Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

Классификация известных методов восстановления изображений, искаженных дефокусировкой фотокамеры

Студент: Сироткина Полина Юрьевна, ИУ7-76Б

Научный руководитель: Филиппов Михаил Владимирович

Цель и задачи

Целью работы является изучение и классификация известных методов восстановления изображений, искаженных дефокусировкой фотокамеры.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- провести анализ предметной области восстановления изображений, искаженных дефокусировкой фотокамеры;
- провести обзор существующих методов восстановления изображений, искаженных дефокусировкой фотокамеры;
- сформулировать критерии сравнения рассмотренных методов;
- классифицировать рассмотренные методы;
- на основе полученных теоретических сведений сделать выводы.

Введение в предметную область

Основные формулы и обозначения предметной области:

- функция исходного изображения f(x, y);
- функция дефокусированного изображения g(x, y);
- функция шума $\eta(x, y)$;
- искажающая функция h(x, y);
- модель процесса получения дефокусированного изображения:

$$g(x, y) = f(x, y) \oplus h(x, y) + \eta(x, y);$$

– преобразование Фурье:

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{+\infty} f(x) \cdot e^{-i \cdot x \cdot \omega} dx;$$

- теорема о свертке:

$$f(x, y) \oplus h(x, y) \longleftrightarrow F(u, v) \cdot H(u, v).$$

Классификация известных методов восстановления изображений, искаженных дефокусировкой фотокамеры

Инверсный фильтр

Наиболее простой, но также наименее помехоустойчивый метод восстановления дефокусированных изображений.

- искажающая функция известна;
- вычисления производятся в частотной области.

$$\hat{F}(u, v) = \frac{G(u, v)}{H(u, v)} = F(u, v) + \frac{N(u, v)}{H(u, v)}.$$

Если шум на изображении отсутствует, то фильтр работает качественно.

Если присутствует хоть небольшой шум, фильтр становится непригодным.

Фильтр Винера

Метод базируется на рассмотрении функций изображения и шума как случайных процессов и нахождении такой оценки для неискаженного изображения, чтобы среднеквадратическое отклонение этих величин было минимальным.

- искажающая функция известна;
- вычисления производятся в частотной области.

$$\hat{F}(u, v) = \frac{1}{H(u, v)} \cdot \frac{|H(u, v)|^2}{|H(u, v)|^2 + \frac{S_{\eta}(u, v)}{S_f(u, v)}} \cdot G(u, v).$$

где функцией S обозначают энергетические спектры шума и исходного изображения соответственно.

Метод учитывает наличие шума, но возникают краевые эффекты в виде ряби или полос.

Регуляризация Тихонова

Идея заключается в формулировке задачи в матричном виде с дальнейшим решением соответствующей задачи оптимизации.

- искажающая функция известна;
- вычисления производятся в частотной области.

$$\hat{F}(u, v) = \frac{H'(u, v)}{|H(u, v)|^2 + \gamma |P(u, v)|^2} \cdot G(u, v).$$

где γ - параметр регуляризации, P(u,v) - результат Фурье-преобразования оператора Лапласа, H'(u,v) - функция, комплексно сопряженная с H(u,v).

Если параметр регуляризации равен 0, то метод будет эквивалентен инверсной фильтрации.

Метод Люси-Ричардсона

Итерационный метод, идея которого заключается в использовании метода максимального правдоподобия, предполагая, что изображение подчиняется распределению Пуассона.

- искажающая функция известна;
- вычисления производятся в *пространственной* области.

$$\hat{f}_{k+1}(x, y) = \hat{f}_k(x, y) \cdot \left(h(-x, -y) \oplus \frac{g(x, y)}{h(x, y) \oplus \hat{f}_k(x, y)} \right).$$

Недостатком этого метода являются краевые эффекты в виде горизонтальных и вертикальных волос на изображении.

Также возникает вопрос выбора критерия остановки итерационного алгоритма.

Слепая деконволюция

Слепая деконволюция основывается на методе максимального правдоподобия, где целевой функцией является исходное (неискаженное) изображение.

- искажающая функция неизвестна;
- вычисления производятся в частотной области.

Как правило, метод состоит из двух этапов обработки:

- 1. Ядро размытия (функция размытия точки) оценивается по входному изображению.
- 2. Используя оценочное ядро, применяется стандартный алгоритм деконволюции для оценки скрытого изображения.

Данный метод наиболее часто применяется на практике, так как обычно искажающая функция заранее неизвестна.

Классификация методов повышения качества изображений, искаженных дефокусировкой (1/2)

Классификация методов повышения качества изображений, искаженных дефокусировкой (2/2)

Метод	Критерий	
	Искажающая функция	Область обработки
Инверсная фильтрация	Известна	Частотная
Фильтр Винера	Известна	Частотная
Регуляризация Тихонова	Известна	Частотная
Метод Люси – Ричардсона	Известна	Пространственная
«Слепая» деконволюция	Неизвестна	Частотная

Заключение

Цель работы достигнута: были рассмотрены и классифицированы известные методы восстановления изображений, искаженных дефокусировкой фотокамеры.

Были рассмотрены следующие методы восстановления дефокусированных изображений: инверсный фильтр, фильтр Винера, регуляризация Тихонова, метод Люси-Ричардсона, метод слепой деконволюции.

В результате классификации были выделены два класса по следующим признакам: по наличию информации об искажающей функции и по области обработки.

В качестве перспектив развития поставленной задачи можно рассмотреть разработку и программную реализацию метода восстановления дефокусированных изображений на основе определенных параметров искажения.