COM 5336 Lecture 7 Other Public-Key Cryptosystems

Scott CH Huang

Outline

- Rabin public-key encryption algorithm
- ElGamal public-key encryption algorithm
- Diffie-Hellman key exchange protocol

Contemporary Public-Key Cryptosystems

- Based on the Factorization Problem:
 - RSA, Rabin
- Based on the Discrete Logarithm Problem:
 - ElGamal, Elliptic Curve, DSA (signature scheme only), Diffie-Hellman (key exchange & encryption)

Rabin Public-Key Cryptosystem

- Rabin encryption is an extremely fast operation as it only involves a single modular squaring. By comparison with RSA.
- Rabin decryption is slower than encryption but is comparable in speed to RSA decryption

Rabin Key Generation

- Generate 2 large random numbers primes p an q, each with the same size
- Compute N=pq
- The public key is N and the private key is p and q

Rabin Encryption

- Rabin Encryption is nothing more than doing a SQUARE operation as follows.
 - Represent the message as an integer m in the range {0,1,....,N-1}
 - Ciphertext is c ≡ m^2 mod N

Rabin Decryption

Rabin Decryption is a SQROOT operation

- Find the square roots m1,m2,m3 and m4 of c mod N
- The message sent was either m1,m2,m3 or m4.

The Legendre Symbol

- The Legendre symbol is a useful tool for keeping track of whether or not an integer has a sqrt mod a prime number p.
- Let p be an odd prime and a an integer. The Legendre symbol (a/p) is defined as follows.

$$(a/p) = \begin{cases} 0 & \text{, if } p|a \\ 1 & \text{, if } a \text{ has square root(s).} \\ -1 & \text{, otherwise.} \end{cases}$$

Facts of the Legendre Symbol

- $(a/p) \equiv a^{(p-1)/2} \mod p$
- (ab/p)=(a/p)(b/p)
- (Law of quadratic reciprocity) If q is an odd prime distinct from p, then

$$(p/q)=(q/p)(-1)^{(p-1)(q-1)/4}$$

Find SQROOT in Z_p

- INPUT: an odd prime p & an odd integer a s.t. 0<a<p><a<p><a<
- OUTPUT: two square roots of a mod p
- 1. If (a/p)=-1, stop & return
- 2. Select b (0 < b < p) with (b/p)=-1. Represent p-1=2 st where t is odd.
- 3. Compute $a^{-1} \mod p$
- 4. $c \leftarrow b^t \mod p, r \leftarrow a^{(t+1)/2} \mod p$
- 5. For *i* from 1 to *s-1* do
 - 1. Compute $d \equiv (r^2 a^{-1})^{2^{s-i-1}} \mod p$
 - 2. If $d \equiv -1 \mod p$, set $r \leftarrow rc \mod p$
 - 3. $c \leftarrow c^2 \mod p$
- 6. Return (*r,-r*)

Find SQROOT in Z_p where $p \equiv 3 \mod 4$

- INPUT: an odd prime p where p≡3 mod 4, and square a s.t.
 0<a<p
- OUTPUT: two square roots of a mod p
- 1. Compute $r \equiv a^{(p+1)/4} \mod p$
- 2. Return (*r*,-*r*)

Find SQROOT in Z_p where $p \equiv 5 \mod 8$

- INPUT: an odd prime p where p≡5 mod 8, and square a s.t.
 0<a<p
- OUTPUT: two square roots of a mod p
- 1. Compute $d \equiv a^{(p-1)/4} \mod p$
- 2. If $d \equiv 1 \mod p$ then compute $r \equiv a^{(p+3)/8} \mod p$
- 3. If $d \equiv -1 \mod p$ then compute $r \equiv 2a(4a)^{(p-5)/8} \mod p$
- 4. Return (*r*,-*r*)

Find SQROOT in Z_n where n=pq (p,q primes)

- INPUT: n=pq & an integer a s.t. 0<a<n, a has SQROOT(s)
- OUTPUT: four sqrts of a mod p
- 1. Find the two sqrts (r,-r) of $a \mod p$
- 2. Find the two sqrts (s,-s) of a mod q
- Use extended Euclid's algorithm to find integers c,d s.t. cp+dq=1
- 4. Set $x \equiv rdq + scp \mod n$ and $y \equiv rdq scp \mod n$
- 5. Return (x,-x,y,-y)

A Problem Regarding Rabin's Encryption Scheme

- To decrypt a ciphertext, we need to compute the sqrt.
 However, there are 4 sqrts, how to decide which one is the plaintext???
- Appropriate coding is needed to decide which one is the plaintext.
- In practice, we usually take part of the plaintext and append it to the end.

Rabin – An Example

- **Key generation:** Alice chooses the primes p=277, q=331, and computes N=pq=91687. Alice's public key is N=91687 and private key is p=277 and q=331
- **Encryption:** Suppose that the last six bits of the original messages are required to be appended prior to encryption. In order to encrypt the 10-bits message m=1001111001, Bob appends the last six bits of m to obtain 16-bits message.

m=1000111001111001 which in decimal notation is m=40569, the ciphertext is:

 $C \equiv m^2 \mod N \equiv 40569^2 \mod 91687 \equiv 62111$

Rabin (cont'd)

- Decryption: to decrypt C, Alice computes the four sqrts of C mod N
- m1=69954,m2=22033,m3=40569,m45118
 - m1=100010000010110,
 - m2=101011000010001,
 - m3=1001111001111001,
 - m4=110001111010110
- Therefore, m3 is the plaintext.

SQROOT Problem

SQROOT Problem

- If $x^2 \equiv$ a mod N has a solution for a given composite integer N=pq (p,q primes), find a sqrt of a mod N.
- FACTOR =>? SQROOT
 - Use previous algorithm, we can find sqrt mod p and sqrt mod q
 - Then we use extended Euclid's algorithm to find sqrt mod N

SQROOT Problem

- SQROOT=>? FACTOR
 - Suppose A is an algorithm that solves SQROOT
 - Then we generate x randomly and compute $a \equiv x^2 \mod N$
 - Apply A to find sqrt y
 - If y=x or -x, try another x and repeat
 - If not, we are done! (why?)

Security of Rabin

- Rabin=SQROOT=Factor
- Provably secure against passive adversary (cf. RSA)
- Susceptible to chosen ciphertext attack similar to RSA
- Many RSA attacks can be applied to Rabin

Finite Cyclic Groups and the Discrete Logarithm Problem

- A finite group G is cyclic if it can be represented as powers of some element g in G as follows.
 - $G=\{e,g,g^2,g^3,...g^{n-1}\}$
 - g is called a generator of G, and n is called the order of G.
- Example: Let p=97. Then Z_{97}^* is a cyclic group of order n=96. A generator of Z_{97}^* is g=5. Since $5^{32} \equiv 35 \pmod{97}$, $\log_5 35 = 32$ in Z_{97}^* .
- Let G be a finite cyclic group of order n. Let g be a generator of G, and let y ∈ G. The discrete logarithm of y to the base g, denoted log_gy, is the unique integer x, 0 ≤ x ≤ n-1, such that y = g^x.

Discrete Logarithm Problem

- **DLP in Z_p^***: Given a prime p, a generator g of Z_p^* , and an element $y \in Z_p^*$, find the integer x, $0 \le x \le p-2$, such that $g^x \equiv y$ (mod p).
- The security of many cryptographic techniques depends on the intractability of the discrete logarithm problem.
- Both ElGamal encryption scheme and Diffie-Hellman key exchange are based on DLP in Z_p*. The Elliptic curve Cryptosystem is based on DLP in general cyclic groups.

ElGamal Encryption Scheme

- ElGamal encryption scheme is an asymmetric key encryption algorithm
- ElGamal encryption is non-deterministic, meaning that a single plaintext can be encrypted to many possible ciphertexts

ElGamal Key Generation

- Each entity randomly choose a large prime p and picks a generator g ∈ Z_p*
- Each entity randomly chooses an exponent x (x<p), and computes $y \equiv g^x \pmod{p}$.
- Public key = (p,g,y)
- Private key= x

ElGamal Encryption

- Suppose Bob wants to encrypt a message M (M<p) and send to Alice
- 1. Bob obtains Alice's public key (p,g,y) and randomly picks an integer r (r<p)
- 2. Bob computes
 - A \equiv g^r mod p
 - B \equiv My^r mod p
- 3. Ciphertext C = (A, B).

ElGamal Decryption

Alice does the followings

- Computes $K \equiv A^x \mod p$,
- $\qquad \mathsf{M} \equiv \mathsf{B}\mathsf{K}^{-1} \bmod \mathsf{p}$

ElGamal - An Example

- **Key Generation:**
 - p = 2357-g=2- x = 1751
 - $y \equiv g^x \equiv 2^{1751} \equiv 1185 \pmod{2357}$
- Public key: (p,g,y) = (2357, 2, 1185)
- Private key: x = 1751

ElGamal

Encryption:

- say M = 2035
- 1. Pick a random number r = 1520
- 2. Computes

A =
$$g^r \equiv 2^{1520} \equiv 1430 \pmod{2357}$$

B = My^r $\equiv 2035 * 1185^{1520} \equiv 697 \pmod{2357}$

- The ciphertext C = (A, B) = (1430, 697)
- Decryption:
 - 1. Computes $K \equiv A^x \equiv 1430^{1751} \equiv 2084 \pmod{2357}$
 - 2. $M \equiv B K^{-1} \equiv 697 * 2084^{-1} \equiv 2035 \pmod{2357}$

Remarks on ElGamal Encryption Scheme

- ElGamal encryption scheme is non-deterministic
- Randomization is introduced to
 - increase the effective size of the plaintext space
 i.e. one plaintext can map to a large set of possible ciphertexts
 - decrease the effectiveness of chosen-plaintext attack by means of a oneto-many mapping in the encryption process

Efficiency:

- encryption requires two exponentiation operations
- exponentiation operations may be very expensive when implemented on some low-power devices. e.g. low-end PalmPilots, smart cards and sensors.
- message expansion by two-fold

Security:

 depends on the difficulty of solving DLP (more precisely, Computational Diffie-Hellman Problem).

Diffie-Hellman Key Exchange

- A Key Exchange Protocol:
 - provide a secure way for two communicating party to share a symmetric key (so called a session key)
 - This session key is then used to provide privacy and authentication for subsequent message flow.
 - History: problem first posed by Merkle at UC Berkeley, Diffie and Hellman came up with the protocol:

• W. Diffie, M. E. Hellman, "New directions in Cryptography", IEEE Trans. Information Theory, IT-22, pp. 64-654, Nov 1976.

Man-in-the-Middle Attack

Diffie-Hellman key exchange

Alice computes gab

Bob computes gxy

Key Management Using Other PKC

- Public-key encryption helps address key distribution problems in two aspects:
 - distribution of public keys
 - use of public-key encryption to distribute secret keys

Distribution of Public Keys

- Can use the following approaches:
 - Public announcement
 - Publicly available directory
 - Public-key authority
 - Public-key certificates

Public Announcement

- Users distribute public keys to recipients or broadcast to community at large
 - eg. append PGP keys to email messages or post to news groups or email list
- Major weakness is forgery
 - anyone can create a key claiming to be someone else and broadcast it
 - can masquerade as claimed user until forgery is discovered

Publicly Available Directory

- Achieve greater security by registering keys with a public directory
- Directory must be trusted with properties:
 - contains {name,public-key} entries
 - participants register securely with directory
 - participants can replace key at any time
 - directory is periodically published
 - directory can be accessed electronically
- still vulnerable to tampering or forgery

Public-Key Authority

- Further improve security by tightening control over distribution of keys from directory
- Keeps all the properties of directory
- Requires users to know the public key for the directory
- Users interact with directory to obtain any desired public key securely
 - does require real-time access to directory when keys are needed

Public-Key Authority

Public-Key Certificates

- Certificates allow key exchange without real-time access to public-key authority
- a certificate binds identity to a public key
 - usually with other info such as period of validity, rights of use etc
- with all contents signed by a trusted Public-Key or Certificate Authority (CA)
- can be verified by anyone who knows the public-key authorities' public-key

Public-Key Certificates

Distribution of Secret Keys using Public-Key

- public-key cryptography can be used for secrecy or authentication
 - but public-key algorithms are slow
 - so usually we want to use private-key encryption to protect message contents, such as using a session key
- There are several alternatives for negotiating a suitable session key

Simple Secret Key Distribution

- proposed by Merkle in 1979
 - A generates a new temporary public key pair
 - A sends B the public key and their identity
 - B generates a session key K sends it to A encrypted using the supplied public key
 - A decrypts the session key and both use
- problem is that an opponent can intercept and impersonate both halves of protocol

Public-Key Distribution of Secret Keys

if A and B have securely exchanged public-keys:

