Elementos de Análise Combinatória

franciscogustaavo

May 2021

Contents

1	Conseitos	3
	1.1 Axiomar	3
	1.2 Teorema	3
	1.3 Prova Formal	3
	1.4 Prova por contradição	4
	l.5 Prova por indução	4
	l.6 Cojectura	6
2	Lógica Proposicional	7
	2.1 Proposição	7
	2.2 Negação de Proposição	7
	2.3 Conectivos (e) e V(ou)	7
	2.4 Condicionais \rightarrow (se., então) e \leftrightarrow (se e somente se)	8
	2.5 Tautologia	9
	2.6 Relação de Implicação \Rightarrow	9
	2.7 Relação de Equivalência ⇔	9
	2.8 Setenças abertas, Quantificadores ($\forall \exists \exists !$)	10
	2.9 Conjuntos	10
3	Indução Matemática	13
	3.1 Princípio da Inclusão e Exclusão	13
	3.2 Tautologia	13
4	Análise Combinatória e Probabilidade	14
	4.1 Princípio fundamental da contagem	14
	4.2 Fatorial	14
	4.3 Combinações	
5	Proplemas Matemáticos	15
	5.1 Pro1	15

Conteudo para estudar

- Indução
- Teorema Finito de Ramsey
- Problema de monty hall
- Curso de ferias da UFC prof caminha (Introdução a análice real matematica)
- Teoria analitica dos números
- $\bullet\,$ Como os números primos são regidos.
- Site de ajuda wolframalpha.com

•

1 Conseitos

1.1 Axiomar

- Um axioma ou postulado é uma sentença ou proposição que não é provada ou demonstrada e é considerada como óbvia ou como um consenso inicial necessário para a construção ou aceitação de uma teoria. Por essa razão, é aceito como verdade e serve como ponto inicial para dedução de outras verdades um axioma ou postulado é uma sentença ou proposição que não é provada ou demonstrada e é considerada como óbvia ou como um consenso inicial necessário para a construção ou aceitação de uma teoria. Por essa razão, é aceito como verdade e serve como ponto inicial para dedução de outras verdades
- Melhor dizendo: É algo que é aceito como verdade, por ser muito óbvio.
- Obs: N\u00e3o \u00e9 porque um axioma \u00e9 verdadeiro em um determinado ambiente matem\u00e1tico, que ele vai ser verdadeiro no ambiente real.
- Exemplo: Uma caixa não vazia, ao colocar a sua mão dentro dessa caixa, você pode escolher ao acaso um elemento dela (para qualquer conjunto não vazio).

1.2 Teorema

• Na matemática, um teorema é uma afirmação que pode ser provada como verdadeira, por meio de outras afirmações já demonstradas, como outros teoremas, juntamente com afirmações anteriormente aceitas, como axiomas.

1.3 Prova Formal

- Em matemática, uma prova é uma demonstração de que, dados certos axiomas, algum enunciado de interesse é necessariamente verdadeiro. Utiliza como base premissas intrínsecas a um modelo conceitual e um silogismo que, a partir de uma série de operações, chega ao resultado.
- Melhor dizendo: É parte de um conjunto de conhecimentos, tomados como verdades, desenvolvendo por meio de raciocínio lógico de inferência básica a sua demonstração até chegar em um resultado desejado.
- Obs: Tenho uma proposição: A soma dos **n** primeiros números naturais > 0 é igual a $(\frac{n(n+1)}{2})$. Se eu sair testando essa proposição até o valor de um milhão, e não encontrar nenhum valor que contradiz essa preposição, isso ainda não é uma prova, mesmo que eu tenha plena certeza que a proposição é verdadeira.
- Exemplo 1:
 - Prove que $(A B) \subset A$
 - Se $x \in (A B)$, então $x \in A \ e \ x \notin B$.
 - Logo $x \in (A B) \Rightarrow x \in A \ e \ (A B) \subset A$
- Exemplo 2:
 - Prove que $(A-B) \cup (B-A) = (A \cup B) (A \cap B)$

• Exemplo 3:

A soma de todos os alunos de três turmas diferente: A=Matemática, B=Cálculo, C=Combinatoria, $\#(A \cup B \cup C)$ é?

- #A + #B + #C
- Retirando os alunos que estudam em mais de uma turma ABC: $-\#(A\cap B) \#(A\cap C) \#(B\cap C)$
- Acabei retiram todos os alunos que se repetem, colocando de volta o aluno, idependente se ele estuda em mais de uma turma: $+\#(A \cap B \cap C)$
- A formula final é: $(\#A + \#B + \#C) \#(A \cap B) \#(A \cap C) \#(B \cap C) + \#(A \cap B \cap C)$

• Exemplo 4:

415 alunos, 221 estudam inglês, 163 estudam francês, 52 estudam inglês e francês. Quantos alunos não estudam nenhum idioma?

- O número de alunos que estudam inglês: #I = 221; Francês: #F = 163; Inglês e Francês: $\#(I \cap F)$; Todos os alunos: $\#\Omega = 415$; Valor desejado: $\#(I \cup F)^c = ?$.
- $\#(I \cup F) = \#I + \#F \#I \cap F \implies 221 + 163 52 = 332$
- $-\#(I \cup F) + \#(I \cup F)^c = \#\Omega \implies 332 + \#(I \cup F)^c = 415 \implies \#(I \cup F)^c = 83$

1.4 Prova por contradição

- Prova por contradição (ou redução ao absurdo) é um método de prova matemática indireta, não-construtiva. Este tipo de prova é feito assumindo-se como verdade o contrário do que queremos provar e então chegando-se a uma contradição.
- Melhor dizendo: Quero prova que **p** é verdade, então eu pego ~ **p** e faço de conta que ele verdade, chego em um absurdo (algo que não pode acontecer), então ~ **p** é falso, sendo assim **p** é verdadeiro.

• Exemplo 1:

- Existe uma quantidade infinita de números primos.
- Prova: Por absurdo, suponha $p_1 + p_2 + p_3 \dots p_n$ são os **únicos** primos. Tal $p = p_1 p_2 p_3 \dots p_n + 1$. Nenhum primo entre $p_1 \dots p_n$ divide **p**. Então **p** é primo e é maior que todos os outros. Contradição.
- Ou seja, o absurdo foi supor que existia uma quantidade finita de números primos, portando essa suposição é falsa,
 e existem infinitos números primos.

• Exemplo 2:

- Não existe menor número real positivo.
- Prova: Por contradição. Suponha que existe o menor número real positivo. Seja x esse número. Veja que $\frac{x}{2} > 0$ e $\frac{x}{2} \in \mathbb{R}$ e $\frac{x}{2} < x$. Contradição!
- Ou seja, o absurdo foi supor que existia um menor número real positivo, portando essa suposição é falsa, e não existem um menor número real positivo.

1.5 Prova por indução

- É uma prova usado para demonstrar a verdade de um número infinito de proposições. Esse método funciona provando que o enunciado é verdadeiro para um valor inicial, e então provando que o processo usado para ir de um valor para o próximo é valido.
- Ou seja: A prova por indução é formada por uma sequência de três passos.
 - $1^{\underline{0}}$ Base de indução (Também chamado de caso inicial):

É provar que uma equação (ideia) qualquer é válida para um valor inicial P(1). Dependendo da definição utilizada de \mathbb{N} , esse valor pode ser 0 ou 1.

- 2º Hipótese de indução

É mostrar que, a equação é válida para um determinado \mathbf{n} , P(n).

- 3º Passo indutivo

É mostrar que a equação é válida para o $\mathbf{n} + \mathbf{1}$, P(n+1).

- Obs:

Se eu conseguir provar o **Passo indutivo**, então eu consigo provar que a equação é válida para qualquer n.

• Exemplo 1:

A soma dos **n** primeiros números naturais vai ser igual a **n** multiplicado por **n** mais **1**, tudo isso dividido por dois. $(\frac{n(n+1)}{2})$.

- Prova, por indução:

Base de indução, para n = 1, temos: $\left(1 = \frac{1(1+1)}{2}\right)$. A partir dessa premissa, vamos para o segundo passo.

Hipótese de indução, suponha que: $1+2+3+...+k=\frac{k(k+1)}{2}$ é verdadeiro, para um certo $k \in \mathbb{N}$. Dessa premissa vamos para o último passo.

Passo indutivo, 1+2+3+...+k+k+1, a soma de 1 até k podemos subistituir pelo resultado da Hipótese de indução, ficando: $\frac{k(k+1)}{2}+k+1$, o MMC desse valor é 2, dividir esse MMC pelo denominador e multiplicar o resultado pelo numerador vai ficar: $\frac{k(k+1)+2(k+1)}{2}$, colocando k+1 em evidência fica: $\frac{(k+1)(k+2)}{2}$. Finalizamos provando que essa fórmula vale para todos os números naturais.

• Exemplo 2:

A soma dos **n** primeiros números naturais ao quadrado: $1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{c}$

- Prova, por indução:

Base de indução, para n = 1, temos: $(1^2 = \frac{1(1+1)(2\cdot 1+1)}{\epsilon})$.

Hipótese de indução, suponha que a formula é verdadeira para p(n).

Passo indutivo, $1^2 + 2^2 + ... + n^2 + (n+1)^2 = \frac{(n+1)(n+2)(2n+3)}{6}$, a formula depois da igualdade é o resultado que eu pretendo chegar, eu cheguei a esse resultado pegando a formula $\frac{n(n+1)(2n+1)}{6}$ colocando onde tinha n por n+1.

- * Fazendo o passo indutivo, fica, $1^2 + 2^2 + ... + n^2 + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2$.
- * Fazendo o MMC fica: $\frac{n(n+1)(2n+1)+6(n+1)^2}{6}$. * Deixando o n+1 em evidência: $\frac{(n+1)(n(2n+1)+6(n+1))}{6}$
- * Abrindo os parêntes: $\frac{(n+1)(2n^2+n+6n+6)}{6}$
- * Colocando o 2n e o 3 em evidência, fica: $\frac{(n+1)(2n^2+4n+3n+6)}{6} = \frac{(n+1)(2n(n+2)+3(n+2))}{6}$.
- * Colocando o n+2 em evidência: $\frac{(n+1)(n+2)(2n+3)}{6}$.

• Exemplo 3:

A soma dos **n** primeiros números ímpares naturais: $1+3+5+...+(2n-1)=n^2$

Prova, por indução:

Base de indução, para n = 1, temos: $(1^2 = 1)$.

Hipótese de indução, suponha que a formula é verdadeira para p(n).

Passo indutivo, $1+3+5+...+(2n-1)+(2n+1)=(n+1)^2$.

- * Fazendo o passo indutivo, fica, $1 + 3 + 5 + ... + (2n 1) + (2n + 1) = n^2 + (2n + 1)$.
- * O resultado $n^2 + (2n+1)$ é um Trinômio do quadrado perfeito, que fica: $(n+1)^2$
- * Então provamos que a formula $1+3+5+...+(2n-1)=n^2$ é valida para 1, para n e para n+1.

• Exemplo 4:

A soma dos **n** primeiros números de Fibonacci: $1+1+2+3+5+8+...+F_n=F_{n+2}-1$

- Prova, por indução:

Base de indução, para n = 1, temos: $(F_{1+2} - 1 = F_3 - 1 = 2 - 1 = 1)$.

Hipótese de indução, suponha que a formula é verdadeira para p(n).

Passo indutivo, $1 + 1 + 2 + 3 + 5 + ... + F_n + F_{n+1} = F_{n+3} - 1$.

- * Fazendo o passo indutivo, fica, $1+1+2+3+5+...+F_n+F_{n+1}=(F_{n+2}-1)+(F_{n+1})$.
- * Com o próprio resultado $(F_{n+2}-1)+(F_{n+1})$ podemos aplica a formula de Fibonacci, somando os dois antecessores: $(F_{n+2}-1)+(F_{n+1})=F_{n+3}-1$
- * Então provamos que a formula $1+1+2+3+5+\ldots+F_n=F_{n+2}-1$ é valida para 1, para n e para n+1.

• Exemplo 5:

A soma dos **n** primeiros números: $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + ... + \frac{1}{n(n+1)} = \frac{n}{n+1}$

- Prova, por indução:

Base de indução, para n = 1, temos: $(\frac{1}{1+1} = 0, 5)$.

Hipótese de indução, suponha que a formula é verdadeira para p(n). Passo indutivo, $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} = \frac{n+1}{n+2}$.

- * Fazendo o passo indutivo, fica, $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$
- * Colocando o $\frac{1}{n+1}$ em evidência, fica: $\frac{1}{n+1} \left\{ \frac{n}{n} + \frac{1}{n+2} \right\}$
- * Fazendo o mínimo de $\{\frac{n}{n+1}, \frac{1}{n+2}\}$ fica: $\frac{1}{n+1}\{\frac{n(n+2)+1}{n+2}\}$
- * Tirando os parênteses: $\frac{1}{n+1}\big\{\frac{n^2+2n+1}{n+2}\big\}$
- * O resultado acima é um Trinômio do quadrado perfeito, resolvendo fica: $\frac{1}{n+1} \left\{ \frac{(n+1)^2}{n+2} \right\}$
- * Retirando as chaves: $\frac{(n+1)^2}{(n+1)(n+2)}$, isso é a mesma coisa de $\frac{(n+1)(n+1)}{(n+1)(n+2)}$, cortando o (n+1), fica: $\frac{n+1}{n+2}$
- * Então provamos que a formula $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$ é valida para 1, para n e para n+1.

• Exemplo 6:

Provar que $3^n - 1$ é par para todo $n \in \mathbb{N}$.

- Prova, por indução:

Base de indução, para n = 0, temos: $(3^0 - 1 = 0)$. Hipótese de indução, $3^n + 1 = 2k$, para um certo n. Passo indutivo, $3^{n+1} - 1$.

- * O valor anterior também pode ser escrito, como $3 \cdot 3^n 1$, substituindo o 3^n , fica: 3(2k+1) 1.
- * Multiplicando, fica: 6k + 3 1 = 6k + 2
- * 6k + 2 = 2(3k + 1) = 2q

1.6 Cojectura

• Uma conjectura é uma ideia, fórmula ou frase, a qual não foi provada ser verdadeira, baseada em suposições ou ideias com fundamento não verificado. As conjecturas utilizadas como prova de resultados matemáticos recebem o nome de hipóteses.

2 Lógica Proposicional

2.1 Proposição

- É uma senteça ou oração que pode ser classificada em verdadeiro ou falso.
- Exemplo:
 - $(9 \neq 5)$ Nove é diferente de cinco. Verdadeira
 - (7 > 3) Sete é maior que três. Verdadeira
 - $(2 \in \mathbb{Z})$ Dois é um número inteiro. Verdadeira
 - (3 | 11) Três é divisor de onze. False
 - $-(4\cdot 5=20)$ Quatro vezes cinco é igual a vinte. Verdadeira

2.2 Negação de Proposição

- A partir de uma proposição p qualquer, sempre podemos construir outra, denominada negação de p e indicada com o símbolo $\sim p$.
- Exemplo:

```
 - p:(9 \neq 5), \sim p:(9 = 5) 
 - p:(7 > 3), \sim p:(7 \le 3) 
 - p:(2 \in \mathbb{Z}), \sim p:(2 \notin \mathbb{Z}) 
 - p:(3 \mid 11), \sim p:(3 \mid 11) 
 - p:(4 \cdot 5 = 20), \sim p:(4 \cdot 5 \neq 20) 
 - p:(\forall x), \sim p:(\exists x) 
 - p:(\forall x)(x^2 - 4x + 1 \neq (x - 2)^2), \sim p:(\exists x)(x^2 - 4x + 1 = (x - 2)^2)
```

2.3 Conectivos ∧(e) e ∨(ou)

- Conjunção \wedge
 - Colocando o conectivo \wedge entre duas proposições p e q, obtemos uma nova proposição, p \wedge q, denominada conjunção das sentenças p e q.
 - A conjunção p ∧ q é verdadeira se p e q são ambas verdadeiras;
 - Se ao menos uma delas for falsa então p \wedge q é falsa.

р	q	$p \wedge q$
V	V	V
V	F	\mathbf{F}
F	V	\mathbf{F}
F	F	F

- Exemplo:

```
* p: 2 > 0 (V)

q: 2 \neq 1 (V)

então:

p \land q: 2 > 0  e  2 \neq 1 (V)

* p: -2 < -1 (V)

q: (-2)^2 < (-1)^2 (F)

então:

p \land q: -2 < -1  e (-2)^2 < (-1)^2 (F)
```

• Disjunção V

- Colocando o conectivo \lor entre duas proposições p e q, obtemos uma nova proposição, p \lor q, denominada disjunção das sentenças p e q.

- A disjunção p \vee q é verdadeira se ao menos uma das proposições p ou q é verdadeira; se p e q são ambas falsas, então p \vee q é falsa.

р	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

- Exemplo:

```
* p: 5 > 0 (V)

q: 5 > 1 (V)

então:

p \lor q: 5 > 0 ou 5 > 1 (V)

* p: 3 = 3 (V)

q: 3 < 3 (F)

então:

p \lor q: 3 \le 3 (F)
```

2.4 Condicionais \rightarrow (se. então...) e \leftrightarrow (se e somente se)

ullet Condicional o

- Colocando o condicional \rightarrow entre duas proposições p e q, obtemos uma nova proposição, p \rightarrow q, que se lê: 'se p, então q', 'p é condição necessária para q', 'q é condição suficiente para p'.
- O condicional p \rightarrow q é falso somente quando p é verdadeiro e q é falsa; caso contrári, p \rightarrow q é verdadeiro.

р	q	$\mathrm{p} ightarrow \mathrm{q}$
V	V	V
V	F	F
F	V	V
F	F	V

- Exemplo:

```
* p: (2 | 4) (V)
q: (4 | 20) (V)
```

 $p \to q$: se dois é divisor de quatro, então quatro é divisor de vinte $(2 \mid 4 \to 4 \mid 20)$ (V)

```
* p: (2 \cdot 5 = 10) (V)
q: (3 \mid 10) (F)
```

 $p \to q$: se dois vezes cinco é igual a dez, então três é divisor de dez $(2 \cdot 5 = 10 \to 3 \mid 10)(F)$

```
* p: (5 < 2) (F)
q: (2 \in \mathbb{Z}) (V)
```

 $p \to q$: se cinco é menor que dois, então dois é número inteiro $(5 < 2 \to 2 \in \mathbb{Z})(V)$

- Exemplo em portugues:

* "Se eu for eleito, reduzirei o valor do RU"

```
p: "Se eu for eleito"
```

q: "reduzirei o valor do RU"

 $p \to q$: Se eu for eleito \to reduzirei o valor do RU

Se eu for eleito	reduzirei o valor do RU	$\mathrm{p} \rightarrow \mathrm{q}$
V	V	V
V	F	F
F	V	V
F	F	V

• Condicional \leftrightarrow

Colocando o condicional ↔ entre duas proposições p e q, obtemos uma nova proposição, p ↔ q, que se lê: 'p se, e somente se, q', 'p é condição necessária e suficiente para q', 'q é condição necessária e suficiente para p' ou 'se p, então q e reciprocamente'.

 O condicional ↔ é verdadeiro somente quando p e q são ambas verdadeiro ou ambas falsas; se isso não acontecer, o condicional ↔ é falso.

р	q	$\mathbf{p} \leftrightarrow \mathbf{q}$
V	V	V
V	F	F
F	V	F
F	F	V

- Exemplo:

```
* p: (2 | 12) (V)

q: (2 \cdot 7 | 12 \cdot 7) (V)

p \leftrightarrow q: (2 | 12 \leftrightarrow 2 \cdot 7 | 12 \cdot 7) (V)

* p: (\frac{3}{2} = \frac{6}{4}) (V)

q: (3 \cdot 4 \neq 6 \cdot 2) (F)

p \leftrightarrow q: (\frac{3}{2} = \frac{6}{4} \leftrightarrow 3 \cdot 4 \neq 6 \cdot 2) (F)

* p: (6 = 12: 3) (F)

q: (3 \cdot 6 = 18) (V)

p \leftrightarrow q: (6 = 12: 3 \leftrightarrow 3 \cdot 6 = 18) (F)
```

2.5 Tautologia

- É uma proposição formada por outras proposições e conectivos, que é sempre verdadeira idependente dos valores de suas variáveis.
- Exemplo 1: $(p \land \sim p) \rightarrow (q \lor p)$

р	q	$\sim p$	$p \wedge \sim p$	$q \lor p$	$(p \land \sim p) \to (q \lor p)$
V	V	F	F	V	V
V	F	F	F	V	V
F	V	V	F	V	V
F	F	V	F	F	V

• Exemplo 2: $(p \land \sim p) \rightarrow (q \lor p)$

p	q	$p \wedge q$	$\sim (p \wedge q)$	$\sim p$	$\sim q$	$\sim p \lor \sim q$	$ \sim (p \land q) \leftrightarrow (\sim p \lor \sim q) $
V	V	V	F	F	F	F	V
V	F	F	V	F	V	V	V
F	V	\mathbf{F}	V	V	\mathbf{F}	V	V
F	F	\mathbf{F}	V	V	V	V	V

- Exemplo prático: $\sim (p \land q)$
 - − p : "Olhei para a direita"
 - -q: "Olhei para a esquerda"

р	q	$p \wedge q$	$\sim (p \land q)$
V	F	F	V
F	V	F	V

2.6 Relação de Implicação \Rightarrow

- $p \Rightarrow q$ (p implica q), se $p \rightarrow q$ é verdade.
- Esse símbolo \Rightarrow é usado em linguagens natural; demostrações; afirmações. Já no modelo de lógica usamos o \rightarrow .

2.7 Relação de Equivalência ⇔

- $p \Leftrightarrow q$ (p equivale a q), se, e somente se, $p \leftrightarrow q$ é verdade.
- \bullet Esse símbolo \Leftrightarrow é usado em linguagens natural; demostrações; afirmações. Já no modelo de lógica usamos o \leftrightarrow .

2.8 Setenças abertas, Quantificadores (∀∃∃!)

• Setenças abertas

- Orações que contêm variáveis são chamadas funções proporcionais ou sentenças abertas. Tais orações não são proposições pois seu valor lógico (V ou F) é discutível, dependem do valor dado as variáveis.
- Há, entretanto, duas maneiras de transformar senteças abertas em proposições:
 - 1. Atribuir valor ás variáveis.
 - 2. Utilizar quantificadores.

- Exemplos:

- * x+1=7 é verdadeira se trocarmos x por 6 e é falsa para qualquer outro valor dado a x;
- * $x^3 = 2x^2$ é verdadeira se trocarmos x por 0 ($0^3 = 2 \cdot 0^2$) ou 2 ($2^3 = 2 \cdot 2^2$) e é falsa para qualquer outro valor dado a x.

• Quantificadores

1. Quantificador universal ∀

- O quantificador universal, usado para transformar sentenças abertas em proposições, é indicado pelo símbolo
 ∀, que se lê: "qualquer que seja", "para todo", "para cada".
- Exemplos:
 - * $(\forall x)(x+1=7)$ que se lê: "qualquer que seja o número x, temos x+1=7" F
 - * $(\forall x)(x^3 = 2x^2)$ que se lê: "para todo número x, $x^3 = 2x^2$ " F
 - * $(\forall a)((a+1)^2=a^2+2a+1)$ que se lê: "qualquer que seja o número a, temos $(a+1)^2=a^2+2a+1$ " V
 - * $(\forall y)(y^2+1>0)$ que se lê: "para todo número y, temos y^2+1 positivo" V

2. Quantificador existencial ∃

- O quantificador existencial é indicado pelo símbolo ∃, que se lê: "existe", "existe pelo menos um ", "existe um".
- Exemplos:
 - * $(\exists x)(x+1=7)$, que se lê: "Existe um número x tal que x+1=7".V
 - * $(\exists x)(x^3=2x^2)$, que se lê: "Existe um número x tal que $x^3=2x^2$ ". V
 - * $(\exists a)(a^2+1\leq 0)$, que se lê: "Existe um número a tal que a^2+1 é não positivo".F
 - * $(\exists!m)(m(m+1) \neq m^2 + m)$, que se lê: "Existe pelo menos um número m tal que $m(m+1) \neq m^2 + m$ ".

3. Quantificador para unicidade ∃!

- Algumas vezes utilizamos também outro quantificador: ∃!, que se lê: "existe um único", "existe um e um só", "existe só um".
- Exemplos:
 - * $(\exists !x)(x+1=7)$, que se lê: "existe um só número x tal que x+1=7". V
 - * $(\exists !x)(x^3=2x^2)$, que se lê: "existe um só número x tal que $x^3=2x^2$ ". F
 - * $(\exists !x)(x+2>3)$, que se lê: "existe um só número x tal que x+2>3".F

2.9 Conjuntos

- Um conjunto é uma lista de elementos que não se repetem.
- A ordem não importa: 1, 2, 3 = 2, 3, 1
- Os conjuntos são representados por chaves: {}

• Operações entre Cojuntos

- Pertence \in : $x \in A$, x só pertence a A, se x é elemento de A.
- Não Pertence \notin : $x \notin A$, x não pertence a A, se x não for elemento de A.
- Contido
 — Um conjunto (A) só esta contido em um outro conjunto (B) se todos os elementos de (A) estive em (B). O contido só pode ser usado em relações de conjunto com conjunto.
- Não Contido ⊄: Um conjunto (A) não esta contido em um outro conjunto (B) se os elementos de (A) não estiverem em (B).
- **União** ∪: União de dois conjuntos: $A = \{1, 2, 3\}$ $B = \{2, 7, 9\}$ $A \cup B = \{1, 2, 3, 7, 9\}$

- Interseção ∩: Interseção de dois conjuntos, é quando um elemento pertence aos dois conjuntos: $A = \{1, 2, 3\}$ $B = \{2, 7, 9\}$ $A \cap B = \{2\}$
- Obs: A rigor, o certo é esse: $(A \cup B) \cup C$ ou $(A \cap B) \cap C$, mas se fizer desse modo $A \cup B \cup C$ ou $A \cap B \cap C$, da o mesmo resultado.
- Todos os elementos #: Quando esse símbolo vem antes de uma variável #A, ele está se referindo a todos os elementos, ou seja, se lê #A como "Todos os elementos de A".
- Omega Ω : Usado para denotar um conjunto universo, isso vai depender do contexto, se estiver falando de números, o conjunto universo pode ser o conjunto de todos os alunos. Ex: $A = \{0, 2, 4, 6, ...\}$ $B = \{1, 3, 5, 7, ...\}$ $A \cup B = \Omega$ Obs:Dizemos que $\{A, b\}$ são partições de Ω , se $A \cap B = \emptyset$.

Obs:Dizemos que algo é complementa, representado pelo espoente c , se o valor pertence a Ω , e não pertence ao A. O $(A^c)^c$ é mesmo que A. Ex: $\Omega = \{1, 2, 3, 4\}$ $A = \{1, 4\}$ $A^c = \{2, 3\}$

- Pertence ∈:
- Pertence ∈:
- **Exemplo:** $A = \{1, 2, 3\}$ $B = \{\{1, 2\}, 2, 3\}$ $C = \{1, 2\}$
 - * $1 \in A(V)$
 - * $7 \in A$ (F)
 - $* 4 \notin A \text{ (V)}$
 - * $\{1,2\} \in B$ (V)
 - * $\{1,2\} \in A$ (F) O conjunto $\{1,2\}$ não é elemento de A.
 - $* A \subset B \ (V)$
 - $* B \subset A$ (F)
 - $* C \subset B$ (F)
 - $* C \not\subset B$ (V)
 - $* A \subset A (V)$
 - * $\#(A \cup C) = \#A + \#B$ (F) O $\#(A \cup C) = \{1, 2, 3\} = 3$ e $\#A + \#B = \{1, 2, 3, 1, 2\} = 5$
 - $* \#(A \cup C) = \#A + \#B \#(A \cap B) \text{ (V)}$
- Igualdade entre conjuntos: Um conjunto é igual a outro conjunto A=B, se, e somente se, $A\subset B$ e $B\subset A$. $A=\{1,2,3\}$ $B=\{3,2,1\}$ A=B V
- Vazio: O conjunto vazio pode ser representado por \varnothing ou {}. Atenção: Isso { \varnothing } não é um conjunto vazio, isso é um conjunto cuja o único elemento é o vazio. O vazio esta contido em todos os conjuntos.
- Leis de De Morgan:
 - $1^{\underline{\mathbf{a}}}: (A \cup B)^c = A^c \cap B^c$

Para provar isso, precisamos primeiro provar que $(A \cup B)^c$ esta contido em $A^c \cap B^c$ e depois, provar que $A^c \cap B^c$ esta contido em $(A \cup B)^c$.

$1) \ (\mathbf{A} \cup \mathbf{B})^{\mathbf{c}} \subset \mathbf{A}^{\mathbf{c}} \cap \mathbf{B}^{\mathbf{c}}$	2) $\mathbf{A^c} \cup \mathbf{B^c} \subset (A \cap B)^c$				
Se $x \in (A \cup B)^c$	Se $x \in A^c \cap B^c$, então				
$x \notin A \cup B$. Então,	$x \in A^c e x \in B^c$. Logo,				
$x \notin A e x \notin B$. Daí	$x \notin A$ e $x \notin B$. Certamente,				
$x \in A^c e x \in B^c d. \text{ Logo},$	$x \notin (A \cup B)$. Por fim,				
$x \in A^c \cap B^c e (A \cup B)^c \subset A^c \cap B^c$	$x \in (A \cup B)^c$ e $A^c \cap B^c \subset (A \cup B)^c$				

 $- 2^{\underline{a}}: (A \cap B)^c = A^c \cup B^c$

$1)\; (\mathbf{A}\cap \mathbf{B})^\mathbf{c} \subset \mathbf{A}^\mathbf{c} \cup \mathbf{B}^\mathbf{c}$	2) $\mathbf{A^c} \cup \mathbf{B^c} \subset (A \cap B)^c$
Se $x \in (A \cap B)^c$. Então	Se $x \in A^c \cup B^c$, ocorre
$x \notin A \cap B$. Então $x \notin A$	$x \in A^c$ ou $x \in B^c$. Se
ou $x \notin B$. Se $x \notin A$, então	$x \in A^c, x \not\in A$. Se $x \not\in A$,
$x \in A^c$ e $x \in A^c \cup B^c$. Se	$x \notin A \cap B$, logo $x \in (A \cap B)^c$
$x \notin B$, então $x \in B^c$ e $x \in A^c \cup B^c$.	Se $x \in B^c$, então $x \notin B$ e
Em todo caso, $x \in (A \cap B)^c \Rightarrow$	$x \notin A \cap B$. Logo, $x \in (A \cap B)^c$.
$x \in A^C \cup B^c$. Logo $(A \cap B)^c \subset A^c \cup B^c$	Em todo caso,
	$x \in A^c \cup B^c \Rightarrow x \in (A \cap B)^c$.
	Logo, $A^c \cup B^c \subset (A \cap B)^c$.

\bullet Propriedades Distribuitivas:

$$- (A \cup B) \cap C = (A \cap C) \cup (B)$$

$$- (A \cap B) \cup C = (A \cup C) \cap (B)$$

3 Indução Matemática

3.1 Princípio da Inclusão e Exclusão

• $\#(A_1 \cup A_2 \dots \cup A_n) = \#A_1 + \dots \#A_n - \#(A_1 \cap A_2) - \dots - \#(A_{n-1} \cap A_n) + \dots + (-1)^{n+1} \#(A_1 \cap A_2 \cap A_n)$

3.2 Tautologia

•

4 Análise Combinatória e Probabilidade

4.1 Princípio fundamental da contagem

O princípio fundamental da contagem é um princípio da combinatória. É, basicamente, a ideia de que o número de possibilidades de fazer n ações distintas e independentes é a multiplicação da quantidade de modos possíveis que cada uma pode ser feita. Ex: 3 blusas, 2 calças e 2 sapatos, quantas maneiras diferentes uma pessoa pode sair de casa: 12 possibilidades.

4.2 Fatorial

- Essa operação é bastante comum na análise combinatória, facilitando o cálculo de arranjos, permutações, combinações e demais problemas envolvendo contagem. O fatorial é representado pelo símbolo "!". Definimos como n! (n fatorial) a multiplicação de n por todos os seus antecessores até chegar em 1. n! = $n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1$.
- -0! = 1
- Ex 1: Tenho 3 alunos (A, B, C), quantas filas diferentes eu posso organizar com 10 alunos: $3! = 3 \cdot 2 \cdot 1 = 6$
- Ex 2: Quantas permutações podemos fazer com o nome "CAIO": $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$ ("CAIO", "COIA", "CIOA", ..., "OIAC").
- Ex 3: Quantas permutações podemos fazer com o nome "CASA": $4! = \frac{4 \cdot 3 \cdot 2 \cdot 1}{2} = 24$. É dividido por dois pois o A se repete duas vezes.
- Ex 4: Quantas permutações podemos fazer com o nome "PARAGUAIO": $\frac{9!}{3!}$. É dividido por 3! pois o A se repete três vezes.
- Ex 5: Quantas permutações podemos fazer com o nome "ARARA": $\frac{5!}{3! \cdot 2!}$

4.3 Combinações

- A Combinação (C_{np}) é um tipo de agrupamento da análise combinatória que calcula quantos subconjunto de "p" elementos podemos formar partindo de um conjunto inicial com "n" elementos. Nesse caso, a ordem das combinações não importa, pois trocá-la gera o mesmo resultado. Há 2 tipos de Combinações que possuem suas próprias fórmulas.
- Ex 1: Tenho 45 alunos, quero formar um comiter com 3 alunos, de quantas maneiras diferente eu posso forma esse comiter? 45·44·43/3!, O 45, pois existe 45 alunos para a primeira posição, o 44 pois existe 44 alunos para a segunda posição, o 43 pois existe 43 alunos para a terceira posição, sabendo que a ordem não importa, então temos que retira os valores que se repetem (3!).

5 Proplemas Matemáticos

5.1 Pro1

• Eu tenho dois filhos. Um deles é um menino e nasceu numa terça-feira. Qual a probabilidade de que eu tenha dois meninos?

Resposta: $\frac{13}{27}$

Solução: Observe que se o filho maior é um menino que nasceu numa terça-feira, então existem 14 possibilidades para a segunda criança: pode ser um menino, nascido em qualquer um dos sete dias da semana, ou bem ser uma menina, que tenha nascido em qualquer um dos sete dias. Suponhamos agora que o filho menor seja o nascido numa terça-feira. Então, como antes, existem 14 possibilidades para quem nasceu primeiro. No entanto, há um caso que está sendo considerado duplicado, que é quando os dois filhos são meninos e nasceram em uma terça-feira. Assim que, ao invés de considerarmos 28 casos distintos (14 se o primeiro filho foi o citado e 14 se o segundo filho foi o citado), na verdade temos 27 casos possíveis como espaço amostral. Desse total, repare que são 13 os que nos interessam: 7 casos em que o filho mais velho é um menino nascido em uma terça-feira (e o segundo, neste caso, em qualquer dia da semana) e 6 casos em que o filho mais novo é um menino nascido em um terça feira e o mais velho, neste caso, teria nascido em qualquer um dos outros dias da semana (o caso em que os dois nasceram em uma terça-feira já foi considerado na contagem anterior). Logo, a probabilidade é de 13271327. Observação: Se os dois filhos forem gêmeos, considere como "maior" o filho que nasceu primeiro. O raciocínio continua válido.

	$((x \lor y) \to z) \leftrightarrow ((x \to y) \to z)$									
X	У	$(x \lor y)$	\mathbf{z}	$(x \lor y) \to z$	X	У	$(x \to y)$	$((x \to y) \to z)$	$((x \lor y) \to z) \leftrightarrow ((x \to y) \to z)$	
V	V	V	V	V	V	V	V	V	V	
V	F	V	F	F	V	F	F	V	${ m F}$	
F	V	V	V	V	F	V	V	V	V	
F	F	F	F	V	F	F	V	V	V	