

GRID DA DISCIPLINA			
CURSO:	Engenharia de Computação		
DISCIPLINA:	Arquitetura de Computadores		
PROFESSOR: Clayton Jones Alves da Silva, MSc			

I - OBJETIVOS

- Projetar e implementar circuitos digitais básicos, lógicos e aritméticos, aplicando testes com simuladores em software e em bancada, para produção de sistemas computacionais.
- Desenvolver programas em assembly, utilizando instruções e diretivas do assembler de microprocessadores/microcontroladores, para construção de aplicações no nível ISA.
- Desenvolver programas em linguagem C, simulando algoritmos típicos de gestão de memória, processos e arquivos, implementados pelos Sistemas Operacionais.
- Especificar os atributos dos elementos de um modelo de arquitetura de sistemas de computação, considerando o propósito do emprego, para aplicá-lo em um sistema de Tecnologia da Informação e Comunicação.
- Analisar o desempenho de modelos de arquiteturas de sistemas de computação, utilizando as especificações de atributos dos seus elementos, considerando o propósito do emprego, para seleção do modelo mais adequado a uma aplicação.

II - CONTEÚDOS

- **1.** Conceitos básicos: dados, linguagens e programas de computadores; máquinas de níveis; máquina de seis níveis; evolução histórica dos computadores; tradutores e interpretadores; compiladores.
- 2. Dados e informação: Representação de grandezas numéricas nos sistemas computacionais; Sistemas de numeração de base 2 (binários) e de base 16 (hexadecimais); Aritmética binária e aritmética hexadecimal; Representação de números negativos; Representação de números de ponto flutuante; Codificação.
- **3.** Elementos do sistema de computação: Estrutura detalhada da máquina de Von Neumman; processador da máquina IAS, características e instruções Unidade Lógica e Aritmética, Unidade de Controle e registradores; memória da máquina IAS, características; barramento; Dispositivos de entrada/saída (I/O); programa armazenado e o ciclo de execução de instruções.
- **4.** Nível de lógica digital: portas lógicas AND, OR, NOT, NAND, NOR, EXOR, funções booleanas.
- **5.** Projeto de circuitos lógicos digitais combinacionais e sequenciais básicos: circuitos aritméticos somadores binários e outros; circuitos lógicos comparadores, mux/demux, decoder; memória, flip-flops e registradores.

- **6.** Organização do sistema de memória: hierarquia da memória dos sistemas de computação; características e tecnologias de memórias; tipos de memória; memória cache.
- **7.** Nível de Microarquitetura: caminho dos dados: elementos, sinais, funções, temporização, controle de execução; microprogramas; microinstruções e microprograma; microarquitetura do microcontrolador Atmel ATmega V-2560.
- **8.** Nível do Conjunto de Instruções do Processador: visão geral; tipos de dados; formatos de instrução *opcode* e operando; endereçamento modos de endereçamento; tipos de instrução; fluxo de controle; *set* de instruções do Atmel ATmega V-2560.
- **9.** Nível de Linguagem de Montagem: assembly versus assembler, mnemônicos do set de instruções do processador; diretivas de assembly.
- **10.** Programação em *assembly*: *assembler* do Atmel ATmega V-2560; IDE para desenvolvimento de aplicações no assembler do Atmel ATmega V-2560, Atmel Studio 7.
- 11. Nível de Sistema Operacional: conceitos; atividades típicas; tipos; elementos do SO.
- **12.** Gerência de memória memória virtual paginação, segmentação; gerência de processos; gerência de arquivos e diretórios; e gerência de I/O.
- **13.** Programação de aplicações utilizando linguagem C para implementação de tarefas de gerência do SO.
- **14.** Arquiteturas paralelas: paralelismo no chip; co-processadores; multiprocessadores.

III - REFERÊNCIAS

Autor	Título / Publicação	Editora	Ano
TANENBAUM, Andrew S.	Organização estruturada de computadores. 5. ed.	Prentice Hall do Brasil	2006
STALLINGS, William	Arquitetura e organização de computadores: projeto para o desempenho. 5. ed	LTC	2002
MONTEIRO, Mário A	Introdução à organização de computadores. 5. ed. (*)	LTC	2002
MAZIERO, Carlos A.	Sistemas Operacionais: Conceitos e Mecanismos	UFPR	2019
TANENBAUM, Andrew S. e BOS, Herbert	Sistemas Operacionais Modernos, 4. ed.	PEARSON	2016
DELGADO, José e RIBEIRO, Carlos	Arquitetura de Computadores, 5. ed. (*)	Grupo GEN	2017
WEBER, Raul F.	Fundamentos de arquitetura de computadores, série livros didáticos informática vol.8, 4. ed. (*)	UFRGS	2012

(*) Disponível na Biblioteca Virtual