Monday, June 29, 2020 3:42 PM

Natural language processing

Language has:

- Syntax
- Semantics

Formal Grammar:

A system of rules for generating sentences in a language

Example: context-free Grammar

N-gram:

A contiguous sequence of n items from a sample of text

Examples:

Character n-gram Word n-gram

Types:

Unigram : n = 1Bigram: n = 2Trigram : n = 3

Tokenization:

The task of splitting a sequence of characters into pieces (tokens)

- Word tokenization: ...splitting words

Text Categorization:

Bag-of-words model:

Model that represents text as an unordered collection of words

Naïve Bayes:

Bayed Rule:

```
P(b | a) = P(a | b) * p(b) / p(a)
```

 $P(B \mid A)$ proportional to $P(A \mid B) * p(B)$

P(B | A) proportional to P(B, A)

Naïve: assume that the words are independent from one another

Additive smoothing:

Adding a value (a)to each value in our distribution to smooth the data

Example:

Laplace Smoothing:

Adding 1 to each value in our distribution:

Pretending we have seen each value one more time than we have

Information retrieval:

The task of finding relevant documents in response to a user query

Topic Modeling:

Models for discovering the topics for a set of documents

Term frequency:

Number of times a term appears in a document

Function words:

Words that have little meaning on their own, but are used to Grammatically connect other words

Content words:

Words that carry meaning independently

Inverse document frequency:

Measure of how common or rare a word is across documents

Equals to : Log $\frac{Total Documents}{documents Containing (word)}$

Tf-idf:

Ranking of what words are important in a document by multiplying term frequency (TF) by inverse document frequency (IDF)

Multiply it by the count of word in the document to get the probability

Information Extraction:

The task of extracting Knowledge from the document

Word representation:

One-hot representation:

Representation of meaning as a vector with a single 1, and with other value as 0

Distribution representation:

Representation of a meaning distributed across multiple values

Example:

Word2vec:

Model for generating word vectors

Skip-gram architecture:

Neural network architecture for predicting context words given a target word