Zadanie 15. W sytuacji jak w zadaniu 14 pokaż, że każdy element M można przedstawić jako $\mu_i(x_i)$ dla pewnego $i \in I$ oraz $x_i \in M_i$.

Pokaż również, że jeżeli $\mu_i(x_i)$ = 0, wtedy istnieje j \geq i takie, że $\mu_{ii}(x_i)$ = 0 w M_i .

Po pierwsze, weźmy sobie jakieś $x \in M$. Ono tak naprawdę siedzi w C ale bez D (bo M = C/D), czyli $x = \sum \mu_i(x_i)$. Super. To teraz my wiemy, że i jest częściowo uporządkowane i że elementy C mają niezera na skończenie wielu miejscach, czyli musi istnieć jakieś j takie, że

$$\mathsf{x} = \sum \mu_{\mathsf{i}}(\mathsf{x}_{\mathsf{i}}) = \sum_{\mathsf{i} \leq \mathsf{j}} \mu_{\mathsf{i}}(\mathsf{x}_{\mathsf{i}}).$$

Ale my mamy powiedzialne, że jeśli i \leq j, to $\mu_{\rm j}$ = $\mu_{\rm j} \circ \mu_{\rm jj}$, czyli

$$\sum_{i < j} \mu_i(x_i) = \sum_{i < j} \mu_j(\mu_{ij}(x_i)) = \mu_j \left[\sum \mu_{ij}(x_i) \right],$$

a przecież $\sum_{i < j} \mu_{ij}(x_i) \in M_i$

Zadanie 16. Pokaż, że skierowana granica jest określona (z dokładnością do izomorfizmu) przez następującą własność. Niech N będzie A-modułem i niech dla każdego $i \in I$ $\alpha_i : M_i \to N$ będzie homomorfizmem A-modułów takim, że $\alpha_i = \alpha_j \circ \mu_{ij}$ zawsze gdy $i \le j$. Wtedy istnieje unikalny homomorfizm $\alpha : M \to N$ taki, że $\alpha_i = \alpha \circ \mu_i$ dla wszystkich $i \in I$.

Istnieje, bo tak XD

Zadanie 17. Niech $(M_i)_{i\in I}$ będzie rodziną podmodułów A-modułu takich, że dla każdej pary indeksów i, j \in I istnieje k \in I takie, że M_i + M_j \in M_k . Zdefiniujemy i \leq j przez M_i \subseteq M_j i niech μ_{ij} : $M_i \rightarrow M_j$ będzie włożeniem M_i w M_i . Pokaż, że

$$\underset{\longleftarrow}{\underline{\lim}} M_i = \sum M_i = \bigcup M_i$$
.

W szczególności, dowolny A-moduł jest skierowana granicą skończenie generowanych podmodułów.

Najpierw to drugie pytanie. Niech S będzie zbiorem skończenie generowanych podmodułów M. Od razu widać, że jest to zbiór uporządkowany przez zawieranie. Niech $x \in M$. No raczej nie może być nieskończoną sumą generatorów, tylko musi być sumowany przez skończenie wiele ziomeczków, czyli jego generatory są w skończenie wielu M_i , czyli są w $\bigcup M_i$, czyli jest to $\varinjlim M_i$ na mocy pierwszej części ćwiczenia.

To teraz powrót do pierwszej części zadanka. Wydaje mi się, że $\bigcup M_i \subseteq \sum M_i$ jest dość proste. $\sum M_i \subseteq \varinjlim M_i$ brzmi jak coś z definicji. Zostaje mi, że $\varinjlim M_i \subseteq \bigcup M_i$. To weźmy sobie dowolnego $x \in M$, wiem że istnieje $x_i \in M_i$ takie, że $\mu_i(x_i) = x$ no i to mi chyba kończy dowód? Bo μ_i to tak naprawdę identyczność obcięta do M_i ?