	Page No. Date Date
X 1	ME 564 - Autum 2025 NAME: ARCHIT JAIN ID: 2426587
	HOMEWORK - 01
	1 to (w) Ad a link of the and the land
11	Excercise 1-1: Compute the derinate of following:
 	Exercise 1-1: Compute the derinate of following:
6	$f(x) = \sin(x^2)$
<u>_</u>	Him of air mile to solve this composite function
	using chain rule to solve this composite function
11.11	As we know, $\frac{d \left[f(g(n))\right] = f'(g(x)) \cdot g'(n)}{d x} = I$
	dn
	So, $f(\alpha) = \sin(\alpha)$
	$\leq q(x) = x^2$
	?. f'(a) = cos(a) - D
	$(x) = x^2 \Rightarrow g'(x) = 2x - 2$
A	using () & (2) in (I), we get
	(C) \$100 & colon) (cla)
	$f'(x) = f'(g(x)) \cdot g'(x)$
	$=\cos(n^2)\cdot 2n^2$
	(2012) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$\frac{f'(x) = 2 \times \cos(x)^2}{f'(x)} = 2 \times \cos(x^2)$
(a) (b)	$f(x) = x^{\times}$
~	Let xx = xx -1
	By taking natural logarithm on both sides.
4 77	$\ln(y) = \ln(x^{2})$
	ln(y) = nln(x)
0 1	Differentiate on both sides?
frames	d[ln(y)] = d[nln(n)]
	dn dn
,	
Set Control	그 맛이 그렇게 하는데 그가 있다면 하겠습니다. 그래 어떻게 하는데 그는 그 가장하는 사로 감성했다고 있었다.

	Page No.
MIAT	on right side, me get:
granda 8.	1 dy = ln(x) +1 F dx Solving for dy; muttiply both sides by y-
1, 4	$\frac{dn}{dx} = y(\ln(n) + 1)$
	As we know from () that $y = x^2$ $\frac{dy}{dx} = x^2 \left(\ln(x) + 1 \right) = 100$
	$f(n) = \chi^{x}(\ln(n) + 1)$ $f(n) = e^{\cos(3x)} \cos(x)$
(C) =>	$f(x) = e^{-\cos(x)}$ to per product rule ((1)) $(x \cdot y)' = x'y + (y'x - 0)$ $(x \cdot y)' = x'y + (y'x - 0)$
	Differentiate each part: $x' = e^{\cos(3\pi)} \cdot (-3\sin(3\pi))$ $\frac{1}{2} = e^{\sin(3\pi)} =$
	$x' = -3e^{i\sigma S(3\pi)}\sin(3\pi) - 2 \qquad d\pi$ $2 y' = -\sin(\pi) - 3$ Now, from (1) (2) & (2) \(\sigma \omega \o
	$f'(x) = \left[-3\sin(3x)e^{-3\sin(3x)} - \left[-\frac{\sin(x)}{\sin(x)}\right] + e^{\cos(3x)}(-\sin(x)) - \left[-\sin(x)\right] - \left[-\sin(x)\right]$ $= \left[-\frac{\sin(3x)}{\sin(3x)} - \sin(3x) - \cos(x)\right] - \left[-\sin(x)\right]$
A CONTRACTOR OF THE PARTY OF TH	

	Page No. Date
a d	$f(x,y) = \sin(x^2 - y^2)$ whit to assuming that
(also of)	x(t) & y(t) nary with time. Lets assume
\Rightarrow	Lets assume
	Now by chain rule: (multinariable)
	Now by chain rule: (multinariable)
- ATV.	at = of du + of dy - D
	$\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$
	So, partial derivites are as follows: If = cos(x²-y²).2x -> by chain rule
	$f = \cos(x^2 - y^2) \cdot 2x \longrightarrow by \text{ chain rule}$
	[]
	$\int_{y}^{2} f = -2y \cdot \cos(x^{2} - y^{2})$
) + + £ = x rd
	Using above in heg " (1), we get :
\$ = 3	df = [2xco(x2-y2)] dn + [-2ycos(x2-y2)] dy dt dt
	dit dt dt
	: $\int df = 2 \cos(\pi^2 - y^2) \int x dx - y dy \int$
	$\frac{1}{dt} = 2 \cos(x^2 - y^2) \left[x \frac{dx}{dt} - y \frac{dy}{dt} \right]$

#	Excercise 1-2: A given mass x of a radioactive
	Excercise 1-2: 4 given mass & of a radioactive element obeys the following differential
	equation: x = 12
	where 2 => constant of rate of decay
0	Solution for x(t) to the differential equation
-21	Solution for $\chi(t)$ to the differential equation Rearranging eq. 1 integrating on both sides: dx = 2 dt
-	lun Xun wa to x5 (y x) to x = 76
	$\frac{1}{n} dx = \int 2dt$
	$\therefore \ln x = 4 \lambda t + C$
9	Exponentiating on both sides: $\chi(t) = e^{2t+c} = e^{2t}$
	$\chi(t) = e = ee$ 1. The initial mass at $t=0$
	Here, $x_0 = e^{\epsilon}$ as the initial mass at $t=0$ $\frac{\chi(t) = \chi_0 e^{\lambda t}}{\chi(t) = \chi_0 e^{\lambda t}}$


```
Filename: e_2_b.py
Date Created: 10/09/2025
Created by: Archit Jain
Email: architj@uw.edu
Student No: 2426587
Description: Excercise 1-2: (b)
A given mass x of a radioactive element obeys the following differential equation in time:
\dot{x} = \lambda x,
where \lambda is a constant describing the rate of decay.
Plot the solution for an initial condition x(0) = 10
From time t = 0 to t = 5 for \lambda = -5, -1, 0, 0.01, 0.1.
Please plot these all on the same figure. Include a legend.

""
# Importing libraries
import numpy as np
# for arrays data storage
```

```
import matplotlib.pyplot as plt  # for plotting graphs
# Define the function to compute x(t)
def compute x t(x 0, t, lambda const):
    A function that loops and plot for each lambda const with graph dim 10x8
    plt.figure(figsize=(10, 8))
    # looping for lambda in given list
    for \lambda in lambda_const:
        \# x(t) = x(0) * e^{(\lambda * t)}
        x t = x 0 * np.exp(\lambda * t)
        plt.plot(t, x_t, label=f'\lambda = {\lambda}')
    return plt
# Given: Initial condition
x 0 = 10
# Setting a time array from 0->5 with 50 points from t=0 to t=5
t = np.linspace(0, 5, 50)
# Setting list for decay constants \lambda from the given list:
lambda_const = [-5, -1, 0, 0.01, 0.1]
# Compute x(t) and plot them w.r.t t for different lambda
plt = compute x t(x 0, t, lambda const)
# Adding legends to graph plotted
plt.xlabel('Time (t)')
plt.ylabel('Mass (x)')
plt.title('Excercise 1-2 (b)\nRadioactive Element Decay for Multiple Decay
Constants \lambda')
plt.legend()
# Show grid to the plot
plt.grid(True)
# Display the graph plotted
plt.show()
```

	Page No. Date
kin d O	The half-line T is defined as the time it
	Late of Market at
14.1	half of it's mass through radioactive decay. The half-life of uranium-238 is 4.468 billion years
187711	The half-life of uranum-us 12?
3	The half-life of transition and 2? unat is corresponding value of 2? T = half-life time (ii) to be reduced to half its)
=>	7 = half-life time
	(time taken to be reduced to half its) initial mass.
(3)	eg " mith de coy formula:
	egn mith decay formula: $x(t) = x_0 e^{\lambda t}$
	becomes, the start and got remaint
	1120 = X0 e1 = 1101 A
	·2 · · · · · · · · · · · · · · · · · ·
	$\frac{2}{1} = e^{2T}$ $\frac{1}{2} = e^{2T}$
	11/2 y 31 2 2 4 4 5 2 31 2 2 4 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4
2	Taking log on both sides:
	$\ln\left(\frac{1}{2}\right) = 2T$
	= ln(2) = 1 T
2	Solving for noture 2;
	$\lambda = -\ln(2)$
	(L(2) T
	45, Turanium 230 = 4.468 × 109 years -> (given)
	$\frac{1}{2} = -\ln(2) \approx -1.551 \times 10^{-10} \text{ years}^{-1}$
	4.468 × 109 years

	Page No. Date
(1)	
100 AU	have 10 kg of wronium - 238, how long ago
2511	The state of the received of the state of
	How long until 5 hg is left from 50 kg? Here, initial mass xo = 50 kg
	final mass $x(t) = 5 \text{ kg}^{t}$ As, $x(t) = 40 \text{ e}^{-2t}$
man factor of contract of the	7 = -1.55 × 10 - > from previous solution @ :. 5 = 50 e (-1.55 × 10-1) + => (0-1= (-1.55 × 10-10) +
1	Taking log on both sides, would
	: t ≈ -2.3026 ≈ 1.485 × 10°°
	-1.551×10-10 -= \[t \app \ 1.4P5 \ \ 1010 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
=>	How long ago was it 50kg, if it is 10kg now?
	Here, 20 = 50kg -> initial made
	$\chi(t) = 10 \text{ kg} \longrightarrow \text{final mess (now)}$ $\chi(t) = \chi_0 e^{\lambda t}$ $(-1.55^{-1}) \times (0^{-10}) E$
	$0.5 = 6(-0.221 \times 10_{10}) + 6$
	Taking log on both sides: $ln(0.2) = (-1.551\times10^{-10}) t$
	$\frac{1}{-1.551 \times 10^{-10}} \approx \frac{1.033 \times 10^{10}}{1.033 \times 10^{10}}$
	: Approx. [10.38 billion year ago] there was
	sokg of uranium-238

	Page No. Date
#	Exercise 1-3: compute taylor series expansion la
	mark 1
(a)	f(x)= din(x)/x At 200 x standard which at basepoint at =0
->	7D DOL TVIMA COM
	$f(n) = f(a) + \frac{df}{dn} (n-a) + \frac{d^2f}{dn^2} (n-a)^2 + \cdots$
3-4-1	
	evaluated at a = 0-7
	: $f(x) = f(0) + f'(0)(x-0) + -f''(0) \cdot (x-0)^2 + \cdots$
	At fr sin(n) 7
	$f(x) = \sin(0) + \cos(0)(x) + (-\sin(0) \times x^2) + (-\cos(0) \cdot x^3)$
	2! / [3!)
	$= 0 + 1 \cdot x + (-0 \cdot x^{2}) + (-1 \cdot x^{3}) + \cdots$
	1 X - 3! /1 - (x) my
2579	$f(x) = \frac{1}{2} \sin(x) = x - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots = \frac{1}{2} (-1)^{n} x^{2n}$
	3! 51 (2n+
10 N.	Taylor series for sin(x) is by dividing above by x
	by x
	$\frac{1}{x} \frac{\sin(x) = 1}{x} \left(\frac{x - x^3 + x^5 - x^7 + \cdots}{3!} \right)$
	\times
	$\sin(x) = 1 - x^2 + x^4 - x^6 + \cdots$
	R 3! 5! 7!
	White productive and the second of the secon
	First three non-zero terms of above series are:
	$P_3(x) = 1 - x^3 + x^4$
	6 120
Wanter Commence	


```
# Define the function f(x)
def compute f(x):
    A function that computes f(x) = \sin(x)/x for different values of x
    and also handles values where x=0 to be used as 1 to avoid singularity
errors.
    return np.where(x == 0, 1, np.sin(x) / x)
# Define the three-term Taylor expansion
def compute taylor expansion(x):
   A function that returns 3-term taylor expansion of f(x) = \sin(x)/x
    \# P 3(x) = [1 - (x^2/3!) + (x^4/5!)]
    first term = 1
    second\_term = (x**2) / math.factorial(3)
    third_term = (x^{**4}) / math.factorial(5)
    return first term - second term + third term
# Setting a x array from -5->5 with 100 points from x=-5 to x=5
x_{val} = np.linspace(-5, 5, 100)
# Calculate y values for f(x)
f_x = compute_f(x_val)
# Calculate the Three-term Taylor expansion
y_val = compute_taylor_expansion(x val)
# Setting graph dimensions 10x8
plt.figure(figsize=(10, 8))
# Plotting points on graph
plt.plot(x_val, f_x, label='f(x) = sin(x)/x', color='purple')
plt.plot(x_val, y_val, label='Taylor Expansion - Three-term', color='red',
linestyle='--')
# Adding title and legends to graph plotted
plt.xlabel('x')
plt.ylabel('y')
plt.title('Excercise 1-3 (a)\nPlot of f(x) and its Three-term Taylor Expansion
for function sin(x)/x'
plt.legend()
# Show grid to the plot
plt.grid(True)
# Highlighting the origin lines
plt.axvline(0, color='gray', linestyle='-', linewidth=0.5)
plt.axhline(0, color='gray', linestyle='-', linewidth=0.5)
```

Display the graph plotted plt.show()


```
# Define the function f(x)
def compute f(x):
    A function that computes f(x) = (\cos(x) - 1)/x for different values of x
    and also handles values where x=0 to be used as 0
    if x==0:
        # limit of (\cos(x) - 1)/x as x->0 is 0
        return 0
    return (np.cos(x) - 1) / x
# Define the three-term Taylor expansion
def compute taylor expansion(x):
    A function that returns 3-term taylor expansion of f(x) = (\cos(x) - 1)/x
    \# P 3(x) = [(-x/2) + (x^3/4!) - (x^5/6!)]
    first term = -1*x/2
    second term = (x**3) / math.factorial(4)
    third_term = (x**5) / math.factorial(6)
    return first_term + second_term - third_term
# Setting a x array from -5->5 with 100 points from x=-5 to x=5
x \text{ val} = \text{np.linspace}(-5, 5, 100)
# Calculate y values for f(x) for each value of x
f_x = [compute_f(val) for val in x_val]
# Calculate the Three-term Taylor expansion
y val = compute taylor expansion(x val)
# Setting graph dimensions 10x8
plt.figure(figsize=(10, 8))
# Plotting points on graph
plt.plot(x val, f x, label='f(x) = (cos(x) - 1)/x', color='purple')
plt.plot(x_val, y_val, label='Taylor Expansion - Three-term', color='red',
linestyle='--')
# Adding title and legends to graph plotted
plt.xlabel('x')
plt.ylabel('y')
plt.title('Excercise 1-3 (b)\nPlot of f(x) and its Three-term Taylor Expansion
for function (\cos(x) - 1)/x'
plt.legend()
# Show grid to the plot
plt.grid(True)
# Highlighting the origin lines
```

```
plt.axvline(0, color='gray', linestyle='-', linewidth=0.5)
plt.axhline(0, color='gray', linestyle='-', linewidth=0.5)
# Display the graph plotted
plt.show()
```

	Page No. Date
#	Excurcise 1-4: Please compute an analytic expression, by hand, for the real & imaginary parts of the following complex numbers functions: f(t) = eit
	parts of the following complex numbers
<u> </u>	$f(t) = e^{it}$
→ VI W [377] The second	$f(t) = e$ As per Euler's formula for any real number x : $e^{ix} = coj(x) + i sin(x)$
	$\int f(t) = e^{it} = \cos(t) + i\sin(t)$
	Real part => cos(t) Imaginary part => sin(t)
200	1 - 170 to Some trace of the
(i)	$f(t) = e^{(1-i)t}$ $f(t) = e^{(1-i)t} = e^{t-it}$ $f(t) = e^{(1-i)t}$
	From Eulers formule, me get, (here x=-t)
	$\frac{-i}{e^{-it}} = \omega_{5}(-t) + i\sin(-t)$ $e^{-it} = \omega_{5}(t) - i\sin(t)$
	$f(t) = e^{t} \cdot (cos(t) - isin(t))$
The state of the s	$\therefore \left f(t) = e^{t} \cos(t) - i(e^{t} \sin(t)) \right $
and the second s	Real part => et cos(t)
100 A	Imaginary part -> -et sin(t)

	Page No.
$G f(t) = e^{(-1-\pi i)t}$ $-t -\pi i$	at French 1-4
using Eulens formula,	
$e^{i\mathbf{k}} = \cos(x) + i\sin(x)$ here, $x = -\pi +$	
$\frac{1}{100} = \frac{1}{100} \left(-\frac{1}{100} + \frac{1}{100} \sin(-\frac{1}{100})\right)$	11t) = us (11t) - isin(11t)
$f(t) = e^{-t} \left(\cos(\pi t) - i \sin(\pi t) \right)$	(円))
$f(t) = e^{-t} \cos(\pi t) - i$ $\text{Real part} \rightarrow e^{-t} \cos(\pi t)$	$\left(e^{-t}\sin(\pi t)\right)$
Imaginary part -> -e-tsin (11	t)
11- 3 30-5 W	4-11


```
# Calculate the real and imaginary parts as f(t) = e^{(i*t)} = (cos(t)) + i(sin(t))
real_part = np.cos(t)
imaginary_part = np.sin(t)
# Setting graph dimensions 10x8
plt.figure(figsize=(10, 8))
# Plotting the real part on graph
plt.plot(t, real_part, label='Real Part (cos(t))', color='red')
# Plotting the imaginary part on graph
plt.plot(t, imaginary_part, label='Imaginary Part (sin(t))', color='blue',
linestyle='--')
# Adding title and legends to graph plotted
plt.xlabel('t')
plt.ylabel('Value')
plt.title('Excercise 1-4 (a)\nPlot of Real and Imaginary Parts of function f(x) =
e^(it)')
plt.legend()
# Show grid to the plot
plt.grid(True)
# Display the graph plotted
plt.show()
```



```
# Calculate the real and imaginary parts as f(t) = e^{(1-i)t} = (e^t * cos(t)) - e^t
i(e^t * sin(t))
real_part = np.exp(t) * np.cos(t)
imaginary_part = -np.exp(t) * np.sin(t)
# Setting graph dimensions 10x8
plt.figure(figsize=(10, 8))
# Plotting the real part on graph
plt.plot(t, real_part, label='Real Part (e^t cos(t))', color='red')
# Plotting the imaginary part on graph
plt.plot(t, imaginary_part, label='Imaginary Part (-e^t sin(t))', color='blue',
linestyle='--')
# Adding title and legends to graph plotted
plt.xlabel('t')
plt.ylabel('Value')
plt.title('Excercise 1-4 (b)\nPlot of Real and Imaginary Parts of function f(x) =
e^(1-i)t')
plt.legend()
# Show grid to the plot
plt.grid(True)
# Display the graph plotted
plt.show()
```



```
# Calculate the real and imaginary parts as f(t) = e^{(-1-\pi i)}t = (e^{-t} * \cos(\pi t))
 i(e^-t * sin(\pi t))
real_part = np.exp(-t) * np.cos(np.pi*t)
imaginary_part = -np.exp(-t) * np.sin(np.pi*t)
# Setting graph dimensions 10x8
plt.figure(figsize=(10, 8))
# Plotting the real part on graph
plt.plot(t, real_part, label='Real Part (e^-t cos(πt))', color='red')
# Plotting the imaginary part on graph
plt.plot(t, imaginary_part, label='Imaginary Part (-e^-t sin(πt))', color='blue',
linestyle='--')
# Adding title and legends to graph plotted
plt.xlabel('t')
plt.ylabel('Value')
plt.title('Excercise 1-4 (c)\nPlot of Real and Imaginary Parts of function f(x) =
e^{(-1-\pi i)t'}
plt.legend()
# Show grid to the plot
plt.grid(True)
# Display the graph plotted
plt.show()
```