Optiver Prove It: Episode 3

Gabriel Romon¹

1 e-mail: gabriel.s.romon@gmail.com

The video containing the problem statement is available here: https://www.youtube.com/watch?v=y2mjE8RDPxg.

1. Exercise 1: Optimal number of 6-sided dice

1.1. Probability of getting a single Six

Let $n \ge 1$ denote the number of dice, and let X_1, \ldots, X_n be i.i.d. random variables uniformly distributed over $\{1, \ldots, 6\}$.

We denote by p_n the probability of getting a single 6 after throwing the n dice. Note that

$$p_n = \mathbb{P}(\text{only one Six among } X_1, \dots, X_n)$$

$$\stackrel{(i)}{=} n \mathbb{P}\left(\{X_1 = 6\} \cap \bigcap_{i=2}^n \{X_i \neq 6\}\right)$$

$$\stackrel{(ii)}{=} n \mathbb{P}(X_1 = 6) \prod_{i=2}^n \mathbb{P}(X_i \neq 6)$$

$$= n \cdot \frac{1}{6} \left(\frac{5}{6}\right)^{n-1}$$

$$= \frac{n5^{n-1}}{6^n},$$

where (i) follows from symmetry and (ii) from independence.

1.2. Optimizing over the number of dice

In what follows we let S denote the set of optimal values for n.

We observe that

$$\frac{p_{n+1}}{p_n} = \frac{n+1}{n} \cdot \frac{5}{6},$$

hence $\frac{p_{n+1}}{p_n} > 1 \iff n < 5 \iff n \le 4$ and similarly $\frac{p_{n+1}}{p_n} < 1 \iff n > 5 \iff n \ge 6$. Therefore $p_1 < \ldots < p_4 < p_5$ and $p_6 > p_7 > p_8 \ldots$

Consequently, if $n \notin \{5,6\}$, then n is suboptimal. In other words, we have the inclusion $S \subset \{5,6\}$. Since $p_5 = \left(\frac{5}{6}\right)^5 = p_6$, we conclude that $S = \{5,6\}$.

2. Exercise 2: Optimal number of m-sided dice with a target of r Sixes

To avoid trivialities we assume that $m \geq 6$.

Again, let $n \geq 1$ denote the number of dice, and let X_1, \ldots, X_n be i.i.d. random variables uniformly distributed over $\{1, \ldots, m\}$.

We denote by p_n the probability of getting r Sixes after throwing the n dice. If n < r, then clearly $p_n = 0$. Otherwise, if $n \ge r$, note that

$$p_n = \mathbb{P}(\text{exactly } r \text{ Sixes among } X_1, \dots, X_n)$$
$$= \mathbb{P}\left(\sum_{i=1}^n \mathbb{1}_{X_i=6} = r\right)$$
$$= \binom{n}{r} \frac{1}{m^r} \left(1 - \frac{1}{m}\right)^{n-r}.$$

In what follows we let S denote the set of optimal values for n.

2.1. The case r = 0

When r=0, we have $p_n=\binom{n}{0}\frac{1}{m^0}\left(1-\frac{1}{m}\right)^{n-0}=\left(1-\frac{1}{m}\right)^n$, which is strictly decreasing in n. Thus n=1 is optimal and $S=\{1\}$.

2.2. The case $r \geq 1$

For each n such that $n \geq r$, we have

$$\frac{p_{n+1}}{p_n} = \frac{n+1}{n+1-r} \left(1 - \frac{1}{m} \right). \tag{1}$$

Furthermore, some algebra shows that

$$\frac{p_{n+1}}{p_n} < 1 \iff n > rm - 1 \iff n \ge rm$$

and

$$\frac{p_{n+1}}{p_n} > 1 \iff n < rm-1 \iff n \leq rm-2.$$

Besides, $rm-2 \ge r \iff r(m-1) \ge 2$, and this last inequality is true since $r \ge 1$ and $m \ge 6$. As a consequence, we have the following inequalities:

$$p_r < \ldots < p_{(rm-2)+1}$$
 and $p_{rm} > p_{rm+1} > \ldots$,

from which we derive the inclusion $S \subset \{rm-1, rm\}$.

Lastly, by Equation (1),

$$\frac{p_{rm}}{p_{rm-1}} = \frac{rm}{rm-r} \left(1 - \frac{1}{m}\right) = 1,$$

hence $p_{rm-1} = p_{rm}$ and $S = \{rm - 1, rm\}$.

2.3. Conclusion

To summarize, the set of optimal values for n is

$$\begin{cases} S = \{1\} & \text{if } r = 1, \\ S = \{rm - 1, rm\} & \text{if } r \ge 2. \end{cases}$$