MLP and BP

C. V. Jawahar

IIIT Hyderabad

28 Mar, 2025

Video

Basic Problem

Goal: Minimize Loss L by adjusting/updating the weights W of the neural network.

Motivating Analogy

Many many Knobs (~Millions)
You can increase or decrease each
one.

Goal: Control the intensity of the bulb

Gradient Descent

$$w_1^{n+1} = w_1^n - \eta \frac{\partial L}{\partial w_1}$$

$$w_2^{n+1} = w_2^n - \eta \frac{\partial L}{\partial w_2}$$

Gradient Descent: Simple Vector Notation

$$\mathbf{w}^{n+1} = \mathbf{w}^n - \eta \frac{\partial L}{\partial \mathbf{w}}$$

Deeper Networks

Error depends on many weights

Compute Loss/Error; Loss Layer

Error depends on two terms/outputs

Each one depends on three weights and three intermediate values

Each one of these intermediate values depends on four weights and four inputs

To minimize error/loss, we need to adjust/vary all the 18 weights.!!

Back Propagation

Back Propagation

Back Propagation

Two Typical Blocks (with and without weights)

$$\mathbf{z} = \mathbf{W}\mathbf{x} \qquad \mathbf{y} = \phi(\mathbf{z})$$

$$\mathbf{X} \stackrel{\partial \mathbf{z}}{\rightarrow} \mathbf{W} \stackrel{\partial \mathbf{z}}{\rightarrow} \mathbf{y}$$

$$\frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \mathbf{W} \qquad \frac{\partial \mathbf{y}}{\partial \mathbf{z}} = \phi'(\mathbf{z})$$

Eg. Sigmoid

$$y = \phi(z) = \frac{1}{1 + e^{-z}}$$

$$\phi'(z) = \phi(z) \cdot (1 - \phi(z))$$

Back Propagation:

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y_1} \cdot \frac{\partial Y_1}{\partial W}$$

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y_3} \cdot \frac{\partial Y_3}{\partial W}$$

 $\frac{\partial L}{\partial Y_2} = \frac{\partial L}{\partial X_3} = \frac{\partial L}{\partial Y_3} \cdot \frac{\partial Y_3}{\partial X_3} \qquad \qquad \frac{\partial L}{\partial Y_4} = \frac{\partial L}{\partial X_5} = \frac{\partial L}{\partial Y_5} \cdot \frac{\partial Y_5}{\partial X_5}$

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y_5} \cdot \frac{\partial Y_5}{\partial W}$$

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y_3} \cdot \frac{\partial Y_3}{\partial W} \qquad \qquad \frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y_5} \cdot \frac{\partial Y_5}{\partial W} \qquad W^{n+1} = W^n - \eta \frac{dL}{dW}$$

Basic Algorithm

Forward Pass

Take a batch of samples; Compute outputs; Compute Loss.

Backward Pass

Update all the weights (backwards) and reduce the errors.

Repeat the steps; Until?

Improvements

Mini Batch, Stochastic, SGD Activation Fns, Learning Rate.

Better
Initialization
(Xavier, He)

Design or Initial.

Momentum (Nesterov)

Numerical/Parallelism (including Vanishing Exploding Gradients)

Better Update (Adam, Adagrad, RMSProp etc.)

Update

Early Stopping

Regularization (L1, L2)

Regularization (Dropout, Data Augmentation etc.)

Regularize

Basic; Good to Discuss

Worth; Insightful

Advanced

Video

Link to the video: https://www.youtube.com/watch?v=tleHLnjs5U8

Questions?