S1G1 Diskrete Mathematik: Kostenminimale Flüsse

Andreas Gwilt

13. Juni 2017

Recap Max-Flow-Min-Cut?

1 Problemstellung

Draw picture with coal, factories and graph \Rightarrow Graph G mit

- Kapazitäten $u: E(G) \to \mathbb{R}_+$
- Kosten $c: E(G) \to \mathbb{R}$
- "Balance" $b:V(G)\to\mathbb{R}$: Was wollen von diesem Knoten? Quelle/Senke

Das bringt uns zur ersten Definition:

Def (b-Fluss). Gegeben sei ein Digraph G, Kapazitäten $u: E(G) \to \mathbb{R}_+$ und Zahlen $b: V(G) \to \mathbb{R}$ mit $\sum_{v \in V(G)} b(v) = 0$. Ein **b-Fluss** in (G, u) ist eine Funktion $f: E(G) \to \mathbb{R}_+$ mit $f(e) \le u(e)$ für alle $e \in E(G)$ und

$$\sum_{e \in \delta^+(v)} f(e) - \sum_{e \in \delta_-(v)} f(e) = b(v)$$

für alle $v \in V(G)$.

Bem. • Ein b-Fluss mit $b \equiv 0$ heißt Zirkulation.

- b(v) heißt **Balance** des Knotens v.
- Falls b(v) > 0: v heißt **Quelle**, b(v) heißt **Angebot**.
- Falls b(v) < 0: v heißt **Senke**, |b(v)| heißt **Nachfrage**.
- Ein b-Fluss kann leicht mit einem MAX-FLOW Algorithmus in z.B. $O(m^2n)$ gefunden werden (oder es kann entschieden werden, dass es keinen Gibt).

Aufgabe 1: Finde einen b-Fluss in dem beigelegten Graphen.

Wir wollen aber nicht nur irgendeinen b-Fluss, dass können wir schon. Wir wollen einen minimalen. Das bringt uns zu folgendem Berechnungsproblem:

Minimum-Cost-Flow-Problem

Instanz: Ein Digraph G, Kapazitäten $u:E(G)\to\mathbb{R}_+$, Zahlen $b:V(G)\to\mathbb{R}$ mit

 $\sum_{v \in V(G)} b(v) = 0$ und Gewichte $c : E(G) \to \mathbb{R}$.

Aufgabe: Bestimme eine b-Fluss f mit minimalen Kosten $c(f) := \sum_{e \in E(G)} f(e)c(e)$

(oder entscheide, dass es keinen solchen gibt).

Show example with two flows f_1 , f_2 .

Aufgabe 2: Was sind die Kosten von f_1 und f_2 ? Wo unterscheiden sie sich?

 $\Rightarrow f_2$ teurer als f_1 . Wie kommen wir von f_1 zu $f_2 \leadsto \mathsf{Kreis}$, an dem wir augmentieren. Ähnlich zu Max-Flow

2 Ein Optimalitätskriterium

Zuerst ein Paar Definitionen und Notationen:

Def. Sei G ein gerichteter Graph. Dann ist $\overset{\leftrightarrow}{G} := (V(G), E(G) \cup \{\stackrel{\leftarrow}{e} | e \in E(G)\})$. (Also G, wo aber jede Kante zusätzlich auch in die andere Richtung geht.)

Def (Residualgraph). Sei G ein Digraph mit Kapazitäten $u: E(G) \to \mathbb{R}_+$ und ein b-Fluss f. Dann definieren wir die **Residualkapazitäten** $u_f: E(\overset{\leftrightarrow}{G}) \to \mathbb{R}_+$ durch $u_f(e) := u(e) - f(e)$ und $u_f(\overset{\leftarrow}{e})$ für alle $e \in E(G)$ und die **Residualkosten** $c_f: E(\overset{\leftrightarrow}{G}) \to \mathbb{R}$ durch $c_f(e) := c(e)$ und $c_f(\overset{\leftarrow}{e}) := -c(e)$ für alle $e \in E(G)$.

Der **Residualgraph** ist der Graph G_f definiert durch $V(G_f) := V(G)$ und $E(G_f) := \{e \in E(G) | u_f(e) > 0\} = \{e \in E(G) | f(e) < u(e)\} \dot{\cup} \{e \mid e \in E(G), f(e) > 0\}.$

Ein f-augmentierender Kreis ist ein Kreis in G_f .

Aufgabe 3: Macht euch klar, dass Augmentierung entlang eines solchen Kreises C um $\gamma \le \min\{u_f(e)|e \in C\}$ wieder einen b-Fluss f' ergibt mit

$$f'(e) = \begin{cases} f(e) + \gamma & : e \in C \\ f(e) - \gamma & : \overleftarrow{e} \in C \\ f(e) & : \text{sonst} \end{cases}$$

Es geht aber auch (fast) anders herum:

Lemma 2.1. Sei G ein Digraph mit Kapazitäten $u: E(G) \to \mathbb{R}_+$. Seien f und f' b-Flüsse in (G, u). Dann ist die Funktion $g: E(G) \to \mathbb{R}_+$, gegeben durch $g(e) := \max\{0, f'(e) - f(e)\}$ und $g(\overleftarrow{e}) := \max\{0, f(e) - f'(e)\}$ für $e \in E(G)$, eine Zirkulation in G. Ferner ist g(e) = 0 für alle $e \notin E(G_f)$ und c(g) = c(f') - c(f).

Beweis. 1. In jedem Knoten $v \in V(\overset{\leftrightarrow}{G})$ haben wir

$$\sum_{e \in \delta_{\overrightarrow{G}}^+(v)} g(e) - \sum_{e \in \delta_{\overrightarrow{G}}^-(v)} g(e) = \sum_{e \in \delta_{\overrightarrow{G}}^+(v)} (f'(e) - f(e)) - \sum_{e \in \delta_{\overrightarrow{G}}^-(v)} (f'(e) - f(e))$$
$$= b(v) - b(v) = 0$$

also ist g eine Zirkulation in $\overset{\leftrightarrow}{G}$.

- 2. Nun betrachten wir für jedes $e \in E(\overset{\leftrightarrow}{G}) \setminus E(G_f)$ zwei Fälle:
 - $e \in E(G) \Rightarrow f(e) = u(e) \Rightarrow f'(e) \le f(e) \Rightarrow g(e) = 0$
 - $e = \stackrel{\leftarrow}{e_0}$ für ein $e_0 \in E(G) \Rightarrow f(e_0) = 0 \Rightarrow g(\stackrel{\leftarrow}{e_0}) = 0$.
- 3. Die letzte Aussage lässt sich leicht beweisen:

$$c(g) = \sum_{e \in E(G)} c(e)g(e) = \sum_{e \in E(G)} c(e)f'(e) - \sum_{e \in E(G)} c(e)f(e) = c(f') - c(f)$$

Diese Zirkulationen lassen sich aber nun in Kreise aufteilen:

Lemma 2.2 (Ford und Fulkerson, 1962). Für jede Zirkulation f in einem Digraphen G gibt es eine Familie C von höchstens |E(G)| Kreisen in G und positive Zahlen h(C) $(C \in C)$ mit $f(e) = \sum_{C \in C} \sum_{e \in E(C)} h(e)$ für alle $e \in E(G)$.

Beweis. Folgt direkt aus AlMa I, Lemma 6.10.

Damit können wir ein Optimalitätskriterium ähnlich zu dem von s-t-Flüssen beweisen:

Satz 2.3 (Klein, 1967). Sei (G, u, b, c) eine Instanz der Minimum-Cost-Flow-Problems. Ein b-Fluss f hat genau dann minimale Kosten, wenn es keinen f-augmentierenden Kreis mit negativem Gesamtgewicht gibt (i.e. G_f ist konservativ).

Beweis. " \Rightarrow " Gibt es einen f-augmentierenden Kreis C mit negativem Gewicht, so können wir f entlang C um ein $\varepsilon > 0$ augmentieren und einen b-Fluss f' mit gesenkten Kosten erhalten. Somit ist f kein Fluss mit minimalen Kosten.

" \Leftarrow " Ist f kein b-Fluss mit minimalen Kosten, dann gibt es einen anderen b-Fluss f' mit geringeren Kosten. Betrachte das in Lemma 2.1 definierte g. Dann ist g eine Zirkulation mit c(g) < 0. Nach Lemma 2.2 kann man g dann in Flüsse entlang einzelnen Kreisen zerlegen. Da g(e) = 0 für alle $e \notin E(G_f)$, sind all diese Kreise f-augmentierend. Mindestens einer von ihnen muss jedoch negatives Gesamtgewicht haben, womit der Satz bewiesen ist.

Aufgabe 4: Ist der folgende b-Fluss minimal? Wenn nicht, welcher Kreis in G_f hat negative Kosten? (Legende: f(e), u(e), c(e))

3 Zwei Algorithmen

3.1 Der Minimum-Mean-Cycle-Cancelling-Algorithmus

Ähnlich wie Ford-Fulkerson für maximale Flüsse, legt Satz 2.3 einen Algorithmus nahe: Finde zuerst einen beliebigen b-Fluss (mit einem Max-Flow-Algorithmus), und augmentiere wiederholt entlang augmentierenden Kreisen negativen Gewichts.

Wie bei Ford-Fulkerson gibt es aber Probleme mit der Laufzeit/Terminierung, wenn wir nicht die richtigen Kreise auswählen. Dazu wählen wir Kreise mit möglichst niedrigen gewichten, genauer gesagt: mit minimalem durchschnittlichem Kantengewicht:

Minimum-Mean-Cycle-Cancelling-Algorithmus (Klein, 1967)

- \bigcirc Bestimme einen b-Fluss f (z.B. mit Edmonds-Karp).
- 2 Bestimme einen Kreis C in G_f mit minimalem durchschnittlichem Kantengewicht. If C hat nichtnegatives Gesamtgewicht (oder G_f ist azyklisch) then stop.
- (3) Berechne $\gamma := \min_{e \in E(C)} u_f(e)$. Augmentiere f entlang C um γ . Go to (2).

Wir gehen jetzt nicht näher darauf ein (Korrektheit ist klar), sondern gehen sofort zum nächsten Algorithmus. Hier ist die Idee, schon von Anfang an einen minimalen Fluss zu haben — allerdings kein b-Fluss. Dann bauen wir f nach und nach zu einem b-Fluss auf, wobei wir Optimalität beibehalten. Intuitiv würden wir hier kürzeste Wege von Quellen zu Senken finden, und genau das werden wir machen. Zuerst brauch wir aber den folgenden Satz:

Satz 3.1. Sei (G, u, b, c) eine Instanz des Minimum-Cost-Flow-Problems und f ein b-Fluss mit minimalen Kosten. Sei P ein kürzester (bzgl. c_f) s-t-Weg in G_f (für irgendwelche $s, t \in V(G)$). Sei f' der durch Augmentierung von f entlang P um den Wert $\gamma \leq \min_{e \in P} u_f(e)$ entstehender Fluss. Dann ist f' ein kostenminimaler Fluss zu den Balancen b' mit

$$b'(v) = \begin{cases} b(v) + \gamma & : v = s \\ b(v) - \gamma & : v = t \\ b(v) & : \text{sonst.} \end{cases}$$

Beweis. Nach Konstruktion ist f' ein b'-Fluss. Angenommen, f' sei nicht kostenminimal. Nach Satz 2.3 existiert dann ein Kreis C in G'_f mit negativem Gesamtgewicht.

Idea: Hilfsgraph aus C und P, der Subgraph von G_f ist, aber einen günstigeren s-t-Weg als P hat, im Widerspruch zur Wahl von P.

Betrachte den Graphen H, der aus $(V(G), E(C) \dot{\cup} E(P))$ durch das Entfernen von Paaren entgegengesetzt orientierter Kanten hervorgeht. (Hier werden Kanten, die sowohl in C als auch in P vorkommen, zweimal gezählt.)

Es gilt $E(H) \subseteq E(G_f)$, da jede Kante aus P schon in G_f ist und jedes $e \in G_{f'} \setminus G_f$ durch Augmentierung entlang P in $G_{f'}$ gelandet ist, also $e \in P \Rightarrow e$ wurde zusammen mit e herausgelöscht.

Es gilt c(E(H)) = c(E(C)) + c(E(P)) < c(E(P)) (Zur Erinnerung: c(e) = -c(e)). Ferner ist H die Vereinigung eines s-t-Weges und einigen Kreisen. (Übungsaufgabe!) Da aber $E(H) \subseteq E(G_f)$, kann keiner der Kreise negativ sein (sonst wäre f nicht minimal).

Damit enthält H, und somit auch G_f , einen s-t-Weg mit kleinerem Gewicht als P, im Widerspruch zur Wahl von P.

Sind die Gewichte konservativ, können wir mit $f \equiv 0$ als optimale Zirkulation beginnen. Sonst saturieren wir alle Kanten mit negativen Kosten und setzen b entsprechend.

Sukzessive-Kürzeste-Wege-Algorithmus

- (1) Setze $b' \leftarrow b$ und $f(e) \leftarrow 0$ für alle $e \in E(G)$.
- (2) If b' = 0 then stop, else:

Wähle einen Knoten s mit b'(s) > 0.

Wähle einen Knoten t mit b'(t) < 0, so dass t von s aus in G_f erreichbar ist.

If es gibt kein solches t then stop. (Es gibt keinen b-Fluss)

- (3) Bestimme einen s-t-Weg P (z.B. mit MOORE-BELLMAN-FORD in O(nm)) in G_f mit minimalen Kosten bzgl. c_f .
- 4 Berechne $\gamma \leftarrow \min\{\min_{e \in E(P)} u_f(e), b'(s), -b'(t)\}.$ Setze $b'(s) \leftarrow b'(s) - \gamma$ und $b'(t) \leftarrow b'(t) + \gamma$. Augmentiere f entlang P um γ . Go to 2