第九讲 维数.基与坐标

一、线性空间中向量之间的线性关系

二、线性空间的维数、基与坐标

引入

问题 I

如何把线性空间的全体元素表示出来? 这些元素之间的关系又如何呢?

即线性空间的构造如何?

(基的问题)

问题Ⅱ

线性空间是抽象的,如何使其元素与具体的东西——数联系起来,使其能用比较具体的数学式子来表达? 怎样才能便于运算? (坐标问题)

一、线性空间中向量之间的线性关系

- 1、有关定义: 设V 是数域 P 上的一个线性空间
- (1) $\alpha_1, \alpha_2, \dots, \alpha_r \in V(r \ge 1), k_1, k_2, \dots, k_r \in P$,和式 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_r\alpha_r$

称为向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 的一个线性组合.

(2) $\alpha_1, \alpha_2, \dots, \alpha_r, \beta \in V$,若存在 $k_1, k_2, \dots, k_r \in P$ 使 $\beta = k_1\alpha_1 + k_2\alpha_2 + \dots + k_r\alpha_r$

则称向量 β 可由向量组 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 线性表出;

若向量组 $\beta_1, \beta_2, \dots, \beta_s$ 中每一向量皆可由向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性表出,则称向量组 $\beta_1, \beta_2, \dots, \beta_s$ 可由向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性表出;

若两向量组可以互相线性表出,则称这两个向量组 为**等价的**.

(3) $\alpha_1, \alpha_2, \dots, \alpha_r \in V$,若存在不全为零的数 $k_1, k_2, \dots, k_r \in P$,使得 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_r\alpha_r = 0$

则称向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 为线性相关的;

如果向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 不是线性相关的,即 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_r\alpha_r = 0$

只有在 $k_1 = k_2 = \cdots = k_r = 0$ 时才成立,

则称 $\alpha_1, \alpha_2, \dots, \alpha_r$ 为线性无关的.

2、有关结论

- (1) 单个向量 α 线性相关 $\Leftrightarrow \alpha = 0$. 单个向量 α 线性无关 $\Leftrightarrow \alpha \neq 0$ 向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性相关
 - $\Leftrightarrow \alpha_1, \alpha_2, \dots, \alpha_r$ 中有一个向量可经其余向量线性表出.

- (2) 若向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关,且可被向量组 $\beta_1, \beta_2, \dots, \beta_s$ 线性表出,则 $r \leq s$; 若 $\alpha_1, \alpha_2, \dots, \alpha_r$ 与 $\beta_1, \beta_2, \dots, \beta_s$ 为两线性无关的 等价向量组,则 r = s.
- (3) 若向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关,但向量组 $\alpha_1, \alpha_2, \dots, \alpha_r, \beta$ 线性相关,则 β 可被向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性表出,且表法是唯一的.

二、线性空间的维数、基与坐标

1、无限维线性空间

若线性空间 V 中可以找到任意多个线性无关的向量,则称 V 是无限维线性空间.

例1 所有实系数多项式所成的线性空间 R[x] 是无限维的. 因为,

对任意的正整数n,都有n个线性无关的向量

1, x, x^2 , ..., x^{n-1}

2、有限维线性空间

(1) n 维线性空间:

若在线性空间 V 中有 n 个线性无关的向量,但是任意 n+1 个向量都是线性相关的,则称 V 是一个 n 维线性空间;常记作 $\dim V = n$.

注:零空间的维数定义为0.

(2) 基

$$\overline{\dim} V = 0 \iff V = \{0\}$$

在n维线性空间V中,n个线性无关的向量 $\mathcal{E}_1, \mathcal{E}_2, \dots, \mathcal{E}_n$,称为V的一组基;

(3) 坐标

设 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 为线性空间 \mathbf{V} 的一组基, $\alpha \in V$, 若 $\alpha = a_1 \varepsilon_1 + a_2 \varepsilon_2 + \dots + a_n \varepsilon_n$, $a_1, a_2, \dots, a_n \in P$ 则数组 a_1, a_2, \dots, a_n , 就称为 α 在基 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$

下的**坐标**,记为
$$(a_1,a_2,\cdots,a_n)$$
. 有时也形式地记作 $\alpha=(\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n)$ $\begin{pmatrix} a_1\\a_2\\ \vdots\\a_n \end{pmatrix}$ 注意:

向量 α 的坐标 (a_1, a_2, \dots, a_n) 是由向量 α 和基 $\mathcal{E}_1, \mathcal{E}_2, \dots, \mathcal{E}_n$ 唯一确定的. 即向量 α 在基 $\mathcal{E}_1, \mathcal{E}_2, \dots, \mathcal{E}_n$ 下的坐标是唯一的. 但是,在不同基下 α 的坐标一般是不同的.

3、线性空间的基与维数的确定

定理: 若线性空间V中的向量组 $\alpha_1,\alpha_2,\dots,\alpha_n$ 满足

- i) $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关;
- ii) $\forall \beta \in V$, β 可经 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表出

则V为n 维线性空间, $\alpha_1,\alpha_2,\cdots,\alpha_n$ 为V的一组基.

证明: $: a_1, a_2, \dots, a_n$ 线性无关, : V的维数至少为 n. 任取V中n+1个向量 $\beta_1, \beta_2, \dots, \beta_n, \beta_{n+1}$,由 ii),向量 组 $\beta_1, \beta_2, \dots, \beta_n, \beta_{n+1}$ 可用向量组 a_1, a_2, \dots, a_n 线性表出. 若 $\beta_1, \beta_2, \dots, \beta_n, \beta_{n+1}$ 是线性无关的,则 $n+1 \le n$,矛盾.

- **..** V中任意n+1个向量 $\beta_1, \beta_2, \dots, \beta_n, \beta_{n+1}$ 是线性相关的. 故,V是n 维的, $\alpha_1, \alpha_2, \dots, \alpha_n$ 就是V的一组基.
- 例2 3 维几何空间 $\mathbb{R}^3 = \{(x, y, z) | x, y, z \in R\}$ $\varepsilon_1 = (1,0,0), \varepsilon_2 = (0,1,0), \varepsilon_3 = (0,0,1)$ 是 \mathbb{R}^3 的一组基; $\alpha_1 = (1,1,1), \alpha_2 = (1,1,0), \alpha_3 = (1,0,0)$ 也是 \mathbb{R}^3 的一组基.

一般地,向量空间

$$P^{n} = \{(a_{1}, a_{2}, \dots, a_{n}) | a_{i} \in P, i = 1, 2, \dots, n\}$$
 为n维的, $\varepsilon_{1} = (1, 0, \dots, 0), \varepsilon_{2} = (0, 1, \dots, 0), \dots, \varepsilon_{n} = (0, \dots, 0, 1)$ 就是 P^{n} 的一组基. 称为 P^{n} 的标准基.

注意:

- ① n维线性空间 V 的基不是唯一的, V 中任意 n 个 线性无关的向量都是 V 的一组基.
- ② 任意两组基向量是等价的.

- 例3(1)证明:线性空间 $P[x]_n$ 是n维的,且 1,x, x^2 ,..., x^{n-1} 为 $P[x]_n$ 的一组基.
 - (2) 证明: $1, x-a, (x-a)^2, ..., (x-a)^{n-1}$ 也为 $P[x]_n$ 的一组基.

证: (1) 首先,1, x, x^2 , ..., x^{n-1} 是线性无关的.

其次,
$$\forall f(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \in P[x]_n$$
 $f(x)$ 可经 1, x , x^2 , ..., x^{n-1} 线性表出.

 \therefore 1, x, x^2 , ..., x^{n-1} 为 $P[x]_n$ 的一组基,从而, $P[x]_n$ 是n维的.

注: 此时,
$$f(x) = a_0 + a_1 x + L + a_{n-1} x^{n-1}$$

在基1, x , x^2 , ..., x^{n-1} 下的坐标就是
 (a_0, a_1, L, a_{n-1})

(2) 1, x-a, $(x-a)^2$, ..., $(x-a)^{n-1}$ 是线性无关的.

又对 $\forall f(x) \in P[x]_n$, 按泰勒展开公式有

$$f(x) = f(a) + f'(a)(x-a) + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1}$$

即,f(x)可经1,x-a, $(x-a)^2$,..., $(x-a)^{n-1}$ 线性表出.

 $\therefore 1, x-a, (x-a)^2, ..., (x-a)^{n-1}$ 为 $P[x]_n$ 的一组基.

注: 此时,
$$f(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$$

在基1, x-a, $(x-a)^2$, ..., $(x-a)^{n-1}$ 下的坐标是 $(f(a), f'(a), \dots, \frac{f^{(n-1)}(a)}{(n-1)!})$

例4 求全体复数的集合C看成复数域C上的线性空间的维数与一组基;

若把C看成是实数域R上的线性空间呢?

解:复数域C上的线性空间C是1维的,数1就是它的一组基;

而实数域R上的线性空间C为2维的,数1,i 就为它的一组基.

注: 任意数域P看成是它自身上的线性空间是一维的,数1就是它的一组基.

例5 在线性空间 P^4 中求向量 $\xi = (1,2,1,1)$ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 下的坐标,其中

$$\varepsilon_1 = (1,1,1,1), \quad \varepsilon_2 = (1,1,-1,-1), \quad \varepsilon_3 = (1,-1,1,-1), \quad \varepsilon_4 = (1,-1,-1,1)$$

解:设 $\xi = x_1\varepsilon_1 + x_2\varepsilon_2 + x_3\varepsilon_3 + x_4\varepsilon_4$,则有线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_1 + x_2 - x_3 - x_4 = 2 \\ x_1 - x_2 + x_3 - x_4 = 1 \\ x_1 - x_2 - x_3 + x_4 = 1 \end{cases}$$

解之得,
$$x_1 = \frac{5}{4}$$
, $x_2 = \frac{1}{4}$, $x_3 = -\frac{1}{4}$, $x_4 = -\frac{1}{4}$.

. ξ在基
$$\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$$
下的坐标为 $(\frac{5}{4}, \frac{1}{4}, -\frac{1}{4}, -\frac{1}{4})$.