#### 1

# Assignment - 1

# Soham Bhatt SM21MTECH14004

### **PROBLEM**

1. Show that the diameter of the circum-circle formed by the points  $A(r,\theta)$ ,  $B(\rho,\theta)$  and the pole is:

$$\frac{\sqrt{r^2 + \rho^2 - 2r\rho\cos(\theta - \phi)}}{\sin(\phi - \theta)}$$

## SOLUTION



Substituting values of (2) in (1), we get

$$A_t = \frac{1}{2}r\rho(\frac{l}{2R})$$

$$\frac{1}{2}r\rho\sin(\phi - \theta) = \frac{1}{2}r\rho(\frac{l}{2R})$$

$$\sin(\phi - \theta) = \frac{l}{2R}$$

$$R = \frac{l}{2\sin(\phi - \theta)} = Radius$$
 of circum circle

$$D = 2R = \frac{l}{\sin(\phi - \theta)}$$
 (3)

(Where Dis Diameter of circumcircle)

But we know that, the distance between two points  $A(r, \theta)$  and  $B(\rho, \phi)$  is,

$$AB = l = \sqrt{r^2 + \rho^2 - 2r\rho\cos(\theta - \phi)}$$

From (3),

$$D = \frac{\sqrt{r^2 + \rho^2 - 2r\rho\cos(\theta - \phi)}}{\sin(\phi - \theta)}$$

We know that area of  $\Delta OAB$  with vertices (0,0),  $(\theta,\phi)$ ,  $(r,\phi)$  is given by

$$A_t = \frac{1}{2}(OA)(OB)(\sin(\phi - \theta))$$

$$A_t = \frac{1}{2}r\rho\sin(\phi - \theta) \qquad (1)$$

Now, by right angle triangle  $\Delta PCB$ ,

$$\sin(\phi - \theta) = \frac{\frac{l}{2}}{R} = \frac{l}{2R} \tag{2}$$

(where Risradius of the circle)