Modelos de Média Móvel

Modelos de média móvel são uma extensão do processo de ruído branco:

$$X_t = E_t + \beta_1 E_{t-1} + \beta_2 E_{t-2} + ... + \beta_q E_{t-q}$$

Isto é, uma combinação linear da corrente pertubação E_t mais as mais recentes E_{t-1} , E_{t-2} , ... E_{t-q} .

Em muitos aspectos, os modelos de média móvel são complementares aos modelos autoregressivos.

AR = AR MA(P, 9)

- Motivação
- Definição e Propriedades
- Ajustamento
- Exemplos

Fonte: <u>www.pixabay.com</u>

Primeiramente, os modelos de média móvel têm sido aplicados com grande sucesso em várias áreas, particularmente em econometria.

Fonte: www.pixabay.com

Séries temporais de indicadores econômicos, por exemplo, são afetadas por uma variedade de eventos randômicos como greves, decisões governamentais, desastres naturais, déficits de commodities e etc.

 $X_t = E_t + \beta E_{t-1}$

Esses eventos não terão apenas um efeito imediato no indicador, mas poderá afetá-lo também em vários períodos consecutivos.

- ★ Assim, é plausível que um processo de média móvel apareça na prática!
- Além disso, como veremos, suas propriedades matemáticas são complementares a aquelas dos processos autoregressivos.

Definição e Propriedades

Como já mecionado, um processo de média móvel de ordem *q* ou *MA(q)* é uma extensão do processo de ruído branco E_t:

$$X_t = E_t + \beta_1 E_{t-1} + \beta_2 E_{t-2} + ... + \beta_q E_{t-q}$$

Isto é, uma combinação linear da corrente pertubação E_t mais as mais recentes E_{t-1} , E_{t-2} , ... E_{t-q} .

Fonte: www.pixabay.com

 E_t é um processo de ruído branco (!), ou seja, é independente e identicamente distribuído, e também é independente de qualquer X_s , em que s < t.

Momentos e Dependência

Sendo uma combinação linear de E_t, qualquer processo *MA(q)* X_t possui média zero e variância constante:

$$\mathsf{E}[\mathsf{X}_\mathsf{t}]$$
 = 0 para todo t , e Var(X_t) = $\sigma_E^2 \cdot \left(1 + \sum_{j=1}^q \beta_j^2\right)$ = constante

Assim como para o modelo autoregressivo, é possível adicionar uma constante *m* ao *MA(q)* para se considerar séries temporais com média diferente de zero:

$$Y_t = m + X_t$$

Fonte: www.pixabay.com

Agora, considere MA(q=1) com $X_t = E_t + \beta_1 E_{t-1}$. A sua autocovariância para um intervalo k = 1 será:

$$\gamma(k=1) = \text{Cov}(X_t, X_{t-1}) = \text{Cov}(E_t + \beta_1 E_{t-1}, E_{t-1} + \beta_1 E_{t-2}) = \beta_1 . \sigma^2_E$$

Utilizando a técnica de plug-in, a autocovariância para qualquer k maior que q=1 será:

$$\gamma(k > 1) = \text{Cov}(X_t, X_{t-k}) = 0$$

Não há mais dependência serial para intervalos k maior que a ordem q=1:

Assim, a autocovariância do processo MA(q=1) é independente do tempo t (!). Essa propriedade juntamente com a média zero e variância constante demonstram que MA(q=1) é um processo estacionário.

☐ Já para a autocorrelação de MA(q=1), tem-se:

$$\rho(1) = \frac{\gamma(1)}{\gamma(0)} = \frac{\beta_1}{1 + \beta_1} e \, \rho(k) = 0 \, para \, todo \, k > q = 1$$

Assim, $\rho(1) \leq 0.5$, não importa o valor de β_1 . Então, se observarmos uma série temporal que o seu coeficiente de correlação exceda esse valor, temos uma evidência de que ela não seguirá um processo MA(1). Note que estacionariedade não depende da escolha do parâmetro β_1 .

Fonte: www.pixabay.com

- Generalizando os resultados acima para um processo MA de ordem qualquer $q \ge 1$, podemos concluir que um processo MA(q) será sempre estacionário, independente de β_1 , β_2 , ... β_q [diferentemente do processo AR(p)]. Além disso, a sua função de autocorrelação é zero para qualquer k > q.
- ★ Exemplo:

