# 1 13.2: Vectors in Three Dimensions

#### The xyz- Coordinate System:

The three-dimensional coordinate system is created by adding the z-axis, which is perpendicular to both the x-axis and the y-axis. When looking at the xy-plane, the positive direction of the z-axis protrudes towards the viewer. This can also be shown using the right-hand rule (Figure 13.25 from Briggs):



#### Definition.

This three-dimensional coordinate system is broken up into eight **octants**, which are separated by

- the xy-plane (z = 0),
- the xz-plane (y = 0), and
- the yz-plane (x = 0).

The **origin** is the location where all three axes intersect.



#### **Equations of Simple Planes:**

Planes in three-dimensions are analogous to lines in two-dimensions. Below, we see the yz-plane, the xz-plane, and the xy-plane, along with planes that are parallel where x, y, and z are fixed respectively:



**Example** (Parallel planes). Determine the equation of the plane parallel to the xz-plane passing through the point (2, -3, 7).



#### Distances in xyz-Space:

Recall that in  $\mathbb{R}^2$ , for some vector  $\overrightarrow{PR}$ , the distance formula is given by

$$|PR| = \sqrt{(x_2 - x_1)^2 - (y_2 - y_1)^2}$$

where  $(x_1, y_1)$  and  $(x_2, y_2)$  represent the points P and R respectively. This idea can be further extended into  $\mathbb{R}^3$  by considering the two sides of the triangle formed by the points  $P(x_1, y_1, z_1)$  and  $Q(x_2, y_2, z_2)$ :



# Distance Formula in xyz-Space

The **distance** between points  $P(x_1, y_1, z_1)$  and  $Q(x_2, y_2, z_2)$  is

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$$

The **midpoint** between points  $P(x_1, y_1, z_1)$  and  $Q(x_2, y_2, z_2)$  is found by averaging the x-, y-, and z-coordinates:

Midpoint 
$$= \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$$

**Example.** Consider P(-1,4,3) and Q(3,5,7). Find

•  $\left| \overrightarrow{PQ} \right|$ 

• The midpoint between P and Q

• Two unit vectors parallel to  $\overrightarrow{PQ}$ 

ullet The equation of the sphere centered at the midpoint passing through P and Q

# Equation of a Sphere:

# Definition.

A sphere centered at (a, b, c) with radius r is the set of points satisfying the equation

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2.$$

A ball centered at (a, b, c) with radius r is the set of points satisfying the inequality

$$(x-a)^2 + (y-b)^2 + (z-c)^2 \le r^2$$
.

**Example.** Rewrite the following equation into the standard form of a sphere:

$$x^2 + y^2 + z^2 - 2x + 6y - 8z = -1$$

**Example.** What is the geometry of the intersection between  $x^2 + y^2 + z^2 = 50$  and z = 1?

#### **Vector Operations in Terms of Components**

# Definition. (Vector Operations in $\mathbb{R}^3$ )

Suppose c is a scalar,  $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ , and  $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ .

$$\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$$

Vector addition

$$\mathbf{u} - \mathbf{v} = \langle u_1 - v_1, u_2 - v_2, u_3 - v_3 \rangle$$

Vector subtraction

$$c\mathbf{u} = \langle cu_1, cu_2, cu_3 \rangle$$

Scalar multiplication

# Magnitude and Unit Vectors:

#### Definition.

The **magnitude** (or **length**) of the vector  $\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$  is the distance from  $P(x_1, y_1, z_1)$  to  $Q(x_2, y_2, z_2)$ :

$$\left| \overrightarrow{PQ} \right| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$



In  $\mathbb{R}^3$ , the **coordinate unit vectors** are  $\mathbf{i} = \langle 1, 0, 0 \rangle$ ,  $\mathbf{j} = \langle 0, 1, 0 \rangle$ , and  $\mathbf{k} = \langle 0, 0, 1 \rangle$ .

**Example.** Consider P(-1,4,3) and Q(3,5,7). Find two unit vectors parallel to  $\overrightarrow{PQ}$ .

# **Properties of Vector Operations:**

Suppose  $\mathbf{u}$ ,  $\mathbf{v}$ , and  $\mathbf{w}$  are vectors and a and c are scalars. Then the following properties hold (for vectors in any number of dimensions).

| 1  | $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ | Commutative property | of addition |
|----|-----------------------------------------------------|----------------------|-------------|
| Ι. | $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ | Commutative property | or addition |

2. 
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 Associative property of addition

3. 
$$\mathbf{v} + \mathbf{0} = \mathbf{v}$$
 Additive identity

4. 
$$\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$$
 Additive inverse

5. 
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
 Distributive property 1

6. 
$$(a+c)\mathbf{v} = a\mathbf{v} + c\mathbf{v}$$
 Distributive property 2

7. 
$$0\mathbf{v} = \mathbf{0}$$
 Multiplication by zero scalar

8. 
$$c\mathbf{0} = \mathbf{0}$$
 Multiplication by zero vector

9. 
$$1\mathbf{v} = \mathbf{v}$$
 Multiplicative identity

10. 
$$a(c\mathbf{v}) = (ac)\mathbf{v}$$
 Associative property of scalar multiplication