Introduction to Loss Function

Recap: Neural Networks

Recap: Neural Networks

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Actual Values	Predicted Values
19	28
37	33
25	20
9	16
22	15

Actual Values	Predicted Values
19	28
37	33
25	20
9	16
22	15

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
Analytics
Vidhya

Actual Values	Predicted Values	Squared Error
19	28	81
37	33	16
25	20	25
9	16	49
22	15	49

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

7 Analytics Vidhya

Actual Values	Predicted Values	Squared Error
19	28	81
37	33	16
25	20	25
9	16	49
22	15	49

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

7 Analytics Vidhya

MSE = 44

Loss Functions for Regression problem

- Mean Absolute Error
- Mean Squared Error
- Root Mean Squared Error

Mean Absolute Error

$$ext{MAE} = rac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$
Analytics
Vidhya

Mean Absolute Error

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

Actual Values	Predicted Values	Absolute Error
19	28	9
37	33	4
25	20	5
9	16	7
22	15	7

Analytics Vidhya

Mean Absolute Error

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

Actual Values	Predicted Values	Absolute Error
19	28	9
37	33	4
25	20	5
9	16	7
22	15	7

Root Mean Squared Error

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

Root Mean Squared Error

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

MSE = 44

Actual Values	Predicted Values	Squared Error
19	28	81
37	33	16
25	20	25
9	16	49
22	15	49

Root Mean Squared Error

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

Actual Values	Predicted Values	Squared Error
19	28	81
37	33	16
25	20	25
9	16	49
22	15	49

MSE = 44

RMSE = 6.63

Thank You

