IDLE 知识 LOAD

AAT AATT AATT CNT AATT COUNT >1 => -1

表 3-2 控制奇仔器

Bit mnemonic	Bit No.	Description	R/W	Value After Reset
Reserved	31:4	保留	-	0
IM	3	中断屏蔽 0: 禁止中断 1: 允许中断	R/W	0
Mode	2:1	模式选择 00: 方式 0 01: 方式 1 10: 未定义 11: 未定义	R/W	00
Enable	0	计数器使能 0: 停止计数 1: 允许计数	R/W	0

4

3.2. 初值寄存器(PRESET)

表 3-3 初值寄存器格式

					Z-4 13 mm 12 - 4
	Bit Bit mnemonic No	Bit		R/W	Value
			Description		After
		NO.			Reset
	PRESET	31:0	32 位计数初值	R/W	0

3.3. 计数值寄存器(COUNT)

表 3-4 计数值寄存器格式

Bit mnemonic	Bit No.	Description	R/W	Value After Reset
COUNT	31:0	32 位计数值	R	0

4. 模块接口信号定义

表 4-1 Timer/Counter 接口信号定义

信号名	方向	描述
CLK_I	I	时钟
RST_I	I	复位信号
ADD_I[3:2]	I	地址输入
WE_I	I	写使能
DAT_I[31:0]	I	32 位数据输入
DAT_O[31:0]	0	32 位数据输出
IRQ	0	中断请求

计时器使用说明:

IDLE:闲置状态

LOAD:重置态

CNT: 计数态

INT: 中断态

1. 功能描述及内部结构

TC 的内部基本结构如图 1-1 所示。TC 由控制寄存器、初值寄存器、32 位 计数器及中断产生逻辑构成。

- 1) 控制寄存器决定该计数起停控制等。
- 2) 初值寄存器为32位计数器提供初始值。
- 3) 根据不同的计数模式,在计数为0后,计数器或者自动装填初值并重新倒计数,或者保持在0值直至计数器使能再次被设置为1。
- 4) 使用 store 类指令修改 TC 寄存器值的优先级高于 TC 自修改的优先级。
- 5) 当计数器计数时,若计数器使能被 store 类指令修改为 0 则停止计数。
- 6) 当计数器工作在模式 0 并且在中断允许的前提下,当计数器计数值为 0 时,中断产生逻辑产生中断请求($\Pi Q \$)1)。

模式 0:

计数器值为 0 停止计数,使能变成 0,使能被置 1 后重新计数,用来产生定时中断。 允许计数后,进入重置态,初值寄存器写入计数寄存器,进入计数态开始计数。

模式 1:

计数器值为 0, 初值寄存器加载到计数器, 计数器继续计数。

可以对控制寄存器和初始寄存器写值, 控制模式

不能写计数寄存器, 否则会出现计数错误