UNCLASSIFIED

AD NUMBER AD875556 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to DoD only; Administrative/Operational Use; 12 AUG 1970. Other requests shall be referred to Naval Ordnance Lab., White Oak, MD 20910. **AUTHORITY** USNOL 1tr, 12 Dec 1972

NOLTR 70-98

19875556

REPLACEMENT OF SR 4990 BY BARIUM STYPHNATE IN THE MK 24 ACTUATOR

By Stephen C. Uman

This report contains information with a restriction on use end/or dissemination and is not to be distributed to non-Government addressess nor used without authorization from the Naval Ordnance Laboratory,

MOI

12 AUGUST 1970:

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND 20910

20L, K, 0-98

ATTENTION

Each transmittal of this document outside the Department of Defense must have prior approval of NOL.

REPLACEMENT OF SR 4990 BY BARIUM STYPHNATE IN THE MK 24 ACTUATOR

by: Stephen C. Urman

ABSTRACT: DuPont SR 4990, a single-base propellant used in Navy explosive actuators, is no longer produced. This necessitated a search for an adequate replacement for the SR 4990 in the Mk 24 Actuator. Experimental work was performed with barium styphnate, lead mononitroresorcinate, and two DuPont manufactured powders. Candidate materials were first screened using a pressure bomb. Final testing was performed in the Mk 24 Actuator design. Test results showed that of the four candidates, barium styphnate is the best material for the Actuator Mk 24.

PUBLISHED 12 AUGUST 1970

Explosions Research Department U.S. Naval Ordnance Laboratory White Oak, Silver Spring, Maryland 12 August 1970

NOLTR 70-98

REPLACEMENT OF SR 4990 BY BARIUM STYPHNATE IN THE MK 24 ACTUATOR

This study was undertaken to determine a replacement for SR 4990 in the Mk 24 Actuator. The work was performed under Task ORD 053 470/092-1/U38 01 and NOL 412/ORD 053 Prob. B01.

The results should be of interest to persons engaged in actuator design and propellant research.

The identification of commercial materials implies no criticisms or endorsement of these products by the U. S. Naval Ordnance Laboratory.

GEORGE G. BALL Captain, USN Commander

C. J. ARONSON
By direction

NOLTR 70-98

CONTENTS

		Page
INTRODU	CTION	. 1
EXPERIM	ENTAL APPARATUS	. 2
EXPERIM	ENTAL RESULTS	. 3
DISCUSS	ION	. 6
CONCLUS	IONS	. 7
REFEREN	CES	. 8
	TABLES	
1	Pressure-Time Responses of Barium Styphnate	9
2	Pressure-Time Responses of LMNR and LMNR/KC104	10
3	Rough Handling/Surveillance Test Results	11
4	Impact Sensitivity Tests	12
	FIGURES	
Fig. 1	Assembly for Pressure Bomb Testing	13
Fig. 2	Test Arrangement	14
Fig. 3	Mk 15 Actuator	15
Fig. 4	Pressure-Time Profile of the Mk 15 Actuator	16
Fig. 5	Pressure-Time Profiles of Mk 15 Actuators with Reduced Charge of Normal Lead Styphnate	17
Fig. 6	Pressure-Time Profile of Mk 15 Actuator with Reduced Ignition Charge	18

NOLTR 70-98

Figures	(continued)	
Fig. 7	Pressure-Time Responses of DuPont Powdere	19
Fig. 8	Pressur=-Time Responses of Barium Styphnate	20
Fig. 9	Pressure-Time Responses of Barium Styphnate at Different Loading Pressures	21
Fig. 10	Pressure-Time Responses of SR-4990 and Barium Styphnate	22
Fig. 11	Pressure-Time Responses of LMNR	23
Fig. 12	Pressur: Time Responses of Different LMNR/KN104	24
Fig. 13	Pressure-Time Responses of LMNR/KCLO4 and SR-4990	25
Fig. 14	Mk 24 Actuator	
Fig. 15	Photomicrograph of LMNR/KCLO4 Mixture	26
ig. 16		27
+9· 10	Photonicrograph of Barium Styphnate	28

INTRODUCTION

- 1. The Mk 24 Mod 0 Actuator, used in the Mk 20 Cable Cutter, contains SR-4990 as the propellant base charge. SR-4990 is a single base smokeless powder manufactured by DuFont and has been used as the propellant material in Navy actuators because it produces a very desirable rapid pressure rise. However, DuPont has ceased production of SR-4990, making it necessary for the Navy to find a suitable replacement material for use in the Mk 24 Mod 0 Actuator.
- 2. Besides a rapid pressure rise, the replacement material should have: (a) high pressure output, (b) good loading properties, (c) safe handling properties, (d) storage stability, and (e) bulk density sufficiently high to assure that an adequate quantity of base charge can be loaded within the present volume of the actuator. In addition to possessing these qualities, it is desirable that the replacement be non-proprietary and covered by a military specification.
- 3. Various available materials were considered as possible replacements for SR-4990. Two proprietary samples supplied by DuPont and said to have pressure-time responses similar to that of SR-4990, were included in initial testing in case non-proprietary substitutes were not successful. They were SR-8044 and "Hi-Skor" 700-x (DuPont Powders). Lead mononitroresorcinate is used in various dimple and bellows motors and was thought to have possible application. A literature scaled traveled that barium styphnate had a pressure-time response which suggested its possible applicability.
- 4. The experimental work was divided into two phases. A basic survey was first made of the possible substitutes by testing in a pressure bomb to determine how closely the substitute materials matched the pressure-time curves produced by SR-4990. Materials found satisfactory in the pressure bomb test were then tested in the Mk 24 Actuator.

EXPERIMENTAL APPARATUS

- 5. A small pressure bomb was used to compare the pressure time profiles of the test materials with that of SR-4990. This pressure bomb, Fig. 1, has been successfully used by E. E. Kilmer¹ to evaluate different propellant materials for actuators.
- 6. A Norwood strain gage pressure transducer, with a range up to 10,000 psi, was used in conjunction with a Model 5AC Pressure Monitor. The pressure monitor provides a source of power and completes the bridge and calibrating circuits. This arrangement was monitored by a Tektronix oscilloscope, Model 545, and the resultant curves were recorded by a Polaroid Land camera. A block diagram of the experimental arrangement is shown in Fig. 2.
- 7. The Norwood bonded strain gage pressure transducer has proved itself in static and dynamic pressure measurements over the years. The gage's catenary diaphragm is designed to minimize temperature effects and volume changes. An increased pressure on the diaphragm produces a minute dimensional change in the strain tube. This change is reflected by an equivalent resistance change in the strain wages bonded to the tube. Past experience with propellant powders has shown this transducer to be unaffected by corrosive gases, that it has the desired electrical characteristics, and it facilitates the cleaning of the pressure bomb.
- 8. For convenience of testing, the Mk 15 Actuator, Fig. 3, was used as the test vehicle to compare the different candidate powders. The Mk 15 Actuator has 25 mg of propellant base charge compared with 1 gram of propellant base charge in the Mk 24 Actuator. Thus, the pressure generated from the Mk 15 Actuator is much less than that of the Mk 24 Actuator and therefore more adaptable to the pressure bomb arrangement described above. In addition, smaller amounts of substitute material can be used for testing purposes. Also, the Mk 15 Actuator is relatively simple in design and easier to fabricate than the Mk 24 Actuator.

EXPERIMENTAL RESULTS

Pressure-Pomb Work

- Initial exploratory experiments were performed using the Mk 15 Actuator with 25 mg of SR-4990. A typical response is shown in Fig. 4. A peak pressure of approximately 1900 psi is generated in the pressure bomb in 2-3 milliseconds. To isolate the pressuretime effect of SR-4990 from the ignition charge of lead styphnate, various charge weights of lead styphnate were tried. See Fig. 5. When these results are compared with the normal Mk 15 profile, (Fig. 4), a marked difference in the pressure build up was noticed. This effect of pressure on burning rate demonstrated that the 25 mg tests might not scale too well with larger amounts of material in the rinal Mk 24 Actuator design. Actuators with 15 mg of lead styphnate gave the closest duplication of the pressure-time response of the normal Mk 15. It was concluded that a five milligram charge of lead styphnate would be sufficient to isolate the response of the propellant. To ensure adequate ignition of the propellant, five milligrams of FA 878 Igniter Mix* were pressed at the same loading pressure as the lead styphnate in the charge holder on top of the increment of lead styphnate. This igniter mix is used to ignite the propellant charge in the Mk 24 Actuator and is very effective when used in this operation. As shown in Fig. 6, the response of these actuators was as good as the original design containing 20 mg of lead styphnate.
- 10. "Hi-SKOR" 700-x and SR-8044. These are two Dupont powders which were recommended by DuPont as possible substitutes for SR-4990. The same weight (25 mg) as SR-4990 was employed. Figure 7 shows these powders to be promising, giving pressures in the 1500-2000 psi range within 2-4 milliseconds. It was decided to keep them in reserve for further study if necessary in case the non-proprietary materials were not satisfactory.

^{* 40%} zirconium, 20% barium nitrate, 20% lead peroxide, and 20% PETN.

- Barium Styphnate (Barium Trinitrorescorcinate). Twenty-five 11 mg of barium styphnate, loaded loose (the same conditions as SR-4990) resulted in a low pressure and extremely quick response time. See Fig. 8a. (The charge holder in this test was not filled completely due to the higher density of barium styphnate compared with SR-4990.) Filling the charge holder (55 mg) with loose barium styphnate increased the pressure correspondingly, and the fast rise time was maintained. See Fig. 8b. To determine whether we could achieve a slower burning rate with a suitable peak pressure, tests were run with actuators containing ninety mg barium styphnate but pressed in the charge holders at different loading pressures. Figure 9 shows typical oscillograms illustrating the results obtained at 5000 psi, 10,000 psi, and 15,900 psi. The charge holder was filled completely at 5000 psi loading pressure. The pressure rise times and magnitude of the peak pressures for the various loading methods are summarized in Table I. Figure 10 shows the P-T profiles of actuators loaded with barium styphnate compared with those loaded with SR-4990. By using 5000 psi as the loading pressure, the desired response could be produced in the same volume as SR-4990.
- 12. Lead Mononitroresorcinate. Lead Mononitroresorcinate (LMNR) when used by itself generated a pressure which was too low. Its rate of burning was also too low. See Fig. 11. This is due to the "oxygen deficiency" of LMNR. The oxygen balance is calculated from the empirical formula of a compound in percentage of oxygen required for complete conversion of carbon to CO2 and hydrogen to water. For LMNR, it was determined to be -48% to CO2 and -15% to CO. However, when used with an oxidizer added for complete combustion, the pressure build up can be enhanced. The oxidizer used here was KClO4 and the different ratios by weight tried were 85% LMNR = 15% KClO4, 80% LMNR 20% KClO4, 75% LMNR 25% KClO4, and 60% LMNR 40% KClO4. See Fig. 12. The actuators loaded with a 75/25% mixture pressed at 5000 psi gave pressure-time profiles most similar to those of actuators with SR-4990. The different responses from varying loading conditions and mixtures are summarized in Table II. In Fig. 13, the P-T profile of LMNR-KClO4 (75/25%) as obtained from the pressure bomb is plotted and compared with SR-4990.

Mk 24 Actuator Work

13. The next phase of the program consisted of replacing the base charge in the Mk 24 Actuator with barium styphnate and LMNR/KCl04 (75/25%) and comparing their performance with the standard Mk 24 Actuator. Work on the proprietary powders was discontinued at this time pending the results of the subsequent experimentation. The Mk 24 Actuator, Fig. 14, is a hermatically sealed, stab initiated device which contains 135 mg of NOL 130 primer mix, 150 mg of FA 878 igniter mix, and one gram of SR-4990 as the base charge.

NOLTR 70-98

- 14. The SR-4990 explosive load was replaced with 4.4 grams of barium styphnate pressed at 5000 psi and 5.6 grams of LMNR/KC1C4 at 5000 psi. During the fabrication of the actuators with LMNR/KC1O4, difficulty was encountered during the soldering process. When heat was applied to melt the solder, a few actuators accidentally ignited during the process. No accidental ignitions were obtained when the barium styphnate loaded actuators were sealed.
- 15. The actuators loaded with the two candidates were tested for output using the Mk 24 Actuator output fixture. In this device, the actuator drives a piston which is required to shear a 0-172-in. steel rod. All of the samples tested (10 each) passed the test at room temperature and at -65°P. In fact, rods up to 0.218-in. diameter could be successfully sheared at room temperature. (The upper bound on the output from SR-4990 loaded Mc 24 Actuators is 0.197 in.) Actuators with the two candidates were tried in the Mk 20 cable cutter and successfully sheared the 1-in. diameter cable.
- The actuators were then subjected to rough handling and surveillance tests. (See Table III.) Two out of fifteen actuators with LMNR/KClO4 fired on impact in the 40-ft. guided drop test. This is not too uncommon for stab initiated items, as they occasionally will fire on this test. All actuators with barlum styphnate successfully passed the safety tests. The samples remaining from the safety tests were tested in an output fixture by the impact of a two-ounce steel ball from four inches on a standard firing pin. The 0.172-in. diameter steel drill rod was areared successfully each time by actuators containing barium styphnate. One out of fifteen actuators loaded with LMBR/KClO4 falled to shear the rod after being subjected to the 40-ft. guided drop test. One cut of fifteen failed after being stored at 160°P and two out of fifteen failed after a sequential transportation, high frequency vibration test. The reasons for the failures are not known. As a result of these tests, barium styphnate was judged to be more consistent and reliable than lead mononitroresorcinate when used in the Mk 24 Actuator.

DISCUSSION

- 17. The results of impact sensitivity tests of the candidate materials are shown in Table IV. Although both candidates are more impact sensitive than SR-4990, barium styphnate is considerably less impact sensitive than LMNR/KClO4. Although barium styphnate is regarded as a primary explosive, it is safer to manufacture and use than most other primaries.² It is also relatively unsusceptible to accidental ignition from electrostatic sources.²
- 18. A cost analysis revealed no significant difference between the current price of LMNR (price of KClO₄ can be neglected when compared with LMNR) and barium styphnate. However, the extra step of mixing LMNR and KClO₄ must be considered. Efforts have to be made to insure uniform blending of the two ingredients. Otherwise, inconsistent burning times with varying pressure outputs will result. To facilitate the blending, it is necessary to use potassium perchlorate crystals which are of very small size. Also, because of the mensitivity of these materials, adequate safety precautions must be taken during the mixing process. See Fig. 15 for a photomicrograph of a LMNR/KClO₄ mixture.
- 19. The difficulty of soldering actuators with LMNR/KClO₄ was previously mentioned. The soldering is done with the use of a high frequency induction heater equipped with a reset timing device. The amount of heat delivered and its duration can be varied depending on the particular item to be soldered. The settings are very crucial to insure proper melting of the solder without any accidents. Hence, extra time and efforts were necessary to solder a complete batch of actuators with LMNR/KClO₄. Due to the small difference between the melting point of the solder and the ignition temperature of LMNR/KClO₄, a lower melting point solder (tin-indium) would have to be used. If not successful, an alternate method for hermetically sealing the actuator would have to be found. There were no difficulties encountered in soldering actuators loaded with barium styphnate.
- 20. Barium styphnate, has been found to be relatively stable to heating and to storage in vacuum and humid conditions. It is also compatible with the metals and other materials likely to be in contact with it in explosive stores. A photomicrograph of barium styphnate is provided in Fig. 16. The particle size ranges from 10 to 500 microns. As is shown in the pressure-time profiles in Fig. 9, it is possible, by varying the lcading pressure of barium styphnate in the actuator, to closely approximate the burning response of SR-4990.

CONCLUSIONS

- 21. Two possible non-proprietary candidates for replacement of SR-4990 have been found. Work with the Mk 24 Actuator has shown barium styphnate to be more reliable than a lead mononitroresor-cinate/KCl04 mixture. Superior chemical and physical properties have also demonstrated the advantage of using barium styphnate over the LMNR/KCl04 mixture.
- 22. Barium styphnate is recommended as the substitute for SR-4990 in the Mk 24 Actuator.

REFERENCES

- 1. Kilmer, E. E., "The Actuator, Explosive WOX-23A, An Actuator to Replace Actuator Mk 3 Mod 0 in the Explosive Switch Mk 46 Mod 0", NAVORD Rept. 6761, May 1960.
- Taylor, G. W. C., Thomas, A. T., and Holloway, K. J., "The Manufacture of Barium Styphnate RD 1340" (U), Ministry of Supply, Explosive Research and Development Establishment, Rept. No. 28/R/55, Feb. 1956, conf.

TABLE 1 PRESSURE - TIME RESPONSES OF BARIUM STYPHNATE

POWDER WEIGHT	LOADING PRESSURE (psi)	PRESSURE RISE TIME (MILLISEC)	PEAK PRESSURE (psi)
.25 mg	0	0.4	1,050
55 mg	0	0.6	1,760
90 mg	5,000	2.0	2,100
90 mg	10,000	2.0	2,100
У0 mg	15,000	2.0	2,400

TABLE 2 PRESSURE - TIME RESPONSES OF LMNR AND LMNR/KCIQ 4

POWDER	POWDER WEIGHT	LOADING PRESSURE (psi)	PRESSURE RISE TIME (MILLISEC)	PEAK PRESSURE (psi)
LMNR	15 mg	0	-	250
LMNR	120 mg	10,000	5.0	560
LMNR	180 mg	5,000	6.0	875
LMNR-KCIO ₄ (85/15)	180 mg	5,000	6.0	2 _e 020
LMNR - KCIO, (80/20)	180 mg	5,000	3.0	1,750
LMNR- KCIO (75/25)	180 mg	5,000	2.0	2,020
LMNR - KCIO ₄ (60/40)	180 mg	5000	_	1900

TABLE 3 ROUGH HANDLING/SURVEILLANCE TEST RESULTS

	ACTION TES		OUT RESU		
	LMNR/KC:04	BARIUM STYPHNATE	LMNR/KCIO ₄	BARIUM STYPHNATE	
T&H CYCLING (TEST 105)			√	√	-
JOLT (TEST 101)	NO FIRES	NO FIRES	✓	√	
JUMBLE ((EST 102)	NO FIRES	NO FIRES	√ ·	√	√=PASS O=FAIL
40' GUIDED DROP	2/15*	NO FIRES	O 1/15	√	*=ACCIDENTAL IGNITION
160° F STORAGE (28 DAYS)			C 1/15	. /	-
TRANSPORTATION HIGH FREQ VIB TEST 104 II	NO FIRES	NO FIRES	O 2/15	. ✓	

NOTE: TEST NUMBERS REFER TO MIL-STD-331

TABLE 4 IMPACT SENSITIVITY TESTS

FIG. 1 ASSEMBLY FOR PRESSURE BOMB TESTING

FIG. 2 TEST ARRANGEMENT

FIG. 3 MK 15 ACTUATOR

VERT SENS 476 psi/DIV SWEEP TIME 5 cms/DIV

TIME ---

FIG. 4 PRESSURE-TIME PROFILE OF THE MK 15 ACTUATOR

25 mg BASE CHARGE 5 mg NORMAL LEAD STYPHNATE

VERT SENS 476 psi/DIV SWEEP SPEED 5 ms/DIV 25 mg BASE CHARGE 10 mg NORMAL LEAD STYPHNATE

VERT SENS 476 psi/DIV SWEEP SPEED 5 ms/DIV

25 mg BASE CHARGE 15 mg NORMAL LEAD STYPHNATE

VERT SENS 476 psi/DIV SWEEP SPEED 5 ms/DIV

FIG. 5 PRESSURE-TIME PROFILES OF MK 15 ACTUATORS WITH REDUCED CHARGE OF NORMAL LEAD STYPHNATE

25 mg BASE CI ARGE 5 mg NORMAL LEAD STYPHNATE 5 mg FA 878 MIX

VERTICAL SENSITIVITY: 485 psi/DIV

SWEFP SPEED: 5 MSEC/DIV

FIG. 6 PRESSURE - TIME PROFILE OF MK 15 ACTUATOR WITH REDUCED IGNITION CHARGE

25 mg SR 8044 5 mg NORMAL LEAD STYPHNATE 5 mg FA 878 (a)

VERT SENS: 398 psi/DIV SWEEP SPEED 5 MSEC/DIV

25 mg"HI-SKOR"-700X 5 mg NORMAL LEAD STYPHNATE 5 mg FA 878 (b)

VERT. SENS: 1000psi/DIV SWEEP SPEED 5 MSEC/DIV

FIG. 7 PRESSURE-TIME RESPONSES OF DUPONT POWDERS

25 mg BARIUM STYPHNATE 5 mg NORMAL LEAD STYPHNATE 5 mg FA 878 MIX (a)

VERT SENS: 375psi/DIV SWEEP SPEED 5 MSEC/DIV

55 mg BARIUM STYPHNATE 5 mg NORMAL LEAD STYPHNATE 5 mg FA 878 MIX (b)

VERT SENS: 400psi/DIV SWEEP SPEED 5 MSEC/DIV

FIG. 8 PRESSURE-TIME RESPONSES OF BARIUM STYPHNATE

96 mg BARIUM STYPHNATE LOADING PRESSURE: 5,000 psi

VERT SENS
350 psi/DIV
SWEEP SPEED
5 ms/DIV

90 mg BARIUM STYPHNATE LOADING PRESSURE: 10,000 psi

VERT SENS 750 psi/DIV SWEEP SPEED 5 ms/DIV

90 mg BARIUM STYPHNATE LOADING PRESSURE: 15,000 psi

VERT SENS 750 psi/DIV SWEEP SPEED 5 ms/DIV

FIG. 9 PRESSURE - TIME RESPONSES OF BARIUM STYPHNATE AT DIFFERENT LOADING PRESSURES

FIG. 10 PRESSURE-TIME RESPONSES OF SR4990 AND BARIUM STYPHNATE

TIME (MILLISEC)

15 mg LMNR

VFRT. SENS. 250 psi/DIV.

HANNAND INNER KINGSCHAM BURKERINGER

SWEEP SPEED: 0.5 msec/DIV.

180 mg LMNR

LOADING-PRESSURE 5,000 psi

VERT. SENS. 250 psi/DIV.

SWEEP SPEED: 5 msec/DIV.

120 mg LMNR LOADING PRESSURE 10,000psi

VERT. SENS. 200 psi/DIV.

SWEEP SPEED 5 msec/DIV

FIG. 11. PRESURE-TIME RESPONSES OF LMNR

180 MG LMNR-KCIO₄ (85/15) VERT. SENSITIVITY: 460psi/DIVISION SWEEP SPEED: 5 MSEC/DIVISION

180 MG LMNR-KCIO₄ (80/26) VERT. SENSITIVITY: 460psi/DIVISION SWEEP SPEED: 5 MSEC/DIVISION

180 MG LMNR-KCIO, (75/25)
VERT. SENSITIVITY: 460psi/DIVISION
SWEEP SPEED: 5 MSEC/DIVISION

180 MG LMNR-KCIO (60/40)
VERT. SENSITIVITY: 4600psi/DIVISION
SWEEP SPEED: 5 MSEC/DIVISION

FIG. 12 PRESSURE - TIME RESPONSES OF DIFFERENT LMNR-KCIO₄ MIXTURES

FIG. 13 PRESSURE-TIME RESPONSES OF LMNR/KCIO4 AND SR4990

26

REMARKS: NOTE THE RELATIVE SIZES OF THE DIFFERENT CRYSTALS. PARTICLE SIZES OF INDIVIDUAL CONSTITUENTS ARE LESS THAN 75 MICRONS.

FIG. 15 PHOTOMICROGRAPH OF LMNR/KCIO4 MIXTURE

REMARKS: NOTE THE WELL-FORMED CRYSTALS CONTAINING OCCLU-DED MATERIALS, PROBABLY MOTHER LIQUOR. THE DARK CRYSTALS OCCUR BECAUSE OF THEIR ORIENTATION ON THE POLARIZING MICRO-SCOPE. PARTICLE SIZE RANGE IS FROM 19 TO 500 MICRONS.

FIG. 16 PHOTOMICROGRAPH OF BARIUM STYPHNATE

_	Security Classification		м	<u> </u>				
Ī	DOCUMENT CONT	ROL DATA - R	& D					
	Security Classification of title, body of abstract and indexing appointing must be universtand when the overall report is classified)							
I	I ORIGINATING ACTIVITY (Comprise suffice)		ZA PEFORT SE	CURITY CLASSIFICATION				
I	U. S. Naval Ordnance Laboratory		UNCLASS	IPIED				
I	White Oak, Silver Spring, Maryland	20916	th GROUP					
I	made only outlier of analy, or all and		i					
- , }	3. REPORT TITLE							
	Replacement of SR 4997 by Barium S	typhnate i	n the Mk	24 Actuator -				
Į į		-3.5						
I								
I	4 DESCRIPTIVE HOTES (Type of report and inclusive dates)							
1								
	5 AUTHORSI (Fust name, middle initial, last name)							
7	Stephen C./Urman							
F- 1								
~"4	A STATE OF THE PARTY OF THE PAR			_				
	A. REPORT DATE	TAL TOTAL NO. O	F PACES	7b. NO. OF REFS				
'nΪ	12 Aug 3/60.	28	-	2				
*- 1	SECTION I RECT OF GREAT NO	PRICINATOR	S REPORT NUMB	ERIS				
1		19						
	& PROJECT NO.	HOLTR-79	-98 [
1 500	08D-052-470/092-1/038-014-44E	-						
اس	ORD-053-470/092-1/U38-019 115- NOL-412/08D-053 P20-1-201	St. OTHER REPO	AT NOIST (Aug of	er numbers that may be assigned				
	101 411/08B-035 11-01-B01							
I	4	l						
I	10. DISTRIBUTION STATEMENT							
l	Each transmittal of this document	outside t	he Depart	ment of Defense				
l	must have prior approval of MOL.							
I								
	11. SUPPLEMENTARY NOTES	IZ SFOXIONNS	MELITARY ACTIV	MIA .				
1	•							
		MAYAL OR	LEARCS 51	STEMS CCEPAND				
	13. A8\$79ACT	<u> </u>						
ì								
Î	2254 CD 4000 - circle base mice	-11-nt me-	dia wa	. ovinlasies				
1	Dopont SR-4990, a single-base propactuators, is no longer produced.	erranc nae	costated	explosive				
ı	an adequate replacement for the SR							
-1								
	Experimental work was performed wi	th Darium	scypmace	:, 1-au 				
I	mononitroresorcinate, and two pure							
1	date materials were first screened							
•	testing was performed in the Mx 24							
	showed that of the four candidates, barium styphnate is the best							
	material for the Actuator Mx 24.							
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	•						
	\							
	•							
ı								
ı	· v							
	-M = (550 -55)-	_						
ı		-						
Į	<i>[[]</i>							
		كالأكافا الكالا						

DD FORM 1473 (PAGE 1)

UNCLASSIFIED
Security Classification

	LINX	^	LINE	· 6	LINI	(c
KEY WOHOS	ROLE	WT	ROLE	WT	ROLE	**
		T				
Barium Styphnate		- 1	1			!
		- 1	1			
Mk24 Actuator		1	1			
			1			
		1	l			
		Î	- 1			
			ĺ	i		
		- 1	1			
		1	İ			
	1	1	1			
			-			
			ĺ			
	-	1				
		1				
		1				}
		ĺ	ĺ			
		1				
		1			[1
	i l	1		ļ		Ì
		1	l		l	
		1				
		i				1
		1			l	ĺ
·		1			-	
		1			l	
		:			1	1
		1			1	
		-				
		- 1			1	l
		i		-		
-		1				1
			1	 	1	1
		1			1	
	1 !	l			1	
		1			1	
	i	į			1	
		ļ			1	
		1				
		1			1	
	}	1			1	İ
	ì	l			1	1
		}				
		1		}	1	
		1			ļ	
	1 1	į			I	
		1			1	ĺ
		1		ł	1	

DD FORM 1473 (BACK)
(PAGE- 2)

UNCLASSIFIED
Security Classification