Algorithms and Phase Transitions in Random Graph Alignment Problem

Shuyang Gong

School of Mathematical Sciences, Peking University

September, 2023

Joint work with Jian Ding(PKU), Hang Du(MIT) and Rundong Huang(PKU)

Motivations

- Random Graph Matching is an extensively studied topic in recent years, which lies in the intersection of probability, statistics and computer science
- Goal: find a bijection between two vertex sets which maximizes the number of common edges(i.e. minimize the adjacency disagreements)
- Quadratic Assignment Problem(QAP): $\max_{\pi \in S_n} \sum_{i < j} A_{i,j} B_{\pi(i),\pi(j)}$. Introduced by [Koopmans-Beckmann'57] NP-hard in the worst case.
 - $A \simeq B \Rightarrow$ Graph isomorphism problem(no noise)
 - But two graphs are usually not isomorphic.(statistical challenge)
 - n! bijections (computationally expensive)
- Efforts from community on average case of graph matching: [Feizi at el.'16, Lyzinski at el'16, Cullina-Kiyavash'16,17, Ding-Ma-Wu-Xu'18, Barak-Chou-Lei-Schramm-Sheng'19, Fan-Mao-Wu-Xu'19a,19b, Ganassali-Massoulié'20, Hall-Massoulié'20, Ding-Du'22a,22b, Ding-Du-G'22, Ding-Li'22,23, Du-G-Huang'23...]

Mathematical model

- Erdős-Rényi graph G(n, p): Each edge in K_n is preserved with probability p independently.
- Sample two independent Erdős-Rényi graphs $G_1(n, p)$ and $G_2(n, p)$.
- Core quantity $O(\pi)$: the number of common edges of these two graphs under π . Formally,

$$\mathsf{O}(\pi) := \sum_{i < j} \mathsf{G}_{i,j}^{(1)} \mathsf{G}_{\pi(i),\pi(j)}^{(2)} \,,$$

where $G^{(i)}$ are adjacency matrices.

• e.g. $\pi(1) = 1, \pi(2) = 8, \pi(3) = 2, \pi(4) = 7, \pi(5) = 3, \pi(6) = 5, \pi(7) = 4, \pi(8) = 6 \Rightarrow$ we have $O(\pi) = 5$

Our problem

- Q1: what is the typical value of $\max_{\pi \in S_n} O(\pi)$?
- A first moment computation on $\max_{\pi \in S_n} O(\pi)$ yields an **upper** bound, e.g. take $p = n^{-3/4}$, let $\gamma(n) := (1 + \varepsilon)2n$,

$$\begin{split} \mathbb{P}\left[\max_{\pi \in \mathsf{S}_n} \mathsf{O}(\pi) > 2(1+\varepsilon)n\right] &\leq \sum_{\pi \in \mathsf{S}_n} \mathbb{P}\left[\mathsf{O}(\pi) \geq 2(1+\varepsilon)n\right] \\ &= n! \mathbb{P}\left[\mathbf{B}\left(\binom{n}{2}, p^2\right) > 2(1+\varepsilon)n\right] \\ &\stackrel{\mathsf{Chernoff}}{\leq} n! \exp\left(-2(1+\varepsilon)n\log\left(\frac{2(1+\varepsilon)n}{\binom{n}{2}n^{-3/2}}\right) + 2(1+\varepsilon)n - \binom{n}{2}n^{-3/2}\right) \\ &= n! \exp(-(1+\varepsilon+o(1))n\log n) = o(1) \,. \end{split}$$

• The calculation for other *p* is similar.

Our problem

• For other $p(\text{divide into sparse/dense by } \sqrt{\log n/n})$,

regime	$max_{\pi \in S_n} O(\pi)$
sparse: $\frac{\log n}{n} \ll p \ll \sqrt{\frac{\log n}{n}}$	$n \cdot \frac{\log n}{\log(\log n/np^2)}$
dense: $\sqrt{\frac{\log n}{n}} \ll p \le \frac{1}{(\log n)^4}$	$\binom{n}{2}p^2 + \sqrt{n^3p^2\log n}$

- First moment computation ⇒ Upper bound w.h.p.
- Right asymptotics?—True.
- Q2: Find a polynomial time algorithm for $\arg \max_{\pi} O(\pi)$?(sparse: yes, dense: no)
- Information-Computation gap?(sparse: no, dense: yes)

Sparse regime

Theorem (Ding-Du-G. 22)

For $p=n^{-\alpha+o(1)},\,1/2<\alpha\leq 1$, there exists a polynomial-time algorithm s.t.

$$\mathbb{P}\left[\mathsf{O}(\pi^*) \geq \frac{1-\epsilon}{2\alpha-1} n\right] = 1 - o(1).$$

Theorem (Du-G.-Huang 23)

For $p=n^{-1/2+o(1)}$ and $p\ll \sqrt{\log n/n}$, for any $\varepsilon>0$, there exists an $O(n^3)$ -time algorithm such that

$$\mathbb{P}\left[\mathsf{O}(\pi^*) \geq \frac{(1-\varepsilon) n \log n}{\log \left(\log n/np^2\right)}\right] = 1 - o(1).$$

- $n/(2\alpha 1) = (1 + o(1))n \log n / \log (\log n / np^2)$ for $p = n^{-\alpha}$.
- The constructive lower bound matches the $\gamma(n)$ derived in the first moment computation.
- No information-computation gap in the sparse regime.

Algorithm

The algorithm in [Ding-Du-G'22], let $\alpha = 3/4 - \delta$, $\frac{1}{2\alpha - 1}n \approx 2n$

- Match the first εn vertices arbitrarily.
- In step k+1, select unmatched u_k in G_1 . Neighbor of u_k in matched part N_k
- Map N_k by π^*
- ullet For each such pair (s_k,t_k) , check if there exists unmatched v_k in G_2
- If succeed, let $\pi^*(u_k) = v_k$.

Dense regime—information

Theorem (Du-G.-Huang 23, informational result)

For p in the dense regime, we have

$$\frac{\mathsf{max}_{\pi \in \mathsf{S}_n} \, \mathsf{O}(\pi) - \binom{n}{2} \rho^2}{\sqrt{n^3 p^2 \log n}} \overset{\mathit{prob.}}{\to} 1 \, .$$

• Second moment method: $X_{\varepsilon} := \sum_{\pi \in S_n} \mathbf{1}_{O(\pi) > \binom{n}{2} p^2 + \sqrt{(1-\varepsilon)n^3p^2 \log n}}$.

$$\mathbb{P}\left[\max_{\pi\in\mathsf{S}_n}\mathsf{O}(\pi)>\binom{n}{2}p^2+\sqrt{(1-\varepsilon)n^3p^2\log n}\right]\geq\frac{(\mathbb{E}X_\varepsilon)^2}{\mathbb{E}X_\varepsilon^2}=\exp(-o(n\log n))\,.$$

Talagrand's concentration:

$$\mathbb{P}\left[\left|\max_{\pi\in\mathsf{S}_n}\mathsf{O}(\pi)-\mathbb{E}\max_{\pi\in\mathsf{S}_n}\mathsf{O}(\pi)\right|\geq\sqrt{\varepsilon n^3p^2\log n}\right]\leq \exp\left(-c(\varepsilon)n\log n\right).$$

- Idea: concentration of maximum
- $\qquad \qquad \textbf{(Gaussian) Talagrand's concentration} \ \Rightarrow \ Borell-TIS \ inequality$

- 4ロト 4個ト 4 差ト 4 差ト (差) からの

Dense regime—computation

Theorem (Du-G.-Huang 23, computational result)

There exists an $O(n^3)$ -time algorithm ${\mathcal A}$ which outputs a π^* such that

$$\mathbb{P}\left[\frac{\mathsf{O}\left(\pi^*\right)-\binom{n}{2}p^2}{\sqrt{n^3p^2\log n}}\geq \sqrt{8/9}-\varepsilon\right]=1-o(1)\,.$$

Theorem (Du-G.-Huang 23, hardness result)

For p in the dense regime, for all $\varepsilon > 0$, there exists a constant $c = c(\varepsilon) > 0$ such that for any online algorithm \mathcal{A} ,

$$\mathbb{P}\left[\frac{O\left(\mathcal{A}(\mathsf{G}_1,\mathsf{G}_2)\right)-\binom{n}{2}p^2}{\sqrt{n^3p^2\log n}}\geq \sqrt{\pmb{8}/\pmb{9}}+\varepsilon\right]=o(1)\,.$$

No online algorithm above $\sqrt{8/9}!$ — Hardness result.

Main tool: Branching-OGP structure[Huang-Sellke'22].

Shuyang Gong Random Graph Alignment Problem Sept. 2023 9 / 12

The Branching OGP

- Define tree T with leave set L.
- Construct leave-indexed correlated instances $\{(G_1^{(u)}, G_2)\}_{u \in \mathbb{L}}$.
- Each ray represents an instance. $G_1^{(u)}$ and $G_1^{(v)}$ share $\rho_{|u \wedge v|}$ Bernoulli variables. $(\rho_1 < \rho_2 < \rho_3)$
- Impossible for all $O(\pi_i)$ above $\sqrt{8/9} + \varepsilon$.
- Run online algorithm on all instances. Prove by contradiction.

Summary

Take-home messages

- In sparse regime, no information computation gap.
- In dense regime, information computation gap emerges with a threshold $\sqrt{8/9}$.

Related papers:

- DDG22 Jian Ding, Hang Du and Shuyang Gong, A Polynomial-time Approximation Scheme for the Maximal Overlap Between Two Independent Erdős-Rényi Graphs, arXiv:2210.07823.
- DGH23 Hang Du, Shuyang Gong and Rundong Huang, The Algorithmic Phase Transition of Random Graph Alignment Problem, arXiv:2307.06590.

Thank you for your listening!

References

[BCPP98] Rainer E Burkard, Eranda Cela, Panos M Pardalos, and Leonidas S Pitsoulis. The quadratic assignment problem. In handbook of combinatorial optimization, pages 1713-1809. Springer, 1998. [DDG22] Jian Ding, Hang Du and Shuyang Gong, A Polynomial-time Approximation Scheme for the Maximal Overlap Between Two Independent Erdős-Rényi Graphs, arXiv:2210.07823. [DGH23+]Hang Du, Shuyang Gong and Rundong Huang, The Algorithmic Phase Transition of Random Graph Alignment Problem, arXiv:2307.06590. [HS22] B. Huang and M. Sellke, "Tight Lipschitz Hardness for optimizing Mean Field Spin Glasses," 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), Denver, CO, USA, 2022, pp. 312-322, doi: 10.1109/FOCS54457.2022.00037. [PRW94] Panos M. Pardalos, Franz Rendl, and Henry Wolkowicz. The

quadratic assignment problem: A survey and recent developments.