What is claimed is:

1. A pharmaceutical compound according to Formula I,

wherein R1, R2, R3 and R4 are selected from the group consisting of a straight or branched chain alkyl group having 1 to 6 carbons substitutes with one or more Ra groups, a benzyl group, a phenyl group which is substituted with one or two Rb groups, and a benzyl group which is substituted with one or two Rb groups;

wherein R1, R2, R3 and R4 are selected from the group consisting of halogen, -NO₂, -OCH₃, -OCH₂CH₃, -CH(CH₃)₂, -(CH₂)_nOH, -(CH₂)_nNH, -CH₂CH₂N(CH₃)₂, -CH₂CH₂NH(CH₂)₂OH, cyclopentane, 2,3-(CH₃)₂-cyclohexane, -S-Rc, -O-CO-Rd, -N-Re, -CO-Rf, -CONH-Rg; and

wherein Ra, Rb, Rc, Rd, Re, Rf, Rg are selected from the group consisting of a straight or branched chain alkyl group having 1 to 6 carbons, -NO₂, -OCH₃, -OCH₂CH₃, -CH(CH₃)₂, -(CH₂)_nOH, -(CH₂)_nNH, -CH₂CH₂N(CH₃)₂, -CH₂CH₂NH(CH₂)₂OH, cyclopentane, 2,3-(CH₃)₂-cyclohexane, -S-, -OCO-, -N-, -CO-, -CONH-.

2. The compound according to claim 1, wherein R1, R2, R3 and R4 represent a substituted phenyl, benzyl, ethylphenyl, cyclopentane, and 2,3-(CH₃)₂-cyclohexane groups selected from the group consisting of 2-CH₃C₆H₄, 3-CH₃C₆H₄, 4-CH₃C₆H₄, 2-OHC₆H₄, 3-OHC₆H₄, 4-OHC₆H₄, 3-ClC₆H₄, 4-ClC₆H₄, 4-NO₂C₆H₄, 3-NO₂C₆H₄, 4-NO₂C₆H₄, 3-NH₂C₆H₄, 4-NH₂C₆H₄, and 2,4-Cl₂C₆H₃.

- 3. The compound according to claim 1, wherein R1, R2, R3 and R4 represent a substituted alkyl group selected from the group consisting of CH₂Br, CH₂Cl, CH₂OH, C(CH₃)₃, (CH₂)₂OH, (CH₂)₃OH, (CH₂)₄OH, CH₂NH₂, (CH₂)₂NH₂, (CH₂)₃NH₂, (CH₂)₄NH₂, (CH₂)₅NH₂, CH₂N(CH₃)₂, (CH₂)₂N(CH₃)₂, (CH₂)₂NH(CH₂)₂OH, (CH₂)₃NH(CH₂)₂OH, (CH₂)₂NHCH₂OH, (CH₂)₃NHCH₂OH, CH₂CH(CH₃)₂, CHCl₂, CH(CH₃)Cl, (CH₂)₂Cl, (CH₂)₃Cl, (CH₂)₄Br, and (CH₂)₄Cl.
- 4. An anti-cancer drug, comprising, as an active ingredient, the pharmaceutical compound of claim 1.
- 5. A telomerase effect drug, comprising, as an active ingredient, the pharmaceutical compound of claim 1.
- 6. An anti-inflammatory drug, comprising, as an active ingredient, the pharmaceutical compound of claim 1.
- 7. An anti-oxidant drug, comprising, as an active ingredient, the pharmaceutical compound of claim 1.
- 8. An anti-psoriatic drug, comprising, as an active ingredient, the pharmaceutical compound of claim 1.
- 9. A stem cell and tissue engineering application, comprising, as an active ingredient, the pharmaceutical compound of claim 1.
- 10. A compound having the chemical structure of Formula I,

wherein R1, R2, R3 and R4 represent cyclopentane, cyclohexane, -C₆H₅, -CH₂C₆H₅, or -CH₂CH₂C₆H₅, group having one, two or three substituents which is selected from the group of halogen, OH, CH₃, OCH₃, NH₂, and NO₂.

11. A compound having the chemical structure of Formula 1,

FORMULA I

wherein R1, R2, R3 and R4 represent -S-, -O-CO-, -N-, -CO-, and -CONH-, consisting of a straight or branched chain alkyl group having 1 to 6 carbons, and CH₂Br, CH₂Cl, CH₂OH, C(CH₃)₃, (CH₂)₂OH, (CH₂)₃OH, (CH₂)₄OH, CH₂NH₂, (CH₂)₂NH₂, (CH₂)₃NH₂, (CH₂)₄NH₂, (CH₂)₄NH₂, (CH₂)₅NH₂, CH₂N(CH₃)₂, (CH₂)₂N(CH₃)₂, (CH₂)₂NH(CH₂)₂OH, (CH₂)₃NH(CH₂)₂OH, (CH₂)₃NHCH₂OH, CH₂CH(CH₃)₂, CHCl₂, CH(CH₃)Cl, (CH₂)₂Cl, (CH₂)₃Cl, (CH₂)₃Br, (CH₂)₄Br, and (CH₂)₄Cl.

12. A method for synthesis of bis-substituted anthraquinone compounds and salts thereof, comprising reacting 1,5-dichloroanthraquinone, anthrarufin, 1,8-dichloroanthraquinone, 1,5-diaminoanthraquinone or 1,8-diaminoanthraquinone with an appropriate acyl chlorides, thiols, or amines under appropriate conditions to give the bis-substituted anthraquinones according to Formula I

FORMULAI

wherein R1, R2, R3 and R4 are selected from the group consisting of a straight chain alkyl group having 1 to 6 carbons which is optionally substituted with one or more R groups, a branched chain alkyl group having 1 to 6 carbons which is optically substituted with one or more R groups, cyclopentane, 2,3-(CH₃)₂-cyclohexane, -C₆H₅, -CH₂C₆H₅, or -CH₂CH₂C₆H₅, a phenyl which is substituted with one or more R groups, and a benzyl group which is optionally substituted with one or more R groups, and -CH₂CH₂C₆H₅ group which is optionally substituted with one or more R groups;

wherein R is selected from the group consisting of halogen, OH, CH₃, OCH₃, NH₂, and NO₂.

- 13. A method for anti-cancer treatment, comprising administering a therapeutically effective amount of a pharmaceutical compounds according to claim 11 or a pharmaceutically acceptable salt of said compound and optionally a pharmaceutical carrier to a patient in need of such treatment.
- 14. A method for treating abnormal proliferation, comprising administering a therapeutically effective amount of a pharmaceutical compounds according to claim 11 or a pharmaceutically acceptable salt of said compound and optionally a pharmaceutical carrier to a patient in need of such treatment.

- 15. A method for enhancing an anti-oxidation affect, comprising administering a therapeutically effective amount of a pharmaceutical compounds according to claim 11 or a pharmaceutically acceptable salt of said compound and optionally a pharmaceutical carrier to a patient in need of such treatment.
- 16. A method for enhancing human telomerase activity, comprising administering a therapeutically effective amount of a pharmaceutical compounds according to claim 11 or a pharmaceutically acceptable salt of said compound and optionally a pharmaceutical carrier to a patient in need of such treatment.
- 17. A method for stem cell research, comprising administering a therapeutically effective amount of a pharmaceutical compounds according to claim 11 or a pharmaceutically acceptable salt of said compound and optionally a pharmaceutical carrier to a patient in need of such treatment.
- 18. A method for enhancing tissue engineering application, comprising administering a therapeutically effective amount of a pharmaceutical compounds according to claim 11 or a pharmaceutically acceptable salt of said compound and optionally a pharmaceutical carrier to a patient in need of such treatment.
- 19. An anti-cancer drug, comprising, as an active ingredient, the pharmaceutical compound of claim 11.
- 20. An anti-inflammatory drug, comprising, as an active ingredient, the pharmaceutical compound of claim 11.
- 21. An anti-oxidant drug, comprising, as an active ingredient, the pharmaceutical compound of claim 11.
- 22. An anti-psoriatic drug, comprising, as an active ingredient, the pharmaceutical compound of claim 11.
- 23. Drug for telomerase activation or inhibition, comprising, as an active ingredient, the pharmaceutical compound of claim 11.
- 24. Drug for stem cell application, comprising, as an active ingredient, the pharmaceutical compound of claim 11.

25. Drug for tissue engineering, comprising, as an active ingredient, the pharmaceutical compound of claim 11.

Table 1. Cytotoxicity Against the Growth of Suspended Murine and Human Tumor Cell Lines and Inhibitory Effect of Anthraquinone Derivatives (IIa-k)on Iron-induced Lipid Peroxidation in Rat Brain Homogenates.

		IC ₅₀ (μ	M) ^a	LP (%)
Compound	R	Hep G2 °	C6 cells d	$(10 \text{ mM})^{b}$
IIa	CH ₂ CH ₃	12.2 ± 1.1	0.02 ± 0.01	83 ± 2.2
IIb	CH ₂ CH ₂ OH	36.4 ± 1.5	21.5 ± 0.8	16 ± 2.2
IIc	CH ₂ CH ₂ CH ₃	75.1 ± 2.5	29.9 ± 2.1	15 ± 1.5
IId	CH ₂ CH(OH)CH ₂ OH	34.3 ± 1.8	38.5 ± 1.5	83 ± 1.1
IIe	(CH ₂) ₆ OH	49.3 ± 2.1	31.7 ± 1.6	54 ± 1.9
IIf	$2-NH_2C_6H_4$	34.0 ± 1.7	15.1 ± 1.7	5 ± 0.5
llg	3-NH2C6H4	21.5 ± 1.2	26.3 ± 2.8	6 ± 0.9
IIh	4-NH ₂ C ₆ H ₄	17.4 ± 1.5	0.05 ± 0.01	20 ± 1.4
IIi	CH ₂ C ₆ H ₅	41.5 ± 2.5	38.2 ± 4.4	>100
· IIj	$CH_2C_6H_4(OCH_3)(p)$	28.6 ± 1.2	25.1 ± 2.8	67 ± 2.9
IIk .	CH ₂ CH ₂ C ₆ H ₅	36.9 ± 1.5	32.9 ± 3.3	69 ± 1.5
*	Mitoxantrone	2.0 ± 0.5	0.07 ± 0.01	54 ± 1.5
	Ascorbic acid			>100
	(+)-α-Tocopherol			>100
	Anthrarufin		·	-36 ± 1.9

 a IC₅₀, drug concentration inhibiting 50% of cellular growth following 48 h of drug exposure. Values are in μM and represent an average of three experiments. The variance for the IC₅₀ values was less than ± 20%. Inhibition of cell growth was significantly different with respect to that of the control; n = 3 or more, P < 0.01. Relative percentage of inhibition. Inhibition was compared with that of the control (ascorbic acid, α-tocopherol and mitoxantrone-HCl), P < 0.01, mean ± S.E., n = 4. Values are mean percent inhibition at the indicated concentration (μM), and standard errors. Hep G2, human hepatoma G2 cells. C6 cells, rat glioma C6 cells.

Table 2. Inhibitory Effects of IIi on Iron-induced Lipid Peroxidation in Rat Brain Homogenates.

		Inhibition (%	(₀) ^a	
Compound	10 mM	l mM	0.1 mM	0.01 mM
IIi	>100	95	60 ± 2.0	24 ± 0.8
Ascorbic acid	100	75 ± 1.5	32 ± 1.2	10 ± 0.6
$(+)-\alpha$ -Tocopherol	100	55 ± 1.7	0	0
Mitoxantrone-HCl	100	54 ± 2.1	22 ± 3.5	5 ± 0.3

^aRelative percentage of inhibition. Inhibition was compared to that of the control (ascorbic acid, (+)- α -tocopherol and mitoxantrone-HCl); P < 0.01, mean \pm S.E., n = 4. Values are mean percent inhibition at the indicated concentration (mM) with standard errors.

Table 3. Cytotoxicity against the growth of suspended murine and human tumors and inhibitory effect of anthraquinone derivatives (IIIa-n) on iron-induced lipid peroxidation in rat brain homogenates.

	_	IC ₅₀	$(\mu M)^a$	Inhibition of LP (10
Compd	R	Hep G2 °	C6 cells d	mM) ^b
IIIa	CH₂CH₃	4.1 ± 0.5	21.1 ± 1.6	-100
IIIb	CH ₂ CH ₂ CH ₃	0.02 ± 0.01	38.5 ± 2.8	54 ± 2.2
IIIc	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	36.2 ± 2.5	39.1 ± 4.1	-55 ± 1.5
IIId	$C(CH_3)_3$	13.7 ± 1.8	$12:0 \pm 1.5$	-23 ± 1.1
IIIe	C_6H_5	47.7 ± 5.5	38.7 ± 3.6	-50 ± 1.9
IIIf	2-ClC ₆ H ₄	0.04 ± 0.01	40.7 ± 4.7	5 ± 0.5
IIIg	3-C1C ₆ H ₄	15.1 ± 1.9	25.1 ± 2.8	1 ± 0.1
IIIh	4-ClC ₆ H ₄	48.1 ± 4.5	38.6 ± 3.5	2 ± 0.2
IIIi	$2,4-Cl_2C_6H_3$	>50	38.4 ± 4.4	-1 ± 0.1 .
IIIj	$2-CH_3C_6H_4$	21.6 ± 2.2	25.1 ± 2.8	23 ± 1.1
IIIk	$3-CH_3C_6H_4$	18.1 ± 1.5	30.1 ± 3.3	-32 ± 1.5
IIII	4-CH ₃ C ₆ H ₄	9.3 ± 0.9	37.6 ± 4.1	33 ± 1.2
IIIm	CH ₂ C ₆ H ₅	9.0 ± 1.5	39.1 ± 6.2	-1 ± 0.2
IIIn	CH ₂ CH ₂ C ₆ H ₅	0.4 ± 0.1	40.1 ± 5.5	>100
	mitoxantrone	2.0 ± 0.5	0.07 ± 0.01	>100
	ascorbic acid	•		>100
	(+)–α-tocopherol	-0.0		>100
	anthrarufin			-36 ± 1.1

^a IC₅₀, drug concentration inhibiting 50% of cellular growth following 48 h of drug exposure. Values are in μM and represent an average of three experiments. The variance for the IC₅₀ was less than $\pm 20\%$. Inhibition of cell growth was significantly different with respect to that of the control; N = 3 or more, P < 0.01. ^b Relative percentage of inhibition. Inhibition was compared to that of the control [ascorbic acid, α-tocopherol and mitoxantrone-HCl], P < 0.01, Mean \pm S.E., n = 4. Values are mean percent inhibition at the indicated concentration (mM), and standard errors.

^c Hep G2: human hepatoma G2 cells. ^d C6 cells: rat glioma C6 cells.

Table 4. Inhibitory effects of IIIn on iron-induced lipid peroxidation in rat brain homogenates.

- 10 1 4	* 12	Inhibition (%) ^a		
Compound	10mM	l mM	0.1 mM	0.01 mM
IIIn	>100	>100	95 ± 2.0	50 ± 0.8
ascorbic acid	100	75 ± 1.5	32 ± 1.2	10 ± 0.6
(+)–α-tocopherol	100	55 ± 1.7	0	0
mitoxantrone-HCI	100	54 ± 2.1	22 ± 3.5	5 ± 0.3

^aRelative percentage of inhibition. Inhibition was compared to that of the control ascorbic acid, (+)- α -tocopherol and mitoxantrone-HCl], P < 0.01, Mean \pm S.E., n = 4. Values are mean percent inhibition at the indicated concentration (mM), and standard errors.

Table 5. In vitro Cytotoxicity of Diaminoanthraquinones (IVa-s) Against the Growth of Suspended Murine and Human Tumor Cell Lines

			$IC_{50} (\mu M)^a$	
Compound	R	Hep G2 ^b	C6 cells c	2.2.15 ^d
IVa	CH ₂ CH ₃	>20	>20	>20
IVb	CH ₂ CH ₂ OH	>20	>20	19.26 ± 2.2
. IVc	$CH(CH_3)_2$	7.64 ± 2.38	>20	18.98 ± 2.4
IVd	$CH_2CH_2N(CH_3)_2$	0.09 ± 0.01	0.12 ± 0.01	0.13 ± 0.01
. IVe	CH ₂ CH ₂ NH(CH ₂) ₂ OH	1.20 ± 0.02	1.17 ± 0.03	8.35 ± 0.11
IVf	CH ₂ CH ₂ CH ₃	1.74 ± 0.14	16.03 ± 0.68	1.94 ± 0.02
IVg	CH ₂ CH(CH ₃) ₂	14.27±1.54	12.67 ± 0.37	>20
IVh	CH ₂ CH ₂ CH ₂ OH	>20	>20	>20
· IVi	CH ₂ CH ₂ CH ₂ NH ₂	11.67 ± 0.09	12.18 ± 0.04	7.48 ± 0.09
ΙVj	CH ₂ CH ₂ CH ₂ CH ₃	>20	>20	>20
IVk	CH ₂ CH ₂ CH ₂ CH ₂ OH	>20	>20	10.30 ± 0.24
IVI ·	CH ₂ CH ₂ CH ₂ CH ₂ NH ₂	11.61 ± 0.02	12.56 ± 0.16	10.07 ± 0.58
IVm	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NH ₂	17.37 ± 0.74	8.36 ± 0.13	>20
IVn	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	>20	>20	>20
IVo	cyclopentane	>20	>20	>20
ΙVp	2,3-(CH ₃) ₂ -cyclohexane	>20	>20	>20
IVq	4-OHC ₆ H ₄	4.20 ± 0.76	14.21 ± 0.08	>20
. IVr	$CH_2C_6H_5$	>20		>20
IVs	CH ₂ CH ₂ C ₆ H ₅	>20	>20	>20
	Mitoxantrone	2.00 ± 0.5	0.07 ± 0.01	0.40 ± 0.02
	Adriamycin	0.90 ± 0.01	1.00 ± 0.16	1.60 ± 0.04
· · · · · · · · · · · · · · · · · · ·	Cisplatin	1.48 ± 0.62	>1	2.0 ± 0.54

 $^{^{}a}$ IC₅₀, drug concentration inhibiting 50% of cellular growth following 48 h of drug exposure. Values are in μM and represent an average of three experiments. The variance for the IC₅₀ values was less than ±20%. Inhibition of cell growth was significantly different with respect to that of the control; n = 3 or more, P < 0.01. Inhibition was compared with that of control (mitoxantrone-HCl, adriamycin, cisplatin), (μM), and standard errors. b Hep G2, human hepatoma G2 cells. c C6 cells, rat glioma C6 cells. d 2.2.15 cells, hepatitis B virus transfected hepatoma cell lines, HepG 2.2.15 cells.

Table 6. Effects of Symmetrical 1,5-Diaminoanthraquinones (IVa-p) on Activating hTERT Expression

	·		P _{hTERT} -SEAP (hTERT-BJI) ^b			
No.	R	Conc.	Relative MTT	Relative SEAP		
		$(\mu M)^a$	viability (%)	activity (%)	SEAP/vibility	
IVa	CH ₂ CH ₃	3.3	100±4.8	94±17.4	0.94	
		. 33	97±1.0	96±8.5	1.00	
		339	· 99±3.2	66±11.8	0.67	
IVb	CH ₂ CH ₂ OH	3.0	116±5.6	45±20.6	0.39	
		30	90±26.9	16±13.1	. 0.18	
		308	69±18.7	11±11.6	0.16	
IVc	CH(CH ₃) ₂	3.1	101±4.5	32±18.3	0.32	
		31	93±6.5	23±20.5	0.25	
		310	98±12.9	(-2)±15.3	-0.02	
IVd	$CH_2CH_2N(CH_3)_2$	2.6	92±4.8	11±22.4	0.12	
		. 26	76±5.9	(-15)±18.2	-0.19	
	¥ .	262	7±18.2	(-26)±16.9	-3.77	
IVe'.	CH ₂ CH ₂ NH(CH ₂) ₂ OH	2.4	84±19.8	60±11.6	0.72	
		. 24	60±11.2	40±17.3	0.67	
		242	44±12.9	52±19.1	1.18	
lVf	CH ₂ CH ₂ CH ₃	3.1	97±5.6	18±16.7	0.18	
		31	93±8.9	19±24.6	0.20	
		310	42±8.1	(-7)±27.1	-0.16	
[Vg	$CH_2CH(CH_3)_2$	2.8	110±7.6	22±18.3	0.20	
. •		28	103±3.0	22±21.4	0.21	
	*	285	72±3.3	29±3.9.	0.41	
IVh	CH ₂ CH ₂ CH ₂ OH	2.8	72±7.4	41±12.5	0.57	
		28	39±10.5	0±22.1	0.01	
		282	26±15.9	(-3)±10.0	-0.10	
IVi .	CH ₂ CH ₂ CH ₂ NH ₂	2.8	85±6.9	103±19.8	1.22	
		28	3±6.9	47±20.5	15.35	
		283	(-2)±7.7	60±15.1	-28.94	

					•
ĮVj	CH ₂ CH ₂ CH ₂ CH ₃	2.8	109±9.1	98±27.4	0.89
		- 28	99±5.9	103±27.0	1.04
		285	75±5.9	123±22.9	1.64
IVk	CH ₂ CH ₂ CH ₂ CH ₂ NH ₂	2.6	101±10.5	114±20.5	1.13
		26	101±8.8	113±21.6	1.:12
		265	91±11.8	127±19.9	1.39
IVI	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	2.4	106±3.9	. 90±19.5	0.85
		. 24	97±4.6	97±17.9	1.00
		245	68±8.5	122±30.2	1.79
IVm	cyclopentane	2.6	104±3.6	18±20.1	0.18
	5	26	102±4.0	14±29.6	0.14
		267	87±4.6	34±16.5	0.39
IVn	2,3-(CH ₃) ₂ -cyclohexane	2.1	118±10.6	94±20.2	0.80
	9	21	99±8.2	92±17.4	0.93
	•	218	84±6.9	90±22.7.	1.07
I·Vo	CH ₂ C ₆ H ₅	2.3	· 110±4.1	110±14.8	1.00
		23	102±5.3	92±13.8	0.91
٠.		238	74±4.9	86±13.8	1.15
IVp	CH ₂ CH ₂ C ₆ H ₅	2.2	97±4.0	115±12.9	1.18
. *		22	92±1.0	103±12.3	1.12
		223	81±4.7	133±23.8	1.65
- *	Mitoxnatrone	1.9	75±2.9	30±5.8	0.40
		19	56±3.1	13±9.2	0.24
		193	10±2.0	4±14.2	0.38

^aValues are in μ M and represent an average of three experiments. The variance for the relative viability (%) and relative SEAP activity (%) values was less than \pm 20%. Activity of P_{hTERT} -SEAP (hTERT-BJ1) cell growth was significantly different from that of the control; n = 3 or more, P < 0.05. Relative percentage of inhibition was not compared with that of the control, P < 0.01, mean \pm S.E., n = 4. Values are mean percent activity at the indicated concentration, and standard errors. ^bThe hTERT immortalized hTERT-BJ1 was purchased from BD Biosciences Clontech.

Note: The results in this column are shown as means \pm SE of experiments repeated five times. The different symbols qualify as in any concentration of treatment: Relative Cell Viability> 80%, Relative SEAP activity> 100% and P value below 0.05 analyzed with Two-tail T-test.

The ratio of relative cell viability under relative SEAP activity is over 1.2. All of SEAP data are shown as the result that drug-self interference has been subtracted

Table 7. Effects of Symmetrical 1,5-Diaminoanthraquinones (IVa-p) on Repressing hTERT Expression

		Phyterr-St	EAP (hTERT-H129	9) ^b
No. R	Conc	Relative MTT	Relative SEAP	
	$(\mu M)^a$	viability (%)	activity (%)	SEAP/vibility
IVa CH ₂ CH ₃	3.3	106±7.4	108±6.3	. 1.01
		104±3.7	101±6.8	0.97
*	339	103±6.4	95±11.0	0.91
IVb CH ₂ CH ₂ OH	3.0	105±6.3	91±3.9	0.86
	30	88±9.1	88±4.5	1.00
	308	53±2.8	5.7±1.1	1.08
IVc CH(CH ₃) ₂	3.1	114±7.6	94±4.1	0.82
	31	111±4.7	93±2.0	0.84
	310	50±7.5	66±4.7	1.32
IVd CH ₂ CH ₂ N(CH ₃) ₂	2.6	107±9.1	103±6.0	0.95
	26	81±8.3	54±5.9	0.67
	262	29±2.6	40±5.9	1.39
IVe CH ₂ CH ₂ NH(CH ₂) ₂ (OH 2.4	97±8.7	87±3.8	0.89
	24	37±3.9	43±5.5	1.15
	242	11±4.1	40±6.7	3.77
IVf CH ₂ CH ₂ CH ₃	3.1	99±7.6	101±15.3	1.02
	31	98±5.8	100±5.6	1.03
	310	46±9.5	89±8.3	1.93
IVg CH ₂ CH(CH ₃) ₂	2.8	108±4.8	94±7.0	0.87
	28	106±3.7	91±2.5	0.85
	285	80±4.8	75±4.1	0.94
IVh CH ₂ CH ₂ CH ₂ OH	2.8	107±5.0	88±4.9	0.82
	28	49±3.5	69±5.4	1.41
	282	40±10.4	33±2.2	0.81
IVi CH2CH2CH2NH2	2.8	85±11.5	102±4.9	1.20
	28	32±9.3	44±7.5	1.39
	283	16±2.1	38±6,0	2.34

IVj CH ₂ CH ₂ CH ₂ CH ₃			104.71	
TVJ CH2CH2CH2CH3	2.8	102±7.0	106±7.1	1.04
•	28	104±9.2	105±5.5	1.01
	285	81±13.9	98±5.2	1.21
IVk CH ₂ CH ₂ CH ₂ CH ₂ NH ₂	2.6	114±8.1	89±4.9	0.78
	26	110±7.1	71±9.8	0.65
en e	265	16±3.4	27±2.0	1.65
IVI CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	2.4	99±5.3	101±6.1	1.02
ii.	24	95±6.2	106±9.1	1.11
	245	85±8.8	104±9.4	1.22
IVm cyclopentane	2.6	114±7.5	98±4.5	0.86
	26	110±5.7	95±2.8	0.86
	267	86±8.2	90±4.8	1.05
IVn 2,3-(CH ₃) ₂ -cyclohexane	2.1	88±7.9	103±9.2	1.17
	. 21	84±10.2	105±5.1	1.25
	- 218	58±8.0	96±4.5	1.64
IVo CH ₂ C ₆ H ₅	2.3	98±8.4	99±5.0	1.01
	. 23	100±7.3	103±8.9	1.04
	238	40±8.4	97±3.8	2.45
IVp CH ₂ CH ₂ C ₆ H ₅	2.2	94±5.2	105±3.0	1.12
	· 22	97±3.2	103±9.5	1.06
*	223	77±4.2	96±2.9	1.25
Mitoxnatrone	1.9	100±5.6	81±3.8	0.82
	19	57±4.3	66±4.0	1.16
	193	39±3.2	47±3.9	1.21

"Values are in μ M and represent an average of three experiments. The variance for the relative viability (%) and relative SEAP activity (%) values was less than \pm 20%. Repression of P_{hTERT}-SEAP (hTERT-H1299) cell growth was significantly different from that of the control; n=3 or more, P<0.05. Relative percentage of inhibition was not compared with that of the control, P<0.01, mean \pm S.E., n=4. Values are mean percent activity at the indicated concentration, and standard errors. ^bThe hTERT cancer cell hTERT-H1299 was purchased from BD Biosciences Clontech.

Table 8. In vitro Cytotoxicity of 1,8-Diaminoanthraquinones (Va-p) Against the Growth of Suspended Murine and Human Tumor Cell Lines

	le le	,	$IC_{50} \left(\mu M\right)^a$,
Compound	R —	C6 cells c	Hep G2 ^b	2.2.15 ^d
Va	CH ₂ CH ₃	>20	>20	>20
Vb	CH ₂ CH ₂ CH ₃	0.61±0.01	0.19±0.01	1.06±0.03
Ve	CH ₂ CH ₂ CH ₂ CH ₃	>20	>20	>20
Vd	CH ₂ CH(CH ₃) ₂	1.32±0.01	>20	>20
Ve	(CH2)5CH3	>20	>20	>20
Vf	$CH(CH_3)_2$	1.24±0.01	>20	>20
Vg	CH ₂ CH ₂ OH	0.02±0.01	>20	>20
Vh	CH ₂ CH ₂ CH ₂ OH	1.00±0.01	>20	>20
Vi	CH ₂ CH ₂ CH ₂ CH ₂ OH	0.41±0.02	1.65±0.13	>20
Vj	$CH_2CH_2N(CH_3)_2$	0.15±0.04	0.16±0.04	8.55±0.09
Vk	CH ₂ CH ₂ CH ₂ NH ₂	>20	11.43±0.17	>20
Vl	CH ₂ CH ₂ CH ₂ CH ₂ NH ₂	>20	11,47±0.34	>20
Vm	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NH ₂	0.11±0.01	0.09±0.01	1.29±0.06
Vn	Cyclopentane	>20	>20	>20
Vo	CH ₂ C ₆ H ₅	1.66±0.09	>20	>20
Vp	CH ₂ CH ₂ C ₆ H ₅	>20	>20	>20
	Mitoxantrone	0.07±0.01	2.0±0.50	0.40±0.02
	Adriamycin	1.00±0.16	0.90±0.01	1.60±0.04

 $^{^{8}\}text{IC}_{50}$, drug concentration inhibiting 50% of cellular growth following 48 h of drug exposure. Values are in μM and represent an average of three experiments. The variance for the IC₅₀ values was less than $\pm 20\%$. Inhibition of cell growth was significantly different with respect to that of the control; n = 3 or more, P < 0.01. Inhibition was compared with that of the control (mitoxantrone-HCl, adriamycin, cisplatin), (μM), and standard errors. $^{\text{b}}\text{Hep G2}$, human hepatoma G2 cells. $^{\text{c}}\text{C6}$ cells, rat glioma C6 cells. $^{\text{d}}\text{2.2.15}$ cells, hepatitis B virus transfected hepatoma cell lines, HepG 2.2.15 cells.

Table 9. In vitro Cytotoxicity of 1,4-Diamidoanthraquinones (VI₁₋₃₇) Against the Growth of Suspended Murine and Human Tumor Cell Lines

			$IC_{50} \left(\mu M\right)^a$	• •
Compound	R	C6 cells c	Hep G2 b	2.2.15 d
· VI ₁	CH ₂ Cl	·>20	>20	>20
VI_2	2-ClC ₆ H ₄	>20	>20	>20
VI_3	CH ₃	>20	>20	>20
VI ₄	C_6H_5	>20	>20	>20
VI_5	3-ClC ₆ H ₄	>20	>20	>20
VI_6	$3-CH_3C_6H_4$	>20	>20	>20
VI_7	CH ₂ CH ₂ Cl	>20	>20	>20
VI_8 .	$2,4-Cl_2C_6H_3$	>20	>20	>20
VI_9	CHCICH ₃	>20	>20	>20
VI ₁₀	2-FC ₆ H ₄	>20	>20	;· >20
VI_{11}	$2-NO_2C_6H_4$	>20	>20	>20
VI_{12}	3-FC ₆ H ₄	>20	>20	>20
VI ₁₃	2,4,6-Cl ₃ C ₆ H ₂	>20	2.77±0.93	3.63±2.33
VI ₁₄	$2,3,6-F_3C_6H_2$	>20	>20	>20
VI_{15}	2,4,5-Cl ₃ C ₆ H ₂	>20	>20	3.35±3.24
VI ₁₆	4-ClC ₆ H ₄	>20	>20	·· >20
VI ₁₇	cyclohexane	>20	>20	>20
VI ₁₈	$2,4-F_2C_6H_3$	>20	>20	>20
VI ₁₉	(CH2)2CH(CH2)4	>20	>20	>20
VI_{20}	cyclopentane	>20	>20	>20
VI_{21}	cyclopropane	>20	>20	>20
VI_{22}	2-SC(CH) ₃	>20	>20	>20
VI_{23}	2,3-Cl ₂ -5-FC ₆ H ₂	>20	>20	>20
VI_{24}	2-OC(CH) ₃	>20	>20	>20
VI_{25}	CH_2 -2-S- $C(CH)_3$	>20	>20	15.47±12.00
VI_{26}	3-O-2,5-(CH ₃) ₂ CH	>20	>20	>20
VI ₂₇	CH(CH ₂)CHC ₆ H ₅	>20	>20	19.48±18.13
VI_{28}	CH ₂ SC ₆ H ₅	>20	>20	>20

	VI ₂₉	$C_6H_3(CF_3)_2(o,m)$	2.82±0.47	>20	2.20±0.64
•	VI_{30}	$C_6H_4F(p)$	>20	>20	>20
	VI_{31}	$C_6H_4CF_3(p)$	>20	>20	>20
	VI_{32}	$CH_2C_6H_4F(p)$	>20	>20	>20
	VI_{33}	$CH_2N(CH_2CH_3)_2$	4.46±2.76	0.65±0.62	12.97±11.93
	VI_{34}	(CH2)2N(CH2CH3)2	0.90±0.68	0.49±0.41	0.28±0.01
	VI_{35}	CHCH3N(CH2CH3)2	18.09±14.11	2.02±0.26	8.57±7.18
,	VI_{36}	CHCH ₃ NHCH ₂ CH(CH ₂) ₂	2.76±1.74	6.46±1.40	3.46±1.15
	VI_{37}	CH ₂ CH ₂ NHCH ₂ CH(CH ₂) ₂	0.40 ± 0.09	0.32±0.29	1.71±1.67
, · ·		Mitoxantrone	0.07 ± 0.01	2.0±0.50	0.40±0.02
• :		Adriamycin	1.00±0.16	0.90±0.01	1.60±0.04

 a IC₅₀, drug concentration inhibiting 50% of cellular growth following 48 h of drug exposure. Values are in μ M and represent an average of three experiments. The variance for the IC₅₀ values was less than $\pm 20\%$. Inhibition of cell growth was significantly different with respect to that of the control; n = 3 or more, P < 0.01. Inhibition was compared with that of the control (mitoxantrone-HCl, adriamycin, cisplatin), (μ M), and standard errors. b Hep G2, human hepatoma G2 cells. c C6 cells, rat glioma C6 cells. d 2.2.15 cells, hepatitis B virus transfected hepatoma cell lines, HepG 2.2.15 cells.

Table 10. Effects of Symmetrical 1,5-bis-thio-Substituted Anthraquinones (IIa-o) on Respressing and Activating hTERT Expression

			Phtert-SEAF	(H1299) ^h	PhTERT-SEAP (1	TERT-BJI) ^c
No.	R	Conc.	Relative	Relative SEAP	Relative	Relative SEAP
		$(\mu M)^a$	viability (%)	activity (%)	viability (%)	activity (%)
Ila	CH ₂ CH ₃	3.0	111±2.8	134±14.4	112±9.2	109±22:4
		30	44±7.3	111±7.7	98±12.3	110±14.3
		300	25±2.3	99±14.3	34±18.1	104±20.6
Ilb	CH ₂ CH ₂ OH	2.8	54±4.0	97±15.7	94±9.3	104±15.7
٠.		28	29±7.0	76±12.4	49±2.9	98±10.9
		280	36±7.2	45±2.7	23±2.9	71±5.0
lic	CH ₂ CH ₂ CH ₃	2.8	96±5.9	73±5.4	103±6.3	132±21.0
•		28	44±2.5	29±2.5	97±3.0	110±13.2
		280	. 25±2.4	17±13.9	39±4.9	122±14.3
IId	CH ₂ CH(OH)CH ₂ OH	I 2.4	102±6.2	105±21.6	98±10.7	144±16.9
		24	103±4.2	90±5.7	86±5.5	136±10.0
		240	83±18.2	81±6.1	79±8.2	142±9.
Ile.	(CH ₂) ₆ OH	2.1	99±6.2	110±6.1	99±6.2	140±9.
		21	94±3.9	100±5.5	70±2.2	128±14.4
		·210	36±4.2	68±5.9	40±4.7	75±17.4
llf	2-NH ₂ C ₆ H ₄	2.2	94±3.5	108±12.2	103±7.9	136±17.
		22	50±3.3	96±8.4	107±5.5	141±18.2
-		220	14±2.5	59±6.6	25±3.3	115±29.
llg	3-NH ₂ C ₆ H ₄	2.2	92±3.5	106±7.6	104±5.1	118±9.9
		22	68±1.9	109±11.7	9±3.4	41±9.
£ .	•	220	32±4.9	101±7.3	4±1.5	8±30.
IIh	4-NH ₂ C ₆ H ₄	2.2	103±4.3	100±5.7	86±11.9	97±17.
	· · .	- 22	76±4.0	95±2.6	65±12.6	97±14.
		220	42±2.3	84±5.3	56±13.8	26±12.
Цi	CH ₂ C ₆ H ₅	2.2	83±5.5	97±6.0	121±4.7	117±11.
		22	44±0.9	100±7.2	98±4.2	112±9.
	•	220	34±3.3	100±12.9	47±9.1	87±11.

IIj CH ₂ C ₆ H ₄ (OCH ₃)(p)	2.2	89±6.1	92±3.3	119±9.4	142±27.7
	. 22	59±5.4	96±8.5	98±13.4	141±22 <u>,</u> 6
	220	42±.3	. 88±5.6	62±6.4	118±19.2
IIk CH ₂ CH ₂ C ₆ H ₅	2.2	93±6.2	108±0.5	91±3.9	119±12.2
	22	51±9.3	102±0.5	54±4.4	109±23.4
	220	27±2.9	· 97±4.8	35±4.1	110±30.6
IIL C ₄ H ₃ N ₂	2.3 ·	107±5.1	105±6.6	104±8.9	137±12.3
	23	99±5.8	110±8.0	103±6.4	125±6.9
	230	44±6.3	49±10.0	73±8.3	61±8.7
Ilm C₅H₄N	2:3	79±12.2	104±12.6	112±6.4	98±12.3
	23	45±7.1	103±15.8	91±7.3	133±6.8
	· 230	29±1.5	89±9.3	55±11.3	121±13.8
IIn $C_4H_2N_2(OH)(m)$	2.2	99±4.0	92±7.1	104±7.6	93±7.9
	-22	95±4.9	97±2.9	106±6.3	116±15.4
	220	51±16.7	93±12.1	89±3.5	145±20.7
IIo C ₆ H ₄ CH ₃	2.2	84±5.9	117±12.5	111±5.4	132±19.3
	22	41±2.4	103±10.5	77±6.9	109±5.7
	220	25±2.4	90±11.6	22±8.5	87±29.6

"Values are in μ M and represent an average of three experiments. The variance for the relative viability (%) and relative SEAP activity (%) values was less than \pm 20%. Activity of P_{hTERT} -SEAP (H1299) and (hTERT-BJ1) cell growth was significantly different with respect to that of the control; n = 3 or more, P < 0.01. Relative percentage of inhibition was not compared with that of the control, P < 0.01, mean \pm S.E., n = 4. Values are the mean percent activity at the indicated concentration, and include standard errors. ^bNon-small-cell lung cancer cells H1299. ^cThe hTERT immortalized hTERT-BJ1 was purchased from BD Biosciences Clontech.

Table 11. Effects of Symmetrical 1,5-Bisacyloxyanthraquinones (Illa-n) on Respressing and Activating hTERT Expression

		Phter-SEAF	(H1299) ^b	PhTERT-SEAP (hTERT-BJI) ^e		
No. R	Conc.	Relative	Relative SEAP	Relative	Relative SEAI	
	$\mu M''$	viabilitý (%)	activity (%)	viability (%)	activity (%	
IIIa COCH ₂ CH ₃	2.8	116±8.0	. 103±5.8	99±11.9	131±7.0	
	28	116±7.4	107±4.9	109±8.7	152±16.	
	280	87±6.6	97±3.1	93±10.8	161±12.	
IIIb COCH ₂ CH ₂ CH ₃	2.6	107±5.6	114±7.9	109±5.1	107±11.	
	26	106±3.2	118±8.4	106±5.6	119±8.3	
	260	87±6.5	111±4.4	85±6.6	134±3.	
IIIc CO(CH ₂) ₄ CH ₃	2.3	117±5.1	91±9.9	119±9.4	147±18.8	
	23	114±4.7	95±17.4	98±13.4	149±16.	
	230	106±4.3	95±10.5	62±6.4	124±5.	
IIId COC(CH ₃) ₃	2.4	106±8.9	105±4.9	94±3.4	147±11.	
	24	97±7.1	78±14.8	93±6.0	165±18.	
	240	70±5.2	80±10.1	100±9.0	141±14.	
IIIe COC ₆ H ₅	2.2	99±7.3	88±10.0	103±6.5	137±10.	
	22	60±11.9	94±8.0	87±9.8	122±9.	
	220	33±4.7	86±4.7	51±4.6	84±21.	
IIIf COC ₆ H ₄ Cl(o)	1.9	74±5.3	93±4.4	107±5.5	120±10.	
	19	34±3.4	101±4.9	92±4.3	116±3.	
	190	30±1.4	97±5.3	40±4.0	97±10.	
IIIg $COC_6H_4Cl(m)$	1.9	98±3.9	83±5.7	101±2.3	154±23.	
	19	88±7.2	92±8.1	80±6.7	152±15.	
	190	46±3.5	81±2.5	44±6.0	91±25.	
IIIh $COC_6H_4Cl(p)$	1.9	91±10.0	106±4.5	111±6.5	136±5.	
	19	57±1.8	106±4.9	89±14.3	123±6.	
	190	31±1.0	97±4.9	48±9.0	107±6.	
IIIi $COC_6H_4Cl_2(o,p)$	1.8	108±3:8	100±5.2	107±7.2	155±16.	
	18	. 103±5.9	102±5.4	102±4.1	150±13.	
	180	77±2.8	96±4.4	96±7.0	160±36.7	

				\$ 100 miles		
IIIj	COC ₆ H ₄ CH ₃ (o)	2.1	72±4.9	97±4.4	118±11.6	129±13.0
•		21	36±9.7	91±7.4	82±8.5	120±24.0
	- -	210	45±8.0	90±4.2	39±13.0	94±27.1
IIIk	$COC_6H_4CH_3(m)$	2.1	26±3.7	104±5.4	98±9.4	141±10.5
	•	21	28±5.0	116±12.8	54±7.5	124±15.6
		210	29±3.3	110±16.4	47±4.8	86±17.2
ШĻ	$COC_6H_4CH_3(p)$	2.1	61±5.8	98±1.1	102±13.9	130±8.8
	÷	21	33±2.8	95±4.3	98±6.3	126±13.3
		210	32±5.7	95±8.9	56±6.2	99±15.8
Illm	COCH ₂ C ₆ H ₅	2.1	91±4.2	98±0.3	106±9.0	129±4.5
· .		21	53±2.3	101±6.8	97±8.2	125±4.3
		210	30±1.6	142±14	64±10.2	100±17.3
. IIIn	COCH ₂ CH ₂ C ₆ H ₅	2.0	111±0.8	94±2.5	111±7.3	126±6.1
		20	101±4.3	98±4.7	106±6.6	124±13.4
		200	54±4.1	89±5.2	76±7.2	110±10.5

"Values are in μ M and represent an average of three experiments. The variance for the relative viability (%) and relative SEAP activity (%) values was less than \pm 20%. Activity of P_{hTERT} -SEAP (H1299) and (hTERT-BJ1) cell growth was significantly different from that of the control; n=3 or more, P<0.01. Relative percentage of inhibition was not compared with that of the control, P<0.01, mean \pm S.E., n=4. Values are the mean percent activity at the indicated concentration, and include standard errors. ^bNon-small-cell lung cancer cells H1299.
"The hTERT immortalized hTERT-BJ1 was purchased from BD Biosciences Clontech."

Table 12. Effects of Anthraquinones on the CMV Promoter Activity

•	Conen"	P_{CMV} -SEAP (hTERT-BJ1) $''$				
Compd.	(μM)	Relative viability (%)	Relative SEAP activity (%)			
IIf	2.2	108±9	103±8			
	22	109±4	102±10			
	220	48±6	122±8			
Hj	2.0	116±13	103±15			
	22	67±18	102±8			
	. 220	52±7	100±8			
IIn	2.2	107±10	112±15			
	22	118±9	105±16			
;	220	78±18	120±14			
Illa	2.8	114±16	101±6			
	28	110±12	112±6			
	280	94±21	138±12			
IIId	2.4	115±7	102±10			
	24	104±8	114±18			
	240	103±11	141±11			
IIIi	1.8	105±8	99±15			
	18	105±7	111±11			
	180	108±15	121±17			

"Values are in μ M and represent an average of three experiments. The variance for the relative viability (%) and relative SEAP activity (%) values was less than \pm 20%. Activity of P_{CMV} -SEAP (hTERT-BJ1) cell growth was significantly different from that of the control; n=3 or more, P<0.01. Relative percentage of inhibition was not compared with that of the control, P<0.01, mean \pm S.E., n=4. Values are the mean percent activity at the indicated concentration and include standard errors. bCMV (cytomegalovirus); SEAP (secreted alkaline phosphatase).

Table 13. Effects of Symmetrical 1,4-Diamidoanthraquinones (VI₁₋₃₇) on Activating hTERT

L.		-	-0	SS	٠.	\sim	•
г.	х	11		``	ш		

	P _{hTERT} -SEAP (hTERT-BJ1) ^b					
No. R	Conc.	Relative MTT	Relative SEAP			
	$(\mu M)^a$	viability (%)	activity (%)	SEAP/vibility		
VI₁ CH₂Cl	2.5	101±2.7	123±16.8	1.23		
	25	84±6.3	129±17.7	1.53		
	255	44±4:7	121±10.9	2.76		
VI ₇ (CH ₂) ₂ Cl	2.3	102±4.1	36±12.1	0.36		
	23	82±8.2	40±10.8	0.48		
	238	60±2.5	14±11.8	0.23		
VI ₉ CH(Cl)CH ₃	2.3	94±10.4	91±10.8	0.97		
	23	68±8.2	101±8.4	1.49		
	238	48±2.3	81±8.5	1.68		
VI_{33} CH ₂ N(CH ₂ CH ₃) ₂	2.1	105±2.8	111±24.4	1.06		
	21	86±3.5	120±25.6	1.40		
	. 215	32±13.1	83±19.0	2.61		
$VI_{34} (CH_2)_2 N (CH_2 CH_3)_2$	2.0	83±9.2	2±11.1	0.03		
	20	15±3.9	(-2)±11.2	-0.13		
	203	6±3.9	(-2)±6.5	-0.37		
VI ₃₅ CH(CH ₃)N(CH ₂ CH ₂) ₂	2.0	97±3.9	40±14.5	0.41		
	. 20	52±7.2	49±9.3	0.94		
	203	36±5.8	22±6.6	0.61		
VI ₃₆ CH(CH ₂)NCH ₂ CH(CH ₂) ₂	2.0	103±6.4	91±19.4	0.88		
	20	92±11.4	95±14.2	1.03		
	204	104±17.4	65±15.7	0.63		
VI_{37} (CH ₂) ₂ NCH ₂ CH(CH ₂) ₂	2.0	95±2.5	97±13.8	1.02		
	20	84±1.5	124±22.8	1.48		
	. 204	35±3.7	105±17.7	3.01		
VI ₃ CH ₃	3.1	117±3.0	77±12.4	0.66		
(m)	31	95±11.9	83±10.0	0.87		
	310	49±8.9	59±15.2	1.20		

		and the second second		·
Vl ₂₁ cyclopropane	2.6	103±6.8	64±9.5	0.62
	. 26	82±5.9	54±8.8	0.66
	267	58±4.1	43±8.3	0.74
VI ₂₀ cyclopentane	. 2,3	106±2.3.	85±7.7	0.81
	23	103±4.4	93±18.5	0.90
	233	93±5.7	63±36.5	0.67
VI ₁₇ cyclohexane	2.1	102±3.0	65±16.0	0.64
	21	97±2.4	42±24.3	0.44
	218	83±4.2	56±16.3	0.68
VI ₁₉ (CH ₂) ₂ CH(CH ₂) ₄	2.0	107±3.6	90±9.2	0.84
	. 20	101±4.7	87±5.5	0.87
	205	100±5.8	87±8.0	0.87
VI ₂₂ 2-SC(CH) ₃	2.1	118±10.6	94±20.2	0.80
	21	99±8.2	92±17.4	0.93
	218	84±6.9	90±22.7	1.07
VI ₂₄ 2-OC(CH) ₃	2.3	91±9.5	39±7.8	0.43
	23	69±10.7	45±11.0	0.65
	234	72±11.3	37±15.0	0.51
VI ₂₅ CH ₂ -2-SC(CH) ₃	2.0	116±7.5	53±17.4	0.45
	20	105±4.4	40±12.7	. 0.38
	205	76±6.5	14±24.1	0.19
VI ₄ C ₆ H ₅	2.2	95±4.9	(-4)±25.7	-0.04
* **	. • 22	69±3.2	(-10)±26.8	-0.14
	224	38±2.6	(-41)±26.8	-1.10
VI ₆ 3-CH ₃ C ₆ H ₄	2.1	110±2.6	97±17.1	0.88
	21	109±4.6	78±7.1	0.71
	210	101±6.0	70±5.8	0.69
VI ₁₀ 2-FC ₆ H ₄	2.0	106±6.5	95±8.9	0.90
	20	105±8.5	96±9.8	0.96
	207	86±7.3	79±7.4	0.92
VI ₁₂ 3-FC ₆ H ₄	2.0	102±1.5	107±11.9	1.05
	20	97±2.9	108±15.5	1.11
			٠.	

	207	85±2.6	95±13.9	1.12
VI ₃₀ 4-FC ₆ H ₄	2.0	103±9.0	104±16.3	1.01
	20	107±3.1	101±27.6	0.95
	207	83±5.3	100±14.5	1.20
VI ₂ 2-ClC ₆ H ₄	1.9	116±7.7	110±20.1	0.95
	19	109±2.2	96±33.4	0.88
	194	95±2.0	95±36.6	1.00
VI ₅ 3-ClC ₆ H ₄	1.9	99±9.8	98±10.1	0.99
	19	90±1.9	105±8.8	1.17
	194	60±2.0	89±10.1	1.48
VI ₁₆ 4-ClC ₆ H ₄	1.9	111±0.8	116±28.6	1.05
	19	103±5.9	112±21.9	1.09
	194	99±5.2	152±39.7	1.54
VI ₁₁ 2-NO ₂ C ₆ H ₄	1.8	110±4.1	102±33.4	0.92
	18	107±6.3	122±19.5	1.14
	186	99±3.2	114±28.1	1.15
VI ₃₁ 2-CF ₃ C ₆ H ₄	. 1.7	98±4.4	100±15.1	1.02
	17	100±3.4	90±16.3	0.90
	171	89±3.6	103±17.6	1.16
VI ₂₉ 2,3-(CF ₃) ₂ C ₆ H ₃	1.3	107±6.4	16±31.8	0.15
	13	85±4.8.	24±21.5	0.28
	139	56±4.6	26±36.9	0.47
$VI_{18} 2,4-F_2C_6H_3$	1.9	104±5.6	48±21.7	. 0.46
	19	101±4.4	51±18.5	0.50
	192	103±6.1	48±23.1	0.46
VI ₈ 2,4-Cl ₂ C ₆ H ₃	1.7	102±3.4	33±11.2	0.32
	17	98±7.2	25±17.2	0.26
	171	76±4.8	39±12.8	0.52
$VI_{13} 2,4,6-Cl_3C_6H_2$	1.5	98±8.5	31±23.0	0.32
	15	63±7.0	12±12.5	0.19
	153	. 40±22.2	4±15	0.09
VI ₁₄ 2,3,6-F ₃ C ₆ H ₂	1.8	102±3.3	35±14.1	0.35
			* *	

	18	90±6.0	22±24.4	0.25
*	180	70±6.8	31±7.9°	0.44
VI ₁₅ 2,4,5-F ₃ C ₆ H ₂	1.6	104±4.5	117±14.2	1.12
	16	89±5.0	114±20.4	1.29
	161	80±3.8	115±30.8	1.44
VI ₂₃ 2,3-Cl ₂ -5-FC ₆ H ₂	1.6	111±6.8	113±16.0	1.02
	16	110±7.1	131±19.1	1.20
	161	101±6.6	106±17.3	1.05
VI ₂₇ CH(CH ₂)CHC ₆ H ₅	1.8	92±16.9	92±16.9	0.89
	18	97±18.2	97±18.2	0.99
	189	104±10.7	102±16.6	0.98
VI ₂₈ CH ₂ SC ₆ H ₅	1.8	115±4.8	14±14.7	0.12
	18	105±6.7	23±9.5	. 0.21
	185	60±2.3	7±9.6	0.12
VI ₃₂ CH ₂ -4-FC ₆ H ₄	1,9	107±7.2	90±18.4	0.84
	19	100±6.3	102±20.0	1.02
	195	96±4.1	97±11.6	1.01
VI ₂₆ 2,5-dimethylfuran	2.0	101±6.2	84±13.3	0.83
	20	101±5.8	79±14.7	0.78
	207	93±7.1	81±16.1	0.88

"Values are in μ M and represent an average of three experiments. The variance for the relative viability (%) and relative SEAP activity (%) values was less than \pm 20%. Activity of P_{hTERT} -SEAP (hTERT-BJ1) cell growth was significantly different from that of the control; n=3 or more, P<0.05. Relative percentage of inhibition was not compared with that of the control, P<0.01, mean \pm S.E., n=4. Values are mean percent activity at the indicated concentration, and standard errors. ^bThe hTERT immortalized hTERT-BJ1 was purchased from BD Biosciences Clontech.

Note: The results in this column are shown as means \pm SE of experiments repeated five times. The different symbols qualify as in any concentration of treatment: Relative Cell Viability> 80%, Relative SEAP activity> 100% and P value below 0.05 analyzed with Two-tail T-test. The ratio of relative cell viability under relative SEAP activity is over 1.2. All of SEAP data are shown as the result that drug-self interference has been subtracted.

Table 14. Effects of Symmetrical 1,4-diamidoanthraquinones (VI $_{1-37}$) on Repressing hTERT

Expression

Expres			P _{hTERT} -S	SEAP (hTERT-HI	299) ^b
		Conc	Relative MTT	Relative SEAP	
No.	R	$(\mu M)^a$	viability (%)	activity (%)	SEAP/vibility
$\overline{VI_1}$	OH O	2.5	104±5.5	102±5.3	0.98
	CH ₂ Cl	25	96±3.8	110±8.8	1.14
		255	· 21±1.5	97±7.1	4.66
VI_7	(CH ₂) ₂ Cl	2.3	99±6.0	87±2.3	0.88
	•	23	68±2.4	87±3.1	1.28
		238	30±3.8	68±5.3	.2.30
Vl_9	CH(Cl)CH ₃	2.3	111±5.5	· 106±5.5	0.96
		23	77±3.4	109±1.0	1.40
		238	·11±1.4	85±5.3	7.82
VI_{33}	$CH_2N(CH_2CH_3)_2$	2.1	105±4.9	98±3.3	0.94
•		. 21	87±3.9	86±7:4	0.99
		215	44±2.7	48±2.3	1.11
VI_{34}	(CH2)2N(CH2CH3)2	2.0	92±6.1	73±2.7	0.79
		20	11±2.5	53±2.7	4.63
	\$ · · ·	203	1±2.4	39±0.8	44.24
VI ₃₅	$CH(CH_3)N(CH_2CH_2)_2$	2.0	96±7.9	96±14.3	1.00
		20	77±7.2	104±6.0	1.35
	- A	203	75±4.6	73±11.7	. 0.98
VI_{36}	$CH(CH_2)NCH_2CH(CH_2)_2$	2.0	106±4.1	123±12.4	1.16
		20	64±5.1	, . 112±11.5	1.76
		204	30±4.7	80±14.5	2.71
VI_{37}	(CH2)2NCH2CH(CH2)2	. 2.0	108±7.8	95±4.2	. 0.88
		20	83±1.6	91±8.9	1.09
		204	67±9.8	52±4.4	0.77
VI_3	CH ₃	3.1	109±3.5	85±2.3	0.78
		31	108±3.6	90±3.3	0.83
-		310	37±1.3	80±3.1	2.16.
VI_{21}	cyclopropane	2.6	95±4.2	108±4.9	1.14
		26	88±4.2	106±7.3	1.21
		267	41±4.6	92±5.9	. 2.23
VI_{20}	cyclopentane	2.3	107±6.1	119±8.5	1.11
*		23	103±6.1	118±9.2	1.15
		. 233	. 92±8.6	113±8.9	1.23
VI_{17}	cyclohexane	2.1	104±6.4	104±1.8	1.00
		21	96±5.8	100±6.2	1.05
		- 218	67±1.5	93±2.5	1.38
· VI19	(CH ₂) ₂ CH(CH ₂) ₄	2.0	105±2.1	111±9.4	1.06
		20	106±4.7	116±8.0	1.09
		205	95±1.3	109±9.2	1.15

				• •	
VI_{22}	$2-SC(CH)_3$	2.1	108±3.7	100±3.1	- 0.93
		21	107±8.5	105±5.9	0.98
		218	84±4.3	97±4.9	1.16
VI_{24}	2-OC(CH) ₃	2.3	101±6.0	99±7.8	0.99
	,	23	75±3.9	97±4.6	1.30
14.	. • '	234	32±5.1	90±2.9	2.83
VI_{25}	CH_2 -2- $SC(CH)_3$	2.0	104±8.0	111±3.7	1.06
		20	83±6.6	115±4.3	1.39
	•	205	41±4.0	102±5.5	2.47
VI_4	C_6H_5	2.2	109±6.0	81±3.3	0.74
		· 22	88±6.2	84±2.6	0.96
	5 · · ·	224	27±1.8	80±2.7	2.99
VI_6	$3-CH_3C_6H_4$	2.1	101±5.6	107±4.6	1.06
		21	97±6.2	104±4.0	1.08
		210	83±7.8	99±9.1	1.20
VI_{10}	2-FC ₆ H ₄	. 2.0	116±2.4	105±7.8	0.91
		20	104±6.1	107±11.9	1.03
		207	77±2.6	103±14.4	1.34
VI_{12}	3-FC ₆ H ₄	2.0	105±6.8	102±2.9	0.98
•		20	96±7.4	110±6.5	1.14
		207	66±5.5	106±9.4	1.59
VI_{30}	$4-FC_6H_4$	2.0	110±5.9	111±3.6	1.01
		20	103±6.6	107±4.8	1.04
·		207	89±6.7	107±9.0	1.20
VI_2	2-ClC ₆ H ₄	1.9	114±5.4	108±10.5	0.94
		19	72±3.6	105±7.7	1.47
		194	60±7.9	100±8.9	1.68
VI_5	3-ClC ₆ H ₄	1.9	95±11.3	110±4.9	1.17
		19	102±8.5	112±6.1	1.10
	4 G1G YY	194	59±4.3	91±3.0	1.55
VI ₁₆	4-ClC ₆ H ₄	1.9	89±5.5	109±6.8	1.23
		19	89±9.5	118±5.6	1.33
Y / Y	2.1/2.0.11	194	79±5.6	116±12.3	1.46
VIII	$2-NO_2C_6H_4$	1.8	104±6.3	105±4.3	1.00
•	v v	18	101±4.1	107±7.9	1.06
X ZÝ	2 CE C II	186	86±5.3	94±8.0 110±5.5	1.10 1.12
V 131	2-CF ₃ C ₆ H ₄	1.7 17	98±7.8 100±8.9	110±5.5	1.12
		171	77±6.7	96±2.1	1.14
171	2.2 (CE) C H	1.3	99±8.6	106±6.7	1.07
V 129	$2,3-(CF_3)_2C_6H_3$	1.3	79±10.3	105±7.9	1.32
•	, - · · · · · · · · · · · · · · · · · ·	139	37±8.8	94±10.2	2.56
1/1	2,4-F ₂ C ₆ H ₃	1.9	87±3.7	93±5.6	1.06
V 118	2,4-1206113	1.9	85±7.1	99±5.4	1.00
		192	69±8.4	99±3.4 99±1.8	1.17
1/1	2,4-Cl ₂ C ₆ H ₃	1.7	106±3.9	85±7.9	0.80
V 18 .	4,4-01206113	17	95±1.3	84±7.1	0.89
•	•	171	83±1.2	87±2.6	1.06
		171	0.5-1.2	02.0	1.00

VI_{13}	2,4,6-Cl ₃ C ₆ H ₂	1.5	113±4.8	98±4.5	0.87
	, , , , , , ,	15	107±5.4	66±2.4	0.61
	•	153	20±3.3	41±3.9	0.03
VI_{14}	$2,3,6-F_3C_6H_2$	1.8	111±2.9	91±5.2	0.82
	· · · · · · · · · · · · · · · · · · ·	. 18	89±3.7	97±4.1	1.09
		180	55±3.3	91±3.3	1.64
VI_{15}	$2,4,5-F_3C_6H_2$	1.6	90±6.6	109±10.8	1.20
• • •		16	81±1.9	118±10.3	1.45
		161	60±5.0	104±8.2	1.73
VI23	2,3-Cl ₂ -5-FC ₆ H ₂	1.6	98±7.0	102±4.1	1.04
		. 16	103±8.7	102±5.1	0.99
		161	87±5.1	83±4.0	0.95
VI27	CH(CH ₂)CHC ₆ H ₅	1.8	101±2.4	95±7.7	0.94
2.		18	100±4.7	93±3.2	0.93
		189	94±3.5.	87±3.6	0.92
VI_{28}	CH ₂ SC ₆ H ₅	1.8	104±5.6	93±3.2	0.89
		18	96±4.3	92±3.5	0.96
		185	59±3.8	80±4.0	. 1.35
VI32	CH ₂ -4-FC ₆ H ₄	1.9	108±8.8	109±10.8	1.00
	•	19	107±7.5	109±5.8	1.03
	A Company of the Comp	195	78±8.0	109±6.6	1.39
VI_{26}	2,5-dimethylfuran	2.0	87±4.9	104±10.8	1.20
		20	71±2.3	103±10.0	1.46
		207	47±2.6	98±10.5	2.10
	Mitoxnatrone	1.9	100±5.6	81±3.8	0.82
		19	57±4.3	66±4.0	1.16
		193	39±3.2	47±3.9	1.21
-					

"Values are in μ M and represent an average of three experiments. The variance for the relative viability (%) and relative SEAP activity (%) values was less than \pm 20%. Repression of Phtert-SEAP (htert-H1299) cell growth was significantly different from that of the control; n=3 or more, P<0.05. Relative percentage of inhibition was not compared with that of the control, P<0.01, mean \pm S.E., n=4. Values are mean percent activity at the indicated concentration, and standard errors. The htert cancer cell htert-H1299 was purchased from BD Biosciences Clontech.