MA 544: Homework 6

Carlos Salinas

February 22, 2016

PROBLEM 6.1 (WHEEDEN & ZYGMUND §4, Ex. 4)

Let f be defined and measurable in \mathbb{R}^n . If T is a nonsingular linear transformation of \mathbb{R}^n , show that $f(T\mathbf{x})$ is measurable. [If $E_1 = \{ \mathbf{x} \mid f(\mathbf{x}) > a \}$ and $E_2 = \{ \mathbf{x} \mid f(T\mathbf{x}) > a \}$, show $E_2 = T^{-1}E_1$.]

Proof. We shall proceed as in the hint. Suppose f is measurable. Then for every finite a in \mathbf{R} , the set $\{f > a\}$ is measurable. Since $T \colon \mathbf{R}^n \to \mathbf{R}^n$ is nonsingular it is invertible. Let $E_1 \coloneqq \{\mathbf{x} \mid f(\mathbf{x}) > a\}$ and $E_2 \coloneqq \{\mathbf{x} \mid f(T\mathbf{x}) > a\}$. Then, we show that $E_2 = T^{-1}E_1$.

Let $\mathbf{x} \in E_2$. Then $f(T\mathbf{x}) > a$. Since T is nonsingular, it is surjective so for some $\mathbf{x}' \in \mathbf{R}^n$, $\mathbf{x} = T^{-1}\mathbf{x}'$ so $f(TT^{-1}\mathbf{x}') = f(\mathbf{x}') > a$. Thus, $\mathbf{x} \in T^{-1}E_1$. Similarly, if $\mathbf{x} \in T^{-1}E_1$ then $\mathbf{x} = T^{-1}\mathbf{x}'$ for some $\mathbf{x}' \in E_2$. Then $f(T\mathbf{x}) = f(TT^{-1}\mathbf{x}') = f(\mathbf{x}') > a$. Thus, $\mathbf{x} \in E_2$. It follows that since E_1 is measurable for all a and T^{-1} is Lipschitz, by 3.33, E_2 is measurable for all a so $f \circ T$ is measurable.

Problem 6.2 (Wheeden & Zygmund §4, Ex. 7)

Let f be use and less that $+\infty$ on a compact set E. Show that f is bounded above on E. Show also that f assumes its maximum on E, i.e., that there exists $\mathbf{x}_0 \in E$ such that $f(\mathbf{x}_0) \geq f(\mathbf{x})$ for all $\mathbf{x} \in E$.

Proof. First we shall demonstrate boundedness. Suppose that f is use on E. By 4.14 (i), the set $\{\mathbf{x} \mid f(\mathbf{x}) < a\}$ is relatively open. Set $\mathcal{G} \coloneqq \{G_k\}_{k=1}^{\infty}$ where $G_k \coloneqq \{\mathbf{x} \mid f(\mathbf{x}) < k\}$. Then \mathcal{G} is a cover of E by relatively open sets so there exists a finite subcover $\{G_{k_{\ell}}\}_{\ell=1}^{N}$ of E by relatively open sets. Set $M \coloneqq \max\{k_1, ..., k_N\}$. Then $f(\mathbf{x}) < M$ for all $\mathbf{x} \in E$.

Also by 4.14, the set $\{\mathbf{x} \mid f(\mathbf{x}) \geq a\}$ is relatively closed in E. Consider the collection of relatively closed sets $\{H_{\mathbf{x}}\}_{\mathbf{x} \in E}$ where $H_{\mathbf{x}} \coloneqq \{\mathbf{x}' \mid f(\mathbf{x}') \geq f(\mathbf{x})\}$. Moreover, if we take any finite collection of the $H_{\mathbf{x}}$'s, say $H_{\mathbf{x}_1}, ..., H_{\mathbf{x}_N}$, then $\bigcap_{k=1}^N H_{\mathbf{x}_k} \neq \emptyset$ since $f(\mathbf{x}) \geq M$ for all $\mathbf{x} \in H_{\mathbf{x}_i}$ where $M \coloneqq \min\{f(\mathbf{x}_1), ..., f(\mathbf{x}_N)\}$. Thus, $\{H_{\mathbf{x}}\}$ has the finite intersection property, so, since E is compact, the intersection $H \coloneqq \bigcap_{\mathbf{x} \in E} H_{\mathbf{x}} \neq \emptyset$. Let $\mathbf{x}_0 \in H$. Then $f(\mathbf{x}_0) \geq f(\mathbf{x})$ for all $\mathbf{x} \in E$, as desired.

PROBLEM 6.3 (WHEEDEN & ZYGMUND §4, Ex. 8)

- (a) Let f and g be two functions which are use at \mathbf{x}_0 . Show that f + g is use at \mathbf{x}_0 . Is f g use at \mathbf{x}_0 ? When is fg use at \mathbf{x}_0 ?
- (b) If $\{f_k\}$ is a sequence of functions are use at \mathbf{x}_0 , show that inf $f_k(\mathbf{x})$ is use at \mathbf{x}_0 .
- (c) If $\{f_k\}$ is a sequence of functions which are usc at \mathbf{x}_0 and which converge uniformly near \mathbf{x}_0 , show that $\lim f_k$ is usc at \mathbf{x}_0 .

Proof. (a) Suppose that f and g are use at \mathbf{x}_0 . Then, by definition, given $M > f(\mathbf{x}_0), g(\mathbf{x}_0)$ there exists $\delta_f, \delta_g > 0$ such that $f(\mathbf{x}_1), g(\mathbf{x}_2) < M/2$ for all $|\mathbf{x}_1 - \mathbf{x}_0| < \delta_f, |\mathbf{x}_2 - \mathbf{x}_0| < \delta_g$. Set $\delta := \min\{\delta_f, \delta_g\}$. Then for any $\mathbf{x} \in B_\delta(\mathbf{x}_0)$ we have

$$|f(\mathbf{x}) + g(\mathbf{x}) - (f(\mathbf{x}_0) + g(\mathbf{x}_0))| = |(f(\mathbf{x}) - f(\mathbf{x}_0)) + (g(\mathbf{x}) - g(\mathbf{x}_0))|$$

$$\leq |f(\mathbf{x}) - f(\mathbf{x}_0)| + |g(\mathbf{x}) - g(\mathbf{x}_0)|$$

$$< \frac{M}{2} + \frac{M}{2} = M.$$

Thus, f + g is usc.

For the second part of this problem, we provide a counter example. Recall the functions u_1 and u_2 from the text

$$u_1(x) := \begin{cases} 0 & \text{if } x < x_0 \\ 1 & \text{if } x \ge x_0 \end{cases} \qquad u_2(x) := \begin{cases} 0 & \text{if } x \ne x_0 \\ 1 & \text{if } x = x_0 \end{cases}$$
 (1)

Consider the difference $u := u_1 - u_2$ which is piecewise defined to be

$$u(x) := \begin{cases} 0 & \text{if } x \le x_0 \\ 1 & \text{if } x > x_0 \end{cases}$$
 (2)

Now, note that u being use at x_0 implies that for $1/2 > f(x_0) = 0$ there exists $\delta > 0$ such that f(x) < 1/2 for all $x \in B_{\delta}(x_0)$. But for any $x = x_0 + \delta'$ in $B_{\delta}(x_0)$, for some $0 < \delta' < \delta$, u(x) = 1 > 1/2. Thus, u is not use at x_0 .

A sufficient condition is that $f, g \ge 0$ for all \mathbf{x} . For if f and g are usc, then $\lim f_k(\mathbf{x}) \le f(\mathbf{x}_0)$ and $\overline{\lim} g_k(\mathbf{x}) \le g(\mathbf{x}_0)$ for all sequences $\mathbf{x} \to \mathbf{x}_0$. Thus, we have

$$\overline{\lim} fg(\mathbf{x}) \le (\overline{\lim} f)(\overline{\lim} g) \le fg(\mathbf{x}_0).$$

Thus, fg is use at \mathbf{x}_0 .

(b) Suppose that $\{f_k\}$ is a sequence of functions that are use at \mathbf{x}_0 . Set $f := \inf f_k$. Then for every $\varepsilon > 0$, $f_k(\mathbf{x}_0) < f(\mathbf{x}_0) + \varepsilon$. Since f_k is use, for every sequence $\mathbf{x} \to \mathbf{x}_0$, we have $\overline{\lim} f_k(\mathbf{x}) \le f(\mathbf{x}_0)$ and $\overline{\lim} g_k(\mathbf{x}) \le g(\mathbf{x}_0)$.

$$f(\mathbf{x}) < f_k(\mathbf{x}) < f(\mathbf{x}_0) + \varepsilon.$$
 (3)

Now, let $\varepsilon \to 0$ and we see that f is usc at \mathbf{x}_0 .

(c) By near, we will assume topological proximity, i.e., on some open ball $B_{\delta}(\mathbf{x}_0)$ where $\delta > 0$. Suppose $f_k \to f$ uniformly on $B_{\delta}(\mathbf{x}_0)$. Then, for every $\varepsilon > 0$ there exists a positive integer N such that $n \geq N$ implies $|f_k(\mathbf{x}) - f(\mathbf{x})| < \varepsilon$. Fix $\varepsilon > 0$. Then, by uniform convergence of f_k on $B_{\delta}(\mathbf{x}_0)$, we have

$$f_k(\mathbf{x}) - \frac{\varepsilon}{2} < f(\mathbf{x}) < f_k(\mathbf{x}) + \frac{\varepsilon}{2}.$$
 (4)

Since the f_k 's are use on \mathbf{x}_0 , for each k there exists $\delta_k > 0$ such that $f_k(\mathbf{x}) < f_k(\mathbf{x}_0) + \varepsilon/2$ whenever $\mathbf{x} \in B_{\delta_k}(\mathbf{x}_0)$. Thus, we have

$$f(\mathbf{x}) < f_k(\mathbf{x}) + \frac{\varepsilon}{2} < \left(f_k(\mathbf{x}_0) + \frac{\varepsilon}{2} \right) + \frac{\varepsilon}{2} = f_k(\mathbf{x}_0) + \varepsilon$$
 (5)

whenever $\mathbf{x} \in B_{\delta'}(\mathbf{x}_0)$ where $\delta' := \min\{\delta, \delta_k\}$. Now, taking the lim sup on both sides of the inequality (5), we have

$$\overline{\lim} f(\mathbf{x}) \leq f(\mathbf{x}_0) + \varepsilon.$$

Thus, letting $\varepsilon \to 0$, we see that f is usc at \mathbf{x}_0 .