实验二 运算器实验

一、实验目的

- 1、了解算术逻辑运算器(74LS181)的组成和功能。
- 2、掌握基本算术和逻辑运算的实现方法。

二、实验内容

运用算术逻辑运算器 74LS181 进行有符号数/无符号数的算术运算和逻辑运算。

三、实验器件

- 1. 算术逻辑运算器(74LS181)。
- 2. 三态门(74LS244)及寄存器(74LS273、74LS373)。
- 3. RESPACK-8: 排阻
- 4. DIPSWC 8: 拨码开关
- 5. 7SEG-BCD:显示一位数字
- 6. 7SEG-BCD-GRN: 显示一位数字
- 7. 4078: 8 输入端的或门
- 8. 74LS04: 反相器, 非门
- 9. BUS: 总线
- 10. SW-SPDT: 单刀双掷开关
- 11. LED-GREEN: 用来表示 ZF/CF/SF 的值
- 12. LED-RED: 用来表示 ZF/CF/SF 的值
- 13. LED-YELLOW: 用来表示 ZF/CF/SF 的值

本实验的算术逻辑运算器电路:输入单元(拨码开关)用来提供参与运算的数据,输出单元(数码显示管 7SEG-BCD/7SEG-BCD-GRN)显示总线 BUS 的内容。运算器则由两个集成电路芯片 74LS181 以串行进位形式构成 8 位运算器(ALU): ALU_L4B 为低 4 位运算芯片,ALU_H4B 为高 4 位运算芯片。ALU_L4B 的进位输出端 CN+4 与ALU_H4B 的进位输入端 CN 相连,使低 4 位运算产生的进位送进高 4 位运算中。ALU_L4B 的进位输入端 CN 连接到外来进位端开关 ALU_CN,ALU_H4B 的进位输出端 CN+4 经过反相器 74LS04,通过三态门接到溢出标志位 CF 指示灯(CF=1,即 ALU 运算结果溢出)。

ALU 有三个标志位:溢出标志位 CF(最高位产生进位),零标志位 ZF(ZF=1,ALU 运算结果为 0)和符号标志位 SF(SF=1,运算结果为负数; SF=0,运算结果为正数或 0)。

ALU 的工作方式可通过设置两个 74LS181 芯片的控制信号(ALU_S0、S1、S2、S3、M及 CN)来实现, 其逻辑功能表如表 2-1 所示, 表中"A"和"B"分别表示参与运算的两个数, "+"表示逻辑或, "加"表示算术求和。

S3	S2	S1	S0	M=0 (3	M=1	
				CN=1 无进位	CN=0 有进位	(逻辑运算)
0	0	0	0	F=A	F=A 加 1	$F = \overline{A}$
0	0	0	1	F = A + B	F= (A+B) 加1	$F = \overline{A + B}$
0	0	1	0	$F = A + \overline{B}$	$F=(A+\overline{B})$ 加1	$F = \overline{AB}$
0	0	1	1	F=0 减 1	F=0	F=0
0	1	0	0	$F = A \parallel A \overline{B}$	$F = A \parallel A \overline{B} \parallel 1$	$F = \overline{AB}$
0	1	0	1	$F = (A+B) \ln A\overline{B}$	$F=(A+B)$ 加 $A\overline{B}$ 加1	$F = \overline{B}$
0	1	1	0	F= A 减 B 减 1	F= A 减 B	$F=A\oplus B$
0	1	1	1	$F=A\overline{B}$ 减 1	$F = A\overline{B}$	$F = A\overline{B}$
1	0	0	0	$F=A \parallel AB$	F= A 加 AB 加 1	$F = \overline{A} + B$
1	0	0	1	$F=A \parallel B$	F=A加 B 加 1	$F = \overline{A \oplus B}$
1	0	1	0	$F = (A + \overline{B}) \operatorname{m} AB$	$F = (A + \overline{B}) \operatorname{m} AB \operatorname{m} 1$	F=B
1	0	1	1	F= AB 减 1	F=AB	F = AB
1	1	0	0	$F=A \parallel A$	F= A 加 A 加 1	F=1
1	1	0	1	F=(A+B)加A	F= (A+B) 加A加1	$F = A + \overline{B}$
1	1	1	0	$F = (A + \overline{B}) $	$F=(A+\overline{B})$ $mAm1$	F = A + B
1	1	1	1	F= A 减 1	F=A	F=A

表 2-1 74LS181 逻辑功能表

注意: +表示或, 加表示算数加法, 0表示8位全零, 1表示8位全1.

运算器 ALU 的输出经过三态门(74LS244)和数据总线 BUS 相连。当运算器使能开关低电平有效(ALU_OE=0)的时候,运算器三个部位的三态门 244 状态为直通:74LS181 的控制信号(S0~S3、M、CN)全部连通;74LS181 的运算标志位(CF、ZF和SF)的指示灯全部连通;以及 74LS181 的运算结果输出到数据总线 BUS。当ALU_OE=1 的时候,74LS181 停止工作,此时 74LS181 的输出端数据为无效数据,与数据总线 BUS 隔断。

运算器 ALU 的两个数据输入端分别由两个数据锁存器(74LS273)DRA、DRB 锁存, 74LS181 将 DRA、DRB 内的数据作为上述表 2-1 中参与运算的数 A 和 B。由于DRA、DRB 已经把数据暂存,只要 74LS181 的控制信号不变,那么 74LS181 的输出数

据也不会发生改变。数据锁存器 DRA、DRB 的输入连至数据总线 BUS,在 DRA_CLK、DRB_CLK 端开关出现上升沿跳变的时候,总线 BUS 的数据分别打入 DRA、DRB 锁存。

五、实验步骤

- 1、放置 RESPACK-8 和 DIPSWC_8,通过总线将这两个器件连接起来,注意接电源和接地。
- 2、放置多个单刀双掷开关,用来控制 S0, S1, S2, S3, CN, M, 还有 ALU 输出 (低电平有效), DIPSWC_8 (低电平有效)输出和两个存储 A和 B的寄存器,并且都高电平连接电源,低电平接地。
- 3、放置两个 74LS244 和 74LS273,DIPSWC_8 与两个 74LS244 通过总线相连,74LS244 与 74LS273 通过总线相连,74LS244 的作用为控制总线上 DIPSWC_8 的数据流通,避免与结果数据冲突,74LS273 的作用为储存进行运算的两个数值。
- 4、放置两个 74LS181 和 74LS244, 74LS273 通过总线与 74LS181 相连,依次连接单刀双掷开关(S0, S1...)和 74LS244 和 74LS181。
- 5、放置 3 个 74LS244,一个 4078,一个 74LS04,三个 LED,其中一 74LS244 与三个 LED 相连。
- 6、放置一个7SEG-BCD,一个7SEG-BCD-GRN,用来显示数字,与总线相连。每一个总线都必须命名,总线的命名格式为: name[0..n], name 为总线的名字,n 为总线数量,与总线相连的每一条线都要命名,格式为: namei, name 为相连的总线的名字,i=0,1,2,3....n
- 7、启动仿真前,令(S3,S2,S1,S0,M,CN) = (1,1,1,1,1,1), DRA_CLK = DRB_CLK = 0, SW_BUS = ALU_OE = 1;
- 8、启动仿真后, $\overline{SW}_{BUS} = 0$,使用拨码开关,选择一个 8 位的二进制值 0xAA,将 DRA-CLK 置为 1,将值存进锁存器 DRA,再将 DRA-CLK 置为 0,再次使用拨码开关,选择一个 8 位的二进制值 0x55,将 DRB-CLK 置为 1,将值存进锁存器 DRB,再将 DRB-CLK 置为 0,再令 $\overline{SW}_{BUS} = 1$ 。
- 9、设置 ALU_OE=0, 然后改变运算器的控制信号(S3,S2,S1,S0,M,CN), 观察运算器的输出 F 和标志位 CF、SF、ZF, 并且把输出 F 填入下表。

						M=0(算术运算)		标志位 CF/ZF/SF		M=1
DRA	DRB	S3	S2	S1	S0	CN=1	CN=0	CN=1	CN=0	逻辑运算
						无进位	有进位	无进位	有进位	
0xAA	0x55	0	0	0	0	F=	F=			F=
		0	0	0	1	F=	F=			F=
		0	0	1	0	F=	F=			F=
		0	0	1	1	F=	F=			F=
		0	1	0	0	F=	F=			F=
		0	1	0	1	F=	F=			F=
		0	1	1	0	F=	F=			F=
		0	1	1	1	F=	F=			F=
		1	0	0	0	F=	F=			F=
		1	0	0	1	F=	F=			F=
		1	0	1	0	F=	F=			F=
		1	0	1	1	F=	F=			F=
		1	1	0	0	F=	F=			F=
		1	1	0	1	F=	F=			F=
		1	1	1	0	F=	F=			F=
		1	1	1	1	F=	F=			F=

六、思考题

- 1. 74LS181运算器可以区分有符号数运算和无符号数运算么?可以执行无符号数的加法和减法运算么?对于有符号数的运算,74LS181运算器是补码运算器还是原码运算器?
- 2. 在 74LS181 运算器的通路中,输入锁存器 DRA、DRB 的作用是什么?运算结果输出端连接的 74LS244 缓冲器的作用是什么?假设去掉其中一个输入锁存器,使得 74LS181 的输入直连总线,运算器还能正常工作么?假设去掉输出端74LS244 缓冲器,使得 74LS181 运算器的输出直连总线,运算器还能正常工作么?
- 3. 当 74LS181 运算器进行无符号数运算的过程中,运算结果的标志位 SF 有无意义? 在有符号数运算过程中,标志位 CF 的含义是一致的么?如果做两个有符号数加法"A+0",标志位 CF 会置位么?如果做两个有符号数减法"A-0",标志位 CF 会置位么?在什么情况下有符号数的加法会出现标志位 CF 置位?

电路图

说明:这里使用总线 BUS_[0..7]的原因是,在使用拨码开关输入值的时候,上面是会显示你输入的数值的。如果断开 BUS_[0..7],则看不到。因为相连,为了避免总线冲突,需要使用 ALU_BUS 和 SW BUS 来控制器件向总线输入信号,所以这两个只能同时一个是低电位(低电位有效)。

FAQ:

1. 问:怎么输入A和B的值?

答:、启动仿真后, $\overline{SW_BUS}$ = 0,使用拨码开关,选择一个 8 位的二进制值 0xAA,将 DRA-CLK 置为 1,将值存进锁存器 DRA,再将 DRA-CLK 置为 0;再次使用拨码开关,选择一个 8 位的二进制值 0x55,将 DRB-CLK 置为 1,将值存进锁存器 DRB,再将 DRB-CLK 置为 0,再令 $\overline{SW_BUS}$ = 1。这样 DRA 和 DRB 就分别存有你输入的两个值。

2. 问:器件某个输出端口为灰色

答:这种一般是连接总线的问题,检查是否总线没有命名,端口与总线相连的线是否有命名,是否存在端口与总线相连的线的命名重复。

3. 问: DRA-CLK 和 DRB-CLK 的作用

答:用来控制向 DRA 或者 DRB 输入值,高电平有效。比如当 DRA-CLK=1 时,拨码开关的值将会存入 DRA。