

The effects of dietary medium-chain fatty acids on ruminal methanogenesis and fermentation in vitro and in vivo: A metaanalysis

Y. R. Yanza, M. Szumacher-Strabel, A. Jayanegara, A.M. Kasenta, M. Gao, H. Huang, A. K. Patra, E. Warzych, A. Cieślak

2nd AFENUE online meeting, Tuesday, 12 May 2020 Animal and Feed Nutrition Modeling Research Group IPB University, Bogor

Email: yulianri.yanza@up.poznan.pl; yanza.pulspoznan@gmail.com

Aim

- Thinking the right topic and aim
- Verified that our topic and aim that we thought were already published by previous researchers. If yes, then collecting all related journals to ours.

Data

- Input all data of different journals into a database into the same sheet
- Verify our database units, must be similar!
- The statistical power is based on sample size.

Analysis and Interpretation

- Choosing the statistical engine. SAS, R, Stata, Comprehensive Meta-analysis, SPSS, Phyton
- SAS proc :PROC MIXED, GLM, class: study becomes random factor, R: mixed effect model
- Figures, tables, and results interpretation: linear or quadratic response, single or multivariate models, continuous or discrete model

*Sauvant et al (2008): Animal, 2:8, 1203-1214

Hypothesis

General idea concept:

Independent

variable

Measured variable :
Dosage, diet, etc.
(var. X)

Object

measurement

Person, animal, plant, building, cell, etc.

Dependent

variable

Parameter (height, intake, size, etc. (var. Y)

Hypothesis

General idea concept:

MCFA SOURCE

Inclusion in the ruminant diet and verified in vitro and in vivo

Ruminant

metabolism Microbial and rumen fermentation

Methane **MITIGATION**

Mitigate rumen methane emission without negative impact on ruminant production

FIGURE 1 Flow diagram for selection of the studies in the meta-analysis to investigate the effect of medium-chain fatty acids (MCFA) on ruminal methanogenesis in the in vitro and in vivo studies

Božic et al. (2009)

O'Kiely (2014)

Kim et al. (2014)

Kang et al. (2016)

Kang et al. (2017)

Klevenhusen et al. (2009)

Staerfl, Kreuzer, and Soliva (2010)

O'brien, Navarro-Villa, Purcell, Boland, and

14

15

16

17

18

19

Poznań University of Life Sciences

TABLE 1 In vitro experiments included in the meta-analysis of the effect of medium-chain fatty acids (MCFA) on ruminal methanogenesis

Exp. No.	Reference	Method	Diet	Source	MCFA level, g/ kg DM	
1	Dong et al. (1997)	RUSITEC	Grass	со	0-63.8	
2	Machmüller et al. (1998)	RUSITEC	Concentrates	со	0-25.2	
3	Dohme et al. (1999)	RUSITEC	Maize silage, concentrate	со	0-35.1	
4	Dohme et al. (2000)	RUSITEC	Maize silage, concentrates	CanO, PKO, CO	0.8-47.7	
5	Dohme et al. (2001)	RUSITEC	Maize silage, concentrate	LA, MA	0-45	
6	Machmüller, Dohme, Soliva, Wanner, and Kreuzer (2001)	RUSITEC	Hay, corn silage, concentrates	СО	0-33.1	
7	Machmüller et al. (2001)	RUSITEC	Hay, corn silage, concentrates	LA	TABLE 2	l
8	Machmüller, Soliva, and Kreuzer (2002)	RUSITEC	Hay, corn silage, concentrates	LA	Exp.	
9	Ajisaka et al. (2002)	GVI	Glucose, cellobiose	LA	No.	Re
10	Soliva et al. (2003)	HGT	Not specified	LA, MA, LMA	1	М
11	Soliva et al. (2004)	RUSITEC	Grass hay, concentrate	LA, MA, LMA	2	М
12	Yabuuchi et al. (2006)	GBI	Corn grains	PKO, CO	3	М
13	Cieślak et al. (2006)	RUSITEC	Hay; wheat meal	CO	4	М

Alfalfa

Maize, wheat; hay

Alfalfa; concentrate

Rice straw, cassava

palm meals

Maize silage, concentrate

Ryegrass, grass silage, barley grains

Cassava chips, rice bran; coconut and KO, CO

LA

LA

LA

LA

Abbreviations: CanO, canola oil enriched with lauric acid; CBC, batch culture; DM, dry matter; GBI, glass bottle incubation; GPT, gas pr technique; GVI, glass vessel incubation; HGT, Hohenheim gas test; KO, krabok oil; LA, lauric acid; LMA, mixed lauric and myristic acids; acid; MCFA, medium-chain fatty acids ($C_{12:0}$ and $C_{14:0}$) CO, coconut oil; PKO, palm kernel oil; RUSITEC, rumen simulation technique.

CBC

HGT

GPT

GVI

GBI

GBI

RUSITEC

TABLE 2 In vivo experiments included in the meta-analysis of the effect of medium-chain fatty acids (MCFA) on ruminal methanogenesis

Exp. No.	Reference	Animal	Feeding ration	Source	MCFA level, g/ kg DM
1	Machmüller and Kreuzer (1999)	Sheep	Hay, concentrate	со	0-36.2
2	Machmüller, Ossowski, and Kreuzer (2000)	Lamb	Hay, concentrate, maize silage	со	0-23.4
3	Machmüller et al. (2003)a	Lamb	Hay, concentrate	MA	0-49
4	Machmüller et al. (2003)b	Lamb	Maize silage, concentrate	СО	0-35
5	Lovett et al. (2003)	Dairy cattle	Rolled barley, soybean meal	со	0-75.4
6	Jordan, Lovett, Hawkins, Lovett, Hawkins, Callan, and O'Mara (2006)	Dairy cattle	Grass, barley, soybean meal	со	0-33.9
7	Jordan, Lovett, Monahan, et al. (2006)	Dairy cattle	Barley, soybean meal	со	0-81.3
8	Sauvant et al. (2008)	Dairy cattle	Cassava chips, soybean meal, coconut meal	СО	0-19.5
9	Crompton, Mills, and Reynolds (2010)	Dairy cattle	Maize, grass silage, cereals	CO	0-22.8
10	Hristov et al. (2009)	Dairy cattle	Alfalfa, barley, corn	LA, CO	0-14.3
11	Ding et al. (2012)	Female yaks	Grass, oat hay	со	0-78
12	Kongmun, Wanapat, Nontaso, Nishida, and Angthong (2009)	Steer	Rice straw, concentrate	со	0-45.5
13	Pilajun, Wanapat, Wachirapakorn, and Navanukroaw (2010)	Steer	Rice straw, concentrate	СО	7.1-28.2
14	Van Zijderveld et al. (2011)	Dairy cattle	Maize, dry beet pulp, barley	LA, MA	0-16
15	Liu, Vaddella, and Zhou (2011)	Lamb	Barley silage, concentrate	со	0-14.8
16	Hollmann et al. (2012)	Dairy cattle	Alfalfa, corn, grass	со	0-19.9
17	Ding et al. (2012)	Sheep	Oat hay	co	0-11.6
18	Hollmann, Powers, Fogiel, Liesman, and Beede (2013)	Dairy cattle	Alfalfa, corn, soy hull	со	0-24.1
19	Nguyen and Hegarty (2017)	Dairy cattle	Oaten, alfalfa	со	0-26.5
20	Klop et al. (2017)	Dairy cattle	Corn, soybean meal	LA	0-63.7
21	Suryani, Zain, Ningrat, and Jamarun (2017)	Steer	Palm oil frond	co	0-13.9

Abbreviations: DM, dry matter; LA, lauric acid; MA, myristic acid LMA, Mixed lauric and myristic acids; MCFA, medium-chain fatty acids ($C_{12:0}$ and $C_{14:0}$) CO, coconut oil.

variables. The continuous predictor variable consisted of the concentrations of MCFA supplementation. The statistical model used was (Equation 1):

Regression

$Y_{ij} = B_0 + B_1 X_{ij} + B_2 X_{ij}^2 + s_i + b_i X^{ij} + e_{ij}$ (1)

Means comparison

The effectiveness across sources of MCFA was compared using the following statistical model for the discrete predictor variables (MCFA sources; (Equation 2):

$$Y_{ij} = \mu + s_i + \tau_j + s\tau_{ij} + e_{ij}$$
 (2)

TABLE 3 Descriptive statistics of the variables in the database used to evaluate the effect of medium-chain fatty acids (MCFA) on ruminal methane production in ruminants

	In vitro						In vivo					
Item	n	Mean	SD	Max	Min	n	Mean	SD	Max	Min		
DMI (kg/d)						65	10.2	7.9	26.5	0.7		
Digestibility (%)												
DMD	23	56.4	12.4	81.5	38.1	32	66.3	6.3	75.5	50.		
OMD	44	55.8	10.5	77.9	33.4	44	69.7	4.4	76.4	59.		
CPD	28	60.1	17.3	89.4	34.1	32	66.2	8.7	80.4	50.		
NDFD	53	25.6	13.5	57.3	5.3	46	55.6	7.9	70.0	35.		
Rumen fermentation												
pH	86	6.8	0.2	7.2	6.3	32	6.6	0.3	7.0	6.		
Gas (mL/g DMs)	63	218	120	489	9.0							
CH ₄ (mL/d and L/d)	102	6.9	5.8	20.2	0.0	60	303	272	835	10.		
CH ₄ /DMs (L/kg)	110	14.4	11.3	45.4	0.2	53	31.1	11.0	54.5	9.		
CH ₄ /OMD (L/kg)	38	17.8	7.4	29.6	4.4	36	38.9	14.5	57.8	6.		
Total VFA (mmol/L)	106	72.7	31.3	170.7	21.0	36	101.2	16.6	134.9	59.		
C ₂ (mol/100 mol VFA)	108	56.9	6.0	70.2	40.2	36	65.8	2.5	70.1	60.		
C ₃ (mol/100 mol VFA)	109	22.6	6.8	39.5	11.4	40	21.2	3.0	27.1	13.		
C ₄ (mol/100 mol VFA)	109	13.9	4.3	24.2	5.1	40	10.4	2.4	15.3	6.		
IsoC ₄ (mol/100 mol VFA)	66	1.1	0.9	2.6	0.1	27	0.7	0.4	1.2	0.		
C ₅ (mol/100 mol VFA)	88	4.0	2.7	9.6	0.6	27	1.7	0.5	2.7	1.		
IsoC ₅ (mol/100 mol VFA)	69	2.8	1.5	5.8	0.5	27	1.3	0.5	2.1	0.		
C2:C3	105	2.7	1.1	5.3	0.1	38	3.2	0.5	4.2	2.		
H ₂ (mmol/L)	56	0.9	1.1	4.0	0.0							
NH ₃ (mmol/L)	70	12.6	6.7	25.6	2.1	23	8.3	3.5	18.0	2.		
Microorganism												
Protozoa (10 ⁴ /ml)	49	0.51	0.54	2.24	0.0	34	51.7	36.6	138.2	1		
Bacteria (10 ⁹ /ml)	40	3.3	1.5	5.1	0.3	20	17.7	14.5	44.0	3.		
Archaea (10 ⁷ /ml)	50	11.5	8.4	33.9	0.0	16	71.0	61.6	234.0	5.		

Abbreviation: n, number of observations; SD, standard deviation; Max, maximum; Min, minimum; DMD, digested dry matter; OMD, digested organic matter; CPD, digested crude protein; NDFD, digested neutral detergent fibre; CH_4 :methane, mL/d for the in vitro and L/d for the in vivo; DMs, dry matter substrate for in vitro or dry matter intake for in vivo; VFA, volatile fatty acids; C_2 , acetate; C_3 , propionate; C_4 , butyrate; C_5 , valerate; C_5 , isovalerate; C_5 , hydrogen.

TABLE 4 Regression equations of ruminal fermentation parameters on the concentrations of medium-chain fatty acids (MCFA) addition in the in vitro experiments

		Model	Parameter estimates						
Response parameters	n		Intercept	SE Intercept	Slope	SE Slope	P value	RMSE	R^2
In vitro digestibility (%)									
DMD	23	L	61.5	2.77	-0.2	80.0	.02	9.97	0.3
OMD	44	L	57.6	3.28	-0.07	0.05	ns	5.32	0.7
CPD	28	L	57.7	8.39	-0.09	0.06	ns	6.19	0.8
NDFD	53	L	29.8	3.82	-0.23	0.06	<.01	7.15	0.7
Rumen fermentation									
pH	86	L	6.82	0.05	-0.00006	0.0004	ns	0.09	0.7
Gas (mL/g DMs)	63	L	209	35.6	-0.5	0.4	ns	66.7	0.6
CH ₄ (mL)	102	L	9.51	1.6	-0.044	0.02	.03	3.55	0.6
CH ₄ /DMs (L/kg)	110	L	18	2.3	-0.13	0.03	<.01	6	0.7
CH ₄ /OMD (L/kg)	38	L	23.7	2.1	-0.2	0.03	<.01	3.66	0.7
Total VFA (mmol/L)	106	L	81.4	7.1	-0.1	0.1	.07	11.17	0.8
C ₂ (mol/100 mol VFA)	108	Q	57.9	1.3	-0.1	0.04	.01	3.5	0.6
					0.0014	0.0006	.02		
C ₃ (mol/100 mol VFA)	109	Q	21.6	1.5	0.1	0.04	<.01	3.13	0.7
					-0.001	0.001	.05		
C ₄ (mol/100 mol VFA)	109	L	14.2	1	-0.015	0.008	.08	1.83	0.8
IsoC ₄ (mol/100 mol VFA)	66	L	0.83	0.26	0.00002	0.0019	ns	0.32	0.8
C ₅ (mol/100 mol VFA)	88	Q	3.55	0.68	0.023	0.012	.06	0.93	0.8
					-0.00029	0.00016	.07		
IsoC ₅ (mol/100 mol VFA)	69	L	2.2	0.46	-0.0024	0.003	ns	0.48	0.8
C2:C3	105	Q	3.01	0.24	-0.021	0.007	<.01	0.6	0.7
					0.0002	0.0001	.03		
H ₂ (mmol/L)	56	L	0.56	0.28	0.01	0.003	<.01	0.49	0.7
NH ₃ (mmol/L)	70	Q	11.75	1.8	-0.11	0.05	.03	2.59	0.8
					0.0014	0.0008	.08		
Microorganism									
Protozoa (10 ³ /ml)	49	L	10.3	1.03	-0.19	0.03	<.01	3.16	0.6
Bacteria (10 ⁹ /ml)	40	Ĺ	3.27	0.49	-0.0009	0.006	ns	0.6	0.8
Archaea (10 ⁷ /ml)	50	Q	14.52	5.41	-0.77	0.26	.01	4.48	0.7
					0.01	0.01	.04		

Note: The model is tended to be significantly compatible at $p \le .10$. The model is considered compatible at $p \le .05$.

Abbreviations: C_2 , acetate; C_3 , propionate; C_4 , butyrate; C_5 , valerate; CH_4 , methane; CPD, digested crude protein; DMD, digested dry matter; DMS, dry matter substrate; H_2 , hydrogen; Iso- C_4 , isobutyrate; Iso- C_5 , isovalerate; Model, linear (L) or quadratic (Q); n, number of observations; NDFD, digested neutral detergent fibre; OMD, digested organic matter; R^2 , R-square; RMSE, root mean square of errors; SE, standard error; VFA, volatile fatty acids.

TABLE 5 Responses of ruminal fermentation parameters affected by different medium-chain fatty acids (MCFA) sources in the in vitro experiments

Response parameters	n	Control	со	CanO	ко	LA	MA	LMA	PKO	p value
In vitro digestibility (%)										
DMD	23	70.4°	50.3 ^b	823	54.2 ^b	47.5 ^b	2	_	23	<.01
OMD	44	57.5	55.9	57.5	25	51.5	57.4	56.2	55.4	ns
CPD	28	58.0	51.9	32		53.7	59.0	53.2	27	ns
NDFD	50	30.5 ^a	18.1 ^b	21.8 ^{ab}	25.5 ^{ab}	15.0 ^b	27.9 ^{ab}	21.3 ^{ab}	15.3 ^b	<.01
Rumen fermentation										
рH	84	6.82	6.79	6.83	6.66	6.82	6.83	6.83	6.82	ns
Gas (mL/g DMs)	63	220	156	-	197	176	258	236	163	ns
CH ₄ (mL)	102	9.75°	10.20	-	9.21 ^{abc}	5.70 ^b	12.8 ^{ab}	4.77 ^c	-	<.01
CH ₄ /DMs (L/kg)	110	18.5ª	12.3 ^b	15.8°	11.9 ^{ab}	10.9 ^b	18.6 ^{ab}	13.4°b	13.5 ^{ab}	<.01
CH ₄ /OMD (L/kg)	38	23.0ª	15.8 ^b	21.6 ^{ab}	-	13.7 ^b	21.9 ^{ab}	13.3 ^b	15.6 ^b	<.01
Total VFA (mmol/L)	106	81.7	76.7	80.2	80.6	75.2	85.9	79.1	82.2	ns
C ₂ (mol/100 mol VFA)	105	57.9	56.2	58.0	55.9	56.3	59.5	54.4	56.2	ns
C ₃ (mol/100 mol VFA)	109	21.5 ^b	24.4 ^a	21.3 ^{ab}	24.6 ^{ab}	24.3°	22.1 ^{ab}	22.5 ^{ab}	23.5 ^{ab}	.07
C ₄ (mol/100 mol VFA)	108	14.1	14.0	14.9	14.2	13.2	13.1	15.0	14.5	ns
IsoC ₄ (mol/100 mol VFA)	66	0.86	0.64	-	_	0.84	0.85	0.80	-	ns
C ₅ (mol/100 mol VFA)	79	3.57 ^b	2.89 ^b	4.42 ^{ab}	28	3.21 ^b	3.66 ^b	5.84ª	3.85 ^b	.03
Iso-C ₅ (%)	69	2.28	1.62		23	2.18	2.06	2.06	1.65	ns
C2:C3	105	3.04°	2.74 ^{ab}	3.45 ^a	2.61 ^{ab}	2.33 ^b	2.89 ^{ab}	2.71 ^{ab}	2.99 ^{ab}	.03
H ₂ (mmol/L)	50	0.53 ^c	0.77 ^{abc}	0.53 ^{bc}	-	1.37 ^{ab}	0.49 ^c	1.84ª	1.24 ^{abc}	.02
NH ₃ (mmol/L)	70	11.7	9.32	10.6	-	10.0	13.2	9.23	9.52	ns
Microorganism										
Protozoa (10 ³ /ml)	42	10.3ª	2.59 ^b	2.21 ^b	-	1.52 ^b	9.10 ^a	3.26 ^b	-	<.01
Bacteria (10 ⁹ /ml)	40	3.30	2.98	3.45		3.39	3.55	3.30	4.00	ns
Archaea (10 ⁷ /ml)	50	15.1°	6.80 ^{ab}	9.75 ^{ab}		1.48 ^b	9.10	0.00 ^b	9.74°b	<.01

Note: Different superscript alphabets of means in a row are significant differences at $p \le .05$.

Abbreviations: C₂, acetate; C₃, propionate; C₄, butyrate; C₅, valerate; CanO, canola oil enriched with lauric acid; CH₄, methane; CO, coconut oil; CPD, digested crude protein; DMD, digested dry matter; DMs, dry matter substrate; H₂, hydrogen; Iso-C₄, isobutyrate; Iso-C₅, isovalerate; KO, krabok oil; LA, lauric acid; LMA, mixed lauric and myristic acids; MA, myristic acid; n, number of observations; NDFD, digested neutral detergent fibre; OMD, digested organic matter; PKO, palm kernel oil; VFA, volatile fatty acids.

TABLE 6 Regression equations of ruminal fermentation parameters on the concentrations of medium-chain fatty acids (MCFA) addition in the in vivo experiments

			Parameter estimates						
Response Parameters	n	Model	Intercept	SE Intercept	Slope	SE Slope	p value	RMSE	\mathbb{R}^2
DMI (kg/d)	65	Q	10.2	1.9	-0.072	0.024	<.01	1.05	0.9
					0.0008	0.0004	.05		
In vivo digestibility (%)									
DMD	32	L	64.4	2.1	-0.005	0.02	ns	2.01	0.8
OMD	44	L	69.5	1.2	-0.01	0.02	ns	1.75	0.8
CPD	32	L	65.8	3.3	0.03	0.02	.09	1.61	0.9
NDFD	46	L	56.8	2.1	-0.08	0.03	.02	3.73	0.7
Rumen fermentation									
рН	32	L	6.61	0.1	-0.002	0.001	.08	0.12	0.8
CH ₄ (L/d)	60	L	303	66.6	-1.58	0.5	<.01	67.6	0.9
CH ₄ /DMI (L/kg)	53	Q	33.8	2.79	-0.32	0.1	<.01	3.89	0.8
					0.0029	0.0014	.05		
CH ₄ /OMD (L/kg)	36	Q	42.2	4.57	-0.44	0.16	.01	5.67	0.8
					0.0048	0.0026	.07		
Total VFA (mmol/L)	36	Q	105.5	5.3	-0.58	0.29	.06	7.06	0.8
					0.011	0.005	.06		
C ₂ (mol/100 mol VFA)	36	Ĺ	65.6	0.7	-0.011	0.013	ns	1.28	0.7
C ₃ (mol/100 mol VFA)	40	L	20.5	0.8	0.03	0.02	.06	1.65	0.7
C ₄ (mol/100 mol VFA)	40	L	10.8	0.7	-0.01	0.01	ns	1.02	0.8
IsoC ₄ (mol/100 mol VFA)	27	L	0.78	0.13	-0.003	0.001	.03	0.1	0.9
C ₅ (mol/100 mol VFA)	27	Q	1.69	0.2	0.01	0.004	.02	0.08	0.9
					-0.0002	0.0001	.02		
IsoC ₅ (mol/100 mol VFA)	27	L	1.46	0.19	-0.006	0.002	<.01	0.18	0.8
C2:C3	38	L	3.27	0.12	-0.006	0.003	.05	0.31	0.5
NH ₃ (mmol/L)	23	L	10.5	1.3	-0.08	0.02	<.01	0.91	0.9
Microorganism									
Protozoa (10 ⁵ /ml)	34	L	7.14	0.99	-0.09	0.02	<.01	1.87	0.7
Bacteria (10 ⁹ /ml)	20	L	18	7.2	-0.05	0.04	ns	2.77	0.9
Archaea (10 ⁷ /ml)	16	L	88.5	32.9	-0.52	0.5	ns	31.2	0.7

Note: The model is tended to be significantly compatible at $p \le .10$. The model is considered compatible at $p \le .05$.

n, number of observations; Model, linear (L) or quadratic (Q); SE, standard error; RMSE, root mean square of errors; R^2 , R-square; DMI, dry matter intake; DMD, digested dry matter; OMD, digested organic matter; CPD, digested crude protein; NDFD, digested neutral detergent fibre; CH₄, methane; VFA, volatile fatty acids; C_2 , acetate; C_3 , propionate; C_4 , butyrate; Iso- C_4 , isobutyrate; C_5 , valerate; Iso- C_5 , isovalerate.

TABLE 7 Responses of ruminal fermentation parameters affected by different medium-chain fatty acids (MCFA) sources in the in vivo experiments

Response parameters	n	Control	со	LA	MA	LMA	p value
DMI (kg/d)	65	10.3ª	8.90 ^b	8.75 ^b	10.2 ^{ab}	10.0 ^{ab}	.01
n vivo digestibility (%)							
DMD	30	67.8 ^a	64.8 ^b	69.3°	-	-	.03
OMD	43	70.1	68.6	71.5	68.0	-	ns
CPD	32	65.8	66.7	66.6	-	_	ns
NDFD	46	57.5	53.0	57.9	53.4	60.4	ns
Rumen fermentation							
pH	32	6.58 ^a	6.64 ^a	6.56°	6.15 ^b	3 55 1	<.01
CH ₄ (L/d)	60	320°	231 ^b	285 ^{ab}	296 ^{ab}	284 ^{ab}	.04
CH ₄ /DMI (L/kg)	53	34.6°	27.4 ^b	33.7 ^{ab}	21.3 ^{bc}	27.0 ^{abc}	<.01
CH ₄ /OMD (L/kg)	36	42.9 ^a	33.0 ^b	41.5 ^{ab}	30.2 ^{ab}		<.01
Total VFA (mmol/L)	34	1120	99 ^b	110 ^a	84 ^c	111 ^{ab}	<.01
C ₂ (mol/100 mol VFA)	37	65.8	65.2	64.4	65.6	62.3	ns
C ₃ (mol/100 mol VFA)	40	20.1 ^b	21.0 ^{ab}	22.3 ^{ab}	24.6ª	23.2 ^{ab}	.02
C ₄ (mol/100 mol VFA)	40	10.8	11.1ª	10.6°	7.5 ^b	10.1 ^{ab}	.02
IsoC ₄ (mol/100 mol VFA)	27	0.77 ^a	0.79ª	0.71°	0.40 ^b	0.70 ^{ab}	.01
C ₅ (mol/100 mol VFA)	24	1.68 ^{bc}	1.88ª	1.68 ^b	1.49°	1.88 ^{ab}	.01
Iso-C ₅ (mol/100 mol VFA)	27	1.47	1.23	1.34	1.06	1.68	ns
C ₂ :C ₃	37	3.38°	3.07 ^b	2.93 ^{bc}	2.51 ^c	2.74 ^{bc}	<.01
NH ₃ (mM)	23	9.61 ^b	7.25 ^c	7.33 ^{bc}	5.98 ^c	18.0 ^a	<.01
Microorganism							
Protozoa (10 ⁵ /ml)	34	8.46 ^a	4.24 ^b	1.25 ^b	4.78 ^b	6.33 ^{ab}	<.01
Bacteria (10 ⁹ /ml)	20	18.1	16.5	-	16.7	177	ns
Archaea (10 ⁷ /ml)	16	97.4	59.3	· 75	84.0		ns

Note: Different superscript alphabets of means in a row are significant differences at $p \le .05$.

n, number of observations; CO, coconut oil; LA, lauric acid; MA, myristic acid; LMA, mixed lauric and myristic acids; DMI, dry matter intake; DMD, digested dry matter; OMD, digested organic matter; CPD, digested crude protein; NDFD, digested neutral detergent fibre; CH₄, methane; VFA, volatile fatty acids; C₂, acetate; C₃, propionate; C₄, butyrate; Iso-C₄, isobutyrate; C₅, valerate; Iso-C₅, isovalerate.

FIGURE 3 Relative changes in methane production with dietary medium-chain fatty acids (MCFA) concentrations in vitro and in vivo. Methane production (L/kg organic matter digested) converted to percentage change was predicted based on MCFA concentration (g/kg DM) in the in vitro (Δ , dot regression line) and in vivo (O, dash regression line) experiments. The solid regression line represents for both in vitro and in vivo experiments

- Increasing the MCFA concentrations caused a decrease in CH4 emission in both in vitro and in vivo studies, and this was associated with diminished populations of protozoa both in the in vitro and in vivo studies and *Archaea* in the in vitro study, but not of bacteria.
- Among the sources of MCFA, suppression of CH4 production was noted in the following order: coconut oil > lauric acid > myristic acid > mixed lauric and myristic acids > palm kernel oil > canola oil enriched with lauric acids > krabok oil.
- In general, greater concentrations of dietary MCFA resulted in the reduction of ruminal fermentation products and digestibility.
- The in vitro results did not fully reflect the in vivo results regarding the effect of MCFA on ruminal methane production.
- The effective dose of dietary MCFA is usually 40 g/kg DM to decrease methane production, with the exception of MA and KO due to limited numbers of observations for these MCFA sources.

Yuk kerja bareng!