Problema 1

Uma palavra é uma sequência de letras maiúsculas do nosso alfabeto (isto é, há 26 possíveis letras). Uma palavra é chamada de palíndromo se tem pelo menos duas letras e ela é a mesma palavra se lida da esquerda para a direita ou da direita para a esquerda. Por exemplo, as palavras ARARA e NOON são palíndromos, mas BOBO e AÑÂ não são palíndromos.

Dizemos que uma palavra x contém uma palavra y se existem letras consecutivas de x que juntas formam y. Por exemplo, a palavra ARARA contém a palavra RARA e também a palavra ARARA, mas não contém a palavra ARRA.

Calcule a quantidade de palavras de 14 letras que contêm algum palíndromo.

Resposta

Sabe-se que existem 26^{14} possibilidades de palavras de 14 letras no total. Além disso, podemos afirmar também que toda palavra contém no mínimo um palíndromo de 2 ou 3 letras. Isso ocorre porque, ao retirar as primeira e última letras de um palíndromo, será obtido outro palíndromo (caso tenha mais de 2 letras). É possível repetir isso até chegar a xx (um palíndromo de 2 letras), ou xyx (um palíndromo de 3 letras).

Existem 26 possíveis letras para a 1^a letra de um não palíndromo de 14 totais letras. Afim de evitar um palíndromo, a 2^a deve ser diferente da 1^a , (25 opções). Pelo mesmo motivo, a 3^a é diferente da 1^a e da 2^a , (24 opções). Esse argumento da 3^a letra será válido para todas as outras 11 letras. Com isso podemos concluir que existem $26^{14} - 26 \cdot 25 \cdot 24^{12}$ palíndromos no total.

Problema 2

Mostre que não existem triplas de inteiros não negativos (x, y, z) satisfazendo a equação

$$x^2 = 5^y + 3^z$$
.

Resposta

Já que *împar* + *împar* = par, $5^y + 3^z$ é par, logo x é par. Se x = 2k, $x^2 = 4k^2$, logo $x^2 \equiv 0 \pmod{4}$. Neste caso, $0 \equiv 5^y + 3^z \equiv 1 + (-1)^z \pmod{4}$, por conseguinte, z é um número ímpar. Claramente, $x \not\equiv 0 \pmod{3}$, pois

$$x \equiv 0 \pmod{3} \Rightarrow 5^y = x^2 - 3^z \Rightarrow 5^y \equiv 0 \pmod{3}$$

Absurdo! Agora, nos resta apenas $x \equiv 1 \pmod 3$ ou $x \equiv 2 \pmod 3$. Perceba abaixo que $x \not\equiv 1 \pmod 3$ e $x \not\equiv 2 \pmod 3$, e como já vimos que $x \not\equiv 0 \pmod 3$, não existem soluções para x.

- 1. Caso 1: $x \equiv 1 \pmod{3} \Rightarrow x^2 5^y = 3^z \Rightarrow y = 2w$. Neste caso, podemos afirmar que $x^2 5^{2w} = 3^z \Rightarrow (x + 5^w)(x 5^w) = 3^z$. Para que esta igualdade seja verdadeira, ou $x + 5^w \equiv 0 \pmod{3}$ e $x 5^w = 1$, ou, tanto $x + 5^w$ quanto $x 5^w$ são múltiplos de 3. Evidentemente $x 5^w \neq 1$, pois se $x 5^w = 1$, $5^w + 1 \equiv 1 \pmod{3} \Rightarrow 5^w \equiv 0 \pmod{3}$, absurdo! Mas é impossível também que tanto $x + 5^w$ quanto $x 5^w$ sejam múltiplos de 3, pois neste caso, $x \equiv 5^w \pmod{3} \Rightarrow x \equiv 5^w \equiv 1 \pmod{3}$, impossibilitando que $x 5^w \equiv 0 \pmod{3}$; $x \not\equiv 1 \pmod{n}$
- 2. Caso 2: $x \equiv 2 \pmod{3} \Rightarrow x^2 \equiv 5^w \equiv 1 \pmod{3}$. Evidentemente $x + 5^w \not\equiv 0 \pmod{3}$, logo a única opção é que $x + 5^w = 1$, claramente impossível já que tanto x quanto w são números inteiros positivos $\therefore x \not\equiv 2 \pmod{3}$

Problema 3

No triângulo escaleno ABC, sejam I o seu incentro e D o ponto onde AI intersecta BC. Sejam M e N os pontos onde o incírculo de ABC toca AB e AC, respectivamente. Seja F o segundo encontro do circuncírculo (AMN) com o circuncírculo (ABC). Seja T o encontro de AF com o prolongamento de BC. Seja J a interseção de TI com a paralela a FI que passa por D. Prove que AJ é perpendicular a BC.

Nota: o incentro de um triângulo é a interseção das bissetrizes internas.

Resposta

Problema 4

Encontre todos os inteiros positivos $a, b \in c$ tais que

$$3ab = 2c^2$$
 e $a^3 + b^3 + c^3$

Figure 1: Uma ilustração do terceiro problema. Fonte

seja o dobro de um número primo.

Resposta