Universidade do Vale do Itajaí

Disciplina: Projeto de Sistemas Digitais Professores: Douglas Rossi de Melo

Avaliação 6 - Projeto de processadores em VHDL

Instruções:

- 1. Esta avaliação tem por objetivo consolidar o aprendizado sobre o projeto de processadores em VHDL.
- 2. O sistema digital a ser implementado consiste em um processador programável básico de 4 instruções.
- 3. O processador a ser desenvolvido consiste no processodr de 3 instruções (básico) apresentado no livro "sistemas digitais projetos de otimização e hdls", acrescido da instrução de carga de constante (load constant).
- 4. O processador descrito em VHDL deve ser verificado com o uso de testbench no simulador ModelSim e sintetizado no Quartus para verificação com o uso do visualizador de RTL para conferir os circuitos inferidos.
- Para a implementação, deve-se utilizar o Quartus para identificar os custos de implementação do sistema expresso pelo número de LUTs e FFs.
- 6. Aplique o seguinte guia de estilo na codificação VHDL:
 - a. Tabulação com 02 espaços (substituindo tabs por espaços);
 - b. Palavras reservadas da linguagem em caixa baixa;
 - c. Nomes de sinais em caixa alta (exceto os prefixos e sufixos);
 - d. Utilize os seguintes prefixos para identificar o tipo sinal:
 - i NOME: pino de entrada
 - o NOME: pino de saída
 - b NOME: pino de entrada-e-saída (bidirecional)
 - w NOME: fio interno
 - v NOME : variável de processo
 - r NOME: registrador
 - t NOME: tipo de dado
 - p NOME: processo
 - u NOME : instância de componente
 - e. Utilize o sufixo "n" para sinalizar que o sinal é ativo em 0 (negado). Ex: i RSTn
- 7. Devem ser apresentados as seguintes estruturas na defesa do trabalho:
 - a. Código fonte do projeto e testbench
 - b. Diagrama de formas de onda da simulação
 - c. Diagrama RTL gerado pelo Quartus
 - d. Tabela de custos do circuito (LUTs e FFs)
 - e. Frequência máxima do circuito

Descrição do projeto a ser desenvolvido

Lista de instruções:

- Instrução Carregar— 0000 r₃r₂r₁r₀ d₇d₆d₅d₄d₃d₂d₁d₀: Essa instrução especifica uma movimentação de dados que vai desde uma posição da memória de dados, cujo endereço é especificado pelo bits d₇d₆d₅d₄d₃d₂d₁d₀, até um registrador do banco de registradores, cuja posição é especificada pelo bits r₃r₂r₁r₀. Por exemplo, a instrução "0000 0000 00000000" especifica uma movimentação de dados desde a posição 0 da memória de dados, ou D[0], até a posição 0 do banco de registradores, ou RF[0]; em outras palavras, essa instrução representa a operação RF[0]=D[0]. De modo similar, "0000 0001 00101010" especifica RF[1]=D[42]. Inserimos espaços em branco entre alguns bits para facilitar a leitura do leitor—esses espaços não têm nenhum outro significado e não existem na memória de instruções.
- Instrução Armazenar 0001 r₃r₂r₁r₀ d₇d₆d₅d₄d₃d₂d₁d₀: Essa instrução especifica uma movimentação de dados no sentido oposto ao da instrução anterior, ou seja, uma movimentação que vai do banco de registradores até a memória de dados. Assim, "0001 0000 00001001" especifica D[9]=RF[0].
- Instrução Somar- 0010 ra₃ra₂ra₁ra₀ rb₃rb₂rb₁rb₀ rc₃rc₂rc₁rc₀: Essa instrução especifica somar os conteúdos de dois registradores do banco de registradores, especificados por rb₃rb₂rb₁rb₀ e rc₃rc₂rc₁rc₀. O resultado é armazenado em um banco de registradores, no registrador especificado por ra₃ra₂ra₁ra₀. Por exemplo, "0010 0010 0000 0001" especifica a instrução RF[2]=RF[0]+RF[1]. Observe que somar é uma operação de ALU.

Visão geral do processador programável de 3 instruções:

Controle básico do processador:

Caminho de dados do processador:

Máquinas de estados do controle:

A adição de carga de constate (load constant) deve ser baseada na instrução presente no processador de 6 instruções, apresentado no mesmo livro.

Requisitos:

- 1. O sistema deve ser composto de um controle (máquina de estados) e um caminho de dados;
- 2. O projeto deve seguir uma abordagem hierárquica, com a seguinte estrutura sugerida
 - Topo (CPU)
 - o Controle (máquina de estados)
 - Caminho de dados
- 3. Ao realizar o projeto, identifique previa e claramente os nomes das entradas, saídas e sinais internos nos diagramas esquemáticos de modo a facilitar a documentação e a descrição do projeto em VHDL;
- 4. Para sinais internos, utilize como referência a porta de saída e o nome do bloco ao qual o sinal está conectado. Exemplo: para um sinal de 8 bits conectado à saída de um somador, utilize o seguinte identificador: w_ADDER_OUT. Caso o sistema contenha mais de uma instância de um mesmo bloco, diferencie-os com algum sufixo (ex. w_ADDERO_out, w_ADDER1_out, ...);
- 5. Para a verificação, deve ser elaborado um programa que realize as seguintes operações, evidenciadas nas formas de onda:

D[0] := 4

D[1] := D[0] + 2

D[0] := D[0] + D[1]