

BLANK PAGE

Indian Standard

TOLERANCES FOR TAPERED ROLLER BEARINGS

(First Revision)

- 1. Scope Covers the tolerances for tapered roller bearings with boundary dimensions conforming to IS: 7461-1974 'General plan of boundary dimensions for tapered roller bearings'.
- 1.1 It also covers the tolerances for the effective width of tapered roller bearing sub-units and for outside flange diameter of tapered roller bearing with flanged outer ring.
- 2. Definitions Definitions of the concepts to which the tolerances specified in this standard apply are given in IS: 11027-1984 'Definition of tolerances for rolling bearings' and IS: 2399-1988 'Rolling bearings Vocabulary (first revision)'.

3. Symbols

Adopted 4 July 1988

э. эу	inbots	i
d	= bearing bore diameter, nominal	T ₁ = effective width of inner sub-unit, nominal
∆ ds	= deviation of a single bore diameter	\triangle_{Bs} = deviation of a single inner ring width
△dmp	= single plane mean bore diameter deviation (for a basically tapered bore △dmp	C = outer ring width, nominal
	refers only to the theoretical small end of bore)	\triangle_{Cs} = deviation of a single outer ring width
$V_{ m dp}$	bore diameter variation in a single radial plane	K_{ia} = radial runout of assembled bearing inner ring
$V_{ m dmp}$	mean bore diameter variation (this applies only to a basically cylindrical bore)	K _{ea} = radial runout of assembled bearing outer ring
D	= bearing outside diameter, nominal	S_d = inner ring reference face (backface, where applicable) runout with bore
D_1	= outer ring flange outside diameter, nominal	S _D = variation of bearing outside surface generatrix inclination with outer ring reference face (backface)
∆Ds	= deviation of a single outside diameter	, or
△ Dmp	= single plane mean outside diameter deviation	S_{ia} = assembled bearing inner ring face (backface) runout with raceway
V_{Dp}	= outside diameter variation in a single radial plane	S_{ea} = assembled bearing outer ring face (backface) runout with raceway
V_{Dmp}	= mean outside diameter variation	∆ _{T1s} = deviation of the actual effective width of inner sub-unit
В	= inner ring width, nominal	T ₂ = effective width of outer sub-unit, nominal
T	= bearing width, nominal	_
∆⊤s	= deviation of the actual bearing width	\triangle_{T2s} = deviation of the actual effective width of outer sub-unit.

February 1989, BIS

Gr 3

IS: 7460 - 1988

FIG. 1 SYMBOLS FOR TAPERED ROLLER BEARINGS

4. Tolerances

4.1 Bore diameter tolerances given apply to basically cylindrical bores. Tolerances for tapered bores are given in **4.2** of IS: 5692-1988 'Tolerances for radial rolling bearing (first revision)'.

4.1.1 Normal tolerance class.

TABLE 1 DIAMETER AND RADIAL RUNOUT — INNER RING
Tolerance values in micrometres

n	d nm	۵۵	lmp	V _{dp}	V _{dmp}	K _{ia}
Over	Including	High	Low	Max	Max	Max
10	18	0	-12	12	9	15
18	30	0	-12	12	9	18
30	50	0	-12	12	9	20
50	80	0	-15	15	11	25
80	120	0	-20	20	15	30
120	180	0	-25	25	19	35
180	250	0	-30	30	23	50
250	315	0	-35	35	26	60
315	400	0	-40	40	30	70

TABLE 2 DIAMETER AND RADIAL RUNOUT — OUTER RING
Tolerance values in micrometres

D nm	Δρ)mp	V _{Dp}	V _{Dmp}	Kos
Including	High	Low	Max	Max	Max
30	0 0	-12	12	9	18
50		-14	14	11	20
80		-16	16	12	25
120	0	-18	18	14	35
150	0	-20	20	15	40
180	0	-25	25	19	45
250	0	-30	30	23	50
315	0	-35	35	26	60
400	0	-40	40	30	70
500	0	45	45	34	80
630		50	50	38	100
	100 lincluding 30 50 80 120 150 180 250 315 400 500	Including High 30 0 50 0 80 0 120 0 150 0 180 0 250 0 315 0 400 0	Including High Low	Including High Low Max 30 0 -12 12 50 0 -14 14 80 0 -16 16 120 0 -18 18 150 0 -20 20 180 0 -25 25 250 0 -30 30 315 0 -35 35 400 0 -40 40	Including High Low Max Max Max

Note — The tolerance for the outside diameter of an outer ring flange, D_i , is h9:

IS: 7460 - 1988

TABLE 3 WIDTH — INNER AND OUTER RING, SINGLE ROW BEARING, AND SINGLE ROW SUB-UNITS

Tolerance values in micrometres

	d nm	Δ	Bs	Δ	Cs	Δ	Ts		T1s	Δ	T2s
Over	Including	Hìgh	Low	High	Low	High	Low	High	Low	High	Low
10 18 30	18 30 50	0 0 0	-120 -120 -120	0 0	-120 -120 -120	+200 +200 +200	0 0 0	+100 +100 +100	0 0 0	+100 +100 +100	0 0 0
50 80 120	80 120 180	0 0 0	-150 -200 -250	0	-150 -200 -250	+200 +200 +350	0 -200 -250	+100 +100 +150	0 -100 -150	+100 +100 +200	-100 -100
180 250 315	250 315 400	0 0 0	-300 -350 -400	0 0 0	-300 -350 -400	+350 +350 +400	-250 -250 -400	+150 +150 +200	-150 -150 -200	+200 +200 +200	-100 -100 -200

4.1.2 Tolerance class 6X

4.1.2.1 The diameter and radial runout tolerances for inner and outer rings of this tolerance class are same as those given in Tables 1 and 2 for the normal class.

Width tolerances are given in Table 4.

TABLE 4 WIDTH - INNER AND OUTER RING, SINGLE ROW BEARING AND SINGLE ROW SUB-UNITS

Tolerance values in micrometres

1	d nm	Δ	Bs		Cs	Δ	Ts	Δ.	T1s	Δ	T2s
Over	Including	High	Low	High	Low	High	Low	High	Low	High	Low
10	18	0	-50	0	-100	+100	0	+50	0	+50	0
18	30	0	-50		-100	+100	0	+50	0	+50	0
30	50	0	-50		-100	+100	0	+50	0	+50	0
50	80	0	50	0	-100	+100	0	+50	0	+50	0
80	120	0	50	0	-100	+100	0	+50	0	+50	0
120	180	0	50	0	-100	+150	0	+50	0	+100	0
180	250	0	50	0	-100	+150	0	+50	0	+100	0
250	315	0	50	0	-100	+200		+100	0	+100	0
315	400	0	50	0	-100	+200		+100	0	+100	0

4.1.3 Tolerance class 5

TABLE 5 INNER RING AND SINGLE ROW BEARING WIDTH

Tolerance values in micrometres

m	d m	$\Delta_{\sf dmp}$		$oldsymbol{v}_{ ext{dp}}$	V dmp	<i>K</i> ia	S _d	Δ	Bs	- Д	Ts
Over	Including	High	Low	Max	Max	Max	Max	High	Low	High	Low
10	18	0	7	5	5	5	7	0	200	+200	-200
18	30	0	8	6	5	5	8	0	200	+200	-200
30	50	0	10	8	5	6	8	0	240	+200	-200
50	80	0	—12	9	6	7	8	0	-300	+200	200
80	120	0	—15	11	8	8	9	0	-400	+200	200
120	180	0	—18	14	9	11	10	0	-500	+350	250
180	250	0	—22	17	11	13	11	0	-600	+350	250

TABLE 6 OUTER RING

Tolerance values in micrometres

i	<i>D</i> mm		Δ_{Dmp}		V	K es	S _D	Δ	Cs
Over	Including	High	Low	Max	Max	Max	Max	High	Low
18 30 50	30 50 80	0 0	-8 -9 -11	6 7 8	5 5 6	6 7 8	8 8 8		
80 120 150	120 150 180	0 0 0	13 15 18	10 11 14	7 8 9	10 11 13	9 10 10	ldentical z	∆ _{Bs} of inner ne bearing
180 250 315	250 315 400	0 0 0	-20 -25 -28	15 19 22	10 13 14	15 18 20	11 13 13		

Note — The tolerance for the outside diameter of an outer ring flange, D_i , is h9.

4.1.4 Tolerance class 4

TABLE 7 INNER RING AND SINGLE ROW BEARING WIDTH

Tolerance values in micrometres-

a m		Δ	dmp	Δ	ds	V _{dp}	V _{dmp}	K _{ia}	\mathcal{S}_{d}	Sia	Δ	Bs	Δ	Ts
Over	Including	High	Low	High	Low	Max	Max	Max	Max	Max	Hjgh	Low	High	Low
10 18 30	18 30 50	0 0 0	—5 —6 —8	0 0 0	-5 -6 -8	4 5 6	4 4 5	3 3 4	3 4 4	3 4 4	0 0 0	-200 -200 -240	+200 +200 +200	200 200 200
50 80 120 180	80 120 180 250	0 0 0 0	-9 -10 -13 -15	0 0 0	-9 -10 -13 -15	7 8 10 11	5 5 7 8	4 5 6 8	5 5 6 7	4 5 7 8	0 0 0	-300 -400 -500 -600	+200 +200 +350 +350	200 200 250 250

IS: 7460 - 1988

TABLE 8 OUTER RING

Tolerance values in micrometres

	D nm	Δ	Dmp	Δ_{Ds}		V _{Dp}	V _{Dmp}	Kea	SD	Sea	Δ	'Cs
Over	Including	High	Low	High	Low	Max	Max	Max	Max	Max	High	Low
18 30 50	30 50 80	0 0 0	-6 -7 -9	0	6 7 9	5 5 7	4 5 5	4 5 5	4 4 4	5 5 5	l domáic al	
80 120 150	120 150 180	0 0 0	—10 —11 —13	0 0 0	—10 —11 —13	8 8 10	5 6 7	6 7 8	5 5 5	6 7 8	of inner of same	to ∆ _{Bs} ring bearing
180 250 315	250 315 400	0 0 0	15 18 20	0 0 0	-15 -18 -20	11 14 15	8 9 10	10 11 13	7 8 10	10 10 13		

Note — The tolerance for the outside diameter of an outer ring flange, D1, is h9.

EXPLANATORY NOTE

This standard was originally published in 1974. The revision has been taken up to incorporate the changes agreed at the international level as reflected in the latest revision of ISO 492-1986 'Rolling bearings — Radial bearing — Tolerances'.

In this revision, symbols for various dimensions and tolerances have been standardized. The tolerance values for certain deviations under various tolerance classes have also been rationalized. However, no change has been made with respect to the effective width and outside flange diameter tolerances for tapered roller bearings.

This standard is in full conformity with ISO 492-1986.