- 1. Найдите функцию распределения Коши с параметром θ , плотность которого задается формулой $p(x) = \frac{\theta}{\pi(\theta^2 + x^2)}$.
- 2. Пусть ξ имеет равномерное распределение на множестве $\{1,\ldots,10\}\sqcup\{21,\ldots,30\}$. Найдите функцию распределения ξ .
- 3. Пусть ξ имеет геометрическое распределение с параметром p, т.е. $\mathsf{P}(\xi=k)=p(1-p)^k, k\in\mathbb{Z}_+$. Найдите вероятность множества всех четных натуральных чисел, т.е. $\mathsf{P}(\xi\in2\mathbb{N})$.
- 4. Стрелок в тире стреляет в "четверть круга", т.е. в область $\{(x,y): x^2+y^2<1, x>0, y>0\}$, распределение равномерное. Найдите вероятность попадания в квадрат $[0,3/4]\times[0,3/4]$.
- 5. Случайные величины ξ, η независимы и распределены равномерно на отрезке [-1, 2]. Найдите плотность распределения случайных величин $\xi + \eta$ и $\xi \eta$.
- 6. Случайные величины X, Y независимы и распределены равномерно на отрезке [0,1]. Найдите вероятность того, что из отрезков длин X, Y, 1 можно составить треугольник.
- 7. Величина ξ имеет стандартное нормальное распределение. Вычислите $\mathsf{E}\xi^3, \mathsf{E}|\xi|^3, \mathsf{E}\xi^4$.
- 8. Пользователь 10 раз вводил поисковый запрос. Считается, что интервалы времени между i-м и (i+1)-м запросами равны ξ_i минут, $i \in \{1, \dots, 9\}$, где $\xi_1, \dots \xi_9$ независимые случайные величины, распределенные экспоненциально с параметром 1. Найдите математическое ожидание и дисперсию времени $\xi_1 + \dots + \xi_9$, потраченного на введение этих запросов.
- 9. В группе из 5 человек случайным образом назначают 5 пар. Пусть X количество троек людей, каждые два из которых образуют пару. Найдите $\mathsf{E} X$ и $\mathsf{var}\ X$.
- 10. Известно, что если лектор чихает во время записи условия важной теоремы, то он его забывает с вероятностью p=0.995. В курсе 1000 важных теорем, и во время записи каждой из них лектор чихнул. Найти вероятность того, что лектор смог выписать хотя бы 5 важных теорем из своего курса, не забыв их условия.
- 11. Брошено 1800 игральных костей. Найти приближенное значение вероятности того, что суммарное число появлений 2 и 6 не меньше, чем 620 .