SESSION 2011 MPM1002

EPREUVE SPECIFIQUE - FILIERE MP

MATHEMATIQUES 1

Durée: 4 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées.

Le sujet est composé de deux exercices et d'un problème indépendants.

Exercice 1

On considère la série de fonctions $\sum_{n \geq 2} \frac{2x^n}{n^2-1}$.

- 1. Déterminer le rayon de convergence R de cette série entière.
- 2. On note S la fonction somme de la série $\sum_{n\geq 2}\frac{2x^n}{n^2-1}$. Déterminer S sur] -R,R[.
- 3. Démontrer que S(x) admet une limite lorsque x tend vers 1 par valeurs strictement inférieures et déterminer cette limite.

Exercice 2

On considère l'équation différentielle (E) $2xy' - 3y = \sqrt{x}$.

- **1.** Résoudre (E) sur $]0, +\infty[$.
- 2. Déterminer l'ensemble des solutions de (E) sur l'intervalle $[0, +\infty[$.

Problème

AUTOUR DE LA TRANSFORMATION DE LAPLACE

Dans tout ce problème, on note :

- $-\mathcal{F}(\mathbb{R}^+,\mathbb{R})$ l'ensemble des applications de \mathbb{R}^+ dans \mathbb{R} ;
- E l'ensemble des fonctions $f: \mathbb{R}^+ \to \mathbb{R}$, continues, telles que, pour tout x > 0 réel, la fonction $t \mapsto f(t)e^{-xt}$ soit intégrable sur \mathbb{R}^+ ;
- -F l'ensemble des fonctions continues et bornées sur \mathbb{R}^+ .

Pour tout f dans E, on appelle transformée de LAPLACE de f et on note $\mathcal{L}(f)$ la fonction définie pour tout x > 0 réel par :

$$\mathcal{L}(f)(x) = \int_0^{+\infty} f(t) e^{-xt} dt.$$

1. Question préliminaire

Soient $a \in \mathbb{R}$ et $f : [a, +\infty[\to \mathbb{R}$ une fonction continue par morceaux. Pour tout x dans $[a, +\infty[$, on pose :

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t.$$

On considère les propositions suivantes :

- (i) f est intégrable sur $[a, +\infty[$;
- (ii) F admet une limite finie en $+\infty$.

Donner, sans démonstration, toutes les implications possibles entre (i) et (ii) lorsque :

- (a) f est positive sur $[a, +\infty[$;
- (b) f n'est pas positive sur $[a, +\infty[$.

Partie I : Exemples et propriétés

- 2. (a) Démontrer que E est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}^+, \mathbb{R})$.
 - (b) Démontrer que F est un sous-espace vectoriel de E.
 - (c) Justifier que \mathcal{L} est une application linéaire de E dans $\mathcal{F}(\mathbb{R}_*^+, \mathbb{R})$, espace vectoriel des applications de $]0, +\infty[$ dans \mathbb{R} .
- 3. (a) On considère la fonction $\mathcal{U}: \mathbb{R}^+ \to \mathbb{R}$ définie par $\mathcal{U}(t) = 1$. Déterminer $\mathcal{L}(\mathcal{U})$.
 - (b) Soit $\lambda \geqslant 0$ réel. On considère la fonction $h_{\lambda} : [0, +\infty[\to \mathbb{R} \text{ définie pour tout } t \geqslant 0 \text{ réel par :}$

$$h_{\lambda}(t) = e^{-\lambda t}$$

Démontrer que h_{λ} est dans E et déterminer $\mathcal{L}(h_{\lambda})$.

4. Soient f dans E et n dans \mathbb{N} . On considère $g_n: t \mapsto t^n f(t)$ de $[0, +\infty[$ dans \mathbb{R} . Pour x > 0, justifier de l'existence de A > 0 tel que $t^n e^{-xt} \leq e^{-\frac{xt}{2}}$ pour tout $t \geq A$. En déduire que g_n est un élément de E.

5. Transformée de Laplace d'une dérivée

Soit f dans E de classe C^1 , croissante et bornée sur $[0, +\infty[$. Démontrer que f' est encore dans E et que l'on a :

$$\forall x \in]0, +\infty[, \mathcal{L}(f')(x) = x\mathcal{L}(f)(x) - f(0).$$

6. Régularité d'une transformée de Laplace

- (a) Démontrer que pour tout f dans E, la fonction $\mathcal{L}(f)$ est de classe C^1 sur $]0, +\infty[$ et que l'on a $\mathcal{L}(f)' = -\mathcal{L}(g_1)$ où g_1 a été définie à la question 4.
- (b) Démontrer que pour tout f dans E, la fonction $\mathcal{L}(f)$ est de classe C^{∞} sur $]0, +\infty[$ et pour x > 0 et $n \in \mathbb{N}$, déterminer $\mathcal{L}(f)^{(n)}(x)$ à l'aide d'une transformée de Laplace.

Partie II : Comportements asymptotiques de la transformée de Laplace

Dans toute cette partie, f est un élément de E.

- 7. On suppose dans cette question que f est dans F.
 - (a) Déterminer la limite en $+\infty$ de $\mathcal{L}(f)$.
 - (b) Théorème de la valeur initiale On suppose, de plus, que f est de classe C^1 et croissante sur \mathbb{R}^+ , avec f' bornée sur \mathbb{R}^+ .

Démontrer que
$$\lim_{x\to +\infty} x \mathcal{L}(f)(x) = f(0)$$
.

8. Théorème de la valeur finale

On suppose dans cette question que $\lim_{t\to +\infty} f(t) = \ell$ où ℓ est un réel. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs qui converge vers 0.

- (a) Démontrer que f appartient à F.
- (b) Soit n un entier naturel. Démontrer que $a_n \mathcal{L}(f)(a_n) = \int_0^{+\infty} h_n(x) dx$ où h_n est la fonction définie sur $[0, +\infty[$ par $h_n(x) = e^{-x} f\left(\frac{x}{a_n}\right)$.
- (c) En déduire, à l'aide du théorème de convergence dominée, que $\lim_{n\to+\infty} a_n \mathcal{L}(f)(a_n) = \ell$.
- (d) Lorsque $\ell \neq 0$, déterminer un équivalent de $\mathcal{L}(f)(x)$ en 0.
- 9. Dans cette question, on suppose que f est intégrable sur \mathbb{R}^+ et on pose $R(x) = \int_x^{+\infty} f(t) dt$ pour tout x dans $[0, +\infty[$.

- (a) Démontrer que R est une fonction de classe C^1 sur $[0, +\infty[$ et déterminer R'. En déduire que, pour tout x > 0 réel, on a : $\mathcal{L}(f)(x) = R(0) - x\mathcal{L}(R)(x)$.
- (b) On fixe $\varepsilon > 0$. Justifier de l'existence de A réel positif tel que pour tout $t \ge A$, on ait $|R(t)| \le \varepsilon$. En déduire que, pour tout x > 0, on a :

$$|\mathcal{L}(f)(x) - R(0)| \le x \int_0^A |R(t)| \, dt + \varepsilon$$

(c) Démontrer que $\mathcal{L}(f)$ se prolonge par continuité en 0 (on précisera la valeur en 0 de ce prolongement).

Partie III : Application

10. Calcul de l'intégrale de Dirichlet

Ici f est la fonction définie par f(0) = 1 et $f(t) = \frac{\sin t}{t}$ pour t > 0 réel.

- (a) Démontrer que la fonction $F: \mathbb{R}^+ \to \mathbb{R}$ définie par $F(x) = \int_0^x f(t) dt$ admet une limite réelle ℓ en $+\infty$.
- (b) En considérant la série $\sum_{n\geqslant 0} u_n$ où $u_n = \int_{n\pi}^{(n+1)\pi} |f(t)| dt$, démontrer que f n'est pas intégrable sur \mathbb{R}^+ .
- (c) Soit x > 0. Démontrer, en détaillant les calculs, que pour tout X > 0 on a :

$$\int_0^X (\sin t) e^{-xt} dt = -\frac{1}{1+x^2} \left(e^{-xX} (x \sin X + \cos X) - 1 \right) .$$

Démontrer que la fonction $t \mapsto (\sin t) e^{-xt}$ est intégrable sur \mathbb{R}^+ .

Déterminer alors
$$\int_{0}^{+\infty} (\sin t) e^{-xt} dt$$
.

(d) Déterminer, pour x > 0, une expression simple de $\mathcal{L}(f)(x)$ et en déduire ℓ . Pour cela, on pourra utiliser le résultat suivant (la démarche de la preuve étant identique à celle de la question 9) :

Lorsque
$$f$$
 dans E vérifie $\lim_{x\to +\infty} \int_0^x f(t) dt = \ell \in \mathbb{R}$, alors $\lim_{x\to 0} \mathcal{L}(f)(x) = \ell$.

On notera que, par rapport à la question 9, on a remplacé l'hypothèse f intégrable sur \mathbb{R}^+ par l'hypothèse $\lim_{x\to +\infty} \int_0^x f(t) dt = \ell \in \mathbb{R}$.

Fin de l'énoncé