LAB #2 DECODER, DEMULTIPLEXER DAN MULTIPLEXER

TUJUAN

- 1. Untuk menyelidiki desain dan penggunaan *Decoder*, *Multiplexer* dan *Demultiplexers*
- 2. Untuk menerapkan dan mensimulasikan rangkaian tersebut

PENDAHULUAN

Decoder

Decoder adalah rangkaian logika kombinasional yang membuat *output* 2ⁿ untuk informasi biner dikodekan dari *input* bit n dan jika ada kondisi yang tidak terpakai atau "*don't care*" dalam informasi n bit, jumlah *output* kurang dari 2ⁿ.

Sebagai contoh, n to m decoder memiliki output m dan n sebagai input $m \le 2^n$.

Demultiplexer

Demultiplexer adalah sirkuit kombinasional yang menerima data dari line *input* dan *output* dari *output* sinyal 2ⁿ.

Demultiplexer disebut juga distributor data, yang berarti rangkaian logika mengirim data ke saluran sinyal *output* dipilih oleh sinyal *Select* n-bit pada garis sinyal *output* 2ⁿ setelah memasukkan data dari *input*. Untuk memilih *output* pada *output* 2ⁿ di demultiplexer, kita memerlukan setidaknya *Select* n baris.

Multiplexer

Multiplexer adalah rangkaian kombinasional yang memilih salah satu sinyal *input* untuk menghubungkannya ke sinyal *output*.

Multiplexer memiliki *output* tunggal untuk *input* data yang beragam, jadi kita menyebutnya *Data Selector*. Untuk memilih salah satu *input* dan mengirimkan ke sebuah *output*, kita memerlukan setidaknya n bit *Select input* dan memilih *input* dari kombinasi masukan n *Select*.

KEBUTUHAN

- 1. Koper lengkap HBE-LogicCircuit-Digital
- 2. Kabel tembaga

TUGAS PENDAHULUAN

- 1. Baca dan pahami Technical Guide terlebih dahulu!
- 2. Pelajari semua datasheet dari semua IC yang digunakan pada percobaan ini!

- 3. Apa itu Encoder? Jelaskan!
- 4. Tuliskan Aljabar Boolean untuk setiap output dari Decoder dan Demultiplexer!

EKSPERIMEN 1: DECODER

[Percobaan 1] Decoder 2 to 4

[Persiapan]

Alat I/O	Slide Switch (SW1, SW2), LED (D1, D2, D3, D4)
Modul	Modul AND, Modul NOT
Lain-lain	Kabel (untuk menghubungkan alat I/O dengan modul)

[Prosedur]

1. Buat rangkaian Decoder 2 to 4 seperti pada gambar Fig. II-1 di bawah ini.

Fig. II-1. Diagram Operasi 2 to 4 Decoder

2. Catat hasilnya pada Tabel II-1.

Tabel II-1. Hasil Operasi Decoder 2 to 4						
Input		Output				
S ₁ (SW1)	S ₀ (SW2)	D1	D2	D3	D4	
0	0					
0	1					
1	0					
1	1					

3. Simulasikan menggunakan DAQ. Lalu simpan *waveform*-nya dan lampirkan dalam laporan.

EKSPERIMEN 2 : DEMULTIPLEXER

[Percobaan 2] Demultiplexer 1 to 4

[Persiapan]

Alat I/O	Slide Switch (SW1, SW2, SW3), LED (D1, D2, D3, D4)
Modul	Modul AND, Modul NOT
Lain-lain	Kabel (untuk menghubungkan alat I/O dengan modul)

[Prosedur]

1. Bangun operasi *Demultiplexer* 1 to 4 seperti pada gambar Fig. II-2.

Fig. II-2. Diagram Operasi Demultiplexer 1 to 4

2. Periksa dan tulis hasilnya pada Tabel II-2.

Tabel II-2. Hasil Operasi Demultiplexer 1 to 4						
Input			Output			
S ₁ (SW1)	S ₀ (SW2)	I (SW3)	D1	D2	D3	D4
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

3. Simulasikan menggunakan DAQ. Lalu simpan *waveform*-nya dan lampirkan dalam laporan.

EKSPERIMEN 3: MULTIPLEXER

[Percobaan 3] Multiplexer 4 to 1

[Persiapan]

Alat I/O	Slide Switch (SW1, SW2, SW4, SW5, SW6, SW7), LED (D1)
Modul	Modul AND, Modul NOT, Modul OR
Lain-lain	Kabel (untuk menghubungkan alat I/O dengan modul)

[Prosedur]

1. Gunakan semua modul yang dibutuhkan untuk membangun rangkaian *Multiplexer* 4 *to* 1 seperti pada Fig. II-3.

Fig. II-3. Diagram Operasi Multiplexer 4 to 1

2. Catat hasilnya pada Tabel II-3.

Tabel II-3. Hasil Operasi Multiplexer 4 to 1						
Input						Output
S_1 (SW1)	S_0 (SW2)	I ₀ (SW4)	I ₁ (SW5)	I ₂ (SW6)	I ₃ (SW7)	Y (D1)
0	0	0	0	0	0	
0	0	1	0	0	0	
0	1	0	0	0	0	
0	1	0	1	0	0	
1	0	0	0	0	0	
1	0	0	0	1	0	
1	1	0	0	0	0	
1	1	0	0	0	1	

3. Simulasikan menggunakan DAQ. Lalu simpan *waveform*-nya dan lampirkan dalam laporan.

TUGAS MODUL

- 1. Simulasikan semua percobaan di Circuit Maker
- 2. Apa fungsi S_0 and S_1 pada semua percobaan?
- 3. Jelaskan cara kerja Decoder, Demultiplexer, dan Multiplexer!
- 4. Apa bedanya Decoder dan Demultiplexer?
- 5. Simulasikan rangkaian 3 to 8 Decoder dan 8 to 1 Multiplexer di Circuit Maker!
- 6. Jelaskan 7-Segment Decoder dan logic diagram-nya! Lampirkan data sheet-nya!