Intel® Al for Manufacturing Certificate Course

Week 7: Assignment Report – Group Project – Computer Vision in Manufacturing

Name: Paresh Patil

Submission Date: 12 - 06 - 2025

Project Title:

Surface Defect Detection in Metal Components using Computer Vision

1. Problem Statement

In manufacturing industries, particularly in automotive or aerospace sectors, **surface defects like cracks, dents, and scratches on metal components** can lead to serious quality and safety issues.

Manual inspection is:

- Time-consuming
- Inconsistent due to human fatigue
- Not scalable for high-speed production lines

There is a need for an automated, accurate, and scalable solution for **real-time surface defect detection**.

2. Proposed Solution

We propose using a **Computer Vision system powered by deep learning** to automate surface defect detection. The project plan involves:

- Capturing high-resolution images of metal parts on the production line using industrial cameras.
- Training a Convolutional Neural Network (CNN) model to detect and classify defects like:
 - Cracks
 - Surface roughness
 - Scratches
 - o Dents
- Integrating the model with a factory monitoring system for real-time alerts.

Steps:

- 1. Data collection and image labeling
- 2. CNN model development using TensorFlow or PyTorch
- 3. Model validation and tuning
- 4. Deployment via edge devices or cloud platform
- 5. Real-time dashboard for defect monitoring

3. Impact

Operational Impact

- **Improved Inspection Speed**: Inspections can be performed in real-time with high throughput.
- **Increased Accuracy**: Reduces false positives/negatives compared to human inspection.
- Cost Saving: Early detection prevents wastage and reduces returns and recalls.

Business Impact

- Enhances product quality and brand reputation
- Helps meet international quality standards (ISO, Six Sigma)
- Strengthens customer trust and reliability

4. Ethical and Legal Considerations

Ethical Aspects

- Ensure that the model does not unintentionally **bias** inspection results due to poor training data.
- Maintain transparency in how the AI system flags defects and how decisions are made.

Legal Compliance

- Data collection must comply with industrial data privacy policies.
- If images of workers are accidentally captured, **GDPR or local privacy regulations** must be followed.
- Model decisions should be auditable and explainable to meet regulatory standards in safety-critical industries.

Conclusion

This project aims to demonstrate how **AI** and computer vision can transform quality **control** in manufacturing. With proper implementation, it can lead to enhanced efficiency,

better safety, and high-quality product output, all while maintaining ethical and legal compliance.