機械学習を 解釈する技術3

廣田雄亮

3章 特徴量の需要度を知る PFI

特徴量の重要度を知る必要性

特徴量の重要度とは どの特徴量がモデルの予測に強く影響し, どの特徴量は影響しないのか

特徴量の重要度がわかると実務で

- ・重要度がドメイン知識に沿っているかを確認 → デバッグ 直感的に重要そうな特徴量の重要度が低い あまり重要そうでない特徴量の重要度が高い
- KPIを効率よく改善できる 重要度が高い特徴量に重要的に介入する

モデルの振る舞いを確認し、現実のアクションにつながる

回帰係数について

回帰係数を用いることで特徴量の重要度を確認できた

Random Forest や GBDTといった機械学習モデルには線形回帰 モデルにおける回帰係数に相当するものがない

→ パラメータから重要度を確認することが困難

どのようなモデルでも計算できる予測誤差を用いたアプローチが必要

回帰係数について

が必要

ある特徴量が使えない場合の予測誤差

すべての特徴量が使える場合の予測誤差 Random Forest や GBDTといを比較 モデルにおける**回帰係数に**

→ パラメータから重要度を確認することが困難

予測誤差が大きく変化する場合 どのようなモその特徴量は重要と判断するたアプローチ

PFI (Permutation Feature Importance) 3/3

 X_2

-2

4

特徴量の値をシャッフル(permutation)することで その特徴量の情報が使えない状態にする

元データ

 X_1

-3

0

Xo

1

-2

1

X。の値を	
シャッフノ	
	>

シャッフル後のデータ

Xo	X ₁	X ₂
-2	-3	2
-1	3	1
1	0	-2
3	1	4

予測誤差を 比較

予測誤差

予測誤差

PFI (Permutation Feature Importance) 2/3

アルゴリズム

Xo	X ₁	X ₂	1つ1つのインデックス
1	-3	2	━━━→ 関係性が情報を持つ.
-2	3	1	────
3	0	-2	
1	1	4	導かれる.

シャッフルすることにより,持っている関係性が崩れる. → シャッフルしたデータが使えなくなる. PFI (Permutation Feature Importance) 3/3

問題点

相関の高い特徴量を同時に投入している場合

→ 重要度が分散し、両方の特徴量が低くなる

LOCOFI (Leave One Covariate Importance) 1/2

特徴量の値を使わないことで その特徴量の情報が使えない状態にする

元データ

Xo	X ₁	X ₂
1	-3	2
-2	3	1
3	0	-2
1	1	4

x_oの値を 使用しない

Xo	X ₁	X ₂
-2	-3	2
-1	3	1
1	0	-2
3	1	4

予測誤差

•

予測誤差を 比較

予測誤差

LOCOFI (Leave One Covariate Importance) 2/2

問題点

- 特徴量の数だけモデルが必要になり,再学習が必要 (計算時間がかかる)
- 2. 振る舞いを理解したモデルと別のモデルを作成して重要度 の評価を行っている
 - → 真に知りたいことではない

2つ目に関して

「全特徴量を使ったモデル」と「ある特徴量を落として作った モデル」は別のモデルと言える.

知りたいことは,あくまでも<u>「全特徴量を使ったモデル」が</u> 特定の特徴量をどの程度重要視しているか PFI & LOCOFI

2つは互いに類似した発想の手法

しかし, 双方の問題点を踏まえると

実践的には、PFIを用いるほうが良い、と言える.

GPFI(Grouped Permutation Feature Importance) 1/2

PFIの問題点として,相関が高い特徴量を投入すると 重要度が分散し,両方の重要度が低くなる,ことがある.

 \downarrow

そこで、それらをまとめてシャッフルする GPFI を用いる.

元データ

 X_1

0

1

 X_2

-2

4

Xo

-2

1

Xoの値を
シャッフル

シャッフル後のデータ

Xo	X ₁	X ₂
-2	3	2
-1	1	1
1	-3	-2
3	0	4

予測誤差を 比較

予測誤差

予測誤差

GPFI(Grouped Permutation Feature Importance) 2/2

例

• 売上予測の場合:「今日の売上」「昨日の予測」→「過去の予測」

これらとは別に以下の場合にもGPFIが有効

特徴量をまとめた特徴量群の方が解釈性が向上するケース

「住所データ」「郵便番号」→「住所- 郵便番号データ」 「緯度」「経度」→「位置データ」

・カテゴリー変数

職業カテゴリ「学生」「会社員」「自営業」←「1」「1」「0」このような場合は起き得ない、とされる.

特徴量重要度は因果関係として解釈できるか? 1/2

特徴量重要度を因果関係として解釈することは危険である.

その理由の一つとして

疑似相関

がある.

特徴量重要度は因果関係として解釈できるか? 2/2

疑似相関あるとどうなるのか?

本来モデルに入れるべき特徴量が入っていない場合に, <u>影響を与えない特徴量が影響を与えると解釈</u>してしまう.

重要な特徴量である ≠ 目的変数と因果関係がある

PFIの結果は**モデル上の振る舞い** であって因果関係ではない まとめ

PFIのメリット・デメリット

メリット

- どのようなモデルに対しても、同じ方法で特徴量の重要度を 計算できる
- 直感的に理解しやすい
- ・計算時間が短い

デメリット

- 強く相関する特徴量の扱いに注意が必要
- 因果関係としては解釈できない