## 2020 Engineering Sciences

## AI24BTECH11003 - Badde Vijaya Sreyas

2) Let  $\overrightarrow{V}(x, y, z) = ax\overrightarrow{i} - bz\overrightarrow{j} + cy\overrightarrow{k}$  be a vector whose curl is zero. Then necessarily

3) Let f(x) be a continuous function on the real line such that for any x,  $\int_0^{x^2} f(t) dt =$ 

 $x^2 \left(1 + x^2\right)$ . Then f(2) is \_\_\_\_\_. (2020) 4) The number of points at which the function  $f(x, y) = \frac{x^2}{2} + \frac{y^4}{4} - \frac{y^2}{2}$  has local minima is

b) a = -b = c c) b = c

(2020)

(2020)

d) b = -c

1) Let z be a complex number. Then the series  $\sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$ 

b) converges for all |z| ≤ 1 and diverges for |z| > 1.
c) converges for z = 0 and diverges for any z ≠ 0.
d) converges for |z| < 1 and diverges for |z| ≥ 1</li>

a) converges for all z.

a) a = b = c

|                                                                                                                                    | <i>.</i> 0 <i>j</i> |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 5) Let $f(t)$ be a real-valued differential function on $(-1, 1)$ such that $f(0) = 0$ and $\left  \frac{df}{dt} \right  < \infty$ | : 1                 |
| for $0 < t < 1$ . Then the series $\sum_{n=0}^{\infty} f(0.5)^n$ (202)                                                             |                     |
| a) converges but not absolutely.                                                                                                   |                     |
| b) is unbounded.                                                                                                                   |                     |
| c) converges absolutely.                                                                                                           |                     |
| d) is bounded but does not converge.                                                                                               |                     |
| 6) Let <i>X</i> be a random variable with probability density function                                                             |                     |
| $f(t) = \begin{cases} \exp(-t) & \text{for } t \ge 0\\ 0 & \text{for } t < 0 \end{cases}$                                          |                     |
|                                                                                                                                    | 10)                 |
| Let $0 < a < b$ . Then the probability $\mathbf{P}(X \le b   X \ge a)$ depends only on (202)                                       | :0)                 |
| a) $b - a$ . b) $b$ . c) $a$ . d) $a + b$ .                                                                                        |                     |
| 7) Let A be a $3 \times 3$ matrix such that $A^2 = A$ . Then it is necessary that (202)                                            | 20)                 |
| a) A is the identity matrix or the zero matrix.                                                                                    |                     |
| b) the determinant of $A^4$ is either 0 or 1.                                                                                      |                     |
| c) the rank of A is 3.                                                                                                             |                     |
| d) A has one imaginary eigenvalue.                                                                                                 |                     |
| 8) Players A and B take turns to throw a fair dice with six sides. If A is the first player                                        | to                  |
| throw, then the probability of B being the first one to get a six is (round off                                                    |                     |
| two decimal places). (202                                                                                                          |                     |
| two decimal places).                                                                                                               | <i>.</i> 0 <i>)</i> |

9) Figures below show the velocity and the shear stress profiles for the flow in a duct. In each option, '1' represents velocity profile, and '2' represents shear stress profile. Choose the correct option that closely represents the turbulent flow condition. (2020)



10) The variation of shear stress ( $\tau$ ) against strain rate  $\left(\frac{du}{dy}\right)$  is given in the Figure. Identify the line/curve among P, Q, R and S, that represents an ideal fluid. (2020)



a) S b) P c) Q d) R

11) A body is under stable equilibrium in a homogeneous fluid, where CG and CB are center of gravity and center of buoyancy, respectively. Two statements, 'P' and 'Q', are given below:

P: For a fully submerged condition, CG should always be below CB

**Q:** For a floating body, CG need not be below CB

Choose the option that is valid for the present situation.

(2020)

- a) P is False, Q is True, when metacentre is below CG
- b) P is False, Q is True, when metacentre is above CG
- c)  ${\bf P}$  is True,  ${\bf Q}$  is False, when metacentre is below CG
- d) P is True, Q is False, when metacentre is above CG
- 12) A laminar hydrodynamic boundary layer over a smooth flat plate is shown in the Figure. The shear stress at the wall is denoted by  $\tau_W$ . Which one of the following conditions is correct? (2020)
  - a) pressure is varying along 'x' and  $(\tau_w)_{x1} > (\tau_w)_{x2}$



- b) pressure is constant along 'x' and  $(\tau_w)_{x2} > (\tau_w)_{x1}$
- c) pressure is constant along 'x' and  $(\tau_w)_{x1} > (\tau_w)_{x2}$
- d) pressure is varying along 'x' and  $(\tau_w)_{x2} > (\tau_w)_{x1}$
- 13) A non-dimensional number known as **Weber** number is used to characterize which one of the following flows, (2020)
  - a) motion of fluid in open channel
- c) motion of fluid at high velocity

b) motion of fluid droplets

d) motion of fluid through a pipe