

AARHUS SCHOOL OF ENGINEERING

SUNDHEDSTEKNOLOGI OG INFORMATIONS- OG KOMMUNIKATIONSTEKNOLOGI BACHELORPROJEKT

AUTOMATISK ULTRALYDSSCANNER

Accepttest

Charlotte Søgaard Kristensen (201371015) Mathias Siig Nørregaard (201270810) Marie Kirkegaard (201370526)

Vejleder
Associate Professor
Michael Alrøe
Aarhus School of Engineering

Indholdsfortegnelse

Indhol	dsfortegnelse	1
\mathbf{K} apite	l 1 Versionshistorik	2
Kapite	l 2 Indledning	3
Kapite	l 3 Testresultat	4
Kapite	l 4 Testformalia	5
4.1	Godkendelseskriterier	5
4.2	Testprocedure	5
4.3	Forsøgsopstilling	5
Kapite	l 5 Tests af funktionelle krav	6
5.1	Test: UC1: Hovedscenarie	6
5.2	Test: UC2: Hovedscenarie	7
5.3	Test: UC2: Udvidelse: Juster 3D billedets skæring	8
5.4	Test: UC2: Undtagelse: Scanning er ikke godkendt	9
5.5	Test: UC3: Hovedscenarie	10
5.6	Test: UC3: Udvidelse: Operatør pauser scanning	11
5.7	Test: UC3: Undtagelse: Operatør stopper scanning	12
5.8	Test: UC4: Hovedscenarie	13
Kapite	l 6 Ikke-funktionelle krav	14
6.1	Usability	14
6.2	Performance	15
Bilag		19

Version	Dato	Ansvarlig	Beskrivelse
1.0	2016-09-21	MK, CSK	Første version af accepttest af de funktionel-
			le og ikke-funktionelle krav.
1.1	2016-09-29	CSK, MK, MSN	Rettelser efter kommentarer vejledermøde
			og reviewgruppe.
1.2	2016-10-04	MSN	Streamlinet denne efter kravspecificationen
1.3	2016-10-05	MSN	Rettet test af Use Case 1
1.4	2016-10-26	CSK	Rettet efter vejledermøde
1.5	2016-11-08	CSK	Rettet efter tilføjelser til Use Case 2 og Use
			Case 3
1.6	2016-11-23	CSK, MK	Rettet til efter rettelser i kravspæcifikation
1.7	2016-12-02	CSK	Rettet til efter mødet med Lars Bolvig og
			rettelser/tilføjelser i kravspæcifikation
1.8	2016-12-06	CSK	Endelig udgave af Accepttest

 $Tabel\ 1.1:\ Versionshistorik$

Indledning 2

Formålet med en accepttest er at få testet de funktionelle, use cases, og ikke-funktionelle krav fra kravsspecifikationen, bilag 8.

Accepttesten udføres typisk overfor kunden og er med til at sikre, at det færdige produkt lever op til kundens krav. Forkortelser og forklaring på forsøgsopstillingen, kan findes i bilag 17 Sætningsliste. Sætningslisten skal være tilgængelig under udførslen af accepttesten som opslagsværk for systemets standard positurer.

Testresultat 3

Testformalia 4

4.1 Godkendelseskriterier

Godkendelsen af systemtesten består af to trin:

- 1. Godkendelse af det overordnede dokument Accepttest. Dette gøres under afsnittet Testresultat, resultatet markeres med X og underskrives under "Godkendt af:".
- 2. Godkendelse af de enkelte dele i accepttesten. De enkelte dele i accepttesten godkendes, når testene af funktionelle og ikke-funktionelle krav er gennemført step for step og med resultater i overensstemmelse med de forventede resultater.

4.2 Testprocedure

De funktionelle og ikke-funktionelle krav vil blive testet som beskrevet under hver test. I feltet "resultat" markerer testpersonen 'Godkendt' eller 'Ikke godkendt' ud for det enkelte teststep. Godkendt betyder fejlfri gennemførsel. Ikke godkendt betyder, at teststeppet ikke kan gennemføres og godkendes. De fejl, der fører til, at steppet ikke kan gennemføres bliver beskrevet i et bilag til accepttesten, hvori fejlen bliver nærmere beskrevet.

4.3 Forsøgsopstilling

For at kunne gennemføre accepttest af funktionelle og ikke-funktionelle krav er det vigtigt, at systemet er stillet korrekt op, og at opstillingen kan stilles op på samme måde igen. Der refereres til opstillingerne i bilaget 'Sætningsliste', som til accepttesten er udskrevet og medtaget.

Under hver test, er forsøgsopstillingen og de pågældende aktører blevet beskrevet, som er en forudsætning for, at testene kan gennemføres. Aktøren Testperson agerer i denne accepttest Operatør, hvilket betyder, at Testperson betjener Automatisk Ultralydsscanner uden at behøve forudsætningen om kendskab til ultralyd. For at kunne reproducere testen, er det valgt ikke at benytte en levende aktør, Patient. I stedet er Testobjekt, udformet som et bryst, anvendt som erstatning for aktøren Patient. Der anvendes ikke ultralydsscanner i forsøget, da det er systemets evne til at omregne et 3D billede til en bevægelse omkring Testobjekt, der testes.

Tests af funktionelle krav

5.1 Test: UC1: Hovedscenarie

Use Case Navn: Start system

 $For s \verb| g sop stilling:$

• Computeren er tændt

• Robotarm er tilsluttet

• Robotarm står i Ikke-standard Positur

Aktører:

• Testperson

• Robotarm

	Test	Visuelle resultat	$\operatorname{Godkendt}$
1.1	Testperson trykker på 'AutoSo-	Menuen 'Startup Menu' vises på	✓
	nography.exe' på computerens	GUI	
	skrivebord		
2.1	Testpersonen venter på, at Ro-	Robotarm er stoppet	√
	botarm flytter sig og stopper i		
	en ny position		
2.2	På Robotarms touchskærm	En ny skærm vises, hvor der er	✓
	trykker Testperson på 'Move'-	mulighed for at aflæse koordina-	
	fanen øverst på GUI'en	ter i højre side	
2.3	I højre hjørne af Robotarms	Z-koordinatet i rammen 'TCP'	✓
	skærm trykker Testperson på	under 'Feature'-rammen er shif-	
	'Feature'-dropdownen, og der	tet cirka +400 mm og farverne	
	vælges 'Base'	på knapperne i venstre side er	
		skiftet.	
2.4	Testperson aflæser hver tekst-	Med en margin på ± 1 mm er Ro-	√
	boks i rammen 'TCP' og note-	botarms nuværende koordinater	
	rer, at de matcher hvert koordi-	tilsvarende Posituren 'Standard	
	nat angivet i 'Standard Positur'	Positur's koordinater	
	i bilaget 'Sætningsliste'		

Tabel 5.1: Test: UC1: Hovedscenarie

5.2 Test: UC2: Hovedscenarie

Use Case Navn: 3D scan brystområde Forsøgsopstilling:

- PC Applikation er startet
- 3D kamera er tilsluttet
- Testobjekt er placeret inden for afgrænsning

- \bullet Testperson
- Testobjekt
- 3D kamera

	Test	Visuelle resultat	Godkendt
1.1	Testperson trykker på knappen	Skærmbilledet skifter til menuen	✓
	[3D Scan] på GUI's 'Startup	'3D Scan Menu'	
	Menu'		
2.1	Testperson trykker på knappen	På GUI bliver knappen [OK]	√
	[Scan] på GUI's '3D Scan Menu'	tilgængelig	
3.1	Testperson tjekker, om der er	Menuen '3D Scan Menu' viser	✓
	et dybdebillede på menuen '3D	noget andet end et hvidt billede	
	Scan Menu'		
4.1	Testperson trykker på knappen	Menuen 'Startup Menu' vises på	✓
	[OK] i menuen '3D Scan Menu'	GUI. Knappen [Ultralydsscan]	
		er tilgængelig	

Tabel 5.2: Test: UC2: Hovedscenarie

5.3 Test: UC2: Udvidelse: Juster 3D billedets skæring

Use Case Navn: 3D scan brystområde

Forsøgsopstilling:

- PC Applikation er startet
- 3D kamera er tilsluttet
- Testobjekt er placeret indenfor afgrænsning

- Testperson
- Testobjekt
- 3D kamera

	Test	Visuelle resultat	$\operatorname{Godkendt}$
1.1	Testperson trykker på knappen	Skærmbilledet skifter til menu-	✓
	[3D Scan] på GUI's 'Startup	en '3D Scan Menu'	
	Menu'		
A1.1	Testperson ændrer Y min til -	GUI viser Y Min til at være 0,14	✓
	0,14 på GUI's track bars	og Y max til 0,3	
A2.1	Testperson trykker på knappen	På GUI bliver knappen [OK]	✓
	[Scan] på GUI's '3D Scan Menu'	tilgængelig	
A2.2	Testperson tjekker, at der der	'3D Scan Menu' viser et afskåret	✓
	er et afskåret brystområde på	brystområde af Testobjekt	
	menuen '3D Scan Menu'		
A2.3	Testperson trykker på knappen	Menuen 'Startup Menu' vises	✓
	[OK] i menuen '3D Scan Menu'	på GUI. Knappen [Ultralyds-	
		scan] er tilgængelig	

Tabel 5.3: Test: UC2: Undtagelse: Juster 3D billedets skæring

5.4 Test: UC2: Undtagelse: Scanning er ikke godkendt

Use Case Navn: 3D scan brystområde Forsøgsopstilling:

- PC Applikation er startet
- 3D kamera er tilsluttet
- Testobjekt er placeret indenfor afgrænsning

- \bullet Testperson
- Testobjekt
- 3D kamera

	Test	Visuelle resultat	Godkendt
1.1	Testperson trykker på knappen	Skærmbilledet skifter til menu-	✓
	[3D Scan] på GUI's 'Startup	en '3D Scan Menu'	
	Menu'		
2.1	Testperson trykker på knappen	På GUI bliver knappen [OK]	√
	[Scan] på GUI's '3D Scan Menu'	tilgængelig	
3.1	Testperson tjekker, om der er	Menuen '3D Scan Menu' viser	√
	et dybdebillede på menuen '3D	noget andet end et hvidt billede	
	Scan Menu'		
B1.1	Testperson godkender ikke bil-	På GUI bliver knappen [OK] til-	√
	ledet, men afskærer brystom-	gængelig, og menuen '3D Scan	
	råde på Testobjekt, hvorefter	Menu' viser et afskåret bryst-	
	Testperson trykker på knappen	område på Testobjekt	
	[Scan] på GUI's '3D Scan Me-		
	nu' indtil der kommer et afskå-		
	ret brystområde		
B1.2	Testperson trykker på knappen	Menuen 'Startup Menu' vises	√
	[OK] i menuen '3D Scan Menu'	på GUI. Knappen [Ultralyds-	
		scan] er tilgængelig	

Tabel 5.4: Test: UC2: Undtagelse: Scaning er ikke godkendt

5.5 Test: UC3: Hovedscenarie

Use Case Navn: Ultralydsscan brystområde Forsøgsopstilling:

- PC Applikation er startet
- Robotarm er tilsluttet
- Testobjekt har ikke skiftet position siden udførslen af UC2: 3D scan brystområde
- 3D scanning af Testobjekt er godkendt

- Testperson
- Testobjekt
- Robotarm

	Test	Visuelle resultat	$\mathbf{Godkendt}$
1.1	Testperson trykker på knap-	Skærmbilledet skifter til menuen	√
	pen [Ultralydsscan] på GUI's	'Ultralydsscan Menu'	
	'Startup Menu'		
2.1	Testperson observerer, om Ro-	Robotarm roterer rundt om Te-	- Se bilag
	botarm roterer omkring Testob-	stobjekt	2 for yderli-
	jekt		gere forkla-
			ring
3.1	Testperson gennemgår tests fra	Visuelle resultater fra punkt 2.1	✓
	UC1: Start system i Tabel 5.1 fra	til punkt 2.4 i Tabel 5.1	
	punkt 2.1 til punkt 2.4		

Tabel 5.5: Test: UC3: Hovedscenarie

5.6 Test: UC3: Udvidelse: Operatør pauser scanning

Use Case Navn: Ultralydsscan brystområde Forsøgsopstilling:

- PC Applikation er startet
- Robotarm er tilsluttet
- Testobjekt har ikke skiftet position siden UC2: 3D scan brystområde
- 3D scanning af Testobjekt er godkendt
- Stopur

- Testperson
- Testobjekt
- Robotarm

	Test	Visuelle resultat	Godkendt
1.1	Testperson trykker på knap-	Skærmbilledet skifter til menu-	√
	pen [Ultralydsscan] på GUI's	en 'Ultralydsscan Menu'	
	'Startup Menu'		
A1.1	Testperson starter stopur og	Stopur er startet, og Robotarm	√
	trykker på knappen [Pause],	stopper med at flytte sig på	
	mens Robotarm roterer rundt	Testobjekt	
	på Testobjek		
A1.2	Testperson slukker for stopur,	Stopur viser 7 sekunder eller	√
	når Robotarm stopper	derunder	
A2.1	Testperson starter stopur	Stopur er startet	√
A2.2	Testperson trykker på knappen	Robotarm genoptager scanning	√
	[Resume] og stopper stopur, når	af Testobjekt, og stopur viser 2	
	Robotarm bevæger sig	sekunder eller derunder	
2.1	Testperson gennemgår tests fra	Visuelle resultater fra punkt 2.1	√
	hovedforløbet i UC2: Ultralyds-	til punkt 3.1 i Tabel 5.1	
	scan brystområde i Tabel 5.5 fra		
	punkt 2.1 til punkt 3.1		

Tabel 5.6: Test: UC3: Udvidelse: Operatør pauser scanning

5.7 Test: UC3: Undtagelse: Operatør stopper scanning

Use Case Navn: Ultralydsscan brystområde Forsøgsopstilling:

- PC Applikation er startet
- Robotarm er tilsluttet
- Testobjekt har ikke skiftet position siden UC2: 3D scan brystområde
- 3D scanning af Testobjekt er godkendt

- Testperson
- Testobjekt
- Robotarm

	Test	Visuelle resultat	$\operatorname{Godkendt}$
1.1	Testperson trykker på knap-	Skærmbilledet skifter til menu-	\checkmark
	pen [Ultralydsscan] på GUI's	en 'Ultralydsscan Menu'	
	'Startup Menu'		
B1.1	Testperson trykker på knappen	Robotarm stopper med at flytte	✓
	[Stop], mens Robotarm roterer	sig på Testobjekt	
	rundt om Testobjekt		
B2.1	Testperson gennemgår tests fra	Visuelle resultater fra punkt 2.1	✓
	UC1: Start system i Tabel 5.1	til punkt 2.4 i Tabel 5.1	
	fra punkt 2.1 til punkt 2.4		

Tabel 5.7: Test: UC3: Undtagelse: Operatør stopper scanning

5.8 Test: UC4: Hovedscenarie

Use Case Navn: Stop system

Forsøgsopstilling:

- System er startet
- Robotarm er tilsluttet

- Testperson
- \bullet Robotarm

	Test	Visuelle resultat	$\operatorname{Godkendt}$
1.1	Testperson trykker på knappen	Vinduet lukker ned	\checkmark
	[Luk Knap] i GUI's øverste højre		
	hjørne		
2.1	Testperson gennemgår tests fra	Visuelle resultater fra punkt 2.1	✓
	UC1: Start System i Tabel 5.1	til punkt 2.4 i Tabel 5.1	
	fra punkt 2.1 til punkt 2.4		

Tabel 5.8: Test: UC4: Hovedscenarie

Ikke-funktionelle krav

Accepttest af ikke-funktionelle krav, hvor der kun testes på must-krav.

6.1 Usability

U1. PC Applikation skal have en GUI

Forsøgsopstilling:

1. PC Applikation er startet

Aktører:

1. Testperson

Test	Visuelt resultat	Godkendt
Testperson trykker på 'AutoSono-	Menuen 'Startup Menu' vises	✓
graphy.exe' på computerens skrive-		
bord		

Tabel 6.1: Usability 1

6.2. Performance ASE

6.2 Performance

P1. Scanningen med 3D kamera og ultralydsscanning skal max tage 10 minutter til sammen

Forsøgsopstilling:

- 1. PC Applikation er startet
- 2. 3D kamera er tilsluttet
- 3. Robotarm er tilsluttet
- 4. Stopur

- 1. Testperson
- 2. Testobjekt
- 3. 3D kamera
- 4. Robotarm

Test	Visuelt resultat	Godkendt
Testperson starter stopur	Stopur er startet	
Testperson trykker på knappen [3D	Skærmbilledet skifter til menuen	✓
Scan] på GUI's 'Startup Menu'	'3D Scan Menu'	
Testperson trykker på knappen	UC2: 3D scan gennemføres, og	√
[Scan] på GUI's '3D Scan Menu'	menuen '3D Scan Menu' viser noget	
	andet end et hvidt billede	
Testperson trykker på knappen	Menuen 'Startup Menu' vises på	✓
[OK] på GUI's '3D Scan Menu'	GUI og knappen [Ultralydsscan] er	
	tilgængelig	
Testperson trykker på knappen [Ul-	UC3: Ultralydsscan gennemføres,	√
tralydsscan] på GUI's 'Startup Me-	og Robotarm føres rundt på Te-	
nu'	stobjekt	
Robotarm stopper, og Testperson	Stopur viser 10 minutter eller der-	√
slukker for stopur	under	

Tabel 6.2: Performance 1

P2. Startoptid på PC Applikation skal være max 10 sekunder

For søg sop stilling:

- 1. Computer skal være tændt
- 2. Stopur

Aktører:

1. Testperson

Test	Visuelt resultat	Godkendt
Testpersonen starter stopur	Stopur er startet	
Testperson trykker på 'AutoSono-	Menuen 'Startup Menu' vises på	√
graphy.exe' på computerens skrive-	GUI	
bord		
Testpersonen venter på, at Robo-	Robotarm er stoppet	√
tarm starter og derefter stopper		
med at flytte sig		
Testpersonen slukker for stopur,	Stopur viser 10 sekunder eller der-	√
når Robotarm stopper	under	

Tabel 6.3: Performance 2

6.2. Performance ASE

P3. 3D kamera skal max bruge 10 sekunder om at tage 3D billedet

$For s \verb| g sop stilling:$

- 1. PC Applikation er startet
- 2. 3D kamera er tilsluttet
- 3. Testobjekt ligger indenfor afgrænsning
- 4. Stopur

- 1. Testperson
- 2. 3D kamera
- 3. Testobjekt

Test	Visuelt resultat	Godkendt
Testpersonen starter stopur	Stopur er startet	
Testperson trykker på knappen [3D	Skærmbilledet skifter til menuen	√
Scan] på GUI's 'Startup Menu'	'3D Scan Menu'	
Testperson trykker på knappen	UC2: 3D scan gennemføres, og	√
[Scan] på GUI's '3D Scan Menu'	menuen '3D Scan Menu' viser noget	
	andet end et hvidt billede	
Testpersonen slukker for stopur	Stopur viser 1 minut eller derunder	√

Tabel 6.4: Performance 3

P4. PC Applikation skal max bruge 10 sekunder på at færdiggøre brystområdets positurer til Robotarm

Forsøgsopstilling:

- 1. PC Applikation er startet
- 2. 3D kamera er tilsluttet
- 3. Testobjekt ligger indenfor afgrænsning
- 4. Stopur

- 1. Testperson
- 2. 3D kamera
- 3. Testobjekt

Test	Visuelt resultat	Godkendt
Testperson trykker på knappen [3D	Skærmbilledet skifter til menuen	√
Scan] på GUI's 'Startup Menu'	'3D Scan Menu'	
Testperson trykker på knappen	UC2: 3D scan gennemføres, og	√
[Scan] på GUI's '3D Scan Menu'	menuen '3D Scan Menu' viser noget	
	andet end et hvidt billede	
Testperson trykker på knappen	Menuen [Startup Menu] vises på	✓
[OK] på '3D Scan Menu'	GUI	
Testpersonen starter en timer	Timer starter	√
Testperson trykker på knappen	Skærmbilledet skifter til menuen	√
[Ultralydsscan Knap] på GUI's	'Ultralydsscan Menu'	
'Startup Menu'		
Testperson slukker for stopur, når	Stopur viser 10 sekunder eller der-	✓
menuen 'Startup Menu' vises	under	

Tabel 6.5: Performance 4

Bilag

Bilag 2 Bilag til Accepttest Bilag 8 Kravspecifikation Bilag 17 Sætningsliste