```
rarity(metadata, padding = False, save_output = False, path = "./", name = "Collection", plotting =
   True, plt_xaxis = "Harmonic", plt_yaxis = "Geometric", ind_sig = 0.99, save_graph = False)
```

Dependencies

To use the rarity class, ensure you have the following Python packages installed: os (standard libraries), pandas, numpy, scipy, matplotlib.

If using the notebook version of this package, ensure your environment supports Jupyter or is run in a compatible IDE (e.g., VSCode, JupyterLab).

Inputs

Parameter	Type	Default	Description
metadata	pd.DataFrame	-	Metadata DataFrame of the NFT collection. Each row is a token with its ID as the index; each column is a trait with the column name as the trait name.
padding	bool	TRUE	Whether to pad missing trait values. If True, missing data is filled with a placeholder (e.g., 'None').
$save_output$	bool	False	Whether to save output data into CSVs.
path	str	·./ [,]	Directory path where output data will be saved.
name	str	'Collection'	Name of the NFT collection. Used in output CSV filenames and plot titles.
plotting	bool	TRUE	Whether to generate visualizations comparing rarity ranks across methods.
plt_xaxis	str	'Geometric'	Name of the rarity method for the x-axis of the comparison plot (options include 'Harmonic', 'Geometric', 'Arithmetic', 'TN_Harmonic', 'TN_Geometric', 'TN_Arithmetic', where 'TN' stands for trait-normalized').
plt_yaxis	str	'Harmonic'	Name of the rarity method for the y-axis of the comparison plot (options include 'Harmonic', 'Geometric', 'Arithmetic', 'TN_Harmonic', 'TN_Geometric', 'TN_Arithmetic', where 'TN' stands for trait-normalized').
ind _sig	float	0.99	Threshold for trait independence test. Passing the test indicates that the pair of traits tested are independent.
save_graph	bool	False	If True, scatter plots are exported as a standalone png file.

Methods

rarity.run()

Executes the full rarity analysis pipeline:

- Computes trait frequency matrix
- \bullet Calculates multiple rarity values, scores and ranks such as 'Harmonic', 'Geometric', 'Arithmetic', 'TN_Harmonic', 'TN_Geometric', 'TN_Arithmetic'.
- Assesses trait independence
- Optionally save these outputs into CSVs
- Optionally generates visual plots for rarity comparison and save plots

Attributes

Attribute	Description
original_padding metadata	A string explaining whether the metadata has already been padded prior to download. DataFrame of metadata after padding and cleaning.
attr_prob	DataFrame on the token-level trait frequencies.
${\tt rarity_metrics}$	DataFrame containing rarity values, scores and ranks across all methods for each token.
independ	Matrix showing pairwise trait independence evaluations and criteria.
${ t ind_pair_result}$	A dictionary containing number of independent trait pair (ITP), number of total trait pairs (TTP), and ITP/TTP.
cramersV	DataFrame containing Cramer's V test result.

Output

- save_output = True exports attr_prob, rarity_metrics, independ, cramersV.
- save_graph = True (plotting = True required) exports a rank-rank comparison plot between methods.

Example

```
import pandas as pd
import os
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
from scipy.stats.distributions import chi2
from Func_rarity import rarity # if using Func_rarity.py, or otherwise %run Func_rarity.ipynb
# Load metadata
path = os.getcwd()
collection_name = "BoredApeYachtClub"
Address = "0xBC4CA0EdA7647A8aB7C2061c2E118A18a936f13D"
metadata = pd.read_csv(collection_name + "_Address_" + Address + "_metadata.csv")
# Create rarity analyzer
rc = rarity(
   metadata = metadata,
   padding = False,
   save_output = False,
   path = path,
   name = collection_name,
   plotting = True,
   plt_xaxis = "Harmonic",
   plt_yaxis = "Geometric",
    ind_sig = 0.99,
    save_graph = True
)
# Run rarity analysis
rc.run()
# Access attributes such as rarity metrics
rc.rarity_metrics
```

Notes

- This class assumes a tabular structure: rows = tokens, columns = traits.
- Missing traits are optionally padded to ensure fair scoring.
- Trait independence is based on statistical similarity of value distributions.