Homework 7

March 2, 2017

Problem 1.

Show that for all non zero $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{n \times 1}$

$$\mathbf{u} = \left(\frac{\mathbf{v} \cdot \mathbf{v}^*}{\mathbf{v}^* \cdot \mathbf{v}}\right) \cdot \mathbf{u} + \left(\mathbf{I}_n - \frac{\mathbf{v} \cdot \mathbf{v}^*}{\mathbf{v}^* \cdot \mathbf{v}}\right) \cdot \mathbf{u}$$

$$\left(\frac{\mathbf{v} \cdot \mathbf{v}^*}{\mathbf{v}^* \cdot \mathbf{v}}\right) \cdot \mathbf{u} \perp \left(\mathbf{I}_n - \frac{\mathbf{v} \cdot \mathbf{v}^*}{\mathbf{v}^* \cdot \mathbf{v}}\right) \cdot \mathbf{u}$$

Problem 2.

Consider the following data showing the atmospheric pollutants y_i at half hour intervals t_i :

t_i	1						
y_i	-0.15	0.24	0.68	1.04	1.21	1.15	0.86

Use the least square solution to solve for x_0, x_1, x_2 which achieves the best

$$y(t) = x_2 \cdot t^2 + x_1 \cdot t^1 + x_0 \cdot t^0.$$

Problem 3.

We discussed in class that the least square solution to a system of equation

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$$

where $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{b} \in \mathbb{C}^{m \times 1}$ is found by solving

$$\mathbf{A} \cdot \mathbf{x} = \operatorname{Proj}_{Column \ Space \ of \ \mathbf{A}}(\mathbf{b})$$

Show using properties of the orthogonal complements that the least square solution can also be obtained by solving

$$\overline{\mathbf{A}^\top} \cdot \mathbf{A} \cdot \mathbf{x} = \overline{\mathbf{A}^\top} \cdot \mathbf{b}$$

Problem 4.

Let \mathbf{u} , \mathbf{v} denote two linear independent vectors in $\mathbb{C}^{n\times 1}$. Express in terms of \mathbf{v} the $n\times n$ matrix $\mathbf{P}_{\mathbf{v}}$ subject to the equality

$$\mathrm{Proj}_{Span\{\mathbf{v}\}}\left(\mathbf{u}\right) = \mathbf{P}_{\mathbf{v}} \cdot \mathbf{u}$$

Problem 5.

Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ and $\mathbf{B} \in \mathbb{C}^{n \times n}$ be unitary matrices. Let the matrix $\mathbf{C} \in \mathbb{C}^{m \cdot n \times m \cdot n}$ have entries given by

$$c_{k+n\cdot(i-1), n\cdot(j-1)+l} = a_{i,j} \cdot b_{k,l}.$$

Show that the matrix C is unitary.