

THIS PDF NOTE WAS FOUND ON INTERNET.I DON'T BEHOLD THE COPYRIGHT OF THIS MATERIAL. IF SOMEONE THINKS THAT THIS MATERIAL SHOULDN'T BE HERE, PLEASE EMAIL AT

<u>joyoshish@gmail.com</u> AND THE MATERIAL WILL BE IMMEDIATELY REMOVED (ONLY FOR COPYRIGHT ISSUES).

Joyoshish Saha

COMMON DISTINCTION TESTS IN ORGANIC CHEMISTRY

I. $R - Cl vs R - Br vs R - I (R \equiv alkyl or aryl)$

SNo.	Test	R – Cl	R – Br	R – I
a)	Dil AgNO ₃	$R - C1 \xrightarrow{AgNO_3} AgC1$ (White ppt)	R – Br ^{AgNO3} → AgBr (Pale yellow ppt)	$R - I \xrightarrow{AgNO_3} AgI$ (Yellow ppt)
b)	NH ₄ OH test	above ppt + liq. NH₃ of AgCl	above ppt + liq. NH₃ or of AgBr ↓ NH₄OH ppt partially dissolves	above ppt + liq. NH₃ or NH₄OH ppt remains insoluble

II. Ethylidene chloride (Geminal) vs Ethylene Dichloride (Vicinal)

SNo.	Test	CH ₃ – CH Cl (Ethylidene chloride)	Cl – CH ₂ – CH ₂ – Cl Ethylene dichloride
a)	Aq KOH test (Hydrolysis)	$CH_{3}-CH \longrightarrow CI$ CI $H_{2}O \longrightarrow CH_{3}-CH$ $O_{2}N \longrightarrow NHNH_{2}$ VO_{2} $VO_{2}N \longrightarrow NHN = CH-CH_{3}$ VO_{2} VO_{3} VO_{2} VO_{2} VO_{3} VO_{4} VO_{5} VO_{7} VO_{8} VO_{1} VO_{2} VO_{1} VO_{2} VO_{3} VO_{2} VO_{3} VO_{4} VO_{5} VO_{5} VO_{7} VO_{8} VO_{9}	$CH_2 - CH_2 \xrightarrow{\text{aq KOH}} CH_2 - CH_2$ $Cl Cl OH OH$ $O_2N \longrightarrow NHNH_2$ NO_2 $2, 4 \text{ dinitrophenyl hydrazine}$ $No \text{ reaction}$

III. CHCl₃ vs CH₃Cl/CCl₄/CH₃OH

SNo.	Test	CHCl ₃	CH ₃ Cl/CCl ₄ /CH ₃ OH
a)	Carbylamine test	R-NH ₂ + 3KOH + CHCl ₃	(-ve)
		(1° amine) (aq)	No reaction
		R-NC + 3KCl + 3H ₂ O alkyl isocyanide	
		Pungent Smelling	

IV. $CH_3 - CH_2 - OH$ (Alcohol) vs $CH_3 - O - CH_3$ (Ether)

SNo.	Test	$CH_3 - CH_2 - OH$	$CH_3 - O - CH_3$
a)	Na metal test	$CH_3 - CH_2 - OH + Na \longrightarrow CH_3 - CH_2 - ONa + \frac{1}{2}H_2$	_ve
b)	Iodoform test (for alcohols having CH ₃ -CH - OH)	CH ₃ CH ₂ OH + 6NaOH + 4I ₂ $\xrightarrow{\Delta}$ CHI ₃ ↓+ (iodoform) HCOONa + 5NaI + 5H ₂ O	(-ve)

V.

SNo.	Test	$CH_3 - CH_2 - CH_2$	$CH_3 - CH - CH_3$	CH ₃	OH
		OH (1°) alcohol	OH (2°) alcohol	CH ₃ - C - CH ₃ OH (3°) alcohol	(Phenol)

a)	Lucas Test (Conc. HCl + anhyd ZnCl ₂	Turbidity appears on heating	Turbidity appears within in 5 – 10 min.	Turbidity appears spontaneously	No appearance of turbidity
b)	Iodofor m test	(ve)	$CH_3 - CH - CH_3 + \bigcup_{OH}$ OH $6NaOH + 4I_2 \longrightarrow$ $CHI_3(\downarrow) + HCOONa$ $Yellow$ $+ 5NaI + 5H_2O$	(ve)	(ve)
c)	Br ₂ water test	(ve)	(ve)	(ve)	OH 3Br ₂ OH Br + 3HBr (2, 4, 6-tribromophenol)
d)	Neutral FeCl ₃ Test	(-ve)	(-ve)	(-ve)	OH 3 O Ferric Phenoxide (Violet ppt.)
e)	Litmus Test	-ve	WEAK ACIDS	_ve	Turns blue litmus red

f)	Victor Meyer Test	$CH_3CH_2CH_2OH$ $P + I_2$	CH ₃ – CH – CH ₃ OH	CH ₃ CH ₃ – C – OH	ve
	Test	CH ₃ CH ₂ CH ₂ I	$P + I_2$	CH ₃	
		-AgI AgNO2	CH ₃ – CH – CH ₃	$P + I_2$	
		CH ₃ CH ₂ CH ₂ NO ₂	i	CH ₃	
		HNO ₂	−AgI AgNO ₂	CH ₃ – C – I	
		CH ₃ - C - NO ₂	CH ₃ – CH – CH ₃	CH ₃	
		NOH	NO ₂	-Agl AgNO ₂	
		Nitrolic Acid	HNO ₂	↓ CH₃	
		Blood Red Colouration	CH ₃ - C - CH ₃	CH ₃ – C – NO ₂	
		2.000 1.00 00100111011	N = O	CH ₃	
			Pseudonitrol NaOH	HNO ₂	
			Blue Colouration	No reaction	
				NaOH	
				Colourless	
			AA		

VI.

SNo.	Test		OH CH – CH ₃	О СН₂ОН
a)	Litmus Test	Turns blue Litmus to red	(-ve)	(-ve)
b)	Neutral FeCl ₃ test	Ferric Phenoxide + 3HCl (violet ppt)	(-ve)	(-ve)

c)	Iodoform Test	(ve)	(+ve)	(ve)
			CH – CH ₃ + 6NaOH OH	
			+ 4I ₂	
			+ CHI ₃ + COONa (Yellow ppt) COONa	
			+ 5NaI + 5H ₂ O	

VII. HCHO vs CH₃CHO

SNo.	Test	НСНО	CH ₃ CHO
a)	Iodoform test	_ve)	O $CH_3 - C - H + 4NaOH + 3I_2 \longrightarrow CHI_3 \downarrow$ (Yellow) $+ HCOONa + 3NaI + 3H_2O$
b)	Liquor Ammonia Test	6HCHO + 4NH ₃ \longrightarrow (CH ₂) ₆ N ₄ + 6H ₂ O Hexamethylene tetramine (urotropine)	$CH_3 - C \searrow H + NH_3 \longrightarrow CH_3 - CH = NH$ Addition product

VIII.

SNo.	Test	O CH ₃ – CH ₂ – C – CH ₂ – CH ₃	СН ₃ СНО	O CH ₃ - C - CH ₂ - CH ₃ or
				$CH_3 - C - CH_3$ or $CH_3 - C - CH_3$

a)	Iodoform test	ve	(+ve)	ve	(+ve)
	test		CH ₃ – CHO + 4NaOH +		U CH₃ − C − CH₂ − CH₃
			3I ₂ → CHI ₃ ↓ + HCOONa		or
			(Yellow) + 3NaI + 3H ₂ O		o
					CH ₃ – C – CH ₃ or
					1
					CHI ₃ + 3NaI + 3H ₂ O +
				and the second	CH ₃ CH ₂ COONa or
				0.	CH₃COONa or
				11/1	CO COON
				1 1 1	COONa
b)	Tollen's				
	reagent (amm.	(-ve)	(ve)	(+ve)	(-ve)
	silver nitrate)		CH ₃ CHO + 2[Ag (NH ₃) ₂] ⁺	CHO+	
	,	1	+ 2OH →	2[Ag (NH ₃) ₂]++	
			CH₃COO [©] +	20H →	
		L AV	NH₄ [©] + 2Ag↓ +		
			H ₂ O + 3NH ₃	(O) - coo	
				+ NH ₄ + 2Ag↓ +	
				$H_2O + 3NH_3$	
c)	Fehling's solution	(ve)	(+ve)	(+ve)	(-ve)
	(copper sulphate +	<u> </u>		0.11.1	<u> </u>
	sodium		CH ₃ CHO + 2[Cu(OH) ₂] + NaOH	Oxidation is very difficult	
	potassium tartarate)		\downarrow		
			CH₃COO [©] +		
			$Na^{\odot} + Cu_2O + 3H_2O$ (Red ppt)		

IX.

SNo.	Test	O H – C – OH	O CH ₃ – C – OH	OH	СООН
a)	Tollen's test	$(+ve)$ $HCOOH + Ag_2O$ $\rightarrow CO_2 + H_2O +$ $2Ag \downarrow$	(-ve)	(-ve)	(ve)
b)	Fehling's Solution test	$\begin{array}{c} & & \\ +\text{ve} \\ \\ \text{HCOOH} + 2\text{CuO} \\ \\ \longrightarrow \text{CO}_2 + \text{H}_2\text{O} + \\ \\ \text{Cu}_2\text{O} \downarrow \\ \\ \text{Reddish} \\ \text{Brown} \\ \text{ppt} \end{array}$	(ve)	(ve)	(ve)
c)	NaHCO 3 test	HCOOH + NaHCO ₃ → HCOONa + H ₂ O + CO ₂ ↑ Brisk Effervescence	(+ve) CH ₃ − COOH + NaHCO ₃ → CH ₃ COONa + H ₂ O + CO ₂ ↑ Brisk (Effervescence)	(ve)	(+ve) COOH + NaHCO₃ COONa + H ₂ O + CO ₂ ↑ Brisk Effervescence

d)	Neutral FeCl ₃	ve	ve	(+ve)	(+ve)
	test			OH 3	3 ○ + FeCl ₃ →
				/ i \	/ coo \
					$ \begin{array}{c} $
				(Violet ppt of ferric phenoxide)	Brown ppt of ferric benzoate
				:.(

X.

$$R-NH_2$$
 vs \bigcirc vs \bigcirc

SNo.	Test	$R - NH_2$	NH ₂	ÓН
a)	Bromine water	(ov)	$(+ve)$ NH_2 $+ 3Br_2 \longrightarrow$	$ \begin{array}{c} (+ve) \\ OH \\ \hline O \\ + 3Br_2 \longrightarrow \end{array} $
			Br O Br $+ 3HBr$	Br Br + 3HBr
			 4, 6-tribromo aniline (White ppt) 	2, 4, 6-tribromo phenol (White ppt)
b)	Neutral FeCl ₃	(ve)	(-ve)	(+ve)

		T		T
				OH 3
c)	Carbylamine test	(+ve) R - NH ₂ + 3KOH + (1° amine) (aq) CHCl ₃ → RNC + alkyl isocyanide (Pungent smelling) 3KCl + 3H ₂ O	NH2 + 3KOH + CHCl3 (1° amine) NC + 3KCl + 3H ₂ O Phenyl Isocyanide (Pungent smelling)	(ve)
d)	Azo Dye Text	Azo dye formed is unstable, so cannot be removed from solution	$ \begin{array}{c c} \hline O & NH_2 & \frac{NaNO_2}{HCl} & O & N_2Cl \\ \hline -HCl & O & OH \end{array} $ $ \begin{array}{c c} O & OH \end{array} $ $ \begin{array}{c c} O & OH \end{array} $ $ \begin{array}{c c} Azo & dye & OH \end{array} $	(+ve)

$XI. R - NH_2 vs R_2NH vs R_3N$

SNo.	Test	$R - NH_2$	R ₂ NH	R ₃ N
		(1° amine)	(2° amine)	

a)	Carbylamine Test	R − NH ₂ + CHCl ₃ + 3KOH (aq) R − NC + 3KCl + 3H ₂ O alkyl isocyanide (Pungent smelling)	_ve	(ve)
b)	Nitrous Acid Test	$R - NH_2 + HO - N = O$ $\longrightarrow R - OH + N_2 \uparrow + H_2O$ Evolution of nitrogen	$R_2 - N - H + HO - N = O$ $\longrightarrow R_2N - N = O$ N-nitroso dialkyl amine (Yellow oily liquid) $+ Phenol \xrightarrow{Warm} $ Green colour	R ₃ N + HNO ₂ Warm→R ₃ NHNO ₂ (Water Soluble)
c)	Hinsberg's Test [Hinsberg's Reagent is a mixture of (i) Benzene sulphonyl chloride, (ii) KOH, and (iii) HCl	R - NH ₂ + O SO ₂ Cl Benzene sulphonyl chloride -HCl R - N - SO ₂ O H N-alkylbenzene sulphonamide (Insoluble) -H ₂ O KOH R - N - S O KOH R - N - S O KOH K+ O C C C C C C C C C C C C C C C C C C C	R H - N - R + OSO2CI Benzene sulphonyl chloride -HCI R - N - S	R R-N-R+ SO ₂ Cl Benzene sulphonyl chloride No reaction (Insoluble) HCl R ₃ NHCl- Trialkyl-ammonium chloride (Soluble in HCl)

$$\begin{matrix} O \\ \parallel \\ R-C-NH_2 & vs & R-NH_2 \end{matrix}$$

SNo.	Test	O R – C – NH ₂	$R - NH_2$
a)	Litmus Test	No response to litmus	Red litmus changes to Blue
b)	Carbylamine test	(-ve)	O R – NH ₂ + CHCl ₃ + 3KOH (aq)
			RNC + 3KCl + 3H ₂ O alkyl isocyanide
			Pungent Smelling

XIII. RNO₂ vs RONO

SNo.	Test	$R - NO_2$	RONO
a)	Reduction (Sn/HCl)	$R - NO_2 + 6H \longrightarrow RNH_2 + 2H_2O$	$RONO + 6H \longrightarrow ROH + NH_3 + H_2O$
b)	NaOH	Form's soluble sodium salt. $R - N \xrightarrow{O} \xrightarrow{NaOH} R = N \xrightarrow{ONa} O$	Readily hydrolysed to give corresponding alcohol and sodium nitrite. RONO + NaOH

XIV. RCN vs RNC

SNo.	Test	$R - NO_2$	RONO
a)	Solubility in water	Soluble	Insoluble
b)	Reduction followed by nitrous acid treatment	RCN + 4H \longrightarrow RCH ₂ NH ₂ 1° amine HNO ₂ R-OH + N ₂ ↑ + H ₂ O Evolution of nitrogen	$RCN + 4H \longrightarrow R - N - CH_3$ H HNO_2 $R - N - N = O + H_2O$
			l CH₃ Yellow oily

c)	Hydrolysis	$R - C \equiv N \xrightarrow{H_2O} RCONH_2$ $H^+ \downarrow H_2O$ $H_3N + RCOOH$ $Carboxylic$ $acid$	$R - N = C + 2H_2O \xrightarrow{H^+}$ RNH ₂ + HCOOH 1° amine Formic acid
d)	Heating	No effect	Alkyl cyanide is formed

