MATH 202, Fall	2023
In class work 20)

Name:	
Row and Seat:	

In class work **20** has questions **1** through **3** with a total of **6** points. Turn in your work at the end of class *on paper*. This assignment is due *Tuesday 7 November 13:20*.

"There's no problem so awful that you can't add some guilt to it and make it even worse."

CALVIN (BILL WATTERSON)

2 1. Find the Taylor polynomial of order four centered at zero for the cosine function; that is find the polynomial $P_4(x) = \sum_{k=0}^4 \frac{\cos^{(k)}(0)}{k!} x^k$. You'll need to find the numerical values of $\cos^{(0)}(0)$, $\cos^{(1)}(0)$, $\cos^{(2)}(0)$, $\cos^{(3)}(0)$, and $\cos^{(4)}(0)$.

2. Use Desmos to graph $y = \cos(x)$ and P_4 , the Taylor polynomial of order four centered at zero for the cosine function. Reproduce the graph here. For $x \in (-2,2)$, use the graph to estimate the maximum of $|\cos(x) - P_4(x)|$.

3. Find the Taylor polynomial of order four centered at zero for the *square* of the cosine function. You could *suffer* through the calculation by finding the first four derivatives of $\cos(x)^2$ and evaluate them at zero. Or you could use the fact we learned in class on Monday. For $k \in \mathbb{Z}_{\geq 0}$ and infinitely differentiable functions F and G, define

$$a_k = \frac{F^{(k)}(0)}{k!}, \quad b_k = \frac{G^{(k)}(0)}{k!}.$$

Then for all $n \in \mathbb{Z}_{\geq 0}$, we have

$$\frac{(FG)^{(n)}(0)}{n!} = \sum_{k=0}^{n} a_k b_{n-k}.$$

You will want to use these formulae with $F = \cos$ and $G = \cos$. You can find the numbers a_o , a_1 , a_2 , a_3 , a_4 and b_o , b_1 , b_2 , b_3 , b_4 from the first question.