

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL) Academic Year 2016 –1st Year Examination – Semester 1

EN1201: Introductory Mathematics

Multiple Choice Question Paper 29th May 2016 (TWO HOUR)

Important Instructions:

- The duration of the paper is **2(two) hours**.
- The medium of instruction and questions is English.
- The paper has 40 questions and 7 pages.
- All questions are of the MCQ (Multiple Choice Questions) type.
- All questions should be answered.
- Each question will have 5 (five) choices with **one or more** correct answers.
- All questions will carry equal marks.
- There will be a penalty for incorrect responses to discourage guessing.
- The mark given for a question will vary from 0 (*All the incorrect choices are marked & no correct choices are marked*) to +1 (*All the correct choices are marked*).
- Answers should be marked on the special answer sheet provided.
- Note that questions appear on both sides of the paper.
 If a page is not printed, please inform the supervisor immediately.
- Mark the correct choices on the question paper first and then transfer them to the given answer sheet which will be machine marked. Please completely read and follow the instructions given on the other side of the answer sheet before you shade your correct choices.
- Calculators are not allowed

$\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ is equal to				
(a) $5+2\sqrt{6}$	$(b)5 + \sqrt{6}$	(c) $\frac{1}{5-1}$	$(d)\frac{1}{5-\sqrt{6}}$	(e)5
$0.3^2 + 0.7^2 - 2 \times 0$	0.3×0.7 is equal	al to		
(a) 0.49	(b) -0.49	(c) 0.01	(d) 0.16	(e) -0.16
If the length of a box actual length is	is 2.5cm to the	first decimal point	, then the smallest p	oossible value of the
(a) 2.45 cm	(b) 2.40 cm	(c) 2.49 cm	(d) 2.44 cm	(e) 2.50 cm
$(-1)^2 + (-1)^3 + ($	$(1)^4 + (-1)^5$ is	s equal to		
(a) 4 (d) $[1-(-1)^2]^3$		b) $[1 + (-1)^2]^3$ e) -4	(c) 0	
How many integers a	are there betwee	en $\sqrt{19}$ and $\sqrt{90}$		
(a) 5	(b) 4	(c) $\sqrt{81} - \sqrt{25}$	(d) 8	(e) $\sqrt{100} - \sqrt{25}$
The Lowest Common	n Multiple of 2 ²	$^{2}x3^{2}x4$ and $2^{3}x3$		
(a) 144	(b) 288	(c) 24	(d) 12	(e) $2^4 X 3^2$
The sum 1+3+5+7+.	+99 is equal to	0		
(a) 2300 (d) 2500	(b) 2600 (e) 2400		(c) 2700	

8)	Consider lines, $A: 2x + 3y = 5$, $B: x - \frac{y}{2} = 7$, $C: -2x + 3y = 2$, $D: y = \frac{2}{3}x - 7$
	Which of the above lines are parallel?

(a) A and C	(b) A and B	(c) B and C	(d) A,B and C	(e) C and D	

9) The perimeter of the smallest rectangle that can be formed using 24 squares 1cm² of area each is

(a) 49	(b) 28	(c) 20	
(d) 22	(e) 24		

10) If x + y = 5 and x and y are positive integers, then the largest possible value of $\frac{1}{x} + \frac{1}{y}$ is

(a) 1	(b) $\frac{5}{6}$	(c) $\frac{6}{5}$	
(d) $\frac{5}{4}$	(e) $\frac{3}{2}$	3	

11) If the sum of the squares of two consecutive odd integers is 74, then the smaller of the two is

(a) -7	(b) 2	(c) 5
(d) -6	(e) 6	

12) If x = 10 then $x + x^{-4}$ is equal to

```
(a) 10.4 (b) 10.04 (c) 10.1 (d) 10.01 (e) 10.0001
```

13) $\frac{x^2 + x - a(a+1)}{x - a}$ is equal to

(a)
$$x + a - 1$$
 (b) $x + a + 1$ (c) $x + a$ (d) $x - a$ (e) $x - a + 1$

Which of the following is equal to $\frac{5-x}{(x-1)(x+3)}$

(a)
$$\frac{5}{(x-1)} - \frac{x}{(x+3)}$$
 (b) $\frac{1}{(x-1)} + \frac{2}{(x+3)}$ (c) $\frac{1}{(x-1)} - \frac{2}{(x+3)}$ (d) $\frac{2}{(x-1)} - \frac{1}{(x+3)}$ (e) $-\frac{2}{(3+x)} - \frac{1}{(1-x)}$

(a) 6	(b) 4	(c) 3	(d) 8	(e) 2
(a) 0	(0) 1	(6) 3	(u) 0	(6) 2
4999 × 5001 is e	qual to			
(a) 25,000,00	9	(b) 24,999,999	(c) 25,000,999)
(d) 24,999,90	9	(e) 25,000,099		
			1	
The equation of a	line perpendi	cular to the line $y = -$	$\frac{1}{3}x + 7$ is /are	
(a) $y - 3x = 1$	2 (b) 3y	y - x = 5 (c) 2y - 3x = 0	= 7 (d) 3y + x = 2	(e)y = 3x + 3x
The solution to	0 < x - 2 <	5 is		
	· - ·	0 10		
(a) (-2,7)\	ያበያ	(b) (-2, 0) ∪ (0 ,7)	(c) (-3,7)\ {	2)
(d) (-3,7)	(v)	(e) $(-3, 2) \cup (2, 7)$	(c) (-3,7)({	L }
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
The solution to $\frac{1}{2}$	$\left \frac{x}{x-1}\right = 3$ is			
(a) 0.7E 1				
(a) $0.75, -1$ (b) $-0.75, 1$				
(c) 0.75, 1.5				
(d) $1.5, -1.5$				
(e) $0.75, -0$				
(e) 0.73, -0	./3			
m : 1		1 4.		
The region bound		y =1 is		
(a) a square	(t) a rhombus	(c) a rectangle	
(d) a parallelo	ogram (e	e) a trapezium		

(e) 2200

(d) 2080

(a) $\frac{5}{12}$	(b) $\frac{5}{13}$	(c) $\frac{12}{13}$	(d) $\frac{1}{1}$	(12)	e) $\frac{12}{5}$
pole B is 30 de		x m away. The angle of elevation from the height of B is		_	
(a) 1:3	(b) 1:2	2 (c)2:3	(d) 3:2	2 (e)	3:1
(a) 1:3	radius r as the spl (b) 1:9	(c) 2:3 (d)			ne cylinder i
_		height 3r is melted	and n spheres of 1	radius r/10 are	e made. The
_	ue of n is	height 3r is melted (c) 2500 (d) 27	-	radius r/10 are	e made. The
(a) 2000	(b) 2250	-	750 (e) 3000		
(a) 2000	(b) 2250	(c) 2500 (d) 27 × $3^1 \times 7^2$ then the	(e) 3000 e highest common		
(a) 2000 (a) $a = 2^5 \times 3^5$ (a) 105	ue of n is (b) 2250 $^{2} \times 5$ and $b = 2^{4}$ (b) $2^{3} \times 6$	(c) 2500 (d) 27 × $3^1 \times 7^2$ then the	250 (e) 3000 e highest common (d) $2^5 \times 3$ (factor of a an	
(a) 2000 (a) $a = 2^5 \times 3^5$ (a) 105	ue of n is (b) 2250 $^{2} \times 5$ and $b = 2^{4}$ (b) $2^{3} \times 6$	$(c) 2500 \qquad (d) 27$ $\times 3^{1} \times 7^{2} \text{ then the}$ $(c) 70 \qquad (d)$ $(c) 70 \qquad (d)$ $(d) 27$ $(d) 27$ $(e) 70 \qquad (d)$ $(e) 70 \qquad (e)$ $(f) 70 \qquad (f)$ $(f) 70 \qquad (f)$ $(f) 70 \qquad (f)$ $(f) 70 \qquad (f)$	250 (e) 3000 The highest common (d) $2^5 \times 3$ (qual to	factor of a an	
maximum value (a) 2000 (a) 2000 (a) 105 (b) $a = 2^5 \times 3^2$ (a) 105	ue of n is (b) 2250 $^{2} \times 5 \text{ and } b = 2^{4}$ (b) $2^{3} \times 6$ $y^{2} + 2y \text{ and } x \neq 6$ (b) $2^{3} \times 6$	$(c) 2500 \qquad (d) 27$ $\times 3^{1} \times 7^{2} \text{ then the}$ $(c) 70 \qquad (d)$ $(c) 70 \qquad (d)$ $(d) 27$ $(d) 27$ $(e) 70 \qquad (d)$ $(e) 70 \qquad (e)$	thighest common (d) $2^5 \times 3$ (qual to	e) 48	

(a) 65 degrees	(b) supp	element of (47.5+	68.5) degrees	(c) 64.5 degree
(d) 64 degrees	(e) supp	element of (47+68	3) degrees	
The shape of a qua	adrilateral ABCD w	ith interior angles	in the ratio A:I	3:C:D = 1:2:3:4 is
(a) trapezium	(b) parallelogram	(c) rhombus	(d) square	(e) rectangle
$f x_n = 3 + 2(-$	$(1)^n$ then x_{100} is equ	ıal to		
(a) 3 (l	o) 2 (c) 5	(d) 1	(e) -5	
(a) 50	(b) 55	(c) 54	(d) 57	(e) 60
5% profit. The ret as a percentage of		umer with a 10% the manufacturer	profit. What is	rn sells it to a retailer with the price the consumer
(a) 125% (d) 112.50%				ner annum. If he with
(d) 112.50% A man invests Rs	. 100,000 in a bank and of each year, wh			eginning of the third ye

If the nth term of 1,3,6,10,15,21,28,.... is $\frac{n(n+1)}{2}$, then the nth term of 10,15,21,28,... is

(a) $2(n^2 + n + 1)$

(b) $(n^2 + 3n + 1)$ (c) $(\frac{n}{2} + 2)(n + 3)$ (d) $2(n^2 - 3n + 5)$ (e) $\frac{1}{2}(n^2 + 7n + 12)$

36) The LCM of $a = 2^5 \times 3^2 \times 5^1$ and $b = 2^4 \times 3^1 \times 7^2$ is

(a) $2 \times 3 \times 5 \times 7$ (b) $2^4 \times 3^2 \times 7^2 \times 10$ (c) $2^4 \times 3^1 \times 5^1 \times 7$ (d) $2^5 \times 3^2 \times 5^1 \times 7^2$

(e) $2^4 \times 3^2 \times 5^1 \times 7^2$

37) The sum of the first n positive odd numbers is

(a) $2n^2 + 1$

(b) $2n^2$

(c) n^2

(d) $2n^2 - 1$

(e) $n^2 - 1$

Two goods A and B with current prices Rs. 200 and Rs. 100 respectively have gone up in prices 38) by 10% and 16% respectively. What is the percentage increase in cost for a consumer who buys one unit of each of A and B?

(b) 14%

(c) 13%

(d) 12%

If the length of a rectangle is 4cm to the nearest cm and its area is $14cm^2$ to the nearest square cm, 39) then the smallest possible breadth of the rectangle is

(a) 3.0

(b) 3.5

(c) 4.0

(d) 4.5

(e) 5.0

If all dimensions of a cuboid are increased by 10% then the increase in the volume of the cuboid is 40)

(a) $[(1.1)^3 - 1] \times 100\%$

(b) $[3 \times 1.1 - 1] \times 100\%$

(c) 31%

(d) 33.1%

(e) 33%
