Number Theory

Computer Security

February 15, 2023

Number Theory

- Divisibility and Division Algorithm
- Euclidean Algorithm
- Modular Arithmetic
- Groups, Rings and Fields
- Finite Fields of Form GF(p)
- Polynomial Arithmetic
- Finite Fields of Form $GF(2^n)$

Divisibility

b divides a (b|a)

$$a = m * b$$
 $a, b, m \rightarrow \text{integers}$

Example: 8|40,5|25

- If a|1, then $a=\pm 1$.
- If a|b and b|a, then $a = \pm b$
- Any $b \neq 0$ divides 0.
- if a|b and b|c, then a|c.
- If b|g and b|h, then b|(mg + nh) for arbitrary intereger m, n.

b = 7; g = 14; h = 63; m = 3; n = 2

$$7|14$$
 and $7|63$.
To show $7|(3*14+2*63)$,
we have $(3*14+2*63)=7(3*2+2*9)$,
and it is obvious that $7|(7(3*2+2*9))$.

The Division Algorithm

Division Algorithm

$$a = qn + r$$
 $0 \le rn$; $q = |a/n|$

$$a = 11$$
; $n = 7$; $11 = 1 * 7 + 4$; $r = 4$ $q = 1$

$$a = -11$$
; $n = 7$; $-11 = (-2) * 7 + 3$; $r = 3$ $q = -2$

The Euclidean Algorithm

- Finds the Greatest Common Divisor GCD of two integers.
- GCD should be positive

$$gcd(a, b) = gcd(a, -b) = gcd(-a, b) = gcd(-a, -b)$$

 $gcd(60, 24) = gcd(60, -24) = 12$

• Two integers are **relatively prime** if their only common positive integer factor **(GCD)** is 1. Ex: gcd(8, 15) = 1

$$gcd(x,1) = 1$$

$$gcd(x,0) = x$$

$$gcd(a,b) = gcd(b, a \mod b)$$

Q: Find gcd(324, 266)?

Q: Find gcd(1973, 539)? \rightarrow **Co-prime**

Modular Arithmetic

The Modulus

If a is an integer and n is a positive integer, we define a mod n to be the remainder when a is divided by n. The integer n is called the modulus.

$$a = qn + r$$
 $0 \le r < n$; $q = \lfloor a/n \rfloor$
 $a = \lfloor a/n \rfloor * n + (a \mod n)$

$$11 \mod 7 = 4;$$
 $-11 \mod 7 = 7 - (11 \mod 7) = 7 - 4 = 3$
 $11 \mod -7 = 4$
 $-11 \mod -7 = 3$

Modular Arithmetic

Congruent Modulo

Two integers a and b are said to be **congruent modulo** n, if (a mod n) = (b mod n). This is written as $a \equiv b \pmod{n}$.

Ex:73 \equiv 4 (mod 23) if $a\equiv$ 0 (mod n), then n|a

Congruences have the following properties:

- 2 $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$.
- lacksquare $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ imply $a \equiv c \pmod{n}$.

Modular Arithmetic Operations

The (mod n) operator maps all integers into the set of integers $\{0,1,...,(n-1)\}$

- $\bullet \ ((a \ mod \ n) + (b \ mod \ n)) \ mod \ n = (a + b) \ mod \ n$
- $\bullet \ ((a \ mod \ n) (b \ mod \ n)) \ mod \ n = (a b) \ mod \ n$
- $\bullet \ ((a \ mod \ n) \ * \ (b \ mod \ n)) \ mod \ n = (a \ * \ b) \ mod \ n$

What about division?? \rightarrow Modular Inverse (**Extended Euclidean Algorithm**)

The extended Euclidean algorithm not only calculate the greatest common divisor d but also two additional integers x and y that satisfy the following equation. ax + by = d = gcd(a, b)

Note: x and y will have opposite signs

Note: Numbers should be coprime to get multiplicative inverse.

Q: Find multiplicative inverse of 24140 mod 40902?

Arithmetic Modulo 8

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

-w	w^{-1}
0	_
7	1
6	_
5	3
4	-
3	5
2	_
1	7
	0 7 6 5 4 3

(c) Additive and multiplicative inverses modulo 8

(a) Addition r	nodulo 8
----------------	----------

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

(b) Multiplication modulo 8

Modular Arithmetic Properties

Define the set Z_n as the set of nonnegative integers less than n: $Z_n = \{0, 1, ..., (n-1)\}$ This is referred to as the set of residues, or residue classes (mod n). To be more precise, each integer in Z_n represents a residue class.

Table 4.3 Properties of Modular Arithmetic for Integers in Z_n

Property	Expression				
Commutative Laws	$(w + x) \bmod n = (x + w) \bmod n$ $(w \times x) \bmod n = (x + w) \bmod n$				
Associative Laws	$[(w+x)+y] \operatorname{mod} n = [w+(x+y)] \operatorname{mod} n$ $[(w\times x)\times y] \operatorname{mod} n = [w\times (x\times y)] \operatorname{mod} n$				
Distributive Law	$[w \times (x + y)] \bmod n = [(w \times x) + (w \times y)] \bmod n$				
Identities	$(0 + w) \bmod n = w \bmod n$ $(1 \times w) \bmod n = w \bmod n$				
Additive Inverse (-w)	For each $w \in Z_n$, there exists a $a z$ such that $w + z \equiv 0 \mod n$				

Group, Ring and Field

Figure 4.2 Groups, Ring, and Field

Set of natural numbers $N \to \text{Not}$ a groups Set of integers $Z \to \text{Integral Domain}$ Set of integers modulo a prime? If a and b belong to S, then a + b is also in S a + (b + c) = (a + b) + c for all a, b, c in SThere is an element 0 in R such that a + 0 = 0 + a = a for all a in S For each a in S there is an element -a in Ssuch that a + (-a) = (-a) + a = 0a + b = b + a for all a, b in SIf a and b belong to S, then ab is also in S a(bc) = (ab)c for all a, b, c in Sa(b+c) = ab + ac for all a, b, c in S(a + b)c = ac + bc for all a, b, c in Sab = ba for all a, b in SThere is an element 1 in S such that a1 = 1a = a for all a in S If a, b in S and ab = 0, then either a = 0 or b = 0If a belongs to S and a 0, there is an element a^{-1} in S such that $aa^{-1} = a^{-1}a = 1$

Finite Galois Fields GF(p)

- Set of integeres $\{0,1,...,p-1\}$ with arithmetic operations modulo prime p.
- The binary operations + and * are defined over the set. The operations of addition, subtraction, multiplication, and division can be performed without leaving the set.
- Each element of the set other than 0 has a multiplicative inverse.
 0
 1
 2
 3
 4
 5
 6
 ×
 0
 1
 2
 3
 4
 5
 6
 ×
 0
 1
 2
 3
 4
 5
 6

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

(a) Addition modulo 7

0	1	2	3	4	5	6
0	0	0	0	0	0	0
0	1	2	3	4	5	6
0	2	4	6	1	3	5
0	3	6	2	5	1	4
0	4	1	5	2	6	3
0	5	3	1	6	4	2
0	6	5	4	3	2	1

⁽b) Multiplication modulo 7

Polynomial Arithmetic

let
$$f(x) = x^3 + x^2 + 2$$
 and $g(x) = x^2 - x + 1$

Ordinary polynomial arithmetic

$$f(x) + g(x) = x^3 + 2x^2 - x + 3$$

$$f(x) - g(x) = x^3 + x + 1$$

$$f(x) * g(x) = x^5 + 3x^2 - 2x + 2$$

② Poly arithmetic with coefficients mod p (in GF(P)) Could be modulo any prime, but we are interested in mod 2 $f(x) + g(x) = x^3 + x + 1$

$$f(x) - g(x) = x^3 + x + 1$$

 $f(x) * g(x) = x^5 + x^2$

 Poly arithmetic with coefficients mod p and polynomials mod m(x)

Polynomial Division & GCD

- Any polynomial can be written in the form: f(x) = g(x)g(x) + r(x)
- r(x) can be interpretted as being a remainder
 r(x) = f(x) mod g(x)
- If have no remainder say g(x) divides f(x)
- If g(x) has no divisors other than itself & 1 say it is irreducible (or prime) polynomial
- Arithmetic modulo an irreducible polynomial forms a field
- Can find greatest common divisor for polys
 c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest degree which divides both a(x), b(x)

Finite Fields of the form $GF(2^n)$

- Polynomials with coefficients modulo 2 whose degree is less than n
- Must reduce modulo an irreducible poly of degree n (for multiplication only)
- Forms a finite field
- Can always find an inverse
- Can extend Euclid's Inverse algorithm to find