## INTANGIBLE CAPITAL, TANGIBLE MISALLOCATION

Stepan Gordeev March 5, 2020

### 1. Role of intangible assets in production is rising

- Tangible K: buildings, machines...
- Intangible K: IT, brand value, organizational structure..
- $\frac{\text{Intangible K}}{\text{tangible K}}$  in the US: 0.20 ightarrow 0.52 since 1948

### Misallocation in the US is rising

- THIS PAPER: role of intangibles in generating observed misallocation
- **DATA:** US Compustat 1987-2017
- MISALLOCATION MEASUREMENT: Hsieh and Klenow '09 + intangibles

- 1. Role of intangible assets in production is rising
  - · Tangible K: buildings, machines...
  - Intangible K: IT, brand value, organizational structure..
  - $\frac{\text{Intangible K}}{\text{tangible K}}$  in the US:  $0.20 \rightarrow 0.52$  since 1948
- Misallocation in the US is rising
  - THIS PAPER: role of intangibles in generating observed misallocation
- DATA: US Compustat 1987-2017
- MISALLOCATION MEASUREMENT: Hsieh and Klenow '09 + intangibles

- 1. Role of intangible assets in production is rising
  - · Tangible K: buildings, machines...
  - · Intangible K: IT, brand value, organizational structure...
  - $\frac{\text{Intangible K}}{\text{tangible K}}$  in the US:  $0.20 \rightarrow 0.52$  since 1948
- 2. Misallocation in the US is rising
  - THIS PAPER: role of intangibles in generating observed misallocation
- **DATA:** US Compustat 1987-2017
- MISALLOCATION MEASUREMENT: Hsieh and Klenow '09 + intangibles

- 1. Role of intangible assets in production is rising
  - · Tangible K: buildings, machines...
  - Intangible K: IT, brand value, organizational structure...
  - $\frac{\text{intangible K}}{\text{tangible K}}$  in the US: 0.20  $\rightarrow$  0.52 since 1948
- Misallocation in the US is rising
  - THIS PAPER: role of intangibles in generating observed misallocation
- **DATA:** US Compustat 1987-2017
- MISALLOCATION MEASUREMENT: Hsieh and Klenow '09 + intangibles

- 1. Role of intangible assets in production is rising
  - · Tangible K: buildings, machines...
  - Intangible K: IT, brand value, organizational structure...
  - $\frac{\text{intangible K}}{\text{tangible K}}$  in the US: 0.20  $\rightarrow$  0.52 since 1948
- 2. Misallocation in the US is rising
  - THIS PAPER: role of intangibles in generating observed misallocation
  - DATA: US Compustat 1987-2017
  - MISALLOCATION MEASUREMENT: Hsieh and Klenow '09 + intangibles

- 1. Role of intangible assets in production is rising
  - · Tangible K: buildings, machines...
  - Intangible K: IT, brand value, organizational structure...
  - $\frac{\text{intangible K}}{\text{tangible K}}$  in the US: 0.20  $\rightarrow$  0.52 since 1948
- 2. Misallocation in the US is rising
- THIS PAPER: role of intangibles in generating observed misallocation
- DATA: US Compustat 1987-2017
- MISALLOCATION MEASUREMENT: Hsieh and Klenow '09 + intangibles

- 1. Role of intangible assets in production is rising
  - · Tangible K: buildings, machines...
  - Intangible K: IT, brand value, organizational structure...
  - $\frac{\text{intangible K}}{\text{tangible K}}$  in the US: 0.20  $\rightarrow$  0.52 since 1948
- 2. Misallocation in the US is rising
- THIS PAPER: role of intangibles in generating observed misallocation
- DATA: US Compustat 1987-2017
- MISALLOCATION MEASUREMENT: Hsieh and Klenow '09 + intangibles

- 1. Role of intangible assets in production is rising
  - · Tangible K: buildings, machines...
  - · Intangible K: IT, brand value, organizational structure...
  - $\frac{\text{intangible K}}{\text{tangible K}}$  in the US: 0.20  $\rightarrow$  0.52 since 1948
- 2. Misallocation in the US is rising
- THIS PAPER: role of intangibles in generating observed misallocation
- **Data:** US Compustat 1987-2017
- MISALLOCATION MEASUREMENT: Hsieh and Klenow '09 + intangibles

- 1. Ignoring intangibles leads to **overestimation** of both the level and growth of misallocation
  - Corrected misallocation is 35% lower
  - Corrected misallocation has not increased in the last two decades
- Intan-intensive sectors have 75% higher misallocation than tan-intensive sectors
  - Uncertain intangible productivity + variable markups can generate one third of the difference

- 1. Ignoring intangibles leads to **overestimation** of both the level and growth of misallocation
  - · Corrected misallocation is 35% lower
  - Corrected misallocation has not increased in the last two decades
- Intan-intensive sectors have 75% higher misallocation than tan-intensive sectors
  - Uncertain intangible productivity + variable markups can generate one third of the difference

- 1. Ignoring intangibles leads to **overestimation** of both the level and growth of misallocation
  - · Corrected misallocation is 35% lower
  - · Corrected misallocation has not increased in the last two decades
- Intan-intensive sectors have 75% higher misallocation than tan-intensive sectors
  - Uncertain intangible productivity + variable markups can generate one third of the difference

- 1. Ignoring intangibles leads to **overestimation** of both the level and growth of misallocation
  - · Corrected misallocation is 35% lower
  - · Corrected misallocation has not increased in the last two decades
- 2. Intan-intensive sectors have 75% **higher misallocation** than tan-intensive sectors
  - Uncertain intangible productivity + variable markups can generate one third of the difference

- 1. Ignoring intangibles leads to **overestimation** of both the level and growth of misallocation
  - · Corrected misallocation is 35% lower
  - · Corrected misallocation has not increased in the last two decades
- 2. Intan-intensive sectors have 75% **higher misallocation** than tan-intensive sectors
  - Uncertain intangible productivity + variable markups can generate one third of the difference

#### LITERATURE

- ROLE OF INTANGIBLES: Corrado and Hulten (2010), Haskel and Westlake (2017), McGrattan (2017), Chen (2014), Peters and Taylor (2017), Döttling and Perotti (2017)
- MISALLOCATION: Hsieh and Klenow (2009), Restuccia and Rogerson (2008), David and Venkateswaran (2017), Bils, Klenow, and Ruane (2018)
- · Intangibles + Misallocation: Caggese and Pérez-Orive (2016), this paper

#### LITERATURE

- ROLE OF INTANGIBLES: Corrado and Hulten (2010), Haskel and Westlake (2017), McGrattan (2017), Chen (2014), Peters and Taylor (2017), Döttling and Perotti (2017)
- MISALLOCATION: Hsieh and Klenow (2009), Restuccia and Rogerson (2008), David and Venkateswaran (2017), Bils, Klenow, and Ruane (2018)
- Intangibles + Misallocation: Caggese and Pérez-Orive (2016), this paper

#### LITERATURE

- ROLE OF INTANGIBLES: Corrado and Hulten (2010), Haskel and Westlake (2017), McGrattan (2017), Chen (2014), Peters and Taylor (2017), Döttling and Perotti (2017)
- MISALLOCATION: Hsieh and Klenow (2009), Restuccia and Rogerson (2008), David and Venkateswaran (2017), Bils, Klenow, and Ruane (2018)
- · Intangibles + Misallocation: Caggese and Pérez-Orive (2016), this paper

#### **OUTLINE**

- 1. Data
- 2. Estimating Misallocation
- 3. Potential Mechanisms
- 4. Variable Markup Model
- 5. Conclusion

# Dата

- · Annual traded firm balance sheets from Compustat
  - · 1987-2017
  - · Sectoral output, tangible, and intangible investment deflators from BLS
- Production:  $y = ak_T^{\alpha_T} v^{1-\alpha_T}$
- Measure variable input v with cost of goods sold
- · Construct tangible capital stock  $k_{T,f,t}$  from PPE investment  $x_{T,f,t-1}$

$$k_{T,f,t} = (1 - \delta_{T,f})k_{T,f,t-1} + x_{T,f,t-1}$$

- · Implied firm-specific depreciation  $\delta_{T,f}$
- Construct intangible capital stock  $k_{l,f,t}$  using method from Falato, Kadyrzhanova and Sim (2013) and Peters and Taylor (2017)
  - Consists of 3 components

- · Annual traded firm balance sheets from Compustat
  - · 1987-2017
  - · Sectoral output, tangible, and intangible investment deflators from BLS
- Production:  $y = ak_T^{\alpha_T} v^{1-\alpha_T}$
- Measure variable input v with cost of goods sold
- Construct tangible capital stock  $k_{T,f,t}$  from PPE investment  $x_{T,f,t-1}$

$$k_{T,f,t} = (1 - \delta_{T,f})k_{T,f,t-1} + x_{T,f,t-1}$$

- · Implied firm-specific depreciation  $\delta_{T,f}$
- Construct intangible capital stock k<sub>I,f,t</sub> using method from Falato, Kadyrzhanova and Sim (2013) and Peters and Taylor (2017)
  - Consists of 3 components

- · Annual traded firm balance sheets from Compustat
  - · 1987-2017
  - · Sectoral output, tangible, and intangible investment deflators from BLS
- Production:  $y = ak_T^{\alpha_T} k_I^{\alpha_I} v^{1-\alpha_T-\alpha_I}$
- Measure variable input v with cost of goods sold
- Construct tangible capital stock  $k_{T,f,t}$  from PPE investment  $x_{T,f,t-1}$

$$k_{T,f,t} = (1 - \delta_{T,f})k_{T,f,t-1} + x_{T,f,t-1}$$

- · Implied firm-specific depreciation  $\delta_{T,f}$
- Construct intangible capital stock k<sub>1,f,t</sub> using method from Falato, Kadyrzhanova and Sim (2013) and Peters and Taylor (2017)
  - Consists of 3 components

- · Annual traded firm balance sheets from Compustat
  - · 1987-2017
  - · Sectoral output, tangible, and intangible investment deflators from BLS
- Production:  $y = ak_T^{\alpha_T} k_I^{\alpha_I} v^{1-\alpha_T-\alpha_I}$
- Measure variable input v with cost of goods sold
- Construct tangible capital stock  $k_{T,f,t}$  from PPE investment  $x_{T,f,t-1}$

$$k_{T,f,t} = (1 - \delta_{T,f})k_{T,f,t-1} + x_{T,f,t-1}$$

- · Implied firm-specific depreciation  $\delta_{T,f}$
- Construct intangible capital stock  $k_{l,f,t}$  using method from Falato, Kadyrzhanova and Sim (2013) and Peters and Taylor (2017)
  - Consists of 3 components

- · Annual traded firm balance sheets from Compustat
  - · 1987-2017
  - · Sectoral output, tangible, and intangible investment deflators from BLS
- Production:  $y = ak_T^{\alpha_T} k_I^{\alpha_I} v^{1-\alpha_T-\alpha_I}$
- Measure variable input v with cost of goods sold
- · Construct tangible capital stock  $k_{T,f,t}$  from PPE investment  $x_{T,f,t-1}$

$$k_{T,f,t} = (1 - \delta_{T,f})k_{T,f,t-1} + x_{T,f,t-1}$$

- · Implied firm-specific depreciation  $\delta_{T,f}$
- Construct intangible capital stock  $k_{l,f,t}$  using method from Falato, Kadyrzhanova and Sim (2013) and Peters and Taylor (2017)
  - Consists of 3 components

- · Annual traded firm balance sheets from Compustat
  - · 1987-2017
  - · Sectoral output, tangible, and intangible investment deflators from BLS
- Production:  $y = ak_T^{\alpha_T}k_I^{\alpha_I}v^{1-\alpha_T-\alpha_I}$
- Measure variable input v with cost of goods sold
- · Construct tangible capital stock  $k_{T,f,t}$  from PPE investment  $x_{T,f,t-1}$

$$k_{T,f,t} = (1 - \delta_{T,f})k_{T,f,t-1} + x_{T,f,t-1}$$

- · Implied firm-specific depreciation  $\delta_{T,f}$
- Construct intangible capital stock  $k_{l,f,t}$  using method from Falato, Kadyrzhanova and Sim (2013) and Peters and Taylor (2017)
  - Consists of 3 components

#### INTANGIBLE K COMPONENTS

### 1. Knowledge capital

 $x_{\mathsf{know},f,t}$  is R&D investment,  $\delta_{\mathsf{know}} = 0.15$ 

$$Knowledge_{f,t} = (1 - \delta_{know})Knowledge_{f,t-1} + x_{know,f,t-1}$$

Knowledge<sub>f,1</sub> = 
$$\frac{x_{\text{know},f,1}}{\delta_{\text{know}}}$$

2. Organizational capital

 $x_{{
m org},f,t}$  is "sales, general and administrative expense",  $\delta_{{
m org}}=$  0.2, weight investment by 0.3

Organization
$$_{f,t} = (1-\delta_{ ext{org}})$$
Organization $_{f,t-1} + 0.3 \cdot x_{ ext{org},f,t-1}$ 

External purchases

EXTERNAL $_{f,t}$  = externally acquired intangibles: patents, trademarks, goodwill, etc

#### INTANGIBLE K COMPONENTS

### 1. Knowledge capital

 $x_{\mathrm{know},f,t}$  is R&D investment,  $\delta_{\mathrm{know}}=0.15$ 

$$Knowledge_{f,t} = (1 - \delta_{know})Knowledge_{f,t-1} + x_{know,f,t-1}$$

Knowledge<sub>f,1</sub> = 
$$\frac{x_{\text{know},f,1}}{\delta_{\text{know}}}$$

### 2. Organizational capital

 $x_{{
m org},f,t}$  is "sales, general and administrative expense",  $\delta_{{
m org}}=$  0.2, weight investment by 0.3

Organization<sub>f,t</sub> = 
$$(1 - \delta_{\text{org}})$$
Organization<sub>f,t-1</sub> +  $0.3 \cdot x_{\text{org},f,t-1}$ 

External purchases

EXTERNAL $_{f,t}$  = externally acquired intangibles: patents, trademarks, goodwill, etc

#### INTANGIBLE K COMPONENTS

### 1. Knowledge capital

 $x_{\mathrm{know},f,t}$  is R&D investment,  $\delta_{\mathrm{know}}=0.15$ 

$$Knowledge_{f,t} = (1 - \delta_{know})Knowledge_{f,t-1} + x_{know,f,t-1}$$

KNOWLEDGE<sub>f,1</sub> = 
$$\frac{x_{\text{know},f,1}}{\delta_{\text{know}}}$$

### 2. Organizational capital

 $x_{{
m org},f,t}$  is "sales, general and administrative expense",  $\delta_{{
m org}}=$  0.2, weight investment by 0.3

Organization<sub>f,t</sub> = 
$$(1 - \delta_{org})$$
Organization<sub>f,t-1</sub> +  $0.3 \cdot x_{org,f,t-1}$ 

### 3. External purchases

EXTERNAL $_{f,t}$  = externally acquired intangibles: patents, trademarks, goodwill, etc

#### INTANGIBLE K

• Intangible capital  $k_{l,f,t}$  consists of 3 components

 $k_{l,f,t} = \text{Knowledge}_{f,t} + \text{Organization}_{f,t} + \text{External}_{f,t}$ 

### AGGREGATE INTANGIBLES





**ESTIMATING MISALLOCATION** 

- HK+I: Hsieh and Klenow (HK) with an additional input: intangible K<sub>I</sub>
- Final good Y produced competitively from S intermediates

$$Y = \prod_{S=1}^{S} Y_S^{\theta_S}$$

Intermediate Y<sub>s</sub> produced competitively from varieties of F<sub>s</sub> firms

$$Y_{S} = \left(\sum_{f=1}^{F_{S}} y_{S,f}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

- HK+I: Hsieh and Klenow (HK) with an additional input: intangible K<sub>I</sub>
- Final good Y produced competitively from S intermediates

$$Y = \prod_{s=1}^{S} Y_s^{\theta_s}$$

Intermediate Y<sub>s</sub> produced competitively from varieties of F<sub>s</sub> firms

$$Y_{S} = \left(\sum_{f=1}^{F_{S}} y_{S,f}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

- HK+I: Hsieh and Klenow (HK) with an additional input: intangible K<sub>I</sub>
- Final good Y produced competitively from S intermediates

$$Y = \prod_{s=1}^{S} Y_s^{\theta_s}$$

• Intermediate  $Y_s$  produced competitively from varieties of  $F_s$  firms

$$Y_{S} = \left(\sum_{f=1}^{F_{S}} y_{S,f}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

- HK+I: Hsieh and Klenow (HK) with an additional input: intangible K<sub>I</sub>
- Final good Y produced competitively from S intermediates

$$Y = \prod_{s=1}^{S} Y_s^{\theta_s}$$

• Intermediate  $Y_s$  produced competitively from varieties of  $F_s$  firms

$$Y_{S} = \left(\sum_{f=1}^{F_{S}} y_{S,f}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

#### **VARIETY PRODUCER**

- Each variety (s, f) produced by monop. competitive firm using
  - variable input  $v_{s,f}$  (paid w)
  - tangible capital  $k_{T,s,f}$  (paid return  $r_T$ )
  - intangible capital  $k_{l,s,f}$  (paid return  $r_l$ )
- · Subject to distortions (1  $au_{Y,s,f}$ ), (1 +  $au_{T,s,f}$ ), and (1 +  $au_{I,s,f}$ )

$$\max_{p_{s,f},v_{s,f},k_{T,s,f},k_{I,s,f}} (1-\tau_{Y,s,f})p_{s,f}y_{s,f} - wv_{s,f} - (1+\tau_{T,s,f})r_Tk_{T,s,f} - (1+\tau_{I,s,f})r_Ik_{I,s,f}$$

s.t

$$y_{s,f} = a_{s,f} k_{T,s,f}^{\alpha_{T,s}} k_{l,s,f}^{\alpha_{l,s}} v_{s,f}^{1-\alpha_{T,s}-\alpha_{l,s}}$$

#### **VARIETY PRODUCER**

- Each variety (s, f) produced by monop. competitive firm using
  - variable input  $v_{s,f}$  (paid w)
  - tangible capital  $k_{T,s,f}$  (paid return  $r_T$ )
  - intangible capital  $k_{l,s,f}$  (paid return  $r_l$ )
- Subject to distortions  $(1 \tau_{Y,s,f})$ ,  $(1 + \tau_{T,s,f})$ , and  $(1 + \tau_{I,s,f})$

$$\max_{p_{s,f},v_{s,f},k_{T,s,f},k_{I,s,f}} (1-\tau_{Y,s,f})p_{s,f}y_{s,f} - wv_{s,f} - (1+\tau_{T,s,f})r_Tk_{T,s,f} - (1+\tau_{I,s,f})r_Ik_{I,s,f}$$

s.t.

$$y_{s,f} = a_{s,f} k_{T,s,f}^{\alpha_{T,s}} k_{l,s,f}^{\alpha_{l,s}} v_{s,f}^{1-\alpha_{T,s}-\alpha_{l,s}}$$

#### **VARIETY PRODUCER**

- Each variety (s, f) produced by monop. competitive firm using
  - variable input  $v_{s,f}$  (paid w)
  - tangible capital  $k_{T,s,f}$  (paid return  $r_T$ )
  - intangible capital  $k_{l,s,f}$  (paid return  $r_l$ )
- Subject to distortions  $(1 \tau_{Y,s,f})$ ,  $(1 + \tau_{T,s,f})$ , and  $(1 + \tau_{I,s,f})$

$$\max_{p_{s,f},v_{s,f},k_{T,s,f},k_{I,s,f}} (1-\tau_{Y,s,f}) p_{s,f} y_{s,f} - w v_{s,f} - (1+\tau_{T,s,f}) r_T k_{T,s,f} - (1+\tau_{I,s,f}) r_I k_{I,s,f}$$

s.t.

$$y_{s,f} = a_{s,f} k_{T,s,f}^{\alpha_{T,s}} k_{I,s,f}^{\alpha_{I,s}} v_{s,f}^{1-\alpha_{T,s}-\alpha_{I,s}}$$

#### **ESTIMABLE EXPRESSIONS**

• Express firm f's productivity  $a_{s,f}$  with observables:

$$a_{s,f} \propto \frac{\left(p_{s,f}y_{s,f}\right)^{\frac{\sigma}{\sigma-1}}}{k_{t,s,f}^{\alpha_{t,s}}k_{l,s,f}^{\alpha_{l,s}}v_{s,f}^{1-\alpha_{t,s}-\alpha_{l,s}}}$$

Revenue productivity reflects distortions:

$$\mathsf{ffpr}_{\mathsf{s},f} \propto \frac{(1+\tau_{\mathsf{T},\mathsf{s},f})^{\alpha_{\mathsf{T},\mathsf{s}}}(1+\tau_{\mathsf{I},\mathsf{s},f})^{\alpha_{\mathsf{I},\mathsf{s}}}}{(1-\tau_{\mathsf{Y},\mathsf{s},f})}$$

#### **ESTIMABLE EXPRESSIONS**

• Express firm f's productivity  $a_{s,f}$  with observables:

$$a_{s,f} \propto \frac{\left(p_{s,f}y_{s,f}\right)^{\frac{\sigma}{\sigma-1}}}{k_{T,s,f}^{\alpha_{T,s}}k_{l,s,f}^{\alpha_{l,s}}v_{s,f}^{1-\alpha_{T,s}-\alpha_{l,s}}}$$

· Revenue productivity reflects distortions:

$$\mathsf{tfpr}_{\mathsf{s},f} \propto \frac{(1+\tau_{\mathsf{T},\mathsf{s},f})^{\alpha_{\mathsf{T},\mathsf{s}}}(1+\tau_{\mathsf{I},\mathsf{s},f})^{\alpha_{\mathsf{I},\mathsf{s}}}}{(1-\tau_{\mathsf{Y},\mathsf{s},f})}$$

productivities

Distorted sectoral TFP:

$$TFP_{s} = \left(\sum_{f=1}^{F_{s}} \left(a_{s,f} \frac{TFPR_{s}}{tfpr_{s,f}}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$$

Efficient sectoral TFP if equalize distortions:

$$\mathsf{TFP}_{\mathsf{s},\mathsf{eff}} = \left(\sum_{f=1}^{F_{\mathsf{s}}} a_{\mathsf{s},f}^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$$

Reallocation gain:

$$\mathsf{GAIN}_{\mathsf{S}} = rac{\mathsf{TFP}_{\mathsf{S},\mathsf{eff}}}{\mathsf{TFP}_{\mathsf{S}}}$$

• Aggregate output gain from equalizing distortions: GAIN  $=\prod_{s=1}^{s} (GAIN_s)^{\theta_s}$ 

Distorted sectoral TFP:

$$TFP_{s} = \left(\sum_{f=1}^{F_{s}} \left(a_{s,f} \frac{TFPR_{s}}{tfpr_{s,f}}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$$

• Efficient sectoral TFP if equalize distortions:

$$\mathsf{TFP}_{\mathsf{s},\mathsf{eff}} = \left(\sum_{f=1}^{F_{\mathsf{s}}} a_{\mathsf{s},f}^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$$

Reallocation gains

$$GAIN_{S} = \frac{TFP_{s,ef}}{TFP_{s}}$$

• Aggregate output gain from equalizing distortions: GAIN  $=\prod_{s=1}^{S}(\mathsf{GAIN}_s)^{ heta_s}$ 

Distorted sectoral TFP:

$$TFP_{s} = \left(\sum_{f=1}^{F_{s}} \left(a_{s,f} \frac{TFPR_{s}}{tfpr_{s,f}}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$$

• Efficient sectoral TFP if equalize distortions:

$$\mathsf{TFP}_{\mathsf{s},\mathsf{eff}} = \left(\sum_{f=1}^{F_{\mathsf{s}}} a_{\mathsf{s},f}^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$$

· Reallocation gain:

$$GAIN_{S} = \frac{TFP_{s,eff}}{TFP_{s}}$$

• Aggregate output gain from equalizing distortions: GAIN  $=\prod_{s=1}^{s}(\mathsf{GAIN}_{s})^{ heta_{s}}$ 

Distorted sectoral TFP:

$$\mathsf{TFP}_{\mathsf{S}} = \left(\sum_{f=1}^{F_{\mathsf{S}}} \left(a_{\mathsf{S},f} \frac{\mathsf{TFPR}_{\mathsf{S}}}{\mathsf{tfpr}_{\mathsf{S},f}}\right)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$$

• Efficient sectoral TFP if equalize distortions:

$$\mathsf{TFP}_{s,\mathsf{eff}} = \left(\sum_{f=1}^{F_s} a_{s,f}^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$$

· Reallocation gain:

$$GAIN_{S} = \frac{TFP_{s,eff}}{TFP_{s}}$$

- Aggregate output gain from equalizing distortions: GAIN  $=\prod_{s=1}^{S}$  (GAINs) $^{ heta_s}$ 

- Cannot identify distortions and factor shares separately, assume sectoral input shares not distorted
- Measure 1  $-\alpha_{T,s} \alpha_{I,s}$  as  $\frac{\text{COGS}}{\text{SALE}}$  for each sector-year
- Pin down  $\frac{\alpha_{T,s}}{\alpha_{I,s}}$  from  $\frac{K_{T,s}r_T}{K_{I,s}r_I}$
- · Alternatively, use  $\alpha_{T,s}$  and  $\alpha_{I,s}$  from BEA
- · Reallocation gains not sensitive to alternative  $\alpha_{\rm X}$  and  $r_{\rm X}$

- Cannot identify distortions and factor shares separately, assume sectoral input shares not distorted
- Measure 1  $\alpha_{T,s}$   $\alpha_{I,s}$  as  $\frac{\text{COGS}}{\text{SALE}}$  for each sector-year
- Pin down  $\frac{\alpha_{T,s}}{\alpha_{I,s}}$  from  $\frac{K_{T,s}r_T}{K_{I,s}r_I}$
- · Alternatively, use  $lpha_{T,s}$  and  $lpha_{I,s}$  from BEA
- · Reallocation gains not sensitive to alternative  $\alpha_{\rm X}$  and  $r_{\rm X}$

- Cannot identify distortions and factor shares separately, assume sectoral input shares not distorted
- Measure 1  $\alpha_{T,s}$   $\alpha_{I,s}$  as  $\frac{\text{COGS}}{\text{SALE}}$  for each sector-year
- Pin down  $\frac{\alpha_{T,s}}{\alpha_{I,s}}$  from  $\frac{K_{T,s}r_T}{K_{I,s}r_I}$ 
  - rental rates
- · Alternatively, use  $lpha_{T,s}$  and  $lpha_{I,s}$  from BEA
- · Reallocation gains not sensitive to alternative  $\alpha_{\mathsf{x}}$  and  $r_{\mathsf{x}}$

- Cannot identify distortions and factor shares separately, assume sectoral input shares not distorted
- Measure 1  $\alpha_{T,s}$   $\alpha_{I,s}$  as  $\frac{\text{COGS}}{\text{SALE}}$  for each sector-year
- Pin down  $\frac{\alpha_{T,s}}{\alpha_{I,s}}$  from  $\frac{K_{T,s}r_T}{K_{I,s}r_I}$ 
  - rental rates
- $\cdot$  Alternatively, use  $lpha_{ extsf{T}, extsf{S}}$  and  $lpha_{ extsf{I}, extsf{S}}$  from BEA
- · Reallocation gains not sensitive to alternative  $\alpha_{\mathsf{x}}$  and  $r_{\mathsf{x}}$

- Cannot identify distortions and factor shares separately, assume sectoral input shares not distorted
- Measure 1  $-\alpha_{T,s} \alpha_{I,s}$  as  $\frac{\text{COGS}}{\text{SALE}}$  for each sector-year
- Pin down  $\frac{\alpha_{T,s}}{\alpha_{I,s}}$  from  $\frac{K_{T,s}r_{T}}{K_{I,s}r_{I}}$ 
  - rental rates
- $\cdot$  Alternatively, use  $lpha_{ extsf{T}, extsf{S}}$  and  $lpha_{ extsf{I}, extsf{S}}$  from BEA
- · Reallocation gains not sensitive to alternative  $lpha_{\mathsf{X}}$  and  $r_{\mathsf{X}}$

- Defined HK+I, how to compare to HK?
- Estimate HK from same data, need to define capital stock and factor share
- · Capital stock is tangible capital:  $k_{s,f} = k_{T,s,f}$
- Capital factor share is one minus labor share:  $\alpha_{\rm S}=\alpha_{\rm T,S}+\alpha_{\rm I,S}$

- Defined HK+I, how to compare to HK?
- Estimate HK from same data, need to define capital stock and factor share
- Capital stock is tangible capital:  $k_{s,f} = k_{T,s,f}$
- · Capital factor share is one minus labor share:  $\alpha_{\rm s}=\alpha_{\rm T,s}+\alpha_{\rm I,s}$

- Defined HK+I, how to compare to HK?
- Estimate HK from same data, need to define capital stock and factor share
- Capital stock is tangible capital:  $k_{s,f} = k_{T,s,f}$
- · Capital factor share is one minus labor share:  $\alpha_{\rm S}=\alpha_{\rm T,S}+\alpha_{\rm l,S}$

- Defined HK+I, how to compare to HK?
- Estimate HK from same data, need to define capital stock and factor share
- Capital stock is tangible capital:  $k_{s,f} = k_{T,s,f}$
- · Capital factor share is one minus labor share:  $\alpha_{\rm S}=\alpha_{\rm T,S}+\alpha_{\rm I,S}$



- HK+I:  $8.7\% \rightarrow 14.2\%$  of Y, HK:  $9.0\% \rightarrow 21.9\%$
- $\cdot$  Growing HK error accounts for  $> \frac{1}{2}$  of  $\Delta$ GAIN<sup>HK</sup>, and **all of it** since '87



- HK+I: 8.7%  $\rightarrow$  14.2% of Y, HK: 9.0%  $\rightarrow$  21.9%
- r Growing HK error accounts for  $>rac{1}{2}$  of  $\Delta$ GAIN<sup>HK</sup>, and all of it since '87



- HK+I:  $8.7\% \rightarrow 14.2\%$  of Y, HK:  $9.0\% \rightarrow 21.9\%$
- Growing HK error accounts for  $> \frac{1}{2}$  of  $\Delta$ GAIN<sup>HK</sup>, and all of it since '87

- Over/underestimation of GAIN driven by HK's over/underestimation of  $a_{\mathrm{s},\mathrm{f}}$ 

$$a_{s,f} = \underbrace{\frac{y_{s,f}}{R_{I}^{\alpha_{T,s} + \alpha_{I,s}} R_{I}^{\alpha_{I,s}} V^{1 - \alpha_{T,s} - \alpha_{I,s}}}}_{q^{HK} \downarrow q^{HK} \uparrow}$$

• If  $a_{s,f}$ ,  $1 + \tau_{T,s,f}$ ,  $1 + \tau_{I,s,f}$  are jointly lognormal (means  $\mu_x$ , (co)variances  $\sigma_x$ ),

$$\log \left( \mathsf{GAIN}_{\mathsf{s}}^{\mathsf{HK}} / \mathsf{GAIN}_{\mathsf{s}} \right) = \log \left( \frac{\sum_{i} \left( a_{\mathsf{s},f} \left( \frac{1 + \tau_{\mathsf{I},\mathsf{s},f}}{1 + \tau_{\mathsf{I},\mathsf{s},f}} \right)^{\alpha_{\mathsf{I},\mathsf{s}}} \right)^{\sigma - 1}}{\sum_{i} a_{\mathsf{s},f}^{\sigma - 1}} \right)^{\frac{1}{\sigma - 1}} = \alpha_{\mathsf{I},\mathsf{s}} \left( (\mu_{\mathsf{T},\mathsf{s}} - \mu_{\mathsf{I},\mathsf{s}}) + (\sigma - 1) \frac{\alpha_{\mathsf{I},\mathsf{s}}}{2} (\sigma_{\mathsf{T},\mathsf{s}}^2 + \sigma_{\mathsf{I},\mathsf{s}}^2 - 2\sigma_{\mathsf{T},\mathsf{I},\mathsf{s}}) + (\sigma - 1) (\sigma_{\mathsf{a},\mathsf{T},\mathsf{s}} - \sigma_{\mathsf{a},\mathsf{I},\mathsf{s}}) \right)^{\frac{1}{\sigma - 1}} = \alpha_{\mathsf{I},\mathsf{s}} \left( (\mu_{\mathsf{T},\mathsf{s}} - \mu_{\mathsf{I},\mathsf{s}}) + (\sigma - 1) \frac{\alpha_{\mathsf{I},\mathsf{s}}}{2} (\sigma_{\mathsf{T},\mathsf{s}}^2 + \sigma_{\mathsf{I},\mathsf{s}}^2 - 2\sigma_{\mathsf{T},\mathsf{I},\mathsf{s}}) + (\sigma - 1) (\sigma_{\mathsf{a},\mathsf{T},\mathsf{s}} - \sigma_{\mathsf{a},\mathsf{I},\mathsf{s}}) \right)^{\frac{1}{\sigma - 1}} = \alpha_{\mathsf{I},\mathsf{s}} \left( (\mu_{\mathsf{T},\mathsf{s}} - \mu_{\mathsf{I},\mathsf{s}}) + (\sigma - 1) \frac{\alpha_{\mathsf{I},\mathsf{s}}}{2} (\sigma_{\mathsf{T},\mathsf{s}}^2 + \sigma_{\mathsf{I},\mathsf{s}}^2 - 2\sigma_{\mathsf{T},\mathsf{I},\mathsf{s}}) \right)^{\frac{1}{\sigma - 1}} = \alpha_{\mathsf{I},\mathsf{s}} \left( (\mu_{\mathsf{T},\mathsf{s}} - \mu_{\mathsf{I},\mathsf{s}}) + (\sigma - 1) \frac{\alpha_{\mathsf{I},\mathsf{s}}}{2} (\sigma_{\mathsf{T},\mathsf{s}}^2 + \sigma_{\mathsf{I},\mathsf{s}}^2 - 2\sigma_{\mathsf{T},\mathsf{I},\mathsf{s}}) \right)^{\frac{1}{\sigma - 1}} = \alpha_{\mathsf{I},\mathsf{s}} \left( (\mu_{\mathsf{T},\mathsf{s}} - \mu_{\mathsf{I},\mathsf{s}}) + (\sigma - 1) \frac{\alpha_{\mathsf{I},\mathsf{s}}}{2} (\sigma_{\mathsf{T},\mathsf{s}}^2 + \sigma_{\mathsf{I},\mathsf{s}}^2 - 2\sigma_{\mathsf{T},\mathsf{I},\mathsf{s}}) \right)^{\frac{1}{\sigma - 1}} = \alpha_{\mathsf{I},\mathsf{s}} \left( (\mu_{\mathsf{T},\mathsf{s}} - \mu_{\mathsf{I},\mathsf{s}}) + (\sigma - 1) \frac{\alpha_{\mathsf{I},\mathsf{s}}}{2} (\sigma_{\mathsf{T},\mathsf{s}}^2 + \sigma_{\mathsf{I},\mathsf{s}}^2 - 2\sigma_{\mathsf{T},\mathsf{I},\mathsf{s}}) \right)^{\frac{1}{\sigma - 1}} \right)^{\frac{1}{\sigma - 1}} = \alpha_{\mathsf{I},\mathsf{s}} \left( (\mu_{\mathsf{T},\mathsf{s}} - \mu_{\mathsf{I},\mathsf{s}}) + (\sigma - 1) \frac{\alpha_{\mathsf{I},\mathsf{s}}}{2} (\sigma_{\mathsf{T},\mathsf{s}}^2 - 2\sigma_{\mathsf{T},\mathsf{I},\mathsf{s}}) \right)^{\frac{1}{\sigma - 1}}$$

mean distortion ratio

covariance with tfp

- Over/underestimation of GAIN driven by HK's over/underestimation of  $a_{\mathrm{s},\mathrm{f}}$ 

$$a_{s,f}^{HK} = \underbrace{\frac{y_{s,f}}{k_T^{\alpha_{T,s} + \alpha_{I,s}} k_I^{\alpha_{I,s}} v^{1 - \alpha_{T,s} - \alpha_{I,s}}}^{y_{s,f}}}_{a^{HK} \uparrow}$$

 $\cdot$  If  $a_{ extstyle s,f},$  1 +  $au_{ extstyle t,s,f}$  are jointly lognormal (means  $\mu_{ extstyle x}$ , (co)variances  $\sigma_{ extstyle x}$ ),

$$\log\left(\mathsf{GAIN}_\mathsf{S}^{HK}/\mathsf{GAIN}_\mathsf{S}\right) = \log\left(\frac{\sum_i \left(a_{\mathsf{S},f}\left(\frac{1+\tau_{\mathsf{T},\mathsf{S},f}}{1+\tau_{\mathsf{I},\mathsf{S},f}}\right)^{\alpha_{\mathsf{I},\mathsf{S}}}\right)^{\sigma-1}}{\sum_i a_{\mathsf{S},f}^{\sigma-1}}\right)^{\frac{1}{\sigma-1}} = \alpha_{\mathsf{I},\mathsf{S}}\left((\mu_{\mathsf{T},\mathsf{S}} - \mu_{\mathsf{I},\mathsf{S}}) + (\sigma-1)\frac{\alpha_{\mathsf{I},\mathsf{S}}}{2}(\sigma_{\mathsf{T},\mathsf{S}}^2 + \sigma_{\mathsf{I},\mathsf{S}}^2 - 2\sigma_{\mathsf{T},\mathsf{I},\mathsf{S}}) + (\sigma-1)(\sigma_{\mathsf{a},\mathsf{T},\mathsf{S}} - \sigma_{\mathsf{a},\mathsf{I},\mathsf{S}})\right)$$

mean distortion ratio

covariance with tfp

· Over/underestimation of GAIN driven by HK's over/underestimation of  $a_{s,f}$ 

$$a_{s,f}^{HK} = \underbrace{\frac{y_{s,f}}{k_T^{\alpha_{T,s} + \alpha_{I,s}} k_I^{\alpha_{I,s}} v^{1 - \alpha_{T,s} - \alpha_{I,s}}}}_{a^{HK} \uparrow}$$

• If  $a_{s,f}$ ,  $1 + \tau_{T,s,f}$ ,  $1 + \tau_{I,s,f}$  are jointly lognormal (means  $\mu_x$ , (co)variances  $\sigma_x$ ),

$$\log\left(\mathsf{GAIN}_{\mathsf{s}}^{\mathsf{HK}}/\mathsf{GAIN}_{\mathsf{s}}\right) = \log\left(\frac{\sum_{i}\left(a_{\mathsf{s},f}\left(\frac{1+\tau_{\mathsf{T},\mathsf{s},f}}{1+\tau_{\mathsf{I},\mathsf{s},f}}\right)^{\alpha_{\mathsf{I},\mathsf{s}}}\right)^{\sigma-1}}{\sum_{i}a_{\mathsf{s},f}^{\sigma-1}}\right)^{\frac{1}{\sigma-1}} = \alpha_{\mathsf{I},\mathsf{s}}\left(\underbrace{(\mu_{\mathsf{T},\mathsf{s}} - \mu_{\mathsf{I},\mathsf{s}}) + (\sigma-1)\frac{\alpha_{\mathsf{I},\mathsf{s}}}{2}(\sigma_{\mathsf{T},\mathsf{s}}^2 + \sigma_{\mathsf{I},\mathsf{s}}^2 - 2\sigma_{\mathsf{T},\mathsf{I},\mathsf{s}})}_{\mathsf{covariance}} + \underbrace{(\sigma-1)(\sigma_{\mathsf{a},\mathsf{T},\mathsf{s}} - \sigma_{\mathsf{a},\mathsf{I},\mathsf{s}})}_{\mathsf{covariance}}\right)^{\frac{1}{\sigma-1}}_{\mathsf{covariance}}$$

- Over/underestimation of GAIN driven by HK's over/underestimation of  $a_{\mathrm{s},\mathrm{f}}$ 

$$a_{s,f}^{HK} = \underbrace{\frac{y_{s,f}}{k_T^{\alpha_{T,s} + \alpha_{I,s}} k_I^{\alpha_{I,s}} v^{1 - \alpha_{T,s} - \alpha_{I,s}}}^{y_{s,f}}}_{a^{HK} \uparrow}$$

• If  $a_{s,f}$ ,  $1 + \tau_{T,s,f}$ ,  $1 + \tau_{I,s,f}$  are jointly lognormal (means  $\mu_X$ , (co)variances  $\sigma_X$ ),

$$\log \left( \mathsf{GAIN}_{\mathsf{S}}^{\mathsf{HK}} / \mathsf{GAIN}_{\mathsf{S}} \right) = \log \left( \frac{\sum_{l} \left( a_{\mathsf{S},f} \left( \frac{1 + \tau_{l,\mathsf{S},f}}{1 + \tau_{l,\mathsf{S},f}} \right)^{\alpha_{l,\mathsf{S}}} \right)^{\sigma_{l}}}{\sum_{l} a_{\mathsf{S},f}^{\sigma_{l}}} \right)^{\sigma_{l}} = \alpha_{l,\mathsf{S}} \left( (\mu_{\mathsf{T},\mathsf{S}} - \mu_{\mathsf{I},\mathsf{S}}) + (\sigma - 1) \frac{\alpha_{l,\mathsf{S}}}{2} (\sigma_{\mathsf{T},\mathsf{S}}^{2} + \sigma_{\mathsf{I},\mathsf{S}}^{2} - 2\sigma_{\mathsf{T},\mathsf{I},\mathsf{S}}) + (\sigma - 1) (\sigma_{\mathsf{G},\mathsf{T},\mathsf{S}} - \sigma_{\mathsf{G},\mathsf{I},\mathsf{S}}) \right)^{\sigma_{\mathsf{S},\mathsf{S}}}$$

17/31

· Over/underestimation of GAIN driven by HK's over/underestimation of  $a_{s,f}$ 

$$a_{s,f}^{HK} = \underbrace{\frac{y_{s,f}}{k_T^{\alpha_{T,s} + \alpha_{I,s}} k_I^{\alpha_{I,s}} v^{1 - \alpha_{T,s} - \alpha_{I,s}}}}_{a^{HK} \uparrow}$$

• If  $a_{s,f}$ ,  $1 + \tau_{T,s,f}$ ,  $1 + \tau_{I,s,f}$  are jointly lognormal (means  $\mu_X$ , (co)variances  $\sigma_X$ ),

$$\log\left(\mathsf{GAIN}_{\mathsf{S}}^{\mathsf{HK}}/\mathsf{GAIN}_{\mathsf{S}}\right) = \log\left(\frac{\sum_{i}\left(a_{\mathsf{S},f}\left(\frac{1+\tau_{\mathsf{T},\mathsf{S},f}}{1+\tau_{\mathsf{I},\mathsf{S},f}}\right)^{\alpha_{\mathsf{I},\mathsf{S}}}\right)^{\sigma-1}}{\sum_{i}a_{\mathsf{S},f}^{\sigma-1}}\right)^{\frac{1}{\sigma-1}} = \alpha_{\mathsf{I},\mathsf{S}}\left(\underbrace{(\mu_{\mathsf{T},\mathsf{S}} - \mu_{\mathsf{I},\mathsf{S}}) + (\sigma-1)\frac{\alpha_{\mathsf{I},\mathsf{S}}}{2}(\sigma_{\mathsf{T},\mathsf{S}}^{2} + \sigma_{\mathsf{I},\mathsf{S}}^{2} - 2\sigma_{\mathsf{T},\mathsf{I},\mathsf{S}})}_{\text{engage distortion ratio}} + \underbrace{(\sigma-1)(\sigma_{\mathsf{G},\mathsf{T},\mathsf{S}} - \sigma_{\mathsf{G},\mathsf{I},\mathsf{S}})}_{\text{engage distortion ratio}}\right)$$

- Over/underestimation of GAIN driven by HK's over/underestimation of  $a_{s,f}$ 

$$a_{s,f}^{HK} = \underbrace{\frac{y_{s,f}}{k_T^{\alpha_{T,s} + \alpha_{I,s}} k_I^{\alpha_{I,s}} v^{1 - \alpha_{T,s} - \alpha_{I,s}}}^{y_{s,f}}}_{a^{HK} \uparrow}$$

• If  $a_{s,f}$ ,  $1 + \tau_{T,s,f}$ ,  $1 + \tau_{I,s,f}$  are jointly lognormal (means  $\mu_X$ , (co)variances  $\sigma_X$ ),

$$\log\left(\mathsf{GAIN}_{\mathsf{S}}^{HK}/\mathsf{GAIN}_{\mathsf{S}}\right) = \log\left(\frac{\sum_{i}\left(a_{\mathsf{S},f}\left(\frac{1+\tau_{\mathsf{T},\mathsf{S},f}}{1+\tau_{\mathsf{I},\mathsf{S},f}}\right)^{\alpha_{\mathsf{I},\mathsf{S}}}\right)^{\sigma-1}}{\sum_{i}a_{\mathsf{S},f}^{\sigma-1}}\right)^{\frac{1}{\sigma-1}} = \alpha_{\mathsf{I},\mathsf{S}}\left((\mu_{\mathsf{T},\mathsf{S}} - \mu_{\mathsf{I},\mathsf{S}}) + (\sigma-1)\frac{\alpha_{\mathsf{I},\mathsf{S}}}{2}(\sigma_{\mathsf{T},\mathsf{S}}^{2} + \sigma_{\mathsf{I},\mathsf{S}}^{2} - 2\sigma_{\mathsf{T},\mathsf{I},\mathsf{S}}) + (\sigma-1)(\sigma_{\mathsf{a},\mathsf{T},\mathsf{S}} - \sigma_{\mathsf{a},\mathsf{I},\mathsf{S}})\right)$$

 $\cdot$  Over/underestimation of GAIN driven by HK's over/underestimation of  $a_{s,f}$ 

$$a_{s,f}^{HK} = \underbrace{\frac{y_{s,f}}{k_T^{\alpha_{T,s} + \alpha_{I,s}} k_T^{\alpha_{I,s}} v^{1 - \alpha_{T,s} - \alpha_{I,s}}}}_{a^{HK} \uparrow}$$

• If  $a_{s,f}$ ,  $1 + \tau_{T,s,f}$ ,  $1 + \tau_{I,s,f}$  are jointly lognormal (means  $\mu_x$ , (co)variances  $\sigma_x$ ),

$$\log\left(\mathsf{GAIN}_{\mathsf{S}}^{HK}/\mathsf{GAIN}_{\mathsf{S}}\right) = \log\left(\frac{\sum_{i}\left(a_{\mathsf{S},f}\left(\frac{1+\tau_{\mathsf{T},\mathsf{S},f}}{1+\tau_{\mathsf{I},\mathsf{S},f}}\right)^{\alpha_{\mathsf{I},\mathsf{S}}}\right)^{\sigma-1}}{\sum_{i}a_{\mathsf{S},f}^{\sigma-1}}\right)^{\frac{1}{\sigma-1}} = \alpha_{\mathsf{I},\mathsf{S}}\left(\underbrace{(\mu_{\mathsf{T},\mathsf{S}} - \mu_{\mathsf{I},\mathsf{S}}) + (\sigma-1)\frac{\alpha_{\mathsf{I},\mathsf{S}}}{2}(\sigma_{\mathsf{T},\mathsf{S}}^2 + \sigma_{\mathsf{I},\mathsf{S}}^2 - 2\sigma_{\mathsf{T},\mathsf{I},\mathsf{S}})}_{\text{mean distortion ratio}} + \underbrace{(\sigma-1)(\sigma_{a,\mathsf{T},\mathsf{S}} - \sigma_{a,\mathsf{I},\mathsf{S}})}_{\text{covariance with tfp}}\right)^{\frac{1}{\sigma-1}}$$

- Over/underestimation of GAIN driven by HK's over/underestimation of  $a_{\mathrm{s},\mathrm{f}}$ 

$$a_{s,f}^{HK} = \underbrace{\frac{y_{s,f}}{k_T^{\alpha_{T,s} + \alpha_{I,s}} k_I^{\alpha_{I,s}} v^{1 - \alpha_{T,s} - \alpha_{I,s}}}}_{a^{HK} \uparrow}$$

• If  $a_{s,f}$ ,  $1 + \tau_{T,s,f}$ ,  $1 + \tau_{I,s,f}$  are jointly lognormal (means  $\mu_x$ , (co)variances  $\sigma_x$ ),

$$\log\left(\mathsf{GAIN}_{\mathsf{S}}^{HK}/\mathsf{GAIN}_{\mathsf{S}}\right) = \log\left(\frac{\sum_{i}\left(a_{\mathsf{S},f}\left(\frac{1+\tau_{\mathsf{T},\mathsf{S},f}}{1+\tau_{\mathsf{I},\mathsf{S},f}}\right)^{\alpha_{\mathsf{I},\mathsf{S}}}\right)^{\sigma-1}}{\sum_{i}a_{\mathsf{S},f}^{\sigma-1}}\right)^{\frac{1}{\sigma-1}} = \alpha_{\mathsf{I},\mathsf{S}}\left(\underbrace{(\mu_{\mathsf{T},\mathsf{S}} - \mu_{\mathsf{I},\mathsf{S}}) + (\sigma-1)\frac{\alpha_{\mathsf{I},\mathsf{S}}}{2}(\sigma_{\mathsf{T},\mathsf{S}}^2 + \sigma_{\mathsf{I},\mathsf{S}}^2 - 2\sigma_{\mathsf{T},\mathsf{I},\mathsf{S}})}_{\text{mean distortion ratio}} + \underbrace{(\sigma-1)(\sigma_{a,\mathsf{T},\mathsf{S}} - \sigma_{a,\mathsf{I},\mathsf{S}})}_{\text{covariance with tfp}}\right)$$

## MISALLOCATION AND INTANGIBLE SHARE

- · Are intangible-intensive sectors more distorted or less?
- · Split sectors into high/low-intangible groups by their  $rac{\mathcal{K}_{\mathsf{I},\mathsf{S}}}{\mathcal{K}_{\mathsf{T},\mathsf{S}}}$  in 2017
  - Sales Shares
- Evaluate misallocation cost in each group

#### MISALLOCATION AND INTANGIBLE SHARE

- Are intangible-intensive sectors more distorted or less?
- Split sectors into high/low-intangible groups by their  $\frac{K_{l,s}}{K_{T,s}}$  in 2017
  - Sales Shares
- Evaluate misallocation cost in each group

#### MISALLOCATION AND INTANGIBLE SHARE

- Are intangible-intensive sectors more distorted or less?
- Split sectors into high/low-intangible groups by their  $\frac{K_{l,s}}{K_{T,s}}$  in 2017
  - Sales Shares
- · Evaluate misallocation cost in each group

#### MISALLOCATION BY INTAN INTENSITY



• High-intan: 11.5%  $\rightarrow$  16.3%, low-intan: 5.8%  $\rightarrow$  9.3%



# POTENTIAL MECHANISMS

# THE MOST AND THE LEAST INTAN-INTENSIVE SECTORS

| $\frac{K_l}{K_T}$ Rank | Sector                             | $\frac{K_I}{K_T}$ |
|------------------------|------------------------------------|-------------------|
| 1                      | Motion picture and sound recording | 4.85              |
| 2                      | Computer systems design            | 4.81              |
| 3                      | Publishing industries              | 4.47              |
| :                      |                                    |                   |
|                        |                                    |                   |
|                        |                                    |                   |
|                        |                                    |                   |
|                        |                                    |                   |
|                        |                                    |                   |
| 52                     | Forestry and fishing               | .02               |

# THE MOST AND THE LEAST INTAN-INTENSIVE SECTORS

| $\frac{K_l}{K_T}$ Rank | Sector                             | $\frac{K_I}{K_T}$ |
|------------------------|------------------------------------|-------------------|
| 1                      | Motion picture and sound recording | 4.85              |
| 2                      | Computer systems design            | 4.81              |
| 3                      | Publishing industries              | 4.47              |
| :                      |                                    |                   |
|                        |                                    |                   |
|                        |                                    |                   |
| :                      |                                    |                   |
| 50                     | Oil and gas extraction             | .05               |
| 51                     | Utilities                          | .05               |
| 52                     | Forestry and fishing               | .02               |

# THE MOST AND THE LEAST INTAN-INTENSIVE SECTORS

| $\frac{K_I}{K_T}$ Rank | Sector                             | $\frac{K_I}{K_T}$ |
|------------------------|------------------------------------|-------------------|
| 1                      | Motion picture and sound recording | 4.85              |
| 2                      | Computer systems design            | 4.81              |
| 3                      | Publishing industries              | 4.47              |
| :                      |                                    |                   |
| 26                     | Transportation equipment           | 1.14              |
| 27                     | Printing                           | 0.83              |
| :                      |                                    |                   |
| 50                     | Oil and gas extraction             | .05               |
| 51                     | Utilities                          | .05               |
| 52                     | Forestry and fishing               | .02               |

|                          | high-intan | low-intan | mechanism        |
|--------------------------|------------|-----------|------------------|
| $K_T$ factor share       | 0.083      | 0.230     |                  |
| $K_l$ factor share       | 0.260      | 0.124     |                  |
| V factor share           | 0.657      | 0.646     |                  |
| SD of demeaned log sales | 2.53       | 1.95      | winner-take-most |
|                          |            |           |                  |
|                          |            |           |                  |
|                          |            |           |                  |

|                            | high-intan | low-intan | mechanism        |
|----------------------------|------------|-----------|------------------|
| $K_T$ factor share         | 0.083      | 0.230     |                  |
| $K_l$ factor share         | 0.260      | 0.124     |                  |
| V factor share             | 0.657      | 0.646     |                  |
| SD of demeaned log sales   | 2.53       | 1.95      | winner-take-most |
| Median firm growth rate SD | 0.24       | 0.17      | uncertainty      |
| Median leverage ratio      |            |           | fin. frictions   |
| Sales-weighted markup      | 1.178      | 1.048     | market power     |

|                            | high-intan | low-intan | mechanism        |
|----------------------------|------------|-----------|------------------|
| $K_T$ factor share         | 0.083      | 0.230     |                  |
| $K_l$ factor share         | 0.260      | 0.124     |                  |
| V factor share             | 0.657      | 0.646     |                  |
| SD of demeaned log sales   | 2.53       | 1.95      | winner-take-most |
| Median firm growth rate SD | 0.24       | 0.17      | uncertainty      |
| Median leverage ratio      |            |           | fin. frictions   |
| Sales-weighted markup      | 1.178      | 1.048     | market power     |

|                            | high-intan | low-intan | mechanism        |
|----------------------------|------------|-----------|------------------|
| $K_T$ factor share         | 0.083      | 0.230     |                  |
| $K_l$ factor share         | 0.260      | 0.124     |                  |
| V factor share             | 0.657      | 0.646     |                  |
| SD of demeaned log sales   | 2.53       | 1.95      | winner-take-most |
| Median firm growth rate SD | 0.24       | 0.17      | uncertainty      |
| Median leverage ratio      | 0.20       | 0.32      | fin. frictions   |
| Sales-weighted markup      | 1.178      | 1.048     | market power     |

|                            | high-intan | low-intan | mechanism        |
|----------------------------|------------|-----------|------------------|
| $K_T$ factor share         | 0.083      | 0.230     |                  |
| $K_l$ factor share         | 0.260      | 0.124     |                  |
| V factor share             | 0.657      | 0.646     |                  |
| SD of demeaned log sales   | 2.53       | 1.95      | winner-take-most |
| Median firm growth rate SD | 0.24       | 0.17      | uncertainty      |
| Median leverage ratio      | 0.20       | 0.32      | fin. frictions   |
| Sales-weighted markup      | 1.178      | 1.048     | market power     |



VARIABLE MARKUP MODEL

- · Uncertain productivity of intan investment + markup heterogeneity
- Add intangibles to PE version of Edmond, Midrigan and Xu (2018)
- Small sector: sectoral variables do not affect prices
- Intangible investments face uncertain productivity, less adjustable than tangibles
- Sectoral Kimball aggregator produces size-dependent markups

- · Uncertain productivity of intan investment + markup heterogeneity
- · Add intangibles to PE version of Edmond, Midrigan and Xu (2018)
- Small sector: sectoral variables do not affect prices
- Intangible investments face uncertain productivity, less adjustable than tangibles
- Sectoral Kimball aggregator produces size-dependent markups

- · Uncertain productivity of intan investment + markup heterogeneity
- · Add intangibles to PE version of Edmond, Midrigan and Xu (2018)
- · Small sector: sectoral variables do not affect prices
- Intangible investments face uncertain productivity, less adjustable than tangibles
- Sectoral Kimball aggregator produces size-dependent markups

- · Uncertain productivity of intan investment + markup heterogeneity
- · Add intangibles to PE version of Edmond, Midrigan and Xu (2018)
- · Small sector: sectoral variables do not affect prices
- Intangible investments face uncertain productivity, less adjustable than tangibles
- Sectoral Kimball aggregator produces size-dependent markups

- · Uncertain productivity of intan investment + markup heterogeneity
- · Add intangibles to PE version of Edmond, Midrigan and Xu (2018)
- · Small sector: sectoral variables do not affect prices
- Intangible investments face uncertain productivity, less adjustable than tangibles
- · Sectoral Kimball aggregator produces size-dependent markups

#### **TIMELINE**

• All firms enter, make one-time investment  $x_l$ , draw e to get  $k_l = ex_l$ , choose  $k_T$ , then produce



### **DEMAND**

- Sectoral composite good produced from varieties  $\omega$  using the Kimball aggregator

$$\int_0^{F_t} \Upsilon\left(\frac{y_t(\omega)}{Y_t}\right) d\omega = 1$$

Use the functional form for ↑ from Klenow and Willis (2016)

$$\Upsilon\left(\frac{y_t(\omega)}{Y_t}\right) = 1 + (\tilde{\sigma} - 1) \exp\left(\frac{1}{\varepsilon}\right) \varepsilon^{\frac{\tilde{\sigma}}{\varepsilon} - 1} \left(\Gamma\left(\frac{\tilde{\sigma}}{\varepsilon}, \frac{1}{\varepsilon}\right) - \Gamma\left(\frac{\tilde{\sigma}}{\varepsilon}, \frac{(y_t(\omega)/Y)^{\frac{\varepsilon}{\tilde{\sigma}}}}{\varepsilon}\right)\right)$$

### **DEMAND**

- Sectoral composite good produced from varieties  $\omega$  using the Kimball aggregator

$$\int_0^{F_t} \Upsilon\left(\frac{y_t(\omega)}{Y_t}\right) d\omega = 1$$

 $\cdot$  Use the functional form for  $\Upsilon$  from Klenow and Willis (2016)

$$\Upsilon\left(\frac{y_t(\omega)}{Y_t}\right) = 1 + (\tilde{\sigma} - 1) \exp\left(\frac{1}{\varepsilon}\right) \varepsilon^{\frac{\tilde{\sigma}}{\varepsilon} - 1} \left(\Gamma\left(\frac{\tilde{\sigma}}{\varepsilon}, \frac{1}{\varepsilon}\right) - \Gamma\left(\frac{\tilde{\sigma}}{\varepsilon}, \frac{(y_t(\omega)/Y)^{\frac{\varepsilon}{\tilde{\sigma}}}}{\varepsilon}\right)\right)$$

· Produce with

$$y_t = \underbrace{k_T^{\alpha_T} k_I^{\alpha_I}}_{\equiv z} v_t^{1 - \alpha_T - \alpha_I}$$

• Static production problem in  $t \ge 1$ 

$$\pi(z) = \max_{V_t, V_t} p(z) y(z) - wv(z)$$

$$p(z) = \frac{\tilde{\sigma}\left(\frac{y(z)}{Y}\right)^{-\frac{z}{\tilde{\sigma}}}}{\tilde{\sigma}\left(\frac{y(z)}{Y}\right)^{-\frac{z}{\tilde{\sigma}}} - 1} \cdot MC(z)$$

$$\mu\left(\frac{y(z)}{Y}\right)$$

- $\left(rac{\mu\left(rac{Y(Z)}{Y}
  ight)}{Y}
  ight)$  is increasing in relative quantity
- Tractable way to generate size-dependent markups

· Produce with

$$y_t = \underbrace{k_T^{\alpha_T} k_I^{\alpha_I}}_{\equiv z} v_t^{1 - \alpha_T - \alpha_I}$$

• Static production problem in  $t \ge 1$ :

$$\pi(z) = \max_{V_t, V_t} p(z)y(z) - wv(z)$$

$$p(z) = \frac{\tilde{\sigma}\left(\frac{y(z)}{Y}\right)^{-\frac{z}{\tilde{\sigma}}}}{\tilde{\sigma}\left(\frac{y(z)}{Y}\right)^{-\frac{z}{\tilde{\sigma}}} - 1} \cdot MC(z)$$

$$\mu\left(\frac{y(z)}{Y}\right)$$

- $\cdot \,\,\, \mu\left(rac{y(z)}{Y}
  ight)$  is increasing in relative quantity
- Tractable way to generate size-dependent markups

· Produce with

$$y_t = \underbrace{k_T^{\alpha_T} k_I^{\alpha_I}}_{=z} v_t^{1 - \alpha_T - \alpha_I}$$

• Static production problem in  $t \ge 1$ :

$$\pi(z) = \max_{y_t, v_t} p(z)y(z) - wv(z)$$

$$p(z) = \frac{\tilde{\sigma}\left(\frac{y(z)}{Y}\right)^{-\frac{\varepsilon}{\tilde{\sigma}}}}{\tilde{\sigma}\left(\frac{y(z)}{Y}\right)^{-\frac{\varepsilon}{\tilde{\sigma}}} - 1} \cdot MC(z)$$

- $\displaystyle \cdot \; \mu \left( rac{y(z)}{Y} 
  ight)$  is increasing in relative quantity
- Tractable way to generate size-dependent markups

· Produce with

$$y_t = \underbrace{k_T^{\alpha_T} k_I^{\alpha_I}}_{\equiv z} v_t^{1 - \alpha_T - \alpha_I}$$

• Static production problem in  $t \ge 1$ :

$$\pi(z) = \max_{V_t, V_t} p(z)y(z) - wv(z)$$

$$p(z) = \frac{\tilde{\sigma}\left(\frac{y(z)}{Y}\right)^{-\frac{z}{\tilde{\sigma}}}}{\tilde{\sigma}\left(\frac{y(z)}{Y}\right)^{-\frac{z}{\tilde{\sigma}}} - 1} \cdot MC(z)$$

$$\mu\left(\frac{y(z)}{Y}\right)$$

- $\cdot \mu\left(\frac{y(z)}{Y}\right)$  is increasing in relative quantity
- Tractable way to generate size-dependent markups

· Produce with

$$y_t = \underbrace{k_T^{\alpha_T} k_I^{\alpha_I}}_{=z} v_t^{1 - \alpha_T - \alpha_I}$$

• Static production problem in  $t \ge 1$ :

$$\pi(z) = \max_{\forall t, \forall t} p(z)y(z) - wv(z)$$

$$p(z) = \frac{\tilde{\sigma}\left(\frac{y(z)}{Y}\right)^{-\frac{z}{\tilde{\sigma}}}}{\tilde{\sigma}\left(\frac{y(z)}{Y}\right)^{-\frac{z}{\tilde{\sigma}}} - 1} \cdot MC(z)$$

$$\mu\left(\frac{y(z)}{Y}\right)$$

- $\cdot \mu\left(\frac{y(z)}{Y}\right)$  is increasing in relative quantity
- · Tractable way to generate size-dependent markups

#### TANGIBLE INVESTMENT

• Given  $k_l$  draw, choose tangible capital to max discounted profits less cost of investment

$$\max_{k_T} eta \sum_{t=1}^{\infty} \left( eta(1-d) \right)^{t-1} \pi_t \left( k_T^{lpha_T}(k_l) k_l^{lpha_l} \right) - k_T(k_l)$$

#### **TANGIBLE INVESTMENT**

• Given  $k_l$  draw, choose tangible capital to max discounted profits less cost of investment

$$\max_{k_T} \beta \sum_{t=1}^{\infty} (\beta(1-d))^{t-1} \pi_t \left( k_T^{\alpha_T}(k_I) k_I^{\alpha_I} \right) - k_T(k_I)$$

#### INTANGIBLE INVESTMENT

· Choose intangible investment to max expected profits less cost of investment

$$\max_{\mathsf{x}_l} \int \left( \beta \sum_{t=1}^{\infty} \left( \beta (1-\delta) \right)^{t-1} \pi_t \left( k_T^{\alpha_T}(e\mathsf{x}_l)(e\mathsf{x}_l)^{\alpha_l} \right) - k_T(e\mathsf{x}_l) \right) dG(e) - \mathsf{x}_l^{\phi}$$

- $\cdot \phi >$  1 needed to close the model
- Then draw  $e \sim G(e)$  and obtain  $k_l = ex_l$

#### INTANGIBLE INVESTMENT

· Choose intangible investment to max expected profits less cost of investment

$$\max_{\mathsf{X}_l} \int \left( \beta \sum_{t=1}^{\infty} \left( \beta (1-\delta) \right)^{t-1} \pi_t \left( k_T^{\alpha_T} (e\mathsf{X}_l) (e\mathsf{X}_l)^{\alpha_l} \right) - k_T (e\mathsf{X}_l) \right) dG(e) - \mathsf{X}_l^{\phi}$$

- $\phi > 1$  needed to close the model
- Then draw  $e \sim G(e)$  and obtain  $k_l = ex_l$

#### INTANGIBLE INVESTMENT

· Choose intangible investment to max expected profits less cost of investment

$$\max_{\mathsf{x}_l} \int \left( \beta \sum_{t=1}^{\infty} \left( \beta (1-\delta) \right)^{t-1} \pi_t \left( k_T^{\alpha_T} (\mathsf{ex}_l) (\mathsf{ex}_l)^{\alpha_l} \right) - k_T (\mathsf{ex}_l) \right) dG(e) - \mathsf{x}_l^{\phi}$$

- $\phi > 1$  needed to close the model
- Then draw  $e \sim G(e)$  and obtain  $k_l = ex_l$

### **CALIBRATION**

- · Calibrate to the low-intangible group of sectors
- $e \sim lognormal(0, \iota^2)$

#### **CALIBRATION**

- · Calibrate to the low-intangible group of sectors
- $e \sim lognormal(0, \iota^2)$

### **CALIBRATION**

- · Calibrate to the low-intangible group of sectors
- $e \sim lognormal(0, \iota^2)$

| Parameter               | Symbol           | Value | Rationale               |
|-------------------------|------------------|-------|-------------------------|
| discount rate           | β                | 0.96  | standard                |
| death rate              | δ                | 0.10  | standard                |
| intan inv convexity     | $\phi$           | 1.1   | ad hoc                  |
| Low-Intan Sector        |                  |       |                         |
| tangible share          | $\alpha_{T,l}$   | 0.230 | compensation share      |
| intangible share        | $\alpha_{l,l}$   | 0.124 | compensation share      |
| average elasticity      | $\tilde{\sigma}$ | 29    | aggregate markup        |
| superelasticity         | $\varepsilon$    | 6     | sales-COGS relationship |
| productivity dispersion | ι                | 2.25  | sales distribution      |
| HIGH-INTAN SECTOR       |                  |       |                         |
| tangible share          | $lpha_{T,h}$     | 0.083 | compensation share      |
| intangible share        | $lpha_{I,h}$     | 0.260 | compensation share      |

Targeted moments

### **MECHANISM**

• Intan investment productivity dispersion  $\to$  size dispersion  $\to$  markup dispersion  $\to$  measured misallocation



#### **MECHANISM**

• Intan investment productivity dispersion  $\to$  size dispersion  $\to$  markup dispersion  $\to$  measured misallocation



### **MECHANISM**

• Intan investment productivity dispersion  $\to$  size dispersion  $\to$  markup dispersion  $\to$  measured misallocation



|                 | lo    | low-intan |       | -intan |
|-----------------|-------|-----------|-------|--------|
|                 | data  | model     | data  | model  |
| HK+I TFP GAIN   | 9.3%  | 17.0%     | 16.3% | 19.7%  |
| TFPR DISPERSION | 0.300 | 0.353     | 0.545 | 0.397  |

|                 | lo    | low-intan |       | high-intan |  |
|-----------------|-------|-----------|-------|------------|--|
|                 | data  | model     | data  | model      |  |
| HK+I TFP GAIN   | 9.3%  | 17.0%     | 16.3% | 19.7%      |  |
| TFPR DISPERSION | 0.300 | 0.353     | 0.545 | 0.397      |  |

|                 | lo    | low-intan |       | -intan |
|-----------------|-------|-----------|-------|--------|
|                 | data  | model     | data  | model  |
| HK+I TFP GAIN   | 9.3%  | 17.0%     | 16.3% | 19.7%  |
| TFPR DISPERSION | 0.300 | 0.353     | 0.545 | 0.397  |

|                 | lo    | low-intan |       | -intan |
|-----------------|-------|-----------|-------|--------|
|                 | data  | model     | data  | model  |
| HK+I TFP GAIN   | 9.3%  | 17.0%     | 16.3% | 19.7%  |
| TFPR DISPERSION | 0.300 | 0.353     | 0.545 | 0.397  |



#### **CONCLUSION**

#### SUMMARY

- Ignoring intangibles overestimates misallocation by 50%
  - · and its growth by 130%, explaining ~all measured deterioration in last 20 years
- · High and deteriorating misallocation driven by intangible-intensive sectors
- Investment uncertainty + variable markups can explain  $\frac{1}{3}$  of the difference

#### FUTURE WORK

 Figure out what mechanisms drive the high misallocation in intan-intensive sectors

### SUMMARY

- Ignoring intangibles **overestimates misallocation** by 50%
  - $\cdot$  and its growth by 130%, **explaining ~all measured deterioration** in last 20 years
- High and deteriorating misallocation driven by intangible-intensive sectors
- Investment uncertainty + variable markups can explain  $\frac{1}{3}$  of the difference

### FUTURE WORK

### SUMMARY

- Ignoring intangibles **overestimates misallocation** by 50%
  - $\cdot$  and its growth by 130%, **explaining ~all measured deterioration** in last 20 years
- High and deteriorating misallocation driven by intangible-intensive sectors
- Investment uncertainty + variable markups can explain  $\frac{1}{3}$  of the difference

### FUTURE WORK

#### SUMMARY

- Ignoring intangibles **overestimates misallocation** by 50%
  - and its growth by 130%, **explaining ~all measured deterioration** in last 20 years
- · High and deteriorating misallocation driven by intangible-intensive sectors
- Investment uncertainty + variable markups can explain  $\frac{1}{3}$  of the difference

### FUTURE WORK

### SUMMARY

- Ignoring intangibles **overestimates misallocation** by 50%
  - $\cdot$  and its growth by 130%, **explaining ~all measured deterioration** in last 20 years
- · High and deteriorating misallocation driven by intangible-intensive sectors
- Investment uncertainty + variable markups can explain  $\frac{1}{3}$  of the difference

## FUTURE WORK

#### SUMMARY

- Ignoring intangibles **overestimates misallocation** by 50%
  - and its growth by 130%, **explaining ~all measured deterioration** in last 20 years
- · High and deteriorating misallocation driven by intangible-intensive sectors
- Investment uncertainty + variable markups can explain  $\frac{1}{3}$  of the difference

## FUTURE WORK

# INTANGIBLE K COMPONENTS



# **PRODUCTIVITIES**

$$tfpr_{s,f} = \frac{\sigma}{\sigma - 1} \left( \frac{(1 + \tau_{T,s,f})r_{T}}{(1 - \tau_{Y,s,f})\alpha_{T,s}} \right)^{\alpha_{T,s}} \left( \frac{(1 + \tau_{I,s,f})r_{I}}{(1 - \tau_{Y,s,f})\alpha_{I,s}} \right)^{\alpha_{I,s}} \times$$

$$\left( \frac{W}{(1 - \tau_{Y,s,f})(1 - \alpha_{T,s} - \alpha_{I,s})} \right)^{1 - \alpha_{T,s} - \alpha_{I,s}}$$

$$a_{s,f} = \left( P_{s} Y_{s}^{\frac{1}{\sigma}} \right)^{\frac{\sigma}{1 - \sigma}} \frac{\left( p_{s,f} y_{s,f} \right)^{\frac{\sigma}{\sigma - 1}}}{k_{T,s,f}^{\alpha_{I,s}} k_{I,s,f}^{\alpha_{I,s}} v_{s,f}^{1 - \alpha_{T,s} - \alpha_{I,s}}}$$

$$TFPR_{s} = \left( \frac{MRPK_{T,s}}{\alpha_{T,s}} \right)^{\alpha_{T,s}} \left( \frac{MRPK_{I,s}}{\alpha_{I,s}} \right)^{\alpha_{I,s}} \left( \frac{MRPV_{s}}{1 - \alpha_{T,s} - \alpha_{I,s}} \right)^{1 - \alpha_{T,s} - \alpha_{I,s}}$$

## **RENTAL RATES**

- Assume  $r = 0.05 + \delta$
- $r_T = 0.12, r_I = 0.22$
- · Rates matter for factor shares, but not (directly) for reallocation gains



## **REALLOCATION OF SALES ACROSS SECTORS**



 $\cdot$   $\frac{1}{10}$  of increase due to reallocation of revenue to more distorted sectors

# SALES SHARES BY GROUP



# MISALLOCATION BY INTAN INTENSITY, HK



# **DISPERSION BY INTAN INTENSITY**



# **TARGETED MOMENTS**

|                                                              |                                                                                     | low-intan<br>(targeted)                                                            |                                                                                      | high-intan<br>(non-targeted)                                                        |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
|                                                              | data                                                                                | model                                                                              | data                                                                                 | model                                                                               |  |
| Aggr. Markup<br>M                                            | 1.048                                                                               | 1.048                                                                              | 1.178                                                                                | 1.053                                                                               |  |
| RELATIVE COGS decile 1st 2nd 3rd 4th 5th 6th 7th 8th 9th     | -4.20<br>-3.01<br>-2.06<br>-1.62<br>-1.22<br>-0.85<br>-0.34<br>0.06<br>0.75<br>1.64 | -2.47<br>-1.64<br>-1.07<br>-0.77<br>-0.50<br>-0.21<br>0.11<br>0.35<br>0.79<br>1.31 | -5.17<br>-4.14<br>-3.52<br>-2.79<br>-2.32<br>-1.57<br>-1.20<br>-0.47<br>0.27<br>2.00 | -3.70<br>-2.77<br>-2.16<br>-1.67<br>-1.24<br>-0.78<br>-0.39<br>0.05<br>0.54<br>1.66 |  |
| RELATIVE SALES percentile 20th 40th 60th 80th 90th 95th 99th | -3.22<br>-1.72<br>-0.77<br>0.24<br>0.98<br>1.43<br>2.28                             | -2.83<br>-1.73<br>-0.82<br>0.18<br>0.89<br>1.46<br>2.46                            | -4.23<br>-2.70<br>-1.54<br>-0.23<br>0.74<br>1.49<br>2.77                             | -3.47<br>-2.25<br>-1.22<br>-0.06<br>0.79<br>1.47<br>2.69                            |  |