

SEQUENCE LISTING

<110> LEVINE, Zurit

<120> SPLICE VARIANTS OF ONCOGENES

<130> 2786-0168P

<140> 09/805,020

<141> 01-03-13

<160> 72

<170> PatentIn Ver. 2.1

<210> 1

<211> 1735

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(1735)

<223> any n = a,c,g,t any unknown or other

<400> 1

gtccaccgga agcgagttgc gacacggca gttccggccc ggaagaagcg accaaagcgc 60
 ctgaggaccg gcaacatggt gcgggtcgaaa aataaggcag ctgttgtgct gtgtatggac 120
 gtgggcttta ccatgagtaa ctccatttc ggtatagaat ccccatattga acaagcaaag 180
 aagggtataa ccatgtttgt acagcgacag gtgttgctg agaacaaga tgagattgct 240
 ttagtcctgt ttggcacaga tggcactgac aatccccctt ctgggtggga tcagttatcg 300
 aacatcacag tgcacagaca tctgatgcta ccagattttg atttgctgaa ggacattgaa 360
 agcaaaaatcc aaccaggttc tcaacaggct gacttcctgg atgcactaat cgtgagcatg 420
 gatgtgattc aacatgaaac aataggaaag aagtttgaga agaggcatat tgaatattc 480
 actgaccta gcagccgatt cagcaaaagt cagctggata ttataattca tagttgaag 540
 aaatgtgaca tctccctgca attttcttg cctttctcac ttggcaagga agatggaagt 600
 ggggacacagag gagatggccc cttdcgctta ggtggccatg ggccttcctt tccactaaaa 660
 ggaatttaccc aacagcaaaa agaaggctt gagatagtga aaatgggtat gatatcttta 720
 gaaggtgaag atgggttggaa tggaaattttat tcattttagt agagtctgag aaaactgtgc 780
 gtcttcaaga aaatttggag gcattccatt cactggccct gccgactgac cattggctcc 840
 aatttgcata taaggattgc agcctataaa tcgattctac aggagagagt taaaaagact 900
 tggacagttg tggatgcaaa aaccctaaaa aaagaagata tacaaaaaaga aacagtttat 960
 tgcttaaatg atgatgatga aactgaagtt taaaaagagg atattattca agggttccgc 1020
 tatggaaagtg atataggttcc tttctctaaa gtggatgagg aacaaatgaa atataaatcg 1080
 gaggggaagt gcttctctgt tttgggattt tgtaaatctt ctcaggttca gagaagattc 1140
 ttcatggaa atcaaggctt aaaggcttt gcagcaagag atgatgaggc agctgcagtt 1200
 gcactttccct ccctgattca tgccttggat gacttagaca tggtgccat agttcgatata 1260
 gcttatgaca aaagagctaa tcctcaagtc ggcgtggctt ttcctcatat caagcataac 1320
 tatgagtgtt tagtgtatgt gcagctgcct ttcatgaaag acttgcggca atacatgttt 1380
 tcattcattga aaaacagtaa gaaatatgct cccaccgagg cacagttgaa tgctgttgat 1440
 gctttgattt actccatgag ctggcaagaa aagatgaga agacagacac ctttgaagac 1500
 ttgtttccaa ccacaaaaat cccaaatcct cgatttcaga gattatttca ggtaaagagaa 1560
 gaaggatgaa caagtcatat ttctttaaa tgaaagagag ctaagtgc当地 agttgcggta 1620
 attggccagt cctaaataaa tgtctttttt ctctgaaggc cccatttgct ctatttaatg 1680
 gaagaataac atcttcctct cctacttcag aagtaaaaaa tattctgagc tctta 1735

<210> 2
<211> 2766
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(2766)
<223> any n = a,c,g,t any unknown or other

<400> 2

gtccaccgga agcgagttgc gacacggcag gttccgcggc ggaagaagcg accaaagcgc 60
ctgaggaccg gcaacatggt gcggtcgggg aataaggcag ctgttgtgt gtgtatggac 120
gtgggctta ccatgagtaa ctccattcct ggtatagaat ccccatattga acaagcaaag 180
aagggtataa ccatgtttgt acagcgacag gtgttgctg agaacaagga tgagattgct 240
ttagtcctgt ttggcacaga tggcactgac aatcccctt ctggtggggta tcagttatcag 300
aacatcacag tgcacagaca tctgatgcta ccagattttg atttgctgaa ggacattgaa 360
agcaaaatcc aaccaggttc tcaacaggct gacttcctgg atgcactaat cgtgagcatg 420
gatgtgattc aacatgaaac aataggaaag aagtttgaga agaggcatat tgaatattc 480
actgacctca gcagccgatt cagcaaaaagt cagctggata ttataattca tagttgaag 540
aaatgtgaca tctccctgca atttttcttgc cctttctcac ttggcaagga agatggaagt 600
ggggacagag gagatggccc cttcgctta ggtggccatg ggccttcctt tccactaaaa 660
ggaattacgg aacagcaaaa agaaggctt gagatagtga aaatgggtat gatatctta 720
gaaggtgaag atgggttggaa tggaaattttat tcattcagtg agagtctgaa aaaactgtgc 780
gtcttcaaga aaattgagag gcattccatt cactgccct gccgactgac cattggctcc 840
aatttgcata taaggattgc agcctataaa tcgattctac aggagagagt taaaaagact 900
tggacagttg tggatgcataa aaccctaaaaaa aaagaagata tacaaaaaaga aacagtttat 960
tgcttaatg atgatgtatgaa aactgaactg aatcctcccg ctgaggtgac aacgaaaagt 1020
cagattcctc tctctaaaat aaagaccctt tttcctctga ttgaagccaa gaaaaaggat 1080
caagtgcactg ctcagggaaat tttccaagac aaccatgaag atggacctac agctaaaaaa 1140
ttaaagactg agcaaggggg agccctactc agcgctctca gtctggctga aggcaagtgc 1200
acctctgttg gaagtgtgaa tctctgtgaa aacttccgtt ttcttagtggaa acagaagaag 1260
gccagctttg aggaagcgag taaccagctc ataaatcaca tcgaacaggat tttggataact 1320
aatgaaacac cgtatttat gaagagcata gactgcattc gaggccttcg ggaagaagcc 1380
attaagttt cagaagagca gcgcatttaac aacttctgaa aagcccttca agagaaagt 1440
gaaattaaac attaaatca ttcttggaa attgtgtcc aggtatggaa tactctgatc 1500
accaaagagg aagcctctgg aagttctgtc acagctgagg aagccaaaaaa gtttctggcc 1560
cccaaagaca aaccaagtgg agacacagca gctgtatgg aagaagggtgg tggatgtggac 1620
gatttattgg acatgtatata ggtcgtggat gtatgggaa tctaaagagag ctgcattcgc 1680
tgtgatgttg ggagttctaa caaaacaagt tggatgcggc cattcaaggag gagccaaat 1740
ctcaagaaat tcccagcagg ttacctggag gcgatcattc taattctctg tggatgaat 1800
acacacatataattacaag ggataattta gacccatata aagtttataa agatcattg 1860
ttatttctg gttgggtgtat tatttttctt gtggctttac tgatcttgc atattacata 1920
catgcttga agtttctgaa aagtagatct tttcttgacc tagtataatca gtgacagttg 1980
cagcccttgt gatgtgatta gtgtctcatg tggaaaccatg gcatggttat tgatgagttt 2040
cttaaccctt tccagagtcc tcccttgcct gatcctccaa cagctgtcac aacttgcgtt 2100
gagaagcag tagcattgc ttcttcccaa caagcagctg gtttaggaaa accatggta 2160
aggacggact cacttctt ttagttgag gccttctgt taccacattt ctctgcctct 2220
gtatatagggtt ggtttcttt aagtgggtgg agaaggggag cacaattttcc cttcataactc 2280
cttttaagca gtgagttatg gtgggtggat catgaagaaa agaccttttgc gccaatctc 2340
tgccatatca gtgaacctt agaaactcaa aaactgagaa atttactaca gtagttagaa 2400
ttatatactc tcactgttctt ctacttgcaaa gcctcaaaga gagaaggatcg cgttatattt 2460
aaacacttag gtaacttttc ggtcttccc atttctacat aagtcaatcg tcatcttgc 2520
ggatgggtgtc tcctttacta aataagaaaa taacaaagcc cttattctt tttttcttgc 2580
tcctcattctt tgccttgagt tccagttccctt ctgtttgttgc cagacttctt ggtacccatg 2640
cacctctgtc ttcagcaccctt tcataagtgc tcactaataac acagttttgtt acatgtaaaca 2700
ttaaaggcat aaatgactca taaaaaaaaaaa aaaaaaaaaaaa aattatggta cctcgaatca 2760

atgtgt

2766

<210> 3
<211> 2034
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(2034)
<223> any n = a,c,g,t any unknown or other

<400> 3
ggagacaggt ggtggctacg acggcraagg gagctgagac tgtccaggca gccaggttag 60
gccaggagga ccatgtaat gggccagag ggctcccggg ctgggcaggg accatggct 120
gtggctgcag ctcacacccg gaagatgact ggatgaaaa catcgatgtg tgtgagaact 180
gccatttatcc catagttcca ctggatggca agggcacgct gctcatccga aatgctctg 240
aggtgcggga cccactgggtt acctacgaag gctccaatcc gccggcttc ccactgcaag 300
acaaccttgtt tatcgctctg cacagctatg agccctctca cgacggagat ctggctttg 360
agaaggggga acagctccgc atcctggagc agagccgcga gtggtggaa ggcgcgtccc 420
tgaccacggg ccaggaaggc ttcatccccct tcaattttgt ggc当地 aacagcctgg 480
agcccgaaacc ctggttcttc aagaacctga gccgcaagga cgc当地 cggc当地 540
cgcccgggaa cactcacggc tccttcctca tccggagag cgagagcacc gc当地 gatcgt 600
tttcaactgtc ggtccgggac ttgcaccaga accaggaga ggtggtaaaa cattacaaga 660
tccgtaatct ggacaacggg ggcttctaca tctccctcg aatcaactt cccgcctgc 720
atgaacttgtt cc当地 ctttccca accaatgtt cagatggct gtgc当地 acggg 780
cctgccc当地 ac cc当地 agccccc cagaagccgt ggtggagag cgagtgggag gttccc当地 840
agacgctgaa gctggggag cgctggggg ctggacagtt cggggaggtg tggatgggt 900
actacaacgg gc当地 acgaag ggctgggtga agagcctgaa gc当地 gggc当地 atgtccccgg 960
acgc当地 ttccctt ggccgaggcc aacctcatga agcagctgca acaccagcgg ctggttc当地 1020
tctacgctgt ggtcacccag gagcccatct acatcatcac tgaatacatg gagaatggg 1080
gtcttagtggaa ttttctcaag accccttc当地 gcatcaagtt gaccatcaac aaactcctgg 1140
acatggc当地 cccaaatgca gaaggcatgg cattcattga agagcggaa tatattcatc 1200
gtgacccctcg ggctgccaac attctgggtt ctgacaccct gagctgcaag attgc当地 act 1260
ttggcccttagc acgc当地 cttt gaggacattc accatcaagt cagatgtgt gtttttggg 1320
atctgctgaa cgaaaattgt caccacggc cgcatccctt acccaggat gaccaacccg 1380
gaggtgattc agaacctgga gc当地 gggctac cgcatggtgc gccctgacaa ctgtccagag 1440
gagctgtacc aactcatgag gctgtgctgg aaggagcggc cagaggacgg gccc当地 cttt 1500
gactacctgc gc当地 gtgtc ggaggacttc ttacggccca cagaggccca gtaccaggct 1560
cagc当地 ttgag aggccctggg gttctccccc tttctctcca gc当地 ctgacttg 1620
gggagatgga gttctgtgc catagtcaca tggccatgc acatatggac tctgc当地 catg 1680
aatccc当地 accatgtgaca catatgcacc ttgtgtctgt acacgtgtcc tgttagttg 1740
tggactctgc acatgtctt tacatgtgta gc当地 gtgtcat gtatgtctt gacactgtac 1800
aaggtacccc tttctgtgc tcccatattcc tgagaccaca gagagagggg agaagcctgg 1860
gattgacaga agcttctgcc cacctacttt tctttctca gatcatccag aagttcctca 1920
aggccagga ct当地 atctaa tacctctgtg tgctccctt tgggc当地 cctggc当地 acac 1980
atcaggagtt caataaatgt ctgttcatca ctgttcatca caacaacaaa acaa 2034

<210> 4
<211> 2282
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<222> (1)..(2282)
 <223> any n = a,c,g,t any unknown or other
 <400> 4
 ggagacagg ggtggctacg acggcraagg gagctgagac tgtccagga gccaggttag 60
 gccaggagga ccatgtaat ggggccagag ggctcccggg ctgggcaggg accatggct 120
 gtggctgcag ctcacacccg gaagatgact gnatgaaaa catcgatgtg tgtgagaact 180
 gccattatcc catagtccca ctggatggca agggcacgct gctcatccga aatggctctg 240
 aggtgcggga cccactggtt acctacgaag gctccaatcc gccggcttcc ccactgcaag 300
 gtgaccccgag gcagcaggcctg ctgaaagaca aggccctgcgg atccctggct gttggcttcc 360
 acctctcccc cacctacttt ctcccccggtc ttgccttcct tgcctccac cctgttaactc 420
 caggttctt cccgatccca gctcggttct ccctgacgccc ccttgtctt acagacaacc 480
 tggttatcgc tctgcacagc tatgagccct ctcacacacgg agatctggc tttgagaagg 540
 gggAACAGCT CCGCATCCTG GAGCAGAGCG GCGAGTGGT GAAGGCAGCAG TCCCTGACCA 600
 CGGGCCAGGA AGGCTTCATC CCCTCAATT TTGTGCCAA AGCGAACAGC CTGGAGCCCG 660
 AACCCCTGGTT CCTCAAGAAC CTGAGCCGCA AGGACCGGA CGGGCAGCCTC CTGGCGCCCG 720
 GGAACACTCA CGGCTCCTC CTCATCCGGG AGAGCAGAG CACCGCGGGA TC GTTTTAC 780
 TGTGGTCCG GGACTTCGAC CAGAACCGAG GAGAGTGGT GAAACATTAC AAGATCCGTA 840
 ATCTGGACAA CGGTGGCTTC TACATCTCCC CTCGAATCAC TTTCCCGGC CTGCAATGAA 900
 TGGTCCGCCA TTACACCAAT GCTCAGATG GGCTGTGAC ACGGTTGAGC CGCCCTGCC 960
 AGACCCAGAA GCCCCAGAAG CCCTGGTGGG AGGACAGTG GGAGGTTCCC AGGGAGACGC 1020
 TGAAGCTGGT GGAGCGCTG GGGGCTGGAC AGTTCGGGGA GGTGTGGATG GGGTACTACA 1080
 ACGGGCACAC GAAGGTGGCG GTGAAGAGCC TGAAGCAGGG CAGCATGTCC CGGGACGCCT 1140
 TCCTGGCCGA GGCCAACCTC ATGAAGCAGC TGCAACACCA GCGGCTGGTT CGGCTCTACG 1200
 CTGTGGTACAC CCAGGAGCCC ATCTACATCA TC ACTGAATA CATGGAGAAT GGGAGTCTAG 1260
 TGGATTTCT CAAGACCCCT TCAGGCATCA AGTTGACCAT CAACAAACTC CTGGACATGG 1320
 CAGCCCAAAT TGCAAGAGGC ATGGCATTCA TTGAAGAGCG GAATTATATT CATCGTGACC 1380
 TTCGGGCTGC CAACATTCTG GTGTCTGACA CCCTGAGCTG CAAGATTGCA GACTTGGCC 1440
 TAGCACGCCT CATTGAGGAC AACGAGTACA CAGCCAGGGA GGGGGCCAAG TTTCCATTAA 1500
 AGTGGACAGC GCCAGAACCC ATTAACTACG GGACATTACATCAAGTCA GATGTGTGGT 1560
 CTTTGGGAT CCTGCTGACG GAAATTGTCA CCCACGGCCG CATCCCTTAC CCAGGGATGA 1620
 CCAACCCGGA GGTGATTCAG AACCTGGAGC GAGGCTACCG CATGGTGCGC CCTGACAAC 1680
 GTCCAGAGGA GCTGTACCAA CTCATGAGGC TGTGTGGAA GGAGCGCCCA GAGGACCGGC 1740
 CCACCTTGA CTACCTGCGC AGTGTGCTGG AGGACTTCTT CACGGCCACA GAGGCCAGT 1800
 ACCAGCCTCA GCCTTGAGAG GCCTTGAGAG GCCCTGGGT TCTCCCTT TCTCTCCAGC 1860
 CTGACTTGGG GAGATGGAGT TCTTGTGACA TAGTCACATG GCCTATGAC ATATGGACTC 1920
 TGCACATGAA TCCCACCCAC ATGTGACACACA TATGCACCTT GTGTCTGTAC ACGTGTCTG 1980
 TAGTTGCGTG GACTCTGAC ATGTCTTGTA CATGTGTAGC CTGTGATGT ATGTCTTGG 2040
 CACTGTACAA GGTACCCCTT TCTGGCTCTC CCATTCTG AGACCACAGA GAGAGGGGAG 2100
 AACCTGGGA TTGACAGAAC CTCTGCCA CCTACTTTT TTTCTCAGA TCAATCCAGAA 2160
 GTTCTCAAG GGCCAGGACT TTATCTAATA CCTCTGTGT CTCCCTTGT GTGCTGGCC 2220
 TGGCACACAT CAGGAGTCA ATAATGTCT GTTGTGACT GTTGTACACA ACAACAAAAC 2280
 aa 2282

<210> 5
 <211> 932
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)..(932)
 <223> any n = a,c,g,t any unknown or other
 <400> 5
 gaggcagcag cagcaggagg aggcaagca cagcatcgcc gggaccagac tcgtctcagg 60

ccagttgcag ccttctcagc caaacgccga ccaaggaaaa ctcactacca tgagaattgc 120
 agtgatggc ttttgctcc taggcacatcac ctgtgccata ccagttaaac aggctgattc 180
 tggaaagtct gaggaaaagc agctttacaa caaataccca gatgctgtgg ccacatggct 240
 aaaccctgac ccatctcaga agcagaatct cctagccccca cagaatgctg tgtcctctga 300
 agaaaaccaat gactttaaac aagagaccct tccaaatgttcc acggacacctc cagcaaccga 360
 catggatgtat atggatgtat aagatgtat tgaccatgtg gacagccagg actccattga 420
 ctgcAACGAC tctgtatgtat tagatgacac tgatgttctt caccagtctg atgagtctca 480
 ccattctgtat gaatctgtat aactggtcac tgatgttccc acggacacctc cagcaaccga 540
 agtttactt ccagttgtcc ccacagttaga cacatgtat ggcggaggtt atagttgttgt 600
 ttatggactg aggtcaaaat ctaagaagt tcgcagaccc gacatccagg taaatccctt 660
 aacagacaca cctgtatggtt ctgacttagcg ctcaagtcta gaaaccaca gtttgcata 720
 tcattcattt attcatccat tcattcatcc attcagcaag aattcattca tatttactt 780
 tatgaccattt gaatacaaattt cttttctgc ttggccgttt ttgttaagtct acataatttc 840
 tctcttagattt tgattctcaa acacaattctt accttttggaa atcctggatc agtttatttc 900
 agattaaaaat aaatggaaaa caccattat tt 932

<210> 6
 <211> 1314
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)..(1314)
 <223> any n = a,c,g,t any unknown or other

<400> 6
 agcgtcgac taccgttggc ttccgcaact tcctggatta tcctcgccaa ggactttgca 60
 atatattttt ccgccttttc tgaaggatt tcgctgttc ccgaagtctt ggacgagcgc 120
 tctagctctg tggaaagggtt ttgggtcttc tggctcgat ttgtcaattt ctccctgggg 180
 actgcccgtgg agccgcattcc actgtggatt ataattgcaat catgacgctg gaagagctcg 240
 tggcgtgcga caacgcggcg cagaagatgc agacgggtac cgccgcggg gaggagctt 300
 tgggtggccgc tcagcgcctc gatcgcctca cagtgggggt gtacgagtcg gccaagttga 360
 tgaatgtgtg agtcagaccc ctttcccggtt ctggcgcggg gtgggacggg acctccctc 420
 cgctctggac gcttccgca cgcttgcctt gcatggagct gggacttccc caagtgc 480
 ccgctgtgga tgcagagctt ctctggcgtt ttgtggatcg gggactgccc tatctgtat 540
 tattgtctgc aaacaccctt cccgcgtgg gcctgtctcc ccctaccata tacttgaac 600
 cgtgtccctt cccctcccccc caccgtcacc agcttgcaga ggcaatcccc tgacccctt 660
 cagtttcgaa ccctcacacg gacgcctgga agagccacgg ctgggtggag gtggccagct 720
 actgcgaaga aagccggggc aacaaccagt gggccctta catctctttt caggaacgct 780
 gagggcccttc ccagcagcag aatctgttga ttgtgtgcca caaacaaaaa atacaataaa 840
 tatttgaacc ccctcccccc cagcacaacc ccccaaaaac aacccaaccc acgaggacca 900
 tcggggggcag agtcgttggc gactgaagag gaagaggagg aggagaaggg gagttggcgg 960
 ccgctgcccgc ctccccatc acggagggtc cagactgtcc actcggggggt ggagtggagac 1020
 tgactgcaag cccccaccctc ctgtggactg gagctggcgt ctgcatacga gagacttgg 1080
 tgaacttggt tggccctgtt ctgcaccctc gacaagacca cactttggga cttggagct 1140
 ggggctgaag ttgtctgtt cccatgttgc cccagttgc gaattataga gacaatctat 1200
 ttgtttaactt gcacttggta ttgcacccac tgagagcggat atgggaagca tagatatcta 1260
 tatttttattt tctactatgtt gggccttgcataaaatttctt aaagcctcaa aaaa 1314

<210> 7
 <211> 2130
 <212> DNA
 <213> Homo sapiens

```

<220>
<221> misc_feature
<222> (1)..(2130)
<223> any n = a,c,g,t any unknown or other

<400> 7
cgctgtgtct gcccggtctc tcctggggtc tccgggtctg ccgcctcctg tccctccttc 60
cgctgcccc ggccagaggg gctcgaaggc gcgttgggc ccggggccac gctggagac 120
acgccttcgg cccgcctaa ttcgagccag gcgcggacg cgtccccgg ccggcggag 180
cgggaggggc cccgcgcgc gctcgccct cccggcccc gaccctcct ttgtatattg 240
aataaaaacgc ctccccccgc cgcgcgcgc cttAACCCGc cgcctccgt ctccccggct 300
gcaggcggcg tgcaggacca gcggcggccg tgcaggcgg aacttcggc gcggcctctc 360
ctgggtgtga ccccgccgc gcccgcgcg cgacgatgag gcgcggccg caggctcg 420
aggcgctgct ctgcgcctg gcgcgtccaga cccgcgtgt ctatggcatc aagtggctgg 480
cgctgtccaa gacaccatcg gcgcgtccac tgaaccagac gcaacactgc aagcagctgg 540
agggtcttgt gtctgcacag gtgcagctgt gccgcagcaa cctggagctc atgcacacgg 600
tggtgcacgc cggccgcgc gtcatgaagg cctgtcgccg gcgccttggc gacatgcgt 660
ggaactgctc ctccattgag ctgcgccttca actattgtc tgacctggag agaggaccc 720
gggagtcggc ctgcgtgtat gcgcgtgcgg ccgcgcctat cagccacgcc atgcgcggg 780
cctgcaccc cggcgcacctg cccggctgct cctgcggccc cgtcccaggat gagccacccg 840
ggcccgggaa cccgcgtgggaa agatgtgcgg acaacactcag ctacgggctc ctcatgggg 900
ccaagtttc ccatgcgtccat atgaagggtga aaaaaacagg atcccaagcc aataaactga 960
tgcgtctaca caacagtgaa gtggggagac aggctgcgc gcgcctctgc gaaatgaagt 1020
gtaagtgccta tgggtgtct ggctcctgct ccatccgcac ctgcgtggaaag gggctgcagg 1080
agctgcagga tgggtgtct gacctaaga cccgataacct gtcggccacc aagtagtgc 1140
accgacccat gggcaccgc aagcacctgg tgcccaagga cctggatatac cggcctgtga 1200
aggactcgga actcgcttat ctgcagagct cacctgactt ctgcgtggaaag aatgagaagg 1260
tgggtctcca cgggacacaa gacaggcagt gcaacaagac atccaacggc agcgcacagct 1320
gcgaccttat gtgcgtctac gtcacctgcgc cccgcgtgtga gcgttaccgtg gagcgctatg 1380
tctgcaagtg aggccctgccc ctccgccttca cgcaggagcg aggactctgc tcaaggaccc 1440
tcagcaactg gggccagggg cctggagaca ctccatggag ctctgttttgaattccaga 1500
tgccaggcat gggaggccgc ttgtgttttgc ctttacttgc aagccacca ggaacagaag 1560
gtctggccac cttggaaagga gggcaggaca tcaaaaggaaa ccgacaagat taaaataaac 1620
ttggcagctt gaggctctgg agtgcccaca ggctgggttgc aggagcgggg cttggatcg 1680
gtgagactga tacagacttgc accttcagg gccacagaga ccagcctcgc ggaagggtc 1740
tgccgcctt cttcagaatg ttctgcggga cccctggcc caccctgggg tctgagcctg 1800
ctggcccac ccatgaaat cactagcttgc gttgtaaat gttttcttt gttttttgtc 1860
ttttcttcct ttggatgttgc gaagctacag aaatatttat aaaacatacg tttttctttg 1920
gggtggact tctcaattcc tctttatata ttttatatat ataaatatat atgtatatat 1980
ataatgatct ctattttaaa actagtttt taagcagctg tatgaaataa atgctgagtg 2040
agcccccagcc cggccctgca gttccggcc tcgtcaagtg aactcggcag accctggggc 2100
tggcagaggg agctctccag ttccgggca 2130

```

```

<210> 8
<211> 1847
<212> DNA
<213> Homo sapiens

```

```

<220>
<221> misc_feature
<222> (1)..(1847)
<223> any n = a,c,g,t any unknown or other

```

```

<400> 8
cgctgtgtct gcccggtctc tcctggggtc tccgggtctg ccgcctcctg tccctccttc 60
cgctgcccc ggccagaggg gctcgaaggc gcgttgggc ccggggccac gctggagac 120

```

acgccttcgg ccgcgcctaa ttcgagccag gcgcgggacg cgtccccgg ccggcggag 180
 cgggagggga cgccccccgc gctcgccctc cccgggcccc gaccctcct ttgtaattt 240
 aataaaacgc ctccccccgc cgcgcgccgc cttAACCCGC CGCCTCCGCT CTCCCCGGCT 300
 gcaaggcggcg tgcaggacca gcccggccgc tgcaagcggg ggacttcgac ggcgcggccg 360
 ctgggtgtga ccccgccgc gcccggccgc cgacgatgag ggcgcggccg caggctcg 420
 aggctgctgtct ctgcgcctg gcgcctcaga cccggctgtg ctatggcatc aagtggctgg 480
 cgctgtccaa gacaccatcg gccctggcac tgaaccagac gcaacactgc aagcagctgg 540
 aggtctgtgt gtctgcacag gtgcagctgt gccgcagcaa cctggagctc atgcacacgg 600
 tgggtgcacgc cgccccggcag gtcatgaagg cctgtcgccg ggccttgc gacatgcgct 660
 ggaactgctc ctccatttgag ctgcgcctt actatttgc tgacctggag agagggaccc 720
 gggagtgcgc ctgcgttat gcgcgtgtg cctcaagacc cgataacctgt cggccaccaa 780
 ggttagtgcac cgaccatgg gcacccgcac gcacctggg cccaaggacc tggatatccg 840
 gcctgtgaag gactcggaaac tcgtctatct gcagagctca cctgacttct gcatgaagaa 900
 tgagaagggtg ggctccacg ggacacaaga caggcagtgc aacaagacat ccaacggaaag 960
 cgacagctgc gaccttatgt gctgcggcg tggctacaac ccctacacag accgcgttgt 1020
 cgagcgggtgc cactgttaatg accactgggt ctgctacgtc acctgcccga ggtgtgagcg 1080
 tacccgtggag cgctatgtct gcaagtgggg ccctggccct cgcggccacgc aggagcgagg 1140
 actctgctca aggaccctca gcaactgggg ccagggccct ggagacactc catggagctc 1200
 tgcttgtgaa ttccagatgc caggcatggg aggccgttg tgctttgcct tcacttgaa 1260
 gccaccagga acagaaggc tgccacccct ggaaggaggg caggacatca aaggaaaccg 1320
 acaagattaa aaataacttgc gcaacttgc gctctggagt gcccacagggc tgggtgtaagg 1380
 agcggggcgtt gggatcggtg agactgatac agacttgacc tttcagggcc acagagacca 1440
 gcctccggga aggggtctgc ccgccttctt cagaatgttc tgccggaccc cctggcccac 1500
 cctgggtct gaggcctgtc ggcccaccac atggaatcac tagctgggt tgtaatgtt 1560
 ttctttgtt ttttgcttt ttttcctttt ggtgtggaa gctacagaaa tattataaaa 1620
 acatagctt ttctttgggg tggcacttct caattcctct ttatatatatt tataatata 1680
 aatatatatatg tatatatata atgatctcta tttaaaact agcttttaa gcagctgtat 1740
 gaaataaaatg ctgagtgagc cccagccgc ccctgcagtt cccggctcg tcaagtgaac 1800
 tcggcagacc ctgggctgg cagagggagc tctccagttt ccgggca 1847

<210> 9
 <211> 2369
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)..(2369)
 <223> any n = a,c,g,t any unknown or other

<400> 9
 gaattccgccc agcccccgcgttcccgccgc agtccccgcgc cagtcccagc gccaccgggc 60
 agcagcggcg ccgtgcgtc tccaggcgc aaccatgtcg ccatttcttc ggattggctt 120
 gtccaaacttt gactgcgggt cctgcccgtc ttgtcaggggc gaggctgtt acccttactg 180
 tgctgtgtcgtc gtcaaaaggt atgtcaatc agagaacggg cagatgtatc tccaaaaaaa 240
 gcctaccatg tacccacccct ggacacgcac ttttgatgcc catatcaaca agggaaagagt 300
 catgcagatc attgtgaaag gcaaaaacgt ggacccatc tctgaaacca ccgtggagct 360
 ctactcgctg gctgagaggt gcaggaagaa caacgggaag acagaaatat gtttagagct 420
 gaaacctcaa ggccgaatgc taatgaatgc aagatactt ctggaaatga gtgacacaaa 480
 ggacatgaat gaatttgaga cggaaaggctt ctttgccttgc catcagcgc ggggtgccat 540
 caaggcaggca aagggtccacc acgtcaagtg ccacgagttc actgcccaccc tcttccac 600
 gcccacattt tgctctgtct gccacgagtt tgctggggc ctgaacaaac agggctacca 660
 gtgccgacaa tgcaatgcag caattcacaatc gaagtgtatt gataaaagtta tagcaaagt 720
 cacaggatca gctatcaata gccgagaaac catgttccac aaggagagat tcaaaattga 780
 catgccacac agatttaaag tctacaatta caagagccgc accttctgtg aacactgtgg 840
 gaccctgctg tgggactgg cacggcaagg actcaagtgt gatgcacatgt gcatgaatgt 900

gcatcataga tgccagacaa aggtggccaa cctttgtggc ataaaccaga agctaattggc 960
 tgaagcgctg gccatgattt agagcactca acaggctcg tgccttaagag atactgaaca 1020
 gatcttcaga gaaggccgg ttgaaattgg tctccatgc tccatcaaaa atgaagcaag 1080
 gcccctatgt ttaccgacac cggaaaaaag agagccttag ggcatttcct gggagtctcc 1140
 gttggatgag gtggataaaa tgcctcatct tccagaacct gaactgaaca aagaaagacc 1200
 atctctgcag attaaactaa aaatttgagga ttttatctt cacaatgtt tggggaaagg 1260
 aagtttggc aaggcttcc tgcagaatt caagaaaacc aatcaatttt tcgcaataaa 1320
 ggccttaaag aaagatgtgg tttgtatggc cgatgtgtt gagtgacca tggtagagaa 1380
 gagagttctt tccttggcct gggagcatcc gtttctgacg cacatgttt gtacattcca 1440
 gaccaaggaa aaccttttt ttgtatggc gtacctaacc ggagggact taatgtacca 1500
 catccaaagc tgccacaagt tcgaccttc cagagcgacg ttttatgtctg ctgaaatcat 1560
 tcttggctcg cagttccctt attccaaagg aatagtctac agggacacta agctagataa 1620
 catcctgtta gacaaagatg gacatatcaa gatcgccgtt tttgaatgt gcaaggagaa 1680
 catgttagga gatgccaaga cgaataaccc ttgtggaca cctgactaca tcgccccaga 1740
 gatcttgctg ggtcagaat acaaccactc tttggactgg tggcccttc gggttctcc 1800
 ttatgaaatg ctgattggc agtgcctt ccacggcag gatgaggagg agcttcca 1860
 ctccatccgc atggacaatc ccttttaccc acggggctg gagaaggaa caaaggacct 1920
 tcttggtaag gtaagaagct gaaggttaga agcgaagcca agagcgtt cataagacga 1980
 gcatttaggtc ttctggcag tttctgttc ctcttagttt ccaacttgc tttggcaaac 2040
 aatgattatt attgaactgg gttaaatgg gatgtgcacc gtctgtgtt taatagaggc 2100
 accaatatta tgagcattaa atgtcaaaa gatgttaaga gaaaccctca tttggcatcag 2160
 ttataacata acggcccccag gaaccagttc catggaccc ttatggagat 2220
 gtagttggtt cattaaacaa gcacagtgtt tggctaaaa atcaatcttc tagtacttg 2280
 ggaggtttag gcaaggaggat tgaagttggc agtgtgaggt cagcctggc aatgtatcga 2340
 gaccctgtc tccaaaacaa taaaggaga 2369

<210> 10
 <211> 1101
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)..(1101)
 <223> any n = a,c,g,t any unknown or other

<400> 10
 tccttagtc gaggcaagac gtgcgcccga gccccgccga accgaggcca cccggagccg 60
 tgcccagtc acgcccggcg tggccggcg ccttaagaac caggcaacct ctgccttctt 120
 ccctcttcca ctcggagtcc cgctccgcgc gcccctactg cagccctgc gtcggccggga 180
 ccctcgccgc cgaccagccg aatcgctctt gcagcagagc caacatgccc atcaactcgga 240
 tgcgcatgag accctggcta gagatgcaga ttaattccaa ccaatcccg gggctcatct 300
 ggattaataa agaggagatg atcttccaga tcccatggaa gcatgctgcc aagcatggct 360
 gggacatcaa caaggatgcc ttgttgttcc ggagctggc cattcacaca ggccgataca 420
 aacagggga aaaggagcca gatcccaaga cgtggaaaggc caacttgc tttggccatga 480
 actccctgcc agatatcgag gaggtgaaag accagagcag gaacaaggc agctcagctg 540
 tgcgagtgtt ccggatgtt ccacctctca ccaagaacca gagaaaagaa agaaagtgc 600
 agtccagccg agatgtcaag agcaaggcca agaggaagtc atgtggggat tccagccctg 660
 ataccttctc tggactc agcagctcca ctctgcctga tgaccacagc agctacacag 720
 ttccaggcta catgcaggac ttggagggtgg agcaggccct gactccagca ctgtcgccat 780
 gtgtgttcag cagcaacttc cccgactggc acatcccagt gaaagggttgc cggacagca 840
 ccagtgtatctt gtacaacttc caggtgtcac ccatggccctc cacctctgaa gctacaacag 900
 atgaggatga ggaaggaaaa ttacctgagg acatcatgaa gctttggag cagtcggagt 960
 ggcagccaac aaacgtggat gggaaagggtt acctactcaa tgaacctggc gtccagccca 1020
 cctctgtcta tggagacttt agtgcataagg aggagccaga aattgacagc ccaggggta 1080
 agaaggcccc tggatcctta t 1101

<210> 11
 <211> 4628
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)..(4628)
 <223> any n = a,c,g,t any unknown or other

<400> 11

```

cctcttgcgg ccacaggcgc ggcgtcctcg gcggccggcg gagctagcg ggagccggga 60
cgccgggtca gcccgcgcg cgggaggaac cgggtgtgc cgggagctgg gcccacgt 120
ccggwcggga ccgagacccc tcttagcgca ttgcggcgcac ctgccttcc cccggcgca 180
gcgcgcgcgt gcttaaaag cgcggaaacc caaggacttt tctccgttcc gagctcgaaa 240
cgccccgcag ggcacggta cccgtgtgc agtcgggcac gccgcggcgcc cgggggccct 300
ccgcaggcgat atggagcccg gtctcaagg aaagtggc gccgcgcgtg cgttctggag 360
gagggggca caaggcttgg agaccccggt tggcgacgg gagccctccc cccggcccg 420
ctccggggca ccagctccgg ctccattgtt cccgcggg ctggaggcgc cgagcaccga 480
gcgccgcggg gagtcgagcg cccgcgcgg agctttgtc accccgcac gaccgaaca 540
gagccgggg gcccggggcc ggagccgggg acgcgggcac acgcccgcgc gcacaagcca 600
cgccggactc tcccggggcg gaacctccac gccgagcgcg gtcagtttggaaaaggagga 660
tcgagctcac tggagatcatggat gtcggacccgtt gtcaccaacc tctaactgca 720
gaactggat gtggagctgg aagtgcctcc tcttctggc tggctggc acagccacac 780
tctgcaccgc taggcgtcc cgcacccgtc ctgaacaagg ccagccctgg ggagccctgg 840
tggaaagtggat gtccttctgg tggccacccggt gtgacccgttgc gtcggctgc 900
gggacgatgt gcagagcatc aactggctgc gggacgggggt gcagctggcg gaaagcaacc 960
gcacccgcata cacagggggag gaggtggagg tgcaggactc cgtgcggcga gactccggcc 1020
tctatgttgc ctgtaccatc accccctcggtc gcaatgttgc accctacttc tccgtcaatg 1080
ttttagatgc tctccctcc tcggaggatgt atgtatgttgc tgatgactcc tcttcagagg 1140
agaaagaaac agataacacc aaaccaaacc gtatcccgt agctccatcat tggacatccc 1200
cagaaaagat ggaaaagaaa ttgcattgcg tggcgctgc caagacatgt aagtcaaat 1260
gcccttccat tggggacccca aaccccacac tgcgtgggtt gaaaaatggc aaagaattca 1320
aacctgacca cagaattggc ggctacaagg tccgttatgc cacctggagc atcataatgg 1380
actctgtggt gccctctgac aagggcaact acacccgtcat tggatggaaat ggtacggca 1440
gcatcaacca cacatccatcg ctggatgtcg tggagcggcgc ccctcaccgg cccatcctgc 1500
aagcagggtt gcccggcaac aaaacatgtt ccctgggttag caacgtggag ttcatgtgt 1560
aggtgtacag tgacccgcag cccgacatcc agtggctaaa gcacatcgag gtatggga 1620
gcaagattgg cccagacaac ctgccttatgt tccagatctt gaagactgtt ggagttata 1680
ccacccgacaa agatggggat gtgccttact taagaaatgt tcccttggat gacgcagggg 1740
agatatacgat cttgggggtt aactctatcg gactctccca tcaactctgc tggtgaccg 1800
ttcttggaaagc ccttggaaagag aggccggcag tggatgacccgc gcccctgtac ctggagatca 1860
tcatcttattt cacagggggcc ttccatcatct cctgcattgtt ggggtcggtc atcgcttaca 1920
agatgttgc tggatccatc aagatgtact tccacagccca gatggctgtt cacaagctgg 1980
ccaagagcat cccctctgcgc agacaggtaa cagtgtctgc tgactccatgt gcatccatga 2040
actctgggtt tcttctgggtt cggccatcatc ggcctccctc cagtggactt cccatgttag 2100
cagggtctc tggatgttgc ctcccgaaatcc accctcgctg ggagctgcct cgggacagac 2160
tggatgttgc tggatgttgc ctcccgaaatcc accctcgctg ggagctgcct cgggacagac 2220
tcgggcttggat caaggacaaa cccaaaccgtt tgacccaaatgt ggctgttgc gatgttgc 2280
cgacgcacac agagaaagac ttgtcagacc tggatgttgc aatggatgtt gatgttgc 2340
tcgggaaatgc taagaatatc atcaacccgtt tggggccctg cacgcaggat ggtcccttgc 2400
atgtcatcgat gggatgttgc tccaaaggccca acctggggat gtacccgttgc gcccggaggc 2460
ccccagggtt ggaataactgc tacaacccca gccacaaccc agaggaggat ctctccatca 2520
aggacctgtt gtccttgcgc taccagggtt cccgaggat gggatgttgc gcctccaaga 2580
agtgcataca ccgagacccgtt gcaaggccaggat atgttgcgtt gacagaggat aatgttgc 2640
  
```

agatagcaga ctttggctc gcacggaca ttcaccacat cgactactat aaaaagacaa 2700
 ccaacggccg actgcctgtg aagtggatgg cacccgaggc attatttgac cgatctaca 2760
 cccaccagag tcatgtgtgg tcttcgggg tgcccatac cccgggtgtgc ctgtggagga 2820
 actttcaag ctgctgaagg agggtcaccc catggacaag cccagtaact gcaccaacga 2880
 gctgtacatg atgatgcggg actgctggca tgcagtgc ccacagagac ccaccccaa 2940
 gcaagctggg gaagacctgg accgcacgt ggccttgacc tccaaccagg agtacctgga 3000
 cctgtccatg cccctggacc agtactcccc cagcttccc gacaccggc gctctacgtg 3060
 ctcctcaggg gaggattccg tcttctctca tgagccgtg cccggaggagc cctgcctgcc 3120
 ccgacaccca gcccagctt ccaatggcg actcaaacgc cgctgactgc caccacacg 3180
 ccctccccag actccaccgt cagctgttaac cctcaccac agccctgtc gggccacca 3240
 cctgtccgtc cctgtccct ttctgtggc caggagccg ctgcctacca gggccctcc 3300
 ttgtgtggcct gccttcaccc cactcagctc acctctccct ccacctcctc tccacctgct 3360
 ggtgagaggt gcaaagaggc agatcttgc tgccagccac ttcattccct cccagatgtt 3420
 ggaccaacac ccctccgtc caccaggac tgcctggagg gcaggaggtg ggagccaatg 3480
 aacaggcatg caagtgagag ctccctgagc ttctctctgt cggtttggc tggtttgcc 3540
 tcacccataa gcccctcgca ctctgggtgc aggtgccttgc ttctcaggc tacagcagta 3600
 gggaggtcag tgcttcgtgc ctgcattgaa ggtgaccttgc gcccagata ggtgggtcc 3660
 gtggcttatt aattccgata cttagttgc ttgctgacca aatgcctgtt accagaggat 3720
 ggtgaggcga aggccagggtt gggggcagtg ttgtggccct gggggccac cccaaactgg 3780
 gggctctgtatata gatgtatg aagaaaacac aaagtgtata aatctgatgata tatatttaca 3840
 tgccttttttta aaagggtcgt taccagagat ttaccatcg gtaagatgc tcctgggtgc 3900
 tgggaggcat cagttgctat atattaaaaaa caaaaaagaa aaaaaaggaa aatgttttttta 3960
 aaaaggtcat atattttttgc ctacttttgc tgtttttattt tttaaatttata tgttctaaac 4020
 ctatttttagt tttaggtccc tcaataaaaaa ttgctgctgc ttcatattatc tatgggtcgt 4080
 atggaaaaggg tggaaatgtc cactggaaag aagggacacc cacggccctt ggggcttaggt 4140
 ctgtccccgag ggcaccgt gctcccgccg caggttcctt gtaaccctttt cttccctaggt 4200
 cctgcacccca gacctcacga cgcacccctt gcctccgc tgcttttgc aagtcaaaaa 4260
 aagaagatgt ctgcttcgag ggcaggaacc ccatccatgc agtagaggcg ctggcagag 4320
 agtcaaggccc cagcagccat cgaccatggc tggttcctc caagggaaac cgggtgggtt 4380
 tgggctgggg agggggcacc taccttagggc tttagccacgg ggttagagcta cagtgattaa 4440
 gagaaagaca agggcgtgag ccaccacgc tggcattaat ttgtcccttt ttaagatatg 4500
 gggctcact atgttgcctt ggcgtgtt gaaactctgg gctcaagtga tcctccgtcc 4560
 tttagcctccc aaagtgtgg gattacaggc gtgagccact gtgcccagcc tggatgtttc 4620
 ttaattta 4628

<210> 12
 <211> 1418
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)..(1418)
 <223> any n = a,c,g,t any unknown or other

<400> 12
 ccacgtgggg gctcagcgtg cacccttctt tggctcggg ttaggaggag ctggctgcc 60
 atcggggccgg tgcagatacg ggggtgtctt tttgctcata agaggggcctt cgctggcagt 120
 ctgaacggca agcttgcgtc aggaccctta attaagatcc tcaattggct ggagggcaga 180
 tctcgcgagt agggcaacgc gtaaaaaata ttgctcgtt ggggtgacgcg gtacagctgc 240
 ccaagggcgt tcgtaacggg aatgccgaag cgtggaaaaa aggggagcggt ggcgaaagac 300
 ggggatgagc tcaggacaga gccagaggcc aagaagagta agacggccgc aaagaaaaat 360
 gacaaagagg cagcaggaga gggcccgcc ctgtatgagg acccccccaaga tcagaaaaacc 420
 tcaccccgatg gcaaacctgc cacactcaag atctgctttt gaaatgtgg tggccttcga 480
 gcctggatta agaagaaaagg attagattgg gtaaaggaag aagccccaga tatactgtgc 540
 ctcaagaga ccaaatgttc agagaacaaa ctaccagctg aacttcaggaa gtcgtccgtt 600

ctctctcatc aataactggtc agtccttcg gacaaggaag ggtacagtgg cgtgggcctg 660
 cttcccgcc agtgcacct caaagttct tacggcatag catatgtacc taatgcaggc 720
 cgaggtctgg tacgactgga gtaccggcag cgctggatg aagccttcg caagttcctg 780
 aaggcctgg cttccgaaa gcccttgtg ctgtgtggag acctcaatgt ggcacatgaa 840
 gaaattgacc ttcgcaaccc caaggggaac aaaaagaatg ctggcttcac gccacaagag 900
 cgccaaggct tcgggaaatt actgcaggct gtgccactgg ctgacagctt taggcacctc 960
 taccctaaca caccatatgc ctacaccctt tggacttata tgatgaatgc tcgatccaag 1020
 aatgtgggtt ggcccttga ttacttttg ttgtcccact ctctgttacc tgcattgtgt 1080
 gacagcaaga tccgttccaa gccctcgcc agtgatcaact gtcctatcac cctataccta 1140
 gcactgtgac accacccta aatcaacttg agcctggaa ataagcccc tcaactacca 1200
 ttccctttaaaacactt cagagaaatc tgcattctat ttctcatgta taaaactagg 1260
 aatcctccaa ccaggctcct gtgatagagt tcttttaagc ccaagattt ttatttgagg 1320
 gtttttgtt tttaaaaaa aaattgaaca aagactacta atgactttgt ttgaattatc 1380
 cacatgaaaaa taaagagcca tagttcagc gtcgtacc 1418

<210> 13
 <211> 1558
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)..(1558)
 <223> any n = a,c,g,t any unknown or other

<400> 13
 ccacgtgggg gctcagcgtg cacccttctt tgtgctcggg ttaggaggag ctaggctgcc 60
 atcggggccgg tgcagatacg gggttgcctt tttgctata agagggcctt cgctggcagt 120
 ctgaacggca agctttagtc aggaccctta attaagatcc tcaattggct ggagggcaga 180
 tctcgcgagt agggcaacgc gtaaaaaata ttgctcggt gggtgacgcg gtacagctgc 240
 ccaagggcgt tcgtaacggg aatgccgaag cgtggaaaaa agggagcgtt ggcgaagac 300
 gggatgagc tcaggacagg taagggatg aaatcagccc ttcttcctag aactgcggcg 360
 ggggttttgc tcattccctt gatgtacgag agccagagggc caagaagagt aagacggccg 420
 caaagaaaaa tgacaaaagag gcagcaggag agggcccgac cctgtatgag gaccggccag 480
 atcagaaaaac ctcacccagt ggcaaacctg ccacactcaa gatctgcctt tggaatgtgg 540
 atgggcttcg agcctggatt aagaagaaaag gattagattt gttaaaggaa gaagccccag 600
 atatactgtt cttcaagag accaaatgtt cagagaacaa actaccagct gaacttcagg 660
 agtcgcctgg actctctcat caatactggt cagctccctt ggacaaggaa gggtagtgc 720
 gcgtgggcct gcttcccgc caagtccccac tcaaagtttcttacggcata ggcgtatgagg 780
 agcatgatca ggaaggccgg gtattgtgg ctgaatttga ctcgtttgtg ctggtaacag 840
 catatgtacc taatgcaggc cgaggtctgg tacgactgga gtaccggcag cgctggatg 900
 aaggcttcg caagttcctg aaggccctgg ctccccaaaa gccccttgg ctgtgtggag 960
 acctcaatgt ggcacatgaa gaaattgacc ttgcacccca aaggggaac aaaaagaatg 1020
 ctggcttcac gccacaagag cgccaaaggct tcggggattt actgcaggct gtgcactgg 1080
 ctgacagctt taggcacccctc tacccttacca caccctatgc ctacaccctt tggacttata 1140
 tgcattgttgc aatgtttgtt ggcgccttga ttacttttg ttgtcccact 1200
 ctctgttacc tgcattgtgt gacagcaaga tccgttccaa gccctcgcc agtgcattact 1260
 gtcctatcac cctataccta gcaactgtgac accacccta aatcaacttg agcctggaa 1320
 ataagcccc tcaactacca ttcccttctt aaacactt cagagaaatc tgcattctat 1380
 ttctcatgta taaaactagg aatcctccaa ccaggctcct gtgatagagt tcttttaagc 1440
 ccaagattt ttatttgagg gtttttgtt tttaaaaaa aaattgaaca aagactacta 1500
 atgactttgt ttgaattatc cacatgaaaaa taaagagcca tagttcagc gtcgtacc 1558

<210> 14
 <211> 1911

```
<210> 15
<211> 1476
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(1476)
<223> any n = a,c,g,t any unknown or other
```

<400> 15
tgccgcgtc ccgccccgcca gcgcggccagc gaggaaggcag cgccgcagcccc gcggcccccagc 60
gcaccccgca gacgcggccgc agctcggtcc cgccatgttc caggcgccgc agcgccccca 120
qqaatqqqcc atqqaqqqqcc ccccqccqacqq qctqaaqaaq qaqcqqctac tqqacqaccq 180

ccacgacagc ggcctggact ccatgaaaga cgaggagtag cagcagatgg tcaaggagct 240
 gcaggagatc cgccctcgagc cgaggagggt gcccgcggc tcggagccct ggaaggcaca 300
 gctcacccgag gacggggact cttccctgca cttggccatc atccatgaag aaaaggcact 360
 gaccatggaa gtgatccgca aggtgaaggg agacctggcc ttccctcaact tccagaacaa 420
 cctgcagcag actccactcc acttggctgt gatcaccac cagccagaaa ttgctgaggc 480
 acttctggga gctggctgtg atccctgagct ccgagacttt cgaggaata ccccccata 540
 ccttcctgt gaggcaggct gcctggccag cgtggagtc ctgactcagt cctgcaccac 600
 cccgcaccc cactccatcc tgaaggctac caactacaat ggtcaggagc cctgtaatgg 660
 ccggactgcc cttcaccccg cagtggacct gcaaaatccct gacctgggt cactcctgtt 720
 gaagtgtggg gctgatgtca acagagttac ctaccaggc tattctccct accagctcac 780
 ctggggccgc ccaagcaccc ggatacagca gcagctggc cagctgacac tagaaaacct 840
 tcagatgctg ccagagatg aggtgagga gagctatgac acagagtcag agttcacgga 900
 gttcacagag gacgagctgc cctatgatga ctgtgtgtt ggaggccagc gtctgacgtt 960
 atgagcgcaa aggggctgaa agaacatgga ctgttatatt tgtacaaaaaa aaaagttta 1020
 ttttctaaa aaaagaaaaaa agaagaaaaaa atttaaaggg tgtacttata tccacactgc 1080
 acactgcctg gccccaaacg tcttattgtg gtaggatcag ccctcatttt gttgtttt 1140
 tgaactttt gttagggacg agaaagatca ttgaaattct gagaaaaactt ctttaaacc 1200
 tcacctttgt ggggttttg gagaaggta tcaaaaattt catgaaagga ccacatttt 1260
 tatttattgt gcttcgagtg actgacccca gtggatccct gtgacatgta acagccagga 1320
 gtgttaagcg ttcatgtatg tggtgtgaaa agttactacc tgtcaagggtt tgtgttaccc 1380
 tcctgttaat ggtgtacata atgtattgtt ggttaattt ttggtaactt tatgtatgtat 1440
 atttattaaa cagattttt caaatggaan aaagan 1476

<210> 16
 <211> 2913
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)..(2913)
 <223> any n = a,c,g,t any unknown or other

<400> 16

aagccgcagg agcagcgttg gcaccggcga accatggctg ggattttcta tttcgcccta 60
 ttttcgtgtc tcttcggat ttgcgacgct gtcacaggtt ccagggtata ccccgcaat 120
 gaagttacct tattggattc cagatctgtt cagggagaac ttgggtggat agcaagccct 180
 ctgaaaggag ggtgggagga agttagtatac atggatgaaa aaaatacacc aatccgaacc 240
 taccatgtgt gcaatgtat ggaacccagc cagaataact ggctacgaac tgattggatc 300
 acccgagaag gggctcagag ggtgtatatt gagatataat tcacctttag ggactgcaat 360
 agtcttcgg gcgcatggg gacttgcag gagactttta acctgtacta ctatgaatca 420
 gacaacgaca aagagcgtt catcagagag aaccagttt tcaaaatttga caccattgt 480
 gctgatgaga gcttcacccca agtggacattt ggtgacagaa tcatgaagttt gaacaccgag 540
 atccgggatg tagggcatt aagcaaaaag gggtttacc tggctttca ggatgtgggg 600
 gcctgcacatcg ccctggatc agtccgtgtt ttctataaaa agtgcactt cacagtccgc 660
 aatctggccc agttcctga caccatcaca ggggctgata cgtctccct ggtgaaagt 720
 cgaggctcct gtgtcaacaa ctcagaagag aaagatgtgc caaaaatgtt ctgtggggca 780
 gatggtaat ggctggatc cattggcaac tgcctatgca acgctggca tgaggagcgg 840
 agccggagaat gccaagctt caaaatttggg tattacaagg ctctctccac ggatgccacc 900
 tggccaaatgtt gcccacccca cagctactct gtctggaaag gagccaccc gtcacctgt 960
 gaccggaggct ttttcagagc tgacaaacgt gctgcctcta tgccctgcac ccgtccacca 1020
 tctgctcccc tgaacttgcattttcaatgtc aacgagacat ctgtgaactt ggaatggagt 1080
 agccctcaga atacaggtgg ccggcaggac atttctata atgtggatgtt caagaaatgt 1140
 ggagctgggtt accccagcaa gtggccaccc tggtaatgtt gggtccacta caccacag 1200
 cagaatggct tgaagaccac caaagtctcc atcaactgacc tccttagctca taccattac 1260
 acctttggaaa tctggctgtt gaatggagtg tccaaatata accctaacc agaccaatca 1320

gtttctgtca ctgtgaccac caaccaagca gcaccatcat ccattgcttt ggtccaggct 1380
 aaagaagtca caagatacag tggactcg gcttgctgg aaccagatcg gcccaatggg 1440
 gtaatcctgg aatatgaagt caagtattat gagaaggatc agaatgagcg aagctatcg 1500
 atagttcgga cagctgccag gaacacagat atcaaaggcc tgaaccctt cacttcstat 1560
 gttttccacg tgcgagccag gacagcagct ggctatggag acttcagtgaa gcccggag 1620
 gtttacaacca acacagtgc ttcccgatc attggagatg gggctaactc cacagtcctt 1680
 ctggctctg tctcgccag tgggtgctg gtggtaattc tcattgcagc ttttgtcatc 1740
 agccggagac ggagtaata cagtaaagcc aaacaagaag cggatgaaga gaaacattt 1800
 aatcaagggtg taagaacata tgggacccc ttacgtacg aagatccaa ccaagcagtg 1860
 cgagagttt ccaaagaaat tgacgcattcc tgcattaaga ttgaaaaagt tataggagtt 1920
 ggtgaatttg gtgaggtatg cagtggcgt ctcaaagtgc ctggcaagag agagatctgt 1980
 gtggctatca agactctgaa agctggttat acagacaaac agaggagaga cttcctgagt 2040
 gagggccagca tcatgggaca gtttgcattcc cggaaacatca ttcaacttgcaggcgtggc 2100
 actaaatgtt aaccagtaat gatcataaaca ggttacatgg agaatggctc cttggatgc 2160
 ttccctcagga aaaatgttgc cagatttaca gtcattcagc ttggggcat gcttcgtggc 2220
 attgggtctg ggtgaagta ttatctgtat atgagctatg tgcattcgttgc 2280
 cggaaacatcc tggtaacag caacttggc tgcaaaatgtt ctgattttgg catgtcccga 2340
 gtgttggagg atgatccgga accagcttac accaccagggtt ggcaagat tcctatccgg 2400
 tggactgcgc cagaagcaat tgcctatcgt aaattcacat cagcaagtgc tgatggagc 2460
 tatggaatcg ttatgtgggaa agtgtatgtcg tacggggaga gccccttatgg gatatgtcc 2520
 aatcaagata cctaacactg ctttgggatc tccaagctcc cctgaatttc ctgtgtgg 2580
 atcagtggc gattggctcc agccattaa aatggaccgg tataaggata acttcacagc 2640
 tgctggttat accacactag aggctgtggt gcacgtgaac caggaggacc tggcaagaat 2700
 tggatcaca gccatcacgc accagaataa gattttggc agtgtccagg caatgcgaac 2760
 ccaaattgcag cagatgcacg gcagaatggt tcccgtctga gccagactg aataaactca 2820
 aaactcttgc aatttagtttgc cctcatccat gcacttaat tgaagaactg cactttttt 2880
 acttcgtctt cgccctctga aattaaagaa atg 2913

<210> 17
 <211> 3695
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)..(3695)
 <223> any n = a,c,g,t any unknown or other

<400> 17

ccgtttcctc	ccctccctc	cactcgccg	tccctccctc	ctcctccctc	ctccctccctc	60
ctcccgctcc	tgaagagcgc	gccgcgtggg	ggacggcccg	gttacttctt	ccagagactg	120
acgagtgcgg	tgtcgctca	gctcagagct	cccgagccg	cccgccacgc	gtccggccctc	180
cctgatcg	tctggccgc	gcctcgccc	tcgccccgc	cgcaccgagc	agccgcgggc	240
gcccggcgc	caccgtccc	accaagcgc	ggccctgccc	gcagcggcag	gatgaatgt	300
ttcggaatca	agaatatgg	ccaggtagcc	cctgtggcta	acagttacag	agggacactc	360
aaggccagc	cagccttgc	caccttgc	gggtccctgt	ttgtctttt	tccttctcta	420
aatgaagagc	aaacactgca	agaagtgc	acaggcttg	attccatttc	tcatgactcc	480
gccaactgt	aattgcctt	gttaaccccg	tgcagcaagg	ctgtgtatgag	tcaagcctt	540
aaagctacct	tcagtggctt	ctctggccca	ccaatgagtt	cagtctgggt	aacgtgaatc	600
tgcagaggtt	cggcatgaat	ggccagatgc	tgttaacct	ttggcaaggaa	cgcttctgg	660
agctggcacc	tgactttgt	ggtgacattc	tctggaaaca	tctggagcaa	atgatcaaag	720
aaaaccaaga	aaagacagaa	gatcaatatg	aagaaaattc	acacctcacc	tccgttccctc	780
atggattaa	cagcaataca	ttaggttttgc	gcacagagca	ggcgccttat	ggaatgcaga	840
cacagaatta	ccccaaaggc	ggcctcctgg	acagcatgtg	tccggccctcc	acacccagcg	900
tactcagctc	tgagcaggag	tttcagatgt	tcccaagtc	tcggctcagc	tccgtcagcg	960
tcacctactg	ctctgtcagt	caggacttcc	caggcagcaa	tttgaatttgc	ctcaccaaca	1020

<210> 18
<211> 1535
<212> DNA
<213> Homo sapiens

```
<220>
<221> misc_feature
<222> (1)..(1535)
<223> any n = a,c,g,t any unknown or other
```

<400> 18

```

attaattctg gctccacttg ttgctcgcc caggttggg agaggacgga gggtgccgc 60
agcggttcc tgagttaatt acccaggagg gactgagcac agcaccaact agagaggggt 120
caggggtgc gggactcgag cgagcaggaa ggaggcagcg cctggcacca gggcttgac 180
tcaacagaat tgagacacgt ttgtaatcgc tggctgccc cgccacagg atcccagcga 240
aaatcagatt tcctggtgag gtgcgtggg tggataatt tggaaaaaga aactgcctat 300
atcttgccat caaaaactc acggaggaga agcgcagtca atcaacagta aacttaagag 360
acccccgtg ctccccgtt ttaacttgta tgcttgaaa ttatctgaga gggataaaac 420
atctttcct tcttcctct ccagaagtc attggatat taagcccagg agttgcttg 480
ggatggctg gaagtgaat gtctccaag ttcttcctag tggcttgac catatttc 540
tccttcgccc aggtttaat tgaagccaat tcttgggtt cgcttaggtat gaataaccct 600
gttcagatgt cagaagtata tattatagga gcacagcctc tctgcagcca actgcagga 660
cttctcaag gacagaagaa actgtgccac ttgtatcagg accacatgca gtacatcgga 720
gaaggcgcga agacaggcat caaagaatgc cagtatcaat tccgacatcg acgggtggac 780
tgcagcactg tggataaacac ctctgtttt ggcagggtga tgcagatagg cagccgcgag 840
acggcctca catacggcgt gagcgcagca ggggtggta acgccatgag ccggcgtgc 900
cgcgaggcgc agctgtccac ctgcggctgc agccgcgcg cgcccccggg ggacctgccc 960
cgggactggc tctggggcgg ctgcggcgc aacatcgact atggctaccg ctggccaaag 1020
gagttcgtgg acgcccgcga gggggagcgc atccacgcca agggctccta cgagagtgt 1080
cgcatcctca tgaacctgca caacaacgag gccggccgca ggacgggtga caacctggct 1140
gatgtggcct gcaagtgcga tgggggtgtcc ggctcatgta gcctgaagac atgctggctg 1200
cagctggcag acttcccaa ggtgggtgat gccctgaagg agaagtacga cacactggtt 1260
taaaaaacaa acatcgaaag gcttatgcca aatggaaagat agaatataaa ataaaacgtt 1320
acttgtat tggtaagtgg ttcaattgt cttcagata attcatgtgg agattttgg 1380
agaaaaccatg acggatagtt taggatgact acatgtcaaa gtaataaaag agtggtaat 1440
tttaccaaaa ccaagcttatt tggaaagcttc aaaagtttc tataatgtaat ggaacaaaag 1500
ggaaattctc tttccata tatgttcctt acaaa 1535

```

<210> 19
<211> 3877
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(3877)
<223> any n = a,c,g,t any unknown or other

<400> 19

```

cattagatct ttacatgaaa gtaaaattta taagatttct agaaagtcaa aagatgataa 60
ctatttctta ggataactaaa agcaactcaca ttatagaaaaaaa aatcaggat aactataactc 120
cacaacatt aaaggctccc tataaaaaaaa catttttaat aggcaagcca cagaaaggc 180
aaatattaat agtttcaat acatatgtat gaaaaggaat tgaatctaga atattaaca 240
aagctttaca actcaaaaaaa tacaaaagaaa atattttct tccaaattggc aaattactta 300
aacagaacct tcacaaaaga agataagaat gtttaataaa catttgaagc cataataatg 360
acatcattag ccatgatgga aatgcaatttta taagtaccac ttcacatcca caaaaaaaag 420
ataaaaataa aaggactgag ctcaccaaattttaatgggtgagg atgtggtaat actgaaattc 480
ttgtaccgtg ctccctgaggg tataacatattacaggattt tttgaaaac tagtggttcc 540
ttataaaactt aatgccctgg caacctcaca cctattttact taagaatgaa agggcccccgc 600
cctccctccct cctcgctcgc gggccgggccc cggcatggtg cggcgctcgc gccgatggcg 660
ctgaggcggc gcatggggcg gcccgggctc cccgcgtcgc cgctgccgc gccaccgcgg 720
ctcgccgtgc tgctggcggc gtccggccgc gcaggctgta agctcatggg agcccccgtg 780
aagctgacag tgtctcaggg gcagccgggtg aagctcaact gcagtgtgga gggatggag 840
gagcctgaca tccagtggtt gaaggatggg gctgtgttcc agaacttggaa ccagttgtac 900
atcccagtca gcgagcagca ctggatcgcc ttccctcagcc tgaagtcaact ggagcgctct 960
gacgcccggcc ggtactgggtg ccaggtggag gatgggggtg aaaccgagat ctcccagcca 1020

```

gtgtggctca cggtagaagg tgtgccattt ttcacagtgg agccaaaaga tctggcagtg 1080
 ccacccaatg ccccttcca actgtcttgt gaggctgtgg gtccccctga acctgttacc 1140
 attgtctggt ggagaggaac tacgaagatc gggggacccg ctccctctcc atctgtttta 1200
 aatgtAACAG gggtgaccca gagcaccatg ttttcctgtg aagctcacaa cctaaaaggc 1260
 ctggccttctt ctcgcacagc cactgttac cttcaagcac tgcctgcagc cccctcaac 1320
 atcaccgtga caaagcttc cagcagcaac gctagtgtgg cctggatgcc aggtgctgat 1380
 ggccgagctc tgctacagtc ctgtacagtt caggtgacac aggcccagg aggctggaa 1440
 gtcctggctg ttgtggccc ttgtggccc ttacactgcc tgctccggaa cctgtgcct 1500
 gccaccaact acagcctcag ggtgcgctgt gccaatgcct tggggccctc tccctatgct 1560
 gactgggtgc ccttcagac caagggtcta gccccagcca gcgcctccca aaacctccat 1620
 gccatccgca cagattcagg cctcatctt gagtggaaag aagtgtatccc cgaggcccct 1680
 ttgaaaggcc ccctgggacc ctacaaactg tcctgggttc aagacaatgg aaccaggat 1740
 gagctgacag tggagggac cagggccaat ttgacaggct gggatccca aaaggacctg 1800
 atcgtaatgt tgcgtctc caatgcagtt ggctgtggac cctggatgtca gccactggtg 1860
 gtctttctc atgaccgtgc aggccagca ggcctccctc acagccgcac atcctggta 1920
 cctgtgttcc ttgggtgtct aacggccctg gtgacggctg ctgcctgtgc ctcatacctg 1980
 cttcgaaaga gacggaaaga gacgcggttt gggcaagct ttgacagtgt catggcccg 2040
 ggagagccag ccgttcaattt ccggggcagcc cggtccttca atcgagaaag gcccggcgc 2100
 atcgaggcca cattggacag ctggggcattc agcgatgaac taaaggaaaa actggaggat 2160
 gtgctcatcc cagagcagca gtcacccctg ggcggatgt tggccaaagg agagtttgt 2220
 tcagtgcggg aggcccagct gaagcaagag gatggctct ttgtgaaagt ggctgtgaag 2280
 atgctgaaag ctgacatcat tgcctcaagc gacattgaag agttccttag ggaagcagct 2340
 tgcataaggc agtttgcacca tccacacgtg gccaaacttg ttggggtaag cctccggac 2400
 aggctaaag gccgtctccc catccccatg gtcatcttgc cttcatgaa gcatggggac 2460
 ctgcattgcct tcctgctcgc ctcccgattt ggggagaacc ctttaacctt acccctccag 2520
 accctgatcc gggttcatggt ggacattgccc tgccgcattt agtacacttag ctctcgaaac 2580
 ttcatccacc gagacctggc tgctcgaaat tgcatctgg cagaggatcat gacagtgtgt 2640
 gtggctact tcggactctc ccggaaagatc tacagtact gtcggatcat actcaccctt 2700
 ggagggctgg ctgagcagcc agggcaggca gagcaccagc cagagatcc cctcaatgag 2760
 acacagaggc ttttgcgtctt gcaagcaagggtt ctactgccc acatgtatgtt ttagcccaca 2820
 ggcagagggc atcggggcca ttggccggc tctggggcc actgagctgg ctgactaagc 2880
 cccgtctgac cccagccag acagcaaggt gtggaggctc ctgtggtagt cctccaaagc 2940
 tgcgtggga agccccgact gaccaaatac cccaaatccca gttcttcctt caaccactct 3000
 gtggccagcc tggcatcaat ttggccttgc gcttgcgtt gatggggccat tcctgggtgt 3060
 ctgaacccag gcagctggca ggagtgggtt ggatatgtttt ccatggttac catgggtgt 3120
 gatggcagtg tggggaggcc aggtccagct ctgtggccc tacccttcctt ctgagctgcc 3180
 cctgctgtttt aagtgcatttgc attgagctgc ctccagccttgc gtggcccagc tattaccaca 3240
 ctgggggttt aaatatccat gtgtggccctt ccaagtccaca aagagatgtc cttgtatata 3300
 tcccttttagt gtgagggtt gtaagggtt ggtatcttagt gtctgaatct tcaccatctt 3360
 tctgattccg caccctgcctt acggccaggag aagttgaggg gagcatgtttt ccctgcagct 3420
 gaccgggtca cacaaaggca tgctggatca cccagcttat caggtggccc tcttccaaag 3480
 gcagcgtgcc gagccagca gaggaagggg tgctgtgagg ctggcccagg agcaagttag 3540
 gcccggagagg agttcaggaa cccttccttca taccctacaat ctgagcaccgc taccctatct 3600
 caaaatatcc taagactaac aaaggcagct gtgtctgagc ccaacccttc taaacgggt 3660
 cctttagtgc caactttccc tctaactggc cagcccttcc tgccttcaatgt ctccagagag 3720
 aaatcaggcc tgcgtgggg gaattcctgg aacctggacc ccagccttgg tgggggagcc 3780
 tctggaaatgc atggggcggg tcttagctgt tagggacatttccaaatgtt tagttgtgt 3840
 ttAAAATAGA aataaaattt aagactaaag acctaaa 3877

<210> 20
 <211> 3532
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature

<222> (1)..(3532)
<223> any n = a,c,g,t any unknown or other

<400> 20
ttccccctccc ctccccaccc cctttttcg ctgctctccc gttcccccgc caatggagaa 60
gcgagcttat gacaatacg gggccgcgga gtccgcggga cttcgaccca ggagtaataa 120
aacagaccca gagatcaagg agctggggag ggggcggggg aacaggaggag gagagcgtgt 180
gagcgtctgc gagtgtgtgg aggccgctgc tgtggcagcg caggcggctc ggctccggcc 240
cgagagcgcag cgaaagccgc gagggatgca gcggcggggg ctttggccgg tggaggatgt 300
ggaggtggaa gtggagcgg gtcgcgtccc caagagctcc gccacgcgag gttcgggct 360
cgtggtttg cttccctccg ccaaggctcc cgccgcgtca tccctcgcc cttccgtgc 420
gtcccgccgc ggagccgagc cgccgcgtct gccacagcca ggcgcctccac acactcgac 480
acgctcacac gcttccttc cctgttcccc cgccccctcc ccagctcctt gatctctggg 540
tctgtttat tactccttgtt gcgagtcgg cggactccgg cccgcattt gtcatcagct 600
cgctctccat tggcggggag cgagagcagc cgaagaagg ggtggggagg ggagggaaag 660
gaaagggggt ggaaaactgcc tggagccgtt tctcgcgcg ctgttgggtgc tgccgcgtcc 720
tcctcctctt cccgcgcgcg cggccgcgcg gccgcgcgc cttccggc ttcgcgcgc 780
ccctctccgc ctccatgtgc cgatagcgg gagcgcgtcg gaccctgcg cccgcgtcc 840
cgccgcgtct tcaggcgtct gttagaggctt ctggtaaat cgcattatgc aagactggat 900
ttcctgaaga tgtttacagt gcagtcttat cgaaggatgt gcatgaaga cagctcttc 960
tcaatgtgaa gtttagcaac tgaatggaa aaagaaaagt acaatatgag agcagtggc 1020
ctgcagattt taagggtggat gaagatggca tggtgtatgc cgtgagaagc tttccactct 1080
cttctgagca tgccaagttc ctgatatatgt cccaagacaa agagacccag gaaaagtggc 1140
aagtggcagt aaaattggac ctgaagccaa ccttaactga ggagtcagtg aaggagtca 1200
cagaagttga agaaaatagt tttccaagac aattcagtaa gcacagtggc cacctacaaa 1260
ggcagaagag agactggtc atccctccaa tcaacttgcc agaaaactcc agggacctt 1320
ttcctcaaga gcttgcagg atcaggctctg atagagataa aaaccttca ctgcgtaca 1380
gtgttaactgg gccaggagct gaccagcctc caactggtat cttcattatc aacccatct 1440
cgggtcagct gtcgggtaca aagccctgg atcgcgagca gatagccgg tttcatttga 1500
gggcacatgc agtagatatt aatggaaatc aagtggagaa ccccatttgc attgtcatca 1560
atgttattga catgaatgac aacagaccttg agttcttaca ccaggtttgg aatgggacag 1620
ttcctgaggg atcaaagcct ggaacatatgt tgatgaccgt aacagcaatt gatgtgcac 1680
atcccaatgc cctcaatggg atgttggatgtt acagaatcgt gtctcaggct ccaagcaccc 1740
cttcacccaa catgttaca atcaacaatg agactggta catcatcaca gtggcagctg 1800
gacttgcgtc agaaaaatgt caacagtata cgttaataat tcaagctaca gacatggaag 1860
gcaatcccac atatggccct tcaaacacaa ccacggccgt catcacagtg acagatgtca 1920
atgacaatcc tccagagttt actgccatga cgttttatgg tgaagttcct gagaacaggg 1980
tagacatcat agtagcta ataaactgtga ccgataagga tcaacccat acaccagcct 2040
gaaacgcagt gtacagaatc agtggcggag atcctactgg acgggtcgcc atccagaccg 2100
acccaaacag caacgcggg ttatgtcaccg tggtaaaacc aatcgacttt gaaacaaata 2160
ggatgtttgt ctttactgtt gctgcagaaa atcaagtgcattttagccaa ggaatttcagc 2220
acccgcctca gtcaactgca accgtgtctg ttacagttat tgacgttaat gaaaaccctt 2280
atttggcccc caatccctaag atcattgcgc aagaagaagg gtttgcgtcc ggtaccatgt 2340
tgacaacatt cactgctcag gacccagatc gatataatgc gaaaaatattt agatacacta 2400
aattatctga tcctgcataat tggctaaaaa tagatccgtt gaatggacaa ataactacaa 2460
ttgtgtttt ggaccgagaa tcaccaaatg tgaaaaacaa tatataataat gctactttcc 2520
ttgttctga caatggaaatt cctcctatga gtggacagg aacgctgcag atctatttac 2580
ttgatattaa tgacaatgcc cctcaagtgt tacctcaaga ggcagagact tgcaacttc 2640
cagacccaa ttcaattaat attacagcac ttgattatga cattgatcca aatgtggac 2700
cattgtctt tgatcttcct ttatctccatg tgactattaa gagaatttgg accatcactc 2760
ggcttaatgg tgatgttgc tggtaatt taaagataaa atttcttggaa gctggatct 2820
atgaagttcc catcataatc acagattcgg gtaatccctt ccaatcaat atttccatcc 2880
tgcgcgtgaa ggtttgccag tggacttca acggggactg cacagatgtg gacaggattg 2940
tgggtgcggg gcttggcacc ggtgccatca ttgcatttc gctctgcattc atcatcctgc 3000
ttatccttgtt gctgatgtttt gttgtatgg tggatggacaa gataaaggaa cgccaggcca 3060
aacaactttt aattgtatcca gaagatgtatg taagagataa tattttaaaa tatgtatgaag 3120
aagggtggagg agaagaagac caggactatg acttgagcca gctgcagcag cctgacactg 3180

tggagcctga tgccatcaag cctgtggaa tccgacgaat ggatgaaaga cccatccacg 3240
 ccgagccccca gtatccggtc ccatctgcag ccccacaccc tggagacatt ggggacttca 3300
 ttaatgagaa aacctggccc atacagagct tacacctatg accttggctt cgtggcacc 3360
 atgatttcag caatgcacatc atcatgcctg cctttggacc taatgagtat gaaccacatt 3420
 acatcagaga agagtggcag ggtcaacaat taatattta gagttacaac tacatgtcaa 3480
 cctatgtact tgcatattca gcaatattgc agcatagttatc ta 3532

<210> 21
 <211> 3069
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)..(3069)
 <223> any n = a,c,g,t any unknown or other

<400> 21
 agattatgat cgccctgaggc ccctctccta cccagatacc gatgttatac ttagtgtttt 60
 ttcctttttt tttttttttt tttaagtaat taaggtagt taaatttattt aaagtataca 120
 aagtccaaac agccagggtt aaggctccca agaggccctt ccagggttaag ggagtgcgga 180
 gagggcccccgg tcgccaccccg cggtgcccattt ggagcgggtg aagatgatca acgtgcagcg 240
 tctgtggag gctgcccagg ttttggagcg ccgggagcga gagggtgaaac atggctacgc 300
 ctcttcattt ccgtccatgc cgagcccccg actgcagcat tcaagcccc cacgagggtt 360
 gagccgggca cagaaacaca gcagcgggag cagcaacacc agcactgcca acagatctac 420
 acacaatgag ctggaaaaga atcgcttggaa gaattggttt gttgggagaa gggataccag 480
 aggcatgaag atgctttga agcttattgc agtaatctag acgagctcat ctgcgcctt 540
 gtttagaacg cttaaaagtt ctgattccac taggaccaga ctgcacccgg cacacaacac 600
 ttggtttgc caacaaagcc aaagcacaca tcaagaaact tgaagaagttt gaaagaaaaaa 660
 gccagcacca gctcgagaat ttggAACCGG aacagagatt tttaaagtgg cgactggAAC 720
 agctgcaggc tcctcaggag atggaacgaa tacgaatggc cagcattggc tcaactattt 780
 cttagatcg ttctgattca gaggcggagg agattgaagt ggatgtttt gacacagagt 840
 tctccatgg agaagtggac aatataagta ccaccagcat cagtgcacattt gatgaccaca 900
 gcaagcctgcc gaggatttgg agtgacggg gttactccag tgccagtgcc aaactttcat 960
 tcacttcata gaacccagca tgacataaca gtgcaggc aataattcac tggccaaattt 1020
 caatacaaaac aatctcttaa attgggttca ttagtgcgttcc tcctctttaa aacaaaacaa 1080
 aacaaaacaa aactataactt gaacaaaagg gtcagaggac ctgttattttt gcaaatactt 1140
 agcaaaaaagt gggcagagc tcccaaggaa aacaaatattt cagaatattt atattggaaa 1200
 aatcacaattt tttaatggca gcagaaaact tttgttattttt tttcttgatt tgagggtt 1260
 gagaagagga cattggagat gccatcctt ttctttttt tagtttgcctt atactacattt 1320
 gagtagacac atttaaggat ggggttatgtt acccttcctg agctttatgg tcctaaaagg 1380
 aaaataaaaaa ctattcgaat gaaaagacaa gaaaatcagg tattaatctt ggatagctaa 1440
 taatgagcta tttaaaactca gcctgggaca gtttattcatg aagcctgtgg atgatcaatc 1500
 ctttattttt attttttttt ttgtttttttt agtcatttc atgctctgc aaggagaga 1560
 ctcccatgaa gccttttggaa agggatcatc atgcagctca actttctgtt ggattccatg 1620
 ctaagcaagc taaccttatac ctgcattgtt agcactaggc acccagctgc cacctctcca 1680
 tcctgctgcc cttagggccac atggggagcg tccatgcattt acagcctcta tcctacaagg 1740
 cctatgatgtt tggattgggg gggccaaaag gaaaagctc catgtgcctt tttgtctgcg 1800
 tgggtcagaa gagtttgca cgcagattttt caggccaaagg tctgagccac agcagcattt 1860
 ttatccaga ttgttataac ttgttataatgtt tttttttttt tttttttttt tttttttttt 1920
 gcttatccat aaaaaaaaaat agatgtctttt tttttttttt tttttttttt tttttttttt 1980
 catctatttt gatgcagcat ttgtataatgtt taaaacaccc tttttttttt tttttttttt 2040
 gcacaaaaatg aatgaggtct ggcttaggtt gaaaaggggtt caatgtttttt tttttttttt 2100
 gaatcattttt cttttaccatg ctgtttttttt tttttttttt tttttttttt tttttttttt 2160
 gttaacatag ttaagttcag cactttgtctc attttttttt tttttttttt tttttttttt 2220
 ctacaggcag tctctctt cctcacatgc ccactgtgc ggtgttattt tttttttttt 2280

```

gaatattttc agtaatgtta ttttcttcta agtgaardt ctggcctgca ctttgatgtc 2340
atgtgttccc ttgttcttcc aaactccaag gttcccttgt ggcctctcc cttaccctgg 2400
gaaggcctct tgagacacctt accccctggct gtttggactt tgtatacttt aaataattta 2460
actaccctta attacttaaa aaaaaaaaaa aaagctttat gatttcata acttattgt 2520
gatttaatg gattgttaat ttcatgtcctg tagttttatt ttatgtttag atagggctgg 2580
gcaaggaaaa agaaaataaa gacaaccata tttagcagt cagttgagtt gtgtgttaat 2640
gttagactat ccctttgtga gtgacacttt aacagcattc actgcttcta tatatagtgt 2700
accatcttgg tcatacatta cgcctcaaca tatacttgg ctcttcctt gcctccagaa 2760
gaagttttc ctgttattgtc ctatgttca gtggaaagaaa ttctttgaag tagatgtgag 2820
tgaaaaactg catgccttta gaagcccagt atcagaactt gctacgttcc aggtgctagg 2880
gacttaatga aaaacaggac aaaacaattt ctttttgtgg cccaggtaaa ttatttctgg 2940
tttcacttat aattactaat ggctgagtca agatgttgc tctgtgttg cttaactcttg 3000
atcaagtgtg agacagtttgc aagactgtgc taccatacaa agtgaatgaa gccagtgact 3060
aagaaacaa

```

<210> 22
<211> 2971
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> (1)..(2971)
<223> any n = a,c,g,t any unknown or other
```

<400> 22
cggccgcgca aggaggcgcg ctgcgagggc gcggggctgg ccccccgcgc gccccccggct 60
gtgcccccccg ccgtggccgc gccccagccc ccggccctgc ccgaggaccc cgctggggcc 120
aagcccaggt gcccctctc agacatttc aacaccagcg agaactcgat ggagaagcac 180
atcaacactt ttctgcagaa cgtcagatt ctgctcgagg ccgcagcta cctggagcag 240
atcgagaaaag aaaacaaaaaa gtgtAACAT ggctacgcct cttcattccc gtccatgccg 300
agcccccgac tgtagcattc aaagccccca cggaggttga gccgggcaca gaaacacagc 360
agcgggagca gcaacaccag cactgccaac agatctacac acaatgagct ggaaaagaat 420
cgacgagctc atctgcgcct ttgttagaa cgcttaaaag ttctgattcc actaggacca 480
gactgcaccc ggcacacaac acttggtttg ctcaacaaag ccaaggcaca catcaagaaa 540
cttgaagaag ctgaaagaaa aagccagcac cagctcgaga atttggaaacg agaacagaga 600
tttttaaagt ggcgactgga acagctgcag gtcctcagg agatggaaacg aatacgaatg 660
gacagcattg gatcaactat ttcttcagat cgttctgatt cagagcgaga ggagattgaa 720
gtggatgttg aaagcacaga gttctcccat ggagaagtgg acaatataag taccaccagc 780
atcagtgaca ttgatgacca cagcagcctg ccgagtttgg ggagtgacga gggtaactcc 840
agtgcagtg tcaaactttc attcacttca tagaacccag catgacataa cagtgcaggg 900
caaaatattc actggggccaa ttcaatacaa acaatcttt aaattgggtt catgatgcag 960
tctcctctt aaaacaaaac aaaacaaaac aaaactatac ttgaacaaaa gggtcagagg 1020
acctgtattt aagcaaatac ttagcaaaaa gtggggcaga gctccaaagg agaacaataa 1080
ttcagaatat tcataattgga aaaatcacaat ttttaatgg cagcagaaaa ctttgtgtgaa 1140
attttcttga tttagtttga ttgagaagag gacattggag atgcattcc tttctcttt 1200
tctagttgc tcataactaca ttgagtagac acatttaagg atgggttat gaacccttcc 1260
tgagctttat ggtcctaaaa gcaaataaa aactattcga atgaaaagac aagaaaatca 1320
ggtattaaatc ttggatagct aataatgagc tattaaaact cagcctggaa cagtttatca 1380
tgaaggctgt ggatgatcaa tccttttta ttatttttt ttttttggaa aaagctcatt 1440
tcatgctctg caaaaggaga gactccatg aagccttttgaagggatca tcatgcagct 1500
caacttctg ttggatttca tgctaagcaa gctaaccctta tcctgcattt ttagcactag 1560
gcacccagct gccacctctc catcctgctg cccttagggc acatggggac agtccatgca 1620
tgacagcctc tattcctacaa ggcctatgag tatggattgg gggggccaaa agggaaaagc 1680
tccatgtgcc tctttgtctg cgtgggtcag aagagtttg cacgcagatt agcaggccaa 1740
ggtctgagcc acagcagcat ttttatttca gattttgata actgtttata ttttgtgaaa 1800

accaaaatga catctttta aagcttatcc ataaaaaaaaa atagatgtct tttatagtgg 1860
 aaaaacacat gggaaaaaaa atcatctatt ttgatgcagc atttgataat gataaaacac 1920
 ctcacacctc actcttataa gtgcacaaaa tgaatgaggt ctgggctagg tagaaaaagg 1980
 gtcaatgcta ttttgttt tagaatcatt acctttacc agctttaacat catctgatat 2040
 ctatagtaga cacactatca tagttAACAT agttaAGTTC agcacttGTC tcattttAAAT 2100
 gtaaagattt gcttccattt tcctacaggc agtctctc ttccctcacag tcccactgtg 2160
 caggtgctat tgTTACTCTT acgaatattt tcagtaatgt tattttcttc taagtgaat 2220
 ttctagcctg cacttGATG tcatgtgttc cctttgtctt tcaaactcca aggttcccct 2280
 gtggccctct cccttACCCt ggaaggcct cttggagacc ttacccctgg ctgtttggac 2340
 tttgtatact ttaaataatt taactaccct taattactta aaaaaaaaaa aaaaagctt 2400
 atgattttca taacttattt ctgatTTAA tggatgtta atttcagttc tgtatTTTA 2460
 tttatgttt agataggcgt gggcaaggaa aaagaaaata aagacaacca tatttagcag 2520
 tgcagttgag ttgtgtgtt atgttagact atcccttgt gagtgacact ttaacagcat 2580
 tcactgcttc tatataatgt gtaccatctt ggtcatacat tacgcctcaa catatactt 2640
 tgctcttcct ttgcctccag aagaagttt tccttgattt tgctatgtt cagtgaaaga 2700
 aattcttga agtagatgtg agtggaaaac tgcattgcctt tagaagccca gtatcagaac 2760
 ttgtacgtt tcaggtgcta gggacttaat gaaaacagg acaaacaat tccttttgt 2820
 ggcccaggta aattatttct ggttcaactt ataattacta atggctgagt caagatgtt 2880
 tctctgtgtt tgcttactt tcatcaagtg tgagacagtt tgaagactgt gctaccatac 2940
 aaagtgaatg aagccagtga ctaagaaaaca a 2971

<210> 23
 <211> 1394
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)..(1394)
 <223> any n = a,c,g,t any unknown or other

<400> 23

actcaactata gggctcgagc ggccgccccgg gcaggtgtct gcccgcagcc atgagcgtgc 60
 tcggcccccgs tsgagycrcy wgtscctctaa wkagtcctca cccgcgtcca ggaccactt 120
 gcacgcattga gtcgcccccc tcgagccagc cccgcacat gcccgcgtcc aaagaaaaat 180
 ccaagaggaa gaaggatcta cggatatcct gcatgtccaa gccacccgca cccacccca 240
 caccccccgg gAACCTGGAC tcccggacct tcattcaccat tggagacaga aactttgagg 300
 tggaggctga tgacttggtg accatctca gactggccg tggagcctat ggggtggtag 360
 agaagggtgcg gcacgcaccc agcggcacca tcatggccgt gaagcggatc cggggccaccg 420
 tgaactcaca ggagcagaag cgctgctca tggacctgga catcaacatg cgcacggctc 480
 actgtttcta cactgtcacc ttctacgggg cactattcag agagggagac gtgtggatct 540
 gcatggagct catggacaca tccttggaca agtttacccg gaaggtgctg gataaaaaca 600
 tgacaattcc agaggacatc ctggggaga ttgctgtgtc tattgtgcgg gcccggagc 660
 atctgcacag caagctgtcg gtgatccaca gagatgtgaa gcccctccat gtccttatca 720
 acaaggaggg ccatgtgaag atgtgtgact ttggcatcag tggctacttg gtggactctg 780
 tggccaagac gatggatgcc ggctgcaagc cctacatggc ccctgagagg atcaacccag 840
 agctgaacca gaagggtctac aatgtcaagt ccgacgtctg gaggcctgggc atcaccatga 900
 tttagatggc catcctgcgg ttcccttacg agtccctgggg gaccccggtc cagcagctga 960
 agcaggtggt ggaggagccg tccccccagc tcccagccga ccgttctcc cccgagttt 1020
 tggacttcac tgctcaatgc ctgaggaaga accccgcaga gcgtatgagc tacctggagc 1080
 tgattggagc tgatgcgttc tccccccaccc ccttaggtac cagcaggcag agccttggcc 1140
 tctgctcagg ctggggtcca gtgggggggg cccaaatct ctgctcagag aagtgcaggg 1200
 ggagccttcc agctcaactt ccctgaggac tggcttgaca ggggctatgg gtttgcttt 1260
 gtgttggttt taaaaaaaa aatataattt tttgaaaaaa acgactgccc atccgggtc 1320
 ctttccctga tgggtgggg cagttacctg gttgctgttt taattaaaaa cttagagca 1380
 caatggatct cgag 1394

```

<210> 24
<211> 1717
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(1717)
<223> any n = a,c,g,t any unknown or other

<400> 24
tccctggcc ccaggagaca ggggttgcag aaagccgaga tcgtgccact gcactccatc 60
ctgggtgaga gagcaagacc ctgtctcaac aaaaaatttt taaaaaataa aataaataat 120
aatacagcaa aaagattgc tttctcggt tcagtgtgg cggttaactcc atcgtgcaat 180
gagaaggcg aatttcttcc agacaccaat cccggaggc gcttctgtt ctaggctccc 240
agaaagcagg gtccggacgt cattgggagg cgaggctaga gcgggggtgt gtgtggcgga 300
gggaggcggg gctggaggaa acgctcggtt ctaagaacg cagcgcttt cccgctctgg 360
agaggcgcga ctgggcttgc gcagtgtcga cgccgccc ggcgcgccc ggtttgaag 420
gcccggcct cgccgcgttgc cgcaacttgc ccagcgcagg ggcgcaccccg ctccctccca 480
ctctccctgc ccctcgacc ccatactcta cctcatcctt ctggccagc gaagccccacg 540
acgttgacat gccggagatc cgccctccgccc atgtcggtc ctgcagcagc caggactcga 600
ctcaactgtgc agaaaatctt ctcaaggcag acacttaccg aaaatggcgg gcagccaagg 660
caggcgagaa gaccatctt gtggtcctac agttggagaa ggaggagcag atacacagt 720
tggacattgg gaatgtggc tcagcttcg tggaggtgt ggtggcagt tcagctggag 780
gcgcgtggga gcaagactat gaggtccttc tggcacctc atcttcatg tcccttccg 840
agagccgcag tggctcaaacc ccaaccgcg ttgcacatgtt tgggcctgac aagctggtcc 900
gggcagccgc cgagaagcgc tgggaccggg tcaaaaattgt ttgcagccag ccctacagca 960
aggactcccc ctggcgttgc agttttgtac ggtttcatag ccccccagac aaagatgagg 1020
cagaggcccc gtcccagaag gtgcacagtga ccaagcttgc ccagttccgt gtgaaggagg 1080
aggatgagag cgccaaactct ctgaggccgg gggctctt cttcagccgg atcaacaaga 1140
catccccagt cacagccagc gacccggcag gacctagcta tgcagctgt accctccagg 1200
cttctagtgc tgcctctca gcctctccag tctccaggc cataggcagc acctccaagc 1260
cccaggagtc tccctggcat tcgttcgtcc ccgtatggatc tacagttgca atgagaagca 1320
gaagttactt cctcaccaggc tctatgggtt ggtgcgcggaa gcctgaagta tgtgtatac 1380
acacacacac acacacacac acacacacac acacacgtt catttaataa agatgagtt 1440
gttctcatcc aagagtctcc caaaactcta agaggctccc tgggacactgg ggaagaatgc 1500
tggcacctc cgtcagagat ctggtagaca aggaacttgc tgtctttctt gcttggccccc 1560
ttatccctgt gttggcaaga ggcaggaaac tggaatctg accctcagca ctgcccctca 1620
acttttctg gccctctgag ccacacctgt atcttgc tccctttgtt gctggannnt 1680
ggtaaccat gaggcttgc tctctcctga agcctca 1717

```

```

<210> 25
<211> 1346
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(1346)
<223> any n = a,c,g,t any unknown or other

<400> 25
tccctggcc ccaggagaca ggggttgcag aaagccgaga tcgtgccact gcactccatc 60
ctgggtgaga gagcaagacc ctgtctcaac aaaaaatttt taaaaaataa aataaataat 120

```

aatacagcaa aaagattgc tttctcggt tcagtgtggg cggttaactcc atcgtcaat 180
 gagaaggcg aatttcttcc agacaccaat cccggagggtc gcttctgttg cttaggctccc 240
 agaaaaggcagg gttcggacgt cattgggagg cgaggctaga gcgggggttg gtgtggcgga 300
 gggaggcgaa gctggaggaa acgctcggtg ctaaggAACG cagcgcttt cccgctctgg 360
 agaggcgca ctgggcttgc gcagtgtcga cccggcgcc ggcgcgcgg ggTTTGAAG 420
 gcccggcct cgcgcgttgc cgacttttag ccagcgcagg ggcgcaccccg ctccctccca 480
 ctctccctgc ccctcgacc ccatactcta cctcatcctt ctggccaggc gaagccccacg 540
 acgttgacat gccggagatc cgccctccgc atgtcggtc ctgcagcagc caggactcga 600
 ctcaactgtgc agaaaatctt ctcaggcag acacttaccg aaaatggcg ggAGGCAAG 660
 caggcgagaa gaccatctt gtggccttac agttggagaa ggaggagcag atacacagt 720
 tggacattgg gaatgtggc tcagcttgc tggagggtgt ggtggggcagt tcagctggag 780
 ggcgtgggaa gcaagactat gaggtccttc tggcacctt atctttcatg tcccccctccg 840
 agagcccgaa tggctcaaACG cccaaccgcg ttgcacatgtt tgggcctgac aagctggtcc 900
 gggcagccgc cgagaagcgc tgggaccggg tcaaaaattgt ttgcagccag ccctacagca 960
 aggactcccc ctggcgttgc agtttgcgt ggtttcatag ccccccagac aaagatgagg 1020
 cagaggcccc gtcccagaag gtgacagtga ccaagcttgc ccagttccgt gtgaaggagg 1080
 agatgagag cgcccaactct ctgaggccgg gggctcttctt cttcagccgg atcaacaaga 1140
 catccccagt cacagccagc gaccggcag gacctagcta tgcagctgtt accctccagg 1200
 ctcttagtgc tgcctccca gcctctccag tctccaggc cataggcagc acctccaagc 1260
 cccaggagtc atcagacttt ggtgggggtgg aggaggagag aagctggagg cctcaatcca 1320
 tccccatccc ctcagccccca gggagt 1346

<210> 26
 <211> 1643
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)..(1643)
 <223> any n = a,c,g,t any unknown or other

<400> 26
 tccctggcc ccaggagaca ggggttgcag aaagccgaga tcgtgccact gcactccatc 60
 ctgggtgaga gagcaagacc ctgtctcaac aaaaaatttt taaaaaaataa aataaataat 120
 aatacagcaa aaagattgc tttctcggt tcagtgtggg cggttaactcc atcgtcaat 180
 gagaaggcg aatttcttcc agacaccaat cccggagggtc gcttctgttg cttaggctccc 240
 agaaaaggcagg gttcggacgt cattgggagg cgaggctaga gcgggggttg gtgtggcgga 300
 gggaggcgaa gctggaggaa acgctcggtt ctaaggAACG cagcgcttt cccgctctgg 360
 agaggcgca ctgggcttgc gcagtgtcga cccggcgcc ggcgcgcgg ggTTTGAAG 420
 gcccggcct cgcgcgttgc cgacttttag ccagcgcagg ggcgcaccccg ctccctccca 480
 ctctccctgc ccctcgacc ccatactcta cctcatcctt ctggccaggc gaagccccacg 540
 acgttgacat gccggagatc cgccctccgc atgtcggtc ctgcagcagc caggactcga 600
 ctcaactgtgc agaaaatctt ctcaggcag acacttaccg aaaatggcg ggAGGCAAG 660
 caggcgagaa gaccatctt gtggccttac agttggagaa ggaggagcag atacacagt 720
 tggacattgg gaatgtggc tcagcttgc tggagggtgt ggtggggcagt tcagctggag 780
 ggcgtgggaa gcaagactat gaggtccttc tggcacctt atctttcatg tcccccctccg 840
 agagcccgaa tggctcaaACG cccaaccgcg ttgcacatgtt tgggcctgac aagctggtcc 900
 gggcagccgc cgagaagcgc tgggaccggg tcaaaaattgt ttgcagccag ccctacagca 960
 aggactcccc ctggcgttgc agtttgcgt ggtttcatag ccccccagac aaagatgagg 1020
 cagaggcccc gtcccagaag gtgacagtga ccaagcttgc ccagttccgt gtgaaggagg 1080
 agatgagag cgcccaactct ctgaggccgt aggactatat gaggacccgg gttcagttt 1140
 tgatcacagc acaggaatgg gatcccagct ttgaggaggc cctgtatggac aaccctcc 1200
 tggcattcgt tcgtccccga tggatctaca gttcaatga gaagcagaag ttacttcctc 1260
 accagctcta tgggggtgtt ccgcaaggct gaagtatgtt ctatacacac acacacacac 1320
 acacacacac acacacacac acgatgcatt taataaagat gagttgggtc tcataccaaga 1380

gtctcccaa actctaagag gctccctggg acctggggaa gaatgctggg caccctcg 1440
 agagatctgg tacacaagga actctttgtc tcttctgctt ggccccttat ccctgtgtt 1500
 gcaagaggca gggactggg aatctgaccc tcagcaactgc ccctcaactt tttctggccc 1560
 tctgagccac acctgtatct tgctgtccc tttgtggctg gannntgggt acccatgagg 1620
 ctgtctctc tcctgaagcc tca 1643

<210> 27
 <211> 2713
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)..(2713)
 <223> any n = a,c,g,t any unknown or other

<400> 27

tcccttgcc ccaggagaca ggggttgcag aaagccgaga tcgtgccact gcactccatc 60
 ctgggtgaga gagcaagacc ctgtctcaac aaaaaatttt taaaaaaaataa aataaataat 120
 aatacagcaa aaagattgc tttctcggtc tcagtggtt cgtaactcc atcgtgcaat 180
 gagaaaggcg aatttcttcc agacaccaat cccggaggc gcttctgtt ctaggctccc 240
 agaaaagcagg gttcggacgt cattgggagg cgaggctaga gcgggggtt gtgtggcgga 300
 gggaggcgaa gctggaggaa acgctcggtt ctaagaacg cagcgctt cccgctctgg 360
 agaggcgcga ctgggcttgc gcagtgtcga cggccggccgc ggccggccgg ggtttaaag 420
 gcccggcct cgcgcgttgc cgcacttttag ccagcgcagg ggcgcaccccg ctccctccca 480
 ctctccctgc ccctcgacc ccataactcta cctcatcctt ctggccaggc gaagccccacg 540
 acgttgacat gccggagatc cgcctccgcgc atgtcggtc ctgcagcagc caggactcga 600
 ctcaactgtgc agaaaatctt ctcaaggcag acacttaccg aaaatggccg gcagccaagg 660
 caggcgagaa gaccatctt gtggtcctac agttggagaa ggaggagcag atacacagt 720
 tggacattgg gaatgatggc tcagtttcg tggaggtgt gttggggcgt tcagctggag 780
 ggcgtgggaa gcaagactat gaggtccttc tggcacctc atcttcatg tcccttcg 840
 agagccgcag tggctcaaacc cccaaccgcg ttgcacatgt tggccctgtc aagctggcc 900
 gggcagccgc cgagaagcgc tgggaccggg tcaaaaattgt ttgcagccag ccctacagca 960
 aggactcccc ctttggcttgc agtttgcgtc ggtttcatag cccccccagac aaagatgagg 1020
 cagaggcccc gtcggcagaag gtgacagtga ccaagcttgg ccagttccgt gtgaaggagg 1080
 agatgagag cgccaaactct ctgaggcccg gggctctt cttcagccgg atcaacaaga 1140
 catccccagt cacagccgcg gacccggcag gacctagcta tgcagctgt accctccagg 1200
 cttctagtgc tgcctcctca gcctctccag tctccaggc cataggcagc acctccaagc 1260
 cccaggagtc tcccaaaggaa aagaggaatg tggatttgc ccaagaagaa aagaagaccc 1320
 ccagcaaacc accagcccg ctgtcgccat ctgttccaa gagacctaaa ttgcacagtc 1380
 caactcgatc cccagccaca gcccccagtcc ctgcccggc acagggggca gtacaggc 1440
 aaccccgagg agaaggcacc gagcccagac gacccggc tggcccgagag gagctgggaa 1500
 agatcctca ggggtgttgc tgggtgttgc gtggcttccaa gaaccccttc cgctccgagc 1560
 tgcgagataa ggccttagat cttggggccaa agtacggcc agactggacc cgggacagca 1620
 cgcacccat ctgtgcctt gccaacaccc ccaagtagac ccaggcttgc ggcctgggag 1680
 gcccgcacgt gcgtaaggag tgggtgttgc actgtcaccc catgcgttgc cggctggcc 1740
 cccggaggta cctcatggca gggccaggat ccagcgttgc ggaggatgag gcctctcaca 1800
 gcggtggcag cggagatgaa gcccccaagc ttccctcagaa gcaaccccaag accaaaacca 1860
 agcccactca ggcagctgaa cccagctcac cccagaagcc cccaaacccctt gaagagacca 1920
 aagcagccctc accagtgttc caggaagata tagacattga ggggttacag tcagaaggac 1980
 aggacaatgg ggcggaaagat tctggggaca cagaggatga gctggaggagg gtggcagac 2040
 agaaggaaca cagactgccc cctggccagg aggagaatgg ggaagaccccg tatgcaggct 2100
 ccacggatga gaacacggac agtggaggaac accaggagcc tcctgtatctg ccagtcctg 2160
 agctccccag atttcttccaa gggcaagcac ttcttcattt acggggaggat ccctggggac 2220
 gagcggcgaa aactcatccg atacgtcaca gccttcaatg gggagctccc tggcattcgt 2280
 tcgtccccga tggatctaca gtttcaatg gaagcagaag ttacttcctc accagctcta 2340

tgggtggtg	ccgcaagcct	gaagtatgtg	ctatacacac	acacacacac	acacacacac	2400
acacacacac	acgatgcatt	taataaagat	gagttggttc	tcatccaaga	gtctccaaa	2460
actctaagag	gctccctggg	acctggggaa	aatgctggg	caccccgctc	agagatctgg	2520
tacacaagga	actcttgc	tcttctgctt	ggccccttat	ccctgtgtt	gcaagaggca	2580
gggaaactggg	aatctgaccc	tcagcaactgc	ccctcaactt	tttctggccc	tctgagccac	2640
acctgtatct	tggctgtccc	tttgtggctg	gannntgggt	acccatgagg	cttgctctc	2700
tcctgaagcc	tca					2713

<210> 28
<211> 2143
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(2143)
<223> any n = a,c,g,t any unknown or other

<400> 28						
cgaggtgccg	ggtcgcgcct	gcaccgaagg	tcccggctcc	tgtgccctcc	ctgcagccgt	60
caggaccgt	cccccaactc	cccttccgc	tcagggcagg	tcctcgccgc	ccatgctggc	120
cgctggggac	ccgcgcagcc	cagaccgttc	ccggggccggc	cagccggcca	ccatgggtggc	180
cctgaggcct	gtgcagcaac	tccagggggg	ctaaagggt	cagagtgcag	gccgtggggc	240
gcgagggtcc	cgggcctgag	ccccgcgc	tggccggggc	catcgcttcc	cgcatgagct	300
tcaagctctc	caagaggaag	caacccaaga	cgttacccgt	gaggatcg	accatggacg	360
ccgagatgga	gttcaattgc	gagatgaagt	ggaaaggaa	ggacctctt	gattgggt	420
gcccggactct	ggggctccga	gaaacctgg	tctttggact	gcagatcaca	atcaaggaca	480
cagtggctg	gctcaaaatg	gacaagaagg	tactggatca	tgatgttca	aaggaagaac	540
cagtcacctt	tcacttcttgc	gccaaatttt	atcctgagaa	tgctgaagag	gagctgggtc	600
aggagatcac	acaacattt	ttcttcttac	agttaaagaa	gcagattt	atgaaaaga	660
tctactgccc	tcctgaggct	tctgtgtcc	tggcttctt	cgccgtccag	gccaagtatg	720
gtgactacga	ccccagtgtt	cacaagcggg	gattttggc	ccaagaggaa	ttgcttccaa	780
aaaggtaat	aaatctgtat	cagatgactc	cggaaatgt	ggaggagaga	attactgtt	840
ggtacgcaga	gcaccgaggc	c gagccagg	atgaagct	aatgaaat	ctgaagatag	900
ctcaggacct	ggagatgtac	ggtgtgaact	actttcaat	ccggaataaa	aaggcacak	960
agctgctgct	tggagtggt	gcctggggc	ttcacattt	tgaccctgag	aacagactga	1020
cccccaagat	ctccttcccg	tgaaaaaaat	gaaatccgaa	acatctcgta	cagtgacaag	1080
gagttacta	ttaaaccact	ggataagaaa	attgtatgt	tcaagttt	ctcctcaaag	1140
cttcgtgtta	ataagctgat	tctccagct	tgtatcggg	accatgatct	atttatgagg	1200
agaaggaaag	ccgattctt	ggaagttcag	catgtaaag	cccaggccag	ggaggagaag	1260
gctagaaagc	agatgaaaga	agaagcaaca	atggccaac	aagcactgat	gcggctgtag	1320
gagacagctg	acctgtggc	tggaaaggcc	catgtaccc	aggaggaggc	aaaactctg	1380
gcccagaagg	cccgagaggc	tgagcaggaa	atgcagcg	tcaaggccac	agcgattcgc	1440
acggaggagg	agaagcgct	gatggagc	aaggtgctgg	aagccgaggt	gctggcactg	1500
aagatggctg	aggagtca	gaggaggcc	aaagaggc	atcagct	gcaggac	1560
cagaagcac	gcgaggcgg	gcgaagagc	aagcagaag	tcctggagat	tgccaccaag	1620
cccacgtacc	ccccatgaa	cccaattcc	gcaccgttgc	ctcctgacat	accaagctt	1680
aacctcattt	gtgacagcct	gtcttcgac	ttcaaaagata	ctgacatgaa	gcggcttcc	1740
atggagatag	agaaagaaaa	atggaatac	atggaaaaga	gcaagcatct	gcaggagcag	1800
ctcaatgaac	tcaagacaga	aatcgaggcc	ttgaaactg	aagagagg	gacagct	1860
gatattctgc	acaatgagaa	ctccgacagg	ggtggcag	gcaagcaca	taccattaa	1920
aagctcacct	tgcagagcgc	caagtccga	gtggcctt	ttgaagagct	ctagcagg	1980
acccagccac	cccaggac	gccacttctc	ctgctaccgg	gaccgcgg	tggaccagat	2040
atcaagagag	ccatccatag	ggagctggct	gggggttcc	gtgggagctc	cagaactt	2100
cccagctgac	atgaaatac	aattgtctgc	cggcctcccc	tca		2143

<210> 29
 <211> 540
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)..(540)
 <223> any n = a,c,g,t any unknown or other

<400> 29
 gcgttagacgc gccgcgtccc cgcytgcgcg tgctccgccc cagtcgccc tccagtctat 60
 ccggcactag gaacagcccc gagcggcgag acggccccg ccatgtctgc ggccatgagg 120
 gagaggttcg accggttcct gcacgagaag aactgcatga ctgaccttct ggccaagctc 180
 gaggccaaaa ccggcgtgaa caggagcttc atcgctcttg gtgtcatcgg actggtgcc 240
 ttgtacctgg tgttcgttta tgagccctct ctcctctgca acctgataagg atttggctac 300
 ccagcctaca tctcaattaa agctatagag agtcccaaca aagaagatga taccagtg 360
 ctgacctact gggtagtgta tggtgtgttc agcattgctg aattcttctc tgatatcttc 420
 ctgtcatggt tcccctcta ctacatgctg aagcagattt atttagaacc tccatgtgcc 480
 agattctgtt ctacatctgg gagatacttt ggcgaataaaa acaaagtctt tggtgtcaaa 540

<210> 30
 <211> 4533
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)..(4533)
 <223> any n = a,c,g,t any unknown or other

<400> 30
 cctactctat tcagatattc tccagattcc taaagattag agatcatttc tcattctcct 60
 aggagtactc acttcaggaa gcaaccagat aaaagagagg tgcaacggaa gccagaacat 120
 tcctcctgga aattcaacct gttcgcagt ttctcgagga atcagcattc agtcaatccg 180
 ggccgggagc agtcatctgt ggtgaggctg attggctggg caggaacagc gccggggcgt 240
 gggctgagca cagcgttgc ctctctttgc cacaggaagc ctgagctcat tcgagtagcg 300
 gctttccaa gctcaaagaa gcagaggccg ctgttcgtt ccttaggtc tttccactaa 360
 agtcggagta tcttcttcca agatttcacg tcttgggtgc cgttccaagg agcgcgaggt 420
 cggatggat cttgaagggg accgcaatgg aggagaaag aagaagaact ttttaaact 480
 gaacaataaaa agtgaaaaag ataagaagga aaagaaacca actgtcagtg tatttcaat 540
 gttcgcstat tcaaattggc ttgacaagtt gtatatggtg gtggaaactt tggctgccat 600
 catccatggg gctggacttc ctctcatgat gctgggttt ggagaaatga cagatatctt 660
 tgcaaatgca ggaatttag aagatctgat gtcaaacatc actaatagaa gtgatatcaa 720
 tgatacaggg ttcttcatga atctggagga agacatgacc aggtatgctt attattacag 780
 tggaaatttgtt gctgggtgc tggttgcgtc ttacattcag gtttcatttt ggtgcctggc 840
 agcttggaaaga caaatacaca aaatttagaaa acagttttt catgctataa tgcgacagga 900
 gataggctgg tttgatgtgc acgatgttg ggagcttaac acccgactta cagatgtgt 960
 ctctaagattt aatgaagttt ttggtgacaa aatttggaaatg ttcttcagt caatggcaac 1020
 atttttcaact gggtttatag taggatttac acgtgggtgg aagctaacc ttgtgatttt 1080
 ggcattcagt cctgttcttg gactgtcagc tgctgtctgg gcaaaagatac tatcttcatt 1140
 tactgataaaa gaactcttag cgtatgc当地 agctggagca gtagctgaag aggtcttggc 1200
 agcaatttaga actgtgattt cattttggagg acaaaagaaa gaacttgaaa ggtacaacaa 1260
 aaatttagaa gaagctaaaaa gaattttggat aaagaaaagct attacagcca atatttctat 1320
 aggtgctgctt ttcctgctga tctatgc当地 ttatgtctgg gccttctggt atgggaccac 1380

cttgggttttc tcaggggaat attctattgg acaagtactc actgtattct tttctgtatt 1440
aattggggct ttttagtgtt gacaggcatc tccaagcatt gaagcatttgc caaatgcaga 1500
aggagcagct tatgaaatct tcaagataat tgataataag ccaagtatttgc acagctattc 1560
gaagagtggg cacaaccag ataataattaa gggaaatttgc gaattcagaa atgttgcatt 1620
cagttaccca tctcggaaaag aagttaagat cttgaaggcctt ctgaacctga aggtgcagag 1680
tgggcagacg gtggccctgg ttggaaacag tggctgtgg aagagcaca cagtcacgt 1740
gatgcagagg ctctatgacc ccacagaggg gatggtcagt gtttatggc aggtatgg 1800
gaccataaat gtaagggtttc tacggaaat cattgggtgt gtgagtcagg aacctgtatt 1860
gtttgccacc acgatagctg aaaacattcg ctatggccgt gaaaatgtca ccatggatga 1920
gattgagaaa gctgtcaagg aagccaatgc ctatgactt atcatgaaac tgcctcataa 1980
atttgacacc ctgggtggag agagagggc ccagttgagt ggtggcaga agcagaggt 2040
cgccattgca ctgtccctgg ttcgcaaccc caagatcctc ctgctggatg agggcacgtc 2100
agccttggac acagaaagcg aagcagtgg tcaagtggt ctggataagg ccagaaaagg 2160
tcggaccacc atttgtatacg ctcatcggtt gtctacagtt cgtaatgctg acgtcatcg 2220
tggtttcgtat gatggagtca ttgtggagaa aggaatcat gatgaactca tgaaagagaa 2280
aggcatttac ttcaaaacttg tcacaatgca gacagcagga aatgaagttt aatttagaaaa 2340
tgcagctgat gaatccaaaaa gtgaaatttgc tgcctggaa atgtcttcaa atgattcaag 2400
atccagtcataaataaaaaa gatcaactcg taggagtgtc cgtgatcac aagcccaaga 2460
cagaaagctt agtacccaaag aggctctgg taaaagtttgc cttccagttt cctttggag 2520
gattatgaag ctaaattttaa ctgaatggcc ttatgggtt gttgtgtat ttgtgcatt 2580
tataaatggc ggccctgcaac cagcatttgc aataatattt tcaaaagatta taggggtttt 2640
tacaagaattt gatgatcctg aaacaaaacg acagaatagt aacttgtttt cactattgtt 2700
tctagccctt ggaatttattt cttttatttac atttttcctt caggtttca catttggca 2760
agctggagag atccctacca agccggctccg atacatggg ttccgatcca tgctcagaca 2820
ggatgtgagt tggttgcattt accctaaaaa caccactgaa gcattgacta ccaggctcgc 2880
caatgtatgtc gctcaagttt aaggggctat aggttccagg cttgtgtaa ttacccagaa 2940
tatagcaaattt ctggggacag gaataattat atccttcattc tatgttggc aactaacact 3000
gttactctt gcaatttgtac ccatcattgc aatagcagga gttgttggaa tgaaaatgtt 3060
gtctggacaa gcactgaaag ataagaaga actagaagtt gctggaaaga tcgctactga 3120
agcaatagaa aacttccgaa ccgttgcattt tttgactcag gagcagaagt ttgaacatata 3180
gtatgctcag agtttgcagg taccatacag aaactctttg agggaaagcac acatcttgg 3240
aattacattt tccttcaccc aggcaatgtat gtatgggttcc tatgttggat gtttccggtt 3300
tggagcctac ttgggtggcattt ataaactcat gagcttttagt gatgttctgt tagtattttc 3360
agctgtgtc ttgggtgcattt tggccgtgg gcaagtcagt tcatttgc tcgactatgc 3420
caaagccaaa atatcagcag cccacatcat catgatcattt gaaaaaaccctt ctttgattga 3480
cagctacagc acggaaaggcc taatggcggaa cacattggaa gggaaatgtca catttggtga 3540
agttgtattt aactatccccca cccgaccggaa catcccaatgtc cttcaggggac tgagcctgga 3600
ggtaagaag gcccagacgc tggctctgg tggcagcagttt ggcctgtggaa agagcacaatgt 3660
ggtccagctc ctggagcggt tctacgaccc cttggcaggaa aaagtgcgtc ttgtatggca 3720
agaaataaaag cgactgaatgtt tcagttggctt ccgagcacac ctggcatcg tgcccaggaa 3780
gcccatcttgc ttgtactgca gcattgtca gaacatttgc tatggagaca acagccgggt 3840
ggtgtcacag gaagagatcg tgagggcagc aaaggaggcc aacatacatg ctttcatcg 3900
gtcactgcct aataaaatata gcactaaagt aggagacaaa ggaactcagc tctctgggtt 3960
ccagaaacaa cgcattgcca tagctcgat ccttgcatttgc cagcctcata ttttgctttt 4020
ggatgaagcc acgtcagctc tggatcaga aagtggaaat gttgtccaaag aagccctgga 4080
caaagccaga gaaggccgca cctgcattgtt gattgtcattc cgcctgtcca ccatccagaa 4140
tgcagactta atagtgggtt ttcaaatgg cagagtcaag gagcatggca cgcacatcg 4200
gctgtggca cagaaaggca tctatgggttcaatggtcagt gtccaggctg gaacaattt 4260
gaagacccaa ttgggggtt attacggcat ttgaaatttgc agagttagaa gtgacacactg 4320
tcttgcattt gttatggaaac aacaggtctg ctctccctaa gttttagaa acatccagaa 4380
aaagaacaaa attcaaggta agtacaggtg tagaaatata gaagccacag acataggaa 4440
atggtcttat ggtcctgaaat ggggtggta gacagggaaat tttggaaata attticccaa 4500
gtacaaaaga aaaataaaattt gttcaatagc ctc 4533

<210> 31
<211> 2307

<212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)..(2307)
 <223> any n = a,c,g,t any unknown or other

 <400> 31

cctactctat	tcagatattc	tccagattcc	taaagattag	agatcatttc	tcattctcct	60
aggagtactc	acttcaggaa	gcaaccagat	aaaagagagg	tgcaacggaa	gccagaacat	120
tcctcctgga	aattcaacct	gttgcgagt	ttctcgagga	atcagcatc	agtcaatccg	180
ggccgggagc	agtcatctgt	ggtgaggctg	attggctggg	caggaacagc	gccggggcgt	240
gggctgagca	cagcgcttcg	ctctcttgc	cacagaagc	ctgagctcat	tcgagtagcg	300
gctcttccaa	gctcaaagaa	gcagaggccg	ctgttcgttt	cctttaggtc	tttccactaa	360
agtcggagta	tcttctcca	agatttcacg	tcttggtggc	cgttccaagg	agcgcgaggt	420
cggatggat	cttgaagggg	accgcaatgg	aggagcaaag	aagaagaact	tttttaaact	480
gaacaataaa	agtgaaaaag	ataagaagga	aaagaaacca	actgtcagtg	tatttcaat	540
gttgcctat	tcaaattggc	ttgacaagtt	gtatatggt	gtgggaactt	tggctgccat	600
catccatggg	gctggacttc	ctctcatgat	gctgggttt	ggagaaaatga	cagatatctt	660
tgcaaatgca	ggaatttag	aagatctgat	gtcaaacatc	actaatagaa	gtgatataaa	720
tgatacaggg	ttcttcatga	atctggagga	agacatgacc	aggtatgcct	attattacag	780
tggaatttgt	gctggggtgc	tggttgctgc	ttacattcag	gtttcatttt	ggtcctggc	840
agtcggaaga	caaatacaca	aaatttagaaa	acagttttt	catgtataaa	tgcgacagga	900
gataggctgg	tttgcgtgc	acgatgttgg	ggagcttaac	acccgactta	cagatgatgt	960
ctccaagatt	aatgaaggaa	tttgtgacaa	aatttgaatg	ttctttcagt	caatggcaac	1020
attttcaact	gggttatag	taggatttac	acgtgttgg	aagctaacc	tttgtatttt	1080
ggccatcagt	cctgttcttgc	gactgtcagc	tgctgtctgg	gcaaaagatac	tatcttctt	1140
tactgataaa	gaactcttag	cgtatcataa	agctggagca	gtagctgaag	aggcttggc	1200
agcaattttaga	actgtgatttgc	cattttggagg	acaaaagaaa	gaacttggaaa	ggtacaacaa	1260
aaatttttagaa	gaagctaaaaa	gaatttggat	aaagaaaagct	attacagccaa	atatttctat	1320
aggtgctgtc	ttcctgtga	tctatgcattc	ttatgtctg	gccttctgtt	atgggaccac	1380
cttggccttc	tcagggaaat	attctattgg	acaagttactc	actgttatty	tttctgtatt	1440
aattttggct	tttagtggc	gacaggcattc	tccaagcatt	gaagcatttg	caaatgcaag	1500
aggagcagct	tatgaaatct	tcaagataat	tgataataag	ccaagttatttgc	acagctattc	1560
gaagagtggg	cacaaaccag	ataatattaa	ggaaatttg	gaattcagaa	atgttcactt	1620
cagttaccca	tctcgaaaag	aagttaagat	tttgcgttttgc	ctgaaccttgc	agggtgcagag	1680
tggcagacg	gtggccctgg	ttggaaacag	tggctgtggg	aagagcaca	cagtccagct	1740
gatgcagagg	ctctatgacc	ccacagaggg	gatggtcagt	gttgcgtggc	aggatattag	1800
gaccataaaat	gttagtttc	tacggaaat	cattttgttgc	gttgcgttttgc	aacctgtatt	1860
gttgcacc	acgatagctg	aaaacattcg	ctatgtccgt	gaaaatgtca	ccatggatga	1920
gatttggaaa	gctgtcaagg	aagccaaatgc	ctatgtactt	atcatgaaac	tgcctcataa	1980
atttgacacc	ctgggtggag	agagaggggc	ccagctgagt	gttgcgttttgc	agcagagggat	2040
cgcatttgc	cgtggccctgg	ttcgcaacccc	caagatcatttgc	ctgttttttttgc	aggccacgtc	2100
agcattggac	acagaaatgt	aagctgaggt	acaggcagct	ctggataagg	tcagtagact	2160
ctaaaaagct	gaaggaccac	cacattgaaa	cctattgttgc	gttgcgttttgc	gtgcttccgg	2220
agtcggggct	gagaaacaga	aacatagcaa	atggagctac	ctcatggagc	tgtatttgatt	2280
tctcccttct	gtcaggttac	attgttcc				2307

<210> 32
 <211> 1712
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature

<222> (1)..(1712)
 <223> any n = a,c,g,t any unknown or other

 <400> 32
 gctggattg cgagccgcg agcagcgctg ggtaacggcc gcggcgacca cccggacgg 60
 cccctgtccc cgctggcggt ctccctgtc gccgtcgct gcgtgcggg cttcttggtg 120
 aatttttggaa tgaaggcatt aaattaattt gttccatca tgagcagaag caagcgtgac 180
 aacaatttt atagttaga gattggagat tctacattca cagtcctgaa acgatatacg 240
 aatttaaaaac ctatagctc aggagctcaa ggaatagtat ggcgcgactt tgatgccatt 300
 cttgaaagaa atgttgcatt caagaagcta agccgaccat ttcaaatca gactcatgcc 360
 aagccccctt acagagagct agttcttatg aaatgtgtt atcacaaaaa tataattggc 420
 ctttgaatg tttcacacc acagaatcc ctagaagaat ttcaagatgt ttacatagtc 480
 atggagctca tggatgcaaa tcttgccaa gtgattcaga tggagctaga tcatgaaaga 540
 atgtcctacc ttctctatca gatgtgtgtt ggaatcaagc accttcattc tgctgaaatt 600
 attcatcggtt acttaaagcc cagtaatata gtagtaaaat ctgattgcac tttgaagatt 660
 cttgacttcg gtctggccag gactgcagga acgagtttta tgatgacgcc ttatgttagt 720
 actcgctact acagagcacc cgaggtcattt cttggcatgg gctacaagga aaacggagga 780
 agaatggaa aaggcatatt cacaaggta caataaggta cctgttagat ataaaattta 840
 taactgcccac atccttctt aggaatttt aaatttctat ttcttgcata tatgaatata 900
 agaatacatt ctgttaatg aatgttattga acattagttt tggagttt ttcttagcta 960
 cttgatatta gatattgatc agtggaaataa agttattgaa cagcttggaa caccatgtcc 1020
 tgaattcatg aagaaactgc aaccaacagt aaggacttac gttgaaaaca gacctaaata 1080
 tgctggatg agctttaga aactcttccc ttagtgcctt ttcccgctg actcagaaca 1140
 caacaaactt aaagccagtc aggcaaggaa tttgttatcc aaaatgtgg taatagatgc 1200
 atctaaaagg atctctgtatc atgaagctctt ccaacacccg tacatcaatg tctgttatga 1260
 tccttctgaa gcagaagctc caccaccaaa gatccctgac aagcgttagt atgaaaggaa 1320
 acacacaata gaagagtggaa aagaattgtatc atataaggaa gttatggact tggaggagag 1380
 aaccaagaat ggagtatac gggggcagcc ctctcccttgcacaggatgc agcagtgtc 1440
 aatggctctc agcatccatc atcatcgatc tctgtcaatg atgtgtctc aatgtcaaca 1500
 gatccgactt tggcctctga tacagacagc agtctagaag cagcagctgg gcctctggc 1560
 tgctgttagat gactacttgg gccatcgggg ggtggaggg atggggagtc gtttagtcat 1620
 tgatagaact actttgaaaaa caattcagttt gtcttatttt tgggtgattt ttcaaaaaat 1680
 taggatttc attttgtatc aaagttagttt at 1712

<210> 33
 <211> 1068
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <222> (1)..(1068)
 <223> any n = a,c,g,t any unknown or other

<400> 33
 cattaattgc ttgccatcat gagcagaagc aagcgtgaca acaattttta tagttagag 60
 atggagattt ctacattcac agtcctgaaa cgatattcaga attaaaaacc tataggctca 120
 ggagctcaag gaatgtatg cgccgttat gatgcattt tggaaagaaa tggcaatc 180
 aagaagctaa gcccaccatt tcagaatcag actcatgcc agcggccctt cagagacta 240
 gttcttatga aatgtttaa tcacaaaaat ataattggcc tttgaatgt tttcacacca 300
 cagaaatccc tagaagaatt tcaagatgtt tacatgtca tggagctcat ggtgcacat 360
 ctttgccaaatg tgattcagat ggagcttagat catggaaatg tggcttaccc tctctatcg 420
 atgtgtgtg gaatcaagca ctttcatttc gctggattt ttcatcggtt cttaaagccc 480
 agtaatatacg tagtaaaaatc tgattgcact ttgaagattc ttgacttcgg tctggccagg 540
 actgcaggaa cgagttttagt gatgacgcctt tatgttagtgc ctcgcacta cagagcacc 600
 gaggtcatcc ttggcatggg ctacaaggaa aacgtggattt tatgtctgtt ggggtgcattt 660

atgggagaaa tggttgcca caaaatcctc tttccaggaa gggactatat tgatcagtgg 720
aataaagtta ttgaacagct tggAACACCA tgccCTGAAT tcATGAAGAA actGCAACCA 780
acagtaagga ctTACGTTGA aaACAGACCT aaATATGCTG gATATAGCTT tgAGAAAACTC 840
ttCCCTGATG tcCTTTCCC agCTGACTCA gaACACAACA aACTTAAAGC cAGTCAGTAC 900
tttttacaaa tatgtacatt taatcccatt tggggTGTGT agtGTGTGT tnatGGGTTT 960
gggtttata tgtattcata ttcttatggg acatGAACCC aaggTTTCT ctggatGGTG 1020
ggggaaaaaaa tgaggTTTT tctttaatct tataTATT 1068

<210> 34
<211> 1388
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(1388)
<223> any n = a,c,g,t any unknown or other

<400> 34
catTAATTGC ttGCCATCAT gagCAGAAGC aAGCGTGACA aCAATTtTA tagTGTAGAG 60
atTggagatt ctacattcac agTCCTGAAA cgatATCAGA attTAAACC TATAGGCTCA 120
ggagCTCAAG gaATAGTATG CGCAGCTTAT gatGCCATT tGAAAGAAA tGTTGCAATC 180
aagaAGCTAA gCcGACCATT tcAGAATCAG actCATGCCA aGCGGGCCTA cAGAGAGCTA 240
gttCTTATGA aATGTGTTAA tcACAAAAT ataATTGGCC tttGAATGT tttCACACCA 300
cagaAAATCCC tagAAGAATT tcaAGATGTT tacATAGTCA tGGAGCTCAT ggATGCAAAT 360
cttGCCAAG tgATTCAAGAT ggAGCTAGAT catGAAAGAA tGTCCTACCT tCTCTATCAG 420
atGCTGTGTG gaATCAAGCA CCTTCATTCT gCTGGATTt ttcATCGGA ctTAAGCCC 480
agTAATATAG tagTAAAATC tgATTGCACT ttGAAGATTc ttGACTTCGG tCTGCCAGG 540
actGcAGGAA cgAGTTTAT gatGACGCCt tatGTAGTCA CTCGCTACTA cAGAGCACCC 600
gaggTCATCC ttGGCATGGG ctACAAAGGA aACGTGGATT tatGTCTGT gGGGTGcATT 660
atGGGAGAAA tGGTTGCCA caAAATCCTC tttCCAGGA gGGACTATA tgATCAGTGG 720
aataaagtta ttGAACAGCT tGGAACACCA tGTCCTGAAT tcATGAAGAA actGCAACCA 780
acAGTAAGGA ctTACGTTGA aaACAGACCT aaATATGCTG gATATAGCTT tgAGAAAACTC 840
ttCCCTGATG tcCTTTCCC agCTGACTCA gaACACAACA aACTTAAAGC cAGTCAGGCA 900
aggGATTGt tatCCAAAAT gCTGGTAATA gatGcATCTA aAAGGATCTC tGTagATGAA 960
gCTCTCCAAc ACCCGTACAT caATGTCTGG tatGATCCTT CTGAAGCAGA agCTAGAAGC 1020
tgtaAGTTAT tttCTTAATG ttTACAGAAC atATTGATT CTTAGAGTT gaATGACAGT 1080
tagTTTGGa ggAGACCTT taATTTAAA tAAAATGTA gataCATGAT gatGATGTT 1140
ttCTGTTCT tCATGAAGAC tacGTCAAAT aaACTAATGA ACATATTGCA gCCCCTCCTA 1200
cacaAAATAA agTTACCTCC CACTGTTTT tGCAATCTT CTCGGATAcc TAACCAGAGA 1260
actAGGATGT tGAATGCTC tGGGGAAACAT CCTAACTCAG GTATAAAACA aATTACTGTA 1320
tccAAAGGAA aACAGAATTc tGtgATCTGT gatATAAATA AAATGTGGCA attTCAGAG 1380
ctAGAAGA 1388

<210> 35
<211> 1452
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(1452)
<223> any n = a,c,g,t any unknown or other

<400> 35

gcccgcagtg gcttttaccg ccaggagggt accaagacgg cctgggagggt gcgcgcgtg 60
 taccgggacc tgcagccgt ggctcgccc gcctacggcg cgggtgtgtc ggccgtggac 120
 ggccgcaccc ggcctaagggt gcccataag aagctgtatc gccccttcca gtccgagctg 180
 ttgcacaaggc ggccttaccg cgagctgcgc ctgctcaagc acatgcgcca cgagaacgtg 240
 atcgggctgc tggacgtatt cactcctgtat gagaccctgg atgacttcac ggactttac 300
 ctgtgtatgc cgttcatggg caccgacacctg ggcaagctca tgaacatga gaagcttaggc 360
 gagaccggc tccagttcct cgtgtaccag atgctgaagg ggctgaggta tatccacgct 420
 gccggcatca tccacagagt gagtcccggt ggagaagccg ctcatacgcc ctccccagg 480
 gcaatccccc cgccctccacg tcccacctgt gaggatgtga tgggtctgg gtgctgagcc 540
 acgcctatg cacagccctt ggtggaaacc tgccctgggt cccaggaccc gaagccggc 600
 aacctggctg tgaacgaaga ctgtgagctg aagatctgg acttcggcct ggccaggcag 660
 gcagacagtg agatgactgg gtacgtgggt accccgggtt accgggctcc cgaggtcatc 720
 ttgaatttga tgcgttacac gcagacgggt gacatctggt ctgtgggtc catcatggcg 780
 gagatgatca caggcaagac gctgttcaag ggcagcgacc acctggacca gctgaaggag 840
 atcatgaagg tgacngggg cgcctccggc tgagttgtc cagcggctgc agagcgatga 900
 ggccaagaac tacatgaagg gcctccccca attggagaag aaggatttg cctctatcct 960
 gacaatgca agccctctgg ctgtgaacct cctggagaag atgctgggtc tggacgcgg 1020
 gcagcgggtg acggcaggcg aggccgtggc ccattccctac ttgcagtc tgcacgcac 1080
 ggaagatgag ccccaggtcc agaagtatga tgactccctt gacgacgttg accgcacact 1140
 ggatgaatgg aagcgttta ctacaaaaga ggtgctcagc ttcaagcctn cccggcaggc 1200
 tggggccag ggtctncaan gagacgcctn tgtgaagatc tcttgggtt ccgggtggg 1260
 cagtgaggac cacccatcacc ttccacctga gaggggactc tcgntggcac ctgaccttg 1320
 gctggggctt gcattccaag gcatccattc agacagacgc ccgggttctt ggaccctnct 1380
 tcccacgggc atgcctntgt ctggggcgcc catatggang agcnctgact ttctggacaa 1440
 anctctggnc ca 1452

<210> 36
 <211> 2355
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)..(2355)
 <223> any n = a,c,g,t any unknown or other

<400> 36
 gaattccgcc agccccgcca gtccccgcgc agtccccgcg cagtcacccagc gccaccgggc 60
 agcagcggcg ccgtgtcgcc tccagggcgcc aaccatgtcg ccatttcttc ggattggctt 120
 gtccaaacttt gactgcgggt cctgcccagtc ttgtcagggc gaggctgtta acccttactg 180
 tgctgtgtc gtcaaaaggat atgtcgaaatc agagaacggg cagatgtata tccagaaaaaa 240
 gcctaccatg taccaccctt ggacacgac ttttgcgttcc catatcaaca agggaaagat 300
 catgcagatc attgtgaaag gcaaaaaacgt ggacccatc tctgaaacca ccgtggagct 360
 ctactcgctg gctgagaggt gcaaggaagaa caacgggaag acagaaaatat gtttagagct 420
 gaaacctcaa ggccgaatgc taatgaatgc aagatacttt ctggaaatga gtgacacaaa 480
 ggacatgaat gaaatttggaa cggaaaggctt ctttgccttgc catcagcggc ggggtgcct 540
 caagcaggca aaggccatc accgtcaagtg ccacgagttc actgcacccct tcttccac 600
 gcccacattt tgctctgtct gccacgagttt tgtctggggc ctgaacaaac agggctacca 660
 gtggccgacaa tgcaatgcg caattccaa gaagtgttatt gataaaagttt tagcaaagtg 720
 cacaggatca gctatcaata gcccggaaac catgttccac aaggagagat tcaaaatttg 780
 catgccacac agatttaaag tctacaatta caagagcccg accttctgtg aacactgtgg 840
 gaccctgctg tggggactgg cacggcaagg actcaagtgtt gatgcgttgc gcatgaatgt 900
 gcatcataga tgccagacaa aggtggccaa ctttgcgttgc ataaaccaga agctaatggc 960
 tgaagcgttg gccatgattt agagcactca acaggctcgc tgcttaagatc atactgaaca 1020
 gatcttcaga gaaggtcccg tggaaattgg tctccatgc tccatcaaaa atgaagcaag 1080
 gccgcccattgt ttaccgacac cggaaaaaag agagcctcag ggcatttcctt gggagtctcc 1140

gttggatgag gtggataaaa tggccatct tccagaacct gaactgaaca aagaaagacc 1200
 atctctgcag attaaactaa aaattgagga ttttatcttgc cacaatgt tgaaaagg 1260
 aagtttggc aaggcttcc tggcagaatt caagaaaacc aatcaatttc tcgcaataaa 1320
 ggccttaaag aaagatgtgg tttgtatggc cgatgtatgtt gagtgacga tggtagagaa 1380
 gagagttctt tccttgcctt gggagcatcc gtttctgacg cacatgtttt gtacattcca 1440
 gaccaaggaa aacctctttt ttgtatggc gtacctaacc ggaggggact taatgtacca 1500
 catccaaagc tgccacaagt tcgaccttc cagagcgacg ttttatgtcg ctgaaatcat 1560
 tcttggctcg cagttccctt attccaaagg aatagtctac agggacacta agctagataa 1620
 catcctgtta gacaaagatg gacatatcaa gatcgccgat tttgaatgt gcaaggagaa 1680
 catgttagga gatgccaaga cgaataaccc ttgtggaca cctgactaca tcgccccaga 1740
 gatcttgctg ggtcagaaat acaaccactc tgtggactgg tggccttcg ggttctcct 1800
 ttatgaaatg ctgattggc agtgcctt ccacggcag gatgaggagg agctcttcca 1860
 ctcatccgc atggacaatc cctttaccc acggggctg gagaaggaaag caaaggacct 1920
 tctgtgaag gtaagaagcg aagccaagag cgtcttcata agacgagcat taggtcttct 1980
 ggtcagttt ctgttccctt tagttccaa ttgcattgtg gcaaaacaatg attattattt 2040
 aactgggtt aaatggatg tgaccgtct gtgtttaat agaggcacca atattatgag 2100
 cattaaatgt caaaatgtgt gtaagagaaa ccctcatgtg catcgttat aacataacgg 2160
 ccccaggaac cagttccatg gacccatg acgctcacct ggagatgttag ttggttcatt 2220
 aaacaagcac agtgtgtggc taaaaaatca atcttctagc tacttgggag gttgaggcag 2280
 gagattgaa gtttggaaatgt tgaggtcagc ctggcaatg tatcgagacc cctgtctcca 2340
 aaacaataaa gggga 2355

<210> 37
 <211> 497
 <212> PRT
 <213> Homo sapiens

<400> 37
 Met Val Arg Ser Gly Asn Lys Ala Ala Val Val Leu Cys Met Asp Val
 1 5 10 15
 Gly Phe Thr Met Ser Asn Ser Ile Pro Gly Ile Glu Ser Pro Phe Glu
 20 25 30
 Gln Ala Lys Lys Val Ile Thr Met Phe Val Gln Arg Gln Val Phe Ala
 35 40 45
 Glu Asn Lys Asp Glu Ile Ala Leu Val Leu Phe Gly Thr Asp Gly Thr
 50 55 60
 Asp Asn Pro Leu Ser Gly Gly Asp Gln Tyr Gln Asn Ile Thr Val His
 65 70 75 80
 Arg His Leu Met Leu Pro Asp Phe Asp Leu Leu Glu Asp Ile Glu Ser
 85 90 95
 Lys Ile Gln Pro Gly Ser Gln Gln Ala Asp Phe Leu Asp Ala Leu Ile
 100 105 110
 Val Ser Met Asp Val Ile Gln His Glu Thr Ile Gly Lys Lys Phe Glu
 115 120 125
 Lys Arg His Ile Glu Ile Phe Thr Asp Leu Ser Ser Arg Phe Ser Lys
 130 135 140
 Ser Gln Leu Asp Ile Ile His Ser Leu Lys Lys Cys Asp Ile Ser

145	150	155	160
Leu Gln Phe Phe Leu Pro Phe Ser Leu Gly Lys Glu Asp Gly Ser Gly			
165	170	175	
Asp Arg Gly Asp Gly Pro Phe Arg Leu Gly Gly His Gly Pro Ser Phe			
180	185	190	
Pro Leu Lys Gly Ile Thr Glu Gln Gln Lys Glu Gly Leu Glu Ile Val			
195	200	205	
Lys Met Val Met Ile Ser Leu Glu Gly Glu Asp Gly Leu Asp Glu Ile			
210	215	220	
Tyr Ser Phe Ser Glu Ser Leu Arg Lys Leu Cys Val Phe Lys Lys Ile			
225	230	235	240
Glu Arg His Ser Ile His Trp Pro Cys Arg Leu Thr Ile Gly Ser Asn			
245	250	255	
Leu Ser Ile Arg Ile Ala Ala Tyr Lys Ser Ile Leu Gln Glu Arg Val			
260	265	270	
Lys Lys Thr Trp Thr Val Val Asp Ala Lys Thr Leu Lys Lys Glu Asp			
275	280	285	
Ile Gln Lys Glu Thr Val Tyr Cys Leu Asn Asp Asp Asp Glu Thr Glu			
290	295	300	
Val Leu Lys Glu Asp Ile Ile Gln Gly Phe Arg Tyr Gly Ser Asp Ile			
305	310	315	320
Val Pro Phe Ser Lys Val Asp Glu Glu Gln Met Lys Tyr Lys Ser Glu			
325	330	335	
Gly Lys Cys Phe Ser Val Leu Gly Phe Cys Lys Ser Ser Gln Val Gln			
340	345	350	
Arg Arg Phe Phe Met Gly Asn Gln Val Leu Lys Val Phe Ala Ala Arg			
355	360	365	
Asp Asp Glu Ala Ala Ala Val Ala Leu Ser Ser Leu Ile His Ala Leu			
370	375	380	
Asp Asp Leu Asp Met Val Ala Ile Val Arg Tyr Ala Tyr Asp Lys Arg			
385	390	395	400
Ala Asn Pro Gln Val Gly Val Ala Phe Pro His Ile Lys His Asn Tyr			
405	410	415	
Glu Cys Leu Val Tyr Val Gln Leu Pro Phe Met Glu Asp Leu Arg Gln			
420	425	430	
Tyr Met Phe Ser Ser Leu Lys Asn Ser Lys Lys Tyr Ala Pro Thr Glu			
435	440	445	
Ala Gln Leu Asn Ala Val Asp Ala Leu Ile Asp Ser Met Ser Leu Ala			

450

455

460

Lys Lys Asp Glu Lys Thr Asp Thr Leu Glu Asp Leu Phe Pro Thr Thr
465 470 475 480

Lys Ile Pro Asn Pro Arg Phe Gln Arg Leu Phe Gln Val Arg Glu Glu
485 490 495

Gly

<210> 38

<211> 521

<212> PRT

<213> Homo sapiens

<400> 38

Met Val Arg Ser Gly Asn Lys Ala Ala Val Val Leu Cys Met Asp Val
1 5 10 15

Gly Phe Thr Met Ser Asn Ser Ile Pro Gly Ile Glu Ser Pro Phe Glu
20 25 30

Gln Ala Lys Lys Val Ile Thr Met Phe Val Gln Arg Gln Val Phe Ala
35 40 45

Glu Asn Lys Asp Glu Ile Ala Leu Val Leu Phe Gly Thr Asp Gly Thr
50 55 60

Asp Asn Pro Leu Ser Gly Gly Asp Gln Tyr Gln Asn Ile Thr Val His
65 70 75 80

Arg His Leu Met Leu Pro Asp Phe Asp Leu Leu Glu Asp Ile Glu Ser
85 90 95

Lys Ile Gln Pro Gly Ser Gln Gln Ala Asp Phe Leu Asp Ala Leu Ile
100 105 110

Val Ser Met Asp Val Ile Gln His Glu Thr Ile Gly Lys Lys Phe Glu
115 120 125

Lys Arg His Ile Glu Ile Phe Thr Asp Leu Ser Ser Arg Phe Ser Lys
130 135 140

Ser Gln Leu Asp Ile Ile His Ser Leu Lys Lys Cys Asp Ile Ser
145 150 155 160

Leu Gln Phe Phe Leu Pro Phe Ser Leu Gly Lys Glu Asp Gly Ser Gly
165 170 175

Asp Arg Gly Asp Gly Pro Phe Arg Leu Gly Gly His Gly Pro Ser Phe
180 185 190

Pro Leu Lys Gly Ile Thr Glu Gln Gln Lys Glu Gly Leu Glu Ile Val
195 200 205

Lys Met Val Met Ile Ser Leu Glu Gly Glu Asp Gly Leu Asp Glu Ile
 210 215 220
 Tyr Ser Phe Ser Glu Ser Leu Arg Lys Leu Cys Val Phe Lys Lys Ile
 225 230 235 240
 Glu Arg His Ser Ile His Trp Pro Cys Arg Leu Thr Ile Gly Ser Asn
 245 250 255
 Leu Ser Ile Arg Ile Ala Ala Tyr Lys Ser Ile Leu Gln Glu Arg Val
 260 265 270
 Lys Lys Thr Trp Thr Val Val Asp Ala Lys Thr Leu Lys Lys Glu Asp
 275 280 285
 Ile Gln Lys Glu Thr Val Tyr Cys Leu Asn Asp Asp Asp Glu Thr Glu
 290 295 300
 Leu Asn Pro Pro Ala Glu Val Thr Thr Lys Ser Gln Ile Pro Leu Ser
 305 310 315 320
 Lys Ile Lys Thr Leu Phe Pro Leu Ile Glu Ala Lys Lys Lys Asp Gln
 325 330 335
 Val Thr Ala Gln Glu Ile Phe Gln Asp Asn His Glu Asp Gly Pro Thr
 340 345 350
 Ala Lys Lys Leu Lys Thr Glu Gln Gly Gly Ala His Phe Ser Val Ser
 355 360 365
 Ser Leu Ala Glu Gly Ser Val Thr Ser Val Gly Ser Val Asn Pro Ala
 370 375 380
 Glu Asn Phe Arg Val Leu Val Lys Gln Lys Lys Ala Ser Phe Glu Glu
 385 390 395 400
 Ala Ser Asn Gln Leu Ile Asn His Ile Glu Gln Phe Leu Asp Thr Asn
 405 410 415
 Glu Thr Pro Tyr Phe Met Lys Ser Ile Asp Cys Ile Arg Ala Phe Arg
 420 425 430
 Glu Glu Ala Ile Lys Phe Ser Glu Glu Gln Arg Phe Asn Asn Phe Leu
 435 440 445
 Lys Ala Leu Gln Glu Lys Val Glu Ile Lys Gln Leu Asn His Phe Trp
 450 455 460
 Glu Ile Val Val Gln Asp Gly Ile Thr Leu Ile Thr Lys Glu Glu Ala
 465 470 475 480
 Ser Gly Ser Ser Val Thr Ala Glu Glu Ala Lys Lys Phe Leu Ala Pro
 485 490 495
 Lys Asp Lys Pro Ser Gly Asp Thr Ala Ala Val Phe Glu Glu Gly Gly
 500 505 510

Asp Val Asp Asp Leu Leu Asp Met Ile
515 520

<210> 39
<211> 437
<212> PRT
<213> Homo sapiens

<400> 39
Met Gly Cys Gly Cys Ser Ser His Pro Glu Asp Asp Trp Met Glu Asn
1 5 10 15

Ile Asp Val Cys Glu Asn Cys His Tyr Pro Ile Val Pro Leu Asp Gly
20 25 30

Lys Gly Thr Leu Leu Ile Arg Asn Gly Ser Glu Val Arg Asp Pro Leu
35 40 45

Val Thr Tyr Glu Gly Ser Asn Pro Pro Ala Ser Pro Leu Gln Asp Asn
50 55 60

Leu Val Ile Ala Leu His Ser Tyr Glu Pro Ser His Asp Gly Asp Leu
65 70 75 80

Gly Phe Glu Lys Gly Glu Gln Leu Arg Ile Leu Glu Gln Ser Gly Glu
85 90 95

Trp Trp Lys Ala Gln Ser Leu Thr Thr Gly Gln Glu Gly Phe Ile Pro
100 105 110

Phe Asn Phe Val Ala Lys Ala Asn Ser Leu Glu Pro Glu Pro Trp Phe
115 120 125

Phe Lys Asn Leu Ser Arg Lys Asp Ala Glu Arg Gln Leu Leu Ala Pro
130 135 140

Gly Asn Thr His Gly Ser Phe Leu Ile Arg Glu Ser Glu Ser Thr Ala
145 150 155 160

Gly Ser Phe Ser Leu Ser Val Arg Asp Phe Asp Gln Asn Gln Gly Glu
165 170 175

Val Val Lys His Tyr Lys Ile Arg Asn Leu Asp Asn Gly Gly Phe Tyr
180 185 190

Ile Ser Pro Arg Ile Thr Phe Pro Gly Leu His Glu Leu Val Arg His
195 200 205

Tyr Thr Asn Ala Ser Asp Gly Leu Cys Thr Arg Leu Ser Arg Pro Cys
210 215 220

Gln Thr Gln Lys Pro Gln Lys Pro Trp Trp Glu Asp Glu Trp Glu Val
225 230 235 240

Pro Arg Glu Thr Leu Lys Leu Val Glu Arg Leu Gly Ala Gly Gln Phe
 245 250 255
 Gly Glu Val Trp Met Gly Tyr Tyr Asn Gly His Thr Lys Val Ala Val
 260 265 270
 Lys Ser Leu Lys Gln Gly Ser Met Ser Pro Asp Ala Phe Leu Ala Glu
 275 280 285
 Ala Asn Leu Met Lys Gln Leu Gln His Gln Arg Leu Val Arg Leu Tyr
 290 295 300
 Ala Val Val Thr Gln Glu Pro Ile Tyr Ile Ile Thr Glu Tyr Met Glu
 305 310 315 320
 Asn Gly Ser Leu Val Asp Phe Leu Lys Thr Pro Ser Gly Ile Lys Leu
 325 330 335
 Thr Ile Asn Lys Leu Leu Asp Met Ala Ala Gln Ile Ala Glu Gly Met
 340 345 350
 Ala Phe Ile Glu Glu Arg Asn Tyr Ile His Arg Asp Leu Arg Ala Ala
 355 360 365
 Asn Ile Leu Val Ser Asp Thr Leu Ser Cys Lys Ile Ala Asp Phe Gly
 370 375 380
 Leu Ala Arg Leu Ile Glu Asp Ile His His Gln Val Arg Cys Val Val
 385 390 395 400
 Phe Trp Asp Pro Ala Asp Gly Asn Cys His Pro Arg Pro His Pro Leu
 405 410 415
 Pro Arg Asp Asp Gln Pro Gly Gly Asp Ser Glu Pro Gly Ala Arg Leu
 420 425 430
 Pro His Gly Ala Pro
 435

<210> 40
 <211> 567
 <212> PRT
 <213> Homo sapiens

<400> 40
 Met Gly Cys Gly Cys Ser Ser His Pro Glu Asp Asp Trp Met Glu Asn
 1 5 10 15
 Ile Asp Val Cys Glu Asn Cys His Tyr Pro Ile Val Pro Leu Asp Gly
 20 25 30
 Lys Gly Thr Leu Leu Ile Arg Asn Gly Ser Glu Val Arg Asp Pro Leu
 35 40 45
 Val Thr Tyr Glu Gly Ser Asn Pro Pro Ala Ser Pro Leu Gln Gly Asp

50	55	60
Pro Arg Gln Gln Gly Leu Lys Asp Lys Ala Cys Gly Ser Leu Ala Val		
65	70	75
Gly Phe His Leu Ser Pro Thr Tyr Phe Leu Pro Gly Leu Ala Phe Leu		
85	90	95
Val Pro His Pro Val Thr Pro Gly Phe Leu Pro Ile Pro Ala Arg Phe		
100	105	110
Ser Leu Thr Pro Leu Val Phe Thr Asp Asn Leu Val Ile Ala Leu His		
115	120	125
Ser Tyr Glu Pro Ser His Asp Gly Asp Leu Gly Phe Glu Lys Gly Glu		
130	135	140
Gln Leu Arg Ile Leu Glu Gln Ser Gly Glu Trp Trp Lys Ala Gln Ser		
145	150	155
Leu Thr Thr Gly Gln Glu Gly Phe Ile Pro Phe Asn Phe Val Ala Lys		
165	170	175
Ala Asn Ser Leu Glu Pro Glu Pro Trp Phe Phe Lys Asn Leu Ser Arg		
180	185	190
Lys Asp Ala Glu Arg Gln Leu Leu Ala Pro Gly Asn Thr His Gly Ser		
195	200	205
Phe Leu Ile Arg Glu Ser Glu Ser Thr Ala Gly Ser Phe Ser Leu Ser		
210	215	220
Val Arg Asp Phe Asp Gln Asn Gln Gly Glu Val Val Lys His Tyr Lys		
225	230	235
Ile Arg Asn Leu Asp Asn Gly Gly Phe Tyr Ile Ser Pro Arg Ile Thr		
245	250	255
Phe Pro Gly Leu His Glu Leu Val Arg His Tyr Thr Asn Ala Ser Asp		
260	265	270
Gly Leu Cys Thr Arg Leu Ser Arg Pro Cys Gln Thr Gln Lys Pro Gln		
275	280	285
Lys Pro Trp Trp Glu Asp Glu Trp Glu Val Pro Arg Glu Thr Leu Lys		
290	295	300
Leu Val Glu Arg Leu Gly Ala Gly Gln Phe Gly Glu Val Trp Met Gly		
305	310	315
Tyr Tyr Asn Gly His Thr Lys Val Ala Val Lys Ser Leu Lys Gln Gly		
325	330	335
Ser Met Ser Pro Asp Ala Phe Leu Ala Glu Ala Asn Leu Met Lys Gln		
340	345	350
Leu Gln His Gln Arg Leu Val Arg Leu Tyr Ala Val Val Thr Gln Glu		

355	360	365
Pro Ile Tyr Ile Ile Thr Glu Tyr Met Glu Asn Gly Ser Leu Val Asp		
370	375	380
Phe Leu Lys Thr Pro Ser Gly Ile Lys Leu Thr Ile Asn Lys Leu Leu		
385	390	395
Asp Met Ala Ala Gln Ile Ala Glu Gly Met Ala Phe Ile Glu Glu Arg		
405	410	415
Asn Tyr Ile His Arg Asp Leu Arg Ala Ala Asn Ile Leu Val Ser Asp		
420	425	430
Thr Leu Ser Cys Lys Ile Ala Asp Phe Gly Leu Ala Arg Leu Ile Glu		
435	440	445
Asp Asn Glu Tyr Thr Ala Arg Glu Gly Ala Lys Phe Pro Ile Lys Trp		
450	455	460
Thr Ala Pro Glu Ala Ile Asn Tyr Gly Thr Phe Thr Ile Lys Ser Asp		
465	470	475
Val Trp Ser Phe Gly Ile Leu Leu Thr Glu Ile Val Thr His Gly Arg		
485	490	495
Ile Pro Tyr Pro Gly Met Thr Asn Pro Glu Val Ile Gln Asn Leu Glu		
500	505	510
Arg Gly Tyr Arg Met Val Arg Pro Asp Asn Cys Pro Glu Glu Leu Tyr		
515	520	525
Gln Leu Met Arg Leu Cys Trp Lys Glu Arg Pro Glu Asp Arg Pro Thr		
530	535	540
Phe Asp Tyr Leu Arg Ser Val Leu Glu Asp Phe Phe Thr Ala Thr Glu		
545	550	555
Gly Gln Tyr Gln Pro Gln Pro		
565		

<210> 41
<211> 192
<212> PRT
<213> Homo sapiens

<400> 41
Met Arg Ile Ala Val Ile Cys Phe Cys Leu Leu Gly Ile Thr Cys Ala
1 5 10 15
Ile Pro Val Lys Gln Ala Asp Ser Gly Ser Ser Glu Glu Lys Gln Leu
20 25 30
Tyr Asn Lys Tyr Pro Asp Ala Val Ala Thr Trp Leu Asn Pro Asp Pro
35 40 45

Ser	Gln	Lys	Gln	Asn	Leu	Leu	Ala	Pro	Gln	Asn	Ala	Val	Ser	Ser	Glu
50					55						60				
Glu	Thr	Asn	Asp	Phe	Lys	Gln	Glu	Thr	Leu	Pro	Ser	Lys	Ser	Asn	Glu
65					70				75					80	
Ser	His	Asp	His	Met	Asp	Asp	Met	Asp	Asp	Glu	Asp	Asp	Asp	Asp	His
						85				90					95
Val	Asp	Ser	Gln	Asp	Ser	Ile	Asp	Ser	Asn	Asp	Ser	Asp	Asp	Val	Asp
						100			105					110	
Asp	Thr	Asp	Asp	Ser	His	Gln	Ser	Asp	Glu	Ser	His	His	Ser	Asp	Glu
						115		120				125			
Ser	Asp	Glu	Leu	Val	Thr	Asp	Phe	Pro	Thr	Asp	Leu	Pro	Ala	Thr	Glu
						130			135			140			
Val	Phe	Thr	Pro	Val	Val	Pro	Thr	Val	Asp	Thr	Tyr	Asp	Gly	Arg	Gly
						145			150		155			160	
Asp	Ser	Val	Val	Tyr	Gly	Leu	Arg	Ser	Lys	Ser	Lys	Lys	Phe	Arg	Arg
						165			170				175		
Pro	Asp	Ile	Gln	Val	Asn	Pro	Leu	Thr	Asp	Thr	Pro	Asp	Gly	Ser	Asp
						180			185			190			

<210> 42
<211> 109
<212> PRT
<213> Homo sapiens

<400> 42															
Met	Glu	Leu	Gly	Leu	Pro	Gln	Val	Pro	Pro	Ala	Val	Asp	Ala	Glu	Leu
1					5					10				15	
Leu	Cys	Arg	Phe	Val	Asp	Arg	Gly	Leu	Pro	Tyr	Pro	Asp	Val	Ser	Ser
						20			25				30		
Ala	Asn	Thr	Pro	Pro	Ala	Val	Gly	Leu	Ser	Pro	Pro	Thr	Pro	Tyr	Phe
						35			40			45			
Glu	Pro	Cys	Ala	Leu	Pro	Ser	Pro	His	Arg	His	Gln	Leu	Ala	Glu	Ala
						50			55			60			
Ile	Pro	Cys	Thr	Leu	Ala	Val	Ser	Asn	Pro	His	Thr	Asp	Ala	Trp	Lys
						65			70		75			80	
Ser	His	Gly	Leu	Val	Glu	Val	Ala	Ser	Tyr	Cys	Glu	Glu	Ser	Arg	Gly
						85			90				95		

Asn Asn Gln Trp Val Pro Tyr Ile Ser Leu Gln Glu Arg
100 105

<210> 43
<211> 331
<212> PRT
<213> Homo sapiens

<400> 43
Met Arg Ala Arg Pro Gln Val Cys Glu Ala Leu Leu Phe Ala Leu Ala
1 5 10 15

Leu Gln Thr Gly Val Cys Tyr Gly Ile Lys Trp Leu Ala Leu Ser Lys
20 25 30

Thr Pro Ser Ala Leu Ala Leu Asn Gln Thr Gln His Cys Lys Gln Leu
35 40 45

Glu Gly Leu Val Ser Ala Gln Val Gln Leu Cys Arg Ser Asn Leu Glu
50 55 60

Leu Met His Thr Val Val His Ala Ala Arg Glu Val Met Lys Ala Cys
65 70 75 80

Arg Arg Ala Phe Ala Asp Met Arg Trp Asn Cys Ser Ser Ile Glu Leu
85 90 95

Ala Pro Asn Tyr Leu Leu Asp Leu Glu Arg Gly Thr Arg Glu Ser Ala
100 105 110

Phe Val Tyr Ala Leu Ser Ala Ala Ile Ser His Ala Ile Ala Arg
115 120 125

Ala Cys Thr Ser Gly Asp Leu Pro Gly Cys Ser Cys Gly Pro Val Pro
130 135 140

Gly Glu Pro Pro Gly Pro Gly Asn Arg Trp Gly Arg Cys Ala Asp Asn
145 150 155 160

Leu Ser Tyr Gly Leu Leu Met Gly Ala Lys Phe Ser Asp Ala Pro Met
165 170 175

Lys Val Lys Lys Thr Gly Ser Gln Ala Asn Lys Leu Met Arg Leu His
180 185 190

Asn Ser Glu Val Gly Arg Gln Ala Leu Arg Ala Ser Leu Glu Met Lys
195 200 205

Cys Lys Cys His Gly Val Ser Gly Ser Cys Ser Ile Arg Thr Cys Trp
210 215 220

Lys Gly Leu Gln Glu Leu Gln Asp Val Ala Ala Asp Leu Lys Thr Arg
225 230 235 240

Tyr Leu Ser Ala Thr Lys Val Val His Arg Pro Met Gly Thr Arg Lys

	245	250	255
His Leu Val Pro Lys Asp Leu Asp Ile Arg Pro Val Lys Asp Ser Glu			
260	265	270	
Leu Val Tyr Leu Gln Ser Ser Pro Asp Phe Cys Met Lys Asn Glu Lys			
275	280	285	
Val Gly Ser His Gly Thr Gln Asp Arg Gln Cys Asn Lys Thr Ser Asn			
290	295	300	
Gly Ser Asp Ser Cys Asp Leu Met Cys Cys Tyr Val Thr Cys Arg Arg			
305	310	315	320
Cys Glu Arg Thr Val Glu Arg Tyr Val Cys Lys			
325	330		
<210> 44			
<211> 237			
<212> PRT			
<213> Homo sapiens			
<400> 44			
Met Arg Ala Arg Pro Gln Val Cys Glu Ala Leu Leu Phe Ala Leu Ala			
1	5	10	15
Leu Gln Thr Gly Val Cys Tyr Gly Ile Lys Trp Leu Ala Leu Ser Lys			
20	25	30	
Thr Pro Ser Ala Leu Ala Leu Asn Gln Thr Gln His Cys Lys Gln Leu			
35	40	45	
Glu Gly Leu Val Ser Ala Gln Val Gln Leu Cys Arg Ser Asn Leu Glu			
50	55	60	
Leu Met His Thr Val Val His Ala Ala Arg Glu Val Met Lys Ala Cys			
65	70	75	80
Arg Arg Ala Phe Ala Asp Met Arg Trp Asn Cys Ser Ser Ile Glu Leu			
85	90	95	
Ala Pro Asn Tyr Leu Leu Asp Leu Glu Arg Gly Thr Arg Glu Ser Ala			
100	105	110	
Phe Val Tyr Ala Ala Ala Asp Leu Lys Thr Arg Tyr Leu Ser Ala Thr			
115	120	125	
Lys Val Val His Arg Pro Met Gly Thr Arg Lys His Leu Val Pro Lys			
130	135	140	
Asp Leu Asp Ile Arg Pro Val Lys Asp Ser Glu Leu Val Tyr Leu Gln			
145	150	155	160
Ser Ser Pro Asp Phe Cys Met Lys Asn Glu Lys Val Gly Ser His Gly			
165	170	175	

Thr	Gln	Asp	Arg	Gln	Cys	Asn	Lys	Thr	Ser	Asn	Gly	Ser	Asp	Ser	Cys
180						185							190		
Asp	Leu	Met	Cys	Cys	Gly	Arg	Gly	Tyr	Asn	Pro	Tyr	Thr	Asp	Arg	Val
195						200						205			
Val	Glu	Arg	Cys	His	Cys	Lys	Tyr	His	Trp	Cys	Cys	Tyr	Val	Thr	Cys
210						215					220				
Arg	Arg	Cys	Glu	Arg	Thr	Val	Glu	Arg	Tyr	Val	Cys	Lys			
225						230					235				

<210> 45
<211> 615
<212> PRT
<213> Homo sapiens

<400> 45															
Met	Ser	Pro	Phe	Leu	Arg	Ile	Gly	Leu	Ser	Asn	Phe	Asp	Cys	Gly	Ser
1										10				15	
Cys	Gln	Ser	Cys	Gln	Gly	Glu	Ala	Val	Asn	Pro	Tyr	Cys	Ala	Val	Leu
										20			25		30
Val	Lys	Glu	Tyr	Val	Glu	Ser	Glu	Asn	Gly	Gln	Met	Tyr	Ile	Gln	Lys
										35			40		45
Lys	Pro	Thr	Met	Tyr	Pro	Pro	Trp	Asp	Ser	Thr	Phe	Asp	Ala	His	Ile
										50			55		60
Asn	Lys	Gly	Arg	Val	Met	Gln	Ile	Ile	Val	Lys	Gly	Lys	Asn	Val	Asp
						65				70			75		80
Leu	Ile	Ser	Glu	Thr	Thr	Val	Glu	Leu	Tyr	Ser	Leu	Ala	Glu	Arg	Cys
						85				90				95	
Arg	Lys	Asn	Asn	Gly	Lys	Thr	Glu	Ile	Trp	Leu	Glu	Leu	Lys	Pro	Gln
						100				105			110		
Gly	Arg	Met	Leu	Met	Asn	Ala	Arg	Tyr	Phe	Leu	Glu	Met	Ser	Asp	Thr
										115			120		125
Lys	Asp	Met	Asn	Glu	Phe	Glu	Thr	Glu	Gly	Phe	Phe	Ala	Leu	His	Gln
										130			135		140
Arg	Arg	Gly	Ala	Ile	Lys	Gln	Ala	Lys	Val	His	His	Val	Lys	Cys	His
										145			150		160
Glu	Phe	Thr	Ala	Thr	Phe	Phe	Pro	Gln	Pro	Thr	Phe	Cys	Ser	Val	Cys
										165			170		175
His	Glu	Phe	Val	Trp	Gly	Leu	Asn	Lys	Gln	Gly	Tyr	Gln	Cys	Arg	Gln
										180			185		190

Cys Asn Ala Ala Ile His Lys Lys Cys Ile Asp Lys Val Ile Ala Lys
 195 200 205
 Cys Thr Gly Ser Ala Ile Asn Ser Arg Glu Thr Met Phe His Lys Glu
 210 215 220
 Arg Phe Lys Ile Asp Met Pro His Arg Phe Lys Val Tyr Asn Tyr Lys
 225 230 235 240
 Ser Pro Thr Phe Cys Glu His Cys Gly Thr Leu Leu Trp Gly Leu Ala
 245 250 255
 Arg Gln Gly Leu Lys Cys Asp Ala Cys Gly Met Asn Val His His Arg
 260 265 270
 Cys Gln Thr Lys Val Ala Asn Leu Cys Gly Ile Asn Gln Lys Leu Met
 275 280 285
 Ala Glu Ala Leu Ala Met Ile Glu Ser Thr Gln Gln Ala Arg Cys Leu
 290 295 300
 Arg Asp Thr Glu Gln Ile Phe Arg Glu Gly Pro Val Glu Ile Gly Leu
 305 310 315 320
 Pro Cys Ser Ile Lys Asn Glu Ala Arg Pro Pro Cys Leu Pro Thr Pro
 325 330 335
 Gly Lys Arg Glu Pro Gln Gly Ile Ser Trp Glu Ser Pro Leu Asp Glu
 340 345 350
 Val Asp Lys Met Cys His Leu Pro Glu Pro Glu Leu Asn Lys Glu Arg
 355 360 365
 Pro Ser Leu Gln Ile Lys Leu Lys Ile Glu Asp Phe Ile Leu His Lys
 370 375 380
 Met Leu Gly Lys Gly Ser Phe Gly Lys Val Phe Leu Ala Glu Phe Lys
 385 390 395 400
 Lys Thr Asn Gln Phe Phe Ala Ile Lys Ala Leu Lys Lys Asp Val Val
 405 410 415
 Leu Met Asp Asp Asp Val Glu Cys Thr Met Val Glu Lys Arg Val Leu
 420 425 430
 Ser Leu Ala Trp Glu His Pro Phe Leu Thr His Met Phe Cys Thr Phe
 435 440 445
 Gln Thr Lys Glu Asn Leu Phe Phe Val Met Glu Tyr Leu Asn Gly Gly
 450 455 460
 Asp Leu Met Tyr His Ile Gln Ser Cys His Lys Phe Asp Leu Ser Arg
 465 470 475 480
 Ala Thr Phe Tyr Ala Ala Glu Ile Ile Leu Gly Leu Gln Phe Leu His
 485 490 495

Ser Lys Gly Ile Val Tyr Arg Asp Leu Lys Leu Asp Asn Ile Leu Leu
 500 505 510
 Asp Lys Asp Gly His Ile Lys Ile Ala Asp Phe Gly Met Cys Lys Glu
 515 520 525
 Asn Met Leu Gly Asp Ala Lys Thr Asn Thr Phe Cys Gly Thr Pro Asp
 530 535 540
 Tyr Ile Ala Pro Glu Ile Leu Leu Gly Gln Lys Tyr Asn His Ser Val
 545 550 555 560
 Asp Trp Trp Ser Phe Gly Val Leu Leu Tyr Glu Met Leu Ile Gly Gln
 565 570 575
 Ser Pro Phe His Gly Gln Asp Glu Glu Glu Leu Phe His Ser Ile Arg
 580 585 590
 Met Asp Asn Pro Phe Tyr Pro Arg Trp Leu Glu Lys Glu Ala Lys Asp
 595 600 605
 Leu Leu Val Lys Val Arg Ser
 610 615

<210> 46
 <211> 292
 <212> PRT
 <213> Homo sapiens

<400> 46
 Met Pro Ile Thr Arg Met Arg Met Arg Pro Trp Leu Glu Met Gln Ile
 1 5 10 15
 Asn Ser Asn Gln Ile Pro Gly Leu Ile Trp Ile Asn Lys Glu Glu Met
 20 25 30
 Ile Phe Gln Ile Pro Trp Lys His Ala Ala Lys His Gly Trp Asp Ile
 35 40 45
 Asn Lys Asp Ala Cys Leu Phe Arg Ser Trp Ala Ile His Thr Gly Arg
 50 55 60
 Tyr Lys Ala Gly Glu Lys Glu Pro Asp Pro Lys Thr Trp Lys Ala Asn
 65 70 75 80
 Phe Arg Cys Ala Met Asn Ser Leu Pro Asp Ile Glu Glu Val Lys Asp
 85 90 95
 Gln Ser Arg Asn Lys Gly Ser Ser Ala Val Arg Val Tyr Arg Met Leu
 100 105 110
 Pro Pro Leu Thr Lys Asn Gln Arg Lys Glu Arg Lys Ser Lys Ser Ser
 115 120 125
 Arg Asp Ala Lys Ser Lys Ala Lys Arg Lys Ser Cys Gly Asp Ser Ser

130	135	140
Pro Asp Thr Phe Ser Asp Gly Leu Ser Ser Ser Thr Leu Pro Asp Asp		
145	150	155
His Ser Ser Tyr Thr Val Pro Gly Tyr Met Gln Asp Leu Glu Val Glu		
165	170	175
Gln Ala Leu Thr Pro Ala Leu Ser Pro Cys Ala Val Ser Ser Thr Leu		
180	185	190
Pro Asp Trp His Ile Pro Val Glu Val Val Pro Asp Ser Thr Ser Asp		
195	200	205
Leu Tyr Asn Phe Gln Val Ser Pro Met Pro Ser Thr Ser Glu Ala Thr		
210	215	220
Thr Asp Glu Asp Glu Glu Gly Lys Leu Pro Glu Asp Ile Met Lys Leu		
225	230	235
Leu Glu Gln Ser Glu Trp Gln Pro Thr Asn Val Asp Gly Lys Gly Tyr		
245	250	255
Leu Leu Asn Glu Pro Gly Val Gln Pro Thr Ser Val Tyr Gly Asp Phe		
260	265	270
Ser Cys Lys Glu Glu Pro Glu Ile Asp Ser Pro Gly Gly Lys Lys Ala		
275	280	285
Pro Gly Ser Leu		
290		

<210> 47
 <211> 702
 <212> PRT
 <213> Homo sapiens

<400> 47			
Met Trp Ser Trp Lys Cys Leu Leu Phe Trp Ala Val Leu Val Thr Ala			
1	5	10	15
Thr Leu Cys Thr Ala Arg Pro Ser Pro Thr Leu Pro Glu Gln Ala Gln			
20	25	30	
Pro Trp Gly Ala Pro Val Glu Val Glu Ser Phe Leu Val His Pro Gly			
35	40	45	
Asp Leu Leu Gln Leu Arg Cys Arg Leu Arg Asp Asp Val Gln Ser Ile			
50	55	60	
Asn Trp Leu Arg Asp Gly Val Gln Leu Ala Glu Ser Asn Arg Thr Arg			
65	70	75	80
Ile Thr Gly Glu Glu Val Glu Val Gln Asp Ser Val Pro Ala Asp Ser			
85	90	95	

Gly Leu Tyr Ala Cys Val Thr Ser Ser Pro Ser Gly Ser Asp Thr Thr
 100 105 110
 Tyr Phe Ser Val Asn Val Ser Asp Ala Leu Pro Ser Ser Glu Asp Asp
 115 120 125
 Asp Asp Asp Asp Asp Ser Ser Ser Glu Glu Lys Glu Thr Asp Asn Thr
 130 135 140
 Lys Pro Asn Arg Met Pro Val Ala Pro Tyr Trp Thr Ser Pro Glu Lys
 145 150 155 160
 Met Glu Lys Lys Leu His Ala Val Pro Ala Ala Lys Thr Val Lys Phe
 165 170 175
 Lys Cys Pro Ser Ser Gly Thr Pro Asn Pro Thr Leu Arg Trp Leu Lys
 180 185 190
 Asn Gly Lys Glu Phe Lys Pro Asp His Arg Ile Gly Gly Tyr Lys Val
 195 200 205
 Arg Tyr Ala Thr Trp Ser Ile Ile Met Asp Ser Val Val Pro Ser Asp
 210 215 220
 Lys Gly Asn Tyr Thr Cys Ile Val Glu Asn Glu Tyr Gly Ser Ile Asn
 225 230 235 240
 His Thr Tyr Gln Leu Asp Val Val Glu Arg Ser Pro His Arg Pro Ile
 245 250 255
 Leu Gln Ala Gly Leu Pro Ala Asn Lys Thr Val Ala Leu Gly Ser Asn
 260 265 270
 Val Glu Phe Met Cys Lys Val Tyr Ser Asp Pro Gln Pro His Ile Gln
 275 280 285
 Trp Leu Lys His Ile Glu Val Asn Gly Ser Lys Ile Gly Pro Asp Asn
 290 295 300
 Leu Pro Tyr Val Gln Ile Leu Lys Thr Ala Gly Val Asn Thr Thr Asp
 305 310 315 320
 Lys Glu Met Glu Val Leu His Leu Arg Asn Val Ser Phe Glu Asp Ala
 325 330 335
 Gly Glu Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Leu Ser His His
 340 345 350
 Ser Ala Trp Leu Thr Val Leu Glu Ala Leu Glu Glu Arg Pro Ala Val
 355 360 365
 Met Thr Ser Pro Leu Tyr Leu Glu Ile Ile Ile Tyr Cys Thr Gly Ala
 370 375 380
 Phe Leu Ile Ser Cys Met Val Gly Ser Val Ile Val Tyr Lys Met Lys
 385 390 395 400

Ser Gly Thr Lys Lys Ser Asp Phe His Ser Gln Met Ala Val His Lys
 405 410 415

 Leu Ala Lys Ser Ile Pro Leu Arg Arg Gln Val Thr Val Ser Ala Asp
 420 425 430

 Ser Ser Ala Ser Met Asn Ser Gly Val Leu Leu Val Arg Pro Ser Arg
 435 440 445

 Leu Ser Ser Ser Gly Thr Pro Met Leu Ala Gly Val Ser Glu Tyr Glu
 450 455 460

 Leu Pro Glu Asp Pro Arg Trp Glu Leu Pro Arg Asp Arg Leu Val Leu
 465 470 475 480

 Gly Lys Pro Leu Gly Glu Gly Cys Phe Gly Gln Val Val Leu Ala Glu
 485 490 495

 Ala Ile Gly Leu Asp Lys Asp Lys Pro Asn Arg Val Thr Lys Val Ala
 500 505 510

 Val Lys Met Leu Lys Ser Asp Ala Thr Glu Lys Asp Leu Ser Asp Leu
 515 520 525

 Ile Ser Glu Met Glu Met Met Lys Met Ile Gly Lys His Lys Asn Ile
 530 535 540

 Ile Asn Leu Leu Gly Ala Cys Thr Gln Asp Gly Pro Leu Tyr Val Ile
 545 550 555 560

 Val Glu Tyr Ala Ser Lys Gly Asn Leu Arg Glu Tyr Leu Gln Ala Arg
 565 570 575

 Arg Pro Pro Gly Leu Glu Tyr Cys Tyr Asn Pro Ser His Asn Pro Glu
 580 585 590

 Glu Gln Leu Ser Ser Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala
 595 600 605

 Arg Gly Met Glu Tyr Leu Ala Ser Lys Lys Cys Ile His Arg Asp Leu
 610 615 620

 Ala Ala Arg Asn Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala
 625 630 635 640

 Asp Phe Gly Leu Ala Arg Asp Ile His His Ile Asp Tyr Tyr Lys Lys
 645 650 655

 Thr Thr Asn Gly Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu
 660 665 670

 Phe Asp Arg Ile Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val
 675 680 685

 Pro His Thr Pro Val Cys Leu Trp Arg Asn Phe Ser Ser Cys
 690 695 700

<210> 48
<211> 295
<212> PRT
<213> Homo sapiens

<400> 48
Met Pro Lys Arg Gly Lys Lys Gly Ala Val Ala Glu Asp Gly Asp Glu
1 5 10 15

Leu Arg Thr Glu Pro Glu Ala Lys Lys Ser Lys Thr Ala Ala Lys Lys
20 25 30

Asn Asp Lys Glu Ala Ala Gly Glu Gly Pro Ala Leu Tyr Glu Asp Pro
35 40 45

Pro Asp Gln Lys Thr Ser Pro Ser Gly Lys Pro Ala Thr Leu Lys Ile
50 55 60

Cys Ser Trp Asn Val Asp Gly Leu Arg Ala Trp Ile Lys Lys Lys Gly
65 70 75 80

Leu Asp Trp Val Lys Glu Ala Pro Asp Ile Leu Cys Leu Gln Glu
85 90 95

Thr Lys Cys Ser Glu Asn Lys Leu Pro Ala Glu Leu Gln Glu Leu Pro
100 105 110

Gly Leu Ser His Gln Tyr Trp Ser Ala Pro Ser Asp Lys Glu Gly Tyr
115 120 125

Ser Gly Val Gly Leu Leu Ser Arg Gln Cys Pro Leu Lys Val Ser Tyr
130 135 140

Gly Ile Ala Tyr Val Pro Asn Ala Gly Arg Gly Leu Val Arg Leu Glu
145 150 155 160

Tyr Arg Gln Arg Trp Asp Glu Ala Phe Arg Lys Phe Leu Lys Gly Leu
165 170 175

Ala Ser Arg Lys Pro Leu Val Leu Cys Gly Asp Leu Asn Val Ala His
180 185 190

Glu Glu Ile Asp Leu Arg Asn Pro Lys Gly Asn Lys Lys Asn Ala Gly
195 200 205

Phe Thr Pro Gln Glu Arg Gln Gly Phe Gly Glu Leu Leu Gln Ala Val
210 215 220

Pro Leu Ala Asp Ser Phe Arg His Leu Tyr Pro Asn Thr Pro Tyr Ala
225 230 235 240

Tyr Thr Phe Trp Thr Tyr Met Met Asn Ala Arg Ser Lys Asn Val Gly
245 250 255

Trp Arg Leu Asp Tyr Phe Leu Leu Ser His Ser Leu Leu Pro Ala Leu
260 265 270

Cys Asp Ser Lys Ile Arg Ser Lys Ala Leu Gly Ser Asp His Cys Pro
275 280 285

Ile Thr Leu Tyr Leu Ala Leu
290 295

<210> 49
<211> 342
<212> PRT
<213> Homo sapiens

<400> 49
Met Pro Lys Arg Gly Lys Lys Gly Ala Val Ala Glu Asp Gly Asp Glu
1 5 10 15

Leu Arg Thr Gly Lys Gly Met Lys Ser Ala Leu Leu Pro Arg Asn Cys
20 25 30

Gly Gly Gly Val Cys His Ser Leu Asp Val Arg Glu Pro Glu Ala Lys
35 40 45

Lys Ser Lys Thr Ala Ala Lys Lys Asn Asp Lys Glu Ala Ala Gly Glu
50 55 60

Gly Pro Ala Leu Tyr Glu Asp Pro Pro Asp Gln Lys Thr Ser Pro Ser
65 70 75 80

Gly Lys Pro Ala Thr Leu Lys Ile Cys Ser Trp Asn Val Asp Gly Leu
85 90 95

Arg Ala Trp Ile Lys Lys Gly Leu Asp Trp Val Lys Glu Glu Ala
100 105 110

Pro Asp Ile Leu Cys Leu Gln Glu Thr Lys Cys Ser Glu Asn Lys Leu
115 120 125

Pro Ala Glu Leu Gln Glu Leu Pro Gly Leu Ser His Gln Tyr Trp Ser
130 135 140

Ala Pro Ser Asp Lys Glu Gly Tyr Ser Gly Val Gly Leu Leu Ser Arg
145 150 155 160

Gln Cys Pro Leu Lys Val Ser Tyr Gly Ile Gly Asp Glu Glu His Asp
165 170 175

Gln Glu Gly Arg Val Ile Val Ala Glu Phe Asp Ser Phe Val Leu Val
180 185 190

Thr Ala Tyr Val Pro Asn Ala Gly Arg Gly Leu Val Arg Leu Glu Tyr
195 200 205

Arg Gln Arg Trp Asp Glu Ala Phe Arg Lys Phe Leu Lys Gly Leu Ala

210	215	220
Ser Arg Lys Pro Leu Val Leu Cys Gly Asp Leu Asn Val Ala His Glu		
225	230	235
Glu Ile Asp Leu Arg Asn Pro Lys Gly Asn Lys Lys Asn Ala Gly Phe		
245	250	255
Thr Pro Gln Glu Arg Gln Gly Phe Gly Glu Leu Leu Gln Ala Val Pro		
260	265	270
Leu Ala Asp Ser Phe Arg His Leu Tyr Pro Asn Thr Pro Tyr Ala Tyr		
275	280	285
Thr Phe Trp Thr Tyr Met Met Asn Ala Arg Ser Lys Asn Val Gly Trp		
290	295	300
Arg Leu Asp Tyr Phe Leu Leu Ser His Ser Leu Leu Pro Ala Leu Cys		
305	310	315
Asp Ser Lys Ile Arg Ser Lys Ala Leu Gly Ser Asp His Cys Pro Ile		
325	330	335
Thr Leu Tyr Leu Ala Leu		
340		

<210> 50
 <211> 305
 <212> PRT
 <213> Homo sapiens

<400> 50		
Met Phe Gln Ala Ala Glu Arg Pro Gln Glu Trp Ala Met Glu Gly Pro		
1	5	10
15		
Arg Asp Gly Leu Lys Lys Glu Arg Leu Leu Asp Asp Arg His Asp Ser		
20	25	30
Gly Leu Asp Ser Met Lys Asp Glu Glu Tyr Glu Gln Met Val Lys Glu		
35	40	45
Leu Gln Glu Ile Arg Leu Glu Pro Gln Glu Val Pro Arg Gly Ser Glu		
50	55	60
Pro Trp Lys Gln Gln Leu Thr Glu Asp Gly Asp Ser Phe Leu His Leu		
65	70	75
80		
Ala Ile Ile His Glu Glu Lys Ala Leu Thr Met Glu Val Ile Arg Gln		
85	90	95
Val Lys Gly Asp Leu Ala Phe Leu Asn Phe Gln Asn Asn Leu Gln Gln		
100	105	110
Thr Pro Leu His Leu Ala Val Ile Thr Asn Gln Pro Glu Ile Ala Glu		
115	120	125

Ala Leu Leu Gly Ala Gly Cys Asp Pro Glu Leu Arg Asp Phe Arg Gly
 130 135 140
 Asn Thr Pro Leu His Leu Ala Cys Glu Gln Gly Cys Leu Ala Ser Val
 145 150 155 160
 Gly Val Leu Thr Gln Ser Cys Thr Thr Pro His Leu His Ser Ile Leu
 165 170 175
 Lys Ala Thr Asn Tyr Asn Gly His Thr Cys Leu His Leu Ala Ser Ile
 180 185 190
 His Gly Tyr Leu Gly Ile Val Glu Leu Leu Val Ser Leu Gly Ala Asp
 195 200 205
 Val Asn Ala Gln Glu Pro Cys Asn Gly Arg Thr Ala Leu His Leu Ala
 210 215 220
 Val Asp Leu Gln Asn Pro Asp Leu Val Ser Leu Leu Lys Cys Gly
 225 230 235 240
 Ala Asp Val Asn Arg Val Thr Tyr Gln Gly Tyr Ser Pro Tyr Gln Leu
 245 250 255
 Thr Trp Gly Arg Pro Ser Thr Arg Ile Gln Gln Gln Leu Gly Gln Leu
 260 265 270
 Thr Leu Glu Asn Leu Gln Met Leu Pro Glu Ser Glu Asp Glu Glu Ser
 275 280 285
 Tyr Asp Thr Glu Ser Glu Phe Thr Glu Phe Thr Glu Asp Glu Val Ser
 290 295 300
 Leu
 305

<210> 51
 <211> 289
 <212> PRT
 <213> Homo sapiens

<400> 51
 Met Phe Gln Ala Ala Glu Arg Pro Gln Glu Trp Ala Met Glu Gly Pro
 1 5 10 15
 Arg Asp Gly Leu Lys Lys Glu Arg Leu Leu Asp Asp Arg His Asp Ser
 20 25 30
 Gly Leu Asp Ser Met Lys Asp Glu Glu Tyr Glu Gln Met Val Lys Glu
 35 40 45
 Leu Gln Glu Ile Arg Leu Glu Pro Gln Glu Val Pro Arg Gly Ser Glu
 50 55 60

Pro Trp Lys Gln Gln Leu Thr Glu Asp Gly Asp Ser Phe Leu His Leu
 65 70 75 80
 Ala Ile Ile His Glu Glu Lys Ala Leu Thr Met Glu Val Ile Arg Gln
 85 90 95
 Val Lys Gly Asp Leu Ala Phe Leu Asn Phe Gln Asn Asn Leu Gln Gln
 100 105 110
 Thr Pro Leu His Leu Ala Val Ile Thr Asn Gln Pro Glu Ile Ala Glu
 115 120 125
 Ala Leu Leu Gly Ala Gly Cys Asp Pro Glu Leu Arg Asp Phe Arg Gly
 130 135 140
 Asn Thr Pro Leu His Leu Ala Cys Glu Gln Gly Cys Leu Ala Ser Val
 145 150 155 160
 Gly Val Leu Thr Gln Ser Cys Thr Thr Pro His Leu His Ser Ile Leu
 165 170 175
 Lys Ala Thr Asn Tyr Asn Gly Gln Glu Pro Cys Asn Gly Arg Thr Ala
 180 185 190
 Leu His Leu Ala Val Asp Leu Gln Asn Pro Asp Leu Val Ser Leu Leu
 195 200 205
 Leu Lys Cys Gly Ala Asp Val Asn Arg Val Thr Tyr Gln Gly Tyr Ser
 210 215 220
 Pro Tyr Gln Leu Thr Trp Gly Arg Pro Ser Thr Arg Ile Gln Gln Gln
 225 230 235 240
 Leu Gly Gln Leu Thr Leu Glu Asn Leu Gln Met Leu Pro Glu Ser Glu
 245 250 255
 Asp Glu Glu Ser Tyr Asp Thr Glu Ser Glu Phe Thr Glu Phe Thr Glu
 260 265 270
 Asp Glu Leu Pro Tyr Asp Asp Cys Val Phe Gly Gly Gln Arg Leu Thr
 275 280 285
 Leu

<210> 52
 <211> 921
 <212> PRT
 <213> Homo sapiens

<400> 52
 Met Ala Gly Ile Phe Tyr Phe Ala Leu Phe Ser Cys Leu Phe Gly Ile
 1 5 10 15
 Cys Asp Ala Val Thr Gly Ser Arg Val Tyr Pro Ala Asn Glu Val Thr

20	25	30
Leu Leu Asp Ser Arg Ser Val Gln Gly Glu Leu Gly Trp Ile Ala Ser		
35	40	45
Pro Leu Glu Gly Gly Trp Glu Glu Val Ser Ile Met Asp Glu Lys Asn		
50	55	60
Thr Pro Ile Arg Thr Tyr Gln Val Cys Asn Val Met Glu Pro Ser Gln		
65	70	75
Asn Asn Trp Leu Arg Thr Asp Trp Ile Thr Arg Glu Gly Ala Gln Arg		
85	90	95
Val Tyr Ile Glu Ile Lys Phe Thr Leu Arg Asp Cys Asn Ser Leu Pro		
100	105	110
Gly Val Met Gly Thr Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Tyr Glu		
115	120	125
Ser Asp Asn Asp Lys Glu Arg Phe Ile Arg Glu Asn Gln Phe Val Lys		
130	135	140
Ile Asp Thr Ile Ala Ala Asp Glu Ser Phe Thr Gln Val Asp Ile Gly		
145	150	155
Asp Arg Ile Met Lys Leu Asn Thr Glu Ile Arg Asp Val Gly Pro Leu		
165	170	175
Ser Lys Lys Gly Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys Ile		
180	185	190
Ala Leu Val Ser Val Arg Val Phe Tyr Lys Lys Cys Pro Leu Thr Val		
195	200	205
Arg Asn Leu Ala Gln Phe Pro Asp Thr Ile Thr Gly Ala Asp Thr Ser		
210	215	220
Ser Leu Val Glu Val Arg Gly Ser Cys Val Asn Asn Ser Glu Glu Lys		
225	230	235
Asp Val Pro Lys Met Tyr Cys Gly Ala Asp Gly Glu Trp Leu Val Pro		
245	250	255
Ile Gly Asn Cys Leu Cys Asn Ala Gly His Glu Glu Arg Ser Gly Glu		
260	265	270
Cys Gln Ala Cys Lys Ile Gly Tyr Tyr Lys Ala Leu Ser Thr Asp Ala		
275	280	
Thr Cys Ala Lys Cys Pro Pro His Ser Tyr Ser Val Trp Glu Gly Ala		
290	295	
Thr Ser Cys Thr Cys Asp Arg Gly Phe Phe Arg Ala Asp Asn Asp Ala		
305	310	
Ala Ser Met Pro Cys Thr Arg Pro Pro Ser Ala Pro Leu Asn Leu Ile		

325	330	335
Ser Asn Val Asn Glu Thr Ser Val Asn Leu Glu Trp Ser Ser Pro Gln		
340	345	350
Asn Thr Gly Gly Arg Gln Asp Ile Ser Tyr Asn Val Val Cys Lys Lys		
355	360	365
Cys Gly Ala Gly Asp Pro Ser Lys Cys Arg Pro Cys Gly Ser Gly Val		
370	375	380
His Tyr Thr Pro Gln Gln Asn Gly Leu Lys Thr Thr Lys Val Ser Ile		
385	390	395
Thr Asp Leu Leu Ala His Thr Asn Tyr Thr Phe Glu Ile Trp Ala Val		
405	410	415
Asn Gly Val Ser Lys Tyr Asn Pro Asn Pro Asp Gln Ser Val Ser Val		
420	425	430
Thr Val Thr Thr Asn Gln Ala Ala Pro Ser Ser Ile Ala Leu Val Gln		
435	440	445
Ala Lys Glu Val Thr Arg Tyr Ser Val Ala Leu Ala Trp Leu Glu Pro		
450	455	460
Asp Arg Pro Asn Gly Val Ile Leu Glu Tyr Glu Val Lys Tyr Tyr Glu		
465	470	475
Lys Asp Gln Asn Glu Arg Ser Tyr Arg Ile Val Arg Thr Ala Ala Arg		
485	490	495
Asn Thr Asp Ile Lys Gly Leu Asn Pro Leu Thr Ser Tyr Val Phe His		
500	505	510
Val Arg Ala Arg Thr Ala Ala Gly Tyr Gly Asp Phe Ser Glu Pro Leu		
515	520	525
Glu Val Thr Thr Asn Thr Val Pro Ser Arg Ile Ile Gly Asp Gly Ala		
530	535	540
Asn Ser Thr Val Leu Leu Val Ser Val Ser Gly Ser Val Val Leu Val		
545	550	555
Val Ile Leu Ile Ala Ala Phe Val Ile Ser Arg Arg Arg Ser Lys Tyr		
565	570	575
Ser Lys Ala Lys Gln Glu Ala Asp Glu Glu Lys His Leu Asn Gln Gly		
580	585	590
Val Arg Thr Tyr Val Asp Pro Phe Thr Tyr Glu Asp Pro Asn Gln Ala		
595	600	605
Val Arg Glu Phe Ala Lys Glu Ile Asp Ala Ser Cys Ile Lys Ile Glu		
610	615	620
Lys Val Ile Gly Val Gly Glu Phe Gly Glu Val Cys Ser Gly Arg Leu		

625	630	635	640
Lys Val Pro Gly Lys Arg Glu Ile Cys Val Ala Ile Lys Thr Leu Lys			
645	650	655	
Ala Gly Tyr Thr Asp Lys Gln Arg Arg Asp Phe Leu Ser Glu Ala Ser			
660	665	670	
Ile Met Gly Gln Phe Asp His Pro Asn Ile Ile His Leu Glu Gly Val			
675	680	685	
Val Thr Lys Cys Lys Pro Val Met Ile Ile Thr Glu Tyr Met Glu Asn			
690	695	700	
Gly Ser Leu Asp Ala Phe Leu Arg Lys Asn Asp Gly Arg Phe Thr Val			
705	710	715	720
Ile Gln Leu Val Gly Met Leu Arg Gly Ile Gly Ser Gly Met Lys Tyr			
725	730	735	
Leu Ser Asp Met Ser Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile			
740	745	750	
Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Met Ser			
755	760	765	
Arg Val Leu Glu Asp Asp Pro Glu Ala Ala Tyr Thr Thr Arg Gly Gly			
770	775	780	
Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Ala Tyr Arg Lys			
785	790	795	800
Phe Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu			
805	810	815	
Val Met Ser Tyr Gly Glu Arg Pro Tyr Trp Asp Met Ser Asn Gln Asp			
820	825	830	
Pro Asn Thr Ala Leu Leu Asp Pro Ser Ser Pro Glu Phe Ser Ala Val			
835	840	845	
Val Ser Val Gly Asp Trp Leu Gln Ala Ile Lys Met Asp Arg Tyr Lys			
850	855	860	
Asp Asn Phe Thr Ala Ala Gly Tyr Thr Thr Leu Glu Ala Val Val His			
865	870	875	880
Val Asn Gln Glu Asp Leu Ala Arg Ile Gly Ile Thr Ala Ile Thr His			
885	890	895	
Gln Asn Lys Ile Leu Ser Ser Val Gln Ala Met Arg Thr Gln Met Gln			
900	905	910	
Gln Met His Gly Arg Met Val Pro Val			
915	920		

<210> 53
 <211> 444
 <212> PRT
 <213> Homo sapiens

<400> 53
 Met Asn Asp Phe Gly Ile Lys Asn Met Asp Gln Val Ala Pro Val Ala
 1 5 10 15

Asn Ser Tyr Arg Gly Thr Leu Lys Arg Gln Pro Ala Phe Asp Thr Phe
 20 25 30

Asp Gly Ser Leu Phe Ala Val Phe Pro Ser Leu Asn Glu Glu Gln Thr
 35 40 45

Leu Gln Glu Val Pro Thr Gly Leu Asp Ser Ile Ser His Asp Ser Ala
 50 55 60

Asn Cys Glu Leu Pro Leu Leu Thr Pro Cys Ser Lys Ala Val Met Ser
 65 70 75 80

Gln Ala Leu Lys Ala Thr Phe Ser Gly Phe Phe Trp Ala Thr Asn Glu
 85 90 95

Phe Ser Leu Val Asn Val Asn Leu Gln Arg Phe Gly Met Asn Gly Gln
 100 105 110

Met Leu Cys Asn Leu Gly Lys Glu Arg Phe Leu Glu Leu Ala Pro Asp
 115 120 125

Phe Val Gly Asp Ile Leu Trp Glu His Leu Glu Gln Met Ile Lys Glu
 130 135 140

Asn Gln Glu Lys Thr Glu Asp Gln Tyr Glu Glu Asn Ser His Leu Thr
 145 150 155 160

Ser Val Pro His Trp Ile Asn Ser Asn Thr Leu Gly Phe Gly Thr Glu
 165 170 175

Gln Ala Pro Tyr Gly Met Gln Thr Gln Asn Tyr Pro Lys Gly Gly Leu
 180 185 190

Leu Asp Ser Met Cys Pro Ala Ser Thr Pro Ser Val Leu Ser Ser Glu
 195 200 205

Gln Glu Phe Gln Met Phe Pro Lys Ser Arg Leu Ser Ser Val Ser Val
 210 215 220

Thr Tyr Cys Ser Val Ser Gln Asp Phe Pro Gly Ser Asn Leu Asn Leu
 225 230 235 240

Leu Thr Asn Asn Ser Gly Thr Pro Lys Asp His Asp Ser Pro Glu Asn
 245 250 255

Gly Ala Asp Ser Phe Glu Ser Ser Asp Ser Leu Leu Gln Ser Trp Asn
 260 265 270

Ser Gln Ser Ser Leu Leu Asp Val Gln Arg Val Pro Ser Phe Glu Ser
 275 280 285
 Phe Glu Asp Asp Cys Ser Gln Ser Leu Cys Leu Asn Lys Pro Thr Met
 290 295 300
 Ser Phe Lys Asp Tyr Ile Gln Glu Arg Ser Asp Pro Val Glu Gln Gly
 305 310 315 320
 Lys Pro Val Ile Pro Ala Ala Val Leu Ala Gly Phe Thr Gly Ser Gly
 325 330 335
 Pro Ile Gln Leu Trp Gln Phe Leu Leu Glu Leu Ser Asp Lys Ser
 340 345 350
 Cys Gln Ser Phe Ile Ser Trp Thr Gly Asp Gly Trp Glu Phe Lys Leu
 355 360 365
 Ala Asp Pro Asp Glu Val Ala Arg Arg Trp Gly Lys Arg Lys Asn Lys
 370 375 380
 Pro Lys Met Asn Tyr Glu Lys Leu Ser Arg Gly Leu Arg Tyr Tyr Tyr
 385 390 395 400
 Asp Lys Asn Ile Ile His Lys Thr Ser Gly Lys Arg Tyr Val Tyr Arg
 405 410 415
 Phe Val Cys Asp Leu Gln Asn Leu Leu Gly Phe Thr Pro Glu Glu Leu
 420 425 430
 His Ala Ile Leu Gly Val Gln Pro Asp Thr Glu Asp
 435 440

<210> 54
 <211> 260
 <212> PRT
 <213> Homo sapiens

<400> 54
 Met Ala Gly Ser Ala Met Ser Ser Lys Phe Phe Leu Val Ala Leu Ala
 1 5 10 15
 Ile Phe Phe Ser Phe Ala Gln Val Val Ile Glu Ala Asn Ser Trp Trp
 20 25 30
 Ser Leu Gly Met Asn Asn Pro Val Gln Met Ser Glu Val Tyr Ile Ile
 35 40 45
 Gly Ala Gln Pro Leu Cys Ser Gln Leu Ala Gly Leu Ser Gln Gly Gln
 50 55 60
 Lys Lys Leu Cys His Leu Tyr Gln Asp His Met Gln Tyr Ile Gly Glu
 65 70 75 80

Gly Ala Lys Thr Gly Ile Lys Glu Cys Gln Tyr Gln Phe Arg His Arg
 85 90 95

 Arg Trp Asn Cys Ser Thr Val Asp Asn Thr Ser Val Phe Gly Arg Val
 100 105 110

 Met Gln Ile Gly Ser Arg Glu Thr Ala Phe Thr Tyr Ala Val Ser Ala
 115 120 125

 Ala Gly Val Val Asn Ala Met Ser Arg Ala Cys Arg Glu Gly Glu Leu
 130 135 140

 Ser Thr Cys Gly Cys Ser Arg Ala Ala Arg Pro Lys Asp Leu Pro Arg
 145 150 155 160

 Asp Trp Leu Trp Gly Gly Cys Gly Asp Asn Ile Asp Tyr Gly Tyr Arg
 165 170 175

 Phe Ala Lys Glu Phe Val Asp Ala Arg Glu Arg Glu Arg Ile His Ala
 180 185 190

 Lys Gly Ser Tyr Glu Ser Ala Arg Ile Leu Met Asn Leu His Asn Asn
 195 200 205

 Glu Ala Gly Arg Arg Thr Val Tyr Asn Leu Ala Asp Val Ala Cys Lys
 210 215 220

 Cys His Gly Val Ser Gly Ser Cys Ser Leu Lys Thr Cys Trp Leu Gln
 225 230 235 240

 Leu Ala Asp Phe Arg Lys Val Gly Asp Ala Leu Lys Glu Lys Tyr Asp
 245 250 255

 Thr Leu Val Gly
 260

<210> 55
 <211> 719
 <212> PRT
 <213> Homo sapiens

<400> 55
 Met Ala Leu Arg Arg Ser Met Gly Arg Pro Gly Leu Pro Pro Leu Pro
 1 5 10 15

 Leu Pro Pro Pro Arg Leu Gly Leu Leu Leu Ala Glu Ser Ala Ala
 20 25 30

 Ala Gly Leu Lys Leu Met Gly Ala Pro Val Lys Leu Thr Val Ser Gln
 35 40 45

 Gly Gln Pro Val Lys Leu Asn Cys Ser Val Glu Gly Met Glu Glu Pro
 50 55 60

 Asp Ile Gln Trp Val Lys Asp Gly Ala Val Val Gln Asn Leu Asp Gln

65	70	75	80
Leu Tyr Ile Pro Val Ser Glu Gln His Trp Ile Gly Phe Leu Ser Leu			
85	90		95
Lys Ser Val Glu Arg Ser Asp Ala Gly Arg Tyr Trp Cys Gln Val Glu			
100	105		110
Asp Gly Gly Glu Thr Glu Ile Ser Gln Pro Val Trp Leu Thr Val Glu			
115	120		125
Gly Val Pro Phe Phe Thr Val Glu Pro Lys Asp Leu Ala Val Pro Pro			
130	135		140
Asn Ala Pro Phe Gln Leu Ser Cys Glu Ala Val Gly Pro Pro Glu Pro			
145	150	155	160
Val Thr Ile Val Trp Trp Arg Gly Thr Thr Lys Ile Gly Gly Pro Ala			
165	170		175
Pro Ser Pro Ser Val Leu Asn Val Thr Gly Val Thr Gln Ser Thr Met			
180	185		190
Phe Ser Cys Glu Ala His Asn Leu Lys Gly Leu Ala Ser Ser Arg Thr			
195	200		205
Ala Thr Val His Leu Gln Ala Leu Pro Ala Ala Pro Phe Asn Ile Thr			
210	215		220
Val Thr Lys Leu Ser Ser Ser Asn Ala Ser Val Ala Trp Met Pro Gly			
225	230	235	240
Ala Asp Gly Arg Ala Leu Leu Gln Ser Cys Thr Val Gln Val Thr Gln			
245	250		255
Ala Pro Gly Gly Trp Glu Val Leu Ala Val Val Val Pro Val Pro Pro			
260	265		270
Phe Thr Cys Leu Leu Arg Asp Leu Val Pro Ala Thr Asn Tyr Ser Leu			
275	280		285
Arg Val Arg Cys Ala Asn Ala Leu Gly Pro Ser Pro Tyr Ala Asp Trp			
290	295		300
Val Pro Phe Gln Thr Lys Gly Leu Ala Pro Ala Ser Ala Pro Gln Asn			
305	310	315	320
Leu His Ala Ile Arg Thr Asp Ser Gly Leu Ile Leu Glu Trp Glu Glu			
325	330		335
Val Ile Pro Glu Ala Pro Leu Glu Gly Pro Leu Gly Pro Tyr Lys Leu			
340	345		350
Ser Trp Val Gln Asp Asn Gly Thr Gln Asp Glu Leu Thr Val Glu Gly			
355	360		365
Thr Arg Ala Asn Leu Thr Gly Trp Asp Pro Gln Lys Asp Leu Ile Val			

370	375	380	
Arg Val Cys Val Ser Asn Ala Val Gly Cys Gly Pro Trp Ser Gln Pro			
385	390	395	400
Leu Val Val Ser Ser His Asp Arg Ala Gly Gln Gln Gly Pro Pro His			
405	410	415	
Ser Arg Thr Ser Trp Val Pro Val Val Leu Gly Val Leu Thr Ala Leu			
420	425	430	
Val Thr Ala Ala Ala Leu Ala Leu Ile Leu Leu Arg Lys Arg Arg Lys			
435	440	445	
Glu Thr Arg Phe Gly Gln Ala Phe Asp Ser Val Met Ala Arg Gly Glu			
450	455	460	
Pro Ala Val His Phe Arg Ala Ala Arg Ser Phe Asn Arg Glu Arg Pro			
465	470	475	480
Glu Arg Ile Glu Ala Thr Leu Asp Ser Leu Gly Ile Ser Asp Glu Leu			
485	490	495	
Lys Glu Lys Leu Glu Asp Val Leu Ile Pro Glu Gln Gln Phe Thr Leu			
500	505	510	
Gly Arg Met Leu Gly Lys Gly Glu Phe Gly Ser Val Arg Glu Ala Gln			
515	520	525	
Leu Lys Gln Glu Asp Gly Ser Phe Val Lys Val Ala Val Lys Met Leu			
530	535	540	
Lys Ala Asp Ile Ile Ala Ser Ser Asp Ile Glu Glu Phe Leu Arg Glu			
545	550	555	560
Ala Ala Cys Met Lys Glu Phe Asp His Pro His Val Ala Lys Leu Val			
565	570	575	
Gly Val Ser Leu Arg Ser Arg Ala Lys Gly Arg Leu Pro Ile Pro Met			
580	585	590	
Val Ile Leu Pro Phe Met Lys His Gly Asp Leu His Ala Phe Leu Leu			
595	600	605	
Ala Ser Arg Ile Gly Glu Asn Pro Phe Asn Leu Pro Leu Gln Thr Leu			
610	615	620	
Ile Arg Phe Met Val Asp Ile Ala Cys Gly Met Glu Tyr Leu Ser Ser			
625	630	635	640
Arg Asn Phe Ile His Arg Asp Leu Ala Ala Arg Asn Cys Met Leu Ala			
645	650	655	
Glu Asp Met Thr Val Cys Val Ala Asp Phe Gly Leu Ser Arg Lys Ile			
660	665	670	
Tyr Ser Asp Cys Arg Tyr Ile Leu Thr Pro Gly Gly Leu Ala Glu Gln			

675	680	685
Pro Gly Gln Ala Glu His Gln Pro Glu Ser Pro Leu Asn Glu Thr Gln		
690	695	700
Arg Leu Leu Leu Leu Gln Gln Gly Leu Leu Pro His Ser Ser Cys		
705	710	715
<210> 56		
<211> 848		
<212> PRT		
<213> Homo sapiens		
<400> 56		
Met Cys Arg Ile Ala Gly Ala Leu Arg Thr Leu Leu Pro Leu Leu Ala		
1	5	10
		15
Ala Leu Leu Gln Ala Ser Val Glu Ala Ser Gly Glu Ile Ala Leu Cys		
20	25	30
Lys Thr Gly Phe Pro Glu Asp Val Tyr Ser Ala Val Leu Ser Lys Asp		
35	40	45
Val His Glu Gly Gln Pro Leu Leu Asn Val Lys Phe Ser Asn Cys Asn		
50	55	60
Gly Lys Arg Lys Val Gln Tyr Glu Ser Ser Glu Pro Ala Asp Phe Lys		
65	70	75
80		
Val Asp Glu Asp Gly Met Val Tyr Ala Val Arg Ser Phe Pro Leu Ser		
85	90	95
Ser Glu His Ala Lys Phe Leu Ile Tyr Ala Gln Asp Lys Glu Thr Gln		
100	105	110
Glu Lys Trp Gln Val Ala Val Lys Leu Ser Leu Lys Pro Thr Leu Thr		
115	120	125
Glu Glu Ser Val Lys Glu Ser Ala Glu Val Glu Glu Ile Val Phe Pro		
130	135	140
Arg Gln Phe Ser Lys His Ser Gly His Leu Gln Arg Gln Lys Arg Asp		
145	150	155
160		
Trp Val Ile Pro Pro Ile Asn Leu Pro Glu Asn Ser Arg Gly Pro Phe		
165	170	175
Pro Gln Glu Leu Val Arg Ile Arg Ser Asp Arg Asp Lys Asn Leu Ser		
180	185	190
Leu Arg Tyr Ser Val Thr Gly Pro Gly Ala Asp Gln Pro Pro Thr Gly		
195	200	205
Ile Phe Ile Ile Asn Pro Ile Ser Gly Gln Leu Ser Val Thr Lys Pro		
210	215	220

Leu Asp Arg Glu Gln Ile Ala Arg Phe His Leu Arg Ala His Ala Val
 225 230 235 240
 Asp Ile Asn Gly Asn Gln Val Glu Asn Pro Ile Asp Ile Val Ile Asn
 245 250 255
 Val Ile Asp Met Asn Asp Asn Arg Pro Glu Phe Leu His Gln Val Trp
 260 265 270
 Asn Gly Thr Val Pro Glu Gly Ser Lys Pro Gly Thr Tyr Val Met Thr
 275 280 285
 Val Thr Ala Ile Asp Ala Asp Asp Pro Asn Ala Leu Asn Gly Met Leu
 290 295 300
 Arg Tyr Arg Ile Val Ser Gln Ala Pro Ser Thr Pro Ser Pro Asn Met
 305 310 315 320
 Phe Thr Ile Asn Asn Glu Thr Gly Asp Ile Ile Thr Val Ala Ala Gly
 325 330 335
 Leu Asp Arg Glu Lys Val Gln Gln Tyr Thr Leu Ile Ile Gln Ala Thr
 340 345 350
 Asp Met Glu Gly Asn Pro Thr Tyr Gly Leu Ser Asn Thr Ala Thr Ala
 355 360 365
 Val Ile Thr Val Thr Asp Val Asn Asp Asn Pro Pro Glu Phe Thr Ala
 370 375 380
 Met Thr Phe Tyr Gly Glu Val Pro Glu Asn Arg Val Asp Ile Ile Val
 385 390 395 400
 Ala Asn Leu Thr Val Thr Asp Lys Asp Gln Pro His Thr Pro Ala Trp
 405 410 415
 Asn Ala Val Tyr Arg Ile Ser Gly Gly Asp Pro Thr Gly Arg Phe Ala
 420 425 430
 Ile Gln Thr Asp Pro Asn Ser Asn Asp Gly Leu Val Thr Val Val Lys
 435 440 445
 Pro Ile Asp Phe Glu Thr Asn Arg Met Phe Val Leu Thr Val Ala Ala
 450 455 460
 Glu Asn Gln Val Pro Leu Ala Lys Gly Ile Gln His Pro Pro Gln Ser
 465 470 475 480
 Thr Ala Thr Val Ser Val Thr Val Ile Asp Val Asn Glu Asn Pro Tyr
 485 490 495
 Phe Ala Pro Asn Pro Lys Ile Ile Arg Gln Glu Glu Gly Leu His Ala
 500 505 510
 Gly Thr Met Leu Thr Thr Phe Thr Ala Gln Asp Pro Asp Arg Tyr Met
 515 520 525

Gln Gln Asn Ile Arg Tyr Thr Lys Leu Ser Asp Pro Ala Asn Trp Leu
 530 535 540
 Lys Ile Asp Pro Val Asn Gly Gln Ile Thr Thr Ile Ala Val Leu Asp
 545 550 555 560
 Arg Glu Ser Pro Asn Val Lys Asn Asn Ile Tyr Asn Ala Thr Phe Leu
 565 570 575
 Ala Ser Asp Asn Gly Ile Pro Pro Met Ser Gly Thr Gly Thr Leu Gln
 580 585 590
 Ile Tyr Leu Leu Asp Ile Asn Asp Asn Ala Pro Gln Val Leu Pro Gln
 595 600 605
 Glu Ala Glu Thr Cys Glu Thr Pro Asp Pro Asn Ser Ile Asn Ile Thr
 610 615 620
 Ala Leu Asp Tyr Asp Ile Asp Pro Asn Ala Gly Pro Phe Ala Phe Asp
 625 630 635 640
 Leu Pro Leu Ser Pro Val Thr Ile Lys Arg Asn Trp Thr Ile Thr Arg
 645 650 655
 Leu Asn Gly Asp Phe Ala Gln Leu Asn Leu Lys Ile Lys Phe Leu Glu
 660 665 670
 Ala Gly Ile Tyr Glu Val Pro Ile Ile Ile Thr Asp Ser Gly Asn Pro
 675 680 685
 Pro Lys Ser Asn Ile Ser Ile Leu Arg Val Lys Val Cys Gln Cys Asp
 690 695 700
 Ser Asn Gly Asp Cys Thr Asp Val Asp Arg Ile Val Gly Ala Gly Leu
 705 710 715 720
 Gly Thr Gly Ala Ile Ile Ala Ile Leu Leu Cys Ile Ile Ile Leu Leu
 725 730 735
 Ile Leu Val Leu Met Phe Val Val Trp Met Lys Arg Arg Asp Lys Glu
 740 745 750
 Arg Gln Ala Lys Gln Leu Leu Ile Asp Pro Glu Asp Asp Val Arg Asp
 755 760 765
 Asn Ile Leu Lys Tyr Asp Glu Glu Gly Gly Glu Glu Asp Gln Asp
 770 775 780
 Tyr Asp Leu Ser Gln Leu Gln Gln Pro Asp Thr Val Glu Pro Asp Ala
 785 790 795 800
 Ile Lys Pro Val Gly Ile Arg Arg Met Asp Glu Arg Pro Ile His Ala
 805 810 815
 Glu Pro Gln Tyr Pro Val Arg Ser Ala Ala Pro His Pro Gly Asp Ile
 820 825 830

Gly Asp Phe Ile Asn Glu Lys Thr Trp Pro Ile Gln Ser Leu His Leu
835 840 845

<210> 57
<211> 103
<212> PRT
<213> Homo sapiens

<400> 57
Met Glu Arg Val Lys Met Ile Asn Val Gln Arg Leu Leu Glu Ala Ala
1 5 10 15

Glu Phe Leu Glu Arg Arg Glu Arg Glu Cys Glu His Gly Tyr Ala Ser
20 25 30

Ser Phe Pro Ser Met Pro Ser Pro Arg Leu Gln His Ser Lys Pro Pro
35 40 45

Arg Arg Leu Ser Arg Ala Gln Lys His Ser Ser Gly Ser Ser Asn Thr
50 55 60

Ser Thr Ala Asn Arg Ser Thr His Asn Glu Leu Glu Lys Asn Arg Leu
65 70 75 80

Lys Asn Trp Leu Val Gly Arg Arg Asp Thr Arg Gly Met Lys Met Leu
85 90 95

Leu Lys Ala Ile Ala Val Ile
100

<210> 58
<211> 234
<212> PRT
<213> Homo sapiens

<400> 58
Met Glu Lys His Ile Asn Thr Phe Leu Gln Asn Val Gln Ile Leu Leu
1 5 10 15

Glu Ala Ala Ser Tyr Leu Glu Gln Ile Glu Lys Glu Asn Lys Lys Cys
20 25 30

Glu His Gly Tyr Ala Ser Ser Phe Pro Ser Met Pro Ser Pro Arg Leu
35 40 45

Gln His Ser Lys Pro Pro Arg Arg Leu Ser Arg Ala Gln Lys His Ser
50 55 60

Ser Gly Ser Ser Asn Thr Ser Thr Ala Asn Arg Ser Thr His Asn Glu

65	70	75	80
Leu Glu Lys Asn Arg Arg Ala His Leu Arg Leu Cys Leu Glu Arg Leu			
85		90	95
Lys Val Leu Ile Pro Leu Gly Pro Asp Cys Thr Arg His Thr Thr Leu			
100		105	110
Gly Leu Leu Asn Lys Ala Lys Ala His Ile Lys Lys Leu Glu Glu Ala			
115	120		125
Glu Arg Lys Ser Gln His Gln Leu Glu Asn Leu Glu Arg Glu Gln Arg			
130	135	140	
Phe Leu Lys Trp Arg Leu Glu Gln Leu Gln Gly Pro Gln Glu Met Glu			
145	150	155	160
Arg Ile Arg Met Asp Ser Ile Gly Ser Thr Ile Ser Ser Asp Arg Ser			
165		170	175
Asp Ser Glu Arg Glu Glu Ile Glu Val Asp Val Glu Ser Thr Glu Phe			
180		185	190
Ser His Gly Glu Val Asp Asn Ile Ser Thr Thr Ser Ile Ser Asp Ile			
195	200		205
Asp Asp His Ser Ser Leu Pro Ser Ile Gly Ser Asp Glu Gly Tyr Ser			
210	215	220	
Ser Ala Ser Val Lys Leu Ser Phe Thr Ser			
225	230		

<210> 59
 <211> 329
 <212> PRT
 <213> Homo sapiens

<400> 59			
Met Glu Ser Pro Ala Ser Ser Gln Pro Ala Ser Met Pro Gln Ser Lys			
1	5	10	15
Gly Lys Ser Lys Arg Lys Lys Asp Leu Arg Ile Ser Cys Met Ser Lys			
20	25		30
Pro Pro Ala Pro Asn Pro Thr Pro Pro Arg Asn Leu Asp Ser Arg Thr			
35	40	45	
Phe Ile Thr Ile Gly Asp Arg Asn Phe Glu Val Glu Ala Asp Asp Leu			
50	55	60	
Val Thr Ile Ser Glu Leu Gly Arg Gly Ala Tyr Gly Val Val Glu Lys			
65	70	75	80
Val Arg His Ala Gln Ser Gly Thr Ile Met Ala Val Lys Arg Ile Arg			
85		90	95

Ala Thr Val Asn Ser Gln Glu Gln Lys Arg Leu Leu Met Asp Leu Asp
 100 105 110
 Ile Asn Met Arg Thr Val Asp Cys Phe Tyr Thr Val Thr Phe Tyr Gly
 115 120 125
 Ala Leu Phe Arg Glu Gly Asp Val Trp Ile Cys Met Glu Leu Met Asp
 130 135 140
 Thr Ser Leu Asp Lys Phe Tyr Arg Lys Val Leu Asp Lys Asn Met Thr
 145 150 155 160
 Ile Pro Glu Asp Ile Leu Gly Glu Ile Ala Val Ser Ile Val Arg Ala
 165 170 175
 Leu Glu His Leu His Ser Lys Leu Ser Val Ile His Arg Asp Val Lys
 180 185 190
 Pro Ser Asn Val Leu Ile Asn Lys Glu Gly His Val Lys Met Cys Asp
 195 200 205
 Phe Gly Ile Ser Gly Tyr Leu Val Asp Ser Val Ala Lys Thr Met Asp
 210 215 220
 Ala Gly Cys Lys Pro Tyr Met Ala Pro Glu Arg Ile Asn Pro Glu Leu
 225 230 235 240
 Asn Gln Lys Gly Tyr Asn Val Lys Ser Asp Val Trp Ser Leu Gly Ile
 245 250 255
 Thr Met Ile Glu Met Ala Ile Leu Arg Phe Pro Tyr Glu Ser Trp Gly
 260 265 270
 Thr Pro Phe Gln Gln Leu Lys Gln Val Val Glu Glu Pro Ser Pro Gln
 275 280 285
 Leu Pro Ala Asp Arg Phe Ser Pro Glu Phe Val Asp Phe Thr Ala Gln
 290 295 300
 Cys Leu Arg Lys Asn Pro Ala Glu Arg Met Ser Tyr Leu Glu Leu Ile
 305 310 315 320
 Gly Ala Asp Arg Phe Ser Pro Thr Pro
 325

<210> 60
 <211> 292
 <212> PRT
 <213> Homo sapiens

<400> 60
 Met Pro Glu Ile Arg Leu Arg His Val Val Ser Cys Ser Ser Gln Asp
 1 5 10 15

Ser Thr His Cys Ala Glu Asn Leu Leu Lys Ala Asp Thr Tyr Arg Lys
 20 25 30

 Trp Arg Ala Ala Lys Ala Gly Glu Lys Thr Ile Ser Val Val Leu Gln
 35 40 45

 Leu Glu Lys Glu Glu Gln Ile His Ser Val Asp Ile Gly Asn Asp Gly
 50 55 60

 Ser Ala Phe Val Glu Val Leu Val Gly Ser Ser Ala Gly Gly Ala Gly
 65 70 75 80

 Glu Gln Asp Tyr Glu Val Leu Leu Val Thr Ser Ser Phe Met Ser Pro
 85 90 95

 Ser Glu Ser Arg Ser Gly Ser Asn Pro Asn Arg Val Arg Met Phe Gly
 100 105 110

 Pro Asp Lys Leu Val Arg Ala Ala Glu Lys Arg Trp Asp Arg Val
 115 120 125

 Lys Ile Val Cys Ser Gln Pro Tyr Ser Lys Asp Ser Pro Phe Gly Leu
 130 135 140

 Ser Phe Val Arg Phe His Ser Pro Pro Asp Lys Asp Glu Ala Glu Ala
 145 150 155 160

 Pro Ser Gln Lys Val Thr Val Thr Lys Leu Gly Gln Phe Arg Val Lys
 165 170 175

 Glu Glu Asp Glu Ser Ala Asn Ser Leu Arg Pro Gly Ala Leu Phe Phe
 180 185 190

 Ser Arg Ile Asn Lys Thr Ser Pro Val Thr Ala Ser Asp Pro Ala Gly
 195 200 205

 Pro Ser Tyr Ala Ala Ala Thr Leu Gln Ala Ser Ser Ala Ala Ser Ser
 210 215 220

 Ala Ser Pro Val Ser Arg Ala Ile Gly Ser Thr Ser Lys Pro Gln Glu
 225 230 235 240

 Ser Pro Trp His Ser Phe Val Pro Asp Gly Ser Thr Val Ala Met Arg
 245 250 255

 Ser Arg Ser Tyr Phe Leu Thr Ser Ser Met Gly Trp Cys Arg Lys Pro
 260 265 270

 Glu Val Cys Ala Ile His Thr His Thr His Thr His Thr His Thr His
 275 280 285

 Thr Arg Cys Ile
 290

<211> 266
<212> PRT
<213> Homo sapiens

<400> 61
Met Pro Glu Ile Arg Leu Arg His Val Val Ser Cys Ser Ser Gln Asp
1 5 10 15

Ser Thr His Cys Ala Glu Asn Leu Leu Lys Ala Asp Thr Tyr Arg Lys
20 25 30

Trp Arg Ala Ala Lys Ala Gly Glu Lys Thr Ile Ser Val Val Leu Gln
35 40 45

Leu Glu Lys Glu Glu Gln Ile His Ser Val Asp Ile Gly Asn Asp Gly
50 55 60

Ser Ala Phe Val Glu Val Leu Val Gly Ser Ser Ala Gly Gly Ala Gly
65 70 75 80

Glu Gln Asp Tyr Glu Val Leu Leu Val Thr Ser Ser Phe Met Ser Pro
85 90 95

Ser Glu Ser Arg Ser Gly Ser Asn Pro Asn Arg Val Arg Met Phe Gly
100 105 110

Pro Asp Lys Leu Val Arg Ala Ala Glu Lys Arg Trp Asp Arg Val
115 120 125

Lys Ile Val Cys Ser Gln Pro Tyr Ser Lys Asp Ser Pro Phe Gly Leu
130 135 140

Ser Phe Val Arg Phe His Ser Pro Pro Asp Lys Asp Glu Ala Glu Ala
145 150 155 160

Pro Ser Gln Lys Val Thr Val Thr Lys Leu Gly Gln Phe Arg Val Lys
165 170 175

Glu Glu Asp Glu Ser Ala Asn Ser Leu Arg Pro Gly Ala Leu Phe Phe
180 185 190

Ser Arg Ile Asn Lys Thr Ser Pro Val Thr Ala Ser Asp Pro Ala Gly
195 200 205

Pro Ser Tyr Ala Ala Ala Thr Leu Gln Ala Ser Ser Ala Ala Ser Ser
210 215 220

Ala Ser Pro Val Ser Arg Ala Ile Gly Ser Thr Ser Lys Pro Gln Glu
225 230 235 240

Ser Ser Asp Phe Gly Gly Val Glu Glu Arg Ser Trp Arg Pro Gln
245 250 255

Ser Ile Pro Ile Pro Ser Ala Pro Gly Ser
260 265

<210> 62
 <211> 247
 <212> PRT
 <213> Homo sapiens

<400> 62
 Met Pro Glu Ile Arg Leu Arg His Val Val Ser Cys Ser Ser Gln Asp
 1 5 10 15

Ser Thr His Cys Ala Glu Asn Leu Leu Lys Ala Asp Thr Tyr Arg Lys
 20 25 30

Trp Arg Ala Ala Lys Ala Gly Glu Lys Thr Ile Ser Val Val Leu Gln
 35 40 45

Leu Glu Lys Glu Glu Gln Ile His Ser Val Asp Ile Gly Asn Asp Gly
 50 55 60

Ser Ala Phe Val Glu Val Leu Val Gly Ser Ser Ala Gly Gly Ala Gly
 65 70 75 80

Glu Gln Asp Tyr Glu Val Leu Leu Val Thr Ser Ser Phe Met Ser Pro
 85 90 95

Ser Glu Ser Arg Ser Gly Ser Asn Pro Asn Arg Val Arg Met Phe Gly
 100 105 110

Pro Asp Lys Leu Val Arg Ala Ala Glu Lys Arg Trp Asp Arg Val
 115 120 125

Lys Ile Val Cys Ser Gln Pro Tyr Ser Lys Asp Ser Pro Phe Gly Leu
 130 135 140

Ser Phe Val Arg Phe His Ser Pro Pro Asp Lys Asp Glu Ala Glu Ala
 145 150 155 160

Pro Ser Gln Lys Val Thr Val Thr Lys Leu Gly Gln Phe Arg Val Lys
 165 170 175

Glu Glu Asp Glu Ser Ala Asn Ser Leu Arg Leu Glu Asp Tyr Met Ser
 180 185 190

Asp Arg Val Gln Phe Val Ile Thr Ala Gln Glu Trp Asp Pro Ser Phe
 195 200 205

Glu Glu Ala Leu Met Asp Asn Pro Ser Leu Ala Phe Val Arg Pro Arg
 210 215 220

Trp Ile Tyr Ser Cys Asn Glu Lys Gln Lys Leu Leu Pro His Gln Leu
 225 230 235 240

Tyr Gly Val Val Pro Gln Ala
 245

<210> 63
 <211> 624
 <212> PRT
 <213> Homo sapiens

<400> 63
 Met Pro Glu Ile Arg Leu Arg His Val Val Ser Cys Ser Ser Gln Asp
 1 5 10 15

Ser Thr His Cys Ala Glu Asn Leu Leu Lys Ala Asp Thr Tyr Arg Lys
 20 25 30

Trp Arg Ala Ala Lys Ala Gly Glu Lys Thr Ile Ser Val Val Leu Gln
 35 40 45

Leu Glu Lys Glu Glu Gln Ile His Ser Val Asp Ile Gly Asn Asp Gly
 50 55 60

Ser Ala Phe Val Glu Val Leu Val Gly Ser Ser Ala Gly Gly Ala Gly
 65 70 75 80

Glu Gln Asp Tyr Glu Val Leu Leu Val Thr Ser Ser Phe Met Ser Pro
 85 90 95

Ser Glu Ser Arg Ser Gly Ser Asn Pro Asn Arg Val Arg Met Phe Gly
 100 105 110

Pro Asp Lys Leu Val Arg Ala Ala Glu Lys Arg Trp Asp Arg Val
 115 120 125

Lys Ile Val Cys Ser Gln Pro Tyr Ser Lys Asp Ser Pro Phe Gly Leu
 130 135 140

Ser Phe Val Arg Phe His Ser Pro Pro Asp Lys Asp Glu Ala Glu Ala
 145 150 155 160

Pro Ser Gln Lys Val Thr Val Thr Lys Leu Gly Gln Phe Arg Val Lys
 165 170 175

Glu Glu Asp Glu Ser Ala Asn Ser Leu Arg Pro Gly Ala Leu Phe Phe
 180 185 190

Ser Arg Ile Asn Lys Thr Ser Pro Val Thr Ala Ser Asp Pro Ala Gly
 195 200 205

Pro Ser Tyr Ala Ala Ala Thr Leu Gln Ala Ser Ser Ala Ala Ser Ser
 210 215 220

Ala Ser Pro Val Ser Arg Ala Ile Gly Ser Thr Ser Lys Pro Gln Glu
 225 230 235 240

Ser Pro Lys Gly Lys Arg Lys Leu Asp Leu Asn Gln Glu Glu Lys Lys
 245 250 255

Thr Pro Ser Lys Pro Pro Ala Gln Leu Ser Pro Ser Val Pro Lys Arg
 260 265 270

Pro Lys Leu Pro Ala Pro Thr Arg Thr Pro Ala Thr Ala Pro Val Pro
 275 280 285
 Ala Arg Ala Gln Gly Ala Val Thr Gly Lys Pro Arg Gly Glu Gly Thr
 290 295 300
 Glu Pro Arg Arg Pro Arg Ala Gly Pro Glu Glu Leu Gly Lys Ile Leu
 305 310 315 320
 Gln Gly Val Val Val Leu Ser Gly Phe Gln Asn Pro Phe Arg Ser
 325 330 335
 Glu Leu Arg Asp Lys Ala Leu Glu Leu Gly Ala Lys Tyr Arg Pro Asp
 340 345 350
 Trp Thr Arg Asp Ser Thr His Leu Ile Cys Ala Phe Ala Asn Thr Pro
 355 360 365
 Lys Tyr Ser Gln Val Leu Gly Leu Gly Gly Arg Ile Val Arg Lys Glu
 370 375 380
 Trp Val Leu Asp Cys His Arg Met Arg Arg Arg Leu Pro Ser Arg Arg
 385 390 395 400
 Tyr Leu Met Ala Gly Pro Gly Ser Ser Ser Glu Glu Asp Glu Ala Ser
 405 410 415
 His Ser Gly Gly Ser Gly Asp Glu Ala Pro Lys Leu Pro Gln Lys Gln
 420 425 430
 Pro Gln Thr Lys Thr Lys Pro Thr Gln Ala Ala Gly Pro Ser Ser Pro
 435 440 445
 Gln Lys Pro Pro Thr Pro Glu Glu Thr Lys Ala Ala Ser Pro Val Leu
 450 455 460
 Gln Glu Asp Ile Asp Ile Glu Gly Val Gln Ser Glu Gly Gln Asp Asn
 465 470 475 480
 Gly Ala Glu Asp Ser Gly Asp Thr Glu Asp Glu Leu Arg Arg Val Ala
 485 490 495
 Glu Gln Lys Glu His Arg Leu Pro Pro Gly Gln Glu Glu Asn Gly Glu
 500 505 510
 Asp Pro Tyr Ala Gly Ser Thr Asp Glu Asn Thr Asp Ser Glu Glu His
 515 520 525
 Gln Glu Pro Pro Asp Leu Pro Val Pro Glu Leu Pro Arg Phe Leu Pro
 530 535 540
 Gly Gln Ala Leu Leu Ser Leu Arg Gly Val Pro Trp Gly Arg Ala Ala
 545 550 555 560
 Glu Thr His Pro Ile Arg His Ser Leu Gln Trp Gly Ala Pro Trp His
 565 570 575

Ser Phe Val Pro Asp Gly Ser Thr Val Ala Met Arg Ser Arg Ser Tyr
580 585 590

Phe Leu Thr Ser Ser Met Gly Trp Cys Arg Lys Pro Glu Val Cys Ala
595 600 605

Ile His Thr His Thr His Thr His Thr His Thr Arg Cys Ile
610 615 620

<210> 64

<211> 567

<212> PRT

<213> Homo sapiens

<400> 64

Met Ala Gly Ala Ile Ala Ser Arg Met Ser Phe Ser Ser Leu Lys Arg
1 5 10 15

Lys Gln Pro Lys Thr Phe Thr Val Arg Ile Val Thr Met Asp Ala Glu
20 25 30

Met Glu Phe Asn Cys Glu Met Lys Trp Lys Gly Lys Asp Leu Phe Asp
35 40 45

Leu Val Cys Arg Thr Leu Gly Leu Arg Glu Thr Trp Phe Phe Gly Leu
50 55 60

Gln Tyr Thr Ile Lys Asp Thr Val Ala Trp Leu Lys Met Asp Lys Lys
65 70 75 80

Val Leu Asp His Asp Val Ser Lys Glu Glu Pro Val Thr Phe His Phe
85 90 95

Leu Ala Lys Phe Tyr Pro Glu Asn Ala Glu Glu Glu Leu Val Gln Glu
100 105 110

Ile Thr Gln His Leu Phe Phe Leu Gln Val Lys Lys Gln Ile Leu Asp
115 120 125

Glu Lys Ile Tyr Cys Pro Pro Glu Ala Ser Val Leu Leu Ala Ser Tyr
130 135 140

Ala Val Gln Ala Lys Tyr Gly Asp Tyr Asp Pro Ser Val His Lys Arg
145 150 155 160

Gly Phe Leu Ala Gln Glu Glu Leu Leu Pro Lys Arg Val Ile Asn Leu
165 170 175

Tyr Gln Met Thr Pro Glu Met Trp Glu Glu Arg Ile Thr Ala Trp Tyr
180 185 190

Ala Glu His Arg Gly Arg Ala Arg Asp Glu Ala Glu Met Glu Tyr Leu

195	200	205
Lys Ile Ala Gln Asp Leu Glu Met Tyr Gly Val Asn Tyr Phe Ala Ile		
210	215	220
Arg Asn Lys Lys Gly Thr Glu Leu Leu Leu Gly Val Asp Ala Leu Gly		
225	230	240
Leu His Ile Tyr Asp Pro Glu Asn Arg Leu Thr Pro Lys Ile Ser Phe		
245	250	255
Pro Trp Lys Asn Glu Ile Arg Asn Ile Ser Tyr Ser Asp Lys Glu Phe		
260	265	270
Thr Ile Lys Pro Leu Asp Lys Lys Ile Asp Val Phe Lys Phe Asn Ser		
275	280	285
Ser Lys Leu Arg Val Asn Lys Leu Ile Leu Gln Leu Cys Ile Gly Asn		
290	295	300
His Asp Leu Phe Met Arg Arg Arg Lys Ala Asp Ser Leu Glu Val Gln		
305	310	320
Gln Met Lys Ala Gln Ala Arg Glu Glu Lys Ala Arg Lys Gln Met Lys		
325	330	335
Glu Glu Ala Thr Met Ala Asn Glu Ala Leu Met Arg Ser Glu Glu Thr		
340	345	350
Ala Asp Leu Leu Ala Glu Lys Ala Gln Ile Thr Glu Glu Ala Lys		
355	360	365
Leu Leu Ala Gln Lys Ala Ala Glu Ala Glu Gln Glu Met Gln Arg Ile		
370	375	380
Lys Ala Thr Ala Ile Arg Thr Glu Glu Glu Lys Arg Leu Met Glu Gln		
385	390	400
Lys Val Leu Glu Ala Glu Val Leu Ala Leu Lys Met Ala Glu Glu Ser		
405	410	415
Glu Arg Arg Ala Lys Glu Ala Asp Gln Leu Lys Gln Asp Leu Gln Glu		
420	425	430
Ala Arg Glu Ala Glu Arg Arg Ala Lys Gln Lys Leu Leu Glu Ile Ala		
435	440	445
Thr Lys Pro Thr Tyr Pro Pro Met Asn Pro Ile Pro Ala Pro Leu Pro		
450	455	460
Pro Asp Ile Pro Ser Phe Asn Leu Ile Gly Asp Ser Leu Ser Phe Asp		
465	470	480
Phe Lys Asp Thr Asp Met Lys Arg Leu Ser Met Glu Ile Glu Lys Glu		
485	490	495
Lys Val Glu Tyr Met Glu Lys Ser Lys His Leu Gln Glu Gln Leu Asn		

500	505	510
Glu Leu Lys Thr Glu Ile Glu Ala Leu Lys Leu Lys Glu Arg Glu Thr		
515	520	525
Ala Leu Asp Ile Leu His Asn Glu Asn Ser Asp Arg Gly Gly Ser Ser		
530	535	540
Lys His Asn Thr Ile Lys Lys Leu Thr Leu Gln Ser Ala Lys Ser Arg		
545	550	555
Val Ala Phe Phe Glu Glu Leu		
565		

<210> 65
<211> 134
<212> PRT
<213> Homo sapiens

<400> 65		
Met Arg Glu Arg Phe Asp Arg Phe Leu His Glu Lys Asn Cys Met Thr		
1	5	10
Asp Leu Leu Ala Lys Leu Glu Ala Lys Thr Gly Val Asn Arg Ser Phe		
20	25	30
Ile Ala Leu Gly Val Ile Gly Leu Val Ala Leu Tyr Leu Val Phe Gly		
35	40	45
Tyr Gly Ala Ser Leu Leu Cys Asn Leu Ile Gly Phe Gly Tyr Pro Ala		
50	55	60
Tyr Ile Ser Ile Lys Ala Ile Glu Ser Pro Asn Lys Glu Asp Asp Thr		
65	70	75
80		
Gln Trp Leu Thr Tyr Trp Val Val Tyr Gly Val Phe Ser Ile Ala Glu		
85	90	95
Phe Phe Ser Asp Ile Phe Leu Ser Trp Phe Pro Phe Tyr Tyr Met Leu		
100	105	110
Lys Gln Ile Tyr Leu Glu Pro Pro Cys Ala Arg Phe Cys Ser Thr Ser		
115	120	125
Gly Arg Tyr Phe Gly Glu		
130		

<210> 66
<211> 1278
<212> PRT
<213> Homo sapiens

<400> 66

Met Asp Leu Glu Gly Asp Arg Asn Gly Gly Ala Lys Lys Lys Asn Phe
 1 5 10 15

Phe Lys Leu Asn Asn Lys Ser Glu Lys Asp Lys Lys Glu Lys Lys Pro
 20 25 30

Thr Val Ser Val Phe Ser Met Phe Arg Tyr Ser Asn Trp Leu Asp Lys
 35 40 45

Leu Tyr Met Val Val Gly Thr Leu Ala Ala Ile Ile His Gly Ala Gly
 50 55 60

Leu Pro Leu Met Met Leu Val Phe Gly Glu Met Thr Asp Ile Phe Ala
 65 70 75 80

Asn Ala Gly Asn Leu Glu Asp Leu Met Ser Asn Ile Thr Asn Arg Ser
 85 90 95

Asp Ile Asn Asp Thr Gly Phe Phe Met Asn Leu Glu Glu Asp Met Thr
 100 105 110

Arg Tyr Ala Tyr Tyr Tyr Ser Gly Ile Gly Ala Gly Val Leu Val Ala
 115 120 125

Ala Tyr Ile Gln Val Ser Phe Trp Cys Leu Ala Ala Gly Arg Gln Ile
 130 135 140

His Lys Ile Arg Lys Gln Phe Phe His Ala Ile Met Arg Gln Glu Ile
 145 150 155 160

Gly Trp Phe Asp Val His Asp Val Gly Glu Leu Asn Thr Arg Leu Thr
 165 170 175

Asp Asp Val Ser Lys Ile Asn Glu Val Ile Gly Asp Lys Ile Gly Met
 180 185 190

Phe Phe Gln Ser Met Ala Thr Phe Phe Thr Gly Phe Ile Val Gly Phe
 195 200 205

Thr Arg Gly Trp Lys Leu Thr Leu Val Ile Leu Ala Ile Ser Pro Val
 210 215 220

Leu Gly Leu Ser Ala Ala Val Trp Ala Lys Ile Leu Ser Ser Phe Thr
 225 230 235 240

Asp Lys Glu Leu Ala Tyr Ala Lys Ala Gly Ala Val Ala Glu Glu
 245 250 255

Val Leu Ala Ala Ile Arg Thr Val Ile Ala Phe Gly Gly Gln Lys Lys
 260 265 270

Glu Leu Glu Arg Tyr Asn Lys Asn Leu Glu Glu Ala Lys Arg Ile Gly
 275 280 285

Ile Lys Lys Ala Ile Thr Ala Asn Ile Ser Ile Gly Ala Ala Phe Leu
 290 295 300

Leu Ile Tyr Ala Ser Tyr Ala Leu Ala Phe Trp Tyr Gly Thr Thr Leu
 305 310 315 320

Val Leu Ser Gly Glu Tyr Ser Ile Gly Gln Val Leu Thr Val Phe Phe
 325 330 335

Ser Val Leu Ile Gly Ala Phe Ser Val Gly Gln Ala Ser Pro Ser Ile
 340 345 350

Glu Ala Phe Ala Asn Ala Arg Gly Ala Ala Tyr Glu Ile Phe Lys Ile
 355 360 365

Ile Asp Asn Lys Pro Ser Ile Asp Ser Tyr Ser Lys Ser Gly His Lys
 370 375 380

Pro Asp Asn Ile Lys Gly Asn Leu Glu Phe Arg Asn Val His Phe Ser
 385 390 395 400

Tyr Pro Ser Arg Lys Glu Val Lys Ile Leu Lys Gly Leu Asn Leu Lys
 405 410 415

Val Gln Ser Gly Gln Thr Val Ala Leu Val Gly Asn Ser Gly Cys Gly
 420 425 430

Lys Ser Thr Thr Val Gln Leu Met Gln Arg Leu Tyr Asp Pro Thr Glu
 435 440 445

Gly Met Val Ser Val Asp Gly Gln Asp Ile Arg Thr Ile Asn Val Arg
 450 455 460

Phe Leu Arg Glu Ile Ile Gly Val Val Ser Gln Glu Pro Val Leu Phe
 465 470 475 480

Ala Thr Thr Ile Ala Glu Asn Ile Arg Tyr Gly Arg Glu Asn Val Thr
 485 490 495

Met Asp Glu Ile Glu Lys Ala Val Lys Glu Ala Asn Ala Tyr Asp Phe
 500 505 510

Ile Met Lys Leu Pro His Lys Phe Asp Thr Leu Val Gly Glu Arg Gly
 515 520 525

Ala Gln Leu Ser Gly Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala
 530 535 540

Leu Val Arg Asn Pro Lys Ile Leu Leu Asp Glu Ala Thr Ser Ala
 545 550 555 560

Leu Asp Thr Glu Ser Glu Ala Val Val Gln Val Ala Leu Asp Lys Ala
 565 570 575

Arg Lys Gly Arg Thr Thr Ile Val Ile Ala His Arg Leu Ser Thr Val
 580 585 590

Arg Asn Ala Asp Val Ile Ala Gly Phe Asp Asp Gly Val Ile Val Glu
 595 600 605

Lys Gly Asn His Asp Glu Leu Met Lys Glu Lys Gly Ile Tyr Phe Lys
 610 615 620 640
 Leu Val Thr Met Gln Thr Ala Gly Asn Glu Val Glu Leu Glu Asn Ala
 625 630 635 640
 Ala Asp Glu Ser Lys Ser Glu Ile Asp Ala Leu Glu Met Ser Ser Asn
 645 650 655
 Asp Ser Arg Ser Ser Leu Ile Arg Lys Arg Ser Thr Arg Arg Ser Val
 660 665 670
 Arg Gly Ser Gln Ala Gln Asp Arg Lys Leu Ser Thr Lys Glu Ala Leu
 675 680 685
 Asp Glu Ser Ile Pro Pro Val Ser Phe Trp Arg Ile Met Lys Leu Asn
 690 695 700
 Leu Thr Glu Trp Pro Tyr Phe Val Val Gly Val Phe Cys Ala Ile Ile
 705 710 715 720
 Asn Gly Gly Leu Gln Pro Ala Phe Ala Ile Ile Phe Ser Lys Ile Ile
 725 730 735
 Gly Val Phe Thr Arg Ile Asp Asp Pro Glu Thr Lys Arg Gln Asn Ser
 740 745 750
 Asn Leu Phe Ser Leu Leu Phe Leu Ala Leu Gly Ile Ile Ser Phe Ile
 755 760 765
 Thr Phe Phe Leu Gln Gly Phe Thr Phe Gly Lys Ala Gly Glu Ile Leu
 770 775 780
 Thr Lys Arg Leu Arg Tyr Met Val Phe Arg Ser Met Leu Arg Gln Asp
 785 790 795 800
 Val Ser Trp Phe Asp Asp Pro Lys Asn Thr Thr Gly Ala Leu Thr Thr
 805 810 815
 Arg Leu Ala Asn Asp Ala Ala Gln Val Lys Gly Ala Ile Gly Ser Arg
 820 825 830
 Leu Ala Val Ile Thr Gln Asn Ile Ala Asn Leu Gly Thr Gly Ile Ile
 835 840 845
 Ile Ser Phe Ile Tyr Gly Trp Gln Leu Thr Leu Leu Leu Ala Ile
 850 855 860
 Val Pro Ile Ile Ala Ile Ala Gly Val Val Glu Met Lys Met Leu Ser
 865 870 875 880
 Gly Gln Ala Leu Lys Asp Lys Lys Glu Leu Glu Gly Ala Gly Lys Ile
 885 890 895
 Ala Thr Glu Ala Ile Glu Asn Phe Arg Thr Val Val Ser Leu Thr Gln
 900 905 910

Glu Gln Lys Phe Glu His Met Tyr Ala Gln Ser Leu Gln Val Pro Tyr
 915 920 925
 Arg Asn Ser Leu Arg Lys Ala His Ile Phe Gly Ile Thr Phe Ser Phe
 930 935 940
 Thr Gln Ala Met Met Tyr Phe Ser Tyr Ala Gly Cys Phe Arg Phe Gly
 945 950 955 960
 Ala Tyr Leu Val Ala His Lys Leu Met Ser Phe Glu Asp Val Leu Leu
 965 970 975
 Val Phe Ser Ala Val Val Phe Gly Ala Met Ala Val Gly Gln Val Ser
 980 985 990
 Ser Phe Ala Pro Asp Tyr Ala Lys Ala Lys Ile Ser Ala Ala His Ile
 995 1000 1005
 Ile Met Ile Ile Glu Lys Thr Pro Leu Ile Asp Ser Tyr Ser Thr Glu
 1010 1015 1020
 Gly Leu Met Pro Asn Thr Leu Glu Gly Asn Val Thr Phe Gly Glu Val
 1025 1030 1035 1040
 Val Phe Asn Tyr Pro Thr Arg Pro Asp Ile Pro Val Leu Gln Gly Leu
 1045 1050 1055
 Ser Leu Glu Val Lys Lys Gly Gln Thr Leu Ala Leu Val Gly Ser Ser
 1060 1065 1070
 Gly Cys Gly Lys Ser Thr Val Val Gln Leu Leu Glu Arg Phe Tyr Asp
 1075 1080 1085
 Pro Leu Ala Gly Lys Val Leu Leu Asp Gly Lys Glu Ile Lys Arg Leu
 1090 1095 1100
 Asn Val Gln Trp Leu Arg Ala His Leu Gly Ile Val Ser Gln Glu Pro
 1105 1110 1115 1120
 Ile Leu Phe Asp Cys Ser Ile Ala Glu Asn Ile Ala Tyr Gly Asp Asn
 1125 1130 1135
 Ser Arg Val Val Ser Gln Glu Glu Ile Val Arg Ala Ala Lys Glu Ala
 1140 1145 1150
 Asn Ile His Ala Phe Ile Glu Ser Leu Pro Asn Lys Tyr Ser Thr Lys
 1155 1160 1165
 Val Gly Asp Lys Gly Thr Gln Leu Ser Gly Gly Gln Lys Gln Arg Ile
 1170 1175 1180
 Ala Ile Ala Arg Ala Leu Val Arg Gln Pro His Ile Leu Leu Leu Asp
 1185 1190 1195 1200
 Glu Ala Thr Ser Ala Leu Asp Thr Glu Ser Glu Lys Val Val Gln Glu
 1205 1210 1215

Ala Leu Asp Lys Ala Arg Glu Gly Arg Thr Cys Ile Val Ile Ala His
1220 1225 1230

Arg Leu Ser Thr Ile Gln Asn Ala Asp Leu Ile Val Val Phe Gln Asn
1235 1240 1245

Gly Arg Val Lys Glu His Gly Thr His Gln Gln Leu Leu Ala Gln Lys
1250 1255 1260

Gly Ile Tyr Phe Ser Met Val Ser Val Gln Ala Gly Thr Ile
1265 1270 1275

<210> 67
<211> 579
<212> PRT
<213> Homo sapiens

<400> 67
Met Asp Leu Glu Gly Asp Arg Asn Gly Gly Ala Lys Lys Lys Asn Phe
1 5 10 15

Phe Lys Leu Asn Asn Lys Ser Glu Lys Asp Lys Lys Glu Lys Lys Pro
20 25 30

Thr Val Ser Val Phe Ser Met Phe Arg Tyr Ser Asn Trp Leu Asp Lys
35 40 45

Leu Tyr Met Val Val Gly Thr Leu Ala Ala Ile Ile His Gly Ala Gly
50 55 60

Leu Pro Leu Met Met Leu Val Phe Gly Glu Met Thr Asp Ile Phe Ala
65 70 75 80

Asn Ala Gly Asn Leu Glu Asp Leu Met Ser Asn Ile Thr Asn Arg Ser
85 90 95

Asp Ile Asn Asp Thr Gly Phe Phe Met Asn Leu Glu Glu Asp Met Thr
100 105 110

Arg Tyr Ala Tyr Tyr Tyr Ser Gly Ile Gly Ala Gly Val Leu Val Ala
115 120 125

Ala Tyr Ile Gln Val Ser Phe Trp Cys Leu Ala Ala Gly Arg Gln Ile
130 135 140

His Lys Ile Arg Lys Gln Phe Phe His Ala Ile Met Arg Gln Glu Ile
145 150 155 160

Gly Trp Phe Asp Val His Asp Val Gly Glu Leu Asn Thr Arg Leu Thr
165 170 175

Asp Asp Val Ser Lys Ile Asn Glu Gly Ile Gly Asp Lys Ile Gly Met
180 185 190

Phe Phe Gln Ser Met Ala Thr Phe Phe Thr Gly Phe Ile Val Gly Phe

195	200	205
Thr Arg Gly Trp Lys Leu Thr Leu Val Ile Leu Ala Ile Ser Pro Val		
210	215	220
Leu Gly Leu Ser Ala Ala Val Trp Ala Lys Ile Leu Ser Ser Phe Thr		
225	230	235
Asp Lys Glu Leu Leu Ala Tyr Ala Lys Ala Gly Ala Val Ala Glu Glu		
245	250	255
Val Leu Ala Ala Ile Arg Thr Val Ile Ala Phe Gly Gly Gln Lys Lys		
260	265	270
Glu Leu Glu Arg Tyr Asn Lys Asn Leu Glu Glu Ala Lys Arg Ile Gly		
275	280	285
Ile Lys Lys Ala Ile Thr Ala Asn Ile Ser Ile Gly Ala Ala Phe Leu		
290	295	300
Leu Ile Tyr Ala Ser Tyr Ala Leu Ala Phe Trp Tyr Gly Thr Thr Leu		
305	310	315
320		
Val Leu Ser Gly Glu Tyr Ser Ile Gly Gln Val Leu Thr Val Phe Phe		
325	330	335
Ser Val Leu Ile Gly Ala Phe Ser Val Gly Gln Ala Ser Pro Ser Ile		
340	345	350
Glu Ala Phe Ala Asn Ala Arg Gly Ala Ala Tyr Glu Ile Phe Lys Ile		
355	360	365
Ile Asp Asn Lys Pro Ser Ile Asp Ser Tyr Ser Lys Ser Gly His Lys		
370	375	380
Pro Asp Asn Ile Lys Gly Asn Leu Glu Phe Arg Asn Val His Phe Ser		
385	390	395
400		
Tyr Pro Ser Arg Lys Glu Val Lys Ile Leu Lys Gly Leu Asn Leu Lys		
405	410	415
Val Gln Ser Gly Gln Thr Val Ala Leu Val Gly Asn Ser Gly Cys Gly		
420	425	430
Lys Ser Thr Thr Val Gln Leu Met Gln Arg Leu Tyr Asp Pro Thr Glu		
435	440	445
Gly Met Val Ser Val Asp Gly Gln Asp Ile Arg Thr Ile Asn Val Arg		
450	455	460
Phe Leu Arg Glu Ile Ile Gly Val Val Ser Gln Glu Pro Val Leu Phe		
465	470	475
480		
Ala Thr Thr Ile Ala Glu Asn Ile Arg Tyr Gly Arg Glu Asn Val Thr		
485	490	495
Met Asp Glu Ile Glu Lys Ala Val Lys Glu Ala Asn Ala Tyr Asp Phe		

500	505	510
Ile Met Lys Leu Pro His Lys Phe Asp Thr Leu Val Gly Glu Arg Gly		
515	520	525
Ala Gln Leu Ser Gly Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala		
530	535	540
Leu Val Arg Asn Pro Lys Ile Leu Leu Asp Glu Ala Thr Ser Ala		
545	550	555
Leu Asp Thr Glu Ser Glu Ala Glu Val Gln Ala Ala Leu Asp Lys Val		
565	570	575
Ser Arg Leu		

<210> 68
 <211> 218
 <212> PRT
 <213> Homo sapiens

<400> 68		
Met Ser Arg Ser Lys Arg Asp Asn Asn Phe Tyr Ser Val Glu Ile Gly		
1	5	10
		15
Asp Ser Thr Phe Thr Val Leu Lys Arg Tyr Gln Asn Leu Lys Pro Ile		
20	25	30
Gly Ser Gly Ala Gln Gly Ile Val Cys Ala Ala Tyr Asp Ala Ile Leu		
35	40	45
Glu Arg Asn Val Ala Ile Lys Lys Leu Ser Arg Pro Phe Gln Asn Gln		
50	55	60
Thr His Ala Lys Arg Ala Tyr Arg Glu Leu Val Leu Met Lys Cys Val		
65	70	75
		80
Asn His Lys Asn Ile Ile Gly Leu Leu Asn Val Phe Thr Pro Gln Lys		
85	90	95
Ser Leu Glu Glu Phe Gln Asp Val Tyr Ile Val Met Glu Leu Met Asp		
100	105	110
Ala Asn Leu Cys Gln Val Ile Gln Met Glu Leu Asp His Glu Arg Met		
115	120	125
Ser Tyr Leu Leu Tyr Gln Met Leu Cys Gly Ile Lys His Leu His Ser		
130	135	140
Ala Gly Ile Ile His Arg Asp Leu Lys Pro Ser Asn Ile Val Val Lys		
145	150	155
Ser Asp Cys Thr Leu Lys Ile Leu Asp Phe Gly Leu Ala Arg Thr Ala		
165	170	175

Gly Thr Ser Phe Met Met Thr Pro Tyr Val Val Thr Arg Tyr Tyr Arg
180 185 190

Ala Pro Glu Val Ile Leu Gly Met Gly Tyr Lys Glu Asn Gly Gly Arg
195 200 205

Met Gly Lys Gly Ile Phe Thr Arg Leu Gln
210 215

<210> 69

<211> 307

<212> PRT

<213> Homo sapiens

<400> 69

Met Ser Arg Ser Lys Arg Asp Asn Asn Phe Tyr Ser Val Glu Ile Gly
1 5 10 15

Asp Ser Thr Phe Thr Val Leu Lys Arg Tyr Gln Asn Leu Lys Pro Ile
20 25 30

Gly Ser Gly Ala Gln Gly Ile Val Cys Ala Ala Tyr Asp Ala Ile Leu
35 40 45

Glu Arg Asn Val Ala Ile Lys Lys Leu Ser Arg Pro Phe Gln Asn Gln
50 55 60

Thr His Ala Lys Arg Ala Tyr Arg Glu Leu Val Leu Met Lys Cys Val
65 70 75 80

Asn His Lys Asn Ile Ile Gly Leu Leu Asn Val Phe Thr Pro Gln Lys
85 90 95

Ser Leu Glu Glu Phe Gln Asp Val Tyr Ile Val Met Glu Leu Met Asp
100 105 110

Ala Asn Leu Cys Gln Val Ile Gln Met Glu Leu Asp His Glu Arg Met
115 120 125

Ser Tyr Leu Leu Tyr Gln Met Leu Cys Gly Ile Lys His Leu His Ser
130 135 140

Ala Gly Ile Ile His Arg Asp Leu Lys Pro Ser Asn Ile Val Val Lys
145 150 155 160

Ser Asp Cys Thr Leu Lys Ile Leu Asp Phe Gly Leu Ala Arg Thr Ala
165 170 175

Gly Thr Ser Phe Met Met Thr Pro Tyr Val Val Thr Arg Tyr Tyr Arg
180 185 190

Ala Pro Glu Val Ile Leu Gly Met Gly Tyr Lys Glu Asn Val Asp Leu
195 200 205

Trp	Ser	Val	Gly	Cys	Ile	Met	Gly	Glu	Met	Val	Cys	His	Lys	Ile	Leu
210							215					220			
Phe	Pro	Gly	Arg	Asp	Tyr	Ile	Asp	Gln	Trp	Asn	Lys	Val	Ile	Glu	Gln
225							230				235			240	
Leu	Gly	Thr	Pro	Cys	Pro	Glu	Phe	Met	Lys	Lys	Leu	Gln	Pro	Thr	Val
								245		250			255		
Arg	Thr	Tyr	Val	Glu	Asn	Arg	Pro	Lys	Tyr	Ala	Gly	Tyr	Ser	Phe	Glu
							260		265			270			
Lys	Leu	Phe	Pro	Asp	Val	Leu	Phe	Pro	Ala	Asp	Ser	Glu	His	Asn	Lys
							275		280			285			
Leu	Lys	Ala	Ser	Gln	Tyr	Phe	Leu	Gln	Ile	Cys	Thr	Phe	Asn	Pro	Ile
							290		295			300			
Trp	Gly	Val													
		305													

<210> 70
<211> 339
<212> PRT
<213> Homo sapiens

<400> 70																
Met	Ser	Arg	Ser	Lys	Arg	Asp	Asn	Asn	Phe	Tyr	Ser	Val	Glu	Ile	Gly	
1							5				10			15		
Asp	Ser	Thr	Phe	Thr	Val	Leu	Lys	Arg	Tyr	Gln	Asn	Leu	Lys	Pro	Ile	
							20		25			30				
Gly	Ser	Gly	Ala	Gln	Gly	Ile	Val	Cys	Ala	Ala	Tyr	Asp	Ala	Ile	Leu	
							35		40			45				
Glu	Arg	Asn	Val	Ala	Ile	Lys	Lys	Leu	Ser	Arg	Pro	Phe	Gln	Asn	Gln	
							50		55			60				
Thr	His	Ala	Lys	Arg	Ala	Tyr	Arg	Glu	Leu	Val	Leu	Met	Lys	Cys	Val	
							65		70			75		80		
Asn	His	Lys	Asn	Ile	Ile	Gly	Leu	Leu	Asn	Val	Phe	Thr	Pro	Gln	Lys	
							85		90			95				
Ser	Leu	Glu	Glu	Phe	Gln	Asp	Val	Tyr	Ile	Val	Met	Glu	Leu	Met	Asp	
							100		105			110				
Ala	Asn	Leu	Cys	Gln	Val	Ile	Gln	Met	Glu	Leu	Asp	His	Glu	Arg	Met	
							115		120			125				
Ser	Tyr	Leu	Leu	Tyr	Gln	Met	Leu	Cys	Gly	Ile	Lys	His	Leu	His	Ser	
							130		135			140				
Ala	Gly	Ile	Ile	His	Arg	Asp	Leu	Lys	Pro	Ser	Asn	Ile	Val	Val	Lys	

145	150	155	160
Ser Asp Cys Thr Leu Lys Ile Leu Asp Phe Gly Leu Ala Arg Thr Ala			
165	170	175	
Gly Thr Ser Phe Met Met Thr Pro Tyr Val Val Thr Arg Tyr Tyr Arg			
180	185	190	
Ala Pro Glu Val Ile Leu Gly Met Gly Tyr Lys Glu Asn Val Asp Leu			
195	200	205	
Trp Ser Val Gly Cys Ile Met Gly Glu Met Val Cys His Lys Ile Leu			
210	215	220	
Phe Pro Gly Arg Asp Tyr Ile Asp Gln Trp Asn Lys Val Ile Glu Gln			
225	230	235	240
Leu Gly Thr Pro Cys Pro Glu Phe Met Lys Lys Leu Gln Pro Thr Val			
245	250	255	
Arg Thr Tyr Val Glu Asn Arg Pro Lys Tyr Ala Gly Tyr Ser Phe Glu			
260	265	270	
Lys Leu Phe Pro Asp Val Leu Phe Pro Ala Asp Ser Glu His Asn Lys			
275	280	285	
Leu Lys Ala Ser Gln Ala Arg Asp Leu Leu Ser Lys Met Leu Val Ile			
290	295	300	
Asp Ala Ser Lys Arg Ile Ser Val Asp Glu Ala Leu Gln His Pro Tyr			
305	310	315	320
Ile Asn Val Trp Tyr Asp Pro Ser Glu Ala Glu Ala Arg Ser Cys Lys			
325	330	335	
Leu Phe Ser			

<210> 71
<211> 178
<212> PRT
<213> Homo sapiens

<400> 71			
Ala Arg Ser Gly Phe Tyr Arg Gln Glu Val Thr Lys Thr Ala Trp Glu			
1	5	10	15
Val Arg Ala Val Tyr Arg Asp Leu Gln Pro Val Gly Ser Gly Ala Tyr			
20	25	30	
Gly Ala Val Cys Ser Ala Val Asp Gly Arg Thr Gly Ala Lys Val Ala			
35	40	45	
Ile Lys Lys Leu Tyr Arg Pro Phe Gln Ser Glu Leu Phe Ala Lys Arg			
50	55	60	

Ala	Tyr	Arg	Glu	Leu	Arg	Leu	Leu	Lys	His	Met	Arg	His	Glu	Asn	Val
65				70				75				80			
Ile	Gly	Leu	Leu	Asp	Val	Phe	Thr	Pro	Asp	Glu	Thr	Leu	Asp	Asp	Phe
	85						90					95			
Thr	Asp	Phe	Tyr	Leu	Val	Met	Pro	Phe	Met	Gly	Thr	Asp	Leu	Gly	Lys
	100					105					110				
Leu	Met	Lys	His	Glu	Lys	Leu	Gly	Glu	Asp	Arg	Ile	Gln	Phe	Leu	Val
	115					120					125				
Tyr	Gln	Met	Leu	Lys	Gly	Leu	Arg	Tyr	Ile	His	Ala	Ala	Gly	Ile	Ile
	130					135				140					
His	Arg	Val	Ser	Pro	Gly	Gly	Glu	Ala	Ala	His	Gln	Pro	Ser	Pro	Ser
	145					150			155			160			
Ala	Ile	Pro	Pro	Pro	Pro	Arg	Pro	Thr	Cys	Glu	Asp	Val	Met	Gly	Ser
								165		170			175		
Gly	Cys														

<210> 72
<211> 648
<212> PRT
<213> Homo sapiens

<400> 72															
Met	Ser	Pro	Phe	Leu	Arg	Ile	Gly	Leu	Ser	Asn	Phe	Asp	Cys	Gly	Ser
1				5					10				15		
Cys	Gln	Ser	Cys	Gln	Gly	Glu	Ala	Val	Asn	Pro	Tyr	Cys	Ala	Val	Leu
			20					25				30			
Val	Lys	Glu	Tyr	Val	Glu	Ser	Glu	Asn	Gly	Gln	Met	Tyr	Ile	Gln	Lys
	35				40						45				
Lys	Pro	Thr	Met	Tyr	Pro	Pro	Trp	Asp	Ser	Thr	Phe	Asp	Ala	His	Ile
	50					55				60					
Asn	Lys	Gly	Arg	Val	Met	Gln	Ile	Ile	Val	Lys	Gly	Lys	Asn	Val	Asp
	65					70				75			80		
Leu	Ile	Ser	Glu	Thr	Thr	Val	Glu	Leu	Tyr	Ser	Leu	Ala	Glu	Arg	Cys
				85				90				95			
Arg	Lys	Asn	Asn	Gly	Lys	Thr	Glu	Ile	Trp	Leu	Glu	Leu	Lys	Pro	Gln
				100					105			110			
Gly	Arg	Met	Leu	Met	Asn	Ala	Arg	Tyr	Phe	Leu	Glu	Met	Ser	Asp	Thr
			115				120				125				

Lys Asp Met Asn Glu Phe Glu Thr Glu Gly Phe Phe Ala Leu His Gln
 130 135 140
 Arg Arg Gly Ala Ile Lys Gln Ala Lys Val His His Val Lys Cys His
 145 150 155 160
 Glu Phe Thr Ala Thr Phe Phe Pro Gln Pro Thr Phe Cys Ser Val Cys
 165 170 175
 His Glu Phe Val Trp Gly Leu Asn Lys Gln Gly Tyr Gln Cys Arg Gln
 180 185 190
 Cys Asn Ala Ala Ile His Lys Lys Cys Ile Asp Lys Val Ile Ala Lys
 195 200 205
 Cys Thr Gly Ser Ala Ile Asn Ser Arg Glu Thr Met Phe His Lys Glu
 210 215 220
 Arg Phe Lys Ile Asp Met Pro His Arg Phe Lys Val Tyr Asn Tyr Lys
 225 230 235 240
 Ser Pro Thr Phe Cys Glu His Cys Gly Thr Leu Leu Trp Gly Leu Ala
 245 250 255
 Arg Gln Gly Leu Lys Cys Asp Ala Cys Gly Met Asn Val His His Arg
 260 265 270
 Cys Gln Thr Lys Val Ala Asn Leu Cys Gly Ile Asn Gln Lys Leu Met
 275 280 285
 Ala Glu Ala Leu Ala Met Ile Glu Ser Thr Gln Gln Ala Arg Cys Leu
 290 295 300
 Arg Asp Thr Glu Gln Ile Phe Arg Glu Gly Pro Val Glu Ile Gly Leu
 305 310 315 320
 Pro Cys Ser Ile Lys Asn Glu Ala Arg Pro Pro Cys Leu Pro Thr Pro
 325 330 335
 Gly Lys Arg Glu Pro Gln Gly Ile Ser Trp Glu Ser Pro Leu Asp Glu
 340 345 350
 Val Asp Lys Met Cys His Leu Pro Glu Pro Glu Leu Asn Lys Glu Arg
 355 360 365
 Pro Ser Leu Gln Ile Lys Leu Lys Ile Glu Asp Phe Ile Leu His Lys
 370 375 380
 Met Leu Gly Lys Gly Ser Phe Gly Lys Val Phe Leu Ala Glu Phe Lys
 385 390 395 400
 Lys Thr Asn Gln Phe Phe Ala Ile Lys Ala Leu Lys Lys Asp Val Val
 405 410 415
 Leu Met Asp Asp Asp Val Glu Cys Thr Met Val Glu Lys Arg Val Leu
 420 425 430

Ser Leu Ala Trp Glu His Pro Phe Leu Thr His Met Phe Cys Thr Phe
435 440 445

Gln Thr Lys Glu Asn Leu Phe Phe Val Met Glu Tyr Leu Asn Gly Gly
450 455 460

Asp Leu Met Tyr His Ile Gln Ser Cys His Lys Phe Asp Leu Ser Arg
465 470 475 480

Ala Thr Phe Tyr Ala Ala Glu Ile Ile Leu Gly Leu Gln Phe Leu His
485 490 495

Ser Lys Gly Ile Val Tyr Arg Asp Leu Lys Leu Asp Asn Ile Leu Leu
500 505 510

Asp Lys Asp Gly His Ile Lys Ile Ala Asp Phe Gly Met Cys Lys Glu
515 520 525

Asn Met Leu Gly Asp Ala Lys Thr Asn Thr Phe Cys Gly Thr Pro Asp
530 535 540

Tyr Ile Ala Pro Glu Ile Leu Leu Gly Gln Lys Tyr Asn His Ser Val
545 550 555 560

Asp Trp Trp Ser Phe Gly Val Leu Leu Tyr Glu Met Leu Ile Gly Gln
565 570 575

Ser Pro Phe His Gly Gln Asp Glu Glu Glu Leu Phe His Ser Ile Arg
580 585 590

Met Asp Asn Pro Phe Tyr Pro Arg Trp Leu Glu Lys Glu Ala Lys Asp
595 600 605

Leu Leu Val Lys Val Arg Ser Glu Ala Lys Ser Val Phe Ile Arg Arg
610 615 620

Ala Leu Gly Leu Leu Val Ser Phe Leu Phe Leu Leu Val Ser Asn Leu
625 630 635 640

His Val Ala Asn Asn Asp Tyr Tyr
645