

AUDIO-VISUAL SPEECH RECOGNITION

MATHILDE BATESON & VIVIEN CABANNES

PROBLEM

Recognize audio-visual speeches.

Motivations

- Graphical Model Application
- Stream Collaboration

Dataset

- Word samples
- Uncluttered conditions
- Small dictionary

SPEECH RECOGNIZER

DESCRIPTORS

Video Descriptors

Audio Descriptors

Scalogram

Low dimensional

MODEL

Generative model

- Output: $arg max_w p(w|o)$
- Modeling o|w: hidden Markov model

Hidden Markov model

- Hidden state: stage in the word (left-to-right)
- $q_{t+1} \in \{q_t, q_t + 1\}$
- Modeling o|q: Gaussian mixture model $o_t|(q_t=i,c_t=m)\sim \mathcal{N}(\mu_{i,m},U_{i,m})$

Fitting parameters

- Maximum likelihood estimator
- Expectation-Maximization relaxation

Difficulties

- Exponential vanishing
- Gaussian without density

OUR RESULTS

Experimental results

Predictions precision	video	audio
train	30%	too slow
test	10%	too slow
random	1.5%	too slow

STREAM COLLABORATION

Dynamic Bayesian Networks

- Asynchrony between the audio and visual modalities is intrinsic to human speech (ex. the movement of the lips precedes or follows the actual production of sound).
- Allow asynchrony between audio and visual streams (and defines some synchronization points)
- While preserving the natural dependency over time of the acoustic and visual features of speech.

Ideas & Models

Stream collaboration	IHMM	PHMM	FHMM	CHMM
Transition probabilities	ind	joint	ind	joint
Observation likelihood	ind	joint	joint	ind

LITTERATURE RESULTS

Audio exponent

How to weight stream? Confidence exponents:

$$p(o_{\rm a},o_{\rm v}) \propto p(o_{\rm a})^{\lambda} p(o_{\rm v})^{1-\lambda}$$

Recognition rate

SNR (db)	30	20	10
MS-HMM (%)	98.6	79.2	67.8
F-HMM (%)	97.8	78.6	66.8
C-HMM (%)	98.1	81.9	65.7

FUTURE DIRECTIONS & CONCLUSION

Algorithm acceleration

- E-step via approximate inference
- Reducing descriptors time frames

Breaking the framework

- Use silent detection
- Toward discriminative models

This project attempted to cast audio-visual speech recognition towards graphical modeling. It can be done relatively smoothly, and allows efficient stream collaboration.

REFERENCES & SOURCE CODE

- L. Rabiner. A Tutorial on Hidden Markov Models and selected Applications in Speech Recognition. In *Proceedings* of the IEEE 1999
- A. Nefian et al. Dynamic Bayesian Networks for Audio-Visual Speech Recognition. In EURASIP Journal on Applied Signal Processing 2002

The full code is provided on GitHub at:

https://github.com/VivienCabannes/