Real Time Automatic Modulation to Vitis

Motivation

Testing With Python or HLS

Initial Implementation with Vitis HLS

Optimizing the design in Vitis HLS

Running In Vitis

Software and Hardware emulation outputs
Final Report files

Tradeoffs between Vitis and Vivado

Pros of the Vitis Unified Software Platform

Cons of the Vitis Unified Software Platform

Future Work (Possible CSE 237D Project)

Motivation

The code aims at automatic modulation classification for radio signals leveraging the RF capabilities offered by Xilinx ZCU111 RFSoC platform. The original code was created using python 3.6 and tensorflow 1.14 using the Vgg10 architecture. The network was trained using the radio modulation dataset created by O'Shea et. al available at deepsig.io.

The C code (trained neural network layers) was generated using a python script and implemented the quantized, low precision CNN components to mimic the precision of Verilog.

The top function compute_network() takes an input image signal of 1024 I/Q samples of the form [I0,Q0,I1,Q1,..., I1023, Q1023]. Output is a 4x1 vector of integers. The model is trained to detect 4 different modulation methods. We apply the softmax function to the output vector to choose between 1 of 4 modulation methods: OOK (0),4ASK (1), 8ASK (2), BPSK (3). The softmax is the index where the maximum value occurs in an array.

We check the accuracy of the output against a validation set for different SNRs, and record the accuracy (100*correct choices / incorrect choices) in output.txt.

Testing With Python or HLS

Code under test/

We improved upon the given code at https://github.com/da-steve101/radio_modulation/tree/master/c, their testing with python does not work with the deepsig.io dataset (they parsed it in their own way and did not link to the file) and is not documented.

DEPENDENCIES:

- tensorflow
- python3
- debian machine for bash scripts

SETUP (for testing): In linux, download tar.gz from here: deepsig.io to code/

```
cp tw_vgg10_hardware.c tw_vgg10.c
bash get_txt_files.sh
export MODEL_DIR=../models/vgg_twn_rfsoc_50k_64_d128
rm -rf build
python3 setup.py build
export PYTHONPATH=build/lib.linux-x86_64-3.6
python3 test_vggpy.py

Or run:
cp tw_vgg10_hardware.c tw_vgg10.c; bash run_all.sh
```

For each snr in the validation set, accuracy is reported output.txt

For the python testbench, the output should be:

```
accr[16] = 25.714285714285715
```

• • •

```
accr[-14] = 23.529411764705884 accr[28] = 17.857142857142858
```

Where, for example, at SNR=-14 the accuracy is 23.529.

In Vitis HLS and in hardware emulation on Vitis V++ compiler, we feed a single 2048 input array. The output should *always* display:

FAILED: (0,0) where **-186**!=210

FAILED: (0,1) where **199**!=144

FAILED: (0,2) where **34**!=-144

FAILED: (0,3) where **22**!=46

We used a legacy testbench from here

https://github.com/da-steve101/radio_modulation/blob/master/c/tw_vgg10.c, and use wrong values to compare against the correct values (LHS, in bold above). In this way, we can make sure that the first 4 values are always the same. We also need to make sure that the next values are 0. Note that it would choose modulation classification #1 in this case. There are many output vectors that would provide a false negative, and this is one arbitrary way we chose to test our implementation.

Initial Implementation with Vitis HLS

Note: Vitis HLS is found in \$(Vitis_install_path)/2019.2/bin/vitis_hls. Its newer version of vivado HLS, and allows us to create .xo files after synthesis that can be used on the Vitis Unified Software Platform.

Baseline (In Vitis HLS):

Code under baseline/

The <u>baseline</u> folder contains the following files:

src folder:

Top file: tw_vgg10.c (and header file tw_vgg10.h)

Helper files: all CNN layer (.c and .h) such as conv1.c, dense1.c

Testbench file: pyvgg.cScript: script.tcl

Report folder: contains the synthesis .rpt and .xml

Target Board: ZCU111 (part: xczu28dr-ffvg1517-2-e)

The generated C code from python implementation was not synthesizable. The use of pointer structures was throwing a lot of errors on synthesizing the code. We transformed the code to get a synthesizable baseline implementation in Vitis HLS.

Performance and resource utilization for our baseline implementation are given below.

The baseline implementation has a frequency of 132.1 Hz. As seen from resource utilization, the LUTs exceeds the resource utilization by almost 100%. This is because of the adders/subtractors in the CNN layers.

```
+ Timing:
    * Summary:
                        | Estimated | Uncertainty |
    |ap_clk | 10.00 ns | 8.750 ns |
+ Latency:
    * Summary:
      Latency (cycles) |
                         Latency (absolute)
                                                    Interval
                                                                  Pipeline |
       min |
                 max
                             min
                                       max
                                                  min |
                                                                    Type
       103446
                 865110 | 1.034 ms | 8.651 ms |
                                                 103446
                                                          865110
```

Fig- Performance of Baseline implementation

== Utilization Estimates == Summary:								
Name	BRAM_18K	DSP48E	FF	LUT	URAM			
DSP Expression FIFO Instance Memory Multiplexer Register	- - 422 423 - -	- - - 474 - - -	- 0 - 125767 0 - 151	0 585	- - - 0 0 -			
Total	845	474	125918	823430	0			
Available	2160	4272	850560	425280	80			
Utilization (%)	39	11	14	193	0			

Fig- Resource Utilization of Baseline implementation

Optimizing the design in Vitis HLS

Code under optimized/

The optimized folder contains the following files:

src folder:

Top file: tw vgg10.c (and header file tw vgg10.h)

• Helper files: all CNN layer (.c and .h) such as conv1.c, dense1.c

Testbench file: pyvgg.cScript: script.tcl

Report folder: contains the synthesis .rpt and .xml

Target Board: ZCU111 (part: xczu28dr-ffvg1517-2-e)

The following optimizations were used to improve the performance and resource utilization of our baseline design:

- Convolution functions and loops and array structure in file tw_vgg10.c was simplified
- Dataflow implementation along with array partitioning (block factor=2) was performed for the design
- LUT Add/sub units were changed to DSP48E Add/Sub units in the CNN layers (conv2.c, conv3.c etc) to decrease our LUT usage
- The loops were pipelined and unrolled to increase throughput of our design

Performance and resource utilization for the optimized implementation are given below.

The optimized implementation has a frequency of 450 Hz which is almost 4x that baseline.

Our resource utilization of LUTs decreased significantly from baseline. However, it still exceeds the resource utilization by almost 83%. Even though resource allocation pragmas were used to shift some of the LUT adders/subtractors of the CNN layer files (conv2.c, conv3.c, dense1.c etc) to DSP48E adders/subtractors, the adders/subtractors of the vgg10 architecture could not fit the board using just the Vitis HLS pragmas.

Fig- Performance of Optimized implementation

== Utilization Estimates										
* Summary:										
+		+			+					
Name	BRAM_18K	DSP48E	FF	LUT	URAM					
+					+					
DSP	-1	-1	-1	-	-					
Expression	-	-	0	98	-					
FIFO	0	-	646	3630	-					
Instance	6	4240	212403	776350	-					
Memory	258	-	0	0	0					
Multiplexer	-	- j	-	144	- [
Register	j -j	- j	16	- i	- j					
+	++	+			+					
Total	264	4240	213065	780222	0					
+					+					
Available	2160	4272	850560	425280	80					
+		+			+					
Utilization (%)	12	99	25	183	0					
+	++	+			+					

Fig- Resource utilization of Optimized implementation

Running In Vitis

Code under vitis_emulation/

Now that we have optimized code, we run software emulation to check functionality, then hardware emulation in place of the physical chip. Hardware emulation defined by the Vitis toolset means that it emulates the target device. One of the main benefits of Vitis is that after hardware emulation, that is a high degree of confidence that it will run the same on chip due to the portability of the output file: xclbin. The target devices all run a linux cpu layer on top of an fpga, so portability isn't much of a problem.

The target device we use is **u200_xdma_201830_2** in place of ZCU111, as the Vitis does not have support for ZCU111 as of yet. See setup.pdf for a walkthrough of how to install vitis and how to install the target device platform on ubuntu 18.04 if you are interested in running on your own machine, or want to expand on this project.

Software and Hardware emulation outputs

The purpose of these outputs is to make sure functionality is correct. The outputs are the same as the vitis his testbench output. There are also interesting logs showing that axis are being used in place of procedural code.

Software Emulation (few minutes run time)

```
abc@abc-ThinkPad-P50:~/CSE237_FINAL_Ritika_Justin/vitis_cpp_run$ ./host compute_network.xilinx_u200_xdma_201830_2.xclbin
Found Platform
Platform Name: Xilinx
INFO: Reading compute_network.xilinx_u200_xdma_201830_2.xclbin
Loading: 'compute_network.xilinx_u200_xdma_201830_2.xclbin'
FAILED: (0, ) where - 1861-210
FAILED: (0, 1) where 1991=32
FAILED: (0, 1) where 1991=32
FAILED: (0, 3) where 34!=-144
FAILED: (0, 3) where 22!=46
```

Hardware Emulation is most likely to work if software emulation works.

Hardware Emulation (2hour+ run time)

```
### Processor | P
```

Final Report files

After hardware emulation is run, final estimates are taken before being run on the board. The compute_network.xilinx_u200_xdma_201830_2.xclbin file in vitis_emulation/can be run on the sd card of the xilinx_u200_xdma_201830_2 board.

The figures on the next few pages show the final estimates given by Vitis.

Figure 1

25	Timing Informati	on (MHz)			
26	Compute Unit	Kernel Name	Module Name	Target Frequency	Estimated Frequency
27					
28	compute network	compute network	allocate network	300.300293	430.663208
29	compute network	compute network	window data ld l	300.300293	411.015198
30	compute network	compute network	convl	300.300293	421.22998
31	compute_network	compute_network	bnl_a_b	300.300293	420.698334
32	compute_network	compute_network	compute_conv_layer_l	300.300293	411.015198
33	compute_network	compute_network	window_data_ld_2	300.300293	421.585175
34	compute_network	compute_network	conv2	300.300293	411.184235
35	compute_network	compute_network	bn2_a_b	300.300293	428.082184
36	compute_network	compute_network	compute_conv_layer_2_1	300.300293	411.184235
37		compute_network	window_data_ld_2_l	300.300293	419.463074
38	compute_network	compute_network	conv3	300.300293	411.184235
39		compute_network	bn3_a_b	300.300293	430.477844
40		compute_network	compute_conv_layer_2_2	300.300293	411.184235
41	compute_network	compute_network	window_data_ld_2_2	300.300293	417.53653
42	compute_network	compute_network	conv4	300.300293	411. 34235
43		compute_network	bn4_a_b	300.300293	435.350464
44		compute_network	compute_conv_layer_2_3	300.300293	411.184235
45		compute_network	window_data_ld_2_3	300.300293	415.627625
46		compute_network	conv5	300.300293	411.184235
47	; compute_network	compute_network	bn5_a_b	300.300293	435.350464
48	compute_network	compute_network	compute_conv_layer_2_4	300.300293	411.184235
49	compute_network	compute_network	window_data_ld_2_4	300.300293	413.564941
50	compute_network	compute_network	conv6	300.300293	411.184235
51	compute_network	compute_network	bn6_a_b	300.300293	435.350464
52	compute_network	compute_network	compute_conv_layer_2_5	300.300293	411.184235
53	compute_network	compute_network	window_data_ld_2_5	300.300293	411.692078
54	; compute_network	compute_network	conv7	300.300293	411.184235
55	compute_network	compute_network	bn7_a_b	300.300293	432.900452
56	compute_network	compute_network	compute_conv_layer_2_6	300.300293	411.184235
57	compute_network	compute_network	densel	300.300293	411.184235
58	compute_network	compute_network	bndl_a_b	300.300293	428.265503
59	compute_network	compute_network	dense2	300.300293	411.184235
60	compute_network	compute_network	bnd2_a_b	300.300293	428.082184
61	compute_network	compute_network	compute_network	300.300293	411.015198
62	1				

Figure 2

ompute Unit	Kernel Name	Module Name	Start Interval	Best (cycles)	Avg (cycles)	Worst (cycles)	Best (absolute)	Avg (absolute)	Worst (absolute
ompute network	compute network	allocate network	529	529	529	529	1.763 us	1.763 us	1.763 us
ompute network	compute network	window data 1d 1	2 ~ 396	2	undef	396	6.666 ns	undef	1.320 us
ompute network	compute network	convl	34	34	34	34	0.113 us	0.113 us	0.113 us
ompute network	compute network	bnl a b	63	63	63	63	0.210 us	0.210 us	0.210 us
ompute network	compute network	compute conv layer 1	109572 ~ 578055	109572	undef	578055	0.365 ms	undef	1.927 ms
ompute network	compute network	window data Id 2	2 ~ 389	2	undef	389	6,666 ns	undef	1.297 us
ompute network	compute network	conv2	182	182	182	182	0.607 us	0.607 us	0.607 us
ompute network	compute network	bn2 a b	63	63	63	63	0.210 us	0.210 us	0.210 us
ompute network	compute network	compute conv layer 2 1	130564 ~ 361223	130564	undef	361223	0.435 ms	undef	1.204 ms
ompute network	compute network	window data 1d 2 1	2 ~ 389	2	undef	389	6,666 ns	undef	1.297 us
ompute network	compute network	conv3	178	178	178	178	0.593 us	0.593 us	0.593 us
ompute network	compute network	bn3 a b	63	63	63	63	0.210 us	0.210 us	0.210 us
ompute network	compute network	compute conv layer 2 2	64004 ~ 179335	64004	undef	179335	0.213 ms	undef	0.598 ms
ompute network	compute network	window data 1d 2 2	2 ~ 389	2	undef	389	6,666 ns	undef	1.297 us
ompute network	compute network	conv4	176	176	176	176	0.587 us	0.587 us	0.587 us
ompute network	compute network	bn4 a b	63	63	63	63	0.210 us	0.210 us	0.210 us
ompute network	compute network	compute conv layer 2 3	31748 ~ 89415	31748	undef	89415	0.106 ms	undef	0.298 ms
ompute network	compute network	window data Id 2 3	2 ~ 389	2	undef	389	6,666 ns	undef	1.297 us
ompute network	compute network		168	168	168	168	0.560 us	0.560 us	0.560 us
ompute network	compute network	bn5 a b	68	68	68	68	0.227 us	0.227 us	0.227 us
ompute network	compute network	compute conv layer 2 4	15684 ~ 44519	15684	undef	44519	52.275 us	undef	0.148 ms
ompute network	compute network	window data 1d 2 4	2 ~ 389	2	undef	389	6.666 ns	undef	1.297 us
ompute network	compute network	conv6	124	124	124	124	0.413 us	0.413 us	0.413 us
ompute network	compute network	bn6 a b	68	68	68	68	0.227 us	0.227 us	0.227 us
ompute network	compute network	compute conv layer 2 5	6436 ~ 20855	6436	undef	20855	21.451 us	undef	69.510 us
ompute network	compute network	window data 1d 2 5	2 ~ 389	2	undef	389	6.666 ns	undef	1.297 us
ompute network	compute network	conv7	123	123	123	123	0.410 us	0.410 us	0.410 us
ompute network	compute network	bn7 a b	68	68	68	68	0.227 us	0.227 us	0.227 us
ompute network	compute network	compute conv layer 2 6	undef	undef	undef	undef	undef	undef	undef
ompute network	compute network	densel	199	199	199	199	0.663 us	0.663 us	0.663 us
ompute network	compute network	bndl a b	127	127	127	127	0.423 us	0.423 us	0.423 us
ompute network	compute network	dense2	127	127	127	127	0.423 us	0.423 us	0.423 us
ompute network	compute network	bnd2 a b	127	127	127	127	0.423 us	0.423 us	0.423 us
ompute network	compute network	compute network	undef	undef	undef	undef	undef	undef	undef

Figure 3

100	compare_nerwork	compare_nerwork	compaco_necwork	unuci		unu	-1	unuci	unuc
101	Area Information								
102	Compute Unit	Kernel Name	Module Name	FF	LUT	DSP	BRAM	URAM	
103									
104	compute network	compute network	allocate network	715	1159	3	1	0	
105	compute network	compute network	window data ld l	1189	850	8	0	0	
106	compute network	compute network	convl	756	3712	0	0	0	
107	compute network	compute network	bnl a b	2178	4280	59	0	0	
108	compute network	compute network	compute_conv_layer_1	4510	9494	71	0	0	
109	compute_network	compute_network	window_data_ld_2	998	744	8	0	0	
110;	compute_network	compute_network	conv2	19111	52167	0	0	0	
111 ;	compute_network	compute_network	bn2_a_b	2042	4715	45	0	0	
112	compute_network	compute_network	compute_conv_layer_2_1	22452	58231	56	0	0	
113	compute_network	compute_network	window_data_ld_2_l	997	744	8	0	0	
114	compute_network	compute_network	conv3	18834	52029	0	0	0	
115	compute_network	compute_network	bn3_a_b	2010	4702	45	0	0	
116;	compute_network	compute_network	compute_conv_layer_2_2	22128	58203	54	0	0	
117 ;	compute_network	compute_network	window_data_ld_2_2	996	744	8	0	0	
118 :	compute_network	compute_network	conv4	18687	51453	0	0	0	
	compute_network		bn4_a_b	1954	4437	51	0	0	
120	compute_network	compute_network	compute_conv_layer_2_3	21911	57329	60	0	0	
121	compace_necuoin		window_data_ld_2_3	1035	832	8	0	0	
122 ;			conv5	18422	51479	0	0	0	
123 ;	compute_network		bn5_a_b	1893	4377	51	0	0	
124 ;		compute_network	compute_conv_layer_2_4	21613	57376	60	0	0	
125	compute_network		window_data_ld_2_4	1034	832	8	0	0	
	compute_network	compute_network	conv6	17481	50570	0	0	0	
	compute_network		bn6_a_b	1813	4024	57	0	0	
128	compute_network		compute_conv_layer_2_5	20579	56108	66	0	0	
129	compute_network	compute_network	window_data_ld_2_5	1033	832	8	0	0	
130 ;	compute_network		conv7	17559	50123	0	0	0	
131 ;	compute_network		bn7_a_b	1772	4674	42	0	0	
132	compute_network		compute_conv_layer_2_6	20619	56305	51	0	0	
	compute_network		densel	109736	297783	0	0	0	
	compute_network		bndl_a_b	1722	9002	50	0	0	
135	compute_network	compute_network	dense2	25568	84482	0	0	0	
136 ;	compute_network		bnd2_a_b	1896	8254	74	0	0	
137 ;	compute_network	compute_network	compute_network	274558	756918	546	551	0	
138 ;							57		
139 ;									

Figure 4

If the run is successful, you should get two classes of report files:

- Get report files from hardware emulation (this runs vivado hls or vitis hls).
 - Run vitis_analyzer in the <Vitis_install_location>/2019.2/bin and open the link summaries to get the Estimated Timing Information (Figure 1), Latency Information (Figure 2) and Area Information (Figure 3).
 - Open the Compile Summary to get the estimated latency and area on the board (figure 4).

Figure 4 shows that the design fits for our target device - u200_xdma_201830_2.

Although, it estimates that the SLR portion of the board is overutilized. This is just an estimate, and we can't change this without running board specific optimizations (which is counterproductive because we want to eventually migrate to ZCU111) [1].

[1]:

https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/xqd1554752221979.html#p hm1523550940155.

Tradeoffs between Vitis and Vivado

Figure A

 $Figure\ A\ is\ from\ \underline{https://www.hackster.io/news/microzed-chronicles-vitis-hls-85a9b1d272e6}$

Pros of the Vitis Unified Software Platform

- Uses host file and a kernel file
- See diagram. Kernel is "plug-and-play" i.e. it can be linked with many programming languages for the host file.
- Allows for multiple programming languages. C for the kernel. The host can be cpp, c or python.
- See the flow below, it allows us to test in software with axis, before running on hardware.
 Our design was medium sized, and it took around 2 hours to run the Hardware steps below. If our design was large, this would be an even bigger benefit.
- Platforms that are supported are easy to download (the dpkg files are given for ubuntu users).

Cons of the Vitis Unified Software Platform

- Very little documentation
- Still very buggy. For instance, although it supports C, there is a bug that using a c file extension will not allow vivado his to export the .xo file. This can only be fixed by changing c files to cpp.
- Only really supports linux. There is a gui for windows, but it is documented even less than the ubuntu version. Had to use ubuntu 18.04 to run the tutorials.
- Accelerated Platforms (i.e. platforms that get the upsides mentioned above) are limited for now.

Future Work (Possible CSE 237D Project)

- Run this code on the ZCU111 board using the PYNQ interface, probably have to do vivado as ZCU111 is not supported officially by vitis yet.
- Modify the axi interface to stream 2048 inputs one at a time
- Optimize in vitis, the possibilities are much more than we were able to go though. Memory buffers are the most obvious route to take.
- Optimize in hls, as we learned in class there we can explore further the pareto curve. We made many sacrifices for the area (this machine learning model was 10 layers of 1000-input look up tables) but this was not enough for ZCU111.
- Suggested by Alireza Try a different architecture, such as imagenet, that is larger but gives better accuracy.