Capítulo 2

Introducción a los sistemas operativos

Sistemas operativos

- Programa que controla la ejecución de los programas de aplicación.
- Actúa como interfaz entre las aplicaciones del usuario y el hardware.

Objetivos de los sistemas operativos

- Comodidad:
 - Hace que un computador sea más cómodo de utilizar.
- Eficiencia:
 - Permite que los recursos de un sistema informático se aprovechen de una manera más eficiente.
- Capacidad de evolución:
 - Permite el desarrollo efectivo, la verificación y la introducción de nuevas funciones en el sistema sin interferir en los servicios.

Niveles de un sistema informático

Figura 2.1. Niveles y vistas de un sistema informático.

Servicios que ofrece el sistema operativo

- Creación de programas:
 - Editores y depuradores (debuggers).
- Ejecución de programas.
- Acceso a los dispositivos de E/S.
- Acceso controlado a los archivos.
- Acceso al sistema.

Servicios que ofrece el sistema operativo

- Detección y respuesta a errores:
 - Errores internos y externos del hardware.
 - Error de memoria.
 - Fallo de dispositivos.
 - Errores de software.
 - Desbordamiento aritmético.
 - Acceso a una posición prohibida de memoria.
 - Incapacidad del sistema operativo para satisfacer la solicitud de una aplicación.

Servicios que ofrece el sistema operativo

- Contabilidad:
 - Recoger estadísticas.
 - Supervisar su rendimiento.
 - Utilizado para anticiparse a las mejoras futuras.
 - Utilizado para los usuarios de cuotas.

Sistemas operativos

- Funciona de la misma manera que el software normal de un computador.
 - Es un programa ejecutado por el procesador.
- El sistema operativo abandona el control del procesador para ejecutar otros programas.

Sistema informático

Figura 2.2. El sistema operativo como administrador de recursos.

Núcleo

- Parte del sistema operativo que se encuentra en la memoria principal.
- Incluye las funciones utilizadas con más frecuencia.
- También denominado kernel.

Evolución de un sistema operativo

- Actualizaciones del hardware y nuevos tipos de hardware.
- Nuevos servicios.
- Correcciones.

Evolución de los sistemas operativos

- Proceso en serie:
 - No había sistema operativo.
 - Las operación con estas máquinas era desde una consola consistente en unos indicadores luminosos, unos conmutadores, un dispositivo de entrada y una impresora.
 - Planificación.
 - La preparación incluía cargar un compilador, un programa fuente, salvar el programa compilado y, por último, cargar y montar.

Evolución de los sistemas operativos

- Sistemas sencillos de proceso por lotes.
 - Monitores:
 - Software que controla los programas que están en funcionamiento.
 - Los trabajos se agrupaban por lotes.
 - El programa volvía al monitor al terminar su procesamiento.
 - El monitor residente está en la memoria principal y disponible para su ejecución.

Lenguaje de control de trabajos (JCL)

- Tipo especial de lenguaje de programación.
- Empleado para dar instrucciones al monitor:
 - Qué compilador utilizar.
 - Qué datos utilizar.

Características del hardware

- Protección de memoria:
 - No permite modificar la zona de memoria en la que está el monitor.
- Temporizador:
 - Previene que un solo trabajo monopolice el sistema.

Monoprogramación

 Antes de continuar, el procesador debe esperar hasta que la instrucción de E/S termine.

Multiprogramación

 Cuando un trabajo necesite esperar una E/S, el procesador puede cambiar al otro trabajo.

(b) Mulitprogramación con dos programas

Multiprogramación

Figura 2.6. Historiograma de utilización.

Ejemplo

	ΓRABAJO1	TRABAJO2	TRABAJO3
Tipo de trabajo Cá	lculo intensivo	E/S intensiva	E/S intensiva
Duración	5 min.	15 min.	10 min.
Memoria exigida	50 K	100 K	80 K
¿Necesita disco?	No	No	Sí
¿Necesita terminal?	No	Sí	No
¿Necesita impresora	? No	No	Sí

Efectos de la multiprogramación

	Monoprogramación	Multiprogramación
Uso del procesador	22%	43%
Uso de la memoria	30%	67%
Uso del disco	33%	67%
Uso de la impresora	33%	67%
Tiempo transcurrido	30 min.	15 min.
Tasa de productividad	l 6 trabajos/hora	12 trabajos/hora
Tiempo medio de resp	ouesta 18 min.	10 min.

Tiempo compartido

- Utiliza la multiprogramación para gestionar varias tareas interactivas.
- El tiempo del procesador se comparte entre los diversos usuarios.
- Múltiples usuarios acceden simultáneamente al sistema por medio de terminales.

Multiprogramación por lotes frente a tiempo compartido

	Multiprogramación por lotes	Tiempo compartido
Objetivo principal	Maximizar la utilización del procesador	Minimizar tiempo de respuesta
Origen de las instrucciones al sistema operativo	Instrucciones de un lenguaje de control de trabajos incluidas en el trabajo	Órdenes dadas en el terminal

Figura 2.7. Operación CTSS.