

Minería de datos y Patrones

Version 2024-I

HoG - Human Detection

[Capítulo 2]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

HoG: Histogram of oriented gradients

Navneet Dalal

Histograms of oriented gradients for human detection

Authors Navneet Dalal, Bill Triggs

Publication date 2005/6/20

Conference 2005 IEEE computer society conference on computer vision and pattern recognition

(CVPR'05)

Volume 1

Pages 886-893

Publisher leee

Description We study the question of feature sets for robust visual object recognition; adopting linear

SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

Total citations Cited by 35511

R: Magnitude

A: Angle

Histogram of 8 directions

R: Magnitude

A: Angle

Histogram of 8 directions (computation of first bin)

R: Magnitude

A: Angle between -22.5° and 22.5°

Histogram of 8 directions (computation of first bin)

R: Magnitude in this direction

A: Angle between -22.5° and 22.5°

Histogram of 8 directions (computation of first bin)

R: Magnitude in this direction

A: Angle between 22.5° and 67.5°

Histogram of 8 directions (computation of second bin)

R: Magnitude

A: Angle

Histogram of 8 directions

R: Magnitude

A: Angle

Histogram of 8 directions

The descriptor proposed by the authors is a concatenation of HoG in different overlapped partitions

Feature Extraction

Descriptor of n elements

n = # cells x # bins

Example using Python:

```
def hog(img, orientations=9,
pixels_per_cell=(16,16),cells_per_block=(2,2),norm=False):
  X = skimage.feature.hog(img, orientations=orientations,
  pixels_per_cell=pixels_per_cell,cells_per_block=cells_per_block)
  if norm:
    X = X/np.linalg.norm(X)
    return X
```

La función hog() toma 6 parámetros como entrada:

- •image: la imagen de destino a la que desea aplicar la extracción de características HOG.
- •Orientaciones: Número de contenedores en el histograma que queremos crear, el trabajo de investigación original utilizó 9 contenedores, por lo que pasaremos 9 como orientaciones.
- •pixels per cell: Determina el tamaño de la celda, como mencionamos anteriormente, es 8x8.
- •cells per block: El número de celdas por bloque, será de 2x2 como se mencionó anteriormente.
- •visualizar: Un booleano si para devolver la imagen del HOG, la establecemos en True para que podamos mostrar la imagen.
- •multicanal: Lo establecemos en True para indicar a la función que la última dimensión se considera como un canal de color, en lugar de espacial.

Example using Balu:

How to detect pedestrians using HoG?

The Solution

Strategy: Sliding Windows

Strategy: Sliding Windows

Strategy: Sliding Windows

The Key-Idea:

Design a classifier that is able to distinguish between pedestrians from no-pedestrians.

Positive Class: Pedestrians

Negative Class: No-Pedestrians

Construction of the Dataset: Positive Class

Original Image: 720 x 475

Positive Class: Pedestrians

Construction of the Dataset: Negative Class

Construction of the Dataset: Negative Class

Negative Class: No-Pedestrians

Center: The RGB patch and gradients represented using arrows. Right: The gradients in the same patch represented as numbers

Dataset: Positive Class

Pedestrian	Element-1	Element-2	Element-3	Element-4	Element-5	 Element-3780
1	0.3452	0.1151	0.2685	0.1342	0.2416	0.2301
2	0.2301	0.1534	0.2148	0.1611	0.2071	0.3068
3	0.1726	0.1918	0.1790	0.1879	0.1812	0.3836
4	0.1381	0.2301	0.1534	0.2148	0.1611	0.4603
5	0.1151	0.2685	0.1342	0.2416	0.1450	0.5370
6	0.0986	0.3068	0.1193	0.2685	0.1318	0.6137
7	0.0863	0.3452	0.1074	0.2953	0.1208	0.6904
8	0.0767	0.3836	0.0976	0.3222	0.1115	0.7671
9	0.0690	0.4219	0.0895	0.3490	0.1036	0.8438
10	0.0628	0.4603	0.0826	0.3759	0.0967	0.9205
11	0.0575	0.4986	0.0767	0.4027	0.0906	0.9972
12	0.0531	0.5370	0.0716	0.4296	0.0853	1.0740
13	0.0493	0.5753	0.0671	0.4564	0.0805	1.1507
14	0.0460	0.6137	0.0632	0.4833	0.0763	1.2274
15	0.0432	0.6520	0.0597	0.5101	0.0725	1.3041
16	0.0406	0.6904	0.0565	0.5370	0.0690	1.3808
17	0.0384	0.7288	0.0537	0.5638	0.0659	1.4575
18	0.0363	0.7671	0.0511	0.5907	0.0630	1.5342
19	0.0345	0.8055	0.0488	0.6175	0.0604	1.6109
20	0.0329	0.8438	0.0467	0.6444	0.0580	1.6876
21	0.0314	0.8822	0.0447	0.6712	0.4851	1.7644
22	0.0300	0.9205	0.0430	0.0802	0.6444	1.8411
23	0.0288	0.9589	0.3593	0.0604	0.4660	1.9178
24	0.0276	0.1146	0.4773	0.0835	0.3625	0.2293
25	0.2310	0.0863	0.3452	0.1074	0.2953	0.1726
:	:	:	:	:	:	:
:	:	:	:	:	:	:
100000	0.1230	0.0493	0.5753	0.0671	0.4564	0.0986

Pedestrians

Dataset: Negative Class

No-Pedestrian Element-1

800000

0.9230

0.1065

1.2420

0.1449

0.9853

0.7452

Element-2

0.2484

Element-3

0.5796

Element-4

0.2898

Element-5

0.5216

Element-3780

0.4968

0.2129

	2	0.4968	0.3312	0.4637	0.3478	0.4471	0.6624
	3	0.3726	0.4140	0.3864	0.4057	0.3912	0.8280
	4	0.2981	0.4968	0.3312	0.4637	0.3478	0.9936
	5	0.2484	0.5796	0.2898	0.5216	0.3130	1.1592
	6	0.2129	0.6624	0.2576	0.5796	0.2845	1.3248
	7	0.1863	0.7452	0.2318	0.6376	0.2608	1.4904
	8	0.1656	0.8280	0.2108	0.6955	0.2408	1.6560
	9	0.1490	0.9108	0.1932	0.7535	0.2236	1.8216
	10	0.1355	0.9936	0.1783	0.8114	0.2087	1.9872
	11	0.1242	1.0764	0.1656	0.8694	0.1956	2.1528
П	12	0.1146	1.1592	0.1546	0.9274	0.1841	2.3184
	13	0.1065	1.2420	0.1449	0.9853	0.1739	2.4840
	14	0.0994	1.3248	0.1364	1.0433	0.1647	2.6496
7	15	0.0932	1.4076	0.1288	1.1012	0.1565	2.8152
	16	0.0877	1.4904	0.1220	1.1592	0.1490	2.9808
	17	0.0828	1.5732	0.1159	1.2172	0.1423	3.1464
	18	0.0784	1.6560	0.1104	1.2751	0.1361	3.3120
	19	0.0745	1.7388	0.1054	1.3331	0.1304	3.4776
	20	0.0710	1.8216	0.1008	1.3910	0.1252	3.6432
	21	0.0677	1.9044	0.0966	1.4490	0.4851	3.8088
	22	0.0648	1.9872	0.0927	0.3740	1.3910	3.9744
	23	0.0621	2.0700	0.3593	0.1304	1.0060	4.1400
	24	0.0596	0.5342	1.0304	0.1803	0.7825	1.0684
	25	0.2310	0.1863	0.7452	0.2318	0.6376	0.3726

No-**Pedestrians**

Training

Dataset

Image: 128 x 64 x 3 pixels

Descriptor 3780 elements

Feature Extraction
Using HoG Features

Classification
Using Trained Model

