Rozmieszczanie kamer bezpieczeństwa

Przemysław Kopański Mateusz Forc

15 maja 2017

Spis treści

1	Treść zadania	1
2	Przyjęte założenia	2
3	Przestrzeń przeszukiwań	2
4	Funkcja celu 4.1 Przykład	3
5	Metaheurystyka	5
6	Przewidywane wyniki pracy	5

1 Treść zadania

Jak optymalnie rozmieścić kamery monitoringu w ustalonym pomieszczeniu (rzut z góry), aby minimalną liczbą kamer móc obserwować dowolne miejsce (z uwzględnieniem maksymalnej dopuszczalnej odległości od kamery).

2 Przyjęte założenia

- wszystkie kamery są takie same (mają taki sam zasięg)
 - zasięg kamery jest kołem o stałym promieniu
 - promień zasięgu kameru wynosi 2 (możliwa interpretacja średnica kamery wynosi 4 metry)
- rzut pomieszczenia reprezentowany jest przez zbiór punktów
 - punkty mają współrzędne odpowiadające I ćwiartce wykresu

$$x \geqslant 0, y \geqslant 0$$

 punkty podawane są jako lista, która reprezentuje zamknięty wielokąt - muszą one zostać podane we właściwej kolejności, tak aby można je było jednoznacznie połączyć (każde dwa kolejne punkty łączone są w odcinek)

3 Przestrzeń przeszukiwań

Pojedynczym elementem przestrzeni przeszukiwań jest zbiór kamer wraz z ich pozycjami.

Pierwsze wygenerowane rozwiązanie zawiera zbiór składający się z [obszar rzutu/obszar jednej kamery] kamer rozmieszczonych losowo wewnątrz wielokątu. Do kolejnego stanu możemy przejść poprzez dodanie/usunięcie kamery lub przemieszczenie jednej z aktualnie umieszczonych kamer. Do zbioru kamer nie można wstawić kamery, która jest na zewnątrz obserwowanego pomieszczenia.

4 Funkcja celu

Dostępna informacja:

 k_{min} - minimalna teoretyczna liczba kamer dla aktualnie rozpatrywanego rzutu ([obszar rzutu/obszar jednej kamery])

Parametry zadania:

 d_k - koszt użycia kamery

 d_p - wartość pokrycia 1% powierzchni

Funkcja:
$$f(p,k) = d_p * p - \frac{100d_k}{k_{min}} * max(k, k_{min})$$

gdzie:

p - % pokrycia dla danego stanu

k - ilość użytych kamer w danym stanie

Zadanie polega na maksymalizacji funkcji f.

Przykładowo

$$d_p = 1d_k = 1$$

Dla podanych parametrów algorytm będzie znajdował "złoty środek pomiędzy" procentem pokrycia a ilością użytych kamer. Odpowiednio przeskalowując podane parametry i trzymajac odpowiedni stosunek pomiędzy tymi wartościami, mozemy sterowac na czym bardziej nam zależy, jeżeli np $d_p=2d_k=1$ to będziemy w stanie zaakceptować dwukrotna ilość kamer w zamian za dwukrotnie większe pokrycie.

4.1 Przykład

Podane pomieszczenie ma pole powierzchni równe 103.38. Zasięgi kamer są między sobą rozłączne, a ich pole wynosi 62.83. Minimalna teoretyczna liczba kamery wynosi 9. Pokrycie dla danego stanu wynosi 60.8%.

Dla parametrów: $d_p = 1d_k = 1$ wartość funkcji wynosi 60.8-100 = -39.2

Podane rozwiązanie posiada zbyt małą liczbę kamer.

5 Metaheurystyka

Zastosowany zostanie stabuizowany algorytm symulowanego wyżarzania. Ze względu na to, że stworzenie funkcji heurystycznej do badanej przestrzeni jest obliczalnie trudne, użycie metody A* jest niewskazane. Algorytmy wspinaczkowe nie sprawdzą się w opisywanej przestrzeni ze względu na dużą liczbę ekstremów lokalnych. Stosując algorytm symulowanego wyżarzania zapewnione jest, że algorytm nie 'utknie' w ekstremum. Wraz z rosnącą liczbą iteracji można zmniejszać temperaturę, w celu znalezienia coraz lepszego rozwiązania. Dodatkowym mechanizmem pozwalającym uniknąć zakotwiczenia w ekstremum lokalnym jest tabuizacja.

Podana metoda wymaga strojenia ze względu na 2 parametry:

- 1. wielkość kolejki tabu określa ile maksymalnie jednocześnie punktów przestrzeni może ulec tabuizacji
- parametr funkcji temperatury do doboru temperatury zostanie wykorzystana funkcja zależna od numeru iteracji, która udostępni parametr do strojenia

6 Przewidywane wyniki pracy

Dla kilkunastu zadanych rzutów ilustrujących różne warianty pomieszczeń np. długie, wąskie i kręte, duże otwarte zostaną przeprowadzone symulacje w celu odnalezienia i zaprezentowania parametrów funkcji celu, które pozwalają implementacji na znalezienie możliwie najlepszego rozwiązania dla danego rodzaju przypadku.

Wyniki zostaną zaprezentowane jako zestawy rzutów oraz wykresów ilustrujących pokrycie w zależności od parametrów: d_p i d_k wraz z wyróżnionym zestawem parametrów dla każdego zestawu, który ilustruje najlepsze rezultaty.