第六章 电视显示器原理

石东新

sdx@cuc. edu. cn 中国传媒大学信息工程学院

石东斯 信息工程学院 广播电视工程系

彩色电视显示器件: CRT(显像管) LCD(液晶显示器) PDP(等离子体显示器) OLED(有机电激发光二极 DLP(数字光处理)

中国传媒大学 电视原理 .17.11.29

1、 黑白显像管的结构

---行场偏转线圈、 中心位置调整磁片。

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29

石东斯 信息工程学院 广播电视工程系

第一节 CRT显像管

一、黑白显像管

中国传媒大学 电视原理 .17.11.29

高压阳极的高压由维体壁 上的高压嘴进入(和高压帽 相接)。锥体内的石墨导电 层和高压阳极相接,形成等 电位空间,使电子束按直线 👸 射至荧光屏。

维体外表面的石墨导电层 和地相接,作用:防止玻壳的 外表面和厚整电荷。和电影 外表面积累静电荷;和内表结 面石墨导电层构成电容, 对高压起滤波作用。

石东斯 信息工程学院 广播电视工程系

2、电子枪的作用

作用: 发射电子流、调制电子流、聚焦电子流和加速电子流。 结构: 五极式电子枪: 调制极(控制栅极)、第一阳极(加速极)、第二阳极、第四阳极、第三阳极(聚焦极)。

五极式电子枪结构

石东斯 信息工程学院 广播电视工程系

说明: 五极式电子枪用于黑白显象管,还有四极式电子枪(无 第二阳极),用于彩色显象管(高压达22至27KV,防止和加 速极之间打火)。

- (A) 灯丝F-- 加热阴极;
- (B) 阴极K(发射电子80~100V直流电压),加负极性信号;
- (C) 控制栅极G(调制极,开孔圆筒,使电子束截止,电 压0V);

石灰斯 信息工程管辖 广播由报工程集

五极式电子枪结构

(D) 加速极A₁ (第一阳极, 300至400伏, 和控制栅极、 阴极构成聚焦的第一电子透镜(浸没透镜),使从阴极平行

第二透镜 (主要焦)

五极式电子枪结构

石龙斯 信息工程管辖 广播由租工程务

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29

(E) 第二阳极A₂、第三阳极 (聚焦极) A₃、第四阳极A₄ (第二阳极和第四阳极

各为一节金属圆筒,

中间有第三阳极即聚焦极, 二、四阳极加相同电压 (8000至16000伏)。

第二阳极和加速极为 预聚焦透镜(双电位透镜, 第二电子透镜),

第二阳极第四阳极和聚焦极 组成起主要聚焦作用的透镜

::(**1**:----五极式电子枪结构

(单透镜,第三电子透镜)。第三阳极加100至+450伏。 调节电压可达到聚焦。

3、对电子枪的要求:

- (1) 能产生足够大的高速电子束 -----以得到足够高的亮度;
- (2) 要有足够细小的电子束聚焦点
 - --以获得高分解力;
- (3)有陡峭的调制特性曲线(电子東电流和栅 阴极间电压的关系)
 - -----使小的图像信号电压变化可获得高对比度图像。

石东斯 信息工程学院 广播电视工程系 石东斯 信息工程学院 广播电视工程集

调制 极 G-4、 显像管的调制特性和电视系统的总传输特性 显像管的调制特性 电子束电流 i_K和控制极(栅极)一阴极间电压u_{gk}的关系: V_H +0 V_L $i_{\scriptscriptstyle K} = f \; (u_{\scriptscriptstyle gk})$ 说明 (1) 正常工作时, u_{gk}为负值, 即控制极电压低于阴极电压; (2) i_K随u_{gk}增大而增大; (3) 加速极电压U_k增大, i_K也要增大; (4) 通常UA是固定值, $i_K = K \left(u_{gK} - u_{gK0} \right)^{\gamma}$ u_{ako}为截止电压(和加速极电压有关), i_K和u_{ak}为指数关系。

石东斯 信息工程学院 广播电视工程集

中国传媒大学 电视原理 .17.11.29 调制极G V_H #0 V_L 白电平. 白电平 正极性 负极性 石东斯 信息工程学院 广播电视工程:

中国传媒大学 电视原理 .17.11.29

显像管的电-光变换特性

显像管的激励电压Up到重现亮度Bp。

$$B_P = K_3 U_P^{\gamma_3}$$

电视系统的总传输特性:

重现图像亮度Bp和景物亮度Bs的关系。

$$B_{P} = K_{3}K_{2}^{\gamma_{3}}K_{1}^{\gamma_{2}\gamma_{3}}B_{S}^{\gamma_{1}\gamma_{2}\gamma_{3}} = KB_{S}^{\gamma}$$

 $\gamma=\gamma_1\gamma_2\gamma_3$ γ 为电视系统的非线性系数, γ =1,重现图像亮度和景物亮度 成正比,无亮度层次失真。

石东斯 信息工程学院 广播电视工程系

者/+1,会产生亮度失真。 者/+1的恒定值,出现的亮度失真称为均匀性亮度失真。 其中。 石东斯 信息工程学院 广播电视工程

中国传媒大学 电视原理 .17.11.29

二、自会聚彩色显像管

彩色显像管根据结构不同有:

三枪三束管

一·他—·木·日 单枪三束管(加速极、聚焦极和高压阳极是公共的) 自会聚管 (为三枪三束型)

玻璃支架 / 兰电子枪

石东斯 信息工程学院 广播电视工程系

石东斯 信息工程学院 广播电视工程系

彩色显像管白平衡: 当彩色显像管在显示黑白图像时,或者显示彩色图像中的黑白景物时,即只要三个基色信号电压幅度相等,不出现任何彩色色调。

摄像机<u>白平</u>衡、当拍摄黑白图像,或者彩色图像中的黑白景物时,输出的三个基色信号 由压<u>感</u>度相等。

- 彩色显像管白平衡不好的原因:
 (1) 三支电子枪调制特性(束电流和控制栅极基色电压的关系)的斜率、截止点不同;
 (2) 三色荧光粉发光效率不同。

白平衡调整又分为暗平衡调整和亮平衡调整两方面。

石东斯 信息工程学院 广播电视工程系

相对光输出 白平衡调整前调制曲线

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29

1、 暗平衡及调整

石东斯 信息工程学院 广播电视工程系

1、 唱下例及调整 暗平衡实质上是指低亮度区域的白平 衡,对于自会聚彩色显像等,三个电 子枪的阴极是独立的,可单独改变电 压,因此采用改变三个阴极的偏置电 压,使三个电子枪都在基色消隐电平 截止。

一般需用三个电位器进行各自调整。

2、 亮平衡及调整

石东斯 信息工程学院 广播电视工程系

亮平衡是指高亮度区域的白

的幅度,即用三基色信号的幅度 大小来补偿调制特性曲线斜率的 不同和荧光粉发光效率的差异。

例如,红荧光粉发光效率低, 就应增大红基色信号的幅度。一 般只需两个电位器用来调整两个

石东斯 信息工程学院 广播电视工程集

调整亮平衡 📵 白金果苦白平衡调整动画演示

第二节 彩色液晶显示器件

一、液晶

液晶显示器(Liquid Crystal Display, LCD)的主要构成材料为液晶。

1、液晶的概念

最早报告发现液晶的是奥地利植物学家<mark>莱尼茨尔</mark>。一般来说,液晶是指在某一 温度范围内,从外观看属于具有流动性的液体,但同时又是具有光学双折射性 的晶体,具有规则性分子排列。构成液晶材料分子呈细长的棒状,长度约几纳 米,宽度约十分之几纳米。

根据液晶的生成条件,可把它分为两类:

1) 溶致液晶 2) 热致液晶。 石东斯 信息工程学院 广播电视工程系

石东斯 信息工程学院 广播电视工程集

中国传媒大学 电视原理 .17.11.29

液晶的特点:

具有晶体的特性:各向异性,但液晶分子的排列不像晶体那样完全有序、坚固,因此,外界微弱的电场、磁场、温度等刺激都极易改变液晶分子的排列方向,从而改变液晶的光学性质。液晶显示器件即是基于这一特性。

用于显示器件的液晶是可工作于室温的<mark>热致液晶,它在常温范围内</mark> 呈现液晶性质,高温或高寒环境不能工作。

2、液晶的分子如何排列?

名集新 信息工程学院 广播电视工程系

石东斯 信息工程学院 广播电视工程系

向列型nematics 美棒状分子的位置显无规则,但棒状分子平行棒列。 中围传牒大学 电视原理 .17.11.29

近晶型 smectics

近晶型

棒状分子分层排列,但每层分子排列方向一致。

石东斯 信息工程学院 广播电视工程系

胆甾型 分子排列是多层重量而成,每层内 的分子排列与向列型液晶相似,但 冬层向分子排列方向发生一定的偏 转;

石东斯 信息工程学院 广播电视工程系

3、 液晶的物理特性---各向异性

- (1) 自然光和偏振光
- 光的电矢量和磁矢量的方向均
- 垂直于波的传播方向。
- 等用电矢量代表光矢量(即光的振动方向)。 一般光源同时存在各个方向的光矢量,并在所有的方向上电场强度的振幅都相等,这样的光称为自然光。
- 线偏振光 (简称偏振光): 在传播过程中, 光矢量方 向只在某一固定方向上的光。
- 自然光可以用两个光矢量是相互垂直、大小相等、相位 无关联的线偏振光表示。

石东斯 信息工程学院 广播电视工程系

中国传媒大学 电视原理 .17.11.29

"起傾益" 能使自然光成为线偏振光的装置。 起偏器是一种偏振片,将一种特殊材料涂在透明薄片上,能吸收来一方向的光振动,而只让与这个方向垂直的光振动通过。 起偏器允许通过的光矢量的方向称为透光轴。

用于检验偏振光的偏振片称为检偏器。检偏器只允许某一个方向的光振动通过。 起偏器可作为检偏器使用。

中国传媒大学 电视原理 .17.11.29

液晶的物理特性-----各向异性

中国传媒大学 电视原理 .17.11.29

(沿分子长轴和短轴方向的物理性质是不同的) (A) 液晶的光学双折射特性

一束光线进入液晶会出现两束折射光,

(a) 光线从空气垂直液晶表面 射入液晶时,正常光不发生折射, 异常光将发生折射;

(b) 双折射输出的两条光线均 为偏振光;

偏振片:将非偏极光 (一般光线)过滤成 偏极光。

当非偏极光通过a方 向的偏光片时,光线 被过滤成与a方向平 行的线性偏极光。

❖上图: 线性偏极光维 续前进,通过第二片偏 光片时,光线通过。

❖下图:通过第二片时, 光线被完全阻挡。

石东斯 信息工程学院 广播电视工程系

说明:

石东斯 信息工程学院 广播电视工程集

(c) 液晶存在一个特殊 方向,当光沿该方向传播 时,不产生双折射,此方 向称为液晶的光轴。分子 的长轴方向为光轴。

中国传媒大学 电视原理 .17.11.29

(B) 介电常数 E的各向异性 长轴方向的介电常数 ε// 不等于

短轴方向的介电常数ε⊥。

ε// - ε ⊥ > 0 称为正性液晶 (P型液晶); ε// - ε ⊥ < 0 称为负性液晶 (n型液晶)。

P型液晶在 电场作用下, 会使液晶分子 长轴方向趋向 于电场方向。

石东斯 信息工程学院 广播电视工程系

4、 液晶显示器件工作原理---利用液晶的电光效应

TFT-LCD(TFT—Thin Film Transistor)使用的液晶为TN(Twist Nematic: **扭曲向列**)型液晶,液晶分子呈椭圆状。

□TN型液晶一般是顺着 长轴方向串接,长轴间 彼此平行方式排列。

名集新 信息工程学院 广播电视工程系统 广播电视工程系统 广播电视工程系统 广播电视工程系统

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29

□当液晶被包含在两个槽状 表面中间,且槽的方向互相 垂直,则液晶分子的排列为:

上表面分子: 沿着a方向 下表面分子: 沿着b方向

□介于上下表面中间的分子: 产生旋转的效应。因此液晶 分子在两槽状表面间产生90 度的旋转。

□当线性偏极光射入 上层槽状表面时,此 光线随着液晶分子的 旋转也产生旋转。

□当线性偏极光射出下层槽状表面时,此 光线已经产生了90度 的旋转。

石东斯 信息工程等院 广播电视工程盘 64 石东斯 信息工程等院 广播电视工程盘

中国传媒大学 电视原理 .17.11.29

◆当上下偏光片相互垂直时,若未施加电压,光线可通过。

Agrand were visited to the state of the stat

◆当施加电压时,光线被完全阻挡。

 石东斯 信息工程学院 广播电视工程系
 69
 石东斯 信息工程学院 广播电视工程系
 70

中国传媒大学 电视原理 .17.11.29 中国传媒大学 电视原理 .17.11.29

电光特性: 外加电压和透光强度的关系。

 V_{10} 为阈值电压 V_{so}为饱和电压

V90 / V10为电光特性的陡度。 扭曲向列型液晶器件 的陡度为1.3。

为线性关系。

最大透光强度的10%所对应的外加电压值称为阈值电压(Uth),标志了液

最大透光强度的90%对应的外加电压值称为饱和电压(Ur),标志了获得最 对比密斯雷纳从加电压动值。Ur小则易获得良好的显示效果,且降低显示 大对比度所需的外加电压数值,Urz 的耗,对显示寿命有利

石灰斯 信息工程管辖 广播由报工程集

有源矩阵的驱动

• 通常采用薄膜场效应管 (TFT) 驱动的有源矩阵 结构特点:

扫描电极和信号电极都安在

一个基板上,并在交叉处, 安装透明的薄膜场效应晶体管; 同一行晶体管栅极连在一起, 加扫描脉冲,同一列的漏极连 在一起,加信号电压;

每个TFT的源极与液晶的像素电极相连。 在另一个基板上有所有像素的公共电极(背电极)。

乙克斯 信负工程管辖 广播由报工程系

按行顺序扫描, 扫描到某 一行,该行的管子全部导 通,信号电压给电容充电。电压保持一帧。

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29 Array 面板示意图 Sn-2 Sn-1 Sn G1 G2 G3 石东斯 信息工程学院 广播电视工程系

石东斯 信息工程学院 广播电视工程系

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29

(1) 为了避免由于电化学作用使器件退化,实际要用 AC电压驱动。通常采用公共电极反转驱动方式: 信号电极逐场交替加正负极性的视频信号,公共电极加逐场反转的方波。

(2) 现阶段电视台广播的电视信号针对显像管 的非线性 是作了非线性(y)预先校正的,而液 晶显示屏的电光转换 特性近似线性,为使接收到的电视信号在液晶屏上显示 为无灰度畸变的电视图像,应将接收到的电视信号经过 y= 2.8 的非线性校正电路。

石东斯 信息工程学院 广播电视工程集 石东斯 信息工程学院 广播电视工程系 中国传媒大学 电视原理 .17.11.29 中国传媒大学 电视原理 .17.11.29

6、 彩色液晶显示屏

实际中采用的彩色液晶显示方式为"微彩色膜方式"。它将像 素分成三个子像素,并在液晶表面设置R、G、B三个微型滤色膜, 液晶层作为光阀,控制三个子像素的灰度,采用加法混色可实现 全色显示。

背景光应是三基色白光,一般用冷阴极的荧光灯,它亮度高、色温合适。

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29

石东斯 信息工程学院 广播电视工程系

Polarizer | Unpolarized Write Light

Glass Substrate | ITF | Orientation Film | Orientati

石东斯 信息工程学院 广播电视工程系

中国传媒大学 电视原理 .17.11.29

液晶电视的特点:

优点:

- 1、低压驱动、功耗小:工作电压: 2----3V; 工作电压: 几个uA。
- 2、平板结构、失真小。
- 3、被动显示、人眼不疲劳。
- 4、无污染辐射、环保。

缺点:

- 1、显示视角小:只有170度至40度。因为透射的光有一定的方向。
- 2、响应速度慢:液晶显示是靠在外电场作用下,液晶分子排列发生变化改变透光率实现的,响应速度慢(80~200ms)。
- 3、显示亮度低。
- 4、大尺寸的显示器成本高。

石京新 信息工程等院 广播电视工程系

第三节 彩色等离子体显示器

一、什么是等离子体

处于电离状态的气体称为等离子体,等离子体 内有丰富的电子和带正电的离子,是很好的导体。 电离通常是由电场使气体的分子或原子发生碰撞 产生。电流通过(电离的)气体的现象称为气体 放电。

二、什么是等离子体显示器(PDP---Plasma Display Panel) 等离子体显示器是所有利用气体放电而发光的 平板显示器的总称。

石东斯 信息工程学院 广播电视工程系

中国传媒大学 电视原理 .17.11.29 中国传媒大学 电视原理 .17.11.29

定的电压,使管 内的气体产生辉光 放电,放电气体为 氖(Ne)氙(Xe)

混合气、氦氙混合 气或氦(He)氖氙混合气等。气体放电发射紫外线 (Vacuum Ultraviolet),分别照射红、绿、蓝三种荧光 粉实现彩色显示。

PDP一旦产生放电,发光亮度就不变。

石灰斯 信息工程管辖 广播由报工程集

主要优缺点

- учмт (1) 易于实现薄型大屏幕-----厚度小于12cm,屏幕可达40至80 英寸;
- 具有高速响应特性---气体放电的开关时间在微秒量级,因 此扫描行数和像素数几乎不受限制;
- (3) 可实现全彩色显示—由于是荧光粉发光,采用时间调制,可 达到256级灰度;
- (4) 视角宽,达160度;

(5)对比度高。 存在的问题:发光效率不高、驱动电压过高、功耗大?, 另外由于AC-PDP的驱动电压频率高、放电电流大,会产 生电磁干扰。

石灰斯 信息工程管辖 广播由班工程集

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29

四 、 PDP的分类

两种基本类型: 直流(DC)型和交流(AC)型。

DC型用直流电压使气体放电,而且电极直接和放电气体接触; AC型用交流电压使气体放电,而且电极表面受介质层保护。

ACPDP根据电极结构的不同又可分为双基板(对向放电) 型和单基板(表面放电)型两种类型。目前性能领先的是 表面放电型ACPDP。

石东斯 信息工程学院 广播电视工程系

石东斯 信息工程学院 广播电视工程系

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29

具体的 驱动方法:

广泛使用寻址与显示分离的子场 (ADS) 驱动方法

石东斯 信息工程学院 广播电视工程系

─ 維持显示─ 寻址期─ 准备期

每个子场的时序为: 准备期: 料全屏所有单元处于熄灭状态,准备寻址。 寻址期: 厕中扫描各行,完成对全屏所有单元的寻址。 维持期: 全屏所有积累了壁电荷的单元进行维持显示。

維持易示期为 1:2:4:8:16:32:64:128

AC-PDP是断续发光,在维持脉冲的每个周期内产生两次放电发光。通常维持脉冲的频率在10万Hz以上,所以AC-PDP一秒至少可以发光20万次,没有闪烁感。

各于场的准备期、寻址期相同,而维持期由该子场所对应的位数有关。 例如:显示8位数字图像: 00000000;所有于场影不点亮: 00001001;第一个郑第四八子场点亮,对应灰度级9的亮度; 11111111,所有子场都点亮,对应灰度级9的亮度;

中国传媒大学 电视原理 .17.11.29 中国传媒大学 电视原理 .17.11.29

LED显示器

LED的分类和使用

- LED背光电视
 - 面板还是LCD液晶面板,只是背光变为LED。 LED背光分为普通白光LED,和RGB三色LED.
- LED大屏幕
 - 单个LED灯泡组成,模块化设计。 用于大尺寸画面,较远距离。
- OLED面板

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29

OLED的优势

石东斯 信息工程学院 广播电视工程系

石东斯 信息工程学院 广播电视工程系

显示黑色时无光产生

OLED的优势

精确的黑色还原

黑色细节的显示甚至比CRT还要高 对比度高达1,000,000:1

LCD

OLED

石东斯 信息工程学院 广播电视工程系

OLED的优势

运动拖尾

石东斯 信息工程学院 广播电视工程系

OLED的优势

无运动拖尾

OLED

石东斯 信息工程学院 广播电视工程系

OLED的优势

OLED的优势

中国传媒大学 电视原理 .17.11.29

更宽的色域

OLED 可以在极低的信号电平下显示色彩

ICD **OLED** • 高对比度性能

在所有环境光线条件下, OLED均能提供最优异的对比度性能

石东斯 信息工程学院 广播电视工程系

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29

中国传媒大学 电视原理 .17.11.29

·OLED的问题

石东斯 信息工程学院 广播电视工程系

大尺寸面板烧屏

因为OLED依赖的是**有机基质**,显示器作为耐用产品,烧屏 问题几乎难以避免。

"目前掌握OLED技术的主要就是LG和三星两家。三星是全球最大的OLED面板生产商,技术也是最先进,但即便如此,三星一直没有涉足自有品牌的OLED电视,只在手机、平板等中小尺寸经营。此前,三星的说法是大尺寸切割的成本高、良率低,不过据The Korea Herald报道,他们从三星那里了解到,韩国巨头最担心的问题还是OLED的烧屏(Burn-in),即某些像素点因过度使用而无法正常从屏幕底层消失,从而对全局画面造成干扰。"

QLED也是自发光,与OLED的不同是,基质换为无机物。

- 量子点电视的优势
- 1.全色域显示优势。
- 2.窄频带连续光谱,色彩纯度高。
- 3.95%接近于自然光,色彩还原能力强,显色性卓越。 4.无机材料。稳定性强,寿命长,不易老化。
- 5.精准色彩控制。
- 6.效率高,节能性强。
- 7.量子点电视造价成本更低

石东斯 信息工程学院 广播电视工程系

石东斯 信息工程学院 广播电视工程系

DLP显示技术

- · DLP的含义及器件:
- 1、定义: Digital Light Processing的缩写,中文含义为数字光处 理技术。该技术是由美国德州仪器公司研制推出的一种全数字的反 射式投影技术。
- 2、核心: DLP技术生成的投影机采用DMD署件(Digital Micromirror Device)即数字微镜作为光学成像器件,由美国德州仪器公司独家拥有。一个DMD芯片中含有几十万个细微正方形反射镜片16μm×16μm,每个微镜都代表一个像家,每个微镜在开或关的两种状态下均狭转动,从而控制光的反射。
- 3、灰度控制:在单位时间内,控制每一个微镜开关的占空比,生成的这种图像灰度等级达到256-1024级,色彩达到1700万色以上。

石东斯 信息工程学院 广播电视工程系

00000000 **门巨X**了 同步信号 同步系统

DLP的分类:

1、单片型

RGB三种光像均通过一片DMD器件分时共用进行投射,使用高速旋转的色轮来产生全彩色的投影图像,功能强大,清晰度高。画面均匀,色彩锐利。电视、家庭影院和商用投影仪主要为单个芯片配置。

中国传媒大学 电视原理 .17.11.29

2、两片型

一片DMD单独投射紅色光,另一片分时投射蓝、绿色光,与单片 DLP投影机相同的,使用了高速旋转的色轮来产生全彩色的投影图像, 它主要应用于大型的显示墙,具有<u>亮度高</u>的特点。

3、三片型

3、三斤型 三片DMD芯片分别反射三原色中的一种颜色,此时,已经不需要 再使用色轮来滤光了。使用三片DMD芯片制造的投影机亮度最高可达到 12000流明,它抛弃了传统意义上的会聚,可随意变焦,调整十分便利; 但是分辨率不高,不经压缩分辨率只能达到1280×1024、适用于画面质量或亮度要求极高的场合,如电影院,或采用3-DMD-芯片配置系统显示动、静优质画面的大型会议厅。

石京斯 信息工程学院 广播电视工程系 118

中国传媒大学 电视压性 17.11.29

中国传媒大学 电视原理 .17.11.29

- 作业
- · 2、6、8
- 17、22