

Improvements in the high-energy lepton propagator PROPOSAL

Jean-Marco Alameddine **25.03.2019**

E5b

Introduction

- PROPOSAL: Tool to propagate charged leptons
 - → MC simulations, multivariate statistics
- Requirements: Accuracy, performance
- **Processes:** Energy losses, scattering, decays
- lacktriangleright Possibility to use **different parametrizations** ightarrow Study **systematic uncertainties**
- C++ library with Python bindings

Propagation

$$\frac{\mathrm{d}\sigma}{\mathrm{d}v} \quad \xrightarrow{?} \quad \text{energy losses}$$

Propagation

$$v < v_{\rm cut}$$
 continuous losses

$$v>v_{
m cut}$$
 stochastic losses

with
$$v_{\mathrm{cut}} = \min\left[{^{e_{\mathrm{cut}}}\!/_{\!E}}, {v'}_{\mathrm{cut}}\right]$$

Propagation

Standard interactions:

- \blacksquare e pair production
- Bremsstrahlung
- Photonuclear
- Ionization

Rare interactions:

- \blacksquare μ pair production
- Weak interaction
- → Negligible contribution to overall energy loss
- → Observable, interesting signature

Propagation of 10 4 muons with energy 10 8 MeV through 100 m of standard rock.

Direct Production of Muon Pairs

With the energy fraction transferred to the muon pair:

$$v = \frac{\left(\epsilon_{+} + \epsilon_{-}\right)}{E}$$

With the asymmetry parameter:

$$\rho = \frac{(\epsilon_+ - \epsilon_-)}{(\epsilon_+ + \epsilon_-)}$$

E : Initial energy of the incoming muon $\mu_{\rm i}$ ϵ_{\pm} : Energy of the produced (anti)muon

Double-differential cross section

For production of muon pairs 1:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}v\mathrm{d}\rho} = \frac{2}{3\pi} (Z\alpha r_{\mu})^{2} \frac{1-v}{v} \Phi(v,\rho) \ln(X)$$

For production of electron positron pairs ²:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}v\mathrm{d}\rho} = \frac{2}{3\pi}Z(Z+\xi)\left(\alpha r_e\right)^2\frac{1-v}{v}\left(\varPhi_e + \frac{m_e^2}{m_\mu^2}\varPhi_\mu\right)$$

¹Kelner, Kokoulin, Petrukhin: Phys. of Atomic Nuclei, Vol. 63, No. 9, 2000, pp. 1603-1611

²Kokoulin, Petrukhin: Proceedings of 12th ICCR, 1971, p. 2436

e5 experimentelle physik 5

Continous energy loss per distance

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = E\frac{N_{\mathrm{A}}}{A}\int_{v_{\mathrm{min}}}^{v_{\mathrm{cut}}}v\frac{\mathrm{d}\sigma}{\mathrm{d}v}\mathrm{d}v$$

with

$$\begin{split} v_{\rm min} &= \frac{2m_{\mu}}{E}, \\ v_{\rm max} &= 1 - \frac{m_{\mu}}{E}. \end{split}$$

Comparion of e-pair and μ -pair production, only continous losses (i.e. $v_{\text{cut}} = v_{\text{max}}$).

process	N/N_{ges}	E/E_{ges}
e pairp.	0,94	0,94
loniz.	$4 \cdot 10^{-2}$	$5 \cdot 10^{-2}$
Brems.	$1 \cdot 10^{-2}$	$7 \cdot 10^{-3}$
Photon.	$8 \cdot 10^{-3}$	$6 \cdot 10^{-3}$
μ pairp.	$6 \cdot 10^{-5}$	$5 \cdot 10^{-5}$

Stochastic losses in standard rock of 10 6 muons with E= 10 8 MeV, $e_{\rm cut}=$ 500 MeV, $v_{\rm cut}=$ 5 \cdot 10 $^{-2}$.

jean-marco.alameddine@udo.edu

Sampling of ρ for muons with $E={\rm 1\cdot 10^6~MeV}$ and different v in standard rock.

Weak interaction

- Highly suppressed process
- Similarities with "lollipop" signature in au-events
- Crossing symmetry ³:

$$d\sigma (\mu Z \to \nu_{\mu} Z) = \frac{1}{2} d\sigma (\nu_{\mu} Z \to \mu Z)$$

³Sandrock, Alexander: Higher-order corrections to the energy loss cross sections of high-energy muons, 2018, pp. 38-40

Future: Physical improvements in PROPOSAL

- Improvement of electron propagation
- Propagation of high-energy photons
- Deflection of particles in magnetic fields
- Propagation through media with non-homogenous density

https://arxiv.org/abs/1809.07740

PROPOSAL may be modified and distrubuted under terms of a modified LGPL license.

More information on our GitHub page.