n	_		C									
Code	100302013	Name	DAINSIRUCI	OKES AIND ALGORITHMS	Categor	7		1 rojessionai Core	3	0	2	4
Course	18CSC201J	Course	DATA STRUCT	URES AND ALGORITHMS	Course		_	Professional Core	L	Т	P	С

Pre-requisite Courses	Nil		Co-requisite Courses	Nil		Progressive Courses	18CSC204J
Course Offerin	g Department	Computer Science and I	Engineering		Data Book / Codes/Standards	Nil	

Course (CLR):	Learning Rationale	The purpose of learning this course is to:	L	earni	ng
CLR- 1:	Utilize the different data	types; Utilize searching and sorting algorithms for data search	1	2	3
CLR- 2:	Utilize linked list in deve	loping applications			
CLR-3:	Utilize stack and queues	in processing data for real-time applications		Ex	Ex
CLR- 4:	Utilize tree data storage s	tructure for real-time applications	Le vel of	cte d	pe cte d
CLR- 5:	Utilize algorithms to find	shortest data search in graphs for real-time application development	Th ink ing (Bl	Pr ofi cie nc	Att ain me
CLR-	Utilize the different types	of data structures and its operations for real-time programming applications	(BI 00 m)	y (%	nt (%

Course (CLO):	Learning Outcomes	At the end of this course, learners will be able to:			
CLO- 1:	Identify linear and non-linear	data structures. Create algorithms for searching and sorting	3	80	70
CLO- 2:	Create the different types of la	inked lists and evaluate its operations	3	85	75
CLO-3:	Construct stack and queue da	ata structures and evaluate its operations	3	75	70
CLO- 4:	Create tree data structures an	d evaluate its types and operations	3	85	80
CLO- 5:	Create graph data structure, e	evaluate its operations, implement algorithms to identify shortest path	3	85	75

			P	rogra	m L	earni	ng C	Outco	mes	(PL	O)			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
En gin eer ing Kn ow led ge	Pr obl em An aly sis	De sig n & De vel op me nt	An aly sis, De sig n, Re sea rch	M od ern To ol Us age	So cie ty & Cu ltu re	En vir on me nt & Su stai na bili ty	Et hic s	In div idu al & Te am Wo rk	Co m mu nic ati on	Pr oje ct Mg t. & Fin anc	Lif e Lo ng Le arn ing	PS O - 1	PS O - 2	PS O
L	Н	-	Н	L	-	-	-	L	L	-	Н	-	-	
М	Н	L	M	L	-	-	-	М	L	-	Н	-	-	
M	Н	M	Н	L	-	-	-	M	L	-	Н	-	-	
M	Н	M	Н	L	-	-	-	М	L	-	Н	-	-	
Н	Н	M	Н	L	-	-	-	M	L	-	Н	-	-	

CLO- 6:	Construct the different data structures and evaluate their types and operations	3	8	80 70		L	Н	-	Н	L	-	-	-	L	L	-	Н	-	-	-	
------------	---	---	---	-------	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

	iration nour)	15	15	15	15	15
6.1	SLO- 1	Introduction-Basic Terminology	Array	Stack ADT	General Trees	Graph Terminology
S-1	SLO-	Data Structures	Operations on Arrays – Insertion and Deletion	Stack Array Implementation	Tree Terminologies	Graph Traversal
	SLO- 1	Data Structure Operations	Applications on Arrays	Stack Linked List Implementation	Tree Representation	Topological sorting
S-2	SLO-	ADT	Multidimensional Arrays- Sparse Matrix	Applications of Stack-Infix to Postfix Conversion	Tree Traversal	Minimum spanning tree – Prims Algorithm
	SLO- 1	Algorithms – Searching techniques	Linked List Implementation - Insertion	Applications of Stack- Postfix Evaluation	Binary Tree Representation	Minimum Spanning Tree - Kruskal's Algorithm
S-3	SLO-	Complexity – Time , Space Trade off	Linked List- Deletion and Search	Applications of Stack- Balancing symbols	Expression Trees	Network flow problem
s	SLO- 1	Lab 1: Implementation of Searching - Linear and Binary Search Techniques	Lab 4: Implementation of Array – Insertion, Deletion.	Lab 7: Implementation of stack using array and Linked List	Lab 10: Implementation of Tree using array	Lab 13: Implementation of Graph using Array
4-5	SLO- 2					
S-6	SLO- 1	Algorithms - Sorting	Applications of Linked List	Applications of Stack- Nested Function Calls	Binary Tree Traversal	Shortest Path Algorithm- Introduction
3-0	SLO-	Complexity – Time , Space Trade off	Polynomial Arithmetic	Recursion concept using stack	Threaded Binary Tree	Shortest Path Algorithm: Dijkstra's Algorithm
S-7	SLO- 1	Mathematical notations	Cursor Based Implementation — Methodology	Applications of Recursion:Tower of Hanoi	Binary Search Tree :Construction, Searching	Hashing: Hash functions – Introduction
5-7	SLO-	Asymptotic notations-Big O, Omega	Cursor Based Implementation	Quene ADT	Binary Search Tree : Insertion and Deletion	Hashing: Hash functions
0.0	SLO-	Asymptotic notations - Theta	Circular Linked List	Queue Implementation using array	AVLTrees: Rotations	Hashing: Collision avoidance
S-8	SLO-	Mathematical functions	Circular Linked List - Implementation	Queue Implementation using Linked List	AVL Tree: Insertions	Hashing: Separate chaining
S	SLO-	Lab 2: Implementation of sorting Techniques – Insertion sort and Bubble Sort	Lab 5: Implementation of Linked List - Cursor Based Implementation	Lab 8: Implementation of Queue using Array and linked list	Lab 11: Implementation of BST using linked list	Lab 14: Implementation of Shortest path Algorithm
9-1 0	SLO- 2	Techniques				

S-1	SLO- 1	Data Structures and its Types	Applications of Circular List -Joseph Problem	Circular Queue	B-Trees Constructions	Open Addressing
1	SLO- 2	Linear and Non-Linear Data Structures	Doubly Linked List	Implementation of Circular Queue	B-Trees Search	Linear Probing
S-1	SLO- 1	1D, 2D Array Initialization using Pointers	Doubly Linked List Insertion	Applications of Queue	B-Trees Deletions	Quadratic probing
2	SLO- 2	1D, 2D Array Accessing usingPointers	Doubly Linked List Insertion variations	Double ended queue	Splay Trees	Double Hashing
S-1	SLO- 1	Declaring Structure and accessing	Doubly Linked List Deletion	Priority Queue	Red Black Trees	Rehashing
3	SLO-	Declaring Arrays of Structures and accessing	Doubly Linked List Search	Priority Queue - Applications	Red Black Trees Insertion	Extensible Hashing
S 14-	SLO- 1	Lah 3: Implement Structures using Pointers	Lab 6: Implementation of Doubly linked List	Lab 9: Applications of Stack, Queue	Lab 12:Implementation of B-Trees	Lab 15 :Implementation of Minimal Spanning Tree
15	SLO- 2					

Learning Resources

- 1. Seymour Lipschutz, Data Structures with C, McGraw Hill, 2014
- 2. R.F.Gilberg, B.A.Forouzan, Data Structures, 2nd ed., Thomson India, 2005
- 3. A.V.Aho, J.E Hopcroft , J.D.Ullman, Data structures and Algorithms, Pearson Education, 2003
- 4. Mark Allen Weiss, Data Structures and Algorithm Analysis in C, 2nd ed., Pearson Education, 2015
- 5. Reema Thareja, Data Structures Using C, 1st ed., Oxford Higher Education, 2011
- 6. Thomas H Cormen, Charles E Leiserson, Ronald L Revest, Clifford Stein, Introduction to Algorithms 3rd ed., The MIT Press Cambridge, 2014

Learning Asse	essment												
	Bloom's			Contin	uous Learning Ass	essment (50% wei	ghtage)			Final Exam	ination (50%		
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	1 (10%)#	weightage)			
	Timiking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 1	Understand	2070	2070	1576	1576	1570	1570	1570	1570	1570	1570		
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 2	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070		
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 3	Create	1078	1070	1570	1570	1570	1570	1570	1570	1570	1570		
	Total	100) %	100) %	100) %	100) %		-		

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Nagaveer, CEO, Campus Corporate Connect, nagaveer@campuscorporateconnect.com	1. Dr. Srinivasa Rao Bakshi, HTM, Chennai, shakshi@iitm.ac.in	1. Mr. K. Venkatesh, SRMIST
2. Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	2. Dr. Ramesh Bahu, N , nrbahu@ütm.ac.in	2. Dr.Subalalitha C.N, SRMIST
	3. Dr.Noor Mahammad, IIITDM, Kancheepuram,noor@iiitdm.ac.in	3. Ms. Ferni Ukrit, SRMIST