COMP170 Discrete Mathematical Tools for Computer Science Big O Notation

Version 2.1: Last updated, Nov 3, 2008

(You'll see more details in COMP171 and COMP271.)

(You'll see more details in COMP171 and COMP271.)

Which function is "bigger"?

$$\frac{1}{10}n^2$$
 or $100n + 10000$

(You'll see more details in COMP171 and COMP271.)

Which function is "bigger"?

$$\frac{1}{10}n^2$$
 or $100n + 10000$

Answer depends upon value of n.

(You'll see more details in COMP171 and COMP271.)

Which function is "bigger"?

$$\frac{1}{10}n^2$$
 or $100n + 10000$

Answer depends upon value of n.

In Computer Science we are usually interested in what happens when our problem input size gets large.

Notice that when n is "large enough" $\frac{1}{10}n^2$ gets much bigger than 100n+10000 and stays larger.

Notice that when n is "large enough" $\frac{1}{10}n^2$ gets much bigger than 100n + 10000 and stays larger.

```
Function f(n) = O(g(n)):

(read: f(n) is O of g(n))
```

Notice that when n is "large enough" $\frac{1}{10}n^2$ gets much bigger than 100n+10000 and stays larger.

```
Function f(n) = O(g(n)):

(read: f(n) is O of g(n))
```

If (i) There is some positive $x_0 \in R$ such that (ii) There is some positive $c \in R$

Notice that when n is "large enough" $\frac{1}{10}n^2$ gets much bigger than 100n + 10000 and stays larger.

Function
$$f(n) = O(g(n))$$
:

(read: $f(n)$ is O of $g(n)$)

- If (i) There is some positive $x_0 \in R$ such that
 - (ii) There is some positive $c \in R$

$$\forall x \geq x_0 \qquad f(x) \leq cg(x)$$
.

Note that the opposite is **not** true!

Why? (Proof by contradiction)

Note that the opposite is **not** true!

Why? (Proof by contradiction)

More Examples:

Note that the opposite is **not** true!

Why? (Proof by contradiction)

More Examples:

$$4n^2$$

$$8n^2 + 2n - 3$$

$$n^2/5 + \sqrt{n} - 10\log n$$

$$n(n-3)$$
 are all $O(n^2)$.

Two functions f(n), g(n) have the same order of growth if

$$f(n) = O(g(n))$$
 and $g(n) = O(f(n))$.

Two functions f(n), g(n) have the same order of growth if

$$f(n) = O(g(n))$$
 and $g(n) = O(f(n))$.

In this case we say

$$f(n) = \Theta(g(n))$$

which is the same as

$$g(n) = \Theta(f(n))$$

- $3n^2 + 4n = \Theta(n)$?
- $3n^2 + 4n = \Theta(n^2)$?
- $3n^2 + 4n = \Theta(n^3)$?
- $n/5 + 10n \log n = \Theta(n^2)$?
- $n^2/5 + 10n \log n = \Theta(n \log n)$?
- $n^2/5 + 10n \log n = \Theta(n^2)$?

•
$$3n^2 + 4n = \Theta(n)$$
?

No

•
$$3n^2 + 4n = \Theta(n^2)$$
?

•
$$3n^2 + 4n = \Theta(n^3)$$
?

•
$$n/5 + 10n \log n = \Theta(n^2)$$
?

•
$$n^2/5 + 10n \log n = \Theta(n \log n)$$
?

•
$$n^2/5 + 10n \log n = \Theta(n^2)$$
?

•
$$3n^2 + 4n = \Theta(n)$$
?

No

•
$$3n^2 + 4n = \Theta(n^2)$$
?

Yes

•
$$3n^2 + 4n = \Theta(n^3)$$
?

•
$$n/5 + 10n \log n = \Theta(n^2)$$
?

•
$$n^2/5 + 10n \log n = \Theta(n \log n)$$
?

•
$$n^2/5 + 10n \log n = \Theta(n^2)$$
?

•
$$3n^2 + 4n = \Theta(n)$$
?

No

•
$$3n^2 + 4n = \Theta(n^2)$$
?

Yes

•
$$3n^2 + 4n = \Theta(n^3)$$
?

No, but $O(n^3)$

- $n/5 + 10n \log n = \Theta(n^2)$?
- $n^2/5 + 10n \log n = \Theta(n \log n)$?
- $n^2/5 + 10n \log n = \Theta(n^2)$?

•
$$3n^2 + 4n = \Theta(n)$$
?

No

•
$$3n^2 + 4n = \Theta(n^2)$$
?

Yes

•
$$3n^2 + 4n = \Theta(n^3)$$
?

No, but $O(n^3)$

•
$$n/5 + 10n \log n = \Theta(n^2)$$
?

No, but $O(n^2)$

•
$$n^2/5 + 10n \log n = \Theta(n \log n)$$
?

•
$$n^2/5 + 10n \log n = \Theta(n^2)$$
?

•
$$3n^2 + 4n = \Theta(n)$$
?

No

•
$$3n^2 + 4n = \Theta(n^2)$$
?

Yes

•
$$3n^2 + 4n = \Theta(n^3)$$
?

No, but $O(n^3)$

•
$$n/5 + 10n \log n = \Theta(n^2)$$
?

No, but $O(n^2)$

•
$$n^2/5 + 10n \log n = \Theta(n \log n)$$
? No

•
$$n^2/5 + 10n \log n = \Theta(n^2)$$
?

•
$$3n^2 + 4n = \Theta(n)$$
?

No

•
$$3n^2 + 4n = \Theta(n^2)$$
?

Yes

•
$$3n^2 + 4n = \Theta(n^3)$$
?

No, but $O(n^3)$

•
$$n/5 + 10n \log n = \Theta(n^2)$$
? No, but $O(n^2)$

•
$$n^2/5 + 10n \log n = \Theta(n \log n)$$
? No

•
$$n^2/5 + 10n \log n = \Theta(n^2)$$
? Yes