МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механники

Кафедра: алгебры, геометрии и дискретной математики

Направление подготовки: «Программная инженерия» Профиль подготовки: «Разработка программно-информационных систем»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

на тему:

«Алгоритмы для нахождения Эрмитовой нормальной формы и ближайшего вектора решетки»

Выполнил(а):	студент(ка)	группы
	Д.В.	Огнев
	Подпись	
Научный руко	водитель:	
Доцент, к	андидат	физико-
математических	к наук	
	С.И.	Весёлов
	Подпись	

Аннотация (ДОПИСАТЬ)

Тема выпускной квалификационной работы бакалавра — «Алгоритмы для нахождения Эрмитовой нормальной формы и ближайшего вектора решетки».

Ключевые слова: решетки, Эрмитова нормальная форма, проблема ближайшего вектора.

Данная работа посвящена изучению задач теории решеток и методов их решения. В работе изложены основные понятия, связанные с решетками, и разбор алгоритмов для нахождения Эрмитовой нормальной формы и ближайшего вектора решетки.

Целью работы является программная реализация алгоритмов для решения задач. Объем работы - ...

Содержание

1.	Список условных обозначений и сокращений (ТООО)	4
2.	Введение (ТООО)	5
3.	Основные определения (TODO)	6
4.	Постановка задачи (TODO)	7
5.	Обзор литературных источников (TODO)	8
6.	Обзор инструментов (ТООО)	9
	6.1. Обзор библиотеки Eigen	9
	6.2. Обзор библиотеки Boost.Multiprecision	9
7.	Нахождение ЭНФ (ТООО)	10
	7.1. Алгоритм для матриц полного ранга строки	10
8.	Решение ПБВ (ТООО)	12
9.	Обзор программной реализации (TODO)	13
10.	Заключение (ТООО)	14
11.	Список источников (ТООО)	15
Пп	мложения (ТОПО)	16

1. Список условных обозначений и сокращений (ТООО)

ПБВ (CVP) – проблема ближайшего вектора (Closest vector problem)

ЭНФ (HNF) – Эрмитова нормальная форма (Hermite normal form)

B&B – Branch and bound

2. Введение (ТООО)

Текст введения

3. Основные определения (ТООО)

Решетка. Пусть $\mathbf{B} = [\mathbf{b}_1,...,\mathbf{b}_n] \in \mathbb{R}^{d \times n}$ - линейно независимые вектора из \mathbb{R}^d . Решетка, генерируемая от \mathbf{B} есть набор

$$\mathcal{L}(\mathbf{B}) = \{\mathbf{B}\mathbf{x} : \mathbf{x} \in \mathbb{Z}^n\} = \left\{ \sum_{i=1}^n x_i \cdot \mathbf{b}_i : \forall i \ x_i \in \mathbb{Z} \right\}$$

всех целочисленных линейных комбинаций столбцов матрицы **B**. Матрица **B** называется базисом для решетки $\mathcal{L}(\mathbf{B})$. Число n называется рангом решетки. Если n=d, то решетка $\mathcal{L}(\mathbf{B})$ называется решеткой полного ранга или полноразмерной решеткой в \mathbb{R}^d .

4. Постановка задачи (ТООО)

Основная задача - реализовать алгоритмы для нахождения ЭНФ и решения ПБВ за полиномиальное и суперполиномиальное время. Для этого необходимо изучить предложенные в псевдокоде алгоритмы, найти необходимые инструменты для программной реализации, научиться их эффективно использовать и написать программу, реализующие разобранные алгоритмы в виде подключаемой библиотеки. Полученную библиотеку использовать для решения задач теории решеток и найти практическое применение в криптографии.

5.	Обзор литературных источников (ТОДО)

6. Обзор инструментов (ТООО)

Для программной реализации был выбран язык C++. Сборка проекта осуществляется с помощью системы сборки CMake. Для работы с матрицами была выбрана библиотека Eigen, для работы с большими числами используется часть библиотеки Boost Boost.Multiprecision, которая подключается в режиме Standalone.

6.1. Обзор библиотеки Eigen

6.2. Обзор библиотеки Boost.Multiprecision

7. Нахождение ЭНФ (ТООО)

Будет разобрано два алгоритма - общий и алгоритм для матриц полного ранга строки, который используется в общем алгоритме.

7.1. Алгоритм для матриц полного ранга строки

Дана матрица $\mathbf{B} \in \mathbb{Z}^{m \times n}$. Предположим, что у нас есть процедура AddColumn, которая работает за полиномиальное время и принимает на вход квадратную невырожденную ЭНФ матрицы $\mathbf{H} \in \mathbb{Z}^{m \times m}$ и вектор \mathbf{b} , а возвращает ЭНФ матрицы $[\mathbf{H}|\mathbf{b}]$. ЭНФ от \mathbf{B} может быть вычислена следующим образом:

- 1. Применить алгоритм Грама-Шмидта к столбцам ${\bf B}$, чтобы найти m линейно независимых столбцов. Пусть ${\bf B}$ ' матрица размера $m \times m$, заданная этими столбцами.
- 2. Вычислить $d = \det(\mathbf{B}')$, используя алгоритм Грама-Шмидта или любую другую процедуру с полиномиальным временем. Пусть $\mathbf{H}_0 = d \cdot \mathbf{I}$ будет диагональной матрицей с d на диагонали.
- 3. Для $i=1,\ldots,n$ пусть \mathbf{H}_i это результат применения AddColumn ко входу \mathbf{H}_{i-1} и \mathbf{b}_i .
- 4. Вернуть \mathbf{H}_n .

Разберем подпункты:

- 1. Необходимо найти линейно независимые столбцы матрицы. Их количество всегда будет равно m, т.к. наша матрица полного ранга строки, а значит матрица, состоящая из этих столбцов, будет размера $m \times m$. Для нахождения этих строк можно использовать алгоритм ортогонализации Грама-Шмитда: если $\mathbf{b}_i^* = 0$, то i-ая строка является линейной комбинацией других строк, и ее необходимо удалить. Реализация данного алгоритма находится в пространстве имен Utils в функции get_linearly_independent_columns_by_gram_schmidt. Полученная матрица будет названа \mathbf{B}_i^* .
- 2. Для вычисления det напишем функцию det_by_gram_schmidt, которая принимает на вход матрицу и вычисляет det по формуле $d = \prod_i \|\mathbf{b}_i^*\|$ сумма произведений длин всех элементов, полученных после применения ортогонализации Грама-Шмидта. Матрица $\mathbf{H_0}$ будет единичной матрицей размера $m \times m$, умноженной на определитель. В результате все диагональные элементы будут равны d.
- 3. Применяем функцию AddColumn (реализация находится в функции add_column) к \mathbf{H}_0 и первому столбцу матрицы $\mathbf{B} \mathbf{b}_0$, получаем \mathbf{H}_1 , повторяем для всех столбцов, получаем \mathbf{H}_n .

4. **H**_n является ЭН Φ (**B**).

Алгоритм AddColumn на вход принимает квадратную невырожденную ЭНФ матрицы $\mathbf{H} \in \mathbb{Z}^{m \times m}$ и вектор $\mathbf{b} \in \mathbb{Z}^m$ и работает следующим образом. Если m=0, то тут ничего не надо делать, и мы можем сразу вернуть \mathbf{H} . В противном случае, пусть $\mathbf{H}=$ и дальше:

8. Решение ПБВ (ТООО)

7.	Оозор программной реализации (ТООО)

10. Заключение (ТООО)

В ходе выполнения выпускной квалификационной работы бакалавра были реализованы алгоритмы на языке C++ для нахождения ЭНФ и решения ΠBB .

Полученную программную реализацию можно использовать как библиотеку и подключать в другие проекты.

Был создан Github репозиторий, который содержит в себе все исходные файлы. Программная реализация использует CMake для автоматической сборки.

11. Список источников (ТООО)

Тут будет список источников

Приложения (TODO)

Тут будет листинг кода