Информационно-аналитические системы

Предпосылки

- Развитие компьютеров и телекоммуникаций привело к резкому ускорению процессов обмена данными и их накопления.
- Когда объем хранилища исчисляется миллионами объектов (или даже десятками тысяч) встает вопрос о том, как обеспечить эффективную работу с этими данными.
- Ручной анализ становится невозможен в полном объеме.
- Для решения проблемы часть поисковоаналитических задач была переложена на средства автоматизации – информационные системы.

Возможности и проблемы

- С одной стороны чем большим объемом информации мы располагаем, тем больше у нас возможностей для получения и анализа интересующих нас фактов, событий и явлений.
- Но с другой стороны это приводит и к увеличению времени поиска нужной информации, анализа результатов поиска, к увеличению объема «шума» в данных.
- На основании этих предпосылок возник целый класси информационных систем – системы поддержки принятия решений.

Определения и основные задачи

- ▶ СППР (системы поддержки принятия решений) класс систем, автоматизировано выполняющих функции анализа и представления данных.
- Основные задачи СППР:
 - ввод данных;
 - хранение данных;
 - анализ данных.
- СППР это системы, обладающие средствами ввода, хранения и анализа данных, относящихся к определенной предметной области, с целью поиска решений.

Еще одно определение

▶ Система поддержки принятия решений (Decision Support Systems, DSS) — это компьютерная система, которая путем сбора и анализа большого количества информации может влиять на процесс принятия решений организационного плана в бизнесе и предпринимательстве. [TAdviser]

Дополнительные задачи СППР (1)

- Система также должна обеспечить:
 - сбор информации (включая интерфейс для ее ввода);
 - надежное хранение всей поступающей информации;
 - преобразовать информацию в вид, пригодный для ее анализа человеком.
- Иными словами: система обеспечивает аналитикам инструменты для эффективного выполнения задач анализа данных.

Дополнительные задачи СППР (2)

- Система сама не генерирует правильные решения, а только предоставляет аналитику данные в соответствующем виде для дальнейшего изучения и анализа.
- Данные помогают повысить эффективность принимаемых человеком решений, но не ставят задачу сделать всю работу за аналитика.

Классификация СППР по степени «интеллектуальности» решаемых задач

- **Информационно-поисковые** поддерживаются возможности поиска.
 - Нацелены на выполнение заранее определенных запросов.
- Оперативно-аналитические производиться группировка и обобщение данных в произвольном виде, необходимом для анализа в текущий момент.
 - в данном случае заранее неизвестно, какие запросы будет необходимо выполнить в ходе анализа.
- ▶ Интеллектуальный осуществляется поиск закономерностей в накопленных данных, построение моделей и правил описывающих выявленные закономерности и/или прогнозирующих дальнейшее развитие некоторых процессов.

Как можно их использовать (1)

- Интерактивные системы позволяют руководителям:
 - получить полезную информацию из первоисточников;
 - проанализировать ее;
 - выявить существующие бизнес-модели для решения определенных задач.

Как можно их использовать (2)

Например:

- можно проследить за всеми доступными информационными активами;
- получить сравнительные значения объемов продаж;
- спрогнозировать доход организации при возможном внедрении новой технологии;
- ▶ и т.п.

Классификация СППР по способу взаимодействия с пользователем

- ▶ Пассивные системы не позволяют выдвинуть конкретное предложение, хотя реализуют средства, в различной степени поддерживающие пользователя при поиске наиболее эффективного решения.
- Активные системы непосредственно участвуют в поиске и подготовке наиболее оптимального решения.
- ▶ Кооперативные системы предоставляют пользователю возможность доработать найденные ими решение, а затем проверить внесенные пользователем коррективы.

Классификация СППР по способу поддержки

- Модельно-ориентированные выполняют поиск оптимальных решений основываясь на специально разработанных моделях (статистические, финансовые и т.п.).
- ▶ Ориентированные на данные организуют поддержку пользователя при поиске эффективных решений, агрегируя большие объемы данных из гетерогенных источников.
- Ориентированные на знания выполняют поиск оптимальных решений основываясь на специально разработанной базе знаний.

Классификация СППР по сфере использования

- Настольные небольшие системы, ориентированные на использование одним пользователем, работающим на персональном компьютере.
- Общесистемные используют в своей работе большие хранилища данных и ориентированы на использование многими пользователями.

Состав СППР (1)

- ▶ Подсистема ввода данных. В таких подсистемах, называемых OLTP (Online transaction processing), выполняется операционная (транзакционная) обработка данных. Для реализации этих подсистем используют обычные системы управления базами данных (СУБД).
- Подсистема хранения. Для реализации данной подсистемы используют СУБД и концепцию хранилищ данных.

Состав СППР (2)

- Подсистема анализа. Данная подсистема может быть построена на основе:
 - подсистемы информационно-поискового анализа на базе реляционных СУБД и статических запросов с использованием языка структурных запросов SQL (Structured Query Language);

Состав СППР (3)

- подсистемы оперативного анализа для реализации таких подсистем применяется технология оперативной аналитической обработки данных OLAP (On-line analytical processing), использующая концепцию многомерного представления данных;
- ▶ подсистемы интеллектуального анализа данная подсистема реализует методы и алгоритмы Data Mining ("добыча данных").

Обобщенная архитектура СППР

Использование двух СУБД

- Из схемы явно видно, что СУБД присутствует в двух элементах, а следовательно речь идет о двух разных базах данных в пределах одной системы.
- На первый взгляд назначение второго хранилища данных получается не вполне понятным.
- Фактически в подсистеме хранения происходит дублирование информации, которая уже хранится в подсистеме ввода.
- Причина этого противоречие между требованиями, которые предъявляются к хранению и обработке данных в подсистеме сбора и теми, которые необходимы для обеспечения эффективного анализа значительных объемов данных.

▶ База данных — основа СППР.

▶ Информационно-аналитическая система (ИАС) — это комплекс программно-технических средств, информационных ресурсов, методик, которые используются для автоматизации аналитических работ с целью обоснования принятия управленческих решений и других возможных применений.

Разница в требованиях к системам анализа и OLTP (1)

Характеристика	Требования к OLTP	Требования к системе анализа
Степень	Хранение только	Хранение как
детализации	детализированных	детализированных, так
хранимых данных	данных	и обобщенных данных
Качество данных	Допускаются неверные	Не допускаются
	данные из-за ошибок	ошибки в данных
	ввода	
Формат хранения	Может содержать данные	Единый согласованный
данных	в разных форматах в	формат хранения
	зависимости от	данных
	приложений	

Разница в требованиях к системам анализа и OLTP (2)

Характеристика	Требования к OLTP	Требования к системе анализа
Допущение	Должна обеспечиваться	Допускается контролируемая
избыточных	максимальная	денормализация
данных	нормализация	(избыточность) для
		эффективного извлечения
		информации
Управление	Должна быть возможность	Должна быть возможность
данными	в любое время добавлять,	периодически добавлять
	удалять и изменять	данные
	данные	
Количество	Должны быть доступны все	Должны быть доступны все
хранимых	оперативные данные,	данные, накопленные в
данных	требующиеся в данный	течение продолжительного
	момент	интервала времени

Разница в требованиях к системам анализа и OLTP (3)

Характеристика	Требования к OLTP	Требования к системе анализа
Характер запросов	Доступ к данным	Запросы к данным
к данным	пользователей	могут быть
	осуществляется по заранее	произвольными и
	составленным запросам	заранее
		неоформленными.
Время обработки	Время отклика системы	Время отклика системы
обращений к	измеряется в секундах	может составлять
данным		несколько минут
Характер	Постоянно средняя	Загрузка процессора
вычислительной	загрузка процессора	формируется только
нагрузки на систему		при выполнении
		запроса, но на 100%

Хранилища данных

Основные определения

- Хранилище данных (ХД) предметноориентированный, интегрированный, неизменчивый, поддерживающий хронологию набор данных, организованный для целей поддержки принятия решений.
- Оперативные источники данных (ОИД) источники импорта данных для ХД.

Предметная ориентированность

- Это наиболее фундаментальное отличие ХД от ОИД (оперативного источника данных).
- Разные ОИД могут содержать данные, описывающие одну и ту же предметную область с различных точек зрения (например бух. учет, склад, плановый отдел и т.д.).
- ХД позволяет интегрировать информацию отображающую разные точки зрения на одну предметную область.
- Также это позволяет хранить только необходимые для анализа данные, не дублируя лишнюю информацию.

Интеграция

- ОИД, как правило, разрабатываются в разное время несколькими коллективами с собственным инструментарием.
- Это приводит к тому, что данные, отражающие один и тот же объект реального мира в разных системах, описывают его по-разному.
- Обязательная интеграция данных в ХД позволяет решить эту проблему, приведя данные к единому формату.

Поддержка хронологии

- Данные в ОИД могут не иметь жесткую привязку ко времени, поскольку операции над ними происходят в текущий момент.
- Для полноценного анализа как правило четкая хронология событий является необходимой.
- ХД решают эту проблему за счет приведения всех дат к единому формату, тем самым обеспечивая возможность хронологического сопоставления событий.

Неизменяемость

- Во многих ОИД для минимизации объема хранимых данных зачастую устанавливается определенный срок, после которого исторические данные могут быть совсем удалены из системы.
- В ХД необходимо хранить весь накопленный массив информации.
- После загрузки данные в ХД только считываются, но не изменяются.
- Это позволяет в том числе существенно увеличить скорость доступа к данным за счет исключения операций по их модификации.

Организация ХД

- Хранилища данных разделяются на 3 основные категории:
 - детальные данные;
 - агрегированные данные;
 - метаданные.

Детальные данные

- Детальные данные переносятся непосредственно из ОИД и соответствуют элементарным событиям фиксируемым OLTP-системами.
- Принято делить все данные на:
 - измерения наборы данных, необходимые для описания события. Например площадь квартиры, удаленность от метро и центра города, этаж, кол-во комнат и т.п.;
 - факты данные отражающие суть события, например, цена продажи квартиры.
- В процессе эксплуатации если потребность в детальных данных снижается они могут храниться в архивах в сжатом виде на отдельных носителях.

Агрегированные данные

- На основании детальных данных в ХД могут быть получены агрегированные (обобщенные) данные.
- В зависимости от возможности агрегации данные делятся на:
 - аддитивные фактические числовые данные, которые могут просуммированы по всем измерениям;
 - полу-аддитивные числовые фактические данные, которые могут быть просуммированы только по определенным измерениям;
 - **неаддитивные** фактические данные которые не могут быть просуммированы.

Использование агрегированных данных

- Для обеспечения максимально оперативного доступа к агрегированным данным часть из них хранится непосредственно в ХД.
- Если проводить все расчеты налету, то это очень длительная по времени и накладная с точки зрения загрузки ресурсов операция.
- Очевидно, что это ведет к избыточности информации и увеличению размеров ХД — важно добиться оптимального соотношения между вычисляемыми и хранящимися агрегированными данными.
- Данные, которые требуются более часто, должны храниться в ХД.