

Vivekanand Education Society's Institute of Technology

NAME: NARENDER KESWANI

ROLL NO: 24

DIVISION: B

DEPARTMENT: MASTER OF COMPUTER APPLICATION (M.C.A)

SUBJECT: MCA11 - Mathematical Foundation for Computer Science 1 (MFCS)

EXAM: CONTINOUS ASSESTMENT (CA)

PROFESSOR: RUCHI RAUTELA (RR)

DATE: 04/03/2022

Vivekanand Education Society's Institute of Technology, Chembur, Mumbai

Department Of MCA

Year:2021-22 (Odd Sem)

Assignment 1

Class : FIRST YEAR MCA	Division: A & B
Semester: I	Subject: Mathematical Foundation for Computer Science 1
Assignment: 1	Topic: Statistics & Probability
Each question carries 5 marks.	

	Calculate Karl Pearson's coefficient of skewness for the following data:						
Q1	Clașs interval	Frequency	Class interval	Frequency	CO1		
	130 - 134	3	150 - 154	19			
	135 - 139	12	155 - 159	12			
	140 - 144	21	160 - 164	5			
	145 – 149	28					
	A sample of 12 fo	athers and their	eldest sons gave th	e following data			
	about their heigh	t in inches :					
Q2	Father: 65 63 67 64 68 62 70 66 68 67 69 71						
	Son: 68 66 68 65 69 66 68 65 71 67 68 70						
	Calculate coefficient of rank correlation.						
Q3	probability that among 200 such components fewer than 45 will fail						
	in less than 1200 hrs of continuous use.						
0.1	The level of calcium in the blood of healthy, young adults varies with a mean of 9.5 mg per deciliter and a SD of 0.4. A clinic measures						
Q4	the blood calcium level of 180 healthy women and finds $x = 9.57$ mg. Is this an indication that the mean calcium level in this population differs from 9.5mg?($Z_{\alpha} = 1.96$)						

Q.1.	Calculate	har	Pearson 's	coefficient	of	stources	for	the
	following							

Class Joderwal	Frequency	13.35
130-134	3	
135-139	12	FROM - NO.
196-144	21	COOL
145-149	28	
150-154	19	19000 C 149.20
154 - 159	12	
160 - 164	5	to mode.

SN.

	. /	L turned 4	Tubons ACIPIES LIGHT				
15	Class	Frequency	simia .	Sini	Jini2	cf.	
	Intornal	- (fi)	(ni)	then sou	ca.		
	129.5-134.5	reals wints	132	396	52272	3	
	134.5 - 199.5	12 500	137	1644	725728	15	
	139.5-144.5	21	142	2982	423444	36	
20	144.5-149.5	284.1	147	4116	6050521	64	_
	149.5-154.5	19	152	2888	4389 76	83	
	154.5-159.5	12	157	1884	295758	95	
	159.5-164.5	5 (162 - 8	810	131220	100	
		Efi'	128-21-1	5fini	E.fini2		
25		=100		-14720	= 2171980		
			200	51 (2	191 - John		
	2			21			

Formula Usad:

Karl Pearson's coefficient of steepess = mean-morb

2681.5 12.1V1 = 1007

For mean, Mean - Shini Shi Mean = 14720 Mean = 147.20 491-09 For Mode, where 1=144.5 [lower limit] fr = friegrany of mode class = 28 for = frequency of preceding class = 19

fire treations of succeeding class = 19

h = class length of mode class = 5

Mode = 2 + 1 (fi-for) x h

Cafe - fo = fz 157 1884 295758 $Mode = 144.5 + \left(\frac{28-21}{2\times28-21-19}\right) \times 5$ 5-164.5 Mode = 144.5+ (7)×5 Mode = 144.5+ 2.1875 का हिल्लाहर क 30 More = 146.6875

For Standard Davistion (s.D)

$$C = \int 2f n^2 - (Ef n)^2$$

$$C = \int 2f n^2 + (Ef n)^2$$

$$C = \int 2f n^2$$

$$C$$

						Camlin Page	171
0.2.	tother	: 65,63	12 father data of , 67, 64, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65	18,60	65,35	1 302 ga in Inhos , 62,69,71 57,68,70	10/1/1/1
Sol-	Father (71) 65 63 67 64 68 62 70 66 68 67 69 71	50n (y) 68 66 68 65 69 66 63 65 71 67 68 70	Rank (RF) of Father 9 11 6:5 10 4:5 12 2 8 4:5 6:5 3 1	5.5 9.5 11.5 3 9.5 11.5 1.5 1.5 1.5	3.5 1.5 1.5 1.5 2.5 -3.5 -3.5 -1.5 -1.5 -1.5	12.25 1 2.25 2.25 2.25 6.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25	
945 3	In no	68 is 4,5. T	nepeated	2 times ce (4+5)/2=4	SHEAG	ding to	
	from 9	ank 4	5 with my	27.			

In 2, 67 is reported 2 times corresponding to ranks 6, 7. Thorofore, 6+7 =65 is assignal for rank 6, 7 with 172=2

In y, 68 is neperted 4 times vernespooding to ronks 4, 5, 6, 7. Thorofore, (4+5+6+7) 14 = 5.5. 18 assigned for nonk 45, 6, 7 with m3=4.

910. Thorofore (9+10)/2 = 9.5% assigned for rook

In y 65 is repeated 2 times wirespondry to ranks
11,12. Therefore, (11+12)/2-11.5 is assigned for
grant 11,12 with m= 2.

Formula Used:

 $91-1-6\times(2d^2+2m(n^2-1))$

 $91 = 1 - 6 \times (72.5 + 2 \times (2^{2} - 1) + 2 \times (2^{2} - 1) + 4 \times (4^{2} - 1) + 2 \times (5^{2} - 1) + 2 \times (5^$

9 = 1 - 6x(73.5+0.5+0.5+5+0.5+0.5) 12x(144-D)

9 = 1 - 477 = 1 - 0.278 1716 9 = 0.727

: The Ronk contrelation coefficient is 0.772

D3. The probability that an electric component will be in less than 1200 hows of continue use is 0.24 Using mormal distribution, find probability that and 200 such components fewer than 45 will fair of less the components fewer than 45 less than 1200 how of continous use N=200 ... 9=.1-p=1-0.24=0.76 P= 0.24 1-0.74 = 0.40 Mean = np mean = 48 Mean = 200x0.24 or = Inpa T - V20070.2480.76 C = 6.63 Formula Used: 3+63 x 2 = X - np = - 1919 61-1-8x (43.24. 5x(3-1/43-17-1) - 16 Z= X-48 9-1- (x (33.5+0.5+0 5+5.5+0.5) Sime, x = 44-5 (1-pol) x 01 2 = 44.5-48 6.03 Z = -0-6 Kent Cerrelation contract is o.

For Z=0.6, p=0.2257 [Four Table] 144 per a many in other source states P(XS44.5) = P(X 50.6) P(X544.5) =0.5-0.2257 7 (==0.5) PCX \$ 44.5) - 0.2743 pages calcius toil in this regulation direct trees .. Hence, predadily that arming 200 such wingsonds fewer than 45 will fail in less than 1200 his of continous use is 0-2743.

D.4. The level of calcium in the blood of healthy, you decilition in the blood of por decilition with a mean of 9.5 mg measures decilities and a SD of 0.4. A clin women and blood calcium level of 180 healthy women and first or - 0.50 First x = 9.57 mg. To this on indication that the mean calcin level in this population differs from 9.5 mg 2 (7) 9.5 mg ? (Za = 1.96) ENECT OF STATE CONTRACTOR TO n=180 Step 1: 40: 11-9.5 Step 2: 11: 74 + 9.5 Step 3: 2 - 21-74 z = 9.57-9.5 0.4 VISO 7 = 2.33

Step 4: With alphy = 0.05 & since this is two tailed test (i.e. the + & =), the critical region will ronsist of Z score beyond + 1.96 (in proportion of tail, 0-0250 was closed to Z = 1.96, 80 0-0250 x2 = 0-05)

Therefore, look for (1-0.0250 = 0.9750)

Cin the table)

10 Step 5: Since, 2.33 lies outside the critical interval + 1.96, hence it lies in the rejection region, we reject the null hypothesis at the level of significance & 0.05 and conclude that those is enough evidence to show the mean is different from 9.5. Hence, he have show that the average level of calcium in the blood of healthy women is different from 9.5. (which is of others healthy young adults).