

Universidade Federal do Ceará

Centro de Tecnologia, Departamento de Engenharia Elétrica

Disciplina: Lab. de Controle de Sistemas Dinâmicos

Profs.: Laurinda L N dos Reis

Objetivos

- 1. Utilizar a ferramenta SISOTOOL para o ajuste dos parâmetros dos controladores;
- 2. Comparar o desempenho dos diferentes tipos de controladores em relação ao seguimento de referências e rejeição de perturbações;
- 3. Enviar para josesergio@alu.ufc.br_até 11/02/2025 às 09:59.

LABORATÓRIO #9 -Lugar das Raízes / PI / I+P / PID / I+PD

Parte 1

1. Objetivo

Comparar o desempenho frente ao seguimento de referências e rejeição de perturbações de um controlador PI e um I+P.

2. Procedimentos

- **2.1-** Ajustar por meio da ferramenta SISOTOOL as constantes do controlador \mathbf{K} e \mathbf{z} de forma tal que os pólos dominantes tenham a forma $s = -a \pm ja$. O ajuste deve buscar maximizar a constante a para melhorar o desempenho do sistema.
- **2.2-** Simular e comparar as respostas de ambos os controladores. R(s) é um degrau unitário aplicado no instante t = 0 e Q(s) é um distúrbio do tipo degrau e deve ser aplicado na metade da simulação).

Figura 1 - Controlador PI

Figura 2 - Controlador P+I

3. Objetivo

Comparar o desempenho frente ao seguimento de referências e rejeição de perturbações de um controlador PID e um I+PD.

4. Procedimentos

- **4.1-** Ajustar por meio da ferramenta SISOTOOL as constantes do controlador **K**, **Ti** e **Td** de forma tal que os pólos dominantes tenham a forma $s = -a \pm ja$. O ajuste deve buscar maximizar a constante a para melhorar o desempenho do sistema.
- **4.2-** Simular e comparar as respostas de ambos os controladores. R(s) é um degrau unitário aplicado no instante t = 0 e Q(s) é um distúrbio do tipo degrau e deve ser aplicado na metade da simulação)

Figura 3 - Controlador PID

Figura 4 - Controlador I+PD

