LAB REPORT FOR EXPERIMENT 1.2

Date: August 10, 2021

Name: Rita Abani

Roll No: 19244

Title of Experiment: Objectives 1.2: I-V Characteristics of Ohm's Law

involving AC Input

Brief Description:

This lab session involved the use of LTspice which is an analog electronic circuit simulator computer software, to perform some basic simulations namely first drawing the circuit that involved a resistor of 1K Ohms with an AC voltage source in series. The AC voltage source had the following parameters:

Schematic diagram:

The following screenshot depicts the circuit setup.

While running the simulations, I tried the AC input with two sets of values as outlined in the results and in the brief procedure above.

Results:

An enlarged image of the above is as follows:

This experiment was also performed with another set of values for the AC voltage source:

The corresponding result obtained is as follows:

Discussion:

In this version of performing Experiment 1, the input was generated through an AC voltage source. In real life, a typical AC source is basically an electric generator in which the rotor in a magnetic field generates sine waves as it rotates. So in an AC voltage source, the polarity of the positive and negative terminals change periodically while in the case of a DC source, polarity remains the same.

In an AC circuit, this can be mathematically represented as follows:

 $\Delta V = \Delta V 1 \sin(\omega t)$

Where ΔV is instantaneous voltage , $\Delta V1$ is the maximum voltage of the generator and ω is the angular frequency of the AC voltage source.

Ohm's law is applicable to circuits involving an AC voltage source too and is generally written as I=V/Z where Z I the impedance of the circuit.

Hence the Plots we obtained above are in tandem with Ohm's Law