Семинар 3.

3.1. Бинарные отношения

Определение 3.1. n -арным (или n -местным) отношением на множествах A_1,\ldots,A_n называется произвольное подмножество ρ декартова произведения $A_1\times\ldots\times$

$$\rho \subseteq A_1 \times \ldots \times A_n$$
.

В частности, при $\rho = \emptyset$ получаем **пустое отношение**, а при ρ , совпадающем со всем указанным декартовым произведением — универсальное отношение.

Важный частный случай получаем при n=2: тогда говорят **о соответствии из**

множества A_1 в множество A_2 . Если $A_1 = A_2 = \ldots = A_n = A$, то ρ называют n -арным отношением на множестве A; при n=2 получаем бинарное отношение на множестве A.

Рассмотрим более подробно соответствия и бинарные отношения. Любое соответствие — это множество упорядоченных пар. Например, если $A = \mathbb{R}^1$ (множество действительных чисел), то бинарное отношение на \mathbb{R}^1 — это некоторое множество точек плоскости \mathbb{R}^2 .

Определение 3.2. Область определения соответствия из множества A_1 в множество A_2 $\rho \subseteq A_1 \times A_2$ — есть множество

$$\operatorname{dom} \rho = \{x \mid (\exists y \in A_2)(x, y) \in \rho\}.$$

Область значения соответствия ρ — это множество

$$\operatorname{rng} \rho = \{ y \mid (\exists x \in A_1)(x, y) \in \rho \}.$$

Из определения вытекает, что dom $\rho\subseteq A_1$, rng $\rho\subseteq A_2$. Соответствие называют всюду определенным, если dom $\rho=A_1$.

Определение 3.3. Сечением соответствия ρ для фиксированного $x \in A_1$ называют множество

$$\rho(x) = \{ y \, | \, (x, y) \in \rho \}.$$

Пример 3.1.

Пусть $\rho = \{(x,y) \mid x > y+1\} \subseteq \{1,2,3,4\}^2$. Имеем $\rho = \{(3,1),(4,1),(4,2)\}$.

Область определения отношения dom $\rho = \{3,4\}$, область значений — rng $\rho = \{1,2\}$. Построить график и граф отношения ρ .

- 3.1. Построить графики и графы следующих бинарных отношений, заданных на множестве $X = \{1, 2, 3, 4, 5, 6\}$:
 - (a) $x_1 \varphi x_2$, если $x_1 < x_2$;
 - (б) $x_1 \tau x_2$, если $x_1 \leq x_2$;
 - (в) $x_1 \rho x_2$, если $(x_1 x_2) \ge 2$;
 - (г) $\{(a,b)| a+b$ четное $\}$;
- **3.2.** Определить, по какому принципу построено отношение, заданное графиком Φ на $M \times M$, где $M = \{\pi, o, c, \tau\}$, a $\Phi = \{(o, \pi), (c, \pi), (\tau, \pi), (c, o), (\tau, o), (c, \tau)\}$.

СЕМИНАР 3.

3.2. Операции над соответствиями

Поскольку соответствия являются множествами, то все операции над множествами (пересечение, объединение, разность, дополнение и т.д.) применимы и к соответствиям. Однако для соответствий можно определить специальные операции: композицию соответствий и получение обратного соответствия.

1) Композиция соответствий.

Если $\rho \subseteq A_1 \times A_2$, $\sigma \subseteq A_2 \times A_3$, то композиция (произведение) соответствий ρ и σ есть соответствие $\rho \circ \sigma$, определяемое как

$$\rho \circ \sigma = \{(x, z) \mid (\exists y)((x, y) \in \rho) \land \land ((y, z) \in \sigma)\}.$$

Пример 3.2. Соответствие ρ берем из предыдущего примера, а соответствие $\sigma\subseteq\{1,2,3,4\}^2$ зададим непосредственно как множество пар $\sigma=\{(1,2),(1,3),(3,4)\}$. Построить граф композиции $\rho\circ\sigma$.

Композицию отношения с самим собой называют квадратом отношения.

Определение 3.4. Отношение $\mathrm{id}_A = \{(x,x) \mid \in A\}$ называют диагональю множества A .

Свойства композиции:

- (1) $\rho \circ (\sigma \circ \tau) = (\rho \circ \sigma) \circ \tau$;
- (2) $\rho \circ \emptyset = \emptyset \circ \rho = \emptyset$;
- (3) $\rho \circ (\sigma \cup \tau) = \rho \circ \sigma \cup \rho \circ \tau$;
- (4) $\rho \circ (\sigma \cap \tau) \subseteq \rho \circ \sigma \cap \rho \circ \tau$; (равенство в общем случае не имеет места!).
- (5) $\rho \circ \mathrm{id}_A = \mathrm{id}_A \circ \rho = \rho$, где $\rho \subseteq A^2$ бинарное отношение на A.

Рассмотрим доказательство свойства (1). Используем метод двух включений:

$$(x,z) \in \rho \circ (\sigma \circ \tau) \Rightarrow$$

$$\Rightarrow (\exists y)(((x,y) \in \rho) \land \land ((y,z) \in \sigma \circ \tau)) \Rightarrow$$

$$\Rightarrow (\exists y)(\exists t)(((x,y) \in \rho) \land (((y,t) \in \sigma) \land \land ((t,z) \in \tau))) \Rightarrow$$

$$\Rightarrow (\exists y)(\exists t)((((x,y) \in \rho) \land ((y,t) \in \sigma)) \land \land ((t,z) \in \tau)) \Rightarrow$$

$$\Rightarrow (\exists t)(((x,t) \in \rho \circ \sigma) \land ((t,z) \in \tau)) \Rightarrow$$

$$\Rightarrow (x,z) \in (\rho \circ \sigma) \circ \tau.$$

СЕМИНАР 3. 3

Обратно:

$$(x,z) \in (\rho \circ \sigma) \circ \tau \Rightarrow$$

$$\Rightarrow (\exists t)(((x,t) \in \rho \circ \sigma) \land \land ((t,z) \in \tau)) \Rightarrow$$

$$\Rightarrow (\exists y)(\exists t)((((x,y) \in \rho) \land \land ((y,t) \in \sigma)) \land \land ((t,z) \in \tau)) \Rightarrow$$

$$\Rightarrow (\exists y)(\exists t)(((x,y) \in \rho) \land \land (((y,t) \in \sigma) \land \land (((y,t) \in \sigma))) \Rightarrow$$

$$\Rightarrow (\exists y)(((x,y) \in \rho) \land ((y,z) \in \sigma \circ \tau)) \Rightarrow$$

$$\Rightarrow (x,z) \in \rho \circ (\sigma \circ \tau).$$

2) Обратное соответствие.

Соответствие, обратное соответствию $\rho\subseteq A_1\times A_2$, есть соответствие из A_2 в A_1 , обозначаемое ρ^{-1} и равное по определению

$$\rho^{-1} = \{ (y, x) \mid (x, y) \in \rho \}.$$

Для соответствия ρ из примера ??

$$\rho^{-1} = \{(1,3), (1,4), (2,4)\}.$$

 $Oбратное\ coomsemcmsue$ обладает следующими свойствами: (6) $(\rho^{-1})^{-1}=\rho$

 $(7) \quad (\rho \circ \sigma)^{-1} = \sigma^{-1} \circ \rho^{-1}$

Для фиксированного $y \in A_2$ положим $\rho^{-1}(y) = \{x \mid y \in \rho(x)\}$.

СЕМИНАР 3.

4

Задачи

- **3.1.** Найти dom_{ρ} , rng_{ρ} , ρ^{-1} , $\rho\circ\rho$, $\rho^{-1}\circ\rho$, $\rho\circ\rho^{-1}$ для отношений:
- (a) $\rho = \{(x,y) \mid x,y \in \mathbb{N}, x = 0 \pmod{y}\};$ (b) $\rho = \{(x,y) \mid x,y \in [0,1], x+y \leq 1\}$ (c) $\rho = \{(x,y) \mid x,y \in [0,1], 2x \geq 3y\}.$

- **3.2.** Доказать, что для любого бинарного отношения $\rho \subseteq A \times A$:
- (a) $\operatorname{dom}_{\rho^{-1}} = \operatorname{rng}_{\rho}$;
- (6) $\operatorname{rng}_{\rho^{-1}} = \operatorname{dom}_{\rho}$;
- (B) $dom_{\rho_1 \circ \rho_2} = \rho_1^{-1}(rng_{\rho_1} \cap dom_{\rho_2});$
- $(\Gamma) \operatorname{rng}_{\rho_1 \circ \rho_2} = \rho_2(\operatorname{rng}_{\rho_1} \cap \operatorname{dom}_{\rho_2}) .$
- **3.3.** Доказать, что для любых бинарных отношений ρ_1 , ρ_2 , $\rho_3 \in A \times A$:
- (a) $\rho_1 \cap \rho_1 = \rho_1 \cup \rho_1 = \rho_1$;
- (б) $\rho_1 \circ (\rho_2 \circ \rho_3) = (\rho_1 \circ \rho_2) \circ \rho_3$;
- (B) $\rho_1 \circ id_A = id_A \circ \rho_1 = \rho_1$;
- (r) $(\rho_1 \cap \rho_2)^{-1} = \rho_1^{-1} \cap \rho_2^{-1}$;
- (π) $(\rho_1 \cup \rho_2)^{-1} = \rho_1^{-1} \cup \rho_2^{-1}$;
- (e) $(\overline{\rho})^{-1} = \overline{(\rho^{-1})}$;
- (ж) $(\rho_1 \circ \rho_2)^{-1} = \rho_2^{-1} \circ \rho_1^{-1}$.