DYSCO course on low-rank approximation and its applications

Generalized total least squares

Ivan Markovsky

Vrije Universiteit Brussel

Outline

Statistical properties of TLS

errors-in-variables (EIV) model

$$A = \overline{A} + \widetilde{A}$$
 and $y = \overline{y} + \widetilde{y}$

- ▶ true values \overline{A} , \overline{y} satisfy $\overline{A}\overline{x} = \overline{y}$, for some $\overline{x} \in \mathbb{R}^n$
- **perturbations** \widetilde{A} , \widetilde{y} are zero mean element-wise i.i.d.
- under additional mild assumptions the TLS approx. solution \hat{x} is a consistent estimator of the true value \bar{x}
- measurement errors model
 - A, y measured data
 - \overline{x} / \widehat{x} true/estimated model parameters

Estimation error $e = \overline{X} - \hat{X}$

Notes

- TLS problem vs EIV model
 - TLS approx. can be used without EIV model
 - EIV model shows the correct testbed TLS approx.
- distinguish
 - corrections ΔA , Δy in the TLS problem, and
 - ▶ noise/perturbations \widetilde{A} , \widetilde{y} in the EIV model

Confidence bounds

- ▶ assume that \widetilde{A} , \widetilde{y} are i.i.d. normal with variance ξ^2
- ► the estimation error is *e* asymptorically normal \rightsquigarrow confidence bounds for \widehat{x}
- ▶ the asymptotic error $e := \overline{x} \hat{x}$ covariance matrix is

$$V_e = \xi^2 (1 + \widehat{x}\widehat{x}^{\top})(A^{\top}A - m\sigma^2I)^{-1}$$

• the noise variance ξ^2 can be estimated from the data

$$\widehat{\xi} = \frac{1}{m}\sigma_n^2$$

95% confidence ellipsoid

Outline

Weighted total least squares problem

replace the Frobenius norm by the weighted 2-norm

$$||D||_W := \sqrt{\operatorname{vec}^\top(D) W \operatorname{vec}(D)}$$

- $W = \text{inverse noise } (\text{vec}([\widetilde{A} \ \widetilde{y}])) \text{ covariance matrix}$
- WTLS doesn't have analytic solution
- special cases → structure of W
 - column/row-wise weighting
 - element-wise weighting
 - generalized TLS
 - restricted TLS

Hierarchy of WTLS problems

- 1. fully weighted $W \ge 0$
- 2. column-wise weighted

$$W = \operatorname{diag}(W_1, \dots, W_m), \quad W_i \in \mathbb{R}_+^{(n+1)\times(n+1)}$$

3. element-wise weighted

$$W = \operatorname{diag}(w), \quad w \in \mathbb{R}^{m(n+1)}_+$$

- 4. column-wise GTLS: case 2, with W_i's equal
- 5. column-wise scaled: case 3, with W_i diagonal

Relative error TLS

consider the element-wise weighted case

$$\|D\|_{\it w}=\|D\|_{\Sigma}:=\|\Sigma\odot D\|_{\sf F}$$
 (\odot — element-wise product)

▶ $\Sigma_{ij} = 1/d_{ij} \sim$ approximation in relative error sense

$$e_{ij} = \frac{d_{ij} - \widehat{d}_{ij}}{d_{ij}}$$

GTLS problem

TLS approximation with criterion

$$\| \textbf{\textit{D}} \|_{\Sigma_{I},\Sigma_{r}} := \| \Sigma_{I} \textbf{\textit{D}} \Sigma_{r} \|_{F}$$

link to WTLS

$$\begin{split} \|\Sigma_{l}(D-\widehat{D})\Sigma_{r}\|_{\text{F}}^{2} &= \big\|\operatorname{vec}(\Sigma_{l}(D-\widehat{D})\Sigma_{r})\big\|^{2} \\ &= \big\|(\Sigma_{r}\otimes\Sigma_{l})\operatorname{vec}(D-\widehat{D})\big\|^{2} \\ &= \operatorname{vec}^{\top}(D-\widehat{D})\big(\textit{W}_{r}\otimes\textit{W}_{l}\big)\operatorname{vec}(D-\widehat{D}) \end{split}$$
 where $\sqrt{\textit{W}_{r}} = \Sigma_{r}$ and $\sqrt{\textit{W}_{l}} = \Sigma_{l}$

▶ WTLS problem with weight matrix $W = W_r \otimes W_l$

Element-wise GTLS

element-wise weighted total least squares

$$||D||_{W} = ||D||_{\Sigma} := ||\Sigma \odot D||_{\mathsf{F}}$$

element-wise generalized total least squares

$$W_r = diag(w_r)$$
 and $W_l = diag(w_l)$

 $ightharpoonup \sim \text{rank-1 matrix } \Sigma = w_1 w_r^{\top}$

GTLS solution

- $\sqrt{W_r} = \Sigma_r$, w.l.o.g. we can choose Σ_r upper triangular, e.g., the Cholesky factor of W_r
- modified data matrix: D_m := Σ_IDΣ_r
- ► TLS approximation of D_m : $\widehat{D}_{m,tls}$ and $\widehat{x}_{m,tls}$
- $\blacktriangleright \text{ partition } \Sigma_r \text{ as } \begin{bmatrix} \Sigma_{r,11} & \Sigma_{r,12} \\ 0 & \Sigma_{r,22} \end{bmatrix} \text{, with } \Sigma_{r,11} \in \mathbb{R}^{n \times n}$
- GTLS solution

$$\widehat{x}_{\text{gtls}} = \frac{\sum_{r,11} \widehat{x}_{\text{tls}} - \sum_{r,11}}{\sum_{r,22}}, \quad \widehat{D}_{\text{gtls}} = \left(\Sigma_{\text{I}}\right)^{-1} \widehat{D}_{\text{m,tls}} \left(\Sigma_{\text{r}}\right)^{-1}$$

Singular weight matrix

consider the element-wise weighted case

$$||D||_{W} = ||D||_{\Sigma} := ||\Sigma \odot D||_{\mathsf{F}}$$

- Σ is a matrix of element-wise nonnegative weights
- $\sigma_{ij} = 0 \implies$ the solution doesn't depend on d_{ij}
- zero weights allow us to consider missing data

Restricted total least squares problem

▶ impose structured correction △D

minimize
$$\|E\|_{\mathsf{F}}$$

subject to $(A+\Delta y)x=y+\Delta y$
and $[\Delta A \ \Delta y]=LER$

link to WTLS: RTLS is a GTLS problem with

$$W_{l} = (LL^{\top})^{+}$$
 and $W_{r} = (RR^{\top})^{+}$

 (A^+) is the pseudo-inverse of A)

Outline

Structured total least squares

•

T. Abatzoglou, J. Mendel, and G. Harada. The constrained total least squares technique and its application to harmonic superresolution. *IEEE Trans. Signal Proc.*, 39:1070–1087, 1991

minimize over
$$x$$
, ΔA , $\Delta y \parallel [\Delta A \Delta y] \parallel_{\mathsf{F}}$ subject to $(A + \Delta A)x = y + \Delta y$ and $[\Delta A \Delta y]$ has the same structure as $[A \ y]$

- types of structure
 - linear: Hankel/Toeplitz, Sylvester
 - nonlinear: Vandermonde
- link to structured low-rank approximation

Link to structured low-rank approximation

STLS is equivalent to structured low-rank approx.

minimize over
$$\Delta D \|\Delta D\|_{\mathsf{F}}$$
 subject to $\operatorname{rank}(D + \Delta D) \leq r$ and ΔD has the same structure as D

with
$$D:=ig[A \ yig], \ r=n,$$
 and $e_{n+1}
ot\in \ker(\widehat{D})$ $(*)$

- generically, the condition (??) is satisfied
- ▶ in nongeneric cases, the STLS solution does not exist

History of the problem

- Errors-in-variables system identification M. Aoki and P. Yue. On a priori error estimates of some identification methods. *IEEE Trans. Automat. Control*, 15(5):541–548, 1970
- Sum-of-exponetials estimation
 - Y. Bresler and A. Macovski. Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. *IEEE Trans. Acust., Speech, Signal Proc.*, 34:1081–1089, 1986
 - J. Cadzow. Signal enhancement—A composite property mapping algorithm. *IEEE Trans. Signal Proc.*, 36:49–62, 1988

- Rimmanian SVD algorithm
 - B. De Moor. Structured total least squares and L_2 approximation problems. *Linear Algebra Appl.*, 188–189:163–207, 1993
- Structured total least norm algorithm
 - J. Rosen, H. Park, and J. Glick. Total least norm formulation and solution of structured problems. *SIAM J. Matrix Anal. Appl.*, 17:110–126, 1996
- Variable projection algorithm
 - I. Markovsky, S. Van Huffel, and R. Pintelon. Block-Toeplitz/Hankel structured total least squares. *SIAM J. Matrix Anal. Appl.*, 26(4):1083–1099, 2005