with

$$\begin{split} [L^2,L_z] &= [L_x^2 + L_y^2 + L_z^2, L_z] \\ &= L_x[L_x,L_z] + [L_x,L_z]L_x \\ &+ L_y[L_y,L_z] + [L_y,L_z]L_y + (L_z^2,L_z) \\ &= L_x(-i\hbar)L_y + (-i\hbar)L_yL_x + L_y(i\hbar)L_x + (i\hbar)L_xL_y + 0 \\ &= 0 \end{split}$$

Thus operators L^2 and L_z commute and, continuing in the same way, it can be shown that

$$[L^2, L_x] = [L^2, L_y] = [L^2, L_x] = 0$$
 (19.29)

Eigenvalues of the angular momentum operators

We will now use the commutation relations for L^2 and its components to find the eigenvalues of L^2 and L_z , without reference to any specific wavefunction. In other words, the eigenvalues of the operators follow from the structure of their commutators. There is nothing particular about L_z , and L_x or L_y could equally well have been chosen, though, in general, it is not possible to find states that are simultaneously eigenstates of two or more of L_x , L_y and L_z .

To help with the calculation, it is convenient to define the two operators

$$U \equiv L_x + iL_y$$
 and $D \equiv L_x iL_y$.

These operators are not Hermitian; they are in fact Hermitian conjugates, in that $U^{\dagger}=D$ and $D^{\dagger}=U$, but they do not represent measurable physical quantities. We first note their multiplication and commutation properties:

$$UD = (L_x + iL_y)(L_x - iL_y) = L_x^2 + L_y^2 + i[L_y, L_x]$$

= $L^2 L_z^2 + hL_z$, (19.30)

$$DU = (L_x - iL_y)(L_x + iL_y) = L_x^2 + L_y^2 - i[L_y, L_x]$$

= $L^2 - L_z^2 - \hbar L_z$, (19.31)

$$[L_z, U] = [L_z, L_x] + i[L_z, L_y] = i\hbar L_y + \hbar L_x = \hbar U,$$
 (19.32)

$$[L_z, D] = [L_z, L_x]i[L_z, L_y] = i\hbar L_y - \hbar L_x = -\hbar D$$
(19.33)

In the same way as was shown for matrices, it can be demonstrated that if two operators commute they have a common set of eigenstates. Since L^2 and L_z commute they possess such a set; let one of the set be $|\psi\rangle$ with

$$L^2|\psi\rangle = a|\psi\rangle$$
 and $L_z|\psi\rangle = b|\psi\rangle$.

Now consider the state $|\psi'\rangle = \mathbf{U}|\psi\rangle$ and the actions of \mathbf{L}^2 and L_z upon it.