

DESCRIPTION

The CM6535 is a USB 2.0 audio chip builds in 8051 for flexible applications with Tri-Colors PWM LED driver, two (2)-channel ADC/DAC and S/PDIF and I2S interface makes it suitable for headset, notebook/ mobile docking, speaker and microphone applications. The internal 8051 can also be developed to different applications, such as Microsoft™ Lync/ Skype/VoIP device and Android Phone or Tablet/Slate docking device. The CM6535 is compatible with USB Audio Class 1.0 and USB 2.0 full-speed, thus it can plug and play without additional software installation on the major operation systems. The internal DAC/ADC and I2S support 8~96 KHz sampling rate and 16/24bits resolution.

The CM6535 integrates the equalizer on both playback and recording paths to compensate the frequency response of microphones and headphones.

The CM6535 also integrates 512K Byte flash (Including 32KB F/W programming size) and requires few passive components to make a finish product. Thus, it can save the total BOM cost and PCB area can be smaller.

FEATURES

- USB 2.0 full-speed compliant
- USB Audio Class 1.0 compliant
- USB Human Interface Device (HID) Class 1.1 compliant
- Two (2)-channel DAC & I2S for audio output interface
- Two (2)-channel ADC & I2S for audio input interface
- Supports Digital Microphone Interface
- Built-in S/PDIF Input/output transmitter
- Built-in Equalizer on both playback and recording paths
- Built-in AGC on recording path
- Supports dual tone generator
- Supports USB suspend/resume/reset functions
- Supports control, interrupt, bulk, and isochronous data transfers
- Embedded 1T 8051 with 32K Byte SRAM and 512K Byte flash(Including 32K Byte F/W programming size)
- Supports OMTP and CTIA auto switch on a 4-pole jack
- Integrated Tri-Colors PWM LED driver
- Master/Slave H/W I2C/SPI/UART control interface for external audio devices or FLASH access
- Built-in 30mW @ 32 ohm load headphone amplifier
- On chip watchdog timer

BLOCK DIAGRAM

Release notes

Revision	Date	Description	
1.0	2015/6/22	First release	
1.1	2016/02/18	 Modify I2C Using Example. Modify SPI Using Example. Update TEST pin information. Modify UART TX/RX pin description 	

TABLE OF CONTENTS

1	Des	cription	and overview	6
2	Feat	tures		6
	2.1	U	SB compliance	6
	2.2	In	tegrated 8051 micro-processor	6
	2.3	C	ontrol interface	6
	2.4	G	eneral	7
	2.5	A	udio I/O	7
	2.6	G	eneral firmware volume setting value	8
3	App	olication	s	8
4	Pin	assignm	ent	9
	4.1	Pi	n-out diagram	9
	4.2	Pi	n description	10
	4.3	Pi	n Circuit Diagrams	13
5	USI	B audio 1	topology	14
	5.1	H	eadset topology	14
6	Fun	ction de	scription	16
	6.1	Pl	ayback equalizer	16
		6.1.1	Five (5)-band Equalizer	16
		6.1.2	Four(4) preset EQ mode	17
	6.2	Re	ecording equalizer	18
	6.3	Re	ecording AGC	18
	6.4	Н	ID function	21
		6.4.1	HID interrupt in	21
		6.4.2	HID get_input_report	22
		6.4.3	HID set_output_report	
	6.5	Ve	endor command definition	24
		6.5.1	Vender command read	24
		6.5.2	Vender command write	24
		6.5.3	USB vendor requests	24
		6.5.4	Simple process of firmware update	
	6.6	I^2	S Control description	26
		6.6.1	I ² S Interface setting	
		6.6.2	Basic of I ² S bus	
		6.6.3	Left justified mode	27

6.6.4	I ² S Mode	27
6.6.5	I ² S MCLK/BCLK/LRCK ratio and format for cm6535	28
6.6.6	I2S output enable setting and data stream path	29
6.6.7	I ² S DSP mode	30
6.7 SI	PDIF control description	31
6.7.1	SPDIF frame description	31
6.7.2	SPDIF out channel status	32
6.8 Di	igital microphone	33
6.9 I^2	C interface	34
6.9.1	I ² C master mode	34
6.9.2	I2C-master read with clk_sync mode	35
6.9.3	I ² C master device address and control register	35
6.9.4	I ² C master memory address pointer (map) register	35
6.9.5	I ² C master memory address pointer (map2) register	35
6.9.6	I ² C master data register	35
6.9.7	I ² C Master Control and Status Register 0	36
6.9.8	I ² C master control and status register 1	36
6.9.9	I ² C master download control and status register	36
6.9.10	I ² C master clock period setting register	37
6.9.11	I ² C slave mode	38
6.9.12	I ² C slave data register	38
6.9.13	I ² C slave status register	38
6.9.14	I ² C slave memory address pointer (map) register	39
6.9.15	I ² C slave status register	39
6.10 SF	PI interface	41
6.10.1	SPI Registers Descriptions	41
6.10.2	SPI Control Register 0	41
6.10.3	SPI control register 1	42
6.10.4	SPI interrupt	42
6.10.5	SPI Control Register 3	
6.11 Gl	PIO	44
6.11.1	GPO data register	44
6.11.2	GPI data register	44
6.11.3	GPIO direction control register	
6.11.4	GPIO interrupt enable mask register	44
6.11.5	GPIO debouncing register	
6.11.6	GPI remote choose	
6.11.7	GPIO pull-up/down	45
6.12 Aı	rbitrary sine-tone generator	

	6.13	Tri-colored led control setting	48
	6.14	Reset	49
	6.14	1.1 Watchdog reset timer	49
7	Electrica	l characteristics	50
	7.1	Absolute maximum ratings	50
	7.2	Recommended operation conditions	50
	7.3	Power consumption	50
	7.4	DC characteristics	
	7.5	Analog audio	51
	7.6	USB transceiver	
	7.7	Microphone bias	52
8	Audio pe	erformance	
	8.1	DAC audio quality	53
	8.2	ADC audio quality	54
	8.3	A-A path audio quality	
9	Package	dimensiondimension	

1 Description and overview

The CM6535 is a USB 2.0 audio chip builds in 8051 for flexible applications with Tri-Colors PWM LED driver, two (2)-channel ADC/DAC and S/PDIF and I2S interface makes it suitable for headset, notebook/ mobile docking, speaker and microphone applications. The internal 8051 can also be developed to different applications, such as Microsoft™ Lync/ Skype/VoIP device and Android Phone or Tablet/Slate docking device. The CM6535 is compatible with USB Audio Class 1.0 and USB 2.0 full-speed, thus it can plug and play without additional software installation on the major operation systems. The internal DAC/ADC and I2S support 8~96 KHz sampling rate and 16/24bits resolution.

The CM6535 integrates the equalizer on both playback and recording paths to compensate the frequency response of microphones and headphones.

The CM6535 also integrates 512K Byte flash (Including 32KB F/W programming size) and requires few passive components to make a finish product. Thus, it can save the total BOM cost and PCB area can be smaller.

2 Features

2.1 USB compliance

- USB 2.0 full-speed compliant
- USB Audio Class 1.0 compliant
- USB Human Interface Device (HID) Class 1.1 compliant
- Supports USB suspend/resume/reset functions
- Supports control, interrupt, bulk, and isochronous data transfers
- Support Synchronous and Asynchronous audio data synchronization

2.2 Integrated 8051 micro-processor

- Embedded 8051 micro-processor to handle the comment/protocol transactions
- Embedded 512K Byte SPI Flash(Including 32KB F/W programming size)
- 32K Byte RAM for firmware extension and plug-in
- HID interrupts/buttons/functions can be implemented via firmware codes
- Provides maximum hardware configuration flexibility with firmware code upgrade
- VID/PID/Product String can program by firmware

2.3 Control interface

- Master/Slave I2C control interface, bus speed supports 100 and 400kbit/s
- One 4-wire SPI mater / slave interface, bus speed supports from 150k to 12Mbit/s
- Twelve (12) GPIO pins and firmware programmable.
- JTAG debug interface
- GPIOs are configured as HID key and LED indicators
- Tri-color PWM LED Driver

2.4 General

- Single 12MHz crystal input is required
- Single 5V power supply (embedded 5V to 1.8V regulator for digital core, 5V to 3.3V regulator for digital IO, 5V to 3.6V regulator for analog codec)
- 3.3V digital I/O pads with 5V tolerance
- Industrial standard LQFP-64 package (7x7mm)

2.5 Audio I/O

- Playback Stream:
 - Speaker/Headphone
 - Sample Rates: 8K/11.025K/16K/22.05K/32K/44.1K/48K/88.2K/96KHz
 - Supported Bit Length: 16/24 bits
 - Speaker Gain Range(Analog) is -44 ~ 0dB, 1dB/step
 - DAC Gain Range(Digital) is -62 ~ 0dB, 1dB/step
 - > I2S interface with DSP mode
 - Sample Rates: 8K/11.025K/16K/22.05K/32K/44.1K/48/88.2/96K
 - Supported Bit Length: 16/24 bits
 - > S/PDIF transmitter
 - Sample Rates: 44.1K/48K/88.2K/96K
 - Supported Bit Length: 16/24 bits
- Recording Stream:
 - Microphone/Line input
 - Sample Rates: 8K/11.025K/16K/22.05K/32K/44.1K/48K/96KH
 - Supported Bit Length: 16/24 bits
 - Microphone gain range(Analog) is -18 ~ 45dB, 1dB/step
 - Line input gain range(Analog) is -33 ~ 30dB, 1dB/step
 - ADC gain range(Digital) is -16 ~ 12dB, 1dB/step
 - I2S interface with DSP mode
 - Sample Rates: 8K/11.025K/16K/22.05K/32K/44.1K/48K/96KH
 - Supported Bit Length: 16/24 bits.
 - S/PDIF transmitter
 - Sample Rates: 44.1K/48K/88.2K/96KH
 - Supported Bit Length: 16/24 bits
 - Stereo Mixer
 - Mix playback stream with microphone and line input
 - Gain Range (Analog) is -30 ~ 33dB, 1dB/step

A-A path Stream:

- Microphone to playback A-A path
 - Mix mono microphone input to stereo playback both L/R channel.
 - Gain Range (Analog) is -15 ~ 32dB, 1dB/step.
- Line input to playback A-A path
 - Mix Line input to stereo playback both L/R channel.
 - Gain Range (Analog) is -30 ~ 12dB, 1dB/step.

CM6535 is a USB 2.0 full-speed audio device. Since there is a bandwidth limitation, CM6535 cannot support 96 KHz/24bits for playback and capture streams simultaneously. The possible combinations are shown below:

	Playback	Capture	
	Storoo 061/47/24bits	Stereo, 48KHz/24bits or below	
Audio Format	Stereo, 96KHz/24bits	Mono, 96KHz/24bits or below	
Audio Format	Stereo, 48KHz/24bits or below	Stereo, 96KHz/24bits	
	Mono, 96KHz/24bits or below		

2.6 General firmware volume setting value

The CM6535 is a MCU base USB Audio Device; the default topology is different from its hardware capability. Please refer to Chapter 5.1 for the CM6535 default topology while below the gain volume range.

Device	Minimum	Maximum	Default	dB/Step
Speaker	-45dB(Mute)	0dB	-10dB	1dB
Microphone input recording Volume	0dB	+30dB	+20dB	1dB
Microphone A-A path (playback)	-15dB(Mute)	+22dB	0dB	1dB
Line input recording Volume	-26dB	+12dB	0dB	1dB
Line input A-A path Volume	-30dB	+12dB	0dB	1dB

3 Applications

- USB Headset
- Notebook/Net book Docking
- Android Phone/Tablet Docking
- USB DAC, Headphone amplify
- USB Microphone

^{**}Note 1: A-A path means Analog to Analog Mixer path

^{**}Note 2:

4 Pin assignment

4.1 Pin-out diagram

4.2 Pin description

Pin #	Symbol	1/0	Description	
	Clock			
8	8 XTAL_O AO 12MHz crystal oscillator output			
7	XTAL_I	Al	12MHz crystal oscillator input	
			USB2.0 BUS Interface	
10	USB_DP	AIO	USB 2.0 data plus (USB D+ signal)	
11	USB_DM	AIO	USB 2.0 data minus (USB D- signal)	
			Power/Ground	
12	DVDD33	AO	Regulator 3.3V output, drive capacity 10mA	
13	DVDD18	AO	Regulator 1.8V output, no current drive capacity	
14	DVDD50	PWR	5V digital power for 5/3.3/1.8V regulator	
27	AVDD36	AO	Analog 3.6V regulator for ADC, no current drive capacity	
28	28 AVDD42 AO 4.2V power for Analog and Voltage and Current Reference			
29	29 AVDD50 PWR 5V analog power for 4.2/3.6V regulator			
30	AV42_DA	AO	Analog 4.2V regulator for Analog 3.6V regulator, no current drive capacity	
31	AV36_DAL	AO	Analog 3.6V regulator for DAC left channel, no current drive capacity	
37	AV36_DAR	AO	Analog 3.6V regulator for DAC right channel, no current drive capacity	
9	VSS	GND	Digital Ground	
59	VSS	GND	Digital Ground	
15	VSS	GND	Digital Ground	
16	AGND	GND	Analog Ground	
26	AGND	GND	Analog Ground	
33	AGND_DAL	GND	Analog Ground	
35	AGND_DAR	GND	Analog Ground	

	Audio Interface			
23	MIC_SWOUT	Al	Combo jack detect and auto switch, detect combo jack type and switch to MICR_RING2 or MBIASR_SLEEVE.	
20	MICL	Al	Microphone in left channel	
			•	
24	MICR_RING2	Al	Microphone in right channel or combo jack ring2 pin input	
21	MBIASL	AO	Microphone bias (2.75V) for left channel	
25	MBIASR_SLEEVE	AO	Microphone bias (2.75V) for right channel or combo jack Sleeve pin input	
22	VAG	AO	Voltage reference cap filter	
32	LOUTL	AO	Line out left channel	
			Line out common reference for cap-less connection	
2.4	10004	40	Suggested connections:	
34	LOCOM	AO	Cap-less: 10uF	
			None use: floating	
36	LOUTR	AO	Line out right channel	
18	LINEINL	Al	Line input left channel	
19	LINEINR	Al	Line input right channel	
			Analog control voltage input for playback volume control	
			SAR ADC digital input range:	
			SARAD<5:0>	
17	VOLADJ	Al	000000:Maxium27.3mV	
			111111:Minium1.75V	
			(27.3mV/1step)	
	Two (2)-channel I2S DAC Output Interface			
			I2S out master clock	
38	DAC_MCLK	DIO	Programmable 3.3V output buffer	
			programmable 3.34 output burier	

			I2S out bit clock		
39	DAC_BCLK	DIO	Programmable 3.3V bidirectional buffer		
			Internal default pull-down		
40	DAC_DOUT	DO	I2S out serial data output		
40	DAC_DOUT	DO	Programmable 3.3V output buffer		
			I2S out left/right clock		
41	DAC_LRCK	DIO	Programmable 3.3V bidirectional buffer		
			Internal default pull-down		
42	DAC_DIN	DI	I2S out serial data input, For DSP mode only		
72	DAC_DIN	Di	Programmable 3.3V output buffer		
		T	wo (2)-channel I2S ADC Input Interface		
52	ADC_ DOUT	DO	I2S in serial data output; for DSP mode only		
			I2S in left/right clock		
53	ADC_ LRCK	DIO	Programmable 3.3V bidirectional buffer		
			Internal default pull-down		
			I2S in serial data input		
54	ADC_ DIN	DI	Programmable 3.3V input buffer, Schmitt trigger		
			Internal default pull-down		
			I2S in bit clock		
55	ADC_ BCLK	DIO	Programmable 3.3V bidirectional buffer		
			Internal default pull-down		
56	ADC_ MCLK	DIO	I2S in master clock		
30	ADC_ MCLK	DIO	Programmable 3.3V output buffer		
	S/PDIF I/O				
47	SPDIF_O	DO	S/PDIF transmitter		
4/	ט_ וועזנ	DO	SPDIF_O is an output buffer with 8mA Tri-state		
48	SPDIF_I	DI	S/PDIF Receiver		
70	ווט זר	0	SPDIF_O is an input buffer with 8mA Tri-state		

	GPIO				
2	GPIO_0	DIO	General purpose input/output (default Volume Up button). 3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current, Default weak pull-up for input (JTAG-TCK)		
1	GPIO_1	DIO	General purpose input/output (default Volume Down button). 3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current, Default weak pull-up for input (JTAG-TMS)		
64	GPIO_2	DIO	General purpose input/output (default Play Mute button). 3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current, Default weak pull-up for input (JTAG-TDI)		
51	GPIO_3	DIO	General purpose input/output (default Rec Mute button). 3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current, Default weak pull-up for input.		
50	GPIO_4	DIO	Programmable 2 in 1 I/O interface. GPIO/PWM select by firmware. General purpose input/output (default PWM LED Blue). 3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current, Default weak pull-up for input.		
49	GPIO_5	DIO	Programmable 2 in 1 I/O interface. GPIO/PWM select by firmware. General purpose input/output (default PWM LED Green). 3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current, Default weak pull-up for input.		
58	GPIO_6	DIO	Programmable 2 in 1 I/O interface. GPIO/PWM select by firmware. General purpose input/output (default PWM LED Red). 3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current, Default weak pull-up for input (JTAG-TRST)		

			General purpose input/output		
			(JTAG-TDO). There are 4 kinds of preset EQ, GPIO7 and 8		
57	GPIO_7	DIO	3.3V I/O, 5V tolerance, are used to determine in which mode. The		
3,	GI 10_7	D10	bidirectional buffer with 8mA combinations are shown below.		
			driving current, default EQ GPIO[8:7]=0,0: Normal mode		
			disable weak pull-up for input. GPIO[8:7]=0,1: Gaming mode		
			General purpose input/output GPIO[8:7]=1,0: Communication mode		
			3.3V I/O, 5V tolerance, GPIO[8:7]=1,1: Movie mode		
46	GPIO_8	DIO	bidirectional buffer with 8mA EQ function can enable via configuration		
			driving current, Default EQ tool or firmware.		
			disable weak pull-up for input.		
			General purpose input/output (default Rec Clip Indicator).		
45	GPIO_9	DIO	3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current,		
			Default weak pull-up for input.		
			Programmable 3 in 1 I/O interface. GPIO/Digital MIC Clock (DMIC_CLK)/		
			UART_RX select by firmware.		
44	GPIO_10	DIO	GPIO (Default MIC Jack Detect):		
			3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current,		
			Default weak pull-up for input.		
			Programmable 3 in 1 I/O interface. GPIO/Digital MIC Data (DMIC_DAT)/		
			UART_TX select by firmware.		
43	GPIO_11	DIO	GPIO (Default Headphone Jack Detect):		
			3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current,		
			Default weak pull-up for input.		
			4-Wire SPI Serial Bus		
			SPI data master in/slave out,		
60	SPI_MISO	DIO	3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current,		
			Default weak pull-down for input.		
			SPI data master out/slave in,		
61	SPI_MOSI	DIO	3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current,		
			Default weak pull-down for input.		
			SPI chip select,		
62	SPI_CS0	DIO	3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current,		
			Default weak pull-up for input.		
			SPI clock,		
63	SPI_SCK	DIO	3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current,		
			Default weak pull-down for input.		
1			2-Wire Serial Bus (I2C)		
			2-wire serial data,		
6	I2C_SDAT	DIO	3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current		
			Default weak pull-up for input.		
			2-wire serial clock,		
5	I2C_SCLK	DIO	3.3V I/O, 5V tolerance, bidirectional buffer with 8mA driving current		
			Default weak pull-up for input.		
	Miscellaneous				
			Power Down Switch is an output buffer with 8mA Tri-state output.		
3	PDSW	PDSW DO	Normal mode: 0		
		1	Suspend mode: 1		
			The TEST pin is used for IC test, another one is in the instance when F/W		
			crashes or USB was not recognized, set TEST pin to 3.3V before USB connect		
4	TEST	DI	can force MCU into boot loader mode and be able to update F/W via		
'	1231			configuration tool, default weak pull-down for input.	
			1: Boot loader mode		
			0: Normal operation		

^{**}Note1: GPIOs, I2C, SPI, SPDIF, MIC_SWOUT, MICL, MICR_RING2, MBIASL, MBIASR_SLEEVE, VAG, LOUTL, LOCOM, LOUTR, VOLADJ, PDSW pins can be left floating if not in use.

^{**}Note2: Suggest connect TEST pin to GND by default setting.

4.3 Pin Circuit Diagrams

VAG, MIC_BAIS

Analog input pins LINE, MIC

Output pins LOUTL, LOUTR

Output pins LOUTL, LOUTR

5 USB audio topology

5.1 Headset topology

USB Interfaces List

	Interface Description	Endpoint
Interface 0	Audio Control Interface	
Interface 1	Audio Stream Interface for Playback	0x01
Interface 2	Audio Stream Interface for Record	0x82
Interface 3	HID Interface	0x87(Interrupt In 16 bytes)

Audio Stream Interfaces' Alternate Setting List

	Alt 1	2CH, 16bits PCM	8K,11.025K,16K,22.05K,32K,44.1K,48K
Interface 1	Alt 2	2CH, 24bits PCM	8K,11.025K,16K,22.05K,32K,44.1K,48K
(Speaker)	Alt 3	2CH, 16bits PCM	88.2K,96K
	Alt 4	2CH, 24bits PCM	88.2K,96K
	Alt 1	2CH, 16bits PCM	44.1K,48K
Interface 2 (MIC In,	Alt 2	2CH, 24bits PCM	44.1K,48K
Line-In, SPDIF-In)	Alt 3	2CH, 16bits PCM	88.2K,96K
,	Alt 4	2CH, 24bits PCM	88.2K,96K

6 Function description

6.1 Playback equalizer

6.1.1 Five (5)-band Equalizer

CM6535 has integrated five (5)-band hardware digital equalizer (EQ) engine inside the chips to provide various application usages. It provides up to four (4)-preset modes on client's product design for different user scenarios including default/music, movies, gaming and communication modes. Clients could also change the gain parameters for each of the preset application EQ mode via embedded FLASH coding. Also, the EQ engine could also be utilized for compensating and fine-tuning the headphone driver for Sound Pressure Level (SPL) performance to a specific preference. In this case, clients could fully customize all EQ coefficients such as center frequency, gain values, and bandwidth to one optimized frequency response curve and setting in terms of the headphone driver and housing's acoustics characteristics, also via embedded FLASH programming.

The EQ engine contains five (5) frequency bands (Fc) of digital filters to conduct transfer functions of the frequency response over the audio band. It allows maximum of +-12dB digital gain (Gain) for each band with 0.5dB adjustment per step. Each filter will have its bandwidth (BW) factor between 0 and 1.0.

Fc: Center Frequency, F1~F5, 20<Fc<20K (Hz)

Gain: Digital Frequency Gain, -12dB <= Gain <=+12dB, 0.5dB/step

BW: Filter Bandwidth Factor, 0<BW<1

OPA Gain: Analog Gain Compensation setting for each equalizer mode

The EQ engine already provides four (4) preset modes/settings based on the same preset F1~F5 center frequencies and OPA gain:

F1 (Bass) = 100Hz

F2 = 350Hz

F3 = 1 KHz

F4 = 3.5 KHz

F5 (Treble) = 13 KHz

With the four (4)-preset EQ modes, clients could use embedded FLASH parameters to change the gain values for each band of the center frequency and hence customize the four (4)-preset EQ curves based on the preset center frequencies and bandwidth. Alternatively, clients could also skip the four (4) preset modes and create a customized EQ curve by changing the center frequencies, gain values and even the bandwidth factors in embedded FLASH parameters to make the headphones sound better or meet some frequency requirements. However, in this case, the product will always use one optimized EQ setting and could not allow users to dynamically change from one preset mode into another. Clients could also consider reporting Treble/Bass feature unit by embedded FLASH to Windows UAA driver to allow end-users to adjust Bass (F1) and Treble (F5) manually. Therefore, there are three usage/application scenarios as shown by the summary table below:

Three (3) EQ Usage/Application Scenarios

No	Scenario	Gain Value	Center Frequency / Bandwidth Factor	Number of Modes	User Control Type
1	4 Switchable Presets	Configurable	Fixed	4	Hardware
2	Full-Customized EQ	Configurable	Configurable	1	N.A.
3	Treble/Bass Feature Unit	Configurable	Configurable	1	Software

^{**}Note: In the User Control Type, hardware means end-users could select which EQ mode will be used by a hardware switch/button on the product while software control means they could control the treble/bass gain values by GUI in Windows OS sound device advanced settings.

6.1.2 Four(4) preset EQ mode

As mentioned above, EQ engine already provides four (4)-preset EQ modes for different user scenarios/applications. The EQ function default was disabled but it can be enabled via configuration tool or firmware, end users could use the hardware switch on the product (determined by 2 EQ configuration input pins) to dynamically change to different EQ modes. The following shows the frequency response of each mode:

Mode	GPIO8	GPIO7	Color
Default	0	0	
Gaming	0	1	
Communication	1	0	
Movie	1	1	

Audio Precision 04/20/11 15:35:35

Sweep	Trace	Color	Line Style	Thick	Data	Axis	Comment
1	1	Red	Solid	2	Anir.Ampi	Left	00
2	1	Magenta	Solid	2	Anlr.Ampl	Left	11
3	1	Cyan	Solid	2	Anlr.Ampl	Left	10
4	1	Blue	Solid	2	Anlr.Ampl	Left	

DA-EQ-SPDIF_In_DA_Out.at27

6.2 Recording equalizer

CM6535 also provide five (5)-band equalizer for the input. It can be used to compensate the frequency response of microphone unit. Clients could fully customize all EQ coefficients (center frequency, gain values, and bandwidth) through embedded FLASH coding.

6.3 Recording AGC

Automatic Gain Control (AGC) is an automatically controlled method to adjust with intensity of signal. AGC closes the return circuit and that is by the negative response system too.

AGC is also for compressing volume, first it will increase Gain when it is started, then it will set up the upper and lower limits of the signal and lastly, it will compress the dynamic range of sound. AGC is used usually for recording and producing sound, or when volume is being changed in a small environment. If the volume is low, AGC will increase the volume hence if volume is sustained loudly, AGC will decrease volume.

FEATURES

В

Α

Programmable AGC Parameters
Selectable Gain from -12 dB to 45 dB in 1-dB Steps
Selectable Attack, Release and Hold Times
AGC Enable/Disable Function
Limiter Enable/Disable Function
Pre-Detect Limiter Level Function
Two (2)-Channel AGC Independent

Shown below are input source types to set AGC gain max/min limit

I2S rec	+12~ -16DB	0xf9= 0x1c (max)+fix gain(9db) = 0x25 0cfA= 0x00(min)
Digital microphone	+20 ~ -16DB	0xf9= 0x24 (max)+fix gain(9db) =0x2d 0xfA= 0x00(min)
Analog microphone	+30 ~ 0DB	0xf9=0x0F+fix gain(9db) inv -> 0x39(max) 0xfA=0x2D inv -> 0x12(min)

AGC Variable Description

Fixed Gain: The normal gain of the device when the AGC is inactive Limiter Level: The value that sets the maximum allowed output amplitude

Attack Time: The minimum time between two gain decrements Release Time: The minimum time between two gain increments

Hold Time: The time it takes for the very first gain increment after the input signal amplitude decreases

6.4 HID function

6.4.1 HID interrupt in

Input Data Format:

byte0	always 1 for org HID event report ID
byte1	for defined HID event, each event occupies one bit
byte2	
byte3	start address of returned data (H-start_addr)
byte4	start address of returned data (L-start_addr)
byte5	bit7
	bit6:UART_INT
	bit5:GPI_INT
	bit4:SPIS_INT (slave mode int)
	bit3: SPIM_INT (master mode int)
	bit2:I2CS_INT (slave mode int)
	bit1:I2CM_INT (master mode int)
	bit0: IR_INT
byte6	read data of [start_addr]
byte7	read data of [start_addr+1]
byte8	read data of [start_addr+2]
byte9	read data of [start_addr+3]
byte10	read data of [start_addr+4]
byte11	read data of [start_addr+5]
byte12	read data of [start_addr+6]
byte13	read data of [start_addr+7]
byte14	read data of [start_addr+8]
byte15	read data of [start_addr+9]

6.4.2 HID get_input_report

Command format:

bmRequestType	bRequest	wValue	wIndex	wLength	Data
8'h A1	8'h 01	16'h 01 01	16'h 00 03	16'h 00 10	Doport
	(Get_Report)	(Rpt Type + Rpt ID)	(Interface)	(16 bytes)	Report

^{*}Note: The Start_Addr value in the input reported is put in the Internal Register Address 0xff. Software must set the value of Start_Addr Register to make sure Get Input Report can read the proper data you want.

Input Data Format:

byte0	always 1 for org HID event report ID			
byte1	for defined HID event, each event occupies one bit			
byte2				
byte3	start address of returned data (H-start_addr)			
byte4	start address of returned data (L-start_addr)			
byte5	bit7			
	bit6: UART_INT			
	bit5: GPI_INT			
	bit4: SPIS_INT(slave mode int)			
	bit3: SPIM_INT(master mode int)			
	bit2: I2CS_INT(slave mode int)			
	bit1: I2CM_INT(master mode int)			
	bit0: IR_INT			
byte6	read data of [start_addr]			
byte7	read data of [start_addr+1]			
byte8	read data of [start_addr+2]			
byte9	read data of [start_addr+3]			
byte10	read data of [start_addr+4]			
byte11	read data of [start_addr+5]			
byte12	read data of [start_addr+6]			
byte13	read data of [start_addr+7]			
byte14	read data of [start_addr+8]			
byte15	read data of [start_addr+9]			

6.4.3 HID set_output_report

Command format:

bmRequestType	bRequest	wValue	wIndex	wLength	Data
8'h 21	8'h 09	16'h 02 01	16'h 00 03	16'h 00 10	Doport
0 11 21	(Set_Report)	(Rpt Type + Rpt ID)	(Interface)	(16 bytes)	Report

^{*}Note: Byte5 is the beginning address of this write sequence.

Output data format:

1	
byte0	always 1 for org HID event report ID
byte1	start address of write reg (H-start_addr)
byte2	start address of write reg (L-start_addr)
byte3	effective write/read data length (<=12)
byte4	write data to [start_addr]
byte5	write data to [start_addr+1]
byte6	write data to [start_addr+2]
byte7	write data to [start_addr+3]
byte8	write data to [start_addr+4]
byte9	write data to [start_addr+5]
byte10	write data to [start_addr+6]
byte11	write data to [start_addr+7]
byte12	write data to [start_addr+8]
byte13	write data to [start_addr+9]
byte14	write data to [start_addr+10]
byte15	write data to [start_addr+11]

6.5 Vendor command definition

6.5.1 Vender command read

Command format:

bmRequestType	bRequest	wValue	wIndex	wLength	Data
8'h C3	8'h 02 (Command 2)	16'h (Starting Address of input Data)	16'h 00 00	16'h 00 - (<=64 bytes)	Data

Input data format:

Byte 0	Data of Reg[wValue]	
Byte 1	Data of Reg[wValue + 1]	
Byte 2	Data of Reg[wValue + 2]	
•••		
Byte 63	Data of Reg[wValue + 63]	

6.5.2 Vender command write

Command format:

bmRequestType	bRequest	wValue	wIndex	wLength	Data
8'h 43	8'h 01 (Command 1)	16'h (Start Address of Output Data)	16'h 00 00	16'h 00 - (<=64 bytes)	Data

Output data format:

Byte 0	Data of Reg[wValue]
Byte 1	Data of Reg[wValue + 1]
Byte 2	Data of Reg[wValue + 2]
•••	
Byte 63	Data of Reg[wValue + 63]

6.5.3 USB vendor requests

bmRequestType	bRequest	wValue	wIndex	wLength	Data
0x43 (Vendor Other)	0x01 Register Write	Address	0x0000	Data Length (<=64 bytes)	Data
0xC3 (Vendor Other)	0x02 Register Read	Address	0x0000	Data Length (<=64 bytes)	Data
0x43 (Vendor Other)	0x03 Flash Write	Address	0x0000: Write only 0x0001: Auto Verify	Data Length (<=64 bytes)	Data
0xC3 (Vendor Other)	0x04 Flash Read	Address	0x0000	Data Length (<=64 bytes)	Data
0x43	0x05 Flash Control	0x0000	0x0001: Chip Erase	0x0000	None
(Vendor Other)		Address	0x0002: Sector Erase		
0xC3 (Vendor Other)	0x06 Flash Control - Get Status	0x0000	0x0000	0x0001	1-byte data 0x01: Erasing 0x00: Ready

6.5.4 Simple process of firmware update

6.6 I²S Control description

6.6.1 I²S Interface setting

I²S has three clock signals (MCLK, BCLK and LRCK) and at least one data line depending on the channels supported. One data line contains two channels. Therefore, there is one data line for a 2-channel I²S DAC controller. The three I²S clock symbols are explained below:

MCLK = main clock. BCLK = bit clock. LRCK = left and right clock.

6.6.2 Basic of I²S bus

Both master and slave modes of I^2S are supported, namely I^2S DAC, I^2S ADC. Master mode means BCLK and LRCK are provided as shown in the left diagram below. On the contrary, slave mode means BCLK and LRCK are provided by the I^2S codecs as shown in the right diagram below.

Figure -1 I2S Master/Slave Block Diagram

Below figure illustrates the basic waveform of I^2S . Note that BCLK is generated at the positive edges of MCLK with the ratios 1, 1/2, 1/4, or 1/8, and LRCK is generated at the negative edges of BCLK with the ratios 1/64, 1/128, 1/256. Data lines are transmitted at the negative edges of BCLK, and are sampled at the positive edges of BCLK by codecs in case of playback or recording.

Figure -2 I²S Timing Diagram

For the I²S DAC controller, the audio data is transformed from the parallel format to the serial format before being transmitted. Then, the bit data is shifted out one by one with the MSB first via DOUT signal. If the I²S DAC controller is set to 32 bits, at least 32 BCLK clocks must exist in both LRCK left and right channels. In the same manner, the audio data is transformed from serial format to the parallel format for the I²S ADC controller.

6.6.3 Left justified mode

In the left justified mode of the I²S DAC controller, the MSB data bit is clocked out at the negative edge of BCLK which is aligned to the transition of LRCK. In the left justified mode of I²S ADC controllers, the MSB data bit is clocked out by codecs and sampled at the first positive edge of BCLK which follows a LRCK transition. LRCK is high during left channel transmission and low during right channel transmission in the left justified mode.

Figure -3 Left Justified Mode Timing Diagram of I²S

6.6.4 I²S Mode

In the I²S mode of the I²S DAC controller, the MSB data bit is clocked out by CM6535 at the first negative edge of BCLK which follows a LRCK transition. In the same manner, the MSB data bit is clocked out by codecs and sampled at the second positive edge of BCLK which follows a LRCK transition. LRCK is low during left channel transmission and high during right channel transmission in the I²S mode.

Figure -4 I²S Mode Timing Diagram of I²S

6.6.5 I²S MCLK/BCLK/LRCK ratio and format for cm6535

I2S clock format						
	Sampling Freq.	Resolution	Format	BCLK/LRCK	MCLK/LRCK	
Master Mede	8/11.025/16/ 22.5/32/44.1/48	16/24 bits	Left Justified / I2S-Mode	64	256/512	
Master Mode	88.2/96	16/24 bits	Left Justified / I2S-Mode	64	256	
Slave Mode	8/11.025/16/ 22.5/32/44.1/48	16/24 bits	Left Justified / I2S-Mode	64	256/512	
MCLK from CM6535	88.2/96	16/24 bits	Left Justified / I2S-Mode	64	256	
Slave Mode MCLK from external	8/11.025/16/ 22.5/32/44.1/48 /88.2/96	16/24 bits	Left Justified / I2S-Mode	64	128/256/512	

6.6.6 I2S output enable setting and data stream path

Pin-Out-En	Ext-I2S-master	Ext-I2S-slave with mclk-out	Ext-I2S-slave with mclk-in	Int-I2S-master	Int-I2S-master with DSP
	Codec_sel=1	Codec_sel=1	Codec_sel=1	Codec_sel=2	Codec_sel=3
ADCMK_EXT	0	0	1	0	0
ADC_MKEN	1	1	0	0	1
ADC_BLKEN	1	0	0	0	1
ADC_DSPEN	0	0	0	0	1
DACMK_EXT	0	0	1	0	0
DAC_MKEN	1	1	0	0	1
DAC_BLKEN	1	0	0	0	1
DAC_DOEN	1	1	1	0	1

6.6.7 I²S DSP mode

The CM6535 I²S interface supports DSP mode. The audio signal can be passed through external DSP processing and returned back to internal DAC/ADC for audio data convert.

USB Playback Stream DSP Mode Audio Data Flow

USB Capture Stream DSP Mode Audio Data Flow

6.7 SPDIF control description

6.7.1 SPDIF frame description

- > Audio format: linear 16 bit default.
- > Allowed sampling frequencies (Fs) of the audio:
 - 44.1 kHz from CD
 - 48 kHz from DAT
 - 32 kHz from DSR
- One way communication: from transmitter to receiver.
- Control information:

Biphase Mark

- V (validity) bit: indicates if audio sample is valid.
- U (user) bit: user free coding i.e. running time song, track number.
- C (channel status) bit: emphasis, sampling rate and copy permit.
- P (parity) bit: error detection bit to check for good reception.
- Coding format: bi-phase mark except the headers (preambles), for sync purposes.
- ➤ Bandwidth occupation: 100 kHz up to 6 Mhz (no DC!)
- > Signal bitrate is 2.8 Mhz (Fs=44.1 kHz), 2Mhz (Fs=32 kHz) and 3.1 Mhz (Fs=48 kHz).

Figure -17 Bi-phase Mark Signal of SPDIF

Preamble B:

Marks a word containing data for channel A (left) at the start of the data-block.

Preamble M:

Marks a word with data for channel A that isn't at the start of the data-block.

Preamble W:

Marks a word containing data for channel B (right, for stereo). When using more than 2 channels, this could also be any other channel (except for A).

The number of sub-frames that will be used will depend on the number of channels that is being transmitted. A CD-player uses Channels A and B (left/right) and so each frame contains two sub-frames. A block contains 192 frames and starts with a preamble "B":

V: Valid, U: User-Data, C:Channel-Status-Data, P:Parity-Bit

Figure -5 SPDIF Subframe Description

In each block, 384 bits of channel status and subcode info are transmitted. The Channel-status bits are equal for both sub-frames, so actually only 192 useful bits are transmitted:

Figure -6 Preamble Description of 192 SPDIF frame

6.7.2 SPDIF out channel status

	bit0	bit1	bit2	bit3	bit4	bit5	bit6	bit7
byte0	consumer /professional	audio/ non-audio	copyright	ı	ore-emphasi	s	mo	ode
default	0(P)	0(P)	1(P)	0(P)	0(fixed)	0(fixed)	0(fixed)	0(fixed)
byte1		category code						L
default	0(P)	0(P)	0(P)	0(P)	0(P)	0(P)	0(P)	0(P)
byte2	source number			channel number				
default	0(fixed)	0(fixed)	0(fixed)	0(fixed)	0(fixed)	0(fixed)	0(fixed)	0(fixed)
byte3	te3 sampling frequency				clock accuracy rese			rved
default	0(P)	0(P)	0(P)	0(P)	0(fixed)	0(fixed)	0(fixed)	0(fixed)

NOTE

P: these bits can be programmed by USB HID or USB vendor command

6.8 Digital microphone

CM6535 provide digital microphone interface for recording. There are two microphone signals transmitted on a single DATA line from DMIC module. The oversampling bit stream output from DMIC module connects to internal decimation filter to generate PCM output.

6.9 I²C interface

6.9.1 I²C master mode

I²C protocol timing

6.9.2 I2C-master read with clk_sync mode

6.9.3 I²C master device address and control register

Address: 0x80

Bits	R/W	Bit Mnemonic	Description	Default
7-1	R/W	CA roa	The target clave device address	0xA8
/-1	7-1 R/W	SA_reg	The target slave device address.	(POR)
	0 R/W	/ SA_reg	1. road Or write	1'b0
0			1: read, 0: write	(POR)

6.9.4 I²C master memory address pointer (map) register

Address: 0x81

Bits	R/W	Bit Mnemonic	Description	Default
7-0	R/W	MAP_reg	The register low byte address of salve device to be read or written.	8'b0 (POR)

6.9.5 I²C master memory address pointer (map2) register

Address: 0x82

Bits	R/W	Bit Mnemonic	Description	Default
7.0	-0 R/W	MAP2_reg	The register high byte address of	8'b0
7-0			salve device to be read or written.	(POR)

6.9.6 I²C master data register

Address: 0x83 ~ 0x92

Bits	R/W	Bit Mnemonic	Description	Default
7-0	0 R/W	data0~ data15	The data read from or written to the	8'b0
7-0			slave device.	(POR)

6.9.7 I²C Master Control and Status Register 0

Address: 0x93

Bits	R/W	Bit Mnemonic	Description	Default
7-0	R/W	i2c_ctrl_reg1	Data length of read/write command 8'h1: 1 byte, minimum length 8'h2: 2 bytes 8'hFE: 254 bytes 8'hFF: 256 bytes, maximum length	0x14 (POR)

6.9.8 I²C master control and status register 1

Address: 0x94

Bits	R/W	Bit Mnemonic	Description	Default
7	R/W	i2c_start	Trigger I ² C read/write command 0->1: trigger I ² C read/write command. 1->0: I ² C interface had completed current task. 0 : I ² C interface is idle and ready for work. 1 : I ² C interface is running.	1'b0 (POR)
6	R/W	i2c_reset	Reset I ² C interface 0 : Not reset I ² C interface 1 : Reset I ² C interface	1'b0 (POR)
5	R/W	map_len	MAP length 0 : 8-bit MAP 1 : 16-bit MAP	1'b0 (POR)
4	R/W	clk_sync	Clock Synchronization 0: off 1: on, when slave pull-down SCLK, master would pause	1'b1 (POR)
3	R/W	fast_std	I ² C speed mode 0 : Standard mode, 100kHz 1 : Fast mode, 400kHz	1'b0 (POR)
2	R/W	map_only	MAP only write command 0 : Write command. 1 : MAP only write command.	1'b0 (POR)
1	R/W	auto_rd	Auto read command 0 : Read command. 1 : Auto read command.	1'b1 (POR)
0	R	i2c_ctrl_reg2	Slave NACK error occur 1 : No error 2 : Slave NACK error occur	1'b0 (POR)

^{*}Note: Write-MAP-Only: An operation which only writes the register MAP the salve device

6.9.9 I²C master download control and status register

Address: 0x95

Bits	R/W	Bit Mnemonic	Description	Default
7	R/W	I2c_mas_sel	I2C master/slave select	1'b1
				(POR)
6	RO	Flag_8byte	Flag_8byte (RO): Flag to status I2C is	1'b0
	WO	Flag_ready	transmitting at 1 st 8 bytes data or 2 nd	(POR)

			8 bytes data. If the flag index it's transmitting the 2 nd 8 bytes data, then F/W can prepare the next 8 bytes data into 1 st 8byte buffer.	
			Flag_ready (WO): Flag to index F/W has prepared next data ready. After prepare done, F/W need set this bit to index the data had been written. If F/W didn't catch on when all data has been transmitted, the I ² C clock would be keep low to till it ready.	
5:4	R/W	LD_BLOCK	Download to which block of SRAM. 00: Load to 1 st 8KB block. 01: Load to 2 nd 8KB block. 10: Load to 3 rd 8KB block. 11: Load to 4 th 8KB block.	2'b00 (POR)
3	RO	CHKSUM_ERR	Check sum Error 1. If in LD_PHASE, the check sum value was calculated by I ² C load data. 2. If in CHK_PHASE, the check sum value was calculated by SRAM read content.	1'b0
2	RO	CHK_FINISH	CHECK phase done 1: finish download data CHECK	1'b0
1	R/W	CHK_PHASE	MCU select CHECK phase to read SRAM data for check-sum check. 1: enable (after disable LD_PHASE) 0: set 0 after complete	1'b0 (POR)
0	R/W	LD_PHASE	MCU select LOAD phase to access SRAM from download. 1: enable 0: set 0 after complete	1'b0 (POR)

6.9.10 I²C master clock period setting register

Address: 0x96

Bits	R/W	Bit Mnemonic	Description	Default
7	W	CHG_ENABLE	MCU can program I ² C clock; 1'b1: enable	1'b0 (POR)
6	R/W	LD_SEL	MCU download select 1'b0 : SPI download 1'b1 : I ² C download	1'b0 (POR)
5-0	8	CHG_FREQ	Set I ² C-master clock period. The clock period=83.3*5*(CHG_FREQ+1) Ex: CHG_FREQ = 6'd48 I2C Clock Period=83.3*5*(48+1)=20408ns HW limitation CHG_FREQ >= 6'h3	6'h0 (POR)

6.9.11 I²C slave mode

"7-bit slave address = 7'b0001000 to 7'b0001011"

CM6535 can serves as a slave device with bit rate up to 400Kbps (fast mode). External MCU can write data to CM6535 or read data from CM6535 (No Size limitation in I²C Interface). Since host side and MCU can both access to all the internal registers.

CM6535 will transfer an interrupt to internal MCU until the INT bit of I²C control register has been cleaned by internal MCU. The interrupt will be trigger when write transaction is done or detect read-slave-address.

The main usage of 2-wire slave bus is to become the interface between the CM6535 and an external micro control unit (EMCU).

6.9.12 I²C slave data register

Address: 30~33h

Bits	R/W	Bit Mnemonic	Description	Default
31:0	R/W	_	The data received from or transmitted to master device. This register cannot be written when 2-wire slave serial bus status is busy.	UUUUN

6.9.13 I²C slave status register

Address: 34~35h

Bits	R/W	Bit Mnemonic	Description	Default
15			Reserved	1b
14:12	R		Reserved	0h
11	R/W	Thld_int_mask	Threshold interrupt mask: 1: mask; 0: non-mask ; default :0	0b (POR)
10	R	Write_data_ready	Interrupt happened, auto-cleared after read	0b (POR)
9	R/W	I2c_s_reset	0: 2-wire serial bus in normal operation (default)1: 2-wire serial bus in reset state	0b (POR)
8	R/W	Dri_tran_st	Initiated transaction status 1: The last initiated transaction failed, write 1 to clear.	0b (POR)
7	R/W	Rd_tran_st	Read transaction status 1: a new read transaction received, write 1 to clear.	0b (POR)
6	R/W	Wr_tran_st	Write transaction status 1: a new write transaction received, write 1 to clear.	0b (POR)
5:1	R	Data_len	The data length of the last write transaction received, 00000: 1 byte (MAP only) 00001: 2 byte (MAP + 1 byte data) 00010: 3 byte (MAP + 2 byte data) 00011: 4 byte (MAP + 3 byte data) 00100: 5 byte (MAP + 4 byte data) 01111: 16 byte (MAP + 15 byte data) 10000: 17 byte (MAP + 16 byte data) Others: Reserved	0b (POR)
0	R	busy	The 2-wire serial bus status, 0: idle, 1: busy	0b (POR)

**Note: When I²C issue interrupt to MCU, MCU needs to read the data numbers that threshold data count specified. And waits another interrupt until the total data transfer completed.

6.9.14 I²C slave memory address pointer (map) register

Address: 36h

Bits	R/W	Bit Mnemonic	Description	Default
7:0	R/W	· - ·	The memory addresses of the read or write transactions from MCU. Address 0 is reserved for initiated transaction.	00h (POR)

6.9.15 I²C slave status register

Address: 37h

Bits	R/W	Bit Mnemonic	Description	Default
7	R/W	Sync_en	Synchronization Enable 1: enable (the synchronization selection bit will decide the method adopted). 0: disable (MCU and ARC should guarantee no data lost themselves).	1b (POR)
6	R/W	Int_polarity	The polarity control of pin INT_OUT (initiated transaction interrupt), 0: high active, 1: low active	0b (POR)
5:4	R/W	Slave_addr	Slave Device Address 00: select 0001000 (10h) as slave address 01: select 0001001 (12h) as slave address 10: select 0001010 (14h) as slave address 11: select 0001011 (16h) as slave address	01b (POR)
3	R/W	Sync_sel	Synchronization Method Selection 1: Data synchronization. When this bit is one, if the current transaction has not been serviced by ARC, the clock line of the 2-wire serial bus will be pulled low. Under this situation, the MCU cannot start a new transaction or continue the current read transaction until the clock line goes back to high. 0: Ready pin synchronization. If the MCU cannot support open drain 2-wire serial bus, this bit should be set to zero. In this instance, the MCU cannot start a new transaction or continue the current read transaction until the pin XSLAVE_RDY goes high to signal that the driver has serviced the current transaction. Driver should use "driver acknowledge" to signal the processing of the current transaction is completed.	1b (POR)
2	R/W	Int_mask	Interrupt Mask 0: interrupt will happen at a read/write transaction received or a driver initiated transaction failed 1: interrupt will not happen	0b (POR)
1	R/W	Dri_init_tran	Driver initiated transaction Write 1 to start Driver initiated transaction. This bit is cleared automatically, after ARC initiated transaction starts. The ARC initiated transaction should be issued only when the 2-wire slave serial bus is idle. Otherwise, it will be ignored. The ARC initiated transaction will cause pin INT_OUT to send out an interrupt for MCU. After MCU responded with a Write-MAP-Address-0-Only transaction and a subsequent read transaction, interrupt	Ob (POR)

			INT_OUT will be de-asserted. However, if the MCU does not act as what is expected (a write MAP-Address-O-Only transaction and a subsequent read transaction), the interrupt INT_OUT will be still de-asserted, but the ARC initiated transaction status is used to signal a fail status to ARC. In this case, the driver should consider to repeat the failed Driver initiated transaction again.	
0	R/W	ack	Driver Acknowledge means driver has processed the current transaction. Write 1 to acknowledge. This bit will be cleared automatically.	0b

I2C example for Master mode:

Write 2 bytes:

(Slave address = 92, MAP address = 01, Data = 55, AA)

Write 0x80 = 92 (Slave address)

Write 0x81 = 01 (MAP address)

Write 0x83-0x84 = 55 AA (Data register)

Write 0x93 = 02 (Data length 2 bytes)

Write 0x94 = 92 (I2C start)

Read 2 bytes:

(Slave address = 92, MAP address = 01)

Write 0x80 = 93 (Slave address)

Write 0x81 = 01 (MAP address)

Write 0x93 = 02 (Data length 2 bytes)

Write 0x94 = 92 (I2C start)

Read 0x83~0x84 (Data register)

6.10SPI interface

The SPI interface is used to transfer control data between the CM6535 and external codec.

In a SPI interface there is only one central clock source producing a reference clock to which SPI data processing is synchronized. This clock is often referred to as the MCU clock, e.g. for SPI clock 12 Mhz, when the MCU clock is equal to 48Mhz and SPI clock div4.

Example	MCU CLK 0xB5[2:0]	48M(3'b100)	24M(3'b011)	12M(3'b010)	6M(3'b001)	3M(3'b000)
SPI clock 0x3D[4:3]=00(div4)	SPI CLK	12M	6M	3M	1.5M	750k
SPI clock 0x3D[4:3]=01(div12)	SPI CLK	4M	2M	1M	500k	250k
SPI clock 0x3D[4:3]=10(div16)	SPI CLK	3M	1.5M	769k	375k	187.5k
SPI clock 0x3D[4:3]=11(div20)	SPI CLK	2.4M	1.2M	625k	300k	150k

6.10.1 SPI Registers Descriptions

Address: 38~3bh

Bits	R/W	Bit Mnemonic	Description	default
			The data (which include address, r/w, and data bits)	
			written to or read from the codec. The bits in this	
		Data0~Data3	register should be interpreted according to the	0x0000
31-0	R/W		individual codec. The content of this register, after a	0000
31-0	N/ VV		write operation completes, has no meaning. The	(POR)
			content of this register, after a read operation	(POR)
			completes, should reference the document of individual	
			codec to see how many bits in this register is valid.	

6.10.2 SPI Control Register 0

Address: 3ch

Bits	R/W	Bit Mnemonic	Description	default
7	R/W	slv_mst	SPI master/slave mode 0: master mode 1: slave mode	1'b1 (POR)
6	R/W	long_mode	SPI slave address length 0: 1-byte address 1: 2-byte address	1'b1 (POR)
5		-	Reserved	1'b0 (POR)
4		1	Reserved	1'b0 (POR)
3	R/W	si_mode	Serial interface mode 0: normal SPI mode 1: Serial interface mode	1'b0 (POR)
2	R/W	si_mode_rs	Serial interface RS/A0 output 0: RS/A0==0 for 8 th bit 1: RS/A0==1 for 8 th bit	1'b0 (POR)
1	RO	flag_rd	Flag read 0: mcu can't read spi data 1:mcu need to read spi data	1'b0
0	RO	flag_wr	Flag write 0: mcu can't write spi data 1:mcu need to write spi data	1'b0

6.10.3 SPI control register 1

Address: 3dh

Bits	R/W	Bit Mnemonic	Description	default
7	R/W	spi_start	Trigger SPI read/write command 0->1: trigger SPI read/write command 1->0: SPI interface had completed current task 0: SPI interface is idle and ready for work 1: SPI interface is running	1'b0 (POR)
6	R/W	spi_lh_edge	SPI CEN control 0: codec latch control data at SPI clock low (default) 1: codec latch control data at SPI clock high	1'b1 (POR)
5	R/W	Spi_flash_rd_wr	SPI Flash Read/Write 0:spi flash read (default) 1:spi flash write	1'b0 (POR)
4-3	R/W	frq_sel	SPI clock period 2'b00: by MCU clk div 4 2'b01: by MCU clk div 12 2'b10: by MCU clk div 16 2'b11: by MCU clk div 20	2'b0 (POR)
2	R/W	first_leading_bit	First data bit of 2-bit leading mode	1'b0(POR)
1	R/W	second_leading_bit	Second data bit of 2-bit leading mode	1'b0(POR)
0	R/W	leading_bit_mode	RA8815 2-bit leading mode 0: No leading bits 1: 2-bit leading for each transaction	1'b0 (POR)

6.10.4 SPI interrupt

Address: 3eh

Bits	R/W	Bit Mnemonic	Description	default
7	R/W	CPOL	Clock Polarity	1'b1(POR)
6	R/W	СРНА	Clock Phase	1'b1(POR)
5-4	R/W	CS_SEL	SPI CS Select 00: CS0 01: CS1 10: CS2(Default) 11: CS2	2'b10(POR)
3	RO	slv_hid	SPI slave flag to HID interrupt 0: access to internal register 1: flag to HID interrupt	1'b0 (POR)
2	RO	slv_rw	SPI slave read/write flag 0: read 1: write	1'b0 (POR)
1	R/W	slv_int_en	SPI slave interrupt 0: no interrupt 1: interrupt (Default) Ext MCU can program this bit to make slave mode interrupt	1'b1 (POR)
0	R/W	mst_int_en	SPI master interrupt enable 0: disable 1: enable (Default) Control HW to make master mode interrupt	1'b1 (POR)

^{**}Note:

^{1.} Bit[1]: When SPI interface is in slave mode, SPI interrupt will happened when bit[1] ==1, which is written by external MPU via SPI. Interrupt (HID) would be cleaned once address 0x10 was written.

2. Bit[0]: When SPI interface is in master mode, SPI interrupt will happened when bit[0] ==1 and every SPI master command completed. Interrupt (HID) would be cleaned once address 0x10 was written.

6.10.5 SPI Control Register 3

Address: 3fh

Bits	R/W	Bit Mnemonic	Description	default
7-0	R/W	data_len	The data length of read/write, 0000_0000: Reserved 0000_0001: 1 bytes 0000_0010: 2 bytes 0000_0011: 3 bytes	8'd0 (POR)

SPI example for master mode:

Write 3 bytes:

(Address = 92, DATA = 55,AA)

Write 0x38~0x3A = 92 55 AA (Data register)

Write 0x3F = 03 (Write 3 bytes length)

Write 0x3D = A0 (SPI start)

Read 3 bytes:

(Address = 92)

Write 0x38= 92 (Data register)

Write 0x3F = 03 (Read 3 bytes length)

Write 0x3D = 80 (SPI start)

Read 0x38~0x3A

6.11**GPIO**

6.11.1 GPO data register

Address Offset: C0-C1h

Bits	R/W	Bit Mnemonic	Description	Default
15.0	D /\\/	GPO_0_reg	CDO data register which represents	16'h0
15:0	15:0 R/W	GPO_1_reg	GPO data register which represents	(POR)

6.11.2 GPI data register

Address Offset: C2-C3h

Bits	R/W	Bit Mnemonic	Description	Default
				16'h0
15:0	R		GPI data register which represents	(POR)

6.11.3 GPIO direction control register

Address Offset: C4-C5h

Bits	R/W	Bit Mnemonic	Description	Default
15:0	R/W	GPOE_0 GPOE_1	GPIO output enable register which represents for pin XGPIO[15:0] 1: the corresponding pins are used as outputs 0: the corresponding pins are used as inputs	16'h0 (POR)

6.11.4 GPIO interrupt enable mask register

Address Offset: C6-C7h

Bits	R/W	Bit Mnemonic	Description	Default
			GPIO_E, GPIO interrupt enable mask which	16'h0
15:0	R/W	GPI_EN	represents for pins, XGPIO[15:0]	(POR)
			1: enable, 0: disable	

6.11.5 GPIO debouncing register

Address Offset: C8-C9h

Default Value: 0000h (MSB -> LSB)

Bits	R/W	Bit Mnemonic	Description	Default
15:0	R/W	GPI_Deb	Enable the clock scale of millisecond (32 ms) for debouncing, default 1 1: enable, 0: disable	16'h0 (POR)

6.11.6 GPI remote choose

Address Offset: 0xE2~E3h

Bits	R/W	Bit Mnemonic	Description	default
15:0	R/W	GPI_RWL GPI_RWH	D0==1'b1:GPI[0] remote wake up enabled D1==1'b1:GPI[1] remote wake up enabled D2==1'b1:GPI[2] remote wake up	16'h0 (POR)

	ana blad	
	enabled	
	D3==1'b1:GPI[3] remote wake up	
	enabled	
	D4==1'b1:GPI[4] remote wake up	
	enabled	
	D5==1'b1:GPI[5] remote wake up	
	enabled	
	D6==1'b1:GPI[6] remote wake up	
	enabled	
	D7==1'b1:GPI[7] remote wake up	
	enabled	
	D8==1'b1:GPI[8] remote wake up	
	enabled	
	D9==1'b1:GPI[9] remote wake up	
	enabled	
	D10==1'b1:GPI[10] remote wake	
	up enabled	
	D11==1'b1:GPI[11] remote wake	
	up enabled	
	D12==1'b1:GPI[12] remote wake	
	up enabled	
	D13==1'b1:GPI[13] remote wake	
	up enabled	
	•	
	D14==1'b1:GPI[14] remote wake	
	up enabled	
	D15==1'b1:GPI[15] remote wake	
	up enabled	

6.11.7 GPIO pull-up/down

Address Offset: 0xE4

Bits	R/W	Bit Mnemonic	Description	Default
7	R/W	GPIO_PD0[7]	GPIO_7 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)
6	R/W	GPIO_PD0[6]	GPIO_6 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)
5	R/W	GPIO_PD0[5]	GPIO_5 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)
4	R/W	GPIO_PD0[4]	GPIO_4 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)
3	R/W	GPIO_PD0[3]	GPIO_3 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)
2	R/W	GPIO_PD0[2]	GPIO_2 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)
1	R/W	GPIO_PD0[1]	GPIO_1 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)
0	R/W	GPIO_PD0[0]	GPIO_0 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)

Address Offset: 0xE5

Bits	R/W	Bit Mnemonic	Description	Default
7	R/W	GPIO_PD1[7]	GPIO_15 pad control	1'b1
/	R/ W	[/]ושים_טויים	1'b1 : floating ; 1'b0 : 75k pull up	(POR)
6	R/W	GPIO_PD1[6]	GPIO_14 pad control	1'b1(POR)
0	K/ W	GPIO_PDI[0]	1'b1 : floating ; 1'b0 : 75k pull up	T DT(FOK)
5	R/W	GPIO_PD1[5]	GPIO_13 pad control	1'b1(POR)
J	11.7 44	GEIO_FDI[3]	1'b1 : floating ; 1'b0 : 75k pull up	I DI(FOK)

4	R/W	GPIO_PD1[4]	GPIO_12 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)
3	R/W	GPIO_PD1[3]	GPIO_11 pad control 1'b1: floating; 1'b0: 75k pull up	1'b1(POR)
2	R/W	GPIO_PD1[2]	GPIO_10 pad control 1'b1: floating; 1'b0: 75k pull up	1'b1(POR)
1	R/W	GPIO_PD1[1]	GPIO_9 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)
0	R/W	GPIO_PD1[0]	GPIO_8 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)

Address Offset: 0xE6

Bits	R/W	Bit Mnemonic	Description	Default
7	R/W	GPIO_PD2[7]	GPIO23 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1 (POR)
6	R/W	GPIO_PD2[6]	GPIO_22 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)
5	R/W	GPIO_PD2[5]	GPIO_21 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)
4	R/W	GPIO_PD2[4]	GPIO_20 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)
3	R/W	GPIO_PD2[3]	GPIO_19 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)
2	R/W	GPIO_PD2[2]	GPIO_18 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)
1	R/W	GPIO_PD2[1]	GPIO_17 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)
0	R/W	GPIO_PD2[0]	GPIO_16 pad control 1'b1 : floating ; 1'b0 : 75k pull up	1'b1(POR)

6.12 Arbitrary sine-tone generator

There are four (4) memory banks to store user defined waveform in CM6535 design. This function would generate waveform data that is desired to be heard from earphones. For example, when function keys were pressed or do other operations, user can predefine two different waveforms with 96K and 88.2K sampling rates and stores it in corresponding memory banks. The waveform data format must comply with the following specifications:

- 1. 16 bits PCM with 2's complement
- 2. First word must define waveform length (Length[9:0]= {byte1[2:0], byte0[7:0]})
- 3. Waveform length must less than 2046
- 4. Four memory banks

Bank1: 0x6000~0x67FF (Length: 0x6000~0x6001, Waveform data 0x6002~0x67FF)
Bank2: 0x6800~0x6FFF (Length: 0x6800~0x6801, Waveform data 0x6802~0x6FFF)
Bank3: 0x7000~0x77FF (Length: 0x7000~0x7001, Waveform data 0x7002~0x77FF)
Bank4: 0x7800~0x7FFF (Length: 0x7800~0x7801, Waveform data 0x7802~0x7FFF)

Generating sine-tone is based on a look-up table and the step size of look-up table for different sampling rates is adjusted automatically.

0x7800	ENBLTWAV3: 88.2K samples
0x7000	ENBLTWAV3: 96K samples
0x6800	ENBLTWAV2: 88.2K samples
0×6000	ENBLTWAV2: 96K samples
0×4000	8K Byte
	8K Byte
0x2000	
	8K Byte
0x0000	

6.13Tri-colored led control setting

PWM function is generated by LED counter and output the PWM signal to GPIO pin. The 8-bit counter counts modulus 256 controlled by LED freq, LED duty register. The LED unit register controls PWM resolution. When the LED freq register value is equal to the LED duty register (high), the PWM output also goes high. When the LED freq, LED duty register reaches zero, the PWM output is forced to go low. The low-to-high ratio (duty) of the PWM output is LED duty/LED freq.

LED duty	LED freq	LED unit (256 step)	PWM duty range
00H	FFH	00:10.5ms	
01H	FFH	01:5.45ms	00H/FFH
80H	FFH	10:2.73ms	~FEH/FFH
FEH	FFH	11:1.36ms	

The Output Duty of PWM has different timings. Duty range is from 0/256~255/256.

6.14Reset

6.14.1 Watchdog reset timer

The watchdog timer is a 15-bit counter that is incremented every 24 or 384 clock cycles. It is used to provide the system supervision in case of software or hardware upset. If the software was not able to refresh the watchdog timer after 786336 or 12581376 clock cycles (65ms or 1s when using 12MHz clock), an internal reset is generated.

7 Electrical characteristics

7.1 Absolute maximum ratings

Test conditions: DV50 = 5V, AV50 = 5V, DGND = 0V, TA=+25oC

Parameter	Symbol	Min.	Тур	Max.	Unit
Storge temperature	Ts	-25	-	150	°C
Operating ambient temperature	T _A	-15	25	70	°C
Digital supply voltage(DV50)		4.5	5.0	5.5	V
Analog supply voltage(AV50)		4.5	5.0	5.5	V
I/O pin voltage	-	GND	-	3.3	V
ESD (Body mode)			±4000		V
ESD (Machine mode)			±200		V

7.2 Recommended operation conditions

Parameter	Symbol	Min.	Тур	Max.	Unit
Digital supply voltage(DV50)	-		5		V
Analog supply voltage(AV50)			5		V
Operating ambient temperature			25		°C
Crystal clock	-		12.000		MHz

7.3 Power consumption

Test Conditions: DV50=5V, AV50 = 5V, DGND =0V, $TA=+25^{\circ}C$, MCU Clock = 12MHz.

Sample Rate=48kHz, 16Bits, Operation: HP-Out Playback+Mic-In Recording, EQ disable, Spdif out disable, No loading

sample Rate-40kitz, Tobits, Operation. In Four Rayback Michin Recording, EQ disable, Spair out disable, No todaing								
Parameter	Min.	Тур	Max.	Unit				
Total power consumption		65.9		mA				
(including playback and recording)	-	= Digital 27.9mA + Analog 38mA	-	IIIA				
Standby power consumption		64		mA				
(excluding playback and recording)	-	04	-	IIIA				
Suspend mode power consumption	-	2.4	-	mA				

7.4 DC characteristics

Test Conditions: DV50=5V, V_{DD} = 3.3V, DGND =0V, TA=+25°C, V_{DD} = 3.3V

Parameter	Symbol	Min.	Тур	Max.	Unit
Operation Voltage range	DVDD	4.5	5	5.5	
DC Input voltage range (GPIO,I2C,SPI,SPDIF)	DCVin	-0.3		5.5	٧
Input High-level voltage (GPIO,I2C,SPI,SPDIF)	Vih	2	2		٧
Input Low-level voltage (GPIO,I2C,SPI,SPDIF)	Vil		0.8	0.8	٧
Output High-level voltage (GPIO,I2C,SPI,SPDIF)	Voh	2.4	-	3.6	٧
Output Low-level voltage (GPIO,I2C,SPI,SPDIF)	Vol	0	-	0.4	٧
Output source current (GPIO, I2C,SPI,SPDIF)	ЮН		8		mA
Output sink current (GPIO, I2C,SPI,SPDIF)	IOL		8		mA
VREG33 driver current	IVREG			10	mA

^{**}Note: DVDD18,AVDD36,AV42_DA,AV36_DAL,AV36_DAR without current drivecapacity

7.5 Analog audio

Parameter	Symbol	Pin Name	Liı	mit Valu	ies	Unit	Test Conditions
raidileter	Symbol	1 III Italiic	Min.	Тур.	Max	Offic	rese conditions
Signal Reference Voltage	XVAG	XVAG	1.65	1.75	1.85	٧	RLoad>> 10 MΩ
Microphone Input Clipping Level (at minimum input volume, i.e., 0 dB)	VMI	XMICL XMICR			2.828	Vpp	Volume =0dB
Line Input Clipping Level (at minimum input volume, i.e., 0 dB)	VMI	XLINL XLINR			2.828	Vpp	Volume =0dB
Analog Output Voltage AC	VAO	XLNOUTL XLNOUTR			2.828	Vpp	
Microphone Input Impedance	MII	XMICL XMICR	20		45	kΩ	
Microphone A-A Input Impedance	MAII	XMICL XMICR		20		kΩ	
Headphone Output Impedance	HPOI	XLNOUTL XLNOUTR		32		Ω	Volume = 0 dB

7.6 USB transceiver

Parameter	Symbol	Pin Name	Liı	mit Valu	ies	Unit	Test Conditions
rarameter	Symbol	1 III I I III	Min.	Тур.	Max	Onic	rest conditions
Regulator Voltage	XV33	XV33	3.0	3.3	3.6	٧	CL =10uF
Driver Output Impedance including the 22ΩExternal Serial Resistor	RO	D+/D-	24		40	Ω	static, LOW or HIGH
Rise and Fall Times	tr/tf		3	10	19	ns	CL = 50 pF, driver mode
Rise/Fall Time Matching	MA_TRT F		90		110	%	CL = 50 pF, driver mode
Crossover Voltage	VXOVER		1.30	1.75	2.0	٧	CL = 50 pF, driver mode
Differential Receiver Common-Mode Range	VCM_DR EC		0.8		2.5	٧	
Single-ended Receiver Threshold Voltage	VT_SREC		0.8		2.0	٧	
Switchable Pull-up Resistor	RPU	VREG, D+		1.5		kΩ	

7.7 Microphone bias

Parameter	Symbol	Pin	Li	mit Valu	ies	Unit	Test Conditions
1 31 3111 3 3 3	O y201	Name	Min.	Тур.	Max	J	
Open Circuit Voltage Microphone Bias	VMICBIAS	MICBIAS	2.55	2.75	2.95	٧	
Output Current Microphone Bias	IMICBIAS	MICBIAS			1.25	mA	RMIN=2.2kΩ
Output Impedance Microphone Bias	ROUTMICB	MICBIAS	600	650	700	Ω	
Power Supply Rejection Ratio for Microphone Bias	PSRRMICB	AVDD, MICBIAS		100		dB	Internal regulators active, at maximum load current (0.5 mA), 1 kHz sine wave at 100 mVrms

8 Audio performance

8.1 DAC audio quality

TA= 25° C, DV50=5V, AV50=5V, Equalizer disable, Typical Fs/Bit-depth=48KHz/16bit (except remarked in Test Conditions), Master Volume= 0dB, Platform DELL Desktop 32BWS02, 4G RAM, Windows 8.1 CHT

lá	Total Completions		l lmit		
Items	Test Conditions	Min.	Тур.	Max.	Unit
Full Coals Output Voltage	10KΩ loading		1.04		Vrms
Full Scale Output Voltage	32Ω loading		0.99		Vrms
TUDIN @ 2dP Full Cools	10KΩ loading, 20~20KHz		-87		dB
THD+N @ -3dB Full Scale	32Ω loading, 20~20KHz	-86.7	-71 (@1KHZ)		dB
Dynamic Range (with -60dBFs	10KΩ loading, A-Weighted		91		dB
Output Signal)	32Ω loading, A-Weighted		92		dB
Noise Level (SNR, with -96dBFs	10KΩ loading, A-Weighted		93		dB
Output Signal)	32Ω loading, A-Weighted		93		dB
Inter-Channel Phase Delay	100Hz ~ 20kHz	+0.01		+1.01	Deg
Sampling Frequency Accuracy	10KΩ loading	-0.0046		+0.0078	%
	10KΩ loading, 20~20KHz		-95		dB
Channel Separation(Crosstalk)	32Ω loading (Normal Jack), 20~20KHz		-60		dB
	32Ω loading (4-ring Combo Jack), 20~20KHz	-61	-53 (@1KHz)	-52	dB
Fraguency Posperso	10KΩ loading, Fs=48kHz/16bits, 20~20KHz	-0.064 (20Hz)		-0.949 (20KHz)	dB
Frequency Response	10KΩ loading, Fs=96kHz/24bits, 20~48KHz	-0.017 (20Hz)		-3 (42KHz)	dB
Passband Ripple Range	10KΩ loading, 20~20KHz			0.278	dB

8.2 ADC audio quality

TA=25 $^{\circ}$ C, DV50=5V, AV50=5V, input test signal is 997Hz sine wave, measure bandwidth is 120Hz to 20kHz, Equalizer disable, AGC off, Mic Gain= 0dB, Typical Fs/Bit-depth=48KHz/16bit (except remarked in Test Conditions) Platform DELL Desktop 32BWS02, 4G RAM, Windows 8.1 CHT

Items	Test Conditions		Unit		
items	rest Conditions	Min.	Тур.	Max.	Unit
Full Scale Input Voltage	Microphone		0.74		Vrms
Full Scale Input Voltage	Line input		0.7		Vrms
THD+N @ -3dB Full Scale	Microphone[120Hz ~ 20KHz]		-83 (@1KHz)		dB
THD+N @ -3dB Full Scale	Line input[20Hz ~ 20KHz]		-84 (@1KHz)		dB
Dynamic Range (with -60dBFs Input Signal)	Microphone[997Hz] A-Weighted		88		dB
Dynamic Range (with -60dBFs Input Signal)	Line input[997Hz] A-Weighted		89		dB
Compling Frequency Assurably	Microphone[997Hz]	-0.0032		-0.0069	%
Sampling Frequency Accuracy	Line input[997Hz]	-0.0038		+0.0076	%
Channel Congration (Crosstally)	Microphone, 20~20KHz		-80		dB
Channel Separation(Crosstalk)	Line input, 20~20KHz		-84		dB
	Microphone, 20~20KHz	0.035 (20Hz)		-0.527 (20KHz)	dB
Frequency Response	Line input, 20-48KHz	0.414 (20Hz)		-0.581 (20KHz)	dB
Passband Ripple Range	Microphone			0.264	dB
Passband Ripple Range	Line input			0.265	dB

8.3 A-A path audio quality

TA= 25° C, DV50=5V, AV50=5V, Microphone-In to Line-Out, 10Kohms loading, Master Volume=0dB, Mic Gain=0dB, Typical Fs/Bit-depth=48KHz/16bit Platform DELL Desktop 32BWS02, 4G RAM, Windows 8.1 CHT

Items	Test Conditions		Test Values				
rems	rest conditions	Min.	Тур.	Max.	Unit		
Full Scale Output Voltage	Microphone to Line out		1.05		Vrms		
Full Scale Output Voltage	Line input to Line out		1.01		Vrms		
THD+N @ -3dB Full Scale	Microphone to Line out 20~20KHz		-89		dB		
THD+N @ -3dB Full Scale	Line input to Line out 20~20KHz		-89		dB		
Dynamic Range (with -60dBFs Input Signal)	Microphone to Line out A-Weighted		93		dB		
Dynamic Range (with -60dBFs Input Signal)	Line input to Line out A-Weighted		93		dB		
Channel Separation(Crosstalk)	Microphone to Line out 20~20KHz		-90		dB		
Channel Separation(Crosstalk)	Line input to Line out 20~20KHz		-90		dB		
Frequency Response	Microphone to Line out 20~20KHz	-0.036		-0.133	dB		
Frequency Response	Line input to Line out 20~20KHz	+0.007		-0.104	dB		
Passband Ripple	Microphone 20~20KHz			0.002	dB		
Passband Ripple	Line input 20-20KHz			0.001	dB		

9 Package dimension

Model Number	Package	Operating Ambient Temperature	Supply Range
CM6535	64-Pin LQFP 7mm×7mm×1.4mm (Plastic)	-15°C to +70°C	DVdd = 5V, AVdd = 5V

Outline Dimensions *Dimensions shown in inches and (mm)

64-Lead Thin Plastic Quad Flatpack (LQFP)

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)					
SYMBOLS	MIN.	NOM.	MAX.		
А	-	-	1.60		
A1	0.05	_	0.15		
A2	1.35	1.40	1.45		
b	0.13	0.18	0.23		
С	0.09	-	0.20		
D	9.00 BSC				
D1	7.00 BSC				
е		0.40 BSC			
E	9.00 BSC				
E1	7.00 BSC				
L	0.45	0.60	0.75		
L1	1.00 REF				
θ	0,	3.5*	7*		

Package Dimension of CM6535

-End of Datasheet-

C-MEDIA ELECTRONICS INC.

6F., 100, Sec. 4, Civil Boulevard, Taipei, Taiwan 106 R.O.C.

TEL: +886-2-8773-1100 FAX: +886-2-8773-2211

E-MAIL: sales@cmedia.com.tw

Disclaimer:

Information furnished by C-Media Electronics Inc. is believed to be accurate and reliable. However, no responsibility is assumed by C-Media Electronics Inc. for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of C-Media. Trademark and registered trademark are the property of their respective owners.