1. (10 marks) **Distance**

If x_1 and x_2 are binary n-tuples, then $x_1 + x_2$ denotes the bitwise modulo 2 sum of x_1 and x_2 . For example, 000111 + 011011 = 011100.

(a) Let C be a binary [n, M]-code with distance d. Let $x \in \{0, 1\}^n$, and let $C + x = \{c + x : c \in C\}$. Prove that the distance of C + x is also d.

Proof. Suppose C is a binary [n, M]-code with distance d. That is, $C = \{c_1c_2 \cdots c_n : c_i \in \{0, 1\}, 1 \le i \le n\}$ where |C| = M. Observe that when adding x to each codeword, where $x \in \{0, 1\}^n$, each codeword will differ in the exact same index $i, \forall i \in \{1, \dots, n\}$ (that is, the indices where any two codewords were different before adding x, will still be different after adding x).

Suppose $d(C_1 = c_1c_2 \cdots c_n, C'_1 = c'_1c'_2 \cdots c'_n) = d$, and suppose that C_1 and C'_1 differ in index i = 1, (i.e. $c_1 \neq c'_1$).

Case 1

 $c_1 = 1$, $c'_1 = 0$, and $x_1 = 1$. We get that $c_1 + x_1 = 0$, and $c'_1 + x_1 = 1$. Thus, they still differ in the same index before and after being added by x (or x_1).

Case 2

 $c_1 = 1$, $c'_1 = 0$, and $x_1 = 0$. We get that $c_1 + x_1 = 1$, and $c'_1 + x_1 = 0$. Thus, they still differ in the same index before and after being added by x (or x_1).

Since $d(c_1, c_1') = d(c_1', c_1)$, we can easily swap c_1 with c_1' in each case above and the result will be the same. Also, we can do this for all M codewords to each index (i.e. $\binom{M}{2}$ comparisons for each pair of codewords, and $\binom{n}{2}$ extra comparisons with Case 1 and Case 2). Thus, d(C) = d(C+x) = d as the difference between any two codewords will be the exact same after adding x as the indices where the difference is obtained will be the same.

(b) Construct a binary [8, 4]-code with distance 5, or prove that no such code exists.

 $C = \{c_1 = 00000000, c_2 = 11111000, c_3 = 10101111, c_4 = 01010111\}.$

We have $\binom{M}{2} = \binom{4}{2} = 6$ comparisons.

- 1. $d(c_1, c_2) = 5$
- 2. $d(c_1, c_3) = 6$
- 3. $d(c_1, c_4) = 5$
- 4. $d(c_2, c_3) = 5$
- 5. $d(c_2, c_4) = 6$
- 6. $d(c_3, c_4) = 5$

Thus, we have constructed a binary [8, 4]-code with d(C) = 5.

(c) Construct a binary [7,3]-code with distance 5, or prove that no such code exists.

We will prove that no such code exists. Suppose $C = \{c_1, c_2, c_3\}$ where c_1, c_2, c_3 are all codes of length 7. Suppose that $d(C) \ge 5$ is attained by at least one pair of codewords, c_1 and c_3 . We try all possible cases.

Case 1
$$d(c_1, c_3) = 5$$

We know that c_1 and c_3 differ in five indices, and are the same in two indices. We immediately see that we can pick c_2 to be different in two indices (the same indices where c_1 and c_3 were the same). Now c_2 has five indices left to pick. If we were to pick c_2 to be different in three more indices when compared to c_1 (to get $d(c_1,c_2)=5\geq 5$), then we only have two more indices to select to be different when compared to c_3 (meaning we would get $d(c_2,c_3)=4<5 \implies d(C)=4\neq 5$). Thus, no such [7,3]-code where d(C)=5 can exist when $d(c_1,c_3)=5$.

Case 2
$$d(c_1, c_3) = 6$$

We know that c_1 and c_3 differ in six indices, and are the same in one index. We immediately see that we can pick c_2 to be different in one index (the same index where c_1 and c_3 were the same). Now c_2 has six indices left to pick. If we were to pick c_2 to be different in four more indices when compared to c_1 (to get $d(c_1,c_2)=5\geq 5$), then we only have two more indices to select to be different when compared to c_3 (meaning we would get $d(c_2,c_3)=3<5\implies d(C)=3\neq 5$). Thus, no such [7,3]-code where d(C)=5 can exist when $d(c_1,c_3)=6$.

Case 3
$$d(c_1, c_3) = 7$$

We know that c_1 and c_3 differ in seven indices. If we were to pick c_2 to be different in five indices when compared to c_1 (to get $d(c_1,c_2)=5\geq 5$), then we only have two more indices to select to be different when compared to c_3 (meaning we would get $d(c_2,c_3)=2<5 \implies d(C)=2\neq 5$). Thus, no such [7,3]-code where d(C)=5 can exist when $d(c_1,c_3)=7$.

Thus, no such [7,3]-code exists with d(C) = 5.