Stoffdidaktik Mathematik Kernideen, Kernfragen, Kontexte

- Sie können zu ausgewählten Lerngegenständen Kernideen und Kernfragen formulieren.
- Sie können gegebene Kontexte zu Lerngegenständen hinsichtlich ihrer Sinnstiftung beurteilen.
- Sie sind sich der Möglichkeiten und Bedeutung horizontaler und vertikaler Matheamtisierung bewusst.

Quadratische Funktionen

Wie würden Sie diesen Lerngegenstand einführen?

Was ist der Sinn hinter diesem Lerngegenstand?

Welches Beispiel ist besonders gut geeignet?

Kernidee

Kontext

Kernideen / Kernfragen

Eine **Kernidee** beschreibt unter sinnstiftender Perspektive das mathematische Wesen eines Lerngegenstand.

Eine **Kernfrage** stellt die Kernidee in Frageform aus der Perspektive der Schülerinnen und Schüler dar.

Kernideen und Kernfragen verfolgen eine **Vorschauperspektive**, die der Orientierung und Initiierung der Auseinandersetzung mit dem neuen Lerngegenstand dient, sowie eine **Rückschauperspektive**, die es den Schülerinnen und Schülern ermöglicht, den Lerngegenstand einzuordnen.

(angelehnt an Leuders et al. 2011, S. 8)

Kernideen / Kernfragen

Quadratische Funktionen

Konstruktion von Dreiecken

Negative Zahlen

Bedingte Wahrscheinlichkeiten

Vorschauperspektive: Orientierung, Initiierung der Auseinandersetzung mit Lerngegenstand

Rückschauperspektive: ermöglicht, Lerngegenstand einzuordnen

Kontexte

Ein sinnstiftender Kontext ist ein Ausschnitt einer inner- oder außermathematischen Welt, der folgende Anforderungen möglichst gut erfüllt:

- Er ist anschlussfähig an die Erfahrungen, Interessen und die Denk- und Handlungsmuster der Lernenden (Lebensweltbezug).
- Er ermöglicht es, authentische Fragen zu bearbeiten und dabei auch etwas über den Kontext zu lernen (Kontextauthentizität).
- Er ist problemhaltig und offen genug, um Lernende zum reichhaltigen Fragen und Erkunden anzuregen (Reichhaltigkeit).

(Leuders et al. 2011, S. 4)

Stoffdidaktik als Spezifizieren und Strukturieren von Lerngegenständen

Vier-Ebenen-Ansatz

Spezifizieren

Strukturieren

konkrete Ebene

- Welche Kernfragen und Kernideen können die Entwicklung der Begriffe,
 Sätze und Verfahren leiten?
- Welche Kontexte und Probleme sind geeignet, um an ihnen die Kernfragen und -ideen exemplarisch zu behandeln und die Inhalte zu rekonstruieren?
- Wie kann das Verständnis sukzessive über konkrete Situationen in den beabsichtigten Lernpfaden konstruiert werden (horizontale Mathematisierung)?
- Wie können die Lernpfade in Bezug auf die Problemstruktur angeordnet werden (vertikale Mathematisierung)?

nach Hußmann & Prediger, 2016

horizontale Mathematisierung

Beschreiben, Ordnen und Lösen realer Situationen und alltäglicher Probleme mithilfe mathematischer Objekte und Operationen

vertikale Mathematisierung

Reorganisieren und Operieren innerhalb des mathematischen Systems

Literatur

- Barzel, B., Blattmann, A., Bullinger, R., Glade, M., & Greefrath, G. (2015). *Mathewerkstatt. 7, Schulbuch* (T. Leuders, S. Prediger, B. Barzel, & S. Hußmann, Hrsg.; 1. Auflage). Cornelsen.
- Barzel, B., Hußmann, S., Leuders, T., & Prediger, S. (Hrsg.). (2016). Mathewerkstatt. 9, Schulbuch (1. Auflage). Cornelsen.
- Hußmann, S., & Prediger, S. (2016). Specifying and Structuring Mathematical Topics: A Four-Level Approach for Combining Formal, Semantic, Concrete, and Empirical Levels Exemplified for Exponential Growth. *Journal für Mathematik-Didaktik*, 37(S1), 33–67. https://doi.org/10.1007/s13138-016-0102-8
- Leuders, T., Hußmann, S., Barzel, B., & Prediger, S. (2011). Das macht Sinn! Sinnstiftung mit Kontexten und Kernideen. *Praxis der Mathematik in der Schule*, 53(37), 2-9. https://www.researchgate.net/publication/233978329