UPAAA 2025

Trigonometry

Mathematics

Lecture - 03

By - Ritik Sir

TOPICS to be covered

Questions.

OORK HARD DREAM BIG NEUER GIVE UP!!

Janam kabh lena hai or Marna kabh hai vo hum decide nhi kr skte, pr kese jeena hai vo hum decide kr skte hain.

Here is the answer babua:

Papa bole pakistan Hindustan hai bhaibhai

... X

Mathematics Homework

Mentions - shagun_udanians 13m From create mode >

Trick to learn trigonometry Ratio-:

Pappu beta padhle

Perpundicula

Ries

Perpendicular

Hard hai boards

Hypotenus

Hypotenus

Bose

Pizza Burger pyaar Hai Hmare babua

Hello sir new trigonometry formula Padloo Babuuaass Padloo

Fm Jayant Lai from Udaan 2024-25

#Todays Homework for find a trick

*After a long time I became able to first a trick & that's trick to

Trigo-Ratios formulas*

Pakistani Blowlers are Preparing for being Harm on Hindustani Braturran

But, it will be never possible, may be at dream of Pakittani.

ig id > gjayantlalart

Wesnework of todays matte class to delikmistes...

Please Reply sit.

@ritikmishra

Mentions - eclipwze.007 29m

coin &

Coser OL

TI Paul

<u>@ritikmishra</u> Apka hukm sar akhon Parr

Trick-Physicswallah Banaye Percentage Ha Ha Bangye

Trick 1 :-P= Papa B = Bole P= putra H= Hamshe H= Har B= Baat (btao)

Trick 2:-P= Pyare B= Babuaa P= poll (secret) H= Hamko H= Hamare B= Babuaa (ke bato)

decoul:

Recibrocal

- Sind Coseco +
- B coso -> Seco H
 - Jamo (so cota R

Hamo = Sino

(960= C020)

CORD

Costi

Topic: Trigonometric ratios of some specific angles

	T. ratios	0°	30°	45°	60°	90°
tomo = Sin	sin θ	0	1	752	2	5
(0	cos θ	1	13 13	75	72	0
	tanθ	0	13	1	13	w.g
	cosec θ	n.d	2	52	2	2
	sec θ	1	73	15	2	nd
	cot θ	n-d	13	1	7	0

 $Q = \frac{1}{2}$ Q = 4

Sin0=Sin30 Orcingologism 0=36

 $Q = \frac{1}{2}$ 0=9

> ins 0 = 0 sniz - masia od mos mo 05 = 05 01 = 0

#Q. Find the value of θ in each of the following:

(i)
$$2\sin 2\theta = \sqrt{3}$$

Sinzo =
$$\frac{13}{20}$$

Sinzo = $\frac{13}{20}$
On C
 $\frac{13}{20}$

(ii)
$$2\cos 3\theta = 1$$

#Q. Find the value of x in each of the following:

3x = 45 3x = 45 3x = 45

X = 12.

#Q. Find the value of x in each of the following:

(ii)
$$\cos x = \cos 60^{\circ} \cos 30^{\circ} + \sin 60^{\circ} \sin 30^{\circ}$$

$$\cos x = \frac{5}{13+13}$$

$$= \frac{13+13}{13+13}$$

$$= \frac{13+13}{13+13}$$

$$\cos x = \frac{5}{13} \times \frac{5}{13} + \frac{5}{13} \times \frac{5}{13} = \frac{5}{13} = \frac{5}{13} = \frac{5}{13}$$

#Q. If sin(A + B) = 1 and sin(A - B) = 1/2, $0 \le A + B \le 90^{\circ}$ and A > B, then find

A and B.

Find acute angles A and B, if $\sin (A + 2B) = \frac{\sqrt{3}}{2}$ and $\cos(A + 4B) = 0$, A > B.

$$\sin\left(A + 2B\right) = \frac{\sqrt{3}}{2}$$

and
$$cos(A + 4B) = 0, A > B.$$

angle less than

#Q. If $\sqrt{3} \sin \theta - \cos \theta = 0$ and $0^{\circ} < \theta < 90^{\circ}$, find the value of θ .

[Board SQP, 2020-21]

$$\sqrt{3}\sin\theta - \cos\theta = 0$$

$$13 \sin 0 = 1$$

When a 10th Class student solves Trigonometry problem without converting Tan into Sin and Cos:

#Q. If $tan(3x + 30^\circ) = 1$, then find the value of x.

[Board Term - I, 2015]

B 25

C 15

D 2

Z=X

#Q. If
$$\sin \alpha = \frac{\sqrt{3}}{2}$$
 and $\cos \beta = 0$, then find the value of $\beta - \alpha$.

#Q. In a right triangle ABC, right angled at B, the ratio of AB to AC is $1:\sqrt{2}$. Find

the value of $\frac{2\tan A}{1-\tan^2 A}$.

$$(AC)^2 = (AB)^2 + (BC)^2$$

 $(SX)^2 = (3X)^2 + (BC)^2$
 $(XX)^2 = (3X)^2 + (BC)^2$
 $(XX)^2 = (3X)^2 + (BC)^2$

 $\frac{1+\tan\theta}{\sin\theta}$ is

$$0: az$$
 $0: az$
 $0: az$
 $0: az$

#Q. If the value of $\sin\theta = 1/2$, then find the value of $3\cos\theta - 4\cos^3\theta$.

$$= 3\cos 30 - 4\cos^{3}30$$

$$= 3(3) - 4(3)^{3}$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

$$= 3(3) - 43(3)$$

Trigonometric Ratios of 45°

Sinus: =
$$\frac{AB}{H} = \frac{AB}{AC} = \frac{1}{52}x = \frac{1}{52}$$

Cosus: = $\frac{B}{H} = \frac{BC}{AC} = \frac{BC}{52}x = \frac{1}{52}$
domus: = $\frac{P}{B} = \frac{AB}{BC} = \frac{Q}{Q} = \frac{1}{2}$
Cosucui: $\sqrt{2}$

Trigonometric Ratios of 60° to 30°

T

Trigonometric Ratios of 0° to 90°

#Q. If A and B are acute angles such that $\tan A = \frac{1}{2}$, $\tan B = \frac{1}{3}$ and

$$tan(A + B) = \frac{tanA + tanB}{1 - tanAtanB}$$
, find A + B.

#Q. If $\tan^2 45^\circ - \cos^2 30^\circ = x \sin 45^\circ \cos 45^\circ$, then x =

- (A) 2
- **B** -2
- \bigcirc -1/2
- 1/2

#Q. If $\sqrt{3} \tan \theta = 1$, then find the value of $\sin^2 \theta - \cos^2 \theta$.

Answer = -1/2

#Q. If $\sin \theta - \cos \theta = 0$, then the value of $(\sin^4 \theta + \cos^4 \theta)$ is

- (A) 1
- **B** 3/4
- **C** 1/2
- 1/4

#Q. In a $\triangle ABC$, if $\angle B = 90^\circ$, BC = 5 cm, AC – AB = 1 cm. Then the value of $\frac{1 + \sin C}{1 + \cos C}$

is

 $\frac{18}{25}$

 $\frac{36}{31}$

 $\frac{25}{18}$

 $\frac{31}{36}$

	1		
	<u> </u>	W	١
1	1	Ĭ,	

- **#Q.** In an acute angled triangle ABC, if sin(A + B C) = 1/2 and $cos(B + C A) = \frac{1}{\sqrt{2}}$. Then measure of angle B is
- **A** $37\frac{1}{2}^{\circ}$
- **B** 45°
- C 75°
- D 62.5°

#Q. In figure, lengths of sides BC and AB are respectively

- \triangle 12 cm, $3\sqrt{3}$ cm
- \mathbf{B} 3 cm, $3\sqrt{3}$ cm
- \bigcirc 12 cm, $6\sqrt{3}$ cm
- \bigcirc 18 cm, $9\sqrt{3}$ cm

#Q. In figure, the value of DE is

- $\sqrt{4}$ 5 $\sqrt{2}$ units
- B 10 units
- \bigcirc 10 $\sqrt{2}$ units
- \bigcirc 15 $\sqrt{2}$ units

Homework

(8 Questions)

-> khub maje Raso.

-> Backlog Complete.

-> Pending work

