We're Investigating the Relationship

between Image Classification Accuracy

and Various Self-Supervised/Unsupervised Metrics.

Can Effective Invariance Metrics Predict Classifier Accuracy in a Data-Centric View?

Callum Koh

1 Intro

- Image classification models need many images outside training to understand generalisability.
- Adding labels to images is laborious and time-consuming.
- Exists many reliable metrics such as Rotation Invariance (RI) for gauging image classification accuracy.
- We compare above metrics with our own jigsaw invariance metric.
- CIFAR-10 dataset has 60,000 images, 1 of 10 unique objects in each.
- Includes planes, frogs, boats, etc.
- Small images promote simplicity in proof of concepts such as ours.

2 Data Used

- In-distribution (ID) CIFAR-10 test set
 + its copies via. image transforms,
- Various out-of-distribution (OOD)
 CIFAR-10 variants + its copies through image transforms.

3 Jigsaw Invariance (JI)

- 1. Classifier takes image x, outputting predicted class \hat{y} and confidence \hat{p} .
- 2. Turn x into jigsaw puzzle x_t .
- 3. Feed x_t into model, outputting associated \hat{y}_t and \hat{p}_t .
- 4. Same \hat{y} and \hat{y}_t with high \hat{p} and high \hat{p}_t implies high JI, and vice versa.
- 5. Take mean average JI over all images \boldsymbol{x} in dataset.

4 Results

- Weak Relationship between image classification and JI.
- Better correlation than RI.
- Strength depends on permutations selected.
- JI and RI derive from Effective Invariance (EI). Correlation shown only when dataset fixed + each point is a model (model-centric).
- CIFAR-10 uses 32 by 32 images small size introduces biases.
- Nuclear norm remains most effective metric for estimating classification accuracy.

5 Future Work

- Adopt model-centric view instead of dataset-centric,
- Use dataset with larger images, such as ImageNet,
- May obtain better comparison between JI and other metrics.

Other Metrics

ResNet56 - Rotation Invariance

ResNet20 - Nuclear Norm with \ln Classification

ResNet32 - Rotation Prediction

Other models over each metric produced similar results.

El over a single image.

$$EI(\hat{y}, \hat{y}_t, \hat{p}, \hat{p}_t) = \mathbf{1}(\hat{y} = \hat{y}_t) \sqrt{\hat{p} \cdot \hat{p}_t}$$

El for a whole dataset D.

$$EI_D = \frac{1}{|D|} \sum_{x \in D} EI(\hat{y}, \hat{y}_t, \hat{p}, \hat{p}_t)$$

