Testing pleiotropy vs. separate QTL in multiparental populations

Frederick J. Boehm, Brian S. Yandell, and Karl W. Broman

 High-dimensional phenotypes in multiparental populations provide new opportunities for understanding complex trait architecture.
nagramicissonal pictotypes in munipacinal populations provide new opportunities for understanding complex than architecture. New analysis tools are required
• We developed a test of pleiotropy vs. separate QTL for multiparental populations
• We applied it to find evidence for separate QTL for behavioral phenotypes in a 3 cM region in 261 Diversity Outbred mice
• We share our methods in an R package, qt12pleio https://github.com/fboehm/qt12pleio
Experimentalists can now measure tens of thousands of phenotypes with RNA sequencing and mass spectrometry
Multiparental populations enable high-resolution QTL mapping
Together, high-dimensional phenotypes and multiparental populations can inform complex trait genetics
New analysis tools, such as our test of pleiotropy vs. separate QTL, are needed
•Jiang and Zeng (1995) developed a pleiotropy vs. separate QTL test for F2 mice •Applies to two traits that map to a single genomic region •Pleiotropy is the null hypothesis •Separate QTL is the alternative hypothesis •Perform a two-dimensional QTL scan •Calculate likelihood ratio test statistic
•Relatedness •Multiple founder lines •Test statistic calibration
•Multivariate random effects to account for relatedness Fixed effect for each founder allele •Parametric bootstrap for test statistic calibration
Fit the model:
Y = XB + G + E
for each ordered pair of markers
•
$G \sim MN(0, K, V_g)$
$E - MN(0, I, V_e)$
•X contains allele probabilities
ontains allele effects
Calculate likelihood for each model fit Test statistic:
$\max L_0(\mathcal{B}, \Sigma, \omega_1, \omega_2)$
${-\log_{10}\max L_{A}(B,\Sigma,\omega_{1},\omega_{2})}$
n_{210}
Parametric bootstrap to get p-value
*Logan et al. (2013) and Recla et al. (2014) genotyped and phenotyped 261 Diversity Outbred mice *Identified <i>Hydin</i> as the chromosome 8 gene affecting "hot plate latency" at 57 cM *Identified chromosome 8 QTLs for "percent time in light" and "distance traveled in light" at 55 cM *Motivated us to ask if <i>Hydin</i> also affects "percent time in light" and "distance traveled in light"

Processing math: 100%

[•]Suggest that "percent time in light" and "distance traveled in light" share a single QTL •Hydin is distinct from that QTL

Allele effects for distance traveled in light

Allele effects for percent time in light

Allele effects for hot plate latency

•Performed 3 pairwise analyses

Α Chromosome 8 profile LODs for percent time in light and hot plate latency

Chromosome 8 profile LODs for distance traveled in light and hot plate latency

^C Chromosome 8 profile LODs for distance traveled in light and percent time in light

^{•&}quot;percent time in light" & "hot plate latency": p=0.109•"distance traveled in light" & "hot plate latency": p=0.108•"percent time in light" & "distance traveled in light": p=0.871

•Evidence for two separate QTL affecting the 3 phenotypes
•1 QTL affects both "distance traveled in light" and "percent time in light"
•Second QTL contains Hydin and affects "hot plate latency"

•Develop methods for analyzing multiple phenotypes in a single test

Fred Boehm EMAIL: <frederick.boehm@gmail.com> WEBSITE: WEBSITE: https://fboehm.us/> ORCID: 0000-0002-1644-5931

Jiang, Changjian, and Zhao-Bang Zeng. 1995. "Multiple Trait Analysis of Genetic Mapping for Quantitative Trait Loci." Genetics 140 (3). Genetics Soc America: 1111–27.

Logan, Ryam W, Raymond F Robledo, Jill M Recla, Vivek M Philip, Jason A Bubier, Jeremy J Jay, Carter Harwood, et al. 2013. "High-Precision Genetic Mapping of Behavioral Traits in the Diversity Outbred Mouse Population." Genes, Brain and Behavior 12 (4). Wiley Online Library: 424–37.

Recla, Jill M, Raymond F Robledo, Daniel M Gatti, Carol J Bult, Gary A Churchill, and Elissa J Chesler. 2014. "Precise Genetic Mapping and Integrative Bioinformatics in Diversity Outbred Mice Reveals Hydin as a Novel Pain Gene." Mammalian Genome 25 (5-6). Springer: 211–22.