Х22-Т6 — Колебания в заряженном цилиндре

A1^{0.50} Диск радиусом R заряжен поверхностной плотностью заряда σ_R . Определите потенциал $\varphi(y)$ в точке на оси на расстоянии y от центра диска. Потенциал равен нулю на бесконечности.

 $oldsymbol{0.20}$ Потенциал от кольца шириной dr радиусом r

$$d\varphi = k \frac{\sigma_R \cdot 2\pi r dr}{\sqrt{y^2 + r^2}}$$

0.30 Ответ. Потенциал диска:

$$\varphi(y) = 2\pi k \sigma_R \left(\sqrt{R^2 + y^2} - |y| \right)$$

A2^{1.00} Два таких диска радиусом R заряжены поверхностной плотностью заряда $\sigma_R > 0$ находятся параллельно друг другу. Расстояние между центрами дисков равно 2L, центры находятся на оси дисков. В положении равновесия находятся заряд q массой m, который может двигаться только вдоль оси дисков. Определите угловую частоту ω_1 колебаний такого заряда. Какой знак заряда?

- ${f 0.10}$ Идейно правильный способ найти E(x). Например, посчитать поле кольца или $E_x=-rac{darphi}{dx}$.
- 0.50 Напряженность электрического поля

$$E_x(x) = -k \frac{2\pi R \delta \sigma_R}{(L^2 + R^2)} \frac{L}{\sqrt{L^2 + R^2}} = -\frac{\sigma_R R^2}{\varepsilon_0 (L^2 + R^2)^{3/2}} x.$$

<u>ИЛИ</u> найден коэффициент перед x^2 в разложении для потенциала.

0.30 Ответ. Угловая частота при колебаниях:

$$\omega_1^2 = \frac{q\sigma_R R^2}{m\varepsilon_0 (L^2 + R^2)^{3/2}}.$$

0.10 Ответ. Знак заряда:

$$q > 0$$
.

A3^{1.00} Теперь этот заряд может двигаться только в перпендикулярном направлении. Выразите угловую частоту ω_2 колебаний в таком случае через ω_1 . Какой теперь знак заряда?

- **0.10** Идея использовать теорему Гаусса
- **0.50** Запись теоремы Гаусса

$$2\pi r \cdot 2x E_r(r) + 2\pi r^2 E_x(x) = 0$$

0.20 Найдена ω_2 через заданные в условии величины (это находить необязательно):

$$\omega_2^2 = \frac{|q|\sigma_R R^2}{2m\varepsilon_0 (L^2 + R^2)^{3/2}},$$

0.10 Ответ. Угловая частота:

$$\omega_2 = \frac{\omega_1}{\sqrt{2}}.$$

Страница 1 из 4 ≈

0.10 Ответ. Знак заряда:

$$q < 0$$
.

B1^{1.00} Боковая поверхность цилиндра радиусом R и длиной L заряжена поверхностной плотностью заряда σ_L . Определите потенциал в точке на оси на расстоянии z от центра одного из оснований цилиндра. Потенциал равен нулю на бесконечности.

 $oldsymbol{0.30}$ Потенциал от кольца высотой dl на расстоянии l от нуля

$$d\varphi(y) = k \frac{\sigma_L \cdot 2\pi R dl}{\sqrt{(z+l)^2 + R^2}}.$$

- **0.20** Правильные пределы интегрирования (от z до z+L)
- 0.50 Ответ. Потенциал боковых стенок цилиндра.

$$\varphi(y) = 2\pi k R \sigma_L \left(\operatorname{arth} \frac{L+z}{\sqrt{(L+z)^2 + R^2}} - \operatorname{arth} \frac{z}{\sqrt{z^2 + R^2}} \right).$$

B2^{1.00} Два таких цилиндра (радиусом R и длиной L, поверхность заряжена поверхностной плотностью заряда $\sigma_L > 0$) поставлены рядом вплотную и имеют общую ось. В положении равновесия находятся заряд q массой m, который может двигаться только вдоль оси цилиндров. Определите угловую частоту ω_3 колебаний такого заряда. Какой знак заряда?

- $oldsymbol{0.10}$ Идейно правильный способ найти E(x). Например, посчитать поле кольца или $E_x=-rac{darphi}{dx}$.
- 0.50 Напряженность электрического поля

$$E_x(x) = k \frac{2\pi R \delta \sigma_L}{(L^2 + R^2)} \frac{L}{\sqrt{L^2 + R^2}} = \frac{\sigma_L R L}{\varepsilon_0 (L^2 + R^2)^{3/2}} x.$$

 ${
m MJM}$ найден коэффициент перед x^2 в разложении для потенциала.

0.30 Ответ. Угловая частота:

$$\omega_3^2 = \frac{|q|\sigma_L RL}{m\varepsilon_0(L^2 + R^2)^{3/2}}.$$

0.10 Знак точечного заряда.

$$q < 0$$
.

B3^{0.50} Теперь этот заряд может двигаться только в перпендикулярном направлении. Выразите угловую частоту ω_4 колебаний в таком случае через ω_3 . Какой теперь знак заряда?

0.20 Связь двух напряженностей

$$E_r(r) = -\frac{1}{2}E_x(x)\frac{r}{r},$$

0.10 Угловая частота (это находить необязательно):

$$\omega_4^2 = \frac{|q|\sigma_L RL}{2m\varepsilon_0 (L^2 + R^2)^{3/2}}.$$

Страница 2 из 4 ≈

0.10 Ответ. Угловая частота

$$\omega_4 = \frac{\omega_3}{\sqrt{2}},$$

0.10 Ответ. Знак заряда.

$$q > 0$$
.

C1^{1.50} Заряженный цилиндр радиусом R высотой L=40R/9 состоит из боковой поверхности и одного основания. Поверхностная плотность заряда боковой поверхности σ_L , основания σ_R . Если поместить точечный заряд в центр противоположного основания, то он окажется в положении равновесия. Определите отношение σ_L/σ_R .

- **0.10** Указано, что сумма двух действующих сил равна нулю.
- 0.50 Напряженность поля от основания цилиндра

$$E_R = 2\pi\sigma_R k \left(1 - \frac{L}{\sqrt{R^2 + L^2}} \right).$$

0.50 Напряженность поля от боковых стенок цилиндра

$$E_L = 2\pi\sigma_L k \left(1 - \frac{R}{\sqrt{R^2 + L^2}} \right).$$

0.30 Ответ в общем виде.

$$\frac{\sigma_L}{\sigma_R} = -\frac{\sqrt{R^2 + L^2} - L}{\sqrt{R^2 + L^2} - R}$$

0.10 Ответ численно.

$$\frac{\sigma_L}{\sigma_R} = -\frac{1}{32}$$

 $C2^{2.50}$ Заряженный цилиндр радиусом R=28b высотой L=45b состоит из боковой поверхности и одного основания. Заряд боковой поверхности $\sigma_L=-8\sigma_0$, заряд основания $\sigma_R=25\sigma_0>0$. На оси этой системы помещают частицу с зарядом q>0. Оцените численно координаты z (в единицах b) положений равновесия если частица может двигаться только вдоль оси. Координата z отсчитывается как на картинке. Сделайте это максимально точно, однако, достаточно с точностью 1%. Ответы попадающие в 1% от правильного получат полный балл.

0.30 Указано уравнение, решение которого позволяет найти положение равновесия z = 0, например:

$$25\left(\frac{45+z}{\sqrt{28^2+(45+z)^2}}-1\right)-8\left(\frac{28}{\sqrt{28^2+(45+z)^2}}-\frac{28}{\sqrt{28^2+z^2}}\right)=0.$$

- **0.30** Указан способ решить уравнение
- **0.40** Ответ: z = 0
- 0.30 Понимание того, что нужно записать другое уравнение для точек с другой стороны цилиндра.
- **0.30** Указано уравнение, решение которого позволяет найти положение равновесия z = -1632.6, например:

$$25\left(\frac{45+z}{\sqrt{28^2+(45+z)^2}}+1\right)-8\left(\frac{28}{\sqrt{28^2+(45+z)^2}}-\frac{28}{\sqrt{28^2+z^2}}\right)=0.$$

Страница 3 из 4 ≈

0.30 Указан способ решить уравнение с достаточной точностью

0.10 Найден корень уравнения с точностью 10%

0.20 Найден корень уравнения с точностью 1%

0.30 Ответ:

$$\frac{z}{b} = -1632.6...$$

C3^{1.00} В условиях предыдущего пункта частицу поместили в ближайшее к цилиндру положение равновесия, её масса m. Определите угловую частоту ω малых колебаний частицы.

0.30 Выбрана точка с координатой

$$z = 0$$

0.50 Напряженность поля

$$E(z) = -\alpha z,$$

$$\alpha = 2\pi\sigma_0 k \cdot \frac{560}{2809} \frac{z}{b}$$

0.20 Ответ:

$$\omega^2 = \frac{280\sigma_0 q}{2809\varepsilon_0 bm}$$