ALL files available here

Australian National University

Workshop on Decomposition Methods

Vladimir Canudas-Romo, Joo Won Park and Wen Su

What is Decomposition?

"In general, to decompose means to separate something into its constituent parts or elements or into simpler compounds. The decomposition methods used in demography also follow this separation principle by dividing demographic variables into specific components."

About Me

PhD

Univ. Groningen, NLD Max-Planck Institute, DEU **Researcher** Penn State, USA UC, Berkeley, USA **Faculty**

Johns Hopkins University, USA MaxO, DNK ANU, AUS

About Joo Won

Bachelor & Master SNU, SKO Master & PhD KDI, SKO

About Wen

Bachelor UIR, CHN Master & PhD ANU, AUS About You

And you?

Schedule

- Day1. Direct and Indirect Standardization
- Day2. Kitagawa and Vaupel & Canudas-Romo decomposition
- Day3. Decomposing mortality measures
- Day4. Decomposing fertility measures
- Day5. Decomposition of alternative measures

Course style

Intensive: 25 hours

- a) A demographic question?
- b) Learn methods
- c) R data calculations

Course style

- Facilitation of YOUR LEARNING
- ► ACTIVE participation is highly recommended
- ► Follow-up readings and R-activities will increase learning

Day 1

Direct and Indirect Standardization

Crude Death Rate

$$CDR(t) = D(t)/P(t)$$

Crude Death Rate

Table 1: CDR Comparison 2020

	Korea	Japan
CDR	5.9	11.1

Note: Results are multiplied by 1000

Source: HMD

Crude Death Rate

$$CDR(t) = \frac{\sum_{x} m(x,t) P(x,t)}{\sum_{x} P(x,t)}$$

Age-specific Death Rate (Korea, 2020)

Age-specific Death Rates (2020)

Population Comparison between Korea and Japan (2020)

WHO Standard

Source: WHO standard population

Direct Standardization

Table 2: CDR comparison with WHO standard

	Korea	Japan
CDR	5.9	11.1
Standardized CDR	3.1	2.8

Note: Results are multiplied by 1000

Use a Different Standard

Table 3: Comparison of Standardized CDR

	Standard as JPN	Standard as KOR
Korea	12.7	5.9
Japan	11.1	5.3

Note: Results are multiplied by 1000

Weighted Average

$$\bar{v}(t) = \frac{\sum_{x} v(x,t) w(x,t)}{\sum_{x} w(x,t)}$$

Weighted Average

$$\bar{v}(t) = \frac{\int_0^\omega v(x,t) w(x,t) dx}{\int_0^\omega w(x,t) dx}$$

General Fertility Rate

$$\bar{g}(t) = \frac{\int_{12}^{55} f(x,t) P_F(x,t) dx}{\int_{12}^{55} P_F(x,t) dx}$$

Mean Age of the Population

$$\bar{a} = \frac{\int_0^\omega a P(a,t) da}{\int_0^\omega P(a,t) da}$$

Crude Birth Rate

$$CBR(t) = \frac{B(t)}{P(t)}$$

Crude Birth Rate

$$CBR(t) = \sum_{x} f(x,t)c_F(x,t)$$

Direct Standardization

$$\bar{v}^s(t) = \frac{\int_0^\omega v(x,t) w^s(x,t) dx}{\int_0^\omega w^s(x,t) dx}$$

Indirect Standardization

$$\bar{v}^s(t) = \frac{\int_0^\omega v^s(x,t) w(x,t) dx}{\int_0^\omega w(x,t) dx}$$

General Fertility Rate

$$\bar{g}(t) = \frac{\int_{12}^{55} f(x,t) P_F(x,t) dx}{\int_{12}^{55} P_F(x,t) dx}$$

General Fertility Rate (Direct S)

Table 4: GFR comparison, Korea

	2000	2020
GFR	40.1	18.0
Standardized GFR	35.8	20.4

Note: Results are multiplied by 1000

Expected Number of Births

$$ENB = \int_{12}^{55} f(x)P_F(x)dx$$

Expected Number of Births (DS)

Table 5: ENB Comparison, Korea & USA, * 100,000

	KOR standard	USA standard
Korea	3.0	20.4
USA	5.6	37.5

Note: Results are divided by 100000

Mean Age of the Population

$$\bar{a} = \frac{\int_0^\omega a P(a,t) da}{\int_0^\omega P(a,t) da}$$

Mean Age of the Population (DS)

Table 6: MAP comparison

	Korea	Japan
MAP	42	47.2

Crude Death Rate (Indirect S)

Table 7: CDR comparison, Korea vs Japan

	Korea	Japan
CDR	5.9	11.1
Indirect Standardized CDR	5.6	11.9

Note: Results are multiplied by 1000

Expected Number of Deaths

$$END = \int_0^\omega m(x)P(x)dx.$$

Expected Number of Deaths (IS)

Table 8: END with indirect standard, Korea & USA 2020, * 100,000

	KOR standard	USA standard
Korea	3	5
USA	21	34

Note: Results are divided by 100,000

Assignment

Select one of the measures in the examples of this section and apply to a different population from HMD or HFD.

Submit ONE page: one Figure (or Table) and a brief paragraph describing the results that you find.