• Occurrence probability of TcA_i related papers

Term		S	ubcateg	ory labels			Danaga (titla)	Probability	Publication
labels	S_i		ca_i		A_i		Papers (title)	(%)	years
$Tc_{172}A_{54}$	S ₁₁	0.0100	ca ₁₂	0.0032	A_{54}	0.0379	Arc welding robot systems for large steel constructions	0.00012076	1983
Tc ₁₈₁ A ₅₅		0.0050	ca_2	0.0032	A_{55}	0.0275	Walking robot for underwater construction	0.00004391	1983
Tc237A54	S ₁₁	0.0100	ca ₁₂₀	0.0064	A_{54}	0.0379	Arc welding robot with maximum flexibility for large steel construction	0.00024152	1984
Tc236A54		0.0050	ca ₈	0.0032	A_{54}	0.0379	Application of intelligent robot arc-welding system to large- sized steel	0.00006038	1985
Tc171A54		0.0050	ca ₁₃	0.0032	A_{54}	0.0379	Robotized welding of large offshore constructions	0.00006038	1986
Tc43A14	S ₁₂₅	0.0050	ca ₁₂₀	0.0064	A ₁₄		Development of positioning systems for autonomous robots on construction sites	0.00004391	1989
Tc97A31		0.0050	Ca ₄₂	0.0128	A ₃₁	0.0069	Framework for construction robot fleet management system	0.00004391	1990
Tc_7A_1	S ₆₅	0.0050	ca ₆₃	0.0032	A_1	0.0189	Automation and robotics for road construction and maintenance	0.00003019	1990
Tc19A50	S33	0.0100	ca ₃₆	0.0192	A ₅₀	1111216	Position-force adaptive control of a robot with applications in construction	0.00098804	1991
$Tc_{11}A_{20}$	S ₃₄	0.0050	ca ₃₆	0.0192	A ₂₀	0.0138	Automation of surface treatment in construction by using a robot	0.00013174	1991
Tc97A31		0.0050	ca ₄₂	0.0128	A_{31}	0.0069	Construction robot fleet management system prototype	0.00098804	1991
$Tc_{115}A_4$	S ₇₆	0.0050	ca ₉₅	0.0096	A_4	0.0017	Ssr: a mobile robot on ferromagnetic surfaces	0.00000823	1992
$Tc_{82}A_{24}$		0.0050	ca ₃₃	0.0032	A_{24}		Real-time robot path planning using the potential function method	0.00003568	1993
$Tc_{64}A_{20}$	S ₆	0.0846	ca ₃₈	0.0064	A_{20}	0.0138	Position-force adaptive control for construction robots		
Tc97A7		0.0050	Ca42	0.0128	A_7	0.0207	Managing multiple construction robots with a computer	0.00074652	1993
Tc106A32	S 39	0.2289	Ca ₅₂	0.0032	A ₃₂		Model-based guidance by the longest common subsequence algorithm for indoor autonomous vehicle navigation using computer vision	0.00010704	1993
Tc80A24	S ₁₀	0.0050	Ca ₆₅	0.0096	A ₂₄		Map representation of a large in-door environment with path planning and navigation abilities for an autonomous mobile robot with its implementation on a real robot	0.00010704	1993

$Tc_{13}A_{14}$		0.0050	ca ₁₁₅	0.0224	A ₁₄	0.0138	Self-position measuring method for moving robot working at construction sites	0.00015370	1994
Tc97.A48		0.0050	Ca ₄₂	0.0128	A ₄₈	0.0034	Logistics support system for construction robotics implementation	0.00002196	1994
$Tc_{87}A_{50}$		0.0050	ca ₅	0.0160	A ₅₀	0.0516	Study on active vibration control of arm for construction machinery – modelling and linear-control simulation	0.00041168	1994
$Tc_{75}A_{22}$	S ₇₄	0.0050	ca ₇₃	0.1282	A ₂₂	0.0534	Path planning and sensing for an experimental masonry building robot	0.00340326	1994
$Tc_{137}A_{45}$	S ₅₀	0.0050	ca ₇₉	0.0256	A_{45}	0.0241	Construction robot force control in cleaning operations	0.00030739	1994
Tc51A50	S ₂₂	0.0100	ca ₁₀	0.0096	A ₅₀	0.0516	On the dynamic control of a hydraulic large range robot for construction applications	0.00049402	1995
$Tc_{84}A_{24}$		0.0050	ca ₁₀₃	0.0224	A ₂₄	0.0224	A behavioral language for motion planning in building construction	0.00024976	1995
$Tc_{84}A_{34}$		0.0050	ca ₁₀₃	0.0224	A ₃₄	0.0413	Integration of cad drawings and construction robot motion controllers	0.00046109	1996
$Tc_{164}A_{50}$		0.0050	ca ₁₁₄	0.0128	A ₅₀	0.0516	Construction robot for three-dimensional shapes based on the nesting behavior of paper wasps	0.00032935	1996
Tc ₁₃ A ₁₄		0.0050	ca ₁₁₅	0.0224	A_{14}	0.0138	Self-position measuring method for moving robot working at construction sites (2nd report, improvement of pillar-detecting algorithm)	0.00015370	1996
$T_{c_{79}}A_{22}$	S ₂₁	0.0050	ca ₇₀	0.0096	A_{22}	0.0534	Controlled hydraulics for a direct drive brick laying robot	0.00025524	1996
Tc ₁₁₆ A ₅₈		0.0050	ca ₇₀	0.0096	A ₅₈	0.0069	Development of interior finishing unit assembly system with robot: wascor iv research project report	0.00003293	1996
$T_{c_{78}}A_{22}$	S ₁	0.0149	ca ₇₁	0.0032	A ₂₂	0.0534	Technological aspects in the development of a mobile bricklaying robot	0.00025524	1996
$Tc_{27}A_{11}$		0.0050	ca ₉₀	0.0256	A ₁₁	0.0551	Automatic generation of the controlling-system for a wall construction robot	0.00070261	1996
$Tc_{140}A_{46}$	S ₁	0.0149	ca ₁₂₁	0.0032	A ₄₆	0.0052	Robotic mapping of building interior - precision analysis	0.00002470	1997
Tc170A54	S ₁₄	0.0697	ca ₁₄	0.0032	A ₅₄	0.0379	Steel frame welding robot systems and their application at the construction site	0.00084533	1997
Tc ₁₁₇ A ₃₄	S ₇₀	0.0050	ca ₂₆	0.0256	A ₃₄	0.0413	Robot assembly system for the construction process automation	0.00052696	1997

Tc ₁₈₉ A ₃₂		0.0050	ca ₂₆	0.0256	A_{32}	0.0310	A fuzzy navigation system for mobile construction robots	0.00039522	1997
Tc ₁₈₉ A ₅₆		0.0050	Ca ₂₆	0.0256	A ₅₆	0.0688	Feasibility of automating military's environmental operations	0.00087826	1997
Tc60A53	S14	0.0697	Ca46	0.0128	A ₅₃	0.0069	Development of a distributed multiple mobile robot control system for automatic highway maintenance and construction	0.00061478	1997
Tc33A12		0.0050	Ca ₄₉	0.0160	A_{12}	0.0241	Selection of optimal construction robot using genetic algorithm	0.00019212	1997
Tc ₁₂₁ A ₂₆	S154	0.0050	ca ₉₀	0.0256	A ₂₆	0.0052	The development of a rapid-prototyping technique for mechatronic-augmented heavy plant	0.00006587	1997
Tc42A53	S ₅₄	0.1393	ca ₉₀	0.0256	A_{53}	0.0069	Distributed control of a multiple tethered mobile robot system for highway maintenance and construction	0.00245913	1997
Tc205A50		0.0050	ca ₉₂	0.0064	A ₅₀	0.0516	Programming construction robots using virtual reality techniques	0.00016467	1997
Tc29A12	S 39	0.2289	ca ₉₆	0.0096	A_{12}	0.0241	Vision-based interactive path planning for robotic bridge paint removal	0.00530250	1997
Tc_6A_1	S ₆₆	0.0050	ca ₆₄	0.0064	A_1	0.0189	A new facility for testing accurate positioning systems for road construction robotics	0.00006038	1998
Tc_5A_1	S 67	0.0050	ca ₆₅	0.0096	A_1	0.0189	Autopave: towards an automated paving system for asphalt pavement compaction operations	0.00009057	1998
Tc_4A_1	S 6	0.0846	ca ₇₃	0.1282	A_1	0.0189	Automated and robotics-based techniques for road construction	0.02052933	1998
Tc31A12	S94	0.0050	ca ₉₆	0.0096	A_{12}	0.0241	Automation infrastructure system for a robotic 30-ton bridge crane	0.00011527	1998
Tc200A56		0.0050	ca ₈₁	0.0032	A ₅₆	0.0688	Teleoperation control of ets-7 robot arm for on-orbit truss construction	0.00010978	1999
Tc70A38		0.0050	ca ₈₉	0.0096	A ₃₈	0.0155	Development of a construction robot for marking on ceiling boards: 2nd report, drawing a long straight line on the ceiling	0.0000/410	1999
Tc ₁₁₈ A ₃₄	S ₁₃₈	0.0050	ca ₂₆	0.0256	A ₃₄	0.0413	Robot assembly system for computer-integrated construction	0.00052696	2000
Tc226A7	S44	0.0050	Ca43	0.0064	A ₇	0.0207	Impedance control of a hydraulically actuated robotic excavator	0.00006587	2000
$Tc_{57}A_2$	S 39	0.2289	ca ₆₁	0.0032	A_2	0.0086	Process and quality control with a video camera, for a floor-tilling robot	0.00063125	2000

$Tc_{169}A_{12}$		0.0050		0.0032	Λ	0.0241	Development of a teachingless robot system for welding a	0.00003842	2001
1 t169Z-112		0.0030	ca ₁₅	0.0032	A_{12}	0.0241	large-sized box-type construction	0.00003642	2001
$Tc_{54}A_{19}$	S ₁₁₈	0.0050	ca ₁₁₅	0.0224	A ₁₉	0.0138	Lan-based building maintenance and surveillance robot	0.00015370	2002
Tc41A14	S39	0.2289	ca ₅₆	0.0032	A ₁₄	0.0138	A framework for rapid local area modeling for construction automation	0.00101000	2002
$Tc_{224}A_7$	S45	0.0050	ca ₈₉	0.0096	A_7	0.0207	Automated excavation in construction using robotics trajectory and envelop generation	0.00009880	2002
$Tc_{95}A_{30}$	S ₆	0.0846	ca ₁₀₀	0.0032	A_{30}	0.0103	Blind bulldozing: multiple robot nest construction	0.00027995	2003
Tc ₁₂₄ A ₃₈	S ₁₄	0.0697	ca ₁₁₅	0.0224	A ₃₈	0.0155	Development of a construction robot for marking on ceiling boards (3rd report, prototype of the laser pointer system)	0.00242070	2003
Tc87A26	\$8	0.0199	ca ₅	0.0160	A ₂₆	0.0052	Application of robots using pneumatic artificial rubber muscles for operating construction machines	0.00016467	2003
$Tc_{144}A_5$	S ₈₆	0.0050	ca ₈₇	0.0032	A_5	0.0120	Construction robot path-planning for earthwork operations	0.00001921	2003
Tc ₁₈₇ A ₅₆		0.0050	ca ₃₁	0.0160	A ₅₆	0.0688	Field test of remote control system for construction machines using robot arm	0.00054891	2004
Tc ₁₈₇ A ₅₆		0.0050	ca ₃₁	0.0160	A ₅₆	0.0688	Development of remote control system of construction machinery using pneumatic robot arm	0.00054891	2004
Tc ₁₃₈ A ₄₅	S ₃₃	0.0100	ca ₄₃	0.0064	A_{45}	0.0241	Analysis of a climbing parallel robot for construction applications	0.00015370	2004
$Tc_{222}A_7$	S47	0.0050	Ca47	0.0032	A_7	0.0207	A control architecture for robotic excavation in construction	0.00003293	2004
Tc33A12		0.0050	Ca49	0.0160	A ₁₂	0.0241	Application of ga in optimal robot selection for bridge restoration	0.00019212	2004
Tc ₁₈₂ A ₅₅	S ₁	0.0149	ca ₆₂	0.0224	A_{55}	0.0275	The study of remotely teleoperated robotic manipulator system for underwater construction	0.00092217	2004
$Tc_{56}A_2$	S ₅₄	0.1393	ca ₆₂	0.0224	A_2	0.0086	Real-time sense-and-act' operation for construction robots	0.00268967	2004
Tc76A24		0.0050	c a ₇₃	0.1282	A ₂₄	0.0224	Spatial model for path planning of multiple mobile construction robots	0.00142717	2004
$Tc_{216}A_{6}$	S ₅₄	0.1393	ca ₁₀₂	0.0032	A_6	0.0723	Automating inspection and documentation of remote building construction using a robotic camera	0.00322761	2005
Tc ₂₆ A ₁₁	S ₂₂	0.0100	ca ₂₅	0.0064	A ₁₁	0.0551	A heavy climbing robotic platform for geotechnical applications	0.00035130	2005
$Tc_{23}A_{11}$	S ₂₃	0.0050	ca ₂₆	0.0256	A_{11}	0.0551	Climbing robots with adaptive grippers for construction	0.00070261	2005

$Tc_{93}A_3$	S ₃₉	0.2289	ca ₃₆	0.0192	A_3	0.0069	A hybrid pole climbing and manipulating robot with minimum dofs for construction and service applications	0.00303000	2005
Tc_3A_1	S ₅₄	0.1393	ca ₆₇	0.0064	A_1	0.0189	Robotic systems for pavement lane painting operations	0.00169065	2005
Tc132A42	S ₁₄	0.0697	ca ₁₀₉	0.0064	A ₄₂	0.0086	Example of experimental use of 3d measurement system for construction robot based on component design concept	0.00038424	2006
$Tc_{232}A_{51}$	S ₈₇	0.0100	ca ₁₀₉	0.0064	A ₅₁	0.0052	Pose estimation of construction materials using multiple id devices for construction automation	0.00003293	2006
Tc55A19	S38	0.0050	Ca ₁₁₄	0.0128	A ₁₉	0.0138	Sustainable cooperative robotic technologies for human and robotic outpost infrastructure construction and maintenance	0.00008783	2006
$Tc_{22}A_{11}$	S ₂₄	0.0050	ca ₂₇	0.0032	A ₁₁	0.0551	A distributed feedback mechanism to regulate wall construction by a robotic swarm	0.00008783	2006
$Tc_{105}A_{32}$	S ₁₄₂	0.0050	ca ₃₁	0.0160	A ₃₂	0.0310	Wireless sensor-driven intelligent navigation robots for indoor construction site security and safety	0.00024701	2006
$Tc_{154}A_{50}$		0.0050	ca ₄₆	0.0128	A ₅₀	0.0516	Control architecture characteristics for intelligence in autonomous mobile construction robots	0.00032935	2006
Tc145A5	S 87	0.0100	Ca ₆₅	0.0096	A_5	0.0120	Closure to "construction robot path-planning for earthwork operations" by sung-keun kim, jeffrey s. Russell, and kyo-jin koo		2006
Tc_2A_1	S ₆₈	0.0050	ca ₆₈	0.0032	A_1	0.0189	A 3d model based control of an excavator	0.00003019	2006
Tc_1A_1	S ₆₉	0.0050	ca ₆₉	0.0032	A_1	0.0189	Autonomous robot for pavement construction in challenging environments	0.00003019	2006
$Tc_{197}A_{50}$	S ₈₁	0.0100	ca ₇₉	0.0256	A ₅₀	0.0516	Research on rbf-pid control for the 6-dof motion base in construction tele-robot system	0.00131739	2006
$Tc_{27}A_8$	S39	0.2289	Ca ₉₀	0.0256	A_8	0.0293	Development of a real-time control system architecture for automated steel construction	0.01716999	2006
$Tc_{215}A_{6}$	S ₃₉	0.2289	ca ₁₀₃	0.0224	A_6	0.0723	The study in using an autonomous robot for pavement inspection	0.03711747	2007
Tc93A56	S ₃₉	0.2289	ca ₃₆	0.0192	A ₅₆	0.0688	Graphical modeling and simulation for design and control of a tele-operated clinker clearing robot	0.03029998	2007
Tc33A50		0.0050	C 249	0.0160	A ₅₀	0.0516	A multicriteria approach for the optimal design of 2 dof parallel robots used in construction applications	0.00041168	2007

$Tc_{76}A_{52}$		0.0050	Ca ₇₃	0.1282	A ₅₂	0.0103	Modified stereo vision calibration method for construction	0.00065870	2007
1 0/62 132		0.0030	Ca/3	0.1202	1152	0.0103	robot	0.00003070	2007
Tc199A56	S39	0.2289	ca ₈₀	0.0096	A ₅₆	0.0688	Development of immersive augmented reality interface for construction robotic system	0.01514999	2007
$Tc_{229}A_8$		0.0050	ca ₉₁	0.0032	A_8	0.0293	Pre-acting manipulator for shock isolation in steel construction	0.00004666	2007
Tc ₁₆₈ A ₅₄		0.0050	ca ₁₆	0.0032	A_{54}	0.0379	Construction of welding robot network control system	0.00006038	2008
Tc89A29	S ₁₁₄	0.0050	ca ₃₆	0.0192	A ₂₉	0.0310	Development of prototype of a unmanned transport robot for transport of construction materials	0.00029641	2008
Tc ₁₁₉ A ₃₄	S ₃₉	0.2289	ca ₇₉	0.0256	A ₃₄	0.0413	Anti-swinging input shaping control of an automatic construction crane	0.02423998	2008
Tc198A56	S 6	0.0846	ca 79	0.0256	A ₅₆	0.0688	Improved force feedback control method for construction telerobot	0.01493042	2008
Tc86A56		0.0050	ca ₈₆	0.0385	A ₅₆	0.0688	Construction telerobot system with virtual reality (development of a bilateral construction robot)	0.00131739	2008
$Tc_{149}A_{50}$	S ₈₉	0.0050	ca ₉₀	0.0256	A ₅₀	0.0516	Development of an automated verticality alignment system for a vibro-lance	0.00065870	2008
Tc71A22	S ₁₈	0.0100	ca ₁₀₅	0.0096	A ₂₂	0.0534	Feasibility verification of brick-laying robot using manipulation trajectory and the laying pattern optimization	0.00051049	2009
Tc91A29	S ₁₁₃	0.0050	ca ₁₁₁	0.0032	A ₂₉	0.0310	A laser-technology-based lifting-path tracking system for a robotic tower crane	0.00004940	2009
Tc ₁₉₂ A ₅₆	S ₁₃₄	0.0050	ca ₁₁₃	0.0128	A ₅₆	0.0688	Haptic interaction in tele-operation control system of construction robot based on virtual reality	0.00043913	2009
Tc104A32	S ₁₄	0.0697	Ca ₂₅	0.0064	A ₃₂	0.0310	Light-weight 3d ladar system for construction robotic operations	0.00138326	2009
Tc ₁₆₇ A ₅₄	S ₁₄	0.0697	ca ₃₂	0.0096	A ₅₄	0.0379	Simulation of industrial robots for laser welding of load bearing construction	0.00253598	2009
Tc ₁₈₆ A ₅₆	S ₁₃₃	0.0050	ca ₃₆	0.0192	A ₅₆	0.0688	Tele-operation construction robot control system with virtual reality	0.00065870	2009
Tc ₁₂₈ A ₄₁	S ₈₁	0.0100	Ca ₅₉	0.0032	A ₄₁	0.0138	Work state identification using primitive static states - implementation to demolition work in double-front work machines	0.00004391	2009
$Tc_{209}A_6$	S ₁₀₄	0.0050	ca ₇₃	0.1282	A_6	0.0723	Bridge inspection robot system with machine vision	0.00461087	2009

					1				
$Tc_{190}A_{56}$	S ₁₃₅	0.0050	ca ₂₆	0.0256	A_{56}		Virtual reality-based teleoperation construction robot control system with 3d visor device	0.00087826	2010
Tc160A50		0.0050	Ca45	0.0096	A ₅₀	0.0516	Specific mechanisms for construction mobile robots	0.00024701	2010
$Tc_{162}A_{50}$	S ₅₇	0.0050	ca ₇₉	0.0256	A_{50}	0.0516	Labview based control and simulation of a construction robot	0.00065870	2010
Tc ₁₉₈ A ₅₆	S ₆	0.0846	ca ₇₉	0.0256	A ₅₆	0.0688	Research on improved force feedback control method for construction telerobot	0.01493042	2010
Tc199A56	S39	0.2289	ca ₈₀	0.0096	A ₅₆	0.0688	Development of immersive augmented reality interface system for construction robotic system	0.01514999	2010
Tc ₁₉₆ A ₅₀	s ₆	0.0846	ca ₈₄	0.0064	A_{50}	1111516	Bilateral hydraulic servo control system based on force sense for construction robot	0.00279945	2010
$Tc_{201}A_{50}$	s ₆	0.0846	ca ₈₆	0.0385	A_{50}	0.0516	Research on bilateral hydraulic servo control system of construction robotics	0.01679673	2010
Tc ₈₆ A ₅₆		0.0050	ca ₈₆	0.0385	A_{56}	0.0688	Study on master-slave control method using load force and impedance identifiers for tele-operated hydraulic construction robot	0.00131739	2010
$Tc_{214}A_6$		0.0050	ca ₁₀₄	0.0032	A_6	0.0723	Robot-aided tunnel inspection and maintenance system	0.00011527	2011
Tc211A6	S109	0.0199	ca ₁₀₇	0.0032	A_6	0.0723	Strateg+d171 autonomous robots to inspect pavement distresses	0.00046109	2011
Tc49A17	S157	0.0050	Ca ₁₁₂	0.0096	A ₁₇	0.0103	A conceptualization for the automation of a lift car operation in high rise building construction	0.00004940	2011
Tc ₁₆₄ A ₅₀		0.0050	ca ₁₁₄	0.0128	A_{50}	0.0516	Ltl-based decentralized supervisory control of multi-robot tasks modelled as petri nets	0.00032935	2011
$Tc_{20}A_{11}$		0.0050	ca ₂₈	0.0032	A_{11}	0.0551	Concept of a wall building industrial robotic system	0.00008783	2011
$Tc_{24}A_{40}$	S ₈	0.0199	ca ₃₈	0.0064	A ₄₀	0.0034	Development of pressure observer to measure cylinder length of harbor-construction robot	0.00004391	2011
Tc ₁₅₅ A ₅₂	S ₁₀₈	0.0050	ca ₆₂	0.0224	A_{52}	0.0103	Study on a vision sensing system for the parameter estimation of a serial construction robot	0.00011527	2011
$Tc_{94}A_{30}$	S ₁₀₉	0.0199	ca ₆₂	0.0224	A_{30}	0.0103	A plan for lunar outpost construction by using robots	0.00046109	2011
Tc25A9	S39	0.2289	ca ₁₁₅	0.0224	A_9	0.0069	Tunnel boring machine positioning automation in tunnel construction	0.00353500	2012
Tc ₁₃ A ₃₈		0.0050	ca ₁₁₅	0.0224	A ₃₈	0.0155	High accuracy position marking system applying mobile robot in construction site	0.00017291	2012

Tc ₁₃ A ₅₄		0.0050	ca ₁₁₅	0.0224	A ₅₄	0.0379	Automatic welding robot system for the horizontal position in the shipyard	0.00042266	2012
Tc125A38		0.0050	ca ₁₁₉	0.0032	A ₃₈	0.0155	Development of high accuracy position marking system in construction site applying automated mark robot	0.00002470	2012
Tc ₁₆₅ A ₅₄	S ₁₆	0.0050	ca ₁₉	0.0032	A_{54}	0.0379	Model analysis and experimental technique on computing accuracy of seam spatial position information based on stereo vision for welding robot		2012
Tc ₁₈₉ A ₅₆		0.0050	ca ₂₆	0.0256	A ₅₆	0.0688	Autonomous task control system of construction tele-robot based on stereo vision	0.00067620	2012
Tc10A11	S25	0.0050	ca ₂₉	0.0032	A ₁₁	0.0551	Autonomous construction of a roofed structure: synthesizing planning and stigmergy on a mobile robot	0.00008783	2012
$Tc_{68}A_{22}$	S ₇₂	0.0050	ca ₃	0.0064	A ₂₂	0.0534	Development of refractory brick construction robot in steel works	0.00017016	2012
Tc ₁₈₄ A ₅₆		0.0050	ca ₆₂	0.0224	A ₅₆	0.0688	Research on roi image processing technology of teleoperation construction robot based on trinocular stereo vision	0.00076848	2012
Tc48A17	s ₁₁ 9	0.0050	ca ₆₇	0.0064	A ₁₇	0.0103	Sensor based motion planning and estimation of high-rise building facade maintenance robot	0.00003293	2012
Tc ₁₀₀ A ₃₂	S ₁₄	0.0697	ca ₇₃	0.1282	A ₃₂	0.0310	Study on 3-d laser-scanning-based machine vision system for robotic construction vehicles	0.02766520	2012
Tc191A56		0.0050	ca ₈₄	0.0064	A ₅₆	0.0688	Force feedback control of tele-operated construction robot based on regression model	0.00021957	2012
Tc86A25		0.0050	ca ₈₆	0.0385	A ₂₅	0.0069	Application of a position-force control method in a master- slave teleoperation construction robot system	0.00013174	2012
Tc ₈₆ A ₂₅		0.0050	ca ₈₆	0.0385	A ₂₅	0.0069	Operability of a control method for grasping soft objects in a construction teleoperation robot tested in virtual reality	0.00013174	2012
Tc86A25		0.0050	ca ₈₆	0.0385	A ₂₅	0.0069	Master-slave control method with force feedback for grasping soft objects using a teleoperation construction robot	0.00013174	2012
Tc35A12	S ₁₄	0.0697	ca ₉₀	0.0256	A ₁₂	0.0241	Human-robot-environment interaction interface for robotic grit-blasting of complex steel bridges	0.00430347	2012
$Tc_{84}A_{29}$		0.0050	ca ₁₀	0.0096	A_{29}	0.0310	Autonomous robotic dozing for rapid material removal	0.00014821	2013
Tc109A32		0.0050	ca ₁₁₂	0.0096	A ₃₂	0.0310	Human-robot integration for pose estimation and semi- autonomous navigation on unstructured construction sites	0.00014821	2013

Tc53A19	S ₅₄	0.1393	ca ₁₁₆	0.0032	A ₁₉	0.0138	A novel surface segmentation approach for robotic manipulator-based maintenance operation planning	0.00061478	2013
Tc18A11	S26	0.0050	ca ₃₀	0.0032	A ₁₁	0.0551	Development of fail-safety system for building wall cleaning robot	0.00008783	2013
$Tc_{157}A_{50}$		0.0050	ca ₃₇	0.0032	A ₅₀	0.0516	Mutli-robot distributed control for construction tasks based on intelligent beacons	0.00008234	2013
$Tc_{62}A_{20}$	S ₃₇	0.0050	ca ₄₀	0.0032	A ₂₀	0.0138	Autonomous thin spray-on liner application in irregular tunnel and mine roadway surfaces	0.00002196	2013
Tc33A24		0.0050	ca 49	0.0160	A ₂₄	0.0224	Path planning of wheel loader type robot for scooping and loading operation by genetic algorithm	0.00017840	2013
Tc ₈₇ A ₃₇	S ₈	0.0199	ca ₅	0.0160	A ₃₇	0.0155	Potentials of robotic fabrication in wood construction: elastically bent timber sheets with robotically fabricated finger joints		2013
Tc96A31		0.0050	ca ₅₄	0.0032	A ₃₁	0.0069	Design and research of a construction robot based on series parallel structure	0.00001098	2013
Tc27.A56		0.0050	ca 90	0.0256	A ₅₆	0.0688	Geometric and kinematics modeling of tele-operated virtual construction robot	0.00087826	2013
Tc ₁₁₄ A ₃₄	S ₅₄	0.1393	Ca ₉₅	0.0096	A ₃₄	0.0413	An implementation of a teleoperation system for robotic beam assembly in construction	0.00553304	2013
Tc34A29	S39	0.2289	ca ₁₁₂	0.0096	A ₂₉	0.0310	Potential of time-of-flight range imaging for object identification and manipulation in construction	0.00681749	2014
Tc156A50	S39	0.2289	ca ₂₆	0.0256	A ₅₀	0.0516	Chip-based real-time gesture tracking for construction robot's guidance	0.03029998	2014
$Tc_{160}A_{50}$		0.0050	ca ₄₅	0.0096	A ₅₀	0.0516	Modified discrete event simulation algorithm for control of automated construction operations	0.00024701	2014
Tc160A50		0.0050	c a ₄₅	0.0096	A ₅₀	0.0516	Automating construction operations using discrete event simulation models (control simulation design)	0.00024701	2014
$Tc_{58}A_2$	S64	0.0050	ca ₆₀	0.0032	A_2	0.0086	Robotic tile placement: tools, techniques and feasibility	0.00001372	2014
Tc185A56	S136	0.0100	Ca ₆₂	0.0224	A ₅₆	0.0688	Development of a teleoperation system for a construction robot	0.00153696	2014
Tc66A21	S39	0.2289	Ca ₆₂	0.0224	A ₂₁	0.0172	Automatic detection and verification of pipeline construction features with multi-modal data	0.00883749	2014

$Tc_{21}A_{34}$		0.0050	ca ₇₅	0.0545	A ₃₄	0.0413	Development of a bim-based automated construction system	0.00111978	2014
$Tc_{228}A_8$	S92	0.0050	ca ₉₂	0.0064	A_8	0.0293	Virtual prototyping for robotic fabrication of rebar cages in manufactured concrete construction	0.00009332	2014
$Tc_{30}A_{12}$	S ₃₉	0.2289	ca ₉₈	0.0064	A ₁₂	0.0241	Rapid and automated determination of rusted surface areas of a steel bridge for robotic maintenance systems	0.00353500	2014
$Tc_{113}A_{34}$		0.0050	ca ₉₈	0.0064	A ₃₄	0.0413	A tree-based algorithm for construction robots	0.00013174	2014
Tc67A21		0.0050	ca ₁₀₁	0.0032	A ₂₁	0.0172	Modeling and control of automated pipe hoisting in oil and gas well construction	0.00002745	2015
$Tc_{111}A_{32}$	S ₁₄₃	0.0050	ca ₁₀₅	0.0096	A ₃₂	0.0310	Construction site navigation for the autonomous excavator thor	0.00014821	2015
$T_{c40}A_{14}$	S ₁₂₇	0.0100	ca ₁₁₃	0.0128	A ₁₄	0.0138	Position reaction force control of teleoperation construction robot for grasping soft objects	0.00017565	2015
Tc158A52	S ₆	0.0846	ca ₁₁₃	0.0128	A ₅₂	0.0103	Automated measurement and estimation of concrete strength by mobile robot with small-sized grinding drill	0.00111978	2015
Tc ₁₀₈ A ₃₄	S ₅₄	0.1393	ca ₁₁₈	0.0417	A ₃₄	0.0413	Vision guided autonomous robotic assembly and as-built scanning on unstructured construction sites	0.02397650	2015
Tc135A54	S 39	0.2289	ca ₂₀	0.0064	A ₅₄	0.0379	Intuitive task programming of stud welding robots for ship construction	0.00555500	2015
$Tc_{61}A_{20}$	S 39	0.2289	Ca ₄₁	0.0032	A ₂₀	0.0138	Automatic path-planning algorithm for realistic decorative robotic painting	0.00101000	2015
$Tc_{85}A_{25}$		0.0050	ca ₅₀	0.0064	A_{25}	0.0069	Design and construction of a translational parallel robot for drilling tasks	0.00002196	2015
$T_{c_{21}}A_{22}$		0.0050	c a ₇₅	0.0545	A ₂₂	0.0534	Towards a new bim 'dimension'-translating bim data into actual construction using robotics	0.00144638	2015
Tc ₁₉₉ A ₅₆	S39	0.2289	ca ₈₀	0.0096	A ₅₆	0.0688	Augmented reality-based tele-robotic system architecture for on-site construction	0.01514999	2015
$Tc_{202}A_{56}$	S ₁₃₆	0.0100	ca ₈₆	0.0385	A ₅₆	0.0688	Development of a telerobotics system for construction robot using virtual reality	0.00263478	2015
Tc136A14	S126	0.0050	ca ₁₀₈	0.0032	A ₁₄	0.0138	Robotic shm and model-based positioning system for monitoring and construction automation	0.00002196	2016
Tc ₁₇₇ A ₅₆	S ₆	0.0846	ca ₂₀	0.0064	A ₅₆	0.0688	Estimation for torques applied to the master side in a construction robot teleoperation system	0.00373261	2016

Tc ₁₂₂ A ₅₄		0.0050	ca ₂₁	0.0032	A ₅₄	0.0379	Research on improving the efficiency and welding quality of welding robot for construction machinery structure	0.00006038	2016
Tc ₁₈₀ A ₅₅		0.0050	ca ₃	0.0064	A ₅₅	0.0275	Parameter study of chain trenching machines of underwater construction robots via analytical model	0.00008783	2016
$Tc_{45}A_{18}$	S39	0.2289	ca ₄₄	0.0417	A_{18}	0.0069	Robotic 3d-printing for building and construction	0.00656499	2016
Tc148A29	S85	0.0050	ca ₇₃	0.1282	A ₂₉	0.0310	Machine learning approach to automatic bucket loading	0.00197609	2016
Tc76A34		0.0050	ca ₇₃	0.1282	A ₃₄	0.0413	Site automation: automated/robotic on-site factories	0.00263478	2016
$Tc_{21}A_{22}$		0.0050	ca ₇₅	0.0545	A_{22}	0.0534	Simulation of automated construction using wire robots	0.00144638	2016
Tc ₁₉₅ A ₅₆		0.0050	ca ₇₈	0.0032	A ₅₆	0.0688	Support system for slope shaping based on a teleoperated construction robot	0.00010978	2016
Tc203A56	S39	0.2289	ca ₈₆	0.0385	A ₅₆	0.0688	Support system for teleoperation of slope shaping by a construction robot	0.06059995	2016
$Tc_{218}A_{61}$		0.0050	ca ₉	0.0064	A ₆₁	0.0034	A realisation of a construction scale robotic system for 3d printing of complex formwork	0.00001098	2016
Tc28A12	S 96	0.0050	ca 99	0.0032	A ₁₂	0.0241	Smart automation system dedicated to in frastructure and construction	0.00003842	2016
Tc83A24	S39	0.2289	ca ₁₀₅	0.0096	A ₂₄	0.0224	A cable-driven robot for architectural constructions: a visual- guided approach for motion control and path-planning	0.00492375	2017
Tc ₁₁₀ A ₃₂	S ₁₄	0.0697	ca ₁₁₀	0.0160	A ₃₂	0.0310	Automatic interpretation of unordered point cloud data for uav navigation in construction	0.00345815	2017
Tc234A52	S6	0.0846	Ca ₁₁₄	0.0128	A ₅₂	0.0103	Using local force measurements to guide construction by distributed climbing robots	0.00111978	2017
Tc16A58		0.0050	Ca ₃₂	0.0096	A ₅₈	0.0069	Robotic system for plaster and finishing works on the construction site	0.00003293	2017
Tc238A55		0.0050	ca ₄	0.0032	A ₅₅	0.0275	Development of a remotely controlled semi-underwater heavy carrier robot for unmanned construction works	0.00004391	2017
Tc44A16		0.0050	ca44	0.0417	A ₁₆	0.0189	Smcspo based 3d printing simulator control for building construction	0.00039247	2017
Tc44A16		0.0050	Ca ₄₄	0.0417	A ₁₆	0.0189	Development of 3d printing simulator nozzle system using pid control for building construction	0.00039247	2017
Tc44A16		0.0050	Ca ₄₄	0.0417	A ₁₆	0.0189	Automation of robotic concrete printing using feedback control system	0.00039247	2017

Tc44A16		0.0050	ca ₄₄	0.0417	A_{16}	0.0189	Classification of building systems for concrete 3d printing	0.00039247	2017
Tc ₈₇ A ₅₅	S ₈	0.0199	ca ₅	0.0160	A ₅₅	0.0275	Active control for rock grinding works of an underwater construction robot consisting of hydraulic rotary and linear actuators	0.00087826	2017
$Tc_{217}A_{60}$		0.0050	ca ₅₇	0.0032	A ₆₀	0.0086	A method based on c-k theory for fast stcr development: the case of a drilling robot design	0.00001372	2017
Tc ₁₇₆ A ₅₅	S ₆	0.0846	ca ₆	0.0032	A ₅₅	0.0275	Development of the control algorithm for longitudinal motion of underwater construction robot with trenching	0.00074652	2017
Tc77A22		0.0050	ca ₇₂	0.0032	A ₂₂	0.0534	A stochastic learning approach for construction of brick structures with a ground robot	0.00008508	2017
$Tc_{223}A_{50}$	S43	0.0050	ca ₇₃	0.1282	A ₅₀	0.0516	Online learning control of hydraulic excavators based on echostate networks	0.00329348	2017
$Tc_{73}A_8$	S14	0.0697	ca ₇₅	0.0545	A_8	0.0293	Beam for the steel fabrication industry robotic systems	0.01110450	2017
Tc21A3		0.0050	ca ₇₅	0.0545	A ₃	0.0069	Model-based development of robotic systems and services in construction robotics	0.00018663	2017
Tc ₁₂₀ A ₃₄	S ₁₂₇	0.0100	ca ₈₂	0.0192	A ₃₄	0.0413	Scene understanding for adaptive manipulation in robotized construction work	0.00079043	2017
Tc204A56	S137	0.0050	ca ₈₆	0.0385	A ₅₆	0.0688	A master-slave control method with gravity compensation for a hydraulic teleoperation construction robot	0.00131739	2017
$T_{c_{27}}A_{34}$		0.0050	ca 90	0.0256	A ₃₄	0.0413	Robotic fabrication of freeform foam structures with quadrilateral and puzzle shaped panels	0.00052696	2017
$Tc_{221}A_{62}$	S39	0.2289	Ca94	0.0032	A_{62}	0.0017	Pyroshield - a hvac fire curtain testing robot	0.00012625	2017
Tc98A32	S82	0.0050	ca 96	0.0096	A ₃₂	0.0310	Target-focused local workspace modeling for construction automation applications	0.00014821	2017
Tc99A32	S ₁₀₉	0.0199	ca ₁₀₃	0.0224	A ₃₂	0.0310	Automated localization of uavs in gps-denied indoor construction environments using fiducial markers	0.00136320	2018
$Tc_{84}A_{24}$		0.0050	ca ₁₀₃	0.0224	A ₂₄	0.0224	Construction equipment collision-free path planning using robotic approach	0.00024976	2018
Tc84A33		0.0050	ca ₁₀₃	0.0224	A ₃₃	0.0069	A robotic wearable exoskeleton for construction worker's safety and health	0.00007685	2018
$Tc_{84}A_{45}$		0.0050	ca ₁₀₃	0.0224	A ₄₅	0.0241	Identification of usage scenarios for robotic exoskeletons in the context of the hong kong construction industry	0.00026897	2018

Tc ₁₄₂ A ₄₆	S ₁₄	0.0697	ca ₁₁₀	0.0160	A ₄₆	0.0052	Mapping and localization module in a mobile robot for insulating building crawl spaces	0.00057636	2018
Tc174A55		0.0050	ca ₁₁₃	0.0128	A ₅₅	0.0275	Study on down-cutting ladder trencher of an underwater construction robot for seabed application	0.00017565	2018
$Tc_{107}A_{32}$	S ₂₉	0.0149	ca ₁₁₈	0.0417	A ₃₂	0.0310	Slam-driven intelligent autonomous mobile robot navigation for construction applications	0.00192668	2018
Tc38A32	S39	0.2289	ca ₁₁₈	0.0417	A ₃₂	0.0310	Building an integrated mobile robotic system for real-time applications in construction	0.02954248	2018
Tc38A32	S39	0.2289	ca ₁₁₈	0.0417	A ₃₂	0.0310	Vision-based integrated mobile robotic system for real-time applications in construction	0.02954248	2018
$Tc_{233}A_{43}$	S ₆	0.0846	ca ₁₇	0.0032	A ₄₃	0.0086	Implementation of admittance control on a construction robot using load cells	0.00023329	2018
Tc ₁₇ A ₁₁	S ₂₈	0.0050	ca ₃₁	0.0160	A ₁₁	0.0551	The study on the integrated control system for curtain wall building façade cleaning robot	0.00043913	2018
$Tc_{225}A_7$	S48	0.0199	ca ₃₁	0.0160	A_7	0.0207	Modular data communication methods for a robotic excavator	0.00065870	2018
Tc45A18	S39	0.2289	C244	0.0417	A ₁₈	0.0069	Large-scale 3d printing by a team of mobile robots	0.00656499	2018
$Tc_{50}A_{18}$	S48	0.0199	Ca44	0.0417	A ₁₈	0.0069	Map - a mobile agile printer robot for on-site construction	0.00057087	2018
Tc ₁₇₈ A ₅₅	S ₆	0.0846	ca ₅	0.0160	A ₅₅	0.0275	Active control strategy for trenching work of track-based underwater construction robot	0.00373261	2018
Tc ₁₀₃ A ₃₂	S ₁₀₉	0.0199	ca73	0.1282	A ₃₂	0.0310	The autonomous vehicle celina as educational platform on final works in computer science	0.00790434	2018
$Tc_{150}A_{50}$	S ₁₄₆	0.0050	ca ₇₃	0.1282	A ₅₀	0.0516	Real-time simulation of construction workers using combined human body and hand tracking for robotic construction worker system	0.00329348	2018
Tc ₁₂₇ A ₃₉	S ₁₅₈	0.0050	ca ₇₃	0.1282	A ₃₉	0.0017	Multimodal trip hazard affordance detection on construction sites	0.00010978	2018
Tc32A51	S39	0.2289	ca ₇₃	0.1282	A ₅₁	0.0052	Stacked hourglass networks for markerless pose estimation of articulated construction robots	0.01514999	2018
Tc32A59	S39	0.2289	ca ₇₃	0.1282	A ₅₉	0.0069	Industrial robot control with object recognition based on deep learning	0.02019998	2018

Tc32A6	S39	0.2289	Ca73	0.1282	A_6	0.0723	Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks		2018
Tc76A36		0.0050	ca ₇₃	0.1282	A ₃₆	0.0086	Synthesis of the ac and dc drives fault diagnosis method for the cyber-physical systems of building robots	0.00054891	2018
Tc76A36		0.0050	ca ₇₃	0.1282	A ₃₆	0.0086	A cyber-physical system of diagnosing electric drives of building robots	0.00054891	2018
Tc73A22	S ₁₄	0.0697	ca ₇₅	0.0545	A ₂₂	0.0534	Concept studies of automated construction using cable-driven parallel robots	0.02024939	2018
Tc37A13	S29	0.0149	c a ₇₅	0.0545	A ₁₃	0.0034	Design of robot based work progress monitoring system for the building construction site	0.00027995	2018
$Tc_{21}A_{15}$		0.0050	ca ₇₅	0.0545	A_{15}	0.0086	Bim plus robot creates a new era of building construction	0.00023329	2018
Tc21A15		0.0050	Ca ₇₅	0.0545	A ₁₅	0.0086	Uav-enabled site-to-bim automation: aerial robotic- and computer vision-based development of as-built/as-is bims and quality control	0.00023329	2018
Tc21A63		0.0050	c a ₇₅	0.0545	A ₆₃	0.0086	Perspectives on a bim-integrated software platform for robotic construction through contour crafting	0.00023329	2018
Tc ₂₁ A ₉		0.0050	ca ₇₅	0.0545	A_9	0.0069	Information modeling of an underground laboratory for the r&d of mining automation and tunnel construction robotics	0.00018663	2018
Tc198A55	S 6	0.0846	ca ₇₉	0.0256	A_{55}	0.0275	Dynamics modeling and structural analysis of underwater construction robot	0.00597217	2018
$Tc_{12}A_{43}$	S ₁₂₉	0.0100	ca ₈₂	0.0192	A_{43}	0.0086	Workpiece modeling for adaptive robotized construction work	0.00016467	2018
Tc ₁₂ A ₄₃	S ₁₂₉	0.0100	ca ₈₂	0.0192	A_{43}	0.0086	Adaptive perception and modeling for robotized construction joint filling	0.00016467	2018
Tc69A22		0.0050	ca ₈₂	0.0192	A ₂₂	0.0534	Enhancing perceived safety in human-robot collaborative construction using immersive virtual environments	0.00051049	2018
Tc ₂₀₃ A ₅₆	S39	0.2289	ca ₈₆	0.0385	A ₅₆	0.0688	Teleoperated construction robot using visual support with drones	0.06059995	2018
$Tc_{86}A_{34}$		0.0050	ca ₈₆	0.0385	A ₃₄	0.0413	Foam custom single task construction robot	0.00079043	2018
Tc173A55	S 6	0.0846	ca ₉	0.0064	A ₅₅	0.0275	A propulsion performance test of underwater construction robot light work rov uri-l in circulation water channel	0.00149304	2018

							Construction and usage of three-dimensional data for road		
$Tc_{212}A_6$	S54	0.1393	ca ₁₀₆	0.0032	A_6	0.0723	structures using terrestrial laser scanning and uav with photo		2019
							grammetry		
Tc131A36	S39	0.2289	Ca ₁₁₀	0.0160	A ₃₆	0.0086	Framework for automated registration of uav and ugv point	0.00315625	2019
101512 150	039	0.2207	Ca110	0.0100	2 1 30	0.0000	clouds using local features in images		2017
Tc_9A_{11}	S29	0.0149	ca ₁₁₈	0.0417	A_{11}	0.0551	Monocular vision-based parameter estimation for mobile	0.00342521	2019
							robotic painting		
$Tc_{123}A_{24}$	S48	0.0199	ca ₁₁₈	0.0417	A_{24}	0.0224	Implementation of an augmented reality ar workflow for human robot collaboration in timber prefabrication	0.00185532	2019
							An occupancy grid mapping enhanced visual slam for real-time		
$Tc_{108}A_{24}$	S54	0.1393	ca ₁₁₈	0.0417	A_{24}	0.0224	locating applications in indoor gps-denied environments	0.01298727	2019
							Collaborative welding system using bim for robotic		
$Tc_{139}A_{54}$	S ₁₉	0.0100	Ca ₂₂	0.0064	A_{54}	0.0379	reprogramming and spatial augmented reality	0.00024152	2019
Tc133A33	S39	0.2289	ca ₂₂	0.0064	A ₃₃	0.0069	Towards mobile projective ar for construction co-robots	0.00101000	2019
Tc159A54		0.0050		0.0032	A ₅₄	0.0379	Construction of the remote welding system based on power	0.00006038	2019
1 61592-154		0.0030	Ca ₂₃	0.0032	A54	0.0379	line communication		2019
$Tc_{14}A_{11}$	S ₃₁	0.0050	Ca ₃₄	0.0032	A_{11}	0.0551	Man-machine cooperation of building robot based on	0.00008783	2019
10/42 1//	531	0.0030	Cu34	0.0032	2.11	0.0331	interactive force information		2017
$T_{c_{44}}A_{11}$		0.0050	Ca44	0.0417	A_{11}	0.0551	3d printing for construction based on a complex wall of	0.00114174	2019
., .,			, ,				polymer-foam and concrete		
$Tc_{44}A_{18}$		0.0050	Ca44	0.0417	A_{18}	0.0069	Large-scale digital concrete construction – conprint3d concept	0.00014272	2019
$Tc_{60}A_2$	0	0.0697	20	0.0128	A_2	0.0086	for on-site, monolithic 3d-printing Measuring and positioning system design of robotic floor-tiling	0.00076848	2019
1 6002-12	S14	0.0097	C246	0.0126	Λ_2	0.0000	Tip localization analysis for mobile manipulator in	0.00070040	2019
$T c_{60} A_{29}$	S ₁₄	0.0697	Ca46	0.0128	A_{29}	0.0310	construction field	0.00276652	2019
							Soft additive fabrication processes: material indeterminacy in		
$Tc_{90}A_{29}$	S39	0.2289	ca ₅₈	0.0032	A_{29}	0.0310	3d printing	0.00227250	2019
T. 1		0.2200		0.0022	۸	0.0310	Vision-based obstacle removal system for autonomous ground	0.00227250	2010
$Tc_{102}A_{32}$	S39	0.2289	ca ₆₆	0.0032	A_{32}	0.0310	vehicles using a robotic arm	0.00227230	2019
Tc32A15	S39	0.2289	Ca73	0.1282	A ₁₅	0.0086	Computer vision for real-time extrusion quality monitoring and	0.02524998	2019
1 0322 113	339	0.2207	Ca/5	0.1202	1113	0.0000	control in robotic construction	0.0232 1 770	2017

Tc32A32	S39	0.2289	Ca73	0.1282	A ₃₂	0.0310	Real-time scene segmentation using a light deep neural network architecture for autonomous robot navigation on construction sites	0.09089993	2019
Tc32A32	S39	0.2289	Ca ₇₃	0.1282	A ₃₂	0.0310	Lnsnet: lightweight navigable space segmentation for autonomous robots on construction sites	0.09089993	2019
Tc32A50	S39	0.2289	ca ₇₃	0.1282	A_{50}	0.0516	Vision-based estimation of excavator manipulator pose for automated grading control	0.15149988	2019
Tc32A51	S ₃₉	0.2289	ca ₇₃	0.1282	A ₅₁	0.0052	A vision-based marker-less pose estimation system for articulated construction robots	0.01514999	2019
Tc4A50	S 6	0.0846	c a ₇₃	0.1282	A ₅₀	0.0516	Analytical design of an underwater construction robot on the slope with an up-cutting mode operation of a cutter bar	0.05598909	2019
Tc ₇₆ A ₂₂		0.0050	ca ₇₃	0.1282	A ₂₂	0.0534	Automated brick pattern generator for robotic assembly using machine learning and images	0.00340326	2019
Tc76A28		0.0050	ca ₇₃	0.1282	A ₂₈	0.0189	Teaching robots to perform construction tasks via learning from demonstration	0.00120761	2019
Tc76A33		0.0050	c a ₇₃	0.1282	A ₃₃	0.0069	Semantic relation detection between construction entities to support safe human-robot collaboration in construction	0.00043913	2019
Tc76A36		0.0050	ca ₇₃	0.1282	A ₃₆	0.0086	Formulation of the optimization problem of the cyber-physical diagnosis system configuration level for construction mobile robots	0.00054891	2019
Tc206A58	S ₁₉	0.0100	c a ₇₅	0.0545	A ₅₈	0.0069	Automatical acquisition of point clouds of construction sites and its application in autonomous interior finishing robot	0.00037326	2019
Tc92A30	S54	0.1393	c a ₇₅	0.0545	A ₃₀	0.0103	Robotic construction & prototyping of a 3d-printed mars surface habitat	0.00783847	2019
Tc92A38	S ₅₄	0.1393	ca ₇₅	0.0545	A ₃₈	0.0155	An automated system for projection of interior construction layouts	0.01175771	2019
Tc ₂₁ A ₃₇		0.0050	ca ₇₅	0.0545	A ₃₇	0.0155	Game simulation to support construction automation in modular construction using bim and robotics technology-stage i	0.00041992	2019
Tc ₁₉₃ A ₅₆	S ₁₄₀	0.0050	c a ₇₇	0.0032	A ₅₆	0.0688	Flexible virtual fixtures for human-excavator cooperative system	0.00010978	2019

Tc ₁₆₃ A ₅₀	S ₈₄	0.0149	ca ₇₉	0.0256	A_{50}	0.0516	Youwasps: towards autonomous multi-robot mobile deposition for construction	0.00197609	2019
Tc69A43	S54	0.1393	ca ₈₂	0.0192	A_{43}	0.0086	Planning and execution for geometrically adaptive bim-driven robotized construction processes	0.00230543	2019
Tc ₆₉ A ₄₃	S ₅₄	0.1393	ca ₈₂	0.0192	A_{43}	0.0086	Autonomous motion planning and task execution in geometrically adaptive robotized construction work	0.00230543	2019
$Tc_{235}A_{50}$		0.0050	ca ₈₃	0.0032	A_{50}	0.0516	Dynamic analysis of high precision construction cable-driven parallel robots	0.00008234	2019
Tc146A5	S84	0.0149	Ca ₈₅	0.0064	A_5	0.0120	Development of an earthmoving machinery autonomous excavator development platform	0.00011527	2019
Tc ₁₄₆ A ₅	S ₈₄	0.0149	ca ₈₅	0.0064	A_5	0.0120	Robotic autonomous systems for earthmoving in military applications	0.00011527	2019
$Tc_{86}A_{16}$		0.0050	ca ₈₆	0.0385	A ₁₆	0.0189	Determinants of adoption of robotics in precast concrete production for buildings	0.00036228	2019
Tc8A10	S 6	0.0846	ca ₈₉	0.0096	A_{10}	0.0138	Trajectory adaptation for an impedance controlled cooperative robot according to an operator's force	0.00111978	2019
Tc ₂₀₈ A ₅₉	S ₅₄	0.1393	ca ₁₁₀	0.0160	A_{59}	0.0069	An autonomous robotic platform for automatic extraction of detailed semantic models of buildings	0.00153696	2020
$Tc_{213}A_6$	S79	0.0100	ca ₁₁₀	0.0160	A_6	0.0723	Lidar-equipped uav path planning considering potential locations of defects for bridge inspection	0.00113272	2020
$Tc_{101}A_{32}$	S ₁₄₄	0.0149	ca ₁₁₈	0.0417	A_{32}	0.0310	An integrated ugv-uav system for construction site data collection	0.00192668	2020
Tc ₁₀₁ A ₄₅	S ₁₄₄	0.0149	ca ₁₁₈	0.0417	A_{45}	0.0241	Construction of slam algorithm for window cleaning robot moving along window frame	0.00149855	2020
Tc38A46	S 39	0.2289	ca ₁₁₈	0.0417	A ₄₆	0.0052	A scene-adaptive descriptor for visual slam-based locating applications in built environments	0.00492375	2020
Tc123A11	S 48	0.0199	ca ₁₁₈	0.0417	A ₁₁	0.0551	Cooperative aerial-ground multi-robot system for automated construction tasks (wall)	0.00456695	2020
Tc36A12	S 79	0.0100	ca ₁₁₈	0.0417	A_{12}	0.0241	Automated defect quantification in concrete bridges using robotics and deep learning (bridge)	0.00099902	2020
Tc39A14		0.0050	ca ₁₁₈	0.0417	A_{14}	0.0138	Development of construction robots using crazyflie	0.00028543	2020

Tc16A11		0.0050	ca ₃₂	0.0096	A ₁₁	0.0551	Robotic 3d clay printing of prefabricated non-conventional wall components based on a parametric-integrated design	0.00020348	2020
Tc46A16	S144	0.0149	C244	0.0417	A ₁₆	0.0189	Inspecting manufacturing precision of 3d printed concrete parts based on geometric dimensioning and tolerancing	0.00117742	2020
Tc44A16		0.0050	Ca ₄₄	0.0417	A ₁₆	0.0189	Automation in the construction of a 3d-printed concrete wall with the use of a lintel gripper	0.00039247	2020
$Tc_{44}A_{22}$		0.0050	ca ₄₄	0.0417	A_{22}	0.0534	Bricklaying robot moving algorithms at a construction site	0.00110606	2020
Tc44A22		0.0050	C244	0.0417	A ₂₂	0.0534	Additive manufacturing of cantilever - from masonry to concrete 3d printing	0.00110606	2020
$Tc_{33}A_{24}$		0.0050	Ca49	0.0160	A_{24}	0.0224	Generalized task allocation and route planning for robots with multiple depots in indoor building environments	0.00017840	2020
$Tc_{85}A_{50}$		0.0050	ca ₅₀	0.0064	A_{50}	0.0516	The problem of manipulation and angular orientation of gripping devices of construction robots	0.00016467	2020
Tc129A41	S54	0.1393	Ca ₆₄	0.0064	A_{41}	0.0138	Optimization of grasping efficiency of a robot used for sorting construction and demolition waste	0.00122956	2020
Tc ₁₁₆ A ₃₄		0.0050	ca ₇₀	0.0096	A ₃₄	0.0413	Generic design aided robotically facade pick and place in construction site dataset	0.00019761	2020
Tc188A56	S139	0.0100	Ca73	0.1282	A ₅₆	0.0688	A general approach for automating teleoperated construction machines	0.00878260	2020
Tc ₁₈₈ A ₅₆	S ₁₃₉	0.0100	Ca73	0.1282	A ₅₆	0.0688	Direct-visual-operation support system for unmanned construction	0.00878260	2020
Tc ₁₅₃ A ₅₀	S ₁₈	0.0100	ca ₇₃	0.1282	A_{50}	0.0516	Robot construction simulation using deep reinforcement learning+b21b4:b22b6b4:b20b4:b24bb4:b20	0.00658695	2020
Tc32A12	S 39	0.2289	c a ₇₃	0.1282	A_{12}	0.0241	Measurement for cracks at the bottom of bridges based on tethered creeping unmanned aerial vehicle	0.07069994	2020
Tc32A24	S 39	0.2289	ca ₇₃	0.1282	A ₂₄	0.0224	Proximity prediction of mobile objects to prevent contact- driven accidents in co-robotic construction	0.06564995	2020
Tc32A37	S 39	0.2289	ca ₇₃	0.1282	A ₃₇	0.0155	Augmented drawn construction symbols: a method for ad hoc robotic fabrication	0.04344990	2020
Tc130A28	S54	0.1393	ca ₇₃	0.1282	A ₂₈	0.0189	Teaching robots to perform quasi-repetitive construction tasks through human demonstration	0.03381302	2020

$Tc_{130}A_{41}$	S ₅₄	0.1393	ca ₇₃	0.1282	A ₄₁	0.0138	Deep learning of grasping detection for a robot used in sorting construction and demolition waste	0.02459129	2020
Tc ₁₃₀ A ₄₁	S ₅₄	0.1393	ca ₇₃	0.1282	A ₄₁	0.0138	Vision-based robotic system for on-site construction and demolition waste sorting and recycling	0.02459129	2020
Tc75A16		0.0050	ca ₇₃	0.1282	A_{16}	0.0189	Structural stay-in-place formwork for robotic in situ fabrication of non-standard concrete structures: a real scale architectural demonstrator	0.00120761	2020
Tc76A24		0.0050	c a ₇₃	0.1282	A ₂₄	0.0224	Complete coverage path planning using reinforcement learning for tetromino based cleaning and maintenance robot	0.00142717	2020
Tc76A29		0.0050	ca ₇₃	0.1282	A ₂₉	0.0310	What lies beneath: material classification for autonomous excavators using proprioceptive force sensing and machine learning	0.00197609	2020
Tc33A8		0.0050	c a ₇₃	0.1282	A_8	0.0293	Agent based modeling to optimize workflow of robotic steel and concrete 3d printers	0.00186630	2020
Tc ₁₄₃ A ₄₈	S ₁₇	0.0050	ca ₇₅	0.0545	A_{48}	0.0034	Combining the robot operating system with building information modeling for robotic applications in construction logistics	0.00009332	2020
Tc ₇₄ A ₂₂	S ₃₉	0.2289	ca ₇₅	0.0545	A ₂₂	0.0534	Bim-based task-level planning for robotic brick assembly through image-based 3d modeling	0.06653370	2020
$Tc_{227}A_{16}$		0.0050	Ca ₉₃	0.0032	A ₁₆	0.0189	Bond properties of reinforcing bar penetrations in 3d concrete printing	0.00003019	2020
Tc ₆₅ A ₂₁	S ₈₀	0.0050	Ca ₉₅	0.0096	A ₂₁	0.0172	Sampling robot for primary circuit pipelines of decommissioned nuclear facilities	0.00008234	2020
Tc52A19	S39	0.2289	ca ₁₁₇	0.0032	A ₁₉	0.0138	Construction of land base station for uav maintenance automation	0.00101000	2021
Tc63A16	S 39	0.2289	Ca ₃₉	0.0032	A ₁₆	0.0189	Robotic spray coating of self-sensing metakaolin geopolymer for concrete monitoring	0.00138875	2021

• occurrence probability of ThA_i related papers

Term				Subcateg	ory lal	bels			D (id-)	Probability	Publication
labels	a_i	P	hd_i	P	bc_i	P	A_i	P	Papers (title)	(%)	years
Th ₁₅₈ A ₅₅	a ₆	0.0807	hd ₅₂	0.0441	hc ₄	0.0041	A ₅₅	0.0275	Development of a survey and inspection robot system for underwater construction works	0.000040	1974
Th ₉ A ₁₁	a_4	0.0311	hd ₁₅	0.0132	hc ₂	0.6585	A ₁₁	0.0551	Blockbot: a robot to automate construction of cement block walls	0.001489	1988
$Th_{25}A_{54}$		0.5776	hd ₆₇	0.0573	hc_2	0.6585	A_{54}	0.0379	Using robots in the tubular structural constructions	0.082490	1988
Th157.A50		0.5776	hd_{52}	0.0441	hc ₃	0.1707	A_{50}	0.0516	A concept of control system for construction robot	0.022433	1989
Th35A21	a ₂	0.2236	hd ₂	0.1278	hc ₆	0.0407	A ₂₁	0.0172	Pipe manipulator enhancements for increased automation	0.001999	1989
Th141A7	a ₄	0.0311	hd ₁₂	0.0573	hc ₆	0.0407	A_7	0.0207	A master-slave manipulator for excavation and construction tasks	0.000149	1989
Th35A7	a_2	0.2236	hd ₂	0.1278	hc ₆	0.0407	A_7	0.0207	Robots and automated systems for the civil and construction industries	0.002398	1990
$Th_{62}A_7$	a_2	0.2236	hd ₂	0.1278	hc ₁	0.1260	A_7	0.0207	Air-force construction automation robotics	0.007435	1992
$Th_{156}A_6$	a_3	0.5776	hd_{12}	0.0573	hc_1	0.1260	A_6	0.0723	A remotely operated building inspection cell	0.030135	1992
Th123A31	a_2	0.2236	hd_{52}	0.0441	hc_2	0.6585	A_{31}	0.0069	Automation of concrete slab-on-grade construction	0.004466	1992
Th ₆₁ A ₂₉	a_5	0.0373	hd ₂₇	0.0132	hc ₂	0.6585	A_{29}	0.0310	Robotic materials handling for automated building construction technology	0.001005	1992
Th157.A47		0.5776	hd ₅₂	0.0441	hc ₃	0.1707	A ₄₇	0.0034	Outpost service and construction robot (oscr)	0.001496	1992
$Th_{36}A_{7}$	a ₃	0.5776	hd ₁₂	0.0573	hc ₆	0.0407	A_7	0.0207	Object-oriented programming in robotics research for excavation	0.002777	1992
$Th_{33}A_{20}$	a ₃	0.5776	hd_{21}	0.0044	hc ₂	0.6585	A_{20}	0.0138	Full-scale building with interior finishing robot	0.002307	1993
$Th_{39}A_{22}$	a_3	0.5776	hd_{55}	0.0044	hc_2	0.6585	A_{22}	0.0534	Prototype robotic masonry system	0.008941	1993
Th ₁₄₂ A ₇	a ₄	0.0311	hd ₁₂	0.0573	hc ₂	0.6585	A_7	0.0207	Artificial intelligence in the control and operation of construction plant-the autonomous robot excavator	0.002419	1993
Th126A6	a ₅	0.0373	hd ₂	0.1278	hc ₂	0.6585	A_6	0.0723	Articulated multi-vehicle robot for inspection and testing of pipeline interiors =	0.022665	1993
Th36A21	a ₃	0.5776	hd_{12}	0.0573	hc ₆	0.0407	A_{21}	0.0172	Automation potential of pipe laying operations	0.002315	1993
$Th_{151}A_{21}$		0.5776	hd_{52}	0.0441	hc_1	0.1260	A_{21}	0.0172	Air force construction automation/robotics	0.005519	1994

Th40A22	a_2	0.2236	hd ₅₆	0.0088	hc ₂	0.6585	A_{22}	0.0534	Mobile robot for on-site construction of masonry	0.006922	1994
$Th_{40}A_{22}$	a_2	0.2236	hd_{56}	0.0088	hc_2	0.6585	A_{22}	0.0534	A mobile robot for on-site construction of masonry	0.006922	1994
Th19A22	a_2	0.2236	hd ₂	0.1278	hc ₂	0.6585	A ₂₂	0.0534	Application specific realisation of a mobile robot for on-site construction of masonry	0.100372	1994
$Th_{98}A_6$	a_3	0.5776	hd ₁₉	0.0132	hc ₂	0.6585	A_6	0.0723	A robotic manipulator for inspection and maintenance of tall structures	0.036342	1994
Th13A29	a ₃	0.5776	hd ₇	0.0529	hc ₂	0.6585	A ₂₉	0.0310	Modularity of prm type cartesian robots and their application in the production of construction materials	0.062300	1994
Th60A34	a ₃	0.5776	hd ₁₂	0.0573	hc ₂	0.6585	A ₃₄	0.0413	Robotics and automation in the construction of the sliding domes of king fahd's extension of the prophet's holy mosque in madinah, kingdom of saudi arabia	0.089989	1994
$Th_{22}A_{58}$	a_3	0.5776	hd ₃₂	0.0793	hc ₂	0.6585	A_{58}	0.0069	Robot for interior-finishing works in building: feasibility analysis	0.020767	1994
Th ₂₅ A ₅₃		0.5776	hd ₆₇	0.0573	hc ₂	0.6585	A_{53}	0.0069	Requirements for application of robotics and automation in highway maintenance and construction tasks	0.014998	1994
$Th_{23}A_{24}$		0.5776	hd ₃₂	0.0793	hc ₂	0.6585	A ₂₄	0.0224	Construction process simulation with rule-based robot path planning	0.067492	1994
Th ₁₂₄ A ₅₉	a_2	0.2236	hd_{12}	0.0573	hc ₂	0.6585	A_{59}	0.0069	First results in autonomous retrieval of buried objects	0.005806	1995
$Th_{10}A_{11}$	a_3	0.5776	hd_{16}	0.0132	hc_2	0.6585	A_{11}	0.0551	High tractive power wall-climbing robot	0.027689	1995
$Th_{34}A_{20}$	a_3	0.5776	hd ₃₂	0.0793	hc ₂	0.6585	A_{20}	0.0138	Conceptual design of a flooring robot: development methodology and results	0.041533	1995
Th49A34		0.5776	hd_{36}	0.0220	hc ₂	0.6585	A_{34}	0.0413	Automatic assembly of a commercial cavity block system	0.034611	1995
Th25A54		0.5776	hd ₆₇	0.0573	hc ₂	0.6585	A ₅₄	0.0379	New tig arc welding processes and welding robot for construction of storage tank	0.082490	1995
Th ₂₅ A ₅₄		0.5776	hd ₆₇	0.0573	hc ₂	0.6585	A ₅₄	0.0379	Development of welding robot technology for civil engineering and construction	0.082490	1995
Th ₂₈ A ₁₁		0.5776		0.1278	hc ₂	0.6585	A ₁₁	0.0551	Wall assembly robot - its development and its integration in construction management mauerwerksroboter - entwicklung und integration in die ausfuehrungs-planung	0.267660	1995
Th ₈₈ A ₄₄	a ₃	0.5776	hd ₂	0.1278	hc ₆	0.0407	A ₄₄	0.0155	Task planning experiment toward an autonomous robot system for the construction of overhead distribution lines	0.004647	1995

Th_1A_1 a2 0.2236 hd ₂ 0.0793 hc ₂ 0.6885 Λ ₁ 0.0189 Evolution of an automated crack scaler: a study in construction 0.022106 1996 $Tb_{32}A_{32}$ a3 0.5776 hd ₁₅ 0.0132 hc ₂ 0.6885 Λ ₂₈ 0.0189 Development of a construction robot for marking on ceiling boards 0.009518 1996 $Tb_{12}A_{12}$ a3 0.5776 hd ₆ 0.0230 hc ₂ 0.6885 Λ ₂ 0.0723 Automatic task modelling for sewer studies 0.060570 1996 $Tb_{12}A_{12}$ a3 0.5776 hd ₆ 0.0573 hc ₂ 0.6585 Λ ₂ 0.0379 Compact are welding robot system for huge construction parts 0.082490 1996 $Tb_{22}A_{17}$ 0.5776 hd ₆ 0.1278 hc ₂ 0.6585 Λ ₁ 0.0103 Development of automated cleaning system for construction parts 0.02910 1996 $Tb_{22}A_{17}$ a3 0.5776 hd ₆ 0.0244 hc ₂ 0.6585 Λ ₁ 0.0516 Control of construction ma										Exclusion of an automated analy coolem a study in		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Th_1A_1	a_2	0.2236	hd_{32}	0.0793	hc_2	0.6585	A_1	0.0189		0.022106	1996
$Th_{IL}A_{22}$ as 0.0373 hd ₁₂ 0.0573 hc2 0.6585 A_{22} 0.0344 Methods of control for robotic brick masonry 0.007499 1996 $Th_{25}A_{17}$ 0.5776 hd ₆₇ 0.0573 hc2 0.6585 A_{34} 0.0379 Compact are welding robot system for huge construction parts 0.082490 1996 $Th_{26}A_{17}$ 0.5776 hd ₅₀ 0.1278 hc2 0.6585 A_{47} 0.0103 Development of automated cleaning system for construction aluminum scaffolding boards 0.05186 1996 $Th_{10}A_{10}$ a3 0.5776 hd ₁₀ 0.0441 hc3 0.1707 A_{50} 0.0516 Control of construction robots using camera-space manipulation 0.022433 1996 $Th_{10}A_{11}$ a3 0.5776 hd ₁₇ 0.0444 hc3 0.1707 A_{8} 0.0293 Construction manipulators of steel towers for the transmission of wall slits in masonry 0.036865 1997 $Th_{26}A_{17}$ a2 0.2236 hd ₂ 0.1278 hc3 0.1707 A_{8} 0.0293<	Th59A28	a ₃	0.5776	hd ₁₅	0.0132	hc ₂	0.6585	A ₂₈	0.0189		0.009518	1996
$Tb_{23}A_{54}$ 0.5776 hd_{c7} 0.0573 hc_2 0.6585 A_{54} 0.0379 Compact arc welding robot system for huge construction parts 0.082490 1996 $Tb_{23}A_{17}$ 0.5776 0.1278 hc_2 0.6585 A_{17} 0.0103 Development of automated cleaning system for construction aluminum scaffolding boards 0.05186 1996 $Tb_{64}A_{50}$ 0.5776 hd_{30} 0.0441 hc_3 0.1707 A_{50} 0.0516 Control of construction robots using camera-space mainpulation 0.02433 1996 $Tb_{11}A_{11}$ a3 0.5776 hd_{17} 0.0444 hc_2 0.6585 A_{11} 0.0551 Control of construction robots using camera-space mainpulation 0.022433 1996 $Tb_{11}A_{11}$ a3 0.5776 hd_2 0.1278 hc_2 0.6585 A_{11} 0.0551 Control of construction robots using camera-space mainpulation 0.009230 1997 $Tb_{12}A_{11}$ a3 0.5776 hd_2 0.1278 hc_2 0.1260 A_{22} 0.0203 Const	$Th_{127}A_6$	a_3	0.5776	hd_{36}	0.0220	hc ₂	0.6585	A_6	0.0723	Automatic task modelling for sewer studies	0.060570	1996
$Tb_{28}A_{17}$ 0.5776 0.1278 hc2 0.6585 A_{17} 0.0103 Development of automated cleaning system for construction aluminum scaffolding boards 0.050186 1996 $Tb_{64}A_{59}$ 0.5776 hd30 0.0441 hc3 0.1707 A_{30} 0.0516 Control of construction robots using camera-space manipulation 0.02433 1996 $Tb_{11}A_{11}$ as 0.5776 hd47 0.0044 hc2 0.6585 A_{11} 0.0551 Concept of a robot for interior building trades by the example of wall slis in masonry 0.00230 1997 $Tb_{12}A_{11}$ as 0.5776 hd2 0.1278 hc3 0.1707 A_{8} 0.0293 Construction manipulators of steel towers for the transmission of electricity 0.036865 1997 $Tb_{62}A_{29}$ a2 0.2236 hd2 0.1278 hc1 0.1260 A_{29} 0.0310 Development of the construction methods for distribution line materials using a robot system remotely controlled from the ground 0.01152 1998 $Tb_{12}A_{17}$ a2 0.2236 hd37 0.0573 hc2	Th41A22	a ₅	0.0373	hd ₁₂	0.0573	hc ₂	0.6585	A_{22}	0.0534	Methods of control for robotic brick masonry	0.007499	1996
$Th_{28}A17$ 0.5776 0.1278 hc_2 0.688 A_{17} 0.0103 aluminum scaffolding boards 0.050186 1996 $Th_{64}A_{50}$ 0.5776 hd_{30} 0.0441 hc_3 0.1707 A_{50} 0.0516 Control of construction robots using camera-space mainpulation 0.022433 1996 $Th_{11}A_{11}$ a_3 0.5776 hd_{17} 0.0044 hc_2 0.6585 A_{11} 0.0551 Concept of a robot for interior building trades by the example of wall slits in masonry 0.009230 1997 Th_{8A} a_3 0.5776 hd_2 0.1278 hc_3 0.1707 A_8 0.0293 Construction manipulators of steel towers for the transmission of electricity 0.036865 1997 Th_{22}	Th25A54		0.5776	hd ₆₇	0.0573	hc ₂	0.6585	A_{54}	0.0379	Compact arc welding robot system for huge construction parts	0.082490	1996
$Ib_{64}A_{50}$ 0.57/6 ha_{30} 0.0441 hc_3 0.1707 A_{50} 0.0516 manipulation Concept of a robot for interior building trades by the example of wall slits in masonry 0.00223 1997 $Ib_{11}A_{11}$ a3 0.5776 hd_2 0.1278 hc_3 0.1707 A_8 0.0293 Construction manipulators of steel towers for the transmission of electricity 0.036865 1997 $Ib_{62}A_{29}$ a2 0.2236 hd_2 0.1278 hc_1 0.1260 A_{29} 0.0310 Development of the construction methods for distribution line materials using a robot system remotely controlled from the ground 0.01152 1998 $Ib_{24}A_{17}$ a2 0.2236 hd_{67} 0.0573 hc_2 0.6585 A_{17} 0.0103 Development of automated construction system for high-rise reinforced concrete buildings 0.008709 1998 $Ib_{10}A_{41}$ a3 0.5776 hd_{67} 0.0529 hc_2 0.6585 A_{34} 0.0293 Robotic assembly of rebar cages for beams and columns 0.058839 1998 $Ib_{10}A_{41}$ a3	Th ₂₈ A ₁₇		0.5776		0.1278	hc ₂	0.6585	A ₁₇	0.0103		0.050186	1996
$Tb_{11}A_{11}$ a_3 0.5776 hd_1 0.0044 hc_2 0.0385 A_{11} 0.0351 of wall slits in masonry 0.009250 1997 Tb_{8A} a_3 0.5776 hd_2 0.1278 hc_3 0.1707 A_8 0.0293 Construction manipulators of steel towers for the transmission of electricity 0.036865 1997 $Tb_{62}A_{29}$ a_2 0.2236 hd_2 0.1260 A_{29} 0.0310 Development of the construction methods for distribution line materials using a robot system remotely controlled from the ground 0.011152 1998 $Tb_{12}A_{11}$ a_2 0.2236 hd_6 0.0573 hc_2 0.6585 A_{17} 0.0103 Development of automated construction system for high-rise reinforced concrete buildings 0.008709 1998 $Tb_{13}A_{28}$ a_3 0.5776 hd_7 0.0529 hc_2 0.6585 A_8 0.0293 Robotic welding speeds olympic stadium construction 0.082490 1998 $Tb_{15}A_{26}$ a_3 0.5776 hd_6	Th ₆₄ A ₅₀		0.5776	hd ₃₀	0.0441	hc ₃	0.1707	A_{50}	0.0516		0.022433	1996
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Th11A11	a ₃	0.5776	hd ₁₇	0.0044	hc ₂	0.6585	A ₁₁	0.0551		0.009230	1997
$Th_{62}A_{29}$ a_2 0.2236 hd_2 0.1278 hc_1 0.1260 A_{29} 0.0310 line materials using a robot system remotely controlled from the ground 0.011152 1998 $Th_{24}A_{17}$ a_2 0.2236 hd_6 0.0573 hc_2 0.6585 A_{17} 0.0103 Development of automated construction system for high-rise reinforced concrete buildings 0.008709 1998 $Th_{13}A_8$ a_3 0.5776 hd_7 0.0529 hc_2 0.6585 A_8 0.0293 Robotic assembly of rebar cages for beams and columns 0.058839 1998 $Th_{106}A_{19}$ 0.5776 hd_{12} 0.0573 hc_2 0.6585 A_5 0.0379 Robotic welding speeds olympic stadium construction 0.082490 1998 $Th_{106}A_{19}$ 0.5776 hd_{49} 0.0264 hc_6 0.0407 A_{49} 0.0017 Construction manipulators for transmission towers 0.000107 1998 $Th_{152}A_{16}$ a_3 0.5776 hd_{67} 0.0573 hc_1 0.1260 A_{56}	Th_8A_8	a_3	0.5776	hd ₂	0.1278	hc ₃	0.1707	A_8	0.0293		0.036865	1997
$ID_{24}A_{17}$ a_2 0.2230 IRG_{0} 0.0575 IRC_{0} 0.0588 A_{17} 0.0105 reinforced concrete buildings $0.008/09$ 1998 $Tb_{13}A_{8}$ a_3 0.5776 IRG_{0}	Th ₆₂ A ₂₉	a_2	0.2236	hd_2	0.1278	hc ₁	0.1260	A_{29}	0.0310	line materials using a robot system remotely controlled from the ground	0.011152	1998
$Th_{60}A_{54}$ a_3 0.5776 hd_{12} 0.0573 hc_2 0.6585 A_{54} 0.0379 Robotic welding speeds olympic stadium construction 0.082490 1998 $Th_{106}A_{49}$ 0.5776 hd_{49} 0.0264 hc_6 0.0407 A_{49} 0.0017 Construction manipulators for transmission towers 0.000107 1998 $Th_{152}A_{56}$ a_3 0.5776 hd_{67} 0.0573 hc_1 0.1260 A_{56} 0.0688 Tele-operated construction robot using virtual reality - (cg presentation of virtual robot for increasing working efficiency) 0.028700 2000 $Th_{151}A_{56}$ 0.5776 hd_{52} 0.0441 hc_1 0.1260 A_{56} 0.0688 Master-slave control for tele-operation construction robot system 0.022077 2000 $Th_{12}A_{11}$ a_2 0.2236 hd_7 0.0529 hc_2 0.6585 A_{11} 0.0551 Designing for automated construction 0.042873 2000 $Th_{19}A_{12}$ a_2 0.2236 hd_2 0.1278 hc_2 0.6585	Th24A17	a_2		hd ₆₇	0.0573	hc ₂	0.6585	A ₁₇	0.0103		0.008709	1998
$Th_{106}A_{49}$ 0.5776 hd ₄₉ 0.0264 hc ₆ 0.0407 A ₄₉ 0.0017 Construction manipulators for transmission towers 0.000107 1998 $Th_{152}A_{56}$ a ₃ 0.5776 hd ₆₇ 0.0573 hc ₁ 0.1260 A ₅₆ 0.0688 Tele-operated construction robot using virtual reality - (cg presentation of virtual robot for increasing working efficiency) 0.028700 2000 $Th_{151}A_{56}$ 0.5776 hd ₅₂ 0.0441 hc ₁ 0.1260 A ₅₆ 0.0688 Master-slave control for tele-operation construction robot system 0.022077 2000 $Th_{12}A_{11}$ a ₂ 0.2236 hd ₇ 0.0529 hc ₂ 0.6585 A ₁₁ 0.0551 Designing for automated construction 0.042873 2000 $Th_{19}A_{12}$ a ₂ 0.2236 hd ₂ 0.1278 hc ₂ 0.6585 A ₁₂ 0.0241 Development of a robotic bridge maintenance system 0.045329 2000 $Th_{96}A_{45}$ a ₃ 0.5776 hd ₃₄ 0.0044 hc ₂ 0.6585 A ₄₅ 0.0241	$Th_{13}A_{8}$	a ₃	0.5776	hd ₇	0.0529	hc ₂	0.6585	A_8	0.0293	Robotic assembly of rebar cages for beams and columns	0.058839	1998
$Th_{152}A_{56}$ a_3 0.5776 hd_{67} 0.0573 hc_1 0.1260 A_{56} 0.0688 Tele-operated construction robot using virtual reality - (cg presentation of virtual robot for increasing working efficiency) 0.028700 0.028700 0.028700 0.028700 0.028700 0.028700 0.028700 0.028700 0.028700 0.022077	$Th_{60}A_{54}$	a_3	0.5776	hd_{12}	0.0573	hc_2	0.6585	A_{54}	0.0379	Robotic welding speeds olympic stadium construction	0.082490	1998
$Th_{152}A_{56}$ a_3 0.5776 hd_{67} 0.0573 hc_1 0.1260 A_{56} 0.0688 presentation of virtual robot for increasing working efficiency) 0.028700 2000	Th106A49		0.5776	hd49	0.0264	hc ₆	0.0407	A_{49}	0.0017	Construction manipulators for transmission towers	0.000107	1998
$Th_{151}A_{56}$ 0.5776 hd ₅₂ 0.0441 hc ₁ 0.1260 A_{56} 0.0688 system 0.022077 2000 $Th_{12}A_{11}$ a ₂ 0.2236 hd ₇ 0.0529 hc ₂ 0.6585 A ₁₁ 0.0551 Designing for automated construction 0.042873 2000 $Th_{19}A_{12}$ a ₂ 0.2236 hd ₂ 0.1278 hc ₂ 0.6585 A ₁₂ 0.0241 Development of a robotic bridge maintenance system 0.045329 2000 $Th_{96}A_{45}$ a ₃ 0.5776 hd ₃₄ 0.0044 hc ₂ 0.6585 A ₄₅ 0.0241 Automated cleaning of windows on standard facades 0.004038 2000	Th ₁₅₂ A ₅₆	a ₃	0.5776	hd ₆₇	0.0573	hc ₁	0.1260	A_{56}	0.0688		0.028700	2000
$Th_{19}A_{12}$ a_2 0.2236 hd_2 0.1278 hc_2 0.6585 A_{12} 0.0241 Development of a robotic bridge maintenance system 0.045329 2000 $Th_{96}A_{45}$ a_3 0.5776 hd_{34} 0.0044 hc_2 0.6585 A_{45} 0.0241 Automated cleaning of windows on standard facades 0.004038 2000	Th151A56		0.5776	hd ₅₂	0.0441	hc ₁	0.1260	A ₅₆	0.0688	^	0.022077	2000
$Th_{96}A_{45}$ a ₃ 0.5776 hd ₃₄ 0.0044 hc ₂ 0.6585 A ₄₅ 0.0241 Automated cleaning of windows on standard facades 0.004038 2000	Th12A11	a_2	0.2236	hd ₇	0.0529	hc ₂	0.6585	A_{11}	0.0551	Designing for automated construction	0.042873	2000
	Th19A12	a_2	0.2236	hd ₂	0.1278	hc ₂	0.6585	A_{12}	0.0241	Development of a robotic bridge maintenance system	0.045329	2000
$Th_{112}A_{54}$ 0.5776 hd ₁₁ 0.0044 hc ₂ 0.6585 A ₅₄ 0.0379 Welding automation in space-frame bridge construction 0.006345 2001	$Th_{96}A_{45}$	a ₃	0.5776	hd ₃₄	0.0044	hc ₂	0.6585	$\overline{A_{45}}$	0.0241	Automated cleaning of windows on standard facades	0.004038	2000
	$\overline{Th_{112}A_{54}}$		0.5776	hd_{11}	0.0044	hc_2	0.6585	\overline{A}_{54}	0.0379	Welding automation in space-frame bridge construction	0.006345	2001

$Th_{32}A_{20}$	a_2	0.2236	hd ₁₂	0.0573	hc ₃	0.1707	A ₂₀	0.0138	Technological enhancement and creation of a computer-aided construction system for the shotcreting robot	0.003010	2001
Th85A42	a ₂	0.2236	hd ₃	0.0220	hc ₁	0.1260	A ₄₂	0.0086	Disaster restoration work for the eruption of mt usuzan using an unmanned construction system	0.000534	2002
$Th_{128}A_6$	a ₃	0.5776	hd ₇₀	0.0176	hc ₂	0.6585	A_6	0.0723	Adaptive control strategy of climbing robot for inspection applications in construction industry	0.048456	2002
Th143A7	a4	0.0311	hd ₃₃	0.0044	hc ₂	0.6585	A_7	0.0207	Robotic excavation in construction automation	0.000186	2002
Th ₁₅₂ A ₅₆	a ₃	0.5776	hd ₆₇	0.0573	hc ₁	0.1260	A_{56}	0.0688	Development of a hydraulic tele-operated construction robot using virtual reality: new master-slave control method and an evaluation of a visual feedback system	0.028700	2003
Th ₁₅₀ A ₅₆	a_2	0.2236	hd ₁	0.0088	hc ₂	0.6585	A_{56}	0.0688	A tele-operated humanoid robot drives a backhoe in the open air	0.008932	2003
Th ₁₁₃ A ₅₄	a ₃	0.5776	hd_{10}	0.0044	hc ₂	0.6585	A_{54}	0.0379	Portable robotic system for steel h-beam welding	0.006345	2003
Th ₂₈ A ₁₁		0.5776		0.1278	hc ₂	0.6585	A ₁₁	0.0551	A cleaning robot for construction out-wall with complicated curve surface	0.267660	2003
Th91A56	a_1	0.0497	hd ₆₇	0.0573	hc ₃	0.1707	A ₅₆	0.0688	A remotely controlled robot operates construction machines	0.003345	2003
$Th_{55}A_{28}$	a ₃	0.5776	hd_{36}	0.0220	hc_6	0.0407	A_{28}	0.0189	Manipulators help out with plaster panels in construction	0.000979	2003
Th ₁₁₇ A ₅₅	a_1	0.0497	hd ₂	0.1278	hc ₁	0.1260	A_{55}	0.0275	Distance measurement technology development at remotely teleoperated robotic manipulator system for underwater constructions	0.002203	2004
$Th_{60}A_{28}$	a ₃	0.5776	hd ₁₂	0.0573	hc ₂	0.6585	A_{28}	0.0189	Construction of ceiling adsorbed mobile robots platform utilizing permanent magnet inductive traction method	0.041245	2004
$Th_{26}A_8$		0.5776	hd ₄₉	0.0264	hc ₂	0.6585	A_8	0.0293	Adapting a teleoperated device for autonomous control using three-dimensional positioning sensors: experiences with the nist robocrane	0.029419	2004
Th ₁₄ A ₆₃		0.5776	hd ₇	0.0529	hc ₂	0.6585	A_{63}	0.0086	Automated construction by contour crafting - related robotics and information technologies	0.017306	2004
Th28A11		0.5776		0.1278	hc ₂	0.6585	A_{11}	0.0551	A service robot for construction industry	0.267660	2004
Th ₁₀₇ A ₅₆		0.5776		0.1278	hc ₁	0.1260	A ₅₆	0.0688	Graphical simulation of remote control construction robot based on virtual reality	0.064024	2005
$Th_{65}A_{60}$	a_1	0.0497	hd_{70}	0.0176	hc ₂	0.6585	A ₆₀	0.0086	A robotized drilling system for rocky wall consolidation	0.000496	2005

$Th_{129}A_6$	a ₃	0.5776	hd ₇₄	0.0132	hc ₂	0.6585	A_6	0.0723	Multiconfigurable inspection robots for low diameter canalizations	0.036342	2005
Th ₁₃₀ A ₆	a ₃	0.5776	hd ₇₀	0.0176	hc ₂	0.6585	A_6	0.0723	Application of robots for inspection and restoration of historical sites	0.048456	2005
Th ₂₈ A ₁₁		0.5776		0.1278	hc ₂	0.6585	A ₁₁	0.0551	The analysis of the curtain wall installation robot: based on the test in the construction site	0.267660	2005
$Th_{81}A_{40}$	a_2	0.2236	hd ₄₉	0.0264	hc ₃	0.1707	A ₄₀	0.0034	Development of a parallel typed robot with a sensorless observer for harbor construction	0.000347	2005
Th7A11	a ₅	0.0373	hd ₂₀	0.0044	hc ₃	0.1707	A ₁₁	0.0551	Development of hybrid robot for construction works with pneumatic actuator	0.000154	2005
Th ₈₄ A ₄₁	a_1	0.0497	hd ₃₀	0.0441	hc ₁	0.1260	A_{41}	0.0138	Development of a remote control system for construction machinery for rescue activities with a pneumatic robot	0.000380	2006
Th ₁₁₈ A ₅₅	a_2	0.2236	hd ₃	0.0220	hc ₁	0.1260	A_{55}	0.0275	Experiment on teleoperation of underwater backhoe with haptic information	0.001709	2006
Th94A56	a_2	0.2236		0.1278	hc ₁	0.1260	A_{56}	0.0688	A novel distributed telerobotic system for construction machines based on modules synchronization	0.024783	2006
$Th_{18}A_{11}$	a_3	0.5776	hd ₃₂	0.0793	hc ₁	0.1260	A ₁₁	0.0551	Automation of incineration plant demolition and utilization of information technology	0.031791	2006
Th ₈₆ A ₄₂		0.5776	hd ₃	0.0220	hc ₁	0.1260	A_{42}	0.0086	Examination of practical utility of remotely controlled robots in disasters	0.001380	2006
$Th_{53}A_{23}$	a_3	0.5776	hd_{66}	0.0044	hc_2	0.6585	A_{23}	0.0017	Using rescue robots to increase construction site safety	0.000288	2006
Th51A59		0.5776	hd ₃₀	0.0441	hc ₂	0.6585	A_{59}	0.0069	Massive rock handling by a breaker - graspless manipulation and object recognition	0.011537	2006
Th25A34		0.5776	hd ₆₇	0.0573	hc ₂	0.6585	A ₃₄	0.0413	Construction automation based on parts and packets unification	0.089989	2006
Th ₈ A ₁₁	a ₃	0.5776	hd ₂	0.1278	hc ₃	0.1707	A ₁₁	0.0551	A multidegree-of-freedom manipulator for curtain-wall installation	0.069393	2006
Th ₈₉ A ₄₄		0.5776		0.1278	hc ₃	0.1707	A ₄₄	0.0155	The application of the human-robot cooperative system for construction robot manipulating and installing heavy materials	0.019517	2006
$Th_{38}A_{21}$	a_2	0.2236	hd ₆₉	0.0044	hc ₁	0.1260	A ₂₁	0.0172	Control schemes for tele-robotic pipe installation	0.000214	2007
Th93A44		0.5776	hd ₂	0.1278	hc ₁	0.1260	A ₄₄	0.0155	Intuitive ocu (operator control unit) of mfr (multipurpose field robot) on construction site	0.014405	2007

Th_1A_1	a_2	0.2236	hd ₃₂	0.0793	hc ₂	0.6585	A_1	0.0189	Concrete paving productivity improvement using a multi-task autonomous robot	0.022106	2007
$Th_{80}A_6$	a ₃	0.5776	hd ₅₈	0.0308	hc ₂	0.6585	A_6	0.0723	A uav for bridge inspection: visual servoing control law with orientation limits	0.084797	2007
$Th_{16}A_{63}$	a_6	0.0807	hd_{25}	0.0308	hc ₂	0.6585	A_{63}	0.0086	Cable-suspended robotic contour crafting system	0.001411	2007
$Th_{146}A_8$		0.5776	hd_{26}	0.0176	hc_2	0.6585	A_8	0.0293	Design of a bolting robot for constructing steel structure	0.019613	2007
Th25A63		0.5776	hd ₆₇	0.0573	hc ₂	0.6585	A ₆₃	0.0086	Cable-suspended robotic contour crafting system (vol 17, pg 45, 2007)	0.018748	2007
$Th_{56}A_{28}$	a_3	0.5776	hd ₄₂	0.0088	hc ₃	0.1707	A_{28}	0.0189	Design of a ceiling glass installation robot	0.001645	2007
$Th_{63}A_{6}$	a ₃	0.5776	hd ₃₂	0.0793	hc ₃	0.1707	A_6	0.0723	Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel	0.056532	2007
Th ₈ A ₁₁	a ₃	0.5776	hd ₂	0.1278	hc ₃	0.1707	A ₁₁	0.0551	Development of the curtain wall installation robot: performance and efficiency tests at a construction site	0.069393	2007
Th ₈ A ₄₄	a ₃	0.5776	hd ₂	0.1278	hc ₃	0.1707	A ₄₄	0.0155	Mfr (multipurpose field robot) for installing construction materials	0.019517	2007
Th ₇₀ A ₃₄		0.5776	hd ₆₀	0.0088	hc ₃	0.1707	A ₃₄	0.0413	Robotic technologies for the automatic assemble of massive beams in high-rise building	0.003589	2007
Th90A44		0.5776	hd ₆₇	0.0573	hc ₃	0.1707	A ₄₄	0.0155	Human-robot cooperation control for installing heavy construction materials	0.008749	2007
Th ₁₂₂ A ₅₆	a_1	0.0497	hd ₁₂	0.0573	hc ₁	0.1260	A ₅₆	0.0688	Remote control of backhoe at construction site with a pneumatic robot system	0.002469	2008
Th95A44	a ₃	0.5776	hd ₃₂	0.0793	hc ₁	0.1260	A ₄₄	0.0155	Power assist devices for installing plaster panels in construction	0.008941	2008
Th_2A_1	a ₃	0.5776	hd_{52}	0.0441	hc ₂	0.6585	A_1	0.0189	A robotic system for road lane painting	0.031727	2008
$Th_{13}A_{8}$	a ₃	0.5776	hd ₇	0.0529	hc ₂	0.6585	A_8	0.0293	A new type of bolting robot for steel-frame structure constructions	0.058839	2008
Th ₃₇ A ₂₁	a_2	0.2236	hd ₂₅	0.0308	hc ₃	0.1707	A ₂₁	0.0172	A comparison of two innovative technologies for safe pipe installation - "pipeman" and the stewart-gough platform-based pipe manipulator	0.002026	2008
Th57A28	a ₃	0.5776	hd ₄₄	0.0088	hc ₃	0.1707	A ₂₈	0.0189	Human robot cooperative control and task planning for a glass ceiling installation robot	0.001645	2008

$Th_{139}A_{60}$	a ₃	0.5776	hd ₁₂	0.0573	hc ₃	0.1707	A ₆₀	0.0086	Autonomous drilling robot for landslide monitoring and consolidation	0.004861	2008
Th71A34		0.5776	hd ₄₅	0.0176	hc ₃	0.1707	A ₃₄	0.0413	Wearable haptic glove using micro hydraulic system for control of construction robot system with vr environment	0.007179	2008
Th ₈₉ A ₁₀		0.5776		0.1278	hc ₃	0.1707	A_{10}	0.0138	A human-robot cooperative system helps out with glass panels in construction	0.017348	2008
$Th_{144}A_8$	a_2	0.2236	hd ₆₃	0.0088	hc ₆	0.0407	A_8	0.0293	Development of automation system for steel construction based on robotic crane	0.000234	2008
Th_3A_1	a_1	0.0497	hd ₂	0.1278	hc ₂	0.6585	A_1	0.0189	Chronological development history of x-y table based pavement crack sealers and research findings for practical use in the field	0.007915	2009
$Th_{129}A_6$	a ₃	0.5776	hd ₇₄	0.0132	hc ₂	0.6585	A_6	0.0723	Design, construction, and testing of a new class of mobile robots for cave exploration	0.036342	2009
$Th_{13}A_{8}$	a_3	0.5776	hd ₇	0.0529	hc ₂	0.6585	A_8	0.0293	Experimental evaluation of a robotic bolting device in steel beam assembly	0.058839	2009
Th26A29		0.5776	hd ₄₉	0.0264	hc ₂	0.6585	A ₂₉	0.0310	Basic study of smart robotic construction lift for increasing resource lifting efficiency in high-rise building construction	0.031150	2009
$Th_{145}A_8$	a_3	0.5776	hd ₆₃	0.0088	hc ₃	0.1707	A_8	0.0293	Robotic automation system for steel beam assembly in building construction	0.002542	2009
Th92A44	a_2	0.2236	hd ₂₄	0.0088	hc ₂	0.6585	A ₄₄	0.0155	Climbing and pole line hardware installation robot for construction of distribution lines	0.002010	2010
Th50A45	a ₃	0.5776	hd ₃₆	0.0220	hc ₂	0.6585	A ₄₅	0.0241	Self-traveling robotic system for autonomous abrasive blast cleaning in double-hulled structures of ships	0.020190	2010
$Th_{66}A_{10}$	a ₃	0.5776	hd ₂₅	0.0308	hc ₂	0.6585	A ₁₀	0.0138	Implementation of a foldable 3-dof master device to a glass window panel fitting task	0.016152	2010
$Th_{14}A_8$		0.5776	hd ₇	0.0529	hc ₂	0.6585	A_8	0.0293	Mechanism and analysis of a robotic bolting device for steel beam assembly	0.058839	2010
Th ₅₄ A ₂₆	a_2	0.2236	hd ₆₁	0.0132	hc ₃	0.1707	A ₂₆	0.0052	Development of a dual robotic arm system to evaluate intelligent system for advanced construction machinery	0.000261	2010
Th ₈ A ₄₄	a ₃	0.5776	hd ₂	0.1278	hc ₃	0.1707	A ₄₄	0.0155	An improved multipurpose field robot for installing construction materials	0.019517	2010

Th ₁₁₉ A ₅₆	a_2	0.2236		0.1278	hc ₁	0.1260	A ₅₆	0.0688	Tele-operation construction robot control system with virtual reality technology	0.024783	2011
Th ₆₈ A ₃₃	a_2	0.2236	hd ₄₅	0.0176	hc_2	0.6585	A ₃₃	0.0069	Wearable robotic system using hydraulic actuator	0.001786	2011
Th ₂₀ A ₁₂	a ₃	0.5776	hd ₅₇	0.0132	hc ₂	0.6585	A ₁₂	0.0241	Field application of a robotic system on cable stays of incheon bridge for snow removal	0.012114	2011
Th ₁₀ A ₁₉	a ₃	0.5776	hd ₁₆	0.0132	hc ₂	0.6585	A ₁₉	0.0138	Development of building-façade maintenance robot with docking station based on vertical climbing mechanism	0.006922	2011
Th_4A_{20}	a_3	0.5776	hd_2	0.1278	hc_2	0.6585	A_{20}	0.0138	Robot system for removing asbestos sprayed on beams	0.066915	2011
Th97A45	a_5	0.0373	hd ₂₆	0.0176	hc ₂	0.6585	A_{45}	0.0241	An experimental study of automatic cleaning tool and robot for façade in high-rise buildings	0.001042	2011
$Th_{148}A_8$	a_6	0.0807	hd ₂₄	0.0088	hc ₂	0.6585	A_8	0.0293	Real-time nde of steel cable using elasto-magnetic sensors installed in a cable climbing robot	0.001371	2011
Th26A17		0.5776	hd ₄₉	0.0264	hc ₂	0.6585	A ₁₇	0.0103	Development of robotic-crane based automatic construction system for steel structures of high-rise buildings	0.010383	2011
Th ₂₈ A ₁₇		0.5776		0.1278	hc ₂	0.6585	A ₁₇	0.0103	Building of a sample scenario of a built-in guide type robot for external wall maintenance work of a skyscraper	0.050186	2011
Th ₂₈ A ₁₉		0.5776		0.1278	hc ₂	0.6585	A ₁₉	0.0138	Window contamination detection method for the robotic building maintenance system	0.066915	2011
$Th_{28}A_{38}$		0.5776		0.1278	hc ₂	0.6585	A_{38}	0.0155	Development of high accuracy position making system applying mark robot in construction site	0.075279	2011
$Th_{153}A_6$	a_3	0.5776	hd ₂	0.1278	hc ₃	0.1707	A_6	0.0723	Robot-aided tunnel inspection and maintenance system by vision and proximity sensor integration	0.091079	2011
Th ₈₂ A ₄₁	a_2	0.2236	hd ₆₁	0.0132	hc ₆	0.0407	A_{41}	0.0138	Development of double arm working machine for demolition and scrap processing	0.000165	2011
$Th_{115}A_{55}$	a_3	0.5776	hd_4	0.0044	hc_2	0.6585	A_{55}	0.0275	A robotic system for underwater eco-sustainable wire-cutting	0.004615	2012
$Th_{27}A_{28}$	a ₃	0.5776	hd ₄₆	0.0088	hc ₂	0.6585	A ₂₈	0.0189	Autonomous construction of a roofed structure: synthesizing planning and stigmergy on a mobile robot	0.006345	2012
Th129A6	a ₃	0.5776	hd ₇₄	0.0132	hc ₂	0.6585	A_6	0.0723	Hete+a184:h184rogeneous multi-configurable chained microrobot for the exploration of small cavities	0.036342	2012
$Th_{22}A_6$	a_3	0.5776	hd ₃₂	0.0793	hc ₂	0.6585	A_6	0.0723	Design and construction of an in-pipe robot for inspection and maintenance	0.218050	2012

									La		
$Th_{28}A_{38}$		0.5776		0.1278	hc ₂	0.6585	A_{38}	0.0155	High accuracy position marking system applying mobile robot in construction site	0.075279	2012
$Th_{63}A_3$	a_3	0.5776	hd ₃₂	0.0793	hc ₃	0.1707	A_3	0.0069	Open robot control for services in construction	0.005384	2012
Th64A10		0.5776	hd ₃₀	0.0441	hc ₃	0.1707	A ₁₀	0.0138	An easy handling system for installing heavy glass using human robot cooperation	0.005982	2012
Th ₁₀₇ A ₅		0.5776		0.1278	hc ₁	0.1260	A_5	0.0120	Job planning and supervisory control for automated earthmoving using 3d graphical tools	0.011204	2013
Th13A29	a ₃	0.5776	hd ₇	0.0529	hc ₂	0.6585	A ₂₉	0.0310	Development of an automated freeform construction system and its construction materials	0.062300	2013
$Th_{140}A_{63}$	a_6	0.0807	hd ₅₇	0.0132	hc ₂	0.6585	A_{63}	0.0086	Optimal machine operation planning for construction by contour crafting	0.000605	2013
Th ₅₁ A ₇		0.5776	hd ₃₀	0.0441	hc ₂	0.6585	A_7	0.0207	Design and construction of a scale robotic excavator work-cell to test automated excavation algorithms	0.034611	2013
$Th_{147}A_8$	a_2	0.2236	hd ₇	0.0529	hc ₃	0.1707	A_8	0.0293	Robot-based construction automation: an application to steel beam assembly (part i)	0.005905	2013
Th149A10	a ₃	0.5776	hd ₆₂	0.0044	hc ₃	0.1707	A_{10}	0.0138	Prototype for glazed panel construction robot	0.000598	2013
Th_8A_8	a ₃	0.5776	hd ₂	0.1278	hc ₃	0.1707	A_8	0.0293	Robot-based construction automation: an application to steel beam assembly (part ii)	0.036865	2013
$Th_{58}A_{28}$		0.5776	hd ₄₄	0.0088	hc_3	0.1707	A_{28}	0.0189	Glazed ceiling panel construction robot	0.001645	2013
Th ₆₄ A ₁₀		0.5776	hd ₃₀	0.0441	hc ₃	0.1707	A ₁₀	0.0138	Installation of heavy duty glass using an intuitive manipulation device	0.005982	2013
Th137A55	a_2	0.2236	hd ₂	0.1278	hc ₁	0.1260	A ₅₅	0.0275	Underwater construction robot for rubble leveling on the seabed for port construction	0.009913	2014
Th131A6	a ₃	0.5776	hd ₇₁	0.0044	hc ₂	0.6585	A_6	0.0723	Considerations regarding the construction of a minirobot for surveillance and inspection	0.012114	2014
Th121A57	a ₃	0.5776	hd_{83}	0.0088	hc ₂	0.6585	A ₅₇	0.0034	Towards a vision controlled robotic home environment	0.001154	2014
Th47A5	a ₃	0.5776	hd ₅₈	0.0308	hc ₂	0.6585	A_5	0.0120	Mobile 3d mapping for surveying earthwork projects using an unmanned aerial vehicle (uav) system	0.014133	2014
Th_4A_6	a_3	0.5776	hd ₂	0.1278	hc ₂	0.6585	A_6	0.0723	A lightweight bridge inspection system using a dual-cable suspension mechanism	0.351303	2014
$Th_{31}A_2$		0.5776	hd_1	0.0088	hc_2	0.6585	A_2	0.0086	Towards on-site autonomous robotic floor tiling of mosaics	0.002884	2014

$Th_{26}A_{10}$		0.5776	hd ₄₉	0.0264	hc ₂	0.6585	A_{10}	0.0138	Introduction of human-robot cooperation technology at construction sites	0.013844	2014
Th46A34		0.5776	hd ₅₈	0.0308	hc ₂	0.6585	A ₃₄	0.0413	Collision-free 4d trajectory planning in unmanned aerial vehicles for assembly and structure construction	0.048456	2014
Th ₁₀₅ A ₄₇	a_2	0.2236	hd ₂	0.1278	hc ₃	0.1707	A ₄₇	0.0034	Robotic explosive charging in mining and construction applications	0.001679	2014
$Th_{72}A_{34}$		0.5776	hd_{42}	0.0088	hc ₃	0.1707	A ₃₄	0.0413	In-situ fabrication: mobile robotic units on construction sites	0.003589	2014
Th30A19	a ₂	0.2236	hd ₅₇	0.0132	hc ₂	0.6585	A ₁₉	0.0138	A robotic cutting tool for contaminated structure maintenance and decommissioning	0.002680	2015
Th ₁₁₆ A ₅₅	a_3	0.5776	hd ₅	0.0044	hc ₂	0.6585	A_{55}	0.0275	Design and construction of a robot hand prototype for underwater applications	0.004615	2015
Th ₁₂₁ A ₅₇	a_3	0.5776	hd_{83}	0.0088	hc ₂	0.6585	A_{57}	0.0034	Assistive robotic micro-rooms for independent living	0.001154	2015
Th_2A_6	a ₃	0.5776	hd ₅₂	0.0441	hc ₂	0.6585	A_6	0.0723	A low-cost robotic system for the efficient visual inspection of tunnels	0.121139	2015
Th52A29	a_6	0.0807	hd ₁₃	0.0132	hc ₂	0.6585	A ₂₉	0.0310	Cable robot for non-standard architecture and construction: a dynamic positioning system	0.002177	2015
Th43A22		0.5776	hd ₅₄	0.0044	hc ₂	0.6585	A_{22}	0.0534	Between manual and robotic approaches to brick construction in architecture expanding the craft of manual bricklaying with the help of video projection techniques	0.008941	2015
Th29A28	a ₃	0.5776	hd ₄₅	0.0176	hc ₃	0.1707	A ₂₈	0.0189	Ceiling work scenario based hardware design and control algorithm of supernumerary robotic limbs	0.003290	2015
Th108A5	a_2	0.2236	hd_{32}	0.0793	hc ₁	0.1260	A_5	0.0120	Key challenges in automation of earth-moving machines	0.002692	2016
Th136A6	a ₃	0.5776	hd ₁₉	0.0132	hc ₁	0.1260	A_6	0.0723	Design and analysis of climbing robot based on construction surface inspection	0.006954	2016
Th ₁₂₀ A ₅₆	a ₃	0.5776	hd ₃₂	0.0793	hc ₁	0.1260	A ₅₆	0.0688	Prototyping a remotely-controlled machine for concrete surface griding operations	0.039739	2016
Th ₁₁₀ A ₅₀	a ₄	0.0311	hd ₅₂	0.0441	hc ₁	0.1260	A_{50}	0.0516	An electro-hydraulic servo controller for construction robot using system-on-chip device	0.000890	2016
Th44A22	a ₆	0.0807	hd ₂₆	0.0176	hc ₂	0.6585	A ₂₂	0.0534	Automated construction of masonry buildings using cable- driven parallel robots	0.004999	2016
Th ₁₀₉ A ₃₇		0.5776	hd ₇₈	0.0088	hc ₂	0.6585	A ₃₇	0.0155	Study on parts processing of the traditional wooden construction method using articulated robot	0.005192	2016

					1	1				Т	1
Th ₁₀₉ A ₅₀		0.5776	hd_{78}	0.0088	hc ₂	0.6585	A_{50}	0.0516	Local search on trees and a framework for automated construction using multiple identical robots	0.017306	2016
Th14A37		0.5776	hd ₇	0.0529	hc ₂	0.6585	A ₃₇	0.0155	Robotic timber construction - expanding additive fabrication to new dimensions	0.031150	2016
$Th_{23}A_{29}$		0.5776	hd_{32}	0.0793	hc ₂	0.6585	A ₂₉	0.0310	Autonomous construction with compliant building material	0.093450	2016
Th74A34	a ₃	0.5776	hd ₉	0.0044	hc ₃	0.1707	A ₃₄	0.0413	Automation of modular assembly of structural frames for buildings	0.001795	2016
Th29A29	a ₃	0.5776	hd ₄₅	0.0176	hc ₃	0.1707	A ₂₉	0.0310	Applications of supernumerary robotic limbs to construction works: case studies	0.005384	2016
Th73A34		0.5776	hd ₃₀	0.0441	hc ₃	0.1707	A ₃₄	0.0413	Human-machine interaction for intuitive programming of assembly tasks in construction	0.017947	2016
Th ₁₀₄ A ₄₅	a_3	0.5776	hd ₃₅	0.0044	hc ₁	0.1260	A_{45}	0.0241	Development of a wall-climbing platform with modularized wall-cleaning units	0.000773	2017
Th138A6	a ₃	0.5776	hd ₂	0.1278	hc ₁	0.1260	A_6	0.0723	Autonomous robotic system with tunnel inspection tool positioning	0.067225	2017
Th ₆₅ A ₃₀	a_1	0.0497	hd ₇₀	0.0176	hc ₂	0.6585	A ₃₀	0.0103	Three types of robot builder for the unsupervised construction of mars habitats	0.000595	2017
$Th_{45}A_{22}$	a_3	0.5776	hd_{59}	0.0044	hc_2	0.6585	A_{22}	0.0534	Robotic mechanical design for brick-laying automation	0.008941	2017
Th47.A6	a ₃	0.5776	hd ₅₈	0.0308	hc ₂	0.6585	A_6	0.0723	Wall contact by octo-rotor uav with one dof manipulator for bridge inspection	0.084797	2017
$Th_{22}A_{15}$	a_3	0.5776	hd ₃₂	0.0793	hc ₂	0.6585	A ₁₅	0.0086	Development of a novel post-construction quality assessment robot system	0.025958	2017
$Th_{22}A_6$	a ₃	0.5776	hd ₃₂	0.0793	hc ₂	0.6585	A_6	0.0723	Design and construction of an inspection robot for the sewage pipes	0.218050	2017
Th ₁₆ A ₁₁	a ₆	0.0807	hd ₂₅	0.0308	hc ₂	0.6585	A ₁₁	0.0551	Autonomous big-scale additive manufacturing using cable-driven robots	0.009031	2017
$Th_{15}A_{11}$		0.5776	hd ₂₃	0.0044	hc ₂	0.6585	A ₁₁	0.0551	Ja-wa - a wall construction system using unilateral material application with a mobile robot	0.009230	2017
Th ₆₇ A ₆₀		0.5776	hd ₇₅	0.0044	hc ₂	0.6585	A ₆₀	0.0086	Industrial robots application in the construction of buildings and structures	0.001442	2017
Th ₁₁₁ A ₅₂		0.5776	hd ₁₆	0.0132	hc ₂	0.6585	A_{52}	0.0103	Towards force-aware robot collectives for on-site construction	0.005192	2017

$Th_{46}A_6$		0.5776	hd ₅₈	0.0308	hc ₂	0.6585	A_6	0.0723	Construction inspection with unmanned aerial vehicle [bauwerksinspektion mit unbemannten flugsystemen]	0.084797	2017
Th23A15		0.5776	hd ₃₂	0.0793	hc ₂	0.6585	A ₁₅	0.0086	A novel building post-construction quality assessment robot: design and prototyping	0.025958	2017
Th77A9		0.5776	hd ₂	0.1278	hc ₂	0.6585	A_9	0.0069	Construction techniques used to automatically pass standard box girders through special passenger-line tunnels	0.033457	2017
$Th_{28}A_6$		0.5776		0.1278	hc ₂	0.6585	A_6	0.0723	Bottom-up cognitive analysis of bionic inspection robot for construction site	0.351303	2017
Th75A34	a ₅	0.0373	hd ₇	0.0529	hc ₃	0.1707	A ₃₄	0.0413	Design of modular re-configurable robotic system for construction and digital fabrication	0.001389	2017
Th ₆₄ A ₃		0.5776	hd ₃₀	0.0441	hc ₃	0.1707	A_3	0.0069	On-site robotic construction assistance for assembly using a- priori knowledge and human-robot collaboration	0.002991	2017
$Th_{99}A_{45}$	a_3	0.5776	hd_{37}	0.0044	hc_2	0.6585	A_{45}	0.0241	Floor cleaning robot with reconfigurable mechanism	0.004038	2018
$Th_{154}A_6$	a3	0.5776	hd_{46}	0.0088	hc ₂	0.6585	A_6	0.0723	Development of a robot for boiler tube inspection	0.024228	2018
Th98A45	a ₃	0.5776	hd ₁₉	0.0132	hc ₂	0.6585	A_{45}	0.0241	Glass facade cleaning robot with passive suction cups and self- locking trapezoidal lead screw drive	0.012114	2018
$Th_{133}A_6$	a_3	0.5776	hd ₃	0.0220	hc ₂	0.6585	A_6	0.0723	Automatic inspection of embankment by crawler-type mobile robot	0.060570	2018
Th_2A_6	a_3	0.5776	hd ₅₂	0.0441	hc ₂	0.6585	A_6	0.0723	Automatic traveling method for the self-propelled tunnel inspection system	0.121139	2018
$Th_{22}A_6$	a_3	0.5776	hd_{32}	0.0793	hc_2	0.6585	A_6	0.0723	Localisation of a mobile robot for bridge bearing inspection	0.218050	2018
Th_4A_6	a ₃	0.5776	hd ₂	0.1278	hc ₂	0.6585	A_6	0.0723	Tunnel structural inspection and assessment using an autonomous robotic system	0.351303	2018
Th42A22	a_6	0.0807	hd ₅₃	0.0044	hc ₂	0.6585	A_{22}	0.0534	Cu-brick cable-driven robot for automated construction of complex brick structures: from simulation to hardware realisation	0.001250	2018
$Th_{44}A_{22}$	a_6	0.0807	hd ₂₆	0.0176	hc ₂	0.6585	A ₂₂	0.0534	Process analysis of cable-driven parallel robots for automated construction	0.004999	2018
Th16A11	a ₆	0.0807	hd ₂₅	0.0308	hc ₂	0.6585	A ₁₁	0.0551	Cable-driven parallel robot for curtain wall modules automatic installation	0.009031	2018
Th76A34	a_6	0.0807	hd ₂₅	0.0308	hc ₂	0.6585	A ₃₄	0.0413	On the improvements of a cable-driven parallel robot for achieving additive manufacturing for construction	0.006773	2018

			,						,		
Th ₁₁₄ A ₅₄		0.5776	hd ₁₄	0.0044	hc ₂	0.6585	A ₅₄	0.0379	A changeable jig-less welding cell for subassembly of construction machinery	0.006345	2018
Th132A6		0.5776	hd ₇₂	0.0088	hc ₂	0.6585	A_6	0.0723	Robotic inspection tests of tunnel lining concrete with crack light-section device on variable guide frame	0.024228	2018
$Th_{132}A_6$		0.5776	hd ₇₂	0.0088	hc ₂	0.6585	A_6	0.0723	Concrete inspection systems using hammering robot imitating sounds of workers	0.024228	2018
Th_6A_{11}		0.5776	hd ₁₃	0.0132	hc_2	0.6585	A ₁₁	0.0551	Robotic application of foam concrete onto bare wall elements - analysis, concept and robotic experiments	0.027689	2018
Th5A11		0.5776	hd ₂₇	0.0132	hc ₂	0.6585	A ₁₁	0.0551	Improvement of the mobile robot location dedicated for habitable house construction by 3d printing	0.027689	2018
$Th_{46}A_{22}$		0.5776	hd ₅₈	0.0308	hc_2	0.6585	A ₂₂	0.0534	Feasibility study for drone-based masonry construction of real-scale structures	0.062589	2018
Th ₂₃ A ₃₀		0.5776	hd ₃₂	0.0793	hc_2	0.6585	A ₃₀	0.0103	Planetary lego: designing a construction block from a regolith derived feedstock for in situ robotic manufacturing	0.031150	2018
Th77A6		0.5776	hd ₂	0.1278	hc ₂	0.6585	A_6	0.0723	Automatic multi-image stitching for concrete bridge inspection by combining point and line features	0.351303	2018
Th ₂₈ A ₁₉		0.5776		0.1278	hc_2	0.6585	A ₁₉	0.0138	Smart construction robot technology to improve construction and safety in outer walls of high-rise buildings	0.066915	2018
$Th_{28}A_{28}$		0.5776		0.1278	hc ₂	0.6585	A_{28}	0.0189	Automation of the execution of monolithic reinforced ceilings	0.092008	2018
$Th_{125}A_6$	a ₃	0.5776	hd ₇₃	0.0044	hc ₃	0.1707	A_6	0.0723	A semi-autonomous mobile robot for bridge inspection	0.003141	2018
Th ₈₇ A ₄₂	a_2	0.2236	hd_{61}	0.0132	hc ₁	0.1260	A_{42}	0.0086	Dual-arm construction robot with remote-control function	0.000320	2019
Th86A42		0.5776	hd ₃	0.0220	hc ₁	0.1260	A ₄₂	0.0086	Efforts to unmanned construction for post-disaster restoration and reconstruction	0.001380	2019
Th135A6	a_1	0.0497	hd ₁₅	0.0132	hc ₂	0.6585	A_6	0.0723	Control of a hyper-redundant robot for quality inspection in additive manufacturing for construction	0.003126	2019
Th ₆₉ A ₆₀	a_2	0.2236	hd ₇₆	0.0044	hc ₂	0.6585	A ₆₀	0.0086	A novel holonomic mobile manipulator robot for construction sites	0.000558	2019
Th ₁₀₁ A ₄₅	a ₃	0.5776	hd ₃₈	0.0044	hc ₂	0.6585	A_{45}	0.0241	Self-reconfigurable façade-cleaning robot equipped with deep- learning-based crack detection based on convolutional neural networks	0.004038	2019
Th ₁₀₀ A ₄₅	a ₃	0.5776	hd ₃₉	0.0044	hc ₂	0.6585	A_{45}	0.0241	Four-wheel steering and driving mechanism for a reconfigurable floor cleaning robot	0.004038	2019

Th103A45	a ₃	0.5776	hd ₄₀	0.0044	hc ₂	0.6585	A_{45}	0.0241	Design and modelling of a modular window cleaning robot	0.004038	2019
$Th_{102}A_{45}$	a ₃	0.5776	hd ₄₁	0.0044	hc ₂	0.6585	A_{45}	0.0241	Parallel 2-dof manipulator for wall-cleaning applications	0.004038	2019
Th79A38	a ₃	0.5776	hd ₇₉	0.0088	hc ₂	0.6585	A ₃₈	0.0155	Mobile robot for marking free access floors at construction sites	0.005192	2019
Th79A38	a ₃	0.5776	hd ₇₉	0.0088	hc ₂	0.6585	A ₃₈	0.0155	Development of automated mobile marking robot system for free access floor	0.005192	2019
$Th_{134}A_6$	a ₃	0.5776	hd ₁₃	0.0132	hc ₂	0.6585	A_6	0.0723	Quicabot: quality inspection and assessment robot	0.036342	2019
$Th_{48}A_{22}$	a ₃	0.5776	hd ₃₆	0.0220	hc ₂	0.6585	A_{22}	0.0534	Labview based brick laying robot	0.044706	2019
Th17A11	a ₆	0.0807	hd ₂₈	0.0044	hc ₂	0.6585	A ₁₁	0.0551	Design, modelling and simulation of novel hexapod-shaped passive damping system for coupling cable robot and end effector in curtain wall module installation application (wall)	0.001290	2019
$Th_{16}A_{22}$	a ₆	0.0807	hd ₂₅	0.0308	hc ₂	0.6585	A22	0.0534	Investigation of robot systems in masonry construction [baubetriebliche untersuchung von robotersystemen im mauerwerksbau]	0.008749	2019
$Th_{46}A_6$		0.5776	hd ₅₈	0.0308	hc ₂	0.6585	A_6	0.0723	Indoor visualization experiments at building construction site using high safety uav	0.084797	2019
$Th_{51}A_{22}$		0.5776	hd ₃₀	0.0441	hc ₂	0.6585	A_{22}	0.0534	Automatic brick masonry system and its application in on-site construction	0.089412	2019
Th ₁₄ A ₄₄		0.5776	hd ₇	0.0529	hc ₂	0.6585	A ₄₄	0.0155	Towards automated installation of reinforcement using industrial robots	0.031150	2019
$Th_{77}A_{37}$		0.5776	hd ₂	0.1278	hc ₂	0.6585	A ₃₇	0.0155	Robotic fabrication of nail laminated timber	0.075279	2019
Th77A37		0.5776	hd ₂	0.1278	hc ₂	0.6585	A ₃₇	0.0155	Adaptive automation strategies for robotic prefabrication of parametrized mass timber building components	0.075279	2019
Th77A41		0.5776	hd ₂	0.1278	hc ₂	0.6585	A ₄₁	0.0138	Construction waste recycling robot for nails and screws: computer vision technology and neural network approach	0.066915	2019
Th ₂₈ A ₃₀		0.5776		0.1278	hc ₂	0.6585	A ₃₀	0.0103	In-situ construction method for lunar habitation: chinese super mason	0.050186	2019
Th21A13		0.5776	hd ₃₁	0.0044	hc ₃	0.1707	A ₁₃	0.0034	User interfaces for human-robot interaction in field robotics	0.000150	2019
Th ₁₅₈ A ₃₆	a2	0.2236	hd ₂₇	0.0132	hc ₁	0.1260	A ₃₆	0.0086	Controller area network standard for unmanned ground vehicles hydraulic systems in construction applications	0.000320	2020
Th ₇₈ A ₃₇	a3	0.5776	hd ₄₈	0.0044	hc ₂	0.6585	A ₃₇	0.0155	Flexible and transportable robotic timber construction platform – tim	0.002596	2020

Th ₁₅₅ A ₃₇	0.5776	hd ₅₀	0.0044	hc_2	0.6585	A ₃₇	0.0155	Automated manufacturing for timber-based panelised wall systems	0.002596	2020
Th83A41	0.5776	hd ₆₀	0.0088	hc ₂	0.6585	A ₄₁	0.0138	Development of an automatic sorting robot for construction and demolition waste	0.004615	2020
Th ₅₁ A ₂₂	0.5776	hd ₃₀	0.0441	hc ₂	0.6585	A ₂₂	1 111554	Automation of the construction process by using a hinged robot with interchangeable nozzles	0.089412	2021

• occurrence probability of TeA_i related papers

Term	S	Subcatego	ry lab	els	Danaga (titla)	Probability	Publication
labels	bm_i	P	A_i	P	Papers (title)	(%)	years
Te ₁₄ A ₅₄	bm ₁₄	0.1304	A_{54}	0.0379	Application of robotics in bridge deck fabrication	0.493901	1989
Te_2A_{53}	bm_2	0.0870	A_{53}	0.0069	Robotics in highway construction & maintenance	0.059867	1995
Te ₉ A ₂₉	bm ₉	0.0870	A_{29}	0.0310	Automated construction system for high-rise reinforced concrete buildings	0.269401	2000
Te ₁₄ A ₃₅	bm_{14}	0.1304	A_{35}	0.0103	Balancing human-and-robot integration in building tasks	0.134700	2004
Te_6A_{12}	bm_6	0.0870	A_{12}	0.0241	Intelligent painting process planner for robotic bridge painting	0.209534	2007
Te_9A_{29}	bm ₉	0.0870	A_{29}	0.0310	Task management of robots for the automatic construction	0.269401	2008
$Te_{10}A_{14}$	bm_{10}	0.1304	A_{14}	0.0138	Position error modeling for automated construction manipulators	0.179600	2009
Te ₁₂ A ₃₅	bm_{12}	0.0870	A ₃₅	0.0103	Development of conceptual model of construction factory for automated construction	0.089800	2009
Te_7A_{21}	bm ₇	0.0435	A_{21}	0.0172	A performance evaluation of a stewart platform based hume concrete pipe manipulator	0.074833	2009
$Te_{10}A_{52}$	bm_{10}	0.1304	A_{52}	0.0103	Relative accuracy enhancement system based on internal error range estimation for external	0.134700	2011
1 6702 152	D111 ₁₀				force measurement in construction manipulator		
Te_4A_9	bm₄	0.0435	A_9	0.0069	Dimension optimization of an orientation fine-tuning manipulator for segment assembly	0.029933	2011
·	D1114				robots in shield tunneling machines		
Te_5A_{10}	bm_5	0.0435	A_{10}	0.0138	A methodology to quantitatively evaluate the safety of a glazing robot	0.059867	2011
Te ₁₁ A ₅₆	bm ₁₁	0.0435	A_{56}	0.0688	Evaluation of construction robot telegrasping force perception using visual, auditory and	0.299334	2012
1 0 2 1 3 6	DIIII				force feedback integration		
$Te_{10}A_{35}$	bm_{10}	0.1304	A_{35}	0.0103	Analysis on autonomous task trajectory tracking performance of construction robot with	0.134700	2013
10702 199	21110				online gravity compensation		
Te ₁₂ A ₃₅	bm_{12}	0.0870	A_{35}	0.0103	A framework of indicators for assessing construction automation and robotics in the	0.089800	2015
					sustainability context		
Te_6A_{12}	bm ₆	0.0870	A_{12}		Bridge maintenance automation	0.209534	2016
Te_1A_{11}	bm₁	0.0435	A_{11}	0.0551	Potential benefits of digital fabrication for complex structures: envitonmental assessment	0.239467	2017
10/21//	DIII				of a robotically fabricated concrete-wall		
Te ₁₄ A ₃₅	bm ₁₄	0.1304	A_{35}	0.0103	Improved productivity, efficiency and cost savings following implementation of drone	0.134700	2018
1.0/42 1))	211114				technology in the surveying industry		
$Te_{15}A_{16}$	bm ₁₅	0.0435	A_{16}	0.0189	Framework for human performance analysis in unmanned aircraft system (uas) operations	0.082317	2018
10132 116	211113				in dynamic construction environment (concrete printing)		

Te_3A_{22}	hm	0.0435	A_{22}	0.0534	The analysis of factors influencing on efficiency of applying mobile bricklaying robots and	0.231984	2019
1 63/122	bm ₃				tools for such analysis		
Te ₁₃ A ₃₅	1	0.0435	A_{35}	0.0103	A comprehensive performance evaluation of different mobile manipulators used as	0.044900	2020
I 613Z-135	bm ₁₃				displaceable 3d printers of building elements for the construction industry		
Te_2A_{22}	bm_2	0.0870	A_{22}	0.0534	Determining a numerical efficiency indicator for a mobile bricklaying robot	0.463968	2020
Te_8A_{21}	bm ₈	0.0435	A_{21}	0.0172	Life cycle cost analysis of the steel pipe pile head cutting robot	0.074833	2020