Homework Assignment 12

Due Saturday, April 30

- 1. Let R be a ring. Recall that for $a \in R$ we denote the additive inverse of a by -a. Establish the following identities.
 - (a) (-a)b = a(-b) = -ab
 - (b) (-a)(-b) = ab
 - (c) If $1 \in R$ then (-1)a = -a.
 - (d) Suppose R is an integral domain. Show that if $a^2 = 1$ then $a = \pm 1$. (Recall A ring is an integral domain if it is commutative, with multiplicative identity $1 \neq 0$, and such that if ab = 0 then a = 0 or b = 0
- 2. Let R be a ring with $1 \neq 0$.
 - (a) Let $R^{\times} \subseteq R$ be the set of units of R. Show that R^{\times} is a group under the multiplication operation of R.
 - (b) Suppose that $a \in R$ is a zero divisor. Show that $a \notin R^{\times}$.
- 3. Let R be a commutative ring. An element $r \in R$ is called *nilpotent* if there exists a positive n such that $r^n = 0$. A commutative ring is called *reduced* if it has no nonzero nilpotent elements.
 - (a) Show that a nilpotent element of a ring is either 0 or a zero divisor.
 - (b) Give an example of a ring with a nonzero nilpotent element.
 - (c) Show that the sum of nilpotent elements is nilpotent.
 - (d) Suppose r is nilpotent. Show that rx is nilpotent for all $x \in R$. (Note, in future terminology, (c) and (d) prove that the set of nilpotent elements is an *ideal* of R, which we will call the *nilradical*).
 - (e) Suppose R is a commutative ring with $1 \neq 0$, and suppose $r \in R$ is nilpotent. Show that $1 + r \in R^{\times}$.
- 4. Let R be ring, and X any set. Define

$$Maps(X, R) = \{ f : X \to R \mid f \text{ is a function} \}.$$

Define binary operations + and \times as follows.

$$(f+g)(x) = f(x) + g(x) \qquad (f \times g)(x) = f(x)g(x).$$

- (a) Show that Maps(X, R) is a ring.
- (b) Suppose R is commutative, show that Maps(X, R) is too.
- (c) Suppose R is unital, show that Maps(X, R) is too.
- (d) Suppose R is reduced (defined in Problem 3), show that Maps(X,R) is too.
- (e) Give an example to show that even if R is a field, Maps(X, R) need not be.
- (f) Give an example to show that even if R is an integral domain, Maps(X,R) need not be.

5. Let A be an abelian group (with binary operation +). Define the *endomorphism ring* of A as follows:

$$\operatorname{End}(A) = \{ f : A \to A \mid f \text{ is a homomorpism} \}.$$

Give $\operatorname{End}(A)$ 2 binary operations + and \times as follows:

$$(f+g)(a) = f(a) + g(a)$$
 $(f \times g)(a) = f(g(a)).$

- (a) Prove that End(A) is a ring.
- (b) Prove that $(\operatorname{End}(A))^{\times} \cong \operatorname{Aut}(A)$.
- (c) Let E be an elementary abelian p-group of order p^n . Show that $\operatorname{End}(E) \cong M_n(\mathbb{F}_p)$, where we give the latter the operations matrix addition and multiplication. Conclude that $M_n(\mathbb{F}_p)$ is a ring and that $M_n(\mathbb{F}_p)^{\times} = GL_n(\mathbb{F}_p)$. (You may use Proposition 1 from HW6, after which this should be completely formal.)

Had we been not been in lockdown on Thursday, we would have encountered the following definition:

Definition 1. Let R be a ring. A subset $S \subseteq R$ is called a subring if it is a subgroup under addition, and also if $a, b \in S$ then $ab \in S$.

- 6. (a) Let R be a ring and $S \subseteq R$ a subring. Show that S is a ring.
 - (b) Let $\{S_i \subseteq R\}$ be a nonempty collection of subrings of R. Show that $\bigcap_i S_i$ is a subring of R.
 - (c) Suppose S is a subring of R, and R is a subring of T. Show that S is a subring of T.
- 7. Let D be an integer which is not a perfect square. One forms a quadratic integer ring

$$\mathbb{Z}[\sqrt{D}] = \{a + b\sqrt{D} : a, b \in \mathbb{Z}\},\$$

with the standard notions of addition and multiplication. We will see that the structure of this ring depends heavily on D.

- (a) Show that $\mathbb{Z}[\sqrt{D}]$ is a ring. (*Hint:* You could do this directly, or observe it is a subring of a well known field, and leverage the previous exercise).
- (b) Define the norm of a quadratic integer to be

$$N(a + b\sqrt{D}) = (a + b\sqrt{D})(a - b\sqrt{D}).$$

Prove that the norm gives a map $N: \mathbb{Z}[\sqrt{D}] \to \mathbb{Z}$ satisfying N(xy) = N(x)N(y).

- (c) Let $x \in \mathbb{Z}[\sqrt{D}]$. Show x is a unit if and only if $N(x) = \pm 1$.
- (d) Use part (c) to establish the following.
 - i. Let $i = \sqrt{-1}$. Show $(\mathbb{Z}[i])^{\times} = \{\pm 1, \pm i\}$.
 - ii. Let D < -2. Show $(\mathbb{Z}[\sqrt{D}])^{\times} = \{\pm 1\}$.
 - iii. Show $|(\mathbb{Z}[\sqrt{2}])^{\times}| = \infty$.