2023-12-09

(2015 年福建) 已知过点 P(0,1) 、斜率为 k 的直线 l 与双曲线 $C: x^2 - \frac{y^2}{3} = 1$ 交于 A 、 B 两点.

- 则①k 的取值范围为 ; $(-2, -\sqrt{3}) \cup (-\sqrt{3}, \sqrt{3}) \cup (\sqrt{3}, 2)$
- ②若 F, 为双曲线 C 的右焦点,且 $|AF_2|+|BF_2|=6$,则k 的值为_____.±1

key: 设l: y = kx + 1,代入C方程得: $(3 - k^2)x^2 - 2kx - 4 = 0$

$$|AF_{2}| + |BF_{2}| = |-2x_{A} + 1| + |2x_{B} - 1| = \begin{cases} 2|x_{A} - x_{B}|, |k| < \sqrt{3}, \\ 2|x_{A} + x_{B} - 1|, |k| > \sqrt{3} \end{cases}$$

当
$$k^2 < 3$$
时, $\frac{4\sqrt{3}\sqrt{4-k^2}}{|3-k^2|} = 6$ 得 $k^2 = 1, \frac{11}{3}$ (舍去);

当
$$k^2 > 3$$
时, $2 | \frac{2k}{3-k^2} - 1 | = 6$ 得 $k = -2, \frac{3}{2}, \frac{1 \pm \sqrt{13}}{2}$ 舍去,∴ $k = \pm 1$

变式1 (1) 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0).$ 则

- ①过右焦点F的弦长的最小值为_____; $\min\{2a, \frac{2b^2}{a}\}$
- ②过一点可作_____条直线与双曲线只有一个公共点.0,1,2,3,4
- (2) 已知双曲线 $x^2 \frac{y^2}{a^2} = 1$,若过点 (2,2) 能作该双曲线的两条切线,则该双曲线离心率 e 取值范围为
- (D) A. $(\frac{\sqrt{21}}{3}, +\infty)$ B. $(1, \frac{\sqrt{21}}{3})$ C. $(1, \sqrt{2})$ D. 以上选项均不正确

key:由双曲线的一条渐近线为y = ax(a > 0),如图,

$$\therefore 2 > 2a, 或 \begin{cases} 2 < 2a \\ 4 - \frac{4}{a^2} < 1 \end{cases}$$
 得 $0 < a < 1, or, 1 < a < \frac{2}{\sqrt{3}}$

 $\therefore e = \sqrt{1 + a^2} \in (1, \sqrt{2}) \cup (\sqrt{2}, \frac{\sqrt{21}}{3})$

- (2022II) 设双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0)的右焦点为F(2,0),渐近线方程为 $y = \pm \sqrt{3}x$.(1) 求C的方程;
- (2) 过F的直线与C的两条渐近线分别交于A,B两点,点 $P(x_1,y_1)$, $Q(x_2,y_2)$ 在C上,且 $x_1 > x_2 > 0$, $y_1 > 0$. 过P且斜率为 $-\sqrt{3}$ 的直线与过Q且斜率为 $\sqrt{3}$ 的直线交于点M.从下面①②③中选取两个作为条件,证明另一个成立.①M在AB上;②PQ//AB;③|MA|=|MB|.

(2022II) 解:(1) 由己知得c = 2,且 $\frac{b}{a} = \sqrt{3}$,∴a = 1, $b = \sqrt{3}$,∴ $C: x^2 - \frac{y^2}{3} = 1$

:: AB的中点坐标为($\frac{-2}{3t^2-1}$, $\frac{-6t}{3t^2-1}$),

选①③为条件,②为结论,而① $\Leftrightarrow x_M = ty_M + 2$

由①③得: *M是AB*的中点,::
$$x_M = \frac{2}{1-3t^2}, y_M = \frac{6t}{1-3t^2}$$

$$\overset{\text{\tiny 17}}{\boxtimes} P(\frac{1}{2}(p+\frac{1}{p}), \frac{\sqrt{3}}{2}(p-\frac{1}{p})), Q(\frac{1}{2}(q+\frac{1}{q}), \frac{\sqrt{3}}{2}(q-\frac{1}{q})), (p>q>0, p>1)$$

$$\text{Im} I_{PM}: y - \frac{\sqrt{3}}{2}(p - \frac{1}{p}) = -\sqrt{3}(x - \frac{1}{2}(p + \frac{1}{p})), \therefore \frac{6t}{1 - 3t^2} - \frac{\sqrt{3}}{2}(p - \frac{1}{p}) = -\sqrt{3}(\frac{2}{1 - 3t^2} - \frac{1}{2}(p + \frac{1}{p})) \text{ if } p = \frac{2\sqrt{3}t + 2}{1 - 3t^2}$$

同理:
$$\frac{6t}{1-3t^2} - \frac{\sqrt{3}}{2}(q-\frac{1}{q}) = \sqrt{3}(\frac{2}{1-3t^2} - \frac{1}{2}(q+\frac{1}{q}))$$
得 $q = \frac{1-3t^2}{2-2\sqrt{3}t}$

key2:①②为条件,③为结论

由②设 l_{PO} : x = ty + n代入C方程得: $(3t^2 - 1)y^2 + 6tny + 3n^2 - 3 = 0$,

$$\therefore \begin{cases} y_1 + y_2 = \frac{-6tn}{3t^2 - 1} \\ y_1 y_2 = \frac{3n^2 - 3}{3t^2 - 1} \end{cases}, \, \text{\mathbb{H}} \Delta = 12(3t^2 - 1 + n^2) > 0$$

联立
$$l_{MP}: y - y_1 = -\sqrt{3}(x - x_1) = l_{OM}: y - y_2 = \sqrt{3}(x - x_2)$$
得

$$x_M = \frac{y_1 - y_2}{2\sqrt{3}} + \frac{t(y_1 + y_2)}{2} + n, y_M = \frac{\sqrt{3}t(y_1 - y_2) + y_1 + y_2}{2}$$

$$\therefore \frac{y_1 - y_2}{2\sqrt{3}} + \frac{t(y_1 + y_2)}{2} + n = \frac{\sqrt{3}t^2(y_1 - y_2) + t(y_1 + y_2)}{2} + 2 = \sqrt{3}t^2 - 1 + n^2 + 2 = \sqrt{3}t$$

$$\therefore y_M = \frac{\sqrt{3}t(y_1 - y_2) + y_1 + y_2}{2} = \frac{\sqrt{3}t}{2} \cdot 2\sqrt{3} \cdot \frac{\frac{5 - 3t^2}{4} - 2}{3t^2 - 1} - \frac{3t \cdot \frac{5 - 3t^2}{4}}{3t^2 - 1} = \frac{-6t}{3t^2 - 1}$$

UNDAB OF ABOUTE IN MARKON AND AREA OF ABOUTE AND AREA OF A ABOUTE AND AREA OF A ABOUT

∴|*MA*|=|*MB*|,即②成立,证毕

(2022*A*) 在平面直角坐标系中,双曲线 Γ : $\frac{x^2}{3} - y^2 = 1$.对平面内不在 Γ 上的任意一点P,记 Ω_P 为过点P且与 Γ 有两个交点的直线的全体.对任意直线 $l \in \Omega_P$,记M,N为l与 Γ 的两个交点,定义 $f_P(l) = |PM| \cdot |PN|$.若存在一条直线 $l_0 \in \Omega_P$ 满足: l_0 与 Γ 的两个交点位于y轴异侧,且对任意直线 $l \in \Omega_P$, $l \neq l_0$,均有 $f_P(l) > f_P(l_0)$,则称P为"好点"。求所有好点所构成的区域的面积.

解: 由题意设P(s,t),直线 $l: y = kx + m(t = ks + m, 且 \frac{s^2}{3} - t^2 \neq 1)$ 代入 Γ 得: $(1 - 3k^2)x^2 - 6kmx - 3m^2 - 3 = 0$,

$$\therefore \begin{cases} x_M + x_N = \frac{6km}{1 - 3k^2} \\ x_M x_N = \frac{-3m^2 - 3}{1 - 3k^2} \end{cases}, \quad \pm \Delta = 12(m^2 + 1 - 3k^2) > 0$$

$$\therefore f_P(l) = (1+k^2) | (x_N - s)(s - x_M) | = (1+k^2) | -x_M x_N + s(x_M + x_N) - s^2 |$$

$$= (1+k^2) \left| \frac{3m^2 + 3}{1 - 3k^2} + \frac{6skm}{1 - 3k^2} - s^2 \right| = (1+k^2) \cdot \left| \frac{3(t - ks)^2 + 3 + 6sk(t - ks) - s^2(1 - 3k^2)}{1 - 3k^2} \right|$$

$$1 + k^2$$

$$= \frac{1+k^2}{|1-3k^2|} \cdot |3t^2 - s^2 + 3|(k^2 \neq \frac{1}{3})$$

$$\stackrel{\underline{\mathsf{M}}}{=} |k| < \frac{1}{\sqrt{3}} \; |\mathsf{f}|, \frac{1+k^2}{|1-3k^2|} = -1 + \frac{4}{1-3k^2} \in [3,+\infty), \therefore f_P(l)_{\min} = |3t^2 - s^2 + 3|$$

当
$$|k| > \frac{1}{\sqrt{3}}$$
 时, $f_P(l) = \frac{1+k^2}{3k^2-1} \cdot |3t^2-s^2+3| \ge |3t^2-s^2+3|$ 得 $|k| \le 1$

∴当|k|>1时,直线l与Γ不相交,

即 $\Delta < 0$ 即 $(t - ks)^2 + 1 - 3k^2 = (s^2 - 3)k^2 - 2stk + t^2 + 1 \le 0$ 对 |k| > 1恒成立,

$$\begin{cases} s^{2} - 3 \le 0 \\ \left| \frac{st}{s^{2} - 3} \right| < 1 \\ s^{2} - 2st + t^{2} - 2 \le 0 \\ s^{2} + 2st + t^{2} - 2 \le 0 \end{cases} \begin{cases} |s| < \sqrt{3} \\ |t| < |s - \frac{3}{s}|, \quad or, \begin{cases} s^{2} - 3 < 0 \\ \left| \frac{st}{s^{2} - 3} \right| \ge 1 \\ |s - t| \le \sqrt{2} \end{cases} \end{cases}$$
 (无解),

:: 所有好点构成的区域的面积为4

(2021I) 在平面直角坐标系xOy中,已知点 $F_1(-\sqrt{17},0), F_2(\sqrt{17},0),$ 点M满足| MF_1 |-| MF_2 |=2,

记M的轨迹为C.(I) 求C的方程;(II) 设点T在直线 $x = \frac{1}{2}$ 上,过T的两条直线分别交C于

A, B两点和P, Q两点,且 $|TA| \cdot |TB| = |TP| \cdot |TQ|$,求直线AB的斜率与直线PQ的斜率之和.

解: (I) 由己知得轨迹C为双曲线的右支,且 $c = \sqrt{17}, a = 1, \because b = 4$,

∴ *C*的方程为
$$x^2 - \frac{y^2}{16} = 1(x \ge 1)$$
.

(II) 设
$$T(\frac{1}{2},t)$$
, 直线 AB 的方程为 $y-t=k_1(x-\frac{1}{2})$ 即 $k_1(x-\frac{1}{2})-y+t=0$

直线
$$PQ$$
的方程为 $y-t=k_2(x-\frac{1}{2})$ 即 $k_2(x-\frac{1}{2})-y+t=0$

:. 过
$$A, B, P, Q$$
四点的曲线系方程为[$k_1(x-\frac{1}{2})-y+t$]·[$k_2(x-\frac{1}{2})-y+t$]+ $\lambda(x^2-\frac{y^2}{16}-1)=0\cdots(*)$

由 $|TA|\cdot|TB|=|TP|\cdot|TQ|$ 得A,B,P,Q四点共圆

若(*)是圆方程,则
$$\begin{cases} k_1k_2 + \lambda = 1 - \frac{\lambda}{16} \neq 0 \\ -k_1 - k_2 = 0 \end{cases}$$
 , .: 直线*AB*与直线*PQ*的斜率之和为0

变式 1(1)已知直线 l_1, l_2 是过点 $P(-\sqrt{2}, 0)$ 的两条互相垂直的直线,且 l_1, l_2 与双曲线 $y^2 - x^2 = 1$ 各有两个交点,分别为 A_1 、 B_1 和 A_2 、 B_2 .(1)求直线 l_1 的斜率 l_1 的取值范围;(2)若 $|A_1B_1| = \sqrt{5} |A_2B_2|$,求 l_1 、 l_2 的方程.

$$key(1)(-\sqrt{3},-1) \cup (-1,-\frac{\sqrt{3}}{3}) \cup (\frac{\sqrt{3}}{3},1) \cup (1,\sqrt{3})$$

(2)
$$y = \pm \sqrt{2}(x + \sqrt{2}), y = \pm \frac{\sqrt{2}}{2}(x + \sqrt{2})$$

(2) 等轴双曲线 $x^2 - y^2 = a^2(a > 0)$ 上的定点 $P(x_0, y_0)$ 及两个动点A、B满足 $\overrightarrow{PA} \cdot \overrightarrow{PB} = 0$,

M、N分别是PA、PB的中点则 $\angle MON = _____; |AB|$ 的最小值为______

变式1.key:由已知得
$$\begin{cases} x_A^2 - y_A^2 = a^2 \\ x_B^2 - y_B^2 = a^2 \Rightarrow \begin{cases} (x_A - x_0) \cdot 2x_M - (y_A - y_0) \cdot 2y_M = 0 \\ (x_B - x_0) \cdot 2x_N - (y_B - y_0) \cdot 2y_N = 0 \end{cases}$$

$$\therefore (x_A - x_0)(x_B - x_0) \cdot x_M x_N = (y_A - y_0)(y_B - y_0) y_M y_N$$

$$\therefore \overrightarrow{PA} \cdot \overrightarrow{PB} = (x_A - x_0, y_A - y_0) \cdot (x_B - x_0, y_B - y_0) = (x_A - x_0)(x_B - x_0) + (y_A - y_0)(y_B - y_0) = 0$$

$$\Leftrightarrow (x_A - x_0)(x_B - x_0) = -(y_A - y_0)(y_B - y_0), \therefore x_M x_N = -y_M y_N,$$

 $\therefore \overrightarrow{OM} \cdot \overrightarrow{ON} = 0, \therefore \angle MON = 90^{\circ},$

$$|AB| = 2|MN| = 2 \cdot \frac{|OP|}{\sin \angle ONP} = \frac{2\sqrt{x_0^2 + y_0^2}}{\sin \angle ONP} \ge 2\sqrt{x_0^2 + y_0^2}$$

(3) 已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0)的左、右焦点分别是 $F_1, F_2, P(x_1, y_1), Q(x_2, y_2)$ 是双曲线右支上的两

点, $x_1 + y_1 = x_2 + y_2 = 3$. 记 $\triangle PQF_1$, $\triangle PQF_2$ 的周长分别为 C_1 , C_2 , 若 $C_1 - C_2 = 8$,则双曲线的右顶点到直线PQ的距离为 .

$$key: C_1 - C_2 = |PF_1| + |QF_1| - |PF_2| - |QF_2| = 4a = 8 \Leftrightarrow a = 2, \therefore l_{PQ}: x + y - 3 = 0, \therefore d = \frac{|2 - 3|}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

- (4) 已知点N(1,2),过点N的直线交双曲线 $x^2 \frac{y^2}{2} = 1$ 于A、B两点.
- (I) 若 $\overrightarrow{ON} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB})$,(i) 求直线AB的方程;
- (ii) 若过N的直线I交双曲线于C、D两点,且 \overrightarrow{CD} · \overrightarrow{AB} = 0,那么A、B、C、D四点是否共圆?为什么?
- (II) 求弦AB的中点P的轨迹方程.

解: (I) (i) (利用点差法得): AB的方程: (x-1)-(y-2)=0

(ii) key1: A, B, C, D四点共圆 ⇔ NA | · | NB | = NC | · | ND |

$$\Leftrightarrow \sqrt{2}(x_1 - 1) \cdot \sqrt{2}(1 - x_2) = \sqrt{2}(x_3 - 1) \cdot \sqrt{2}(1 - x_4)$$

key2:由 $\overrightarrow{CD} \cdot \overrightarrow{AB} = 0$ 得CD的方程:(x-1) + (y-2) = 0,则直线AB与CD的方程为 $(x-1)^2 - (y-2)^2 = 0$,则过A,B,C,D四点的曲线系方程为:

$$(x-1)^2 - (y-2)^2 + \lambda(2x^2 - y^2 - 2) = 0 \\ \square (1+2\lambda)x^2 + (-1-\lambda)y^2 - 2x + 4y - 3 - 2\lambda = 0$$

令
$$1+2\lambda=-1-\lambda$$
得 $\lambda=-\frac{2}{3}$,此时曲线系方程为 $-\frac{1}{3}x^2-\frac{1}{3}y^2-2x+4y-\frac{5}{3}=0$

即 $(x+3)^2 + (y-6)^2 = 40$ 表示过A, B, C, D四点的圆,故A, B, C, D四点共圆.

(II) 设
$$P(x, y)$$
,则
$$\begin{cases} x_A^2 - \frac{y_A^2}{2} = 1 \cdots 1 \\ x_B^2 - \frac{y_B^2}{2} = 1 \cdots 2 \\ x_A + x_B = 2x, \exists y_A + y_B = 2y \\ \frac{y - 2}{x - 1} = \frac{y_A - y_B}{x_A - x_B} \end{cases}$$
, ① - ②得: $(x_A - x_B) \cdot 2x - \frac{1}{2}(y_A - y_B) \cdot 2y = 0$

$$\therefore \frac{y-2}{x-1} = \frac{2x}{y} \text{即} 2x^2 - y^2 - 2x + 2y = 0$$
即为*P*的轨迹方程

(2014 湖南)如图,O 为坐标原点,椭圆 $C_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左、右焦点分别为 F_1, F_2 ,离心率为

$$e_1$$
: 双曲线 C_2 : $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 的左、右焦点分别为 F_3 , F_4 , 离心率为 e_2 . 已知 $e_1e_2 = \frac{\sqrt{3}}{2}$ 且 $|F_2F_4| = \sqrt{3} - 1$

(1) 求 C_1 , C_2 的方程; (2) 过 F_1 作 C_1 的不垂直于y轴的弦AB的中点M,当直线OM与 C_2 交于P,Q两点时,求四边形APBQ面积的最小值.

2023-12-09

解: (1) 由已知得
$$\begin{cases} e_1e_2 = \frac{\sqrt{a^2 - b^2}}{a} \cdot \frac{\sqrt{a^2 + b^2}}{a} = \frac{\sqrt{3}}{2} \ \textit{得} a = \sqrt{2}, b = 1, \\ \sqrt{a^2 + b^2} - \sqrt{a^2 - b^2} = \sqrt{3} - 1 \end{cases}$$

$$\therefore C_1$$
的方程为 $\frac{x^2}{2} + y^2 = 1, C_2$ 的方程为 $\frac{x^2}{2} - y^2 = 1$

(2) 设
$$l_{AB}$$
: $x = ty - 1$ 代入 C_1 方程得: $(t^2 + 2)y^2 - 2ty - 1 = 0$,

$$\therefore \begin{cases} y_A + y_B = \frac{2t}{t^2 + 2}, \ \Delta = 8(t^2 + 1), \ \Delta M(\frac{-2}{t^2 + 2}, \frac{t}{t^2 + 2}), \\ y_A y_B = -\frac{1}{t^2 + 2}, \ \Delta = 8(t^2 + 1), \ \Delta M(\frac{-2}{t^2 + 2}, \frac{t}{t^2 + 2}), \end{cases}$$

$$\therefore l_{OM}: y = -\frac{t}{2}x 代入 C_2 方程得x_Q^2 = \frac{4}{2-t^2} > 0(得0 \le t^2 < 2)$$

$$\therefore S_{APBQ} = \frac{1}{2} \sqrt{1 + t^2} \cdot \frac{2\sqrt{2}\sqrt{1 + t^2}}{t^2 + 2} \cdot \frac{\mid x_Q - ty_Q - 1 - (-x_Q + ty_Q - 1)\mid}{\sqrt{1 + t^2}} = \frac{\sqrt{2}\sqrt{1 + t^2}}{t^2 + 2} \mid 2x_Q - 2t \cdot (-\frac{t}{2})x_Q \mid$$

$$=\sqrt{2}\sqrt{1+t^2}\cdot\frac{2}{\sqrt{2-t^2}}=2\sqrt{2}\sqrt{-1+\frac{3}{2-t^2}}\geq 2(\texttt{当}t=0$$
时取 $=)$,.: $APBQ$ 面积的最小值为 $2\sqrt{2}$

(2016福建) 如图, F_1 、 F_2 为双曲线 $C: \frac{x^2}{4} - y^2 = 1$ 的左、右焦点,动点 $P(x_0, y_0)(y_0 \ge 1)$ 在双曲线C的右支上.

设 $\angle F_1PF_2$ 的平分线与x轴、y轴分别交于点M(m,0)、N.(1) 求m的取值范围;

(2) 设过点 F_1 、N的直线l与双曲线C交于D、E两点,求 $_2DE$ 的面积的最大值.

2016福建
$$key$$
:(1) 由 $\angle F_1PF_2$ 的平分线方程为 $\frac{x_0x}{4} - y_0y = 1$ 得 $m = \frac{4}{x_0}$, $y_0 \ge 1$, $x_0 = 2\sqrt{y_0^2 + 1} \ge 2$, $m \in (0, 2]$

(2) 由 (1) 得 $N(0, \frac{1}{y_0})$,

由
$$l: \frac{x}{-\sqrt{5}} + \frac{y}{\frac{1}{y_0}} = 1$$
即 $x = -\sqrt{5} + \sqrt{5}y_0$ y代入*C*得: $(5y_0^2 - 4)y^2 - 10y_0y + 1 = 0$

$$\therefore \begin{cases} y_D + y_E = \frac{10y_0}{5y_0^2 - 4}, \quad \text{ } \exists \Delta = 16(5y_0^2 + 1) > 0 \\ y_D y_E = \frac{1}{5y_0^2 - 4} \end{cases}$$

= $4\sqrt{5}\cdot\sqrt{5t^2+t} \le 4\sqrt{30}$, .:. ΔF_2DE 的面积的最大值为 $4\sqrt{30}$

(2022I) 已知点A(2,1)在双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{a^2-1} = 1(a>1)$ 上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.

(1) 求l的斜率; (2) 若 $\tan \angle PAQ = 2\sqrt{2}$, 求 $\triangle PAQ$ 的面积.

2022I 解:(1) 由
$$\frac{4}{a^2} - \frac{1}{a^2 - 1} = 1$$
 得 $a = \sqrt{2}$,设 $l : y = kx + m$ 代入 C 得: $(1 - 2k^2)x^2 - 4kmx - 2m^2 - 2 = 0$

$$\therefore \begin{cases} x_P + x_Q = \frac{4km}{1 - 2k^2} \\ x_P x_Q = \frac{-2m^2 - 2}{1 - 2k^2} \end{cases}, \, \text{\mathbb{L}} \Delta = 8(m^2 + 1 - 2k^2) > 0$$

$$\therefore k_{AP} + k_{AQ} = \frac{kx_P + m - 1}{x_P - 2} + \frac{kx_Q + m - 1}{x_Q - 2} = 0 \Leftrightarrow (kx_P + m - 1)(x_Q - 2) + (x_P - 2)(kx_Q + m - 1)$$

$$=2kx_{P}x_{Q}+(m-1-2k)(x_{P}+x_{Q})-4m+4=\frac{2k(-2m^{2}-2)}{1-2k^{2}}+\frac{4km(m-1-2k)}{1-2k^{2}}-4m+4=0$$

得(k+1)(2k-m+1)=0, $\therefore k=-1$, or, 2k-m+1=0(此时l经过A, 舍去), $\therefore l$ 的斜率为-1

$$key2$$
: 设 l_{AP} : $y-1=k(x-2)$ 代入 C 得 $x_P=\frac{4k^2-4k+2}{2k^2-1}$, $y_P=\frac{-4k^2+4k}{2k^2-1}+1$

同理
$$x_Q = \frac{4k^2 + 4k + 2}{2k^2 - 1}$$
, $y_Q = \frac{-4k^2 - 4k}{2k^2 - 1} + 1$, $\therefore k_I = \frac{\frac{-4k^2 + 4k}{2k^2 - 1} - \frac{-4k^2 - 4k}{2k^2 - 1}}{\frac{4k^2 - 4k + 2}{2k^2 - 1} - \frac{4k^2 + 4k + 2}{2k^2 - 1}} = -1$ 即为所求的

(2)
$$ext{the } k_{PA} = an \frac{\pi - \angle PAQ}{2} = \sqrt{2}, \ \ \vdots \ \ x_P = \frac{10 - 4\sqrt{2}}{3}, \ \ x_Q = \frac{10 + 4\sqrt{2}}{3}$$

$$\therefore S_{_{\Delta PAQ}} = \frac{1}{2} \cdot \sqrt{3} \cdot \left| \frac{10 - 4\sqrt{2}}{3} - 2 \right| \cdot \sqrt{3} \cdot \left| \frac{10 + 4\sqrt{2}}{3} - 2 \right| \cdot \frac{2\sqrt{2}}{3} = \frac{16\sqrt{2}}{9}$$

(2014 福建) 已知双曲线 $E: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 的两条渐近线分别为 $l_1: y = 2x, l_2: y = -2x$.

(1) 求双曲线 E 的离心率; (2) 如图,O 为坐标原点,动直线 l 分别交直线 l_1 , l_2 于 A ,B 两点(A ,B 分别在第一,四象限),且 ΔOAB 的面积恒为 B ,试探究:是否存在总与直线 B 有且只有一个公共点的双曲线 B 是不存在,求出双曲线 B 的方程;若不存在,说明理由.

解: (1) 由己知得
$$\frac{b}{a} = 2$$
得 $e = \sqrt{5}$

$$\therefore \Delta = 4k^2m^2 + 4(m^2 + 4a^2)(4 - k^2) = 16(m^2 + 4a^2 - a^2k^2) = 0$$

$$\begin{cases} v = 2r \\ m \end{cases}$$

$$\therefore S_{\Delta OAB} = \frac{1}{2} \sqrt{1 + k^2} \left(\frac{m}{2 - k} + \frac{m}{2 + k} \right) \cdot \frac{|m|}{\sqrt{1 + k^2}} = \frac{2m^2}{k^2 - 4} = 8i \vec{\Box} m^2 = 4(k^2 - 4)$$

$$\therefore m^2 + a^2(4 - k^2) = m^2 - a^2 \cdot \frac{m^2}{4} = 0$$
得 $a = 2$, ∴ 存在,且双曲线的方程为 $\frac{x^2}{4} - \frac{y^2}{16} = 1$

变式 1. 如图,已知双曲线 $C: \frac{x^2}{2} - y^2 = 1$,经过点T(1,1)且斜率为k的直线l与C交于A,B两点,

与C的渐近线交于M,N两点(从左至右的顺序依次为A,M,N,B),其中 $k\in(0,\frac{\sqrt{2}}{2})$.

(I) 若点T是MN的中点,求k的值;(II)求 ΔOBN 面积的最小值.

解: (1) 由
$$\begin{cases} \frac{x^2}{2} - y^2 = 1 \\ y - 1 = k(x - 1)$$
即 $y = kx - k + 1$

$$\therefore x_A + x_B = \frac{4k(1-k)}{1-2k^2}, \, \text{且}\Delta_1 = 8(-k^2 - 2k + 2) > 0即 - 1 - \sqrt{3} < k < -1 + \sqrt{3} \\ \text{得}k \in (0, \frac{\sqrt{2}}{2})$$

由
$$\begin{cases} \frac{x^2}{2} - y^2 = 0 \\ y - 1 = k(x - 1) \end{cases}$$
 得 $(1 - 2k^2)x^2 - 4k(1 - k)x - 2(1 - k)^2 = 0$, $\triangle_2 = 8(1 - k)^2$, $\exists x_M + x_N = \frac{4k(1 - k)}{1 - 2k^2} = 2$ 得 $k = \frac{1}{2}$

(2) 由 (1) 得AB与MN的中点重合,

$$\begin{split} & \therefore S_{\triangle OBN} = S_{\triangle OAB} - s_{\triangle OMN} = \frac{1}{2} \cdot \frac{1}{2} \left(\mid AB \mid - \mid MN \mid \right) \cdot d_{O \to AB} = \frac{1}{4} \sqrt{1 + k^2} \cdot \frac{2\sqrt{2} \left(\sqrt{2 - 2k - k^2} - (1 - k) \right)}{\mid 1 - 2k^2 \mid} \cdot \frac{1 - k}{\sqrt{1 + k^2}} \\ & = \frac{\sqrt{2}}{2} \cdot \frac{\left[\sqrt{2 - 2k - k^2} - (1 - k) \right] (1 - k)}{1 - 2k^2} = \frac{\sqrt{2}}{2} \cdot \frac{1 - k}{\sqrt{2 - 2k - k^2} + 1 - k} = \frac{\sqrt{2}}{2} \cdot \frac{1}{1 + \sqrt{\frac{2 - 2k - k^2}{(1 - k)^2}}} \end{split}$$

$$\therefore f(k)_{\text{max}} = 3, \therefore \triangle OBN$$
面积的最小值为 $\frac{\sqrt{2}}{2} \cdot \frac{1}{1+\sqrt{3}} = \frac{\sqrt{6}-\sqrt{2}}{4}$

变式 2. 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 的离心率为 $\frac{2\sqrt{3}}{3}$,且点 $(3,\sqrt{2})$ 在 C 上. (1) 求双曲线 C 的方程: (2) 试问: 在双曲线 C 的右支上是否存在一点 P,使得过点 P 作圆 $x^2 + y^2 = 1$ 的两条切线,切点分别为 A,B,直线 AB 与双曲线 C 的两条渐近线分别交于点 M,N,且 $S_{\Delta MON} = \frac{\sqrt{3}}{33}$? 若存在,求出点 P;若不存在,请说明理由.

解: (1) 由
$$\begin{cases} \frac{c}{a} = \frac{2}{\sqrt{3}} \\ \frac{9}{a^2} - \frac{2}{b^2} = 1 \end{cases}$$
 得 $a = \sqrt{3}, c = 2, b = 1, \therefore$ 双曲线 C 的方程为: $\frac{x^2}{3} - y^2 = 1$

(2) 假设存在, 设 $P(u,v)(\frac{u^2}{3}-v^2=1,u>0)$

则
$$l_{AB}: ux + vy = 1$$
,由
$$\begin{cases} y = \frac{\sqrt{3}}{3}x & \exists x_M = \frac{1}{ux + vy = 1}, \\ ux + vy = 1 & u + \frac{\sqrt{3}}{3}v \end{cases}$$

由
$$\begin{cases} y = -\sqrt{3}x \\ ux + vy = 1 \end{cases}$$
 得 $x_N = \frac{1}{u - \frac{\sqrt{3}}{3}v}$

$$\therefore S_{\Delta MON} = \frac{1}{2} \cdot \sqrt{1 + \frac{u^2}{v^2}} \cdot \left| \frac{1}{u + \frac{\sqrt{3}}{3}v} - \frac{1}{u - \frac{\sqrt{3}}{3}v} \right| \cdot \frac{1}{\sqrt{u^2 + v^2}} = \frac{\sqrt{3}}{\frac{8}{3}u^2 + 1} = \frac{\sqrt{3}}{33}$$

得 $u = 2\sqrt{3}, v = \pm\sqrt{3}$. : 存在, $P(2\sqrt{3}, \pm\sqrt{3})$

变式 3. 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = \mathbb{1}(a > 0, b > 0)$ 的左、右顶点分别为 $A \setminus B$,渐近线方程为 $y = \pm \frac{1}{2}x$,焦点

到渐近线距离为 1,直线 l: y = kx + m 与 C 左右两支分别交于 P, Q,且点 $(\frac{2\sqrt{3}m}{3}, \frac{2\sqrt{3}k}{3})$ 在双曲线 C 上.记 $\triangle APQ$ 和 $\triangle BPQ$ 面积分别为 S_1, S_2, AP, BQ 的斜率分别为 k_1 , k_2 . (1) 求双曲线 C 的方程;

(2) 若 $S_1S_2 = 432$,试问是否存在实数 λ ,使得 $-k_1$, λk , k_2 成等比数列,若存在,求出 λ 的值,不存在说明理由.

解: (1) 由已知得
$$\begin{cases} \frac{b}{a} = \frac{1}{2}, \therefore a = 2, \therefore C$$
的方程为: $\frac{x^2}{4} - y^2 = 1$

(2) 假设存在,由
$$\begin{cases} y = kx + m \\ x^2 - 4y^2 = 4 \end{cases}$$
消去y得:(1-4k²)x²-8kmx-4m²-4=0

$$\therefore \begin{cases} x_P + x_Q = \frac{8km}{1 - 4k^2} \\ x_P x_Q = \frac{-4m^2 - 4}{1 - 4k^2} \end{cases}, \, \text{\mathbb{L}} \Delta = 16(m^2 + 1 - 4k^2) > 0, \, \text{\mathbb{L}} k^2 < \frac{1}{4} \end{cases}$$

由
$$(\frac{2\sqrt{3}m}{3}, \frac{2\sqrt{3}k}{3})$$
在 C 上得 $\frac{m^2}{3} - \frac{4k^2}{3} = 1$ 即 $m^2 - 4k^2 = 3$, $\therefore \Delta = 64$,

$$\therefore S_1 S_2 = \frac{1}{2} \cdot \sqrt{1 + k^2} \cdot \frac{8}{1 - 4k^2} \cdot \frac{|-2k + m|}{\sqrt{1 + k^2}} \cdot \frac{1}{2} \cdot \sqrt{1 + k^2} \cdot \frac{8}{1 - 4k^2} \cdot \frac{|2k + m|}{\sqrt{1 + k^2}} = \frac{48}{(1 - 4k^2)^2} = 432$$

得
$$k^2 = \frac{1}{6}, m^2 = \frac{11}{3}, 且 \begin{cases} x_P + x_Q = 24km \\ x_P x_Q = -56 \end{cases}$$

$$\overrightarrow{\text{III}} k_1 = \frac{y_P}{x_P + 2}, k_2 = \frac{y_Q}{x_Q - 2}$$

由
$$-k_1$$
, λk , k_2 成等比数列,则 $\lambda^2 k^2 = -k_1 k_2$ 即 $\lambda^2 = -6k_1 k_2 = -6 \cdot \frac{y_P y_Q}{(x_P + 2)(x_Q - 2)}$

变式 4. 已知双曲线 $C_1: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 的离心率为 $\sqrt{2}$,点 $F_1(-c,0)$, $F_2(c,0)$ 分别是其左右焦点,过点 F_2 的直线交双曲线的右支于 P,A 两点,点 P 在第一象限.当直线 PA 的斜率不存在时, $|PA| = 2\sqrt{2}$.

(1) 求双曲线的标准方程; (2) 线段 PF_1 交圆 C_2 : $(x+c)^2+y^2=4a^2$ 于点 B,记 $\triangle PF_2B$, $\triangle AF_2F_1$, $\triangle PAF_1$ 的面积分别为 S_1,S_2,S , 求 $\frac{S}{S_1}+\frac{S}{S_2}$ 的最小值.

解: (1) 由己知得
$$\begin{cases} \frac{c}{a} = \sqrt{2} \\ \frac{2b^2}{a} = 2\sqrt{2} \end{cases}$$
 得 $a = b = \sqrt{2}, c = 2, \therefore$ 双曲线的标准方程为 $\frac{x^2}{2} - \frac{y^2}{2} = 1$

(2) 设 l_{PA} : x = ty + 2代入 C_1 方程得: $(t^2 - 1)y^2 + 4ty + 2 = 0$,

$$\therefore \begin{cases} y_P + y_A = -\frac{4t}{t^2 - 1}, \ \Delta = 8(t^2 + 1)(t^2 - 1 \neq 0), \ \Delta = 2ty_P y_A = y_P + y_A \\ y_P y_A = \frac{2}{t^2 - 1} \end{cases}$$

曲
$$l_{PF_1}: y = \frac{y_P}{x_P + 2}(x + 2)$$
代入 $C_2: (x + 2)^2 + y^2 = 8$ 得 $y_B = \frac{2y_P}{x_P + 1} = \frac{2y_P}{ty_P + 3}$

$$\therefore S = 2(y_P - y_A), S_1 = 2(y_P - y_B), S_2 = -2y_A,$$

$$\therefore \frac{S}{S_1} + \frac{S}{S_2} = (y_P - y_A) \cdot (\frac{1}{y_P - y_B} + \frac{1}{-y_A}) = (y_P - y_A) \cdot (\frac{ty_P + 3}{y_P(ty_P + 1)} - \frac{1}{y_A})$$

$$= (y_P - y_A) \cdot \frac{ty_P y_A + 3y_A - y_P (ty_P + 1)}{y_P (ty_P y_A + y_A)} = -\frac{2}{y_P} [(ty_P + 3) \cdot \frac{-y_P}{2ty_P + 1} - y_P (ty_P + 1)]$$

$$=2(\frac{ty_{_{P}}+3}{2ty_{_{P}}+1}+ty_{_{P}}+1)=\frac{5}{u}+u+2\geq2\sqrt{5}+2(\diamondsuit u=2ty_{_{P}}+1), \therefore \frac{S}{S_{_{1}}}+\frac{S}{S_{_{2}}}$$
的最小值为 $2\sqrt{5}+2$

$$key2: \stackrel{\text{th}}{\boxtimes} \angle PF_2x = \theta(\theta \in (\frac{\pi}{4}, \frac{3\pi}{4})), |PF_2| = r, \quad \text{MP}(2 + r\cos\theta, r\sin\theta)$$

∴
$$4 + 4r\cos\theta + r^2\cos^2\theta - r^2\sin^2\theta = 2\square(2\cos^2\theta - 1)r^2 + 4r\cos\theta + 2 = 0$$
 ($\frac{\sqrt{2}}{1 - \sqrt{2}\cos\theta}$)

同理
$$|AF_2| = \frac{\sqrt{2}}{1 + \sqrt{2}\cos\theta}$$
, $|PA| = |PF_2| + |AF_2| = \frac{2\sqrt{2}}{1 - 2\cos^2\theta}$, $|PB| = |PF_1| - 2\sqrt{2} = |PF_2|$

$$\therefore \frac{S}{S_1} + \frac{S}{S_2} = \frac{|PA| \cdot |PF_1|}{|PB| \cdot |PF_2|} + \frac{|PA|}{|AF_2|} = \frac{\sqrt{2}}{1 + \sqrt{2}\cos\theta} \left(\frac{(3\sqrt{2} - 4\cos\theta)(1 - \sqrt{2}\cos\theta)}{2} + \frac{1 + \sqrt{2}\cos\theta}{\sqrt{2}} \right)$$

$$=2(\frac{5}{1+\sqrt{2}\cos\theta}+\frac{1}{1-\sqrt{2}\cos\theta}-2)\geq 2(\frac{(\sqrt{5}+1)^2}{2}-2)=2+2\sqrt{5}$$

$$key2'$$
: 设∠ $PF_2x = \theta(\theta \in (\frac{\pi}{4}, \frac{3\pi}{4})), |PF_2| = r_p, \quad 则P(2 + r_p \cos \theta, r_p \sin \theta)$

$$\therefore 4 + 4r\cos\theta + r_p^2\cos^2\theta - r_p^2\sin^2\theta = 2即(2\cos^2\theta - 1)r_p^2 + 4r_p\cos\theta + 2 = 0 得 r_p = \frac{\sqrt{2}}{1 - \sqrt{2}\cos\theta}$$

同理
$$r_A = |AF_2| = \frac{\sqrt{2}}{1+\sqrt{2}\cos\theta}$$
, $\therefore \frac{1}{r_A} + \frac{1}{r_P} = \sqrt{2}$, $|PA| = r_A + r_P$, $|PB| = |PF_1| - 2\sqrt{2} = |PF_2| = r_P$,

$$\therefore \frac{S}{S_1} + \frac{S}{S_2} = \frac{|PA| \cdot |PF_1|}{|PB| \cdot |PF_2|} + \frac{|PA|}{|AF_2|} = (r_A + r_P)(\frac{r_P + 2\sqrt{2}}{r_P^2} + \frac{1}{r_A}) = \sqrt{2}r_A r_P (\sqrt{2} + \frac{2\sqrt{2}}{r_P^2})$$

$$= \sqrt{2}(r_A + r_P) + \frac{4r_A}{r_P} = \sqrt{2}(r_A + r_P) + 4r_A(\sqrt{2} - \frac{1}{r_A}) = \sqrt{2}(5r_A + r_P) - 4$$

$$= \sqrt{2} \cdot (\frac{5}{\frac{1}{r_{_{A}}}} + \frac{1}{\frac{1}{r_{_{P}}}}) - 4 \ge \sqrt{2} \cdot \frac{(\sqrt{5} + 1)^{2}}{\sqrt{2}} - 4 = 2\sqrt{5} + 2$$

$$key3$$
: 设 $\mid PF_{2}\mid =m, \mid AF_{2}\mid =n,$ 则 $\mid PF_{1}\mid =2\sqrt{2}+m, \mid AF_{1}\mid =2\sqrt{2}+n,$

$$\therefore \cos \angle PF_1F_2 = \frac{(2\sqrt{2} + m)^2 + 16 - m^2}{2(2\sqrt{2} + m) \cdot 4} = \frac{6 + \sqrt{2}m}{2(2\sqrt{2} + m)}$$

且
$$\cos \angle F_1 P F_2 = \frac{(2\sqrt{2}+m)^2+m^2-16}{2m(2\sqrt{2}+m)} = \frac{(2\sqrt{2}+m)^2+(m+n)^2-(2\sqrt{2}+n)^2}{2(2\sqrt{2}+m)(m+n)}$$
得 $n = \frac{m}{\sqrt{2}m-1}$

$$\therefore \frac{S}{S_1} + \frac{S}{S_2} = \frac{|PA| \cdot |PF_1|}{|PB| \cdot |PF_2|} + \frac{|PA|}{|PF_2|} = \frac{(m+n)(m+2\sqrt{2})}{(m-2\sqrt{2})m} + \frac{m+n}{m}$$

$$key4:|PF_2| = \sqrt{2}x_P - \sqrt{2}, |AF_2| = \sqrt{2}x_A - \sqrt{2},$$
设 $\overrightarrow{PF_2} = \lambda \overrightarrow{F_2}$ 承則 $\lambda = \frac{x_P - 1}{x_{+-1}} = \frac{y_P}{-y_{+-1}}$

$$\therefore \begin{cases} x_P^2 - y_P^2 = 2 \\ (\frac{x_P - 1}{\lambda} + 1)^2 - (-\frac{y_P}{\lambda})^2 = 2 \mathbb{E}[(x_P + \lambda - 1)^2 - y_P^2 = 2\lambda^2], & \therefore x_P = \frac{\lambda + 3}{2}, & |PF_2| = \frac{\sqrt{2}(\lambda + 1)}{2}, \end{cases}$$

$$\overrightarrow{\text{III}} \frac{S}{S_1} + \frac{S}{S_2} = \frac{|PA| \cdot |PF_1|}{|PB| \cdot |PF_2|} + \frac{|PA|}{|AF_2|} = \frac{(|PF_2| + |AF_2|) \cdot (|PF_2| + 2\sqrt{2})}{|PF_2| \cdot |PF_2|} + \frac{|PF_2| + |AF_2|}{|AF_2|}$$

$$= (1 + \frac{1}{\lambda})(1 + \frac{4}{\lambda + 1}) + 1 + \lambda = 2 + \frac{5}{\lambda} + \lambda \ge 5 = 2 + 2\sqrt{5}$$

2023-12-09

(2014江西) 如图,已知双曲线 $C: \frac{x^2}{a^2} - y^2 = 1 (a > 0)$ 的右焦点F,点A, B分别在C的两条渐近线上, $AF \perp x$ 轴, $AB \perp OB$, BF / /OA(O为坐标原点).(1) 求双曲线C的方程;

(2) 过C上一点 $P(x_0, y_0)(y_0 \neq 0)$ 的直线 $l: \frac{x_0 x}{a^2} - y_0 y = 1$ 与直线AF相交于点M,与直线

 $x = \frac{3}{2}$ 相交于点N,证明:点P在C上移动时, $\frac{|MF|}{|NF|}$ 恒为定值,并求此定值.

2014江西 (1) 由已知得 $A(c, \frac{c}{a})$, 设 $B(m, -\frac{m}{a})$, 则 $\begin{cases} \frac{c}{a} + \frac{m}{a} \\ c - m \end{cases} \cdot (-\frac{1}{a}) = -1 \\ \frac{m}{a} = \frac{1}{a} \text{即} m = \frac{c}{2} \end{cases}$ 得 $a = \sqrt{3}$, ∴ C的方程为 $\frac{x^2}{3} - y^2 = 1$;

(2) 由己知得
$$M(2, \frac{2x_0-3}{3y_0}), N(\frac{3}{2}, \frac{x_0-2}{2y_0}),$$

$$\therefore \frac{|MF|}{|NF|} = \sqrt{\frac{\left(\frac{2x_0 - 3}{3y_0}\right)^2}{\frac{1}{4} + \frac{(x_0 - 2)^2}{4y_0^2}}} = \frac{2}{3} \sqrt{\frac{\frac{4x_0^2 - 12x_0 + 9}{x_0^2}}{\frac{x_0^2}{3} - 1 + x_0^2 - 4x_0 + 4}} = \frac{2}{3} \sqrt{\frac{\frac{4x_0^2 - 12x_0 + 9}{4}}{\frac{4}{3}x_0^2 - 4x_0 + 3}} = \frac{2\sqrt{3}}{3}$$
 为定值

(2007 湖北) 过点 Q(-1,-1) 作已知直线 $l: y = \frac{1}{4}x + 1$ 的平行线,交双曲线 $\frac{x^2}{4} - y^2 = 1$ 于点 M, N .

(1)证明:点Q是线段MN的中点;(2)分别过点M,N作双曲线的切线 l_1,l_2 ,证明:三条直线 l,l_1,l_2 相交于同一点;(3)设P为直线l上一动点,过点P作双曲线的切线PA,PB,切点分别为A,B.证明:点Q在直线AB上.

证明: (1) 由已知得 l_{MN} : $y+1=\frac{1}{4}(x+1)$ 即 $y=\frac{1}{4}x-\frac{3}{4}$ 代入双曲线方程得:

 $3x^2 + 6x - 25 = 0$, $\therefore x_M + x_N = -2 = 2x_Q$, $\therefore Q$ 为线段MN的中点

而 $\frac{4}{3} = \frac{1}{4} \cdot (\frac{4}{3}) + 1$, ∴ T在直线l上, ∴ l, l₁, l₂相交于同一点

(3) 设
$$P(t, \frac{1}{4}t+1)$$
, 丽 $l_{PA}: \frac{x_A x}{4} - y_A y = 1$, $l_{PB}: \frac{x_B x}{4} - y_B y = 1$

$$\therefore l_{AB}: \frac{t}{4}x - (\frac{1}{4}t + 1)y = 1, \therefore \frac{t}{4} \cdot (-1) - (\frac{t}{4} + 1) \cdot (-1) = 1 即 Q 在 AB 上, 证毕$$

