Linear Algebra Done Right Solutions

Axler. S. (2024) Linear Algebra Done Right. 4th edn. February 19, 2024

Contents

1.B. Definition of Vector Space

1. Vector Spaces

1.A. \mathbb{R}^n and \mathbb{C}^n

1.A. \mathbf{R}^n and \mathbf{C}^n

Chapter 1 Vector Spaces

Exercise 1.A.1. Show that $\alpha + \beta = \beta + \alpha$ for all $\alpha, \beta \in \mathbb{C}$.

Solution. If $\alpha = x + yi$ and $\beta = u + vi$, then $\alpha + \beta = (x + u) + (y + v)i = (u + x) + (v + y)i = \beta + \alpha,$

where we have used the commutativity of addition in \mathbf{R} .

Exercise 1.A.2. Show that $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$ for all $\alpha, \beta \in \mathbb{C}$.

Solution. If $\alpha = x + yi$, $\beta = u + vi$, and $\lambda = s + ti$, then $(\alpha + \beta) + \lambda = ((x+u) + (y+v))i + \lambda = ((x+u) + s) + ((y+v) + t)i$

 $= (x + (u + s)) + (y + (v + t))i = \alpha + ((u + s) + (v + t)i) = \alpha + (\beta + \lambda),$ where we have used the associativity of addition in \mathbf{R} .

Exercise 1.A.3. Show that $(\alpha\beta)\lambda = \alpha(\beta\lambda)$ for all $\alpha, \beta, \lambda \in \mathbb{C}$.

Solution. If $\alpha = x + yi$, $\beta = u + vi$, and $\lambda = s + ti$, then $(\alpha\beta)\lambda = [(xu - yv) + (xv + yu)i]\lambda$

= [(xu)s - (yv)s - (xv)t - (yu)t] + [(xu)t - (yv)t + (xv)s + (yu)s]i= [x(us) - x(vt) - y(ut) - y(vs)] + [x(ut) + x(vs) + y(us) - y(vt)]i= [x(us - vt) - y(ut + vs)] + [x(ut + vs) + y(us - vt)]i

= [(xu - yv)s - (xv + yu)t] + [(xu - yv)t + (xv + yu)s]i

 $= \alpha[(us - vt) + (ut + vs)i]$ $= \alpha(\beta\lambda),$ where we have used several algebraic properties of \mathbf{R} .

Exercise 1.A.4. Show that $\lambda(\alpha + \beta) = \lambda \alpha + \lambda \beta$ for all $\lambda, \alpha, \beta \in \mathbb{C}$.

Solution. If $\alpha = x + yi$, $\beta = u + vi$, and $\lambda = s + ti$, then $\lambda(\alpha + \beta) = [s(x+u) - t(y+v)] + [s(y+v) + t(x+u)i]$ = (sx + su - ty - tv) + (sy + sv + tx + tu)i

= [(sx - ty) + (sy + tx)i] + [(su - tv) + (sv + tu)i] $=\lambda\alpha+\lambda\beta$.

where we have used distributivity in \mathbf{R} .

of addition in \mathbf{C} (Exercise 1.A.1).

mutativity of multiplication in \mathbf{C} (1.4).

Exercise 1.A.7. Show that

i.e., $8z^3 = 8$. It follows that $z^3 = 1$.

such that $\alpha\beta = 1$.

 $\alpha + \beta = 0.$ **Solution.** Suppose that $\alpha = x + yi$. Let $\beta = -x - yi$ and observe that $\alpha + \beta = (x - x) + (y - y)i = 0 + 0i = 0.$

Exercise 1.A.5. Show that for every $\alpha \in \mathbb{C}$, there exists a unique $\beta \in \mathbb{C}$ such that

where we have used the associativity of addition in \mathbb{C} (Exercise 1.A.2) and the commutativity

Exercise 1.A.6. Show that for every $\alpha \in \mathbb{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbb{C}$

Solution. Suppose that $\alpha = x + yi$. Since $\alpha \neq 0$, it must be the case that x and y are not

 $\alpha\beta = (x+yi)\left(\frac{x}{x^2+y^2} - \frac{y}{x^2+y^2}i\right) = \frac{x^2+y^2}{x^2+y^2} + \frac{xy-xy}{x^2+y^2}i = 1 + 0i = 1.$

both zero, so that $x^2 + y^2 \neq 0$. Let $\beta = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}i$ and observe that

To see that β is unique, suppose that β' also satisfies $\alpha + \beta' = 0$ and notice that $\beta = \beta = 0 = \beta + (\alpha + \beta') = (\alpha + \beta) + \beta' = 0 + \beta' = \beta',$

To see that β is unique, suppose β' also satisfies $\alpha\beta'=1$ and notice that $\beta = \beta 1 = \beta(\alpha\beta') = (\alpha\beta)\beta' = 1\beta' = \beta'$ where we have used the associativity of multiplication in C (Exercise 1.A.3) and the com-

is a cube root of 1 (meaning that its cube equals 1). **Solution.** Let $z = \frac{-1+\sqrt{3}i}{2}$, so that $2z = -1 + \sqrt{3}i$. Observe that

 $\Rightarrow (2z)^3 = \left(4z^2\right)(2z) = \left(-2 - 2\sqrt{3}i\right)\left(-1 + \sqrt{3}i\right) = 2 - 2\sqrt{3}i + 2\sqrt{3}i + 6 = 8,$

 $(2z)^2 = 4z^2 = (-1 + \sqrt{3}i)^2 = 1 - 2\sqrt{3}i - 3 = -2 - 2\sqrt{3}i$

Exercise 1.A.8. Find two distinct square roots of i.

Exercise 1.A.9. Find $x \in \mathbb{R}^4$ such that

Solution. If there was such a λ , then

Solution. If $x = (x_1, ..., x_n)$, then

Solution. If $x = (x_1, ..., x_n)$, then

Exercise 1.A.13. Show that 1x = x for all $x \in \mathbf{F}^n$.

Exercise 1.A.3).

However,

 $\frac{-1+\sqrt{3}i}{2}$

 $2z_1^2 = (1+i)^2 = 2i \implies z_1^2 = i,$ i.e. z_1 is a square root of i. Furthermore, $z_2^2 = (-z_1)^2 = z_1^2 = i$, so that z_2 is a square root of i also.

(4, -3, 1, 7) + 2x = (5, 9, -6, 8).

Solution. Let $z_1=\frac{1+i}{\sqrt{2}}$ and $z_2=-z_1$ (z_1 and z_2 are distinct since $z_1\neq 0$) and observe that

Solution. The unique solution is $x = (\frac{1}{2}, 6, -\frac{7}{2}, \frac{1}{2})$. **Exercise 1.A.10.** Explain why there does not exist $\lambda \in \mathbb{C}$ such that $\lambda(2-3i, 5+4i, -6+7i) = (12-5i, 7+22i, -32-9i).$

 $\lambda(2-3i) = 12-5i \implies \lambda = \frac{12-5i}{2-3i} = 3+2i.$

 $(3+2i)(-6+7i) = -32+9i \neq -32-9i.$

Exercise 1.A.11. Show that (x + y) + z = x + (y + z) for all $x, y, z \in \mathbf{F}^n$.

 $(x+y)+z=(x_1+y_1,...,x_n+y_n)+z=((x_1+y_1)+z_1,...,(x_n+y_n)+z_n)$

Solution. If $x = (x_1, ..., x_n), y = (y_1, ..., y_n), \text{ and } z = (z_1, ..., z_n), \text{ then}$

Exercise 1.A.12. Show that (ab)x = a(bx) for all $x \in \mathbf{F}^n$ and all $a, b \in \mathbf{F}$.

 $(ab)x = ((ab)x_1, ..., (ab)x_n) = (a(bx_1), ..., a(bx_n)) = a(bx_1, ..., bx_n) = a(bx),$

where we have used the associativity of multiplication in F (we proved this for C in

 $1x = (1x_1, ..., 1x_n) = (x_1, ..., x_n) = x, \\$

where we have used that $1x_j = x_j$ for any $x_j \in \mathbf{F}$. **Exercise 1.A.14.** Show that $\lambda(x+y) = \lambda x + \lambda y$ for all $\lambda \in \mathbf{F}$ and all $x, y \in \mathbf{F}^n$. **Solution.** If $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$, then

 $\lambda(x+y) = \lambda(x_1 + y_1, ..., x_n + y_n)$

 $= (\lambda(x_1 + y_1), ..., \lambda(x_n + y_n))$

 $=(\lambda x_1 + \lambda y_1, ..., \lambda x_n + \lambda y_n)$

 $=\lambda(x_1,...,x_n)+\lambda(y_1,...,y_n)$

 $=(\lambda x_1,...,\lambda x_n)+(\lambda y_1,...,\lambda y_n)$

Solution. If $x = (x_1, ..., x_n)$, then $(a+b)x = (a+b)(x_1, ..., x_n)$ $=((a+b)x_1,...,(a+b)x_n)$ $=(ax_1+bx_1,...,ax_n+bx_n)$

 $=(ax_1,...,ax_n)+(bx_1,...,bx_n)$

 $= a(x_1,...,x_n) + b(x_1,...,x_n)$

The phrase a "condition can be replaced" in a definition means that the collection of objects satisfying the definition is unchanged if the original condition is replaced with the new condition.

the product $\lambda f(x)$ is scalar multiplication in V. We now show that V^S with these definitions satisfies each condition in definition (1.20). Commutativity. Let $f, g \in V^S$ and $x \in S$ be given. Observe that (f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x),where we have used the commutativity of addition in V for the second equality. It follows that f + g = g + f. **Associativity.** Let $f, g, h \in V^S$ and $x \in S$ be given. Observe that

where we have used the associativity of addition in V for the third equality. It follows that (f+g)+h=f+(g+h). Similarly, let $f\in V^S$ and $a,b\in \mathbf{F}$ be given. Observe that, for any

((ab)f)(x) = (ab)f(x) = a(bf(x)) = a((bf)(x)) = (a(bf))(x),

where we have used the associativity of scalar multiplication in V for the second equality. It

Additive identity. We claim that the additive identity in V^S is the function $0: S \to V$ given by 0(x) = 0 for any $x \in S$; the 0 on the right-hand side is the additive identity in V.

(f+0)(x) = f(x) + 0(x) = f(x) + 0 = f(x).

Additive inverse. For $f \in V^S$, define $g: S \to V$ by g(x) = -f(x) for $x \in S$, where -f(x)is the additive inverse in V of f(x). We claim that g is the additive inverse of f. To see this,

(f+g)(x) = f(x) + g(x) = f(x) + (-f(x)) = 0 = 0(x);

(1f)(x) = 1f(x) = f(x),

Distributive properties. Let $a \in \mathbf{F}$ and $f, g \in V^S$ be given. Observe that, for any $x \in S$,

where we have used the first distributive property in V for the third equality. It follows that a(f+g)=af+ag. Similarly, let $a,b\in \mathbf{F}$ and $f\in V^S$ be given. For any $x\in S$, observe that

((a+b)f)(x) = (a+b)f(x) = af(x) + bf(x) = (af)(x) + (bf)(x) = (af+bf)(x),

 $(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2)$

(a+bi)(u+iv) = (au-bv) + i(av+bu)

Prove that with the definitions of addition and scalar multiplication as above, $V_{\mathbf{C}}$ is a

Think of V as a subset of $V_{\mathbf{C}}$ by identifying $u \in V$ with u + i0. The construction of $V_{\mathbf{C}}$ from V can then be thought of as generalizing the construction of

= af(x) + ag(x) = (af)(x) + (ag)(x) = (af + ag)(x),

= f(x) + (g(x) + h(x)) = f(x) + (g+h)(x) = (f + (g+h))(x),

((f+g)+h)(x) = (f+g)(x) + h(x) = (f(x)+g(x)) + h(x)

Exercise 1.B.8. Suppose V is a real vector space. • The complexification of V, denoted by $V_{\mathbf{C}}$, equals $V \times V$. An element of $V_{\mathbf{C}}$ is an ordered pair (u, v), where $u, v \in V$, but we write this as u + iv. • Addition on $V_{\mathbf{C}}$ is defined by

• Complex scalar multiplication on $V_{\mathbf{C}}$ is defined by

Solution. We need to verify each condition in definition (1.20).

additive identity in V. Indeed, for any $u + iv \in V_{\mathbf{C}}$ we have

and Exercise 1.A.3, except instead of using the algebraic properties of \mathbf{R} , we are using the algebraic properties of V.

(1+0i)(u+iv) = (1u-0v) + i(1v+0u) = u+iv.

= (a+bi)(u+iv) + (c+di)(u+iv),

 $=(x_1+(y_1+z_1),...,x_n+(y_n+z_n))=x+(y_1+z_1,...,y_n+z_n)=x+(y+z),$ where we have used the associativity of addition in \mathbf{F} (we proved this for \mathbf{C} in Exercise 1.A. 2).

where we have used distributivity in \mathbf{F} (we proved this for \mathbf{C} in Exercise 1.A.4). **Exercise 1.A.15.** Show that (a+b)x = ax + bx for all $a, b \in \mathbf{F}$ and all $x \in \mathbf{F}^n$.

=ax+bx,

where we have used distributivity in \mathbf{F} (we proved this for \mathbf{C} in Exercise 1.A.4).

1.B. Definition of Vector Space

be the case that -(-v) = v.

v + 3x = w.

identity of V.

 $t \in \mathbf{R}$ define

space over **R**? Explain.

is a vector space with these definitions.

the sum $f + g \in V^S$ is the function

uct $\lambda f \in V^S$ is the function

 $x \in S$,

follows that (ab)f = a(bf).

It follows that f + 0 = f.

it follows that f + g = 0.

let $x \in S$ be given and observe that

for all $u_1, v_1, u_2, v_2 \in V$.

complex vector space.

 \mathbf{C}^n from \mathbf{R}^n .

for all $a, b \in \mathbf{R}$ and all $u, v \in V$.

Indeed, for any $f \in V^S$ and $x \in S$ we have

and

Solution. For $v, w, x \in V$, notice that

Exercise 1.B.1. Show that -(-v) = v for every $v \in V$.

 $=\lambda x + \lambda y$,

Solution. It will suffice to show that if av = 0 and $a \neq 0$, so that a^{-1} exists, then v = 0. Indeed, $av = 0 \quad \Rightarrow \quad a^{-1}(av) = 0 \quad \Rightarrow \quad (a^{-1}a)v = 0 \quad \Rightarrow \quad 1v = 0 \quad \Rightarrow \quad v = 0.$

Exercise 1.B.3. Suppose $v, w \in V$. Explain why there exists a unique $x \in V$ such that

 $v + 3x = w \quad \Leftrightarrow \quad 3x = w - v \quad \Leftrightarrow \quad x = \frac{1}{3}(w - v).$

Exercise 1.B.4. The empty set is not a vector space. The empty set fails to satisfy only one of the requirements listed in the definition of a vector space (1.20). Which one?

Exercise 1.B.5. Show that in the definition of a vector space (1.20), the additive

0v = 0 for all $v \in V$.

Here the 0 on the left side is the number 0, and the 0 on the right side is the additive

Solution. If V satisfies all of the conditions in (1.20), then as shown in (1.30) we have 0v = 0for all $v \in V$. Suppose that V satisfies all of the conditions in (1.20), except we have replaced the additive inverse condition with the condition that 0v = 0 for all $v \in V$. We want to show

Exercise 1.B.6. Let ∞ and $-\infty$ denote two distinct objects, neither of which is in **R**. Define an addition and scalar multiplication on $\mathbb{R} \cup \{\infty, -\infty\}$ as you could guess from the notation. Specifically, the sum and product of two real numbers is as usual, and for

 $t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \qquad t(-\infty) = \begin{cases} \infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ -\infty & \text{if } t > 0, \end{cases}$

 $t + (-\infty) = (-\infty) + t = (-\infty) + (-\infty) = -\infty,$

With these operations of addition and scalar multiplication, is $\mathbf{R} \cup \{\infty, -\infty\}$ a vector

 $(1+\infty) + (-\infty) = \infty + (-\infty) = 0 \neq 1 = 1 + 0 = 1 + (\infty + (-\infty)).$

Exercise 1.B.7. Suppose S is a nonempty set. Let V^S denote the set of functions from S to V. Define a natural addition and scalar multiplication on V^S , and show that V^S

Solution. We define addition and scalar multiplication on V^S as in (1.24), i.e. for $f, g \in V^S$

the addition f(x) + g(x) is vector addition in V. Similarly, for $\lambda \in \mathbf{F}$ and $f \in V^S$, the prod-

 $\lambda f : S \rightarrow V$

 $x \mapsto \lambda f(x);$

 $x \mapsto f(x) + g(x);$

 $f+g: S \to V$

 $t + \infty = \infty + t = \infty + \infty = \infty$,

 $\infty + (-\infty) = (-\infty) + \infty = 0.$

Solution. This is not a vector space over **R**, since addition is not associative:

Solution. The empty set does not contain an additive identity.

inverse condition can be replaced with the condition that

Solution. Since v + (-v) = 0 and the additive inverse of a vector is unique (1.27), it must

Exercise 1.B.2. Suppose $a \in \mathbf{F}, v \in V$, and av = 0. Prove that a = 0 or v = 0.

that for each $v \in V$, there exists an element $w \in V$ such that v + w = 0. Indeed, for $v \in V$, let w = (-1)v and observe that v + w = 1v + (-1)v = (1 - 1)v = 0v = 0.

where we have used the second distributive property in V for the second equality. It follows that (a+b)f = af + bf. We may conclude that V^S is a vector space over \mathbf{F} .

Multiplicative identity. Let $f \in V^S$ and $x \in S$ be given. Observe that

where we have used that 1v = v for any $v \in V$. It follows that 1f = f.

(a(f+g))(x) = a(f+g)(x) = a((f(x) + g(x)))

Commutativity. The proof for commutativity is essentially the same as in Exercise 1.A.1, except instead of using the commutativity of addition in \mathbf{R} , we are using the commutativity of addition in V. **Associativity.** The proofs for associativity are essentially the same as in Exercise 1.A.2

Additive identity. We claim that the additive identity in $V_{\mathbf{C}}$ is 0+i0, where 0 is the

(u+iv) + (0+i0) = (u+0) + i(v+0) = u+iv.**Additive inverse.** We claim that the additive inverse of an element $u + iv \in V_{\mathbf{C}}$ is the element (-u) + i(-v), where -u is the additive inverse of u in V. Indeed, (u+iv) + ((-u)+i(-v)) = (u+(-u)) + i(v+(-v)) = 0 + i0.Multiplicative identity. For any $u + iv \in V_{\mathbf{C}}$, we have

Distributive properties. The proof for the first distributive property is essentially the same as in Exercise 1.A.4, except instead of using distributivity in \mathbf{R} , we are using the first distributive property of V. For the second distributive property, let $a + bi, c + di \in \mathbb{C}$ and $u + iv \in V_{\mathbf{C}}$ be given. Observe that ((a+bi) + (c+di))(u+iv) = ((a+c) + (b+d)i)(u+iv)= ((a+c)u - (b+d)v) + i((a+c)v + (b+d)u)= (au + cu - bv - dv) + i(av + cv + bu + du)= ((au - bv) + i(av + bu)) + ((cu - dv) + i(cv + du))

where we have used the second distributive property for V for the third equality.