Tema 5. Aritmètica d'enters i coma flotant Estructura de Computadors (EC)

Rubèn Tous

rtous@ac.upc.edu Computer Architecture Department Universitat Politecnica de Catalunya

Índex

- 1 5.1 Overflow de suma i resta d'enters
- 2 5.2 Multiplicació entera de 32 bits amb resultat de 64 bits
- 3 5.3 Divisió entera de 32 bits amb càlcul del residu

5.2 Multiplicació entera de 32 bits amb resultat de 64 bits 5.3 Divisió entera de 32 bits amb càlcul del residu

Índex

- 1 5.1 Overflow de suma i resta d'enters
- 5.2 Multiplicació entera de 32 bits amb resultat de 64 bits
- 3 5.3 Divisió entera de 32 bits amb càlcul del residu

5.3 Divisió entera de 32 bits amb càlcul del residu

Overflow de suma i resta de naturals i enters

Si realitzem la següent suma de bits:

```
0000 0001
+ 1111 1111
-----
(1)0000 0000
```

Hi ha carry? Sí. Overflow? Depèn. Overflow si són naturals (255+1=256).

Operació	carry/borrow	ovf. nat.	overflow enters
a+b=c	c < a (nat.)	=carry	(sign_a == sign_b) && (sign_a != sign_c)
a-b=c	<i>a</i> < <i>b</i> (nat.)	=borrow	(sign_a != sign_b) && (sign_a != sign_c)

Exemple càlcul carry i overflow suma naturals:

```
# $t3 = carry = overflow suma naturals
# $t2 = t0 + $t1
addu $t2, $t0, $t1
sltu $t3, $t2, $t0
```

Exemple càlcul overflow suma enters:

```
# $t3 = overflow suma entera
# $t2 = t0 + $t1
addu $t2, $t0, $t1
xor $t3, $t0, $t1 #
nor $t3, $t3, $zero # s_a == s_b
xor $t4, $t0, $t2 # s_a!=s_res
and $t3, $t3, $t4 # (s_a==s_b)&&(s_a!=s_res)
srl $t3, $t3, $t3, $1
```

- add, addi i sub generen una excepció en cas d'overflow d'enterns (ús: Fortran).
- addu, addiu i subu no generen cap excepció en cas d'overflow (ni de naturals ni d'enters) (ús: C).

NOTA: En cas de naturals, C especifica que l'overflow ha de fer 'wrapping', és a dir, modul 2^n .

```
#include <stdio.h>
int main() {
  register unsigned char a;
  a = 255;
  a = a + 1;
  if (a == 0)
    printf("Overflow wrapping OK");
}
```

En MIPS, en cas de variables de menys de 32 bits, després d'una suma cal afegir una màscara per assegurar que és així:

```
li $t0, 255
addiu $t0, $t0, 1
andi $t0, $t0, 0x00ff
bne $t0, $zero, fi_if
```

Índex

- 1 5.1 Overflow de suma i resta d'enters
- 2 5.2 Multiplicació entera de 32 bits amb resultat de 64 bits
- 3 5.3 Divisió entera de 32 bits amb càlcul del residu

Multiplicació naturals. Algorisme "paper i llapis"

Exemple multiplicació naturals:

```
11 * 13 = 143
    1011 = 11
    1101 = 13
    1011
   0000
  1011
 1011
10001111 = 143
```

Multiplicació enters

 Multiplicació entera = Canvi de signe + Multiplicació naturals + canvi de signe (si signes diferents)

Instruccions

```
mult/multu Ra, Rb
mflo Rd # 32 bits menor pes
mfhi Rd # 32 bits major pes
```

No usarem (no permet tractar overflow):

```
mul Rd, Ra, Rb
```

Overflow multiplicació natural/entera

Sobreeiximent (no excepció):

- El resultat de la multiplicació pot requerir fins a 64 bits.
- Sobreeiximent = més de 32 bits.

Overflow multiplicació natural/entera

Sobreeiximent:

- En naturals si algún dels bits 63..32 és diferent de zero
- En enters si algún dels bits 63..32 és diferent del bit 31 de la part baixa (el signe)

Overflow multiplicació natural/entera

Algorisme càlcul overflow enters (no provoca excepció):

```
mult $t1, $t2
mflo $t3
mfhi $t4
sra $t0, $t3, 31
bne $t4, $t0, hi_ha_overflow
```

$$Z=X*Y$$


```
M1_{63:32} = 0
M1_{31:0} = X
M2 = Y
P = 0
for (i=1; i <= 32; i++)
  if(M2_0==1) P=P+M1;
  M1 = M1 < <1:
  M2=M2>>1;
Producte = P:
```

Exemple (amb 4 bits):

```
1011 \times 1101 (11 \times 13 = 143)
INI: |P= 00000000|M2=1101|
     |M1=00001011|
IT1: |P= 00001011|M2=0110| s'ha sumat
      |M1 = 0.00101101
IT2: |P= 00001011|M2=0011| NO s'ha sumat
     |M1=00101100|
IT3: |P= 00110111|M2=0001| s'ha sumat
      IM1=01011000I
IT4: |P= 10001111|M2=0000| s'ha sumat
      IM1=10110000I
```

- Un mínim de 33 cicles per fer una multiplicació (un per inicialitzar els registres i 32 sumes).
- Un compilador traduirà sempre una multiplicació per M, essent M una potència de 2 per un sll de log₂M.

Índex

- 1 5.1 Overflow de suma i resta d'enters
- 5.2 Multiplicació entera de 32 bits amb resultat de 64 bits
- 3 5.3 Divisió entera de 32 bits amb càlcul del residu

Divisió naturals. Algorisme paper i llapis"

- Dividir equival a comptar quantes vegades li podem restar
 Y a X. Però fer-ho un a un seria lent.
- Busquem un dígit q i una potència n tals que Y * q * 10ⁿ sigui el més gran possible i menor que X.
- q * 10ⁿ passa al quocient però només escrivim el digit q, no els zeros, com si anèssim sumant.
- En binari q només pot ser 1 o 0. Busquem Y multiplicat per la potència de 2 (desplaçat a l'esquerra) més gran que sigui més petita que X.

Divisió naturals. Algorisme paper i llapis"

Exemple 25/2:

```
0001 1001 : 10 = 1100

-1 0000-----^

------ |

0 1001 |

- 1000-----|

------ |

0001 (residu)
```

Divisió enters

- Divisió entera = Canvi de signe + Divisió naturals + canvi de signe (si signes diferents)
- Ajustar el signe del residu de a/b per que sigui el mateix que el del dividend a.

Divisió enters

Sobre el residu:

- La divisió entera en C arrodoneix a 0. Això es podria haver definit d'una altra manera.
- Per aquest motiu el residu ha de tenir signe del dividend (e.g. -5/2=-2 i R=-1 però 5/-2=-2 i R=1).
- En canvi, una divisió feta amb sra arrodoneix a -infinit. Això exigeix un residu de signe sempre positiu (1011 » 1 = 1101 = -3. Per tant residu = -5-(2*-3 = 1).
- Divergència quan el dividend és negatiu i la divisió no és exacta.
- L'algorisme paper i llapis"(el que implementa el hardware) arrodoneix a 0. S'ha d'ajustar el signe del residu per que sigui el mateix que el del dividend.

Instruccions

```
div/divu Ra, Rb
mflo Rd #Quocient de la divisió
mfhi Rd #Residu de la divisió
```

Overflow

- Sobreeiximent (no excepció): En naturals mai. En enters quan dividim -2^{31} (el menor número enter) per -1 = 2^{31} (fora de rang)
- No excepció si divisió per 0 en MIPS.

$$Q = X \text{ div } Y; R = X \text{ mod } Y$$


```
D_{63:32} = Y ;
D_{31:0} = 0 ;
   = 0 ;
R_{63:32} = 0;
R_{31:0} = X ;
for (i=1; i<=32; i++)
   D = D >> 1;
   R = R-D;
    if (R>=0)
        Q = (Q << 1) \mid 0x1;
   else
        R = R+D;
        Q = Q << 1;
```

```
Exemple: 1101 / 10 = 110 (13 / 2 = 6)
INI: |R= 00001101|Q=0000 |
    |D= 00100000|
IT1: |R= 00001101|Q=0000 | D>>1
     ID= 000100001
IT1: |R= 00000101|Q=0001 | D>>1 + R=R-D
     |D= 00001000|
IT3: |R= 00000001|0=0011 | D>>1 + R=R-D
     |D= 00000100|
IT4: |R= 00000001|0=0110 | D>>1
      ID= 000000101
```