Методы оптимизации Лекция 2: Выпуклые множества и их свойства

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

14 сентября 2020 г.

▶ План на семестр

- План на семестр
- Классические задачи оптимизации

- План на семестр
- ▶ Классические задачи оптимизации
- Выпуклые множества

- План на семестр
- ▶ Классические задачи оптимизации
- Выпуклые множества
- Конусы

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1\in\mathcal A$, $\mathbf x_2\in\mathcal A$ и $\theta\in\mathbb R$ точка $\theta\mathbf x_1+(1-\theta)\mathbf x_2\in\mathcal A$.

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1\in\mathcal A$, $\mathbf x_2\in\mathcal A$ и $\theta\in\mathbb R$ точка $\theta\mathbf x_1+(1-\theta)\mathbf x_2\in\mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1\in\mathcal A$, $\mathbf x_2\in\mathcal A$ и $\theta\in\mathbb R$ точка $\theta\mathbf x_1+(1-\theta)\mathbf x_2\in\mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1\in\mathcal A$, $\mathbf x_2\in\mathcal A$ и $\theta\in\mathbb R$ точка $\theta\mathbf x_1+(1-\theta)\mathbf x_2\in\mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

Доказательство

ightharpoonup Пусть ${\cal A}$ подпространство

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1 \in \mathcal A$, $\mathbf x_2 \in \mathcal A$ и $\theta \in \mathbb R$ точка $\theta \mathbf x_1 + (1-\theta) \mathbf x_2 \in \mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

- ightharpoonup Пусть ${\cal A}$ подпространство
 - $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A} \to \mathbf{z}_1 = \theta \mathbf{x}_1 \in \mathcal{A}, \ \mathbf{z}_2 = (1 \theta) \mathbf{x}_2 \in \mathcal{A}$

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1 \in \mathcal A$, $\mathbf x_2 \in \mathcal A$ и $\theta \in \mathbb R$ точка $\theta \mathbf x_1 + (1-\theta) \mathbf x_2 \in \mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

- ightharpoonup Пусть ${\cal A}$ подпространство
 - $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A} \to \mathbf{z}_1 = \theta \mathbf{x}_1 \in \mathcal{A}, \ \mathbf{z}_2 = (1 \theta) \mathbf{x}_2 \in \mathcal{A}$
 - $\theta \mathbf{x}_1 + (1 \theta)\mathbf{x}_2 = \mathbf{z}_1 + \mathbf{z}_2 \in \mathcal{A}$

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1 \in \mathcal A$, $\mathbf x_2 \in \mathcal A$ и $\theta \in \mathbb R$ точка $\theta \mathbf x_1 + (1-\theta) \mathbf x_2 \in \mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

- ightharpoonup Пусть ${\cal A}$ подпространство
 - $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A} \to \mathbf{z}_1 = \theta \mathbf{x}_1 \in \mathcal{A}, \ \mathbf{z}_2 = (1 \theta) \mathbf{x}_2 \in \mathcal{A}$
 - $\theta \mathbf{x}_1 + (1 \theta)\mathbf{x}_2 = \mathbf{z}_1 + \mathbf{z}_2 \in \mathcal{A}$
- ▶ Пусть \mathcal{A} аффинное множество и $0 \in \mathcal{A}$.

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1 \in \mathcal A$, $\mathbf x_2 \in \mathcal A$ и $\theta \in \mathbb R$ точка $\theta \mathbf x_1 + (1-\theta) \mathbf x_2 \in \mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

- ightharpoonup Пусть ${\cal A}$ подпространство
 - $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A} \to \mathbf{z}_1 = \theta \mathbf{x}_1 \in \mathcal{A}, \ \mathbf{z}_2 = (1 \theta) \mathbf{x}_2 \in \mathcal{A}$
 - $\theta \mathbf{x}_1 + (1 \theta)\mathbf{x}_2 = \mathbf{z}_1 + \mathbf{z}_2 \in \mathcal{A}$
- ▶ Пусть \mathcal{A} аффинное множество и $0 \in \mathcal{A}$.
 - ▶ Пусть $\mathbf{x} \in \mathcal{A}$ и $\theta \in \mathbb{R}$, тогда $\theta \mathbf{x} = (1 \theta)0 + \theta \mathbf{x} \in \mathcal{A}$ замкнутость для умножения на число

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1\in\mathcal A$, $\mathbf x_2\in\mathcal A$ и $\theta\in\mathbb R$ точка $\theta\mathbf x_1+(1-\theta)\mathbf x_2\in\mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

- ightharpoonup Пусть ${\cal A}$ подпространство
 - $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A} \to \mathbf{z}_1 = \theta \mathbf{x}_1 \in \mathcal{A}, \ \mathbf{z}_2 = (1 \theta) \mathbf{x}_2 \in \mathcal{A}$
 - $\theta \mathbf{x}_1 + (1 \theta)\mathbf{x}_2 = \mathbf{z}_1 + \mathbf{z}_2 \in \mathcal{A}$
- ▶ Пусть \mathcal{A} аффинное множество и $0 \in \mathcal{A}$.
 - ▶ Пусть $\mathbf{x} \in \mathcal{A}$ и $\theta \in \mathbb{R}$, тогда $\theta \mathbf{x} = (1 \theta)0 + \theta \mathbf{x} \in \mathcal{A}$ замкнутость для умножения на число
 - $lack \mathsf{P}$ Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, тогда $rac{1}{2}(\mathbf{x}_1+\mathbf{x}_2) = rac{1}{2}\mathbf{x}_1 + \left(1-rac{1}{2}
 ight)\mathbf{x}_2 = \mathbf{y} \in \mathcal{A}$

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1\in\mathcal A$, $\mathbf x_2\in\mathcal A$ и $\theta\in\mathbb R$ точка $\theta\mathbf x_1+(1-\theta)\mathbf x_2\in\mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

- ightharpoonup Пусть ${\cal A}$ подпространство
 - $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A} \to \mathbf{z}_1 = \theta \mathbf{x}_1 \in \mathcal{A}, \ \mathbf{z}_2 = (1 \theta) \mathbf{x}_2 \in \mathcal{A}$
 - $\theta \mathbf{x}_1 + (1 \theta)\mathbf{x}_2 = \mathbf{z}_1 + \mathbf{z}_2 \in \mathcal{A}$
- ▶ Пусть \mathcal{A} аффинное множество и $0 \in \mathcal{A}$.
 - ▶ Пусть $\mathbf{x} \in \mathcal{A}$ и $\theta \in \mathbb{R}$, тогда $\theta \mathbf{x} = (1 \theta)0 + \theta \mathbf{x} \in \mathcal{A}$ замкнутость для умножения на число
 - ightharpoonup Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, тогда $rac{1}{2}(\mathbf{x}_1+\mathbf{x}_2) = rac{1}{2}\mathbf{x}_1 + \left(1-rac{1}{2}
 ight)\mathbf{x}_2 = \mathbf{y} \in \mathcal{A}$
 - ▶ $\mathbf{z} = \mathbf{x}_1 + \mathbf{x}_2 = 2\mathbf{y} \in \mathcal{A}$ замкнутость относительно сложения элементов

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Утверждение

Любое аффинное множество ${\mathcal A}$ параллельно единственному подпространству

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Утверждение

Любое аффинное множество ${\mathcal A}$ параллельно единственному подпространству

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Утверждение

Любое аффинное множество ${\mathcal A}$ параллельно единственному подпространству

Доказательство

▶ Пусть $\mathcal{A} \parallel \mathcal{L}_1$ и $\mathcal{A} \parallel \mathcal{L}_2$. Значит $\mathcal{L}_1 \parallel \mathcal{L}_2$ и $\mathcal{L}_2 = \mathcal{L}_1 + \mathbf{a}$

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Утверждение

Любое аффинное множество ${\mathcal A}$ параллельно единственному подпространству

- lack Пусть $\mathcal{A} \parallel \mathcal{L}_1$ и $\mathcal{A} \parallel \mathcal{L}_2$. Значит $\mathcal{L}_1 \parallel \mathcal{L}_2$ и $\mathcal{L}_2 = \mathcal{L}_1 + \mathbf{a}$
- $0 \in \mathcal{L}_2 \to -\mathbf{a} \in \mathcal{L}_1 \to \mathbf{a} \in \mathcal{L}_1$

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Утверждение

Любое аффинное множество ${\mathcal A}$ параллельно единственному подпространству

- ▶ Пусть $\mathcal{A} \parallel \mathcal{L}_1$ и $\mathcal{A} \parallel \mathcal{L}_2$. Значит $\mathcal{L}_1 \parallel \mathcal{L}_2$ и $\mathcal{L}_2 = \mathcal{L}_1 + \mathbf{a}$
- $0 \in \mathcal{L}_2 \to -\mathbf{a} \in \mathcal{L}_1 \to \mathbf{a} \in \mathcal{L}_1$
- ▶ В силу замкнутости подмножества относительно сложения $\mathcal{L}_1\supseteq \mathcal{L}_1+\mathbf{a}=\mathcal{L}_2$

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Утверждение

Любое аффинное множество ${\mathcal A}$ параллельно единственному подпространству

- lack Пусть $\mathcal{A} \parallel \mathcal{L}_1$ и $\mathcal{A} \parallel \mathcal{L}_2$. Значит $\mathcal{L}_1 \parallel \mathcal{L}_2$ и $\mathcal{L}_2 = \mathcal{L}_1 + \mathbf{a}$
- $0 \in \mathcal{L}_2 \to -\mathbf{a} \in \mathcal{L}_1 \to \mathbf{a} \in \mathcal{L}_1$
- ightharpoonup В силу замкнутости подмножества относительно сложения $\mathcal{L}_1\supseteq\mathcal{L}_1+\mathbf{a}=\mathcal{L}_2$
- lacktriangle Аналогично показывается, что $\mathcal{L}_1 \subseteq \mathcal{L}_2 o \mathcal{L}_1 = \mathcal{L}_2$

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Утверждение

Любое аффинное множество ${\mathcal A}$ параллельно единственному подпространству

- lack Пусть $\mathcal{A} \parallel \mathcal{L}_1$ и $\mathcal{A} \parallel \mathcal{L}_2$. Значит $\mathcal{L}_1 \parallel \mathcal{L}_2$ и $\mathcal{L}_2 = \mathcal{L}_1 + \mathbf{a}$
- $0 \in \mathcal{L}_2 \to -\mathbf{a} \in \mathcal{L}_1 \to \mathbf{a} \in \mathcal{L}_1$
- ightharpoonup В силу замкнутости подмножества относительно сложения $\mathcal{L}_1\supseteq\mathcal{L}_1+\mathbf{a}=\mathcal{L}_2$
- lacktriangle Аналогично показывается, что $\mathcal{L}_1 \subseteq \mathcal{L}_2 o \mathcal{L}_1 = \mathcal{L}_2$
- Рассмотрим некоторый вектор $\mathbf{y} \in \mathcal{A}$ и множество $\mathcal{A} \mathbf{y} = \mathcal{A} + (-\mathbf{y})$, которое является аффинным и содержит 0, следовательно, подпространство

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

Доказательство

▶ Рассмотрим $\mathcal{A} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ и покажем, что оно аффинно по определению

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

- ▶ Рассмотрим $\mathcal{A} = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b} \}$ и покажем, что оно аффинно по определению
 - ▶ Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, рассмотрим $\mathbf{z} = \theta \mathbf{x}_1 + (1 \theta) \mathbf{x}_2$

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

- ▶ Рассмотрим $\mathcal{A} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ и покажем, что оно аффинно по определению
 - lacktriangle Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, рассмотрим $\mathbf{z} = heta \mathbf{x}_1 + (1- heta) \mathbf{x}_2$
 - $ightharpoonup \mathbf{Az} = heta \mathbf{Ax}_1 + (1- heta) \mathbf{Ax}_2 = heta \mathbf{b} + (1- heta) \mathbf{b} = \mathbf{b}$, а значит $\mathcal A$ аффинню

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

- ▶ Рассмотрим $\mathcal{A} = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b} \}$ и покажем, что оно аффинно по определению
 - lacktriangle Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, рассмотрим $\mathbf{z} = heta \mathbf{x}_1 + (1- heta) \mathbf{x}_2$
 - $ightharpoonup \mathbf{Az} = heta \mathbf{Ax}_1 + (1- heta)\mathbf{Ax}_2 = heta \mathbf{b} + (1- heta)\mathbf{b} = \mathbf{b}$, а значит $\mathcal A$ аффиннно
- Рассмотрим произвольное аффинное множество А

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

- ▶ Рассмотрим $\mathcal{A} = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b} \}$ и покажем, что оно аффинно по определению
 - ▶ Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, рассмотрим $\mathbf{z} = \theta \mathbf{x}_1 + (1 \theta) \mathbf{x}_2$
 - $ightharpoonup \mathbf{Az} = heta \mathbf{Ax}_1 + (1- heta)\mathbf{Ax}_2 = heta \mathbf{b} + (1- heta)\mathbf{b} = \mathbf{b}$, а значит $\mathcal A$ аффиннно
- Рассмотрим произвольное аффинное множество А
 - lacktriangle Для него существует подпространство $\mathcal{L} \parallel \mathcal{A}$

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

- ▶ Рассмотрим $\mathcal{A} = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b} \}$ и покажем, что оно аффинно по определению
 - ▶ Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, рассмотрим $\mathbf{z} = \theta \mathbf{x}_1 + (1 \theta) \mathbf{x}_2$
 - $ightharpoonup \mathbf{Az} = heta \mathbf{Ax}_1 + (1- heta)\mathbf{Ax}_2 = heta \mathbf{b} + (1- heta)\mathbf{b} = \mathbf{b}$, а значит \mathcal{A} аффиннно
- Рассмотрим произвольное аффинное множество А
 - lacktriangle Для него существует подпространство $\mathcal{L} \parallel \mathcal{A}$
 - ▶ Рассмотрим ортогональное подпространство \mathcal{L}^\perp и его базис $\mathbf{b}_1, \dots, \mathbf{b}_m$

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

- ▶ Рассмотрим $\mathcal{A} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ и покажем, что оно аффинно по определению
 - ▶ Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, рассмотрим $\mathbf{z} = \theta \mathbf{x}_1 + (1 \theta) \mathbf{x}_2$
 - $ightharpoonup \mathbf{Az} = \theta \mathbf{Ax}_1 + (1 \theta) \mathbf{Ax}_2 = \theta \mathbf{b} + (1 \theta) \mathbf{b} = \mathbf{b}$, а значит \mathcal{A} аффинню
- Рассмотрим произвольное аффинное множество А
 - lacktriangle Для него существует подпространство $\mathcal{L} \parallel \mathcal{A}$
 - ▶ Рассмотрим ортогональное подпространство \mathcal{L}^\perp и его базис $\mathbf{b}_1, \dots, \mathbf{b}_m$

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

- ▶ Рассмотрим $\mathcal{A} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ и покажем, что оно аффинно по определению
 - ▶ Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, рассмотрим $\mathbf{z} = \theta \mathbf{x}_1 + (1 \theta) \mathbf{x}_2$
 - $ightharpoonup \mathbf{Az} = heta \mathbf{Ax}_1 + (1- heta)\mathbf{Ax}_2 = heta \mathbf{b} + (1- heta)\mathbf{b} = \mathbf{b}$, а значит $\mathcal A$ аффиннно
- lacktriangle Рассмотрим произвольное аффинное множество ${\cal A}$
 - lacktriangle Для него существует подпространство $\mathcal{L} \parallel \mathcal{A}$
 - ▶ Рассмотрим ортогональное подпространство \mathcal{L}^\perp и его базис $\mathbf{b}_1,\dots,\mathbf{b}_m$
 - $\mathcal{L} = (\mathcal{L}^{\perp})^{\perp} = \{ \mathbf{x} \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = 0, \ i = 1, \dots, m \} = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = 0 \}$

Теорема Каратеодори

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из $\mathcal{X}.$

Теорема Каратеодори

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из $\mathcal{X}.$

Теорема Каратеодори

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

Доказательство

▶ Пусть $\mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}_i$, где $\alpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

- lacktriangle Пусть $\mathbf{x} = \sum_{i=1}^m lpha_i \mathbf{x}_i$, где $lpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1
- ▶ Покажем, как сделать одним слагаемым меньше

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

- ▶ Пусть $\mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}_i$, где $\alpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1
- Покажем, как сделать одним слагаемым меньше
- lacktriangle Если $lpha_j=0$, тогда \mathbf{x}_j можно исключить

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

- ▶ Пусть $\mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}_i$, где $\alpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1
- Покажем, как сделать одним слагаемым меньше
- lacktriangle Если $lpha_j=0$, тогда \mathbf{x}_j можно исключить
- ▶ Пусть все $\alpha_i > 0$

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

- ▶ Пусть $\mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}_i$, где $\alpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1
- Покажем, как сделать одним слагаемым меньше
- lacktriangle Если $lpha_j=0$, тогда \mathbf{x}_j можно исключить
- ▶ Пусть все $\alpha_i > 0$
- ▶ Так как m>n+1, то $\sum_{k=1}^m \gamma_k egin{bmatrix} \mathbf{x}_k \\ 1 \end{bmatrix}=0$ для некоторого набора γ_k не равных нулю одновременно

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

- ▶ Пусть $\mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}_i$, где $\alpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1
- Покажем, как сделать одним слагаемым меньше
- lacktriangle Если $lpha_j=0$, тогда \mathbf{x}_j можно исключить
- ▶ Пусть все $\alpha_i > 0$
- ▶ Так как m>n+1, то $\sum_{k=1}^m \gamma_k \begin{bmatrix} \mathbf{x}_k \\ 1 \end{bmatrix} = 0$ для некоторого набора γ_k не равных нулю одновременно
- ▶ Обозначим $au = \min_{\gamma_i>0} rac{lpha_i}{\gamma_i}$ и рассмотрим $\hat{lpha}_i = lpha_i au \gamma_i$

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

- ▶ Пусть $\mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}_i$, где $\alpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1
- Покажем, как сделать одним слагаемым меньше
- lacktriangle Если $lpha_j=0$, тогда \mathbf{x}_j можно исключить
- ▶ Пусть все $\alpha_i > 0$
- ▶ Так как m>n+1, то $\sum_{k=1}^m \gamma_k \begin{bmatrix} \mathbf{x}_k \\ 1 \end{bmatrix} = 0$ для некоторого набора γ_k не равных нулю одновременно
- ▶ Обозначим $au = \min_{\gamma_i > 0} rac{lpha_i}{\gamma_i}$ и рассмотрим $\hat{lpha}_i = lpha_i au \gamma_i$
- $\sum_{i=1}^{m} \hat{\alpha}_i = \sum_{i=1}^{m} \alpha_i \tau \sum_{i=1}^{m} \gamma_i = 1$

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

- lacktriangle Пусть $\mathbf{x} = \sum_{i=1}^m lpha_i \mathbf{x}_i$, где $lpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1
- ▶ Покажем, как сделать одним слагаемым меньше
- lacktriangle Если $lpha_j=0$, тогда \mathbf{x}_j можно исключить
- ▶ Пусть все $\alpha_i > 0$
- ▶ Так как m>n+1, то $\sum_{k=1}^m \gamma_k {\mathbf{x} \brack 1}=0$ для некоторого набора γ_k не равных нулю одновременно
- ▶ Обозначим $au = \min_{\gamma_i>0} rac{lpha_i}{\gamma_i}$ и рассмотрим $\hat{lpha}_i = lpha_i au\gamma_i$
- $\sum_{i=1}^{m} \hat{\alpha}_i = \sum_{i=1}^{m} \alpha_i \tau \sum_{i=1}^{m} \gamma_i = 1$
- $\sum_{i=1}^{m} \hat{\alpha}_i \mathbf{x}_i = \sum_{i=1}^{m} \alpha_i \mathbf{x}_i \tau \sum_{i=1}^{m} \gamma_i \mathbf{x}_i = \mathbf{x}$

Продолжение доказательства

▶ По построению существует j такой что $\hat{\alpha}_j = 0$, значит можно исключить \mathbf{x}_j

Продолжение доказательства

- ▶ По построению существует j такой что $\hat{\alpha}_j = 0$, значит можно исключить \mathbf{x}_j
- ightharpoonup Продолжая аналогично, сократим число слагаемых до n+1

Продолжение доказательства

- ▶ По построению существует j такой что $\hat{\alpha}_j = 0$, значит можно исключить \mathbf{x}_j
- ightharpoonup Продолжая аналогично, сократим число слагаемых до n+1

Упражнение

Докажите, что если $\mathcal{X}\subseteq\mathbb{R}^n$, то любая точка из $\mathrm{cone}\,(\mathcal{X})$ может быть представлена в виде конической комбинации не более чем n точек из \mathcal{X} .

Утверждение

Выпуклая оболочка компактного множества $\mathcal{G}\subseteq\mathbb{R}^n$ является компактом

Утверждение

Выпуклая оболочка компактного множества $\mathcal{G}\subseteq\mathbb{R}^n$ является компактом

Утверждение

Выпуклая оболочка компактного множества $\mathcal{G}\subseteq\mathbb{R}^n$ является компактом

Доказательство

▶ Пусть $f:\Delta_{n+1}\times\mathbb{R}^n\times\ldots\times\mathbb{R}^n\to\mathbb{R}^n$ такая функция, что $f(\alpha,\mathbf{x}_1,\ldots,\mathbf{x}_{n+1})=\sum_{i=1}^{n+1}\alpha_i\mathbf{x}_i$

Утверждение

Выпуклая оболочка компактного множества $\mathcal{G}\subseteq\mathbb{R}^n$ является компактом

- ▶ Пусть $f:\Delta_{n+1}\times\mathbb{R}^n\times\ldots\times\mathbb{R}^n\to\mathbb{R}^n$ такая функция, что $f(\alpha,\mathbf{x}_1,\ldots,\mathbf{x}_{n+1})=\sum_{i=1}^{n+1}\alpha_i\mathbf{x}_i$
- ▶ f непрерывна, Δ_{n+1} компакт

Утверждение

Выпуклая оболочка компактного множества $\mathcal{G}\subseteq\mathbb{R}^n$ является компактом

- ▶ Пусть $f:\Delta_{n+1}\times\mathbb{R}^n\times\ldots\times\mathbb{R}^n\to\mathbb{R}^n$ такая функция, что $f(\alpha,\mathbf{x}_1,\ldots,\mathbf{x}_{n+1})=\sum_{i=1}^{n+1}\alpha_i\mathbf{x}_i$
- ▶ f непрерывна, Δ_{n+1} компакт
- lacktriangle По теореме Каратеодори произвольный элемент $\mathbf{z}\in\mathrm{conv}\left(\mathcal{G}
 ight)$ можно представить в виде $\mathbf{z}=\sum_{i=1}^{n+1}lpha_{i}\mathbf{g}_{i}$, где $\mathbf{g}_{i}\in\mathcal{G}$

Утверждение

Выпуклая оболочка компактного множества $\mathcal{G}\subseteq\mathbb{R}^n$ является компактом

- ▶ Пусть $f:\Delta_{n+1}\times\mathbb{R}^n\times\ldots\times\mathbb{R}^n\to\mathbb{R}^n$ такая функция, что $f(\alpha,\mathbf{x}_1,\ldots,\mathbf{x}_{n+1})=\sum_{i=1}^{n+1}\alpha_i\mathbf{x}_i$
- ▶ f непрерывна, Δ_{n+1} компакт
- $f extbf{ iny}$ По теореме Каратеодори произвольный элемент ${f z}\in {
 m conv}\,(\mathcal G)$ можно представить в виде ${f z}=\sum_{i=1}^{n+1}lpha_i{f g}_i$, где ${f g}_i\in\mathcal G$
- $conv (\mathcal{G}) = f(\Delta_{n+1} \times \mathcal{G} \times \ldots \times \mathcal{G})$

Утверждение

Выпуклая оболочка компактного множества $\mathcal{G}\subseteq\mathbb{R}^n$ является компактом

- ▶ Пусть $f:\Delta_{n+1}\times\mathbb{R}^n\times\ldots\times\mathbb{R}^n\to\mathbb{R}^n$ такая функция, что $f(\alpha,\mathbf{x}_1,\ldots,\mathbf{x}_{n+1})=\sum_{i=1}^{n+1}\alpha_i\mathbf{x}_i$
- ▶ f непрерывна, Δ_{n+1} компакт
- lacktriangle По теореме Каратеодори произвольный элемент $\mathbf{z}\in\mathrm{conv}\left(\mathcal{G}
 ight)$ можно представить в виде $\mathbf{z}=\sum_{i=1}^{n+1}lpha_{i}\mathbf{g}_{i}$, где $\mathbf{g}_{i}\in\mathcal{G}$
- $conv (\mathcal{G}) = f(\Delta_{n+1} \times \mathcal{G} \times \ldots \times \mathcal{G})$
- Непрерывная функция отображает компакт в компакт

Внутренность

Внутренность множества

Внутренность множества ${\mathcal G}$ состоит из точек ${\mathcal G}$, таких что:

$$\operatorname{int}\left(\mathcal{G}\right)=\{\mathbf{x}\in\mathcal{G}\mid\exists\varepsilon>0,B(\mathbf{x},\varepsilon)\subset\mathcal{G}\},$$

где
$$B(\mathbf{x}, \varepsilon) = \{\mathbf{y} \mid \|\mathbf{x} - \mathbf{y}\|_2 \le \varepsilon\}$$

Q: приведите пример непустого выпуклого множества с пустой внутренностью

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

Доказательство

lacktriangledown $ext{dim}\,\mathcal{X}$ — это размерность аффинной оболочки \mathcal{X}

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangledown $\to \dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \mathrm{int}\,(\mathcal{X})$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangledown $\to \dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \mathrm{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangle $\dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \text{int}(\mathcal{X})$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \ge \dim B = n$. Тогда $\dim \mathcal{X} = n$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangle $\dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \mathrm{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \ge \dim B = n$. Тогда $\dim \mathcal{X} = n$
- ▶ Пусть $\dim \mathcal{X} = n$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangledown $\to \dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \text{int}(\mathcal{X})$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \geq \dim B = n$. Тогда $\dim \mathcal{X} = n$
- ▶ Пусть $\dim \mathcal{X} = n$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangledown $\to \dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \mathrm{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \geq \dim B = n$. Тогда $\dim \mathcal{X} = n$
- ▶ Пусть $\dim \mathcal{X} = n$

 - ightharpoonup Рассмотрим максимальный набор линейно независимых векторов $\{{f a}_1,\dots,{f a}_m\}$ лежащих в ${\cal X}$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangledown $\to \dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \mathrm{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \ge \dim B = n$. Тогда $\dim \mathcal{X} = n$
- ▶ Пусть $\dim \mathcal{X} = n$

 - ightharpoonup Рассмотрим максимальный набор линейно независимых векторов $\{{f a}_1,\dots,{f a}_m\}$ лежащих в ${\cal X}$
 - lacktriangle Тогда $\mathcal{X} \subseteq exttt{span}(\mathbf{a}_1,\ldots,\mathbf{a}_m)$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangledown $\to \dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \text{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \ge \dim B = n$. Тогда $\dim \mathcal{X} = n$
- ▶ Пусть $\dim \mathcal{X} = n$
 - $\dim \mathcal{X} = \dim \left(\mathcal{X} + \mathbf{c} \right) \to 0 \in \mathcal{X}$
 - ightharpoonup Рассмотрим максимальный набор линейно независимых векторов $\{{f a}_1,\dots,{f a}_m\}$ лежащих в ${\cal X}$
 - lacktriangle Тогда $\mathcal{X} \subseteq \mathtt{span}(\mathbf{a}_1, \dots, \mathbf{a}_m)$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangledown $\to \dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \text{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \ge \dim B = n$. Тогда $\dim \mathcal{X} = n$
- ▶ Пусть $\dim \mathcal{X} = n$

 - ▶ Рассмотрим максимальный набор линейно независимых векторов $\{{\bf a}_1,\dots,{\bf a}_m\}$ лежащих в ${\cal X}$
 - lacktriangle Тогда $\mathcal{X} \subseteq \mathtt{span}(\mathbf{a}_1, \dots, \mathbf{a}_m)$

 - $ightharpoonup conv (\mathbf{a}_1, \dots, \mathbf{a}_n, 0) \subset \mathcal{X}$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangle $\dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \mathrm{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \geq \dim B = n$. Тогда $\dim \mathcal{X} = n$
- ▶ Пусть $\dim \mathcal{X} = n$

 - Рассмотрим максимальный набор линейно независимых векторов $\{{\bf a}_1,\dots,{\bf a}_m\}$ лежащих в ${\cal X}$
 - lacktriangle Тогда $\mathcal{X} \subseteq \mathtt{span}(\mathbf{a}_1, \dots, \mathbf{a}_m)$
 - $ightharpoonup \dim \mathcal{X} = n \to m = n$
 - $ightharpoonup conv (\mathbf{a}_1, \dots, \mathbf{a}_n, 0) \subset \mathcal{X}$
 - ▶ Открытое множество $\{\sum_{i=1}^{n} \alpha_i \mathbf{a}_i \mid \alpha > 0, \sum_{i=1}^{m} \alpha_i < 1\} \subset \mathcal{X} \to \operatorname{int}(\mathcal{X}) \neq \emptyset$

Относительная внутренность и замыкание

Относительная внутренность

Относительной внутренностью множества ${\mathcal G}$ называют следующее множество:

$$\operatorname{relint}\left(\mathcal{G}\right) = \left\{\mathbf{x} \in \mathcal{G} \mid \exists \varepsilon > 0, B(\mathbf{x}, \varepsilon) \cap \operatorname{aff}\left(\mathcal{G}\right) \subseteq \mathcal{G}\right\}$$

Относительная внутренность и замыкание

Относительная внутренность

Относительной внутренностью множества ${\cal G}$ называют следующее множество:

relint
$$(\mathcal{G}) = \{ \mathbf{x} \in \mathcal{G} \mid \exists \varepsilon > 0, B(\mathbf{x}, \varepsilon) \cap \text{aff } (\mathcal{G}) \subseteq \mathcal{G} \}$$

Замыкание

Замыканием множества $\mathcal G$ называют множество $\mathrm{cl}\,(\mathcal G)=\bigcap_{r>0}\mathcal G(r)$, где $\mathcal G(r)$ — это множество точек, удалённых от $\mathcal G$ меньше чем на r. Также это множество совпадает с множеством всех предельных точек множества $\mathcal G$.

Теорема

Замыкание выпуклого множества есть выпуклое множество

Теорема

Замыкание выпуклого множества есть выпуклое множество

Теорема

Замыкание выпуклого множества есть выпуклое множество

Доказательство

▶ По определению $\operatorname{cl}\left(\mathcal{G}\right) = \bigcap_{r>0} \mathcal{G}(r)$

Теорема

Замыкание выпуклого множества есть выпуклое множество

- ▶ По определению $\operatorname{cl}\left(\mathcal{G}\right) = \bigcap_{r>0} \mathcal{G}(r)$
- \blacktriangleright Покажем, что $\mathcal{G}(r)$ выпуклое множество для фиксированного r

Теорема

Замыкание выпуклого множества есть выпуклое множество

- lacktriangle По определению $\operatorname{cl}\left(\mathcal{G}
 ight) = igcap_{r>0} \mathcal{G}(r)$
- ightharpoonup Покажем, что $\mathcal{G}(r)$ выпуклое множество для фиксированного r

Выпуклость замыкания

Теорема

Замыкание выпуклого множества есть выпуклое множество

- lacktriangle По определению $\operatorname{cl}\left(\mathcal{G}
 ight) = igcap_{r>0} \mathcal{G}(r)$
- ightharpoonup Покажем, что $\mathcal{G}(r)$ выпуклое множество для фиксированного r
- $ightharpoonup \mathcal{G}$ и B(0,r) выпуклые множества

Выпуклость замыкания

Теорема

Замыкание выпуклого множества есть выпуклое множество

- lacktriangle По определению $\operatorname{cl}\left(\mathcal{G}
 ight) = igcap_{r>0} \mathcal{G}(r)$
- ightharpoonup Покажем, что $\mathcal{G}(r)$ выпуклое множество для фиксированного r
- $ightharpoonup \mathcal{G}$ и B(0,r) выпуклые множества
- $ightharpoonup \mathcal{G}(r)$ выпуклое множество, как сумма Минковского выпуклых множеств

Выпуклость замыкания

Теорема

Замыкание выпуклого множества есть выпуклое множество

- lacktriangle По определению $\operatorname{cl}\left(\mathcal{G}
 ight) = igcap_{r>0} \mathcal{G}(r)$
- ightharpoonup Покажем, что $\mathcal{G}(r)$ выпуклое множество для фиксированного r
- $ightharpoonup \mathcal{G}$ и B(0,r) выпуклые множества
- $ightharpoonup \mathcal{G}(r)$ выпуклое множество, как сумма Минковского выпуклых множеств
- $ightharpoonup \operatorname{cl}(\mathcal{G})$ выпуклое множество как пересечение выпуклых множеств

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a\in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b\in\mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a,\mathbf b)\subset\mathrm{relint}\,(\mathcal X).$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a \in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b \in \mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a, \mathbf b) \subset \mathrm{relint}\,(\mathcal X).$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a\in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b\in\mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a,\mathbf b)\subset\mathrm{relint}\,(\mathcal X).$

Доказательство

▶ Пусть $\mathcal{A} = \mathrm{aff}\,(\mathcal{X})$, $\mathbf{c} = \alpha \mathbf{a} + (1 - \alpha) \mathbf{b}$ и $\alpha \in (0, 1)$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a\in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b\in\mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a,\mathbf b)\subset\mathrm{relint}\,(\mathcal X).$

- ▶ Пусть $\mathcal{A} = \operatorname{aff}(\mathcal{X})$, $\mathbf{c} = \alpha \mathbf{a} + (1 \alpha) \mathbf{b}$ и $\alpha \in (0, 1)$
- lacktriangle Покажем, что $\mathbf{c} \in \operatorname{relint}\left(\mathcal{X}
 ight)$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a \in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b \in \mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a, \mathbf b) \subset \mathrm{relint}\,(\mathcal X).$

- ▶ Пусть $\mathcal{A} = \operatorname{aff}(\mathcal{X})$, $\mathbf{c} = \alpha \mathbf{a} + (1 \alpha) \mathbf{b}$ и $\alpha \in (0, 1)$
- ▶ Покажем, что $\mathbf{c} \in \operatorname{relint}\left(\mathcal{X}\right)$
- ightharpoonup Выберем r>0 такой что $B({f a},r)\cap {\cal A}\subset {\cal X}$ и точку ${f b}'$ что $\|{f b}-{f b}'\|\leq rac{lpha r}{1-lpha}$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a\in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b\in\mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a,\mathbf b)\subset\mathrm{relint}\,(\mathcal X).$

- ▶ Пусть $\mathcal{A} = \operatorname{aff}(\mathcal{X})$, $\mathbf{c} = \alpha \mathbf{a} + (1 \alpha) \mathbf{b}$ и $\alpha \in (0, 1)$
- ▶ Покажем, что $\mathbf{c} \in \operatorname{relint}\left(\mathcal{X}\right)$
- lacktriangle Выберем r>0 такой что $B({f a},r)\cap {\cal A}\subset {\cal X}$ и точку ${f b}'$ что $\|{f b}-{f b}'\|\leq rac{lpha r}{1-lpha}$
- ► Пусть $B = \alpha B(\mathbf{a}, r) + (1 \alpha)\mathbf{b}'$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a \in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b \in \mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a, \mathbf b) \subset \mathrm{relint}\,(\mathcal X).$

- ▶ Пусть $\mathcal{A} = \mathrm{aff}\,(\mathcal{X})$, $\mathbf{c} = \alpha \mathbf{a} + (1 \alpha) \mathbf{b}$ и $\alpha \in (0, 1)$
- lacktriangle Покажем, что $\mathbf{c} \in \operatorname{relint}\left(\mathcal{X}\right)$
- lacktriangle Выберем r>0 такой что $B({f a},r)\cap {\cal A}\subset {\cal X}$ и точку ${f b}'$ что $\|{f b}-{f b}'\|\leq rac{lpha r}{1-lpha}$
- ► Пусть $B = \alpha B(\mathbf{a}, r) + (1 \alpha)\mathbf{b}'$
- ▶ Заметим, что справедливо равенство $B = B(\alpha {\bf a} + (1 \alpha) {\bf b}', \alpha r)$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a \in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b \in \mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a, \mathbf b) \subset \mathrm{relint}\,(\mathcal X)$.

- ▶ Пусть $\mathcal{A} = \operatorname{aff}(\mathcal{X})$, $\mathbf{c} = \alpha \mathbf{a} + (1 \alpha) \mathbf{b}$ и $\alpha \in (0, 1)$
- ▶ Покажем, что $\mathbf{c} \in \operatorname{relint}\left(\mathcal{X}\right)$
- lacktriangle Выберем r>0 такой что $B({f a},r)\cap {\cal A}\subset {\cal X}$ и точку ${f b}'$ что $\|{f b}-{f b}'\|\leq rac{lpha r}{1-lpha}$
- ► Пусть $B = \alpha B(\mathbf{a}, r) + (1 \alpha)\mathbf{b}'$
- ▶ Заметим, что справедливо равенство $B = B(\alpha \mathbf{a} + (1 \alpha) \mathbf{b}', \alpha r)$
- $\|\mathbf{c} (\alpha \mathbf{a} + (1 \alpha)\mathbf{b}')\| = \|(1 \alpha)(\mathbf{b} \mathbf{b}')\| \le \alpha r \to \mathbf{c} \in B$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a \in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b \in \mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a, \mathbf b) \subset \mathrm{relint}\,(\mathcal X).$

- ▶ Пусть $\mathcal{A} = \operatorname{aff}(\mathcal{X})$, $\mathbf{c} = \alpha \mathbf{a} + (1 \alpha) \mathbf{b}$ и $\alpha \in (0, 1)$
- lacktriangle Покажем, что ${f c} \in {
 m relint}\,({\mathcal X})$
- lacktriangle Выберем r>0 такой что $B({f a},r)\cap {\cal A}\subset {\cal X}$ и точку ${f b}'$ что $\|{f b}-{f b}'\|\leq rac{lpha r}{1-lpha}$
- ► Пусть $B = \alpha B(\mathbf{a}, r) + (1 \alpha)\mathbf{b}'$
- ▶ Заметим, что справедливо равенство $B = B(\alpha \mathbf{a} + (1 \alpha) \mathbf{b}', \alpha r)$
- $\|\mathbf{c} (\alpha \mathbf{a} + (1 \alpha) \mathbf{b}')\| = \|(1 \alpha)(\mathbf{b} \mathbf{b}')\| \le \alpha r \to \mathbf{c} \in B$
- $B \cap \mathcal{A} = \alpha(B(\mathbf{a}, r) \cap \mathcal{A}) + (1 \alpha)\mathbf{b}' \subset \alpha \mathcal{X} + (1 \alpha)\mathcal{X} \subset \mathcal{X}$

Относительная внутренность выпуклого множества — выпуклое множество

Относительная внутренность выпуклого множества — выпуклое множество

Относительная внутренность выпуклого множества — выпуклое множество

Доказательство

ightharpoonup relint $(\mathcal{X}) \subset \mathrm{cl}\,(\mathcal{X})$

Относительная внутренность выпуклого множества — выпуклое множество

- ightharpoonup relint $(\mathcal{X}) \subset \mathrm{cl}\,(\mathcal{X})$
- ▶ По предыдущей теореме выберем $\mathbf{x} \in \operatorname{relint}\left(\mathcal{X}\right), \mathbf{y} \in \operatorname{relint}\left(\mathcal{X}\right) \subset \operatorname{cl}\left(X\right)$

Относительная внутренность выпуклого множества — выпуклое множество

- ightharpoonup relint $(\mathcal{X}) \subset \operatorname{cl}(\mathcal{X})$
- ▶ По предыдущей теореме выберем $\mathbf{x} \in \operatorname{relint}(\mathcal{X}), \mathbf{y} \in \operatorname{relint}(\mathcal{X}) \subset \operatorname{cl}(X)$
- ▶ Точка вида $\alpha \mathbf{x} + (1 \alpha)\mathbf{y} \in \operatorname{relint}(\mathcal{X})$, $\alpha \in [0, 1]$

Теорема

Пусть $\mathcal X$ выпуклое множество. Тогда

- 1. $\operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) = \operatorname{cl}\left(\mathcal{X}\right)$
- 2. relint $(cl(\mathcal{X})) = relint(\mathcal{X})$

Теорема

Пусть $\mathcal X$ выпуклое множество. Тогда

- 1. $\operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) = \operatorname{cl}\left(\mathcal{X}\right)$
- 2. relint $(cl(\mathcal{X})) = relint(\mathcal{X})$

Теорема

Пусть $\mathcal X$ выпуклое множество. Тогда

- 1. $\operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) = \operatorname{cl}\left(\mathcal{X}\right)$
- 2. relint $(cl(\mathcal{X})) = relint(\mathcal{X})$

1a relint
$$(\mathcal{X}) \subset \mathcal{X} \Rightarrow \operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) \subset \operatorname{cl}\left(\mathcal{X}\right)$$

Теорема

Пусть ${\mathcal X}$ выпуклое множество. Тогда

- 1. $\operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) = \operatorname{cl}\left(\mathcal{X}\right)$
- 2. relint $(cl(\mathcal{X})) = relint(\mathcal{X})$

- 1a relint $(\mathcal{X}) \subset \mathcal{X} \Rightarrow \operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) \subset \operatorname{cl}\left(\mathcal{X}\right)$
- 1b Пусть $\mathbf{x}_0 \in \operatorname{relint}(\mathcal{X})$, рассмотрим $\mathbf{x} \in \operatorname{cl}(\mathcal{X})$. Тогда $(\mathbf{x}_0, \mathbf{x}) \subset \operatorname{relint}(\mathcal{X})$. Значит $\mathbf{x} \in \operatorname{relint}(\mathcal{X})$ или $\mathbf{x} \in \partial \operatorname{relint}(\mathcal{X})$. Следовательно, $\mathbf{x} \in \operatorname{cl}(\operatorname{relint}(\mathcal{X}))$

Теорема

Пусть $\mathcal X$ выпуклое множество. Тогда

- 1. $\operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) = \operatorname{cl}\left(\mathcal{X}\right)$
- 2. relint $(cl(\mathcal{X})) = relint(\mathcal{X})$

- 1a relint $(\mathcal{X}) \subset \mathcal{X} \Rightarrow \operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) \subset \operatorname{cl}\left(\mathcal{X}\right)$
- 1b Пусть $\mathbf{x}_0 \in \operatorname{relint}(\mathcal{X})$, рассмотрим $\mathbf{x} \in \operatorname{cl}(\mathcal{X})$. Тогда $(\mathbf{x}_0, \mathbf{x}) \subset \operatorname{relint}(\mathcal{X})$. Значит $\mathbf{x} \in \operatorname{relint}(\mathcal{X})$ или $\mathbf{x} \in \partial \operatorname{relint}(\mathcal{X})$. Следовательно, $\mathbf{x} \in \operatorname{cl}(\operatorname{relint}(\mathcal{X}))$
- 2a $\mathcal{X} \subset \operatorname{cl}(\mathcal{X}) \Rightarrow \operatorname{relint}(\mathcal{X}) \subset \operatorname{relint}(\operatorname{cl}(\mathcal{X}))$

Теорема

Пусть \mathcal{X} выпуклое множество. Тогда

- 1. $\operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) = \operatorname{cl}\left(\mathcal{X}\right)$
- 2. relint $(\operatorname{cl}(\mathcal{X})) = \operatorname{relint}(\mathcal{X})$

- 1a relint $(\mathcal{X}) \subset \mathcal{X} \Rightarrow \operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) \subset \operatorname{cl}\left(\mathcal{X}\right)$
- 1b Пусть $\mathbf{x}_0 \in \operatorname{relint}(\mathcal{X})$, рассмотрим $\mathbf{x} \in \operatorname{cl}(\mathcal{X})$. Тогда $(\mathbf{x}_0, \mathbf{x}) \subset \operatorname{relint}(\mathcal{X})$. Значит $\mathbf{x} \in \operatorname{relint}(\mathcal{X})$ или $\mathbf{x} \in \partial \operatorname{relint}(\mathcal{X})$. Следовательно, $\mathbf{x} \in \operatorname{cl}(\operatorname{relint}(\mathcal{X}))$
- 2a $\mathcal{X} \subset \operatorname{cl}(\mathcal{X}) \Rightarrow \operatorname{relint}(\mathcal{X}) \subset \operatorname{relint}(\operatorname{cl}(\mathcal{X}))$
- 2b Пусть $\mathbf{x} \in \mathrm{relint}\,(\mathrm{cl}\,(\mathcal{X}))$, рассмотрим точку $\mathbf{y}_{\alpha} = (1-\alpha)\mathbf{x}_0 + \alpha\mathbf{x}$ при $\alpha>1$, тогда $\alpha\to 1, \mathbf{y}_{\alpha}\to \mathbf{x}$. Выберем достаточно близкое к 1 α_0 , для которого $\mathbf{y}_{\alpha_0}\in\mathrm{cl}\,(\mathcal{X})$. Тогда $\mathbf{x}=\frac{1}{\alpha_0}\mathbf{y}_{\alpha_0}+\left(1-\frac{1}{\alpha_0}\right)\mathbf{x}_0\in\mathrm{relint}\,(\mathcal{X})$

Главное в первой части

Критерий аффинности

Главное в первой части

- Критерий аффинности
- ▶ Топологические свойства выпуклых множеств

Главное в первой части

- Критерий аффинности
- ▶ Топологические свойства выпуклых множеств
- Относительная внутренность и замыкание

Отделимость

Определение

▶ Множества \mathcal{A}, \mathcal{B} называются отделимыми, если существует гиперплоскость $\{\mathbf{x} \mid \mathbf{a}^{\top}\mathbf{x} = b\}$ такая что $\mathbf{a}^{\top}\mathbf{x} \leq b \leq \mathbf{a}^{\top}\mathbf{y}$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$ и $\mathbf{a}^{\top}\mathbf{z} \neq b$ для произвольного $\mathbf{z} \in \mathcal{A} \cup \mathcal{B}$

Отделимость

Определение

- ▶ Множества \mathcal{A}, \mathcal{B} называются отделимыми, если существует гиперплоскость $\{\mathbf{x} \mid \mathbf{a}^{\top}\mathbf{x} = b\}$ такая что $\mathbf{a}^{\top}\mathbf{x} \leq b \leq \mathbf{a}^{\top}\mathbf{y}$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$ и $\mathbf{a}^{\top}\mathbf{z} \neq b$ для произвольного $\mathbf{z} \in \mathcal{A} \cup \mathcal{B}$
- Множества \mathcal{A}, \mathcal{B} называются **строго** отделимыми, если существует гиперплоскость $\{\mathbf{x} \mid \mathbf{a}^{\top}\mathbf{x} = b\}$ и числа $b_1 < b < b_2$ такие что $\mathbf{a}^{\top}\mathbf{x} \le b_1 < b_2 \le \mathbf{a}^{\top}\mathbf{y}$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$

Теорема

Пусть \mathcal{A},\mathcal{B} непустые подмножества \mathbb{R}^n . Тогда

- 1. \mathcal{A} и \mathcal{B} отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$ и $\inf_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \sup_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- 2. \mathcal{A} и \mathcal{B} **строго** отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

Теорема

Пусть \mathcal{A},\mathcal{B} непустые подмножества \mathbb{R}^n . Тогда

- 1. \mathcal{A} и \mathcal{B} отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$ и $\inf_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \sup_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- 2. \mathcal{A} и \mathcal{B} **строго** отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

Теорема

Пусть \mathcal{A}, \mathcal{B} непустые подмножества \mathbb{R}^n . Тогда

- 1. \mathcal{A} и \mathcal{B} отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$ и $\inf_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \sup_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- 2. \mathcal{A} и \mathcal{B} **строго** отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

Доказательство

▶ Пусть выполнены условия в 1. Тогда выберем b что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq b \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

Теорема

Пусть \mathcal{A}, \mathcal{B} непустые подмножества \mathbb{R}^n . Тогда

- 1. \mathcal{A} и \mathcal{B} отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$ и $\inf_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \sup_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- 2. \mathcal{A} и \mathcal{B} **строго** отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

- ▶ Пусть выполнены условия в 1. Тогда выберем b что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq b \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- ▶ Тогда $\langle \mathbf{c}, \mathbf{x} \rangle \leq b$ и $\langle \mathbf{c}, \mathbf{y} \rangle \geq b$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$

Теорема

Пусть \mathcal{A},\mathcal{B} непустые подмножества \mathbb{R}^n . Тогда

- 1. \mathcal{A} и \mathcal{B} отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$ и $\inf_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \sup_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- 2. \mathcal{A} и \mathcal{B} **строго** отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

- ▶ Пусть выполнены условия в 1. Тогда выберем b что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq b \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- ▶ Тогда $\langle \mathbf{c}, \mathbf{x} \rangle \leq b$ и $\langle \mathbf{c}, \mathbf{y} \rangle \geq b$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$
- ▶ Также в силу второго условия $\langle \mathbf{c}, \mathbf{x} \rangle \neq b$ для $\mathbf{x} \in \mathcal{A} \cup \mathcal{B}$. Таким образом, множества отделимы

Теорема

Пусть \mathcal{A},\mathcal{B} непустые подмножества \mathbb{R}^n . Тогда

- 1. \mathcal{A} и \mathcal{B} отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$ и $\inf_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \sup_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- 2. \mathcal{A} и \mathcal{B} **строго** отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

- ▶ Пусть выполнены условия в 1. Тогда выберем b что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq b \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- ▶ Тогда $\langle \mathbf{c}, \mathbf{x} \rangle \leq b$ и $\langle \mathbf{c}, \mathbf{y} \rangle \geq b$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$
- ▶ Также в силу второго условия $\langle \mathbf{c}, \mathbf{x} \rangle \neq b$ для $\mathbf{x} \in \mathcal{A} \cup \mathcal{B}$. Таким образом, множества отделимы
- ▶ Пусть множества \mathcal{A}, \mathcal{B} отделимы. Тогда $\langle \mathbf{c}, \mathbf{x} \rangle \leq b$ и $\langle \mathbf{c}, \mathbf{y} \rangle \geq b$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$

Теорема

Пусть \mathcal{A}, \mathcal{B} непустые подмножества \mathbb{R}^n . Тогда

- 1. \mathcal{A} и \mathcal{B} отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$ и $\inf_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \sup_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- 2. \mathcal{A} и \mathcal{B} **строго** отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

- ▶ Пусть выполнены условия в 1. Тогда выберем b что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq b \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- ▶ Тогда $\langle \mathbf{c}, \mathbf{x} \rangle \leq b$ и $\langle \mathbf{c}, \mathbf{y} \rangle \geq b$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$
- ▶ Также в силу второго условия $\langle \mathbf{c}, \mathbf{x} \rangle \neq b$ для $\mathbf{x} \in \mathcal{A} \cup \mathcal{B}$. Таким образом, множества отделимы
- ▶ Пусть множества \mathcal{A}, \mathcal{B} отделимы. Тогда $\langle \mathbf{c}, \mathbf{x} \rangle \leq b$ и $\langle \mathbf{c}, \mathbf{y} \rangle \geq b$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$
- ► Так как $\langle \mathbf{c}, \mathbf{z} \rangle \neq b$, $\mathbf{z} \in \mathcal{A} \cup \mathcal{B}$, то найдутся $\mathbf{x}_1 \in \mathcal{A}, \mathbf{y}_1 \in \mathcal{B}$, что $\langle \mathbf{c}, \mathbf{x}_1 \rangle < \langle \mathbf{c}, \mathbf{y}_1 \rangle$ и выполнено второе условие

▶ Пусть выполнены условия 2. Тогда выберем b так что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < b < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

- ▶ Пусть выполнены условия 2. Тогда выберем b так что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < b < \inf_{\mathbf{v} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- ightharpoonup Значит можно найти числа b_1, b_2 , для которых будет выполнено условие в определении строгой отделимости

- ▶ Пусть выполнены условия 2. Тогда выберем b так что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < b < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- ightharpoonup Значит можно найти числа b_1, b_2 , для которых будет выполнено условие в определении строгой отделимости
- ▶ Пусть множества \mathcal{A}, \mathcal{B} строго отделимы. Тогда из определения сразу следует выполнение условия 2

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

Доказательство

▶ Если гиперплоскость строго отделяет \mathbf{a} от $\mathrm{cl}\,(\mathcal{X})$, то она строго отделяет \mathbf{a} от \mathcal{X}

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

- ightharpoonup Если гиперплоскость строго отделяет ${f a}$ от ${
 m cl}\,({\mathcal X})$, то она строго отделяет ${f a}$ от ${\mathcal X}$
- lacktriangle Рассматриваем ${\mathcal X}$ выпуклое и замкнутое

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

- ightharpoonup Если гиперплоскость строго отделяет ${f a}$ от ${
 m cl}\,({\mathcal X})$, то она строго отделяет ${f a}$ от ${\mathcal X}$
- lacktriangle Рассматриваем ${\mathcal X}$ выпуклое и замкнутое
- ▶ Пусть $d(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|_2^2$

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

- ightharpoonup Если гиперплоскость строго отделяет ${f a}$ от ${
 m cl}\,({\mathcal X})$, то она строго отделяет ${f a}$ от ${\mathcal X}$
- ightharpoonup Рассматриваем ${\mathcal X}$ выпуклое и замкнутое
- ▶ Пусть $d(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|_2^2$
- lacktriangle Выберем r>0 так, чтобы шар $B({f a},r)$ пересекал ${\mathcal X}$

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

- ightharpoonup Если гиперплоскость строго отделяет ${f a}$ от ${
 m cl}\,({\mathcal X})$, то она строго отделяет ${f a}$ от ${\mathcal X}$
- lacktriangle Рассматриваем ${\mathcal X}$ выпуклое и замкнутое
- ▶ Пусть $d(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|_2^2$
- lacktriangle Выберем r>0 так, чтобы шар $B(\mathbf{a},r)$ пересекал $\mathcal X$
- lacktriangle Тогда множество $\mathcal{X}\cap B(\mathbf{a},r)$ является компактом

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

- ightharpoonup Если гиперплоскость строго отделяет ${f a}$ от ${
 m cl}\,({\mathcal X})$, то она строго отделяет ${f a}$ от ${\mathcal X}$
- lacktriangle Рассматриваем ${\mathcal X}$ выпуклое и замкнутое
- ightharpoonup Пусть $d(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|_2^2$
- lacktriangle Выберем r>0 так, чтобы шар $B({f a},r)$ пересекал ${\mathcal X}$
- lacktriangle Тогда множество $\mathcal{X}\cap B(\mathbf{a},r)$ является компактом
- lacktriangle Функция $d(\mathbf{x})$ принимает на нём минимальное значение в точке \mathbf{x}_0

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

- ightharpoonup Если гиперплоскость строго отделяет ${f a}$ от ${
 m cl}\,({\mathcal X})$, то она строго отделяет ${f a}$ от ${\mathcal X}$
- lacktriangle Рассматриваем ${\mathcal X}$ выпуклое и замкнутое
- ightharpoonup Пусть $d(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|_2^2$
- lacktriangle Выберем r>0 так, чтобы шар $B({f a},r)$ пересекал ${\cal X}$
- lacktriangle Тогда множество $\mathcal{X}\cap B(\mathbf{a},r)$ является компактом
- lacktriangle Функция $d(\mathbf{x})$ принимает на нём минимальное значение в точке \mathbf{x}_0
- ▶ Значит $d(\mathbf{x}) \ge d(\mathbf{x}_0)$ для всех $\mathbf{x} \in \mathcal{X}$

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

- ightharpoonup Если гиперплоскость строго отделяет ${f a}$ от ${
 m cl}\,({\mathcal X})$, то она строго отделяет ${f a}$ от ${\mathcal X}$
- ightharpoonup Рассматриваем $\mathcal X$ выпуклое и замкнутое
- ▶ Пусть $d(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|_2^2$
- lacktriangle Выберем r>0 так, чтобы шар $B({f a},r)$ пересекал ${\mathcal X}$
- lacktriangle Тогда множество $\mathcal{X}\cap B(\mathbf{a},r)$ является компактом
- lacktriangle Функция $d(\mathbf{x})$ принимает на нём минимальное значение в точке \mathbf{x}_0
- ▶ Значит $d(\mathbf{x}) \ge d(\mathbf{x}_0)$ для всех $\mathbf{x} \in \mathcal{X}$
- ▶ Покажем, что для $\mathbf{c}=\mathbf{a}-\mathbf{x}_0$ выполнено $\langle \mathbf{c},\mathbf{x}-\mathbf{x}_0\rangle \leq 0$ для всех $\mathbf{x}\in\mathcal{X}$

lacktriangle Пусть найдётся ${f x}_1 \in \mathcal{X}$ такой что $\langle {f c}, {f x}_1 - {f x}_0
angle > 0$

- ▶ Пусть найдётся $\mathbf{x}_1 \in \mathcal{X}$ такой что $\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0 \rangle > 0$
- ▶ Рассмотрим точку $\mathbf{x}(\alpha) = \alpha \mathbf{x}_1 + (1-\alpha) \mathbf{x}_0 \in \mathcal{X}$, $\alpha \in [0,1]$

- ▶ Пусть найдётся $\mathbf{x}_1 \in \mathcal{X}$ такой что $\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0 \rangle > 0$
- ▶ Рассмотрим точку $\mathbf{x}(\alpha) = \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_0 \in \mathcal{X}$, $\alpha \in [0, 1]$
- ▶ Тогда $f(\alpha) = d(\mathbf{x}(\alpha)) = \|\mathbf{x}(\alpha) \mathbf{a}\|_2^2$

- lacktriangle Пусть найдётся ${f x}_1 \in \mathcal{X}$ такой что $\langle {f c}, {f x}_1 {f x}_0
 angle > 0$
- ▶ Рассмотрим точку $\mathbf{x}(\alpha) = \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_0 \in \mathcal{X}$, $\alpha \in [0, 1]$
- ▶ Тогда $f(\alpha) = d(\mathbf{x}(\alpha)) = \|\mathbf{x}(\alpha) \mathbf{a}\|_2^2$
- ▶ Вычислим $f'(0) = -2\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0 \rangle < 0$

- lacktriangle Пусть найдётся $\mathbf{x}_1 \in \mathcal{X}$ такой что $\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0
 angle > 0$
- ▶ Рассмотрим точку $\mathbf{x}(\alpha) = \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_0 \in \mathcal{X}$, $\alpha \in [0, 1]$
- ► Тогда $f(\alpha) = d(\mathbf{x}(\alpha)) = \|\mathbf{x}(\alpha) \mathbf{a}\|_2^2$
- ▶ Вычислим $f'(0) = -2\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0 \rangle < 0$
- lacktriangle Значит для достаточно малого lpha выполнено $d(\mathbf{x}(lpha)) < d(\mathbf{x}_0)$ противоречие

- lacktriangle Пусть найдётся ${f x}_1 \in \mathcal{X}$ такой что $\langle {f c}, {f x}_1 {f x}_0
 angle > 0$
- ▶ Рассмотрим точку $\mathbf{x}(\alpha) = \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_0 \in \mathcal{X}$, $\alpha \in [0, 1]$
- ▶ Тогда $f(\alpha) = d(\mathbf{x}(\alpha)) = \|\mathbf{x}(\alpha) \mathbf{a}\|_2^2$
- ▶ Вычислим $f'(0) = -2\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0 \rangle < 0$
- lacktriangle Значит для достаточно малого lpha выполнено $d(\mathbf{x}(lpha)) < d(\mathbf{x}_0)$ противоречие
- ▶ Значит $\langle \mathbf{c}, \mathbf{x} \mathbf{x}_0 \rangle \leq 0$ для всех $\mathbf{x} \in \mathcal{X}$

- lacktriangle Пусть найдётся $\mathbf{x}_1 \in \mathcal{X}$ такой что $\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0
 angle > 0$
- ▶ Рассмотрим точку $\mathbf{x}(\alpha) = \alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_0 \in \mathcal{X}$, $\alpha \in [0,1]$
- ► Тогда $f(\alpha) = d(\mathbf{x}(\alpha)) = \|\mathbf{x}(\alpha) \mathbf{a}\|_2^2$
- ▶ Вычислим $f'(0) = -2\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0 \rangle < 0$
- lacktriangle Значит для достаточно малого lpha выполнено $d(\mathbf{x}(lpha)) < d(\mathbf{x}_0)$ противоречие
- ▶ Значит $\langle \mathbf{c}, \mathbf{x} \mathbf{x}_0 \rangle \leq 0$ для всех $\mathbf{x} \in \mathcal{X}$
- lacktriangle Следоватиельно, $\langle \mathbf{c}, \mathbf{x}
 angle \leq \langle \mathbf{c}, \mathbf{x}_0
 angle = \langle \mathbf{c}, \mathbf{a}
 angle \|\mathbf{c}\|_2^2$

- lacktriangle Пусть найдётся $\mathbf{x}_1 \in \mathcal{X}$ такой что $\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0
 angle > 0$
- ▶ Рассмотрим точку $\mathbf{x}(\alpha) = \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_0 \in \mathcal{X}$, $\alpha \in [0, 1]$
- ► Тогда $f(\alpha) = d(\mathbf{x}(\alpha)) = \|\mathbf{x}(\alpha) \mathbf{a}\|_2^2$
- ▶ Вычислим $f'(0) = -2\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0 \rangle < 0$
- lacktriangle Значит для достаточно малого lpha выполнено $d(\mathbf{x}(lpha)) < d(\mathbf{x}_0)$ противоречие
- ▶ Значит $\langle \mathbf{c}, \mathbf{x} \mathbf{x}_0 \rangle \leq 0$ для всех $\mathbf{x} \in \mathcal{X}$
- lacktriangle Следоватиельно, $\langle \mathbf{c}, \mathbf{x}
 angle \leq \langle \mathbf{c}, \mathbf{x}_0
 angle = \langle \mathbf{c}, \mathbf{a}
 angle \|\mathbf{c}\|_2^2$
- ightharpoonup И наконец $\sup_{\mathbf{x}\in\mathcal{X}}\langle\mathbf{c},\mathbf{x}
 angle <\langle\mathbf{c},\mathbf{a}
 angle$ критерий сильной отделимости

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- 1. Множество $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}$ непусто
- 2. Существует вектор \mathbf{p} такой что $\mathbf{p}^{\top}\mathbf{A} \geq 0$ и $\mathbf{p}^{\top}\mathbf{b} < 0$

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- 1. Множество $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq 0\}$ непусто
- 2. Существует вектор \mathbf{p} такой что $\mathbf{p}^{\top}\mathbf{A} \geq 0$ и $\mathbf{p}^{\top}\mathbf{b} < 0$

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- 1. Множество $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq 0\}$ непусто
- 2. Существует вектор \mathbf{p} такой что $\mathbf{p}^{\top}\mathbf{A} \geq 0$ и $\mathbf{p}^{\top}\mathbf{b} < 0$

Доказательство

▶ Первое условие означает, что ${\bf b}$ лежит в конусе C, образованном столбцами матрицы ${\bf A}=[{\bf a}_1,\dots,{\bf a}_m]$

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- 1. Множество $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq 0\}$ непусто
- 2. Существует вектор \mathbf{p} такой что $\mathbf{p}^{\top}\mathbf{A} \geq 0$ и $\mathbf{p}^{\top}\mathbf{b} < 0$

- ▶ Первое условие означает, что ${\bf b}$ лежит в конусе C, образованном столбцами матрицы ${\bf A}=[{\bf a}_1,\ldots,{\bf a}_m]$
- ► Если это не так, то существует гиперплоскость, которая *строго* отделяет конус от точки b:

$$\mathbf{c}^{\top}\mathbf{y} < d, \ \mathbf{y} \in C \quad \mathbf{c}^{\top}\mathbf{b} > d.$$

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- 1. Множество $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}$ непусто
- 2. Существует вектор \mathbf{p} такой что $\mathbf{p}^{\top}\mathbf{A} \geq 0$ и $\mathbf{p}^{\top}\mathbf{b} < 0$

Доказательство

- ▶ Первое условие означает, что ${\bf b}$ лежит в конусе C, образованном столбцами матрицы ${\bf A}=[{\bf a}_1,\ldots,{\bf a}_m]$
- ► Если это не так, то существует гиперплоскость, которая *строго* отделяет конус от точки **b**:

$$\mathbf{c}^{\top} \mathbf{y} < d, \ \mathbf{y} \in C \quad \mathbf{c}^{\top} \mathbf{b} > d.$$

▶ Поскольку $0 \in C$, то d > 0. Также $\mathbf{a}_i \in C \Rightarrow \alpha \mathbf{a}_i \in C \alpha > 0$

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- 1. Множество $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}$ непусто
- 2. Существует вектор \mathbf{p} такой что $\mathbf{p}^{\top}\mathbf{A} \geq 0$ и $\mathbf{p}^{\top}\mathbf{b} < 0$

- ▶ Первое условие означает, что ${f b}$ лежит в конусе C, образованном столбцами матрицы ${f A}=[{f a}_1,\dots,{f a}_m]$
- ► Если это не так, то существует гиперплоскость, которая *строго* отделяет конус от точки **b**:

$$\mathbf{c}^{\top} \mathbf{y} < d, \ \mathbf{y} \in C \quad \mathbf{c}^{\top} \mathbf{b} > d.$$

- ▶ Поскольку $0 \in C$, то d>0. Также $\mathbf{a}_i \in C \Rightarrow \alpha \mathbf{a}_i \in C \ \alpha>0$
- ▶ Значит $\mathbf{c}^{\top} \alpha \mathbf{a}_i < d \Rightarrow \mathbf{c}^{\top} \mathbf{a}_i < d/\alpha$. При $\alpha \to \infty$, $\mathbf{c}^{\top} \mathbf{a}_i \leq 0$

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- 1. Множество $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}$ непусто
- 2. Существует вектор \mathbf{p} такой что $\mathbf{p}^{\top}\mathbf{A} \geq 0$ и $\mathbf{p}^{\top}\mathbf{b} < 0$

- Первое условие означает, что b лежит в конусе C,
 образованном столбцами матрицы $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_m]$
- ► Если это не так, то существует гиперплоскость, которая *строго* отделяет конус от точки **b**:

$$\mathbf{c}^{\top} \mathbf{y} < d, \ \mathbf{y} \in C \quad \mathbf{c}^{\top} \mathbf{b} > d.$$

- ▶ Поскольку $0 \in C$, то d>0. Также $\mathbf{a}_i \in C \Rightarrow \alpha \mathbf{a}_i \in C \ \alpha>0$
- ▶ Значит $\mathbf{c}^{\top} \alpha \mathbf{a}_i < d \Rightarrow \mathbf{c}^{\top} \mathbf{a}_i < d / \alpha$. При $\alpha \to \infty$, $\mathbf{c}^{\top} \mathbf{a}_i \leq 0$
- lacktriangle Таким образом, ${f p}=-{f c}$ и выполнено второе условие

Критерий отделимости выпуклых множеств

Теорема

Два выпуклых множества отделимы, iff их относительные внутренности не пересекаются

Критерий отделимости выпуклых множеств

Теорема

Два выпуклых множества отделимы, iff их относительные внутренности не пересекаются

Признак отделимости

Пусть $\mathcal A$ и $\mathcal B$ — выпуклые и непересекающиеся множества. Тогда существует разделяющая их гиперплоскость.

Опорная гиперплоскость

Определение

Гиперплоскость называется опорной в точке \mathbf{x}_0 к множеству \mathcal{X} , если она отделяет множество и точку, то есть выполнено $\langle \mathbf{c}, \mathbf{x}_0 \rangle = \inf_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{c}, \mathbf{x} \rangle$ и $\langle \mathbf{c}, \mathbf{x}_0 \rangle < \sup_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{c}, \mathbf{x} \rangle$

Опорная гиперплоскость

Определение

Гиперплоскость называется опорной в точке \mathbf{x}_0 к множеству \mathcal{X} , если она отделяет множество и точку, то есть выполнено $\langle \mathbf{c}, \mathbf{x}_0 \rangle = \inf_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{c}, \mathbf{x} \rangle$ и $\langle \mathbf{c}, \mathbf{x}_0 \rangle < \sup_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{c}, \mathbf{x} \rangle$

Критерий существования

Если $\mathbf{x}_0 \in \mathcal{X}$ точка относительной границы множества, \mathcal{X} выпуклое множество, тогда существует опорная гиперплоскость в точке \mathbf{x}_0 к множеству \mathcal{X} .

Главное во второй части

- Отделимость множеств
- Лемма Фаркаша
- Опорная гиперплоскость