Non-convex optimisation convex envelopes and Fenchel Conjugates

Andrew Wu

May 25, 2021

1 Introduction

This note aims to extend propositions from **Bauschke2010** and **Tardella** to a class of optimization problems on Hilbert spaces with non-convex constraints.

2 Superadditivity of convex envelopes

Definition 1. Let V be a convex subset of arbitrary space X and suppose $f: X \to [-\infty, \infty]$. The convex envelope of f, $\operatorname{conv}(f): V \to [-\infty, \infty]$, is the largest convex minorant of f. That is, for any convex function $g: V \to [-\infty, \infty]$ such that $g \leq f$, $g \leq \operatorname{conv}(f)$.

Definition 2. Let V be a vector space. The functional $g: V \to \mathbb{R}$ is affine if there exists linear functional $l: V \to \mathbb{R}$ and $b \in V$ such that for all $v \in V$,

$$g(v) = l(v) + b$$

If l is a continuous linear functional, then g is a continuous affine functional.

The following proposition extends **Proposition 2.20** of **Tardella** from convex subsets of \mathbb{R}^n to general vector spaces.

Theorem 1. Let V be a vector space. Suppose $f, g: V \to \mathbb{R}$ are arbitrary functionals. Then,

$$\operatorname{conv}(f) + \operatorname{conv}(g) \le \operatorname{conv}(f+g).$$

If g is affine, then

$$conv(f) + conv(g) = conv(f + g)$$

Proof. Observe that conv(f) + conv(g) is a convex underestimator of f + g. Hence, by definition,

$$conv(f) + conv(g) \le conv(f + g).$$

Suppose g is affine, then both g and -g are convex. Thus, conv(g) = g and conv(-g) = g. Hence,

$$conv(f+g) - g = conv(f+g) + conv(-g) \le conv(f),$$

so

$$\operatorname{conv}(f) + \operatorname{conv}(g) \ge \operatorname{conv}(f + g).$$

Combining this with the first part of the proposition yields the desired equality.

3 Superadditivity of biconjugates

A similar proposition can be proved for biconjugates.

Definition 3. Let H be a Hilbert Space and $f: H \to [-\infty, \infty]$. The Fenchel conjugate (or convex conjugate or Legendre Transform) is the function $f^*: H \to [-\infty, \infty]$

$$f^*(x^*) = \sup_{x \in X} \left\{ \langle x^*, x \rangle - f(x) \right\}$$

The biconjugate of f is the function $f^{**} := (f^*)^*$.

Lemma 1. Let H be a Hilbert space and $f: H \to [-\infty, \infty]$. Then, f^{**} is the largest convex lower semicontinuous minorant of f. That is, for any convex lower semicontinuous function g such that $g \le f$, $g \le f^{**}$.

Proof. See **Proposition 4.1** of **Ekeland**.

Theorem 2. Let H be a Hilbert space and $f, g: H \to \mathbb{R}$ be arbitrary functionals. Then,

$$f^{**} + g^{**} \le (f+g)^{**}.$$

In particular, if g is affine continuous, then

$$f^{**} + g^{**} = (f+g)^{**}$$

Proof. By Lemma 1, f^{**} , g^{**} are convex and lower semicontinuous and $f \leq f^{**}$, $g \leq g^{**}$. Observe that $f^{**} + g^{**}$ is a convex minorant of f + g, and is also lower semicontinuous by the superadditivity of the infimum. Hence, by definition,

$$f^{**} + q^{**} < (f+q)^{**}.$$

Now, if g is affine and continuous, both g and -g are convex and lower semicontinuous. Hence, by Lemma 1, $g^{**} = g$ and $(-g)^{**} = -g$, so

$$(f+g)^{**} - g = (f+g)^{**} + (-g)^{**} \le f^{**},$$

which rearranges to

$$(f+g)^{**} \le f^{**} + g^{**}.$$

Combining this with the first inequality in the theorem yields the equality.

4 Separable additivity of biconjugates

Definition 4. Let X be some space. The function $f: X \to [-\infty, \infty]$ is proper if $f(x) \neq -\infty$ for all $x \in X$ and there exists $x \in X$ such that $f(x) < +\infty$.

Definition 5. Let (X, \langle, \rangle) be a real Hilbert space. The functional $f: X \to [-\infty, \infty]$ has a continuous affine minorant if there exists $a \in X$ and $b \in \mathbb{R}$ such that for all $x \in X$:

$$f(x) \ge \langle a, x \rangle + b$$

Lemma 2. Let (X, \langle, \rangle) be a real Hilbert space and suppose $f: X \to [-\infty, \infty]$ is proper and has a continuous affine minorant. Then, both $f^*, f^{**}: X \to [-\infty, \infty]$ are also proper and have affine minorants.

Proof. See Lemma 2.1 of Klein

The following theorem is essentially a double application of **Proposition 13.30** of **Bauschke2010** where extra conditions are imposed to guarantee g^{**} is proper. The proof follows that of **Theorem 2.1** in **Klein** albeit with a modified definition of proper function to match **Bauschke2010**. As with **Bauschke2010**, we allow $\sup\{\cdot\}$ to take values $\pm\infty$.

Theorem 3. Let $X_1, X_2, ... X_n$ be real Hilbert spaces with inner products $\langle , \rangle_{i=1,2...n}$ respectively and $X = X_1 \times X_2 \times ... X_n$. Suppose $g: X \to (-\infty, \infty]$ is a proper separable function defined by

$$g(x) = \sum_{i=1}^{n} g_i(x_i), \text{ for any } x = (x_1, x_2, \dots, x_n) \in X,$$

where $g: X := g_i: X_i \to (-\infty, \infty]$, i = 1, 2, ... n are proper functions with continuous affine minorants. Then, g^{**} is proper and for all $x \in X$,

$$g^{**}(x) = \sum_{i=1}^{n} g_i^{**}(x_i),$$

where g_i^{**} are proper functions.

Proof. Let $x = (x_1, \dots x_n)$ and $y = (y_1, \dots y_n)$ be elements of X. Observe that X equipped with the inner product

$$\langle x, y \rangle := \sum_{i=1}^{n} \langle x_i, y_i \rangle_i$$

defines a Hilbert space. Computing the Fenchel conjugate, we obtain:

$$g^{*}(x^{*}) = \sup_{x \in X} \{\langle x^{*}, x \rangle - g(x) \}$$

$$= \sup_{x_{1}, x_{2} \dots x_{n}} \left\{ \sum_{i=1}^{n} \langle x_{i}^{*}, x_{i} \rangle - g_{i}(x_{i}) \right\}$$

$$= \sum_{i=1}^{n} \sup_{x_{i} \in X_{i}} \{\langle x_{i}^{*}, x_{i} \rangle - g_{i}(x_{i}) \}$$

$$= \sum_{i=1}^{n} g_{i}^{*}(x_{i})$$

Observe that g^* is separable and $g_i^*: X_i \to [-\infty, \infty]$ are proper with continuous affine minorants by Lemma 2. Thus, reapplying the above line of reasoning yields

$$g^{**}(x) = \sum_{i=1}^{n} g_i^{**}(x_i),$$

where again, g_i^{**} are proper by Lemma 2. Finally, if g_i , i = 1, 2 ... n have continuous affine minorants $\langle a_i, x \rangle + b_i$, then $\langle \sum_{i=1}^n a_i, x_i \rangle + \sum_{i=1}^n b_i$ is a continuous affine minorant of the proper function g, so g^{**} is proper by Lemma 2.

Lemma 3. Suppose X_i , i = 1, 2 ... n is a family of real Hilbert spaces with inner products $\langle \cdot, \cdot \rangle_i$ and denote the product Hilbert space by $\mathbf{X} = \bigoplus_{i=1}^n X_i$ (that is $\prod_{i=1}^n X_i$ with inner product $\sum_{i=1}^n \langle \cdot, \cdot \rangle_i$). Let $f : \mathbf{X} \to \mathbb{R}$ be an additively separable function;

$$f(\boldsymbol{x}) = \sum_{i=1}^{n} f_i(x_i),$$

where $f_i: X_i \to \mathbb{R}$. Let $\mathbf{x} = (x_1, \dots x_n) \in dom\ f$. As with **Bauschke2010**, we define $R_i: X_i \to \mathbf{X}$ such that the j^{th} component of $R_i y$ is y if j = i and x_j otherwise. Then, if $u_i \in \partial_i f(\mathbf{x})$ for $i = 1, 2, \dots n$, then $\mathbf{u} = (u_1, \dots, u_n) \in \partial f(\mathbf{x})$.

Proof. By definition, for all i = 1, 2, ..., n and $y_i \in X_i$,

$$\langle y_i - x_i, u_i \rangle + (f \circ R_i)(x_i) \le (f \circ R_i)(y_i)$$

$$\langle y_i - x_i, u_i \rangle + \sum_{j=1}^n f(x_j) \le f(y_i) + \sum_{j \ne i}^n f(x_j)$$

$$\langle y_i - x_i, u_i \rangle + f(x_i) \le f(y_i).$$

Adding these inequalities together, we have that for all $y \in X$,

$$\sum_{i=1}^{n} \langle y_i - x_i, u_i \rangle + \sum_{i=1}^{n} f(x_i) \le \sum_{i=1}^{n} f(y_i)$$
$$\langle \boldsymbol{y} - \boldsymbol{x}, \boldsymbol{u} \rangle + f(\boldsymbol{x}) \le f(\boldsymbol{y}),$$

thus, $\boldsymbol{u} \in \partial f(\boldsymbol{x})$.