## MADMO Introduction to ...

Deep Learning

#### Taras Khakhulin

Deep Learning Engineer Samsung Al Center Skoltech and MIPT Master Student

#### t.khakhulin@gmail.com

https://github.com/khakhulin/ https://twitter.com/t khakhulin

#### Real world problems Audio Features







- Object detection
- Action classification
- Image captioning









"man in black shirt is playing quitar."

#### Logistic regression



$$P(y|x) = \sigma(w \cdot x + b)$$

$$L = -\sum_{i} y_{i} \log P(y|x_{i}) + (1 - y_{i}) \log(1 - P(y|x_{i}))$$

#### Problem: nonlinear dependencies





Logistic regression (generally, linear model) need feature engineering to show good results.

And feature engineering is an *art*.

## Classic pipeline



Handcrafted features, generated by experts.

#### NN pipeline



Automatically extracted features.

### NN pipeline: example



E.g. two logistic regressions one after another.

### NN pipeline: example



Actually, it's a neural network.

#### XOR problem



#### Activation functions: nonlinearities

$$f(a) = \frac{1}{1 + e^a}$$

$$f(a) = \tanh(a)$$

$$f(a) = \max(0, a)$$

$$f(a) = \log(1 + e^a)$$



#### Some generally accepted terms

- Layer a building block for NNs :
  - o Dense layer: f(x) = Wx+b
  - Nonlinearity layer:  $f(x) = \sigma(x)$
  - Input layer, output layer
  - A few more we will cover later
- Activation function function applied to layer output
  - o Sigmoid
  - o tanh
  - ReLU
  - Any other function to get nonlinear intermediate signal in NN
- Backpropagation a fancy word for "chain rule"



"Train it via backprop!"

#### Actually, it can be deeper



## Much deeper...



Much deeper...



How to train it?

# Backpropagation and chain rule

Chain rule is just simple math:

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$$

Backprop is just way to use it in NN training.



$$f(x, y, z) = (x + y)z$$
  
e.g. x = -2, y = 5, z = -4



$$f(x, y, z) = (x + y)z$$
  
e.g.  $x = -2$ ,  $y = 5$ ,  $z = -4$ 

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
  $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ 



$$f(x,y,z) = (x+y)z$$
  
e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
  $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ 



$$f(x,y,z) = (x+y)z$$
  
e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
  $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ 



$$f(x,y,z) = (x+y)z$$
  
e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
  $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ 

Want:  $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$ 



$$f(x,y,z) = (x+y)z$$
  
e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
  $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ 



$$f(x, y, z) = (x + y)z$$
  
e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
  $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ 



$$f(x,y,z) = (x+y)z$$
  
e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
  $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ 

Want: 
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$



$$f(x, y, z) = (x + y)z$$
  
e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
  $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ 



$$f(x,y,z) = (x+y)z$$
  
e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
  $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ 

Want:  $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$ 



$$f(x, y, z) = (x + y)z$$
  
e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
  $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ 



$$f(x, y, z) = (x + y)z$$
  
e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
  $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ 



#### Practice time: interactive playground



# Backpropagation and chain rule

Chain rule is just simple math:

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$$

Backprop is just way to use it in NN training.



Another example: 
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Another example:  $f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$ 



source: http://cs231n.github.io

Another example: 
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$



$$egin{array}{lll} f(x)=e^x & 
ightarrow & rac{df}{dx}=e^x & f(x)=rac{1}{x} & 
ightarrow & rac{df}{dx}=-1/x^2 \ f_a(x)=ax & 
ightarrow & rac{df}{dx}=a & f_c(x)=c+x & 
ightarrow & rac{df}{dx}=1 \end{array}$$

Another example: 
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

Another example: 
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$



Another example: 
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$
 $f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$ 
 $f(x) = e^x$ 
 $f(x) = e^x$ 
 $f(x) = ax$ 
 $f(x) = ax$ 

Another example: 
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Another example: 
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$



Another example: 
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$



$$f(x) = e^x$$
  $o$   $\dfrac{df}{dx} = e^x$   $f(x) = \dfrac{1}{x}$   $o$   $\dfrac{df}{dx} = -1/x^2$   $f_c(x) = ax$   $o$   $\dfrac{df}{dx} = 1$ 

Another example: 
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$



Another example: 
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$f(x) = e^x \hspace{1cm} 
ightarrow \hspace{1cm} rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm} 
ightarrow \hspace{1cm} rac{df}{dx} = -1/x^2 \ f_c(x) = ax \hspace{1cm} 
ightarrow \hspace{1cm} rac{df}{dx} = a \hspace{1cm} f_c(x) = c + x \hspace{1cm} 
ightarrow \hspace{1cm} rac{df}{dx} = 1$$

Another example: 
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$



$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Another example: 
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$w_0 = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$w_1 = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$w_1 = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$w_1 = \frac{1}{3.00}$$

$$w_1 = \frac{1}{3.00}$$

$$w_2 = \frac{1}{3.00}$$

$$w_2 = \frac{1}{3.00}$$

$$w_2 = \frac{1}{3.00}$$

$$w_3 = \frac{1}{3.00}$$

$$w_4 = \frac{1}{3.00}$$

$$w_2 = \frac{1}{3.00}$$

$$w_3 = \frac{1}{3.00}$$

$$w_4 = \frac{1}{3.00}$$

$$w_2 = \frac{1}{3.00}$$

$$w_3 = \frac{1}{3.00}$$

$$w_4 = \frac{1}{3.00}$$

$$w_5 = \frac{1}{3.00}$$

$$w_6 = \frac{1}{3.00}$$

$$w_7 = \frac{1}{3.00}$$

$$w_7$$

Another example: 
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$
 [local gradient] x [its gradient] 
$$x0: [2] \times [0.2] = 0.4$$
 
$$w0: [-1] \times [0.2] = -0.2$$
 
$$x_1 = -0.2$$
 
$$x_2 = -0.2$$
 
$$x_3 = -0.2$$
 
$$x_4 = -0.2$$
 
$$x_1 = -0.2$$
 
$$x_2 = -0.2$$
 
$$x_3 = -0.2$$
 
$$x_4 = -0.2$$
 
$$x_1 = -0.2$$
 
$$x_2 = -0.2$$
 
$$x_3 = -0.2$$
 
$$x_4 = -0.2$$
 
$$x_5 = -0.2$$
 
$$x_5 = -0.2$$
 
$$x_7 = -0.2$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$
  $\sigma(x)=rac{1}{1+e^{-x}}$  sigmoid function  $rac{d\sigma(x)}{dx}=rac{e^{-x}}{(1+e^{-x})^2}=\left(rac{1+e^{-x}-1}{1+e^{-x}}
ight)\left(rac{1}{1+e^{-x}}
ight)=(1-\sigma(x))\,\sigma(x)$ 



### **Gradient optimization**

Stochastic gradient descent (and variations) is used to optimize NN parameters.

 $x_{t+1} = x_t - \text{learning rate} \cdot dx$ 





source: <a href="http://cs231n.github.io/neural-networks-3/">http://cs231n.github.io/neural-networks-3/</a>

#### Once more: nonlinearities

$$f(a) = \frac{1}{1 + e^a}$$

$$f(a) = \tanh(a)$$

$$f(a) = \max(0, a)$$

$$f(a) = \log(1 + e^a)$$





### Sigmoid

$$f(a) = \frac{1}{1 + e^a}$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

#### 3 problems:

- Saturated neurons "kill" the gradients
- Sigmoid outputs are not zerocentered
- 3. exp() is a bit compute expensive



- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

## taili(x)

$$f(a) = \tanh(a)$$



### ReLU

(Rectified Linear Unit)

$$f(a) = \max(0, a)$$

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?



- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

### Leaky ReLU

$$f(x) = \max(0.01x, x)$$



#### Leaky ReLU

$$f(x) = \max(0.01x, x)$$

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

#### Parametric Rectifier (PReLU)

$$f(x) = \max(\alpha x, x)$$

backprop into \alpha (parameter)

### **Exponential Linear Units (ELU)**



$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

- All benefits of ReLU
- Does not die
- Closer to zero mean outputs
- Computation requires exp()

### Activation functions: sum up

- Use ReLU as baseline approach
- Be careful with the learning rates
- Try out Leaky ReLU or ELU
- Try out tanh but do not expect much from it
- Do not use Sigmoid

• Pitfall: all zero initialization.

- Pitfall: all zero initialization.
- Small random numbers.

- Pitfall: all zero initialization.
- Small random numbers.
- Calibrated random numbers.

$$S = \sum_{i}^{n} w_{i}x_{i}$$

$$Var(s) = Var(\sum_{i}^{n} w_{i}x_{i})$$

$$= \sum_{i}^{n} Var(w_{i}x_{i})$$

$$= \sum_{i}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$

$$= \sum_{i}^{n} Var(x_{i}) Var(w_{i})$$

$$= (nVar(w)) Var(x)$$

Xavier initialization (Glorot, Bengio, 2010)

Simple linear 
$$y = \mathbf{w}^{ op} \mathbf{x} + b = \sum_i w_i x_i + b$$
 neuron

Compute the variance

Xavier initialization (Glorot, Bengio, 2010)

Simple linear 
$$y = \mathbf{w}^{ op} \mathbf{x} + b = \sum_i w_i x_i + b$$
 neuron

Compute the variance

$$egin{aligned} \operatorname{Var}[y_i] &= \operatorname{Var}[w_i x_i] = \mathbb{E}\left[w_i^2 x_i^2
ight] - \left(\mathbb{E}[w_i x_i]
ight)^2 = \ &= \mathbb{E}[x_i]^2 \operatorname{Var}[w_i] + \mathbb{E}[w_i]^2 \operatorname{Var}[x_i] + \operatorname{Var}[w_i] \operatorname{Var}[x_i] \end{aligned}$$

$$egin{aligned} \operatorname{Var}[y_i] &= \operatorname{Var}[w_i x_i] = \mathbb{E}\left[w_i^2 x_i^2
ight] - \left(\mathbb{E}[w_i x_i]
ight)^2 = \ &= \mathbb{E}[x_i]^2 \operatorname{Var}[w_i] + \mathbb{E}[w_i]^2 \operatorname{Var}[x_i] + \operatorname{Var}[w_i] \operatorname{Var}[x_i] \end{aligned}$$

$$\operatorname{Var}[y_i] = \operatorname{Var}[w_i] \operatorname{Var}[x_i]$$
 Zero mean for weights and data

$$ext{Var}[y] = ext{Var} \left| \sum_{i=1}^{n_{ ext{out}}} y_i 
ight| = \sum_{i=1}^{n_{ ext{out}}} ext{Var}[w_i x_i] = n_{ ext{out}} ext{ Var}[w_i] ext{Var}[x_i]$$

$$egin{aligned} \operatorname{Var}[y_i] &= \operatorname{Var}[w_i x_i] = \mathbb{E}\left[w_i^2 x_i^2
ight] - (\mathbb{E}[w_i x_i])^2 = \ &= \mathbb{E}[x_i]^2 \operatorname{Var}[w_i] + \mathbb{E}[w_i]^2 \operatorname{Var}[x_i] + \operatorname{Var}[w_i] \operatorname{Var}[x_i] \end{aligned}$$

$$\operatorname{Var}[y_i] = \operatorname{Var}[w_i] \operatorname{Var}[x_i]$$
 Zero mean for weights and data

$$ext{Var}[y] = ext{Var}igg[\sum_{i=1}^{n_{ ext{out}}} y_iigg] = \sum_{i=1}^{n_{ ext{out}}} ext{Var}[w_i x_i] = egin{bmatrix} n_{ ext{out}} & ext{Var}[w_i] \ \end{pmatrix} ext{Var}[x_i]$$

Weights init: Neural Networks: Tricks of the Trade

$$w_i \sim Uiggl[-rac{1}{\sqrt{n_{
m out}}},rac{1}{\sqrt{n_{
m out}}}iggr]$$

$$\operatorname{Var}[w_i] = rac{1}{12} \left( rac{1}{\sqrt{2}} + rac{1}{\sqrt{2}} 
ight)^2 = rac{1}{2}$$

$$ext{Var}[w_i] = rac{1}{12}igg(rac{1}{\sqrt{n_{ ext{out}}}} + rac{1}{\sqrt{n_{ ext{out}}}}igg)^2 = rac{1}{3n_{ ext{out}}}$$

$$n_{ ext{out}} \operatorname{Var}[w_i] = rac{1}{3}$$

Weights init: How to fix it?

$$ext{Var}[w_i] = rac{2}{n_{ ext{in}} + n_{ ext{out}}}$$

$$n_{
m in}+n_{
m out}$$

$$w_i \sim Uiggl[-rac{\sqrt{6}}{\sqrt{n_{
m in}+n_{
m out}}},rac{\sqrt{6}}{\sqrt{n_{
m in}+n_{
m out}}}iggr]$$

 $\operatorname{Var}[w_i x_i] = \mathbb{E}[x_i]^2 \operatorname{Var}[w_i] + \mathbb{E}[w_i]^2 \operatorname{Var}[x_i] + \operatorname{Var}[w_i] \operatorname{Var}[x_i]$ 

Weights init: relu case

$$ext{Var}[w_i x_i] = \mathbb{E}[x_i]^2 \operatorname{Var}[w_i] + \mathbb{E}[w_i]^2 \operatorname{Var}[x_i] + \operatorname{Var}[w_i] \operatorname{Var}[x_i]$$

$$egin{aligned} ext{Var}[w_i x_i] &= \mathbb{E}[x_i]^2 \operatorname{Var}[w_i] + \operatorname{Var}[w_i] \operatorname{Var}[x_i] &= \operatorname{Var}[w_i] \mathbb{E}\left[x_i^2
ight] \ ext{Var}\left[y^{(l)}
ight] &= n_{ ext{in}}^{(l)} \operatorname{Var}\left[w^{(l)}
ight] \mathbb{E}\left[\left(x^{(l)}
ight)^2
ight] \end{aligned}$$

### Weights init: ReLU case

$$ext{Var}ig[y^{(l)}ig] = n_ ext{in}^{(l)} ext{Var}ig[w^{(l)}ig] \mathbb{E}ig[ig(x^{(l)}ig)^2ig] \hspace{1cm} x^{(l)} = ext{max}ig(0,y^{(l-1)}ig) \hspace{1cm} ext{Symmetric distribution across zero for y}$$

$$\mathbb{E}igg[ \left(x^{(l)}
ight)^2 igg] = rac{1}{2} \mathrm{Var}igg[ y^{(l-1)} igg], \quad \mathrm{Var}igg[ y^{(l)} igg] = rac{n_{\mathrm{in}}^{(l)}}{2} \mathrm{Var}igg[ w^{(l)} igg] \, \mathrm{Var}igg[ y^{(l-1)} igg]$$

 $ext{Var}[w_i] = 2/n_{ ext{in}}^{(l)} ~~w_i \sim N(0, \sqrt{2/n_{ ext{in}}^{(l)}})$ 

| Weights init: ReLU case |  |
|-------------------------|--|
|                         |  |

$$ext{Vergints init. Relico case} \ ext{Var} \Big[ y^{(l)} \Big] = rac{n_{ ext{in}}^{(l)}}{2} ext{Var} \Big[ w^{(l)} \Big] ext{Var} \Big[ y^{(l-1)} \Big] .$$

# Weights init: Sigmoid



### Weights init: Task



Определим две функции:  $\sigma(z) = \frac{1}{1+e^{-z}}$  и  $\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$ . Предположим, что перед обучением вашей нейронной сети состоящей из нескольких полно-связных слоев с одной из функций активаций указанных выше мы делаем следующие предположения: а) Данные центрированы по нулю. б)Все веса инициализируются независимо со средним значением 0 и дисперсией 0.001. c) Все смещения инициализируются до 0. д) Скорость обучения мала и фиксирована.

Попробуйте объяснить, какая функция активации между anh и  $\sigma$  приведет к более высокому градиенту во время первого обновления.

### **Optimizers**

Stochastic gradient descent is used to optimize NN parameters.



 $x_{t+1} = x_t - \text{learning rate} \cdot dx$ 



source: <a href="http://cs231n.github.io/neural-networks-3/">http://cs231n.github.io/neural-networks-3/</a>

### **Optimizers**

#### There are much more optimizers:

- Momentum
- Adagrad
- Adadelta
- RMSprop
- Adam
- ...
- even other NNs



### Optimization: SGD

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W)$$

Averaging over minibatches ---> noisy gradient



## First idea: momentum

### Simple SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

### SGD with momentum

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

### Momentum update:



### Nesterov momentum

### Momentum update:



$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

### **Nesterov Momentum**



$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

# Comparing momentums



source: http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture7.pdf

# Second idea: different dimensions are different

Adagrad: SGD with cache

$$\operatorname{cache}_{t+1} = \operatorname{cache}_t + (\nabla f(x_t))^2$$
$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{\operatorname{cache}_{t+1} + \varepsilon}$$

## Second idea: different dimensions are different

Adagrad: SGD with cache

$$\operatorname{cache}_{t+1} = \operatorname{cache}_t + (\nabla f(x_t))^2$$
$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{\operatorname{cache}_{t+1} + \varepsilon}$$

Problem: gradient fades with time

## Second idea: different dimensions are different

Adagrad: SGD with cache

$$cache_{t+1} = cache_t + (\nabla f(x_t))^2$$
$$\nabla f(x_t)$$

$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{\operatorname{cache}_{t+1} + \varepsilon}$$

RMSProp: SGD with cache with exp. Smoothing  $\operatorname{cache}_{t+1} = \beta \operatorname{cache}_t + (1-\beta)(\nabla f(x_t))^2$ 

$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{\operatorname{cache}_{t+1} + \varepsilon}$$

Slide 29 Lecture 6 of Geoff Hinton's Coursera class



source: http://cs231n.stanford.edu/slides/2017/cs231n\_2017\_lecture7.pdf

Let's combine the momentum idea and RMSProp normalization:

$$v_{t+1} = \gamma v_t + (1 - \gamma) \nabla f(x_t)$$

$$\operatorname{cache}_{t+1} = \beta \operatorname{cache}_t + (1 - \beta) (\nabla f(x_t))^2$$

$$x_{t+1} = x_t - \alpha \frac{v_{t+1}}{\operatorname{cache}_{t+1} + \varepsilon}$$

## Adam

Let's combine the momentum idea and RMSProp normalization:

$$v_{t+1} = \gamma v_t + (1 - \gamma) \nabla f(x_t)$$

$$\operatorname{cache}_{t+1} = \beta \operatorname{cache}_t + (1 - \beta) (\nabla f(x_t))^2$$

$$x_{t+1} = x_t - \alpha \frac{v_{t+1}}{\operatorname{cache}_{t+1} + \varepsilon}$$

Actually, that's not quite Adam.

Adam full form involves bias correction term. See <a href="http://cs231n.github.io/neural-networks-3/">http://cs231n.github.io/neural-networks-3/</a> for more info.

# Comparing optimizers



source: <a href="http://cs231n.stanford.edu/slides/2017/cs231n\_2017\_lecture7.pdf">http://cs231n.stanford.edu/slides/2017/cs231n\_2017\_lecture7.pdf</a>

## Once more: learning rate





source: http://cs231n.stanford.edu/slides/2017/cs231n\_2017\_lecture7.pdf

# Sum up: optimization

- Adam is great basic choice
- Even for Adam/RMSProp learning rate matters
- Use learning rate decay
- Monitor your model quality



Better optimization algorithms help reduce training loss

But we really care about error on new data - how to reduce the gap?