TD3: Intégrales Généralisées

Exercice 1. Déterminer la nature des intégrales suivantes et, le cas échéant, calculer la valeur:

$$1. \int_0^{+\infty} \cos(2t+1) \, \mathrm{d}t,$$

2.
$$\int_0^1 (1+t)^{-2} \ln t \, dt$$
,

3.
$$\int_0^{+\infty} (1+t^2)^{-2} dt$$
,

4.
$$\int_{1}^{+\infty} (1+t)^{-2} \ln t \, dt$$
,

5.
$$\int_0^{+\infty} (t^2 - 1)^{-1} dt$$
,

6.
$$\int_a^b ((t-a)\,(b-t))^{-1/2}\,\mathrm{d}t,$$
 où $a\leq b$ sont deux réels.

Exercice 2. Pour tout réel $a \neq 0$ et tout entier $n \in \mathbb{N}^*$, on définit

$$f_n(a) = \int_0^{+\infty} \frac{\mathrm{d}t}{(t^2 + a^2)^n}$$

Montrer par récurrence que les intégrales $f_n(a)$ convergent et établir une formule de récurrence entre $f_{n+1}(a)$ et $f_n(a)$. En déduire la valeur de $f_n(a)$ pour tout n.

Exercice 3. Déterminer la nature des intégrales suivantes:

1.
$$\int_0^1 t^{-2} \sin t \, dt$$
,

2.
$$\int_0^1 (1 - \cos t) (\sin t)^{-4} dt$$
,

3.
$$\int_0^1 (e^t - 1) |\ln(1+t)|^{-1.5} dt$$
,

4.
$$\int_0^1 ((1+t)^{3.5} - 1) \cot t \, dt$$
,

5.
$$\int_0^{+\infty} t (1+t^2)^{-\alpha} \ln t \, dt$$
,

6.
$$\int_1^2 t^{-1} (\ln t)^{-3} dt$$
,

7.
$$\int_{2/\pi}^{+\infty} \ln(\cos(1/t)) \, \mathrm{d}t,$$

8.
$$\int_0^{+\infty} t^{1/2} \sin(t^{-1/2}) (\ln(1+t))^{-1} dt$$
,

9.
$$\int_0^{+\infty} x^{-1/2} \exp(-\sqrt{x^2 + x + 1}) dx$$
,

$$10. \int_0^{+\infty} t^{-\alpha} \sin t \, \mathrm{d}t,$$

11.
$$\int_0^{+\infty} s^{-\beta} ((1+s)^{\alpha} - s^{\alpha}) ds$$
,

12.
$$\int_{e^2}^{+\infty} t^{-\alpha} (\ln t)^{-\beta} (\ln \ln t)^{-\gamma} dt$$
,

13.
$$\int_0^{+\infty} \sin t^2 dt.$$

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue, T périodique. Montrer que $\int_T^{+\infty} t^{-1} f(t) dt$ converge si et seulement si $\int_0^T f(t) dt = 0$.

Exercice 5. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue décroissante et $\int_0^{+\infty} f(x) dx$ converge. Montrer que $\lim_{x \to +\infty} x f(x) = 0$.

Exercice 6. Soit $f: \mathbb{R}_{\geq 0} \to \mathbb{C}$ une fonction à valeurs complexes deux fois différentiable, et la dérivée seconde $f'': \mathbb{R}_{\geq 0} \to \mathbb{C}$ est Riemann-intégrable sur tous les intervaux fermés $[a,b] \subseteq \mathbb{R}_{\geq 0}$. Si les intégrales $\int_0^{+\infty} |f(x)|^2 dx$, $\int_0^{+\infty} |f''(x)|^2 dx$ convergent, on va montrer que l'intégrale $\int_0^{+\infty} |f'(x)|^2 dx$ converge.

- 1. Sans perte de généralité, on peut supposer que la fonction f est à valeurs réels. Pourquoi?
- 2. En utilisant l'inégalité $2|f(x)|f''(x)| \le |f(x)|^2 + |f''(x)|^2$, montrer que l'intégrale $\int_0^{+\infty} |f(x)|f''(x)| dx$ converge. On note $M := |f(0)|f'(0)| + \int_0^{+\infty} |f(x)|f''(x)| dx$.
- 3. Afin de prouver que $\int_0^{+\infty} |f'(x)|^2 dx$ converge, il suffit de montrer que $\int_0^E |f'(x)|^2 dx = \int_0^E (f'(x))^2 dx \le M$ pour tout réel $E \ge 0$. On montre par l'absurde. Sinon, il existe $E \ge 0$, tel que $\int_0^E (f'(x))^2 > M$. Montrer que pour tout réel $x \ge E$, on a f(x) f'(x) > 0. [Indication: considérer la formule de Newton-Leibniz: f(x) f'(x) f(0) $f'(0) = \int_0^x (f(t)) f''(t) + (f'(t))^2 dt$]
- 4. En déduire que la fonction $g(x) = (f(x))^2$ est strictement croissante sur $[E, +\infty[$. Montrer que $\int_0^{+\infty} |f(x)|^2 dx$ diverge. Conclure.