

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Primer Semestre de 2019

Tarea 2

Introducción a la Geometría Algebraica — MAT 2335 Fecha de Entrega: 2019/04/11

${\bf \acute{I}ndice}$

Problema 1.25:	2
Problema 1.29:	2
Problema 1.30:	2
Problema 1.31:	3
Problema 1.33:	3
Problema 1.37:	3
Problema 1.45:	3
Problema 1.49:	4
Problema 1.51:	4
Problema 1.54:	4

Notas

En esta tarea se usará la notación $\overline{a} = (a_1, ..., a_n)$

. Problema 1.25:

- (a) Muestre que $V(y-x^2)\subset \mathbb{A}^2_{\mathbb{C}}$ es irreducible; en efecto, $I(V(y-x^2))=I(y-x^2)$
- (b) Separe $V(y^4-x^2,y^4-x^2y^2+xy^2-x^3)\subset \mathbb{A}^2_{\mathbb{C}}$ en componentes irreducibles.

Solución problema 1.25:

. Problema 1.29:

Muestre que \mathbb{A}^n_k es irreducible si k es infinito.

Solución problema 1.29:

. Problema 1.30:

Sea $k = \mathbb{R}$

- (a) Muestre que $I(V(x^2 + y^2 + 1)) = (1)$
- (b) Demuestre que todo subconjunto algebraico de $\mathbb{A}^2_{\mathbb{R}}$ es igual a V(F) para algún $F\in\mathbb{R}[x,y]$

Solución problema 1.30:

. Problema 1.31:

- (a) Encuentre los componentes irreducibles de $V(y^2-xy-x^2y+x^3)$ en $\mathbb{A}^2_{\mathbb{R}}$ y también en $\mathbb{A}^2_{\mathbb{C}}$
- (b) Haga lo mismo para $V(y^2-x(x^2-1))$, y para $V(x^3+x-x^2y-y)$

Solución problema 1.31:

. Problema 1.33:

- (a) Separe $V(x^2+y^2-1,x^2-z^2-1)\subset \mathbb{A}^3_{\mathbb{C}}$ en componentes irreducibles.
- (b) Sea $V=\{(t,t^2,t^3)\in\mathbb{A}^3_{\mathbb{C}}:t\in\mathbb{C}\}$. Encuentre I(V), y demuestre que es irreducible.

Solución problema 1.33:

. Problema 1.37:

Sea k un cuerpo cualquiera, $F \in k[x]$ un polinomio de grado n > 0. Muestre que los residuos $\overline{1}, \overline{x}, ..., \overline{x}^{n-1}$ forman una base de k[x]/(F) sobre k.

Solución problema 1.37:

. Problema 1.45:

Sea R un subanillo de S, S un subanillo de T.

- 1. Si $S = \sum Rv_i, T = \sum Sw_j$, muestre que $T = \sum Rv_iw_j$.
- 2. Si $S = R[v_1, ..., v_n], T = S[w_1, ..., w_m],$ muestre que $T = R[v_1, ..., v_n, w_1, ..., w_m].$
- 3. Si R, S, T son cuerpos, y $S = R(v_1, ..., v_n), T = S(w_1, ..., w_m)$, demuestre que $T = R(v_1, ..., v_n, w_1, ..., w_m)$.

Solución problema 1.45:

3

. Problema 1.49:

Sea k un cuerpo, L = k(x) el cuerpo de funciones racionales en una variable sobre k.

- 1. Muestre que todo elemento de L que es integral sobre k[x] ya esta en k[x]. (Hint: Si $z^n + a_1 z^{n-1} + ... = 0$, tome z = F/G, con F, G coprimos. Entonces $F^n + a_1 F^{n-1} + ... = 0$, por lo que G divide a F.)
- 2. Muestre que hay un elemento no cero $F \in k[x]$ tal que para todo $z \in L$, $F^n z$ es integral sobre k[x] para algún n > 0.

Solución problema 1.49:

. Problema 1.51:

Sea k un cuerpo, $F \in k[x]$ un polinomio irreducible mónico de grado n > 0.

- (a) Muestre que L=k[x]/(F) es un cuerpo, y si a es el residuo de x en L, entonces F(a)=0.
- (b) Suponga que L' es una extensión de cuerpo de $k, y \in L'$ tal que F(y) = 0. Demuestre que el homorfismo de k[x] a L' que toma x a y, induce un isomorfismo de L con k(y).
- (c) Con L', y como en (b), suponga que $G \in k[x]$ y G(y) = 0. Muestre que F divide a G.
- (d) Muestre que $F = (x a)F_1, F_1 \in L[x]$

Solución problema 1.51:

. Problema 1.54:

Sea R un dominio con K su cuerpo cociente, y sea L una extensión finita y algebraica de K

1. Para todo $v \in L$, demuestre que existe $a \in R$ distinto a cero tal que av es integral sobre R

2. Muestre que hay una base $v_1, ..., v_n$ para L sobre K (como un espacio vectorial) tal que cada v_i es integral sobre R.

Solución problema 1.54: