E. Bash Plays with Functions

time limit per test: 3 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

Bash got tired on his journey to become the greatest Pokemon master. So he decides to take a break and play with functions.

Bash defines a function $f_0(n)$, which denotes the number of ways of factoring n into two factors p and q such that gcd(p,q)=1. In other words, $f_0(n)$ is the number of ordered pairs of positive integers (p,q) such that $p \cdot q = n$ and gcd(p,q)=1.

But Bash felt that it was too easy to calculate this function. So he defined a series of functions, where f_{r+1} is defined as:

Where (u, v) is any ordered pair of positive integers, they need not to be co-prime.

Now Bash wants to know the value of $f_r(n)$ for different r and n. Since the value could be huge, he would like to know the value modulo $10^9 + 7$. Help him!

Input

The first line contains an integer q ($1 \le q \le 10^6$) — the number of values Bash wants to know.

Each of the next q lines contain two integers r and n ($0 \le r \le 10^6$, $1 \le n \le 10^6$), which denote Bash wants to know the value $f_r(n)$.

Output

Print *q* integers. For each pair of *r* and *n* given, print $f_r(n)$ modulo $10^9 + 7$ on a separate line.

Example

input	
5	
0 30	
1 25	
3 65	
2 5	
4 48	
output	
output 8	
8	
8 5	