企业的原始的对称加密算法

陈博 胡鸣

2016. 5. 20

背景

copherlilght grænsbeirlved

云服务大量出现,云存储,云播放, 云查看等。非对称加密没法满足快速, 大量文件加密要求。

- 常见的对称加密算法不够灵活:
 - -密钥长度局限,可选的种类少
 - -数据需要手动填充

基于喷泉码的对称加密算法

算法特性

copherlilgh, t grænsbeirlved

- 密钥多样化
 - -密钥长度为8的倍数8n(1, 2, 3, 4 •••)
 - -最短8位,没有上限
 - -16进制字符串
 - PKCS #7块自动填充
 - 喷泉码混淆与扩散
 - -XOR, 链式压缩, 混乱信息熵
 - -块内行换位,扩散明文信息

加密 copherlilgh,t greensheirlyed

b7 b6 b5 b4	b3 b2	b1 b0
-------------	-------	-------

message = B7B6B5B4B3B2B1B0

key = b7b6b5 ∧ mask

 $B'[0] = B[\ker +]$

 $B'[1] = B[key++ \% bsize] \land B'[0]$

 $B'[2] = B[key++ \% bsize] \land B'[1]$

 $B'[3] = B[key++ \% bsize] \land B'[2]$

..

 $B'[7] = B[key++ \% bsize] \land B'[6]$

解密 cophedilght greensheirlyed

cliper = B7B6B5B4B3B2B1B0

key = b0b7b6 ∧ mask

B'[key++] = B[0]

B'[key++ % bsize] = B[1] \land B[0]

 $B'[key++ \% bsize] = B[2] \land B[1]$

...

 $B'[key++ \% bsize] = B[7] \land B[6]$

算法测试

copherlilgh, t grænsbeirlved

- 1、密钥长度测试
- 2、明文长度测试
- 3、二进制文件测试
- 4、压缩测试
- 5、明文与密文相似度测试
- 6、雪崩效应测试

DEMO

copyerlight greensbeirly ed

密文压缩测试

 算法
 测试结果
 压缩比率

 SEF
 success
 99.9445832361

 DES
 success
 100.019329338

 DES3
 success
 100.023680687

 AES
 success
 100.022062417

表 5-10 密钥雪崩效应测试

雪崩效应测试

密钥 (原密钥)	密钥 (改变后)	密文变化比率
6477710ee4154d39	6477710ae4154d39	9.884 %
d5a47bef2844be4b	d5a47baf2844be4b	9.855 %
abf096587a897b4c	abf096187a897b4c	9.893 %

时间复杂度与密钥长度关系

fppt.com