1)Теорема Бернштейна-Кантора

Теорема Бернштейна-Кантора

Биекция между множествами A и B существует тогда и только тогда, когда существуют инъекции из A в B и из B в A.

- Доказательство:
 - необходимость очевидна, так как биекция частный случай инъекции
 - достаточность на следующем слайде
- Пример: отрезок [0,1] и интервал (0,1) равномощны
 - ullet выберем lpha,eta так, что 0<lpha<eta<1
 - ullet линейная функция f(x)=eta x+lpha(1-x) биекция [0,1] на $[lpha,eta]\subseteq (0,1)$ и (0,1) на $(\alpha,\beta) \subseteq [0,1]$
 - биекцию между [0,1] и (0,1) построить немного сложнее; в частности, она не может быть непрерывной функцией (почему?) ◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 釣९@

Доказательство теоремы Бернштейна-Кантора

Пусть f:A o B и g:B o A — инъекции; обозначим $A_1=g(B)$, $A_2=g(f(A))$:

$$g$$
 — биекция B на A_1 $\phi = f \circ g$ — биекция A на A_2

Так как B равномощно A_1 , достаточно построить биекцию A на A_1

- ullet Положим $C_0=A_1ackslash A_2$, $C_n=\phi(C_{n-1})$ для всех $n\in\mathbb{N}$, $C=igcup_{n=0}^\infty C_i$
- ullet Определим функцию $\psi:A o A$ условием $\psi(a)=egin{cases} a,&a\in C\ \phi(a),&a
 otin C \end{cases}$
- ullet $\psi(A)\subseteq A_1$ по определениям A_2 , ϕ и C; докажем, что ψ биекция A на A_1
- ullet достаточно доказать, что любой элемент A_1 имеет единственный ψ -прообраз
 - ullet пусть $c\in C$; тогда c единственный ψ -прообраз c, принадлежащий C
 - если $a \notin C \psi$ -прообраз $c \Rightarrow a = \phi^{-1}(c) \Rightarrow c \in C_i$, $i \geqslant 1$ $\Rightarrow a \in C_{i-1} \subseteq C \Rightarrow$ противоречие $\Rightarrow c -$ единственный ψ -прообраз c
 - пусть $c \in A_1 \setminus C$; тогда у c нет ψ -прообразов в C
 - $c \in A_2$, т.е. имеет ψ -прообраз $\phi^{-1}(c)$ (единственный ввиду инъективности ϕ)

Вторая лемма о частных решениях

Пусть характеристический многочлен $\chi(x)$ рекуррентного соотношения $f(n)=a_1f(n-1)+\cdots+a_kf(n-k)$ имеет корень λ кратности не менее m+1. Тогда функция $f(n) = n^m \lambda^n$ является решением данного соотношения.

Доказательство:

- При m=0 доказано ранее (лемма о частных решениях); далее m>0
 - \star λ является корнем первых m производных многочлена $\chi(x)$
 - \star умножение многочлена на x не меняет кратности его ненулевых корней
 - \star если многочлены $p_1(x)$ и $p_2(x)$ имеют общий корень λ кратности m_1 и m_2 соответственно, то у $p_1(n) \pm p_2(n)$ есть корень λ кратности min $\{m_1, m_2\}$
- $\Rightarrow \lambda$ является корнем многочленов

 - $2x^{n+1} a_1x^n \ldots a_kx^{n-k+1}$ $3(n+1)x^n a_1nx^{n-1} \ldots a_k(n-k+1)x^{n-k}$ (производная многочлена 2) $4nx^n a_1(n-1)x^{n-1} \ldots a_k(n-k)x^{n-k}$ (вычли 1 из 3)

 - \star λ обращает многочлен 4 в ноль $\Rightarrow n\lambda^n$ решение нашего соотношения
 - \star умножим многочлен 4 на x, возьмем производную и вычтем многочлен 4: $n^2 x^n - a_1(n-1)^2 x^{n-1} - \ldots - a_k(n-k)^2 x^{n-k}$
 - $\Rightarrow n^2 \lambda^n$ решение нашего соотношения
 - ullet Повторяя m раз, получаем решения $n\lambda^n, n^2\lambda^n, \dots, n^m\lambda^n$
- 3)Переход к системе линейных уравнений и возведению матрицы в степень

Переход к системе линейных уравнений

Для компактности записи, пусть $f_n = f(n)$; запишем систему линейных уравнений

$$\begin{cases}
f_n &= a_1 f_{n-1} + \ldots + a_k f_{n-k} \\
f_{n-1} &= f_{n-1} \\
\vdots &\vdots &\vdots \\
f_{n-k+1} &= f_{n-k+1}
\end{cases}$$

в матричном виде:

$$\begin{bmatrix} f_n \\ f_{n-1} \\ f_{n-2} \\ \vdots \\ f_{n-k+1} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \dots & a_{k-1} & a_k \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix} \begin{bmatrix} f_{n-1} \\ f_{n-2} \\ f_{n-3} \\ \vdots \\ f_{n-k} \end{bmatrix}$$

- ullet Пусть $ec{f_n} = (f_{n+k-1}, \ldots, f_n)^\perp$, A матрица системы
- \Rightarrow $\vec{f_n} = A\vec{f_{n-1}}$ для любого $n \geqslant 1$
- \Rightarrow $\vec{f_n} = A \vec{f_{n-1}}$ для любого $n \geqslant 1$ \Rightarrow $\vec{f_n} = A^n \vec{f_0}$ $(\vec{f_0}$ вектор начальных значений функции f)
- 🛨 Задача: найти выражение для последней компоненты вектора, являющегося произведением степени известной матрицы на известный вектор
 - ullet степени матрицы A вычисляются через жорданову матрицу $J=TAT^{-1}$

4)Лемма о степени жордановой клетки

Лемма о степени жордановой клетки

Пусть J — жорданова клетка размера t с числом λ . Тогда $J^n[i,j]=\binom{n}{j-i}\lambda^{n+i-j}$. (Полагаем $\binom{n}{x}=0$ при x<0 и x>n.)

$$\star$$
 Лемма утверждает, что $J^n = egin{bmatrix} \lambda^n & n\lambda^{n-1} & \binom{n}{2}\lambda^{n-2} & \dots & \binom{n}{t-1}\lambda^{n-t+1} \\ 0 & \lambda^n & n\lambda^{n-1} & \dots & \binom{n}{t-2}\lambda^{n-t+2} \\ 0 & 0 & \lambda^n & \dots & \binom{n}{t-3}\lambda^{n-t+3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \lambda^n \end{bmatrix}$

Доказательство по индукции: база (n=1) очевидна; шаг индукции:

$$J^{n+1}[i,j] = \sum_{k=1}^{t} J^{n}[i,k] \cdot J[k,j] = J^{n}[i,j-1] + J^{n}[i,j] \cdot \lambda = \binom{n}{j-1-i} \lambda^{n+i-j+1} + \binom{n}{j-i} \lambda^{n+i-j+1} = \binom{n+1}{j-i} \lambda^{n+1+i-j} \quad \Box$$

Следствие: Для жордановой матрицы выполняется
$$J^n = \begin{bmatrix} J_1^n & 0 \\ J_2^n \\ & \ddots \\ & & J_r^n \end{bmatrix}$$

5)Лемма о характеристических многочленах

Лемма о характеристических многочленах

$$|\lambda E - A| = \chi(\lambda)$$

Доказательство: разложим определитель по первой строке (красный множитель — знак слагаемого, синий — определитель подматрицы в столбцах $1, \ldots, i-1$)

$$|\lambda E - A| = \begin{vmatrix} \lambda - a_1 & -a_2 & \dots & -a_{k-1} & -a_k \\ -1 & \lambda & \dots & 0 & 0 \\ 0 & -1 & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & -1 & \lambda \end{vmatrix} = (\lambda - a_1)\lambda^{k-1} + \sum_{i=2}^{k} (-1)^{i+1} (-a_i)(-1)^{i-1} \lambda^{k-i} = \lambda^k - a_1 \lambda^{k-1} - \dots - a_{k-1} \lambda - a_k \quad \Box$$

6)Теорема в общем случае

Теорема об общем решении (для произвольных корней)

Пусть характеристический многочлен рекуррентного соотношения $f(n)=a_1f(n-1)+\cdots+a_kf(n-k)$ имеет s различных корней $\lambda_1,\ldots,\lambda_s\in\mathbb{C}$ с кратностями m_1,\ldots,m_s соответственно, $m_1+\cdots+m_s=k$. Тогда общее решение этого соотношения над $\mathbb C$ имеет вид

$$f(n) = (C_1 + \ldots + C_{m_1} n^{m_1-1}) \lambda_1^n + \ldots + (C_{m_1+\ldots+m_{s-1}+1} + \ldots + C_k n^{m_s-1}) \lambda_s^n,$$

где константы C_1, \ldots, C_k пробегают множество \mathbb{C} .

Собираем все вместе

- $\star A^n = T^{-1}J^nT$, J жорданова
 - ⋆ теорема Жордана
- * На диагонали матрицы J стоят корни $\chi(x)$ числа $\lambda_1(m_1$ раз), . . . , $\lambda_s(m_s$ раз) * лемма о характеристических многочленах + подобие A и J
- \star Размер жордановой клетки в J с числом λ_i не превосходит m_i $(i=1,\ldots,s)$
- \star Ненулевые элементы J^n являются произведениями полиномов на экспоненты:
 - \star по лемме о степенях жордановой матрицы, $\binom{n}{j-i}\lambda^{n+i-j}=rac{\lambda^{i-j}}{(j-i)!}n(n-1)\cdots(n+i-j+1)\lambda^n=p(n)\lambda^n$
- \star Матрицы T и T^{-1} , как и вектор $ec{f_0}$, не зависят от n
- \Rightarrow Элементы матрицы $T^{-1}J^nT=A^n$ и вектора $\vec{f_n}=A^n\vec{f_0}$ линейные комбинации произведений вида $p(n)\lambda^n$

Пример \Longrightarrow

Собираем все вместе (2)

Пример: пусть
$$J = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu \end{bmatrix}$$
, $T[i,j] = t_{ij}$, $T^{-1}[i,j] = \tau_{ij}$; тогда
$$J^n = \begin{bmatrix} \lambda^n & \frac{n}{\lambda} \lambda^n & 0 \\ 0 & \lambda^n & 0 \\ 0 & 0 & \mu^n \end{bmatrix}$$
, $J^n T = \begin{bmatrix} (t_{11} + \frac{t_{21}}{\lambda} n) \lambda^n & (t_{12} + \frac{t_{22}}{\lambda} n) \lambda^n & (t_{13} + \frac{t_{23}}{\lambda} n) \lambda^n \\ t_{21} \lambda^n & t_{22} \lambda^n & t_{23} \lambda^n \\ t_{31} \mu^n & t_{32} \mu^n & t_{33} \mu^n \end{bmatrix}$, $T^{-1}J^n T = \begin{bmatrix} (\tau_{11}t_{11} + \tau_{12}t_{21} + \frac{\tau_{11}t_{21}}{\lambda} n) \lambda^n + \tau_{13}t_{31}\mu^n & (\dots) & (\dots) \\ (\tau_{21}t_{21} + \tau_{22}t_{21} + \frac{\tau_{21}t_{21}}{\lambda} n) \lambda^n + \tau_{23}t_{32}\mu^n & (\dots) & (\dots) \\ (\tau_{31}t_{21} + \tau_{32}t_{21} + \frac{\tau_{31}t_{21}}{\lambda} n) \lambda^n + \tau_{33}t_{33}\mu^n & (\dots) & (\dots) \end{bmatrix}$

⋆ Любая функция, удовлетворяющая соотношению $f(n)=a_1f(n-1)+\cdots+a_kf(n-k)$, имеет вид $f(n)=p_1(n)\lambda_1^n+\cdots+p_s(n)\lambda_s^n$, где $p_i(n)$ — многочлен степени не выше $m_i-1,\ i=1,\ldots,s$

 $\Rightarrow f(n)$ является линейной комбинацией специальных решений $\lambda_1^n, \ldots, n^{m_1-1}\lambda_1^n, \ldots, \lambda_s^n, \ldots, n^{m_s-1}\lambda_s^n,$

что и требовалось доказать

7) Асимптотика n-го простого числа

Учимся считать: *n*-е простое число

Пусть $\pi(n)$ — количество простых чисел, не превосходящих n

- \bigstar Одна из важнейших комбинаторных теорем утверждает, что $\pi(n)\sim \frac{n}{\ln n}$ ★ более точно, $\pi(n) = \frac{n}{\ln n} + O(\frac{n}{\ln^2 n})$
 - Задача: найти асимптотическую формулу для *п*-го простого числа
 - ullet Решение: пусть p=p(n)-n-е простое число, тогда $\pi(p)=n$

$$\Rightarrow n = \frac{p}{\ln p} + O(\frac{p}{\ln^2 p})$$

 $\Rightarrow n = rac{p}{\ln p} + O(rac{p}{\ln^2 p})$ $_\star$ надо решить это «уравнение» относительно p

•
$$O(\frac{p}{\ln^2 n}) = o(\frac{p}{\ln n}) \Rightarrow \frac{p}{\ln n} = O(n)$$

•
$$O\left(\frac{p}{\ln^2 p}\right) = O\left(\frac{p}{\ln p}\right) \Rightarrow \frac{p}{\ln p} = O(n)$$

 $\Rightarrow O\left(\frac{p}{\ln^2 p}\right) = O\left(\frac{n}{\ln p}\right) = O\left(\frac{n}{\ln n}\right) \text{ (т.к. } p > n\text{)}$

$$\Rightarrow \frac{p}{\ln p} = n + O\left(\frac{n}{\ln n}\right) = n\left(1 + O\left(\frac{1}{\ln n}\right)\right) \Rightarrow p = n \ln p\left(1 + O\left(\frac{1}{\ln n}\right)\right)$$

 \star надо избавиться от $\ln p$ справа; логарифмируем обе части

- $\ln p = \ln n + \ln \ln p + O(\frac{1}{\ln n})$
- $\Rightarrow p < n^2$ для больших $n \Rightarrow \ln p < 2 \ln n \Rightarrow \ln \ln p < \ln \ln n + O(1)$
- \Rightarrow ln $p = \ln n + \ln \ln n + O(1)$

$$\Rightarrow p = n(\ln n + \ln \ln n + O(1))(1 + O(\frac{1}{\ln n})) = n \ln n + n \ln \ln n + O(n)$$

! Начав с более точной формулы $\pi(n)=rac{n}{\ln n}+rac{n}{\ln^2 n}+O\left(rac{n}{\ln^3 n}
ight)$, выведите более точное приближение для р

Учимся считать: уточнение формулы Стирлинга

Мы знаем формулу Стирлинга в виде $n! \sim \sqrt{2\pi n} \left(\frac{n}{e} \right)^n$

• Более точные варианты:

$$\star n! = \left(1 + O\left(\frac{1}{n}\right)\right) \sqrt{2\pi n} \left(\frac{n}{e}\right)^{n}$$

$$\star n! = \left(1 + \frac{a}{n} + O(n^{-2})\right) \sqrt{2\pi n} \left(\frac{n}{e}\right)^{n}$$

$$\star n! = \left(1 + \frac{a}{n} + \frac{b}{n^{2}} + O(n^{-3})\right) \sqrt{2\pi n} \left(\frac{n}{e}\right)^{n}$$

$$\cdots$$
(1)

- Задача: уточнить формулу Стирлинга, найдя константу а
- Метод: шевеление (малое возмущение) формулы (1)
 - n! = n(n-1)!

•
$$(n-1)! = (1 + \frac{a}{n-1} + \frac{b}{(n-1)^2} + O((n-1)^{-3}))\sqrt{2\pi(n-1)}(\frac{n-1}{e})^{n-1}$$

$$\bullet \ \, (n-1)! = \left(1+\frac{a}{n-1}+\frac{b}{(n-1)^2}+O((n-1)^{-3})\right)\sqrt{2\pi(n-1)}\left(\frac{n-1}{e}\right)^{n-1}$$

$$\star \ \, \text{заметим, что} \ \, \frac{n-1}{n} = 1-n^{-1}; \ \, \frac{n}{n-1} = (1-n^{-1})^{-1} = 1+\frac{1}{n}+\frac{1}{n^2}+\cdots \ \, \Rightarrow$$

$$\bullet \ \, \frac{a}{n-1} = \frac{a}{n}\cdot\frac{n}{n-1} = \frac{a}{n}+\frac{a}{n^2}+O(n^{-3})$$

$$\bullet \ \, \frac{b}{(n-1)^2} = \frac{b}{n^2}+O(n^{-3})$$

$$\frac{a}{n-1} = \frac{a}{n} \cdot \frac{n}{n-1} = \frac{a}{n} + \frac{a}{n^2} + O(n^{-3})$$

$$\frac{b}{(n-1)^2} = \frac{b}{n^2} + O(n^{-3})$$

•
$$O((n-1)^{-3}) = O(n^{-3})$$

•
$$O((n-1)^{-3}) = O(n^{-3})$$

• $\sqrt{2\pi(n-1)} = \sqrt{2\pi n}(1-n^{-1})^{1/2} = \sqrt{2\pi n}(1-\frac{1}{2n}-\frac{1}{8n^2}+O(n^{-3}))$

$$ullet$$
 формула Тейлора $(1+x)^lpha=1+lpha x+rac{lpha(lpha-1)}{2}x^2+O(x^3)$ при $x=-rac{1}{n}$, $lpha=rac{1}{2}$

Имеем

•
$$(n-1)! = (1 + \frac{a}{n} + \frac{a+b}{n^2} + O(n^{-3}))(1 - \frac{1}{2n} - \frac{1}{8n^2} + O(n^{-3}))\sqrt{2\pi n}(\frac{n-1}{e})^{n-1}$$

Уточнение формулы Стирлинга (2)

$$(n-1)! = \left(1 + \frac{a}{n} + \frac{a+b}{n^2} + O(n^{-3})\right) \left(1 - \frac{1}{2n} - \frac{1}{8n^2} + O(n^{-3})\right) \sqrt{2\pi n} \left(\frac{n-1}{e}\right)^{n-1}$$

• Оценим $(n-1)^{n-1}$:

•
$$(n-1)^{n-1} = n^{n-1}(1-n^{-1})^{n-1} = n^{n-1}(1-n^{-1})^n(1+n^{-1}+n^{-2}+O(n^{-3}))$$

•
$$(1-n^{-1})^n=e^{n\cdot\ln(1-n^{-1})}=$$
 [Тейлор]
$$=e^{n\left(-\frac{1}{n}-\frac{1}{2n^2}-\frac{1}{3n^3}+O\left(\frac{1}{n^4}\right)\right)}=e^{-1-\frac{1}{2n}-\frac{1}{3n^2}+O\left(\frac{1}{n^3}\right)}=$$
 [Тейлор]
$$=e^{-1}\left(1-\frac{1}{2n}+\frac{1}{8n^2}+O(n^{-3})\right)\left(1-\frac{1}{3n^2}+O(n^{-3})\right)\left(1+O(n^{-3})\right)$$

$$=e^{-1}\left(1-\frac{1}{2n}-\frac{5}{24n^2}+O(n^{-3})\right)$$

• Перемножим все скобки вида 1 + o(1):

$$\left(1 + \frac{a}{n} + \frac{a+b}{n^2} + O(n^{-3})\right) \left(1 - \frac{1}{2n} - \frac{1}{8n^2} + O(n^{-3})\right) \left(1 + \frac{1}{n} + \frac{1}{n^2} + O(n^{-3})\right) \cdot \left(1 - \frac{1}{2n} - \frac{5}{24n^2} + O(n^{-3})\right) = \left(1 + \frac{a}{n} + \frac{a+b-1/12}{n^2} + O(n^{-3})\right)$$

В итоге,

•
$$n! = n(n-1)! = n\left(1 + \frac{a}{n} + \frac{a+b-1/12}{n^2} + O(n^{-3})\right)\sqrt{2\pi n}\left(\frac{n}{e}\right)^{n-1} \cdot \frac{1}{e} =$$

= $\left(1 + \frac{a}{n} + \frac{a+b-1/12}{n^2} + O(n^{-3})\right)\sqrt{2\pi n}\left(\frac{n}{e}\right)^n$ (2)

• Коэффициенты (2) равны коэффициентам исходной формулы Стирлинга (1)

$$\Rightarrow a+b-\frac{1}{12}=b \Rightarrow a=\frac{1}{12}$$

 \bigstar выражение $\left(1+\frac{1}{12n}\right)\sqrt{2\pi n}\left(\frac{n}{e}\right)^n$ дает очень хорошее приближение для n!

9) Теорема Оре

Теорема Оре

Пусть G — обыкновенный граф с n вершинами, n > 2. Если $\deg(u) + \deg(v) \geqslant n$ для любых двух несмежных вершин u и v графа G, то граф G гамильтонов.

Доказательство: от противного

- пусть существует граф G, удовлетворяющий всем условиям теоремы и не являющийся гамильтоновым
- \star если возможно, добавим к G новое ребро так, чтобы граф остался негамильтоновым
- * новый граф тоже удовлетворяет всем условиям теоремы
- будем повторять данную процедуру, пока это возможно
- в какой-то момент получим граф G', который удовлетворяет всем условиям теоремы и является максимальным негамильтоновым
 - превращается в гамильтонов при добавлении любого ребра
 - ullet существование такого G' следует из того, что полный граф гамильтонов
- ullet получим противоречие, построив гамильтонов цикл в $G'\Longrightarrow$

Доказательство теоремы Оре (окончание)

- ullet Пусть u и v произвольные несмежные вершины графа G'
- * В G' нет гамильтонова цикла, но при добавлении ребра (u, v) появится \Rightarrow в G' есть гамильтонов (u, v)-путь:

$$u = v_1 \underbrace{\bullet}_{v_2} \cdots \underbrace{\bullet}_{v_{n-1}} v_n = v$$

- Пусть $S = \{i \mid u \text{ смежна с } v_{i+1}\}$ и $T = \{i \mid v \text{ смежна c } v_i\}$
 - $\star |S| = \deg(u), |T| = \deg(v)$
 - $\Rightarrow |S| + |T| \geqslant n$ по условию теоремы
 - ullet элементы множеств S и T являются числами 1 до $n{-}1$
 - $\Rightarrow S \cap T \neq \emptyset$
 - пусть $i \in S \cap T \Rightarrow$ в G' есть ребра (u, v_{i+1}) и (v_i, v) :

- \Rightarrow В графе G' есть гамильтонов цикл
 - $u \rightarrow v_2 \rightarrow \cdots \rightarrow v_i \rightarrow v \rightarrow v_{n-1} \rightarrow \cdots \rightarrow v_{i+1} \rightarrow u$
 - Требуемое противоречие получено

10) Теорема Клини

Теорема Клини

Язык регулярен тогда и только тогда, когда он распознается некоторым конечным автоматом.

Регулярные языки распознаются автоматами

Докажем, что любой регулярный язык распознается конечным автоматом

⋆ теорема Рабина-Скотта дает использовать ДКА и НКА вперемешку

План:

- ① построить автоматы, распознающие языки $\varnothing, \{\lambda\}, \{a\}$! постройте самостоятельно
- $m{Q}$ по ДКА $m{\mathcal{A}_1} = (Q_1, \Sigma, \delta_1, s_1, T_1)$ и $m{\mathcal{A}_2} = (Q_2, \Sigma, \delta_2, s_2, T_2)$ построить автоматы, распознающие языки
 - $L(A_1) \cup L(A_2)$
 - $L(A_1) \cdot L(A_2)$
 - $(\hat{L}(A_1))^*$

$$\mathcal{A}_{\cup} = (Q_1 \cup Q_2, \Sigma, \delta_1 \cup \delta_2, \{s_1, s_2\}, T_1 \cup T_2)$$

$$L(\mathcal{A}_{\cup}) = L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$$

Регулярные языки распознаются автоматами (2)

$$\mathcal{A}_{\cdot} = (Q_1 \cup Q_2, \Sigma, \delta, \{s_1\}, T_2)$$
 при $\lambda \notin L_2$, $\mathcal{A}_{\cdot} = (Q_1 \cup Q_2, \Sigma, \delta, \{s_1\}, T_1 \cup T_2)$ при $\lambda \in L_2$, где $\delta = \delta_1 \cup \delta_2 \cup \{(t, a, q) \mid t \in T_1, q \in Q_2, (s_2, a, q) \in \delta_2\}$ $L(\mathcal{A}_{\cdot}) = L(\mathcal{A}_1) \cdot L(\mathcal{A}_2)$

$$egin{aligned} \mathcal{A}_* &= (Q_1 \cup \{s'\}, \Sigma, \delta', \{s_1, s'\}, T \cup \{s'\}), \text{ где} \ \delta' &= \delta_1 \cup \{(t, a, q) \mid t \in T, q \in Q_1, (s_1, a, q) \in \delta\} \ \star \ s' \ \text{нужно только для распознавания } \lambda \ \mathcal{L}(\mathcal{A}_*) &= (\mathcal{L}(\mathcal{A}_1))^* \end{aligned}$$

Регулярность автоматных языков

- Пусть $\mathcal{A}=(Q,\Sigma,\delta,s,T)$ автомат; докажем, что $L(\mathcal{A})\in \mathbf{R}$ индукцией по $|\delta|$ База индукции: $|\delta|=0$ $L(\mathcal{A})=\{\lambda\}\in \mathbf{R}$ при $s\in T$ и $L(\mathcal{A})=\varnothing\in \mathbf{R}$ при $s\notin T$
 - Шаг индукции: $|\delta| = k$
 - по предположению индукции, языки, распознаваемые автоматами с менее чем k переходами (ребрами), регулярны
 - ullet возьмем произвольный переход $(q,a,r)\in \delta$, пусть $\delta'=\delta\setminus\{(q,a,r)\}$; положим
 - $A_0 = (Q, \Sigma, \delta', s, T)$
 - $\mathcal{A}_1 = (Q, \Sigma, \delta', s, \{q\})$
 - $\mathcal{A}_2 = (Q, \Sigma, \delta', r, \{q\})$
 - $\mathcal{A}_3 = (Q, \Sigma, \delta', r, T)$
 - \star языки $L(\mathcal{A}_0), L(\mathcal{A}_1), L(\mathcal{A}_2), L(\mathcal{A}_3)$ регулярны по предположению индукции
- ullet Докажем, что $L(\mathcal{A}) = L(\mathcal{A}_0) \cup L(\mathcal{A}_1) a \big(L(\mathcal{A}_2)a\big)^* L(\mathcal{A}_3)$
 - ullet пусть $w\in L(\mathcal{A})$ помечает (s,t)-маршрут W в \mathcal{A} , $t\in T$
 - \star если $(q, a, r) \notin W$, то $w \in L(A_0)$
 - \star если $(q, a, r) \in W$, то $w = w_0 a w_1 \dots a w_n$, где a отмечают все случаи использования перехода (q, a, r):

- $\Rightarrow w_0 \in L(A_1), w_1, \ldots, w_{n-1} \in L(A_2), w_n \in L(A_3) \Rightarrow w \in L(A_1)a(L(A_2)a)^*L(A_3)$
- $\Rightarrow w \in L(A_0) \cup L(A_1)a(L(A_2)a)^*L(A_3)$
 - $L(\mathcal{A}_0) \subseteq L(\mathcal{A})$ очевидно
 - $w \in L(A_1)a(L(A_2)a)^*L(A_3) \Rightarrow w = w_0aw_1\dots aw_n$ как на рисунке $\Rightarrow w \in L(A)$
- 11)Теорема о полноте

Теорема о полноте

Теорема о полноте метода резолюций

КНФ $F = C_1 \wedge \cdots \wedge C_k$ является противоречием \Leftrightarrow существует доказательство методом резолюций с условиями C_1, \ldots, C_k и заключением \square .

Доказательство достаточности:

- рассмотрим доказательство методом резолюций с заключением 🗆
- каждая формула является либо условием, либо получено по правилу резолюций из каких-то предыдущих формул
 - а значит, является следствием конъюнкции этих формул согласно лемме
- отношение «быть следствием» транзитивно
- любая формула вида $C_{i_1} \wedge \cdots \wedge C_{i_i}$ является следствием F
- \Rightarrow любая формула в доказательстве является следствием F
- \star пустой клоз является следствием формулы $x \wedge ar{x}$, а значит, задает константу 0
- \Rightarrow 0 следствие $F \Rightarrow F$ противоречие

Комментарий:

- * мы доказали корректность метода: если существует доказательство, содержащее пустой клоз, то заданная КНФ действительно является противоречием
- \star обратная импликация доказывает полноту метода: если КНФ противоречие, то это можно доказать методом резолюций

Доказательство необходимости

- Проведем индукцию по числу n переменных в F
- ullet База индукции: n=1
 - F противоречие \Rightarrow F содержит клозы x и \bar{x}
 - \Rightarrow по правилу резолюций из x и \bar{x} выводится пустой клоз
- Шаг индукции:
 - пусть $F = F(x_1, ..., x_n), S = \{C_1, ..., C_k\}$
 - ullet считаем, что клоз не может содержать одновременно x_i и $ar{x}_i$
 - ullet если такой клоз есть, он задает константу 1 и может быть удален из F
 - построим два множества клозов, S^+ и S^- :

 - $S^- = \{C \in S \mid \mathsf{B} \mid C \mathsf{Het} \mathsf{переменной} \mid X_n\} \cup \{C \mid (C \lor \bar{X}_n) \in S\}$
 - \star докажем, что КНФ $F^+ = \bigwedge_{C \in S^+} C$ является противоречием:
 - ullet пусть существует набор значений b_1,\dots,b_{n-1} такой, что $F^+_{|b_1,\dots,b_{n-1}}=1$
 - рассмотрим значения всех клозов из множества S на наборе $b_1, \ldots, b_{n-1}, 0$:
 - ullet если клоз C не содержит переменную x_n , то $C_{|b_1,\dots,b_{n-1},\mathbf{0}}=C_{|b_1,\dots,b_{n-1}}=\mathbf{1}$
 - ullet если клоз имеет вид $C \lor x_n$, то $(C \lor x_n)_{|b_1,\dots,b_{n-1},\mathbf{0}} = C_{|b_1,\dots,b_{n-1}} = 1$
 - ullet клоз вида $C ee ar{x_n}$ превращается в $oldsymbol{1}$ за счет значения $b_n = oldsymbol{0}$
 - $\Rightarrow F_{|b_1,...,b_{n-1},0} = 1$, что невозможно, так как F противоречие
 - \star аналогично, $F^- = \bigwedge_{C \in S^-} C$ является противоречием
 - ullet к гипотетическому набору, выполняющему F^- , надо добавить $b_n=1$
 - \star по предположению индукции, из каждого из множеств S^+ , S^- можно вывести пустой клоз

Шаг индукции — окончание

- ullet Рассмотрим вывод пустого клоза из множества S^+
 - ullet если в выводе участвовали только клозы из S, то из S выводим пустой клоз
 - ullet пусть в выводе участвовал хотя бы один клоз $C \in S^+ \setminus S$; тогда $(C \lor x_n) \in S$

- \Rightarrow построим вывод из S, заменив в выводе из S^+ каждый клоз из $S^+ \setminus S$ на соответствующий клоз из S
- \Rightarrow во всех следствиях из таких клозов добавится литерал x_n
- \Rightarrow из S выводится клоз x_n
- \star аналогично, из вывода пустого клоза из S^- получим вывод клоза \bar{x}_n из S
 - \Rightarrow из клозов x_n и \bar{x}_n получим пустой клоз

Комментарий:

- * искать доказательства методом резолюций может компьютер
 - существуют различные стратегии оптимизации поиска вывода
- на более общем варианте метода резолюций (для формул логики первого порядка) основан язык Пролог

12)Решение 2-SAT

- ullet SAT: дана КНФ $F=igwedge_{i=1}^\ell C_i$, определить, выполнима ли она
 - ullet если F выполнима, обычно нужно предъявить пример т.е. булев вектор $ec{b}$ такой, что $F_{ec{b}}=1$
 - ullet если F противоречие, иногда нужно предъявить доказательство
- КНФ, в которой каждый клоз состоит из двух литералов, называется 2-КНФ
- ⋆ Задача SAT с 2-КНФ называется 2-выполнимость (2-SAT)

Теорема

Задача 2-SAT может быть решена за время $O(\ell)$, где ℓ — число клозов в формуле.

- Доказательство:
 - построим по формуле F граф G(F), в нем 2ℓ ребер
 - найдем компоненты сильной связности и отсортируем их топологически
 - * например, и алгоритм Косараю, и алгоритм Тарьяна ищут компоненты за линейное от числа ребер время и выдают их в топологически отсортированном виде
 - ullet если $\mathsf{comp}(x) = \mathsf{comp}(\bar{x})$ для какой-нибудь вершины x, возвращаем 0
 - иначе выполняем булеву раскраску G(F) и возвращаем полученные значения
 - все шаги требуют времени $O(\ell)$

