

Digital Logic

Lecture 5

2nd Stage
Computer Science Department
Faculty of Science
Soran University

Topics covered

- ♦ Boolean algebra theorems
- ♦ De Morgan's theorem
- ♦ Reduction of logic expressions using Boolean algebra
- ♦ Canonical Forms
- ♦ Sum Of Products (SOP)
- ♦ Product Of Sums (POS)
- ♦ Non-Canonical to Canonical Conversion
- ♦ How to convert SOP to POS & POS to SOP

Boolean Algebra:

Allows us to apply provable mathematical principles to help us design logical circuits.

The algebra which deals with binary variables and the logic operators AND (\bullet), OR (+) and NOT (\bar{x}) is called Boolean algebra. Boolean algebra also follows the Commutative, Associative, Absorption, Distributive laws and De Morgan's laws of the common algebra.

Identity Name	AND Form	OR Form
Identity Law	1x = x	0+x=x
Null (or Dominance) Law	0x = 0	1+ <i>x</i> = 1
Idempotent Law	XX = X	X+X=X
Inverse Law	$x\overline{x} = 0$	$X+\overline{X}=1$
Commutative Law	xy = yx	X+y=y+X
Associative Law	(xy)z = x(yz)	(x+y)+z=x+(y+z)
Distributive Law	X+YZ=(X+Y)(X+Z)	X(y+z) = Xy+Xz
Absorption Law	X(X+Y)=X	X+XY=X
DeMorgan's Law	$(\overline{XY}) = \overline{X} + \overline{Y}$	$(\overline{X+Y}) = \overline{X}\overline{Y}$
Double Complement Law	$\overline{\overline{X}} =$	X

Simplify the following Boolean function to a minimum number of literals.

1)
$$A.(\overline{A} + B) = ?$$

Solution:

$$A.(\bar{A} + B) = A.\bar{A} + A.B = 0 + A.B = AB$$

$$(2) A + (\overline{A}.B) = ?$$

Solution:

$$A + (\bar{A}.B) = (A + \bar{A}).(A + B) = 1.(A + B) = A + B$$

3)
$$(A + B) \cdot (A + \overline{B}) = ?$$

Note: List the identities used at each step.

Solution:

$$(A+B). (A+\bar{B}) = A.A + A.B + A.\bar{B} + B.\bar{B}$$
 Inverse Law
$$= A + A.B + A.\bar{B} + 0$$

$$= A + A(B+\bar{B})$$
 Distributive Law
$$= A + A.1$$
 Identity Law
$$= A + A$$
 Idempotent Law

Find the complement of the following function by applying DeMorgan's theorems as many times as necessary.

Question:
$$F = (\overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot z)$$

Solu.:

$$\bar{F} = \overline{(\bar{x} \cdot y \cdot \bar{z} + \bar{x} \cdot \bar{y} \cdot z)}
= (\bar{x} \cdot y \cdot \bar{z}) \cdot (\bar{x} \cdot \bar{y} \cdot z)
= (\bar{x} + \bar{y} + \bar{z}) \cdot (\bar{x} + \bar{y} + \bar{z})
= (x + \bar{y} + z) \cdot (x + y + \bar{z})$$

Use Boolean algebra to simplify the following logic diagram:

Use Boolean algebra to simplify the following logic diagram:

Canonical Forms

♦ Any Boolean function F() can be expressed as a unique sum of minterms and a unique product of maxterms (under a fixed variable ordering).

- ♦ In other words, every function F() has two canonical forms:
 - Canonical Sum-Of-Products (sum of minterms)
 - Canonical Product-Of-Sums (product of maxterms)

Canonical Forms (cont.)

♦ Canonical Sum-Of-Products: The minterms included are those m_j such that F() = 1 in row j of the truth table for F().

♦ Canonical Product-Of-Sums: The maxterms included are those M_j such that F() = 0 in row j of the truth table for F().

Minterm

- ♦ Represents exactly one combination in the truth table.
- \diamond Denoted by m_j , where j is the decimal equivalent of the minterm's corresponding binary combination (b_i) .
- \diamond A variable in m_j is complemented if its value in b_j is 0, otherwise is uncomplemented.
- \Rightarrow Example: Assume 3 variables (A,B,C), and j=3. Then, b $_j$ = 011 and its corresponding minterm is denoted by m_j = A'BC

Shorthand: ∑

 \Rightarrow F(A,B,C) = \sum m(1,2,4,6), where \sum indicates that this is a sum-of-products form, and m(1,2,4,6) indicates that the minterms to be included are m₁, m₂, m₄, and m₆.

minterm

Variables appear exactly once in each minterm in true or inverted form (but not both)

A	В	С	F	minterm	ns -	F in canonical form:
0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1	0 1 0 1	A'B'C A'BC AB'C ABC' ABC'	m1 m3 m5 m6 m7	$F(A,B,C) = \Sigma m(1,3,5,6,7)$ = m1 + m3 + m5 + m6 + m7 = A'B'C+A'BC+AB'C+ABC'+ABC

short-hand notation

Develop a truth table for the canonical SOP expression

$$\overline{A}\overline{B}C + A\overline{B}\overline{C} + ABC$$

Inputs		.s	Output	minterm
A	В	С	X	
0	0	0	0	
0	0	1	1	$\overline{A}\overline{B}C$
0	1	0	0	
0	1	1	0	
1	0	0	1	$A\overline{B}\overline{C}$
1	0	1	0	
1	1	0	0	
1	1	1	1	ABC

Maxterm

- ♦ Represents exactly one combination in the truth table.
- \diamond Denoted by M_j , where j is the decimal equivalent of the maxterm's corresponding binary combination (b_i) .
- \diamond A variable in M_j is complemented if its value in b_j is 1, otherwise is uncomplemented.
- ♦ Example: Assume 3 variables (A,B,C), and j=3. Then, b_j = 011 and its corresponding maxterm is denoted by M_j = A+B'+C'

Shorthand: ☐

♦ F(A,B,C) = \prod M(0,3,5,7), where \prod indicates that this is a product-of-sums form, and M(0,3,5,7) indicates that the maxterms to be included are M₀, M₃, M₅, and M₇.

♦ Since $m_j = M_j$ for any j, $\sum m(1,2,4,6) = \prod M(0,3,5,7) = F(a,b,c)$

Also called conjunctive normal form (CNF) or maxterm expansion

Variables appear exactly once in each maxterm in true or inverted form (but not both)

Α	В	С	F maxterms_	
0 0 0 0 0	0 0 1 1	0 1 0 1	0 A+B+C M0 1 0 A+B'+C M2 1 0 A'+B+C M4	F in canonical form: $F(A,B,C) = \Pi M(0,2,4)$ $= M0 \cdot M2 \cdot M4$ $= (A+B+C)(A+B'+C)(A'+B+C)$
1 1 1	0 1 1	1 0 1		

20

Example

- ♦ The canonical sum-of-products form for F is:

$$F(a,b,c) = m_1 + m_2 + m_4 + m_6$$

= a'b'c + a'bc' + ab'c' + abc'

♦ The canonical product-of-sums form for F is:

$$F(a,b,c) = M_0 \cdot M_3 \cdot M_5 \cdot M_7$$

= $(a+b+c)\cdot (a+b'+c')\cdot (a'+b+c')\cdot (a'+b'+c')$.

 \diamond Observe that: $m_i = M_i$

		-		
#	а	b	С	F
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

Example

Develop a truth table for the canonical POS expression

$$(A+B+C)(A+\overline{B}+C)(A+\overline{B}+\overline{C})$$
$$(\overline{A}+B+\overline{C})(\overline{A}+\overline{B}+C)$$

Inputs		CS.	Output	Maxtarm
A	В	С	X	Maxterm
0	0	0	0	(A+B+C)
0	0	1	1	
0	1	0	0	$(A+\overline{B}+C)$
0	1	1	0	$(A+\overline{B}+\overline{C})$
1	0	0	1	
1	0	1	0	$(\overline{A} + B + \overline{C})$
1	1	0	0	$(\overline{A} + \overline{B} + C)$
1	1	1	1	

Non-canonical Forms

- non-canonical forms are "like" canonical forms, except that not all variables need appear in the individual product (SOP) or sum (POS) terms.
- ♦ Example:

F(a,b,c) = a'b'c + bc' + ac' is a non-canonical sum-of-products form

 \Rightarrow F(a,b,c) = (a+b+c).(b'+c').(a'+c') is a non-canonical product-of-sums form.

Conversion of SOP from non-canonical to canonical form

- Expand non-canonical terms by inserting equivalent of 1 in each missing variable x: (x + x') = 1
- Remove duplicate minterms
- F(a,b,c) = a'b'c + bc' + ac'
 = a'b'c + (a+a')bc' + a(b+b')c'
 = a'b'c + abc' + a'bc' + abc' + ab'c'
 = a'b'c + abc' + a'bc' + ab'c'

Conversion of SOP from non-canonical to canonical form

Convert the following Boolean expression into canonical SOP form:

$$F(A,B,C) = AB + AC$$

Sol.
$$AB + AC$$

 $=AB(C+C') + AC(B+B')$
 $=ABC+ABC'+ABC+AB'C$
 $=ABC+ABC'+AB'C$

Conversion of SOP from non-canonical to canonical form

♦ Convert the following Boolean expression into canonical SOP form:

$$F(A, B, C, D) = A\overline{B}C + \overline{A}\overline{B} + AB\overline{C}D$$

Solution:

$$A\overline{B}C = A\overline{B}C(D + \overline{D}) = A\overline{B}CD + A\overline{B}C\overline{D}$$

$$\overline{A}B = \overline{A}B(C + \overline{C}) = \overline{A}BC + \overline{A}B\overline{C}$$

$$\overline{A}BC(D + \overline{D}) + \overline{A}B\overline{C}(D + \overline{D}) = \overline{A}BCD + \overline{A}BC\overline{D} + \overline{A}B\overline{C}D + \overline{A}B\overline{C}D$$

$$A\overline{B}C + \overline{A}B + AB\overline{C}D = A\overline{B}CD + A\overline{B}C\overline{D} + \overline{A}BC\overline{D} + \overline{A}B\overline{C}D + \overline{A}B\overline{C}D + \overline{A}B\overline{C}D + \overline{A}B\overline{C}D$$

Conversion of POS from non-canonical to canonical form

- Expand non-canonical terms by adding 0 in terms of missing variables (e.g., xx' = 0) and using the distributive law
- Remove duplicate maxterms

```
• F(a,b,c) = (a+b+c).(b'+c').(a'+c')

= (a+b+c).(aa'+b'+c').(a'+bb'+c')

= (a+b+c).(a+b'+c').(a'+b'+c').(a'+b+c').(a'+b'+c')

= (a+b+c).(a+b'+c').(a'+b'+c').(a'+b+c')
```

Conversion of POS from non-canonical to canonical form

Convert the following Boolean expression into canonical POS form:

$$F(A,B,C) = (A+B)(A+C)$$

Sol.
$$F = (A+B).(A+C)$$

= $(A+B)+(C.C').(A+C)+(B.B')$
= $(A+B+C).(A+B+C').(A+B+C)(A+B'+C)$ Distributive law
= $(A+B+C).(A+B+C')(A+B'+C)$ Remove duplicates

Conversion of POS from non-canonical to canonical form

♦ Convert the following Boolean expression into canonical POS form:

$$F(A,B,C,D) = (A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$$

Solution:

$$A + \bar{B} + C = A + \bar{B} + C + D\bar{D} = (A + \bar{B} + C + D)(A + \bar{B} + C + \bar{D})$$

$$\bar{B} + C + \bar{D} = \bar{B} + C + \bar{D} + A\bar{A} = (A + \bar{B} + C + \bar{D})(\bar{A} + \bar{B} + C + \bar{D})$$

$$(A + \bar{B} + C)(\bar{B} + C + \bar{D})(A + \bar{B} + \bar{C} + D) =$$

$$(A + \bar{B} + C + D)(A + \bar{B} + C + \bar{D})(A + \bar{B} + C + \bar{D})(\bar{A} + \bar{B} + C + \bar{D})(\bar{A} + \bar{B} + \bar{C} + D)$$

$$= (A + \bar{B} + C + D)(A + \bar{B} + C + \bar{D})(\bar{A} + \bar{B} + \bar{C} + D)$$

Conversion Between Canonical Forms

- ♦ Replace ∑ with ☐ (or vice versa) and replace those j's that appeared in the original form with those that do not.
- ♦ Example:

```
F(a,b,c) = a'b'c + a'bc' + ab'c' + abc'

= m_1 + m_2 + m_4 + m_6

= \sum m(1,2,4,6)

= \prod M(0,3,5,7)

= (a+b+c).(a+b'+c').(a'+b+c').(a'+b'+c')
```

Conversion Between Canonical Forms

SOP

Exercises-4

1- Express the following logic diagram as a sum of minterms.

2) Find the complement of the following expression by using DeMorgan's theorems.

$$F = (XYZ) + (\overline{XYZ}) + \overline{(Y.\overline{Z}) + \overline{X}}$$

Deadline: October 29, 2022 @ 11:59 PM

Homework 5

1) Simplify the following Boolean function to a minimum number of literals. List the identities used at each step.

A)
$$F(W,X,Y,Z) = \overline{W}X(\overline{Z} + \overline{Y}Z) + X(W + \overline{W}YZ)$$

B)
$$F(X,Y,Z) = \overline{X}YZ + X\overline{Y}Z + XY\overline{Z} + XYZ$$

2) Express the following function as a sum of minterms.

$$\mathbf{F}(\mathbf{A},\mathbf{B}) = (\overline{A}\overline{B}) \otimes \overline{(A \oplus B)} + (A + B)$$

Deadline: November 4, 2022 @ 11:59 PM