

Circuit Theory and Electronics Fundamentals

Lecture 18: The Metal Oxide Semiconductor Field Effect Transistor

- Field Effect Transistors
- The Metal Oxide Semiconductor Field Effect Transistor (MOSFET):
 - Operation regions
 - Large signal model (DC)
 - Small signal model (AC)
 - Spice model
 - Comparison with BJT

The Field Effect Transistor

- The Field Effect Transistor (FET) is another way to realize a controlled current source
- Unipolar device: only one type of carrier (hole or electron) contributes electric current
- FET types:
 - Junction FET (JFET)
 - Metal Oxide Semiconductor FET (MOSFET)
- 4-pin device: Gate, Source, Drain and Body

The JFET

The Body is always always connected to lowest voltage in chip

How the JFET works

- Channel physically present
- Current flows when positive v_{DS} applied
- A negative v_{GS} will deplete the channel and decrease the current until cut off
- For constant v_{GS} the current saturates with increasing v_{DS}

The MOSFET

How the MOSFET works

- Channel not physically present
- Channel is created when high enough v_{GS} applied
- Current flows when channel present and positive v_{DS} applied
- A negative or insuficcient v_{GS} will cut off the device
- For a constant v_{GS} the current saturates with increasing v_{DS}

The MOSFET operation regions

- Source and drain are physically indistinguishable if no electric field applied
- When an electric field is applied
 - the **drain** is the higher potential terminal
 - The **source** is the lower potential terminal
 - Electrons move from source to drain (current flows from drain to source)
- The gate controls the amount of current that flows
- If $v_{GS} < V_T$ the MOSFET is in the **CUT-OFF region** no current
 - V_T is the threshold voltage for MOSFETs (not to be confused with Diode's and BJT's thermal voltage V_T !)
- If $v_{GS} \ge V_T$ and $v_{DS} \le v_{GS} V_T$ the MOSFET is in the **OHMIC** or **TRIODE** region and behaves like a v_{GS} controlled resistor
- If $v_{GS} \ge V_T$ and $v_{DS} \ge v_{GS} V_T$ the MOSFET is in the **SATURATION region** and behaves like a v_{GS} controlled current source

The MOSFET large signal model

$$i_D = 0$$

$$I_{D} = k[2(v_{GS} - V_{T})v_{DS} - v_{DS}^{2}]$$

$$I_D = k(v_{GS} - V_T)^2$$

$$k = \frac{1}{2} \mu C_{ox} \frac{W}{L} \left[AV^{-2} \right]$$

 μ : Carrier mobility

 C_{ox} : Oxide layer capacity

W: Channel effective width

L: Channel effective length

Cut-off region

Triode or Ohmic region

The p-channel MOSFET

 Reverse all currents and voltages

$$i_{D} \rightarrow i_{S}$$

$$v_{GS} \rightarrow v_{SG}$$

$$v_{DS} \rightarrow v_{SD}$$

$$I_{S} = 0$$
 C
$$I_{S} = k \left[2(v_{SG} - V_{T})v_{SD} - v_{SD}^{2} \right]$$
 To

$$I_S = k \left(v_{SG} - V_T \right)^2$$

$$k = \frac{1}{2} \mu C_{ox} \frac{W}{L} [AV^{-2}]$$

MOSFET

symbol

Saturation

The MOSFET cut-off region – no channel

The MOSFET triode region – channel present

The MOSFET saturation region – channel pinch-off

The MOSFET in saturation – channel length modulation

Channel effective length shortens with $V_{\rm DS}$

MOS transistor small signal model (AC)

Saturation region ONLY

$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}} = \frac{2I_{D}}{V_{GS} - V_{T}}$$

$$r_{o} = \frac{\partial v_{DS}}{\partial i_{D}} = \frac{1 + \lambda V_{DS}}{\lambda I_{D}} \approx \frac{V_{A}}{I_{D}}$$

Incremental parameters

 g_m Transconductance

 r_o Output impedance

Nice feature: *Infinite* input impedance!

Spice's MOS model

- Ngspice has very sophisticated MOS models
- Let's consider a reduced parameter set one
 - Level=1
 - Gamma= 0
 - Xj=0
 - Tox=1200n
 - Phi=.6
 - Rs=0
 - Kp=111u
 - Vto=1.4
 - Lambda=0.01
 - Rd=0
 - Cbd=2.0p
 - Cbs=2.0p
 - Pb=.8
 - Cgso=0.1p
 - Cgdo=0.1p
 - Is=16.64p N=1
- Check out I18.net: simulates $I_D(v_{DS})$ for constant v_{GS} using DC analysis (DC sweep) for a real commercial discrete MOS transistor: the CD4007

BJT versus MOS

Parameter	BJTs	MOS	* io odvostovo
Gain	High *	Medium	* is advantage
			The table explains
Input impedance	Low	High * (no gate current)	why MOS rules!
Output impedance	Low *	Medium	
Size	Large	Small *	
Cost	High	Low *	
Power consumption	High	Low*	

Conclusion

- Field Effect Transistors
- The Metal Oxide Semiconductor Field Effect Transistor (MOSFET):
 - Operation regions
 - Large signal model (DC)
 - Small signal model (AC)
 - Spice model
 - Comparison with BJT