## Análisis de Estudio de Ratones a Tratamiento Farmacéutico Alejandro Ayala Castañeda

April 30, 2025

# 1 Estudio Mono-Compartimental farmacocinético del Sunitinib + ketoconazol en ratones

En este cuaderno se analiza el comportamiento farmacocinético de una formulación que contiene sunitinib combinado con ketotomasapredatidonazol en ratones.

Utilizamos un modelo monocompartimental con absorción de primer orden para describir la concentración del fármaco en distintos compartimentos: Plasma, Cerebro, Riñón e Hígado.

#### 1.0.1 Objetivos

- Estimar los parámetros:
  - $-k_e$ : constante de eliminación
  - $-t_{1/2}$ : vida media
  - $-k_a$ : constante de absorción
  - Factor de concentración
- Calcular el error cuadrático total (SSR) y el criterio de información de Akaike (AIC)
- Comparar los valores reales y predichos mediante gráficas

|        | Cerebro  | Plasma   | Riñon     | Higado     |
|--------|----------|----------|-----------|------------|
| Tiempo |          |          |           |            |
| 0.00   | 0.000000 | 0.000000 | 0.000000  | 0.000000   |
| 0.08   | 2.375455 | 1.253699 | 7.725515  | 28.739378  |
| 0.25   | 2.428088 | 1.883693 | 17.777037 | 43.681615  |
| 0.50   | 2.473455 | 1.635242 | 22.042997 | 53.189255  |
| 1.00   | 3.671161 | 2.028957 | 35.874868 | 80.544272  |
| 2.00   | 4.597385 | 2.850109 | 66.188478 | 158.306083 |
| 4.00   | 6.108580 | 3.384569 | 64.424283 | 119.348789 |
| 6.00   | 4.235917 | 2.608140 | 53.622046 | 90.896761  |
| 8.00   | 2.888443 | 1.869260 | 39.509340 | 71.328054  |
| 12.00  | 2.103540 | 1.188970 | 19.110558 | 27.001372  |

#### 1.1 Función analizar\_compartimento

Esta función estima los parámetros cinéticos a partir de los datos experimentales de un compartimento dado.

Se realiza el siguiente flujo:

1. Se encuentra el tiempo al que se alcanza la concentración máxima  $C_{max}$  (es decir,  $t_{max}$ ).

- 2. Se utiliza la fase terminal para ajustar una recta a  $(\ln(C))$  ycalcular:
- $k_e=-$ pendiente  $t_{1/2}=\frac{\ln(2)}{k_e}$ 3. Se estima  $k_a$  utilizando el **método de bisección** con la ecuación:

$$\ln(x) = k_e \cdot (x - 1) \cdot t_{max}$$

4. Se ajusta el modelo monocompartimental con absorción de primer orden:

$$C(t) = F \cdot \left( e^{-k_e t} - e^{-k_a t} \right)$$

Donde F es un factor de concentración calculado a partir de  $C_{max}$ ,  $k_e$ , y  $k_a$ .

5. Se calcula el SSR y el AIC para evaluar el ajuste.

#### 1.2 Aplicación del modelo a los compartimentos

Aplicamos la función analizar\_compartimento a los siguientes compartimentos:

- Plasma
- Cerebro
- Riñón
- Hígado

Y mostramos los parámetros estimados para cada uno.

#### Visualización de los modelos

Comparamos la concentración real con la concentración predicha por el modelo monocompartimental con absorción para cada compartimento.

Se espera que el modelo prediga adecuadamente la fase de absorción y eliminación.



### 2 Estudio Bi-Compartimental farmacocinético del Sunitinib + ketoconazol en ratones

Este análisis se basa en un estudio farmacocinético del fármaco sunitinib combinado con ketotomasapredatidonazol administrado a ratones. El objetivo es ajustar un modelo bicompartimental con absorción para describir la cinética del fármaco en distintos tejidos (plasma, hígado, riñón y cerebro), y calcular parámetros como:

- Tasa de absorción (ka)
- Tasas de eliminación de los compartimentos (alfa, beta)
- Concentración máxima (Cmax) y tiempo a la concentración máxima (Tmax)
- Área bajo la curva hasta infinito (AUC\_inf)
- Semivida terminal (t/)
- Depuración aparente (CL/F)
- Volumen de distribución aparente (Vd/F)
- Tiempo medio de residencia (MRT)

|        | Cerebro  | Plasma   | Riñon     | Higado    |
|--------|----------|----------|-----------|-----------|
| Tiempo |          |          |           |           |
| 0.00   | 0.000000 | 0.000000 | 0.000000  | 0.000000  |
| 0.08   | 2.375455 | 1.253699 | 7.725515  | 28.739378 |
| 0.25   | 2.428088 | 1.883693 | 17.777037 | 43.681615 |

| 0.50  | 2.473455 | 1.635242 | 22.042997 | 53.189255  |
|-------|----------|----------|-----------|------------|
| 1.00  | 3.671161 | 2.028957 | 35.874868 | 80.544272  |
| 2.00  | 4.597385 | 2.850109 | 66.188478 | 158.306083 |
| 4.00  | 6.108580 | 3.384569 | 64.424283 | 119.348789 |
| 6.00  | 4.235917 | 2.608140 | 53.622046 | 90.896761  |
| 8.00  | 2.888443 | 1.869260 | 39.509340 | 71.328054  |
| 12.00 | 2.103540 | 1.188970 | 19.110558 | 27.001372  |

#### 2.1 Modelo bicompartimental con absorción

El modelo describe la concentración del fármaco C(t) en función del tiempo t mediante la siguiente ecuación:

$$C(t) = A\left(e^{-\alpha t} - e^{-k_a t}\right) + B\left(e^{-\beta t} - e^{-k_a t}\right)$$

Donde: - (k\_a): constante de absorción - (A), (B): coeficientes de distribución - (α): tasa de distribución (fase rápida) - (β): tasa de eliminación terminal (fase lenta)

#### 2.2 Ajuste del modelo y cálculo de parámetros farmacocinéticos

Se ajusta el modelo bicompartimental a los datos experimentales usando mínimos cuadrados no lineales, y se calculan los siguientes parámetros:

- Cmax: concentración máxima predicha.
- Tmax: tiempo en el que ocurre Cmax.
- AUC-: área bajo la curva desde 0 hasta infinito, usando:

$$AUC_{0-\infty} = AUC_{0-12h} + \frac{C_{\text{last}}}{\beta}$$

• t/ (semivida terminal):

$$t_{1/2} = \frac{\ln 2}{\beta}$$

• CL/F (depuración aparente):

$$CL/F = \frac{D}{AUC_{0-\infty}}$$
 donde  $D = 40 \,\mu g/kg$ 

• Vd/F (volumen de distribución aparente):

$$Vd/F = \frac{CL/F}{\beta}$$

• MRT (tiempo medio de residencia):

$$MRT = \frac{Vd/F}{CL/F}$$

 $\bullet \ \mathbf{SE}_{\{\mathbf{AUC}_{\{\mathbf{0}\text{-}\infty\}}\}} (errorestndardel AUC extrapolado): \\$ 

Cerebro

0.657

$$SE_{AUC_{0-\infty}} = \frac{C_{\text{last}}}{\beta^2} \cdot SE_{\beta}$$

 $\bullet$   $SE_{\{CL/F\}}$  (error estándar de la depuración aparente, por propagación):

#### 2.3 Comparación gráfica entre datos reales y predicción del modelo

7.717

5.070

0.210

En esta sección se grafican las concentraciones reales observadas y las curvas predichas por el modelo bicompartimental para cada tejido. Esto permite visualizar qué tan bien se ajusta el modelo a los datos experimentales.

0.753

9.416



#### 3 Conclusiones del estudio

En esta sección final de nuestro estudio, vamos a **evaluar cuantitativamente el ajuste de nuestros modelos** farmacocinéticos a los datos experimentales obtenidos de ratones tratados con sunitinib. Para ello, utilizaremos dos métricas muy importantes:

- SSR (Suma de los Cuadrados del Residuo): mide el error total entre los valores predichos por un modelo y los valores observados. Cuanto menor sea el SSR, mejor es el ajuste del modelo.
- AIC (Criterio de Información de Akaike): evalúa la calidad de un modelo teniendo en cuenta tanto el ajuste a los datos como la complejidad del modelo (número de parámetros). Un AIC más bajo indica un modelo más eficiente.

Vamos a comparar **cuatro funciones modelo** y determinar cuál se ajusta mejor a nuestros datos reales.

#### 3.1 Cálculo del SSR

El SSR (Suma de los Cuadrados del Residuo) se calcula usando la siguiente fórmula:

$$SSR = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Donde:

- $y_i$  son los valores reales.
- $\hat{y}_i$  son los valores predichos por el modelo.

#### 3.2 Cálculo del AIC

El AIC (Criterio de Información de Akaike) penaliza la complejidad del modelo. La fórmula que usaremos es:

$$AIC = n \cdot \ln\left(\frac{SSR}{n}\right) + 2k$$

Donde:

- n: número de observaciones.
- SSR: suma de los cuadrados de los residuos.
- k: número de parámetros del modelo.

Asumiremos lo siguiente para nuestros modelos: - Modelo 1: 2 parámetros - Modelo 2: 3 parámetros - Modelo 3: 2 parámetros - Modelo 4: 4 parámetros

#### 3.3 Conclusiones

|                    | Tejido  | SSR         | AIC       |
|--------------------|---------|-------------|-----------|
| Modelo             |         |             |           |
| Bicompartimental   | CEREBRO | 6.324883    | 6.825402  |
| Monocompartimental | CEREBRO | 12.903700   | 9.242600  |
| Bicompartimental   | HIGADO  | 1485.013923 | 55.953594 |
| Monocompartimental | HIGADO  | 4641.323000 | 62.209800 |
| Bicompartimental   | PLASMA  | 2.322398    | -2.191619 |
| Monocompartimental | PLASMA  | 4.276900    | -0.695900 |
| Bicompartimental   | RIÑON   | 94.974923   | 31.207495 |
| Monocompartimental | RIÑON   | 956.999700  | 47.999200 |

Al comparar los modelos farmacocinéticos mono y bicompartimental en diferentes tejidos (cerebro, hígado, plasma y riñón), se observa que el modelo bicompartimental proporciona un mejor ajuste general a los datos. Esto se evidencia tanto por los valores más bajos de Suma de los Cuadrados de los Residuos (SSR) como por los criterios de información de Akaike (AIC) más reducidos en todos los tejidos evaluados. En particular, las diferencias son más marcadas en tejidos como el hígado y el riñón, donde el modelo bicompartimental reduce significativamente el error de ajuste en comparación con el monocompartimental. Estos resultados sugieren que el comportamiento farmacocinético del compuesto estudiado se describe mejor con un enfoque bicompartimental, reflejando posiblemente una distribución más compleja en los tejidos analizados.

## 4 Aplicar modelo Bi-Compartimental sobre los datos de Test

|                  | Cerebr  | o Pla    | sma   | Higado    |        | Riñon   |               |        |   |
|------------------|---------|----------|-------|-----------|--------|---------|---------------|--------|---|
| Tiempo           |         |          |       |           |        |         |               |        |   |
| 0.00             | 0.01000 | 0.010    | 000   | 0.010000  | 0.0    | 10000   |               |        |   |
| 0.08             | 1.47817 | 5 0.761  | 520   | 5.620105  | 27.7   | 757062  |               |        |   |
| 0.25             | 1.54291 | 6 1.140  | 623 1 | .3.975576 | 49.4   | 153853  |               |        |   |
| 0.50             | 2.86069 | 3 2.716  | 908 6 | 5.792679  | 107.0  | 25753   |               |        |   |
| 1.00             | 2.11825 | 3 1.732  | 809 3 | 3.339625  | 78.3   | 884621  |               |        |   |
| 2.00             | 2.11773 | 7 1.967  | 675 3 | 7.041934  | 68.0   | 008447  |               |        |   |
| 4.00             | 2.11778 | 5 1.238  | 243 3 | 80.133649 | 36.7   | 16059   |               |        |   |
| 6.00             | 2.02521 | 2 1.056  | 993 2 | 21.450501 | 27.1   | .88582  |               |        |   |
| 8.00             | 1.75210 | 1 0.964  | 013 1 | 4.368102  | 15.0   | )55364  |               |        |   |
| 12.00            | 1.46847 | 9 0.714  | 241   | 9.960894  | 5.8    | 880010  |               |        |   |
|                  | 1-0     | alfa     | beta  | Cmax      | Tmax   | ATIC in | e or allo inf | t1/2   | \ |
| Toddo            | ka      | alla     | beta  | Ciliax    | Illiax | AUC_int | f SE_AUC_inf  | 61/2   | \ |
| Tejido<br>Plasma | 2.245   | 2.202    | 0.087 | 2.225     | 0.724  | 22.019  | 0 0 0 1 7     | 7.932  |   |
|                  |         |          |       |           |        |         |               |        |   |
| 0                | 2.102   |          | 0.121 |           | 0.844  | 359.293 |               | 5.725  |   |
| Riñon            | 2.040   |          | 0.213 |           | 0.724  | 427.977 |               |        |   |
| Cerebro          | 7.039   | 1.957    | 0.036 | 2.381     | 0.603  | 65.727  | 7 45.382      | 19.386 |   |
|                  | OI /E   | ar at /r | 37.3  | 1 / E M   | D.TT   | Δ.      | D             |        |   |
| m - 22 a -       | CL/F    | SE_CL/F  | Va    | l/F M     | RT     | A       | В             |        |   |
| Tejido           | 4 047   | 0 004    | 00.5  | 700 44 4  | 40 4   | 00 454  | 4 000         |        |   |
| Plasma           | 1.817   | 0.664    |       |           |        | .33.456 | 1.898         |        |   |
| Higado           | 0.111   | 0.045    |       |           |        | 331.606 | 43.277        |        |   |
| Riñon            | 0.093   | 0.006    |       |           |        | .62.078 | 89.006        |        |   |
| Cerebro          | 0.609   | 0.420    | 17.0  | 27.9      | 67     | 0.368   | 2.357         |        |   |



#### 5 Análisis de diferencias de AUC usando el Test de Yuan

En este análisis comparamos los valores de  $\mathbf{AUC\_inf}$  entre un grupo  $\mathbf{control}$  y un grupo  $\mathbf{inhibidor}$  utilizando el  $\mathbf{Test}$  de  $\mathbf{Yuan}$ , considerando la varianza en  $\mathbf{CL/F}$  (Clearance/F).

#### 5.1 Funciones utilizadas

#### 5.1.1 Calcular la varianza del AUC inf

La fórmula para la varianza de AUC es:

$$Var(AUC) = \frac{dosis^2 \times Var(CL/F)}{(CL/F)^4}$$

donde:

• 
$$Var(CL/F) = (SE_{CL/F})^2$$

#### 5.1.2 Test de Yuan para comparar AUC\_inf

El estadístico de prueba (Z) se calcula como:

$$Z = \frac{AUC_{\text{control}} - AUC_{\text{inhibidor}}}{\sqrt{\frac{\text{Var}(AUC_{\text{control}})}{n_{\text{control}}} + \frac{\text{Var}(AUC_{\text{inhibidor}})}{n_{\text{inhibidor}}}}}$$

El valor p (p-value) se calcula como:

$$p$$
-value =  $2 \times P(Z > |z|)$ 

|         | AUC_Control   | Var_AUC_Control | AUC_Inhibidor | Var_AUC_Inhibidor | \ |
|---------|---------------|-----------------|---------------|-------------------|---|
| Plasma  | 22.019        | 0.440896        | 40.922        | 0.165649          |   |
| Higado  | 359.293       | 0.002025        | 1273.524      | 0.313600          |   |
| Riñon   | 427.977       | 0.000036        | 641.877       | 0.000064          |   |
| Cerebro | 65.727        | 0.176400        | 60.887        | 0.044100          |   |
|         |               |                 |               |                   |   |
|         | Z             | p-value Signifi | cativo        |                   |   |
| Plasma  | -48.543291    | 0.0             | Sí            |                   |   |
| Higado  | -3254.619643  | 0.0             | Sí            |                   |   |
| Riñon   | -42780.000000 | 0.0             | Sí            |                   |   |
| Cerebro | 20.614417     | 0.0             | Sí            |                   |   |

#### 5.2 Interpretación

- Si el valor  $\mathbf{p} < \mathbf{0.05}$ , se considera que hay una diferencia estadísticamente significativa en los valores de AUC inf entre el grupo control y el grupo inhibidor para ese tejido.
- El **estadístico Z** indica cuántas desviaciones estándar separan los valores de AUC entre los grupos.

Se compararon los valores de AUC entre Control e Inhibidor. Todos los cambios fueron estadísticamente significativos (p = 0.0), lo que implica un efecto real del inhibidor sobre la farmacocinética en cada tejido.

| Tejido  | Efecto del Inhibidor | Implicación                                                                                                                 |
|---------|----------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Plasma  | ↑ AUC                | Mayor exposición<br>sistémica, el inhibidor<br>podría reducir el<br>aclaramiento.                                           |
| Hígado  | ↑↑ AUC               | Acumulación hepática<br>marcada, posible<br>inhibición del<br>metabolismo hepático.                                         |
| Riñón   | ↑ AUC                | Mayor retención renal,<br>podría afectar la<br>excreción.                                                                   |
| Cerebro | ↓ AUC                | Menor penetración al<br>SNC, el inhibidor podría<br>estar bloqueando el paso a<br>través de la barrera<br>hematoencefálica. |