Proyecto – Parte 1

Resumen:

Fecha de entrega	Jueves 27 de mayo de 2021 (antes de la media noche)
Valor de la nota	10 %
Entregable	Un reporte en formato <u>IEEE</u> (en pdf), código funte

Lo que debe realizar

A usted se le dara una descripción de un sistema, para dicho sistema usted debe:

- 1. Describir por medio de un diagrama de bloques una arquitectura para implementar dicho sistema optimizado en area.
- 2. Describir por medio de un diagrama de bloques una arquitectura para implementar dicho sistema optimizado en desempeño.
- 3. Crear un modelo de sistema para cualquiera de las dos arquitecturas utilizando el lenguaje de programación de su preferencia (python, c++, perl, go, otro).

Consideraciones:

- Se puede realizar de forma individual o en grupos de dos o 3 personas
- Utilice una sección para cada arquitectura.
- Incluya el diagrama de bloques de cada arquitura.
- Explique porque considera que la arquitectura en específico esta optimizada en area o desempeño.
- Para el modelo de sistema. Incluya comentarios dentro del código fuente, no olvide modularizar su código.
- En el código recordar el tamaño de tanto los operandos como resultados son de un byte.
- Incluya resultados, demostrando que su modelo de sistema funciona.
- No olvide incluir las referencias bibliograficas, si las utilizó.
- El reporte debe ser un pdf utilzando el formato <u>IEEE</u>.
- Debe subir el pdf y el cógico fuente del modelo de sistema a mediación virtual.

Evaluación:

Rubro	Valor
Arquitectura optimizada en área	30 %
Arquitectura optimizada en desempeño	30 %
Modelo de sistema	40 %
Total	100%

Rubros opcionales (% adicional a la nota de este proyecto):

- Crear un modelo de sistema para la otra arquitectura. 10% adicional
- Explicar cual es el papel de un sistema como el diseñado en el contexto de las criptomonedas, cuales serías los objectivos de optimización más importantes y que problemas están generando las criptomonedas en el ecosistema de hardware. 10% adicional

Descripción del sistema

Existe una función "micro_ucr_hash", que toma como entrada una sequencia de 16 bytes y genera una salida de 3 bytes:

Es importante destacar que no es posible regenerar la entrada a partir de la salida.

El sistema va a recibir un bloque de 12 bits y debe adjuntar alguna combinacion de 4 bytes, que llamaremeos el *Nonce*, que logre generar una salida donde los primeros dos bytes sean menores a un *target*. Por ejemplo si el target es 10, un *Nonce* valido puede ser [0x00, 0x00, 0x01, 0xC1] ya que genera una salida donde los dos primeros bytes son 0x07 y 0x09, menores a 10.

En resumen, el sistema va a recibir un *bloque* de 12 bytes y un *target* de 1 byte, debe empezar a procesar cuando la entrada *inicio* se active. Al final el sistema debe retornar un *bounty* e indicar que el proceso se completo activando la salida *terminado*.

Función micro_ucr_hash (en todas las operaciones estamos trabajando con bytes):

1. Recibe como entrada un bloque de 16 bytes, el orden de los bytes es little endian:

```
bloque[0:15] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
```

2. Inicializar 32 variables W (tamaño un byte) donde:

```
W[i] = bloque[i] para 0 \le i \le 15

W[i] = W[i-3] | W[i-9] ^ W[i-14] para 16 \le i \le 31
```

3. Inicializar tres variables:

```
H[0] = 0x01
```

H[1] = 0x89

H[2] = 0xfe

4. Iterar 32 veces haciendo lo siguiente:

$$a = H[0]$$

b = H[1]

c = H[2]

Si 0 <= iteracion <= 16:

$$k = 0x99$$

$$x = a \wedge b$$

Si 17 <= iteracion <= 31:

$$k = 0xa1$$

$$x = a \mid b$$

$$b = c << 4$$

$$c = x + k + W[iteracion]$$

5. En la ultima iteración:

$$H[0] = H[0] + a$$

$$H[1] = H[1] + b$$

$$H[2] = H[2] + c$$

6. La salida sería la concatenación de los valores de H de la última iteración: [H[0], H[1], H[2]]

Ejemplos de la función hash:

Bloque										micro	_hash							
0x39	0x7d	0x9f	0x2f	0x40	0xca	0x9e	0x6c	0x6b	0x1f	0x33	0x24	0xfd	0xed	0x87	0x3c	0xf1	0x89	0x73
0xed	0x18	0xbe	0x0f	0x98	0x4a	0xe0	0xe2	0xe3	0x12	0x8e	0xfe	0x0f	0xa2	0x34	0x91	0x7a	0x19	0x6e
0x88	0x55	0xc7	0xac	0x8b	0x73	0xf8	0xf2	0x97	0x01	0xef	0xf1	0xba	0x0f	0x98	0xb3	0x97	0xe9	0x57
0x5b	0x71	0xfd	0x32	0xbd	0x79	0xb8	0x72	0xdb	0xe6	0x1c	0xf7	0xc0	0x09	0x65	0x18	0xce	0x59	0x73
0xd0	0xe1	0xaa	0xb6	0xae	0x1e	0xa2	0xd1	0x11	0x5d	0xd7	0x16	0x11	0x9f	0x29	0x2c	0x55	0xc9	0x91
0xeb	0xad	0x50	0x90	0x38	0x43	0xf9	0xc9	0xaa	0xad	0x6f	0x64	0xdf	0xd3	0x6f	0xa3	0xf0	0x79	0x95
0x87	0x3f	0x33	0xfa	0x4a	0x96	0xd3	0x41	0xa4	0xa1	0x6e	0xa4	0x95	0x91	0xa7	0xec	0x22	0x99	0x9b
0x26	0x6e	0x30	0xf5	0xe8	0x32	0xd7	0x54	0x76	0x5e	0xb5	0x81	0x70	0x43	0xce	0x8b	0x47	0xe9	0xf3
0xfe	0x35	0x36	0xdf	0x50	0x49	0x85	0x45	0x24	0x02	0x12	0xde	0xc6	0x09	0x59	0x2a	0xf2	0x99	0xbe
0x73	0xa9	0xde	0xbe	0x6a	0xf9	0xc9	0x5e	0x9f	0x05	0x2d	0x59	0x53	0xdb	0xd6	0x5c	0xbe	0x59	0xc0