- 2.) a.) gcd(2, 10) = 2, lcm(2, 10) = 10
 - b.) gcd(20, 8) = 4, lcm(20, 8) = 40
 - c.) gcd(12, 40) = 4, lcm(12, 40) = 120
 - d.) gcd(21, 50) = 1, lcm(21, 50) = 1050
 - e.) $gcd(p^2q^2, pq^3) = pq^2$, $lcm(p^2q^2, pq^3) = p^2q^3$
- 7.) Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. Assume $a \equiv b \pmod{n}$, thus a = b + kn for some $k \in \mathbb{Z}$. $a = b + kn \implies a b = kn \implies n \mid a b$, thus $a \equiv b \pmod{n} \implies n \mid a b$.

Next, assume $n \mid a - b$, thus ln = a - b for some $l \in \mathbb{Z}$. $ln = a - b \implies a = b + ln \implies a \equiv b \pmod{n}$, thus $n \mid a - b \implies a \equiv b \pmod{n}$,

Thus $a \equiv b \pmod{n} \iff n \mid a - b$. Q.E.D.

- 18.) $8^1 \equiv 3 \pmod{5}$, $8^2 \equiv 4 \pmod{5}$, $8^3 \equiv 2 \pmod{5}$, $8^4 \equiv 1 \pmod{5}$, $8^5 \equiv 3 \pmod{5}$, thus $8^{402} \equiv (8^4)^{100} \times 8^2 \equiv 1^{100} \times 4 \equiv 4 \pmod{5}$
- 58.) Define a relation R on \mathbb{R} where $a \sim b \implies a b \in \mathbb{Z}$ for $a, b \in \mathbb{R}$. Since for all $a \in \mathbb{R}$, a a = 0, we know that $a \sim a$, thus R is reflexive.

Next, assume $a \sim b$, thus $a-b \in \mathbb{Z}$. Let n=a-b; $n=a-b \implies -n=-(a-b)=b-a$. Since $n \in \mathbb{Z} \implies -n \in \mathbb{Z}$, we know that $b \sim a$, thus R is symmetric. ***

60.) awd