# Introduction to the Model Theory of Higher-Order Logic

Dennis Y. Zvigelsky

Model Theory Seminar Fall 2024, McMaster University

September 23, 2024



## Presentation Overview

- 1 A brief history of simple type theory
- 2 Alonzo: syntax and semantics
- Standard semantics and categoricity
- 4 Henkin's Theorem and Skolem's Paradox

## (1908) Russell's Ramified Theory of Types

## Two distinct hierarchies [1]:

- Types
  - Stratifying and distinguishing individuals, predicates on individuals, and predicates on predicates on ...
  - Restrict variable scope and term formation
  - Ban set-theoretic paradoxes
- Orders
  - Stratifying properties based on argument order (predicativity)
  - Bans *impredicative* definitions which have a "vicious circle"
  - E.g.  $y = \inf(X)$  iff
    - (1) For all  $x \in X$ ,  $y \le x$ ;
    - (2) For all  $z \in X$ , z is a lower bound, implies  $z \le y$ .
  - Since we quantified over  $y \in X$ ,  $\inf(X)$  is impredicative



# (1908) Russell's Axiom of Reducibility & STT

- (Axiom) Any propositional function can be expressed as a predicative one
- So why care about predicativity?!

STT = Ramified Type Theory + Axiom of Reducibility



# (1940) Church's (Simple) Type Theory

- A simple theory of types with  $\lambda$ -conversion [2]
- Hierarchy of types via o,  $\iota$ ,  $(\alpha\beta)$
- Great influence on computing as a practical function theory

# (1940) Inference Rules of Church's Type Theory

- I. To replace any part  $M_{\alpha}$  of a formula by the result of substituting  $y_{\beta}$  for  $x_{\beta}$  throughout  $M_{\alpha}$ , provided that  $x_{\beta}$  is not a free variable of  $M_{\alpha}$  and  $y_{\beta}$  does not occur in  $M_{\alpha}$ . (I.e., to infer from a given formula the formula obtained by this replacement.)
- II. To replace any part  $((\lambda x_{\beta} \mathbf{M}_{\alpha}) N_{\beta})$  of a formula by the result of substituting  $N_{\beta}$  for  $x_{\beta}$  throughout  $\mathbf{M}_{\alpha}$ , provided that the bound variables of  $\mathbf{M}_{\alpha}$  are distinct both from  $x_{\beta}$  and from the free variables of  $N_{\beta}$ .
- III. Where  $A_{\alpha}$  is the result of substituting  $N_{\beta}$  for  $\mathbf{x}_{\beta}$  throughout  $\mathbf{M}_{\alpha}$ , to replace any part  $A_{\alpha}$  of a formula by  $((\lambda \mathbf{x}_{\beta}\mathbf{M}_{\alpha})N_{\beta})$ , provided that the bound variables of  $\mathbf{M}_{\alpha}$  are distinct both from  $\mathbf{x}_{\beta}$  and from the free variables of  $N_{\beta}$ .
  - IV. From  $F_{\circ \alpha} x_{\alpha}$  to infer  $F_{\circ \alpha} A_{\alpha}$ , provided that  $x_{\alpha}$  is not a free variable of  $F_{\circ \alpha}$ . V. From  $A_{\circ} \supset B_{\circ}$  and  $A_{\circ}$ , to infer  $B_{\circ}$ .
  - VI. From  $F_{\circ \alpha} x_{\alpha}$  to infer  $\Pi_{\circ (\circ \alpha)} F_{\circ \alpha}$ , provided that  $x_{\alpha}$  is not a free variable of  $F_{\circ \alpha}$ .

Figure 1: Inference rules of CTT. (I–III) are  $\lambda$ -conversions. [2]

# (1963) Henkin & Andrews' Practical Revision

- Henkin: logic [3]
- Andrews: proof system [4]
- Reformulated Church's type theory to a logic with:
  - Definite description
  - Equality
  - Function abstraction
  - Function application

Model Theory Seminar Fall 2024, McMaster University

## The Duality of Simple Type Theory

- STT as a *weak set theory*:  $\mathbf{A} + \mathbf{I}$  are equiconsistent with bounded Zermelo set theory and conversely [5].
- STT as a strong predicate logic: an  $\omega$ -order logic.

## (2023) Alonzo: Church's Type Theory With Undefinedness

The definitions below are taken from [6].

Let  $L = (\mathcal{B}, \mathcal{C})$  be a language. A *frame* for L is a collection  $\mathcal{D} = \{D_{\alpha} \mid \alpha \in \mathcal{T}(L)\}$  of *nonempty* domains (sets) of values such that:

- F1. Domain of truth values:  $D_o = \mathbb{B} = \{F, T\}.$
- F2. Predicate domain:  $D_{\alpha \to o}$  is a set of some total functions from  $D_{\alpha}$  to  $D_{o}$  for  $\alpha \in \mathcal{T}(L)$ .
- F3. Function domain:  $D_{\alpha \to \beta}$  is a set of some partial and total functions from  $D_{\alpha}$  to  $D_{\beta}$  for  $\alpha, \beta \in \mathcal{T}(L)$  with  $\beta \neq o$ .
- F4. Product domain:  $D_{\alpha \times \beta} = D_{\alpha} \times D_{\beta}$  for  $\alpha, \beta \in \mathcal{T}(L)$ .
- A frame is *full* if  $D_{\alpha \to \beta}$  is full for all  $\alpha, \beta \in \mathcal{T}(L)$ .





## Semantics of Alonzo

- An interpretation of L is a pair  $M = (\mathcal{D}, I)$  where  $I: \mathcal{C} \to \bigcup D_{\alpha}$ .
- M is a general model of L if there is a partial binary valuation function  $V^M$  such that, for all  $\varphi \in \operatorname{assign}(M)$  and expressions  $\mathbf{C}_{\gamma}$  of L,
  - **1** Either  $V_{\omega}^{M}(\mathbf{C}_{\gamma}) \in D_{\gamma}$  or  $V_{\omega}^{M}(\mathbf{C}_{\gamma})$  is undefined
  - Conditions V1 V7 are satisfied

Model Theory Seminar Fall 2024, McMaster University

#### Semantics of Alonzo

- V1.  $V_{\varphi}^{M}((\mathbf{x}:\alpha)) = \varphi((\mathbf{x}:\alpha)).$
- V2.  $V_{\varphi}^{M}(\mathbf{c}_{\alpha}) = I(\mathbf{c}_{\alpha}).$
- V3.  $V_{\varphi}^{M}(\mathbf{A}_{\alpha} = \mathbf{B}_{\alpha}) = \mathrm{T} \text{ if } V_{\varphi}^{M}(\mathbf{A}_{\alpha}) \text{ is defined, } V_{\varphi}^{M}(\mathbf{B}_{\alpha}) \text{ is defined,}$  and  $V_{\varphi}^{M}(\mathbf{A}_{\alpha}) = V_{\varphi}^{M}(\mathbf{B}_{\alpha}).$  Otherwise,  $V_{\varphi}^{M}(\mathbf{A}_{\alpha} = \mathbf{B}_{\alpha}) = \mathrm{F}.$
- V4.  $V_{\varphi}^{M}(\mathbf{F}_{\alpha \to \beta} \mathbf{A}_{\alpha}) = V_{\varphi}^{M}(\mathbf{F}_{\alpha \to \beta})(V_{\varphi}^{M}(\mathbf{A}_{\alpha}))$  i.e., the application of the function  $V_{\varphi}^{M}(\mathbf{F}_{\alpha \to \beta})$  to the argument  $V_{\varphi}^{M}(\mathbf{A}_{\alpha})$  if  $V_{\varphi}^{M}(\mathbf{F}_{\alpha \to \beta})$  is defined,  $V_{\varphi}^{M}(\mathbf{A}_{\alpha})$  is defined, and  $V_{\varphi}^{M}(\mathbf{F}_{\alpha \to \beta})$  is defined at  $V_{\varphi}^{M}(\mathbf{A}_{\alpha})$ . Otherwise,  $V_{\varphi}^{M}(\mathbf{F}_{\alpha \to \beta} \mathbf{A}_{\alpha}) = \mathbf{F}$  if  $\beta = o$  and  $V_{\varphi}^{M}(\mathbf{F}_{\alpha \to \beta} \mathbf{A}_{\alpha})$  is undefined if  $\beta \neq o$ .

## Semantics of Alonzo

V5.  $V_{\varphi}^{M}(\lambda \mathbf{x} : \alpha \cdot \mathbf{B}_{\beta})$  is the (partial or total) function  $f \in D_{\alpha \to \beta}$  such that, for each  $d \in D_{\alpha}$ ,  $f(d) = V_{\varphi[(\mathbf{x} : \alpha) \mapsto d]}^{M}(\mathbf{B}_{\beta})$  if  $V_{\varphi[(\mathbf{x} : \alpha) \mapsto d]}^{M}(\mathbf{B}_{\beta})$  is defined and f(d) is undefined if  $V_{\varphi[(\mathbf{x} : \alpha) \mapsto d]}^{M}(\mathbf{B}_{\beta})$  is undefined.

Alonzo

- V6.  $V_{\varphi}^{M}(\mathbf{I} \mathbf{x} : \alpha \cdot \mathbf{A}_{o})$  is the  $d \in D_{\alpha}$  such that  $V_{\varphi[(\mathbf{x}:\alpha)\mapsto d]}^{M}(\mathbf{A}_{o}) = \mathbf{T}$  if there is exactly one such d. Otherwise,  $V_{\varphi}^{M}(\mathbf{I} \mathbf{x} : \alpha \cdot \mathbf{A}_{o})$  is undefined.
- V7.  $V_{\varphi}^{M}((\mathbf{A}_{\alpha}, \mathbf{B}_{\beta})) = (V_{\varphi}^{M}(\mathbf{A}_{\alpha}), V_{\varphi}^{M}(\mathbf{B}_{\beta}))$  if  $V_{\varphi}^{M}(\mathbf{A}_{\alpha})$  and  $V_{\varphi}^{M}(\mathbf{B}_{\beta})$  are defined. Otherwise,  $V_{\varphi}^{M}((\mathbf{A}_{\alpha}, \mathbf{B}_{\beta}))$  is undefined.

## Some Definitions

Let M be a general model of  $L = (\mathcal{B}, \mathcal{C})$ .

- The *size* of a model, |M|, is the cardinality of  $\bigcup_{\mathbf{a} \in \mathcal{B}} D_{\mathbf{a}}^{M}$
- The *power* of a model,  $\|M\|$ , is the least cardinal  $\kappa$  such that  $|D_{\alpha}^{M}| \leq \kappa$  for all  $\alpha \in \mathcal{T}$
- An interpretation  $N = (\mathcal{D}, I)$  of L is a *standard model* of L if  $\mathcal{D}$  is full.

#### Notational definitions:

- $T_o$  stands for  $(\lambda x : o . x) = (\lambda x : o . x)$
- $F_o$  stands for  $(\lambda x : o . T_o) = (\lambda x : o . x)$
- $(\forall \mathbf{x} : \alpha . \mathbf{A}_o)$  stands for  $(\lambda \mathbf{x} : \alpha . T_o) = (\lambda \mathbf{x} : \alpha . \mathbf{A}_o)$
- $\blacksquare$  ( $\exists \mathbf{x} : \alpha . \mathbf{A}_o$ ) stands for  $\neg (\forall \mathbf{x} : \alpha . \neg \mathbf{A}_o)$



#### References I

- [1] B. Russell, "Mathematical logic as based on the theory of types," *American journal of mathematics*, vol. 30, no. 3, pp. 222–262, 1908.
- [2] A. Church, "A formulation of the simple theory of types," *The journal of symbolic logic*, vol. 5, no. 2, pp. 56–68, 1940.
- [3] L. Henkin, "A theory of propositional types," *Fundamenta Mathematicae*, vol. 52, pp. 323–334, 1963.
- [4] P. Andrews, "A reduction of the axioms for the theory of propositional types," *Fundamenta Mathematicae*, vol. 52, pp. 345–350, 1963.
- [5] W. M. Farmer, "The seven virtues of simple type theory," Journal of Applied Logic, vol. 6, no. 3, pp. 267–286, 2008.



## References II

[6] W. M. Farmer, Simple type theory: a practical logic for expressing and reasoning about mathematical ideas. Springer Nature. 2023.

Model Theory Seminar Fall 2024, McMaster University