線形写像の階数

次の定理は、行列の階数のさらに本質的な意味を明らかにし、行列の階数 が行変形の仕方によらずに決まることを念押しするような定理である。

ref: 行列と行列式の基 礎 p100

・ 行列の階数と像空間の次元の一致 行列の階数は像空間の次元である。

すなわち、A を $m \times n$ 型行列とするとき、

rank A = dim Im A

証明

主列ベクトルによる像空間の基底の構成で示したように、A の主列ベクトル $oldsymbol{a}_{i_1}$, $oldsymbol{a}_{i_2}$, . . . , $oldsymbol{a}_{i_r}$ は $\operatorname{Im} A$ の基底を成す。

よってその個数 $r = \operatorname{rank} A$ は $\operatorname{Im} A$ の次元である。

この定理から、線形写像に対して、像空間の次元をその階数と定める。

 $f: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像とするとき、f の階数を

rank f = dim Im f

と定義する。