E1	ΓXI	ſλ	D
D	l y	VΙ	М

Кафедра ЭВМ

Отчет по лабораторной работе № 4 Тема: «Исследование работы регистров»

Выполнил:

Проверил:

1 ЦЕЛЬ РАБОТЫ

Целью работы является изучить работу параллельного регистра и регистра сдвига.

2 ИСХОДНЫЕ ДАННЫЕ К РАБОТЕ

Работа выполняется на базовом лабораторном стенде NI ELVIS II с использованием модуля dLab10 и dLab11 для исследования работы регистров.

В процессе выполнения данной лабораторной работы требуется выполнить следующие задачи:

Получить таблицы истинности и диаграммы состояний параллельного регистра и регистра сдвига.

При изучении работы параллельного регистра в статическом режиме разобрать:

- Режим параллельной загрузки и хранения;
- Режим управления выходом регистра.

Изучить работу параллельного регистра в динамическом режиме.

При изучении работы регистра сдвига в статическом режиме разобрать:

- Режим сдвига вправо;
- Режим сдвига влево;
- Режим параллельной загрузки;
- Режим хранения.

Изучить работу регистра сдвига в динамическом режиме.

3 КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

3.1 Параллельный регистр

На рисунке 3.1 показана схема четырехразрядного регистра, выполненного на D-триггерах и логических элементах 2И. При подаче управляющего сигнала У1=1 цифровой код, установленный на

информационных входах D0 - D3, записывается в соответствующие разряды четырех D-триггеров. При Y1=Y2=0 цифровой код хранится в регистре, а при Y2=1 происходит параллельное считывание кода, т.е. передача его на выходы Q0 - Q3.

Рисунок 3.1 – Схема четырехразрядного параллельного регистра

Выпускаемые промышленностью регистры иногда объединяются на кристалле микросхемы с другими узлами, совместно с которыми регистры обычно используются в схемах цифровой аппаратуры. Такой интегральной микросхемой является 4-разрядный параллельный регистр К155ИР15, условное графическое обозначение которого приведено на рисунке 3.2.

Рисунок 3.2 - Условное графическое обозначение регистра К555ИР15

Микросхема имеет следующие входы: тактовый С. информационные DO - D3. управления загрузкой P1 и P2, сброса R и считывания выходных

данных E1 и E2. Операция загрузки происходит синхронно с фронтом тактового импульса на входе C. если на входах P1 и P2 одновременно присутствует сигнал логического 0.

Хранящийся в регистре цифровой код может быть считан с выходов Q0 - Q3. если на входы управления считыванием Е1 и Е2 одновременно подан сигнал логического 0. Выходными каскадами данной микросхемы являются буферные логические элементы с тремя логическими состояниями. Если хотя бы на одном из входов присутствует сигнал логической 1, выходы находятся в высокоимпедансном состоянии (Z-состояние) и считывание информации запрещено. Это позволяет подключать выходы регистра непосредственно к шине данных микропроцессорных устройств.

Режимы работы регистра K155ИР15 при различных значениях входных сигналов приведено на рисунке 3.3.

Режим				Bxoo)			Выход
работы	EI	E2	R	C	PI	P2	Dn	Qn
Сброс	0	0	1	×	×	×	×	0
Параллельная	0	0	0	1	0	0	0	0
загрузка	0	0	0	1	0	0	1	0
Vacuanus	0	0	0	×	1	0	×	q_{n}
Хранение	0	0	0	×	0	1	×	q_n
Запрет считы-	1	0	×	×	×	×	×	Z
вания	0	1	×	×	×	×	×	Z

Рисунок 3.3 - Режимы работы регистра К155ИР15 при различных значениях входных сигналов

3.2 Регистр сдвига

Регистр сдвига (shift register) это регистр, содержимое которого при подаче управляющего сигнала на тактовый вход С может сдвигаться в сторону старших или младших разрядов. Схема сдвигающего регистра из цепочки ЈК-триггеров показана на рисунке 3.4.

Рисунок 3.4 – Схема регистра сдвига

Пусть левый по схеме триггер соответствует младшему разряду регистра, а правый триггер - старшему разряду. Тогда вход каждого триггера (кроме левого) подключен к выходу соседнего младшего триггера. Когда на все входы С триггеров поступает срез входного тактового импульса, выход каждого триггера Qi принимает состояние предыдущего каскада и, таким образом, информация, содержащаяся в регистре, сдвигается на один разряд в сторону старших разрядов. Триггер младшего разряда принимает при этом состояние последовательного входа D. Информация, поступившая на вход D схемы, появится на ее выходе Q(m-l) через m тактов.

Существенным является то, что схема построена на двухступенчатых триггерах. Если использовать триггеры с потенциальным управлением, то при активном уровне сигнала С все триггеры будут открыты для записи, и сигнал D успеет пройти столько триггеров, сколько позволит длительность сигнала С.

Часто требуются более сложные регистры: с параллельной синхронной записью информации, реверсивные, с параллельнопоследовательной записью. Такие регистры называются универсальными. Примером универсального регистра служит интегральная микросхема К555ИР11, условное графическое обозначение которой показано на рисунке 3.5.

Рисунок 3.5 – Условное графическое обозначение регистра сдвига

Регистр К555ИР11 может работать в следующих режимах, представленные в таблице 3.6: сброс, хранение данных, сдвиг влево, сдвиг вправо, и параллельная загрузка. Микросхема имеет входы: тактовый (С), параллельной загрузки (DO - D3), выбора режима работы (S0 и S1), асинхронного сброса (R). Данные также могут поступать в регистр в последовательном коде на входы DL (при сдвиге влево) и DR (при сдвиге вправо). Все операции кроме сброса выполняются в регистре синхронно по

фронту тактовых импульсов. Внутренний код регистра может быть прочитан на выходах Q0 - 03.

Режим				Bxo	0				But	ход	
работы	R	C	SI	SO	DR	DL	Dn	Q0	QI	Q 2	Q3
Сброс	0	×	×	×	×	×	×	0	0	0	0
Хранение	1	×	0	0	×	×	×	qo	q_1	q ₂	q ₃
Сдвиг влево	1	1	1	0	×	0	×	\mathbf{q}_1	q_2	q ₃	0
Сдвиг влево	1	1	1	0	×	1	×	\mathbf{q}_1	q_2	q ₃	1
C	1	1	0	1	0	×	×	0	q_0	q_1	q ₂
Сдвиг вправо	1	1	0	1	1	×	×	1	q_0	q ₁	q ₂
Параллельная загрузка	1	1	1	1	×	×	d _n	d ₀	d_1	d ₂	d ₃

Рисунок 3.6 - Режимы работы регистра К155ИР11 при различных значениях входных сигналов

Области применения сдвиговых регистров весьма разнообразны. В двоичной арифметике сдвиг числа на один разряд влево соответствует умножению его на 2, а сдвиг на один разряд вправо - делению пополам. В универсальные регистры преобразуют аппаратуре передачи данных параллельный код в последовательный и обратно. Передача данных последовательным сравнению с параллельной кодом ПО существенно экономит число линий связи, однако при этом увеличивается время обмена.

4 ВЫПОЛНЕНИЕ РАБОТЫ

4.1 Параллельный регистр в статическом режиме

Условное графическое изображение параллельного регистра представлено на рисунке 4.1.

Рисунок 4.1 – Условное графическое параллельного регистра

4.1.1 Режим параллельной загрузки и хранения

Таблица истинности параллельного регистра в режиме параллельной загрузки и хранения в статическом режиме изображена на рисунке 4.2.

	R	E2	E1	P2	P1	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	0	0	0	0	0	0	1	1	0	LΓ	0	1	1	0
Шаг 2	0	0	0	1	0	0	1	1	0	LΓ	0	1	1	0
Шаг 3	0	0	0	0	1	0	1	1	0	LΓ	0	1	1	0
Шаг 4	0	0	0	1	1	0	1	1	0	LΓ	0	1	1	0

Рисунок 4.2 — Таблица истинности параллельного регистра в режиме параллельной загрузки и хранения в статическом режиме

Исходя из вышеперечисленных данных, была построена диаграмма состояний параллельного регистра в режиме параллельной загрузки и хранения в статическом режиме, представленная на рисунке 4.3.

Рисунок 4.3 — Диаграмма состояний параллельного регистра в режиме параллельной загрузки и хранения в статическом режиме

Из полученных таблицы истинности и диаграммы состояний можно сделать вывод, что параллельная загрузка регистра происходит, если на входы Р1 и Р2 подан активный уровень сигнала, равный нулю. Параллельный регистр работает в режиме хранения информации, если хотя бы на один из входов подан неактивный уровень сигнала.

4.1.2 Режим управления выходом регистра

Таблица истинности параллельного регистра в режиме управления выходом регистра изображена на рисунке 4.4.

	R	E2	E1	P2	P1	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	0	0	0	0	0	0	1	1	0	LΓ	0	1	1	0
Шаг 2	0	1	0	0	0	0	1	1	0	LΓ	0	0	0	0
Шаг 3	0	0	1	0	0	0	1	1	0	LΓ	0	0	0	0
Шаг 4	0	1	1	0	0	0	1	1	0	LΓ	0	0	0	0

Рисунок 4.4 — Таблица истинности параллельного регистра в режиме управления выходом регистра

Исходя из вышеперечисленных данных, была построена диаграмма состояний параллельного регистра в режиме управления выходом регистра в статическом режиме, представленная на рисунке 4.5.

Рисунок 4.5 – Диаграмма состояний параллельного регистра в режиме управления выходом регистра

Из полученных таблицы истинности и диаграммы состояний можно сделать вывод, что считывание состояния регистра с выходов Q разрешено, если на входы E1 и E2 подан активный уровень сигнала.

4.2 Параллельного регистра в динамическом режиме

Таблица истинности параллельного регистра в динамическом режиме изображена на рисунке 4.6.

	R	E2	E1	P2	P1	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	0	0	0	0	0	1	1	1	1	LΓ	1	1	1	1
Шаг 2	0	0	1	0	0	1	1	1	1	LΓ	0	0	0	0
Шаг 3	0	0	0	0	1	1	1	1	1	LΓ	1	1	1	1
Шаг 4	1	0	0	0	1	1	1	1	1	LΓ	0	0	0	0

Рисунок 4.6 — Таблица истинности параллельного регистра в динамическом режиме

Исходя из вышеперечисленных данных, была построена диаграмма состояний параллельного регистра в динамическом режиме, представленная на рисунке 4.7.

Рисунок 4.7 – Диаграмма состояний параллельного регистра в динамическом режиме

По вышеприведённой диаграмме работы можно сделать вывод, что регистр меняет своё состояние по положительному перепаду импульса на входе C (из 0 в 1).

4.3 Регистра сдвига в статическом режиме

Условное графическое обозначение регистра сдвига приведено на рисунке 4.8.

Рисунок 4.8 – Условное графическое обозначение регистра сдвига

4.3.1 Регистр сдвига в статическом режиме в режиме сдвига вправо

Таблица истинности регистра сдвига в статическом режиме в режиме сдвига вправо изображена на рисунке 4.9.

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	0	1	1	0	0	0	0	0	LΓ	0	0	0	1
Шаг 2	1	0	1	0	0	0	0	0	0	LF	0	0	1	0
Шаг 3	1	0	1	0	0	0	0	0	0	LΓ	0	1	0	0
Шаг 4	1	0	1	0	0	0	0	0	0	LF	1	0	0	0

Рисунок 4.9 — Таблица истинности регистра сдвига в статическом режиме в режиме сдвига вправо

Исходя из вышеперечисленных данных, была построена диаграмма состояний регистра сдвига в статическом режиме в режиме сдвига вправо, представленная на рисунке 4.10.

Рисунок 4.10 — Диаграмма состояний регистра сдвига в статическом режиме в режиме сдвига вправо

Из полученных таблицы истинности и диаграммы состояний можно сделать вывод, что логическая единица смещается от Q3 к Q0.

4.3.2 Регистр сдвига в статическом режиме в режиме сдвига влево

Таблица истинности регистра сдвига в статическом режиме в режиме сдвига влево изображена на рисунке 4.11.

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	1	0	0	1	0	0	0	0	LΓ	1	0	0	0
Шаг 2	1	1	0	0	0	0	0	0	0	LΓ	0	1	0	0
Шаг 3	1	1	0	0	0	0	0	0	0	LΓ	0	0	1	0
Шаг 4	1	1	0	0	0	0	0	0	0	LΓ	0	0	0	1

Рисунок 4.11 — Таблица истинности регистра сдвига в статическом режиме в режиме сдвига влево

Исходя из вышеперечисленных данных, была построена диаграмма состояний регистра сдвига в статическом режиме в режиме сдвига влево, представленная на рисунке 4.12.

Рисунок 4.12 — Диаграмма состояний регистра сдвига в статическом режиме в режиме сдвига влево

Из полученных таблицы истинности и диаграммы состояний можно сделать вывод, что логическая единица смещается от Q0 к Q3.

4.3.3 Регистр сдвига в статическом режиме в режиме параллельной загрузки

Таблица истинности регистра сдвига в статическом режиме в режиме параллельной загрузки изображена на рисунке 4.13.

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	1	1	0	0	0	1	0	1	LΓ	0	1	0	1
Шаг 2	1	1	1	0	0	1	1	1	1	LΓ	1	1	1	1
Шаг 3	1	1	1	0	0	0	0	1	0	LF	0	0	1	0
Шаг 4	1	1	1	0	0	0	0	1	0	LΓ	0	0	1	0

Рисунок 4.13 — Таблица истинности регистра сдвига в статическом режиме в режиме параллельной загрузки

Исходя из вышеперечисленных данных, была построена диаграмма состояний регистра сдвига в статическом режиме в режиме параллельной загрузки, представленная на рисунке 4.14.

Рисунок 4.14 — Диаграмма состояний регистра сдвига в статическом режиме в режиме параллельной загрузки

Из полученных таблицы истинности и диаграммы состояний можно сделать вывод, что значения на выходах Q0-Q3 соответствуют значениям на входах D0-D3.

4.3.4 Регистр сдвига в статическом режиме в режиме хранения

Таблица истинности регистра сдвига в статическом режиме в режиме хранения изображена на рисунке 4.15.

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	0	0	1	1	0	1	0	1	LF	1	0	1	0
Шаг 2	1	0	0	1	1	1	1	1	1	LΓ	1	0	1	0
Шаг 3	1	0	0	1	1	0	0	1	0	LΓ	1	0	1	0
Шаг 4	1	0	0	1	1	0	0	1	0	LF	1	0	1	0

Рисунок 4.15 — Таблица истинности регистра сдвига в статическом режиме в режиме хранения

Исходя из вышеперечисленных данных, была построена диаграмма состояний регистра сдвига в статическом режиме в режиме хранения, представленная на рисунке 4.16.

Рисунок 4.16 — Диаграмма состояний регистра сдвига в статическом режиме в режиме хранения

Из полученных таблицы истинности и диаграммы состояний можно сделать вывод, что если на входы S0 и S1 подан сигнал логический ноль, а также на входы DR и DL подан сигнал логическая единица, то регистр работает в режиме хранения информации. Сводная таблица истинности представлена ниже.

Таблица 4.3.1 – Таблица истинности регистра сдвига

R	S1	S0	C	$Q3_{n+1}$	$Q2_{n+1}$	$Q1_{n+}$	$Q0_{n+1}$	
						1		
0	-	-	-	0	0	0	0	Сброс
1	0	0	-	Q3 _n	Q2 _n	Q1 _n	$Q0_n$	Хранение
1	0	1	0-1	Q2 _n	Q1 _n	Q0 _n	DR	Сдвиг вправо
1	1	0	0-1	DL	Q3 _n	Q2 _n	Q1 _n	Сдвиг влево
1	1	1	0-1	D3	D2	D1	D0	Загрузка

4.4 Регистр сдвига в динамическом режиме

Таблица истинности регистра сдвига в динамическом режиме изображена на рисунке 4.17.

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	0	1	1	1	1	1	1	1	LΓ	0	0	0	1
Шаг 2	1	1	0	1	1	1	1	1	1	LΓ	1	0	0	0
Шаг 3	1	1	1	1	1	1	1	1	1	LΓ	1	1	1	1
Шаг 4	0	1	1	1	1	1	1	1	1	LΓ	0	0	0	0

Рисунок 4.17 – Таблица истинности регистра сдвига в динамическом режиме

Исходя из вышеперечисленных данных, была построена диаграмма состояний регистра сдвига в динамическом режиме, представленная на рисунке 4.18.

Рисунок 4.18 — Диаграмма состояний регистра сдвига в динамическом режиме

По вышеприведённой диаграмме состояний работы можно сделать вывод, что регистр меняет своё состояние по отрицательному перепаду импульса на входе С (из 1 в 0).

5 ВЫВОД

В ходе выполнения лабораторной работы была изучена работа параллельного регистра и регистра сдвига в статическом и динамическом режимах.

При изучении работы параллельного регистра в режиме параллельной загрузки и хранения были получены таблица истинности и диаграмма состояний. Определены, при каких значениях сигналов Р1 и Р2 происходит параллельная загрузка регистра, а при каких регистр находится в режиме хранения информации.

При изучении работы параллельного регистра в режиме управления выходом регистра были получены таблица истинности и диаграмма состояний. Определены, при каких значениях сигналов E1 и E2 разрешено считывание состояния регистра с его выходов Q0, Q1, Q2 и Q3.

При изучении работы параллельного регистра в динамическом режиме были получена диаграмма состояний и таблица истинности. Определены, по какому перепаду на тактовом входе С, а также при каких значениях управляющих сигналов на входах R, P1, P2, E1 и E2 происходит изменения состояния регистра в режимах параллельной загрузки и сброса.

При изучении работы регистра сдвига в режиме сдвига вправо были получены диаграмма состояний и таблица истинности. Определены, в каком направлении смещается логическая единица, записанная в регистр на первом такте.

При изучении работы регистра сдвига в режиме сдвига влево были получены диаграмма состояний и таблица истинности. Определены, в каком направлении смещается логическая единица, записанная в регистр на первом такте.

При изучении работы регистра сдвига в режиме параллельной загрузки были получены диаграмма состояний и таблица истинности. Проверено соответствие выходных сигналов регистра Q0, Q1, Q2 и Q3 сигналам на входах параллельной загрузки D0, D1, D2 и D3.

При изучении работы регистра сдвига в режиме хранения были получены диаграмма состояний и таблица истинности. Составлена сводная таблица истинности регистра сдвига.

При изучении работы регистра сдвига в динамическом режиме были получены диаграмма состояний и таблица истинности. Определены, по какому перепаду на тактовом входе С регистра сдвига происходит изменения состояния счетчика в режимах сдвига вправо, сдвига влево, параллельной загрузки и сброса.