Artikel		Stützlänge	cm
Bautiefe	cm	Eigengewicht	N/m
I,	cm ⁴	I_{y}	cm ⁴
I s	cm ⁴	λ ₋₂₀	
I_{ν}	cm ⁴	λ_{20}	
v		λ_{80}	
Tributary Area	m^2	C_{pe}/C_{pe_1}	

Äußere Einwirkungen

Projektname:

Bauort:

Datum:

Bearbeiter:

Max. Biegemomente

		kN ·cm			
		$\mathcal{M}_{_{omax}}$	$\mathcal{M}_{_{umax}}$	$M_{_{vmax}}$	$M_{\scriptscriptstyle temp}$
Sommer	(1/2) Wind				
	Temperatur				
Winter	Wind				
	Temperatur				

Max. Biege- und Schubspannungen

	_	N/mm ²			N/mm	
		σ ₀₀	σ_{ou}	σ_{uo}	σ_{uu}	$\mathcal{T}_{_{V}}$
Sommer	(1/2) Wind					
	Temperatur					
	$\Sigma(\sigma_{xx}\Phi)$					
Winter	Wind					
	Temperatur					
	$\Sigma(\sigma_{xx}\Phi)$					
	$\sigma_{max}/\beta_{0.2} =$					
τ	(IPS/A) _ Soi	mmer				
l m	$/(R^S/A_2) = \begin{cases} Son \\ V \end{cases}$	Vinter				
	$20 / R^{T} = \begin{cases} Sor \\ V \end{cases}$	mmer				
	20/m/={ N	Vinter				

Max. Verformungen

Horizontale Verformung

$$\delta_z$$
 =

$$\delta_{z_allow} =$$

$$\delta_z$$
 / δ_{z_allow} =

$$1.1(T_{vw}+T_{vt})/(R^s/A_2) = \begin{cases} Sommer \\ Winter \end{cases}$$

Vertikale Verformung

$$\delta_v =$$

$$\delta_{y_allow} = min(L/300, \, 3mm) =$$

$$\delta_y \, / \, \delta_{y_allow} =$$

Projektname:

Bauort:

Datum:

Bearbeiter: