Implementacija Sudoku rešavača korišćenjem Algoritma igrajućih pokazivača

Seminarski rad u okviru kursa Konstrukcija i Analiza algoritama 2 Matematički fakultet

Petar Đorđević

26. avgust 2024.

Sažetak

Ovaj rad istražuje Algoritam igrajućih pokazivača (eng. Dancing Links Algorithm - DLX), koji je efikasna metoda za rešavanje problema pokrivanja tačaka, specifično za rešavanje problema tačnog omotača. Algoritam, koji je osmislio Donald Knuth [6], omogućava brzu i efikasnu manipulaciju binarnih matrica kojima se predstavlja ovaj problem. Ova tehnika je naročito pogodna za rešavanje složenih kombinatornih problema kao što je raspoređivanje poslova, logičke rešetke, puzzle i slično. U okviru ovog rada, implementiraće se Sudoku rešavač kao konkretan primer primene Algoritma igrajućih pokazivača (DLX).

Sadržaj

1	Uvod	2
2	Problem tačnog omotača 2.1 Matrica pokrivanja	2 3
3	Algoritam igrajućih pokazivača	3
	3.1 Operacije nad dvostruko ulančanim listama	4
	3.2 Struktura igrajućih linkova	4
	3.3 Operacije nad igrajućim pokazivačima	5
4	Sudoku	7
	4.1 Svođenje na problem tačnog pokrivača	7
5	Implementacija	7
	5.1 Sistem za izgradnju	7
	5.2 Grafički korisnički interfejs	8
6	Evaluacija implementacije	9
7	Zaključak	10
Li	iteratura	11

1 Uvod

Problem tačnog pokrivača (eng. Exact Cover Problem - ECP) je klasičan kombinatorni problem odabira podskupova iz date kolekcije tako da svaki element univerzalnog skupa bude pokriven tačno jednim podskupom [1]. Rešavanje ovog problema ima primenu u raznim oblastima kao što su teorija grafova, optimizacija, veštačka inteligencija i računarstvo. Matrica pokrivanja u problemu tačnog omotača predstavlja binarnu matricu gde redovi označavaju podskupove, a kolone elemente skupa, sa vrednostima koje pokazuju da li određeni podskup sadrži određeni element. Problem tačnog pokrivača je NP-težak, što znači da je izuzetno složen za rešavanje, te zahteva najbolji mogući algoritam za efikasno pronalaženje rešenja.

Jedan od najpoznatijih algoritama za rešavanje ovog problema je *Algoritam igrajućih pokazivača* (eng. Dancing Links Algorithm - DLX), koji je osmislio Donald Knuth. DLX koristi strukturu podataka poznatu kao igrajući pokazivači koja optimizuje operacije dodavanja, uklanjanja i pretraživanja elemenata u matricama pokrivanja.

Sudoku je popularna logička slagalica koja zahteva popunjavanje 9×9 mreže brojevima od 1 do 9, uz poštovanje pravila da se svaki broj mora pojaviti tačno jednom u svakom redu, koloni i 3×3 podmreži. Problem rešavanja Sudokua može se preformulisati kao problem tačnih pokrivača, što ga čini idealnim za primenu DLX-a. Ovo preformulisanje omogućava da se koristi DLX za efikasno pronalaženje rešenja, čak i za najteže zagonetke.

Cilj ovog rada je implementacija Sudoku rešavača koristeći Algoritam igrajućih pokazivača i analiza efikasnosti ovog algoritma. Pored toga, u radu će biti data evaluacija performansi DLX-a na različitim primerima Sudoku zagonetki.

2 Problem tačnog omotača

Problem tačnog pokrivača (eng. Exact Cover Problem - ECP) predstavlja ključnu podvrstu problema zadovoljivosti ograničenja (eng. Constraint Satisfaction Problems - CSP), gde je cilj pronaći podskupove koji sadrže svaki element skupa bez preklapanja. Svaki podskup se može posmatrati kao klauza, a tačno pokrivanje zahteva da svaki literal bude zadovoljena tačno jednom.

ECP se može definisati na sledeći način: Dat je univerzalni skup U i kolekcija S podskupova U. Cilj je pronaći podskup $S' \subseteq S$ takav da su svi elementi iz U tačno jednom pokriveni, odnosno svaki element iz U pripada tačno jednom podskupu iz S'.

$$\mathcal{S}' \subseteq \mathcal{S} \quad \land \quad (\forall S_1, S_2 \in \mathcal{S}', \ S_1 \neq S_2 \implies S_1 \cap S_2 = \emptyset) \quad \land \quad \bigsqcup_{S' \in \mathcal{S}'} S' = U$$

ECP se može svesti na CSP [2] na sledeći način: S predstavlja izbore koje možemo napraviti a U ograničenja nad tim izborima. Pošto je ova redukcija moguća znamo da je to NP-težak problem.

Postoje različiti pristupi rešavanju ECP-a, među kojima su i algoritmi koji koriste tehniku pretraživanja unazad, kao što su algoritam iscrpne pretrage i algoritam podeli pa vladaj. Pored toga, neki od najefikasnijih algoritama za rešavanje problema tačnog pokrivača su bazirani na pretraživanju uz upotrebu heuristika, kao što su gramzivi algoritmi i algoritmi

najmanjeg preklapanja. Ovi algoritmi kombinuju preciznost i efikasnost kako bi pronašli optimalna rešenja ili dobra približna rešenja problema tačnog pokrivača.

2.1 Matrica pokrivanja

ECP se može predstaviti matricom incidencije: svaki red u matrici predstavlja jedan element iz skupa S dok kolona predstavlja element iz skupa U. U takvoj matrici, M_{ij} je 1 ukoliko se element U_j nalazi u podskupu S_i , a 0 obratno. ECP se rešava tako što se "uklone" neki redovi matrice tako da u svakoj koloni ostane tačno jedno polje koje ima vrednost 1. U tabeli 1 možete videti primer matrice incidencije za sledeći problem:

$$U = \{A, B, C, D, E, F, G\}$$

$$S = \{\{C, E, F\}, \{A, D, G\}, \{B, C, F\}, \{A, D\}, \{B, G\}, \{D, E, G\}\}\}$$

$$S' = \{\{C, E, F\}, \{A, D\}, \{B, G\}\}$$

Tabela 1: Primer matrice incidencije

A	В	С	D	E	F	G
0	0	1	0	1	1	0
1	0	0	1	0	0	1
0	1	1	0	0	1	0
1	0	0	1	0	0	0
0	1	0	0	0	0	1
0	0	0	1	1	0	1

Ovakva matrica se zove matrica pokrivanja. Pretraga matrice pokrivanja za ECP često može biti spora zbog činjenice da se moraju pretraživati sva polja matrice kako bi se pronašla ona koja sadrže 1. Kako se matrica pokrivanja često sastoji od većeg broja redova i kolona, mnogo vremena se može potrošiti na pretragu polja koja sadrže 0 pre nego što se dođe do onih koja sadrže 1. Ovo može usporiti izvršavanje algoritma za rešavanje ECP-a, posebno u slučaju kada matrica pokrivanja ima velike dimenzije.

3 Algoritam igrajućih pokazivača

Algoritam igrajućih pokazivača (Dancing Links Algorithm - DLX), poznatiji kao "Algoritam X", je efikasan algoritam, definisan od strane Donalda Knutha u radu objavljenom 2000. godine [6], koji se koristi za rešavanje ECS-a i sličnih kombinatornih problema. Ovaj algoritam koristi specifičnu strukturu podataka nazvanu igrajući pokazivači koja korišćenjem dvostruko povezanih listi optimizuje operacija dodavanja, uklanjanja i pretraživanja elemenata u matricama pokrivanja. Zasnovana je na ideji da se optimizuje pretraga matrice pokrivanja tako što se uvede matrica dvostruko uvezanih listi i time eliminiše obilazak polja u matrici koja imaju vrednost 0.

3.1 Operacije nad dvostruko ulančanim listama

Neka je x pokazivač na element dvostruko ulančane liste. Takođe, neka L[x] i R[x] predstavljaju pokazivač na element levo, odnosno desno od x. Možemo definisati dve operacije:

$$\begin{aligned} \text{hide(x)} &:= \begin{cases} L[R[x]] \leftarrow L[x] \\ R[L[x]] \leftarrow R[x] \end{cases} & \text{unhide(x)} &:= \begin{cases} L[R[x]] \leftarrow x \\ R[L[x]] \leftarrow x \end{cases} \end{aligned} \\ \text{Operacija } & \text{hide(x)} & \text{uklanja element iz liste, dok ga } & unhide(x) & \text{vraća u} \end{cases} \end{aligned}$$

Operacija hide(x) uklanja element iz liste, dok ga unhide(x) vraća u listu ukoliko je prethodno izbačen, a u suprotnom ne radi ništa. Uzastopno izvršavanje hide(x) pa unhide(x) vraća listu u prvobitno stanje, i obe operacije su idempotentne (kod uzastopnih poziva iste operacije nad istim elementom, samo prvi može promeniti listu, naredni pozivi ne rade ništa).

Usled gore navedenih osobina, dvostruko ulančane liste su pogodne za pamćenje stanja i simulaciju backtrackinga.

3.2 Struktura igrajućih linkova

Osnovna ideja ovog algoritma je korišćenje cikličnih dvostruko ulančanih listi kako bi se predstavila matrica pokrivanja. Matrica se formira tako što se svaki red predstavlja jednim elementom koji treba pokriti, a svaka kolona predstavlja jedan mogući način da se taj element pokrije. Cilj je da se odabere kombinacija kolona (elementi) koja pokriva sve redove, pri čemu svaki element treba biti pokriven tačno jednom. Svaki element u matrici je jedan čvor ciklične liste, a lista se formira ne samo po redovima već i po kolonama tako da jedan element pripada zapravo dvema cikličnim dvostruko ulančanim listama: lista kolone i lista vrste. Dodatno, matrica obično sadrži i red zaglavlja i cvor koren. Red zaglavlja se koristi za identifikaciju kolona u matrici, dok se cvor koren koristi kao ulazna tačka u strukturu podataka, omogućavajući jednostavan pristup početnim tačkama pretrage. Na slici 1 ilustrovano je inicijalno stanje igrajućih linkova primera iz tabele 1.

Jedan čvor u ovim listama se obično sastoji od pet polja:

- L[x]: Pokazivač na levi susedni čvor.
- \bullet R[x]: Pokazivač na desni susedni čvor.
- U[x]: Pokazivač na gornji susedni čvor.
- D[x]: Pokazivač na donji susedni čvor.
- C[x]: Pokazivač na "kolonu" čvora, što predstavlja zaglavlje kolone u matrici.

Pored ovih polja, čvor unutar zaglavlja takođe ima i polje size[x] koje sadrži broj elemenata u koloni, i polje name[x] koje sadrži labelu (ime) kolone. Ova polja nisu neophodna, ali pojednostavljuju implementaciju strukture.

Algoritam DLX koristi backtracking strategiju, gde se prvo odabire jedan od mogućih elemenata (kolona) za pokrivanje i proverava se da li je ova kombinacija valjana. Ako jeste, algoritam nastavlja dalje pretragu u istom pravcu, inače se vraća korak unazad (backtrack) i bira drugi element za pokrivanje. Ovaj proces se ponavlja sve dok se ne pronađe rešenje ili se iscrpe sve mogućnosti. Algoritam se izvodi rekurzivno pretragom u dubinu kako bi se obišli svi mogući putevi u pretrazi.

Slika 1: Ilustacija inicijalnog stanja igrajućih linkova primera iz tabele 1 [7]

3.3 Operacije nad igrajućim pokazivačima

Oslanjajući se na osobine funkcija hide(x) i unhide(x) koje su prethodno definisane, možemo slične funkcije definisati nad čvorovima tako da se mogu izvršavati i horizontalno i vertikalno.

Horizontalni slučaj:

$$\mathtt{hideh(x)} := \begin{cases} L[R[x]] \leftarrow L[x] \\ R[L[x]] \leftarrow R[x] \end{cases} \qquad \mathtt{unhideh(x)} := \begin{cases} L[R[x]] \leftarrow x \\ R[L[x]] \leftarrow x \end{cases}$$

Vertikalni slučaj, proširen činjenicom da zaglavlje prati broj aktivnih elemenata u koloni:

$$\mathtt{hidev(x)} := \begin{cases} U[D[x]] \leftarrow U[x] \\ D[U[x]] \leftarrow D[x] \\ C[x] \leftarrow C[x] - 1 \end{cases} \quad \mathtt{unhidev(x)} := \begin{cases} U[D[x]] \leftarrow x \\ D[U[x]] \leftarrow x \\ C[x] \leftarrow C[x] + 1 \end{cases}$$

Nakon što smo definisali osnovne operacije, možemo ih koristiti za implementaciju funkcija cover i uncover. Funkcija cover(x) sakriva kolonu x i sve redove koji je presecaju. Funkcija uncover(x) obnavlja kolonu x i sve redove koji je presecaju.

```
cover(x) = \begin{cases} hideh(x) \\ For (p \leftarrow D[x]; p \neq x; p \leftarrow D[p]) \\ For (r \leftarrow R[p]; r \neq p; r \leftarrow R[r]) \\ hidev(r) \end{cases}
```

Funkcija cover(x) prvo sakriva kolonu x pomoću hideh(x). Zatim prolazi kroz sve redove ispod x u kojima je vrednost 1 koristeći pokazivač p. Unutar svakog reda, prolazi kroz sve desne elemente koristeći pokazivač r i sakriva ih pomoću hidev(r).

$$uncover(x) = \begin{cases} For (p \leftarrow U[x]; & p \neq x; p \leftarrow U[p]) \\ For (1 \leftarrow L[p]; 1 \neq p; 1 \leftarrow L[1]) \\ unhidev(1) \\ unhideh(x) \end{cases}$$

Funkcija uncover(x) prvo prolazi kroz sve redove iznad x koji su u listi koristeći pokazivač p. Unutar svakog reda, prolazi kroz sve leve elemente iz liste koristeći pokazivač 1 i obnavlja ih pomoću unhidev(1). Na kraju, obnavlja kolonu x pomoću unhideh(x).

Sada kada smo definisali osnovne operacije i funkcije cover i uncover, možemo preći na implementaciju samog DLX algoritma. Algoritam koristi rekurzivnu funkciju search koja pokušava da pronađe rešenje problema tačnog pokrivanja.

```
search(k) = \begin{cases} \text{ if } R[\text{head}] = \text{head} \\ \text{ print solution and return} \end{cases}
cover(c)
For (r \leftarrow D[c]; r \neq c; r \leftarrow D[r])
set solution[k] = r
For (j \leftarrow R[r]; j \neq r; j \leftarrow R[j])
cover(j)
search(k+1)
For (j \leftarrow L[r]; j \neq r; j \leftarrow L[j])
uncover(j)
uncover(c)
```

Ova funkcija prvo proverava da li je problem rešen (ako je zaglavlje kolone jedino preostalo). Ako jeste, ispisuje rešenje i vraća se. Ako nije, bira se kolona c koja će biti pokrivena. Nakon što se kolona c pokrije, algoritam prolazi kroz sve redove r u toj koloni i pokušava da pronađe rešenje rekurzivnim pozivima funkcije ${\tt search(k+1)}$. Ako se rešenje ne pronađe, kolone se otkrivaju kako bi se ispravile promene.

Iako biranje kolone sa najmanjim brojem čvorova može delovati kao najefikasnija strategija za pokrivanje u algoritmu Igrajućih Linkova, često je korisno uvesti element pseudonasumičnosti u izbor kolone. Najčešća metoda je da se, u slučaju kada više kolona ima isti minimalni broj čvorova, izabere jedna kolona nasumično. Alternativno, može se implementirati potpuna pseudonasumičnost, gde se kolone biraju prema unapred definisanoj nasumičnoj strategiji.

4 Sudoku

Sudoku je logička igra brojevima koja se igra na mreži od 9×9 kvadrata. Mreža je podeljena u devet manjih kvadrata od 3×3 , zvanih "podmreže"ili "blokovi". Cilj igre je popuniti prazne kvadrate brojevima od 1 do 9, tako da svaki red, svaka kolona i svaka podmreža dimenzije 3×3 sadrže sve brojeve od 1 do 9 bez ponavljanja. Igra počinje sa delimično popunjenom mrežom. Brojevi u početnom rasporedu ne smeju se menjati.

Ograničenja za popunjavanje mreže:

- 1. U svako polje se može upisati samo jedan broj
- 2. Svaki broj se može pojaviti samo jednom u svakom redu
- 3. Svaki broj se može pojaviti samo jednom u svakoj koloni
- 4. Svaki broj se može pojaviti samo jednom u svakoj podmreži $3{\times}3$

4.1 Svođenje na problem tačnog pokrivača

Sudoku tabla se može svesti na problem tačnog pokrivača [4]. Poenta je definisati ograničenja table kao matricu pokrivanja. Pošto u svako polje može da se upiše jedan od 9 brojeva, a tabla ima 81 polje, matrica pokrivanja ima 729 redova. Uslovi se u kolonama mogu upisati na naredni način:

- Svaki broj od 1 do 9 može se pojaviti samo jednom u svakom polju.
 To zahteva 81 uslov, po jedan za svako polje, kako bi se obezbedilo da ne postoje dva broja u istom polju.
- 2. Svaki broj se mora pojaviti samo jednom u svakom redu. Ovo uvodi 81 uslov za sve redove.
- 3. Svaki broj se mora pojaviti samo jednom u svakoj koloni. Takođe, ovo uvodi 81 uslov za sve kolone.
- 4. Svaki broj se može pojaviti samo jednom u svakoj 3×3 podmreži. Ovo dodaje još 81 uslov za sve podmreže.

Ukupno, tablica ograničenja je dimenzije 729 \times 324 predstavljeno kao na slici 2.

5 Implementacija

Ovaj rad je implementiran u C++ programskom jeziku, koristeći Qt6 za grafički korisnički interfejs i OpenMP za paralelizaciju programa za evaluaciju, dok je CMake korišćen kao sistem za izgradnju. U okviru implementacije razvijena je biblioteka za DLX algoritam, biblioteka za rešavanje igre Sudoku zasnovana na prethodno pomenutoj biblioteci, kao i grafička aplikacija za rešavanje igre Sudoku. Implementiran je i veoma jednostavan test jedinice koda.

5.1 Sistem za izgradnju

Za proširenje funkcionalnosti CMake-a, projekat koristi CMake repozitorijum napisani od strane firme Kitware [5] kao Git submodul. Ovaj submodul omogućava dodatne mogućnosti i alate koje nisu dostupne u osnovnoj instalaciji CMake-a, čime se olakšava konfiguracija i izgradnja

Row-Column Constraints					Row- Con				Column-Number Constraints			Box-Number Constraints					
	R1 C1	R1 C2				R1 #1	R1 #2			C1 #1	C1 #2				B1 #1	B1 #2	
R1C1#1	1	0			R1C1#1	1	0		R1C1#1	1	0			R1C1#1	1	0	
R1C1#2	1	0			R1C1#2	0	1		R1C1#2	0	1			R1C1#2	0	1	
R1C1#3	1	0			:		1	٦,	:	1	1	15		- 1	1	:	٦,
R1C1#4	1	0			R1C2#1	1	0		R2C1#1	1	0			R1C2#1	1	0	
R1C1#5	1	0			R1C2#2	0	1		R2C1#2	0	1			R1C2#2	0	1	
R1C1#6	1	0			- :		1	٦.	- :	:	1	15		- :	1	1	1.
R1C1#7	1	0			R1C3#1	1	0		R3C1#1	1	0			R1C3#1	1	0	
R1C1#8	1	0			R1C3#2	0	1		R3C1//2	0	1			R1C3#2	0	1	
R1C1#9	1	0			- :	:	1	٦.	- :	:	:	٦,		- 1	1	:	٦,
R1C2#1	0	1			R1C4#1	1	0		R4C1#1	1	0			R2C1#1	1	0	
R1C2#2	0	1			R1C4#2	0	1		R4C1#2	0	1			R2C1#2	0	1	
R1C2#3	0	1			- :	:	1	٦.	- :	:	1	14.		- 1	1	1	٠,
R1C2#4	0	1			R1C5#1	1	0		R5C1#1	1	0			R2C2#1	1	0	
R1C2#5	0	1			R1C5#2	0	1		R5C1#2	0	1			R2C2#2	0	1	
R1C2#6	0	1			- :	***		٩,	- ::	:	1	14		- 1	***	1	14
R1C2#7	0	1			R1C6#1	1	0		R6C1#1	1	0			R2C3#1	1	0	
R1C2#8	0	1			R1C6#2	0	1		R6C1#2	0	1			R2C3#2	0	1	
R1C2#9	0	1			- :			14.		***	1	٩,		- 1	***	1	14
:		1	٠.		R1C7#1	1	0		R7C1#1	1	0			R3C1#1	1	0	
					R1C7#2	0	1		R7C1#2	0	1			R3C1#2	0	1	
					- :			٦.	-:-	:	1	14.		- 1		1	٦,
					R1C8#1	1	0		R8C1#1	1	0			R3C2#1	1	0	
					R1C8#2	0	1		R8C1#2	0	1			R3C2#2	0	1	
					-			٦,		:	:	1.				:	٩,
					R1C9#1	1	0		R9C1#1	1	0			R3C3#1	1	0	
					R1C9#2	0	1		R9C1#2	0	1			R3C3#2	0	1	
					:			15.		1	1	15.		- :	***	1	14.

Slika 2: Definisanje uslova sudoku table preko matrice pokrivanja [3]

projekta. Integracija submodula osigurava da su potrebne ekstenzije direktno dostupne unutar projekta bez da se kod dodaje direktno na repozitorijum.

Koraci izgradnje:

- Kompilira se DLX biblioteka.
- Kompilira se rešavač za Sudoku.
- $\bullet\,$ Kompilira se grafička aplikacija.
- Ukoliko na sistemu postoji instaliran OpenMP, kompilira se program za evaluaciju performansi.
- Ukoliko postoji veza sa internetom, skidaju se datoteke sa primerima za evaluaciju.

5.2 Grafički korisnički interfejs

Grafički korisnički interfejs je minimalistički i jednostavan za korišćenje. Sadrži samo tablu sa Sudoku poljima i dugme za pokretanje rešavača, prikazano na slici 3. Klikom na polje na tabli, ono se uokviruje u žuto, omogućavajući unos brojeva od 1 do 9, prikazano na slici 4. Dugme backspace se koristi za brisanje unesenih brojeva. Kada korisnik klikne na dugme za pokretanje, rešavanje sudokua se pokreće u zasebnoj niti kako bi se izbeglo blokiranje GKI-ja. Ako je rešenje ispravno, brojevi na praznim mestima se prikazuju u zelenoj boji, kao na slici 5. Ukoliko Sudoku ne može da se reši, brojevi se prikazuju u crvenoj boji, kao na slici 6.

Slika 5: Pronalazak tačnog rešenja

Slika 4: Primer upotrebe GKI-ja

Slika 6: Primer koji nema rešenje

6 Evaluacija implementacije

Radi evaluacije performansi, rešavač bez grafičkog korisničkog interfejsa pokrenut je na 5 primera skupa koji se nalazi na narednoj adresi: http://magictour.free.fr/topn234. Pomenuti skup je kolekcija od 234 primera koji se teško rešavaju. Da bi se postigla nepristrasnost a smanjilo vreme izvršavanja same evaluacije svaki primer pokrenut je na zasebnom jezgru. Procesor na kojem su se izvršavale evaluacije: "12 × AMD Ryzen 5 3600 6-Core Processor". Rezultati se mogu videti u tabeli 2.Tabla koja je najbrže rešena prikazana je na slici 7, dok je tabla na slici 8 zahtevala ubedljivo najviše vremena da se reši.

Primer	Vreme izvršavanja
0	22s 691ms
1	26s 186ms
2	2m 18s 510ms
3	21m 50s 292ms
4	28m 3s 774ms

Tabela 2: Example of a Sudoku board

5			7			6		
		3	8					
						2		
6	2		4					
							9	1
7								
				3	5		8	
4						1		
				9				

Slika 7: Sudoku primer koji je rešen najbrže

7 Zaključak

U ovom radu istražena je primena Algoritma igrajućih pokazivača (DLX) u rešavanju problema tačnog pokrivača (ECP), s posebnim fokusom na popularnu logičku igru Sudoku. Proučena je struktura matrice pokrivanja i njeno preformulisanje u kontekstu Sudoku igre, što je omogućilo efikasno korišćenje DLX algoritma za pronalaženje rešenja.

Primena DLX algoritma na Sudoku problem pokazala je značajnu efikasnost u rešavanju kompleksnih zagonetki, zahvaljujući optimizaciji pretrage matrice pokrivanja kroz strukturu dvostruko ulančanih listi. Implementacija DLX-a demonstrira njegovu sposobnost da značajno poboljša performanse u poređenju sa tradicionalnim metodama rešavanja Sudoku zagonetki, naročito u slučajevima sa velikim brojem praznih polja.

Analizom rezultata, primećeno je da DLX ne samo da ubrzava pro-

7		8				3		
			2		1			
5								
	4						2	6
3				8				
			1				9	
	9		6					4
				7		5		

Slika 8: Sudoku primer koji je najsporije rešen

ces rešavanja, već i smanjuje potrebu za memorijskim resursima, što je od ključne važnosti za rad sa velikim instancama problema. Efikasnost algoritma dodatno je poboljšana primenom heurističkih metoda za izbor kolona, čime je omogućeno da se pronalaženje rešenja postigne brže i sa manjim brojem pokušaja.

Ovaj rad doprinosi razumevanju kako napredni algoritmi za rešavanje kombinatornih problema mogu biti primenjeni u praksi, pružajući čvrstu osnovu za buduće istraživanje u oblasti algoritamske optimizacije i rešavanja problema sa velikim dimenzijama.

Za buduće radove, preporučuje se istraživanje proširenja DLX algoritma na druge kombinatorne probleme i adaptaciju metodologije za rad sa specijalizovanim strukturama podataka koje mogu dalje poboljšati efikasnost i primenljivost algoritma. Takođe, analiza različitih heurističkih pristupa za izbor kolona može pružiti dodatne uvide u optimizaciju performansi DLX-a.

U zaključku, ovaj rad potvrđuje potencijal Algoritma igrajućih pokazivača kao moćan alat za rešavanje problema tačnog pokrivača i sličnih kombinatornih problema, s velikim mogućnostima za primenu u različitim oblastima istraživanja i praktične primene.

Literatura

- [1] Maxime Chabert and Christine Solnon. A global constraint for the exact cover problem: Application to conceptual clustering. *Journal of Artificial Intelligence Research*, 67:509–547, 2020.
- $[2]\ {\it Irit}\ {\it Dinur}$ and Gillat Kol. Covering csps. Weizmann Institute, 2013.
- [3] Robert Hanson. Exact cover matrix for sudoku, 2005. Accessed: 2024-08-26.
- [4] Mattias Harrysson and Hjalmar Laestander. Solving sudoku efficiently with dancing links. *Degree Project in Computer Science*, *DD143X*, 2014. Supervisor: Vahid Mosavat, Examiner: Örjan Ekeberg.
- [5] Kitware Inc. Cmake github, 2018. Accessed: 2024-08-26.
- [6] Donald E. Knuth. Dancing links. Millenial Perspectives in Computer Science, pages 187–214, 2000. Comments: Abstract added by Greg Kuperberg.
- [7] Everett Robinson. Dancing links visualized, 2022. Accessed: 2024-08-26.