

Current Status and Perspectives of ERL-based Compton Sources

Ryoichi Hajima

National Inst. Quantum and Radiological Sci. and Tech. (QST)

March 8, 2018

FLS 2018, The 60th ICFA Advanced Beam Dynamics Workshop

Work supported by:

- A government (MEXT) subsidy for strengthening nuclear security
- Photon and Quantum Basic Research Coordinated Development Program from the MEXT
- JSPS KAKENHI 17H02818.

Laser Compton Scattering (LCS)

$$E_L = \hbar \omega$$
 Incident Photon

$$E_X \simeq rac{4\gamma^2 E_L}{1+(\gamma heta)^2+4\gamma E_L/(mc^2)}$$
 for head-on collision

- ✓ Pencil like beam
- ✓ Energy Tunable
- ✓ Polarized (linear and circular)
- ✓ Correlation of E_X and θ

Applications and Advantages of LCS

Imaging
Element assay by XRF

Advantage

Compactness

25 MeV x 1 μ m \rightarrow 10 keV

MeV

Photo-nuclear reaction (γ, γ') (γ, n) Isotope assay by NRF Polarized gamma and positron

Unparalleled Brightness > MeV

C.P.J. Barty, "White Book of ELI-NP"

GeV

Hadron physics γ-γ collider

New-generation LCS Gamma-ray Sources

Nondestructive Detection & Measurement of Nuclear Material

Detection and measurement of specific isotopes

- J. Pruet et al., J. App. Phys. 99, 123102 (2006)
- R. Hajima et al., J. Nucl. Sci. Tech. 45, 441 (2008)
- H. Ohgaki et al., IPAC-2016, 2007 (2016)

Applications on Fundamental Science

QED predicts two photon collision

Many experiments for testing the QED.

13 events were observed at 2015 run.

ATLAS Collaboration, Nat. Phys. (2017).

MeV gamma provides an efficient way.

Delbrück (photon-photon) Scattering can be selected from other scattering by linearly-pol. MeV γ .

10⁴ events in 76-day exp. at ELI-NP.

J. Koga and T. Hayakawa, PRL (2017)

Photon Vortex

beams carrying orbital angular momentum.

X-ray vortex

S. Sasaki et al., PRL100, 124801 (2008).

γ-ray vortex

γ-ray vortex from nonlinear LCS

Y. Taira et al. Sci. Rep. 7, 5018(2017)

γ-ray vortex with Laguerre Gaussian wave function

T. Maruyama et al., arXiv:1710.09369 (2017)

6

ERL-based Compton Source

LCS Experiment at the Compact ERL

4-year R&D program funded from MEXT (2011-2014)

ERL-LCS technologies towards high-flux and narrow-bandwidth γ -rays.

Installation of Equipment for LCS Experiment

Demonstration of technologies relevant to future ERL-based LCS sources

Laser enhancement cavity and 45W laser

Beam line

Experimental hut

Laser Enhancement Cavity

M4 M3 162.5MHz Frequency cERL Concave Concave divider 1.3GHz telescope for mode-matching M2M1HWP Laser PD QWP **PZT** HWP[162.5 MHz reflectivity 45W, 1064nm PD M1: 99.9% **PBS** M2: 99.99% locking M3, M4: 99.999% PD loop

Developed by KEK group

T. Akagi et al., Proc. IPAC-2014, p.2072 A. Kosuge et al., Proc. IPAC-2015, TUPWA-66

Electron beam tunings for the LCS

- Low-beta insertion for small beam sizes at IP
- Transport beams to the dump with small beam losses

Beam optics was established

 σ_y^*

IP: interaction point

Design optics (example: "70% middle" optics)

$$\sigma_{x}^{*}$$
 = 21 µm, σ_{y}^{*} = 33 µm at IP

Beam sizes at IP were estimated from Q-scan data $\sigma_{x}^{*} \sim 13 \mu \text{m}, \ \sigma_{v}^{*} \sim 25 \mu \text{m} \text{ (example)}$

 σ_{x}^{*} , σ_{v}^{*} < (resolution of the screen monitor)

Bunch charge: 0.5 pC/bunch, Normalized emittances: $(\varepsilon_{nx}, \varepsilon_{ny}) = (0.47, 0.39) \text{ mm} \cdot \text{mrad}$

S. Sakanaka et al., Proc. IPAC-2015, TUBC1

First LCS photon (Mar. 2015)

Parameters of electron beams:

Energy [MeV]	20
Bunch charge [pC]	0.36
Bunch length [ps, rms]	2
Spot size [μ m, rms]	30
Emittance [mm mrad, rms]	0.4
Repetition Rate [MHz]	162.5
Beam current [μA]	58

Parameters of laser (enhanced by cavity):

Center wavelength [nm]	1064
Pulse energy [μ J]	64
Pulse length [ps, rms]	5.65
Spot size [μ m, rms]	30
Collision angle [deg]	18
Repetition rate [MHz]	162.5
Intracavity power [kW]	10.4

Results:

Photon energy = 6.95 keVDetector count rate = $1370 \text{ cps } @\phi 4.66 \text{mm } (*)$ Energy bandwidth = $30 \text{ eV} (0.4\%) @\phi 4.66 \text{mm } (**)$ Source flux = $2.6 \times 10^7 \text{ ph/s } (***)$

- (*) Detector collecting angle is 4.66mm/16.6m = 0.281 mrad
- (**) Detector resolution subtracted
- (***) CAIN/EGS simulations with the detector count rate

T. Akagi et al. PR-AB 19, 114701 (2016)

X-ray imaging with a LCS beam

An X-ray image of a hornet taken with LCS-produced X-ray.

Detector: HyPix-3000 from RIGAKU. Detector was apart from the sample by approx. 2.5 m.

X-ray resonance fluorescence with a LCS beam

Assay of a SUS plate

6.95-keV X-ray is between K absorption edges of Mn and Fe minor composition (Cr, Mn) can be assayed with LCS-XRF

LCS-XRF is applicable to assay of U/Np/Pu in HNO₃ aqueous solution with ~100 keV LCS X-ray.

T. Shizuma et al. NIM-A 654, 597 (2011).

	LCS	Rigaku, ZSX100e
Cr	18.0±0.5%	17.9%
Mn	0.95±0.06%	1.0%

T. Akagi et al. PR-AB 19, 114701 (2016)

ERL-based LCS sources form keV to GeV

MeV

R. Ainsworth et al., PR-AB 19, 083502 (2016)

R. Hajima, S. Benson, Next-gamma WS (2016).

Summary

- Laser Compton Scattering sources have many advantages
 - pencil-like beam, energy tunability, polarization, narrow bandwidth, short pulse, vortex
- Applications of LCS sources cover
 - nondestructive detection, measurement and imaging of isotopes
 - QED, photon vortex, nuclear physics, hadron physics ...
- ERL is one of the promising platforms for the next-gen LCS
 - small emittance, high repetition, high average current, compatible with a laser enhancement cavity
- We established technologies necessary for ERL-based Compton sources and demonstrated X-ray generation at the cERL.

Collaborators

- Quantum Beam Science Research Division, QST
 - Laser Compton Scattered Gamma-ray Research Project T. Hayakawa, T. Shizuma, C.T. Angell, M. Sawamura, R. Nagai

- High-Intensity Laser Science Group M. Mori, J. Koga
- Integrated Support Center for Nuclear Nonproliferation and Nuclear Security, JAEA
 - M. Seya, M. Koizumi, M. Omer
- **KEK**
 - H. Kawata, Y. Kobayashi and cERL team
 - N. Terunuma, A. Kosuge, T. Akagi

H. Ohgaki, H. Zen, T. Kii

M. Fujiwara

- N. Nishimori
- Hiroshima U.
 - S. Matsuba

Y. Taira, H. Toyokawa

- U. Hyogo
 - S. Miyamoto

- T. Kajino
- Nihon U.
 - T. Maruyama

