

Unidad 1 (Repaso de) Clasificación de suelos

Interacción Terreno Estructura I Especialización en Ingeniería Geotécnica

Clasificación de suelos

La clasificación le da el "nombre" a un suelo (lo que el suelo "es")

Suelos de grano grueso: Grava (G) y Arena (S)

- Las partículas se tocan (fuerzas de masa)
- Controla: granulometría, forma y dureza de partículas
- Suelos de grano fino: Limo (M) y Arcilla (C)
 - Las partículas no se tocan entre sí (cargas eléctricas, f. superficiales)
 - Controla: capacidad de absorber agua

Carta de clasificación de suelos

NOTES:

- Based on the material passing the 3 in (75 mm) sieve.
- If field sample contained cobbles and/or boulders, add "with cobbles and/or boulders" to group name.
- Gravels with 5 to 12% fines require dual symbols:

GW-GM, well-graded gravel with silt

GW-GC, well-graded gravel with clay

GP-GM, poorly graded gravel with silt

GP-GC, poorly graded gravel with clay

Sands with 5 to 12% fines require dual symbols:

SW-SM, well-graded sand with silt

SW-SC, well-graded sand with clay

SP-SM, poorly graded sand with silt

SP-SC, poorly graded sand with clay

$$C_u = \frac{D_{60}}{D_{10}}$$
 $C_c = \frac{(D_{30})^2}{(D_{10})(D_{60})}$

[C_u: Uniformity Coefficient; C_c: Coefficient of Curvature]

- If soil contains $\geq 15\%$ sand, add "with sand" to group name.
- If fines classify as CL-ML, use dual symbol GC-GM, SC-SM.
- If fines are organic, add "with organic fines" to group name.
- If soil contains ≥ 15% gravel, add "with gravel" to group name.
- If the liquid limit and plasticity index plot in hatched area on plasticity chart, soil is a CL-ML, silty clay.
- If soil contains 15 to 29% plus No. 200 (0.075 mm), add "with sand" or "with gravel," whichever is predominant.
- If soil contains $\geq 30\%$ plus No. 200 (0.075mm), predominantly sand, add "sandy" to group name.
- If soil contains $\geq 30\%$ plus No. 200 (0.075 mm), predominantly gravel, add "gravelly" to group name.
- $PI \ge 4$ and plots on or above "A" line.
- PI < 4 or plots below "A" line.
- PI plots on or above "A" line.
- PI plots below "A" line.

Criteria for Assigning Group Symbols and Group Names			Soil Classification	
Using Laboratory Tests ^a COARSE-GRAINED SOILS (Sands and Gravels) - more than 50% retained on No. 200 (0.075 mm) sieve FINE-GRAINED (Silts and Clays) - 50% or more passes the No. 200 (0.075 mm) sieve			Group Symbol	Group Name ^b
GRAVELS	CLEAN GRAVELS	$C_u \ge 4$ and $1 \le C_c \le 3^e$	GW	Well-graded gravel ^f
More than 50% of coarse Fraction retained on No. 4 Sieve	< 5% fines	$C_u < 4 \text{ and/or } 1 > C_c > 3^e$	GP	Poorly-graded gravel ^f
	GRAVELS	Fines classify as ML or MH	GM	Silty gravel ^{f,g,h}
	WITH FINES > 12% of fines ^c	Fines classify as CL or CH	GC	Clayey gravel ^{f,g,h}
SANDS	CLEAN SANDS	$C_u \ge 6$ and $1 \le C_c \le 3^e$	SW	Well-graded Sand ⁱ
50% or more of coarse fraction passes No. 4 Sieve	< 5% fines ^d	$C_u < 6 \text{ and/or } 1 > C_c > 3^e$	SP	Poorly-graded sand ⁱ
	SANDS WITH	Fines classify as ML or MH	SM	Silty sand ^{g,h,i}
	FINES > 12% fines ^d	Fines classify as CL or CH	SC	Clayey sand ^{g,h,i}
SILTS AND CLAYS	Inorganic	PI > 7 and plots on or above "A" line ^j	CL	Lean clay ^{k,l,m}
		PI < 4 or plots below "A" line ^j	ML	Silt ^{k,l,m}
Liquid limit less than 50	Organic	Liquid limit - overdried Liquid limit - not dried < 0.75	OL	Organic clay ^{k,l,m,n} Organic silt ^{k,l,m,o}
SILTS AND CLAYS	Inorganic	PI plots on or above "A" line	СН	Fat clay ^{k,l,m}
		PI plots below "A" line	MH	Elastic silt ^{k,l,m}
Liquid limit 50 or more	Organic	$\frac{\text{Liquid limit - ove n dried}}{\text{Liquid limit - not dried}} < 0.75$	ОН	Organic clay ^{k,l,m,p} Organic
Highly fibrous organic soils	Primary organic matter, dark in color, and organic odor		Pt	silt ^{k,l,m,q} Peat

Propiedades índice

Las propiedades índice caracterizan el estado de un suelo (definen cómo el suelo "está")

Propiedades índice

Las propiedades índice caracterizan el estado de un suelo (definen cómo el suelo "está")

- Humedad: $\omega = W_W/W_S$
- Humedad vol: $\theta = V_W/V$
- Peso unitario: $\gamma = W/V$
- Peso unitario seco: $\gamma_d = W_S/V$
- Relación de vacíos: $e = V_V/V_S$
- Porosidad: $n = V_V/V$
- Grado de saturación: $S_r = V_W/V_V$

Propiedades índice

Las propiedades índices aplican a una muestra de tamaño tal que las propiedades sean independientes del volumen muestral que se toma.

.UBAfiuba

La definición de tensión efectiva en un medio poroso

Las fuerzas concentradas que se transmiten de grano a grano (a través de sus contactos) se "convierten" en una "tensión integranular" que actúa en toda la superficie

Presión efectiva en terreno horizontal: suelo sumergido

La presión integranular (efectiva) es igual a la presión total menos la presión del fluido de poros (agua)

Ejercicio: presiones efectivas verticales .UBAfiuba .UBA

Nota importante: Se asume que la presión de poros es nula por encima del nivel freático

$$\sigma_v' + u = \sigma_v$$

Limitaciones del concepto de tensión efectiva para suelos saturados

El concepto de tensión efectiva es válido para un medio poroso saturado con fases perfectamente incompresibles

En muchas aplicaciones la tensión efectiva limita la capacidad

predictiva

Skempton (1960):

$$\boldsymbol{\sigma}' = \boldsymbol{\sigma} - \left(1 - \frac{K}{K_S}\right) \cdot \boldsymbol{u} \cdot \mathbf{1}$$

• *K*: rigidez vol suelo

• K_s: rigidez vol granos

Ley de Darcy

Hipótesis

- Medio poroso uniforme
- Flujo laminar

La velocidad de flujo es linealmente proporcional al gradiente hidráulico

$$v = k \frac{\partial h}{\partial x} = k \cdot i$$

k es el coeficiente de permeabilidad, que depende de la viscosidad del fluido

h

El permeámetro de carga constante es un cilindro

lleno de suelo por el que fluye agua

Darcy

Permeabilidad

$$Q = \frac{V}{\Delta T}$$

$$v = \frac{Q}{A}$$

$$v = k \cdot i$$

$$k = \frac{V \cdot L}{\Delta H \cdot A \cdot \Delta t}$$

Gradiente hidráulico crítico

El gradiente hidráulico crítico es el que produce presión efectiva nula

$$\sigma'_{v} = \gamma_{sat} \cdot L - \gamma_{w} \cdot (h + L)$$

$$h = h_{crit} \to \sigma'_{v} = 0 \text{kPa}$$

$$h_{crit} = \frac{\gamma_{sat} - \gamma_{w}}{\gamma_{w}} L \to i_{crit} = \frac{\gamma'}{\gamma_{w}}$$

Sifonaje

El flujo de agua de abajo hacia arriba produce reducción de la presión efectiva.

Si la presión efectiva se anula, el suelo puede ser arrastrado por el agua -> Sifonaje

$$F = \frac{W}{U} = \frac{\gamma'D}{\gamma_w \overline{h}} > 1.20$$

Ejercicio: flujo unidimensional ascendente

Calcule

- Caudal
- Gradiente hidráulico crítico
- Diagramas de presiones

$$k_1 = 10^{-4} \frac{cm}{\frac{s}{s}}$$

$$\gamma_{sat1} = 20 \frac{kN}{m^3}$$

$$k_2 = 10^{-3} \frac{cm}{\frac{s}{s}}$$

$$\gamma_{sat2} = 22 \frac{kN}{s}$$

Interacción Terreno Estructura I Especialización en Ingeniería Geotécnica

Compresión edométrica (o compresión unidimensional)

Trayectoria de compresión típica de suelos blandos cargados con rellenos

- Vertical $\epsilon_1 > 0$
- Horizontal $\epsilon_3 = 0$

Tiene componentes

- Reversible (elástica)
- Permanente (elastoplástica)
- Dependiente del tiempo (viscosa)

En los suelos reales, las tres componentes están siempre presentes

Ensayo edométrico

Pendiente ramas "elástica", "elastoplástica" y tensión de fluencia σ_{vc} ("presión de preconsolidación")

Ensayo edométrico

Si la carga se mantiene n/(1-n) en el tiempo se produce una compresión adicional (comportamiento viscoplástico)

Suelos preconsolidados

Un suelo está preconsolidado si su estado $(n - \sigma_v)$ está a la izquierda de la línea de compresión 1D

Esto puede ocurrir por dos razones

- Tensión pasada mayor que la actual
- Tensión actual aplicada mucho tiempo

Preconsolidación

 $OCR = \frac{\sigma_{v1}}{\sigma}$

- Parte de un estado normalmente cons.
- Se incrementa σ_v
- Se reduce σ_v
- Se define el Over
 Consolidation Ratio

Preconsolidación por tiempo

- Estado inicial
- Se recorre la rama preconsolidada
- Se cruza la tensión de fluencia
- Se recorre la rama normalmente cons.
- Se alcanza la tensión final
- Pasan 10 años
- Pasan 1000 años

Preconsolidación por tiempo

El tiempo preconsolida

- A los 1000 años se alcanza el punto
- Al mismo punto se llega si se carga hasta σ_{1000} y descarga hasta σ_{vf}
- Entonces, NC con 1000 años es preconsolidado

Compresión vs. consolidación

La compresión primaria es un proceso de deformación elastoplástico (acrónico)

La compresión secundaria es un proceso de creep (crónico)

La consolidación es un proceso de flujo acoplado con deformación (velocidad depende de la permeabilidad del suelo)

Ensayo de corte directo

- Se aplica una carga vertical constante
- Se aplica una carga horizontal creciente
- Se mide el desplazamiento horizontal y vertical

- El ensayo impone un plano de falla en la muestra
- En ese plano se mide la resistencia al corte s
- Se determinan los parámetros resistentes $s = c + \sigma \tan[\phi]$
- Este procedimiento se basa en una interpretación incorrecta del comportamiento de los suelos

Ensayo de corte directo

Introducción al concepto de dilatancia

Los materiales friccionales cambian su volumen cuando son sometidos a tensiones de corte

Dilatancia: acoplamiento entre $\Delta \tau$ y $\Delta \epsilon_v$

Caminando en la playa

- El pie "comprime" la arena
- La arena se "seca" alrededor del pie (por un ratito)
- ¿Qué ocurre? La arena aumenta su volumen (dilata) y absorbe agua en el proceso

.UBAfiuba FACULTAD DE INGENIERÍA

La teoría tensión-dilatancia y la mecánica de suelos de estado crítico

La mecánica de suelos de estado crítico se basa en relacionar resistencia con cambio de volumen

- Interpretación incorrecta: $\tau/\sigma = \tan[\phi]$
 - Los suelos resisten más cuando dilatan
- Taylor (1948)
 - Balance de trabajo: $\tau \Delta x = \mu \sigma \Delta x + \sigma \Delta y$
 - Dividiendo por σ :

$$\tau/\sigma = \mu + \Delta y/\Delta x$$

- Entonces: $tan[\phi] = tan[\phi_{cv}] + tan[\psi]$
 - · Los suelos resisten más porque dilatan

La curva de resistencia intrínsica de los geomateriales ↑^τ

 ϕ era una "propiedad" del suelo

En 1936 Casagrande mostró que $\phi[e] \rightarrow \phi_{cv}$

En 1966 Bishop mostró que $\phi[p]$

En 1986 Bolton mostró que

$$\phi[p,e] = \phi_{cv} + \psi[p,e]$$

Resistencia al corte en arenas

$$\phi(p,e) = \phi_c + \psi$$

- El ángulo de fricción interna critico φ_c es una propiedad del material.
- La dilatancia ψ depende de la densidad relativa y la presión.

Densidad y dilatancia

Suelo denso

- Alta rigidez
- Alta resistencia
- Dilata

Suelo suelto

- Baja rigidez
- Baja resistencia
- Contrae

Densidad y dilatancia

 En ambos casos la densidad y resistencia final son las mismas.

 La relación de vacíos final es la misma para ambas muestras

 Curvas horizontales: densidad constante.

.uBafiub

.UBAfiuba PACULTAD DE INGENIERÍA

Los suelos densos y sueltos alcanzan el mismo estado crítico

Porosidad y dilatancia: estado crítico

- Alta rigidez
- Alta resistencia
- Dilata

- Suelo suelto
 - Baja rigidez
 - Baja resistencia
 - Contrae

- Suelo (no tan) denso
 - Baja su rigidez
 - Baja su resistencia
 - Deja de dilatar
 - Estado crítico
- Suelo (no tan) suelto
 - Sube su rigidez
 - Sube su resistencia
 - Deja de contraer
 - Mismo estado crítico

$\sigma_1 - \sigma_3$ crece con la presión

ϕ decrece con la presión

ϕ tiende a ϕ_c para cualquier presión med ${\mathbb A}^{\mathrm{fiuba}}$

Ecuación de Bolton

Q	Grain type
10	Quartz and feldspar
8	Limestone
7	Anthracite
5.5	Chalk

$$\phi - \phi_c = 3^{\circ} D_r \left(Q - \ln \left[100 \frac{p}{p_{atm}} \right] \right) - 3^{\circ}$$

Resistencia al corte en arcillas

- Las arcillas compactas dilatan (como arenas densas)
- Las arcillas blandas contraen (como arenas sueltas)
- Ambas alcanzan el mismo estado crítico luego de una deformación grande

Resistencia al corte en arcillas

- Las partículas de las arcillas no tienen contacto directo grano a grano
- Las arenas no tienen memoria: ϕ no depende de la historia de tensiones
- Las arcillas tienen memoria: ϕ depende de la historia de cargas, porque el material "recuerda" cual fue la presión máxima que soportó y en qué dirección ocurrió
- Para enormes deformaciones, las arcillas tienen un ángulo de fricción interna residual ϕ_r menor que ϕ_c

Resistencia al corte en arcillas

La dilatancia

En las arcillas, igual que en las arenas

$$\phi = \phi_c + \psi$$

En las arenas, la dilatancia depende de la densidad relativa y de la presión

$$\phi = \phi_c + \psi[D_r, p]$$

En las arcillas, la dilatancia depende del grado de sobreconsolidación

$$\phi = \phi_c + \psi[OCR]$$

Interpretación correcta de ensayo de corte directo

1. Consolide hasta σ_c

Interpretación correcta de ensayo de corte directo

Interpretación correcta de ensayo de corte directo

Interpretación correcta de ensayo de corte directo

Interpretación correcta de ensayo de corte directo

- 1. Consolide hasta σ_c
- 2. Reduzca σ_n hasta un OCR dado y corte hasta la falla
- 3. Repita con distintos OCR
- 4. Establezca la relación $tan[\phi_{max}] = tan[\phi_{cv}] + tan[\psi]$
- 5. ¡No haga esto! El área sombreada es inalcanzable para los suelos

Rango de deformación: Arenas

La relación tensión – deformación tiene cuatro rangos

- anterior al deslizamiento de partículas
- deslizamiento de algunos granos
- resistencia pico: reorientación de contactos
- ablandamiento: estado crítico

Modulo de corte inicial: crece con la presidad juba con la densidad

E_i : Módulo de Young secante "cercano" $\mathbf{A}^{\mathbf{BAfiuba}}$ origen

E_{50} : Módulo de Young al 50% de la tensión de falla

Reducción de la "rigidez" con la distorsióh par la contra de la "rigidez" con la distorsióh par la contra de la contra del la contra de la contra del la contra de la contra del la contra de la contra

Muestras inalteradas

(Hardin & Richart 1963)

Problemas "elásticos" en geotecnia

Los problemas que pueden abordarse con elasticidad son aquellos en los que el suelo está lejos de "falla"

- Propagación de ondas
- Vibraciones de máquinas
- Asentamiento de fundaciones con cargas de servicio
- Desplazamiento bajo carga lateral en pilotes y muros
- Tensiones alrededor de túneles

Los parámetros elásticos dependen del rango de deformación dominante del problema

Rango elástico en suelos y rocas

2. Increase as OCR increases and with cyclic loading

Parámetros elásticos y rangos de deformación

La curva σ-ε es única Los parámetros "elásticos" dependen del problema

- Fundaciones máquinas
 - Rigidez a baja deformación
 - Módulo de Poisson ~0.10

Parámetros elásticos y rangos de deformación

La curva σ-ε es única Los parámetros "elásticos" dependen del problema

- Fund. máquinas: G₀
- Zapatas
 - Rigidez "inicial" E_i
 - Módulo de Poisson ~0.30

Parámetros elásticos y rangos de deformación

La curva σ-ε es única Los parámetros "elásticos" dependen del problema

- Fund. máquinas: G₀
- Zapatas: E_i
- Muros, tablestacas, taludes (y similares):

No usar elasticidad

Bibliografía

- Powrie, W. Soil Mechanics. Concepts and Applications. CRC Press (2014)
- Mitchell, J. M., Soga, K. Fundamentals of soil behavior. John Wiley & Sonc, Inc. (2005)
- Sfriso. Caracterización mecánica de materiales constituidos por partículas. Tesis de doctorado FIUBA.
- Videos de repaso
 (https://www.youtube.com/watch?v=YOWkJ7pHHco&list=PLQX7AAuxwaHb3Mzc5YDTNqYvbgGUQq3yB)