Homework Set #3

Due Date: Before class Friday February 8th

1) Work out the commutation relation among the \vec{X} and \vec{P} operators: ie: $[\vec{X}, \vec{X}], [\vec{P}, \vec{P}],$ and $[\vec{X}, \vec{P}]$

(5 points)

Hint: for $[\vec{X}, \vec{P}]$ work out how the commutator $[\vec{X}, T(\vec{a})]$ acts on position eigenstate for generic translation. Then apply the result to the infinitesimal case.

2) Harmonic Oscillator

(10 points)

The 1D Harmonic oscillator has Hamiltonian:

$$H = \frac{P^2}{2m} + \frac{1}{2}mw^2X^2$$

where P and X are position and momentum operators

a Define "raising" and "lowering" operators as

$$a = \sqrt{\frac{mw}{2}} \left(X + i \frac{P}{mw} \right)$$
 $a^{\dagger} = \sqrt{\frac{mw}{2}} \left(X - i \frac{P}{mw} \right)$

What are the position and momentum operators in terms of the raising and lowering operators?

- b Find $[a, a^{\dagger}]$
- c What is the Hamiltonian in terms of a and a^{\dagger} ?
- d Define the "Number" operator N as $a^{\dagger}a$. What is the Hamiltonian in terms of the number operator?
- e Work out the commutation relations: $[N, a^{\dagger}]$ and [N, a].
- f Show that the eigenvalues of N (n) are real and satisfy $n \ge 0$. (Hint: consider $\langle n|N|n \rangle = \langle n|a^{\dagger}a|n \rangle$, where $|n\rangle$ are eigenkets of N)
- g Show that $a|n\rangle$ is an eigenstate of N, with eigenvalue (n-1). This implies $a|n\rangle \propto |n-1\rangle$ and justifies calling a the lower operator.
- h Show that $a^{\dagger} | n \rangle$ is an eigenstate of N, with eigenvalue (n+1). This implies $a^{\dagger} | n \rangle \propto | n+1 \rangle$ and justifies calling a^{\dagger} the raising operator.
- i Find c_n such that $|n+1\rangle = c_n a \dagger |n\rangle$ is normalized.
- j Since $n \ge 0$, there must be a state $|0\rangle$ which satisfies $a|0\rangle = 0$ and n must be an integer. What is the general state $|n\rangle$ in terms of $|0\rangle$ and a^{\dagger} ? What is the energy associated to this state?