IN THE CLAIMS

callus to form from the explant;

- 1. (Currently Amended) A method for regeneration of cotton via somatic embryogenesis with substantially synchronized development of embryos after short duration inositol starvation, said process comprising the steps of:
- (i) cutting from the germinated cotton seedling the an explant, selected from a the group consisting of cotyledon, hypocotyl, and mesocotyl, and or mixtures thereof;
- (ii) culturing the explant for the purpose of callus induction in on a first solid medium, in on a culture medium containing glucose as the carbon source supplemented with Gamborg B5 vitamins, 2,4-D, BA and inositol, at a temperature between 23 to 33° C in light intensity of at least 90 μmol/m²/s under a 16 hour photoperiod for a period of 3-5 weeks, to enable a dedifferentiated
- (iii) transferring the callus from the first solid callus induction medium to a liquid medium comprising a basal medium containing glucose as the carbon source and supplemented with Gamborg B5 vitamins and culturing the a suspension generated thereof at a temperature from 23 to 33° C in a reduced light intensity of 20-40 μmol/m³/s, under a 16 hour photoperiod for a period of time sufficient to form embryogenic clumps;
- (iv) screening the cell suspension through metal sieves of different pore sizes to select embryogenic cells, clumps, or both and subculturing the embryogenic callus containing somatic embryos to said basal medium;
- (v) subjecting the embryogenic mass/clumps cells, the clumps, the callus, or any combination thereof to inositol deprivation, consequent upon subculturing it to said a second basal medium devoid of inositol and then returning the culture to inositol containing medium to enable the somatic embryos to synchronize developmentally;
 - (vi) transferring bipolar the somatic embryos to an embryo germination medium on a

_

support and growing the embryos in embryo germination medium up to the plantlet stage developed sufficiently for transfer to soil as plantlets and;

(vii) further transferring the plantlets to a potting mix for acclimatization and then to field.

2. (Cancel)

- 3. (Currently Amended) The method as recited in claim 1, wherein the explant is derived from cotton cv Coker 312 and the seedlings are developed by:
 - (i) sterilizing cotton seed in a sterilization solution of 0.1% HgCl2 for 5-10 min.,
 - (ii) rinsing the seed in sterile water 4-6 times,
 - (iii) scorching the seed in flame of a spirit burner for 5-10 seconds,
 - (iv) inoculating the seed on a seed germination medium,
- (v) growing the seed in the seed germination medium in light or dark at a temperature of 23° to 33° C for a period of 6-12 days, and
 - (vi) excising the explant from the seedling.
- 4. (Previously Presented) The method as claimed in claim 3, wherein seed germination medium is a liquid medium comprising salts of Murashige and Skoog and Gamborg B5 vitamins at half of its concentration.
- 5. (Currently Amended) The method as claimed in claim 3, wherein a carbon source in the seed germination medium is selected from a the group consisting of sucrose and glucose at a range of 1 to 3% wt./vol.

2

6. (Currently Amended) The method as claimed in claim 1, wherein said first solid callus induction medium comprises following components of Murashige and Skoog medium:

Component	Conc. (mg/L)
a. Salts of Murashige and Skoog medium:	
NH ₄ NO ₃	1650
KNO ₃	1900
CaCl ₂ .2H ₂ O	440
MgSO ₄ .7H ₂ O	370
KH_2PO_4	170
KI	0.83
H_3BO_3	6.2
$MnSO_4H_2O$	22.3
$ZnSO_4.7H_2O$	8.6
Na ₂ MoO ₄ .2H ₂ O	0.25
CuSO ₄ .5H ₂ O	0.025
CoCl ₂ .6H ₂ O	0.025
Na ₂ .EDTA	37.3
FeSO ₄ .7H ₂ O	27.8 and
b. Organics	
Myo-inositol	100_

^{7. (}Currently Amended) The method as claimed in claim 1, wherein Gamborg B5 vitamins, wherever included comprise:

А

Component Conc. (mg/L)

Nicotinic Acid 1.0

Pyridoxine Hcl 1.0 and

Thiamine Hcl 10.

8. (Previously Presented) The method as claimed in claim 1, wherein 2,4-D as exogenously

supplied auxin in first solid callus induction medium is selected from a range of 0.44 to 4.4 $\mu \text{M}.$

9. (Previously Presented) The method as claimed in claim 1, wherein BA as exogenously supplied

cytokinin in first solid callus induction medium is selected from a range of 0.22 μM to 2.2 μM .

10. (Currently Amended) The method as claimed in claim 1, wherein a gelling agent in said first

solid callus induction medium is selected from a the group consisting of agar in the range of 0.6-

0.8% wt./vol. and phytagel in the range of 0.15-0.29% wt./vol.

11. (Cancel)

12. (Currently Amended) The method as claimed in claim 1, wherein said explants are cultured on

said callus induction medium at a temperature between 23 to 33° C., in light intensity of at least 90

 μ mol/m²/s under a 16 hour photoperiod for period of not more than of 3-5 weeks, to enable

dedifferentiated callus to form from any of the explant.

5

- 13. (Currently Amended) The method as claimed in claim 1, essentially including the step of transferring callus from the said-first solid callus induction medium to a liquid medium in Ehrlenmeyer flasks at a packing density of 600 to 1000 mg of callus/50 ml of media-and shaking the culture in this and all subsequent steps until somatic embryos are taken out for germination on a gyratory shaker at 110-130 rpm.
- 14. (Currently Amended) The method as claimed in claim 1, wherein said embryogenesis induction basal medium is a basal liquid medium comprising Murashinge and Skoog salts, Gamborg B5 vitamins, inositol and glucose as the carbon source.
- 15. (Currently Amended) The method as claimed in claim 1, wherein a plant cell suspension embryogenic mass and somatic embryos generated thereof in liquid medium are incubated at a temperature from 23 to 33° C., in light intensity of 20-40 µmol/m²/s, under a 16 hour photoperiod.
- 16. (Currently Amended) The method as claimed in claim 1, wherein said embryogenic mass/clumps are subjected to inositol deprivation for a period of 8 to 12 days, in inositol deprivation medium comprising MS Murashige and Skoog basal salts, Gamborg B5 vitamins, glucose as carbon source but no inositol, leading to developmental synchronization of somatic embryos.
- 17. (Previously Presented) The method as claimed in claim 1, wherein said first solid callus induction medium has a pH in the range of 5.4-6.2 and the entire liquid media in said process has a pH in the range of 5.2-5.8, being sterile as a result of autoclaving at 121° C, 16 psi for 16 minutes.

,

- 18. (Currently Amended) The method as claimed in claim 1, wherein potting mix comprises of garden soil: sand: Peat moss: vermiculite typically in 2:1:1:1 ratio.
- 19. (Currently Amended) The method as claimed in claim 1, wherein developmental synchrony of somatic embryogenesis is utilized for multiplication of an elite cotton cultivar or development of a transgenic cotton cultivar.
- 20. (Cancel)
- 21. (Currently Amended) The method as claimed in claim 1, wherein said culture medium and basal medium comprise of Murashige and Skoog medium.
- 22. (Currently Amended) The method as claimed in claim 1, wherein said period of time sufficient to from form embryonic clumps comprises 12-32 days.
- 23. (Previously Presented) The method as claimed in claim 1, wherein said subculturing the embryogenic callus containing somatic embryos to said basal medium is carried out at intervals of 8-12 days.
- 24. (Previously Presented) The method as claimed in claim 1, wherein said embryogenic mass/clumps are subjected to inositol deprivation for a period of 8 to 12 days.
- 25. (Previously Presented) The method as claimed in claim 1, wherein said support for said embryo germination medium comprises vermiculite.

- $26. \ (Previously\ Presented)\ The\ method\ according\ to\ part\ (v)\ of\ claim\ 3,\ wherein\ the\ seed\ is\ grown$ for 9-10 days.
- 27. (Previously Presented) The method according to claim 15, wherein the plant cell suspension embryogenic mass and somatic embryos are incubated at a temperature from 27-29 °C.
- 28. (Previously Presented) The method according to claim 8, wherein the range is 1.76 to 2.64 μ M.
- 29. (Previously Presented) The method according to claim 9, wherein the range is 0.66 to 1.00 μ M.
- 30. (Currently Amended) The method according to claim 12, wherein the explants are cultured on said callus induction medium at a temperature between $\frac{23}{27}$ $\frac{27^{\circ}\text{C}}{\text{C}}$ to $\frac{33}{29}$ $\frac{29}{\text{C}}$.
- (Previously Presented) The method according to claim 15, wherein the temperature is from 27-29°C.
- 32. (Previously Presented) The method according to claim 15, wherein the light intensity is 27-33 μ mol/m²/s.