9.3 习题

张志聪

2024年12月3日

9.3.1

• $(a) \Rightarrow (b)$

对任意 $\epsilon>0$,由 (a) f 在 x_0 处沿着 E 收敛于 L 可知,都存在 $\delta>0$ 使得 f 被限制在集合 $\{x\in E: |x-x_0|<\delta\}$ 上时,f 是 $\epsilon-$ 接近于 L 的,即 $|f(x)-L|\leq\epsilon$ 。

由于 $(a_n)_{n=0}^{\infty}$ 收敛于 x_0 , 那么存在正整数 N, 使得

$$|a_n - x_0| \le \frac{1}{2}\delta$$

对 $n \ge N$ 均成立。又因为此时 $a_n \in \{x \in E : |x - x_0| < \delta\}$,所以

$$|f(a_n) - L| \le \epsilon$$

由 ϵ 的任意性,可得 $f((a_n))_{n=0}^{\infty}$ 收敛于 L。

• $(b) \Rightarrow (a)$

反证法,假设(a)不成立,即对某一个 $\epsilon_0 > 0$ 不存在 $\delta > 0$ 使得

$$|f(x) - L| \le \epsilon_0$$

对所有满足 $|x-x_0| < \delta$ 对 $x \in E$ 均成立。

那么,对于任意的正整数 n,设 X_n 表示集合

$$X_n := \{x : |f(x) - L| > \epsilon_0, |x - x_0| < 1/n\}$$

是非空集合 (其中 $|x-x_0|<1/n$ 由 x_0 是附着点保证, $|f(x)-L|>\epsilon_0$ 由假设 (a) 不成立保证)。

利用选择公理,能够找到一个序列 $(a_n)_{n=0}^{\infty}$ 使得 $a_n \in X_n$ 对所有的 $n \geq 1$ 均成立(特别的, a_0 可以任选 E 中的一个元素)。于是这里构 造的序列 $(a_n)_{n=0}^{\infty}$ 收敛于 x_0 ,由题设(b)可知,序列 $f((a_n))_{n=0}^{\infty}$ 收敛于 L,即存在正整数 N,使得

$$|f(a_n) - L| \le \epsilon_0$$

对 $n \ge N$ 均成立。因为 $a_n \in X_n$ 所以 $|f(a_n) - L| > \epsilon_0$,存在矛盾。

9.3.2

说明 1. 书中的证明个人感觉是有问题的, 理由如下:

引理 9.1.14 只说明了收敛于 x_0 序列的存在性,极端情况下可能只有一个,而命题 9.3.9 (b) 说的是任意序列,两者是有区别的。

接下来的证明, 我会避免使用引理 9.1.14

因为证明方式都是一致的, 只以乘法为例。

设 $(a_n)_{n=0}^{\infty}$ 是任意一个完全由 E 中元素构成并且收敛于 x_0 的序列 (引理 9.1.14 只是保证这个序列的存在性,只是一个特例)。

因为 f 在 x_0 处沿着 E 有极限 L, 由命题 9.3.9 (b) 可知,序列 $f((a_n))_{n=0}^{\infty}$ 收敛于 L。类似地, $g((a_n))_{n=0}^{\infty}$ 收敛于 M。根据序列的极限定律(定理 6.1.19),我们推导出 $((fg)(a_n))_{n=0}^{\infty}$ 收敛于 LM。再次由命题 9.3.9 (b) 可知,fg 在 x_0 处沿着 E 有极限 LM。

9.3.3

• ⇒

因为 $E \cap (x_0 - \delta, x_0 + \delta) \subseteq E$,因为是 E 的子集,且 x_0 也是其附着点,所以也收敛于 L。

• =

按照定义 9.3.5 证明。

对任意 $\epsilon > 0$,存在一个 $\delta' > 0$ 使得

$$|f(x) - L| \le \epsilon$$

对所有满足 $|x-x_0| < \delta'$ 的 $x \in E \cap (x_0 - \delta, x_0 + \delta)$ 均成立。 令 $\delta'' := min(\delta, \delta')$ 那么,当 $x \in E$ 并满足

$$|x-x_0|<\delta''$$

时, 也是满足 $|x-x_0| < \delta'$ 和 $x \in E \cap (x_0 - \delta, x_0 + \delta)$ 。所以

$$|f(x) - L| \le \epsilon$$

也成立。于是 f 在 x_0 处沿着 E 也是极限 L。

9.3.4

$$\sup_{x \to x_0, x \in E} f(x) = \lim_{x \to x_0, x \in E \cap (-\infty, x_0)} f(x)$$
$$\inf_{x \to x_0, x \in E} f(x) = \lim_{x \to x_0, x \in E \cap (x_0, +\infty)} f(x)$$

至于 9.3.9 的结论, 证明方法类似, 略

9.3.5

因为 $\lim_{x \to x_0, x \in E} f(x) = L$,设 $(a_n)_{n=0}^{\infty}$ 是任意一个完全由 E 中元素构成并且收敛于 x_0 的序列,由命题 9.3.9 (b) 可知, $f((a_n))_{n=0}^{\infty}$ 收敛于 L。类似地, $h((a_n))_{n=0}^{\infty}$ 收敛于 L,由题设可知对任意 n 都有 $f(a_n) \leq g(a_n) \leq h(a_n)$,推论 6.4.14(夹逼定理)可知 $g((a_n))_{n=0}^{\infty}$ 收敛于 L。再次由命题 9.3.9 (b) 可知, $\lim_{x \to x_0, x \in E} g(x) = L$ 。