COMP232 MATHEMATICS FOR COMPUTER SCIENCE

TERM TEST Wednesday October 28, 2015

NAME:	ID:	Total Points:

INSTRUCTIONS

Books, notes, calculators, and communication devices are not allowed.

Use a black or blue pen. Writing in pencil will be ignored!

Rough work can be done on the back of these pages, but it will not be reviewed.

Do not add or detach any pages!

All problems have equal value, namely 8 points.

Notation : \mathbb{Z} denotes all integers, \mathbb{Z}^+ all integers greater than zero, and \mathbb{R} all real numbers.

Table for Instructor's use

Problem	Max Points	Points	Problem	Max Points	Points
1	8		6	8	
2	8		7	8	
3	8		8	8	
4	8		9	8	
5	8		10	8	

Problem 1. For each of the following logical expressions, determine whether it is a tautology, a contradiction, or a contingency:

(a) $(p \to q) \leftrightarrow (q \to p)$

☐ Tautology ☐ Contradiction ☐ Contingency

(b) $(p \wedge q) \vee r \leftrightarrow p \wedge (q \vee r)$

☐ Tautology ☐ Contradiction ☐ Contingency

(c) $(p \to (q \to r)) \leftrightarrow ((p \to q) \to r)$

 \Box Tautology \Box Contradiction \Box Contingency

 $\text{(d)} \ \left((p \wedge \neg q) \vee (\neg p \wedge q) \right) \ \leftrightarrow \ \left((p \vee q) \wedge \neg (p \wedge q) \right)$

 \square Tautology \square Contradiction \square Contingency

Problem 2. Let P(x, y, z) denote the statement

$$x + |y| < z^2$$
, where $x, y, z \in \mathbb{Z}$.

What is the truth value of each of the following two logical expressions? Checkmark only one box:

- (a) $\forall x \forall y \exists z P(x, y, z)$
- (b) $\forall x \forall z \exists y P(x, y, z)$
- \square both (a) and (b) are True \square both (a) and (b) are False
- \square (a) is True and (b) is False
- □ (a) is False and (b) is True

What is the truth value of each of the following two logical expressions? Checkmark only one box:

- (c) $\forall y \exists x \exists z P(x, y, z)$
- (d) $\forall z \exists x \exists y P(x, y, z)$
- □ both (c) and (d) are True
- □ both (c) and (d) are False
- \Box (c) is True and (d) is False
- □ (c) is False and (d) is True

Problem 3. Determine the validity of the following two equivalence statements (i.e., valid for all predicates P and Q, or invalid for some predicates P and Q).

Checkmark only one box:

(a) $\forall x[P(x) \land Q(x)] \iff \forall xP(x) \land \forall xQ(x)$ (b) $\forall x[P(x) \lor Q(x)] \iff \forall xP(x) \lor \forall xQ(x)$

□ both (a) and (b) are Valid

□ both (a) and (b) are Invalid

□ (a) is Valid and (b) is Invalid

 \square (a) is Invalid and (b) is Valid

Determine the validity of the following two equivalence statements (i.e., valid for all predicates P and Q, or invalid for some predicates P and Q).

Checkmark only one box:

(c)
$$\exists x [P(x) \land Q(x)] \iff \exists x P(x) \land \exists x Q(x)$$

(c)
$$\exists x [P(x) \land Q(x)] \iff \exists x P(x) \land \exists x Q(x)$$
 (d) $\exists x [P(x) \lor Q(x)] \iff \exists x P(x) \lor \exists x Q(x)$

□ both (c) and (d) are Valid

□ both (c) and (d) are Invalid

☐ (c) is Valid and (d) is Invalid

 \square (c) is Invalid and (d) is Valid

Problem 4.

For any predicates A(x), B(x), C(x), and D(x), consider these logical statements:

(a)
$$\forall x \Big(A(x) \to \neg B(x) \Big)$$
 (b) $\forall x \Big(C(x) \to B(x) \Big)$

(b)
$$\forall x \Big(C(x) \to B(x) \Big)$$

(c)
$$\forall x \Big(D(x) \to A(x) \Big)$$

(c)
$$\forall x \Big(D(x) \to A(x) \Big)$$
 (d) $\forall x \Big(D(x) \to \neg C(x) \Big)$

Of the following four choices, only one is valid. Which one is valid?

Check only one box:

Problem 5. (a) In the open space immediately below below, write down the contrapositive of $[(\neg p \lor q) \land (\neg q \lor r)] \Rightarrow [\neg p \lor r],$

appropriately written in a form to be useful in part (b). In particular, neither of the two logical expressions in your contrapositive should start with the negation symbol "¬".

Next prove this contrapositive by a clear, concise, and correct direct proof, using proper logical notation.

NOTE: The contrapositive will be of the form $L \Rightarrow R$. In a direct proof one assumes that L is True, and using this, one shows that R is True. In particular, do not use logical equivalences and do not use truth tables.

Pro	h	em	6
I 10	D.	GIII	U

(a) In the space provided below, write the statement
"Some students do the assignments, but do not attend classes",
in logical notation, using quantifiers and the following predicates:
$S(x) \equiv x$ is a student , $C(x) \equiv x$ attends classes , $A(x) \equiv x$ does the assignments .
(b) If P is a logical statement then its negation is the logical statement $\neg P$. In the space provided below, write the negation of the statement in (a) in logical notation, using quantifiers and the predicates $S(x)$, $C(x)$, and $A(x)$. Write your negation is such way that it will be useful in Problem 7; in particular, your negation should not start with the symbol " \neg ".
Problem 7. Which one of the following is a negation of the statement in Problem 6a: Checkmark only one box:
(a) Students neither do the assignments nor attend classes.
☐ is a negation ☐ not a negation
(b) There is a student who neither does the assignments nor attends classes.
☐ is a negation ☐ not a negation
(c) Students attend classes or do not do the assignments.
☐ is a negation ☐ not a negation
(1) G. I. And the attend alonger do the occionments
(d) Students who attend classes do the assignments.
☐ is a negation ☐ not a negation

If $A \cap B \cap C \subseteq D$ then $(A - D) \cap (B - D) \cap (C - D)$ is empty.
NOTE: The above statement is of the form $L \Rightarrow R$. In a proof by contradiction one assumes
that L is True and R is False, and then one shows that this leads to a contradiction.
Problem 0 0 1 and
Problem 9. Only one of the statements below is True. Indicate which one is True. Checkmark only one box:
(a) if x and y are both nonzero and their product is rational then x and y are rational. \Box True \Box False
(b) if m is nonzero and notice of an initial and a line of the late of the lat
(b) if x is nonzero and rational and y is irrational then the product xy is irrational. \Box True \Box False
(d) If \sqrt{x} is irrational then $x \in \mathbb{Z}^+$. \Box True \Box False
□ True □ Paise
(d) If p_1 and p_2 are two consecutive prime numbers greater than 2 then $p_1 + p_2 - 1$ is also prime.
\Box True \Box False

Problem 8. Using proper set-theoretic notation, prove the following by contradiction:

Problem 10.

For each of the definitions of f below, indicate whether f is a properly defined function, and if so then indicate whether f is one-to-one, whether f is onto, and whether f is has an inverse. If f is not a properly defined function then only check "f is not a function".

(a)
$$f$$
 : \mathbb{R} \longrightarrow \mathbb{R} , given by $f(x) = 1 + \sqrt{\mid x \mid}$.

 \Box f is not a function \Box f is a function \Box one-to-one \Box onto \Box invertible

(b)
$$f: \mathbb{Z}^+ \longrightarrow \mathbb{Z}$$
, given by $f(n) = (-1)^n n$.

 \Box f is not a function \Box f is a function \Box one-to-one \Box onto \Box invertible

(c)
$$f : \mathbb{Z} \longrightarrow \mathbb{Z}^+$$
, given by $f(n) = |n| - n + 1$.

 \square f is not a function \square f is a function \square one-to-one \square onto \square invertible

(d)
$$f: \mathbb{Z}^+ \longrightarrow \mathbb{Z}$$
, given by $f(x) = \begin{cases} \frac{n-1}{2} & \text{if } n \text{ is odd}, \\ -\frac{n}{2} & \text{if } n \text{ is even}, \end{cases}$

 \square f is not a function \square f is a function \square one-to-one \square onto \square invertible