Ben-Or asynchronous Byzantine consensus algorithm

Introduction

The idea of the consensus problem is to have a system of N processes, t of which are faulty. Each correct process starts with either 0 or 1, and after running the algorithm, all correct processes must end up with either 0 or 1 based on the following rules:

- All correct processes end up with the same value.
- If all correct processes start with the same value v, then all correct processes must end with v.
- All correct processes must terminate (with probability 1).

Ben-Or algorithm allows the network to be asynchronous and does not restrict the malevolence of faulty processes.

Protocol

Let N - number of all processes, t - number of faulty processes. It is assumed that $t < \frac{N}{5}$. Let's bring up the pseudo code[1]:

Process P: Initial value x_p .

step 1: Set r := 1.

step 0: Send the message $(1, r, x_p)$ to all the processes.

step 2: Wait till messages of type (1, r, *) are received from N - t processes. If more than (N - t)/2 messages have the same value v, then send the message (2, r, v, D) to all processes.

Else send the message (2, r, ?) to all processes.

step 3: Wait till messages of type (2, r, *) arrive from N - t processes.

- (a) If there are at least t+1 D-messages (2, r, v, D), then set $x_p := v$.
- (b) If there are more than (N+t)/2 D-messages then **decide** v.
- (c) Else set $x_p = 1$ or 0 each with probability $\frac{1}{2}$.

step 4: Set r := r + 1 and go to step 1.

Processes locally keep track of current round number, and store current binary value. Within each round they go through 2 stages, messages from each round from now on will be called type 1 or 2 messages.

Correctness

Let's start with proving the following lemma:

Lemma 1. If all correct processes start with the value v, then within one round they will all decide v.

Proof. Each process broadcasts message (1, 1, v).

Process then waits for N-t messages.

At most t messages came from faulty processes, which means that at least $N-2 \cdot t$ messages are correct. Because $N-2 \cdot t > \frac{N+t}{2}$, all the correct processes send message $(2,\ 1,\ v,\ D)$.

Among N-t accepted type 2 messages at most t are incorrect, which means that step 3(b) will not execute.

Again, because at least $N-2 \cdot t$ of type 2 messages are correct, then more than $\frac{N+t}{2}$ of them will have the same value (v). That means that every process will **decide** v this round.

Lemma 2. If process sets v in step 3(a) in round r, then it can't set $\neg v$ in the same round.

Proof. Let's say that process saw $\geq t+1$ messages (2, r, 0, D) and $\geq t+1$ messages (2, r, 1, D). Let A_x be equal to the number of messages (2, r, x, D) originated from correct processes with x = 0, 1. Of course $A_0 + A_1 \geq t + 2$.

Every process responsible for A_x saw more than $\frac{N-t}{2}$ messages (1, r, x) from correct process. But that means that there are more than N-t correct processes, which is a contradiction.

Then let's look at the next lemma, which states that the processes will decide with at most 2 round window.

Lemma 3. If for some round r, some correct process decides v in step 3(b), then all other correct processes will decide v within the next round.

Proof. Let P be the process that has decided on v. In order to **decide** v, P must have received more than $\frac{N+t}{2}$ messages $(2, r, _{-}, D)$. That means that more than $\frac{N-t}{2}$ correct processes sent that message. Let A_x be the number of (2, r, x, D) messages from correct processes for x = 0, 1.

Because P has decided v, it follows that $A_{\neg v} \leq t$. On top of that $A_v + A_{\neg v} > \frac{N-t}{2}$.

Simple calculations show that $A_v \ge t+1$. It means that every other process will set v in step 3(a). From Lemma 2 we know that it will be the only value that they will set.

It follows that in the next round every correct process will start with v, so Lemma 1 can be applied.

Time complexity

In each round processes have probability of at least $2^{-(N-t)+1}$ of all setting the same value, which using *Lemma 1* means that the run algorithm would end next round. That means that expected number of rounds is bounded by $O(2^{N-t})$.

The following theorem shows tighter bound under stricter assumptions:

Theorem 1. [1] If $t = O(\sqrt{N})$ then the expected number of rounds to reach agreement in this protocol is constant, i.e., it does not depend on N.

References

[1] Michael Ben-Or. Another Advantage of Free Choice: Completely Asynchronous Agreement Protocols. In *Proceedings of the second annual ACM symposium on Principles of distributed computing*, pages 27-30. ACM, 1983, doi: 10.1145/800221.806707.