PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification 7: C07K 14/435, C12N 1/00, 1/19, 5/10, 15/12, 15/63			(11) International Publication Number:	WO 00/34321
		A1	(43) International Publication Date:	15 June 2000 (15.06.00)
(21) International Applic (22) International Filing			DK, ES, FI, FR, GB, GR, IE, IT	
(30) Priority Data: 09/210,330 09/418,917	11 December 1998 (11.12.9 15 October 1999 (15.10.99)	•	Published With international search report. Before the expiration of the tin claims and to be republished in amendments.	ne limit for amending the
	ECH LABORATORIES, INC. w Drive, Palo Alto, CA 94303 (1;	
binskaya 13/1-16 Fedorovich; ul. 113570 (RU). L erala Tyuleneva, Mikhail Vladimir 117465 (RU). A vard, Cupertino, Thain Way, Palo (74) Agent: ADLER, Bo	NOY, Sergey Anatolievich; ul 1, Moscow (RU). FRADKOV Dnepropetrovskaya, 35/2–14, ABAS, Yulii Aleksandrovich; 35/416, Moscow, 117465 (RU). ovich; ul. Teplii stan, 7/2–28, NGRES, Brigitte; 10534 Sterlir CA 95014 (US). GREEN, Giscalto, CA 94306 (US).	Moscovul. Ge MAT Moscov ng Boul	ly w, n	
	NT PROTEINS FROM NON-B EINS AND USES THEREOF	IOLUM	INESCENT SPECIES OF CLASS ANTHOZ	ZOA, GENES ENCODING
(57) Abstract				
	on is directed to novel fluorescending the fluorescent proteins.	nt prote	ins from non-bioluminescent organisms from	the Class Anthozoa. Also

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Сапада	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	. NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

FLUORESCENT PROTEINS FROM NON-BIOLUMINESCENT SPECIES OF CLASS ANTHOZOA, GENES ENCODING SUCH PROTEINS AND USES THEREOF

5

BACKGROUND OF THE INVENTION

10

25

Cross-reference to Related Application

This is a divisional application of U.S.S.N. 09/210,330 filed on December 11, 1998.

15 Field of the Invention

This invention relates to the field of molecular biology. More specifically, this invention relates to novel fluorescent proteins, cDNAs encoding the proteins and uses thereof.

20 Description of the Related Art

Fluorescence labeling is a particularly useful tool for marking a protein, cell, or organism of interest. Traditionally, a protein of interest is purified, then covalently conjugated to a fluorophore derivative. For in vivo studies, the protein-dye complex is then inserted into cells of interest using micropipetting or a method of reversible permeabilization. The dye attachment and insertion steps, however, make the process laborious and difficult to control. An alternative method of labeling proteins of interest is to concatenate or fuse the gene expressing the protein of interest to a gene expressing a

marker, then express the fusion product. Typical markers for this method of protein labeling include β -galactosidase, firefly luciferase and bacterial luciferase. These markers, however, require exogenous substrates or cofactors and are therefore of limited use for *in vivo* studies.

5

10

15

20

25

A marker that does not require an exogenous cofactor or substrate is the green fluorescent protein (GFP) of the jellyfish Aequorea victoria, a protein with an excitation maximum at 395 nm, a second excitation peak at 475 nm and an emission maximum at 510 nm. GFP is a 238-amino acid protein, with amino acids 65-67 involved in the formation of the chromophore.

Uses of GFP for the study of gene expression and protein localization are discussed in detail by Chalfie et al. in Science 263 (1994), 802-805, and Heim et al. in Proc. Nat. Acad. Sci. 91 (1994), 12501-12504. Additionally, Rizzuto et al. in Curr. Biology 5 (1995), 635-642, discuss the use of wild-type GFP as a tool for visualizing subcellular organelles in cells, while Kaether and Gerdes in Febs Letters 369 (1995), 267-271, report the visualization of protein transport along the secretory pathway using wild-type GFP. The expression of GFP in plant cells is discussed by Hu and Cheng in Febs Letters 369 (1995), 331-334, while GFP expression in Drosophila embryos is described by Davis et al. in Dev. Biology 170 (1995), 726-729.

Crystallographic structures of wild-type GFP and the mutant GFP S65T reveal that the GFP tertiary structure resembles a barrel (Ormö et al., Science 273 (1996), 1392-1395; Yang, et al., Nature Biotechnol 14 (1996), 1246-1251). The barrel consists of beta sheets in a compact structure, where, in the center, an alpha helix containing the chromophore is shielded by the barrel. The compact structure makes GFP very stable under diverse and/or harsh conditions such as

protease treatment, making GFP an extremely useful reporter in general. However, the stability of GFP makes it sub-optimal for determining short-term or repetitive events.

A great deal of research is being performed to improve the properties of GFP and to produce GFP reagents useful and optimized for a variety of research purposes. New versions of GFP have been developed, such as a "humanized" GFP DNA, the protein product of which has increased synthesis in mammalian cells (Haas, et al., Current Biology 6 (1996), 315-324; Yang, et al., Nucleic Acids Research 24 (1996), 4592-4593). One such humanized protein is "enhanced green fluorescent protein" (EGFP). Other mutations to GFP have resulted in blue-, cyan- and yellow-green light emitting versions. Despite the great utility of GFP, however, other fluorescent proteins with properties similar to or different from GFP would be useful in the art. fluorescent proteins result in possible new colors, or produce pHdependent fluorescence. Other benefits of novel fluorescent proteins include fluorescence resonance energy transfer (FRET) possibilities based on new spectra and better suitability for larger excitation.

The prior art is deficient in novel fluorescent proteins wherein the DNA coding sequences are known. The present invention fulfills this long-standing need in the art.

SUMMARY OF THE INVENTION

25

5

10

15

20

The present invention is directed to DNA sequences encoding fluorescent proteins selected from the group consisting of:
(a) an isolated DNA from an organism from the Class Anthozoa which encodes a fluorescent protein; (b) an isolated DNA which hybridizes to

the isolated DNA of (a) and which encodes a fluorescent protein; and (c) an isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to the degeneracy of the genetic code and that encodes a fluorescent protein. Preferably, the DNA is isolated from a non-bioluminescent organism from Class Anthozoa. More preferably, the DNA has the sequence shown in SEQ ID No. 55 and the fluorescent protein has the amino acid sequence shown in SEQ ID No. 56.

In another embodiment of the present invention, there is provided a vector capable of expressing the DNA of the present invention in a recombinant cell comprising the DNA and regulatory elements necessary for expression of the DNA in the cell. Preferably, the DNA encodes a fluorescent protein having the amino acid sequence shown in SEQ ID No. 56.

10

15

20

25

In still another embodiment of the present invention, there is provided a host cell transfected with a vector of the present invention, such that the host cell expresses a fluorescent protein. Preferably, the cell is selected from the group consisting of bacterial cells, mammalian cells, plant cells and insect cells. A representative example of bacterial cell is an *E. coli* cell.

The present invention is also directed to an isolated and purified fluorescent protein coded for by DNA selected from the group consisting of: (a) isolated DNA from an organism from Class Anthozoa which encodes a fluorescent protein; (b) isolated DNA which hybridizes to the isolated DNA of (a) and which encodes a fluorescent protein; and (c) isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to the degeneracy of the genetic code, and which encodes a fluorescent protein. Preferably, the protein has the amino acid sequence shown in SEQ ID No. 56.

The present invention is also directed to a DNA sequence encoding a fluorescent protein selected from the group consisting of:

(a) an isolated DNA which encodes a fluorescent protein, wherein the DNA is from an organism from Class Anthozoa and wherein the organism does not exhibit bioluminescence; (b) an isolated DNA which hybridizes to isolated DNA of (a) and which encodes a fluorescent protein; and (c) an isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to degeneracy of the genetic code and which encodes a fluorescent protein. Preferably, the organism is from Sub-class Alcyonaria, Order Stolonifera. More preferably, the organism is from Family Clavulariidae, Genus Clavularia. Most particularly, the present invention is drawn to a novel fluorescent protein from Clavularia sp., cFP484.

The present invention is further directed to an amino acid sequence which can be used as a basis for designing an oligonucleotide probe for identification of a DNA encoding a fluorescent protein by means of hybridizaton, wherein the amino acid sequence is selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12, 14. Preferably, such an oligonucleotide has a nucleotide sequence selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15, 16.

Other and further aspects, features, and advantages of the present invention will be apparent from the following description of the presently preferred embodiments of the invention given for the purpose of disclosure.

25

5

10

15

20

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the modified strategy of 3'-RACE used to isolate the target fragments. Sequences of the oligonucleotides used are shown in Table 2. Dp1 and Dp2 are the degenerate primers used in the first and second PCR, respectively (see Tables 3 and 4 for the sequences of degenerate primers). In the case of Clavularia sp., the first degenerate primer used was NGH (SEQ ID No. 4), and the second degenerate primer used was GEG(a) (SEQ ID No. 6).

5

10

15

25

Figure 2 shows the excitation and emission spectrum of the novel fluorescent protein from Clavularia sp., cFP484.

Figure 3 shows transient expression of cFP484 lacking the N-terminal 19 amino acids ($\Delta 19$ cFP484) in mammalian cells. Figure 3A shows the image emitted by $\Delta 19$ cFP484 using the filter set XF 114 (Omega Optical). Figure 3B shows phase contrast image taken from the same field of view as that in Figure 3A and overlayed with the image in Figure 3A.

DETAILED DESCRIPTION OF THE INVENTION

As used herein, the term "GFP" refers to the basic green fluorescent protein from Aequorea victoria, including prior art versions of GFP engineered to provide greater fluorescence or fluoresce in different colors. The sequence of Aequorea victoria GFP (SEQ ID No. 54) has been disclosed in Prasher et al., Gene 111 (1992), 229-33.

As used herein, the term "EGFP" refers to mutant variant of GFP having two amino acid substitutions: F64L and S65T (Heim et al., Nature 373 (1995), 663-664). The term "humanized" refers to changes made to the GFP nucleic acid sequence to optimize the codons for

expression of the protein in human cells (Yang et al., Nucleic Acids Research 24 (1996), 4592-4593).

In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Maniatis, Fritsch & Sambrook, "Molecular Cloning: A Laboratory Manual (1982); "DNA Cloning: A Practical Approach," Volumes I and II (D.N. Glover ed. 1985); "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" (B.D. Hames & S.J. Higgins eds. (1985)); "Transcription and Translation" (B.D. Hames & S.J. Higgins eds. (1984)); "Animal Cell Culture" (R.I. Freshney, ed. (1986)); "Immobilized Cells and Enzymes" (IRL Press, (1986)); B. Perbal, "A Practical Guide To Molecular Cloning" (1984).

10

15

20

25

A "vector" is a replicon, such as plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "DNA molecule" refers to the polymeric form of deoxyribonucleotides (adenine, guanine, thymine, or cytosine) in either single stranded form or a double-stranded helix. This term refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, inter alia, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes.

A DNA "coding sequence" is a DNA sequence which is transcribed and translated into a polypeptide in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3'

(carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g., mammalian) DNA, and synthetic DNA sequences. A polyadenylation signal and transcription termination sequence may be located 3' to the coding sequence.

5

10

15

20

25

As used herein, the term "hybridization" refers to the process of association of two nucleic acid strands to form an antiparallel duplex stabilized by means of hydrogen bonding between residues of the opposite nucleic acid strands.

The term "oligonucleotide" refers to a short (under 100 bases in length) nucleic acid molecule.

"DNA regulatory sequences", as used herein, are transcriptional and translational control sequences, such as promoters, enhancers, polyadenylation signals, terminators, and the like, that provide for and/or regulate expression of a coding sequence in a host cell.

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' to include the minimum number of bases or elements direction) necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found transcription initiation site, as well as protein binding domains responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Various promoters, including inducible promoters, may be used to drive the various vectors of the present invention.

8

As used herein, the terms "restriction endonucleases" and "restriction enzymes" refer to bacterial enzymes, each of which cut double-stranded DNA at or near a specific nucleotide sequence.

5

10

15

20

25

A cell has been "transformed" or "transfected" exogenous or heterologous DNA when such DNA has been introduced inside the cell. The transforming DNA may or may not be integrated (covalently linked) into the genome of the cell. In prokaryotes, yeast, and mammalian cells for example, the transforming DNA may be maintained on an episomal element such as a plasmid. With respect to eukaryotic cells, a stably transformed cell-is one in which the transforming DNA has become integrated into a chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cells containing the transforming DNA. A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations.

A "heterologous" region of the DNA construct is an identifiable segment of DNA within a larger DNA molecule that is not found in association with the larger molecule in nature. Thus, when the heterologous region encodes a mammalian gene, the gene will usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism. In another example, heterologous DNA includes coding sequence in a construct where portions of genes from two different sources have been brought together so as to produce a fusion protein product. Allelic variations or naturally-occurring mutational events do not give rise to a heterologous region of DNA as defined herein.

As used herein, the term "reporter gene" refers to a coding sequence attached to heterologous promoter or enhancer elements and whose product may be assayed easily and quantifiably when the construct is introduced into tissues or cells.

5

10

15

20

25

The amino acids described herein are preferred to be in the "L" isomeric form. The amino acid sequences are given in one-letter code (A: alanine; C: cysteine; D: aspartic acid; E: gluetamic acid; F: phenylalanine; G: glycine; H: histidine; I: isoleucine; K: lysine; L: leucine; M: metionine; N: asparagine; P: proline; Q: gluetamine; R: arginine; S: serine; T: threonine; V: valine; W: tryptophane; Y: tyrosine; X: any residue). NH₂ refers to the free amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxy group present at the carboxy terminus of a polypeptide. In keeping with standard polypeptide nomenclature, J Biol. Chem., 243 (1969), 3552-59 is used.

The present invention is directed to an isolated DNA selected from the group consisting of: (a) isolated DNA from an organism from the Class Anthozoa which encodes a fluorescent protein; (b) isolated DNA which hybridizes to isolated DNA of (a) and which encodes a fluorescent protein; and (c) isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to the degeneracy of the genetic code, and which encodes a fluorescent protein. Preferably, the DNA has the sequence shown in SEQ ID No. 55 and the fluorescent protein has the amino acid sequence shown in SEQ ID No. 56.

In another embodiment of the present invention, there is provided a vector capable of expressing the DNA of the present invention in a recombinant cell comprising the DNA and regulatory elements necessary for expression of the DNA in the cell. Specifically,

the DNA encodes a fluorescent protein having the amino acid sequence shown in SEO ID No. 56.

In still another embodiment of the present invention, there is provided a host cell transfected with the vector of the present invention, which expresses a fluorescent protein of the present invention. Preferably, the cell is selected from the group consisting of bacterial cells, mammalian cells, plant cells and insect cells. A representative example of bacterial cell is an *E. coli* cell.

The present invention is also directed to a DNA sequence encoding a fluorescent protein selected from the group consisting of:

(a) an isolated DNA which encodes a fluorescent protein, wherein the DNA is from an organism from Class Anthozoa and wherein the organism does not exhibit bioluminescence; (b) an isolated DNA which hybridizes to isolated DNA of (a) and which encodes a fluorescent protein; and (c) an isolated DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to degeneracy of the genetic code and which encodes a fluorescent protein. Preferably, the organism is from Sub-class Alcyonaria, Order Stolonifera. More preferably, the organism is from Family Clavulariidae, Genus Clavularia.

10

15

20

25

The present invention is also directed to an isolated and purified fluorescent protein coded for by DNA selected from the group consisting of: (a) an isolated protein encoded by a DNA which encodes a fluorescent protein wherein the DNA is from an organism from Class Anthozoa and wherein the organism does not exhibit bioluminescence; (b) an isolated protein encoded by a DNA which hybridizes to isolated DNA of (a); and (c) an isolated protein encoded by a DNA differing from the isolated DNAs of (a) and (b) in codon sequence due to degeneracy of the genetic code. Preferably, the isolated and purified fluorescent protein is cFP484.

The present invention is further directed to an amino acid sequence which can be used as a basis for designing an oligonucleotide probe for identification of a DNA encoding a fluorescent protein by means of hybridizaton, wherein the amino acid sequence is selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12, 14. Preferably, such an oligonucleotide has a nucleotide sequence selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15, 16 and is used as a primer in polymerase chain reaction. Alternatively, it can be used as a probe for hybridization screening of the cloned genomic or cDNA library.

The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion.

15

10

5

EXAMPLE 1

Biological Material

Novel fluorescent proteins were identified from several genera of Anthozoa which do not exhibit any bioluminescence but have fluorescent color as observed under usual white light or ultraviolet light. Six species were chosen (see Table 1).

TABLE 1

Anthozoa Species Used in This Study

Species	Area of Origination	Fluorescent Color
Anemonia	Western Pacific	bright green tentacle tips
majano		
Clavularia sp.	Western Pacific	bright green tentacles and
	_	oral disk
Zoanthus sp.	Western Pacific	green-yellow tentacles and
		oral disk
Discosoma sp.	Western Pacific	orange-red spots oral disk
"red"		
Discosoma	Western Pacific	blue-green stripes on oral
striata		disk
Discosoma sp.	Western Pacific	faintly purple oral disk
"magenta"		
Discosoma sp.	Western Pacific	green spots on oral disk
"green"		
Anemonia	Mediterranean	purple tentacle tips
sulcata		

EXAMPLE 2

cDNA Preparation

5

10

15

Total RNA was isolated from the species of interest according to the protocol of Chomczynski and Sacchi (Chomczynski P., et al., Anal. Biochem. 162 (1987), 156-159). First-strand cDNA was synthetized starting with 1-3 µg of total RNA using SMART PCR cDNA synthesis kit (CLONTECH) according to the provided protocol with the only alteration being that the "cDNA synthesis primer" provided in the kit was replaced by the primer TN3 (5'- CGCAGTCGACCG(T)₁₃, SEQ ID Amplified cDNA samples were then prepared as No. 1) (Table 2). described in the protocol provided except the two primers used for PCR were the TS primer (5'-AAGCAGTGGTATCAACGCAGAGT, SEO ID No. 2) (Table 2) and the TN3 primer (Table 2), both in 0.1 μM concentration. Twenty to twenty-five PCR cycles were performed to amplify a cDNA sample. The amplified cDNA was diluted 20-fold in water and 1 µl of this dilution was used in subsequent procedures.

TABLE 2

Oligos Used in cDNA Synthesis and RACE

5 TN3: 5'-CGCAGTCGACCG(T)₁₃

(SEQ ID No. 1)

T7-TN3: 5'-GTAATACGACTCACTATAGGGCCGCAGTCGACCG(T)₁₃

(SEQ ID No. 17)

10

TS-primer: 5'-AAGCAGTGGTATCAACGCAGAGT (SEQ ID No. 2)

T7-TS:

15 5'-GTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT (SEQ ID No. 18)

T7: 5'-GTAATACGACTCACTATAGGGC

(SEQ ID No. 19)

20

TS-oligo 5'-AAGCAGTGGTATCAACGCAGAGTACGCrGrGrG (SEQ ID No. 53)

25

EXAMPLE 3

Oligo Design

5

10

To isolate fragments of novel fluorescent protein cDNAs, PCR using degenerate primers was performed. Degenerate primers were designed to match the sequence of the mRNAs in regions that were predicted to be the most invariant in the family of fluorescent proteins. Four such stretches were chosen (Table 3) and variants of degenerate primers were designed. All such primers were directed to the 3'-end of mRNA. All-oligos were gel-purified before use. Table 2 shows the oligos used in cDNA synthesis and RACE.

TABLE 3

Key Amino Acid Stretches and Corresponding Degenerate Primers Used for Isolation of Fluorescent Proteins

	_	
٠		
٠	_	

Stretch Position	Amino Acid	
according to	Sequence of	Degenerated Primer Name
A. victoria GFP (7)	the Key Stretch	and Sequence
A. Victoria GII (1)	die Rey Streten	and bequence
20-25	GXVNGH	NGH: 5'- GA(C,T) GGC TGC
	(SEQ ID No. 3)	GT(A,T,G,C) $AA(T,C)$ $GG(A,T,G)$
		CA (SEQ ID No. 4)
31-35	GEGEG	GEGa: 5'- GTT ACA GGT GA(A,G)
	(SEQ ID No. 5)	GG(A,C) GA(A,G) GG
		(SEQ ID No. 6)
		GEGb: 5'- GTT ACA GGT GA(A,G)
		GG(T,G) GA(A,G) GG
		(SEQ ID No. 7)
	GEGNG	GNGa: 5'- GTT ACA GGT GA(A,G)
	(SEQ·ID No. 8)	GG(A,C) $AA(C,T)$ GG
		(SEQ ID No. 9)
		GNGb: 5'- GTT ACA GGT GA(A,G)
		GG(T,G) $AA(C,T)$ GG
		(SEQ ID No. 10)
127-131	GMNFP	NFP: 5' TTC CA(C,T) GGT
	(SEQ ID No. 11)	(G,A)TG $AA(C,T)$ $TT(C,T)$ CC
	GVNFP	(SEQ ID NO. 13)
	(SEQ ID No. 12)	·
134-137	GPVM	PVMa: 5' CCT GCC (G,A)A(C,T)
	(SEQ ID No. 14)	GGT CC(A,T,G,C) GT(A,C) ATG
		(SEQ ID NO. 15)
		PVMb: 5' CCT GCC (G,A)A(C,T)
		GGT CC(A,T,G,C) GT(G,T) ATG
		(SEQ ID NO. 16)

EXAMPLE 4

Isolation of 3'-cDNA Fragments of nFPs

5

10

15

The modified strategy of 3'-RACE was used to isolate the target fragments (see Figure 1). The RACE strategy involved two consecutive PCR steps. The first PCR step involved a first degenerate primer (Table 4) and the T7-TN3 primer (SEQ ID No. 17) which has a 3' portion identical to the TN3 primer used for cDNA synthesis (for sequence of T7-TN3, Table 2). The reason for substituting the longer T7-TN3 primer in this PCR step was that background amplification which occurred when using the shorter TN3 primer was suppressed effectively, particularly when the T7-TN3 primer was used at a low concentration (0.1 _M) (Frohman et al., (1998) PNAS USA, 85, 8998-9002). The second PCR step involved the TN3 primer (SEQ ID No. 1, Table 2) and a second degenerate primer (Table 4).

TABLE 4

Combinations of Degenerate Primers for First and Second PCR Resulting in Specific Amplification of 3'-Fragments of nFP cDNA

Species	First	Second Degenerate Primer
	Degenerate	
	Primer	
Anemonia majano	NGH	GNGb
	(SEQ ID No. 4)	(SEQ ID No. 10)
Clavularia sp.	NGH	GEGa
	(SEQ ID No. 4)	(SEQ ID No. 6)
Zoanthus sp.	NGH	GEGa
	(SEQ ID No. 4)	(SEQ ID No. 6)
Discosoma sp. "red"	NGH	GEGa (SEQ ID No. 6),
	(SEQ ID No. 4)	NFP (SEQ ID No. 13) or
		PVMb (SEQ ID No. 16)
Discosoma striata	NGH	NFP
	(SEQ ID No. 4)	(SEQ ID No. 13)
Anemonia sulcata	NGH	GEGa (SEQ ID No. 6)
	(SEQ ID No. 4)	or NFP (SEQ ID No. 13)

5

The first PCR reaction was performed as follows: 1 µl of 20-fold dilution of the amplified cDNA sample was added into the reaction mixture containing 1X Advantage KlenTaq Polymerase Mix with provided buffer (CLONTECH), 200 µM dNTPs, 0.3 µM of first degenerate

primer (Table 4) and 0.1 µM of T7-TN3 (SEQ ID No. 17) primer in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 1 cycle for 95°C, 10 sec.; 55°C, 1 min.: 72°C, 40 sec; 24 cycles for 95°C, 10 sec.; 62°C, 30 sec.; 72°C, 40 The reaction was then diluted 20-fold in water and 1 μ l of this dilution was added to a second PCR reaction, which contained Advantage KlenTaq Polymerase Mix with the buffer provided by the manufacturer (CLONTECH), 200 µM dNTPs, 0.3 µM of the second degenerate primer (Table 4) and 0.1 µM of TN3 primer. The cycling profile was (Hybaid OmniGene-Thermocycler, tube control mode): 1 cycle for 95°C, 10 sec.; 55°C (for GEG/GNG or PVM) or 52°C (for NFP), 1 min.; 72°C, 40 sec; 13 cycles for 95°C, 10sec.; 62°C (for GEG/GNG or PVM) or 58°C (for NFP), 30 sec.; 72°C, 40 sec. The product of PCR was PCR-Script vector (Stratagene) according to the into manufacturer's protocol.

5

10

15

20

25

Different combinations of degenerate primers were tried in the first and second PCR reactions on the DNA from each species until a of primers was found that resulted in specific combination amplification--meaning that a pronounced band of expected (about 650-800 bp for NGH and GEG/GNG and 350-500 bp for NFP and PVM--sometimes accompanied by a few minor bands) was detected on agarose gel after two PCR reactions. The primer combinations choice for different species of the Class Anthozoa are listed in Table 4. Some other primer combinations also resulted in amplification of fragments of correct size, but the sequence of these fragments showed no homology to the other fluorescent proteins identified or Aequorea victoria GFP.

EXAMPLE 5

Obtaining Full-Length cDNA Copies

5

10

15

20

25

Upon sequencing the obtained 3'-fragments novel fluorescent protein cDNAs, two nested 5'-directed primers synthesized for cDNA (Table 5), and the 5' ends of the cDNAs were then amplified using two consecutive PCRs. In the next PCR reaction, the novel approach of "step-out PCR" was used to suppress background The step-out reaction mixture contained 1x Advantage amplification. KlenTaq Polymerase Mix using buffer provided by the manufacturer (CLONTECH), 200 µM dNTPs, 0.2 µM of the first gene-specific primer (see Table 5), 0.02 µM of the T7-TS primer (SEQ ID No. 18), 0.1 µM of T7 primer (SEQ ID No. 19) and 1 µl of the 20-fold dilution of the amplified cDNA sample in a total volume of 20 μl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 23-27 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of amplification was diluted 50-fold in water and one µl of this dilution was added to the second (nested) PCR. The reaction contained Advantage KlenTaq Polymerase Mix with provided buffer (CLONTECH), 200 μM dNTPs, 0.2 μM of the second gene-specific primer and 0.1 μM of TS primer (SEQ ID No. 2) in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 12 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of amplification was then cloned into pAtlas vector (CLONTECH) according to the manufacturer's protocol.

TABLE 5

Gene-Specific Primers Used for 5'-RACE

Species	First Primer	Second (Nested) Primer
Anemonia	5'-GAAATAGTCAGGCATACTGGT	5'-GTCAGGCATAC
majano	(SEQ ID No. 20)	TGGTAGGAT
	·	(SEQ ID No. 21)
Clavularia	5'-CTTGAAATAGTCTGCTATATC	5'-TCTGCTATATC
sp.	(SEQ ID No. 22)	GTCTGGGT
		(SEQ ID No. 23)
Zoanthus	5'-	5'-GTCTACTATGTCTT
sp.	GTTCTTGAAATAGTCTACTATGT	GAGGAT
	(SEQ ID No. 24)	(SEQ ID No. 25)
Discosoma	5'-CAAGCAAATGGCAAAGGTC	5'-CGGTATTGTGGCC
sp. "red"	(SEQ ID No. 26)	TTCGTA
		(SEQ ID No. 27)
Discosoma	5'-TTGTCTTCTTCTGCACAAC	5'-CTGCACAACGG
striata	(SEQ ID No. 28)	GTCCAT
		(SEQ ID No. 29)
Anemonia	5'-CCTCTATCTTCATTTCCTGC	5'-TATCTTCATTTCCT
sulcata	(SEQ ID No. 30)	GCGTAC
	·	(SEQ ID No. 31)
Discosoma	5'-TTCAGCACCCCATCACGAG	5'-ACGCTCAGAGCTG
sp.	(SEQ ID No. 32)	GGTTCC
"magenta"		(SEQ ID No. 33)
Discosoma	5'-CCCTCAGCAATCCATCACGTTC	5'-ATTATCTCAGTGGA
sp. "green"	(SEQ ID No. 34)	TGGTTC
		(SEQ ID No. 35)

EXAMPLE 6

Expression of nFP in E.coli

5

10

15

20

25

To prepare a DNA construct for novel fluorescent protein expression, two primers were synthesized for each cDNA: a 5'-directed "downstream" primer with the annealing site located in the 3'-UTR of the cDNA and a 3'-directed "upstream" primer corresponding to the site of translation start site (not including the first ATG codon) (Table 6). Primers with SEQ ID Nos. 38 and 40 or SEQ ID Nos. 39 and 40 were the primers used to prepare the c484 DNA. Both primers had 5'-heels coding for a site for a restriction endonuclease; in addition, the upstream primer was designed so as to allow the cloning of the PCR product into the pQE30 vector (Qiagen) in such a way that resulted in the fusion of reading frames of the vector-encoded 6xHis-tag and nFP. The PCR was performed as follows: 1 µl of the 20-fold dilution of the amplified cDNA sample was added to a mixture containing Advantage KlenTaq Polymerase Mix with buffer provided by the manufacturer (CLONTECH), 200 µM dNTPs, 0.2 µM of upstream primer and 0.2 µM of downstream primer, in a final total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 23-27 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of this amplification step was purified by phenol-chlorophorm extraction and ethanol precipitation and then cloned into pQE30 vector using restriction endonucleases corresponding to the primers' sequence according to standard protocols.

All plasmids were amplified in XL-1 blue *E. coli* and purified by plasmid DNA miniprep kits (CLONTECH). The recombinant clones were selected by colony color, and grown in 3 ml of LB medium

(supplemented with 100 μg/ml of ampicillin) at 37°C overnight. 100 μl of the overnight culture was transferred into 200 ml of fresh IB medium containing 100 μg/ml of ampicillin and grown at 37°C, 200 rpm up to OD₆₀₀ 0.6-0.7. 1 mM IPTG was then added to the culture and incubation was allowed to proceed at 37°C for another 16 hours. The cells were harvested and recombinant protein, which incorporated 6x His tags on the N-terminus, was purified using TALONTM metal-affinity resin according to the manufacturer's protocol (CLONTECH).

TABLE 6

Primers Used to Obtain Full Coding Region of nFPs for Cloning into Expression Construct

Species	Upstream Primer	Downstream Primer
Anemonia majano	5' -acatggatccgctctttcaaaca agtttatc (SEQ ID No. 36) BamHI	5'-tagtactcgagettattegta ttteagtgaaate (SEQ ID No. 37) XhoI
Clavularia sp.	L: 5'-acatggatccaacatttttttga gaaacg (SEQ ID No. 38) BamHI S: 5'-acatggatccaaagctctaacc accatg (SEQ ID No. 39) BamHI	5'-tagtactcgagcaacacaa accetcagacaa (SEQ ID No. 40) XhoI
Zoanthus sp.	5'- acatggatccgctcagtcaaag cacggt (SEQ ID No. 41) BamHI	5'-tagtactcgaggttggaactacat tcttatca (SEQ ID No. 42) XhoI
Discosoma sp. "red"	5'- acatggatccaggtettccaagaat gttatc (SEQ ID No. 43) BamHI	5'-tagtactcgaggagccaagttc agcctta (SEQ ID No. 44) XhoI
Discosoma striata	5'- acatggatccagttggtccaagagtgtg (SEQ ID No. 45) BamHI	5'-tagcgagctctatcatgcctc gtcacct (SEQ ID No. 46) SacI
Anemonia sulcata	5'- acatggatccgcttcctttttaaagaagact (SEQ ID No. 47) BamHI	5'-tagta <u>ctcgag</u> tccttgggagc ggcttg (SEQ ID No. 48) XhoI
Discosoma sp. "magenta"	5'- acatggatccagttgttccaagaatgtgat (SEQ ID No. 49) BamHI	5'-tagtactcgaggccattacg ctaatc (SEQ ID No. 50) XhoI
Discosoma sp. "green"	5'-acatggatccagtgcacttaaagaagaaatg (SEQ ID No. 51)	5'-tagtactcgagattcggtttaat gccttg (SEQ ID No. 52)

EXAMPLE 7

Novel Fluorescent Proteins and cDNAs Encoding the Proteins

One of the full-length cDNAs encoding fluorescent proteins found is described herein (cFP484). The nucleic acid sequence and deduced amino acid sequence are SEQ ID Nos. 55 and 56, respectively. The spectral properties of cFP484 is listed in Table 7, and the emission and excitation spectra for the cFP484 is shown in Figure 2.

10 _ TABLE 7

5

30

Spectral Properties of the Isolated cFP484 nFP

	Species:	Clavularia sp.	Max. Extinction Coefficient:	35,300
15	nFP Name:	cFP484	Quantum Yield	0.48
	Absorbance Max. (nm):	456	Relative Brightness:*	0.77
20	Emission Max. (nm):	484		

*relative brightness is extinction coefficient multiplied by quantum yield divided by the same value for A. victoria GFP.

25 EXAMPLE 8

Generation of Deletion Mutants of cFP484

Two deletion mutants were generated by two separate PCR reactions: Δ19 cFP484 lacks the N-terminal first 19 amino acids of cFP484, and Δ38 cFP484 lacks the N-terminal first 38 amino acids of cFP484. Mammalian expression vectors containing the DNA encoding

the fluorescent protein $\Delta 19$ cFP484 or $\Delta 38$ cFP484 are generated, which are named as p $\Delta 19$ NFP2-N1 and p $\Delta 38$ NFP2-N1, respectively.

5

10

15

20

25

visualize fluorescence

with image in Figure 3A.

EXAMPLE 9

Transient Expression of Deletion Mutants of cFP484 in Mammalian Cells

HeLa cells were transiently transfected with mammalian expression vector p $\Delta 19$ NFP2-N1 which contains the DNA encoding the fluorescent protein $-\Delta 19$ cFP484. After transfection, cells were incubated for 48 hours at 37°C then fixed in 3.7% formaldehyde. Cells were mounted in mounting medium and observed by fluorescence microscopy. Digital images were taken with MetaMorph software (Universal Imaging Corp.) using a monochrome cooled CCD camera (Roper Scientific). The filter set XF 114 (Omega Optical) was used to

 $\Delta 38$ cFP484 is also fluorescent when expressed in HeLa cells (Data not shown).

emitted by $\Delta 19$ cFP484.

pseudocolored (Figure 3A). Shown in Figure 3B is phase contrast image

taken from the same field of view as that in Figure 3A and overlayed

The image was

Any patents or publications mentioned in this specification are indicative of the levels of those skilled in the art to which the invention pertains. These patents and publications are incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.

One skilled in the art will appreciate readily that the present invention is adapted to carry out the objects and obtain the ends and

advantages mentioned, as well as those objects and ends inherent therein. The present examples, along with the methods, procedures, treatments, molecules, and specific compounds described herein, are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes to the methods and compounds, and other uses, will occur to those skilled in the art and are encompassed within the spirit of the invention as defined by the scope of the claims.

5

WHAT IS CLAIMED IS:

5

25

1. A DNA sequence encoding a fluorescent protein selected from the group consisting of:

- (a) an isolated DNA which encodes a fluorescent protein, wherein said DNA is from an organism from a Class Anthozoa and wherein said organism does not exhibit bioluminescence;
- (b) an isolated DNA which hybridizes to isolated DNA of
 (a) above and which encodes a fluorescent protein; and
- (c) an isolated ĐNA differing from the isolated DNAs of
 (a) and (b) above in codon sequence due to degeneracy of the genetic
 code and which encodes a fluorescent protein.
- 2. The DNA sequence of claim 1, wherein said organism is from Sub-class Alcyonaria.
 - 3. The DNA sequence of claim 2, wherein said organism is from Order Stolonifera.
- 20 4. The DNA sequence of claim 3, wherein said organism is from Family Clavulariidae.
 - 5. The DNA sequence of claim 4, wherein said organism is from Genus Clavularia.
 - 6. A DNA sequence encoding a fluorescent protein selected from the group consisting of:
 - (a) an isolated DNA which encodes a fluorescent protein, wherein said DNA has a sequence shown in SEQ ID No. 55;

(b) an isolated DNA which hybridizes to isolated DNA of
(a) above and which encodes a fluorescent protein; and

- (c) an isolated DNA differing from the isolated DNAs of (a) and (b) above in codon sequence due to degeneracy of the genetic code, and which encodes a fluorescent protein.
- 7. The DNA of claim 6, wherein said DNA encodes a fluorescent protein having an amino acid sequence shown in SEQ ID No. 56.

10

5

- 8. A vector capable of expressing the DNA of claim 1 in a recombinant cell, said vector comprising said DNA of claim 1 and regulatory elements necessary for expression of the DNA in the cell.
- 9. The vector of claim 8, wherein said DNA encodes a fluorescent protein having the amino acid sequence shown in SEQ ID No. 56.
- 10. A host cell transfected with the vector of claim 8, 20 wherein said cell is capable of expressing a fluorescent protein.
 - 11. The host cell of claim 10, wherein said cell is selected from the group consisting of bacterial cells, mammalian cells, plant cell, yeast and insect cells.

25

12. The host cell of claim 11, wherein said bacterial cell is an E. coli cell.

13. An isolated and purified fluorescent protein coded for by DNA selected from the group consisting of:

(a) an isolated DNA which encodes a fluorescent protein from an organism from Class Anthozoa, wherein said organism does not exhibit bioluminescence;

5

10

20

- (b) an isolated DNA which hybridizes to isolated DNA of
 (a) above and which encodes a fluorescent protein; and
- (c) an isolated DNA differing from the isolated DNAs of
 (a) and (b) above in codon sequence due to degeneracy of the genetic
 code and which encodes a fluorescent protein.
 - 14. The isolated and purified fluorescent protein of claim 13, wherein said organism is from Sub-class Alcyonaria.
- 15. The isolated and purified fluorescent protein of claim 14, wherein said organism is from Order Stolonifera.
 - 16. The isolated and purified fluorescent protein of claim15, wherein said organism is from Family Clavulariidae.
 - 17. The isolated and purified fluorescent protein of claim 16, wherein said organism is from Genus Clavularia.
- 18. An isolated and purified fluorescent protein coded for by DNA selected from the group consisting of:
 - (a) isolated DNA which encodes a fluorescent protein having an amino acid sequence shown in SEQ ID No. 56;
 - (b) isolated DNA which hybridizes to isolated DNA of (a) above and which encodes a fluorescent protein; and

(c) isolated DNA differing from said isolated DNAs of (a) and (b) above in codon sequence due to degeneracy of the genetic code and which encodes a fluorescent protein.

- 19. The isolated and purified fluorescent protein of claim 18, wherein said protein is cFP484.
 - 20. An amino acid sequence which can be used as a basis for designing an oligonucleotide probe for identification of a DNA encoding a fluorescent protein by means of hybridizaton, wherein said sequence is selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12, 14.

10

21. The amino acid sequence of claim 20, wherein said oligonucleotide has a nucleotide sequence selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15, 16

FIG. 1

			•	
·				
_				

			•	
·				
	_			
		·		
	,			

WO 00/34321 PCT/US99/29402

FIG. 3A

	·				•	÷
·						
		_				
				•		

WO 00/34321 PCT/US99/29402

FIG. 3B

.

WO 00/34321 - PCT/US99/29402

```
SEQUENCE LISTING
```

```
Lukyanov, Sergey A.
     <110>
                Labas, Yulii A.
                Matz, Mikhail V.
                Fradkov, Arcady F.
                Angres, Brigitte
                Green, Gisele
     <120>
                Fluorescent Proteins from Non-Bioluminescent
                Species of Class Anthozoa, Genes Encoding Such
                Proteins and Uses Thereof
     <130>
                D6196D2PCT
     <140>
                09/418,917
     <141>
                1999-10-15
     <150>
                09/210,330
     <151>
                1998-12-11
     <160>
                56
     <210>
                1
     <211>
                25
     <212>
               DNA
     <213>
               artificial sequence
     <220>
     <221>
               primer_bind
     <223>
               primer TN3 used in cDNA synthesis and RACE
     <400>
cgcagtcgac cgttttttt tttt
                                                    25
     <210>
               2
     <211>
               23
     <212>
               DNA
     <213>
               artificial sequence
     <220>
               primer_bind
     <221>
     <223>
               primer TS used in cDNA synthesis and RACE
                2
     <400>
                                                    23
aagcagtggt atcaacgcag agt
     <210>
               3
```

	_			
		•		

WO 00/34321	PCT/US99/29402
<211>	6
<212>	PRT
<213>	Aequorea victoria
<220>	
<222>	21
<223>	amino acid sequence of a key stretch on which
	primer NGH is based; Xaa at position 21 represents unknown
<400>	3
Gly Xaa Val Asr	n Gly His
	5
<210>	4
<211>	20
<212>	DNA
<213>	artificial sequence
<220>	
<221>	primer_bind
<222>	12
<223>	primer NGH used for isolation of fluorescent
	protein; n at position 12 represents any of the
	four bases
<400>	4
gayggctgcg tnaa	yggdca 20
<210>	5
<211>	5
<212>	PRT
<213>	Aequorea victoria
<220>	
<222>	3135
<223>	amino acid sequence of a key stretch on which
	primers GEGa and GEGb are based
<400>	5
Gly Glu Gly Glu	Gly
	5

-		 ·	
			·
	_		

WO 00/34321	PCT/1	JS99/29402
<210>	6	•
<211>	20	
<212>	DNA	
<213>	artificial sequence	
<220>		
<221>	primer_bind	
<223>	primer GEGa used for isolation of fluoresc	ent
	protein	
<400>	6	
gttacaggtg a	arggmgargg 20	
<210>	7	
<211>	20	
<212>	DNA	
<213>	artificial sequence	
<220>		
<221>	primer_bind	
<223>	primer GEGb used for isolation of fluoresc	ent
	protein	
<400>	7	
gttacaggtg a	arggkgargg 20	
<210>	8	
<211>	5	
<212>	PRT	
<213>	Aequorea victoria	
<220>		
<222>	3135	
<223>	amino acid sequence of a key stretch on wh	ich
	primers GNGa and GNGb are based	
<400>	8	
Gly Glu Gly	Asn Gly 5	
<210>	9	
<211>	20	
<212>	DNA	

	 '	-	-		
•					
	_				
					·

WO 00/3432	PCT/US99/29402
<213>	artificial sequence
<220>	
<221>	primer_bind
<223>	primer GNGa used for isolation of fluorescent
	protein
<400>	9
gttacaggtg	arggmaaygg 20
<210>	10
<211>	20
<212>	DNA
<213>	artificial sequence
<220>	-
<221>	primer_bind
<223>	primer GNGb used for isolation of fluorescent
	protein
<400>	10
gttacaggtg	arggkaaygg 20
<210>	11
<211>	5
<212>	PRT
<213>	Aequorea victoria
<220>	
<222>	127131
<223>	amino acid sequence of a key stretch on which
	primer NFP is based
<400>	11
Gly Met Asn	Phe Pro
	5
<210>	12
<211>	5
<212>	PRT
<213>	Aequorea victoria
<220>	
<222>	127131

				• .	
	-	•	·		
		•			

```
WO 00/34321
                                                      PCT/US99/29402
                amino acid sequence of a key stretch on which
     <223>
                primer NFP is based
     <400>
                12
Gly Val Asn Phe Pro
                 5
                13
     <210>
     <211>
                20
     <212>
                DNA
     <213>
                artificial sequence
     <220>
                primer_bind
     <221>
                primer NFP used for isolation of fluorescent
     <223>
                protein
     <400>
                13
ttccayggtr tgaayttycc
                                                     20
     <210>
                14
     <211>
                4
     <212>
                PRT
                Aequorea victoria
     <213>
     <220>
     <222>
                134...137
                amino acid sequence of a key stretch on which
     <223>
                primers PVMa and PVMb are based
                14
     <400>
Gly Pro Val Met
     <210>
                15
                21
     <211>
     <212>
                DNA
     <213>
                artificial sequence
     <220>
                primer_bind
     <221>
                15
     <222>
```

	 		:		
	•				
		-			

<pre><223> primer PVMa used for isolation of fluorescent</pre>
four bases <400> 15 cctgccrayg gtccngtmat g 21
<pre><400> 15 cctgccrayg gtccngtmat g 21</pre>
cctgccrayg gtccngtmat g 21
<210> 16
<211> 21
<212> DNA
<213> artificial sequence
<220>
<221> primer_bind
<222> 15
<223> primer PVMb used for isolation of fluorescent
protein; n at position 15 represents any of the
four bases
<400> 16
cctgccrayg gtccngtkat g 21
<210> 17
<211> 47
<211> 47 <212> DNA
<213> artificial sequence
<220>
<221> primer_bind
<pre><223> primer T7-TN3 used in cDNA synthesis and RACE</pre>
<400> 17
gtaatacgac tcactatagg gccgcagtcg accgtttttt ttttttt 47
<210> 18
<211> 45
<212> DNA
<213> artificial sequence
<220>
<221> primer_bind
<223> primer T7-TS used in cDNA synthesis and RACE
<400> 18

				•
	-			
·		•		
			-	

WO 00/34321 PCT/US99/29402 gtaatacgac tcactatagg gcaagcagtg gtatcaacgc agagt 45 <210> 19 <211> 22 <212> DNA <213> artificial sequence <220> <221> primer_bind <223> primer T7 used in cDNA synthesis and RACE <400> gtaatacgac tcactatagg gc 22 <210> 20 <211> 21 <212> DNA <213> artificial sequence <220> <221> primer_bind <223> gene-specific primer used for 5'-RACE for Anemonia majano <400> 20 gaaatagtca ggcatactgg t 21 <210> 21 <211> 20 <212> DNA <213> artificial sequence <220> <221> primer_bind <223> gene-specific primer used for 5'-RACE for Anemonia majano <400> 21 gtcaggcata ctggtaggat 20

<210>

22

	-				
		·			•

WO 00/3432	at the second of		PCT/US99/29402
<211>	21		
<212>	DNA		
<213>	artificial sequence		
<220>			
<221>	primer_bind		
<223>	gene-specific primer used for	or 5'-RACE	for
	Clavularia sp.		
<400>	22		
cttgaaatag	tctgctatat c	21	
<210>	23		
<211>		_	
<212>	DNA		
<213>	artificial sequence		
<220>			
<221>	primer_bind		
<223>	gene-specific primer used for	or 5'-RACE	for
	Clavularia sp.		
<400>	23		
tctgctatat	cgtctgggt	19	
<210>	24		
<211>	23		
<212>	DNA		
<213>	artificial sequence		
<220>	•		
<221>	primer_bind		
<223>	gene-specific primer used for	or 5'-RACE	for Zoanthus
	sp.		
<400>	24		
gttcttgaaa	tagtctacta tgt	23	
<210>	25		
<211>	20		
<212>	DNA		

		 . -	·		
		_			

WO 00/34321	· ·		PCT/US99/29402
<213>	artificial sequence		
<220>			
<221>	primer_bind		
<223>	gene-specific primer used for	5'-RACE	for Zoanthus
	sp.		
<400>	25		
gtctactatg tct	tgaggat	20	
<210>	26		
<211>	19		
<212>	DNA		
<213>	artificial sequence		
<220>			
<221>	primer_bind		
<223>	gene-specific primer used for	5'-RACE	for
	Discosoma sp. "red"		
<400>	26		
caagcaaatg gcaa	aaggtc	19	
<210>	27		
<211>	19		
<212>	DNA		
<213>	artificial sequence		
<220>			
<221>	primer_bind		
<223>	gene-specific primer used for	5'-RACE	for
	Discosoma sp. "red"		
<400>	27		
cggtattgtg gcct	tcgta	19	
<210>	28		
<211>	19		
<212>	DNA		
<213>	artificial sequence		
<220>			
<221>	primer_bind		

-	^			
	-	_		

WO 00/3432	1	PCT/US99/29402
<223>	gene-specific primer used for 5'-RA	ACE for
	Discosoma striata	
<400>	28	
ttgtcttctt	ctgcacaac	19
<210>	29	
<211>	17	
<212>	DNA	
<213>	artificial sequence	
<220>		
<221>	primer_bind	
<223>	gene-specific primer used for 5'-RA	ACE for
	Discosoma striata	_
<400>	29	
ctgcacaacg	ggtccat	17
<210>	30	
<211>	20	
<212>	DNA	
<213>	artificial sequence	
<220>		
<221>	primer_bind	
<223>	gene-specific primer used for 5'-RA	ACE for Anemonia
	sulcata	
<400>	30	
cctctatctt	catttcctgc 2	0
<210>	31	
<211>	20	
<212>	DNA	
<213>	artificial sequence	,
<220>		
<221>	primer_bind	
<223>	gene-specific primer used for 5'-RA	ACE for Anemonia
	sulcata	
<400>	31	

					,	
		-				
			~			

WO 00/34321 PCT/US99/29402
tatcttcatt tcctgcgtac 20

·	
<210>	32
<211>	19
<212>	DNA
<213>	artificial sequence
<220>	
<221>	primer_bind
<223>	gene-specific primer used for 5'-RACE for
	Discosoma sp. "magenta"
<400>	32
ttcagcaccc	catcacgag 19
<210>	33
<211>	19
<212>	DNA
<213>	artificial sequence
<220>	
<221>	primer_bind
<223>	gene-specific primer used for 5'-RACE for
	Discosoma sp. "magenta"
<400>	33
acgctcagag	ctgggttcc 19
<210>	34
<211>	22
<212>	DNA
<213>	artificial sequence
<220>	
<221>	primer_bind
<223>	gene-specific primer used for 5'-RACE for
	Discosoma sp. "green"
<400>	34
ccctcagcaa	tccatcacgt tc 22
<210>	35

			•	
. •	-	·		
		-		

WO 00/343	321	PCT/US99/29402
<211>	> 20	
<212>	> DNA	
<213>	> artificial sequence	
<220>	>	
<221>	> primer_bind	
<223>	<pre>> gene-specific primer used for 5'-RACE</pre>	for
	Discosoma sp. "green"	
<400>	> 35	
attatctcag	g tggatggttc 20	
<210>	> 36	
<211>	> 31	
<212>	DNA	
<213>	artificial sequence	
<220>	•	
<221>	primer_bind	
<223>	upstream primer used to obtain full coo	ding region
	of nFPs from <i>Anemonia majano</i>	
<400>	36	
acatggatcc	gctctttcaa acaagtttat c 31	
<210>	37	
<211>	34	
<212>	DNA	
<213>	artificial sequence	
<220>		
<221>	primer_bind	
<223>	downstream primer used to obtain full o	oding
	region of nFPs from Anemonia majano	
<400>	37	
tagtactcga	gcttattcgt atttcagtga aatc 34	
<210>	38	
<211>	29	
<212>	DNA	
<213>	artificial sequence	
<220>		

					,	
		-				
			_			

WO 00/3432	PCT/US99/29402
<221>	primer_bind
<223>	upstream primer used to obtain full coding region
	of nFPs from Clavularia sp.
<400>	38
acatggatcc	aacattttt tgagaaacg 29
<210>	39
<211>	28
<212>	DNA
<213>	artificial sequence
<220>	
<221>	primer_bind
<223>	upstream primer used to obtain full coding region
	of nFPs from <i>Clavularia sp</i> .
<400>	39
acatggatcc	aaagctctaa ccaccatg 28
<210>	40
<211>	31
<212>	DNA
<213>	artificial sequence
<220>	
<221>	primer_bind
<223>	downstream primer used to obtain full coding
	region of nFPs from Clavularia sp.
<400>	40
tagtactcga	gcaacacaaa ccctcagaca a 31
<210>	41
<211>	28
<212>	DNA
<213>	artificial sequence
<220>	
<221>	primer_bind
<223>	upstream primer used to obtain full coding region
	of nFPs from Zoanthus sp.

<u>.</u> -		
	_	
	_	

```
WO 00/34321
                                                     PCT/US99/29402
                41
     <400>
acatggatec geteagteaa ageaeggt
                                                    28
     <210>
                42
     <211>
                32
     <212>
                DNA
     <213>
                artificial sequence
     <220>
     <221>
                primer_bind
     <223>
                downstream primer used to obtain full coding
                region of nFPs from Zoanthus sp.
     <400>
                42
tagtactcga ggttggaact acattcttat ca
                                                    32
     <210>
                43
                31 .
     <211>
     <212>
                DNA
     <213>
                artificial sequence
     <220>
     <221>
                primer_bind
     <223>
                upstream primer used to obtain full coding region
                of nFPs from Discosoma sp. "red"
                43
     <400>
acatggatcc aggtcttcca agaatgttat c
                                                   31
     <210>
                44
     <211>
                29
     <212>
                DNA
     <213>
                artificial sequence
     <220>
     <221>
               primer_bind
     <223>
                downstream primer used to obtain full coding
                region of nFPs from Discosoma sp. "red"
     <400>
                44
tagtactcga ggagccaagt tcagcctta
                                                   29
```

					· .	
	. •					c
						•
				-		
					·	
			•			٠

WO 00/3432	PCT/US99/29402
<210>	45
<211>	28
<212>	DNA
<213>	artificial sequence
<220>	
<221>	primer_bind
<223>	upstream primer used to obtain full coding region
	of nFPs from <i>Discosoma striata</i>
<400>	45
acatggatcc	agttggtcca agagtgtg 28
<210>	46
<211>	28
<212>	DNA
<213>	artificial sequence
<220>	
<221>	primer_bind
<223>	downstream primer used to obtain full coding
	region of nFPs from <i>Discosoma striata</i>
<400>	46
tagcgagctc	tatcatgcct cgtcacct 28
<210>	47
<211>	31
<212>	DNA
<213>	artificial sequence
<220>	·
<221>	primer_bind
<223>	upstream primer used to obtain full coding region
	of nFPs from Anemonia sulcata
<400>	47
acatggatcc	gcttcctttt taaagaagac t 31
<210>	48
<211>	28
<212>	DNA
<213>	artificial sequence

. •			
		_	

WO 00/34321		PCT/US99/29402
<220>		
<221>	primer_bind	
<223>	downstream primer u	sed to obtain full coding
	region of nFPs from	Anemonia sulcata
<400>	48	
tagtactcga gt	ccttggga gcggcttg	28
<210>	49	
<211>	30	
<212>	DNA	
<213>	artificial sequence	•
<220>		
<221>	primer_bind	
<223>	upstream primer used	d to obtain full coding region
	of nFPs from Discos	oma sp. "magenta"
<400>	49	
acatggatcc ag	ttgttcca agaatgtgat	30
<210>	50	
<211>	26	
<212>	DNA .	
<213>	artificial sequence	•
<220>		
<221>	primer_bind	
<223>	downstream primer u	sed to obtain full coding
	region of nFPs from	Discosoma sp. "magenta"
<400>	50	
tagtactcga gg	ccattacg ctaatc	26
<210>	51	
<211>	31	
<212>	DNA	
<213>	artificial sequence	1
<220>		
<221>	primer_bind	
<223>	upstream primer use	ed to obtain full coding region
	of nFPs from Discos	soma sp. "green"

·			
			•
			_

PCT/US99/29402 WO 00/34321 <400> 51 31 acatggatcc agtgcactta aagaagaaat g <210> 52 <211> 29 <212> DNA <213> artificial sequence <220> <221> primer_bind <223> downstream primer used to obtain full coding region of nFPs from Discosoma sp. "green" <400> 29 tagtactcga gattcggttt aatgccttg <210> 53 <211> 33 <212> DNA artificial sequence <213> <220> <221> primer_bind <223> TS-oligo used in cDNA synthesis and RACE <400> 53 aagcagtggt atcaacgcag agtacgcrgr grg 33 <210> 54 <211> 238 <212> PRT <213> Aequorea victoria <220> <223> amino acid sequence of GFP <400> 54 Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 15 5 10 Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser 25 30 20 Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys 35 40 45

		•		
•				
	-		-	

WO 00/34321 PCT/US99/29402

```
Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu
                 50
                                                           60
                                      55
Val Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro
                 65
                                      70
                                                           75
Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu
                 80
                                      85
Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn
                 95
                                      100
                                                           105
Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val
                 110
                                      115
Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn
                 125
                                      130
                                                           135
Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val
                 140
                                      145
Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe
                 155
                                      160
                                                           165
Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp
                 170
                                      175
                                                           180
His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu
                 185
                                      190
                                                           195
Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp
                 200
                                      205
                                                          210
Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr
                 215
                                      220
                                                          225
Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys
                 230
                                      235
     <210>
                55
     <211>
                1116
     <212>
                DNA
     <213>
                Clavularia sp.
     <220>
     <221>
                CDS
     <222>
                8, 12, 13, 17, 65, 77, 102, 104
     <223>
                cDNA sequence of cFP484; n represents unknown
     <400>
                55
tatagganca tnngggngat tggggtccaa agcattgtaa ccaacgcaga
                                                           50
```

taacccccag tggtntcaaa cgcaganaac gcgggaacat tggaaaattg

	, -		:	
-				

WO 00/34321 PCT/US99/29402

```
150
antnttaagg aggcaaggaa tcgggagtaa agttgcgaga aactgaaaaa
atgaagtgta aatttgtgtt ctgcctgtcc ttcttggtcc tcgccatcac
                                                         200
aaacgcgaac attttttga gaaacgaggc tgacttcgaa gagaagacat
                                                         250
ttagaatacc aaaagctcta accaccatgg gtgtgattaa accagacatg
                                                         300
aagattaagc tgaagatgga aggaaatgta aacgggcatg cttttgtgat
                                                         350
tgaaggagaa ggagaaggaa agccttacga tgggacacac actttaaacc
                                                         400
tggaagtgaa ggaaggtgcg cctctgcctt tttcttacga tatcttqtca
                                                         450
aacgcgttcc agtacggaaa cagagcattg acaaaatacc cagacgatat
                                                         500
agcagactat ttcaagcagt cgtttcccga gggatattcc tgggaaagaa
                                                         550
ccatgacttt tgaagacaaa ggcattgtca aagtgaaaag tgacataaqc
                                                         600
atggaggaag actcctttat ctatgaaatt cgttttgatg ggatggactt
                                                         650
tcctcccaat ggtccggtta tgcagaaaaa aactttgaag tgggaaccat
                                                         700
ccactgagat tatgtacgtg cgtgatggag tgctggtcgg agatattagc
                                                         750
cattetetgt tgetggaggg aggtggceat taccgatgtg actteaaaag
                                                         800
tatttacaaa gcaaaaaaag ttgtcaaatt gccagactat cactttgtgg
                                                         850
accategeat tgagatettg aaccatgaca aggattacaa caaagtaacg
                                                         900
ctgtatgaga atgcagttgc tcgctattct ttgctgccaa gtcaggccta
                                                         950
gacaacaagg atactgaaaa catatttgtc tgagggtttg tgttgttttt 1000
taaaagacat cagctcagca ttcgttagtt gtaacaaaaa atagctttaa 1050
tttttggtgg gattaaatca tagggatttg ttttagtaat cattttgctt 1100
aataaaaagt gccttg
                                                        1116
     <210>
               56
     <211>
               266
     <212>
               PRT
     <213>
               Clavularia sp.
     <220>
     <223>
               amino acid sequence of cFP484
```

<400> 56 Met Lys Cys Lys Phe Val Phe Cys Leu Ser Phe Leu Val Leu Ala 5 10 15 Ile Thr Asn Ala Asn Ile Phe Leu Arg Asn Glu Ala Asp Phe Glu 20 25 30 Glu Lys Thr Phe Arg Ile Pro Lys Ala Leu Thr Thr Met Gly Val 35 40 Ile Lys Pro Asp Met Lys Ile Lys Leu Lys Met Glu Gly Asn Val 50 55 60

			1
	. -	 	
•			
			-
			·

WO 00/34321 PCT/US99/29402

Asn	Gly	His	Ala	Phe 65	Val	Ile	Glu	Gly	Glu 70	Gly	Glu	Gly	Lys	Pro 75
Tyr	Asp	Gly	Thr	His 80	Thr	Leu	Asn	Leu	Glu 85	Val	Lys	Glu	Gly	Ala 90
Pro	Leu	Pro	Phe	Ser 95	Tyr	Asp	Ile	Leu	Ser 100	Asn	Ala	Phe	Gln	Tyr 105
Gly	Asn	Arg	Ala	Leu 110	Thr	Lys	Tyr	Pro	Asp 115	Asp	Ile	Ala	Asp	Tyr 120
Phe	Lys	Gln	Ser	Phe 125	Pro	Glu	Gly	Tyr	Ser 130	Trp	Glu	Arg	Thr	Met 135
Thr	Phe	Glu	Asp	Lys 140	Gly	Ile	Val	Lys	Val 145	Lys	Ser	Asp	Ile	Ser 150
Met	Glu	Glu	Asp	Ser 155	Phe	Ile	Tyr	Glu	Ile 160	Arg	Phe	Asp	Gly	Met 165
Asp	Phe	Pro	Pro	Asn 170	Gly	Pro	Val	Met	Gln 175	Lys	Lys	Thr	Leu	Lys 180
Trp	Glu	Pro	Ser	Thr 185	Glu	Ile	Met	Tyr	Val 190	Arg	Asp	Gly	Val	Leu 195
Val	Gly	Asp	Ile	Ser 200	His	Ser	Leu	Leu	Leu 205	Glu	Gly	Gly	Gly	His 210
Tyr	Arg	Cys	Asp	Phe 215	Lys	Ser	Ile	Tyr	Lys 220	Ala	Lys	Lys	Val	Val 225
Lys	Leu	Pro	Asp	Tyr 230	His	Phe	Val	Asp	His 235	Arg	Ile	Glu	Ile	Leu 240
Asn	His	Asp	Lys	Asp 245	Tyr	Asn	Lys	Val	Thr 250	Leu	Tyr	Glu	Asn	Ala 255
Val	Ala	Arg	Tyr	Ser 260	Leu	Leu	Pro	Ser	Gln 265	Ala				

		• .
	. w -	
	ı	
		_

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/29402

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

435/320.1, 252.3, 252.33, 325, 410, 254.11, 348, 369, 69.1; 530/350; 536/23.5

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

Dialog files 155, 5, 434, 34, 357, 28, 44, 35, 77 (Medline, Biosis, Scisearch, Derwent Biotech abs., Oceanic Abs., Aquatic Sci. & Fish Abs., Dissertation Abs. Online, Conference papers Index); STN-CAS files registry, CAPLUS; WEST, files USPT, Derwent WPI,

search terms: fluoresc?, bioluminesc?, protein? polypeptide?, anthozo?, zoanthar?, coral? Cnidar?, inverteb?, anemon?, alcyonar?, octocorall?, stolonif?, clavulari?, gene#, zoanthid?, mscsksvi/sqsp, vngh/sqep, gegg/sqep, gegng/sqep, gmnfp/sqep, gvnfp/sqep, gpvn/sqep

			•
•			
•			

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/29402

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No.				
X	ANDERLUH et al. Cloning, sequencing, and expression equinatoxin II. Biochemical and Biophysical Research Communications. 1996, Volume 220, No. 2, pages 437 document.		1, 6, 8, 10-13, 18				
X L	MACEK et al. Intrinsic tryptophan fluorescence of equa pore-forming polypeptide from the sea anemone, Acti L, monitors its interaction with lipid membranes. Europ of Biochemistry. 1995, Volume 234, pages 329-335, en document. Cited as "" document because it establishe fluorescence of equinatoxin II.	nia equina ean Journal tire	13, 18 1, 6, 8, 10-12				
		•					

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/29402

	SSIFICATION OF SUBJECT MATTER	•					
US CL :	:C07K 14/435; C12N 1/00, 1/19, 5/10, 15/12, 15/63 Please See Extra Sheet.						
According to International Patent Classification (IPC) or to both national classification and IPC							
	DS SEARCHED						
	ocumentation searched (classification system followed		j				
U.S. : 4	U.S. : 435/320.1, 252.3, 252.33, 325, 410, 254.11, 348, 369, 69.1; 530/350; 536/23.5						
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	in the sields searched				
Flores d	lata base consulted during the international search (na	me of data base and where practicable	search terms used)				
	e Extra Sheet.	inc of data base and, whose practices of	,, 5541.01 (5142-55-7)				
Ficase Sec	E EARLA SHOOT.						
C. DOC	UMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
****	The sequence diskette submitted with the	he description was defective:	****				
	thus the documents listed below were	-					
	search. No SEQ ID NOs. could be sea	arched.					
	NAA COCK		1 21				
X, P	MATZ et al. Fluorescent proteins from species. Nature Biotechnology. Octobe		1-21				
	pages 969-673, entire document.	1 1999, Volume 17, 140. 10,	,				
	pages yes ever, entire accumum.						
X, P	DE 197 18 640 A1 (WIEDENMAN	NN) 22 July 1999, entire	13, 18				
	document.						
	han danumente and listed in the continuation of Day C	See notest femily const	<u> </u>				
	her documents are listed in the continuation of Box C		terretional Glima data as mission				
•	pecial categories of cited documents: ocument defining the general state of the art which is not considered	"T" later document published after the integration date and not in conflict with the app the principle or theory underlying the	lication but cited to understand				
to	be of particular relevance arlier document published on or after the international filing date	"X" document of particular relevance; the	ne claimed invention cannot be				
"L" do	ocument which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered the document is taken alone	ered to involve an inventive step				
CI	ted to establish the publication date of another citation or other secial reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive	ne claimed invention cannot be				
	ocument referring to an oral disclosure, use, exhibition or other loans	combined with one or more other such being obvious to a person skilled in	ch documents, such combination				
•P• do	ocument published prior to the international filing date but later than	*&* document member of the same pater					
·	e priority date claimed c actual completion of the international search	Date of mailing of the international se	earch report				
	•	04 APR 2000	•				
06 MAR	CH 2000						
Name and	mailing address of the ISA/US oner of Paients and Trademarks	Authorized officer	$\Lambda \cap \Omega$				
Box PCT	on. D.C. 20231	GABRIELE ELISABETH BUGA	JSKY 9/1 1 1				
Facsimile I		Telephone No. (703) 308-0196	, which				