Geometry of first order equation

Let J^1M be a space of first jets of functions on manifold M. Coordinates on J^1M are (p_i, q^j, u) , where q^j are coordinates on M. Jet of every function u = u(x) has coordinates $\left(p_i = \frac{\partial u}{\partial x q^i}, q^i, u\right)$.

Consider \mathcal{C} , the Cartan distribution of 2n-dimensional planes in J^1M defined by the form $\omega = p_i dq^i - du$

$$C_{\mathbf{p}} \subset T_{\mathbf{p}}J^1M = \{T_{\mathbf{p}}(J^1M) \ni \mathbf{X} : \ \omega(\mathbf{X}) = 0\},$$

Vector field

$$M^i \frac{\partial}{\partial q^i} + N_i \frac{\partial}{\partial p_i} + A \frac{\partial}{\partial u}$$
 belongs to Cartan distribution \mathcal{C} if $A = p_i M^i$.

 \mathcal{C} is non-integrable distribution.

Consider differential equation,

$$\mathcal{E}: F(p, q, u) = 0.$$

Differential equation is sumbmanifold of codimension 1 in the space $J^1(M)$.

The Cartan distribution \mathcal{C} of hyperplanes on J^1M defines distribution $\mathcal{C}(\mathcal{E})$ in $T\mathcal{E}$:

$$\mathcal{C}(E) = \mathcal{C} \cap T\mathcal{E} .$$

$$\mathbf{X} = M^{i} \frac{\partial}{\partial q^{i}} + N_{i} \frac{\partial}{\partial p_{i}} + A \frac{\partial}{\partial u} \in \mathcal{C}(\mathcal{E}) \text{ if } A = p_{i} M^{i} \& \left(M^{i} \frac{\partial}{\partial q^{i}} + N_{i} \frac{\partial}{\partial p_{i}} + A \frac{\partial}{\partial u} \right) F(p, q, u) \big|_{F=0} = 0.$$

The solution of differential equation (1) is the maximal integral of the distribution $C(\mathcal{E})$, which is the *n*-dimensional submanifold in M. (We come to the *n*-parametric family of solutions?)

Quesion: Why

Let N be an arbitrary solution, N is the surface of dimension n and any tangent plane to N belongs to Cartan distribution and is tangent to \mathcal{E} . Consider an arbitrary point $\mathbf{p} \in N$. Let $\alpha = \alpha_{\mathbf{p}}$ be the tangent plane. The vectors in tangent plane belong to distribution $\mathcal{C}_{\mathcal{E}} = \mathcal{C} \cap \mathcal{E}$, i.e. they are orthogonal to the covector (1-form) in 2n + 1dimensional space

$$\omega_C = (1, 0, \dots, 0, -p_1, \dots, -p_n),$$
 (the vector belongs to Cartan distribution \mathcal{C})

and to the covector

$$dF = \left(F_u, \frac{\partial F}{\partial q^1}, \dots, \frac{\partial F}{\partial q^n}; \frac{\partial F}{\partial p_1}, \dots, \frac{\partial F}{\partial p_n}\right), \quad \text{(the vector is tangent to the differential equation } \mathcal{E} = \alpha_{\mathbf{p}} \ni \mathbf{X} \Leftrightarrow \omega_C(\mathbf{X}) = dF(\mathbf{X}) = 0.$$

Definition The point **p** is not singular point if the rank of the matrix $\begin{pmatrix} \omega_C \\ dF \end{pmatrix}$ is equal to 2. IN this case the dimension of

I continue this file the first day of the New Year.....