Week Twelve

Siva Sundar, EE23B151

December 16, 2024

16nd December

- A database is an organised system of interlocking tables. Database Scheme are categories \mathcal{C} , data itself is given by a 'set-valued' functor $\mathcal{C} \longrightarrow \mathbf{Set}$, and databases can be mapped to each other via functors $\mathcal{C} \longrightarrow \mathcal{D}$.
- Category theory formalizes **data migration** between databases using **adjoint functors**.
- A category C consists of four constituents:
 - \star a collection Ob(\mathcal{C}), whose elements are **objects**.
 - * $\forall c, d \in \text{Ob}(\mathcal{C})$, we specify the **hom-set** $\mathcal{C}(c, d)$, whose elements are called **morphisms**.
 - * $\forall c \in \mathrm{Ob}(\mathcal{C})$, we can specify the **identity morphism** on c: $id_c \in \mathcal{C}(c,c)$.
 - * $\forall c, d, e \in \text{Ob}(\mathcal{C})$ and morphisms $f \in \mathcal{C}(c, d)$ and $g \in \mathcal{C}(d, e)$, we can define the **composite morphism** $f \circ g \in \mathcal{C}(c, c)$.

It should also satisfy two properties:

- * Unitality: $id_c \circ f = f \circ id_c = f$.
- * associativity: $(f \circ g) \circ h = f \circ (g \circ h)$.