UC Projeto

 $3^{\rm o}$ ano Licenciatura em Ciências da Computação Construção de um ferramenta genérica de verificação SAT para propriedades de segurança e animação de sistemas de transição de $1^{\rm o}$ ordem (FOTS)

Alef Keuffer (A91683)

Alexandre Baldé (A70373) Bruno Machado (A91680)

Pedro Pereira (A88062)

Supervisor: Professor José Manuel Esgalhado Valença

19 de junho de 2022

Conteúdo

1	Introdução	3
	1.1 Estrutura do Relatório	3
	1.2 Problema em análise	3
	1.3 Resolução e Estratégias adotadas	3
	1.4 Agradecimentos	3
2	Estado de arte	4
3	Análise do trabalho	5
	3.1 "k-induction" e "Bounded Model-Checking"	6
	3.2 "Interpolant-Based Model-Checking	7
	3.3 "Property Directed Reachability"	8
4	Caso de Estudo	9
5	Conclusão	10
	5.1 Comentários	10
	5.2 Trabalho Futuro	10
\mathbf{A}	Excertos de Código Utilizado no Projeto	11
В	Repositório GitHub com código fonte e documentação	12

Lista de Figuras

Introdução

Este relatório contém a descrição do projeto realizado pelos autores para a UC de Projeto da Licenciatura em Ciências da Computação, para o ano letivo de 2021/2022.

1.1 Estrutura do Relatório

A estrutura do relatório é a seguinte:

- No capítulo 2 faz-se uma análise do trabalho já existente na área, e das referência usadas para o projeto.
- No capítulo 3 explicam-se alguns aspetos mais técnicos e concretos da implementação, assim como decisões tomadas e alternativas consideradas.
- No capítulo 4 apresenta-se um case de estudo com um FOTS que servirá para apresentação das funcionalidades desenvolvidas.
- No capítulo 5 termina-se o relatório com as conclusões e o trabalho futuro.
- Nos anexos A e B , encontra-se informação relativa ao código Python desenvolvido, assim como o repositório GitHub que o contém.

1.2 Problema em análise

Para implementar este projeto, utilizou-se a biblioteca \mathbf{PySMT}^1 .

1.3 Resolução e Estratégias adotadas

1.4 Agradecimentos

¹Documentação disponível em https://pysmt.readthedocs.io/en/latest/

Estado de arte

"k-induction" e "Bounded Model-Checking"

Explorar: [BCCZ99] [SSS00].

 $"Interpolant-Based\ Model-Checking"$

Explorar: [BLW21] [FR14] [BBW14].

"Property Directed Reachability"

Explorar: [BD19] [Bra11] [EMB11].

Análise do trabalho

3.1 "k-induction" e "Bounded Model-Checking"

 $3.2 \quad "Interpolant-Based \ Model-Checking$

3.3 "Property Directed Reachability"

Caso de Estudo

Conclusão

Conclui-se desta forma a apresentação do trabalho desenvolvido pelos autores para a UC Projeto no ano letivo 2021/2022.

5.1 Comentários

5.2 Trabalho Futuro

Apêndice A

Excertos de Código Utilizado no Projeto

Apêndice B

Repositório *GitHub* com código fonte e documentação

Link para código fonte: https://github.com/Alef-Keuffer/FOTS-Prover.
Link para documentação: https://alef-keuffer.github.io/FOTS-Prover.docs/backend.html.

Bibliografia

- [BBW14] Johannes Birgmeier, Aaron R. Bradley, and Georg Weissenbacher. Counterexample to induction-guided abstraction-refinement (ctigar). In Armin Biere and Roderick Bloem, editors, *Computer Aided Verification*, pages 831–848, Cham, 2014. Springer International Publishing.
- [BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model checking without bdds. In W. Rance Cleaveland, editor, *Tools and Algorithms for the Construction and Analysis of Systems*, pages 193–207, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.
- [BD19] Dirk Beyer and Matthias Dangl. Software verification with pdr: Implementation and empirical evaluation of the state of the art. 2019.
- [BLW21] Dirk Beyer, Nian-Ze Lee, and Philipp Wendler. Interpolation and sat-based model checking revisited: Adoption to software verification. 2021.
- [Bra11] Aaron R. Bradley. Sat-based model checking without unrolling. In Ranjit Jhala and David Schmidt, editors, *Verification, Model Checking, and Abstract Interpretation*, pages 70–87, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
- [EMB11] Niklas Een, Alan Mishchenko, and Robert Brayton. Efficient implementation of property directed reachability. In *Proceedings of the International Conference on Formal Methods in Computer-Aided Design*, FMCAD '11, page 125–134, Austin, Texas, 2011. FMCAD Inc.
- [FR14] Simone Fulvio Rollini. Craig Interpolation and Proof Manipulation Theory and Applications to Model Checking. PhD thesis, 2014.
- [SSS00] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety properties using induction and a sat-solver. In Warren A. Hunt and Steven D. Johnson, editors, Formal Methods in Computer-Aided Design, pages 127–144, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.