Variáveis Aleatórias

Parte 2

Prof.: Eduardo Vargas Ferreira

Exemplo: distribuição de frequência do uso de bicicleta compartilhada

Fonte: An Introduction to Statistical Learning.

Exemplo: investigando o naufrágio do Titanic

Idade	P(Idade		
$0 \vdash 5$	0.056		
5 10	0.030		
$10 \vdash 15$	0.022		
$15 \vdash 20$	0.120		
$20 \vdash 25$	0.159		
$25 \vdash 30$	0.148		
$30 \vdash 35$	0.133		
$35 \vdash 40$	0.100		
$40 \vdash 45$	0.067		
$45 \vdash 50$	0.057		
$50 \vdash 55$	0.044		
$55 \vdash 60$	0.022		
> 60	0.021		

$$P(X = x)$$

$$P(X=3)$$

Exemplo: extrações de bolas da urna

▶ Uma urna contém duas bolas brancas (B) e três vermelhas (V). Suponha que são sorteadas duas bolas ao acaso, sem reposição. Então:

Resultados	Probabilidades		
$B \cap B$	1/10		
$B \cap V$	3/10		
$V \cap B$	3/10		
$V \cap V$	3/10		

Exemplo: extrações de bolas da urna

X= número de bolas vermelhas obtidas nas duas extrações.

Resultados	Probabilidades	
$B\cap B$	1/10	0
$B \cap V$	3/10	
$V \cap B$	3/10	1
$V \cap V$	3/10	2

$$P(X = 0) = P(B \cap B) = \frac{2}{5} \cdot \frac{1}{4} = \frac{1}{10}$$

$$P(X = 1) = P(B \cap V \text{ ou } V \cap B) = \frac{2}{5} \cdot \frac{3}{4} + \frac{3}{5} \cdot \frac{2}{4} = \frac{6}{10}$$

$$P(X = 2) = P(V \cap V) = \frac{3}{5} \cdot \frac{2}{4} = \frac{3}{10}$$

X	P(X = x)
0	1/10
1	6/10
2	3/10

Observação

▶ Variáveis aleatórias são definidas por letras maiúsculas, por exemplo:

- lacktriangledown X= número de peças defeituosas em um linha de produção;
- $ightharpoonup T={
 m tempo\ de\ espera\ em\ uma\ fila.}$
- ▶ Já as letras minúsculas representam os possíveis valores que a variável aleatória pode assumir, p. ex.:
 - $x = 0, 1, \dots$
 - $t \in \mathbb{R}^+$.
- ightharpoonup Então, P(X=x) indica a probabilidade da variável aleatória X assumir o valor x.

Exemplo: lançamento de uma moeda

► Considere o lançamento de uma moeda duas vezes e defina a v.a.:

Y = número de caras obtidas nos dois lançamentos.

Resultados	Probabilidades	Y
CnC	1/4	2
$C\cap R$	1/4	1
$R \cap C$	1/4	1
$R \cap R$	1/4	0

Y	0	1	2
P(Y = y)	1/4	1/2	1/4

Exemplo: lançamento de uma moeda

ightharpoonup Esquematicamente, temos a tabela com a função de probabilidade de Y e a seguinte representação:

Y	0	1	2
P(Y = y)	1/4	1/2	1/4

Definição de variável aleatória discreta

ightharpoonup Uma função X, definida no espaço amostral Ω e com valores num conjunto enumerável de pontos da reta é dita uma variável aleatória discreta.

Definição de função de probabilidade

▶ Chama-se função de probabilidade da variável aleatória discreta X a função que associa a cada valor de x_i sua probabilidade de ocorrência, isto é,

$$P(X = x)$$

$$P(X=6)$$

Exemplo: investigando o naufrágio do Titanic

 $Y={
m indiv}{
m iduos}\ {
m com}\ {
m mais}\ {
m de}\ 20\ {
m anos}$

Y	0	1
P(Y = y)	0.228	0.772

Exemplo: número de carros no posto de pedágio

X = número de carros que chegam em uma hora.

$$P(X = x) = \frac{e^{-3} \cdot 3^x}{x!}, \quad x = 1, 2, \dots$$

X	1	2	3	4	43.3
P(X = x)	0.149	0.224	0.224	0.168	

Exemplo: seleção de candidatos

Uma dinâmica selecionará 5 candidatos para a próxima fase. A distribuição de probabilidade do nº de homens escolhidos é dada por:

X = número de homens selecionados.

$$p(x) = \begin{cases} \binom{5}{x} 0, 2^x \cdot 0, 8^{5-x}, & \text{se } x \in \mathbb{N} \le 5 \\ 0, & \text{caso contrário }. \end{cases}$$

X	0	1	2	3	4	5
P(X = x)	0.327	0.409	0.204	0.051	0.006	0.000

Referências

- ▶ Bussab, WO; Morettin, PA. Estatística Básica. São Paulo: Editora Saraiva, 2006 (5ª Edição).
- Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008.

