Session 37: Big-O

- Illustration of Big-O
- Proofs for Big-O
- Examples for Big-O

Example

Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$

$$|f(x)| = f(x) = x^2 + 2x + 1 < x^2 + 2x^2 + x^2 = 4x^2$$
 $|f(x)| = 4(x) = x^2 + 2x + 1 < x^2 + 2x^2 + x^2 = 4x^2$
 $|f(x)| = 4(x) = x^2 + 2x + 1 < x^2 + 2x^2 + 2x^2 + x^2 = 4x^2$

We choose C=4, then $|f(x)| \leq Cx^2$ and therefore f(x) is $O(x^2)$

Illustration of Big-O Notation

The part of the graph of $f(x) = x^2 + 2x + 1$ that satisfies $f(x) < 4x^2$ is shown in blue.

Illustration of Big-O Notation

Example

Show that x^2 is not O(x).

Assume there exists k, C such that
$$x^2 \leq Cx, \text{ for } x > k$$
 therefore $x \leq C$, for all $x > k$ Since $C+k > k$, it should be that $C+k \leq k \leq C$ (thore of x)

Big-O examples

```
75 is O(1) and 1 is O(75)
1 is O(x) but x is not O(1)
x is O(x^2) but x^2 is not O(x)
x^2 is O(x^2) and x^2 is O(x^3)
x^2 is O(6x^2+x+3) and 6x^2+x+3 is O(x^2)
O(6x^2+x+3) and O(75) are unusual
```

Big-O Estimates for Polynomials

Theorem: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x^1 + a_0$ where a_0, a_1, \ldots, a_n are real numbers with $a_n \neq 0$. Then f(x) is is $O(x^n)$.

The leading term $a_n x^n$ of a polynomial dominates its growth.

Proof

If
$$x > 1$$
, $x^{n} > x^{n-lk}$, for $k = 1, ..., n$
Pherefore $|a_{n}x^{n} + a_{n-1}x^{n-1} + ... + |a_{0}| \le |a_{n}x^{n}| + |a_{n-1}x^{n-1}| + ... + |a_{0}| \le |a_{n}|x^{n} + |a_{n-1}|x^{n} + ... + |a_{0}|x^{n} = (|a_{n}|x^{n} + ... + |a_{0}|)x^{n}$
Choose $k = 1$ and $k = |a_{n}| + ... + |a_{0}|$

An Important Point about Big-O Notation

You may see "f(x) = O(g(x))" instead of "f(x) is O(g(x))"

• This is an abuse of the equality sign

It is ok to write $f(x) \in O(g(x))$

• O(g(x)) represents the set of functions that are O(g(x)).

Summary

- Examples of Big-O
- Big-O for polynomials
- Use of Big-O notation