643

INDEX

	PAGE
ADAMS, C. R., Note on the Existence of Analytic Solutions of Non-homo-	
geneous Linear q-difference Equations, Ordinary and Partial	73
ALEXANDER, J. W., On the Decomposition of Tensors	421
Bell, E. T., Generalizations of the Eight Square and Similar Identities	99
Bell, E. T., On the Arithmetical Applications of the Power Series for	
Theta Quotients	249
Bell, E. T., On Class Number Relations Implied by Representations as	
Sums of an Odd Number of Squares	
Bell, E. T., Irregular Fields	511
BENNETT, A. A., The Four Term Diophantine Arccotangent Relation	21
Bennett, A. A., Incidence and Parallelism in Biaffine Geometry	84
Bennett, A. A., Table of Quadratic Residues	349
Blumberg, H., Non-measurable Functions Connected with Certain Functional	100
Equations	199
CAMPBELL, A. D., Plane Cubic Curves in the Galois Fields of Order 2".	395
Colpitts, J. T., Entire Functions Defined by Certain Power Series	209
COOLIDGE, J. L., Algebraic Potential Curves	177
CRAMLET, C. M., Some General Determinant Theorems in Tensor Notation	373
DEDEBICK, L.S., Successive Derivatives of a Function of Several Functions	385
DINES, L. L., Definite Linear Dependence.	51
Dodd, E. L., The Frequency Law of a Function of Variables with Given	
Frequency Laws	12
FRINK, O., The Operations of Boolean Algebras	401
FRINK, O., A Proof of Petersen's Theorem	491
GEHMAN, H. M., Concerning the Subsets of a Plane Continuous Curve	29
Gehman, H.M., Some Conditions under which a Continuum is a Continuous	
Curve	971
GRAUSTEIN, W. C., Semi-parallel Maps of Surfaces	211
HARTLEY, R. W., Determination of the Ternary Collineation Groups whose	140
Coefficients Lie in the $GF(2^n)$	257
HILLE, E., Miscellaneous Questions in the Theory of Differential Equations.	331
1. On the Method of Frobenius	105
HILLE, E., A Class of Reciprocal Functions.	
HOLLCROFT, T. R., Conditions for Self-dual Curves	958
Hollebort, T. R., Harmonic Cubies	569
Ingold, L., Geometry of a Set of n Functions	101
Jackson, D., Some Convergence Proofs in the Vector Analysis of Function	
Space	
KAUCKÝ, J., A Contribution to the Theory of Finite Differences	
Kerékjártó, B. de, On a Geometrical Theory of Continuous Groups.	
I. Families of Path-curves of Continuous One-parameter Groups of	
the Plane	105
***************************************	100

**

	PAGE
KOOPMAN, B. O., Flow in a Möbius Strip	424
KRYLOFF, N., On the Approximate Solution of the Integro-differential	
Equations of Mathematical Physics	537
Lehmer, D. H., On the Indeterminate Equation $t^2 - p^2 Du^2 = 1$	471
Levy, H., Symmetric Tensors of the Second Order whose Covariant Deri-	
vatives Vanish	91
MacDuffer, C. C., The Nullity of a Matrix Relative to a Field	133
METZLER, W. H., On an Expression of a Minor of Order Two of the mth Compound of a Determinant A in Terms of Minors of A of	
Order Higher than m	129
METZLER, W. H., On Certain Determinant Relations	407
MILLER, G. A., New Proofs of the Simplicity of Every Alternating Group	
whose Degree is not Four	87
MITCHELL, H. H., On Classes of Ideals in a Quadratic Field	297
MITTAG-LEFFLER, G., A Method of Deriving the Infinite Double Products	
in the Theory of Elliptic Functions from the Multiplication Theorems	
MURRAY, F. H., On the Oscillations of a Line near a Position of Equilibrium	47
Nassau, J. J., Some Extensions of the Generalized Kronecker Symbol	
PERKINS, F. W., On the Oscillation of Harmonic Functions	
Shohat, J. A. (J. Chokhate), On the Asymptotic Expressions of Certain	
Definite Integrals	3
SMITH, H. L., Notes on the Ampere-Cauchy Derived Functions	
SMITH, P. A., Approximation of Curves and Surfaces by Algebraic Curves	
and Surfaces	224
STONE, M. H., Developments in Legendre Polynomials	315
TAMARKIN, J., A New Proof of Parseval's Identity for Trigonometric	
Functions	041
THOMAS, J. M., and O. VEBLEN, Projective Invariants of Affine Geometry	~=~
of Paths	279
Thomas, T.Y., On Weyl's Treatment of the Parallel Displacement of a Vector around an Infinitesimal Closed Circuit in an Affinely Connected Mani-	
fold	25
THOMAS, T. Y., Tensors whose Components are Absolute Constants.	548
UHLER, H. S., Least Distance from a Point to a Linear $(n-k)$ -space	0=
in a Linear n-space	65
VANDIVER, H. S., Note on Trinomial Congruences and the First Case of	
Fermat's Last Theorem	54
VANDIVER, H. S., Transformation of the Kummer Criteria in Connection	
With Fermat's Last Theorem	171
VEBLEN, O., and J. M. Thomas, Projective Invariants of Affine Geometry	
of Paths	279
Wedderburn, J. H. M., Note on Matrices in a Given Field	245
Wong, B. C., On Certain Two-dimensional Varieties in r-space and Certain	000
Curves traced on Them	330
Wood, F., Group Velocity and the Propagation of Disturbances in	
Dispersive Media	118

A CONTRIBUTION TO THE THEORY OF FINITE DIFFERENCES.

By Jes. KAUCKÝ.

This paper contains a short demonstration of equation (8) which was treated by H. L. Smith in his paper "On the Ampère-Cauchy derived functions".*

Consider a function f(x) of a single variable which we suppose has a derivative of order n. Let $x_0, x_1, \dots x_n$ be numbers differing from each other and let us form the following sequence of functions:

$$[x_0] = f(x_0), [x_1] = f(x_1), \dots [x_0 x_1] = \frac{[x_0] - [x_1]}{x_0 - x_1}, [x_1 x_2] = \frac{[x_1] - [x_2]}{x_1 - x_2}, \dots [x_0 x_1 \dots x_n] = \frac{[x_0 x_1 \dots x_{n-1}] - [x_1 x_2 \dots x_n]}{x_0 - x_n}.$$

The expression $[x_0 \ x_1 \cdots x_n]$ may be written in the form of an integral. First it is evident that

$$[x_0 x_1] = \int_0^1 dt_1 f'[(1-t_1)x_0 + t_1 x_1];$$

then by complete induction we get easily the general relation

(2)
$$[x_0 x_1 \cdots x_n] = \int_0^1 dt_1 \int_0^{t_1} dt_2 \cdots \int_0^{t_{n-1}} dt_n f^{(n)} [(1-t_1) x_0 + \cdots + (t_{n-1}-t_n) x_{n-1} + x_n t_n].$$

Suppose we are given n numbers $w_1, w_2, \cdots w_n^*$ and form the differences

$$\Delta f(x) = \frac{f(x+w_1) - f(x)}{w_1} \qquad (w_1 \neq 0)$$

and in general

(3)
$$\frac{1}{\Delta} \int_{w_1 w_1 \cdots w_n} f(x) = \int_{w_n} \left(\int_{w_1 w_1 \cdots w_{n-1}}^{n-1} f(x) \right).$$

From this definition there follows first

$$\Delta f(x) = \int_0^1 dt_1 f'(x + w_1 t_1)$$

^{*} These Annals, vol. 25 (1924), p. 124.