The Clmg Library 2.5.2

Generated by Doxygen 1.8.13

Contents

1	Mair	n Page																							1
2	Mod	ule Ind	ex																						3
	2.1	Modul	es															 							3
3	Nam	espace	Index																						5
	3.1	Name	space List	t.														 						-	5
4	Hier	archica	l Index																						7
	4.1	Class	Hierarchy			. 											 -	 							7
5	Clas	s Index	(9
	5.1	Class	List															 						-	9
6	Mod	ule Do	cumentati	ior	1																				11
	6.1	Clmg l	Library Ov	ver	vie	w .												 							11
		6.1.1	Library s	strı	uctı	ure												 						-	11
		6.1.2	Clmg ve	ersi	ion	of "I	Hell	lo v	vor	ld".								 							12
		6.1.3	How to o	cor	npi	le?												 							12
		6.1.4	What's n	nex	ct?													 							13
	6.2	FAQ:	Frequently	y A	\sk(ed C	Ques	stic	ons									 							14
		6.2.1	FAQ Sui	ımr	nar	у.												 							14
		6.2.2	1. Gene	eral	linf	orm	atio	n a	and	ava	aila	bili	.y					 							14
			6.2.2.1		1.1.	. Wł	nat i	is t	he	Clm	ng I	Libr	ary	?				 							14
			6.2.2.2		1.2.	. Wł	nat p	pla	tfor	ms	are	e sı	ıppo	orte	ed ?	?		 							14
			6.2.2.3		1.3.	. Ho	w is	s C	lmį	g dis	stri	but	ed 1	? .				 							15

ii CONTENTS

		6.2.2.4	1.4. What kind of people are concerned by Clmg?	15
		6.2.2.5	1.5. What are the specificities of the CeCILL license?	15
		6.2.2.6	1.6. Who is behind CImg?	15
	6.2.3	2. C++ re	elated questions	16
		6.2.3.1	2.1 What is the level of C++ knowledge needed to use CImg?	16
		6.2.3.2	2.2 How to use CImg in my own C++ program ?	16
		6.2.3.3	2.3 Why is Clmg entirely contained in a single header file ?	16
	6.2.4	3. Other r	resources	17
		6.2.4.1	3.1 Translations	17
6.3	Setting	Environme	ent Variables	18
6.4	How to	use CImg	library with Visual C++ 2005 Express Edition ?	19
	6.4.1	How to us	se CImg library with Visual C++ 2005 Express Edition?	19
6.5	Tutorial	: Getting	Started	20
6.6	Using [Drawing Fu	unctions	22
	6.6.1	Using Dra	awing Functions	22
6.7	Using I	mage Loop	ps	23
	6.7.1	Loops ove	er the pixel buffer	23
	6.7.2	Loops ove	er image dimensions	24
	6.7.3	Loops ove	er interior regions and borders.	25
	6.7.4	Loops usi	ing neighborhoods.	25
		6.7.4.1	Neighborhood-based loops for 2D images	26
		6.7.4.2	Neighborhood-based loops for 3D images	26
		6.7.4.3	Defining neighborhoods	26
		6.7.4.4	Using alternate variable names	27
		6.7.4.5	Example codes	28
6.8	Using [Display Wir	ndows	29
6.9	How pi	xel data ar	e stored with Clmg	30
6.10	Files IC) in CImg.		31
6.11	Retriev	ing Comm	and Line Arguments	32
	6.11.1	The cimg	_usage() macro	32
	6.11.2	The cimg	_help() macro	32
	6.11.3	The cimg	_option() macro	32
	6.11.4	Example	of use	33
	6.11.5	How to le	arn more about command line options?	33

CONTENTS

7	Nam	espace	Documen	utation	35
	7.1	cimg_l	ibrary Nam	nespace Reference	35
		7.1.1	Detailed I	Description	35
	7.2	cimg_l	ibrary::cim	g Namespace Reference	36
		7.2.1	Detailed I	Description	44
		7.2.2	Function	Documentation	44
			7.2.2.1	output()	44
			7.2.2.2	info()	45
			7.2.2.3	exception_mode() [1/2]	45
			7.2.2.4	exception_mode() [2/2]	45
			7.2.2.5	openmp_mode()	45
			7.2.2.6	eval()	46
			7.2.2.7	warn()	46
			7.2.2.8	system()	47
			7.2.2.9	endianness()	47
			7.2.2.10	invert_endianness() [1/2]	48
			7.2.2.11	invert_endianness() [2/2]	48
			7.2.2.12	time()	48
			7.2.2.13	tic()	48
			7.2.2.14	toc()	49
			7.2.2.15	sleep()	49
			7.2.2.16	wait()	49
			7.2.2.17	mod()	50
			7.2.2.18	minmod()	50
			7.2.2.19	round()	50
			7.2.2.20	atof()	51
			7.2.2.21	strncasecmp()	51
			7.2.2.22	strcasecmp()	52
			7.2.2.23	strellipsize() [1/2]	52
			7.2.2.24	strellipsize() [2/2]	52

iv CONTENTS

7.2.2.25	strpare()	53
7.2.2.26	strwindows_reserved()	53
7.2.2.27	strunescape()	53
7.2.2.28	fopen()	54
7.2.2.29	fclose()	54
7.2.2.30	is_directory()	55
7.2.2.31	is_file()	55
7.2.2.32	fsize()	55
7.2.2.33	fdate() [1/2]	55
7.2.2.34	fdate() [2/2]	56
7.2.2.35	date() [1/2]	56
7.2.2.36	date() [2/2]	57
7.2.2.37	temporary_path()	57
7.2.2.38	imagemagick_path()	57
7.2.2.39	graphicsmagick_path()	58
7.2.2.40	medcon_path()	58
7.2.2.41	ffmpeg_path()	59
7.2.2.42	gzip_path()	59
7.2.2.43	gunzip_path()	59
7.2.2.44	dcraw_path()	60
7.2.2.45	wget_path()	60
7.2.2.46	curl_path()	60
7.2.2.47	split_filename()	61
7.2.2.48	fread()	61
7.2.2.49	fwrite()	61
7.2.2.50	fempty()	62
7.2.2.51	ftype()	62
7.2.2.52	load_network()	62
7.2.2.53	files()	63
7.2.2.54	dialog()	63

CONTENTS

8	Clas	s Docu	mentation		65
	8.1	Clmg<	T > Struc	ct Template Reference	65
		8.1.1	Detailed	Description	120
		8.1.2	Member [*]	Typedef Documentation	122
			8.1.2.1	iterator	122
			8.1.2.2	const_iterator	122
			8.1.2.3	value_type	123
		8.1.3	Construc	tor & Destructor Documentation	123
			8.1.3.1	~CImg()	123
			8.1.3.2	Clmg() [1/13]	123
			8.1.3.3	Clmg() [2/13]	124
			8.1.3.4	Clmg() [3/13]	124
			8.1.3.5	Clmg() [4/13]	125
			8.1.3.6	Clmg() [5/13]	126
			8.1.3.7	Clmg() [6/13]	127
			8.1.3.8	Clmg() [7/13]	128
			8.1.3.9	Clmg() [8/13]	128
			8.1.3.10	Clmg() [9/13]	129
			8.1.3.11	Clmg() [10/13]	130
			8.1.3.12	Clmg() [11/13]	130
			8.1.3.13	Clmg() [12/13]	131
			8.1.3.14	Clmg() [13/13]	131
		8.1.4	Member	Function Documentation	132
			8.1.4.1	assign() [1/13]	132
			8.1.4.2	assign() [2/13]	132
			8.1.4.3	assign() [3/13]	132
			8.1.4.4	assign() [4/13]	132
			8.1.4.5	assign() [5/13]	133
			8.1.4.6	assign() [6/13]	133
			8.1.4.7	assign() [7/13]	133

vi

8.1.4.8	assign() [8/13]
8.1.4.9	assign() [9/13]
8.1.4.10	assign() [10/13]
8.1.4.11	assign() [11/13]
8.1.4.12	assign() [12/13]
8.1.4.13	assign() [13/13]
8.1.4.14	clear()
8.1.4.15	move_to() [1/2]
8.1.4.16	move_to() [2/2]
8.1.4.17	swap()
8.1.4.18	empty()
8.1.4.19	operator()() [1/2]
8.1.4.20	operator()() [2/2]
8.1.4.21	operator T*()
8.1.4.22	operator=() [1/4]
8.1.4.23	operator=() [2/4]
8.1.4.24	operator=() [3/4]
8.1.4.25	operator=() [4/4]
8.1.4.26	operator+=() [1/3]
8.1.4.27	operator+=() [2/3]
8.1.4.28	operator+=() [3/3]
8.1.4.29	operator++() [1/2]
8.1.4.30	operator++() [2/2]
8.1.4.31	operator+() [1/4]
8.1.4.32	operator+() [2/4]
8.1.4.33	operator+() [3/4]
8.1.4.34	operator+() [4/4]
8.1.4.35	operator-=() [1/3]
8.1.4.36	operator-=() [2/3]
8.1.4.37	operator-=() [3/3]

CONTENTS vii

8.1.4.38	operator() [1/2]	144
8.1.4.39	operator() [2/2]	144
8.1.4.40	operator-() [1/4]	144
8.1.4.41	operator-() [2/4]	145
8.1.4.42	operator-() [3/4]	145
8.1.4.43	operator-() [4/4]	145
8.1.4.44	operator*=() [1/3]	145
8.1.4.45	operator*=() [2/3]	145
8.1.4.46	operator*=() [3/3]	145
8.1.4.47	operator*() [1/3]	146
8.1.4.48	operator*() [2/3]	146
8.1.4.49	operator*() [3/3]	146
8.1.4.50	operator/=() [1/3]	147
8.1.4.51	operator/=() [2/3]	147
8.1.4.52	operator/=() [3/3]	147
8.1.4.53	operator/() [1/3]	147
8.1.4.54	operator/() [2/3]	148
8.1.4.55	operator/() [3/3]	148
8.1.4.56	operator%=() [1/3]	148
8.1.4.57	operator%=() [2/3]	148
8.1.4.58	operator%=() [3/3]	148
8.1.4.59	operator%() [1/3]	149
8.1.4.60	operator%() [2/3]	149
8.1.4.61	operator%() [3/3]	149
8.1.4.62	operator &=() [1/3]	149
8.1.4.63	operator &=() [2/3]	149
8.1.4.64	operator &=() [3/3]	150
8.1.4.65	operator &() [1/3]	150
8.1.4.66	operator &() [2/3]	150
8.1.4.67	operator &() [3/3]	150

viii CONTENTS

8.1.4.68	operator" =() [1/3]	150
8.1.4.69	operator" =() [2/3]	151
8.1.4.70	operator" =() [3/3]	151
8.1.4.71	operator" () [1/3]	151
8.1.4.72	operator" () [2/3]	151
8.1.4.73	operator" () [3/3]	151
8.1.4.74	operator^=() [1/3]	152
8.1.4.75	operator^=() [2/3]	152
8.1.4.76	operator^=() [3/3]	152
8.1.4.77	operator^() [1/3]	152
8.1.4.78	operator^() [2/3]	153
8.1.4.79	operator^() [3/3]	153
8.1.4.80	operator<<=() [1/3]	153
8.1.4.81	operator<<=() [2/3]	153
8.1.4.82	operator<<=() [3/3]	153
8.1.4.83	operator<<() [1/3]	154
8.1.4.84	operator<<() [2/3]	154
8.1.4.85	operator<<() [3/3]	154
8.1.4.86	operator>>=() [1/3]	154
8.1.4.87	operator>>=() [2/3]	154
8.1.4.88	operator>>=() [3/3]	155
8.1.4.89	operator>>() [1/3]	155
8.1.4.90	operator>>() [2/3]	155
8.1.4.91	operator>>() [3/3]	155
8.1.4.92	operator~()	155
8.1.4.93	operator==() [1/3]	155
8.1.4.94	operator==() [2/3]	156
8.1.4.95	operator==() [3/3]	156
8.1.4.96	operator"!=() [1/3]	156
8.1.4.97	operator"!=() [2/3]	157

CONTENTS

8.1.4.98 operator"!=() [3/3]
8.1.4.99 operator,() [1/2]
8.1.4.100 operator,() [2/2]
8.1.4.101 operator<()
8.1.4.102 pixel_type()
8.1.4.103 width()
8.1.4.104 height()
8.1.4.105 depth()
8.1.4.106 spectrum()
8.1.4.107 size()
8.1.4.108 data() [1/2]
8.1.4.109 data() [2/2]
8.1.4.110 offset()
8.1.4.111 begin()
8.1.4.112 end()
8.1.4.113 front()
8.1.4.114 back()
8.1.4.115 at() [1/2]
8.1.4.116 at() [2/2]
8.1.4.117 atX() [1/2]
8.1.4.118 atX() [2/2]
8.1.4.119 atXY() [1/2]
8.1.4.120 atXY() [2/2]
8.1.4.121 atXYZ() [1/2]
8.1.4.122 atXYZ() [2/2]
8.1.4.123 atXYZC() [1/2]
8.1.4.124 atXYZC() [2/2]
8.1.4.125 linear_atX() [1/2]
8.1.4.126 linear_atX() [2/2] 168
8.1.4.127 linear_atXY() [1/2]

CONTENTS

8.1.4.128 linear_atXY() [2/2]
8.1.4.129 linear_atXYZ() [1/2]
8.1.4.130 linear_atXYZ() [2/2]
8.1.4.131 linear_atXYZC() [1/2]
8.1.4.132 linear_atXYZC() [2/2]
8.1.4.133 cubic_atX() [1/2]
8.1.4.134 cubic_cut_atX() [1/2]
8.1.4.135 cubic_atX() [2/2]
8.1.4.136 cubic_cut_atX() [2/2]
8.1.4.137 cubic_atXY() [1/2]
8.1.4.138 cubic_cut_atXY() [1/2]
8.1.4.139 cubic_atXY() [2/2]
8.1.4.140 cubic_cut_atXY() [2/2]
8.1.4.141 cubic_atXYZ() [1/2]
8.1.4.142 cubic_cut_atXYZ() [1/2]
8.1.4.143 cubic_atXYZ() [2/2]
8.1.4.144 cubic_cut_atXYZ() [2/2]
8.1.4.145 set_linear_atX()
8.1.4.146 set_linear_atXY()
8.1.4.147 set_linear_atXYZ()
8.1.4.148 value_string()
8.1.4.149 is_shared()
8.1.4.150 is_empty()
8.1.4.151 is_inf()
8.1.4.152 is_nan()
8.1.4.153 is_sameXY() [1/3]
8.1.4.154 is_sameXY() [2/3]
8.1.4.155 is_sameXY() [3/3]
8.1.4.156 is_sameXZ() [1/2]
8.1.4.157 is_sameXZ() [2/2]

CONTENTS xi

8.1.4.158 is_sameXC() [1/2]
8.1.4.159 is_sameXC() [2/2]
8.1.4.160 is_sameYZ() [1/2]
8.1.4.161 is_sameYZ() [2/2]
8.1.4.162 is_sameYC() [1/2]
8.1.4.163 is_sameYC() [2/2]
8.1.4.164 is_sameZC() [1/2]
8.1.4.165 is_sameZC() [2/2]
8.1.4.166 is_sameXYZ() [1/2]
8.1.4.167 is_sameXYZ() [2/2]
8.1.4.168 is_sameXYC() [1/2]
8.1.4.169 is_sameXYC() [2/2]
8.1.4.170 is_sameXZC() [1/2]
8.1.4.171 is_sameXZC() [2/2]
8.1.4.172 is_sameYZC() [1/2]
8.1.4.173 is_sameYZC() [2/2]
8.1.4.174 is_sameXYZC() [1/2]
8.1.4.175 is_sameXYZC() [2/2]
8.1.4.176 containsXYZC()
8.1.4.177 contains() [1/5]
8.1.4.178 contains() [2/5]
8.1.4.179 contains() [3/5]
8.1.4.180 contains() [4/5]
8.1.4.181 contains() [5/5]
8.1.4.182 is_overlapped()
8.1.4.183 is_object3d()
8.1.4.184 is_Clmg3d()
8.1.4.185 sqr()
8.1.4.186 sqrt()
8.1.4.187 exp()

xii CONTENTS

8.1.4.188 log()
8.1.4.189 log2()
8.1.4.190 log10()
8.1.4.191 abs()
8.1.4.192 sign()
8.1.4.193 cos()
8.1.4.194 sin()
8.1.4.195 sinc()
8.1.4.196 tan()
8.1.4.197 cosh()
8.1.4.198 sinh()
8.1.4.199 tanh()
8.1.4.200 acos()
8.1.4.201 asin()
8.1.4.202 atan()
8.1.4.203 atan2()
8.1.4.204 acosh()
8.1.4.205 asinh()
8.1.4.206 atanh()
8.1.4.207 mul()
8.1.4.208 div()
8.1.4.209 pow() [1/3]
8.1.4.210 pow() [2/3]
8.1.4.211 pow() [3/3]
8.1.4.212 rol() [1/3]
8.1.4.213 rol() [2/3]
8.1.4.214 rol() [3/3]
8.1.4.215 ror() [1/3]
8.1.4.216 ror() [2/3]
8.1.4.217 ror() [3/3]

CONTENTS xiii

8.1.4.218 min() [1/3]
8.1.4.219 min() [2/3]
8.1.4.220 min() [3/3]
8.1.4.221 max() [1/3]
8.1.4.222 max() [2/3]
8.1.4.223 max() [3/3]
8.1.4.224 min_max()
8.1.4.225 max_min()
8.1.4.226 kth_smallest()
8.1.4.227 variance()
8.1.4.228 variance_mean()
8.1.4.229 variance_noise()
8.1.4.230 MSE()
8.1.4.231 PSNR()
8.1.4.232 eval() [1/3]
8.1.4.233 eval() [2/3]
8.1.4.234 eval() [3/3]
8.1.4.235 magnitude()
8.1.4.236 dot()
8.1.4.237 get_vector_at()
8.1.4.238 get_matrix_at()
8.1.4.239 get_tensor_at()
8.1.4.240 set_vector_at()
8.1.4.241 set_matrix_at()
8.1.4.242 set_tensor_at()
8.1.4.243 vector() [1/5]
8.1.4.244 diagonal()
8.1.4.245 identity_matrix() [1/2]
8.1.4.246 sequence() [1/2]
8.1.4.247 transpose()

xiv CONTENTS

8.1.4.248 cross()
8.1.4.249 invert()
8.1.4.250 solve()
8.1.4.251 solve_tridiagonal()
8.1.4.252 eigen()
8.1.4.253 get_eigen()
8.1.4.254 symmetric_eigen()
8.1.4.255 get_symmetric_eigen()
8.1.4.256 sort() [1/2]
8.1.4.257 sort() [2/2]
8.1.4.258 SVD()
8.1.4.259 get_SVD()
8.1.4.260 dijkstra() [1/2]
8.1.4.261 dijkstra() [2/2]
8.1.4.262 string()
8.1.4.263 vector() [2/5]
8.1.4.264 vector() [3/5]
8.1.4.265 vector() [4/5]
8.1.4.266 vector() [5/5]
8.1.4.267 matrix() [1/3]
8.1.4.268 matrix() [2/3]
8.1.4.269 matrix() [3/3]
8.1.4.270 tensor()
8.1.4.271 identity_matrix() [2/2]
8.1.4.272 sequence() [2/2]
8.1.4.273 rotation_matrix()
8.1.4.274 fill() [1/4]
8.1.4.275 fill() [2/4]
8.1.4.276 fill() [3/4]
8.1.4.277 fill() [4/4]

CONTENTS xv

8.1.4.278 fillX()
8.1.4.279 fillY()
8.1.4.280 fillZ()
8.1.4.281 fillC()
8.1.4.282 discard()
8.1.4.283 rand()
8.1.4.284 round()
8.1.4.285 noise()
8.1.4.286 normalize() [1/2]
8.1.4.287 normalize() [2/2]
8.1.4.288 norm()
8.1.4.289 cut()
8.1.4.290 quantize()
8.1.4.291 threshold()
8.1.4.292 histogram()
8.1.4.293 equalize()
8.1.4.294 index()
8.1.4.295 map()
8.1.4.296 label() [1/2]
8.1.4.297 label() [2/2]
8.1.4.298 default_LUT256()
8.1.4.299 HSV_LUT256()
8.1.4.300 lines_LUT256()
8.1.4.301 hot_LUT256()
8.1.4.302 cool_LUT256()
8.1.4.303 jet_LUT256()
8.1.4.304 flag_LUT256()
8.1.4.305 cube_LUT256()
8.1.4.306 RGBtoXYZ()
8.1.4.307 XYZtoRGB()

xvi CONTENTS

8.1.4.308 resize() [1/3]
8.1.4.309 resize() [2/3]
8.1.4.310 resize() [3/3]
8.1.4.311 resize_doubleXY()
8.1.4.312 resize_tripleXY()
8.1.4.313 mirror() [1/2]
8.1.4.314 mirror() [2/2]
8.1.4.315 shift()
8.1.4.316 permute_axes()
8.1.4.317 unroll()
8.1.4.318 rotate() [1/4]
8.1.4.319 rotate() [2/4]
8.1.4.320 rotate() [3/4]
8.1.4.321 rotate() [4/4]
8.1.4.322 warp()
8.1.4.323 get_projections2d()
8.1.4.324 crop()
8.1.4.325 autocrop()
8.1.4.326 get_column()
8.1.4.327 columns()
8.1.4.328 row()
8.1.4.329 get_rows()
8.1.4.330 get_slice()
8.1.4.331 get_slices()
8.1.4.332 get_channel()
8.1.4.333 get_channels()
8.1.4.334 streamline()
8.1.4.335 get_shared_points()
8.1.4.336 get_shared_rows()
8.1.4.337 get_shared_row()

CONTENTS xvii

8.1.4.338 get_shared_slices()
8.1.4.339 get_shared_slice()
8.1.4.340 get_shared_channels()
8.1.4.341 get_shared_channel()
8.1.4.342 get_split() [1/2]
8.1.4.343 get_split() [2/2]
8.1.4.344 append()
8.1.4.345 correlate()
8.1.4.346 convolve()
8.1.4.347 cumulate() [1/2]
8.1.4.348 cumulate() [2/2]
8.1.4.349 erode() [1/3]
8.1.4.350 erode() [2/3]
8.1.4.351 erode() [3/3]
8.1.4.352 dilate() [1/3]
8.1.4.353 dilate() [2/3]
8.1.4.354 dilate() [3/3]
8.1.4.355 watershed()
8.1.4.356 deriche()
8.1.4.357 vanvliet()
8.1.4.358 blur() [1/2]
8.1.4.359 blur() [2/2]
8.1.4.360 blur_anisotropic() [1/2]
8.1.4.361 blur_anisotropic() [2/2]
8.1.4.362 blur_bilateral() [1/2]
8.1.4.363 blur_bilateral() [2/2]
8.1.4.364 boxfilter()
8.1.4.365 blur_box() [1/2]
8.1.4.366 blur_box() [2/2]
8.1.4.367 blur_guided()

xviii CONTENTS

8.1.4.368 blur_patch()
8.1.4.369 blur_median()
8.1.4.370 sharpen()
8.1.4.371 get_gradient()
8.1.4.372 get_hessian()
8.1.4.373 structure_tensors()
8.1.4.374 diffusion_tensors()
8.1.4.375 displacement()
8.1.4.376 matchpatch()
8.1.4.377 distance() [1/2]
8.1.4.378 distance() [2/2]
8.1.4.379 distance_dijkstra()
8.1.4.380 distance_eikonal() [1/2]
8.1.4.381 distance_eikonal() [2/2]
8.1.4.382 haar() [1/2]
8.1.4.383 haar() [2/2]
8.1.4.384 get_FFT()
8.1.4.385 FFT() [1/2]
8.1.4.386 FFT() [2/2]
8.1.4.387 shift_object3d() [1/2]
8.1.4.388 shift_object3d() [2/2]
8.1.4.389 resize_object3d()
8.1.4.390 append_object3d()
8.1.4.391 texturize_object3d()
8.1.4.392 get_elevation3d()
8.1.4.393 get_projections3d()
8.1.4.394 get_isoline3d()
8.1.4.395 get_isosurface3d()
8.1.4.396 elevation3d()
8.1.4.397 isoline3d()

CONTENTS xix

8.1.4.398 isosurface3d()
8.1.4.399 box3d()
8.1.4.400 cone3d()
8.1.4.401 cylinder3d()
8.1.4.402 torus3d()
8.1.4.403 plane3d()
8.1.4.404 sphere3d()
8.1.4.405 ellipsoid3d()
8.1.4.406 object3dtoClmg3d()
8.1.4.407 Clmg3dtoobject3d()
8.1.4.408 draw_point() [1/2]
8.1.4.409 draw_point() [2/2]
8.1.4.410 draw_line() [1/7]
8.1.4.411 draw_line() [2/7]
8.1.4.412 draw_line() [3/7]
8.1.4.413 draw_line() [4/7]
8.1.4.414 draw_line() [5/7]
8.1.4.415 draw_line() [6/7]
8.1.4.416 draw_line() [7/7]
8.1.4.417 draw_arrow()
8.1.4.418 draw_spline() [1/5]
8.1.4.419 draw_spline() [2/5]
8.1.4.420 draw_spline() [3/5]
8.1.4.421 draw_spline() [4/5]
8.1.4.422 draw_spline() [5/5]
8.1.4.423 draw_triangle() [1/9]
8.1.4.424 draw_triangle() [2/9]
8.1.4.425 draw_triangle() [3/9]
8.1.4.426 draw_triangle() [4/9]
8.1.4.427 draw_triangle() [5/9]

CONTENTS

8.1.4.428 draw_triangle() [6/9]
8.1.4.429 draw_triangle() [7/9]
8.1.4.430 draw_triangle() [8/9]
8.1.4.431 draw_triangle() [9/9]
8.1.4.432 draw_rectangle() [1/3]
8.1.4.433 draw_rectangle() [2/3]
8.1.4.434 draw_rectangle() [3/3]
8.1.4.435 draw_polygon()
8.1.4.436 draw_ellipse() [1/4]
8.1.4.437 draw_ellipse() [2/4]
8.1.4.438 draw_ellipse() [3/4]
8.1.4.439 draw_ellipse() [4/4]
8.1.4.440 draw_circle() [1/2]
8.1.4.441 draw_circle() [2/2]
8.1.4.442 draw_image() [1/2]
8.1.4.443 draw_image() [2/2]
8.1.4.444 draw_text() [1/4]
8.1.4.445 draw_text() [2/4]
8.1.4.446 draw_text() [3/4]
8.1.4.447 draw_text() [4/4]
8.1.4.448 draw_quiver() [1/2]
8.1.4.449 draw_quiver() [2/2]
8.1.4.450 draw_axis() [1/2]
8.1.4.451 draw_axis() [2/2]
8.1.4.452 draw_axes()
8.1.4.453 draw_grid()
8.1.4.454 draw_graph()
8.1.4.455 draw_fill()
8.1.4.456 draw_plasma()
8.1.4.457 draw_mandelbrot()

CONTENTS xxi

8.1.4.458 draw_gaussian() [1/2]
8.1.4.459 draw_gaussian() [2/2]
8.1.4.460 draw_object3d()
8.1.4.461 select()
8.1.4.462 load()
8.1.4.463 load_ascii()
8.1.4.464 load_dlm()
8.1.4.465 load_bmp()
8.1.4.466 load_jpeg()
8.1.4.467 load_magick()
8.1.4.468 load_png()
8.1.4.469 load_pnm()
8.1.4.470 load_pfm()
8.1.4.471 load_rgb()
8.1.4.472 load_rgba()
8.1.4.473 load_tiff()
8.1.4.474 load_minc2()
8.1.4.475 load_analyze()
8.1.4.476 load_cimg() [1/2]
8.1.4.477 load_cimg() [2/2]
8.1.4.478 load_inr()
8.1.4.479 load_exr()
8.1.4.480 load_pandore()
8.1.4.481 load_parrec()
8.1.4.482 load_raw()
8.1.4.483 load_yuv()
8.1.4.484 load_off()
8.1.4.485 load_video()
8.1.4.486 load_ffmpeg_external()
8.1.4.487 load_gif_external()

xxii CONTENTS

8.1.4.488 load_graphicsmagick_external()
8.1.4.489 load_gzip_external()
8.1.4.490 load_imagemagick_external()
8.1.4.491 load_medcon_external()
8.1.4.492 load_dcraw_external()
8.1.4.493 load_camera()
8.1.4.494 load_other()
8.1.4.495 print()
8.1.4.496 display() [1/3]
8.1.4.497 display() [2/3]
8.1.4.498 display() [3/3]
8.1.4.499 display_object3d()
8.1.4.500 display_graph()
8.1.4.501 save()
8.1.4.502 save_ascii()
8.1.4.503 save_cpp()
8.1.4.504 save_dlm()
8.1.4.505 save_bmp()
8.1.4.506 save_jpeg()
8.1.4.507 save_magick()
8.1.4.508 save_png()
8.1.4.509 save_pnm()
8.1.4.510 save_pnk()
8.1.4.511 save_pfm()
8.1.4.512 save_rgb()
8.1.4.513 save_rgba()
8.1.4.514 save_tiff()
8.1.4.515 save_minc2()
8.1.4.516 save_analyze()
8.1.4.517 save_cimg() [1/2]

CONTENTS xxiii

		8.1.4.518	8 save_cimg() [2/2]		316		
		8.1.4.519	9 save_empty_cimg() [1/2]		317		
		8.1.4.520	0 save_empty_cimg() [2/2]		317		
		8.1.4.521	1 save_inr()		317		
		8.1.4.522	2 save_exr()		318		
		8.1.4.523	3 save_pandore() [1/2]		318		
		8.1.4.524	4 save_pandore() [2/2]		318		
		8.1.4.525	5 save_raw() [1/2]		318		
		8.1.4.526	6 save_raw() [2/2]		319		
		8.1.4.527	7 save_yuv() [1/2]		319		
		8.1.4.528	8 save_yuv() [2/2]		319		
		8.1.4.529	9 save_off() [1/2]		320		
		8.1.4.530	0 save_off() [2/2]		320		
		8.1.4.531	1 save_video()		320		
		8.1.4.532	2 save_ffmpeg_external()		321		
		8.1.4.533	3 save_gzip_external()		321		
		8.1.4.534	4 save_graphicsmagick_external()		321		
		8.1.4.535	5 save_imagemagick_external()		322		
		8.1.4.536	6 save_medcon_external()		322		
		8.1.4.537	7 save_other()		322		
		8.1.4.538	8 get_serialize()		323		
8.2	ClmgD	isplay Stru	uct Reference		323		
	8.2.1	Detailed	Description		329		
	8.2.2	2 Constructor & Destructor Documentation					
		8.2.2.1	~CImgDisplay()		330		
		8.2.2.2	ClmgDisplay() [1/5]		330		
		8.2.2.3	ClmgDisplay() [2/5]		330		
		8.2.2.4	ClmgDisplay() [3/5]		331		
		8.2.2.5	ClmgDisplay() [4/5]		331		
		8.2.2.6	ClmgDisplay() [5/5]		332		

xxiv CONTENTS

8.2.3	Member I	Function Documentation
	8.2.3.1	screenshot() [1/2]
	8.2.3.2	assign()
	8.2.3.3	empty()
	8.2.3.4	operator=() [1/3]
	8.2.3.5	operator=() [2/3]
	8.2.3.6	operator=() [3/3]
	8.2.3.7	operator bool()
	8.2.3.8	is_closed()
	8.2.3.9	is_key() [1/3]
	8.2.3.10	is_key() [2/3] 334
	8.2.3.11	is_key() [3/3] 334
	8.2.3.12	is_key_sequence()
	8.2.3.13	is_keyESC()
	8.2.3.14	width()
	8.2.3.15	height()
	8.2.3.16	normalization()
	8.2.3.17	title()
	8.2.3.18	window_width()
	8.2.3.19	window_height()
	8.2.3.20	window_x()
	8.2.3.21	window_y()
	8.2.3.22	mouse_x()
	8.2.3.23	mouse_y()
	8.2.3.24	button()
	8.2.3.25	wheel()
	8.2.3.26	key()
	8.2.3.27	released_key()
	8.2.3.28	keycode()
	8.2.3.29	frames_per_second()

CONTENTS XXV

		8.2.3.30	display() [1/2]	340
		8.2.3.31	display() [2/2]	341
		8.2.3.32	show()	341
		8.2.3.33	close()	341
		8.2.3.34	move()	342
		8.2.3.35	resize() [1/4]	342
		8.2.3.36	resize() [2/4]	342
		8.2.3.37	resize() [3/4]	343
		8.2.3.38	resize() [4/4]	343
		8.2.3.39	set_normalization()	343
		8.2.3.40	set_title()	344
		8.2.3.41	set_fullscreen()	344
		8.2.3.42	toggle_fullscreen()	345
		8.2.3.43	show_mouse()	345
		8.2.3.44	hide_mouse()	345
		8.2.3.45	set_mouse()	345
		8.2.3.46	set_button() [1/2]	346
		8.2.3.47	set_button() [2/2]	346
		8.2.3.48	set_wheel() [1/2]	346
		8.2.3.49	set_wheel() [2/2]	346
		8.2.3.50	set_key() [1/2]	347
		8.2.3.51	set_key() [2/2]	347
		8.2.3.52	flush()	347
		8.2.3.53	wait()	347
		8.2.3.54	render()	348
		8.2.3.55	paint()	348
		8.2.3.56	screenshot() [2/2]	348
		8.2.3.57	snapshot()	349
8.3	ClmgE	xception S	Struct Reference	349
	8.3.1	Detailed	Description	349

xxvi CONTENTS

8.4	ClmgL	ist <t>S</t>	Struct Template Reference
	8.4.1	Detailed I	Description
	8.4.2	Member ⁻	Typedef Documentation
		8.4.2.1	iterator
		8.4.2.2	const_iterator
		8.4.2.3	value_type
	8.4.3	Construct	tor & Destructor Documentation
		8.4.3.1	~CImgList()
		8.4.3.2	ClmgList() [1/19]
		8.4.3.3	ClmgList() [2/19]
		8.4.3.4	ClmgList() [3/19]
		8.4.3.5	ClmgList() [4/19]
		8.4.3.6	ClmgList() [5/19]
		8.4.3.7	ClmgList() [6/19]
		8.4.3.8	ClmgList() [7/19]
		8.4.3.9	ClmgList() [8/19]
		8.4.3.10	ClmgList() [9/19]
		8.4.3.11	ClmgList() [10/19]
		8.4.3.12	ClmgList() [11/19]
		8.4.3.13	ClmgList() [12/19]
		8.4.3.14	ClmgList() [13/19]
		8.4.3.15	ClmgList() [14/19]
		8.4.3.16	ClmgList() [15/19]
		8.4.3.17	ClmgList() [16/19]
		8.4.3.18	ClmgList() [17/19]
		8.4.3.19	ClmgList() [18/19]
		8.4.3.20	ClmgList() [19/19]
	8.4.4	Member I	Function Documentation
		8.4.4.1	get_shared()
		8.4.4.2	assign() [1/18]

CONTENTS xxvii

8.4.4.3	clear()	373
8.4.4.4	assign() [2/18]	373
8.4.4.5	assign() [3/18]	374
8.4.4.6	assign() [4/18]	374
8.4.4.7	assign() [5/18]	374
8.4.4.8	assign() [6/18]	375
8.4.4.9	assign() [7/18]	375
8.4.4.10	assign() [8/18]	375
8.4.4.11	assign() [9/18]	375
8.4.4.12	assign() [10/18]	376
8.4.4.13	assign() [11/18]	376
8.4.4.14	assign() [12/18]	376
8.4.4.15	assign() [13/18]	377
8.4.4.16	assign() [14/18]	377
8.4.4.17	assign() [15/18]	377
8.4.4.18	assign() [16/18]	378
8.4.4.19	assign() [17/18]	378
8.4.4.20	assign() [18/18]	378
8.4.4.21	move_to() [1/2]	378
8.4.4.22	move_to() [2/2]	379
8.4.4.23	swap()	379
8.4.4.24	empty()	379
8.4.4.25	operator()() [1/3]	380
8.4.4.26	operator()() [2/3]	380
8.4.4.27	operator()() [3/3]	380
8.4.4.28	operator CImg $<$ T $>$ *()	380
8.4.4.29	operator=() [1/4]	381
8.4.4.30	operator=() [2/4]	381
8.4.4.31	operator=() [3/4]	381
8.4.4.32	operator=() [4/4]	382

xxviii CONTENTS

8.4.4.33	operator+()	382
8.4.4.34	operator,() [1/2]	382
8.4.4.35	operator,() [2/2]	382
8.4.4.36	operator>()	383
8.4.4.37	operator<()	383
8.4.4.38	pixel_type()	383
8.4.4.39	width()	384
8.4.4.40	size()	384
8.4.4.41	data() [1/2]	384
8.4.4.42	data() [2/2]	384
8.4.4.43	at()	385
8.4.4.44	atNXYZC() [1/2]	385
8.4.4.45	atNXYZC() [2/2]	385
8.4.4.46	atNXYZ() [1/2]	386
8.4.4.47	atNXYZ() [2/2]	386
8.4.4.48	atNXY() [1/2]	387
8.4.4.49	atNXY() [2/2]	387
8.4.4.50	atNX() [1/2]	388
8.4.4.51	atNX() [2/2]	388
8.4.4.52	atN() [1/2]	389
8.4.4.53	atN() [2/2]	389
8.4.4.54	is_sameN() [1/2]	390
8.4.4.55	is_sameN() [2/2]	390
8.4.4.56	is_sameXYZC()	390
8.4.4.57	is_sameNXYZC()	391
8.4.4.58	containsNXYZC()	391
8.4.4.59	containsN()	392
8.4.4.60	contains() [1/8]	392
8.4.4.61	contains() [2/8]	392
8.4.4.62	contains() [3/8]	393

CONTENTS xxix

8.4.4.63	contains() [4/8]	393
8.4.4.64	contains() [5/8]	394
8.4.4.65	contains() [6/8]	394
8.4.4.66	contains() [7/8]	394
8.4.4.67	contains() [8/8]	395
8.4.4.68	min_max() [1/2]	395
8.4.4.69	min_max() [2/2]	395
8.4.4.70	max_min()	395
8.4.4.71	insert() [1/5]	396
8.4.4.72	insert() [2/5]	396
8.4.4.73	insert() [3/5]	396
8.4.4.74	insert() [4/5]	397
8.4.4.75	insert() [5/5]	397
8.4.4.76	remove() [1/2]	397
8.4.4.77	remove() [2/2]	397
8.4.4.78	images()	398
8.4.4.79	get_shared_images()	398
8.4.4.80	get_append()	398
8.4.4.81	split()	399
8.4.4.82	push_back() [1/2]	399
8.4.4.83	push_front() [1/2]	399
8.4.4.84	push_back() [2/2]	399
8.4.4.85	push_front() [2/2]	400
8.4.4.86	erase()	400
8.4.4.87	get_select() [1/2]	400
8.4.4.88	get_select() [2/2]	400
8.4.4.89	load()	401
8.4.4.90	load_cimg() [1/3]	401
8.4.4.91	load_cimg() [2/3]	401
8.4.4.92	load_cimg() [3/3]	402

CONTENTS

8.4.4.93 load_parrec()	 402
8.4.4.94 load_yuv()	 403
8.4.4.95 load_video()	 403
8.4.4.96 load_ffmpeg_external()	 403
8.4.4.97 load_gif_external()	 405
8.4.4.98 load_gzip_external()	 405
8.4.4.99 load_off()	 405
8.4.4.100 load_tiff()	 406
8.4.4.101 print()	 406
8.4.4.102 display() [1/3]	 406
8.4.4.103 display() [2/3]	 407
8.4.4.104 display() [3/3]	 407
8.4.4.105 save()	 408
8.4.4.106 is_saveable()	 408
8.4.4.107 save_gif_external()	 408
8.4.4.108 save_yuv() [1/2]	 408
8.4.4.109 save_yuv() [2/2]	 409
8.4.4.110 save_cimg() [1/4]	 409
8.4.4.111 save_cimg() [2/4]	 409
8.4.4.112 save_cimg() [3/4]	 410
8.4.4.113 save_cimg() [4/4]	 410
8.4.4.114 save_empty_cimg() [1/2]	 411
8.4.4.115 save_empty_cimg() [2/2]	 411
8.4.4.116 save_tiff()	 411
8.4.4.117 save_gzip_external()	 412
8.4.4.118 save_video()	 412
8.4.4.119 save_ffmpeg_external()	 412
8.4.4.120 get_serialize()	 413
8.4.4.121 font()	 413
8.4.4.122 FFT() [1/2]	 413
8.4.4.123 FFT() [2/2]	 414

Index

415

Chapter 1

Main Page

This is the reference documentation of the CImg Library, the C++ template image processing library. This documentation have been generated using the tool doxygen. It contains a detailed description of all classes and functions of the CImg Library.

Use the menu above to navigate through the documentation pages. As a first step, you may look at the list of available modules.

You may be interested also in the presentation slides presenting an overview of the CImg Library capabilities

2 Main Page

Chapter 2

Module Index

2.1 Modules

Here is a list of all modules:

mg Library Overview	1
AQ: Frequently Asked Questions	4
etting Environment Variables	8
ow to use CImg library with Visual C++ 2005 Express Edition ?	9
torial: Getting Started	0
sing Drawing Functions	2
sing Image Loops	23
sing Display Windows	9
ow pixel data are stored with CImg	0
les IO in CImg	1
etrieving Command Line Arguments	2

4 Module Index

Chapter 3

Namespace Index

3.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

cimg_library cimedian control	
Contains all classes and functions of the CImg library	35
cimg_library::cimg	
Contains low-level functions and variables of the CImg Library	36

6 Namespace Index

Chapter 4

Hierarchical Index

4.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

$CImg < T > \dots \dots$	35
Clmg< charT >	35
$CImg < doubleT > \dots $	35
$CImg < float T > \dots \dots$	35
$CImg < intT > \dots $	35
CImg< uintT >	35
$CImg < ulongT > \ \ldots \$	35
CImgDisplay	23
CImgException	49
$CImgList < T > \dots \dots$	
CImgList < boolT >	
$CImgList < charT > \dots $	50
CImgList< doubleT >	50
Clmal ist $<$ ulong $T >$ 35	50

8 Hierarchical Index

Chapter 5

Class Index

5.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Simg< 1 >	
Class representing an image (up to 4 dimensions wide), each pixel being of type ${\tt T}$	65
ElmgDisplay	
Allow the creation of windows, display images on them and manage user events (keyboard, mouse and windows events)	323
ElmgException	
Instances of CImgException are thrown when errors are encountered in a CImg function call 3	349
SImgList < T >	
Represent a list of images CImg <t></t>	350

10 Class Index

Chapter 6

Module Documentation

6.1 Clmg Library Overview

The **Clmg Library** is an image processing library, designed for C++ programmers. It provides useful classes and functions to load/save, display and process various types of images.

6.1.1 Library structure

The Clmg Library consists in a single header file CImg. h providing a set of C++ template classes that can be used in your own sources, to load/save, process and display images or list of images. Very portable (Unix/X11,Windows, MacOS X, FreeBSD,..), efficient, simple to use, it's a pleasant toolkit for coding image processing stuff in C++.

The header file CImg.h contains all the classes and functions that compose the library itself. This is one originality of the CImg Library. This particularly means that :

- No pre-compilation of the library is needed, since the compilation of the CImg functions is done at the same time as the compilation of your own C++ code.
- No complex dependencies have to be handled: Just include the CImg.h file, and you get a working C++ image processing toolkit.
- The compilation is done on the fly: only Clmg functionalities really used by your program are compiled and appear in the compiled executable program. This leads to very compact code, without any unused stuff.
- Class members and functions are inlined, leading to better performance during the program execution.

The Clmg Library is structured as follows:

All library classes and functions are defined in the namespace cimg_library. This namespace encapsulates
the library functionalities and avoid any class name collision that could happen with other includes. Generally,
one uses this namespace as a default namespace:

```
#include "CImg.h"
using namespace cimg_library;
...
```

The namespace cimg_library::cimg defines a set of low-level functions and variables used by the library.
 Documented functions in this namespace can be safely used in your own program. But, never use the cimg_library::cimg namespace as a default namespace, since it contains functions whose names are already defined in the standard C/C++ library.

• The class cimg_library::Clmg represents images up to 4-dimensions wide, containing pixels of type T (template parameter). This is actually the main class of the library.

- The class cimg_library::ClmgList represents lists of cimg_library::Clmg<T> images. It can be used for instance to store different frames of an image sequence.
- The class cimg_library::ClmgDisplay is able to display images or image lists into graphical display windows.
 As you may guess, the code of this class is highly system-dependent but this is transparent for the programmer, as environment variables are automatically set by the Clmg library (see also Setting Environment Variables).
- The class cimg_library::ClmgException (and its subclasses) are used by the library to throw exceptions when
 errors occur. Those exceptions can be caught with a try { ..} catch (CImgException) { ..
 } block. Subclasses define precisely the type of encountered errors.

Knowing these four classes is **enough** to get benefit of the CImg Library functionalities.

6.1.2 Clmg version of "Hello world".

Below is some very simple code that creates a "Hello World" image. This shows you basically how a CImg program looks like.

Which can be also written in a more compact way as:

Generally, you can write very small code that performs complex image processing tasks. The Clmg Library is very simple to use and provides a lot of interesting algorithms for image manipulation.

6.1.3 How to compile?

The CImg library is a very light and user-friendly library: only standard system libraries are used. It avoids handling complex dependencies and problems with library compatibility. The only thing you need is a (quite modern) C++ compiler:

• Microsoft Visual Studio.NET and Visual Express Edition: Use the project files and solution files provided in the Clmg Library package (directory 'compilation/') to see how it works.

• Intel ICL compiler: Use the following command to compile a Clmg-based program with ICL:

```
icl /Ox hello_world.cpp user32.lib gdi32.lib
```

• g++ (MingW windows version) : Use the following command to compile a Clmg-based program with g++, on Windows :

```
q++ -o hello_word.exe hello_word.cpp -02 -1gdi32
```

• g++ (Linux version): Use the following command to compile a Clmg-based program with g++, on Linux:

```
g++ -o hello_word.exe hello_world.cpp -O2 -L/usr/X11R6/lib -lm -lpthread -1X11
```

• g++ (Solaris version): Use the following command to compile a CImg-based program with g++, on Solaris:

```
g++ -o hello_word.exe hello_world.cpp -O2 -lm -lpthread -R/usr/X11R6/lib -lrt -lns1 -lsocket
```

• g++ (Mac OS X version) : Use the following command to compile a Clmg-based program with g++, on Mac OS X :

```
g++ -o hello_word.exe hello_world.cpp -O2 -lm -lpthread -I/usr/X11R6/include -L/usr/X11R6/lib -lm -lpthread -1X11
```

• Dev-Cpp: Use the project file provided in the Clmg library package to see how it works.

If you are using other compilers and encounter problems, please write me since maintaining compatibility is one of the priorities of the CImg Library. Nevertheless, old compilers that do not respect the C++ standard will not support the CImg Library.

6.1.4 What's next?

If you are ready to get more, and to start writing more serious programs with Clmg, you are invited to go to the Tutorial: Getting Started. section.

6.2 FAQ: Frequently Asked Questions.

6.2.1 FAQ Summary

```
General information and availability
What is the CImg Library?
What platforms are supported?
How is CImg distributed?
What kind of people are concerned by CImg?
What are the specificities of the CeCILL license?
Who is behind CImg?
C++ related questions
What is the level of C++ knowledge needed to use CImg?
How to use CImg in my own C++ program?
Why is CImg entirely contained in a single header file?
Other resources
Translations
```

6.2.2 1. General information and availability

6.2.2.1 1.1. What is the Clmg Library?

The Clmg Library is an *open-source C++ toolkit for image processing*.

It mainly consists in a (big) single header file CImg.h providing a set of C++ classes and functions that can be used in your own sources, to load/save, manage/process and display generic images. It's actually a very simple and pleasant toolkit for coding image processing stuff in C++: Just include the header file CImg.h, and you are ready to handle images in your C++ programs.

6.2.2.2 1.2. What platforms are supported?

Clmg has been designed with *portability* in mind. It is regularly tested on different architectures and compilers, and should also work on any decent OS having a decent C++ compiler. Before each release, the Clmg Library is compiled under these different configurations:

- PC Linux 32/64 bits, with g++.
- PC Windows 32/64 bits, with Visual C++ Express Edition.

Clmg has a minimal number of dependencies. In its minimal version, it can be compiled only with standard C++ headers. Anyway, it has interesting extension capabilities and can use external libraries to perform specific tasks more efficiently (Fourier Transform computation using FFTW for instance).

6.2.2.3 1.3. How is Clmg distributed?

The Clmg Library is freely distributed as a complete .zip compressed package, hosted at the CImg server. The package is distributed under the CeCILL license.

This package contains:

- The main library file CImg.h (C++ header file).
- Several C++ source code showing examples of using CImg.
- A complete library documentation, in PDF format.
- Additional library plug-ins that can be used to extend library capabilities for specific uses.

The Clmg Library is a quite lightweight library which is easy to maintain (due to its particular structure), and thus has a fast rythm of release. A new version of the Clmg package is released approximately every three months.

6.2.2.4 1.4. What kind of people are concerned by Clmg?

The Clmg library is an *image processing* library, primarily intended for computer scientists or students working in the fields of image processing or computer vision, and knowing bases of C++. As the library is handy and really easy to use, it can be also used by any programmer needing occasional tools for dealing with images in C++, since there are no standard library yet for this purpose.

6.2.2.5 1.5. What are the specificities of the CeCILL license?

The CeCILL license governs the use of the Clmg Library. This is an *open-source* license which gives you rights to access, use, modify and redistribute the source code, under certains conditions. There are two different variants of the CeCILL license used in Clmg (namely CeCILL and CeCILL—C, all open-source), corresponding to different constraints on the source files:

- The CeCILL-C license is the most permissive one, close to the GNU LGPL license, and applies only on the main library file CImg.h. Basically, this license allows to use CImg.h in a closed-source product without forcing you to redistribute the entire software source code. Anyway, if one modifies the CImg.h source file, one has to redistribute the modified version of the file that must be governed by the same CeCILL-C license.
- The Cecill license applies to all other files (source examples, plug-ins and documentation) of the Clmg Library package, and is close (even *compatible*) with the *GNU GPL license*. It *does not allow* the use of these files in closed-source products.

You are invited to read the complete descriptions of the the CeCILL-C and CeCILL licenses before releasing a software based on the Clmg Library.

6.2.2.6 1.6. Who is behind Clmg?

Clmg has been started by <code>David Tschumperle</code> at the beginning of his PhD thesis, in October 1999. He is still the main coordinator of the project. Since the first release, a growing number of contributors has appeared. Due to the very simple and compact form of the library, submitting a contribution is quite easy and can be fastly integrated into the supported releases. List of contributors can be found on the front page.

6.2.3 2. C++ related questions

6.2.3.1 2.1 What is the level of C++ knowledge needed to use Clmg?

The CImg Library has been designed using C++ templates and object-oriented programming techniques, but in a very accessible level. There are only public classes without any derivation (just like C structures) and there is at most one template parameter for each CImg class (defining the pixel type of the images). The design is simple but clean, making the library accessible even for non professional C++ programmers, while proposing strong extension capabilities for C++ experts.

6.2.3.2 2.2 How to use Clmg in my own C++ program?

Basically, you need to add these two lines in your C++ source code, in order to be able to work with CImg images:

```
#include "CImg.h"
using namespace cimg_library;
```

6.2.3.3 2.3 Why is Clmg entirely contained in a single header file?

People are often surprised to see that the complete code of the library is contained in a single (big) C++ header file CImg.h. There are good practical and technical reasons to do that. Some arguments are listed below to justify this approach, so (I hope) you won't think this is a awkwardly C++ design of the CImg library:

- First, the library is based on *template datatypes* (images with generic pixel type), meaning that the programmer is free to decide what type of image he instanciates in his code. Even if there are roughly a limited number of fully supported types (basically, the "atomic" types of C++: *unsigned char, int, float, ...*), this is *not imaginable* to pre-compile the library classes and functions for *all possible atomic datatypes*, since many functions and methods can have two or three arguments having different template parameters. This really means *a huge number* of possible combinations. The size of the object binary file generated to cover all possible cases would be just *colossal*. Is the STL library a pre-compiled one? No, CImg neither. CImg is not using a classical *.cpp* and *.h* mechanism, just like the STL. Architectures of C++ *template-based* libraries are somewhat special in this sense. This is a proven technical fact.
- Second, why CImg does not have several header files, just like the STL does (one for each class for instance)? This would be possible of course. There are only 4 classes in CImg, the two most important being C← Img<T> and CImgList<T> representing respectively an image and a collection of images. But contrary to the STL library, these two CImg classes are strongly inter-dependent. All CImg algorithms are actually not defined as separate functions acting on containers (as the STL does with his header <algorithm>), but are directly methods of the image and image collection classes. This inter-dependence practically means that you will undoubtly need these two main classes at the same time if you are using CImg. If they were defined in separate header files, you would be forced to include both of them. What is the gain then? No gain. Concerning the two other classes: You can disable the third most important class CImgDisplay of the CImg library, by setting the compilation macro cimg_display to 0, avoiding thus to compile this class if you don't use display capabilities of CImg in your code. But to be honest, this is a quite small class and doing this doesn't save much compilation time. The last and fourth class is CImgException, which is only few lines long and is obviously required in almost all methods of CImg. Including this one is mandatory.

As a consequence, having a single header file instead of several ones is just a way for you to avoid including all of them, without any consequences on compilation time. This is both good technical and practical reasons to do like this.

• Third, having a single header file has plenty of advantages: Simplicity for the user, and for the developers (maintenance is in fact easier). Look at the CImg.h file, it looks like a mess at a first glance, but it is in fact very well organized and structured. Finding pieces of code in Clmg functions or methods is particularly easy and fast. Also, how about the fact that library installation problems just disappear? Just bring CImg.h with you, put it in your source directory, and the library is ready to go!

I admit the compilation time of CImg-based programs can be sometime long, but don't think that it is due to the fact that you are using a single header file. Using several header files wouldn't arrange anything since you would need all of them. Having a pre-compiled library object would be the only solution to speed up compilation time, but it is not possible at all, due to the too much generic nature of the library.

6.2.4 3. Other resources

6.2.4.1 3.1 Translations

This FAQ has been translated to Serbo-Croatian language by Web Geeks .

6.3 Setting Environment Variables

The CImg library is a multiplatform library, working on a wide variety of systems. This implies the existence of some *environment variables* that must be correctly defined depending on your current system. Most of the time, the CImg Library defines these variables automatically (for popular systems). Anyway, if your system is not recognized, you will have to set the environment variables by hand. Here is a quick explanations of environment variables. Setting the environment variables is done with the #define keyword. This setting must be done *before including the file CImg.h* in your source code. For instance, defining the environment variable cimg_display would be done like this:

```
#define cimg_display 0
#include "CImg.h"
```

Here are the different environment variables used by the Clmg Library:

- cimg_OS: This variable defines the type of your Operating System. It can be set to 1 (*Unix*), 2 (*Windows*), or 0 (*Other configuration*). It should be actually auto-detected by the Clmg library. If this is not the case (cimg OS=0), you will probably have to tune the environment variables described below.
- cimg_display: This variable defines the type of graphical library used to display images in windows. It can be set to 0 (no display library available), 1 (X11-based display) or 2 (Windows-GDI display). If you are running on a system without X11 or Windows-GDI ability, please set this variable to 0. This will disable the display support, since the CImg Library doesn't contain the necessary code to display images on systems other than X11 or Windows GDI.
- cimg_use_vt100: This variable tells the library if the system terminal has VT100 color capabilities. It can be defined or not defined. Define this variable to get colored output on your terminal, when using the Clmg Library.
- cimg_verbosity: This variable defines the level of run-time debug messages that will be displayed by
 the Clmg Library. It can be set to 0 (no debug messages), 1 (normal debug messages displayed on standard
 error), 2 (normal debug messages displayed in modal windows, which is the default value), or 3 (high debug
 messages). Note that setting this value to 3 may slow down your program since more debug tests are made by
 the library (particularly to check if pixel access is made outside image boundaries). See also CImgException
 to better understand how debug messages are working.
- cimg_plugin: This variable tells the library to use a plugin file to add features to the Clmg<T> class. Define it with the path of your plugin file, if you want to add member functions to the Clmg<T> class, without having to modify directly the "<tt>Clmg.h</tt>" file. An include of the plugin file is performed in the Clmg<T> class. If cimg_plugin if not specified (default), no include is done.
- cimglist_plugin: Same as cimg_plugin, but to add features to the ClmgList<T> class.
- $\bullet \ \, \textbf{cimgdisplay_plugin} : Same \ \, \textbf{as} \ \, \textbf{cimg_plugin}, \ \, \textbf{but to add features to the CImgDisplay} < T > \textbf{class}. \\$

All these compilation variables can be checked, using the function cimg_library::cimg::info(), which displays a list of the different configuration variables and their values on the standard error output.

6.4 How to use Clmg library with Visual C++ 2005 Express Edition ?.

6.4.1 How to use CImg library with Visual C++ 2005 Express Edition?

This section has been written by Vincent Garcia and Alexandre Fournier from I3S/Sophia_Antipolis.

- · Download Clmg library
- · Download and install Visual C++ 2005 Express Edition
- · Download and install Microsoft Windows SDK
- · Configure Visual C++ to take into account Microsoft SDK
 - 1. Go to menu "Tools -> options"
 - 2. Select option "Projects and Solutions -> VC++ Directories"
 - 3. In the select liste "Show directories for", choose "include files", and add C:\Program Files\Microsoft Platform SDK\Include (adapt if needed)
 - 4. In the select liste "Show directories for", choose "library files", and add C:\Program Files\Microsoft Platform SDK\Lib (adapt if needed) Edit file C:\Program Files\Microsoft Visual Studio 8\VC\VCProject← Defaults\corewin_express.vsprops (adapt if needed)
 - 6. 7. Remplace the line AdditionalDependencies="kernel32.lib"/> by AdditionalDependencies="kernel32.\(\circ\) lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib"/>
- Restart Visual C++
- · Import Clmg library in your main file

6.5 Tutorial : Getting Started.

Let's start to write our first program to get the idea. This will demonstrate how to load and create images, as well as handle image display and mouse events. Assume we want to load a color image lena.jpg, smooth it, display it in a windows, and enter an event loop so that clicking a point in the image will draw the (R,G,B) intensity profiles of the corresponding image line (in another window). Yes, that sounds quite complex for a first code, but don't worry, it will be very simple using the CImg library! Well, just look at the code below, it does the task:

```
#include "CImg.h"
using namespace cimg_library;
int main() {
    CImg<unsigned char> image("lena.jpg"), visu(500,400,1,3,0);
    const unsigned char red[] = { 255,0,0 }, green[] = { 0,255,0 }, blue[] = { 0,0,255 };
    image.blur(2.5);
    CImgDisplay main_disp(image,"Click a point"), draw_disp(visu,"Intensity profile");
    while (!main_disp.is_closed() && !draw_disp.is_closed()) {
        main_disp.wait();
        if (main_disp.button() && main_disp.mouse_y()>=0) {
            const int y = main_disp.mouse_y();
            visu.draw_graph(image.get_crop(0,y,0,0,image.width()-1,y,0,0),red,1,1,0,255,0);
            visu.draw_graph(image.get_crop(0,y,0,1,image.width()-1,y,0,1),green,1,1,0,255,0);
            visu.draw_graph(image.get_crop(0,y,0,2,image.width()-1,y,0,2),blue,1,1,0,255,0).display(draw_disp);
        }
    return 0;
}
```

Here is a screenshot of the resulting program:

And here is the detailled explanation of the source, line by line:

```
#include "CImg.h"
```

Include the main and only header file of the Clmg library.

```
using namespace cimg_library;
```

Use the library namespace to ease the declarations afterward.

```
int main() {
```

Definition of the main function.

```
CImg<unsigned char> image("lena.jpg"), visu(500,400,1,3,0);
```

Creation of two instances of images of unsigned char pixels. The first image image is initialized by reading an image file from the disk. Here, lena.jpg must be in the same directory as the current program. Note that you must also have installed the *ImageMagick* package in order to be able to read JPG images. The second image visu is initialized as a black color image with dimension dx=500, dy=400, dz=1 (here, it is a 2D image, not a 3D one), and dv=3 (each pixel has 3 'vector' channels R,G,B). The last argument in the constructor defines the default value of the pixel values (here 0, which means that visu will be initially black).

```
const \ unsigned \ char \ red[] \ = \ \{ \ 255,0,0 \ \}, \ green[] \ = \ \{ \ 0,255,0 \ \}, \ blue[] \ = \ \{ \ 0,0,255 \ \};
```

Definition of three different colors as array of unsigned char. This will be used to draw plots with different colors.

```
image.blur(2.5);
```

Blur the image, with a gaussian blur and a standard variation of 2.5. Note that most of the CImg functions have two versions: one that acts in-place (which is the case of blur), and one that returns the result as a new image (the name of the function begins then with $get_$). In this case, one could have also written $image = image.get_$ _blur(2.5); (more expensive, since it needs an additional copy operation).

```
CImgDisplay main_disp(image, "Click a point"), draw_disp(visu, "Intensity profile");
```

Creation of two display windows, one for the input image image, and one for the image visu which will be display intensity profiles. By default, Clmg displays handles events (mouse,keyboard,...). On Windows, there is a way to create fullscreen displays.

```
while (!main_disp.is_closed() && !draw_disp.is_closed()) {
```

Enter the event loop, the code will exit when one of the two display windows is closed.

```
main_disp.wait();
```

Wait for an event (mouse, keyboard,..) in the display window main_disp.

```
if (main_disp.button() && main_disp.mouse_y()>=0) {
```

Test if the mouse button has been clicked on the image area. One may distinguish between the 3 different mouse buttons, but in this case it is not necessary

```
const int y = main_disp.mouse_y();
```

Get the image line y-coordinate that has been clicked.

```
visu.fill(0).draw_graph(image.get_crop(0,y,0,0,image.width()-1,y,0,0),red,1,0,256,0);
```

This line illustrates the pipeline property of most of the CImg class functions. The first function fill(0) simply sets all pixel values with 0 (i.e. clear the image visu). The interesting thing is that it returns a reference to visu and then, can be pipelined with the function $draw_graph()$ which draws a plot in the image visu. The plot data are given by another image (the first argument of $draw_graph()$). In this case, the given image is the red-component of the line y of the original image, retrieved by the function $get_crop()$ which returns a sub-image of the image image. Remember that images coordinates are 4D (x,y,z,c) and for color images, the R,G,B channels are respectively given by v=0, v=1 and v=2.

```
visu.draw_graph(image.get_crop(0,y,0,1,image.width()-1,y,0,1),green,1,0,256,0);
```

Plot the intensity profile for the green channel of the clicked line.

Same thing for the blue channel. Note how the function (which return a reference to visu) is pipelined with the function display () that just paints the image visu in the corresponding display window.

```
...till the end
```

I don't think you need more explanations!

As you have noticed, the CImg library allows to write very small and intuitive code. Note also that this source will perfectly work on Unix and Windows systems. Take also a look to the examples provided in the CImg package (directory <code>examples/</code>). It will show you how CImg-based code can be surprisingly small. Moreover, there is surely one example close to what you want to do. A good start will be to look at the file <code>CImg_demo.cpp</code> which contains small and various examples of what you can do with the CImg Library. All CImg classes are used in this source, and the code can be easily modified to see what happens.

6.6 Using Drawing Functions.

6.6.1 Using Drawing Functions.

This section tells more about drawing features in Clmg images. Drawing functions list can be found in the CImg functions list (section **Drawing** Functions), and are all defined on a common basis. Here are the important points to understand before using drawing functions:

- Drawing is performed on the instance image. Drawing functions parameters are defined as *const* variables and return a reference to the current instance (*this), so that drawing functions can be pipelined (see examples below). Drawing is usually done in 2D color images but can be performed in 3D images with any vector-valued dimension, and with any possible pixel type.
- A color parameter is always needed to draw features in an image. The color must be defined as a C-style array whose dimension is at least

6.7 Using Image Loops.

The Clmg Library provides different macros that define useful iterative loops over an image. Basically, it can be used to replace one or several for (..) instructions, but it also proposes interesting extensions to classical loops. Below is a list of all existing loop macros, classified in four different categories:

- · Loops over the pixel buffer
- · Loops over image dimensions
- · Loops over interior regions and borders.
- · Loops using neighborhoods.

6.7.1 Loops over the pixel buffer

Loops over the pixel buffer are really basic loops that iterate a pointer on the pixel data buffer of a cimg_ \(\) library::CImg image. Two macros are defined for this purpose:

- cimg_for(img,ptr,T): This macro loops over the pixel data buffer of the image img, using a pointer T* ptr, starting from the beginning of the buffer (first pixel) till the end of the buffer (last pixel).
 - img must be a (non empty) cimg_library::CImg image of pixels T.
 - ptr is a pointer of type T*. This kind of loop should not appear a lot in your own source code, since this is a low-level loop and many functions of the Clmg class may be used instead. Here is an example of use:

```
CImg<float> img(320,200);
cimg_for(img,ptr,float) { *ptr=0; } // Equivalent to 'img.fill(0);'
```

- cimg_rof(img,ptr,T): This macro does the same as cimg_for() but from the end to the beginning of the pixel buffer.
- cimg_foroff(img,off): This macro loops over the pixel data buffer of the image img, using an offset, starting from the beginning of the buffer (first pixel, off=0) till the end of the buffer (last pixel value, off = img. ← size()-1).
 - img must be a (non empty) cimg library::Clmg<T> image of pixels T.
 - off is an inner-loop variable, only defined inside the scope of the loop.

Here is an example of use :

6.7.2 Loops over image dimensions

The following loops are probably the most used loops in image processing programs. They allow to loop over the image along one or several dimensions, along a raster scan course. Here is the list of such loop macros for a single dimension:

```
cimg_forX(img,x): equivalent to: for (int x = 0; x<img.width(); ++x).</li>
cimg_forY(img,y): equivalent to: for (int y = 0; y<img.height(); ++y).</li>
cimg_forZ(img,z): equivalent to: for (int z = 0; z<img.depth(); ++z).</li>
cimg_forC(img,c): equivalent to: for (int c = 0; c<img.spectrum(); ++c).</li>
```

Combinations of these macros are also defined as other loop macros, allowing to loop directly over 2D, 3D or 4D images :

```
cimg_forXY(img,x,y): equivalent to: cimg_forY(img,y) cimg_forX(img,x).
cimg_forXZ(img,x,z): equivalent to: cimg_forZ(img,z) cimg_forX(img,x).
cimg_forYZ(img,y,z): equivalent to: cimg_forZ(img,z) cimg_forY(img,y).
cimg_forXC(img,x,c): equivalent to: cimg_forC(img,c) cimg_forX(img,x).
cimg_forYC(img,y,c): equivalent to: cimg_forC(img,c) cimg_forY(img,y).
cimg_forZC(img,z,c): equivalent to: cimg_forC(img,c) cimg_forZ(img,z).
cimg_forXYZ(img,x,y,z): equivalent to: cimg_forZ(img,z) cimg_forXY(img,x,y).
cimg_forXYC(img,x,y,c): equivalent to: cimg_forC(img,c) cimg_forXY(img,x,z).
cimg_forYZC(img,x,z,c): equivalent to: cimg_forC(img,c) cimg_forYZ(img,y,z).
cimg_forYZC(img,y,z,c): equivalent to: cimg_forC(img,c) cimg_forYZ(img,y,z).
cimg_forXYZC(img,x,y,z,c): equivalent to: cimg_forC(img,c) cimg_forYZ(img,y,z).
```

- For all these loops, x,y,z and v are inner-defined variables only visible inside the scope of the loop. They don't have to be defined before the call of the macro.
- img must be a (non empty) cimg library::Clmg image.

Here is an example of use that creates an image with a smooth color gradient :

6.7.3 Loops over interior regions and borders.

Similar macros are also defined to loop only on the border of an image, or inside the image (excluding the border). The border may be several pixel wide:

- cimg_for_insideX(img,x,n): Loop along the x-axis, except for pixels inside a border of n pixels wide.
- cimg for insideY(img,y,n): Loop along the y-axis, except for pixels inside a border of n pixels wide.
- cimg_for_insideZ(img,z,n): Loop along the z-axis, except for pixels inside a border of n pixels wide.
- cimg for insideC(img,c,n): Loop along the c-axis, except for pixels inside a border of n pixels wide.
- cimg_for_insideXY(img,x,y,n): Loop along the (x,y)-axes, excepted for pixels inside a border of n pixels wide.
- cimg_for_insideXYZ(img,x,y,z,n): Loop along the (x,y,z)-axes, excepted for pixels inside a border of n pixels wide.

And also:

- cimg_for_borderX(img,x,n): Loop along the x-axis, only for pixels inside a border of n pixels wide.
- cimg_for_borderY(img,y,n): Loop along the y-axis, only for pixels inside a border of n pixels wide.
- cimg_for_borderZ(img,z,n): Loop along the z-axis, only for pixels inside a border of n pixels wide.
- cimg_for_borderC(img,c,n): Loop along the c-axis, only for pixels inside a border of n pixels wide.
- cimg_for_borderXY(img,x,y,n): Loop along the (x,y)-axes, only for pixels inside a border of n pixels wide.
- cimg_for_borderXYZ(img,x,y,z,n): Loop along the (x,y,z)-axes, only for pixels inside a border of n pixels wide
- For all these loops, x,y,z and c are inner-defined variables only visible inside the scope of the loop. They don't have to be defined before the call of the macro.
- img must be a (non empty) cimg_library::Clmg image.
- The constant n stands for the size of the border.

Here is an example of use, to create a 2d grayscale image with two different intensity gradients:

```
CImg<> img(256,256);
cimg_for_insideXY(img,x,y,50) img(x,y) = x+y;
cimg_for_borderXY(img,x,y,50) img(x,y) = x-y;
img.display();
```

6.7.4 Loops using neighborhoods.

Inside an image loop, it is often useful to get values of neighborhood pixels of the current pixel at the loop location. The Clmg Library provides a very smart and fast mechanism for this purpose, with the definition of several loop macros that remember the neighborhood values of the pixels. The use of these macros can highly optimize your code, and also simplify your program.

6.7.4.1 Neighborhood-based loops for 2D images

For 2D images, the neighborhood-based loop macros are :

- cimg_for2x2(img,x,y,z,c,l,T): Loop along the (x,y)-axes using a centered 2x2 neighborhood.
- cimg for3x3(img,x,y,z,c,I,T): Loop along the (x,y)-axes using a centered 3x3 neighborhood.
- cimg_for4x4(img,x,y,z,c,l,T): Loop along the (x,y)-axes using a centered 4x4 neighborhood.
- cimg for5x5(img,x,y,z,c,l,T): Loop along the (x,y)-axes using a centered 5x5 neighborhood.

For all these loops, x and y are inner-defined variables only visible inside the scope of the loop. They don't have to be defined before the call of the macro. img is a non empty CImg<T> image. z and c are constants that define on which image slice and vector channel the loop must apply (usually both 0 for grayscale 2D images). Finally, I is the 2x2, 3x3, 4x4 or 5x5 neighborhood of type I that will be updated with the correct pixel values during the loop (see Defining neighborhoods).

6.7.4.2 Neighborhood-based loops for 3D images

For 3D images, the neighborhood-based loop macros are :

- cimg_for2x2x2(img,x,y,z,c,l,T): Loop along the (x,y,z)-axes using a centered 2x2x2 neighborhood.
- cimg_for3x3x3(img,x,y,z,c,l,T): Loop along the (x,y,z)-axes using a centered 3x3x3 neighborhood.

For all these loops, x, y and z are inner-defined variables only visible inside the scope of the loop. They don't have to be defined before the call of the macro. img is a non empty Clmg<T> image. c is a constant that defines on which image channel the loop must apply (usually 0 for grayscale 3D images). Finally, I is the 2x2x2 or 3x3x3 neighborhood of type T that will be updated with the correct pixel values during the loop (see Defining neighborhoods).

6.7.4.3 Defining neighborhoods

A neighborhood is defined as an instance of a class having operator[] defined. This particularly includes classical C-array, as well as CImg<T> objects.

For instance, a 3x3 neighborhood can be defined either as a 'float[9]' or a 'Clmg<float>(3,3)' variable.

6.7.4.4 Using alternate variable names

There are also some useful macros that can be used to define variables that reference the neighborhood elements. There are :

- Clmg_2x2(I,type): Define a 2x2 neighborhood named I, of type type.
- Clmg_3x3(I,type): Define a 3x3 neighborhood named I, of type type.
- Clmg_4x4(I,type): Define a 4x4 neighborhood named I, of type type.
- Clmg_5x5(I,type): Define a 5x5 neighborhood named I, of type type.
- Clmg_2x2x2(I,type): Define a 2x2x2 neighborhood named I, of type type.
- Clmg 3x3x3(I,type): Define a 3x3x3 neighborhood named I, of type type.

Actually, I is a generic name for the neighborhood. In fact, these macros declare a set of new variables. For instance, defining a 3x3 neighborhood $CImg_3x3(I,float)$ declares 9 different float variables Ipp,Icp,Inp,Ipc,Icc,Inc,Ipn,Icn,Inn which correspond to each pixel value of a 3x3 neighborhood. Variable indices are p,c or n, and stand respectively for 'previous', 'current' and 'next'. First indice denotes the x-axis, second indice denotes the y-axis. Then, the names of the variables are directly related to the position of the corresponding pixels in the neighborhood. For 3D neighborhoods, a third indice denotes the z-axis. Then, inside a neighborhood loop, you will have the following equivalence:

```
• Ipp = img(x-1,y-1)
```

- Icn = img(x,y+1)
- Inp = img(x+1, y-1)
- Inpc = img(x+1,y-1,z)
- Ippn = img(x-1, y-1, z+1)
- · and so on...

For bigger neighborhoods, such as 4x4 or 5x5 neighborhoods, two additionnal indices are introduced: a (stands for 'after') and b (stands for 'before'), so that:

```
• Ibb = img(x-2,y-2)
```

- Ina = img(x+1,y+2)
- · and so on...

The value of a neighborhood pixel outside the image range (image border problem) is automatically set to the same values as the nearest valid pixel in the image (this is also called the *Neumann border condition*).

6.7.4.5 Example codes

More than a long discussion, the above example will demonstrate how to compute the gradient norm of a 3D volume using the $cimg_for3x3x3$ () loop macro :

And the following example shows how to deal with neighborhood references to blur a color image by averaging pixel values on a 5x5 neighborhood.

As you can see, explaining the use of the CImg neighborhood macros is actually more difficult than using them!

6.8 Using Display Windows.

When opening a display window, you can choose the way the pixel values will be normalized before being displayed on the screen. Screen displays only support color values between [0,255], and some

When displaying an image into the display window using CImgDisplay::display(), values of the image pixels can be eventually linearly normalized between [0,255] for visualization purposes. This may be useful for instance when displaying CImg<double> images with pixel values between [0,1]. The normalization behavior depends on the value of normalize which can be either 0,1 or 2:

- 0 : No pixel normalization is performed when displaying an image. This is the fastest process, but you must be sure your displayed image have pixel values inside the range [0,255].
- 1 : Pixel value normalization is done for each new image display. Image pixels are not modified themselves, only displayed pixels are normalized.
- 2 : Pixel value normalization is done for the first image display, then the normalization parameters are kept and used for all the next image displays.

6.9 How pixel data are stored with Clmg.

First, CImg<T> are *very* basic structures, which means that there are no memory tricks, weird memory alignments or disk caches used to store pixel data of images. When an image is instanced, all its pixel values are stored in memory at the same time (yes, you should avoid working with huge images when dealing with CImg, if you have only 64kb of RAM).

A CImg<T> is basically a 4th-dimensional array (width,height,depth,dim), and its pixel data are stored linearly in a single memory buffer of general size (width*height*depth*dim). Nothing more, nothing less. The address of this memory buffer can be retrieved by the function CImg<T>::data(). As each image value is stored as a type T (T being known by the programmer of course), this pointer is a 'T*', or a 'const T*' if your image is 'const'. so, 'T *ptr = img.data()' gives you the pointer to the first value of the image 'img'. The overall size of the used memory for one instance image (in bytes) is then 'width*height*depth*dim*sizeof(T)'.

Now, the ordering of the pixel values in this buffer follows these rules: The values are *not* interleaved, and are ordered first along the X,Y,Z and V axis respectively (corresponding to the width,height,depth,dim dimensions), starting from the upper-left pixel to the bottom-right pixel of the instane image, with a classical scanline run.

So, a color image with dim=3 and depth=1, will be stored in memory as:

R1R2R3R4R5R6......G1G2G3G4G5G6......B1B2B3B4B5B6.... (i.e following a 'planar' structure)

and *not* as R1G1B1R2G2B2R3G3B3... (interleaved channels), where R1 = img(0,0,0,0) is the first upper-left pixel of the red component of the image, R2 is img(1,0,0,0), G1 = img(0,0,0,1), G2 = img(1,0,0,1), B1 = img(0,0,0,2), and so on...

Another example, a (1x5x1x1) Clmg<T> (column vector A) will be stored as : A1A2A3A4A5 where A1 = img(0,0), A2 = img(0,1), ..., A5 = img(0,4).

As you see, it is *very* simple and intuitive: no interleaving, no padding, just simple. This is cool not only because it is simple, but this has in fact a number of interesting properties. For instance, a 2D color image is stored in memory exactly as a 3D scalar image having a depth=3, meaning that when you are dealing with 2D color images, you can write 'img(x,y,k)' instead of 'img(x,y,0,k)' to access the kth channel of the (x,y) pixel. More generally, if you have one dimension that is 1 in your image, you can just skip it in the call to the operator(). Similarly, values of a column vector stored as an image with width=depth=spectrum=1 can be accessed by 'img(y)' instead of 'img(0,y)'. This is very convenient.

Another cool thing is that it allows you to work easily with 'shared' images. A shared image is a Clmg<T> instance that shares its memory with another one (the 'base' image). Destroying a shared image does nothing in fact. Shared images is a convenient way of modifying only *portions* (consecutive in memory) of an image. For instance, if 'img' is a 2D color image, you can write:

img.get_shared_channel(0).blur(2); img.get_shared_channels(1,2).mirror('x');

which just blur the red channel of the image, and mirror the two others along the X-axis. This is possible since channels of an image are not interleaved but are stored as different consecutive planes in memory, so you see that constructing a shared image is possible (and trivial).

6.10 Files IO in Clmg.

6.10 Files IO in Clmg.

The CImg Library can NATIVELY handle the following file formats :

- RAW : consists in a very simple header (in ascii), then the image data.
- ASC (Ascii)
- HDR (Analyze 7.5)
- INR (Inrimage)
- PPM/PGM (Portable Pixmap)
- BMP (uncompressed)
- PAN (Pandore-5)
- DLM (Matlab ASCII)

If ImageMagick is installed, The CImg Library can save image in formats handled by ImageMagick : JPG, GIF, PNG, TIF,...

6.11 Retrieving Command Line Arguments.

The Clmg library offers facilities to retrieve command line arguments in a console-based program, as it is a commonly needed operation. Three macros $cimg_usage()$, $cimg_help()$ and $cimg_option()$ are defined for this purpose. Using these macros allows to easily retrieve options values from the command line. Invoking the compiled executable with the option -h or -help will automatically display the program usage, followed by the list of requested options.

6.11.1 The cimg_usage() macro

The macro <code>cimg_usage(usage)</code> may be used to describe the program goal and usage. It is generally inserted one time after the <code>int main(int argc, char **argv)</code> definition.

Parameters

usage	: A string describing the program goal and usage.
-------	---

Precondition

The function where cimq usage () is used must have correctly defined argc and argv variables.

6.11.2 The cimg_help() macro

The macro $cimg_help(str)$ will display the string str only if the -help or -help option are invoked when running the programm.

6.11.3 The cimg_option() macro

The macro <code>cimg_option(name, default, usage)</code> may be used to retrieve an option value from the command line.

Parameters

name	: The name of the option to be retrieved from the command line.
default	: The default value returned by the macro if no options name has been specified when running the
	program.
usage	: A brief explanation of the option. If usage==0, the option won't appear on the option list when invoking the executable with options -h or -help (hidden option).

Returns

cimg_option() returns an object that has the same type as the default value default. The return value is equal to the one specified on the command line. If no such option have been specified, the return value is equal to the default value default. Warning, this can be confusing in some situations (look at the end of the next section).

Precondition

The function where <code>cimg_option()</code> is used must have correctly defined <code>argc</code> and <code>argv</code> variables.

6.11.4 Example of use

The code below uses the macros <code>cimg_usage()</code> and <code>cimg_option()</code>. It loads an image, smoothes it an quantifies it with a specified number of values.

Invoking the corresponding executable with test -h -hidden -n 20 -i foo.jpg will display:

Warning

As the type of object returned by the macro <code>cimg_option(option,default,usage)</code> is defined by the type of <code>default,undesired</code> casts may appear when writting code such as:

```
const double sigma = cimg_option("-val",0,"A floating point value");
```

In this case, sigma will always be equal to an integer (since the default value 0 is an integer). When passing a float value on the command line, a *float to integer* cast is then done, truncating the given parameter to an integer value (this is surely not a desired behavior). You must specify 0.0 as the default value in this case.

6.11.5 How to learn more about command line options?

You should take a look at the examples <code>examples/gmic.cpp</code> provided in the Clmg Library package. This is a command line based image converter which intensively uses the <code>cimg_option()</code> and <code>cimg_usage()</code> macros to retrieve command line parameters.

Chapter 7

Namespace Documentation

7.1 cimg_library Namespace Reference

Contains all classes and functions of the CImg library.

Namespaces

· cimg

Contains low-level functions and variables of the CImg Library.

Classes

• struct CImg

Class representing an image (up to 4 dimensions wide), each pixel being of type T.

struct CImgDisplay

Allow the creation of windows, display images on them and manage user events (keyboard, mouse and windows events).

• struct CImgException

Instances of CImgException are thrown when errors are encountered in a CImg function call.

struct ClmgList

Represent a list of images CImg<T>.

7.1.1 Detailed Description

Contains all classes and functions of the CImg library.

This namespace is defined to avoid functions and class names collisions that could happen with the inclusion of other C++ header files. Anyway, it should not happen often and you should reasonnably start most of your CImgbased programs with

```
#include "CImg.h"
using namespace cimg_library;
```

to simplify the declaration of CImg Library objects afterwards.

7.2 cimg_library::cimg Namespace Reference

Contains low-level functions and variables of the CImq Library.

Functions

```
• std::FILE * output (std::FILE *file)
```

Get/set default output stream for the CImg library messages.

• void info ()

Print information about CImg environement variables.

template<typename T >

```
void unused (const T &,...)
```

Avoid warning messages due to unused parameters. Do nothing actually.

unsigned int & exception_mode (const unsigned int mode)

Set current CImg exception mode.

• unsigned int & exception_mode ()

Return current CImg exception mode.

• unsigned int openmp_mode (const unsigned int mode)

Set current CImg openmp mode.

• unsigned int openmp_mode ()

Return current CImg openmp mode.

int dialog (const char *const title, const char *const msg, const char *const button1_label, const char *const button2_label, const char *const button3_label, const char *const button4_label, const char *const button5
 — label, const char *const button6_label, const bool is_centered)

Display a simple dialog box, and wait for the user's response [specialization].

double eval (const char *const expression, const double x, const double y, const double z, const double c)

Evaluate math expression.

• void warn (const char *const format,...)

Display a warning message on the default output stream.

- int system (const char *const command, const char *const module_name=0, const bool is_verbose=false)
- template<typename T >

T & temporary (const T &)

Return a reference to a temporary variable of type T.

• template<typename T >

```
void swap (T &a, T &b)
```

Exchange values of variables a and b.

• template<typename T1 , typename T2 >

```
void swap (T1 &a1, T1 &b1, T2 &a2, T2 &b2)
```

Exchange values of variables (a1,a2) and (b1,b2).

- template<typename T1 , typename T2 , typename T3 >

```
void swap (T1 &a1, T1 &b1, T2 &a2, T2 &b2, T3 &a3, T3 &b3)
```

Exchange values of variables (a1,a2,a3) and (b1,b2,b3).

ullet template<typename T1 , typename T2 , typename T3 , typename T4 >

```
void swap (T1 &a1, T1 &b1, T2 &a2, T2 &b2, T3 &a3, T3 &b3, T4 &a4, T4 &b4)
```

Exchange values of variables (a1,a2,...,a4) and (b1,b2,...,b4).

```
    template<typename T1 , typename T2 , typename T3 , typename T4 , typename T5 > void swap (T1 &a1, T1 &b1, T2 &a2, T2 &b2, T3 &a3, T3 &b3, T4 &a4, T4 &b4, T5 &a5, T5 &b5)
```

Exchange values of variables (a1,a2,...,a5) and (b1,b2,...,b5).

template < typename T1, typename T2, typename T3, typename T4, typename T5, typename T6 >
 void swap (T1 &a1, T1 &b1, T2 &a2, T2 &b2, T3 &a3, T3 &b3, T4 &a4, T4 &b4, T5 &a5, T5 &b5, T6 &a6, T6 &b6)

Exchange values of variables (a1,a2,...,a6) and (b1,b2,...,b6).

template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7>
 void swap (T1 &a1, T1 &b1, T2 &a2, T2 &b2, T3 &a3, T3 &b3, T4 &a4, T4 &b4, T5 &a5, T5 &b5, T6 &a6, T6 &b6, T7 &a7, T7 &b7)

Exchange values of variables (a1,a2,...,a7) and (b1,b2,...,b7).

template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8 > void swap (T1 &a1, T1 &b1, T2 &a2, T2 &b2, T3 &a3, T3 &b3, T4 &a4, T4 &b4, T5 &a5, T5 &b5, T6 &a6, T6 &b6, T7 &a7, T7 &b7, T8 &a8, T8 &b8)

Exchange values of variables (a1,a2,...,a8) and (b1,b2,...,b8).

• bool endianness ()

Return the endianness of the current architecture.

template<typename T >

void invert_endianness (T *const buffer, const unsigned long size)

Reverse endianness of all elements in a memory buffer.

• template<typename T >

T & invert_endianness (T &a)

Reverse endianness of a single variable.

• unsigned long time ()

Return the value of a system timer, with a millisecond precision.

unsigned long tic ()

Start tic/toc timer for time measurement between code instructions.

• unsigned long toc ()

End tic/toc timer and displays elapsed time from last call to tic().

· void sleep (const unsigned int milliseconds)

Sleep for a given numbers of milliseconds.

long wait (const unsigned int milliseconds)

Wait for a given number of milliseconds since the last call to wait().

• template<typename T , typename t >

T cut (const T &val, const t &val_min, const t &val_max)

Cut (i.e. clamp) value in specified interval.

• template<typename T >

T rol (const T &a, const unsigned int n=1)

Bitwise-rotate value on the left.

• template<typename T >

T ror (const T &a, const unsigned int n=1)

Bitwise-rotate value on the right.

 $\bullet \ \ template {<} typename \ T >$

Tabs (const T &a)

Return absolute value of a value.

double acosh (const double x)

Return hyperbolic arcosine of a value.

• double asinh (const double x)

Return hyperbolic arcsine of a value.

double atanh (const double x)

Return hyperbolic arctangent of a value.

• double sinc (const double x)

Return the sinc of a given value.

double log2 (const double x)

Return base-2 logarithm of a value.

• template<typename T >

T sqr (const T &val)

Return square of a value.

```
• template<typename T >
  double cbrt (const T &x)
      Return cubic root of a value.

    template<typename t >

  t min (const t &a, const t &b, const t &c)
      Return the minimum between three values.

    template<typename t >

  t min (const t &a, const t &b, const t &c, const t &d)
      Return the minimum between four values.
• template<typename t >
  t max (const t &a, const t &b, const t &c)
      Return the maximum between three values.
template<typename t >
  t max (const t &a, const t &b, const t &c, const t &d)
      Return the maximum between four values.
• template<typename T >
  T sign (const T &x)
     Return the sign of a value.
template<typename T >
  unsigned long nearest_pow2 (const T &x)
      Return the nearest power of 2 higher than given value.

    template<typename T >

  T mod (const T &x, const T &m)
      Return the modulo of a value.
template<typename T >
  T minmod (const T &a, const T &b)
      Return the min-mod of two values.

    template<typename T >

  T round (const T &x, const double y, const int rounding type=0)
      Return rounded value.

    template<typename T >

  T hypot (const T x, const T y)
      Return sqrt(x^2 + y^2).
· double factorial (const int n)
      Return the factorial of n.
• double permutations (const int k, const int n, const bool with order)
      Return the number of permutations of k objects in a set of n objects.

    double fibonacci (const int n)

      Calculate fibonacci number.
• long gcd (long a, long b)
      Calculate greatest common divisor.
• char lowercase (const char x)
      Convert Ascii character to lower case.

    void lowercase (char *const str)

      Convert C-string to lower case.
• char uppercase (const char x)
      Convert Ascii character to upper case.

    void uppercase (char *const str)

      Convert C-string to upper case.
• bool is_blank (const char c)
      Return true if input character is blank (space, tab, or non-printable character).
```

double atof (const char *const str)

Read value in a C-string.

• int strncasecmp (const char *const str1, const char *const str2, const int I)

Compare the first 1 characters of two C-strings, ignoring the case.

• int strcasecmp (const char *const str1, const char *const str2)

Compare two C-strings, ignoring the case.

char * strellipsize (char *const str, const unsigned int l=64, const bool is_ending=true)

Ellipsize a string.

char * strellipsize (const char *const str, char *const res, const unsigned int l=64, const bool is_ending=true)
 Ellipsize a string.

bool strpare (char *const str, const char delimiter, const bool is_symmetric, const bool is_iterative)

Remove delimiters on the start and/or end of a C-string.

• bool strpare (char *const str, const bool is symmetric, const bool is iterative)

Remove white spaces on the start and/or end of a C-string.

void strwindows_reserved (char *const str, const char c='_')

Replace reserved characters (for Windows filename) by another character.

void strunescape (char *const str)

Replace escape sequences in C-strings by their binary Ascii values.

const char * basename (const char *const s, const char separator='/')

Return the basename of a filename.

std::FILE * fopen (const char *const path, const char *const mode)

Open a file.

• int fclose (std::FILE *file)

Close a file.

int fseek (FILE *stream, long offset, int origin)

Version of 'fseek()' that supports >=64bits offsets everywhere (for Windows).

long ftell (FILE *stream)

Version of 'ftell()' that supports >=64bits offsets everywhere (for Windows).

bool is_directory (const char *const path)

Check if a path is a directory.

• bool is_file (const char *const path)

Check if a path is a file.

• long long fsize (const char *const filename)

Get file size.

• template<typename T >

int fdate (const char *const path, T *attr, const unsigned int nb_attr)

Get last write time of a given file or directory (multiple-attributes version).

• int fdate (const char *const path, unsigned int attr)

Get last write time of a given file or directory (single-attribute version).

• template<typename T >

int date (T *attr, const unsigned int nb_attr)

Get current local time (multiple-attributes version).

int date (unsigned int attr)

Get current local time (single-attribute version).

• const char * temporary_path (const char *const user_path, const bool reinit_path)

Get/set path to store temporary files.

const char * imagemagick_path (const char *const user_path, const bool reinit_path)

Get/set path to the Program Files/ directory (Windows only).

const char * graphicsmagick path (const char *const user path, const bool reinit path)

Get/set path to the GraphicsMagick's qm binary.

• const char * medcon path (const char *const user path, const bool reinit path)

Get/set path to the XMedcon's medcon binary.

const char * ffmpeg_path (const char *const user_path, const bool reinit_path)

Get/set path to the FFMPEG's ffmpeg binary.

const char * gzip path (const char *const user path, const bool reinit path)

Get/set path to the gzip binary.

const char * gunzip_path (const char *const user_path, const bool reinit_path)

Get/set path to the gunzip binary.

const char * dcraw_path (const char *const user_path, const bool reinit_path)

Get/set path to the dcraw binary.

const char * wget_path (const char *const user_path, const bool reinit_path)

Get/set path to the wget binary.

• const char * curl path (const char *const user path, const bool reinit path)

Get/set path to the curl binary.

• const char * split_filename (const char *const filename, char *const body=0)

Split filename into two C-strings body and extension.

 char * number_filename (const char *const filename, const int number, const unsigned int digits, char *const str)

Generate a numbered version of a filename.

template<typename T >

```
size t fread (T *const ptr, const size t nmemb, std::FILE *stream)
```

Read data from file.

• template<typename T >

```
size_t fwrite (const T *ptr, const size_t nmemb, std::FILE *stream)
```

Write data to file.

• void fempty (std::FILE *const file, const char *const filename)

Create an empty file.

• const char * ftype (std::FILE *const file, const char *const filename)

Try to guess format from an image file.

• char * load_network (const char *const url, char *const filename_local, const unsigned int timeout, const bool try_fallback, const char *const referer)

Load file from network as a local temporary file.

const char * option (const char *const name, const int argc, const char *const argv, const char *const defaut, const char *const usage, const bool reset static)

Return options specified on the command line.

ClmgList< char > files (const char *const path, const bool is_pattern=false, const unsigned int mode=2, const bool include_path=false)

Return list of files/directories in specified directory.

 $\bullet \ \ \text{template}{<} \text{typename t} >$

int dialog (const char *const title, const char *const msg, const char *const button1_label, const char *const button2_label, const char *const button3_label, const char *const button4_label, const char *const button5 \leftarrow _label, const char *const button6_label, const CImg< t > &logo, const bool is_centered=false)

Display a simple dialog box, and wait for the user's response.

Variables

• const unsigned int keyESC = 1U

Keycode for the ESC key (architecture-dependent)

• const unsigned int keyF1 = 2U

Keycode for the F1 key (architecture-dependent)

const unsigned int keyF2 = 3U

Keycode for the F2 key (architecture-dependent)

• const unsigned int keyF3 = 4U

```
Keycode for the F3 key (architecture-dependent)

    const unsigned int keyF4 = 5U

     Keycode for the F4 key (architecture-dependent)

 const unsigned int keyF5 = 6U

     Keycode for the F5 key (architecture-dependent)

 const unsigned int keyF6 = 7U

     Keycode for the F6 key (architecture-dependent)

    const unsigned int keyF7 = 8U

     Keycode for the F7 key (architecture-dependent)

    const unsigned int keyF8 = 9U

     Keycode for the F8 key (architecture-dependent)

    const unsigned int keyF9 = 10U

     Keycode for the F9 key (architecture-dependent)
• const unsigned int keyF10 = 11U
     Keycode for the F10 key (architecture-dependent)

    const unsigned int keyF11 = 12U

     Keycode for the F11 key (architecture-dependent)
• const unsigned int keyF12 = 13U
     Keycode for the F12 key (architecture-dependent)

    const unsigned int keyPAUSE = 14U

     Keycode for the PAUSE key (architecture-dependent)
• const unsigned int key1 = 15U
     Keycode for the 1 key (architecture-dependent)

 const unsigned int key2 = 16U

     Keycode for the 2 key (architecture-dependent)

 const unsigned int key3 = 17U

     Keycode for the 3 key (architecture-dependent)

 const unsigned int key4 = 18U

     Keycode for the 4 key (architecture-dependent)
• const unsigned int key5 = 19U
     Keycode for the 5 key (architecture-dependent)

    const unsigned int key6 = 20U

     Keycode for the 6 key (architecture-dependent)
• const unsigned int key7 = 21U
     Keycode for the 7 key (architecture-dependent)

 const unsigned int key8 = 22U

     Keycode for the 8 key (architecture-dependent)
• const unsigned int key9 = 23U
     Keycode for the 9 key (architecture-dependent)

 const unsigned int key0 = 24U

     Keycode for the 0 key (architecture-dependent)

    const unsigned int keyBACKSPACE = 25U

     Keycode for the BACKSPACE key (architecture-dependent)

    const unsigned int keyINSERT = 26U

     Keycode for the INSERT key (architecture-dependent)

    const unsigned int keyHOME = 27U

     Keycode for the HOME key (architecture-dependent)

    const unsigned int keyPAGEUP = 28U

     Keycode for the PAGEUP key (architecture-dependent)
• const unsigned int keyTAB = 29U
     Keycode for the TAB key (architecture-dependent)
```

 const unsigned int keyQ = 30U Keycode for the Q key (architecture-dependent) const unsigned int keyW = 31U Keycode for the ₩ key (architecture-dependent) const unsigned int keyE = 32U Keycode for the E key (architecture-dependent) • const unsigned int keyR = 33U Keycode for the R key (architecture-dependent) const unsigned int keyT = 34U Keycode for the T key (architecture-dependent) const unsigned int keyY = 35U Keycode for the Y key (architecture-dependent) const unsigned int keyU = 36U Keycode for the U key (architecture-dependent) const unsigned int keyl = 37U Keycode for the I key (architecture-dependent) const unsigned int keyO = 38U Keycode for the ○ key (architecture-dependent) • const unsigned int keyP = 39U Keycode for the P key (architecture-dependent) const unsigned int keyDELETE = 40U Keycode for the DELETE key (architecture-dependent) const unsigned int keyEND = 41U Keycode for the END key (architecture-dependent) const unsigned int keyPAGEDOWN = 42U Keycode for the PAGEDOWN key (architecture-dependent) const unsigned int keyCAPSLOCK = 43U Keycode for the CAPSLOCK key (architecture-dependent) • const unsigned int keyA = 44U Keycode for the A key (architecture-dependent) const unsigned int keyS = 45U Keycode for the S key (architecture-dependent) • const unsigned int keyD = 46U Keycode for the D key (architecture-dependent) const unsigned int keyF = 47U Keycode for the F key (architecture-dependent) const unsigned int keyG = 48U Keycode for the G key (architecture-dependent) const unsigned int keyH = 49U Keycode for the H key (architecture-dependent) const unsigned int keyJ = 50U Keycode for the J key (architecture-dependent) const unsigned int keyK = 51U Keycode for the K key (architecture-dependent) const unsigned int keyL = 52U Keycode for the \bot key (architecture-dependent) const unsigned int keyENTER = 53U Keycode for the ENTER key (architecture-dependent) const unsigned int keySHIFTLEFT = 54U

Keycode for the SHIFTLEFT key (architecture-dependent)

const unsigned int keyZ = 55U

7.2 cimg_library::cimg Namespace Reference Keycode for the Z key (architecture-dependent) const unsigned int keyX = 56U *Keycode for the X key (architecture-dependent)* const unsigned int keyC = 57U Keycode for the C key (architecture-dependent) const unsigned int keyV = 58U Keycode for the V key (architecture-dependent) const unsigned int keyB = 59U Keycode for the B key (architecture-dependent) const unsigned int keyN = 60U Keycode for the N key (architecture-dependent) const unsigned int keyM = 61U Keycode for the M key (architecture-dependent) • const unsigned int keySHIFTRIGHT = 62U Keycode for the SHIFTRIGHT key (architecture-dependent) • const unsigned int keyARROWUP = 63U Keycode for the ARROWUP key (architecture-dependent) const unsigned int keyCTRLLEFT = 64U Keycode for the CTRLLEFT key (architecture-dependent) const unsigned int keyAPPLEFT = 65U Keycode for the APPLEFT key (architecture-dependent) const unsigned int keyALT = 66U Keycode for the ALT key (architecture-dependent) const unsigned int keySPACE = 67U Keycode for the SPACE key (architecture-dependent) const unsigned int keyALTGR = 68U Keycode for the ALTGR key (architecture-dependent) const unsigned int keyAPPRIGHT = 69U Keycode for the APPRIGHT key (architecture-dependent) const unsigned int keyMENU = 70U Keycode for the MENU key (architecture-dependent) const unsigned int keyCTRLRIGHT = 71U Keycode for the CTRLRIGHT key (architecture-dependent) const unsigned int keyARROWLEFT = 72U Keycode for the ARROWLEFT key (architecture-dependent) const unsigned int keyARROWDOWN = 73U Keycode for the ARROWDOWN key (architecture-dependent) const unsigned int keyARROWRIGHT = 74U Keycode for the ARROWRIGHT key (architecture-dependent) const unsigned int keyPAD0 = 75U Keycode for the PADO key (architecture-dependent) • const unsigned int keyPAD1 = 76U Keycode for the PAD1 key (architecture-dependent)

 const unsigned int keyPAD2 = 77U Keycode for the PAD2 key (architecture-dependent) • const unsigned int keyPAD3 = 78U Keycode for the PAD3 key (architecture-dependent) const unsigned int keyPAD4 = 79U Keycode for the PAD4 key (architecture-dependent) • const unsigned int keyPAD5 = 80U Keycode for the PAD5 key (architecture-dependent)

const unsigned int keyPAD6 = 81U

Keycode for the PAD6 key (architecture-dependent)

• const unsigned int keyPAD7 = 82U

Keycode for the PAD7 key (architecture-dependent)

• const unsigned int keyPAD8 = 83U

Keycode for the PAD8 key (architecture-dependent)

• const unsigned int keyPAD9 = 84U

Keycode for the PAD9 key (architecture-dependent)

• const unsigned int keyPADADD = 85U

Keycode for the PADADD key (architecture-dependent)

• const unsigned int keyPADSUB = 86U

Keycode for the PADSUB key (architecture-dependent)

• const unsigned int keyPADMUL = 87U

Keycode for the PADMUL key (architecture-dependent)

• const unsigned int keyPADDIV = 88U

Keycode for the PADDDIV key (architecture-dependent)

• const double PI = 3.14159265358979323846

Value of the mathematical constant Pl.

7.2.1 Detailed Description

Contains low-level functions and variables of the CImg Library.

Most of the functions and variables within this namespace are used by the CImg library for low-level operations. You may use them to access specific const values or environment variables internally used by CImg.

Warning

Never write using namespace cimg_library::cimg; in your source code. Lot of functions in the cimg:: namespace have the same names as standard C functions that may be defined in the global namespace ::.

7.2.2 Function Documentation

7.2.2.1 output()

Get/set default output stream for the CImg library messages.

Parameters

file Desired output stream. Set to 0 to get the currently used output stream only.

Returns

Currently used output stream.

7.2.2.2 info()

```
void info ( )
```

Print information about CImg environement variables.

Note

Output is done on the default output stream.

7.2.2.3 exception_mode() [1/2]

Set current CImq exception mode.

The way error messages are handled by CImg can be changed dynamically, using this function.

Parameters

mode

Desired exception mode. Possible values are:

- 0: Hide library messages (quiet mode).
- 1: Print library messages on the console.
- 2: Display library messages on a dialog window.
- 3: Do as 1 + add extra debug warnings (slow down the code!).
- 4: Do as 2 + add extra debug warnings (slow down the code!).

7.2.2.4 exception_mode() [2/2]

```
unsigned int& cimg_library::cimg::exception_mode ( )
```

Return current CImg exception mode.

Note

By default, return the value of configuration macro cimg_verbosity

7.2.2.5 openmp_mode()

Set current CImg openmp mode.

The way openmp-based methods are handled by CImg can be changed dynamically, using this function.

```
mode Desired openmp mode. Possible values are:
0: Never parallelize.
1: Always parallelize.
2: Adaptive parallelization mode (default behavior).
```

7.2.2.6 eval()

Evaluate math expression.

Parameters

expression	C-string describing the formula to evaluate.	
X Value of the pre-defined variable x.		
У	Value of the pre-defined variable y.	
Z	Value of the pre-defined variable z.	
С	Value of the pre-defined variable c.	

Returns

Result of the formula evaluation.

Note

Set expression to 0 to keep evaluating the last specified expression.

Example

```
const double  res1 = cimg::eval("cos(x)^2 + sin(y)^2",2,2), // will return '1' \\ res2 = cimg::eval(0,1,1); // will return '1' too
```

7.2.2.7 warn()

Display a warning message on the default output stream.

format	C-string containing the format of the message, as with std::printf().
--------	---

Note

If configuration macro $cimg_strict_warnings$ is set, this function throws a $CimgWarning \leftarrow Exception$ instead.

Warning

As the first argument is a format string, it is highly recommended to write

```
cimg::warn("%s",warning_message);
instead of
```

cimg::warn(warning_message);

if warning_message can be arbitrary, to prevent nasty memory access.

7.2.2.8 system()

Parameters

command	C-string containing the command line to execute.
module_name	Module name.

Returns

Status value of the executed command, whose meaning is OS-dependent.

Note

This function is similar to std::system() but it does not open an extra console windows on Windowsbased systems.

7.2.2.9 endianness()

```
bool cimg_library::cimg::endianness ( )
```

Return the endianness of the current architecture.

Returns

false for Little Endian or true for Big Endian.

7.2.2.10 invert_endianness() [1/2]

Reverse endianness of all elements in a memory buffer.

Parameters

in,out	buffer	Memory buffer whose endianness must be reversed.	
	size	Number of buffer elements to reverse.	l

7.2.2.11 invert_endianness() [2/2]

Reverse endianness of a single variable.

Parameters

in,out	а	Variable to reverse.
--------	---	----------------------

Returns

Reference to reversed variable.

7.2.2.12 time()

```
unsigned long cimg_library::cimg::time ( )
```

Return the value of a system timer, with a millisecond precision.

Note

The timer does not necessarily starts from 0.

7.2.2.13 tic()

```
unsigned long cimg_library::cimg::tic ( )
```

Start tic/toc timer for time measurement between code instructions.

Returns

Current value of the timer (same value as time()).

7.2.2.14 toc()

```
unsigned long cimg_library::cimg::toc ( )
```

End tic/toc timer and displays elapsed time from last call to tic().

Returns

Time elapsed (in ms) since last call to tic().

7.2.2.15 sleep()

Sleep for a given numbers of milliseconds.

Parameters

milliseconds	Number of milliseconds to wait for.
--------------	-------------------------------------

Note

This function frees the CPU ressources during the sleeping time. It can be used to temporize your program properly, without wasting CPU time.

7.2.2.16 wait()

Wait for a given number of milliseconds since the last call to wait().

Parameters

milliseconds	Number of milliseconds to wait for.
miniococinac	i varribor or riminocoornas to wait ior.

Returns

Number of milliseconds elapsed since the last call to wait().

Note

Same as sleep() with a waiting time computed with regard to the last call of wait(). It may be used to temporize your program properly, without wasting CPU time.

7.2.2.17 mod()

Return the modulo of a value.

Parameters

X	Input value.	
m	Modulo value.	

Note

This modulo function accepts negative and floating-points modulo numbers, as well as variables of any type.

7.2.2.18 minmod()

Return the min-mod of two values.

Note

minmod(a,b) is defined to be:

- minmod(a,b) = min(a,b), if a and b have the same sign.
- minmod(a,b) = 0, if a and b have different signs.

7.2.2.19 round()

Return rounded value.

Parameters

x Value to be rounded.	
У	Rounding precision.
rounding_type	Type of rounding operation (0 = nearest, -1 = backward, 1 = forward).

Returns

Rounded value, having the same type as input value $\ensuremath{\mathbf{x}}$.

7.2.2.20 atof()

Read value in a C-string.

Parameters

	str	C-string containing the float value to read.
--	-----	--

Returns

Read value.

Note

Same as std::atof() extended to manage the retrieval of fractions from C-strings, as in "1/2".

7.2.2.21 strncasecmp()

```
int cimg_library::cimg::strncasecmp ( const char *const str1, const char *const str2, const int l)
```

Compare the first $\ensuremath{\mathtt{l}}$ characters of two C-strings, ignoring the case.

Parameters

str1	C-string.
str2	C-string.
1	Number of characters to compare.

Returns

 $\ensuremath{\text{0}}$ if the two strings are equal, something else otherwise.

Note

This function has to be defined since it is not provided by all C++-compilers (not ANSI).

7.2.2.22 strcasecmp()

Compare two C-strings, ignoring the case.

Parameters

str1	C-string.
str2	C-string.

Returns

 $\ensuremath{\text{0}}$ if the two strings are equal, something else otherwise.

Note

This function has to be defined since it is not provided by all C++-compilers (not ANSI).

7.2.2.23 strellipsize() [1/2]

Ellipsize a string.

Parameters

str	C-string.
1	Max number of characters.
is_ending	Tell if the dots are placed at the end or at the center of the ellipsized string.

7.2.2.24 strellipsize() [2/2]

Ellipsize a string.

Parameters

str	C-string.	
-----	-----------	--

res	output C-string.	
1	Max number of characters.	
is_ending	Tell if the dots are placed at the end or at the center of the ellipsized string.	

7.2.2.25 strpare()

Remove delimiters on the start and/or end of a C-string.

Parameters

in,out	str	C-string to work with (modified at output).
	delimiter	Delimiter character code to remove.
	is_symmetric	Tells if the removal is done only if delimiters are symmetric (both at the beginning and the end of ${\tt s}$).
	is_iterative	Tells if the removal is done if several iterations are possible.

Returns

true if delimiters have been removed, false otherwise.

7.2.2.26 strwindows_reserved()

Replace reserved characters (for Windows filename) by another character.

Parameters

in,out	str	C-string to work with (modified at output).
in	С	Replacement character.

7.2.2.27 strunescape()

Replace escape sequences in C-strings by their binary Ascii values.

in,out	str	C-string to work with (modified at output).
--------	-----	---

7.2.2.28 fopen()

Open a file.

Parameters

path	Path of the filename to open.
mode	C-string describing the opening mode.

Returns

Opened file.

Note

Same as std::fopen() but throw a CImgIOException when the specified file cannot be opened, instead of returning 0.

7.2.2.29 fclose()

Close a file.

Parameters

```
file File to close.
```

Returns

 $\ensuremath{\text{0}}$ if file has been closed properly, something else otherwise.

Note

Same as std::fclose() but display a warning message if the file has not been closed properly.

7.2.2.30 is_directory()

Check if a path is a directory.

Parameters

```
path Specified path to test.
```

7.2.2.31 is_file()

Check if a path is a file.

Parameters

path | Specified path to test.

7.2.2.32 fsize()

Get file size.

Parameters

filename	Specified filename to get size from.
----------	--------------------------------------

Returns

File size or '-1' if file does not exist.

7.2.2.33 fdate() [1/2]

Get last write time of a given file or directory (multiple-attributes version).

	path	Specified path to get attributes from.
in,out	attr	Type of requested time attributes. Can be { 0=year 1=month 2=day 3=day of week 4=hour 5=minute 6=second } Replaced by read attributes after return (or -1 if an error occured).
	nb_attr	Number of attributes to read/write.

Returns

Latest read attribute.

Get last write time of a given file or directory (single-attribute version).

Parameters

path	Specified path to get attributes from.
attr	Type of requested time attributes. Can be { 0=year 1=month 2=day 3=day of week 4=hour 5=minute 6=second }

Returns

Specified attribute or -1 if an error occured.

Get current local time (multiple-attributes version).

Parameters

in,out	attr	Type of requested time attributes. Can be { 0=year 1=month 2=day 3=day of week 4=hour 5=minute 6=second } Replaced by read attributes after return (or -1 if an error occured).
	nb_attr	Number of attributes to read/write.

Returns

Latest read attribute.

Get current local time (single-attribute version).

Parameters

```
attr Type of requested time attribute. Can be { 0=year | 1=month | 2=day | 3=day of week | 4=hour | 5=minute | 6=second }
```

Returns

Specified attribute or -1 if an error occured.

7.2.2.37 temporary_path()

Get/set path to store temporary files.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path where temporary files can be saved.

7.2.2.38 imagemagick_path()

Get/set path to the *Program Files/* directory (Windows only).

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the program files.Get/set path to the ImageMagick's convert binary.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the convert binary.

7.2.2.39 graphicsmagick_path()

Get/set path to the GraphicsMagick's gm binary.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the gm binary.

7.2.2.40 medcon_path()

Get/set path to the XMedcon's medcon binary.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the medcon binary.

7.2.2.41 ffmpeg_path()

Get/set path to the FFMPEG's ffmpeg binary.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the ffmpeg binary.

7.2.2.42 gzip_path()

Get/set path to the gzip binary.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the gzip binary.

7.2.2.43 gunzip_path()

Get/set path to the gunzip binary.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the gunzip binary.

7.2.2.44 dcraw_path()

Get/set path to the dcraw binary.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the dcraw binary.

7.2.2.45 wget_path()

Get/set path to the wget binary.

Parameters

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the wget binary.

7.2.2.46 curl_path()

Get/set path to the curl binary.

user_path	Specified path, or 0 to get the path currently used.
reinit_path	Force path to be recalculated (may take some time).

Returns

Path containing the curl binary.

7.2.2.47 split_filename()

Split filename into two C-strings body and extension.

filename and body must not overlap!

7.2.2.48 fread()

Read data from file.

Parameters

out	ptr	Pointer to memory buffer that will contain the binary data read from file.
	nmemb	Number of elements to read.
	stream	File to read data from.

Returns

Number of read elements.

Note

Same as std::fread() but may display warning message if all elements could not be read.

7.2.2.49 fwrite()

Write data to file.

	ptr	Pointer to memory buffer containing the binary data to write on file.
	nmemb	Number of elements to write.
out	stream	File to write data on.

Returns

Number of written elements.

Note

Similar to std::fwrite but may display warning messages if all elements could not be written.

7.2.2.50 fempty()

Create an empty file.

Parameters

file	9	Input file (can be 0 if filename is set).
file	ename	Filename, as a C-string (can be 0 if file is set).

7.2.2.51 ftype()

Try to guess format from an image file.

Parameters

file	Input file (can be 0 if filename is set).
filename	Filename, as a C-string (can be 0 if file is set).

Returns

C-string containing the guessed file format, or $\ensuremath{\text{0}}$ if nothing has been guessed.

7.2.2.52 load_network()

```
char *const filename_local,
const unsigned int timeout,
const bool try_fallback,
const char *const referer )
```

Load file from network as a local temporary file.

Parameters

	url	URL of the filename, as a C-string.
out	filename_local	C-string containing the path to a local copy of filename.
	timeout	Maximum time (in seconds) authorized for downloading the file from the URL.
	try_fallback	When using libcurl, tells using system calls as fallbacks in case of libcurl failure.
	referer	Referer used, as a C-string.

Returns

```
Value of filename_local.
```

Note

Use the libcurl library, or the external binaries wget or curl to perform the download.

7.2.2.53 files()

Return list of files/directories in specified directory.

Parameters

path	Path to the directory. Set to 0 for current directory.
is_pattern	Tell if specified path has a matching pattern in it.
mode	Output type, can be primary { 0=files only 1=folders only 2=files + folders }.
include_path	Tell if path must be included in resulting filenames.

Returns

A list of filenames.

7.2.2.54 dialog()

```
const char *const msg,
const char *const button1_label,
const char *const button2_label,
const char *const button3_label,
const char *const button4_label,
const char *const button5_label,
const char *const button6_label,
const CImg< t > & logo,
const bool is_centered = false )
```

Display a simple dialog box, and wait for the user's response.

Parameters

title	Title of the dialog window.
msg	Main message displayed inside the dialog window.
button1_label	Label of the 1st button.
button2_label	Label of the 2nd button (0 to hide button).
button3_label	Label of the 3rd button (0 to hide button).
button4_label	Label of the 4th button (0 to hide button).
button5_label	Label of the 5th button (0 to hide button).
button6_label	Label of the 6th button (0 to hide button).
logo	Image logo displayed at the left of the main message.
is_centered	Tells if the dialog window must be centered on the screen.

Returns

Index of clicked button (from 0 to 5), or -1 if the dialog window has been closed by the user.

Note

- Up to 6 buttons can be defined in the dialog window.
- The function returns when a user clicked one of the button or closed the dialog window.
- If a button text is set to 0, the corresponding button (and the followings) will not appear in the dialog box. At least one button must be specified.

Chapter 8

Class Documentation

8.1 Clmg < T > Struct Template Reference

Class representing an image (up to 4 dimensions wide), each pixel being of type T.

Public Types

typedef T * iterator

Simple iterator type, to loop through each pixel value of an image instance.

typedef const T * const_iterator

Simple const iterator type, to loop through each pixel value of a const image instance.

typedef T value_type

Pixel value type.

Constructors / Destructor / Instance Management

• ~CImg ()

Destroy image.

• Clmg ()

Construct empty image.

Clmg (const unsigned int size_x, const unsigned int size_y=1, const unsigned int size_z=1, const unsigned int size_c=1)

Construct image with specified size.

• Clmg (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const T &value)

Construct image with specified size and initialize pixel values.

• Clmg (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_z, const unsigned int size_z, const int value0, const int value1,...)

Construct image with specified size and initialize pixel values from a sequence of integers.

• Clmg (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_z, const double value0, const double value1,...)

Construct image with specified size and initialize pixel values from a sequence of doubles.

• Clmg (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const char *const values, const bool repeat_values)

Construct image with specified size and initialize pixel values from a value string.

66 Class Documentation

• template<typename t >

Clmg (const t *const values, const unsigned int size_x, const unsigned int size_y=1, const unsigned int size z=1, const unsigned int size c=1, const bool is shared=false)

Construct image with specified size and initialize pixel values from a memory buffer.

Clmg (const T *const values, const unsigned int size_x, const unsigned int size_y=1, const unsigned int size z=1, const unsigned int size c=1, const bool is shared=false)

Construct image with specified size and initialize pixel values from a memory buffer [specialization].

Clmg (const char *const filename)

Construct image from reading an image file.

• template<typename t >

Clmg (const Clmg< t > &img)

Construct image copy.

Clmg (const Clmg < T > &img)

Construct image copy [specialization].

template<typename t >

Clmg (const Clmg< t > &img, const bool is_shared)

Advanced copy constructor.

Clmg (const Clmg< T > &img, const bool is_shared)

Advanced copy constructor [specialization].

• template<typename t >

Clmg (const Clmg< t > &img, const char *const dimensions)

Construct image with dimensions borrowed from another image.

template<typename t >

Clmg (const Clmg< t > &img, const char *const dimensions, const T &value)

Construct image with dimensions borrowed from another image and initialize pixel values.

Clmg (const ClmgDisplay &disp)

Construct image from a display window.

• Clmg< T > & assign ()

Construct empty image [in-place version].

Clmg< T > & assign (const unsigned int size_x, const unsigned int size_y=1, const unsigned int size_z=1, const unsigned int size c=1)

Construct image with specified size [in-place version].

Clmg< T > & assign (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size c, const T &value)

Construct image with specified size and initialize pixel values [in-place version].

• Clmg< T > & assign (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const int value0, const int value1,...)

Construct image with specified size and initialize pixel values from a sequence of integers [in-place version].

• Clmg< T > & assign (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const double value1,...)

Construct image with specified size and initialize pixel values from a sequence of doubles [in-place version].

Clmg< T > & assign (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const char *const values, const bool repeat_values)

Construct image with specified size and initialize pixel values from a value string [in-place version].

 $\bullet \ \ template{<} typename\ t>$

Clmg< T > & assign (const t *const values, const unsigned int size_x, const unsigned int size_y=1, const unsigned int size_z=1, const unsigned int size_c=1)

Construct image with specified size and initialize pixel values from a memory buffer [in-place version].

• Clmg< T > & assign (const T *const values, const unsigned int size_x, const unsigned int size_y=1, const unsigned int size z=1, const unsigned int size c=1)

Construct image with specified size and initialize pixel values from a memory buffer [specialization].

• template<typename t >

Clmg< T > & assign (const t *const values, const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const bool is_shared)

Construct image with specified size and initialize pixel values from a memory buffer [overloading].

Clmg< T > & assign (const T *const values, const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, const bool is_shared)

Construct image with specified size and initialize pixel values from a memory buffer [overloading].

• Clmg< T > & assign (const char *const filename)

Construct image from reading an image file [in-place version].

template<typename t >

```
Clmg< T > & assign (const Clmg< t > &img)
```

Construct image copy [in-place version].

template<typename t >

```
Clmg< T > & assign (const Clmg< t > &img, const bool is_shared)
```

In-place version of the advanced copy constructor.

template<typename t >

```
Clmg< T > & assign (const Clmg< t > &img, const char *const dimensions)
```

Construct image with dimensions borrowed from another image [in-place version].

template<typename t >

```
Clmg< T > & assign (const Clmg< t > &img, const char *const dimensions, const T &value)
```

Construct image with dimensions borrowed from another image and initialize pixel values [in-place version].

Clmg
 T > & assign (const ClmgDisplay &disp)

Construct image from a display window [in-place version].

• Clmg< T > & clear ()

Construct empty image [in-place version].

• template<typename t >

```
CImg < t > & move\_to (CImg < t > & img)
```

Transfer content of an image instance into another one.

Clmg< T > & move_to (Clmg< T > &img)

Transfer content of an image instance into another one [specialization].

template<typename t >

```
ClmgList< t > & move_to (ClmgList< t > &list, const unsigned int pos=\sim0U)
```

Transfer content of an image instance into a new image in an image list.

• Clmg< T > & swap (Clmg< T > &img)

Swap fields of two image instances.

static Clmg< T > & empty ()

Return a reference to an empty image.

static const Clmg< T > & const_empty ()

Return a reference to an empty image [const version].

Overloaded Operators

- T & operator() (const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0)
 Access to a pixel value.
- const T & operator() (const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) const

Access to a pixel value [const version].

• T & operator() (const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, const ulongT wh, const ulongT whd=0)

Access to a pixel value.

68 Class Documentation

 const T & operator() (const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, const ulongT wh, const ulongT whd=0) const Access to a pixel value [const version]. operator T* () Implicitely cast an image into a T*. operator const T * () const Implicitely cast an image into a T* [const version]. Clmg< T > & operator= (const T &value) Assign a value to all image pixels. Clmg< T > & operator= (const char *const expression) Assign pixels values from a specified expression. • template<typename t >Clmg< T > & operator= (const Clmg< t > &img) Copy an image into the current image instance. Clmg< T > & operator= (const Clmg< T > &img) Copy an image into the current image instance [specialization]. Clmg< T > & operator= (const ClmgDisplay &disp) Copy the content of a display window to the current image instance. template<typename t > Clmg< T > & operator+= (const t value) In-place addition operator. Clmg< T > & operator+= (const char *const expression) In-place addition operator. template<typename t > CImg < T > & operator += (const CImg < t > & img)In-place addition operator. Clmg< T > & operator++ () In-place increment operator (prefix). Clmg< T > operator++ (int) In-place increment operator (postfix). Clmg< T > operator+ () const Return a non-shared copy of the image instance. • template<typename t > Clmg< typename cimg::superset< T, t >::type > operator+ (const t value) const Addition operator. Clmg< Tfloat > operator+ (const char *const expression) const Addition operator. template<typename t > Clmg< typename cimg::superset< T, t >::type > operator+ (const Clmg< t > &img) const Addition operator. template<typename t > Clmg< T > & operator-= (const t value) In-place substraction operator. Clmg< T > & operator= (const char *const expression) In-place substraction operator. • template<typename t > Clmg< T > & operator-= (const Clmg< t > &img) In-place substraction operator. Clmg< T > & operator-- () In-place decrement operator (prefix). Clmg< T > operator-- (int)

In-place decrement operator (postfix).

```
    Clmg< T > operator- () const

      Replace each pixel by its opposite value.

    template<typename t >

  Clmg< typename cimg::superset< T, t >::type > operator- (const t value) const
      Substraction operator.

    Clmg< Tfloat > operator- (const char *const expression) const

     Substraction operator.

    template<typename t >

  Clmg< typename cimg::superset< T, t >::type > operator- (const Clmg< t > &img) const
      Substraction operator.
• template<typename t >
  Clmg< T > & operator*= (const t value)
      In-place multiplication operator.

    Clmg< T > & operator*= (const char *const expression)

      In-place multiplication operator.
• template<typename t >
  Clmg< T > & operator*= (const Clmg< t > &img)
     In-place multiplication operator.

    template<typename t >

  {\color{red} \textbf{CImg}}{<} \ \text{typename cimg::superset}{<} \ \textbf{T}, \ \textbf{t} > :: \\ \text{type} > \text{operator*} \ (\text{const t value}) \ \text{const}
      Multiplication operator.

    Clmg< Tfloat > operator* (const char *const expression) const

     Multiplication operator.

    template<typename t >

  Clmg< typename cimg::superset< T, t >::type > operator* (const Clmg< t > &img) const
     Multiplication operator.
• template<typename t >
  Clmg< T > & operator/= (const t value)
     In-place division operator.

    Clmg< T > & operator/= (const char *const expression)

     In-place division operator.

    template<typename t >

  Clmg< T > & operator/= (const Clmg< t > &img)
     In-place division operator.

    template<typename t >

  Clmg< typename cimg::superset< T, t >::type > operator/ (const t value) const
      Division operator.

    Clmg< Tfloat > operator/ (const char *const expression) const

      Division operator.

    template<typename t >

  Clmg< typename cimg::superset< T, t >::type > operator/ (const Clmg< t > &img) const
      Division operator.
• template<typename t >
  Clmg< T > & operator%= (const t value)
      In-place modulo operator.

    Clmg< T > & operator%= (const char *const expression)

     In-place modulo operator.

    template<typename t >

  Clmg< T > & operator%= (const Clmg< t > &img)
      In-place modulo operator.

    template<typename t >

  Clmg< typename cimg::superset< T, t >::type > operator% (const t value) const
```

70 Class Documentation

Modulo operator. Clmg< Tfloat > operator% (const char *const expression) const Modulo operator. template<typename t > $\label{eq:clmg} \textbf{Clmg} < \textbf{typename cimg::superset} < \textbf{T}, \textbf{t} > :: \textbf{type} > \textbf{operator}\% \ (\textbf{const Clmg} < \textbf{t} > \& \textbf{img}) \ \textbf{const}$ Modulo operator. template<typename t > Clmg< T > & operator &= (const t value) In-place bitwise AND operator. Clmg< T > & operator &= (const char *const expression) In-place bitwise AND operator. template<typename t > Clmg< T > & operator &= (const Clmg< t > &img) In-place bitwise AND operator. template<typename t > Clmg< T > operator & (const t value) const Bitwise AND operator. Clmg< T > operator & (const char *const expression) const Bitwise AND operator. • template<typename t > Clmg< T > operator & (const Clmg< t > &img) const Bitwise AND operator. template<typename t > Clmg< T > & operator = (const t value) In-place bitwise OR operator. Clmg< T > & operator = (const char *const expression) In-place bitwise OR operator. • template<typename t > CImg < T > & operator = (const CImg < t > & img)In-place bitwise OR operator. template<typename t > Clmg< T > operator (const t value) const Bitwise OR operator. Clmg< T > operator (const char *const expression) const Bitwise OR operator. • template<typename t > Clmg< T > operator (const Clmg< t > &img) const Bitwise OR operator. • template<typename t >Clmg< T > & operator $^{\land}$ = (const t value) In-place bitwise XOR operator. Clmg< T > & operator[^] = (const char *const expression) In-place bitwise XOR operator. • template<typename t >Clmg< T > & operator $^{\land}$ = (const Clmg< t > &img) In-place bitwise XOR operator. template<typename t > Clmg< T> operator $^{\wedge}$ (const t value) const Bitwise XOR operator. Clmg< T > operator[∧] (const char *const expression) const Bitwise XOR operator. • template<typename t >

 $CImg < T > operator^{\wedge}$ (const CImg < t > &img) const

```
Bitwise XOR operator.
```

• template<typename t >

```
Clmg< T > & operator<<= (const t value)
```

In-place bitwise left shift operator.

Clmg< T > & operator<<= (const char *const expression)

In-place bitwise left shift operator.

template<typename t >

```
Clmg< T > & operator<<= (const Clmg< t > &img)
```

In-place bitwise left shift operator.

template<typename t >

```
Clmg< T > operator<< (const t value) const
```

Bitwise left shift operator.

• Clmg< T > operator<< (const char *const expression) const

Bitwise left shift operator.

template<typename t >

```
\label{eq:clmg} \textit{CImg} < \textit{T} > \textit{operator} << (\textit{const CImg} < \textit{t} > \&\textit{img}) \; \textit{const}
```

Bitwise left shift operator.

template<typename t >

```
Clmg< T > & operator>>= (const t value)
```

In-place bitwise right shift operator.

Clmg< T > & operator>>= (const char *const expression)

In-place bitwise right shift operator.

template<typename t >

In-place bitwise right shift operator.

template<typename t >

Bitwise right shift operator.

• Clmg< T > operator>> (const char *const expression) const

Bitwise right shift operator.

template<typename t >

Bitwise right shift operator.

Clmg< T > operator ~ () const

Bitwise inversion operator.

template<typename t >

```
bool operator == (const t value) const
```

Test if all pixels of an image have the same value.

• bool operator== (const char *const expression) const

Test if all pixel values of an image follow a specified expression.

 $\bullet \ \ template{<} typename\ t>$

```
bool operator== (const Clmg< t > &img) const
```

Test if two images have the same size and values.

 $\bullet \ \ \text{template}{<} \text{typename t} >$

bool operator!= (const t value) const

Test if pixels of an image are all different from a value.

bool operator!= (const char *const expression) const

Test if all pixel values of an image are different from a specified expression.

• template<typename t >

```
bool operator!= (const Clmg< t > &img) const
```

Test if two images have different sizes or values.

template<typename t >

```
ClmgList< typename cimg::superset< T, t >::type > operator, (const Clmg< t > &img) const
```

72 Class Documentation

Construct an image list from two images.

• template<typename t >

 $\label{eq:clmgList} \textbf{ClmgList} < \textbf{typename cimg::superset} < \textbf{T}, \textbf{t} > :: \textbf{type} > \textbf{operator}, \textbf{(const ClmgList} < \textbf{t} > \textbf{\&list) const}$

Construct an image list from image instance and an input image list.

ClmgList< T > operator< (const char axis) const

Split image along specified axis.

Instance Characteristics

• int width () const

Return the number of image columns.

· int height () const

Return the number of image rows.

• int depth () const

Return the number of image slices.

• int spectrum () const

Return the number of image channels.

• ulongT size () const

Return the total number of pixel values.

T * data ()

Return a pointer to the first pixel value.

const T * data () const

Return a pointer to the first pixel value [const version].

T * data (const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0)

Return a pointer to a located pixel value.

const T * data (const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0)

Return a pointer to a located pixel value [const version].

longT offset (const int x, const int y=0, const int z=0, const int c=0) const

Return the offset to a located pixel value, with respect to the beginning of the pixel buffer.

• iterator begin ()

Return a Clmg<T>::iterator pointing to the first pixel value.

const_iterator begin () const

Return a Clmg<T>::iterator pointing to the first value of the pixel buffer [const version].

• iterator end ()

Return a Clmg<T>::iterator pointing next to the last pixel value.

• const_iterator end () const

Return a Clmg<T>::iterator pointing next to the last pixel value [const version].

• T & front ()

Return a reference to the first pixel value.

• const T & front () const

Return a reference to the first pixel value [const version].

• T & back ()

Return a reference to the last pixel value.

• const T & back () const

Return a reference to the last pixel value [const version].

T & at (const int offset, const T &out_value)

Access to a pixel value at a specified offset, using Dirichlet boundary conditions.

• T at (const int offset, const T &out_value) const

Access to a pixel value at a specified offset, using Dirichlet boundary conditions [const version].

T & at (const int offset)

Access to a pixel value at a specified offset, using Neumann boundary conditions.

· const T & at (const int offset) const

Access to a pixel value at a specified offset, using Neumann boundary conditions [const version].

T & atX (const int x, const int y, const int z, const int c, const T &out_value)

Access to a pixel value, using Dirichlet boundary conditions for the X-coordinate.

• T atX (const int x, const int y, const int z, const int c, const T &out_value) const

Access to a pixel value, using Dirichlet boundary conditions for the X-coordinate [const version].

T & atX (const int x, const int y=0, const int z=0, const int c=0)

Access to a pixel value, using Neumann boundary conditions for the X-coordinate.

const T & atX (const int x, const int y=0, const int z=0, const int c=0) const

Access to a pixel value, using Neumann boundary conditions for the X-coordinate [const version].

T & atXY (const int x, const int y, const int z, const int c, const T &out_value)

Access to a pixel value, using Dirichlet boundary conditions for the X and Y-coordinates.

T atXY (const int x, const int y, const int z, const int c, const T &out value) const

Access to a pixel value, using Dirichlet boundary conditions for the X and Y coordinates [const version].

T & atXY (const int x, const int y, const int z=0, const int c=0)

Access to a pixel value, using Neumann boundary conditions for the X and Y-coordinates.

const T & atXY (const int x, const int y, const int z=0, const int c=0) const

Access to a pixel value, using Neumann boundary conditions for the X and Y-coordinates [const version].

T & atXYZ (const int x, const int y, const int z, const int c, const T &out_value)

Access to a pixel value, using Dirichlet boundary conditions for the X,Y and Z-coordinates.

• T atXYZ (const int x, const int y, const int z, const int c, const T &out value) const

Access to a pixel value, using Dirichlet boundary conditions for the X,Y and Z-coordinates [const version].

T & atXYZ (const int x, const int y, const int z, const int c=0)

Access to a pixel value, using Neumann boundary conditions for the X,Y and Z-coordinates.

const T & atXYZ (const int x, const int y, const int z, const int c=0) const

Access to a pixel value, using Neumann boundary conditions for the X,Y and Z-coordinates [const version].

• T & atXYZC (const int x, const int y, const int z, const int c, const T &out_value)

Access to a pixel value, using Dirichlet boundary conditions.

• T atXYZC (const int x, const int y, const int z, const int c, const T &out_value) const

Access to a pixel value, using Dirichlet boundary conditions [const version].

• T & atXYZC (const int x, const int y, const int z, const int c)

Access to a pixel value, using Neumann boundary conditions.

const T & atXYZC (const int x, const int y, const int z, const int c) const

Access to a pixel value, using Neumann boundary conditions [const version].

Tfloat linear_atX (const float fx, const int y, const int z, const int c, const T &out_value) const

Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X-coordinate.

• Tfloat linear atX (const float fx, const int y=0, const int z=0, const int c=0) const

Return pixel value, using linear interpolation and Neumann boundary conditions for the X-coordinate.

• Tfloat linear_atXY (const float fx, const float fy, const int z, const int c, const T &out_value) const

Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X and Y-coordinates.

Tfloat linear_atXY (const float fx, const float fy, const int z=0, const int c=0) const

Return pixel value, using linear interpolation and Neumann boundary conditions for the X and Y-coordinates.

• Tfloat linear_atXYZ (const float fx, const float fy, const float fz, const int c, const T &out_value) const

Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X,Y and Z-coordinates.

• Tfloat linear atXYZ (const float fx, const float fy=0, const float fz=0, const int c=0) const

Return pixel value, using linear interpolation and Neumann boundary conditions for the X,Y and Z-coordinates.

• Tfloat linear_atXYZC (const float fx, const float fy, const float fz, const float fc, const T &out_value) const Return pixel value, using linear interpolation and Dirichlet boundary conditions for all X,Y,Z,C-coordinates.

• Tfloat linear atXYZC (const float fx, const float fy=0, const float fz=0, const float fc=0) const

74 Class Documentation

Return pixel value, using linear interpolation and Neumann boundary conditions for all X,Y,Z and C-coordinates.

• Tfloat cubic_atX (const float fx, const int y, const int z, const int c, const T &out_value) const

Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X-coordinate.

• T cubic_cut_atX (const float fx, const int y, const int z, const int c, const T &out_value) const

Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the X-coordinate.

• Tfloat cubic_atX (const float fx, const int y=0, const int z=0, const int c=0) const

Return pixel value, using cubic interpolation and Neumann boundary conditions for the X-coordinate.

• T cubic cut atX (const float fx, const int y, const int z, const int c) const

Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the X-coordinate.

Tfloat cubic_atXY (const float fx, const float fy, const int z, const int c, const T &out_value) const

Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X and Y-coordinates.

• T cubic_cut_atXY (const float fx, const float fy, const int z, const int c, const T &out_value) const

Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the X,Y-coordinates.

Tfloat cubic atXY (const float fx, const float fy, const int z=0, const int c=0) const

Return pixel value, using cubic interpolation and Neumann boundary conditions for the X and Y-coordinates.

• T cubic_cut_atXY (const float fx, const float fy, const int z, const int c) const

Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y-coordinates.

• Tfloat cubic_atXYZ (const float fx, const float fy, const float fz, const int c, const T &out_value) const

Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X,Y and Z-coordinates.

T cubic_cut_atXYZ (const float fx, const float fy, const float fz, const int c, const T &out_value) const
 Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the XYZ-coordinates.

Tfloat cubic_atXYZ (const float fx, const float fy, const float fz, const int c=0) const

Return pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y and Z-coordinates.

• T cubic_cut_atXYZ (const float fx, const float fy, const float fz, const int c) const

Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the XYZ-coordinates.

Clmg< T > & set_linear_atX (const T &value, const float fx, const int y=0, const int z=0, const int c=0, const bool is added=false)

Set pixel value, using linear interpolation for the X-coordinates.

Clmg< T > & set_linear_atXY (const T &value, const float fx, const float fy=0, const int z=0, const int z=0, const bool is added=false)

Set pixel value, using linear interpolation for the X and Y-coordinates.

Clmg< T > & set_linear_atXYZ (const T &value, const float fx, const float fy=0, const float fz=0, const int c=0, const bool is_added=false)

Set pixel value, using linear interpolation for the X,Y and Z-coordinates.

Clmg< charT > value_string (const char separator=',', const unsigned int max_size=0, const char *const format=0) const

Return a C-string containing a list of all values of the image instance.

static const char * pixel_type ()

Return the type of image pixel values as a C string.

Instance Checking

· bool is_shared () const

Test shared state of the pixel buffer.

· bool is empty () const

Test if image instance is empty.

bool is_inf () const

Test if image instance contains a 'inf' value.

• bool is nan () const

Test if image instance contains a NaN value.

bool is_sameX (const unsigned int size_x) const

Test if image width is equal to specified value.

• template<typename t >

bool is sameX (const Clmg< t > &img) const

Test if image width is equal to specified value.

• bool is_sameX (const ClmgDisplay &disp) const

Test if image width is equal to specified value.

bool is_sameY (const unsigned int size_y) const

Test if image height is equal to specified value.

template<typename t >

bool is_sameY (const Clmg< t > &img) const

Test if image height is equal to specified value.

bool is sameY (const ClmgDisplay &disp) const

Test if image height is equal to specified value.

bool is_sameZ (const unsigned int size_z) const

Test if image depth is equal to specified value.

• template<typename t >

bool is_sameZ (const Clmg< t > &img) const

Test if image depth is equal to specified value.

bool is sameC (const unsigned int size c) const

Test if image spectrum is equal to specified value.

template<typename t >

bool is_sameC (const Clmg< t > &img) const

Test if image spectrum is equal to specified value.

bool is_sameXY (const unsigned int size_x, const unsigned int size_y) const

Test if image width and height are equal to specified values.

• template<typename t >

bool is_sameXY (const Clmg< t > &img) const

Test if image width and height are the same as that of another image.

bool is sameXY (const ClmgDisplay &disp) const

Test if image width and height are the same as that of an existing display window.

bool is_sameXZ (const unsigned int size_x, const unsigned int size_z) const

Test if image width and depth are equal to specified values.

• template<typename t >

bool is_sameXZ (const Clmg< t > &img) const

Test if image width and depth are the same as that of another image.

bool is_sameXC (const unsigned int size_x, const unsigned int size_c) const

Test if image width and spectrum are equal to specified values.

template<typename t >

```
bool is_sameXC (const Clmg< t > &img) const
```

Test if image width and spectrum are the same as that of another image.

bool is_sameYZ (const unsigned int size_y, const unsigned int size_z) const

Test if image height and depth are equal to specified values.

• template<typename t >

```
bool is_sameYZ (const Clmg< t > &img) const
```

Test if image height and depth are the same as that of another image.

bool is_sameYC (const unsigned int size_y, const unsigned int size_c) const

Test if image height and spectrum are equal to specified values.

template<typename t >

```
bool is sameYC (const Clmg< t > &img) const
```

Test if image height and spectrum are the same as that of another image.

• bool is_sameZC (const unsigned int size_z, const unsigned int size_c) const

76 Class Documentation

Test if image depth and spectrum are equal to specified values.

template<typename t >

bool is_sameZC (const Clmg< t > &img) const

Test if image depth and spectrum are the same as that of another image.

bool is_sameXYZ (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z) const

Test if image width, height and depth are equal to specified values.

template<typename t >

bool is_sameXYZ (const Clmg< t > &img) const

Test if image width, height and depth are the same as that of another image.

• bool is_sameXYC (const unsigned int size_x, const unsigned int size_y, const unsigned int size_c) const

Test if image width, height and spectrum are equal to specified values.

template<typename t >

bool is_sameXYC (const Clmg< t > &img) const

Test if image width, height and spectrum are the same as that of another image.

• bool is_sameXZC (const unsigned int size_x, const unsigned int size_z, const unsigned int size_c) const

Test if image width, depth and spectrum are equal to specified values.

template<typename t >

template<typename t >

bool is sameXZC (const Clmg< t > &img) const

Test if image width, depth and spectrum are the same as that of another image.

• bool is_sameYZC (const unsigned int size_y, const unsigned int size_z, const unsigned int size_c) const

Test if image height, depth and spectrum are equal to specified values.

bool is sameYZC (const Clmg< t > &img) const

Test if image height, depth and spectrum are the same as that of another image.

 bool is_sameXYZC (const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c) const

Test if image width, height, depth and spectrum are equal to specified values.

• template<typename t>

bool is sameXYZC (const Clmg< t > &img) const

Test if image width, height, depth and spectrum are the same as that of another image.

• bool contains XYZC (const int x, const int y=0, const int z=0, const int c=0) const

Test if specified coordinates are inside image bounds.

template<typename t >

bool contains (const T &pixel, t &x, t &y, t &z, t &c) const

Test if pixel value is inside image bounds and get its X,Y,Z and C-coordinates.

• template<typename t >

bool contains (const T &pixel, t &x, t &y, t &z) const

Test if pixel value is inside image bounds and get its X,Y and Z-coordinates.

template<typename t >

bool contains (const T &pixel, t &x, t &y) const

Test if pixel value is inside image bounds and get its X and Y-coordinates.

• template<typename t >

bool contains (const T &pixel, t &x) const

Test if pixel value is inside image bounds and get its X-coordinate.

bool contains (const T &pixel) const

Test if pixel value is inside image bounds.

template<typename t >

bool is_overlapped (const Clmg< t > &img) const

Test if pixel buffers of instance and input images overlap.

ullet template<typename tp , typename tc , typename to >

 $bool\ is_object3d\ (const\ ClmgList< tp>\&primitives,\ const\ ClmgList< tc>\&colors,\ const\ to\ \&opacities,\ const\ bool\ full_check=true,\ char\ *const\ error_message=0)\ const$

Test if the set {*this,primitives,colors,opacities} defines a valid 3D object.

• bool is_CImg3d (const bool full_check=true, char *const error_message=0) const

Test if image instance represents a valid serialization of a 3D object.

Mathematical Functions

```
• Clmg< T > & sqr ()
```

Compute the square value of each pixel value.

- Clmg< Tfloat > get_sqr () const
- Clmg< T > & sqrt ()

Compute the square root of each pixel value.

- Clmg< Tfloat > get_sqrt () const
- Clmg< T > & exp ()

Compute the exponential of each pixel value.

- Clmg< Tfloat > get_exp () const
- Clmg< T > & log ()

Compute the logarithm of each pixel value.

- CImg< Tfloat > get_log () const
- Clmg< T > & log2 ()

Compute the base-2 logarithm of each pixel value.

- Clmg< Tfloat > get_log2 () const
- Clmg< T > & log10 ()

Compute the base-10 logarithm of each pixel value.

- Clmg< Tfloat > get_log10 () const
- Clmg< T > & abs ()

Compute the absolute value of each pixel value.

- Clmg< Tfloat > get_abs () const
- CImg< T > & sign ()

Compute the sign of each pixel value.

- Clmg< Tfloat > get_sign () const
- Clmg< T > & cos ()

Compute the cosine of each pixel value.

- Clmg< Tfloat > get_cos () const
- Clmg< T > & sin ()

Compute the sine of each pixel value.

- Clmg< Tfloat > get_sin () const
- Clmg< T > & sinc ()

Compute the sinc of each pixel value.

- Clmg< Tfloat > get_sinc () const
- Clmg< T > & tan ()

Compute the tangent of each pixel value.

- CImg< $Tfloat > get_tan$ () const
- Clmg< T > & cosh ()

Compute the hyperbolic cosine of each pixel value.

- CImg< Tfloat > get_cosh () const
- Clmg< T > & sinh ()

Compute the hyperbolic sine of each pixel value.

- Clmg< Tfloat > get_sinh () const
- Clmg< T > & tanh ()

Compute the hyperbolic tangent of each pixel value.

- Clmg< Tfloat > get_tanh () const
- Clmg< T > & acos ()

Compute the arccosine of each pixel value.

- Clmg< Tfloat > get_acos () const
- Clmg< T > & asin ()

Compute the arcsine of each pixel value.

```
    Clmg< Tfloat > get_asin () const

• Clmg< T > & atan ()
     Compute the arctangent of each pixel value.

    Clmg< Tfloat > get_atan () const

    template<typename t >

  Clmg< T > & atan2 (const Clmg< t > &img)
     Compute the arctangent2 of each pixel value.

    template<typename t >

  Clmg< Tfloat > get atan2 (const Clmg< t > &img) const
      Compute the arctangent2 of each pixel value [new-instance version].
• Clmg< T > & acosh ()
     Compute the hyperbolic arccosine of each pixel value.

    Clmg< Tfloat > get acosh () const

• Clmg< T > & asinh ()
     Compute the hyperbolic arcsine of each pixel value.

    Clmg< Tfloat > get_asinh () const

• Clmg< T > & atanh ()
     Compute the hyperbolic arctangent of each pixel value.

    Clmg< Tfloat > get_atanh () const

• template<typename t >
  CImg < T >  mul (const CImg < t >  & img)
     In-place pointwise multiplication.

    template < typename t >

  Clmg< typename cimg::superset< T, t >::type > get_mul (const Clmg< t > &img) const
     In-place pointwise multiplication [new-instance version].

    template<typename t >

  CImg < T > & div (const CImg < t > & dimg)
     In-place pointwise division.
• template<typename t >
  Clmg< typename cimg::superset< T, t >::type > get_div (const Clmg< t > &img) const
     In-place pointwise division [new-instance version].

    Clmg< T > & pow (const double p)

      Raise each pixel value to a specified power.

    Clmg< Tfloat > get_pow (const double p) const

     Raise each pixel value to a specified power [new-instance version].

    Clmg< T > & pow (const char *const expression)

     Raise each pixel value to a power, specified from an expression.

    Clmg< Tfloat > get pow (const char *const expression) const

     Raise each pixel value to a power, specified from an expression [new-instance version].
• template<typename t >
  Clmg< T > & pow (const Clmg< t > &img)
     Raise each pixel value to a power, pointwisely specified from another image.

    template<typename t >

  Clmg< Tfloat > get pow (const Clmg< t > &img) const
     Raise each pixel value to a power, pointwisely specified from another image [new-instance version].

    Clmg< T > & rol (const unsigned int n=1)

     Compute the bitwise left rotation of each pixel value.

    Clmg< T > get_rol (const unsigned int n=1) const

     Compute the bitwise left rotation of each pixel value [new-instance version].

    Clmg< T > & rol (const char *const expression)

      Compute the bitwise left rotation of each pixel value.
```

Clmg< T > get_rol (const char *const expression) const

Compute the bitwise left rotation of each pixel value [new-instance version].

• template<typename t >

```
Clmg< T > & rol (const Clmg< t > &img)
```

Compute the bitwise left rotation of each pixel value.

template<typename t >

```
Clmg< T > get_rol (const Clmg< t > &img) const
```

Compute the bitwise left rotation of each pixel value [new-instance version].

Clmg< T > & ror (const unsigned int n=1)

Compute the bitwise right rotation of each pixel value.

Clmg< T > get_ror (const unsigned int n=1) const

Compute the bitwise right rotation of each pixel value [new-instance version].

Clmg< T > & ror (const char *const expression)

Compute the bitwise right rotation of each pixel value.

Clmg< T > get ror (const char *const expression) const

Compute the bitwise right rotation of each pixel value [new-instance version].

template<typename t >

```
Clmg < T > \& ror (const Clmg < t > \&img)
```

Compute the bitwise right rotation of each pixel value.

template<typename t >

```
Clmg< T > get_ror (const Clmg< t > &img) const
```

Compute the bitwise right rotation of each pixel value [new-instance version].

Clmg< T > & min (const T &value)

Pointwise min operator between instance image and a value.

Clmg< T > get_min (const T &value) const

Pointwise min operator between instance image and a value [new-instance version].

template<typename t >

```
CImg < T > & min (const CImg < t > & min)
```

Pointwise min operator between two images.

template<typename t >

```
Clmg< typename cimg::superset< T, t >::type > get_min (const Clmg< t > &img) const
```

Pointwise min operator between two images [new-instance version].

Clmg< T > & min (const char *const expression)

Pointwise min operator between an image and an expression.

Clmg< Tfloat > get_min (const char *const expression) const

Pointwise min operator between an image and an expression [new-instance version].

Clmg< T > & max (const T &value)

Pointwise max operator between instance image and a value.

Clmg< T > get_max (const T &value) const

Pointwise max operator between instance image and a value [new-instance version].

template<typename t >

```
CImg < T > & max (const CImg < t > & img)
```

Pointwise max operator between two images.

template<typename t >

```
Clmg< typename cimg::superset< T, t >::type > get_max (const Clmg< t > &img) const
```

Pointwise max operator between two images [new-instance version].

• Clmg< T > & max (const char *const expression)

Pointwise max operator between an image and an expression.

Clmg< Tfloat > get_max (const char *const expression) const

Pointwise max operator between an image and an expression [new-instance version].

• T & min ()

Return a reference to the minimum pixel value.

• const T & min () const

Return a reference to the minimum pixel value [const version].

• T & max ()

Return a reference to the maximum pixel value.

const T & max () const

Return a reference to the maximum pixel value [const version].

template<typename t >

```
T & min_max (t &max_val)
```

Return a reference to the minimum pixel value as well as the maximum pixel value.

• template<typename t >

```
const T & min_max (t &max_val) const
```

Return a reference to the minimum pixel value as well as the maximum pixel value [const version].

template<typename t >

```
T & max_min (t &min_val)
```

Return a reference to the maximum pixel value as well as the minimum pixel value.

template<typename t >

```
const T & max min (t &min val) const
```

Return a reference to the maximum pixel value as well as the minimum pixel value [const version].

• T kth smallest (const ulongT k) const

Return the kth smallest pixel value.

T median () const

Return the median pixel value.

· double product () const

Return the product of all the pixel values.

· double sum () const

Return the sum of all the pixel values.

• double mean () const

Return the average pixel value.

• double variance (const unsigned int variance method=1) const

Return the variance of the pixel values.

template<typename t >

double variance_mean (const unsigned int variance_method, t &mean) const

Return the variance as well as the average of the pixel values.

double variance_noise (const unsigned int variance_method=2) const

Return estimated variance of the noise.

template<typename t >

```
double MSE (const Clmg< t > &img) const
```

Compute the MSE (Mean-Squared Error) between two images.

• template<typename t >

```
double PSNR (const Clmg< t > &img, const double max_value=255) const
```

Compute the PSNR (Peak Signal-to-Noise Ratio) between two images.

double eval (const char *const expression, const double x=0, const double y=0, const double z=0, const double z=0, const ClmgList< T > *const list_inputs=0, ClmgList< T > *const list_outputs=0)

Evaluate math formula.

• double eval (const char *const expression, const double x=0, const double y=0, const double z=0, const double z=0, const double z=0, const ClmgList< T > *const list inputs=0, ClmgList< T > *const list outputs=0) const

Evaluate math formula [const version].

template<typename t >

void eval (CImg< t > &output, const char *const expression, const double x=0, const double y=0, const double z=0, const double c=0, const CImgList< T > *const list_inputs=0, CImgList< T > *const list_ \leftarrow outputs=0)

Evaluate math formula.

• template<typename t >

void eval (CImg< t > &output, const char *const expression, const double x=0, const double y=0, const double z=0, const double c=0, const CImgList< T > *const list_inputs=0, CImgList< T > *const list_ \leftarrow outputs=0) const

Evaluate math formula [const version].

• template<typename t >

Clmg< doubleT > eval (const char *const expression, const Clmg< t > &xyzc, const ClmgList< T > *const list inputs=0, ClmgList< T > *const list outputs=0)

Evaluate math formula on a set of variables.

template<typename t >

Clmg< doubleT > eval (const char *const expression, const Clmg< t > &xyzc, const ClmgList< T > *const list inputs=0, ClmgList< T > *const list outputs=0) const

Evaluate math formula on a set of variables [const version].

Clmg< Tdouble > get_stats (const unsigned int variance_method=1) const

Compute statistics vector from the pixel values.

Clmg< T > & stats (const unsigned int variance_method=1)

Compute statistics vector from the pixel values [in-place version].

Vector / Matrix Operations

double magnitude (const int magnitude_type=2) const

Compute norm of the image, viewed as a matrix.

• double trace () const

Compute the trace of the image, viewed as a matrix.

· double det () const

Compute the determinant of the image, viewed as a matrix.

template<typename t >

double dot (const Clmg< t > &img) const

Compute the dot product between instance and argument, viewed as matrices.

- Clmg< T > get_vector_at (const unsigned int x, const unsigned int y=0, const unsigned int z=0) const Get vector-valued pixel located at specified position.
- Clmg< T > get_matrix_at (const unsigned int x=0, const unsigned int y=0, const unsigned int z=0) const
 Get (square) matrix-valued pixel located at specified position.
- Clmg< T > get_tensor_at (const unsigned int x, const unsigned int y=0, const unsigned int z=0) const Get tensor-valued pixel located at specified position.
- template<typename t >

Clmg< T > & set_vector_at (const Clmg< t > &vec, const unsigned int x, const unsigned int y=0, const unsigned int z=0)

Set vector-valued pixel at specified position.

template<typename t >

Clmg< T > & set_matrix_at (const Clmg< t > &mat, const unsigned int x=0, const unsigned int y=0, const unsigned int z=0)

Set (square) matrix-valued pixel at specified position.

• template<typename t >

 $Clmg < T > \& set_tensor_at$ (const Clmg < t > &ten, const unsigned int x=0, const unsigned int y=0, const unsigned int z=0)

Set tensor-valued pixel at specified position.

Clmg< T > & vector ()

Unroll pixel values along axis y.

Clmg< T > get vector () const

Unroll pixel values along axis y [new-instance version].

• Clmg< T > & matrix ()

Resize image to become a scalar square matrix.

• Clmg< T > get_matrix () const

Resize image to become a scalar square matrix [new-instance version].

Clmg< T > & tensor ()

Resize image to become a symmetric tensor.

Clmg< T > get_tensor () const

Resize image to become a symmetric tensor [new-instance version].

Clmg< T > & diagonal ()

Resize image to become a diagonal matrix.

• Clmg< T > get_diagonal () const

Resize image to become a diagonal matrix [new-instance version].

Clmg< T > & identity_matrix ()

Replace the image by an identity matrix.

• Clmg< T > get_identity_matrix () const

Replace the image by an identity matrix [new-instance version].

Clmg< T > & sequence (const T &a0, const T &a1)

Fill image with a linear sequence of values.

Clmg< T > get_sequence (const T &a0, const T &a1) const

Fill image with a linear sequence of values [new-instance version].

Clmg< T > & transpose ()

Transpose the image, viewed as a matrix.

• Clmg< T > get_transpose () const

Transpose the image, viewed as a matrix [new-instance version].

• template<typename t >

```
CImg < T > \& cross (const CImg < t > \& img)
```

Compute the cross product between two 1x3 images, viewed as 3D vectors.

• template<typename t >

 $\label{eq:clmg} \textbf{Clmg} < \textbf{typename cimg::superset} < \textbf{T}, \textbf{t} > \\ \textbf{::type} > \textbf{get_cross} \text{ (const Clmg} < \textbf{t} > \\ \textbf{\&img) const}$

Compute the cross product between two 1x3 images, viewed as 3D vectors [new-instance version].

Clmg< T > & invert (const bool use_LU=true)

Invert the instance image, viewed as a matrix.

Clmg< Tfloat > get_invert (const bool use_LU=true) const

Invert the instance image, viewed as a matrix [new-instance version].

Clmg< T > & pseudoinvert ()

Compute the Moore-Penrose pseudo-inverse of the instance image, viewed as a matrix.

• Clmg< Tfloat > get_pseudoinvert () const

Compute the Moore-Penrose pseudo-inverse of the instance image, viewed as a matrix [new-instance version].

• template<typename t >

```
Clmg< T > & solve (const Clmg< t > &A)
```

Solve a system of linear equations.

template<typename t >

Clmg< typename cimg::superset2< T, t, float >::type > get_solve (const Clmg< t > &A) const

Solve a system of linear equations [new-instance version].

template<typename t >

```
CImg < T > & solve_tridiagonal (const CImg < t > &A)
```

Solve a tridiagonal system of linear equations.

template<typename t >

 $Clmg < typename cimg::superset2 < T, t, float >::type > get_solve_tridiagonal (const <math>Clmg < t > &A$) const

Solve a tridiagonal system of linear equations [new-instance version].

template<typename t >

```
const Clmg< T > & eigen (Clmg< t > &val, Clmg< t > &vec) const
```

Compute eigenvalues and eigenvectors of the instance image, viewed as a matrix.

ClmgList< Tfloat > get_eigen () const

Compute eigenvalues and eigenvectors of the instance image, viewed as a matrix.

template<typename t >

const Clmg< T > & symmetric_eigen (Clmg< t > &val, Clmg< t > &vec) const

Compute eigenvalues and eigenvectors of the instance image, viewed as a symmetric matrix.

ClmgList< Tfloat > get_symmetric_eigen () const

Compute eigenvalues and eigenvectors of the instance image, viewed as a symmetric matrix.

template<typename t >

Clmg< T > & sort (Clmg< t > &permutations, const bool is_increasing=true)

Sort pixel values and get sorting permutations.

template<typename t >

Clmg< T > get_sort (Clmg< t > &permutations, const bool is_increasing=true) const

Sort pixel values and get sorting permutations [new-instance version].

Clmg< T > & sort (const bool is_increasing=true, const char axis=0)

Sort pixel values.

Clmg< T > get sort (const bool is increasing=true, const char axis=0) const

Sort pixel values [new-instance version].

• template<typename t >

const Clmg< T > & SVD (Clmg< t > &U, Clmg< t > &S, Clmg< t > &V, const bool sorting=true, const unsigned int max_iteration=40, const float lambda=0) const

Compute the SVD of the instance image, viewed as a general matrix.

 ClmgList< Tfloat > get_SVD (const bool sorting=true, const unsigned int max_iteration=40, const float lambda=0) const

Compute the SVD of the instance image, viewed as a general matrix.

template<typename t >

Clmg< T > & dijkstra (const unsigned int starting_node, const unsigned int ending_node, Clmg< t > &previous_node)

Return minimal path in a graph, using the Dijkstra algorithm.

template<typename t >

 $Clmg < T > get_dijkstra$ (const unsigned int starting_node, const unsigned int ending_node, Clmg < t > aprevious_node) const

Return minimal path in a graph, using the Dijkstra algorithm [new-instance version].

Clmg< T > & dijkstra (const unsigned int starting_node, const unsigned int ending_node=~0U)

Return minimal path in a graph, using the Dijkstra algorithm.

• Clmg< Tfloat > get_dijkstra (const unsigned int starting_node, const unsigned int ending_node=~0U) const Return minimal path in a graph, using the Dijkstra algorithm [new-instance version].

• template<typename tf , typename t >

static Clmg< T > dijkstra (const tf &distance, const unsigned int nb_nodes, const unsigned int starting_node, const unsigned int ending_node, Clmg< t > &previous_node)

Compute minimal path in a graph, using the Dijkstra algorithm.

template<typename tf , typename t >

static Clmg < T > dijkstra (const tf &distance, const unsigned int nb_nodes, const unsigned int starting_node, const unsigned int ending_node= \sim 0U)

Return minimal path in a graph, using the Dijkstra algorithm.

static Clmg< T > string (const char *const str, const bool is_last_zero=true, const bool is_shared=false)

Return an image containing the Ascii codes of the specified string.

static Clmg< T > vector (const T &a0)

Return a 1x1 image containing specified value.

static Clmg< T > vector (const T &a0, const T &a1)

Return a 1x2 image containing specified values.

static Clmg< T > vector (const T &a0, const T &a1, const T &a2)

Return a 1x3 image containing specified values.

static Clmg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3)

Return a 1x4 image containing specified values.

static CImg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4)

Return a 1x5 image containing specified values.

static Clmg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5)
 Return a 1x6 image containing specified values.

static Clmg < T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6)

Return a 1x7 image containing specified values.

static Clmg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7)

Return a 1x8 image containing specified values.

static Clmg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8)

Return a 1x9 image containing specified values.

static Clmg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9)

Return a 1x10 image containing specified values.

static Clmg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10)

Return a 1x11 image containing specified values.

static Clmg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11)

Return a 1x12 image containing specified values.

static Clmg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12)

Return a 1x13 image containing specified values.

static Clmg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13)

Return a 1x14 image containing specified values.

static Clmg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13, const T &a14)

Return a 1x15 image containing specified values.

static CImg< T > vector (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13, const T &a14, const T &a15)

Return a 1x16 image containing specified values.

static Clmg< T > matrix (const T &a0)

Return a 1x1 matrix containing specified coefficients.

static Clmg< T > matrix (const T &a0, const T &a1, const T &a2, const T &a3)

Return a 2x2 matrix containing specified coefficients.

static Clmg< T > matrix (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8)

Return a 3x3 matrix containing specified coefficients.

static Clmg< T > matrix (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13, const T &a14, const T &a15)

Return a 4x4 matrix containing specified coefficients.

static CImg
 matrix (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5, const T &a6, const T &a7, const T &a8, const T &a9, const T &a10, const T &a11, const T &a12, const T &a13, const T &a14, const T &a15, const T &a16, const T &a17, const T &a18, const T &a19, const T &a20, const T &a21, const T &a22, const T &a23, const T &a24)

Return a 5x5 matrix containing specified coefficients.

static Clmg< T > tensor (const T &a0)

Return a 1x1 symmetric matrix containing specified coefficients.

static Clmg< T > tensor (const T &a0, const T &a1, const T &a2)

Return a 2x2 symmetric matrix tensor containing specified coefficients.

static Clmg< T > tensor (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4, const T &a5)

Return a 3x3 symmetric matrix containing specified coefficients.

static Clmg< T > diagonal (const T &a0)

Return a 1x1 diagonal matrix containing specified coefficients.

static Clmg< T > diagonal (const T &a0, const T &a1)

Return a 2x2 diagonal matrix containing specified coefficients.

static Clmg< T > diagonal (const T &a0, const T &a1, const T &a2)

Return a 3x3 diagonal matrix containing specified coefficients.

static Clmg< T > diagonal (const T &a0, const T &a1, const T &a2, const T &a3)

Return a 4x4 diagonal matrix containing specified coefficients.

static Clmg < T > diagonal (const T &a0, const T &a1, const T &a2, const T &a3, const T &a4)

Return a 5x5 diagonal matrix containing specified coefficients.

static Clmg< T > identity matrix (const unsigned int N)

Return a NxN identity matrix.

static Clmg< T > sequence (const unsigned int N, const T &a0, const T &a1)

Return a N-numbered sequence vector from a 0 to a 1.

static Clmg< T > rotation_matrix (const float x, const float y, const float z, const float w, const bool is_
 —
 quaternion=false)

Return a 3x3 rotation matrix from an { axis + angle } or a quaternion.

Value Manipulation

• Clmg< T > & fill (const T &val)

Fill all pixel values with specified value.

Clmg< T > get_fill (const T &val) const

Fill all pixel values with specified value [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1)

Fill sequentially all pixel values with specified values.

- Clmg< T > get_fill (const T &val0, const T &val1) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2)

Fill sequentially all pixel values with specified values [overloading].

- Clmg< T > get_fill (const T &val0, const T &val1, const T &val2) const

Fill sequentially all pixel values with specified values [new-instance version].

- Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5)
 const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12, const T &val13)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12, const T &val13) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12, const T &val13, const T &val14)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12, const T &val13, const T &val14) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12, const T &val13, const T &val14, const T &val15)

Fill sequentially all pixel values with specified values [overloading].

Clmg< T > get_fill (const T &val0, const T &val1, const T &val2, const T &val3, const T &val4, const T &val5, const T &val6, const T &val7, const T &val8, const T &val9, const T &val10, const T &val11, const T &val12, const T &val13, const T &val14, const T &val15) const

Fill sequentially all pixel values with specified values [new-instance version].

Clmg< T > & fill (const char *const expression, const bool repeat_values, const bool allow_formula=true, const ClmgList< T > *const list_inputs=0, ClmgList< T > *const list_outputs=0)

Fill sequentially pixel values according to a given expression.

Clmg< T > get_fill (const char *const expression, const bool repeat_values, const bool allow_formula=true, const ClmgList< T > *const list inputs=0, ClmgList< T > *const list outputs=0) const

Fill sequentially pixel values according to a given expression [new-instance version].

template<typename t >

Clmg< T > & fill (const Clmg< t > &values, const bool repeat_values=true)

Fill sequentially pixel values according to the values found in another image.

• template<typename t >

Clmg< T > get_fill (const Clmg< t > &values, const bool repeat_values=true) const

Fill sequentially pixel values according to the values found in another image [new-instance version].

Clmg< T > & fillX (const unsigned int y, const unsigned int z, const unsigned int c, const int a0,...)

Fill pixel values along the X-axis at a specified pixel position.

Clmg< T > & fillX (const unsigned int y, const unsigned int z, const unsigned int c, const double a0,...)

Fill pixel values along the X-axis at a specified pixel position [overloading].

Clmg< T > & fillY (const unsigned int x, const unsigned int z, const unsigned int c, const int a0,...)

Fill pixel values along the Y-axis at a specified pixel position.

Clmg< T > & fillY (const unsigned int x, const unsigned int z, const unsigned int c, const double a0,...)

Fill pixel values along the Y-axis at a specified pixel position [overloading].

Clmg< T > & fillZ (const unsigned int x, const unsigned int y, const unsigned int c, const int a0,...)

Fill pixel values along the Z-axis at a specified pixel position.

• Clmg< T > & fillZ (const unsigned int x, const unsigned int y, const unsigned int c, const double a0,...)

Fill pixel values along the Z-axis at a specified pixel position [overloading].

• Clmg< T > & fillC (const unsigned int x, const unsigned int y, const unsigned int z, const int a0,...)

Fill pixel values along the C-axis at a specified pixel position.

Clmg< T > & fillC (const unsigned int x, const unsigned int y, const unsigned int z, const double a0,...)

Fill pixel values along the C-axis at a specified pixel position [overloading].

 $\bullet \ \ \text{template}{<} \text{typename t} >$

Clmg< T > & discard (const Clmg< t > &values, const char axis=0)

Discard specified sequence of values in the image buffer, along a specific axis.

template<typename t >

Clmg< T > get_discard (const Clmg< t > &values, const char axis=0) const

Clmg< T > & discard (const char axis=0)

Discard neighboring duplicates in the image buffer, along the specified axis.

Clmg< T > get_discard (const char axis=0) const

Discard neighboring duplicates in the image buffer, along the specified axis [new-instance version].

Clmg< T > & invert_endianness ()

Invert endianness of all pixel values.

Clmg< T > get_invert_endianness () const

Invert endianness of all pixel values [new-instance version].

Clmg< T > & rand (const T &val_min, const T &val_max)

Fill image with random values in specified range.

• Clmg< T > get rand (const T &val min, const T &val max) const

Fill image with random values in specified range [new-instance version].

Clmg< T > & round (const double y=1, const int rounding_type=0)

Round pixel values.

Clmg< T > get round (const double y=1, const unsigned int rounding type=0) const

Round pixel values [new-instance version].

Clmg< T > & noise (const double sigma, const unsigned int noise_type=0)

Add random noise to pixel values.

Clmg< T > get_noise (const double sigma, const unsigned int noise_type=0) const

Add random noise to pixel values [new-instance version].

Clmg< T > & normalize (const T &min_value, const T &max_value)

Linearly normalize pixel values.

• Clmg< Tfloat > get_normalize (const T &min_value, const T &max_value) const

Linearly normalize pixel values [new-instance version].

• Clmq< T > & normalize ()

Normalize multi-valued pixels of the image instance, with respect to their L2-norm.

Clmg< Tfloat > get_normalize () const

Normalize multi-valued pixels of the image instance, with respect to their L2-norm [new-instance version].

Clmg< T > & norm (const int norm type=2)

Compute Lp-norm of each multi-valued pixel of the image instance.

Clmg< Tfloat > get_norm (const int norm_type=2) const

Compute L2-norm of each multi-valued pixel of the image instance [new-instance version].

Clmg< T > & cut (const T &min_value, const T &max_value)

Cut pixel values in specified range.

Clmg< T > get_cut (const T &min_value, const T &max_value) const

Cut pixel values in specified range [new-instance version].

- CImg< T > & quantize (const unsigned int nb_levels, const bool keep_range=true)

Uniformly quantize pixel values.

• Clmg< T > get_quantize (const unsigned int n, const bool keep_range=true) const

Uniformly quantize pixel values [new-instance version].

Clmg< T > & threshold (const T &value, const bool soft_threshold=false, const bool strict_threshold=false)
 Threshold pixel values.

Clmg< T > get_threshold (const T &value, const bool soft_threshold=false, const bool strict_threshold=false)
const

Threshold pixel values [new-instance version].

Clmg< T > & histogram (const unsigned int nb_levels, const T &min_value, const T &max_value)

Compute the histogram of pixel values.

• Clmg< T > & histogram (const unsigned int nb levels)

Compute the histogram of pixel values [overloading].

Clmg< ulongT > get_histogram (const unsigned int nb_levels, const T &min_value, const T &max_value)
 const

Compute the histogram of pixel values [new-instance version].

Clmg< ulongT > get_histogram (const unsigned int nb_levels) const

Compute the histogram of pixel values [new-instance version].

Clmg< T > & equalize (const unsigned int nb_levels, const T &min_value, const T &max_value)
 Equalize histogram of pixel values.

• Clmg< T > & equalize (const unsigned int nb levels)

Equalize histogram of pixel values [overloading].

Clmg< T > get_equalize (const unsigned int nblevels, const T &val_min, const T &val_max) const

Equalize histogram of pixel values [new-instance version].

• Clmg< T > get equalize (const unsigned int nblevels) const

Equalize histogram of pixel values [new-instance version].

template<typename t >

Clmg< T > & index (const Clmg< t > &colormap, const float dithering=1, const bool map_indexes=false)

Index multi-valued pixels regarding to a specified colormap.

template<typename t >

Clmg< typename Clmg< t >::Tuint > get_index (const Clmg< t > &colormap, const float dithering=1, const bool map_indexes=true) const

Index multi-valued pixels regarding to a specified colormap [new-instance version].

template<typename t >

Clmg< T > & map (const Clmg< t > &colormap, const unsigned int boundary_conditions=0)

Map predefined colormap on the scalar (indexed) image instance.

template<typename t >

 $Clmg < t > get_map$ (const Clmg < t > &colormap, const unsigned int boundary_conditions=0) const

Map predefined colormap on the scalar (indexed) image instance [new-instance version].

Clmg< T > & label (const bool is_high_connectivity=false, const Tfloat tolerance=0)

Label connected components.

Label connected components [new-instance version].

• template<typename t >

Clmg< T > & label (const Clmg< t > &connectivity_mask, const Tfloat tolerance=0)

Label connected components [overloading].

• template<typename t >

Clmg< ulongT > get_label (const Clmg< t > &connectivity_mask, const Tfloat tolerance=0) const

Label connected components [new-instance version].

Color Base Management

Clmg< T > & sRGBtoRGB ()

Convert pixel values from sRGB to RGB color spaces.

Clmg< Tfloat > get_sRGBtoRGB () const

Convert pixel values from sRGB to RGB color spaces [new-instance version].

Clmg< T > & RGBtosRGB ()

Convert pixel values from RGB to sRGB color spaces.

• CImg< Tfloat > get RGBtosRGB () const

Convert pixel values from RGB to sRGB color spaces [new-instance version].

Clmg< T > & RGBtoHSI ()

Convert pixel values from RGB to HSI color spaces.

• Clmg< Tfloat > get RGBtoHSI () const

Convert pixel values from RGB to HSI color spaces [new-instance version].

Clmg< T > & HSItoRGB ()

Convert pixel values from HSI to RGB color spaces.

Clmg< Tfloat > get HSltoRGB () const

Convert pixel values from HSI to RGB color spaces [new-instance version].

Clmg< T > & RGBtoHSL ()

Convert pixel values from RGB to HSL color spaces.

Clmg< Tfloat > get_RGBtoHSL () const

Convert pixel values from RGB to HSL color spaces [new-instance version].

• Clmg< T > & HSLtoRGB ()

Convert pixel values from HSL to RGB color spaces.

Clmg< Tuchar > get HSLtoRGB () const

Convert pixel values from HSL to RGB color spaces [new-instance version].

Clmg< T > & RGBtoHSV ()

Convert pixel values from RGB to HSV color spaces.

Clmg< Tfloat > get_RGBtoHSV () const

Convert pixel values from RGB to HSV color spaces [new-instance version].

Clmg< T > & HSVtoRGB ()

Convert pixel values from HSV to RGB color spaces.

Clmg< Tuchar > get_HSVtoRGB () const

Convert pixel values from HSV to RGB color spaces [new-instance version].

Clmg< T > & RGBtoYCbCr ()

Convert pixel values from RGB to YCbCr color spaces.

Clmg< Tuchar > get_RGBtoYCbCr () const

Convert pixel values from RGB to YCbCr color spaces [new-instance version].

Clmg< T > & YCbCrtoRGB ()

Convert pixel values from RGB to YCbCr color spaces.

Clmg< Tuchar > get_YCbCrtoRGB () const

Convert pixel values from RGB to YCbCr color spaces [new-instance version].

Clmg< T > & RGBtoYUV ()

Convert pixel values from RGB to YUV color spaces.

• CImg< Tfloat > get_RGBtoYUV () const

Convert pixel values from RGB to YUV color spaces [new-instance version].

Clmg< T > & YUVtoRGB ()

Convert pixel values from YUV to RGB color spaces.

Clmg< Tuchar > get YUVtoRGB () const

Convert pixel values from YUV to RGB color spaces [new-instance version].

Clmg< T > & RGBtoCMY ()

Convert pixel values from RGB to CMY color spaces.

Clmg< Tuchar > get_RGBtoCMY () const

Convert pixel values from RGB to CMY color spaces [new-instance version].

• CImg< T > & CMYtoRGB ()

Convert pixel values from CMY to RGB color spaces.

Clmg< Tuchar > get_CMYtoRGB () const

Convert pixel values from CMY to RGB color spaces [new-instance version].

Clmg< T > & CMYtoCMYK ()

Convert pixel values from CMY to CMYK color spaces.

• Clmg< Tuchar > get CMYtoCMYK () const

Convert pixel values from CMY to CMYK color spaces [new-instance version].

Clmg< T > & CMYKtoCMY ()

Convert pixel values from CMYK to CMY color spaces.

Clmg< Tfloat > get_CMYKtoCMY () const

Convert pixel values from CMYK to CMY color spaces [new-instance version].

Clmg< T > & RGBtoXYZ (const bool use_D65=true)

Convert pixel values from RGB to XYZ color spaces.

Clmg< Tfloat > get_RGBtoXYZ (const bool use_D65=true) const

Convert pixel values from RGB to XYZ color spaces [new-instance version].

Clmg< T > & XYZtoRGB (const bool use_D65=true)

Convert pixel values from XYZ to RGB color spaces.

Clmg< Tuchar > get XYZtoRGB (const bool use D65=true) const

Convert pixel values from XYZ to RGB color spaces [new-instance version].

Clmg< T > & XYZtoLab (const bool use_D65=true)

Convert pixel values from XYZ to Lab color spaces.

Clmg< Tfloat > get XYZtoLab (const bool use D65=true) const

Convert pixel values from XYZ to Lab color spaces [new-instance version].

Clmg< T > & LabtoXYZ (const bool use_D65=true)

Convert pixel values from Lab to XYZ color spaces.

Clmg< Tfloat > get LabtoXYZ (const bool use D65=true) const

Convert pixel values from Lab to XYZ color spaces [new-instance version].

Clmg< T > & XYZtoxyY ()

Convert pixel values from XYZ to xyY color spaces.

Clmg< Tfloat > get_XYZtoxyY () const

Convert pixel values from XYZ to xyY color spaces [new-instance version].

Clmg< T > & xyYtoXYZ ()

Convert pixel values from xyY pixels to XYZ color spaces.

Clmg< Tfloat > get_xyYtoXYZ () const

Convert pixel values from xyY pixels to XYZ color spaces [new-instance version].

Clmg< T > & RGBtoLab (const bool use_D65=true)

Convert pixel values from RGB to Lab color spaces.

• Clmg< Tfloat > get RGBtoLab (const bool use D65=true) const

Convert pixel values from RGB to Lab color spaces [new-instance version].

Clmg< T > & LabtoRGB (const bool use_D65=true)

Convert pixel values from Lab to RGB color spaces.

Clmg< Tuchar > get_LabtoRGB (const bool use_D65=true) const

Convert pixel values from Lab to RGB color spaces [new-instance version].

Clmg< T > & RGBtoxyY (const bool use_D65=true)

Convert pixel values from RGB to xyY color spaces.

Clmg< Tfloat > get_RGBtoxyY (const bool use_D65=true) const

Convert pixel values from RGB to xyY color spaces [new-instance version].

Clmg< T > & xyYtoRGB (const bool use_D65=true)

Convert pixel values from xyY to RGB color spaces.

• Clmg< Tuchar > get_xyYtoRGB (const bool use_D65=true) const

Convert pixel values from xyY to RGB color spaces [new-instance version].

Clmg< T > & RGBtoCMYK ()

Convert pixel values from RGB to CMYK color spaces.

Clmg< Tfloat > get_RGBtoCMYK () const

Convert pixel values from RGB to CMYK color spaces [new-instance version].

• Clmg< T > & CMYKtoRGB ()

Convert pixel values from CMYK to RGB color spaces.

Clmg< Tuchar > get_CMYKtoRGB () const

Convert pixel values from CMYK to RGB color spaces [new-instance version].

• static const Clmg< Tuchar > & default LUT256 ()

Return colormap "default", containing 256 colors entries in RGB.

static const Clmg< Tuchar > & HSV_LUT256 ()

Return colormap "HSV", containing 256 colors entries in RGB.

static const Clmg< Tuchar > & lines LUT256 ()

Return colormap "lines", containing 256 colors entries in RGB.

• static const Clmg< Tuchar > & hot LUT256 ()

Return colormap "hot", containing 256 colors entries in RGB.

static const Clmg< Tuchar > & cool_LUT256 ()

Return colormap "cool", containing 256 colors entries in RGB.

static const Clmg< Tuchar > & jet LUT256 ()

Return colormap "jet", containing 256 colors entries in RGB.

static const Clmg< Tuchar > & flag_LUT256 ()

Return colormap "flag", containing 256 colors entries in RGB.

static const Clmg< Tuchar > & cube_LUT256 ()

Return colormap "cube", containing 256 colors entries in RGB.

Geometric / Spatial Manipulation

• Clmg< T > & resize (const int size_x, const int size_y=-100, const int size_z=-100, const int size_c=-100, const int interpolation_type=1, const unsigned int boundary_conditions=0, const float centering_x=0, const float centering_z=0, const float centering_c=0)

Resize image to new dimensions.

• Clmg< T > get_resize (const int size_x, const int size_y=-100, const int size_z=-100, const int size_c=-100, const int interpolation_type=1, const unsigned int boundary_conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_z=0

Resize image to new dimensions [new-instance version].

template<typename t >

Clmg< T > & resize (const Clmg< t > &src, const int interpolation_type=1, const unsigned int boundary \leftarrow _conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_c=0)

Resize image to dimensions of another image.

template<typename t >

$$\label{eq:composition} \begin{split} &\text{Clmg} < t > \text{get_resize} \text{ (const Clmg} < t > \text{\&src, const int interpolation_type=1, const unsigned int boundary} \\ &_\text{conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_c=0, const float cent$$

Resize image to dimensions of another image [new-instance version].

Clmg< T > & resize (const ClmgDisplay &disp, const int interpolation_type=1, const unsigned int boundary
 _conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_c=0)

Resize image to dimensions of a display window.

• Clmg< T > get_resize (const ClmgDisplay &disp, const int interpolation_type=1, const unsigned int boundary_conditions=0, const float centering_x=0, const float centering_y=0, const float centering_z=0, const float centering_c=0) const

Resize image to dimensions of a display window [new-instance version].

Clmg< T > & resize halfXY ()

Resize image to half-size along XY axes, using an optimized filter.

Clmg< T > get_resize_halfXY () const

Resize image to half-size along XY axes, using an optimized filter [new-instance version].

Clmg< T > & resize_doubleXY ()

Resize image to double-size, using the Scale2X algorithm.

• Clmg< T > get_resize_doubleXY () const

Resize image to double-size, using the Scale2X algorithm [new-instance version].

Clmg< T > & resize_tripleXY ()

Resize image to triple-size, using the Scale3X algorithm.

Clmg< T > get resize tripleXY () const

Resize image to triple-size, using the Scale3X algorithm [new-instance version].

Clmg< T > & mirror (const char axis)

Mirror image content along specified axis.

• Clmg< T > get_mirror (const char axis) const

Mirror image content along specified axis [new-instance version].

Clmg< T > & mirror (const char *const axes)

Mirror image content along specified axes.

Clmg< T > get_mirror (const char *const axes) const

Mirror image content along specified axes [new-instance version].

 Clmg< T > & shift (const int delta_x, const int delta_y=0, const int delta_z=0, const int delta_c=0, const unsigned int boundary conditions=0)

Shift image content.

 Clmg< T > get_shift (const int delta_x, const int delta_y=0, const int delta_z=0, const int delta_c=0, const unsigned int boundary conditions=0) const

Shift image content [new-instance version].

Clmg< T > & permute_axes (const char *const order)

Permute axes order.

• Clmg< T > get_permute_axes (const char *const order) const

Permute axes order [new-instance version].

Clmg< T > & unroll (const char axis)

Unroll pixel values along specified axis.

Clmg< T > get unroll (const char axis) const

Unroll pixel values along specified axis [new-instance version].

Clmg< T > & rotate (const float angle, const unsigned int interpolation=1, const unsigned int boundary_
 conditions=0)

Rotate image with arbitrary angle.

Clmg< T > get_rotate (const float angle, const unsigned int interpolation=1, const unsigned int boundary
 —conditions=0) const

Rotate image with arbitrary angle [new-instance version].

 Clmg< T > & rotate (const float angle, const float cx, const float cy, const unsigned int interpolation, const unsigned int boundary_conditions=0)

Rotate image with arbitrary angle, around a center point.

 Clmg< T > get_rotate (const float angle, const float cx, const float cy, const unsigned int interpolation, const unsigned int boundary_conditions=0) const

Rotate image with arbitrary angle, around a center point [new-instance version].

Clmg< T > rotate (const float u, const float v, const float w, const float angle, const unsigned int interpolation, const unsigned int boundary_conditions)

Rotate volumetric image with arbitrary angle and axis.

Clmg< T > get_rotate (const float u, const float v, const float w, const float angle, const unsigned int interpolation, const unsigned int boundary_conditions) const

Rotate volumetric image with arbitrary angle and axis [new-instance version].

Clmg< T > rotate (const float u, const float v, const float w, const float angle, const float cx, const float cy, const float cz, const unsigned int interpolation=1, const unsigned int boundary_conditions=0)

Rotate volumetric image with arbitrary angle and axis, around a center point.

Clmg< T > get_rotate (const float u, const float v, const float w, const float angle, const float cx, const float cy, const float cz, const unsigned int interpolation=1, const unsigned int boundary_conditions=0) const

Rotate volumetric image with arbitrary angle and axis, around a center point [new-instance version].

template<typename t >

Clmg< T > & warp (const Clmg< t > &warp, const unsigned int mode=0, const unsigned int interpolation=1, const unsigned int boundary conditions=0)

Warp image content by a warping field.

template<typename t >

 $\label{eq:clmg} \mbox{Clmg} < T > \mbox{get_warp} \mbox{ (const Clmg} < t > \mbox{\&warp, const unsigned int mode=0, const unsigned int interpolation=1, const unsigned int boundary_conditions=0) const }$

Warp image content by a warping field [new-instance version]

Clmg< T > get_projections2d (const unsigned int x0, const unsigned int y0, const unsigned int z0) const
 Generate a 2D representation of a 3D image, with XY,XZ and YZ views.

Clmg< T > & projections2d (const unsigned int x0, const unsigned int y0, const unsigned int z0)

Construct a 2D representation of a 3D image, with XY,XZ and YZ views [in-place version].

Clmg< T > & crop (const int x0, const int y0, const int z0, const int c0, const int x1, const int y1, const int z1, const int c1, const unsigned int boundary_conditions=0)

Crop image region.

• Clmg< T > get_crop (const int x0, const int y0, const int z0, const int c0, const int x1, const int y1, const int z1, const int c1, const unsigned int boundary_conditions=0) const

Crop image region [new-instance version].

Clmg< T > & crop (const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const unsigned int boundary_conditions=0)

Crop image region [overloading].

 Clmg< T > get_crop (const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const unsigned int boundary_conditions=0) const

Crop image region [new-instance version].

Clmg< T > & crop (const int x0, const int y0, const int x1, const int y1, const unsigned int boundary_
 conditions=0)

Crop image region [overloading].

Clmg< T > get_crop (const int x0, const int y0, const int x1, const int y1, const unsigned int boundary_←
conditions=0) const

Crop image region [new-instance version].

Clmg< T > & crop (const int x0, const int x1, const unsigned int boundary conditions=0)

Crop image region [overloading].

Clmg< T > get_crop (const int x0, const int x1, const unsigned int boundary_conditions=0) const

Crop image region [new-instance version].

Clmg< T > & autocrop (const T &value, const char *const axes="czyx")

Autocrop image region, regarding the specified background value.

Clmg< T > get_autocrop (const T &value, const char *const axes="czyx") const

Autocrop image region, regarding the specified background value [new-instance version].

Clmg< T > & autocrop (const T *const color=0, const char *const axes="zyx")

Autocrop image region, regarding the specified background color.

• Clmg< T > get_autocrop (const T *const color=0, const char *const axes="zyx") const

Autocrop image region, regarding the specified background color [new-instance version].

template<typename t >

Clmg< T > & autocrop (const Clmg< t > &color, const char *const axes="zyx")

Autocrop image region, regarding the specified background color [overloading].

template<typename t >

Clmg< T > get_autocrop (const Clmg< t > &color, const char *const axes="zyx") const

Autocrop image region, regarding the specified background color [new-instance version].

Clmg< T > get column (const int x0) const

Return specified image column.

Clmg< T > & column (const int x0)

Return specified image column [in-place version].

Clmg< T > & columns (const int x0, const int x1)

Return specified range of image columns.

Clmg< T > get_columns (const int x0, const int x1) const

Return specified range of image columns [in-place version].

Clmg< T > get_row (const int y0) const

Return specified image row.

Clmg< T > & row (const int y0)

Return specified image row [in-place version].

• Clmg< T > get_rows (const int y0, const int y1) const

Return specified range of image rows.

• Clmg< T > & rows (const int y0, const int y1)

Return specified range of image rows [in-place version].

Clmg< T > get_slice (const int z0) const

Return specified image slice.

• Clmg< T > & slice (const int z0)

Return specified image slice [in-place version].

Clmg< T > get_slices (const int z0, const int z1) const

Return specified range of image slices.

Clmg< T > & slices (const int z0, const int z1)

Return specified range of image slices [in-place version].

Clmg< T > get_channel (const int c0) const

Return specified image channel.

Clmg< T > & channel (const int c0)

Return specified image channel [in-place version].

• Clmg< T > get_channels (const int c0, const int c1) const

Return specified range of image channels.

• Clmg< T > & channels (const int c0, const int c1)

Return specified range of image channels [in-place version].

Clmg< floatT > get_streamline (const float x, const float y, const float z, const float L=256, const float dl=0.1f, const unsigned int interpolation_type=2, const bool is_backward_tracking=false, const bool is_oriented_
 only=false) const

Return stream line of a 2D or 3D vector field.

 Clmg< T > get_shared_points (const unsigned int x0, const unsigned int x1, const unsigned int y0=0, const unsigned int z0=0, const unsigned int c0=0)

Return a shared-memory image referencing a range of pixels of the image instance.

const Clmg
 T > get_shared_points (const unsigned int x0, const unsigned int x1, const unsigned int y0=0, const unsigned int z0=0, const unsigned int c0=0) const

Return a shared-memory image referencing a range of pixels of the image instance [const version].

 Clmg< T > get_shared_rows (const unsigned int y0, const unsigned int y1, const unsigned int z0=0, const unsigned int c0=0)

Return a shared-memory image referencing a range of rows of the image instance.

const Clmg
 T > get_shared_rows (const unsigned int y0, const unsigned int y1, const unsigned int z0=0, const unsigned int c0=0) const

Return a shared-memory image referencing a range of rows of the image instance [const version].

• Clmg< T > get_shared_row (const unsigned int y0, const unsigned int z0=0, const unsigned int c0=0)

Return a shared-memory image referencing one row of the image instance.

const Clmg< T > get_shared_row (const unsigned int y0, const unsigned int z0=0, const unsigned int c0=0)
const

Return a shared-memory image referencing one row of the image instance [const version].

Clmg< T > get_shared_slices (const unsigned int z0, const unsigned int z1, const unsigned int c0=0)

Return a shared memory image referencing a range of slices of the image instance.

const Clmg< T > get_shared_slices (const unsigned int z0, const unsigned int z1, const unsigned int c0=0)
const

Return a shared memory image referencing a range of slices of the image instance [const version].

Clmg< T > get_shared_slice (const unsigned int z0, const unsigned int c0=0)

Return a shared-memory image referencing one slice of the image instance.

const Clmg< T > get_shared_slice (const unsigned int z0, const unsigned int c0=0) const

Return a shared-memory image referencing one slice of the image instance [const version].

Clmg< T > get_shared_channels (const unsigned int c0, const unsigned int c1)

Return a shared-memory image referencing a range of channels of the image instance.

- const $CImg < T > get_shared_channels$ (const unsigned int c0, const unsigned int c1) const

Return a shared-memory image referencing a range of channels of the image instance [const version].

Clmg< T > get_shared_channel (const unsigned int c0)

Return a shared-memory image referencing one channel of the image instance.

const Clmg< T > get_shared_channel (const unsigned int c0) const

Return a shared-memory image referencing one channel of the image instance [const version].

Clmg< T > get_shared ()

Return a shared-memory version of the image instance.

const Clmg< T > get_shared () const

Return a shared-memory version of the image instance [const version].

ClmgList< T > get_split (const char axis, const int nb=-1) const

Split image into a list along specified axis.

template<typename t >

 $\label{eq:clmgList} \textbf{ClmgList} < \textbf{T} > \textbf{get_split} \text{ (const Clmg} < \textbf{t} > \textbf{\&values, const char axis=0, const bool keep_values=true) const}$

Split image into a list of sub-images, according to a specified splitting value sequence and optionally axis.

template<typename t >

Clmg< T > & append (const Clmg< t > &img, const char axis='x', const float align=0)

Append two images along specified axis.

Clmg< T > & append (const Clmg< T > &img, const char axis='x', const float align=0)

Append two images along specified axis [specialization].

template<typename t >

Clmg< typename cimg::superset< T, t >::type > get_append (const Clmg< T > &img, const char axis='x', const float align=0) const

Append two images along specified axis [const version].

Clmg< T > get append (const Clmg< T > &img, const char axis='x', const float align=0) const

Append two images along specified axis [specialization].

template<typename tfunc >

static Clmg< float T > streamline (const tfunc &func, const float x, const float y, const float z, const float z

Return stream line of a 3D vector field.

• static CImg< floatT > streamline (const char *const expression, const float x, const float y, const float z, const float L=256, const float dl=0.1f, const unsigned int interpolation_type=2, const bool is_backward_← tracking=true, const bool is_oriented_only=false, const float x0=0, const float y0=0, const float z0=0, const float x1=0, const float y1=0, const float z1=0)

Return stream line of a 3D vector field [overloading].

Filtering / Transforms

• template<typename t >

Clmg< T > & correlate (const Clmg< t > &kernel, const bool boundary_conditions=true, const bool is_ \leftarrow normalized=false)

Correlate image by a kernel.

template<typename t >

Clmg< typename cimg::superset2< T, t, float >::type > $get_correlate$ (const Clmg< t > &kernel, const bool boundary_conditions=true, const bool is_normalized=false) const

template<typename t >

 $\label{eq:const_$

Convolve image by a kernel.

template<typename t >

Clmg< typename cimg::superset2< T, t, float >::type > $get_convolve$ (const Clmg< t > &kernel, const bool boundary conditions=true, const bool is normalized=false) const

Convolve image by a kernel [new-instance version].

Clmg< T > & cumulate (const char axis=0)

Cumulate image values, optionally along specified axis.

Clmg< Tlong > get_cumulate (const char axis=0) const

Cumulate image values, optionally along specified axis [new-instance version].

Clmg< T > & cumulate (const char *const axes)

Cumulate image values, along specified axes.

Clmg< Tlong > get_cumulate (const char *const axes) const

Cumulate image values, along specified axes [new-instance version].

• template<typename t >

Clmg< T > & erode (const Clmg< t > &kernel, const bool boundary_conditions=true, const bool is_ \leftarrow real=false)

Erode image by a structuring element.

template<typename t >

Clmg< typename cimg::superset< T, t >::type > get_erode (const Clmg< t > &kernel, const bool boundary_conditions=true, const bool is_real=false) const

Erode image by a structuring element [new-instance version].

Clmg< T > & erode (const unsigned int sx, const unsigned int sy, const unsigned int sz=1)

Erode image by a rectangular structuring element of specified size.

Clmg< T > get_erode (const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const

Erode image by a rectangular structuring element of specified size [new-instance version].

Clmg< T > & erode (const unsigned int s)

Erode the image by a square structuring element of specified size.

Clmg< T > get_erode (const unsigned int s) const

Erode the image by a square structuring element of specified size [new-instance version].

• template<typename t >

Clmg< T > & dilate (const Clmg< t > &kernel, const bool boundary_conditions=true, const bool is_ \leftarrow real=false)

Dilate image by a structuring element.

 $\bullet \ \ \text{template}{<} \text{typename t} >$

Clmg< typename cimg::superset< T, t >::type > get_dilate (const Clmg< t > &kernel, const bool boundary_conditions=true, const bool is_real=false) const

Dilate image by a structuring element [new-instance version].

• Clmg< T > & dilate (const unsigned int sx, const unsigned int sy, const unsigned int sz=1)

Dilate image by a rectangular structuring element of specified size.

Clmg< T > get_dilate (const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const

Dilate image by a rectangular structuring element of specified size [new-instance version].

Clmg< T > & dilate (const unsigned int s)

Dilate image by a square structuring element of specified size.

Clmg< T > get_dilate (const unsigned int s) const

Dilate image by a square structuring element of specified size [new-instance version].

 $\bullet \ \ \text{template}{<} \text{typename t} >$

Clmg< T > & watershed (const Clmg< t > &priority, const bool is_high_connectivity=false)

Compute watershed transform.

template<typename t >

Clmg< T > get_watershed (const Clmg< t > &priority, const bool is_high_connectivity=false) const

Compute watershed transform [new-instance version].

 Clmg< T > & deriche (const float sigma, const unsigned int order=0, const char axis='x', const bool boundary_conditions=true)

Apply recursive Deriche filter.

 Clmg< Tfloat > get_deriche (const float sigma, const unsigned int order=0, const char axis='x', const bool boundary_conditions=true) const

Apply recursive Deriche filter [new-instance version].

Clmg< T > & vanvliet (const float sigma, const unsigned int order, const char axis='x', const bool boundary
 conditions=true)

Van Vliet recursive Gaussian filter.

 Clmg< Tfloat > get_vanvliet (const float sigma, const unsigned int order, const char axis='x', const bool boundary conditions=true) const

Blur image using Van Vliet recursive Gaussian filter. [new-instance version].

Clmg< T > & blur (const float sigma_x, const float sigma_y, const float sigma_z, const bool boundary_

 conditions=true, const bool is_gaussian=false)

Blur image.

• Clmg< Tfloat > get_blur (const float sigma_x, const float sigma_y, const float sigma_z, const bool boundary_conditions=true, const bool is_gaussian=false) const

Blur image [new-instance version].

• Clmg< T > & blur (const float sigma, const bool boundary_conditions=true, const bool is_gaussian=false)

Blur image isotropically.

• Clmg< Tfloat > get_blur (const float sigma, const bool boundary_conditions=true, const bool is_← gaussian=false) const

Blur image isotropically [new-instance version].

template<typename t >

Clmg< T > & blur_anisotropic (const Clmg< t > &G, const float amplitude=60, const float dl=0.8f, const float da=30, const float gauss_prec=2, const unsigned int interpolation_type=0, const bool is_fast_approx=1)

Blur image anisotropically, directed by a field of diffusion tensors.

template<typename t >

Clmg< Tfloat > get_blur_anisotropic (const Clmg< t > &G, const float amplitude=60, const float dl=0.8f, const float da=30, const float gauss_prec=2, const unsigned int interpolation_type=0, const bool is_fast_ \leftarrow approx=true) const

Blur image anisotropically, directed by a field of diffusion tensors [new-instance version].

Clmg< T > & blur_anisotropic (const float amplitude, const float sharpness=0.7f, const float anisotropy=0.6f, const float alpha=0.6f, const float sigma=1.1f, const float dl=0.8f, const float da=30, const float gauss_prec=2, const unsigned int interpolation type=0, const bool is fast approx=true)

Blur image anisotropically, in an edge-preserving way.

Clmg
 Tfloat > get_blur_anisotropic (const float amplitude, const float sharpness=0.7f, const float anisotropy=0.6f, const float alpha=0.6f, const float sigma=1.1f, const float dl=0.8f, const float da=30, const float gauss_prec=2, const unsigned int interpolation_type=0, const bool is_fast_approx=true) const

Blur image anisotropically, in an edge-preserving way [new-instance version].

 $\bullet \ \ \text{template}{<} \text{typename t} >$

 $Clmg < T > \& blur_bilateral (const <math>Clmg < t > \&guide, const float sigma_x, const float sigma_y, const float sigma_z, const float sigma_r, const float sampling_x, const float sampling_y, const float sampling_z, const float sampling_r)$

Blur image, with the joint bilateral filter.

 $\bullet \ \ \text{template}{<} \text{typename t} >$

$$\label{local_const_const} \begin{split} & \text{Clmg} < \text{Tfloat} > \text{get_blur_bilateral} \text{ (const Clmg} < t > \text{\&guide, const float sigma_x, const float sigma_y, const float sigma_z, const float sigma_r, const float sampling_x, const float sampling_y, const float sampling_z, const float sampling_r) const \\ & \text{const float sampling_r)} \end{split}$$

Blur image, with the joint bilateral filter [new-instance version].

template<typename t >

Clmg< T > & blur_bilateral (const Clmg< t > &guide, const float sigma_s, const float sigma_r, const float sampling s=0, const float sampling r=0)

Blur image using the joint bilateral filter.

template<typename t >

 $\label{local_const_const} \mbox{Clmg} < T \mbox{float} > \mbox{get_blur_bilateral (const Clmg} < t > \mbox{\&guide, const float sigma_s, const float sigma_r, const float sampling_r=0) const}$

Blur image using the bilateral filter [new-instance version].

- Clmg< T > & boxfilter (const float boxsize, const int order, const char axis='x', const bool boundary_
 conditions=true, const unsigned int nb_iter=1)
- Clmg< Tfloat > get_boxfilter (const float boxsize, const int order, const char axis='x', const bool boundary
 —conditions=true, const unsigned int nb_iter=1) const
- Clmg< T > & blur_box (const float boxsize_x, const float boxsize_y, const float boxsize_z, const bool boundary_conditions=true, const unsigned int nb_iter=1)

Blur image with a box filter.

Clmg< Tfloat > get_blur_box (const float boxsize_x, const float boxsize_y, const float boxsize_z, const bool boundary_conditions=true) const

Blur image with a box filter [new-instance version].

Clmg< T > & blur_box (const float boxsize, const bool boundary_conditions=true)

Blur image with a box filter.

• Clmg< Tfloat > get blur box (const float boxsize, const bool boundary conditions=true) const

Blur image with a box filter [new-instance version].

template<typename t >

Clmg< T > & blur_guided (const Clmg< t > &guide, const float radius, const float regularization)

Blur image, with the image guided filter.

template<typename t >

 $\label{eq:clmg} \textbf{CImg} < \textbf{Tfloat} > \textbf{get_blur_guided} \text{ (const } \textbf{CImg} < t > \textbf{\&guide, const float radius, const float regularization)}$

Blur image, with the image guided filter [new-instance version].

 Clmg< T > & blur_patch (const float sigma_s, const float sigma_p, const unsigned int patch_size=3, const unsigned int lookup_size=4, const float smoothness=0, const bool is_fast_approx=true)

Blur image using patch-based space.

• Clmg< Tfloat > get_blur_patch (const float sigma_s, const float sigma_p, const unsigned int patch_size=3, const unsigned int lookup_size=4, const float smoothness=0, const bool is_fast_approx=true) const

Blur image using patch-based space [new-instance version].

Clmg< T > & blur_median (const unsigned int n, const float threshold=0)

Blur image with the median filter.

• Clmg< T > get_blur_median (const unsigned int n, const float threshold=0) const

Blur image with the median filter [new-instance version].

Clmg< T > & sharpen (const float amplitude, const bool sharpen_type=false, const float edge=1, const float alpha=0, const float sigma=0)

Sharpen image.

 Clmg< T > get_sharpen (const float amplitude, const bool sharpen_type=false, const float edge=1, const float alpha=0, const float sigma=0) const

Sharpen image [new-instance version].

• ClmgList< Tfloat > get gradient (const char *const axes=0, const int scheme=3) const

Return image gradient.

ClmgList< Tfloat > get_hessian (const char *const axes=0) const

Return image hessian.

• Clmg< T > & laplacian ()

Compute image Laplacian.

• Clmg< Tfloat > get_laplacian () const

Compute image Laplacian [new-instance version].

Clmg< T > & structure_tensors (const bool is_fwbw_scheme=false)

Compute the structure tensor field of an image.

• Clmg< Tfloat > get_structure_tensors (const bool is_fwbw_scheme=false) const

Compute the structure tensor field of an image [new-instance version].

Clmg< T > & diffusion_tensors (const float sharpness=0.7f, const float anisotropy=0.6f, const float alpha=0.6f, const float sigma=1.1f, const bool is_sqrt=false)

Compute field of diffusion tensors for edge-preserving smoothing.

• Clmg< Tfloat > get_diffusion_tensors (const float sharpness=0.7f, const float anisotropy=0.6f, const float alpha=0.6f, const float sigma=1.1f, const bool is_sqrt=false) const

Compute field of diffusion tensors for edge-preserving smoothing [new-instance version].

• Clmg< T > & displacement (const Clmg< T > &source, const float smoothness=0.1f, const float precision=5.f, const unsigned int nb_scales=0, const unsigned int iteration_max=10000, const bool is← _backward=false, const Clmg< floatT > &guide=Clmg< floatT >::const_empty())

Estimate displacement field between two images.

CImg< floatT > get_displacement (const CImg< T > &source, const float smoothness=0.1f, const float precision=5.f, const unsigned int nb_scales=0, const unsigned int iteration_max=10000, const bool is_← backward=false, const CImg< floatT > &guide=CImg< floatT > ::const empty()) const

Estimate displacement field between two images [new-instance version].

template<typename t1, typename t2 >

Clmg< T > & matchpatch (const Clmg< T > &patch_image, const unsigned int patch_width, const unsigned int patch_height, const unsigned int patch_depth, const unsigned int nb_iterations, const unsigned int nb_ \leftarrow randoms, const float occ_penalization, const Clmg< t1 > &guide, Clmg< t2 > &matching_score)

Compute correspondence map between two images, using a patch-matching algorithm.

• template<typename t1 , typename t2 >

 $\label{local_const_const} \textbf{CImg} < \textbf{T} > \textbf{\&patch_image}, \ \textbf{const unsigned int patch_width}, \ \textbf{const unsigned int patch_height}, \ \textbf{const unsigned int patch_depth}, \ \textbf{const unsigned int nb_iterations}, \ \textbf{const unsigned int nb_randoms}, \ \textbf{const float occ_penalization}, \ \textbf{const CImg} < \textbf{t1} > \textbf{\&guide}, \ \textbf{CImg} < \textbf{t2} > \textbf{\&matching_score}) \ \textbf{const}$

Compute correspondence map between two images, using the patch-match algorithm [new-instance version].

template<typename t >

Clmg< T > & matchpatch (const Clmg< T > &patch_image, const unsigned int patch_width, const unsigned int patch_height, const unsigned int patch_depth, const unsigned int nb_iterations=5, const unsigned int nb \leftarrow _randoms=5, const float occ_penalization=0, const Clmg< t > &guide=Clmg< t >::const_empty())

Compute correspondence map between two images, using the patch-match algorithm [overloading].

template<typename t >

 $\label{local_const_const} $$\operatorname{CImg}< T> &\operatorname{patch_image}, \ \operatorname{const} \ \operatorname{unsigned} \ \operatorname{int} \ \operatorname{patch_width}, \ \operatorname{const} \ \operatorname{unsigned} \ \operatorname{int} \ \operatorname{patch_height}, \ \operatorname{const} \ \operatorname{unsigned} \ \operatorname{int} \ \operatorname{nb_iterations=5}, \ \operatorname{int} \ \operatorname{int} \ \operatorname{nb_iterations=5}, \ \operatorname{int} \ \operatorname{int} \ \operatorname{nb_iterations=5}, \ \operatorname{int} \ \operatorname{int}$

Compute correspondence map between two images, using the patch-match algorithm [overloading].

Clmg< T > & distance (const T &value, const unsigned int metric=2)

Compute Euclidean distance function to a specified value.

• Clmg< Tfloat > get_distance (const T &value, const unsigned int metric=2) const

Compute distance to a specified value [new-instance version].

• template<typename t >

```
Clmg< T > & distance (const T &value, const Clmg< t > &metric mask)
```

Compute chamfer distance to a specified value, with a custom metric.

template<typename t >

```
Clmg< Tfloat > get_distance (const T &value, const Clmg< t > &metric_mask) const
```

Compute chamfer distance to a specified value, with a custom metric [new-instance version].

- template<typename t , typename to >

```
Clmg< T > & distance_dijkstra (const T &value, const Clmg< t > &metric, const bool is_high_connectivity, Clmg< to > &return_path)
```

Compute distance to a specified value, according to a custom metric (use dijkstra algorithm).

- template<typename t , typename to >

```
Clmg< typename cimg::superset< t, long >::type > get_distance_dijkstra (const T &value, const Clmg< t > &metric, const bool is high connectivity, Clmg< to > &return path) const
```

Compute distance map to a specified value, according to a custom metric (use dijkstra algorithm) [new-instance version].

• template<typename t >

Clmg< T > & distance_dijkstra (const T &value, const Clmg< t > &metric, const bool is_high_ \leftarrow connectivity=false)

Compute distance map to a specified value, according to a custom metric (use dijkstra algorithm). [overloading].

template<typename t >

Clmg< Tfloat > get_distance_dijkstra (const T &value, const Clmg< t > &metric, const bool is_high_← connectivity=false) const

Compute distance map to a specified value, according to a custom metric (use dijkstra algorithm). [new-instance version].

template<typename t >

Clmg< T > & distance_eikonal (const T &value, const Clmg< t > &metric)

Compute distance map to one source point, according to a custom metric (use fast marching algorithm).

template<typename t >

Clmg< Tfloat > get_distance_eikonal (const T &value, const Clmg< t > &metric) const

Compute distance map to one source point, according to a custom metric (use fast marching algorithm).

Clmg< T > & distance_eikonal (const unsigned int nb_iterations, const float band_size=0, const float time ← step=0.5f)

Compute distance function to 0-valued isophotes, using the Eikonal PDE.

 Clmg< Tfloat > get_distance_eikonal (const unsigned int nb_iterations, const float band_size=0, const float time_step=0.5f) const

Compute distance function to 0-valued isophotes, using the Eikonal PDE [new-instance version].

Clmg< T > & haar (const char axis, const bool invert=false, const unsigned int nb_scales=1)

Compute Haar multiscale wavelet transform.

 $\bullet \ \ \, \textbf{CImg} \\ < \text{Tfloat} \\ > \text{get_haar} \ (\text{const char axis, const bool invert=false, const unsigned int nb_scales=1)} \ const \\ \\ \text{const char axis, const bool invert=false, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const bool invert=false, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const bool invert=false, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const bool invert=false, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const bool invert=false, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const bool invert=false, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const unsigned int nb_scales=1)} \ const \\ \text{const char axis, const char axis, const char axis, const char axis, const cha$

Compute Haar multiscale wavelet transform [new-instance version].

Clmg< T > & haar (const bool invert=false, const unsigned int nb_scales=1)

Compute Haar multiscale wavelet transform [overloading].

Clmg< Tfloat > get haar (const bool invert=false, const unsigned int nb scales=1) const

Compute Haar multiscale wavelet transform [new-instance version].

ClmgList< Tfloat > get_FFT (const char axis, const bool is_invert=false) const

Compute 1D Fast Fourier Transform, along a specified axis.

• ClmgList< Tfloat > get FFT (const bool is invert=false) const

Compute n-d Fast Fourier Transform.

static void FFT (Clmg< T > &real, Clmg< T > &imag, const char axis, const bool is_invert=false)

Compute 1D Fast Fourier Transform, along a specified axis.

static void FFT (Clmg< T > &real, Clmg< T > &imag, const bool is_invert=false, const unsigned int nb_←
threads=0)

Compute n-d Fast Fourier Transform.

3D Objects Management

• Clmg< T > & shift_object3d (const float tx, const float ty=0, const float tz=0)

Shift 3D object's vertices.

Clmg< Tfloat > get_shift_object3d (const float tx, const float ty=0, const float tz=0) const

Shift 3D object's vertices [new-instance version].

• Clmg< T > & shift object3d ()

Shift 3D object's vertices, so that it becomes centered.

Clmg< Tfloat > get_shift_object3d () const

Shift 3D object's vertices, so that it becomes centered [new-instance version].

• Clmg< T > & resize object3d (const float sx, const float sy=-100, const float sz=-100)

Resize 3D object.

Clmg< Tfloat > get_resize_object3d (const float sx, const float sy=-100, const float sz=-100) const
 Resize 3D object [new-instance version].

Clmg< T > resize_object3d ()

Resize 3D object to unit size.

Clmg< Tfloat > get_resize_object3d () const

Resize 3D object to unit size [new-instance version].

ullet template<typename tf , typename tp , typename tff >

Clmg< T > & append_object3d (ClmgList< tf > &primitives, const Clmg< tp > &obj_vertices, const C \leftarrow lmgList< tff > &obj_primitives)

Merge two 3D objects together.

template<typename tp , typename tt , typename tt , typename tx >
 const Clmg< T > & texturize_object3d (ClmgList< tp > &primitives, ClmgList< tc > &colors, const Clmg
 tt > &texture, const Clmg< tx > &coords=Clmg< tx > ::const_empty()) const

Texturize primitives of a 3D object.

• template < typename tf , typename tc , typename te >

Clmg< floatT > get_elevation3d (ClmgList< tf > &primitives, ClmgList< tc > &colors, const Clmg< te > &elevation) const

Generate a 3D elevation of the image instance.

ullet template<typename tf , typename tc >

Clmg< floatT > get_projections3d (ClmgList< tf > &primitives, ClmgList< tc > &colors, const unsigned int x0, const unsigned int z0, const bool normalize_colors=false) const

Generate the 3D projection planes of the image instance.

template<typename tf >

Clmg< floatT > get_isoline3d (ClmgList< tf > &primitives, const float isovalue, const int size_x=-100, const int size_y=-100) const

Generate a isoline of the image instance as a 3D object.

template<typename tf >

Clmg< floatT > get_isosurface3d (ClmgList< tf > &primitives, const float isovalue, const int size_x=-100, const int size y=-100, const int size z=-100) const

Generate an isosurface of the image instance as a 3D object.

• template<typename tp , typename tc , typename to >

 $\label{eq:clmgdist} \begin{aligned} &\text{Clmg} < \text{T} > \& \text{ object3dtoClmg3d (const ClmgList} < \text{tp} > \& \text{primitives, const ClmgList} < \text{tc} > \& \text{colors, const to} \\ &\text{\& opacities, const bool full_check=true)} \end{aligned}$

Convert 3D object into a Clmg3d representation.

• template<typename tp , typename tc >

 $\label{eq:clmg} \mbox{Clmg< T} > \mbox{\& object3dtoClmg3d (const ClmgList< tp} > \mbox{\&primitives, const ClmgList} < \mbox{tc} > \mbox{\&colors, const bool full_check=true)}$

Convert 3D object into a Clmg3d representation [overloading].

• template<typename tp >

Clmg< T > & object3dtoClmg3d (const ClmgList< tp > &primitives, const bool full_check=true)

Convert 3D object into a Clmg3d representation [overloading].

Clmg< T > & object3dtoClmg3d (const bool full_check=true)

Convert 3D object into a Clmg3d representation [overloading].

ullet template<typename tp , typename tc , typename to >

Clmg< floatT > get_object3dtoClmg3d (const ClmgList< tp > &primitives, const ClmgList< tc > &colors, const to &opacities, const bool full check=true) const

Convert 3D object into a Clmg3d representation [new-instance version].

• template<typename tp , typename tc >

 $\label{local_const_const} \mbox{Clmg< floatT} > \mbox{get_object3dtoClmg3d} \mbox{ (const ClmgList< tp } > \mbox{\&primitives, const ClmgList< tc } > \mbox{\&colors, const bool full check=true) const}$

Convert 3D object into a CImg3d representation [overloading].

template<typename tp >

 $\label{eq:clmgd} \textbf{Clmg} < \textbf{floatT} > \textbf{get_object3dtoClmg3d} \ (\textbf{const ClmgList} < \textbf{tp} > \textbf{\&primitives}, \textbf{const bool full_check=true}) \ \textbf{const} \\ \ \textbf{const ClmgList} < \textbf{tp} > \textbf{\&primitives}, \textbf{const bool full_check=true}) \ \textbf{const} \\ \ \textbf{const clmgList} < \textbf{tp} > \textbf{\&primitives}, \textbf{const bool full_check=true}) \ \textbf{const} \\ \ \textbf{const clmgList} < \textbf{tp} > \textbf{\&primitives}, \textbf{const bool full_check=true}) \ \textbf{const} \\ \ \textbf{const clmgList} < \textbf{const bool full_check=true}) \ \textbf{const} \\ \ \textbf{const clmgList} < \textbf{const bool full_check=true}) \ \textbf{const} \\ \ \textbf{const clmgList} < \textbf{const bool full_check=true}) \ \textbf{const} \\ \ \textbf{const clmgList} < \textbf{const bool full_check=true}) \ \textbf{const} \\ \ \textbf{const clmgList} < \textbf{const bool full_check=true}) \ \textbf{const} \\ \ \textbf{const clmgList} < \textbf{const$

Convert 3D object into a Clmg3d representation [overloading].

Clmg< floatT > get_object3dtoClmg3d (const bool full_check=true) const

Convert 3D object into a Clmg3d representation [overloading].

• template<typename tp , typename tc , typename to >

Clmg< T > & Clmg3dtoobject3d (ClmgList< tp > &primitives, ClmgList< tc > &colors, ClmgList< to > &opacities, const bool full_check=true)

Convert Clmg3d representation into a 3D object.

template<typename tp , typename tc , typename to >
 CImg< T > get_CImg3dtoobject3d (CImgList< tp > &primitives, CImgList< tc > &colors, CImgList< to >
 &opacities, const bool full check=true) const

Convert Clmg3d representation into a 3D object [new-instance version].

• template<typename tf , typename tfunc >

static CImg< float T > elevation3d (CImgList< tf > &primitives, const tfunc &func, const float x0, const float y0, const float x1, const float y1, const int size_x=256, const int size_y=256)

Compute 3D elevation of a function as a 3D object.

template<typename tf >

static Clmg< float T > elevation3d (ClmgList< tf > &primitives, const char *const expression, const float x0, const float y0, const float x1, const float y1, const int size x=256, const int size y=256)

Compute 3D elevation of a function, as a 3D object [overloading].

• template<typename tf , typename tfunc >

static Clmg< floatT > isoline3d (ClmgList< tf > &primitives, const tfunc &func, const float isovalue, const float x0, const float y0, const float x1, const float y1, const int size_x=256, const int size_y=256)

Compute 0-isolines of a function, as a 3D object.

• template<typename tf >

static Clmg< floatT > isoline3d (ClmgList< tf > &primitives, const char *const expression, const float iso-value, const float x0, const float y0, const float x1, const float y1, const int size_x=256, const int size_y=256)

Compute isolines of a function, as a 3D object [overloading].

• template<typename tf , typename tfunc >

static CImg< float T > isosurface3d (CImgList< tf > &primitives, const tfunc &func, const float isovalue, const float x0, const float y0, const float z0, const float x1, const float y1, const float z1, const int size_x=32, const int size_y=32, const int size_z=32)

Compute isosurface of a function, as a 3D object.

template<typename tf >

static Clmg< float T > isosurface3d (ClmgList< tf > &primitives, const char *const expression, const float isovalue, const float x0, const float z0, const float x1, const float y1, const float z1, const int dx=32, const int dy=32, const int dz=32)

Compute isosurface of a function, as a 3D object [overloading].

• template<typename tf >

static Clmg< float T > box3d (ClmgList< tf > &primitives, const float size_x=200, const float size_y=100, const float size_z=100)

Generate a 3D box object.

template<typename tf >

static CImg< floatT > cone3d (CImgList< tf > &primitives, const float radius=50, const float size_z=100, const unsigned int subdivisions=24)

Generate a 3D cone.

template<typename tf >

static CImg< floatT > cylinder3d (CImgList< tf > &primitives, const float radius=50, const float size_z=100, const unsigned int subdivisions=24)

Generate a 3D cylinder.

template<typename tf >

static CImg< float T > torus3d (CImgList< tf > &primitives, const float radius1=100, const float radius2=30, const unsigned int subdivisions1=24, const unsigned int subdivisions2=12)

Generate a 3D torus.

template<typename tf >
 static Clmg< floatT > plane3d (ClmgList< tf > &primitives, const float size_x=100, const float size_y=100,
 const unsigned int subdivisions x=10, const unsigned int subdivisions y=10)

Generate a 3D XY-plane.

• template<typename tf >

static Clmg< floatT > sphere3d (ClmgList< tf > &primitives, const float radius=50, const unsigned int subdivisions=3)

Generate a 3D sphere.

template<typename tf , typename t >
 static Clmg< floatT > ellipsoid3d (ClmgList< tf > &primitives, const Clmg< t > &tensor, const unsigned int subdivisions=3)

Generate a 3D ellipsoid.

Drawing Functions

template<typename tc >

 $\label{eq:clmg} CImg < T > \& \ draw_point \ (const \ int \ x0, \ const \ int \ y0, \ const \ int \ z0, \ const \ tc \ *const \ color, \ const \ float \ opacity=1)$

Draw a 3D point.

• template<typename tc >

Clmg< T > & draw_point (const int x0, const int y0, const tc *const color, const float opacity=1)

Draw a 2D point [simplification].

• template<typename t , typename tc >

Clmg< T > & draw_point (const Clmg< t > &points, const tc *const color, const float opacity=1)

• template<typename tc >

Clmg< T > & draw_line (const int x0, const int y0, const int x1, const int y1, const tc *const color, const float opacity=1, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a 2D line.

- template<typename tz , typename tc >

Clmg< T > & draw_line (Clmg< tz > &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const tc *const color, const float opacity=1, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a 2D line, with z-buffering.

ullet template<typename tc >

Clmg< T > & draw_line (const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const tc *const color, const float opacity=1, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a 3D line.

template<typename tc >

Clmg< T > & draw_line (const int x0, const int y0, const int x1, const int y1, const Clmg< tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const float opacity=1, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a textured 2D line.

• template<typename tc >

Clmg< T > & draw_line (const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const Clmg< tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const float opacity=1, const unsigned int pattern= \sim 0U, const bool init hatch=true)

Draw a textured 2D line, with perspective correction.

• template<typename tz , typename tc >

Clmg< T > & draw_line (Clmg< tz > &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const Clmg< tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const float opacity=1, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a textured 2D line, with perspective correction and z-buffering.

• template<typename t , typename tc >

Clmg< T > & draw_line (const Clmg< t > &points, const tc *const color, const float opacity=1, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a set of consecutive lines.

• template<typename tc >

Clmg< T > & draw_arrow (const int x0, const int y0, const int x1, const int y1, const tc *const color, const float opacity=1, const float angle=30, const float length=-10, const unsigned int pattern= \sim 0U)

Draw a 2D arrow.

• template<typename tc >

Clmg< T > & draw_spline (const int x0, const int y0, const float u0, const float v0, const int x1, const int y1, const float u1, const float v1, const tc *const color, const float opacity=1, const float precision=0.25, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a 2D spline.

template<typename tc >

Clmg< T > & draw_spline (const int x0, const int y0, const int z0, const float u0, const float v0, const float w0, const int x1, const int y1, const int z1, const float u1, const float v1, const float w1, const tc *const color, const float opacity=1, const float precision=4, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a 3D spline [overloading].

template<typename t >

Clmg< T > & draw_spline (const int x0, const int y0, const float u0, const float v0, const int x1, const int y1, const float u1, const float v1, const Clmg< t > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const float opacity=1, const float precision=4, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a textured 2D spline.

• template<typename tp , typename tt , typename tc >

Clmg< T > & draw_spline (const Clmg< tp > &points, const Clmg< tt > &tangents, const tc *const color, const float opacity=1, const bool is_closed_set=false, const float precision=4, const unsigned int pattern= \sim 0U, const bool init hatch=true)

Draw a set of consecutive splines.

• template<typename tp , typename tc >

Clmg< T > & draw_spline (const Clmg< tp > &points, const tc *const color, const float opacity=1, const bool is_closed_set=false, const float precision=4, const unsigned int pattern= \sim 0U, const bool init_hatch=true)

Draw a set of consecutive splines [overloading].

 $\bullet \ \ {\sf template}{<} {\sf typename} \ {\sf tc}>$

Clmg< T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const tc *const color, const float opacity=1)

Draw a filled 2D triangle.

template<typename tc >

Clmg< T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const tc *const color, const float opacity, const unsigned int pattern)

Draw a outlined 2D triangle.

• template<typename tz , typename tc >

Clmg< T > & draw_triangle (Clmg< tz > &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const tc *const color, const float opacity=1, const float brightness=1)

Draw a filled 2D triangle, with z-buffering.

template<typename tc >

Clmg< T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const tc *const color, const float brightness0, const float brightness1, const float brightness2, const float opacity=1)

Draw a Gouraud-shaded 2D triangle.

• template<typename tz , typename tc >

Clmg< T > & draw_triangle (Clmg< tz > &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const tc *const color, const float brightness0, const float brightness1, const float brightness2, const float opacity=1)

Draw a Gouraud-shaded 2D triangle, with z-buffering [overloading].

- template<typename tc1 , typename tc2 , typename tc3 >

Clmg< T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const tc1 *const color1, const tc2 *const color2, const tc3 *const color3, const float opacity=1)

Draw a color-interpolated 2D triangle.

• template<typename tc >

Clmg< T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const Clmg< tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int tx2, const int ty2, const float opacity=1, const float brightness=1)

Draw a textured 2D triangle.

• template<typename tc >

Clmg< T > & draw_triangle (const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const Clmg< tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int tx2, const int ty2, const float opacity=1, const float brightness=1)

Draw a 2D textured triangle, with perspective correction.

template<typename tz , typename tc >

Clmg< T> & draw_triangle (Clmg< tz> &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const Clmg< tc> &texture, const int tx0, const int ty0, const int tx1, const int tx2, const int ty2, const float opacity=1, const float brightness=1)

Draw a textured 2D triangle, with perspective correction and z-buffering.

• template<typename tc , typename tl >

Clmg< T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const tc *const color, const Clmg< tl > &light, const int lx0, const int ly0, const int lx1, const int lx1, const int lx2, const int ly2, const float opacity=1)

Draw a Phong-shaded 2D triangle.

• template<typename tz , typename tc , typename tl >

Clmg< T > & draw_triangle (Clmg< tz > &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const tc *const color, const Clmg< tl > &light, const int lx0, const int ly0, const int lx1, const int ly1, const int lx2, const int ly2, const float opacity=1)

Draw a Phong-shaded 2D triangle, with z-buffering.

• template<typename tc >

Clmg< T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const Clmg< tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int tx2, const int ty2, const float brightness0, const float brightness2, const float opacity=1)

Draw a textured Gouraud-shaded 2D triangle.

• template<typename tc >

Clmg< T > & draw_triangle (const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const Clmg< tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int ty2, const float brightness0, const float brightness1, const float brightness2, const float opacity=1)

Draw a textured Gouraud-shaded 2D triangle, with perspective correction [overloading].

- template<typename tz , typename tc >

Clmg< T > & draw_triangle (Clmg< tz > &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const Clmg< tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int tx2, const int ty2, const float brightness0, const float brightness2, const float opacity=1)

Draw a textured Gouraud-shaded 2D triangle, with perspective correction and z-buffering [overloading].

• template<typename tc , typename tl >

Clmg< T > & draw_triangle (const int x0, const int y0, const int x1, const int y1, const int x2, const int y2, const Clmg< tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int tx2, const int ty2, const Clmg< tl > &light, const int lx0, const int ly0, const int lx1, const int ly1, const int lx2, const int ly2, const float opacity=1)

Draw a textured Phong-shaded 2D triangle.

• template<typename tc , typename tl >

Clmg< T > & draw_triangle (const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const Clmg< tc > &texture, const int tx0, const int ty0, const int tx1, const int ty1, const int tx2, const int ty2, const Clmg< tl > &light, const int lx0, const int ly0, const int lx1, const int ly1, const int lx2, const int ly2, const float opacity=1)

Draw a textured Phong-shaded 2D triangle, with perspective correction.

• template<typename tz , typename tc , typename tl >

Clmg< T > & draw_triangle (Clmg< tz > &zbuffer, const int x0, const int y0, const float z0, const int x1, const int y1, const float z1, const int x2, const int y2, const float z2, const Clmg< tc > &texture, const int tx0, const int ty0, const int tx1, const int tx1, const int tx2, const int ty2, const Clmg< tl > &light, const int lx0, const int ly0, const int lx1, const int ly1, const int lx2, const int ly2, const float opacity=1)

Draw a textured Phong-shaded 2D triangle, with perspective correction and z-buffering.

Clmg< T > & draw_rectangle (const int x0, const int y0, const int z0, const int c0, const int x1, const int y1, const int z1, const int c1, const T val, const float opacity=1)

Draw a filled 4D rectangle.

template<typename tc >

Clmg< T > & draw_rectangle (const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const tc *const color, const float opacity=1)

Draw a filled 3D rectangle.

• template<typename tc >

Clmg< T > & draw_rectangle (const int x0, const int y0, const int z0, const int x1, const int y1, const int z1, const tc *const color, const float opacity, const unsigned int pattern)

Draw an outlined 3D rectangle [overloading].

• template<typename tc >

Clmg< T > & draw_rectangle (const int x0, const int y0, const int x1, const int y1, const tc *const color, const float opacity=1)

Draw a filled 2D rectangle.

template<typename tc >

Clmg< T > & draw_rectangle (const int x0, const int y0, const int x1, const int y1, const tc *const color, const float opacity, const unsigned int pattern)

Draw a outlined 2D rectangle [overloading].

• template<typename tp , typename tc >

Clmg < T > & draw polygon (const Clmg < tp > &points, const tc *const color, const float opacity=1)

Draw a filled 2D polygon.

• template<typename t , typename tc >

Clmg< T > & draw_polygon (const Clmg< t > &points, const to *const color, const float opacity, const unsigned int pattern)

Draw a outlined 2D or 3D polygon [overloading].

• template<typename tc >

Clmg< T > & draw_ellipse (const int x0, const int y0, const float r1, const float r2, const float angle, const tc *const color, const float opacity=1)

Draw a filled 2D ellipse.

 $\bullet \ \ \text{template}{<} \text{typename t , typename tc}{>}$

Clmg< T > & draw_ellipse (const int x0, const int y0, const Clmg< t > &tensor, const tc *const color, const float opacity=1)

Draw a filled 2D ellipse [overloading].

• template<typename tc >

Clmg< T > & draw_ellipse (const int x0, const int y0, const float r1, const float r2, const float angle, const tc *const color, const float opacity, const unsigned int pattern)

Draw an outlined 2D ellipse.

• template<typename t , typename tc >

Clmg< T > & draw_ellipse (const int x0, const int y0, const Clmg< t > &tensor, const tc *const color, const float opacity, const unsigned int pattern)

Draw an outlined 2D ellipse [overloading].

• template<typename tc >

Clmg< T > & draw_circle (const int x0, const int y0, int radius, const to *const color, const float opacity=1)

Draw a filled 2D circle.

template<typename tc >

Clmg< T > & draw_circle (const int x0, const int y0, int radius, const tc *const color, const float opacity, const unsigned int pattern)

Draw an outlined 2D circle.

• template<typename t >

Clmg< T > & draw_image (const int x0, const int y0, const int z0, const int c0, const Clmg< t > &sprite, const float opacity=1)

Draw an image.

Clmg< T > & draw_image (const int x0, const int y0, const int z0, const int c0, const Clmg< T > &sprite, const float opacity=1)

Draw an image [specialization].

template<typename t >

Clmg< T > & draw_image (const int x0, const int y0, const int z0, const Clmg< t > &sprite, const float opacity=1)

Draw an image [overloading].

• template<typename t >

Clmg < T > & draw image (const int x0, const int y0, const <math>Clmg < t > & sprite, const float opacity=1)

Draw an image [overloading].

template<typename t >

Clmg< T > & draw_image (const int x0, const Clmg< t > &sprite, const float opacity=1)

Draw an image [overloading].

• template<typename t >

Clmg< T > & draw_image (const Clmg< t > &sprite, const float opacity=1)

Draw an image [overloading].

• template<typename ti , typename tm >

Clmg< T > & draw_image (const int x0, const int y0, const int z0, const int c0, const Clmg< ti > &sprite, const Clmg< tm > &mask, const float opacity=1, const float mask_max_value=1)

Draw a masked image.

• template<typename ti , typename tm >

Clmg< T > & draw_image (const int x0, const int y0, const int z0, const Clmg< ti > &sprite, const Clmg< tm > &mask, const float opacity=1, const float mask max value=1)

Draw a masked image [overloading].

• template<typename ti , typename tm >

Clmg< T > & draw_image (const int x0, const int y0, const Clmg< ti > &sprite, const Clmg< tm > &mask, const float opacity=1, const float mask max value=1)

Draw a image [overloading].

• template<typename ti , typename tm >

 $\label{eq:clmg} \begin{aligned} &\text{Clmg} < \text{T} > \& \text{ draw_image (const int x0, const Clmg} < \text{ti} > \& \text{sprite, const Clmg} < \text{tm} > \& \text{mask, const float opacity=1, const float mask_max_value=1)} \end{aligned}$

Draw a image [overloading].

template<typename ti , typename tm >

 $CImg < T > \& draw_image$ (const CImg < ti > & sprite, const CImg < tm > & mask, const float opacity=1, const float mask_max_value=1)

Draw an image.

• template<typename tc1 , typename tc2 , typename t >

 $\label{eq:const} \begin{aligned} &\text{Clmg} < \text{T} > \& \text{ draw_text (const int x0, const int y0, const char *const text, const tc1 *const foreground_color, const tc2 *const background_color, const float opacity, const $$\operatorname{ClmgList} < t > \& \text{font,...}$$) \end{aligned}$

Draw a text string.

• template<typename tc , typename t >

Clmg< T > & draw_text (const int x0, const int y0, const char *const text, const tc *const foreground_color, const int, const float opacity, const ClmgList< t > &font,...)

Draw a text string [overloading].

• template<typename tc , typename t >

Clmg< T > & draw_text (const int x0, const int y0, const char *const text, const int, const tc *const background color, const float opacity, const ClmgList < t > &font,...)

Draw a text string [overloading].

• template<typename tc1 , typename tc2 >

Clmg< T > & draw_text (const int x0, const int y0, const char *const text, const tc1 *const foreground_color, const tc2 *const background_color, const float opacity=1, const unsigned int font_height=13,...)

Draw a text string [overloading].

template<typename tc >

Clmg< T > & draw_text (const int x0, const int y0, const char *const text, const tc *const foreground_color, const int background_color=0, const float opacity=1, const unsigned int font_height=13,...)

Draw a text string [overloading].

• template<typename tc >

Clmg< T > & draw_text (const int x0, const int y0, const char *const text, const int, const tc *const background_color, const float opacity=1, const unsigned int font_height=13,...)

Draw a text string [overloading].

template<typename t1 , typename t2 >

Clmg< T > & draw_quiver (const Clmg< t1 > &flow, const t2 *const color, const float opacity=1, const unsigned int sampling=25, const float factor=-20, const bool is_arrow=true, const unsigned int pattern= \sim 0U)

Draw a 2D vector field.

template<typename t1, typename t2 >

Clmg< T > & draw_quiver (const Clmg< t1 > &flow, const Clmg< t2 > &color, const float opacity=1, const unsigned int sampling=25, const float factor=-20, const bool is_arrow=true, const unsigned int pattern= \sim 0U)

Draw a 2D vector field, using a field of colors.

• template<typename t , typename tc >

Clmg< T > & draw_axis (const Clmg< t > &values_x, const int y, const tc *const color, const float opacity=1, const unsigned int pattern= \sim 0U, const unsigned int font_height=13, const bool allow_zero=true)

Draw a labeled horizontal axis.

• template<typename t , typename tc >

Clmg< T > & draw_axis (const int x, const Clmg< t > &values_y, const tc *const color, const float opacity=1, const unsigned int pattern= \sim 0U, const unsigned int font_height=13, const bool allow_zero=true)

Draw a labeled vertical axis.

- template<typename ${\rm tx}$, typename ${\rm ty}$, typename ${\rm tc}$ >

Clmg< T > & draw_axes (const Clmg< tx > &values_x, const Clmg< ty > &values_y, const tc *const color, const float opacity=1, const unsigned int pattern_x= \sim 0U, const unsigned int pattern_y= \sim 0U, const unsigned int font_height=13, const bool allow_zero=true)

Draw labeled horizontal and vertical axes.

template<typename tc >

Clmg< T > & draw_axes (const float x0, const float x1, const float y0, const float y1, const tc *const color, const float opacity=1, const int subdivisionx=-60, const int subdivisiony=-60, const float precisionx=0, const float precisiony=0, const unsigned int pattern_x= \sim 0U, const unsigned int pattern_y= \sim 0U, const unsigned int font_height=13)

Draw labeled horizontal and vertical axes [overloading].

• template<typename tx, typename ty, typename tc>

Clmg< T > & draw_grid (const Clmg< tx > &values_x, const Clmg< ty > &values_y, const tc *const color, const float opacity=1, const unsigned int pattern_x= \sim 0U, const unsigned int pattern_y= \sim 0U)

Draw 2D grid.

• template<typename tc >

Clmg< T > & draw_grid (const float delta_x, const float delta_y, const float offsetx, const float offsety, const bool inverty, const tc *const color, const float opacity=1, const unsigned int pattern_ \leftarrow x= \sim 0U, const unsigned int pattern_y= \sim 0U)

Draw 2D grid [simplification].

• template<typename t , typename tc >

Clmg< T > & draw_graph (const Clmg< t > &data, const tc *const color, const float opacity=1, const unsigned int plot_type=1, const int vertex_type=1, const double ymin=0, const double ymax=0, const unsigned int pattern= \sim 0U)

Draw 1D graph.

• template<typename tc , typename t >

Clmg< T > & draw_fill (const int x0, const int y0, const int z0, const tc *const color, const float opacity, Clmg< t > & region, const float tolerance=0, const bool is high connectivity=false)

Draw filled 3D region with the flood fill algorithm.

• template<typename tc >

Clmg< T > & draw_fill (const int x0, const int y0, const int z0, const tc *const color, const float opacity=1, const float tolerance=0, const bool is_high_connexity=false)

Draw filled 3D region with the flood fill algorithm [simplification].

• template<typename tc >

Clmg< T > & draw_fill (const int x0, const int y0, const tc *const color, const float opacity=1, const float tolerance=0, const bool is_high_connexity=false)

Draw filled 2D region with the flood fill algorithm [simplification].

Clmg< T > & draw_plasma (const float alpha=1, const float beta=0, const unsigned int scale=8)

Draw a random plasma texture.

template<typename tc >

Clmg< T > & draw_mandelbrot (const int x0, const int y0, const int x1, const int y1, const Clmg< tc > &colormap, const float opacity=1, const double z0r=-2, const double z0i=-2, const double z1r=2, const double z1i=2, const unsigned int iteration_max=255, const bool is_normalized_iteration=false, const bool is_julia_ \leftarrow set=false, const double param_r=0, const double param_i=0)

Draw a quadratic Mandelbrot or Julia 2D fractal.

• template<typename tc >

Clmg< T > & draw_mandelbrot (const Clmg< tc > &colormap, const float opacity=1, const double z0r=-2, const double z1r=2, const double z1i=2, const unsigned int iteration_max=255, const bool is_normalized_iteration=false, const bool is_julia_set=false, const double param_r=0, const double param_i=0)

Draw a quadratic Mandelbrot or Julia 2D fractal [overloading].

• template<typename tc >

Clmg< T > & draw gaussian (const float xc, const float sigma, const tc *const color, const float opacity=1)

Draw a 1D gaussian function.

• template<typename t , typename tc >

 $CImg < T > \& draw_gaussian$ (const float xc, const float yc, const CImg < t > & tensor, const tc *const color, const float opacity=1)

Draw a 2D gaussian function.

• template<typename tc >

Clmg< T > & draw_gaussian (const int xc, const int yc, const float r1, const float r2, const float ru, const float rv, const tc *const color, const float opacity=1)

Draw a 2D gaussian function [overloading].

• template<typename tc >

Clmg< T > & draw_gaussian (const float xc, const float yc, const float sigma, const tc *const color, const float opacity=1)

Draw a 2D gaussian function [overloading].

• template<typename t , typename tc >

Clmg< T > & draw_gaussian (const float xc, const float yc, const float zc, const Clmg< t > &tensor, const tc *const color, const float opacity=1)

Draw a 3D gaussian function [overloading].

ullet template<typename tc >

Clmg< T > & draw_gaussian (const float xc, const float yc, const float zc, const float sigma, const tc *const color, const float opacity=1)

Draw a 3D gaussian function [overloading].

template<typename tp , typename tf , typename tc , typename to >

Draw a 3D object.

template<typename tp , typename tf , typename tc , typename to , typename tz >
 CImg< T > & draw_object3d (const float x0, const float y0, const float z0, const CImg< tp > &vertices, const
 CImgList< tf > &primitives, const CImgList< tc > &colors, const CImg< to > &opacities, const unsigned
 int render_type, const bool is_double_sided, const float focale, const float lightx, const float lighty, const
 float lightz, const float specular_lightness, const float specular_shininess, const float g_opacity, CImg< tz >
 &zbuffer)

Draw a 3D object [simplification].

template < typename tp , typename tf , typename tc , typename to >
 Clmg < T > & draw_object3d (const float x0, const float y0, const float z0, const Clmg < tp > & vertices, const ClmgList < tf > & primitives, const ClmgList < tc > & colors, const ClmgList < to > & opacities, const unsigned int render_type=4, const bool is_double_sided=false, const float focale=700, const float lightx=0, const float lighty=0, const float lighty=0, const float specular_lightness=0.2f, const float specular_shininess=0.1f, const float g_opacity=1)

Draw a 3D object [simplification].

template < typename tp , typename tf , typename tc , typename to , typename tz >
 CImg < T > & draw_object3d (const float x0, const float y0, const float z0, const CImg < tp > & vertices, const CImgList < tf > & primitives, const CImgList < tc > & colors, const CImgList < to > & opacities, const unsigned int render_type, const bool is_double_sided, const float focale, const float lightx, const float lighty, const float lightz, const float specular_lightness, const float specular_shininess, const float g_opacity, CImg < tz > & zbuffer)

Draw a 3D object [simplification].

template<typename tp , typename tf , typename tc >
 Clmg< T > & draw_object3d (const float x0, const float y0, const float z0, const Clmg< tp > &vertices, const
 ClmgList< tf > &primitives, const ClmgList< tc > &colors, const unsigned int render_type=4, const bool is
 _double_sided=false, const float focale=700, const float lightx=0, const float lighty=0, const float lightz=-5e8,
 const float specular_lightness=0.2f, const float specular_shininess=0.1f, const float g_opacity=1)

Draw a 3D object [simplification].

template<typename tp , typename tf , typename tc , typename tz >
 Clmg< T > & draw_object3d (const float x0, const float y0, const float z0, const Clmg< tp > &vertices,
 const ClmgList< tf > &primitives, const ClmgList< tc > &colors, const unsigned int render_type, const bool
 is_double_sided, const float focale, const float lightx, const float lighty, const float lightz, const float specular
 lightness, const float specular shininess, const float g opacity, Clmg< tz > &zbuffer)

Draw a 3D object [simplification].

Data Input

• Clmg< T > & select (ClmgDisplay &disp, const unsigned int feature_type=2, unsigned int *const XYZ=0, const bool exit on anykey=false, const bool is deep selection default=false)

Launch simple interface to select a shape from an image.

• Clmg< T > & select (const char *const title, const unsigned int feature_type=2, unsigned int *const XYZ=0, const bool exit on anykey=false, const bool is deep selection default=false)

Simple interface to select a shape from an image [overloading].

• Clmg< intT > get_select (ClmgDisplay &disp, const unsigned int feature_type=2, unsigned int *const XYZ=0, const bool exit_on_anykey=false, const bool is_deep_selection_default=false) const

Simple interface to select a shape from an image [new-instance version].

• Clmg< intT > get_select (const char *const title, const unsigned int feature_type=2, unsigned int *const XYZ=0, const bool exit_on_anykey=false, const bool is_deep_selection_default=false) const

Simple interface to select a shape from an image [new-instance version].

• Clmg< intT > get_select_graph (ClmgDisplay &disp, const unsigned int plot_type=1, const unsigned int vertex_type=1, const char *const labelx=0, const double xmin=0, const double xmax=0, const char *const labely=0, const double ymin=0, const double ymax=0, const bool exit on anykey=false) const

Select sub-graph in a graph.

Clmg< T > & load (const char *const filename)

Load image from a file.

Clmg< T > & load_ascii (const char *const filename)

Load image from an Ascii file.

Clmg< T > & load ascii (std::FILE *const file)

Load image from an Ascii file [overloading].

Clmg< T > & load_dlm (const char *const filename)

Load image from a DLM file.

Clmg< T > & load dlm (std::FILE *const file)

Load image from a DLM file [overloading].

Clmg< T > & load_bmp (const char *const filename)

Load image from a BMP file.

Clmg< T > & load_bmp (std::FILE *const file)

Load image from a BMP file [overloading].

Clmg< T > & load_jpeg (const char *const filename)

Load image from a JPEG file.

Clmg< T > & load_jpeg (std::FILE *const file)

Load image from a JPEG file [overloading].

Clmg< T > & load magick (const char *const filename)

Load image from a file, using Magick++ library.

Clmg< T > & load_png (const char *const filename, unsigned int *const bits_per_pixel=0)

Load image from a PNG file.

• Clmg< T > & load png (std::FILE *const file, unsigned int *const bits per pixel=0)

Load image from a PNG file [overloading].

Clmg< T > & load_pnm (const char *const filename)

Load image from a PNM file.

• Clmg< T > & load_pnm (std::FILE *const file)

Load image from a PNM file [overloading].

Clmg< T > & load_pfm (const char *const filename)

Load image from a PFM file.

Clmg< T > & load_pfm (std::FILE *const file)

Load image from a PFM file [overloading].

- Clmg< T > & load_rgb (const char *const filename, const unsigned int dimw, const unsigned int dimh=1)
 Load image from a RGB file.
- Clmg< T > & load_rgb (std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1)

Load image from a RGB file [overloading].

- Clmg< T > & load_rgba (const char *const filename, const unsigned int dimw, const unsigned int dimh=1)
 Load image from a RGBA file.
- Clmg< T > & load rgba (std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1)

Load image from a RGBA file [overloading].

Clmg< T > & load_tiff (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, float *const voxel_size=0, Clmg< charT > *const description=0)

Load image from a TIFF file.

• Clmg< T > & load minc2 (const char *const filename)

Load image from a MINC2 file.

Clmg< T > & load_analyze (const char *const filename, float *const voxel_size=0)

Load image from an ANALYZE7.5/NIFTI file.

Clmg< T > & load analyze (std::FILE *const file, float *const voxel size=0)

Load image from an ANALYZE7.5/NIFTI file [overloading].

CImg< T > & load cimg (const char *const filename, const char axis='z', const float align=0)

Load image from a .cimg[z] file.

Clmg< T > & load_cimg (std::FILE *const file, const char axis='z', const float align=0)

Load image from a .cimg[z] file [overloading].

• Clmg< T > & load_cimg (const char *const filename, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1, const char axis='z', const float align=0)

Load sub-images of a .cimg file.

• Clmg< T > & load_cimg (std::FILE *const file, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1, const char axis='z', const float align=0)

Load sub-images of a .cimg file [overloading].

Clmg< T > & load_inr (const char *const filename, float *const voxel_size=0)

Load image from an INRIMAGE-4 file.

Clmg< T > & load inr (std::FILE *const file, float *const voxel size=0)

Load image from an INRIMAGE-4 file [overloading].

Clmg< T > & load exr (const char *const filename)

Load image from a EXR file.

Clmg< T > & load_pandore (const char *const filename)

Load image from a PANDORE-5 file.

• Clmg< T > & load_pandore (std::FILE *const file)

Load image from a PANDORE-5 file [overloading].

Clmg< T > & load parrec (const char *const filename, const char axis='c', const float align=0)

Load image from a PAR-REC (Philips) file.

Clmg< T > & load_raw (const char *const filename, const unsigned int size_x=0, const unsigned int size
 _y=1, const unsigned int size_z=1, const unsigned int size_c=1, const bool is_multiplexed=false, const bool invert_endianness=false, const ulongT offset=0)

Load image from a raw binary file.

Clmg< T > & load_raw (std::FILE *const file, const unsigned int size_x=0, const unsigned int size_y=1, const unsigned int size_z=1, const unsigned int size_c=1, const bool is_multiplexed=false, const bool invert
 __endianness=false, const ulongT offset=0)

Load image from a raw binary file [overloading].

Clmg< T > & load_yuv (const char *const filename, const unsigned int size_x, const unsigned int size←
 _y=1, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int
 last_frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z')

Load image sequence from a YUV file.

• Clmg< T > & load_yuv (std::FILE *const file, const unsigned int size_x, const unsigned int size_y=1, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int last_← frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z')

Load image sequence from a YUV file [overloading].

- template<typename tf , typename tc >

```
Clmg< T > & load_off (ClmgList< tf > &primitives, ClmgList< tc > &colors, const char *const filename)
```

Load 3D object from a .OFF file.

- template<typename tf , typename tc >

```
Clmg< T > & load_off (ClmgList< tf > &primitives, ClmgList< tc > &colors, std::FILE *const file)
```

Load 3D object from a .OFF file [overloading].

• Clmg< T > & load_video (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const char axis='z', const float align=0)

Load image sequence from a video file, using OpenCV library.

Clmg< T > & load_ffmpeg_external (const char *const filename, const char axis='z', const float align=0)

Load image sequence using FFMPEG's external tool 'ffmpeg'.

Clmg< T > & load_gif_external (const char *const filename, const char axis='z', const float align=0)

Load gif file, using Imagemagick or GraphicsMagicks's external tools.

Clmg< T > & load_graphicsmagick_external (const char *const filename)

Load image using GraphicsMagick's external tool 'gm'.

Clmg< T > & load_gzip_external (const char *const filename)

Load gzipped image file, using external tool 'gunzip'.

Clmg< T > & load imagemagick external (const char *const filename)

Load image using ImageMagick's external tool 'convert'.

Clmg< T > & load_medcon_external (const char *const filename)

Load image from a DICOM file, using XMedcon's external tool 'medcon'.

Clmg< T > & load dcraw external (const char *const filename)

Load image from a RAW Color Camera file, using external tool 'dcraw'.

Clmg< T > & load_camera (const unsigned int index=0, const unsigned int capture_width=0, const unsigned int capture_height=0, const unsigned int skip_frames=0, const bool release_camera=true)

Load image from a camera stream, using OpenCV.

• Clmg< T > & load_other (const char *const filename)

Load image using various non-native ways.

static Clmg< T > get_load (const char *const filename)

Load image from a file [new-instance version].

static Clmg< T > get_load_ascii (const char *const filename)

Load image from an Ascii file [in-place version].

static Clmg< T > get_load_ascii (std::FILE *const file)

Loadimage from an Ascii file [new-instance version].

static Clmg< T > get_load_dlm (const char *const filename)

Load image from a DLM file [new-instance version].

static Clmg< T > get_load_dlm (std::FILE *const file)

Load image from a DLM file [new-instance version].

static Clmg< T > get_load_bmp (const char *const filename)

Load image from a BMP file [new-instance version].

static Clmg< T > get_load_bmp (std::FILE *const file)

Load image from a BMP file [new-instance version].

static Clmg< T > get_load_ipeg (const char *const filename)

Load image from a JPEG file [new-instance version].

static Clmg< T > get_load_jpeg (std::FILE *const file)

Load image from a JPEG file [new-instance version].

static Clmg< T > get load magick (const char *const filename)

Load image from a file, using Magick++ library [new-instance version].

• static Clmg< T > get_load_png (const char *const filename, unsigned int *const bits_per_pixel=0)

Load image from a PNG file [new-instance version].

• static Clmg< T > get_load_png (std::FILE *const file, unsigned int *const bits_per_pixel=0)

Load image from a PNG file [new-instance version].

static Clmg< T > get_load_pnm (const char *const filename)

Load image from a PNM file [new-instance version].

static Clmg< T > get_load_pnm (std::FILE *const file)

Load image from a PNM file [new-instance version].

static Clmg< T > get_load_pfm (const char *const filename)

Load image from a PFM file [new-instance version].

• static Clmg< T > get_load_pfm (std::FILE *const file)

Load image from a PFM file [new-instance version].

static Clmg< T > get_load_rgb (const char *const filename, const unsigned int dimw, const unsigned int dimh=1)

Load image from a RGB file [new-instance version].

• static Clmg< T > get_load_rgb (std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1)

Load image from a RGB file [new-instance version].

static Clmg< T > get_load_rgba (const char *const filename, const unsigned int dimw, const unsigned int dimh=1)

Load image from a RGBA file [new-instance version].

- static Clmg < T > get_load_rgba (std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1)
 Load image from a RGBA file [new-instance version].
- static Clmg< T > get_load_tiff (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, float *const voxel_size=0, Clmg< charT > *const description=0)

Load image from a TIFF file [new-instance version].

static Clmg< T > get_load_minc2 (const char *const filename)

Load image from a MINC2 file [new-instance version].

static Clmg< T > get_load_analyze (const char *const filename, float *const voxel_size=0)

Load image from an ANALYZE7.5/NIFTI file [new-instance version].

static Clmg< T > get_load_analyze (std::FILE *const file, float *const voxel_size=0)

Load image from an ANALYZE7.5/NIFTI file [new-instance version].

static Clmg< T > get_load_cimg (const char *const filename, const char axis='z', const float align=0)

Load image from a .cimg[z] file [new-instance version]

static Clmg < T > get_load_cimg (std::FILE *const file, const char axis='z', const float align=0)

Load image from a .cimg[z] file [new-instance version]

static Clmg
 T > get_load_cimg (const char *const filename, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1, const char axis='z', const float align=0)

Load sub-images of a .cimg file [new-instance version].

static Clmg< T > get_load_cimg (std::FILE *const file, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1, const char axis='z', const float align=0)

Load sub-images of a .cimg file [new-instance version].

static CImg< T > get load inr (const char *const filename, float *const voxel size=0)

Load image from an INRIMAGE-4 file [new-instance version].

static Clmg< T > get_load_inr (std::FILE *const file, float *voxel_size=0)

Load image from an INRIMAGE-4 file [new-instance version].

static Clmg< T > get load exr (const char *const filename)

Load image from a EXR file [new-instance version].

static Clmg< T > get_load_pandore (const char *const filename)

Load image from a PANDORE-5 file [new-instance version].

static Clmg< T > get_load_pandore (std::FILE *const file)

Load image from a PANDORE-5 file [new-instance version].

static Clmg< T > get_load_parrec (const char *const filename, const char axis='c', const float align=0)

Load image from a PAR-REC (Philips) file [new-instance version].

• static Clmg< T > get_load_raw (const char *const filename, const unsigned int size_x=0, const unsigned int size_y=1, const unsigned int size_z=1, const unsigned int size_c=1, const bool is_multiplexed=false, const bool invert_endianness=false, const ulongT offset=0)

Load image from a raw binary file [new-instance version].

static Clmg< T > get_load_raw (std::FILE *const file, const unsigned int size_x=0, const unsigned int size←
 _y=1, const unsigned int size_z=1, const unsigned int size_c=1, const bool is_multiplexed=false, const bool invert_endianness=false, const ulongT offset=0)

Load image from a raw binary file [new-instance version].

static Clmg< T > get_load_yuv (const char *const filename, const unsigned int size_x, const unsigned int size_y=1, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z')

Load image sequence from a YUV file [new-instance version].

static Clmg< T > get_load_yuv (std::FILE *const file, const unsigned int size_x, const unsigned int size←
 _y=1, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int
last_frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z')

Load image sequence from a YUV file [new-instance version].

• template<typename tf , typename tc >

static Clmg< T > get_load_off (ClmgList< tf > &primitives, ClmgList< tc > &colors, const char *const filename)

Load 3D object from a .OFF file [new-instance version].

• template<typename tf , typename tc >

static CImg< T > get_load_off (CImgList< tf > &primitives, CImgList< tc > &colors, std::FILE *const file)

Load 3D object from a .OFF file [new-instance version].

static Clmg< T > get_load_video (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const char axis='z', const float align=0)

Load image sequence from a video file, using OpenCV library [new-instance version].

 static Clmg< T > get_load_ffmpeg_external (const char *const filename, const char axis='z', const float align=0)

Load image sequence using FFMPEG's external tool 'ffmpeg' [new-instance version].

• static Clmg< T > get_load_gif_external (const char *const filename, const char axis='z', const float align=0)

Load gif file, using ImageMagick or GraphicsMagick's external tool 'convert' [new-instance version].

• static Clmg< T > get_load_graphicsmagick_external (const char *const filename)

Load image using GraphicsMagick's external tool 'gm' [new-instance version].

static Clmg< T > get_load_gzip_external (const char *const filename)

Load gzipped image file, using external tool 'gunzip' [new-instance version].

static Clmg< T > get_load_imagemagick_external (const char *const filename)

Load image using ImageMagick's external tool 'convert' [new-instance version].

static Clmg< T > get_load_medcon_external (const char *const filename)

Load image from a DICOM file, using XMedcon's external tool 'medcon' [new-instance version].

static Clmg< T > get_load_dcraw_external (const char *const filename)

Load image from a RAW Color Camera file, using external tool 'dcraw' [new-instance version].

• static Clmg< T > get_load_camera (const unsigned int index=0, const unsigned int capture_width=0, const unsigned int capture_height=0, const unsigned int skip_frames=0, const bool release_camera=true)

Load image from a camera stream, using OpenCV [new-instance version].

static Clmg< T > get load other (const char *const filename)

Load image using various non-native ways [new-instance version].

Data Output

const Clmg< T > & print (const char *const title=0, const bool display_stats=true) const

Display information about the image data.

const Clmg
 T > & display (ClmgDisplay &disp) const

Display image into a ClmgDisplay window.

const Clmg< T > & display (ClmgDisplay &disp, const bool display_info, unsigned int *const XYZ=0, const bool exit_on_anykey=false) const

Display image into a CImgDisplay window, in an interactive way.

• const Clmg< T > & display (const char *const title=0, const bool display_info=true, unsigned int *const XYZ=0, const bool exit_on_anykey=false) const

Display image into an interactive window.

• template<typename tp , typename tf , typename tc , typename to > const Clmg< T > & display_object3d (ClmgDisplay &disp, const Clmg< tp > &vertices, const ClmgList< tf > &primitives, const ClmgList< tc > &colors, const to &opacities, const bool centering=true, const int render_static=4, const int render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float light_y=0, const float light_z=-5e8f, const float specular_lightness=0.2f, const float specular_shininess=0.1f, const bool display_axes=true, float *const pose_matrix=0, const bool exit_on_← anykey=false) const

Display object 3D in an interactive window.

• template<typename tp , typename tf , typename tc , typename to > const Clmg< T > & display_object3d (const char *const title, const Clmg< tp > &vertices, const ClmgList< tf > &primitives, const ClmgList< tc > &colors, const to &opacities, const bool centering=true, const int render_static=4, const int render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float light_y=0, const float light_z=-5e8f, const float specular_lightness=0.2f, const float specular_shininess=0.1f, const bool display_axes=true, float *const pose_matrix=0, const bool exit_on_← anykey=false) const

Display object 3D in an interactive window [simplification].

template<typename tp , typename tf , typename tc > const Clmg
 T > & display_object3d (ClmgDisplay &disp, const Clmg
 & primitives, const ClmgList
 & const int render_static=4, const int render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float light_y=0, const float light_z=-5e8f, const float specular_lightness=0.2f, const float specular_shininess=0.1f, const bool display axes=true, float *const pose matrix=0, const bool exit on anykey=false) const

Display object 3D in an interactive window [simplification].

• template<typename tp , typename tf , typename tc > const Clmg< T > & display_object3d (const char *const title, const Clmg< tp > &vertices, const ClmgList< tf > &primitives, const ClmgList< tc > &colors, const bool centering=true, const int render_static=4, const int render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float light_y=0, const float light_z=-5e8f, const float specular_lightness=0.2f, const float specular_shininess=0.1f, const bool display_axes=true, float *const pose_matrix=0, const bool exit_on_anykey=false) const

Display object 3D in an interactive window [simplification].

template<typename tp , typename tf >
 const Clmg< T > & display_object3d (ClmgDisplay &disp, const Clmg< tp > &vertices, const ClmgList
 tf > &primitives, const bool centering=true, const int render_static=4, const int render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float light_y=0, const float light_z=-5e8f, const float specular_lightness=0.2f, const float specular_shininess=0.1f, const bool display_axes=true, float *const pose_matrix=0, const bool exit_on_anykey=false) const

Display object 3D in an interactive window [simplification].

template<typename tp , typename tf >
 const Clmg< T > & display_object3d (const char *const title, const Clmg< tp > &vertices, const ClmgList
 tf > &primitives, const bool centering=true, const int render_static=4, const int render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float light_y=0, const float light_z=-5e8f, const float specular_lightness=0.2f, const float specular_shininess=0.1f, const bool display_axes=true, float *const pose_matrix=0, const bool exit_on_anykey=false) const

Display object 3D in an interactive window [simplification].

template<typename tp >
 const Clmg< T > & display_object3d (ClmgDisplay &disp, const Clmg< tp > &vertices, const bool centering=true, const int render_static=4, const int render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float light_y=0, const float light_z=-5e8f, const float specular ← _lightness=0.2f, const float specular_shininess=0.1f, const bool display_axes=true, float *const pose_← matrix=0, const bool exit on anykey=false) const

Display object 3D in an interactive window [simplification].

template<typename tp >
 const Clmg< T > & display_object3d (const char *const title, const Clmg< tp > &vertices, const bool centering=true, const int render_static=4, const int render_motion=1, const bool is_double_sided=true, const float focale=700, const float light_x=0, const float light_y=0, const float light_z=-5e8f, const float specular ← _lightness=0.2f, const float specular_shininess=0.1f, const bool display_axes=true, float *const pose_← matrix=0, const bool exit on anykey=false) const

Display object 3D in an interactive window [simplification].

• const Clmg< T > & display_graph (ClmgDisplay &disp, const unsigned int plot_type=1, const unsigned int vertex_type=1, const char *const labelx=0, const double xmin=0, const double xmax=0, const char *const labely=0, const double ymin=0, const double ymax=0, const bool exit_on_anykey=false) const

Display 1D graph in an interactive window.

• const Clmg < T > & display_graph (const char *const title=0, const unsigned int plot_type=1, const unsigned int vertex_type=1, const char *const labelx=0, const double xmin=0, const double xmax=0, const char *const labely=0, const double ymin=0, const double ymax=0, const bool exit on anykey=false) const

Display 1D graph in an interactive window [overloading].

• const Clmg < T > & save (const char *const filename, const int number=-1, const unsigned int digits=6) const Save image as a file.

const Clmg< T > & save_ascii (const char *const filename) const
 Save image as an Ascii file.

const Clmg< T > & save ascii (std::FILE *const file) const

Save image as an Ascii file [overloading].

const Clmg< T > & save_cpp (const char *const filename) const

Save image as a .cpp source file.

const CImg< T > & save_cpp (std::FILE *const file) const

Save image as a .cpp source file [overloading].

const Clmg< T > & save_dlm (const char *const filename) const

Save image as a DLM file.

const Clmg< T > & save_dlm (std::FILE *const file) const

Save image as a DLM file [overloading].

const Clmg< T > & save_bmp (const char *const filename) const

Save image as a BMP file.

const Clmg< T > & save_bmp (std::FILE *const file) const

Save image as a BMP file [overloading].

- const Clmg< T > & save_jpeg (const char *const filename, const unsigned int quality=100) const
 Save image as a JPEG file.
- const Clmg < T > & save_jpeg (std::FILE *const file, const unsigned int quality=100) const
 Save image as a JPEG file [overloading].
- const Clmg< T > & save_magick (const char *const filename, const unsigned int bytes_per_pixel=0) const Save image, using built-in ImageMagick++ library.
- const Clmg < T > & save_png (const char *const filename, const unsigned int bytes_per_pixel=0) const
 Save image as a PNG file.
- const Clmg< T > & save_png (std::FILE *const file, const unsigned int bytes_per_pixel=0) const
 Save image as a PNG file [overloading].
- const Clmg < T > & save_pnm (const char *const filename, const unsigned int bytes_per_pixel=0) const
 Save image as a PNM file.
- const Clmg < T > & save_pnm (std::FILE *const file, const unsigned int bytes_per_pixel=0) const
 Save image as a PNM file [overloading].
- const Clmg< T > & save_pnk (const char *const filename) const
- const Clmg< T > & save_pnk (std::FILE *const file) const

Save image as a PNK file [overloading].

Save image as a PNK file.

Save image as a PFM file.

- const Clmg< T > & save_pfm (const char *const filename) const

const Clmg< T > & save_pfm (std::FILE *const file) const

Save image as a PFM file [overloading].

const Clmg < T > & save_rgb (const char *const filename) const
 Save image as a RGB file.

const Clmg< T > & save_rgb (std::FILE *const file) const

Save image as a RGB file [overloading].

const Clmg< T > & save rgba (const char *const filename) const

Save image as a RGBA file.

const Clmg< T > & save_rgba (std::FILE *const file) const

Save image as a RGBA file [overloading].

• const Clmg< T > & save_tiff (const char *const filename, const unsigned int compression_type=0, const float *const voxel_size=0, const char *const description=0, const bool use_bigtiff=true) const

Save image as a TIFF file.

- const Clmg < T > & save_minc2 (const char *const filename, const char *const imitate_file=0) const
 Save image as a MINC2 file.
- const Clmg < T > & save_analyze (const char *const filename, const float *const voxel_size=0) const
 Save image as an ANALYZE7.5 or NIFTI file.
- const Clmg< T > & save_cimg (const char *const filename, const bool is_compressed=false) const Save image as a .cimg file.
- const CImg < T > & save_cimg (std::FILE *const file, const bool is_compressed=false) const
 Save image as a .cimg file [overloading].
- const Clmg< T > & save_cimg (const char *const filename, const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0) const

Save image as a sub-image into an existing .cimg file.

 const CImg< T > & save_cimg (std::FILE *const file, const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0) const

Save image as a sub-image into an existing .cimg file [overloading].

- const Clmg < T > & save_inr (const char *const filename, const float *const voxel_size=0) const
 Save image as an INRIMAGE-4 file.
- const Clmg < T > & save_inr (std::FILE *const file, const float *const voxel_size=0) const
 Save image as an INRIMAGE-4 file [overloading].
- const CImg< T > & save_exr (const char *const filename) const

Save image as an OpenEXR file.

- const Clmg < T > & save_pandore (const char *const filename, const unsigned int colorspace=0) const Save image as a Pandore-5 file.
- const Clmg< T > & save_pandore (std::FILE *const file, const unsigned int colorspace=0) const
 Save image as a Pandore-5 file [overloading].
- const Clmg< T > & save_raw (const char *const filename, const bool is_multiplexed=false) const
 Save image as a raw data file.
- const Clmg < T > & save_raw (std::FILE *const file, const bool is_multiplexed=false) const
 Save image as a raw data file [overloading].
- const Clmg< T > & save_yuv (const char *const filename, const unsigned int chroma_subsampling=444, const bool is_rgb=true) const

Save image as a .yuv video file.

 const Clmg< T > & save_yuv (std::FILE *const file, const unsigned int chroma_subsampling=444, const bool is_rgb=true) const

Save image as a .yuv video file [overloading].

- template<typename tf , typename tc >

 $\label{eq:const_clmg_list} $$\operatorname{const} \ ClmgList< tf > \$ \ primitives, \ const \ ClmgList< tc > \$ \ const \ char * const \ filename) \ const $$$

Save 3D object as an Object File Format (.off) file.

• template<typename tf , typename tc >

const CImg

 T > & save_off (const CImgList< tf > &primitives, const CImgList< t
c > &colors, std::FILE *const file) const

Save 3D object as an Object File Format (.off) file [overloading].

const Clmg < T > & save_video (const char *const filename, const unsigned int fps=25, const char *codec=0, const bool keep_open=false) const

Save volumetric image as a video, using the OpenCV library.

• const Clmg< T > & save_ffmpeg_external (const char *const filename, const unsigned int fps=25, const char *const codec=0, const unsigned int bitrate=2048) const

Save volumetric image as a video, using ffmpeg external binary.

const Clmg< T > & save_gzip_external (const char *const filename) const
 Save image using gzip external binary.

 const Clmg< T > & save_graphicsmagick_external (const char *const filename, const unsigned int quality=100) const

Save image using GraphicsMagick's external binary.

const Clmg < T > & save_imagemagick_external (const char *const filename, const unsigned int quality=100)
 const

Save image using ImageMagick's external binary.

- const Clmg< T > & save_medcon_external (const char *const filename) const

Save image as a Dicom file.

- const Clmg < T > & save_other (const char *const filename, const unsigned int quality=100) const
- Clmg< ucharT > get serialize (const bool is compressed=false) const

Serialize a Clmg<T> instance into a raw Clmg<unsigned char> buffer.

• static void save_empty_cimg (const char *const filename, const unsigned int dx, const unsigned int dy=1, const unsigned int dz=1, const unsigned int dc=1)

Save blank image as a .cimg file.

• static void save_empty_cimg (std::FILE *const file, const unsigned int dx, const unsigned int dy=1, const unsigned int dz=1, const unsigned int dz=1)

Save blank image as a .cimg file [overloading].

8.1.1 Detailed Description

```
template < typename T> struct cimg_library::Clmg< T>
```

Class representing an image (up to 4 dimensions wide), each pixel being of type T.

This is the main class of the CImg Library. It declares and constructs an image, allows access to its pixel values, and is able to perform various image operations.

Image representation

A CImg image is defined as an instance of the container CImg < T>, which contains a regular grid of pixels, each pixel value being of type T. The image grid can have up to 4 dimensions: width, height, depth and number of channels. Usually, the three first dimensions are used to describe spatial coordinates (x, y, z), while the number of channels is rather used as a vector-valued dimension (it may describe the R,G,B color channels for instance). If you need a fifth dimension, you can use image lists CImgList < T> rather than simple images CImg < T>.

Thus, the CImg < T > class is able to represent volumetric images of vector-valued pixels, as well as images with less dimensions (1D scalar signal, 2D color images, ...). Most member functions of the class Clmg < T > are designed to handle this maximum case of (3+1) dimensions.

Concerning the pixel value type T: fully supported template types are the basic C++ types: unsigned char, char, short, unsigned int, int, unsigned long, long, float, double, Typically, fast image display can be done using CImg < unsigned char > images, while complex image processing algorithms may be rather coded using CImg < float > or CImg < double > images that have floating-point pixel values. The default value for the template T is float. Using your own template types may be possible. However, you will certainly have to define the complete set of arithmetic and logical operators for your class.

Image structure

The CImg<T> structure contains *six* fields:

- _width defines the number of columns of the image (size along the X-axis).
- _height defines the number of *rows* of the image (size along the Y-axis).
- _depth defines the number of *slices* of the image (size along the Z-axis).
- _spectrum defines the number of *channels* of the image (size along the C-axis).
- _data defines a pointer to the pixel data (of type T).
- _is_shared is a boolean that tells if the memory buffer data is shared with another image.

You can access these fields publicly although it is recommended to use the dedicated functions width(), height(), depth(), spectrum() and ptr() to do so. Image dimensions are not limited to a specific range (as long as you got enough available memory). A value of 1 usually means that the corresponding dimension is flat. If one of the dimensions is 0, or if the data pointer is null, the image is considered as *empty*. Empty images should not contain any pixel data and thus, will not be processed by Clmg member functions (a ClmgInstanceException will be thrown instead). Pixel data are stored in memory, in a non interlaced mode (See How pixel data are stored with Clmg.).

Image declaration and construction

Declaring an image can be done by using one of the several available constructors. Here is a list of the most used:

- · Construct images from arbitrary dimensions:
 - CImg<char> img; declares an empty image.
 - CImg<unsigned char> img(128,128); declares a 128x128 greyscale image with unsigned char pixel values.
 - CImg<double> img(3,3); declares a 3x3 matrix with double coefficients.
 - CImg<unsigned char> img(256,256,1,3); declares a 256x256x1x3 (color) image (colors are stored as an image with three channels).
 - CImg<double> img(128,128,128); declares a 128x128x128 volumetric and greyscale image (with double pixel values).
 - CImg<> img (128, 128, 128, 3); declares a 128x128x128 volumetric color image (with float pixels, which is the default value of the template parameter T).
 - Note: images pixels are not automatically initialized to 0. You may use the function fill() to do it, or use the specific constructor taking 5 parameters like this: CImg<> img(128, 128, 128, 128, 3, 0); declares a 128x128x128 volumetric color image with all pixel values to 0.
- · Construct images from filenames:
 - CImg<unsigned char> img("image.jpg"); reads a JPEG color image from the file "image.jpg".
 - CImg<float> img("analyze.hdr"); reads a volumetric image (ANALYZE7.5 format) from the file "analyze.hdr".
 - **Note:** You need to install ImageMagick to be able to read common compressed image formats (JPG,PNG, ...) (See Files IO in Clmg.).

- · Construct images from C-style arrays:
 - CImg<int> img(data_buffer, 256, 256); constructs a 256x256 greyscale image from a int* buffer data_buffer (of size 256x256=65536).
 - CImg<unsigned char> img(data_buffer, 256, 256, 1, 3); constructs a 256x256 color image from a unsigned char* buffer data_buffer (where R,G,B channels follow each others).

The complete list of constructors can be found here.

Most useful functions

The CImg<T> class contains a lot of functions that operates on images. Some of the most useful are:

- operator()(): Read or write pixel values.
- display(): displays the image in a new window.

8.1.2 Member Typedef Documentation

8.1.2.1 iterator

```
typedef T* iterator
```

Simple iterator type, to loop through each pixel value of an image instance.

Note

- The CImg<T>::iterator type is defined to be a T*.
- You will seldom have to use iterators in Clmg, most classical operations being achieved (often in a faster way) using methods of CImg<T>.

Example

8.1.2.2 const_iterator

```
typedef const T* const_iterator
```

Simple const iterator type, to loop through each pixel value of a const image instance.

Note

- The CImg<T>::const_iterator type is defined to be a const T*.
- You will seldom have to use iterators in Clmg, most classical operations being achieved (often in a faster way) using methods of CImg<T>.

Example

8.1.2.3 value_type

```
typedef T value_type
```

Pixel value type.

Refer to the type of the pixel values of an image instance.

Note

- The CImg<T>::value_type type of a CImg<T> is defined to be a T.
- CImg<T>::value_type is actually not used in Clmg methods. It has been mainly defined for compatibility with STL naming conventions.

8.1.3 Constructor & Destructor Documentation

```
8.1.3.1 ∼Clmg()
```

```
\simCImg ( )
```

Destroy image.

Note

- The pixel buffer data() is deallocated if necessary, e.g. for non-empty and non-shared image instances.
- · Destroying an empty or shared image does nothing actually.

Warning

• When destroying a non-shared image, make sure that you will *not* operate on a remaining shared image that shares its buffer with the destroyed instance, in order to avoid further invalid memory access (to a deallocated buffer).

```
8.1.3.2 Clmg() [1/13]
```

```
CImg ()
```

Construct empty image.

Note

- An empty image has no pixel data and all of its dimensions width(), height(), depth(), spectrum() are set to 0, as well as its pixel buffer pointer data().
- An empty image may be re-assigned afterwards, e.g. with the family of assign(unsigned int,unsigned int,unsigned int,unsigned int,unsigned int) methods, or by operator=(const CImg<t>&). In all cases, the type of pixels stays T.
- · An empty image is never shared.

Example

Construct image with specified size.

Parameters

size⊷	Image width().
_X	
size⊷	Image height().
_y	
size⊷	Image depth().
_Z	
size⊷	Image spectrum() (number of channels).
_c	

Note

- It is able to create only *non-shared* images, and allocates thus a pixel buffer data() for each constructed image instance.
- Setting one dimension size_x,size_y,size_z or size_c to 0 leads to the construction of an *empty* image.
- A CImgInstanceException is thrown when the pixel buffer cannot be allocated (e.g. when requested size is too big for available memory).

Warning

• The allocated pixel buffer is *not* filled with a default value, and is likely to contain garbage values. In order to initialize pixel values during construction (e.g. with 0), use constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,unsigned int,T) instead.

Example

Construct image with specified size and initialize pixel values.

const T & value)

Parameters

size⊷	Image width().
_X	
size⊷	Image height().
y	
size⊷	Image depth().
_Z	
size⊷	Image spectrum() (number of channels).
_c	
value	Initialization value.

Note

• Similar to Clmg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills the pixel buffer with the specified value.

Warning

• It cannot be used to construct a vector-valued image and initialize it with *vector-valued* pixels (e.g. RGB vector, for color images). For this task, you may use fillC() after construction.

Construct image with specified size and initialize pixel values from a sequence of integers.

Construct a new image instance of size $size_x x size_y x size_z x size_c$, with pixels of type T, and initialize pixel values from the specified sequence of integers value0, value1,...

Parameters

size⇔	Image width().
_X	
size⊷	Image height().
_y	
size⊷	Image depth().
_Z	
size⇔	Image spectrum() (number of channels).
_c	
value0	First value of the initialization sequence (must be an integer).
value1	Second value of the initialization sequence (must be an integer).

Note

• Similar to Clmg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills the pixel buffer with a sequence of specified integer values.

Warning

• You must specify *exactly* size_x*size_y*size_z*size_c integers in the initialization sequence. Otherwise, the constructor may crash or fill your image pixels with garbage.

Example

```
const CImg<float> img(2,2,1,3, ) // Construct a 2x2 color (RGB) image 0,255,0,255,  // Set the 4 values for the red component 0,0,255,255, // Set the 4 values for the green component 64,64,64,64); // Set the 4 values for the blue component img.resize(150,150).display();
```

```
8.1.3.6 Clmg() [5/13]
```

```
CImg (

const unsigned int size_x,
const unsigned int size_y,
const unsigned int size_z,
const unsigned int size_c,
const double value0,
const double value1,
...)
```

Construct image with specified size and initialize pixel values from a sequence of doubles.

Construct a new image instance of size $size_x x size_y x size_z x size_c$, with pixels of type T, and initialize pixel values from the specified sequence of doubles value0, value1,...

Parameters

size⊷	Image width().
_X	
size⊷	Image height().
_y	
size⊷	Image depth().
_Z	
size⊷	Image spectrum() (number of channels).
_c	
value0	First value of the initialization sequence (must be a double).
value1	Second value of the initialization sequence (must be a double).

Note

• Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int,int,int,...), but takes a sequence of double values instead of integers.

Warning

• You must specify exactly dx*dy*dz*dc doubles in the initialization sequence. Otherwise, the constructor may crash or fill your image with garbage. For instance, the code below will probably crash on most platforms:

```
const CImg<float> img(2,2,1,1, 0.5,0.5,255,255); // FAIL: The two last arguments are 'int', not 'double'!
```

Construct image with specified size and initialize pixel values from a value string.

Construct a new image instance of size $size_x x size_y x size_z x size_c$, with pixels of type T, and initializes pixel values from the specified string values.

Parameters

size_x	Image width().
size_y	Image height().
size_z	Image depth().
size_c	Image spectrum() (number of channels).
values	Value string describing the way pixel values are set.
repeat_values	Tells if the value filling process is repeated over the image.

Note

- Similar to Clmg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills the pixel buffer with values described in the value string values.
- Value string values may describe two different filling processes:
 - Either values is a sequences of values assigned to the image pixels, as in "1,2,3,7,8,2". In this case, set repeat_values to true to periodically fill the image with the value sequence.
 - Either, values is a formula, as in "cos(x/10)*sin(y/20)". In this case, parameter repeat_values is pointless.
- For both cases, specifying repeat_values is mandatory. It disambiguates the possible overloading of constructor Clmg(unsigned int,unsigned int,unsigned int,unsigned int,T) with T being a const char*.
- A CImgArgumentException is thrown when an invalid value string values is specified.

Example

Construct image with specified size and initialize pixel values from a memory buffer.

Construct a new image instance of size $size_x x size_y x size_z x size_c$, with pixels of type T, and initializes pixel values from the specified t* memory buffer.

Parameters

values	Pointer to the input memory buffer.
size_x	Image width().
size_y	Image height().
size_z	Image depth().
size_c	Image spectrum() (number of channels).
is_shared	Tells if input memory buffer must be shared by the current instance.

Note

- If is_shared is false, the image instance allocates its own pixel buffer, and values from the specified input buffer are copied to the instance buffer. If buffer types T and t are different, a regular static cast is performed during buffer copy.
- Otherwise, the image instance does not allocate a new buffer, and uses the input memory buffer as its
 own pixel buffer. This case requires that types T and t are the same. Later, destroying such a shared
 image will not deallocate the pixel buffer, this task being obviously charged to the initial buffer allocator.
- A CImgInstanceException is thrown when the pixel buffer cannot be allocated (e.g. when requested size is too big for available memory).

Warning

• You must take care when operating on a shared image, since it may have an invalid pixel buffer pointer data() (e.g. already deallocated).

Example

Construct image from reading an image file.

Construct a new image instance with pixels of type \mathbb{T} , and initialize pixel values with the data read from an image file.

Parameters

```
filename Filename, as a C-string.
```

Note

- Similar to Clmg(unsigned int,unsigned int,unsigned int,unsigned int), but it reads the image dimensions and pixel values from the specified image file.
- The recognition of the image file format by Clmg higly depends on the tools installed on your system and on the external libraries you used to link your code against.
- Considered pixel type T should better fit the file format specification, or data loss may occur during file load (e.g. constructing a CImg<unsigned char> from a float-valued image file).
- A CImgIOException is thrown when the specified filename cannot be read, or if the file format is not recognized.

Example

Construct image copy.

Construct a new image instance with pixels of type T, as a copy of an existing CImg < t > instance.

Parameters

```
img Input image to copy.
```

Note

- Constructed copy has the same size width() x height() x depth() x spectrum() and pixel values as the input image img.
- If input image img is *shared* and if types T and t are the same, the constructed copy is also *shared*, and shares its pixel buffer with img. Modifying a pixel value in the constructed copy will thus also modifies it in the input image img. This behavior is needful to allow functions to return shared images.
- Otherwise, the constructed copy allocates its own pixel buffer, and copies pixel values from the input image img into its buffer. The copied pixel values may be eventually statically casted if types T and t are different.
- Constructing a copy from an image img when types t and T are the same is significantly faster than with different types.
- A CImgInstanceException is thrown when the pixel buffer cannot be allocated (e.g. not enough available memory).

Advanced copy constructor.

Construct a new image instance with pixels of type T, as a copy of an existing CImg < t > instance, while forcing the shared state of the constructed copy.

Parameters

img	Input image to copy.
is_shared	Tells about the shared state of the constructed copy.

Note

- Similar to Clmg(const Clmg<t>&), except that it allows to decide the shared state of the constructed image, which does not depend anymore on the shared state of the input image img:
 - If is_shared is true, the constructed copy will share its pixel buffer with the input image img.
 For that case, the pixel types T and t must be the same.
 - If is_shared is false, the constructed copy will allocate its own pixel buffer, whether the input image img is shared or not.
- A CImgArgumentException is thrown when a shared copy is requested with different pixel types
 T and t.

Construct image with dimensions borrowed from another image.

Construct a new image instance with pixels of type T, and size get from some dimensions of an existing CImg < t > Imstance.

Parameters

img	Input image from which dimensions are borrowed.
dimensions	C-string describing the image size along the X,Y,Z and C-dimensions.

Note

- Similar to Clmg(unsigned int,unsigned int,unsigned int,unsigned int), but it takes the image dimensions (not its pixel values) from an existing CImg<t> instance.
- The allocated pixel buffer is *not* filled with a default value, and is likely to contain garbage values. In order to initialize pixel values (e.g. with 0), use constructor Clmg(const Clmg<t>&,const char*,T) instead.

Example

Construct image with dimensions borrowed from another image and initialize pixel values.

Construct a new image instance with pixels of type T, and size get from the dimensions of an existing CImg < t > instance, and set all pixel values to specified value.

Parameters

img	Input image from which dimensions are borrowed.
dimensions	String describing the image size along the X,Y,Z and V-dimensions.
value	Value used for initialization.

Note

• Similar to Clmg(const Clmg<t>&,const char*), but it also fills the pixel buffer with the specified value.

```
8.1.3.14 Clmg() [13/13]

CImg (

const CImgDisplay & disp ) [explicit]
```

Construct image from a display window.

Construct a new image instance with pixels of type T, as a snapshot of an existing CImgDisplay instance.

Parameters

```
disp Input display window.
```

Note

- The width() and height() of the constructed image instance are the same as the specified CImg
 Display.
- The depth() and spectrum() of the constructed image instance are respectively set to 1 and 3 (i.e. a 2D color image).
- The image pixels are read as 8-bits RGB values.

8.1.4 Member Function Documentation

```
8.1.4.1 assign() [1/13]

CImg<T>& assign ( )
```

Construct empty image [in-place version].

In-place version of the default constructor Clmg(). It simply resets the instance to an empty image.

Construct image with specified size [in-place version].

const unsigned int $size_c = 1$)

In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int).

const T & value)

Construct image with specified size and initialize pixel values [in-place version].

In-place version of the constructor Clmg(unsigned int,unsigned int,unsigned int,unsigned int,T).

Construct image with specified size and initialize pixel values from a sequence of integers [in-place version].

In-place version of the constructor Clmg(unsigned int,unsigned int,unsigned int,unsigned int,int,int,...).

```
8.1.4.5 assign() [5/13]
```

Construct image with specified size and initialize pixel values from a sequence of doubles [in-place version].

In-place version of the constructor Clmg(unsigned int,unsigned int,unsigned int,unsigned int,double,double,...).

8.1.4.6 assign() [6/13]

Construct image with specified size and initialize pixel values from a value string [in-place version].

In-place version of the constructor Clmg(unsigned int,unsigned int,uns

8.1.4.7 assign() [7/13]

Construct image with specified size and initialize pixel values from a memory buffer [in-place version].

In-place version of the constructor Clmg(const t*,unsigned int,unsigned int,unsigned int,unsigned int).

Construct image from reading an image file [in-place version].

In-place version of the constructor Clmg(const char*).

Construct image copy [in-place version].

In-place version of the constructor Clmg(const Clmg<t>&).

In-place version of the advanced copy constructor.

In-place version of the constructor Clmg(const Clmg<t>&,bool).

Construct image with dimensions borrowed from another image [in-place version].

In-place version of the constructor Clmg(const Clmg<t>&,const char*).

Construct image with dimensions borrowed from another image and initialize pixel values [in-place version].

In-place version of the constructor Clmg(const Clmg<t>&,const char*,T).

Construct image from a display window [in-place version].

In-place version of the constructor Clmg(const ClmgDisplay&).

```
8.1.4.14 clear()
```

```
CImg<T>& clear ( )
```

Construct empty image [in-place version].

Equivalent to assign().

Note

• It has been defined for compatibility with STL naming conventions.

Transfer content of an image instance into another one.

Transfer the dimensions and the pixel buffer content of an image instance into another one, and replace instance by an empty image. It avoids the copy of the pixel buffer when possible.

Parameters

img	Destination image.
-----	--------------------

Note

• Pixel types T and t of source and destination images can be different, though the process is designed to be instantaneous when T and t are the same.

Example

Transfer content of an image instance into a new image in an image list.

Transfer the dimensions and the pixel buffer content of an image instance into a newly inserted image at position pos in specified CImgList < t > instance.

Parameters

list	Destination list.
pos	Position of the newly inserted image in the list.

Generated by Doxygen

Note

- When optional parameter pos is ommited, the image instance is transferred as a new image at the end of the specified list.
- It is convenient to sequentially insert new images into image lists, with no additional copies of memory buffer.

Example

8.1.4.17 swap()

Swap fields of two image instances.

Parameters

```
img Image to swap fields with.
```

Note

• It can be used to interchange the content of two images in a very fast way. Can be convenient when dealing with algorithms requiring two swapping buffers.

Example

8.1.4.18 empty()

```
static CImg<T>& empty ( ) [static]
```

Return a reference to an empty image.

Note

This function is useful mainly to declare optional parameters having type CImg < T > in functions prototypes, e.g.

```
void f(const int x=0, const int y=0, const CImg<float>& img=CImg<float>::empty());
```

Access to a pixel value.

Return a reference to a located pixel value of the image instance, being possibly const, whether the image instance is const or not. This is the standard method to get/set pixel values in CImg < T > images.

Parameters

X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

- Range of pixel coordinates start from (0,0,0,0) to (width() 1, height() 1, depth() 1, spectrum() 1).
- Due to the particular arrangement of the pixel buffers defined in Clmg, you can omit one coordinate if the corresponding dimension is equal to 1. For instance, pixels of a 2D image (depth() equal to 1) can be accessed by img(x,y,c) instead of img(x,y,0,c).

Warning

• There is *no* boundary checking done in this operator, to make it as fast as possible. You *must* take care of out-of-bounds access by yourself, if necessary. For debuging purposes, you may want to define macro 'cimg_verbosity'>=3 to enable additional boundary checking operations in this operator. In that case, warning messages will be printed on the error output when accessing out-of-bounds pixels.

Example

```
CImg<float> img(100,100,1,3,0); // Construct a 100x100x1x3 (color) image with pixels set to '0'
const float
  valR = img(10,10,0,0), // Read red value at coordinates (10,10)
  valG = img(10,10,0,1), // Read green value at coordinates (10,10)
  valB = img(10,10,2), // Read blue value at coordinates (10,10) (Z-coordinate can be omitted)
  avg = (valR + valG + valB)/3; // Compute average pixel value
img(10,10,0) = img(10,10,1) = img(10,10,2) = avg; // Replace the color pixel (10,10) by the average grey
  value
```

8.1.4.20 operator()() [2/2]

Access to a pixel value.

Parameters

X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
wh	Precomputed offset, must be equal to width()*height().
whd	Precomputed offset, must be equal to width()*height()*depth().

Note

• Similar to (but faster than) operator()(). It uses precomputed offsets to optimize memory access. You may use it to optimize the reading/writing of several pixel values in the same image (e.g. in a loop).

8.1.4.21 operator T*()

```
operator T* ( )
```

Implicitely cast an image into a T*.

Implicitely cast a CImg<T> instance into a T* or const T* pointer, whether the image instance is *const* or not. The returned pointer points on the first value of the image pixel buffer.

Note

- It simply returns the pointer data() to the pixel buffer.
- This implicit conversion is convenient to test the empty state of images (data() being 0 in this case), e.g.

• It also allows to use brackets to access pixel values, without need for a CImg<T>::operator[](), e.g.

```
CImg<float> img(100,100); const float value = img[99]; // Access to value of the last pixel on the first row img[510] = 255; // Set pixel value at (10,5)
```

8.1.4.22 operator=() [1/4]

Assign a value to all image pixels.

Assign specified value to each pixel value of the image instance.

Parameters

```
value Value that will be assigned to image pixels.
```

Note

- · The image size is never modified.
- The value may be casted to pixel type T if necessary.

Example

```
CImg<char> img(100,100); // Declare image (with garbage values) img = 0; // Set all pixel values to '0' img = 1.2; // Set all pixel values to '1' (cast of '1.2' as a 'char')
```

Assign pixels values from a specified expression.

Initialize all pixel values from the specified string expression.

Parameters

Note

- String parameter expression may describe different things:
 - If expression is a list of values (as in "1, 2, 3, 8, 3, 2"), or a formula (as in " (x*y) %255"), the pixel values are set from specified expression and the image size is not modified.
 - If expression is a filename (as in "reference.jpg"), the corresponding image file is loaded and replace the image instance. The image size is modified if necessary.

Example

Copy an image into the current image instance.

Similar to the in-place copy constructor assign(const Clmg<t>&).

Copy the content of a display window to the current image instance.

Similar to assign(const ClmgDisplay&).

In-place addition operator.

Add specified value to all pixels of an image instance.

Parameters

```
value Value to add.
```

Note

- Resulting pixel values are casted to fit the pixel type T. For instance, adding 0.2 to a CImg<char> is possible but does nothing indeed.
- Overflow values are treated as with standard C++ numeric types. For instance,

```
CImg<unsigned char> img(100,100,1,1,255); // Construct a 100x100 image with pixel values '255' img+=1; // Add '1' to each pixels -> Overflow // here all pixels of image 'img' are equal to '0'.
```

• To prevent value overflow, you may want to consider pixel type T as float or double, and use cut() after addition.

Example

8.1.4.27 operator+=() [2/3]

In-place addition operator.

Add values to image pixels, according to the specified string expression.

Parameters

expression Value string describing the way pixel values are added.

Note

• Similar to operator=(const char*), except that it adds values to the pixels of the current image instance, instead of assigning them.

8.1.4.28 operator+=() [3/3] CImg<T>& operator+= (

const CImg < t > & img)

In-place addition operator.

Add values to image pixels, according to the values of the input image imq.

Parameters

```
img Input image to add.
```

Note

- The size of the image instance is never modified.
- It is not mandatory that input image img has the same size as the image instance. If less values are available in img, then the values are added periodically. For instance, adding one WxH scalar image (spectrum() equal to 1) to one WxH color image (spectrum() equal to 3) means each color channel will be incremented with the same values at the same locations.

Example

```
CImg<float> img1("reference.jpg"); // Load a RGB color image (img1.spectrum()==3)
// Construct a scalar shading (img2.spectrum()==1).
const CImg<float> img2(img1.width(),img.height(),1,1,"255*(x/w)^2");
img1+=img2; // Add shading to each channel of 'img1'
img1.cut(0,255); // Prevent [0,255] overflow
(img2,img1).display();
```

```
8.1.4.29 operator++() [1/2]
```

```
CImg<T>& operator++ ( )
```

In-place increment operator (prefix).

Add 1 to all image pixels, and return a reference to the current incremented image instance.

Note

• Writing ++img is equivalent to img+=1.

```
8.1.4.30 operator++() [2/2]
```

```
CImg<T> operator++ (
    int )
```

In-place increment operator (postfix).

Add 1 to all image pixels, and return a new copy of the initial (pre-incremented) image instance.

Note

• Use the prefixed version operator++() if you don't need a copy of the initial (pre-incremented) image instance, since a useless image copy may be expensive in terms of memory usage.

```
8.1.4.31 operator+() [1/4]

CImg<T> operator+ ( ) const
```

Return a non-shared copy of the image instance.

Note

- Use this operator to ensure you get a non-shared copy of an image instance with same pixel type T. Indeed, the usual copy constructor CImg<T>(const CImg<T>&) returns a shared copy of a shared input image, and it may be not desirable to work on a regular copy (e.g. for a resize operation) if you have no information about the shared state of the input image.
- Writing (+img) is equivalent to CImg<T> (img, false).

Addition operator.

Similar to operator+=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

Addition operator.

Similar to operator+=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

Addition operator.

Similar to operator+=(const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

In-place substraction operator.

Similar to operator+=(const t), except that it performs a substraction instead of an addition.

In-place substraction operator.

Similar to operator+=(const char*), except that it performs a substraction instead of an addition.

In-place substraction operator.

Similar to operator+=(const Clmg<t>&), except that it performs a substraction instead of an addition.

```
8.1.4.38 operator--() [1/2]

CImg<T>& operator-- ( )
```

In-place decrement operator (prefix).

Similar to operator++(), except that it performs a decrement instead of an increment.

In-place decrement operator (postfix).

Similar to operator++(int), except that it performs a decrement instead of an increment.

```
8.1.4.40 operator-() [1/4]

CImg<T> operator- ( ) const
```

Replace each pixel by its opposite value.

Note

• If the computed opposite values are out-of-range, they are treated as with standard C++ numeric types. For instance, the unsigned char opposite of 1 is 255.

Example

Substraction operator.

Similar to operator=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type T, if necessary.

Substraction operator.

Similar to operator-=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type T, if necessary.

Substraction operator.

Similar to operator-=(const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type T, if necessary.

In-place multiplication operator.

Similar to operator+=(const t), except that it performs a multiplication instead of an addition.

In-place multiplication operator.

Similar to operator+=(const char*), except that it performs a multiplication instead of an addition.

In-place multiplication operator.

Replace the image instance by the matrix multiplication between the image instance and the specified matrix img.

Parameters

img | Second operand of the matrix multiplication.

Note

- It does *not* compute a pointwise multiplication between two images. For this purpose, use mul(const CImg<t>&) instead.
- The size of the image instance can be modified by this operator.

Example

Multiplication operator.

Similar to operator*=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

Multiplication operator.

Similar to operator*=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

Multiplication operator.

Similar to operator*=(const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type T, if necessary.

In-place division operator.

Similar to operator+=(const t), except that it performs a division instead of an addition.

In-place division operator.

Similar to operator+=(const char*), except that it performs a division instead of an addition.

In-place division operator.

Replace the image instance by the (right) matrix division between the image instance and the specified matrix imq.

Parameters

```
img Second operand of the matrix division.
```

Note

- It does *not* compute a pointwise division between two images. For this purpose, use div(const C← lmg<t>&) instead.
- It returns the matrix operation A*inverse(img).
- The size of the image instance can be modified by this operator.

Division operator.

Similar to operator/=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

Division operator.

Similar to operator/=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

Division operator.

Similar to operator/=(const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

In-place modulo operator.

Similar to operator+=(const t), except that it performs a modulo operation instead of an addition.

In-place modulo operator.

Similar to operator+=(const char*), except that it performs a modulo operation instead of an addition.

In-place modulo operator.

Similar to operator+=(const Clmg<t>&), except that it performs a modulo operation instead of an addition.

Modulo operator.

Similar to operator%=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type \mathbb{T} , if necessary.

Modulo operator.

Similar to operator%=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type T, if necessary.

Modulo operator.

Similar to operator%=(const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image may be a superset of the initial pixel type T, if necessary.

In-place bitwise AND operator.

Similar to operator+=(const t), except that it performs a bitwise AND operation instead of an addition.

In-place bitwise AND operator.

Similar to operator+=(const char*), except that it performs a bitwise AND operation instead of an addition.

```
8.1.4.64 operator &=() [3/3]
```

In-place bitwise AND operator.

Similar to operator+=(const Clmg<t>&), except that it performs a bitwise AND operation instead of an addition.

```
8.1.4.65 operator &() [1/3]
```

```
CImg<T> operator& ( const t value) const
```

Bitwise AND operator.

Similar to operator&=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is $\verb|T|$.

```
8.1.4.66 operator &() [2/3]
```

Bitwise AND operator.

Similar to operator&=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \mathbb{T} .

```
8.1.4.67 operator &() [3/3]
```

Bitwise AND operator.

Similar to operator&=(const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

```
8.1.4.68 operator" | =() [1/3]
```

In-place bitwise OR operator.

Similar to operator+=(const t), except that it performs a bitwise OR operation instead of an addition.

In-place bitwise OR operator.

Similar to operator+=(const char*), except that it performs a bitwise OR operation instead of an addition.

In-place bitwise OR operator.

Similar to operator+=(const Clmg<t>&), except that it performs a bitwise OR operation instead of an addition.

Bitwise OR operator.

Similar to operator = (const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

Bitwise OR operator.

Similar to operator = (const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

Bitwise OR operator.

Similar to operator |= (const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

```
8.1.4.74 operator^=() [1/3]
```

```
CImg<T>& operator^{\wedge}= ( const t value )
```

In-place bitwise XOR operator.

Similar to operator+=(const t), except that it performs a bitwise XOR operation instead of an addition.

Warning

• It does *not* compute the *power* of pixel values. For this purpose, use pow(const t) instead.

```
8.1.4.75 operator^=() [2/3]  CImg < T > \& operator ^= ( const char *const expression )
```

In-place bitwise XOR operator.

Similar to operator+=(const char*), except that it performs a bitwise XOR operation instead of an addition.

Warning

• It does not compute the power of pixel values. For this purpose, use pow(const char*) instead.

In-place bitwise XOR operator.

Similar to operator+=(const CImg < t > &), except that it performs a bitwise XOR operation instead of an addition.

Warning

• It does *not* compute the *power* of pixel values. For this purpose, use pow(const Clmg<t>&) instead.

Bitwise XOR operator.

Similar to operator $^{\wedge}$ =(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

Bitwise XOR operator.

Similar to operator $^{\wedge}$ =(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is \mathbb{T} .

Bitwise XOR operator.

Similar to operator $^-$ =(const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

In-place bitwise left shift operator.

Similar to operator+=(const t), except that it performs a bitwise left shift instead of an addition.

In-place bitwise left shift operator.

Similar to operator+=(const char*), except that it performs a bitwise left shift instead of an addition.

In-place bitwise left shift operator.

Similar to operator+=(const Clmg<t>&), except that it performs a bitwise left shift instead of an addition.

Bitwise left shift operator.

Similar to operator <<= (const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

Bitwise left shift operator.

Similar to operator<<=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

Bitwise left shift operator.

Similar to operator <<= (const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

In-place bitwise right shift operator.

Similar to operator+=(const t), except that it performs a bitwise right shift instead of an addition.

In-place bitwise right shift operator.

Similar to operator+=(const char*), except that it performs a bitwise right shift instead of an addition.

In-place bitwise right shift operator.

Similar to operator+=(const Clmg<t>&), except that it performs a bitwise right shift instead of an addition.

Bitwise right shift operator.

Similar to operator>>=(const t), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

Bitwise right shift operator.

Similar to operator>>=(const char*), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

Bitwise right shift operator.

Similar to operator>>=(const Clmg<t>&), except that it returns a new image instance instead of operating in-place. The pixel type of the returned image is T.

Bitwise inversion operator.

Similar to operator-(), except that it compute the bitwise inverse instead of the opposite value.

```
8.1.4.93 operator==() [1/3] bool operator== (

const t value ) const
```

Test if all pixels of an image have the same value.

Return true is all pixels of the image instance are equal to the specified value.

Parameters

value Reference value to compare with.

Test if all pixel values of an image follow a specified expression.

Return true is all pixels of the image instance are equal to the specified expression.

Parameters

expression Value string describing the way pixel values are compared.

```
8.1.4.95 operator==() [3/3] bool operator== ( const CImg< t > & img ) const
```

Test if two images have the same size and values.

Return true if the image instance and the input image img have the same dimensions and pixel values, and false otherwise.

Parameters

```
img Input image to compare with.
```

Note

• The pixel buffer pointers data() of the two compared images do not have to be the same for operator==() to return true. Only the dimensions and the pixel values matter. Thus, the comparison can be true even for different pixel types T and t.

Example

```
const CImg<float> img1(1,3,1,1, 0,1,2); // Construct a 1x3 vector [0;1;2] (with 'float' pixel values) const CImg<char> img2(1,3,1,1, 0,1,2); // Construct a 1x3 vector [0;1;2] (with 'char' pixel values) if (img1==img2) { // Test succeeds, image dimensions and values are the same std::printf("'img1' and 'img2' have same dimensions and values."); }
```

8.1.4.96 operator"!=() [1/3]

Test if pixels of an image are all different from a value.

Return true is all pixels of the image instance are different than the specified value.

Parameters

value Reference value to compare with.

Test if all pixel values of an image are different from a specified expression.

Return true is all pixels of the image instance are different to the specified expression.

Parameters

expression Value string describing the way pixel values are compared.

Test if two images have different sizes or values.

Return true if the image instance and the input image img have different dimensions or pixel values, and false otherwise.

Parameters

img Input image to compare with.

Note

• Writing img1!=img2 is equivalent to ! (img1==img2).

Construct an image list from two images.

Return a new list of image (CImgList instance) containing exactly two elements:

- A copy of the image instance, at position [0].
- A copy of the specified image ${\tt img}$, at position [1].

Parameters

img Input image that will be the second image of the resulting list.

Note

- The family of operator,() is convenient to easily create list of images, but it is also *quite slow* in practice (see warning below).
- Constructed lists contain no shared images. If image instance or input image img are shared, they are inserted as new non-shared copies in the resulting list.
- The pixel type of the returned list may be a superset of the initial pixel type T, if necessary.

Warning

Pipelining operator,() N times will perform N copies of the entire content of a (growing) image list. This
may become very expensive in terms of speed and used memory. You should avoid using this technique
to build a new CImgList instance from several images, if you are seeking for performance. Fast insertions
of images in an image list are possible with CImgList<T>::insert(const CImg<t>&,unsigned int,bool) or
move_to(CImgList<t>&,unsigned int).

Example

```
const CImg<float>
    img1("reference.jpg"),
    img2 = img1.get_mirror('x'),
    img3 = img2.get_blur(5);
const CImgList<float> list = (img1,img2); // Create list of two elements from 'img1' and 'img2'
    (list,img3).display(); // Display image list containing copies of 'img1','img2'
    and 'img3'

8.1.4.100 operator,() [2/2]

CImgList< typename cimg::superset<T,t>::type > operator, (
        const CImgList< t > & list ) const
```

Construct an image list from image instance and an input image list.

Return a new list of images (CImgList instance) containing exactly list.size() + 1 elements:

- A copy of the image instance, at position [0].
- A copy of the specified image list list, from positions [1] to [list.size()].

Parameters

list Input image list that will be appended to the image instance.

Note

• Similar to operator, (const Clmg<t>&) const, except that it takes an image list as an argument.

8.1.4.101 operator<()

Split image along specified axis.

Return a new list of images (CImgList instance) containing the splitted components of the instance image along the specified axis.

Parameters

```
axis | Splitting axis (can be 'x','y','z' or 'c')
```

Note

• Similar to get_split(char,int) const, with default second argument.

Example

```
const CImg<unsigned char> img("reference.jpg"); // Load a RGB color image
const CImgList<unsigned char> list = (img<'c'); // Get a list of its three R,G,B channels
(img,list).display();

8.1.4.102 pixel_type()

static const char* pixel_type ( ) [static]</pre>
```

Return the type of image pixel values as a C string.

Return a char* string containing the usual type name of the image pixel values (i.e. a stringified version of the template parameter ${\tt T}$).

Note

- The returned string may contain spaces (as in "unsigned char").
- If the pixel type T does not correspond to a registered type, the string "unknown" is returned.

8.1.4.103 width()

```
int width ( ) const
```

Return the number of image columns.

Return the image width, i.e. the image dimension along the X-axis.

Note

- The width() of an empty image is equal to 0.
- width() is typically equal to 1 when considering images as vectors for matrix calculations.
- width() returns an int, although the image width is internally stored as an unsigned int. Using an int is safer and prevents arithmetic traps possibly encountered when doing calculations involving unsigned int variables. Access to the initial unsigned int variable is possible (though not recommended) by (*this)._width.

8.1.4.104 height()

```
int height ( ) const
```

Return the number of image rows.

Return the image height, i.e. the image dimension along the Y-axis.

Note

- The height() of an empty image is equal to 0.
- height() returns an int, although the image height is internally stored as an unsigned int. Using
 an int is safer and prevents arithmetic traps possibly encountered when doing calculations involving
 unsigned int variables. Access to the initial unsigned int variable is possible (though not recommended) by (*this)._height.

8.1.4.105 depth()

```
int depth ( ) const
```

Return the number of image slices.

Return the image depth, i.e. the image dimension along the Z-axis.

Note

- The depth() of an empty image is equal to 0.
- depth() is typically equal to 1 when considering usual 2D images. When depth()> 1, the image is said to be *volumetric*.
- depth() returns an int, although the image depth is internally stored as an unsigned int. Using an int is safer and prevents arithmetic traps possibly encountered when doing calculations involving unsigned int variables. Access to the initial unsigned int variable is possible (though not recommended) by (*this)._depth.

8.1.4.106 spectrum()

```
int spectrum ( ) const
```

Return the number of image channels.

Return the number of image channels, i.e. the image dimension along the C-axis.

Note

- The spectrum() of an empty image is equal to 0.
- spectrum() is typically equal to 1 when considering scalar-valued images, to 3 for RGB-coded color images, and to 4 for RGBA-coded color images (with alpha-channel). The number of channels of an image instance is not limited. The meaning of the pixel values is not linked up to the number of channels (e.g. a 4-channel image may indifferently stands for a RGBA or CMYK color image).
- spectrum() returns an int, although the image spectrum is internally stored as an unsigned int. Using an int is safer and prevents arithmetic traps possibly encountered when doing calculations involving unsigned int variables. Access to the initial unsigned int variable is possible (though not recommended) by (*this)._spectrum.

8.1.4.107 size()

```
ulongT size ( ) const
```

Return the total number of pixel values.

Return width () *height () *depth () *spectrum (), i.e. the total number of values of type T in the pixel buffer of the image instance.

Note

- The size() of an empty image is equal to 0.
- The allocated memory size for a pixel buffer of a non-shared CImg<T> instance is equal to size()*sizeof(T).

Example

```
8.1.4.108 data() [1/2]

T* data ( )
```

Return a pointer to the first pixel value.

Return a T*, or a const T* pointer to the first value in the pixel buffer of the image instance, whether the instance is const or not.

Note

- The data() of an empty image is equal to 0 (null pointer).
- The allocated pixel buffer for the image instance starts from data() and goes to data()+size()
 1 (included).
- To get the pointer to one particular location of the pixel buffer, use data(unsigned int,unsigned int,unsigned int,unsigned int) instead.

```
8.1.4.109 data() [2/2]

T* data (

const unsigned int x,

const unsigned int y = 0,

const unsigned int z = 0,

const unsigned int c = 0)
```

Return a pointer to a located pixel value.

Return a T*, or a const T* pointer to the value located at (x,y,z,c) in the pixel buffer of the image instance, whether the instance is const or not.

Parameters

X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

• Writing img.data(x, y, z, c) is equivalent to & (img(x, y, z, c)). Thus, this method has the same properties as operator()(unsigned int,unsigned int,unsigned int,unsigned int).

8.1.4.110 offset()

Return the offset to a located pixel value, with respect to the beginning of the pixel buffer.

Parameters

X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

• Writing img.data(x,y,z,c) is equivalent to & (img(x,y,z,c)) - img.data(). Thus, this method has the same properties as operator()(unsigned int,unsigned int,unsigned int,unsigned int).

Example

8.1.4.111 begin()

```
iterator begin ( )
```

Return a Clmg<T>::iterator pointing to the first pixel value.

Note

- Equivalent to data().
- · It has been mainly defined for compatibility with STL naming conventions.

```
8.1.4.112 end()
```

```
iterator end ( )
```

Return a Clmg<T>::iterator pointing next to the last pixel value.

Note

- Writing img.end() is equivalent to img.data() + img.size().
- · It has been mainly defined for compatibility with STL naming conventions.

Warning

The returned iterator actually points to a value located *outside* the acceptable bounds of the pixel buffer.
 Trying to read or write the content of the returned iterator will probably result in a crash. Use it mainly as a strict upper bound for a CImg<T>::iterator.

Example

```
CImg<float> img(100,100,1,3); // Define a 100x100 RGB color image
// 'img.end()' used below as an upper bound for the iterator.
for (CImg<float>::iterator it = img.begin(); it<img.end(); ++it)
    *it = 0;

8.1.4.113 front()</pre>
```

Return a reference to the first pixel value.

Note

- Writing img.front() is equivalent to img[0], or img(0,0,0,0).
- It has been mainly defined for compatibility with STL naming conventions.

```
8.1.4.114 back()

T& back ( )
```

Return a reference to the last pixel value.

Note

- Writing img.back() is equivalent to img[img.size() 1], or img(img.width() 1, img.height() 1, img.depth() 1, img.spectrum() 1).
- It has been mainly defined for compatibility with STL naming conventions.

Access to a pixel value at a specified offset, using Dirichlet boundary conditions.

Return a reference to the pixel value of the image instance located at a specified offset, or to a specified default value in case of out-of-bounds access.

Parameters

offset	Offset to the desired pixel value.
out_value	Default value returned if offset is outside image bounds.

Note

- Writing img.at (offset,out_value) is similar to img[offset], except that if offset is outside bounds (e.g. offset<0 or offset>=img.size()), a reference to a value out_value is safely returned instead.
- Due to the additional boundary checking operation, this method is slower than operator()(). Use it when you are *not* sure about the validity of the specified pixel offset.

```
8.1.4.116 at() [2/2]

T& at (

const int offset)
```

Access to a pixel value at a specified offset, using Neumann boundary conditions.

Return a reference to the pixel value of the image instance located at a specified offset, or to the nearest pixel location in the image instance in case of out-of-bounds access.

Parameters

offset	Offset to the desired pixel value.
--------	------------------------------------

Note

- Similar to at(int,const T), except that an out-of-bounds access returns the value of the nearest pixel in the image instance, regarding the specified offset, i.e.
 - If offset<0, then img[0] is returned.
 - If offset>=img.size(), then img[img.size() 1] is returned.
- Due to the additional boundary checking operation, this method is slower than operator()(). Use it when you are *not* sure about the validity of the specified pixel offset.
- If you know your image instance is not empty, you may rather use the slightly faster method $_\texttt{at}$ (int).

Access to a pixel value, using Dirichlet boundary conditions for the X-coordinate.

Return a reference to the pixel value of the image instance located at (x,y,z,c), or to a specified default value in case of out-of-bounds access along the X-axis.

Parameters

X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
out_value	Default value returned if (x,y,z,c) is outside image bounds.

Note

- Similar to operator()(), except that an out-of-bounds access along the X-axis returns the specified value out_value.
- Due to the additional boundary checking operation, this method is slower than operator()(). Use it when you are *not* sure about the validity of the specified pixel coordinates.

Warning

• There is *no* boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.

```
8.1.4.118 atX() [2/2]  \text{T\& atX (} \\ \text{const int } x, \\ \text{const int } y = 0, \\ \text{const int } z = 0, \\ \text{const int } c = 0 \text{ ) }
```

Access to a pixel value, using Neumann boundary conditions for the X-coordinate.

Return a reference to the pixel value of the image instance located at (x,y,z,c), or to the nearest pixel location in the image instance in case of out-of-bounds access along the X-axis.

Parameters

X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

- Similar to at(int,int,int,const T), except that an out-of-bounds access returns the value of the nearest pixel in the image instance, regarding the specified X-coordinate.
- Due to the additional boundary checking operation, this method is slower than operator()(). Use it when you are *not* sure about the validity of the specified pixel coordinates.
- If you know your image instance is *not* empty, you may rather use the slightly faster method _← at (int,int,int,int).

Warning

• There is *no* boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.

Access to a pixel value, using Dirichlet boundary conditions for the X and Y-coordinates.

Similar to atX(int,int,int,int,const T), except that boundary checking is performed both on X and Y-coordinates.

Access to a pixel value, using Neumann boundary conditions for the X and Y-coordinates.

Similar to atX(int,int,int,int), except that boundary checking is performed both on X and Y-coordinates.

Note

If you know your image instance is not empty, you may rather use the slightly faster method _atX← Y (int,int,int,int).

Access to a pixel value, using Dirichlet boundary conditions for the X,Y and Z-coordinates.

Similar to atX(int,int,int,const T), except that boundary checking is performed both on X,Y and Z-coordinates.

Access to a pixel value, using Neumann boundary conditions for the X,Y and Z-coordinates.

Similar to atX(int,int,int,int), except that boundary checking is performed both on X,Y and Z-coordinates.

Note

• If you know your image instance is *not* empty, you may rather use the slightly faster method _atXY
Z(int,int,int,int).

Access to a pixel value, using Dirichlet boundary conditions.

Similar to atX(int,int,int,int,const T), except that boundary checking is performed on all X,Y,Z and C-coordinates.

Access to a pixel value, using Neumann boundary conditions.

Similar to atX(int,int,int,int), except that boundary checking is performed on all X,Y,Z and C-coordinates.

Note

• If you know your image instance is *not* empty, you may rather use the slightly faster method _atXYZ \leftarrow C(int,int,int).

Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X-coordinate.

Return a linearly-interpolated pixel value of the image instance located at (fx,y,z,c), or a specified default value in case of out-of-bounds access along the X-axis.

Parameters

fx	X-coordinate of the pixel value (float-valued).
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
out_value	Default value returned if (fx,y,z,c) is outside image bounds.

Note

- Similar to atX(int,int,int,const T), except that the returned pixel value is approximated by a linear interpolation along the X-axis, if corresponding coordinates are not integers.
- The type of the returned pixel value is extended to float, if the pixel type T is not float-valued.

Warning

• There is *no* boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.

8.1.4.126 linear_atX() [2/2]

Return pixel value, using linear interpolation and Neumann boundary conditions for the X-coordinate.

Return a linearly-interpolated pixel value of the image instance located at (fx,y,z,c), or the value of the nearest pixel location in the image instance in case of out-of-bounds access along the X-axis.

Parameters

fx	X-coordinate of the pixel value (float-valued).
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

- Similar to linear_atX(float,int,int,const T) const, except that an out-of-bounds access returns the value of the nearest pixel in the image instance, regarding the specified X-coordinate.
- If you know your image instance is *not* empty, you may rather use the slightly faster method _linear ← _atX(float,int,int).

Warning

 There is no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.

8.1.4.127 linear_atXY() [1/2]

Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X and Y-coordinates.

Similar to linear_atX(float,int,int,const T) const, except that the linear interpolation and the boundary checking are achieved both for X and Y-coordinates.

Return pixel value, using linear interpolation and Neumann boundary conditions for the X and Y-coordinates.

Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking are achieved both for X and Y-coordinates.

Note

• If you know your image instance is *not* empty, you may rather use the slightly faster method _linear ← _atXY (float, float, int, int).

8.1.4.129 linear_atXYZ() [1/2]

Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X,Y and Z-coordinates.

Similar to linear_atX(float,int,int,const T) const, except that the linear interpolation and the boundary checking are achieved both for X,Y and Z-coordinates.

8.1.4.130 linear_atXYZ() [2/2]

Return pixel value, using linear interpolation and Neumann boundary conditions for the X,Y and Z-coordinates.

Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking are achieved both for X,Y and Z-coordinates.

Note

If you know your image instance is not empty, you may rather use the slightly faster method _linear ← _atXYZ (float, float, float, int).

8.1.4.131 linear_atXYZC() [1/2]

Return pixel value, using linear interpolation and Dirichlet boundary conditions for all X,Y,Z,C-coordinates.

Similar to linear_atX(float,int,int,int,const T) const, except that the linear interpolation and the boundary checking are achieved for all X,Y,Z and C-coordinates.

8.1.4.132 linear_atXYZC() [2/2]

Return pixel value, using linear interpolation and Neumann boundary conditions for all X,Y,Z and C-coordinates.

Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking are achieved for all X,Y,Z and C-coordinates.

Note

• If you know your image instance is *not* empty, you may rather use the slightly faster method _linear ← _atXYZC (float, float, float, float).

```
8.1.4.133 cubic_atX() [1/2]
```

Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X-coordinate.

Return a cubicly-interpolated pixel value of the image instance located at (fx,y,z,c), or a specified default value in case of out-of-bounds access along the X-axis. The cubic interpolation uses Hermite splines.

Parameters

fx	d X-coordinate of the pixel value (float-valued).
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
out_value	Default value returned if (fx,y,z,c) is outside image bounds.

Note

- Similar to linear_atX(float,int,int,const T) const, except that the returned pixel value is approximated by a *cubic* interpolation along the X-axis.
- The type of the returned pixel value is extended to float, if the pixel type T is not float-valued.

Warning

• There is *no* boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.

8.1.4.134 cubic_cut_atX() [1/2]

Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the X-coordinate.

Similar to cubic_atX(float,int,int,const T) const, except that the return value is clamped to stay in the min/max range of the datatype T.

8.1.4.135 cubic_atX() [2/2]

Return pixel value, using cubic interpolation and Neumann boundary conditions for the X-coordinate.

Return a cubicly-interpolated pixel value of the image instance located at (fx,y,z,c), or the value of the nearest pixel location in the image instance in case of out-of-bounds access along the X-axis. The cubic interpolation uses Hermite splines.

Parameters

fx	X-coordinate of the pixel value (float-valued).
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

- Similar to cubic_atX(float,int,int,const T) const, except that the returned pixel value is approximated by a cubic interpolation along the X-axis.
- If you know your image instance is *not* empty, you may rather use the slightly faster method _cubic← _atX(float,int,int,int).

Warning

 There is no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.

Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the X-coordinate.

Similar to cubic_atX(float,int,int,int) const, except that the return value is clamped to stay in the min/max range of the datatype T.

Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X and Y-coordinates.

Similar to cubic_atX(float,int,int,int,const T) const, except that the cubic interpolation and boundary checking are achieved both for X and Y-coordinates.

Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the X,Y-coordinates.

Similar to cubic_atXY(float,float,int,int,const T) const, except that the return value is clamped to stay in the min/max range of the datatype \mathbb{T} .

Return pixel value, using cubic interpolation and Neumann boundary conditions for the X and Y-coordinates.

Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking are achieved for both X and Y-coordinates.

Note

• If you know your image instance is *not* empty, you may rather use the slightly faster method _cubic← _atXY(float, float, int, int).

8.1.4.140 cubic_cut_atXY() [2/2]

Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y-coordinates.

Similar to $cubic_atXY(float,float,int,int)$ const, except that the return value is clamped to stay in the min/max range of the datatype T.

8.1.4.141 cubic_atXYZ() [1/2]

Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X,Y and Z-coordinates.

Similar to cubic_atX(float,int,int,const T) const, except that the cubic interpolation and boundary checking are achieved both for X,Y and Z-coordinates.

8.1.4.142 cubic_cut_atXYZ() [1/2]

Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the XYZ-coordinates.

Similar to cubic_atXYZ(float,float,float,int,const T) const, except that the return value is clamped to stay in the min/max range of the datatype T.

Return pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y and Z-coordinates.

Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking are achieved both for X,Y and Z-coordinates.

Note

• If you know your image instance is *not* empty, you may rather use the slightly faster method _cubic← _atXYZ (float, float, float, int).

8.1.4.144 cubic_cut_atXYZ() [2/2]

Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the XYZ-coordinates.

Similar to $cubic_atXYZ(float,float,float,int)$ const, except that the return value is clamped to stay in the min/max range of the datatype T.

8.1.4.145 set_linear_atX()

Set pixel value, using linear interpolation for the X-coordinates.

Set pixel value at specified coordinates (fx,y,z,c) in the image instance, in a way that the value is spread amongst several neighbors if the pixel coordinates are float-valued.

Parameters

value	Pixel value to set.
fx	X-coordinate of the pixel value (float-valued).
у	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
is added	Tells if the pixel value is added to (true), or simply replace (false) the current image pixel(s).

Returns

A reference to the current image instance.

Note

· Calling this method with out-of-bounds coordinates does nothing.

8.1.4.146 set_linear_atXY()

Set pixel value, using linear interpolation for the X and Y-coordinates.

Similar to set_linear_atX(const T&,float,int,int,bool), except that the linear interpolation is achieved both for X and Y-coordinates.

8.1.4.147 set_linear_atXYZ()

Set pixel value, using linear interpolation for the X,Y and Z-coordinates.

Similar to set_linear_atXY(const T&,float,float,int,int,bool), except that the linear interpolation is achieved both for X,Y and Z-coordinates.

8.1.4.148 value_string()

Return a C-string containing a list of all values of the image instance.

Return a new CImg<char> image whose buffer data() is a char* string describing the list of all pixel values of the image instance (written in base 10), separated by specified separator character.

Parameters

separator	A char character which specifies the separator between values in the returned C-string.	
max_size	Maximum size of the returned image (or 0 if no limits are set).	
format	For float/double-values, tell the printf format used to generate the Ascii representation of the numbers (or 0 for default representation).	

Note

- The returned image is never empty.
- For an empty image instance, the returned string is "".
- If max_size is equal to 0, there are no limits on the size of the returned string.
- Otherwise, if the maximum number of string characters is exceeded, the value string is cut off and terminated by character ' $\0$ '. In that case, the returned image size is $max_size + 1$.

8.1.4.149 is_shared()

```
bool is_shared ( ) const
```

Test shared state of the pixel buffer.

Return true if image instance has a shared memory buffer, and false otherwise.

Note

- A shared image do not own his pixel buffer data() and will not deallocate it on destruction.
- Most of the time, a CImg < T > image instance will not be shared.
- A shared image can only be obtained by a limited set of constructors and methods (see list below).

8.1.4.150 is_empty()

```
bool is_empty ( ) const
```

Test if image instance is empty.

Return true, if image instance is empty, i.e. does *not* contain any pixel values, has dimensions $0 \times 0 \times 0 \times 0$ and a pixel buffer pointer set to 0 (null pointer), and false otherwise.

8.1.4.151 is_inf()

```
bool is_inf ( ) const
```

Test if image instance contains a 'inf' value.

Return true, if image instance contains a 'inf' value, and false otherwise.

```
8.1.4.152 is_nan()
```

```
bool is_nan ( ) const
```

Test if image instance contains a NaN value.

Return true, if image instance contains a NaN value, and false otherwise.

Test if image width and height are equal to specified values.

Test if is_sameX(unsigned int) const and is_sameY(unsigned int) const are both verified.

Test if image width and height are the same as that of another image.

Test if is_sameX(const Clmg<t>&) const and is_sameY(const Clmg<t>&) const are both verified.

Test if image width and height are the same as that of an existing display window.

Test if is_sameX(const CImgDisplay&) const and is_sameY(const CImgDisplay&) const are both verified.

Test if image width and depth are equal to specified values.

Test if is_sameX(unsigned int) const and is_sameZ(unsigned int) const are both verified.

Test if image width and depth are the same as that of another image.

Test if is_sameX(const Clmg<t>&) const and is_sameZ(const Clmg<t>&) const are both verified.

Test if image width and spectrum are equal to specified values.

Test if is_sameX(unsigned int) const and is_sameC(unsigned int) const are both verified.

Test if image width and spectrum are the same as that of another image.

Test if is_sameX(const Clmg<t>&) const and is_sameC(const Clmg<t>&) const are both verified.

Test if image height and depth are equal to specified values.

Test if is_sameY(unsigned int) const and is_sameZ(unsigned int) const are both verified.

Test if image height and depth are the same as that of another image.

Test if is_sameY(const Clmg<t>&) const and is_sameZ(const Clmg<t>&) const are both verified.

Test if image height and spectrum are equal to specified values.

Test if is sameY(unsigned int) const and is sameC(unsigned int) const are both verified.

Test if image height and spectrum are the same as that of another image.

Test if is_sameY(const Clmg<t>&) const and is_sameC(const Clmg<t>&) const are both verified.

Test if image depth and spectrum are equal to specified values.

Test if is_sameZ(unsigned int) const and is_sameC(unsigned int) const are both verified.

Test if image depth and spectrum are the same as that of another image.

 $\label{total const} \textbf{Test if is_sameZ} (const~Clmg < t > \&)~const~and~is_sameC (const~Clmg < t > \&)~const~are~both~verified.$

Test if image width, height and depth are equal to specified values.

Test if is_sameXY(unsigned int,unsigned int) const and is_sameZ(unsigned int) const are both verified.

Test if image width, height and depth are the same as that of another image.

Test if is sameXY(const Clmg<t>&) const and is sameZ(const Clmg<t>&) const are both verified.

Test if image width, height and spectrum are equal to specified values.

Test if is_sameXY(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified.

Test if image width, height and spectrum are the same as that of another image.

Test if is_sameXY(const Clmg<t>&) const and is_sameC(const Clmg<t>&) const are both verified.

Test if image width, depth and spectrum are equal to specified values.

Test if is sameXZ(unsigned int,unsigned int) const and is sameC(unsigned int) const are both verified.

Test if image width, depth and spectrum are the same as that of another image.

Test if is_sameXZ(const Clmg<t>&) const and is_sameC(const Clmg<t>&) const are both verified.

Test if image height, depth and spectrum are equal to specified values.

Test if is_sameYZ(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified.

```
8.1.4.173 is_sameYZC() [2/2] bool is\_sameYZC ( \\ const CImg< t > & img ) const
```

Test if image height, depth and spectrum are the same as that of another image.

Test if is_sameYZ(const Clmg<t>&) const and is_sameC(const Clmg<t>&) const are both verified.

Test if image width, height, depth and spectrum are equal to specified values.

Test if is_sameXYZ(unsigned int,unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified.

Test if image width, height, depth and spectrum are the same as that of another image.

Test if is_sameXYZ(const Clmg<t>&) const and is_sameC(const Clmg<t>&) const are both verified.

8.1.4.176 containsXYZC()

Test if specified coordinates are inside image bounds.

Return true if pixel located at (x,y,z,c) is inside bounds of the image instance, and false otherwise.

Parameters

X	X-coordinate of the pixel value.		
У	Y-coordinate of the pixel value.		
Z	Z-coordinate of the pixel value.		
С	C-coordinate of the pixel value.		

Note

- Return true only if all these conditions are verified:
 - The image instance is *not* empty.

```
- 0<=x<=width() - 1.
- 0<=y<=height() - 1.
- 0<=z<=depth() - 1.
- 0<=c<=spectrum() - 1.</pre>
```

8.1.4.177 contains() [1/5]

Test if pixel value is inside image bounds and get its X,Y,Z and C-coordinates.

Return true, if specified reference refers to a pixel value inside bounds of the image instance, and false otherwise.

Parameters

	pixel	Reference to pixel value to test.
out	X	X-coordinate of the pixel value, if test succeeds.
out	У	Y-coordinate of the pixel value, if test succeeds.
out	Z	Z-coordinate of the pixel value, if test succeeds.
out	С	C-coordinate of the pixel value, if test succeeds.

Note

• Useful to convert an offset to a buffer value into pixel value coordinates:

8.1.4.178 contains() [2/5]

Test if pixel value is inside image bounds and get its X,Y and Z-coordinates.

Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X,Y and Z-coordinates are set.

Test if pixel value is inside image bounds and get its X and Y-coordinates.

Similar to contains(const T&,t&,t&,t&,t&,t) const, except that only the X and Y-coordinates are set.

Test if pixel value is inside image bounds and get its X-coordinate.

Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X-coordinate is set.

Test if pixel value is inside image bounds.

Similar to contains(const T&,t&,t&,t&) const, except that no pixel coordinates are set.

8.1.4.182 is_overlapped()

```
bool is_overlapped (  {\tt const\ CImg<\ t\ >\ \&\ img\ )\ const}
```

Test if pixel buffers of instance and input images overlap.

Return true, if pixel buffers attached to image instance and input image img overlap, and false otherwise.

Parameters

```
img Input image to compare with.
```

Note

- Buffer overlapping may happen when manipulating *shared* images.
- · If two image buffers overlap, operating on one of the image will probably modify the other one.
- Most of the time, CImg<T> instances are *non-shared* and do not overlap between each others.

Example

8.1.4.183 is_object3d()

Test if the set {*this,primitives,colors,opacities} defines a valid 3D object.

Return true is the 3D object represented by the set {*this,primitives,colors,opacities} defines a valid 3D object, and false otherwise. The vertex coordinates are defined by the instance image.

Parameters

	primitives	List of primitives of the 3D object.
colors List of colors of the 3D object.		List of colors of the 3D object.
opacities List (or image) of opacities of the 3D object.		List (or image) of opacities of the 3D object.
	full_check Tells if full checking of the 3D object must be performed.	
out	error_message C-string to contain the error message, if the test does not succe	

Note

- Set full_checking to false to speed-up the 3D object checking. In this case, only the size of each 3D object component is checked.
- Size of the string error_message should be at least 128-bytes long, to be able to contain the error message.

8.1.4.184 is_Clmg3d()

Test if image instance represents a valid serialization of a 3D object.

Return true if the image instance represents a valid serialization of a 3D object, and false otherwise.

Parameters

	full_check	Tells if full checking of the instance must be performed.
out	error_message	C-string to contain the error message, if the test does not succeed.

Note

- Set full_check to false to speed-up the 3D object checking. In this case, only the size of each 3D object component is checked.
- Size of the string error_message should be at least 128-bytes long, to be able to contain the error message.

8.1.4.185 sqr()

```
CImg<T>& sqr ()
```

Compute the square value of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its square value $I_{(x,y,z,c)}^2$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type ${\tt T}$.
- The [new-instance version] returns a CImg < float > image, if the pixel type T is not float-valued.

Example

```
const CImg<float> img("reference.jpg");
(img,img.get_sqr().normalize(0,255)).display();
```

8.1.4.186 sqrt()

```
CImg<T>& sqrt ( )
```

Compute the square root of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its square root $\sqrt{I_{(x,y,z,c)}}$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

Example

```
const CImg<float> img("reference.jpg");
(img,img.get_sqrt().normalize(0,255)).display();
```

```
8.1.4.187 exp()
```

```
CImg<T>& exp ()
```

Compute the exponential of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its exponential $e^{I_{(x,y,z,c)}}$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

8.1.4.188 log()

```
CImg<T>& log ()
```

Compute the logarithm of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its logarithm $\log_e(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg < float > image, if the pixel type T is not float-valued.

8.1.4.189 log2()

```
CImg < T > \& log2 ()
```

Compute the base-2 logarithm of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its base-2 logarithm $\log_2(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

8.1.4.190 log10()

```
CImg<T>& log10 ()
```

Compute the base-10 logarithm of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its base-10 logarithm $\log_{10}(I_{(x,y,z,c)})$.

- The [in-place version] of this method statically casts the computed values to the pixel type ${\tt T}$.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

```
8.1.4.191 abs()
```

```
CImg<T>& abs ( )
```

Compute the absolute value of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its absolute value $|I_{(x,y,z,c)}|$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type ${\tt T}$.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

8.1.4.192 sign()

```
CImg<T>& sign ()
```

Compute the sign of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its sign $\mathrm{sign}(I_{(x,y,z,c)})$.

Note

- The sign is set to:
 - 1 if pixel value is strictly positive.
 - − 1 if pixel value is strictly negative.
 - 0 if pixel value is equal to 0.
- The [in-place version] of this method statically casts the computed values to the pixel type ${\tt T}.$
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

8.1.4.193 cos()

```
CImg<T>&cos()
```

Compute the cosine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its cosine $\cos(I_{(x,y,z,c)})$.

- Pixel values are regarded as being in radian.
- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

```
8.1.4.194 sin()
```

```
CImg<T>& sin ( )
```

Compute the sine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its sine $\sin(I_{(x,y,z,c)})$.

Note

- Pixel values are regarded as being in radian.
- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

8.1.4.195 sinc()

```
CImg<T>& sinc ()
```

Compute the sinc of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its sinc $\operatorname{sinc}(I_{(x,y,z,c)})$.

Note

- Pixel values are regarded as being exin radian.
- The [in-place version] of this method statically casts the computed values to the pixel type ${\tt T}.$
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

8.1.4.196 tan()

```
CImg<T>& tan ( )
```

Compute the tangent of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its tangent $\tan(I_{(x,y,z,c)})$.

- Pixel values are regarded as being exin radian.
- The [in-place version] of this method statically casts the computed values to the pixel type ${\tt T}$.
- The [new-instance version] returns a CImg < float > image, if the pixel type T is not float-valued.

```
8.1.4.197 cosh()
```

```
CImg < T > \& cosh ()
```

Compute the hyperbolic cosine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its hyperbolic cosine $\cosh(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

8.1.4.198 sinh()

```
CImg<T>& sinh ()
```

Compute the hyperbolic sine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its hyperbolic sine $\sinh(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

8.1.4.199 tanh()

```
CImg < T > \& tanh ( )
```

Compute the hyperbolic tangent of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its hyperbolic tangent $\tanh(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

8.1.4.200 acos()

```
CImg<T>& acos ( )
```

Compute the arccosine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its arccosine $a\cos(I_{(x,y,z,c)})$.

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

```
8.1.4.201 asin()
```

```
CImg<T>& asin ( )
```

Compute the arcsine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its arcsine $\mathrm{asin}(I_{(x,y,z,c)}).$

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

8.1.4.202 atan()

```
CImg<T>& atan ( )
```

Compute the arctangent of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its arctangent $atan(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg < float > image, if the pixel type T is not float-valued.

8.1.4.203 atan2()

Compute the arctangent2 of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its arctangent2 $\mathrm{atan2}(I_{(x,y,z,c)})$.

Parameters

```
img | Image whose pixel values specify the second argument of the atan2 () function.
```

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

Example

```
const CImg<float>  img_x(100,100,1,1,"x-w/2",false), \hspace{0.5cm} // \hspace{0.1cm} Define \hspace{0.1cm} an \hspace{0.1cm} horizontal \hspace{0.1cm} centered \hspace{0.1cm} gradient, \hspace{0.1cm} from \hspace{0.1cm} '-width/2' \hspace{0.1cm} to \hspace{0.1cm} 'width/2' \\
```

8.1.4.204 acosh()

```
CImg<T>& acosh ()
```

Compute the hyperbolic arccosine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its arccosineh $a\cosh(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

8.1.4.205 asinh()

```
CImg < T > \& asinh ()
```

Compute the hyperbolic arcsine of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its hyperbolic arcsine $asinh(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

8.1.4.206 atanh()

```
CImg < T > \& atanh ( )
```

Compute the hyperbolic arctangent of each pixel value.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its hyperbolic arctangent $\operatorname{atanh}(I_{(x,y,z,c)})$.

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg<float> image, if the pixel type T is not float-valued.

8.1.4.207 mul()

```
CImg<T>& mul ( const CImg< t > & img)
```

In-place pointwise multiplication.

Compute the pointwise multiplication between the image instance and the specified input image img.

Parameters

img Input image, as the second operand of the multiplication.

Note

- Similar to operator+=(const Clmg<t>&), except that it performs a pointwise multiplication instead of an addition.
- It does not perform a matrix multiplication. For this purpose, use operator*=(const Clmg<t>&) instead.

Example

```
CImg<float>
  img("reference.jpg"),
  shade(img.width,img.height(),1,1,"-(x-w/2)^2-(y-h/2)^2",false);
shade.normalize(0,1);
(img,shade,img.get_mul(shade)).display();
```

8.1.4.208 div()

```
\label{eq:cimg} \begin{array}{ll} \text{CImg} < T > \& \ \text{div} \ ( \\ & \text{const CImg} < \ t \ > \ \& \ \textit{img} \ ) \end{array}
```

In-place pointwise division.

Similar to mul(const Clmg<t>&), except that it performs a pointwise division instead of a multiplication.

Raise each pixel value to a specified power.

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by its power $I^p_{(x,y,z,c)}$.

Parameters

```
p Exponent value.
```

Note

- The [in-place version] of this method statically casts the computed values to the pixel type T.
- The [new-instance version] returns a CImg < float > image, if the pixel type T is not float-valued.

Example

Raise each pixel value to a power, specified from an expression.

Similar to operator+=(const char*), except it performs a pointwise exponentiation instead of an addition.

Raise each pixel value to a power, pointwisely specified from another image.

Similar to operator+=(const Clmg<t>& img), except that it performs an exponentiation instead of an addition.

Compute the bitwise left rotation of each pixel value.

Similar to operator <<= (unsigned int), except that it performs a left rotation instead of a left shift.

Compute the bitwise left rotation of each pixel value.

Similar to operator <<= (const char*), except that it performs a left rotation instead of a left shift.

Compute the bitwise left rotation of each pixel value.

Similar to operator <<= (const Clmg <t>&), except that it performs a left rotation instead of a left shift.

Compute the bitwise right rotation of each pixel value.

Similar to operator>>=(unsigned int), except that it performs a right rotation instead of a right shift.

Compute the bitwise right rotation of each pixel value.

Similar to operator>>=(const char*), except that it performs a right rotation instead of a right shift.

Compute the bitwise right rotation of each pixel value.

Similar to operator>>=(const Clmg<t>&), except that it performs a right rotation instead of a right shift.

```
8.1.4.218 min() [1/3]

CImg<T>& min (

const T & value)
```

Pointwise min operator between instance image and a value.

Parameters

val Value used as the reference argument of the min operator.

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\min(I_{(x,y,z,c)}, \text{val})$.

Pointwise min operator between two images.

Parameters

img Image used as the reference argument of the min operator.

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\min(I_{(x,y,z,c)}, \operatorname{img}_{(x,y,z,c)})$.

Pointwise min operator between an image and an expression.

Parameters

```
expression Math formula as a C-string.
```

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\min(I_{(x,y,z,c)},\exp_{(x,y,z,c)})$.

```
8.1.4.221 max() [1/3]

CImg<T>& max (

const T & value)
```

Pointwise max operator between instance image and a value.

Parameters

val Value used as the reference argument of the max operator.

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\max(I_{(x,y,z,c)}, \mathrm{val})$.

Pointwise max operator between two images.

Parameters

img | Image used as the reference argument of the max operator.

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\max(I_{(x,y,z,c)}, \mathrm{img}_{(x,y,z,c)})$.

```
8.1.4.223 max() [3/3]
CImg<T>& max (
```

Pointwise max operator between an image and an expression.

const char *const expression)

Parameters

```
expression Math formula as a C-string.
```

Note

Replace each pixel value $I_{(x,y,z,c)}$ of the image instance by $\max(I_{(x,y,z,c)},\exp_{(x,y,z,c)})$.

8.1.4.224 min_max()

```
T& min_max ( t & max_val )
```

Return a reference to the minimum pixel value as well as the maximum pixel value.

Parameters

out	. max_val	Maximum pixel value.
-----	-----------	----------------------

8.1.4.225 max_min()

```
T& max_min ( t & min_val )
```

Return a reference to the maximum pixel value as well as the minimum pixel value.

Parameters

out	min_val	Minimum pixel value.
-----	---------	----------------------

8.1.4.226 kth_smallest()

```
T kth_smallest ( {\tt const\ ulongT\ }k\ {\tt )\ const}
```

Return the kth smallest pixel value.

Parameters

k Rank of the search smallest element.

8.1.4.227 variance()

```
double variance ( {\tt const\ unsigned\ int\ } {\it variance\_method\ =\ 1\ )\ {\tt const}
```

Return the variance of the pixel values.

Parameters

variance_method	Method used to estimate the variance. Can be:
	• 0: Second moment, computed as $1/N\sum_{k=1}^N(x_k-\bar{x})^2=1/N\left(\sum_{k=1}^Nx_k^2-\left(\sum_{k=1}^Nx_k\right)^2/N\right) \text{ with } \bar{x}=1/N\sum_{k=1}^Nx_k.$
	• 1: Best unbiased estimator, computed as $\frac{1}{N-1}\sum_{k=1}^{N}(x_k-\bar{x})^2$.
	2: Least median of squares.
	• 3: Least trimmed of squares.

8.1.4.228 variance_mean()

Return the variance as well as the average of the pixel values.

Parameters

	variance_method	Method used to estimate the variance (see variance(const unsigned int) const).
out	mean	Average pixel value.

8.1.4.229 variance_noise()

```
double variance_noise ( {\tt const\ unsigned\ int\ } \textit{variance\_method} = \textit{2} \text{ ) const}
```

Return estimated variance of the noise.

Parameters

variance_method	Method used to compute the variance (see variance(const unsigned int) const).
-----------------	---

Note

Because of structures such as edges in images it is recommanded to use a robust variance estimation. The variance of the noise is estimated by computing the variance of the Laplacian $(\Delta I)^2$ scaled by a factor c insuring $cE[(\Delta I)^2] = \sigma^2$ where σ is the noise variance.

8.1.4.230 MSE()

```
double MSE ( \label{eq:const_cimg} \mbox{const} \ \mbox{Cimg} < \mbox{t} \ > \mbox{\&} \ \mbox{img} \ ) \ \mbox{const}
```

Compute the MSE (Mean-Squared Error) between two images.

Parameters

img Image used as the second argument of the MSE of	operator.
---	-----------

8.1.4.231 PSNR()

```
double PSNR (  {\rm const~CImg} < ~\rm{t} ~>~ \& ~img, \\ {\rm const~double} ~max\_value ~=~ 255~) ~\rm{const}
```

Compute the PSNR (Peak Signal-to-Noise Ratio) between two images.

Parameters

img	Image used as the second argument of the PSNR operator.
max_value	Maximum theoretical value of the signal.

8.1.4.232 eval() [1/3]

Evaluate math formula.

	expression	Math formula, as a C-string.
	Х	Value of the pre-defined variable x.
	у	Value of the pre-defined variable y.
	Z	Value of the pre-defined variable z.
	С	Value of the pre-defined variable c.
	list_inputs	A list of input images attached to the specified math formula.
out	list_outputs	A pointer to a list of output images attached to the specified math formula.

8.1.4.233 eval() [2/3]

Evaluate math formula.

Parameters

out	output	Contains values of output vector returned by the evaluated expression (or is empty if the returned type is scalar).
	expression	Math formula, as a C-string.
	X	Value of the pre-defined variable x.
	У	Value of the pre-defined variable y.
	Z	Value of the pre-defined variable z.
	С	Value of the pre-defined variable c.
	list_inputs	A list of input images attached to the specified math formula.
out	list_outputs	A pointer to a list of output images attached to the specified math formula.

```
8.1.4.234 eval() [3/3]
```

Evaluate math formula on a set of variables.

Parameters

	expression	Math formula, as a C-string.
	xyzc	Set of values (x,y,z,c) used for the evaluation.
	list_inputs	A list of input images attached to the specified math formula.
out	list_outputs	A pointer to a list of output images attached to the specified math formula.

8.1.4.235 magnitude()

Compute norm of the image, viewed as a matrix.

Parameters

magnitude_type	Norm type. Can be:
	• -1: Linf-norm
	• 0: L0 -norm
	• 1: L1-norm
	• 2: L2 -norm
I	

8.1.4.236 dot()

```
double dot ( \label{eq:const_cimg} \mbox{const} \ \mbox{CImg} < \ \mbox{t} \ > \ \mbox{\&} \ \mbox{img} \ \mbox{)} \ \mbox{const}
```

Compute the dot product between instance and argument, viewed as matrices.

Parameters

img	Image used as a second argument of the dot product.
-----	---

8.1.4.237 get_vector_at()

Get vector-valued pixel located at specified position.

Parameters

X	X-coordinate of the pixel value.
y Y-coordinate of the pixel value	
Z	Z-coordinate of the pixel value.

8.1.4.238 get_matrix_at()

Get (square) matrix-valued pixel located at specified position.

Parameters

X	X-coordinate of the pixel value.		
У	Y-coordinate of the pixel value.		
Z	Z-coordinate of the pixel value.		

Note

- The spectrum() of the image must be a square.

8.1.4.239 get_tensor_at()

Get tensor-valued pixel located at specified position.

Parameters

X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.

8.1.4.240 set_vector_at()

Set vector-valued pixel at specified position.

Parameters

vec	Vector to put on the instance image.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.

8.1.4.241 set_matrix_at()

```
const unsigned int x=0, const unsigned int y=0, const unsigned int z=0)
```

Set (square) matrix-valued pixel at specified position.

Parameters

mat	Matrix to put on the instance image.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.

8.1.4.242 set_tensor_at()

```
CImg<T>& set_tensor_at (  const \ CImg < t > \& \ ten, \\ const \ unsigned \ int \ x = 0, \\ const \ unsigned \ int \ y = 0, \\ const \ unsigned \ int \ z = 0 )
```

Set tensor-valued pixel at specified position.

Parameters

ten	Tensor to put on the instance image.
Х	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.

```
8.1.4.243 vector() [1/5]
CImg<T>& vector ( )
Unroll pixel values along axis y.
```

Note

Equivalent to

```
unroll('y');
```

8.1.4.244 diagonal()

```
CImg<T>& diagonal ( )
```

Resize image to become a diagonal matrix.

Note

Transform the image as a diagonal matrix so that each of its initial value becomes a diagonal coefficient.

```
8.1.4.245 identity_matrix() [1/2]

CImg<T>& identity_matrix ( )
```

Replace the image by an identity matrix.

Note

If the instance image is not square, it is resized to a square matrix using its maximum dimension as a reference.

Fill image with a linear sequence of values.

Parameters

a0	Starting value of the sequence.
a1	Ending value of the sequence.

8.1.4.247 transpose()

```
CImg<T>& transpose ( )
```

Transpose the image, viewed as a matrix.

Note

Equivalent to

```
permute_axes("yxzc");
```

8.1.4.248 cross()

Compute the cross product between two 1x3 images, viewed as 3D vectors.

ima	Image used as the second argument of the cross product.
mig	mage about as the second argument of the steep product.

Note

The first argument of the cross product is *this.

8.1.4.249 invert()

Invert the instance image, viewed as a matrix.

Parameters

use_LU Choose the inverting algorithm. Can be: true: LU-based matrix inversion. false: SVD-based matrix inversion.

8.1.4.250 solve()

Solve a system of linear equations.

Parameters

A Matrix of the linear system.

Note

Solve AX = B where B=*this.

8.1.4.251 solve_tridiagonal()

Solve a tridiagonal system of linear equations.

```
A Coefficients of the tridiagonal system. A is a tridiagonal matrix A = [ b0,c0,0,...; a1,b1,c1,0,...; ...; ...,0,aN,bN ], stored as a 3 columns matrix
```

Note

Solve AX=B where B=*this, using the Thomas algorithm.

8.1.4.252 eigen()

Compute eigenvalues and eigenvectors of the instance image, viewed as a matrix.

Parameters

out	val	Vector of the estimated eigenvalues, in decreasing order.
out	vec	Matrix of the estimated eigenvectors, sorted by columns.

8.1.4.253 get_eigen()

```
CImgList<Tfloat> get_eigen ( ) const
```

Compute eigenvalues and eigenvectors of the instance image, viewed as a matrix.

Returns

A list of two images [val; vec], whose meaning is similar as in eigen(Clmg<t>&,Clmg<t>&) const.

8.1.4.254 symmetric_eigen()

Compute eigenvalues and eigenvectors of the instance image, viewed as a symmetric matrix.

Parameters

out	val	Vector of the estimated eigenvalues, in decreasing order.
out	vec	Matrix of the estimated eigenvectors, sorted by columns.

8.1.4.255 get_symmetric_eigen()

```
CImgList<Tfloat> get_symmetric_eigen ( ) const
```

Compute eigenvalues and eigenvectors of the instance image, viewed as a symmetric matrix.

Returns

A list of two images [val; vec], whose meaning are similar as in symmetric_eigen(Clmg<t>&,C \leftarrow lmg<t>&) const.

Sort pixel values and get sorting permutations.

Parameters

out	permutations	Permutation map used for the sorting.	
	is_increasing	Tells if pixel values are sorted in an increasing (true) or decreasing (false) way.	1

Sort pixel values.

Parameters

is_increasing	Tells if pixel values are sorted in an increasing (true) or decreasing (false) way.
axis	Tells if the value sorting must be done along a specific axis. Can be:
	0: All pixel values are sorted, independently on their initial position.
	• 'x': Image columns are sorted, according to the first value in each column.
	 'y': Image rows are sorted, according to the first value in each row.
	 'z': Image slices are sorted, according to the first value in each slice.
	• 'c': Image channels are sorted, according to the first value in each channel.

8.1.4.258 SVD()

Compute the SVD of the instance image, viewed as a general matrix.

Compute the SVD decomposition *this=U*S*V' where U and V are orthogonal matrices and S is a diagonal matrix. V' denotes the matrix transpose of V.

Parameters

out	U	First matrix of the SVD product.
out	S	Coefficients of the second (diagonal) matrix of the SVD product. These coefficients are
		stored as a vector.
out	V	Third matrix of the SVD product.
	sorting	Tells if the diagonal coefficients are sorted (in decreasing order).
	max_iteration	Maximum number of iterations considered for the algorithm convergence.
	lambda	Epsilon used for the algorithm convergence.

Note

The instance matrix can be computed from ${\tt U},{\tt S}$ and ${\tt V}$ by

```
const CImg<> A; // Input matrix (assumed to contain some values) CImg<> U,S,V; A.SVD(U,S,V)
```

8.1.4.259 get_SVD()

Compute the SVD of the instance image, viewed as a general matrix.

Returns

A list of three images [U; S; V], whose meaning is similar as in $SVD(Clmg < t > \&, Clmg < t > \&, C \leftarrow lmg < t > \&, bool, unsigned int, float) const.$

```
8.1.4.260 dijkstra() [1/2]
```

Compute minimal path in a graph, using the Dijkstra algorithm.

distance	An object having operator()(unsigned int i, unsigned int j) which returns distance between two nodes (i,j).
nb_nodes	Number of graph nodes.
starting_node	Index of the starting node. Generated by Doxygen
ending_node	Index of the ending node (set to \sim 0U to ignore ending node).
previous_node	Array that gives the previous node index in the path to the starting node (optional parameter).

Returns

Array of distances of each node to the starting node.

Return minimal path in a graph, using the Dijkstra algorithm.

Parameters

starting_node	Index of the starting node.
ending_node	Index of the ending node.
previous_node	Array that gives the previous node index in the path to the starting node (optional parameter).

Returns

Array of distances of each node to the starting node.

Note

image instance corresponds to the adjacency matrix of the graph.

8.1.4.262 string()

Return an image containing the Ascii codes of the specified string.

Parameters

str	input C-string to encode as an image.
is_last_zero	Tells if the ending '0' character appear in the resulting image.
is_shared	Return result that shares its buffer with str.

Return a 1x1 image containing specified value.

Parameters

```
a0 First vector value.
```

Return a 1x2 image containing specified values.

Parameters

a0	First vector value.
a1	Second vector value.

Return a 1x3 image containing specified values.

Parameters

a0	First vector value.
a1	Second vector value.
a2	Third vector value.

8.1.4.266 vector() [5/5]

Return a 1x4 image containing specified values.

a0	First vector value.
a1	Second vector value.
a2	Third vector value.
аЗ	Fourth vector value.

```
8.1.4.267 matrix() [1/3] static CImg<T> matrix ( const T & a0 ) [static]
```

Return a 1x1 matrix containing specified coefficients.

Parameters

```
a0 First matrix value.
```

Note

Equivalent to vector(const T&).

Return a 2x2 matrix containing specified coefficients.

const T & a3) [static]

Parameters

a0	First matrix value.
a1	Second matrix value.
a2	Third matrix value.
аЗ	Fourth matrix value.

```
8.1.4.269 matrix() [3/3]
```

Return a 3x3 matrix containing specified coefficients.

Parameters

a0 First matrix value.

Parameters

a1	Second matrix value.
a2	Third matrix value.
аЗ	Fourth matrix value.
a4	Fifth matrix value.
а5	Sixth matrix value.
а6	Seventh matrix value.
a7	Eighth matrix value.
a8	Nineth matrix value.

8.1.4.270 tensor()

Return a 1x1 symmetric matrix containing specified coefficients.

Parameters

```
a0 First matrix value.
```

Note

Equivalent to vector(const T&).

Return a NxN identity matrix.

Parameters

```
N Dimension of the matrix.
```

Return a N-numbered sequence vector from a0 to a1.

const T & a1) [static]

Parameters

N	Size of the resulting vector.
a0	Starting value of the sequence.
a1	Ending value of the sequence.

8.1.4.273 rotation_matrix()

Return a 3x3 rotation matrix from an { axis + angle } or a quaternion.

Parameters

X	X-coordinate of the rotation axis, or first quaternion coordinate.	
У	Y-coordinate of the rotation axis, or second quaternion coordinate.	
Z	Z-coordinate of the rotation axis, or third quaternion coordinate.	
w Angle of the rotation axis (in degree), or fourth quaternion coordinates		
is_quaternion	Tell is the four arguments denotes a set { axis + angle } or a quaternion (x,y,z,w).	

Fill all pixel values with specified value.

Parameters

```
val Fill value.
```

Fill sequentially all pixel values with specified values.

val0	First fill value.
val1	Second fill value.

Fill sequentially pixel values according to a given expression.

Parameters

	expression C-string describing a math formula, or a sequence of values.	
repeat_values In case a list of values is provided, tells if this list must be repeated for the fi		In case a list of values is provided, tells if this list must be repeated for the filling.
	allow_formula	Tells that mathematical formulas are authorized for the filling.
list_inputs In case of a mathematical expression, attach a list of images to the specified ex		In case of a mathematical expression, attach a list of images to the specified expression.
out	list_outputs	In case of a math expression, list of images atatched to the specified expression.

Fill sequentially pixel values according to the values found in another image.

Parameters

values	Image containing the values used for the filling.	
repeat_values	es In case there are less values than necessary in values, tells if these values must be	
	repeated for the filling.	

8.1.4.278 fillX()

Fill pixel values along the X-axis at a specified pixel position.

У	Y-coordinate of the filled column.
Z	Z-coordinate of the filled column.
c C-coordinate of the filled col	
a0	First fill value.

8.1.4.279 fillY()

Fill pixel values along the Y-axis at a specified pixel position.

Parameters

X	X-coordinate of the filled row.	
Z	Z-coordinate of the filled row.	
С	C-coordinate of the filled row.	
a0	First fill value.	

8.1.4.280 fillZ()

Fill pixel values along the Z-axis at a specified pixel position.

Parameters

X	X-coordinate of the filled slice.
У	Y-coordinate of the filled slice.
С	C-coordinate of the filled slice.
a0	First fill value.

8.1.4.281 fillC()

Fill pixel values along the C-axis at a specified pixel position.

	Χ	X-coordinate of the filled channel.
y Y-coordinate of the filled		Y-coordinate of the filled channel.

Parameters

Z	Z-coordinate of the filled channel.	
a0	First filling value.	

8.1.4.282 discard()

```
CImg<T>& discard (  \mbox{const CImg} < \mbox{t} > \mbox{\& values,}   \mbox{const char } \mbox{axis} \ = \ 0 \ )
```

Discard specified sequence of values in the image buffer, along a specific axis.

Parameters

values	Sequence of values to discard.	
axis	Axis along which the values are discarded. If set to 0 (default value) the method does it for all the	
	buffer values and returns a one-column vector.	

Note

Discarded values will change the image geometry, so the resulting image is returned as a one-column vector.

8.1.4.283 rand()

Fill image with random values in specified range.

Parameters

val_min	Minimal authorized random value.
val_max	Maximal authorized random value.

Note

Random variables are uniformely distributed in [val_min,val_max].

8.1.4.284 round()

```
CImg<T>& round ( const double y = 1, const int rounding_type = 0 )
```

Round pixel values.

Parameters

У	Rounding precision.
rounding_type	Rounding type. Can be:
	• −1: Backward.
	• 0: Nearest.
	• 1: Forward.

8.1.4.285 noise()

Add random noise to pixel values.

Parameters

sigma	Amplitude of the random additive noise. If sigma<0, it stands for a percentage of the global value range.
noise_type	Type of additive noise (can be 0=gaussian, 1=uniform, 2=Salt and Pepper, 3=Poisson or 4=Rician).

Returns

A reference to the modified image instance.

Note

- For Poisson noise (noise_type=3), parameter sigma is ignored, as Poisson noise only depends on the image value itself.
- Function CImg<T>::get_noise() is also defined. It returns a non-shared modified copy of the image instance.

Example

Linearly normalize pixel values.

Parameters

min_value	Minimum desired value of the resulting image.
max_value	Maximum desired value of the resulting image.

Example

```
const CImg<float> img("reference.jpg"), res = img.get_normalize(160,220);
  (img,res).display();
8.1.4.287 normalize() [2/2]
CImg<T>& normalize()
```

Normalize multi-valued pixels of the image instance, with respect to their L2-norm.

Example

Compute Lp-norm of each multi-valued pixel of the image instance.

Parameters

```
norm_type | Type of computed vector norm (can be −1=Linf, or greater or equal than 0).
```

Example

```
const CImg<float> img("reference.jpg"), res = img.get_norm();
(img,res.normalize(0,255)).display();
```

8.1.4.289 cut()

Cut pixel values in specified range.

min_value		Minimum desired value of the resulting image.
		Marriagona de algado do calco a fisha da acultina da acua
	max value	Maximum desired value of the resulting image.

Example

```
const CImg<float> img("reference.jpg"), res = img.get_cut(160,220);
(img,res).display();
```

8.1.4.290 quantize()

Uniformly quantize pixel values.

Parameters

nb_levels	Number of quantization levels.
keep_range	Tells if resulting values keep the same range as the original ones.

Example

```
const CImg<float> img("reference.jpg"), res = img.get_quantize(4);
(img,res).display();
```

8.1.4.291 threshold()

Threshold pixel values.

Parameters

value	Threshold value
soft_threshold	Tells if soft thresholding must be applied (instead of hard one).
strict_threshold	Tells if threshold value is strict.

Example

Compute the histogram of pixel values.

const T & min_value,
const T & max_value)

Parameters

nb_levels	Number of desired histogram levels.
min_value	Minimum pixel value considered for the histogram computation. All pixel values lower than min_value will not be counted.
max_value	Maximum pixel value considered for the histogram computation. All pixel values higher than max_value will not be counted.

Note

- The histogram H of an image I is the 1D function where H(x) counts the number of occurrences of the value x in the image I.
- The resulting histogram is always defined in 1D. Histograms of multi-valued images are not multi-dimensional.

Example

```
const CImg<float> img = CImg<float>("reference.jpg").histogram(256);
img.display_graph(0,3);
```

8.1.4.293 equalize()

Equalize histogram of pixel values.

Parameters

nb_levels	Number of histogram levels used for the equalization.
min_value	Minimum pixel value considered for the histogram computation. All pixel values lower than min_value will not be counted.
max_value	Maximum pixel value considered for the histogram computation. All pixel values higher than max_value will not be counted.

Example

```
const CImg<float> img("reference.jpg"), res = img.get_equalize(256);
(img,res).display();
```

8.1.4.294 index()

Index multi-valued pixels regarding to a specified colormap.

Parameters

colormap	Multi-valued colormap used as the basis for multi-valued pixel indexing.
dithering	Level of dithering (0=disable, 1=standard level).
map_indexes	Tell if the values of the resulting image are the colormap indices or the colormap vectors.

Note

• img.index(colormap,dithering,1) is equivalent to img.index(colormap,dithering,0).map(col

Example

```
const CImg<float> img("reference.jpg"), colormap(3,1,1,3, 0,128,255, 0,128,255, 0,128,255);
const CImg<float> res = img.get_index(colormap,1,true);
(img,res).display();
```

8.1.4.295 map()

Map predefined colormap on the scalar (indexed) image instance.

Parameters

colormap	Multi-valued colormap used for mapping the indexes.
boundary_conditions	The border condition type { 0=dirichlet 1=neumann 2=periodic 3=mirror }.

Example

8.1.4.296 label() [1/2]

Label connected components.

is_high_connectivity	Boolean that choose between 4(false)- or 8(true)-connectivity in 2D case, and between 6(false)- or 26(true)-connectivity in 3D case.
tolerance	Tolerance used to determine if two neighboring pixels belong to the same region.

Note

The algorithm of connected components computation has been primarily done by A. Meijster, according to the publication: 'W.H. Hesselink, A. Meijster, C. Bron, "Concurrent Determination of Connected Components.", In: Science of Computer Programming 41 (2001), pp. 173–194'. The submitted code has then been modified to fit Clmg coding style and constraints.

Label connected components [overloading].

Parameters

connectivity_mask	Mask of the neighboring pixels.
tolerance	Tolerance used to determine if two neighboring pixels belong to the same region.

8.1.4.298 default_LUT256()

```
static const CImg<Tuchar>& default_LUT256 ( ) [static]
```

Return colormap "default", containing 256 colors entries in RGB.

Returns

The following 256x1x1x3 colormap is returned:

```
8.1.4.299 HSV_LUT256()
```

```
static const CImg<Tuchar>& HSV_LUT256 ( ) [static]
```

Return colormap "HSV", containing 256 colors entries in RGB.

Returns

The following 256x1x1x3 colormap is returned:

```
8.1.4.300 lines_LUT256()
```

```
static const CImg<Tuchar>& lines_LUT256 ( ) [static]
```

Return colormap "lines", containing 256 colors entries in RGB.

Returns

The following 256x1x1x3 colormap is returned:

```
8.1.4.301 hot_LUT256()
static const CImg<Tuchar>& hot_LUT256 ( ) [static]
Return colormap "hot", containing 256 colors entries in RGB.
Returns
     The following 256x1x1x3 colormap is returned:
8.1.4.302 cool_LUT256()
static const CImg<Tuchar>& cool_LUT256 ( ) [static]
Return colormap "cool", containing 256 colors entries in RGB.
Returns
     The following 256x1x1x3 colormap is returned:
8.1.4.303 jet_LUT256()
static const CImg<Tuchar>& jet_LUT256 ( ) [static]
Return colormap "jet", containing 256 colors entries in RGB.
Returns
     The following 256x1x1x3 colormap is returned:
8.1.4.304 flag_LUT256()
static const CImg<Tuchar>& flag_LUT256 ( ) [static]
Return colormap "flag", containing 256 colors entries in RGB.
Returns
     The following 256x1x1x3 colormap is returned:
8.1.4.305 cube_LUT256()
static const CImg<Tuchar>& cube_LUT256 ( ) [static]
Return colormap "cube", containing 256 colors entries in RGB.
Returns
     The following 256x1x1x3 colormap is returned:
8.1.4.306 RGBtoXYZ()
CImg<T>& RGBtoXYZ (
              const bool use\_D65 = true)
```

Convert pixel values from RGB to XYZ color spaces.

Parameters

use D65	Tell to use the D65 illuminant (D50 otherwise).

8.1.4.307 XYZtoRGB()

Convert pixel values from XYZ to RGB color spaces.

Parameters

```
use_D65 Tell to use the D65 illuminant (D50 otherwise).
```

8.1.4.308 resize() [1/3]

Resize image to new dimensions.

size_x	Number of columns (new size along the X-axis).	
size_y	Number of rows (new size along the Y-axis).	
size_z	Number of slices (new size along the Z-axis).	
size_c	Number of vector-channels (new size along the C-axis).	
interpolation_type	Method of interpolation:	
	 -1 = no interpolation: raw memory resizing. 	
	 0 = no interpolation: additional space is filled according to boundary_conditions. 	
	• 1 = nearest-neighbor interpolation.	
	• 2 = moving average interpolation.	
	• 3 = linear interpolation.	
	• 4 = grid interpolation.	
	• 5 = cubic interpolation.	
	6 = lanczos interpolation.	
L		Generated by Doxygen

Parameters

boundary_conditions	Type of boundary conditions used if necessary.
centering_x	Set centering type (only if interpolation_type=0).
centering_y	Set centering type (only if interpolation_type=0).
centering_z	Set centering type (only if interpolation_type=0).
centering_c	Set centering type (only if interpolation_type=0).

Note

If pd[x,y,z,v] < 0, it corresponds to a percentage of the original size (the default value is -100).

Resize image to dimensions of another image.

Parameters

src	Reference image used for dimensions.
interpolation_type	Interpolation method.
boundary_conditions	Boundary conditions.
centering_x	Set centering type (only if interpolation_type=0).
centering_y	Set centering type (only if interpolation_type=0).
centering_z	Set centering type (only if interpolation_type=0).
centering_c	Set centering type (only if interpolation_type=0).

8.1.4.310 resize() [3/3]

Resize image to dimensions of a display window.

Parameters

disp	Reference display window used for dimensions.
interpolation_type	Interpolation method.
boundary_conditions	Boundary conditions.
centering_x	Set centering type (only if interpolation_type=0).
centering_y	Set centering type (only if interpolation_type=0).
centering_z	Set centering type (only if interpolation_type=0).
centering_c	Set centering type (only if interpolation_type=0).

8.1.4.311 resize_doubleXY()

```
CImg<T>& resize_doubleXY ( )
```

Resize image to double-size, using the Scale2X algorithm.

Note

Use anisotropic upscaling algorithm described here.

8.1.4.312 resize_tripleXY()

```
CImg<T>& resize_tripleXY ( )
```

Resize image to triple-size, using the Scale3X algorithm.

Note

Use anisotropic upscaling algorithm described here.

8.1.4.313 mirror() [1/2]

```
CImg<T>& mirror ( const char axis)
```

Mirror image content along specified axis.

Parameters

```
axis Mirror axis
```

8.1.4.314 mirror() [2/2]

Mirror image content along specified axes.

Parameters

```
axes Mirror axes, as a C-string.
```

Note

axes may contains multiple characters, e.g. "xyz"

8.1.4.315 shift()

Shift image content.

Parameters

delta_x	Amount of displacement along the X-axis.
delta_y	Amount of displacement along the Y-axis.
delta_z	Amount of displacement along the Z-axis.
delta_c	Amount of displacement along the C-axis.
boundary_conditions	Border condition. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.

8.1.4.316 permute_axes()

Permute axes order.

Parameters

order Axes permutations, as a C-string of 4 characters. This function permutes image content regarding the specified axes permutation.

8.1.4.317 unroll()

Unroll pixel values along specified axis.

Parameters

```
axis Unroll axis (can be 'x', 'y', 'z' or c'c').
```

Rotate image with arbitrary angle.

Parameters

angle	Rotation angle, in degrees.	
interpolation	Type of interpolation. Can be { 0=nearest 1=linear 2=cubic }.	
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic	
	3=mirror }.	

Note

The size of the image is modified.

Rotate image with arbitrary angle, around a center point.

angle	Rotation angle, in degrees.
СХ	X-coordinate of the rotation center.
су	Y-coordinate of the rotation center.
interpolation	Type of interpolation, { 0=nearest 1=linear 2=cubic 3=mirror }.
boundary_conditions	Boundary conditions, { 0=dirichlet 1=neumann 2=periodic 3=mirror }.

Rotate volumetric image with arbitrary angle and axis.

Parameters

и	X-coordinate of the 3D rotation axis.
V	Y-coordinate of the 3D rotation axis.
W	Z-coordinate of the 3D rotation axis.
angle	Rotation angle, in degrees.
interpolation	Type of interpolation. Can be { 0=nearest 1=linear 2=cubic }.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.

Note

Most of the time, size of the image is modified.

Rotate volumetric image with arbitrary angle and axis, around a center point.

и	X-coordinate of the 3D rotation axis.
V	Y-coordinate of the 3D rotation axis.
W	Z-coordinate of the 3D rotation axis.
angle	Rotation angle, in degrees.
СХ	X-coordinate of the rotation center.
су	Y-coordinate of the rotation center.
CZ	Z-coordinate of the rotation center.
interpolation	Type of interpolation. Can be { 0=nearest 1=linear 2=cubic
	3=mirror }.
_boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann 2=periodic
Generated by Doxygen	}.

Note

Most of the time, size of the image is modified.

8.1.4.322 warp()

Warp image content by a warping field.

Parameters

warp	Warping field.
mode	Can be { 0=backward-absolute 1=backward-relative 2=forward-absolute 3=foward-relative }
interpolation	Can be { 0=nearest 1=linear 2=cubic }.
boundary_conditions	Boundary conditions { 0=dirichlet 1=neumann 2=periodic 3=mirror }.

8.1.4.323 get_projections2d()

Generate a 2D representation of a 3D image, with XY,XZ and YZ views.

Parameters

х0	X-coordinate of the projection point.
y0	Y-coordinate of the projection point.
z0	Z-coordinate of the projection point.

8.1.4.324 crop()

```
const int c1, const unsigned int boundary\_conditions = 0)
```

Crop image region.

Parameters

x0	= X-coordinate of the upper-left crop rectangle corner.
у0	= Y-coordinate of the upper-left crop rectangle corner.
<i>z</i> 0	= Z-coordinate of the upper-left crop rectangle corner.
c0	= C-coordinate of the upper-left crop rectangle corner.
x1	= X-coordinate of the lower-right crop rectangle corner.
y1	= Y-coordinate of the lower-right crop rectangle corner.
z1	= Z-coordinate of the lower-right crop rectangle corner.
c1	= C-coordinate of the lower-right crop rectangle corner.
boundary_conditions	= Can be { 0=dirichlet 1=neumann 2=periodic 3=mirror }.

8.1.4.325 autocrop()

Autocrop image region, regarding the specified background color.

Parameters

color	Color used for the crop. If 0 , color is guessed.
axes	Axes used for the crop.

8.1.4.326 get_column()

```
CImg<T> get_column ( const int x0 ) const
```

Return specified image column.

Parameters

```
x0 Image column.
```

8.1.4.327 columns()

```
CImg<T>& columns ( const int x0, const int x1)
```

Return specified range of image columns.

Parameters

х0	Starting image column.
x1	Ending image column.

8.1.4.328 row()

```
CImg<T>& row ( const int y0 )
```

Return specified image row [in-place version].

Parameters

```
y0 Image row.
```

8.1.4.329 get_rows()

Return specified range of image rows.

Parameters

y0	Starting image row.
y1	Ending image row.

8.1.4.330 get_slice()

```
CImg<T> get_slice ( const int z0 ) const
```

Return specified image slice.

Parameters

```
z0 Image slice.
```

8.1.4.331 get_slices()

```
CImg<T> get_slices ( const int z0, const int z1 ) const
```

Return specified range of image slices.

Parameters

z0	Starting image slice.
z1	Ending image slice.

8.1.4.332 get_channel()

Return specified image channel.

Parameters

```
c0 Image channel.
```

8.1.4.333 get_channels()

Return specified range of image channels.

Parameters

c0	Starting image channel.
c1	Ending image channel.

8.1.4.334 streamline()

```
static CImg<floatT> streamline (
            const tfunc & func,
            const float x,
             const float y,
             const float z,
             const float L = 256,
             const float dl = 0.1f,
             const unsigned int interpolation_type = 2,
             const bool is_backward_tracking = false,
             const bool is_oriented_only = false,
             const float x0 = 0,
             const float y0 = 0,
             const float z0 = 0,
             const float x1 = 0,
             const float y1 = 0,
             const float z1 = 0 ) [static]
```

Return stream line of a 3D vector field.

Parameters

func	Vector field function.
X	X-coordinate of the starting point of the streamline.
у	Y-coordinate of the starting point of the streamline.
Z	Z-coordinate of the starting point of the streamline.
L	Streamline length.
dl	Streamline length increment.
interpolation_type	Type of interpolation. Can be { 0=nearest int 1=linear 2=2nd-order RK 3=4th-order RK. }.
is_backward_tracking	Tells if the streamline is estimated forward or backward.
is_oriented_only	Tells if the direction of the vectors must be ignored.
x0	X-coordinate of the first bounding-box vertex.
у0	Y-coordinate of the first bounding-box vertex.
z0	Z-coordinate of the first bounding-box vertex.
x1	X-coordinate of the second bounding-box vertex.
y1	Y-coordinate of the second bounding-box vertex.
z1	Z-coordinate of the second bounding-box vertex.

8.1.4.335 get_shared_points()

Return a shared-memory image referencing a range of pixels of the image instance.

Parameters

х0	X-coordinate of the starting pixel.
x1	X-coordinate of the ending pixel.
y0	Y-coordinate.
<i>z</i> 0	Z-coordinate.
c0	C-coordinate.

8.1.4.336 get_shared_rows()

```
CImg<T> get_shared_rows (  const unsigned int y0, \\ const unsigned int y1, \\ const unsigned int z0 = 0, \\ const unsigned int c0 = 0)
```

Return a shared-memory image referencing a range of rows of the image instance.

Parameters

y0	Y-coordinate of the starting row.
y1	Y-coordinate of the ending row.
z0	Z-coordinate.
c0	C-coordinate.

8.1.4.337 get_shared_row()

Return a shared-memory image referencing one row of the image instance.

Parameters

y0	Y-coordinate.
z0	Z-coordinate.
c0	C-coordinate.

8.1.4.338 get_shared_slices()

```
CImg<T> get_shared_slices (  const \ unsigned \ int \ z0, \\ const \ unsigned \ int \ z1, \\ const \ unsigned \ int \ c0 = 0 )
```

Return a shared memory image referencing a range of slices of the image instance.

Parameters

z0	Z-coordinate of the starting slice.
<i>z</i> 1	Z-coordinate of the ending slice.
c0	C-coordinate.

8.1.4.339 get_shared_slice()

Return a shared-memory image referencing one slice of the image instance.

Parameters

<i>z</i> 0	Z-coordinate.
-c0	C-coordinate.

Generated by Doxygen

8.1.4.340 get_shared_channels()

```
CImg<T> get_shared_channels (  {\rm const\ unsigned\ int\ } c0,   {\rm const\ unsigned\ int\ } c1\ )
```

Return a shared-memory image referencing a range of channels of the image instance.

Parameters

c0	C-coordinate of the starting channel.
c1	C-coordinate of the ending channel.

8.1.4.341 get_shared_channel()

```
\begin{tabular}{ll} $\tt CImg<T> $\tt get\_shared\_channel ( & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
```

Return a shared-memory image referencing one channel of the image instance.

Parameters

```
c0 C-coordinate.
```

Split image into a list along specified axis.

Parameters

axis	Splitting axis. Can be { 'x' 'y' 'z' 'c' }.	
nb	Number of splitted parts.	

Note

- If nb==0, instance image is splitted into blocs of egal values along the specified axis.
- If nb<=0, instance image is splitted into blocs of -nb pixel wide.
- If nb>0, instance image is splitted into nb blocs.

```
const char axis = 0,
const bool keep_values = true ) const
```

Split image into a list of sub-images, according to a specified splitting value sequence and optionally axis.

Parameters

values	Splitting value sequence.
axis	Axis along which the splitting is performed. Can be '0' to ignore axis.
keep_values	Tells if the splitting sequence must be kept in the splitted blocs.

8.1.4.344 append()

```
CImg<T>& append (  \mbox{const CImg} < \mbox{t} > \mbox{\& img}, \\ \mbox{const char } axis = 'x', \\ \mbox{const float } align = 0 \mbox{)}
```

Append two images along specified axis.

Parameters

img	Image to append with instance image.		
axis	Appending axis. Can be { 'x' 'y' 'z' 'c' }.		
align	Append alignment in [0,1].		

8.1.4.345 correlate()

Correlate image by a kernel.

Parameters

kernel	= the correlation kernel.
boundary_conditions	boundary conditions can be (false=dirichlet, true=neumann)
is_normalized	= enable local normalization.

Note

• The correlation of the image instance *this by the kernel kernel is defined to be: $res(x,y,z) = sum \leftarrow \{i,j,k\}$ (*this)(x + i,y + j,z + k)*kernel(i,j,k).

8.1.4.346 convolve()

Convolve image by a kernel.

Parameters

kernel	= the correlation kernel.
boundary_conditions	boundary conditions can be (false=dirichlet, true=neumann)
is_normalized	= enable local normalization.

Note

• The result res of the convolution of an image img by a kernel kernel is defined to be: $res(x,y,z) = sum_{i,j,k} img(x-i,y-j,z-k)*kernel(i,j,k)$

```
8.1.4.347 cumulate() [1/2]
```

```
CImg<T>& cumulate (
const char axis = 0 )
```

Cumulate image values, optionally along specified axis.

Parameters

axis Cumulation axis. Set it to 0 to cumulate all values globally without taking axes into account.

```
8.1.4.348 cumulate() [2/2]
```

Cumulate image values, along specified axes.

Parameters

axes	Cumulation axes, as a C-string.
------	---------------------------------

Note

 ${\tt axes}$ may contains multiple characters, e.g. "xyz"

Erode image by a structuring element.

Parameters

kernel	Structuring element.
boundary_conditions	Boundary conditions.
is_real	Do the erosion in real (a.k.a 'non-flat') mode (true) rather than binary mode (false).

Erode image by a rectangular structuring element of specified size.

Parameters

SX	Width of the structuring element.
sy	Height of the structuring element.
SZ	Depth of the structuring element.

Erode the image by a square structuring element of specified size.

Parameters

s Size of the structuring element.

Dilate image by a structuring element.

Parameters

kernel	Structuring element.
boundary_conditions	Boundary conditions.
is_real	Do the dilation in real (a.k.a 'non-flat') mode (true) rather than binary mode (false).

Dilate image by a rectangular structuring element of specified size.

const unsigned int sy, const unsigned int sz = 1)

Parameters

SX	Width of the structuring element.
sy	Height of the structuring element.
SZ	Depth of the structuring element.

Dilate image by a square structuring element of specified size.

Parameters

```
s Size of the structuring element.
```

8.1.4.355 watershed()

Compute watershed transform.

priority	Priority map.
is_high_connectivity	Boolean that choose between 4(false)- or 8(true)-connectivity in 2D case, and between
	6(false)- or 26(true)-connectivity in 3D case.

Note

Non-zero values of the instance instance are propagated to zero-valued ones according to specified the priority map.

8.1.4.356 deriche()

Apply recursive Deriche filter.

Parameters

sigma	Standard deviation of the filter.
order	Order of the filter. Can be { 0=smooth-filter 1=1st-derivative 2=2nd-derivative }.
axis	Axis along which the filter is computed. Can be { 'x' 'y' 'z' 'c' }.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann }.

8.1.4.357 vanvliet()

Van Vliet recursive Gaussian filter.

Parameters

sigma	standard deviation of the Gaussian filter
order	the order of the filter 0,1,2,3
axis	Axis along which the filter is computed. Can be { 'x' 'y' 'z' 'c' }.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann }.

Note

dirichlet boundary condition has a strange behavior

I.T. Young, L.J. van Vliet, M. van Ginkel, Recursive Gabor filtering. IEEE Trans. Sig. Proc., vol. 50, pp. 2799-2805, 2002.

(this is an improvement over Young-Van Vliet, Sig. Proc. 44, 1995)

Boundary conditions (only for order 0) using Triggs matrix, from B. Triggs and M. Sdika. Boundary conditions for Young-van Vliet recursive filtering. IEEE Trans. Signal Processing, vol. 54, pp. 2365-2367, 2006.

 ${\tt const bool} \ is_{\tt gaussian} = {\tt false} \)$

Blur image.

Parameters

sigma_x	Standard deviation of the blur, along the X-axis.
sigma_y	Standard deviation of the blur, along the Y-axis.
sigma_z	Standard deviation of the blur, along the Z-axis.
boundary_conditions	Boundary conditions. Can be { false=dirichlet true=neumann }.
is_gaussian	Tells if the blur uses a gaussian (true) or quasi-gaussian (false) kernel.

Note

- The blur is computed as a 0-order Deriche filter. This is not a gaussian blur.
- This is a recursive algorithm, not depending on the values of the standard deviations.

See also

```
deriche(), vanvliet().
```

Blur image isotropically.

Parameters

sigma	Standard deviation of the blur.
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann }.a
is_gaussian	Use a gaussian kernel (VanVliet) is set, a pseudo-gaussian (Deriche) otherwise.

See also

```
deriche(), vanvliet().
```

8.1.4.360 blur_anisotropic() [1/2]

Blur image anisotropically, directed by a field of diffusion tensors.

Parameters

G	Field of square roots of diffusion tensors/vectors used to drive the smoothing.
amplitude	Amplitude of the smoothing.
dl	Spatial discretization.
da	Angular discretization.
gauss_prec	Precision of the diffusion process.
interpolation_type	<pre>Interpolation scheme. Can be { 0=nearest-neighbor 1=linear 2=Runge-Kutta }.</pre>
is_fast_approx	Tells if a fast approximation of the gaussian function is used or not.

8.1.4.361 blur_anisotropic() [2/2]

Blur image anisotropically, in an edge-preserving way.

Parameters

amplitude	Amplitude of the smoothing.
sharpness	Sharpness.
anisotropy	Anisotropy.
alpha	Standard deviation of the gradient blur.
sigma	Standard deviation of the structure tensor blur.
dl	Spatial discretization.
da	Angular discretization.
gauss_prec	Precision of the diffusion process.
interpolation_type	Interpolation scheme. Can be { 0=nearest-neighbor 1=linear
	2=Runge-Kutta }.
is_fast_approx	Tells if a fast approximation of the gaussian function is used or not.

Generated by Doxygen

8.1.4.362 blur_bilateral() [1/2]

Blur image, with the joint bilateral filter.

Parameters

guide	Image used to model the smoothing weights.
sigma_x	Amount of blur along the X-axis.
sigma_y	Amount of blur along the Y-axis.
sigma_z	Amount of blur along the Z-axis.
sigma_r	Amount of blur along the value axis.
sampling⇔	Amount of downsampling along the X-axis used for the approximation. Defaults (0) to sigma_x.
_X	
sampling⊷	Amount of downsampling along the Y-axis used for the approximation. Defaults (0) to sigma_y.
sampling⇔	Amount of downsampling along the Z-axis used for the approximation. Defaults (0) to sigma_z.
_Z	
sampling⊷	Amount of downsampling along the value axis used for the approximation. Defaults (0) to sigma_r.
r	

Note

This algorithm uses the optimisation technique proposed by S. Paris and F. Durand, in ECCV'2006 (extended for 3D volumetric images). It is based on the reference implementation $http://people.csail.mit. \leftarrow edu/jiawen/software/bilateralFilter.m$

8.1.4.363 blur_bilateral() [2/2]

Blur image using the joint bilateral filter.

guide	Image used to model the smoothing weights.
sigma_s	Amount of blur along the XYZ-axes.

Parameters

sigma_r	Amount of blur along the value axis.
sampling⇔	Amount of downsampling along the XYZ-axes used for the approximation. Defaults to sigma_s.
_s	
sampling⊷	Amount of downsampling along the value axis used for the approximation. Defaults to sigma_r.
_r	

8.1.4.364 boxfilter()

Parameters

boxsize	Size of the box window (can be subpixel)	
order	the order of the filter 0,1 or 2.	
axis	Axis along which the filter is computed. Can be { 'x' 'y' 'z' 'c' }.	
boundary_conditions Boundary conditions. Can be { 0=dirichlet 1=neumann }.		
nb_iter	Number of filter iterations.	

8.1.4.365 blur_box() [1/2]

Blur image with a box filter.

Parameters

boxsize_x	Size of the box window, along the X-axis (can be subpixel).
boxsize_y	Size of the box window, along the Y-axis (can be subpixel).
boxsize_z	Size of the box window, along the Z-axis (can be subpixel).
boundary_conditions	Boundary conditions. Can be { false=dirichlet true=neumann }.
nb_iter	Number of filter iterations.

Note

• This is a recursive algorithm, not depending on the values of the box kernel size.

See also

blur().

Blur image with a box filter.

Parameters

boxsize	Size of the box window (can be subpixel).
boundary_conditions	Boundary conditions. Can be { 0=dirichlet 1=neumann }.a

See also

deriche(), vanvliet().

8.1.4.367 blur_guided()

```
\label{eq:const_cimg} $$\operatorname{CImg}<T>\& \ blur\_guided ($$ \operatorname{const} \ CImg< t>\& \ guide, $$ \operatorname{const} \ float \ radius, $$ \operatorname{const} \ float \ regularization )$
```

Blur image, with the image guided filter.

Parameters

guide	Image used to guide the smoothing process.
radius	Spatial radius. If negative, it is expressed as a percentage of the largest image size.
regularization	Regularization parameter. If negative, it is expressed as a percentage of the guide value range.

Note

This method implements the filtering algorithm described in: He, Kaiming; Sun, Jian; Tang, Xiaoou, "← Guided Image Filtering," Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.35, no.6, pp.1397,1409, June 2013

8.1.4.368 blur_patch()

```
const unsigned int patch_size = 3,
const unsigned int lookup_size = 4,
const float smoothness = 0,
const bool is_fast_approx = true )
```

Blur image using patch-based space.

Parameters

sigma_s	Amount of blur along the XYZ-axes.
sigma_p	Amount of blur along the value axis.
patch_size	Size of the patches.
lookup_size	Size of the window to search similar patches.
smoothness	Smoothness for the patch comparison.
is_fast_approx	Tells if a fast approximation of the gaussian function is used or not.

8.1.4.369 blur_median()

```
CImg<T>& blur_median ( const unsigned int n, const float threshold = 0)
```

Blur image with the median filter.

Parameters

n	Size of the median filter.	1
threshold	Threshold used to discard pixels too far from the current pixel value in the median computation.	1

8.1.4.370 sharpen()

Sharpen image.

amplitude	Sharpening amplitude	
sharpen_type	Select sharpening method. Can be { false=inverse diffusion true=shock	
	filters }.	
edge	Edge threshold (shock filters only).	
alpha	Gradient smoothness (shock filters only).	
sigma	Tensor smoothness (shock filters only).	

8.1.4.371 get_gradient()

Return image gradient.

Parameters

axes	Axes considered for the gradient computation, as a C-string (e.g "xy").	
scheme	= Numerical scheme used for the gradient computation:	
	 -1 = Backward finite differences 	
	• 0 = Centered finite differences	
	• 1 = Forward finite differences	
	• 2 = Using Sobel kernels	
	• 3 = Using rotation invariant kernels	
	 4 = Using Deriche recusrsive filter. 	
	 5 = Using Van Vliet recusrsive filter. 	

8.1.4.372 get_hessian()

Return image hessian.

Parameters

axes Axes considered for the hessian computation, as a C-string (e.g "xy").

8.1.4.373 structure_tensors()

Compute the structure tensor field of an image.

is_fwbw_scheme scheme. C	Canbe { false=centered	true=forward-backward }
--------------------------	------------------------	-------------------------

8.1.4.374 diffusion_tensors()

Compute field of diffusion tensors for edge-preserving smoothing.

Parameters

sharpness	Sharpness
anisotropy	Anisotropy
alpha	Standard deviation of the gradient blur.
sigma	Standard deviation of the structure tensor blur.
is_sqrt	Tells if the square root of the tensor field is computed instead.

8.1.4.375 displacement()

Estimate displacement field between two images.

Parameters

source	Reference image.
smoothness	Smoothness of estimated displacement field.
precision	Precision required for algorithm convergence.
nb_scales	Number of scales used to estimate the displacement field.
iteration_max	Maximum number of iterations allowed for one scale.
is_backward	If false, match $I2(X + U(X)) = I1(X)$, else match $I2(X) = I1(X - U(X))$.
guide	Image used as the initial correspondence estimate for the algorithm. 'guide' may have a last channel with boolean values (0=false other=true) that tells for each pixel if its correspondence vector is constrained to its initial value (constraint mask).

8.1.4.376 matchpatch()

```
CImg<T>& matchpatch ( const\ CImg<\ T\ >\ \&\ patch\_image, const\ unsigned\ int\ patch\_width,
```

```
const unsigned int patch_height,
const unsigned int patch_depth,
const unsigned int nb_iterations,
const unsigned int nb_randoms,
const float occ_penalization,
const CImg< t1 > & guide,
CImg< t2 > & matching_score )
```

Compute correspondence map between two images, using a patch-matching algorithm.

Parameters

	patch_image	The image containing the reference patches to match with the instance image.
	patch_width	Width of the patch used for matching.
	patch_height	Height of the patch used for matching.
	patch_depth	Depth of the patch used for matching.
	nb_iterations	Number of patch-match iterations.
	nb_randoms	Number of randomization attempts (per pixel).
	occ_penalization	Penalization factor in score related patch occurrences.
	guide	Image used as the initial correspondence estimate for the algorithm. 'guide' may have a last channel with boolean values (0=false other=true) that tells for each pixel if its correspondence vector is constrained to its initial value (constraint mask).
out	matching_score	Returned as the image of matching scores.

Compute Euclidean distance function to a specified value.

Parameters

valu	ле	Reference value.
met	tric	Type of metric. Can be { 0=Chebyshev 1=Manhattan 2=Euclidean
		3=Squared-euclidean }.

Note

The distance transform implementation has been submitted by A. Meijster, and implements the article 'W.H. Hesselink, A. Meijster, J.B.T.M. Roerdink, "A general algorithm for computing distance transforms in linear time.", In: Mathematical Morphology and its Applications to Image and Signal Processing, J. Goutsias, L. Vincent, and D.S. Bloomberg (eds.), Kluwer, 2000, pp. 331-340.' The submitted code has then been modified to fit Clmg coding style and constraints.

Compute chamfer distance to a specified value, with a custom metric.

Parameters

value	Reference value.
metric_mask	Metric mask.

Note

The algorithm code has been initially proposed by A. Meijster, and modified by D. Tschumperlé.

8.1.4.379 distance_dijkstra()

Compute distance to a specified value, according to a custom metric (use dijkstra algorithm).

Parameters

	value	Reference value.
	metric	Field of distance potentials.
	is_high_connectivity	Tells if the algorithm uses low or high connectivity.
out	return_path	An image containing the nodes of the minimal path.

8.1.4.380 distance_eikonal() [1/2]

Compute distance map to one source point, according to a custom metric (use fast marching algorithm).

Parameters

value	Reference value.
metric	Field of distance potentials.

8.1.4.381 distance_eikonal() [2/2]

Compute distance function to 0-valued isophotes, using the Eikonal PDE.

Parameters

nb_iterations	Number of PDE iterations.
band_size	Size of the narrow band.
time_step	Time step of the PDE iterations.

Compute Haar multiscale wavelet transform.

Parameters

axis	Axis considered for the transform.
invert	Set inverse of direct transform.
nb_scales	Number of scales used for the transform.

Compute Haar multiscale wavelet transform [overloading].

Parameters

invert	Set inverse of direct transform.
nb_scales	Number of scales used for the transform.

```
8.1.4.384 get_FFT()
```

Compute 1D Fast Fourier Transform, along a specified axis.

axis	Axis along which the FFT is computed.
is_invert	Tells if the forward (false) or inverse (true) FFT is computed.

Compute 1D Fast Fourier Transform, along a specified axis.

Parameters

in,out	real	Real part of the pixel values.	
in,out	imag	Imaginary part of the pixel values.	
	axis	Axis along which the FFT is computed.	
	is_invert	nvert Tells if the forward (false) or inverse (true) FFT is computed.	

Compute n-d Fast Fourier Transform.

Parameters

in,out	real	Real part of the pixel values.	
in,out	imag	Imaginary part of the pixel values.	
	is_invert Tells if the forward (false) or inverse (true) FFT is computed.		
nb_threads Number of parallel threads used for the computation. Use 0 to set this to the of available cpus.		Number of parallel threads used for the computation. Use 0 to set this to the number of available cpus.	

```
8.1.4.387 shift_object3d() [1/2]
```

Shift 3D object's vertices.

tx	X-coordinate of the 3D displacement vector.
ty	Y-coordinate of the 3D displacement vector.
tz	Z-coordinate of the 3D displacement vector.

```
8.1.4.388 shift_object3d() [2/2]
```

```
CImg<T>& shift_object3d ( )
```

Shift 3D object's vertices, so that it becomes centered.

Note

The object center is computed as its barycenter.

8.1.4.389 resize_object3d()

```
CImg<T>& resize_object3d ( const float sx, const float sy = -100, const float sz = -100)
```

Resize 3D object.

Parameters

SX	Width of the 3D object's bounding box.
sy	Height of the 3D object's bounding box.
SZ	Depth of the 3D object's bounding box.

8.1.4.390 append_object3d()

```
\label{eq:cimg} $$ CImg<T>\& append_object3d ($$ CImgList< tf > \& primitives, $$ const CImg< tp > \& obj_vertices, $$ const CImgList< tff > \& obj_primitives )$
```

Merge two 3D objects together.

Parameters

in,out	primitives	Primitives data of the current 3D object.
	obj_vertices	Vertices data of the additional 3D object.
	obj_primitives	Primitives data of the additional 3D object.

8.1.4.391 texturize_object3d()

Texturize primitives of a 3D object.

Parameters

in,out	primitives	Primitives data of the 3D object.
in,out	colors	Colors data of the 3D object.
	texture	Texture image to map to 3D object.
	coords	Texture-mapping coordinates.

8.1.4.392 get_elevation3d()

Generate a 3D elevation of the image instance.

Parameters

out	primitives	The returned list of the 3D object primitives (template type tf should be at least unsigned int).	
out	colors	The returned list of the 3D object colors.	
	elevation	The input elevation map.	

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

```
const CImg<float> img("reference.jpg");
CImgList<unsigned int> faces3d;
CImgList<unsigned char> colors3d;
const CImg<float> points3d = img.get_elevation3d(faces3d,colors3d,img.get_norm()*0.2);
CImg<unsigned char>().display_object3d("Elevation3d",points3d,faces3d,colors3d);
```

8.1.4.393 get_projections3d()

Generate the 3D projection planes of the image instance.

Parameters

out	primitives	Primitives data of the returned 3D object.
out	colors	Colors data of the returned 3D object.
	х0	X-coordinate of the projection point.
	у0	Y-coordinate of the projection point.
	z0	Z-coordinate of the projection point.
	normalize_colors	Tells if the created textures have normalized colors.

Generated by Doxygen

8.1.4.394 get_isoline3d()

Generate a isoline of the image instance as a 3D object.

Parameters

out	primitives	The returned list of the 3D object primitives (template type <i>tf</i> should be at least <i>unsigned int</i>).
	isovalue	The returned list of the 3D object colors.
	size_x	The number of subdivisions along the X-axis.
	size_y	The number of subdisivions along the Y-axis.

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

```
const CImg<float> img("reference.jpg");
CImgList<unsigned int> faces3d;
const CImg<float> points3d = img.get_isoline3d(faces3d,100);
CImg<unsigned char>().display_object3d("Isoline3d",points3d,faces3d,colors3d);
```

8.1.4.395 get_isosurface3d()

Generate an isosurface of the image instance as a 3D object.

Parameters

out	primitives	The returned list of the 3D object primitives (template type tf should be at least unsigned int).
	isovalue	The returned list of the 3D object colors.
	size_x	Number of subdivisions along the X-axis.
	size_y	Number of subdisivions along the Y-axis.
	size_z	Number of subdisivions along the Z-axis.

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

```
const CImg<float> img = CImg<unsigned char>("reference.jpg").resize(-100,-100,20);
CImgList<unsigned int> faces3d;
const CImg<float> points3d = img.get_isosurface3d(faces3d,100);
CImg<unsigned char>().display_object3d("Isosurface3d",points3d,faces3d,colors3d);
```

8.1.4.396 elevation3d()

Compute 3D elevation of a function as a 3D object.

Parameters

out	primitives	Primitives data of the resulting 3D object.	
	func	Elevation function. Is of type float (*func) (const float x, const float y).	
	x0	X-coordinate of the starting point.	
	y0	Y-coordinate of the starting point.	
	x1	X-coordinate of the ending point.	
	y1	Y-coordinate of the ending point.	
	size_x	Resolution of the function along the X-axis.	
	size_y	Resolution of the function along the Y-axis.	

8.1.4.397 isoline3d()

Compute 0-isolines of a function, as a 3D object.

out	primitives	Primitives data of the resulting 3D object.		
	func	Elevation function. Is of type float (*func) (const float x, const float y).		
	isovalue	Isovalue to extract from function.		

Parameters

x0	X-coordinate of the starting point.
y0	Y-coordinate of the starting point.
x1	X-coordinate of the ending point.
y1	Y-coordinate of the ending point.
size_x	Resolution of the function along the X-axis.
size_y	Resolution of the function along the Y-axis.

Note

Use the marching squares algorithm for extracting the isolines.

8.1.4.398 isosurface3d()

Compute isosurface of a function, as a 3D object.

out	primitives	Primitives data of the resulting 3D object.	
	func	Implicit function. Is of type float (*func) (const float x, const float	
		y, const float z).	
	isovalue	Isovalue to extract.	
	x0	X-coordinate of the starting point.	
	y0 Y-coordinate of the starting point.		
	z0	Z-coordinate of the starting point.	
	x1	X-coordinate of the ending point.	
	y1	Y-coordinate of the ending point.	
	z1	Z-coordinate of the ending point.	
	size_x	Resolution of the elevation function along the X-axis.	
	size_y	Resolution of the elevation function along the Y-axis.	
	size_z	Resolution of the elevation function along the Z-axis.	

Note

Use the marching cubes algorithm for extracting the isosurface.

8.1.4.399 box3d()

Generate a 3D box object.

Parameters

out	primitives	The returned list of the 3D object primitives (template type tf should be at least unsigned int).
	size_x	The width of the box (dimension along the X-axis).
	size_y	The height of the box (dimension along the Y-axis).
	size_z	The depth of the box (dimension along the Z-axis).

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0 <= i <= N-1).

Example

```
CImgList<unsigned int> faces3d;
const CImg<float> points3d = CImg<float>::box3d(faces3d,10,20,30);
CImg<unsigned char>().display_object3d("Box3d",points3d,faces3d);
```

8.1.4.400 cone3d()

Generate a 3D cone.

out	primitives	The returned list of the 3D object primitives (template type <i>tf</i> should be at least <i>unsigned int</i>).
	radius	The radius of the cone basis.
	size_z	The cone's height.
	subdivisions	The number of basis angular subdivisions.

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

```
CImgList<unsigned int> faces3d;
const CImg<float> points3d = CImg<float>::cone3d(faces3d,50);
CImg<unsigned char>().display_object3d("Cone3d",points3d,faces3d);
```

8.1.4.401 cylinder3d()

Generate a 3D cylinder.

Parameters

out	primitives	The returned list of the 3D object primitives (template type <i>tf</i> should be at least <i>unsigned int</i>).	
	radius	The radius of the cylinder basis.	
	size_z	The cylinder's height.	
	subdivisions	The number of basis angular subdivisions.	

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

```
CImgList<unsigned int> faces3d;
const CImg<float> points3d = CImg<float>::cylinder3d(faces3d,50);
CImg<unsigned char>().display_object3d("Cylinder3d",points3d,faces3d);
```

8.1.4.402 torus3d()

Generate a 3D torus.

out	primitives	The returned list of the 3D object primitives (template type <i>tf</i> should be at least <i>unsigned int</i>).
	radius1	The large radius.
Generated	by Daxygen	The small radius.
	subdivisions1	The number of angular subdivisions for the large radius.
	subdivisions2	The number of angular subdivisions for the small radius.

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0 <= i <= N-1).

Example

```
CImgList<unsigned int> faces3d;
const CImg<float> points3d = CImg<float>::torus3d(faces3d,20,4);
CImg<unsigned char>().display_object3d("Torus3d",points3d,faces3d);
```

8.1.4.403 plane3d()

Generate a 3D XY-plane.

Parameters

out	primitives	The returned list of the 3D object primitives (template type <i>tf</i> should be at least <i>unsigned int</i>).
	size_x	The width of the plane (dimension along the X-axis).
	size_y	The height of the plane (dimensions along the Y-axis).
	subdivisions⇔ _X	The number of planar subdivisions along the X-axis.
	subdivisions↔ v	The number of planar subdivisions along the Y-axis.

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0 <= i <= N-1).

Example

```
CImgList<unsigned int> faces3d;
const CImg<float> points3d = CImg<float>::plane3d(faces3d,100,50);
CImg<unsigned char>().display_object3d("Plane3d",points3d,faces3d);
```

8.1.4.404 sphere3d()

Generate a 3D sphere.

Parameters

out	primitives	The returned list of the 3D object primitives (template type <i>tf</i> should be at least <i>unsigne int</i>).	
	radius	The radius of the sphere (dimension along the X-axis).	
	subdivisions	The number of recursive subdivisions from an initial icosahedron.	

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

```
CImgList<unsigned int> faces3d;
const CImg<float> points3d = CImg<float>::sphere3d(faces3d,100,4);
CImg<unsigned char>().display_object3d("Sphere3d",points3d,faces3d);
```

8.1.4.405 ellipsoid3d()

Generate a 3D ellipsoid.

Parameters

out	primitives	The returned list of the 3D object primitives (template type <i>tf</i> should be at least <i>unsigned int</i>).
	tensor	The tensor which gives the shape and size of the ellipsoid.
	subdivisions	The number of recursive subdivisions from an initial stretched icosahedron.

Returns

The N vertices (xi,yi,zi) of the 3D object as a Nx3 Clmg<float> image (0<=i<=N - 1).

Example

8.1.4.406 object3dtoClmg3d()

Convert 3D object into a Clmg3d representation.

Parameters

primitives Primitives data of the 3D object.	
colors	Colors data of the 3D object.
opacities	Opacities data of the 3D object.
full_check	Tells if full checking of the 3D object must be performed.

8.1.4.407 Clmg3dtoobject3d()

Convert Clmg3d representation into a 3D object.

Parameters

out	primitives	Primitives data of the 3D object.
out	colors	Colors data of the 3D object.
out	opacities	Opacities data of the 3D object.
	full_check	Tells if full checking of the 3D object must be performed.

```
8.1.4.408 draw_point() [1/2]
```

Draw a 3D point.

Parameters

x0	X-coordinate of the point.
y0	Y-coordinate of the point.
z0	Z-coordinate of the point.
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.

Note

• To set pixel values without clipping needs, you should use the faster Clmg::operator()() function.

Example:

```
CImg<unsigned char> img(100,100,1,3,0);
```

```
const unsigned char color[] = { 255,128,64 };
img.draw_point(50,50,color);
```

8.1.4.409 draw_point() [2/2]

Parameters

points	Image of vertices coordinates.	
color	Pointer to spectrum () consecutive values, defining the drawing color.	
opacity	Drawing opacity.	

8.1.4.410 draw_line() [1/7]

Draw a 2D line.

Parameters

х0	X-coordinate of the starting line point.
y0	Y-coordinate of the starting line point.
x1	X-coordinate of the ending line point.
y1	Y-coordinate of the ending line point.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	Tells if a reinitialization of the hash state must be done.

Note

- · Line routine uses Bresenham's algorithm.
- Set init_hatch = false to draw consecutive hatched segments without breaking the line pattern.

Example:

```
CImg<unsigned char> img(100,100,1,3,0);
const unsigned char color[] = { 255,128,64 };
img.draw_line(40,40,80,70,color);
```

8.1.4.411 draw_line() [2/7]

Draw a 2D line, with z-buffering.

Parameters

zbuffer	Zbuffer image.
х0	X-coordinate of the starting point.
y0	Y-coordinate of the starting point.
z0	Z-coordinate of the starting point
x1	X-coordinate of the ending point.
y1	Y-coordinate of the ending point.
z1	Z-coordinate of the ending point.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	Tells if a reinitialization of the hash state must be done.

8.1.4.412 draw_line() [3/7]

Draw a 3D line.

x0	X-coordinate of the starting point.
y0	Y-coordinate of the starting point.
z0	Z-coordinate of the starting point

Parameters

x1	X-coordinate of the ending point.
y1	Y-coordinate of the ending point.
z1	Z-coordinate of the ending point.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	Tells if a reinitialization of the hash state must be done.

8.1.4.413 draw_line() [4/7]

Draw a textured 2D line.

Parameters

x0	X-coordinate of the starting line point.
у0	Y-coordinate of the starting line point.
x1	X-coordinate of the ending line point.
y1	Y-coordinate of the ending line point.
texture	Texture image defining the pixel colors.
tx0	X-coordinate of the starting texture point.
ty0	Y-coordinate of the starting texture point.
tx1	X-coordinate of the ending texture point.
ty1	Y-coordinate of the ending texture point.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	Tells if the hash variable must be reinitialized.

Note

• Line routine uses the well known Bresenham's algorithm.

Example:

```
 \label{eq:const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const_const
```

8.1.4.414 draw_line() [5/7]

Draw a textured 2D line, with perspective correction.

Parameters

x0	X-coordinate of the starting point.
y0	Y-coordinate of the starting point.
z0	Z-coordinate of the starting point
x1	X-coordinate of the ending point.
y1	Y-coordinate of the ending point.
z1	Z-coordinate of the ending point.
texture	Texture image defining the pixel colors.
tx0	X-coordinate of the starting texture point.
ty0	Y-coordinate of the starting texture point.
tx1	X-coordinate of the ending texture point.
ty1	Y-coordinate of the ending texture point.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	Tells if the hash variable must be reinitialized.

8.1.4.415 draw_line() [6/7]

```
const float opacity = 1, const unsigned int pattern = \sim 0U, const bool init_hatch = true )
```

Draw a textured 2D line, with perspective correction and z-buffering.

Parameters

zbuffer	Z-buffer image.
х0	X-coordinate of the starting point.
y0	Y-coordinate of the starting point.
z0	Z-coordinate of the starting point
x1	X-coordinate of the ending point.
y1	Y-coordinate of the ending point.
z1	Z-coordinate of the ending point.
texture	Texture image defining the pixel colors.
tx0	X-coordinate of the starting texture point.
ty0	Y-coordinate of the starting texture point.
tx1	X-coordinate of the ending texture point.
ty1	Y-coordinate of the ending texture point.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	Tells if the hash variable must be reinitialized.

8.1.4.416 draw_line() [7/7]

Draw a set of consecutive lines.

Parameters

points	Coordinates of vertices, stored as a list of vectors.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	If set to true, init hatch motif.

Note

• This function uses several call to the single Clmg::draw_line() procedure, depending on the vectors size in points.

8.1.4.417 draw_arrow()

Draw a 2D arrow.

Parameters

x0	X-coordinate of the starting arrow point (tail).
y0	Y-coordinate of the starting arrow point (tail).
x1	X-coordinate of the ending arrow point (head).
y1	Y-coordinate of the ending arrow point (head).
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
angle	Aperture angle of the arrow head.
length	Length of the arrow head. If negative, describes a percentage of the arrow length.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.

8.1.4.418 draw_spline() [1/5]

Draw a 2D spline.

х0	X-coordinate of the starting curve point
y0	Y-coordinate of the starting curve point
и0	X-coordinate of the starting velocity
v0	Y-coordinate of the starting velocity

Parameters

x1	X-coordinate of the ending curve point
y1	Y-coordinate of the ending curve point
u1	X-coordinate of the ending velocity
v1	Y-coordinate of the ending velocity
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
precision	Curve drawing precision.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	If true, init hatch motif.

Note

- The curve is a 2D cubic Bezier spline, from the set of specified starting/ending points and corresponding velocity vectors.
- The spline is drawn as a serie of connected segments. The precision parameter sets the average number of pixels in each drawn segment.
- A cubic Bezier curve is sometimes defined by a set of 4 points { (x0,y0), (xa,ya), (xb,yb), (x1,y1) } where (x0,y0) is the starting point, (x1,y1) is the ending point and (xa,ya), (xb,yb) are two *control* points. The starting and ending velocities (u0,v0) and (u1,v1) can be deduced easily from the control points as u0 = (xa x0), v0 = (ya y0), u1 = (x1 xb) and v1 = (y1 yb).

Example:

```
CImg<unsigned char> img(100,100,1,3,0);
const unsigned char color[] = { 255,255,255 };
img.draw_spline(30,30,0,100,90,40,0,-100,color);
```

8.1.4.419 draw_spline() [2/5]

```
CImg<T>& draw_spline (
             const int x0,
             const int y0,
             const int z0,
             const float u0,
             const float v0,
             const float w0,
             const int x1,
             const int y1,
             const int z1,
             const float u1,
             const float v1,
             const float w1,
             const tc *const color,
             const float opacity = 1,
             const float precision = 4,
             const unsigned int pattern = \sim 0U,
             const bool init_hatch = true )
```

Draw a 3D spline [overloading].

Note

• Similar to Clmg::draw_spline() for a 3D spline in a volumetric image.

8.1.4.420 draw_spline() [3/5]

```
CImg < T > \& draw_spline (
             const int x0,
             const int y0,
             const float u0,
             const float v0,
             const int x1,
             const int y1,
             const float u1,
             const float v1,
             const CImg< t > & texture,
             const int tx0,
             const int ty0,
             const int tx1,
             const int ty1,
             const float opacity = 1,
             const float precision = 4,
             const unsigned int pattern = \sim 0U,
             const bool init_hatch = true )
```

Draw a textured 2D spline.

Parameters

x0	X-coordinate of the starting curve point
y0	Y-coordinate of the starting curve point
и0	X-coordinate of the starting velocity
v0	Y-coordinate of the starting velocity
x1	X-coordinate of the ending curve point
y1	Y-coordinate of the ending curve point
u1	X-coordinate of the ending velocity
v1	Y-coordinate of the ending velocity
texture	Texture image defining line pixel colors.
tx0	X-coordinate of the starting texture point.
ty0	Y-coordinate of the starting texture point.
tx1	X-coordinate of the ending texture point.
ty1	Y-coordinate of the ending texture point.
precision	Curve drawing precision.
opacity	Drawing opacity.
pattern	An integer whose bits describe the line pattern.
init_hatch	if true, reinit hatch motif.

8.1.4.421 draw_spline() [4/5]

```
const float precision = 4, const unsigned int pattern = \sim 0U, const bool init\_hatch = true)
```

Draw a set of consecutive splines.

Parameters

points	Vertices data.
tangents	Tangents data.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.
is_closed_set	Tells if the drawn spline set is closed.
precision	Precision of the drawing.
pattern	An integer whose bits describe the line pattern.
init_hatch	If true, init hatch motif.

8.1.4.422 draw_spline() [5/5]

Draw a set of consecutive splines [overloading].

Similar to previous function, with the point tangents automatically estimated from the given points set.

8.1.4.423 draw_triangle() [1/9]

Draw a filled 2D triangle.

x0	X-coordinate of the first vertex.
y0	Y-coordinate of the first vertex.
x1	X-coordinate of the second vertex.
y1	Y-coordinate of the second vertex.
x2	X-coordinate of the third vertex.
y2	Y-coordinate of the third vertex.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.

8.1.4.424 draw_triangle() [2/9]

Draw a outlined 2D triangle.

Parameters

x0	X-coordinate of the first vertex.
y0	Y-coordinate of the first vertex.
x1	X-coordinate of the second vertex.
y1	Y-coordinate of the second vertex.
x2	X-coordinate of the third vertex.
y2	Y-coordinate of the third vertex.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.
pattern	An integer whose bits describe the outline pattern.

8.1.4.425 draw_triangle() [3/9]

Draw a filled 2D triangle, with z-buffering.

zbuffer	Z-buffer image.
x0	X-coordinate of the first vertex.
y0	Y-coordinate of the first vertex.
z0	Z-coordinate of the first vertex.
x1	X-coordinate of the second vertex.

Parameters

y1	Y-coordinate of the second vertex.
z1	Z-coordinate of the second vertex.
x2	X-coordinate of the third vertex.
y2	Y-coordinate of the third vertex.
z2	Z-coordinate of the third vertex.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.
brightness	Brightness factor.

8.1.4.426 draw_triangle() [4/9]

Draw a Gouraud-shaded 2D triangle.

Parameters

x0	X-coordinate of the first vertex in the image instance.
y0	Y-coordinate of the first vertex in the image instance.
x1	X-coordinate of the second vertex in the image instance.
y1	Y-coordinate of the second vertex in the image instance.
x2	X-coordinate of the third vertex in the image instance.
y2	Y-coordinate of the third vertex in the image instance.
color	Pointer to spectrum () consecutive values, defining the drawing color.
brightness0	Brightness factor of the first vertex (in [0,2]).
brightness1	brightness factor of the second vertex (in [0,2]).
brightness2	brightness factor of the third vertex (in [0,2]).
opacity	Drawing opacity.

8.1.4.427 draw_triangle() [5/9]

```
CImg<T>& draw_triangle ( const int x0, const int y0, const int x1,
```

```
const int y1,
const int x2,
const int y2,
const tc1 *const color1,
const tc2 *const color2,
const tc3 *const color3,
const float opacity = 1)
```

Draw a color-interpolated 2D triangle.

Parameters

x0	X-coordinate of the first vertex in the image instance.
у0	Y-coordinate of the first vertex in the image instance.
x1	X-coordinate of the second vertex in the image instance.
y1	Y-coordinate of the second vertex in the image instance.
x2	X-coordinate of the third vertex in the image instance.
y2	Y-coordinate of the third vertex in the image instance.
color1	Pointer to spectrum () consecutive values of type T, defining the color of the first vertex.
color2	Pointer to spectrum () consecutive values of type T, defining the color of the seconf vertex.
color3	Pointer to spectrum () consecutive values of type T, defining the color of the third vertex.
opacity	Drawing opacity.

8.1.4.428 draw_triangle() [6/9]

```
CImg<T>& draw_triangle (
            const int x0,
            const int y0,
            const int x1,
             const int y1,
             const int x2,
             const int y2,
             const CImg< tc > & texture,
             const int tx0,
             const int ty0,
             const int tx1,
             const int ty1,
             const int tx2,
             const int ty2,
             const float opacity = 1,
             const float brightness = 1)
```

Draw a textured 2D triangle.

х0	X-coordinate of the first vertex in the image instance.
y0	Y-coordinate of the first vertex in the image instance.
x1	X-coordinate of the second vertex in the image instance.
y1	Y-coordinate of the second vertex in the image instance.
x2	X-coordinate of the third vertex in the image instance.
y2	Y-coordinate of the third vertex in the image instance.

Parameters

texture	Texture image used to fill the triangle.
tx0	X-coordinate of the first vertex in the texture image.
ty0	Y-coordinate of the first vertex in the texture image.
tx1	X-coordinate of the second vertex in the texture image.
ty1	Y-coordinate of the second vertex in the texture image.
tx2	X-coordinate of the third vertex in the texture image.
ty2	Y-coordinate of the third vertex in the texture image.
opacity	Drawing opacity.
brightness	Brightness factor of the drawing (in [0,2]).

8.1.4.429 draw_triangle() [7/9]

```
CImg < T > \& draw_triangle (
            const int x0,
            const int y0,
             const int x1,
             const int y1,
             const int x2,
             const int y2,
             const tc *const color,
             const CImg< tl > & light,
             const int lx0,
             const int ly0,
             const int lx1,
             const int ly1,
             const int 1x2,
             const int 1y2,
             const float opacity = 1 )
```

Draw a Phong-shaded 2D triangle.

X-coordinate of the first vertex in the image instance.
Y-coordinate of the first vertex in the image instance.
X-coordinate of the second vertex in the image instance.
Y-coordinate of the second vertex in the image instance.
X-coordinate of the third vertex in the image instance.
Y-coordinate of the third vertex in the image instance.
Pointer to spectrum () consecutive values, defining the drawing color.
Light image.
X-coordinate of the first vertex in the light image.
Y-coordinate of the first vertex in the light image.
X-coordinate of the second vertex in the light image.
Y-coordinate of the second vertex in the light image.
X-coordinate of the third vertex in the light image.
Y-coordinate of the third vertex in the light image.
Drawing opacity.

8.1.4.430 draw_triangle() [8/9]

```
CImg < T > & draw_triangle (
             const int x0,
             const int y0,
             const int x1,
             const int y1,
             const int x2,
             const int y2,
             const CImg< tc > & texture,
             const int tx0,
             const int ty0,
             const int tx1,
             const int tyl,
             const int tx2,
             const int ty2,
             const float brightness0,
             const float brightness1,
             const float brightness2,
             const float opacity = 1)
```

Draw a textured Gouraud-shaded 2D triangle.

Parameters

x0	X-coordinate of the first vertex in the image instance.
y0	Y-coordinate of the first vertex in the image instance.
x1	X-coordinate of the second vertex in the image instance.
y1	Y-coordinate of the second vertex in the image instance.
x2	X-coordinate of the third vertex in the image instance.
y2	Y-coordinate of the third vertex in the image instance.
texture	Texture image used to fill the triangle.
tx0	X-coordinate of the first vertex in the texture image.
ty0	Y-coordinate of the first vertex in the texture image.
tx1	X-coordinate of the second vertex in the texture image.
ty1	Y-coordinate of the second vertex in the texture image.
tx2	X-coordinate of the third vertex in the texture image.
ty2	Y-coordinate of the third vertex in the texture image.
brightness0	Brightness factor of the first vertex.
brightness1	Brightness factor of the second vertex.
brightness2	Brightness factor of the third vertex.
opacity	Drawing opacity.

8.1.4.431 draw_triangle() [9/9]

```
const int y2,
const CImg< tc > & texture,
const int tx0,
const int ty0,
const int tx1,
const int ty1,
const int tx2,
const int ty2,
const CImg< tl > & light,
const int lx0,
const int ly0,
const int lx1,
const int ly1,
const int 1x2,
const int 1y2,
const float opacity = 1)
```

Draw a textured Phong-shaded 2D triangle.

Parameters

x0	X-coordinate of the first vertex in the image instance.
y0	Y-coordinate of the first vertex in the image instance.
x1	X-coordinate of the second vertex in the image instance.
y1	Y-coordinate of the second vertex in the image instance.
x2	X-coordinate of the third vertex in the image instance.
y2	Y-coordinate of the third vertex in the image instance.
texture	Texture image used to fill the triangle.
tx0	X-coordinate of the first vertex in the texture image.
ty0	Y-coordinate of the first vertex in the texture image.
tx1	X-coordinate of the second vertex in the texture image.
ty1	Y-coordinate of the second vertex in the texture image.
tx2	X-coordinate of the third vertex in the texture image.
ty2	Y-coordinate of the third vertex in the texture image.
light	Light image.
lx0	X-coordinate of the first vertex in the light image.
ly0	Y-coordinate of the first vertex in the light image.
lx1	X-coordinate of the second vertex in the light image.
ly1	Y-coordinate of the second vertex in the light image.
lx2	X-coordinate of the third vertex in the light image.
ly2	Y-coordinate of the third vertex in the light image.
opacity	Drawing opacity.

8.1.4.432 draw_rectangle() [1/3]

```
const int y1,
const int z1,
const int c1,
const T val,
const float opacity = 1)
```

Draw a filled 4D rectangle.

Parameters

x0	X-coordinate of the upper-left rectangle corner.
y0	Y-coordinate of the upper-left rectangle corner.
z0	Z-coordinate of the upper-left rectangle corner.
c0	C-coordinate of the upper-left rectangle corner.
x1	X-coordinate of the lower-right rectangle corner.
y1	Y-coordinate of the lower-right rectangle corner.
z1	Z-coordinate of the lower-right rectangle corner.
c1	C-coordinate of the lower-right rectangle corner.
val	Scalar value used to fill the rectangle area.
opacity	Drawing opacity.

8.1.4.433 draw_rectangle() [2/3]

Draw a filled 3D rectangle.

x0	X-coordinate of the upper-left rectangle corner.
y0	Y-coordinate of the upper-left rectangle corner.
z0	Z-coordinate of the upper-left rectangle corner.
x1	X-coordinate of the lower-right rectangle corner.
y1	Y-coordinate of the lower-right rectangle corner.
z1	Z-coordinate of the lower-right rectangle corner.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.

```
8.1.4.434 draw_rectangle() [3/3]
```

```
CImg<T>& draw_rectangle ( const int x0,
```

```
const int y0,
const int x1,
const int y1,
const tc *const color,
const float opacity = 1)
```

Draw a filled 2D rectangle.

Parameters

x0	X-coordinate of the upper-left rectangle corner.
y0	Y-coordinate of the upper-left rectangle corner.
x1	X-coordinate of the lower-right rectangle corner.
y1	Y-coordinate of the lower-right rectangle corner.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.

8.1.4.435 draw_polygon()

Draw a filled 2D polygon.

Parameters

points	Set of polygon vertices.
color	Pointer to spectrum () consecutive values of type T, defining the drawing color.
opacity	Drawing opacity.

8.1.4.436 draw_ellipse() [1/4]

Draw a filled 2D ellipse.

x0	X-coordinate of the ellipse center.
y0	Y-coordinate of the ellipse center.
r1	First radius of the ellipse.

Parameters

r2	Second radius of the ellipse.
angle	Angle of the first radius.
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.

8.1.4.437 draw_ellipse() [2/4] CImg<T>& draw_ellipse (

```
const int x0,
const int y0,
const CImg< t > & tensor,
const tc *const color,
const float opacity = 1)
```

Draw a filled 2D ellipse [overloading].

Parameters

x0	X-coordinate of the ellipse center.
y0	Y-coordinate of the ellipse center.
tensor	Diffusion tensor describing the ellipse.
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.

8.1.4.438 draw_ellipse() [3/4]

Draw an outlined 2D ellipse.

x0	X-coordinate of the ellipse center.
y0	Y-coordinate of the ellipse center.
r1	First radius of the ellipse.
r2	Second radius of the ellipse.
angle	Angle of the first radius.
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.
pattern	An integer whose bits describe the outline pattern.

8.1.4.439 draw_ellipse() [4/4]

Draw an outlined 2D ellipse [overloading].

Parameters

x0	X-coordinate of the ellipse center.
y0	Y-coordinate of the ellipse center.
tensor	Diffusion tensor describing the ellipse.
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.
pattern	An integer whose bits describe the outline pattern.

8.1.4.440 draw_circle() [1/2]

Draw a filled 2D circle.

Parameters

х0	X-coordinate of the circle center.
у0	Y-coordinate of the circle center.
radius	Circle radius.
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.

Note

· Circle version of the Bresenham's algorithm is used.

8.1.4.441 draw_circle() [2/2]

```
int radius,
const tc *const color,
const float opacity,
const unsigned int pattern )
```

Draw an outlined 2D circle.

Parameters

х0	X-coordinate of the circle center.
у0	Y-coordinate of the circle center.
radius	Circle radius.
color	Pointer to spectrum() consecutive values, defining the drawing color.
opacity	Drawing opacity.
pattern	An integer whose bits describe the outline pattern.

8.1.4.442 draw_image() [1/2]

Draw an image.

Parameters

sprite	Sprite image.
x0	X-coordinate of the sprite position.
y0	Y-coordinate of the sprite position.
z0	Z-coordinate of the sprite position.
c0	C-coordinate of the sprite position.
opacity	Drawing opacity.

8.1.4.443 draw_image() [2/2]

Draw a masked image.

Parameters

sprite	Sprite image.
mask	Mask image.
хО	X-coordinate of the sprite position in the image instance.
у0	Y-coordinate of the sprite position in the image instance.
z0	Z-coordinate of the sprite position in the image instance.
c0	C-coordinate of the sprite position in the image instance.
mask_max_value	Maximum pixel value of the mask image mask.
opacity	Drawing opacity.

Note

- Pixel values of mask set the opacity of the corresponding pixels in sprite.
- Dimensions along x,y and z of \mbox{sprite} and \mbox{mask} must be the same.

8.1.4.444 draw_text() [1/4]

Draw a text string.

Parameters

x0	X-coordinate of the text in the image instance.
у0	Y-coordinate of the text in the image instance.
text	Format of the text ('printf'-style format string).
foreground_color	Pointer to spectrum () consecutive values, defining the foreground drawing color.
background_color	Pointer to spectrum () consecutive values, defining the background drawing color.
opacity	Drawing opacity.
font	Font used for drawing text.

8.1.4.445 draw_text() [2/4]

```
const float opacity,
const CImgList< t > & font,
```

Draw a text string [overloading].

Note

A transparent background is used for the text.

Draw a text string [overloading].

Note

A transparent foreground is used for the text.

Draw a text string [overloading].

x0	X-coordinate of the text in the image instance.
у0	Y-coordinate of the text in the image instance.
text	Format of the text ('printf'-style format string).
foreground_color	Array of spectrum() values of type T, defining the foreground color (0 means 'transparent').
background_color	Array of spectrum() values of type T, defining the background color (0 means 'transparent').
opacity	Drawing opacity.
font_height	Height of the text font (exact match for 13,23,53,103, interpolated otherwise).

8.1.4.448 draw_quiver() [1/2]

Draw a 2D vector field.

Parameters

flow	Image of 2D vectors used as input data.	
color	Image of spectrum()-D vectors corresponding to the color of each arrow.	
opacity	Drawing opacity.	
sampling	Length (in pixels) between each arrow.	
factor	Length factor of each arrow (if $<$ 0, computed as a percentage of the maximum length).	
is_arrow	Tells if arrows must be drawn, instead of oriented segments.	
pattern	Used pattern to draw lines.	

Note

Clipping is supported.

8.1.4.449 draw_quiver() [2/2]

Draw a 2D vector field, using a field of colors.

flow	Image of 2D vectors used as input data.
color	Image of spectrum()-D vectors corresponding to the color of each arrow.
opacity	Opacity of the drawing.
sampling	Length (in pixels) between each arrow.
factor	Length factor of each arrow (if <0, computed as a percentage of the maximum length).
is_arrow	Tells if arrows must be drawn, instead of oriented segments.
pattern	Used pattern to draw lines.

Note

Clipping is supported.

```
8.1.4.450 draw_axis() [1/2]
```

Draw a labeled horizontal axis.

Parameters

values_x	Values along the horizontal axis.
У	Y-coordinate of the horizontal axis in the image instance.
color	Pointer to spectrum() consecutive values, defining the drawing color.
opacity	Drawing opacity.
pattern	Drawing pattern.
font_height	Height of the labels (exact match for 13,23,53,103, interpolated otherwise).
allow_zero	Enable/disable the drawing of label '0' if found.

8.1.4.451 draw_axis() [2/2]

Draw a labeled vertical axis.

X	X-coordinate of the vertical axis in the image instance.
values_y	Values along the Y-axis.
color	Pointer to spectrum() consecutive values, defining the drawing color.
opacity	Drawing opacity.
pattern	Drawing pattern.
font_height	Height of the labels (exact match for 13,23,53,103, interpolated otherwise).
allow_zero	Enable/disable the drawing of label '0' if found.

8.1.4.452 draw_axes()

Draw labeled horizontal and vertical axes.

Parameters

values_x	Values along the X-axis.
values_y	Values along the Y-axis.
color	Pointer to spectrum() consecutive values, defining the drawing color.
opacity	Drawing opacity.
pattern_x	Drawing pattern for the X-axis.
pattern_y	Drawing pattern for the Y-axis.
font_height	Height of the labels (exact match for 13,23,53,103, interpolated otherwise).
allow_zero	Enable/disable the drawing of label '0' if found.

8.1.4.453 draw_grid()

Draw 2D grid.

values⇔	X-coordinates of the vertical lines.
_X	
values⊷	Y-coordinates of the horizontal lines.
_y	
color	Pointer to spectrum() consecutive values, defining the drawing color.
opacity	Drawing opacity.
pattern←	Drawing pattern for vertical lines.
_X	
pattern⊷	Drawing pattern for horizontal lines.
_ <i>y</i>	

8.1.4.454 draw_graph()

Draw 1D graph.

Parameters

data	Image containing the graph values $I = f(x)$.	
color	Pointer to spectrum () consecutive values, defining the drawing color.	
opacity	Drawing opacity.	
plot_type	Define the type of the plot:	
	• 0 = No plot.	
	• 1 = Plot using segments.	
	• 2 = Plot using cubic splines.	
	• 3 = Plot with bars.	
vertex_type	Define the type of points:	
	• 0 = No points.	
	• 1 = Point.	
	• 2 = Straight cross.	
	• 3 = Diagonal cross.	
	• 4 = Filled circle.	
	• 5 = Outlined circle.	
	• 6 = Square.	
	• 7 = Diamond.	
ymin	Lower bound of the y-range.	
ymax	Upper bound of the y-range.	
pattern	Drawing pattern.	

Note

• if ymin = ymax = 0, the y-range is computed automatically from the input samples.

8.1.4.455 draw_fill()

```
CImg<T>& draw_fill ( const int x0,
```

```
const int y0,

const int z0,

const tc *const color,

const float opacity,

CImg < t > \& region,

const float tolerance = 0,

const bool is\_high\_connectivity = false)
```

Draw filled 3D region with the flood fill algorithm.

Parameters

	x0	X-coordinate of the starting point of the region to fill.
	y0	Y-coordinate of the starting point of the region to fill.
	z0	Z-coordinate of the starting point of the region to fill.
	color	Pointer to spectrum () consecutive values, defining the drawing color.
out	region	Image that will contain the mask of the filled region mask, as an output.
	tolerance	Tolerance concerning neighborhood values.
	opacity	Opacity of the drawing.
	is_high_connectivity	Tells if 8-connexity must be used.

Returns

region is initialized with the binary mask of the filled region.

8.1.4.456 draw_plasma()

Draw a random plasma texture.

Parameters

alpha	Alpha-parameter.
beta	Beta-parameter.
scale	Scale-parameter.

Note

Use the mid-point algorithm to render.

8.1.4.457 draw_mandelbrot()

```
CImg<T>& draw_mandelbrot ( const int x0,
```

```
const int y0,
const int x1,
const int y1,
const int y1,
const CImg< tc > & colormap,
const float opacity = 1,
const double z0r = -2,
const double z0i = -2,
const double z1i = 2,
const double z1i = 2,
const unsigned int iteration_max = 255,
const bool is_normalized_iteration = false,
const double param_r = 0,
const double param_i = 0)
```

Draw a quadratic Mandelbrot or Julia 2D fractal.

Parameters

x0	X-coordinate of the upper-left pixel.
y0	Y-coordinate of the upper-left pixel.
x1	X-coordinate of the lower-right pixel.
y1	Y-coordinate of the lower-right pixel.
colormap	Colormap.
opacity	Drawing opacity.
z0r	Real part of the upper-left fractal vertex.
z0i	Imaginary part of the upper-left fractal vertex.
z1r	Real part of the lower-right fractal vertex.
z1i	Imaginary part of the lower-right fractal vertex.
iteration_max	Maximum number of iterations for each estimated point.
is_normalized_iteration	Tells if iterations are normalized.
is_julia_set	Tells if the Mandelbrot or Julia set is rendered.
param_r	Real part of the Julia set parameter.
param_i	Imaginary part of the Julia set parameter.

Note

Fractal rendering is done by the Escape Time Algorithm.

8.1.4.458 draw_gaussian() [1/2]

Draw a 1D gaussian function.

XC	X-coordinate of the gaussian center.	
sigma	Standard variation of the gaussian distribution.	
color	Pointer to spectrum () consecutive values, defining the drawing color.	
opacity	Drawing opacity.	

8.1.4.459 draw_gaussian() [2/2]

Draw a 2D gaussian function.

Parameters

xc	X-coordinate of the gaussian center.
ус	Y-coordinate of the gaussian center.
tensor	Covariance matrix (must be 2x2).
color	Pointer to spectrum () consecutive values, defining the drawing color.
opacity	Drawing opacity.

8.1.4.460 draw_object3d()

```
CImg<T>& draw_object3d (
            const float x0,
            const float y0,
            const float z0,
             const CImg< tp > & vertices,
             const CImgList< tf > & primitives,
             const CImgList< tc > & colors,
            const CImg< to > & opacities,
            const unsigned int render_type = 4,
            const bool is_double_sided = false,
            const float focale = 700,
             const float lightx = 0,
             const float lighty = 0,
             const float lightz = -5e8,
             const float specular_lightness = 0.2f,
             const float specular_shininess = 0.1f,
             const float g_opacity = 1)
```

Draw a 3D object.

x0	X-coordinate of the 3D object position
у0	Y-coordinate of the 3D object position
z0	Z-coordinate of the 3D object position
vertices	Image Nx3 describing 3D point coordinates
primitives	List of P primitives
colors	List of P color (or textures)
opacities	Image or list of P opacities
render_type	d Render type (0=Points, 1=Lines, 2=Faces (no light), 3=Faces (flat), 4=Faces(Gouraud)
is_double_sided	Tells if object faces have two sides or are oriented.

Parameters

focale	length of the focale (0 for parallel projection)
lightx	X-coordinate of the light
lighty	Y-coordinate of the light
lightz	Z-coordinate of the light
specular_lightness	Amount of specular light.
specular_shininess	Shininess of the object
g_opacity	Global opacity of the object.

8.1.4.461 select()

Launch simple interface to select a shape from an image.

Parameters

disp	Display window to use.
feature_type	Type of feature to select. Can be { 0=point 1=line 2=rectangle
	3=ellipse }.
XYZ	Pointer to 3 values X,Y,Z which tells about the projection point coordinates, for volumetric
	images.
exit_on_anykey	Exit function when any key is pressed.

8.1.4.462 load()

Load image from a file.

Parameters

filename Filename, as a	C-string.
-------------------------	-----------

Note

The extension of filename defines the file format. If no filename extension is provided, $Clmg < T > ::get \leftarrow load()$ will try to load the file as a .cimg or .cimgz file.

8.1.4.463 load_ascii()

Load image from an Ascii file.

Parameters

filename F	Filename, as a C -string.
------------	---------------------------

8.1.4.464 load_dlm()

Load image from a DLM file.

Parameters

filename	Filename, as a C-string.
----------	--------------------------

8.1.4.465 load_bmp()

Load image from a BMP file.

Parameters

filename Filename, as a C-string	g.
------------------------------------	----

8.1.4.466 load_jpeg()

Load image from a JPEG file.

filename	Filename	as a C-string.

8.1.4.467 load_magick()

Load image from a file, using Magick++ library.

Parameters

```
filename Filename, as a C-string.
```

8.1.4.468 load_png()

Load image from a PNG file.

Parameters

	filename	Filename, as a C-string.
out	bits_per_pixel	Number of bits per pixels used to store pixel values in the image file.

8.1.4.469 load_pnm()

Load image from a PNM file.

Parameters

filename	Filename, as a C-string.

8.1.4.470 load_pfm()

Load image from a PFM file.

filename Filename, as a C-string	J .
----------------------------------	------------

8.1.4.471 load_rgb()

Load image from a RGB file.

Parameters

filename	Filename, as a C-string.
dimw	Width of the image buffer.
dimh	Height of the image buffer.

8.1.4.472 load_rgba()

Load image from a RGBA file.

Parameters

filename	Filename, as a C-string.
dimw	Width of the image buffer.
dimh	Height of the image buffer.

8.1.4.473 load_tiff()

Load image from a TIFF file.

	filename	Filename, as a C-string.
	first_frame	First frame to read (for multi-pages tiff).
	last_frame	Last frame to read (for multi-pages tiff).
	step_frame	Step value of frame reading.
out	voxel_size	Voxel size, as stored in the filename.
out	description	Description, as stored in the filename.

Note

- libtiff support is enabled by defining the precompilation directive cimg_use_tif.
- When libtiff is enabled, 2D and 3D (multipage) several channel per pixel are supported for char, uchar, short, ushort, float and double pixel types.
- If cimg_use_tif is not defined at compile time the function uses Clmg<T>& load_other(const char*).

8.1.4.474 load_minc2()

Load image from a MINC2 file.

Parameters

filename	Filename, as a C-string.
----------	--------------------------

8.1.4.475 load_analyze()

Load image from an ANALYZE7.5/NIFTI file.

Parameters

	filename	Filename, as a C-string.
out	voxel_size	Pointer to the three voxel sizes read from the file.

8.1.4.476 load_cimg() [1/2]

Load image from a .cimg[z] file.

filename	Filename, as a C-string.
axis	Appending axis, if file contains multiple images. Can be { 'x' 'y' 'z' 'c' }.
align	Appending alignment.

8.1.4.477 load_cimg() [2/2]

Load sub-images of a .cimg file.

Parameters

filename	Filename, as a C-string.
n0	Starting frame.
n1	Ending frame (\sim 0U for max).
x0	X-coordinate of the starting sub-image vertex.
y0	Y-coordinate of the starting sub-image vertex.
z0	Z-coordinate of the starting sub-image vertex.
c0	C-coordinate of the starting sub-image vertex.
x1	X-coordinate of the ending sub-image vertex (\sim 0U for max).
y1	Y-coordinate of the ending sub-image vertex (~0U for max).
z1	Z-coordinate of the ending sub-image vertex (\sim 0U for max).
c1	C-coordinate of the ending sub-image vertex (\sim 0U for max).
axis	Appending axis, if file contains multiple images. Can be { 'x' 'y' 'z' 'c' }.
align	Appending alignment.

8.1.4.478 load_inr()

Load image from an INRIMAGE-4 file.

	filename	Filename, as a C-string.
out	voxel_size	Pointer to the three voxel sizes read from the file.

8.1.4.479 load_exr()

Load image from a EXR file.

Parameters

filename	Filename, as a C-string.
----------	--------------------------

8.1.4.480 load_pandore()

Load image from a PANDORE-5 file.

Parameters

1	filename	Filename, as a C-string.	
---	----------	--------------------------	--

8.1.4.481 load_parrec()

Load image from a PAR-REC (Philips) file.

Parameters

filenan	e Filename, as a C-string.
axis	Appending axis, if file contains multiple images. Can be { 'x' 'y' 'z' 'c' }.
align	Appending alignment.

8.1.4.482 load_raw()

```
const bool invert_endianness = false,
const ulongT offset = 0 )
```

Load image from a raw binary file.

Parameters

filename	Filename, as a C-string.
size_x	Width of the image buffer.
size_y	Height of the image buffer.
size_z	Depth of the image buffer.
size_c	Spectrum of the image buffer.
is_multiplexed	Tells if the image values are multiplexed along the C-axis.
invert_endianness	Tells if the endianness of the image buffer must be inverted.
offset	Starting offset of the read in the specified file.

8.1.4.483 load_yuv()

Load image sequence from a YUV file.

Parameters

filename	Filename, as a C-string.	
size_x	Width of the frames.	
size_y	Height of the frames.	
chroma_subsampling	Type of chroma subsampling. Can be { 420 422 444 }.	
first_frame	Index of the first frame to read.	
last_frame	Index of the last frame to read.	
step_frame	Step value for frame reading.	
yuv2rgb	Tells if the YUV to RGB transform must be applied.	
axis	Appending axis, if file contains multiple images. Can be { 'x' 'y' 'z' 'c' }.	

8.1.4.484 load_off()

```
CImgList< tc > & colors,
const char *const filename )
```

Load 3D object from a .OFF file.

Parameters

out	primitives	Primitives data of the 3D object.
out	colors	Colors data of the 3D object.
	filename	Filename, as a C-string.

8.1.4.485 load_video()

Load image sequence from a video file, using OpenCV library.

Parameters

filename	Filename, as a C-string.
first_frame	Index of the first frame to read.
last_frame	Index of the last frame to read.
step_frame	Step value for frame reading.
axis	Alignment axis.
align	Apending alignment.

8.1.4.486 load_ffmpeg_external()

Load image sequence using FFMPEG's external tool 'ffmpeg'.

filename	Filename, as a C-string.
axis	Appending axis, if file contains multiple images. Can be { 'x' 'y' 'z' 'c' }.
align	Appending alignment.

8.1.4.487 load_gif_external()

Load gif file, using Imagemagick or GraphicsMagicks's external tools.

Parameters

filename	Filename, as a C-string.	
axis	Appending axis, if file contains multiple images. Can be { 'x' 'y' 'z' 'c' }.	
align	Appending alignment.	

8.1.4.488 load_graphicsmagick_external()

Load image using GraphicsMagick's external tool 'gm'.

Parameters

filename	Filename, as a C-string.
----------	--------------------------

8.1.4.489 load_gzip_external()

Load gzipped image file, using external tool 'gunzip'.

Parameters

filename	Filename, as a C-string.
----------	--------------------------

8.1.4.490 load_imagemagick_external()

Load image using ImageMagick's external tool 'convert'.

filename	Filename, as a C-string.

8.1.4.491 load_medcon_external()

Load image from a DICOM file, using XMedcon's external tool 'medcon'.

Parameters

```
filename Filename, as a C-string.
```

8.1.4.492 load_dcraw_external()

Load image from a RAW Color Camera file, using external tool 'dcraw'.

Parameters

```
filename Filename, as a C-string.
```

8.1.4.493 load_camera()

Load image from a camera stream, using OpenCV.

Parameters

index	Index of the camera to capture images from (from 0 to 63).
capture_width	Width of the desired image ('0' stands for default value).
capture_height	Height of the desired image ('0' stands for default value).
skip_frames	Number of frames to skip before the capture.
release_camera	Tells if the camera ressource must be released at the end of the method.

8.1.4.494 load_other()

Load image using various non-native ways.

Parameters

filename	Filename, as a C-string.
----------	--------------------------

8.1.4.495 print()

Display information about the image data.

Parameters

title	Name for the considered image.
display_stats	Tells to compute and display image statistics.

8.1.4.496 display() [1/3]

Display image into a CImgDisplay window.

Parameters

disp Display window	<i>I</i> .
---------------------	------------

8.1.4.497 display() [2/3]

Display image into a CImgDisplay window, in an interactive way.

	disp	Display window.
	display_info	Tells if image information are displayed on the standard output.
in,out	XYZ	Contains the XYZ coordinates at start / exit of the function.
	exit_on_anykey	Exit function when any key is pressed.

8.1.4.498 display() [3/3]

Display image into an interactive window.

Parameters

	title	Window title
	display_info	Tells if image information are displayed on the standard output.
in, out	XYZ	Contains the XYZ coordinates at start / exit of the function.
	exit_on_anykey	Exit function when any key is pressed.

8.1.4.499 display_object3d()

```
const CImg<T>& display_object3d (
            CImgDisplay & disp,
             const CImg< tp > & vertices,
             const CImgList< tf > & primitives,
             const CImgList< tc > & colors,
             const to & opacities,
             const bool centering = true,
             const int render_static = 4,
             const int render_motion = 1,
             const bool is_double_sided = true,
             const float focale = 700,
             const float light_x = 0,
             const float light_y = 0,
             const float light_z = -5e8f,
             const float specular_lightness = 0.2f,
             const float specular_shininess = 0.1f,
             const bool display_axes = true,
             float *const pose_matrix = 0,
             const bool exit_on_anykey = false ) const
```

Display object 3D in an interactive window.

disp	Display window.
vertices	Vertices data of the 3D object.
primitives	Primitives data of the 3D object.
colors	Colors data of the 3D object.
opacities	Opacities data of the 3D object.
centering	Tells if the 3D object must be centered for the display.
render_static	Rendering mode.
render_motion	Rendering mode, when the 3D object is moved.
is_double_sided	Tells if the object primitives are double-sided.

Parameters

focale	Focale
light_x	X-coordinate of the light source.
light_y	Y-coordinate of the light source.
light_z	Z-coordinate of the light source.
specular_lightness	Amount of specular light.
specular_shininess	Shininess of the object material.
display_axes	Tells if the 3D axes are displayed.
pose_matrix	Pointer to 12 values, defining a 3D pose (as a 4x3 matrix).
exit_on_anykey	Exit function when any key is pressed.

8.1.4.500 display_graph()

Display 1D graph in an interactive window.

Parameters

disp	Display window.
plot_type	Plot type. Can be { 0=points 1=segments 2=splines 3=bars }.
vertex_type	Vertex type.
labelx	Title for the horizontal axis, as a C-string.
xmin	Minimum value along the X-axis.
xmax	Maximum value along the X-axis.
labely	Title for the vertical axis, as a C-string.
ymin	Minimum value along the X-axis.
ymax	Maximum value along the X-axis.
exit_on_anykey	Exit function when any key is pressed.

8.1.4.501 save()

Save image as a file.

Parameters

filename	Filename, as a C-string.
number	When positive, represents an index added to the filename. Otherwise, no number is added.
digits	Number of digits used for adding the number to the filename.

Note

- The used file format is defined by the file extension in the filename filename.
- Parameter number can be used to add a 6-digit number to the filename before saving.

```
8.1.4.502 save_ascii()
```

Save image as an Ascii file.

Parameters

filename	Filename, as a C-string.
----------	--------------------------

8.1.4.503 save_cpp()

Save image as a .cpp source file.

Parameters

filename	Filename, as a C-string.
----------	--------------------------

8.1.4.504 save_dlm()

Save image as a DLM file.

filename	Filename, as a C-string.
----------	--------------------------

8.1.4.505 save_bmp()

Save image as a BMP file.

Parameters

filename Filename, a	as a C-string.
----------------------	----------------

8.1.4.506 save_jpeg()

Save image as a JPEG file.

Parameters

filename	Filename, as a C-string.
quality	Image quality (in %)

8.1.4.507 save_magick()

Save image, using built-in ImageMagick++ library.

Parameters

filename	Filename, as a C-string.
bytes_per_pixel	Force the number of bytes per pixel for the saving, when possible.

8.1.4.508 save_png()

Save image as a PNG file.

filename	Filename, as a C-string.	
bytes_per_p	Force the number of bytes p	er pixels for the saving, when possible.

8.1.4.509 save_pnm()

Save image as a PNM file.

Parameters

filename	Filename, as a C-string.
bytes_per_pixel	Force the number of bytes per pixels for the saving.

8.1.4.510 save_pnk()

Save image as a PNK file.

Parameters

8.1.4.511 save_pfm()

Save image as a PFM file.

Parameters

filename	Filename, as a C-string.

8.1.4.512 save_rgb()

Save image as a RGB file.

filename	Filename, as a C-string.
----------	--------------------------

8.1.4.513 save_rgba()

Save image as a RGBA file.

Parameters

filename Filename, as a C-stri	ng.
--------------------------------	-----

8.1.4.514 save_tiff()

Save image as a TIFF file.

Parameters

filename	Filename, as a C-string.
compression_type	Type of data compression. Can be { 0=None 1=LZW 2=JPEG }.
voxel_size	Voxel size, to be stored in the filename.
description	Description, to be stored in the filename.
use_bigtiff	Allow to save big tiff files (>4Gb).

Note

- libtiff support is enabled by defining the precompilation directive <code>cimg_use_tif</code>.
- When libtiff is enabled, 2D and 3D (multipage) several channel per pixel are supported for char, uchar, short, ushort, float and double pixel types.
- If cimg_use_tif is not defined at compile time the function uses Clmg<T>&save_other(const char*).

8.1.4.515 save_minc2()

Save image as a MINC2 file.

Parameters

filename	Filename, as a C-string.
imitate file	If non-zero, reference filename, as a C-string, to borrow header from.

Generated by Doxygen

8.1.4.516 save_analyze()

Save image as an ANALYZE7.5 or NIFTI file.

Parameters

filename	Filename, as a C-string.
voxel_size	Pointer to 3 consecutive values that tell about the voxel sizes along the X,Y and Z dimensions.

Save image as a .cimg file.

Parameters

filename	Filename, as a C-string.
is_compressed	Tells if the file contains compressed image data.

```
8.1.4.518 save_cimg() [2/2]
```

Save image as a sub-image into an existing .cimg file.

filename	Filename, as a C-string.
n0	Index of the image inside the file.
x0	X-coordinate of the sub-image location.
y0	Y-coordinate of the sub-image location.
z0	Z-coordinate of the sub-image location.
c0	C-coordinate of the sub-image location.

const unsigned int dc = 1) [static]

Save blank image as a .cimg file.

Parameters

filename	Filename, as a C-string.
dx	Width of the image.
dy	Height of the image.
dz	Depth of the image.
dc	Number of channels of the image.

Note

- All pixel values of the saved image are set to 0.
- Use this method to save large images without having to instanciate and allocate them.

8.1.4.520 save_empty_cimg() [2/2]

```
static void save_empty_cimg ( std::FILE *const \ file, \\ const \ unsigned \ int \ dx, \\ const \ unsigned \ int \ dy = 1, \\ const \ unsigned \ int \ dz = 1, \\ const \ unsigned \ int \ dc = 1 ) \ [static]
```

Save blank image as a .cimg file [overloading].

Same as save_empty_cimg(const char *,unsigned int,unsigned int,unsigned int,unsigned int) with a file stream argument instead of a filename string.

8.1.4.521 save_inr()

Save image as an INRIMAGE-4 file.

filename	Filename, as a C-string.	
voxel_size	Pointer to 3 values specifying the voxel sizes along the X,Y and Z dimensions.]

8.1.4.522 save_exr()

Save image as an OpenEXR file.

Parameters

filename	Filename, as a C-string.
----------	--------------------------

Note

The OpenEXR file format is described here.

Save image as a Pandore-5 file.

Parameters

filename	Filename, as a C-string.	
colorspace	Colorspace data field in output file (see Pandore file specifications for more	
	information).	

Save image as a Pandore-5 file [overloading].

Same as save_pandore(const char *,unsigned int) const with a file stream argument instead of a filename string.

Save image as a raw data file.

Parameters

filename	Filename, as a C-string.
is_multiplexed	Tells if the image channels are stored in a multiplexed way (true) or not (false).

Note

The .raw format does not store the image dimensions in the output file, so you have to keep track of them somewhere to be able to read the file correctly afterwards.

Save image as a raw data file [overloading].

Same as save_raw(const char *,bool) const with a file stream argument instead of a filename string.

Save image as a .yuv video file.

Parameters

filename	Filename, as a C-string.
chroma_subsampling	Type of chroma subsampling. Can be { 420 422 444 }.
is_rgb	Tells if pixel values of the instance image are RGB-coded (true) or YUV-coded (false).

Note

Each slice of the instance image is considered to be a single frame of the output video file.

Save image as a .yuv video file [overloading].

Same as save_yuv(const char*,const unsigned int,const bool) const with a file stream argument instead of a file-name string.

Save 3D object as an Object File Format (.off) file.

Parameters

filename	Filename, as a C-string.
primitives	List of 3D object primitives.
colors	List of 3D object colors.

Note

- Instance image contains the vertices data of the 3D object.
- Textured, transparent or sphere-shaped primitives cannot be managed by the .off file format. Such primitives will be lost or simplified during file saving.
- The .off file format is described here.

Save 3D object as an Object File Format (.off) file [overloading].

Same as save_off(const ClmgList<tf>&,const ClmgList<tc>&,const char*) const with a file stream argument instead of a filename string.

8.1.4.531 save_video()

Save volumetric image as a video, using the OpenCV library.

filename	Filename to write data to.
fps	Number of frames per second.
codec	Type of compression (See http://www.fourcc.org/codecs.php to see available codecs).
keep_open	Tells if the video writer associated to the specified filename must be kept open or not (to allow
	frames to be added in the same file afterwards).

8.1.4.532 save_ffmpeg_external()

Save volumetric image as a video, using ffmpeg external binary.

Parameters

filename	Filename, as a C-string.
fps	Video framerate.
codec	Video codec, as a C-string.
bitrate	Video bitrate.

Note

- Each slice of the instance image is considered to be a single frame of the output video file.
- This method uses ffmpeg, an external executable binary provided by FFmpeg. It must be installed for the method to succeed.

8.1.4.533 save_gzip_external()

Save image using gzip external binary.

Parameters

filename	Filename, as a C-string.

Note

This method uses gzip, an external executable binary provided by gzip. It must be installed for the method to succeed.

8.1.4.534 save_graphicsmagick_external()

```
const CImg<T>& save_graphicsmagick_external ( const char *const filename, const unsigned int quality = 100) const
```

Save image using GraphicsMagick's external binary.

Parameters

filename	Filename, as a C-string.
quality	Image quality (expressed in percent), when the file format supports it.

Note

This method uses gm, an external executable binary provided by GraphicsMagick. It must be installed for the method to succeed.

8.1.4.535 save_imagemagick_external()

```
const CImg<T>& save_imagemagick_external ( const char *const filename, const unsigned int quality = 100) const
```

Save image using ImageMagick's external binary.

Parameters

filename	Filename, as a C-string.]
quality	Image quality (expressed in percent), when the file format supports it.]

Note

This method uses <code>convert</code>, an external executable binary provided by <code>ImageMagick</code>. It must be installed for the method to succeed.

8.1.4.536 save_medcon_external()

Save image as a Dicom file.

Parameters

filename	Filename, as a C-string.

Note

This method uses medcon, an external executable binary provided by (X) Medcon. It must be installed for the method to succeed.

8.1.4.537 save_other()

```
const CImg<T>& save_other (
```

```
const char *const filename,
const unsigned int quality = 100 ) const
```

Parameters

filename	Filename, as a C-string.	1
quality	Image quality (expressed in percent), when the file format supports it.	1

Note

- The filename extension tells about the desired file format.
- This method tries to save the instance image as a file, using external tools from ImageMagick or GraphicsMagick. At least one of these tool must be installed for the method to succeed.
- It is recommended to use the generic method save(const char*, int) const instead, as it can handle some file formats natively.

8.1.4.538 get_serialize()

Serialize a Clmg<T> instance into a raw Clmg<unsigned char> buffer.

Parameters

is_compressed	tells if zlib compression must be used for serialization (this requires 'cimg_use_zlib' been
	enabled).

8.2 ClmgDisplay Struct Reference

Allow the creation of windows, display images on them and manage user events (keyboard, mouse and windows events).

Constructors / Destructor / Instance Management

∼CImgDisplay ()

Destructor.

ClmgDisplay ()

Construct an empty display.

• CImgDisplay (const unsigned int width, const unsigned int height, const char *const title=0, const unsigned int normalization=3, const bool is_fullscreen=false, const bool is_closed=false)

Construct a display with specified dimensions.

• template<typename T >

ClmgDisplay (const Clmg< T > &img, const char *const title=0, const unsigned int normalization=3, const bool is_fullscreen=false, const bool is_closed=false)

Construct a display from an image.

• template<typename T >

ClmgDisplay (const ClmgList< T > &list, const char *const title=0, const unsigned int normalization=3, const bool is fullscreen=false, const bool is closed=false)

Construct a display from an image list.

ClmgDisplay (const ClmgDisplay &disp)

Construct a display as a copy of an existing one.

ClmgDisplay & assign ()

Destructor - Empty constructor [in-place version].

• ClmgDisplay & assign (const unsigned int width, const unsigned int height, const char *const title=0, const unsigned int normalization=3, const bool is_fullscreen=false, const bool is_closed=false)

Construct a display with specified dimensions [in-place version].

• template<typename T >

ClmgDisplay & assign (const Clmg < T > &img, const char *const title=0, const unsigned int normalization=3, const bool is fullscreen=false, const bool is closed=false)

Construct a display from an image [in-place version].

• template<typename T >

ClmgDisplay & assign (const ClmgList< T > &list, const char *const title=0, const unsigned int normalization=3, const bool is_fullscreen=false, const bool is_closed=false)

Construct a display from an image list [in-place version].

ClmgDisplay & assign (const ClmgDisplay &disp)

Construct a display as a copy of another one [in-place version].

• template<typename T >

static void screenshot (CImg< T > &img)

Take a screenshot.

static ClmgDisplay & empty ()

Return a reference to an empty display.

• static const CImgDisplay & const empty ()

Return a reference to an empty display [const version].

Overloaded Operators

template<typename t >

ClmgDisplay & operator= (const Clmg< t > &img)

Display image on associated window.

• template<typename t >

ClmgDisplay & operator= (const ClmgList< t > &list)

Display list of images on associated window.

ClmgDisplay & operator= (const ClmgDisplay &disp)

Construct a display as a copy of another one [in-place version].

• operator bool () const

Return false if display is empty, true otherwise.

Instance Checking

• bool is_empty () const

Return true if display is empty, false otherwise.

bool is_closed () const

Return true if display is closed (i.e. not visible on the screen), false otherwise.

· bool is resized () const

Return true if associated window has been resized on the screen, false otherwise.

• bool is_moved () const

Return true if associated window has been moved on the screen, false otherwise.

bool is_event () const

Return true if any event has occured on the associated window, false otherwise.

· bool is fullscreen () const

Return true if current display is in fullscreen mode, false otherwise.

• bool is_key () const

Return true if any key is being pressed on the associated window, false otherwise.

• bool is_key (const unsigned int keycode) const

Return true if key specified by given keycode is being pressed on the associated window, false otherwise.

bool & is_key (const char *const keycode)

Return true if key specified by given keycode is being pressed on the associated window, false otherwise.

• bool is_key_sequence (const unsigned int *const keycodes_sequence, const unsigned int length, const bool remove_sequence=false)

Return true if specified key sequence has been typed on the associated window, false otherwise.

bool is keyESC () const

Return true if the ESC key is being pressed on the associated window, false otherwise.

- bool is_keyF1 () const
- · bool is keyF2 () const
- bool is_keyF3 () const
- bool is_keyF4 () const
- bool is keyF5 () const
- bool is_keyF6 () const
- bool is_keyF7 () const
- · bool is kevF8 () const
- bool is_keyF9 () const
- bool is keyF10 () const
- bool is keyF11 () const
- bool is_keyF12 () const
- · bool is keyPAUSE () const
- bool is key1 () const
- bool is_key2 () const
- bool is_key3 () const
- bool is_key4 () const
- · bool is key5 () const
- bool is_key6 () const
- bool is_key7 () const
- bool is_key8 () const
- bool is_key9 () const
- bool is_key0 () const
- · bool is keyBACKSPACE () const
- · bool is keyINSERT () const
- bool is_keyHOME () const
- bool is_keyPAGEUP () const
- bool is_keyTAB () const
- bool is_keyQ () const
- bool is_keyW () const
- bool is_keyE () const
- bool is_keyR () const
- bool is_keyT () const
- bool is_keyY () const
- bool is_keyU () const
- bool is_keyl () const
- bool is_keyO () const

- bool is_keyP () const
- bool is_keyDELETE () const
- · bool is keyEND () const
- bool is_keyPAGEDOWN () const
- · bool is_keyCAPSLOCK () const
- bool is_keyA () const
- bool is_keyS () const
- bool is_keyD () const
- bool is_keyF () const
- · bool is keyG () const
- · bool is keyH () const
- bool is keyJ () const
- bool is_keyK () const
- bool is keyL () const
- bool is_keyENTER () const
- · bool is keySHIFTLEFT () const
- · bool is keyZ () const
- bool is_keyX () const
- bool is_keyC () const
- bool is keyV () const
- · bool is keyB () const
- bool is_keyN () const
- bool is_keyM () const
- bool is_keySHIFTRIGHT () const
- bool is_keyARROWUP () const
- bool is_keyCTRLLEFT () const
- · bool is keyAPPLEFT () const
- bool is_keyALT () const
- bool is_keySPACE () const
- bool is_keyALTGR () const
- bool is_keyAPPRIGHT () const
- bool is_keyMENU () const
- bool is_keyCTRLRIGHT () const
- bool is_keyARROWLEFT () const
- bool is_keyARROWDOWN () const
- bool is_keyARROWRIGHT () const
- bool is_keyPAD0 () const
- bool is_keyPAD1 () const
- bool is_keyPAD2 () const
- bool is_keyPAD3 () const
- · bool is keyPAD4 () const
- bool is_keyPAD5 () const
- bool is_keyPAD6 () const
- bool is_keyPAD7 () const
- · bool is keyPAD8 () const
- bool is keyPAD9 () const
- bool is_keyPADADD () const
- bool is_keyPADSUB () const
- · bool is_keyPADMUL () const
- bool is_keyPADDIV () const

Instance Characteristics

• int width () const

Return display width.

· int height () const

Return display height.

· unsigned int normalization () const

Return normalization type of the display.

• const char * title () const

Return title of the associated window as a C-string.

• int window_width () const

Return width of the associated window.

• int window_height () const

Return height of the associated window.

• int window x () const

Return X-coordinate of the associated window.

• int window y () const

Return Y-coordinate of the associated window.

• int mouse_x () const

Return X-coordinate of the mouse pointer.

• int mouse_y () const

Return Y-coordinate of the mouse pointer.

• unsigned int button () const

Return current state of the mouse buttons.

• int wheel () const

Return current state of the mouse wheel.

• unsigned int key (const unsigned int pos=0) const

Return one entry from the pressed keys history.

unsigned int released_key (const unsigned int pos=0) const

Return one entry from the released keys history.

• float frames_per_second ()

Return the current refresh rate, in frames per second.

- ClmgDisplay & move_inside_screen ()
- static int screen width ()

Return width of the screen (current resolution along the X-axis).

static int screen_height ()

Return height of the screen (current resolution along the Y-axis).

static unsigned int keycode (const char *const keycode)

Return keycode corresponding to the specified string.

Window Manipulation

```
• template<typename T >
```

ClmgDisplay & display (const Clmg< T > &img)

Display image on associated window.

• template<typename T >

ClmgDisplay & display (const ClmgList< T > &list, const char axis='x', const float align=0)

Display list of images on associated window.

· CImgDisplay & show ()

Show (closed) associated window on the screen.

• ClmgDisplay & close ()

Close (visible) associated window and make it disappear from the screen.

CImgDisplay & move (const int pos_x, const int pos_y)

Move associated window to a new location.

ClmgDisplay & resize (const bool force_redraw=true)

Resize display to the size of the associated window.

• ClmgDisplay & resize (const int width, const int height, const bool force_redraw=true)

Resize display to the specified size.

• template<typename T >

ClmgDisplay & resize (const Clmg< T > &img, const bool force_redraw=true)

Resize display to the size of an input image.

CImgDisplay & resize (const CImgDisplay &disp, const bool force_redraw=true)

Resize display to the size of another ClmgDisplay instance.

ClmgDisplay & set_normalization (const unsigned int normalization)

Set normalization type.

ClmgDisplay & set_title (const char *const format,...)

Set title of the associated window.

CImgDisplay & set_fullscreen (const bool is_fullscreen, const bool force_redraw=true)

Enable or disable fullscreen mode.

ClmgDisplay & toggle fullscreen (const bool force redraw=true)

Toggle fullscreen mode.

CImgDisplay & show_mouse ()

Show mouse pointer.

ClmgDisplay & hide_mouse ()

Hide mouse pointer.

• ClmgDisplay & set_mouse (const int pos_x, const int pos_y)

Move mouse pointer to a specified location.

ClmgDisplay & set button ()

Simulate a mouse button release event.

• ClmgDisplay & set_button (const unsigned int button, const bool is_pressed=true)

Simulate a mouse button press or release event.

ClmgDisplay & set_wheel ()

Flush all mouse wheel events.

• ClmgDisplay & set_wheel (const int amplitude)

Simulate a wheel event.

CImgDisplay & set_key ()

Flush all key events.

• ClmgDisplay & set key (const unsigned int keycode, const bool is pressed=true)

Simulate a keyboard press/release event.

ClmgDisplay & flush ()

Flush all display events.

• ClmgDisplay & wait ()

Wait for any user event occuring on the current display.

• ClmgDisplay & wait (const unsigned int milliseconds)

Wait for a given number of milliseconds since the last call to wait().

template<typename T >

ClmgDisplay & render (const Clmg< T > &img)

Render image into internal display buffer.

• ClmgDisplay & paint ()

Paint internal display buffer on associated window.

• template<typename T >

const ClmgDisplay & snapshot (Clmg< T > &img) const

Take a snapshot of the associated window content.

static void wait (ClmgDisplay &disp1)

Wait for any event occuring on the display disp1.

static void wait (ClmgDisplay &disp1, ClmgDisplay &disp2)

Wait for any event occuring either on the display disp1 or disp2.

static void wait (ClmgDisplay &disp1, ClmgDisplay &disp2, ClmgDisplay &disp3)

Wait for any event occuring either on the display disp1, disp2 or disp3.

static void wait (ClmgDisplay &disp1, ClmgDisplay &disp2, ClmgDisplay &disp3, ClmgDisplay &disp4)

Wait for any event occuring either on the display disp1, disp2, disp3 or disp4.

static void wait (ClmgDisplay &disp1, ClmgDisplay &disp2, ClmgDisplay &disp3, ClmgDisplay &disp4, C← lmgDisplay &disp5)

Wait for any event occuring either on the display disp1, disp2, disp3, disp4 or disp5.

static void wait (ClmgDisplay &disp1, ClmgDisplay &disp2, ClmgDisplay &disp3, ClmgDisplay &disp4, C←
 lmgDisplay &disp5, ClmgDisplay &disp6)

Wait for any event occurring either on the display disp1, disp2, disp3, disp4, ... disp6.

static void wait (ClmgDisplay &disp1, ClmgDisplay &disp2, ClmgDisplay &disp3, ClmgDisplay &disp4, C←
 lmgDisplay &disp5, ClmgDisplay &disp6, ClmgDisplay &disp7)

Wait for any event occuring either on the display disp1, disp2, disp3, disp4, ... disp7.

static void wait (ClmgDisplay &disp1, ClmgDisplay &disp2, ClmgDisplay &disp3, ClmgDisplay &disp4, C←
 lmgDisplay &disp5, ClmgDisplay &disp6, ClmgDisplay &disp7, ClmgDisplay &disp8)

Wait for any event occuring either on the display disp1, disp2, disp3, disp4, ... disp8.

static void wait (ClmgDisplay &disp1, ClmgDisplay &disp2, ClmgDisplay &disp3, ClmgDisplay &disp4, C←
 lmgDisplay &disp5, ClmgDisplay &disp6, ClmgDisplay &disp7, ClmgDisplay &disp8, ClmgDisplay &disp9)

Wait for any event occurring either on the display disp1, disp2, disp3, disp4, ... disp9.

 static void wait (ClmgDisplay &disp1, ClmgDisplay &disp2, ClmgDisplay &disp3, ClmgDisplay &disp4, C← lmgDisplay &disp5, ClmgDisplay &disp6, ClmgDisplay &disp7, ClmgDisplay &disp8, ClmgDisplay &disp9, ClmgDisplay &disp10)

Wait for any event occuring either on the display disp1, disp2, disp3, disp4, ... disp10.

static void wait_all ()

Wait for any window event occuring in any opened ClmgDisplay.

template<typename T >

static void screenshot (const int x0, const int y0, const int x1, const int y1, Clmg < T > &img)

Take a snapshot of the current screen content.

8.2.1 Detailed Description

Allow the creation of windows, display images on them and manage user events (keyboard, mouse and windows events).

CImgDisplay methods rely on a low-level graphic library to perform: it can be either **X-Window** (X11, for Unix-based systems) or **GDI32** (for Windows-based systems). If both libraries are missing, CImgDisplay will not be able to display images on screen, and will enter a minimal mode where warning messages will be outputed each time the program is trying to call one of the CImgDisplay method.

The configuration variable <code>cimg_display</code> tells about the graphic library used. It is set automatically by <code>CImg</code> when one of these graphic libraries has been detected. But, you can override its value if necessary. Valid choices are:

- 0: Disable display capabilities.
- 1: Use X-Window (X11) library.
- · 2: Use GDI32 library.

Remember to link your program against X11 or GDI32 libraries if you use ClmgDisplay.

8.2.2 Constructor & Destructor Documentation

8.2.2.1 \sim ClmgDisplay()

```
\simCImgDisplay ( )
```

Destructor.

Note

If the associated window is visible on the screen, it is closed by the call to the destructor.

```
8.2.2.2 ClmgDisplay() [1/5]
```

```
CImgDisplay ( )
```

Construct an empty display.

Note

Constructing an empty CImgDisplay instance does not make a window appearing on the screen, until display of valid data is performed.

Example

```
CImgDisplay disp; // Does actually nothing
...
disp.display(img); // Construct new window and display image in it
```

8.2.2.3 ClmgDisplay() [2/5]

Construct a display with specified dimensions.

Parameters

width	Window width.	
height	Window height.	
title	Window title.	
normalization	Normalization type (0=none, 1=always, 2=once, 3=pixel type-dependent, see normalization()).	
is_fullscreen	Tells if fullscreen mode is enabled.	
is_closed	Tells if associated window is initially visible or not.	

Note

A black background is initially displayed on the associated window.

8.2.2.4 ClmgDisplay() [3/5]

Construct a display from an image.

Parameters

img	Image used as a model to create the window.	
title	Window title.	
normalization	Normalization type (0=none, 1=always, 2=once, 3=pixel type-dependent, see normalization()).	
is_fullscreen	is_fullscreen Tells if fullscreen mode is enabled.	
is_closed	Tells if associated window is initially visible or not.	

Note

The pixels of the input image are initially displayed on the associated window.

8.2.2.5 ClmgDisplay() [4/5]

Construct a display from an image list.

Parameters

list	The images list to display.	
title	Window title.	
normalization	Normalization type (0=none, 1=always, 2=once, 3=pixel type-dependent, see normalization()).	
is_fullscreen	Tells if fullscreen mode is enabled.	
is_closed	Tells if associated window is initially visible or not.	

Note

All images of the list, appended along the X-axis, are initially displayed on the associated window.

8.2.2.6 ClmgDisplay() [5/5]

```
CImgDisplay ( {\tt const~CImgDisplay~\&~disp~)}
```

Construct a display as a copy of an existing one.

Parameters

```
disp Display instance to copy.
```

Note

The pixel buffer of the input window is initially displayed on the associated window.

8.2.3 Member Function Documentation

Take a screenshot.

Parameters

	out	img	Output screenshot. Can be empty on input
--	-----	-----	--

8.2.3.2 assign()

```
CImgDisplay& assign ()
```

Destructor - Empty constructor [in-place version].

Note

Replace the current instance by an empty display.

8.2.3.3 empty()

```
static CImgDisplay& empty ( ) [static]
```

Return a reference to an empty display.

Note

Can be useful for writing function prototypes where one of the argument (of type ClmgDisplay&) must have a default value.

Example

```
void foo(CImgDisplay& disp=CImgDisplay::empty());
```

```
8.2.3.4 operator=() [1/3]
CImgDisplay& operator= (
             const CImg < t > & img)
Display image on associated window.
Note
     disp = img is equivalent to disp.display(img).
8.2.3.5 operator=() [2/3]
CImgDisplay& operator= (
             const CImgList< t > & list )
Display list of images on associated window.
Note
     disp = list is equivalent to disp.display(list).
8.2.3.6 operator=() [3/3]
CImgDisplay& operator= (
             const CImgDisplay & disp )
Construct a display as a copy of another one [in-place version].
Note
     Equivalent to assign(const ClmgDisplay&).
8.2.3.7 operator bool()
operator bool ( ) const
Return false if display is empty, true otherwise.
Note
     if (disp) { ... } is equivalent to if (!disp.is_empty()) { ... }.
```

8.2.3.8 is_closed()

```
bool is_closed ( ) const
```

Return true if display is closed (i.e. not visible on the screen), false otherwise.

Note

- When a user physically closes the associated window, the display is set to closed.
- · A closed display is not destroyed. Its associated window can be show again on the screen using show().

```
8.2.3.9 is_key() [1/3]
```

```
bool is_key ( ) const
```

Return true if any key is being pressed on the associated window, false otherwise.

Note

The methods below do the same only for specific keys.

Return true if key specified by given keycode is being pressed on the associated window, false otherwise.

Parameters

```
keycode Keycode to test.
```

Note

Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC).

Example

Return true if key specified by given keycode is being pressed on the associated window, false otherwise.

Parameters

kevcode	C-string containing the keycode label of the key to test.
,	

Note

Use it when the key you want to test can be dynamically set by the user.

Example

```
CImgDisplay disp(400,400);
const char *const keycode = "TAB";
while (!disp.is_closed()) {
   if (disp.is_key(keycode)) { ... } // Equivalent to 'if (disp.is_keyTAB())'
   disp.wait();
}
```

8.2.3.12 is_key_sequence()

Return true if specified key sequence has been typed on the associated window, false otherwise.

Parameters

keycodes_sequence	Buffer of keycodes to test.
length	Number of keys in the keycodes_sequence buffer.
remove_sequence	Tells if the key sequence must be removed from the key history, if found.

Note

Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC).

Example

```
CImgDisplay disp(400,400);
const unsigned int key_seq[] = { cimg::keyCTRLLEFT, cimg::keyD };
while (!disp.is_closed()) {
   if (disp.is_key_sequence(key_seq,2)) { ... } // Test for the 'CTRL+D' keyboard event
disp.wait();
}
```

8.2.3.13 is_keyESC()

```
bool is_keyESC ( ) const
```

Return true if the ESC key is being pressed on the associated window, false otherwise.

Note

Similar methods exist for all keys managed by CImg (see cimg::keyESC).

8.2.3.14 width()

```
int width ( ) const
```

Return display width.

Note

The width of the display (i.e. the width of the pixel data buffer associated to the ClmgDisplay instance) may be different from the actual width of the associated window.

8.2.3.15 height()

```
int height ( ) const
```

Return display height.

Note

The height of the display (i.e. the height of the pixel data buffer associated to the CImgDisplay instance) may be different from the actual height of the associated window.

8.2.3.16 normalization()

```
unsigned int normalization ( ) const
```

Return normalization type of the display.

The normalization type tells about how the values of an input image are normalized by the CImgDisplay to be correctly displayed. The range of values for pixels displayed on screen is [0,255]. If the range of values of the data to display is different, a normalization may be required for displaying the data in a correct way. The normalization type can be one of:

- 0: Value normalization is disabled. It is then assumed that all input data to be displayed by the ClmgDisplay instance have values in range [0, 255].
- 1: Value normalization is always performed (this is the default behavior). Before displaying an input image, its values will be (virtually) stretched in range [0,255], so that the contrast of the displayed pixels will be maximum. Use this mode for images whose minimum and maximum values are not prescribed to known values (e.g. float-valued images). Note that when normalized versions of images are computed for display purposes, the actual values of these images are not modified.
- 2: Value normalization is performed once (on the first image display), then the same normalization coefficients are kept for next displayed frames.
- 3: Value normalization depends on the pixel type of the data to display. For integer pixel types, the normalization is done regarding the minimum/maximum values of the type (no normalization occurs then for unsigned char). For float-valued pixel types, the normalization is done regarding the minimum/maximum value of the image data instead.

8.2.3.17 title()

```
const char* title ( ) const
```

Return title of the associated window as a C-string.

Noto

Window title may be not visible, depending on the used window manager or if the current display is in fullscreen mode.

8.2.3.18 window_width()

```
int window_width ( ) const
```

Return width of the associated window.

Note

The width of the display (i.e. the width of the pixel data buffer associated to the ClmgDisplay instance) may be different from the actual width of the associated window.

8.2.3.19 window_height()

```
int window_height ( ) const
```

Return height of the associated window.

Note

The height of the display (i.e. the height of the pixel data buffer associated to the CImgDisplay instance) may be different from the actual height of the associated window.

8.2.3.20 window_x()

```
int window_x ( ) const
```

Return X-coordinate of the associated window.

Note

The returned coordinate corresponds to the location of the upper-left corner of the associated window.

8.2.3.21 window_y()

```
int window_y ( ) const
```

Return Y-coordinate of the associated window.

Note

The returned coordinate corresponds to the location of the upper-left corner of the associated window.

8.2.3.22 mouse_x()

```
int mouse_x ( ) const
```

Return X-coordinate of the mouse pointer.

Note

- If the mouse pointer is outside window area, -1 is returned.
- Otherwise, the returned value is in the range [0,width()-1].

8.2.3.23 mouse_y()

```
int mouse_y ( ) const
```

Return Y-coordinate of the mouse pointer.

Note

- If the mouse pointer is outside window area, -1 is returned.
- Otherwise, the returned value is in the range [0,height()-1].

8.2.3.24 button()

```
unsigned int button ( ) const
```

Return current state of the mouse buttons.

Note

Three mouse buttons can be managed. If one button is pressed, its corresponding bit in the returned value is set:

- bit 0 (value 0x1): State of the left mouse button.
- bit 1 (value 0x2): State of the right mouse button.
- bit 2 (value 0x4): State of the middle mouse button.

Several bits can be activated if more than one button are pressed at the same time.

Example

```
CImgDisplay disp(400,400);
while (!disp.is_closed()) {
   if (disp.button()&1) { // Left button clicked
        ...
   }
   if (disp.button()&2) { // Right button clicked
        ...
   }
   if (disp.button()&4) { // Middle button clicked
        ...
   }
   disp.wait();
}
```

8.2.3.25 wheel()

```
int wheel ( ) const
```

Return current state of the mouse wheel.

Note

- The returned value can be positive or negative depending on whether the mouse wheel has been scrolled forward or backward.
- Scrolling the wheel forward add 1 to the wheel value.
- Scrolling the wheel backward substract 1 to the wheel value.
- The returned value cumulates the number of forward of backward scrolls since the creation of the display, or since the last reset of the wheel value (using set_wheel()). It is strongly recommended to quickly reset the wheel counter when an action has been performed regarding the current wheel value. Otherwise, the returned wheel value may be for instance 0 despite the fact that many scrolls have been done (as many in forward as in backward directions).

Example

8.2.3.26 key()

```
unsigned int key (  {\rm const\ unsigned\ int\ } pos \, = \, 0 \ ) \ {\rm const}
```

Return one entry from the pressed keys history.

Parameters

pos | Index to read from the pressed keys history (index 0 corresponds to latest entry).

Returns

Keycode of a pressed key or 0 for a released key.

Note

- Each CImgDisplay stores a history of the pressed keys in a buffer of size 128. When a new key is pressed, its keycode is stored in the pressed keys history. When a key is released, 0 is put instead. This means that up to the 64 last pressed keys may be read from the pressed keys history. When a new value is stored, the pressed keys history is shifted so that the latest entry is always stored at position 0.
- Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC).

8.2.3.27 released_key()

```
unsigned int released_key ( {\tt const\ unsigned\ int\ } pos \ = \ 0\ )\ {\tt const}
```

Return one entry from the released keys history.

Parameters

```
pos Index to read from the released keys history (index 0 corresponds to latest entry).
```

Returns

Keycode of a released key or 0 for a pressed key.

Note

- Each CImgDisplay stores a history of the released keys in a buffer of size 128. When a new key is released, its keycode is stored in the pressed keys history. When a key is pressed, 0 is put instead. This means that up to the 64 last released keys may be read from the released keys history. When a new value is stored, the released keys history is shifted so that the latest entry is always stored at position 0.
- Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC).

8.2.3.28 keycode()

Return keycode corresponding to the specified string.

Note

Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC).

Example

```
const unsigned int keyTAB = CImgDisplay::keycode("TAB"); // Return cimg::keyTAB
8.2.3.29 frames_per_second()
float frames_per_second ( )
```

Return the current refresh rate, in frames per second.

Note

Returns a significant value when the current instance is used to display successive frames. It measures the delay between successive calls to frames per second().

Display image on associated window.

Parameters

img Input image to display.	
-----------------------------	--

Note

This method returns immediately.

Display list of images on associated window.

Parameters

list	List of images to display.
axis	Axis used to append the images along, for the visualization (can be x, y, z or c).
align	Relative position of aligned images when displaying lists with images of different sizes (0 for upper-left, 0.5 for centering and 1 for lower-right).

Note

This method returns immediately.

8.2.3.32 show()

```
CImgDisplay& show ( )
```

Show (closed) associated window on the screen.

Note

- Force the associated window of a display to be visible on the screen, even if it has been closed before.
- Using show() on a visible display does nothing.

8.2.3.33 close()

```
CImgDisplay& close ()
```

Close (visible) associated window and make it disappear from the screen.

Note

- A closed display only means the associated window is not visible anymore. This does not mean the display has been destroyed. Use show() to make the associated window reappear.
- · Using close() on a closed display does nothing.

8.2.3.34 move()

Move associated window to a new location.

Parameters

pos⊷	X-coordinate of the new window location.
_X	
pos⊷	Y-coordinate of the new window location.
_y	

Note

Depending on the window manager behavior, this method may not succeed (no exceptions are thrown nevertheless).

Resize display to the size of the associated window.

Parameters

force red	row	Tells if the previous window content must be updated and refreshed as well.
lorce_rea	iavv	rens if the previous window content must be appeared and refreshed as well.

Note

- Calling this method ensures that width() and window_width() become equal, as well as height() and window_height().
- The associated window is also resized to specified dimensions.

Resize display to the specified size.

Parameters

width	Requested display width.	
height	Requested display height.	
force_redraw	Tells if the previous window content must be updated and refreshed as well.	Ge

Note

The associated window is also resized to specified dimensions.

Resize display to the size of an input image.

Parameters

img	Input image to take size from.
force_redraw	Tells if the previous window content must be resized and updated as well.

Note

- Calling this method ensures that width() and img.width() become equal, as well as height() and img.height().
- The associated window is also resized to specified dimensions.

Resize display to the size of another ClmgDisplay instance.

Parameters

disp	Input display to take size from.
force_redraw	Tells if the previous window content must be resized and updated as well.

Note

- Calling this method ensures that width() and disp.width() become equal, as well as height() and disp.height().
- The associated window is also resized to specified dimensions.

8.2.3.39 set_normalization()

Set normalization type.

Parameters

8.2.3.40 set_title()

Set title of the associated window.

Parameters

format	C-string containing the format of the title, as with std::printf().
--------	---

Warning

As the first argument is a format string, it is highly recommended to write

```
disp.set_title("%s",window_title);
instead of
```

disp.set_title(window_title);

if window_title can be arbitrary, to prevent nasty memory access.

8.2.3.41 set_fullscreen()

Enable or disable fullscreen mode.

Parameters

is_fullscreen	Tells is the fullscreen mode must be activated or not.
force_redraw	Tells if the previous window content must be displayed as well.

Note

- When the fullscreen mode is enabled, the associated window fills the entire screen but the size of the current display is not modified.
- The screen resolution may be switched to fit the associated window size and ensure it appears the largest as possible. For X-Window (X11) users, the configuration flag <code>cimg_use_xrandr</code> has to be set to allow the screen resolution change (requires the X11 extensions to be enabled).

8.2.3.42 toggle_fullscreen()

Toggle fullscreen mode.

Parameters

Note

Enable fullscreen mode if it was not enabled, and disable it otherwise.

8.2.3.43 show_mouse()

```
CImgDisplay& show_mouse ( )
```

Show mouse pointer.

Note

Depending on the window manager behavior, this method may not succeed (no exceptions are thrown nevertheless).

8.2.3.44 hide_mouse()

```
CImgDisplay& hide_mouse ( )
```

Hide mouse pointer.

Note

Depending on the window manager behavior, this method may not succeed (no exceptions are thrown nevertheless).

8.2.3.45 set_mouse()

Move mouse pointer to a specified location.

Note

Depending on the window manager behavior, this method may not succeed (no exceptions are thrown nevertheless).

```
8.2.3.46 set_button() [1/2]
CImgDisplay& set_button ( )
```

Simulate a mouse button release event.

Note

All mouse buttons are considered released at the same time.

Simulate a mouse button press or release event.

Parameters

button		Buttons event code, where each button is associated to a single bit.
is_pres	sed	Tells if the mouse button is considered as pressed or released.

```
8.2.3.48 set_wheel() [1/2]

CImgDisplay& set_wheel ( )
```

Flush all mouse wheel events.

Note

Make wheel() to return 0, if called afterwards.

Simulate a wheel event.

Parameters

amplitude	Amplitude of the wheel scrolling to simulate.

Note

Make wheel() to return amplitude, if called afterwards.

```
8.2.3.50 set_key() [1/2] CImgDisplay& set_key ( )
```

Flush all key events.

Note

Make key() to return 0, if called afterwards.

Simulate a keyboard press/release event.

Parameters

keycode	Keycode of the associated key.
is_pressed	Tells if the key is considered as pressed or released.

Note

Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure your code stay portable (see cimg::keyESC).

```
8.2.3.52 flush()
```

```
CImgDisplay& flush ( )
```

Flush all display events.

Note

Remove all passed events from the current display.

```
8.2.3.53 wait()
```

Wait for a given number of milliseconds since the last call to wait().

Parameters

milliagganda	Number of milliseconds to wait for.
miniseconas	invallment of milliseconds to wait for.

Note

Similar to cimg::wait().

8.2.3.54 render()

```
CImgDisplay& render ( \mbox{const CImg} < \mbox{T} \ > \mbox{\&} \ \mbox{img} \ )
```

Render image into internal display buffer.

Parameters

	img	Input image data to render.
--	-----	-----------------------------

Note

- Convert image data representation into the internal display buffer (architecture-dependent structure).
- The content of the associated window is not modified, until paint() is called.
- Should not be used for common ClmgDisplay uses, since display() is more useful.

8.2.3.55 paint()

```
CImgDisplay& paint ( )
```

Paint internal display buffer on associated window.

Note

- Update the content of the associated window with the internal display buffer, e.g. after a render() call.
- Should not be used for common ClmgDisplay uses, since display() is more useful.

8.2.3.56 screenshot() [2/2]

Take a snapshot of the current screen content.

Parameters

	x0	X-coordinate of the upper left corner.
	y0	Y-coordinate of the upper left corner.
	x1	X-coordinate of the lower right corner.
	y1	Y-coordinate of the lower right corner.
out	img	Output screenshot. Can be empty on input

8.2.3.57 snapshot()

```
const CImgDisplay& snapshot ( {\tt CImg<\ T\ >\ \&\ img\ )\ const}
```

Take a snapshot of the associated window content.

Parameters

out	img	Output snapshot. Can be empty on input.	Output snapshot. Can be empty on input
-----	-----	---	--

8.3 ClmgException Struct Reference

Instances of CImgException are thrown when errors are encountered in a CImg function call.

Inherits exception.

Inherited by CImgArgumentException, CImgDisplayException, CImgInstanceException, CImgIoException, and $C \leftarrow ImgWarningException$.

Public Member Functions

• const char * what () const throw ()

Return a C-string containing the error message associated to the thrown exception.

8.3.1 Detailed Description

Instances of CImgException are thrown when errors are encountered in a CImg function call.

Overview

ClmgException is the base class of all exceptions thrown by CImg (except ClmgAbortException). ClmgException is never thrown itself. Derived classes that specify the type of errord are thrown instead. These classes can be:

- ClmgAbortException: Thrown when a computationally-intensive function is aborted by an external signal. This is the only non-derived exception class.
- CImgArgumentException: Thrown when one argument of a called CImg function is invalid. This is probably one of the most thrown exception by CImg. For instance, the following example throws a CImgArgument← Exception:

```
CImg<float> img(100,100,1,3); // Define a 100 \times 100 color image with float-valued pixels img.mirror('e'); // Try to mirror image along the (non-existing) 'e'-axis
```

ClmgDisplayException: Thrown when something went wrong during the display of images in ClmgDisplay instances.

• CImgInstanceException: Thrown when an instance associated to a called CImg method does not fit the function requirements. For instance, the following example throws a CImgInstanceException:

• CImglOException: Thrown when an error occured when trying to load or save image files. This happens when trying to read files that do not exist or with invalid formats. For instance, the following example throws a CImgIOException:

```
const CImg<float> img("missing_file.jpg"); // Try to load a file that does not exist
```

• ClmgWarningException: Thrown only if configuration macro cimg_strict_warnings is set, and when a CImg function has to display a warning message (see cimg::warn()).

It is not recommended to throw CImgException instances by yourself, since they are expected to be thrown only by CImg. When an error occurs in a library function call, CImg may display error messages on the screen or on the standard output, depending on the current CImg exception mode. The CImg exception mode can be get and set by functions cimg::exception mode() and cimg::exception mode(unsigned int).

Exceptions handling

In all cases, when an error occurs in CImg, an instance of the corresponding exception class is thrown. This may lead the program to break (this is the default behavior), but you can bypass this behavior by handling the exceptions by yourself, using a usual try { ... } catch () { ... } bloc, as in the following example:

8.4 ClmgList < T > Struct Template Reference

Represent a list of images Clmg<T>.

Public Types

typedef Clmg< T > * iterator

Simple iterator type, to loop through each image of a list.

typedef const Clmg< T > * const_iterator

Simple const iterator type, to loop through each image of a const list instance.

typedef T value_type

Pixel value type.

Constructors / Destructor / Instance Management

∼CImgList ()

Destructor.

· ClmgList ()

Default constructor.

ClmgList (const unsigned int n)

Construct list containing empty images.

• ClmgList (const unsigned int n, const unsigned int width, const unsigned int height=1, const unsigned int depth=1, const unsigned int spectrum=1)

Construct list containing images of specified size.

• ClmgList (const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const T &val)

Construct list containing images of specified size, and initialize pixel values.

• ClmgList (const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const int val0, const int val1,...)

Construct list containing images of specified size, and initialize pixel values from a sequence of integers.

• ClmgList (const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const double val0, const double val1,...)

Construct list containing images of specified size, and initialize pixel values from a sequence of doubles.

• template<typename t >

ClmgList (const unsigned int n, const Clmg< t > &img, const bool is_shared=false)

Construct list containing copies of an input image.

template<typename t >

ClmgList (const Clmg< t > &img, const bool is_shared=false)

Construct list from one image.

• template<typename t1 , typename t2 >

ClmgList (const Clmg < t1 > &img1, const Clmg < t2 > &img2, const bool is shared=false)

Construct list from two images.

- template<typename t1 , typename t2 , typename t3 >

ClmgList (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const bool is_ \leftarrow shared=false)

Construct list from three images.

• template<typename t1 , typename t2 , typename t3 , typename t4 >

ClmgList (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const Clmg< t4 > &img4, const bool is_shared=false)

Construct list from four images.

- template<typename t1 , typename t2 , typename t3 , typename t4 , typename t5 >

ClmgList (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const Clmg< t4 > &img4, const Clmg< t5 > &img5, const bool is_shared=false)

Construct list from five images.

- template<typename t1 , typename t2 , typename t3 , typename t4 , typename t5 , typename t6 >

ClmgList (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const Clmg< t4 > &img4, const Clmg< t5 > &img5, const Clmg< t6 > &img6, const bool is_shared=false)

Construct list from six images.

Construct list from seven images.

```
    template<typename t1, typename t2, typename t3, typename t4, typename t5, typename t6, typename t7, typename t8 > ClmgList (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const Clmg< t4 > &img4, const Clmg< t5 > &img5, const Clmg< t6 > &img6, const Clmg< t7 > &img7, const Clmg< t8 > &img8, const bool is_shared=false)
```

Construct list from eight images.

• template<typename t >

ClmgList (const ClmgList< t > &list)

Construct list copy.

ClmgList (const ClmgList< T > &list)

Construct list copy [specialization].

• template<typename t >

ClmgList (const ClmgList< t > &list, const bool is_shared)

Construct list copy, and force the shared state of the list elements.

ClmgList (const char *const filename)

Construct list by reading the content of a file.

ClmgList (const ClmgDisplay &disp)

Construct list from the content of a display window.

ClmgList< T > get_shared ()

Return a list with elements being shared copies of images in the list instance.

const ClmgList< T > get shared () const

Return a list with elements being shared copies of images in the list instance [const version].

ClmgList< T > & assign ()

Destructor [in-place version].

ClmgList< T > & clear ()

Destructor [in-place version].

ClmgList< T > & assign (const unsigned int n)

Construct list containing empty images [in-place version].

 ClmgList< T > & assign (const unsigned int n, const unsigned int width, const unsigned int height=1, const unsigned int depth=1, const unsigned int spectrum=1)

Construct list containing images of specified size [in-place version].

 ClmgList< T > & assign (const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const T &val)

Construct list containing images of specified size, and initialize pixel values [in-place version].

• ClmgList< T > & assign (const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const int val0, const int val1,...)

Construct list with images of specified size, and initialize pixel values from a sequence of integers [in-place version].

• ClmgList< T > & assign (const unsigned int n, const unsigned int width, const unsigned int height, const unsigned int depth, const unsigned int spectrum, const double val0, const double val1,...)

Construct list with images of specified size, and initialize pixel values from a sequence of doubles [in-place version].

template<typename t >

ClmgList< T > & assign (const unsigned int n, const Clmg< t > &img, const bool is shared=false)

Construct list containing copies of an input image [in-place version].

template<typename t >

ClmgList< T > & assign (const Clmg< t > &img, const bool is_shared=false)

Construct list from one image [in-place version].

• template<typename t1 , typename t2 >

ClmgList< T > & assign (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const bool is_shared=false)

Construct list from two images [in-place version].

- template<typename t1 , typename t2 , typename t3 >

ClmgList< T > & assign (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const bool is_shared=false)

Construct list from three images [in-place version].

• template<typename t1 , typename t2 , typename t3 , typename t4 >

 $\begin{array}{l} \textbf{CImgList} < T > \& \ assign \ (const \ \textbf{CImg} < t1 > \&img1, \ const \ \textbf{CImg} < t2 > \&img2, \ const \ \textbf{CImg} < t3 > \&img3, \ const \ \textbf{CImg} < t4 > \&img4, \ const \ bool \ is_shared=false) \end{array}$

Construct list from four images [in-place version].

template<typename t1 , typename t2 , typename t3 , typename t4 , typename t5 >
 ClmgList< T > & assign (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const Clmg< t4 > &img4, const Clmg< t5 > &img5, const bool is_shared=false)

Construct list from five images [in-place version].

• template<typename t1 , typename t2 , typename t3 , typename t4 , typename t5 , typename t6 > $\begin{array}{l} \text{CImgList} < \text{T} > \text{\& assign (const CImg} < \text{t1} > \text{\&img1, const CImg} < \text{t2} > \text{\&img2, const CImg} < \text{t3} > \text{\&img3, const CImg} < \text{t4} > \text{\&img4, const CImg} < \text{t5} > \text{\&img5, const CImg} < \text{t6} > \text{\&img6, const bool is_shared=false)} \end{array}$

Construct list from six images [in-place version].

template<typename t1, typename t2, typename t3, typename t4, typename t5, typename t6, typename t7 >
 ClmgList< T > & assign (const Clmg< t1 > &img1, const Clmg< t2 > &img2, const Clmg< t3 > &img3, const Clmg< t4 > &img4, const Clmg< t5 > &img5, const Clmg< t6 > &img6, const Clmg< t7 > &img7, const bool is_shared=false)

Construct list from seven images [in-place version].

template<typename t1 , typename t2 , typename t3 , typename t4 , typename t5 , typename t6 , typename t7 , typename t8 > CImgList< T > & assign (const CImg< t1 > &img1, const CImg< t2 > &img2, const CImg< t3 > &img3, const CImg< t4 > &img4, const CImg< t5 > &img5, const CImg< t6 > &img6, const CImg< t7 > &img7, const CImg< t8 > &img8, const bool is_shared=false)

Construct list from eight images [in-place version].

template<typename t >

ClmgList< T > & assign (const ClmgList< t > &list, const bool is_shared=false)

Construct list as a copy of an existing list and force the shared state of the list elements [in-place version].

ClmgList< T > & assign (const ClmgList< T > &list, const bool is shared=false)

Construct list as a copy of an existing list and force shared state of elements [in-place version] [specialization].

ClmgList< T > & assign (const char *const filename)

Construct list by reading the content of a file [in-place version].

ClmgList< T > & assign (const ClmgDisplay &disp)

Construct list from the content of a display window [in-place version].

• template<typename t >

```
ClmgList< t > & move_to (ClmgList< t > &list)
```

Transfer the content of the list instance to another list.

• template<typename t >

```
ClmgList< t > & move_to (ClmgList< t > &list, const unsigned int pos)
```

Transfer the content of the list instance at a specified position in another list.

ClmgList< T > & swap (ClmgList< T > &list)

Swap all fields between two list instances.

static ClmgList< T > & empty ()

Return a reference to an empty list.

static const ClmgList< T > & const_empty ()

Return a reference to an empty list [const version].

Overloaded Operators

Clmg< T > & operator() (const unsigned int pos)

Return a reference to one image element of the list.

const Clmg< T > & operator() (const unsigned int pos) const

Return a reference to one image of the list.

• T & operator() (const unsigned int pos, const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0)

Return a reference to one pixel value of one image of the list.

• const T & operator() (const unsigned int pos, const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) const

Return a reference to one pixel value of one image of the list [const version].

operator CImg< T > * ()

Return pointer to the first image of the list.

operator const Clmg< T > * () const

Return pointer to the first image of the list [const version].

template<typename t >

```
ClmgList< T > & operator= (const Clmg< t > &img)
```

Construct list from one image [in-place version].

template<typename t >

```
ClmgList< T > & operator= (const ClmgList< t > &list)
```

Construct list from another list.

ClmgList< T > & operator= (const ClmgList< T > &list)

Construct list from another list [specialization].

ClmgList< T > & operator= (const char *const filename)

Construct list by reading the content of a file [in-place version].

ClmgList< T > & operator= (const ClmgDisplay &disp)

Construct list from the content of a display window [in-place version].

ClmgList< T > operator+ () const

Return a non-shared copy of a list.

template<typename t >

```
ClmgList< T > & operator, (const Clmg< t > &img)
```

Return a copy of the list instance, where image img has been inserted at the end.

• template<typename t >

```
ClmgList< T > operator, (const Clmg< t > &img) const
```

Return a copy of the list instance, where image img has been inserted at the end [const version].

template<typename t >

```
ClmgList< T > & operator, (const ClmgList< t > &list)
```

Return a copy of the list instance, where all elements of input list list have been inserted at the end.

template<typename t >

```
ClmgList< T > & operator, (const ClmgList< t > &list) const
```

Return a copy of the list instance, where all elements of input list have been inserted at the end [const version].

Clmg< T > operator> (const char axis) const

Return image corresponding to the appending of all images of the instance list along specified axis.

ClmgList< T > operator< (const char axis) const

Return list corresponding to the splitting of all images of the instance list along specified axis.

Instance Characteristics

· int width () const

Return the size of the list, i.e. the number of images contained in it.

• unsigned int size () const

Return the size of the list, i.e. the number of images contained in it.

Clmg< T > * data ()

Return pointer to the first image of the list.

const Clmg
 T > * data () const

Return pointer to the first image of the list [const version].

Clmg< T > * data (const unsigned int pos)

Return pointer to the pos-th image of the list.

- const Clmg< T > * data (const unsigned int I) const
- · iterator begin ()

Return iterator to the first image of the list.

const_iterator begin () const

Return iterator to the first image of the list [const version].

iterator end ()

Return iterator to one position after the last image of the list.

· const iterator end () const

Return iterator to one position after the last image of the list [const version].

• Clmg< T > & front ()

Return reference to the first image of the list.

const Clmg< T > & front () const

Return reference to the first image of the list [const version].

const Clmg
 T > & back () const

Return a reference to the last image of the list.

• Clmg< T > & back ()

Return a reference to the last image of the list [const version].

Clmg< T > & at (const int pos)

Return pos-th image of the list.

T & atNXYZC (const int pos, const int x, const int y, const int z, const int c, const T &out_value)

Access to pixel value with Dirichlet boundary conditions.

 $\bullet \ \ T \ \text{atNXYZC} \ (\text{const int pos, const int } x, \, \text{const int } y, \, \text{const int } z, \, \text{const int } c, \, \text{const } T \ \& \text{out_value}) \ \text{const} \\$

Access to pixel value with Dirichlet boundary conditions [const version].

T & atNXYZC (const int pos, const int x, const int y, const int z, const int c)

Access to pixel value with Neumann boundary conditions.

T atNXYZC (const int pos, const int x, const int y, const int z, const int c) const

Access to pixel value with Neumann boundary conditions [const version].

• T & atNXYZ (const int pos, const int x, const int y, const int z, const int c, const T &out_value)

Access pixel value with Dirichlet boundary conditions for the 3 coordinates (pos, x,y,z).

• T atNXYZ (const int pos, const int x, const int y, const int z, const int c, const T &out_value) const

Access pixel value with Dirichlet boundary conditions for the 3 coordinates (pos, x,y,z) [const version].

T & atNXYZ (const int pos, const int x, const int y, const int z, const int c=0)

Access to pixel value with Neumann boundary conditions for the 4 coordinates (pos, x,y,z).

T atNXYZ (const int pos, const int x, const int y, const int z, const int c=0) const

Access to pixel value with Neumann boundary conditions for the 4 coordinates (pos, x,y,z) [const version].

T & atNXY (const int pos, const int x, const int y, const int z, const int c, const T &out_value)

Access to pixel value with Dirichlet boundary conditions for the 3 coordinates (pos, x, y).

T atNXY (const int pos, const int x, const int y, const int z, const int c, const T &out_value) const

Access to pixel value with Dirichlet boundary conditions for the 3 coordinates (pos, x,y) [const version].

• T & atNXY (const int pos, const int x, const int y, const int z=0, const int c=0)

Access to pixel value with Neumann boundary conditions for the 3 coordinates (pos, x,y).

• T atNXY (const int pos, const int x, const int y, const int z=0, const int c=0) const

Access to pixel value with Neumann boundary conditions for the 3 coordinates (pos, x,y) [const version].

T & atNX (const int pos, const int x, const int y, const int z, const int c, const T &out_value)

Access to pixel value with Dirichlet boundary conditions for the 2 coordinates (pos,x).

• T atNX (const int pos, const int x, const int y, const int z, const int c, const T &out value) const

Access to pixel value with Dirichlet boundary conditions for the 2 coordinates (pos,x) [const version].

T & atNX (const int pos, const int x, const int y=0, const int z=0, const int c=0)

Access to pixel value with Neumann boundary conditions for the 2 coordinates (pos, x).

• T atNX (const int pos, const int x, const int y=0, const int z=0, const int c=0) const

Access to pixel value with Neumann boundary conditions for the 2 coordinates (pos, x) [const version].

T & atN (const int pos, const int x, const int y, const int z, const int c, const T &out_value)

Access to pixel value with Dirichlet boundary conditions for the coordinate (pos).

T atN (const int pos, const int x, const int y, const int z, const int c, const T &out_value) const

Access to pixel value with Dirichlet boundary conditions for the coordinate (pos) [const version].

T & atN (const int pos, const int x=0, const int y=0, const int z=0, const int c=0)

Return pixel value with Neumann boundary conditions for the coordinate (pos).

• T atN (const int pos, const int x=0, const int y=0, const int z=0, const int c=0) const

Return pixel value with Neumann boundary conditions for the coordinate (pos) [const version].

static const char * pixel_type ()

Return the type of image pixel values as a C string.

Instance Checking

· bool is_empty () const

Return true if list is empty.

bool is_sameN (const unsigned int size_n) const

Test if number of image elements is equal to specified value.

template<typename t >

bool is sameN (const ClmgList< t > &list) const

Test if number of image elements is equal between two images lists.

• template<typename t >

bool **is_sameXY** (const Clmg< t > &img) const

template<typename t >

bool is_sameXY (const ClmgList< t > &list) const

template<typename t >

bool **is_sameNXY** (const unsigned int n, const Clmg< t > &img) const

template<typename t >

bool is_sameNXY (const ClmgList< t > &list) const

• template<typename t >

bool **is_sameXZ** (const Clmg< t > &img) const

• template<typename t >

bool is_sameXZ (const ClmgList< t > &list) const

template<typename t >

bool **is_sameNXZ** (const unsigned int n, const Clmg< t > &img) const

• template<typename t >

bool is_sameNXZ (const CImgList< t > &list) const

template<typename t >

bool **is_sameXC** (const Clmg< t > &img) const

template<typename t >

bool is_sameXC (const CImgList < t > &list) const

 $\bullet \ \ template{<} typename\ t>$

bool **is_sameNXC** (const unsigned int n, const Clmg< t > &img) const

template<typename t >

bool **is_sameNXC** (const ClmgList< t > &list) const

 $\bullet \ \ template{<} typename \ t>$

bool is_sameYZ (const Clmg< t > &img) const

template<typename t >

bool **is_sameYZ** (const ClmgList< t > &list) const

• template<typename t >

bool $\emph{is_sameNYZ}$ (const unsigned int n, const $\emph{CImg} < t > \& \emph{img}$) const

template<typename t >

bool is_sameNYZ (const ClmgList< t > &list) const

template<typename t >

bool is_sameYC (const Clmg< t > &img) const

template<typename t >

bool is_sameYC (const ClmgList< t > &list) const

• template<typename t >

bool $is_sameNYC$ (const unsigned int n, const Clmg< t > &img) const

```
    template < typename t > bool is_sameNYC (const ClmgList < t > &list) const
    template < typename t > bool is_sameXYZ (const Clmg < t > &img) const
    template < typename t > bool is_sameXYZ (const ClmgList < t > &list) const
    template < typename t > bool is_sameNXYZ (const unsigned int n, const Clmg < t > &img) const
    template < typename t > bool is_sameNXYZ (const unsigned int n, const Clmg < t > &img) const
```

bool **is_sameNXYZ** (const ClmgList< t > &list) const

template<typename t >

bool is_sameXYC (const Clmg< t > &img) const

template<typename t >

bool **is_sameXYC** (const ClmgList< t > &list) const

• template<typename t >

bool is_sameNXYC (const unsigned int n, const Clmg< t > &img) const

• template<typename t >

bool **is_sameNXYC** (const ClmgList< t > &list) const

template<typename t >

bool is_sameYZC (const Clmg< t > &img) const

template<typename t >

bool **is_sameYZC** (const ClmgList< t > &list) const

• template<typename t >

bool **is_sameNYZC** (const unsigned int n, const Clmg< t > &img) const

template<typename t >

bool **is_sameNYZC** (const ClmgList< t > &list) const

template<typename t >

bool **is_sameXYZC** (const Clmg< t > &img) const

 $\bullet \ \ template{<} typename \ t>$

bool is_sameXYZC (const ClmgList< t > &list) const

• template<typename t >

bool **is_sameNXYZC** (const unsigned int n, const Clmg< t > &img) const

template<typename t >

bool $is_sameNXYZC$ (const CImgList< t > &list) const

- bool is_sameX (const unsigned int val) const
- bool **is_sameNX** (const unsigned int n, const unsigned int val) const
- · bool is sameY (const unsigned int val) const
- bool is_sameNY (const unsigned int n, const unsigned int val) const
- bool is_sameZ (const unsigned int val) const
- bool is_sameNZ (const unsigned int n, const unsigned int val) const
- · bool is sameC (const unsigned int val) const
- bool is sameNC (const unsigned int n, const unsigned int val) const
- bool is_sameXY (const unsigned int val1, const unsigned int val2) const
- · bool is sameNXY (const unsigned int n, const unsigned int val1, const unsigned int val2) const
- bool is_sameXZ (const unsigned int val1, const unsigned int val2) const
- bool is_sameNXZ (const unsigned int n, const unsigned int val1, const unsigned int val2) const
- bool is sameXC (const unsigned int val1, const unsigned int val2) const
- bool is_sameNXC (const unsigned int n, const unsigned int val1, const unsigned int val2) const
- bool is_sameYZ (const unsigned int val1, const unsigned int val2) const
- bool is sameNYZ (const unsigned int n, const unsigned int val1, const unsigned int val2) const
- bool is_sameYC (const unsigned int val1, const unsigned int val2) const
- bool is sameNYC (const unsigned int n, const unsigned int val1, const unsigned int val2) const
- bool is sameZC (const unsigned int val1, const unsigned int val2) const
- bool is sameNZC (const unsigned int n, const unsigned int val1, const unsigned int val2) const
- bool is_sameXYZ (const unsigned int val1, const unsigned int val2, const unsigned int val3) const

bool is_sameNXYZ (const unsigned int n, const unsigned int val1, const unsigned int val2, const unsigned int val3) const

- bool is_sameXYC (const unsigned int val1, const unsigned int val2, const unsigned int val3) const
- bool is_sameNXYC (const unsigned int n, const unsigned int val1, const unsigned int val2, const unsigned int val3) const
- bool is sameXZC (const unsigned int val1, const unsigned int val2, const unsigned int val3) const
- bool is_sameNXZC (const unsigned int n, const unsigned int val1, const unsigned int val2, const unsigned int val3) const
- · bool is_sameYZC (const unsigned int val1, const unsigned int val2, const unsigned int val3) const
- bool **is_sameNYZC** (const unsigned int n, const unsigned int val1, const unsigned int val2, const unsigned int val3) const
- bool is_sameXYZC (const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc) const

Test if dimensions of each image of the list match specified arguments.

bool is_sameNXYZC (const unsigned int n, const unsigned int dx, const unsigned int dy, const unsigned int dz, const unsigned int dc) const

Test if list dimensions match specified arguments.

bool containsNXYZC (const int n, const int x=0, const int y=0, const int z=0, const int c=0) const

Test if list contains one particular pixel location.

bool containsN (const int n) const

Test if list contains image with specified index.

• template<typename t >

bool contains (const T &pixel, t &n, t &x, t &y, t &z, t &c) const

Test if one image of the list contains the specified referenced value.

template<typename t >

bool contains (const T &pixel, t &n, t &x, t &y, t &z) const

Test if one of the image list contains the specified referenced value.

 $\bullet \ \ template{<} typename \ t>$

bool contains (const T &pixel, t &n, t &x, t &y) const

Test if one of the image list contains the specified referenced value.

template<typename t >

bool contains (const T &pixel, t &n, t &x) const

Test if one of the image list contains the specified referenced value.

• template<typename t >

bool contains (const T &pixel, t &n) const

Test if one of the image list contains the specified referenced value.

bool contains (const T &pixel) const

Test if one of the image list contains the specified referenced value.

template<typename t >

bool contains (const Clmg< T > &img, t &n) const

Test if the list contains the image 'img'.

• bool contains (const Clmg< T > &img) const

Test if the list contains the image img.

Mathematical Functions

• T & min ()

Return a reference to the minimum pixel value of the instance list.

• const T & min () const

Return a reference to the minimum pixel value of the instance list [const version].

• T & max ()

Return a reference to the maximum pixel value of the instance list.

const T & max () const

Return a reference to the maximum pixel value of the instance list [const version].

template<typename t >

T & min_max (t &max_val)

Return a reference to the minimum pixel value of the instance list and return the maximum vvalue as well.

• template<typename t >

```
const T & min max (t &max val) const
```

Return a reference to the minimum pixel value of the instance list and return the maximum vvalue as well [const version].

template<typename t >

T & max_min (t &min_val)

Return a reference to the minimum pixel value of the instance list and return the minimum value as well.

template<typename t >

const T & max_min (t &min_val) const

Return a reference to the minimum pixel value of the instance list and return the minimum value as well [const version].

List Manipulation

template<typename t >

ClmgList< T > & insert (const Clmg< t > &img, const unsigned int pos= \sim 0U, const bool is_shared=false)

Insert a copy of the image img into the current image list, at position pos.

- ClmgList< T > & insert (const Clmg< T > &img, const unsigned int pos=~0U, const bool is_shared=false)
 Insert a copy of the image img into the current image list, at position pos [specialization].
- template<typename t >

 $\label{eq:clmgList} \begin{aligned} &\text{ClmgList} < T > \text{get_insert} \text{ (const Clmg} < t > \text{\&img, const unsigned int pos} = \sim &0U, \text{const bool is_shared=false)} \\ &\text{const} \end{aligned}$

Insert a copy of the image img into the current image list, at position pos [new-instance version].

ClmgList< T > & insert (const unsigned int n, const unsigned int pos=~0U)

Insert n empty images img into the current image list, at position pos.

CImgList< T > get_insert (const unsigned int n, const unsigned int pos=~0U) const

Insert n empty images img into the current image list, at position pos [new-instance version].

• template<typename t >

ClmgList< T > & insert (const unsigned int n, const Clmg< t > &img, const unsigned int pos= \sim 0U, const bool is_shared=false)

Insert n copies of the image img into the current image list, at position pos.

template<typename t >

ClmgList< T > get_insert (const unsigned int n, const Clmg< t > &img, const unsigned int pos= \sim 0U, const bool is_shared=false) const

Insert n copies of the image img into the current image list, at position pos [new-instance version].

template<typename t >

 $\textbf{ClmgList} < \textbf{T} > \textbf{\& insert (const ClmgList} < \textbf{t} > \textbf{\& list, const unsigned int pos} = \sim \textbf{0U, const bool is_shared} = \textbf{false})$

Insert a copy of the image list list into the current image list, starting from position pos.

template<typename t >

CImgList< T > get_insert (const CImgList< t > &list, const unsigned int pos= \sim 0U, const bool is_ \leftarrow shared=false) const

Insert a copy of the image list list into the current image list, starting from position pos [new-instance version].

• template<typename t >

 $\label{eq:clmgList} \begin{aligned} &\text{ClmgList} < T > \& \text{ insert (const unsigned int n, const } \\ &\text{ClmgList} < t > \& \\ &\text{list, const unsigned int pos} \\ &\sim \\ &\text{0U, const bool is shared} \\ &\text{=false)} \end{aligned}$

Insert n copies of the list list at position pos of the current list.

template<typename t >

ClmgList< T > get_insert (const unsigned int n, const ClmgList< t > &list, const unsigned int pos= \sim 0U, const bool is_shared=false) const

Insert n copies of the list list at position pos of the current list [new-instance version].

ClmgList< T > & remove (const unsigned int pos1, const unsigned int pos2)

Remove all images between from indexes.

ClmgList< T > get_remove (const unsigned int pos1, const unsigned int pos2) const

Remove all images between from indexes [new-instance version].

ClmgList< T > & remove (const unsigned int pos)

Remove image at index pos from the image list.

ClmgList< T > get_remove (const unsigned int pos) const

Remove image at index pos from the image list [new-instance version].

ClmgList< T > & remove ()

Remove last image.

ClmgList< T > get_remove () const

Remove last image [new-instance version].

ClmgList< T > & reverse ()

Reverse list order.

ClmgList< T > get_reverse () const

Reverse list order [new-instance version].

ClmgList< T > & images (const unsigned int pos0, const unsigned int pos1)

Return a sublist.

• ClmgList< T > get_images (const unsigned int pos0, const unsigned int pos1) const

Return a sublist [new-instance version].

ClmgList< T > get shared images (const unsigned int pos0, const unsigned int pos1)

Return a shared sublist.

const CImgList< T > get_shared_images (const unsigned int pos0, const unsigned int pos1) const

Return a shared sublist [new-instance version].

• Clmg< T > get_append (const char axis, const float align=0) const

Return a single image which is the appending of all images of the current CImgList instance.

• ClmgList< T > & split (const char axis, const int nb=-1)

Return a list where each image has been split along the specified axis.

• ClmgList< T > get split (const char axis, const int nb=-1) const

Return a list where each image has been split along the specified axis [new-instance version].

 $\bullet \ \ \text{template}{<} \text{typename t} >$

```
ClmgList< T > & push_back (const Clmg< t > &img)
```

Insert image at the end of the list.

 $\bullet \ \ \text{template}{<} \text{typename t} >$

```
ClmgList< T > & push_front (const Clmg< t > &img)
```

Insert image at the front of the list.

 $\bullet \ \ \text{template}{<} \text{typename t} >$

```
ClmgList< T > & push back (const ClmgList< t > &list)
```

Insert list at the end of the current list.

template<typename t >

```
ClmgList< T > & push_front (const ClmgList< t > &list)
```

Insert list at the front of the current list.

• ClmgList< T > & pop_back ()

Remove last image.

ClmgList< T > & pop_front ()

Remove first image.

ClmgList< T > & erase (const iterator iter)

Remove image pointed by iterator.

Data Input

 Clmg< intT > get_select (ClmgDisplay &disp, const bool feature_type=true, const char axis='x', const float align=0, const bool exit_on_anykey=false) const

Display a simple interactive interface to select images or sublists.

• Clmg< intT > get_select (const char *const title, const bool feature_type=true, const char axis='x', const float align=0, const bool exit_on_anykey=false) const

Display a simple interactive interface to select images or sublists.

ClmgList< T > & load (const char *const filename)

Load a list from a file.

ClmgList< T > & load_cimg (const char *const filename)

Load a list from a .cimg file.

ClmgList< T > & load_cimg (std::FILE *const file)

Load a list from a .cimg file.

 ClmgList< T > & load_cimg (const char *const filename, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1)

Load a sublist list from a (non compressed) .cimg file.

ClmgList< T > & load_cimg (std::FILE *const file, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int y1, const unsigned int z1, const unsigned int c1)

Load a sub-image list from a (non compressed) .cimg file [overloading].

ClmgList< T > & load parrec (const char *const filename)

Load a list from a PAR/REC (Philips) file.

ClmgList< T > & load_yuv (const char *const filename, const unsigned int size_x, const unsigned int size_y, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int last_← frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true)

Load a list from a YUV image sequence file.

ClmgList< T > & load_yuv (std::FILE *const file, const unsigned int size_x, const unsigned int size_
 y, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int last_
 frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true)

Load a list from an image sequence YUV file [overloading].

ClmgList< T > & load_video (const char *const filename, const unsigned int first_frame=0, const unsigned int last frame=~0U, const unsigned int step frame=1)

Load an image from a video file, using OpenCV library.

ClmgList< T > & load_ffmpeg_external (const char *const filename)

Load an image from a video file using the external tool 'ffmpeg'.

• ClmgList< T > & load gif external (const char *const filename)

Load gif file, using ImageMagick or GraphicsMagick's external tools.

ClmgList< T > & load_gzip_external (const char *const filename)

Load a gzipped list, using external tool 'gunzip'.

• template<typename tf , typename tc >

ClmgList< T > & load_off (const char *const filename, ClmgList< tf > &primitives, ClmgList< tc > &colors)

Load a 3D object from a .OFF file.

ClmgList< T > & load_tiff (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, float *const voxel_size=0, Clmg< charT > *const description=0)

Load images from a TIFF file.

static ClmgList< T > get_load (const char *const filename)

Load a list from a file [new-instance version].

static ClmgList< T > get load cimg (const char *const filename)

Load a list from a .cimg file [new-instance version].

static ClmgList< T > get_load_cimg (std::FILE *const file)

Load a list from a .cimg file [new-instance version].

static ClmgList< T > get_load_cimg (const char *const filename, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int z1, const unsigned int z1)

Load a sublist list from a (non compressed) .cimg file [new-instance version].

static CImgList< T > get_load_cimg (std::FILE *const file, const unsigned int n0, const unsigned int n1, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0, const unsigned int x1, const unsigned int z1, const unsigned int c1)

Load a sub-image list from a (non compressed) .cimg file [new-instance version].

• static ClmgList< T > get load parrec (const char *const filename)

Load a list from a PAR/REC (Philips) file [new-instance version].

static ClmgList< T > get_load_yuv (const char *const filename, const unsigned int size_x, const unsigned int size_y=1, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true)

Load a list from a YUV image sequence file [new-instance version].

static CImgList< T > get_load_yuv (std::FILE *const file, const unsigned int size_x, const unsigned int size_w_y=1, const unsigned int chroma_subsampling=444, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, const bool yuv2rgb=true)

Load a list from an image sequence YUV file [new-instance version].

• static CImgList< T > get_load_video (const char *const filename, const unsigned int first_frame=0, const unsigned int last frame=~0U, const unsigned int step frame=1)

Load an image from a video file, using OpenCV library [new-instance version].

• static ClmgList< T > get_load_ffmpeg_external (const char *const filename)

Load an image from a video file using the external tool 'ffmpeg' [new-instance version].

static ClmgList< T > get load gif external (const char *const filename)

Load gif file, using ImageMagick or GraphicsMagick's external tools [new-instance version].

static ClmgList< T > get_load_gzip_external (const char *const filename)

Load a gzipped list, using external tool 'gunzip' [new-instance version].

• template<typename tf , typename tc >

static ClmgList< T > get_load_off (const char *const filename, ClmgList< tf > &primitives, ClmgList< tc > &colors)

Load a 3D object from a .OFF file [new-instance version].

static CImgList< T > get_load_tiff (const char *const filename, const unsigned int first_frame=0, const unsigned int last_frame=~0U, const unsigned int step_frame=1, float *const voxel_size=0, CImg< charT > *const description=0)

Load a multi-page TIFF file [new-instance version].

Data Output

Print information about the list on the standard output.

const ClmgList< T > & display (ClmgDisplay &disp, const char axis='x', const float align=0) const

Display the current ClmgList instance in an existing ClmgDisplay window (by reference).

 const ClmgList< T > & display (ClmgDisplay &disp, const bool display_info, const char axis='x', const float align=0, unsigned int *const XYZ=0, const bool exit_on_anykey=false) const

Display the current ClmgList instance in a new display window.

const ClmgList< T > & display (const char *const title=0, const bool display_info=true, const char axis='x', const float align=0, unsigned int *const XYZ=0, const bool exit on anykey=false) const

Display the current ClmgList instance in a new display window.

const ClmgList< T > & save (const char *const filename, const int number=-1, const unsigned int digits=6) const

Save list into a file.

 const ClmgList< T > & save_gif_external (const char *const filename, const float fps=25, const unsigned int nb loops=0)

Save image sequence as a GIF animated file.

const ClmgList< T > & save_yuv (const char *const filename=0, const unsigned int chroma_

 subsampling=444, const bool is_rgb=true) const

Save list as a YUV image sequence file.

 const ClmgList< T > & save_yuv (std::FILE *const file, const unsigned int chroma_subsampling=444, const bool is_rgb=true) const

Save image sequence into a YUV file.

- const ClmgList< T > & save_cimg (const char *const filename, const bool is_compressed=false) const Save list into a .cimg file.
- const ClmgList< T > & save_cimg (std::FILE *file, const bool is_compressed=false) const
 Save list into a .cimg file.
- const ClmgList< T > & save_cimg (const char *const filename, const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0) const

Insert the image instance into into an existing .cimg file, at specified coordinates.

 const ClmgList< T > & save_cimg (std::FILE *const file, const unsigned int n0, const unsigned int x0, const unsigned int y0, const unsigned int z0, const unsigned int c0) const

Insert the image instance into into an existing .cimg file, at specified coordinates.

• const ClmgList< T > & save_tiff (const char *const filename, const unsigned int compression_type=0, const float *const voxel_size=0, const char *const description=0, const bool use_bigtiff=true) const

Save list as a TIFF file.

const ClmgList< T > & save_gzip_external (const char *const filename) const

Save list as a gzipped file, using external tool 'gzip'.

 const ClmgList< T > & save_video (const char *const filename, const unsigned int fps=25, const char *codec=0, const bool keep_open=false) const

Save image sequence, using the OpenCV library.

• const ClmgList< T > & save_ffmpeg_external (const char *const filename, const unsigned int fps=25, const char *const codec=0, const unsigned int bitrate=2048) const

Save image sequence, using the external tool 'ffmpeg'.

• Clmg< ucharT > get serialize (const bool is compressed=false) const

Serialize a ClmgList<T> instance into a raw Clmg< unsigned char> buffer.

static bool is saveable (const char *const filename)

Tell if an image list can be saved as one single file.

• static void save_empty_cimg (const char *const filename, const unsigned int nb, const unsigned int dx, const unsigned int dy=1, const unsigned int dz=1, const unsigned int dc=1)

Save empty (non-compressed) .cimg file with specified dimensions.

• static void save_empty_cimg (std::FILE *const file, const unsigned int nb, const unsigned int dx, const unsigned int dz=1, const unsigned int dz=1)

Save empty .cimg file with specified dimensions.

• template<typename t >

static ClmgList< T > get unserialize (const Clmg< t > &buffer)

Unserialize a Clmg<unsigned char> serialized buffer into a ClmgList<T> list.

Others

ClmgList< T > & FFT (const char axis, const bool invert=false)

Compute a 1D Fast Fourier Transform, along specified axis.

ClmgList< Tfloat > get_FFT (const char axis, const bool invert=false) const

Compute a 1-D Fast Fourier Transform, along specified axis [new-instance version].

ClmgList< T > & FFT (const bool invert=false)

Compute a n-d Fast Fourier Transform.

ClmgList< Tfloat > get_FFT (const bool invert=false) const

Compute a n-d Fast Fourier Transform [new-instance version].

ClmgList< T > & reverse_object3d ()

Reverse primitives orientations of a 3D object.

ClmgList< T > get_reverse_object3d () const

Reverse primitives orientations of a 3D object [new-instance version].

static const ClmgList< ucharT > & font (const unsigned int requested_height, const bool is_variable_
 width=true)

Return a Clmg pre-defined font with requested height.

8.4.1 Detailed Description

```
template<typename T> struct cimg_library::ClmgList< T>
```

Represent a list of images CImg<T>.

8.4.2 Member Typedef Documentation

8.4.2.1 iterator

```
typedef CImg<T>* iterator
```

Simple iterator type, to loop through each image of a list.

Note

- The CImgList<T>::iterator type is defined as a CImg<T>*.
- · You may use it like this:

```
CImgList<> list;    // Assuming this image list is not empty
for (CImgList<>::iterator it = list.begin(); it<list.end(); ++it) (*it).mirror('x');</pre>
```

• Using the loop macro <code>cimglist_for</code> is another (more concise) alternative:

```
cimglist_for(list,1) list[1].mirror('x');
```

8.4.2.2 const_iterator

```
typedef const CImg<T>* const_iterator
```

Simple const iterator type, to loop through each image of a const list instance.

Note

- The CImgList<T>::const_iterator type is defined to be a const CImg<T>*.
- Similar to ClmgList<T>::iterator, but for constant list instances.

8.4.2.3 value_type

```
typedef T value_type
```

Pixel value type.

Refer to the pixels value type of the images in the list.

Note

- The CImgList<T>::value_type type of a CImgList<T> is defined to be a T. It is then similar to CImg<T>::value_type.
- CImgList<T>::value_type is actually not used in CImg methods. It has been mainly defined for compatibility with STL naming conventions.

8.4.3 Constructor & Destructor Documentation

```
8.4.3.1 \simClmgList() \simClmgList ( )
```

Destructor.

Destroy current list instance.

Note

- Any allocated buffer is deallocated.
- · Destroying an empty list does nothing actually.

```
8.4.3.2 ClmgList() [1/19]
```

```
CImgList ( )
```

Default constructor.

Construct a new empty list instance.

Note

- An empty list has no pixel data and its dimension width() is set to 0, as well as its image buffer pointer data().
- An empty list may be reassigned afterwards, with the family of the assign() methods. In all cases, the type of pixels stays T.

```
8.4.3.3 ClmgList() [2/19]
```

Construct list containing empty images.

Parameters

```
n Number of empty images.
```

Note

Useful when you know by advance the number of images you want to manage, as it will allocate the right amount of memory for the list, without needs for reallocation (that may occur when starting from an empty list and inserting several images in it).

8.4.3.4 ClmgList() [3/19]

Construct list containing images of specified size.

Parameters

n	Number of images.
width	Width of images.
height	Height of images.
depth	Depth of images.
spectrum	Number of channels of images.

Note

Pixel values are not initialized and may probably contain garbage.

8.4.3.5 ClmgList() [4/19]

```
CImgList (

const unsigned int n,

const unsigned int width,

const unsigned int height,

const unsigned int depth,

const unsigned int spectrum,

const T & val )
```

Construct list containing images of specified size, and initialize pixel values.

n	Number of images.
width	Width of images.

Parameters

height	Height of images.
depth	Depth of images.
spectrum	Number of channels of images.
val	Initialization value for images pixels.

8.4.3.6 ClmgList() [5/19]

```
CImgList (

const unsigned int n,
const unsigned int width,
const unsigned int height,
const unsigned int depth,
const unsigned int spectrum,
const int val0,
const int val1,
```

Construct list containing images of specified size, and initialize pixel values from a sequence of integers.

Parameters

n	Number of images.
width	Width of images.
height	Height of images.
depth	Depth of images.
spectrum	Number of channels of images.
val0	First value of the initializing integers sequence.
val1	Second value of the initializing integers sequence.

Warning

You must specify at least width*height*depth*spectrum values in your argument list, or you will probably segfault.

8.4.3.7 ClmgList() [6/19]

```
CImgList (

const unsigned int n,

const unsigned int width,

const unsigned int height,

const unsigned int depth,

const unsigned int spectrum,

const double val0,

const double val1,
```

Construct list containing images of specified size, and initialize pixel values from a sequence of doubles.

Parameters

n	Number of images.
width	Width of images.
height	Height of images.
depth	Depth of images.
spectrum	Number of channels of images.
val0	First value of the initializing doubles sequence.
val1	Second value of the initializing doubles sequence.

Warning

You must specify at least width*height*depth*spectrum values in your argument list, or you will probably segfault.

8.4.3.8 ClmgList() [7/19]

```
CImgList (  {\rm const\ unsigned\ int\ } n,   {\rm const\ CImg} <\ t\ >\ \&\ img,   {\rm const\ bool\ } is\_shared\ =\ false\ )
```

Construct list containing copies of an input image.

Parameters

n	Number of images.
img	Input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of img.

8.4.3.9 ClmgList() [8/19]

Construct list from one image.

img	Input image to copy in the constructed list.
is_shared	Tells if the element of the list is a shared or non-shared copy of img.

```
8.4.3.10 ClmgList() [9/19]
```

```
CImgList ( \label{eq:const_cimg} \mbox{const_Cimg< t1 > \& imgl,}
```

```
const CImg< t2 > & img2,
const bool is_shared = false )
```

Construct list from two images.

Parameters

img1	First input image to copy in the constructed list.
img2	Second input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.

8.4.3.11 ClmgList() [10/19]

Construct list from three images.

Parameters

img1	First input image to copy in the constructed list.
img2	Second input image to copy in the constructed list.
img3	Third input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.

8.4.3.12 ClmgList() [11/19]

Construct list from four images.

img1	First input image to copy in the constructed list.
img2	Second input image to copy in the constructed list.
img3	Third input image to copy in the constructed list.
img4	Fourth input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.

8.4.3.13 ClmgList() [12/19]

Construct list from five images.

Parameters

img1	First input image to copy in the constructed list.
img2	Second input image to copy in the constructed list.
img3	Third input image to copy in the constructed list.
img4	Fourth input image to copy in the constructed list.
img5	Fifth input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.

8.4.3.14 ClmgList() [13/19]

Construct list from six images.

img1	First input image to copy in the constructed list.
img2	Second input image to copy in the constructed list.
img3	Third input image to copy in the constructed list.
img4	Fourth input image to copy in the constructed list.
img5	Fifth input image to copy in the constructed list.
img6	Sixth input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.

```
8.4.3.15 ClmgList() [14/19]
```

```
CImgList (  \mbox{const CImg} < \mbox{t1} > \& \mbox{img1}, \\ \mbox{const CImg} < \mbox{t2} > \& \mbox{img2},
```

```
const CImg< t3 > & img3,
const CImg< t4 > & img4,
const CImg< t5 > & img5,
const CImg< t6 > & img6,
const CImg< t7 > & img7,
const bool is\_shared = false)
```

Construct list from seven images.

Parameters

img1	First input image to copy in the constructed list.
img2	Second input image to copy in the constructed list.
img3	Third input image to copy in the constructed list.
img4	Fourth input image to copy in the constructed list.
img5	Fifth input image to copy in the constructed list.
img6	Sixth input image to copy in the constructed list.
img7	Seventh input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.

8.4.3.16 ClmgList() [15/19]

Construct list from eight images.

img1	First input image to copy in the constructed list.
img2	Second input image to copy in the constructed list.
img3	Third input image to copy in the constructed list.
img4	Fourth input image to copy in the constructed list.
img5	Fifth input image to copy in the constructed list.
img6	Sixth input image to copy in the constructed list.
img7	Seventh input image to copy in the constructed list.
img8	Eighth input image to copy in the constructed list.
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.

```
8.4.3.17 ClmgList() [16/19]
```

```
CImgList (
```

```
const CImgList< t > & list )
```

Construct list copy.

Parameters

```
list Input list to copy.
```

Note

The shared state of each element of the constructed list is kept the same as in list.

Construct list copy, and force the shared state of the list elements.

Parameters

list	Input list to copy.	
is_shared	Tells if the elements of the list are shared or non-shared copies of input images.]

Construct list by reading the content of a file.

Parameters

filename	Filename, as a C-string.

Construct list from the content of a display window.

Note

Constructed list contains a single image only.

```
8.4.4 Member Function Documentation
```

```
CImgList<T> get_shared ( )
```

8.4.4.1 get_shared()

Return a list with elements being shared copies of images in the list instance.

Note

```
list2 = list1.get_shared() is equivalent to list2.assign(list1, true).
```

```
8.4.4.2 assign() [1/18]

CImgList<T>& assign ( )
```

Destructor [in-place version].

See also

CImgList().

```
8.4.4.3 clear()
```

```
CImgList<T>& clear ( )
```

Destructor [in-place version].

Equivalent to assign().

Note

Only here for compatibility with STL naming conventions.

Construct list containing empty images [in-place version].

See also

CImgList(unsigned int).

Construct list containing images of specified size [in-place version].

See also

ClmgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int).

Construct list containing images of specified size, and initialize pixel values [in-place version].

See also

ClmgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, const T).

Construct list with images of specified size, and initialize pixel values from a sequence of integers [in-place version].

See also

ClmgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, const int, const int, ...).

Construct list with images of specified size, and initialize pixel values from a sequence of doubles [in-place version].

See also

ClmgList(unsigned int,unsigned int,unsigned int,unsigned int,unsigned int,const double,const double,...).

Construct list containing copies of an input image [in-place version].

See also

ClmgList(unsigned int, const Clmg<t>&, bool).

Construct list from one image [in-place version].

See also

CImgList(const CImg<t>&, bool).

Construct list from two images [in-place version].

See also

ClmgList(const Clmg<t>&, const Clmg<t>&, bool).

```
8.4.4.12 assign() [10/18]
CImgList<T>& assign (
             const CImg< t1 > & img1,
             const CImg< t2 > & img2,
             const CImg< t3 > & img3,
             const bool is_shared = false )
Construct list from three images [in-place version].
```

See also

ClmgList(const Clmg<t>&, const Clmg<t>&, const Clmg<t>&, bool).

```
8.4.4.13 assign() [11/18]
CImgList<T>& assign (
            const CImg< t1 > & img1,
            const CImg< t2 > & img2,
             const CImg < t3 > & img3,
             const CImg < t4 > & img4,
             const bool is_shared = false )
```

Construct list from four images [in-place version].

See also

ClmgList(const Clmg<t>&, const Clmg<t>&, const Clmg<t>&, const Clmg<t>&, bool).

```
8.4.4.14 assign() [12/18]
CImgList<T>& assign (
             const CImg< t1 > & img1,
             const CImg < t2 > & img2,
             const CImg < t3 > & img3,
             const CImg < t4 > \& img4,
             const CImg < t5 > & img5,
             const bool is_shared = false )
```

Construct list from five images [in-place version].

See also

ClmgList(const Clmg<t>&, const Clmg<t>&, const Clmg<t>&, const Clmg<t>&, bool).

Construct list from six images [in-place version].

See also

 $\label{local_const_con$

```
8.4.4.16 assign() [14/18]
```

Construct list from seven images [in-place version].

See also

 $\label{local_const_co$

8.4.4.17 assign() [15/18]

Construct list from eight images [in-place version].

See also

Construct list as a copy of an existing list and force the shared state of the list elements [in-place version].

See also

ClmgList(const ClmgList<t>&, bool is_shared).

Construct list by reading the content of a file [in-place version].

See also

ClmgList(const char *const).

Construct list from the content of a display window [in-place version].

See also

CImgList(const CImgDisplay&).

Transfer the content of the list instance to another list.

Parameters

list Destination list.

Note

When returning, the current list instance is empty and the initial content of list is destroyed.

Transfer the content of the list instance at a specified position in another list.

Parameters

list	Destination list.
pos	Index of the insertion in the list.

Note

When returning, the list instance is empty and the initial content of list is preserved (only images indexes may be modified).

8.4.4.23 swap()

```
CImgList<T>& swap (
CImgList< T > & list )
```

Swap all fields between two list instances.

Parameters

list	List to swap fields with.
	' '

Note

Can be used to exchange the content of two lists in a fast way.

8.4.4.24 empty()

```
static CImgList<T>& empty ( ) [static]
```

Return a reference to an empty list.

Note

Can be used to define default values in a function taking a ClmgList<T> as an argument.

```
void f(const CImgList<char>& list=CImgList<char>::empty());
```

```
8.4.4.25 operator()() [1/3]

CImg<T>& operator() (
```

Return a reference to one image element of the list.

const unsigned int pos)

Parameters

```
pos Index of the image element.
```

Return a reference to one image of the list.

Parameters

	pos	Index of the image element.
--	-----	-----------------------------

```
8.4.4.27 operator()() [3/3]
```

Return a reference to one pixel value of one image of the list.

Parameters

pos	Index of the image element.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

```
list (n, x, y, z, c) is equivalent to list [n](x, y, z, c).
```

8.4.4.28 operator Clmg< T>*()

```
operator CImg < T > * ()
```

Return pointer to the first image of the list.

Note

Images in a list are stored as a buffer of CImg < T >.

Construct list from one image [in-place version].

Parameters

```
img | Input image to copy in the constructed list.
```

Note

```
list = img; is equivalent to list.assign(img);.
```

```
8.4.4.30 operator=() [2/4] CImgList<T>& operator= ( const CImgList< t > & list )
```

Construct list from another list.

Parameters

```
list Input list to copy.
```

Note

```
list1 = list2 is equivalent to list1.assign(list2);.
```

```
8.4.4.31 operator=() [3/4]

CImgList<T>& operator= (
```

Construct list by reading the content of a file [in-place version].

const char *const filename)

See also

```
CImgList(const char *const).
```

Construct list from the content of a display window [in-place version].

See also

CImgList(const CImgDisplay&).

```
8.4.4.33 operator+()
```

```
CImgList<T> operator+ ( ) const
```

Return a non-shared copy of a list.

Note

+list is equivalent to CImgList<T>(list, false). It forces the copy to have non-shared elements.

Return a copy of the list instance, where image img has been inserted at the end.

Parameters

img Image inserted at the end of the instance copy.

Note

Define a convenient way to create temporary lists of images, as in the following code:

```
(img1,img2,img3,img4).display("My four images");
```

Return a copy of the list instance, where all elements of input list list have been inserted at the end.

Parameters

list List inserted at the end of the instance copy.

8.4.4.36 operator>()

Return image corresponding to the appending of all images of the instance list along specified axis.

Parameters

```
axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }.
```

Note

```
list>'x' is equivalent to list.get_append('x').
```

8.4.4.37 operator<()

```
CImgList<T> operator< (
          const char axis ) const</pre>
```

Return list corresponding to the splitting of all images of the instance list along specified axis.

Parameters

```
axis Axis used for image splitting.
```

Note

```
list<'x' is equivalent to list.get_split('x').</pre>
```

8.4.4.38 pixel_type()

```
static const char* pixel_type ( ) [static]
```

Return the type of image pixel values as a C string.

Return a char* string containing the usual type name of the image pixel values (i.e. a stringified version of the template parameter T).

Note

- The returned string may contain spaces (as in "unsigned char").
- If the pixel type T does not correspond to a registered type, the string "unknown" is returned.

```
8.4.4.39 width()
```

```
int width ( ) const
```

Return the size of the list, i.e. the number of images contained in it.

Note

Similar to size() but returns result as a (signed) integer.

```
8.4.4.40 size()
```

```
unsigned int size ( ) const
```

Return the size of the list, i.e. the number of images contained in it.

Note

Similar to width() but returns result as an unsigned integer.

```
8.4.4.41 data() [1/2]
```

```
CImg<T>* data ( )
```

Return pointer to the first image of the list.

Note

Images in a list are stored as a buffer of CImg < T >.

```
8.4.4.42 data() [2/2]
```

```
CImg<T>* data ( const unsigned int pos )
```

Return pointer to the pos-th image of the list.

Parameters

pos | Index of the image element to access.

Note

```
list.data(n); is equivalent to list.data + n;.
```

8.4.4.43 at()

```
CImg<T>& at ( const int pos )
```

Return pos-th image of the list.

Parameters

pos	Index of the image element to access.
-----	---------------------------------------

8.4.4.44 atNXYZC() [1/2]

Access to pixel value with Dirichlet boundary conditions.

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
out_value	Default value returned if offset is outside image bounds.

Note

```
list.atNXYZC(p,x,y,z,c); is equivalent to list[p].atXYZC(x,y,z,c);.
```

8.4.4.45 atNXYZC() [2/2]

```
T& atNXYZC (

const int pos,
const int x,
const int y,
const int z,
const int c)
```

Access to pixel value with Neumann boundary conditions.

pos	Index of the image element to access.
-----	---------------------------------------

Parameters

X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

```
list.atNXYZC(p,x,y,z,c); is equivalent to list[p].atXYZC(x,y,z,c);.
```

Access pixel value with Dirichlet boundary conditions for the 3 coordinates (pos, x,y,z).

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
out_value	Default value returned if offset is outside image bounds.

Note

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

```
T& atNXYZ (

const int pos,
const int x,
const int y,
const int z,
```

const int c = 0)

8.4.4.47 atNXYZ() [2/2]

Access to pixel value with Neumann boundary conditions for the 4 coordinates (pos, x,y,z).

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

Access to pixel value with Dirichlet boundary conditions for the 3 coordinates (pos, x,y).

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
out_value	Default value returned if offset is outside image bounds.

Note

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

Access to pixel value with Neumann boundary conditions for the 3 coordinates (pos, x,y).

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

Access to pixel value with Dirichlet boundary conditions for the 2 coordinates (pos,x).

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
out_value	Default value returned if offset is outside image bounds.

Note

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

Access to pixel value with Neumann boundary conditions for the 2 coordinates (pos, x).

Parameters

pos	Index of the image element to access.
Х	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

Access to pixel value with Dirichlet boundary conditions for the coordinate (pos).

Parameters

pos	Index of the image element to access.
X	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.
out_value	Default value returned if offset is outside image bounds.

Note

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

Return pixel value with Neumann boundary conditions for the coordinate (pos).

Parameters

pos	Index of the image element to access.
Х	X-coordinate of the pixel value.
У	Y-coordinate of the pixel value.
Z	Z-coordinate of the pixel value.
С	C-coordinate of the pixel value.

Note

```
list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);.
```

Test if number of image elements is equal to specified value.

Parameters

size←	Number of image elements to test.
_n	

Test if number of image elements is equal between two images lists.

Parameters

```
list Input list to compare with.
```

8.4.4.56 is_sameXYZC()

```
bool is_sameXYZC (  {\rm const\ unsigned\ int}\ dx, \\ {\rm const\ unsigned\ int}\ dy, \\ {\rm const\ unsigned\ int}\ dz, \\ {\rm const\ unsigned\ int}\ dc\ )\ {\rm const}
```

Test if dimensions of each image of the list match specified arguments.

Parameters

dx	Checked image width.
dy	Checked image height.
dz	Checked image depth.
dc	Checked image spectrum.

8.4.4.57 is_sameNXYZC()

Test if list dimensions match specified arguments.

Parameters

n	Number of images in the list.
dx	Checked image width.
dy	Checked image height.
dz	Checked image depth.
dc	Checked image spectrum.

8.4.4.58 containsNXYZC()

Test if list contains one particular pixel location.

n	Index of the image whom checked pixel value belong to.
Х	X-coordinate of the checked pixel value.
У	Y-coordinate of the checked pixel value.
Z	Z-coordinate of the checked pixel value.
С	C-coordinate of the checked pixel value.

8.4.4.59 containsN()

```
bool contains N ( {\rm const\ int}\ n\ )\ {\rm const}
```

Test if list contains image with specified index.

Parameters

```
n Index of the checked image.
```

8.4.4.60 contains() [1/8]

Test if one image of the list contains the specified referenced value.

Parameters

	pixel	Reference to pixel value to test.	
out	n	Index of image containing the pixel value, if test succeeds.	
out	X	X-coordinate of the pixel value, if test succeeds.	
out	У	Y-coordinate of the pixel value, if test succeeds.	
out	Z	Z-coordinate of the pixel value, if test succeeds.	
out	С	C-coordinate of the pixel value, if test succeeds.	

Note

If true, set coordinates (n,x,y,z,c).

8.4.4.61 contains() [2/8]

Test if one of the image list contains the specified referenced value.

	pixel	Reference to pixel value to test.
--	-------	-----------------------------------

Parameters

out	n	Index of image containing the pixel value, if test succeeds.
out	X	X-coordinate of the pixel value, if test succeeds.
out	У	Y-coordinate of the pixel value, if test succeeds.
out	Z	Z-coordinate of the pixel value, if test succeeds.

Note

If true, set coordinates (n,x,y,z).

8.4.4.62 contains() [3/8]

Test if one of the image list contains the specified referenced value.

Parameters

	pixel	Reference to pixel value to test.
out	n	Index of image containing the pixel value, if test succeeds.
out	X	X-coordinate of the pixel value, if test succeeds.
out	У	Y-coordinate of the pixel value, if test succeeds.

Note

If true, set coordinates (n,x,y).

8.4.4.63 contains() [4/8]

Test if one of the image list contains the specified referenced value.

	pixel	Reference to pixel value to test.
out	n	Index of image containing the pixel value, if test succeeds.
out	Х	X-coordinate of the pixel value, if test succeeds.

Note

If true, set coordinates (n,x).

```
8.4.4.64 contains() [5/8] bool contains ( const T & pixel,
```

t & n) const

Test if one of the image list contains the specified referenced value.

Parameters

	pixel	Reference to pixel value to test.]
out	n	Index of image containing the pixel value, if test succeeds.	1

Note

If true, set coordinates (n).

```
8.4.4.65 contains() [6/8] bool contains ( const \ T \ \& \ pixel \ ) \ const
```

Test if one of the image list contains the specified referenced value.

Parameters

1	oixel	Reference to pixel value to test.
---	-------	-----------------------------------

```
8.4.4.66 contains() [7/8]
```

```
bool contains (  \mbox{const CImg} < \mbox{T} > \& \mbox{img,}  t & n ) const
```

Test if the list contains the image 'img'.

	img	Reference to image to test.
out	n	Index of image in the list, if test succeeds.

Note

If true, returns the position (n) of the image in the list.

Test if the list contains the image img.

Parameters

```
img Reference to image to test.
```

Return a reference to the minimum pixel value of the instance list and return the maximum vvalue as well.

Parameters

out	max_val	Value of the maximum value found.
-----	---------	-----------------------------------

Return a reference to the minimum pixel value of the instance list and return the maximum vvalue as well **[const version]**.

Parameters

```
out max_val Value of the maximum value found.
```

8.4.4.70 max_min()

```
T& max_min ( t & min_val )
```

Return a reference to the minimum pixel value of the instance list and return the minimum value as well.

Parameters

out	min_val	Value of the minimum value found.	
-----	---------	-----------------------------------	--

Insert a copy of the image img into the current image list, at position pos.

Parameters

img	Image to insert a copy to the list.
pos	Index of the insertion.
is_shared	Tells if the inserted image is a shared copy of img or not.

Insert n empty images img into the current image list, at position pos.

Parameters

n	Number of empty images to insert.
pos	Index of the insertion.

Insert n copies of the image img into the current image list, at position pos.

n	Number of image copies to insert.
img	Image to insert by copy.
pos	Index of the insertion.
is_shared	Tells if inserted images are shared copies of img or not.

Insert a copy of the image list list into the current image list, starting from position pos.

Parameters

list	Image list to insert.	
pos	Index of the insertion.	
is_shared	Tells if inserted images are shared copies of images of list or not.	

Insert n copies of the list list at position pos of the current list.

Parameters

n	Number of list copies to insert.	
list	Image list to insert.	
pos	Index of the insertion.	
is_shared	Tells if inserted images are shared copies of images of list or not.	

Remove all images between from indexes.

pos1	Starting index of the removal.
pos2	Ending index of the removal.

```
8.4.4.77 remove() [2/2] CImgList<T>& remove (
```

```
const unsigned int pos )
```

Remove image at index pos from the image list.

Parameters

```
pos Index of the image to remove.
```

8.4.4.78 images()

```
CImgList<T>& images (  {\rm const\ unsigned\ int\ } pos0, \\ {\rm const\ unsigned\ int\ } pos1\ )
```

Return a sublist.

Parameters

pos0	Starting index of the sublist.
pos1	Ending index of the sublist.

8.4.4.79 get_shared_images()

Return a shared sublist.

Parameters

pos0	Starting index of the sublist.
pos1	Ending index of the sublist.

8.4.4.80 get_append()

Return a single image which is the appending of all images of the current ClmgList instance.

axis	Appending axis. Can be { 'x' 'y' 'z' 'c' }.
align	Appending alignment.

8.4.4.81 split()

```
CImgList<T>& split ( const char axis, const int nb = -1)
```

Return a list where each image has been split along the specified axis.

Parameters

axis	Axis to split images along.
nb	Number of spliting parts for each image.

8.4.4.82 push_back() [1/2]

Insert image at the end of the list.

Parameters

img	Image to insert.
-----	------------------

8.4.4.83 push_front() [1/2]

Insert image at the front of the list.

Parameters

```
img Image to insert.
```

8.4.4.84 push_back() [2/2]

Insert list at the end of the current list.

Parameters

list List to insert.

```
8.4.4.85 push_front() [2/2]
```

Insert list at the front of the current list.

Parameters

```
list List to insert.
```

8.4.4.86 erase()

Remove image pointed by iterator.

Parameters

iter Iterator pointing to the image to remove.

```
8.4.4.87 get_select() [1/2]
```

Display a simple interactive interface to select images or sublists.

Parameters

disp	Window instance to display selection and user interface.
feature_type	Can be false to select a single image, or true to select a sublist.
axis	Axis along whom images are appended for visualization.
align	Alignment setting when images have not all the same size.
exit_on_anykey	Exit function when any key is pressed.

Returns

A one-column vector containing the selected image indexes.

```
const bool feature_type = true,
const char axis = 'x',
const float align = 0,
const bool exit_on_anykey = false ) const
```

Display a simple interactive interface to select images or sublists.

Parameters

title	Title of a new window used to display selection and user interface.	
feature_type	feature_type Can be false to select a single image, or true to select a sublis	
axis	Axis along whom images are appended for visualization.	
align Alignment setting when images have not all the same size.		
exit_on_anykey Exit function when any key is pressed.		

Returns

A one-column vector containing the selected image indexes.

8.4.4.89 load()

Load a list from a file.

Parameters

```
8.4.4.90 load_cimg() [1/3]
```

Load a list from a .cimg file.

Parameters

8.4.4.91 load_cimg() [2/3]

Load a list from a .cimg file.

Parameters

```
file File to read data from.
```

8.4.4.92 load_cimg() [3/3]

Load a sublist list from a (non compressed) .cimg file.

Parameters

filename	Filename to read data from.	
n0	Starting index of images to read (\sim 0U for max).	
n1	Ending index of images to read (\sim 0U for max).	
x0	Starting X-coordinates of image regions to read.	
y0	Starting Y-coordinates of image regions to read.	
z0	Starting Z-coordinates of image regions to read.	
c0	Starting C-coordinates of image regions to read.	
x1	Ending X-coordinates of image regions to read (\sim 0U for max).	
y1	Ending Y-coordinates of image regions to read (\sim 0U for max).	
<i>z</i> 1	Ending Z-coordinates of image regions to read (\sim 0U for max).	
c1	Ending C-coordinates of image regions to read (\sim 0U for max).	

8.4.4.93 load_parrec()

Load a list from a PAR/REC (Philips) file.

Γ	filename	Filename to read data from.
	filename	Filename to read data from.

8.4.4.94 load_yuv()

Load a list from a YUV image sequence file.

Parameters

filename	Filename to read data from.
size_x	Width of the images.
size_y	Height of the images.
chroma_subsampling	Type of chroma subsampling. Can be { 420 422 444 }.
first_frame	Index of first image frame to read.
last_frame	Index of last image frame to read.
step_frame Step applied between each frame.	
yuv2rgb	Apply YUV to RGB transformation during reading.

8.4.4.95 load_video()

Load an image from a video file, using OpenCV library.

Parameters

filename	Filename, as a C-string.	
first_frame	first_frame Index of the first frame to read.	
last_frame	Index of the last frame to read (can be higher than the actual number of frames, e.g. ' \sim 0U').	
step_frame Step value for frame reading.		

Note

If step_frame==0, the current video stream is forced to be released (without any frames read).

8.4.4.96 load_ffmpeg_external()

Load an image from a video file using the external tool 'ffmpeg'.

Parameters

name Filename to read data from.	<i>ilename</i> Filenam
----------------------------------	--------------------------

8.4.4.97 load_gif_external()

Load gif file, using ImageMagick or GraphicsMagick's external tools.

Parameters

8.4.4.98 load_gzip_external()

Load a gzipped list, using external tool 'gunzip'.

Parameters

filename	Filename to read data from.
morianio	i nonamo to roda data nom

8.4.4.99 load_off()

Load a 3D object from a .OFF file.

Parameters

filename	Filename to read data from.
primitives	At return, contains the list of 3D object primitives.
At return, contains the list of 3D object colors.	

Returns

List of 3D object vertices.

8.4.4.100 load_tiff()

Load images from a TIFF file.

Parameters

	filename	Filename to read data from.
	first_frame	Index of first image frame to read.
	last_frame	Index of last image frame to read.
	step_frame	Step applied between each frame.
out	voxel_size	Voxel size, as stored in the filename.
out	description	Description, as stored in the filename.

8.4.4.101 print()

Print information about the list on the standard output.

Parameters

title	Label set to the information displayed.
display_stats	Tells if image statistics must be computed and displayed.

8.4.4.102 display() [1/3]

Display the current ClmgList instance in an existing ClmgDisplay window (by reference).

disp	Reference to an existing ClmgDisplay instance, where the current image list will be displayed.	
axis	xis Appending axis. Can be { 'x' 'y' 'z' 'c' }.	
align	Appending alignmenet.	

Note

This function displays the list images of the current ClmgList instance into an existing ClmgDisplay window. Images of the list are appended in a single temporarly image for visualization purposes. The function returns immediately.

8.4.4.103 display() [2/3]

Display the current ClmgList instance in a new display window.

Parameters

	disp	Display window.
	display_info	Tells if image information are displayed on the standard output.
	axis	Alignment axis for images viewing.
	align	Apending alignment.
in,out	XYZ	Contains the XYZ coordinates at start / exit of the function.
	exit_on_anykey	Exit function when any key is pressed.

Note

This function opens a new window with a specific title and displays the list images of the current ClmgList instance into it. Images of the list are appended in a single temporarly image for visualization purposes. The function returns when a key is pressed or the display window is closed by the user.

8.4.4.104 display() [3/3]

Display the current ClmgList instance in a new display window.

	title	Title of the opening display window.
	display_info	Tells if list information must be written on standard output.
	axis	Appending axis. Can be { 'x' 'y' 'z' 'c' }.
	align	Appending alignment.
in, out	XYZ	Contains the XYZ coordinates at start / exit of the function.
Generated by Do	xxexit_on_anykey	Exit function when any key is pressed.

8.4.4.105 save()

Save list into a file.

Parameters

filename	Filename to write data to.
number	When positive, represents an index added to the filename. Otherwise, no number is added.
digits	Number of digits used for adding the number to the filename.

8.4.4.106 is_saveable()

Tell if an image list can be saved as one single file.

Parameters

filename Filename, a	as a C-string.
----------------------	----------------

Returns

true if the file format supports multiple images, false otherwise.

8.4.4.107 save_gif_external()

Save image sequence as a GIF animated file.

filename	Filename to write data to.
fps	Number of desired frames per second.
nb_loops	Number of loops (0 for infinite looping).

```
8.4.4.108 save_yuv() [1/2] const CImgList<T>& save_yuv (
```

```
const char *const filename = 0,
const unsigned int chroma_subsampling = 444,
const bool is_rgb = true ) const
```

Save list as a YUV image sequence file.

Parameters

filename	Filename to write data to.
chroma_subsampling	Type of chroma subsampling. Can be { 420 422 444 }.
is_rgb	Tells if the RGB to YUV conversion must be done for saving.

Save image sequence into a YUV file.

Parameters

file	File to write data to.
chroma_subsampling	Type of chroma subsampling. Can be { 420 422 444 }.
is_rgb	Tells if the RGB to YUV conversion must be done for saving.

Save list into a .cimg file.

Parameters

filename	Filename to write data to.
is_compressed	Tells if data compression must be enabled.

Save list into a .cimg file.

Parameters

file	File to write data to.
is_compressed	Tells if data compression must be enabled.

```
8.4.4.112 save_cimg() [3/4]
```

Insert the image instance into into an existing .cimg file, at specified coordinates.

Parameters

filename	Filename to write data to.
n0	Starting index of images to write.
x0	Starting X-coordinates of image regions to write.
y0	Starting Y-coordinates of image regions to write.
z0	Starting Z-coordinates of image regions to write.
c0	Starting C-coordinates of image regions to write.

8.4.4.113 save_cimg() [4/4]

```
const CImgList<T>& save_cimg (
    std::FILE *const file,
    const unsigned int n0,
    const unsigned int x0,
    const unsigned int y0,
    const unsigned int z0,
    const unsigned int c0 ) const
```

Insert the image instance into into an existing .cimg file, at specified coordinates.

file	File to write data to.
n0	Starting index of images to write.
х0	Starting X-coordinates of image regions to write.
y0	Starting Y-coordinates of image regions to write.
z0	Starting Z-coordinates of image regions to write.
c0	Starting C-coordinates of image regions to write.

8.4.4.114 save_empty_cimg() [1/2]

Save empty (non-compressed) .cimg file with specified dimensions.

Parameters

filename	Filename to write data to.	
nb	Number of images to write.	
dx	Width of images in the written file.	
dy	Height of images in the written file.	
dz	Depth of images in the written file.	
dc	Spectrum of images in the written file.	

8.4.4.115 save_empty_cimg() [2/2]

```
static void save_empty_cimg ( std::FILE * const \ file, \\ const \ unsigned \ int \ nb, \\ const \ unsigned \ int \ dx, \\ const \ unsigned \ int \ dy = 1, \\ const \ unsigned \ int \ dz = 1, \\ const \ unsigned \ int \ dc = 1 \ ) \ [static]
```

Save empty .cimg file with specified dimensions.

Parameters

file	File to write data to.
nb	Number of images to write.
dx	Width of images in the written file.
dy	Height of images in the written file.
dz	Depth of images in the written file.
dc	Spectrum of images in the written file.

8.4.4.116 save_tiff()

```
const char *const description = 0,
const bool use_bigtiff = true ) const
```

Save list as a TIFF file.

Parameters

filename	Filename to write data to.
compression_type	Compression mode used to write data.
voxel_size	Voxel size, to be stored in the filename.
description	Description, to be stored in the filename.
use_bigtiff	Allow to save big tiff files (>4Gb).

8.4.4.117 save_gzip_external()

Save list as a gzipped file, using external tool 'gzip'.

Parameters

filen	ame	Filename to write data to.
-------	-----	----------------------------

8.4.4.118 save_video()

Save image sequence, using the OpenCV library.

Parameters

filename	Filename to write data to.
fps	Number of frames per second.
codec	Type of compression (See http://www.fourcc.org/codecs.php to see available codecs).
keep_open	Tells if the video writer associated to the specified filename must be kept open or not (to allow frames to be added in the same file afterwards).

8.4.4.119 save_ffmpeg_external()

```
const unsigned int fps = 25, const char *const codec = 0, const unsigned int bitrate = 2048) const
```

Save image sequence, using the external tool 'ffmpeg'.

Parameters

filename	Filename to write data to.	
fps	Number of frames per second.	
codec	Type of compression.	
bitrate	Output bitrate	

8.4.4.120 get_serialize()

Serialize a ClmgList<T> instance into a raw Clmg<unsigned char> buffer.

Parameters

is_compressed	tells if zlib compression must be used for serialization (this requires 'cimg_use_zlib' been		
	enabled).		

8.4.4.121 font()

Return a Clmg pre-defined font with requested height.

Parameters

font_height	Height of the desired font (exact match for 13,23,53,103).
is_variable_width	Decide if the font has a variable (true) or fixed (false) width.

8.4.4.122 FFT() [1/2] CImgList<T>& FFT (const char axis,

Compute a 1D Fast Fourier Transform, along specified axis.

const bool invert = false)

Parameters

axis	Axis along which the Fourier transform is computed.	
invert	Tells if the direct (false) or inverse transform (true) is computed.	

Compute a n-d Fast Fourier Transform.

invert	Tells if the direct	(false) or inverse transform	(true) is computed.
--------	---------------------	------------------------------	---------------------

Index

\sim Clmg	atof
cimg_library::Clmg, 123	cimg_library::cimg, 51
\sim CImgDisplay	atX
cimg_library::ClmgDisplay, 330	cimg_library::Clmg, 164, 165
\sim CImgList	autocrop
cimg_library::CImgList, 365	cimg_library::Clmg, 231
abs	back
cimg_library::Clmg, 187	cimg library::Clmg, 163
acos	begin 5
cimg_library::Clmg, 190	cimg_library::Clmg, 162
acosh	blur
cimg_library::Clmg, 192	cimg_library::Clmg, 244, 245
append	blur_anisotropic
cimg_library::Clmg, 239	cimg_library::Clmg, 245, 246
append_object3d	blur bilateral
cimg_library::Clmg, 258	cimg library::Clmg, 247
asin	blur box
cimg_library::Clmg, 190	cimg_library::Clmg, 248, 249
asinh	blur_guided
cimg_library::Clmg, 192	cimg_library::Clmg, 249
assign	blur median
cimg_library::Clmg, 132–134	cimg_library::Clmg, 250
cimg_library::ClmgDisplay, 332	blur_patch
cimg_library::ClmgList, 373–378	cimg_library::Clmg, 249
at	box3d
cimg_library::Clmg, 163, 164	cimg_library::Clmg, 264
cimg_library::ClmgList, 384	boxfilter
atNXYZC	cimg_library::Clmg, 248
cimg_library::ClmgList, 385	button
atNXYZ	cimg_library::CImgDisplay, 338
cimg_library::ClmgList, 386	cing_librarycinigbisplay, 330
atNXY	CImg
cimg library::ClmgList, 387	cimg_library::Clmg, 123–131
atNX	Clmg Library Overview, 11
cimg_library::CImgList, 388	CImg < T >, 65
atXYZC	CImg3dtoobject3d
cimg_library::Clmg, 167	cimg_library::Clmg, 268
atXYZ	ClmgDisplay, 323
	cimg_library::CImgDisplay, 330, 331
cimg_library::CImg, 166	Cling_libraryClingDisplay, 330, 331
atXY	
cimg_library::Clmg, 166	ClmgList
atan	cimg_library::ClmgList, 365–372
cimg_library::Clmg, 191	CImgList< T >, 350
atan2	cimg_library, 35
cimg_library::Clmg, 191	cimg_library::CImg
atanh	~Clmg, 123
cimg_library::Clmg, 192	abs, 187
atN	acos, 190
cimg_library::ClmgList, 389	acosh, 192

append, 239	discard, 216
append_object3d, 258	displacement, 252
asin, 190	display, 309
asinh, 192	display_graph, 311
assign, 132–134	display_object3d, 310
at, 163, 164	distance, 253
atXYZC, 167	distance_dijkstra, 255
atXYZ, 166	distance_eikonal, 255
atXY, 166	div, 193
atan, 191	dot, 201
atan2, 191	draw_arrow, 273
atanh, 192	draw_axes, 292
atX, 164, 165	draw_axis, 292
autocrop, 231	draw_circle, 287
back, 163	draw_ellipse, 285-287
begin, 162	draw_fill, 294
blur, 244, 245	draw_gaussian, 296, 297
blur_anisotropic, 245, 246	draw_graph, 293
blur_bilateral, 247	draw_grid, 293
blur_box, 248, 249	draw_image, 288
blur_guided, 249	draw_line, 269-273
blur_median, 250	draw_mandelbrot, 295
blur_patch, 249	draw_object3d, 297
box3d, 264	draw_plasma, 295
boxfilter, 248	draw_point, 268, 269
Clmg, 123–131	draw_polygon, 285
CImg3dtoobject3d, 268	draw_quiver, 291
clear, 134	draw_rectangle, 283, 284
columns, 231	draw_spline, 274-277
cone3d, 264	draw_text, 289, 290
const iterator, 122	draw_triangle, 277-282
contains, 183, 184	eigen, 206
containsXYZC, 182	elevation3d, 262
convolve, 239	ellipsoid3d, 267
cool_LUT256, 223	empty, 136
correlate, 239	end, 162
cos, 188	equalize, 220
cosh, 189	erode, 240, 241
crop, 230	eval, 199, 200
cross, 204	exp, 186
CUDE LU1256, 223	FFT, 256, 257
cube_LUT256, 223 cubic_atXYZ, 174	FFT, 256, 257 fill, 213, 214
cubic_atXYZ, 174	FFT, 256, 257 fill, 213, 214 fillC, 215
cubic_atXYZ, 174 cubic_atXY, 173	fill, 213, 214 fillC, 215
cubic_atXYZ, 174 cubic_atXY, 173 cubic_atX, 170, 172	fill, 213, 214 fillC, 215 fillX, 214
cubic_atXYZ, 174 cubic_atXY, 173 cubic_atX, 170, 172 cubic_cut_atXYZ, 174, 175	fill, 213, 214 fillC, 215 fillX, 214 fillY, 215
cubic_atXYZ, 174 cubic_atXY, 173 cubic_atX, 170, 172 cubic_cut_atXYZ, 174, 175 cubic_cut_atXY, 173, 174	fill, 213, 214 fillC, 215 fillX, 214 fillY, 215 fillZ, 215
cubic_atXYZ, 174 cubic_atXY, 173 cubic_atX, 170, 172 cubic_cut_atXYZ, 174, 175 cubic_cut_atXY, 173, 174 cubic_cut_atX, 172, 173	fill, 213, 214 fillC, 215 fillX, 214 fillY, 215 fillZ, 215 flag_LUT256, 223
cubic_atXYZ, 174 cubic_atXY, 173 cubic_atX, 170, 172 cubic_cut_atXYZ, 174, 175 cubic_cut_atXY, 173, 174 cubic_cut_atX, 172, 173 cumulate, 240	fill, 213, 214 fillC, 215 fillX, 214 fillY, 215 fillZ, 215 flag_LUT256, 223 front, 163
cubic_atXYZ, 174 cubic_atXY, 173 cubic_atX, 170, 172 cubic_cut_atXYZ, 174, 175 cubic_cut_atXY, 173, 174 cubic_cut_atX, 172, 173 cumulate, 240 cut, 218	fill, 213, 214 fillC, 215 fillX, 214 fillY, 215 fillZ, 215 flag_LUT256, 223 front, 163 get_FFT, 256
cubic_atXYZ, 174 cubic_atXY, 173 cubic_atX, 170, 172 cubic_cut_atXYZ, 174, 175 cubic_cut_atXY, 173, 174 cubic_cut_atX, 172, 173 cumulate, 240 cut, 218 cylinder3d, 265	fill, 213, 214 fillC, 215 fillX, 214 fillY, 215 fillZ, 215 flag_LUT256, 223 front, 163 get_FFT, 256 get_SVD, 208
cubic_atXYZ, 174 cubic_atXY, 173 cubic_atX, 170, 172 cubic_cut_atXYZ, 174, 175 cubic_cut_atXY, 173, 174 cubic_cut_atX, 172, 173 cumulate, 240 cut, 218 cylinder3d, 265 data, 161	fill, 213, 214 fillC, 215 fillX, 214 fillY, 215 fillZ, 215 flag_LUT256, 223 front, 163 get_FFT, 256 get_SVD, 208 get_channel, 235
cubic_atXYZ, 174 cubic_atXY, 173 cubic_atX, 170, 172 cubic_cut_atXYZ, 174, 175 cubic_cut_atXY, 173, 174 cubic_cut_atX, 172, 173 cumulate, 240 cut, 218 cylinder3d, 265 data, 161 default_LUT256, 222	fill, 213, 214 fillC, 215 fillX, 214 fillY, 215 fillZ, 215 flag_LUT256, 223 front, 163 get_FFT, 256 get_SVD, 208 get_channel, 235 get_channels, 235
cubic_atXYZ, 174 cubic_atXY, 173 cubic_atX, 170, 172 cubic_cut_atXYZ, 174, 175 cubic_cut_atXY, 173, 174 cubic_cut_atX, 172, 173 cumulate, 240 cut, 218 cylinder3d, 265 data, 161 default_LUT256, 222 depth, 160	fill, 213, 214 fillC, 215 fillX, 214 fillY, 215 fillZ, 215 flag_LUT256, 223 front, 163 get_FFT, 256 get_SVD, 208 get_channel, 235 get_channels, 235 get_column, 231
cubic_atXYZ, 174 cubic_atXY, 173 cubic_atXY, 170, 172 cubic_cut_atXYZ, 174, 175 cubic_cut_atXY, 173, 174 cubic_cut_atX, 172, 173 cumulate, 240 cut, 218 cylinder3d, 265 data, 161 default_LUT256, 222 depth, 160 deriche, 244	fill, 213, 214 fillC, 215 fillX, 214 fillY, 215 fillZ, 215 flag_LUT256, 223 front, 163 get_FFT, 256 get_SVD, 208 get_channel, 235 get_channels, 235 get_column, 231 get_eigen, 206
cubic_atXYZ, 174 cubic_atXY, 173 cubic_atXY, 170, 172 cubic_cut_atXYZ, 174, 175 cubic_cut_atXY, 173, 174 cubic_cut_atX, 172, 173 cumulate, 240 cut, 218 cylinder3d, 265 data, 161 default_LUT256, 222 depth, 160 deriche, 244 diagonal, 203	fill, 213, 214 fillC, 215 fillX, 214 fillY, 215 fillZ, 215 flag_LUT256, 223 front, 163 get_FFT, 256 get_SVD, 208 get_channel, 235 get_channels, 235 get_column, 231 get_eigen, 206 get_elevation3d, 260
cubic_atXYZ, 174 cubic_atXY, 173 cubic_atX, 170, 172 cubic_cut_atXYZ, 174, 175 cubic_cut_atXY, 173, 174 cubic_cut_atX, 172, 173 cumulate, 240 cut, 218 cylinder3d, 265 data, 161 default_LUT256, 222 depth, 160 deriche, 244 diagonal, 203 diffusion_tensors, 251	fill, 213, 214 fillC, 215 fillX, 214 fillY, 215 fillZ, 215 flag_LUT256, 223 front, 163 get_FFT, 256 get_SVD, 208 get_channel, 235 get_channels, 235 get_column, 231 get_eigen, 206 get_elevation3d, 260 get_gradient, 250
cubic_atXYZ, 174 cubic_atXY, 173 cubic_atXY, 170, 172 cubic_cut_atXYZ, 174, 175 cubic_cut_atXY, 173, 174 cubic_cut_atX, 172, 173 cumulate, 240 cut, 218 cylinder3d, 265 data, 161 default_LUT256, 222 depth, 160 deriche, 244 diagonal, 203	fill, 213, 214 fillC, 215 fillX, 214 fillY, 215 fillZ, 215 flag_LUT256, 223 front, 163 get_FFT, 256 get_SVD, 208 get_channel, 235 get_channels, 235 get_column, 231 get_eigen, 206 get_elevation3d, 260

get_isosurface3d, 261	load_ascii, 298
get_matrix_at, 201	load_bmp, 299
get_projections2d, 230	load_camera, 308
get_projections3d, 260	load_cimg, 302
get_rows, 233	load_dcraw_external, 308
get_serialize, 323	load_dlm, 299
get_shared_channel, 238	load_exr, 303
get_shared_channels, 238	load_ffmpeg_external, 306
get_shared_points, 236	load_gif_external, 306
get_shared_row, 237	load_graphicsmagick_external, 307
get_shared_rows, 236	load_gzip_external, 307
get_shared_slice, 237	load_imagemagick_external, 307
get_shared_slices, 237	load_inr, 303
get_slice, 233	load_jpeg, 299
get_slices, 233	load_magick, 299
get_split, 238	load_medcon_external, 308
get_symmetric_eigen, 206	load_minc2, 302
get_tensor_at, 202	load_off, 305
get_vector_at, 201	load_other, 308
HSV_LUT256, 222	load_pandore, 304
haar, 256	load_parrec, 304
height, 159	load_pfm, 300
histogram, 219	load_png, 300
hot_LUT256, 222	load_pnm, 300
identity_matrix, 203, 212	load_raw, 304
index, 220	load_rgb, 300
invert, 205	load_rgba, 301
is_Clmg3d, 185	load_tiff, 301
is_empty, 177	load_video, 306
is_inf, 177	load_yuv, 305
is_nan, 177	log, 187
is_object3d, 185	log10, 187
is_overlapped, 184 is sameXYZC, 182	log2, 187 MSE, 199
IS Sallier (ZC, 102	magnitude, 200
ic comoVVC 101	
is_sameXYC, 181	_
is_sameXYZ, 180	map, 221
is_sameXYZ, 180 is_sameXZC, 181	map, 221 matchpatch, 252
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179	map, 221 matchpatch, 252 matrix, 211
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178	map, 221 matchpatch, 252 matrix, 211 max, 196
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYC, 179, 180	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYC, 179, 180 is_sameYZ, 179	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197 mirror, 226
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYC, 179, 180 is_sameYZ, 179 is_sameZC, 180	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197 mirror, 226 move_to, 135
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYC, 179, 180 is_sameYZ, 179 is_sameZC, 180 is_shared, 177	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197 mirror, 226 move_to, 135 mul, 192
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYC, 179, 180 is_sameYZ, 179 is_sameZC, 180 is_shared, 177 isoline3d, 262	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197 mirror, 226 move_to, 135 mul, 192 noise, 217
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYC, 179, 180 is_sameYZ, 179 is_sameZC, 180 is_shared, 177 isoline3d, 262 isosurface3d, 263	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197 mirror, 226 move_to, 135 mul, 192 noise, 217 norm, 218
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYC, 179, 180 is_sameYZ, 179 is_sameZC, 180 is_shared, 177 isoline3d, 262 isosurface3d, 263 iterator, 122	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197 mirror, 226 move_to, 135 mul, 192 noise, 217 norm, 218 normalize, 217, 218
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYC, 179, 180 is_sameYZ, 179 is_sameZC, 180 is_shared, 177 isoline3d, 262 isosurface3d, 263 iterator, 122 jet_LUT256, 223	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197 mirror, 226 move_to, 135 mul, 192 noise, 217 norm, 218 normalize, 217, 218 object3dtoClmg3d, 267
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYC, 179, 180 is_sameYZ, 179 is_sameZC, 180 is_shared, 177 isoline3d, 262 isosurface3d, 263 iterator, 122 jet_LUT256, 223 kth_smallest, 197	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197 mirror, 226 move_to, 135 mul, 192 noise, 217 norm, 218 normalize, 217, 218 object3dtoClmg3d, 267 offset, 162
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYC, 179, 180 is_sameYZ, 179 is_sameZC, 180 is_shared, 177 isoline3d, 262 isosurface3d, 263 iterator, 122 jet_LUT256, 223 kth_smallest, 197 label, 221, 222	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197 mirror, 226 move_to, 135 mul, 192 noise, 217 norm, 218 normalize, 217, 218 object3dtoClmg3d, 267 offset, 162 operator &, 150
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYC, 179, 180 is_sameYZ, 179 is_sameZC, 180 is_shared, 177 isoline3d, 262 isosurface3d, 263 iterator, 122 jet_LUT256, 223 kth_smallest, 197 label, 221, 222 linear_atXYZC, 170	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197 mirror, 226 move_to, 135 mul, 192 noise, 217 norm, 218 normalize, 217, 218 object3dtoClmg3d, 267 offset, 162 operator & 150 operator &=, 149
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYC, 179, 180 is_sameYZ, 179 is_sameZC, 180 is_shared, 177 isoline3d, 262 isosurface3d, 263 iterator, 122 jet_LUT256, 223 kth_smallest, 197 label, 221, 222 linear_atXYZC, 170 linear_atXYZ, 169	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197 mirror, 226 move_to, 135 mul, 192 noise, 217 norm, 218 normalize, 217, 218 object3dtoCImg3d, 267 offset, 162 operator &, 150 operator &=, 149 operator T*, 139
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYC, 179, 180 is_sameYZ, 179 is_sameZC, 180 is_shared, 177 isoline3d, 262 isosurface3d, 263 iterator, 122 jet_LUT256, 223 kth_smallest, 197 label, 221, 222 linear_atXYZC, 170 linear_atXYZ, 169 linear_atXY, 168, 169	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197 mirror, 226 move_to, 135 mul, 192 noise, 217 norm, 218 normalize, 217, 218 object3dtoCImg3d, 267 offset, 162 operator &, 150 operator &=, 149 operator!=, 156, 157
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYC, 179, 180 is_sameYZ, 179 is_sameZC, 180 is_shared, 177 isoline3d, 262 isosurface3d, 263 iterator, 122 jet_LUT256, 223 kth_smallest, 197 label, 221, 222 linear_atXYZC, 170 linear_atXYZ, 169 linear_atXY, 168, 169 linear_atX, 167, 168	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197 mirror, 226 move_to, 135 mul, 192 noise, 217 norm, 218 normalize, 217, 218 object3dtoClmg3d, 267 offset, 162 operator &, 150 operator &=, 149 operator T*, 139 operator<, 158
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYC, 179, 180 is_sameYZ, 179 is_sameZC, 180 is_shared, 177 isoline3d, 262 isosurface3d, 263 iterator, 122 jet_LUT256, 223 kth_smallest, 197 label, 221, 222 linear_atXYZC, 170 linear_atXYZ, 169 linear_atXY, 168, 169	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197 mirror, 226 move_to, 135 mul, 192 noise, 217 norm, 218 normalize, 217, 218 object3dtoCImg3d, 267 offset, 162 operator & 150 operator & 149 operator T*, 139 operator<, 158 operator<, 158 operator<<, 153, 154
is_sameXYZ, 180 is_sameXZC, 181 is_sameXC, 179 is_sameXY, 178 is_sameXZ, 178 is_sameYZC, 181, 182 is_sameYZC, 181, 182 is_sameYZ, 179 is_sameZC, 180 is_shared, 177 isoline3d, 262 isosurface3d, 263 iterator, 122 jet_LUT256, 223 kth_smallest, 197 label, 221, 222 linear_atXYZC, 170 linear_atXYZ, 169 linear_atXY, 168, 169 linear_atX, 167, 168 lines_LUT256, 222	map, 221 matchpatch, 252 matrix, 211 max, 196 max_min, 197 min, 195 min_max, 197 mirror, 226 move_to, 135 mul, 192 noise, 217 norm, 218 normalize, 217, 218 object3dtoClmg3d, 267 offset, 162 operator &, 150 operator &=, 149 operator T*, 139 operator<, 158

operator>>=, 154	save_medcon_external, 322
operator*, 146	save_minc2, 315
operator*=, 145	save_off, 319, 320
operator∼, 155	save_other, 322
operator^, 152, 153	save_pandore, 318
operator^=, 151, 152	save_pfm, 314
operator(), 136, 138	save_png, 313
operator+, 142, 143	save_pnk, 314
operator++, 142	save pnm, 314
operator+=, 140, 141	save_raw, 318, 319
operator,, 157, 158	save rgb, 314
operator-, 144, 145	save_rgba, 314
operator, 144	save_tiff, 315
operator-=, 143, 144	save_video, 320
operator/, 147, 148	save_yuv, 319
operator/=, 146, 147	select, 298
operator=, 139, 140	sequence, 204, 212
operator==, 155, 156	set linear atXYZ, 176
operator%, 148, 149	set_linear_atXY, 176
operator%=, 148	set_linear_atX, 175
operator , 151	set matrix at, 202
operator =, 150, 151	set tensor at, 203
PSNR, 199	set_vector_at, 202
permute_axes, 227	sharpen, 250 shift, 227
pixel_type, 159	
plane3d, 266	shift_object3d, 257, 258
pow, 193, 194	sign, 188
print, 309	sin, 188
quantize, 219	sinc, 189
RGBtoXYZ, 223	sinh, 190
rand, 216	size, 160
resize, 224, 225	solve, 205
resize_doubleXY, 226	solve_tridiagonal, 205
resize_object3d, 258	sort, 207
resize_tripleXY, 226	spectrum, 160
rol, 194	sphere3d, 266
ror, 194, 195	sqr, 186
rotate, 228, 229	sqrt, 186
rotation_matrix, 213	streamline, 235
round, 216	string, 209
row, 233	structure_tensors, 251
SVD, 207	swap, 136
save, 311	symmetric_eigen, 206
save_analyze, 316	tan, 189
save_ascii, 312	tanh, 190
save_bmp, 312	tensor, 212
save_cimg, 316	texturize_object3d, 258
save_cpp, 312	threshold, 219
save_dlm, 312	torus3d, 265
save_empty_cimg, 316, 317	transpose, 204
save_exr, 318	unroll, 227
save_ffmpeg_external, 321	value_string, 176
save_graphicsmagick_external, 321	value_type, 122
save_gzip_external, 321	vanvliet, 244
save_imagemagick_external, 322	variance, 198
save_inr, 317	variance_mean, 198
save_jpeg, 313	variance_noise, 198
save_magick, 313	vector, 203, 209, 210

warp, 230	atNXY, 387
watershed, 243	atNX, 388
width, 159	atN, 389
XYZtoRGB, 224	ClmgList, 365-372
cimg_library::ClmgDisplay	clear, 373
~CImgDisplay, 330	const_iterator, 364
assign, 332	contains, 392–395
button, 338	containsNXYZC, 391
CImgDisplay, 330, 331	containsN, 391
close, 341	data, 384
	display, 406, 407
display, 340, 341	
empty, 332	empty, 379
flush, 347	erase, 400
frames_per_second, 340	FFT, 413, 414
height, 336	font, 413
hide_mouse, 345	get_append, 398
is_closed, 333	get_select, 400
is_key, 334	get_serialize, 413
is_key_sequence, 335	get_shared, 373
is_keyESC, 335	get_shared_images, 398
key, 339	images, 398
keycode, 340	insert, 396, 397
mouse_x, 337	is sameNXYZC, 391
mouse_y, 338	is sameXYZC, 390
move, 341	is sameN, 390
normalization, 336	is saveable, 408
operator bool, 333	iterator, 364
operator=, 332, 333	load, 401
paint, 348	load_cimg, 401, 402
•	
released_key, 339	load_ffmpeg_external, 403
render, 348	load_gif_external, 405
resize, 342, 343	load_gzip_external, 405
screenshot, 332, 348	load_off, 405
set_button, 345, 346	load_parrec, 402
set_fullscreen, 344	load_tiff, 405
set_key, 346, 347	load_video, 403
set_mouse, 345	load_yuv, 402
set_normalization, 343	max_min, 395
set_title, 344	min_max, 395
set_wheel, 346	move_to, 378, 379
show, 341	operator Clmg $<$ T $>*$, 380
show_mouse, 345	operator<, 383
snapshot, 349	operator>, 383
title, 336	operator(), 379, 380
toggle_fullscreen, 344	operator+, 382
wait, 347	operator,, 382
wheel, 338	operator=, 381
width, 335	pixel_type, 383
window_height, 337	print, 406
window_neight, 337 window_width, 337	•
- · · ·	push_back, 399
window_x, 337	push_front, 399
window_y, 337	remove, 397
cimg_library::ClmgList	save, 408
∼CImgList, 365	save_cimg, 409, 410
assign, 373–378	save_empty_cimg, 410, 411
at, 384	save_ffmpeg_external, 412
atNXYZC, 385	save_gif_external, 408
atNXYZ, 386	save_gzip_external, 412

save_tiff, 411	clear
save_video, 412	cimg_library::CImg, 134
save_yuv, 408, 409	cimg_library::CImgList, 373
size, 384	close
split, 398	cimg_library::CImgDisplay, 341
swap, 379	columns
value_type, 364	cimg_library::Clmg, 231
width, 383	cone3d
cimg_library::cimg, 36	cimg_library::CImg, 264 const_iterator
atof, 51	
curl_path, 60	cimg_library::Clmg, 122 cimg_library::ClmgList, 364
date, 56	contains
dcraw_path, 60	cimg_library::Clmg, 183, 184
dialog, 63	cimg_library::ClmgList, 392–395
endianness, 47	containsNXYZC
eval, 46	cimg_library::CImgList, 391
exception_mode, 45 fclose, 54	containsXYZC
•	cimg_library::Clmg, 182
fdate, 55, 56	containsN
fempty, 62	cimg_library::ClmgList, 391
ffmpeg_path, 58 files, 63	convolve
fopen, 54	cimg_library::Clmg, 239
•	cool LUT256
fread, 61 fsize, 55	cimg_library::Clmg, 223
ftype, 62	correlate
fwrite, 61	cimg_library::Clmg, 239
graphicsmagick_path, 58	cos
gunzip_path, 59	cimg_library::Clmg, 188
gzip_path, 59	cosh
imagemagick_path, 57	cimg_library::CImg, 189
info, 44	crop
invert_endianness, 47, 48	cimg_library::Clmg, 230
is directory, 54	cross
is_file, 55	cimg_library::Clmg, 204
load network, 62	cube_LUT256
medcon_path, 58	cimg_library::Clmg, 223
minmod, 50	cubic_atXYZ
mod, 49	cimg_library::Clmg, 174
openmp_mode, 45	cubic_atXY
output, 44	cimg_library::Clmg, 173
round, 50	cubic_atX
sleep, 49	cimg_library::Clmg, 170, 172 cubic_cut_atXYZ
split_filename, 61	cimg_library::Clmg, 174, 175
strcasecmp, 51	cubic_cut_atXY
strellipsize, 52	cimg_library::Clmg, 173, 174
strncasecmp, 51	cubic_cut_atX
strpare, 53	cimg_library::CImg, 172, 173
strunescape, 53	cumulate
strwindows_reserved, 53	cimg_library::Clmg, 240
system, 47	curl_path
temporary_path, 57	cimg_library::cimg, 60
tic, 48	cut
time, 48	cimg_library::Clmg, 218
toc, 48	cylinder3d
wait, 49	cimg_library::Clmg, 265
warn, 46	
wget_path, 60	data

cimg_library::CImg, 161	draw_graph
cimg_library::CImgList, 384	cimg_library::Clmg, 293
date	draw_grid
cimg_library::cimg, 56	cimg_library::Clmg, 293
dcraw_path	draw_image
cimg_library::cimg, 60	cimg_library::Clmg, 288
default_LUT256	draw_line
cimg_library::CImg, 222	cimg_library::Clmg, 269-273
depth	draw_mandelbrot
cimg_library::Clmg, 160	cimg_library::Clmg, 295
deriche	draw object3d
cimg library::CImg, 244	cimg_library::Clmg, 297
diagonal	draw_plasma
cimg_library::CImg, 203	cimg_library::Clmg, 295
dialog	draw_point
cimg_library::cimg, 63	cimg_library::Clmg, 268, 269
diffusion_tensors	draw polygon
cimg_library::Clmg, 251	cimg_library::Clmg, 285
dijkstra	draw_quiver
cimg_library::Clmg, 208, 209	cimg_library::Clmg, 291
dilate	draw_rectangle
cimg library::Clmg, 241, 243	cimg_library::Clmg, 283, 284
discard	draw spline
	cimg_library::Clmg, 274–277
cimg_library::Clmg, 216	draw_text
displacement	cimg_library::Clmg, 289, 290
cimg_library::Clmg, 252	draw_triangle
display	cimg_library::Clmg, 277–282
cimg_library::Clmg, 309	- <u>9_</u> , - 9 ,
cimg_library::ClmgDisplay, 340, 341	eigen
cimg_library::CImgList, 406, 407	cimg_library::Clmg, 206
display_graph	elevation3d
cimg_library::Clmg, 311	cimg_library::CImg, 262
display_object3d	ellipsoid3d
cimg_library::Clmg, 310	cimg_library::Clmg, 267
distance	empty
cimg_library::CImg, 253	cimg_library::Clmg, 136
distance_dijkstra	cimg_library::CImgDisplay, 332
cimg_library::Clmg, 255	cimg_library::CImgList, 379
distance_eikonal	end
cimg_library::Clmg, 255	cimg_library::CImg, 162
div	endianness
cimg_library::Clmg, 193	cimg_library::cimg, 47
dot	equalize
cimg_library::CImg, 201	cimg_library::CImg, 220
draw_arrow	erase
cimg_library::CImg, 273	cimg_library::CImgList, 400
draw_axes	erode
cimg_library::Clmg, 292	cimg_library::Clmg, 240, 241
draw_axis	eval
cimg_library::Clmg, 292	cimg_library::Clmg, 199, 200
draw_circle	cimg_library::cimg, 46
cimg_library::Clmg, 287	exception_mode
draw_ellipse	cimg_library::cimg, 45
cimg_library::Clmg, 285–287	exp
draw_fill	cimg_library::Clmg, 186
cimg_library::Clmg, 294	
draw_gaussian	FAQ : Frequently Asked Questions., 14
cimg_library::Clmg, 296, 297	FFT

cimg_library::Clmg, 256, 257	cimg_library::Clmg, 260
cimg_library::ClmgList, 413, 414 fclose	get_gradient
cimg_library::cimg, 54	cimg_library::Clmg, 250 get_hessian
fdate	cimg_library::Clmg, 251
cimg_library::cimg, 55, 56	get_isoline3d
fempty	cimg_library::Clmg, 261
cimg_library::cimg, 62	get_isosurface3d
ffmpeg_path	cimg_library::Clmg, 261
cimg_library::cimg, 58 files	get_matrix_at
cimg_library::cimg, 63	cimg_library::Clmg, 201 get_projections2d
Files IO in Clmg., 31	cimg_library::Clmg, 230
fill	get_projections3d
cimg_library::Clmg, 213, 214	cimg_library::Clmg, 260
fillC	get_rows
cimg_library::Clmg, 215	cimg_library::Clmg, 233
fillX cimg_library::Clmg, 214	get_select
fillY	cimg_library::ClmgList, 400 get_serialize
cimg_library::CImg, 215	cimg_library::Clmg, 323
fillZ	cimg_library::ClmgList, 413
cimg_library::Clmg, 215	get_shared
flag_LUT256	cimg_library::ClmgList, 373
cimg_library::Clmg, 223	get_shared_channel
flush	cimg_library::Clmg, 238
cimg_library::ClmgDisplay, 347 font	get_shared_channels
cimg_library::CImgList, 413	cimg_library::Clmg, 238
fopen	get_shared_images
cimg_library::cimg, 54	cimg_library::ClmgList, 398 get_shared_points
frames_per_second	cimg_library::Clmg, 236
cimg_library::ClmgDisplay, 340	get shared row
fread	cimg_library::Clmg, 237
cimg_library::cimg, 61 front	get_shared_rows
cimg_library::Clmg, 163	cimg_library::Clmg, 236
fsize	get_shared_slice
cimg_library::cimg, 55	cimg_library::Clmg, 237
ftype	<pre>get_shared_slices cimg_library::Clmg, 237</pre>
cimg_library::cimg, 62	get_slice
fwrite	cimg_library::Clmg, 233
cimg_library::cimg, 61	get_slices
get_FFT	cimg_library::Clmg, 233
cimg_library::Clmg, 256	get_split
get_SVD	cimg_library::Clmg, 238
cimg_library::Clmg, 208	get_symmetric_eigen
get_append	cimg_library::Clmg, 206
cimg_library::ClmgList, 398 get_channel	get_tensor_at cimg_library::Clmg, 202
cimg_library::Clmg, 235	get_vector_at
get_channels	cimg_library::Clmg, 201
cimg_library::Clmg, 235	graphicsmagick_path
get_column	cimg_library::cimg, 58
cimg_library::CImg, 231	gunzip_path
get_eigen	cimg_library::cimg, 59
cimg_library::Clmg, 206	gzip_path
get_elevation3d	cimg_library::cimg, 59

HSV_LUT256	is_sameXYZC
cimg_library::Clmg, 222	cimg_library::Clmg, 182
haar	cimg_library::ClmgList, 390
cimg_library::Clmg, 256	is sameXYC
	_
height	cimg_library::Clmg, 181
cimg_library::Clmg, 159	is_sameXYZ
cimg_library::CImgDisplay, 336	cimg_library::Clmg, 180
hide_mouse	is_sameXZC
cimg_library::ClmgDisplay, 345	cimg_library::Clmg, 181
histogram	is_sameXC
cimg_library::Clmg, 219	cimg_library::Clmg, 179
hot_LUT256	is_sameXY
cimg_library::Clmg, 222	cimg_library::Clmg, 178
How pixel data are stored with Clmg., 30	is_sameXZ
How to use CImg library with Visual C++ 2005 Express	
	cimg_library::Clmg, 178
Edition ?., 19	is_sameYZC
	cimg_library::Clmg, 181, 182
identity_matrix	is_sameYC
cimg_library::Clmg, 203, 212	cimg_library::Clmg, 179, 180
imagemagick_path	<u> </u>
cimg library::cimg, 57	is_sameYZ
<u> </u>	cimg_library::Clmg, 179
images	is_sameZC
cimg_library::CImgList, 398	cimg_library::Clmg, 180
index	is_sameN
cimg_library::Clmg, 220	cimg_library::CImgList, 390
info	
cimg_library::cimg, 44	is_saveable
	cimg_library::CImgList, 408
insert	is_shared
cimg_library::CImgList, 396, 397	cimg_library::CImg, 177
invert	isoline3d
cimg_library::Clmg, 205	
invert_endianness	cimg_library::CImg, 262
	isosurface3d
cimg_library::cimg, 47, 48	cimg_library::Clmg, 263
is_CImg3d	iterator
cimg_library::Clmg, 185	cimg_library::Clmg, 122
is closed	
cimg_library::ClmgDisplay, 333	cimg_library::CImgList, 364
is_directory	jet_LUT256
cimg_library::cimg, 54	cimg_library::Clmg, 223
is_empty	
cimg_library::Clmg, 177	key
is_file	cimg_library::ClmgDisplay, 339
cimg_library::cimg, 55	
	keycode
is_inf	cimg_library::CImgDisplay, 340
cimg_library::Clmg, 177	kth_smallest
is_key	cimg_library::Clmg, 197
cimg_library::CImgDisplay, 334	- <u>9</u> , - 9 , -
is_key_sequence	label
cimg_library::CImgDisplay, 335	cimg_library::Clmg, 221, 222
is_keyESC	linear_atXYZC
cimg_library::ClmgDisplay, 335	cimg_library::Clmg, 170
is nan	linear atXYZ
cimg_library::Clmg, 177	cimg_library::Clmg, 169
· · · · · · · · · · · · · · · · · · ·	
is_object3d	linear_atXY
cimg_library::Clmg, 185	cimg_library::Clmg, 168, 169
is_overlapped	linear_atX
cimg_library::CImg, 184	cimg_library::Clmg, 167, 168
is sameNXYZC	lines LUT256
-	_
cimg_library::CImgList, 391	cimg_library::Clmg, 222

load	cimg_library::Clmg, 300
cimg_library::CImg, 298	load_pnm
cimg_library::CImgList, 401	cimg_library::CImg, 300
load_analyze	load_raw
cimg_library::Clmg, 302	cimg_library::Clmg, 304
load_ascii	load_rgb
cimg_library::Clmg, 298	cimg_library::Clmg, 300
load_bmp	load_rgba
cimg_library::Clmg, 299	cimg_library::Clmg, 301
load_camera	load tiff
cimg_library::Clmg, 308	cimg_library::CImg, 301
load_cimg	cimg library::CImgList, 405
cimg_library::Clmg, 302	load video
cimg_library::CImgList, 401, 402	cimg_library::Clmg, 306
	cimg_library::CImgList, 403
load_dcraw_external	load_yuv
cimg_library::CImg, 308	cimg library::Clmg, 305
load_dlm	cimg_library::ClmgList, 402
cimg_library::Clmg, 299	
load_exr	log
cimg_library::Clmg, 303	cimg_library::Clmg, 187
load_ffmpeg_external	log10
cimg_library::Clmg, 306	cimg_library::Clmg, 187
cimg_library::CImgList, 403	log2
load_gif_external	cimg_library::Clmg, 187
cimg_library::Clmg, 306	MSE
cimg_library::ClmgList, 405	cimg_library::Clmg, 199
load_graphicsmagick_external	magnitude
cimg_library::Clmg, 307	_
load_gzip_external	cimg_library::Clmg, 200
cimg_library::Clmg, 307	map
cimg_library::CImgList, 405	cimg_library::Clmg, 221
load_imagemagick_external	matchpatch
cimg_library::Clmg, 307	cimg_library::Clmg, 252
load inr	matrix
cimg_library::Clmg, 303	cimg_library::Clmg, 211
load_jpeg	max
	cimg_library::Clmg, 196
cimg_library::Clmg, 299	max_min
load_magick	cimg_library::Clmg, 197
cimg_library::CImg, 299	cimg_library::CImgList, 395
load_medcon_external	medcon_path
cimg_library::Clmg, 308	cimg_library::cimg, 58
load_minc2	min
cimg_library::Clmg, 302	cimg_library::Clmg, 195
load_network	min_max
cimg_library::cimg, 62	cimg_library::Clmg, 197
load_off	cimg_library::CImgList, 395
cimg_library::CImg, 305	minmod
cimg_library::CImgList, 405	cimg_library::cimg, 50
load_other	mirror
cimg_library::Clmg, 308	cimg_library::Clmg, 226
load_pandore	mod
cimg_library::Clmg, 304	cimg_library::cimg, 49
load_parrec	mouse_x
cimg_library::Clmg, 304	cimg_library::CImgDisplay, 33
cimg_library::ClmgList, 402	mouse_y
load_pfm	cimg_library::CImgDisplay, 33
cimg_library::Clmg, 300	move
load_png	cimg_library::ClmgDisplay, 34
·~~~_b.,a	July_usia justing bispiay,

move to	operator+
cimg_library::Clmg, 135	cimg_library::Clmg, 142, 143
cimg_library::CImgList, 378, 379	cimg_library::CImgList, 382
mul	operator++
cimg_library::Clmg, 192	cimg_library::CImg, 142
<u> </u>	operator+=
noise	cimg_library::CImg, 140, 141
cimg_library::Clmg, 217	operator,
norm	cimg_library::Clmg, 157, 158
cimg_library::Clmg, 218	cimg_library::ClmgList, 382
normalization	operator-
cimg_library::CImgDisplay, 336	cimg_library::Clmg, 144, 145
normalize	operator
cimg_library::Clmg, 217, 218	cimg_library::Clmg, 144
<u> </u>	operator-=
object3dtoClmg3d	cimg_library::Clmg, 143, 144
cimg_library::Clmg, 267	operator/
offset	cimg_library::Clmg, 147, 148
cimg_library::Clmg, 162	
openmp_mode	operator/=
cimg_library::cimg, 45	cimg_library::Clmg, 146, 147
operator &	operator=
cimg_library::Clmg, 150	cimg_library::Clmg, 139, 140
operator &=	cimg_library::ClmgDisplay, 332, 333
cimg_library::CImg, 149	cimg_library::CImgList, 381
operator bool	operator==
cimg_library::CImgDisplay, 333	cimg_library::Clmg, 155, 156
operator Clmg< T > *	operator%
cimg_library::ClmgList, 380	cimg_library::Clmg, 148, 149
operator T*	operator%=
•	cimg_library::CImg, 148
cimg_library::CImg, 139 operator!=	operator
•	cimg_library::Clmg, 151
cimg_library::Clmg, 156, 157	operator =
operator<	cimg_library::Clmg, 150, 151
cimg_library::Clmg, 158	output
cimg_library::CImgList, 383	cimg_library::cimg, 44
operator<<	
cimg_library::Clmg, 153, 154	PSNR
operator<<=	cimg_library::CImg, 199
cimg_library::Clmg, 153	paint
operator>	cimg_library::CImgDisplay, 348
cimg_library::CImgList, 383	permute_axes
operator>>	cimg_library::Clmg, 227
cimg_library::Clmg, 155	pixel_type
operator>>=	cimg_library::Clmg, 159
cimg_library::Clmg, 154	cimg_library::CImgList, 383
operator*	plane3d
cimg_library::Clmg, 146	cimg_library::Clmg, 266
operator*=	pow
cimg_library::Clmg, 145	cimg_library::Clmg, 193, 194
operator \sim	print
cimg_library::Clmg, 155	cimg_library::CImg, 309
$operator^\wedge$	cimg_library::CImgList, 406
cimg_library::Clmg, 152, 153	push_back
operator^=	cimg_library::CImgList, 399
cimg_library::Clmg, 151, 152	push_front
operator()	cimg_library::CImgList, 399
cimg_library::Clmg, 136, 138	<u> </u>
cimg_library::CImgList, 379, 380	quantize

cimg_library::Clmg, 219	save_ffmpeg_external cimg_library::Clmg, 321
RGBtoXYZ	cimg_library::ClmgList, 412
cimg_library::Clmg, 223	save_gif_external
rand	cimg_library::CImgList, 408
cimg_library::Clmg, 216	- · · · · · · · · · · · · · · · · · · ·
released_key	save_graphicsmagick_external
cimg_library::CImgDisplay, 339	cimg_library::Clmg, 321
remove	save_gzip_external
cimg_library::CImgList, 397	cimg_library::Clmg, 321
render	cimg_library::ClmgList, 412
cimg_library::CImgDisplay, 348	save_imagemagick_external
resize	cimg_library::Clmg, 322
cimg_library::Clmg, 224, 225	save_inr
cimg_library::ClmgDisplay, 342, 343	cimg_library::Clmg, 317
resize_doubleXY	save_jpeg
cimg_library::Clmg, 226	cimg_library::Clmg, 313
	save_magick
resize_object3d	cimg_library::Clmg, 313
cimg_library::Clmg, 258	save_medcon_external
resize_tripleXY	cimg_library::Clmg, 322
cimg_library::Clmg, 226	save_minc2
Retrieving Command Line Arguments., 32	cimg_library::Clmg, 315
rol	save off
cimg_library::Clmg, 194	cimg_library::Clmg, 319, 320
ror	save_other
cimg_library::Clmg, 194, 195	cimg_library::Clmg, 322
rotate	
cimg_library::Clmg, 228, 229	save_pandore
rotation_matrix	cimg_library::Clmg, 318
cimg_library::Clmg, 213	save_pfm
round	cimg_library::Clmg, 314
cimg_library::Clmg, 216	save_png
cimg_library::cimg, 50	cimg_library::Clmg, 313
row	save_pnk
cimg_library::Clmg, 233	cimg_library::Clmg, 314
diffig_libraryofffig, 200	save_pnm
SVD	cimg_library::Clmg, 314
cimg_library::Clmg, 207	save_raw
save	cimg_library::Clmg, 318, 319
cimg_library::Clmg, 311	save rgb
cimg_library::ClmgList, 408	cimg_library::Clmg, 314
	save rgba
save_analyze	cimg_library::Clmg, 314
cimg_library::Clmg, 316	save_tiff
save_ascii	cimg_library::Clmg, 315
cimg_library::CImg, 312	<u> </u>
save_bmp	cimg_library::ClmgList, 411
cimg_library::Clmg, 312	save_video
save_cimg	cimg_library::Clmg, 320
cimg_library::Clmg, 316	cimg_library::CImgList, 412
cimg_library::CImgList, 409, 410	save_yuv
save_cpp	cimg_library::Clmg, 319
cimg_library::Clmg, 312	cimg_library::ClmgList, 408, 409
save_dlm	screenshot
cimg_library::Clmg, 312	cimg_library::ClmgDisplay, 332, 348
save_empty_cimg	select
cimg_library::Clmg, 316, 317	cimg_library::Clmg, 298
cimg_library::ClmgList, 410, 411	sequence
save_exr	cimg_library::Clmg, 204, 212
cimg_library::Clmg, 318	set_button
5g	

cimg_library::CImgDisplay, 345, 346	cimg_library::Clmg, 160
set_fullscreen	sphere3d
cimg_library::ClmgDisplay, 344	cimg_library::Clmg, 266
set_key	split
cimg_library::CImgDisplay, 346, 347	cimg_library::ClmgList, 398
set_linear_atXYZ	split_filename
cimg_library::Clmg, 176	cimg_library::cimg, 61
set_linear_atXY	sqr
cimg_library::Clmg, 176	cimg_library::Clmg, 186
set_linear_atX	sqrt
cimg_library::Clmg, 175	cimg_library::Clmg, 186
set_matrix_at	strcasecmp
cimg_library::Clmg, 202	cimg_library::cimg, 51 streamline
set_mouse	
cimg_library::ClmgDisplay, 345	cimg_library::Clmg, 235
set_normalization	strellipsize
cimg_library::ClmgDisplay, 343	cimg_library::cimg, 52
set_tensor_at	string
cimg_library::Clmg, 203	cimg_library::Clmg, 209
set_title	strncasecmp
cimg_library::ClmgDisplay, 344	cimg_library::cimg, 51
set_vector_at	strpare
cimg_library::Clmg, 202	cimg_library::cimg, 53
set_wheel	structure_tensors
cimg_library::CImgDisplay, 346	cimg_library::Clmg, 251
Setting Environment Variables, 18	strunescape
sharpen	cimg_library::cimg, 53
cimg_library::Clmg, 250	strwindows_reserved
shift	cimg_library::cimg, 53
cimg_library::Clmg, 227	swap
shift_object3d	cimg_library::Clmg, 136
cimg_library::Clmg, 257, 258	cimg_library::ClmgList, 379
show	symmetric_eigen
cimg_library::CImgDisplay, 341	cimg_library::Clmg, 206
show_mouse	system
cimg_library::CImgDisplay, 345	cimg_library::cimg, 47
sign	tan
cimg_library::Clmg, 188	cimg_library::Clmg, 189
sin	tanh
cimg_library::Clmg, 188	cimg_library::Clmg, 190
sinc	temporary_path
cimg_library::Clmg, 189	cimg_library::cimg, 57
sinh	tensor
cimg_library::Clmg, 190	cimg library::Clmg, 212
size	texturize_object3d
cimg_library::Clmg, 160	cimg_library::CImg, 258
cimg_library::ClmgList, 384	threshold
sleep	cimg_library::Clmg, 219
cimg_library::cimg, 49	tic
snapshot	cimg_library::cimg, 48
cimg_library::CImgDisplay, 349	time
solve	cimg_library::cimg, 48
cimg_library::Clmg, 205	title
solve_tridiagonal	cimg_library::CImgDisplay, 336
cimg_library::Clmg, 205	toc
sort	cimg_library::cimg, 48
cimg_library::Clmg, 207	toggle_fullscreen
spectrum	cimg_library::CImgDisplay, 344
opooli aiii	Jimg_noraryJimgbispiay, 344

```
torus3d
    cimg_library::Clmg, 265
transpose
    cimg_library::Clmg, 204
Tutorial: Getting Started., 20
unroll
    cimg library::Clmg, 227
Using Display Windows., 29
Using Drawing Functions., 22
Using Image Loops., 23
value_string
    cimg_library::Clmg, 176
value_type
    cimg_library::Clmg, 122
    cimg_library::ClmgList, 364
vanvliet
    cimg_library::Clmg, 244
variance
    cimg_library::Clmg, 198
variance mean
    cimg_library::Clmg, 198
variance_noise
    cimg_library::Clmg, 198
vector
    cimg_library::Clmg, 203, 209, 210
wait
    cimg_library::CImgDisplay, 347
    cimg_library::cimg, 49
warn
    cimg_library::cimg, 46
warp
    cimg_library::Clmg, 230
watershed
    cimg_library::Clmg, 243
wget_path
    cimg_library::cimg, 60
wheel
    cimg_library::ClmgDisplay, 338
width
    cimg_library::Clmg, 159
    cimg library::ClmgDisplay, 335
    cimg_library::CImgList, 383
window_height
     cimg_library::CImgDisplay, 337
window width
    cimg_library::ClmgDisplay, 337
window_x
    cimg_library::ClmgDisplay, 337
window_y
    cimg_library::CImgDisplay, 337
XYZtoRGB
    cimg_library::Clmg, 224
```