On para-Kähler Lie algebroids and contravariant pseudo-Hessian structures

Mohamed Boucetta m.boucetta@uca.ac.ma Joint work with Saïd Benayadi

Cadi-Ayyad University
Faculty of Sciences and Technology Marrakesh Morocco

Séminaire Algèbre, Géométrie, Topologie et Applications 21 Octobre 2017

Example.

Let $M = \mathbb{R}^n$ and $\phi(x) = \frac{1}{2} \sum_{i=1}^n x_i^2$. Then $(g_{ij}) = \left(\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right) \text{ is a Riemannian metric on } M.$

Example.

- Let $M = \mathbb{R}^n$ and $\phi(x) = \frac{1}{2} \sum_{i=1}^n x_i^2$. Then $(g_{ij}) = \left(\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right) \text{ is a Riemannian metric on } M.$
- 2 Let $M = \{x \in \mathbb{R}^n, x_1 > 0, \dots, x_n > 0\}$ and $\phi(x) = \sum_{i=1}^n x_i \ln x_i$. Then $(g_{ij}) = \left(\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right)$ is a Riemannian metric on M.

Example.

- Let $M = \mathbb{R}^n$ and $\phi(x) = \frac{1}{2} \sum_{i=1}^n x_i^2$. Then $(g_{ij}) = \left(\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right) \text{ is a Riemannian metric on } M.$
- 2 Let $M = \{x \in \mathbb{R}^n, x_1 > 0, \dots, x_n > 0\}$ and $\phi(x) = \sum_{i=1}^n x_i \ln x_i$. Then $(g_{ij}) = \left(\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right)$ is a Riemannian metric on M.
- **3** Let $M = \left\{ x \in \mathbb{R}^n, x_n > \frac{1}{2} \sum_{i=1}^{n-1} x_i^2 \right\}$ and $\phi(x) = -\ln\left(x_n \frac{1}{2} \sum_{i=1}^{n-1} x_i^2\right)$. Then $(g_{ij}) = \left(\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right)$ is a Riemannian metric on M.

Example.

- Let $M = \mathbb{R}^n$ and $\phi(x) = \frac{1}{2} \sum_{i=1}^n x_i^2$. Then $(g_{ij}) = \left(\frac{\partial^2 \phi}{\partial x_i \partial x_i}\right) \text{ is a Riemannian metric on } M.$
- Let $M = \{x \in \mathbb{R}^n, x_1 > 0, \dots, x_n > 0\}$ and $\phi(x) = \sum_{i=1}^n x_i \ln x_i$. Then $(g_{ij}) = \left(\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right)$ is a Riemannian metric on M.
 - Let $M = \left\{ x \in \mathbb{R}^n, x_n > \frac{1}{2} \sum_{i=1}^{n-1} x_i^2 \right\}$ and $\phi(x) = -\ln\left(x_n \frac{1}{2} \sum_{i=1}^{n-1} x_i^2\right)$. Then $(g_{ij}) = \left(\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right)$ is a Riemannian metric on M.
 - $\phi(x,y) = \frac{1}{2}x\ln(x^2 + y^2) + y\arctan\left(\frac{x}{y}\right). Then$ $(g_{ij}) = \left(\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right) \text{ is a Lorentzian metric on } M.$

4 Let $M = \{(x, y) \in \mathbb{R}^2, y > 0\}$ and

Theorem.

Let M be a manifold of dimension n. Then the following assertions are equivalent:

- There exists on M a flat and torsionless connection ∇ .
- **2** There exists on M an atlas $((U_i, \phi_i)_{i \in A})$ such that, for any $i, j \in A$, the change of charts $\phi_{i,j} : \phi_i(U_i \cap U_j) \longrightarrow \phi_j(U_i \cap U_j)$ is given by

$$\phi_{i,j}(x) = Mx + b, \ M \in GL(n), b \in \mathbb{R}^n.$$

The atlas is called an affine atlas and its charts are called affine chart.

An affine manifold is a manifold endowed with an affine atlas or equivalently a flat and torsionless connection.

Let M be an affine manifold. A pseudo-Hessian metric on M is a pseudo-Riemannian metric g on M such that for any $m \in M$ there exists an affine chart $(U, (x_i)_{i=1}^n)$ around m and function ϕ on U such that $g_{ij} = g(\partial_{x_i}, \partial_{x_j}) = \frac{\partial^2 \phi}{\partial x_i \partial x_j}$. The triple (M, ∇, g) is called a pseudo-Hessian manifold.

^aSee H. Shima, The geometry of Hessian structures, World Scientific Publishing (2007).

Let M be an affine manifold. A pseudo-Hessian metric on M is a pseudo-Riemannian metric g on M such that for any $m \in M$ there exists an affine chart $(U, (x_i)_{i=1}^n)$ around m and function ϕ on U such that $g_{ij} = g(\partial_{x_i}, \partial_{x_j}) = \frac{\partial^2 \phi}{\partial x_i \partial x_j}$. The triple (M, ∇, g) is called a pseudo-Hessian manifold.

^aSee H. Shima, The geometry of Hessian structures, World Scientific Publishing (2007).

Remark.

The metric g is pseudo-Hessian iff

$$\nabla_X(g)(Y,Z) = \nabla_Y(g)(X,Z)$$
. (Codazzi equation)

Let $D \subset \mathbb{R}^n$ a regular open convex cone and define

$$D^* = \{ y \in \mathbb{R}^n, \langle y, x \rangle > 0, \quad \forall x \in \bar{D} \setminus \{0\} \}$$

and $\psi: D \longrightarrow \mathbb{R}$ by

$$\psi(x) = \int_{D^*} e^{-\langle y, x \rangle} dy.$$

Let $D \subset \mathbb{R}^n$ a regular open convex cone and define

$$D^* = \{ y \in \mathbb{R}^n, \langle y, x \rangle > 0, \quad \forall x \in \bar{D} \setminus \{0\} \}$$

and $\psi: D \longrightarrow \mathbb{R}$ by

$$\psi(x) = \int_{D^*} e^{-\langle y, x \rangle} dy.$$

Theorem.

$$(D, g = \left(\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right))$$
 is a Hessian manifold, where $\phi = \ln \psi$.
Moreover, g is invariant by the group of automorphisms affine preserving D .

Purpose.

The purpose of this talk is:

 $\ \, \textbf{ O} \ \, \textit{To generalize the notion of pseudo-Hessian structure}. \\$

Purpose.

The purpose of this talk is:

- To generalize the notion of pseudo-Hessian structure.
- 2 To give a powerful new machinery to build examples of pseudo-Hessian structures.

Purpose.

The purpose of this talk is:

- To generalize the notion of pseudo-Hessian structure.
- 2 To give a powerful new machinery to build examples of pseudo-Hessian structures.

For more details see:

Saïd Benayadi & M. Boucetta, On para-Kähler Lie algebroids and generalized pseudo-Hessian structures, arxiv: 1610.09682v1[math.DG]30 oct 2016 (submitted).

• Para-Kähler manifolds

- Para-Kähler manifolds
- 2 Para-Kähler Lie algebroids

- Para-Kähler manifolds
- 2 Para-Kähler Lie algebroids
- State Para-Kähler Lie algebroids

- Para-Kähler manifolds
- Para-Kähler Lie algebroids
- 3 Exact Para-Kähler Lie algebroids
- Ontravariant pseudo-Hessian manifolds

Para-Kähler manifolds

Let (M,g) be a pseudo-Riemannian manifold, ∇ its Levi-Civita connection and $K:TM\longrightarrow TM$ satisfying

$$K^2 = \operatorname{Id}_{TM}$$
 and $g(KX, Y) = -g(X, KY)$.

Para-Kähler manifolds

Let (M,g) be a pseudo-Riemannian manifold, ∇ its Levi-Civita connection and $K:TM\longrightarrow TM$ satisfying

$$K^2 = \operatorname{Id}_{TM}$$
 and $g(KX, Y) = -g(X, KY)$.

Define
$$\Omega \in \Omega^2(M)$$
 by

$$\Omega(X,Y) = g(KX,Y).$$

Para-Kähler manifolds

Let (M,g) be a pseudo-Riemannian manifold, ∇ its Levi-Civita connection and $K:TM\longrightarrow TM$ satisfying

$$K^2 = \operatorname{Id}_{TM}$$
 and $g(KX, Y) = -g(X, KY)$.

Define $\Omega \in \Omega^2(M)$ by

$$\Omega(X,Y) = g(KX,Y).$$

Proposition.

The following are equivalent:

$$\mathbf{2}$$
 Ω is closed and

$$N_K(X,Y) := [KX,KY] - K[KX,Y] - K[X,KY] + K^2[X,Y] = 0.$$

 $A\ para-K\"ahler\ manifold\ is\ defined\ equivalently\ eihter\ by:$

 $A\ para\text{-}K\"{a}hler\ manifold\ is\ defined\ equivalently\ either\ by:$

• A pseudo-Riemannian manifold (M, g) of signature (n, n) with $K : TM \longrightarrow TM$ g-skew-symmetric, $K^2 = \operatorname{Id}_{TM}$ and $\nabla(K) = 0$.

A para-Kähler manifold is defined equivalently either by:

- A pseudo-Riemannian manifold (M, g) of signature (n, n) with $K : TM \longrightarrow TM$ g-skew-symmetric, $K^2 = \operatorname{Id}_{TM}$ and $\nabla(K) = 0$.
- 2 A symplectic manifold (M,Ω) with $K:TM \longrightarrow TM$ Ω -skew-symmetric, $K^2 = \operatorname{Id}_{TM}$ and $N_K = 0$.

Let (M, g, K) be a para-Kähler manifold. Then:

Let (M, g, K) be a para-Kähler manifold. Then:

 $\operatorname{rank}(T^+M) = \operatorname{rank}(T^-M) = n \text{ and } TM = T^+M \oplus T^-M,$

• If $T^{\epsilon}M := \ker(K + \epsilon \operatorname{Id}_{TM})$ then

if I in the form of the first term of the first

Let (M, q, K) be a para-Kähler manifold. Then:

• If $T^{\epsilon}M := \ker(K + \epsilon \operatorname{Id}_{TM})$ then

$$\operatorname{rank}(T^+M) = \operatorname{rank}(T^-M) = n \text{ and } TM = T^+M \oplus T^-M,$$

 $2 T^+M$ and T^-M are totally isotropic with respect to g,

Let (M, q, K) be a para-Kähler manifold. Then:

• If $T^{\epsilon}M := \ker(K + \epsilon \operatorname{Id}_{TM})$ then

$$\operatorname{rank}(T^+M)=\operatorname{rank}(T^-M)=n\quad\text{and}\quad TM=T^+M\oplus T^-M,$$

- \circ T^+M and T^-M are totally isotropic with respect to g,

$$\nabla_X Y^+ \in \Gamma(T^+ M)$$
 and $\nabla_X Z^- \in \Gamma(T^- M)$,

Let (M, g, K) be a para-Kähler manifold. Then:

• If $T^{\epsilon}M := \ker(K + \epsilon \operatorname{Id}_{TM})$ then

$$\operatorname{rank}(T^+M)=\operatorname{rank}(T^-M)=n\quad\text{and}\quad TM=T^+M\oplus T^-M,$$

- \circ T^+M and T^-M are totally isotropic with respect to g,

$$\nabla_X Y^+ \in \Gamma(T^+ M)$$
 and $\nabla_X Z^- \in \Gamma(T^- M)$,

1 In particular, T^+M and T^-M define two foliations \mathcal{F}^+ and \mathcal{F}^- which are transverse, totally isotropic and parallel.

So we get the following geometric definition:

Definition.

A para-Kähler manifold is a pseudo-Riemannian manifold (M,g) of signature (n,n) with two foliations \mathcal{F}^+ and \mathcal{F}^- which are transverse, totally isotropic and parallel.

So we get the following geometric definition:

Definition.

A para-Kähler manifold is a pseudo-Riemannian manifold (M,g) of signature (n,n) with two foliations \mathcal{F}^+ and \mathcal{F}^- which are transverse, totally isotropic and parallel.

If we adopt the symplectic point of view we get:

Definition.

A para-Kähler manifold is a symplectic manifold (M, Ω) with two foliations \mathcal{F}^+ and \mathcal{F}^- which are transverse and Lagrangian.

Let M be a para-Kähler manifold.

Let M be a para-Kähler manifold. For any $X^+, Y^+, U^+ \in \Gamma(T^+M)$ and $Z^- \in \Gamma(T^-M)$, according to Bianchi's identity,

$$R^{\nabla}(X^+, Y^+)Z^- + R^{\nabla}(Y^+, Z^-)X^+ + R^{\nabla}(Z^-, X^+)Y^+ = 0.$$

Let M be a para-Kähler manifold. For any $X^+, Y^+, U^+ \in \Gamma(T^+M)$ and $Z^- \in \Gamma(T^-M)$, according to Bianchi's identity,

$$R^{\nabla}(X^+, Y^+)Z^- + R^{\nabla}(Y^+, Z^-)X^+ + R^{\nabla}(Z^-, X^+)Y^+ = 0.$$

Then

$$R^{\nabla}(X^+, Y^+)Z^- = 0$$
 and $R^{\nabla}(Y^+, Z^-)X^+ + R^{\nabla}(Z^-, X^+)Y^+ = 0$.

Let M be a para-Kähler manifold. For any $X^+, Y^+, U^+ \in \Gamma(T^+M)$ and $Z^- \in \Gamma(T^-M)$, according to Bianchi's identity,

$$R^{\nabla}(X^+,Y^+)Z^- + R^{\nabla}(Y^+,Z^-)X^+ + R^{\nabla}(Z^-,X^+)Y^+ = 0.$$

Then

$$R^{\nabla}(X^+, Y^+)Z^- = 0$$
 and $R^{\nabla}(Y^+, Z^-)X^+ + R^{\nabla}(Z^-, X^+)Y^+ = 0$.

On the other hand

$$g(R^{\nabla}(X^+, Y^+)U^+, Z^-) = -g(R^{\nabla}(X^+, Y^+)Z^-, U^+) = 0.$$

Let M be a para-Kähler manifold. For any $X^+, Y^+, U^+ \in \Gamma(T^+M)$ and $Z^- \in \Gamma(T^-M)$, according to Bianchi's identity,

$$R^{\nabla}(X^+, Y^+)Z^- + R^{\nabla}(Y^+, Z^-)X^+ + R^{\nabla}(Z^-, X^+)Y^+ = 0.$$

Then

$$R^{\nabla}(X^+, Y^+)Z^- = 0$$
 and $R^{\nabla}(Y^+, Z^-)X^+ + R^{\nabla}(Z^-, X^+)Y^+ = 0$.

On the other hand

$$g(R^{\nabla}(X^+, Y^+)U^+, Z^-) = -g(R^{\nabla}(X^+, Y^+)Z^-, U^+) = 0.$$

Thus
$$R^{\nabla}(X^+, Y^+) = 0$$
.

Theorem.

Let M be a para-Kähler manifold. Then the leafs of \mathcal{F}^{ϵ} are affine manifolds.

Recall that an affine manifold is a manifold N with a connection ∇ which is flat and torsionless, i.e.,

$$R^{\nabla}(X,Y) = \nabla_{[X,Y]} - \nabla_X \nabla_Y + \nabla_Y \nabla_X = 0 \quad \text{and} \quad [X,Y] = \nabla_X Y - \nabla_Y X = 0$$

Para-Kähler Lie algebroids

A Lie algebroid over a smooth manifold M is a vector bundle $\pi_A : A \longrightarrow M$ together with a \mathbb{R} -Lie algebra structure $[\ ,\]_A$ on $\Gamma(A)$ and a vector bundle homomorphism $\rho : A \longrightarrow TM$ called *anchor* such that, for any $a, b \in \Gamma(A)$ and for any $f \in C^{\infty}(M)$, we have the Leibniz identity

$$[a, fb]_A = f[a, b]_A + \rho(a)(f)b.$$
 (1)

Para-Kähler Lie algebroids

A Lie algebroid over a smooth manifold M is a vector bundle $\pi_A: A \longrightarrow M$ together with a \mathbb{R} -Lie algebra structure $[\ ,\]_A$ on $\Gamma(A)$ and a vector bundle homomorphism $\rho: A \longrightarrow TM$ called *anchor* such that, for any $a, b \in \Gamma(A)$ and for any $f \in C^{\infty}(M)$, we have the Leibniz identity

$$[a, fb]_A = f[a, b]_A + \rho(a)(f)b.$$
 (1)

An immediate consequence of this definition is that the induced map $\rho: \Gamma(A) \longrightarrow \Gamma(TM)$ is a Lie algebra homomorphism and for any $x \in M$, there is an induced Lie bracket on $\mathfrak{g}_x = \operatorname{Ker}(\rho_x) \subset A_x$ which makes it into a Lie algebra.

Example.

- The basic example of a Lie algebroid over M is the tangent bundle itself, with the identity mapping as anchor.
- 2 Every finite dimensional Lie algebra is a Lie algebroid over a one point space.

Example.

- The basic example of a Lie algebroid over M is the tangent bundle itself, with the identity mapping as anchor.
- 2 Every finite dimensional Lie algebra is a Lie algebroid over a one point space.
- **3** Any integrable subbundle of TM is a Lie algebroid with the inclusion as anchor and the induced bracket.

Example.

- The basic example of a Lie algebroid over M is the tangent bundle itself, with the identity mapping as anchor.
- 2 Every finite dimensional Lie algebra is a Lie algebroid over a one point space.
- 3 Any integrable subbundle of TM is a Lie algebroid with the inclusion as anchor and the induced bracket.
- **1** Let (M, π) be a Poisson manifold. The bivector field π defines a bundle homomorphism $\pi_{\#}: T^*M \longrightarrow TM$ and a bracket on $\Omega^1(M)$ by

$$[\alpha, \beta]_{\pi} = \mathcal{L}_{\pi_{\#}(\alpha)}\beta - \mathcal{L}_{\pi_{\#}(\beta)}\alpha - d\pi(\alpha, \beta)$$

such that $(T^*M, M, \pi_{\#}, [\ ,\]_{\pi})$ is a Lie algebroid.

Let $\pi_A : A \longrightarrow M$ be a Lie algebroid with anchor map ρ . An A-connection on a vector bundle $\pi_E : E \longrightarrow M$ is an operator $\nabla : \Gamma(A) \times \Gamma(E) \longrightarrow \Gamma(E)$ satisfying:

- $\nabla_a(s_1+s_2) = \nabla_a s_1 + \nabla_a s_2$ for any $a \in \Gamma(A)$ and $s_1, s_2 \in \Gamma(E)$;
- $\nabla_{fa}s = f\nabla_a s$ for any $a \in \Gamma(A)$, $s \in \Gamma(E)$ and $f \in C^{\infty}(M)$;

If E = A, we call ∇ a linear A-connection.

Let ∇ a linear A-connection. Its dual is the connection ∇^* on A^* given by

$$\prec \nabla_a^* \alpha, b \succ = \rho(a). \prec \nabla_a^* \alpha, b \succ - \prec \alpha, \nabla_a b \succ, \ a, b \in \Gamma(A), \alpha \in \Gamma(A^*).$$

Let ∇ a linear A-connection. Its dual is the connection ∇^* on A^* given by

$$\prec \nabla_a^* \alpha, b \succ = \rho(a). \prec \nabla_a^* \alpha, b \succ - \prec \alpha, \nabla_a b \succ, \ a, b \in \Gamma(A), \alpha \in \Gamma(A^*).$$

Definition.

A Lie algebroid $(A, M, \rho, [\ ,\]_A)$ is called affine if there exists a linear A-connection ∇ such that for any $a, b \in \Gamma(A)$,

$$R^{\nabla}(a,b) := \nabla_{[a,b]_A} - \nabla_a \nabla_b + \nabla_b \nabla_a = 0 \quad and \quad [a,b]_A = \nabla_a b - \nabla_b a$$

A pseudo-Riemannian Lie algebroid is a Lie algebroid (A, M, ρ) together with an pseudo-Euclidean metric \langle , \rangle_A on $\pi_A : A \longrightarrow M$.

A pseudo-Riemannian Lie algebroid is a Lie algebroid (A, M, ρ) together with an pseudo-Euclidean metric \langle , \rangle_A on $\pi_A : A \longrightarrow M$. The Koszul formula

$$2\langle \mathcal{D}_a b, c \rangle_A = \rho(a).\langle b, c \rangle_A + \rho(b).\langle a, c \rangle_A - \rho(c).\langle a, b \rangle_A + \langle [c, a]_A, b \rangle_A + \langle [c, b]_A, a \rangle_A + \langle [a, b]_A, c \rangle_A,$$

defines a linear A-connection.

A pseudo-Riemannian Lie algebroid is a Lie algebroid (A, M, ρ) together with an pseudo-Euclidean metric \langle , \rangle_A on $\pi_A : A \longrightarrow M$. The Koszul formula

$$2\langle \mathcal{D}_a b, c \rangle_A = \rho(a).\langle b, c \rangle_A + \rho(b).\langle a, c \rangle_A - \rho(c).\langle a, b \rangle_A + \langle [c, a]_A, b \rangle_A + \langle [c, b]_A, a \rangle_A + \langle [a, b]_A, c \rangle_A,$$

defines a linear A-connection.

 \mathcal{D} is metric, i.e., $\rho(a).\langle b, c \rangle_A = \langle \mathcal{D}_a b, c \rangle_A + \langle b, \mathcal{D}_a c \rangle_A$ and \mathcal{D} is torsion free, i.e., $\mathcal{D}_a b - \mathcal{D}_b a = [a, b]_A$.

A pseudo-Riemannian Lie algebroid is a Lie algebroid (A, M, ρ) together with an pseudo-Euclidean metric \langle , \rangle_A on $\pi_A : A \longrightarrow M$. The Koszul formula

$$2\langle \mathcal{D}_a b, c \rangle_A = \rho(a).\langle b, c \rangle_A + \rho(b).\langle a, c \rangle_A - \rho(c).\langle a, b \rangle_A + \langle [c, a]_A, b \rangle_A + \langle [c, b]_A, a \rangle_A + \langle [a, b]_A, c \rangle_A,$$

defines a linear A-connection.

 \mathcal{D} is metric, i.e., $\rho(a).\langle b, c \rangle_A = \langle \mathcal{D}_a b, c \rangle_A + \langle b, \mathcal{D}_a c \rangle_A$ and \mathcal{D} is torsion free, i.e., $\mathcal{D}_a b - \mathcal{D}_b a = [a, b]_A$.

The connection \mathcal{D} is well-known as the *Levi-Civita* A-connection associated to the pseudo-Riemannian metric \langle , \rangle_A .

A para-Kähler Lie algebroid is a pseudo-Riemannian Lie algebroid $(A, M, \rho, \langle , \rangle_A)$ with a an endomorphism field $K: A \longrightarrow A$ such that $K^2 = -\mathrm{Id}_A$, K is skew-symmetric and parallel, i.e.,

$$\langle Ka, b \rangle_A = -\langle Kb, a \rangle_A \quad and \quad K\mathcal{D}_a b = \mathcal{D}_a Kb.$$

A para-Kähler Lie algebroid is a pseudo-Riemannian Lie algebroid $(A, M, \rho, \langle , \rangle_A)$ with a an endomorphism field $K: A \longrightarrow A$ such that $K^2 = -\mathrm{Id}_A$, K is skew-symmetric and parallel, i.e.,

$$\langle Ka, b \rangle_A = -\langle Kb, a \rangle_A$$
 and $K\mathcal{D}_a b = \mathcal{D}_a Kb$.

Let $(A, M, \rho, \langle , \rangle_A, K)$ be a para-Kähler Lie algebroid. Then:

A para-Kähler Lie algebroid is a pseudo-Riemannian Lie algebroid $(A, M, \rho, \langle , \rangle_A)$ with a an endomorphism field $K: A \longrightarrow A$ such that $K^2 = -\mathrm{Id}_A$, K is skew-symmetric and parallel, i.e.,

$$\langle Ka, b \rangle_A = -\langle Kb, a \rangle_A$$
 and $K\mathcal{D}_a b = \mathcal{D}_a Kb$.

Let $(A, M, \rho, \langle , \rangle_A, K)$ be a para-Kähler Lie algebroid. Then:

$$\bullet A = A^+ \oplus A^-, A^{\epsilon} = \ker(K + \epsilon \operatorname{Id}_A),$$

A para-Kähler Lie algebroid is a pseudo-Riemannian Lie algebroid $(A, M, \rho, \langle , \rangle_A)$ with a an endomorphism field $K: A \longrightarrow A$ such that $K^2 = -\mathrm{Id}_A$, K is skew-symmetric and parallel, i.e.,

$$\langle Ka, b \rangle_A = -\langle Kb, a \rangle_A$$
 and $K\mathcal{D}_a b = \mathcal{D}_a Kb$.

Let $(A, M, \rho, \langle \ , \ \rangle_A, K)$ be a para-Kähler Lie algebroid. Then:

- $\bullet A = A^+ \oplus A^-, A^{\epsilon} = \ker(K + \epsilon \operatorname{Id}_A),$
- ② $\mathcal{D}\Gamma(A^{\epsilon}) \subset \Gamma(A^{\epsilon})$ and A^{ϵ} is isotropic,

A para-Kähler Lie algebroid is a pseudo-Riemannian Lie algebroid $(A, M, \rho, \langle , \rangle_A)$ with a an endomorphism field $K: A \longrightarrow A$ such that $K^2 = -\mathrm{Id}_A$, K is skew-symmetric and parallel, i.e.,

$$\langle Ka, b \rangle_A = -\langle Kb, a \rangle_A \quad and \quad K\mathcal{D}_a b = \mathcal{D}_a Kb.$$

Let $(A, M, \rho, \langle , \rangle_A, K)$ be a para-Kähler Lie algebroid. Then:

- $\bullet A = A^+ \oplus A^-, A^{\epsilon} = \ker(K + \epsilon \mathrm{Id}_A),$
- **3** $(A^{\epsilon}, M, \rho^{\epsilon}, \mathcal{D}^{\epsilon})$ is an affine Lie algebroid. (Bianchi's identity)

Let $(A, M, \rho, \langle \ , \ \rangle_A, K)$ be a para-Kähler Lie algebroid.

Let $(A, M, \rho, \langle , \rangle_A, K)$ be a para-Kähler Lie algebroid. We denote by (B, M, ρ_1, S) the affine Lie algebroid structure on A^+ . Let $(A, M, \rho, \langle , \rangle_A, K)$ be a para-Kähler Lie algebroid. We denote by (B, M, ρ_1, S) the affine Lie algebroid structure on A^+ .

The map $A^- \longrightarrow B^*$, $a \mapsto \langle a, . \rangle_A$ is an isomorphism.

Let $(A, M, \rho, \langle , \rangle_A, K)$ be a para-Kähler Lie algebroid. We denote by (B, M, ρ_1, S) the affine Lie algebroid structure on A^+ .

The map $A^- \longrightarrow B^*$, $a \mapsto \langle a, . \rangle_A$ is an isomorphism. We denote by (B^*, M, ρ_2, T) the affine algebroid structure induced from A^- via this isomorphism. Let $(A, M, \rho, \langle , \rangle_A, K)$ be a para-Kähler Lie algebroid.

We denote by (B, M, ρ_1, S) the affine Lie algebroid structure on A^+ .

The map $A^- \longrightarrow B^*$, $a \mapsto \langle a, . \rangle_A$ is an isomorphism. We denote by (B^*, M, ρ_2, T) the affine algebroid structure induced from A^- via this isomorphism.

Proposition. $(A, M, \rho, \langle , \rangle_A, K)$ is isomorphic to $(\Phi(B) = B \oplus B^*, M, \rho_1 \oplus \rho_2, \langle , \rangle_0, K_0)$ where: $\langle a+\alpha,b+\beta\rangle_0 = \langle \alpha,b\rangle + \langle \beta,a\rangle$ $K_0(a+\alpha) = a-\alpha,$ $\mathcal{D}_{X+\alpha}(Y+\beta) = S_X Y + T_{\alpha}^* Y + S_X^* \beta + T_{\alpha} \beta.$ $[X + \alpha, Y + \beta]_{\phi} = [X, Y]_{B} + [\alpha, \beta]_{B^{*}}$ $+T_{\alpha}^{*}Y-T_{\beta}^{*}X+S_{X}^{*}\beta-S_{Y}^{*}\alpha.$

Conversely, let (B, M, ρ_1, S) and (B^*, M, ρ_2, T) two affine Lie algebroids.

Conversely, let (B, M, ρ_1, S) and (B^*, M, ρ_2, T) two affine Lie algebroids.

 $(\Phi(B) = B \oplus B^*, M, \rho = \rho_1 \oplus \rho_2, \langle , \rangle_0, K_0)$ is a para-Kähler Lie algebroid iff the bracket

$$[X + \alpha, Y + \beta]_{\phi} = [X, Y]_{B} + [\alpha, \beta]_{B^{*}} + T_{\alpha}^{*}Y - T_{\beta}^{*}X + S_{X}^{*}\beta - S_{Y}^{*}\alpha,$$

satisfies Jacobi identity.

Conversely, let (B, M, ρ_1, S) and (B^*, M, ρ_2, T) two affine Lie algebroids.

 $(\Phi(B) = B \oplus B^*, M, \rho = \rho_1 \oplus \rho_2, \langle , \rangle_0, K_0)$ is a para-Kähler Lie algebroid iff the bracket

$$[X + \alpha, Y + \beta]_{\phi} = [X, Y]_{B} + [\alpha, \beta]_{B^{*}}$$

$$+ T_{\alpha}^{*}Y - T_{\beta}^{*}X + S_{X}^{*}\beta - S_{Y}^{*}\alpha,$$

satisfies Jacobi identity.

Remark.

If $[\ ,\]_{\phi}$ satisfies Jacobi identity then $\rho: \Gamma(\Phi(B)) \longrightarrow \Gamma(TM)$ is an homomorphism of Lie algebras. In particular

$$\rho([X,\alpha]_{\phi}) = -\rho_0(T_{\alpha}^*X) + \rho_1(S_X^*\alpha) = [\rho_0(X), \rho_1(\alpha)].$$

If ρ_0 is invertible then put $\mathbf{r} = \rho_0^{-1} \circ \rho_1 : B^* \longrightarrow B$ and

$$T_{\alpha}^* X = \mathbf{r}(S_X^* \alpha) - [X, \mathbf{r}(\alpha)]_B,$$

Exact para-Kähler Lie algebroid

Let (B, M, ρ, S) be an affine Lie algebroid, $r \in \Gamma(A \otimes A)$ symmetric. Let $r_{\#}: A^* \longrightarrow A$ given by $\beta(r_{\#}(\alpha)) = r(\alpha, \beta)$. Put $\rho_r = \rho \circ r_{\#}$ and, for any $\alpha, \beta \in \Gamma(A^*)$ and $X \in \Gamma(A)$,

Exact para-Kähler Lie algebroid

Let (B, M, ρ, S) be an affine Lie algebroid, $r \in \Gamma(A \otimes A)$ symmetric. Let $r_{\#}: A^* \longrightarrow A$ given by $\beta(r_{\#}(\alpha)) = r(\alpha, \beta)$. Put $\rho_r = \rho \circ r_{\#}$ and, for any $\alpha, \beta \in \Gamma(A^*)$ and $X \in \Gamma(A)$,

Problem

Under which conditions (B^*, M, ρ_r, T) is an affine Lie algebroid and $(B \oplus B^*, M, \rho \oplus \rho_r, [\ ,\]_{\phi}, K_0, \langle\ ,\ \rangle_0)$ is a para-Kähler Lie algebroid?

 (B^*, M, ρ_r, T) is an affine Lie algebroid and $(B \oplus B^*, M, \rho \oplus \rho_r, [\ ,\]_{\phi}, K_0, \langle\ ,\ \rangle_0)$ is a para-Kähler Lie algebroid iff

$$\rho \circ \Delta(r) = 0, \quad and$$
$$[X, \Delta(r)(\alpha, \beta)]_S - \Delta(r)(S_X^*\alpha, \beta) - \Delta(r)(\alpha, S_X^*\beta) = 0,$$

where

$$\Delta(r)(\alpha,\beta) = r_{\#}([\alpha,\beta]_T) - [r_{\#}(\alpha), r_{\#}(\beta)]_S.$$

 (B^*, M, ρ_r, T) is an affine Lie algebroid and $(B \oplus B^*, M, \rho \oplus \rho_r, [\ ,\]_{\phi}, K_0, \langle\ ,\ \rangle_0)$ is a para-Kähler Lie algebroid iff

$$\rho \circ \Delta(r) = 0, \quad and$$

[X,\Delta(r)(\alpha,\beta)]_S - \Delta(r)(S_X^*\alpha,\beta) - \Delta(r)(\alpha,S_X^*\beta) = 0,

where

$$\Delta(r)(\alpha,\beta) = r_{\#}([\alpha,\beta]_T) - [r_{\#}(\alpha), r_{\#}(\beta)]_S.$$

Remark.

If $\Delta(r) = 0$ then the conditions of the theorem are satisfied. If ρ is injective then the conditions of the theorem reduce to $\Delta(r) = 0$.

Let (M, ∇) be an affine manifold. Then (TM, M, Id_{TM}, ∇) is an affine Lie algebroid.

Let (M, ∇) be an affine manifold. Then (TM, M, Id_{TM}, ∇) is an affine Lie algebroid. Let h be a symmetric bivector field on M.

Let (M, ∇) be an affine manifold. Then (TM, M, Id_{TM}, ∇) is an affine Lie algebroid. Let h be a symmetric bivector field on M. It defines a product \mathcal{D} and bracket on $(T^*M, M, h_\#)$ by

Let (M, ∇) be an affine manifold. Then (TM, M, Id_{TM}, ∇) is an affine Lie algebroid. Let h be a symmetric bivector field on M. It defines a product \mathcal{D} and bracket on $(T^*M, M, h_\#)$ by

Proposition.

 $(T^*M, M, h_\#, \mathcal{D})$ is an affine Lie algebroid and $(TM \oplus T^*M, M, \operatorname{Id}_{TM} \oplus h_\#, [\ ,\]_\phi, K_0, \langle\ ,\ \rangle_0)$ is a para-Kähler Lie algebroid iff

$$\nabla_{h_{\#}(\beta)}h(\alpha,\gamma) = \nabla_{h_{\#}(\alpha)}h(\beta,\gamma). \tag{2}$$

 $(T^*M, M, h_\#, \mathcal{D})$ is an affine Lie algebroid and $(TM \oplus T^*M, M, \operatorname{Id}_{TM} \oplus h_\#, [\ ,\]_\phi, K_0, \langle\ ,\ \rangle_0)$ is a para-Kähler Lie algebroid iff

$$\nabla_{h_{\#}(\beta)}h(\alpha,\gamma) = \nabla_{h_{\#}(\alpha)}h(\beta,\gamma). \tag{2}$$

Proposition.

If (M, ∇, g) is a pseudo-Hessian manifold then $h = g^{-1}$ satisfies (2).

 $(T^*M, M, h_\#, \mathcal{D})$ is an affine Lie algebroid and $(TM \oplus T^*M, M, \operatorname{Id}_{TM} \oplus h_\#, [\ ,\]_\phi, K_0, \langle\ ,\ \rangle_0)$ is a para-Kähler Lie algebroid iff

$$\nabla_{h_{\#}(\beta)}h(\alpha,\gamma) = \nabla_{h_{\#}(\alpha)}h(\beta,\gamma). \tag{2}$$

Proposition.

If (M, ∇, g) is a pseudo-Hessian manifold then $h = g^{-1}$ satisfies (2).

Definition.

A contravariant pseudo-Hessian structure on an affine manifold M is a symmetric bivector field h satisfying (2).

Let (M, ∇, h) be a contravariant pseudo-Hessian manifold. Then $\mathrm{Im} h_{\#}$ is integrable and defines a singular foliation on M such that for every leaf L we have:

- (i) For every vector fields X, Y tangent to L, $\nabla_X Y$ is tangent to L,
- (ii) L has a natural pseudo-Hessian structure.

The following theorem can be compared to Darboux-Weinstein near a regular point in Poisson geometry (see[?]).

Theorem.

Let (M, ∇, h) be a contravariant pseudo-Hessian structure and $x \in M$ such the rank of $h_{\#}$ is constant in a neighborhood of x. Then there exists a chart $(x_1, \ldots, x_r, y_1, \ldots, y_{n-r})$ and a function f(x, y) such that

$$h = \sum_{i=1}^{r} h_{ij} \partial_{x_i} \otimes \partial_{x_j}, \quad \nabla_{\partial_{x_i}} \partial_{x_j} = 0, \ i, j = 1, \dots, r,$$

and the matrix (h_{ij}) is invertible and its inverse is the matrix $\left(\frac{\partial^2 f}{\partial x_i \partial x_i}\right)$.

Canonical contravariant pseudo-Hessian structure on the dual of a commutative associative algebra

Let (A, .) be a finite dimensional commutative associative algebra. We define a symmetric bivector h on A^* by putting

$$h(\alpha,\beta)(\mu) = \prec \mu, \alpha(\mu).\beta(\mu) \succ, \quad \alpha,\beta \in \Omega^1(\mathcal{A}^*) = C^{\infty}(\mathcal{A}^*,\mathcal{A}), \mu \in \mathcal{A}^*.$$

We denote by ∇^0 the canonical affine connection of \mathcal{A}^* given by $\nabla^0_X Y(\mu) = d_\mu Y(X(\mu))$ where $X, Y : \mathcal{A}^* \longrightarrow \mathcal{A}^*$ are regarded as vector fields on \mathcal{A}^* . For any $u \in \mathcal{A}$, we denote by u^* the linear function on \mathcal{A}^* given by $u^*(\mu) = \prec \mu, u \succ$, by X_u the vector field on \mathcal{A}^* given by $X_u = h_\#(du^*)$ and by $L_u : \mathcal{A} \longrightarrow \mathcal{A}$ the left multiplication by u.

Let (A, .) be a finite dimensional commutative associative algebra. We define a symmetric bivector h on A^* by putting

$$h(\alpha,\beta)(\mu) = \prec \mu, \alpha(\mu).\beta(\mu) \succ, \quad \alpha,\beta \in \Omega^1(\mathcal{A}^*) = C^{\infty}(\mathcal{A}^*,\mathcal{A}), \mu \in \mathcal{A}^*.$$

We denote by ∇^0 the canonical affine connection of \mathcal{A}^* given by $\nabla^0_X Y(\mu) = d_\mu Y(X(\mu))$ where $X, Y : \mathcal{A}^* \longrightarrow \mathcal{A}^*$ are regarded as vector fields on \mathcal{A}^* . For any $u \in \mathcal{A}$, we denote by u^* the linear function on \mathcal{A}^* given by $u^*(\mu) = \langle \mu, u \rangle$, by X_u the vector field on \mathcal{A}^* given by $X_u = h_\#(du^*)$ and by $L_u : \mathcal{A} \longrightarrow \mathcal{A}$ the left multiplication by u.

Theorem.

 $(\mathcal{A}^*, \nabla^0, h)$ is a contravariant pseudo-Hessian manifold and the singular foliation associated to $\operatorname{Im} h_{\#}$ is given by the orbits of the linear action Φ of the abelian Lie group $(\mathcal{A}, +)$ on \mathcal{A}^* given by $\Phi(u, \mu) = \exp(L_u^*)(\mu)$. Let compute now all the mathematical objects above in the case where $M = \{\exp(L_a^*)(\mu), a \in \mathcal{A}\}$ is an orbit of the pseudo-Hessian foliation associated to the contravariant pseudo-Hessian manifold $(\mathcal{A}^*, \nabla^0, h)$ appearing in Theorem 25. Note that $T_{\nu}M = \{X_a(\nu), a \in \mathcal{A}\}$. As above, we denote by ∇ the affine connection on M, g the pseudo-Riemannian metric, D the Levi-Civita connection. The following proposition is a consequence of an easy and straightforward computation.

Proposition.

For any $a, b, c \in \mathcal{A}$ and any $\nu \in \mathcal{A}^*$,

$$g(X_a(\nu), X_b(\nu)) = \langle \nu, a.b \rangle,$$

 $\nabla_{X_a} X_b = X_{a.b}, D_{X_a} X_b = \frac{1}{2} X_{a.b}.$

Example $\mathcal{A} = \mathbb{R}^n$. The product is given by $e_i e_i = e_i$ for $i = 1, \ldots, n$. We have

$$\Phi\left(\sum_{i=1}^{n} a_i e_i, \sum_{i=1}^{n} x_i e_i^*\right) = \sum_{i=1}^{n} e^{a_i} x_i e_i^*.$$

Moreover, for any i = 1, ..., n, $X_{e_i} = x_i \partial_{x_i}$. The orbit of a point $x \in \mathcal{A}^*$ is $M_x = \{\sum_{i=1}^n e^{a_i} x_i e_i^*, a_i \in \mathbb{R}\}$. It is a convex cone and one can see easily that if $\phi: \mathcal{A}^* \longrightarrow \mathbb{R}$ is the function given by

$$\phi(u) = \sum_{i=1}^{n} u_i \ln |u_i|,$$

then the restriction of $\nabla d\phi$ to M_x together with the restriction of ∇ to M_x define the pseudo-Hessian structure on M_x .

Example

 $\mathcal{A} = \mathbb{C}$. We have

$$X_{e_1} = \alpha \partial_{\alpha} + \beta \partial_{\beta}$$
 and $X_{e_2} = \beta \partial_{\alpha} - \alpha \partial_{\beta}$.

We deduce that we have two orbits the origin and $\mathcal{A}^* \setminus \{0\}$. Let describe the pseudo-Hessian structure of $M := \mathcal{A}^* \setminus \{0\}$. The pseudo-Hessian metric g satisfies

$$g(X_{e_1}, X_{e_1}) = \alpha, \ g(X_{e_1}, X_{e_2}) = \beta, \ g(X_{e_2}, X_{e_2}) = -\alpha$$

and hence

$$g = \frac{1}{\alpha^2 + \beta^2} (\alpha d\alpha^2 + 2\beta d\alpha d\beta - \alpha d\beta^2).$$

Thus (M, ∇, g) is a Lorentzian Hessian manifold. Moreover, the metric g is flat.

Example

Now we look for a function f on M such that $g = \nabla df$, i.e.,

$$\frac{\partial^2 f}{\partial \alpha^2} = \frac{\alpha}{\alpha^2 + \beta^2}, \ \frac{\partial^2 f}{\partial \beta^2} = \frac{-\alpha}{\alpha^2 + \beta^2} \quad \text{and} \quad \frac{\partial^2 f}{\partial \alpha \partial \beta} = \frac{\beta}{\alpha^2 + \beta^2}$$

The function f given by

$$f(\alpha, \beta) = \frac{1}{2}\alpha \ln(\alpha^2 + \beta^2) + \beta \arctan\left(\frac{\alpha}{\beta}\right)$$

satisfies these equations on the open set $\{\beta \neq 0\}$. Note that this function is harmonic.

Example

We take $\mathcal{A} = \mathbb{R}^4$ with the commutative associative product given by

$$e_1e_1 = e_1, \ e_1e_2 = e_2, \ e_1e_3 = e_3, \ e_1e_4 = e_4, \ e_2e_2 = e_3, \ e_2e_3 = e_4.$$

We have

$$X_{e_1} = x\partial_x + y\partial_y + z\partial_z + t\partial_t, \ X_{e_2} = y\partial_x + z\partial_y + t\partial_z, \ X_{e_3} = z\partial_x + t\partial_y \quad \text{and} \quad X_{e_4} = t\partial_x.$$

Thus $\{t > 0\}$ and $\{t < 0\}$ are orbits and hence carry a pseudo-Hessian structure. The metric is given by

$$g = \frac{1}{t} \left(2 dx dt + 2 dy dz - \frac{2z}{t} dy dt - \frac{z}{t} dz^2 + \frac{2(z^2 - yt)}{t^2} dz dt + \frac{2zyt - xt^2 - z^3}{t^3} dt^2 \right).$$

The signature of this metric is (+, +, -, -). One can check easily that g is the restriction of $\nabla d\phi$ to M, where

$$\phi(x, y, z, t) = -\frac{z^3}{6t^2} + \frac{yz}{t} + x \ln|t|.$$