MACHINE LEARNING (CSE-242) ASSIGNMENT-3

Submitted by - Nandha Ramakrishnan (Student I.D: 1851265)

(1.1)	Perceptoon can be used when! * Data has only two classes (Binary classification) * If data contains linearly seperable sets. * The data is shuffled properly.
(1.2)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0 -1 1 -1
	-1 2 0 -1
Step	b=0: Initially considering $w=(0,0,0)$ 1: $a \leftarrow \stackrel{?}{=} wdxd+b$ $d=1$
	a = (0)(1) + (0)(0) + (0)(1) $a = 0$ $\rightarrow ya = 0$
	Since ya <0, so
	$\omega_{d} < \omega_{d} + y_{xd}$ $\omega = (0 + (+1)(1), 0 + (+1)(0), 0 + (+1)(1))$ $\omega = (1,0,1)$

After first step (or) example: $\omega = (1, 0, 1)$

Step (2):
$$\alpha = (1)(0) + (0)(-1) + (1)(1)$$
 $\alpha = 1$
 $ya = (-1)(1) = -1$

Since $ya \leq 0$, so

 $\omega = (1 + (-1)(0), 0 + (-1)(-1), 1 + (-1)(1)$
 $\omega = (1, 1, 0)$

After second step (0°) example:

$$\omega = (1, 1, 0)$$
 $\alpha = (1)(1) + (1)(1) + (0)(1)$
 $\alpha = 2$
 $ya = (+1)(a) = 2$

Since $ya > 0$, so

 $\omega = (1, 1, 0)$

After third step (0x) example:

$$\omega = (1, 1, 0)$$

Step (1): $\omega = (1, 1, 0)$

 $\alpha = (-1)(1) + (1)(2) + (0)(0)$

$$y_{\alpha} = (-1)(+1) = -1$$

$$Since \quad y_{\alpha} \leq 0, s_{0}$$

$$w = (1+(-1)(-1), 1+(-1)(2), 0+(-1)(0)$$

$$w = (2,-1,0)$$

(2.2) The equation of the line passing through
the support vectors is given by
support vectors (0,1) + (1,0): $\alpha_2' - \alpha_2 = m(\alpha_1' - \alpha_1)$ $m \rightarrow slope = \frac{2^{1}-\alpha_{2}}{x_{1}^{1}-\alpha_{1}} = \frac{1-0}{0-1} = -1$ -: The yintercept of this line is i'. y = mx + i $\chi_2 = (-1)\chi_1 + 1$ $\chi_1 + \chi_2 = 1 \longrightarrow \text{line Oequation}$ ly for line (2) Slope = -1 Since it is parallel to (1) Similarly for line (2) $(x_2-1)=(-1)(x_1-1)$ $\begin{bmatrix} x_1 + x_2 = 2 \end{bmatrix} \rightarrow \text{line (2) equation.}$ So, they max margin hyperplane should lie between line Of line (2) with the same slope as it is parallel to both of them. Points (1,1) and (0,0) - the line passing through it intersects line O. So midpoint perpendiculae to the hyperplane (max margin).

(Since the whole shape being square)

(08) Geometric margin = 1 1/ W// w' for the hyperplane = (1,1) based on the equation of hyperplane, Geometric margin = 1 \[\sqrt{2} \rightarrow \text{it is the distance between} \] hyperplane of the