Universidade Estadual de Campinas Colégio Técnico de Campinas - DPD

Estruturas de Dados

Resolução de Expressões Aritméticas usando Pilhas e Filas (2º Ano do Curso 59)

O propósito deste trabalho é, usando pilhas e filas, construir em Java o programa de uma <u>Calculadora de Expressões Aritméticas</u> apropriadamente orientado a objetos. Nele, uma expressão algébrica deverá ser avaliada e seu resultado deverá ser calculado e exibido. Veja o exemplo abaixo:

Entrada: 10 + (2 *3 - 4) ^ 2 / 4 + 6 * 2 Saída: 23

Para solucionar o problema devido a mudança de prioridade promovida pelos parênteses, o matemático polonês *Jan Lukasiewicz* elaborou uma saída para representarmos e avaliarmos expressões sem nos preocuparmos com as prioridades das operações e, até mesmo, abrir mão dos parênteses. Podemos considerar três formas para representar uma expressão:

- Infixa: operador está entre os operandos. (1 + 2)
- Pré-Fixa: Operador precede os operandos (+ 1 2)
- Pós-Fixa: Operador após os operandos (1 2 +)

Esta implementação utilizará pilhas e filas como estruturas de dados e a técnica utilizada será a de transformar a expressão fornecida da tradicional notação infixa para notação pós-fixa e, a partir desta última, calcular o valor da expressão

OBS: Expressões mal formadas também poderão ser entradas e a má formação deverá ser detectada e sinalizada.

As formas pré-fixa e pós-fixa são conhecidas como notação polonesa (PN) e notação polonesa reversa (RPN), respectivamente, em que a última tem mostrado ser a mais eficiente para construção de algoritmos.

Para o funcionamento da nossa calculadora, os seguintes operadores poderão ser utilizados:

Símbolo	Significado
+	Adição
-	Subtração
*	Multiplicação
/	Divisão
^	Exponenciação
()	Parentetização

Essa calculadora considera a precedência dos operadores e os parênteses durante o cálculo da expressão. A tabela seguinte mostra a precedência dos operadores, da maior precedência no começo para os de menor precedência.

Símbolo	Significado
()	Parentização
^	Exponenciação
*	Multiplicação
/	Divisão
+	Adição
-	Subtração

Observação: Havendo operadores de mesma prioridade (como é o caso da multiplicação e da divisão, bem como da adição e da subtração), sua calculadora deverá resolver a expressão da esquerda para direita, ou seja, o que aparecer primeiro.

- 1. Uma string deverá ser lida e quebrada em pedaços para verificar se é válida ou não:
 - 1.1. Solicitar a digitação de uma expressão aritmética. Você deve ler a expressão digitada pelo usuário como uma *string* e remover todos os espaços em branco. Suponha que tenha sido:

Veja como ficará a string do nosso exemplo:

1.2. Agora você deve implementar uma lógica para quebrar a string em partes. Na linguagem JAVA, você possui uma classe chamada StringTokenizer. Esta classe permite quebrar a string ("exp") em partes quando encontrar um delimitador ("+-*/^()"). O true faz com que pegue os delimitadores também como pedaços.

```
StringTokenizer quebrador = new StringTokenizer (exp, "+-
*/^()", true);
```

- 1.3. Os seguintes métodos desta classe deverão ser utilizados para que você quebre a string em pedaços:
 - p quebrador.nextToken(); // Lê os pedaços
 - p quebrador.hasMoreToken(); // Verifica se tem mais pedaços
- 2. Você deverá nesta segunda etapa, construir <u>Conversor de Notação Infixa para Pós-fixa</u>. Nesta etapa, será utilizada uma pilha e uma fila para transformar a expressão da notação infixa para a notação pós-fixa:

- 2.1. Devemos pegar um pedaço da expressão que foi quebrada no passo anterior:
 - 2.1.1. Se o pedaço for um **abre parênteses** ("("), colocaremos este pedaço na <u>Pilha de Operadores</u>.
 - 2.1.2. Se o pedaço for um **número**, colocaremos este pedaço na <u>Fila</u> de Saída.
 - 2.1.3. Se o pedaço for um **operador aritmético** (+,-,*,/,^), deveremos realizar dois passos:
 - 2.1.3.1. Analisar se não temos elementos para remover da pilha. Você deverá utilizar a tabela a seguir, para decidir se irá remover elementos da <u>Pilha de</u> Operadores:
 - 2.1.3.1.1. Se o valor da tabela for T (true), o elemento da pilha deve ser desempilhado e colocado na Fila de Saída.
 - 2.1.3.1.2. Se o valor da tabela for F (false), o elemento da pilha não deve ser desempilhado e você deve ir para o passo 2.1.3.2.
 - 2.1.3.1.3. A remoção de elementos da pilha deve parar quando for encontrado o valor F, ou seja, o passo 2.1.3.1 deverá ser repetido enquanto for encontrado o valor T (true) na tabela.

		Símbolo pego da Sequência						
		(٨	*	1	+	•)
	(F	F	F	F	F	F	Т
	٨	F	F	Т	Т	Т	Т	Т
Símbolo	*	F	F	Т	Т	Т	Т	Т
que está no	1	F	F	Т	Т	Т	Т	Т
topo da Pilha	+	F	F	F	F	Т	Т	Т
	-	F	F	F	F	Т	Т	Т
)	F	F	F	F	F	F	F

2.1.3.2. Assim que o passo 2.1.3.1 for verificado e concluído, deveremos colocar o operador da expressão no topo da <u>Pilha de Operadores</u>.

- 2.1.4. Se o pedaço for um fecha parênteses (")"), devemos desempilhar um elemento da pilha e colocá-lo na fila. Repetimos este passo até encontrar o "(". Ambos os símbolos "(" como o ")" não irão para a fila. Eles simplesmente deverão ser descartados.
- 2.2. O passo 2.1 termina com a <u>Expressão</u> vazia; quando isso ocorrer, caso a <u>Pilha de Operadores</u> não estiver vazia, todo seu conteúdo deverá ser desempilhado e enfileirado na <u>Fila de Saída</u>.
- 2.3. Veja que ao final do passo 2.2, você terá obtido a expressão em notação pós-fixa. Veja abaixo a aplicação destes passos para o nosso exemplo:

Expressão	Pilha de Operadores	Fila de Saída
10+(2*3-4)^2/4+6*2	<u>Vazia</u>	<u>Vazia</u>
<mark>+</mark> (2*3-4)^2/4+6*2	<u>Vazia</u>	10
<mark>(</mark> 2*3-4)^2/4+6*2	+	10
<mark>2</mark> *3-4)^2/4+6*2	(+	10
<mark>*</mark> 3-4)^2/4+6*2	(+	10 2
<mark>3</mark> -4)^2/4+6*2	* (+	10 2
<mark>-</mark> 4)^2/4+6*2	* (+	10 2 3

Expressão	Pilha de Operadores	Fila de Saída
	<u> </u>	
<mark>-</mark> 4)^2/4+6*2	+	10 2 3 *

<mark>4</mark>)^2/4+6*2	- (+	10 2 3 *
<mark>)</mark> ^2/4+6*2	- (+	10 2 3 * 4
<mark>)</mark> ^2/4+6*2	(+	10 2 3 * 4 -
<mark>^</mark> 2/4+6*2	+	10 2 3 * 4 -
<mark>2</mark> /4+6*2	+	10 2 3 * 4 -
<mark>/</mark> 4+6*2	+	10 2 3 * 4 - 2
<mark>/</mark> 4+6*2	+	10 2 3 * 4 - 2 ^
<mark>4</mark> +6*2	+	10 2 3 * 4 - 2 ^
<mark>+</mark> 6*2	/	10 2 3 * 4 - 2 ^ 4

	+	
<mark>+</mark> 6*2	+	10 2 3 * 4 - 2 ^ 4 /
<mark>+</mark> 6*2	<u>Vazia</u>	10 2 3 * 4 - 2 ^ 4 / +
<mark>6</mark> *2	+	10 2 3 * 4 - 2 ^ 4 / +
<mark>*</mark> 2	+	10 2 3 * 4 - 2 ^ 4 / + 6
2	+	10 2 3 * 4 - 2 ^ 4 / + 6
<u>Vazia</u>	+	10 2 3 * 4 - 2 ^ 4 / + 6 2
<u>Vazia</u>	<u>Vazia</u>	10 2 3 * 4 - 2 ^ 4 / + 6 2 * +

- 3. Você deverá nesta terceira etapa, construir **Calculadora de Expressão**:
 - 3.1. Devemos definir 3 variáveis: dois valores do tipo double (v1 e v2) e um char (op). Lembre-se, nossa expressão pós-fixa está na <u>Fila de Saída</u>.
 - 3.2. Regra Geral Devemos remover um elemento da Fila de Saída e verificar:
 - 3.2.1. Se o elemento for um valor numérico, devemos empilhá-lo na <u>Pilha Resultado</u>. Devemos repetir este passo 1 até que o elemento removido da Fila de Saída seja um operador.
 - 3.2.2. Se o elemento removido da <u>Fila de Saída</u> for um operador, devemos armazená-lo na variável char definida como **op**.
 - **3.2.2.1.** Não pare por aí... ao encontrar um operador lógico e depois de armazená-lo em op, devemos

desempilhar um elemento (que deve ser um string numérico), transformá-lo em número e colocá-lo em v2 e, em seguida, devemos desempilhar mais um elemento (que deve ser um string numérico) transformá-lo em número e colocá-lo em v1. Em seguida, você deve calcular o resultado da expressão: v1 opl v2. Este resultado deve ser armazenado na Pilha Resultado.

- 3.3. Pronto! Caso haja ainda elementos na <u>Fila de Saída</u>, você deve aplicar a regra geral novamente (volte ao passo 3.2). Caso não haja elementos na <u>Fila de Saída</u>, deve ficar um único elemento na <u>Pilha Resultado</u> e este elemento será o resultado final da expressão.
- 3.4. Veja que ao final do passo 3.3, você terá obtido o resultado final da expressão que a saída esperada do seu programa. Veja abaixo a aplicação destes passos para o nosso exemplo:

Fila de Saída (expressão em notação pós- fixa)	Pilha Resultado	Variáveis
10 2 3 * 4 - 2 ^ 4 / + 6 2 * +	<u>Vazia</u>	v1 = v2 = op =
2 3 * 4 - 2 ^ 4 / + 6 2 * +	10	v1 = v2 = op =
3 * 4 - 2 ^ 4 / + 6 2 * +	2 10	v1 = v2 = op =
* 4 - 2 ^ 4 / + 6 2 * +	3 2 10	v1 = v2 = op =
4 - 2 ^ 4 / + 6 2 * +	3 2 10	v1 = v2 = op = '*'
4 - 2 ^ 4 / + 6 2 * +	<mark>2</mark> 10	v1 = v2 = 3 op = '*'

Fila de Saída (expressão em notação pós- fixa)	Pilha Resultado	Variáveis
4 - 2 ^ 4 / + 6 2 * +	10	v1 = 2 v2 = 3 op = '*' (2*3 é 6)
4 - 2 ^ 4 / + 6 2 * +	6 10	v1 = v2 = op =
2 ^ 4 / + 6 2 * +	6 10	v1 = v2 = op =
2 ^ 4 / + 6 2 * +	<mark>4</mark> 6 10	v1 = v2 = op = '-'
2 ^ 4 / + 6 2 * +	<mark>6</mark> 10	v1 = v2 = 4 op = '-'
2 ^ 4 / + 6 2 * +	10	v1 = 6 v2 = 4 op = '-' (6-4 da <mark>2</mark>)
2 ^ 4 / + 6 2 * +	10	v1 = v2 = op =
^ 4 / + 6 2 * +	2 2 10	v1 = v2 = op =
		v1 = v2 =

Fila de Saída (expressão em notação pós- fixa)	Pilha Resultado	Variáveis
4 / + 6 2 * +	2 2 10	op = '^'
4 / + 6 2 * +	2 10	v1 = v2 = 2 op = '^'
4 / + 6 2 * +	10	v1 = 2 v2 = 2 op = '^' (2^2 dá <mark>4</mark>)
- 4 / + 6 2 * +	4 10	v1 = v2 = op =
/ + 6 2 * +	4 4 10	v1 = v2 = op =
+ 6 2 * +	4 4 10	v1 = v2 = op = '/'
+ 6 2 * +	4 10	v1 = v2 = 4 op = '/'
+ 6 2 * +	10	v1 = 4 v2 = 4 op = '/' (4/4 dá 1)
+ 6 2 * +	1 10	v1 = v2 = op =

Fila de Saída (expressão em notação pós- fixa)	Pilha Resultado	Variáveis
6 2 * +	1 10	v1 = v2 = op = '+'
6 2 * +	10	v1 = v2 = 1 op = '+'
6 2 * +	<u>Vazia</u>	v1 = 10 v2 = 1 op = '+' (10+1 dá <mark>11</mark>)
6 2 * +	11	v1 = v2 = op =
2 * +	6 11	v1 = v2 = op =
* +	2 6 11	v1 = v2 = op =
+	2 6 11	v1 = v2 = op = '*'
+	<mark>6</mark> 11	v1 = v2 = 2 op = '*'

Fila de Saída (expressão em notação pós- fixa)	Pilha Resultado	Variáveis
+	11	v1 = 6 v2 = 2 op = '*' (6*2 dá <mark>12</mark>)
+	12 11	v1 = v2 = op =
<u>Vazia</u>	12 11	v1 = v2 = op = '+'
<u>Vazia</u>	11	v1 = v2 = 12 op = '+'
<u>Vazia</u>	<u>Vazia</u>	v1 = 11 v2 = 12 op = '+' (11+12 dá <mark>23</mark>)
<u>Vazia</u>	23	v1 = v2 = op =

Observações Finais:

- A pilha deve terminar com apenas um valor e este valor (23) é o resultado final da expressão inicialmente digitada.
- É imprescindível: (a) que o programa seja adequadamente dividido em classes; (b) que as classes Pilha e Fila sejam implementadas utilizando vetores (não podem ser utilizadas classes prontas da linguagem); (c) que todas as validações cabíveis sejam feitas por todos os métodos e que incorretudes sejam sinalizadas através de exceções que, posteriormente, sejam apropriadamente tratadas.
- O presente trabalho deve ser feito em grupos de até 3 alunos e deverá ser entregue, impreterivelmente no dia 18 de Novembro de 2024.

Bom Trabalho Prof André Carvalho 04/nov/2024