

Projet - Plantation intelligente

Physical Computing

Version 2.2

Plantation intelligente

Ce projet consiste à instrumenter un pot pour la plantation de plantes avec différents capteurs et d'ajouter un arrosage automatique. Il néccessitera de mettre en œuvre des connaisances en électronique mais aussi en informatique avec la programmation d'un microcontrolleur. Le projet se déroulera sur plusieurs séances et se concluera sur une présentation des travaux réalisés.

Les capteurs et actionneur qui seront à mettre en place sont :

- Un capteur de lumière avec une photodiode SFH213.
- Une mesure de la température avec LM335.
- Un capteur d'humidité de l'air environnant avec H25K5A.
- Un capteur d'humidité de la terre devra être imaginé à l'aide de transistors.
- Un mini panneau solaire pour alimenter le moteur de la pompe à eau SOL1W 5,5 V/170 mA.
- Un pompe à eau PPMB00117.

Pour la conception générale des transistors 2N7000 sont aussi disponibles et des AOP TLV271 (travaillant uniquement entre 0 et 5V)

Les capteurs et actionneurs peuvent être mise en place dans n'importe quel ordre, toutefois pour aider la conception il sont classé dans l'ordre de difficulté d'installation.

Le carte microcontrôleur utilisée est la carte Arduino qui fera l'interface entre l'ensemble des capteurs et actionneur. Un afficheur sera ajouté pour permettre le retour d'informations vers l'utilisateur (http://playground.arduino.cc/Code/PCD8544). Vous devrez réaliser au minimum une sauvegarde des mesures sur une journée et mettre en place des scenarios permettant l'arrosage automatique de la plante.

1. Afficheur

Mettre en place l'afficheur pour la durée du projet en respectant les commande #define en début de programme.

Télécharger le programme sur le site internet et VERIFIER que le schéma de câblage ci-dessus est correct par rapport aux déclarations des pins faites en début de programme, et commencer à faire quelques tests permettant l'affichage de texte informatif sur l'écran.

2. Capteur de lumière

La photodiode est le détecteur qui permet de mesurer la lumière environnante qui est certainement le premier paramètre qui permet la croissance de la plante

Le montage de base pour utiliser une photodiode montrée sur la Figure 1 où le choix de la résistance est primordial.

Figure 1 : Schéma de base de câblage d'une photodiode et caractéristique générale selon la luminosité ambiante.

- Une résistance trop petite donnera une tension V_{pol} proche de V_{CC} et indépendante de la luminosité.
- Une résistance trop grande donnera une tension V_{pol} qui évoluera trop rapidement avec la luminosité et supérieur à V_{CC} .

 Ω Après avoir câbler l'ensemble du circuit, vous rechercherez la valeur optimale de R_{ool} permettant d'avoir V_{pol} proche de 5V en pleine lumière solaire proche de 0 dans le noir.

Utiliser une entrée analogique de la carte Arduino pour récupérer la valeur de la lumière et donner une indication à l'utilisateur entre (Très lumineux, Lumineux, Intermédiaire, Sombre, Très sombre).

3. Mesure de la température

La mesure de la température est le second paramètre important pour la croissance de la plante.

Le capteur utilisé est le LM335 qui est un circuit assez complexe mais qui se comporte comme une diode Zener qui est calibrée pour donner une tension proportionnelle à la température (10mV/K) lorsque le courant la traversant est de 1mA.

La gamme de température potentiellement mesurable avec un tel capteur est très large et au-delà des besoins classiques d'une plante. Il faudra donc ajouter un circuit d'adaptation modifiant le gain et l'offset pour avoir une tension mesurée entre 0 et 5V pour une température entre -9°C et 91°C et une résolution de 0.1°C.

Figure 2 : Schéma d'adaptation du capteur de température.

 Ω Etudier le circuit proposé en Figure 2 afin de calibrer les résistances du circuit utilisant un AOP TLV271. Câbler ensuite votre circuit et faites des tests permettant de vérifier son bon fonctionnement.

Conseils: Trouver la résistance R_{pol1} , trouver l'équation entre $V_{température}$, V_{capt} et V_{offset} , R_1 et R_2 . Selon le cahier des charges présenté, déterminer des valeurs pour R_1 , R_2 et V_{offset} . Pour que le système fonctionne correctement, il faut que et R_{3b} soit 1 ordre de grandeur plus faible que R_1 et R_2 .

A partir d'une entrée analogique de l'Arduino mesurant la tension $V_{température}$ donnée l'information de la température en °C à l'utilisateur sur l'afficheur.

4. Capteur d'humidité de l'air

Le capteur d'humidité permet de mesurer la saturation en eau dans l'air (pas dans la terre). Ce paramètre est important pour certaines plantes tropicales qui capture une grande quantité d'eau par leurs feuilles.

Le capteur utilisé se comporte comme une résistance variable qui dépend de l'humidité. La difficulté est que la relation entre la résistance et l'humidité n'est pas linéaire et dépend aussi de la

température. A partir du tableau et du document technique établir une méthode permettant avec la carte Arduino de donner l'information.

 Ω Le circuit pour utiliser le capteur d'humidité sera un simple pont diviseur de tension. Il faudra choisir la résistance idéale pour permettre les meilleurs résultats pour des températures et humidités classiques (environ 25°C et 55% d'humidité). Pour vous aider, calculer un tableau donnant l'humidité en fonction de la tension mesurer (ou plus simplement en fonction de la valeur donnée par le CAN entre 0 et 1023).

Câbler et tester votre circuit avec la carte Arduino en affichant l'humidité de l'air.

5. Mise en place de la pompe à eau.

La pompe à eau est un petit moteur continu qui permet de faire monter l'eau le long d'un tuyau. L'arrosage est souvent le point le plus délicat pour conserver une plante.

L'arrosage de la plante sera contrôlé par la carte Arduino au travers d'un signal numérique. Toutefois le courant sortant d'un Arduino est largement insuffisant pour permettre la mise en route du moteur. Il est donc nécessaire d'ajouter un transistor et une source de tension externe pour permettre le bon fonctionnement de la pompe.

12 Câbler le circuit et vérifier le bon fonctionnement du moteur selon la tension V_{GS} appliquée.

Faites quelques tests de bon fonctionnement avec une sortie numérique de l'Arduino permettant de lancer le moteur

Figure 3 : Schéma de câblage du moteur de la pompe.

6. Mesure de l'humidité de la terre.

Pour lancer l'arrosage il est important de mesurer au préalable l'humidité de la terre.

La mesure de l'humidité de la terre peut se fait au travers d'une mesure de la conductivité (ou résistivité) de milieu. Plus la terre est humide, plus la conductivité sera grande et inversement. Malheureusement, cette mesure dépend aussi de la présence d'engrais qui ajoute des ions dans le milieu tout en améliorant la conductivité. Pour séparer les deux grandeurs (quantité d'eau et teneur en ions) une mesure du pH est souvent réalisée. Toutefois cette approche est trop compliquée dans le cadre de ce projet.

 Ω Faites des recherches sur internet de méthodes permettant de donner la conductivité d'un sol. A partir de ces recherches, proposer une solution pour mettre pratiquement cette mesure en place ; avec une sonde que vous aurez imaginée et un circuit électronique permettant l'interfaçage entre la sonde et la carte Arduino. Dans le cadre de ce projet l'objectif sera simplement de se donner une limite entre une terre très sèche et trop humide avec un hystérésis qui permettra de lancer la pompe à eau.

Connecter votre circuit à la carte Arduino et mettez en œuvre un affichage de l'humidité du sol avec une logique d'arrosage automatique.

7. Panneau solaire

Les meilleurs pourront tenter d'utiliser le panneau solaire pour alimenter le moteur de la pompe plutôt que d'utiliser une source de 10V externe. Mais il est recommandé de valider et de calibrer correctement les autres parties avant d'attaquer cette dernière.

N-Channel Enhancement-Mode MOS Transistor

2N7000/BS170L

DESCRIPTION

The 2N7000 utilizes Calogic's vertical DMOS technology. The device is well suited for switching applications where $B_{\rm V}$ of 60V and low on resistance (under 5 ohms) are required. The 2N7000 is housed in a plastic TO-92 package.

ORDERING INFORMATION

Part	Package	Temperature Range
2N7000	Plastic TO-92	-55°C to +150°C
BS170L	Plastic TO-92	-55°C to +150°C
X2N7000	Sorted Chips in Carriers	-55°C to +150°C

2N7000/BS170L

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise specified)

SYMBOL	PARAMETERS	LIMITS	UNITS	TEST CONDITIONS
V _{DS}	Drain-Source Voltage	60	V	
V _{GS}	Gate-Source Voltage	±40	7	
I-	Continuous Drain Current	0.2		T _A = 25°C
ID	Continuous Drain Current	0.13	A	T _A = 100°C
I _{DM}	Pulsed Drain Current ¹	0.5		
PD	Power Dissipation ¹	0.4	w	T _A = 25°C
PD	Power Dissipation	0.16	7 vv	T _A = 100°C
TJ	Operating Junction Temperature Range	-55 to 150		
T _{stg}	Storage Temperature Range	-55 to 150	°C	
TL	Lead Temperature (1/16" from case for 10 sec.)	300	1	

THERMAL RESISTANCE RATINGS

SYMBOL	THERMAL RESISTANCE	LIMITS	UNITS
RthJA	Junction-to-Ambient	312.5	K/W

NOTE: 1. Pulse width limited by maximum junction temperature.

SPECIFICATIONS1

SYMBOL	PARAMETER	MIN	TYP ²	MAX	UNIT	TEST CONDITIONS
STATIC						•
V _{(BR)DSS}	Drain-Source Breakdown Voltage	60	70		V	I _D = 10μA, V _{GS} = 0V
V _{GS(th)}	Gate-Threshold Voltage	8.0	1.9	3	1 °	$V_{DS} = V_{GS}$, $I_D = 1mA$
I _{GSS}	Gate-Body Leakage			±10	nA	V _{GS} = ±15V, V _{DS} = 0V
	7 - 0 + 1/1			1		V _{DS} = 48V, V _{GS} = 0V
DSS	Zero Gate Voltage Drain Current			1000	μА	T _C = 125°C
I _{D(ON)}	On-State Drain Current ³	75	210		mA	V _{DS} = 10V, V _{GS} = 4.5V
			4.8	5.3		⁴ V _{GS} = 4.5V, I _D = 75mA
r _{DS(ON)}	Drain-Source On-Resistance ³		2.5	5	Ω	V _{GS} = 10V, I _D = 0.5A
	1		4.4	9	1	T _C = 125°C
			0.36	0.4		⁴ V _{GS} = 4.5V, I _D = 75mA
V _{DS(ON)}	Drain-Source On-Voltage ³		1.25	2.5	V	V _{GS} = 10V, I _D = 0.5A
	l I		2.2	4.5		$T_C = 125^{\circ}C^4$
g FS	Forward Transconductance ³	100	170		mS	V _{DS} = 10V, I _D = 0.2A
gos	Common Source Output Conductance ^{3, 4}		500		μS	V _{DS} = 5V, I _D = 50mA
DYNAMIC				•		•
Ciss	Input Capacitance		16	60		
Coss	Output Capacitance ⁴		11	25	pF	$V_{DS} = 25V, V_{GS} = 0V, f = 1MHz$
Crss	Reverse Transfer Capacitance		2	5	1	
SWITCHIN	G					•
ton	Turn-On Time		7	10	nS	V_{DD} = 15V, R_L = 25 Ω , I_D = 0.5A V_{GEN} = 10V, R_G = 25 Ω
toff	Turn-Off Time	7 10 nS		ns	(Switching time is essentially independent of operating temperature	

- NOTES: 1. T_A = 25°C unless otherwise specified.
 2. For design aid only, not subject to production testing.
 3. Pulse test; PW = ≤300µS, duty cycle ≤3%.
 4. This parameter not registered with JEDEC.

LM135, LM135A, LM235, LM235A, LM335, LM335A

SNIS160E -MAY 1999-REVISED FEBRUARY 2015

LMx35, LMx35A Precision Temperature Sensors

1 Features

- · Directly Calibrated to the Kelvin Temperature Scale
- · 1°C Initial Accuracy Available
- · Operates from 400 µA to 5 mA
- Less than 1-Ω Dynamic Impedance
- · Easily Calibrated
- · Wide Operating Temperature Range
- 200°C Overrange
- · Low Cost

2 Applications

- · Power Supplies
- · Battery Management
- HVAC
- Appliances

3 Description

The LM135 series are precision, easily-calibrated, integrated circuit temperature sensors. Operating as a 2-terminal zener, the LM135 has a breakdown voltage directly proportional to absolute temperature at 10 mV/°K. With less than 1-Ω dynamic impedance, the device operates over a current range of 400 µA to 5 mA with virtually no change in performance. When calibrated at 25°C, the LM135 has typically less than 1°C error over a 100°C temperature range. Unlike other sensors, the LM135 has a linear output.

Applications for the LM135 include almost any type of temperature sensing over a -55°C to 150°C temperature range. The low impedance and linear output make interfacing to readout or control circuitry are especially easy.

The LM135 operates over a -55°C to 150°C temperature range while the LM235 operates over a -40°C to 125°C temperature range. The LM335 operates from -40°C to 100°C. The LMx35 devices are available packaged in hermetic TO transistor packages while the LM335 is also available in plastic TO-92 packages.

Device Information(1)

	octice innomin	411011
PART NUMBER	PACKAGE	BODY SIZE (NOM)
LM135	TO 40 (0)	4.699 mm × 4.699 mm
LM135A	TO-46 (3)	4.699 mm × 4.699 mm
LM235	TO-92 (3)	4.30 mm × 4.30 mm
LM235A	10-92 (3)	4.30 mm × 4.30 mm
LM335	SOIC (8)	4.90 mm × 3.91 mm
LM335A	SOIC (8) 4.90 mm × 3.91 i	

(1) For all available packages, see the orderable addendum at

Basic Temperature Sensor Simplified Schematic

Calibrated Sensor

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

TEXAS INSTRUMENTS

LM135, LM135A, LM235, LM235A, LM335, LM335A

SNIS160E -MAY 1999-REVISED FEBRUARY 2015

5 Pin Configuration and Functions

Din Eunstians

	P	IN			DESCRIPTION
NAME	TO-46	TO-92	SO8	1/0	DESCRIPTION
	_	_	1		
N.C.	_	-	2	_	No Connection
	1-	_	3		
-	10-0	5-23	4	0	Negative output
ADJ	_	_	5	1	Calibration adjust pin
	-	_	6		N. O
N.C.		_	7	8 5	No Connection
+	1		8	1	Positive input

Copyright © 1999–2015, Texas Instruments Incorporated

Submit Documentation Feedback

LM135, LM135A, LM235, LM235A, LM335, LM335A

SNIS160E -MAY 1999-REVISED FEBRUARY 2015

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)(3)(4)

		MIN	MAX	UNIT
Reverse Current			15	mA
Forward Current			10	mA
Storage temperature,	8-Pin SOIC Package	-65	150	°C
T _{stg}	TO / TO-92 Package	-60	150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2. Refer to RETS135H for military specifications.
 3. If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.
 4. Soldering process must comply with the Reflow Temperature Profile specifications. Refer to http://www.ti.com/packaging.

6.2 Recommended Operating Conditions

iperature range (unless	ou let wise rioled)				
		MIN	NOM	MAX	UNIT
114405 1144054	Continuous $(T_{MIN} \le T_A \le T_{MAX})$	-55		150	°C
LM135, LM135A	Intermittent (1)	150		200	
111005 1110054	Continuous $(T_{MIN} \le T_A \le T_{MAX})$	-40		125	°C
LM235, LM235A	Intermittent (1)	125		150	
LM225 LM225A	Continuous $(T_{MIN} \le T_A \le T_{MAX})$	-40		100	°C
LIVISSO, LIVISSOA	Intermittent (1)	100		125	
•		0.4	1	5	mA
	LM135, LM135A LM235, LM235A LM335, LM335A	LM135, LM135A Intermittent (1) LM235, LM235A Continuous ($T_{Mini} \le T_A \le T_{MAX}$) Intermittent (1) Continuous ($T_{Mini} \le T_A \le T_{MAX}$) LM335 LM335A Continuous ($T_{Mini} \le T_A \le T_{MAX}$)			

⁽¹⁾ Continuous operation at these temperatures for 5,000 hours for LP package may decrease life expectancy of the device.

6.3 Thermal Information

	THERMAL METRIC ⁽¹⁾	LM335 / LM335A SOIC (D)	LM235 / LM235A TO-92 (LP)	LM135 / LM135A TO-46 (NDV)	UNIT
R _{BJA}	Junction-to-ambient thermal resistance	8 PINS 165	3 PINS 202	3 PINS 400	
R _{BJC}	Junction-to-case thermal resistance	_	170	_	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.4 Temperature Accuracy: LM135/LM235, LM135A/LM235A(1)

	PARAMETER	TEST CONDITIONS	LM13	5A/LM	235A	LM135/LM235			UNIT
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Operating Output	Voltage	$T_C = 25$ °C, $I_R = 1$ mA	2.97	2.98	2.99	2.95	2.98	3.01	V
Uncalibrated Tem	perature Error	$T_C = 25$ °C, $I_R = 1$ mA		0.5	1		1	3	°C
Uncalibrated Tem	perature Error	$T_{MIN} \le T_C \le T_{MAX}$, $I_R = 1$ mA		1.3	2.7		2	5	°C
Temperature Erro	r with 25°C	$T_{MIN} \le T_C \le T_{MAX}$, $I_R = 1$ mA		0.3	1		0.5	1.5	°C
Calibration	Calibrated Error at Extended	T _C = T _{MAX} (Intermittent)		2			2		°C
Temperature	Non-Linearity	I _R = 1 mA		0.3	0.5		0.3	1	°C

⁽¹⁾ Accuracy measurements are made in a well-stirred oil bath. For other conditions, self heating must be considered.

Submit Documentation Feedback

Copyright © 1999–2015, Texas Instruments Incorporated

Product Folder Links: LM135 LM135A LM235 LM235A LM335 LM335A

LM135, LM135A, LM235, LM235A, LM335, LM335A

SNIS160E -MAY 1999-REVISED FEBRUARY 2015

6.5 Temperature Accuracy: LM335, LM335A(1)

	PARAMETER	TEST CONDITIONS	L	.M335A	1		LM335		UNIT
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP MAX		UNII
Operating Outp	ut Voltage	T _C = 25°C, I _R = 1 mA	2.95	2.98	3.01	2.92	2.98	3.04	V
Uncalibrated Te	emperature Error	T _C = 25°C, I _R = 1 mA		1	3		2	6	°C
Uncalibrated Te	emperature Error	$T_{MIN} \le T_C \le T_{MAX}$, $I_R = 1$		2	5		4	9	°C
Temperature E	ror with 25°C	$T_{MIN} \le T_C \le T_{MAX}$, $I_R = 1$ mA		0.5	1		1	2	°C
Calibration	Calibrated Error at Extended	T _C = T _{MAX} (Intermittent)		2			2		°C
Temperature	Non-Linearity	I _R = 1 mA		0.3	1.5		0.3	1.5	°C

⁽¹⁾ Accuracy measurements are made in a well-stirred oil bath. For other conditions, self heating must be considered.

6.6 Electrical Characteristics

PARAMETER	TEST CONDITIONS	LM135/LM235/LM135A/LM 235A			LM3	UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX	
Operating Output Voltage Change with Current	400 μA ≤ I _R ≤ 5 mA, At Constant Temperature		2.5	10		3	14	mV
Dynamic Impedance	I _R = 1 mA		0.5			0.6		Ω
Output Voltage Temperature Coefficient			10			10		mV/°C
Time Constant	Still Air		80			80		sec
	100 ft/Min Air		10			10		sec
	Stirred Oil		1			1		sec
Time Stability	T _C = 125°C		0.2			0.2		°C/khr

(1) Accuracy measurements are made in a well-stirred oil bath. For other conditions, self heating must be considered.

Copyright © 1999–2015, Texas Instruments Incorporated

Submit Documentation Feedback

LM135, LM135A, LM235, LM235A, LM335, LM335A

SNIS160E -MAY 1999-REVISED FEBRUARY 2015

www.ti.com

6.7 Typical Characteristics

Submit Documentation Feedback

Copyright © 1999–2015, Texas Instruments Incorporated

Product Folder Links: LM135 LM135A LM235 LM235A LM335 LM335A

錫麟企業有限公司 Sencera Co. Ltd.

Tel:02-27046595 Fax:886-2-27041279 Email:justinel@ms14.hinet.net 9F-5, No. 26, Sec. 3, Jan-Ai Road, Taipei, Taiwan, ROC. http://www.sensorelement.com

H25K5A resistance humidity sensor specification

Applications

Humidity detecting Humidifier, dehumidifier Hygrometer, Humidity controller.

Electric characteristics

Rated voltage	DC 1~10V Or AC 1Vrms (AC0.26mW)
Operating temp. range	0°C ~ +60°C
Recommended driving Freq.	1 KHz
Operating humidity range	20~ 90%RH
Storage temp. range	-20°C ~ +85°C
Storage humidity range	90% RH Max.
Standard resistance	31KΩ (20-50Kohm) at 25°C, 60% RH, 1KHz
Response time	Max. 60 second.
Accuracy	±5%RH at 25°C, 60% RH
Hysteresis	3%RH Max.
	(when 40%RH change to 80%RH)

Solding request: Not over 3 seconds in the solder tank of 250±5°C and can not immersed the Lead into the solder tank over 3mm.

Fig. 2: H25K5 Reference circuit

Sensor resistance table (unit:K Ω) At 1 KHz, Voltage 1Vrms.

	0℃	5℃	10℃	15℃	20℃	25 ℃	30℃	35 ℃	40 ℃	45 ℃	50℃
20%RH				21000	13500	9800	8000	6300	4600	3800	3200
25%RH		19800	16000	10500	6700	4803	3900	3100	2300	1850	1550
30%RH	12000	9800	7200	5100	3300	2500	2000	1500	1100	900	750
35%RH	5200	4700	3200	2350	1800	1300	980	750	575	430	350
40%RH	2800	2000	1400	1050	840	630	470	385	282	210	170
45%RH	720	510	386	287	216	166	131	104	80	66	51
50%RH	384	271	211	159	123	95	77	63	52	45	38
55%RH	200	149	118	91	70	55	44	38	32	30	24
60%RH	108	82	64	51	40	31	25	21	17	14	12
65%RH	64	48	38	31	25	20	17	13	11	9	8
70%RH	38	29	24	19	16	13	10.5	9	8.2	7.1	6.0
75%RH	23	18	15	12	10	8.5	7.2	6.4	5.8	5.0	4.1
80%RH	16	12	10.2	8.1	7.2	5.7	5.0	4.4	4.0	3.3	2.9
85%RH	10.2	8.2	6.9	5.5	4.7	4.0	3.6	3.2	2.9	2.4	2.0
90%RH	6.9	5.4	4.7	4.1	3.2	2.8	2.5	2.3	2.1	1.8	1.5

Silicon PIN Photodiode

Silizium-PIN-Fotodiode

Version 1.2

SFH 213

Features:

- Wavelength range (S_{10%}) 400 nm to 1100 nm
- · Short switching time (typ. 5 ns)
- 5 mm LED plastic package

Applications

- · High speed photointerrupters
- Industrial electronics
- · For control and drive circuits

Besondere Merkmale:

- Wellenlängenbereich (S_{10%}) 400 nm bis 1100 nm
- · Kurze Schaltzeit (typ. 5 ns)
- 5 mm-Plastikbauform im LED-Gehäuse

Anwendungen

- · Schnelle Lichtschranken
- · Industrieelektronik
- · Messen / Steuern / Regeln

Ordering Information Bestellinformation

	7,7-11.70.70.70.70	
Туре:	Photocurrent	Ordering Code
Typ: Fotostrom		Bestellnummer
V _R = 5 V, Std. Light A	V _R = 5 V, Std. Light A, E _V = 1000 lx	
	I _P [μΑ]	
SFH 213	135 (≥ 100)	Q62702P0930

Maximum Ratings $(T_A = 25 \degree C)$ Grenzwerte

Parameter	Symbol	Values	Unit
Bezeichnung	Symbol	Werte	Einheit
Operating and storage temperature range Betriebs- und Lagertemperatur	T _{op} ; T _{stg}	-40 100	°C

2015-09-02

Version 1.2 SFH 213

Parameter	Symbol	Values	Unit
Bezeichnung	Symbol	Werte	Einheit
Reverse voltage Sperrspannung	V _R	20	V
Reverse voltage Sperrspannung (t < 2 min)	V _R	50	V
Total power dissipation Verlustleistung	P _{tot}	150	mW

Characteristics ($T_A = 25$ °C) Kennwerte

Parameter	Symbol	Values	Unit
Bezeichnung	Symbol	Werte	Einheit
Photocurrent Fotostrom ($E_v = 1000 \text{ lx}$, Std. Light A, $V_R = 5 \text{ V}$, T = 2856 K)	I _P	135 (≥ 100)	μΑ
Wavelength of max. sensitivity Wellenlänge der max. Fotoempfindlichkeit	$\lambda_{\text{S max}}$	850	nm
Spectral range of sensitivity Spektraler Bereich der Fotoempfindlichkeit	λ _{10%}	400 1100	nm
Radiant sensitive area Bestrahlungsempfindliche Fläche	А	1.00	mm ²
Dimensions of radiant sensitive area Abmessung der bestrahlungsempfindlichen Fläche	LxW	1 x 1	mm x mm
Half angle Halbwinkel	φ	± 10	٥
Dark current Dunkelstrom (V _R = 20 V)	I _R	1 (≤ 5)	nA
Spectral sensitivity of the chip Spektrale Fotoempfindlichkeit des Chips $(\lambda = 870 \text{ nm})$	S _{λ typ}	0.65	A/W
Quantum yield of the chip Quantenausbeute des Chips $(\lambda = 870 \text{ nm})$	η	0.93	Electro ns /Photon
Open-circuit voltage Leerlaufspannung $(E_{\rm v} = 1000 \rm lx, Std. Light A)$	V _o	430 (≥ 350)	mV

SFH 213 Version 1.2

Parameter	Symbol	Values	Unit	
Bezeichnung	Symbol	Werte	Einheit	
Short-circuit current Kurzschlussstrom ($E_v = 1000$ lx, Std. Light A)	I _{SC}	125	μА	
Rise and fall time Anstiegs- und Abfallzeit ($V_R = 20 \text{ V}, R_L = 50 \Omega, \lambda = 850 \text{ nm}$)	t _r , t _f	0.005	μs	
Forward voltage Durchlassspannung (I _F = 100 mA, E = 0)	V _F	1.3	V	
Capacitance Kapazität ($V_{\rm R}$ = 0 V, f = 1 MHz, E = 0)	C ₀	11	pF	
Temperature coefficient of V _O Temperaturkoeffizient von V _O	TC _v	-2.6	mV / K	
Temperature coefficient of I _{SC} Temperaturkoeffizient von I _{SC} (Std. Light A)	TCı	0.18	% / K	
Noise equivalent power Rauschäquivalente Strahlungsleistung (V _R = 20 V, λ = 870 nm)	NEP	0.028	pW / Hz ^½	
Detection limit Nachweisgrenze ($V_R = 20 \text{ V}, \lambda = 870 \text{ nm}$)	D [*]	3.6e12	cm x Hz ^½ / W	

2015-09-02

Opto Semiconductors

2

Version 1.2 SFH 213

Relative Spectral Sensitivity Relative spektrale Empfindlichkeit $S_{\rm rel} = f(\lambda)$

Photocurrent / Open-Circuit Voltage Fotostrom / Leerlaufspannung $I_P (V_R = 5 \ V) / V_O = f(E_V)$

Total Power Dissipation Verlustleistung

$$P_{tot} = f(T_A)$$

Dark Current Dunkelstrom

$$I_R = f(V_R), E = 0$$

2015-09-02 4

Version 1.2 SFH 213

Capacitance Kapazität

 $C = f(V_R), f = 1 \text{ MHz}, E = 0$

Dark Current Dunkelstrom

 $I_R = f(T_A), \ V_R = 20 \ V, \ E = 0$

Directional Characteristics Winkeldiagramm

$$S_{rel} = f(\phi)$$

2015-09-02

TLV271, TLV272, TLV274 FAMILY OF 550-µA/Ch 3-MHz RAIL-TO-RAIL OUTPUT **OPERATIONAL AMPLIFIERS**

Operational Amplifier

Rail-To-Rail Output

Wide Bandwidth . . . 3 MHz

High Slew Rate . . . 2 .4 V/μs

Supply Voltage Range . . . 2.7 V to 16 V

Supply Current . . . 550 μA/Channel

■ Input Noise Voltage . . . 39 nV/√Hz

Input Bias Current . . . 1 pA

 Specified Temperature Range 0°C to 70°C . . . Commercial Grade -40°C to 125°C . . . Industrial Grade

Ultrasmall Packaging

- 5 Pin SOT-23 (TLV271)

- 8 Pin MSOP (TLV272)

Ideal Upgrade for TLC27x Family

description

The TLV27x takes the minimum operating supply voltage down to 2.7 V over the extended industrial temperature range while adding the rail-to-rail output swing feature. This makes it an ideal alternative to the TLC27x family for applications where rail-to-rail output swings are essential. The TLV27x also provides 3-MHz bandwidth from only 550 µA.

Like the TLC27x, the TLV27x is fully specified for 5-V and ±5-V supplies. The maximum recommended supply voltage is 16 V, which allows the devices to be operated from a variety of rechargeable cells (±8 V supplies down to ±1.35 V).

The CMOS inputs enable use in high-impedance sensor interfaces, with the lower voltage operation making an attractive alternative for the TLC27x in battery-powered applications.

All members are available in PDIP and SOIC with the singles in the small SOT-23 package, duals in the MSOP, and quads in the TSSOP package.

The 2.7-V operation makes it compatible with Li-Ion powered systems and the operating supply voltage range of many micropower microcontrollers available today including TI's MSP430.

SELECTION OF SIGNAL AMPLIFIER PRODUCTS†

DEVICE	V _{DD} (V)	V _{IO} (μV)	lq/Ch (μA)	I _{IB} (pA)	GBW (MHz)	SR (V/µs)	SHUTDOWN	RAIL- TO- RAIL	SINGLES/DUALS/QUADS
TLV27x	2.7-16	500	550	1	3	2.4	1-0	0	S/D/Q
TLC27x	3-16	1100	675	1	1.7	3.6		-	S/D/Q
TLV237x	2.7-16	500	550	1	3	2.4	Yes	I/O	S/D/Q
TLC227x	4-16	300	1100	1	2.2	3.6	-	0	D/Q
TLV246x	2.7-6	150	550	1300	6.4	1.6	Yes	1/0	S/D/Q
TLV247x	2.7-6	250	600	2	2.8	1.5	Yes	I/O	S/D/Q
TLV244x	2.7-10	300	725	1	1.8	1.4	_	0	D/Q

† Typical values measured at 5 V, 25°C

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include

Copyright @ 2001-2004, Texas Instruments Incorporated

TLV271, TLV272, TLV274 FAMILY OF 550-µA/Ch 3-MHz RAIL-TO-RAIL OUTPUT **OPERATIONAL AMPLIFIERS**

TLV27x PACKAGE PINOUTS(1)

NC - No internal connection (1) SOT-23 may or may not be indicated

TLV271, TLV272, TLV274 FAMILY OF 550-µA/Ch 3-MHz RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS SLOS351D - MARCH 2001 - REVISED FEBRUARY 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	16.5 V
Differential input voltage, V _{ID}	
Input voltage range, V _I (see Note 1)	
Input current range, I ₁	±10 mA
Output current range, IO	±100 mA
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix	0°C to 70°C
I suffix	40°C to 125°C
Maximum junction temperature, T _J	150°C
Storage temperature range, T _{stg}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential voltages, are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE (°C/W)		θJA (°C/W)	$T_A \le 25^{\circ}C$ POWER RATING	T _A = 25°C POWER RATING
D (8)	38.3	176	710 mW	396 mW
D (14)	26.9	122.3	1022 mW	531 mW
D (16)	25.7	114.7	1090 mW	567 mW
DBV (5)	55	324.1	385 mW	201 mW
DBV (6)	55	294.3	425 mW	221 mW
DGK (8)	54.23	259.96	481 mW	250 mW
DGS (10)	54.1	257.71	485 mW	252 mW
N (14, 16)	32	78	1600 mW	833 mW
P (8)	41	104	1200 mW	625 mW
PW (14)	29.3	173.6	720 mW	374 mW
PW (16)	28.7	161.4	774 mW	403 mW

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, V _{DD}	Single supply	2.7	16	V
	Split supply	±1.35	±8	V
Common-mode input voltage range, VICR	223	0	V _{DD} -1.35	V
Operating free-air temperature, T _A	C-suffix	0	70	00
	I-suffix	-40	125	°C

