BPNN CPP 实现

目 录

目 录0
第一章 引言1
第二章 实验内容1
2.1问题描述1
2.2 数据集介绍1
第三章 具体实验2
3.1 算法原理理解2
3.1.1 基本结构2
3.1.2 调参2
3.3 项目结构3
3.4 代码设计3
3.4.1 数据结构设计3
3.4.2 关键代码分析8
第四章 测试数据及程序运行情况10
4.1 训练过程10
4.1.1 数据预处理10
4.1.2 训练详情11
4.2 测试结果13
第五章 问题及心得体会15
第六章 参考文献

第一章 引言

随着近年来计算能力的提高,神经网络异常火爆,在许多方面都有应用,如语言识别、图像识别与理解、计算机视觉、智能机器人故检测等,而 Mnist 手写字体识别是其经典入门实例,通过此次实验希望可以更深刻的理解神经网络,通过实验中的公式推导继而自己编程实现,来体会科研过程。

第二章 实验内容

2.1 问题描述

神经网络算法的实现,并用手写数字进行实验。

2.2 数据集介绍

经典手写字体数据集 Mnist, 其中训练集 60000 张, 测试集 10000 张, png 格式, 每张像素大小 20X20。

0	0	0	Ø	0
0_1.png	0_2.png	0_3.png	0_4.png	0_5.png
\bigcirc	0	\odot	O	\mathcal{O}
0_12.png	0_13.png	0_14.png	0_15.png	0_16.png
\bigcirc	\circ	$\boldsymbol{\Omega}$	igtriangle	0
0_23.png	0_24.png	0_25.png	0_26.png	0_27.png
Ö	0	0	Ó	0
0_34.png	0_35.png	0_36.png	0_37.png	0_38.png
0	\boldsymbol{O}	Ø	0	0
0_45.png	0_46.png	0_47.png	0_48.png	0_49.png
0	0	O	0	0
0_56.png	0_57.png	0_58.png	0_59.png	0_60.png

图 1 数据集剪影

第三章 具体实验

3.1 算法原理理解

3.1.1 基本结构

神经网络层与层之间是映射的过程,如 400 个输入 10 个输出,即将特征(400)映射到类别(10)的过程,为了映射准确,神经网络需知道足够信息,增加隐层结点数,增加联结数。

训练过程即神经网络学习从 400 到 10 如何映射的过程,是拟合(非线性)的过程。为了达到拟合,这里用到常用的一种最优化方法-梯度下降法。

当拟合度到达一定精度,满足要求,即可停止训练,这时得到的结果就是一堆参数,即神经网络的结构信息。神经网络的使用即加载参数,前向传递,进行回归或预测的过程。

3.1.2 调参

神经网络很重要的工作是调参, 如

1. 每层神经元的个数: 这里按经验公式进行尝试,又自己进行了尝试

 $m = \sqrt{n+l} + \alpha$ $m = \log_2 n$ $m = \sqrt{nl}$ m: 隐含层节点数 n: 输入层节点数 l: 输出层节点数 α : 1--10 之间的常数。

图 2 经验公式

- 2. 如何初始化 Weights 和 biases: 这里随机初始化权值,范围[0,0.5],之后权值归一化,除输出层外每层都有一个偏置。
- 3. loss 函数选择哪一个: 这里选用平方误差和
- 4. 选择何种 Regularization? L1,L2: 这里未采用正则化
- 5. 激励函数如何选择: 这里选用 sigmoid
- 6. 训练集多大比较合适:这里将60000分60批,即每个训练集1000个样本
- 7. 学习率多少合适: 这里初始学习率 rate 为 0.1, 随迭代次数 epoch 增加,

按照公式 rate/(1+d*epoch), 学习率逐渐下降。

8. 何时停止 Epoch 训练: 这里设定训练次数,到达次数即停止训练

3.3 项目结构

这里使用 C++编写, 项目结构及简单的主文件, 神经网络头文件和实现文件。

3.4 代码设计

3.4.1 数据结构设计

3.4.1.1 节点结构

```
//node type
//include input weight, net value and output value
struct Perceptron {
   int inputWeightNum;//该节点的输入个数
   double* inputWeights;//输入权值数组
   double netValue,output,delta;//结点值,节点输出值,该节点之后网络的损失值之和
   Perceptron() {
   }
   Perceptron(int n)
   {
       double x,sum=0;
       inputWeightNum = n;
       inputWeights = new double[n];
       for (int i = 0; i < n; i++) {
           x = (double)rand() / (double)RAND_MAX;//随机初始化,范围在[0,0.5]
           inputWeights[i] = (x);
           sum += x;
       }
       //权值归一化
       for (int i = 0; i < n; i++) {</pre>
           inputWeights[i] /= sum;
       }
```

```
}
   ~Perceptron(){
    }
};
3.4.1.2 层结构
//layer type
//include: a group of node
struct Layer {
    int perceptronNum; //该层节点个数
    Perceptron *perceptrons; //结点数组
    Layer() {
    }
    //初始化层 参数: 结点数, 前一层节点数, 是否加偏置
    Layer(int n,int perN,bool partialNum)
    {
       perceptronNum = n;
       srand((unsigned)time(NULL));
       perceptrons = new Perceptron[n+1];
       int i;
       //每个节点的具体信息
       for (i = 0; i < n; i++) {</pre>
           Perceptron perceptron(perN);
           perceptrons[i] = perceptron;
       }
       //加偏置
       if (partialNum) {
           perceptronNum++;
           Perceptron perceptron(0);
           perceptron.netValue = 1;
           perceptron.output = 1;
           perceptrons[i] = perceptron;
```

```
}
   }
   ~Layer()
    {
    }
};
3.4.1.3 样本结构
//a sample data
struct Sample{
    int featureNum; //特征向量大小
    double* feature;//特征向量
    double* label;//标签向量
   Sample() {
    }
   //初始化样本 参数:特征向量大小
   Sample(int n) {
       featureNum = n;
       feature = new double[featureNum];
       label = new double[featureNum];
    }
    //重载赋值运算符
    struct Sample& operator=(const struct Sample& s) {
       this->featureNum = s.featureNum;
       for (int i = 0; i < featureNum; i++) {</pre>
           this->feature[i] = s.feature[i];
           this->label[i] = s.label[i];
       }
       return *this;
   }
};
```

3.4.1.4 数据集结构

```
struct Data {
   int sampleNum; //数据集中样本个数
   struct Sample *sample;//样本集
   struct Data() {
       sampleNum = 0;
   //初始化数据集 参数: 样本数, 特征数
   struct Data(int sampleNum,int featureNum) {
       this->sampleNum = sampleNum;
       this->sample = new struct Sample[sampleNum];
       for (int i = 0; i < sampleNum; ++i) {</pre>
           this->sample[i].feature = new double[featureNum];
           this->sample[i].label = new double[featureNum];
       }
   }
};
3.4.1.5 神经网络结构
//ANN type
//include: a group of layer
class ANN
{
public:
   // 结构相关
   ANN();
   //新建ANN,设置参数(输入层数,隐层数,输出层数,以及各层的结点个数)
   ANN(vector<int>& layer);
   ~ANN();
   void setParameter(double learningRate, int step, double e) { //设定参数
       this->learningRate = learningRate;
       this->step = step;
                                     6
```

```
this->e = e;
}
int getNumLayer() {
   return this->hiddenLayerNum + 2;
}
struct Layer* getLayers() { return layers; }//获取层参数信息
void setLearningRate(double learningRate) {
   this->learningRate = learningRate;
}
// 前向传播
double activeFunction(double netValue, int func); // 求经过激活函数的结果
double weightedSum(int layerNum,int perceptronNum); // 加权和
void forward(); //前向传播
double loss(int func);
double square_error();//计算对应节点均方误差
double getSquareError() { //获取均方误差
   return this->curSquareError;
}
// 后向传播
void backward(); //反向传播
double activeFunctionD(double netValue, int func); // 求经过激活函数的导数
double Loss_functionD(int func,double target,double out);//损失函数的导数
void updateWeights(int layerNum); //更新权值
double computeA(int layerNum, int perceptronNum);//计算此节点为总误差的贡献率
void train();
// 预测
double* prediction(struct Sample& sample);
int judgeClassification(double* v);
// 数据
void addData(int num);//载入数据
```

```
void addTestData(int num);//载入测试数据
   // 参数存储 、 加载
   bool saveANN(string fileName);
   bool loadANN(string fileName);
   // 测试
   double test();
private:
   struct Layer* layers;//input hidden (每个隐层自动加一个偏置) output
   int hiddenLayerNum;// the number of hidden layer
   double learningRate;//learning rate
   int step;//迭代步数
   double curSquareError;//当前误差率
   double e;//精度
   struct Sample* sample;//sample
   struct Data* data;//data
   struct Data* testData;//data
};
3.4.2 关键代码分析
// 权值更新
void ANN::updateWeights(int layerNum){
   double t_o, o_n, n_w,t_w;
   //隐含层---->输出层的权值更新
   if(layerNum == this->hiddenLayerNum+1){
       int numP= this->layers[layerNum].perceptronNum,numW;
       for (int i = 0; i < numP; i++) {</pre>
           //总误差对输出层节点偏导 E_total / out01
           t_o = Loss_functionD(SE,this->sample->label[i],
```

```
//输出层输出值对求输出层节点值求偏导 out01 / net01
       o n = activeFunctionD(this->layers[layerNum].perceptrons[i].output,
                              SIGMOID);
       this->layers[layerNum].perceptrons[i].delta = t_o * o_n;
       //对outi的所有权值进行修正
       numW = this->layers[layerNum].perceptrons[i].inputWeightNum;
       for (int j = 0; j < numW; j++) {</pre>
           //节点值对权值求偏导 net01 / w
           n_w = this->layers[layerNum-1].perceptrons[j].output;
           //三者相乘 即整体误差对权值的偏导值 X
           t_w = this->layers[layerNum].perceptrons[i].delta * n_w;
           //更新权重值 w = w -a*X
           this->layers[layerNum].perceptrons[i].inputWeights[j]
               -= this->learningRate * t_w;
       }
   }
}
//隐含层--->隐含层的权值更新 out(h1) net(h1) w1
else if(layerNum >= 1 && layerNum < this->hiddenLayerNum + 1){
   int numP = this->layers[layerNum].perceptronNum, numW;
   for (int i = 0; i < numP; i++) {</pre>
       //总误差对输出层节点偏导 E_total / out(h1)
       //= E01 / out(h1) + E02 / out(h1) 误差相加
       computeA(layerNum, i);
       //对hidden i的所有权值进行修正
       numW = this->layers[layerNum].perceptrons[i].inputWeightNum;
       for (int j = 0; j < numW; j++) {</pre>
           //节点值对权值求偏导 net(h1) / w
           n_w = this->layers[layerNum-1].perceptrons[j].output;
           //三者相乘 即整体误差对权值的偏导值 x
           t_w = this->layers[layerNum].perceptrons[i].delta * n_w;
```

this->layers[layerNum].perceptrons[i].output);

```
//更新权重值 w = w -a*X
                this->layers[layerNum].perceptrons[i].inputWeights[j]
                        -= this->learningRate * t w;
            }
        }
    }
    else {
        std::cerr << "update parameter wrong \n";</pre>
        return;
    }
}
·
// 计算某结点贡献的误差
idouble ANN::computeA(int layerNum, int perceptronNum)
    this->layers[layerNum].perceptrons[perceptronNum].delta = 0;
    int pointNum = this->layers[layerNum + 1].perceptronNum;
    //某节点之前的误差用delta表示,等于上一层每个结点的delta与对应权值乘积之和 再乘上本节点的损失
    for (int i = 0; i < pointNum; i++) {</pre>
        this->layers[layerNum].perceptrons[perceptronNum].delta
            += this->layers[layerNum + 1].perceptrons[i].delta
            * this->layers[layerNum + 1].perceptrons[i].inputWeights[perceptronNum];
    this->layers[layerNum].perceptrons[perceptronNum].delta
        *= activeFunctionD(this->layers[layerNum].perceptrons[perceptronNum].output, SIGMOID);
    return 0;
```

第四章 测试数据及程序运行情况

4.1 训练过程

4.1.1 数据预处理

考虑到数字识别只看数字信息,而不必看颜色深浅,所以将图片二值化(只要灰度值大于 0 就设为 1),再向量化(20X20 矩阵化为 1X400 的向量)以满足神经网络输入层 400 个节点需要。为解决训练数据量过大不能一起输入训练的问题,这里将 60000 个样本分为 60 份,每份从 10 类数字中选取 100 个然后随机打

乱,为标识类别,这里在每个向量开头说明类别。

图 3 第 7 个样本集组织结构

如上图,60 份样本集中的第7个样本集,共包含1000个样本,每个样本开 头标明类别,后面400个数字是图片向量化后的结果。

4.1.2 训练详情

```
int main()
{
    srand((unsigned)time(NULL));
    int layerArr[] = {400,100,10};
    vector<int> layerSS(layerArr, layerArr + sizeof(layerArr)/sizeof(int));
    //初始化神经网络
    ANN a(layerSS);

//设置参数
    a.setParameter(0.1, 100, 0.01);
    double accuracy = 0;
    string fileName = "4 300 100";
```

```
//若已存在网络,加载文件参数
   a.loadANN("./ann_"+ fileName +".parameter");
   int epoch = 100;
   //训练epoch代
   for(int i=0;i<epoch;i++){</pre>
       //一代 60 个数据集
       for (int j = 1; j < 61; j++) {
           //加载1个数据集
           a.addData(j);
           //训练
           a.train();
           //学习率随迭代次数增长而下降
           a.setLearningRate(0.1 / (1 + i * 0.001));
       }
       //存储网络参数
       a.saveANN("./ann_"+fileName+".parameter");
   }
   return 0;
// 训练过程即遍历数据集,对每个样本进行前向反向传播
void ANN::train()
   int sampleNum = (*this->data).sampleNum;
   int con = 0;
   this->sample = new struct Sample(this->data->sample->featureNum);
   for (int i =0; i<sampleNum;i++) {</pre>
       *this->sample = (*this->data).sample[i];
       //前向传播 反向传播交替
       forward();
       backward();
   }
```

}

{

}

训练结果就是一个参数文件

ann_3_50.parameter
ann_3_100.parameter
ann_3_200.parameter
ann_3_300.parameter
ann_4_300_100.parameter
ann_4_500_200.parameter

图 4 参数文件

4.2 测试结果

表 1 不同结构神经网络的测试结果(准确率)

结构	400 50 10	400 100 10	400 200 10	400 300 10
1	89.22%	89.46%	88.53%	86.84%
2	89.46%	92.63%	90.85%	89.08%
3	92.29%	94.22%	92.75%	92.12%
4	93.66%	95.07%	93.92%	93.32%
5	94.39%	95.43%	94.97%	93.13%
6	94.79%	95.52%	95.65%	93.85%
7	94.86%	95.66%	95.99%	94.67%
8	94.88%	95.70%	95.81%	95.47%
9	94.93%	95.72%	95.91%	95.35%
10	94.97%	95.79%	95.85%	95.79%
11	94.99%	95.84%	96.10%	95.62%
12	94.91%	95.87%	96.11%	95.56%
13	94.90%	95.78%	96.21%	95.81%
14	95.12%	95.77%	96.16%	95.81%
15	95.22%	95.79%	96.10%	96.18%
16	<mark>95.23%</mark>	95.83%	96.22%	96.29%
17	95.13%	95.91%	96.16%	95.81%
18	95.13%	95.88%	96.23%	96.38%
19	95.15%	95.87%	96.27%	96.13%
20	95.03%	96%	96.26%	96.56%
21	94.96%	96.10%	96.34%	96.38%
22	94.93%	96.04%	96.42%	96.61%

23	94.94%	96.07%	96.47%	96.50%
24	94.83%	96.13%	96.50%	96.65%
25	94.83%	96.15%	96.53%	96.54%
26	94.82%	96.13%	96.62%	96.53%
27		96.16%	96.60%	96.60%
28		96.19%	96.58%	96.18%
29		96.25%	96.61%	96.64%
30		96.30%	96.40%	96.44%
31		96.37%	96.53%	96.70%
32		96.33%	96.57%	96.58%
33		96.35%	96.55%	96.63%
34		96.38%	96.65%	96.08%
35		96.37%	96.68%	96.84%
36		96.44%	96.72%	96.84%
37		96.42%	96.74%	96.91%
38		96.42%	96.77%	96.94%
39		96.39%	96.73%	97.07%
40		96.41%	96.81%	96.96%
41		96.45%	96.75%	96.97%
42		96.47%	96.79%	96.88%
43		96.47%	96.85%	96.80%
44		96.44%	96.81%	96.85%
45		96.46%	96.86%	96.90%
46		<mark>96.49%</mark>	96.89%	96.90%
47		96.48%	96.86%	96.93%
48		96.46%	96.85%	96.95%
49		96.43%	96.83%	96.98%
50		96.42%	96.83%	97.02%
51		96.41%	96.89%	97.12%
52			96.85%	97.12%
53			96.88%	97.09%
54			96.89%	97.05%
55			96.95%	97.00%
56			96.98%	96.96%
57			97%	97%
	i			

58	97%	97%
59	<mark>97.03%</mark>	97.03%
60	97%	97%
61	97.03%	97.06%
62	97%	97%
63	97.02%	97.05%
64	97.02%	97.11%
65	97.01%	97.11%
66	97%	97%
67	97.01%	<mark>97.19%</mark>
68		97.15%
69		97.14%
70		97.17%
71		97.16%
72		97.12%
73		97.11%
74		97.16%
75		97.13%
76		97.12%

上述学习率均为 0.1, 且随代数增加而减少。节点数 400 300 10 时, 训练 67 轮时间约 2H, 准确率为 97.19%。

第五章 问题及心得体会

遇到一个非常棘手的问题,训练速度特别慢,就连前向传递过程都十分慢,想了好久都找不到问题究竟在哪。在将所有 C++ STL 结构改为指针,进行动态内存分配后,速度提升大约 60 倍。之前的代码之所以慢是因为 STL 数据结构 push_back 的过程,当 push_back 时所需的空间大于已经分配的空间时,会重新分配比原来大 1.5 倍的内存,不断重新分配内存的过程开销是十分大的。

通过本次实验看到了自己很多薄弱点,该要踏实努力。

第六章 参考文献

- [1] 一文弄懂神经网络反向传播算法 (http://www.cnblogs.com/charlotte77/p/56298 65.html)
- [2] 神经网络中权值初始化的方法 (https://blog.csdn.net/u013989576/article/details /76215989)
- [3] 神经网络之激活函数(Activation Function) (https://blog.csdn.net/cyh_24/article /details/50593400)
- [4] A Step by Step Backpropagation Example (https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/)
- [5] Principles of training multi-layer neural network using backpropagation (http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html)