1. 교과목 수강인원

수업년도	수업학기	계열구분	수강인원	이수인원
2021	2	공학	176	161
2022	2	공학	164	145
2023	2	공학	190	180
2024	2	자연과학	1	1
2024	2	공학	182	163

2. 평균 수강인원

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	2	37.26	63.09	32.32	62.33	
2017	1	38.26	65.82	33.5		
2016	2	37.24	72.07	31.53	66.33	
2016	1	37.88	73.25	32.17		
2015	2	36.28	70.35	30.36	58	

3. 성적부여현황(평점)

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	2	3.44	3.05	3.59	3.37	
2016	2	3.49	3.16	3.61	3.26	
2015	2	3.51	3.28	3.6	3.13	

4. 성적부여현황(등급)

2023

2023

2023

2023

2023

2

2

2

2

B0

C+

C0

D+

수업년도	수업학기	등급	인원	비율	수업년도	수업학기	등급	인원	비율
2021	2	Α+	29	18.01	2023	2	D0	2	1.11
2021	2	Α0	37	22.98	2024	2	Α+	24	14.63
2021	2	B+	36	22.36	2024	2	Α0	33	20.12
2021	2	ВО	29	18.01	2024	2	B+	40	24.39
2021	2	C+	16	9.94	2024	2	ВО	24	14.63
2021	2	C0	14	8.7	2024	2	C+	14	8.54
2022	2	Α+	22	15.17	2024	2	C0	15	9.15
2022	2	A0	42	28.97	2024	2	D+	3	1.83
2022	2	B+	38	26.21	2024	2	D0	11	6.71
2022	2	В0	18	12.41					
2022	2	C+	15	10.34	_				
2022	2	C0	6	4.14	_				
2022	2	D0	4	2.76	_				
2023	2	Α+	30	16.67	_				
2023	2	A0	43	23.89	_				

24.44

14.44

8.89

8.33

2.22

44

26

16

15

4

5. 강의평가점수

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2024	2	92.56	93.8	92.33	91.75	
2024	1	91.5	93.79	91.1		
2023	1	91.47	93.45	91.13		
2023	2	91.8	93.15	91.56	93.67	
2022	2	90.98	92.48	90.7	88.75	

6. 강의평가 문항별 현황

		ногт	HOLE			점수별 인원분포						
번호	평가문항	본인평 균 (가중 치적용)) <u>-</u>	소속학 (+	차	학평균 이 ,-:미달		매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다
		5점 미만		학고	과	대	학	· 1점	2점	3점	4점	5점
	교강사:	미만		차이 :	평균	차이	평균	176	2 %	2.5	473	2.5

No data have been found.

7. 개설학과 현황

학과	2025/2	2024/2	2023/2	2022/2	2021/2
기계공학부	3강좌(9학점)	4강좌(12학점)	3강좌(9학점)	4강좌(12학점)	3강좌(9학점)

8. 강좌유형별 현황

강좌유형	2021/2	2022/2	2023/2	2024/2	2025/2
일반	3강좌(176)	4강좌(164)	3강좌(190)	4강좌(183)	0강좌(0)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2024 - 2027 교육과 [*] 정	서울 공과대학 기계공학부	기계진동학은 학부과정의 진동학 입문 과정으로 이 과목을 이해하기 위해서는 동역학, 공업수학(미분방정식)을 선수과목으로 한다. 이 과목에서는 선형진동시스템에 관련된 개념 및 현상을 이해하고 선형진동시스 템의 운동을 결정하는 운동방정식을 유도하여 이를 수식적 혹은 수치적으로 해석하 여 진동현상을 해석할 수 있는 능력을 양성함을 수업의 목표로 한다. 과목의 내 용은 질량, 스프링, 댐퍼로 이루어진 1자유도계를 해석하여 고유진동, 강제진동, 과 도응답, 정상응답 등을 공부하고 이를 다자유도계, 연속계로 확장한다.	energy method, stiffness. Response to harmonic excitation: harmonic excitation of undamped systems, base excitation, rotating unbalnace, Coulomb damping. General forced response: impulse response	

교육과정	관장학과	국문개요	영문개요	수업목표
			Distributed-parameter systems: vibration of a string, axial, torsional and bending vibration of rod, modal analysis and the forced response.	
학부 2020 - 2023 교육과 정	서울 공과대학 기계공학부	기계진동학은 학부과정의 진동학 입문 과정으로 이 과목을 이해하기 위해서는 동역학, 공업수학(미분방정식)을 선수과목으로 한다. 이 과목에서는 선형진동시스템에 관련된 개념 및 현상을 이해하고 선형진동시스템의 운동을 결정하는 운동방정식을 유도하여 이를 수식적 혹은 수치적으로 해석하여 진동현상을 해석할 수 있는 능력을 양성함을 수업의 목표로 한다. 과목의 내용은 질량, 스프링, 댐퍼로 이루어진 1자유도계를 해석하여 고유진동, 강제진동, 과도응답, 정상응답 등을 공부하고 이를 다자유도계, 연속계로 확장한다.	Mechanical Vibration Introduction to vibration and the free response: harmonic motion, viscous damping, energy method, stiffness. Response to harmonic excitation: harmonic excitation of undamped systems, base excitation, rotating unbalnace, Coulomb damping. General forced response: impulse response function, response to an arbitray input, response to arbitrary periodic input, transform method, response to random input. Multi-degree-of-freedom systems: eigen values and natural frequencies, modal analysis, modal analysis of the forced response. Distributed-parameter systems: vibration of a string, axial, torsional and bending vibration of rod, modal analysis and the forced response.	
학부 2016 - 2019 교육과 정	서울 공과대학 기계공학부	기계진동학은 학부과정의 진동학 입문 과정으로 이 과목을 이해하기 위해서는 동역학, 공업수학(미분방정식)을 선수과목으로 한다. 이 과목에서는 선형진동시스템에 관련된 개념 및 현상을 이해하고 선형진동시스 템의 운동을 결정하는 운동방정식을 유도하여 이를 수식적 혹은 수치적으로 해석하 여 진동현상을 해석할 수 있는 능력을 양성함을 수업의 목표로 한다. 과목의 내 용은 질량, 스프링, 댐퍼로 이루어진 1자유도계를 해석하여 고유진동, 강제진동, 과 도응답, 정상응답 등을 공부하고 이를 다자유도계, 연속계로 확장한다.	Mechanical Vibration Introduction to vibration and the free response: harmonic motion, viscous damping, energy method, stiffness. Response to harmonic excitation: harmonic excitation of undamped systems, base excitation, rotating unbalnace, Coulomb damping. General forced response: impulse response function, response to an arbitray input, response to arbitrary periodic input, transform method, response to random input. Multi-degree-of-freedom systems: eigen values and natural frequencies, modal analysis, modal analysis of the forced response. Distributed-parameter systems: vibration of a string, axial, torsional and bending vibration of rod, modal analysis and the forced response.	
학부 2013 - 2015 교육과	서울 공과대학 기계공학	기계진동학은 학부과정의 진동학 입문 과정으로 이 과목을 이해하기 위해서는	Mechanical Vibration Introduction to vibration and the free	

교육과정	관장학과	국문개요	영문개요	수업목표
정	부	동역학, 공업수학(미분방정식)을 선수과목으로 한다. 이 과목에서는 선형진동시스템에 관련된 개념 및 현상을 이해하고 선형진동시스 템의 운동을 결정하는 운동방정식을 유도하여 이를 수식적 혹은 수치적으로 해석하 여 진동현상을 해석할 수 있는 능력을 양성함을 수업의 목표로 한다. 과목의 내 용은 질량, 스프링, 댐퍼로 이루어진 1자유도계를 해석하여 고유진동, 강제진동, 과 도응답, 정상응답 등을 공부하고 이를 다자유도계, 연속계로 확장한다.	response: harmonic motion, viscous damping, energy method, stiffness. Response to harmonic excitation: harmonic excitation of undamped systems, base excitation, rotating unbalnace, Coulomb damping. General forced response: impulse response function, response to an arbitray input, response to arbitrary periodic input, transform method, response to random input. Multi-degree-of-freedom systems: eigen values and natural frequencies, modal analysis, modal analysis of the forced response. Distributed-parameter systems: vibration of a string, axial, torsional and bending vibration of rod, modal analysis and the forced response.	
학부 2009 - 2012 교육과 정	서울 공과대학 기계공학부	기계진동학은 학부과정의 진동학 입문 과정으로 이 과목을 이해하기 위해서는 동역학, 공업수학(미분방정식)을 선수과목으로 한다. 이 과목에서는 선형진동시스템에 관련된 개념 및 현상을 이해하고 선형진동시스 템의 운동을 결정하는 운동방정식을 유도하여 이를 수식적 혹은 수치적으로 해석하 여 진동현상을 해석할 수 있는 능력을 양성함을 수업의 목표로 한다. 과목의 내 용은 질량, 스프링, 댐퍼로 이루어진 1자유도계를 해석하여 고유진동, 강제진동, 과 도응답, 정상응답 등을 공부하고 이를 다자유도계, 연속계로 확장한다.	Mechanical Vibration Introduction to vibration and the free response: harmonic motion, viscous damping, energy method, stiffness. Response to harmonic excitation: harmonic excitation of undamped systems, base excitation, rotating unbalnace, Coulomb damping. General forced response: impulse response function, response to an arbitray input, response to arbitrary periodic input, transform method, response to random input. Multi-degree-of-freedom systems: eigen values and natural frequencies, modal analysis, modal analysis of the forced response. Distributed-parameter systems: vibration of a string, axial, torsional and bending vibration of rod, modal analysis and the forced response.	
학부 2005 - 2008 교육과 정	서울 공과대학 기계공학부	PME302 기계진동학 기계진동학은 학부과정의 진동학 입문 과정으로 이 과목을 이해하기 위해서는 동역학,공업수학(미분방정식)을 선수과목으로 한다. 이 과목에서는 선형진동시스템에 관련된 개념 및 현상을 이해하고 선형진동시스템의 운동을 결정하는 운동방정식을 유도하여 이를 수식적 혹은 수치적으로 해석하	PME302 Mechanical Vibration Introduction to vibration and the free response: harmonic motion, viscous damping, energy method, stiffness. Response to harmonic excitation: harmonic excitation of undamped systems, base excitation, rotating unbalnace, Coulomb damping.	

교육과정	관장학과	국문개요	영문개요	수업목표
		여 진동현상을 해석할 수 있는 능력을 양성함을 수업의 목표로 한다. 과목의 내 용은 질량,스프링,댐퍼로 이루어진 1자유도계를 해석하여 고유진동,강제진동,과도 응답,정상응답 등을 공부하고 이를 다자유도계,연속계로 확장한다.	General forced response: impulse response function, response to an arbitray input, response to arbitrary periodic input, transform method, response to random input. Multi-degree-of-freedom systems: eigen values and natural frequencies, modal analysis, modal analysis of the forced response. Distributed-parameter systems: vibration of a string, axial, torsional and bending vibration of rod, modal analysis and the forced response.	
학부 2001 - 2004 교육과 정	서울 공과대학 기계공학부	PME302 기계진동학 기계진동학은 학부과정의 진동학 입문 과정으로 이 과목을 이해하기 위해서는 동역학,공업수학(미분방정식)을 선수과목으로 한다. 이 과목에서는 선형진동시스템에 관련된 개념 및 현상을 이해하고 선형진동시스템의 운동을 결정하는 운동방정식을 유도하여 이를 수식적 혹은 수치적으로 해석하여 진동현상을 해석할 수 있는 능력을 양성함을 수업의 목표로 한다.과목의 내용은 질량,스프링,댐퍼로 이루어진 1자유도계를 해석하여 고유진동,강제진동,과도응답,정상응답 등을 공부하고 이를 다자유도계,연속계로 확장한다.	PME302 Mechanical Vibration Introduction to vibration and the free response: harmonic motion, viscous damping, energy method, stiffness. Response to harmonic excitation: harmonic excitation of undamped systems, base excitation, rotating unbalnace, Coulomb damping. General forced response: impulse response function, response to an arbitray input, response to arbitrary periodic input, transform method, response to random input. Multi-degree-of-freedom systems: eigen values and natural frequencies, modal analysis, modal analysis of the forced response. Distributed-parameter systems: vibration of a string, axial, torsional and bending vibration of rod, modal analysis and the forced response.	
학부 1997 - 2000 교육과 정	서울 공과대학 기계공학부	PME302 기계진동학 기계진동학은 학부과정의 진동학 입문 과정으로 이 과목을 이해하기 위해서는 동역학,공업수학(미분방정식)을 선수과목으로 한다. 이 과목에서는 선형진동시스템에 관련된 개념 및 현상을 이해하고 선형진동시스템의 운동을 결정하는 운동방정식을 유도하여 이를 수식적 혹은 수치적으로 해석하여 진동현상을 해석할 수 있는 능력을 양성함을 수업의 목표로 한다. 과목의 내용은 질량,스프링,대퍼로 이루어진 1자유도계를 해석하여 고유진동,강제진동,과도응답,정상응답 등을 공부하고	PME302 Mechanical Vibration Introduction to vibration and the free response: harmonic motion, viscous damping, energy method, stiffness. Response to harmonic excitation: harmonic excitation of undamped systems, base excitation, rotating unbalnace, Coulomb damping. General forced response: impulse response function, response to an arbitray input, response to arbitrary periodic input, transform method, response to random	

교육과정	관장학과	국문개요	영문개요	수업목표
		이를 다자유도계,연속계로 확장한다.	input. Multi-degree-of-freedom systems: eigen values and natural frequencies, modal analysis, modal analysis of the forced response. Distributed-parameter systems: vibration of a string, axial, torsional and bending vibration of rod, modal analysis and the forced response.	
학부 1993 - 1996 교육과 정	서울 공과대학 기계공학			
학부 1993 - 1996 교육과 정	서울 공과대학 기계공학		NIVE	

10. CQI 등록내역		
	No data have been found.	