

DS-prof-2022-08

Меня хорошо видно **&&** слышно?

Защита проекта Тема: Прогнозирование электропотребления предприятия с применением искусственных нейронных сетей

Здесь могла бы быть ваша реклам а Здесь могла бы быть ваша реклам

Дьяконов Семен

Начальник управления балансов и энергоресурсов ООО «НОВОГОР-Прикамье» г. Пермь

План защиты

Цели проекта

Что планировалось

Используемые технологии

Что получилось

Выводы

Здесь могла бы быть ваша реклама

Цели проекта

- 0. Актуальность обусловлена необходимостью исследование возможности применения методов искусственного интеллекта для краткосрочного прогнозирования электропотребления групп точек поставки электроэнергии предприятиям. С целью применения таких методов в помощь к экспертному прогнозированию.
- 1. Исследование применения искусственных нейронных сетей для краткосрочного прогнозирования потребления электроэнергии предприятием;
- 2. Изучить Рекуррентные нейронные сети (РНС, англ. Recurrent neural network, RNN), Длинные цепи элементов краткосрочной памяти (англ. Long short-term memory; LSTM)
- 3. Сравнить базовый прогноз и прогноз построенный с применением искусственных нейронных сетей;

Что планировалось

Используемые технологии

- 1. Файлы в формате *.xlsx
- 2. Excel, python стандартные библиотеки, pytorch, RNN, LSTM

Что получилось. Репозиторий на github.

1. Ссылка на репозиторий с исходным кодом:

https://github.com/smddyakonov/otus_ds_dyakonov/tree/main/hw-19

Что получилось. Описание исходных данных

Почасовое потребление электрической энергии представлено

- •за период с 2018 по июнь 2023 г.;
- •в разрезе точек поставки;
- •в разрезе дата-время

Предварительные преобразования для моделирования

Сделано в отдельном ноутбуке

- •сформировать список исходных файлов
- •проверить, что во всех исходных файлах есть лист "Данные эл.эн.". В листе "Данные эл.эн." хранятся почасовые расходы электроэнергии по точкам поставки
- •объединить точки поставки (ТП) по годам и найти перечень всех ТП за период с 2019 2023 гг
- •добавить привязки ТП Объект группа точек поставки (ГТП)

Что получилось.

Ввод [7]:	1	df_ee			
Out[7]:					
			Дата время (мск)	гтп_вс	ГТП_ВО
		0	2019-01-01 00:00:00	6344.080	8562.00
		1	2019-01-01 01:00:00	6311.008	8170.24
		2	2019-01-01 02:00:00	6345.960	7837.36
		3	2019-01-01 03:00:00	6190.032	7835.24
		4	2019-01-01 04:00:00	6354.032	7821.12
	3937	9	2023-06-29 19:00:00	7132.000	6772.00
	3938	30	2023-06-29 20:00:00	7058.000	6860.00
	3938	31	2023-06-29 21:00:00	6967.000	7041.00
	3938	32	2023-06-29 22:00:00	6265.000	6772.00
	3938	33	2023-06-29 23:00:00	5696.000	6664.00

39384 rows × 3 columns

В итоге получил дата-фрейм:

Колонка «Дата время (мск)» – дата-время, часовой пояс - «мск»

Колонка «ГТП_ВС» - потребление электрической энергии за каждый час, по группе точек поставок (ГТП) водоснабжение (ВС);

Колонка «ГТП_ВО» - потребление электрической энергии за каждый час, по группе точек поставок (ГТП) водоотведение (ВО);

Всего строк: 39 384

Тип данных: временной ряд с частотой 1 час

Что получилось. Предобработка данных (Data Preprocessing)

Проверка на выбросы, обнаружено не характерно поведение данных. Технологический останов сооружений. Заменю на среднее значение аналогичного года, месяца, часа. По ГТП_ВО выброс не обнаружено

Что получилось. EDA

df_ee_eda.describe()

	гтп_вс	гтп_во
count	39384.000000	39384.000000
mean	7025.898740	7667.255423
std	1067.284958	989.238861
min	4000.000000	4030.000000
25%	6208.000000	6969.000000
50%	7004.000000	7612.000000
75%	7844.898000	8291.000000
max	10493.112000	12312.840000

Что получилось. «Чистые данные»

Профиль потребления электроэнергии ГТП_ВС, ГТП_ВО

Что получилось. «Чистые данные» ГТП_ВС

Усредненный профиль потребления электроэнергии ГТП_ВС

Что получилось. «Чистые данные» ГТП_ВС

Усредненный профиль потребления электроэнергии ГТП_ВС

Что получилось. Моделирование

Исследование применения искусственных нейронных сетей для краткосрочного прогнозирования потребления электроэнергии предприятием;

Прогнозирую сразу одни сутки, а в сутках 24 значения, то за основу возьму RNN интервальное прогнозирование

Базовая модель прогноз на сутки вперед равен аналогичному дню неделю назад Гипотеза: прогнозирование с помощью ИИ должно быть лучше, чем базовая модель

Оценка подхода проводится по бизнес-метрике, БМ:

$$\mathsf{БM} = \frac{\sum_{h}^{N} \mathbf{\Phi} - \mathsf{О}\mathsf{T}\mathsf{K}\mathsf{J} - \mathsf{abs}}{\mathsf{N}}$$

Ф - фактический расход электрической энергии за час; П - плановый расход электрической энергии за час; Откл_abs = |Ф - П| отклонение фактического расхода за час от планового расхода за час N - число плановых значений за месяц.

Выводы и планы по развитию

- Цели достигнуты
- 2. Для прогнозирования почасвого потребления электрической энергии можно использовать искуственные нейросети Для ГТП_ВС на тесте ИИ-модель показала себя лучше в зимние и летние месяцы.
- 3. Применение трансформеров для задачи

Спасибо за внимание!