Análisis Matemático I

Tema 12: Función implícita

Planteamiento del problema

2 Teorema de la función implícita

Uso del teorema en la práctica

Soluciones locales para ciertos sistemas de ecuaciones

Dada una función $f:A \to \mathbb{R}^N$, con $A \subset \mathbb{R}^N$, consideramos la ecuación:

$$f(x) - y = 0$$

cuyas soluciones son los pares $(x,y) \in A \times \mathbb{R}^N$ que la verifican

La solución (global) con x como dato e y como incógnita es evidente:

$$\left\{\,(x,y)\in A\times\mathbb{R}^N\,:\, f(x)-y=0\,\right\}\,=\,\left\{\,\left(\,x,f(x)\,\right)\,:\,x\in A\,\right\}$$

Problema: resolverla con y como dato y x como incógnita, es decir, expresar las soluciones en la forma $\left(g(y)\,,y\right)$ para g conveniente

Solución (global) cuando f es inyectiva, con $g = f^{-1}$:

$$\left\{\,(x,y)\in A\times\mathbb{R}^N\,:\, f(x)-y=0\,\right\}\,=\,\left\{\,\left(\,g(y),y\,\right)\,:\,y\in f(A)\right\}$$

Solución (local) que nos da el teorema de la función inversa:

$$a\in U=U^{\circ}\subset A,\ b=f(a)\in f(U)=V=V^{\circ}\subset \mathbb{R}^{N},\ f$$
 inyectiva en U

Tomando
$$W = U \times V$$
 y $g = (f|_U)^{-1}$, tenemos:

$$\{(x,y) \in W : f(x) - y = 0\} = \{(g(y),y) : y \in V\}$$

Planteamiento del problema

Ecuaciones o sistemas más generales

En vez de f(x) - y = 0 planteamos ahora una ecuación del tipo:

$$F(x,y) = 0$$

y queremos saber si permite considerar (por ejemplo) y como función de x

- Tendremos $x \in \mathbb{R}^N$ e $y \in \mathbb{R}^M$ (ahora puede ser $M \neq N$)
- ullet Por tanto F estará definida en un subconjunto de $\mathbb{R}^N imes \mathbb{R}^M$
- ullet y deberá tomar valores en \mathbb{R}^M

 $x=(x_1,\ldots,x_N)\,, \ \ y=(y_1,\ldots,y_M)\,, \ \ F=(F_1,\ldots,F_M)\,.$ Tenemos el sistema:

$$F_1(x_1,\ldots,x_N,y_1,\ldots,y_M)=0$$

$$F_2(x_1,\ldots,x_N,y_1,\ldots,y_M)=0$$

$$F_M(x_1,\ldots,x_N,y_1,\ldots,y_M)=0$$

¿ Permite considerar a y_1, \ldots, y_M como funciones de x_1, \ldots, x_N ?

La solución que cabe esperar

Solución local del sistema planteado

- Queremos una equivalencia del tipo $F(x,y) = 0 \Leftrightarrow y = \psi(x)$
- No podemos esperar nada mejor que en el caso de la función inversa, luego aspiramos a resolver "localmente" el problema
- Necesitamos una solución de partida (a,b) tal que F(a,b)=0

Tendremos un abierto
$$\Omega\subset\mathbb{R}^N\times\mathbb{R}^M$$
, una función $F:\Omega\to\mathbb{R}^M$ y un punto $(a,b)\in\Omega$ tal que $F(a,b)=0$.

Con hipótesis adecuadas, pretendemos encontrar:

- Un abierto W de $\mathbb{R}^N \times \mathbb{R}^M$ con $(a,b) \in W \subset \Omega$
- Otro abierto $U \subset \mathbb{R}^N$ y una función $\psi: U \to \mathbb{R}^M$ tales que:

$$\{(x,y) \in W : F(x,y) = 0\} = \{(x,\psi(x)) : x \in U\}$$

La función ψ estará definida implícitamente por la ecuación F(x,y)=0

Teorema de la función implícita

 $\text{Sean }\Omega=\Omega^{\circ}\subset\mathbb{R}^{N}\times\mathbb{R}^{M}\,,\quad F\in D(\Omega,\mathbb{R}^{M})\quad \text{y}\quad (a,b)\in\Omega\quad \text{con}\quad F(a,b)=0\,.$

Consideremos el abierto $\Omega_a\subset\mathbb{R}^M$ y la función $F_a\in D(\Omega_a,\mathbb{R}^M)$ dados por

$$\Omega_a = \{ y \in \mathbb{R}^M : (a, y) \in \Omega \}$$
 y $F_a(y) = F(a, y)$ $\forall y \in \Omega_a$

Supongamos que DF es continua en (a,b) y que $DF_a(b)$ es biyectiva:

Entonces existen: un abierto W de $\mathbb{R}^N \times \mathbb{R}^M$, con $(a,b) \in W \subset \Omega$, otro abierto $U \subset \mathbb{R}^N$, y una función $\psi \in D(U,\mathbb{R}^M)$, tales que:

$$\{(x,y) \in W : F(x,y) = 0\} = \{(x,\psi(x)) : x \in U\}$$

Resumen de la demostración

Usaremos las proyecciones coordenadas $\pi_1: \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N$ y $\pi_2: \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^M$ $\pi_1(x,y) = x$, $\pi_2(x,y) = y$ $\forall (x,y) \in \mathbb{R}^N \times \mathbb{R}^M$

y las inyecciones naturales
$$J_1: \mathbb{R}^N \to \mathbb{R}^N \times \mathbb{R}^M$$
 y $J_2: \mathbb{R}^M \to \mathbb{R}^N \times \mathbb{R}^M$ $J_1(x) = (x,0) \quad \forall x \in \in \mathbb{R}^N, \quad J_2(y) = (0,y) \quad \forall y \in \mathbb{R}^M$

Se usa el teorema de la función inversa para $H:\Omega \to \mathbb{R}^N imes \mathbb{R}^M$ dada por $H(x,y) = (x, F(x,y)) \quad \forall (x,y) \in \Omega$

Se tiene
$$H(a,b)=(a,0)$$
 y $H=J_1\circ\pi_1|_{\Omega}+J_2\circ F$

También se tiene
$$\Omega_a=J_2^{-1}(\Omega)$$
 y $F_a(y)=Fig(J_1(a)+J_2(y)ig)$ $\forall\,y\in\Omega_a$

Las hipótesis sobre F se trasladan a H:

- H es diferenciable en Ω y DH es continua en (a,b)
- DH(a,b) es biyectiva

El teorema nos da dos abiertos W y G de $\mathbb{R}^N \times \mathbb{R}^M$ tales que:

- $(a,b) \in W \subset \Omega \vee H(W) = G$
- H es inyectiva en W y $K = (H|_{W})^{-1}: G \to W$ es diferenciable

Concluimos tomando
$$U = J_1^{-1}(G)$$
 y $\psi = \pi_2 \circ K \circ J_1$

Uso del teorema anterior (I)

Nomenclatura que suele usarse (con la notación del teorema)

Fijados los abiertos W y U, la función ψ es única y $\psi(a)=b$

Se dice que la ecuación F(x,y)=0 define a y como función implícita de x en un entorno de a , con y=b para x=a

Escribiendo $x=(x_1,\ldots,x_N), \quad y=(y_1,\ldots,y_M), \quad F=(F_1,\ldots,F_M),$ $a=(a_1,\ldots,a_N)$ y $b=(b_1,\ldots,b_M)$, se dice que el sistema de ecuaciones

define a las variables reales y_1,y_2,\ldots,y_M como funciones implícitas de x_1,x_2,\ldots,x_N en un entorno del punto (a_1,\ldots,a_N) , con $(y_1,\ldots,y_M)=(b_1,\ldots,b_M)$ para $(x_1,\ldots,x_N)=(a_1,\ldots,a_N)$ También se suele escribir $y_j=y_j(x_1,x_2,\ldots,x_N)$ para $j\in\Delta_M$

Uso del teorema anterior (II)

Indicaciones para probar la existencia de una función implícita

Problema: probar que un sistema de M ecuaciones con N+M variables, define a M de ellas como funciones implícitas de las otras N, en un entorno de un punto $a\in\mathbb{R}^N$, en el que tales funciones toman un valor $b\in\mathbb{R}^M$.

- (1) Tomamos $(a,b) \in \Omega = \Omega^{\circ} \subset \mathbb{R}^N \times \mathbb{R}^M$ y $F: \Omega \to \mathbb{R}^M$ con F(a,b) = 0
- (2) Comprobamos que $F \in D(\Omega, \mathbb{R}^M)$ y que DF es continua en (a,b) A menudo $\Omega = \mathbb{R}^N \times \mathbb{R}^M$ y es evidente que $F \in C^1(\Omega, \mathbb{R}^M)$

Con la notación del teorema de la función implícita se tiene:

$$\frac{\partial F_a}{\partial y_i}(b) = \frac{\partial F}{\partial y_i}(a,b) \quad \forall j \in \Delta_M$$

luego la matriz $JF_a(b)$ está formada por M columnas de JF(a,b)

Por lo que la matriz
$$JF_a(b)$$
, se denota: $\frac{\partial (F_1, F_2, \dots, F_M)}{\partial (y_1, y_2, \dots, y_M)}(a, b)$

- (3) Calculada la matriz JF(a,b) se identifica la submatriz recién indicada
- (4) Se comprueba finalmente que: $\det \left(\frac{\partial (F_1, F_2, \dots, F_M)}{\partial (y_1, y_2, \dots, y_M)} (a, b) \right) \neq 0$

Un caso particular

Caso N=M=1

Sean $\Omega = \Omega^{\circ} \subset \mathbb{R}^2$, $F \in D(\Omega)$ y $(a,b) \in \Omega$ con F(a,b) = 0.

Supongamos que las dos derivadas parciales de ${\cal F}$ son continuas en (a,b) y que

$$\frac{\partial f}{\partial y}(a,b) \neq 0$$

Entonces existen: un abierto W de \mathbb{R}^2 , con $(a,b)\in W\subset \Omega$, otro abierto $U\subset \mathbb{R}$, y una función $\psi\in D(U)$, tales que:

$$\{(x,y) \in W : F(x,y) = 0\} = \{(x, \psi(x)) : x \in U\}$$