复习题

- **习题 1.1.** 如果 \mathcal{F} 是 S 上的滤构成的一个 \subseteq -链,则 $\bigcup \mathcal{F}$ 是 S 上的滤。
- **习题 1.2.** 如果 F 是非主超滤,则任意 $X \in F$ 都是无穷的。因此任何非主超滤必是弗雷歇滤的扩张。
- **习题 1.3.** 如果 F 是 S 上的滤,而 $F' = \{X \subseteq S \mid S X \notin F\}$,则 $F \subseteq F'$,并且 F = F' 当且仅当 F 是超滤。

习题 1.4. 假设 *X* ⊆ *S* , 证明 :

- (1) 如果 $F \in S$ 上的滤且 $X \in F$,则 $F \cap \mathcal{P}(X)$ 是 X 上的滤;
- (2) 如果 $F \in S$ 上的超滤且 $X \in F$,则 $F \cap \mathcal{P}(X)$ 是 X 上的超滤;
- (3) 如果 $F \in X$ 上的滤,则 F 能扩张为 S 上的超滤。

习题 1.5. 假设 S 是无穷的,则

- (1) 存在 S 上的超滤 F,对任意 $X \in F$,|X| = |S|。这样的滤称为 S 上的均匀超滤(uniform ultrafilter);
- (2) $\{F \mid F \neq S \text{ L}$ 的均匀超滤 $\} = \{F \mid F \neq S \text{ L}$ 的非主超滤 $\}$ 当且仅当 S 是可数的。
- **习题 1.6.** 如果 S 是无穷的,F 是 S 上的超滤,则以下命题等价:
 - (1) *F* 是非主滤;
 - (2) $\{X \subseteq S \mid S X$ 是有穷的 $\}$ ⊆ F;
 - (3) F 的元素都是无穷的。
- **习题 1.7.** 如果 S 是无穷的,则 S 上的任何非主超滤都不是 $|S|^+$ 完全的。所以 ω 上的任何非主超滤都不是 σ -完全的。

习题 1.8. 如果 $F \in S$ 上的非主超滤,并且是 |S|-完全的,则 F 是均匀超滤。

习题 1.9. 如果 $F \in S$ 上的滤,并且令 $\mu = \sup\{\kappa \mid F \in \kappa \in \mathbb{R}\}$,则 $\mu \in \mathbb{R}$ 正则基数,并且 $F \in \mu$ -完全的。

证明. F 显然是 μ 完全的。假设 μ 不是正则的,并且 $\mathrm{cf}(\mu) = \lambda < \mu$ 。任取 $\langle X_{\alpha} \rangle_{\alpha < \mu}$ 为 F 中元素的序列,并且 $\bigcap_{\alpha < \mu} X_{\alpha} \not\in F$ 。令 $\{\alpha_{\xi} < \mu \mid \xi < \lambda\}$ 为共 尾序列。定义 $Y_{\alpha_{\gamma}} = \bigcap_{\alpha < \alpha_{\gamma}} X_{\alpha}$,则对任意 α_{γ} , $Y_{\alpha_{\gamma}} \in F$ 。但是 $\bigcap_{\gamma < \lambda} Y_{\alpha_{\gamma}} \not\in F$,与 F 是 λ 完全的矛盾。

习题 1.10. 假设 S 是无穷的,F 是 S 上的超滤。证明 F 是 κ -完全的当且仅当对任意 $\tau < \kappa$ 和任意划分 $\langle X_{\xi} \mid \xi < \tau \rangle$,总存在 $X_{\xi} \in F$ 。

习题 1.11. 如果 $\alpha > \aleph_0$ 是正则基数,并且 $f : \alpha \to \alpha$ 是函数,则集合 $C = \{\beta < \alpha \mid f[\beta] \subseteq \beta\}$ 是 α 上的无界闭集。

Jech 第三版(第7章)

习题 1.12. 如果 $U \in S$ 上的超滤,令 $X \subseteq S \times S$ 为满足以下性质的集合:

 ${a \in S \mid \{b \in S \mid (a,b) \in X\} \in U\} \in U}.$

则所有这样的 X 组成的族 $F \neq S \times S$ 上超滤。

习题 1.13. 令 $U \in S$ 上的超滤, $f: S \to T$ 是函数,证明 $U' = \{X \subseteq T \mid f^{-1}[X] \in U\}$ 是 T 上的超滤。

习题 1.14. 令 A 为自然数 \mathbb{N} 上的线序 (\mathbb{N}, \leq_s) 组成的集合并且满足: 如果 (\mathbb{N}, \leq_s) 与 (\mathbb{N}, \leq_t) 都属于 A,且 $s \neq t$,则 (\mathbb{N}, \leq_s) 与 (\mathbb{N}, \leq_t) 不同构。证明 A 与 \mathbb{R} 等势。

证明. $|A| \leq |\mathbb{R}|$ 是显然的:对任意线序 \leq ,都有 $\leq \subseteq \mathbb{N} \times \mathbb{N}$ 。所以这样的线序至多有 $|2^{\omega}| = |\mathbb{R}|$ 。

考虑 $\mathbb{N} \times \mathbb{N}$, 对任意 $n \in \mathbb{N}$, 令 $\tau_n = \mathbb{N} \times \{n\} \subseteq \mathbb{N} \times \mathbb{N}$ 。对任意 $s \in 2^{\omega}$,我们构造一个线序 $\sigma = (\mathbb{N} \times \mathbb{N}, <_s)$,它是 τ_n 的链接:如果 n < m,则 τ_n

所有元素排在 τ_m 之前。对于同处一个 τ_n 中的元素,如果 s(n) = 0,则令 $<_s \mid \tau_n$ 为: (m,n) < (k,n) 当且仅当 m < k; 而如果 s(n) = 1,则令 $<_s \mid \tau_n$ 为: (m,n) < (k,n) 当且仅当 m > k。显然,如果 $s_1 \neq s_2$,则相应的线序 $\sigma_1 \not\cong \sigma_2$ 。最后,我们利用双射 $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$,可以将 σ 视为 \mathbb{N} 上的线序。所以 $|\mathbb{R}| = |2^{\omega}| \leq |A|$ 。

习题 1.15. 令 X 是一个序数的集合。 $X^{<\omega}$ 是 X 中元素的有穷序列的集合。对任意 $s \in X^{<\omega}$,我们用 |s| 表示 s 的长度。定义 $X^{<\omega}$ 上的序 $<_l$ 为:

对任意
$$s, t \in X$$
, $s <_l t$ 当且仅当

- (1) 存在 i, i < |s| 并且 i < |t|, $s_i < t_i$, 并且对任意 j < i, $s_j = t_j$; 或者
- (2) t 是 s 的真扩张,即,|s| < |t|,并且对任意 i < |s|, $s_i = t_i$,而且存在一个 j,|s| < j < |t|, $t_i \neq 0$ 。

证明 <1 是一个线序。

习题 1.16. 令 λ 为一个无穷基数,记 $D = \lambda^{<\omega}$,定义 D 上的序为:对任意 $s,t\in D$,

$$s \prec t$$
 当且仅当 $s^{\sim} \lambda <_l t^{\sim} \lambda$,

其中,对任意有穷序列 $s=(s_0,\cdots,s_{n-1})$,任意序数 β , $s^{\beta}=(s_0,\cdots,s_{n-1},\beta)$ 。 而 $<_l$ 是当 $X=\lambda\cup\{\lambda\}$ 时,1.15 中定义的 $X^{<\omega}$ 上的序。

- (1) 证明: 对任意 $s,t\in D$, $s\prec t$, 对任意 $\alpha<\lambda$, 存在 $r\in D$ 使得: $s\prec r^{\alpha} \alpha \prec t$ 。
- (2) 对任意 $\alpha < \lambda$,任意 D 中的区间 $(s,t) = \{r \in D \mid s \prec r \prec t\}$,证明:存在 $Y \subseteq (s,t)$,使得 $(\alpha,<) \cong (Y,\prec)$ 。

证明. (1) 分两种情况,(一) 存在 i < |s|, i < |t| 使得 $s_i < t_i$ 。此时取 r = s。(二) $s \neq t$ 的真扩张。此时 $r = t * (s_m + 1)$,其中 $m \neq t$ 的长度。

(2) 根据 (1),归纳证明。后继的情况显然,极限的情况则考虑 α 中的共尾序列,每个序列中的序数都嵌入到一个区间中。这些区间的并还是一个区间,且序型为 α 。

习题 1.17. 假设 λ 是不可数的正则基数。 $S \subseteq \lambda$ 是平稳集。 $f : \lambda \to \lambda$ 在 S 上是退缩函数,即,对任意 $\alpha \in S$, $\alpha > 0$, $f(\alpha) < \alpha$ 。对任意 $\beta < \lambda$,定义 $S_{\beta} = \{\alpha \in S \mid f(\alpha) = \beta\}$ 。最后,令 $I = \{\beta < \lambda \mid S_{\beta}$ 是平稳集}。

- (1) 证明 I 非空, 即至少存在一个 β 使得 S_{β} 是平稳集。
- (2) 如果 $|I| \neq \lambda$,则存在一个无界闭集 C, f 限制在 $C \cap S$ 上是有界的。 Jech 第三版(第 8 章):

习题 1.18. 令 κ 是不可数正则基数,如果 $X \subseteq \kappa$ 不是平稳集,则存在退缩函数 $f: X \to \kappa$ 使得对任意 $\gamma < \kappa$,集合 $\{\alpha \in X \mid f(\alpha) < \gamma\}$ 是有界的。【提示:取 $C \cap X = \emptyset$,定义 $f(\alpha) = \sup(C \cap \alpha)$ 。】

证明. 取无界闭集 C,使得 $C \cap X = \emptyset$,定义 $f(\alpha) = \sup(C \cap \alpha)$ 。 f 显然是退缩函数。对任意 $\gamma < \kappa$,令 $X_{\gamma} = \{\alpha \in X \mid f(\alpha) < \gamma\}$,我们证明 X_{γ} 是有界的。任取 $\eta \in C$, $\eta > \gamma$,这总是可以的,是因为 C 是无界闭集。但是,对任意 $\alpha \in C$, $\alpha > \epsilon$, $f(\alpha) = \sup(C \cap \alpha) \geq \epsilon$,所以 ϵ 是 X_{γ} 的上界。

习题 1.19. 如果 κ 是马洛基数,则 $\{\lambda < \kappa \mid \lambda \in \Lambda \}$ 是不可达基数} 是 κ 上的平稳集,因此 κ 是第 κ 个不可达基数。

证明. 定义 $f: \kappa \to \kappa$ 为: $f(\eta + 1) = 2^{f(\eta)}$; 对于极限基数 $\lambda < \kappa$, $f(\lambda) = \sup_{\eta < \lambda} (f(\eta))$ 。由于 κ 是不可达的,所以这样定义是合理的。f 是 κ 上的连续函数,所以它的值域是一个无界闭集。根据马洛基数的定义, $M = \{ \eta < \kappa \mid \eta$ 是正则的} 是平稳集,所以 $\operatorname{ran}(f) \cap M$ 是平稳集,而它的元素都是不可达基数。

习题 1.20. 如果 $\kappa = \min\{\lambda \mid \lambda \in \mathbb{R} \mid \lambda \in \mathbb{R}$

证明. 假设 κ 是马洛基数,根据上题,令 $M = \{ \eta < \kappa \mid \eta$ 是不可达基数 },则 M 是平稳集。我们取 $\langle \lambda_{\xi} \rangle_{\xi < \kappa}$ 为 M 的一个严格递增的枚举。对任意 $\eta \in M$,都有唯一的 ξ , $\eta = \lambda_{\xi}$ 。如果 $\xi \geq \eta$,则 η 就是第 η 个不可达基数,与 κ 是最小的矛盾。所以如果定义 $f(\eta) = \xi$,其中 ξ 是使得 $\eta = \lambda_{\xi}$ 的唯一的 ξ ,则 f 是平稳集 M 上的退缩函数。由 Fodor 引理,有一个平稳集 $S \subseteq M$,f 限制在 S 上是常值,与 f 是一一函数矛盾。

习题 1.21. 如果 κ 是马洛基数,则集合 $\{\lambda < \kappa \mid \lambda$ 是第 λ 个不可达基数} 在 κ 中无界。

证明. 我们已知 κ 以下的不可测基数有 κ 个。对任意 $\eta < \kappa$,大于 η 的不可达基数有 κ 个。定义函数 $f:\kappa \to \kappa$ 为: $f(0) = \lambda_0$ 为大于 η 的最小的不可达基数, $f(\alpha+1) = \lambda_{\alpha+1}$ 为大于 λ_{α} 的最小的不可达基数。如果 $\gamma < \kappa$ 是极限序数,则 $f(\gamma) = \bigcup_{\alpha < \gamma} f(\alpha)$,注意 $f(\gamma)$ 不一定是不可达基数,它不一定是正则的。f 是连续的无界函数。根据马洛基数的定义,它有一个不可达的不动点 λ ,而 $\lambda > \eta$ 并且是第 λ 个不可达基数。

- **习题 1.22.** (1) 令 κ 是极限基数,并且集合 { $\lambda < \kappa \mid \lambda$ 是强极限基数} 在 κ 中 无界,则 κ 是强极限基数。因此,
 - (2) 令 κ 是弱不可达基数,并且集合 { $\lambda < \kappa \mid \lambda$ 是强极限基数} 在 κ 中无界,则 κ 是强不可达基数。
 - (3) 令 κ 是弱马洛基数,并且集合 { $\lambda < \kappa \mid \lambda$ 是强极限基数} 在 κ 中无界,则 κ 是马洛基数。

证明. (1) 对任意 $\lambda < \kappa$,取 $\eta < \kappa$ 使得 $\lambda < \eta < \kappa$ 并且 η 是强极限基数,则 $2^{\lambda} < \eta < \kappa$,所以 κ 是强极限。

- (2) 由(1), κ是强极限的, 所以是不可达基数。
- (3) 根据弱马洛基数的定义,不难看出 $\{\lambda < \kappa \mid \lambda$ 是正则的 $\}$ 平稳集。但 (1) 和 (2) 蕴含 κ 是不可达基数。所以 κ 是马洛基数。

习题 1.23. 证明不存在 ω 上的正则的非主超滤。

证明. 定义函数 f(n) = n - 1,这是 ω 上的退缩函数,如果 F 是正则非主超滤,则存在 $k \in \omega$, $\{n \in \omega \mid f(n) = k\} = \{k - 1\}$ 具有正测度。由于 F 是非主滤,所以这是不可能的。

Schindler

习题 1.24 (4.1)**.** 如果 $\alpha < \omega_1$ 是序数, 证明存在 $X \subseteq \mathbb{Q}$, $(\alpha, <) \cong (X, <_{\mathbb{Q}})$ 。【对 α 归纳。】

证明. 定理2.1.16的第二部分。

习题 1.25 (4.2). 令 κ 为基数, $y = \kappa \cup \{\alpha \mid |\alpha| = \kappa\}$, 则 $y = \kappa^+$ 。

证明. 首先,根据基数的定义, $y\subseteq\kappa^+$ 是显然的。反过来,对任意 $\alpha\in\kappa^+$, $|\alpha|\le\kappa$ 。如果 $|\alpha|<\kappa$,则 $\alpha\in\kappa\subseteq y$ 。如果 $|\alpha|=\kappa$,则 $\alpha\in y$ 。