Solutions — Example 4 Affine Cipher

Example Walk-Through

 $K \to 10, f(p) = (7p + 3) \mod 26.$

$$f(10) = (7 \cdot 10 + 3) \mod 26 = 73 \mod 26 = 21.$$

21 corresponds to V. $K \to V$

Problem A

C=2.

$$f(2) = (3 \cdot 2 + 1) \mod 26 = 7.$$

 $7 \to H.$ $C \to H$

Problem B

H = 7.

$$f(7) = (5 \cdot 7 + 7) \mod 26 = 42 \mod 26 = 16.$$

 $16 \to Q. \, \boxed{H \to Q}$

Problem C

Encrypt DOG with $f(p) = (11p + 8) \mod 26$.

$$D = 3 \Rightarrow (11 \cdot 3 + 8) \mod 26 = 41 \mod 26 = 15 \rightarrow P$$

$$O = 14 \Rightarrow (11 \cdot 14 + 8) \mod 26 = 162 \mod 26 = 6 \rightarrow G$$

$$G = 6 \Rightarrow (11 \cdot 6 + 8) \mod 26 = 74 \mod 26 = 22 \rightarrow W$$

 $\mathtt{DOG} o \mathtt{PGW}$

Reflection Answer

If a shares a factor with 26, then some letters collapse to the same output (no unique inverse), making decryption impossible. Only when gcd(a, 26) = 1 does the cipher remain bijective and reversible.