

DESCRIPTION:

With high ability to withstand the shock loading of large current, BTA12-800CW series triacs provide high dv/dt rate with strong resistance to electromagnetic interface. With high commutation performances, 3 quadrants products especially recommended for use on inductive load.

MAIN FEATURES

Symbol	Value	Unit
I _{T(RMS)}	s) 12	
V _{DRM} /V _{RRM}	600/800/1200	V

ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Value	Unit
Storage junction temperature range		T _{stg}	-40-150	$^{\circ}\!\mathbb{C}$
Operating junction	Operating junction temperature range		-40-125	$^{\circ}\!\mathbb{C}$
Repetitive peak off	-state voltage (T _j =25℃)	V _{DRM}	600/800/1200	V
Repetitive peak rev	verse voltage (T _j =25℃)	V _{RRM}	RM 600/800/1200	
Non repetitive surge peak Off-state voltage		V _{DSM} V _{DRM} +100		V
Non repetitive peak reverse voltage		VRSM	V _{RRM} +100	V
	TO-220A(Ins) (Tc=85°C)			
RMS on-state current	TO-262/ TO-220A(Non-Ins)/ TO-220C(Tc=100°C) TO-220F(Ins) (Tc=80°C)	I _{T(RMS)}	12	А

Non repetitive surge peak on-state current (full cycle, F=50Hz)		I _{TSM}	120	А
I ² t value for fusing (tp=10ms)		l ² t	78	A ² s
Critical rate of rise of on-state current ($I_G = 2 \times I_{GT}$)		dl/dt	50	A/µs
Peak gate current		I _{GM}	4	Α
Average gate power dissipation		P _{G(AV)}	1	W
Peak gate power		P _{GM}	5	W

ELECTRICAL CHARACTERISTICS (T_j =25 $^{\circ}$ C unless otherwise specified)

3 Quadrants

Symbol	Test Condition Quadrant		Value			Unit		
Symbol	rest Condition	Quadrant		BW	CW	sw	TW	Offic
Ідт	V _D =12V R _L =33Ω	I - II -III	MAX	50	35	10	5	mA
V _G T	VD=12V RL=3312	I - II -III	MAX		1.3	3		V
V _{GD}	$V_D = V_{DRM} T_j = 125^{\circ}C$ $R_L = 3.3 K\Omega$	I - II -III	MIN	0.2		V		
I _L I _G	Ig =1.2IgT	I -III	MAX	80	50	30	20	mΛ
		II	IVIAA	90	60	40	30	mA
Ін	I _T =100mA		MAX	60	40	20	15	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃		MIN	1000	500	200	100	V/µs
(dl/dt)c	Without snubber T _j =	= 125 ℃	MIN	12	6.5	-	-	A/ms

4 Quadrants

Symbol	Test Condition	Quadrant		Value		Unit
				В	С	Onit
loz	I _{GT} V _D =12V R _L =33Ω	I - II -III	MAX	50	25	mA
		IV		70	50	
V _G T		ALL	MAX	1	.3	V
V _{GD}	$V_D = V_{DRM} T_j = 125^{\circ}C$ $R_L = 3.3 K\Omega$	ALL	MIN	0.2		V
IL	1 -4 21	I -III-IV	MAV	50	40	mA
	I _G =1.2I _{GT}	II	MAX	100	80	IIIA

Shenzhen VSEEI Semiconductor Co., Ltd

lн	I _T =100mA	MAX	50	25	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃	MIN	500	200	V/µs
(dV/dt)c	(dl/dt)c=5.3A/ms T _j =125℃	MIN	10	5	V/µs

STATIC CHARACTERISTICS

Symbol	Param	Parameter		Unit
V _{TM}	I _{TM} =17A tp=380µs	Tj=25℃	1.5	V
IDRM	\/\/\/	T _j =25℃	5	μΑ
I _{RRM}	$V_D = V_{DRM} V_R = V_{RRM}$	T _j =125℃	1	mA

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
		TO-220A(Ins)	2.3	
R _{th(j-c)}	junction to case(AC)	TO-262/ TO-220A(Non-Ins)/ TO-220C	1.4	°C/W
		TO-220F(Ins)	2.5	

FIG.1 Maximum power dissipation versus RMS on-state current

FIG.3: Surge peak on-state current versus number of cycles

FIG.2: RMS on-state current versus case temperature

FIG.4: On-state characteristics (maximum values)

Shenzhen VSEEI Semiconductor Co., Ltd

FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<20ms, and corresponging value of I^2t (dI/dt(I-I-II) < 50A/ μ s)

FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction temperature

