HYPOTHESIS TESTING

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Chi-Square Test for Variance

The <u>chi-square test for variance</u> is a statistical method that compares the <u>sample variance</u> to the hypothesized population variance.

Hypothesis

$$H_o$$
: $\sigma_1 = \sigma_o$

$$H_a$$
: $\sigma_1 \neq \sigma_o$ (p-value $\leq \alpha$)

Assumptions

- Continuous data
- Normal data and non-normal data

<u>Test Statistic</u>

$$x^2 = (n-1)\frac{s^2}{\sigma^2}$$

where:

n =sample size

 s^2 = sample variance

 σ^2 = population variance

The <u>chi-square test for variance</u> is a statistical method that compares the <u>sample variance</u> to the hypothesized population variance.

Hypothesis

$$H_o$$
: $\sigma_1 = \sigma_o$ H_a : $\sigma_1 \neq \sigma_o$ (p-value $\leq \alpha$)

Assumptions

- Continuous data
- Normal data and non-normal data

```
syntax
from scipy import stats
Left-Tailed Test
p value = stats.chi2.cdf(chi sq stat, dof)
Right-Tailed Test
p value =
    1 - stats.chi2.cdf(chi sq stat, dof)
Two-Tailed Test
p value = 2*min(
    stats.chi2.cdf(chi sq stat, dof),
```

1 - stats.chi2.cdf(chi_sq_stat, dof);

EXERCISE

The dataset contains the electricity production in MWh by the following production types:

Туре	μ	σ
Nuclear	1283.78	32.50
Wind	779.86	88.28
Hydroelectric	1796.86	96.24
Oil and Gas	1160.69	60.66
Coal	1139.33	42.59
Solar	167.58	36.08
Biomass	55.12	2.13

Perform a <u>chi-square test for variance</u> to determine whether the variance of electricity production (in MWh) for each production type in the given dataset differs significantly from known population parameters.

dataset

"<u>electricity-normal-sample-cleaned.csv</u>"

LABORATORY

