# $12a_{0714} \ (K12a_{0714})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle u^{53} + u^{52} + \dots - u - 1 \rangle$$

\* 1 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 53 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle u^{53} + u^{52} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{8} + u^{6} - u^{4} + 1 \\ -u^{8} + 2u^{6} - 2u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{9} + 2u^{7} - 3u^{5} + 2u^{3} - u \\ -u^{11} + u^{9} - 2u^{7} + u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{28} - 5u^{26} + \dots + u^{2} + 1 \\ u^{30} - 4u^{28} + \dots - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{20} - 3u^{18} + 7u^{16} - 10u^{14} + 10u^{12} - 7u^{10} + u^{8} + 2u^{6} - 3u^{4} + u^{2} + 1 \\ u^{20} - 4u^{18} + 10u^{16} - 18u^{14} + 23u^{12} - 24u^{10} + 18u^{8} - 10u^{6} + 3u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{39} + 6u^{37} + \dots + 8u^{5} - 2u^{3} \\ -u^{39} + 7u^{37} + \dots - 3u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{47} - 8u^{45} + \dots - 10u^{5} + 4u^{3} \\ u^{49} - 7u^{47} + \dots - 2u^{7} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $4u^{52} 36u^{50} + \cdots 8u 2$

#### (iv) u-Polynomials at the component

| Crossings                         | u-Polynomials at each crossing          |
|-----------------------------------|-----------------------------------------|
| $c_1, c_8$                        | $u^{53} + 17u^{52} + \dots - u + 1$     |
| $c_2, c_7$                        | $u^{53} + u^{52} + \dots - u - 1$       |
| <i>c</i> <sub>3</sub>             | $u^{53} - u^{52} + \dots + 13u - 1$     |
| $c_4, c_5, c_6 \\ c_{10}, c_{11}$ | $u^{53} + u^{52} + \dots - u - 1$       |
| <i>c</i> <sub>9</sub>             | $u^{53} + 7u^{52} + \dots + 293u + 295$ |
| $c_{12}$                          | $u^{53} + 5u^{52} + \dots - 417u - 99$  |

## (v) Riley Polynomials at the component

| Crossings                         | Riley Polynomials at each crossing            |
|-----------------------------------|-----------------------------------------------|
| $c_{1}, c_{8}$                    | $y^{53} + 39y^{52} + \dots + 19y - 1$         |
| $c_2, c_7$                        | $y^{53} - 17y^{52} + \dots - y - 1$           |
| <i>c</i> <sub>3</sub>             | $y^{53} + 3y^{52} + \dots + 47y - 1$          |
| $c_4, c_5, c_6 \\ c_{10}, c_{11}$ | $y^{53} - 69y^{52} + \dots - y - 1$           |
| <i>c</i> <sub>9</sub>             | $y^{53} + 23y^{52} + \dots - 620381y - 87025$ |
| $c_{12}$                          | $y^{53} - 13y^{52} + \dots + 120231y - 9801$  |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.917964 + 0.396458I | 11.02350 - 1.17650I                   | 3.47656 - 1.29829I  |
| u = -0.917964 - 0.396458I | 11.02350 + 1.17650I                   | 3.47656 + 1.29829I  |
| u = 1.004410 + 0.120149I  | -3.30847 - 2.92968I                   | -6.10401 + 5.98646I |
| u = 1.004410 - 0.120149I  | -3.30847 + 2.92968I                   | -6.10401 - 5.98646I |
| u = -0.965969 + 0.058477I | -2.10934 + 0.19404I                   | -2.74556 + 1.38490I |
| u = -0.965969 - 0.058477I | -2.10934 - 0.19404I                   | -2.74556 - 1.38490I |
| u = -1.026680 + 0.154387I | 0.16153 + 5.66463I                    | 0.36927 - 7.13482I  |
| u = -1.026680 - 0.154387I | 0.16153 - 5.66463I                    | 0.36927 + 7.13482I  |
| u = 1.03975               | 5.77807                               | -1.63810            |
| u = 0.808317 + 0.497173I  | 1.80074 + 0.19940I                    | 3.10423 - 0.79204I  |
| u = 0.808317 - 0.497173I  | 1.80074 - 0.19940I                    | 3.10423 + 0.79204I  |
| u = 1.045770 + 0.171126I  | 9.64765 - 7.13925I                    | 1.62928 + 5.46600I  |
| u = 1.045770 - 0.171126I  | 9.64765 + 7.13925I                    | 1.62928 - 5.46600I  |
| u = -0.711976 + 0.788691I | 2.77377 - 2.54983I                    | 2.56238 + 3.84090I  |
| u = -0.711976 - 0.788691I | 2.77377 + 2.54983I                    | 2.56238 - 3.84090I  |
| u = 0.741129 + 0.766184I  | 3.37856 - 0.51833I                    | 4.74330 + 3.74158I  |
| u = 0.741129 - 0.766184I  | 3.37856 + 0.51833I                    | 4.74330 - 3.74158I  |
| u = -0.898334 + 0.585827I | -0.89223 + 2.27300I                   | -4.11058 - 2.34862I |
| u = -0.898334 - 0.585827I | -0.89223 - 2.27300I                   | -4.11058 + 2.34862I |
| u = 0.706508 + 0.812636I  | 6.62164 + 5.35410I                    | 7.68244 - 4.25676I  |
| u = 0.706508 - 0.812636I  | 6.62164 - 5.35410I                    | 7.68244 + 4.25676I  |
| u = -0.703816 + 0.827557I | 16.3321 - 6.9044I                     | 8.55087 + 2.77192I  |
| u = -0.703816 - 0.827557I | 16.3321 + 6.9044I                     | 8.55087 - 2.77192I  |
| u = -0.780598 + 0.788930I | 7.91993 + 2.45268I                    | 9.54638 - 3.47883I  |
| u = -0.780598 - 0.788930I | 7.91993 - 2.45268I                    | 9.54638 + 3.47883I  |
| u = 0.941389 + 0.627556I  | 1.18896 - 4.90002I                    | 2.00262 + 7.53056I  |
| u = 0.941389 - 0.627556I  | 1.18896 + 4.90002I                    | 2.00262 - 7.53056I  |
| u = 0.792770 + 0.808036I  | 17.9061 - 3.4233I                     | 9.92605 + 2.63045I  |
| u = 0.792770 - 0.808036I  | 17.9061 + 3.4233I                     | 9.92605 - 2.63045I  |
| u = -0.567997 + 0.619087I | 10.69110 - 0.81715I                   | 5.56596 - 0.12172I  |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -0.567997 - 0.619087I | 10.69110 + 0.81715I                   | 5.56596 + 0.12172I |
| u = -0.984073 + 0.636487I | 9.59431 + 5.77095I                    | 05.49289I          |
| u = -0.984073 - 0.636487I | 9.59431 - 5.77095I                    | 0. + 5.49289I      |
| u = -0.952798 + 0.740289I | 7.39031 + 3.31063I                    | 0                  |
| u = -0.952798 - 0.740289I | 7.39031 - 3.31063I                    | 0                  |
| u = 0.974166 + 0.713810I  | 2.66592 - 5.09809I                    | 0                  |
| u = 0.974166 - 0.713810I  | 2.66592 + 5.09809I                    | 0                  |
| u = 0.952090 + 0.759043I  | 17.4152 - 2.4557I                     | 0                  |
| u = 0.952090 - 0.759043I  | 17.4152 + 2.4557I                     | 0                  |
| u = -0.994703 + 0.718854I | 1.91508 + 8.24431I                    | 0                  |
| u = -0.994703 - 0.718854I | 1.91508 - 8.24431I                    | 0                  |
| u = 1.005020 + 0.728341I  | 5.71195 - 11.14500I                   | 0                  |
| u = 1.005020 - 0.728341I  | 5.71195 + 11.14500I                   | 0                  |
| u = 0.654395 + 0.369401I  | 1.81787 + 0.23650I                    | 4.15811 + 0.08826I |
| u = 0.654395 - 0.369401I  | 1.81787 - 0.23650I                    | 4.15811 - 0.08826I |
| u = -1.011890 + 0.734334I | 15.3906 + 12.7564I                    | 0                  |
| u = -1.011890 - 0.734334I | 15.3906 - 12.7564I                    | 0                  |
| u = -0.124769 + 0.640044I | 13.4136 + 4.6017I                     | 8.93924 - 3.30114I |
| u = -0.124769 - 0.640044I | 13.4136 - 4.6017I                     | 8.93924 + 3.30114I |
| u = 0.124451 + 0.589584I  | 3.80539 - 3.34966I                    | 8.46314 + 5.01124I |
| u = 0.124451 - 0.589584I  | 3.80539 + 3.34966I                    | 8.46314 - 5.01124I |
| u = -0.128727 + 0.466132I | 0.171113 + 1.087940I                  | 2.68023 - 5.97711I |
| u = -0.128727 - 0.466132I | 0.171113 - 1.087940I                  | 2.68023 + 5.97711I |

II. u-Polynomials

| Crossings                         | u-Polynomials at each crossing          |
|-----------------------------------|-----------------------------------------|
| $c_1, c_8$                        | $u^{53} + 17u^{52} + \dots - u + 1$     |
| $c_2, c_7$                        | $u^{53} + u^{52} + \dots - u - 1$       |
| <i>c</i> <sub>3</sub>             | $u^{53} - u^{52} + \dots + 13u - 1$     |
| $c_4, c_5, c_6 \\ c_{10}, c_{11}$ | $u^{53} + u^{52} + \dots - u - 1$       |
| <i>c</i> <sub>9</sub>             | $u^{53} + 7u^{52} + \dots + 293u + 295$ |
| $c_{12}$                          | $u^{53} + 5u^{52} + \dots - 417u - 99$  |

## III. Riley Polynomials

| Crossings                         | Riley Polynomials at each crossing            |
|-----------------------------------|-----------------------------------------------|
| $c_1, c_8$                        | $y^{53} + 39y^{52} + \dots + 19y - 1$         |
| $c_2, c_7$                        | $y^{53} - 17y^{52} + \dots - y - 1$           |
| $c_3$                             | $y^{53} + 3y^{52} + \dots + 47y - 1$          |
| $c_4, c_5, c_6 \\ c_{10}, c_{11}$ | $y^{53} - 69y^{52} + \dots - y - 1$           |
| <i>c</i> 9                        | $y^{53} + 23y^{52} + \dots - 620381y - 87025$ |
| $c_{12}$                          | $y^{53} - 13y^{52} + \dots + 120231y - 9801$  |