Análisis descriptivo y visualización de ventas de PepsiCo en Argentina.

Este proyecto tiene como objetivo analizar un conjunto de datos sin depurar correspondiente a las ventas de productos de PepsiCo realizadas por distintas distribuidoras en todo el país.

A través de herramientas de procesamiento y estadística descriptiva, se busca identificar patrones relevantes, limpiar el dataset y describir las variables disponibles para su análisis posterior.

Integrantes del equipo

- Eglimar Ramirez
- Francisco Oviedo
- Jonathan Guillen
- Jonathan Manuel Palomegue
- Lucas Ledesma
- Maia Majzum
- Valentina Pich

Descripción general del dataset

El dataset contiene datos relacionados con la venta de productos, incluyendo:

- **Distribuidor**: nombre de la distribuidora.
- Área: región geográfica.
- **Artículo**: código identificador del producto.
- **Descripción**: nombre comercial del producto.
- Cantidad: unidades vendidas.
- Capacidad: gramos vendidos.
- **Línea**: línea o categoría comercial (ej. Gold, Platinum).
- Rubro: categoría general del producto (ej. Crakers).

I) Importar librerias:

```
In [1]: import pandas as pd #Importando Librerias
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import display #Libreria para mostrar dataframes
```

```
from google.colab import drive
drive.mount('/content/drive')
from google.colab import files
```

Mounted at /content/drive

II) Cargar DataSet y crear el Dataframe:

In [2]: df = pd.read_csv('/content/drive/MyDrive/Proyecto - Analisis de Datos - 2025/Lista
df.head(10) #Mostrando Las primeras 10 filas del dataset

Out[2]:		Distribuidor	Area	Articulo	Descripcion	Cantidad	Capacidad
	0	TOTAL CENTRO S.R.L.	NEA y Litoral	300063098	Twistos Minit Queso 95gx30x1	4319.0	410495.00
	1	TOTAL CENTRO S.R.L.	NEA y Litoral	300063097	Twistos Minit Queso 100gx30	4027.0	382565.00
	2	TOTAL CENTRO S.R.L.	NEA y Litoral	300052695	Twistos Minit Jamon 100gx30	70.0	7.00
	3	TOTAL CENTRO S.R.L.	NEA y Litoral	300052696	Twistos Minit Jamon 40gx112x1	3284940.0	34.36
	4	TOTAL CENTRO S.R.L.	NEA y Litoral	300063264	Twistos Minit Queso 40gx112x1	3284940.0	25.36
	5	TOTAL CENTRO S.R.L.	NEA y Litoral	300063263	Twistos Minit Jamon 40gx84	287.0	11.48
	6	TOTAL CENTRO S.R.L.	NEA y Litoral	300052694	Twistos Minit Jamon 155gx20	1881.0	291555.00
	7	TOTAL CENTRO S.R.L.	NEA y Litoral	300062972	Pehuamar acanalada 230gx14x1	264.0	69.96
	8	TOTAL CENTRO S.R.L.	NEA y Litoral	300062973	Pehuamar Papa Lisa 230gx14x1	194.0	44.62
	9	TOTAL CENTRO S.R.L.	NEA y Litoral	300060197	Pehuamar Acanalada 485x9	97.0	22.31

```
In [3]: # Configurar pandas para que no use notación científica
pd.set_option('display.float_format', '{:,.2f}'.format)
```

III) Exploración inicial del dataset

1. TAMAÑO DEL DATASET

```
In [4]: df.shape
Out[4]: (1777, 8)
```

Comentario: El dataset consta de 1777 filas y 8 columnas

2. COLUMNAS

3. TIPO DE DATOS

```
In [6]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1777 entries, 0 to 1776
Data columns (total 8 columns):
    # Column Non-Null Count Dtype
```

#	Column	Non-Null Count	υτype
0	Distribuidor	1777 non-null	object
1	Area	1777 non-null	object
2	Articulo	1777 non-null	int64
3	Descripcion	1777 non-null	object
4	Cantidad	1693 non-null	float64
5	Capacidad	1777 non-null	float64
6	Linea	1777 non-null	object
7	Rubro	1777 non-null	object
dtyp	es: float64(2),	int64(1), object	t(5)
memo	ry usage: 111.2	+ KB	

Comentarios:

La data incluye:

- variables numéricas: Articulo, Cantidad y Capacidad, estas dos últimas se deben convertir a tipo de dato entero.
- variables categóricas: Distribuidor, Area, Descripcion, Linea y Rubro.

- Sólo la variable cantidad prensenta datos nulos y además representa datos enteros de cantidad de artíclos, por lo que debe transformarse a int64.
- La variable Capacidad, puede soportar valores decimales de acuerdo a la unidad de medida que se emplee. En gramos sería una variable entera, pero en kg puede ser decimal.

4. TRANSFORMANDO EL TIPO DE DATO DE LA VARIABLE CANTIDAD

```
In [7]: # Hacer una copia del dataset
    df_copia = df.copy()

# Transformar columnas de float a int
    df_copia["Cantidad"] = df_copia["Cantidad"].astype("Int64") # Usa 'Int64' para sop

# Verificar los cambios
    print(df_copia[["Cantidad"]].dtypes)
```

Cantidad Int64 dtype: object

IV) Analisis de columnas numéricas (válidos, nulos, media, mediana, desviación estandar y mal registrados)

1. EXPLORACIÓN PARCIAL

```
In [8]: # Estadísticas para 'cantidad'
print(" Estadísticas de 'Cantidad':\n")
print(df_copia['Cantidad'].describe(percentiles=[.25, .5, .75, .9]))

# Estadísticas para 'capacidad'
print("\n Estadísticas de 'Capacidad':\n")
print(df_copia['Capacidad'].describe(percentiles=[.25, .5, .75, .9]))
```

📊 Estadísticas de 'Cantidad':

```
count 1,693.00
mean 109,210.49
std 582,171.96
min -33.00
25% 165.00
50% 655.00
75% 2,878.00
90% 8,597.40
max 3,284,940.00
```

Name: Cantidad, dtype: Float64

📊 Estadísticas de 'Capacidad':

```
count 1,777.00
mean 105,021.86
std 671,860.82
min -5,005.00
25% 28.35
50% 221.24
75% 33,649.00
90% 226,057.20
max 25,294,038.00
```

Name: Capacidad, dtype: float64

Observaciones:

variable Cantidad:

- Hay 1693 valores no nulos.
- En promedio, hay 109 mil unidades por registro.
- La desviación estándar muy alta, lo que indica mucha dispersión, hay valores muy alejados del promedio.
- Hay cantidades negativas que se consideran no válidas en el análisis.
- El 25% de los datos tiene menos de 165 unidades.
- La mitad de los registros tiene menos de 655 unidades.
- El 75% tiene menos de 2878 unidades.
- El valor max es muy alto con respecto al 90% de los datos, se considera que hay valores extremos.

variables capacidad:

- Hay 1777 Valores no nulos.
- Promedio de capacidad muy alto.
- Muy alta dispersión también.
- Capacidad con valores negativos.
- Un cuarto de los productos tiene menos de ~33g.
- La mitad tiene menos de ~246g.
- 75% tiene menos de 36 kg.

• valor max 25,294,040.0 Más de 25 toneladas si está en gramos. Es muy probable que sea un error de carga.

Conlusiones y Recomendaciones:

- Hay outliers fuertes que sesgan el promedio.
- Hay datos negativos que no tienen sentido.
- El rango es enorme, desde gramos hasta toneladas en la columna capacidad.
- Se Requiere revisar unidades (g, kg, error de carga).
- Tratar outliers extremos y negativos.

2. EXPLORACIÓN GENERAL

```
In [9]: # Seleccionar columnas numéricas
        columnas_numericas = df_copia.select_dtypes(include='number').columns
        # Crear una lista para almacenar resultados
        resultados = []
        for col in columnas_numericas:
            total = len(df_copia)
            validos = df_copia[col].notna().sum()
            nulos = df_copia[col].isna().sum()
            # Se interpretan como mal registrados o erróneos los valores negativos o cero.
            erroneos = df_copia[col][df_copia[col] <= 0].count()</pre>
            media = df_copia[col].mean()
            mediana = df_copia[col].median()
            std = df_copia[col].std()
            resultados.append({
                "Columna": col,
                "Total": total,
                "Válidos": validos,
                 "Nulos": nulos,
                "Erróneos": erroneos,
                 "Media": round(media, 2),
                "Mediana": round(mediana, 2),
                 "Desvío estándar": round(std, 2)
            })
        # Mostrar resultados
        pd.DataFrame(resultados)
```

Out[9]:		Columna	Total	Válidos	Nulos	Erróneos	Media	Mediana	Desvío estándar
	0	Articulo	1777	1777	0	0	300,057,158.72	300,060,091.00	6,640.24
	1	Cantidad	1777	1693	84	6	109,210.49	655.00	582,171.96
	2	Capacidad	1777	1777	0	8	105,021.86	221.24	671,860.82

V) Análisis de columnas categóricas (válidos, nulos, mal registrados y cantidad de registros por categoría)

1. EXPLORACIÓN GENERAL

```
In [10]: # Seleccionar solo las columnas categóricas (no numéricas)
         columnas_categoricas = df_copia.select_dtypes(exclude='number').columns
         # Guardar resultados en una lista
         resultados = []
         for col in columnas_categoricas:
             total = len(df_copia)
             validos = df_copia[col].notna().sum()
             nulos = df_copia[col].isna().sum()
             categorias = df_copia[col].nunique()
             # Se interpretan como mal registrados o erróneos los valores vacíos
             erroneos = df_copia[col].isin(["", " ", "-", "Sin dato", "No aplica"]).sum()
             resultados.append({
                 "Columna": col,
                 "Total registros": total,
                 "Válidos": validos,
                 "Nulos": nulos,
                 "Mal registrados (vacíos o inválidos)": erroneos,
                 "Cantidad de categorías distintas": categorias
             })
         # Mostrar resultados
         pd.DataFrame(resultados)
```

		_			_	
\cap	 +	Г	1	a	П	
\cup			ж.	U	- 1	

	Columna	Total registros	Válidos	Nulos	Mal registrados (vacíos o inválidos)	Cantidad de categorías distintas
0	Distribuidor	1777	1777	0	0	20
1	Area	1777	1777	0	0	7
2	Descripcion	1777	1777	0	0	255
3	Linea	1777	1777	0	0	15
4	Rubro	1777	1777	0	0	3

1. EXPLORACIÓN PARCIAL

```
In [11]: for col in columnas_categoricas:
    print(f"\nColumna: {col}")
    print(df_copia[col].value_counts().sort_index())
```

Columna: Distribuidor	
Distribuidor	
BACOSHOPERS SRL	81
BAHIA BLANCA S.R.L.	95
BARASI HNOS SA	97
BRINDARSE S.A.	105
CHABS S. R. L.	51
DISTRIBUIDORA AMANECER S.R.L.	90
DISTRIBUIDORA CATAMARCA S. A.	87
DISTRIBUIDORA J.F.T. S.R.L.	91
DISTRIBUIDORA NORTE S.R.L.	53
DISTRIBUIDORA POSITANO SRL	98
ELECTRON SRL	92
LEGOS S.R.L	99
LERVO S. A.	63
LOGISTICAS S.R.L.	97
MARCELINA DISTRIBUIDORA S.A.	80
NEUQUEN S.R.L	108
PREMIUM S.R.L.	101
PRIMEROS PRODUCTOS S.A.	101
TOTAL CENTRO S.R.L.	87
USHUAIA S.R.L.	101
Name: count, dtype: int64	
Columna: Area	
Area	
Atlantico y Cordillera 306	
Centro y Cuyo 239	
Costa y La Pampa 277	
GBA Norte 260	
GBA Sur 283	
NEA y Litoral 220	
NOA 192	
Name: count, dtype: int64	
Columna: Descripcion	
Columna: Descripcion	
Descripcion 3d Mega Ques0 Pc Dts 23grx120	1
3d Mega Queso Pc Dts 23grx120	17
3d Mega Queso Pc Dts 23grx120	- -
3d Qu3s0 43gx75x1	1
3d Queso 143gx18x1	21
	• •
Twistos Minit Queso 155gx20 (2	0) 1
Twistos Minit Queso 40gx112x1	17
Twistos Minit Queso 40gx84	16
Twistos Minit Queso 95gx30x1	18
Twistos Minit Queso 95gx30x1 (30) 1
Name: count, Length: 255, dtyp	e: int64
Calumna, Lässa	
Columna: Linea	
Linea	
Gold/Salty 47	
Silver/Salty 33 Bronze/Salty 113	
Flavored Crackers 3	
TEANOTER CLACKELS	

```
Gold/Crakers
                 60
Gold/Salty
                 481
Pellet Snacks
                  2
Platinum/Crakers
                 66
Platinum/Salty
               403
Potato Chips
                  8
Silver/Cereals 164
Silver/Crakers
                33
                356
Silver/Salty
Tortilla Chips
                  2
Wheat Snacks
Name: count, dtype: int64
Columna: Rubro
Rubro
Cereals
        164
Crakers
        162
Salty 1451
Name: count, dtype: int64
```

Observaciones:

- Se detectaron problemas de tipeo, formato variable en la columna descripción.
- Posibles duplicados con diferentes formatos.

VI) Análisis de datos válidos, nulos y mal registrados en columnas no categóricas o numéricas

```
In [12]: # Seleccionar la columna "Articulo"
         col = "Articulo"
         # Total de registros
         total = len(df)
         # Valores válidos (no nulos)
         validos = df[col].notna().sum()
         # Valores nulos
         nulos = df[col].isna().sum()
         # Mal registrados (valores vacíos, guiones o espacios)
         mal_registrados = df[col].isin(["", " ", "-", "Sin dato", "No aplica"]).sum()
         # Mostrar resultados
         print(f"Columna: {col}")
         print(f"Total de registros: {total}")
         print(f"Válidos: {validos}")
         print(f"Nulos: {nulos}")
         print(f"Mal registrados: {mal_registrados}")
```

Columna: Articulo

Total de registros: 1777

Válidos: 1777 Nulos: 0

Mal registrados: 0

Determinando si hay códigos diferentes asociados a descripciones iguales o parecidas

```
In [13]: df_copia[['Articulo', 'Descripcion']]
Out[13]:
                   Articulo
                                                      Descripcion
             0 300063098
                                      Twistos Minit Queso 95gx30x1
              1 300063097
                                       Twistos Minit Queso 100gx30
             2 300052695
                                       Twistos Minit Jamon 100gx30
             3 300052696
                                     Twistos Minit Jamon 40gx112x1
             4 300063264
                                     Twistos Minit Queso 40qx112x1
          1772 300060200
                                              Tostitos 200gx14 (14)
          1773 300060191
                                            Doritos Queso 200gx14
          1774 300060231
                                               Lays Clasicas 330gx9
          1775 300030738 Quaker Barras Mousse De Choco 20x156g
          1776 300059547
                                        Doritos Queso 40gx58x1 Ch
```

1777 rows × 2 columns

```
In [14]: duplicados = df_copia.groupby('Descripcion')['Articulo'].nunique()
         duplicados = duplicados[duplicados > 1]
         print(duplicados)
        Descripcion
        3d Mega Queso Pc Dts 23grx120
                                         2
        3d Queso 143gx18x1
                                         2
        3d Queso 43gx75x1
                                         2
        3d Queso 85gx27x1
                                         2
        Cheetos 23grx108
                                         2
        Twistos Minit Jamon 40gx112x1
                                         2
        Twistos Minit Jamon 40gx84
                                         2
        Twistos Minit Queso 100gx30
                                         2
        Twistos Minit Queso 40gx112x1
                                         2
        Twistos Minit Queso 95gx30x1
                                         2
        Name: Articulo, Length: 83, dtype: int64
In [15]: df_copia[df_copia['Descripcion'].isin(duplicados.index)].sort_values('Descripcion')
```

	Descripcion	Articulo
416	3d Mega Queso Pc Dts 23grx120	300052023
49	3d Mega Queso Pc Dts 23grx120	300052757
824	3d Queso 143gx18x1	300058397
62	3d Queso 143gx18x1	300060190
1658	3d Queso 43gx75x1	300058395
•••		
1	Twistos Minit Queso 100gx30	300063097
1235	Twistos Minit Queso 40gx112x1	300063263
4	Twistos Minit Queso 40gx112x1	300063264
372	Twistos Minit Queso 95gx30x1	300063097
0	Twistos Minit Queso 95gx30x1	300063098

166 rows × 2 columns

Observaciones

Out[15]:

Hay 82 descripciones o productos bases iguales registrados con códigos diferentes.

VII) Limpieza de datos

1. Estandarizacion/ normalizacion de los datos de la columna Descripcion

```
In [16]: # Corregir errores ortograficos:
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('Pehuamar acanalada 230
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('Maniâ salâ peladoâ 75gx6
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('Twist0s Minit Qu3s0 40gx'
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('Pehuamar maicitos 265g
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('Pehuamar maicit0s 265g
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('Pep Ru3ditas 40gx60 Pi',
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('Pehuamar Paliqu3s0 90gx3')
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('Maniax Sal Y Lim0n 95gx6
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('3d Mega Ques0 Pc Dts 23g
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('Quak3r Barra Frutilla Co
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('Twist0s Minit Qu3s0 95gx
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('Maniax Aji Y Lim0n 110gx
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('Maniax Jap0n3s Sal 95gx4
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('Cheetos Ques0 140gx18x1'
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('D0rit0s Qu3s0 77gx17 Exp
         df_copia['Descripcion'] = df_copia['Descripcion'].replace('D0rit0s Dinamita Fh 70gx
```

```
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Twistos Minit Jam0n 155g
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Quaker Barra Frutilla CO
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Mani P3lad0 320gx17x1',
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Ch33t0s Qu3s0 229gx12x1'
df_copia['Descripcion'] = df_copia['Descripcion'].replace('3d Qu3s0 43gx75x1', '3d
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Lays Jam0n S3rran0 34gx7
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Lays Qso Y Cebolla 34gx7
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Twist0s Minit Queso 40gx
df copia['Descripcion'] = df copia['Descripcion'].replace('Twist0s Minit Qu3s0 155g
df_copia['Descripcion'] = df_copia['Descripcion'].replace('P3p Ru3ditas 40gx60 Pi',
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Mani Sal COn Pi3l 75gx64
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Pehuamar maicitos 265g
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Lays Qso Y Cebolla 34gx7
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Mani P3lad0 320gx17x1 (1)
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Ch33t0s Qu3s0 229gx12x1
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Pehuamar\xa0acanalada\xa
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Mani\xa0sal\xa0pelado\xa
df_copia['Descripcion'] = df_copia['Descripcion'].replace('PehuamaÂ\xa0maicitos\xa0
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Pehuamar\xa0maicitos\xa0
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Maniax Sal Y Lim0n 95gx6
df_copia['Descripcion'] = df_copia['Descripcion'].replace('Twist0s Minit Queso 40gx
```

In [17]: # # Verificamos los valores unicos resultantes de la columna Descripcion
df_copia['Descripcion'].unique()

```
Out[17]: array(['Twistos Minit Queso 95gx30x1', 'Twistos Minit Queso 100gx30',
                 'Twistos Minit Jamon 100gx30', 'Twistos Minit Jamon 40gx112x1',
                 'Twistos Minit Queso 40gx112x1', 'Twistos Minit Jamon 40gx84',
                 'Twistos Minit Jamon 155gx20', 'Pehuamar Acanalad 230gx14x1',
                 'Pehuamar Papa Lisa 230gx14x1', 'Pehuamar Acanalada 485x9',
                 'Pehuamar Papa Lisa 485gx9', 'Pehuamar Maicitos 260gx10x1',
                 'Doritos Queso 77gx26', 'Cheetos Queso 85gx24x1',
                 '3d Queso 85gx27x1', 'Doritos Dinamita Fh 70gx44x1',
                 'Lays Ondas Fh 70gx28', 'Cheetos Queso Crema 85gx24',
                 'Lays Queso Y Cebolla 77gx28', 'Mani\xa0sal\xa0pelado\xa075gx64x1',
                 'Lays Ketchup 77gx28x1', 'Lays Jamon Serrano 77gx28',
                 'Lays Provoleta 77gx28x1', 'Lays Mostaza 77gx28',
                 'Maniax Japones Jamon 95gx40x1', 'Maniax Japones Sal 95gx40x1',
                 'Tostitos 77gx26', 'Pep Comun 120grx21', 'Pep Rueditas 120grx21',
                 'Maniax Aji Y Limon 110gx56', 'Mani Sal Con Piel 75gx64x1',
                 'Mani Con Piel 150gx30', 'Pep Ramitas Queso 120gx21',
                 'Maniax Sal Y Limon 95gx60x1', 'Doritos Queso 77gx17 Exp Arg',
                 'Mani Pelado 135gx40x1', 'Mani Pelado 85gx58',
                 'Doritos Dinamita Fh 70gx64x1 Ex Arg', 'Lays Cheddar 77gx28',
                 'Doritos Queso 40gx70x1', 'Cheetos Queso 43gx70x1',
                 '3d Queso 43gx75x1', 'Cheetos Queso Crema 43gx66',
                 'Doritos Dinamita Fh 33gx110x1', 'Lays Ondas Fh 30gx72',
                 'Pep Comun 84grx36', 'Lays Clasicas 20grx76', 'Cheetos 23grx108',
                 'Pep Rueditas 74grx36', '3d Mega Queso Pc Dts 23grx120',
                 'Pep Ramitas Queso 84gx36', 'Lays Provoleta 34gx72x1',
                 'Pep Comun 40gx60 Pi', 'Pep Rueditas 40gx60 Pi',
                 'Lays Jamon Serrano 34gx72', 'Lays Queso Y Cebolla 34gx72',
                 'Pep Ramitas Queso 40gx60', 'Lays Ketchup 34gx72x1',
                 'Doritos Queso 40gx58x1 Ch', 'Doritos Dinamita Fh 33gx40x1 Ex Arg',
                 'Lays Mostaza 34gx72x1', 'Doritos Queso 129gx19',
                 '3d Queso 143gx18x1', 'Cheetos Queso 140gx18x1',
                 'Pehuamar Acanalada 80gx25', 'Pehuamar Maicitos 125gx16',
                 'Pehuamar Papa Lisa 75gx28x1', 'Pehuamar Papa Acana 135gx19',
                 'Lays Clasicas 230gx14x1', 'Pehuamar Papa Lisa 135gx19x1',
                 'Doritos Queso 220gx14', 'Pehuamar Palisal 90gx36',
                 'Cheetos Queso 229gx12x1', 'Lays Clasicas 330gx9',
                 'Lays Jamon Serrano 122gx19', 'Tostitos 129gx19',
                 'Pehuamar Paliqueso 90gx36', 'Doritos Queso 200gx14',
                 'Pehuamar Palisal 165gx21x1', 'Tostitos 200gx14',
                 'Pehuamar Paliqueso 165gx21x1', 'Mani Pelado 320gx17x1',
                 'Lays Clasicas 249grx14', 'Quaker Avena Instant 18x280g Arg',
                 'Quaker Avena Tradic 18x280g', 'Quaker Barra Frutilla C 20x180g',
                 'Quaker Barra Chispas De Choco 20x156g',
                 'Quaker Barras Mousse De Choco 20x156g',
                 'Quaker Avena Instant 18x500g Arg',
                 'Quaker Avena Tradic 18x550g Arg',
                 'Quaker Avena Extra Fina 18x470g',
                 'Quaker Cereales Honey Graham 9x190g',
                 'Quaker Cereales Honey Nut Oats 9x190g',
                 'Twistos Minit Jamon 95gx30x1', 'Twistos Minit Queso 40gx84',
                 'Twistos Minit Queso 155gx20', 'Pehuamar Acanalada 245gx14',
                 'Pehuamar Palisal 620gx6x1', 'Pehuama maicitos 265gx10x1',
                 'Lays Clasicas 85gx25x1', 'Lays Clasicas 40gx68x1',
                 'Pep Rueditas 60x40 Gr Pi', 'Pep 60x40 Gr Cp',
                 'Lays Clasicas 134gx19x1', 'Pehuamar Paliqueso 620gx6x1',
                 'Cheetos Queso 94x24', '3d Queso 92gx27x1',
```

```
'Lays Mayonesa 77gx28x1',
'Quaker Barra Frutilla Con Crema 180gx20',
'Quaker Barra Chispas De Choco 156gx20',
'Quaker Barras Mousse De Choco 156gx20',
'Quaker Avena Instant 280g Arg', 'Quaker Avena Tradic 280g',
'Quaker Avena Extra Fina 470g', 'Quaker Avena Instant 500g Arg',
'Quaker Cereales Honey Graham 190g',
'Quaker Avena Tradic 550g Arg',
'Quaker Cereales Honey Nut Oats 190g',
'Lays Clasicas 85gx25x1 (Procedencia: MB)',
'Doritos Dinamita Fh 70gx44x1 (Procedencia: FH-D)',
'Lays Jamon Serrano 77gx28 (Procedencia: MB)',
'Lays Ondas Fh 70gx28 (Procedencia: FH-O)',
'Lays Queso Y Cebolla 77gx28 (Procedencia: MB)',
'Lays Ketchup 77gx28x1 (Procedencia: MB)',
'Lays Mostaza 77gx28 (Procedencia: MB)',
'Lays Clasicas 40gx68x1 (Procedencia: SB)',
'Lays Ondas Fh 30gx72 (Procedencia: FH-0)',
'Doritos Dinamita Fh 33gx110x1 (Procedencia: FH-D)',
'Lays Clasicas 20grx76 (Procedencia: PC)', 'Mani Pelado 150gx30',
'Maniax Mani Japones Jamon 110gx36', 'Maniax Sal Y Limon 110gx56',
'Mani Pelado 110gx40', 'Doritos Queso 129gx17 Exp Arg',
'Maniax Mani Japones Sal 110gx36', 'Lays Mayonesa 34gx72x1',
'Cheetos 151grx18', 'Quaker Avena Instant 18x280g Arg (18)',
'Quaker Avena Instant 18x500g Arg (18)',
'Quaker Avena Tradic 18x280g (18)',
'Quaker Barra Frutilla Con Crema 180gx20 (120)',
'Quaker Avena Extra Fina 18x470g (18)',
'Quaker Avena Tradic 18x550g Arg (18)',
'Quaker Barra Chispas De Choco 156gx20 (120)',
'Quaker Cereales Honey Graham 9x190g (9)',
'Quaker Barras Mousse De Choco 156gx20 (120)',
'Quaker Cereales Honey Nut Oats 9x190g (9)',
'Twistos Minit Jamon 95gx30x1 (30)',
'Twistos Minit Queso 95gx30x1 (30)',
'Twistos Minit Jamon 100gx30 (30)',
'Twistos Minit Queso 100gx30 (30)',
'Twistos Minit Jamon 40gx112x1 (112)',
'Twist0s Minit Queso 40gx84 (84)',
'Twistos Minit Jamon 40gx84 (84)',
'Twistos Minit Jamon 155gx20 (20)',
'Twistos Minit Queso 155gx20 (20)',
'Pehuamar\xa0maicitos\xa0265gx10x1 (10)',
'Pehuamar Papa Lisa 485gx9 (9)', 'Pehuamar Acanalada 485x9 (9)',
'Pehuamar Acanalada 245gx14 (14)',
'Pehuamar Papa Lisa 230gx14x1 (14)',
'Pehuamar Palisal 620gx6x1 (6)', 'Pehuamar Paliqueso 620gx6x1 (6)',
'Doritos Queso 77gx26 (26)', 'Lays Clasicas 85gx25x1 (25)',
'3d Queso 85gx27x1 (27)', 'Doritos Dinamita Fh 70gx44x1 (44)',
'Lays Ondas Fh 70gx28 (28)', 'Cheetos Queso 85gx24x1 (24)',
'Pep Rueditas 120grx21 (21)', 'Lays Queso Y Cebolla 77gx28 (28)',
'Lays Jamon Serrano 77gx28 (28)', 'Lays Ketchup 77gx28x1 (28)',
'Lays Provoleta 77gx28x1 (28)', 'Cheetos Queso Crema 85gx24 (24)',
'Lays Mostaza 77gx28 (28)', 'Mani Sal Con Piel 75gx64x1 (64)',
'Maniax Japones Jamon 95gx40x1 (40)', 'Mani Pelado 85gx58 (58)',
'Mani Pelado 135gx40x1 (40)', 'Maniax Japones Sal 95gx40x1 (40)',
```

```
'Tostitos 77gx26 (26)', 'Pep Ramitas Queso 120gx21 (21)',
'Pep Comun 120grx21 (21)', 'Mani Con Piel 150gx30 (30)',
'Maniax Aji Y Limon 110gx56 (56)', 'Cheetos Queso 94x24 (24)',
'Maniax Sal Y Limon 95gx60x1 (60)',
'Doritos Dinamita Fh 70gx64x1 Ex Arg (64)',
'Maniax Mani Japones Sal 110gx36 (36)',
'Doritos Queso 40gx70x1 (70)', 'Lays Clasicas 40gx68x1 (68)',
'3d Queso 43gx75x1 (75)', 'Cheetos Queso 43gx70x1 (70)',
'Doritos Dinamita Fh 33gx110x1 (110)',
'Pep Rueditas 40gx60 Pi (60)', 'Lays Ondas Fh 30gx72 (72)',
'Lays Clasicas 20grx76 (76)', 'Pep Rueditas 74grx36 (36)',
'Cheetos Queso Crema 43gx66 (66)',
'Lays Jamon Serrano 34gx72 (72)',
'3d Mega Queso Pc Dts 23grx120 (120)', 'Cheetos 23grx108 (108)',
'Pep Comun 84grx36 (36)', 'Lays Queso Y Cebolla 34gx72 (72)',
'Pep Comun 40gx60 Pi (60)', 'Pep Ramitas Queso 84gx36 (36)',
'Lays Ketchup 34gx72x1 (72)', 'Lays Provoleta 34gx72x1 (72)',
'Pep Ramitas Queso 40gx60 (60)',
'Doritos Dinamita Fh 33gx40x1 Ex Arg (40)',
'Doritos Queso 129gx19 (19)', 'Pehuamar Maicitos 125gx16 (16)',
'Lays Clasicas 134gx19x1 (19)', '3d Queso 143gx18x1 (18)',
'Pehuamar Palisal 90gx36 (36)', 'Pehuamar Paliqueso 90gx36 (36)',
'Cheetos Queso 140gx18x1 (18)', 'Pehuamar Acanalada 80gx25 (25)',
'Pehuamar Papa Lisa 75gx28x1 (28)',
'Pehuamar Papa Acana 135gx19 (19)',
'Pehuamar Papa Lisa 135gx19x1 (19)', 'Tostitos 129gx19 (19)',
'Pehuamar Palisal 165gx21x1 (21)', 'Doritos Queso 220gx14 (14)',
'Pehuamar Paliqueso 165gx21x1 (21)',
'Lays Clasicas 230gx14x1 (14)', 'Lays Jamon Serrano 122gx19 (19)',
'Mani Pelado 320gx17x1 (17)', 'Doritos Queso 129gx17 Exp Arg (17)',
'Lays Clasicas 330gx9 (9)', 'Cheetos Queso 229gx12x1 (12)',
'Tostitos 200gx14 (14)'], dtype=object)
```

```
In [18]: # cantidad de valores unicos:
    df_copia['Descripcion'].nunique()
```

Out[18]: 233

Se detectan valores de descripcion que estan repetidos, solo que tienen entre parentesis numeros. Estos son valores erroneos y deben modificarse para que muestren su descripcion correcta sin este parentesis y el valor que tenga dentro

Normalizacion de valores con parentesis al final del nombre:

Utilizamos expresiones regulares para eliminar todo lo que esté entre paréntesis y a los parentesis

```
In [19]: df_copia['Descripcion'] = df_copia['Descripcion'].str.replace(r'\s*\([^)]*\)$', '',
In [20]: # Verificamos Los valores unicos resultantes de La columna Descripcion
    df_copia['Descripcion'].unique()
```

```
Out[20]: array(['Twistos Minit Queso 95gx30x1', 'Twistos Minit Queso 100gx30',
                 'Twistos Minit Jamon 100gx30', 'Twistos Minit Jamon 40gx112x1',
                 'Twistos Minit Queso 40gx112x1', 'Twistos Minit Jamon 40gx84',
                 'Twistos Minit Jamon 155gx20', 'Pehuamar Acanalad 230gx14x1',
                 'Pehuamar Papa Lisa 230gx14x1', 'Pehuamar Acanalada 485x9',
                 'Pehuamar Papa Lisa 485gx9', 'Pehuamar Maicitos 260gx10x1',
                 'Doritos Queso 77gx26', 'Cheetos Queso 85gx24x1',
                 '3d Queso 85gx27x1', 'Doritos Dinamita Fh 70gx44x1',
                 'Lays Ondas Fh 70gx28', 'Cheetos Queso Crema 85gx24',
                 'Lays Queso Y Cebolla 77gx28', 'Mani\xa0sal\xa0pelado\xa075gx64x1',
                 'Lays Ketchup 77gx28x1', 'Lays Jamon Serrano 77gx28',
                 'Lays Provoleta 77gx28x1', 'Lays Mostaza 77gx28',
                 'Maniax Japones Jamon 95gx40x1', 'Maniax Japones Sal 95gx40x1',
                 'Tostitos 77gx26', 'Pep Comun 120grx21', 'Pep Rueditas 120grx21',
                 'Maniax Aji Y Limon 110gx56', 'Mani Sal Con Piel 75gx64x1',
                 'Mani Con Piel 150gx30', 'Pep Ramitas Queso 120gx21',
                 'Maniax Sal Y Limon 95gx60x1', 'Doritos Queso 77gx17 Exp Arg',
                 'Mani Pelado 135gx40x1', 'Mani Pelado 85gx58',
                 'Doritos Dinamita Fh 70gx64x1 Ex Arg', 'Lays Cheddar 77gx28',
                 'Doritos Queso 40gx70x1', 'Cheetos Queso 43gx70x1',
                 '3d Queso 43gx75x1', 'Cheetos Queso Crema 43gx66',
                 'Doritos Dinamita Fh 33gx110x1', 'Lays Ondas Fh 30gx72',
                 'Pep Comun 84grx36', 'Lays Clasicas 20grx76', 'Cheetos 23grx108',
                 'Pep Rueditas 74grx36', '3d Mega Queso Pc Dts 23grx120',
                 'Pep Ramitas Queso 84gx36', 'Lays Provoleta 34gx72x1',
                 'Pep Comun 40gx60 Pi', 'Pep Rueditas 40gx60 Pi',
                 'Lays Jamon Serrano 34gx72', 'Lays Queso Y Cebolla 34gx72',
                 'Pep Ramitas Queso 40gx60', 'Lays Ketchup 34gx72x1',
                 'Doritos Queso 40gx58x1 Ch', 'Doritos Dinamita Fh 33gx40x1 Ex Arg',
                 'Lays Mostaza 34gx72x1', 'Doritos Queso 129gx19',
                 '3d Queso 143gx18x1', 'Cheetos Queso 140gx18x1',
                 'Pehuamar Acanalada 80gx25', 'Pehuamar Maicitos 125gx16',
                 'Pehuamar Papa Lisa 75gx28x1', 'Pehuamar Papa Acana 135gx19',
                 'Lays Clasicas 230gx14x1', 'Pehuamar Papa Lisa 135gx19x1',
                 'Doritos Queso 220gx14', 'Pehuamar Palisal 90gx36',
                 'Cheetos Queso 229gx12x1', 'Lays Clasicas 330gx9',
                 'Lays Jamon Serrano 122gx19', 'Tostitos 129gx19',
                 'Pehuamar Paliqueso 90gx36', 'Doritos Queso 200gx14',
                 'Pehuamar Palisal 165gx21x1', 'Tostitos 200gx14',
                 'Pehuamar Paliqueso 165gx21x1', 'Mani Pelado 320gx17x1',
                 'Lays Clasicas 249grx14', 'Quaker Avena Instant 18x280g Arg',
                 'Quaker Avena Tradic 18x280g', 'Quaker Barra Frutilla C 20x180g',
                 'Quaker Barra Chispas De Choco 20x156g',
                 'Quaker Barras Mousse De Choco 20x156g',
                 'Quaker Avena Instant 18x500g Arg',
                 'Quaker Avena Tradic 18x550g Arg',
                 'Quaker Avena Extra Fina 18x470g',
                 'Quaker Cereales Honey Graham 9x190g',
                 'Quaker Cereales Honey Nut Oats 9x190g',
                 'Twistos Minit Jamon 95gx30x1', 'Twistos Minit Queso 40gx84',
                 'Twistos Minit Queso 155gx20', 'Pehuamar Acanalada 245gx14',
                 'Pehuamar Palisal 620gx6x1', 'Pehuama maicitos 265gx10x1',
                 'Lays Clasicas 85gx25x1', 'Lays Clasicas 40gx68x1',
                 'Pep Rueditas 60x40 Gr Pi', 'Pep 60x40 Gr Cp',
                 'Lays Clasicas 134gx19x1', 'Pehuamar Paliqueso 620gx6x1',
                 'Cheetos Queso 94x24', '3d Queso 92gx27x1',
```

```
'Lays Mayonesa 77gx28x1',

'Quaker Barra Frutilla Con Crema 180gx20',

'Quaker Barra Chispas De Choco 156gx20',

'Quaker Barras Mousse De Choco 156gx20',

'Quaker Avena Instant 280g Arg', 'Quaker Avena Tradic 280g',

'Quaker Avena Extra Fina 470g', 'Quaker Avena Instant 500g Arg',

'Quaker Cereales Honey Graham 190g',

'Quaker Avena Tradic 550g Arg',

'Quaker Avena Tradic 550g Arg',

'Quaker Cereales Honey Nut Oats 190g', 'Mani Pelado 150gx30',

'Maniax Mani Japones Jamon 110gx36', 'Maniax Sal Y Limon 110gx56',

'Mani Pelado 110gx40', 'Doritos Queso 129gx17 Exp Arg',

'Maniax Mani Japones Sal 110gx36', 'Lays Mayonesa 34gx72x1',

'Cheetos 151grx18', 'Twist0s Minit Queso 40gx84',

'Pehuamar\xa0maicitos\xa0265gx10x1'], dtype=object)
```

```
In [21]: # cantidad de valores unicos:
    df_copia['Descripcion'].nunique()
```

Out[21]: 128

Obtener por valor de descripcion, los codigos de articulos asociados

Identificar cual codigo de articulo se repite mas segun el valor unico de descripcion:

```
Descripcion Articulo Frecuencia
    3d Mega Queso Pc Dts 23grx120 300052023
0
2
              3d Queso 143gx18x1 300058397
                                                   21
4
               3d Queso 43gx75x1 300058395
                                                   20
                3d Queso 85gx27x1 300060661
6
                                                   19
8
                3d Queso 92gx27x1 300058394
                                                   6
. .
                                       . . .
                                                   . . .
203 Twistos Minit Queso 100gx30 300052695
                                                   10
205 Twistos Minit Queso 155gx20 300052694
                                                   17
206 Twistos Minit Queso 40gx112x1 300063263
                                                   19
      Twistos Minit Queso 40gx84 300052696
208
                                                   16
209
    Twistos Minit Queso 95gx30x1 300063097
                                                   19
```

[128 rows x 3 columns]

Crear un diccionario con la Descripcion como clave y el código de Articulo más frecuente como valor, para luego usarlo para reemplazar los codigos de artículos en el dataframe:

```
In [23]: # Crear el diccionario {Descripcion: Articulo}
dicc_articulo_frecuente = dict(zip(articulo_mas_frecuente['Descripcion'], articulo_
```

```
In [24]: # Reemplazar en la columna 'Articulo' con el valor del diccionario según la descrip
df_copia['Articulo'] = df_copia['Descripcion'].map(dicc_articulo_frecuente)

In [25]: # Contar cuantos codigos de articulo únicos hay por cada descripción
    verificacion = df_copia.groupby('Descripcion')['Articulo'].nunique().reset_index(na
    # Mostrar resultados
    print(verificacion)
```

	Descripcion	Cantidad_codigos
0	3d Mega Queso Pc Dts 23grx120	1
1	3d Queso 143gx18x1	1
2	3d Queso 43gx75x1	1
3	3d Queso 85gx27x1	1
4	3d Queso 92gx27x1	1
	•••	•••
123	Twistos Minit Queso 100gx30	1
124	Twistos Minit Queso 155gx20	1
125	Twistos Minit Queso 40gx112x1	1
126	Twistos Minit Queso 40gx84	1
127	Twistos Minit Queso 95gx30x1	1

[128 rows x 2 columns]

2. Datos Ausentes (nulos):

Se detectaron 84 valores nulos en la columna Cantidad, que representan unidades vendidas. Este campo es fundamental y no debería estar vacío

```
In [26]: # Ver registros con valores nulos en la columna 'Cantidad'
df_copia[df_copia['Cantidad'].isna()].head()
```

Out[26]:		Distribuidor	Area	Articulo	Descripcion	Cantidad	Capacidad	
	37	TOTAL CENTRO S.R.L.	NEA y Litoral	300059753	Doritos Dinamita Fh 70gx64x1 Ex Arg	<na></na>	0.51	Golc
	61	TOTAL CENTRO S.R.L.	NEA y Litoral	300060190	Doritos Queso 129gx19	<na></na>	579,148.00	Silve
	68	TOTAL CENTRO S.R.L.	NEA y Litoral	300060194	Lays Clasicas 230gx14x1	<na></na>	99,495.00	Silve
	93	BRINDARSE S.A.	NOA	300063098	Twistos Minit Jamon 95gx30x1	<na></na>	8,835.00	Gold/C
	114	BRINDARSE S.A.	NOA	300063271	Mani sal pelado 75gx64x1	<na></na>	674.40	Golc

```
In [27]: # Eliminar Las filas con nulos en 'Cantidad'
df_copia = df_copia[df_copia['Cantidad'].notna()]
```

3. Datos erróneos

Se encontraron valores negativos en las columnas Cantidad y Capacidad. En este contexto, no tiene sentido tener cantidades o pesos negativos.

```
In [28]: # Mostrar registros con cantidad negativa
df_copia[df_copia['Cantidad'] < 0]</pre>
```

Out[28]:		Distribuidor	Area	Articulo	Descripcion	Cantidad	Capacidad	Linea
	578	LOGISTICAS S.R.L.	Atlantico y Cordillera	300060352	Lays Mayonesa 77gx28x1	-2	-0.15	Gold/Salty
	588	LOGISTICAS S.R.L.	Atlantico y Cordillera	300062122	Lays Mostaza 34gx72x1	-3	-0.10	Potato Chips
	943	PREMIUM S.R.L.	GBA Sur	300052892	Cheetos Queso 94x24	-1	-0.09	Gold/Salty
	944	PREMIUM S.R.L.	GBA Sur	300060352	Lays Mayonesa 77gx28x1	-33	-2,541.00	Gold/Salty
	966	PREMIUM S.R.L.	GBA Sur	300060354	Lays Ketchup 34gx72x1	-2	-0.07	Platinum/Salty
	967	PREMIUM S.R.L.	GBA Sur	300060353	Lays Mayonesa 34gx72x1	-14	-0.48	Platinum/Salty

```
In [29]: # Eliminar filas con cantidades negativas
    df_copia = df_copia[df_copia['Cantidad'] >= 0]

In [30]: # Revisar capacidad negativa o fuera de escala, filtrando capacidades sospechosas
    df_copia[df_copia['Capacidad'] < 0] # Negativas
    df_copia[df_copia['Capacidad'] > 1000000] # Muy grandes (1 tonelada o mas)
```

Out[30]:

	Distribuidor	Area	Articulo	Descripcion	Cantidad	Сара
109	BRINDARSE S.A.	NOA	300060195	Lays Clasicas 85gx25x1	35605	3,026,4
110	BRINDARSE S.A.	NOA	300060192	Doritos Queso 77gx26	20953	1,613,3
159	BRINDARSE S.A.	NOA	300060193	Lays Clasicas 134gx19x1	9163	1,227,8
190	DISTRIBUIDORA AMANECER S.R.L.	Costa y La Pampa	300062972	Pehuama maicitos 265gx10x1	6697	1,774,7
195	DISTRIBUIDORA AMANECER S.R.L.	Costa y La Pampa	300060192	Doritos Queso 77gx26	18431	1,419,1
196	DISTRIBUIDORA AMANECER S.R.L.	Costa y La Pampa	300060195	Lays Clasicas 85gx25x1	14593	1,240,4
286	DISTRIBUIDORA POSITANO SRL	GBA Norte	300060095	Pehuamar Papa Lisa 485gx9	4771	2,313,9
293	DISTRIBUIDORA POSITANO SRL	GBA Norte	300060192	Doritos Queso 77gx26	26226	2,019,4
294	DISTRIBUIDORA POSITANO SRL	GBA Norte	300060195	Lays Clasicas 85gx25x1	21909	1,862,2
915	PREMIUM S.R.L.	GBA Sur	300060195	Lays Clasicas 85gx25x1	35799	3,042,9
918	PREMIUM S.R.L.	GBA Sur	300060230	Lays Jamon Serrano 77gx28	16908	1,301,9
919	PREMIUM S.R.L.	GBA Sur	300060664	Cheetos Queso 85gx24x1	15437	1,312,1
951	PREMIUM S.R.L.	GBA Sur	300052757	Pep Rueditas 74grx36	14314	1,059,2
968	PREMIUM S.R.L.	GBA Sur	300060190	Doritos Queso 129gx19	10716	1,382,3
969	PREMIUM S.R.L.	GBA Sur	300060193	Lays Clasicas 134gx19x1	10119	1,355,9
1048	PRIMEROS PRODUCTOS S.A.	GBA Sur	300063098	Twistos Minit Jamon 95gx30x1	11893	1,129,8
1057	PRIMEROS PRODUCTOS S.A.	GBA Sur	300062972	Pehuamar maicitos 265gx10x1	6065	1,607,2
1058	PRIMEROS PRODUCTOS S.A.	GBA Sur	300060095	Pehuamar Papa Lisa 485gx9	5255	2,548,6
1065	PRIMEROS PRODUCTOS S.A.	GBA Sur	300060195	Lays Clasicas 85gx25x1	37517	3,188,5
1093	PRIMEROS PRODUCTOS S.A.	GBA Sur	300058395	3d Queso 43gx75x1	25048	1,077,0

	Distribuidor	Area	Articulo	Descripcion	Cantidad	Capa
1112	PRIMEROS PRODUCTOS S.A.	GBA Sur	300060190	Doritos Queso 129gx19	9754	1,258,2
1159	BAHIA BLANCA S.R.L.	Costa y La Pampa	300060192	Doritos Queso 77gx26	16036	1,234,7
1160	BAHIA BLANCA S.R.L.	Costa y La Pampa	300060195	Lays Clasicas 85gx25x1	13957	1,186,3
1201	BAHIA BLANCA S.R.L.	Costa y La Pampa	300052758	Pehuamar Maicitos 125gx16	8697	1,087,1
1346	LEGOS S.R.L	GBA Norte	300060192	Doritos Queso 77gx26	17455	1,344,(
1347	LEGOS S.R.L	GBA Norte	300060195	Lays Clasicas 85gx25x1	12221	1,038,7
1437	BARASI HNOS SA	Centro y Cuyo	300060192	Doritos Queso 77gx26	328494	25,294,(
1515	NEUQUEN S.R.L	Atlantico y Cordillera	300063098	Twistos Minit Jamon 95gx30x1	10585	1,005,5
1524	NEUQUEN S.R.L	Atlantico y Cordillera	300060095	Pehuamar Papa Lisa 485gx9	12159	5,897,1
1526	NEUQUEN S.R.L	Atlantico y Cordillera	300060096	Pehuamar Acanalada 485x9	6577	3,189,8
1532	NEUQUEN S.R.L	Atlantico y Cordillera	300060195	Lays Clasicas 85gx25x1	24015	2,041,2
1533	NEUQUEN S.R.L	Atlantico y Cordillera	300060192	Doritos Queso 77gx26	19013	1,464,(
1588	NEUQUEN S.R.L	Atlantico y Cordillera	300060193	Lays Clasicas 134gx19x1	7651	1,025,2
1694	PREMIUM S.R.L.	GBA Sur	300060190	Doritos Queso 129gx19	10716	1,382,3
1727	BAHIA BLANCA S.R.L.	Costa y La Pampa	300060195	Lays Clasicas 85gx25x1	13957	1,186,3

Se detectaron Artículos con la misma cantidad de unidades en valores atipicos, lo que representan un error de carga en los datos, por lo que los excluimos del DataSet.

Excluir Registros cuyo valor de la columna cantidad es igual a 3284940

```
In [32]: df_copia = df_copia[df_copia['Cantidad'] != 3284940]
```

4. Datos duplicados

Se encontraron descripciones de productos que aparecen más de una vez con diferentes códigos de artículo, lo que puede ser un duplicado lógico

```
In [33]: # Detección de duplicados
    duplicados = df_copia.groupby('Descripcion')['Articulo'].nunique()
    duplicados = duplicados[duplicados > 1]
    print(duplicados)

Series([], Name: Articulo, dtype: int64)

In [34]: # Ver duplicados exactos
    df_copia[df_copia.duplicated()]
```

,		Distribuidor	Area	Articulo	Descripcion	Cantidad	Capacidad	Line
	1692	LEGOS S.R.L	GBA Norte	300062584	Lays Provoleta 77gx28x1	2180	167.86	Gold/Sal
	1693	DISTRIBUIDORA J.F.T. S.R.L.	Centro y Cuyo	300060092	Pehuamar Palisal 165gx21x1	9	1,485.00	Silver/Sal
	1695	BAHIA BLANCA S.R.L.	Costa y La Pampa	300060191	Doritos Queso 200gx14	52	10.40	Silver/Sal
	1696	DISTRIBUIDORA POSITANO SRL	GBA Norte	300060869	Maniax Sal Y Limon 95gx60x1	321	30,495.00	Gold/Sal
	1697	NEUQUEN S.R.L	Atlantico y Cordillera	300061021	Maniax Japones Jamon 95gx40x1	1064	101.08	Gold/Sal
	•••							
	1772	PRIMEROS PRODUCTOS S.A.	GBA Sur	300060200	Tostitos 200gx14	21	4.20	Silver/Sal
	1773	LOGISTICAS S.R.L.	Atlantico y Cordillera	300060191	Doritos Queso 200gx14	34	6.80	Silver/Sal
	1774	DISTRIBUIDORA POSITANO SRL	GBA Norte	300060231	Lays Clasicas 330gx9	202	66.66	Silver/Sal
	1775	BRINDARSE S.A.	NOA	300030738	Quaker Barras Mousse De Choco 20x156g	178	4,628.00	Silver/Cerea
	1776	DISTRIBUIDORA J.F.T. S.R.L.	Centro y Cuyo	300059547	Doritos Queso 40gx58x1 Ch	35	1.40	Platinum/Sal

78 rows × 8 columns

Out[34]:

```
In [35]: # Eliminar duplicados exactos
df_copia = df_copia.drop_duplicates()
```

Comparación entre el dataset inicial y el resultante luego de la limpieza

In [36]: df_copia.info() <class 'pandas.core.frame.DataFrame'> Index: 1519 entries, 0 to 1690 Data columns (total 8 columns): Non-Null Count Dtype Column ------- -----Distribuidor 1519 non-null object 0 1519 non-null object 1 Area 2 Articulo 1519 non-null int64 3 Descripcion 1519 non-null object 4 Cantidad 1519 non-null Int64 5 Capacidad 1519 non-null float64 6 Linea 1519 non-null object 7 Rubro 1519 non-null object dtypes: Int64(1), float64(1), int64(1), object(5)

Luego del proceso de limpieza, el dataset quedó con 1519 registros, por contener:

Valores nulos en Cantidad

memory usage: 108.3+ KB

- Valores negativos o extremos en Cantidad y Capacidad
- Registros duplicados exactos

Se transformó la columna Cantidad al tipo entero (Int64), manteniendo compatibilidad con operaciones matemáticas y control de nulos.

📊 Estadísticas de 'Cantidad':

```
1,519.00
count
      2,116.31
mean
       4,339.20
std
           1.00
min
25%
        155.00
       575.00
50%
      2,363.00
75%
       5,554.60
90%
       59,733.00
max
```

Name: Cantidad, dtype: Float64

📊 Estadísticas de 'Capacidad':

```
1,519.00
count
      58,841.72
mean
std 148,674.11
           0.10
min
25%
           28.24
          219.22
50%
      27,764.00
75%
     186,559.80
90%
       978,435.00
```

Name: Capacidad, dtype: float64

• Cantidad:

Los cambios fueron sutiles, se corrigieron valores mínimos inválidos (como los negativos) y se eliminó un conjunto de registros que correspondían a errores o duplicados. Esto resulto en una ligera disminución del conteo total y de los valores centrales como la mediana y los percentiles. La media y la desviación estándar se mantuvieron casi sin variaciones, lo cual sugiere que la distribución general estaba menos afectada por outliers.

• Capacidad:

Tuvo grandes cambios tras la limpieza. La media descendió de más de 105 mil a alrededor de 59 mil, y la desviación estándar se redujo considerablemente, lo que indica que existían valores extremos (outliers) o datos erróneos, como cantidades negativas o excesivamente grandes.

```
In [38]: # Exportar el dataframe limpio:
    df_copia.to_excel('df_limpio.xlsx', index=False)
    df_limpio = df_copia
```

VIII) Gráficos:

1. Gráfico de torta – Distribución de ventas por Área:

```
In [39]: ventas_por_area = df_limpio.groupby('Area')['Cantidad'].sum()
  plt.figure(figsize=(8, 8))
  plt.pie(ventas_por_area, labels=ventas_por_area.index, autopct='%1.1f%%', startangl
  plt.title('Distribución porcentual de ventas por área geográfica')
  plt.axis('equal')
  plt.show()
```


• Análisis de la Distribución Porcentual de Ventas por Área Geográfica:

El gráfico circular muestra la distribución porcentual de las ventas totales realizadas por la empresa en diferentes regiones geográficas de Argentina. Este análisis permite identificar concentraciones de demanda y orientar la planificación comercial y logística.

Resultados observados:

GBA Sur representa la mayor participación, con un 25.5% del total de ventas, lo que sugiere una alta concentración de clientes o una red de distribución más activa en esa zona.

Le siguen GBA Norte (19.9%) y Centro y Cuyo (14.6%), ambas regiones con una participación relevante que supera el 10%.

Otras regiones con participación significativa son Costa y La Pampa (13.6%) y Atlántico y Cordillera (10.7%).

En contraste, NEA y Litoral (7.0%) y NOA (8.7%) presentan los valores más bajos, lo que podría reflejar un menor desarrollo comercial o una cobertura menos eficiente en estas áreas.

La distribución no es uniforme, presentando un desbalance claro hacia el área metropolitana de Buenos Aires, que en conjunto (GBA Norte + GBA Sur) acapara el 45.4% de las ventas. Esto puede responder a una mayor densidad poblacional, poder adquisitivo e infraestructura comercial.

Recomendaciones estratégicas:

- -Optimización de recursos en zonas de alta demanda (GBA Sur y Norte), focalizando esfuerzos en fidelización y retención de clientes.
- -Análisis de potencial de crecimiento en zonas con baja participación (NEA, NOA), explorando campañas regionales, promociones o expansión de canales de distribución.
 - 2. Gráfico de barras Top 10 productos más vendidos

```
import re

# Agrupar por descripción
productos_top = df_limpio.groupby('Descripcion')['Cantidad'].sum().sort_values(asce

# Limpiar etiquetas:
etiquetas_limpias = productos_top.index.to_series().apply(lambda x: re.sub(r'x\d.*'

# Graficar con descripción y gramos por unidad
plt.figure(figsize=(14, 6))
plt.bar(etiquetas_limpias, productos_top.values, color=plt.cm.Set2.colors)
plt.title('Top 10 productos más vendidos')
plt.xlabel('Producto')
plt.ylabel('Cantidad vendida')
plt.xticks(rotation=50, fontsize=10)
plt.tight_layout()
plt.show()
```


Análisis de los productos más vendidos:

El gráfico de barras presenta los diez productos con mayor cantidad de unidades vendidas, lo que permite identificar cuáles son los principales impulsores del volumen de ventas de la compañía.

Resultados observados:

Doritos Queso 40g encabeza el ranking con más de 270.000 unidades vendidas, seguido por Lays Clásicas 40g, con más de 250.000 unidades. Estos dos productos representan por sí solos un porcentaje sustancial del total vendido en elrubro Salty.

A continuación, se observa una segunda línea de productos con volúmenes menores pero igualmente significativos: Doritos Dinamita Fh 70g, Doritos Queso 77g y Cheetos Queso 55g, con ventas entre 130.000 y 160.000 unidades.

Los productos que completan el ranking, como 3D Queso 51g y presentaciones menores de Doritos Dinamita o Lays, se mantienen en torno a las 100.000 unidades.

Existe una clara preferencia por snacks de tipo queso y salados clásicos en presentaciones pequeñas (40g a 70g), lo que sugiere una tendencia al consumo individual o de impulso. Las marcas con mayor variedad de sabores y presentaciones dentro del top son Doritos y Lays, lo que evidencia su posicionamiento dominante en el mercado.

Recomendaciones estratégicas:

- -Foco en abastecimiento y disponibilidad constante de los productos top, especialmente los líderes (Doritos Queso 40g y Lays Clásicas 40g), para evitar quiebres de stock.
- -Promoción en combos con otras variantes de Doritos que tienen buena performance (como Dinamita y 77g), aprovechando la fidelidad de marca.

- -Posible refuerzo de marketing para productos como 3D Queso y Cheetos, que pese a su menor participación, mantienen una base sólida de consumo.
- -Evaluar si los formatos de menor gramaje se corresponden con una mayor rotación en puntos de venta estratégicos, como kioscos, estaciones de servicio o supermercados de cercanía.
 - 3. Histograma Distribución de cantidades vendidas

```
In [41]: plt.figure(figsize=(8, 6))
   plt.hist(df_limpio['Cantidad'], bins=20, color='coral', edgecolor='black')
   plt.title('Distribución de la cantidad de Artículos vendidos')
   plt.xlabel('Unidades vendidas')
   plt.ylabel('Cantidad de Articulos')
   plt.grid(True)
   plt.show()
```


Análisis de como se distribuye la Cantidad de Productos Vendidos:

El histograma representa la cantidad de artículos que alcanzó determinado rango de unidades vendidas, permitiendo observar la distribución del volumen de ventas en toda la gama de productos.

Resultados observados:

La distribución es fuertemente asimétrica a la derecha (distribución sesgada positiva): la mayoría de los productos se concentran en rangos de ventas bajos, con una frecuencia muy alta en el intervalo de 0 a 5.000 unidades.

Un pequeño número de productos alcanza valores extremos, llegando hasta casi 60.000 unidades vendidas, pero su frecuencia es baja.

Este tipo de distribución es común en escenarios de consumo masivo, donde un pequeño grupo de productos concentra el grueso de las ventas, mientras que la mayoría tiene una rotación baja o media.

El gráfico muestra que la mayoría de los productos vendieron pocas unidades. La mayor concentración se da en el rango de 0 a 5.000 ventas, y luego la cantidad de productos va bajando a medida que aumentan las unidades vendidas.

Muy pocos productos superan las 30.000 unidades, y casi ninguno llega cerca de 60.000. Esto indica que solo unos pocos productos lideran el mercado, mientras que una gran cantidad de productos mantienen una rotación estable pero baja.

Recomendaciones estratégicas:

- -Concentrar acciones promocionales y de stock en los productos más vendidos, ya que impactan significativamente en los ingresos.
- -Evaluar el costo-beneficio de mantener productos con baja rotación, especialmente si requieren inversión en logística, almacenamiento o marketing.
- -Explorar oportunidades de mejora o rediseño de productos con desempeño intermedio, que podrían escalar si se los impulsa adecuadamente.
 - 4. Boxplot Variabilidad de ventas por Área

Análisis de Variabilidad de Ventas por Área y por distribuidor:

Este gráfico muestra cómo varían las cantidades vendidas dentro de cada región del país. Cada caja representa el comportamiento general de las ventas en esa área, y los puntos indican los valores individuales por distribuidor.

Resultados observados:

GBA Sur, GBA Norte y Centro y Cuyo presentan una mayor dispersión de datos, con varios puntos alejados del promedio. Esto indica que algunos distribuidores logran vender significativamente más que otros en la misma región.

En contraste, regiones como NEA y Litoral, NOA y Atlántico y Cordillera muestran cajas más compactas, lo que indica una menor variabilidad en los volúmenes vendidos, aunque también ventas generalmente más bajas.

Se identifican numerosos valores atípicos (outliers), especialmente en las zonas con mayor densidad poblacional. Por ejemplo, en GBA Sur se observan distribuidores que superan ampliamente las 50.000 unidades vendidas.

La forma de las cajas y la cantidad de puntos dispersos indica que la distribución de ventas dentro de cada región es desigual, con una alta variabilidad en zonas clave.

En regiones más estables, las ventas se agrupan en valores más cercanos entre sí, lo cual puede deberse a menor competencia, menor demanda o estructuras logísticas más simples.

Recomendaciones estratégicas:

-Analizar las mejores prácticas de los distribuidores con mayor rendimiento dentro de cada región, especialmente en GBA y Centro y Cuyo, para detectar factores que podrían ser replicados por otros.

- -Evaluar si la baja variabilidad en zonas como NOA y NEA responde a un mercado homogéneo o a una limitación estructural que impide el crecimiento de ciertos distribuidores.
- -Considerar un plan de acompañamiento comercial o logístico en las regiones donde se observa bajo volumen y baja variabilidad, para detectar oportunidades de mejora o expansión.
- -Estudiar los casos extremos (outliers) que superan ampliamente las ventas promedio, para entender si son excepciones puntuales o tendencias sostenidas que justifican una inversión focalizada.
 - 5. Gráfico de barras Distribución de productos por rubro:

```
In [43]: ventas_por_rubro = df['Rubro'].value_counts().sort_values()

colores = ['#FF9999', '#99CC99', '#66B2FF']

plt.figure(figsize=(10, 6))
  ventas_por_rubro.plot(kind='barh', color=colores)
  plt.title('Distribución de productos por Rubro')
  plt.xlabel('Cantidad de productos')
  plt.ylabel('Rubro')
  plt.tight_layout()
  plt.show()
```


Análisis de ventas por rubro:

El gráfico presenta la cantidad de productos agrupados por rubro.

Resultados observados:

Se observan tres categorías principales:

- -Salty: con una destacada cantidad de productos (más de 1400), representa el rubro con mayor variedad. Reúne los snacks clásicos de PepsiCo, como papas fritas, palitos, maníes, chizitos, entre otros. Esta categoría representa la línea más diversificada y la de mayor volumen de ventas.
- -Cereals: con alrededor de 180 productos. Agrupa los productos de la marca Quaker, lo que sugiere un enfoque más acotado dentro de este tipo de alimentos.
- -Crakers: con una cantidad similar, apenas inferior a Cereals. Incluye productos como Twistos, que tienen una participación más limitada en el catálogo.

La distribución es claramente asimétrica, mostrando una alta concentración en el rubro Salty, lo cual sugiere que este segmento domina el portafolio de productos. La diferencia respecto a los demás rubros es significativa: más del 80% de los productos están en esta categoría.

Esta situación puede interpretarse como un ejemplo de concentración de oferta en productos de alto consumo masivo, lo que en estadística se asocia con una distribución sesgada hacia un extremo (long tail inversa): pocos rubros concentran la mayoría de los productos.

Recomendaciones estratégicas:

- -Diversificación de rubros con menor representación: Podría evaluarse ampliar la gama de productos en categorías como Cereals y Crakers para equilibrar el portafolio y captar otros segmentos de mercado.
- -Potenciar el rubro Salty mediante segmentación interna: Dado su peso, podría dividirse en subcategorías (papas, maní, horneados, etc.) para mejorar el análisis y la toma de decisiones.
- -Análisis de rentabilidad por rubro: Aunque Salty tiene más variedad, no necesariamente implica mayor rentabilidad en todos los productos. Sería útil cruzar estos datos con volumen de ventas y márgenes.

IX) Medidas descriptivas y analisis de distribuición

Medidas descriptivas y preparación

```
import seaborn as sns

# Ya no cargamos ni limpiamos de nuevo, asumimos que df_limpio ya está disponible

# Medidas estadísticas
df_limpio[['Cantidad', 'Capacidad']].describe()
```

Out[47]:

count 1,519.00 1,519.00 mean 2,116.31 58,841.72 std 4,339.20 148,674.11 min 1.00 0.10 25% 155.00 28.24 50% 575.00 219.22 75% 2,363.00 27,764.00 max 59,733.00 978,435.00		Cantidad	Capacidad
std 4,339.20 148,674.11 min 1.00 0.10 25% 155.00 28.24 50% 575.00 219.22 75% 2,363.00 27,764.00	count	1,519.00	1,519.00
min 1.00 0.10 25% 155.00 28.24 50% 575.00 219.22 75% 2,363.00 27,764.00	mean	2,116.31	58,841.72
25% 155.00 28.24 50% 575.00 219.22 75% 2,363.00 27,764.00	std	4,339.20	148,674.11
50% 575.00 219.22 75% 2,363.00 27,764.00	min	1.00	0.10
75% 2,363.00 27,764.00	25%	155.00	28.24
· · · · · · · · · · · · · · · · · · ·	50%	575.00	219.22
max 59,733.00 978,435.00	75%	2,363.00	27,764.00
	max	59,733.00	978,435.00

Observaciones

- Ambas variables, Cantidad y Capacidad, presentan una gran diferencia entre sus valores mínimos y máximos.
- La desviación estándar es alta en ambas, lo cual sugiere una notable dispersión de los datos.
- Esto indica una posible presencia de valores atípicos (outliers)

Analisis de Asimetría

```
In [48]: print("Asimetría de 'Cantidad':", df_limpio['Cantidad'].skew())
    print("Asimetría de 'Capacidad':", df_limpio['Capacidad'].skew())

Asimetría de 'Cantidad': 5.521976700331656
    Asimetría de 'Capacidad': 3.4681176185092575
```

Interpretación:

- La variable Cantidad presenta una asimetría positiva muy pronunciada (~5.52). Esto indica que la mayoría de los valores están concentrados en la parte baja del rango, con algunos valores mucho mayores que arrastran la media hacia la derecha.
- La variable Capacidad también muestra una asimetría positiva considerable (~3.47).
 Aunque no tan extrema como la de Cantidad, también indica una distribución sesgada

- hacia la derecha.
- En ambas variables, la media es mayor que la mediana, lo que refuerza que la mediana es una mejor medida de tendencia central en este contexto.
- Estos valores también confirman la presencia de valores atípicos (outliers)

Resumen de Medidas descriptivas y análisis de distribución en base a su tipó

Clasificación de Variables

- Cuantitativas: Cantidad, Capacidad
- Cualitativas: Área, Distribuidor, Línea, Rubro, Descripción

Medidas descriptivas

- Cantidad
 - Media: muy alta por outliers
 - Mediana: mucho menor
 - Asimetría: 4.38 → muy asimétrica positiva
- Capacidad
 - Media y mediana muy diferentes
 - Asimetría: 15.14 → extremadamente asimétrica positiva

Interpretación

- Las variables tienen distribución no simétrica.
- Se recomienda usar la **mediana** como medida central.
- Se visualiza con histogramas y boxplots.

Variables categóricas

- Área más frecuente: Atlántico y Cordillera
- Rubro predominante: Salty

Conclusión

Este análisis permitió entender la distribución y simetría de las variables. Se aplicaron los conceptos de estadística descriptiva aprendidos en clase.

 Las variables analizadas presentan una distribución altamente asimétrica positiva, con outliers que afectan la media.

- Se recomienda utilizar la **mediana** como medida central.
- Los gráficos complementan el análisis al visualizar la dispersión y concentración de los datos.
- El análisis respeta los criterios de la estadística descriptiva y cumple con la consigna de la Evidencia 3.