Aula 6

Aula passada

- Limitante da união
- Método do primeiro momento
- Lei dos grandes números (fraca e forte)
- Erro e confiança

Aula de hoje

- Método de Monte Carlo
- Estimando somatórios
- Calculando erro
- Estimando π
- Erro de π
- Integração de Monte Carlo
- Monte Carlo Ray Tracing

Método de Monte Carlo

- Classe de algoritmos baseado em amostragem aleatória repetida
 - obter solução aproximada para problemas determinísticos
- Ideia central: grande número de amostras repetidas acabam revelando a solução
 - no limite, amostras dão a solução

Lei dos grandes números!

$$M_n = \frac{1}{n} \sum_{i=1}^n X_i \qquad P[\lim_{n \to \infty} M_n = \mu] = 1$$

Arcabouço teórico para método de Monte Carlo

Calculando Soma

- Calcular o valor de um somatório (problema da aula 1)
 - N (número de parcelas) é muito grande
 - calcular valor de cada parcela é fácil

$$G_N = \sum_{i=1}^N g(i)$$

- Como usar aleatoriedade para resolver (aproximar) este somatório?
 - No.
- Usando valor esperado!
- Seja X uma v.a. uniforme em [1, N]
 - P[X = i] = 1/N para i=1, ..., N

$$E[g(X)] = \sum_{i=1}^{N} P[X=i]g(i) = \frac{1}{N} \sum_{i=1}^{N} g(i) = \frac{G_N}{N}$$

Calculando Soma

- Logo, temos que $G_N = N E[g(X)]$
- Podemos agora estimar E[g(X)]. Como?

Gerando amostras, fazendo a média!

- Seja X_i sequência iid de v.a. uniforme [1, N]
 - escolher um valor para *n* (número de amostras)

- Temos que $E[M_n] = E[g(X)]$, para todo n
- $M_n \to E[g(X)]$ quando $n \to \infty$ (pela lei dos grds números)
- M_n é estimador de E[g(X)], logo $N*M_n$ é estimador para G_N

Arestas no Facebook

- Quantas arestas tem a rede de amizade do Facebook?
 - função indicadora de aresta, g(i, j) = 1 se existe aresta entre perfil i e j
 - número de perfis $n_p = 2*10^9$

$$T = \sum_{i=1}^{n_p} \sum_{j=i+1}^{n_p} g(i,j) \quad - T = \text{número de arestas}$$

Problema: somatório tem ~ 10¹⁸ termos!

 Como construir um método de Monte Carlo para obter um valor aproximado para T?

Arestas no Facebook

- Seja Z = (i, j) uma v.a. uniforme no conjunto de pares com n_p perfis
 - $N = n_p(n_p-1)/2 \rightarrow \text{número total de pares}$

$$E[g(Z)] = \sum_{i=1}^{n_p} \sum_{j=i+1}^{n_p} \frac{1}{N} g(i,j) = \frac{1}{N} T$$

 \bullet Seja Z_i sequência iid de v.a. uniforme sobre pares

$$M_n = \frac{1}{n} \sum_{i=1}^n g(Z_i)$$
 — Média amostral com n amostras, estima E[g(Z)]

• Logo T é aproximado por $M_n * N$

Jogando Paciência

- Qual é a fração de vezes que um algoritmo determinístico A vence o jogo de paciência?
 - vencer depende apenas da permutação das cartas do baralho (não há aleatoriedade)
- Seja s uma permutação das cartas
 - $f_A(s) = 1$ se algoritmo A vence com permutação s, 0 c.c.
- N = número total de permutações das cartas, N = 52!

$$F_A = \frac{1}{N} \sum_{s=1}^{N} f_A(s)$$
 — Fração de vezes que algoritmo A vence

Problema: somatório tem 52! termos!

Monte Carlo to the rescue!

Jogando Paciência

- Seja Suma v.a. uniforme em [1, N]
 - uniforme entre todas possíveis permutações das cartas

$$E[f_A(S)] = \sum_{s=1}^{N} \frac{1}{N} f_A(s) = \frac{1}{N} \sum_{s=1}^{N} f_A(s) = F_A$$

- Valor esperado já é a fração que queremos!
- Seja S_i sequência iid de v.a. uniforme em [1, N]
 - S_i é uma permutação das cartas

• Logo, F_A é a aproximado por M_n

Vantagens e Desvantagens

- Trocar $G_N = \sum_{i=1}^{N} g(i)$ por $M_n = \frac{1}{n} \sum_{i=1}^{n} g(X_i)$
- Quando esta ideia é boa?
- Comparação entre *N* e *n*
- Se N for pequeno, ideia não é boa
 - podemos calcular G_N diretamente
- Se calcular g(.) é muito caro, boa ideia mesmo quando N pequeno
- Se g(i) for muito "errática", ideia não é boa
 - ex. um valor de g(i) é maior que todo o resto da soma
 - estimador pode ser muito ruim se *n* não for muito grande
- Qualidade da aproximação depende de N, n, g()

Calculando o Erro

- Podemos usar Chebyshev para calcular n
 - para precisão ϵ e confiança β , temos

$$P[M_n \in [\mu - \epsilon, \mu + \epsilon]] > 1 - \frac{\sigma^2}{\epsilon^2 n} = \beta$$

• onde μ e σ^2 são o valor esperado e variância da v.a. que será aproximada pelo estimador

$$\mu = E[g(X)] \qquad \sigma^2 = Var[g(X)]$$

- onde g() é geralmente uma função indicadora (para contar coisas) e X é uma v.a. uniforme nos valores que g pode assumir
- **Problema**: muitas vezes não sabemos σ^2
 - temos que estimar com o estimador!

Erro da Paciência

- Seja $F_A = 0.1$ fração de vezes que algoritmo A vence
 - S é v.a. uniforme nas permutações

•
$$\mu = E[f_A(S)] = 0.1$$
, $\sigma^2 = Var[f_A(S)] = 0.1*0.9 = 0.09$

• Supor $\epsilon = 10^{-4} \text{ e } \beta = 0.99$

$$P[M_n \in [\mu - \epsilon, \mu + \epsilon]] > 1 - \frac{\sigma^2}{\epsilon^2 n} = \beta$$

$$1 - \frac{0.09}{(10^{-4})^2 n} = 0.99 \rightarrow n = 9 \times 10^8$$

 Muito, muito menor do que 52! ~ 10⁶⁸

Calculando π

- Como estimar o valor de π ?
 - ou qualquer outro valor que tenha relação com geométrica

• Ideia

- Escrever π como relação entre áreas
- Usar Monte Carlo para estimar relação

- A_q = Área do quadrado = 1
- A_c = Área do círculo = $\pi r^2 = \pi/4$

$$\bullet \pi = 4 * A_c / A_q$$

• Estimar A_c/A_q

Calculando π

- Ideias para estimar A_c/A_q ?
- Gerar *n* pontos uniforme no quadrado
- Fração do pontos que estão dentro do círculo!

- Seja X e Y duas v.a. uniformes contínuas em [0, 1]
- Seja g(x, y) indicadora do ponto (x, y) estar dentro do círculo
 - $g(x,y) = 1 \text{ se } (x-0.5)^2 + (y-0.5)^2 <=1$
- Temos E[g(x, y)] = $A_c / A_q = \pi/4$
- Como estimar E[g(x, y)] ?

Calculando π

- Seja X_i , Y_i sequência iid uniforme em [0,1]
 - v.a. contínua

$$M_n = \frac{1}{n} \sum_{i=1}^n g(X_i, Y_i)$$
 — Fração de pontos que estão dentro do círculo

- M_n converge para $\pi/4$ (pela lei dos grds números)
- Logo π pode ser estimado por $4*M_n$

O Erro de π

- Podemos usar Chebyshev para calcular n
 - para precisão ϵ e confiança β , temos

$$P[M_n \in [\mu - \epsilon, \mu + \epsilon]] > 1 - \frac{\sigma^2}{\epsilon^2 n} = \beta$$

- μ = E[g(X,Y)] = P[g(X,Y) = 1] = $\pi/4$
- $\sigma^2 = \text{Var}[g(X,Y)] = \pi/4 (1-\pi/4)$
- Não sabemos π mas σ^2 de uma v.a. indicadora tem valor máximo quando p = $\frac{1}{2}$ \rightarrow σ^2 = $\frac{1}{4}$
- Supor $\epsilon = 10^{-6} \text{ e } \beta = 0.99$
 - então temos que $n = 2.5 * 10^{16}$

MSE e SEM

- Mean Squared Error (MSE)
 - medida clássica para erro de preditores ou estimadores
 - MSE(ϕ ') = E $_{\phi}$ [(ϕ ' ϕ)²], onde ϕ ' é o estimador e ϕ o valor a ser estimado
- Seja M_n (média amostral) o estimador para o valor μ
 - $MSE(M_n) = Var(M_n) = \sigma^2/n$
- Standard Error of the Mean (SEM)
 - medida de erro relativo
 - SEM $(M_n) = \sigma/\text{sqrt}(n) = \text{sqrt}(MSE}(M_n))$
- Para qualquer M_n , sempre decresce como sqrt(n)
 - não é muito rápido!

SEM de π

- SEM $(M_n) = \sigma/\text{sqrt}(n)$
- Erro relativo = $|4M_n \pi|/\pi$
- Teoria e prática estão bem de acordo!
- Repare 1/sqrt(n) é devagar !

Integração Numérica

• Encontrar a integral definida de uma função

$$\int_{x=a}^{x=b} f(x)dx$$

 $\int f(x)dx$ • Problema: função pode não ser integrável (ou muito difícil de integrar)!

- Solução: integração numérica
- Conjunto de algoritmos para calcular valor da integral
 - muito usado na física, química, engenharia, etc

- Abordagem via Monte Carlo é uma classe de algoritmos
 - Monte Carlo integration

Integração de Monte Carlo

- Generalização da ideia de computar o valor de π
- Calcular razão entre área de "baixo da curva" (integral) e de um "quadrado" (limites de integração)
- Estimar este valor usando amostras uniformes
- Supor 0 <= f(x) <= 1, para x em [0, 1]

$$I = \int_{x=0}^{x=1} f(x) dx$$

- Definir função indicadora para ponto de baixo da curva
 - g(x, y) = 1 se $f(x) \le y$, e zero c.c.
- Seja X, Y v.a. contínuas uniformes em [0, 1]

Integração de Monte Carlo

Valor esperado

$$E[g(X,Y)] = \int_{x=0}^{x=1} \int_{x=0}^{x=1} f_{XY}(x,y)g(x,y)dxdy$$

- $f_{xy}(x,y) = f_x(x) f_y(y) = 1$ (densidade conjunta de duas v.a. contínuas uniformes e independentes)
- E[g(X,Y)] =área embaixo da curva / área do quadrado [0,1]x[0,1] = I
- Como estimar E[g(X,Y)]?
- Seja X_i , Y_i sequência iid de uniformes em [0, 1]

$$M_n = \frac{1}{n} \sum_{i=1}^n g(X_i, Y_i)$$
 — Fração de pontos que estão baixo da curva

Integração de Monte Carlo

• Método alternativo: relacionar valor esperado diretamente com valor da integral x=1

$$I = \int_{x=0}^{x-1} f(x) dx$$

Seja X v.a. contínua uniforme em [0, 1]

$$E[f(X)] = \int_{x=0}^{x=1} f_X(x)f(x)dx = \int_{x=0}^{x=1} f(x)dx = I$$

- Pois $f_x(x) = 1$ (densidade da v.a. uniforme em [0,1])
- Como estimar E[f(X)]?
- Seja X_i sequência iid uniforme em [0, 1]Converge para valor esperado
 em n (lei dos grds números) $M_n = \frac{1}{n} \sum_{i=1}^n f(X_i)$

Generalização

- Funciona para qualquer limite de integração, e qualquer número de dimensões
 - grande vantagem da abordagem Monte Carlo

$$I = \int_{\omega} f(\vec{x}) d\vec{x} \qquad V = \int_{\omega} d\vec{x}$$

- onde x é um ponto em um espaço de k dimensões, ω um "pedaço" fechado deste espaço, e V é o volume de ω
- Seja X_i uma sequência iid de v.a. uniforme no espaço ω
 - X, tem k dimensões
- Temos

$$M_n = \frac{1}{n} \sum_{i=1}^n f(\vec{X}_i)$$
 converge para I/V quando n \rightarrow infinito

Monte Carlo Ray Tracing

- Integração de Monte Carlo em Computação Gráfica
- Problema: determinar cor (intensidade de luz) em um pixel em uma cena construída

Integral formulation ("rendering equation")

$$R = \int_{\Omega} L(y)dy$$
 Resolvida numericamente usando método de Monte Carlo

• Integrate over all possible light paths $y \leftarrow$ Muitos, muitos caminhos!

Monte Carlo Ray Tracing

$$\int_{\Omega} L(y) dy = E\left[\frac{L(Y)}{\mathsf{pdf}[Y]}\right]$$

Advantage of Monte-Carlo

• Good compromise between cost and precision:

$$\epsilon = O\left(1/\sqrt{N}\right)$$

• in contrast, integration by e.g. trapezoid rule has an error of $\epsilon = O\left(1/N^{2/d}\right)$, for d dimensions

Disadvantage of Monte-Carlo

Output is random