

Include

MicroPatent ® PatSearch FullText: Record 1 of 1

Search scope: JP; Claims, Title or Abstract

Years: 1971-2002

Text: Patent/Publication No.: JP10269822

Order This Patent

Family Lookup

Citation Indicators

Go to first matching text

JP10269822 A
PLANAR LIGHT SOURCE
NICHIA CHEM IND LTD
Inventor(s): NAKANISHI EIJI

Application No. 10122850 JP10122850 JP, Filed 19980415,A1 Published 19981009

Abstract: PROBLEM TO BE SOLVED: To observe uniform luminescence of white and optional colors with LEDs by wavelength-converting the light guided to the end face of a light guide plate with a wavelength converting body made of a fluorescent material excited by the luminescence of LEDs and generating fluorescence, guiding the wavelength- converted luminescence to the light guide plate from the end face, and discharging the luminescence from a luminescence observation face.

SOLUTION: A part of the light emitted from LED lamps 2 of a light source is absorbed by the fluorescent material of a wavelength converting body 4, wavelength-converted, discharged, then guided into a light guide plate 1. The luminescence with the color tone synthesized with the luminescence of the LED lamps 2 and the luminescence converted by the

wavelength converting body 4 can be observed from a luminescence observation face side, or the color tone of only the converted luminescence can be observed when all the light from the LED lamps 2 is converted by the wavelength converting body 4. When high-luminance blue LEDs are used for the LEDs, the luminescence can be converted into an optional color tone by a fluorescent material such as phosphors, a fluorescent pigment, or a fluorescent dye.

Int'l Class: F21V00800; F21V00908 G02F0011335 G09F00900

4

Home Search

For further information, please contact: Technical Support | Billing | Sales | General Information

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-269822

(43)公開日 平成10年(1998)10月9日

(51) Int.Cl.		識別記号	FΙ			
F 2 1 V	8/00	601	F 2 1 V	8/00	601E	
	9/08			9/08	В	
· G 0 2 F	1/1335	5 3 0	G 0 2 F	1/1335	5 3 0	
G09F	9/00	3 3 6	G 0 9 F	9/00	336J	
					3 3 6 A	
			審査語	京 有	請求項の数3 Ⅰ	FD (全 4 頁)
(21)出願番号 特願平10-122850 (62)分割の表示 特願平7-228831の分割		(71)出願/	000226	057		
		寺願平7-228831の分割	日亜化学工業株式会社			
(22)出願日		平成7年(1995) 9月6日		徳島県阿南市上中町岡491番地100		
			(72)発明者			
					阿南市上中町岡491	番妝100 日亜化

(54) 【発明の名称】 面状光源

(57)【要約】

【課題】発光面側から蛍光物質の着色が観測されずLE Dを用いた白色及び任意色の面発光が可能な面状光源を 提供することにある。

【解決手段】骨色が発光可能なLEDと、LEDの発光 により励起されて蛍光を発する蛍光物質が具備された波 長変換体と、LEDと波長変換体を介して設けられLE Dからの発光と蛍光物質からの発光とを合成した発光を 端面より導入し発光観測面側から放出する導光板からな る面状光源である。

学工業株式会社内

(74)代理人 弁理士 豊栖 康弘

【特許請求の範囲】

導光板の端面に導入される光を、LEDの発光により励起されて蛍光を発する蛍光物質を具備してなる波長変換体で波長変換し、波長変換された発光を端面から導光板に導入し、この発光を発光観測面から放出するように構成してなることを特徴とする面状光源。

【請求項2】 前記波長変換体がLEDからの発光を透過する樹脂或いはゴムからなる基材と、該基材中に混入された蛍光物質である請求項1に記載の面状光源。

【請求項3】 前記蛍光物質が無機蛍光物質である請求項1又は請求項2に記載の面状光源。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はディスプレイのバックライト、照光式操作スイッチ等に使用されるLEDを用いた面状光源に関する。

[0002]

【従来の技術】液晶ディスプレイ等の薄型表示装置のバックライト用面光源として、LEDが注目されている。 LEDランプを用いた光源は、導光板の厚さ方向にあたる端面よりLEDランプの光を導入し、面方向で全反射させて面状光源とされる。導光板の厚さは通常2~5ミリ程度と薄く、LEDランプはこの薄い導光板の端面に埋め込まれたり、あるいは支持体等を介して密着させることにより光が導光板に導入される。

【0003】一般に液晶ディスプレイのバックライトの発光色はほとんどが白色とされている。しかし、LEDランプを光源に用いて白色発光を得る場合、三原色のLEDを集合させて、同一平面上に幾何学的に同じ位置に配置しても、バックライトとしてはそれらのLEDを接近した位置で視認するため、均一な白色光源とすることは不可能であった。

【0004】このようなことから我々は、特願平5-3 18276号で高輝度青色LEDランプを光源に用い発 光色の色調を変換することにより白色発光可能なLED 面状光源を提案した。この面状光源は、導光板の主面の いずれか一方に、青色LEDの発光により励起されて蛍 光を発する蛍光物質と、蛍光を散乱させる白色粉末とが 混合された蛍光散乱層を形成し、前記青色LEDの発光 の一部を前記蛍光散乱層で波長変換することにより、任 意の発光色を得ることができる。

【0005】また我々は、特願平6-134763号では青色LEDランプを光源に用いた面状光源において、 導光板の発光観測面に、青色LEDの発光により励起されて蛍光を発する蛍光物質が具備されたフィルムを設けて、発光を波長変換することを提案した。この面状光源 は蛍光層が着脱可能なフィルム上に形成されているため、蛍光層が形成されたフィルムを変えるだけで簡単に 色調を変化させることができる。

[0006]

【発明が解決しようとする課題】しかしながら従来の特願平6-134763号に示した面状光源では、蛍光物質が具備されたフィルムを導光板の発光観測面全体に設ける必要があるため、例えば導光板のサイズを大きくした場合、導光板に合わせて蛍光層も大きくしなければならなかった。また、LEDランプ不点灯時でも発光観測面に蛍光層の色が出るため、見栄えが悪く、まぎらわしいという欠点があった。

【0007】上記に示したように骨色LEDの発光波長を変換して任意色の発光が可能な面状光源とすることができるが、その他にもLEDを用いて白色を含めた任意色の発光を可能とする面状光源が望まれている。従って、本発明の目的とするところは、上記欠点を解決し、LEDを用いた白色発光可能な面状光源を実現すると共に、均一な白色及び任意色の発光を観測できる面状光源を提供することにあり、さらには信頼性に優れたLEDの特性を利用し、バックライト、各種操作スイッチ等に利用することにある。

[0008]

【課題を解決するための手段】本発明は、青色が発光可能なLEDからの発光を、導光板の端面から導光板の内部に導入して、この発光を導光板の発光観測面から放出する面状光源を改良したものである。本発明の請求項1の元光では、導光板の端面に導入される光を、LEDの発光により励起されて蛍光を発する蛍光物質を具備してなる波長変換体で波長変換する。波長変換体で波長変換された発光を端面から導光板に導入し、この発光を発光観測面から放出することを特徴とする。また、本発明の請求項2に記載の面状光源は、波長変換体がLEDからの発光を透過する樹脂或いはゴムからなる基材と、該基材中に混入された蛍光物質である。さらに、本発明の請求項3に記載の面状光源は、蛍光物質が無機蛍光物質である。

【0009】 蛍光物質が具備された波長変換体4には、例えばフィルムの表面に蛍光物質が塗布されてなる波長変換シートがあり、この波長変換シートを光源と導光板との接合面の大きさに合わせて切断し、これを介して光源と導光板とを接合させる。また光源からの発光の波長を変換するための蛍光物質としては、蛍光体、蛍光顔料、蛍光染料等がある。これらの蛍光物質は、無機、有機のどちらでも良いが、有機蛍光物質は直流電界により電気泳動を起こし、色調が変化する可能性があるためあまり好ましくない。

【0010】導光板としては、アクリル樹脂、ポリカーボネート等を用いることができる。また支持体としては、白色のポリカーボネート、PBC、ABS等反射効

率の良いものであればよい。

【0011】更に本発明の面状光源は、支持体にLEDランプが装着されてなる光源と、導光板とが弾性体を介して接合されてなる面状光源であって、前記弾性体には前記LEDランプの発光により励起されて蛍光を発する蛍光物質が具備されていることを特徴とする。

【0012】我々は特願平7-182543号で、弾性体を介して光源と導光板とを接合する方法を示した。本発明では更に、この弾性体にLEDランプの発光により励起されて蛍光を発する蛍光物質が具備されているため、弾性体を用いて光源からの発光を効率よく導光板に導入でき、しかも弾性体に含有された蛍光物質により光源からの発光を効率的に波長変換することができる。

【0013】弾性体としては特に限定するものではないが、LEDランプの発光を透過する樹脂やゴムが用いられ、好ましくはシリコン樹脂、シリコンゴム、アクリルフォーム、あるいは弾性のある基材の両面に接着剤が塗布された両面テープや、接着後も弾性を有する透明な接着剤が用いられる。これらの弾性体に波長を変換するための蛍光物質を具備させるには、例えばシリコン、アクリルフォーム、PET等の基材に練り込んだり、接着剤の中に混入させる等の方法がある。

[0014]

【作用】光源のLEDランプから出た光は、光源と導光板との接合部から導光板内に導入され、面方向で全反射されて主面側から発光が観測される。本発明の面状光源は図1に示すように、光源と導光板1とが波長変換を4を介して接合されているため、光源のLEDランプの出た光の一部は、波長変換体4の蛍光物質により変換された後、導光板1にする。地では、発光観測面側からは、LEDランプ2の発光と波長変換体4により変換された発光とを分で変換された発光を観測できる。あるいは、LEDランプ2からの光を全て波長変換体4により変換すれば、その変換された発光のみの色調を観測することも可能である。更にLEDとして高輝度自LEDを用いれば、その発光を蛍光体、蛍光顔料、蛍光染料等の蛍光物質により任意の色調に変換することが可能である。

【0015】また従来の面状光源では、蛍光物質が具備された蛍光層を導光板の発光観測面全体に設ける必要があったが、本発明の面状光源では光源と導光板の接合面のみに設けるため、波長変換材料である蛍光物質の量を従来よりもかなり少なくできるのでコストが下がるという利点がある。

【0016】更に、従来の面状光源は、LEDランプ消灯時でも発光観測面に蛍光物質の色が出ていたが、本発明の面状光源ではこの問題が解消され、消灯時の見栄えが良くなる。

【0017】また本発明の面状光源は、蛍光物質が具備された弾性体を介して光源と導光板とが接合されている

ため、弾性体の作用により光源の発光を効率よく導光板に導入することができる。光源と導光板とを接合するには、突き合わせや接着剤による充填接着等の方法があるが、光源や導光板の接合面が平滑鏡面でなく凹凸がある場合、接合面に隙間が生じ、光源と導光板との間に空気の層が出来てしまい、光の導入効率が悪くなっていた。しかしながら、弾性体を介して接合すると、弾性体がクッションの作用をすることにより、光源と導光板1との間にできた隙間を埋めてしまうため空気の層が出来ないので、光源からの発光が効率よく導光板に導入される。また、接着剤による充填接着で接合していた時に問題となっていた接着剤の流れ出し等の接着ミスは起こらず、気泡が混入する恐れもない。

[0018]

【発明の実施の形態】本発明の面状光源を実施例に基づき説明する。ただし、以下に示す実施例は、本発明の一 実施例を示すものであって、本発明を下記のものに特定 するものではない。

[実施例1]図1は本発明の面状光源を示す斜視図である。アクリル板の裏面に拡散パターンをスクリーン印刷した導光板を作製する。続いて、白色ポリカーボネート支持体3に複数個の高輝度青色LEDランプ2を等間隔で固定して光源を作製する。

【0019】次に、フィルム表面に蛍光層を形成して波長変換体4を得る。蛍光層は、赤色蛍光顔料(シンロイヒ化学製 FA-001)と緑色蛍光顔料(シンロイヒ化学製 FA-005)とを等量に混合した蛍光顔料をアクリル系バインダー中に分散したものを塗布して形成した。

【0020】前記導光板1と光源の支持体とを、図1に示すように波長変換体4を介して接合させて面状光源を得た。この面状光源の青色LEDランプ2を点灯したところ、導光板1の発光観測面からは白色の面状発光が得られた。

【0021】[実施例2] 実施例1と同様にして、導光板1と光源とを作製する。続いて、接着後も弾性を有する接着剤に黄色発光蛍光体(日亜製 NP-204)を混入させた。次に、実施例1の波長変換体4の代わりに、前記蛍光体が含有された弾性接着剤を用いて導光板1と光源とを接合させて面状光源を得た。この面状光源の青色LEDランプ2を点灯したところ、導光板1の発光観測面からは黄緑色の面状発光が得られた。

[0022]

【発明の効果】以上説明したように、本発明の面状光源は光源と導光板とが光源の発光の波長を変換するための 蛍光物質を介して接合されているので、LEDからの発 光が蛍光物質により効率的に波長変換される。従って、 蛍光物質の種類により白色を含め任意色の発光が可能と なる。また、本発明の面状光源では光源と導光板との接 合面のみに波長変換体を設けるため、波長変換材料であ る蛍光物質の量が節約できコストが下がる。

【0023】更に本発明の面状光源は、蛍光物質が具備された弾性体を介して光源と導光板とが接合されるため、光源からの発光を任意の色に変換できるだけでなく、弾性体の作用により各々の接合面に多少の凹凸があっても光源からの発光を効率よく導光板に導入することができる。

【図面の簡単な説明】

【図1】 本発明の面状光源を示す斜視図。 【符号の説明】

1・・・・導光板

2・・・・LEDランプ

3・・・・支持体

4・・・・波長変換体

【図1】

