Analyse III lesaantekeningen

Fordeyn Tibo

INHOUDSTAFEL

I Pa	rtiële Differentiaalvergelijkingen	3
I.1 Bela	angrijke differentiaalvergelijkingen	4
1.1	Differentiaalvergelijking constante coefficienten	. 4
1.2	Euler	. 5
1.3	De gammafunctie	. 5
1.4	Differentiaalvergelijking van Bessel	. 7
1.5	Gewijzigde differentiaalvergelijking van Bessel	. 1
I.2 Fou	ırierreeksen	13
2.1	Inleidend	. 13
2.2	Benaderingsprobleem uitwerken	. 1
2.3	Intermezzo; over orthogonaliteit	. 1
2.4	Belang orthogonaliteit	. 1
2.5	Trigonometrische orthogonaliteit	. 1
2.6	Fourierreeksen	. 2
2.7	Convergentie van fourier reeksen	. 2
2.8	Gibbs verschijnsel	. 2
2.9	Fourier-Besselreeksen	. 2
I.3 Stu	rm-Liouvilleproblemen	29
3.1	Het eigenwaardeprobleem in de ruimte	. 2
3.2	Symmetrische eigenwaardeproblemen	
3.3	Klasse symmetrische problemen	. 3: v —
3.4	Sturm-Liouvilleproblemen	. 4
	compacte notatie — 41 • Logica achter ontbinding — 41 • Voorbeeld — 41	
3.5	Singuliere sturm-liouvilleproblemen	. 4
I.4 Eer	este oefenzitting	47
4.1	Video UW	. 4
4.2	Tutorial	. 4
4.3	Voorbereidende oefeningen	
4.4	Oefeningen	. 4
I.5 Par	tiële differentiaalvergelijkingen	52
5.1	Inleiding	. 5
5.2	Scheiding der veranderlijken	. 5
5.3	Laplace vergelijking	. 5
5.4	Opsplitsen in deelproblemen	. 6
5.5	Temperatuurverloop in een lange cilinder	. 6
I.6 Ver	dere partiële differentiaalvergelijkingen	71
I.7 Two	eede oefenzitting	72

1.8	.8 Derde oefenzitting			
II	Transformaties	7 4	ļ	
[], 1	Laplace trasnformatie	75	5	
	1.1 Definities en eigenschappen		75	
	1.2 Convoluties		85	
	1.3 Paar quizvragen uit de les		88	
II.2	Verdere Laplace transformaties	89)	
	2.1 Gamma functie		89	

Deel I Partiële Differentiaalvergelijkingen

I.1 Belangrijke differentiaalvergelijkingen

We zullen PDV's later omzetten naar gewone differentiaalvergelijkingen, daarom moeten we drie vormen herhalen.

- differentiaalvergelijkingen constante coefficiënten
- Differentiaalvergelijking van Euler
- · Differentiaalvergelijking van Bessel

En de gamma functie komt ook aan bod voor herhaling.

1.1 Differentiaalvergelijking constante coefficienten

Stelling: oplossen met karakteristieke veelterm

$$a_0y'' + a_1y' + a_2y = 0.$$

We vinden de karakteristieke vergelijking

$$\rho(\nu) = a_0 \nu^2 + a_1 \nu + a_2.$$

met mogelijke oplossingen

$$\begin{cases} v_1 \neq v_2 \in \mathbb{R} \implies y(x) = c_1 e^{v_1 x} + c_2 e^{v_2 x} \\ v_1 = v_2 \implies y(x) = c_1 e^{v_1 x} + c_2 x e^{v_1 x} \\ v_{1,2} = \alpha \pm \beta i \implies y(x) = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x) \end{cases}$$

Opmerking 1.1.1 ν in plaats van λ

Lambda krijgt later een andere betekenis, daarom nu.

Voorbeeld 1.1.1

$$y'' = \lambda y$$
.

waarbij lambda geïnterpreteerd wordt als een parameter

$$p(v) = v^{2} - \lambda.$$

$$\begin{cases} \lambda = 0 \implies v_{1} = v_{2} \implies y(x) = c_{1} + c_{2}x \\ \lambda \in \mathbb{R}^{+} \implies v_{1,2} = \pm\sqrt{\lambda} \implies y(x) = c_{1}e^{\sqrt{\lambda}x} + c_{2}e^{-\sqrt{\lambda}x} \\ \lambda \in \mathbb{R}^{-} \implies v_{1,2} = \pm\sqrt{-\lambda}i \implies y(x) = c_{1}\cos\left(\sqrt{-\lambda}x\right) + c_{2}\sin\left(\sqrt{-\lambda}x\right) \end{cases}$$

Herrinnering 1.1.1 Hyperbolische functies

Merk op dat de hyperboligsche functies lineaire combinaties zijn van die exponentiële functies dus als lambda positief is vinden we ook

$$y(x) = d_1 \cosh(\sqrt{\lambda}x) + d_2 \sinh(\sqrt{\lambda}x).$$

1.2 Euler

Stelling: Differentiaalvergelijking van Euler

$$x^2y'' + a_1xy' + a_2xy = 0.$$

We lossen dit op voor x > 0 met transformatie

$$y(x) = z(t), t = \ln(x).$$

of ook

$$x = e^t$$
.

we krijgen bijgevolg

$$z''(t) + (a_1 - 1)z((t) + a_2z(t) = 0.$$

de karakteristieke veelterm wordt

$$p(v) = v^2 + (a_1 - 1)v + a_2.$$

• $v_1 \neq v_2 \in \mathbb{R}$

$$z(t) = c_1 e^{\nu_1 t} + c_2 e^{\nu_2 t}.$$

$$\implies y(x) = c_1 x^{\nu_1} + c_2 x^{\nu_2}.$$

• $v_1 = v_2 \in \mathbb{R}$

$$z(t) = c_1 e^{\nu t} + c_2 t e^{\nu t}.$$

$$\implies y(x) = c_1 x^{\nu_1} + c_2 \ln(x) x^{\nu_1}.$$

• $v_{1,2} = \alpha \pm \beta i$

$$z(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t).$$

$$\implies y(x) = c_1 x^{\alpha} \cos(\beta \ln(x)) + c_2 x^{\alpha} \sin(\beta \ln(x)).$$

Opmerking 1.2.1 Voor x < 0

Voer een transformatie uit x = -u

1.3 De gammafunctie

Definitie 1.3.1: gamma functie

Gammafunctie voor x > 0:

$$\Gamma(x) = \int_0^{+\infty} e^{-u} u^{x-1} du.$$

We zien dat het domein \mathbb{R}^+ is. Natuurlijk gebruiken we de gamma functie vooarl omwille van de fundamentele eigenschap

Eigenschap: Recursiebetrekking Recursie eigenschap gamma functie

$$\Gamma(x+1) = x\Gamma(x)$$
.

Bewijs 1.3.1: Bewijs recursie eigenschap

$$\Gamma(x+1) = x\Gamma(x).$$

Bewijs;

$$\Gamma(x+1) = \int_0^{+\infty} e^{-u} u^x du.$$

partiele integratie

$$-u^{x}e^{-u}|_{0}^{\infty}+\int_{0}^{+\infty}e^{-u}xu^{x-1}du.$$

Opmerking 1.3.1

$$\lim_{u \to 0} u^x e^{-u} = \lim_{u \to \infty} u^x e^{-u} = 0.$$

hieruit vinden we dat die term nul wordt

$$\iff \int_0^{+\infty} e^{-u} x u^{x-1} du.$$

Definitie 1.3.2: Definitie van de gammafunctie op $\mathbb R$

$$\Gamma(x) = \begin{cases} \int_0^{+\infty} e^{-u} u^{x-1} du, & x > 0\\ \frac{\Gamma(x+1)}{x}, & x < 0 \land |x| \notin \mathbb{N} \end{cases}$$

We maken gebruik van die recursiebetrekking om uit te breiden voor negatieve getallen. Het is belangrijk voor later dat we ook negatieve inputs kunnen geven. De manier waarop je dus rekent is dat je in breukvorm telkens een getal binnen het domein krijgt door een negatief getal kleiner dan één te nemen in absolute waarde, en dan vervolgens wanneer je hier voorbij gaat gebruik je de daarvoor berekende recursie.

Gaat niet $\forall x$, voor $x \in \mathbb{N}$ lukt dat niet want je kan $\Gamma(0)$ niet berekenen. Je ziet dus hoe die "lijn van recursie" niet opgaat. We zien dat dus als de vertikale asymptoten op de grafiek.

Eigenschap: Gammafunctie en faculteiten

Gammafunctie is een uitbreiding van de faculteitenfunctie

$$\Gamma(n+1) = n!$$

kan bewezen worden via inductie, je kunt makkelijk eerst nul beschouwen en zien dat dat gelijk is aan één.

$$\Gamma(1) = \int_0^{+\infty} e^{-t} dt = e^{-t} |_0^{\infty} = 1 = 0!.$$

indien de bewering geldig is voor n, is ze ook geldig voor n+1.

Herrinnering 1.3.1 onthoud de volgende eigenschap

Recursiebetrekking

$$\Gamma(x+1) = x\Gamma(x).$$

$$\Gamma(n+2) = (n+1)\Gamma(n+1) = (n+1)n! = (n+1)!.$$

1.4 Differentiaalvergelijking van Bessel

Definitie 1.4.1: differentiaalvergelijking van Bessel

Orde p (positieve parameter, niet echt de orde)

$$x^2y''(x) + xy'(x) + (x^2 - p^2)y(x) = 0.$$

 $met p \ge 0$

Eerste oplossing

van deze differentiaalvergelijking is via reeksontwikkeling voor p.

$$y_1(x) = \sum_{k=0}^{\infty} C_1 x^{k+p}.$$

Idee of vraag 1.4.1

waarbij C_k voldoet aan de recursiebetrekking die we vinden door in te vullen in differentiaalvergelijking.

$$x^2y''(x) + xy'(x) + (x^2 - p^2)y(x) = 0.$$

$$x^{2} \left(\sum_{k=0}^{\infty} C_{1} x^{k+p} \right)^{n} + x \left(\sum_{k=0}^{\infty} C_{1} x^{k+p} \right)^{n} + (x^{2} - p^{2}) \left(\sum_{k=0}^{\infty} C_{1} x^{k+p} \right) = 0.$$

door C_k te schrijven laat ik het somteken even weg

$$\left(C_k x^{k+p}\right)' = (k+p)C_k x^{k+p-1}.$$

$$\left(C_k x^{k+p}\right)'' = (k+p)(k+p-1)C_k x^{k+p-2}.$$

$$C_k = \frac{-C_{k-2}}{k(k+2p)}, k \text{ even }, C_k = 0, k \text{ oneven.}$$

$$J_p(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+p}}{k!\Gamma(p+k+1)2^{2k+p}}.$$

$$J_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n-k)!} \left(\frac{x}{2}\right)^{2k+n}.$$

waaruit dus blijkt

$$J_0(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(k!)^2} \left(\frac{x}{2}\right)^{2k}.$$

Eigenschap: Afgeleide relatie

$$\frac{d}{dx}[x^nJ_n(x)] = x^nJ_{n-1}(x).$$

stel

$$f(x) = x^n J_n(x).$$

$$f'(x) = nx^{n-1} J_n(x) + x^n J'_n(x).$$

volgens de eigenschap geldt ook

$$f'(x) = x^n J_{n-1}(x).$$

 $\implies nx^{n-1} J_n(x) + x^n J'_n(x) = x^n J_{n-1}(x).$

Hieruit volgt

$$J'_n(x) = J_{n-1}(x) - \frac{n}{x} J_n(x).$$

Eigenschap: Afgeleide relatie

$$\frac{d}{dx}[x^{-n}J_n(x)] = -x^{-n}J_{n+1}(x).$$

$$g(x) = x^{-n} J_n(x).$$

$$g'(x) = -nx^{-n-1} J_n(x) + x^{-n} J'_n(x).$$

$$g'(x) = -x^{-n} J_{n+1}(x).$$

$$\Longrightarrow J'_n(x) = -J_{n+1}(x) + \frac{n}{x} J_n(x).$$

Bewijs 1.4.1: Bewijs van afgeleide relatie

$$J'_n(x) = \frac{1}{2} [J_{n-1}(x) - J_{n+1}(x)].$$

Tel de twee vergelijking uit voorgaande eigenschappen op;

$$J'_n(x) + J'_n(x) = \left(J_{n-1}(x) - \frac{n}{x}J_n(x)\right) + \left(-J_{n+1}(x) + \frac{n}{x}J_n(x)\right).$$

dit simplificeren dan volgt direkt het gestelde.

Voorbeeld 1.4.1 (Bessel differentiaalvergelijking vb)

Idee of vraag 1.4.2

$$J_0'(x) = -J_1(x).$$

· Afgeleide relatie

$$J'_n(x) = \frac{1}{2} [J_{n-1}(x) - J_{n+1}(x)].$$

• Relatie J_{-n} en J_n

$$J_{-n}(x) = (-1)^n J_n(x).$$

$$\implies J_0'(x) = \frac{1}{2} [J_{-1}(x) - J_1(x)].$$

$$\implies J_{-1}(x) = (-1)^1 J_1(x) = -J_1(x).$$

Hieruit volgt direkt het gestelde.

Tweede oplossing

-p is de tweede oplossing, dus we zoeken een oplossing met

$$y_2(x) = \sum_{k=0}^{\infty} B_k x^{k-p}.$$

$$B_k = \frac{-B_{k-2}}{k(k-2p)}.$$

voor k even en nul voor k oneven.

$$J_{-p}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k-p}}{k! \Gamma(-p+k+1) 2^{2k-p}}, p \notin \mathbb{N} \land p \neq 0.$$

Opmerking 1.4.1 Lineair onafhankelijke oplossingen

- $J_p(x)$ is Besselfunctie van de eerste soort orde p
- $J_p(x)$, $J_{-p}(x)$ is een funcamenteel stel voor $p \notin \mathbb{N} \land p \neq 0$
- indien het wel een natuulijk getal of nul is, kan aangetoond worden : $J_{-n}(x) = \lim_{p \to n} J_{-p}(x) = (-1)^n J_n(x)$

Bijgevolg moeten we een moeilijkere vorm gebruiken als we de reeksontwikkeling direct willen berekenen.

Besselfunctie van de tweede soort

Definitie 1.4.2: Besselfuncties van de tweede soort

Gedefinieerd als volgt;

$$Y_{p}(x) = \begin{cases} \frac{J_{p}(x)\cos\left(p\pi\right) - J_{-p}(x)}{\sin\left(p\pi\right)}, p \notin \mathbb{N} \land p \neq 0 \\ \lim_{p \to 0} \frac{J_{p}(x)\cos\left(p\pi\right) - J_{-p}(x)}{\sin\left(p\pi\right)}, p = 0 \\ \lim_{p \to 0} \frac{J_{p}(x)\cos\left(p\pi\right) - J_{-p}(x)}{\sin\left(p\pi\right)}, p = n \in \mathbb{N} \end{cases}.$$

Waar we dus die cotangens moeten beschouwen als coefficient voor J_p en die $\frac{-1}{\sin(...)}$ als coefficient van J_{-p}

Idee of vraag 1.4.3

Dus drie keer dezelfde functie met een limiet naar niet gedefinieerde plaatsen, maar ik snap totaal niet waar de functie vandaan komt en hoe we dit bewijzen. Check de cursus vanaf je die eindelijk krijgt en vraag anders aan prof

Eigenschap:

Een fundamenteel stel voor $p \ge 0$:

$$\left\{J_p(x),Y_p(x)\right\}.$$

Eigenschap:

De Besselfunctie van de tweede soort $Y_p(x)$ zijn onbegrensd in een omgeving van x = 0

1.5 Gewijzigde differentiaalvergelijking van Bessel

Definitie 1.5.1: Gewijzigde Besselvergelijking

Gewijzigde Besselvergelijking van orde p

$$x^2y'' + xy' - (x^2 + p^2)y = 0.$$

met $p \ge 0$ een parameter

Eerste soort

Reeksontwikkeling rond een regulier singulier punt;

$$y_1(x) = \sum_{k=0}^{\infty} C_k x^{k+p}.$$

$$C_k = \frac{C_{k-2}}{k(k+2p)}.$$

We vinden

$$I_p(x) = \sum_{k=0}^{\infty} \frac{x^{2k+p}}{k! \Gamma(p+k+1) 2^{2k+p}}.$$

$$I_n(x) = \sum_{k=0}^{\infty} \frac{1}{k!(n+k)!} \left(\frac{x}{2}\right)^{2k+n}.$$

$$I_0(x) = \sum_{k=0}^{\infty} \frac{1}{(k!)^2} \left(\frac{x}{2}\right)^{2k}.$$

 $I_p(x)$ is de gewijzigde Besselfunctie van de eerste soort en orde p.

Tweede soort

$$K_p(x) = \frac{\pi}{2} \frac{I_{-p}(x) - I_p(x)}{\sin(p\pi)}.$$

Eigenschap:

Fundamenteel stel voor $\forall p \ge 0$

$$\left\{I_p(x),K_p(x)\right\}.$$

Eigenschap:

Voor gewijzigde Besselfuncties van de tweede soort geldt ze zijn onbegrensd in een omgeving x = 0

Opmerking 1.5.1 De grafieken

Zorg vooral dat je de grafieken direct in je hoofd hebt, dat zijn de belangrijkste om te onthouden

Stelling: verschillen hyperbolische hyperb vs Besselfuncties Dit is zowat het belangrijkste van dit hele deel

Trigo- en hyper- functies	Besselfuncties			
Differentiaalvergelijking				
y''(x) + y(x) = 0 $y(x) = c_1 \cos(x) + c_2 \sin(x)$	$ y''(x) + y'(x) + xy(x) = 0 $ $ y(x) = c_1 J_0(x) + c_2 Y_0(x) $			
y''(x) - y(x) = 0 $y(x) = c_1 \cosh(x) + c_2 \sinh(x)$	xy''(x) + y'(x) - xy(x) = 0 $y(x) = c_1 l_0(x) + c_2 K_0(x)$			
Reeksontwikkelingen				
$\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$ $\cosh(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$	$J_0(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{2^{2k} (k!)^2}$ $I_0(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{2^{2k} (k!)^2}$			
Grafieken, nulpunten, begr	ensdheid, orthogonaliteit			
	Vans Vans			

overzicht van functies;

I.2 Fourierreeksen

We willen een functie f benaderen op een interval [a, b] door middel van lineaire combinatie goniometrische functies.

2.1 Inleidend

Definitie 2.1.1: Het interpolatiecriterium

Kies N punten $x_j \in [a,b]$ en eis dat $g(x_j) = f(x_j), j = 1,...,N$ Met andere woorden er wordt in essentie enkel geëist dat de doelfunctie in enkele punten exact samenvalt. Dan wordt een veelterm bepaald. lineair stelsel;

$$\sum_{i=1}^{n} c_i g_i(x_j) = f(x_j), j = 1, 2, \dots, N.$$

$$\begin{pmatrix} g_1(x_1) & g_2(x_1) & \dots & g_N(x_1) \\ g_1(x_2) & g_2(x_2) & \dots & g_N(x_2) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ g_1(x_N) & g_2(x_N) & \dots & g_n(x_N) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{pmatrix} = \begin{pmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_N) \end{pmatrix}.$$

kwaliteit hangt af van keuzes interpolatiepunten, veelterminterpolatie geeft grote fouten.

Dan is er het minimaxcriterium; Het minimaxcriterium is dus vooral lastig omdat het moeilijk uit te werken is.

$$\max\{|f(x)-g(x)|, x \in [a,b]\}.$$

minimaliseren van een maximum wordt een zadelpunt probleem genoemd. Zie fig2.1. Je probeert eigenlijk het minimum van een maximum te nemen.

Figure I.2.1: zadelpuntprobleem

Dan komen we bij dit criterium om een compromis te sluiten.

Definitie 2.1.2: Kleinste kwadratencriterium

Bepaal c_i , i = 1, 2, ..., N zodat

$$\int_a^b w(x)(f(x)-g(x))^2 dx.$$

minimaal is met x(x) > 0

Eerste observatie is dat we de norm vinden door de wortel te nemen van die integraal.

$$||f|| = \sqrt{\int_a^b w(x)f(x)^2 dx}.$$

voldoet aan voorwaarden voor de norm We kunnen het cireterium dus interpreteren als

$$||f-g||^2$$
.

We zoeken een g die het dichtst aansluit bij f.

Opmerking 2.1.1 Belang van w(x)

deze laat ons toe om bepaalde functies in het interval meer of minder prioriteit te geven

2.2 Benaderingsprobleem uitwerken

$$I = \int_{a}^{b} w(x) \left\{ f(x) - \sum_{i=1}^{N} c_{i} g_{i}(x) \right\}^{2} dx = \sigma(c_{1}, c_{2}, \dots, c_{N}).$$

de fout zal een getal zijn dat afhangt van de coefficienten. We moeten die dan zo kiezen dat we een minimum krijgen. De nodig voorwaarde voor een minimum

$$\frac{\partial \sigma}{\partial c_j} = 0, j = 1, 2, \dots, N.$$

Figure I.2.2: één veranderlijke

dit is hoe het eruit zou zien **voor één coefficient** c_1 fig 2.2. Voor meerdere veranderlijken, fig 2.3;

Figure I.2.3: meerdereveranderlijken

We werken dit uit en krijgen;

$$(-2) \int_a^b w(x) \left(f(x) - \sum_{i=1}^N c_i g_i(x) \right) g_j(x) dx = 0.$$

of

$$\sum_{i=1}^{N} c_i(g_i, g_j)_w = (f, g_j)_w, j = 1, 2, \dots, N.$$

Dit kunnen we in stelselvorm schrijven om het duidelijker te maken

$$\begin{pmatrix} (g_1,g_1)_w & (g_1,g_2)_w & \cdots & (g_1,g_N)_w \\ (g_2,g_1)_w & \cdots & \cdots & (g_2,g_N)_w \\ \vdots & \vdots & \vdots & \vdots \\ (g_N,g_1)_w & \cdots & \cdots & (g_N,g_N)_w \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{pmatrix} = \begin{pmatrix} (f,g_1)_w \\ (f,g_2)_w \\ \vdots \\ (f,g_N)_w \end{pmatrix}.$$

2.3 Intermezzo; over orthogonaliteit

Definitie 2.3.1: Orthogonaliteit van functies

Twee functies $f, g \in \mathbb{R}$ zijn orthogonaal op [a, b] als

$$\int_a^b f(x)g(x)dx.$$

Figure I.2.4: Orthogonale functies

Kies n equidistante punten $\in [a,b]$

$$a = x_1 < x_2 < x_3 < \ldots < x_n = b$$
.

tussenafstand

$$h = \frac{b-a}{n-1}.$$

zeg

$$f_i = f(x_i), g_i = g(x_i), i = 1, ..., n.$$

benadering van de integraal

$$\int_{a}^{b} f(x)g(x)dx \approx h(f_{1}g_{1} + f_{2}g_{2} + \dots + f_{n-1}g_{n-1}).$$

kan dus benaderd worden door

$$f_1g_1 + \dots + f_{n-1}g_{n-1} = 0.$$

$$\iff F^TG = 0.$$

Definitie 2.3.2: Orthogonaal tov gewichtsfunctie

Twee reele functies f, g zijn orthogonaal op [a,b] tov gewichtsfunctie w, w(x) > 0 voor $x \in (a,b)$

$$\int_{a}^{b} w(x)f(x)g(x)dx = 0.$$

2.4 Belang orthogonaliteit

We gebruiken orthogonaliteit voor het makkelijker uitwerken van dit inwendig product.

$$\int_a^b g_i(x)g_j(x)dx = 0, i \neq j.$$

Als dat gebeurt zullen alle elementen die niet op diagonaal staan wegvallen!

Herrinnering 2.4.1

$$\begin{pmatrix} (g_1,g_1)_w & (g_1,g_2)_w & \cdots & (g_1,g_N)_w \\ (g_2,g_1)_w & \cdots & (g_2,g_N)_w \\ \vdots & \vdots & \vdots & \vdots \\ (g_N,g_1)_w & \cdots & (g_N,g_N)_w \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{pmatrix} = \begin{pmatrix} (f,g_1)_w \\ (f,g_2)_w \\ \vdots \\ (f,g_N)_w \end{pmatrix}.$$

We komen dan direct uit

$$c_i = \frac{(f, g_i)_w}{(g, g_i)_w} = \frac{\int_a^b w(x) f(x) g(x) dx}{\int_a^b w(x) g_i(x)^2 dx}, i = 1, 2, \dots, N.$$

Voorbeeld 2.4.1 (benaderen)

We gaan een functie f benaderen op een interval [a,b] door een lineaire combinatie van basisfuncties

$$f(x) \approx \sum_{i=1}^{N} c_i g_i(x).$$

$$\begin{cases} g_1 \\ g_2 \end{cases}$$

We gaan een fout karakteriseren met een kleinste kwadratenfunctie met een gewicht w(x)

$$\int_a^b w(x) \left(f(x) - g(x) \right)^2 dx.$$

dit willen we minimaliseren

er zijn voorwaarden mogelijk voor een perfecte match. Stel dat de basisfuncties **orthogonaal zijn tov elkaar op** [a,b] **tov** w(x). In dat geval is de uitdrukking voor optimale coefficienten eenvoudig (de te minimaliseren formule.)

$$c_i = \frac{\int_a^b w(x)f(x)g_i(x)dx}{\int_a^b w(x)\left(g_i(x)\right)^2 dx}.$$

2.5 Trigonometrische orthogonaliteit

stel w(x) = 1 en $[a, b] = [-\pi, \pi]$ we krijgen trigonometrische orthogonaliteit

$$\int_{-\pi}^{\pi} \cos(kx) \cos(lx) dx = \begin{cases} 0, k \neq l \\ \pi, k = l \neq 0 \\ 2\pi, k = l = 0 \end{cases}.$$

$$\int_{-\pi}^{\pi} \cos(kx) \sin(lx) dx = 0.$$

$$\int_{-\pi}^{\pi} \sin(kx) \sin(lx) = \begin{cases} 0, k \neq l, k = l = 0 \\ \pi, k = l \neq 0 \end{cases}$$

Definitie 2.5.1: Trigonometrische veelterm

Gedefinieerd als

$$g(x) = a_0 + \sum_{k=1}^{n} \left(a_k \cos\left(kx\right) + b_k \sin\left(kx\right) \right).$$

Opmerking 2.5.1 !!!

Wat we nu zullen doen is praten over trigonometrische veelterm benaderingen, als aanknopingspunt voor Fourier reeksen in het stuk hierna! Kijk goed naar de voorwaarden en waar ze vandaan komen, dat is wat belangrijk is in dit deel.

Stelling: Kleinste kwadraten trigonometrische veelterm

• stel we gaan f benaderen op $[-\pi, \pi]$ en we kiezen w(x) = 1; benaderen door

$$g(x) = a_0 + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx)).$$

met

$$\int_{-\pi}^{\pi} 1 \cdot \left(f(x) - g(x) \right)^2 dx = 0.$$

minimaal!

• Basisfuncties $\{1, \cos(x), \sin(x), \dots, \cos(nx), \sin(nx)\}$ voldoen aan

$$\int_{-\pi}^{\pi} 1 \cdot g_i(x) g_j(x) dx = 0, i \neq j.$$

aka ze zijn orthogonaal!

•

$$a_0 = \frac{\int_{-\pi}^{\pi} 1 \cdot f(x)}{\int_{-\pi}^{\pi} 1^2 dx} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx.$$

$$a_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx.$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx.$$
$$k = 1, 2, \dots, n.$$

Eigenschap: Orthogonaliteitseigenschap van J_0

De besselfuncties van de eerste soort voldoen aan de orthogonaliteitseigenschap

$$\int_0^1 x J_0(\alpha x) J_0(\beta x) dx = 0.$$

Als

• $\alpha \wedge \beta$ verschillende positieve nulpunten zijn van $J_0(x)$ en J_0'

Corollarium of verklaring:

Dit volgt uit;

$$\int_0^1 x J_0(\alpha x) J_0(\beta x) \mathrm{d} \mathbf{x} = \frac{\beta J_0(\alpha) J_0'(\beta) - \alpha J_0(\beta) J_0'(\alpha)}{\alpha^2 - \beta^2}.$$

als

$$\alpha \neq \beta$$
.

En dat is praktisch waar het bewijs uit handboek naartoe werkt.

Wat is hiervan een belangrijke implicatie? Stel we hebben f(x), voorwaarden

- [0,1], interval kiezen
- $J_0(\alpha_1 x), J_0(\alpha_2 x)...$, gescaleerde besselfuncties als basisfuncties
- Kleinste kwadraten criterium met w(x) = x

$$\implies \int_0^1 x(f(x) - g(x))^2 dx$$
, minimaal.

Opmerking 2.5.2 Wat betekent dit?

We gaan f(x) benaderen door

$$f(x) \approx \sum_{k=1}^{n} a_k J_0(\alpha_k x).$$

Algemeen moet je een stelsel oplossen om de a_k te vinden, maar omwille van de orthogonaliteit **vinden we een goede** match!

$$a_{k} = \int_{0}^{1} x f(x) J_{0}(\alpha_{k} x) dx \cdot \frac{1}{\int_{0}^{1} x (J_{0}(\alpha_{k} x))^{2} dx}.$$

Dit is een eenvoudige uitdrukking voor coefficienten.

Voorbeeld 2.5.1 (Met afgeleiden)

$$J_0(\beta_0 x), J_0(\beta_1 x), \ldots$$

Als we hier nu f willen benadern hebben we enkele ingrediënten nodig;

- [0,1]
- $\{J_0(\beta_0 x), J_0(\beta_1 x), \ldots\}$
- We kiezen kleinste kwadratencrieterium met w(x) = x

$$\int_0^1 x(f-g)^2 \mathrm{dx}.$$

Dit is opnieuw een perfecte match. Alle functies zijn ortthogonaal op 0,1 tov x de gewichtsfunctie.

$$f(x) \approx \sum_{k=0}^{n} a_k J_0(\beta_k x).$$

$$a_k = \frac{\int_0^1 f(x) J_0(\beta_k x) dx}{\int_0^1 x (J_0(\beta_k x))^2 dx}.$$

Eigenschap: Eigenschap van minder belang

Eigenschap die wordt bewezen in de cursus in verband met producten van besselfuncties met zichzelf; nuttig voor vinden expliciete uitdrukking noemer voor uitdrukking coefficienten.

$$\int_0^1 x (J_0(\lambda x))^2 dx = \frac{1}{2} (J_0'(\lambda))^2 + \frac{1}{2} (J_0(\lambda))^2.$$

2.6 Fourierreeksen

We doen dus wat we in het vorig deel besproken hebben, $f(x) \in [-\pi, \pi]$ met basisfuncties

$$g(x) = \begin{cases} 1 \\ \cos(x)\sin(x) \\ \cos(nx)\sin(nx) \end{cases}$$

met kleinste kwadratencriterium w(x) = 1. Dit betekent dat we de volgende fout minimaliseren;

$$\int_{-\pi}^{\pi} 1 \cdot \left(f(x) - g(x) \right)^2 dx.$$

Normaal moeten we dus een stelsel oplossen, maar we krijgen een match (dit is gewoon herhaling van het vorig deel).

Definitie 2.6.1: Kleinste kwadraten trigonometrische veelterm

$$g(x) = a_0 + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx)).$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx.$$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx, k = 1, \dots, n.$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx, k = 1, \dots, n.$$

Opmerking 2.6.1 of ook

$$g(x) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx)).$$

met

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx, k = 0, \dots, n.$$

Definitie 2.6.2: Een fourierreeks

gedefinieerd als

$$f(x) \approx \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)).$$

Eigenschap: Integraal over periodieke functie

f(x) een periodieke functie met periode T en f integreerbaar;

$$\int_0^T f(x) dx = \int_\alpha^{\alpha + T} f(x) dx.$$

Stel we willen een fourier reeks maken van een functie met periode T, we gebruiken een transformatie;

$$\phi(y) = f(x), x = \frac{yT}{2\pi}.$$

$$\iff \phi(y + 2\pi) = f(\frac{yT}{2\pi} + T).$$

$$\iff f(\frac{yT}{2\pi}) = f(x) = \phi(y).$$

Nu heeft ϕ periode 2π

Definitie 2.6.3: Fourierreeks van functie met periode T

$$f(x+T) = f(x), \forall x$$

$$f(x) \approx \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2\pi kx}{T}\right) + b_k \sin\left(\frac{2\pi kx}{T}\right) \right).$$

met

$$a_k = \frac{2}{T} \int_0^T f(x) \cos\left(\frac{2\pi kx}{T}\right) dx.$$

$$b_k = \frac{2}{T} \int_0^T f(x) \sin\left(\frac{2\pi kx}{T}\right) dx.$$

Dit volgt uit de substitutie $\phi(y) = f(x)$, $x = \frac{yT}{2\pi}$.

Opmerking 2.6.2 Basis pulsatie

Als je k = 1 stelt, dan staat bij a_k een basis pulsatie $\frac{2\pi}{T}$ en alle frequenties die voorkomen in die expansie zijn veelvouden van die basisfrerquentie.

Voorbeeld 2.6.1 (Beschouw)

f(x) periodieke uitbreiding van

$$g(x) = \begin{cases} x, 0 \le x < 1 \\ 1, 1 \le x < 3 \\ 4 - x, 3 \le x \le 4 \end{cases}.$$

Dit is een even functie en heeft periode T = 4. Ziet er als volgt uit;

Het is een even functie, fourierreeks herleidt tot cosinusreeks

$$f(x) \approx \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos\left(\frac{2\pi kx}{T}\right).$$

$$\iff \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos\left(\frac{\pi kx}{2}\right) = \sum_{k=0}^{\infty} f_k(x).$$

$$a_0 = \frac{1}{2} \int_0^4 f(x) dx = \frac{3}{2}.$$

Dit is de gemiddelde waarde.

$$a_k = \frac{2}{T} \int_0^T f(x) \cos\left(\frac{2\pi kx}{T}\right) dx = \frac{4}{T} \int_0^{\frac{T}{2}} f(x) \cos\left(\frac{2\pi kx}{T}\right) dx.$$

$$\iff \int_0^1 x \cos\left(\frac{\pi kx}{2}\right) dx + \int_1^2 \cos\left(\frac{\pi kx}{2}\right) dx.$$

De fundamentele trilling $f_1(x)$ gegeven door

$$f_1(x) = a_1 \cos\left(\frac{\pi x}{2}\right) = -\frac{4}{\pi^2} \cos\left(\frac{\pi x}{2}\right).$$

De hogere harmonischen worden ook weergegeven; f_i bevatten gewon hogere termen!! Dit is fundamenteel om te begrijpen;

Dat is wat je krijgjt wanneer je

$$s_3(x) = \sum_{k=0}^{3} f_k(x).$$

2.7 Convergentie van fourier reeksen

Definitie 2.7.1: Stuksgewijs continue functie

f(x) is een stuksgewijze continue functie op [a,b] indien f continu is op [a,b] of een eindig aantal discontinuïteiten heeft en in elk punt van [a,b] de linker- en rechterlimiet bestaan.

In a bestaat de rechtelimiet in b de linkerlimiet. Om het met middelbare termen uit te drukken, functie met enkel perforaties als discontinuiteiten of geen discontinuiteiten.

Definitie 2.7.2: Stuksgewijze effen functie

f(x) is stuksgewijze effen op [a,b] indien f,f' continu zijn op [a,b] of een eindig aantal discontinuiteiten hebben in alle punten $x_0 \in [a,b]$. De linker- en rechterlimieten van al deze punten moeten dan bestaan voor zowel f als f'. Om het simpel uit te drukken; **Effen functie is een functie die stuksgewijze continu is en haar afgeleide is ook stuksgewijze continu.** Denk ik.

Idee of vraag 2.7.1

Betekent dat dan dat de originele functie geen discontinuiteiten mag bevatten?

$$f(x_0+) = \lim_{h \to 0+} f(x_0+h), f(x_0-) = \lim_{h \to 0-} f(x_0+h).$$

$$f'(x_0+) = \lim_{h \to 0+} \frac{f(x_0+h) - f(x_0+)}{h}, f'(x_0-) = \lim_{h \to 0-} \frac{f(x_0+h) - f(x_0)}{h}.$$

Stelling: Fourrierreeks effen functies

Indien f(x) stuksgewijze effen is op $[-\pi,\pi]$ convergeert de fourierreeks puntsgewijze tot

$$\frac{f(x+) + f(x-)}{2}, x \in (-\pi, \pi).$$

$$\frac{f((-\pi)+) + f(\pi-)}{2}.$$

Laten we bespreken wat deze stelling betekent;

Figure I.2.5: effen

Opmerking 2.7.1 Wat kunnen we zeggen over de randpunten?

Op de rand zal de fourierreeks op de discontinuiteit convergeren naar het gemiddelde van de rechter en linkerlimiet!!

Waarom dit zo is kunnen we verder illustreren.

Figure I.2.6: discontinuconv

A is de linkerlimiet, B de rechterlimiet. Dat is precies wat er in de steling staat, gemiddelde van die twee.

Voorbeeld 2.7.1

Bepaal de cosinusreeks; Voor $f(x) = x^2, -\pi \le x \le \pi$ en bereken aan de hand hiervan;

$$\sum_{k=1}^{\infty} \frac{1}{k^2}.$$

en

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2}.$$

1. Fourier coefficienten bepalen;

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2}{\pi} \left[\frac{x^3}{3} \right]_0^{\pi} = \frac{2\pi^2}{3}.$$

$$a_k = \frac{2}{\pi} \int_0^{\pi} x^2 \cos(kx) dx.$$

$$\int x^2 \cos(kx) = x^2 \cdot \frac{\sin(kx)}{k} - \int \frac{\sin(kx)}{k} \cdot 2x dx.$$

Idee of vraag 2.7.2

Dit is waanzinnig nu moet ik dubbele partiele integratie toepassen, dit kan niet de bedoeling zijn???

2.8 Gibbs verschijnsel

fout bij benadering

$$R_n(x) = s_n(x) - f(x) = \sum_{k=1}^n \frac{\sin(kx)}{k} - \frac{\pi - x}{2}, x \in [0, \pi].$$

Dit komt nog uit een voorbeeld dat ze in het boek waren gestart.

$$R'_n(x) = \sum_{k=1}^n \cos(kx) + \frac{1}{2} = \frac{\sin((n+\frac{1}{2})x)}{2\sin(\frac{x}{2})}.$$

bemerk

$$\lim_{x \to 0+} R_n(x) = \frac{\pi}{2}.$$

$$R_n(x) = \frac{\pi}{2} + \int_0^x \frac{\sin((n + \frac{1}{2})t)}{2\sin(\frac{t}{2})} dt.$$

Het lokale maximum wordt bereikt door

$$x_n = \frac{\pi}{n + \frac{1}{2}}.$$
$$\lim_{n \to \infty} x_n = 0.$$

Opmerking 2.8.1

Wat er zal gebeuren is dat de overshoot zich meer en meer zal concentreren in de buurt van de discontinuiteit. Maar het hele punt is wel dat je de overshoot niet kwijt kunt raken. Deze convergeert naar een getal groter dan nul.

$$\lim_{n\to\infty}R_n(x_n)=-\frac{\pi}{2}+\int_0^\pi\frac{\sin\left(s\right)}{s}ds\neq 0.$$

Ze werken het voorbeeld uit in de cursus en meer wordt er niet echt gezegd. Dus je moet gewoon weten dat dit bestaat en gebeurt.

2.9 Fourier-Besselreeksen

Definitie 2.9.1: Fourier-Besselreeks

zij α_k , k = 1, 2, ... de opeenvolgende positieve nulpunten van $J_0(x)$ en β_0 , β_k , k = 1, 2, ... de opeenvolgende positieve nulpunten $J_0'(x)$.

$$\sum_{k=1}^{\infty} f_k(x) = \sum_{k=1}^{\infty} c_k J_0(\alpha_k x).$$

waar

$$c_k = \frac{2}{(J_1(\alpha_k))^2} \int_0^1 x f(x) J_0(\alpha_k x) dx, k = 1, 2, \dots$$

$$\sum_{k=0}^{\infty} f_k(x) = \sum_{k=0}^{\infty} d_k J_0(\beta_k x).$$

$$d_k = \frac{2}{(J_0(\beta_k))^2} \int_0^1 x f(x) J_0(\beta_k x) dx, k = 0, 1, \dots$$

Dit zijn de Fourier-Besselreeksen van eerste en tweede soort resp. van orde 0 van f(x).

Opmerking 2.9.1

Tweede soort heeft hier te maken met de nulpunten van de afgeleide van J_0 , heeft **niets** te maken met besselfuncties van de tweede soort.

Maar zoals ik het zie hadden we dit al eerder in dit hoofdstuk beredeneert in het stuk over orthogonaliteit.

Stelling:

Stel dat $a_1 < a_2 < \dots$ de positieve nulpunten zijn van $J_0(x)$. Zij f(x) stuksgewijze effen op [0,1]. De fourierbesselreeks van de eerste soort convergeert puntsgewijs tot

$$\frac{f(x_0+)+f(x_0-)}{2}, \forall x_0 \in (0,1).$$

Er wordt geen uitspraak gedaan over convergentie op de randpunten, en die is er ook niet altijd.

We krijgen opnieuw een Gibbs-achtig verschijnsel bij volgend voorbeeld;

$$f(x) = 1.$$

De fourier-Besselreeks van de eerste soort;

$$\sum_{k=1}^{\infty} \frac{2}{\alpha_k J_1(\alpha_k)} J_0(\alpha_k x).$$

- $\lim_{n\to\infty} s_n(0) = 1 = f(0) = J_0(\alpha_k)$
- $\lim_{n\to\infty} s_n(1) = 0 \neq f(1)$

Het is niet exact hetzelfde, bij fourierreeksen werd het geinduceerd door discontinuiteiten in de functie, hier heeft het te maken met dat de benadering altijd moet starten vanuit 0 in het punt 1.

I.3 Sturm-Liouvilleproblemen

Dit zijn problemen die het algebraïsche eigenwaardeprobleem veralgemenen naar ruimtes van functies.

Herrinnering 3.0.1 Symmetrisch eigenwaardeprobleem

$$A\vec{E} = \lambda \vec{E}$$
.

Is symmetrisch als A symmetrisch is; $A = A^T$

- Alle eigenwaarden zijn reëel. $\forall \lambda_i \in \sigma(A) : \lambda \in \mathbb{R}$
- Eigenvectoren horend bij verschillende eigenwaarden staan onderling loodrecht op elkaar.
- Er zijn n onafhankelijke eigenvectoren die een basis opspannen.

$$\implies \forall \vec{X} \in \mathbb{R}^n : \vec{X} = \sum_{i=1}^n c_i \vec{E}_i.$$

Of elke vector in de ruimte kan geschreven worden als een lineaire combinatie van de eigenvectoren van A. Dat is immers wat het betekent als ze een ruimte opspannen.

3.1 Het eigenwaardeprobleem in de ruimte

Definitie 3.1.1: Operator

- $C^2([a,b],\mathbb{C})$ is de ruimte van functies f van [a,b] naar \mathbb{C} met f,f',f'' continu
- Operator L op $C^2([a,b],\mathbb{C})$ wordt gedefinieerd als;
 - Het domein van de operator, genoteerd D(L) is de verzameling van functies die voldoen aan randvoorwaarden van de vorm

$$\alpha_1 y(a) + \alpha_2 y(b) + a_3 y'(a) + \alpha_4 y'(b) = 0.$$

$$\beta_1 y(a) + \beta_2 y(b) + \beta_3 y'(a) + \beta_4 y'(b) = 0.$$

- De actie van de operator wordt beschreven door

$$Ly = a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x).$$

$$\forall y \in D(L)$$
.

We kunnen nu een eigenwaardeprobleem definiëren dat analoog is aan het probleem bij matrices.

Definitie 3.1.2: Eigenwaardeprobleem van L

Bepaal oplossingen van $Ly = \lambda y$, $\lambda \in \mathbb{C}$, $y \in D(L)$, $y \neq 0$ Dit betekent concreet; We voeren de L operator uit op y en willen dat dit wordt afgebeeld op een veelvoud; We zoeken $\lambda \in \mathbb{C}$ waarvoor diffvergelijking

$$a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = \lambda y(x).$$

met randvoorwaarden

$$\alpha_1 y(a) + \alpha_2 y(b) + a_3 y'(a) + \alpha_4 y'(b) = 0.$$

$$\beta_1 y(a) + \beta_2 y(b) + \beta_3 y'(a) + \beta_4 y'(b) = 0.$$

Waarvoor deze diffvergelijking met die randvoorwaarden een niet-triviale oplossing heeft.

Voorbeeld 3.1.1 (Functies die interval $[0, \pi]$ afbeelden op complexe vlak)

$$\begin{cases} D(L) = \left\{ y \in C^2([0, \pi], \mathbb{C}) : y(0) = 0, y(\pi) = 0 \right\} \\ Ly = y \end{cases}$$

$$Ly = \lambda y, y \neq 0, y \in D(L).$$

We zoeken een functie van y zodanig dat de tweede afgeleide van y gelijk is aan λy

$$\rightarrow y''(x) = \lambda y$$
.

Opmerking 3.1.1

Het feit dat y tot D(L) behoort betekent dat $y(0) = 0 \land y(\pi) = 0$

$$\Longrightarrow \begin{cases} y''(x) = \lambda y(x) \\ y(0) = 0, y(\pi) = 0 \end{cases}.$$

Eigenschap:

Als $\phi_i(x)$ een eigenfunctie is horend bij eigenwaarde λ_i dan is elke functie $c\pi_i(x)$, $c \neq 0$ ook een eigenfunctie horend bij λ_i

Eigenschap:

Eigenfunctie $\phi_i(x)$, i = 1, ..., n horend bij verschillende eigenwaarden λ_i , i = 1, ..., n zijn lineair onafhankelijk op [a, b]

3.2 Symmetrische eigenwaardeproblemen

We bepalen het inwendig product van functies als

$$(y_1, y_2) = \int_a^b \overline{y_1(x)} y_2(x) dx.$$

Dus de inntegraal van a tot b van de complex toegevoegde van y_1 maal y_2

We beschouwen nu opnieuw een eigenwaardeprobleem

$$Ly = \lambda y, \lambda \in \mathbb{C}, y \in D(L), y \neq 0.$$

$$\iff a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = \lambda y(x).$$

$$\begin{cases} \alpha_1 y(a) + \alpha_2 y(b) + \alpha_3 y'(a) + a_4 y'(b) = 0 \\ \beta_1 y(a) + \beta_2(b) + \beta_3 y'(a) + \beta_4 y'(b) = 0 \end{cases}$$

Definitie 3.2.1: Definitie van zelftoegevoegde operator

L is zelftoegevoegd als

$$(y_1, Ly_2) = (Ly_1, y_2), \forall y_1, y_2 \in D(L).$$

$$\equiv \int_a^b \overline{y_1} Ly_2 dx = \int_a^b \overline{(Ly_1)} y_2 dx.$$

Voor alle y_1, y_2 die voldoen aan

$$\begin{cases} \alpha_1 y(a) + \alpha_2 y(b) + \alpha_3 y'(a) + a_4 y'(b) = 0 \\ \beta_1 y(a) + \beta_2 (b) + \beta_3 y'(a) + \beta_4 y'(b) = 0 \end{cases}.$$

Als L zelftoegevoegd is, dan is het eigenwaardeprobleem symmetrisch.

We hebben nu enkele eigenschappen die analoog zijn aan eigenschappen met symmetrische matrices.

Bewijs 3.2.1:

Stelling:

De eigenwaarden van een symmetrisch eigenwaardeprobleem zijn reëel

Veronderstel dat $\lambda \in \mathbb{C}$ een eigenwaarde is en ϕ de bijhorende eigenfucntie. L is zelftoegevoegd dus geldt

$$(\phi, L\phi) = (L\phi, \phi).$$

Uit $L\phi = \lambda \phi$ volgt;

Idee of vraag 3.2.1

$$\lambda \int_{a}^{b} |\phi(x)|^{2} dx = \int_{a}^{b} \overline{(\lambda \phi(x))} \phi(x) dx = \overline{\lambda} \int_{a}^{b} |\phi(x)|^{2} dx.$$

Snap niet heel goed hoe dit bewijs in elkaar valt, op welke manier de twee vorige stellingen leiden tot dit tussenresultaat

$$\lambda(\phi,\phi) = \overline{\lambda}(\phi,\phi).$$

$$\iff 0 = (\lambda - \overline{\lambda})(\phi,\phi) = (\lambda - \overline{\lambda}) \int_a^b |\phi(x)|^2 dx.$$

$$\phi \neq 0 \implies \lambda = \overline{\lambda} \implies \lambda \in \mathbb{R}.$$

Eigenfuncties kunnen steeds reëel gekozen worden en in wat volgt kiezen we ze ook $\in \mathbb{R}$

Eigenschap:

eigenfuncties $\phi_n(x)$, $\phi_m(x)$ horend bij verschillende eigenwaarden λ_n en λ_m van een symmetrisch eigenwaardeprobleem zijn orthogonaal over het interval [a,b] tov gewichtsfunctie w(x) = 1;

$$\int_a^b \phi_n(x)\phi_m(x)\mathrm{d}x = 0.$$

Dit is de direkte veralgemening van de eigenvectoren die orthogonaal zijn bij verschillende eigenwaarden voor symmetrische matrices.

Bewijs 3.2.2: Bewijs van die orthogonaliteit

Er geldt

$$(L\phi_n, \phi_m) = (\phi_n, L\phi_m).$$
$$\lambda_n(\phi_n, \phi_m) = \lambda_m(\phi_n, \phi_m).$$

en vermits $\lambda_n \neq \lambda_m$

$$(\phi_n, \phi_m) = \int_a^b \overline{\phi_n(x)} \phi_m(x) dx = 0.$$

Vermits de eigenfuncties reëel zijn kan $\overline{\phi_n}$ door ϕ_n vervangen worden.

Eigenschap: Eigenfuncties die een basis vormen

Onderstel dat het eigenwaardeprobleem symmetrisch is en bovendien L normaal is (dwz;)

$$a_0(x) \neq 0, \forall x \in [a,b].$$

Dan zijn er oneindig veel reële eigenwaarden λ_n , $n = 0, 1, \dots$ zodat

$$|\lambda_n|<|\lambda_{n+1}|\wedge\lim_{n\to\infty}|\lambda_n|=\infty.$$

voor een stuksgewijze effen functie f op [a,b] geldt;

$$f(x) \approx \sum_{n=0}^{\infty} a_n \phi_n(x).$$

waarbij

$$a_n = \frac{\int_a^b f(x)\phi_n(x)dx}{\int_a^b \phi_n(x)^2 dx}.$$

Dus hiermee wordt getoond hoe het idee van eigenvectoren die een basis opspannen voor de originele basis is veralgemeend! De eigenfuncties spannen een basis op voor f(x). Om even iets dieper in te gaan op die uitdrukking voor de coefficienten;

$$f(x)\phi_j(x) \approx \sum_{n=0}^{\infty} a_n \phi_n(x)\phi_j(x).$$

Dit is 0 wanneer $\phi_n(x) \neq \phi_i(x)$

$$\implies f(x)\phi_j(x) \approx \sum_{n=0}^{\infty} a_n \phi_n(x)\phi_j(x) = a_j \int_a^b \phi_j(x)^2 dx.$$

Dus vorm het om en voila, magie.

Dit stuk kan worden afgesloten door een parallel te trekken tussen de twee contexten rond symmetrische problemen. **Voorwaarde symmetrie**;

$$< y_1, Ly_2 > = < Ly_1, y_2 > \forall y_1, y_2 \in D(L).$$

voor vectoren;

$$\langle x_1, Ax_2 \rangle = \langle Ax_1, x_2 \rangle, \forall x_1, x_2.$$

 $x_1^T Ax_2 = (Ax_1)^T x_2 = x_1^T A^T x_2, \forall x_1, x_2.$
 $\iff A = A^T.$

Dus het is analoog, we kunnen drie eigenschappen extraheren

- reële eigenwaarden in beide gevallen
- orthogonaliteit eigenvectoren of eigenfuncties
- eigenvectoren of eigenfuncties volgen een basis

3.3 Klasse symmetrische problemen

3.3.1 eerste voorbeeld

Voorbeeld 3.3.1 (Klasse symmetrische problemen)

$$Ly = \lambda y$$
,.

$$\lambda \in \mathbb{C}, y \in D(L), y \neq 0$$

Stel

1. Operator L van de vorm

$$Ly = \frac{d}{dx} \left(p(x) \frac{dy}{dx} \right) + q(x).$$

$$\iff p(x)y''(x) + p'(x)y'(x) + q(x)y(x).$$

Dus de tweede coefficient is de afgeleide van de eerste. en wat in het voorbeeld kader staat is compacte notatie.

2. Stel dat de randvoorwaarden gescheiden zijn (rvw waarin enkel a/b voorkomt)

$$\alpha_1 y(a) + \alpha_3 y'(a) = 0.$$

$$\beta_2 y(b) + \beta_4 y'(b) = 0.$$

of periodieke rvw

$$y(a) = y(b)$$
.

$$y'(a) = y'(b).$$

$$met p(a) = p(b)$$

Om terug te komen op dat vorige voorbeeld

Voorbeeld 3.3.2 (Functies die interval $[0, \pi]$ afbeelden op complexe vlak)

$$\begin{cases} D(L) = \left\{ y \in C^2([0, \pi], \mathbb{C}) : y(0) = 0, y(\pi) = 0 \right\} \\ Ly = y \end{cases}$$

$$Ly = \lambda y, y \neq 0, y \in D(L).$$

$$\to y''(x) = \lambda y.$$

$$\Longrightarrow \begin{cases} y''(x) = \lambda y(x) \\ y(0) = 0, y(\pi) = 0 \end{cases}.$$

Hebben we te maken met een symmetrisch probleem'

$$Ly = 1y''(x) + 0y'(x) + 0y(x) \iff a_0 = 1, a_1 = 0.$$

Als je kijkt naar de vorm van de operator zie je dat deze juist is. Als je kijkt naar de rvw, in de eerste komt enkel nul voor in de tweede enkel pi. **Gescheiden rvw.** \implies we hebben te maken met een symmetrisch probleem, dus reële eigenwaarden. Laten we deze berekenen.

• $\lambda = 0$

$$y''(x) = 0 \iff y(x) = c_1 + c_2 x$$
.

De algemene oplossing is een veelterm van de eerste graad. rvw gebruiken;

$$y(x) = 0.$$

Enkel de nuloplossing voldoet, triviale oplossing die niets zegt.

• $\lambda > 0$ Oplossing zal ofwel een combinatie zijn van exponentiëlen

$$\begin{cases} \exp\left(\sqrt{\lambda}x\right) \\ \exp\left(-\sqrt{\lambda}x\right) \end{cases}.$$

of combinatie van hyperbolische functies (dus evident zijn die twee hetzelfde maarja)

$$y(x) = c_1 \cosh(\sqrt{\lambda}x) + c_2 \sinh(\sqrt{\lambda}x).$$

als we hierop de rvw gebruiken

$$c_1 \cdot 1 + c_2 \cdot 0 = 0 \implies c_1 = 0.$$

 $c_2 \sinh(\sqrt{\lambda}\pi) = 0.$

Figure I.3.1: sinh

Die functie heeft geen positieve nulpunten dus wederom nuloplossing.

• *λ* < 0 :

$$y(x) = c_1 \cos(\sqrt{-\lambda}x) + c_2 \sin(\sqrt{-\lambda}x).$$

Moet met matlab bekeken worden maar mij niet vragen hoe. rvw

$$c_1 \cdot 1 + c_2 \cdot 0 = 0 \implies c_2 = 0.$$

 $c_2 \sin(\sqrt{-\lambda}\pi) = 0.$

wow eindelijk een oplossing.

$$\sqrt{-\lambda}\pi = n\pi, n = 1, 2, \dots \to \lambda_n = -n^2.$$

 $\Longrightarrow X_n(x) = c_2 \sin(nx).$

Dan voldoe je aan diffvergelijking en rvw. Oneindig veel eigenfunctie $\sin(nx)$ en dus op constante na!

3.3.2 Visualisatie van deze eigenfunctie

$$y''(x) = \lambda y, y(0) = 0, y(\pi) = 0.$$

 $\phi_n(x) = \sin(nx)n = 1, 2,$

Figure I.3.2: eigenfuncties

dit komt neer op een fouriersinusreeks van oneven uitbreiding van f

$$f(x) \approx \sum_{n=1}^{\infty} a_n \sin(nx), a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx.$$

dit is de fouriersinusreeks van oneven uitbreiding f op $[-\pi,\pi]$

Figure I.3.3: Uitbreiding

Een fouriersinusreeks kunnen we ook interpreteren als expansie van de functie in de oplossingen van dit eigenwaardeprobleem.

3.3.3 tweede voorbeeld

Voorbeeld 3.3.3 (Actie is hetzelfde)

$$y''(x) = \lambda y(x).$$
$$y'(0) = 0.$$
$$y'(L) = L.$$

Het verschil is dat we hier te maken hebben met afgeleiden als rvw.

• $\lambda = 0$: $y(x) = c_1 + c_2 x$, $y'(x) = c_2$

$$y'(0) = y'(L) = c_2 = 0 \implies \lambda_0 = 0.$$

is een eigenwaarde; $\phi_0(x) = 1$ Alle constante functies zijn eigenfuncties.

λ > 0

$$y(x) = c_1 \cosh\left(\sqrt{\lambda}x\right) + c_2 \sinh\left(\sqrt{\lambda}x\right).$$

$$y'(x) = c_1 \sqrt{\lambda} \sinh\left(\sqrt{\lambda}x\right) + \sqrt{\lambda} \cosh\left(\sqrt{\lambda}x\right).$$

de randvoorwaarde zegt nu dat de afgeleide in nul nul moet zijn.

$$\rightarrow c_1 \sqrt{\lambda} \cdot 0 + c_2 \sqrt{\lambda} \cdot 1 = 0 \implies c_2 = 0.$$

De weede randvoorwaarde zegt dat de afgeleide in het punt L nul moet zijn.

$$\to c_1 \sqrt{\lambda} \sin\left(\sqrt{\lambda} L\right) = 0.$$

sinh heeft voor een positief element geen enkel nulpunt. We kunnen enkel aan deze rvw voldoen als $c_1 = 0$. Er blijft niets meer over.

λ < 0

$$y(x) = c_1 \cos(\sqrt{-\lambda}x) + c_2 \sin(\sqrt{-\lambda}x).$$

Opmerking 3.3.1

Lambda is negatief daarom de min lambda onder de wortel, snap wel nog niet helemaal waarom dat precies mag

$$y'(x) = -c_1 \sqrt{-\lambda} \sin(\sqrt{-\lambda}x) + c_2 \sqrt{-\lambda} \cos(\sqrt{-\lambda}x).$$

We vullen de rvw in

$$\begin{cases} y'(0) = c_2 \sqrt{-\lambda} = 0 \implies c_2 = 0 \\ -c_1 \sqrt{-\lambda} \sin \left(\sqrt{-\lambda} L \right) = 0 \end{cases}.$$

We hebben een uitweg, er staat een sinus.

$$\sqrt{-\lambda}L = n\pi, n = 1, 2, \dots$$

$$\implies \lambda_n = \frac{-n^2\pi^2}{L^2}, n = 1, 2, \dots$$

voor de eigenfuncties kijken we naar wat overblijft.

$$\phi_n(x) = \cos\left(\frac{n\pi}{L}x\right).$$

We hadden de eigenfuncties ook makkelijk kunnen bepalen door na te denken over het probleem.

Figure I.3.4: visualisatie-van-oplossing

Voorbeeld 3.3.4 (Laatste voorbeeld)

$$y''(x) = \lambda y(x).$$

 $y(0) = 0.$
 $hy(L) + y'(L) = 0, (h, L > 0).$

• $\lambda = 0$

$$y(x) = c_1 + c_2 x, y'(x) = c_2.$$

$$y(0) = c_1 = 0.$$

$$hy(L) + y'(L) = hc_1 + hc_2 L + c_2 = 0 \implies c_1 = c_2 = 0.$$

dit is geen eigenwaarde, triviaal

• $\lambda > 0$:

$$y(x) = c_1 \cosh\left(\sqrt{\lambda}x\right) + c_2 \sinh\left(\sqrt{\lambda}x\right).$$

$$y'(x) = \sqrt{\lambda} \left(c_1 \sinh\left(\sqrt{\lambda}x\right)\right) + c_2 \cosh\left(\sqrt{\lambda}x\right).$$

$$\iff y(0) = c_1 = 0.$$

$$hy(L) + y'(L) = hc_2 \sinh\left(\sqrt{\lambda}L\right) + \sqrt{\lambda}c_2 \cosh\left(\sqrt{\lambda}L\right) = 0.$$

$$\implies c_1 = c_2 = 0.$$

opnieuw triviaal geen eigenwaarde.

• *λ* < 0 :

$$y(x) = c_1 \cos\left(\sqrt{-\lambda}x\right) + c_2 \sin\left(\sqrt{-\lambda}x\right).$$

$$y'(x) = \sqrt{-\lambda} \left(-c_1 \sin\left(\sqrt{-\lambda}x\right) + c_2 \cos\left(\sqrt{-\lambda}x\right)\right).$$

$$y(0) = c_1 = 0.$$

$$hy(L) + y'(L) = hc_2 \sin\left(\sqrt{-\lambda}L\right) + \sqrt{-\lambda}c_2 \cos\left(\sqrt{-\lambda}L\right) = 0.$$

Waarom is deze uitdrukking nul?

$$c_2 \left[h \cdot \sin \left(\sqrt{-\lambda} L \right) + \sqrt{-\lambda} \cos \left(\sqrt{-\lambda} L \right) \right] = 0.$$

ofwel is $c_2 = 0$ maar dan enkel triviale oplossing. Andere mogelijkheid is dat de tweede factor nul is (tussen vierkante haakjes).

$$\iff \sin\left(\sqrt{-\lambda}L\right) = \frac{\sqrt{-\lambda}L}{hL}\cos\left(\sqrt{-\lambda}L\right).$$

$$\iff \tan\left(\sqrt{-\lambda}L\right) = -\frac{\sqrt{-\lambda}L}{hL}.$$

we substitueren $\sqrt{-\lambda}L = \mu$

$$\iff \tan(\mu) = -\frac{\mu}{hL}.$$

met h en L gegeven constanten. Deze vergelijking heeft oneindig veel oplossingen.

Figure I.3.5: tangens

We hebben oneindig veel oplossingen μ_i

$$\lambda_n = \frac{-\mu n^2}{L^2}, n = 1, 2, 3, \dots$$

Voor de eigenfuncties

$$\phi_n(1) = \sin\left(\sqrt{-\lambda_n}x\right) = \sin\left(\frac{\mu_n x}{L}\right).$$

1. Orthogonaliteitseigenschap

$$\int_0^L \sin\left(\frac{\mu_n x}{L}\right) \sin\left(\frac{\mu_m x}{L}\right) dx = 0, n \neq m.$$

We weten dat dit moet voldaan zijn omdat we te maken hebben met een symmetrisch probleem. tov w(x) = 1. Je kan dit aantonen met inverse formules simpson, maar doe toch maar niet.

2. Convergentie eigenschap

$$f(x) \approx \sum_{n=1}^{\infty} a_n \sin\left(\frac{\mu_n x}{L}\right).$$

waar

$$a_n = \frac{\int_0^L \sin\left(\frac{\mu_n x}{L} f(x) dx\right)}{\int_0^L \sin^2\left(\frac{\mu_n x}{L}\right) dx}.$$

Dit probleem zal later nog belangrijk zijn voor warmtevergelijking, dus zorg dat je dit goed herhaalt.

3.3.4 Periodieke rvw

Voorbeeld 3.3.5 (Dubbele eigenwaarden)

Nu hebben we te maken met periodieke rvw.

$$y''(x) = \lambda y(x).$$

$$y(\pi) = y(\pi)$$
.

$$y'(-\pi) = y'(\pi).$$

met Ly van de vorm

$$Ly = p(x)y''(x) + p'(x)y'(x) + q(x)y(x).$$

waarbij

$$p(x) = 1, q(x) = 0.$$

Dus afg. coeff 1 is gelijk aan coeff 0. We kunnen zoeken naar reële eigenwaarden

• $\lambda = 0$

$$y(x) = Ax + B.$$

$$-A\lambda + B = A\lambda + B.$$

$$y'(x) = A.$$

$$A = A.$$

$$-A\pi = A\pi \implies A = 0.$$

$$\phi_0(x) = 1, \lambda_0 = 0.$$

λ < 0

$$y(x) = A\cos\left(\sqrt{-\lambda}x\right) + B\sin\left(\sqrt{-\lambda}x\right).$$

$$y'(x) = -A\sqrt{-\lambda}\sin\left(\sqrt{\lambda}x\right) + B\sqrt{-\lambda}\cos\left(\sqrt{-\lambda}x\right).$$

$$\implies \phi_n(x) = A_n\cos\left(nx\right) + B_n\sin\left(nx\right).$$

$$\left\{A\cos\left(\sqrt{-\lambda}\pi\right) \mp B\sin\left(\sqrt{-\lambda}\pi\right) = A\cos\left(\sqrt{-\lambda}\pi\right) + B\sin\left(\sqrt{-\lambda}\pi\right)\right.$$

$$\left\{A\sqrt{-\lambda}\sin\left(\sqrt{\lambda}\pi\right) + B\sqrt{\lambda}\cos\left(\lambda\pi\right) = -A\sqrt{-\lambda}\sin\left(\sqrt{\lambda}\pi\right) + B\sqrt{-\lambda}\cos\left(\sqrt{-\lambda}\pi\right)\right.$$

$$\implies \begin{cases} 2B\sin\left(\sqrt{\lambda}\pi\right) = 0\\ 2A\sqrt{-\lambda}\sin\left(\sqrt{\lambda}\pi\right) = 0 \end{cases}.$$

$$\Longrightarrow \begin{cases} B\sin\left(\sqrt{\lambda}\pi\right) = 0\\ A\sin\left(\sqrt{\lambda}\pi\right) = 0 \end{cases}.$$

We beschouwen de nuloplossing waar A en B gelijk zijn aan nul niet

$$\sin(\sqrt{\lambda}\pi) = 0.$$

$$\iff \sqrt{\lambda}\pi = n\pi, n = 1, 2, \dots$$

$$x_n = n^2.$$

Opmerking 3.3.2

Vaak ga je voorwaarden vinden zodat je a in functie van b kunt schrijven of omgekeerd, maar in dit geval niet. We vinden hier een dubbele eigenwaarde, dit is he enige probleem waarbij dit voorkomt.

3.4 Sturm-Liouvilleproblemen

Definitie 3.4.1: Sturm-Liouvilleprobleem

Gegeven een functie r die voldoet aan $r(x) > 0, x \in [a,b]$ zoeken we waarden van $\lambda \in \mathbb{C}$ waarvoor de differentiaalvergelijking

$$p(x)y''(x) + p'(x)y'(x) + q(x)y(x) = \lambda r(x)y(x).$$

met randvoorwaarden

$$\alpha_1 y(a) + \alpha_3 y'(a) = 0.$$

$$\beta_2 y(b) + \beta_4 y'(b) = 0.$$

een niet-triviale oplossing heeft.

De tweede coefficient is de afgeleide van de eerste. Het is een direkte veralgemening van het symmetrische eigenwaardeprobleem.

Opmerking 3.4.1

 λ noemen we een eigenwaarde van het Sturm-Liouvilleprobleem y(x) de overeenkomstige eigenfunctie

Eigenschap:

De eigenwaarden van een Sturm-Liouvilleprobleem zijn reëel.

Eigenschap:

Eigenfuncties $\phi_n(x) \wedge \phi_m(x)$ horend bij verschillende eigenwaarden λ_n en λ_m van een Sturm-Liouvilleprobleem zijn orthogonaal over het interval [a,b] ten opzichte van de gewichtsfunctie w(x) = r(x)

$$\iff \int_a^b r(x)\phi_n(x)\phi_m(x)\mathrm{d}x = 0.$$

In andere woorden worden eigenschappen van ervoor behouden en dit is eigenlijk al vrij uitgebreid eerder besproken. Maar nu geldt orthogonaliteit tov r.

Voor verdere uitwijjding hieromtrent. We weten dat L een zelftoegevoegde operator is

$$(\phi_n, L\phi_m) = (L\phi_n, \phi_m).$$

 ϕ_m is een eigenfunctie dus we kunnen zeggen dat

$$L\phi_m = \lambda_m r(x)\phi_m(x).$$

$$L\phi_n = \lambda_n r(x)\phi_n(x).$$

Daardoor verschijnt r(x) ook in orthogonaliteitseigenschap.

Eigenschap:

Met behulp van eigenfuncties kun je een basis vormen. Voor een stuksgewijze effen functie f(x) op [a,b]

$$f(x) \approx \sum_{n=0}^{\infty} a_n \phi_n(x).$$

waarbij

$$a_n = \frac{\int_a^b r(x)f(x)\phi_n(x)dx}{\int_a^b r(x)\phi_n(x)^2}.$$

onder bepaalde voorwaarden zoals dat L normaal is $p(x) \neq 0, x \in [a, b]$

3.4.1 compacte notatie

Die operator L kan ook compact genoteerd worden. op dit moment staat het dus als volgt;

$$p(x)y''(x) + p'(x)y'(x) + q(x)y(x) = \lambda r(x)y(x).$$

$$\alpha_1 y(a) + \alpha_3 y'(a) = 0.$$

$$\beta_2 y(b) + \beta_4 y'(b) = 0.$$

we kunnen ook L noteren;

$$\frac{d}{dx}\left(p(x)\frac{dy}{dx}\right).$$

daar kun je de kettingregel op toepassen en de vergelijking terugvinden. Deze notatie ga je terugzien in slides en cursus.

3.4.2 Logica achter ontbinding

$$f(x)\phi_k(x) \approx \sum_{n=0}^{\infty} a_n \phi_n(x)\phi_k(x).$$
$$\int_a^b r(x)f(x)\phi_k(x)dx \approx \sum_{n=0}^{\infty} a_n \int_a^b r(x)\phi_n(x)\phi_k(x)dx.$$

Het enige dat zal overblijven is n = k, dat is de enige term die blijft.

$$a_k \int_a^b r(x)\phi_k(x)^2 dx.$$

$$\implies a_k = \frac{\int_a^b r(x)f(x)\phi_k(x)dx}{\int_a^b r(x)\phi_k(x)^2 dx}.$$

zeer gelijkaardige redenering als eerder.

3.4.3 Voorbeeld

Voorbeeld 3.4.1

$$xy''(x) + y'(x) = \lambda \frac{1}{x}y(x).$$

$$\begin{cases} y(1) = 0 \\ y(e) = 0 \end{cases}$$

Zoals het nu in de slides staat is alles genoteerd zodat L zelftoegevoegde vorm is.

• $\lambda = 0$ opgelost met matlab, weet nog niet hoe dat moet

$$y(x) = c_1 + c_2 \ln(x).$$

we gebruiken de rvw, geven ze in

$$c_1 = 0 \land c_2 = 0$$
.

we vinden dus de triviale oplossing

λ > 0

$$y(x) = c_1 \cdot x^{\sqrt{\lambda}} + c_2 \cdot x^{-\sqrt{\lambda}}.$$

we geven opnieuw rvw in en vinden enkel de triviale oplossing

$$c_1 = 0 \land c_2 = 0$$
.

λ < 0

$$y(x) = c_1 \cos\left(\sqrt{-\lambda} \ln(x)\right) + c_2 \sin\left(\sqrt{-\lambda} \ln(x)\right).$$

en als we hier de rvw invullen

$$c_1 + c_2 \cdot 0 = 0 \implies c_1 = 0.$$

tweede rvw;

$$c_2 \sin\left(\sqrt{-\lambda} \ln(e)\right) = 0.$$

we zeggen $c_2 \neq 0$ dan met het argument van de sinus nul zijn.

$$\sqrt{-\lambda} = n\pi \implies \lambda_n = -n^2\pi^2.$$

$$\implies \phi_n(x) = \sin(n\pi \ln(x)).$$

Belangrijk om te beseffen dit is een standaard sturm-liouvilleprobleem dus alle eigenschappen moeten gelden.

$$\int_{1}^{e} \sin(n\pi \ln(x)) \sin(m\pi \ln(x)) dx = \frac{1}{\pi} \int_{0}^{\pi} \sin(nt) \sin(mt) dt = 0, n \neq m.$$

met substitutie

Stelling: Transformatie

Willekeurig eigenwaardeprobleem gegeven

$$a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = \lambda y(x).$$

met gescheiden randvoorwaarden

1. $a'_0(x) = a_1(x)$ symmetrisch eigenwaardeprobleem, eigenfuncties orthogonaal tegenover gewichtsfunctie w(x) = 1

2. $a_0'(x) \neq a_1(x)$ dan doe je een transformatie tot

$$p(x)y''(x) + p'(x)y'(x) + q(x)y(x) = \lambda r(x)y(x).$$

waarbij

$$p(x) = \exp\left(\int_{x_0}^x \frac{a_1(t)}{a_0(t)} dt\right).$$
$$q(x) = \frac{a_2(t)}{a_0(t)} p(x).$$
$$r(x) = \frac{p(x)}{a_0(x)}.$$

Indien r(x) > 0: sturm liouvilleprobleem! Eigenfuncties orthogonaal tov w(x) = r(x)

Je kunt dit toepassen op het vorige voorbeeld en dan heb je direct het goede resultaat.

$$x^2y''(x) + xy'(x) = \lambda y(x) \implies xy''(x) + y'(x) = \lambda \frac{1}{x}y(x).$$

want

$$p(x) = \exp\left(\int_{1}^{x} \frac{1}{t} dt\right) = \exp(\ln(x)) = x, q(x) = 0, r(x) = \frac{1}{x}.$$

3.5 Singuliere sturm-liouvilleproblemen

Definitie 3.5.1: Singuliere randpunten

$$p(x)y''(x) + p'(x)y'(x) + q(x)y(x) = \lambda r(x)y(x).$$

$$\equiv \frac{d}{dx} \left(p(x) \frac{dy}{dx} \right).$$

met rvw

$$\begin{cases} \alpha_1 y(a) + \alpha_3 y'(a) = 0 \\ \beta_2 y(b) + \beta_4 y'(b) = 0 \end{cases}$$

De eigenschap die vereist dat eigenfuncties een basis vormen vereist dat L normal is;

$$p(x) \neq 0, \forall x \in [a,b].$$

als p(a) = 0 en/of p(b) = 0? Dan is a of b een singulier punt.

Voorbeeld 3.5.1 (Singulier punt)

$$\frac{d}{dx}\left(x\frac{dy}{dx}\right) = \lambda xy(x).$$

$$\equiv xy'' + y' = \lambda xy.$$

$$\begin{cases} y(0) = 0 \\ y(1) = 0 \end{cases}$$

p(x) = x, x = 0 is een singulier punt!.

We gaan eerst in de oefening gewoon aannemen dat het links begrensd is, en voor de rest laten we y(0) = 0 los als rvw.

$$y, y'$$
 begrensd $x \approx 0, y(1) = 0$.

• $\lambda = 0$

$$y(x) = c_1 + c_2 \ln(x).$$

uit rvw halen we direct dat enkel de triviale oplossing overblijft.

λ > 0

$$y(x) = c_1 I_0 \left(\sqrt{\lambda} x \right) + c_2 K_0 \left(\sqrt{\lambda} x \right).$$

 I_0 is gewijzegde besselfunctie van de eerste soort. Beetje equivalent aan cosinus hypberbolicus. K_0 gewijzegde besselfunctie tweede soort.

Figure I.3.6: knulinul

omwille van het feit dat deze K_0 onbegrensd is en we hadden die begrensde rvw moet $c_2 = 0$. Dan met andere rvw ook opnieuw $c_1 = 0$. Enkel triviale oplossing.

• $\lambda < 0$

$$y(x) = c_1 J_0 \left[\sqrt{-\lambda} x \right] + c_2 Y_0 \left(\sqrt{-\lambda} x \right).$$

Combinaties van de gewone besselfuncties.

Figure I.3.7: gewonebessels

enige dat je echt moet weten over die besselfuncte tweede soort is dat die onbegrensd is in de buurt van nul.

$$\implies c_2 = 0.$$

in 1 moet de functie 0 worden, we vullen dit in

$$c_1 J_0\left(\sqrt{-\lambda}\right) = 0.$$

we willen opnieuw niet dat $c_1 = 0$ dus we kunnen $\sqrt{-\lambda}$ kiezen zodat de oplossingen samenvallen

$$\sqrt{-\lambda} = \alpha_n, n = 1, 2, \dots$$
$$\lambda_n = -\alpha_n^2.$$
$$\phi_n(x) = J_0(\alpha_n \cdot x).$$

Om af te sluiten de eigenschappen overlopen

1. orthogonaliteit

$$\int_0^1 x J_0(\alpha_n x) J_0(\alpha_m x) \mathrm{d} \mathbf{x} = 0, n \neq m.$$

2. convergentie-eigenschap

$$f(x) = \sum_{n=1}^{\infty} a_n J_0(\alpha_n x).$$

waarbij

$$a_n = \frac{\int_0^1 x J_0(\alpha_n x) f(x) dx}{\int_0^1 x J_0^2(\alpha_n x) dx}.$$

dit is een fourier besselreeks zoals vroeger behandeld.

Opmerking 3.5.1

Een fourier besselreeks kan men interpreteren als het ontbinden van een functie f in de eigenfuncties in de oplossingen van een singuliere sturm-liouvilleprobleem.

Voorbeeld 3.5.2

$$\frac{d}{dx}\left(x\frac{dy}{dx}\right) = \lambda x y(x).$$

$$\equiv xy'' + y' = \lambda x y.$$

$$\begin{cases} y(0) = 0 \\ y(1) = 0 \end{cases}.$$

p(x) = x, x = 0 is een singulier punt!.

en deze keer echt y(0) = 0

Zelfde probleem, nu gaan we het aanpakken zoals het er staat om dit stuk af te sluiten.

•
$$\lambda = 0$$

$$xy''(x) + y'(x) = 0 \implies y(x) = c_1 \ln(x) + c_2.$$
$$\lim_{x \to 0+} \ln(x) = -\infty.$$

dus $c_1 = c_2 = 0$ triviale oplossing, wow hoe onverwacht.

$$xy''(x) + y'(x) - \lambda xy(x) = 0.$$

we maken een transformatie, ik schrijf het één keer zo omdat het in de slides zo staat maar je moet helemaal niet met zo'n transformatie werken lol

$$y(x) = u(t), t = \sqrt{\lambda}x.$$

$$tu''(t) + u(t) + tu(t) = 0.$$

$$u(t) = c_1 I_0(t) + c_2 K_0(t).$$

$$y(x) = c_1 I_0(\sqrt{\lambda}x) + c_2 K_0(\sqrt{\lambda}x).$$

omwille van het verlopo van die functies vinden we opnieuw de triviale oplossing.

$$xy''(x) + y'(x) - \lambda xy(x) = 0.$$

$$y(x) = c_1 J_0(\sqrt{-\lambda}x) + c_2 Y_0(\sqrt{-\lambda}x).$$

opnieuw geen eigenwaarden omwille het verloop van deze functies

$$- \lim_{x \to 0+} Y_0(x) = -\infty$$

$$-I_0(0)=1$$

$$-y(0) = 0 \implies c_1 = c_2 = 0$$

We vinden geen enkele eigenwaarde terug. Uit de theorie kunnen we halen dat de operator zelftoegevoegd is ook met een singuler punt op voorwaarde dat in dat singulier punt y, y' begrensd zijn in omgevind van 0. Dus dan vanaf hier moet je teruggaan naar de vorige uitwerknig van het voorebeld waar dat wordt opgelegd en dan vind je wel oplossingen. Ik weet ook niet waarom ze het in deze volgorde doen de videos slaan soms echt nergens op.

I.4 Eerste oefenzitting

4.1 Video UW

een paar dingen die ik wou opschrijven tijdens het kijken naar die university of washington video

$$\langle f(x), g(x) \rangle = \int_a^b f(x) \overline{g(x)} dx.$$

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos\left(kx\right) + b_k \sin\left(kx\right) \right).$$

Optelling van allerlei golven

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx = \frac{1}{||\cos(kx)||^2} < f(x), \cos(kx) > .$$

Bemerk dat dit er heel erg uitziet als **een inproduct tussen** f(x) **en** $\cos(x)$ **en dat is exact wat dit is.** Je moet het natuurlijkwel normailiseren.

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx = \frac{1}{||\sin(kx)||^2} < f(x), \sin(kx) > .$$

Opmerking 4.1.1

Die norm gekwadrateerd is $\frac{1}{\pi}$

Wat we hier hebben is een uitbreiding van f met een som van cosinussen en sinussen van hogere en hogeren frequenties met coefficienten bepaald door het inproduct van f met die bepaalde golf.

We hebben hier een x,y coordinatensysteem en een uv coordinatensysteem. \vec{f} is de testvector f die we kunnen voorstellen in eender welk orthogonaal systeem.

Merk trouwens op dat als \vec{x} , \vec{y} geen eenheidsvectoren waren je zou moeen delen door hun norm. Beschouw x,y,u en v als eenheidsvectoren.

Cosinus en sinus zijn ook orthogonale functies. We kunnen dus die vector f nemen en op die manier projecteren. Dat is exact wat we doen bij een fourier transform.

4.2 Tutorial

Enige van noot uit dat bestand om te weten We kunnen de reeksen algemeen maken van eigenfuncties $\Phi_k(x)$ afkomstig van sturm-liouvilleproblemen

$$f(x) \sim A_0 \Phi_0(x) + \sum_{k=1}^{\infty} A_k \Phi_k(x), a \le x \le b.$$

Je ziet hoe dit werkt als een veralgemening omwille van alle eigenschappen van eigenfuncties die uitbundig zijn besproken in het vorig hoofdstuk,

$$A_k = \frac{\int_a^b w(x) f(x) \Phi_k(x) dx}{\int_a^b w(x) \Phi_k^2(x) dx}.$$

4.3 Voorbereidende oefeningen

Vraag 1: Welke van de volgende functies zijn stuksgewijs effen

in
$$[-1,1]$$

$$f(x) = \begin{cases} 1, -1 \le x < 0 \\ x, 0 \le x \le 1 \end{cases}$$
en
$$g(x) = x^{\frac{2}{3}}.$$

f(x) is stuksgewijze continu op [-1,1]:

- f(x) continu op [-1,1] {0}
- f(x) heeft één discontinuiteit in nul.
- In alle punten van (-1,1) bestaan de linker- en rechterlimiet.

Voor f'(x) kun je letterlijk exact hetzelfde schrijven. $\implies f(x)$ is stuksgewijze effen [-1,1] Dan voor g(x)

- g(x) continu op [-1,1]
- geen discontinuiteiten
- in alle punten (-1,1) bestaan de linker- en rechterlimiet

dan g'(x)

$$g'(x) = \frac{2}{3}x^{-\frac{1}{3}}.$$

- g'(x) is continu op [-1,1] 0
- g'(x) heeft één discontinuiteit op [-1, 1]

• in x = 0 bestaan linker- en rechterlimiet niet

$$\lim_{x \to 0+} g'(x) = +\infty.$$

 \implies is **niet stuksgewijze effen** op [-1,1]

Vraag 2

Stel de fourierreeks op van de volgende functie

$$f(x) = \begin{cases} 0, x \in]-\pi, 0] \\ x, x \in]0, \pi] \end{cases}$$

$$f(x) \approx \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)).$$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx, k = 0, 1, 2, \dots$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx, k = 1, 2, \dots$$

berekeningen mochten met matlab haha ik had dat niet door bij mijn vb, maar thank God. Allesinds dan heeft het nu niet veel nut om ze op te schrijven, je moet de live scripts eens checken, We vinden

$$f(x) \approx \frac{\pi}{4} + \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\left[(-1)^k - 1 \right] \cos\left(kx\right)}{k^2} + \sum_{k=1}^{\infty} \frac{(-1)^{k+1} \sin\left(kx\right)}{k}.$$

4.4 Oefeningen

Opmerking 4.4.1 Opmerking over sinusreeksen en cosinus reeksen

Ik skip de eerste drie oef omdat ze te makkelijk zijn, maar ik hoop dat als je dit terugleest dat je nog weet dat; cosinusreeks heeft coefficienten $b_k = 0$ zodat enkel cosinus termen overblijven. Deze worden 0 als g(x) even is. **Dan moet je dus eerst de functie even uitbreiden.** Exact omgekeerd voor sinusreeksen

Vraag 3

$$u'' + \lambda u = 0, u(0) = u(L) = 0.$$

1. Bepaal op basis van de karakteristieke of de dy fundamenteel andere oplossingen zal hebben afhankelijk van λ .

$$v^2 = -\lambda$$
.

- $\lambda = 0 \implies u(x) = Ax + B$
- $\lambda < 0 : \nu^2 = -\lambda \implies \nu = \pm \sqrt{-\lambda} \in \mathbb{R}$

$$u(x) = A \exp\left(\sqrt{-\lambda}x\right) + B \exp\left(\sqrt{-\lambda}x\right).$$

of met hyperbolische functies

$$\equiv u(x) = C \cosh(\sqrt{-\lambda}x) + D \sinh(\sqrt{-\lambda}x).$$

•
$$\lambda > 0$$
: $v^2 = -\lambda \implies v = \pm i\sqrt{\lambda} \in \mathbb{C}$

$$u(x) = A \sin(\sqrt{\lambda}x) + B \cos(\sqrt{\lambda}x).$$

Met
$$A, B, C, D \in \mathbb{R}$$

- 2. Bepaal eigenwaarden en eigenfuncties
 - $\lambda = 0$: $u(0) = B = 0 \land u(L) = AL = 0 \implies A = 0$ dus triviale oplossing, $\lambda = 0$ **gen** eigenwaarde.
 - $\lambda < 0 : \nu^2 = -\lambda \implies \nu = \pm \sqrt{-\lambda} \in \mathbb{R}$ opnieuw enkel triviale oplossing als je vw invult.
 - $\lambda > 0$: $\nu^2 = -\lambda \implies \nu = \pm i\sqrt{\lambda} \in \mathbb{C}$

$$u(0) = B = 0; u(L) = A \sin(\sqrt{\lambda}L) = 0 \implies A = 0.$$

$$\sqrt{\lambda}L = n\pi, n = 1, 2, \dots$$

we vinden oneindig veel eigenwaarden

$$\lambda_n = \frac{n^2 \pi^2}{L^2}, n = 1, 2, \dots$$
$$u_n(x) = \sin\left(\frac{n\pi x}{L}\right).$$

3. Reeksontwikkeling

$$f(x) \approx \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{L}\right).$$

via orthogonaliteit eigenfuncties over [0, L] tegenover w(x) = 1

$$A_n = \frac{\int_0^L w(x) f(x) \sin\left(\frac{n\pi x}{L}\right) dx}{\int_0^L w(x) \sin^2\left(\frac{n\pi x}{L}\right) dx}.$$

$$\iff \frac{200}{n\pi} \left(1 - \cos\left(\frac{n\pi}{4}\right)\right).$$

We vinden uiteindelijk een identieke reeksontwikkeling aan de sinusreeks voor f(x)

$$f(x) \approx \frac{200}{\pi} \sum_{n=1}^{\infty} \frac{1 - \cos\left(\frac{n\pi}{4}\right)}{n} \sin\left(\frac{n\pi x}{L}\right).$$

Vraag 4

$$r^2R''(r) + rR'(r) = \lambda r^2R(r), R(L) = 0 \land R(r)$$
 begrensd.

- 1. de waarde van λ zal bepalen of het een gewone of gewijzigde besselfunctie is
 - $\lambda = 0$

$$r^2R''(r) + rR'(r) = 0.$$

dit is een eulerse dus we gebruiken een transformatie

$$R(r) = Z(t), r = \exp(t).$$

 $Z''(t) = 0.$
 $\implies Z(t) = A + Bt.$
 $\implies R(r) = A + B \ln(r).$

• $\lambda > 0$ Via tranformatie R(r) = Y(t), $t = \sqrt{\lambda} r$ Gewijzigde Besseldifferentiaalvergelijking van orde 0

$$t^2Y''(t) + tY'(t) - t^2Y(t) = 0, Y(t) = AI_0(t) + BK_0(t).$$

dus

$$R(r) = AI_0(\sqrt{\lambda}r) + BK_0(\sqrt{\lambda}r).$$

• $\lambda < 0$: transformatie $R(r) = Y(t), t = \sqrt{-\lambda}r$ Besseldifferentiaalvergelijking orde 0

$$t^2Y''(t) + tY'(t) + t^2Y(t) = 0, Y(t) = AJ_0(t) + BY_0(t).$$

$$\implies R(r) = AI_0(\sqrt{-\lambda}r) + BY_0(\sqrt{-\lambda}r).$$

 $A, B \in \mathbb{R}$

- 2. Bepalen van eigenwaarden en eigenfuncties
 - $\lambda = 0$ We vinden de triviale oplossing
 - $\lambda > 0$ Voor begrensde oplossuing $R(r) \in [0, L]$ moeten we B = 0

$$\lim_{r\to 0+} K_0(\sqrt{\lambda}r) = +\infty.$$

$$\iff R(L) = AI_0(\sqrt{\lambda}L) = 0.$$

 $I_0(r)$ heeft geen nulpunten \implies triviale oplossing

• *λ* < 0 :

$$\lim_{r \to 0+} Y_0(\sqrt{-\lambda}r) = -\infty.$$

Voor begrensde oplossing $R(r) \in [0, L] \implies B = 0$

$$\Longrightarrow R(L) = AJ_0(\sqrt{-\lambda}L) = 0.$$

$$\implies \sqrt{-\lambda_n}L = \alpha_n.$$

waar α_n de nulpunten zijn van $J_0(r)$.

$$\implies R_n(r) = AJ_0\left(\frac{\alpha_n r}{I_n}\right).$$

zo vinden we oneindig veel eigenwaarden met bijhorende eigenfunctie

$$R_n(r) = J_0\left(\frac{\alpha_n r}{L}\right).$$

3. Reeksontwikkeling

$$f(r) \approx \sum_{n=1}^{\infty} A_n J_0\left(\frac{\alpha_n r}{L}\right).$$

via orthogonaliteit van eigenfuncteis over [0, L] tov w(r) = r

$$A_n = \dots$$

van hier reken je zelf maar uit standaardformules en zie notas op papier

I.5 Partiële differentiaalvergelijkingen

5.1 Inleiding

$$F\left(\phi(x_1,\ldots,x_n),\frac{\partial\phi}{\partial x_1},\ldots,\frac{\partial\phi}{\partial x_n},\ldots,\frac{\partial^k\phi}{\partial 1\partial x_n^{k-1}},\frac{\partial^k\phi}{\partial x_n^k}\right)=0.$$

in onze toepassingen zal de orde vooral twee zijn.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2} \iff \textbf{Golfvergelijking} \; .$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = a^2 \frac{\partial u}{\partial t} \iff \textbf{Diffusievergelijking} \ .$$

we noemen die driedimensionaal. Bestaat ook in één of twee dimensies. Oplossingen van pde's kunnen nog algemene functies bevatten.

Definitie 5.1.1: Klassificatie

$$a(x,y)\frac{\partial^2\phi}{\partial x^2}+b(x,y)\frac{\partial^2\phi}{\partial x\partial y}+c(x,y)\frac{\partial^2\phi}{\partial y^2}+F(x,y,\phi,\frac{\partial\phi}{\partial x},\frac{\partial\phi}{\partial y})=0.$$

We kunnen deze vergelijkingen classificeren; elliptisch hyperbolisch of parabolisch. Drichlet Neumann of gemengde rvw.

Elliptisch $\iff b^2(x,y) < 4a(x,y) \cdot c(x,y), \forall (x,y) \in D.$

Hyperbolisch $\iff b^2(x,y) > 4a(x,y)c(x,y), \forall (x,y) \in D.$

Parabolisch $\iff b^2(x,y) = 4a(x,y)c(x,y), \forall (x,y) \in D.$

randvoorwaarden

Drichlet randvoorwaarde; $\iff \phi(x,y) = g(x,y), \forall (x,y) \in \partial D.$

Neumann randvoowaarde; $\iff \frac{\partial \phi}{\partial n}(x,y) = g(x,y), \forall (x,y) \in \partial D.$

Gemengde randvoowaarden; $\iff \frac{\partial \phi}{\partial n}(x,y) + \sigma(x,y)\phi(x,y) = g(x,y), \forall (x,y) \in \partial D.$

Als g(x,y) = 0, $(x,y) \in \partial D$ dan zeggen we dat dit homogene rvw zijn.

Opmerking 5.1.1

 $\frac{\partial \phi}{\partial n}$ is de richtingsafgeleide van ϕ in de richting vd normaalvector op de rand!

Voorbeeld 5.1.1 (Inleidend voorbeeld)

We hebben een één-dimensionale golfvergelijking als voorbeeld van wat een pdv is.

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2} = 0, 0 \le x \le L, t \ge 0.$$

hier is u(x,t) de uitwijking van trillende snaar in functie van positie en tijd. We zien dat **dit een hyperbolische** vergelijking is. rvw;

$$u(0,t) = u(L,t) = 0$$
; Drichlet, homogeen.

$$u(x,0) = f(x)$$
; Drichlet, niet-homogeen.

$$\frac{\partial u}{\partial t}(x,0) = g(x)$$
; Neumann, niet-homogeen .

5.2 Scheiding der veranderlijken

Voorbeeld 5.2.1 (Eén dimensionale golfvergelijking)

Probleem; bereken de vertikale uitwijking u(x,t) van een snaar met lengte π , die aan de uiteinden wordt vastgehouden. Beginuitwijking f(x) krijgt en losgelaten wordt met beginsnelheid g(x)

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2} = 0, 0 \le x \le \pi, t \ge 0.$$

$$u(0,t) = 0, t \ge 0 \land u(\pi,t) = 0, t \ge 0.$$

aan de twee uiteinden is er geen uitwijking voor alle t positief!

$$u(x,0) = f(x), 0 \le x \le \pi \land \frac{\partial x}{\partial t}(x,0) = g(x), 0 \le x \le \pi.$$

info over beginuitwijking en beginsnelheid!

We gebruiken scheiding der veranderlijken

1. Oplossing zal van de vorm zijn;

$$u(x,t) = X(x)T(t)$$
.

Dus we veronderstellen dat de functie die we zoeken kan geschreven worden als een functie van uitwijking vermenigvuldigd met een functie van de tijd. Hiermee kunnen we verder door dit in te vullen.

$$X''(x)T(t) = \frac{1}{a^2}X(x)T'(t).$$

$$\iff \frac{X''(x)}{X(x)} = \frac{T''(t)}{a^2T(t)} = \lambda.$$

We hebben het nu kunnen herschrijven waar we iets hebben enkel van x afhankelijk en enkel van t afhankelijk. We introduceren een constante lambda want kies een willekeurige x of t, het resultaat moet hetzelfde zijn!!

Opmerking 5.2.1

Zodat dit echt duidelijk is, het komt er dus op neer dat die lambda daar mag staan omdat als je twee delen hebt in functie van verschillende variabelen die gelijk zijn, dan moeten die per definitie gelijk zijn aan een constante die we dus hier λ noemen.

2. Herschrijven als gewone dv;

$$X''(x) = \lambda X(x)$$
.

$$T'(t) = \lambda a^2 T(t).$$

we passen toe homogene rvw

$$u(0,t) = 0, t \ge 0 \implies X(0)T(t) = 0, t \ge 0 \implies X(0) = 0.$$

$$u(\pi,t) = 0, t \ge 0 \implies X(\pi)T(t) = 0, t \ge 0 \implies X(\pi) = 0.$$

Opmerking 5.2.2 Niet homogene rvw

Bemerk als je dit op de niet homogene rvw 4 en 5 probeert dat dit nergens op slaat. **We passen deze scheiding dus enkel toe op de homogene rvw en nooit op niet-homogene rvw.**

3. De volgende stap is nu om een Sturm-liouvilleprobleem op te lossen; Omwille van de rvw zal het x-probleem sturm-liouville worden en niet het t-probleem.

Opmerking 5.2.3 Geen t sturm-liouvilleprobleem

Zelfs als er voorwaarden voor de tijd zouden staan zou dat nog niet het Sturm-liouvilleprobleem opleveren. We krijgen twee voorwaarden op hetzelfde tijdstip wat dus alsnog niet zou lukken. Je moet twee voorwaarden hebben op twee verschillende tijdstippen wat **niet kan**, nooit zal gebeuren.

$$\begin{cases} X''(x) = \lambda \cdot 1 \cdot X(x) \\ X(0) = 0 \\ X(\pi) = 0 \end{cases}$$

Opmerking 5.2.4 Gewichtsfunctie

Die ·1· factor representeert hier de gewichtsfunctie w(x).

We kunnen dit oplossen, is met een sinus en cosinus, cosinus voldoet niet aan rvw zogezegd dus die gaat wegvallen en dan krijg je;

$$\implies \lambda_n = -n^2, n = 1, 2, \dots$$

en hier hebben we dus

$$\phi_n(x) = X_n(x) = \sin(nx).$$

En dit was in het vorige deel al eerder opgelost dus daarom wordt er niet in detail gegaan, maar je weet het wel nog.

4. We lossen nu het tijdsprobleem op.

$$T_n''(t) = \lambda_n a^2 T_n(t) \implies T_n''(t) + n^2 a^2 T_n(t) = 0.$$

We lossen enkel op voor waarden van λ die eigenwaarden zijn, het heeft geen zin om voor alle lambdas op te lossen omdat je dan die oplossing zou moeten vermenigvuldigen met de nulfunctie (aangezien anders die lambda geen opl is van het x probleem) en dat is nutteloos.

$$\iff p(v) = v^2 + n^2 a^2 = 0 \implies v_{1,2} = \pm nai.$$

 $\implies T_n(t) = A_n \sin(nat) + B_n \cos(nat).$

5. We moeten opnieuw proberen te vermenigvuldigen. Van elke λ_n hebben we enerzijds een functie en een oplossing van het overeenkomstig t probleem.

$$u_n(x,t) = X_n(x)T_n(t)$$
.

Voldoet aan de golfvergelijking en de homogene ryw, dus ook

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t) = \sum_{n=1}^{\infty} \sin(nx) \left(A_n \sin(nat) + B_n \cos(nat) \right).$$

- 6. Nu moeten we A_n en B_n bepalen zodat ze voldoen aan de niet-homogene rvw.
 - eerste rvw;

$$u(x,0) = f(x).$$

$$\iff u(x,0) = \sum_{n=1}^{\infty} B_n \sin(nx) = \sum_{n=1}^{\infty} a_n \phi_n(x) = f(x).$$

$$\iff B_n = \frac{\int_a^b r(x) \phi_n(x) f(x) dx}{\int_a^b r(x) \phi_n^2(x) dx}.$$

$$\iff \frac{\int_0^{\pi} 1 \cdot \sin(nx) f(x) dx}{\int_0^x 1 \cdot \sin^2(nx) dx}.$$

$$\iff \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx.$$

• tweede rvw;

$$\frac{\partial u}{\partial t}(x,0) = g(x).$$

$$\frac{\partial u}{\partial t}(x,t) = \sum_{n=1}^{\infty} \sin(nx) \left(naA_n \cos(nat) - naB_n \sin(nat)\right).$$

$$\frac{\partial u}{\partial t}(x,0) = \sum_{n=1}^{\infty} naA_n \sin(nx) = g(x).$$

$$\iff naA_n = \frac{2}{\pi}g(x)\sin(nx)dx.$$

$$\implies A_n = \frac{2}{\pi na} \int_0^{\pi} g(x)\sin(nx)dx.$$

Voorbeeld 5.2.2 (Andere rvw)

Stel we kiezen een voorbeeld waarbij

$$f(x) = \sin(mx), g(x) = 0.$$

Dus een begin uitwijking onder de vorm van een sinus en geen beginsnelheid.

We zien dat alle A_n gelijk zijn aan nul omdat g(x) = 0. Wat B_n betreft;

$$B_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx.$$

$$\iff \frac{2}{\pi} \int_0^{\pi} \sin(mx) \sin(nx) dx.$$

die zijn orthogonaal tov w(x) = 1. Enige die hier niet nul is is m = n.

$$\implies u(x,t) = \sin(mx)\cos(mat).$$

Opmerking 5.2.5 Consistent met de vorm van de algemene oplossing

Dit is dus de vorm die we eerder vermeldden voor de één-dimensionale golfvergelijking daar is deze oplossing dus mee consistent.

$$\sin(nx)\sin(nat) = \frac{1}{2}(\cos(n(x-at)) - \cos(n(x+at))).$$

$$\sin(nx)\cos(nat) = \frac{1}{2}\left(\sin(n(x-at)) + \sin(n(x+at))\right).$$

Het is de som van een linkslopende en een rechtslopende golf.

Voorbeeld 5.2.3 (Eén dimensionale warmtevergelijking)

Een geïsoleerde staaf lengte L heeft een initiële temperatuursverdeling

$$f(x), 0 \le x \le L$$
.

Deze staaf wordt ogenblikkelijk in een omgeving gebracht van 0C. Het linkeruiteinde wordt op 0C gehouden terwijl het rechteruiteinde warmte verliest evenredig met de temperatuur. Gevraagd is temperatuursverloop u(x,t)

Differentiaalvergelijking;

$$\frac{\partial^2 u}{\partial x^2} = a^2 \frac{\partial u}{\partial t}, 0 \le x \le L, t \ge 0.$$

initiële temperatuursverdeling;

$$u(x,0) = f(x), 0 \le x \le L.$$

Linkeruiteinde op 0C;

$$u(0,t) = 0, t \ge 0.$$

Rechteruiteinde verliest warmte evenredig (h) met temperatuur;

$$\frac{\partial u}{\partial x}(L,t) = -hu(L,t), t \ge 0.$$

We kiezen dat minteken voor die h omdat het verlies van temperatuur zou zijn, maar is goed om h positief te hebben.

1. Scheiding der veranderlijken

$$u(x,t) = X(x)T(t).$$

$$X''(x)T(t) = a^{2}X(x)T'(t).$$

$$\iff \frac{X''(x)}{X(x)} = \frac{a^{2}T'(t)}{T(t)} = \lambda.$$

$$X''(x) = \lambda X(x), T'(t) = \frac{\lambda}{a^{2}}T(t).$$

2. Toepassen op homogene rvw

$$X(0)T(t) = 0, t \ge 0 \implies X(0) = 0.$$

dit is een drichlet randvoorwaarde

$$X'(L)T(t) = -hX(L)T(t), t \ge 0 \implies X'(L) + hX(L) = 0.$$

dit is een gemengde rvw. Andere rvw zijn niet-homogeen dus geen scheiding der veranderlijken mogelijk om daarop toe te passen.

3. Het x probleem is een sturm-liouvilleprobleem, we lossen het op

$$X''(x) = \lambda X(x).$$

$$X(0) = 0.$$

$$X'(L) + hX(L) = 0.$$

is al aan bod gekomen vorig hoofdstuk

$$\iff \lambda_n = -\frac{\mu_0^2}{L^2}, \tan(\mu_n) = -\frac{\mu_n}{hL}.$$

$$\iff \phi_n(x) = X_n(x) = \sin(\frac{\mu_0 x}{L}), n = 1, 2, \dots$$

4. Overeenkomstig probleem in de tijd

$$T'_n(t) = \frac{\lambda_n}{a^2} T_n(t) \implies T'_n(t) + \frac{\mu_n^2}{L^2 a^2} T_n(t) = 0.$$

We stellen karakteristieke veelterm op

$$p(\nu) = \nu + \frac{\mu_n^2}{L^2 a^2}.$$

We vinden dalende exponentiële functie

$$\implies T_n(t) = A_n \exp\left(-\frac{\mu_0^2 t}{L^2 a^2}\right).$$

5. Oplossen van het randvwprobleem

$$u(x,t) = \sum_{n=1}^{\infty} X_n(x) T_n(t) = \sum_{n=1}^{\infty} A_n \exp\left(-\frac{\mu_n^2 t}{L^2 a^2}\right) \sin\left(\frac{\mu_n x}{L}\right).$$

6. Niet-homogene randvoorwaarden gebruiken voor het bepalen van de coefficienten

$$u(x,0) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{\mu_0 x}{L}\right) = f(x).$$

$$\implies A_n = \frac{\int_0^L f(x) \sin\left(\frac{\mu_0 x}{L}\right) dx}{\int_0^L \sin^2\left(\frac{\mu_0 x}{L}\right) dx}.$$

We kunnen dit nu concreet maken door een paar getallen in te vullen;

de tweede figuur is een controlefiguur, die twee moeten met elkaar overeenkomen wat niet perfect is, maar je ziet dat het in de buurt komt en je ziet links een gibbs-verschijnsel.

Addendum 5.2.1 Geisoleerde wand

Bij een plaat in aanwezigheid van thermische geleiding en in evenwichtstoestand wordt warmtestroom bepaald door min de gradiënt van de temperatuur. De warmtestroom loopt dus altijd van hoge naar lage temperatuur.

$$q \sim -\nabla u(x, u)$$
.

We kunnen drie situaties beschrijven;

1. De rand koelen, warmte onttrekken van de wand

$$\frac{\partial u}{\partial x} > 0.$$

2. De rand opwarmen, warmte toevoegen aan de plaat

$$\frac{\partial u}{\partial x} < 0.$$

Addendum 5.2.1 Geisoleerde wand

3. Het tussengeval is zeer belangrijk, geen interactie;

$$\frac{\partial u}{\partial x} = 0.$$

We noemen de rand geïsoleerd

De warmtestroom gaat in de limiet evenwijdig lopen met de wand. We verplaatsen ons isotherm en temperatuur blijft lokaal constant. **Wanneer een bepaalde wand geïsoleerd is dan komen de isothermen loodrecht toe op die wand.**

5.3 Laplace vergelijking

Eigenlijk is dit nog een beejte hetzelfde onderwerp, maar we zullen nu de twee dimensies laplace vergelijking gebruiken. Is zeer belangrijk.

Voorbeeld 5.3.1

We willen de temperatuursverdeling u(x, y) kennen in een dunne plaat van breedte L en hoogte M. Deze plaats is geïsoleerd aan zijwanden x = 0 en x = L.

Bovenaan wordt temperatuur 0C gehouden, onderaan is de temperatuur f(x) Zie figuur laplace-probleem.

We schrijven de laplace diffvergelijking op in twee dimensies;

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, 0 \le x \le L, 0 \le y \le M.$$

We veronderstellen hier dat we het lang genoeg laten lopen en dat er dus geen invloed meer is van de tijd. Anders was het in drie dimensies. geisoleerd aan zijwanden;

$$\frac{\partial u}{\partial x}(0,y) = 0, 0 \le y \le M.$$

$$\frac{\partial u}{\partial x}(L,y) = 0, 0 \le y \le M.$$

boven en onderkant resp.;

$$u(x,M)=0, 0 \leq x \leq L.$$

$$u(x,0) = f(x), 0 \le x \le L.$$

1. Scheiding der verandelijken

$$u(x,y) = X(x)Y(y).$$

$$\iff X''(x)Y(y) + X(x)Y''(y) = 0.$$

$$\iff \frac{Y''(y)}{Y(y)} = -\frac{X''(x)}{X(x)} = \lambda.$$

Opmerking 5.3.1 Wat zouden de gevolgen zijn van het verplaatsen van dat minteken?

eigewaarden gaan tegengesteld zijn maar de eigenfuncties blijven gelijk. Uiteindelijk heeft het geen belang. Je krijgt dezelfde superpositie. Enige verschil is de aard van de eignwaarden.

$$X''(x) = -\lambda X(x).$$

$$Y''(y) = \lambda Y(y).$$

toepassen op homogene rvw

$$u(x,M) = 0 \implies X(x)Y(M) = 0, 0 \le x \le L \implies y(M) = 0.$$

$$\frac{\partial u}{\partial x}(0,y) = 0 \implies X'(0)Y(y) = 0, 0 \le y \le M \implies X'(0) = 0.$$

$$\frac{\partial u}{\partial x}(L,y) = 0 \implies X'(L)Y(y) = 0, 0 \le y \le M \implies X'(L) = 0.$$

2. Sturm-liouvilleprobleem. Voor X hebben we twee homogene rvw, we gebruiken het X probleem. Hier hangt het dus af van de randvw, geen tijdsafhankelijkheid.

$$X''(x) = -\lambda X(x).$$

met dat minteken kunnen we nu een negatieve gewichtsfunctie nemen of $-\lambda$ zoeken. Dan hebben we het probleem als in vorige hoofdstuk besproken.

$$\begin{cases} X'(0) = 0 \\ X'(L) = 0 \end{cases}$$

$$\lambda_0 = 0, \phi_0(x) = X_0(x) = 1.$$

$$\Longrightarrow \lambda_n = \frac{n^2 \pi^2}{L^2}.$$

$$\phi_n(x) = X_n(x) = \cos\left(\frac{n\pi}{x}\right), n = 1, 2, \dots$$

3. Na oplossen van het Sturm-liouvilleprobleem kijken we naar overeenkomstig y-probleem.

$$Y''(y) = \lambda Y(y), Y(M) = 0.$$

moet opgelost worden voor elke eigenwaarde

• $\lambda_0 = 0$

$$Y_0(y) = Cy + D, CM + D = 0.$$

 $\implies Y_0(y) = C(y - M) = C_0(M - y).$

• $\lambda_n = \frac{n^2 \pi^2}{L^2}$

$$Y_n(y) = C \sinh\left(\frac{n\pi y}{L}\right) + D \cosh\left(\frac{n\pi y}{L}\right).$$

y vervangen door M

$$C\sinh\left(\frac{n\pi M}{L}\right) + D\cosh\left(\frac{n\pi M}{L}\right) = 0.$$

blijkbaar mag je C en D als volgt schrijven om een oplossin te bekomen

$$\implies C = -C_0 \cosh\left(\frac{n\pi M}{L}\right), D = C_n \sinh\left(\frac{n\pi M}{L}\right).$$

$$\implies Y_n(y) = C_n \left(-\cosh\left(\frac{n\pi M}{L}\right)\sinh\left(\frac{n\pi y}{L}\right) + \sinh\left(\frac{n\pi M}{L}\right)\cosh\left(\frac{n\pi y}{L}\right)\right).$$

dus dat is zoveel als

$$\iff C_n \sinh\left(\frac{n\pi}{L}(M-y)\right).$$

4. Oplossing rvw probleem

$$u(x,y) = \sum_{n=0}^{\infty} X_n(x) Y_n(y).$$

$$\iff C_0(M-y) + \sum_{n=1}^{\infty} C_n \sinh\left(\frac{n\pi}{L}(M-y)\right) \cos\left(\frac{n\pi x}{L}\right).$$

dit voldoet aan alle homogene rvw, er is nu nog één niet homogene rvw die we hier in rekeing moeten brengen;

$$u(x,0) = C_0 M + \sum_{n=1}^{\infty} C_n \sinh\left(\frac{n\pi M}{L}\right) \cos\left(\frac{n\pi x}{L}\right) = f(x).$$

We moeten nu voor f(x) een fouriercosinusreeks opstellen met coefficiënten C_0M en dan voor n van één naar oneindig. **Deze hoort bij eigenfunctie één**

$$C_0 M = \frac{\int_0^1 (-1)1f(x) dx}{\int_0^1 (-1)1^2 dx} = \frac{1}{L} \int_0^L f(x) dx.$$

we zien hier je neemt dat minteken op in de gewichtsfunctie en dan kun je het naar buiten brengen en zal het elkaar compenseren.

$$\implies C_0 = \frac{1}{LM} \int_0^L f(x) dx.$$

$$C_n \sinh\left(\frac{n\pi M}{L}\right) = \frac{\int_0^L \cos\left(\frac{n\pi x}{L}f(x)dx\right)}{\int_0^L \cos^2\left(\frac{n\pi x}{L}\right)dx}.$$

gewichtsfunctie verdwijnt

$$\iff \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx.$$

$$\implies C_n = \frac{2}{L \sinh\left(\frac{n\pi M}{L}\right)} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx.$$

voorbeeld modellering

daar stopt het en dan in de slides wordt er besproken was f kan zijn, maar het is algemeen bijvoorbeeld gewoon een soort stapfunctie zoals je zou verwachten en het is voor de hand liggend.

Opmerking 5.3.2

$$u(\frac{L}{2}, y) = \frac{50(M - y)}{M}.$$
$$f(\frac{L}{2} +) + f(\frac{L}{2} - y)$$

$$u(\frac{L}{2},0) = 50 = \frac{f(\frac{L}{2}+) + f(\frac{L}{2}-)}{2}.$$

bekijk dit op de afbeeldingen en zorg dat je het kan verklaren.

5.4 Opsplitsen in deelproblemen

Voorbeeld 5.4.1 (Omgevingstemperatuur 20 graden)

Daarnet was het gemakkelijk at dat temperatuur rond de plaat op 0C wordt gezet

Vrijwel analoog met de normale gang van zaken, zet de 20 apart, los het ander probleem op waar er 2à gaat worden afgetrokken. Dan heb e voor dat ander probleem wel homogene rvw.

Voorbeeld 5.4.2

Wat als isolatie links en onder temperatuur boven f(x), rechts g(y) hebt? Twee aanliggende randen

als we de diffvergelijking en rvw opschrijven,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

homogene neumann rvw;

$$\frac{\partial u}{\partial x}(0,y) = 0.$$

niet homogene dirichlet rvw;

$$u(L,y) = g(y).$$

homogene neumann rvw;

$$\frac{\partial u}{\partial y}(x,0) = 0.$$

niet homogene dirichlet rvw;

$$u(x,M) = f(x).$$

$$\implies X''(x) = -\lambda X(x).$$

$$Y''(y) = \lambda Y(y).$$

deze vorige twee vergelijking volgen uit de diffvergelijking, deze hieronder volgen uit, de twee hiernder volgen uit de homogene neumann rvw.

$$X'(0) = 0.$$

$$Y'(0) = 0.$$

met de andere twee rvw kunnen we scheiding van veranderlijken niet toepassen, we moeten het probleem in deelproblemen opsplitsen waarbij we maar één rvw behouden. Andere vervangen door nul.

door daarna op te tellen zal alles opnieuw voldon.

1. Deelprobleem één

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0\\ \frac{\partial u}{\partial x}(0, y) = 0\\ u(L, y) = 0\\ \frac{\partial u}{\partial y}(x, 0) = 0\\ u(x, M) = f(x) \end{cases}.$$

nu kunnen we zeggen dat het x probleem het sturm-liouvilleprobleem zal worden.

$$X''(x) = -\lambda X(x).$$

$$\begin{cases} X'(0) = 0 \\ X(L) = 0 \end{cases}.$$

door die afgeleide zie je dat we cosinussen zullen hebben, en doo die L zullen we een aangepast argument vinden.

Idee of vraag 5.4.1

Maak dit probleem nog eens als oefening, maar dit is zeer gelijkaardig aan meerdere problemen uit h3, ik zou denken dat je een karakteristieke opstelt,

$$v^2 + \lambda v = 0$$
.

dan een algemene krijgt die een sinus heeft die direkt wegvalt met de homogene neumann rvw, en dan krijg je een cosinus van L die gelijk moet zijn aan nul en dan lijkt dat niet echt te kloppen ben niet zeker moet nog eens bekijken

$$\implies \lambda_n = \frac{(2n-1)^2 \pi^2}{4L^2}, n = 1, 2, \dots$$

$$\implies \phi_n(x) = X_n(x) = \cos\left(\frac{(2n-1)\pi x}{2L}\right).$$

We lossen het overeenkomstig y-probleem op

$$Y_n''(y) = \frac{(2n-1)^2 n^2}{4L^2} Y_n(y).$$

$$Y_n'(0) = 0.$$

$$\implies Y_n(y) = C \sinh\left(\frac{(2n-1)\pi y}{2L}\right) + D \cosh\left(\frac{(2n-1)\pi y}{2L}\right).$$

de rvw zorgt ervoor dat we krijgen

$$\iff A_n \cosh\left(\frac{(2n-1)\pi y}{2L}\right).$$

We vinden een oplossing $u_1(x, y)$

$$u_1(x,y) = \sum_{n=1}^{\infty} A_n \cosh\left(\frac{(2n-1)\pi y}{2L}\right) \cos\left(\frac{(2n-1)\pi x}{2L}\right).$$

niet homogene dirichlet rvw

$$u_{1}(x,M) = \sum_{n=1}^{\infty} A_{n} \cosh\left(\frac{(2n-1)\pi M}{2L}\right) \cos\left(\frac{(2n-1)\pi x}{2L}\right) = f(x).$$

$$\iff A_{n} \cosh\left(\frac{(2n-1)\pi M}{2L}\right).$$

$$\iff \frac{\int_{0}^{L} f(x) \cos\left(\frac{(2n-1)\pi x}{2L}\right) dx}{\int_{0}^{L} \cos^{2}\left(\frac{(2n-1)\pi x}{2L}\right) dx}.$$

$$\iff \frac{2}{L} \int_{0}^{L} f(x) \cos\left(\frac{(2n-1)\pi x}{2L}\right) dx.$$

2. Tweede deelprobleem

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0\\ \frac{\partial u}{\partial x}(0, y) = 0\\ u(L, y) = g(y)\\ \frac{\partial u}{\partial y}(x, 0) = 0\\ u(x, M) = 0 \end{cases}$$

nu is dus natuurlijk het y-probleem het sturm-liouvilleprobleem

$$Y''(y) = \lambda Y(y).$$
$$Y'(0) = 0.$$
$$Y(M) = 0.$$

analoog probleem aan eerste, je hebt nu wel die $-\lambda$

$$\Rightarrow \lambda_n = -\frac{(2n-1)^2 \pi^2}{4M^2} n = 1, 2, \dots$$
$$\phi_n(y) = Y_n(y) = \cos\left(\frac{(2n-1)\pi y}{2M}\right).$$

overeenkomstig x-probleem

$$X_n''(x) = \frac{(2n-1)^2 \pi^2}{4M^2} X_n(x), X_n'(0) = 0.$$

$$\implies X_n(x) = B_n \cosh\left(\frac{(2n-1)\pi x}{2M}\right).$$

we kunnen $u_2(x, y)$ schrijven

$$u_{2}(x,y) = \sum_{n=1}^{\infty} B_{n} \cosh\left(\frac{(2n-1)\pi x}{2M}\right) \cos\left(\frac{(2n-1)\pi y}{2M}\right).$$

$$u_{2}(L,y) = \sum_{n=1}^{\infty} B_{n} \cosh\left(\frac{(2n-1)\pi L}{2M}\right) \cos\left(\frac{(2n-1)\pi y}{2M}\right) = g(y).$$

$$\implies B_{n} \cosh\left(\frac{(2n-1)\pi L}{2M}\right) = \frac{\int_{0}^{M} g(y) \cos\left(\frac{(2n-1)\pi y}{2M}\right) dy}{\int_{0}^{M} \cos^{2}\left(\frac{(2n-1)\pi y}{2M}\right) dy} = \frac{2}{M} \int_{0}^{M} g(y) \cos\left(\frac{(2n-1)\pi y}{2M}\right) dy.$$

je telt ze op en vindt de oplossing.

je ziet ze dus allebei en vervolgens hun som.

5.5 Temperatuurverloop in een lange cilinder

Ik denk dat dit een heel belangrijk stuk is hier komen vaak examenvragen over.

Definitie 5.5.1: Warmtevergelijking in cilindercoördinaten

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = a^2 \frac{\partial u}{\partial t}.$$

Het verband cartesische en cilinder coördinaten weet je nog;

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \\ z = z \end{cases}$$

$$u(x,y,z,t) \rightarrow v(r,\theta,r,t)$$
.

Warmtevergelijking in cilindercoördinaten;

$$\frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2} + \frac{\partial^2 v}{\partial z^2} = a^2 \frac{\partial v}{\partial t}.$$

Figure I.5.2: overgang naar poolcoördinaten

Dus je ziet dat punt met drie componenten die naarr en theta gebracht wordt.

Idee of vraag 5.5.1

afleiding van die warmtevergelijking wordt in de cursus gevonden met veel gebruik van kettingregel. Check eens of het belangrijk is en indien ja, voeg het dan nog toe

Voorbeeld 5.5.1 (Temperatuursverloop in een lange cilinder)

Een lange cilinder met straal 1 heeft begintemperatuur f(r) onafhankelijk van θ . De buitenwand van de cilinder wordt plots 0C en wordt daar gehouden. Bestudeer temperatuursverloop binnen de cilinder

Figure I.5.3: tekening-cilinder

$$\frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2} + \frac{\partial^2 v}{\partial z^2} = a^2 \frac{\partial v}{\partial t}.$$
one indig lang $\implies \frac{\partial^2 v}{\partial z^2} = 0.$
cilindersymmetrie $\implies \frac{\partial^2 v}{\partial \theta^2} = 0.$

die cilindersymmetrie slaat terug op het feit dat θ niet voorkomt in die uitdrukknig vor warmte $f(\theta)$. We kunnen ervan uitgaan dat θ niet in de oplossing komt. Het domein wordt bepaald door r.

$$v(r,t), r \in [0,1], t \ge 0$$

$$\begin{cases} v(1,t) = 0, \forall t \ge 0 \\ v(r,0) = f(r), \forall r \in [0,1] \end{cases}$$

nu kunnen we scheiding der veranderlijken toepassen.

1.

$$v(r,t) = R(r)T(t).$$

we vullen in

$$R''(r)T(t) + \frac{1}{r}R'(r)T(t) = a^{2}R(r)T'(t).$$

$$\frac{R''(r) + \frac{1}{r}R'(r)}{R(r)} = \frac{a^{2}T'(t)}{T(t)} = \lambda.$$

we halen hieruit

$$R''(r) + \frac{1}{r}R'(r) = \lambda R(r).$$

en

$$T'(t) = \frac{\lambda}{r^2} T(t).$$

nu moeten we dit toepassen op homogene rvw v(1,t) = 0

$$R(1)T(t) = 0, \forall t \ge 0 \implies R(1) = 0.$$

2. Nu gaan we naar de volgende stap, we doen een sturm-liouvilleprobleem Voor een sturm-liouvilleprobleem moeten we twee dingen nagaan; standaardvorm, onafhankelijke rvw? Beiden niet het geval met huidige formulatie.

$$rR''(r) + 1 \cdot R'(r) = \lambda rR(r)$$
.

wat betreft de onafhankelijke rvw, $r \in [0, 1]$, de leidende term r valt weg in het linerpunt. We hebben te maken met een singulier sturm-liouvilleprobleem. Enkel oplosbaar als in singulier randpunt door te stellen dat begrensd zijjn voldoende is.

$$R_n(r) = I_0(\alpha_n r), n = 1, 2, \dots$$

3. Overeenkomstig t probleem

$$T'(t) = \frac{-\alpha_n^2}{r^2} T(t).$$

$$T_n(t) = A_n e^{\frac{-\alpha_n^2}{a^2}t}.$$

4. Combineren van oplossingen en niet-homogene rvw

$$v(r,t) = \sum_{n=1}^{\infty} A_n J_0(\alpha_n r) e^{-\frac{\alpha_n^2}{a^2}t}.$$

Elke combinatie zal voldoen aan de opgelegde rvw.

$$v(r,0) = f(r) = \sum_{n=1}^{\infty} A_n J_0(\alpha_n r) \cdot 1.$$

we kunnen A_n berekenen.

$$A_n = \int_0^1 r f(r) J_0(\alpha_n r) dr \cdot \frac{1}{\int_0^1 r J_0(\alpha_0 n r)^2 dr}.$$

r is de gewichtsfunctie.

Addendum 5.5.1 Temperatuursprofiel wordt zachter in functie van de tijd

We kunnen dit fysiek verschijnsel verklaren adhv de expansie van de oplossing. Stel een "grillig" profiel;

Addendum 5.5.1 Temperatuursprofiel wordt zachter in functie van de tijd

Het warmteverschil zal ervoor zorgen dat de hoge pieken kleiner worden en dat de minima worden opgevuld. Dat is hoe warmteverplaatsing in zijn werk gaat. laten we nu kijken naar de expansie

$$v(r,t) = \sum_{n=1}^{\infty} A_n J_0(\alpha_n r) e^{-\frac{\alpha_n^2}{a^2}t}.$$

ik teken voor n = 1, 2, 3

Addendum 5.5.1 Temperatuursprofiel wordt zachter in functie van de tijd

Hoe hoger n, hoe meer oscillatie. Maar met de hogere n hoort ook de exponentiële die er telkens bijgeschreven wordt.

$$e^{-\frac{\alpha_n^2}{a^2}t}$$
.

Voor n=1, de eerste mode, wordt gedempt met een factor in de negatieve exponentiële α_1^2 , en elke mode gaat sneller uitdempen. In functie van de tijd zullen alle modes uitdempen (zoals je zou verwaheten) **maar bij hogere n zal het sneller uitdempen en daarom zie je op een simulatie dat het naar die eerste mode lijkt te gaan al vrij snel.**

I.6 Verdere partiële differentiaalvergelijkingen

I.7 Tweede oefenzitting

I.8 Derde oefenzitting

Deel II Transformaties

II.1 Laplace trasnformatie

1.1 Definities en eigenschappen

Definitie 1.1.1: Laplace transformatie

Zij f een reële functie op $(0, +\infty)$. Als

$$\int_0^{+\infty} e^{-pt} f(t) dt.$$

convergeert voor een waarde $p \in \mathbb{C}$ dan definieert deze integraal een functie van p die we de laplacetransformatie of Laplace-getransformeerde van f(t) noemen.

$$\mathscr{L}\left\{f(t)\right\} = F(p) = \int_0^{+\infty} e^{-pt} f(t) dt.$$

F(p) wordt de beeldfunctie genoemd en f(t) de originele functie

Definitie 1.1.2: Convergentieabscis

Als $\mathcal{L}{f(t)}$ bestaat, dan definiëren we de convergentieabscis p_0 als

$$p_0 = \inf \left\{ p \in \mathbb{R} | \int_0^{+\infty} e^{-pt} f(t) dt \text{ is convergent} \right\}.$$

Dus de infimum waarde p_0 waarvoor de laplace transformatie kan bestaan, de kleinste waarde waarvoor die zal beginnen convergeren. $\forall p < p_0$: divergentie, en dan voor p_0 zelf kan allebei zijn, en erboven convergentie.

Voorbeeld 1.1.1

Voorbeelden van belangrijke laplace getransformeerden

$$\mathscr{L}\left\{e^{at}\right\} = \int_0^{+\infty} e^{-pt} e^{at} dt = \frac{1}{p-a}, p > a = p_0.$$

$$\mathcal{L}\left\{1\right\} = \frac{1}{p}, p > 0.$$

maar dat is eigenlijk een speciaal geval van de vorige. Laplace transformatie van de heavyside;

$$\mathcal{L}\left\{\text{heavyside}(t)\right\} = \frac{1}{p}, \text{ heavyside}(t) = \begin{cases} 0, t < 0\\ 1, t \ge 0 \end{cases}$$

Voorbeeld 1.1.2 (Laplace transformatie van de sinus)

$$\mathscr{L}\left\{\sin\left(t\right)\right\} = \frac{1}{p^2 + 1}, p > 0.$$

$$F(p) = \int_0^{+\infty} e^{-pt} \sin(t) dt.$$

$$\iff -\cos(t) e^{-pt} |_0^{+\infty} - p \int_0^{+\infty} e^{-pt} \cos(t) dt.$$

dat eerste stukje gaat naar één en dan nu nog eens partiële integratie

$$\iff 1 - p \left(\sin\left(t\right) e^{-pt} \Big|_0^{+\infty} + p \int_0^{+\infty} e^{-pt} \sin\left(t\right) dt \right).$$

$$1 - p^2 F(p) \iff (1 + p^2) F(p) = 1.$$

$$\implies F(p) = \frac{1}{1 + p^2}.$$

Vrij veel rekenwerk dus. Die van cosinus is vrijwel analoog

$$\mathscr{L}\left\{\cos\left((t)\right)\right\} = \frac{p}{p^2 + 1}.$$

die gaan we later op andere manier berekenen.

Definitie 1.1.3: Stuksgewijze continue functie

De functie f(t) is stuksgewijs continu op $[0,+\infty)$ als f(0+) bestaat en op elk begrensd deelinterval slechts een eindig aantal punten t_i een discontinuiteit heeft waar $f(t_i+)$, $f(t_i-)$ bestaan.

Definitie 1.1.4: Functie van exponentiele orde

f(t) is van exponentiële orde op $[0, +\infty)$ als $\exists C, \alpha \text{ zodat } |f(t)| \le Ce^{\alpha t}, \forall t > 0$ Dus we moeten f(t) kunnen afschatten met een exponentiële functie.

Voorbeeld 1.1.3

hier een voorbeeld van een functie om af te schatten

$$At^n e^{\alpha t} \cos(bt), \forall t > 0.$$

exponentiële schat zichzelf af, die cosinus oscilleert en is kleiner dan één dus vervangen door één, voor t^n gebruiken we

$$n \ln(t) \le nt \implies t^n < e^{nt}$$
.

$$|A^n t^n e^{at} \cos(bt)| < |A| e^{(n+a)t}.$$

De voorwaarden in de stelling zijn voldoende, maar niet nodig.

Stelling: Bestaansvoorwaarde voor laplace getransformeerde

Een functie die stuksgewijze continu is en van exponentiële orde op $[0, +\infty)$, heeft een laplace getransformeerde.

Bewijs 1.1.1:

We tonen aan dat $\exists a: \int_0^{+\infty} e^{-pt} f(t) dt$ absoluut convergeert $\forall p > a$ Er geldt dat

$$0 \le |e^{-pt} f(t)| \le C e^{(\alpha - p)t}.$$

en

$$\int_0^{+\infty} e^{(\alpha-p)t} dt = \frac{1}{p-\alpha}.$$

$$F(p) = \mathcal{L}\{f(t)\}$$
 bestaat en dus: $\forall p > \alpha \land 0 \le |F(p)| \le \frac{C}{p - \alpha}$.

Opmerking 1.1.1 Voldoende, maar niet nodige voorwaarde

Neem

$$f(t) = \frac{1}{\sqrt{t}}.$$

deze is niet stuksgewijze continu $\in [0, +\infty)$ door gedrag in oorsprong. maar heeft toch laplace getransformeerde.

$$\int_0^{+\infty} \frac{1}{\sqrt{t}} e^{pt} dt \text{ convergent.}$$

Idee of vraag 1.1.1 Laplace getransfomeerde van $\frac{1}{t}$

$$\mathscr{L}\left\{\frac{1}{t}\right\} = \int_0^{+\infty} e^{-pt} \frac{1}{t} dt.$$

Deze functie heeft geen laplace getransformeerde, want bekijk t = 0

$$\int_0^a \frac{1}{t} dt = \ln(t)|_0^a = +\infty.$$

De rest zou wel kunnen convergeren maar deze singulariteit zorgt ervoor **dat de integraal divergeert.** Stel dat we $\frac{1}{\sqrt{t}}$ bekijken in t=0

$$\begin{cases} e^{-pt} \sim 1 \\ \frac{1}{\sqrt{t}} \sim \frac{1}{\sqrt{t}} \end{cases}.$$

$$\int_0^a \frac{1}{\sqrt{t}} dt = \int_0^a t^{-\frac{1}{2}} dt = 2\sqrt{a}.$$

Herrinnering 1.1.1

$$\int t^n dt = \frac{t^{n+1}}{n+1} + C.$$

daarom convergeert die, en niet voor $\frac{1}{t}$.

Opmerking 1.1.2 FORMULARIUM

Alle eigenschappen hieronder besproken staan op het formularium dus je moet ze niet echt vanbuiten kennen, gewoon begrijpen zoals ze hier worden beredeneerd. Basisfuncties zoals $\mathscr{L}\{\sin(t)\}$ staan er drie op bij de inverse transformaties.

We gaan eigenschappen gebruiken om makkelijker de transformaties te berekenen

Eigenschap: Eenduidigheid

Als twee functies dezelfde laplace transformatie hebben, dan zijn de functies ook aan elkaar gelijk

$$\mathcal{L}\left\{f(t)\right\} = \mathcal{L}\left\{g(t)\right\} \implies f(t) = g(t), t \ge 0.$$

behalve in punten van discontinuiteit. Dat heeft te maken met hoe een integraal gedefinieerd is.

Eigenschap: Lineariteit

Dit heeft te maken met het feit dat die transformatie een integraal is

$$\mathscr{L}\{af(t) + bg(t)\} = a\mathscr{L}\{f(t)\} + b\mathscr{L}\{g(t)\}.$$

Enkele voorbeelden;

$$\mathscr{L}\left\{\cosh\left(at\right)\right\} = \mathscr{L}\left\{\frac{e^{\alpha t} + e^{-\alpha t}}{2}\right\} = \frac{1}{2}\left(\frac{1}{p-a} + \frac{1}{p+a}\right) = \frac{p}{p^2 - a^2}.$$

$$\mathscr{L}\left\{\sinh\left(at\right)\right\} = \mathscr{L}\left\{\frac{e^{\alpha t} - e^{\alpha t}}{2}\right\} = \frac{1}{2}\left(\frac{1}{p-a} - \frac{1}{p+a}\right) = \frac{a}{p^2 - a^2}.$$

Eigenschap: Eerste asymptotische eigenschap

$$\lim_{p \to \infty} \mathcal{L}\{f(t)\} = 0.$$

Bewijs 1.1.2:

Bewijs voor een functie die van exponentiële orde is;

$$0 \le |F(p)| \le \frac{C}{p-\alpha} \implies 0 \le \lim_{p \to \infty} |F(p)| \le \lim_{n \to \infty} \frac{C}{p-\alpha} = 0.$$

Eigenschap: Verschuivingseigenschap

$$\mathscr{L}\left\{e^{at}f(t)\right\} = F(p-a).$$

Bewijs 1.1.3:

mbhy eigenschappen van machtsverheffing

$$\mathscr{L}\left\{e^{at}f(t)\right\} = \int_0^{+\infty} e^{-pt}e^{at}f(t)dt = \int_0^{+\infty} e^{-(p-a)t}f(t)dt.$$

Bijvoorbeeld:

$$\mathscr{L}\left\{1\right\} = \frac{1}{p} \implies \mathscr{L}\left\{e^{at}\right\} = \frac{1}{p-a}.$$

Eigenschap: Tweede verschuivingseigenschap

Dit is in het tijdsdomein

$$\mathscr{L}\{\text{heavyside}(t-a)f(t-a)\}=e^{-ap}F(p).$$

Figure II.1.1: tijdsdomein-verschuiving

Bewijs 1.1.4:

stel

$$g(t) = \text{heavyside}(t-a)f(t-a) = \begin{cases} 0, 0 \le t < a \\ f(t-a), t \ge a \end{cases}.$$

$$\mathscr{L}\left\{g(t)\right\} = \int_0^a \dots + \int_a^{+\infty} e^{-pt} f(t-a) dt.$$

die integraal van nul tot a wordt dus nul. We gebruiken transformatie u = t - a

$$\iff \int_0^{+\infty} e^{-p(u+a)} f(u) du = e^{-ap} F(p).$$

Zorg dat je vooral deze verschuivingseigenschappen goed kent. Een voorbeeld

$$\mathscr{L}\left\{\text{heavyside}(t-a)\right\} = e^{-ap}\mathscr{L}\left\{1\right\} = \frac{e^{-ap}}{p}.$$

Eigenschap: Schaalverandering

$$\mathscr{L}\left\{f(at)\right\} = \frac{1}{a}F(\frac{p}{a}), a > 0.$$

enkel toepassen met positieve a dus.

Bewijs 1.1.5:

$$\mathscr{L}\left\{f(at)\right\} = \int_0^{+\infty} e^{-pt} f(at) dt.$$

substitutie u = at

$$\frac{1}{a} \int_0^{+\infty} e^{-\frac{pu}{a}} f(u) du.$$

$$\implies \frac{1}{a} F(\frac{p}{a}).$$

$$\mathcal{L}\left\{\sin\left(t\right)\right\} = \frac{1}{p^2 + 1}.$$

$$\iff \mathcal{L}\left\{\sin\left(at\right)\right\} = \frac{1}{a}\frac{1}{\left(\frac{p}{a}\right)^2 + 1} = \frac{a}{p^2 + a^2}.$$

$$\iff \mathcal{L}\left\{e^{bt}\sin\left(at\right)\right\} = \frac{a}{(p-b)^2 + a^2}.$$

Eigenschap: Vermenigvuldigen met t^n

$$\mathscr{L}\left\{t^n f(t)\right\} = (-1)^n \frac{d^n F(p)}{dv^n}, n \in \mathbb{N}.$$

Als we in het t-domein vermenigvuldigen met een macht van t, dan moeten we in het p-domein zoveel keer afleiden en rekening houden met een tekenwissel.

Bewijs 1.1.6: Bewijs via inductie op n

•
$$n = 1$$

$$\frac{d}{dp}F(p) = \int_0^{+\infty} \frac{d}{dp}e^{-pt}f(t)dt \implies F'(p) = -\int_0^{+\infty} e^{-pt}tf(t)dt.$$
• $n \to n+1$
$$\mathscr{L}\left\{t^{n+1}f(t)\right\} = \mathscr{L}\left\{t(t^nf(t))\right\} = -\frac{d}{dp}\mathscr{L}\left\{t^nf(t)\right\}.$$

$$\iff -\frac{d}{dp}\left((-1)^n\frac{d^nF(p)}{dp^n}\right) = (-1)^{n+1}\frac{d^{n+1}F(p)}{dp^{n+1}}.$$

$$\mathcal{L}\left\{t\right\} = -\frac{d}{dp}\mathcal{L}\left\{1\right\} = -\frac{d}{dp}\left(\frac{1}{p}\right) = \frac{1}{p^2}.$$

$$\mathcal{L}\left\{t^2\right\} = -\frac{d}{dp}\left(\frac{1}{p^2}\right) = \frac{2}{p^2}.$$

$$\mathcal{L}\left\{t^3\right\} = -\frac{d}{dp}\left(\frac{2}{p^3}\right) = \frac{6}{p^4}.$$

$$\vdots$$

$$\mathcal{L}\left\{t^n\right\} = \frac{n!}{p^{n+1}}.$$

Eigenschap: Deling door t

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{v}^{+\infty} F(u) du.$$

Bewijs 1.1.7:

Stel

$$g(t) = \frac{f(t)}{t}.$$

en

$$G(p) = \mathcal{L}\{g(t)\}.$$

$$\iff f(t) = tg(t) \iff F(p) = -G'(p).$$

$$G'(p) = -\int_{a}^{p} F(u) du.$$

$$\implies G(p) = \int_{p}^{a} F(u) du, \lim_{p \to \infty} G(p) = 0 \implies a = \infty.$$

$$\implies G(p) = \int_{p}^{\infty} F(u) du.$$

$$\mathscr{L}\left\{\frac{\sin\left(t\right)}{t}\right\} = \int_{v}^{+\infty} \frac{du}{1+u^{2}} = \arctan\left(u\right)|_{p}^{\infty}.$$

Herrinnering 1.1.2

$$\left(\arctan\left(p\right) + \arctan\left(\frac{1}{p}\right)\right)' = \frac{1}{1+p^2} + \frac{1}{1+\frac{1}{p^2}} \cdot \left(-\frac{1}{p}\right) = 0.$$

$$\iff \frac{\pi}{2} - \arctan(p) = \arctan(\frac{1}{p}).$$

Eigenschap: Periodieke functie stel f(t) een periodieke functie periode T

$$\mathscr{L}\left\{f(t)\right\} = \frac{\int_0^T e^{-pt} f(t) dt}{1 - e^{-pt}}.$$

Bewijs 1.1.8:

$$F(p) = \int_0^T e^{-pt} f(t) dt + \int_T^{+\infty} e^{-pt} f(t) dt.$$

$$\iff \int_0^T e^{-pt} f(t) dt + \int_0^{+\infty} e^{-p(u+T)} f(u+T) du.$$

$$\iff \int_0^T e^{-pt} f(t) dt + e^{-pt} F(p).$$

Voorbeeld 1.1.4 (Pulsfunctie)

$$f(t) = \begin{cases} 1, t \in [0, 1] \\ 0, t \in [1, 2) \end{cases}$$

met periode van f T = 2

$$\mathscr{L}\left\{f(t)\right\} = \frac{\int_0^2 e^{-pt} f(t) dt}{1 - e^{-2p}}.$$

die integraal van 1 tot 2 gaat nul zijn omdat f(t) nul is op dat interval!

$$\iff \frac{\int_0^1 e^{-pt} dt}{1 - e^{-2p}} = \frac{\frac{1}{p}(1 - e^{-p})}{1 - e^{-2p}}.$$

$$1 - e^{-2p} = (1 - e^p)(1 + e^p)$$

$$\implies \frac{1}{p(1+e^{-p})}.$$

We zouden dit ook anders kunnen doen mbhv heavyside functies.

$$f(t) = \text{heavyside}(t) - \text{heavyside}(t-1) + \text{heavyside}(t-2) - \dots$$

Probeer je voor te stellen hoe de blokken telkens op elkaar worden geplaatst tot het hetzelfde eindigt.

$$\mathcal{L}\left\{f(t)\right\} = \frac{1}{p} - \frac{e^{-p}}{p} + \frac{e^{-2p}}{p} - \frac{e^{-3p}}{p} + \frac{e^{-4p}}{p} - \dots$$

$$\iff \frac{1}{p} \left(1 - e^{-p} + e^{-2p} - e^{-3p} + e^{-4p} - \dots\right) = \frac{1}{p(1 + e^{-p})}.$$

meetkundige reeks! zelfde resultaat.

Eigenschap: Transformatie van afgeleide

$$\mathcal{L}\left\{f'(t)\right\} = pF(p) - f(0+).$$

Bewijs 1.1.9:

$$\mathscr{L}\left\{f'(t)\right\} = \int_0^{+\infty} e^{-pt} f'(t) dt.$$

$$\iff e^{-pt}f(t)|_0^\infty + p \int_0^{+\infty} e^{-pt}f(t)dt.$$

voor voldoende grote p geldt

$$\lim_{t \to \infty} e^{-pt} f(t) = 0.$$

daaruit volgt het gestelde

$$\implies pF(p) - f(0+).$$

$$\mathscr{L}\left\{\cos\left(t\right)\right\} = p\mathscr{L}\left\{\sin\left(t\right)\right\} - \sin\left(0+\right) = \frac{p}{p^2 + 1}.$$

omdat sin(0) = 0, en nu kunnen we lijstje volledig maken;

$$\mathscr{L}\left\{\cos\left(at\right)\right\} = \frac{1}{a} \frac{\frac{p}{a}}{\left(\frac{p}{a}\right)^2 + 1} = \frac{p}{p^2 + a^2}.$$

$$\mathscr{L}\left\{e^{bt}\cos\left(at\right)\right\} = \frac{p-b}{(p-b)^2 + a^2}.$$

Eigenschap: Algemene afgeleide eigenschap

Voor twee keer afleiden

$$\mathscr{L}\{f''(t)\} = p\mathscr{L}\{f'(t)\} - f'(0+) = p^2F(p) - pf(0+) - f'(0+).$$

voor n keer afleiden

$$\mathscr{L}\left\{f^{(n)}(t)\right\} = p^n F(p) - p^{n-1} f(0+) - \dots - f^{(n-1)}(0+).$$

maar dit staat op het formularium dus je moet het niet vanbuiten kennen.

Eigenschap: Transformatie van een integraal

$$\mathscr{L}\left\{\int_0^t f(u) d\mathbf{u}\right\} = \frac{F(p)}{p}.$$

Bewijs 1.1.10:

Stel

$$g(t) = \int_0^t f(u) du \wedge G(p) = \mathcal{L}\{g(t)\}.$$

$$f(t) = g'(t) \Longrightarrow F(p) = pG(p) - g(0+) = pG(p).$$

dus we maken gewoon gebruik van de afgeleide eigenschap om dit makkelijk aan te tonen.

$$\mathcal{L}\left\{Si(t)\right\} = \mathcal{L}\left\{\int_0^t \frac{\sin\left(u\right)}{u} du\right\} = \frac{1}{p}\arctan\left(\frac{1}{p}\right).$$

$$\mathcal{L}\left\{Shi(t)\right\} = \mathcal{L}\left\{\int_0^t \frac{\sinh\left(u\right)}{u} du\right\} = \frac{1}{p}\int_p^{+\infty} \frac{du}{u^2 - 1} = \frac{1}{2p}\ln\left(\frac{p + 1}{p - 1}\right).$$

Eigenschap: Tweede en derde asymptotische eigenschap **Als die limieten bestaan!**

$$\lim_{n\to\infty} pF(p) = f(0+).$$

deze eigenschap zegt de limiet voor p naar oneindig van laplace transformatie is nul.

$$\lim_{p \to 0+} pF(p) = f(t).$$

het is niet zeker dat deze bestaan, maar als ze bestaan dan geldt dit.

Bewijs 1.1.11:

$$\mathscr{L}\left\{f'(t)\right\} = \int_0^{+\infty} e^{-pt} f'(t) dt = pF(p) - f(0+).$$

• Neem in de integraal en in het rechterlid de limiet voor $p \to \infty$

$$\lim_{p\to\infty} pF(p) - f(0+) = 0.$$

dit komt omdat de dalende exponentiële zo sterk zal dalen dat die integraal nul wordt.

• Neem in de integraal en in het rechterlid de limiet $p \to 0+$

$$\int_0^{+\infty} f'(t) dt = \lim_{p \to 0+} pF(p) - f(0+).$$

$$\lim_{t \to \infty} f(t) - f(0+) = \lim_{p \to 0+} pF(p) - f(0+).$$

$$\int_{0}^{+\infty} \frac{\sin(u)}{u} du = \lim_{t \to \infty} \int_{0}^{t} \frac{\sin(u)}{u} du.$$

$$\iff \lim_{p \to 0+} p \mathcal{L} \{ Si(t) \}.$$

$\lim_{p \to 0+} \arctan\left(\frac{1}{p}\right) = \frac{\pi}{2}.$

Besluit:-

- Eenduidigheid; als twee functies dezelfde laplace transform hebben, zijn ze gelijk behalve op plaatsen waar de functies discontinu zijn.
- Lineariteit
- Verschuiven met exponentiële
- · Verschuiven in tijdsdomein met heavyside
- vermenigvuldigen met t of $p \iff$ afleiden!
- Delen door t of op \iff integreren!

- Schaalfactoren
- · periodieke functie
- · Asymptotisch gedrag

Je moet gewoon weten hoe je elke eigenschap gebruikt.

1.2 Convoluties

Wat doen we met producten van functies? Daarvoor ontbreekt een eigenschap. Daarom de convoluties.

Definitie 1.2.1: Convolutie

$$\int_0^t f(t-u)g(u)du.$$

$$\equiv f * g.$$

Voorbeeld 1.2.1

$$\sin * \cos (t)$$
.

$$\iff \int_0^t \sin(t - u) \cos(u) du.$$

$$\iff \sin(t) \int_0^t \cos^2(u) du - \cos(t) \int_0^t \cos(u) \sin(u) du.$$

$$\iff \sin(t) \left(\frac{1}{2}t + \frac{1}{4}\sin(2t)\right) - \cos(t) \left(\frac{1}{4} - \frac{1}{4}\cos(2t)\right).$$

$$\iff \frac{1}{2}t \sin(t) + \frac{\sin(t)\sin(2t) + \cos(t)\cos(2t) - \cos(t)}{4}.$$

som en verschilformules $\sin(t)\sin(2t) + \cos(t)\cos(2t) = \cos(2t-t) = \cos(t)$ waardoor dat hele stuk wegvalt.

$$\implies \frac{1}{2}t\sin(t).$$

Eigenschap: Commutativiteit

$$f * g(t) = g * f(t).$$

Bewijs 1.2.1:

$$f * g(t) = \int_0^t f(t - u)g(u) du.$$

$$v = t - u$$
, $du = -dv$

$$\iff \int_t^0 f(v)g(t-v)(-1)\mathrm{d} v.$$

$$\iff \int_0^t g(t-v)f(t)dv.$$

$$\implies g*f(t).$$

Eigenschap: Convolutiestelling

Dit is de belangrijke eigenschap die ervoor zorgt dat we convoluties hier gebruiken ig

$$\mathcal{L}\left\{f * g(t)\right\} = \mathcal{L}\left\{f(t)\right\} \mathcal{L}\left\{g(t)\right\}.$$
$$= F(p) \cdot G(p).$$

merk zeker op dat dit dus een gewoon product is

Bewijs 1.2.2: Belangrijk bewijs convolutiestelling

$$f * g(t) = \int_0^t f(t - u)g(t) du.$$

$$\mathcal{L}\{f * g(t)\} = \int_0^{+\infty} e^{-pt} \cdot \left(\int_0^t f(t - u)g(u) du\right) dt.$$

we kunnen dit interpreteren als een dubbele integraal.

$$\iff \int_0^{+\infty} \mathrm{d}t \int_0^t e^{-pt} f(t-u) g(u) \mathrm{d}u.$$

we tekenen dit nieuw gebied;

$$\int_0^{+\infty} du \int_u^{+\infty} e^{-pt} f(t-u) g(u) dt.$$

$$\iff \int_0^{+\infty} g(u) du \int_u^{+\infty} e^{-pt} f(t-u) dt.$$

Om de binneste integraal uit te rekenen gebruiken we een substitutie;

$$t-u=v, t=u+v.$$

$$t = u \implies v = 0.$$

$$\implies \int_0^{+\infty} g(u) du \int_0^{+\infty} e^{-p(u+v)} f(v) dv.$$

$$\iff \int_0^{+\infty} e^{-pu} g(u) du \int_0^{+\infty} e^{-pv} f(v) dv.$$

We zeggen dat die laatste integraal = F(p), dus de laplace transformatie van kleine f. Links staat de laplace transformatie G(p) van kleine g.

$$\Longrightarrow \mathcal{L}\big\{f*g(t)\big\} = \mathcal{L}\big\{f(t)\big\} \cdot \mathcal{L}\big\{g(t)\big\}.$$

We zagen all dat het convolutie product van sinus t cosinus t gelijk is aan $\frac{1}{2}t\sin(t)$, we gaan daar nu de laplace transform van berekenen.

Voorbeeld 1.2.2

$$\mathscr{L}\left\{\frac{1}{2}t\sin\left(t\right)\right\}.$$

$$-\frac{1}{2}\frac{d}{dp}\mathcal{L}\left\{\sin\left(t\right)\right\} = \frac{p}{(p^2+)^2} = \mathcal{L}\left\{\sin\left(t\right)\right\} \cdot \mathcal{L}\left\{\cos\left(t\right)\right\}.$$

1.3 Paar quizvragen uit de les

Vraag 5

Uit eigenschap van delen volgt

$$\mathscr{L}\left\{\frac{1}{t}\right\} = \int_{p}^{+\infty} \mathscr{L}\left\{1\right\} \, \mathrm{du}.$$

die transformatie bestaat NIET. Onafhankelijk van eigenschappen. Anders zou de eigenschap correct toegepast staan. Rechts staat een divergente oneigenlijke integraal.

Vraag 6

Gegeven

$$F(p) = \frac{p^2 + 1}{2p^3 + 6p^2 - 4}.$$

gevraagd is f(0+)

gebruiken de tweede asymptotische eigenschap

$$\lim_{p\to\infty} pF(p) = \lim_{t\to 0+} f(t).$$

we vinden

$$f(0+) = \frac{1}{2}.$$

let erop dat die niet altijd geruikt kunnen worden als die limiet niet bestaat!

II.2 Verdere Laplace transformaties

2.1 Gamma functie