Advanced Data Structures and Algorithms

Min Cut and Karger's Algorithm

This Module

- Minimum Cuts!
 - Karger's algorithm
 - Karger-Stein algorithm
 - Back to randomized algorithms!

*For today, all graphs are undirected and unweighted.

Recall: cuts in graphs

 A cut is a partition of the vertices into two nonempty parts.

*For today, all graphs are undirected and unweighted.

Recall: cuts in graphs

• A cut is a partition of the vertices into two nonempty

This is not a cut

This is a cut

This is a cut

These edges cross the cut.

• They go from one part to the other.

A (global) minimum cut

is a cut that has the fewest edges possible crossing it.

A (global) minimum cut

is a cut that has the fewest edges possible crossing it.

- Finds **global minimum cuts** in undirected graphs
- Randomized algorithm

- Finds global minimum cuts in undirected graphs
- Randomized algorithm
- Karger's algorithm might be wrong.
 - Compare to QuickSort, which just might be slow.

- Finds global minimum cuts in undirected graphs
- Randomized algorithm
- Karger's algorithm might be wrong.
 - Compare to QuickSort, which just might be slow.
- Why would we want an algorithm that might be wrong?

- Finds global minimum cuts in undirected graphs
- Randomized algorithm
- Karger's algorithm might be wrong.
 - Compare to QuickSort, which just might be slow.
- Why would we want an algorithm that might be wrong?
 - With high probability it won't be wrong.
 - Maybe the stakes are low and the cost of a deterministic algorithm is high.

• Pick a random edge.

- Pick a random edge.
- Contract it.

- Pick a random edge.
- Contract it.
- Repeat until you only have two vertices left.

- Pick a random edge.
- Contract it.
- Repeat until you only have two vertices left.

Why is this a good idea? We'll see shortly.

Now stop!

• There are only two nodes left.

The **minimum cut** is given by the remaining super-nodes:

• {a,b,c,d} and {e,h,f,g}

• Does it work?

• Is it fast?

Let $\overline{\boldsymbol{u}}$ denote the SuperNode in Γ containing u Say $E_{\overline{\boldsymbol{u}},\overline{\boldsymbol{v}}}$ is the SuperEdge between $\overline{\boldsymbol{u}}$, $\overline{\boldsymbol{v}}$.

```
    Karger( G=(V,E) ):
```

- Γ = { SuperNode(v) : v in V }
- $E_{\overline{u},\overline{v}} = \{(u,v)\}$ for (u,v) in E
- $E_{\overline{u},\overline{v}} = \{\}$ for (u,v) not in E.
- F = copy of E

```
// one supernode for each vertex
// one superedge for each edge
// we'll choose randomly from F
```

Let $\overline{\boldsymbol{u}}$ denote the SuperNode in Γ containing u Say $E_{\overline{\boldsymbol{u}},\overline{\boldsymbol{v}}}$ is the SuperEdge between $\overline{\boldsymbol{u}}$, $\overline{\boldsymbol{v}}$.

```
    Karger( G=(V,E) ):
```

```
    Γ = { SuperNode(v) : v in V }
```

- $E_{\overline{u},\overline{v}} = \{(u,v)\}$ for (u,v) in E
- $E_{\overline{u},\overline{v}} = \{\}$ for (u,v) not in E.
- F = copy of E
- while $|\Gamma| > 2$:
 - (u,v) ← uniformly random edge in F

```
// one supernode for each vertex
// one superedge for each edge
// we'll choose randomly from F
```

Let $\overline{\boldsymbol{u}}$ denote the SuperNode in Γ containing u Say $E_{\overline{\boldsymbol{u}},\overline{\boldsymbol{v}}}$ is the SuperEdge between $\overline{\boldsymbol{u}}$, $\overline{\boldsymbol{v}}$.

```
• Karger( G=(V,E) ):
```

```
• \Gamma = \{ \text{SuperNode(v)} : \text{v in V} \} // one supernode for each vertex 
• E_{\overline{u},\overline{v}} = \{(\text{u,v})\} \text{ for (u,v) in E} // one superedge for each edge 
• E_{\overline{u},\overline{v}} = \{\} \text{ for (u,v) not in E.} 
• F = \text{copy of E} // we'll choose randomly from F 
• \text{while } |\Gamma| > 2:
• (\text{u,v}) \leftarrow \text{uniformly random edge in F} 
• \text{merge(u,v)}
```

Let $\overline{\boldsymbol{u}}$ denote the SuperNode in Γ containing u Say $E_{\overline{\boldsymbol{u}},\overline{\boldsymbol{v}}}$ is the SuperEdge between $\overline{\boldsymbol{u}}$, $\overline{\boldsymbol{v}}$.

```
    Karger( G=(V,E) ):
```

```
• \Gamma = \{ \text{SuperNode(v)} : \text{v in V} \} // one supernode for each vertex 
• E_{\overline{u},\overline{v}} = \{(\text{u,v})\} \text{ for (u,v) in E} // one superedge for each edge 
• E_{\overline{u},\overline{v}} = \{\} \text{ for (u,v) not in E.} 
• F = \text{copy of E} // we'll choose randomly from F 
• \text{while } |\Gamma| > 2:
• (\text{u,v}) \leftarrow \text{uniformly random edge in F} 
• \text{merge(u,v)}
```

```
    merge( u, v ): // merge also knows about Γ and the E<sub>ū,v̄</sub> 's
     x̄ = SuperNode( ū ∪ v̄ ) // create a new supernode
    for each w in Γ – {ū, v̄}:
```

•
$$E_{\overline{x},\overline{w}} = E_{\overline{u},\overline{w}} \cup E_{\overline{v},\overline{w}}$$

Let $\overline{\boldsymbol{u}}$ denote the SuperNode in Γ containing u Say $E_{\overline{\boldsymbol{u}},\overline{\boldsymbol{v}}}$ is the SuperEdge between $\overline{\boldsymbol{u}}$, $\overline{\boldsymbol{v}}$.

```
    Karger( G=(V,E) ):
```

```
• \Gamma = \{ \text{ SuperNode(v)} : \text{ v in V} \} // one supernode for each vertex } E_{\overline{u},\overline{v}} = \{(u,v)\} \text{ for } (u,v) \text{ in E} // one superedge for each edge } E_{\overline{u},\overline{v}} = \{\} \text{ for } (u,v) \text{ not in E}. • F = \text{copy of E} // we'll choose randomly from F • while |\Gamma| > 2:
• (u,v) \leftarrow \text{uniformly random edge in F} • merge( u,v) // merge the SuperNode containing u with the SuperNode containing v.
• F \leftarrow F - E_{\overline{u},\overline{v}} // remove all the edges in the SuperEdge between those SuperNodes.
```

```
• merge( u, v ):
```

// merge also knows about Γ and the $E_{\overline{\boldsymbol{u}},\overline{\boldsymbol{v}}}$'s

• \overline{x} = SuperNode($\overline{u} \cup \overline{v}$)

// create a new supernode

• for each **w** in $\Gamma - \{\overline{u}, \overline{v}\}$:

•
$$E_{\overline{x},\overline{w}} = E_{\overline{u},\overline{w}} \cup E_{\overline{v},\overline{w}}$$

Let $\overline{\boldsymbol{u}}$ denote the SuperNode in Γ containing u Say $E_{\overline{\boldsymbol{u}},\overline{\boldsymbol{v}}}$ is the SuperEdge between $\overline{\boldsymbol{u}}$, $\overline{\boldsymbol{v}}$.

Karger(G=(V,E)):

return the cut given by the remaining two superNodes.

Let $\overline{\boldsymbol{u}}$ denote the SuperNode in Γ containing u Say $E_{\overline{\boldsymbol{u}},\overline{\boldsymbol{v}}}$ is the SuperEdge between $\overline{\boldsymbol{u}}$, $\overline{\boldsymbol{v}}$.

```
    Karger( G=(V,E) ):
```

```
    Γ = { SuperNode(v) : v in V }
    E<sub>ū,v̄</sub> = {(u,v)} for (u,v) in E
    E<sub>ū,v̄</sub> = {} for (u,v) not in E.
    F = copy of E
    while | Γ | > 2:

            (u,v) ← uniformly random edge in F
            merge(u, v)
```

// one supernode for each vertex // one superedge for each edge

// we'll choose randomly from F

The **while** loop runs n-2 times

merge takes time O(n) naively

// merge the SuperNode containing u with the SuperNode containing v.

```
• F \leftarrow F - E_{\overline{u},\overline{v}} // remove all the edges in the SuperEdge between those SuperNodes.
```

• return the cut given by the remaining two superNodes.

```
• merge( u, v ): // merge also knows about \Gamma and the E_{\overline{u},\overline{v}} 's \overline{x} = SuperNode( \overline{u} \cup \overline{v} ) // create a new supernode • for each w in \Gamma - \{\overline{u},\overline{v}\}: • E_{\overline{x},\overline{w}} = E_{\overline{u},\overline{w}} \cup E_{\overline{v},\overline{w}}
```

Let $\overline{\boldsymbol{u}}$ denote the SuperNode in Γ containing u Say $E_{\overline{\boldsymbol{u}}.\overline{\boldsymbol{v}}}$ is the SuperEdge between $\overline{\boldsymbol{u}}$, $\overline{\boldsymbol{v}}$.

// one supernode for each vertex

// one superedge for each edge

// we'll choose randomly from F

The **while** loop runs n-2 times

```
• Karger( G=(V,E) ):
```

```
    Γ = { SuperNode(v) : v in V }
```

•
$$E_{\overline{u}.\overline{v}} = \{(u,v)\}$$
 for (u,v) in E

- $E_{\overline{u},\overline{v}} = \{\}$ for (u,v) not in E.
- F = copy of E
- while $|\Gamma| > 2$:
 - (u,v) ← uniformly random edge in F
 - merge(u, v)

ge(u, v) **merge** takes time O(n) naively // merge the SuperNode containing u with the SuperNode containing v.

• $F \leftarrow F - E_{\overline{u},\overline{v}}$

// remove all the edges in the SuperEdge between those SuperNodes.

• return the cut given by the remaining two superNodes.

```
• merge( u, v ):
```

// merge also knows about Γ and the $E_{\overline{u},\overline{v}}$'s

• \overline{x} = SuperNode($\overline{u} \cup \overline{v}$)

// create a new supernode

• for each **w** in $\Gamma - \{\overline{u}, \overline{v}\}$:

•
$$E_{\overline{x},\overline{w}} = E_{\overline{u},\overline{w}} \cup E_{\overline{v},\overline{w}}$$

• Remove \overline{u} and \overline{v} from Γ and add \overline{x} .

total runtime O(n²)

We can do a bit better with fancy data structures, but let's go with this for now.

How do we implement this?

- Maintain a secondary "superGraph" which keeps track of superNodes and superEdges
- Running time?
 - We contract n-2 edges
 - Each time we contract an edge we get rid of a vertex, and we get rid of n-2 vertices total.
 - Naively each contraction takes time O(n)
 - Maybe there are $\Omega(n)$ nodes in the superNodes that we are merging. (We can do better with fancy data structures).
 - So total running time O(n²).
 - We can do $O(m \cdot \alpha(n))$ with a union-find data structure, but $O(n^2)$ is good enough for today.

• Does it work?

- Is it fast?
 - O(n²)

• Does it work?

- Is it fast?
 - O(n²)

• Does it work?

- Is it fast?
 - O(n²)

• Randomly contract edges until there are only $_{53}$ two supernodes left.

• Does it work?

- Is it fast?
 - O(n²)

Randomly contract edges until there are only $_{54}$ two supernodes left.

• Does it work?

No?

- Is it fast?
 - O(n²)

 Randomly contract edges until there are only two supernodes left.

Why did that work?

Why did that work?

- We got really lucky!
- This could have gone wrong in so many ways.

Say we had chosen this edge

Say we had chosen this edge

Say we had chosen this edge

Now there is **no way** we could return a cut that separates b and e.

Even worse

If the algorithm EVER chooses either of these edges,

How likely is that?

• For this particular graph, if we do 10,000 times:

How likely is that?

• For this particular graph, if we do 10,000 times:

 Too see why it's good after all, we'll do a case study of this graph.

 Too see why it's good after all, we'll do a case study of this graph.

The plan:

- See that 20% chance of correctness is actually nontrivial.
- Use repetition to boost an algorithm that's correct 20% of the time to an algorithm that's correct 99% of the time.

 Too see why it's good after all, we'll do a case study of this graph.

The plan:

- See that 20% chance of correctness is actually nontrivial.
- Use repetition to boost an algorithm that's correct 20% of the time to an algorithm that's correct 99% of the time.

 To see the first point, let's compare Karger's algorithm to the algorithm:

Choose a completely random cut and hope that it's a minimum cut.

• Pick a random way to split the vertices into two parts:

• Pick a random way to split the vertices into two parts:

• Pick a random way to split the vertices into two parts:

- Pick a random way to split the vertices into two parts:
- The probability of choosing the minimum cut is*...

$$\frac{\text{number of min cuts in that graph}}{\text{number of ways to split 8 vertices in 2 parts}} = \frac{2}{2^8 - 2} \approx 0.008$$

Aka, we get a minimum cut 0.8% of the time.

Karger is better than completely random!

Which is more likely?

A: The algorithm never chooses either of the edges in **the minimum cut**.

B: The algorithm never chooses any of the edges in **this big cut**.

Which is more likely?

• Neither A nor B are very likely, but A is more likely than B.

Which is more likely?

A: The algorithm never chooses either of the edges in **the minimum cut**.

Thing 1: It's unlikely that Karger will hit the min cut since it's so small!

B: The algorithm never chooses any of the edges in **this big cut**.

• Neither A nor B are very likely, but A is more likely than B.

A: This cut can be returned by Karger's algorithm.

A: This cut can be returned by Karger's algorithm.

B: This cut can't be returned by Karger's algorithm!
(Because how would a and g end up in the same super-node?)

A: This cut can be returned by Karger's algorithm.

B: This cut can't be returned by Karger's algorithm!
(Because how would a and g end up in the same super-node?)

This cut actually separates the graph into three pieces, so it's not minimal – either half of it is a smaller cut.

Thing 2: By only contracting edges we are ignoring certain really-not-minimal cuts.

A: This cut can be returned by Karger's algorithm.

B: This cut can't be returned by Karger's algorithm!
(Because how would a and g end up in the same super-node?)

This cut actually separates the graph into three pieces, so it's not minimal – either half of it is a smaller cut.

Why does that help?

- Okay, so it's better than completely random...
- We're still wrong about 80% of the time.

- See that 20% chance of correctness is actually nontrivial.
- Use repetition to boost an algorithm that's correct 20% of the time to an algorithm that's correct 99% of the time.

Why does that help?

- Okay, so it's better than completely random...
- We're still wrong about 80% of the time.
- The main idea: repeat!
 - If I'm wrong 20% of the time, then if I repeat it a few times I'll eventually get it right.

- See that 20% chance of correctness is actually nontrivial.
- Use repetition to boost an algorithm that's correct 20% of the time to an algorithm that's correct 99% of the time.

- Suppose you have a magic button that produces one of 5 numbers, {a,b,c,d,e}, uniformly at random when you push it.
- You don't know what {a,b,c,d,e} are.
- Q: What is the minimum of a,b,c,d,e?

- Suppose you have a magic button that produces one of 5 numbers, {a,b,c,d,e}, uniformly at random when you push it.
- You don't know what {a,b,c,d,e} are.
- Q: What is the minimum of a,b,c,d,e?

- Suppose you have a magic button that produces one of 5 numbers, {a,b,c,d,e}, uniformly at random when you push it.
- You don't know what {a,b,c,d,e} are.
- Q: What is the minimum of a,b,c,d,e?

- Suppose you have a magic button that produces one of 5 numbers, {a,b,c,d,e}, uniformly at random when you push it.
- You don't know what {a,b,c,d,e} are.
- Q: What is the minimum of a,b,c,d,e?

- Suppose you have a magic button that produces one of 5 numbers, {a,b,c,d,e}, uniformly at random when you push it.
- You don't know what {a,b,c,d,e} are.
- Q: What is the minimum of a,b,c,d,e?

- Suppose you have a magic button that produces one of 5 numbers, {a,b,c,d,e}, uniformly at random when you push it.
- You don't know what {a,b,c,d,e} are.
- Q: What is the minimum of a,b,c,d,e?

- Suppose you have a magic button that produces one of 5 numbers, {a,b,c,d,e}, uniformly at random when you push it.
- You don't know what {a,b,c,d,e} are.
- Q: What is the minimum of a,b,c,d,e?

- Suppose you have a magic button that produces one of 5 numbers, {a,b,c,d,e}, uniformly at random when you push it.
- You don't know what {a,b,c,d,e} are.
- Q: What is the minimum of a,b,c,d,e?

- Suppose you have a magic button that produces one of 5 numbers, {a,b,c,d,e}, uniformly at random when you push it.
- You don't know what {a,b,c,d,e} are.
- Q: What is the minimum of a,b,c,d,e?

3 5 2

How many times do you have to push the button, in expectation, before you see the minimum value?

What is the probability that you have to push it more than 5 times? 10 times?

$$\Pr[\text{once and don't ever}] = (1 - 0.2) = 0.8$$
 get the min

$$\Pr[\text{once and don't ever}] = (1 - 0.2) = 0.8$$
 get the min

Number of times
$$E[\text{ we push the button }] = 1/(0.20) = 5$$
until we get the
minimum value

$$\Pr[\substack{\text{We push the button} \\ \text{once and don't ever} }] = (1 - 0.2) = 0.8$$

Number of times
$$E[\text{ we push the button }] = 1/(0.20) = 5$$
until we get the
minimum value

$$Pr[$$
 We push the button $t = (1 - 0.2)^t$ ever get the min

$$\Pr[\text{once and don't ever}] = (1 - 0.2) = 0.8$$
 get the min

Number of times
$$E[\text{ we push the button }] = 1/(0.20) = 5$$
until we get the
minimum value

$$Pr[$$
 We push the button $t = (1 - 0.2)^t$ ever get the min

Pr[
$$_{5 \text{ times and don't}}^{\text{We push the button}}$$
] = $(1 - 0.2)^5 \approx 0.33$
ever get the min

$$\Pr[\text{once and don't ever}] = (1 - 0.2) = 0.8$$
 get the min

Number of times
$$E[\text{ we push the button }] = 1/(0.20) = 5$$
until we get the
minimum value

$$Pr[$$
 We push the button $t = (1 - 0.2)^t$ ever get the min

$$\Pr[\begin{array}{c} \text{We push the button} \\ \text{5 times and don't} \\ \text{ever get the min} \end{array}] = (1 \ - \ 0.2)^5 \approx 0.33$$

Pr[We push the button
$$_{10 \text{ times and don't}}$$
] = $(1 - 0.2)^{10} \approx 0.1$ ever get the min

(Lets Run Karger's!, 5 times)

(Lets Run Karger's!, 5 times)

• Run Karger's! The cut size is 4!

(Lets Run Karger's!, 5 times)

• Run Karger's! The cut size is 4!

Run Karger's! The cut size is 3!

(Lets Run Karger's!, 5 times)

• Run Karger's! The cut size is 4!

Run Karger's! The cut size is 3!

• Run Karger's! The cut size is 3!

(Lets Run Karger's!, 5 times)

• Run Karger's! The cut size is 4!

Run Karger's! The cut size is 3!

• Run Karger's! The cut size is 3!

• Run Karger's! The cut size is 2!

(Lets Run Karger's!, 5 times)

• Run Karger's! The cut size is 4!

Run Karger's! The cut size is 3!

• Run Karger's! The cut size is 3!

Run Karger's! The cut size is 2!

• Run Karger's! The cut size is 5!

(Lets Run Karger's!, 5 times)

• Run Karger's! The cut size is 4!

Run Karger's! The cut size is 3!

• Run Karger's! The cut size is 3!

• Run Karger's! The cut size is 2!

• Run Karger's! The cut size is 5!

(Lets Run Karger's!, 5 times)

• Run Karger's! The cut size is 4!

• Run Karger's! The cut size is 3!

• Run Karger's! The cut size is 3!

• Run Karger's! The cut size is 2!

Run Karger's! The cut size is 5!

If the success probability is about 20%, then if you run Karger's algorithm 5 times and take the best answer you get, that will likely be correct! (with probability about 0.66)

For this particular graph

- Repeat Karger's algorithm about 5 times, and we will get a min cut with decent probability.
 - In contrast, we'd have to choose a random cut about 1/0.008 = 125 times!

- See that 20% chance of correctness is actually nontrivial.
- Use repetition to boost an algorithm that's correct 20% of the time to an algorithm that's correct most of the time.

For this particular graph

- Repeat Karger's algorithm about 5 times, and we will get a min cut with decent probability.
 - In contrast, we'd have to choose a random cut about 1/0.008 = 125 times!

Hang on! This "20%" figure just came from running experiments on this particular graph. What about general graphs? Can we prove something?

- See that 20% chance of correctness is actually nontrivial.
- Use repetition to boost an algorithm that's correct 20% of the time to an algorithm that's correct most of the time.

For this particular graph

- Repeat Karger's algorithm about 5 times, and we will get a min cut with decent probability.
 - In contrast, we'd have to choose a random cut about 1/0.008 = 125 times!

Hang on! This "20%" figure just came from running experiments on this particular graph. What about general graphs? Can we prove something?

Also, we should be a bit more precise about this "about 5 times" statement.

- See that 20% chance of correctness is actually nontrivial.
- Use repetition to boost an algorithm that's correct 20% of the time to an algorithm that's correct most of the time.

Questions

To generalize this approach to all graphs

1. What is the probability that Karger's algorithm returns a minimum cut?

- 2. How many times should we run Karger's algorithm to "probably" succeed?
 - Say, with probability 0.99?
 - Or more generally, probability 1δ ?

Answer to Question 1

Claim:

The probability that Karger's algorithm returns a minimum cut is

at least
$$\frac{1}{\binom{n}{2}}$$

In this case, $\frac{1}{\binom{8}{2}} = 0.036$, so we are

guaranteed to win at least 3.6% of the time.

Questions

1. What is the probability that Karger's algorithm returns a minimum cut?

According to the claim, at least
$$\frac{1}{\binom{n}{2}}$$

- 2. How many times should we run Karger's algorithm to "probably" succeed?
 - Say, with probability 0.99?
 - Or more generally, probability 1δ ?

Before we prove the Claim

2. How many times should we run Karger's algorithm to succeed with probability $1-\delta$?

• Suppose:

- the probability of successfully returning a minimum cut is $p \in [0, 1]$,
- we want failure probability at most $\delta \in (0,1)$.

- Suppose:
 - the probability of successfully returning a minimum cut is $p \in [0, 1]$,
 - we want failure probability at most $\delta \in (0,1)$.
- Pr[don't return a min cut in T trials] = $(1-p)^T$

- Suppose :
 - the probability of successfully returning a minimum cut is $p \in [0, 1]$,
 - we want failure probability at most $\delta \in (0,1)$.
- Pr[don't return a min cut in T trials] = $(1 p)^T$
- So p = $1/\binom{n}{2}$ by the Claim. Let's choose T = $\binom{n}{2} \ln(1/\delta)$.

- Suppose :
 - the probability of successfully returning a minimum cut is $p \in [0, 1]$,
 - we want failure probability at most $\delta \in (0,1)$.
- Pr[don't return a min cut in T trials] = $(1 p)^T$
- So p = $1/\binom{n}{2}$ by the Claim. Let's choose T = $\binom{n}{2} \ln(1/\delta)$.
- Pr[don't return a min cut in T trials] = $(1 - p)^T$

- Suppose :
 - the probability of successfully returning a minimum cut is $p \in [0, 1]$,
 - we want failure probability at most $\delta \in (0,1)$.
- Pr[don't return a min cut in T trials] = $(1 p)^T$
- So p = $1/\binom{n}{2}$ by the Claim. Let's choose T = $\binom{n}{2} \ln(1/\delta)$.
- Pr[don't return a min cut in T trials]

$$= (1 - p)^T$$

$$\leq (e^{-p})^T$$

- Suppose :
 - the probability of successfully returning a minimum cut is $p \in [0, 1]$,
 - we want failure probability at most $\delta \in (0,1)$.
- Pr[don't return a min cut in T trials] = $(1 p)^T$
- So p = $1/\binom{n}{2}$ by the Claim. Let's choose T = $\binom{n}{2} \ln(1/\delta)$.
- Pr[don't return a min cut in T trial

$$= (1 - p)^T$$

$$\leq (e^{-p})^T$$

$$1 - p \le e^{-p}$$

- Suppose :
 - the probability of successfully returning a minimum cut is $p \in [0, 1]$,
 - we want failure probability at most $\delta \in (0,1)$.
- Pr[don't return a min cut in T trials] = $(1 p)^T$
- So p = $1/\binom{n}{2}$ by the Claim. Let's choose T = $\binom{n}{2} \ln(1/\delta)$.
- Pr[don't return a min cut in T trial

$$= (1 - p)^{T}$$

$$\leq (e^{-p})^{T}$$

$$= e^{-pT}$$

- Suppose :
 - the probability of successfully returning a minimum cut is $p \in [0, 1]$,
 - we want failure probability at most $\delta \in (0,1)$.
- Pr[don't return a min cut in T trials] = $(1 p)^T$
- So p = $1/\binom{n}{2}$ by the Claim. Let's choose T = $\binom{n}{2} \ln(1/\delta)$.
- Pr[don't return a min cut in T tria]

$$= (1 - p)^{T}$$

$$\leq (e^{-p})^{T}$$

$$= e^{-pT}$$

$$= e^{-\ln(\frac{1}{\delta})}$$

- Suppose:
 - the probability of successfully returning a minimum cut is $p \in [0, 1]$,
 - we want failure probability at most $\delta \in (0,1)$.
- Pr[don't return a min cut in T trials] = $(1 p)^T$
- So p = $1/\binom{n}{2}$ by the Claim. Let's choose T = $\binom{n}{2} \ln(1/\delta)$.
- Pr[don't return a min cut in T tria]

$$= (1 - p)^{T}$$

$$\leq (e^{-p})^{T}$$

$$= e^{-pT}$$

$$= e^{-\ln(\frac{1}{\delta})}$$

$$= \delta$$

Punchline:

If we repeat $\mathbf{T} = \binom{n}{2} \ln(1/\delta)$ times, we win with probability at least $1 - \delta$.

- Suppose:
 - the probability of successfully returning a minimum cut is $p \in [0, 1]$,
 - we want failure probability at most $\delta \in (0,1)$.
- Pr[don't return a min cut in T trials] = $(1 p)^T$
- So p = $1/\binom{n}{2}$ by the Claim. Let's choose T = $\binom{n}{2} \ln(1/\delta)$.

• Pr don't return a min cut in T trial

$$= (1 - p)^{T}$$

$$\leq (e^{-p})^{T}$$

$$= e^{-pT}$$

$$= e^{-\ln(\frac{1}{\delta})}$$

$$= \delta$$

Answers

1. What is the probability that Karger's algorithm returns a minimum cut?

According to the claim, at least
$$\frac{1}{\binom{n}{2}}$$

- 2. How many times should we run Karger's algorithm to "probably" succeed?
 - Say, with probability 0.99?
 - Or more generally, probability 1δ ?

$$\binom{n}{2} \ln \left(\frac{1}{\delta}\right)$$
 times.

Theorem

Assuming the claim about $1/\binom{n}{2}$...

- Suppose G has n vertices.
- Consider the following algorithm:
 - bestCut = None
 - for $t = 1, ..., \binom{n}{2} \ln \left(\frac{1}{\delta}\right)$:
 - candidateCut ← Karger(G)
 - if candidateCut is smaller than bestCut:
 - bestCut ← candidateCut
 - return bestCut
- Then Pr[this doesn't return a min cut] $\leq \delta$.

What's the running time?

What's the running time?

• $\binom{n}{2} \ln \left(\frac{1}{\delta}\right)$ repetitions, and O(n²) per repetition.

• So,
$$O\left(n^2 \cdot {n \choose 2} \ln\left(\frac{1}{\delta}\right)\right) = O(n^4)$$
 Treating δ as constant.

What's the running time?

• $\binom{n}{2} \ln \left(\frac{1}{\delta}\right)$ repetitions, and O(n²) per repetition.

• So,
$$O\left(n^2 \cdot {n \choose 2} \ln\left(\frac{1}{\delta}\right)\right) = O(n^4)$$
 Treating δ as constant.

Again we can do better with a union-find data structure.

Theorem

Assuming the claim about $1/\binom{n}{2}$...

Suppose G has n vertices. Then [repeating Karger's algorithm] finds a min cut in G with probability at least 0.99 in time O(n⁴).

Now let's prove the claim...

Claim

The probability that Karger's algorithm returns a minimum cut is

at least
$$\frac{1}{\binom{n}{2}}$$

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- **PR**[return S*] = **PR**[none of the e_i cross S*]

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- **PR**[return S*] = **PR**[none of the e_i cross S*]
 - = **PR**[e₁ doesn't cross S*]

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- **PR**[return S*] = **PR**[none of the e_i cross S*]
 - = **PR**[e₁ doesn't cross S*]
 - \times **PR**[e₂ doesn't cross S* | e₁ doesn't cross S*]

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- PR[return S*] = PR[none of the e_i cross S*]
 - = **PR**[e₁ doesn't cross S*]
 - \times **PR**[e₂ doesn't cross S* | e₁ doesn't cross S*]

• • •

 \times **PR**[e_{n-2} doesn't cross S* | e_1 ,..., e_{n-3} don't cross S*]

 $PR[e_j doesn't cross S^* | e_1,...,e_{j-1} don't cross S^*]$

$$PR[e_j doesn't cross S^* | e_1,...,e_{j-1} don't cross S^*]$$

• Suppose: After j-1 iterations, we haven't messed up yet!

$$PR[e_j doesn't cross S^* | e_1,...,e_{j-1} don't cross S^*]$$

• Suppose: After j-1 iterations, we haven't messed up yet!

$$PR[e_j doesn't cross S^* | e_1,...,e_{j-1} don't cross S^*]$$

- Suppose: After j-1 iterations, we haven't messed up yet!
- What's the probability of messing up now?

$$PR[e_j doesn't cross S^* | e_1,...,e_{j-1} don't cross S^*]$$

- Suppose: After j-1 iterations, we haven't messed up yet!
- What's the probability of messing up now?

$$PR[e_j doesn't cross S^* | e_1,...,e_{j-1} don't cross S^*]$$

- Suppose: After j-1 iterations, we haven't messed up yet!
- What's the probability of messing up now?
- Say there are k edges that cross S*
- Every supernode has at least k (original) edges coming out.
 - Otherwise we'd have a smaller cut.

$$PR[e_j doesn't cross S^* | e_1,...,e_{j-1} don't cross S^*]$$

- Suppose: After j-1 iterations, we haven't messed up yet!
- What's the probability of messing up now?
- Say there are k edges that cross S*
- Every supernode has at least k (original) edges coming out.
 - Otherwise we'd have a smaller cut.
- Thus, there are at least (n-j+1)k/2 edges total.
 - because there are n j + 1 supernodes left, each with k edges.

$$PR[e_j doesn't cross S^* | e_1,...,e_{j-1} don't cross S^*]$$

- Suppose: After j-1 iterations, we haven't messed up yet!
- What's the probability of messing up now?
- Say there are k edges that cross S*
- Every supernode has at least k (original) edges coming out.
 - Otherwise we'd have a smaller cut.
- Thus, there are at least (n-j+1)k/2 edges total.
 - because there are n j + 1 supernodes left, each with k edges.

So the probability that we choose one of the k edges crossing S* at step j is at most:

$$\frac{k}{\left(\frac{(n-j+1)k}{2}\right)} = \frac{2}{n-j+1}$$

$$PR[e_j doesn't cross S^* | e_1,...,e_{j-1} don't cross S^*]$$

 So the probability that we choose one of the k edges crossing S* at step j is at most:

$$\frac{k}{\left(\frac{(n-j+1)k}{2}\right)} = \frac{2}{n-j+1}$$

$$PR[e_j doesn't cross S^* | e_1,...,e_{j-1} don't cross S^*]$$

 So the probability that we choose one of the k edges crossing S* at step j is at most:

$$\frac{k}{\left(\frac{(n-j+1)k}{2}\right)} = \frac{2}{n-j+1}$$

• The probability we **don't** choose one of the k edges is at least:

$$1 - \frac{2}{n-j+1} = \frac{n-j-1}{n-j+1}$$
c
d
e,h

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- **PR**[return S*] = **PR**[none of the e_i cross S*]
 - = **PR**[e₁ doesn't cross S*]
 - \times **PR**[e₂ doesn't cross S* | e₁ doesn't cross S*]

• • •

 \times **PR**[e_{n-2} doesn't cross S* | e_1 ,..., e_{n-3} don't cross S*]

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- **PR**[return S*] = **PR**[none of the e_i cross S*]

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{4}{6}\right) \left(\frac{3}{5}\right) \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)$$

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- **PR**[return S*] = **PR**[none of the e_i cross S*]

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{4}{6}\right) \left(\frac{3}{5}\right) \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)$$

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- PR[return S*] = PR[none of the e_i cross S*]

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{4}{6}\right) \left(\frac{3}{5}\right) \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)$$

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- PR[return S*] = PR[none of the e_i cross S*]

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{4}{6}\right) \left(\frac{3}{5}\right) \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)$$

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- PR[return S*] = PR[none of the e_i cross S*]

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{4}{5}\right) \left(\frac{2}{5}\right) \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)$$

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- PR[return S*] = PR[none of the e_i cross S*]

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{4}{6}\right) \left(\frac{2}{5}\right) \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)$$

$$= \left(\frac{2}{n(n-1)}\right)$$

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- **PR**[return S*] = **PR**[none of the e_i cross S*]

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{4}{6}\right) \left(\frac{2}{5}\right) \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)$$

$$= \left(\frac{2}{n(n-1)}\right)$$

$$= \frac{1}{\binom{n}{2}}$$

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- **PR**[return S*] = **PR**[none of the e_i cross S*]

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{4}{6}\right) \left(\frac{2}{5}\right) \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)$$

$$= \left(\frac{2}{n(n-1)}\right)$$

$$= \frac{1}{\binom{n}{2}}$$

$$PROVED$$

Theorem

Assuming the claim about $1/\binom{n}{2}$...

Suppose G has n vertices. Then [repeating Karger's algorithm] finds a min cut in G with probability at least 0.99 in time O(n⁴).

That proves this Theorem!

What have we learned?

- If we randomly contract edges:
 - It's unlikely that we'll end up with a min cut.
 - But it's not TOO unlikely
 - By repeating, we likely will find a min cut.

Here I chose $\delta = 0.01$ just for concreteness.

- Repeating this process:
 - Finds a global min cut in time O(n4), with probability 0.99.
 - We can run a bit faster if we use a union-find data structure.

More generally

- If we have a Monte-Carlo algorithm¹ with a small success probability,
- and we can check how good a solution is,
- Then we can boost the success probability by repeating it a bunch and taking the best solution.

¹In computing, a Monte Carlo algorithm is a randomized algorithm whose output may be incorrect with a certain (typically small) probability.

Can we do better?

- Repeating O(n²) times is pretty expensive.
 - O(n⁴) total runtime to get success probability 0.99.

Can we do better?

- Repeating O(n²) times is pretty expensive.
 - O(n⁴) total runtime to get success probability 0.99.
- The Karger-Stein Algorithm will do better!
 - The trick is that we'll do the repetitions in a clever way.
 - O(n²log²(n)) runtime for the same success probability.
 - Warning! This is a tricky algorithm! We'll sketch the approach here: the important part is the high-level idea, not the details of the computations.

Can we do better?

- Repeating O(n²) times is pretty expensive.
 - O(n⁴) total runtime to get success probability 0.99.
- The Karger-Stein Algorithm will do better!
 - The trick is that we'll do the repetitions in a clever way.
 - O(n²log²(n)) runtime for the same success probability.
 - Warning! This is a tricky algorithm! We'll sketch the approach here: the important part is the high-level idea, not the details of the computations.

To see how we might save on repetitions, let's run through Karger's algorithm again.

Probability that we didn't mess up:

12/14

There are 14 edges, 12 of which are good to contract.

Probability that we didn't mess up:

11/13

Now there are only 13 edges, since the edge between a and b disappeared.

Probability that we didn't mess up:

10/12

Now there are only 12 edges, since the edge between e and h disappeared.

Probability that we didn't mess up:

168

9/11

Probability that we didn't mess up:

5/7

Probability that we didn't mess up:

3/5

Now stop!

• There are only two nodes left.

Probability of not messing up

- At the beginning, it's pretty likely we'll be fine.
- The probability that we mess up gets worse and worse over time.

Probability of not messing up

- At the beginning, it's pretty likely we'll be fine.
- The probability that we mess up gets worse and worse over time.

Repeating the stuff from the beginning of the algorithm is wasteful!

Contract!

Instead...

In words

- Run Karger's algorithm on G for a bit.

 Until there are n/√2 supernodes left.

 Then split into two independent copies, G₁ and

 - G_{2}
- Run Karger's algorithm on each of those for a bit.
 - Until there are $\frac{\left(\frac{n}{\sqrt{2}}\right)}{\sqrt{2}} = \frac{n}{2}$ supernodes left in each.
- Then split each of those into two independent copies...

In pseudocode

- KargerStein(G = (V,E)):
 - n ← |V|
 - if n < 4:
 - find a min-cut by brute force \\ time O(1)
 - Run Karger's algorithm on G with independent repetitions until $\left| \frac{n}{\sqrt{2}} \right|$ nodes remain.
 - G₁, G₂ ← copies of what's left of G
 - $S_1 = KargerStein(G_1)$
 - $S_2 = KargerStein(G_2)$
 - return whichever of S_1 , S_2 is the smaller cut.

Recursion tree

Recursion tree

• depth is
$$\log_{\sqrt{2}}(n) = \frac{\log(n)}{\log(\sqrt{2})} = 2\log(n)$$

Recursion tree

- depth is $\log_{\sqrt{2}}(n) = \frac{\log(n)}{\log(\sqrt{2})} = 2\log(n)$
- number of leaves is $2^{2\log(n)} = n^2$

Two questions

• Does this work?

• Is it fast?

At the jth level

At the jth level $\frac{n}{2^{j/2}}$ nodes Contract a bunch of edges $\frac{}{2^{(j+1)/2}}$ nodes Make 2 copies n $2^{(j+1)/2}$ $\overline{2^{(j+1)/2}}$

nodes

nodes

• The amount of work per level is the amount of work needed to reduce the number of nodes by a factor of $\sqrt{2}$. At the jth level

- The amount of work per level is the amount of work needed to reduce the number of nodes by a factor of $\sqrt{2}$.
- That's at most O(n²).
 - since that's the time it takes to run Karger's algorithm once, cutting down the number of supernodes to two.

At the jth level

- The amount of work per level is the amount of work needed to reduce the number of nodes by a factor of $\sqrt{2}$.
- That's at most O(n²).
 - since that's the time it takes to run Karger's algorithm once, cutting down the number of supernodes to two.
- Our recurrence relation is...

$$T(n) = 2T(n/\sqrt{2}) + O(n^2)$$

At the jth level

- The amount of work per level is the amount of work needed to reduce the number of nodes by a factor of $\sqrt{2}$.
- That's at most O(n²).
 - since that's the time it takes to run Karger's algorithm once, cutting down the number of supernodes to two.
- Our recurrence relation is...

$$T(n) = 2T(n/\sqrt{2}) + O(n^2)$$

The Master Theorem says...

$$T(n) = O(n^2 \log(n))$$

198

Jedi Master Yoda

Two questions

• Does this work?

- Is it fast?
 - Yes, O(n²log(n)).

Suppose we contract n – t edges, until there are t supernodes remaining.

Suppose the first n-t edges that we choose are

Suppose we contract n – t edges, until there are t supernodes remaining.

Suppose the first n-t edges that we choose are

- **PR**[none of e₁, e₂, ..., e_{n-t} cross S*]
 - = **PR**[e₁ doesn't cross S*]
 - \times PR[e₂ doesn't cross S* | e₁ doesn't cross S*]

• • •

 \times **PR**[e_{n-t} doesn't cross S* | e_1 ,..., e_{n-t-1} don't cross S*]

Suppose we contract n – t edges, until there are t supernodes remaining.

Suppose the first n-t edges that we choose are

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{t+1}{t+3}\right) \left(\frac{t}{t+2}\right) \left(\frac{t-1}{t+1}\right)$$

Suppose we contract n – t edges, until there are t supernodes remaining.

Suppose the first n-t edges that we choose are

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{t+1}{t+3}\right) \left(\frac{t}{t+2}\right) \left(\frac{t-1}{t+1}\right)$$

$$= \frac{t \cdot (t-1)}{n \cdot (n-1)}$$

Suppose we contract n – t edges, until there are t supernodes remaining.

Suppose the first n-t edges that we choose are

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{t+1}{t+3}\right) \left(\frac{t}{t+2}\right) \left(\frac{t-1}{t+1}\right)$$

$$= \frac{t \cdot (t-1)}{n \cdot (n-1)} \quad \text{Choose } t = n/\sqrt{2}$$

Suppose we contract n – t edges, until there are t supernodes remaining.

Suppose the first n-t edges that we choose are

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{t+1}{t+3}\right) \left(\frac{t}{t+2}\right) \left(\frac{t-1}{t+1}\right)$$

$$= \frac{t \cdot (t-1)}{n \cdot (n-1)} \quad \text{Choose } t = n/\sqrt{2}$$

$$= \frac{\frac{n}{\sqrt{2}} \cdot \left(\frac{n}{\sqrt{2}} - 1\right)}{n \cdot (n-1)} \approx \frac{1}{2} \quad \text{when n is large}$$

Probability of success

Is the probability that there's a path from the root to a leaf with no failures.

Probability of success

Is the probability that there's a path from the root to a leaf with no failures.

 $\frac{n}{\sqrt{4}}$

nodes

 $\frac{n}{\sqrt{8}}$

nodes

Probability of success

Is the probability that there's a path from the root to a leaf with no failures.

 $\frac{n}{\sqrt{4}}$

nodes

 $\frac{n}{\sqrt{8}}$

nodes

Probability of success

Is the probability that there's a path from the root to a leaf with no failures.

The problem we need to analyze

Let T be binary tree of depth 2log(n)

 Each node of T succeeds or fails independently with probability 1/2

 What is the probability that there's a path from the root to any leaf that's entirely successful?

- Say the tree has height d.
- Let p_d be the probability that there's a path from the root to a leaf that **doesn't fail**.

- Say the tree has height d.
- Let p_d be the probability that there's a path from the root to a leaf that **doesn't fail**.

$$p_d = \frac{1}{2} \cdot \Pr$$
 at least one subtree has a successful path

- Say the tree has height d.
- Let p_d be the probability that there's a path from the root to a leaf that **doesn't fail**.

- Say the tree has height d.
- Let p_d be the probability that there's a path from the root to a leaf that **doesn't fail**.

- Say the tree has height d.
- Let p_d be the probability that there's a path from the root to a leaf that **doesn't fail**.

It's a recurrence relation!

•
$$p_d = p_{d-1} - \frac{1}{2} \cdot p_{d-1}^2$$

•
$$p_0 = 1$$

We are really good at those.

It's a recurrence relation!

•
$$p_d = p_{d-1} - \frac{1}{2} \cdot p_{d-1}^2$$

- $p_0 = 1$
- We are really good at those.
- In this case, the answer is:
 - Claim: for all d, $p_d \ge \frac{1}{d+1}$

Recurrence relation

•
$$p_d = p_{d-1} - \frac{1}{2} \cdot p_{d-1}^2$$

•
$$p_0 = 1$$

- Claim: for all d, $p_d \ge \frac{1}{d+1}$
- Proof: induction on d.
 - Base case: $1 \ge 1$. YEP.
 - Inductive step: say d > 0.
 - Suppose that $p_{d-1} \ge \frac{1}{d}$.

•
$$p_d = p_{d-1} - \frac{1}{2} \cdot p_{d-1}^2$$

$$\geq \frac{1}{d} - \frac{1}{2} \cdot \frac{1}{d^2}$$

$$\bullet \qquad = \frac{1}{d+1}$$

What does that mean for Karger-Stein?

Claim: for all d, $p_d \ge \frac{1}{d+1}$

What does that mean for Karger-Stein?

Claim: for all d,
$$p_d \ge \frac{1}{d+1}$$

- For $d = 2\log(n)$
 - that is, d = the height of the tree:

$$p_{2\log(n)} \ge \frac{1}{2\log(n) + 1}$$

What does that mean for Karger-Stein?

Claim: for all d,
$$p_d \ge \frac{1}{d+1}$$

- For $d = 2\log(n)$
 - that is, d = the height of the tree:

$$p_{2\log(n)} \ge \frac{1}{2\log(n) + 1}$$

aka,

Pr[Karger-Stein is successful] =
$$\Omega\left(\frac{1}{\log(n)}\right)$$

Altogether now

- We can do the same trick as before to amplify the success probability.
 - Run Karger-Stein $O\left(\log(n) \cdot \log\left(\frac{1}{\delta}\right)\right)$ times to achieve success probability 1δ .

Altogether now

- We can do the same trick as before to amplify the success probability.
 - Run Karger-Stein $O\left(\log(n) \cdot \log\left(\frac{1}{\delta}\right)\right)$ times to achieve success probability 1δ .
- Each iteration takes time $O(n^2 \log(n))$
 - That's what we proved before.

Altogether now

- We can do the same trick as before to amplify the success probability.
 - Run Karger-Stein $O\left(\log(n) \cdot \log\left(\frac{1}{\delta}\right)\right)$ times to achieve success probability $1-\delta$.
- Each iteration takes time $O(n^2 \log(n))$
 - That's what we proved before.
- ullet Choosing $\delta=0.01$ as before, the total runtime is

$$O(n^2 \log(n) \cdot \log(n)) = O(n^2 \log^2(n))$$

Much better than O(n⁴)!

What have we learned?

- Just repeating Karger's algorithm isn't the best use of repetition.
 - We're probably going to be correct near the beginning.
- Instead, Karger-Stein repeats when it counts.
 - If we wait until there are $\frac{n}{\sqrt{2}}$ nodes left, the probability that we fail is close to $\frac{1}{2}$.
- This lets us (probably) find a global minimum cut in an undirected graph in time O(n² log²(n)).
 - Notice that we can't do better than n² in a dense graph (we need to look at all the edges), so this is pretty good.

Recap

- Some algorithms:
 - Karger's algorithm for global min-cut
 - Improvement: Karger-Stein
- Some concepts:
 - Monte Carlo algorithms:
 - Might be wrong, are always fast.
 - We can boost their success probability with repetition.
 - Sometimes we can do this repetition very cleverly.

Acknowledgement

Stanford University