The Rational Speech Act Framework

Даша Рыжова, Даша Попова Компьютерная семантика 18 апреля 2022

Теория рационального речевого акта

- прагматика
- моделирование
- вероятностный подход
- общая теория коммуникации, которую можно распространить на сложные феномены, например, на метафору (<u>Kao et al., 2014</u>), гиперболу (<u>Kao et al., 2014</u>), степенную семантику (<u>Lassiter and Goodman, 2013</u>)

Теория рационального речевого акта

- коммуникация как рекурсивное мышление слушающего и говорящего друг о друге
- слушающий интерпретирует высказывание говорящего, считая, что говорящий кооперативен и пытается объяснить наивному (буквальному) слушающему какое-то положение дел
- слушающий пытается понять, каково положение дел, учитывая, что говорящий произнёс то высказывание, которое он произнёс, и полагая, что говорящий размышлял о том, как слушающий наиболее вероятно проинтерпретирует высказывание
- таким образом, возникает (по крайней мере) три уровня интерпретации: прагматический слушающий L1 размышляет о прагматическом говорящем S1 и делает вывод о положении дел s, учитывая, что говорящий произнес высказывание u, говорящий выбирает высказывание u максимизируя вероятность того, что буквальный слушающий L0 правильно поймет положение дел s, учитывая буквальное значение u

Ванильная версия RSA

Frank and Goodman (2012)

Референциальная игра, в которой говорящий выбирает однословное высказывание u, чтобы указать на один объект s

Ванильная версия RSA

Контекстное множество (set of world states):

S = {blue-square, blue-circle, green-square}

Множество высказываний (set of utterances):

$$L_1$$
 pragmatic listener $P_{L_1}(s|u) \propto P_{S_1}(u|s) \cdot P(s)$
 S_1 pragmatic speaker $P_{S_1}(u|s) \propto \exp(\alpha U_{S_1}(u;s))$
 \downarrow
 L_0 literal listener $P_{L_0}(s|u) \propto [\![u]\!](s) \cdot P(s)$

Буквальный слушающий (Literal Listener L0)

Буквальный слушающий интерпретирует высказывание согласно его значению: он вычисляет вероятность положения дел (объекта) s, учитывая высказывание u, согласно семантике u и исходной вероятности s

Например, высказывание "blue" истинно для "blue-square", "blue-circle", ложно для "green-square", [[u]]:S→{0,1}

PL0(s | u)∞[[u]](s)·P(s), где P(s) -- априорная вероятность (prior) того, что говорящий говорит об s, зависит от знаний о мире, перцептивной выделенности и т.п.

https://www.problang.org/chapters/01-introduction.html

Прагматический говорящий (Pragmatic Speaker)

 $P_{S1}(u|s) \propto exp(α(logL_0(s|u)-C(u))), α$ -- рациональность (оптимальность) выбора высказывания, C(u) -- цена (cost) высказывания

https://www.problang.org/chapters/01-introduction.html

Прагматический слушающий (Pragmatic Listener L1)

 $PL1(s|u) \propto PS1(u|s) \cdot P(s)$

https://www.problang.org/chapters/01-introduction.html

Параллели с Грайсом

Грайс	RSA
качество	
количество	
способ	
релевантность	

Параллели с Грайсом

Рекурсивная природа TPPA соотносится с определением конверсациональной импликатуры (слушающий думает, что говорящий думает, что слушающий думает....)

Грайс	RSA
качество	все участники приписывают нулевую вероятность ложным высказываниям
количество	говорящий предпочитает информативные высказывания
способ	функция цены высказывания C(u)
релевантность	условные вероятности: при выборе высказывания учитываются объекты, при выборе объекта, учитывается высказывание

Простая скалярная импликатура

$$P(r1) = P(r2) = 0.5$$

$$C(m) = 0$$

 r_1

$$\alpha = 1$$

$P_{ m Lit}$	r_1	r_2
'hat'	0	1
'glasses'	0.5	0.5

	'hat'	'glasses'
r_1	0	1
r_2	0.67	0.33

	r_1	r_2
'hat'	0	1
'glasses'	0.75	0.25

$$P_{\text{Lit}}(r \mid m) = \frac{[\![m]\!](r)}{\sum_{r' \in R} [\![m]\!](r')}$$

$$P_{S}(m \mid r) = \frac{P_{Lit}(r \mid m)}{\sum_{m' \in M} P_{Lit}(r \mid m')}$$

$$P_L(r \mid m) = \frac{P_S(m \mid r)}{\sum_{r' \in R} P_S(m \mid r')}$$

Простая скалярная импликатура

Начинаем с лексикона: 2) Нормализуем ряды:

3) Транспонируем:

	r_1	r_2
'hat'	0	1
'glasses'	1	1

$P_{ m Lit}$	r_1	r_2
'hat'	0	1
'glasses'	0.5	0.5

	'hat'	'glasses'
r_1	0	0.5
r_2	1	0.5

4) Нормализуем ряды:

P_S	'hat'	'glasses'
r_1	0	1
r_2	0.67	0.33

5) Транспонируем:

	r_1	r_2
'hat'	0	0.67
'glasses'	1	0.33

6) Нормализуем ряды:

P_L	r_1	r_2
'hat'	0	1
'glasses'	0.75	0.25

Роль функции цены высказывания

P(r1) = P(r2) = 0.5

C('hat') = 6

C('glasses') = 0

P_{Lit}	r_1	r_2
'hat'	0	1
'glasses'	0.5	0.5

$$P_{\text{Lit}}(r \mid m) = \frac{[\![m]\!](r) \cdot P(r)}{\sum_{r' \in R} [\![m]\!](r') \cdot P(r')}$$

$$\alpha = 1$$
 P_S 'hat' 'glasses'
 $r_1 = 0$
 $r_2 = 0.0049 = 0.9951$

$$P_{S}(m \mid r) = \frac{\exp\left(\alpha \cdot (\log P_{Lit}(r \mid m) + C(m))\right)}{\sum_{m' \in M} \exp\left(\alpha \cdot (\log P_{Lit}(r \mid m') + C(m'))\right)}$$

P_L	r_1	r_2
'hat'	0	1
'glasses'	0.5012	0.4988

$$P_L(r \mid m) = \frac{P_S(m \mid r) \cdot P(r)}{\sum_{r' \in R} P_S(m \mid r') \cdot P(r')}$$

Роль функции цены высказывания

	r_1	r_2
'hat'	0	1
'glasses'	1	1

$P_{ m Lit}$	r_1	r_2
'hat'	0	1
'glasses'	0.5	0.5

	'hat'	'glasses'
r_1	0	0.5
r_2	1	0.5

	'hat'	'glasses'	
r_1 r_2	275 CM 0.75 CM CC 950	$\exp(\log(0.5) - 0)$ $\exp(\log(0.5) - 0)$	

	'hat'	'glasses'
r_1	0	0.5
r_2	0.0025	0.5

P_S	'hat'	'glasses'
r_1	0	1
r_2	0.0049	0.9951

	r_1	r_2
'hat'	0	0.0049
'glasses'	1	0.9951

P_L	r_1	r_2
'hat'	0	1
'glasses'	0.5012	0.4988

Роль параметра альфа

$$P_{S}(m \mid r) = \frac{\exp(\alpha \cdot (\log P_{Lit}(r \mid m)))}{\sum_{m' \in M} \exp(\alpha \cdot (\log P_{Lit}(r \mid m')))}$$

P_S	'hat'	'glasses'	
r_1	0	1	$\alpha = 1$
r_2	0.67	0.33	
P_S	'hat'	'glasses'	
r_1	0	1	$\alpha = 4$
	0.94	0.06	

Роль исходной вероятности P(r)

$P_{ m Lit}$	r_1	r_2
'hat'	0	1
'glasses'	0.3	0.7

P_S	'hat'	'glasses'
r_1	0	1
r_2	0.59	0.41

P_L	r_1	r_2
'hat'	0	1
'glasses'	0.51	0.49

$$P_{\text{Lit}}(r \mid m) = \frac{[\![m]\!](r) \cdot P(r)}{\sum_{r' \in R} [\![m]\!](r') \cdot P(r')}$$

$$P_{S}(m \mid r) = \frac{P_{Lit}(r \mid m)}{\sum_{m' \in M} P_{Lit}(r \mid m')}$$

$$P_{S}(m \mid r) = \frac{P_{Lit}(r \mid m)}{\sum_{m' \in M} P_{Lit}(r \mid m')}$$

$$P_{Lit}(r \mid m) = \frac{P_{S}(m \mid r) \cdot P(r)}{\sum_{r' \in R} P_{S}(m \mid r') \cdot P(r')}$$

$$0.9 - 0.8 - 0.9 - 0.8 - 0.9 - 0.8 - 0.9 - 0$$

Роль исходной вероятности P(r)

	r_1	r_2
'hat'	0	1
'glasses'	1	1

9	r_1	r_2	 		r_1	r_2
'hat'	0.0.3	1.0.7	\Rightarrow	'hat'	0	0.7
'glasses'	$1 \cdot 0.3$	$1 \cdot 0.7$		'glasses'	0.3	0.7

	'hat'	'glasses'
r_1	0	0.3
r_2	1	0.7

	'hat'	'glasses'
r_1	0	1
r_2	0.59	0.41

	r_1	r_2			r_1	r_2
'hat'	0.0.3	0.59 · 0.7	\Rightarrow	'hat'	0	0.413
'glasses'	1.0.3	$0.41 \cdot 0.7$		'glasses'	0.3	0.287

$P_{ m Lit}$	r_1	r_2
'hat'	0	1
'glasses'	0.3	0.7

P_S	r_1	r_2
'hat'	0	0.59
'glasses'	1	0.41

P_L	r_1	r_2
'hat'	0	1
'glasses'	0.51	0.49

буквальный слушающий/прагматический слушающий/мы: r3

буквальный слушающий/прагматический слушающий/мы: r2

буквальный слушающий: r1 -- 0.5, r2 -- 0.5

прагматический слушающий: r1 -- 0.75, r2 -- 0.25

МЫ:

буквальный слушающий: r1 -- 0.5, r3 -- 0.5

прагматический слушающий: r1 -- 0.33(3), r3 -- 0.66(6)

мы:

буквальный слушающий: r2 -- 0.5, r3 -- 0.5 прагматический слушающий ожидает r2 мы:

буквальный слушающий: r1 -- 0.5, r2 -- 0.5 прагматический слушающий ожидает r1 мы:

буквальный слушающий/прагматический слушающий/мы: r1 -- 0.5, r3 -- 0.5

МЫ:

