Jiahao's correction: T/a torus, acting on X/a scheme of finite type, to T, i: $X^{\pm} \hookrightarrow X$, $X^{T}(X^{\pm})$ ix, $X^{T}(X)$ be comes an isomorphism of a localizing $S \subset X^{T}(pt) = R(T) = \mathbb{Z}[X^{*}(T)]$.

If: $f(t) \neq 0$

Anti-spherical unodule

Daniel Kim

Daniel Kim

Non-auch. boral field, G/F split reductive.

B Borel, T max. split tom, Inahon I = ker (G(O) -, G(k)/B(k))

Extended affine Weyl group. $\widetilde{W} = N_{L(F)}(T(F))/T(0)$.

 $1 \longrightarrow X_* (T) \longrightarrow \widetilde{W} \xrightarrow{e} W \longrightarrow 1$ finite Way & group.

 $\mathcal{H}_{I} = C_{c}^{\infty}(I \setminus G(F)/I, C)$

L(F) = 1 InI (in is a lift) ~ Tw = 1 Ini € HI.

⊕ (Ts+1) (Ts-9) = 0 for s∈ W simple reflection.

@ Tru = Tr. Tw, when l(vw) = l(v) + l(w).

" Inchon' - Matsumoto presentation "

N

Rmk. We can treat 9 as a formal raviable, work over 2[1].

If $\lambda, \mu \in X_*(T)^{\dagger}$ are dominant, => $T_{\lambda} + \mu = T_{\lambda} T_{\mu} = T_{\mu} T_{\lambda}$.

l if we work over Z[q±1], then all Ti's are invertible.

 $\forall \lambda \in X_*(T)$, with $\lambda = \lambda_1 - \lambda_2$ for $\lambda_1, \lambda_2 \in X_*(T)^{\dagger}$,

one define $e^{\lambda} = q^{-(\lambda, p)} T_{\lambda 1} \cdot T_{\lambda 2}^{-1}$ well-defined $q = e^{\lambda + p} = e^{\lambda} \cdot e^{p}$ (we may want $p \in X^*(T)$, otherwise need to introduce $q^{\frac{1}{2}}$).

The (Bernstein) et Tw for 1 & Xx(T), weW form a 2[q+1]-basis

for MI, $Tse^{S(\lambda)} - e^{\lambda} \cdot Ts = (1-q) \frac{e^{\lambda} - e^{S(\lambda)}}{1 - e^{\lambda V}}$ where $S = Sa \in W$ is a simple reflection

Steinberg variety 9, 8, 7/c dual groups

Det. An element $x \in \S$ is nilpotent when its image under $\S \hookrightarrow \S \ln i$ s Fort: $\H = \text{Lie N}$ were all nilpotent elements under the adjoint action.

Det. No g the nilpotent cone is the set of nilp. elts regarded as a var.

Oct. Springer resolution:

$$\widetilde{N} = \{(x,g\xi) \in N \times \widetilde{a}/\widetilde{g} : x \in g\widetilde{n} g^{-1}\}$$

Chrisen
$$g \ \check{g}$$
, $(adg \ \check{h})^{\perp} = adg \ \check{b}$ unch the Killing form
$$\int_{a}^{g} \int_{a}^{g} (\check{h}/\check{g})$$

$$\int_{a}^{g} \int_{a}^{g} (\check{h}/\check{g})$$

$$\Rightarrow$$
 adg $\tilde{n} \cong T_{gg}^* (\tilde{a}/\tilde{g}) \sim \tilde{N} = T^* \tilde{f}, (\tilde{f} = \tilde{a}/\tilde{g})$

Det.
$$Z = \widetilde{N} \times \widetilde{N}$$
 ($\neq \widetilde{N} \times \widetilde{N}$) the Steinberg variety.

Want to understand K-theory of Z.

$$\tilde{\zeta} \times \tilde{\zeta}_{m} \sim \tilde{\zeta}_{m}$$

$$\tilde{\zeta}_{m} \sim \tilde{\zeta}_{m} \sim \tilde{\zeta}_{m}$$

$$\tilde{\zeta}_{m} \sim \tilde{\zeta}_{m} \sim \tilde{\zeta$$

~ Z also has a a x am-action ~ K x am (Z) is defined! Ils spoiler. HI

Subalgebras D:
$$\tilde{N} \longrightarrow \tilde{N} \times \tilde{N} = 2$$
 $\tilde{L} \times \tilde{L}_{m} - equiv$

Claim. This is an algebre homomorphism.

$$\begin{array}{lll} \left(\tilde{K} \times Gm \left(\tilde{K} = T^* \tilde{F} \right) = K^{K \times Gm} \left(\tilde{F} = \tilde{G} / \tilde{g} \right) = K^{\tilde{g} \times Gm} \left(* \right) \\ &= R \left(\tilde{g} \times Gm \right) = 2 \left(X^* (\tilde{T}) \otimes 2 \right) = 2 \left(X_* (T) \right) \left[2^{\pm 1} \right] \end{array}$$

$$\frac{2[\chi_{x}(T)][q^{\pm 1}]}{\lambda \longmapsto e^{\lambda}}$$

Equir. lb. on F corresponding to & - Gm.

(x,9,8, 928) (9,8,928)

$$\frac{1}{7} = \frac{11}{11} \left(\frac{1}{7} \times \frac{1}{7} \right)_{w} \quad \text{each} \quad \pi^{-1}(Y_{w}) \\
\frac{1}{7} \times \frac{1}{7}$$

In fact,
$$\pi^{+}(Y_{w}) = T_{Y_{w}}^{*}(\check{F} \times \check{F})$$
(lean of $T^{*}(\check{F} \times \check{F})|_{Y_{w}} \to T_{Y_{w}}^{*}$).

din
$$\pi^{-1}(Y_{U}) = \dim Y_{U} + \dim f_{ibc} = \left(\dim \mathcal{F} + \ell(w)\right) + \left(\dim \mathcal{F} - \ell(w)\right)$$

$$= 2 \dim \mathcal{F}$$

TT' (Yw) are the sixed. components of E.

Clain. Ts
$$\longleftrightarrow$$
 - [9 Grs] - [00]

HIS KÄKAM (E).

Modules

Note, Whenever hx hm - equicariant is, Kax hm (Nx Y) has a consolution action by Kax m(= K & K)

Take
$$Y = \emptyset$$
 \longrightarrow $K^{\tilde{K} \times \tilde{K} m} (\tilde{F})$ left module one $K^{\tilde{K} \times \tilde{K} m} (\tilde{Z})$

[1]
$$Z[X_{*}(T)][q^{\pm 1}]$$

O Wen
$$V \in \text{Rep}(\tilde{G} \times Gm)$$
, $\tilde{G} \times Gm - \text{equit.} F = \mathbb{Z}$,
$$V \neq F = F + V - (F \otimes V \neq \text{diag section})$$

@ use base change isom.

Hecke algebra side.

$$\mathbb{Z}[X_*(T)]^{W}[s^{\pm 1}] \longrightarrow \mathbb{Z}[X_*(T)][q^{\pm 1}] \longrightarrow \mathcal{H}_{\Sigma}$$

$$\mathcal{Z}[X_*(T)]^{W}[s^{\pm 1}] \longrightarrow \mathbb{Z}[X_*(T)][q^{\pm 1}] \longrightarrow \mathcal{H}_{\Sigma}$$

Def.
$$\mathcal{H}_{fin} = \mathbb{Z}[q^{\pm 1}][Tw: w \in W].$$

 $\xi: \mathcal{H}_{fin} \longrightarrow \mathbb{Z}[q^{\pm 1}], \quad Tw \mapsto q^{\ell(w)} \text{ is a why hom.}$

$$\left[(T_s + 1)(T_s - q) = 0 \text{ for } T_s = q \right]$$

Lemma. Identify
$$\mathcal{H}_{I} \otimes \mathbb{Z}[q^{\pm 1}] \cong \mathbb{K}^{\tilde{u} \times \tilde{u}_{n}}(\tilde{V})$$
, $\mathbb{Z}[q^{\pm 1}]$ -linear. $\mathbb{E}^{-1} \otimes \mathbb{I} \longrightarrow \mathbb{E}[Q_{1}]$

- O Will proce d is injectice
- The actions of Ts and [4 Os] [00] agree ~ Hz ← Karam (2)
- 3 Check that this is everything.

Prop. Write
$$Z_{SW} = \coprod_{y \leq w} T_{yy}^* (\vec{f} \times \vec{f})$$
 and Z_{SW} similarly.