Corrigé – barème IE2 (5 mai 2017)

Dans les 2 exercices : pas de justification → pas de points, et pas d'unité dans les A.N → pas de points non plus

		10pt+1ptbonus
1.1	1 et 3 sont brutales = rapides = pas de temps pour les échanges thermiques (en A et B il y a	0.5
	seulement équilibre mécanique et pas thermique)	
	2 et 4 : la pression extérieure est constante : P _{ext} = _{Pgaz(debut)} =P _{gaz(fin)}	
1.2	a) 1, 2, 3, 4 P_{ext} =cst \rightarrow W=- $P_{\text{ext}}\Delta V \rightarrow$ W ₁ =- $2P_{\text{o}}(V_{\text{A}}-V_{\text{o}})$, W ₂ =- $2P_{\text{o}}(V_{\text{o}}/2-V_{\text{A}})$, W ₃ =- $P_{\text{o}}(V_{\text{B}}-V_{\text{o}}/2)$ et W ₄ =-	1
	$P_{o}(V_{o}-V_{B})$	
	b) 1 et 3 adiabatiques Q=0 $$ Q ₁ =Q ₃ =0	0.5
	2 et 4 monobares Q= Δ H =n $\overline{C_p}$ (Δ T) \rightarrow Q ₂ = $n_o \overline{C_p}$ (T_o - T_A) et Q ₄ = $n_o \overline{C_p}$ (T_o - T_B)	0.5
1.3	Cycle $\Delta U=0=W+Q$ et $Q_{piece}=-Q$	0.5
	Donc Q_{piece} =- Q = W = W_1 + W_2 + W_3 + W_4 = $P_oV_o/2$	0.5
1.4	$T_{I}=T_{F}$ donc $\Delta U_{1+2}=n_{o}\overline{C_{v}}$ (ΔT) = 0 donc $Q_{1+2}=-W_{1+2}$	0.5
	$n\overline{C_p}(T_o-T_A) = -P_oV_o = -n_oRT_o \rightarrow T_A = T_o\frac{2\gamma-1}{\gamma}$	0.5
	de même : $n_o \overline{C_p}$ (T _o -T _B) = P _o V _o /2 = - n_o RT _o /2 \rightarrow T _B = T _o $\frac{\gamma+1}{2\gamma}$	0.5
1.5	Cycle Δ S=0 (S est une fonction d'état)	0.5
	$\Delta S_{piece} = Q_{piece}/T_o = -(Q_2+Q_4)/T_o$ car la pièce est un thermostat	0.5
	$\Delta S_{\text{piece}} = -(Q_2 + Q_4)/T_o = -n_o \overline{C_p} (2T_0 - T_B - T_A)/T_o = n_o \overline{C_p} (\gamma - 1)/2 \gamma$	0.5
1.6	$SC=\Delta S_{univers}=\Delta S+\Delta S_{piece}=n_o \overline{C_p} (\gamma-1)/2 \gamma$	0.5
	Sc > 0 → possible irréversible	
1.7	n _{pièce} =P _o V/RT _o (pas de pt si les notations de l'énoncé ne sont pas respectées) → n _{pièce} =1,0 10 ³	0.5+0.5
	moles (accepter entre 1 et 3 cs, pas plus !)	
1.8	$Q_{total} = n_{pièce} \overline{C_p} (\Delta T)$ (pas de point si n à la place de n_{piece}) \rightarrow $Q_{total} = 1,2 \ 10^5 \ J$ (accepter entre 1 et 3 cs,	0.5+0.5
	pas plus !). Accepter $Q_{total} = n_{pièce} \overline{C_v}$ (ΔT) =0,86 10^5 J si ils considèrent volume cst au lieu de P cste	
1.9	F=P₀*S=100N → correspond à lever 10kg : bon entrainement !	0.5(+0.5bonus)
1.10	$N_{\text{cycle}} = Q_{\text{total}}/W_{\text{1cycle}} = 1200 \text{ cycles (resp. 860 si V cst)}$ (\rightarrow Vu qu'il faut attendre le refroidissement ça	0.5(+0.5bonus)
	risque de faire un peu long mais en regardant youtube ça passe. (tout commentaire faisant allusion	
	au refroidissement non instantané mérite le 0,5bonus)	

			10pt	
II.1	Produits de combustion Eau 45°C 105°C 105°C 105°C		0,25	
II.2	$C_3H_8(g) + 5O_2(g) \rightarrow 4H_2O(g) + 3CO_2(g)$		0,5	
II.3	A l'entrée du brûleur : $\dot{n}_{O2,e}=1.4\times5\times\dot{n}_{C3H8,e}=0.07~mol/s$ d'où $\dot{n}_{N2,e}=4\times\dot{n}_{O2,e}=0.28~mol/s$			
	Composé C ₃ H ₈ O ₂ N ₂ CO ₂ H ₂ O	Total	1,75	
	Entrée brûleur $\dot{n}_{C3H8,e} = 0.01$ $\dot{n}_{O2,e} = 0.07$ $\dot{n}_{N2,e} = 0.28$ $\dot{n}_{CO2,e} = 0$ $\dot{n}_{H2O,e} = 0$	'n _{tot,e} = 0,36	(-0,25/erreur)	
	Etat intermédiaire $0.01 - \dot{\xi}$ $0.07 - \dot{5}\dot{\xi}$ 0.28 $3\dot{\xi}$ $4\dot{\xi}$ Sortie brûleur 0.02 0.02 0.03	$0.36 + \dot{\xi}$		
	Some order $\dot{n}_{C3H8,s} = 0$ $\dot{n}_{O2,s} = 0.02$ $\dot{n}_{N2,s} = 0.28$ $\dot{n}_{CO2,s} = 0.03$ $\dot{n}_{H2O,s} = 0.04$	$\dot{n}_{\text{tot,s}} = 0.37$		
11.4	$\Delta_{\rm r} {\rm H}^{\circ}_{298} = 4 \times (-241.8) + 3 \times (-393.5) - (-103.8) - 5 \times 0 = -2043.$	9 kJ/mol	0,5	
II.5	a) $\dot{Q}_{r} = \dot{n}_{C3H8,e} \times \Delta_{r} H^{\circ}_{298} = \dot{n}_{C3H8,e} \times \Delta_{r} H^{\circ}_{298}$		0,5	
	$\dot{Q}_{eau} = \frac{\dot{m}_{eau}}{M_{H2O}} \times \overline{C_p}(eau liq) \times (T_{e,s} - T_{e,e})$		0,5	
	112O		0,5	
	$\dot{Q}_{gaz} = \int_{T_{g,e}}^{T_{g,s}} (\dot{n}_{H2O,s} \times \overline{C_p}(H_2O) + \dot{n}_{CO2,s} \times \overline{C_p}(CO_2) + \dot{n}_{N2,s} \times \overline{C_p}(N_2) + \dot{n}_{O2,s} \times \overline{C_p}(O_2)) dT$			
II.6	$\dot{Q}_{r} + \dot{Q}_{eau} + \dot{Q}_{gaz} = 0$			
11.7	$\dot{Q}_r = 0.01 \times (-2043.9) = -20.44 \text{ kW}$		0,5	
	$\dot{Q}_{gaz} = \int_{298}^{378} (0.04 \times 32.59 + 0.03 \times 39.80 + 0.28 \times 28.14 + 0.02 \times 28.97) dT = 876.5 W$			
	$\dot{m}_{eau} = \frac{M_{H20}}{\overline{C_p}(eau liq) \times (T_{e,s} - T_{e,e})} \times \left(-\dot{Q}_r - \dot{Q}_{gaz}\right) = \frac{18}{75,32 \times 30} \times (20,44 \cdot 10)$ $= 155,8 g \cdot s^{-1}$	³ – 876,5)	1	
II.8	On peut chauffer 155,8 g d'eau par seconde avec un débit de propane de 0,01 mo puissance reçue par l'eau égale à $\dot{Q}_{eau}=20,44-0,8765=19,56~\mathrm{kW}$ Pour fournir 100 kW.h à l'eau, il faudra donc brûler	0,5		
	$m_{C3H8} = M_{C3H8} \times \dot{n}_{C3H8,e} \times 3600 * 100 \cdot \frac{10^3}{\dot{Q}_{eau}} = 8098 \text{ g} = 8,098 \text{ kg de propane}$ de 13,77€	, soit un coût	0,5	
II.9	Si toute l'eau est à l'état vapeur à 45°C en sortie du brûleur, d'après le bilan matière $x_{H2O,s} = \frac{0.04}{0.37} = 0.11$ soit une pression partielle en eau de 0,11 bar = 11000 Pa > P* _{45°C} Donc une partie de l'eau est à l'état liquide.			
II.10	Accepter plusieurs raisonnements suivant que les étudiants considèrent que l'on garde soit le débit d'eau, soit le débit de propane constant, et/ou que la liquéfaction de l'eau est incluse dans le \dot{Q}_r ou dans le \dot{Q}_{gaz} . Mettre le point si il y a ces 2 idées : chauffer les gaz de combustion à 45° plutôt que 105° « gâche moins d'énergie » (0,5) et former de l'eau liquide plutôt que de l'eau vapeur « gâche » moins d'énergie aussi (0,5). Par exemple raisonnement on considérant que le débit de propane est constant et que la réaction forme de l'eau liquide : $ \dot{Q}_r < \dot{Q'}_r $ donc $\dot{Q}_r > \dot{Q'}_r$. La température de sortie des produits de combustion est plus faible donc $\dot{Q'}_{gaz} < \dot{Q}_{gaz}$ Si \dot{Q}_{gaz} et \dot{Q}_r diminuent, alors \dot{Q}_{eau} augmente donc on peut chauffer plus d'eau pour le même prix, le coût diminue.			