### PCT

(30) Données relatives à la priorité: 98/08094 25 juin

### ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international



### DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

| (51) Classification internationale des brevets <sup>6</sup> C07K 14/00 |               | 42     | (11) Numéro de publication internationale:<br>(43) Date de publication internationale:29 déce | WO 99/67282<br>embre 1999 (29.12.99) |
|------------------------------------------------------------------------|---------------|--------|-----------------------------------------------------------------------------------------------|--------------------------------------|
| (21) Numéro de la demande internationale:                              | PCT/FR99/     | /0149: | 5 (81) Etats désignés: AE, AL, AM, AT, AU, A<br>BY, CA, CH, CN, CU, CZ, DE, DK,               |                                      |
| (22) Date de dépôt international: 22 jui                               | in 1999 (22.0 | 06.99  |                                                                                               |                                      |

FR

(71) Déposant (pour tous les Etats désignés sauf US): CENTRE NA-TIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)

25 juin 1998 (25.06.98)

[FR/FR]; 3, rue Michel Ange, F-75794 Paris Cedex 16 (FR).

(72) Inventeurs; et

- (75) Inventeurs/Déposants (US seulement): CLEMENT, Jean-Luc [FR/FR]; 550, rue Paradis, F-13008 Marseille (FR). TIRARD, Alain [FR/FR]; Chemin de la Floride, F-83640 Saint-Zacharie (FR). RENUCCI, Marielle [FR/FR]; 11, rue Dumont d'Urville, F-13008 Marseille (FR). BELAICH, Anne [FR/FR]; Villa 8, 33, rue Floralia, F-13009 Marseille (FR). MATARAZZO, Valéry [FR/FR]; 4, rue du Calcaire, F-13360 Roquevaire (FR).
- (74) Mandataires: BREESE, Pierre etc.; Breese-Majerowicz, 3, avenue de l'Opéra, F-75001 Paris (FR).

81) Etats désignés: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

### Publiée

Sans rapport de recherche internationale, sera republiée dès réception de ce rapport.

- (54) Title: NOVEL OLFACTORY RECEPTORS AND THEIR USES
- (54) Titre: NOUVEAUX RECEPTEURS OLFACTIFS ET LEURS UTILISATIONS

### (57) Abstract

The invention concerns novel olfactory receptors, and the genes coding for said receptors. The invention also concerns the use of said receptors for detecting aromas, quality control, sample analysis or comparing perfumes, detecting toxic substances or trapping smells.

### (57) Abrégé

La présente invention concerne de nouveaux récepteurs olfactifs, ainsi que les gènes codant ces récepteurs. L'invention se rapporte aussi à l'utilisation de ces récepteurs pour la détection d'arômes, le contrôle de qualité, l'analyse d'échantillons, l'analyse ou la comparaison de parfums, la détection de substances toxiques, ou le piégeage d'odeurs.

### UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

| AL | Albanie                   | ES | Espagne               | LS | Lesotho                  | SI | Slovénie              |
|----|---------------------------|----|-----------------------|----|--------------------------|----|-----------------------|
| AM | Arménie                   | FI | Finlande              | LT | Lituanie                 | SK | Slovaquie             |
| AT | Autriche                  | FR | France                | LU | Luxembourg               | SN | Sénégal               |
| AU | Australie                 | GA | Gabon                 | LV | Lettonie                 | SZ | Swaziland             |
| AZ | Azerbaĭdjan               | GB | Royaume-Uni           | MC | Monaco                   | TD | Tchad                 |
| BA | Bosnie-Herzégovine        | GE | Géorgie               | MD | République de Moldova    | TG | Togo                  |
| BB | Barbade                   | GH | Ghana                 | MG | Madagascar               | TJ | Tadjikistan           |
| BE | Belgique                  | GN | Guinée                | MK | Ex-République yougoslave | TM | Turkménistan          |
| BF | Burkina Faso              | GR | Grèce                 |    | de Macédoine             | TR | Turquie               |
| BG | Bulgarie                  | HU | Hongrie               | ML | Mali                     | TT | Trinité-et-Tobago     |
| BJ | Bénin                     | IE | Irlande               | MN | Mongolie                 | ŲA | Ukraine               |
| BR | Brésil                    | IL | Isra <b>č</b> l       | MR | Mauritanie               | UG | Ouganda               |
| BY | Bélarus                   | 18 | Islande               | MW | Malawi                   | US | Etats-Unis d'Amérique |
| CA | Canada                    | IT | Italie                | MX | Mexique                  | UZ | Ouzbékistan           |
| CF | République centrafricaine | JP | Japon                 | NE | Niger                    | VN | Viet Nam              |
| CG | Congo                     | KE | Kenya                 | NL | Pays-Bas                 | YU | Yougoslavie           |
| CH | Suisse                    | KG | Kirghizistan          | NO | Norvège                  | ZW | Zimbabwe              |
| CI | Côte d'Ivoire             | KP | République populaire  | NZ | Nouvelle-Zélande         |    |                       |
| СМ | Cameroun                  |    | démocratique de Corée | PL | Pologne                  |    |                       |
| CN | Chine                     | KR | République de Corée   | PT | Portugal                 |    |                       |
| CU | Cuba                      | KZ | Kazakstan             | RO | Roumanie                 |    |                       |
| CZ | République tchèque        | LC | Sainte-Lucie          | RU | Fédération de Russie     |    |                       |
| DE | Allemagne                 | LI | Liechtenstein         | SD | Soudan                   |    |                       |
| DK | Danemark                  | LK | Sri Lanka             | SE | Suède                    |    |                       |
| EE | Estonie                   | LR | Libéria               | SG | Singapour                |    |                       |

NOUVEAUX RÉCEPTEURS OLFACTIFS ET LEURS UTILISATIONS.

La présente invention se rapporte à la mise en évidence de nouveaux récepteurs olfactifs chez la marmotte, au clonage et au séquençage des gènes codant pour ces récepteurs ainsi qu'à l'utilisation de ceux-ci pour le criblage de ligands et la préparation de biocapteurs.

5

10

15

20

25

30

35

La découverte récente de récepteurs olfactifs de vertébrés bouleverse les stratégies initialement envisagées pour la conception et la réalisation de nez artificiel avec des capteurs physicochimiques. En effet, au début des années 1990, les biologistes sont parvenus à isoler à partir d'épithélium olfactif de mammifères et à séquencer les premières protéines constituant des récepteurs olfactifs (3), et c'est en 1993 que le premier récepteur olfactif a été exprimé (7). Or, il est admis que l'hommme, qui est réputé avoir un odorat limité, est capable de différencier plus de 10 000 molécules odorantes et que 1% de son génome est composé de gènes codant pour les récepteurs olfactifs (1). On conçoit donc le champ d'investigation formidable qui s'ouvre aux chercheurs en matière de capteurs biologiques potentiels. En outre, il apparaît déjà que ces capteurs biologiques ont une sensibilité supérieure d'environ 100 000 fois aux meilleurs capteurs physico-chimiques existants (4, 6). Des travaux plus récents ont montré que ces détecteurs sont également sensibles à des molécules non biologiques (5).

Tous les organismes vivants dépendent d'informations sensorielles pour leur survie. Les perceptions sensorielles sont transmises par les organes des sens qui recoivent des stimuli physiques (vue, ouie, toucher) et chimiques (gout, odorat). Dans la plupart des espèces, la perception des stimuli chimiques est essentielle pour l'accomplissement de plusieurs taches vitales comme localiser la nourriture, identifier des partenaires, identifier la progéniture et détecter les prédateurs ou d'autres dangers. Dans certaines espèces, l'odorat permet aussi la communication, à des distances pouvant atteindre plusieurs kilomètres, entre individus et permettre de rassembler le groupe, les réactions d'attaque et de défense, l'activité de reproduction et l'allaitement. Les molécules odorantes peuvent aussi induire des changements physiologiques.

5

10

15

20

25

30

35

Dans la plupart des cas les odeurs résultent d'une combinaison complexe de plusieurs molécules. Cette complexité soulève d'intéressantes questions sur les caractéristiques des récepteurs pour permettre aux animaux de reconnaitre une myriade de molécules odorantes (estimées à plus de 10 000) à des concentrations aussi basses que 10<sup>-12</sup> M. Il semble que la reconnaissance est basée sur une large famille multigénique de récepteurs d'odeurs comprenant plusieurs centaines ou milliers de sous types. Ces récepteurs sont supposés contenir 7 domaines trans-membranaires, à partir de l'hypothèse selon laquelle les signaux odorants sont transduits par des cascades de réactions couplées aux protéines G dans les neurones olfactifs sensitifs. La transduction résulte en une augmentation de seconds messagers comme les nucléotides cycliques ou l'inositol triphosphate et à leur tour ces messagers activent les canaux ionodépendants et la phosphorylation de plusieurs protéines parmi lesquelles les récepteurs d'odeurs eux-mêmes.

Buck et Axel (3) ont d'abord caractérisé des récepteurs d'odeurs de rat à l'aide de techniques d'amplification (PCR) et d'amorces dégénérées

10

15

20

25

30

35

correspondant aux domaines les plus conservés des récepteurs couplés aux protéines G. Depuis ces premiers travaux, plus de 339 récepteurs ont été séquencés, le plus souvent partiellement, parmi une grande variété d'espèces dont l'homme, le chien, la souris, le poulet, deux espèces de poisson, deux espèces d'amphibiens et un nématode. Beaucoup d'espèces restent cependant encore à étudier et on estime que plus de 1000 gènes (soit 1% du génome) codent pour la superfamille des récepteurs olfactifs. Les mécanismes sous-jacents à la perception olfactivee sont singuliers et uniques en comparaison avec d'autres systèmes sensoriels et une étude plus poussée dans ce domaine qui a d'importantes implications pour l'identification de ces protéines est nécessaire.

Plusieurs travaux ont souligné l'importance de l'olfaction pour la marmotte des Alpes (2). Des études éthologiques et analytiques ont montré qu'un groupe de 40 composés, produits par les glandes jugales, était utilisés pour marquer le territoire et identifier le groupe social. Les travaux réalisés dans le cadre de la présente invention sur l'épithélium olfactif de la marmotte des Alpes visaient notamment à obtenir un nombre suffisant de séquences de récepteurs olfactifs pour permettre une comparaison significative avec les séquences de vertébrés précédemment déterminées. Une stratégie basée sur la RT-PCR a été utilisée pour identifier des séquences putatives de récepteurs olfactifs de marmotte. Des oligonucléotides dégénérés correspondant à la séquence des domaines conservés dans le second domaine transmembranaire, la seconde boucle intracellulaire et le 7ème domaine transmembranaire de récepteurs olfactifs ont été utilisés par paires comme amorces pour des PCR à partir de l'ADN complémentaire obtenu en utilisant l'ARNm de l'épithélium nasal de marmotte.

Les travaux de recherche réalisés dans le cadre de la présente invention ont ainsi permis pour la

première fois d'identifier, de cloner et de séquencer de nouveaux récepteurs olfactifs chez la marmotte. Ces récepteurs sont utiles pour la conception et la mise au point de biocapteurs ou la préparation de cellules transfectées. Ainsi, ces récepteurs peuvent être associés à des membranes artificielles qui seront utilisées dans différents biocapteurs disposés en parallèle, chacun possédant un type particulier de récepteur, l'ensemble étant géré par un logiciel de réseaux de neurones formels pour constituer un système de détection de type nez electronique dont les capteurs sont des capteurs bioélectroniques.

5

10

15

20

25

30

35

L'invention se rapporte donc à un récepteur olfactif purifié de marmotte.

La distinction entre des dizaines de milliers d'odeurs dépend d'une myriade de récepteurs situés à la surface des dendrites neuronales de l'épithélium nasal. En utilisant l'épithélium nasal de la marmottes des Alpes et différents jeux d'amorces dégénérées correspondant à des séquences consensus de récepteurs d'odeurs, les inventeurs sont parvenus à amplifier par PCR-inverse (RT-PCR), cloner et obtenir la séguence partielle de 23 nouveaux produits de gènes codant pour des récepteurs d'odeurs. Après consultation par le programme blast des banques de données du NCBI, leur traduction en séquences d'acides aminés montre une forte similarité avec des séquences protéiques de récepteurs d'odeurs précédemment rapportées, et les classe sans ambiguité dans la même superfamille de récepteurs à 7 domaines transmembranaires. Les régions hélicoïdales transmembranaires III, IV et V, ainsi que les boucles intra et extracellulaires ont été définies par l'établissement d'un profil d'hydropathie et la prédiction par ordinateur de la structure secondaire. Dans une première tentative de cartographie des sites de fixation d'odeur, les inventeurs ont réalisé une analyse

10

15

20

25

30

35

de variabilité du type de celle décrite par Wu et Kabat (8) sur les régions déterminant la complémentarité (CDR) des immunoglobulines. Quatre pics principaux de variabilité sont localisés à l'intérieur des lère et 3ème boucles extracellulaires prédites, et à l'intérieur des 4ème et 5ème domaines transmembranaires prédits. Ces positions feraient donc partie du site spécifique de liaison des molécules odorantes. Les comparaisons avec la séquence de récepteurs olfactifs d'autres espèces suggèrent que les séquences de la marmotte déterminées dans cette étude appartiennnent à trois familles différentes.

L'invention concerne donc plus particulièrement un récepteur olfactif purifié constitué par ou comprenant la séquence en acides aminés choisie parmi celles représentées dans la liste de séquences en annexe sous les numéro SEQ ID No:1 à SEQ ID No:23, ou un dérivé fonctionnellement équivalent de celles-ci. On entend par dérivé équivalent de ces séquences, les séquences comprenant une modification et/ou une suppression et/ou une addition d'un ou plusieurs résidus d'acides aminés mais conservant environ 75% et de préférence au moins 95% d'homologie avec la séquence dont elle est dérivée. Les récepteurs de l'invention présente des régions très conservée et des régions très hétérogènes. On considère que les régions très conservées sont celles conférant à la protéine son caractère de récepteur, alors que les régions très hétérogènes sont celles qui confèrent à chaque récepteur sa spécificité. Ainsi, selon l'application envisagée, il est possible de préparer des dérivés des récepteurs de l'invention dont la spécificité est modifiée mais qui restent dans le cadre de la présente invention.

L'invention a également pour objet les anticorps poly ou monoclonaux dirigés contre au moins un

10

15

20

25

30

35

récepteur de l'invention, un dérivé ou un fragment de ceux-ci. Ces anticorps peuvent être préparés par les méthodes décrites dans la littérature. Les anticorps polyclonaux sont formés selon les techniques classiques par injection des protéines, extraites à partir d'épithélium ou produite par transformation génétique d'un hôte, à des animaux, puis récupération des antisérums et des anticorps à partir des antisérums par exemple par chromatographie d'affinité. Les anticorps monoclonaux peuvent être produits en fusionnant des cellules de myélomes avec des cellules de rates d'animaux préalablement immunisés à l'aide des récepteurs de l'invention. Ces anticorps sont utiles pour rechercher de nouveaux récepteurs olfactifs ou les homologues de ces récepteurs chez d'autres mammifères ou encore pour étudier la parenté entre des récepteurs de différents individus ou espèces.

L'invention se rapporte également à une molécule d'acide nucléique comprenant ou constituée par une séquence nucléique codant pour un récepteur tel que défini précédemment. Plus particulièrement, l'invention se rapporte à une molécule d'acide nucléique comprenant ou constituée par une séquence choisie parmi celles représentées dans la liste de séquences en annexe sous les numéro SEQ ID No:24 à SEQ ID No:47, lesquelles codent respectivement pour les récepteurs dont les séquences en acides aminés sont représentées dans la liste de séquences en annexe sous les numéro SEQ ID No:1 à SEQ ID No:23.

L'invention concerne bien entendu aussi les séquences nucléotidiques dérivées des séquences cidessus, par exemple du fait de la dégénérescence du code génétique, et qui code pour des protéines présentant des caractéristiques et propriétés de récepteurs olfactifs.

10

15

20

25

30

35

L'invention concerne également un vecteur comprenant au moins une molécule d'acide nucléique précédente, avantageusement associée à des séquences de contrôle adaptés, ainsi qu'un procédé de production ou d'expression dans un hôte cellulaire d'un récepteur de l'invention ou d'un fragment de celui-ci. La préparation de ces vecteurs ainsi que la production ou l'expression dans un hôte des protéines de l'invention peuvent être réalisées par les techniques de biologie moléculaire et de génie génétique bien connues de l'homme du métier.

A titre d'exemple, un procédé de production d'un récepteur selon l'invention consiste :

- à transférer une molécule d'acide nucléique de l'invention ou un vecteur contenant ladite molécule dans un hôte cellulaire,
- à cultiver ledit hôte cellulaire dans des conditions permettant la production de la protéine constituant le récepteur,
- à isoler, par tous moyens appropriés les dites protéines.

A titre d'exemple, un procédé d'expression d'un récepteur selon l'invention consiste :

- à transférer une molécule d'acide nucléique de l'invention ou un vecteur contenant ladite molécule dans un hôte cellulaire.
- à cultiver ledit hôte cellulaire dans des conditions permettant l'expression desdites récepteurs à la surface de l'hôte.

L'hôte cellulaire mis en oeuvre dans les procédés précédents peut être choisi parmi les procaryotes ou les eucaryotes et notamment parmi les bactéries, les levures, les cellules de mammifères, de plantes ou d'insectes.

L'expression dans des cellules eucaryotes est préférable pour que les récepteurs puissent subir

10

15

20

25

30

35

les modifications post-traductionnelles nécessaires à leur fonction.

Une molécule d'acide nucléique codant pour un récepteur olfactif ou un vecteur selon l'invention peuvent aussi être utilisés pour transfomer des animaux et établir une lignée d'animaux transgéniques.

Le vecteur utilisé est choisi en fonction de l'hôte dans lequel il sera transféré; il peut s'agir de tout vecteur comme un plasmide.

L'invention concerne donc aussi les hôtes cellulaires exprimant des récepteurs olfactifs obtenus conformément aux procédés précédents.

L'invention concernent également les sondes nucléiques et oligonucléotides préparés à partir des molécules d'acide nucléique de l'invention.

Ces sondes, avantageusement marquées, sont utiles pour la détection par hybridation de séquences similaires de récepteurs chez d'autres individus ou espèces. Selon les techniques classiques, ces sondes sont mises en contact avec un échantillon biologique. Différentes techniques d'hybridation peuvent être mises en oeuvre telles que l'hybridation sur taches (Dot-blot) ou l'hybridation sur répliques (technique de Southern) ou autres techniques (DNA chips). De telles sondes constituent des outils permettant de détecter rapidement des séquences similaires dans les gènes codant pour des récepteurs olfactifs ce qui permet d'étudier la présence, l'origine et la conservation de ces protéines.

Les oligonucléotides sont utiles pour des expériences de PCR par exemple pour rechercher des gènes dans d'autres espèces ou dans un but de diagnostic.

Comme indiqué précédemment, les récepteurs olfactifs sont des protéines à 7 domaines transmembranaires couplées aux protéines G. La fixation

d'un ligand sur le récepteur entraîne un changement de conformation du récepteur, et à l'intérieur de la cellule, ce signal est transduit par l'intermédiaire de seconds messagers. En conséquence, l'invention a pour objet un procédé de criblage de composés susceptibles de constituer des ligands des récepteurs décrits précédemment consistant à mettre en contact un composé et un ou plusieurs desdits récepteurs et à mesurer par tout moyen approprié l'affinité entre ledit composé et ledit récepteur.

La mise en contact entre le composé à tester et le ou les récepteurs olfactifs de l'invention peut être réalisée en utilisant des hôtes décrits précédemment et exprimant à leur surface au moins desdits récepteurs. Il peut s'agir d'une lignée de cellules immortalisées olfactives ou non, transfectée par un vecteur portant l'ADNc permettant d'exprimer à sa surface et à un niveau élevé un récepteur olfactif recombinant fonctionnel. Si le composé testé constitue un ligand, sa mise en contact avec des cellules transformées , induit des signaux intracellulaires qui découlent de la fixation dudit composé sur le récepteur.

La mise en contact des composés à tester avec les récepteurs de l'invention peut aussi être réalisée en fixant un ou plusieurs récepteurs sur une ou plusieurs membranes. Les récepteurs olfactifs de l'invention peuvent donc aussi être intégrés à un biocapteur. Dans un tel système, il est possible de visualiser en temps réel des interactions entre le composé testé et le récepteur. L'un des partenaires du couple récepteur/ligand est fixé sur une interface qui peut contenir une matrice recouverte de chaînes aliphatiques. Cette matrice hydrophobe peut être facilement recouverte d'une couche lipidique par fusion spontannée de liposomes injectés à son contact. Des récepteurs olfactifs insérés dans des liposomes ou des

10

15

20

vésicules peuvent ainsi être intégrés à des biocapteurs. Les ligands sont ainsi analysés vis-à-vis d'un ou plusieurs récepteurs olfactifs différents.

Les méthodes ci-dessus permettent de déterminer si un composé active ou inhibe les récepteurs. Dans ce mode de réalisation, il est avantageux de disposer d'un ligand connu qui permet des mesures par compétition.

L'invention se rapporte donc aussi à un composé non encore connu constituant un ligand d'un récepteur olfactif, identifié et sélectionné par le procédé ci-dessus.

Les récepteurs de l'invention trouvent des applications dans des domaines très variés comme :

- L'industrie agroalimentaire, pour la détection d'arômes, le contrôle de qualité, l'analyse d'échantillons.
- La parfumerie, pour l'analyse ou la comparaison de parfums.
- L'environnement, pour la détection de substances toxiques, comme des gaz ou le piégeage d'odeurs.
- D'autres avantages et caractéristiques de l'invention apparaîtront à la lecture des exemples qui suivent concernant l'identification et le clonage des réceteurs olfactifs de marmotte, et qui se réfèrent aux dessins en annexe dans lesquels :
- La figure 1 représente l'analyse des produits de PCR réalisée à partir de deux types d'ADNC (R et T) et 3 jeux d'amorces (c-t, 4-1 et 3-2). Les produits de la réaction ont été analysés par électrophorèse sur un gel d'agarose 2 %, comme décrit ci-après dans matériel et méthode. La taille des fragments a été estimée par comparaison avec un standard

10

15

20

25

30

35

de taille connue (côté droit). Les dépôts dans les pistes marquées d'une astérisque contiennent les fragments de la taille attendue.

- La figure 2 représente l'alignement de 14 des 23 séquences de récepteurs olfactifs putatifs de marmotte. 14 séquences différentes (AMOR 1 à AMOR 14) ont été analysées à l'aide du logiciel Clustalw. Les régions ombrées indiquent les domaines consensus contenant les acides aminés presque (.) ou totalement (\*) conservés. Les domaines transmembranaires (DII à DVII), les boucles extracellulaires (E1 à E3) et les boucles intracellulaires (i2 à i3) ont été délimitées après la détermination des domaines hydrophobes.

- La figure 3 représente les profils d'hydropathie des séquences longues obtenues avec le jeu d'amorces c-t (AMOR 1 à AMOR 7) et les séquences courtes obtenues avec le jeu d'amorces 3-2 (AMOR 8 à AMOR 14) ont été obtenues comme décrit dans Matériel et Méthodes Les séquences longues contiennent 6 régions de forte hydrophobicité (pics) séparées par 5 valléees plus hydrophiles. Les séquences courtes présentent seulement 4 régions de forte hydrophobicité et 3 régions hydrophiles. Ces graphes sont compatibles avec la présence de 6 ou 4 domaines transmembranaires, pour les séquences longues et courtes respectivement. Cette architecture est confirmée par les prédictions d'hélices transmembranaires du programme PHD.

La figure 4 représente l'analyse de la variabilité des 14 nouvelles séquences ininterrompues de récepteur olfactif de marmotte. Graphe du haut : variabilité des résidus calculée pour l'alignement de la figure 2. La localisation des pics (positions les plus variables) et la forme globale de la courbe sont indépendantes de la formule utilisée (Wu & Kabat, complexité ou nombre de résidus pris en compte). Graphe du bas : index moyen d'hydropathie des séquences

alignées. Les pics correspondent aux régions hydrophiles (boucles) et les vallées aux régions hydrophobes (domaines transmembranaires). Le graphe minimise l'hydrophobicité du fragment 1 à 59 car la moitié des séquences manque à ces positions. Alors que la position 210 illustre la variabilité habituelle des boucles hydrophiles exposées, la position 148 présente la forte variabilité la plus surprenante dans une région fortement hydrophobe (hélicoïdale) de la molécule.

La figure 5 représente un dendrogramme montrant les similarités entre des récepteurs olfactifs de différentes espèces. Les séquences de récepteurs olfactifs d'autres espèces proviennment de la banque de données NCBI. Il y a cinq familles (notées à gauche). Les astérisques indiquent les séquences pour lesquelles le pourcentage de similarité entre espèce excède 70 %. Abréviations : H : homme ; F : poisson ; C : poulet ; N : nématode ; B : abeille ; A : amphibiens ; D : chien ; M : souris et MM : marmotte.

20

25

5

10

15

### I - MATÉRIEL ET MÉTHODES.

### 1) Préparation des tissus.

L'épithélium olfactif a été prélevé sur une marmotte sauvage morte. Pendant la dissection, la tête a été maintenue congelée dans de la carboglace. Les tissus ont été gardés à -80°C jusqu'à leur utilisation.

### 2) <u>Isolement de l'ARNm</u>.

Jes tissus cgelés ont été réduits en poussière en les concassant avec un pilon dans un mortier. Le pilon et le mortier étaient refroidis dans de la carboglace et tout l'équipement était stérile.

L'ARNm poly(A) + a été isolé en utilisant le Micro-Fast
Track Kit (Invitrogen) puis testé avec le DNA DipStick Kit (Invitrogen).

10

15

20

25

30

35

### 3) Transcription de l'ADNc.

L'ARNm poly(A)+ a été transcrit en ADNc à l'aide d'une transcriptase inverse puis amplifié par PCR. Pour augmenter la production du premier brin d'ADNc complet le kit cDNA Cycle Kit a été utilisé. La transcription inverse a été faite à partir de 150 ng d'ARNm poly(A)+ en utilisant des amorces oligo dT ou des random primers. Après extraction avec phénol / H2O / EDTA (v/v/v: 1/20/80), l'ADNc de la phase aqueuse a été précipité en présence d'acétate d'ammonium et de glycogène entraîneur dans de l'éthanol glacial à -80°C.

#### 4) <u>PCR</u>.

Trois jeux d'oligonucléotides dégénérés spécifiques de récepteurs olfactif sont été synthétisés pour amplifier ces récepteurs de marmotte.

A partir de résultats antérieurs obtenus chez le rat (3), deux jeux d'amorces ont été synthétisées contre des régions conservées du second et du septième domaine transmembranaire des récepteurs olfactifs.

Amorce 4 : 5'-CC(CT) ATG TA(TC) TTI TT(TC)
CT (CT) I(GC)(CT) AA(TC) (TC)TI TC.

Amorce C : 5'-CC(CT) ATG TA(TC) TTG TT(TC)
CT(CT) G(GC)(CT) AA(TC) (TC)TG TC-.

Amorce 1 : 5'-(AG)TT (TC)C(TG) IA(AG) (AG)(CG)(AT) (AG)TA IAT (GA)A(AT) IGG (AG)TT.

 $\label{eq:amorce T} \mbox{Amorce T : 5'-GCA CTG CAG AT(AG) AAI GG(AG)} \mbox{TTI A(AG) ATI GG.}$ 

Ces combinaisons d'amorces ont été conçues pour permettre d'amplifier des produits de l'ordre de 720 pb.

A partir de résultats antérieurs obtenus chez le rat (3) et le poisson-chat, le 3ème jeu d'oligonucléotides dégénérés a été synthétisé à partir

10

15

20

25

30

35

des régions conservées de la 2ème boucle intracellulaire et du 7ème domaine transmembranaire.

14

 $\label{eq:Amorce 3} A \mbox{morce 3} : \mbox{5'-CAC AAG CTT TIG CIT } A \mbox{(TC)} G \mbox{(CT)} A \mbox{(CT)} A \mbox{(AG)} T \mbox{(TA)} \mbox{(TC)} \mbox{(TCG)} TIG C.$ 

Amorce 2 : 5'-GCA CTG CAG AT(AG) AAI GG(AG)
TTI A(AG)C ATI GG.

Ces combinaisons d'amorces ont été conçues pour permettre d'amplifier des produits de l'ordre de 520 pb.

L'amplification a été réalisée dans 50 microlitres d'une solution contenant 5 microlitres d'ADNC, 2 mM dNTP, 100 pmol de chaque amorce dégénérée, 1,5 U de polymérase Taq (Boehringer Mannheim, Allemagne), 50 mM KCl, 2,5 mM MgCl2, 10 mM Tris/HCl pH8,3 et 0,01 de gélatine. Pour éviter l'évaporation, la surface du mélange a été couverte par 35 microlitres d'huile minérale (Sigma, France). La PCR a été réalisée à l'aide d'un thermocycler (Hybaid, Omnigene, USA) selon le protocole suivant : un cycle à 94°C pendant 90 s, 40 cycles à 94°C pendant 20 s, 50°C pendant 25 s et 72°C pendant 90 s, et un cycle à 72°C pendant 120 s.

Après la PCR, 5 microlitres du produit de la réaction ont été analysés sur gel d'agarose Seaplaque 2%, pour vérifier que la présence du fragment (Tebu). S'il était présent, les 45 microlitres restant ont été soumis à électrophorèse et l'ADNc a été extrait du gel d'agarose à l'aide du kit QIARX II (Qiagen). L'ADNc extrait a été inséré dans le vecteur pMOSBlue qui a été utilisé pour infecter les cellules de E.coli MOSBlue compétentes en utilisant le kit pMOSBlue T-vector selon le protocole du fournisseur (Amersham). Les bactéries infectées ont ensuite été cultivées sur un milieu sélectif (Xgal/IPTG).

Les clones recombinants ont été testés par PCR directe sur colonie. En bref, chaque colonie blanche a été resuspendue dans 10 microlitres de tampon TE. La

10

15

20

25

30

35

d'ADNc.

PCR a été réalisée dans 10 microlitres d'une solution contenant 1 microlitres de suspension de colonie, 3 pmoles de chaque amorce universelle U19 et T7, 10 mM dNTP, 50 mM KCl et 2,5 mM MgCl2 dans un tampon Tris HCl pH 8,3 avec 0,25 U de polymérase Taq. Le protocole pour la PCR était le suivant : un cycle à 94°C pendant 270 s, 30 cycles à 94°C pendant 30 s, 48°C pendant 30 s et 72°C pendant 50 s, et un cycle à 72°C pendant 120 s. Après la PCR, 10 microlitres du produit de la réaction ont été analysés sur un gel à 2% d'agarose. Les clones positifs ont été cultivés en milieu LB liquide contenant 0,1 mg / ml d'ampicilline.

### 5) Extraction et purification des fragments

L'ADNc plasmidique a été extrait et purifié en utilisant le kit Wizard miniprep (Promega). Les échantillons ont été séquencés par Genome Express (Grenoble, France).

### 6) Analyse des séquences.

La comparaison des séquences de récepteur olfactif de marmotte de l'invention avec d'autres séquences disponibles dans GenBank / GenPept a été réalisée en utilisant le programme Blast sur le serveur NCBI. ClustalW a été utilisé pour construire les alignements multiples et réaliser l'analyse phylogénétique. Les domaines hydrophobes ont été délimités en utilisant un simple profil d'hydropathie, et la prédiction des domaines transmembranaires  $\alpha$ hélicoidaux en utilisant le serveur PHD. Enfin, la variabilité des 14 séquences de marmotte alignées, ainsi que leur hydropathie moyenne, ont été déterminées et traduites sous forme graphique à l'aide du programme Rav3. Les domaines transmembranaires ont été prédits avec le logiciel Top Pred II.

25

30

35

### II - RÉSULTATS.

### 1) <u>Isolement de l'ARNm</u>.

Un échantillon d'approximativement 2 g, contenant principalement de l'épithélium olfactif et le cartilage <u>le supportant</u> a été retiré de la tête congelée d'une marmotte. Cet échantillon a été utilisé pour la purification et les tests d'ARNm selon la description de la section Matériel et Méthodes. Au total, 1,95 microgramme d'ARNm ont été obtenus. Pour augmenter les chances de cloner des récepteurs olfactifs, la moitié de l'ARNm obtenu a été transcrit en présence de l'amorce oligo d(T) et l'autre moitié en présence de l'amorce random (R).

# 2) <u>Amplification des séquences de récepteurs</u> olfactifs.

L'amplification par PCR a été réalisée avec 150 ng d'ARNm en utilisant les trois jeux d'amorces spécifiques dégénérées (c-t, 4-1, 3-2) décrites précédemment dans Matériel et Méthodes. L'analyse de l'électrophorèse réalisée avec des aliquotes de 5 microlitres des produits de la PCR a révélé des bandes uniques de la taille attendue (Fig.1). Avec l'ADNc "T", une bande 520 pb a été obtenue avec les amorces 3-2 et une bande de 720 pb avec les amorces c-t. Avec l'ADNc "R", une bande de 720 pb a été obtenue en utilisant les amorces c-t. Aucune bande n'a été observée dans les trois autres pistes. Dans les PCR de contrôle, dans lesquelles une seule amorce était utilisée, aucune bande la longueur attendue n'a été observée. L'électrophorèse a été répétée en utilisant les 45 microlitres restant de l'échantillon, et les fragments de 550 et 720 pb ont été extraits. Etant donnée la diversité des récepteurs olfactifs, il a été supposé que la population d'ADNcdans une bande était hétérogène et il n'a donc pas éte essayé de séquencer directement les fragments d'ADNc amplifiés par PCR. Ces fragments ont été clonés dans E. coli comme décrit précédemment.

5

10

15

20

### 3) Clonage.

Après insertion dans le vecteur p-Mosblue et l'infection de E. coli MOSBlue compétentes, 139 clones bactériens ont été obtenus au total, dont 58 à partir de la PCR réalisée à partir de l'ADNc "R" et les amorces ct (clones R c-t), 31 à partir de la PCR réalisée à partir de l'ADNc "T" et les amorces c-t (clones T c-t) et 50 à partir de la PCR réalisée à partir de l'ADNc "T" et les amorces 3-2 (clones T 3-2). Pour confirmer la présence du fragment attendu, nous avons réalisé une autre PCR sur chacun des 139 clones en utilisant des amorces correspondant aux zones du vecteur situées sur chaque côté du fragment. L'électrophorèse sur gel d'agarose des produits de la PCR a montré que 5 clones R c-t, 10 clones T c-t et 22 clones T 3-2 possédaient des fragments de la taille attendue. Ces 37 clones positifs ont été cultivés à nouveau pour une production de masse.

### 4) <u>Séquençage</u>.

25

30

35

L'ADN plamsidique a été extrait, purifié et séquencé, comme décrit précédemment. Les séquences nucléotidiques ont été comparées avec celles trouvées dans les banques de données. Sur les 28 séquences présentant des scores élevés de similarité avec les récepteurs olfactifs, 14 étaient différentes et ininterrompues (AMOR 1 à 14) et pouvaient coder pour des récepteurs olfactifs. Les autres 14 séquences étaient identiques (n=8), inutilisables (n=3) ou incomplètes pour nos conditions expérimentales (116, 153, 159 acides aminés). Les 14 séquences utilisables avaient un seul cadre ouvert de lecture permettant leur traduction en

10

15

20

25

30

35

acides aminés. L'attribution de la séguence de lecture correcte a été confirmée par la similarité de ces traductions putatives avec les séquences en acides aminés d'autres récepteurs olfactifs disponibles dans Gen Bank / GenPept. Le pourcentage de résidus identiques dans les meilleurs alignements s'étendait entre 84% (entre AMOR4 et une séquence partielle de Xenopus laevis No d'accession #:1617233) et 46 % (entre AMOR5 et la séquence de Rattus norvegicus No d'accession#:1016362). 7 des 14 séquences de marmotte présentaient le meilleur alignement avec différents récepteurs de rat, 3 avec le même récepteur humain (accession: #AC002988), 3 avec la même séquence de chien (accession #:X89660) et un avec la séquence de Xénope citée précédemment. Le pourcentage moyen de résidus identiques était 64%. Sept (AMOR 1-7) des nouvelles séquences de marmotte ont été amplifiées à partir d'un couple d'amorces conçu à partir des domaines transmembranaires II et VII et sont longs de 234 à 237 résidus. Sept autres séquences (AMOR 8-14) ont été obtenues avec les amorces conçues à partir de la boucle intracellulaire 2 (i2) et le domaine transmembranaire VII et contiennent 176 résidus. Le pourcentage de résidus identiques entre ces 14 nouvelles séquences est compris entre 33 % (AMOR 4 / AMOR 8) et 79 % (AMOR 8 / AMOR 11).

# 5) <u>Structure du domaine du récepteur olfactif putatif de marmotte</u>.

L'homologie globale entre les 14 nouvelles séquences de marmotte et les séquences de récepteurs précédemment identifiées laisse peu de doutes quant à leur appartenance à la même superfamille des récepteurs à 7 domaines transmembranaires. Selon la localisation des amorces utilisées pour les amplifier, les séquences partielles AMOR 1-7 et AMOR 8-14 devraient présenter 6 ou 4 domaines transmembranaires respectivement. La

Figure en annexe 3 montre que le profil d'hydrophobicité de ces séquences est compatible avec une telle organisation. Afin de délimiter plus précisément les régions transmembranaires a-hélicoidales, l'alignement de la Figure 2 a aussi été soumise au serveur PHD. 5 régions transmembranaires ont été assignées sans ambiguité dans les régions respectives (38-62), (86-103), (140-164), (186-203) et (216-232), qui correspondent aux domaines DIII, DIV, DV, DVI et DVII dans la figure 2.

5

10

15

20

25

30

35

Les inventeurs ont également chercher à situer les positions impliquées dans le site de fixation spécifique de l'odeur en appliquant une analyse précédemment introduite pour les molécules qui lient les antigènes. Ici, le raisonnement est que si ces récepteurs olfactifs sont supposés lier spécifiquement des molécules odorantes, les résidus qui constituent le site spécifique de liaison pourraient montrer plus de variabilité que ceux qui sont impliqués dans la structure core et dans la fonction de signalement.

La Figure 4 montre les profils de variabilité obtenus avec l'alignement de la Figure 2. Quatre pics de variabilité sont clairement visibles. Le profil moven d'hydropathie (average hydropathy plot) montré en parallèle (Figures 2 et 4) indique qu'ils ne sont pas uniquement situés à l'intérieur de boucles hydrophiles comme escompté (position 210), mais aussi dans des régions hydrophobes (e.g. position 148). Le centre des segments les plus variables est situé aux positions 30, 100, 148 et 210, la cartographie respectivement à l'intérieur de la 1ère boucle extracytoplasmique E1, les 4ème et 5ème régions transmembranaires DIV et DV, et le milieu de la 3ème boucle extracytoplasmique E3. Nous proposons que les résidus à ces positions pourraient être impliqués dans le site de liaison de molécules odorantes inconnues olfactifs.

5

10

15

20

25

correspondant à ces récepteurs. Ces positions sont compatibles avec l'hypothèse selon laquelle les régions transmembranaires pourraient s'assembler en un calice ouvert vers l'extérieur pouvant recevoir une molécule odorante. Un tel modèle est aussi en accord avec le fait que beaucoup de molécules odorantes présentent un caractère hydrophobe.

## 6) <u>Classification structurale des récepteurs</u>

Nous avons tenté de classer les récepteurs clonés de marmotte par rapport aux séquences précédemment décrites pour d'autres espèces. La Figure 5 montre une classification structurale de 122 récepteurs olfactifs de la banque de données EMBL trouvés dans différentes espèces ainsi que les 14 séquences complètes et les 3 séquences incomplètes identifiées chez la marmotte dans le cadre de la présente invention. A l'exeption des récepteurs de poisson, les récepteurs ne sont pas regroupés par espèces. Il y a 5 familles contenant un nombre varié de récepteurs. Les récepteurs olfactifs de marmotte ont été classés en sous-familles 1, 2 et 5. 12 séquences ont été rangées dans la sous famille 2.

Le plus fort pourcentage d'homologies interespèces (plus de 70 % de résidus identiques) entre récepteurs olfactifs a été observé dans 9 cas indiqués par une astérisque : entre le rat et la souris (jusqu'à 95 %) dans 5 cas, entre le rat et l'homme (80 %) dans un cas, entre le chien et l'homme (jusqu'à 85 %) dans deux cas, et entre le récepteur de marmotte et celui de rat dans un cas (73 %). L'homologie entre les récepteurs humains et de marmotte ne dépasse jamais 75 % de résidus identiques.

35

10

15

20

25

30

35

Les récepteurs olfactifs comprennent une large famille multigénique. Leur étude demande une combinaison d'approches. Une stratégie de PCR inverse avec plusieurs amorces différentes a été mise en oeuvre dans le cadre de la présente invention. Cette approche a été couronnée de succès puisque 28 séquences putatives de récepteurs olfactifs dont 14 pouvaient permettre une analyse comparative ont été obtenues. Il est possible d'obtenir plus de séquences en changeant simplement les conditions de PCR. La famille de gènes clonés dans le cadre de la présente invention code pour des récepteurs olfactifs pour deux raisons. D'une part les profils d'hydropathie des séguences sont en accord avec les récepteurs de la superfamille des récepteurs à sept domaines transmembranaires. D'autre part, la comparaison avec les séguences de banques de données montre un fort degré de similarité avec les récepteurs olfactifs précédemment identifiés.

Les sites potentiels de reconnaissance des ligands sur les récepteurs olfactifs putatifs de marmotte ont été identifiés. Comme l'olfaction requiert la reconnaissance spécifique d'une grande variété de molécules odorantes, il a été postulé que le site de liaison du récepteur olfactif avec son ligand présenterait une plus grande variabilité entre résidus que les autres parties de la séquence responsables de la structure core et de la fonction de transduction. Il a été observé la plus forte variabilité à l'intérieur de deux domaines transmembranaires (DIV et DV) et à l'intérieur de deux boucles extracellulaires (E1 et E3). Il a donc été conclu que ces régions pourraient être impliquées dans la reconnaissance du ligand.

La présence d'un site de liaison profond dans le calice transmembranaire n'est pas un caractère spécifique des récepteurs olfactifs récepteur mais est

10

15

20

25

30

35

commun parmi les récepteurs à 7 domaines transmembranaires des amines biogènes.

Le site principal d'interaction entre les récepteurs à 7 domaines transmembranaires et la protéine G apparentée est la troisième boucle intracellulaire. Pour les séquences présentées ici, le segment le plus conservé est situé entre les positions 180 à 193, c'est à dire la fin de cette boucle et le début du 6ème domaine transmembranaire.

Les résultats obtenus indique une analogie remarquable entre le récepteur olfactif de marmotte et le récepteur olfactif de rat. La longueur (18 résidus) de la 3ème boucle intracellulaire (i3) était courte. La séquence consensus IVSSI (ou une séquence proche) était l'extrémité N-terminale de la 3ème boucle intracellulaire dans 75 % des clones de l'invention. La troisième boucle intracellaire est riche en résidus Serine et peut donc constituer des sites de phosphorylation pour GRK. Les récepteurs à 7 domaines transmembranaires sont classés en plusieurs groupes. Les récepteurs olfactifs sont supposés appartenir au groupe I, qui est caractérisé par la présence d'une séquence DRY strictement conservée du côté N-terminal de i2. La séquence DRY est présente dans 4 des clones de l'invention mais est remplacée par une séquence DRF dans les 10 restant.

La reconnaissance des mêmes odeurs par des espèces différentes soulève une intéressante question. On peut s'attendre à ce que ces espèces aient des récepteurs orthologues. En utilisant le logiciel clustalW (figure 5), les inventeurs ont chercher à déterminer si certains des récepteurs olfactifs de marmotte étaient bonafide orthologues de récepteurs olfactifs d'autres espèces, en particulier d'autres rongeurs. Pour les récepteurs couplés aux protéines G, les pourcentages d'identité entre les récepteurs

10

15

20

25

30

35

orthologues de différentes espèces allaient de 68 % (pour le récepteur CSN entre le chien et l'homme) à 98 % (pour le récepteur cannabinoide du rat et de l'homme). Des récepteurs olfactifs avec des pourcentages de similitude de cet ordre ont été observés entre rat et souris, rat et homme, et chien et homme. Un seul récepteur olfactif de marmotte présentait un pourcentage de similitude de cet ordre avec un récepteur de rat (AMOR14 73%). En général, nous avons trouvé peu d'homologies fortes. Cette découverte pourrait indiquer que, soit le nombre de récepteurs olractifs était trop petit pour permettre l'identification de vrais récepteurs orthologues, soit le pourcentage de similarité entre récepteurs olfactifs orthologues peut devenir inférieur à 68 %.

Une autre alternative serait que les animaux sauvages expriment de récepteurs pour davantage d'odeurs que les animaux de laboratoire. La marmotte des Alpes (Marmota marmota) a été choisie comme modèle dans cette étude à partir de l'hypothèse selon laquelle, étant donnée l'importance de l'olfaction pour survivre dans la nature, l'olfaction serait fortement développée. La marmotte des Alpes marque son territoire avec des sécrétions produites par les glandes jugales. De plus, pour cet animal, le sens olfactif est de la plus grande importance parce que cette espèce possède un fort niveau de sociabilité : il vit dans des groupes familiaux formés par une paire d'adultes résidents reproductifs et leur progéniture de plusieurs portées successives qui restent dans le groupe natal jusqu'à l'age de 2 ans ou plus. Chaque marmotte a une combinaison différente de molécules odorantes que les membres du même groupe ou d'un groupe différent peuvent flairer.

Contrairement à d'autres systèmes sensoriels, le système olfactif requiert une myriade de récepteurs différents. Comme les mammifères sont généralement supposés avoir environ un millier de gènes, les clones identifiés dans cette étude représentent probablement seulement une partie de la famille des récepteurs olfactifs de marmotte. En plus de la contribution au nombre de récepteurs identifiés, nos résultats supportent aussi l'existene de récepteurs orthologues entre espèces et la notion selon laquelle la variabilité locale observée dans certains des domaines transmembranaires pourrait être capitales pour la spécificité d'un récepteur. Comment même un millier de récepteurs pourrait être capable de distinguer parmi la dizaine de milliers d'odeurs trouvées dans la nature n'est pas encore clair. La confirmation finale de la nature et de la spécificité olfactive de ces récepteurs ne sera pas possible tant que la séquence entière n'a pas été obtenue et la liaison spécifique avec une ou plusieurs molécules odorantes démontrée.

5

10

### RÉFÉRENCES BIBLIOGRAPHIQUES

(1) Axel R. (1995). The molecular logic of smell. Scientific American October 154-159.

5

(2) Bel M.C., Porteret C. and Coulon J. (1995). Scent deposition by cheek rubbing in the Alpine marmot (Marmota marmota) in the French Alps. Can. J. Zool., 73, 2065-2071.

10

25

30

- (3) Buck L. and Axel R. (1991). A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. *Cell*, **65**, 175-187.
- 15 (4) Cornell B.A., Braach-Maksvytis, V.L.B., King L.G., Osman P.D.J., Raguse B., Wieczorek L. and Pace R.J. (1997) A biosensor that uses ion-channel switches. Nature 387, 580-583.
- 20 (5) Kinoshita T. (1995) Biomembrane mimetic systems. Prog. Polym. Sci., 20, 527-583.
  - (6) Mielle P. (1998). Une technique de pointe au service du contrôle de la qualité aromatique. Biofuture, 174, cahier n°99
  - (7) Raming K., Krieger J., Strotmann J., Boekhoff I., Kubick S., Baumstark C., and Breer H. (1993). Cloning and expression of odorant receptors. *Nature*, **361**, 353-356.
  - (8) Wu T.T., and Kabat E.A. (1970). An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. *J. Exp. Med.*, **132**, 211-250.

#### REVENDICATIONS

1) Un récepteur olfactif purifié de marmotte.

5

10

15

30

- 2) Un récepteur olfactif constitué par ou comprenant une séquence en acides aminés choisie parmi celles représentées dans la liste de séquences en annexe sous les numéro SEQ ID No:1 à SEQ ID No:23, ou un dérivé fonctionnellement équivalent de celles-ci.
- 3) Un récepteur selon la revendication 2 constitué par ou comprenant une séquence en acides aminés présentant environ 75% et de préférence au moins 95% d'homologie avec une séquence en acides aminés choisie parmi celles représentées dans la liste de séquences en annexe sous les numéro SEQ ID No:1 à SEQ ID No:23.
- 20 4) Un récepteur selon l'une des revendications 2 ou 3, constitué par ou comprenant une séquence en acides aminés choisie parmi représentées dans la liste de séquences en annexe sous les numéro SEO ID No:1 à SEO ID No:23 dont une ou 25 plusieurs des régions très hétérogènes est modifiée.
  - 5) Un anticorps poly ou monoclonal dirigé contre au moins un récepteur selon l'une quelconque des revendications 1 à 4 ou un dérivé ou un fragment de ceux-ci.
  - 6) Une molécule d'acide nucléique comprenant ou constituée par une séquence nucléique codant pour un récepteur selon l'une quelconque des revendications 1 à 4.

7) Une molécule d'acide nucléique selon la revendication 6, comprenant ou constituée par une séquence choisie parmi celles représentées dans la liste de séquences en annexe sous les numéro SEQ ID No:24 à SEQ ID No:47.

5

10

15

20

25

- 8) Un vecteur comprenant au moins une molécule d'acide nucléique selon l'une des revendications 6 ou 7, avantageusement associée à des séquences de contrôle.
- 9) Procédé de production d'un récepteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il consiste :
- à transférer une molécule d'acide nucléique selon l'une des revendications 6 ou 7 ou un vecteur selon la revendication 8 dans un hôte,
  - à cultiver ledit hôte cellulaire dans des conditions permettant la production de la protéine constituant le récepteur,
  - à isoler, par tous moyens appropriés les dites protéines.
  - 10) Procédé d'expression d'un récepteur selon l'une quelconque des revendications 1 à 4 chez un hôte, caractérisé en ce qu'il consiste :
  - à transférer une molécule d'acide nucléique selon l'une des revendications 6 ou 7 ou un vecteur selon la revendication 8 dans un hôte,
- à cultiver ledit hôte dans des conditions permettant l'expression desdites récepteurs à la surface de l'hôte.
- 11) Un hôte transformé par une molécule 35 d'acide nucléique selon l'une des revendications 6 ou 7 ou par un vecteur selon la revendication 8.

- 12) Procédé de criblage de composés susceptibles de constituer des ligands d'un récepteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il consiste à mettre en contact un composé et un ou plusieurs desdits récepteurs puis à mesurer par tout moyen approprié l'affinité entre ledit composé et ledit récepteur.
- 13) Une membrane sur laquelle est fixée un ou plusieurs récepteurs selon l'une quelconque des revendications 1 à 4 utile pour la mise en oeuvre d'un procédé selon la revendication 12.

15

- 14) Un composé constituant un ligand d'un récepteur olfactif, identifié et sélectionné par le procédé selon la revendication 13.
  - 15) Utilisation d'un récepteur selon l'une quelconque des revendications 1 à 4, d'un hôte selon la revendication 11 ou d'une membrane selon la revendication 13, pour la détection d'arômes, le contrôle de qualité, l'analyse d'échantillons, l'analyse ou la comparaison de parfums, la détection de substances toxiques, ou le piégeage d'odeurs.

1 / 14

Fig. 1



|         | DII                                                         | EJ                          | DIII                        |      |
|---------|-------------------------------------------------------------|-----------------------------|-----------------------------|------|
|         | 1                                                           | ]43                         | 43                          |      |
| AMOR1   | PMYLFLGNLSFLDLSFTTSSIPQLLHNLSGRDKTISYVGCVVQLFLFLGLGGVECLLLA | <b>ŲLLHNLSGRDKTISYVGC</b> V | <b>VQLFLFLGLGGVECLLLA</b> . |      |
| AMOR2   | PMYLFLGNLSFVEVCLTSTTVPKILVNTQTLSKDISYRGCLTQVYFLMVFAGMDNFLLT | KILVNTQTLSKDISYRGCI         | TQVYFLMVFAGMDNFLLT          |      |
| AMOR3   | PMYLFLGNLSFLEVWYTTAAVPKALAILLGRSQSISFISCLLQMYLVFSLGCTEYFLLV | CALAILLGRSQSISFISCI         | LOMYLVFSLGCTEYFLLV          |      |
| AMOR4   | PMYLFLGNLSFIDVCHSTVTVPKMLRDTWSEEKLISFDACVTQMFFLHLFACTEIFLLT | (MLRDTWSEEKLISFDACV         | TOMFFLHLFACTEIFLLT          |      |
| Fr.YOR5 | PMYLFLGNLSLLEIGYTCSVIPKMLQSLVSEARGISREGCATQMFFFTLFAISECCLLA | (MLQSLVSEARGISREGC?         | TOMFFFTLFAISECCLLA          |      |
| AMOR6   | PMYLFLGNLSFLEILYTSTVVPKMLEGFLQVA-AISVTGCLTQFFIFGSLATAECFLLA | MLEGFLQVA-AISVTGCI          | TQFFIFGSLATAECFLLA          |      |
| AMOR7   | PRYLFLGNLSLADIGISTTTIPQMVVNIQRKRKTISYAGCLTQVCFVLIFAGSENFLLA | <u> MVVNIQRKRKTISYAGCI</u>  | TQVCFVLIFAGSENFLLA          | Fi   |
| AMOR8   |                                                             |                             |                             | g. 2 |
| AMOR9   |                                                             |                             | 0                           | 2    |
| AMOR10  |                                                             |                             | 0                           |      |
| AMOR11  |                                                             |                             | 0                           |      |
| AMOR12  |                                                             |                             | 0                           |      |
| AMOR13  |                                                             |                             | 0                           |      |
| AMOR14  |                                                             | 1 1 1 1 1 1 1 1             | 0                           |      |
|         | * *****                                                     | * * *                       | **.                         |      |

Fig. 2 -suite-

| AMOR1  | 648383                                                      |
|--------|-------------------------------------------------------------|
| AMOR2  | VMAYDRFVAVCKPLHYTVIMSSRLCLGLVSVAWGCGMANSLVMSPVTLQLPRCGHNKVD |
| AMOR3  | VMAFDRFVAICYPLNYTVIMNPRLCVLLVLLSWLIMFWVSLLHILLLKRLTFSSGTAVP |
| MOR4   | AMAYDRYVAICFPLHYTTIMSLKLCLSLVVLSWVLTMLHALLHTLLVVRLSFCSDNVIP |
| AMOR5  | VMAYDRYVAICKPLQYMTVMNWKVCVLLAVALWAGGTIHSISLTIKLPYCGPDEID    |
| AMOR6  | AMAFDRYMAICSPLHYATRMSRGVCAHLAVVSWTVGCMVGLGQTNYIFSLDFCGPCEID |
| AMOR7  | VMAYDRFLAICYPLRYPLLMGPRWCMGLVVTAWLSGFMVDELVVVLMAQLRFCGSNRID |
| AMOR8  | AMAYDRYAAICHPLRYTAIMNPHLCVLLVMISLSISTVDALLHSLMLLRLSFCTDLEIP |
| AMOR9  | ALAYDRFVAICHPLHYLVIMSPRHCGFLTLVSFLLSLLDSQLHSFMTLNITSFKDVEIS |
| AMOR10 | ALAYDRFVAICYPLHYMVIMNSRRCGLLILVSWIMSALHSLLQGLMMLRLSFCTDLEIS |
| AMOR11 | ALAYDRFVAICHPLHYPRIMSONLCFLLVVVSWVLSSANALLHTLLLARLSFLRGITLP |
| AMOR12 | ALAYDRFLAICYPLHYTVIMNPRLCGFSILVSFLLSLLDSQLHNLMILQITSFKDVEIS |
| AMOR13 | ALAYDRFVAICHPLHYPTIMNPRFCGFLVLVSFLVSLLESQLHNLIALQFTTFKDVKIA |
| AMOR14 | ALAYDRFGAIRFPLHNTTIMSPKLGLFLVVLSWVLTMFHAMLHTLLMARLCFCAENMIP |
|        | ALAYDRFLAICHPLHYTAIMNPRLCGLLVLVCWILSVLHALLQSLMVLRLSFCRDIEIP |
|        |                                                             |

Fig. 2 -suite-

|        | E2                       | DV                                                          | <b>i</b> 3 |
|--------|--------------------------|-------------------------------------------------------------|------------|
|        | 138                      | 163                                                         |            |
| AMOR1  | HFLCEMPALIRMACVNTVAIEGTV | HFLCEMPALIRMACVNTVAIEGTVFVLAVGIVLSPLVFILVSYGHIVRAVFRIQSSSGR | IQSSSGR    |
| AMOR2  | HFFCELSQLLKATSSDTLVNIILI | HFFCELSQLLKATSSDTLVNIILLYVVTALLGIFPATGILYSYSQIVSSLLRMSSSVGK | MSSSVGK    |
| AMOR3  | HFSCEISALLKLACSNTHVNELVI | EISALLKLACSNTHVNELVIFITGGLVIVTPFLLILGSYVQIFSSILKVPSARGI     | VPSARGI    |
| AMOR4  | NFFCDVPQVIKLACTDTHIIEILI | NFFCDVPQVIKLACTDTHIIEILIVSNSGLISVVCFVVLVVSYAVILVSLRQQIS-EGR | QIS-EGR    |
| AMOR5  | HFFCDLPPILALACGDTSHNEAAV | HFFCDLPPILALACGDTSHNEAAVFVVAILCISSPFLLIVASYGRILAAVLVMPSPEGR | MPSPEGR    |
| AMOR6  | HFYCDFMPLVVLACSDPRVAQVTT | HFYCDFMPLVVLACSDPRVAQVTTFVLSVVFLTVPFGLILTSYARIVVTVLRVPAGASR | VPAGASR    |
| AMOR7  | HFFCELDQVITLACSDTLINNLLI | ELDQVITLACSDTLINNLLIYVTAGIFAGVPLSGIIFSYLHIVSSVLRMPSPGGV     | MPSPGGV    |
| AMOR8  | NFFCDPSQLLNLSCSNTFSDNIVK | DPSQLLNLSCSNTFSDNIVKYFLGAFYGLFPISGILFSYYKIISSILRIPSLGGK     | IPSLGGK '  |
| AMOR9  | HFFCELNHLVHLACSDTFLNEVVI | HFFCELNHLVHLACSDTFLNEVVIYFAAVLLAGGPLAGILYSYCKIVSSIHAISSAQGK | ISSAQGK    |
| AMOR10 | HFFCDLSALLKLSSSDTTINQLAI | HFFCDLSALLKLSSSDTTINQLAILTAGSAVVTLPFMCILVSYGHIGATILRRPSLKGI | RPSLKGI    |
| AMOR11 | SFFCDPSQLLNLSCSDNYSINTGK | SFFCDPSQLLNLSCSDNYSINTGKYVLFALYSFFPISGILFSYYKIISSILRIPSSGGK | IPSSGGK    |
| AMOR12 | NFFCDPSQVLSLSCSGTFINIIVM | NFFCDPSQVLSLSCSGTFINIIVMYFVGALFGVFPISGILFSYYKIVSTILRIPSSGGK | IPSSGGK    |
| AMOR13 | HFFCDMSALLKLSCSNTHVNELVI | HFFCDMSALLKLSCSNTHVNELVIFITAGLILLIPLVLILLSYGHIVSSILKVPSARGI | VPSARGI    |
| AMOR14 | HFFCELNQVVQLACFDNLLNDIVM | HFFCELNQVVQLACFDNLLNDIVMNFALVLLATCPLAGILYSYSKIVSSIRAISSAQGK | ISSAQGK    |
|        | •                        | *                                                           |            |

FEUILLE RECTIFIEE (REGLE 91)

--236aa

-219-

--204

DVI

国

DVII

Fig. 2 -suite-

HRIFNTCGSHLTVVSLFYGNIIYMYMQPGSRSSQDQGKFLTLFYNIVTPLLNPFIYSLRN SKAFSTCGSHLCVVSLFYGTGLGVHLSSAMNHPSQGNMIASVMLHCGHPMLNPIIYTLRN HKAFSTCGSHLSVVSLFYGTIIGLYLCPSANNSTVKDTVVALMYTVVTPMLNPFIYTI.RN RKALSTCAAHLTVVTLFLGHCIFIYSRPSTSLPE--DKVVSVFFTAVTPLLNPFIYSLRN RKALSTCSSHLLVVTLFYGSGSVTYLRPKASHSPGMDKLLALFYTVVTSMLNPIIYTLRN RKAFSTCSSHLAVVSTFYGTLMVLYIVPSAVHSQLLSKVFALLYTVVTPIFNPIIYSFRN YKAFSTCGSHLSVVCLFYGTIFGVYISSAVTDSQRKGAVASVMYSVVPQMLNPIIYTLRN YKAFSTCGSHLAVFCLFLGTGTAVYFGSAVSHSPRENVVSSVMYTVVTPMLNPF1CS--YKAFSTCASHLSVVSLFYCTGLGVYLSSAVSHSSRSSATASVMYTVVTPMLNPFICS--YKAFSTCGSHLSVVCLFYGTGFGVYLGSAVSHSSRKSAVASVMYTVVTPMLNPFICS-HKTFSTCGSHLSVVSLFYGTVIGLYLCPSANNSTVKDTVMALMYTVVTPMLNPFICS-YKAFSTCGSHLAVVCLFLVTASTVYLGSVASHSPRNDVVASLMYTVVTPMLNPFICS YKAFSTCASHLSVVSLFYCTSPGVYLSSAVTQNSHSTATASVMYSVVTPMLNPFICS CKALSTCGSHLSVVSVYYGAVIALYIVPSSNSTNDKDIAVSVLYTLVI PMLNPFICS AMOR13 AMOR10 AMOR12 AMOR14 AMOR11 AMOR8 AMOR4 AMOR5 AMOR6 AMOR9 AMOR2 AMOR3 AMOR7 AMOR1

FEUILLE RECTIFIEE (REGLE 91)





FEUILLE RECTIFIEE (REGLE 91)



FEUILLE RECTIFIEE (REGLE 91)

Fig. 3 -suite-



FEUILLE RECTIFIEE (REGLE 91)

Fig. 3 -suite-



FEUILLE RECTIFIEE (REGLE 91)

Fig. 3 -suite-





Fig. 4





FEUILLE RECTIFIEE (REGLE 91)

13 / 14



FEUILLE RECTIFIEE (REGLE 91)

Fig. 5 -suite-AMPHIBIEN 213 686 AMPHIBIEN 1 23 5 900 AMPHIBIEN 15 523 98 AMPHIBIEN 1 552 400 **HUMAIN** 90 23 2 6 **HUMAIN 90 23 2 2** CHIEN 1 314 661 ABEILLE 9 14 1 66 **ABEILLE 9 14 1 62** POULET 151 4474 POULET 151 4482 POULET 1514484 **SOURIS 4 64 304** SOURIS 46 43 0 3 SOURIS 90 2667 POULET 1 246 530 RAT 5 17 366 RAT 1 29 09 1 RAT 4 23 701 \*( HUMAIN 13 360 41 **HUMAIN 902 328 HUMAIN 9 02 334** POULET 1 51 4 476 **ABEILLE 914160** POULET 1514480 CHIEN 1314 663 POULET 1 246 534 RAT 902 725 SOURIS 464 306 SOURIS 9 026 63 SOURIS 90 23 52 SOURIS 9 026 85 AMOR 6 \*(RAT 902723

FEUILLE RECTIFIEE (REGLE 91)

# LISTE DE SÉQUENCES

- (1) INFORMATION GÉNÉRALES:
  - (iii) NOMBRE DE SEQUENCES: 46
- (2) INFORMATION POUR LA SEQ ID NO:1 :
  - (i) CARACTERISTIQUES DE LA SEQUENCE:
    - (A) LONGUEUR: 237
    - (B) TYPE: acides aminés
  - (ii) TYPE DE MOLECULE: protéine
  - (ix) CARACTERISTIQUES
     (A) NOM/CLE: AMOR1
  - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:1:

Pro Met Tyr Leu Phe Leu Gly Asn Leu Ser Phe Leu Asp Leu Ser Phe 1 10 15

Thr Thr Ser Ser Ile Pro Gln Leu Leu His Asn Leu Ser Gly Arg Asp 20 25 30

Lys Thr Ile Ser Tyr Val Gly Cys Val Val Gln Leu Phe Leu Phe Leu 35 40 45

Gly Leu Gly Gly Val Glu Cys Leu Leu Leu Ala Val Met Ala Tyr Asp 50 55 60

Arg Phe Val Ala Val Cys Lys Pro Leu His Tyr Thr Val Ile Met Ser 65 70 75 80

Ser Arg Leu Cys Leu Gly Leu Val Ser Val Ala Trp Gly Cys Gly Met 85 90 95

Ala Asn Ser Leu Val Met Ser Pro Val Thr Leu Gln Leu Pro Arg Cys 100 105 110

Gly His Asn Lys Val Asp His Phe Leu Cys Glu Met Pro Ala Leu Ile 115 120 125

Arg Met Ala Cys Val Asn Thr Val Ala Ile Glu Gly Thr Val Phe Val
130 135 140

Leu Ala Val Gly Ile Val Leu Ser Pro Leu Val Phe Ile Leu Val Ser 145 150 150 160

Tyr Gly His Ile Val Arg Ala Val Phe Arg Ile Gln Ser Ser Gly
165 170 175

Arg His Arg Ile Phe Asn Thr Cys Gly Ser His Leu Thr Val Val Ser 180 185 190

Leu Phe Tyr Gly Asn Ile Ile Tyr Met Tyr Met Gln Pro Gly Ser Arg

205

195 200

Ser Ser Gln Asp Gin Gly Lys Phe Leu Thr Leu Phe Tyr Asn Ile Val 210 215 220

Thr Pro Leu Leu Asn Pro Phe Ile Tyr Ser Leu Arg Asn 225 230 235 237

#### (3) INFORMATION POUR LA SEQ ID NO:2 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 237
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR2

#### (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:2:

Pro Met Tyr Leu Phe Leu Gly Asn Leu Ser Phe Val Glu Val Cys Leu 1 5 10 15

Thr Ser Thr Thr Val Pro Lys Ile Leu Val Asn Thr Gln Thr Leu Ser 20 25 30

Lys Asp Ile Ser Tyr Arg Gly Cys Leu Thr Gln Val Tyr Phe Leu Met 35 40 45

Val Phe Ala Gly Met Asp Asn Phe Leu Leu Thr Val Met Ala Phe Asp 50 55 60

Arg Phe Val Ala Ile Cys Tyr Pro Leu Asn Tyr Thr Val Ile Met Asn 65 70 75 80

Pro Arg Leu Cys Val Leu Leu Val Leu Leu Ser Trp Leu Ile Met Phe 85 90 95

Trp Val Ser Leu Leu His Ile Leu Leu Leu Lys Arg Leu Thr Phe Ser 100 105 110

Ser Gly Thr Ala Val Pro His Phe Phe Cys Glu Leu Ser Gln Leu Leu 115 120 125

Lys Ala Thr Ser Ser Asp Thr Leu Val Asn Ile Ile Leu Leu Tyr Val 130 135 140

Val Thr Ala Leu Leu Gly Ile Phe Pro Ala Thr Gly Ile Leu Tyr Ser 145 150 150 160

Tyr Ser Gln Ile Val Ser Ser Leu Leu Arg Met Ser Ser Ser Val Gly
165 170 175

Lys Ser Lys Ala Phe Ser Thr Cys Gly Ser His Leu Cys Val Val Ser 180 185 190

Leu Phe Tyr Gly Thr Gly Leu Gly Val His Leu Ser Ser Ala Met Asn 195 200 205

His Pro Ser Gln Gly Asn Met Ile Ala Ser Val Met Leu His Cys Gly 210 215 220

His Pro Met Leu Asn Pro Ile Ile Tyr Thr Leu Arg Asn 225 230 235 235

## (4) INFORMATION POUR LA SEQ ID NO:3:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 237
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
   (A) NOM/CLE: AMOR3
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:3:

Pro Met Tyr Leu Phe Leu Gly Asn Leu Ser Phe Leu Glu Val Trp Tyr 1  $\phantom{-}$  10  $\phantom{-}$  15

Thr Thr Ala Ala Val Pro Lys Ala Leu Ala Ile Leu Gly Arg Ser 20 25 30

Gln Ser Ile Ser Phe Ile Ser Cys Leu Leu Gln Met Tyr Leu Val Phe 35 40 45

Ser Leu Gly Cys Thr Glu Tyr Phe Leu Leu Val Ala Met Ala Tyr Asp 50 55 60

Arg Tyr Val Ala Ile Cys Phe Pro Leu His Tyr Thr Thr Ile Met Ser 65 70 75 80

Leu Lys Leu Cys Leu Ser Leu Val Val Leu Ser Trp Val Leu Thr Met 85 90 95

Leu His Ala Leu Leu His Thr Leu Leu Val Val Arg Leu Ser Phe Cys
100 105 110

Ser Asp Asn Val Ile Pro His Phe Ser Cys Glu Ile Ser Ala Leu Leu 115 120 125

Lys Leu Ala Cys Ser Asn Thr His Val Asn Glu Leu Val Ile Phe Ile 130 135 140

Thr Gly Gly Leu Val Ile Val Thr Pro Phe Leu Leu Ile Leu Gly Ser 145 150 155 160

Tyr Val Gln Ile Phe Ser Ser Ile Leu Lys Val Pro Ser Ala Arg Gly
165 170 175

Ile His Lys Ala Phe Ser Thr Cys Gly Ser His Leu Ser Val Val Ser 180 185 190

Leu Phe Tyr Gly Thr Ile Ile Gly Leu Tyr Leu Cys Pro Ser Ala Asn 195 200 205 Asn Ser Thr Val Lys Asp Thr Val Val Ala Leu Met Tyr Thr Val Val 210 215 220

Thr Pro Met Leu Asn Pro Phe Ile Tyr Thr Leu Arg Asn 225 230 235 237

#### (5) INFORMATION POUR LA SEQ ID NO:4:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 234
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR4
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:4:

Pro Met Tyr Leu Phe Leu Gly Asn Leu Ser Phe Ile Asp Val Cys His 1 5 10 15

Ser Thr Val Thr Val Pro Lys Met Leu Arg Asp Thr Trp Ser Glu Glu 20 25 30

Lys Leu Ile Ser Phe Asp Ala Cys Val Thr Gln Met Phe Phe Leu His 35 40 45

Leu Phe Ala Cys Thr Glu Ile Phe Leu Leu Thr Val Met Ala Tyr Asp 50 55 60

Arg Tyr Val Ala Ile Cys Lys Pro Leu Gln Tyr Met Thr Val Met Asn 65 70 75 80

Trp Lys Val Cys Val Leu Leu Ala Val Ala Leu Trp Ala Gly Gly Thr 85 90 95

Ile His Ser Ile Ser Leu Thr Ser Leu Thr Ile Lys Leu Pro Tyr Cys 100 105 110

Gly Pro Asp Glu Ile Asp Asn Phe Phe Cys Asp Val Pro Gln Val Ile 115 120 125

Lys Leu Ala Cys Thr Asp Thr His Ile Ile Glu Ile Leu Ile Val Ser 130 135 140

Asn Ser Gly Leu Ile Ser Val Val Cys Phe Val Val Leu Val Val Ser 145 150 155 160

Tyr Ala Val Ile Leu Val Ser Leu Arg Gln Gln Ile Ser Glu Gly Arg 165 170 175

Arg Lys Ala Leu Ser Thr Cys Ala Ala His Leu Thr Val Val Thr Leu 180 185 190

Phe Leu Gly His Cys Ile Phe Ile Tyr Ser Arg Pro Ser Thr Ser Leu 195 200 205 Pro Glu Asp Lys Val Val Ser Val Phe Phe Thr Ala Val Thr Pro Leu 210 215 220

Leu Asn Pro Phe Ile Tyr Ser Leu Arg Asn 225 230 234

### (6) INFORMATION POUR LA SEQ ID NO:5 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 237
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR5
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:5:

Pro Met Tyr Leu Phe Leu Gly Asn Leu Ser Leu Leu Glu Ile Gly Tyr 1 5 10 15

Thr Cys Ser Val Ile Pro Lys Met Leu Gln Ser Leu Val Ser Glu Ala 20 25 30

Arg Gly Ile Ser Arg Glu Gly Cys Ala Thr Gln Met Phe Phe Thr 35 40 45

Leu Phe Ala Ile Ser Glu Cys Cys Leu Leu Ala Ala Met Ala Phe Asp 50 55 60

Arg Tyr Met Ala Ile Cys Ser Pro Leu His Tyr Ala Thr Arg Met Ser 65 70 75 80

Arg Gly Val Cys Ala His Leu Ala Val Val Ser Trp Thr Val Gly Cys 85 90 95

Met Val Gly Leu Gly Gln Thr Asn Tyr Ile Phe Ser Leu Asp Phe Cys 100 105 110

Gly Pro Cys Glu Ile Asp His Phe Phe Cys Asp Leu Pro Pro Ile Leu 115 120 125

Ala Leu Ala Cys Gly Asp Thr Ser His Asn Glu Ala Ala Val Phe Val 130 135 140

Val Ala Ile Leu Cys Ile Ser Ser Pro Phe Leu Leu Ile Val Ala Ser 145 150 155 160

Tyr Gly Arg Ile Leu Ala Ala Val Leu Val Met Pro Ser Pro Glu Gly 165 170 175

Arg Arg Lys Ala Leu Ser Thr Cys Ser Ser His Leu Leu Val Val Thr 180 185 190

Leu Phe Tyr Gly Ser Gly Ser Val Thr Tyr Leu Arg Pro Lys Ala Ser 195 200 205 His Ser Pro Gly Met Asp Lys Leu Leu Ala Leu Phe Tyr Thr Val Val 210 215 220

Thr Ser Met Leu Asn Pro Ile Ile Tyr Thr Leu Arg Asn 225 230 235 237

#### (7) INFORMATION POUR LA SEQ ID NO:6:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 236
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR6
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:6:

Pro Met Tyr Leu Phe Leu Gly Asn Leu Ser Phe Leu Glu Ile Leu Tyr 1 5 10 15

Thr Ser Thr Val Val Pro Lys Met Leu Glu Gly Phe Leu Gln Val Ala 20 25 30

Ala Ile Ser Val Thr Gly Cys Leu Thr Gln Phe Phe Ile Phe Gly Ser 35 40 45

Leu Ala Thr Ala Glu Cys Phe Leu Leu Ala Val Met Ala Tyr Asp Arg 50 55 60

Phe Leu Ala Ile Cys Tyr Pro Leu Arg Tyr Pro Leu Leu Met Gly Pro 65 70 75 80

Arg Trp Cys Met Gly Leu Val Val Thr Ala Trp Leu Ser Gly Phe Met 85 90 95

Val Asp Glu Leu Val Val Leu Met Ala Gln Leu Arg Phe Cys Gly

Ser Asn Arg Ile Asp His Phe Tyr Cys Asp Phe Met Pro Leu Val Val 115 120 125

Leu Ala Cys Ser Asp Pro Arg Val Ala Gln Val Thr Thr Phe Val Leu 130 135 140

Ser Val Val Phe Leu Thr Val Pro Phe Gly Leu Ile Leu Thr Ser Tyr

Ala Arg Ile Val Val Thr Val Leu Arg Val Pro Ala Gly Ala Ser Arg 165 170 175

Arg Lys Ala Phe Ser Thr Cys Ser Ser His Leu Ala Val Val Ser Thr

Phe Tyr Gly Thr Leu Met Val Leu Tyr Ile Val Pro Ser Ala Val His 195 200 205

Ser Gln Leu Leu Ser Lys Val Phe Ala Leu Leu Tyr Thr Val Val Thr 210 215 220

Pro Ile Phe Asn Pro Ile Ile Tyr Ser Phe Arg Asn 225 230 235 236

#### (8) INFORMATION POUR LA SEQ ID NO:7:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 237
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR7
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:7:

Pro Arg Tyr Leu Phe Leu Gly Asn Leu Ser Leu Ala Asp Ile Gly Ile
1 5 10 15

Ser Thr Thr Ile Pro Gln Met Val Val Asn Ile Gln Arg Lys Arg 20 25 30

Lys Thr Ile Ser Tyr Ala Gly Cys Leu Thr Gln Val Cys Phe Val Leu 35 40 45

Ile Phe Ala Gly Ser Glu Asn Phe Leu Leu Ala Ala Met Ala Tyr Asp 50 55 60

Arg Tyr Ala Ala Ile Cys His Pro Leu Arg Tyr Thr Ala Ile Met Asn 65 70 75 80

Pro His Leu Cys Val Leu Leu Val Met Ile Ser Leu Ser Ile Ser Thr 85 90 95

Val Asp Ala Leu Leu His Ser Leu Met Leu Leu Arg Leu Ser Phe Cys 100 105 110

Thr Asp Leu Glu Ile Pro His Phe Phe Cys Glu Leu Asp Gln Val Ile 115 120 125

Thr Leu Ala Cys Ser Asp Thr Leu Ile Asn Asn Leu Leu Ile Tyr Val 130 135 140

Thr Ala Gly Ile Phe Ala Gly Val Pro Leu Ser Gly Ile Ile Phe Ser 145 150 155 160

Tyr Leu His Ile Val Ser Ser Val Leu Arg Met Pro Ser Pro Gly Gly 165 170 175

Val Tyr Lys Ala Phe Ser Thr Cys Gly Ser His Leu Ser Val Val Cys 180 185 190

Leu Phe Tyr Gly Thr Ile Phe Gly Val Tyr Ile Ser Ser Ala Val Thr

Asp Ser Gln Arg Lys Gly Ala Val Ala Ser Val Met Tyr Ser Val Val 210 215 220

Pro Gln Met Leu Asn Pro Ile Ile Tyr Thr Leu Arg Asn 225 230 235 237

## (9) INFORMATION POUR LA SEQ ID NO:8:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 176
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR8
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:8:

Gln Ala Leu Ala Tyr Asp Arg Phe Val Ala Ile Cys His Pro Leu His 1 5 10 15

Tyr Leu Val Ile Met Ser Pro Arg His Cys Gly Phe Leu Thr Leu Val 20 25 30

Ser Phe Leu Leu Ser Leu Leu Asp Ser Gln Leu His Ser Phe Met Thr 35 40 45

Leu Asn Ile Thr Ser Phe Lys Asp Val Glu Ile Ser Asn Phe Phe Cys 50 55 60

Asp Pro Ser Gln Leu Leu Asn Leu Ser Cys Ser Asn Thr Phe Ser Asp 65 70 75 80

Asn Ile Val Lys Tyr Phe Leu Gly Ala Phe Tyr Gly Leu Phe Pro Ile 85 90 95

Ser Gly Ile Leu Phe Ser Tyr Tyr Lys Ile Ile Ser Ser Ile Leu Arg 100 105 110

Ile Pro Ser Leu Gly Gly Lys Tyr Lys Ala Phe Ser Thr Cys Gly Ser 115 120 125

His Leu Ala Val Val Cys Leu Phe Leu Val Thr Ala Ser Thr Val Tyr

Leu Gly Ser Val Ala Ser His Ser Pro Arg Asn Asp Val Val Ala Ser 145 150 155 160

Leu Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe Ile Cys Ser 165 170 175 176

#### (10) INFORMATION POUR LA SEQ ID NO:9 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 176
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR9
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:9 :

Gln Ala Leu Ala Tyr Asp Arg Phe Val Ala Ile Cys Tyr Pro Leu His 1  $\phantom{-}$  5  $\phantom{-}$  10  $\phantom{-}$  15

Tyr Met Val Ile Met Asn Ser Arg Arg Cys Gly Leu Leu Ile Leu Val 20 25 30

Ser Trp Ile Met Ser Ala Leu His Ser Leu Leu Gln Gly Leu Met Met 35 40 45

Leu Arg Leu Ser Phe Cys Thr Asp Leu Glu Ile Ser His Phe Phe Cys 50 55 60

Glu Leu Asn His Leu Val His Leu Ala Cys Ser Asp Thr Phe Leu Asn 65 70 75 80

Glu Val Val Ile Tyr Phe Ala Ala Val Leu Leu Ala Gly Gly Pro Leu 85 90 95

Ala Gly Ile Leu Tyr Ser Tyr Cys Lys Ile Val Ser Ser Ile His Ala 100 105 110

Ile Ser Ser Ala Gln Gly Lys Tyr Lys Ala Phe Ser Thr Cys Ala Ser

His Leu Ser Val Val Ser Leu Phe Tyr Cys Thr Ser Pro Gly Val Tyr 130 135 140

Leu Ser Ser Ala Val Thr Gln Asn Ser His Ser Thr Ala Thr Ala Ser 145 150 155 160

Val Met Tyr Ser Val Val Thr Pro Met Leu Asn Pro Phe Ile Cys Ser 165 170 175 176

#### (11) INFORMATION POUR LA SEQ ID NO:10 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 176
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR10
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:10 :

Gln Ala Leu Ala Tyr Asp Arg Phe Val Ala Ile Cys His Pro Leu His 1 5 10 15 15 Tyr Pro Arg Ile Met Ser Gln Asn Leu Cys Phe Leu Leu Val Val Val 20 25 30

Ser Trp Val Leu Ser Ser Ala Asn Ala Leu Leu His Thr Leu Leu Leu 40 45

Ala Arg Leu Ser Phe Leu Arg Gly Ile Thr Leu Pro His Phe Phe Cys 50 55 60

Asp Leu Ser Ala Leu Leu Lys Leu Ser Ser Ser Asp Thr Thr Ile Asn 65 70 75 80

Gln Leu Ala Ile Leu Thr Ala Gly Ser Ala Val Val Thr Leu Pro Phe 85 90 95

Met Cys Ile Leu Val Ser Tyr Gly His Ile Gly Ala Thr Ile Leu Arg 100 105 110

Arg Pro Ser Leu Lys Gly Ile Cys Lys Ala Leu Ser Thr Cys Gly Ser 115 120 125

His Leu Ser Val Val Ser Val Tyr Tyr Gly Ala Val Ile Ala Leu Tyr 130 135 140

Ile Val Pro Ser Ser Asn Ser Thr Asn Asp Lys Asp Ile Ala Val Ser 145 150 155 160

Val Leu Tyr Thr Leu Val Ile Pro Met Leu Asn Pro Phe Ile Cys Ser 165 170 175 176

#### (12) INFORMATION POUR LA SEQ ID NO:11 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 176
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR11
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:11:

Gln Ala Leu Ala Tyr Asp Arg Phe Leu Ala Ile Cys Tyr Pro Leu His 1 5 10 15

Tyr Thr Val Ile Met Asn Pro Arg Leu Cys Gly Phe Ser Ile Leu Val 20 25 30

Ser Phe Leu Leu Ser Leu Leu Asp Ser Gln Leu His Asn Leu Met Ile 35 40 45

Leu Gln Ile Thr Ser Phe Lys Asp Val Glu Ile Ser Ser Phe Phe Cys 50 55 60

Asp Pro Ser Gln Leu Leu Asn Leu Ser Cys Ser Asp Asn Tyr Ser Ile 65 70 75 80

Asn Thr Gly Lys Tyr Val Leu Phe Ala Leu Tyr Ser Phe Phe Pro Ile 85 90 95

Ser Gly Ile Leu Phe Ser Tyr Tyr Lys Ile Ile Ser Ser Ile Leu Arg 100 105 110

· Ile Pro Ser Ser Gly Gly Lys Tyr Lys Ala Phe Ser Thr Cys Gly Ser 115 120 125

His Leu Ala Val Phe Cys Leu Phe Leu Gly Thr Gly Thr Ala Val Tyr 130 135 140

Phe Gly Ser Ala Val Ser His Ser Pro Arg Glu Asn Val Val Ser Ser 145 150 155 160

Val Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe Ile Cys Ser 165 170 175 176

#### (13) INFORMATION POUR LA SEQ ID NO:12 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 176
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR12
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:12 :

Gln Ala Leu Ala Tyr Asp Arg Phe Val Ala Ile Cys His Pro Leu His 1 5 10 15

Tyr Pro Thr Ile Met Asn Pro Arg Phe Cys Gly Phe Leu Val Leu Val 20 25 30

Ser Phe Leu Val Ser Leu Leu Glu Ser Gln Leu His Asn Leu Ile Ala 35 40 45

Leu Gln Phe Thr Thr Phe Lys Asp Val Lys Ile Ala Asn Phe Phe Cys
50 60

Asp Pro Ser Gln Val Leu Ser Leu Ser Cys Ser Gly Thr Phe Ile Asn 65 70 75 80

Ile Ile Val Met Tyr Phe Val Gly Ala Leu Phe Gly Val Phe Pro Ile 85 90 95

Ser Gly Ile Leu Phe Ser Tyr Tyr Lys Ile Val Ser Thr Ile Leu Arg

His Leu Ser Val Val Cys Leu Phe Tyr Gly Thr Gly Phe Gly Val Tyr 130 135 140 Leu Gly Ser Ala Val Ser His Ser Ser Arg Lys Ser Ala Val Ala Ser 145 150 155 160

Val Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe Ile Cys Ser 165 170 175 176

### (14) INFORMATION POUR LA SEQ ID NO:13 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 168
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR13
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:13:

Gly Ala Ile Arg Phe Pro Leu His Asn Thr Thr Ile Met Ser Pro Lys
1 10 15

Leu Gly Leu Phe Leu Val Val Leu Ser Trp Val Leu Thr Met Phe His  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Ala Met Leu His Thr Leu Leu Met Ala Arg Leu Cys Phe Cys Ala Glu 35 40 45

Asn Met Ile Pro His Phe Phe Cys Asp Met Ser Ala Leu Leu Lys Leu 50 55 60

Ser Cys Ser Asn Thr His Val Asn Glu Leu Val Ile Phe Ile Thr Ala 65 70 75 80

Gly Leu Ile Leu Leu Ile Pro Leu Val Leu Ile Leu Leu Ser Tyr Gly 85 90 95

His Ile Val Ser Ser Ile Leu Lys Val Pro Ser Ala Arg Gly Ile His
100 105 110

Lys Thr Phe Ser Thr Cys Gly Ser His Leu Ser Val Val Ser Leu Phe 115 120 125

Tyr Gly Thr Val Ile Gly Leu Tyr Leu Cys Pro Ser Ala Asn Asn Ser 130 135 140

Thr Val Lys Asp Thr Val Met Ala Leu Met Tyr Thr Val Val Thr Pro 145 150 155 160

Met Leu Asn Pro Phe Ile Cys Ser 165 168 WO 99/67282

13

#### (15) INFORMATION POUR LA SEQ ID NO:14:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 176
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR14
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:14 :

Gln Ala Leu Ala Tyr Asp Arg Phe Leu Ala Ile Cys His Pro Leu His 1 5 10 15

Tyr Thr Ala Ile Met Asn Pro Arg Leu Cys Gly Leu Leu Val Leu Val
20 25 30

Cys Trp Ile Leu Ser Val Leu His Ala Leu Leu GIn Ser Leu Met Val 35 40 45

Leu Arg Leu Ser Phe Cys Arg Asp Ile Glu Ile Pro His Phe Phe Cys 50 55 60

Glu Leu Asn Gln Val Val Gln Leu Ala Cys Phe Asp Asn Leu Leu Asn 65 70 75 80

Asp Ile Val Met Asn Phe Ala Leu Val Leu Leu Ala Thr Cys Pro Leu 85 90 95

Ala Gly Ile Leu Tyr Ser Tyr Ser Lys Ile Val Ser Ser Ile Arg Ala
100 105 110

Ile Ser Ser Ala Gln Gly Lys Tyr Lys Ala Phe Ser Thr Cys Ala Ser 115 120 125

His Leu Ser Val Val Ser Leu Phe Tyr Cys Thr Gly Leu Gly Val Tyr 130 135 140

Leu Ser Ser Ala Val Ser His Ser Ser Arg Ser Ser Ala Thr Ala Ser 145 150 150 160

Val Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe Ile Cys Ser 165 170 175 176

#### (16) INFORMATION POUR LA SEQ ID NO:15 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 119
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR15
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:15 :

Val Phe Pro Leu Ser Gly Ile Leu Phe Ser Tyr Ser Gln Ile Phe Ser 35 40 45

Ser Ile Leu Arg Ile Ser Ser Asp Arg Gly Lys Tyr Lys Val Phe Ser 50 55 60

Thr Cys Gly Ser His Leu Leu Val Val Ser Leu Phe Tyr Gly Ser Ser 65 70 75 80

Leu Gly Val Tyr Leu Ser Ser Val Ala Thr Leu Ser Ser Arg Met Thr 85 90 95

Leu Met Ala Ser Val Met Tyr Thr Met Val Thr Pro Met Leu Asn Pro 100 105 110

Ile Ile Tyr Thr Leu Arg Asn 115 119

### (17) INFORMATION POUR LA SEQ ID NO:16 :

- (i) CARACTRERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 159
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR16
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:16:

Pro Met Tyr Leu Phe Leu Gly Asn Leu Ser Phe Leu Glu Ile Leu Tyr 1 5 10 15

Thr Ser Thr Val Val Pro Lys Met Leu Glu Gly Phe Leu Gln Val Ala 20 25 30

Ala Ile Ser Val Thr Gly Cys Leu Thr Gln Phe Phe Ile Phe Gly Ser 35 40 45

Leu Ala Thr Ala Glu Cys Phe Leu Leu Ala Val Met Ala Tyr Asp Arg 50 55 60

Phe Leu Ala Ile Cys Tyr Pro Leu Arg Tyr Pro Leu Leu Met Gly Pro 65 70 75 80

Arg Trp Cys Met Gly Leu Val Val Thr Ala Trp Leu Ser Gly Phe Met

Val Asp Glu Leu Val Val Val Leu Met Ala Gln Leu Arg Phe Cys Gly 100 105 110

Ser Asn Arg Ile Asp His Phe Tyr Cys His Phe Met Pro Leu Val Val 115 120 125

Leu Ala Cys Ser Asp Pro Arg Val Ala Gln Val Thr Thr Phe Val Leu 130 135 140

Ser Val Val Pro Leu Thr Val Pro Phe Gly Leu Ile Leu Thr Ser 145 150 155 159

# (18) INFORMATION POUR LA SEQ ID NO:17 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 113
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR17
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:17 :

Glu Asp Leu Cys Ala Arg Leu Lys Arg Ser Arg Ser Asp Thr Thr Ile 1 10 15

Asn Glu Val Gly Ile Leu Thr Ala Gly Ser Ala Val Val Thr Leu Pro  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Phe Met Cys Ile Leu Val Ser Tyr Gly His Met Gly Ala Thr Ile Leu 35 40 45

Arg Arg Pro Ser Leu Lys Gly Met Cys Lys Ala Leu Ser Thr Cys Gly 50 60

Ser His Leu Cys Val Val Ser Val Tyr Tyr Gly Ala Val Ile Ala Leu 65 70 75 80

Tyr Ile Val Pro Ser Ser Asn Ser Thr Asn Asp Lys Asp Ile Ala Val 85 90 95

Ser Val Leu Tyr Thr Leu Val Ile Pro Met Leu Asn Pro Phe Ile Cys

Ser 113

#### (19) INFORMATION POUR LA SEQ ID NO:18:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 176
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR18
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:18 :

Gln Ala Leu Gly Tyr Asp Arg Phe Val Ala Met Cys His Pro Gly Gln 1 5 10 15

Tyr Leu Val Ile Met Ser Pro Arg His Gly Gly Phe Leu Thr Leu Val 20 25 30

Ser Phe Leu Leu Ser Leu Leu Asp Ser Gln Leu His Ser Phe Met Thr 35 40 45

Leu Asn Ile Thr Ser Phe Lys Asp Val Glu Ile Ser Asn Phe Phe Cys 50 55 60

Asp Pro Ser Gln Leu Leu Asn Leu Ser Cys Ser Asn Thr Phe Ser Asp 65 70 75 80

As Ille Val Lys Tyr Phe Leu Gly Ala Phe Tyr Gly Leu Phe Pro Ile 85 90 95

Ser Gly Iie Leu Phe Ser Tyr Tyr Lys Ile Ile Ser Ser Ile Leu Arg  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Ile Pro Ser Leu Gly Gly Lys Tyr Lys Ala Phe Ser Thr Cys Gly Ser

His Leu Ala Val Val Cys Leu Phe Leu Val Thr Ala Ser Thr Val Tyr 130 135 140

Leu Gly Ser Val Ala Ser His Ser Pro Arg Asn Asp Val Val Ala Ser 145 150 155 160

Leu Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe Ile Cys Ser 165 170 175 176

## (20) INFORMATION POUR LA SEQ ID NO:19 :

- (i) CARACTRERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 176
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR19
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:19:

Gln Ala Leu Ala Tyr Asp Arg Phe Leu Ala Ile Cys His Pro Leu His 1 10 15

Tyr Leu Val Ile Met Ser Pro Arg His Cys Gly Phe Leu Thr Leu Val 20 25 30

Ser Phe Leu Leu Ser Leu Leu Asp Ser Gln Leu His Ser Phe Met Thr 35 40 45

Leu Asn Ile Thr Ser Phe Lys Asp Val Glu Ile Ser Asn Phe Phe Cys 50 55 60

Asp Pro Ser Gln Leu Leu Asn Leu Ser Cys Ser Asn Thr Phe Ser Asp 65 70 75 80

Asn Ile Val Lys Tyr Phe Leu Gly Ala Phe Tyr Gly Leu Phe Pro Ile 85 90 95

Ser Gly Ile Leu Phe Ser Tyr Tyr Lys Ile Ile Ser Ser Ile Leu Arg 100 105 110

· Ile Pro Ser Leu Gly Gly Lys Tyr Lys Ala Phe Ser Thr Cys Gly Ser 115 120 125

His Leu Ala Val Val Cys Leu Phe Leu Val Thr Ala Ser Thr Val Tyr 130 135 140

Leu Gly Ser Val Ala Ser His Ser Pro Arg Asn Asp Val Val Ala Ser 145 150 155 160

Leu Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe Ile Cys Ser 165 170 175 176

# (21) INFORMATION POUR LA SEQ ID NO:20 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 176
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  (A) NOM/CLE: AMOR20
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:20 :

Gln Ala Leu Ala Tyr Asp Arg Phe Leu Ala Ile Cys His Pro Arg His 1 5 10 15

Tyr Leu Val Ile Met Ser Pro Arg His Cys Gly Phe Leu Thr Leu Val

Ser Phe Leu Leu Ser Leu Leu Asp Ser Gln Leu His Ser Phe Met Thr 35 40 45

Leu Asn Ile Thr Ser Phe Lys Asp Val Glu Ile Ser Asn Phe Phe Cys 50 55 60

Asp Pro Ser Gln Leu Leu Asn Leu Ser Cys Ser Asn Thr Phe Ser Asp 65 70 75 80

Asn Ile Val Lys Tyr Phe Leu Gly Ala Phe Tyr Gly Leu Phe Pro Ile 85 90 95

Ser Gly Ile Leu Phe Ser Tyr Tyr Lys Ile Ile Ser Ser Ile Leu Arg 100 105 110

Ile Pro Ser Leu Gly Gly Lys Tyr Lys Ala Phe Ser Thr Cys Gly Ser 115 120 125

His Leu Ala Val Val Cys Leu Phe Leu Val Thr Ala Ser Thr Val Tyr 130 135 140 Leu Gly Ser Val Ala Ser His Ser Pro Arg Asn Asp Val Val Ala Ser 145 150 155 160

Leu Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe Ile Cys Ser 165 170 175 176

# (22) INFORMATION POUR LA SEQ ID NO:21:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 112
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR21
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:21 :

Pro Met Tyr Leu Phe Leu Gly Asn Leu Ser Phe Met Asp Ile Cys Phe 1 10 15

Thr Thr Val Val Val Pro Lys Met Leu Ala Asn Leu Leu Ser Glu Thr 20 25 30

Lys Gly Ile Ser Tyr Val Gly Cys Leu Val Gln Met Tyr Phe Phe Met 35 40 45

Ala Phe Gly Asn Thr Asp Ser Tyr Leu Leu Ala Ser Met Ala Ile Asp

Arg Leu Val Ala Ile Cys Asn Pro Leu His Tyr Asp Val Ala Met Arg 65 70 75 80

Pro His Arg Cys Leu Leu Met Leu Leu Gly Ser Cys Thr Ile Ser His 85 90 95

Leu His Ala Leu Phe Arg Val Leu Leu Met Ser Arg Leu Ser Phe Cys 100 105 110 112

# (23) INFORMATION POUR LA SEQ ID NO:22 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 119
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR22
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:22:

His Leu Cys Arg Leu His Leu Thr Val Leu Lys Leu Ala Cys Ser Asp 1 10 15 Thr Leu Ile Asn Asn Ile Val Val Phe Ser Met Ile Ile Val Leu Gly 20 25 30

Val Phe Pro Leu Ser Gly Ile Leu Phe Ser Tyr Ser Gln Ile Phe Ser 35 40 45

Ser Ile Leu Arg Ile Ser Ser Asp Arg Gly Lys Tyr Lys Val Phe Ser 50 60

Thr Cys Gly Ser His Leu Leu Val Val Ser Leu Phe Tyr Gly Ser Ser 65 70 75 80

Leu Gly Val Tyr Leu Ser Ser Val Ala Thr Leu Ser Ser Arg Met Thr 85 90 95

Leu Met Ala Ser Val Met Tyr Thr Met Val Thr Pro Met Leu Asn Pro 100 105 110

Ile Ile Tyr Thr Leu Arg Asn 115 119

#### (24) INFORMATION POUR LA SEQ ID NO:23:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 141
  - (B) TYPE: acides aminés
- (ii) TYPE DE MOLECULE: protéine
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR23
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:23:

Trp Ser Leu Leu Glu Ser Gln Leu His Ser Leu Arg Thr Leu Asn Met

1 10 15

Thr Ser Phe Arg Asp Val Glu Ser Ser Asn Leu Leu Cys Asp Pro Ser 20 25 30

Gln Met Leu Asn Leu Ser Cys Ser Asn Thr Phe Ser Asp Asn Ile Val 35 40 45

Lys Tyr Phe Leu Gly Ala Phe Tyr Gly Leu Phe Pro Ile Ser Gly Ile 50 55 60

Leu Phe Ser Tyr Tyr Lys Ile Ile Ser Ser Ile Leu Arg Ile Pro Ser 65 70 75 80

Leu Gly Gly Lys Tyr Lys Ala Phe Ser Thr Cys Gly Ser His Leu Ala 85 90 95

Val Val Cys Leu Phe Leu Val Thr Ala Ser Thr Val Tyr Leu Gly Ser 100 105 110

Val Ala Ser His Ser Pro Arg Asn Asp Val Val Ala Ser Leu Met Tyr 115 120 125 Thr Val Val Thr Pro Met Leu Asn Pro Phe Ile Cys Ser 130 135 140 141

FEUILLE DE REMPLACEMENT (REGLE 26)

## (25) INFORMATION POUR LA SEQ ID NO:24 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 711
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 1
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:24 :

| CCT | ATG | TAT | TTG | TTC | CTT | GGC | AAC | TTG | TCC | TTC | CTG            | GAC | CTC | AGC | TTC | 48  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|-----|-----|-----|-----|-----|
| ACC | ACC | AGC | TCC | ATC | CCC | CAG | CTG | CTC | CAC | AAC | CTG            | AGT | GGC | CGT | GAC | 96  |
| AAG | ACC | ATC | AGC | TAT | GTG | GGC | TGC | GTG | GTC | CAG | CTC            | TTC | CTG | TTC | CTG | 144 |
| GGC | CTG | GGT | GGA | GTG | GAG | TGT | CTA | CTG | CTG | GCC | GTC            | ATG | GCC | TAT | GAC | 192 |
| AGG | TTC | GTG | GCC | GTC | TGC | AAG | CCC | CTG | CAC | TAC | ACG            | GTG | ATC | ATG | AGT | 240 |
| TCC | AGG | CTC | TGC | CTG | GGC | TTG | GTG | TCA | GTG | GCC | TGG            | GGC | TGT | GGA | ATG | 288 |
| GCC | AAC | TCC | TTG | GTC | ATG | TCT | CCA | GTG | ACC | CTA | CAA            | TTA | CCC | CGC | TGC | 336 |
| GGG | CAC | AAT | AAG | GTG | GAC | CAT | TTC | CTG | TGT | GAG | $\mathbf{ATG}$ | CCA | GCC | CTG | ATC | 384 |
| CGC | ATG | GCC | TGC | GTC | AAC | ACA | GTG | GCC | ATA | GAA | GGC            | ACT | GTC | TTT | GTC | 432 |
| CTG | GCC | GTG | GGC | ATC | GTG | CTG | TCT | CCC | CTG | GTC | TTC            | ATC | TTG | GTG | TCC | 480 |
| TAT | GGC | CAC | ATC | GTC | AGG | GCG | GTG | TTC | AGA | ATC | CAG            | TCG | TCC | TCA | GGA | 528 |
| AGA | CAC | AGA | ATC | TTC | AAC | ACC | TGT | GGC | TCC | CAC | CTC            | ACC | GTG | GTC | TCC | 576 |
| CTG | TTC | TAC | GGG | AAC | ATC | ATC | TAC | ATG | TAC | ATG | CAG            | CCA | GGA | AGC | AGG | 624 |
| TCC | TCC | CAG | GAC | CAG | GGC | AAG | TTC | CTC | ACC | CTC | TTC            | TAC | AAC | ATC | GTC | 672 |
| ACC | CCC | CTC | CTG | AAC | CCC | TTC | ATC | TAT | TCC | CTC | AGG            | AAT |     |     |     | 711 |

## (26) INFORMATION POUR LA SEQ ID NO:25 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 711
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 2
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:25 :

| CCC | ATG | TAT | TTG | TTC | CTT | GGT | AAC            | CTG | TCC | TTT            | GTG | GAA | GTC                              | TGT | TTA | . 48 |
|-----|-----|-----|-----|-----|-----|-----|----------------|-----|-----|----------------|-----|-----|----------------------------------|-----|-----|------|
| ACC | TCC | ACC | ACG | GTC | CCC | AAG | ATA            | CTG | GTG | AAC            | ACG | CAG | ACA                              | CTC | AGC | 96   |
| AAA | GAC | ATC | TCC | TAC | AGA | GGC | TGC            | CTT | ACT | CAG            | GTG | TAT | $\mathbf{T}\mathbf{T}\mathbf{T}$ | TTA | ATG | 144  |
| GTT | TTT | GCA | GGT | ATG | GAT | AAT | TTC            | CTT | CTG | ACT            | GTG | ATG | GCC                              | TTT | GAC | 192  |
| CGC | TTT | GTG | GCC | ATC | TGC | TAC | CCC            | CTG | AAC | TAT            | ACG | GTC | ATC                              | ATG | AAC | 240  |
| CCC | AGG | CTC | TGT | GTC | CTC | CTG | GTG            | CTG | CTG | $\mathtt{TCT}$ | TGG | CTC | ATC                              | ATG | TTC | 288  |
| TGG | GTG | TCC | TTA | CTT | CAC | ATT | CTA            | CTC | CTG | AAG            | CGA | CTG | ACC                              | TTC | TCC | 336  |
| AGT | GGC | ACT | GCA | GTC | CCT | CAT | $\mathbf{TTC}$ | TTC | TGT | GAA            | CTG | TCT | CAG                              | CTT | CTC | 384  |
| AAA | GCA | ACC | AGC | TCT | GAC | ACC | CTC            | GTC | AAT | ATC            | ATC | TTA | CTG                              | TAT | GTG | 432  |
| GTG | ACT | GCC | CTG | CTG | GGT | ATC | TTC            | CCT | GCC | ACT            | GGG | ATC | CTC                              | TAC | TCC | 480  |
| TAC | TCT | CAG | ATC | GTC | TCT | TCC | TTA            | CTG | AGG | ATG            | TCC | TCC | TCT                              | GTG | GGC | 528  |
| AAG | TCT | AAA | GCC | TTC | TCC | ACC | TGT            | GGT | TCC | CAC            | CTC | TGT | GTG                              | GTC | TCC | 576  |

| TTG | $\mathbf{T}\mathbf{T}\mathbf{C}$ | TAT | GGA | ACA | GGT | CTT | GGG | GTT | CAC | CTC | AGT | TCT | GCC | ATG | AAC | 624 | 4 |
|-----|----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|
| CAT | CCT                              | TCT | CAG | GGA | AAC | ATG | ATT | GCC | TCC | GTG | ATG | TTA | CAC | TGT | GGT | 67: | 2 |
| CAC | CCC                              | ATG | CTG | AAC | CCC | ATC | ATC | TAC | ACC | CTC | CGG | AAC |     |     |     | 71. | 1 |

## (27) INFORMATION POUR LA SEQ ID NO:26:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 711
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 3
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:26 :

| CCC | ATG | TAC | TTG | TTT | CTT | GGC | AAT | CTG | TCC | TTC | CTG | GAG | GTC | TGG | TAC | 48  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ACC | ACG | GCC | GCA | GTG | CCC | AAA | GCC | CTG | GCC | ATC | CTG | CTG | GGG | AGG | AGC | 96  |
| CAG | AGC | ATC | TCC | TTC | ATC | AGC | TGC | CTC | CTG | CAG | ATG | TAC | CTG | GTC | TTC | 144 |
| TCG | CTG | GGC | TGC | ACG | GAG | TAC | TTC | CTC | CTT | GTG | GCC | ATG | GCT | TAT | GAC | 192 |
| CGC | TAT | GTG | GCC | ATC | TGC | TTC | CCC | CTG | CAC | TAC | ACC | ACC | ATC | ATG | AGC | 240 |
| CTC | AAG | CTC | TGT | CTC | TCC | CTG | GTG | GTG | CTG | TCC | TGG | GTG | CTG | ACC | ATG | 288 |
| CTC | CAT | GCC | CTG | TTG | CAC | ACT | CTG | CTT | GTG | GTC | AGA | TTG | TCT | TTC | TGT | 336 |
| TCG | GAC | AAT | GTA | ATC | CCA | CAC | TTT | TCC | TGT | GAA | ATA | TCT | GCT | TTA | TTG | 384 |
| AAG | CTG | GCC | TGC | TCC | AAC | ACT | CAT | GTC | AAT | GAA | CTG | GTG | ATA | TTT | ATC | 432 |
| ACG | GGA | GGA | CTT | GTT | ATT | GTC | ACC | CCA | TTT | CTA | CTC | ATC | CTT | GGG | TCC | 480 |
| TAT | GTA | CAA | ATT | TTC | TCC | TCC | ATC | CTC | AAG | GTC | CCT | TCT | GCT | CGT | GGT | 528 |
| ATC | CAC | AAG | GCC | TTC | TCT | ACC | TGT | GGC | TCC | CAC | CTC | TCT | GTG | GTG | TCA | 576 |
| CTG | TTC | TAT | GGG | ACA | ATT | ATT | GGT | CTC | TAT | TTA | TGT | CCA | TCA | GCT | AAT | 624 |
| AAT | TCT | ACT | GTG | AAA | GAC | ACT | GTC | GTG | GCT | CTG | ATG | TAC | ACG | GTG | GTG | 672 |
| ACT | CCC | ATG | CTG | AAC | CCC | TTC | ATC | TAC | ACC | CTC | CGA | AAT |     |     |     | 711 |

## (28) INFORMATION POUR LA SEQ ID NO:27 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 702
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 4
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:27 :

| CCC | ATG | TAC | TTG | $\mathbf{T}\mathbf{T}\mathbf{T}$ | CTC | GGT | AAC | CTG | TCC | TTT | ATC | GAT | GTC | TGC | CAC | 48  |
|-----|-----|-----|-----|----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| TCC | ACT | GTC | ACT | GTG                              | CCC | AAG | ATG | CTG | AGA | GAC | ACC | TGG | TCA | GAG | GAG | 96  |
| AAG | CTC | ATC | TCC | TTT                              | GAT | GCC | TGT | GTG | ACC | CAG | ATG | TTC | TTC | CTG | CAC | 144 |
| CTC | TTT | GCC | TGC | ACA                              | GAG | ATC | TTC | CTC | CTC | ACC | GTC | ATG | GCC | TAT | GAT | 192 |
| CGT | TAT | GTG | GCC | ATC                              | TGT | AAA | CCC | CTG | CAG | TAC | ATG | ACA | GTG | ATG | AAT | 240 |
| TGG | AAG | GTA | TGT | GTG                              | CTG | CTG | GCT | GTG | GCC | CTC | TGG | GCA | GGA | GGA | ACC | 288 |

| ATC | CAC | TCC  | ATA | TCC | CTG | ACC | TCC | CTC | ACC | ATC | AAG | CTG | CCC | TAC | TGT | 33  | 6 |
|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|
| GGT | CCT | GAT  | GAG | ATT | GAC | AAC | TTC | TTC | TGT | GAC | GTG | CCG | CAG | GTG | ATC | 38  | 4 |
| AAA | TTG | GCC  | TGC | ACT | GAC | ACC | CAC | ATC | ATT | GAG | ATC | CTC | ATC | GTC | TCC | 43. | 2 |
| AAC | AGT | GGG  | CTG | ATC | TCC | GTG | GTC | TGT | TTT | GTC | GTC | CTT | GTG | GTG | TCC | 48  | 0 |
| TAT | GCA | GTC  | ATC | CTG | GTG | AGT | CTG | CGG | CAG | CAG | ATC | TCC | GAG | GGC | AGG | 52  | 8 |
| CGG | AAG | GCC: | CTG | TCC | ACC | TGT | GCA | GCC | CAC | CTC | ACT | GTG | GTC | ACA | CTG | 57  | 6 |
| TTC | CTG | GGA  | CAC | TGC | ATC | TTC | ATC | TAT | TCC | CGC | CCA | TCC | ACC | AGC | CTC | 62  | 4 |
| CCA | GAG | GAC  | AAA | GTG | GTG | TCT | GTG | TTT | TTC | ACT | GCT | GTC | ACC | CCT | CTG | 67: | 2 |
| CTA | AAC | CCC  | TTC | ATC | TAC | TCC | CTC | CGA | AAT |     |     |     |     |     |     | 70: | 2 |

## (29) INFORMATION POUR LA SEQ ID NO:28:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 711
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 5
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:28 :

| CCC | ATG | TAT            | TTG | TTC                              | CTT | GGT | AAC | TTG | TCT                              | CTC                              | CTA | GAG | ATT | GGC | TAC | 48  |
|-----|-----|----------------|-----|----------------------------------|-----|-----|-----|-----|----------------------------------|----------------------------------|-----|-----|-----|-----|-----|-----|
| ACT | TGC | $\mathbf{TCT}$ | GTC | ATA                              | CCC | AAG | ATG | CTG | CAG                              | AGT                              | CTT | GTG | AGT | GAG | GCC | 96  |
| CGA | GGA | ATC            | TCT | CGG                              | GAG | GGT | TGT | GCC | ACA                              | CAG                              | ATG | TTT | TTC | TTT | ACA | 144 |
| TTA | TTT | GCT            | ATC | AGT                              | GAG | TGC | TGC | CTT | TTG                              | GCA                              | GCC | ATG | GCT | TTT | GAC | 192 |
| CGC | TAT | ATG            | GCC | ATA                              | TGT | TCC | CCA | CTC | CAC                              | TAT                              | GCA | ACA | CGA | ATG | AGT | 240 |
| CGT | GGG | GTG            | TGT | GCC                              | CAT | TTG | GCA | GTG | GTT                              | $\mathbf{T}\mathbf{C}\mathbf{T}$ | TGG | ACA | GTG | GGA | TGC | 288 |
| ATG | GTA | GGC            | TTG | GGC                              | CAA | ACC | AAT | TAT | ATT                              | TTC                              | TCC | TTA | GAC | TTC | TGT | 336 |
| GGC | CCC | TGT            | GAG | ATA                              | GAC | CAC | TTC | TTC | TGT                              | GAT                              | CTC | CCA | CCT | ATC | CTG | 384 |
| GCA | CTT | GCT            | TGT | GGG                              | GAT | ACA | TCC | CAT | AAT                              | GAG                              | GCT | GCG | GTC | TTT | GTG | 432 |
| GTG | GCA | ATC            | CTT | $\mathbf{T}\mathbf{G}\mathbf{C}$ | ATT | TCT | AGC | CCA | $\mathbf{T}\mathbf{T}\mathbf{T}$ | TTA                              | TTG | ATC | GTT | GCT | TCC | 480 |
| TAT | GGC | AGA            | ATT | CTA                              | GCT | GCA | GTC | CTG | GTC                              | ATG                              | CCC | TCC | CCT | GAG | GGC | 528 |
| CGC | CGG | AAA            | GCT | CTC                              | TCC | ACC | TGT | TCT | TCC                              | CAC                              | TTA | CTT | GTA | GTA | ACG | 576 |
| CTC | TTC | TAT            | GGC | TCA                              | GGA | TCT | GTT | ACC | TAC                              | TTG                              | AGG | CCC | AAG | GCT | AGC | 624 |
| CAC | TCA | CCA            | GGA | ATG                              | GAT | AAA | CTG | CTA | GCC                              | CTC                              | TTC | TAT | ACC | GTG | GTG | 672 |
| ACA | TCC | ATG            | CTC | AAC                              | CCC | ATC | ATC | TAC | ACC                              | CTC                              | CGG | AAC |     |     |     | 711 |

## (30) INFORMATION POUR LA SEQ ID NO:29:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 708
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 6
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:29 :

CCC ATG TAC TTG TTC CTC GGT AAT TTG TCC TTC CTG GAG ATC CTT TAT

48

| ACA | TCC         | ACA | GTG | GTG | CCG | AAA | ATG | CTG | GAG | GGC | TTC                              | CTG | CAG | GTG | GCA | 96  |
|-----|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------------------------|-----|-----|-----|-----|-----|
| GCC | ATC         | TCT | GTG | ACT | GGT | TGC | TTG | ACC | CAG | TTC | TTC                              | ATC | TTT | GGT | TCT | 144 |
| CTA | GCC         | ACA | GCA | GAA | TGC | TTC | CTA | CTG | GCT | GTT | ATG                              | GÇA | TAT | GAT | CGC | 192 |
| TTC | TTG         | GCA | ATC | TGC | TAC | CCA | CTT | CGC | TAT | CCA | CTC                              | CTG | ATG | GGG | CCT | 240 |
| AGA | TGG         | TGC | ATG | GGG | CTG | GTG | GTC | ACA | GCC | TGG | CTG                              | TCT | GGC | TTC | ATG | 288 |
| GTA | GAT         | GAA | TTA | GTT | GTG | GTC | CTG | ATG | GCC | CAG | CTG                              | AGG | TTC | TGT | GGC | 336 |
| TCC | AAT         | CGC | ATC | GAT | CAC | TTT | TAC | TGT | GAC | TTC | ATG                              | CCT | TTG | GTG | GTC | 384 |
| CTG | GCT         | TGC | TCA | GAT | CCC | AGA | GTA | GCC | CAG | GTG | ACA                              | ACA | TTT | GTT | CTC | 432 |
| TCT | GTA         | GTC | TTC | CTC | ACT | GTT | CCA | TTT | GGA | CTG | ATT                              | CTG | ACA | TCC | TAT | 480 |
| GCT | CGC         | ATC | GTG | GTG | ACT | GTG | CTG | AGA | GTT | CCT | GCT                              | GGG | GCC | AGC | AGG | 528 |
| AGA | AAG         | GCT | TTT | TCC | ACA | TGC | TCC | TCC | CAC | CTT | GCT                              | GTA | GTG | TCC | ACC | 576 |
| TTC | ${\bf TAT}$ | GGA | ACT | CTC | ATG | GTC | TTG | TAC | ATT | GTG | CCC                              | TCA | GCT | GTC | CAC | 624 |
| TCC | CAG         | CTC | CTC | TCC | AAG | GTC | TTT | GCC | TTG | CTC | $\mathbf{T}\mathbf{A}\mathbf{T}$ | ACT | GTG | GTC | ACT | 672 |
| CCC | ATC         | TTC | AAC | CCC | ATC | ATC | TAC | TCC | TTC | CGG | AAT                              |     |     |     |     | 708 |

## (31) INFORMATION POUR LA SEQ ID NO:30 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 711
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 7
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:30 :

| CCC | AGG                              | TAC | TTG | TTT | CTT | GGC | $\mathbf{AAT}$ | TTG | TCT | TTG | GCC | GAC | TTA | GGG | ATC | 48          |
|-----|----------------------------------|-----|-----|-----|-----|-----|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-------------|
| AGC | ACA                              | ACC | ACG | ATC | CCC | CAG | ATG            | GTG | GTG | AAC | ATC | CAG | AGA | AAG | AGA | 96          |
| AAG | ACC                              | ATC | AGT | TAC | GCA | GGC | TGC            | CTC | ACC | CAG | GTC | TGC | TTT | GTC | CTG | 144         |
| ATT | TTT                              | GCT | GGA | TCG | GAG | AAC | TTT            | CTC | CTT | GCA | GCA | ATG | GCT | TAT | GAC | 192         |
| CGT | TAC                              | GCA | GCC | ATC | TGC | CAT | CCC            | CTC | AGG | TAC | ACG | GCC | ATC | ATG | AAC | 240         |
| CCC | CAC                              | CTG | TGT | GTC | CTG | CTG | GTT            | ATG | ATC | TCC | TTG | TCC | ATC | AGC | ACG | 288         |
| GTG | GAT                              | GCC | CTG | CTG | CAC | AGT | CTG            | ATG | CTG | CTG | AGG | CTG | TCC | TTC | TGC | 336         |
| ACA | GAC                              | CTG | GAG | ATC | CCC | CAC | TTC            | TTC | TGT | GAA | CTT | GAT | CAG | GTG | ATC | 384         |
| ACA | CTG                              | GCC | TGT | TCT | GAC | ACC | CTC            | ATC | AAT | AAC | CTC | CTG | ATA | TAT | GTC | 432         |
| ACA | GCT                              | GGG | ATA | TTT | GCT | GGT | GTT            | CCT | CTC | TCT | GGA | ATC | ATC | TTC | TCT | 480         |
| TAC | CTT                              | CAC | ATT | GTG | TCC | TCT | GTC            | TTG | AGA | ATG | CCA | TCA | CCA | GGA | GGA | <b>52</b> 8 |
| GTG | TAT                              | AAA | GCC | TTT | TCC | ACC | TGT            | GGC | TCT | CAC | CTG | TCT | GTG | GTC | TGC | 576         |
| TTG | $\mathbf{T}\mathbf{T}\mathbf{C}$ | TAT | GGG | ACA | ATT | TTT | GGG            | GTG | TAC | ATT | AGC | TCT | GCA | GTG | ACT | 624         |
| GAC | TCA                              | CAG | AGA | AAA | GGT | GCA | GTG            | GCC | TCA | GTG | ATG | TAC | TCT | GTG | GTC | 672         |
| CCT | CAG                              | ATG | CTG | AAC | CCC | ATC | ATC            | TAC | ACC | CTC | AGA | AAC |     |     |     | 711         |

## (32) INFORMATION POUR LA SEQ ID NO:31 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 528
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES

#### (A) NOM/CLE: AMOR 8

## (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:31 :

| CAA | GCT | TTG | GCG | TAT | GAC | AGG | TTT | GTG | GCC | ATC | TGT | CAT | CCT | CTG | CAT | 48  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| TAT | CTG | GTC | ATT | ATG | AGC | CCT | CGC | CAT | TGT | GGC | TTC | TTA | ACT | TTG | GTG | 96  |
| TCA | TTT | TTG | CTG | AGT | CTT | TTG | GAC | TCC | CAG | CTG | CAC | AGT | TTC | ATG | ACC | 144 |
| TTA | AAT | ATT | ACC | AGC | TTC | AAG | GAT | GTG | GAA | ATT | TCT | TAA | TTC | TTC | TGT | 192 |
| GAC | CCT | TCT | CAA | CTG | CTG | AAT | CTC | TCC | TGT | TCC | AAC | ACC | TTC | TCT | GAT | 240 |
| AAC | ATT | GTC | AAG | TAT | TTT | CTG | GGA | GCC | TTC | TAT | GGC | CTT | TTT | CCC | ATC | 288 |
| TCA | GGG | ATC | CTT | TTC | TCT | TAC | TAC | AAA | ATT | ATT | TCC | TCC | ATT | CTG | AGG | 336 |
| ATC | CCC | TCC | TTA | GGT | GGG | AAG | TAC | AAA | GCC | TTC | TCC | ACC | TGT | GGG | TCT | 384 |
| CAC | CTG | GCA | GTT | GTT | TGC | TTA | TTT | TTA | GTG | ACA | GCC | TCC | ACA | GTG | TAC | 432 |
| CTT | GGA | TCA | GTT | GCA | TCA | CAT | TCT | CCC | AGA | AAT | GAT | GTG | GTG | GCT | TCT | 480 |
| CTG | ATG | TAC | ACT | GTG | GTC | ACC | CCC | ATG | CTC | AAT | CCC | TTC | ATC | TGC | AGT | 528 |

## (33) INFORMATION POUR LA SEQ ID NO:32:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 528
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 9

## (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:32 :

| CAA | GCT | TTG | GCG | TAT | GAT | AGG | TTT | GTG | GCC | ATC | TGC | TAC | CCC                              | CTG | CAC | 48  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------------------------|-----|-----|-----|
| TAC | ATG | GTC | ATC | ATG | AAC | TCC | CGG | CGA | TGT | GGA | TTG | CTG | ATT                              | CTG | GTG | 96  |
| TCT | TGG | ATC | ATG | AGT | GCT | CTT | CAT | TCC | TTG | TTA | CAA | GGT | TTA                              | ATG | ATG | 144 |
| TTG | AGA | CTG | TCC | TTC | TGC | ACA | GAT | TTG | GAA | ATC | TCC | CAC | TTT                              | TTC | TGT | 192 |
| GAA | CTT | AAT | CAC | CTG | GTC | CAT | CTT | GCC | TGC | TCT | GAC | ACC | $\mathbf{T}\mathbf{T}\mathbf{T}$ | CTC | TAA | 240 |
| GAG | GTG | GTG | ATA | TAT | TTT | GCT | GCT | GTC | TTG | CTG | GCT | GGT | GGC                              | CCC | CTC | 288 |
| GCT | GGC | ATC | CTT | TAC | TCT | TAC | TGC | AAG | ATA | GTC | TCC | TCC | ATC                              | CAT | GCA | 336 |
| ATC | TCT | TCA | GCT | CAG | GGC | AAG | TAC | AAA | GCC | TTC | TCC | ACC | TGT                              | GCA | TCT | 384 |
| CAC | CTC | TCC | GTG | GTC | TCC | TTA | TTT | TAT | TGT | ACA | AGC | CCG | $\operatorname{\mathbf{GGT}}$    | GTG | TAC | 432 |
| CTC | AGT | TCT | GCT | GTG | ACC | CAA | AAC | TCA | CAC | TCC | ACT | GCA | ACT                              | GCC | TCG | 480 |
| GTG | ATG | TAC | AGC | GTG | GTC | ACC | CCC | ATG | CTC | AAC | CCC | TTT | ATC                              | TGC | AGT | 528 |

#### (34) INFORMATION POUR LA SEQ ID NO:33 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 528
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 10

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:33 :

| CAA         | GCT | TTG | GCG                              | TAC | GAC | AGG | TTT | GTG | GCC            | ATC | TGT | CAC | CCA | CTG | CAT | 48  |
|-------------|-----|-----|----------------------------------|-----|-----|-----|-----|-----|----------------|-----|-----|-----|-----|-----|-----|-----|
| TAT         | CCC | AGA | ATC                              | ATG | AGT | CAG | AAC | CTC | TGT            | TTC | CTG | CTA | GTG | GTT | GTG | 96  |
| TCC         | TGG | GTC | TTA                              | TCC | TCT | GCC | AAT | GCC | CTT            | TTG | CAC | ACC | CTC | CTC | CTA | 144 |
| GCC         | CGT | CTC | $\mathbf{T}\mathbf{C}\mathbf{T}$ | TTC | CTT | AGA | GGC | ATC | ACT            | CTG | CCC | CAC | TTC | TTC | TGT | 192 |
| GAT         | CTC | TCT | GCG                              | TTA | CTC | AAG | CTA | TCC | AGC            | TCT | GAC | ACC | ACC | ATC | AAT | 240 |
| CAG         | CTG | GCT | ATT                              | CTC | ACG | GCA | GGA | TCA | GCA            | GTT | GTT | ACC | CTG | CCA | TTC | 288 |
| ATG         | TGC | ATT | CTG                              | GTC | TCA | TAT | GGC | CAC | $\mathtt{ATT}$ | GGG | GCC | ACC | ATC | CTG | AGA | 336 |
| AGA         | CCC | TCC | CTC                              | AAG | GGC | ATC | TGC | AAA | GCC            | TTA | TCC | ACA | TGT | GGC | TCC | 384 |
| CAC         | CTC | TCT | GTG                              | GTC | TCT | GTG | TAC | TAT | GGA            | GCA | GTT | ATT | GCA | CTC | TAT | 432 |
| ${\tt ATT}$ | GTC | CCC | TCA                              | TCT | AAT | AGC | ACT | AAT | GAC            | AAG | GAT | ATT | GCT | GTG | TCT | 480 |
| GTG         | TTG | TAT | ACT                              | CTG | GTC | ATC | CCC | ATG | CTC            | AAC | CCC | TTC | ATC | TGC | AGΥ | 528 |

## (35) INFORMATION POUR LA SEQ ID NO:34 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 528
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 11
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:34 :

| CAA | GCT                              | TTG | GCG | TAT | GAT | AGG                              | TTC | TTG | GCC | ATC | TGT | TAT | CCC | CTG | CAT | 48  |
|-----|----------------------------------|-----|-----|-----|-----|----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| TAT | ACA                              | GTC | ATT | ATG | AAC | CCT                              | CGC | CTC | TGT | GGC | TTC | TCA | ATT | TTG | GTA | 96  |
| TCA | $\mathbf{T}\mathbf{T}\mathbf{T}$ | TTG | CTG | AGT | CTC | $\mathbf{T}\mathbf{T}\mathbf{G}$ | GAC | TCT | CAG | CTG | CAC | AAT | TTG | ATG | ATC | 144 |
| TTA | CAA                              | ATT | ACC | AGT | TTC | AAG                              | GAT | GTG | GAA | ATT | TCT | AGT | TTC | TTC | TGT | 192 |
| GAC | CCT                              | TCT | CAA | CTT | CTG | AAT                              | CTT | TCC | TGT | TCT | GAC | AAC | TAC | TCT | TTA | 240 |
| TAA | ACT                              | GGC | AAG | TAT | GTT | CTT                              | TTT | GCC | CTA | TAT | AGC | TTT | TTC | CCC | ATC | 288 |
| TCA | GGG                              | ATC | CTT | TTC | TCT | TAC                              | TAT | AAA | ATA | ATT | TCC | TCC | ATT | CTG | AGG | 336 |
| ATC | CCA                              | TCC | TCA | GGG | GGG | AAG                              | TAC | AAA | GCC | TTC | TCC | ACT | TGT | GGC | TCT | 384 |
| CAC | CTG                              | GCA | GTT | TTT | TGC | CTA                              | TTT | TTA | GGA | ACA | GGT | ACT | GCA | GTG | TAC | 432 |
| TTT | GGA                              | TCA | GCT | GTA | TCA | CAT                              | TCT | CCC | AGG | GAG | AAT | GTG | GTG | TCC | TCA | 480 |
| GTA | ATG                              | TAT | ACT | GTG | GTC | ACC                              | CCC | ATG | CTC | AAT | CCC | TTT | ATC | TGC | AGT | 528 |

#### (36) INFORMATION POUR LA SEQ ID NO:35 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 528
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 12
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:35 :

| CAA | GCT | TTG | GCG | TAT | GAC | AGG | TTT                              | GTG | GCC | ATC                              | TGT | CAC                              | ccc | CTG | CAT | 48  |
|-----|-----|-----|-----|-----|-----|-----|----------------------------------|-----|-----|----------------------------------|-----|----------------------------------|-----|-----|-----|-----|
| TAT | CCA | ACC | ATT | ATG | AAC | CCT | CGA                              | TTT | TGT | GGC                              | TTT | TTA                              | GTT | TTG | GTG | 96  |
| TCT | TTT | TTG | GTT | AGC | CTT | TTG | GAA                              | TCC | CAG | CTG                              | CAC | AAT                              | TTG | ATT | GCA | 144 |
| TTA | CAG | TTT | ACT | ACT | TTC | AAA | GAT                              | GTA | AAA | ATT                              | GCT | AAT                              | TTT | TTC | TGT | 192 |
| GAC | CCT | TCT | CAG | GTC | CTC | AGT | CTT                              | TCC | TGT | $\mathbf{T}\mathbf{C}\mathbf{T}$ | GGC | ACC                              | TTC | ATC | AAT | 240 |
| ATC | ATA | GTA | ATG | TAT | TTT | GTT | GGT                              | GCT | CTA | TTT                              | GGT | GTT                              | TTT | CCC | ATC | 288 |
| TCA | GGA | ATC | CTT | TTC | TCT | TAC | TAT                              | AAA | ATA | GTT                              | TCC | ACT                              | ATT | CTG | AGA | 336 |
| ATC | CCA | TCC | TCA | GGT | GGG | AAA | TAT                              | AAA | GCC | TTC                              | TCT | ACC                              | TGT | GGG | TCT | 384 |
| CAC | CTA | TCA | GTT | GTT | TGT | TTA | $\mathbf{T}\mathbf{T}\mathbf{T}$ | TAT | GGA | AÇA                              | GGC | $\mathbf{T}\mathbf{T}\mathbf{T}$ | GGA | GTG | TAC | 432 |
| CTT | GGT | TCA | GCT | GTG | TCA | CAT | TCT                              | TCT | AGA | AAA                              | TCT | GCA                              | GTG | GCC | TCG | 480 |
| GTG | ATG | TAC | ACA | GTT | GTC | ACC | CCC                              | ATG | CTC | AAC                              | CCC | TTC                              | ATC | TGC | AGT | 528 |

## (37) INFORMATION POUR LA SEQ ID NO:36:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 504
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 13

#### (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:36 :

| GGG | GCC | ATT | CGC | TTT | CCC | CTG | CAC | AAT | ACT                              | ACC | ATC | ATG | AGC                              | CCC | AAG | 48  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------------------------|-----|-----|-----|----------------------------------|-----|-----|-----|
| CTC | GGT | CTC | TTC | CTG | GTG | GTG | CTG | TCC | TGG                              | GTG | CTA | ACC | ATG                              | TTC | CAT | 96  |
| GCC | ATG | CTC | CAT | ACC | CTG | CTT | ATG | GCC | AGA                              | TTG | TGT | TTC | TGT                              | GCA | GAG | 144 |
| AAC | ATG | ATT | CCC | CAT | TTT | TTC | TGT | GAT | ATG                              | TCT | GCC | CTT | CTG                              | AAG | CTG | 192 |
| TCC | TGC | TCC | AAC | ACT | CAT | GTC | AAT | GAG | TTG                              | GTG | ATA | TTC | ATC                              | ACA | GCA | 240 |
| GGC | CTC | ATT | CTT | CTC | ATT | CCA | TTG | GTC | CTC                              | ATT | CTT | CTT | TCC                              | TAT | GGG | 288 |
| CAC | ATC | GTG | TCC | TCC | ATT | CTC | AAG | GTC | CCT                              | TCT | GCT | CGA | $\mathbf{G}\mathbf{G}\mathbf{T}$ | ATC | CAT | 336 |
| AAG | ACC | TTC | TCC | ACC | TGT | GGC | TCC | CAT | $\mathbf{T}\mathbf{T}\mathbf{G}$ | TCT | GTG | GTG | TCA                              | CTG | TTC | 384 |
| TAT | GGG | ACA | GTC | ATC | GGA | CTC | TAC | TTA | TGT                              | CCA | TCA | GCT | AAT                              | AAT | TCT | 432 |
| ACT | GTG | AAA | GAT | ACT | GTC | ATG | GCT | CTG | ATG                              | TAC | ACG | GTG | GTC                              | ACT | CCC | 480 |
| ATG | CTC | AAT | CCC | TTT | ATC | TGC | AGT |     |                                  |     |     |     |                                  |     |     | 504 |

## (38) INFORMATION POUR LA SEQ ID NO:37 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 528
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 14

# (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:37 :

| CAA | GCT | TTG | GCG | TAT   | GAC | AGA | TTC | CTG | GCC | ATA | TGT | CAC | ÇCA | CTG | CAC | 48 |
|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| ጥልሮ | ΑCጥ | CCC | AጥC | S/T/A | ΔΔጥ | CCC | ACC | CTC | ጥርጥ | CCT | ጥጥር | CTC | CTT | CTC | CTC | 96 |

| TGC | TGG | ATC  | CTG | AGT | GTC | CTG | CAT | GCC | TTG | TTG                              | CAA         | AGC | TTA | ATG | GTG | 144 |
|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|----------------------------------|-------------|-----|-----|-----|-----|-----|
| TTG | CGA | CTG  | TCC | TTC | TGC | AGA | GAC | ATA | GAA | ATC                              | CCC         | CAT | TTT | TTC | TGT | 192 |
| GAA | CTC | AAC  | CAG | GTG | GTC | CAA | CTT | GCC | TGT | TTT                              | GAC         | AAC | CTT | CTT | AAT | 240 |
| GAC | ATA | GTG  | ATG | AAT | TTT | GCA | CTT | GTG | CTC | TTG                              | ${\tt GCT}$ | ACT | TGT | CCC | CTC | 288 |
| GCT | GGC | ATT  | CTT | TAC | TCC | TAC | TCC | AAG | ATA | GTC                              | TCC         | TCC | ATC | CGT | GCA | 336 |
| ATC | TCT | TCA: | GCT | CAG | GGC | AAG | TAC | AAA | GCC | $\mathbf{T}\mathbf{T}\mathbf{T}$ | TCC         | ACC | TGT | GCC | TCC | 384 |
| CAC | CTC | TCT  | GTG | GTC | TCC | TTA | TTT | TAC | TGC | ACA                              | GGC         | CTG | GGT | GTG | TAC | 432 |
| CTC | AGT | TCT  | GCT | GTA | TCC | CAC | AGC | TCA | CGC | TCC                              | AGT         | GCA | ACA | GCC | TCA | 480 |
| GTG | ATG | TAC  | ACC | GTG | GTC | ACC | CCC | ATG | CTC | AAC                              | CCC         | TTC | ATC | TGC | AGT | 528 |

## (39) INFORMATION POUR LA SEQ ID NO:38:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 357
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 15
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:38 :

| CAC | CTT | TGC | AGG | TTG | CAT | CTC | AÇA | GTC | CTC | AAG | CTC | GCC | TGC            | TCT | GAC | 48  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|-----|-----|-----|
| ACC | CTC | ATC | AAC | AAC | ATA | GTG | GTG | TTC | TCT | ATG | ATC | ATC | GTC            | CTG | GGT | 96  |
| GTC | TTC | CCT | CTC | AGT | GGC | ATC | CTC | TTC | TCC | TAC | TCT | CAG | $\mathbf{ATT}$ | TTC | TCC | 144 |
| TCC | ATC | CTG | AGG | ATC | TCA | TCA | GAC | AGA | GGC | AAG | TAC | AAA | GTC            | TTC | TCC | 192 |
| ACC | TGT | GGG | TCT | CAC | CTC | CTG | GTG | GTC | TCC | TTG | TTC | TAT | GGC            | AGT | AGC | 240 |
| CTT | GGG | GTC | TAC | CTC | AGT | TCT | GTA | GCC | ACA | CTG | TCT | TCT | AGG            | ATG | ACT | 288 |
| CTG | ATG | GCC | TCA | GTG | ATG | TAC | ACC | ATG | GTC | ACC | CCC | ATG | CTG            | AAC | CCC | 336 |
| ATC | ATC | TAC | ACC | CTC | CGG | AAC |     |     |     |     |     |     |                |     |     | 357 |

## (40) INFORMATION POUR LA SEQ ID NO:39 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 477
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 16
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:39 :

| ccc | ATG                              | TAC | TTG | TTC | CTC | GGT | AAT | TTG | TCC | TTC   | CTG   | GAG | ATC  | CTT | TAT | 48  |
|-----|----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-------|-------|-----|------|-----|-----|-----|
| ACA | TCC                              | ACA | GTG | GTG | CCG | AAA | ATG | CTG | GAG | GGC   | TTC   | CTG | CAG  | GTG | GCA | 96  |
| GCC | ATC                              | TCT | GTG | ACT | GGT | TGC | TTG | ACC | CAG | TTC   | TTC   | ATC | TTT  | GGT | TCT | 144 |
| CTA | GCC                              | ACA | GCA | GAA | TGC | TTC | CTA | CTG | GCT | GTT   | ATG   | GCA | TAT  | GAT | CGC | 192 |
| TTC | $\mathbf{T}\mathbf{T}\mathbf{G}$ | GCA | ATC | TGC | TAC | CCA | CTT | CGC | TAT | CCA   | CTC   | CTG | ATG  | GGG | CCT | 240 |
| AGA | TGG                              | TGC | ATG | GGG | CTG | GTG | GTC | ACA | GCC | TGG   | CTG   | TCT | GGC  | TTC | ATG | 288 |
| GTA | GAT                              | GAA | TTA | GTT | GTG | GTC | CTG | ATG | GCC | CAG   | CTG   | AGG | TTC  | TGT | GGC | 336 |
| ጥርር | ል ልጥ                             | CGC | አጥር | CAT | CAC | ጥጥጥ | ጥልሮ | സവസ | CAC | THE C | A TYC | CCT | സ്ഥാ | CTC | CTC | 384 |

CTG GCT TGC TCA GAT CCC CGA GTA GCC CAG GTG ACA ACA TTT GTT CTC 432
TCT GTA GTC CCC CTC ACT GTT CCA TTC GGA CTG ATT CTG ACA TCC 477

## (41) INFORMATION POUR LA SEQ ID NO:40 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 339
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
  - (ii) TYPE DE MOLECULE: ADN
  - (ix) CARACTERISTIQUES
    - (A) NOM/CLE: AMOR 17
  - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:40 :

| GAG | GAT | CTA | TGT | GCG | AGA                  | CTC | AAG | CGA | TCC | AGG | TCG | GAC | ACC | ACC | ATC | 48  |
|-----|-----|-----|-----|-----|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| AAT | GAG | GTG | GGT | ATT | CTC                  | ACG | GCA | GGA | TCA | GCA | GTT | GTT | ACC | CTG | CCA | 96  |
| TTC | ATG | TGC | ATT | CTG | GTC                  | TCA | TAT | GGC | CAC | ATG | GGG | GCC | ACC | ATC | CTG | 144 |
| AGA | AGA | CCC | TCC | CTC | AAG                  | GGC | ATG | TGC | AAA | GCC | TTA | TCC | ACA | TGT | GGC | 192 |
| TCC | CAC | CTC | TGT | GTG | $\operatorname{GTC}$ | TCT | GTG | TAC | TAT | GGA | GCA | GTT | ATT | GÇA | CTC | 240 |
| TAT | ATT | GTC | CCC | TCA | TCT                  | AAT | AGC | ACT | AAT | GAC | AAG | GAT | ATT | GCT | GTG | 288 |
| TCT | GTG | TTG | TAT | ACT | CTG                  | GTC | ATC | CCC | ATG | CTC | AAC | CCC | TTC | ATC | TGC | 336 |
| AGT |     |     |     |     |                      |     |     |     |     |     |     |     |     |     |     | 339 |

## (42) INFORMATION POUR LA SEQ ID NO:41 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 528
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 18
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:41 :

| CAA                              | GCT                              | TTG | GGG | TAT | GAT | AGA | TTT | GTG | GCC | ATG | TGT | CAT | CCT                              | GGG | CAG | 48  |
|----------------------------------|----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------------------------|-----|-----|-----|
| $\mathbf{T}\mathbf{A}\mathbf{T}$ | CTG                              | GTC | ATT | ATG | AGC | CCT | CGC | CAT | GGT | GGC | TTC | CTA | ACT                              | TTG | GTG | 96  |
| TCA                              | $\mathbf{T}\mathbf{T}\mathbf{T}$ | TTG | CTG | AGT | CTT | TTG | GAC | TCC | CAG | CTG | CAC | AGT | TTC                              | ATG | ACC | 144 |
| TTA                              | AAT                              | ATT | ACC | AGC | TTC | AAG | GAT | GTG | GAA | ATT | TCT | AAT | TTC                              | TTC | TGT | 192 |
| GAC                              | CCT                              | TCT | CAA | CTG | CTG | AAT | CTC | TCC | TGT | TCC | AAC | ACC | TTC                              | TCT | GAT | 240 |
| AAC                              | ATT                              | GTC | AAG | TAT | TTT | CTG | GGA | GCC | TTC | TAT | GGC | CTT | TTT                              | CCC | ATC | 288 |
| TCA                              | GGG                              | ATC | CTT | TTC | TCT | TAC | TAC | AAA | ATT | ATT | TCC | TCC | TTA                              | CTG | AGG | 336 |
| ATC                              | CCC                              | TCC | TTA | GGT | GGG | AAG | TAC | AAA | GCC | TTC | TCC | ACC | $\mathbf{T}\mathbf{G}\mathbf{T}$ | GGG | TCT | 384 |
| CAC                              | CTG                              | GCA | GTT | GTT | TGC | TTA | TTT | TTA | GTG | ACA | GCC | TCC | ACA                              | GTG | TAC | 432 |
| CTT                              | GGA                              | TCA | GTT | GCA | TCA | CAT | TCT | CCC | AGA | AAT | GAT | GTG | GTG                              | GCT | TCT | 480 |
| CTG                              | ATG                              | TAC | ACT | GTG | GTC | ACC | CCC | ATG | CTC | AAC | CCC | TTC | ATC                              | TGC | AGT | 528 |

#### (43) INFORMATION POUR LA SEQ ID NO:42 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 528
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double.
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 19
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:42 :

| CAA | GCT | TTG                  | GCG | TAT | GAC                              | AGA | TTT | CTG | GCC | ATC | TGT                              | CAT | CCT | CTG                              | CAT | 48  |
|-----|-----|----------------------|-----|-----|----------------------------------|-----|-----|-----|-----|-----|----------------------------------|-----|-----|----------------------------------|-----|-----|
| TAT | CTG | GTC                  | ATT | ATG | AGC                              | CCT | CGC | CAT | TGT | GGC | $\mathbf{T}\mathbf{T}\mathbf{C}$ | TTA | ACT | $\mathbf{T}\mathbf{T}\mathbf{G}$ | GTG | 96  |
| TCA | TTT | TTG                  | CTG | AGT | CTT                              | TTG | GAC | TCC | CAG | CTG | CAC                              | AGT | TTC | ATG                              | ACC | 144 |
| TTA | AAT | ATT                  | ACC | AGC | TTC                              | AAG | GAT | GTG | GAA | ATT | TCT                              | AAT | TTC | TTC                              | TGT | 192 |
| GAC | CCT | TCT                  | CAA | CTG | CTG                              | AAT | CTC | TCC | TGT | TCC | AAC                              | ACC | TTC | TCT                              | GAT | 240 |
| AAC | ATT | $\operatorname{GTC}$ | AAG | TAT | TTT                              | CTG | GGA | GCC | TTC | TAT | GGC                              | CTT | TTT | CCC                              | ATC | 288 |
| TCA | GGG | ATC                  | CTT | TTC | TCT                              | TAC | TAC | AAA | ATT | ATT | TCC                              | TCC | ATT | CTG                              | AGG | 336 |
| ATC | CCC | TCC                  | TTA | GGT | GGG                              | AAG | TAC | AAA | GCC | TTC | TCC                              | ACC | TGT | GGG                              | TCT | 384 |
| CAC | CTG | GCA                  | GTT | GTC | $\mathbf{T}\mathbf{G}\mathbf{C}$ | TTA | TTT | TTA | GTG | ACA | GCC                              | TCC | ACA | GTG                              | TAC | 432 |
| CTT | GGA | TCA                  | GTT | GCA | TCA                              | CAT | TCT | CCC | AGA | AAT | GAT                              | GTG | GTG | GCT                              | TCT | 480 |
| CTG | ATG | TAC                  | ACT | GTG | GTC                              | ACC | CCC | ATG | CTC | AAC | CCC                              | TTT | ATC | TGC                              | AGT | 528 |

## (44) INFORMATION POUR LA SEQ ID NO:43:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 528
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 20
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:43 :

| CAA | GCT | TTG                  | GCG            | TAT | GAC | AGG | TTC | CTG | GCC | ATC | $\mathbf{T}\mathbf{G}\mathbf{T}$ | CAT | CCT | CGG | CAT | 48  |
|-----|-----|----------------------|----------------|-----|-----|-----|-----|-----|-----|-----|----------------------------------|-----|-----|-----|-----|-----|
| TAT | CTG | $\operatorname{GTC}$ | $\mathbf{ATT}$ | ATG | AGC | CCT | CGC | CAT | TGT | GGC | TTC                              | TTA | ACT | TTG | GTG | 96  |
| TCA | TTT | TTG                  | CTG            | AGT | CTT | TTG | GAC | TCC | CAG | CTG | CAC                              | AGT | TTC | ATG | ACC | 144 |
| TTA | AAT | ATT                  | ACC            | AGC | TTC | AAG | GAT | GTG | GAA | ATT | TCT                              | AAT | TTC | TTC | TGT | 192 |
| GAC | CCT | TCT                  | CAA            | CTG | CTG | AAT | CTC | TCC | TGT | TCC | AAC                              | ACC | TTC | TCT | GAT | 240 |
| AAC | ATT | GTC                  | AAG            | TAT | TTT | CTG | GGA | GCC | TTC | TAT | GGC                              | CTT | TTT | CCC | ATC | 288 |
| TCA | GGG | ATC                  | CTT            | TTC | TCT | TAC | TAC | AAA | ATT | TTA | TCC                              | TCC | TTA | CTG | AGG | 336 |
| ATC | CCC | TCC                  | TTA            | GGT | GGG | AAG | TAC | AAA | GCC | TTC | TCC                              | ACC | TGT | GGG | TCT | 384 |
| CAC | CTG | GCA                  | GTT            | GTT | TGC | TTA | TTT | TTA | GTG | ACA | GCC                              | TCC | ACA | GTG | TAC | 432 |
| CTT | GGA | TCA                  | GTT            | GCA | TCA | CAT | TCT | CCC | AGA | AAT | GAT                              | GTG | GTG | GCT | TCT | 480 |
| CTG | ATG | TAC                  | ACT            | GTG | GTC | ACC | CCC | ATG | CTC | AAT | CCC                              | TTC | ATC | TGC | AGT | 528 |

- (45) INFORMATION POUR LA SEQ ID NO:44:
  - CARACTERISTIQUES DE LA SEQUENCE: (i)

- (A) LONGUEUR: 336
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRIN: double
- (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 21
  - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:44:

| CCC | ATG | TAT | TTG | TTT | CTC | GGT | AAC | CTG | TCC | TTC | ATG | GAC | ATC | TGC | TTC | 48  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ACA | ACA | GTC | GTT | GTG | CCC | AAG | ATG | CTG | GCG | AAT | TTG | CTG | TCA | GAG | ACA | 96  |
| AAG | GGC | ATC | TCC | TAT | GTA | GGC | TGC | CTG | GTC | CAG | ATG | TAT | TTC | TTC | ATG | 144 |
| GCC | TTT | GGG | AAC | ACT | GAT | AGT | TAC | CTG | CTG | GCC | TCC | ATG | GCC | ATC | GAC | 192 |
| CGG | CTG | GTG | GCC | ATC | TGC | AAC | CCC | TTG | CAC | TAT | GAT | GTG | GCC | ATG | CGC | 240 |
| CCA | CAC | CGC | TGC | CTC | CTC | ATG | CTG | CTG | GGT | TCT | TGC | ACC | ATC | TCC | CAC | 288 |
| CTG | CAC | GCC | CTC | TTC | CGG | GTG | CTA | CTC | ATG | TCT | CGC | CTC | TCT | TTC | TGT | 336 |

### (46) INFORMATION POUR LA SEQ ID NO:45 :

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 357
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 22
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:45 :

| CAC | CTT | TGC | AGG | TTG | CAT | CTC | ACA | GTC | CTC | AAG | CTC | GCC | TGC | TCT | GAC | 48  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ACC | CTC | ATC | AAC | AAC | ATA | GTG | GTG | TTC | TCT | ATG | ATC | ATC | GTC | CTG | GGT | 96  |
| GTC | TTC | CCT | CTC | AGT | GGC | ATC | CTC | TTC | TCC | TAC | TCT | CAG | ATT | TTC | TCC | 144 |
| TCC | ATC | CTG | AGG | ATC | TCA | TCA | GAC | AGA | GGC | AAG | TAC | AAA | GTC | TTC | TCC | 192 |
| ACC | TGT | GGG | TCT | CAC | CTC | CTG | GTG | GTC | TCC | TTG | TTC | TAT | GGC | AGT | AGC | 240 |
| CTT | GGG | GTC | TAC | CTC | AGT | TCT | GTA | GCC | ACA | CTG | TCT | TCT | AGG | ATG | ACT | 288 |
| CTG | ATG | GCC | TCA | GTG | ATG | TAC | ACC | ATG | GTC | ACC | CCC | ATG | CTG | AAC | CCC | 336 |
| ATT | ATC | TAC | ACC | CTC | CGG | AAC |     |     |     |     |     |     |     |     |     | 357 |

#### (47) INFORMATION POUR LA SEQ ID NO:46:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
  - (A) LONGUEUR: 423
  - (B) TYPE: acide nucléique
  - (C) NOMBRE DE BRIN: double
  - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUES
  - (A) NOM/CLE: AMOR 23

# (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO:46 :

| TGG | AGT | CTT | TTG | GAG | TCC | CAG | CTG | CAC | AGT | TTG | AGG         | ACC | TTA            | AAT | ATG | 48  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------|-----|----------------|-----|-----|-----|
| ACC | AGC | TTC | AGG | GAT | GTG | GAA | AGT | TCT | AAT | TTG | TTG         | TGT | GAC            | CCT | TCT | 96  |
| CAA | ATG | CTG | AAT | CTC | TCC | TGT | TCC | AAC | ACC | TTC | TCT         | GAT | AAC            | ATT | GTC | 144 |
| AAG | TAT | TTT | CTG | GGA | GCC | TTC | TAT | GGC | CTT | TTT | CCC         | ATC | TCA            | GGG | ATC | 192 |
| CTT | TTC | TCT | TAC | TAC | AAA | ATT | ATT | TCC | TCC | ATT | CTG         | AGG | ATC            | CCC | TCC | 240 |
| TTA | GGT | GGG | AAG | TAC | AAA | GCC | TTC | TCC | ACC | TGT | GGG         | TCT | CAC            | CTG | GCA | 288 |
| GTT | GTT | TGC | TTA | TTT | TTA | GTG | ACA | GCC | TCC | ACA | GTG         | TAC | CTT            | GGA | TCA | 336 |
| GTT | GCA | TCA | CAT | TCT | CCC | AGA | AAT | GAT | GTG | GTG | GCT         | TCT | $\mathtt{CTG}$ | ATG | TAC | 384 |
| ACT | GTG | GTC | ACC | CCC | ATG | CTC | AAC | CCC | TTT | ATC | ${\tt TGC}$ | AGT |                |     |     | 423 |