Quantum Optics May 9, 2024

Homework 2

Professor: Dr. Alfonso Isaac Jaimes Nájera

Francisco Javier Vázquez Tavares A00827546

Contents

1	Problem 4.25	1
2	Problem 4.26	2
3	Problem 4.27	2
4	Problem 4.32 a	3

1 Problem 4.25

If the electron were a classical solid sphere, with radius,

$$r_c = \frac{e^2}{4\pi\epsilon_o mc^2}$$

(the so-called classical electron radius, obtained by assuming the electron's mass is attributable to energy sotred in its electric field, via the Einstein formula $E = mc^2$), and its angular momentum is $\hbar/2$, then how fast (in m/s) would a point on the "equator" be moving? Does this model make sense? (Actually, the radius of the electrin is known experimentally to be much less than r_c but this only makes matters worse.)

Solution 1: Classical spinning

From the classical framework the angular momentum is modeled with the following relation,

$$L = I\omega$$
,

where I is the moment of interia, which in this case is $I=2/5mr^2$ and w is the angular frequency, that can be express as $\omega=v/r$. Replacing this equivalences into the angular momentum equation we can get the following expression for v,

$$v = \frac{5}{2} \frac{L}{mr_c},$$

substituting the values of L and r_c ,

$$v = \frac{5\pi\hbar\epsilon_o}{e^2}c^2.$$

Recalling the order of magnitud of the constants, $e \approx 10^{-19}$, $\hbar \approx 10^{-34}$, $\epsilon_o \approx 10^{-12}$ and $c \approx 10^8$, we get that,

$$\frac{5\pi\hbar\epsilon_o}{e^2}c\approx 90,$$

Quantum Optics May 9, 2024

which tells us that the velocity at the ecuator is 90 times the velocity of light, which does not make sense.

2 Problem 4.26

• Check that the spin matrices(1) obey the fundamental commutation relations for angular momentum(2).

$$\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \quad \hat{S}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}, \quad \hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$
 (1)

$$\left[\hat{S}_x, \hat{S}_y\right] = i\hbar \hat{S}_z, \quad \left[\hat{S}_y, \hat{S}_z\right] = i\hbar \hat{S}_x, \quad \left[\hat{S}_z, \hat{S}_x\right] = i\hbar \hat{S}_y \tag{2}$$

• Show that the Pauli spin matrices 4.148 satisfy the product rule

$$\sigma_j \sigma_k = \delta_{jk} + i \sum_l \epsilon_{jkl} \sigma_l,$$

where the indices stand for x, y, z and ϵ_{jkl} is the Levi-Civita symbol.

Solution 2: Mathematical spin properties

3 Problem 4.27

An electron is in the spin state,

$$\Xi = A \begin{pmatrix} 3i \\ 4 \end{pmatrix}$$

- Determine the normalization constant A.
- Find the expectation values of S_x, S_y and S_z .
- Find the "uncertanties" σ_{S_x} , σ_{S_y} and σ_{S_z} . (Note: These sigmas are standard deviations, not Pauli matrices!)
- Confirm that your results are consistent with all three uncertanty principles 4.100 and its cyclic permutations-only with S in place of L, of course.

Quantum Optics May 9, 2024

4 Problem 4.32 a

If you measure the component of spin angular momentum along the x direction, at time t, what is the probability that you would get $+\hbar/2$?

