Applied Maths II Lecture 5

A physical Application of Residue Theorem Dispersion Relation

Punchline Relating real and imaginary parts of a complex function via integral, can be regarded as a integral Version of Cauchy-Riemann equation

Consider a complex function f(z) that is analytic in the upper half plane and real oxis, and we require f(2) falls fast enough at , eg f(z) ~ /121

Cauchy's Theorem gives
$$C_{R} = \int_{S_{R}^{+}} \frac{dz}{z-x_{o}} - \int_{S_{E}} \frac{dz}{z-x_{o}} \frac{f(z)}{z-x_{o}} + \int_{X_{o}+E}^{R} \frac{dx}{x-x_{o}} \frac{f(x)}{x-x_{o}} + \int_{X_{o}+E}^{R} \frac{dx}{x-x_{o}} \frac{f(x)}{x-x_{o}}$$

R→∞, ∈→0, ∫St drops off, we have

$$P \int_{-\infty}^{+\infty} dx \frac{f(x)}{x - x_0} = i \pi f(x_0)$$

Now if we set f(z) = U(z) + iV(z)

$$\Rightarrow P \int_{-\infty}^{\infty} dx \frac{(u(x)+iv(x))}{x-2c_0} = i\pi(u(x_0)+iv(x_0))$$

Comparing the real and imaginary parts on LHS and RHS, we have

$$U(x_0) = \frac{1}{\pi} P \int_{-\infty}^{\infty} dx \frac{V(x)}{x - x_0}, V(x_0) = -\frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{U(x)}{x - x_0}$$

These are so-called dispersion Relation.

Symmetry Properties

If f(2), when restricted to real argument, has the follow Symmetry $f(-\infty) = f''(\infty)$

$$\mathcal{J}(-\infty) = \mathcal{J}(-\infty)$$

ie u(x) = u(-x) and v(x) = -v(-x)

$$U(x_{\circ}) = \frac{1}{\pi} \int_{-\infty}^{\infty} dx \frac{\lambda(x)}{x^{-x_{\circ}}} + \frac{1}{\pi} \int_{-\infty}^{\infty} dx \frac{\lambda(x)}{x^{-x_{\circ}}}$$

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} dx \frac{x - x_{\circ}}{x^{-x_{\circ}}} + \frac{1}{\pi} \int_{-\infty}^{\infty} dx \frac{x + x_{\circ}}{x^{-x_{\circ}}}$$

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} dx \frac{x - x_{\circ}}{x^{-x_{\circ}}} + \frac{1}{\pi} \int_{-\infty}^{\infty} dx \frac{x - x_{\circ}}{x^{-x_{\circ}}}$$

Taking X0 > 00 limit

Similarly, we can show that

$$\mathcal{V}(\infty) = -\frac{1}{3} \int_{0}^{0} dx \frac{x_{3} - x_{9}}{x^{3} - x_{9}}$$

Parseval Relation

Basically, $U(x_0)$ and $V(x_0)$ as expressed earlier are known as Hilbert Transform of each other, and if U(x) and V(x) are "Square integrable", ,e $\int_{-\infty}^{\infty} dx |f(x)|^2 < \infty$, then we have

$$\int_{-\infty}^{\infty} dx \left| u(x) \right|^2 = \int_{-\infty}^{\infty} dx \left| v(x) \right|^2 \longrightarrow \text{Parseval Relation}$$

Proof
We can Start With

$$\int_{-\infty}^{\infty} dx \left[|u(x)|^2 = \int_{-\infty}^{\infty} dx \left[\frac{\pi}{T} D \int_{-\infty}^{\infty} \frac{ds \, \mathcal{V}(s)}{s-x} \right] \left[\frac{\pi}{T} D \int_{-\infty}^{\infty} \frac{d+\mathcal{V}(t)}{t-x} \right]$$

If we interchange the order of integration, and do x-integral first,

$$\int_{-\infty}^{\infty} |u(x)|^2 = \int_{-\infty}^{\infty} ds \, \mathcal{V}(s) \int_{-\infty}^{\infty} \frac{dt \, \mathcal{V}(t)}{dt \, \mathcal{V}(t)} \times \frac{1}{11} \mathcal{V} \int_{-\infty}^{\infty} \frac{dx}{(s-x)(t-x)}$$

It can be verified that
$$\frac{1}{\pi^2} P \int_{-\infty}^{\infty} \frac{dx}{(s-x)(t-x)} = \delta(s-t)$$

From this we have
$$\int_{-\infty}^{\infty} dx |u(x)|^2 = \int_{-\infty}^{\infty} ds \, V(s) \int_{-\infty}^{\infty} dt \, V(t) \, \delta(s-t)$$

= \sigma ds |V(s)|2 Changing dummy variable to obtain the desired relation

~> Suggest reading

ASW for Applications in optics

(Better treatment When

studying Fourier transform)

Introduction to Gamma Function

In the last lecture, we introduce the infinite product representation of entire function, in particular

Sin
$$\Pi Z = \Pi Z \prod_{k \neq 0} (1 - \frac{Z}{K}) e^{\frac{Z}{K}} \iff \frac{Sin \Pi Z}{\Pi Z} = \prod_{k \neq 0} (1 - \frac{Z}{K}) e^{\frac{Z}{K}}$$

KEZ

1 Containing all Zeros at non-zero integers $k \in \mathbb{Z}$, $k \neq 0$

=> All other entire functions with same zews and multiplicities (an be given by $\times e^{g(z)}$, g(z) is entire

Let us now consider an entire function with only Zeros at hegative integers, the simplest Choice is

$$G(z) = \frac{2}{\| (1 - (\frac{z}{-k})) e^{-z/k} = \frac{6}{\| (1 + \frac{2}{k}) e^{-z/k} \|}$$

Similarly
$$G(-z) = \prod_{k=1}^{\infty} (1-z_k)e^{z_k} \sim \text{only has Zeros at}$$
Positive integers

Clearly G(Z) satisfies that G(Z-1) has the same zeros plus additional zero at Z=0 We can have

7(2) ~ Some entire function

To determine the function $\gamma(z)$, we again take Logarithmic denvative on both sides

$$\sum_{k=1}^{\infty} \left(\frac{1}{z-l+k} - \frac{1}{k} \right) = \frac{1}{z} + \sum_{k=1}^{\infty} \left(\frac{1}{z+k} - \frac{1}{k} \right) + \gamma(z)$$

NOW in LHS, we can replace K -> K+1

$$= \frac{1}{2} \left(\frac{1}{2 - 1 + k} - \frac{1}{k} \right) = \frac{1}{2} - 1 + \sum_{k=1}^{\infty} \left(\frac{1}{2 + k} - \frac{1}{k + 1} \right)$$

$$= \frac{1}{2} - 1 + \sum_{k=1}^{\infty} \left(\frac{1}{2 + k} - \frac{1}{k} \right) + \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k + 1} \right)$$

$$= \frac{1}{2} + \sum_{k=1}^{\infty} \left(\frac{1}{2 + k} - \frac{1}{k} \right) \sim 1 \text{ Comparing with RHS}$$

We undude that Y'(z) = 0 or Y(z) = Constant, Simply Y(z) = YSuch that G(z) has the property that $G(z-1) = e^Y z G(z)$ Clearly, we can consider a Simpler function

$$H(z) = G(z) e^{\gamma z}$$

From the property of G(Z), we can deduce that H(Z-I)=ZH(Z)

We can also deduce the value of & easily from

Notice that $\prod_{k=1}^{n} (1+\frac{1}{k}) = (\frac{2}{1})(\frac{3}{2}) \times (\frac{4}{3}) \times (\frac{n+1}{3}) = (n+1)$

Taking h -> 00 , we verive that

$$\gamma = \lim_{N \to \infty} \left(\frac{1}{K} + \log(N+1) \right) \sim \gamma \text{ Euler Constant}$$

Numerical Value \$ 0 57722

If
$$H(z)$$
 satisfies $H(z-1) = ZH(z)$, then
$$\Gamma(z) = \frac{1}{ZH(z)}$$

Even though G(Z), H(Z), also satisfy similar recursive relation the recursive relation satisfied by P(Z) is more useful, P(Z) is called "Euler's Jamma function" Explicitly,

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin\pi z}$$

T(Z) is a meromorphic function with Poles at Z=0,-1,-2
-3, --, but no Zeros

From the explicit functional definition, we deduce the numerical value

=)
$$P(n)=(n-1)!$$
 n ~ positive integer

Also from the product relation $\Gamma(z)\Gamma(z) = \frac{\pi}{\sin \pi z}$, we also found that setting $z=\pm$, we have $\Gamma(\pm)^2 = \pi$ or

We can also derive other interesting properties of T(Z) by Considering the Logarithmic derivative first

$$\frac{d}{d}\left(\frac{\Gamma(z)}{\Gamma(z)}\right) = \sum_{K=0}^{\infty} \frac{(z+K)^2}{(z+K)^2}$$

This allows us to show that

$$\frac{d}{dz}\left(\frac{\Pi'(z)}{\Pi(z)}\right) + \frac{d}{dz}\left(\frac{\Pi'(z+k)}{\Pi(z+k)}\right) = \sum_{k=0}^{\infty} \frac{1}{(z+k)^2} + \sum_{k=0}^{\infty} \frac{1}{(z+k)^2}$$

$$= 4\left\{\sum_{k=0}^{\infty} \frac{1}{(z+k)^2} + \sum_{k=0}^{\infty} \frac{1}{(z+k)^2} + \sum_{k=0}^{\infty} \frac{1}{(z+k)^2}\right\}$$

$$= 2\frac{d}{dz}\left(\frac{\Pi'(z+k)}{\Pi(z+k)}\right)$$

Integrating thice, we deduce that

We can fix a, b by ア(な)= 1雨, ア(1)=1,ア(1 大)= 大1雨,ア(2)=1

We get that

This relation is known as "Legendre's duplication formula"

Integral Representation and Stirling Representation

Sometimes interesting applications in physics requires us to consider to investigate large & behavior of \(\Gamma\), to this end we have Stirling's formula

We can start the derivation by Gasiderize the Second derivative $\log \vec{\Gamma}(z)$ $\frac{d^2}{dz^2} \log \vec{\Gamma}(z) = \sum_{i=1}^{N} \frac{1}{(z+K)^2}$

and our task is to express the partial sum $\sum_{k=1}^{n} \frac{1}{(z+k)^2}$ as convenient

integral to apply residue theorem for dealing with series, we can use

$$\overline{\Phi}(\omega, z) = \frac{\pi \omega t \pi \omega}{(z + \omega)^2} \sim \frac{7 r eating}{(z + \omega)^2} \approx \frac{7 r eating}{(z + \omega)^2}$$

We will let N > w first, then n >0

Residue Thrm includes taking into account of the pole at N=0 gives

$$\frac{1}{\sqrt{2\pi}i}\int_{C}^{d\omega} \overline{\Phi}(\omega, z) = -\frac{1}{\sqrt{2}} + \sum_{k=1}^{n} \frac{1}{(2+1/2)^{2}}$$

Almost What We Want

Clearly,
$$\int_C = \int_{y=+N} + \int_{y=-N} + \int_{x=n+\frac{L}{2}} + \int_{x=0}$$

and the contributions on $\int_{y=\pm N} \rightarrow 0$ as $N \rightarrow \infty$

We can also unsider on $x = R + \frac{1}{4}$, $\omega + \pi \omega + \pi (x + iy)$ is bound and the bound is independent of n (Periodicity)

The integral along x = n+x is thus less than

$$\int_{X=N+\frac{1}{2}} \frac{d\omega}{|\omega+z|^2} \times \omega n Stan +$$

We can now integrate this by noticing that $W+\overline{W}=2N+1$, then residue thrm gives

$$\int \frac{d\omega}{|\omega+z|^2} = \int \frac{d\omega}{(\omega+z)(2n+1-\omega+z)} = \frac{2\pi\iota}{2n+1+(2+z)} \rightarrow 0 \text{ as } n \rightarrow \infty$$

$$x=mx$$

Finally, we only have contribution along x = 0, we purely imaginary, weld to take principal value from -100 to +100, we have

$$\frac{\pi}{2\pi L} \int_{0}^{\infty} dy \ \omega + \pi i y \ \left[\frac{1}{(iy+z)^{2}} - \frac{1}{(iy-z)^{2}} \right] = -\int_{0}^{\infty} dy \ \omega + h \pi y \ \frac{2yz}{(y^{2}+z^{2})^{2}}$$

$$\frac{d}{dz} \left(\frac{\Gamma(z)}{\Gamma(z)} \right) = \frac{1}{2z^{2}} + \int_{0}^{\infty} dy \ \omega + h \pi y \ \frac{2yz}{(y^{2}+z^{2})^{2}}$$

Integrating wrt Z, we obtained that

$$\frac{d}{dz} \log \Gamma(z) = C + \log z - \frac{1}{2z^2} \int_0^\infty dy \frac{2y}{y^2 + z^2} \frac{1}{e^{2\pi y} - 1}$$

$$\text{for Uniform}$$

$$\text{unvergence of}$$

$$\text{integral}$$

UR would like to integrate above again to obtain an integral representation of log 77(2), to deal with 5^{∞} integral, we can perform Partial integration, such that

$$\int_{0}^{\infty} dy \frac{2y}{(y^{2}+z^{2})} \frac{1}{e^{2\pi y}-1} = \frac{1}{\pi} \int_{0}^{\infty} \frac{z^{2}-y^{2}}{(y^{2}+z^{2})^{2}} log(1-e^{2\pi y}) dy$$
Easier to perform \(\frac{z}{2}\) integral

Substitute this back, we can readily perform the 2-integration to yield that

$$\log \Gamma(z) = A_0 + A_1 z + (z - \frac{1}{2}) \log z + \frac{1}{\pi} \int_0^\infty y \frac{z}{y^2 + z^2} \log \frac{1}{(1 - e^{-2\pi}y)}$$
Re(z)>0

Ao and Ai= C-1 are integration constants

The remaining task is to determine A. & AI, to do so we need to consider the behavior of

$$J(z) = -\frac{1}{11} \int_{0}^{\infty} dy \frac{z}{y^{2} + z^{2}} \log(1 - e^{-2\pi y}) = \frac{1}{11} \int_{0}^{\infty} dy \frac{z}{y^{2} + z^{2}} \log \frac{1}{1 - e^{-2\pi y}}$$

as Z→∞ This is "almost obvious" for Re(Z)>0 as long as
Z also stays away from imaginary axis More concretely,
We can for example consider ReZ>K>0, Katve and

We can then split the integration range into

$$J(z) = \int_{0}^{\frac{|z|}{2}} + \int_{\frac{|z|}{2}}^{\infty}$$

Then by wasidering the modulus of integrand, we get

Similarly,
$$\int_{\frac{121}{2}}^{\infty} - \int_{\frac{121}{2}}^{\infty} \frac{1}{\pi c} \int_{\frac{121}{2}}^{\infty} \frac{dy \log \frac{1}{(1-e^{2\pi y})}}{|2| \rightarrow \infty}$$

because $|3^2+2^2|=|2-iy||2+iy|>C|2|$

We worklude that J(Z) -> 0 as Z -> + w

Using this piece of information and T(2) identity log T(2+1) = log ?

We can deduce from direct substitution that

$$A_s = -(z+k)\log(1+k) + J(z) - J(z+1) \longrightarrow Setting z \rightarrow \infty$$
We arrived that
$$A_s = -/$$

70 obtain A_1 , we can for example whosider the identity $\Gamma(z)\Gamma(1-z) = \prod_{sintile} 1$, and set z = 1/2 + iy, we expand around $y \to \infty$ UP have

Leg $\Pi \leq 1$ Sm $\Pi \geq 1$ Log $2\Pi - \Pi + \Sigma_2(y) \sim also vanishy as <math>y \to \infty$ \Rightarrow We obtain that $A_1 = \frac{1}{2} \log 2\Pi$,

Putting things together, we finally obtained that

$$\Gamma(z) = \sqrt{2\pi} z^{z-\frac{1}{2}} e^{-z} e^{J(z)} \quad \text{or} \quad \sum \text{Stirling's}$$

$$\log \Gamma(z) = \frac{1}{2} \log 2\pi - z + (z-\frac{1}{2}) \log z + J(z)$$

Where

$$J(z) = \frac{1}{\Pi} \int_{0}^{\infty} dy \frac{z}{z^{2} + y^{2}} \log \frac{1}{(1 - e^{2\pi y})}$$
, $Ro(z) > 0$

With the large Z behavior such that J(Z) >0 as Z >00 Clearly as 2>> y, we can express J(Z) as

$$J(z) = \frac{1}{\pi} \int_{0}^{\infty} dy \frac{1}{z} \frac{1}{1 + (\frac{y}{2})^{2}} \log \frac{1}{1 - e^{2\pi i y}} \qquad \left(\frac{1}{z} \times \sum_{k=1}^{\infty} (-1)^{k} (\frac{y}{z})^{2k}\right)$$

$$= \frac{C_{1}}{z} + \frac{C_{2}}{z^{2k}} + \frac{C_{K}}{z^{2k-1}} + J_{K}(z) \qquad \text{"Asymptotic Series"}$$
an example

(Homework) It can be shown ma residue them that

$$C_K = (-1)^{K-1} \frac{B_K}{2K(2K-1)}$$
, $B_K \sim Bernoulli number$

$$= \int_{1}^{2} (\frac{1}{2}) = \frac{3}{1} \frac{1}{2} - \frac{3}{3} \frac{1}{4} + \frac{2}{2} + \cdots + \int_{1}^{2k-1} \frac{3k}{(2k-1)} \frac{1}{2k} \frac{1}{2^{2k-1}} + \int_{1}^{2k} (\frac{1}{2})$$

- The remainder function $J_k(Z)$ Satisfies $Z^{2k}J_k(Z)$ →0, Z^{2k

The asymptotic series is useful for analysing large 2 behavior

Provides turther corrections in e J(2) --

Finally, Stirling's formula also gives us another simpler integral representation of T(Z)

$$\Gamma(z) = \int_{0}^{\infty} dt e^{-t} t^{z-1}$$
, $Re(z) > 0$ for Convergence

Let us for the time being (all $\int_{0}^{\infty} dt \, e^{-t} \, t^{2-1} = F(2)$, the aim is to prove that F(Z) wincides with the other integral definition of T(2) same functional

First thing we notice is that

St thing we notice is that
$$F(z+1) = \int_{0}^{\infty} dt \, e^{-t} \, t^{z} = z \int_{0}^{\infty} dt \, e^{-t} \, t^{z-1} = z F(z)$$
integrating by Parts

~ Therefore trivially
$$\frac{F(z+1)}{P(z+1)} = \frac{F(z)}{P(z)} \sim 10^{\circ} \frac{F(z)}{P(z)}$$
 is Periodic $z \rightarrow z + 1$

NOW WE WANT to Show that $F(2)/\Gamma(2)$ is constant and equals 1 in other words, by Liouville thrm, heed to show it is bounded and entire

By Periodicity, we can do this in a periodic strip 15 x 52 (f= x+1f), first we have

$$|F(z)| \leqslant \int_0^\infty dt \, e^{-t} \, t^{x-1}$$
 $t^{x+1}y = t^x \exp(iy \log t)$
integral is bounded $\sim |F(z)|$ bounded

For 17(2) , Stirling's formula allows us to express that for large & (2= x+1y, 16x62), (Take T(Z) x T(Z))

$$\log |7(z)| = 5 \log a\pi - x + (x - \frac{1}{2}) \log |z| - y \arg z + \text{Re } J(z)$$

~ only -yarg z ~ -141 15 blows up when y → 00

~ |T(Z)|~ exp(下yy) at worst

 $\sim \frac{|F(z)|}{|P(z)|} \sim exp(I(y))$ at worst

This is generally NOT ENOUGH to Show IF(2) I is bounded, but thank to Periodicity 272+1, this is Enough

The point is that, due to periodicity. We can always express F/P as a single valued function of variable $Q = e^{2\pi i \frac{Z}{L}}$ (9 inv when $\frac{Z}{2} \rightarrow \frac{Z}{2} + 1$). the only isolated singularities

 \sim cateful Lowent series expansions of $\frac{F(2)}{\Gamma(2)}$ show both are

"Removable Singularities" $\Rightarrow \frac{F(Z)}{\Gamma(Z)}$ is bounded and entire \Rightarrow Constant

To fix the constant, we can use $F(1) = \Gamma(1) = 1$ i.e $\frac{F(1)}{\Gamma(1)} = \frac{F(2)}{\Gamma(2)} = 1$, or $F(2) = \Gamma(2) = \int_{0}^{\infty} dt \, e^{-t} \, t^{2-1}$

as desired

Area / Volume n-dimensional Sphere

A very useful application of the gamma function

 $\Gamma(z) = \int_{0}^{\infty} dt \, e^{-t} \, t^{z-1}$ is to evaluate area/volume of n-sphing

Clearly from "dimensional analysis", we "know" the volume of an n-sphere is

We can imagine , n-sphere as made up of a set of " which the shell's

The wlume of each shell is

Statestical mechanics

A trick to work (n out is to consider

$$\left[\int_{-\infty}^{\infty} dx \, \exp(-x^2) \right] = \prod^{\frac{1}{2}} , \int_{3}^{\infty} dr \, e^{-r^2} \gamma^{n-1} = \frac{1}{2} \int_{3}^{\infty} dt \, e^{-t} \, t^{\frac{N}{2}-1}$$

$$= \frac{1}{2} \, \Gamma(\frac{N}{2})$$

 $\Rightarrow V_{n} = \frac{2}{n} \frac{\pi \aleph}{\Gamma(\aleph_{2})} \Upsilon^{n} \qquad \lambda_{n} = 2 \frac{\pi \aleph_{2}}{\Gamma(\aleph_{2})} \Upsilon^{n-1}$