日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年11月21日

出 願 番 号

Application Number:

特願2000-355078

出 願 人 Applicant(s):

日亜化学工業株式会社

2001年 6月22日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

P00SR53

【あて先】

特許庁長官殿

【国際特許分類】

H01S 5/00

【発明者】

【住所又は居所】

徳島県阿南市上中町岡491番地100

株式会社内

【氏名】

小崎 徳也

【特許出願人】

【識別番号】

000226057

【氏名又は名称】 日亜化学工業株式会社

【代表者】

小川 英治

【手数料の表示】

【予納台帳番号】

010526

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書

【物件名】。

図面

【物件名】

要約書 1

【プルーフの要否】

【書類名】明細書

【発明の名称】窒化物半導体素子

【特許請求の範囲】

【請求項1】 I n を含む窒化物半導体からなる井戸層と窒化物半導体からなる障壁層を有する量子井戸構造の活性層を、p型窒化物半導体層と、n型窒化物半導体層とで挟む構造を有する窒化物半導体素子において、

前記活性層が前記障壁層として、前記 p 型窒化物半導体層に最も近い位置に配置された第1の障壁層と、該第1の障壁層とは異なる第2の障壁層と、を有すると共に、

前記第1の障壁層が、実質的にn型不純物を含まず、前記第2の障壁層がn型不 純物を有することを特徴とする窒化物半導体素子。

【請求項2】前記活性層内の少なくとも1つの井戸層が、40A以上の膜厚を有することを特徴とする請求項1記載の窒化物半導体素子。

【請求項3】前記第1の障壁層が、前記活性層の最も外側に配置されている ことを特徴とする請求項1又は2記載の窒化物半導体素子。

【請求項4】前記第1の障壁層が、p型不純物を有することを特徴とする請求項1又は2記載の窒化物半導体素子。

【請求項5】前記第1の障壁層の膜厚が、第2の障壁層の膜厚より大きいことを特徴とする請求項1乃至3記載の窒化物半導体素子。

【請求項6】Inを含む窒化物半導体からなる井戸層と窒化物半導体からなる障壁層を有する量子井戸構造の活性層を、p型窒化物半導体層と、n型窒化物半導体層とで挟む構造を有する窒化物半導体素子において、

前記活性層がL個(L≥2)の前記障壁層を有し、

前記 n 型窒化物半導体層に最も近い位置に配置された障壁層を障壁層 B_1 、 該障壁層 B_1 から前記 p 型窒化物半導体層に向かって数えて i 番目(i=1, 2, 3, ·・・・L)の障壁層を障壁層 B_i 、とした時に、

i=1からi=n(1 < n < L)までの障壁層 B_i がn型不純物を有し、i=Lの障壁層 B_L が実質的にn型不純物を含まないことを特徴とする窒化物半導体素子。

【請求項7】前記活性層内の少なくとも1つの井戸層が、40Å以上の膜厚を有することを特徴とする請求項6記載の窒化物半導体素子。

【請求項8】i = Lの障壁層 B_L が、前記活性層の最も外側に配置されていることを特徴とする請求項6又は7記載の窒化物半導体素子。

【請求項9】i=Lの障壁層B_Lが、p型不純物を有することを特徴とする 請求項6乃至8記載の窒化物半導体素子。

【請求項10】 i = Lの障壁層 B_L の膜厚が、 $i \neq L$ の障壁層 B_i の膜厚より大きいことを特徴とする請求項6乃至9記載の窒化物半導体素子。

【請求項11】Inを含む窒化物半導体からなる井戸層と窒化物半導体からなる障壁層を有する量子井戸構造の活性層を、p型窒化物半導体層と、n型窒化物半導体層とで挟む構造を有する窒化物半導体素子において、

前記活性層が、前記活性層内の最も外側の層として、前記 p 型窒化物半導体層に近い位置に配置された第1の p 側障壁層と、前記 n 型窒化物半導体層に近い位置に配置された第2の n 側障壁層と、を有すると共に、

前記第1のp側障壁層がn型不純物を実質的に含まず、前記第2のn側障壁層がn型不純物を有することを特徴とする窒化物半導体素子。

【請求項12】前記活性層内の少なくとも1つの井戸層が、40 Å以上の膜厚を有することを特徴とする請求項11記載の窒化物半導体素子。

【請求項13】前記第1のp側障壁層が、p型不純物を有することを特徴とする請求項11又は12記載の窒化物半導体素子。

【請求項14】前記第1のp側障壁層の膜厚が前記第2のn側障壁層の膜厚とほぼ同じであることを特徴とする請求項11乃至13記載の窒化物半導体素子

【請求項15】前記活性層が2以上の井戸層を有し、該井戸層と井戸層との間に第3の障壁層を有すると共に、

前記第3の障壁層の膜厚が、前記第1のp側障壁層及び前記第2のn側障壁層の膜厚よりも小さいことを特徴とする請求項11乃至14に記載の窒化物半導体素子。

【請求項16】請求項1乃至15記載の前記活性層を、A1を含む窒化物半

導体を有する上部クラッド層と、A1を含む窒化物半導体を有する下部クラッド層とで挟むレーザ素子構造を有する窒化物半導体素子において、

前記上部クラッド層、下部クラッド層のA1平均混晶比xが、0< x ≦0.05 であることを特徴とする窒化物半導体素子。

【請求項17】前記p型窒化物半導体層中に、活性層に隣接して第1のp型窒化物半導体層を有し、該第1のp型窒化物半導体層がA1を含む窒化物半導体からなることを特徴とする請求項1乃至16記載の窒化物半導体素子。

【請求項18】前記第1のp型窒化物半導体層が、前記p型窒化物半導体層に最も近い障壁層に接して設けられ、前記活性層中の障壁層よりも高い濃度のp型不純物をドープして成長していることを特徴とする請求項17記載の窒化物半導体素子。

【請求項19】前記活性層において、井戸層の数が1以上3以下の範囲であることを特徴とする請求項1乃至18記載の窒化物半導体素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】

本発明は、発光ダイオード素子(LED)、レーザダイオード素子(LD)等の発光素子、太陽電池、光センサ等の受光素子、あるいはトランジスタ、パワーデバイス等の電子デバイスに用いられる窒化物半導体($In_XAl_YGa_{1-X-Y}N$ 、 $0 \le X$ 、 $0 \le Y$ 、 $X+Y \le 1$)を用いた窒化物半導体素子に関し、特にInを含む窒化物半導体層を有する窒化物半導体素子に関する。

[0002]

【従来の技術】

今日、窒化物半導体を用いた半導体レーザは、DVDなど、大容量・高密度の情報記録・再生が可能な光ディスクシステムへの利用に対する要求が高まりを見せている。このため、窒化物半導体を用いた半導体レーザ素子は、研究が盛んになされている。また、窒化物半導体を用いた半導体レーザ素子は、紫外域から赤色に至るまで、幅広く可視光域での発振が可能と考えられ、その応用範囲は、上記光ディスクシステムの光源にとどまらず、レーザプリンタ、光ネットワークな

どの光源など、多岐にわたるものと期待されている。また、本出願人は、405 nm、室温、5mWの連続発振の条件で、1万時間を超えるレーザを発表した。

[0003]

また、窒化物半導体を用いた発光素子、受光素子などには、Inを含む窒化物 半導体を用いて活性層とした構造を有しており、活性層におけるより優れた活性 領域の形成が、素子特性の向上において重要となる。

従来、窒化物半導体素子の活性層として、n型不純物などをドープしたn型の 窒化物半導体が一般的に用いられ、特に量子井戸構造である場合には、n型不純 物がドープされた窒化物半導体、n型窒化物半導体が井戸層、障壁層に用いられ てきた。

[0004]

【発明が解決しようとする課題】

窒化物半導体を用いた素子として、発光素子では、その用途を多くの分野に広めるためには、さらなる素子特性、特に素子寿命の向上を成し遂げなければならない。

[0005]

窒化物半導体を用いたレーザ素子としては、上述した高密度光ディスクシステムの読み取り・書き込み光源などへの利用、若しくはさらなる応用のためには、 さらなる素子寿命の向上、出力の向上が必須の課題である。また、その他の窒化 物半導体素子においても、さらなる同様に素子寿命・出力の向上が必要であり、 窒化物半導体を用いた発光素子でも、発光出力の向上が必要である。

[0006]

従来、問題となっている窒化物半導体を用いた素子における脆弱な逆方向耐圧 特性は、その製造上の取り扱い、応用製品への実装時の取り扱いにおいて、破壊 される危険性が高く、極めて重要な課題の一つである。

[0007]

【課題を解決するための手段】

[0008]

本発明は、上記事情に鑑みなされたものであり、閾値電流密度などの素子特性

に優れ、且つ長寿命、高出力の窒化物半導体素子を得るものである。

[0009]

すなわち本発明の半導体素子は、下記(1)~(19)の構成により本発明の 目的を達成することができる。

[0010]

(1)Inを含む窒化物半導体からなる井戸層と窒化物半導体からなる障壁層を 有する量子井戸構造の活性層を、p型窒化物半導体層と、n型窒化物半導体層と で挟む構造を有する窒化物半導体素子において、前記活性層が前記障壁層として 、前記p型窒化物半導体層に最も近い位置に配置された第1の障壁層と、該第1 の障壁層とは異なる第2の障壁層と、を有すると共に、前記第1の障壁層が、実 質的にn型不純物を含まず、前記第2の障壁層がn型不純物を有することを特徴 とする。この構成により、量子井戸構造の活性層において、少なくともn型不純 物を有する障壁層(第2の障壁層)と、それとは異なる活性層中の最もp型窒化 物半導体層(以下、p型層という)側に位置する障壁層(第1の障壁層)とを有 することで、素子寿命、逆方向耐圧特性が向上する。これは、活性層中の障壁層 において、p型層側に配置された障壁層(第1の障壁層)が、n型不純物を実質 的に含ないことで、n型不純物を有する障壁層(第2の障壁層)とは、活性層中 においてその機能が異なり、このことが特性の向上につながる。これは、第2の 障壁層を有することで、n型層から活性層内へ注入されるキャリアを多くし、ま た活性層の奥深く(p型層側)まで達するキャリアを多くし、キャリアの注入効 率が上がり、また第1の障壁層を有することで、n型不純物が含まれない障壁層 が、活性層内でp型層に最も近い障壁層として配置されることとなり、p型層か らのキャリアの注入を多くし、加えて効率良くすることが可能になるものと考え られる。第1の障壁層にn型不純物が含まれると、p型層からのキャリアの注入 が阻害される傾向にあり、特にn型層からのキャリアに比べてp型層からのキャ リアは、その拡散長が短い傾向にあるため、p型層から活性層へのキャリアの注 入口に当たる第1の障壁層がn型不純物を有することで、 p型層からのキャリア の注入に深刻な悪影響を及ぼすものとなる。図14に示すように、第1の障壁層 のn型不純物濃度が大きくなるに従って、素子寿命が急激に低下することがわか

る。これに加えて、第1の障壁層は、p型層に近い位置にあるため、p型層から の p 型不純物の拡散が発生する場合もあり、第1の障壁層に n 型不純物を添加し て形成した場合に、結果として、n型及びp型不純物を有する障壁層となり、こ れも p 型層からのキャリアの注入を阻害する要因と考えられる。従って、第1の 障壁層が活性層に設けられることで、多くのホールを有することができ、それが 上記特性の向上に寄与し、また、キャリアのライフタイムも長くなる傾向が観ら れ、このことに寄与しているのではないかと考えられる。この時、第2の障壁層 は、第1の障壁層に隣接していても良いが、好ましくは少なくとも1つ以上の井 戸層を介して第1の障壁層とは離間して設けられることである。このことにより 、活性層内において、井戸層を挟んで、p側に配置された第1の障壁層と、n側 に配置された第2の障壁層が設けられることとなり、より効率的なキャリアの注 入が可能となり、例えば光ディスクシステムの光源におけるレーザ素子において 損失を減らし、素子特性特に、素子寿命、出力の向上につながる。この時、好ま しくは、第2の障壁層が、活性層中の障壁層おいて、n型層に最も近い障壁層と することで、n型層からのキャリアの注入口となり、キャリアの多量の注入、効 率的な注入が可能となり、素子特性が向上する。また、活性層中の障壁層の内、 第1の障壁層、第2の障壁層を除く障壁層、については、特に限定されないもの の、高出力のレーザ素子・発光素子に用いる場合には、n型不純物ドープ、若し くはノンドープとすることが好ましく、更に好ましくはn型不純物をドープする ことであり、こうすることで、n型層からのキャリアの注入を多くし、且つ効率 よくすることができる。

[0011]

(2)前記活性層内の少なくとも1つの井戸層が、40Å以上の膜厚を有することを特徴とする。この構成により、上述した効率的なキャリアの注入が可能となった上に、それに適した厚膜の井戸層を設けることで、高出力の発光素子、レーザ素子の駆動において、安定性を増すことが可能となり、また、注入電流に対する出力において損失を低く抑えることができ、素子寿命において飛躍的な向上が可能となる。これは、高出力での発光・発振には、大量に注入されたキャリアを井戸層内においてロスすることなく効率よく発光再結合されることが求められも

のであり、上記構成がこれを実現するのに適しているものと考えられる。従来、 井戸層の膜厚は、発振・発光の初期段階における特性、例えば発振閾値電流、を 重視して、好ましい範囲として約20Å~30Åが最適とされてきたが、これで は大電流での連続的な駆動で、素子劣化が早くなり、素子寿命の向上が妨げられ てきたが、本発明では、上記構成によりこれを解決した。ここで、井戸層の膜厚 の上限としては、特に限定されないが500A以下であり、障壁層及び活性層の 膜厚に依存するが、量子井戸構造で複数の層を積層することを考慮すると、30 0 &以下とすることが好ましい。さらに、より好適な井戸層の膜厚の範囲として は、50Å以上200Å以下の範囲とすることで、多重量子井戸構造、単一量子 井戸構造のどちらでも好ましい活性層の形成が可能であり、特に多重量子井戸構 造であると、積層数(井戸層と障壁層のペア数)が多くなることからこの範囲内 におさめることが好ましい。また、この好適な範囲に井戸層があることで、大電 流・高出力での発光、発振において、高い素子信頼性・長寿命を得ることができ 、また、レーザ素子においては、80mWでの連続発振が可能となり、また5~ 80mWといった広い出力域においても優れた素子寿命を実現することができる 。この時、活性層が多重量子井戸構造である場合に、井戸層の膜厚は、少なくと も1つの井戸層に適用することが必要であり、好ましくは全ての井戸層において 、上記膜厚を適用することである。こうすることで、各井戸層において、上述し たような効果が得られ、発光再結合、光電変換効率がさらに向上する。

[0012]

(3) 前記第1の障壁層が、前記活性層の最も外側に配置されていることを特徴とする。この構成により、第1の障壁層が活性層内で最もp型窒化物半導体層に近い側に配置されることで、第1の障壁層がキャリアの注入口となり、p型層から活性層内へのキャリアの注入が効率的になり、また多量のキャリアを注入することができ、しきい値電流密度、素子寿命、出力などの素子特性が向上する。この時、p型窒化物半導体層は、活性層に接して形成されることが好ましく、また、第1の障壁層に接する層として後述する第1のp型窒化物半導体層を設けることができる。

[0013]

(4) 前記第1の障壁層が、p型不純物を有することを特徴とする。この構成により、上述したp型層からのキャリアの注入が効率的になり、またキャリアのライフタイムもあがる傾向にあり、結果として逆耐圧特性、素子寿命、出力の向上に寄与するものとなる。これは、上述したように、n型不純物が実質的に含まれないことで、p型層からのキャリア注入が良好となり、更に、第1の障壁層にp型不純物を有することで、活性層内へのキャリアの注入を更に促すことが可能となり、効率的に多量のキャリアがp型層から活性層内、また活性層の奥深く(n型層側)にまで注入され、発光再結合、光電変換効率、素子寿命の向上、これに加えて逆耐圧特性の向上が実現できる。

[0014]

(5)前記第1の障壁層の膜厚が、第2の障壁層の膜厚より大きいことを特徴とする。この構成により、素子寿命の向上が実現できる。これは、少なくとも第1の障壁層が他の障壁層(第2の障壁層)よりも小さい膜厚であると、素子寿命の低下が観られ、更に第1の障壁層が最も外側に配置されるとこの傾向は顕著なものとなる。更にまた、活性層の上に、p型窒化物半導体層を有し、第1の障壁層が活性層内で最も外側、すなわち最上部、に配置した場合において、上記素子寿命の低下は、大きなものとなる。これは、図8に示すように、第1の障壁層2cが、p型電子閉込め層(第1のp型窒化物半導体層)に最も近くに配置された障壁層となり、このp型電子閉込め層は後述するように、活性層、特に井戸層に密接に影響を及ぼす層であるため、第1の障壁層は、他の障壁層と異なり、活性層及び井戸層の特性を決定する重要な層となる。

[0015]

(6) I n を含む窒化物半導体からなる井戸層と窒化物半導体からなる障壁層を有する量子井戸構造の活性層を、p 型窒化物半導体層と、n 型窒化物半導体層とで挟む構造を有する窒化物半導体素子において、前記活性層がL個($L \ge 2$)の前記障壁層を有し、前記 n 型窒化物半導体層に最も近い位置に配置された障壁層を障壁層 B_1 、該障壁層 B_1 から前記 p 型窒化物半導体層に向かって数えて i 番目(i=1, i=10、i=10、i=10、i=10。 i=10、i=10。 i=10、i=10。 i=10。 i

が p 型不純物を有することを特徴とする。この構成により、活性層の各井戸層へのキャリアの注入が効率的なものとなると思われ、例えばLED、LDにおいて発光効率が向上し、また発振閾値電流密度、順方向電圧の低下、素子寿命の向上が可能となる。この時、好ましくは、障壁層 B_1 (i=1)、障壁層 B_L (i=L)が、活性層の最も外側に配置されることで、より効率的なキャリアの注入が可能となる。ここで、障壁層 B_L は、活性層内で最も p 型層側に位置する障壁層で、前記第 1 の障壁層に当たり、これに加えて、n 型層側からn 番目(1 < n < L)までの障壁層の全てに、n 型不純物を有することで、n 型層からのキャリアの注入が円滑になり、また活性層の奥深く(p 型層側)へのキャリアの注入も良好となり、多量のキャリア注入にも対応できるものとなり、発光出力、素子寿命が向上する。加えて、1 番目からn 番目までの障壁層 B_i に n 型不純物を有することで、素子の駆動初期において、すぐさま井戸層にキャリアが注入されることから、しきい値電流密度の低下にも寄与する。

[0016].

(7) 前記活性層内の少なくとも1つの井戸層が、40Å以上の膜厚を有することを特徴とする。この構成により、上述したように、大電流、高電流密度での素子駆動において、効率の良い各井戸層へのキャリアの注入・発光再結合が可能となり、大電流・高出力駆動でのLED、LDなどの素子において、優れた素子寿命が得られる。これは、上述したように、井戸層が厚膜であることで、多量のキャリアの注入に対応し、良好な発光再結合が実現され、また素子信頼性、すなわち素子寿命にも効果的に作用する。

[00.17]

(8) i=Lの障壁層 B_i が、前記活性層の最も外側に配置されていることを特徴とする。この構成により、上述の第1の障壁層の場合と同様に、障壁層 B_L が活性層内でp型層に最も近い層(通常p型層に接して設けられる)となることで、p型層からのキャリアの注入がより直接的なものとなり、大電流、高出力の厳しい条件での駆動に耐えうる素子信頼性を有する窒化物半導体素子が得られる。

[0018]

(9) i = Lの障壁層 B_I が、p型不純物を有することを特徴とする。この構成

により、上述したように、障壁層 B_L でもって、p型層からの多量のキャリア注入が効率的なものとなり、出力、素子寿命、及び逆耐圧特性に好適に作用する。

[0019]

(10) i = Lの障壁層 B_i の膜厚が、 $i \neq L$ の障壁層 B_i の膜厚より大きいことを特徴とする。この構成は、上述したように、p型窒化物半導体層に最も近くに配置された障壁層 B_L が厚膜であることから、後述する第1のp型窒化物半導体層との距離を大きくすることができること、p型のキャリアが多くなっても、十分に広い空間が確保されるため、素子の連続駆動において、安定して高濃度のキャリアを注入することができ、その結果、素子寿命などの素子信頼性が向上する

[0020]

(11) Inを含む窒化物半導体からなる井戸層と窒化物半導体からなる障壁層を有する量子井戸構造の活性層を、p型窒化物半導体層と、n型窒化物半導体層とで挟む構造を有する窒化物半導体素子において、前記活性層が、前記活性層内の最も外側の層として、前記p型窒化物半導体層に近い位置に配置された第1のp側障壁層と、前記n型窒化物半導体層に近い位置に配置された第2のn側障壁層と、を有すると共に、前記第1のp側障壁層がp型不純物を有し、前記第2のn側障壁層がn型不純物を有することを特徴とする。この構成により、p型窒化物半導体層側、n型窒化物半導体層側、にそれぞれ第1のp側障壁層、第2のn側障壁層が配置された活性層となり、p型層、n型層からのキャリアが活性層の中央部に向けて、効率的に注入されるようになる。これは、第1のp側障壁層が前記第1の障壁層及び障壁層BLに当たり、第2のn側障壁層が前記障壁層Bi、場合によって前記第2の障壁層に当たるものであり、それぞれ、上述したような機能、効果が実現できる。

[0021]

(12)前記活性層内の少なくとも1つの井戸層が、40A以上の膜厚を有することを特徴とする。この構成により、上述したように、高出力の素子において、優れたキャリアの注入・再結合を実現し、素子信頼性、素子寿命の向上が可能となる。

[0022]

(13)前記第1のp側障壁層が、p型不純物を有することを特徴とする。この構成により、上述したように、大電流駆動のLED、LDにおいて、優れた素子寿命、逆耐圧特性が得られ、高出力の素子が得られる。

[0023]

(14)前記第1のp側障壁層の膜厚が前記第2のn側障壁層の膜厚とほぼ同じであることを特徴とする。この構成により、活性層内の対称性が向上し、結果として、素子のばらつきを抑えて歩留まりが向上し、またしきい値電流密度が低下する傾向が観られる。

[0024]

(15)前記活性層が2以上の井戸層を有し、該井戸層と井戸層との間に第3の障壁層を有すると共に、前記第3の障壁層の膜厚が、前記第1のp側障壁層及び前記第2のn側障壁層の膜厚よりも小さいことを特徴とする。この構成により、第2のn側障壁層及び第1のp側障壁層と、第3の障壁層と、は異なる働きを持たせることが可能となり、素子特性のばらつきを抑え、しきい値電流密度、Vfを低下させることが可能となる。これは、第2のn側障壁層、第1のp側障壁層が活性層の最も外側に配置され、n型層、p型層からのキャリアの注入口となり、第3の障壁層よりも膜厚が大きいことから多くのキャリアを保持する広い空間が確保され、逆に、第3の障壁層の膜厚が小さいことから、活性層全体の膜厚を低く抑えることができ、Vfの低下に寄与するものとなる。

[.002.5]

(16) 請求項1乃至15記載の前記活性層を、A1を含む窒化物半導体を有する上部クラッド層と、A1を含む窒化物半導体を有する下部クラッド層とで挟むレーザ素子構造を有する窒化物半導体素子において、前記上部クラッド層、下部クラッド層のA1平均混晶比xが、O<x≦0.05であることを特徴とする。この構成により、得られるレーザ素子は、5~100mWの出力で連続発振可能で、光ディスクシステムの読取り、書込光源に適した素子特性のLDとなり、更に長寿命を実現することが可能となる。これは、クラッド層のA1平均混晶比を0.05以下に抑えることで、高出力時の自励発振を抑えることが可能な光導波

路が設けられ、高出力で安定した連続発振が可能となり、光ディスク光源用のL Dを得ることが可能となる。従来は、クラッド層のA1平均組成を0.05以上 3以下の範囲にある窒化物半導体を用いていたが、これでは光の閉込めが強くな り過ぎることで30mW以上の高出力での連続発振において自励発振が発生する 。本発明の構成では、クラッド層における屈折率差を小さくした光導波路とし、 更に上記範囲にある活性層を用いることで、多量のキャリアを連続的に、安定し て注入・発光再結合しうる構造となり、クラッド層の光閉込めの低下による損失 を上回って連続発振でき、且つ活性層内での発光効率を高めることができる。

[0026]

(14) 前記上部クラッド層がp型の導電性を、前記下部クラッド層がn型の導電性を有し、前記活性層が前記障壁層として、前記上部クラッド層に最も近い位置に配置された第1の障壁層と、該第1の障壁層とは異なる第2の障壁層と、を有すると共に、前記第1の障壁層がp型不純物を有し、前記第2の障壁層がn型不純物を有することを特徴とする。この構成により、上述したように、p型層からのキャリアの注入に優れ、結果として、素子特性、特に素子寿命が向上する。

[0027]

(17)前記p型窒化物半導体層中に、活性層に隣接して第1のp型窒化物半導体層を有し、該第1のp型窒化物半導体層がA1を含む窒化物半導体からなることを特徴とする。この構成により、図4~7に示すように、第1のp型窒化物半導体層28が、電子閉込め層として機能し、特に大電流駆動、高出力のLD、LEDにおいて、活性層内に多量のキャリアを閉込めることが可能となる。また、前記第1の障壁層、障壁層BL、第1のp側障壁層との関係において、図8に示すように、これらの障壁層の膜厚が、第1のp型窒化物半導体層と井戸層1bとの距離d_Bを決定するため、素子特性に大きく影響を及ぼしあう。

[0028]

(18)前記第1のp型窒化物半導体層が、前記p型窒化物半導体層に最も近い 障壁層に接して設けられ、前記活性層中の障壁層よりも高い濃度のp型不純物を ドープして成長していることを特徴とする。この構成により、p型層から最もp 型層に近い障壁層(前記第1の障壁層、障壁層B_I、第1のp側障壁層)へのキ マリアの注入を容易にし、また第1のp型窒化物半導体層は、p型不純物を高濃度でドープすることで、この障壁層へp型不純物が拡散されてドープされることで、適度なp型不純物を添加することができる。このことは、この障壁層成長時に、不純物を添加しないため、結晶性良く成長が可能であり、特にこの障壁層がInを含む窒化物半導体の場合には、不純物添加による結晶性悪化が大きいため、その効果は顕著なものとなる。また、第1のp型窒化物半導体層が、後述するように、A1を含む窒化物半導体であって、そのA1混晶比がp型クラッド層のA1の混晶比よりも高い場合には、活性層内に電子を閉じこめる電子閉込め層として効果的に機能し、大電流駆動、高出力のLD、LEDなどにおいて、発振閾値、駆動電流を低下させる効果が得られる。

[0029]

(19) 前記活性層において、井戸層の数が1以上3以下の範囲であることを特 徴とする。この構成により、LDにおいては発振閾値を、井戸層の数が4以上で ある場合に比べて、低くすることが可能となる。また、この時に、上述したよう に井戸層の膜厚を40 A以上とすることで、少ない井戸層内でも広い空間が確保 され、多量のキャリアが注入されても、効率的な発光再結合が可能となり、この、 ことが素子寿命の向上、発光出力の向上を可能とする。特に、井戸層の膜厚が4 O Å以下で、井戸層数を4以上とした場合には、大電流で駆動させて高出力のL D、LEDを得ようとすると、上記の場合に比して、薄膜の各井戸層に多量のキ ヤリアが注入されることとなり、井戸層は過酷な条件下で駆動させることとなり 、素子劣化が早く発生する。また、井戸層数を多くすると、キャリアは均等に分 布せず、不均一に分布する傾向にあるため、このような状態で大電流での駆動を させると、前記素子劣化が深刻な問題となる。この構成では、上述の最もp型層 側の障壁層がn型不純物を含まないこと又はp型不純物を有すること、他の障壁 層がn型不純物を有することで、多量のキャリアを井戸層内へ安定して注入でき 、更に井戸層を上述したような膜厚(40Å以上)とすることで、これらが密接 に関係して、連続した駆動において、優れた素子寿命、高い発光出力の実現に好 適に作用する。

[0030]

本発明の窒化物半導体素子に用いるn型不純物としては、Si、Ge、Sn、S、O、Ti、Zr等のIV族、若しくはVI族元素を用いることができ、好ましくはSi、Ge、Snを、さらに最も好ましくはSiを用いる。また、p型不純物としては、特に限定されないが、Be、Zn、Mn、Cr、Mg、Ca などが挙げられ、好ましくはMgが用いられる。

[0031]

ここでアンドープとは、窒化物半導体成長時に、ドーパントとなるp型不純物、n型不純物などを添加しない状態で成長させるものであり、例えば有機金属気相成長法において反応容器内に前記ドーパントとなる不純物を供給しない状態で成長させるものである。

[0032]

【発明の実施の形態】

[0033]

本発明の窒化物半導体素子に用いる窒化物半導体としては、GaN、A1N、もしくはInN、又はこれらの混晶である窒化ガリウム系化合物半導体(In_x $A1_yGa_{1-x-y}N$ 、 $0 \le x$ 、 $0 \le y$ 、 $x+y \le 1$)がある。その他に前記窒化ガリウム系化合物半導体の一部を、B、Pで置換した、混晶でもよい。

[0034]

(活性層)

本発明における活性層としては、量子井戸構造を有し、多重量子井戸構造、単一量子井戸構造のどちらでも良い。好ましくは、多重量子井戸構造とすることで、出力の向上、発振閾値の低下などが図ることが可能となる。活性層の量子井戸構造としては、後述する井戸層、障壁層を積層したものを用いることができる。また、積層構造としては、井戸層を障壁層で挟み込む構造を積層したものであり、すなわち、単一量子井戸構造においては、井戸層を挟むように、p型窒化物半導体層側、n型窒化物半導体層側に、それぞれ障壁層を少なくとも1層有し、多重量子井戸構造においては、複数の井戸層と障壁層が積層された活性層内で、後述する各実施形態を有するものである。

[0035]

更に、活性層の構造として好ましくは、最もn型窒化物半導体層、p型窒化物 半導体層に近い位置に配置された層(以下、最外層と記す)として障壁層を有す るものであり、更に好ましくは両側の最外層が障壁層であることである。

[0036]

عومريث - ال

また、多重量子井戸構造において、井戸層に挟まれた障壁層は、特に1層であること(井戸層/障壁層/井戸層)に限るものではなく、2層若しくはそれ以上の層の障壁層を、「井戸層/障壁層(1)/障壁層(2)/・・・/井戸層」というように、組成・不純物量等の異なる障壁層を複数設けても良い。例えば、図10に示すように、各井戸層401の間に、A1を含む窒化物半導体からなる上部障壁層403、上部障壁層よりもエネルギーバンドギャップの小さな下部障壁層402を設ける構造であっても良い。

[0037]

(井戸層)

本発明における井戸層としては、Inを含む窒化物半導体層を用いることが好ましく、この時具体的な組成としては、 $In_{\alpha}Ga_{1-\alpha}N$ ($0<\alpha\leq 1$)を好ましく用いることができる。このことにより、良好な発光・発振を可能とする井戸層となる。この時、In混晶比により、発光波長を決めることができる。

[0038]

また、井戸層の膜厚及び井戸層の数としては、後述する第5の実施形態に示す場合を除いて、膜厚及び井戸層の数を任意に決めることが可能である。具体的な膜厚としては、10Å以上300Å以下の範囲、好ましくは20Å以上200Å以下の範囲とすることで、Vf、しきい値電流密度を低減させることができる。また、結晶成長の観点からは、20Å以上であると、膜厚に大きなむらがなく比較的均一な膜質の層が得られ、200Å以下とすることで結晶欠陥の発生を低く抑えて結晶成長が可能となる。活性層内の井戸層数としては特に限定されず、1以上であり、この時、井戸層の数が4以上である場合には、活性層を構成する各層の膜厚が厚くなると、活性層全体の膜厚が厚くなって、Vfの上昇を招くこととなるため、井戸層の膜厚を100Å以下の範囲として、活性層の膜厚を低く抑えることが好ましい。

[0039]

本発明の井戸層には、n型不純物がドープされていても、いなくても良い。し かしながら、井戸層はІпを含む窒化物半導体が用いられ、n型不純物濃度が大 きくなると結晶性が悪化する傾向にあるため、n型不純物濃度を低く抑えて結晶 性の良好な井戸層とすることが好ましい。具体的には、結晶性を最大限に良好な ものとするために井戸層をアンドープで成長させることであり、この時n型不純 物濃度は 5×10^{16} /cm 3 以下と実質的にn型不純物を含まない井戸層とするこ とである。また、井戸層にn型不純物をドープする場合には、n型不純物濃度が 1×10^{18} 以下 5×10^{16} 以上の範囲でドープされていると、結晶性の悪化を低 く抑え、なおかつキャリア濃度を高くすることができ、しきい値電流密度、Vf を低下させることができる。この時、井戸層のn型不純物濃度としては、障壁層 のn型不純物濃度とほぼ同じか、若しくは小さくすることで、井戸層での発光再 結合を促し、発光出力が向上する傾向にあるため好ましい。このように、n型不 純物をドープした井戸層は、5mW出力のLD、LEDなど、低出力の素子に用 いることで、しきい値電流密度の低下、Vfの低下が得られ好ましい。また、井 戸層のn型不純物濃度を障壁層とほぼ同じ若しくはそれより低くするには、井戸 層成長時に障壁層成長時よりも多くのn型不純物をドープするか、障壁層にドー プして井戸層をアンドープで成長させる変調ドープとしても良い。この時、井戸 層、障壁層をアンドープで成長させて、活性層の一部を構成しても良い。

[0040]

特に、大電流で素子を駆動させた場合(高出力のLD、ハイパワーLEDなど)では、井戸層がアンドープで、実質的にn型不純物を含有しないことで、井戸層でのキャリアの再結合が促進され、高い確率での発光再結合が実現され、逆にn型不純物が井戸層にドープされると、井戸層でのキャリア濃度が高いため、かえって発光再結合の確率が減少し、一定出力下で駆動電流、駆動電流の上昇を招く悪循環が発生し、素子の信頼性(素子寿命)が大幅に低下する傾向にある。このため、このような高出力の素子(5~100mWの出力域のLD、ハイパワーLED)では、井戸層のn型不純物濃度を、少なくとも1×10¹⁸/cm³以下にすることであり、好ましくはアンドープ若しくは実質的にn型不純物を含有しな

い濃度とすることで、高出力で安定した駆動が可能な窒化物半導体素子が得られる。また、井戸層にn型不純物をドープしたレーザ素子では、レーザ光のピーク波長のスペクトル幅が広がる傾向にあるため、好ましくなく $1\times10^{18}/\mathrm{cm}^3$ 、好ましくは $1\times10^{17}/\mathrm{cm}^3$ 以下とすることである。

[0041]

(障壁層)

本発明において、障壁層の組成としては、特に限定されないが、井戸層よりIn混晶比の低いInを含む窒化物半導体若しくはGaN、A1を含む窒化物半導体などを用いることができる。具体的な組成としては、 $In_{\beta}Ga_{1-\beta}N$ ($0 \le \beta < 1$, $\alpha > \beta$)、GaN、 $A1_{\gamma}Ga_{1-\gamma}N$ ($0 < \gamma \le 1$)などを用いることができる。ここで、井戸層に接して下地層となる障壁層(下部障壁層)の場合には、A1を含まない窒化物半導体を用いることが好ましく、具体的には図10に示すように、 $In_{\beta}Ga_{1-\beta}N$ ($0 \le \beta < 1$, $\alpha > \beta$)、GaNを用いることが好ましい。これは、In を含む窒化物半導体からなる井戸層をA1 Ga N などのA1 を含む窒化物半導体の上に直接成長させると、結晶性が低下する傾向にあり、井戸層の機能が悪化する傾向にあるためである。

[0042]

また、後述する最もp型層側の障壁層を除いて、障壁層は、n型不純物がドープされていても、ノンドープであっても良いが、好ましくはn型不純物がドープされていることである。この時、障壁層中のn型不純物濃度としては、少なくとも $5 \times 10^{16}/\mathrm{cm}^3$ 以上ドープされていることで、上限としては $1 \times 10^{20}/\mathrm{cm}^3$ である。具体的には、例えばLEDである場合には、 $5 \times 10^{16}/\mathrm{cm}^3$ 以上 $2 \times 10^{18}/\mathrm{cm}^3$ 以下の範囲でn型不純物を有することであり、また、より高出力のLED及び高出力のLDでは、 $5 \times 10^{17}/\mathrm{cm}^3$ 以上 $1 \times 10^{20}/\mathrm{cm}^3$ 以下の範囲、好ましくは $1 \times 10^{18}/\mathrm{cm}^3$ 以上 $5 \times 10^{19}/\mathrm{cm}^3$ 以下の範囲でドープされていることが好ましく、このように高濃度でドープする場合には、井戸層をn型不純物を実質的に含まないか、アンドープで成長させることが好ましい。この時、通常のLEDと、高出力のLED(ハイパワーLED)と高出力のLD($5 \sim 10$ 0 mW出力のLDなど)とで、n型不純物量が異なるのは、高出力の素子では、

より大電流で駆動させ高い出力を得るために、高いキャリア濃度を必要とするためである。上記好ましい範囲でドープされることで、上述したように、良好な結晶性で、高濃度のキャリアを注入することが可能となる。逆に、高出力でない低出力のLD、LED等の窒化物半導体素子の場合には、活性層中の一部の障壁層にn型不純物をドープしたもの、若しくは全ての障壁層を実質的にn型不純物を含まないものとしても良い。

[0043]

障壁層の膜厚としては、特に限定されず500Å以下、より具体的には井戸層と同様に10Å以上300Å以下の範囲が適用できる。

[0044]

また、後述する各実施形態には、p型不純物をドープする障壁層が用いられる。 が、この時、p型不純物量としては、 $5 \times 10^{16} / cm^3$ 以上 $1 \times 10^{20} / cm^3$ 以下 の範囲、好ましくは、 5×10^{16} /cm³以上 1×10^{18} /cm³以下の範囲である。 これは、 1×10^{20} $/ \text{cm}^3$ 以上と p 型不純物を多くしても、キャリア濃度は殆ど 変化しないため、不純物を含有することによる結晶性の悪化、不純物による光の 散乱作用による損失が大きくなり、かえって活性層における発光効率を低下させ る。更に、 $1 \times 10^{18} / \mathrm{cm}^3$ 以下であると、上記不純物の増加による発光効率の 低下を低く抑え、なおかつ活性層内へのp型層からのキャリア濃度を安定して高 く保つことが可能となる。加えて、p型不純物の下限としては、僅かながらでも p型不純物を有することが好ましく、これは不純物が低濃度である場合には、高 濃度である場合に比較して高い確率で、 p型不純物がキャリアとして機能するも のとなる傾向にあるためである。この時、後述する各実施形態におけるp型不純 物が含有される障壁層には、n型不純物を実質的に含有しないことが好ましい。 なぜなら、p型不純物が含有される障壁層に、n型不純物を含有しないことだけ でも、p型層からのキャリアの注入を促進する障壁層として機能し、それに加え て p 型不純物を有することで更にその作用を強くすることが可能となる。図 1 4 、15は、最もp側の障壁層のn型不純物量と素子寿命若しくは逆耐圧特性との 関係を示しているが、図から明らかなように、n型不純物が多くなると、素子寿 命及び逆耐圧特性が急激に低下し、素子特性を悪化させている。従って、本発明

の窒化物半導体素子において、p型層に最も近い障壁層(後述の第1の障壁層、障壁層BL、第1のp側障壁層)は、n型不純物をアンドープで成長させること若しくはn型不純物を実質的に吹くまいことが好ましく、更に好ましくはp型不純物を有すること、最も好ましくはn型不純物を含まずに、p型不純物を有することである。これは、n型不純物を含まないことでp型層からのキャリアの注入が効率的なものとなり、これとは別にp型不純物を有することで、キャリアの注入を促し、両者を併せること、すなわち、n型不純物を含まずに、p型不純物を有することで、p型層からのキャリアが多量であっても効率的な注入が可能となる。

[0045]

(n型不純物ドープ)

本発明において、活性層には、少なくとも 5 × 1 0 ¹⁶以上 n 型不純物を含有する井戸層、障壁層を有し、好ましくは、活性層中の少なくとも 1 層以上の井戸層及び/又は障壁層が、アンドープ若しくは実質的に n 型不純物を含まないことである。これにより、活性層全体としては、平均として n 型不純物が含有され、活性層の一部を構成する井戸層及び又は障壁層に n 型不純物がドープされることで活性層として効率的なキャリア濃度分布を実現する。

[0046]

本発明において、アンドープとは意図的にドープしないことであり、窒化物半導体成長時に、n型若しくはp型不純物をドープしないで成長させるものである。この時、不純物濃度は、 $5\times10^{16}/\mathrm{cm}^3$ 未満となる。また、本発明におけるn型不純物、若しくはp型不純物を実質的に含まないとは、 $5\times10^{16}/\mathrm{cm}^3$ 未満の濃度領域である。

[0047]

以上は、下記に説明する各実施形態において、説明されていない活性層及び、 障壁層、井戸層についての実施形態を説明したものであり、各実施形態において その説明を補うものである。

[0048]

<第1の実施形態>

本発明の窒化物半導体素子において、第1の実施形態としては、図2、3に示 すように、p型窒化物半導体層13とn型窒化物半導体層11とで挟まれた活性 層12内に、p型窒化物半導体層に最も近くに位置する第1の障壁層、それとは 異なり、n型不純物を有する第2の障壁層とを有する構造である。この時、第1 の障壁層は、n型不純物がアンドープであること、若しくはアンドープで成長さ せて実質的にn型不純物を含まないことである。この時、第1の障壁層は、活性 層内の層で最もp型窒化物半導体層に近い層(以下、最もp側の層という)が、 図2に示すように井戸層1bである場合と、図3に示すようにその層が第1の障 壁層2dである場合の両方の場合があるが、どちらでも良い。好ましくは、図3 に示すように、活性層内で最もp側の層が、第1の障壁層とすることで、p型窒 化物半導体層に接して第1の障壁層を活性層内に設けることができ、図3に示す ように、p型窒化物半導体層13と活性層12内の第1の障壁層2dと、連続し たp型層を活性層内まで形成することができる。このことにより、p型層から活 性層へのキャリアの注入を効率的なものとすることができ、素子駆動における損 失を減らし、素子特性の向上、特に、逆方向耐圧、素子寿命の向上が可能となる 。図3に示す場合は、これとは異なり、p型窒化物半導体層13と第1の障壁層 2 c との間に井戸層 1 b が介在しているため、連続した p 型層の形成とはならな い場合もあるが、第1の障壁層2cは活性層内の最もp側の障壁層であることか ら、前述の場合(図3の場合)ほどではないものの、同様に作用して、効率的な キャリアの注入が可能となり、前述の場合(図3の場合)に比べてその効果は劣 る傾向にあるものの、同種の効果を得ることができる。この時、井戸層は、上述 したようにアンドープであることが好ましく、n型不純物を有する場合には、障 壁層よりも低濃度であることが好ましい。

[0049]

これとは異なり、p型不純物を有する障壁層(以下、p型障壁層という)が、活性層内で、最もp側に位置しない障壁層である場合は、例えば図3において障壁層2cをp型障壁層とすると、かえって素子特性を悪化させる結果となる。これは、p型のキャリア(ホール)の拡散長がn型に比べて大幅に短いため、上述した活性層内へのキャリア注入効率の向上はほとんどなく、n型のキャリアの注

入を阻害して損失を大きくすることとなる。これは、最もp側の障壁層がp型不純物を含有せず、最もp側に位置しない障壁層がp型不純物を含有する場合に最も顕著なものとなる。

[0050]

また、第2の障壁層は、第1の障壁層に隣接してn型窒化物半導体層側(以下 、n側という)に設けられていても良いが、図2、3に示すように、少なくとも 1層以上の井戸層を介して設けられていることが好ましい。こうすることで、1 層以上の井戸層を挟んで、最もp側に設けられ、p型不純物を有する第1の障壁 層と、n側に設けられ、n型不純物を有する第2の障壁層と、を配置した構造の 活性層とすることで、井戸層を介さず隣接して配置された場合に比べて、この挟 まれた1層以上の井戸層内へのキャリア注入をより効率的なものとすることがで きる。従って、最もn側の障壁層、図2,3では障壁層2a、が、少なくとも第 2の障壁層であること、すなわち、第1の障壁層、第2の障壁層が活性層の最も 外側の障壁層で、それぞれp側、n側に配置されていることが好ましい。更に、 第2の障壁層は、1層だけであっても良く、第1の障壁層を除く全ての障壁層で あっても良い。従って、第1の実施形態において、好ましくは最もp側の障壁層 が第1の障壁層、最もn側の障壁層が第2の障壁層であること、更に好ましくは 、以上の構成に加えて、最もp側の障壁層を除く全ての障壁層が第2の障壁層で あることである。これにより、高出力下での素子駆動において、多量のキャリア を効率的に注入することが可能となり、髙出力下での素子信頼性の向上が可能と なる。この時、最もp側の障壁層が第1の障壁層、最もn側の障壁層が第2の障 壁層であることに加えて、2番目若しくは2番目及びそれ以降にp側に配置され た障壁層もp型障壁層とする構成も可能であるが、例えば図3において第1の障 壁層2d、p型障壁層2c、第2の障壁層2aとする構成、この構成では上述し た各キャリアの拡散長の違いにより、効率的なキャリアの注入・再結合などが阻 害され、損失が増す傾向にある。

[0051]

本発明の第1の実施形態において、第1の障壁層について更に詳述すると、 p型不純物を含有すること同様に、第1の障壁層が実質的に n型不純物を含有しな

いことも上記作用を生み出す上で重要な要因となる。これは、n型不純物を含有しないことで、上述のp型不純物を有する場合と同様の効果が期待できる。これは、第1の障壁層がn型不純物を含まないことから、活性層内におけるp型層界面付近若しくは第1の障壁層付近で、p型層から活性層へ、若しくは最もp側の井戸層へのキャリアの注入を多く、且つ効率的にすることが可能となり、上述と同様に素子特性が向上する。逆に、第1の障壁層に実質的にn型不純物を含まないようにすることが、素子特性の向上につながるものであり、更に好ましくはn型不純物を実質的に含まず且つp型不純物を含むようにすることで、上述した効果が顕著なものとなる。また、第2の障壁層には、p型不純物をアンドープで成長させること、若しくはp型不純物を実質的に含まないようにすることが好ましい。

[0052]

本発明の第1の実施形態において、第1の障壁層の膜厚を第2の障壁層の膜厚よりも大きくすることで、素子寿命の向上が可能となる。これは、後述する第1のp型窒化物半導体層との関係に加えて、高出力での駆動において、p型のキャリアが多く存在する第1の障壁層として広い空間が設けられることで、高出力でも安定したキャリアの注入・再結合が可能となる。逆に、第2の障壁層が第1の障壁層よりも膜厚が小さいことで、n型層側から活性層内の各井戸層までの距離を相対的に近づけることとなり、各井戸層へのn型層側からのキャリアの注入が促進される。この時、第2の障壁層が1層以上、好ましくは第1の障壁層を除く全ての障壁層を第2の障壁層とすることで、n型層から全ての井戸層の距離が相対的に小さくでき、n型層からのキャリアの注入が効率的なものとなる。

[0053]

<第2の実施形態>

本発明の第2の実施形態としては、前記活性層がL個(L \geq 2)の前記障壁層を有し、前記 n 型窒化物半導体層に最も近い位置に配置された障壁層を障壁層 B $_1$ 、 該障壁層 B $_1$ から前記 p 型窒化物半導体層に向かって数えて i 番目(i=1, 2, 3, ···L)の障壁層を障壁層 B $_i$ 、とした時に、i=1から i=n(1 <n<L)までの障壁層 B $_i$ が n 型不純物を有し、i=Lの障壁層 B $_i$ が p 型不純

物を有することを特徴とする。ここで、障壁層 B_L が第1の実施形態における第1の障壁層に当たり、最もP側の障壁層であり、この障壁層 B_L による作用は、第1の実施形態と同様である。従って、第2の実施形態における障壁層 B_L は、少なくともP型不純物を有することであり、更に好ましくはP1 型不純物を実質的に含有しないことで、障壁層P2 には優先的にP2 型のキャリアが注入され、効率的なキャリア注入を可能とする。また、P2 の声をでの障壁層P3 には、P3 には、P4 には、P5 での障壁層のよどで、P7 には、P7 での障壁層のよどで、P8 での管壁層のよびが下っていることとなりキャリア濃度が高まるため、P8 での音がら活性層内部へキャリアが円滑に注入されることとなり、結果としてキャリアの注入・再結合が促進され、素子特性が向上する。この時、井戸層はアンドープ、P8 での生を駆動させた場合では、上述したように井戸層がアンドープで、実質的にP8 を駆動させた場合では、上述したように井戸層がアンドープで、実質的にP8 を駆動させた場合では、上述したように井戸層がアンドープで、実質的にP9 不純物を含有しないことで、井戸層でのキャリアの再結合が促進され、素子特性、素子信頼性に富む窒化物半導体素子となる。

[0054]

ここで、第2の実施形態における n は、少なくとも条件式 0 < n < L を満たすことが必要であり、好ましくは n_m < n < L 、 n_m = L / 2 (但し、 n_m は小数点以下を切り捨てた整数)の条件を満たすことである。これは、活性層内の障壁層の総数のほぼ半分以上に n 型不純物が含有されることで、 n 型層からのキャリアが活性層の奥深く(p 型層側)まで効率的な注入が可能となるからであり、特に活性層中の井戸層の数が 3 以上、若しくは活性層内部の積層数が 7 以上、である多重量子井戸構造の場合に有利に働く。具体的には、図 2 、3 において、障壁層 2 a 、2 b を障壁層 B_i として n 型不純物をドープし、障壁層 2 c (図 2)若しくは障壁層 2 d (図 3)を障壁層 B_L として p 型不純物をドープし、障壁層 B_i と B_L に挟まれる他の障壁層をアンドープとして、活性層を構成する。

[0055]

また、第2の実施形態において、障壁層 B_L の膜厚が障壁層 B_i ($i \neq L$)の膜厚よりも大きいことで、上述したように、多量のキャリアを安定して井戸層に注入する必要がある高出力の素子において、p型層に最も近く(p型層からのキャ

リア注入口付近)、p型のキャリアが多く存在する障壁層BLが広い空間を有することで、安定して多量のキャリアをp型層から井戸層へ注入することができ、素子信頼性、素子寿命が向上する。

[0056]

<第3の実施形態>

本発明の第3の実施形態としては、前記活性層内の最も外側の層として、p型 窒化物半導体層に近い位置に配置された第1のp側障壁層と、前記n型窒化物半 導体層に近い位置に配置された第2のn側障壁層と、を有すると共に、第1のp 側障壁層がp型不純物を有し、第2のn側障壁層がn型不純物を有することを特 徴とする。この構成は、具体的には、図3に示すように、活性層が最も外側の第 1のp側障壁層2a、第2のn側障壁層2dに挟まれて、井戸層1、障壁層2b 、2 c が設けられた構造となる。活性層内で最も p 側の層として、第1の p 側障 壁層が設けられることで、上述したように、p型層からの効率的なキャリアの注 入を可能とし、また活性層内で最もn側の層として、第2のn側障壁層が設けら れることで、n型層からのキャリアの注入を良好なものとする。その結果として 、活性層内へp型層、n型層からの効率的なキャリアの注入・再結合を可能とし 、髙出力の素子でも、髙い素子信頼性、及び素子寿命の向上が可能となる。この 時、好ましくは、図3に示すように、第1のp側障壁層2d、第2のn側障壁層 2 a に接して、 p 型層、 n 型層が設けられることであり、これにより、直接的に 活性層にp型層、n型層が接続され、より良好なキャリアの注入が実現される。 この時、第1の p 側障壁層、第2の n 側障壁層に挟まれた障壁層、例えば図3に おける障壁層2b、2c、としては、特に限定されるものではないが、上述した ように好ましくはn型不純物がドープされることであり、これにより、n型層か らのキャリアの注入が効率よくなされ、素子信頼性が向上する。

[0057]

また、前記第1のp側障壁層の膜厚が前記第2のn側障壁層の膜厚とほぼ同じであることにより、図5、7に示すように、活性層の最も外側の層がほぼ対称な障壁層が設けられることとなり、素子のばらつきを防ぎ、歩留まりが向上する。これは、詳しいことは明らかではないが、p型層、n型層のキャリアの注入口と

なる第1のp側障壁層、第2のn側障壁層が対称となることで、活性層の層構成において対称性が増し、このことにより、しきい値電流の低下、安定した素子寿命を得ることが可能となると考えられる。

[0058]

更に、第3の実施形態において、活性層が2以上の井戸層を有し、該井戸層と 井戸層との間に第3の障壁層を有すると共に、前記第3の障壁層の膜厚が、前記 第1のp側障壁層及び前記第2のn側障壁層の膜厚よりも小さいことで、更に素 子特性の向上が可能となる。これは、活性層の最も外側に配された第2のn側障 壁層、第1の p 側障壁層は、それぞれ n 型層、 p 型層からのキャリアの注入口と なり、他の障壁層よりも大きな膜厚であることから、多量のキャリアを保持しう る広い空間が確保され、大電流でも安定した素子の駆動を可能とする。一方、第 3の障壁層は、井戸層に挟まれているため、キャリアが各井戸層に注入されるよ うに設けられ、井戸層の間を連絡できれば足りるため、外側の障壁層のように厚 膜で設ける必要がない。加えて、活性層内で、外側に厚膜の障壁層、活性層中央 部で薄膜の障壁層という構成となり、外側の障壁層でもってp型層、n型層から のキャリアの注入し、n型層、p型層からみて反対側に位置し、第3の障壁層よ りも厚膜の第1のp側障壁層、第2のn側障壁層でもって強固な障壁として機能 し、各井戸層へのキャリアの注入・発光再結合が促進される。また、第3の障壁 層が、外側の障壁層よりも薄く設けられることで、活性層全体の膜厚を低く抑え ることが可能となり、Vf、しきい値電流密度の低下に寄与するものとなる。

【0059】

以上、説明してきたように、第1~3の実施形態において、共通する構成として、以下のようになる。

[0060]

第 $1\sim3$ の実施形態において、活性層内部で最もp型層側に配置された障壁層(第1の障壁層、障壁層 B_L 、第1のp側障壁層)が、実質的にn型不純物を含有しないことで、活性層内へのキャリアの注入が促進され、優れた素子寿命、高出力の窒化物半導体素子が得られ、さらにp型不純物を含有することで、多量のキャリアであっても効率よく注入・発光再結合され、高出力で、長寿命の窒化物

半導体素子が得られる。この時、最もp型層側の障壁層がp型不純物を有するときには、n型不純物をノンドープとするか、n型不純物をアンドープで成長させて実質的にn型不純物を含まない状態とすることが好ましい。これは、最もp型層側の障壁層がp型不純物を有している場合に、n型不純物を有すると、p型層からのキャリアの注入が阻害される傾向にあり、多量のキャリアを効率的に注入する効果が弱まり、結果として素子寿命、出力特性を低下させることになるからである。

[0061]

<第4の実施形態:レーザ素子>

本発明の窒化物半導体素子において、レーザ素子の実施形態としては、活性層を、p型窒化物半導体層、n型窒化物半導体層内のn型クラッド層とp型クラッド層とで挟み込む構造を少なくとも有するものとなる。また、実施例で示すように、クラッド層と活性層との間に、活性層を挟む光ガイド層を設けても良い。

[0062]

ここで、 $n型クラッド層、<math>p型クラッド層としては、A1を含む窒化物半導体が用いられ、具体的には<math>A1_bGa_{1-b}N$ (0<b<1)を用いる。

[0063]

本発明において、光ガイド層の組成としては、特に限定されるものではなく、 窒化物半導体からなり、導波路形成に十分なエネルギーバンドギャップを有して いれば良く、単一の膜、多層膜のどちらでも良い。例えば、波長370~470 nmではGaNを用い、それよりも長波長ではInGaN/GaNの多層膜構造を 用いることで、InGaN、GaN、A1GaNなどを用いることである。

[0064]

(電子閉込め層:第1のp型窒化物半導体層)

本発明において、p型窒化物半導体層として、特にレーザ素子において、第1の p型窒化物半導体層を設けることが好ましい。この第1の p型窒化物半導体層としては、A1を含む窒化物半導体を用いるものであり、具体的にはA1 $_a$ G $_a$ 1 $_a$ N (0<a<1)を用いる。この時、A1混晶比 $_{\gamma}$ としては、レーザ素子に用いる場合には電子閉込め層として機能するように、活性層より十分に大きなバン

ドギャップエネルギーを有する(オフセットをとる)必要があり、少なくとも0.1 ≦ r < 1 の範囲とすることであり、好ましくは0.2 ≦ a < 0.5 の範囲とすることである。なぜなら、rが0.1以下であるとレーザ素子において、十分な電子閉込め層として機能せず、0.2以上であると十分に電子閉込め(キャリアの閉込め)がなされ、キャリアのオーバーフローを抑えて、加えて0.5以下であるとクラックの発生を低く抑えて成長させることができ、更に好ましくはrを0.35以下とすることで良好な結晶性で成長できる。この時、A1混晶比は、p型クラッド層よりも大きくすることであり、これはキャリアの閉込めには光の閉込めとなるクラッド層より高い混晶比の窒化物半導体が必要となるからである。この第1のp型窒化物半導体層は、本発明の窒化物半導体素子に用いることができ、特にレーザ素子のように、大電流で駆動させ、多量のキャリアを活性層内に注入する場合において、第1のp型窒化物半導体層を有していない場合に比べて、効果的なキャリアの閉込めを可能とし、レーザ素子だけでなく、高出力のLEDにも用いることができる。

[0065]

本発明の第1のp型窒化物半導体層の膜厚としては、少なくとも1000A以下とすることであり、好ましくは400A以下とすることである。これは、A1を含む窒化物半導体は、他の窒化物半導体(A1を含まない)に比べて、バルク抵抗が大きいため、1000Aを超えて素子内に設けると、極めて高抵抗な層となり、順方向電圧Vfの大幅な増加を招くこととなるためであり、400A以下であるとVfの上昇を低く抑えることが可能で、更に好ましくは200A以下とすることで更に低く抑えることが可能となる。ここで、第1のp型窒化物半導体層の膜厚の下限としては、少なくとも10A以上、好ましくは50A以上とすることで、電子閉込めとして良好に機能する。

[0066]

また、レーザ素子において、この第1のp型窒化物半導体は、電子閉込め層として機能させるため、活性層とクラッド層との間に設けるものであり、更にガイド層を有する場合には、ガイド層と活性層との間に設けることである。この時、活性層と第1のp型窒化物半導体との距離は、少なくとも1000A以下とする

ことでキャリアの閉込めとして機能し、好ましくは500A以下とすることで良好なキャリアの閉込めが可能となる。すなわち、第1のp型窒化物半導体層は活性層に近いほどキャリアの閉込めが効果的に機能し、その上レーザ素子において活性層と第1のp型窒化物半導体層との間には、殆どの場合、特に他の層を必要とすることがないため、通常は活性層に接して第1のp型窒化物半導体層を設けうることが最も好ましい。この時、量子井戸構造の活性層内で最もp型窒化物半導体層側に位置する層と、第1のp型窒化物半導体層と、を接して設けると結晶性が悪化する場合に、それを避けるため結晶成長におけるバッファ層を両者の間に設けることも可能である。例えば、活性層の最もp側の層をInGaN、A1GaNの第1のp型窒化物半導体層との間に、GaNからなるバッファ層を設けること、又は第1のp型窒化物半導体層よりも低いA1混晶比のA1を含む窒化物半導体からなるバッファ層、などがある。

[0067]

ここで、第1のp型窒化物半導体層と活性層との位置関係、特に井戸層との距離は、レーザ素子のしきい値電流密度、素子寿命を決定する重要な要素となり、具体的には、第1のp型窒化物半導体層が活性層に近いほどしきい値電流密度を低下させれるが、近くなるほど素子寿命が低下させるものとなる。これは、上述したように、第1のp型窒化物半導体層が他の層に比べて極めて高い抵抗を有する層であるため、素子駆動時において発熱量の大きなものとなり、すなわち素子内において高温を呈しているものと考えられ、これが熱に弱い活性層、井戸層に悪影響を及ぼし素子寿命を大きく低下させているものと考えられる。一方で、上述したように、キャリアの閉込めを担う第1のp型窒化物半導体層は、活性層、特に井戸層に近づくほどキャリアの閉込めが効果的になるため、活性層から離れるとその効果が弱まる。

[0068]

従って、素子寿命の低下を抑えるために、図8(a)に示すように、井戸層1bから第1のp型窒化物半導体層28の距離d_Bを少なくとも100Å以上とすることであり、好ましくは120Å以上とすることであり、更に好ましくは140Å以上とすることである。なぜなら、井戸層と第1のp型窒化物半導体層との

距離 d Bが100 Åより短いと、素子寿命が急激に低下する傾向が観られるためであり、120 Å以上であると素子寿命の大幅な向上が可能であり、150 Å以上であると更に素子寿命が向上する傾向にあるが、しきい値電流密度は徐々に高くなる傾向が観られ始める。更に、その距離が200 Åより大きくなると、しきい値電流密度の明らかな上昇傾向が観られ、400 Åより大きいとしきい値電流密度の急激な上昇が起こる傾向にあるため、上記距離の上限としては、400 Å以下、好ましくは200 Å以下とすることである。これは、第1の p 型窒化物半導体層が井戸層から離れることで、キャリア閉込めの効率が低下し、これが主な原因となってしきい値電流密度が上昇するもの、また発光効率の低下を招くものと考えられる。

[0069]

ここで、距離の基準となる井戸層は、図8において、活性層内で最もp型層1 3側の障壁層2 cに隣接して、n型層側に配置された井戸層1 bである。量子井 戸構造の活性層において、活性層に接して第1のp型窒化物半導体層が設けられ る場合に、図8(a)に示すように最もp型層側の障壁層2cに接して第1のp 型窒化物半導体層28が設けられるときと、図8(b)に示すように最もp型層 13側の障壁層2cと第1のp型窒化物半導体層28との間に井戸層4を有する ときがある。最もp型層13側の障壁層2cと第1のp型窒化物半導体層28と の間に井戸層4を有する場合には、この井戸層4がかえって p型層13に近づき すぎ、p型層から注入されたキャリアの殆どが井戸層4を通り抜け、この井戸層 4 での発光再結合が起こらず、井戸層として機能しないものとなる。この時、最 もp型層側の障壁層2cがp型不純物を有する場合、この障壁層2cよりもn型 層側に位置する井戸層1a、1bへのキャリアの注入が良好となる一方で、上述 したようなこの障壁層2cよりもp型層側に位置する井戸層4をキャリアが通過 して、発光再結合に寄与しない傾向が益々強まり、井戸層としての機能を急激に 失うものとなる。このため、図8(b)に示す井戸層4と第1のp型窒化物半導 体層との間には、上述したような距離による特性の変化がなく、前記井戸層との 距離dgは、最もp型層側の障壁層よりもp型層側に位置する前記井戸層1cに 関係なく、最もp型層側の障壁層よりもn型層側に位置する井戸層との距離とな

り、逆にこのような活性層内で最もp型層側の層となる井戸層を有していても、上述したような距離 d Bによる特性の変化がみられる。また、このような最もp型層側の障壁層よりもp型層側に配置された井戸層は、井戸層として十分に機能しないばかりでなく、この井戸層を有していない場合に比べて、素子寿命などの素子特性が悪化する傾向にあるため、好ましくはこのような井戸層を有さずに、活性層内で最もp型層側に配置される層を、障壁層とすること、すなわち、図8(b)よりも図8(c)の構成とすることである。

[0070]

また、最もp型層側の障壁層2cと第1のp型窒化物半導体層28とが接して設けられる場合には、上記井戸層と第1のp型窒化物半導体層との間に障壁層2c(最もp型層側の障壁層)を設けてこの障壁層の膜厚でもって上記距離d_Bを決定することができる。従って、最もp型層側の障壁層(上述の第1の障壁層、障壁層B_L、第1のp側障壁層)の膜厚は、窒化物半導体の素子特性を決定する重要な要素となる。加えて、レーザ素子においてしきい値電流密度の上昇は、上述したキャリアの閉込めが主な原因であるから、上述した活性層と第1のp型窒化物半導体層との関係がここでも適用される。

[0071]

本発明の第1のp型窒化物半導体には、通常p型不純物がドープされ、レーザ素子、ハイパワーLEDなどの大電流で駆動させる場合には、キャリアの移動度を高めるため、高濃度でドープする。具体的なドープ量としては、少なくとも $5 \times 10^{16} / \mathrm{cm}^3$ 以上ドープすることで、好ましくは $1 \times 10^{18} / \mathrm{cm}^3$ 以上ドープすることであり、前記大電流駆動の素子にあっては、 $1 \times 10^{18} / \mathrm{cm}^3$ 以上、好ましくは $1 \times 10^{19} / \mathrm{cm}^3$ 以上ドープすることである。p型不純物量の上限は特に限定されないが、 $1 \times 10^{21} / \mathrm{cm}^3$ 以下とすることである。但し、p型不純物量が多くなると、バルク抵抗が大きくなる傾向にあり、結果としてV f が上昇することになるため、これを回避する場合に好ましくは、必要なキャリア移動度を確保しうる最低限のp型不純物濃度とすることである。

[0072]

以上に加えて、本発明のレーザ素子において、第1のp型窒化物半導体層に接

して p型光ガイド層を設ける場合に、 p型不純物を第1の p型窒化物半導体層からの拡散によりドープすると良好な光ガイド層となる。これは、ガイド層内のp型不純物は、光の導波において光散乱物質となるため、導電性を確保しうる範囲内で、できるだけ低濃度で不純物を有することが、結果として素子特性の向上につながり好ましいことによる。しかしながら、p型光ガイド層の成長時にp型不純物をドープする方法では、前記光の損失を低く抑えられる低濃度領域で、不純物ドープを制御することが困難な傾向にあることが問題となる。なぜなら、窒化物半導体素子は、一般にn型層/活性層/p型層の順に積層された構造を有するが、この構造で成長させると活性層中のInGaNなどのため、その後に続く層の成長においてInの分解などを防ぐ必要があり、p型層の成長温度を700~900℃程度の低温で成長させる方法が一般的に用いられるが、低温であるが故に、不純物ドープ量の制御性に乏しくなる。また、p型不純物として、一般的にMgが用いられるが、比較的ドープ量の制御が困難であることもあり、成長時に前記低濃度領域で不純物をドープすると素子特性のばらつきを生み出す原因となる。

[0.073]

従って、第1のp型窒化物半導体層は、光ガイド層へのp型不純物拡散を考慮に入れて、第1のp型窒化物半導体層の成長時に高濃度で不純物をドープすることで、不純物供給層としての役割を負うことが、好ましい。さらには、上述した各実施形態において、第1のp型窒化物半導体層に接する障壁層(前記第1の障壁層、障壁層 B_L 、第1のP0個障壁層)に、P2型不純物をドープする場合にも同様に、不純物を供給する層として機能させることが可能となる。

[0074]

本発明のレーザ素子では、実施例に示すように、リッジを設けた後、リッジ側面に埋込層となる絶縁膜を形成する。この時、埋込層としては、ここで、第2の保護膜の材料としてはSiO2以外の材料、好ましくはTi、V、Zr、Nb、Hf、Taよりなる群から選択された少なくとも一種の元素を含む酸化物、SiN、BN、SiC、AlNの内の少なくとも一種で形成することが望ましく、その中でもZr、Hfの酸化物、BN、SiCを用いることが特に好ましい。更に

、埋込層として、半絶縁性、i型の窒化物半導体、リッジ部とは逆の導電型、実施例においてはn型、の窒化物半導体、電流狭窄層とするにはA1GaNなどのA1を含む窒化物半導体、等を用いることができる。また、エッチングなどによりリッジを設けずに、B、A1などのイオンを注入して、非注入領域をストライプ状として、電流が流れる領域とする構造をとることもできる。この時用いられる窒化物半導体としては、 $I_{x}A1_{1-y}Ga_{1-x-y}N$ ($0 \le x \le 1$ 、 $0 \le y \le 1$ 、x+y=1) で表される窒化物半導体を好ましく用いることができる。

[0075]

また、リッジ幅としては、 $1 \mu m$ 以上 $3 \mu m$ 以下、好ましくは $1.5 \mu m$ 以上 $2 \mu m$ 以下とすることで、光ディスクシステムの光源として、優れたスポット形状、ビーム形状のレーザ光が得られる。

[0076]

<第4の実施形態>

以上に説明した窒化物半導体素子において、第4の実施形態では、量子井戸構 造の活性層を、A1を含む窒化物半導体を有する上部クラッド層と、A1を含む 窒化物半導体を有する下部クラッド層とで挟むレーザ素子構造を有する窒化物半 導体素子で、前記上部クラッド層、下部クラッド層のA1平均混晶比xが、0< x≦0.05であることを特徴とする。これは、クラッド層のA1混晶比を0. 05以下として、上部クラッド層、下部クラッド層で挟まれる光導波路の閉込め を緩めて、活性層の障壁層、井戸層の膜厚比を上記範囲として、自励発振を抑え ながら、出力特性、素子寿命を向上させることが可能となる。これは、A1混晶 比を下げることで、クラッド層における屈折率差を低下させ、これにより光導波 路内の光分布を広げることができ、高出力でも自励発振を防止できるレーザ素子 となり、5~100mWの出力で連続発振可能で、光ディスクシステムの読取り 、書込光源に適した素子特性のレーザ素子が得られる。この時、好ましくは、図 3, 4, 6, 7に示すように、前記上部、下部クラッド層と活性層との間に光ガ イド層を有することで、クラッド層における屈折率差を小さくして光分布を広げ ても、ガイド層内に光が多く分布し、光の漏れによる損失を低く抑えることがで きる。

[0077]

また、活性層において、井戸層が40A以上の厚膜で、膜厚の比R_tが1/3以上1以下の範囲にある場合には、上述の第1~4の実施形態、第5の実施形態においても、素子特性の向上が可能となる。これについても、どのように作用して素子特性が向上するかは不明であるが、従来、井戸層よりも十分に厚い障壁層を設けることで、井戸層での発光再結合の確率を高める構造が用いられてきた。しかし、前記活性層では、井戸層を40A以上と厚くして、更に、井戸層に比較して障壁層を薄くする構成とすることで、井戸層が厚いことにより発光再結合の領域が増し、井戸層間に設けられる障壁層が薄くなることで、各井戸層にまんべんなく、キャリアが注入され、発光再結合する確率が高まる。更に高出力の素子では、大電流で駆動されるため、多量のキャリアが井戸層に注入されるが、井戸層が厚いことで、発光再結合する領域を広くでき、障壁層が薄いことで障壁層を飛び越えて各井戸層に、均一に注入される傾向にある。

[0078]

この時、井戸層の膜厚が40A以上で、井戸層と障壁層の膜厚の比R_t(R_t=[井戸層の膜厚]/[障壁層の膜厚])が1/3以上1以下の範囲であると、光ディスクシステムの光源として優れた特性のレーザ素子が得られる。これは、井戸層の膜厚を40A以上とすることで、図12に示すように、素子寿命に優れた素子となり、前記範囲にあることで、RIN(相対雑音強度)を低く抑えられる傾向にあるからである。更に好ましくは、井戸層の膜厚を50A以上とすることで、さらなる素子寿命の向上が可能となる。また、R_tが1以上の場合には、RINは大きくなるものの、素子寿命が長く、出力の大きなレーザ素子が得られるため、光ディスクシステム以外の応用が可能である。以上において、障壁層の膜厚は、40A以上とすることで、図13に示すように、素子寿命に優れたレーザ素子が得られるため、好ましい。

[0.079]

<第5の実施形態:井戸層の数>

以上、説明した第1~4の実施形態において、活性層中の井戸層の数を1以上 3以下とすること、大電流における素子駆動でも、良好な素子特性の窒化物半導 体素子が得られる。これは、従来、活性層中の井戸層の数として、4~6程度のものを用いていたが、井戸層の数が多くすると、キャリアの再結合の確率を高めることができる反面、障壁層の数を含めると必然的に活性層全体の膜厚が大きくなり、Vfが大きくなる傾向にある。さらに、井戸層の数を多くしても、それほどキャリアの再結合の確率が高くならないことが実験した結果、明らかになり、特にLDのように大電流、高電流密度で駆動させる素子の場合には、特にその傾向が顕著になる。例えば、LDの場合では、多重量子井戸構造で、井戸層数を変化させると、井戸層の数が減ることで、しきい値電流が下がる傾向にあり、井戸層の数を6から4となる間に急激に減少し、更に4から3の間でなだらかに減少し、そして井戸層の数が2若しくは3のところで極小値をとり、1の場合、すなわち、単一量子井戸構造では2、3の場合より少し高くなるか、2と3の間の値をとるものとなる傾向がある。また、高出力のLEDについても、同様な傾向が観られる。

[0080]

ここで、各図について以下に説明する。図2、3は、本発明の一実施形態に係る模式断面図であり、特にレーザ素子構造において、活性層12がn型層11とp型層13とで挟み込まれる構造を示すものである。図2は、活性層12が上部クラッド層30と下部クラッド層25で挟まれ、活性層12と上部クラッド層30との間に電子閉込め層である第1のp型窒化物半導体層28を有し、活性層12の量子井戸構造は、障壁層2a/井戸層1aを一対として繰り返し積層され、最後に障壁層2cが設けられた構造を有している。図3は、図2に比して異なる点は、上部、下部クラッド層30,25と活性層12との間に上部、下部光ガイド層29,26を有するものである。図4~8、10は、活性層12若しくは活性層周辺の積層構造20と、その積層構造20の下に、それに対応したエネルギーバンドギャップ21を示すものである。図4、6は活性層の量子井戸構造が膜厚において非対称な構造を有するものであり、それとは逆に図5、7は対称な構造を有するものであり、それとは逆に図5、7は対称な構造を有するものであり、それとは逆に図5、7は対称な構造を有するものであり、図4,5は活性層内の井戸層の数が3であり、図6,7は2であり、図5は光ガイド層を含まず、図4,7,8は光ガイド層を有する構造である。図8は、活性層12とp型層13が積層された構造で、p型層13内

の第1のp型窒化物半導体層28と活性層、最もp型層側に配置された障壁層2 c、及びその障壁層2cよりもn型層に近い側に配置された井戸層1bとの関係 を示すものである。

[0081]

[実施例1]

以下、実施例として、図8に示すようなレーザ素子構造の窒化物半導体を用いたレーザ素子について、説明する。

[0082]

ここで、本実施例では、GaN基板を用いているが、基板として窒化物半導体と異なる異種基板を用いても良い。異種基板としては、例えば、C面、R面、及びA面のいずれかを主面とするサファイア、スピネル(MgAl2O4のような絶縁性基板、SiC(6H、4H、3Cを含む)、ZnS、ZnO、GaAs、Si、及び窒化物半導体と格子整合する酸化物基板等、窒化物半導体を成長させることが可能で従来から知られており、窒化物半導体と異なる基板材料を用いることができる。好ましい異種基板としては、サファイア、スピネルが挙げられる。また、異種基板は、オフアングルしていてもよく、この場合ステップ状にオフアングルしたものを用いると窒化ガリウムからなる下地層の成長が結晶性よく成長させるため好ましい。更に、異種基板を用いる場合には、異種基板上に素子構造形成前の下地層となる窒化物半導体を成長させた後、異種基板を研磨などの方法により除去して、窒化物半導体の単体基板として素子構造を形成してもよく、また、素子構造形成後に、異種基板を除去する方法でも良い。

[0083]

異種基板を用いる場合には、バッファ層(低温成長層)、窒化物半導体(好ましくはGaN)からなる下地層を介して、素子構造を形成すること、窒化物半導体の成長が良好なものとなる。また、異種基板上に設ける下地層(成長基板)として、その他に、ELOG(Epitaxially Laterally Overgrowth)成長させた窒化物半導体を用いると結晶性が良好な成長基板が得られる。ELOG成長層の具体例としては、異種基板上に、窒化物半導体層を成長させ、その表面に窒化物半導体の成長が困難な保護膜を設けるなどして形成したマスク領域と、窒化物半導体を成長さ

せる非マスク領域を、ストライプ状に設け、その非マスク領域から窒化物半導体を成長させることで、膜厚方向への成長に加えて、横方向への成長が成されることにより、マスク領域にも窒化物半導体が成長して成膜された層などがある。その他の形態では、異種基板上に成長させた窒化物半導体層に開口部を設け、その開口部側面から横方向への成長がなされて、成膜される層でもよい。

[0084]

(基板101) 基板として、異種基板に成長させた窒化物半導体、本実施例ではGaN、を厚膜(100μ m)で成長させた後、異種基板を除去して、 80μ mのGaNからなる窒化物半導体基板を用いる。基板の詳しい形成方法は、以下の通りである。2インチ ϕ 、C面を主面とするサファイアよりなる異種基板をMOVPE反応容器内にセットし、温度を500℃にして、トリメチルガリウム(TMG)、アンモニア(NH_3)を用い、GaNよりなるバッファ層を200Aの膜厚で成長させ、その後、温度を上げて、アンドープのGaNを1. 5μ mの膜厚で成長させて、下地層とする。次に、下地層表面にストライプ状のマスクを複数形成して、マスク開口部(窓部)から窒化物半導体、本実施例ではGaNを選択成長させて、横方向の成長を伴った成長(ELOG)により成膜された窒化物半導体層を、さらに厚膜で成長させて、異種基板、バッファ層、下地層を除去して、窒化物半導体基板を得る。この時、選択成長時のマスクは、 SiO_2 からなり、マスク幅 15μ m、開口部(窓部)幅 5μ mとする。

[0085]

[0086]

(n型コンタクト層103)

次に得られたバッファ層 $1\ 0\ 2$ 上にTMG、TMA、アンモニア、不純物ガスとしてシランガスを用い、 $1\ 0\ 5\ 0$ \mathbb{C} でS i ドープしたA 1 0.05 G a 0.95 N よりなる n 型コンタクト層 1 0 3 8 4 μ m 0 膜厚で成長させる。

[0087]

(n型クラッド層105) 次に、温度を1050℃にして、原料ガスにTMA、TMG及びアンモニアを用い、アンドープのA $1_{0.05}$ Ga $_{0.95}$ NよりなるA層を25Åの膜厚で成長させ、続いて、TMAを止め、不純物ガスとしてシランガスを用い、Siを 5×1018 /cm3ドープしたGaNよりなるB層を25Åの膜厚で成長させる。そして、この操作をそれぞれ200回繰り返してA層とB層の積層し、総膜厚 1μ mの多層膜(超格子構造)よりなるn型クラッド層106を成長させる。この時、アンドープA1GaNのA1混晶比としては、0.05以上0.3以下の範囲であれば、十分にクラッド層として機能する屈折率差を設けることができる。

[0088]

[0089]

(活性層107) 次に、温度を800℃にして、原料ガスにTMI(トリメチルインジウム)、TMG及びアンモニアを用い、不純物ガスとしてシランガスを用い、Siを 5×1 018/cm3ドープしたIn $_{0.05}$ Ga $_{0.95}$ Nよりなる障壁層(B)を140Åの膜厚で、シランガスを止め、アンドープのIn $_{0.1}$ Ga $_{0.95}$ Nよりなる井戸層(W)を25Åの膜厚で、この障壁層(B)、井戸層(W)を、(B)/(W)/(B)/(W)の順に積層する。最後に最上部の障壁層として、原料ガスにTMI(トリメチルインジウム)、TMG及びアンモニアを用い

、アンドープの $I_{0.05}$ $G_{0.95}$ N e 1 4 0 A の膜厚で成長させる。活性層 1 0 7 は、総膜厚約 4 7 0 A 0 8 重量子井戸構造(MQW)となる。

[0090]

[0091]

(p型光ガイド層109) 次に、温度を1050℃にして、原料ガスにTMG 及びアンモニアを用い、アンドープのGaNよりなるp型光ガイド層109を0 . 15μmの膜厚で成長させる。

[0092]

この p 型光ガイド層 109は、アンドープとして成長させるが、 p 型電子閉込め層 108、 p 型クラッド層 109等の隣接層からのM g の拡散により、M g 濃度が 5×1016 / c m 3 となり p 型を示す。またこの層は成長時に意図的にM g をドープしても良い。

[0093]

(p型クラッド層110) 続いて、1050℃でアンドープA1_{0.05}G a _{0.95}Nよりなる層を25Aの膜厚で成長させ、続いてTMAを止め、Cp₂Mgを用いて、MgドープGaNよりなる層を25Aの膜厚で成長させ、それを90回繰り返して総膜厚0.45μmの超格子層よりなるp型クラッド層110を成長させる。p型クラッド層は少なくとも一方がA1を含む窒化物半導体層を含み、互いにバンドギャップエネルギーが異なる窒化物半導体層を積層した超格子で作製した場合、不純物はいずれか一方の層に多くドープして、いわゆる変調ドープを

行うと結晶性が良くなる傾向にあるが、両方に同じようにドープしても良い。クラッド層110は、A1を含む窒化物半導体層、好ましくはA1_XGa_{1-X}N(0<X<1)を含む超格子構造とすることが望ましく、さらに好ましくはGaNとA1GaNとを積層した超格子構造とする。p側クラッド層110を超格子構造とすることによって、クラッド層全体のA1混晶比を上げることができるので、クラッド層自体の屈折率が小さくなり、さらにバンドギャップエネルギーが大きくなるので、関値を低下させる上で非常に有効である。さらに、超格子としたことにより、クラッド層自体に発生するピットが超格子にしないものよりも少なくなるので、ショートの発生も低くなる。

[0094]

(p型コンタクト層111) 最後に、1050℃で、p型クラッド層110の上に、Mgを 1×10^{20} / cm^3 ドープしたp型GaNよりなるp型コンタクト層111を150Åの膜厚で成長させる。p型コンタクト層111はp型の In_X A 1_Y G a_{1-X-Y} N($0\le X$ 、 $0\le Y$ 、 $X+Y\le 1$)で構成することができ、好ましくはMgをドープしたGaNとすれば、p電極120と最も好ましいオーミック接触が得られる。コンタクト層111は電極を形成する層であるので、 1×10^{17} / cm^3 以上の高キャリア濃度とすることが望ましい。 1×10^{17} / cm^3 よりも低いと電極と好ましいオーミックを得るのが難しくなる傾向にある。さらにコンタクト層の組成をGaNとすると、電極材料と好ましいオーミックが得られやすくなる。反応終了後、反応容器内において、ウエハを窒素雰囲気中、700℃でアニーリングを行い、p型層を更に低抵抗化する。

[0095]

以上のようにして窒化物半導体を成長させ各層を積層した後、ウエハを反応容器から取り出し、最上層のp型コンタクト層の表面に SiO_2 よりなる保護膜を形成して、RIE(反応性イオンエッチング)を用い $SiC1_4$ ガスによりエッチングし、図1に示すように、n電極を形成すべきn型コンタクト層103の表面を露出させる。このように窒化物半導体を深くエッチングするには保護膜として SiO_2 が最適である。

[0096]

次に上述したストライプ状の導波路領域として、リッジストライプを形成する。まず、最上層のp型コンタクト層(上部コンタクト層)のほぼ全面に、pVD装置により、Si酸化物(主として、SiO $_2$)よりなる第1の保護膜161を 0.5 μ mの膜厚で形成した後、第1の保護膜161の上に所定の形状のマスクをかけ、RIE(反応性イオンエッチング)装置により、 CF_4 ガスを用い、フォトリソグラフィー技術によりストライプ幅1.6 μ mの第1の保護膜161とする。この時、リッジストライプの高さ(エッチング深さ)は、p型コンタクト層111、およびp型クラッド層109、p型光ガイド層110の一部をエッチングして、p型光ガイド層109の膜厚が0.1 μ mとなる深さまでエッチングして、p70、 μ 70 の膜厚が0.1 μ mとなる深さまでエッチングして、形成する。

[0097]

次に、リッジストライプ形成後、第1の保護膜161の上から、Zr酸化物(主としてZrO $_2$)よりなる第2の保護膜162を、第1の保護膜161の上と、エッチングにより露出された p型光ガイド層109の上に0.5 μ mの膜厚で連続して形成する。

[0098]

第2の保護膜162形成後、ウエハを600℃で熱処理する。このようにSiO2以外の材料を第2の保護膜として形成した場合、第2の保護膜成膜後に、300℃以上、好ましくは400℃以上、窒化物半導体の分解温度以下(1200℃)で熱処理することにより、第2の保護膜が第1の保護膜の溶解材料(フッ酸)に対して溶解しにくくなるため、この工程を加えることがさらに望ましい。

[0099]

次に、ウエハをフッ酸に浸漬し、第1の保護膜161をリフトオフ法により除去する。このことにより、p型コンタクト層111の上に設けられていた第1の保護膜161が除去されて、p型コンタクト層が露出される。以上のようにして、図1に示すように、リッジストライプの側面、及びそれに連続する平面(p型光ガイド層109の露出面)に第2の保護膜162が形成される。

[0100]

このように、p型コンタクト層112の上に設けられた第1の保護膜161が

、除去された後、図1に示すように、その露出したp型コンタクト層1110表面にNi/Auよりなるp電極120を形成する。但しp電極120は100 μ mのストライプ幅として、図1に示すように、第2の保護膜162の上に渡って形成する。第2の保護膜162形成後、既に露出させたn型コンタクト層103の表面にはTi/A1よりなるストライプ状のn電極121をストライプと平行な方向で形成する。

[0101].

次に、n電極を形成するためにエッチングして露出された面でp, n電極に、取り出し電極を設けるため所望の領域にマスクし、 SiO_2 と TiO_2 よりなる誘電体多層膜164を設けた後、p, n電極上にNi-Ti-Au (1000Å-1000Å-8000Å) よりなる取り出し (パット) 電極122, 123をそれぞれ設けた。この時、活性層107の幅は、 200μ mの幅 (共振器方向に垂直な方向の幅) であり、共振器面 (反射面側) にも SiO_2 と TiO_2 よりなる誘電体多層膜が設けられる。

[0102]

以上のようにして、n電極とp電極とを形成した後、ストライプ状の電極に垂直な方向で、窒化物半導体のM面(GaNoM面、(11-00)など)でバー状に分割して、更にバー状のウエハを分割してレーザ素子を得る。この時、共振器長は、 650μ mである。このようにして得られるレーザ素子は、図7に示す積層構造 20、及びバンドギャップエネルギー図、となるものであり、上述した第1、2、4、50実施形態に相当するものである。

[0103]

室温においてしきい値2.8 kA/cm²、 $5\sim30\,\mathrm{mW}$ の出力において発振 波長 $405\,\mathrm{nm}$ の連続発振のレーザ素子が得られる。得られるレーザ素子の素子 寿命は、比較例1に比べて、 $60\,\mathrm{C}$ 、 $5\,\mathrm{mW}$ の連続発振において、 $2\sim3$ 倍に相 当する $2000\sim3000$ 時間の素子寿命が得られる。また、逆方向耐圧特性に おいては、比較例1に比べて、逆方向耐圧について検査をしたところ、多くのレーザ素子が破壊されず、更に電圧を上げて $100\,\mathrm{V}$ で検査においても、破壊され ないものが得られ、比較例1に比べておおよそ2倍の逆方向耐圧特性の向上が観 られる。

[0104]

[実施例2]

[0105]

[実施例3]

実施例1において、井戸層の膜厚を5.5 Åとする。その結果得られるレーザ素子は、実施例1に比べて、素子寿命が大きく向上し、5.0 $\mathbb C$ 、3.0 mWの条件で連続発振させたところ、1.0.0 $\mathbb C$ $\mathbb C$

[0106]

更に、同様に、実施例1における井戸層の膜厚を、60、80、90Aと増やすことで、素子寿命は、膜厚にほぼ比例して増加する傾向にあり、一方で井戸層の膜厚が増加することによる活性層全体の膜厚の増加によるVf、しきい値電流の増加が確認される。しかしながら、いずれの場合にも、比較例1に比べて、非常に優れた素子寿命を有するものである。また、Vf、しきい値電流については活性層全体の膜厚が関係し、その積層構造に依存するため一概にはいえないが、実施例1のように、井戸層の数が2層と少ない場合、多重量子井戸構造で最小の井戸層数、には、井戸層の膜厚の変化には、それほど大きく依存せず、Vf、しきい値電流の上昇は、低く抑えられ、実施例1よりも僅かに大きくなる程度でおさまり、LDの連続発振において重大な素子特性の悪化にまで至らない。このため、井戸層の膜厚は、40A以上で素子特性の向上が図れ、好ましくは50A以上とすることで更に顕著に大幅な長寿命化が可能となる。また、この時、井戸層の膜厚を50A以上とすると、出力80mWでの発振が可能であり、100mW

の出力が得られるものある。

[0107]

[実施例4]

実施例1において、最後の障壁層(最上部に位置する障壁層)を150Aの膜厚としたところ、素子寿命が実施例1よりも長くなる傾向にある。これは、図9に示すように、最上部障壁層2cが厚くなることで、井戸層1bとp型電子閉込め層28との距離d_Bが必然的に大きくなり、上述したように、第1のp型窒化物半導体層(p型電子閉込め層)は高抵抗であるため、素子駆動時には他の層よりも高い温度になっていると考えられ、この層と井戸層をはなすことで、井戸層を温度上昇による悪影響から守り、良好な発振特性でもってレーザ発振がなされることによるものと思われる。

[0108]

[実施例5]

実施例1において、活性層が、障壁層の膜厚70Åで、障壁層/井戸層/障壁層/井戸層の順に積層し、最後に膜厚140Åの障壁層を積層する。この時、井戸層の膜厚を、22.5Å、45Å、90Å、130Åと変化させ、50℃、30mWの条件で連続発振させた時の素子寿命を図12に示す。図から明らかなように、井戸層の膜厚の増加に伴って、素子寿命が増大し、優れた素子寿命のレーザ素子が得られる。この時、井戸層の膜厚45Å、90Å、130Åでは、実施例3と同様に、30mW以上の高出力の発振が可能であり、90Å、130Åの場合には、80~100mWでの出力が可能なレーザ素子が得られる。

[0109]

[実施例6]

実施例1において、活性層が、井戸層の膜厚45Åで、障壁層/井戸層/障壁層/井戸層の順に積層し、最後に膜厚140Åの障壁層を積層する。この時、最後に積層した障壁層以外の障壁層の膜厚を、22.5Å、45Å、90Å、135Åと変化させ、50℃、30mWの条件で連続発振させた時の素子寿命を図13に示す。図から明らかなように、障壁層の膜厚が増加すると、50Å付近から膜厚を増加させても、素子寿命がほぼ一定となり変化しなくなる傾向が観られる

。従って、障壁層として、少なくとも40 A以上とすることで、本発明の窒化物 半導体素子で、優れた素子寿命が実現されることがわかる。

[0110]

[実施例7]

実施例1において、クラッド層の多層膜におけるA1GaN層のA1混晶比を 0.1とする他は、同様にしてレーザ素子を得る。得られるレーザ素子は、クラッド層のA1平均混晶比が 0.05であり、30mWで、単一モード、連続発振において、自励発振が観測されるものがある。更に、クラッド層の多層膜中のA1GaNにおけるA1混晶比を 0.15とすると、この時クラッド層のA1の平均混晶比が約 0.78となり、A1の平均混晶比が 0.05である場合に比べて、明らかに高い確率で自励発振することが確認される。このため、クラッド層におけるA1の平均混晶比は、0.05以下、好ましくは 0.025若しくは 0.03以下とすることで、確実に自励発振のないレーザ素子が得られる。

[0111]

[実施例8]

実施例1において、最上部の障壁層(最もp型層側に配置された障壁層)を150Åの膜厚で成長させる他は、実施例1と同様にしてレーザ素子を得る。得られるレーザ素子は、実施例1に比べて僅かながら素子寿命が上昇する傾向が観られる。逆に、最上部の障壁層を100Åの膜厚としたレーザ素子では、実施例1に比べて、素子寿命が大幅に低下する。

[0112]

[実施例9]

実施例1において、p型電子閉込め層108を設けないで、活性層107の上に直接p型光ガイド層109を設けることを除いて、実施例1と同様にしてレーザ素子を得る。得られるレーザ素子は、Vfが約1Vほど低下するが、しきい値電流が急激に上昇し、レーザ素子の中には、発振が困難なものも観られる。これは、高抵抗な第1のp型窒化物半導体層(p型電子閉込め層108)を含まないことで、Vfが低下するが、活性層内への電子閉込めが困難となり、しきい値の急激な上昇につながったものと考えられる。

[0113]

[実施例10]

実施例1において、井戸層の数を3層、障壁層の数を4層として、図4に示すように、積層した活性層とする他は、実施例1と同様にして、レーザ素子を得る。得られるレーザ素子は、実施例1に比べて、活性層全体の膜厚が大きくなるため V f が上昇し、また井戸層数が多いことでしきい値電流も僅かに上昇する傾向が観られる。さらに、障壁層/井戸層と交互に積層し、最後に障壁層を積層して、障壁層 5 層、井戸層 4 層の活性層とすると、井戸層が 2 層、3 層である場合に比べて、明らかに閾値電流が上昇し、また V f も高くなる。

[0114]

ここで、図4において、最初の障壁層(第2のn側障壁層)2aと最後の障壁層(第1のp側障壁層)2dとを膜厚140Åとし、障壁層2b、2cの膜厚を100Åとした場合(図5に示す活性層の構造)には、前記の図5の場合に比べて、素子特性のばらつき、特に素子寿命のチップ間のばらつきが減少し、良好な素子特性のレーザ素子が得られる傾向が観られる。

[0115]

[比較例1]

実施例1において、活性層中の障壁層を全て、SiF-プとする他は、同様にしてレーザ素子を得る。得られるレーザ素子は、<math>60 $\mathbb C$ 、5 mW出力での連続発振において、1000 時間の素子寿命となる。また、得られるレーザ素子の逆方向耐圧特性について、評価したところ、レーザ素子のほとんどが、逆方向耐圧50 $\mathbb C$ 0 $\mathbb C$ 0

[0116]

得られるレーザ素子について、SIMS(二次イオン質量分析法)などにより

分析したところ、活性層中の障壁層の内、p型電子閉込め層との界面に位置する 最上部の障壁層(最もp型層側に位置する障壁層)に、SiとMgが検出される 。従って、得られるレーザ素子は、前記最上部の障壁層に、SiとMgがドープ された状態を有するものとなり、このことが、実施例1で得られるレーザ素子に 比べて、その特性が大きく低下する原因と考えられる。しかしながら、図14、 15に示すようにSiドープ量を変化させた場合に、Mgドープ量は変化しない ことから、素子特性の低下は、主にn型不純物に起因しているものと考えられる

[0117]

[実施例11]

実施例1において、活性層107に代えて、図10及ぶ以下に説明する活性層407を用いてレーザ素子を得る。

[0118]

(活性層407)

温度を880℃にして、原料ガスにTMI、T MG 及びアンモニアを用い、不純物ガスとしてシランガスを用い、Si を5 ×10¹⁸/сm³ドープした In0.01Ga0.99Nよりなる第1の障壁層401aを100人の膜厚で成長させる。続いて、温度を820℃に下げ、シランガスを止め、アンドープのIn0.3Ga0.7Nよりなる井戸層402aを50人の膜厚で成長させる。さらに、同温度でTMAを用い、A10.3Ga0.7Nよりなる第2の障壁層403aを10人の膜厚で成長させる。これら第1の障壁層401a、井戸層402a、第2の障壁層層403aの3層構造を、図10に示すようにさらにもう1回繰り返して各層401b、402b、403bを積層し、最後に最上部の障壁層404として、アンドープのIn0.01Ga0.99Nを膜厚140人で形成して、総膜厚460人の多重量子井戸(MQW)からなる活性層407を形成して、総膜厚460人の多重量子井戸(MQW)からなる活性層407を形成する。この時、最もp型層側に位置する最上部の障壁層404には、隣接するp型電子閉込め層108からp型不純物のMgが拡散して、Mgを有する障壁層となる。得られるレーザ素子は、波長470nmの光が得られ、高出力で長寿命のレーザ素子となる。この時、井戸層の上部に設けられる第2の障壁層として

は、A1を含む窒化物半導体とすること、好ましくはA1_zGa_{1-z}N (0 < z ≤ 1)で表される窒化物半導体とすることで、井戸層に適度な凹凸が形成され、Inの偏析、若しくは濃度分布が発生して、このことで量子ドット若しくは量子細線の効果が得られるものと思われ、第2の障壁層を設けない場合に比べて高出力の窒化物半導体素子となる。この時、A1混晶比zは、0.3以上とすることで井戸層の凹凸が良好に発生する傾向にあり、好ましい。この時、第2の障壁層は、特に井戸層に接して設けられていなくても、同様な効果を得ることが可能である。また、井戸層に接して、下部に位置する障壁層は、第1の障壁層のように、A1を含まない障壁層とすることで、結晶性良く井戸層を形成でき好ましい。

[0119]

[実施例12]

図9に示す発光素子を以下のようにして、作製する。

[0120]

サファイア(C面)よりなる基板301をMOVPEの反応容器内にセットし、水素を流しながら、基板の温度を1050℃まで上昇させ、基板のクリーニングを行う。

[0121]

(バッファ層302)

続いて、温度を510℃まで下げ、キャリアガスに水素、原料ガスにアンモニアとTMG(トリメチルガリウム)、TMA(トリメチルアルミニウム)とを用い、基板301上にGaNよりなるバッファ層302を約150Åの膜厚で成長させる。

[0122]

(下地層303)

バッファ層 302成長後、TMGのみを止めて、温度を1050 Cまで上昇させる。 1050 Cになったら、同じく原料ガスにTMG、アンモニアガスを用い、アンドープ GaNからなる下地層 303 を 1.5 μ mの膜厚で成長させる。この下地層 303 は、窒化物半導体を成長させる基板として機能する。

[0123]

(n型コンタクト層304)

[0124]

(n側第1多層膜層305)

次にシランガスのみを止め、1050℃で、TMG、アンモニアガスを用い、アンドープGaNからなる下層305aを3000Åの膜厚で成長させ、続いて同温度にてシランガスを追加しSiを4. $5 \times 10^{18} / cm^3$ ドープしたGaNからなる中間層305bを300Åの膜厚で成長させ、更に続いてシランガスのみを止め、同温度にてアンドープGaNからなる上層305cを50Åの膜厚で成長させ、305a/305b/305cの3層からなる総膜厚3350Åの第1多層膜層305を成長させる。

[0125]

(n側第2多層膜層306)。

次に、同様の温度で、アンドープGaNよりなる第2の窒化物半導体層を40 Å成長させ、次に温度を800 C にして、TMG、TMI、アンモニアを用い、アンドープ $In_{0.13}Ga_{0.87}$ Nよりなる第1の窒化物半導体層を20 Å成長させる。これらの操作を繰り返し、第2の窒化物半導体層+第1の窒化物半導体層の順で交互に10 層ずつ積層させ、最後にGaNよりなる第2の窒化物半導体層を40 Å成長させて形成される超格子構造の多層膜よりなるn 側第2 多層膜層 30 6 を6 4 0 A の膜厚で成長させる。

[0126]

(活性層307)

次に、GaNよりなる障壁層を250 Åの膜厚で成長させ、続いて温度を800 C にして、TMG、TMI、アンモニアを用いアンドープ $In_{0.3}Ga_{0.7}N$ よりなる井戸層を30 Åの膜厚で成長させる。そして障壁層 B_1 /井戸層/障壁層 B_2 /井戸層/障壁層 B_3 /井戸層/障壁層 B_4 /井戸層/障壁層 B_5 /井戸層/障壁層 B_6 /井戸層/障壁層 B_7 の順で障壁層を B_6 /井戸層/障壁層 B_7 の順で障壁層を B_7 0順で障壁層を B_7 0順で障壁層を B_7 0順で

て、総膜厚1930Åの多重量子井戸構造よりなる活性層307を成長させる。この時、障壁層 B_1 、 B_2 には、 S_1 を $1 \times 10^{17}/c$ m^3 ドープして、残りの障壁層 B_i (i=3, 4、・・・、7) はアンドープで形成する。

[0127]

(p型多層膜クラッド層308)

次に、温度1050℃でTMG、TMA、アンモニア、 C_{P_2} Mg(シクロペンタジエニルマグネシウム)を用い、Mgを 1×10^{20} / cm^3 ドープしたp型A $1_{0.2}$ G $a_{0.8}$ Nよりなる第3の窒化物半導体層を40 Åの膜厚で成長させ、続いて温度を800℃にして、TMG、TMI、アンモニア、 C_{P_2} Mgを用いMgを 1×10^{20} / cm^3 ドープした $I_{0.03}$ G $a_{0.97}$ Nよりなる第4の窒化物半導体層を25 Åの膜厚で成長させる。これらの操作を繰り返し、第3の窒化物半導体層+第4の窒化物半導体層の順で交互に5 層ずつ積層し、最後に第3の窒化物半導体層が層を40 Åの膜厚で成長させた超格子構造の多層膜よりなるp型多層膜クラッド層308を365 Åの膜厚で成長させる。

[0128]

(p型GaNコンタクト層310)

続いて1050°Cで、TMG、アンモニア、 C_{P_2} Mgを用い、Mgを 1×10^{20} /cm 3 ドープしたp型GaNよりなるp型コンタクト層310を700Aの膜厚で成長させる。

[0129]

反応終了後、温度を室温まで下げ、さらに窒素雰囲気中、ウェハを反応容器内において、700℃でアニーリングを行い、p型層をさらに低抵抗化する。

[0130]

アニーリング後、ウェハを反応容器から取り出し、最上層のp型コンタクト層 3 1 0 の表面に所定の形状のマスクを形成し、RIE (反応性イオンエッチング) 装置でp型コンタクト層側からエッチングを行い、図9に示すようにn型コンタクト層4の表面を露出させる。

[0131]

エッチング後、最上層にあるp型コンタクト層310のほぼ全面に膜厚200

AのNiとAuを含む透光性のp電極311と、そのp電極11の上にボンディング用のAuよりなるpパッド電極を 0.5μ mの膜厚で形成する。一方、エッチングにより露出させたn型コンタクト層304の表面にはWとAlを含むn電極312を形成して、発光素子を得る。得られる発光素子は、n型層に最も近い障壁層 B_1 と、その次の障壁層 B_2 にn型不純物がドープされていることで、n型層からのキャリアが、活性層の奥深く(p型層側)まで、効率的に注入され、全ての障壁層をアンドープとした比較例2に比べて、光電変換効率が向上し、 V_f 及びリーク電流が減少し、発光出力が向上する。

[0132]

[実施例13]

実施例12の活性層において、最もp側に位置する障壁層 B_7 に、p型不純物としてMgを $1\times10^{18}/c$ m 3 ドープする他は、実施例11と同様にして、発光素子を得る。得られる発光素子は、実施例11に比して、最上部の障壁層 B_7 にp型不純物を有することで、p型層からのキャリアの注入も効率的になり、光電変換効率が向上し、発光出力も向上する。

[0133]

[比較例2]

実施例11において、活性層中の全ての障壁層、井戸層ともアンドープで成長させる他は、実施例1と同様にして発光素子を得る。得られる発光素子は、実施例1に比べて、発光出力が低く、また素子寿命に劣る傾向にある。

[0134].

[実施例14]

図11に示す面発光型のレーザ素子について以下説明する。

[0135]

(基板501)実施例1に用いた窒化物半導体基板101と同様の基板501 を用いる。

[0136]

窒化物半導体基板501の上に、反射膜530として、A1Nからなる第1の層531とGaNからなる第2の層532を交互にそれぞれ3層づつ積層する。

この時、各層は、 λ /(4 n)(但し、 λ は光の波長、nは材料の屈折率)の式を満たす膜厚で設け、ここではn=2(A1N)、2.5(GaN)で、各膜厚を第1の層約500Å、第2の層約400Åの膜厚で形成する。この時、窒化物半導体の反射膜は、第1、2の層を、 $\ln_x A \ln_y G a_{1-x-y} N$ (0 \le x \le 1、0 \le y \le 1、x+y=1)で表される窒化物半導体を用いることができ、好ましくは第1の層をA1を含む窒化物半導体、第2の層をA1を含まない窒化物半導体とすることであり、更に好ましくは第1の層をA1_zGa_{1-z}N(0<z \le 1)で表される窒化物半導体とし、第2の層をGaNとすることで、良好な反射膜が得られる。この時、A1混晶比を大きくすることで、反射率を高くすることができる。

[0137]

続いて、実施例2(井戸層55Å)と同様の条件で、n型コンタクト層533、活性層534、p型電子閉込め層(図示せず)、p型コンタクト層535を積層して、円形状の開口部を有する SiO_2 からなるブロック層536を設けて、その円形状の開口部からMgドープGaNを成長させて、第2のp型コンタクト層537を形成する。この時、p型コンタクト層535、第2のp型コンタクト層537は、いずれか一方だけを形成したものでも良い。その第2のp型コンタクト層537の上に、 SiO_2 / TiO_2 からなる誘電体多層膜を形成し反射膜538とし、前記ブロック層536の開口部の上に円形状に設ける。そして、n型コンタクト層533が露出する深さまでエッチングして、露出したn型コンタクト層533の上にリング状のn電極521、第2のp型コンタクト層537の上に、反射膜538の周りを囲むp電極520をそれぞれ形成する。このようにして、得られる面発光型のレーザ素子は、実施例2と同様に、素子寿命に優れ、高出力のレーザ素子が得られる。

[0138]

【発明の効果】

本発明の窒化物半導体素子は、ライフ特性(素子寿命)に優れ、また、従来問題とされてきた窒化物半導体を用いた素子における脆弱な逆方向耐圧特性を大幅に向上したものとなり、高出力の窒化物半導体素子が得られる。また、本発明の

窒化物半導体素子で、レーザ素子とした場合においても、同様な特性の向上が得られ、さらには自励発振のない優れたレーザ素子となる。

【図面の簡単な説明】

- 【図1】本発明の一実施形態を説明する模式断面図。
- 【図2】本発明の一実施形態を説明する模式断面図。
- 【図3】本発明の一実施形態を説明する模式断面図。
 - 【図4】本発明の一実施形態を説明する模式図。
 - 【図5】本発明の一実施形態を説明する模式図。
 - 【図6】本発明の一実施形態を説明する模式図。
 - 【図7】本発明の一実施形態を説明する模式図。
 - 【図8】本発明の一実施形態を説明する模式図。
 - 【図9】本発明の一実施形態を説明する模式断面図。
 - 【図10】本発明の一実施形態を説明する模式図。
 - 【図11】本発明の一実施形態を説明する模式断面図。
 - 【図12】本発明に係る素子寿命と活性層膜厚との関係を示す図。
 - 【図13】本発明に係る素子寿命と障壁層膜厚との関係を示す図。
 - 【図14】本発明に係る素子寿命とドープ量との関係を示す図。
 - 【図15】本発明に係る逆耐圧とドープ量との関係を示す図。

【符号の簡単な説明】

- 1・・・井戸層
- 2・・・障壁層
- 11・・・n型窒化物半導体層
- 12・・・活性層
- 13···p型窒化物半導体層
- 20・・・積層構造
- 101···基板(GaN基板)
- 102・・・バッファ層
- 103・・・n型コンタクト層
- 104・・・クラック防止層

- 105、25・・・n型クラッド層
- 106、26・・・n型光ガイド層
- 107、27・・・活性層
- 108、28・・・p型電子閉込め層(第1のp型窒化物半導体層)
- 109、29···p型光ガイド層
- 110、30・・・p型クラッド層
- 111・・・p型コンタクト層
- 120・・・p電極
- 121 · · · n電極
- 122・・・pパッド電極
- 123・・・ nパッド電極
- 163・・・第3の保護膜
- 164・・・絶縁膜

【図3】

【図4】

【図5】

【図6】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

Ţ

【書類名】 要約書

【要約】

4

【課題】 従来、窒化物半導体素子中の量子井戸構造の活性層として、n型 窒化物半導体、n型不純物を含有した窒化物半導体などが用いられてきたが、さ らなる活性層の特性向上が必要であった。また、窒化物半導体素子は、素子寿命 、静電耐圧の特性のさらなる向上が必要である。

【解決手段】 本発明は、p型窒化物半導体層11、n型窒化物半導体層13に挟まれる活性層12として、n型不純物を有する障壁層2aと、Inを含む窒化物半導体からなる井戸層1aと、p型不純物を有する、若しくはアンドープで成長させた障壁層2cとを少なくとも有し、該障壁層2をp型層側に最も近い障壁層として配置することで、活性層12への好適なキャリアの注入が可能となる。

【選択図】 図6

認定・付加情報

特許出願の番号

特願2000-355078

受付番号

50001502134

書類名

特許願

担当官

第二担当上席

0091

作成日

平成12年11月22日

<認定情報・付加情報>

【提出日】

平成12年11月21日

出願人履歴情報

識別番号

[000226057]

1. 変更年月日 1990年 8月18日

[変更理由] 新規登録

住 所 徳島県阿南市上中町岡491番地100

氏 名 日亜化学工業株式会社