Practical works - n°4 Sampling

• Exercice 1 - Noise

- 1.1 Create a gaussian white noise signal s_n of length $N=10^6$ (randn) or $N=2^{20}$. Plot this signal.
- 1.2 Estimate the pdf (probability density function) by computing the histogram of the outcomes (with 50 beans for example, normalize by the length of the signal). Plot the result.
- 1.3 Compute the discrete Fourier transform \hat{s}_n (fft) of s_n . What is the length of \hat{s}_n ? Plot 1 $|\hat{s}_n|$ with the correctly graduated frequency axis by assuming s_n is a sampled signal at the frequency $f_s = 1000Hz$. Write in the comment of your program the exact frequency range.
- **1.4** Create the random signal s_b by sub-sampling (1/2) s_n . Respond to the same questions. Conclusions?
- **1.5** Create the random signal s_c defined by : $s_c = \sin(s_n)$. Respond to the same questions. Conclusions ?
- **1.6** Create the random signal s_f defined by : $s_f = K[1\ 1]/2 * s_n$ where $K = \max s_n / \max s_f$. Respond to the same questions. Conclusions?
- 1.7 Respond to the three first questions by considering the uniform white noise s_u (rand, remove the mean to have $\bar{s}_u = 0$).

• Exercice 2 - Deterministic signals

- **2.1** Define a sinusoïdal signal s_d having a frequency $f_d = 1kHz$, $N_T = 10$ periods and N = 100 points. Plot s_d .
- **2.2** Compute the discrete Fourier transform \hat{s}_d (fft) of s_d . What is the length of \hat{s}_d ? Plot $|\hat{s}_d|$ with the correctly graduated frequency axis by deducing the sampling frequency f_s . Comment.
- **2.3** Change f_d , N_T (can be non-integer) and N. Comment your observations.
- **2.4** Define a square signal s_q having a regular pattern period (between -1 and 1) for N_T integer (do not use square). Plot s_q .
- **2.5** Compute the discrete Fourier transform \hat{s}_d (fft) of s_q . What is the length of \hat{s}_q ? Plot $|\hat{s}_q|$ with the correctly graduated frequency axis by deducing the sampling frequency f_s . Compare to the Fourier series of the continuous square signal. Conclusions?

• Exercice 3 - Sound!

```
"Play" with this code.
fSampRecord = 10000; % Hz (RTC: 3400Hz, GSM:4kHz)
nBitsRecord = 16;
nChannelsRecord = 1;
deviceRecord = -1; %default
fSampPlay = 20000; % Hz
r = audiorecorder(fSampRecord, nBitsRecord, nChannelsRecord, deviceRecord);
record(r);
ch=sprintf(' <<< recording during 3s at frequency %6.0f Hz >>>', fSampRecord); disp(ch)
pause(3); %3 secondes
stop(r); % stop recording
disp('-> playback !');
play(r); % sampling rate cannot be changed in the record
pause(4);
p = audioplayer(r); % create a player from the record
set(p, 'SampleRate', fSampPlay); % new sampling rate
ch=sprintf('-> playing at frequency %6.0f Hz', fSampPlay); disp(ch);
```

¹Use fftshift to obtain a centered plot