

Exemplos de aplicações • Atividades e tempo de execução Concurso Ex. psico2 Avaliação 7 Documentação 1 Assinar contrato

Outras Aplicações

- Cada vértice é uma tarefa de um grande projeto. Há um arco de x a y se x é pré-requisito de y, ou seja, se x deve estar pronta antes que y possa começar. Análise de circuitos elétricos
- Cada vértice é um arquivo de um sistema de software. Cada arco é uma "dependência": um arquivo v é construído a partir de todos os arquivos w para os quais existe um arco da forma (v,w).
 - O utilitário make do UNIX trabalha sobre grafos deste tipo
- Cada vértice é uma página na teia WWW. Cada arco é um link que leva de uma página a outra.

Outras Aplicações

- Os vértices são times de futebol e os arcos são os jogos entre os times durante um campeonato.
- Os vértices são as casas de um tabuleiro de xadrez. Há um arco de x para y se um cavalo do jogo pode ir de x a y em um só movimento.

Outras Aplicações

- Outras aplicações
 - Análise de circuitos elétricos
 - Verificação de caminhos mais curtos
 - Análise de planejamento de projetos
 - Identificação de compostos químicos
 - Mecânica estática
 - Genética
 - Cibernética
 - Linguística
 - Ciências sociais
 - ...

Grafos

- Representação
 - implementação da ED
 - ·HOJE!!!
- Principais Algoritmos

Problemas típicos

- planaridade
- árvore geradora (máxima e mínima)
- caminho crítico (máximo e mínimo)
- número cromático

Um grafo é uma tripla (V,A,f), onde V é um

conjunto não-vazio de nodos (vértices), A é um conjunto possivelmente vazio de rela-

GRAFOS -Definições

Definição formal

mento

vértices

cionamentos (linhas) e f é uma função de incidência que representa um relaciona-Linhas: arestas

arcos

Grafos orientados x não-orientados

Um grafo expressa uma relação binária R

Grafo orientado:

(v1, v2) ε G \leftrightarrow v1 R v2

Grafo não orientado:

 $\{v1, v2\} \in G \leftrightarrow v1 R v2^v2 R v1$

Definições e terminologia

Um grafo é *valorado* se possuir valores associados às linhas e/ou aos vértices.

Definições e terminologia

Dois vértices v1 e v2 são ditos adjacentes em G, se neste existe a aresta {v1,v2} ou um dos arcos (v1,v2) e (v2,v1)

Uma linha a é incidente a um vértice v, se v for uma das extremidades de a.

Definições e terminologia

Grau de um vértice é igual ao número de linhas que nele incidem

Vértices com grau igual a zero são ditos *isolados*

A *ordem* de um grafo é igual ao número de vértices do mesmo

Definições e terminologia

Uma linha que tem ambas extremidades em um mesmo vértice é chamada *laço*

Um grafo é dito completo se todos os seus pares de vértices forem adjacentes

Definições e terminologia

Um grafo é dito **simétrico** se para cada arco da forma (v,w) existe um arco da forma (w,v).

Representação física de grafos

- matriz de adjacência
- matriz de incidência
- lista de adjacência
- lista de incidência

Matriz de adjacência

Matriz de adjacência $A(n \times n)$ de um grafo G de ordem n, é uma matriz onde cada elemento a_i , é:

Grafos orientados:

$$a_{i,i}$$
 = 1 se (v_i, v_i) ϵ G

$$a_{i,i} = 0$$
 se $(v_i, v_i) \sim \varepsilon G$

Grafos não orientados:

$$a_{i,j}$$
 = 1 se $\{v_i, v_j\}$ ϵ G

$$a_{i,i} = 0$$
 se $\{v_i, v_i\} \sim \varepsilon G$

Matriz de adjacência (MA)

- Matriz binária: ocupa pouco espaço, especialmente para grafos densos
- Manipulação simples: recursos p/matrizes em qualquer linguagem
- Fácil determinar se (v_i,v_i) ε G
- Fácil determinar {Adjacentes(v,G)}
- Quando o grafo é não orientado, a MA é simétrica (mais econômica)
- Inserção de novos vértices é difícil

Exercício

Exercício 01. Os Turistas Jensen, Leuzingner, Dufour e Medeiros se encontram em um bar de Paris e começam a conversar. As línguas disponíveis são o inglês, o francês, o português e o alemão. Jensen fala todas. Leuzingner não fala apenas o português. Dufour fala francês e alemão. Medeiros fala inglês e português. Represente por meio de um grafo todas as possibilidades de um deles dirigir a palavra a outro, sendo compreendido.

Exercício 02

- 2. Representar o grafo por Matriz de Adjacência
- 3. Representar o grafo por Matriz de Incidência
- 3. Representar o grafo por Lista de Adjacência
- 3. Representar o grafo por Lista de Incidência