Evaluación 2

Cálculo de la Evapotranspiración de Referencia ET_0

Luis Fernando Duarte Gonzalí Universidad de Sonora Física Computacional

5 de Mayo del 2019

1. Introducción

En la agricultura existe un área encargada de la planeación de irrigación de cultivos o uso de agua, en el cual se estudia la cantidad de vapor de agua en la atmósfera, que no proviene sólo de la evaporación del agua de océanos, ríos o lagos, también de la procedente de la humedad del propio suelo, así como también la transpiración de las plantas. A todo este proceso se le llama Evapotranspiración.

1.1. Evapotranspiración

La Evapotranspiración de referencia ET_0 , es uno de los parámetros mas importantes en los estudios hidrológicos, ambientales y agrícolas y juega un papel muy importante en los proyectos de manejo de irrigación y uso de agua en la agricultura. La ET0 es estimada por diversos métodos: utilizando lisímetros, sistemas de covariancias turbulentas o utilizando métodos indirectos utilizando variables climáticas.

El requerimiento de conocer un conjunto de valores de las variables climáticas ha sido una de las limitantes de la aplicación de la Ecuación de Penman-Monteith. Por ello se han desarrollado toda una serie de ecuaciones para el cálculo alternativo de la ETO bajo diversas condiciones climáticas. En esta actividad nos daremos la tarea de evaluar cuáles son las mejores alternativas de la ecuación de Penman-Monteith para una región climática como la nuestra (zona semiárida seca).

2. Parte 1

En esta actividad vamos a trabajar con datos meteorológicos del viñedo que se encuentra ubicado en el kilómetro 41 de la carretera de Hermosillo a Bahía Kino (Latitud 28° 55.117' N, Longitud 111° 18.638' W, altitud 101m.

Después de haber leído o por lo menos visto un poco del artículo de Djaman y el reporte 56 de la FAO, trataremos de aplicar los principales resultados de ese estudio y haremos un contrate con los datos que tenemos del viñedo ubicado cerca de Hermosillo.

Con los datos meteorológicos que se tienen, se construyó una tabla de promedios mensuales similar a la Tabla 1 de Djaman:

	Albedo	RH	Fecha	Mes	Año	Día	Hora	VelWindmean	Tmax	Tmin	Tmean	RHmax	RHmin	RHmean	RadNet
0	-0.423822	20.61	1515258000000000000	1.0	2018.0	6.0	17.0	1.943827	27.341210	7.501276	16.963975	66.380848	14.056733	38.471432	34.734815
1	-0.479545	51.79	15174432000000000000	2.0	2018.0	1.0	0.0	1.964189	25.320357	9.433214	17.230275	72.542857	25.725357	48.168006	56.250350
2	-0.409137	61.63	1519862400000000000	3.0	2018.0	1.0	0.0	1.926196	29.519355	8.883548	19.282359	68.361613	15.204839	36.968353	92.894913
3	-0.386088	53.70	15225408000000000000	4.0	2018.0	1.0	0.0	2.101812	32.671667	10.781667	21.880618	76.585000	15.712333	40.785667	134.012965
4	-0.367835	64.43	1525132800000000000	5.0	2018.0	1.0	0.0	2.113918	34.133548	12.781290	23.650034	79.971935	17.229032	44.233468	162.405343
5	-0.381934	54.48	1527811200000000000	6.0	2018.0	1.0	0.0	2.154986	36.968333	19.552667	28.416187	81.381333	25.799667	50.810507	163.926069
6	-0.189610	81.30	15304032000000000000	7.0	2018.0	1.0	0.0	2.022204	38.419355	24.488387	31.065726	85.183226	32.805806	57.639805	157.534402
7	-0.381667	81.63	15330816000000000000	8.0	2018.0	1.0	0.0	1.910853	36.985806	24.702581	30.120894	92.539677	42.205484	68.868454	151.273589
8	-0.486379	84.23	15357600000000000000	9.0	2018.0	1.0	0.0	1.790326	37.576000	23.582333	29.661271	93.100000	36.606333	66.619750	136.749910
9	-0.614787	82.20	1538352000000000000	10.0	2018.0	1.0	0.0	1.664435	31.346452	16.581613	23.254207	94.842581	37.131613	68.696082	95.513468
10	-0.659308	85.53	1541030400000000000	11.0	2018.0	1.0	0.0	1.498097	28.002333	8.249333	16.966396	90.252000	22.502000	58.085458	60.384285
11	-0.518549	86.00	1543622400000000000	12.0	2018.0	1.0	0.0	1.628730	24.349677	5.991613	14.332823	88.079032	25.355161	58.333938	44.962366

Donde el mes de enero está representado por el número 0 en la columna de índices, a la cual le corresponden todos los datos de esa fila y así sucesivamente.

En esta misma parte, con la información de la tabla se generaron 3 gráficas con matplotlib.

Evolución de las Temperaturas

Donde se puede observar que los meses más calurosos van desde el mes de Junio a Septiembre que es el periodo de verano. Y también se ve que los meses más fríos son los que se encuentran en el periodo de invierno.

Humedad Relativa

En esta gráfica se observa mayor humedad relativa en los meses que pertenecen al periodo de primavera y verano donde el calor es mayor y por lo tanto hay más evaporación del agua.

Radiación Solar

Donde se observa mucha menor radiación en los meses pertenecientes al periodo de invierno (Diciembre-Marzo).

3. Parte 2

En esta parte seguimos trabajando con los datos anteriores, pero ahora para calcular la Evapotranspiración ET_0 mensual promedio utilizando las ecuaciones de los siguientes 3 autores que aparecen en el artículo de K. Djaman:

Ecuación 7, Jansen & Haise (1963)

$$ET_0 = (0.0252T + 0.078)Rs \tag{1}$$

Ecuación 31, Valiantzas 1 (2012)

$$ET_0 = 0.0393Rs(T_{mean} + 9.5)^{0.5} - 0.19Rs^{0.6}\phi^{0.15} + 0.0061(T_{mean} + 20)(1.12T_{mean} - T_{min} - 2)^{0.7}$$
(2)

Donde ϕ es la latitud en radianes.

Ecuación 34, Valiantzas 4 (2013)

$$ET_0 = 0.051(1-\alpha)Rs(T_{mean} + 9.5)^{0.5} - 2.4\left(\frac{Rs}{Ra}\right)^2 + 0.048(T_{mean} + 20)\left(1 - \frac{RH}{100}\right)(0.5 + 0.536u^2) + 0.00012z^2 + 0.00012z^2$$

donde α es el albedo, Ra es la radiación solar en la parte alta de la atmósfera u2 es la velocidad del viento a 2 m de altura, z es la altura sobre el nivel mar.

La tabla obtenida con los datos de promedios mensuales fue la siguiente:

	Janses & Haise	Valiantzas 1	Valiantzas 4
0	17.558177	6.671233	7.229301
1	28.811594	10.466691	6.225899
2	52.384876	18.245723	5.988913
3	84.346631	27.694330	12.721210
4	109.458090	34.602070	22.018419
5	130.171712	37.521038	34.816797
6	135.614481	37.232478	29.379138
7	126.623032	35.134399	36.723789
8	112.882131	31.609232	36.355425
9	63.421517	19.915900	26.914278
10	30.527467	11.229766	15.742576
11	19.746892	7.846407	8.148608

4. Parte 3

En esta parte usamos el archivo de "Flujos Vid
18.csv". A través de un Balance de Energía también es posible determinar la fracción de Evapo
transpiración o Calor Latente λET mediante la ecuación:

$$Rn - G - \lambda ET - H = 0 \tag{4}$$

Donde Rn - G es la radiación neta (Rg_f) , λET es el calor latente (LE_f) y H es el calor sensible (H_f) . Con los datos leídos, se produjo una gráfica del balance energía promedio en un mes típico (promedio por hora en un mes).

5. Referencias

■ Evaluation of the Penman-Monteith and other 34 reference evapotranspiration equations under limited data in a semiarid dry climate (2018). Consultado el 5 de Mayo del 2019, de Theoretical and Applied Climatology. Sitio web:

https://link.springer.com/article/10.1007%2Fs00704-018-2624-0