Anodic and Cathodic Polarization of 1018 Mild Steel and 304 Stainless Steel

MSE 130: Experimental Materials Science and Design

Jonathan Lee Department of Materials Science and Engineering University of California, Berkeley

12 October 2020

Contents

1	Abstract	3
2	Introduction	3
3	Experimental Procedure	3
4	Results	4
5	Discussion	4
6	Conclusions	4
7	Acknowledgments	4
8	Appendices	4

1 Abstract

2 Introduction

3 Experimental Procedure

				A_H (V)	A_{Fe} (V)	$j_{corr} (A/mm^2)$	$\Delta \phi_{corr}$ (V)
Scan	Soln	Rate	Dir				
0	H_2SO_4	1 mV/sec	Asc	8.778e-02	8.903e-02	1.784 e-06	-4.794e-01
			Des	9.588e-02	8.833e-02	1.888e-06	-4.843e-01
2	H_2SO_4	10 mV/sec	Asc	8.341e-02	8.519e-02	1.663e-06	-4.730e-01
			Des	5.730e-02	8.076e-02	3.096e-06	-4.842e-01
4	HCl	1 mV/sec	Asc	7.706e-02	8.553e-02	1.277e-06	-5.022e-01
			Des	9.978e-02	8.326e-02	1.765e-06	-5.090e-01
6	HCl	10 mV/sec	Asc	7.490e-02	9.225 e-02	1.469e-06	-4.806e-01
			Des	1.035e-01	8.415e-02	2.140e-06	-5.097e-01

				$j_{corr} (A/mm^2)$	$\Delta \phi_{corr}$ (V)	$\sigma^2(j_{corr})$	$\sigma^2(\Delta\phi_{corr})$	n
Scan	Soln	Rate	Dir					
1	H_2SO_4	1 mV/sec	Asc	1.342e-06	-4.830e-01	6.559e-16	0	338
			Des	1.354e-06	-4.841e-01	3.434e-15	0	421
3	H_2SO_4	10 mV/sec	Asc	2.058e-06	-4.822e-01	2.552e-15	0	342
			Des	1.941e-06	-4.849e-01	1.070e-14	0	444
5	HCl	1 mV/sec	Asc	1.302e-06	-5.032e-01	4.275e-14	0	353
			Des	1.335e-06	-5.085e-01	2.300e-14	0	442
7	HCl	10 mV/sec	Asc	1.265e-06	-4.879e-01	4.494e-15	0	342
		•	Des	1.297e-06	-4.937e-01	2.720e-14	0	443

08 -1.138e-01 07 3.505e-03	1.587e+02 3.905e+04
07 3.505e-03	
	3.905e + 04
07 3.701e-02	1.968e + 03
04 2.025e-01	3.230e-312
11 -3.289e-02	2.000e + 05
69 -9.784e-06	4.502e + 06
07 5.713e-02	1.324e + 03
04 1.971e-01	3.765 e-06
	2.025e-01 11 -3.289e-02 -9.784e-06 07 5.713e-02

	ϕ_{pass} (V)	$\alpha_{pass} (V^{-3})$	$\rho_{pass} (\Omega \cdot mm)$
Reaction			
Fe oxidation (passivation-limited)	-3.530e-01	4.814e+00	6.966e + 06
Cr_2O_3 barrier breakdown (asc)	1.300e+00	8.971e-03	5.670e + 07
unknown reduction reaction	-3.000e-02	1.000e+01	1.000e + 07
Cr_2O_3 barrier breakdown (desc)	1.239e+00	7.470e-03	2.868e + 07

	ϕ_0 (V)	$j_0 (\mathrm{A/mm^2})$	A(V)	$\rho_{lim} \; (\Omega \cdot \mathrm{mm})$
Reaction				
H ⁺ reduction	-3.478e-01	-3.793e-07	-1.145e-01	3.210e+02
Fe oxidation (diffusion-limited)	-4.695e-01	1.498e-08	3.570 e-02	2.157e + 03
Fe oxidation (passivation-limited)	-4.695e-01	1.498e-08	3.570 e-02	2.157e + 03
Cl ⁻ ion pitting	3.928e-01	8.802e-05	4.837e-02	9.837e + 01

Reaction	ϕ_{pass} (V)	$\alpha_{pass} (V^{-3})$	$\rho_{pass} (\Omega \cdot mm)$
Fe oxidation (passivation-limited)	-1.643e-01	5.187e + 03	5.946e + 03

4 Results

- 5 Discussion
- 6 Conclusions
- 7 Acknowledgments
- 8 Appendices