Eine Woche, ein Beispiel 12.1 weights of type E

There are already much information in wiki and other references about the exceptional Lie algebra. It is nice, but I always have to check the compatability among different references. In this document, I try to fix a standard coordinate, and state all the combinatorical results without proofs.

We will make a list of the following objects, for E_6, E_7 and E_8.

Ref:

[Huy23]: Huybrechts, Daniel. The Geometry of Cubic Hypersurfaces. Camb. Stud. Adv. Math. Cambridge: Cambridge University Press, 2023. https://doi.org/10.1017/9781009280020.

- Weights nearest to the origin some graphs
 - · weight lattice
- Simple roots
- Fundamental wts
- Weyl group action

Remark: There is another coordinate system which is written in wiki: del Pezzo surface. We don't use them. There, the different weight spaces are identified, while in our coordinate system, we identify the root lattices.

1. E6

- Weights nearest to the origin

There are two minuscule representations of E 6. So we just fix one.

affine version

typical coordinates Symbol (1,0,0,0,0,0,0,1,0)
$$V_{i}$$
 (1,0,0,0,0,0,0,1) V_{i} (1,0,0,0,0,0,0,0,0) V_{i} (1,0,0,0,0,0,0,0) V_{i} (1) V_{i} (1) V_{i} (2) V_{i} (2) V_{i} (2) V_{i} (2) V_{i} (3) V_{i} (2) V_{i} (3) V_{i} (4) V_{i} (5) V_{i} (5) V_{i} (6) V_{i} (7) V_{i} (7) V_{i} (8) V_{i} (8) V_{i} (9) V_{i} (9) V_{i} (9) V_{i} (1) V_{i} (2) V_{i} (2) V_{i} (3) V_{i} (3) V_{i} (4) V_{i} (5) V_{i} (6) V_{i} (6) V_{i} (7) V_{i} (8) V_{i}

weight lattice version

typical coordinates Symbol

$$\frac{1}{6}(5, -1, -1, -1, -1, -1, 3, -3)$$
 $\frac{1}{6}(5, -1, -1, -1, -1, -1, -3, 3)$
 $\frac{1}{6}(5, -1, -1, -1, -1, -1, -3, 3)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 1, 0, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 1, 0, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 1, 0, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 1, 0, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 1, 0, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 1, 0, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 1, 0, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0)$
 $\frac{1}{3}(-2, -2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0)$
 $\frac{1}{3}(-2, -2$

The graph constructed is called the Schläfli graph, which has 27 vertices and 216 edges (with HoG Id 1300). This graph is also the configuration graph of 27 lines.

vertices.
$$\longrightarrow$$
 lines edges \longrightarrow intersection points triangle \longrightarrow triangle cut by H_{conly} in E_6

Here are some typical subgraphs:

Q: For each type of subgraph, how many are they in the Schläfli graph? I don't know if there are any simple answer for general subgraphs, and I don't know if there are any efficient algorithm for doing this. But this already produces many mysterious combinatorical numbers.

- Simple roots

$$\begin{cases}
\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{4}, \lambda_{5}, \lambda_{6} \\
V_{1} - V_{2}, V_{2} - V_{3}, V_{3} - V_{4}, V_{4} - V_{5}, V_{5} - V_{6}, V_{4} - V_{56}
\end{cases}$$

$$= \begin{cases}
\begin{pmatrix}
1 \\
-1 \\
0
\end{pmatrix}, \begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix}, \begin{pmatrix}
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2}
\end{pmatrix}$$

$$= \begin{cases}
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}, \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}, \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}, \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}, \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}, \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}, \begin{pmatrix}
0 \\
0 \\
-\frac{1}{2} \\
-\frac{1$$

Ex. Verify that all the 72 roots are given by

typical coordinates Symbol
30 (1, -1, 0, 0, 0, 0, 0, 0)
$$V_{ij}$$

 $40=\binom{6}{3}\cdot 2$ $(-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$ V_{456} , V_{7}

- Fundamental wts

denote by A = (aij) the Cartan matrix, then

As a result,

