You submitted this guiz on Wed 30 Oct 2013 11:53 AM PDT (UTC -0700). You got a score of 4.75 out of 5.00. You can attempt again in 10 minutes.

Question 1

Let two matrices be

$$A = egin{bmatrix} 1 & -4 \ -2 & 1 \end{bmatrix}, \qquad B = egin{bmatrix} 0 & 3 \ 5 & 8 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 3 \\ 5 & 8 \end{bmatrix}$$

What is A - B?

Your Answer Score **Explanation**

1.00

Total 1.00 / 1.00

Question 2

Let
$$x = egin{bmatrix} 2 \\ 7 \\ 4 \\ 1 \end{bmatrix}$$

What is $\frac{1}{2} * x$?

Your Answer Score Explanation

0

 $\begin{bmatrix} 1 & \frac{7}{2} & 2 & \frac{1}{2} \end{bmatrix}$

 $\frac{8}{2}$

 $\begin{bmatrix} 1 \\ \frac{7}{2} \\ 2 \end{bmatrix}$

1.00 To multiply the vector x by $\frac{1}{2}$, take each element of x and multiply that element by $\frac{1}{2}$.

0

Total 1.00 /

1.00

Question 3

Let \boldsymbol{u} be a 3-dimensional vector, where specifically

$$u = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}$$

What is u^{T} ?

Your Answer Score Explanation

○ [1 5 3]

Question 4

Let u and v be 3-dimensional vectors, where specifically

$$u=egin{bmatrix} -3 \ 4 \ 3 \end{bmatrix}$$
 and $v=egin{bmatrix} 3 \ 1 \ 5 \end{bmatrix}$

What is $u^T v$?

(Hint: u^T is a 1x3 dimensional matrix, and v can also be seen as a 3x1 matrix. The answer you want can be obtained by taking the matrix product of u^T and v.)

You entered:

10

Your Answer		Score	Explanation
10	~	1.00	
Total		1.00 / 1.00	

Question 5

Let A and B be 3x3 (square) matrices. Which of the following must necessarily hold true?

Your Answer		Score	Explanation	
	~	0.25	Since A and B are both 3x3 matrices, their product is 3x3. More generally, if A were an $m\times n$. matrix, and I a $n\times o$ matrix, then C would be $m\times o$. (In our example, $m=n=o=3$.)	
	~	0.25	Since A and B are both 3x3 matrices, their product is 3x3. More generally, if A were an $m\times n$. matrix, and B a $n\times o$ matrix, then C would be $m\times o$. (In our example, $m=n=o=3$.)	
If v is a 3 dimensional vector, then $A*B*v$ is a 3 dimensional vector.	×	0.00	Since A and B are both 3x3 matrices, $A*B$ is 3x3 matrix. Thus, $(A*B)*v$ is a 3x3 matrix times a 3×1 matrix (since v is a 3 dimensional vector, and thus also a 3x1 matrix), and the result gives a 3x1 vector.	
$\blacksquare \ A*B = B*A$	~	0.25	We saw in the lecture that matrix multiplication is not commutative in general.	
Total		0.75 / 1.00		