessellated polygons as input and output in SVG format
- Structuring rules as JSON files and parsing them
- Grouping Operators

Overall:

43%

Completed!

Road Ahead

Proposal Submission

Reading related papers and literature review

Structuring the grammar as a tree

Reading and parsing rules as JSON objects

Grouping Operators Geometric Operators

Decorative Operators

Shape Perturbation

Testing And Creating

Tangles!