# Московский Физико-Технический Институт

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа №3.2.5

# Вынужденные колебания в электрическом контуре

Маршрут III

6 октября 2018 г. 13 октября 2018 г. Работу выполнил Валиев Ринат, 711 гр.

Под руководством Г.И. Лапушкина, к.ф.-м.н.

# Подготовка

#### Цель работы

Исследование вынужденных колебаний и процессов их установления. В работе используются: генератор звуковой частоты, осциллограф, вольтметр, частотометр, ёмкость, индуктивность, магазин сопротивлений, универсальный мост.

#### Теоретическая часть

В данной работе будем рассматривать колебания в электрическом колебательном контуре под воздействием внешней ЭДС, гармонически изменяющейся во времени. Получаем, что при подключении внешнего источника возникнут колебания, которые будем рассматривать как решение дифференциального уравнения:

$$L\ddot{I} + R\dot{I} + \frac{I}{C} = -\mathcal{E}\Omega\sin\Omega t$$

в качестве суперпозиции двух синусоид:

$$I = Be^{-\gamma t}\sin(wt - \theta) + \frac{\mathcal{E}\Omega}{L\rho_0}\sin(\Omega t - \psi)$$

одна из которых с частотой собственных колебаний контура  $\omega$  и амплитудой, экспоненциально убывающей со временем; вторая - с частотой внешнего источника и постоянной амплитудой. Однако со временем собственные колебания затухают, и в контуре устанавливаются вынужденные колебания. А их амплитуда максимальна, когда знаменатель второй синусоиды  $\rho_0 = \sqrt{(\omega_0^2 - \Omega_0^2)^2 + (2\gamma\Omega)^2}$  минимален, то есть  $\omega_0 = \Omega$  (частота внешнего сигнала совпадает с собственной частотой контура). Это явление и называется резонансом. Зависимость амплитуды колебаний от частоты внешнего напряжения называется резонансной кривой.

# Резонансная кривая колебательного контура



Рис. 1: Схема установки

Мы можем снять зависимость амплитуды напряжения на резисторе R от частоты на генераторе (при постоянной амплитуде выходного напряжения), однако для этого выходное сопротивление генератора должно быть много меньше импеданса контура. Для этого в цепи используется конденсатор  $C_1$ . И в таком случае импеданс внешней по отношению к контуру цепи был гораздо больше импеданса самого контура вблизи резонанса:

$$\frac{1}{\omega C_1} \gg |Z_{\text{pes}}| = \frac{L}{RC}$$

### Процессы установления и затухания колебаний



Рис. 2: Нарастание и затухание вынужденных колебаний

Добротность контура можно определить и другими способами, например, по скорости затухания свободных колебаний. Подавая на контур цуги синусоид конечной длины, можно наблюдать процессы установления и затухания колебаний в контуре. И те, и другие могут быть использованы для определения добротности контура по скорости нарастания/затухания напряжения:

$$\Theta = \frac{1}{n} \ln \frac{U_0 - U_k}{U_0 - U_{k+n}}$$

Измеряя амплитуды напряжения в какой-нибудь момент времени и через n периодов, можем посчитать добротность по формуле:

$$Q = \frac{\pi}{\gamma T} = \frac{\pi}{\Theta}$$

# Установка и измерения



Рис. 3: Схема экспериментальной установки для исследования вынужденных колебаний

Идеальная схема, изображённая на рисунке 1, не соответствует действительности. Элементы цепи не идеальны и имеют паразитные сопротивления. Измерим все величины для разных частот с помощью RLC – моста:

$$R_L = 22.2 \text{ Ом}, \ L = 99.97 \text{ м}$$
Гн,  $C = 103.33 \text{ н}$ Ф,  $R = 113.7 \text{ Ом}$ 

# Метод резонансных кривых

Снимем зависимость напряжения на конденсаторе от входной частоты, и получим таким образом резонансную кривую. Также в таблицу внесем погрешности измерений:

| U, мВ              | 216   | 332   | 475   | 617   | 775   | 949   | 1139  | 1329  | 1139  | 949   | 760   | 617   | 443   | 316   | 240   |
|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $f$ , к $\Gamma$ ц | 1,442 | 1,478 | 1,504 | 1,518 | 1,528 | 1,539 | 1,548 | 1,561 | 1,574 | 1,582 | 1,594 | 1,608 | 1,630 | 1,661 | 1,700 |
| $U/U_0$            | 0,163 | 0,250 | 0,357 | 0,464 | 0,583 | 0,714 | 0,857 | 1,000 | 0,857 | 0,714 | 0,572 | 0,464 | 0,333 | 0,238 | 0,181 |
| $f/f_0$            | 0,921 | 0,944 | 0,960 | 0,969 | 0,976 | 0,983 | 0,989 | 0,997 | 1,005 | 1,010 | 1,018 | 1,027 | 1,041 | 1,061 | 1,086 |
| $\Delta U/U_0$     | 0,002 | 0,002 | 0,002 | 0,002 | 0,002 | 0,003 | 0,003 | 0,003 | 0,003 | 0,003 | 0,002 | 0,002 | 0,002 | 0,002 | 0,002 |
| $\Delta f/f_0$     | 0,002 | 0,002 | 0,003 | 0,003 | 0,003 | 0,003 | 0,003 | 0,003 | 0,003 | 0,003 | 0,003 | 0,003 | 0,003 | 0,003 | 0,003 |

Таблица 1: Полученные значения при  $R=0~{\rm Om}$ 

| U, MB              | 78    | 94    | 108   | 138   | 182   | 246   | 282   | 264   | 228   | 192   | 153   | 126   | 96    | 82    |
|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $f$ , к $\Gamma$ ц | 1,276 | 1,316 | 1,360 | 1,410 | 1,460 | 1,511 | 1,564 | 1,608 | 1,652 | 1,694 | 1,762 | 1,831 | 1,955 | 2,172 |
| $U/U_0$            | 0,277 | 0,333 | 0,383 | 0,489 | 0,645 | 0,872 | 1,000 | 0,936 | 0,809 | 0,681 | 0,543 | 0,447 | 0,340 | 0,291 |
| $f/f_0$            | 0,815 | 0,840 | 0,868 | 0,900 | 0,932 | 0,965 | 0,999 | 1,027 | 1,055 | 1,082 | 1,125 | 1,169 | 1,248 | 1,387 |
| $\Delta U/U_0$     | 0,001 | 0,001 | 0,001 | 0,001 | 0,001 | 0,001 | 0,001 | 0,001 | 0,001 | 0,001 | 0,001 | 0,001 | 0,001 | 0,001 |
| $\Delta f/f_0$     | 0,002 | 0,002 | 0,002 | 0,002 | 0,002 | 0,003 | 0,003 | 0,003 | 0,003 | 0,003 | 0,003 | 0,003 | 0,003 | 0,003 |

Таблица 2: Полученные значения при  $R=100~{
m Om}$ 

Используя полученные данные построим резонансные кривые для каждой величины сопротивления:



Рис. 4: Резонансные кривые для R=0 Ом, R=1000 Ом в приведенных координатах

#### Метод цугов

Добротность можно определить и другим способ. Будем посылать на осциллограф синусоидальный сигнал порциями. Тогда на экране увидим как сигнал нарастает и затухает. В условиях резонанса огибающая затухающих колебаний — это перевернутая огибающая нарастающего участка. Снимем три пары точек для дальнейших вычислений:

|                 |      |      | Hapac | гание |      | Затухание |      |      |      |     |      |     |
|-----------------|------|------|-------|-------|------|-----------|------|------|------|-----|------|-----|
| R, Om           | 0    |      |       | 100   |      |           | 0    |      |      | 100 |      |     |
| $U_0$ , дел     | 39   |      |       | 40    |      |           | -    |      |      |     |      |     |
| $U_k$ , дел     | 4    | 7    | 10    | 10    | 20   | 10        | 37   | 36   | 32   | 40  | 31.5 | 40  |
| $U_{k+n}$ , дел | 24.5 | 30   | 35    | 37.5  | 37.5 | 36        | 16.5 | 10   | 5    | 4   | 4    | 6.5 |
| n               | 9    | 13   | 20    | 6     | 5    | 5         | 9    | 13   | 20   | 6   | 5    | 5   |
| Q               | 32.1 | 32.2 | 31.7  | 7.6   | 7.6  | 7.8       | 35.0 | 31.9 | 33.8 | 8.2 | 7.6  | 8.6 |

Таблица 3: Измерение добротности по нарастанию и затуханию

Используем данные таблицы 3 и формулы в начале работы для расчета добротности по скорости нарастания и затухания колебаний. Результаты внесем в таблицу 4.

#### Погрешности

Погрешности измерений и вычислений определим через параметры приборов и по шкале осциллографа. Приведем лишь некоторые формулы расчета погрешностей:

Для погрешности теоретического вычисления погрешности используем:

$$\Delta_{Q} = \sqrt{\left(\frac{\partial Q}{\partial R}\right)^{2} \cdot \Delta_{R}^{2} + \left(\frac{\partial Q}{\partial L}\right)^{2} \cdot \Delta_{L}^{2} + \left(\frac{\partial Q}{\partial C}\right)^{2} \cdot \Delta_{C}^{2}}$$

$$\Delta_{Q} = \sqrt{\frac{L}{R^{4}C} \cdot \Delta_{R}^{2} + \frac{1}{4R^{2}LC} \cdot \Delta_{L}^{2} + \frac{L}{4C^{3}R^{2}} \cdot \Delta_{C}^{2}}$$

В случае вычисления добротности через затухающую часть графика имеем:

$$\begin{split} Q &= \frac{\pi}{\Theta}, \quad \text{где } \Theta = \frac{1}{n} \ln(\frac{U_k}{U_{k+n}}) \\ \Delta_{\Theta} &= \sqrt{\left(\frac{\partial \Theta}{\partial U_k}\right)^2 \cdot \Delta_{U_k}^2 + \left(\frac{\partial \Theta}{\partial U_{k+n}}\right)^2 \cdot \Delta_{U_{k+n}}^2} \\ \Delta_Q &= \pi \cdot \frac{\Delta_{\Theta}}{\Theta^2} \end{split}$$

# Итоги

В работе были определены добротности контуров с и без дополнительного сопротивления  $R_{100}$  разными способами.

|             | Теория | Резонансная кривая | Нарастание  | Убывание     |
|-------------|--------|--------------------|-------------|--------------|
| $Q_{R=0}$   | 36.2   | $34.5 \pm 1.2$     | $32 \pm 4$  | $33.6 \pm 3$ |
| $Q_{R=100}$ | 7.0    | $6.2 \pm 0.4$      | $7.6 \pm 1$ | $8.1 \pm 1$  |

 Таблица 4: Сравнение экспериментальных значений добротности, полученных разными методами

В целом добротности оказались примерно одинаковыми при измерении разными способами. Однако, результаты немного разнятся. Следует заметить, что магазин сопротивлений мог дать значительный вклад для сопротивления в контуре с R=0 Ом, т.к. резисторы собраны в виде катушек. Данный факт не был учтен в работе.

#### Замечание

Рассмотрим процесс установления колебаний в контуре с высокой добротностью вблизи резонанса. Этот процесс описывается при начальных условиях  $(U=0,\ddot{U}=0)$  формулой:

$$U = U_0[\cos(\Omega t - \psi) - \exp^{\gamma t} \cos(\omega_0 t - \psi)]$$

Напряжение содержит два близких по частоте колебания, между которыми происходят биения. Появление биений связано с тем, что разность фаз этих колебаний медленно меняется; при нулевой разности фаз они вычитаются друг из друга, а при расхождении фаз на  $\pi$  – складываются. Амплитуда колебаний то растет, то падает, испытывая биения. При порционных сигналах также наблюдаются схожая картина.



Рис. 5: Биение колебаний вблизи резонанса