Loading in required libraries

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
```

Exploratory Data Analysis - EDA

```
In [ ]:
```

Import file Data ==> Nobel

```
In [2]: nobel = pd.read_csv('nobel.csv')
    nobel.head()
```

Out[2]:		year	category	prize	motivation	prize_share	laureate_id	laureate_type	full_name	birth_date	birth_city	birth_country	Sŧ
	0	1901	Chemistry	The Nobel Prize in Chemistry 1901	"in recognition of the extraordinary services	1/1	160	Individual	Jacobus Henricus van 't Hoff	1852-08- 30	Rotterdam	Netherlands	Ma
	1	1901	Literature	The Nobel Prize in Literature 1901	"in special recognition of his poetic composit	1/1	569	Individual	Sully Prudhomme	1839-03- 16	Paris	France	Ma
	2	1901	Medicine	The Nobel Prize in Physiology or Medicine 1901	"for his work on serum therapy, especially its	1/1	293	Individual	Emil Adolf von Behring	1854-03- 15	Hansdorf (Lawice)	Prussia (Poland)	Ma
	3	1901	Peace	The Nobel Peace Prize 1901	NaN	1/2	462	Individual	Jean Henry Dunant	1828-05- 08	Geneva	Switzerland	Ma
	4	1901	Peace	The Nobel Peace Prize 1901	NaN	1/2	463	Individual	Frédéric Passy	1822-05- 20	Paris	France	Ma
	4												
In [3]:	<pre>nobel.info()</pre>												

file:///C:/Users/USER/Downloads/Nobel_analysis.html

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	year	1000 non-null	int64
1	category	1000 non-null	object
2	prize	1000 non-null	object
3	motivation	912 non-null	object
4	prize_share	1000 non-null	object
5	laureate_id	1000 non-null	int64
6	laureate_type	1000 non-null	object
7	full_name	1000 non-null	object
8	birth_date	968 non-null	object
9	birth_city	964 non-null	object
10	birth_country	969 non-null	object
11	sex	970 non-null	object
12	organization_name	736 non-null	object
13	organization_city	735 non-null	object
14	organization_country	735 non-null	object
15	death_date	596 non-null	object
16	death_city	579 non-null	object
17	death_country	585 non-null	object
d+vn	ac: in+64/2 $abiac+/1$	6 \	

dtypes: int64(2), object(16)
memory usage: 140.8+ KB

In [4]: nobel.describe()

Out[4]:		year	laureate_id
	count	1000.000000	1000.000000
	mean	1973.721000	509.099000
	std	34.523195	298.130617
	min	1901.000000	1.000000
	25%	1949.750000	250.750000
	50%	1979.000000	500.500000
	75%	2003.000000	764.250000
	max	2023.000000	1034.000000

Handling & Missing Values

```
Out[6]: year
                                0
        category
        prize
                                0
        motivation
        prize_share
        laureate_id
        laureate_type
        full_name
        birth_date
        birth_city
        birth_country
        sex
        organization name
                                0
        organization_city
                                0
        organization_country
                                0
        death_date
                                0
        death_city
                                0
        death_country
                                0
        dtype: int64
```

In [7]: nobel.head()

7]: _		year	category	prize	motivation	prize_share	laureate_id	laureate_type	full_name	birth_date	birth_city	birth_country	se
	0	1901	Chemistry	The Nobel Prize in Chemistry 1901	"in recognition of the extraordinary services	1/1	160	Individual	Jacobus Henricus van 't Hoff	1852-08- 30	Rotterdam	Netherlands	Ma
	2	1901	Medicine	The Nobel Prize in Physiology or Medicine 1901	"for his work on serum therapy, especially its	1/1	293	Individual	Emil Adolf von Behring	1854-03- 15	Hansdorf (Lawice)	Prussia (Poland)	Ma
	5	1901	Physics	The Nobel Prize in Physics 1901	"in recognition of the extraordinary services	1/1	1	Individual	Wilhelm Conrad Röntgen	1845-03- 27	Lennep (Remscheid)	Prussia (Germany)	1/1/2
	6	1902	Chemistry	The Nobel Prize in Chemistry 1902	"in recognition of the extraordinary services	1/1	161	Individual	Hermann Emil Fischer	1852-10- 09	Euskirchen	Prussia (Germany)	Ma
	8	1902	Medicine	The Nobel Prize in Physiology or Medicine 1902	"for his work on malaria, by which he has show	1/1	294	Individual	Ronald Ross	1857-05- 13	Almora	India	Ма
	4		_	_			_						

The most commonly awarded gender and birth country?

```
In [8]: # the most commonly awarded gender
    top_gender = nobel['sex'].value_counts().idxmax()

# the most commonly awarded birth country
    top_country = nobel['birth_country'].value_counts().idxmax()

    print(top_gender)
    print(top_country)

Male
United States of America
In []:
```

The Heighst ration winners in USA

```
In [9]: # Create column calculate the Decade
    nobel['decade'] = (nobel['year'] // 10)*10
# winners in USA
    nobel['usa_winners'] = nobel['birth_country'] == 'United States of America'
    ration_winner = nobel.groupby('decade',as_index=False)['usa_winners'].mean()
    max_usa_decade = ration_winner[ration_winner['usa_winners'] == ration_winner['usa_winners'].max()]['decade'].values[0]
    print(max_usa_decade)

# create vis
    sns.relplot(kind='line',x='decade', y='usa_winners',data= ration_winner)
    plt.title('Plotting USA born winners')
    plt.xlabel('Deade')
    plt.ylabel('USA Winners')
    plt.show()
```

1990

Calculating the proportion of female laureates per decade

```
In [10]: # Calculating the proportion of female laureates per decade
    nobel['female_winner'] = nobel['sex'] == 'Female'
    prop_fema_winner = nobel.groupby(['decade','category'],as_index=False)['female_winner'].mean()
    female_dec_categ = prop_fema_winner[prop_fema_winner['female_winner'] == prop_fema_winner['female_winner'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category'].max()][['decade','category
```

```
max_female_dic = {female_dec_categ['decade'].values[0]:female_dec_categ['category'].values[0]}
print(max_female_dic)
# create Visu female winners

sns.relplot(x= 'decade', y= 'female_winner', data= prop_fema_winner, hue ='category', kind= 'line')
plt.title('female winners with % winners')
plt.xlabel('Decade')
plt.ylabel('Female Winners')
plt.show()

{2000: 'Economics'}
```


The first woman to receive a Nobel Prize, and in what category?

```
In [11]: # Find the frist woman win the prize and in what category
   woman_winners = nobel[nobel['female_winner']]
   if not woman_winners.empty:
        frist_woman = woman_winners.sort_values(by='year').iloc[0]
        frist_woman_name = frist_woman['full_name']
```

Selecting the laureates that have received 2 or more prizes

```
In [12]: repet_list = []
# ------- Check Individual full name ------
count_name = nobel['full_name'].value_counts()
repet_name = count_name[count_name >1].index
# ------- Check Organization name ------
count_org = nobel['organization_name'].value_counts()
repet_org = count_org[count_org >= 2].index
# Display the result
repet_list.extend(repet_name)
repet_list.extend(repet_org)
print(repet_list)
```

['Frederick Sanger', 'John Bardeen', 'University of California', 'Harvard University', 'University of Cambridge', 'University of Chicago', 'California Institute of Technology (Caltech)', 'Stanford University', 'University of Oxford', 'Rockefeller University', 'Massachusetts Institute of Technology (MIT)', 'Cornell University', 'Columbia University', 'London University', 'Rockefe ller Institute for Medical Research', 'University of Heidelberg', 'Berlin University', 'University College', 'Princeton University', 'Uppsala University', 'MRC Laboratory of Molecular Biology', 'Institut Pasteur', 'Goettingen University', 'Munich University', 'Harvard Medical School', 'Sorbonne University', 'Washington University', 'National Institutes of Health', 'University of Wisconsin', 'University of Pennsylvania', 'Kiel University', 'Stockholm University', 'University of Oslo', 'Imperial College', 'Academy of Sciences', 'Copenhagen University', 'University of Zurich', 'Yale University', 'Karolinska Institutet', 'Victoria University', 'University of Illinois', 'Bell Laboratories', 'Wellcome Research Laboratories', 'University of Toronto', 'Institut du Radium', 'National Institute for Medical Research', 'Mayo Clinic', 'Basel Institute for Immunology', 'Eidgenössische Technis che Hochschule (Swiss Federal Institute of Technology)', 'Graz University', 'Vienna University', 'Leipzig University', 'P.N. Le bedev Physical Institute', 'Amsterdam University', 'Northwestern University', 'University of Moscow', 'Leiden University', 'Edi nburgh University', 'Bell Telephone Laboratories']

```
In []:
In [13]: nobel.head()
```

Out[13]:		year	category	prize	motivation	prize_share	laureate_id	laureate_type	full_name	birth_date	birth_city	•••	sex	organiza
	0	1901	Chemistry	The Nobel Prize in Chemistry 1901	"in recognition of the extraordinary services	1/1	160	Individual	Jacobus Henricus van 't Hoff	1852-08- 30	Rotterdam	•••	Male	Berli
	2	1901	Medicine	The Nobel Prize in Physiology or Medicine 1901	"for his work on serum therapy, especially its	1/1	293	Individual	Emil Adolf von Behring	1854-03- 15	Hansdorf (Lawice)		Male	Marbur
	5	1901	Physics	The Nobel Prize in Physics 1901	"in recognition of the extraordinary services	1/1	1	Individual	Wilhelm Conrad Röntgen	1845-03- 27	Lennep (Remscheid)		Male	Munic
	6	1902	Chemistry	The Nobel Prize in Chemistry 1902	"in recognition of the extraordinary services	1/1	161	Individual	Hermann Emil Fischer	1852-10- 09	Euskirchen		Male	Berli
	8	1902	Medicine	The Nobel Prize in Physiology or Medicine 1902	"for his work on malaria, by which he has show	1/1	294	Individual	Ronald Ross	1857-05- 13	Almora	•••	Male	Univer

5 rows × 21 columns

In [14]: nobel['category'].unique()

```
Out[14]: array(['Chemistry', 'Medicine', 'Physics', 'Economics'], dtype=object)
```

Number of awards in each Category

Collect data by sex and category and calculate the number of winners in each group

```
In [26]: # Collect data by sex and category and calculate the number of winners in each group
         sex category counts = nobel.groupby(['sex', 'category']).size().reset index(name='win count')
         pivot sex cate = sex category counts.pivot(index = 'category', columns = 'sex', values = 'win count')
         # Display Result
         print(pivot sex cate)
                   Female Male
        sex
        category
        Chemistry
                        3 107
        Economics
                           37
        Medicine
                       5 137
                        1 115
        Physics
In [29]: # Create Vis Count win by category and sex
         g = sns.catplot(x = 'category',y = 'win count',hue='sex', data = sex category counts,
                     kind = 'bar', height=3, aspect=1.5, palette=['#4c72b0', '#dd8452'])
```

```
plt.title('Win Count by Category and Sex', fontsize=12)
g.set_axis_labels("Category", "Win Count", size=10)
plt.show()
```


collect data by sex and Decade to know the winner's sex per decade

```
In [18]: # Group data by sex and decade, counting the occurrences
decade_sex = nobel.groupby(['sex','decade']).size().reset_index(name = 'decade_sex')

# Pivot the DataFrame so that 'decade' becomes the index, 'sex' the columns, and 'decade_sex' the values
df_dec_sex = decade_sex.pivot(index='decade', columns='sex', values='decade_sex')

# Fill all NaN Value and convert to int
df_dec_sex = df_dec_sex.fillna(0).astype(int)
# Display Data
print(df_dec_sex)
```

```
Female Male
sex
decade
1900
             0
                  28
1910
             1
                  23
1920
             0
                 32
                  37
1930
             1
1940
             1
                 28
             0
                 50
1950
1960
             2
                  53
1970
             1
                  56
1980
                  40
1990
             0
                  30
2000
                  14
2010
                   5
```


Who is first man to win the Nobel

```
nobel['male winner'] = nobel['sex'] == 'Male'
In [20]:
         man winners = nobel[nobel['male winner']]
         if not man winners.empty:
             frist man = man winners.sort values(by='year').iloc[0]
             frist man name = frist man['full name']
             frist category = frist man['category']
             country name = frist man['birth country']
             print(f'The Frist Man: {frist man name} \t Category: {frist category}\t Country: {country name}')
        The Frist Man: Jacobus Henricus van 't Hoff
```

Category: Chemistry

Country: Netherlands

In []:
In [21]: nobel.head()

Out[21]:		year	category	prize	motivation	prize_share	laureate_id	laureate_type	full_name	birth_date	birth_city	•••	organization_n
	0	1901	Chemistry	The Nobel Prize in Chemistry 1901	"in recognition of the extraordinary services	1/1	160	Individual	Jacobus Henricus van 't Hoff	1852-08- 30	Rotterdam		Berlin Unive
	2	1901	Medicine	The Nobel Prize in Physiology or Medicine 1901	"for his work on serum therapy, especially its	1/1	293	Individual	Emil Adolf von Behring	1854-03- 15	Hansdorf (Lawice)		Marburg Unive
	5	1901	Physics	The Nobel Prize in Physics 1901	"in recognition of the extraordinary services	1/1	1	Individual	Wilhelm Conrad Röntgen	1845-03- 27	Lennep (Remscheid)		Munich Unive
	6	1902	Chemistry	The Nobel Prize in Chemistry 1902	"in recognition of the extraordinary services	1/1	161	Individual	Hermann Emil Fischer	1852-10- 09	Euskirchen		Berlin Unive
	8	1902	Medicine	The Nobel Prize in Physiology or Medicine 1902	"for his work on malaria, by which he has show	1/1	294	Individual	Ronald Ross	1857-05- 13	Almora		University Col

5 rows × 22 columns

In [22]: nobel['prize_share'].unique()

```
Out[22]: array(['1/1', '1/2', '1/4', '1/3'], dtype=object)
```

How many times has the the award been shared and how many entries

```
In [23]: # count prize share
    count_prize_share = nobel['prize_share'].value_counts()
    print(count_prize_share)

prize_share
    1/2    148
    1/1    145
    1/3    90
    1/4    23
    Name: count, dtype: int64
```

Sharing the award across decades

```
In [24]: # grouped by decade and prize_share called decade_share
decade_shera = nobel.groupby(['decade', 'prize_share']).size().reset_index(name='prize_decade_share')

# create pivot table
prize_decade = decade_shera.pivot(index='decade', columns='prize_share', values='prize_decade_share')

# Fill NaN Values (0) and convert to int
prize_decade = prize_decade.fillna(0).astype(int)

# Total award per decade
prize_decade['total'] = prize_decade.sum(axis=1)

# grouped decade and sex new column called count
nobel_sex = nobel.groupby(['decade', 'sex']).size().reset_index(name='count')

# create pivot table nobel_sex and fill NaN values (0) and convert to int
nobel_sex_pivot = nobel_sex.pivot(index='decade', columns='sex', values='count').fillna(0).astype(int)

# Merge two pivot tables nobel_sex and prize_decade
prize_decade = prize_decade.merge(nobel_sex_pivot, on='decade', how='left')
```

```
cate_decade = nobel.groupby(['decade','category']).size().reset index(name = 'Count')
 cate decade piovt = cate decade.pivot(index='decade',columns='category', values='Count').fillna(0).astype(int)
 prize decade = prize decade.merge(cate decade piovt, on='decade',how='left')
 # Display Result
 print(prize decade)
       1/1 1/2 1/3 1/4 total Female Male Chemistry Economics \
decade
1900
                                28
                                                          9
                                                                      0
         20
               7
                         1
                                              28
                    0
1910
         20
               4
                          0
                                24
                                         1
                                              23
                                                          8
                                                                      0
                                                                      0
1920
              12
                                32
                                              32
                                                          10
1930
              18
                    3
                         0
                                38
                                         1
                                              37
                                                         13
                                                                      0
         17
1940
               8
                    3
                                29
                                              28
                                                          9
                                                                      0
         14
                         4
                                         1
                                                                      0
1950
         11
              23
                   14
                         2
                                50
                                         0
                                              50
                                                          14
                         6
                                                                      2
1960
              17
                   20
                                55
                                              53
                                                         14
         12
1970
                         2
                                                                     12
              24
                   18
                                57
                                         1
                                              56
                                                          14
1980
         13
              12
                   13
                         5
                                43
                                         3
                                              40
                                                          7
                                                                      9
1990
              15
                                30
                                                          6
                                                                      9
                   11
                                              30
               6
                    6
                                                          5
2000
          0
                         3
                                15
                                         1
                                              14
                                                                      4
                    2
                                                          1
2010
               2
                         0
                                               5
                                                                      2
       Medicine Physics
decade
1900
              11
                        8
               6
1910
                       10
1920
              10
                       12
1930
              14
                       11
                        7
              13
1940
1950
              20
                       16
1960
              24
                       15
              20
1970
                       11
1980
                       13
              14
1990
               7
                        8
2000
               2
                        4
               1
2010
```

Plotting award across decade

In []:	
In []:	
In []:	
In []:	
In []:	
In []:	