BioCro Equations

Canopy Radiation

$$\delta = -23.5 \cdot \cos\left(\frac{360(D_j + 10)}{365}\right) \tag{1}$$

$$\cos(\theta) = \sin(\Omega)\sin(\delta) + \cos(\Omega)\cos(\delta)\cos(15 \cdot (t - t_{sn})) \tag{2}$$

$$I_{dir} = I_s \alpha^{\frac{(P/P_o)}{\cos(\theta)}} \tag{3}$$

$$I_{diff} = 0.5 \cdot I_s \cdot (1 - \alpha^{(P/P_o)/\cos(\theta)})\cos(\theta)$$
(4)

$$\frac{1}{2}\cos((15 \cdot t_{len}) = -\tan(\Omega)\tan(\delta) \tag{5}$$

$$t_{\rm len} = \frac{2\cos^{-1}(-\tan(\Omega)\tan(\delta))}{15} \tag{6}$$

$$t_{\text{down}} = 12 - t_{\text{len}}/2 \tag{7}$$

$$t_{\rm up} = 12 + t_{\rm len}/2$$
 (8)

Weather Downscaling

$$T_{\text{mean}} = \frac{1}{2} \left(T_{\text{max}} + T_{\text{min}} \right) \tag{9}$$

$$T_{\rm range} = T_{\rm max} - T_{\rm min} \tag{10}$$

$$T_{\text{excursion}} = \sin\left(2\pi \frac{h_r - 10}{24}\right) \tag{11}$$

$$T_{\rm air} = T_{\rm mean} + T_{\rm range} \cdot T_{\rm excursion}$$
 (12)

Canopy Radiation

$$q = \frac{n_r}{n} \tag{13}$$

$$q = \frac{n_r}{n}$$

$$N_{\text{eff}} = \frac{\frac{(1-q)}{q}}{C_{ov}^2}$$

$$r^{\sim} = \frac{m_r}{n}$$

$$h = \frac{r^{\sim}}{q}$$

$$(13)$$

$$(14)$$

$$(15)$$

$$r^{\sim} = \frac{m_r}{n} \tag{15}$$

$$h = \frac{r^{\sim}}{q} \tag{16}$$

C3 Photosynthesis

From Appendix 2 in Bernacchi et al 2003 Plant, Cell and Environment 26, 14191430 doi: 10.1046/j.0016-8025.2003.01050.x:

$$A = (1 - \Gamma^*/c_i) \tag{17}$$

$$w_c = \frac{V_{\text{cmax}}c_i}{c_i + K_c(1 + O_a/K_0)}$$
 (18)

$$w_j = \frac{Jc_i}{4.5c_i + 10.5\Gamma^*} \tag{19}$$

$$\Gamma^* = exp(19.02 - 37.83/(R(T_{leaf} + 273.15))) \tag{20}$$

$$K_c = exp(38.05 - 36.38/R(T_{leaf} + 273.15))$$
 (21)

$$K_0 = \exp(20.30 - 36.38/R(T_{\text{leaf}} + 273.15)) \tag{22}$$

$$V_{c,\text{max}} = V_{c,\text{max}@25C} \cdot \exp(26.35 - 65.33/R(T_{\text{leaf}} + 273.15))$$
(23)

$$J = \frac{Q_2 + J_{\text{max,T}} - \sqrt{(Q_2 + J_{\text{max,T}})^2 - 4\Theta_{PSII}Q_2J_{\text{max,T}}}}{2\Theta_{PSII}}$$
(24)

$$J_{\text{max},T} = J_{\text{max}@25C} \exp(17.57 - 43.54/(R(T_{\text{leaf}} + 273.15)))$$
(25)

$$\Theta_{\text{PSII}} = 0.76 + 0.018T_{\text{leaf}} - 3.7 \cdot 10^{-4} T_{\text{leaf}}^2$$
(26)

$$Q_2 = Q \cdot k \cdot \Phi_{\text{PSII,max}} \cdot \beta_{\Phi} \tag{27}$$

$$\Phi_{\text{PSII.max}} = 0.352 + 0.022T_{\text{leaf}} - 3.4 \cdot 10^{-4} T_{\text{leaf}}^2$$
(28)

From Appendix 1, Equations 7-9 in Long 1991 Plant, Cell and Environment 14, 729-739. doi:10.1111/j.1365-3040.1991.tb01439.x:

$$c_i = 0.7c_a \left(\frac{1.6740 - 6.1294 \cdot 10^{-2} T_{\text{leaf}} + 1.1688 \cdot 10^{-3} T_{\text{leaf}}^2 - 8.8741 \cdot 10^{-6} T_{\text{leaf}}^3}{0.73547} \right)$$
(29)

$$c_i = 0.7c_a @25^{\circ}C$$
 (30)

$$O_i = 210 \left(\frac{4.7000 \cdot 10^{-2} - 1.3087 \cdot 10^{-3} T_{\text{leaf}} + 2.5603 \cdot 10^{-5} T_{\text{leaf}}^2 - 2.1441 \cdot 10^{-7} T_{\text{leaf}}^3}{2.6934 \cdot 10^{-2}} \right)$$
(31)

$$O_i = O_a @25^{\circ}C \tag{32}$$

$$\phi = \frac{A_{I=50} - A_{I=25}}{25f} \tag{33}$$

Water Stress

$$h_s = \frac{e_l - \rho_{va}}{e_l} \cdot 100 \tag{34}$$

$$g_s = g_0 + g_1 \cdot A_{\text{gross}} \cdot \frac{h_s}{c_a} \tag{35}$$

(36)

(41)

Four options for water stress model:

$$g_{\text{ws, linear}} = \frac{W_s - W_p}{F_c - W_p} \tag{37}$$

$$g_{\text{ws, logistic}} = \frac{1}{1 + \exp\left(\frac{\frac{1}{2}(F_c - W_p) - W_s)}{\phi_i}\right)}$$
(38)

$$g_{\text{ws, exponential}} = \frac{1 - \exp\left(\frac{F_c - W_s}{F_c - W_p} + \frac{W_p}{1 - W_p}\right)}{0.631206}$$
 (39)

$$g_{\text{ws, none}} = 1 \tag{40}$$

Calculate g_s and A_n under water stress:

$$g_s^{\text{water stress}} = g_{\text{ws},*} g_s \tag{42}$$

$$g_s^{\text{water stress}} = g_{\text{ws},*}g_s$$
 (42)
 $A_n^{\text{water stress}} = g_{\text{ws},*}A_n$ (43)

Canopy Energy Balance

$$J_a = 2 \cdot I_{\text{abs}} \cdot \left(\frac{1 - r - \tau}{1 - \tau}\right) \cdot \ell \tag{44}$$

$$L_b = (2.126 \cdot 10^{-5} + 1.48 \cdot 10^{-7} \cdot T_{\text{air}}) / 0.004 \cdot \sqrt{L_w / u_{\text{layer}}}$$
(45)

$$u_a = \frac{u \cdot 0.41}{\log((u-d)/z_o)} \tag{46}$$

$$g_a = \frac{(u_a^2/u_{\text{layer}}) \cdot L_b}{(u_a^2/u_{\text{layer}}) + L_b} \tag{47}$$

$$\rho_v' = 610.78 \cdot \exp\left(\left(17.269 \cdot \frac{T_a}{T_a + 237.3}\right)\right) \tag{48}$$

$$\Delta \rho_{va} = \rho_v' \cdot \left(1 - \frac{h_s}{100}\right) \tag{49}$$

$$\gamma = \frac{\rho \cdot c_p}{\lambda} \tag{50}$$

$$s = 18 \cdot (2501 - 2.373 \cdot T_a) \cdot \left(\frac{\rho_v'}{8.314 \cdot (T_a + 273)^2}\right)$$
(51)

$$R_{lc} = 4\sigma \cdot (273 + T_{air})^3 \cdot \Delta T \tag{52}$$

$$\Phi_N = J_a - R_{lc} \tag{53}$$

$$\Delta T = T_{\text{leaf}} - T_{\text{air}} = \frac{\Phi_n \left(\frac{1}{g_a} + \frac{1}{g_c}\right)}{\lambda \left[s + \gamma \left(1 + \frac{g_a}{g_c}\right)\right]} - \frac{\lambda \Delta \rho_{va}}{\lambda \left[s + \gamma \left(1 + \frac{g_a}{g_c}\right)\right]}$$
(54)

$$E = \frac{s \cdot \Phi_N + \lambda \cdot g_a \cdot \Delta \rho_{va}}{\lambda \cdot [s + \lambda \cdot (1 + g_a/g_c)]}$$
(55)

$$\mathbf{E_c} = \sum_{\text{layer}=1}^{N} (\mathbf{E}_{\text{sun}} \cdot l_{\text{sun}}) + (\mathbf{E}_{\text{shade}} \cdot l_{\text{shade}})$$
 (56)

$$\mathbf{E}_{\text{tot}} = \sum_{\text{day}=1}^{365} \sum_{\text{hr}=1}^{24} \mathbf{E}_{\mathbf{c}} \tag{57}$$

Sun / Shade Canopy

$$k = \frac{\sqrt{\chi^2 + \tan^2(\theta)}}{\chi + 1.744 \cdot [\chi + 1.183]^{-0.733}}$$
(58)

$$F_{\text{sun}} = \frac{1 - \exp[-k \cdot F_{\text{canopy}}]}{k} \tag{59}$$

$$F_{\text{shade}} = F_{\text{canopy}} - F_{\text{sun}} \tag{60}$$

$$I_{\text{sun}} = k \cdot I_{beam} + I_{\text{diff}} + I_{\text{scat}} \tag{61}$$

$$I_{\text{beam}} = I_{\text{dir}} \cos(\theta) \tag{62}$$

$$I_{\text{shade}} = I_{\text{diff}} + I_{\text{scat}} \tag{63}$$

$$I_{\text{diff}} = I_{\text{od}} \exp(-k_d F_{\text{canopy}}) \tag{64}$$

$$I_{\text{scat}} = I_{\text{beam}} \exp(-k\sqrt{\alpha_{\text{scat}}} F_{\text{canopy}}) - I_{\text{beam}} \exp(-kF_{\text{canopy}})$$
 (65)

(66)

Total Canopy Assimilation

$$A_c = (A_{c,\text{sun}} \cdot F_{\text{sun}}) + (A_{c,\text{shade}} \cdot F_{\text{shade}})$$
(67)

$$F_{\text{sun}} = \sum_{\text{layer}=1}^{N} l_{\text{sun}}; \ l_{\text{sun}} = \frac{1 - e^{(-k \cdot F_{\text{sun}})}}{k}$$
 (68)

$$F_{\text{shade}} = \sum_{\text{layer}=1}^{N} \ell_{\text{shade}}; \ \ell_{\text{shade}} = F_{\text{sun}} - \ell_{\text{sun}}$$
(69)

$$F_{\text{canopy}} = F_{\text{sun}} + F_{\text{shade}} \tag{70}$$

$$A_c = \sum_{\text{layer}=1}^{N} (A_{c,\text{sun}} \cdot F_{\text{sun}}) + (A_{c,\text{shade}} \cdot F_{\text{shade}})$$
(71)

$$A_{c,\text{tot}} = \sum_{\text{day}=1}^{365} \sum_{\text{hr}=1}^{24} A_c \tag{72}$$

$$g_c = \sum_{\text{layer}=1}^{N} (g_{s,\text{sun}} \cdot l_{\text{sun}}) + (g_{s,\text{shade}} \cdot l_{\text{shade}})$$
(73)

$$g_{c,\text{tot}} = \sum_{\text{day}=1}^{365} \sum_{\text{hr}=1}^{24} g_c \tag{74}$$

Allocation

$A_{\rm storage} = \min(0, \omega_{\rm storage} \cdot k_{\rm storage}) $	(75)
$A_{\text{total}} = A_{\text{leaf}} + A_{\text{stem}} + A_{\text{root}} + A_{\text{storage}}$	(76)
$\omega_{\mathrm{leaf}} = \omega_{\mathrm{leaf}} + (A_{\mathrm{total}} \cdot k_{\mathrm{leaf}})$	(77)
$\omega_{\mathrm{stem}} = \omega_{\mathrm{stem}} + (A_{\mathrm{total}} \cdot k_{\mathrm{stem}})$	(78)
$\omega_{\mathrm{stroot}} = \omega_{\mathrm{storage}} + (A_{\mathrm{total}} \cdot k_{\mathrm{storage}})$	(79)
$\omega_{ m root} = \omega_{ m root} + (A_{ m total} \cdot k_{ m root})$	(80)
$\Psi_{ m adl} < \Psi_{ m pt}$	(81)
$k_{ ext{leaf}} = k_{ ext{leaf}} \cdot k_{ ext{mod}}$	(82)
$k_{ ext{stem}} = k_{ ext{stem}} \cdot k_{ ext{mod}}$	(83)
$k_{\mathrm{storage}} = k_{\mathrm{storage}} \cdot k_{\mathrm{mod}}$	(84)
$k_{\mathrm{mod}} = (\Psi_{\mathrm{adl}} - \Psi_{\mathrm{pt}}) \cdot \Psi_g; 0 \le k_{\mathrm{mod}} \le 1$	(85)
$\Delta F_{ m canopy} = rac{\omega_{ m leaf}}{Sp_{ m leaf}}$	(86)
$\Delta L_{ m stem} = rac{\omega_{ m stem}}{Sp_{ m stem}}$	(87)
$\Delta L_{ m sroot} = rac{\omega_{ m sroot}}{Sp_{ m sroot}}$	(88)
$\Delta L_{ m storage} = rac{\omega_{ m storage}}{Sp_{ m storage}}$	(89)

(90)

 $Stem_{coppice} = 0.95 - \omega_{stem}$

Soil Evaporation

$$E_{\text{soil}} = \sum \frac{(\Psi_{\text{si}} - g \cdot z_i - \Psi_x)}{R_{\text{si}} + R_{\text{ri}}}$$

$$(91)$$

$$R_{\rm ri} = R_r \cdot \frac{\sum L_i}{L_i} \tag{92}$$

$$\Psi_x = \sum \frac{(\Psi_{si} - q_w \cdot z_i)}{R_{si} + R_{ri}} / \sum \frac{1}{R_{si} + R_{ri}}$$
(93)

$$\Psi_L = \Psi_x - E \cdot R_L \tag{94}$$

$$E_{d} = \begin{cases} E_{p}, & \theta^{*} \geq \theta_{1} \\ E_{p} \left(\frac{\theta - \theta_{2}}{\theta_{1} - \theta_{2}} \right), & \theta_{2} < \theta^{*} < \theta_{1} \\ 0, & \theta^{*} \leq \theta_{2} \end{cases}$$

$$(95)$$

$$\theta_{i+1} = \theta_i - \frac{E_i \cdot \theta_i}{\rho_w \cdot d_s} \tag{96}$$

$$g_{a,\text{soil}} = \frac{\rho_w \cdot d_s}{\left(2.126 \cdot 10^{-5}\right) + \left(1.48 \cdot 10^{-7}\right) \cdot T_{\text{soil}}}{\left(0.004 \cdot \sqrt{\frac{S_{size}}{u_{\text{soil}}}}\right)}$$
(97)

$$R_{lc,\text{soil}} = ((4\sigma) \cdot (273 + T_{\text{soil}})^3 \cdot \Delta T) \tag{98}$$

$$J_{a,\text{soil}} = 2 \cdot I_{\text{soil}} \cdot \left(\frac{1 - S_r - S_\tau}{1 - S_\tau}\right) \tag{99}$$

$$\Phi_{N,soil} = J_{a,soil} - R_{lc,soil} \tag{100}$$

$$E_{\text{soil}} = \frac{s \cdot \Phi_{N,soil} + \lambda \cdot g_{a,soil} \cdot \Delta \rho_{va}}{\lambda \cdot [s + \gamma]}$$
(101)

Respiration

$$R_{\text{total}} = aA_n + b_{\text{stem}} \Delta \omega_{\text{stem}} + b_{\text{root}} \Delta \omega_{\text{root}} + b_{\text{storage}} \Delta \omega_{\text{storage}}$$
(102)

Soil Energy Balance

$$HS_{\text{soil}} = HO_{\text{soil}} \cdot exp \left[\frac{h_{\text{soil}}}{46.97 \cdot (T_{\text{soil}} + 273.16)} \right]$$

$$(103)$$

$$HO_{\text{soil}} = 1.323 \cdot exp \left[\frac{17.27 \cdot T_{\text{soil}}}{273.3 + T_{\text{soil}}} \right] / T_{\text{soil}} + 273.16$$
 (104)

$$G_{\text{soil}} = -\lambda_{\text{soil}} \frac{\delta T}{\delta x} \tag{105}$$

$$G_{\text{soil}} = -\lambda_{\text{soil}} \cdot \left[\frac{T_2 - T_{\text{soil}}}{\Delta z} \right] + (T_{\text{soil}} - T_l) \cdot C \cdot \frac{\Delta z}{(2 \cdot \Delta t)}$$
(106)

Definition of Terms

Term	Units	Definition	Value
$A_{\rm gross}$	$\mu mol mol^{-1}$	Gross rate of CO ₂ uptake per unit leaf area	_
$A_{ m net}$	$\mu mol mol^{-1}$	Net rate of CO ₂ uptake per unit leaf area	-
$A_{net, water stress}$	$\mu mol mol^{-1}$	$A_{\rm net}$ under water stress	
A_c	$\mu mol mol^{-1}$	Net canopy rate of CO ₂ uptake per unit ground area	-
$A_{c,\mathrm{tot}}$	$g m^{-2} y r^{-1}$	A_c integrated over the course of a year	-
$A_{c,\mathrm{sun}}$	$mol mol^{-1}$	Net rate of CO ₂ uptake per unit area sunlit leaves	-
$A_{c, \text{shade}}$	$mol m^{-2} s^{-1}$	Net rate of CO ₂ uptake per unit area shaded leaves	-
A	$\mu mol mol^{-1}$	Predicted rate of CO ₂ uptake	-
c_a	$\mu mol mol^{-1}$	Atmospheric CO ₂ concentration	378
C	$J^{\circ}C^{-1}m^{-3}$	volumetric heat capacity	
a	Dimensionless	Coefficient for growth respiration	0.2
α	dimensionless	Atmospheric transmittance	0.85
$lpha_{ m slope}$	mol mol ⁻¹	The quantum yield of CO_2 uptake determined by the initial slope of the response of A versus I_{abs}	0.04
$b_{ m leaf}$	Dimensionless	Coefficient for maintenance respiration for leaf	0.03
$b_{ m stem}$	Dimensionless	Coefficient for maintenance respiration for stem	0.015
$b_{ m root}$	Dimensionless	Coefficient for maintenance respiration for root	0.01
β		C_4 curvature parameter	0.93
eta_Φ	%	Fraction of absorbed quanta reaching PSII	
c_i	$\mu mol\ mol^{-1}$	Intercellular concentration of O ₂ in air corrected for solubility relative to 25°C	
c_p	$J kg^{-1} K-1$	Specific heat capacity of dry air	1010
C_{ov}	Dimensionless	Coefficient of Variation for probability of rain in each month	-
d_s	m	Soil depth	_
D_j	d	day of year	_
$D_{ m start}^{ m J}$	d	Day of year on which the sinusoidal temperature func-	45
		tion is assumed to start	
d	dimensionless	Zero plane displacement	0.77
δ	degrees	Solar declination	_
e_l	kPa	Saturated water VPD in the leaf	_
E	$J mol^{-1}$	Activation energy	$R_d = 66405$ $V_{\text{max}} = 6800$
E_d			
E_i	, _2 _1		
E_c	$mmol m^{-2} s^{-1}$	Instantaneous canopy evapo/transpiration rate	-
E_d	$g m^{-2} s^{-1}$	Potential soil evaporation	-
E_l	$mmol m^{-2} s^{-1}$	Evapo/transpiration rate at sunlit/shaded leaves in a canopy layer	-
E_p	$g m^{-2} s^{-1}$	Actual soil evaporation	-
E_{R_d}	$J \text{ mol}^{-1}$	Activation energy of R_d	-
$E_{ m tot}$	$mmol m^{-2} yr^{-1}$	E_c integrated over the course of a year	-
$E_{V_{\max}}$	$\mathrm{J} \; \mathrm{mol}^{-1}$	Activation energy of V _{cmax}	-
f		fraction of light not absorbed by photosynthesis	0.23
$f_{s,l}$		fraction of sunlit leaves at depth l (l is cumulative leaf	
T.	33	area index from top)	
F_c	$m^{3}m^{-3} \ m^{2} m^{-2}$	Field Capacity	0
$F_{\rm canopy}$	$m^2 m^2 m^{-2} m^2 m^{-2}$	Cumulative canopy leaf area index from top at depth	9
$F_{ m shade}$	$m^2 m^2 m^{-2} = m^2 m^{-2}$	Canopy shaded leaf area index	-
$F_{ m sun}$	$m^{2} m^{-2} = m^{2} m^{-2}$	Canopy sunlit leaf area index	-
$F_{ m sum}$	TH TH	Summed leaf area index from top of canopy to layer considered in calculation	-
C	$W m^{-2}$	Soil heat flux	
$G_{ m soil}$	$\stackrel{vv}{m}\stackrel{m}{s^{-2}}$		0.8
g	ms	Gravitional constant	9.8

Table 1 – continued from previous page

Term	Units	Definition	Value
g_a	$mmol m^{-2} s^{-1}$	Leaf boundary layer conductance	-
g_c	$mmol m^{-2} s^{-1}$	Canopy conductance of CO_2	-
$g_{ m c, \ root}$			
g_s	$mmol m^{-2} s^{-1}$	Leaf stomatal conductance	-
g_0	dimensionless	Stomatal slope factor	3
g_1	dimensionless	Stomatal intercept factor	0.08
$g_{s,\mathrm{sun}}$	$mmol m^{-2} s^{-1}$	The sum of stomatal conductance of sunlit leaves	_
	$mmol m^{-2} s^{-1}$	The sum of stomatal conductance of shaded leaves	_
$g_{s,\mathrm{shade}}$	dimensionless	Species-specific water stress sensitivity factor	_
$g_{ m ws}$	dimensionless		
$g_{ m ws^*}$	difficultiess	water stress stomatal conductance factor; see equations 36	
γ	$Pa K^{-1}$	psychrometer constant	-
, Г*	$\mu \text{mol mol}^{-1}$	CO_2 compensation point in the absence of dark respi-	
_	<i>µ</i>	ration	
h_r	h	Hour of day	_
h_s	%	Relative humidity	_
$h_{ m canopy}$	m	Height of canopy	5
n_{ms}	m	Wind speed measurement height	2
n_{layer}	m	Height of canopy layer above ground	-
	$\mu mol m^{-2} s^{-1}$	Photon flux	-
h	$mmday^{-1}$	The amount of water received on a given rainy day	-
$h_{ m soil}$	m	Water pressure head	-
$HO_{ m soil}$	kgm^{-3}	Saturated humidity of the air at the soil surface	-
$HS_{ m soil}$	Kgm^{-3}	Humidity of the air at the soil surface	-
$I_{ m abs}$	$\mu mol m^{-2} s^{-1}$	Photon flux absorbed by either sunlit or shaded leaves	-
		within a canopy layer	
$I_{ m dir}$	$\mu mol m^{-2} s^{-1}$	Photon flux in direct solar beam	_
$I_{ m diff}$	$\mu mol m^{-2} s^{-1}$	Photon flux in diffuse radiation	_
$I_{ m total}$	$\mu mol m^{-2} s^{-1}$	Total photon flux incident on canopy	_
I_s	$\mu mol m^{-2} s^{-1}$	Solar constant, photon flux in a plane perpedicular to	2600
- 8	μπισιπισ	the solar beam above the atmosphere	2000
I_d		the solar beam above the atmosphere	
$I_{\ell,d}$	$\mu molm^{-2}s^{-1}$		
$I_{ m short}$	$\mu moi m - s$	Short wave radiation component of incident light	-
$l_{ m beam}$		flux density of beam radiation on horizontal surface at	
_		top of canopy	
$I_{ m od}$		flux density of diffuse radiation on horizontal surface	
		at top of canopy	
$I_{ m soil}$	$\mu mol m^{-2} s^{-1}$	Solar radiation incident upon soil surface	-
$I_{ m soil}$	$W m^{-2}$	Solar radiation on soil	-
$I_{ m sun}$	$\mu mol m^{-2} s^{-1}$	Mean I for leaves which receive direct solar radiation,	-
	·	i.e. are sunlit	
$I_{ m shade}$	$\mu mol m^{-2} s^{-1}$	Mean I for leaves shaded from direct solar radiation	-
$I_{ m scat}$	$\mu mol m^{-2} s^{-1}$	Direct beam radiation scattered by surfaces within the	_
5540	r	canopy	
J_{a}	$\mu mol\ m^{-2}\ s^{-1}$	Total solar radiation absorbed by either sunlit or	_
v a	μπουπι σ	shaded leaves within a canopy layer	
<i>I</i>	$\mu mol m^{-2} s^{-1}$		
$J_{\rm a, \ soil}$	•	Total solar radiation absorbed by soil	-
k	dimensionless	Foliar absorption coefficient (α_{ℓ} in Bernacchi 2003)	-
\mathfrak{C}_d	dimensionless	extinction coefficient for diffuse light	460
K_c	$\mu mol mol^{-1}$	Michaelis Menton constant for the carboxylation of	460
	6 4	RuBISCO	
K_{CO_2}	$mol m^{-2} s^{-1}$	Initial slope of photosynthetic CO ₂ response	0.7
Kt		C_4 slope factor	-
K_o	$mmolmol^{-1}$	Michaelis Menton constant for oxygenation of Ru-	330
-		BISCO	
k_{slope}	Dimensionless	Initial slope of photosynthetic light response	0.04
LN	$g m^{-2}$	Leaf nitrogen concentration	-
1	9 110	2001 1110108011 00110011011001011	

Table 1 – continued from previous page

Term	Units	Definition	Value
k_{leaf}	Dimensionless	Partitioning coefficient for leaf	-
$k_{ m stem}$	Dimensionless	Partitioning coefficient for stem	-
$k_{ m sroot}$	Dimensionless	Partitioning coefficient for storage root	-
k_t		temperature-dependent pseudo-first order rate con-	
		stant with respect to P_i (Collatz 1992)	
$k_{ m froot}$	Dimensionless	Partitioning coefficient for fine root	-
$k_{ m stroot}$	Dimensionless	Partitioning coefficient for structural root	-
ℓ			
$\ell_{ m sun}$			
$l_{ m sun}$			
L_i	$cm cm^{-3}$	Root density of ith zone	_
L_w	m	Leaf width in the direction of the wind	0.04
$\Delta L_{ m stem}$			
$\Delta L_{ m sroot}$			
λ	MJ/Kg	Latent heat of vapourisation	_
$\lambda_{ m soil}$	$W/(m^{\circ}C)$	Thermal conductivity for the soil surface	_
M	W/(III C)	Thermal conductivity for the son surface	??
	${\rm mm\ month}^{-1}$	monthly precipitation rate	• •
m_r		monthly precipitation rate	
$N_{ m eff}$	days/mo	effective length of rainy period	20 20
n	day	The number of days in a month	29, 30,
	1		or 31
$\frac{nr}{c}$	day	The number of rainy days in a month	-
O_a	$mmol mol^{-1}$	Atmospheric O_2 concentration	210
O_i	$mmolm^{-2}s^{-1}$	Intercellular concentration of O_2 in air corrected for	-
		solubility relative to 25°C	
$\omega_{ m leaf}$	g	Leaf biomass	-
$\omega_{ m stem}$	g	Stem biomass	-
$\omega_{ m sroot}$	g	Biomass of storage root	-
ω_{froot}	g	Biomass of fine root	-
$\omega_{ m stroot}$	g	Biomass of structural root	-
$\omega_{ m storage}$	g	Biomass of storage	-
Ω	degrees	Latitude	-
P	kPa	Atmospheric pressure	
P_o	kPa	Standard atmospheric pressure at sea level	101.324
P_s	kPa	Leaf surface partial pressure of CO ₂	-
$\Psi_{ m g}$			
Ψ_l	MPa	Leaf water potential	-
$\Psi_{ m L}$		-	
Ψ_t	MPa	Threshold leaf water potential for decreasing gs	-
$\Phi_{ m N}$	${ m W~m^{-2}}$	Net radiation	_
$\Phi_{N,soil}$	${ m W~m^{-2}}$	Net radiation at soil surface	_
ϕ_i		coefficient which controls spread of logistic function	
7 6		used to calculate water stress factor in 36	
$\Psi_{ m adl}$	MPa	Average daily plant water potential	_
$\Psi_{ m pt}$	MPa	Threshold water potential	_
$\Psi_{ m si}$	MPa	Soil water potential of the ith layer	_
Ψ_x	MPa	xylem water potential	_
	Dimensionless	The probability that there is no rainfall	
q	$kg s^{-1}$	Flux of water	_
q_w	кg s dimensionless		2
Q_{10}	unnensioniess	Is the proportional rise in a parameter for a 10°C in-	<i>L</i>
~	dimanais-1	crease in temperature	0.2
r_{\sim}	dimensionless $\frac{1}{1}$	Leaf reflection coefficient for total solar radiation	0.2
r^{\sim}	$mm day^{-1}$	Mean daily rainfall in each month	- 0.014
R	$J k^{-1} mol^{-1}$	Real gas constant	8.314
R_L	$m^3 kg^{-1} s^{-1}$	Leaf resistance	-
$R_{\rm si}$	$m^3kg^{-1}s^{-1}$	Soil resistance of the ith zone	-
$R_{ m ri}$	$M^3kg^{-1}s^{-1}$	root resistance of the ith zone	-
R_o	$mol m^{-2} s^{-1}$	Dark respiration rate at $25^{\circ}C$	3

Table 1 – continued from previous page

Term	Units	Definition	Value
R_d	$mol m^{-2} s^{-1}$	Dark respiration at a given temperature	-
$R_{ m lc}$	$mol m^{-2} s^{-1}$	Longwave radiation	-
$R_{lc,\text{soil}}$	$mol m^{-2} s^{-1}$	Soil longwave radiation	-
$ ho_w$	kgm^{-3}	Density of water	1000
ρ_a	kPa	vapor pressure deficit in air	
$ ho_a'$		• •	
s	$kPa~K^{-1}$	Slope of saturated water vapor pressure change with	_
		respect to temperature (look up table)	
s_p	dimensionless	Spectral imbalance	_
$S_{ m size}$	m	Average size of soil particles	0.04
S_r	Dimensionless	Soil reflectance	0.2
$S_{ au}$	Dimensionless	Soil transmission	0.01
Sp_{leaf}	$gram m^{-2}$	Specific leaf area	50
_	$gram m^{-1}$	Specific stem elongation factor	60
Sp_{stem}			
$Sp_{ m froot}$	$\operatorname{gram} \operatorname{m}^{-1}$	Specific fine root elongation factor	10
$Sp_{ m stroot}$	$\operatorname{gram} \operatorname{m}^{-1}$	Specific structural root elongation factor	60
σ	$\mathrm{Wm}^{-2}\mathrm{K}^{-4}$	Stefan-Boltzmann constant	5.67
	,	Tri C. I	10^{-8}
t	h	Time of day	-
$t_{ m up}$	h	time of dawn	
$t_{ m down}$	h	time of dusk	
$t_{ m len}$	h	day length	-
$t_{ m sn}$	h	Time of solar noon	12
T_{leaf}	$^{\circ}\mathrm{C}$	Leaf temperature	-
$T_{\rm air}$	$^{\circ}\mathrm{C}$	Ambient air temperature	-
T_{mean}	$^{\circ}\mathrm{C}$	Daily mean $T_{\rm air}$	
$T_{\rm range}$	$^{\circ}\mathrm{C}$	$rac{T_{ m air} - T_{ m mean}}{T_{ m range}}$	
$T_{ m excursion}$	fraction	Difference between current $T_{\rm mean}$	
$T_{ m soil}$	°C	Soil surface temperature	_
$T_{ m lower}$	$^{\circ}\mathrm{C}$	Lower T limitation on photosynthesis	
$T_{ m upper}$	$^{\circ}\mathrm{C}$	Upper T limitation on photosynthesis	
T_{1}	$^{\circ}\mathrm{C}$	Annual mean air temperature	18
T_1 T_2	$^{\circ}\mathrm{C}$		2
-	$^{\circ}\mathrm{C}$	Annual range in air temperature	
T_3	$^{\circ}\mathrm{C}$	Average daily range in air temperature	7
T_4		Maximum daily range in air temperature	7
ΔT	°C	Temperature difference between (leaf or soil) and air	
au	Dimensionless	Leaf transmittance coefficient	
$\Theta_{ m curve}$	dimensionless	Curvature parameter	-
Θ^*	kgm^{-3}	Actual volumetric water content	-
Θ_1	$kg m^{-3}$	The volumetric water content for maximizing Evapo-	
	_	ration	
Θ_2	kgm^{-3}	The volumetric water content for wilting point	-
Θ_i	kgm^{-3}	The volumetric water content of the ith day	-
Θ	degrees	Solar zenith angle	-
u	${ m m~s}^{-1}$	Measured wind speed at known height (2m)	2
u_{layer}	$\mathrm{m}\ \mathrm{s}^{-1}$	Wind speed in a given canopy layer	_
$u_{ m soil}$	$\mathrm{m}\;\mathrm{s}^{-1}$	Wind speed at soil surface	_
v		Saturated water vapour concentration	_
$V_{ m max}$	$mol m^{-2} s^{-1}$	Maximum rubP saturated rate of carboxylation at a	_
· max		given temperature	
V	$mol m^{-2} s^{-1}$	Maximum rubP saturated rate of carboxylation at a	
V_{\max_0}	motm s		-
17	$mol m^{-2} s^{-1}$	given temperature	90
V_{c,\max_0}	$moi m^{-s}$	Maximum rubP saturated rate of carboxylation at	39
UDD	1.D	$25^{\circ}C$	
VPD	kPa	Leaf-air water vapour pressure deficit	-
V_T	$mol m^{-2} s^{-1}$	$V_{ m max}$ at current T	
w_c	$mol m^{-2} s^{-1}$	RuBISCO limited rate of photosynthesis	

Table 1 – continued from previous page

\mathbf{Units}	Definition	Value
$mol m^{-2} s^{-1}$	RuBP limited rate of photosynthesis	
$m^{3}m^{-3}$	Wilting point	
$m^{3}m^{-3}$	Soil water content	
m	Roughness length	0.234
dimensionless	The ratio of horizontal:vertical projected area of leaves	1
	in the canopy segment	
$mol m^{-1}$	Initial slope of photosynthetic CO ₂ response	0.7
dimensionless	Curvature parameter	0.83
m	Thickness of a soil layer	_
	$mol m^{-2} s^{-1}$ $m^3 m^{-3}$ $m^3 m^{-3}$ m dimensionless $mol m^{-1}$ dimensionless	$mol \ m^{-2} \ s^{-1}$ RuBP limited rate of photosynthesis $m^3 m^{-3}$ Wilting point $m^3 m^{-3}$ Soil water content m Roughness length dimensionless The ratio of horizontal:vertical projected area of leaves in the canopy segment $mol \ m^{-1}$ Initial slope of photosynthetic CO ₂ response dimensionless Curvature parameter