States:

Current State	Next State	Level 2 Info MemAcess, Operation, Flag	Control Word (ALU(2)_T1(3)_IR(2)_RF(8)_memAcc(3)_INC(2))
S0: PC -> b16 -> a0 Edb -> IR	IB	IR, NA, NA	00 100 00 00000100 001 01
S1: PC -> INC -> PC Ra -> a16 -> ALU Rb -> b16 -> ALU ALU -> t1	S2	NA, OP, CZ	01 010 00 11011100 000 01
S2: T1 -> a16 -> Rc PC -> b16 -> a0 edb->ir	IB	IR, NA, NA	00 110 00 01000101 001 01
S3: IR[5:0] -> se16-> a16->ALU Rb -> b16- > ALU ALU -> T1 PC -> INC -> PC	SB	NA, OP, Z	10 010 01 11010100 000 01
S4: T1 -> b16 ->a0 Edb -> DI	S5	DR, NA, NA	00 100 00 00000000 001 01
S5: DI -> a16 -> Ra PC -> b16 -> a0 Edb -> IR	IB	IR, NA, NA	00 100 00 01000100 001 01
S6: T1 -> b16 -> a0 Ra -> a16 -> DO	S0	DW, NA, NA	00 101 00 00001000 100 01
S7: IR[8:0] -> shift7 -> a16 -> Ra	S0	NA, NA, NA	00 100 10 01000000 000 01
S8: Ra -> a16 -> ALU Rb -> b16 -> ALU ALU -> T1	BCZ (S11;S9) // (Z = 0, Z = 1)	NA, SUB, NA	11(SUB) 010(ALU -> T1) 00(IR) 00(wr) 01(as1as2) 11(read en) 00(D) 000(mem acc) 01
S9: IR[5:0] -> se16 -> a16 -> ALU PC -> b16 -> ALU	S10	IR, OP, NA	00 010 11 00 10 01 00 000 01

ALU -> T1			
S10: T1 -> a16 -> PC	SO	NA, NA, NA	00 110 00 01 00 00 11 000 01
S11: PC -> INC -> PC	SB	NA, NA, NA	00 100 00 11 00 00 00 000 01
S12: IR[5:0] -> a16 -> ALU Ra -> b16 -> ALU ALU -> T1 PC -> INC -> PC	SB	IR, OP, NA	00 010 01 11 10 01 00 000 01
S13: IR[5:0] -> se16 -> a16 -> ALU PC -> b16 -> ALU ALU -> T1 PC -> INC -> PC	S14	IR, OP, NA	00 010 11 11 10 01 00 000 01
S14: PC -> a16 -> ra T1 -> b16 -> PC	S0	NA, NA, NA	00 101 00 01 00 10 00 000 01
S15: Ra -> b16 -> t1 PC -> INC -> PC	SB	NA, NA, NA	00 001 00 00 11 01 00 000 01
S16: PC -> a16 -> ra Rb -> b16 -> PC	IB	NA, NA, NA	00 100 00 01 00 10 00 000 01
S17: DI -> a16 -> RF T1 -> INC -> t1	S18	NA, NA, NA	00 011 00 00 00 00 00 010 10
S18: SR -> INC -> SR	BCBSR(S0;S18;SB) // (SR = 0, SR != 0 && B = 0, SR != 0 && B = 1)	NA, NA, NA	00 100 00 00 00 00 00 000 00
S19: T1 -> b16 ->a0 Edb -> DI	S17	DR, NA, NA	00 101 00 00 00 00 00 000 01
S20: T1 -> INC -> t1 t1 -> b16 -> a0 SR -> a16 -> do	S18	DW, NA, NA	00 011 00 00 01 10 10 000 10

Decoder:

Instruction	IB	SB
0001	S1	-
0000	S12	S2
0010	S1	-
1111(LHI)	S11	S7
0111	S3	S4
0101	S3	S6
1100	S15	S19
1101	S15	S20
1000	S8	S0
1001	S13	-
1010	S11	S16
1011	S12	S10

Control diagrams:

ALU control:

T1 control:

Register File control:

Incrementer control:

Control bits:

• ALU

7120			
alu_c1c2	a0	a1	a2
00	0	0	0
01	0	1	1
10	0	0	1
11	1	0	0

A0 = c1.c2

A1 = c1'.c2

A2 = c1'.c2 + c1.c2'

• T1

t1_c1c2c3	wr1	wr2	wr3	rd1	rd2
000	0	1	0	0	0
001	1	0	0	0	0
010	0	0	1	0	0

011	0	1	0	1	0
100	0	0	0	0	0
101	0	0	0	1	0
110	0	0	0	0	1

Wr1 = c1'c2'c3

Wr2 = c2c3 + c1'c2'c3'

Wr3 = c1'c2c3'

Rd1 = c2c3 + c1c3

Rd2 = c1c2

• IR

ir_c1c2	sel	en	rd
00	0	0	0
01	0	0	1
10	1	1	1
11	1	0	1

Sel = c1En = c1c2

Rd = c1 + c2

• Register file

• Write bits

wr_c1c2	wr1	wr_b	wr_inc
00	0	0	0
01	1	0	0
10	1	1	0
11	0	0	1

Wr1 = c1'c2 + c1c2'

 $Wr_b = c1c2$

 $Wr_inc = c1c2$

Out addresses

Out_addr	AS1	AS2
00	00	10
01	00	01
10	10	01
11	01	00

As1_1 = c1c2' As1_2 = c1'c2 As2_1 = c1'c2' As2_2 = c1'c2 + c1c2'

Read bits

rd_c1c2	rd1	rd2
00	0	0
01	0	1
10	1	0
11	1	1

 $Rd1 = rd_c1$ $rd2 = rd_c2$

• D

DS	D
00	ra
01	rc
10	SR
11	PC(111)

Implementation using MUX

INC

inc_s1s2	SR_write	INC_input	
00	1	SR	
01	0	PC	

10	0	T1	

External Data:

We will have two EDBs, one for reading and one for writing. DO \rightarrow EDBw will have a control, this will also be used as write enable . AO will always be connected to the EAB. EDBr \rightarrow DI will always be connected. There will be one control bit each between a16 \rightarrow DO and DI \rightarrow a16 each. B16 \rightarrow AO will have a control, EDBr -> IR will have one control

DO->EDBw	DI -> a16	EDBr -> IR
0	0	0
1	1	1

Control word format:

State transition for Instructions:

1) Arithmetic and logical instructions (ADD, ADC, ADZ, ADL, NDU, NDC, NDL)

$$S1 \rightarrow S2 \rightarrow IB$$

2) LW:

$$S3 \rightarrow S4 \rightarrow S5 \rightarrow IB$$

3) SW:

$$S3 \rightarrow S6 \rightarrow S0 \rightarrow IB$$

4) LHI:

$$S7 \rightarrow S0 \rightarrow IB$$

5) BEQ:

If
$$z == 0$$
: S8 \rightarrow S11 \rightarrow S0 \rightarrow IB
If $z==1$; S8 \rightarrow S10 \rightarrow S0 \rightarrow IB

6) ADI:

$$S12 \rightarrow S2 \rightarrow IB$$

7) JAL:

$$S13 \rightarrow S14 \rightarrow S0 \rightarrow IB$$

8) JLR:

$$S11 \rightarrow S16 \rightarrow IB$$

9) JRI:

$$S12 \rightarrow S10 \rightarrow S0 \rightarrow IB$$

10) LM:

$$S15 \rightarrow S19 \rightarrow S17 \rightarrow S18$$

if(SR == 0): \rightarrow S0 \rightarrow IB

if(SR != 0 and B == 0):
$$\rightarrow$$
 S18 if(SR != 0 and B != 0): \rightarrow S19

11) SM:

$$\begin{array}{c} S15 \rightarrow S20 \rightarrow S18 \\ if(SR == 0): \rightarrow S0 \rightarrow IB \\ if(SR != 0 \text{ and } B == 0): \rightarrow S18 \\ if(SR != 0 \text{ and } B != 0): \rightarrow S20 \end{array}$$