Multiscale Computation and Parameter Learning for Kernels from PDEs

— Two Provable Examples —

Yifan Chen, Caltech

CMX Student Seminar

November 20, 2020

Three pages' overview

■ The Mathematical Model:

$$\mathcal{L}_{\theta}u = f$$

(Partial Differential Equation)

- \mathcal{L}_{θ} : linear operators, encoding physics / interaction laws
- \bullet : parameters (a family of parameterized laws)
- \mathbf{u}, f : functions (to be specified / observed / computed / predicted)
- e.g. $\mathcal{L}_{\theta}u = -\nabla \cdot (a\nabla u) = f$ in $\Omega = [0,1]^d$ and $u \in H_0^1(\Omega)$; here, $\theta = a(\cdot)$ ($\mathcal{L}_{\theta}^{-1}$: Kernel operator / Green's function)
- Problems of interests:

Computation: given \mathcal{L}_{θ} and f, compute u

- Solve the PDE numerically

Learning: predict $u(x), x \in \Omega$ from some $u(x_i)$ for $x_i \subset \mathcal{X} \subset \Omega$

– Even more: learn the physics underlying the data, i.e., learn θ

Sketch of contributions I

- For **Computation** Problems:
 - Model: $\mathcal{L}_{\theta}u = -\nabla \cdot (a\nabla u) k^2 V u = f$ for $0 \le a, V \in L^{\infty}(\Omega), k \in \mathbb{R}_+$ (Helmholtz's equation + D/N/R boundary conditions)

Our result: on a mesh of lengthscale H = O(1/k), u can be computed by

$$u = \underbrace{\sum_{i \in I_1} c_i \psi_i^{(1)}}_{\text{(I)}} + \underbrace{\sum_{i \in I_2} d_i \psi_i^{(2)}}_{\text{(II)}} + \underbrace{\sum_{i \in I_3} \psi_i^{(3)}}_{\text{(III)}} + O\left(\exp\left(-m^{\frac{1}{d+1}-\epsilon}\right)\right) \quad \text{(Energy norm)}$$

where: $\psi_i^{(1)}, \psi_i^{(2)}, \psi_i^{(3)}$ all have local support of size H

$$\psi_i^{(1)}$$
 obtained by local SVD of \mathcal{L}_{θ}

$$\#I_1 = O(m/H^d)$$

$$\psi_i^{(2)}, \psi_i^{(3)}$$
 obtained by solving local $\mathcal{L}_{\theta} u = f$

$$\#I_2, \#I_3 = O(1/H^d)$$

$$c_i, d_i \in \mathbb{R}$$
 obtained by Galerkin's methods with basis functions $\psi_i^{(1)}, \psi_i^{(2)}$

(II),(III) = O(H) (Energy norm)

A data-adaptive coarse-fine scale decomposition

Y. Chen, T. Y. Hou, and Y. Wang, Exponential convergence for multiscale linear elliptic pdes via adaptive edge basis functions, arXiv:2007.07418, 2020.

Sketch of contributions II

- For **Learning** Problems:
 - \blacksquare General approach: Gaussian Process Regression + Kernel selection
 - Selection algorithms: probabilistic Empirical Bayes (EB) / approximation-theoretic Kernel Flow (KF)
 - Model: $\mathcal{L}_{\theta} = (-\Delta)^{\frac{s}{2}}$ on a torus, and f is the white noise

Our result: u and s can be learned provably from (\mathcal{X} : a uniform lattice)

$$\{u(x_i) \text{ for } x_i \subset \mathcal{X} \subset \Omega\}$$

Moreover,

- EB and KF have different consistency result in the large data limit, yielding different selection bias
- EB and KF behave differently regarding model misspecification
 - Y. Chen, H. Owhadi, and A. M. Stuart, Consistency of empirical bayes and kernel flow for hierarchical parameter estimation, arXiv:2005.11375, 2020.

- 1 Multiscale Computation with Exponential Convergence
 - Solve PDE as an approximation problem
 - Coarse-fine scale decomposition of solution space
 - Exponential efficiency of the coarse part
 - Numerical experiments
 - Related works
 - Take-aways
- 2 Parameter Learning with Provable Guarantees
 - Learning a kernel
 - Bayes' approach
 - Kernel Flow approach
 - Consistency as # of data $\to \infty$, and beyond
 - Take-aways

- 1 Multiscale Computation with Exponential Convergence
 - Solve PDE as an approximation problem
 - Coarse-fine scale decomposition of solution space
 - Exponential efficiency of the coarse part
 - Numerical experiments
 - Related works
 - Take-aways
- 2 Parameter Learning with Provable Guarantees
 - Learning a kernel
 - Bayes' approach
 - Kernel Flow approach
 - Consistency as # of data $\rightarrow \infty$, and beyond
 - Take-aways

Focus on Elliptic PDEs

■ Formulation: $\mathcal{L}_{\theta} = -\nabla \cdot (a\nabla \cdot)$; thus $\theta = a(\cdot) \in L^{\infty}(\Omega)$ $\begin{cases}
-\nabla \cdot (a\nabla u) = f, & \text{in } \Omega \\
u = 0, & \text{on } \partial\Omega.
\end{cases}$

$$\Omega = [0,1]^2$$
 and $u \in H_0^1(\Omega), f \in L^2(\Omega)$

■ Galerkin methods: choose a finite-dim space $V_H \subset H^1_0(\Omega)$

Find
$$u_H \in V_H$$
 such that $\int_{\Omega} a \nabla u_H \cdot \nabla v = \int_{\Omega} f v$ for any $v \in V_H$.

Optimality: (notation
$$||u||_{H_a^1(\Omega)} := \int_{\Omega} a |\nabla u|^2$$
)
 $||u - u_H||_{H_a^1(\Omega)} = \inf_{v \in V_H} ||u - v||_{H_a^1(\Omega)}$.

 V_H needs to approximate the solution space well in the $H_a^1(\Omega)$ norm

- 1 Multiscale Computation with Exponential Convergence
 - Solve PDE as an approximation problem
 - Coarse-fine scale decomposition of solution space
 - Exponential efficiency of the coarse part
 - Numerical experiments
 - Related works
 - Take-aways
- 2 Parameter Learning with Provable Guarantees
 - Learning a kernel
 - Bayes' approach
 - Kernel Flow approach
 - Consistency as # of data $\rightarrow \infty$, and beyond
 - Take-aways

Explore the solution space

- Mesh structure: nodes, edges and elements
- **Split** the solution locally: in each T, $u = u_T^{\mathsf{h}} + u_T^{\mathsf{b}}$

$$\begin{cases} -\nabla \cdot (a\nabla u_T^\mathsf{h}) = 0, & \text{in } T \\ u_T^\mathsf{h} = u, & \text{on } \partial T \,, \end{cases}$$

$$\begin{cases} -\nabla \cdot (a\nabla u_T^\mathsf{b}) = f, & \text{in } T \\ u_T^\mathsf{b} = 0, & \text{on } \partial T \,. \end{cases}$$

■ Merge: $u^{\mathsf{h}}(x) = u^{\mathsf{h}}_T(x)$ and $u^{\mathsf{b}}(x) = u^{\mathsf{b}}_T(x)$ when $x \in T$ for each T

$$x \in \mathcal{N}_H, e \in \mathcal{E}_H, T \in \mathcal{T}_H$$

Coarse-fine scale decomposition

■ Decomposition: $u = u^{\mathsf{h}} + u^{\mathsf{b}} \in V^{\mathsf{h}} \oplus_a V^{\mathsf{b}}$

$$V^{\mathsf{h}} = \{ v \in H_0^1(\Omega) : -\nabla \cdot (a\nabla v) = 0 \text{ in every } T \in \mathcal{T}_H \} \quad (harmonic \ part)$$
$$V^{\mathsf{b}} = \{ v \in H_0^1(\Omega) : v = 0 \text{ on } \partial T, \text{ for every } T \in \mathcal{T}_H \} \quad (bubble \ part)$$

$$H_0^1(\Omega) = V^{\mathsf{h}} \oplus_a V^{\mathsf{b}}$$

- Bubble part is local and small
 - local: $u^{\mathsf{b}} = \sum_{i \in I_3} \psi_i^{(3)}$ (term (III)) each $\psi_i^{(3)}$ solves an elliptic equation inside each T
 - small: elliptic estimate

$$||u^{\mathsf{b}}||_{H_a^1(\Omega)} \le CH||f||_{L^2(\Omega)}$$

i.e. u^{b} oscillates at a frequency large than O(1/H)

Bubble part is the fine scale part

1 Multiscale Computation with Exponential Convergence

- Solve PDE as an approximation problem
- Coarse-fine scale decomposition of solution space
- Exponential efficiency of the coarse part
- Numerical experiments
- Related works
- Take-aways

2 Parameter Learning with Provable Guarantees

- Learning a kernel
- Bayes' approach
- Kernel Flow approach
- Consistency as # of data $\rightarrow \infty$, and beyond
- Take-aways

For the a-harmonic part u^{h}

■ Idea: choose $V_H \subset V^h$ in Galerkin's method, yielding

$$||u^{\mathsf{h}} - u_H||_{H_a^1(\Omega)} = \inf_{v \in V_H} ||u^{\mathsf{h}} - v||_{H_a^1(\Omega)}$$

(Recall: a-orthogonality between V^{h} and V^{b})

Galerkin's solution u_H now only approximates the a-harmonic part

■ $V^{\mathsf{h}} = \{v \in H_0^1(\Omega) : -\nabla \cdot (a\nabla v) = 0 \text{ in every } T \in \mathcal{T}_H\}$ only depends on values of v on edges

Observation: V^{h} is isomorphic to an edge space

Find basis functions to approximate edge values

■ Edge function: $u^h: \Omega \to \mathbb{R}$ restricted to edges: $\tilde{u}^h: E_H \to \mathbb{R}$

Task: find edge basis functions to approximate \tilde{u}^{h}

■ Localization to each edge: $(\tilde{u}^h - I_H \tilde{u}^h)|_e$ vanishes at boundaries where, I_H is nodal interpolation operator, e.g., by linear tent functions

Task then: find edge basis functions to approximate $(\tilde{u}^{\mathsf{h}} - I_H \tilde{u}^{\mathsf{h}})|_e$ for each e

Which norm for approximation?

■ The $\mathcal{H}^{1/2}(e)$ norm: (connect back to energy norms)

$$\|\tilde{\psi}\|_{\mathcal{H}^{1/2}(e)}^2 := \int_{\Omega} a |\nabla \psi|^2$$

where, ψ is the a-harmonic extension of $\tilde{\psi}$ to neighboring elements

■ Edge Coupling: from local to global

If on each edge, there is \tilde{v}_e such that the *local* error satisfies

$$\|\tilde{u}^{\mathsf{h}} - I_H \tilde{u}^{\mathsf{h}} - \tilde{v}_e\|_{\mathcal{H}^{1/2}(e)} \le \epsilon_e$$

then the *global* error satisfies

$$\|u^{\mathsf{h}} - I_H u^{\mathsf{h}} - \sum_{e \in \mathcal{E}_H} v_e\|_{H_a^1(\Omega)}^2 \le \sum_{e \in \mathcal{E}_H} \epsilon_e^2$$

Task now: find basis functions for v_e

Explore $u^{\mathsf{h}} - I_H u^{\mathsf{h}}$ on each e

■ Oversampling: $e \subset \omega_e$

on
$$e: u^h - I_H u^h = (u^h_{\omega_e} - I_H u^h_{\omega_e}) + (u^b_{\omega_e} - I_H u^b_{\omega_e})$$

 $u_{\omega_e}^{\mathsf{h}}, u_{\omega_e}^{\mathsf{b}} \colon$ over sampling harmonic / bubble part

Recall the definition:

$$\begin{cases} -\nabla \cdot (a \nabla u_{\omega_e}^\mathsf{h}) = 0, & \text{in } \omega_e \\ u_{\omega_e}^\mathsf{h} = u, & \text{on } \partial \omega_e \,, \\ \\ -\nabla \cdot (a \nabla u_{\omega_e}^\mathsf{b}) = f, & \text{in } \omega_e \\ u_{\omega_e}^\mathsf{b} = 0, & \text{on } \partial \omega_e \,. \end{cases}$$

Why write in this form?

— restrictions of harmonic functions are of low complexity!

Low complexity: restrictions of a-harmonic functions

Theorem (Y. Chen, T.Y. Hou, Y. Wang, 2020)

For any a-harmonic functions v in ω_e and any $\epsilon > 0$, there exists an $N_{\epsilon} > 0$, such that for all $m > N_{\epsilon}$, we can find an (m-1) dimensional space $W_e^m = \operatorname{span} \left\{ \tilde{v}_e^k \right\}_{k=1}^{m-1}$ so that

$$\min_{\tilde{v}_e \in W_e^m} \|v - I_H v - \tilde{v}_e\|_{\mathcal{H}^{1/2}(e)} \le C \exp\left(-m^{(\frac{1}{d+1} - \epsilon)}\right) \|v\|_{H_a^1(\omega_e)}$$

 $\blacksquare W_e^m$ obtained by the left singular vectors of the operator

$$R_e v = v - I_H v$$

from: space of a-harmonic functions (with energy norm) in ω_e to: space $\mathcal{H}^{1/2}(e)$

■ Proof technique combines [Babuska, Lipton 2011] and C^{α} estimates

(III) local-n-small

(harmonic-bubble splitting)

restriction of a-harmonic func basis functions in (II), small

basis functions in (I)

- (I) basis functions not dependent on f, but may depend on \mathcal{L}_{θ} (local)
- (II) basis functions adapted to \mathcal{L}_{θ} and f (local and small)
- (III) bubble part (local and small) (local and small)

(III) local-n-small

$$u = u^{\mathsf{h}} + \widehat{u^{\mathsf{b}}}$$

(harmonic-bubble splitting)

localized to each edge basis functions in (I)

$$\widetilde{I_H u^\mathsf{h}}$$

(interpolation part)

restriction of a-harmonic func basis functions in (II), small

basis functions in (I)

- (I) basis functions not dependent on f, but may depend on \mathcal{L}_{θ} (local
 - II) basis functions adapted to \mathcal{L}_{θ} and f (local and small
 - III) bubble part (local and sma

(III) local-n-small

$$u = u^{\mathsf{h}} + \widehat{u^{\mathsf{b}}}$$

(harmonic-bubble splitting)

localized to each edge basis functions in (I)

$$\blacksquare u^{\mathsf{h}} = \overbrace{(u^{\mathsf{h}} - I_H u^{\mathsf{h}})}^{\mathsf{h}} +$$

$$\widetilde{I_H u^h}$$

(interpolation part)

restriction of a-harmonic funcbasis functions in (II), small

$$(u^{\mathsf{h}} - I_H u^{\mathsf{h}})|_e = (u^{\mathsf{h}}_{\omega_e} - I_H u^{\mathsf{h}}_{\omega_e})|_e + (u^{\mathsf{b}}_{\omega_e} - I_H u^{\mathsf{b}}_{\omega_e})|_e$$

$$(u_{\omega_e}^{\mathsf{h}} - I_H u_{\omega_e}^{\mathsf{h}})|_e$$

$$(u_{\omega_e}^{\mathsf{b}} - I_H u_{\omega_e}^{\mathsf{b}})|_{\epsilon}$$

(III) local-n-small

(harmonic-bubble splitting)

localized to each edge basis functions in (I)

$$\bullet u^{\mathsf{h}} = \overbrace{(u^{\mathsf{h}} - I_{H}u^{\mathsf{h}})}^{\mathsf{h}} + \overbrace{I_{H}u^{\mathsf{h}}}^{\mathsf{h}} \qquad \text{(interpolation part)}$$

restriction of a-harmonic func basis functions in (II), small

basis functions in (I)

$$\bullet (u_{\omega_e}^{\mathsf{h}} - I_H u_{\omega_e}^{\mathsf{h}})|_e = \sum_{j=1}^{m-1} c_j v_e^j + O\left(\exp\left(-m^{\frac{1}{d+1} - \epsilon}\right) \|u\|_{H_a^1(\omega_e)}\right)$$

- (I) basis functions not dependent on f, but may depend on \mathcal{L}_{θ} (local)
- (II) basis functions adapted to \mathcal{L}_{θ} and f (local and small)
- (III) bubble part (local and small)

Summary of contributions

Our result: on an O(H) mesh, u can be computed by

$$u = \underbrace{\sum_{i \in I_1} c_i \psi_i^{(1)}}_{\text{(I)}} + \underbrace{\sum_{i \in I_2} d_i \psi_i^{(2)}}_{\text{(II)}} + \underbrace{\sum_{i \in I_3} \psi_i^{(3)}}_{\text{(III)}} + O\left(\exp\left(-m^{\frac{1}{d+1}-\epsilon}\right)\right)$$

(Energy norm)

where: $\psi_i^{(1)}, \psi_i^{(2)}, \psi_i^{(3)}$ all have local support of size H

$$ullet$$
 $\psi_i^{(1)}$ obtained by local SVD of \mathcal{L}_{θ} $\#I_1 = O(m/H^d)$

- $\psi_i^{(2)}, \psi_i^{(3)}$ obtained by solving local $\mathcal{L}_{\theta} u = f$ $\#I_2, \#I_3 = O(1/H^d)$
- $c_i, d_i \in \mathbb{R}$ obtained by Galerkin's methods with basis functions $\psi_i^{(1)}, \psi_i^{(2)}$
- (II),(III)= O(H) (Energy norm)

Can be generalized to Helmholtz's equations

1 Multiscale Computation with Exponential Convergence

- Solve PDE as an approximation problem
- Coarse-fine scale decomposition of solution space
- Exponential efficiency of the coarse part
- Numerical experiments
- Related works
- Take-aways

2 Parameter Learning with Provable Guarantees

- Learning a kernel
- Bayes' approach
- Kernel Flow approach
- Consistency as # of data $\to \infty$, and beyond
- Take-aways

Numerical experiments: Elliptic equation

■ The coefficient:

$$a(x) = \frac{1}{6} \left(\frac{1.1 + \sin(2\pi x_1/\epsilon_1)}{1.1 + \sin(2\pi x_2/\epsilon_1)} + \frac{1.1 + \sin(2\pi x_2/\epsilon_2)}{1.1 + \cos(2\pi x_1/\epsilon_2)} + \frac{1.1 + \cos(2\pi x_1/\epsilon_3)}{1.1 + \sin(2\pi x_2/\epsilon_3)} + \frac{1.1 + \sin(2\pi x_2/\epsilon_4)}{1.1 + \cos(2\pi x_1/\epsilon_4)} + \frac{1.1 + \cos(2\pi x_1/\epsilon_5)}{1.1 + \sin(2\pi x_2/\epsilon_5)} + \sin(4x_1^2 x_2^2) + 1 \right),$$

where $\epsilon_1 = 1/5$, $\epsilon_2 = 1/13$, $\epsilon_3 = 1/17$, $\epsilon_4 = 1/31$, $\epsilon_5 = 1/65$.

■ The right hand side f = -1

Only using (I)

only use terms in (I) for the approximation (no information of f)

Figure: The coefficient a has multiple scales, f = -1

Observation: increasing $m \to O(H)$ and $O(H^2)$ accuracy

Using (I)(II)(III)

Figure: The coefficient a has multiple scales, f = -1, H = 1/32

Nearly exponential convergence for both (I)+(III) and (I)+(II)+(III)

1 Multiscale Computation with Exponential Convergence

- Solve PDE as an approximation problem
- Coarse-fine scale decomposition of solution space
- Exponential efficiency of the coarse part
- Numerical experiments
- Related works
- Take-aways
- 2 Parameter Learning with Provable Guarantees
 - Learning a kernel
 - Bayes' approach
 - Kernel Flow approach
 - Consistency as # of data $\rightarrow \infty$, and beyond
 - Take-aways

Related works for elliptic equations

- Generalized FEM, Multiscale FEM (MsFEM), GMsFEM, etc.
 - General strategy: local approximation + global coupling
 - Our method belongs to this family, but with a noval edge coupling seen as an extension of [Hou, Liu 2016]
 - [Babuska, Lipton 2011] first obtained nearly exponential convergence results, using partition of unity (PUM)
 - Compared to the PUM used in [Babuska, Lipton 2011], our edge coupling does not destroy the orthogonality between a-harmonic and bubble parts; (I)+(III) very efficient!
 - Our non-overlapped domain decomposition yields smaller support for basis functions, but # increases since edges are more than elements
- Variational Multiscale Methods (VMS), LOD, Gamblets, etc.
 - General strategy: coarse-fine scale decomposition of solution space + localization of coarse part
 - Our methods use an energy-orthogonal coarse-fine decomposition
 - Compared to LOD [Målqvist, Peterseim 2014] and Gamblets [Owahdi, 2017], our methods have better local adaptivity, and convenient exp accuracy
 - However, our current algorithm is limited to two levels, as in constrast with the multiple levels in Gamblets

1 Multiscale Computation with Exponential Convergence

- Solve PDE as an approximation problem
- Coarse-fine scale decomposition of solution space
- Exponential efficiency of the coarse part
- Numerical experiments
- Related works
- Take-aways

2 Parameter Learning with Provable Guarantees

- Learning a kernel
- Bayes' approach
- Kernel Flow approach
- Consistency as # of data $\rightarrow \infty$, and beyond
- Take-aways

Take-aways

Coarse-fine scale decomposition adapted to \mathcal{L}_{θ} and f

- Coarse a-harmonic part: exponentially efficient approximation
 - Restrictions of a-harmonic functions are of low complexity
- Fine bubble part: local computation
 - Small magnitude; can be ignored

Nearly exponential convergence!

Can be generalized to Helmholtz's equation

- 1 Multiscale Computation with Exponential Convergence
 - Solve PDE as an approximation problem
 - Coarse-fine scale decomposition of solution space
 - Exponential efficiency of the coarse part
 - Numerical experiments
 - Related works
 - Take-aways
- 2 Parameter Learning with Provable Guarantees
 - Learning a kernel
 - Bayes' approach
 - Kernel Flow approach
 - Consistency as # of data $\rightarrow \infty$, and beyond
 - Take-aways

For learning problems

- Context: Supervised learning
- **Approach**: Gaussian process regression / kernel methods
- Question of focus: How to select kernels based on data
- Algorithms in use:
 - Bayesian: Empirical Bayes
 - Approximation theoretic: Kernel Flow
- Contribution:
 - Theory: Consistency for a Matérn class model (this talk)
 - Experiments: beyond Matérn model, and include model misspecification

Gaussian process regression (GPR)

■ Supervised learning / nonparameteric regression / interpolation

Recover
$$\pmb{u}^\dag:D\subset\mathbb{R}^d\to\mathbb{R}$$
 from
$$y_i=\pmb{u}^\dag(x_i), 1\leq i\leq N$$
 (Noise-free data)

■ GPR solution / Kernel method:

$$u(\cdot, \theta, \mathcal{X}) = K_{\theta}(\cdot, \mathcal{X})[K_{\theta}(\mathcal{X}, \mathcal{X})]^{-1} \mathbf{u}^{\dagger}(\mathcal{X})$$
(Depend on kernel K_{θ} , data set \mathcal{X} , and truth \mathbf{u}^{\dagger})

Notation: $(\theta \in \Theta \text{ is a hierarchical parameter})$

$$K_{\theta}: D \times D \to \mathbb{R}$$

 $\mathcal{X} = \{x_1, ..., x_N\}, \text{ and } u^{\dagger}(\mathcal{X}) \in \mathbb{R}^N, K_{\theta}(\mathcal{X}, \mathcal{X}) \in \mathbb{R}^{N \times N}$
 $K_{\theta}(\cdot, \mathcal{X}): D \to \mathbb{R}^N, \text{ and } u(\cdot, \theta, \mathcal{X}): D \to \mathbb{R}$

Gaussian process regression (GPR)

■ Supervised learning / nonparameteric regression / interpolation

Recover
$$\pmb{u}^\dag:D\subset\mathbb{R}^d\to\mathbb{R}$$
 from
$$y_i=\pmb{u}^\dag(x_i), 1\leq i\leq N$$
 (Noise-free data)

■ GPR solution / Kernel method:

$$\begin{split} u(\cdot,\theta,\mathcal{X}) &= K_{\theta}(\cdot,\mathcal{X})[K_{\theta}(\mathcal{X},\mathcal{X})]^{-1} \boldsymbol{u}^{\dagger}(\mathcal{X}) \\ & \text{(Depend on kernel } K_{\theta}, \text{ data set } \mathcal{X}, \text{ and truth } \boldsymbol{u}^{\dagger}) \end{split}$$

Notation: $(\theta \in \Theta \text{ is a hierarchical parameter})$

$$K_{\theta}: D \times D \to \mathbb{R}$$

 $\mathcal{X} = \{x_1, ..., x_N\}, \text{ and } \mathbf{u}^{\dagger}(\mathcal{X}) \in \mathbb{R}^N, K_{\theta}(\mathcal{X}, \mathcal{X}) \in \mathbb{R}^{N \times N}$
 $K_{\theta}(\cdot, \mathcal{X}): D \to \mathbb{R}^N, \text{ and } u(\cdot, \theta, \mathcal{X}): D \to \mathbb{R}$

What's the problem?

■ Any $\theta \in \Theta$ yields an interpolated solution on \mathcal{X} :

$$\mathbf{u}^{\dagger}(x_i) = u(x_i, \boldsymbol{\theta}, \mathcal{X}), 1 \leq i \leq N$$

i.e., zero training error

But, for out-of-sample / generalization errors, how to pick a good θ ?

- θ can encode the "physics" underlying the data
- \blacksquare A model selection problem learn the hierarchical parameter θ

- 1 Multiscale Computation with Exponential Convergence
 - Solve PDE as an approximation problem
 - Coarse-fine scale decomposition of solution space
 - Exponential efficiency of the coarse part
 - Numerical experiments
 - Related works
 - Take-aways
- 2 Parameter Learning with Provable Guarantees
 - Learning a kernel
 - Bayes' approach
 - Kernel Flow approach
 - Consistency as # of data $\rightarrow \infty$, and beyond
 - Take-aways

Bayes' solution

- Put a prior on θ , and $u^{\dagger}|\theta \sim \mathcal{N}(0, K_{\theta})$ then calculate the posterior
- Empirical Bayes (EB) with uninformative prior:

$$\begin{split} & \theta^{\mathrm{EB}}(\mathcal{X}, \boldsymbol{u}^{\dagger}) = \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta} \mathsf{L}^{\mathrm{EB}}(\boldsymbol{\theta}, \mathcal{X}, \boldsymbol{u}^{\dagger}) \\ & \mathsf{L}^{\mathrm{EB}}(\boldsymbol{\theta}, \mathcal{X}, \boldsymbol{u}^{\dagger}) = \boldsymbol{u}^{\dagger}(\mathcal{X})^{\mathsf{T}} [K_{\boldsymbol{\theta}}(\mathcal{X}, \mathcal{X})]^{-1} \boldsymbol{u}^{\dagger}(\mathcal{X}) + \log \det K_{\boldsymbol{\theta}}(\mathcal{X}, \mathcal{X}) \end{split}$$

Maximum Likelihood Estimate!

Roadmap

- 1 Multiscale Computation with Exponential Convergence
 - Solve PDE as an approximation problem
 - Coarse-fine scale decomposition of solution space
 - Exponential efficiency of the coarse part
 - Numerical experiments
 - Related works
 - Take-aways
- 2 Parameter Learning with Provable Guarantees
 - Learning a kernel
 - Bayes' approach
 - Kernel Flow approach
 - Consistency as # of data $\to \infty$, and beyond
 - Take-aways

Approximation-theoretic approach

- Why θ , u^{\dagger} have a prior distribution? may be brittle to misspecification
- Go straightforward: set a target cost d, and optimize_θ $d(u^{\dagger}, u(\cdot, \theta, \mathcal{X}))$
- Problem: u^{\dagger} not available solution: numeric approximation

$$\min_{\theta} \mathsf{d}(u(\cdot, \theta, \mathcal{X}), u(\cdot, \theta, \pi \mathcal{X}))$$
 (One example)

 π : subsampling operator (similar to cross-validation)

Approximation-theoretic approach

- Why θ , u^{\dagger} have a prior distribution? may be brittle to misspecification
- Go straightforward: set a target cost d, and optimize_θ $d(u^{\dagger}, u(\cdot, \theta, \mathcal{X}))$
- lacksquare Problem: u^{\dagger} not available solution: numeric approximation

$$\min_{\theta} \mathsf{d}(u(\cdot, \theta, \mathcal{X}), u(\cdot, \theta, \pi \mathcal{X}))$$
 (One example)

 π : subsampling operator (similar to cross-validation)

Approximation-theoretic approach

- Why θ , u^{\dagger} have a prior distribution? may be brittle to misspecification
- Go straightforward: set a target cost d, and optimize_θ $d(u^{\dagger}, u(\cdot, \theta, \mathcal{X}))$
- Problem: u^{\dagger} not available solution: numeric approximation

$$\min_{\boldsymbol{\theta}} \mathsf{d}(\boldsymbol{u}(\cdot,\boldsymbol{\theta},\boldsymbol{\mathcal{X}}),\boldsymbol{u}(\cdot,\boldsymbol{\theta},\boldsymbol{\pi}\boldsymbol{\mathcal{X}})) \tag{One example}$$

 π : subsampling operator (similar to cross-validation)

Kernel Flow (KF)

KF uses a specific d: [Owhadi, Yoo 2018 & 2020], [Hamzi, Owhadi 2020]

$$\begin{split} \boldsymbol{\theta}^{\mathrm{KF}}(\mathcal{X}, \pi \mathcal{X}, \boldsymbol{u}^{\dagger}) &= \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmin}} \, \mathsf{L}^{\mathrm{KF}}(\boldsymbol{\theta}, \mathcal{X}, \pi \mathcal{X}, \boldsymbol{u}^{\dagger}) \\ \mathsf{L}^{\mathrm{KF}}(\boldsymbol{\theta}, \mathcal{X}, \pi \mathcal{X}, \boldsymbol{u}^{\dagger}) &= \frac{\|\boldsymbol{u}(\cdot, \boldsymbol{\theta}, \mathcal{X}) - \boldsymbol{u}(\cdot, \boldsymbol{\theta}, \pi \mathcal{X})\|_{K_{\boldsymbol{\theta}}}^{2}}{\|\boldsymbol{u}(\cdot, \boldsymbol{\theta}, \mathcal{X})\|_{K_{\boldsymbol{\theta}}}^{2}} \end{split}$$

where

- $\blacksquare \pi$: a subsampling operator, so $\pi \mathcal{X} \subset \mathcal{X}$
- $\|\cdot\|_{K_{\theta}}$: RKHS norm determined by K_{θ}

A kernel is good, if subsampling data does not influence solution much.

Roadmap

- 1 Multiscale Computation with Exponential Convergence
 - Solve PDE as an approximation problem
 - Coarse-fine scale decomposition of solution space
 - Exponential efficiency of the coarse part
 - Numerical experiments
 - Related works
 - Take-aways
- 2 Parameter Learning with Provable Guarantees
 - Learning a kernel
 - Bayes' approach
 - Kernel Flow approach
 - Consistency as # of data $\to \infty$, and beyond
 - Take-aways

Consistency?

Question: How do θ^{EB} and θ^{KF} behave, as # of data $\to \infty$?

■ We answer the question for some specific model of u^{\dagger} , θ and \mathcal{X}

Theory: set-up and theorem

A specific Matérn-like regularity model:

- \blacksquare Domain: $D=\mathbb{T}^d=[0,1]_{\mathrm{per}}^d$
- Lattice data $\mathcal{X}_q = \{j \cdot 2^{-q}, j \in J_q\}$ where $J_q = \{0, 1, ..., 2^q - 1\}^d$, # of data: 2^{qd}
- Kernel $K_{\theta} = (-\Delta)^{-t}$, and $\theta = t$
- Subsampling operator in KF: $\pi \mathcal{X}_q = \mathcal{X}_{q-1}$

Theorem (Y. Chen, H. Owhadi, A.M. Stuart, 2020)

nal: If $u' \sim \mathcal{N}(0, (-\Delta))$ for some s, then as $q \to \infty$,

$$\theta^{\mathrm{EB}} o s$$
 and $\theta^{\mathrm{KF}} o rac{s-d/2}{2}$ in probability

- Equivalently, u^{\dagger} is the solution to $(-\Delta)^{s/2}u^{\dagger} = f$ for white noise f Thus, can learn the fractional physical laws underlying the data
- Analysis based on multiresolution decomposition and uniform convergence of random series

Theory: set-up and theorem

A specific Matérn-like regularity model:

- \blacksquare Domain: $D=\mathbb{T}^d=[0,1]_{\mathrm{per}}^d$
- Lattice data $\mathcal{X}_q = \{j \cdot 2^{-q}, j \in J_q\}$ where $J_q = \{0, 1, ..., 2^q - 1\}^d, \#$ of data: 2^{qd}
- Kernel $K_{\theta} = (-\Delta)^{-t}$, and $\theta = t$
- Subsampling operator in KF: $\pi \mathcal{X}_q = \mathcal{X}_{q-1}$

Theorem (Y. Chen, H. Owhadi, A.M. Stuart, 2020)

Informal: if $\mathbf{u}^{\dagger} \sim \mathcal{N}(0, (-\Delta)^{-s})$ for some s, then as $q \to \infty$,

$$\theta^{\rm EB} \to s$$
 and $\theta^{\rm KF} \to \frac{s - d/2}{2}$ in probability

- Equivalently, \mathbf{u}^{\dagger} is the solution to $(-\Delta)^{s/2}\mathbf{u}^{\dagger} = f$ for white noise f Thus, can learn the fractional physical laws underlying the data
- Analysis based on multiresolution decomposition and uniform convergence of random series

Experiments justifying the theory

How it works in practice?

 $d = 1, s = 2.5, \# \text{ of data } N = 2^9, \text{ mesh size } 2^{-10}$

Figure: Left: EB loss; right: KF loss

- Patterns in the loss function (our theory can predict!)
 - EB: first linear, then blow up quickly
 - KF: more symmetric

Experiments justifying the theory

How it works in practice?

 $d = 1, s = 2.5, \# \text{ of data } N = 2^9, \text{ mesh size } 2^{-10}$

Figure: Left: EB loss; right: KF loss

- Patterns in the loss function (our theory can predict!)
 - EB: first linear, then blow up quickly
 - KF: more symmetric

Selection Bias

Next Question: How are the limits $s \ (= 2.5)$ and $\frac{s-d/2}{2} \ (= 1)$ special?

- What is the *implicit bias* of EB and KF algorithms?
- Our strategy: look at their L^2 population errors

Experiment I

 \blacksquare # of data: $2^q;$ compute $\mathbb{E}_{u^\dagger}\|u^\dagger(\cdot)-u(\cdot,t,\mathcal{X}_q)\|_{L^2}^2$

Figure: L^2 error: averaged over the GP

 \blacksquare $\frac{s-d/2}{2}$ (= 1) is the minimal t that suffices for the fastest rate of L^2 error

Experiment II

• # of data: $2^q, q = 9$; compute $\mathbb{E}_{\boldsymbol{u}^{\dagger}} \| \boldsymbol{u}^{\dagger}(\cdot) - u(\cdot, t, \mathcal{X}_q) \|_{L^2}^2$

Figure: L^2 error: averaged over the GP, for q=9

• s = (2.5) is the t that achieves the minimal L^2 error in expectation

Roadmap

- 1 Multiscale Computation with Exponential Convergence
 - Solve PDE as an approximation problem
 - Coarse-fine scale decomposition of solution space
 - Exponential efficiency of the coarse part
 - Numerical experiments
 - Related works
 - Take-aways

2 Parameter Learning with Provable Guarantees

- Learning a kernel
- Bayes' approach
- Kernel Flow approach
- Consistency as # of data $\rightarrow \infty$, and beyond
- Take-aways

Take-aways

- For Matérn-like kernel model, EB and KF have different selection bias
 - EB selects the θ that achieves the minimal L^2 error in expectation
 - KF selects the minimal θ that suffices for the fastest rate of L^2 error
- More comparisons between EB and KF in our paper
 - Estimate amplitude and lengthscale in $\mathcal{N}(0, \sigma^2(-\Delta + \tau^2 I)^{-s})$
 - Variance of estimators
 - Robustness to model misspecification (important!)
 - Computational cost

Parameter learning: via Bayes or approximation-theoretic?

Thank you!