lamp problems

 $\underline{\text{problem}}^1$ n lamps in a row. initial random position. evolution: a lamp will be lit at time t+1 iff its two neighbors shined the same at time t. an edge lamp at time t+1 takes its neighbors state at time t.² determine the n for which no matter the starting states, the lamps will eventually all be lit forever.

solution³ iff n+1 is a power of two.

restatement over F_2 , where (0,0) = (0,1), the evolution is summing (xoring) the neighbors. i.e. is linear and given by $A \in F_2^{n \times n}$, $A_{ij} = \delta_{|i-j|=1}$. the question reads: for which n is A nilpotent. we call $x \in F_2^n$ s.t. $\exists k : A^k x = \vec{0}$ terminating. observation $\ker A = \{(1,0,1,0,\ldots,0,1,0,1),\vec{0}\}$ if n odd and $\{\vec{0}\}$ if n even. in particular A invertible for n even. observation given a length n vector \vec{x} , the length 2n+1 symmetric vector $(\vec{x},0,\vec{x})^4$ evolves to remain symmetric with n as its central term, with each side evolving as if it were unaffected by the other terms, just as a length n vector would. observation as even n fail, it suffices to show n works $\iff 2n+1$ works.

 $\underline{\longleftarrow}$ fix $\vec{x} \in F_2^n$. as any vector of length 2n+1 terminates, $(\bar{x},0,\vec{x})$ terminates, meaning x does.

 \implies fix $\vec{v} \in F_2^{2n+1}$. then $\vec{v} + \vec{v}$ is symmetric with 0 as the center term. hence terminating. i.e. $A^k(\vec{v} + \vec{v}) = \vec{0}$ and in other words $A^k \vec{v}$ is symmetric [as A and \vec{v} commute]. hence $A^{k+1} \vec{v}$ is symmetric with 0 at its center, and so terminates.

¹Gillis math olympiad '15

²e.g. $(on,off,on,on) \rightarrow (off,on,off,on) \rightarrow (on,on,on,off) \rightarrow (on,on,off,on)...$

³this is my personal solution, there are others.

⁴where $\bar{x} = (x_n, \dots, x_1)$ if $x = (x_1, \dots, x_n)$ and a vector (t_1, \dots, t_n) is symmetric if $t_i = t_j$ for i + j = n + 1.