Vorlesung Kommunikationstechnik

Fernsehen

Harald Orlamünder

Inhalt

- Technische Parameter
- Verbreitungswege
- Digitales Fernsehen
- Schnittstellen
- Dienste
- IPTV
- Mobiles Fernsehen
- Ausblick

Bildformat – Betrachtungsabstand und Zeilenzahl

- Die Anzahl der Zeilen bestimmt die Auflösung und damit die Schärfe des Bildes
- Der empfohlene Betrachtungsabstand und die Zeilenzahl resultieren aus den Eigenschaften des Auges:
 - vertikaler Betrachtungswinkel ca. 14° →
 Abstand A = (h/2) / tan (α/2) = 4*h
 - Auflösungswinkel ca. 1,5' = 1/40° → Anzahl Zeilen α/β = 560

Bildformat – Flimmern

Früher gab es keine Bildspeicher – das Auge musste von Bild zu Bild **integrieren**.

25 Hz Bildwechselfrequenz erzeugt starkes Flimmern, daher wurde das **Zeilensprungverfahren** eingeführt.

Voraussetzung: ungerade Zeilenzahl, Rücksprung in Zeilenmitte.

Bildformat - Bildbreite

- In Deutschland gewählt: 625-Zeilen (nicht alle sichtbar!) Halbbildwechselfrequenz 50 Hz.
- Das analoge Fernsehen verwendet ein einheitliches Bildformat, das Format 4:3. Dieses Verhältnis wurde aus der Filmtechnik übernommen.
- Heute weiß man, dass ein Bildformat von 16:9 dem menschlichen Sehen wesentlich mehr entspricht.
- Mit den analogen Fernsehstandards D2-MAC, HDMAC und PALplus versuchte man diese Erkenntnis für das Analogfernsehen bereits umzusetzen.
- Der Durchbruch des 16:9-Breitbildformates gelang mit der digitalen Fernsehtechnik

Bildformat – Kompatibilität – 16:9-Bildschirm

- Betrachtung eines 4:3-Bildes auf einem 16:9-Bildschirm
 - in einer "Pillar-Box" (links und rechts schwarze Balken)

• 4:3-Bild gezoomt auf 16:9 (oben und unten gehen Inhalte verloren)

 Betrachtung eines 4:3-"Letterbox" Bildes auf einem 16:9-Bildschirm

Bildformat – Kompatibilität – 4:3-Bildschirm

- Betrachtung von 16:9-Bildern auf einem 4:3-Bildschirm
 - im "Letterbox"-Format (oben und unten schwarze Balken)

Center Cut-Out 16:9 zu 4:3 (links und rechts gehen Inhalte verloren)

Bildformat – Bildpunktzahl (Digital TV)

Was bedeutet High Definition (HD) ?

- Zum Vergleich: Filmproduktion (35mm)
 - 2k Negativ-Abtastung = 2048 x 1536 Bildpunkte (3,1 Mio.)
 - Widescreen 1:1,66 (Europa) = 1828 x 1102 Bildpunkte (2,0 Mio.)
 - Bildformat 1:1,85 (Amerika) = 1828 x 988 Bildpunkte (1,8 Mio.)

Visueller Eindruck – 4:3, 16:9 und HDTV

4:3

16:9

mehr Bildinhalt durch Breite entspricht eher unserem Sehen

HDTV

gleiche Bildgröße höhere Auflösung = Betrachtungsabstand verringern

größeres Bild mit mehr Details

größeres Bild mit mehr Bildinhalt = Ziel von HDTV!

HDTV – Grundlagen

- HDTV ist immer digital es gibt kein "analoges HDTV".
- HDTV ist immer 16:9 es gibt kein 4:3-HDTV
- Bei PCM-Codierung ergäben sich bei HDTV Bitraten im Bereich von 1 ... 1,5 Gbit/s, daher:
 - HDTV wird immer komprimiert codiert.
 - z.B. nach Kompression mit H.264/AVC ergeben sich ca. 10 – 15 Mbit/s (mit Potential nach unten)
 - Zum Vergleich typische SDTV-Datenrate:
 ca. 166 Mbit/s vor und ca. 3 5 Mbit/s nach Kompression (MPEG-2)

HDTV – Formate

- Heutige HDTV-Formate:
 - "720p":
 - 1280 x 720 sichtbare Bildpunkte,
 - Progressive Abtastung,
 - 50 Hz Vollbildfrequenz (720p/50)
 - "1080i":
 - 1920 x 1080 sichtbare Bildpunkte,
 - Zwischenzeilenverfahren (interlaced),
 - 25 Hz Vollbildfrequenz (1080i/25)
- Das Bildseitenverhältnis ist grundsätzlich 16:9 bei quadratischen Bildpunkten
- Die jetzt auf den Markt kommenden HDTV-Receiver und HDTV-Displays unterstützen 720p und 1080i gleichermaßen!

- Mittel bis Langfristig:
 - "1080p":
 - 1920*1080 sichtbare Bildpunkte,
 - Progressive Abtastung,
 - 50 Hz Vollbildfrequenz (1080p/50)

HDTV – Kennzeichnung / Zertifizierung

- Die EICTA (European Information, Communications and Consumer Electronics Industry Technology Association) hat zwei Label herausgebracht, die HDTV-fähige Displays und Receiver kennzeichnen sollen.
- Zur Verleihung der Label wird eine Selbstzertifizierung durchgeführt.

Analoges TV-Signal – BAS und FBAS

- Die Bildinformation soll über <u>eine</u> Schnittstelle übermittelt werden.
- Basis der analogen Fernsehbildübertragung ist das so genannte BAS-Signal, das aus dem
 - Bildsignal (B), dem
 - Austastsignal (A) und dem
 - Synchronsignal (S)

zusammengesetzt ist.

 Beim Farbfernsehen kommt als vierte Komponente die Farbe dazu – aus BAS wird FBAS.

Prinzipieller Aufbau des BAS-Signals (eine Zeile)

Bandbreiten und Kanalkapazität

CCIR-Standard	В	D	G	Н	I	K	K1	L	M	N
Zeilenzahl	625	625	625	625	625	625	625	625	525	625
Kanal-Bandbreite	7	8	8	8	8	8	8	8	6	6
Video-Bandbreite	5	6	5	5	5,5	6	6	6	4,2	4,2
Abstand Bild-Ton	+5,5	+6,5	+5,5	+5,5	+6	+6,5	+6,5	+6,5	+4,5	+4,5
Restseitenband	0,75	0,75	0,75	1,25	1,25	0,75	1,25	1,25	0,75	0,75
Bildmodulation	neg.	pos.	neg.	neg.						
Tonmodulation	FM	AM	FM	FM						

Inhalt

- Technische Parameter
- Verbreitungswege
- Digitales Fernsehen
- Schnittstellen
- Dienste
- IPTV
- Mobiles Fernsehen
- Ausblick

Verbreitungswege und Typen

Typ	analog	digital			
Тур	analog	SDTV	HDTV		
Terrestrisch (Funk)	Bild: AM (RSM) Ton: FM In Deutschland seit November 2008 abgeschaltet	DVB-T DVB-H, DMB für Mobilbetrieb	DVB-T2		
Kabel, HFC	Bild: AM (RSM) Ton: FM	DVB-C	DVB-C2		
Satellit	Bild: FM Ton: FM Seit April 2012 abgeschaltet	DVB-S	DVB-S2		
Breitband-Netz	-	IPTV (DVB-IPI)	IPTV (DVB-IPI)		

RSM = Restseitenbandmodulation SD = Standard Definition, HD = High Definition

Verbreitungswege in Deutschland

Inhalt

- Technische Parameter
- Verbreitungswege
- Digitales Fernsehen
- Schnittstellen
- Dienste
- IPTV
- Mobiles Fernsehen
- Ausblick

- PCM
- MPEG Codierung
- MPEG Transportstrom
- MPEG Service Information

Digitales Fernsehen – Puls Code Modulation (PCM) (1)

- Die Video-Bandbreite beträgt 5 MHz gemäß dem Abtast-Theorem wird dafür eine Abtastrate von 10 MHz benötigt.
- Um aber eine "Sicherheitsreserve" einzubauen und die Forderung an das Tiefpass-Filter zu reduzieren, hat man sich auf eine Abtastfrequenz von 13,5 MHz geeinigt.
- Um den Störungen innerhalb eines FBAS-Signals zu entgehen, werden immer Komponentensignale digitalisiert.
- Wie vorher schon erklärt, ist das Auge gegenüber der Farbinformation (Chrominanz) toleranter als gegenüber der Helligkeitsinformation (Luminanz).
- Daher werden die beiden Farb-Differenzsignale (U und V) meist mit dem halben oder viertel Wert der Luminanz-Abtastfrequenz abgetastet.

Digitales Fernsehen – Puls Code Modulation (PCM) (2)

- Die Auflösung wurde auf 8 Bit pro Komponente festgelegt.
- Daraus resultiert die Bitrate:

$$(13.5 + 13.5/2 + 13.5/2)$$
 MHz * 8 Bit = **216 Mbit/s**

- Im Studio wurden wegen der Bearbeitung und dort evtl. auftretender Quantisierungsfehler 10 Bit festgelegt.
- Daraus resultiert die Bitrate:

$$(13.5 + 13.5/2 + 13.5/2)$$
 MHz * 10 Bit = **270 Mbit/s**

DSC 270 Studiostandard

 Die (unkomprimierte) Übertragung des Digital-Videos erfordert eine höhere analoge Bandbreite als das Analog-Video!

Digitales Fernsehen – Puls Code Modulation (PCM) (3)

- Die 216 Mbit/s sind zu viel für eine Übertragung über Standard-Übertragungsleitungen – dort stehen max.
 139,264 Mbit/s (PDH) oder 149,760 Mbit/s (SDH) zur Verfügung.
- Die Lösung:
 - Reduzierung der Farb-Auflösung auf ein Viertel (13,5 + 13,5/4 + 13,5/4) MHz * 8 bit = 162 Mbit/s
 - Eliminierung der Horizontalen Austastlücke ("auspuffern") von 19% 162 (1-19%) Mbit/s = 131 Mbit/s
- Weitere Reduktionen k\u00f6nnen nur mit anderen Codierverfahren erreicht werden, z.B. Differentielle PCM (DPCM), Redundanz- und Irrelevanzreduktion, Pr\u00e4diktion, Transformations-Codierung.
- Daraus entwickelten sich die Standards :
 - JPEG (Joint Photographic Experts Group) → Standbilder
 - MPEG (Moving Pictures Experts Group) → Bewegtbilder

Bezeichung des "Samplings"

- Die Angabe zum Sampling lautete A:B:C mit
 - A = Abtastrate für die Helligkeit
 (Vielfache der Videobandbreite, üblich ist 4)
 - B = Abtastrate der beiden Farbauszüge (üblich ist 2 oder 1)
 - C = Räumliche Aufteilung der Farbauszüge (B oder 0)

Digital-TV – Quellcodierung – Standards

Standard	CCIR 601 NTSC	CCIR 601 PAL/SECAM	CIF	QCIF
Auflösung (Luminanz Y)	720 x 480	768 x 576	352 x 288	176 x 144
Auflösung (Chrominanz C)	360 x 480	384x 576	176x144	88 x 72
Chroma Sub-Sampling	4:2:2	4:2:2	4:2:0	4:2:0
Halbbilder	60	50	30	30
Zeilensprung	ja	ja	nein	nein
Datenrate (Mbit/s	167,6	165,9	36,5	9,1

Digital-TV – Digitale Codierverfahren für SDTV und HDTV

Interlaced Scanning Progressive Scanning VS

Inhalt

- Technische Parameter
- Verbreitungswege
- Digitales Fernsehen
- Schnittstellen
- Dienste
- IPTV
- Mobiles Fernsehen
- Ausblick

- PCM
- MPEG Codierung
- MPEG Transportstrom
- MPEG Service Information

MPEG - Grundlagen

- Die Moving Pictures Experts Group (MPEG) standardisiert seit vielen Jahren Codierverfahren für Videosignale.
 - MPEG behandelt Videokompression, Audiokompression, Containerformate usw. Sie umfasst ca. 350 Mitglieder
- Ziel der Codierung ist die Datenreduktion durch Redundanzund Irrelevanzreduktion sowie geeigneter Codiertechniken.
 - Diese Codierverfahren sind verlustbehaftet.
- Neben der reinen Codierung werden weitere Aspekte berücksichtigt wie:
 - Multiplexen von Audio, Video und zusätzlichen Informationen in einen Datenstrom.
 - Programmbegleitende Informationen

Digital-TV – Komprimierende Codierung – Standards

- Für die Quellcodierung von SDTV-Signalen hat sich weltweit das MPEG-2-Verfahren durchgesetzt.
- Prinzipiell ist MPEG-2 auch für HDTV-Signale geeignet, jedoch ist eine entsprechend höhere Datenrate erforderlich.
- Mit MPEG-4 steht ein wesentlich verbessertes Codierverfahren zur Verfügung, das es möglich macht, HDTV-Signale mit nur unwesentlich größerer Kanalbitrate als bei MPEG-2-SDTV zu übertragen.
- Drei nennenswerte Versionen von MPEG-4 wurden bis 2003 entwickelt.
 - MPEG-4 SP (Simple Protocol) für Videotelefonie u. Internetdienste
 - MPEG-4 ASP (Advanced Simple Protocol)
 - MPEG-4 AVC (Advanced Video Coding)
- Die MPEG Standards wurden in ISO and ITU-T Standards überführt
 - MPEG-2 \rightarrow ITU H.263
 - MPEG-4 AVC → ITU H.264 AVC

MPEG – Video Coding Standards

 Die Audio-Codierung MPEG-1 Layer 3 ist als MP3 bekannt!

- MPEG-2 (H.262) DTV (DVB), SDTV, HDTV, DVD (1994)
- MPEG-4 Interacive Video (1998)

MPEG-3 war für HDTV vorgesehen, ist nie erschienen

- MPEG-7

 Multimedia Content Description Interface (2001)
- MPEG-21
 Multimedia Framework (2002)
- MPEG-4 Part 10 (H.264)
 Advanced Video Coding (2003)
 High Profile, Transport im MPEG-2-TS (2004)
- MPEG-H (H.265)
 High Efficiency Video Coding (2012)

Effizienter als MPEG-4 Part 10

Für DVB und IPTV genutzt. Neue Systeme benutzen MPEG-4.

MPEG-Codierung – Datenreduktion

- Irrelevante Anteile:
 - Das Auge ist für Farb-Veränderungen weniger kritisch als für Helligkeits-Veränderungen
 - Das Auge kann schellen Farbwechseln nicht folgen.

damit kann die Farbinformation mit geringerer Bitrate codiert werden.

- Redundante Anteile:
 - Viele Teile des Bildes ändern sich von einem Teilbild des Films zum nächsten nicht. Das muss dann nicht übertragen werden.

relevant

(irrelevant)

redundant

nicht

redundant

relevant

Nachricht

für die

Informations-

Übertragung not-

weniger Anteil

 Bewegt sich ein Objekt, dann kann die weitere Bewegung abgeschätzt werden.

MPEG-Codierung – Datenreduktion durch DCT

- Aufteilung des Bildes in Helligkeits- und Farbinformation (genau. Farb-Differenzinformation).
- Aufteilen jedes Bildes in Blöcke der Größe 8x8 Pixel.
- Reduzieren der Daten durch eine Diskrete Cosinus-Transformation (DCT).
- Die DCT ergibt, je nach Inhalt des Blocks, viele Koeffizienten mit dem Wert "0". Daher Codieren des Ergebnisses der DCT mit einem Huffman-Code (Lauflängencodierung, Run Length Code – RLC).
- Die DCT kann über die inverse Funktion rückgängig gemacht werden, bis hierher ist die Codierung also verlustlos.
- Mit einem "Entropie-Coding" wird die Datenrate weiter reduziert, allerdings jetzt verlustbehaftet: Anteile mit "hoher Frequenz" werden unterdrückt.

MPEG-Codierung – Beispiel für eine DCT

Vor der DCT

223	191	159	128	98	72	39	16
223	191	159	128	98	72	39	16
223	191	159	128	98	72	39	16
223	191	159	128	98	72	39	16
223	191	159	128	98	72	39	16
223	191	159	128	98	72	39	16
223	191	159	128	98	72	39	16
223	191	159	128	98	72	39	16

Nach der DCT

43,8	-40	0	-4,1	0	-1,1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Wagerecht: zunehmender horizontale Frequenz

Senkrecht: zunehmende vertikale Frequenz.

MPEG-Codierung – Abarbeiten der Tabelle

Die Werte werden im Zik-Zak ausgelesen. Die "0"-Folgen werden nicht einzeln übertragen, sondern es wird angegeben, wie viele "0"-Werte folgen.

Nach 21 Werten folgen nur noch "0"

Schneidet man "hochfrequente" Anteile ab, lässt sich die Datenrate weiter reduzieren, allerdings ist das dann verlustbehaftet (führt zu reduzierter Schärfe)

MPEG-Codierung – Behandlung der Blöcke

- Durch Vergleich eines Teilbildes mit seinem Vorgänger kann erkannt werden, welche Teile des Bildes sich bewegen.
 - Der Block hat sich nicht geändert: → nichts übertragen

 Der Block ist zwar im folgenden Bild vorhanden, aber an einer anderen Stelle: → übermittle einen Bewegungsvektor.

Der Block ist vollkommen neu: → der neue Block wird übertragen.

 Damit lässt sich die Bitrate von Bild zu Bild drastisch reduzieren.

MPEG-Codierung – Frame-Typen

- Für die Übermittlung von Vollständigen Bildern und von Teilbildern (abgeschätzten) Bildern spezifiziert MPEG drei Frame-Typen:
 - Intra Frames (I-Frames) sie beinhalten die vollständige Bildinformation.
 - Predicted Frames (P-Frames)
 sind geschätzte Bilder bezogen auf vorherige I- oder P-Frames
 - Bi-directional Predicted Farmes (B-Frames)
 sind geschätzte Bilder bezogen auf vorherige und zukünftige I- oder P-Frames

MPEG-Codierung – Frame-Reihenfolge

 Der Coder entscheidet bei jedem Bild, ob er als n\u00e4chstes eine I-, Poder B-Codierung durchf\u00fchrt.

P

- Aber alle ca. 12 Frames wird ein I-Frame gesendet. (Nur mit einem I-Frame kann ein Bild aufgebaut werden!)
- Der Abstand der I-Frames wird Group of Pictures (GOP) genannt.
- Da die B-Frames bidirektional arbeiten, müssen die Frames auf die sich der B-Frame bezieht, vorher angekommen sein.
 - Daher ist die Reihenfolge der Sendung unterschiedlich zu der Reihenfolge der Präsentation.
 - Zusätzlich muss jedem Frame Zeitstempel mitgegeben werden. Dazu gibt es den Decoding Time Stamp (DTS) und den Presentation Time Stamp (PTS).

MPEG-4 Part 10 – Änderungen gegenüber MPEG-2

- Neue Verfahren für die Entropie-Codierung:
 - CAVLC (Context-based Adaptive Variable Lenght Coding)
 - CABAC (Context-based Adaptive Binary Arithmetic Coding)
- Die Reihenfolge der Macroblocks muss nicht mehr der Abtastreihenfolge entsprechen:
 - FMO (Flexible Macroblock Order)
 - ASO (Arbitraty Slice Order)
 - RS (Reduandant Slice)
- Einführung eines Wichtungs-Faktors für die P- und B-Frames
 - Weighted prediction
- Zwei Schichten
 - VCL (Video Coding Layer)
 - NAL (Network Abstraction Layer)

MPEG-H (H.265) – Änderungen gegenüber MPEG-4

- Variable Blockgrößen
- Größere Blöcke möglich
- Su-Partitioning von Blcken
- Partitionen enthalten
 - Prediciton Units (PU)
 - Transform Units (TU)
- Bis zu 50% Bandbreitenersparnis
- In Zukunft:
 - Scalable Video Coding

Derzeitige Profile:

- Main-Profile mit 8 Bit, 4:2:0
- Main-10-Profile mit 10 Bit
- Main Still Picture Profile

Zukünftige Profile:

- 12 Bit
- 4:2:2
- 4:4:4

Inhalt

- Technische Parameter
- Verbreitungswege
- Digitales Fernsehen
- Schnittstellen
- Dienste
- IPTV
- Mobiles Fernsehen
- Ausblick

- PCM
- MPEG Codierung
- MPEG Transportstrom
- MPEG Service Information

MPEG-Multiplexing

MPEG-Multiplexing – Programm & Transport-Multiplex

- Program Stream: Pakete variabler Länge, gut geeignet für fehlerfreien Kanal, gemeinsame Zeitbasis, z.B. zur Aufzeichnung auf Festplatte
- Transport Stream: Paket fester Länge (188 Byte), angepasst an fehleranfälligen Kanal, unabhängige Zeitbasen möglich – wird bei DVB verwendet

MPEG-Multiplexing – SPTS und MPTS

 Ein MPEG Transport Stream (TS) kann die Informationen (Video, Audio, Daten) eines Programms tragen:

Single Programme Transport Stream (SPTS)

oder die Informationen für mehrere Programme:

Multiple Programme Transport Stream (MPTS)

Bei MPTS beziehen sich dann die Programme Specific Information (PSI) und die Service Information (SI) auf alle Programme innerhalb des MPTS.

- MPTS ist die Form, die DVB normalerweise verwendet (Ausstrahlung über Satellit, Kabel und terrestrischem Funk).
- SPTS ist die Form, die im IPTV verwendet wird.

MPEG-Multiplexing – MPEG MPTS

MPEG-Multiplexing – MPEG SPTS

MPEG-Multiplexing – Transport-Multiplex

- Multiplexverfahren (vergleichbar zu ATM):
 - Paket fester Länge
 - Kein starres Multiplexschema
 - Einzelne PES werden auf der Multiplexebene nicht synchronisiert
 - Lücken werden mit "Leer-Paketen" aufgefüllt (PID=0x1FFF)
- Der Name "Transport"-Strom wurde gewählt, da er Eingang der "OSI Transport-Layer" ist.

MPEG-Multiplexing – PES und Fragmentierung

MPEG PES Datenpaket (Packetized Elementary Stream)

MPEG-Multiplexing – TS-Datenpaket

MPEG-Multiplexing – MPEG TS über IP und Ethernet

Sieben MPEG Transport Stream Pakete werden in ein IP-Paket gepackt. Damit bleibt der Ethernet-Rahmen unterhalb der 1500-Oktett-Grenze und es findet keine IP-Fragmentierung statt.

Inhalt

- Technische Parameter
- Verbreitungswege
- Digitales Fernsehen
- Schnittstellen
- Dienste
- IPTV
- Mobiles Fernsehen
- Ausblick

- PCM
- MPEG Codierung
- MPEG Transportstrom
- MPEG Service Information

MPEG-Multiplexing – Kanal bzw. Bouquet

Program Specific Information (PSI)

Program Association Table (PAT)

- Liste aller Programme im MPEG TS
- Verweise auf die PIDs der zu den Programmen gehörenden PMTs

Program Map Table (PMT)

- Liste der PIDs der Einzelströme in TS (Video, Audio)
- evtl. Copyright- bzw. Verschlüsselungs-Information

Conditional Access Table (CAT)

Informationen f
ür den Conditional Access ("Private Daten")

Notwendig zur Entschlüsselung

Notwendig zur

Programme

Decodierung der

Network Information Table (NIT)

 Listet Parameter der unterliegenden Netze (z.B. Transpondernummer, Modulation, Orbitposition, ...).
 Beim Transport über IP irrelevant! Notwendig für den Empfänger zur Abstimmung

Service Information (SI)

- Service Decription Table (SDT)
 - Informationen zu den einzelnen Programmen (z.B. Anbieter)
 - Hinweise zu den Anbeitern (z.B. Sendeanstalten)
- Event Information Table (EIT)
 - Informationen (Startzeit, Endezeit, Beschreibung, Klassifizierung) für jedes Programm in einer eigenen Untertabelle:
 - Informationen zur laufenden Sendung ("present")
 - Informationen zu zukünftigen Sendungen ("follows" und "schedule")
- Bouquet Association Table (BAT)
 - Informationen über Kanal/Bouquet (eigenes und andere) eines Anbeiters
- Running Status Table (RST)
 - Zeigte den Status (z.B. "Programm läuft", "Programm beginnt in Kürze")
- Time and Date Table (TDT)
 - augenblickliche Uhrzeit und Datum
- Time Offset Table (TOT)
 - Differenz zwischen der Lokalzeit und UTC

DVB-PSI/SI-Tabellen

MPEG2-TS – Verlinkung der Tabellen

Nur SPTS gezeigt (ein Programm per Transport Stream). In MPTS hat die PAT für jedes Programm einen eigenen Eintrag (mehrere PMTs)

Event Information Table (EIT) - Inhalt & Format

- Startzeit der Sendung
- Dauer der Sendung
- Laufender Status
- Deskriptoren
 - Titel
 - Inhaltsbeschreibung
 - Genre
 - Mindestalter

PID = 0x12

Event Information Table (EIT) - Typen

Event-Informationen für ein Programm in chronologischer Folge

EIT: PID = 12 _{Hex} (nur die genannten Table-IDs können in EIT auftreten)	Event-Information für die aktuelle und die nachfolgende Sendung. (present/follow)	Event-Zeitplan Vorschau für ein Programm über einen oder mehrere Tage (schedule)
Bezieht sich auf das laufende Programm	Table-ID = 4E _{Hex} alle 2 sec.	Table-IDs = 505F _{Hex} alle 10 sec.
Bezieht sich auf andere Programme desselben Anbeiters Notwendig, wenn ein Anbieter seine Programme auf mehrere Kanäle verteilt hat	Table-ID = 4F _{Hex} alle 10 sec.	Table-IDs = 606F _{Hex} alle 10 sec.
	Für eine schnelle Information, wenig Daten, häufig gesendet	Für eine ausführliche Information, viel Daten, selten gesendet

Minimale Wiederholraten für Aussendung der Tabellen.

Event Information Table (EIT) - Tabellenaufbau

table_id				
section_syntax_indicator				
reserved_future_use				
reserved				
section_length				
service_id				
reserved				
version_number				
current_next_indicator				
section_number				
last_section_number				
transport_stream_id				
original_network_id				
segment_last_section_number				
last_table_id				
Events				
CRC_32				

Der Running Status gibt Informationen über den Status des gerade laufenden oder gleiche beginnenden Dienstes.

Wert	Bedeutung	
0	undefined	gilt auch für nVOD
1	not running	
2	starts in a few seconds	benutzt um den VCR zu starten
3	pausing	
4	running	
57	reserved	

Event Information Table (EIT) - Descriptoren

Aus der Gesamtzahl der bei bei DVB spezifizierten "Descriptoren" können die nebenstehenden in EITs auftreten.

Tag (Hex)	Bedeutung
0x42	stuffing_descriptor
0x4A	linkage_descriptor
0x4D	short_event_descriptor
0x4E	extended_event_descriptor
0x4F	time_shifted_event_descriptor
0x50	component_descriptor
0x53	CA_identifier_descriptor
0x54	content_descriptor
0x5	parental_rating_descriptor
0x57	telephone_descriptor
0x5E	multilingual_component_descriptor
0x5F	private_data_specific_descriptor
0x60	PDC_descriptor
0x61	short_smoothing_buffer_descriptor
0x64	data_broadcast_descriptor

Der "Parental Rating Descriptor" (PRC) beschreibt für jedes Land (oder eine Gruppe von Ländern) welches das minimale Alter ist, um dieses Programm anzusehen.

Tag (Hex)	Bedeutung		
1 Byte (0x55)	Descriptor Tag für "parental rating"		<u> </u>
1 Byte	Länge des Descriptors		
3 Bytes	Länderkennungen (Country Codes)		
	XXX	3 Buchstaben (ISO 3166)	
	900-999	Ländergruppe (ETR 162)	Für jedes Land
1 Byte	Beschränkungen		in der Tabelle.
	0	undefiniert	
	1-15	Minimales Alter +3	
	15-255	Vom Programmanbeiter def.	J
3 Bytes	Länderkennungen (Country Codes)]
1 Byte	Beschränkungen		

Digital Video Broadcast (DVB)

- Neben der reinen Videocodierung und Audiocoderung sind weitere Informationen zu übermitteln (Format-Informationen, Programm-Informationen, Videotext, usw.)
- Die verschiedenen Verbreitungswege benötigen Anpassungen (Terrestrisch, Kabel, Satellit).
- Immer wichtiger werden Rückkanäle (sowohl für interaktives Fernsehen als auch letztendlich für das Internet).
- Das "Digital Video Broadcast" Projekt (DVB) der EBU hat die notwenigen Spezifikationen erstellt.
- Die Dokumente werden von ETSI herausgegeben.

EBU European Broadcasting Union

ETSI European Telecommunication Standardization Institute

Digitalempfang im deutschsprachigen Raum

Basis: 33,904 / 33,904 / 36,981 / 37,277 / 37,412 / 37,464 / 37,668 / 37,977 Mio. TV-Haushalte in Deutschland

Inhalt

- Technische Parameter
- Verbreitungswege
- Digitales Fernsehen
- Schnittstellen
- Dienste
- IPTV
- Mobiles Fernsehen
- Ausblick

Video Schnittstellen

Analoge Schnittstellen:

- FBAS (Farb-Bild-Austast-Synchron)
 (englisch: CCVS für Color Component Video Signal)
- Komponenten (Y, Cr, Cb) daher drei Kabel benötigt!

Digitale Schnittstellen:

- SDI (Serial Digital Interface): PCM-codiertes, unkomprimiertes
 Video und Audio im Zeitmultiplex, 270 Mbit/s (früher: CCIR 601)
- SDTI (Serial Digital Transport Interface): Wie SDI aber komprimierte Komponenten und zusätzlich Metadaten, brutto 270 Mbit/s
- ASI (Asynchronous Serial Interface): für komprimiertes Video, brutto 270 Mbit/s

Digitalschnittstellen auf der Consumer-Seite

- DVI (Digital Visual Interface)
 - Nur Video, vermeidet zweimalige Wandlung (D/A in STB und A/D im Endgerät. Zwei Unterarten:
 - DVI-D: ausschließlicher Transfer digitaler Bildsignale
 - DVI-I: zusätzliche Übertragung von analogen Bildsignalen (das "I" steht für "integriert")
- HDMI (High Definition Multimedia Interface)
 - Wie DVI aber zusätzlich digitales Audio. Bidirektional.

HDCP (High Bandwidth Digital Content Protection)

- HDCP ist ein von Intel entwickelter Mechanismus, um Daten auf der digitalen Schnittstelle (DVI bzw. HDMI) zu schützen.
- Mit HDCP soll das Abgreifen des Video- und Audioinhalte innerhalb der Verbindung zwischen Sender und Empfänger verhindert werden.

DVI Steckverbinder an einer STB

DVI-HDMI-Adapter-Kabel

Inhalt

- Technische Parameter
- Verbreitungswege
- Digitales Fernsehen
- Schnittstellen
- Dienste
- IPTV
- Mobiles Fernsehen
- Ausblick

Auswirkungen der Digitalisierung auf die Dienste

Die Digitalisierung hat dem Fernsehen zu einer Vielfalt an Diensten verholfen:

- Mehr Programme, damit auch Spartenkanäle, ausländische Programme, usw.
- Intelligente Endgeräte, Zusatzfunktionen
- Interaktives Fernsehen
- Mobiles Fernsehen
- Qualitätsverbesserungen, HDTV
- Mehrkanal-Ton
- Neue Verbreitungswege (xDSL, UMTS, langfristig Glasfaser)

Digitalisierung

- Mitte der neunziger Jahre wurden die ersten digitalen Fernsehprogramme ausgestrahlt.
- Darauf folgte eine Explosion der Programmvielfalt. Ähnlich wie bei Zeitschriften deckt das Spektrum inzwischen viele spezielle Themen ab.
- Stand Dezember 2008 am Beispiel ASTRA 19,2° Ost:
 - Analoge Fernsehprogramme: 41
 - Digitale Fernsehprogramme: 336
 - Digitale Radioprogramme: 194

(Alle Sprachen, Free- und Pay-Services)

Quelle: www.ses-astra.com

Intelligente Endgeräte

Festplattenreceiver, Personal Video Recorder (PVR)

- Einsatzgebiete eines Festplattenreceivers:
 - Aufnehmen und Wiedergeben ("Videorekorder")
 - Zeitversetztes Fernsehen ("Time Shift")
 - Anhalten und Fortsetzen des laufenden Programms
 - Überspringen der Werbung!

Intelligente Endgeräte

- Werbefinanziertes Fernsehen geht in der Bedeutung zurück:
- (1) die aktuelle Werbekrise,
 - (2) neue disruptive Technologien, die das Überspringen der klassischen Unterbrecherwerbung ermöglichen, und
 - (3) die Vervielfältigung der Kanäle stellen das heutige Geschäftsmodell rein werbefinanzierter TV-Sender in Frage. ...
- Lediglich Blockbuster-Inhalte und stark profilierte Nischensender können ihre Werbeattraktivität konservieren..."

Quelle: MERCER Management Consulting

Interaktives Fernsehen – Allgemeines

- Immer häufiger kommen zum Konsum des Fernsehprogramms auch kommunikative Anteile hinzu.
- Beispiele für Sendungen mit interaktiven Anteil:

 Wichtig: Interaktives Fernsehen (iTV) bietet auch neue Einnahmequellen, nicht nur bei Shopping-Sendern....

Interaktives Fernsehen – Technik

- Voraussetzung für interaktive Dienste:
- Ein Rückkanal (Interaktions-Kanal), der entweder
 - physikalisch mit dem Vorwärtskanal integriert ist (z.B. xDSL, rückkanalfähig ausgebautes BK-Netz)
 - oder mit einem separaten Netz realisiert wird (z.B. separater Internetanschluss, Mobilfunkkanal, SMS)

Interaktives Fernsehen – MHP – Technik

 Interaktives Fernsehen basierend auf der Multimedia Home Platform (MHP) nach ETSI TS 102 812

Haushaltsausstattung "Connected TV"

Im HH vorhanden

Basis: 37,977 TV-HH in Deutschland

Inhalt

- Technische Parameter
- Verbreitungswege
- Digitales Fernsehen
- Schnittstellen
- Dienste
- IPTV
- Mobiles Fernsehen
- Ausblick

- Einleitung
- IPTV-Dienste
- IPTV-System

IPTV – Ziele und Herausforderungen

- Angebot von klassischem Fernsehen über eine IP-Infrastruktur.
- Der Nutzer will seine gewohnten Fernseh-Dienste in gewohnter Qualität sehen:
 - Zusatzdienste sollen vorhanden sein.
 (Videotext, Untertitel, Mehrsprachigkeit, ...)
 - Eine schnelle Kanalumschaltung ("zapping") wird erwartet (bei Triple Play wird das evtl. zur Zentrale signalisiert).
 - Die **Bildqualität** muss der heutigen entsprechen (keine Aussetzer, Artefakte usw.).
 - Die Verfügbarkeit muss der heutigen entsprechen (kein "Besetzt"-Fall oder Wartezeiten bei Überlast).
- Aber auch: Erweiterung der Dienstepalette um weitere Videobezogenen Dienste (z.B. Abrufdienste).

IPTV – Was wird benötigt?

- Breitbandiger Teilnehmerzugang:
 - ADSL, VDSL, FTTx, Cable, WiMax?
- Hochkomprimierende Video-Codierung:
 - MPEG
- Unterstützung für programm-begleitende Daten:
 - DVB Service Information (SI)
- Video-Transport über IP:
 - Via UDP und (optional) RTP
 - Via HTTP
- Multicast-Unterstützung für Fernsehsignale:
 - IGMP und Multicast-Routing-Protokolle
- Aufgrund der hohen Qualitätsanforderungen:
 - Mess- und Überwachungsverfahren!

DVB-IPI – Protocol Stack

IPTV in Deutschland

Weltweit: 51 MIO Kunden (E2011)

156 MIO Kunden (E2017 erwartet)

3,8 MIO Neukunden (1Q2012)

Deutschland:

Anbieter	Deutsche Telekom	Telefonica (ex hansenet, Alice)	Vodafone (ex Arcor)
Produktname	Entertain	Alice TV	Vodafone TV
Anzahl Kunden	1,8 MIO	20 000 ?	?
Filme im Angebot	10 000	2 000	3 000

Ab 4/2012 für Neukunden eingestellt!

Inhalt

- Technische Parameter
- Verbreitungswege
- Digitales Fernsehen
- Schnittstellen
- Dienste
- IPTV
- Mobiles Fernsehen
- Ausblick

- Einleitung
- IPTV-Dienste
- IPTV-System

Konvergenz

IPTV-Dienste - "Content Services"

- Fernsehen (Live TV)
- Radio (Audio)
- Filmabruf (Video on Demand)
 - "echtes" Video on Demand (VoD)
 - Near Video on Demand (nVoD)
- Radio auf Abruf (Audio on Demand)
- Zeitversetztes Fernsehen (Time-Shift TV)
 - Pause
 - Restart Show
 - Just Missed
- Fernsehen mit Steuerung durch den Nutzer (Trick Mode)
- Persönlicher Videorekorder (PVR)
 - Netzbasierter PVR (nPVR)
 - Lokaler PVR (client-basiert, cPVR)

Pause

Restart Show und Just Missed

Vorzüge des Internet-Fernsehens

Fernsehen — **85**

Quelle: BITKOM Info-Grafik, GfK Consumer Tracking,

Inhalt

- Technische Parameter
- Verbreitungswege
- Digitales Fernsehen
- Schnittstellen
- Dienste
- IPTV
- Mobiles Fernsehen
- Ausblick

- Einleitung
- IPTV-Dienste
- IPTV-System

IPTV-Rollenmodell (ITU-T)

IPTV Functional Architecture Framework (ITU-T)

Functional Architecture for IPTV – Non-NGN (ITU-PACKUP)

IPTV-Konfiguration

IPTV - Head-End

IPTV – Set Top Box (STB)

Zusatzgerät, das die Signale für den Fernseher aufbereitet

- Eingang: Ethernet-Schnittstelle vom Netz (Anschluß an IAD).
- Ausgang: SCART- oder HDMI-Schnittstelle zum Fernseher.
- Bedienung: Infrarot-Fernbedienung und On-Screen-Menüs.

Architektur:

MPEG- Decoder für Video

Browser zur
Darstellung von
weiteren Inhalten
und Menüs (HTML,
XML, JavaScript).

Client-SW als Pedant zur zentralen IPTV-Steuerung ("IPTV-Middleware")

Betriebssytem (z.B. WindowsCE, Linux, ..)

Hardware

IPTV - Netzstruktur (DSL) - Beispiel

IPTV - "Dual Homing" (DSL) - Beispiel

IPTV – getrennte Wege (DSL) – Beispiel

IPTV – lokaler Videoserver (DSL) – Beispiel

Überlegungen zum Bandbreitenmanagement

Qualität: Lösung des Paketverlustes

- Mögliche Mechanismen, zur Korrektur von Paktverlusten :
 - Retransmission (Paket-Wiederholung)
 - Forward Error Correction (FEC)
- Retransmission erfordert:
 - Einen Rückkanal um den Paketverlust anzuzeigen und
 - Einen Punkt-zu-Punkt Kanal in Vorwärtsrichtung für die Übertragung der wiederholten Pakete

Beide Leistungsmerkmale sind in einer reinen Broadcast-Umgebung nicht vorhanden.

- Falls eine Übertragungsstrecke komplett ausfällt, gibt es verschiedene Verfahren zur :
 - Physical Layer Link Protection (reagiert in 50 ms)
 - IP Layer Protection Mechanism, z.B. MPLS Fast Reroute (einige 100 ms)
 - IP Layer Routing Mechanism (Sekunden bis zur halben Minute)

Inhalt

- Technische Parameter
- Verbreitungswege
- Digitales Fernsehen
- Schnittstellen
- Dienste
- IPTV
- Mobiles Fernsehen
- Ausblick

Mobiles Fernsehen - Alternativen

DVB-H (H für Handheld)

Kompatible Erweiterung von DVB-T – Geringe Bedeutung

Digital Multimedia Broadcasting (DMB; ETSI TS 102 428)

 Erweiterung von Digital Audio Broadcasting (DAB; ETSI EN 300 401) zur Übertragung von Videodatenströmen basierend auf H.264/AVC

UMTS/LTE

- Von der Art des Übertragungsverfahrens ist der Mobilfunk weniger geeignet (Punkt-zu-Punkt-Verbindungen).
- Mit ausreichend Kapazität im Netz ist das aber machbar.
- Mit LTE wird es attraktiv.

Inhalt

- Technische Parameter
- Verbreitungswege
- Digitales Fernsehen
- Schnittstellen
- Dienste
- IPTV
- Mobiles Fernsehen
- Ausblick

Zusammenfassung

- Digitalisierung der Fernsehtechnik ist Realität
- Highend-Fernsehen mit HDTV und Mehrkanalton
- Interaktives Fernsehen
- Mobiles Fernsehen
- Intelligente Endgeräte (z.B. Festplatten-Receiver)
- Mit IPTV dringen die IP- und Ethernet-Technologien in den letzten Bereich der Kommunikationslandschaft ein.
- IPTV gibt es heute fast nur von Telekommunikations-Anbietern. Es ist zu erwarten, dass auch die Kabel-Branche in das Thema einsteigt.
- IP revolutioniert die Dienste-Vielfalt
- Spezialfall Deutschland:
 - Öffentlich rechtlicher Rundfunk vs Privater Rundfunk vs Netzbetreiber
 - Unübersichtliche Lage bei der Digitalisierung im Kabel

ENDE

Vielen Dank für Ihre Aufmerksamkeit!

Dipl.-Ing. Harald Orlamünder harald.orlamuender@t-online.de