

<110> Sampath, Kuber T.
Cohen, Charles M.

<120> Methods For Tissue Morphogenesis and Methods for
Evaluating Morphogenic Activity

<130> Seq. Listing For CBM-70 WO

<140> 09/423943

<141> 1998-05-29

<160> 9

<170> PatentIn Ver. 2.0

<210> 1

<211> 1822

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (49)..(1341)

<223> "Morphogenic Protein OP-1"

<400> 1

gggtgcgggccc cggagccccc agccccggta gcgcgttagag ccggcgcg atg cac gtg 57
Met His Val
1

cgc tca ctg cga gct gcg gcg ccg cac agc ttc gtg gcg ctc tgg gca 105
Arg Ser Leu Arg Ala Ala Ala Pro His Ser Phe Val Ala Leu Trp Ala
5 10 15

ccc ctg ttc ctg ctg cgc tcc gcc ctg gcc gac ttc agc ctg gac aac 153
Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser Leu Asp Asn
20 25 30 35

gag gtg cac tcg agc ttc atc cac cgg cgc ctc cgc agc cag gag cgg 201
Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser Gln Glu Arg
40 45 50

cgg gag atg cag cgc gag atc ctc tcc att ttg ggc ttg ccc cac cgc 249
Arg Glu Met Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu Pro His Arg
55 60 65

ccg cgc ccg cac ctc cag ggc aag cac aac tcg gca ccc atg ttc atg 297
Pro Arg Pro His Leu Gln Gly Lys His Asn Ser Ala Pro Met Phe Met
70 75 80

ctg gac ctg tac aac gcc atg gcg gtg gag gag ggc ggc ggg ccc ggc 345
Leu Asp Leu Tyr Asn Ala Met Ala Val Glu Glu Gly Gly Pro Gly
85 90 95

ggc cag ggc ttc tcc tac ccc tac aag gcc gtc ttc agt acc cag ggc 393

Gly	Gln	Gly	Phe	Ser	Tyr	Pro	Tyr	Lys	Ala	Val	Phe	Ser	Thr	Gln	Gly	
100																115
ccc	cct	ctg	gcc	agc	ctg	caa	gat	agc	cat	ttc	ctc	acc	gac	gcc	gac	441
Pro	Pro	Leu	Ala	Ser	Leu	Gln	Asp	Ser	His	Phe	Leu	Thr	Asp	Ala	Asp	
120															130	
atg	gtc	atg	agc	ttc	gtc	aac	ctc	gtg	gaa	cat	gac	aag	gaa	ttc	ttc	489
Met	Val	Met	Ser	Phe	Val	Asn	Leu	Val	Glu	His	Asp	Lys	Glu	Phe	Phe	
135															145	
cac	cca	cgc	tac	cac	cat	cga	gag	ttc	cgg	ttt	gat	ctt	tcc	aag	atc	537
His	Pro	Arg	Tyr	His	His	Arg	Glu	Phe	Arg	Phe	Asp	Leu	Ser	Lys	Ile	
150															160	
cca	gaa	ggg	gaa	gct	gtc	acg	gca	gcc	gaa	ttc	cgg	atc	tac	aag	gac	585
Pro	Glu	Gly	Glu	Ala	Val	Thr	Ala	Ala	Glu	Phe	Arg	Ile	Tyr	Lys	Asp	
165															175	
tac	atc	cgg	gaa	cgc	ttc	gac	aat	gag	acg	ttc	cgg	atc	agc	gtt	tat	633
Tyr	Ile	Arg	Glu	Arg	Phe	Asp	Asn	Glu	Thr	Phe	Arg	Ile	Ser	Val	Tyr	
180															195	
cag	gtg	ctc	cag	gag	cac	ttg	ggc	agg	gaa	tcg	gat	ctc	ttc	ctg	ctc	681
Gln	Val	Leu	Gln	Glu	His	Leu	Gly	Arg	Glu	Ser	Asp	Leu	Phe	Leu	Leu	
200															210	
gac	agc	cgt	acc	ctc	tgg	gcc	tcg	gag	ggc	tgg	ctg	qtg	ttt	qac		729
Asp	Ser	Arg	Thr	Leu	Trp	Ala	Ser	Glu	Glu	Gly	Trp	Leu	Val	Phe	Asp	
215															225	
atc	aca	gcc	acc	agc	aac	cac	tgg	gtg	gtc	aat	ccg	cgg	cac	aac	ctg	777
Ile	Thr	Ala	Thr	Ser	Asn	His	Trp	Val	Val	Asn	Pro	Arg	His	Asn	Leu	
230															240	
ggc	ctg	cag	ctc	tcg	gtg	gag	acg	ctg	gat	ggg	cag	agc	atc	aac	ccc	825
Gly	Leu	Gln	Leu	Ser	Val	Glu	Thr	Leu	Asp	Gly	Gln	Ser	Ile	Asn	Pro	
245															255	
aag	ttg	gcg	ggc	ctg	att	ggg	cgg	cac	ggg	ccc	cag	aac	aag	cag	ccc	873
Lys	Leu	Ala	Gly	Leu	Ile	Gly	Arg	His	Gly	Pro	Gln	Asn	Lys	Gln	Pro	
260															275	
ttc	atg	gtg	gct	ttc	aag	gcc	acg	gag	gtc	cac	ttc	cgc	agc	atc		921
Phe	Met	Val	Ala	Phe	Phe	Lys	Ala	Thr	Glu	Val	His	Phe	Arg	Ser	Ile	
280															290	
cg	gg	tt	cc	cc	gg	cc	cc	gg	cc	969						
Arg	Ser	Thr	Gly	Ser	Lys	Gln	Arg	Ser	Gln	Asn	Arg	Ser	Lys	Thr	Pro	
295															305	
aag	aac	cag	gaa	gcc	ctg	cg	atg	gcc	aac	gtg	gca	gag	aac	agc	agc	1017
Lys	Asn	Gln	Glu	Ala	Leu	Arg	Met	Ala	Asn	Val	Ala	Glu	Asn	Ser	Ser	
310															320	
agc	gac	cag	agg	cag	tgt	aag	aag	cac	gag	ctg	tat	gtc	agc	ttc		1065
Ser	Asp	Gln	Arg	Gln	Ala	Cys	Lys	Gln	Asp	Leu	Tyr	Val	Ser	Phe		

325

330

335

cga gac ctg ggc tgg cag gac tgg atc atc gcg cct gaa ggc tac gcc 1113
 Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu Gly Tyr Ala
 340 345 350 355

gcc tac tac tgt gag ggg gag tgt gcc ttc cct ctg aac tcc tac atg 1161
 Ala Tyr Tyr Cys Glu Gly Cys Ala Phe Pro Leu Asn Ser Tyr Met
 360 365 370

aac gcc acc aac cac gcc atc gtg cag acg ctg gtc cac ttc atc aac 1209
 Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu Val His Phe Ile Asn
 375 380 385

ccg gaa acg gtg ccc aag ccc tgc tgt gcg ccc acg cag ctc aat gcc 1257
 Pro Glu Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala
 390 395 400

atc tcc gtc ctc tac ttc gat gac agc tcc aac gtc atc ctg aag aaa 1305
 Ile Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile Leu Lys Lys
 405 410 415

tac aga aac atg gtg gtc cgg gcc tgt ggc tgc cac tagctcctcc 1351
 Tyr Arg Asn Met Val Val Arg Ala Cys Gly Cys His
 420 425 430

gagaattcag accctttggg gccaagttt tctggatcct ccattgctcg cttggccag 1411
 gaaccagcag accaactgcc ttttgtgaga cttccccctc cctatccccca actttaaagg 1471
 tgtgagagta ttaggaaaca tgagcagcat atggctttt atcagtttt cagtggcagc 1531
 atccaatgaa caagatccta caagctgtgc aggcaaaacc tagcaggaaa aaaaaacaac 1591
 gcataaaagaa aaatgccgg gccaggtcat tggctggaa gtctcagcca tgcacggact 1651
 cgtttccaga ggtaattatg agcgcctacc agccaggcca cccagccgtg ggaggaaggg 1711
 ggcgtggcaa ggggtggca cattggtgtc tgtgcgaaag gaaaattgac ccggaagtcc 1771
 ctgtaataaa tgcacaata aaacgaatga atgaaaaaaaaaaaaaaaaa a 1822

<210> 2
<211> 431
<212> PRT
<213> Homo sapiens

<400> 2
Met His Val Arg Ser Leu Arg Ala Ala Pro His Ser Phe Val Ala
1 5 10 15

Leu Trp Ala Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser
20 25 30

Leu Asp Asn Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser
35 40 45

Gln Glu Arg Arg Glu Met Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu
50 55 60

Pro His Arg Pro Arg Pro His Leu Gln Gly Lys His Asn Ser Ala Pro
65 70 75 80

Met Phe Met Leu Asp Leu Tyr Asn Ala Met Ala Val Glu Glu Gly Gly
85 90 95

Gly Pro Gly Gly Gln Gly Phe Ser Tyr Pro Tyr Lys Ala Val Phe Ser
100 105 110

Thr Gln Gly Pro Pro Leu Ala Ser Leu Gln Asp Ser His Phe Leu Thr
115 120 125

Asp Ala Asp Met Val Met Ser Phe Val Asn Leu Val Glu His Asp Lys
130 135 140

Glu Phe Phe His Pro Arg Tyr His His Arg Glu Phe Arg Phe Asp Leu
145 150 155 160

Ser Lys Ile Pro Glu Gly Glu Ala Val Thr Ala Ala Glu Phe Arg Ile
165 170 175

Tyr Lys Asp Tyr Ile Arg Glu Arg Phe Asp Asn Glu Thr Phe Arg Ile
180 185 190

Ser Val Tyr Gln Val Leu Gln Glu His Leu Gly Arg Glu Ser Asp Leu
195 200 205

Phe Leu Leu Asp Ser Arg Thr Leu Trp Ala Ser Glu Glu Gly Trp Leu
210 215 220

Val Phe Asp Ile Thr Ala Thr Ser Asn His Trp Val Val Asn Pro Arg
225 230 235 240

His Asn Leu Gly Leu Gln Leu Ser Val Glu Thr Leu Asp Gly Gln Ser
245 250 255

Ile Asn Pro Lys Leu Ala Gly Leu Ile Gly Arg His Gly Pro Gln Asn
260 265 270

Lys Gln Pro Phe Met Val Ala Phe Phe Lys Ala Thr Glu Val His Phe
275 280 285

Arg Ser Ile Arg Ser Thr Gly Ser Lys Gln Arg Ser Gln Asn Arg Ser
290 295 300

Lys Thr Pro Lys Asn Gln Glu Ala Leu Arg Met Ala Asn Val Ala Glu
305 310 315 320

Asn Ser Ser Ser Asp Gln Arg Gln Ala Cys Lys Lys His Glu Leu Tyr
325 330 335

Val Ser Phe Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu
340 345 350

Gly Tyr Ala Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asn
355 360 365

Ser Tyr Met Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu Val His
370 375 380

Phe Ile Asn Pro Glu Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln
385 390 395 400

Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile
405 410 415

Leu Lys Lys Tyr Arg Asn Met Val Val Arg Ala Cys Gly Cys His
420 425 430

<210> 3

<211> 102

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: OPX

<220>

<221> VARIANT

<222> (1)..(102)

<223> wherein each Xaa is independently selected from a group of one or more specified amino acids as defined in the specification

<400> 3

Cys Xaa Xaa His Glu Leu Tyr Val Ser Phe Xaa Asp Leu Gly Trp Xaa
1 5 10 15

Asp Trp Xaa Ile Ala Pro Xaa Gly Tyr Xaa Ala Tyr Tyr Cys Glu Gly
20 25 30

Glu Cys Xaa Phe Pro Leu Xaa Ser Xaa Met Asn Ala Thr Asn His Ala
35 40 45

Ile Xaa Gln Xaa Leu Val His Xaa Xaa Xaa Pro Xaa Xaa Val Pro Lys
50 55 60

Xaa Cys Cys Ala Pro Thr Xaa Leu Xaa Ala Xaa Ser Val Leu Tyr Xaa
65 70 75 80

Asp Xaa Ser Xaa Asn Val Ile Leu Xaa Lys Xaa Arg Asn Met Val Val
85 90 95

Xaa Ala Cys Gly Cys His
100

<210> 4

<211> 97

<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Generic Sequence 7

<220>
<221> VARIANT
<222> (1)..(97)
<223> wherein each Xaa is independently selected from a group of one or more specified amino acids defined in the specification

<400> 4
Leu Xaa Xaa Xaa Phe Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa Xaa Xaa
1 5 10 15

Pro Xaa Xaa Xaa Xaa Ala Xaa Tyr Cys Xaa Gly Xaa Cys Xaa Xaa Pro
20 25 30

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn His Ala Xaa Xaa Xaa Xaa Xaa
35 40 45

Xaa Cys Cys Xaa Pro
50 55 60

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa
65 70 75 80

Val Xaa Leu Xaa Xaa Xaa Xaa Met Xaa Val Xaa Xaa Cys Xaa Cys
85 90 95

Xaa

<210> 5
<211> 102
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Generic Sequence 8

<220>
<221> VARIANT
<222> ()...
<223> wherein each Xaa is independently selected from a group of one or more specified amino acids defined in the specification

<400> 5
Cys Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Phe Xaa Xaa Gly Trp Xaa
1 5 10 15

Xaa Xaa Xaa Xaa Xaa Pro Xaa Xaa Xaa Xaa Ala Xaa Tyr Cys Xaa Gly
20 25 30

Xaa Cys Xaa Xaa Pro Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn His Ala
35 40 45

Xaa
50 55 60

Xaa Cys Cys Xaa Pro Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Xaa
65 70 75 80

Xaa Xaa Xaa Xaa Xaa Val Xaa Leu Xaa Xaa Xaa Xaa Met Xaa Val
85 90 95

Xaa Xaa Cys Xaa Cys Xaa
100

<210> 6

<211> 97

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Generic
Sequence 9

<220>

<221> VARIANT

<222> (...)

<223> wherein each Xaa is independently selected from a
group of one or more specified amino acids as
defined in the specification

<400> 6

Xaa
1 5 10 15

Pro Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Gly Xaa Cys Xaa Xaa Xaa
20 25 30

Xaa
35 40 45

Xaa Cys Xaa Pro
50 55 60

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa Xaa
65 70 75 80

Xaa Cys Xaa Cys
85 90 95

Xaa

<210> 7
<211> 102
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Generic Sequence 10

<220>
<221> VARIANT
<222> (...)
<223> wherein each Xaa is independently selected from a group of one or more specified amino acids as defined in the specification

<400> 7
Cys Xaa
1 5 10 15

Xaa Xaa Xaa Xaa Xaa Pro Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Gly
20 25 30

Xaa Cys Xaa
35 40 45

Xaa
50 55 60

Xaa Xaa Cys Xaa Pro Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Xaa
65 70 75 80

Xaa
85 90 95

Xaa Xaa Cys Xaa Cys Xaa
100

<210> 8
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Peptide

<220>
<221> VARIANT
<222> (1)..(5)
<223> wherein each Xaa is independently selected from a group of one or more specified amino acids as defined in the specification

<400> 8
Cys Xaa Xaa Xaa Xaa

1

5

<210> 9
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Peptide

<220>
<221> VARIANT
<222> (1)..(5)
<223> wherein each Xaa is independently selected from a group of one or more specified amino acids as defined in the specification

<400> 9
Cys Xaa Xaa Xaa Xaa
1 5