

Formation of circular HIV-1 forms

Analysis of episomal HIV-1 vectors

FIG. 2

Restriction digest analysis of episomal lentivirus vectors containing one and two LTRs.

Wild type integrase.

될

Double LTR

Mutant integrase.

		₹	JIE
W.T	8 E	7	8
integrase	72%	13%	15%
Mutant	9 E	16	2
integrase	67%	30%	*

AVALAPT AVAILABLE COPY

Can an episomal HIV-1 vector be mobilized ?

Episomal vector forms support efficient production of

Transduction by lentivirus vectors containing one and two LTRs.

Converting a simple expression cassette into a lentivirus vector by a single cloning step.

Facs enrichment of tightly regulated transgene expression from Bi-directional inducible lentivirus vector.

FIG. 8

expression. Facs enrichment of 293T cells exhibiting inducible Luc

A, D, G: Before sorting.

B, E, H: After first sort for +GFP.

C, F, I: After second sort for -GFP.

FIG. 9

The extended KM fragment

FIG. 11

