## Probability Theory

#### February 25, 2019

## 1 Notation

```
: Real line.
                                           : Extended real line, i.e., \mathbb{R}^* := \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}.
                                           : Non-negative extended real line, i.e., \mathbb{R}_+^* := \{r \in \mathbb{R}^*; r \geq 0\}.
   (a_n) \uparrow a, for a_n, a \in \mathbb{R}^*
                                           : (a_n) is a monotonically increasing real (extended)
                                            sequence (i.e., a_{n+1} \ge a_n, \forall n) and (a_n) converges to a.
(f_n) \uparrow f, for f, f_n : \Omega \to \mathbb{R}^*
                                            : (f_n) is a monotonically increasing real (extended)
                                            valued function sequence (i.e., f_{n+1}(\omega) \ge f_n(\omega), \omega \in \Omega)
                                            and (f_n) converges to f, i.e., \lim_{n\to\infty} f_n(\omega) = f(\omega), \forall \omega \in \Omega.
I_A
f_1 \wedge f_2, for f_1, f_2 : \Omega \to \mathbb{R}^*
                                            : Indicator function, i.e., I_A=1 if \omega\in A and I_A=0 otherwise.
                                           : f \wedge f_2 is a function from \Omega to \mathbb{R}^* defined as
                                            (f_1 \wedge f_2)(\omega) = \min \{f_1(\omega), f_2(\omega)\}.
f_1 \vee f_2, for f_1, f_2 : \Omega \to \mathbb{R}^* : f \vee f_2 is a function from \Omega to \mathbb{R}^* defined as
                                            (f_1 \vee f_2)(\omega) = \max \{f_1(\omega), f_2(\omega)\}.
```

## 2 Probability space

**Definition:** The 3-tuple  $(\Omega, \mathcal{F}, P)$  is called a probability space, where

- 1.  $\Omega$  is a set called the sample space.
- 2.  $\mathcal{F}$  is a  $\sigma$ -field.

**Definition of \sigma-field:**  $\mathcal{F}$  is a non-empty collection of subsets of  $\Omega$  which satisfies

- (S1)  $\Omega \in \mathcal{F}$ .
- (S2) If  $A \subseteq \Omega$  and  $A \in \mathcal{F}$ , then  $A^c \in \mathcal{F}$ .
- (S3) If each set in the collection  $\{A_n; n \in \mathbb{N}\}$  belongs to  $\mathcal{F}$ , *i.e.*,  $A_n \in \mathcal{F}$ ,  $\forall n \in \mathbb{N}$  (not necessarily disjoint), then  $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$ .

Note that  $A \subseteq \Omega$  is called  $\mathcal{F}$ -set if  $A \in \mathcal{F}$ .

#### 3. P is a probability measure.

**Definition of probability measure:**  $P: \mathcal{F} \to [0,1]$  is called a probability measure if it satisfies:

- (M1)  $P(\Omega) = 1$  and  $P(\emptyset) = 0$ .
- (M2) If  $\{A_n\}_{n\in\mathbb{N}}$  is a <u>disjoint collection</u> of  $\mathcal{F}$ -sets, *i.e.*,  $A_k \cap A_j = \emptyset$ , for  $k \neq j$ , then

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n).$$
 (1)

This property is called the *countable additivity of the probability measure*.

In other words, P is a set function (*i.e.*, P takes sets in  $\mathcal{F}$  to real values in [0,1]) which satisfies M1 and M2.

**Remark 1.** A similar concept to countable additivity is the finite additivity which is defined as follows: If  $\{A_i; 1 \leq i \leq n\}$  is a finite collection of disjoint  $\mathcal{F}$ -sets, then  $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$ . Note that countable additivity implies finite additivity. Indeed, by considering the countable collection  $\{B_i; i \in \mathbb{N}\}$ , where  $B_1 = A_1, \ldots, B_n = A_n$ , and  $B_k = \emptyset$ , for k > n, the claim follows.

Remark 2. A more generalized set function is the notion of measure. A measure  $\mu: \mathcal{F} \to \mathbb{R}_+^*$  (contrary to the probability measure where the range of P is contained in [0,1]) which satisfies  $\mu(\emptyset) = 0$  (need not satisfy  $\mu(\Omega) = 1$ ) and countable additivity (M2). Thus, probability measure is a measure with the additional condition that  $P(\Omega) = 1$ .

**Lemma 1.** If A and B are  $\mathcal{F}$ -sets with  $A \subseteq B$ , then  $P(A) \leq P(B)$ . Also,  $P(B \setminus A) = P(B) - P(A)$ .

*Proof.* Note that since  $A \subseteq B$ , we have  $B = A \cup (B \setminus A)$  and, A and  $B \setminus A$  are disjoint. Now, by the finite additivity of P, we have

$$P(B) = P(A) + \underbrace{P(B \setminus A)}_{\geq 0} \tag{2}$$

$$\Rightarrow P(B) > P(A)$$
.

This proves the first part. The second part follows from Eq. (2).

**Lemma 2.** If A is an  $\mathcal{F}$ -set, then  $P(A^c) = 1 - P(A)$ .

*Proof.* Note that  $A \cup A^c = \Omega$ . Also, A and  $A^c$  are disjoint. Therefore by finite additivity property of P and M1, we have

$$1 = P(\Omega) = P(A \cup A^c) = P(A) + P(A^c).$$

Hence, the claim follows.

#### 2.1 Limit of sets

**Definition:** (Liminf of a sequence of sets) Given a sequence of sets  $(A_n)_{n\in\mathbb{N}}$ , where  $A_n\subseteq\Omega$ , we define

$$\liminf_{n} A_n = \bigcup_{n} \bigcap_{k \ge n} A_k.$$
(3)

**Definition:** (Limsup of a sequence of sets) Given a sequence of sets  $(A_n)_{n\in\mathbb{N}}$ , where  $A_n\subseteq\Omega$ , we define

$$\limsup_{n} A_n = \bigcap_{n} \bigcup_{k \ge n} A_k.$$
(4)

**Definition:** (Limit of a sequence of sets) We say the limit of the sequence of sets  $(A_n)_{n\in\mathbb{N}}$  exists if  $\liminf_n A_n = \limsup_n A_n$  and the  $\lim_n A_n$  is that common set.

We will consider specific sequences here

#### 2.1.1 Monotonically increasing sequence of sets

**Definition:** A sequence  $(A_n)_{n\in\mathbb{N}}$  is called monotonically increasing sequence if  $A_n\subseteq A_{n+1}, \forall n\in\mathbb{N}$ .

In this case, note that for  $n \in \mathbb{N}$ ,

$$\bigcap_{k \ge n} A_k = A_n, \text{ since } A_n \subseteq A_{n+1} \subseteq A_{n+2} \dots$$

Therefore,

$$\liminf_{n} A_n = \bigcup_{n} \bigcap_{k>n} A_k = \bigcup_{n} A_n.$$
(5)

Note that for n > 1, since  $A_1 \subseteq A_2 \cdots \subseteq A_{n-1} \subseteq A_n$ , we have

$$\bigcup_{k=1}^{n} A_k = A_n \Rightarrow \bigcup_{k \ge n} A_k = \bigcup_{k \ge 1} A_k \tag{6}$$

Therefore,

$$\lim\sup_{n} A_{n} = \bigcap_{n} \bigcup_{k \ge n} A_{k} = \bigcap_{n} \bigcup_{k \ge 1} A_{k} = \bigcup_{k \ge 1} A_{k}. \tag{7}$$

Therefore, by the definition of  $\lim_{n} A_n$ , we have

$$\lim_{n} A_n = \bigcup_{n} A_n. \tag{8}$$

The next question is what happens to the probability of the monotonically increasing sets  $A_n$  when each  $A_n$  is an  $\mathcal{F}$ -set. Indeed, we are considering the

real sequence  $(P(A_n))_{n\in\mathbb{N}}$ . The real sequence  $(P(A_n))_{n\in\mathbb{N}}$  is bounded since  $0 \leq P(A_n) \leq 1$ ,  $\forall n \in \mathbb{N}$ . Also since the set sequence  $(A_n)_{n\in\mathbb{N}}$  is monotonically increasing, we have, for  $n \in \mathbb{N}$ ,

$$A_{n+1} \supseteq A_n \Rightarrow P(A_{n+1}) \ge P(A_n)$$
, (follows from Lemma 1)

Therefore, the real sequence  $(P(A_n))_{n\in\mathbb{N}}$  is a monotonically increasing bounded sequence. Hence it should converge. But where does it converges to?

**Theorem 1.** If  $(A_n)_{n\in\mathbb{N}}$  is a monotonically increasing sequence of  $\mathcal{F}$ -sets, then

$$\lim_{n \to \infty} P(A_n) = P(\lim_n A_n) = P(\bigcup_n A_n). \tag{9}$$

*Proof.* Let  $A_0 = \emptyset$ . Now set

$$B_1 := A_1 \setminus A_0;$$

$$B_2 := A_1 \setminus A_1;$$

$$\vdots$$

$$B_n := A_n \setminus A_{n-1};$$

$$\vdots$$

Now note that the set sequence  $(B_n)_{n\in\mathbb{N}}$  is a disjoint sequence, *i.e.*,  $B_i\cap B_j=\emptyset$ , for  $i\neq j$ . Also,

$$\bigcup_{n} B_n = \bigcup_{n} A_n. \tag{10}$$

Therefore, from Eq. (10) and the fact that the set sequence  $(A_n)_{n\in\mathbb{N}}$  is monotonically increasing, we have

$$P(\lim_{n} A_{n}) = P(\bigcup_{n} A_{n}) = P(\bigcup_{n} B_{n})$$

$$= \sum_{n \in \mathbb{N}} P(B_{n}) \text{ (follows from M2)}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} P(B_{i})$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} P(A_{i}) - P(A_{i-1}) \text{ (follows from Lemma 1)}$$

$$= \lim_{n \to \infty} P(A_{n}) - \underbrace{P(A_{0})}_{=0}$$

$$= \lim_{n \to \infty} P(A_{n}).$$

**Remark 3.** Note that in the proof of the above theorem, we never used the condition  $P(\Omega) = 1$  of the probability measure. This implies that the above result also holds for any measure on  $\Omega$ .

#### 2.1.2 Monotonically decreasing sequence of sets

**Definition:** A sequence  $(A_n)_{n\in\mathbb{N}}$  is called monotonically decreasing sequence if  $A_{n+1}\subseteq A_n, \forall n\in\mathbb{N}$ .

In this case, note that for  $n \in \mathbb{N}$ ,

$$\bigcup_{k > n} A_k = A_n$$
, since  $A_n \supseteq A_{n+1} \supseteq A_{n+2} \dots$ 

Therefore,

$$\lim_{n} \sup_{n} A_{n} = \bigcap_{n} \bigcup_{k > n} A_{k} = \bigcap_{n} A_{n}. \tag{11}$$

Note that for n > 1, since  $A_1 \supseteq A_2 \cdots \supseteq A_{n-1} \supseteq A_n$ , we have

$$\bigcap_{k=1}^{n} A_k = A_n \Rightarrow \bigcap_{k \ge n} A_k = \bigcap_{k \ge 1} A_k \tag{12}$$

Therefore,

$$\liminf_{n} A_n = \bigcup_{n} \bigcap_{k \ge n} A_k = \bigcup_{n} \bigcap_{k \ge 1} A_k = \bigcap_{k \ge 1} A_k.$$
 (13)

Therefore, by the definition of  $\lim_{n} A_n$ , we have

$$\lim_{n} A_n = \bigcap_{n} A_n. \tag{14}$$

What happens to the probability of the monotonically decreasing sets  $A_n$  when each  $A_n$  is an  $\mathcal{F}$ -set. Here also, the real sequence  $(P(A_n))_{n\in\mathbb{N}}$  is bounded since  $0 \leq P(A_n) \leq 1$ ,  $\forall n \in \mathbb{N}$ . Also since the set sequence  $(A_n)_{n\in\mathbb{N}}$  is monotonically decreasing, we have, for  $n \in \mathbb{N}$ ,

$$A_{n+1} \subseteq A_n \Rightarrow P(A_{n+1}) \le P(A_n)$$
, (follows from Lemma 1)

Therefore, the real sequence  $(P(A_n))_{n\in\mathbb{N}}$  is a monotonically decreasing bounded sequence. Hence it should converge.

**Theorem 2.** If  $(A_n)_{n\in\mathbb{N}}$  is a monotonically decreasing sequence of  $\mathcal{F}$ -sets, then

$$\lim_{n \to \infty} P(A_n) = P(\lim_n A_n) = P(\bigcap_n A_n). \tag{15}$$

*Proof.* Since  $(A_n)_{n\in\mathbb{N}}$  is a monotonically decreasing sequence of  $\mathcal{F}$ —sets, we have  $(A_n^c)_{n\in\mathbb{N}}$  to be a monotonically increasing sequence of  $\mathcal{F}$ —sets. This follows from S2.

Now from Theorem 1, we know that

$$\lim_{n \to \infty} P(A_n^c) = P(\lim_n A_n^c) = P(\bigcup_n A_n^c)$$
 (16)

However, note that  $\bigcup_n A_n^c = (\cap_n A_n)^c$ . Therefore from Lemma 2 and Eq. (16), we have

$$\lim_{n \to \infty} 1 - P(A_n) = 1 - P(\bigcap_n A_n)$$

$$\Leftrightarrow 1 - \lim_{n \to \infty} P(A_n) = 1 - P(\bigcap_n A_n)$$

$$\Leftrightarrow \lim_{n \to \infty} P(A_n) = P(\bigcap_n A_n).$$

#### 3 Random variables

**Definition:** (Borel  $\sigma$ -field) The smallest  $\sigma$ -field on  $\mathbb{R}^*$  containing intervals. Recall that intervals are of the form (a,b),[a,b],[a,b),(a,b], where  $a,b\in\mathbb{R}^*$  and  $a\leq b$ .

**Remark 4.** The definition is indeed well-defined. Note that given a collection C of subsets of  $\mathbb{R}^*$ , one can ask what is the smallest  $\sigma$ -field containing C. We denote such a sigma field as  $\sigma(C)$ . Indeed, one can obtain  $\sigma(C)$  as follows. Consider the new collection  $\mathcal{G} := \{\mathcal{H} \text{ s.t. } \mathcal{H} \text{ is a } \sigma\text{-field and } C \subseteq \mathcal{H}\}$ . Note that this is a collection of  $\sigma$ -fields. Is  $\mathcal{G}$  non-empty? YES - since the power set of  $\mathbb{R}^*$  itself is a  $\sigma$ -field and it contains C. Hence the power set belongs to  $\mathcal{G}$ . Now it is easy to verify that

$$\sigma(C) = \bigcap_{\mathcal{H} \in \mathcal{G}} \mathcal{H}. \tag{17}$$

**Definition:** (Random variable) A function  $X : \Omega \to \mathbb{R}^*$  is called a random variable (r.v.) if  $X^{-1}(B) \in \mathcal{F}$ , for every  $B \in \mathcal{B}$ . Here,  $X^{-1}(B)$  is defined as follows: for  $B \subseteq \mathbb{R}^*$ ,

$$X^{-1}(B) := \{ \omega \in \Omega : X(\omega) \in B \}. \tag{18}$$

By the above it is hard to verify whether a function  $X : \omega \to \mathbb{R}^*$  is a r.v. since we don't know the sets inside  $\mathcal{B}$ . However, we do know that the intervals are inside  $\mathcal{B}$ . However, the following claim reduces this effort by providing a sufficient condition.

**Theorem 3.** If  $X^{-1}([-\infty, a]) \in \mathcal{F}$ ,  $\forall a \in \mathbb{R}^*$ , then X is a r.v.

*Proof.* Given that  $X^{-1}([-\infty, a]) \in \mathcal{F}$ ,  $\forall a \in \mathbb{R}^*$ , we have to show that X is a r.v. Define

$$\mathcal{C} := \{ B \subseteq \mathbb{R}^* | X^{-1}(B) \in \mathcal{F} \} \tag{19}$$



If we can show that  $\mathcal{B} \subseteq \mathcal{C}$  we are done. Because if so then for every  $E \in \mathcal{B}$ , we have  $X^{-1}(E) \in \mathcal{F}$  (by definition of  $\mathcal{C}$ ). To do so we show that  $\mathcal{C}$  is a  $\sigma$ -field containing intervals. Since  $\mathcal{B}$  (the Borel  $\sigma$ -field) is the smallest  $\sigma$ -field containing intervals, we have  $\mathcal{B} \subseteq \mathcal{C}$ .

#### Part 1: To show that C contains intervals

From the hypothesis we know that  $[-\infty, a] \in \mathcal{C}$ ,  $\forall a \in \mathbb{R}$ . Now note that for  $b \in \mathbb{R}^*$ , we have

$$[-\infty, b) = \bigcup_{n \in \mathbb{N}} [-\infty, b - \frac{1}{n}]. \tag{20}$$

Therefore,

$$X^{-1}([-\infty,b)) = X^{-1}\left(\bigcup_{n\in\mathbb{N}} [-\infty,b-\frac{1}{n}]\right)$$

$$= \bigcup_{n\in\mathbb{N}} X^{-1}([-\infty,b-\frac{1}{n}])$$

$$\in \mathcal{F} \text{ by hypothesis}$$

$$\in \mathcal{F} \text{ by countable union}$$
• This implies that  $[-\infty,b)\in\mathcal{C}, \forall b\in\mathbb{R}^*.$  (21)

Now note that

$$X^{-1}((b, +\infty]) = X^{-1}\left([-\infty, b]^c\right) = \underbrace{\left(X^{-1}([-\infty, b])\right)^c}_{\in \mathcal{F} \text{ since } X^{-1}([-\infty, b]) \in \mathcal{F} \text{ by hypothesis}}$$
• This implies that  $(b, +\infty] \in \mathcal{C}, \forall b \in \mathbb{R}^*.$  (22)

Also, note that

$$X^{-1}([b, +\infty]) = X^{-1}([-\infty, b)^{c}) = \underbrace{\left(X^{-1}([-\infty, b)\right)^{c}}_{\in \mathcal{F} \text{ since } X^{-1}([-\infty, b)) \in \mathcal{F} \text{ by Eq. (21)}}$$
• This implies that  $(b, +\infty] \in \mathcal{C}, \forall b \in \mathbb{R}^{*}$ . (23)

Further, for  $a, b \in \mathbb{R}^*$ , a < b, we have

$$(a,b) = (a,+\infty] \cap [-\infty,b) \Rightarrow X^{-1}\left((a,b)\right) = \underbrace{X^{-1}\left((a,+\infty]\right)}_{\in \mathcal{F} \text{ Eq. (22)}} \cap \underbrace{X^{-1}\left([-\infty,b)\right)}_{\in \mathcal{F} \text{ Eq. (21)}}.$$

- This implies that  $(a, b) \in \mathcal{C}, \forall a, \forall b \in \mathbb{R}^*, a < b.$  (24)
- Similarly,  $[a, b), [a, b], (a, b] \in \mathcal{C}, \forall a, \forall b \in \mathbb{R}^*, a < b.$  (25)

#### Part 2: To show that C is a $\sigma$ -field over $\mathbb{R}^*$

Note that  $X^{-1}(\mathbb{R}^*) = \Omega \in \mathcal{F}$ . Therefore,

$$\mathbb{R}^* \in \mathcal{C}. \tag{26}$$

If  $A \in \mathcal{C}$ , then  $X^{-1}(A) \in \mathcal{F}$ . Therefore,

$$X^{-1}(A^c) = (X^{-1}(A))^c \in \mathcal{F}$$
  

$$\Rightarrow A^c \in \mathcal{C}.$$
(27)

Given a countable collection  $\{A_n\}_{n\in\mathbb{N}}$  with  $A_n\in\mathcal{C}$ ,  $\forall n\in\mathbb{N}$  (which implies that  $X^{-1}(A_n)\in\mathcal{F}, \forall n$  by the definition of  $\mathcal{C}$ ), we have

$$X^{-1}\left(\bigcup_{n=1}^{\infty} A_n\right) = \underbrace{\bigcup_{n=1}^{\infty} \underbrace{X^{-1}(A_n)}_{\in \mathcal{F}}}_{}$$

$$\Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{C}. \tag{28}$$

Therefore,  $\mathcal{C}$  is a  $\sigma$ -field over  $\mathbb{R}^*$ .

We now consider the simplest of random variables.

#### 3.1 Non-negative simple functions

**Definition:** We call a finite collection  $\{A_i\}_{i=1}^n$  an  $\mathcal{F}$ -partition of  $\Omega$  if

- 1. Each  $A_i \in \mathcal{F}$ .
- 2.  $A_i$ 's are disjoint ( i.e.,  $A_k \cap A_t = \emptyset$ , if  $k \neq t$ ) and
- 3.  $\bigcup_{i=1}^{n} A_i = \Omega$  (i.e. their union gives the entire set  $\Omega$ ).



**Definition:** A function  $s:\Omega\to\mathbb{R}_+^*$  is called a non-negative simple function if it has the form

$$s(\omega) = \sum_{i=1}^{n} a_i I_{A_i}(\omega), \text{ where } a_i \in \mathbb{R}_+^*, 1 \le \forall i \le n.$$
 (29)

Note that s is a r.v. To see that, lets assume that  $a_1 < a_2 < a_3 < \cdots < a_n$  (if not, then re-number). Then

$$s^{-1}([-\infty, a]) = \begin{cases} \emptyset, & \text{if } a < a_1. \\ A_1, & \text{if } a_1 \le a < a_2. \\ A_1 \cup A_2, & \text{if } a_2 \le a < a_3. \\ A_1 \cup A_2 \cup A_3, & \text{if } a_3 \le a < a_4. \\ \vdots \\ \Omega, & \text{if } a \ge a_n. \end{cases}$$

Thus  $s^{-1}([-\infty, a]) \in \mathcal{F}, \forall a \in \mathbb{R}^*$ . Therefore s is a r.v.

We denote by  $\mathbb{L}_0^+$  the collection of non-negative simple functions.

$$\mathbb{L}_0^+ := \{ s : \Omega \to \mathbb{R}_+^* | s \text{ is a non-negative simple function} \}. \tag{30}$$

#### **Properties:**

**Proposition 1.** If  $s_1, s_2 \in \mathbb{L}_0^+$ , then

- 1.  $s_1 + s_2 \in \mathbb{L}_0^+$  and  $s_1 s_2 \in \mathbb{L}_0^+$ .
- 2.  $cs_1 \in \mathbb{L}_0^+$ , for  $c \in \mathbb{R}_+^*$ .
- 3.  $s_1 \wedge s_2 \in \mathbb{L}_0^+$ .
- 4.  $s_1 \vee s_2 \in \mathbb{L}_0^+$ .

Proof. Let

$$s_1 = \sum_{i=1}^n a_i I_{A_i}$$
 and  $s_2 = \sum_{j=1}^m b_j I_{B_j}$ .

1. It is easy to verify that  $\{A_i \cap B_j; 1 \leq i \leq n, 1 \leq j \leq m\}$  is a  $\mathcal{F}$ -partition. Then

$$s_1 + s_2 = \sum_{i=1}^n \sum_{j=1}^m (a_i + b_j) I_{A_i \cap B_j}.$$
 (31)

To justify this claim, note that

For 
$$\omega \in \Omega \Rightarrow \omega \in A_i$$
 and  $\omega \in B_j$ , for some  $i, j, 1 \le i \le n, 1 \le j \le m$ ,  
since  $\{A_i\}, \{B_j\}$  are  $\mathcal{F}$  – partitions.  
 $\Leftrightarrow \omega \in A_i \cap B_j$   
 $\Leftrightarrow s_1(\omega) = a_i$  and  $s_2(\omega) = b_j$  with  $\omega \in A_i \cap B_j$   
 $\Leftrightarrow (s_1 + s_2)(\omega) = s_1(\omega) + s_2(\omega) = a_i + b_j$ , with  $\omega \in A_i \cap B_j$   
 $\Leftrightarrow s_1 + s_2 = \sum_{i=1}^n \sum_{j=1}^m (a_i + b_j) I_{A_i \cap B_j}$ .

Therefore  $s_1 + s_2 \in \mathbb{L}_0^+$ .

2. Similarly,  $s_1 s_2 \in \mathbb{L}_0^+$  with

$$s_1 s_2 = \sum_{i=1}^n \sum_{j=1}^m a_i b_j I_{A_i \cap B_j}.$$
 (32)

3. Also, for  $c \in \mathbb{R}_+^*$ ,  $cs_1 \in \mathbb{L}_0^+$  with

$$cs_1 = \sum_{i=1}^n \sum_{i=1}^m ca_i I_{A_i}.$$
 (33)

4.  $s_1 \wedge s_2 \in \mathbb{L}_0^+$  with

$$s_1 \wedge s_2 = \sum_{i=1}^n \sum_{j=1}^m \min\{a_i, b_j\} I_{A_i \cap B_j}.$$
 (34)

5.  $s_1 \vee s_2 \in \mathbb{L}_0^+$  with

$$s_1 \lor s_2 = \sum_{i=1}^n \sum_{j=1}^m \max\{a_i, b_j\} I_{A_i \cap B_j}.$$
 (35)

The simple functions even though are simple are not that simple. They are strong enough to approximate any non-negative r.v.

**Theorem 4.** If X is a non-negative r.v., then there exists a sequence  $(s_n)$ , where  $s_n \in \mathbb{L}_0^+$  s.t.  $s_n \uparrow X$ . This means that for each  $\omega \in \Omega$ , we have  $(s_n(\omega))$  is a monotonically increasing sequence and  $\lim_{n\to\infty} s_n(\omega) = X(\omega)$ .

*Proof.* We will create the sequence  $(s_n)$  as follows: Let

$$E_{n,k} := \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right), 1 \le k \le n2^n \text{ and } E_{n,\infty} = [n, +\infty].$$
 (36)

Also, let

$$A_{n,k} := X^{-1}(E_{n,k}), 1 \le k \le n2^n \text{ and } A_{n,\infty} = X^{-1}(E_{n,\infty}).$$
 (37)

Define

$$s_n = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} I_{A_{n,k}} + nI_{A_{n,\infty}}.$$
 (38)

It is easy to verify that  $s_n \in \mathbb{L}_0^+$  since  $\{A_{n,k}, 1 \leq k \leq n2^n; A_{n,\infty}\}$  is an  $\mathcal{F}$ -partition.

It is also easy to verify from Fig. 2 that

$$s_{n+1}(\omega) \ge s_n(\omega), \forall \omega \in \Omega.$$
 (39)

Now we will verify that  $\lim_{n\to\infty} s_n(\omega) = X(\omega), \forall \omega \in \Omega$ .

For  $\omega \in \Omega$ , there are two cases possible

1) Either  $\omega \in A_{n,k}$  for some  $1 \le k \le n2^n$ . In this case,

$$\begin{split} s_n(\omega) &= \frac{k-1}{2^n} \text{ and } X(\omega) \in E_{n,k} \\ \Rightarrow \frac{k-1}{2^n} &\leq X(\omega) < \frac{k}{2^n} \\ \Rightarrow \frac{k-1}{2^n} - \frac{k-1}{2^n} &\leq X(\omega) - s_n(\omega) < \frac{k}{2^n} - \frac{k-1}{2^n} \\ \Rightarrow 0 &\leq X(\omega) - s_n(\omega) < \frac{1}{2^n}. \\ \Rightarrow \lim_{n \to \infty} s_n(\omega) &= X(\omega) \text{ (by squeeze theorem)}. \end{split}$$

2) Or  $\omega \in A_{n,\infty}$ . In this case, we have

$$s_n(\omega) = n \text{ and } X(\omega) \in [n, +\infty]$$
  
 $\Rightarrow s_n(\omega) = n \text{ and } X(\omega) \ge n.$ 

Hence, we cannot obtain the bound similar to the earlier case. However, one can consider two sub-cases here: 1) If  $X(w) < +\infty$ . In this case, by the Archimedean theorem, there exists an  $N \in \mathbb{N}$  s.t.  $N > X(\omega)$ . Therefore,  $\forall n \geq N$ , we have the bound

$$\Rightarrow 0 \le X(\omega) - s_n(\omega) < \frac{1}{2^n}. \tag{40}$$



Figure 1: Partitions

Therefore,  $\lim_{n\to\infty} s_n(\omega) = X(\omega)$ , by squeeze theorem. 2) If If  $X(w) = +\infty$ . In this case, we have  $s_n(\omega) = n$ . Therefore,

$$\lim_{n\to\infty} s_n(\omega) = +\infty = X(\omega).$$

Thus, we have addressed every possible scenario. Therefore,

$$\lim_{n \to \infty} s_n(\omega) = X(\omega), \forall \omega \in \Omega.$$
(41)



Figure 2: Illustration to show that  $s_{n+1} \geq s_n$ 

### 4 Expectation of a random variable

Goal:



#### 4.1 Expectation of non-negative simple functions

We first define the expectation of the non-negative simple functions as follows: For  $s \in \mathbb{L}_0^+$  with  $s = \sum_{i=1}^n a_i I_{A_i}$ , ( $\{A_i\}$  is an  $\mathcal{F}$ -partition and  $a_i \in \mathbb{R}_+^*$ ), we define

$$\mathbb{E}[s] = \sum_{i=1}^{n} a_i P(A_i). \tag{42}$$

Properties of expectation of non-negative simple functions

**Theorem 5.** For  $s_1, s_2 \in \mathbb{L}_0^+$  with  $s_1 = \sum_{i=1}^n a_i I_{A_i}$  and  $s_2 = \sum_{j=1}^m b_j I_{B_j}$ ,  $(\{A_i; 1 \leq i \leq n\} \text{ and } \{B_j; 1 \leq j \leq m\} \text{ are } \mathcal{F}\text{-partitions and } a_i, b_j \in \mathbb{R}_+^*)$ , we have

- 1.  $\mathbb{E}[s_1] \geq 0$ .
- 2.  $\mathbb{E}[s_1 + s_2] = \mathbb{E}[s_1] + \mathbb{E}[s_2]$ .
- 3. For  $c \in \mathbb{R}_+^*$ ,  $\mathbb{E}[cs_1] = c\mathbb{E}[s_1]$ .
- 4. If  $s_1 \geq s_2$ , then  $\mathbb{E}[s_1] \geq \mathbb{E}[s_2]$ . (Note that  $s_1 \geq s_2$  means that  $s_1(\omega) \geq s_2(\omega), \forall \omega \in \Omega$ )

Proof. 1

$$\mathbb{E}[s_1] = \sum_{i=1}^n \underbrace{a_i}_{\geq 0} \underbrace{P(A_i)}_{\geq 0}$$

$$> 0.$$

2. We know that

$$s_{1} + s_{2} = \sum_{i=1}^{n} \sum_{j=1}^{m} (a_{i} + b_{j}) I_{A_{i} \cap B_{j}}$$

$$\Rightarrow \mathbb{E}[s_{1} + s_{2}] = \mathbb{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{m} (a_{i} + b_{j}) I_{A_{i} \cap B_{j}}\right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (a_{i} + b_{j}) P(A_{i} \cap B_{j})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} P(A_{i} \cap B_{j}) + \sum_{i=1}^{n} \sum_{j=1}^{m} b_{j} P(A_{i} \cap B_{j})$$

$$= \sum_{i=1}^{n} a_{i} P(A_{i} \cap (\bigcup_{j=1}^{m} B_{j})) + \sum_{j=1}^{m} b_{j} P((\bigcup_{i=1}^{n} A_{i}) \cap B_{j}) \text{ (by M2)}$$

$$= \sum_{i=1}^{n} a_{i} P(A_{i} \cap \Omega) + \sum_{j=1}^{m} b_{j} P(\Omega \cap B_{j})$$

$$= \sum_{i=1}^{n} a_{i} P(A_{i}) + \sum_{j=1}^{m} b_{j} P(B_{j})$$

$$= \mathbb{E}[s_{1}] + \mathbb{E}[s_{2}].$$

3. Again,

$$cs_1 = \sum_{i=1}^n ca_i I_{A_i}$$

$$\Rightarrow \mathbb{E}\left[cs_1\right] = \sum_{i=1}^n ca_i P(A_i) = c \sum_{i=1}^n a_i P(A_i) = c \mathbb{E}\left[s_1\right].$$

4. For  $s_1 \geq s_2$ , we have

$$\mathbb{E}[s_1] = \mathbb{E}\left[\sum_{i=1}^n a_i I_{A_i}\right]$$

$$= \sum_{i=1}^n a_i P(A_i \cap \Omega)$$

$$= \sum_{i=1}^n \sum_{j=1}^m a_i P(A_i \cap B_j)$$

$$= \sum_{i=1}^n \sum_{j=1}^m a_i P(A_i \cap B_j) \text{ (by M2)}$$

$$= \sum_{i=1}^n \sum_{j=1}^m a_i P(A_i \cap B_j)$$

$$\geq \sum_{i=1}^n \sum_{j=1}^m a_i P(A_i \cap B_j)$$

$$\geq \sum_{i=1}^n \sum_{j=1}^m b_j P(A_i \cap B_j)$$

$$= \sum_{i=1}^n \sum_{j=1}^m b_j P(A_i \cap B_j)$$

$$= \mathbb{E}[s_2].$$

We denote by  $\{X>Y\}:=\{\omega\in\Omega:X(\omega)>Y(\omega)\}$ . Similarly we define  $\{X\geq Y\},\,\{X=Y\},\{X< Y\}$  and  $\{X\leq Y\}.$ 

**Proposition 2.** Given r.v's X and Y, we have  $\{X > Y\} \in \mathcal{F}$ ,  $\{X \ge Y\} \in \mathcal{F}$ ,  $\{X = Y\} \in \mathcal{F}$ ,  $\{X \ne Y\} \in \mathcal{F}$ ,  $\{X < Y\} \in \mathcal{F}$  and  $\{X \le Y\} \in \mathcal{F}$ .

Proof. Note that

$$\begin{split} \{X > Y\} &= \bigcup_{q \in \mathbb{Q}} \{\omega \in \Omega : X(\omega) < q < Y(\omega)\} \\ &= \bigcup_{q \in \mathbb{Q}} \underbrace{X^{-1}\left([-\infty,q)\right)}_{\in \mathcal{F}} \cap \underbrace{Y^{-1}\left((q,+\infty]\right)}_{\in \mathcal{F}} \in \mathcal{F}. \end{split}$$

Also,

$${X < Y} = {Y > X} \in \mathcal{F}$$
 (follows from the previous case).

Similarly,

$$\{X \neq Y\} = \underbrace{\{X > Y\}}_{\in \mathcal{F}} \cup \underbrace{\{X < Y\}}_{\in \mathcal{F}} \in \mathcal{F}.$$

Also,

$${X = Y} = {X \neq Y}^c \in \mathcal{F} \text{ (since } {X \neq Y} \in \mathcal{F}).$$

Also,

$$\{X \ge Y\} = \underbrace{\{X > Y\}}_{\in \mathcal{F}} \cup \underbrace{\{X = Y\}}_{\in \mathcal{F}} \in \mathcal{F}.$$

Similarly, we can show  $\{X \leq Y\} \in \mathcal{F}$ .

**Proposition 3.** If X, Y are r.v.s (not necessarily non-negative), then

- 1. For  $c \in \mathbb{R}$ , both cX and X + c are r.v.s.
- 2. X + Y is a r.v.
- 3. XY is a r.v.

*Proof.* 1. There are 3 cases to consider:

- (i) c = 0. Then cX = 0 is a r.v.
- (ii) c > 0. Then, for  $a \in \mathbb{R}^*$ , we have

$$(cX)^{-1}([-\infty, a]) = X^{-1}[-\infty, \frac{a}{c}] \in \mathcal{F}.$$

(iii) c < 0. Then, for  $a \in \mathbb{R}^*$ , we have

$$(cX)^{-1}([-\infty,a]) = X^{-1}[\frac{a}{c},+\infty] \in \mathcal{F}.$$

Therefore cX is a r.v.

The case of X + c can be shown similarly.

2. Note that  $(X+Y)(\omega)=X(\omega)+Y(\omega)$ . Since X and Y can take infinity as it values, one cannot define  $(X+Y)(\omega)$  in cases where  $X(\omega)=+\infty, Y(\omega)=-\infty$  and  $X(\omega)=-\infty, Y(\omega)=+\infty$ . Let's define

$$A = \{ \omega \in \Omega : X(\omega) = -\infty \text{ and } Y(\omega) = +\infty \} \cup \{ \omega \in \Omega : X(\omega) = +\infty \text{ and } Y(\omega) = -\infty \}.$$

$$(43)$$

Therefore we define X + Y as follows:

$$(X+Y)(\omega) = \begin{cases} X(\omega) + Y(\omega), & \text{if } \omega \in A^c \\ \beta, & \text{if } \omega \in A, \text{ where } \beta \in \mathbb{R}^*. \end{cases}$$
(44)

To show that X+Y is a r.v., we have to show that  $(X+Y)^{-1}([-\infty, a]) \in \mathcal{F}$ ,  $\forall a \in \mathbb{R}^*$ . To verify that, note that

$$(X+Y)^{-1}([-\infty, a] = \{\omega \in \Omega : (X+Y)(\omega) \le a\}$$

$$= \{\omega \in \Omega : (X+Y)(\omega) \le a\} \cap (A \cup A^c)$$

$$= \{\omega \in \Omega : (X+Y)(\omega) \le a\} \cap A \qquad (45)$$

$$\bigcup$$

$$\{\omega \in \Omega : (X+Y)(\omega) \le a\} \cap A^c \qquad (46)$$

We treat Parts (45) and (46) separately. We will show that (45)  $\in \mathcal{F}$  and (46)  $\in \mathcal{F}$ .

$$(45) \Rightarrow \{\omega \in \Omega : (X+Y)(\omega) \le a\} \cap A$$

$$= \{\omega \in A : (X+Y)(\omega) \le a\}$$

$$= \begin{cases} \emptyset, & \text{if } a < \beta, \\ A, & \text{if } a \ge \beta. \end{cases}$$

$$\in \mathcal{F}$$

$$(47)$$

For Part (46), there are 3 cases to consider.

(i)  $a \in \mathbb{R}$ : In this case, we have

$$(46) \Rightarrow \{\omega \in A^{c} : (X+Y)(\omega) \leq a\}$$

$$= \{\omega \in A^{c} : X(\omega) + Y(\omega) \leq a\}$$

$$= \{\omega \in A^{c} : X(\omega) \leq a - Y(\omega)\}$$

$$= \{X \leq c - Y\} \cap A^{c} \in \mathcal{F} \text{ follows from Proposition 2.}$$

$$(48)$$

(ii)  $a = +\infty$ : In this case, we have

$$(46) \Rightarrow \{\omega \in \Omega : (X+Y)(\omega) \le a\} \cap A^{c}$$
$$= \Omega \cap A^{c}$$
$$= A^{c} \in \mathcal{F}. \tag{49}$$

(iii)  $a = -\infty$ : In this case, we have

$$(46) \Rightarrow \{\omega \in \Omega : (X+Y)(\omega) \le a\} \cap A^{c}$$

$$= \{\omega \in \Omega : (X+Y)(\omega) \le -\infty\} \cap A^{c}$$

$$= \{\omega \in \Omega : (X+Y)(\omega) = -\infty\} \cap A^{c}$$

$$= \{\omega \in A^{c} : (X+Y)(\omega) = -\infty\}$$

$$= \{\omega \in A^{c} : X(\omega) + Y(\omega) = -\infty\}$$

$$= (\{X = -\infty\} \cup \{Y = -\infty\}) \cap A^{c}$$

$$\in \mathcal{F}.$$

$$(50)$$

3. Left as exercise.

For  $s \in \mathbb{L}_0^+$  with  $s = \sum_{i=1}^n a_i I_{A_i}$ , we say that *coefficients of s take non-infinity values* if  $a_i \in \mathbb{R}_+$ ,  $\forall i, 1 \leq i \leq n$ . This means that none of  $a_i$  take infinity.

**Proposition 4.** For  $a \ s \in \mathbb{L}_0^+$ , define

$$\mu(A) := \mathbb{E}\left[sI_A\right], A \in \mathcal{F}.$$

Then  $\mu$  is a measure.

*Proof.* Let  $s = \sum_{i=1}^{n} a_i I_{A_i}$ , To show  $\mu$  is a measure, we have to show two properties

- 1.  $\mu(\emptyset) = 0$ .
- 2. If  $\{B_k\}_{k\in\mathbb{N}}$  is a disjoint collection of  $\mathcal{F}$ -sets, then  $\mu(\bigcup_k B_k) = \sum_k \mu(B_k)$ . For the former case, note that

$$\mu(\emptyset) = \mathbb{E}[sI_{\emptyset}] = 0 \text{ since } (sI_{\emptyset})(\omega) = s(\omega)I_{\emptyset}(\omega) = 0, \forall \omega \in \Omega.$$

For the latter case, let  $B^* = \bigcup_k B_k$ . Now note that

$$\mu(B^*) = \mathbb{E}\left[sI_{B^*}\right] = \sum_{i=1}^n a_i P(A_i \cap B^*) = \sum_{i=1}^n a_i P\left(A_i \cap \left(\bigcup_k B_k\right)\right)$$

$$= \sum_{i=1}^n a_i P\left(\bigcup_k (A_i \cap B_k)\right)$$

$$= \sum_{i=1}^n \sum_k a_i P(A_i \cap B_k)$$

$$= \sum_k \sum_{i=1}^n a_i P(A_i \cap B_k)$$

$$= \sum_k \mu(B_k).$$

Therefore  $\mu$  is a measure.

**Lemma 3.** Let  $(s_n) \uparrow s$ , where  $s_n, s \in \mathbb{L}_0^+$  with the coefficients of s taking non-infinity values. Then  $(\mathbb{E}[s_n]) \uparrow \mathbb{E}[s]$ 

*Proof.* Since  $(s_n) \uparrow s$ , we have

$$s_n \leq s \Rightarrow \mathbb{E}\left[s_n\right] \leq \mathbb{E}\left[s\right].$$
 Also,  $s_{n+1} \geq s_n \Rightarrow \mathbb{E}\left[s_{n+1}\right] \geq \mathbb{E}\left[s_n\right]$ 

Therefore the real sequence  $(\mathbb{E}[s_n])$  is a monotonically increasing sequence bounded by  $\mathbb{E}[s]$ . Therefore

$$\lim_{n \to \infty} \mathbb{E}\left[s_n\right] \le \mathbb{E}\left[s\right]. \tag{51}$$

For 0 < c < 1, consider

$$B_n = \{ \omega \in \Omega : s_n(\omega) \ge cs(\omega) \}. \tag{52}$$

Note that  $(B_n)$  is a monotonically increasing sequence of  $\mathcal{F}$ -sets. Indeed,  $B_n$  is an  $\mathcal{F}$ -set follows from Proposition 2. To see that it is monotonically increasing note that

$$\omega \in B_n \Rightarrow s_{n+1}(\omega) \ge s_n(\omega) \ge cs(\omega) \Rightarrow \omega \in B_{n+1}.$$
  
  $\Rightarrow B_n \subseteq B_{n+1}.$ 

Therefore

$$\lim_{n \to \infty} B_n = \bigcup_n B_n. \tag{53}$$

Since the coefficients of s are finite, we have  $cs(\omega) < +\infty$ ,  $\forall \omega \in \Omega$ . Also, since 0 < c < 1, we have  $cs(\omega) < s(\omega)$ ,  $\forall \omega \in \Omega$ . This implies that for each  $\omega \in \Omega$ , there exists an  $N_{\omega} \in \mathbb{N}$  (depending on  $\omega$ ) s.t.  $s_n(\omega) > cs(\omega)$ ,  $\forall n \geq N_{\omega}$ . This implies that  $\omega \in B_n$ ,  $\forall n \geq N_{\omega}$ . This further implies that

$$\bigcup_{n} B_n = \Omega. \tag{54}$$

Now we will build certain inequalities here:

1. Define  $\nu(A) = \mathbb{E}\left[csI_A\right]$ ,  $A \in \mathcal{F}$ . From Proposition 4, we have  $\nu : \mathcal{F} \to \mathbb{R}_+^*$  is a measure. Therefore, by Remark 3, we have

$$\lim_{n \to \infty} \nu(B_n) = \nu(\bigcup_n B_n) = \nu(\Omega)$$

$$\parallel \qquad \qquad \parallel$$

$$\lim_{n \to \infty} \mathbb{E}\left[csI_{B_n}\right] \qquad = \qquad \mathbb{E}\left[csI_{\Omega}\right] = \mathbb{E}\left[cs\right] = c\mathbb{E}\left[s\right]. \tag{55}$$

2.

$$s_{n}I_{B_{n}} \leq s_{n+1}I_{B_{n+1}} \Rightarrow \mathbb{E}\left[s_{n}I_{B_{n}}\right] \leq \mathbb{E}\left[s_{n+1}I_{B_{n+1}}\right]$$
  
$$\Rightarrow \lim_{n \to \infty} \mathbb{E}\left[s_{n}I_{B_{n}}\right] \text{ exists.}$$
 (56)

3.

$$csI_{B_n} \le s_n I_{B_n} \Rightarrow \mathbb{E}\left[csI_{B_n}\right] \le \mathbb{E}\left[s_n I_{B_n}\right]$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{E}\left[csI_{B_n}\right] \le \lim_{n \to \infty} \mathbb{E}\left[s_n I_{B_n}\right]. \tag{57}$$

4.

$$s_{n}I_{B_{n}} \leq s_{n} \Rightarrow \mathbb{E}\left[s_{n}I_{B_{n}}\right] \leq \mathbb{E}\left[s_{n}\right]$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{E}\left[s_{n}I_{B_{n}}\right] \leq \lim_{n \to \infty} \mathbb{E}\left[s_{n}\right]. \tag{58}$$

From Eqs: (55, 57, 58), we get

$$c\mathbb{E}\left[s\right] \le \lim_{n \to \infty} \mathbb{E}\left[s_n\right].$$
 (59)

Note that the above inequality holds for any 0 < c < 1. Therefore,

$$\mathbb{E}\left[s\right] \le \lim_{n \to \infty} \mathbb{E}\left[s_n\right]. \tag{60}$$

Therefore, from Eqs. (51, 60), we have

$$\lim_{n\to\infty} \mathbb{E}\left[s_n\right] = \mathbb{E}\left[s\right].$$

#### 4.2 Expectation of non-negative random variables

We define the expectation of a non-negative r.v. in the following manner:

**Definition:** For the non-negative  $r.v. X : \Omega \to \mathbb{R}_+^*$ , we define

$$\mathbb{E}[X] = \lim_{n \to \infty} \mathbb{E}[s_n], \text{ where } (s_n) \uparrow X \text{ with } s_n \in \mathbb{L}_0^+ \text{ and } s_n \text{ having}$$
non-infinity coifficients. (61)

We have to show that the above definition is well-defined. When I say well-defined, it means that there should not be any scope for ambiguity. Of course we know from Theorem 4 that there exists  $(s_n) \uparrow X$ , where  $s_n \in \mathbb{L}_0^+$  with non-infinity coefficients. Therefore, the existence of  $\mathbb{E}[X]$  is guaranteed. But the ambiguity is in its uniqueness. Because one can ask if  $(s_n) \uparrow X$  and  $(s'_n) \uparrow X$  be two different sequences monotonically converging to X, then whether  $\lim_n \mathbb{E}[s_n]$  and  $\lim_n \mathbb{E}[s'_n]$  are the same. If they do, then the uniqueness is also guaranteed.

**Theorem 6.** Let X be a non-negative r.v. Let  $(s_n)$  and  $(s'_n)$  be two distinct non-negative simple function sequences (with non-infinity coefficients) monotonically increasing to X. Then

$$\lim_{n\to\infty} \mathbb{E}\left[s_n\right] = \lim_{n\to\infty} \mathbb{E}\left[s'_n\right].$$

*Proof.* Note that

$$s_n \ge s_n \wedge s_m' \tag{62}$$

Now consider the sequence  $(s_n \wedge s'_m)_{n \in \mathbb{N}}$ . Note that

$$\lim_{n \to \infty} s_n \wedge s_m' = s_m'. \tag{63}$$

To see this, consider the pointwise convergence, i.e., for each  $\omega \in \Omega$ , observe the real (extended) sequence

$$((s_n \wedge s'_m)(\omega))_{n \in \mathbb{N}} = (s_n(\omega) \wedge s'_m(\omega))_{n \in \mathbb{N}} = (\min\{s_n(\omega), s'_m(\omega)\})_{n \in \mathbb{N}}.$$
 (64)

Here the sequence is running over n keeping m fixed. Since  $s'_m(\omega) \leq X(\omega)$ , there are two possibilities to consider:

1.  $s'_m(\omega) < X(\omega)$ : In this case, observe that since  $(s_n(\omega))$  is monotonically increasing to  $X(\omega)$ , there exists an  $N \in \mathbb{N}$  s.t.  $s_n(\omega) > s'_m(\omega)$ ,  $\forall n \geq N$ . From Eq. (64), we have

$$((s_n \wedge s'_m)(\omega))_{n \in \mathbb{N}} = (s'_m(\omega)), \forall n \ge N$$

$$\lim_{n \to \infty} (s_n \wedge s'_m)(\omega) = s'_m(\omega).$$

2.  $s'_m(\omega) = X(\omega)$ : Since  $(s_n(\omega)) \uparrow X(\omega)$ , we have  $s_n(\omega) \leq X(\omega) = s'_m(\omega)$ ,  $\forall n$ . Now from Eq. (64), we have

$$((s_n \wedge s'_m)(\omega))_{n \in \mathbb{N}} = (s_n(\omega) \wedge s'_m(\omega))_{n \in \mathbb{N}} = (s_n(\omega) \wedge X(\omega))_{n \in \mathbb{N}} = (s_n(\omega))_{n \in \mathbb{N}}$$
  

$$\Rightarrow \lim_{n \to \infty} (s_n \wedge s'_m)(\omega) = \lim_{n \to \infty} s_n(\omega) = X(\omega) = s'_m(\omega).$$

This proves Eq. (63).

Now from Eqs: (62-63) and Lemma 3, we get

$$\mathbb{E}[s_n] \ge \mathbb{E}[s_n \wedge s'_m]$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{E}[s_n] \ge \lim_{n \to \infty} \mathbb{E}[s_n \wedge s'_m] = \mathbb{E}[s'_m]$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{E}[s_n] \ge \lim_{m \to \infty} \mathbb{E}[s'_m].$$
(65)

The above inequality is obtained starting from Eq. (62). Now instead of Eq. (62), if we start with the following inequality  $s'_m \leq s_n \wedge s'_m$ , then we get

$$\lim_{m \to \infty} \mathbb{E}\left[s_m'\right] \ge \lim_{n \to \infty} \mathbb{E}\left[s_n\right]. \tag{66}$$

Therefore, from Eqs:(65, 66), we get

$$\lim_{m \to \infty} \mathbb{E}\left[s'_{m}\right] = \lim_{n \to \infty} \mathbb{E}\left[s_{n}\right].$$

**Remark 5.** Another definition of  $\mathbb{E}[X]$  (where X is a non-negative r.v.) commonly found in textbook is the following:

$$\mathbb{E}[X] = \sup \{ \mathbb{E}[s] : s \le X, s \in \mathbb{L}_0^+ \}. \tag{67}$$

Properties of expectation of non-negative r.v.

**Proposition 5.** For  $X_1, X_2$  are non-negative r.v.s, we have

- 1.  $\mathbb{E}[X_1] \geq 0$ .
- 2.  $\mathbb{E}[X_1 + X_2] = \mathbb{E}[X_1] + \mathbb{E}[X_2]$ .
- 3.  $\mathbb{E}[cX_1] = c\mathbb{E}[X_2], c \ge 0$ .
- 4. If  $X_1 \leq X_2$ , then  $\mathbb{E}[X_1] \leq \mathbb{E}[X_2]$ .

*Proof.* 1. Since  $X_1$  is a non-negative r.v., there exists a  $(s_n^1) \uparrow X_1$  (follows from Theorem 4) and

$$\mathbb{E}\left[X_1\right] = \lim_{n \to \infty} \quad \underbrace{\mathbb{E}\left[s_n^1\right]}_{\geq 0 \text{ since } s_n \in \mathbb{L}_0^+} \geq 0.$$

2. Since  $X_1, X_2$  are non-negative r.v.s, there exist  $(s_n^1) \uparrow X_1$  and  $(s_n^2) \uparrow X_2$  and

$$\mathbb{E}\left[X_{1}\right] = \lim_{n \to \infty} \mathbb{E}\left[s_{n}^{1}\right] \text{ and } \mathbb{E}\left[X_{2}\right] = \lim_{n \to \infty} \mathbb{E}\left[s_{n}^{2}\right].$$

Therefore,  $(s_n^1 + s_n^2) \uparrow X_1 + X_2$ , with  $s_n^1 + s_n^2 \in \mathbb{L}_0^+$  (follows from Proposition 1) and

$$\mathbb{E}\left[X_1 + X_2\right] = \lim_{n \to \infty} \mathbb{E}\left[s_n^1 + s_n^2\right] = \lim_{n \to \infty} \mathbb{E}\left[s_n^1\right] + \mathbb{E}\left[s_n^2\right]$$
$$= \lim_{n \to \infty} \mathbb{E}\left[s_n^1\right] + \lim_{n \to \infty} \mathbb{E}\left[s_n^2\right] = \mathbb{E}[X_1] + \mathbb{E}[X_2].$$

3. Since  $(s_n^1) \uparrow X_1$ , we have  $(cs_n^1) \uparrow cX_1$  with  $cs_n^1 \in \mathbb{L}_0^+$  and

$$\mathbb{E}\left[cX_{1}\right]=\lim_{n\to\infty}\mathbb{E}\left[cs_{n}^{1}\right]=\lim_{n\to\infty}c\mathbb{E}\left[s_{n}^{1}\right]=c\mathbb{E}\left[X_{1}\right].$$

4. We use the characterization of  $\mathbb{E}[\cdot]$  provided in Remark 5. Note that since  $X_1 \leq X_2$ , we have,

For  $s \in \mathbb{L}_0^+$ , if  $s \leq X_1$  then  $s \leq X_2$ . Therefore, from Eq. (67), we have  $\mathbb{E}\left[X_1\right] \leq \mathbb{E}\left[X_2\right]$ .

# 4.3 Expectation of random variable (which takes both non-negative and negative values)

To define the expectation of a r.v. which takes both non-negative and negative values, we represent the r.v. as the difference of two non-negative r.v.s. Since we have already defined the expectation of non-negative r.v.s. in the previous section, we can thus define the expectation of a r.v. which takes both negative and non-negative values as the difference of expectations of the two non-negative components.

For a random variable  $X: \omega \to \mathbb{R}^*$ , we define

$$X^{+}(\omega) = \begin{cases} X(\omega), & \text{if } X(\omega) \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$
 (68)

Similarly, we define

$$X^{-}(\omega) = \begin{cases} -X(\omega), & \text{if } X(\omega) < 0, \\ 0, & \text{otherwise.} \end{cases}$$
 (69)

Observe that for  $\omega \in \Omega$ ,  $X(\omega) = X^+(\omega) - X^-(\omega)$  and  $|X(\omega)| = X^+(\omega) + X^-(\omega)$ . Therefore,

$$X = X^{+} - X^{-} \text{ and } |X| = X^{+} + X^{-}.$$
 (70)

Note that,

$$(X^+)^{-1}([-\infty, a]) = \begin{cases} \underbrace{\emptyset}_{\in \mathcal{F}}, & \text{if } a < 0, \\ \underbrace{X^{-1}([-\infty, a])}_{\in \mathcal{F}} & \text{if } a \ge 0. \end{cases}$$

Therefore,  $X^+$  is a non-negative r.v.. Similarly,  $X^-$  is a non-negative r.v.. (This further implies |X| is also a non-negative r.v.) Hence, we can talk about  $\mathbb{E}[X^+]$ 

and  $\mathbb{E}[X^-]$ . We want to define  $\mathbb{E}[X]$  as  $\mathbb{E}[X] = \mathbb{E}[X^+] - \mathbb{E}[X^-]$ . But the problem with this definition is that if  $\mathbb{E}[X^+] = +\infty$  and  $\mathbb{E}[X^-] = +\infty$ , then  $\mathbb{E}[X] = +\infty - +\infty$  which is not defined. So we separate out these two situations.

**Definition:** For a r.v. X, we say  $\underline{\mathbb{E}[X] \text{ exists}}$ , if  $\mathbb{E}[X^+] < +\infty$  and  $\mathbb{E}[X^-] < +\infty$ . In this case, we define

$$\mathbb{E}\left[X\right] = \mathbb{E}\left[X^{+}\right] - \mathbb{E}\left[X^{-}\right]. \tag{71}$$

It follows directly from the above definition that

$$\mathbb{E}\left[|X|\right] = \mathbb{E}\left[X^+ + X^-\right] = \mathbb{E}\left[X^+\right] + \mathbb{E}\left[X^-\right] < +\infty.$$

Therefore, another way to say the same thing is

**Definition:** For a r.v. X, we say  $\mathbb{E}[X]$  exists, if  $\mathbb{E}[|X|] < +\infty$ .

**Proposition 6.** For r.v.s X and Y which are integrable, we have

- 1. X + Y is integrable and  $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$ .
- 2. cX is integrable for  $c \in \mathbb{R}$  and  $\mathbb{E}[cX] = c\mathbb{E}[X]$ .

*Proof.* 1. Note that

$$\begin{split} |X+Y| \leq |X| + |Y| \Rightarrow \mathbb{E}\left[|X+Y|\right] \leq \mathbb{E}\left[|X| + |Y|\right] \\ = \underbrace{\mathbb{E}\left[|X|\right]}_{<+\infty} + \underbrace{\mathbb{E}\left[|Y|\right]}_{<+\infty} < +\infty. \end{split}$$

Therefore X + Y is integrable.

Now note that

$$X + Y = (X + Y)^{+} - (X + Y)^{-}$$
 and (72)

$$X = X^{+} - X^{-}; \quad Y = Y^{+} - Y^{-}.$$
 (73)

Combining the above two equations we get

$$X^{+} - X^{-} + Y^{+} - Y^{-} = (X + Y)^{+} - (X + Y)^{-}$$
  
 $\Rightarrow X^{+} + Y^{+} + (X + Y)^{-} = (X + Y)^{+} + X^{-} + Y^{-}.$ 

Now taking expectation on both sides (this is possible since all the terms in the LHS are non-negative r.v.s and similarly on the RHS).

$$\begin{split} \mathbb{E}\left[X^{+} + Y^{+} + (X + Y)^{-}\right] &= \mathbb{E}\left[(X + Y)^{+} + X^{-} + Y^{-}\right] \\ \Rightarrow \mathbb{E}\left[X^{+}\right] + \mathbb{E}\left[Y^{+}\right] + \mathbb{E}\left[(X + Y)^{-}\right] &= \mathbb{E}\left[(X + Y)^{+}\right] + \mathbb{E}\left[X^{-}\right] + \mathbb{E}\left[Y^{-}\right] \\ &\qquad \qquad \text{(follows from Proposition 5(2))} \\ \Rightarrow \mathbb{E}\left[X^{+}\right] - \mathbb{E}\left[X^{-}\right] + \mathbb{E}\left[Y^{+}\right] - \mathbb{E}\left[Y^{-}\right] &= \mathbb{E}\left[(X + Y)^{+}\right] - \mathbb{E}\left[(X + Y)^{-}\right] \\ \Rightarrow \mathbb{E}\left[X\right] + \mathbb{E}\left[Y\right] &= \mathbb{E}\left[X + Y\right]. \end{split}$$

2. Left as exercise.

#### 4.4 Convergence theorems

**Proposition 7.** Let  $(X_n)_{n\in\mathbb{N}}$  be a sequence of r.v.s (not necessarily non-negative), then  $\inf_n X_n$ ,  $\sup_n X_n$ ,  $\liminf_n X_n$  and  $\limsup_n X_n$  are r.v.s. Additionally, if  $\lim_n X_n$  exists, then it is also a r.v.

*Proof.* (i) We will first show that  $\inf_n X_n$  is a r.v.. For that, consider for  $a \in \mathbb{R}^*$ ,

$$(\inf_{n} X_{n})^{-1} ([a, +\infty]) = \{\omega \in \Omega : (\inf_{n} X_{n})(\omega) \ge a\}$$

$$= \{\omega \in \Omega : \inf_{n} X_{n}(\omega) \ge a\}$$

$$= \{\omega \in \Omega : X_{n}(\omega) \ge a, \forall n\}$$

$$= \bigcap_{n} X_{n}^{-1} ([a, +\infty]) \in \mathcal{F} \text{ (follows since each } X_{n} \text{ is a r.v.)}$$

Therefore  $\inf_n X_n$  is a r.v..

(ii) Now consider for  $a \in \mathbb{R}^*$ ,

$$(\sup_{n} X_{n})^{-1} ([-\infty, a]) = \{\omega \in \Omega : (\sup_{n} X_{n})(\omega) \le a\}$$

$$= \{\omega \in \Omega : \sup_{n} X_{n}(\omega) \le a\}$$

$$= \{\omega \in \Omega : X_{n}(\omega) \le a, \forall n\}$$

$$= \bigcap_{n} X_{n}^{-1} ([-\infty, a]) \in \mathcal{F} \text{ (follows since each } X_{n} \text{ is a r.v.)}$$

Therefore  $\sup_{n} X_n$  is a r.v..

(iii) Now note that

$$\liminf_{n} X_n = \sup_{k} \inf_{n \ge k} X_n \tag{74}$$

Let  $Y_k = \inf_{n \geq k} X_n$ . Then,  $\liminf_n X_n = \sup_k Y_k$ . We know that  $Y_k$  is a r.v. from part (i) of the proof. Therefore, it follows from part (ii) of the proof that  $\liminf_n X_n$  is a r.v.

Also,

$$\limsup_{n} X_n = \inf_{k} \sup_{n \ge k} X_n \tag{75}$$

Again by the same argument as above, we can show that  $\limsup_{n} X_n$  is a r.v.

(iv) Now if  $\lim_n X_n$  exists, then

$$\lim_{n} X_n = \lim_{n} \inf_{n} X_n = \lim_{n} \sup_{n} X_n \tag{76}$$

Therefore, since  $\liminf_n X_n$  is a r.v., we have  $\lim_n X_n$  is also a r.v.

**Theorem 7** (Montone Convergence Theorem (MCT)). Let  $(X_n)_{n\in\mathbb{N}}$  be a sequence of monotonically increasing non-negative r.v.s. Then

$$\lim_{n \to \infty} \mathbb{E}\left[X_n\right] = \mathbb{E}\left[\lim_{n \to \infty} X_n\right].$$

\*Note that we can talk about  $\mathbb{E}[\lim_n X_n]$  since  $\lim_n X_n$  is a r.v. by Proposition 7.

*Proof.* Since  $(X_n)_{n\in\mathbb{N}}$  is mononotonically increasing, we have  $\lim_{n\to\infty}X_n$  exists and is a r.v.. Let

$$\lim_{n \to \infty} X_n = X. \tag{77}$$

Further, note that

$$X_{n} \leq X \Rightarrow \mathbb{E}\left[X_{n}\right] \leq \mathbb{E}\left[X\right], \forall n$$
Also,  $X_{n+1} \geq X_{n} \Rightarrow \mathbb{E}\left[X_{n+1}\right] \geq \mathbb{E}\left[X_{n}\right]$  which implies that  $(\mathbb{E}\left[X_{n}\right])_{n \in \mathbb{N}}$  is mononotonically increasing. Therefore,  $\lim_{n \to \infty} \mathbb{E}\left[X_{n}\right]$  exists and 
$$\lim_{n \to \infty} \mathbb{E}\left[X_{n}\right] \leq \mathbb{E}\left[X\right]. \tag{78}$$

 $n{
ightarrow}\infty$ 

Also, since  $X_n$  is a non-negative r.v. for each  $n \in \mathbb{N}$ , we have  $(s_m^n) \uparrow X_n$ , where  $s_m^n \in \mathbb{L}_0^+$  (with non-infinity coefficients) and

$$\lim_{m \to \infty} \mathbb{E}\left[s_m^n\right] = \mathbb{E}\left[X_n\right]. \tag{79}$$

Now define

$$Y_m = s_m^1 \vee s_m^2 \vee s_m^3 \cdots \vee s_m^m. \tag{80}$$

(See notation section for the definition of  $\vee$ ) Note that, for  $\omega \in \Omega$ , we have

$$Y_{m+1}(\omega) = s_{m+1}^{1}(\omega) \vee s_{m+1}^{2}(\omega) \cdots \vee s_{m+1}^{m}(\omega) \vee s_{m+1}^{m+1}(\omega)$$
  
 
$$\geq s_{m}^{1}(\omega) \vee s_{m}^{2}(\omega) \cdots \vee s_{m}^{m}(\omega) = Y_{m}(\omega).$$

Also,  $Y_m \in \mathbb{L}_0^+$  (follows from Proposition 1). Thus  $(Y_m)_{m \in \mathbb{N}}$  is a monotonically increasing sequence of non-negative simple functions (with non-infinity coefficients). Therefore  $\lim_{m \to \infty} Y_m$  exists and let

$$Y = \lim_{m \to \infty} Y_m \text{ and } \mathbb{E}[Y] = \lim_{m \to \infty} \mathbb{E}[Y_m].$$
 (81)

$$\begin{matrix} \downarrow \\ X \\ Y_1 \quad Y_2 \quad Y_3 \quad \dots \quad Y_m \quad \dots \quad \to Y \end{matrix}$$

Also from Eq. (80), for  $\omega \in \Omega$ , we have

$$Y_{m}(\omega) = s_{m}^{1}(\omega) \vee s_{m}^{2}(\omega) \cdots \vee s_{m}^{m}(\omega)$$

$$\leq X_{1}(\omega) \vee X_{2}(\omega) \cdots \vee X_{m}(\omega)$$

$$= X_{m}(\omega). \tag{82}$$

Taking limits on both sides, we get

$$\lim_{m \to \infty} Y_m(\omega) \le \lim_{m \to \infty} X_m(\omega)$$
  

$$\Rightarrow Y(\omega) \le X(\omega).$$
(83)

Therefore,

$$Y \le X. \tag{84}$$

Also, note that, for  $\omega \in \Omega$ ,

$$\begin{split} s_m^k(\omega) &\leq Y_m(\omega), \text{ for } 1 \leq k \leq m \\ \Rightarrow \lim_{m \to \infty} s_m^k(\omega) &\leq \lim_{m \to \infty} Y_m(\omega), \text{ for } 1 \leq k \leq m \\ \Rightarrow X_k(\omega) &\leq Y(\omega), \text{ for } 1 \leq k \leq m \\ \Rightarrow X_m(\omega) &\leq Y(\omega) \\ \Rightarrow \lim_{m \to \infty} X_m(\omega) &\leq Y(\omega) \\ \Rightarrow X(\omega) &\leq Y(\omega). \end{split}$$

Therefore

$$X \le Y. \tag{85}$$

Hence, from Eqs. (84, 85), we have

$$X = Y. (86)$$

Thus

$$\mathbb{E}\left[X\right] \underbrace{=}_{(86)} \mathbb{E}\left[Y\right] \underbrace{=}_{(81)} \lim_{n \to \infty} \mathbb{E}\left[Y_n\right] \underbrace{\leq}_{(82)} \lim_{n \to \infty} \mathbb{E}\left[X_n\right] \underbrace{\leq}_{(78)} \mathbb{E}\left[X\right].$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{E}\left[X_n\right] = \mathbb{E}\left[X\right].$$

**Lemma 4** (Fatou's Lemma). Let  $(X_n)_{n\in\mathbb{N}}$  be a sequence of non-negative r.v.s. Then

$$\liminf_{n} \mathbb{E}[X_n] \ge \mathbb{E}\left[\liminf_{n} X_n\right].$$

Proof. Let

$$Y_n = \inf_{k \ge n} X_k \tag{87}$$

Note that  $Y_n$  is a r.v. (follows from Proposition 7). Also, it is easy to verify that  $Y_{n+1} \geq Y_n, \forall n \in \mathbb{N}$ . Therefore,  $(Y_n)_{n \in \mathbb{N}}$  is a monotonically increasing sequence of r.v.s. Further  $Y_n$  is non-negative for all  $n \in \mathbb{N}$ , since  $X_n$  is non-negative for all n. Also

$$\lim_{n \to \infty} Y_n = \liminf_n X_n. \tag{88}$$

Also it is easy to verify that  $Y_n \leq X_n, \forall n \in \mathbb{N}$ . Therefore,

$$\mathbb{E}[Y_n] \leq \mathbb{E}[X_n], \forall n \in \mathbb{N}$$

$$\Rightarrow \liminf_n \mathbb{E}[Y_n] \leq \liminf_n \mathbb{E}[X_n]$$

$$\Rightarrow \lim_n \mathbb{E}[Y_n] \leq \liminf_n \mathbb{E}[X_n]$$
(89)

The last implication follows since  $\lim_n \mathbb{E}[Y_n]$  exists since  $(\mathbb{E}[Y_n])_{n \in \mathbb{N}}$  is a monotonically increasing real (extended) sequence.

Now by applying MCT to the sequence  $(Y_n)_{n\in\mathbb{N}}$  we get

$$\begin{split} &\lim_{n\to\infty} \mathbb{E}\left[Y_n\right] = \mathbb{E}\left[\lim_{n\to\infty} Y_n\right] \\ \Rightarrow &\lim_{n} \inf \mathbb{E}\left[X_n\right] \geq \mathbb{E}\left[\liminf_{n} X_n\right] \text{ (follow from Eqs. (88, 89))}. \end{split}$$

**Theorem 8** (Bounded Convergence Theorem (BCT)). Let  $(X_n)_{n\in\mathbb{N}}$  be a sequence of r.v.s (not necessarily non-negative). Assume that there exists an integrable r.v. Y such that  $|X_n| \leq Y$ ,  $\forall n \in \mathbb{N}$ . Also let  $\lim_{n \to \infty} X_n = X$ . Then

1. X is integrable.

2. 
$$\lim_{n\to\infty} \mathbb{E}[X_n] = \mathbb{E}[X]$$
.

*Proof.* Since  $\lim_n X_n = X$ , we have

$$\liminf_{n} X_n = \limsup_{n} X_n = X.$$
(90)

Further,  $\lim_{n\to\infty} |X_n| = |X|$  and since  $|X_n| \le Y, \forall n$ , we have  $|X| \le Y$ . Therefore,  $\mathbb{E}[|X|] \le \mathbb{E}[Y] < \infty$  (since Y is integrable). Thus X is integrable, *i.e.*,  $\mathbb{E}[X] < \infty$ .

Also, note that

$$|X_n| \le Y \Rightarrow -Y \le X_n \le Y \Rightarrow Y + X_n \ge 0 \text{ and } Y - X_n \ge 0.$$
 (91)

Now consider the sequence  $(Y + X_n)_{n \in \mathbb{N}}$ . This is a sequence of non-negative r.v.s (follows from Proposition 3, Eq.(91)). By applying Fatou's lemma on this sequence, we get

$$\liminf_{n} \mathbb{E} [Y + X_{n}] \geq \mathbb{E} \left[ \liminf_{n} (Y + X_{n}) \right] 
\Rightarrow \liminf_{n} (\mathbb{E} [Y] + \mathbb{E} [X_{n}]) \geq \mathbb{E} \left[ Y + \liminf_{n} X_{n} \right] 
\Rightarrow \mathbb{E} [Y] + \liminf_{n} \mathbb{E} [X_{n}] \geq \mathbb{E} [Y] + \mathbb{E} \left[ \liminf_{n} X_{n} \right] 
\Rightarrow \lim_{n} \inf_{n} \mathbb{E} [X_{n}] \geq \mathbb{E} \left[ \liminf_{n} X_{n} \right] = \mathbb{E} [X].$$
(92)

Now consider the sequence  $(Y - X_n)_{n \in \mathbb{N}}$ . This is a sequence of non-negative r.v.s (follows from Proposition 3, Eq.(91)). Again, by applying Fatou's lemma on this sequence, we get

$$\liminf_{n} \mathbb{E} [Y - X_{n}] \geq \mathbb{E} \left[ \liminf_{n} (Y - X_{n}) \right] 
\Rightarrow \liminf_{n} (\mathbb{E} [Y] - \mathbb{E} [X_{n}]) \geq \mathbb{E} \left[ Y - \limsup_{n} X_{n} \right] 
\Rightarrow \mathbb{E} [Y] - \lim_{n} \sup_{n} \mathbb{E} [X_{n}] \geq \mathbb{E} [Y] - \mathbb{E} \left[ \limsup_{n} X_{n} \right] 
\Rightarrow \lim_{n} \sup_{n} \mathbb{E} [X_{n}] \leq \mathbb{E} \left[ \limsup_{n} X_{n} \right] = \mathbb{E} [X].$$
(93)

Now for the real (extended) sequence  $(\mathbb{E}[X_n])_{n\in\mathbb{N}}$ , we have

$$\limsup_{n} \mathbb{E}\left[X_{n}\right] \ge \liminf_{n} \mathbb{E}\left[X_{n}\right]. \tag{94}$$

Therefore, from Eqs (92, 93, 94), we have

$$\limsup_{n} \mathbb{E}[X_n] = \limsup_{n} \mathbb{E}[X_n] = \mathbb{E}[X] < \infty \text{ (since } X \text{ is integrable)}$$

$$\Rightarrow \lim_{n} \mathbb{E}[X_n] = \mathbb{E}[X].$$