Estatística

12 – Comparação entre várias populações

1) Comparação de Médias (Análise de Variância)

Página da FEG: www.feg.unesp.br/~marcela

 $H_0: \mu_1 = \mu_2 = ... = \mu_k$ $H_1:$ PELO MENOS uma das médias é diferente

Amostras:

1) 64 66 59 65 62
$$\overline{x}_1 = 63.2$$

$$\bar{x}_1 = 63,2$$

$$\bar{x}_2 = 69.6$$

2) 71 73 66 70 68
$$\overline{x}_2 = 69,6$$

3) 52 57 53 56 53 $\overline{x}_3 = 54,2$

$$\bar{x}_3 = 54,2$$

Assim:

A partir de uma análise "visual" é razoável supor que H₀ deve ser **REJEITADA**.

Tabela 1: Medida da resistência de três tipos de concretos

						Média
Concreto A	69	74	77	70	71	72,2
Concreto B	69	65	69	66	68	67,4
Concreto C	74	77	76	80	69	75,2

Tabela 2: Valores da Tabela (1) subtraídos de 71

						Soma
Concreto A	-2	3	6	-1	0	6
Concreto B	-2	-6	-2	-5	-3	-18
Concreto C	3	6	5	9	-2	21
					Total	9

Tabela 3: Quadro de análise de variância

Fonte de Variação	Soma dos Quadrados	Graus de Liberdade	Quadrado Médio	F	$F_{2,12,1\%}$
Fator	154,8**	2	77,4	7,56	6,93
Erro	122,8	12	10,233		
Total	277,6*	14			

*
$$SQ_{total} = (4+9+36+1+....+4) - 81/15$$

**
$$SQ_{fator} = (36 + 324 + 441) / 5 - 81 / 15$$

Hipótese Ho	O que fazer?
Rejeitada	Calcular o ZETA para verificar qual $\mu_i \neq \mu_i$

Método de Tukey:

os concretos que apresentarem uma diferença da resistência média nas amostras superior a Zeta, isto é,

$$\left|\overline{X}_{i} - \overline{X}_{j}\right| > \text{Zeta, para i, } j \in \{A, B, C\} \text{e i } \neq j$$

serão considerados como tendo diferentes resistências médias.

Tabela 1: Medida da resistência de três tipos de concretos

						Média
Concreto A	69	74	77	70	71	72,2
Concreto B	69	65	69	66	68	67,4
Concreto C	74	77	76	80	69	75,2

Tabela 3: Quadro de análise de variância

Fonte de Variação	Soma dos Quadrados	Graus de Liberdade	Quadrado Médio	F	$F_{2,12,1\%}$
Fator	154,8**	2	77,4	7,56	6,93
Erro	122,8	12	10,233		
Total	277,6*	14			

Zeta =
$$q_{k,\nu,\alpha} \sqrt{\frac{S_R^2}{n}} = q_{3,12,1\%} \sqrt{\frac{S_R^2}{n}} = 5,04 \sqrt{\frac{10,233}{5}} = 7,21$$

k=número de níveis=3; n=tamanho da amostra=5, $\nu = 12$

 $q_{k,\nu,\alpha}$ é a Amplitude Studantizada.

$$Zeta = 7,21$$

$$|\overline{X}_A - \overline{X}_B| = |72,2 - 67,4| = 4,8$$

$$|\overline{X}_A - \overline{X}_C| = |72,2 - 75,2| = 3$$

$$|\overline{X}_B - \overline{X}_C| = |67,4 - 75,2| = 7,8$$

Conclusão:

Só podemos concluir que o concreto C é mais resistente que o concreto B.

2º Experimento:

Experimento com dois fatores, sem repetição

Tabela 4: Experimento - dois fatores, sem repetição

	A	В	С	D	Е	F
Fertilizante						
Variedade 1	5,4	3,2	3,8	4,6	5,0	4,4
Variedade 2	5,7	4,0	4,2	4,5	5,3	5,0

Temos dois conjuntos de hipóteses:

1) Quanto ao fertilizante

 $H_0: \mu_A = \mu_B = \mu_C = \dots = \mu_F$

 H_1 : Ao menos um $\mu_i \neq \mu_j$, para i, $j \in \{A, B, C, ..., F\}$ e i $\neq j$

2) Quanto a variedade

 $H_0: \mu_1 = \mu_2$

 $H_1: \mu_1 \neq \mu_2$

Tabela 5: Dados da Tabela (4)

Fertilizante	A	В	С	D	Е	F	Soma
Variedade 1	5,4	3,2	3,8	4,6	5,0	4,4	26,4
Variedade 2	5,7	4,0	4,2	4,5	5,3	5,0	28,7
Soma	11,1	7,2	8	9,1	10,3	9,4	55,1

Tabela 6: Quadro de análise de variância

Fonte de Variação	Soma dos Quadrados	Graus de Liberdade	Quadrado Médio	F	F _{Tabelado}
v arração					
Fertilizante	5,154**	5	(1,0308)	22,03	$ F_{5;5;1\%} = $
					10,97
Variedade	0,441***	1	0,4410	9,42	$F_{1;5;1\%} =$
					16,26
Erro	0,234	5	0,0468		
Total	5,829*	11			

*
$$SQ_{total} = [(5,4)^2 + (3,2)^2 + ... + (5)^2] - (55,1)^2 / 12$$

**
$$SQ_{fertilizante} = [(11,1)^2 + (7,2)^2 + ... + (9,4)^2)] / 2 - (55,1)^2 / 12$$

$$SQ_{variedade} = [(26,4)^2 + (28,7)^2] / 6 - (55,1)^2 / 12$$

Fertilizante	A	В	C	D	Е	F	Soma
Variedade 1	5,4	3,2	3,8	4,6	5,0	4,4	26,4
Variedade 2	5,7	4,0	4,2	4,5	5,3	5,0	28,7
Soma	11,1	7,2	8	9,1	10,3	9,4	55,1

Fertilizante	A	В	С	D	Е	F	Soma
Variedade 1	11	-11	-5	3	7	1	
Variedade 2	14	-3	-1	2	10	7	
Soma							

Tabela 6: Quadro de análise de variância

Fonte de Variação	Soma dos Quadrados	Graus de Liberdade	Quadrado Médio	F	F _{Tabelado}
Fertilizante	515,4**	5	103,08	22,03	$F_{5;5;1\%} = 10,97$
Variedade	44,1***	1	44,10	9,42	$F_{1;5;1\%} = 16,26$
Erro	23,4	5	4,68		
Total	582,9*	11			

Tabela 6: Cálculo das médias das linhas e das colunas

Fertilizante	A	В	С	D	Е	F	Média
Variedade 1	5,4	3,2	3,8	4,6	5,0	4,4	4,4
Variedade 2	5,7	4,0	4,2	4,5	5,3	5,0	4,783
Média	5,55	3,6	4	4,55	5,15	4,7	

1) Variedade:

Zeta =
$$q_{k,\nu,\alpha} \sqrt{\frac{S_R^2}{n}} = q_{2,5,1\%} \sqrt{\frac{S_R^2}{n}} = 5,70 \sqrt{\frac{0,0468}{6}} = 0,50$$

k=número de linhas=2; n=número de colunas=6,

$$\nu$$
=5, e $q_{k,\nu,\alpha}$ é a Amplitude Studantizada.

2) Fertilizante:

Zeta =
$$q_{n,\nu,\alpha} \sqrt{\frac{S_R^2}{k}} = q_{6,5,1\%} \sqrt{\frac{S_R^2}{k}} = 8.91 \sqrt{\frac{0.0468}{2}} = 1.36$$

k=número de linhas=2; n=número de colunas=6,

$$v = 5$$

2) Fertilizante:

$$Zeta = 1,36$$

$$\left|\overline{\mathbf{X}}_{A} - \overline{\mathbf{X}}_{B}\right| = 1,95$$

$$\left|\overline{X}_A - \overline{X}_C\right| = 1,55$$

$$\left|\overline{\mathbf{X}}_{B} - \overline{\mathbf{X}}_{E}\right| = 1,55$$

Conclusão:

Podemos concluir que há diferença entre os fertilizantes A e B, A e C e B e E.

3º Experimento:

Experimento com dois fatores, com repetição

		Operário					
	•	1	2	3	4		
	I	54	46	55	51		
	I	52	47	54	60		
Método	II	59	61	59	56		
	II	57	55	61	57		
	III	59	63	63	59		
	III	62	58	61	60		

Temos três conjuntos de hipóteses:

1) Quanto ao operário

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$

 H_1 : Ao menos um $\mu_i \neq \mu_j$, para i, $j \in \{1,2,3,4\}$ e i $\neq j$

2) Quanto ao método

 $H_0: \mu_I = \mu_{II} = \mu_{III}$

 H_1 : Ao menos um $\mu_i \neq \mu_j$, para i, $j \in \{I, II, III\}$ e i $\neq j$

3) Quanto a interação método-operário

 $H_0: \mu_{1I} = \mu_{2I} = \mu_{3I} = ... = \mu_{4III}$

 H_1 : Ao menos um $\mu_i \neq \mu_j$, para i, $j \in \{1I,2I,3I,...,4III\}$ e i $\neq j$

Tabela 7: Dados subtraídos de 59

Operário

		1		2		3		4		
	I	-5	-12	-13	-25	-4	-9	-8	-7	-53
	I	-7		-12		-5		1		
Método	II	0	-2	2	-2	0	2	-3	-5	-7
	II	-2		-4		2		-2		
	III	0	3	4	3	4	6	0	1	13
	III	3		-1		2		1		
			-11		-24	-	-1	-	-11	-47

Tabela 8: Quadro de Análise de Variância

Fonte de Variação	Soma dos Quadrados	Graus de Liberdade	Quadrado Médio	F	$F_{ ext{Tabelade}}$
Método	286,34**	2	143,17	20,08	6,93
Operário	44,46***	3	14,82	2,08	5,95
Método- Operário	72,66****	6 (2x3)	12,11	1,70	4,82
Erro	85,50	12	7,13		
Total	488,96*	23			

*
$$SQ_{total} = [(-5)^2 + (-13)^2 + ... + (1)^2] - (-47)^2 / 24$$

** $SQ_{metodo} = [(-53)^2 + (-7)^2 + (13)^2)] / 8 - (-47)^2 / 24$
*** $SQ_{operario} = [(-11)^2 + (-24)^2 + (-1)^2 + (-11)^2] / 6 - (-47)^2 / 24$
**** $SQ_{metodo-operario} = [(-12)^2 + (-25)^2 + ... + (1)^2] / 2 - (-47)^2 / 24$
 $- SQ_{metodo} - SQ_{operario}$

Conclusão:

De acordo com o Quadro de Análise de Variância, apenas o **método** influencia no tempo de execução da tarefa.

Não há diferença entre operários e nem interação entre Método-Operário, ou seja, não existe um método específico com o qual um determinado operário se adapte melhor.

Figura 1: Interação Método - Operário

Operário

		1	2	3	4
	I	54	46	55	51
	I	52	47	54	60
Método	II	59	61	59	56
	II	57	55	61	57
	III	59	63	63	59
	III	62	58	61	60

