Bibliometric-Analysis.R

tonyhung

2023-08-04

```
# Bibliometric Analysis (Findings Part 1)
#### Setting up the script ####
# Loading required packages
library(bibliometrix)
## Please note that our software is open source and available for use, distributed under the MIT licens
## When it is used in a publication, we ask that authors properly cite the following reference:
## Aria, M. & Cuccurullo, C. (2017) bibliometrix: An R-tool for comprehensive science mapping analysis,
##
                           Journal of Informetrics, 11(4), pp 959-975, Elsevier.
##
## Failure to properly cite the software is considered a violation of the license.
## For information and bug reports:
                           - Take a look at https://www.bibliometrix.org
                           - Send an email to info@bibliometrix.org
##
##
                           - Write a post on https://github.com/massimoaria/bibliometrix/issues
##
## Help us to keep Bibliometrix and Biblioshiny free to download and use by contributing with a small d
##
## To start with the Biblioshiny app, please digit:
## biblioshiny()
library(igraph)
## Attaching package: 'igraph'
## The following objects are masked from 'package:stats':
##
##
       decompose, spectrum
## The following object is masked from 'package:base':
##
       union
library(stringr)
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:igraph':
```

##

```
##
       as_data_frame, groups, union
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(xtable) # converts tables to latex tables
library(kableExtra)
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
       group_rows
# Convert cleaned data to data frame
M <- convert2df(file="savedrecs.txt", dbsource="wos",format="plaintext")
## Converting your wos collection into a bibliographic dataframe
##
## Done!
##
##
## Generating affiliation field tag AU_UN from C1: Done!
# Reformat the row names (names of the review articles)
#input string <- rownames(M)</pre>
\#output\_string \leftarrow gsub("([^,]+)\setminus s[^,]*, \setminus s(\setminus d+).*", "\setminus 1 \setminus 2", input\_string)
#output string[26] = "SHARIFI EI 2016"
#output_string[27] = "SHARIFI RSER 2016"
#rownames(M) = output_string
#### Descriptive Statistics ####
# Main bibliometric results of the articles
results = biblioAnalysis(M)
findings = summary(results, verbose=T)
# Most cited references
CR = citations(M,field="article",sep=";")
a=data.frame(cbind(CR$Cited[1:20])) # top 20 most cited references
colnames(a)[1] = "Number of Times Cited"
a %>%
  kbl(caption = "Top 20 Most Cited References") %>%
 kable_classic(full_width = F, html_font = "Cambria")
# xtable(a,auto=TRUE) #This produces Latex table
#### Bibliographic Coupling Network ####
NetMatrix <- biblioNetwork(M, analysis = "coupling", network = "references", sep = ";")</pre>
net=networkPlot(NetMatrix, Title = "Bibliographic Coupling Network", type = "auto", size.cex=TRUE, size
```

Table 1: Top 20 Most Cited References

	Number o
BRUNEAU M, 2003, EARTHQ SPECTRA, V19, P733, DOI 10.1193/1.1623497	
CUTTER SL, 2010, J HOMEL SECUR EMERG, V7	
CUTTER SL, 2014, GLOBAL ENVIRON CHANG, V29, P65, DOI 10.1016/J.GLOENVCHA.2014.08.005	
HOLLING C.S., 1973, ANNUAL REV ECOL SYST, V4, P1, DOI 10.1146/ANNUREV.ES.04.110173.000245	
NORRIS FH, 2008, AM J COMMUN PSYCHOL, V41, P127, DOI 10.1007/S10464-007-9156-6	
HOSSEINI S, 2016, RELIAB ENG SYST SAFE, V145, P47, DOI 10.1016/J.RESS.2015.08.006	
CUTTER SL, 2008, GLOBAL ENVIRON CHANG, V18, P598, DOI 10.1016/J.GLOENVCHA.2008.07.013	
SHERRIEB K, 2010, SOC INDIC RES, V99, P227, DOI 10.1007/S11205-010-9576-9	
BURTON CG, 2015, ANN ASSOC AM GEOGR, V105, P67, DOI 10.1080/00045608.2014.960039	
CARPENTER S, 2001, ECOSYSTEMS, V4, P765, DOI 10.1007/S10021-001-0045-9	
CUTTER SL, 2016, NAT HAZARDS, V80, P741, DOI 10.1007/S11069-015-1993-2	
ADGER WN, 2000, PROG HUM GEOG, V24, P347, DOI 10.1191/030913200701540465	
FOLKE C, 2006, GLOBAL ENVIRON CHANG, V16, P253, DOI 10.1016/J.GLOENVCHA.2006.04.002	
FRAZIER TG, 2013, APPL GEOGR, V42, P95, DOI 10.1016/J.APGEOG.2013.05.004	
MEEROW S, 2016, LANDSCAPE URBAN PLAN, V147, P38, DOI 10.1016/J.LANDURBPLAN.2015.11.011	
ORENCIO PM, 2013, INT J DISAST RISK RE, V3, P62, DOI 10.1016/J.IJDRR.2012.11.006	
ROSE A, 2007, ENVIRON HAZARDS-UK, V7, P383, DOI 10.1016/J.ENVHAZ.2007.10.001	
AINUDDIN S, 2012, NAT HAZARDS, V63, P909, DOI 10.1007/S11069-012-0201-X	
ALEXANDER DE, 2013, NAT HAZARD EARTH SYS, V13, P2707, DOI 10.5194/NHESS-13-2707-2013	
JOERIN J, 2014, DISASTERS, V38, P540, DOI 10.1111/DISA.12058	

Bibliographic Coupling Network

dotted lines means that there are still connections exist between papers, and the colored lines represummary(net) # Look at the net object

```
##
               Length Class
## graph
               29 igraph
                                 list
## graph_pajek 29
                      igraph
                                 list
## cluster_obj 2 communities list
## cluster_res 5 data.frame list
## community_obj 2 communities list
               58
## layout
                      -none-
                                 numeric
## S
                0
                      -none-
                                 NULL
                2
## nodeDegree
                      data.frame list
## params
                2
                      data.frame list
bibnet = net$graph # extract the igraph object and name it bibnet
V(bibnet) $label == V(bibnet) $name # make sure it is all true.
```

```
nodenames = gsub(" [A-Za-z]+,", "", V(bibnet)$name) # transform the names/labels and make it a bit nice
V(bibnet)$label = nodenames
V(bibnet)$name = nodenames
plot(bibnet) # plot it!
```

Bibliographic Coupling Network


```
# summary(bibnet)
#edgelist = as_edgelist(bibnet) # Look at it in an edgelist.
```

net\$cluster_res ## vertex cluster btw_centrality clos_centrality pagerank_centrality ## 1 6.805657e+00 0.02000000 osei-kyei r, 2023 0.01826661 1 ## 2 laurien f, 2022 9.948300e+00 0.02083333 0.03422040 1 tong ph, 2021 ## 6 1 3.518905e+01 0.02272727 0.03190060 ## 8 assarkhaniki z, 2020 1 4.218850e+00 0.02000000 0.03713273 ## 9 sarker mni, 2020 1 4.792412e-02 0.01562500 0.01247474 nguyen hl, 2020 ## 11 2.573417e+01 0.02272727 0.04572943 almutairi a, 2020 ## 14 9.908996e-01 0.01785714 0.03381351 1 ## 16 cariolet jm, 2019 1 1.204345e+01 0.02083333 0.04365244 ## 18 saja ama, 2019 1 3.819307e-01 0.01724138 0.05714217 ## 19 wilkin j, 2019 1.900392e+00 0.01785714 0.02841970 1 cai h, 2018 ## 20 1 7.882468e-03 0.01562500 0.02960671 ## 21 saja ama, 2018 1 5.479310e+00 0.02083333 0.05327095 ## 22 mochizuki j, 2018 1.260023e+01 0.02083333 0.04441923 ## 23 asadzadeh a, 2017 1 1.134465e+01 0.02083333 0.04511708 ## 25 sharifi a, 2016-1 1.231012e+00 0.01785714 0.04503408 sharifi a, 2016-2 ## 26 1 9.815400e+00 0.02000000 0.02676718 ostadtaghizadeh abbas, 2015 1 2.608928e-01 0.01666667 0.02795806 osei-kyei r, 2022 ## 3 2 1.328670e+00 0.01587302 0.01036352 ## 4 rathnayaka b, 2022 4.378781e-01 0.01639344 0.01515358 ## 5 poulin c, 2021 2 1.684061e+01 0.02127660 0.06687476 ## 7 gasser p, 2021 1.048721e+02 0.02564103 0.04388268 ## 10 mohebbi s, 2020 2 3.512567e+01 0.02439024 0.05211406 quitana g, 2020 2 ## 12 1.328241e+01 0.02127660 0.02269349 ## 13 goncalves lapi, 2020 2 7.545409e+00 0.02040816 0.05368759 ## 15 zhou ym, 2019 2 3.140653e+00 0.01886792 0.04647882 rahi k, 2019 2 ## 17 1.548293e+00 0.01754386 0.01005597 ## 24 juan-garcia p, 2017 2 5.203251e+00 0.01818182 0.01672836 ## 27 cantelmi r, 2021 2 6.003096e+00 0.02040816 0.02612079 ## 29 mcclymont kerry, 2022 2 1.267192e+01 0.01960784 0.02092078 # As stated in the slides, it is very interesting to see that with Louvain clustering, there are two cl # Have to make the cluster table by hand instead... #### Co-citation network

NetMatrix <- biblioNetwork(M, analysis = "co-citation", network = "references", sep = ";")

net=networkPlot(NetMatrix, Title = "Co-citation Network", type = "auto", size.cex=TRUE, size=3, remove.

Shows how the different cited references relate to each other

Co-citation Network

net\$cluster_res

##		vertex	cluster	<pre>btw_centrality</pre>	<pre>clos_centrality</pre>	pagerank_centrality
##	1	bruneau m 2003	1	44.8222280	0.011235955	0.05851356
##	4	holling c.s. 1973	1	39.7402720	0.011111111	0.07967746
##	6	hosseini s 2016-1	1	0.0000000	0.003278689	0.04354785
##	11	carpenter s 2001	1	0.0000000	0.010416667	0.01820406
##	13	adger wn 2000	1	0.0000000	0.010416667	0.02621088
##	14	folke c 2006	1	0.0000000	0.003125000	0.01466059
##	18	rose a 2007-1	1	0.0000000	0.003278689	0.03299030
##	2	cutter sl 2010	2	78.8206711	0.012048193	0.09169578
##	8	cutter sl 2008	2	1.3737669	0.010752688	0.06462451
##	9	sherrieb k 2010	2	0.9230769	0.010416667	0.04883882
##	10	burton cg 2015	2	0.8076923	0.010416667	0.04279540
##	15	frazier tg 2013	2	0.0000000	0.010309278	0.03494226
##	19	ainuddin s 2012-1	2	0.0000000	0.009009009	0.02346809
##	20	alexander de 2013	2	0.0000000	0.008928571	0.02102661
##	24	sharifi a 2016-1	2	0.0000000	0.010309278	0.03648655
##	3	cutter sl 2014	3	153.3429290	0.012987013	0.06211060
##	12	cutter sl 2016-1	3	4.2796528	0.010526316	0.03566218
##	16	meerow s 2016	3	0.0000000	0.003278689	0.02725530
##	21	joerin j 2014-1	3	0.0000000	0.003257329	0.01556413
##	5	norris fh 2008	4	37.8897110	0.011363636	0.07135302
##	7	alshehri sa 2015	4	0.0000000	0.010000000	0.02712497
##	17	orencio pm 2013	4	0.0000000	0.010416667	0.04110449
##	22	kafle shesh 2012	4	0.0000000	0.009433962	0.02932166

```
## 23 renschler c.s. 6 4 0.000000 0.009433962 0.02569594
## 25 arbon p 2016 4 0.0000000 0.010000000 0.02712497
```

This network shows nodes that has at least 5 edges. This filter was chosen in order to reveal the mos # In a way, this network is the flip side of bibliographic coupling network.

Author Keywords Analysis

NetMatrix <- biblioNetwork(M, analysis = "co-occurrences", network = "author_keywords", sep = ";")
net=networkPlot(NetMatrix, Title = "Author Keywords Co-occurence Network", type = "auto", size.cex=TRUE

Author Keywords Co-occurence Network

net\$cluster_res					
##	vertex	cluster	btw_centrality	clos_centrality	pagerank_centra
## 1	resilience	1	3199.6250000	0.0017857143	0.04739
## 2	critical infrastructure	1	395.2083333	0.0015479876	0.024199
## 15	disasters	1	24.5000000	0.0014880952	0.01175
## 38	criticality assessment	1	0.0000000	0.0014164306	0.00836
## 39	damage reduction	1	0.0000000	0.0014164306	0.00836
## 44	drinking water	1	0.0000000	0.0006887052	0.007114
## 49	flood risk management	1	0.0000000	0.0006802721	0.004820
## 59	literature review	1	0.0000000	0.0006887052	0.007114
## 60	management	1	0.0000000	0.0006896552	0.00764
## 62	metrics	1	0.0000000	0.0006887052	0.007114
## 65	natural hazard	1	0.0000000	0.0006887052	0.007114
## 69	performance measures	1	0.0000000	0.0006887052	0.007114
## 82	sendai framework	1	0.0000000	0.0014164306	0.00836
## 83	sewer systems	1	0.0000000	0.0006896552	0.00764
	·				

##		standards	1	0.0000000	0.0014224751	0.004231
	93	system analysis	1	0.0000000	0.0006887052	0.007114
	96	systems approach	1	0.0000000	0.0006802721	0.004820
	98	transportation system	1	0.0000000	0.0006849315	0.0063969
		urban community	1	0.4666667	0.0014265335	0.004430
##	103	urban networks	1	0.0000000	0.0006849315	0.006396
##	104	urban transportation modes	1	0.0000000	0.0006849315	0.006396
##	106	wastewater	1	0.0000000	0.0006896552	0.007646
	107	wrrf	1	0.0000000	0.0006896552	0.007646
##	3	community resilience	2	553.3000000	0.0015455951	0.017788
##	6	disaster management	2	657.4333333	0.0016260163	0.015445
##	7	disaster resilience	2	278.8000000	0.0013755158	0.015452
##	16	resilience assessment	2	2.0000000	0.0006882312	0.013831
##	26	big data	2	0.0000000	0.0015337423	0.006533
##	33	composite indicators building (cib)	2	0.0000000	0.0006146281	0.006529
##	51	governance	2	0.0000000	0.0015337423	0.006533
##	53	information visualisation	2	0.0000000	0.0006548788	0.008164
##	58	knowledge representation	2	0.0000000	0.0006548788	0.008164
##	67	operationalizing	2	0.0000000	0.0006146281	0.006529
##	74	resilience indicator	2	0.0000000	0.0006697924	0.006839
##	78	resilience modelling	2	0.0000000	0.0006548788	0.008164
##	80	risk management	2	0.0000000	0.0015337423	0.006533
##	94	systematic overview	2	0.0000000	0.0006548788	0.008164
##	95	systematic survey	2	0.0000000	0.0006146281	0.006529
##	4	criteria	3	482.8690476	0.0016366612	0.016406
##	8	indicators	3	138.5071429	0.0016103060	0.014994
##	11	assessment	3	321.0000000	0.0015576324	0.009588
##	21	adaptive capacity	3	0.0000000	0.0015337423	0.007990
##	23	assessment tool	3	0.0000000	0.0014619883	0.006209
##	25	awareness	3	0.0000000	0.0015337423	0.007990
##	29	climate change mitigation and adaptation	3	0.0000000	0.0015337423	0.008913
##	46	empirical studies	3	0.0000000	0.0015337423	0.007990
##	68	organizational resilience	3	0.0000000	0.0015337423	0.007990
##	70	principles	3	0.0000000	0.0015337423	0.008913
##	88	sustainability	3	0.0000000	0.0015337423	0.008913
##	99	uncertainties	3	0.0000000	0.0014619883	0.006209
##	102	urban energy	3	0.0000000	0.0015337423	0.008913
##	5	measurement	4	195.9071429	0.0016260163	0.015813
##	20	adaptive and transformative capacity	4	0.0000000	0.0015337423	0.006475
##	37	coping	4	0.0000000	0.0015337423	0.006475
##	41	databases	4	0.0000000	0.0015337423	0.009643
##	45	earthquakes	4	0.0000000	0.0015337423	0.009643
##	48	enhancement	4	0.0000000	0.0015337423	0.009643
##	52	hurricanes	4	0.0000000	0.0015337423	0.009643
##	79	risk drivers	4	0.0000000	0.0015337423	0.006475
##	81	roads	4	0.0000000	0.0015337423	0.009643
##	97	transportation	4	0.0000000	0.0015337423	0.009643
##	9	resilience indicators	5	603.0333333	0.0015384615	0.015415
##	13	disaster risk management	5	98.2000000	0.0007272727	0.014750
##		urban resilience	5	56.0000000	0.0013698630	0.012382
##		assessment framework	5	0.0000000	0.0006720430	0.008588
##		assessment tools	5	0.0000000	0.0006993007	0.007275
##		climate-related disasters	5	0.0000000	0.0013623978	0.006075
##		coastal communities	5	0.0000000	0.0006720430	0.008588
		COUNTRY COMMUNICATION	•	2,000000	2.2230.20100	2.20000

```
## 35
                                                         5
                                                                0.0000000
                            conceptual diversity
                                                                              0.0006993007
                                                                                                    0.007275
## 50
                                                         5
                                              gis
                                                                0.000000
                                                                              0.0006451613
                                                                                                    0.007306
## 61
                                                         5
                                                                0.000000
                                                                                                    0.007306
                                              map
                                                                              0.0006451613
## 63
                      models indices and domains
                                                         5
                                                                0.000000
                                                                              0.0006993007
                                                                                                    0.007275
## 101
                                urban ecosystems
                                                         5
                                                                0.0000000
                                                                              0.0013623978
                                                                                                    0.006075
## 10
                                                         6
                                           review
                                                              287.5333333
                                                                              0.0015723270
                                                                                                    0.020913
## 17
                                                         6
                          resilience measurement
                                                              242.4000000
                                                                              0.0015243902
                                                                                                    0.009887
## 27
               biophysical resilience functions
                                                         6
                                                                0.0000000
                                                                              0.0015337423
                                                                                                    0.006921
## 28
                                                         6
                                          climate
                                                                0.000000
                                                                              0.0006747638
                                                                                                    0.009276
## 34
                  comprehensive risk management
                                                         6
                                                                0.0000000
                                                                              0.0006747638
                                                                                                    0.009276
## 42
                                                         6
                                                                                                    0.009276
                                decision support
                                                                0.0000000
                                                                              0.0006747638
                                  energy systems
                                                         6
## 47
                                                                0.0000000
                                                                              0.0015337423
                                                                                                    0.006921
## 55
                                                         6
                       infrastructure resilience
                                                                                                    0.006910
                                                                0.0000000
                                                                              0.0013550136
## 64
                                                         6
                                                                              0.0006747638
                                                                                                    0.009276
                                 multiple hazard
                                                                0.0000000
## 73
                          resilience engineering
                                                         6
                                                                0.000000
                                                                              0.0013550136
                                                                                                    0.006910
## 76
                                                         6
                           resilience management
                                                                0.000000
                                                                              0.0013550136
                                                                                                    0.006910
## 91
                                                         6
                         swoosh resilience curve
                                                                0.0000000
                                                                              0.0015337423
                                                                                                    0.006921
## 12
                                                         7
                  community disaster resilience
                                                              329.1666667
                                                                              0.0007473842
                                                                                                    0.010261
                                                         7
## 14
                         disaster risk reduction
                                                             1035.0500000
                                                                              0.0016286645
                                                                                                    0.010333
## 36
                                     connectivity
                                                         7
                                                                0.0000000
                                                                              0.0007002801
                                                                                                    0.009510
## 40
                                                         7
                                                                0.000000
                                                                              0.0007002801
                                                                                                    0.009510
                                             data
                                                         7
## 56
                                       innovation
                                                                0.000000
                                                                              0.0007002801
                                                                                                    0.009510
## 84
                         social network analysis
                                                         7
                                                                              0.0007002801
                                                                0.0000000
                                                                                                    0.009510
## 85
                          social network mapping
                                                         7
                                                                0.0000000
                                                                              0.0007002801
                                                                                                    0.009510
## 86
                                 social networks
                                                         7
                                                                0.0000000
                                                                              0.0007002801
                                                                                                    0.009510
## 19
                           adaptation strategies
                                                         8
                                                                0.000000
                                                                              0.0250000000
                                                                                                    0.009345
## 43
                                                         8
                disaster resilience measurement
                                                                0.0000000
                                                                              0.0250000000
                                                                                                    0.009345
## 75
                                                         8
                              resilience indices
                                                                0.0000000
                                                                              0.0250000000
                                                                                                    0.009345
## 92
                                                         8
                              synthesis analysis
                                                                0.0000000
                                                                              0.0250000000
                                                                                                    0.009345
## 105
                                       validation
                                                         8
                                                                0.0000000
                                                                              0.0250000000
                                                                                                    0.009345
## 54
                 infrastructure interdependency
                                                         9
                                                                0.0000000
                                                                              0.0333333333
                                                                                                    0.009345
## 57
                                                         9
                                      integration
                                                                0.000000
                                                                              0.0333333333
                                                                                                    0.009345
## 77
                                                         9
                              resilience metrics
                                                                0.000000
                                                                              0.0333333333
                                                                                                    0.009345
                                                         9
## 89
                  sustainable design strategies
                                                                0.0000000
                                                                              0.0333333333
                                                                                                    0.009345
                                                       10
## 66
                             objective indicator
                                                                0.0000000
                                                                              0.0333333333
                                                                                                    0.009345
## 71
                        quantitative measurement
                                                        10
                                                                0.0000000
                                                                              0.0333333333
                                                                                                    0.009345
## 72
                            resilience dimension
                                                        10
                                                                0.000000
                                                                              0.0333333333
                                                                                                    0.009345
## 90
           sustainable development goals (sdgs)
                                                                0.000000
                                                                              0.0333333333
                                                                                                    0.009345
# Using Louvain clustering, 11 clusters were identified. It's interesting to see that that there are th
#### Abstract Co-occurence Network, 1-gram ####
abstract_terms = termExtraction(M, Field="AB", ngrams=1, verbose=F, stemming = TRUE)
NetMatrix <- biblioNetwork(abstract terms, analysis = "co-occurrences", network = "abstracts")</pre>
summary(networkStat(NetMatrix))
##
##
  Main statistics about the network
##
##
  Size
                                            828
##
    Density
                                            0.189
```

coastal hazards

5

0.0000000

0.0006720430

0.008588

32

##

##

Transitivity

Diameter

0.479

2

##

net=networkPlot(NetMatrix, Title = "Abstract Co-occurence Network (1-gram)", type = "auto", size.cex=TR

Abstract Co-occurence Network (1-gram)

net\$cluster_res

##		vertex	cluster	btw_centrality	clos_centrality	pagerank_centrality
##	1	resili	1	1.886113e+03	0.0043859649	0.072272185
##	4	review	1	1.576507e+03	0.0043103448	0.069147247
##	40	articl	1	7.542617e-02	0.0028490028	0.003764447
##	46	climat	1	0.000000e+00	0.0025380711	0.003206164
##	49	improv	1	1.793535e+00	0.0030674847	0.004985659
##	53	capac	1	0.000000e+00	0.0007374631	0.003155818
##	55	definit	1	3.695465e-01	0.0029585799	0.004460501
##	58	metric	1	2.705140e-02	0.0029411765	0.004161237
##	61	characterist	1	0.000000e+00	0.0026809651	0.003596616
##	63	conceptu	1	0.000000e+00	0.0007374631	0.003155818
##	64	direct	1	0.000000e+00	0.0027700831	0.003655978
##	69	level	1	0.000000e+00	0.0024096386	0.003594001
##	70	process	1	1.705548e-01	0.0030487805	0.003905200
##	72	select	1	9.449310e-02	0.0029154519	0.003758533
##	75	discuss	1	4.008754e-01	0.0029940120	0.004664688
##	76	effect	1	3.064362e-01	0.0028901734	0.004984538
##	79	lack	1	0.000000e+00	0.0026525199	0.003638360
##	80	perspect	1	0.000000e+00	0.0027700831	0.003652690

##	82	type	1	4.740834e-02	0.0026455026	0.003255827
##	83	build	1	0.000000e+00	0.0025974026	0.003206024
##	87	emerg	1	0.000000e+00	0.0027548209	0.004349036
##	88	enhanc	1	0.000000e+00	0.0007374631	0.003155818
##	89	environ	1	0.000000e+00	0.0028490028	0.003268921
##	90	examin	1	0.000000e+00	0.0007374631	0.003155818
##	93	practition	1	2.658396e-02	0.0028409091	0.003744023
##	94	relev	1	8.863616e-02	0.0028248588	0.003540993
##	95	understand	1	1.547085e-01	0.0028985507	0.004248204
##	97	common	1	0.000000e+00	0.0024752475	0.003204501
##	98	due	1	0.000000e+00	0.0025906736	0.003219344
##	100	grow	1	0.000000e+00	0.0024875622	0.003221032
##	101	practic	1	0.000000e+00	0.0028490028	0.003289218
##	102	societi	1	7.870220e-02	0.0029069767	0.003659103
##	103	term	1	0.000000e+00	0.0007374631	0.003155818
##	104	accept	1	0.000000e+00	0.0027472527	0.003275143
##	105	environment	1	0.000000e+00	0.0025974026	0.003206024
##	106	field	1	0.000000e+00	0.0007363770	0.002233999
##	107	impact	1	0.000000e+00	0.0025380711	0.003206164
##	108	main	1	0.000000e+00	0.0007374631	0.003155818
##	109	project	1	0.000000e+00	0.0027100271	0.003289124
	110	public	1	0.000000e+00	0.0026455026	0.003218714
	111	publish	1	0.000000e+00	0.0024813896	0.003205287
	112	recent	1	0.000000e+00	0.0007374631	0.003155818
##	114	requir	1	0.000000e+00	0.0007374631	0.003155818
##	2	measur	2	4.976473e+01	0.0033112583	0.023936567
##	5	disast	2	1.851251e+01	0.0033444816	0.022351416
##	6	framework	2	4.911686e+00	0.0032786885	0.011134834
##	7	indic	2	1.555279e+00	0.0032467532	0.013435741
##	10	system	2	2.658428e+01	0.0033444816	0.015565075
##	12	develop	2	5.959670e+02	0.0036764706	0.031411601
##	13	social	2	2.446795e-02	0.0030303030	0.003963786
##	15	risk	2	4.185092e+02	0.0035587189	0.020754278
##	16	paper	2	2.214970e+02	0.0034482759	0.023489080
##	17	approach	2	6.927247e-01	0.0032258065	0.008626303
##	19	literatur	2	1.584770e+02	0.0034364261	0.022428832
##		concept	2	1.480119e+00	0.0032467532	0.011970947
	25	systemat	2	8.803968e+01	0.0034013605	0.017823401
	27	method	2	7.884331e+00	0.0032362460	0.013165973
	29	adapt	2	3.096725e-02	0.0030769231	0.010187206
	30	key	2	6.129000e-01	0.0032362460	0.007487444
	31	manag	2	6.368753e+00	0.0032573290	0.012865413
	34	data	2	1.873327e-02	0.0030303030	0.005951352
	37	base	2	1.295138e+01	0.0033222591	0.017006061
	39	methodolog	2	1.254333e-01	0.0031055901	0.006745474
##		context	2	1.376322e-02	0.0029498525	0.004552277
	44	propos	2	4.707550e-02	0.0030395137	0.008550923
	50	inform	2	9.740155e-01	0.0032051282	0.009656746
	52 54	appli	2	2.446795e-02	0.0030303030	0.006043911
	54 56	conduct	2	4.330643e-01	0.0031645570	0.004664405
	56 57	hazard	2	1.504177e-01	0.0031645570	0.006411652
	57	integr	2	8.684236e-02	0.0031446541	0.006619108
	59	natur	2	1.065418e+00	0.0032467532	0.006775526
##	60	challeng	2	2.446795e-02	0.0029585799	0.007894663

```
## 67
                                 2.307589e-01
                                                  0.0031446541
                                                                         0.005262398
            function
## 71
                            2
                                 1.066446e-01
                                                  0.0031746032
                                                                         0.007154765
              provid
                                                  0.0029498525
## 92
           highlight
                                 1.376322e-02
                                                                         0.004033498
## 115
                  set
                            2
                                 9.557793e-03
                                                  0.0029498525
                                                                         0.002970970
## 3
               assess
                            3
                                 4.574140e+02
                                                  0.0036630037
                                                                         0.020313587
## 9
                            3
                                 3.557327e+01
           communiti
                                                  0.0034722222
                                                                         0.010707603
## 20
              critic
                            3
                                 4.410049e+02
                                                  0.0037735849
                                                                         0.019934546
## 21
             analysi
                            3
                                 2.870307e+01
                                                  0.0034246575
                                                                         0.014484035
## 28
                            3
                                 1.148345e+00
                                                  0.0032362460
                                                                         0.006499533
                 tool
## 32
              result
                            3
                                 2.867380e+01
                                                  0.0034602076
                                                                         0.015415723
## 33
                            3
                                 1.376322e-02
                                                  0.0030487805
                                                                         0.003131665
            criteria
## 35
              increas
                            3
                                 1.583030e+02
                                                  0.0034602076
                                                                         0.012582537
                                 2.302738e-01
## 36
                            3
             address
                                                  0.0031746032
                                                                         0.003830389
## 43
                evalu
                            3
                                 1.155294e+02
                                                  0.0033112583
                                                                         0.007395979
## 47
          comprehens
                            3
                                 1.516501e+00
                                                  0.0031746032
                                                                         0.005977661
## 48
                            3
                                 2.568085e+00
                                                  0.0032258065
                                                                         0.006822721
                exist
## 68
                            3
               includ
                                 1.152854e+00
                                                  0.0031055901
                                                                         0.006133604
## 73
                                 2.038524e+00
                                                  0.0032786885
                                                                         0.006573973
               applic
## 77
                            3
                                 7.869119e-02
                                                  0.0031948882
                empir
                                                                         0.003801027
## 84
            consider
                            3
                                 1.873327e-02
                                                  0.0031446541
                                                                         0.003941907
## 86
                            3
                                 2.792986e-01
                                                  0.0031948882
                                                                         0.005067337
               econom
## 8
            research
                                 6.619296e+02
                                                  0.0038461538
                                                                         0.028433757
## 11
                                 2.281553e+02
                studi
                            4
                                                  0.0036764706
                                                                         0.018605965
## 14
                urban
                            4
                                 2.623887e-01
                                                  0.0031347962
                                                                         0.003953533
## 18
       infrastructur
                            4
                                 9.890378e+01
                                                  0.0035587189
                                                                         0.020084957
## 23
                futur
                                 1.827714e+02
                                                  0.0036630037
                                                                         0.023675894
## 24
            identifi
                            4
                                 1.155874e+01
                                                  0.0034013605
                                                                         0.009538233
## 26
               dimens
                            4
                                 1.288670e+00
                                                  0.0032573290
                                                                         0.006073285
## 38
                  aim
                                 2.997426e+00
                                                  0.0033222591
                                                                         0.010029865
## 42
                                 1.605709e-02
                                                                         0.005753812
             disrupt
                            4
                                                  0.0031055901
## 45
            strategi
                            4
                                 6.442291e-01
                                                  0.0031847134
                                                                         0.004076650
## 51
                            4
                                 9.016614e-01
                                                  0.0031545741
                                                                         0.004074700
                relat
## 62
                                 1.376322e-02
                                                  0.0030487805
                                                                         0.003670750
               compon
## 65
                                 5.229286e-01
                                                                         0.007423593
                            4
                                                  0.0032573290
                event
## 66
                                 5.617038e-01
                 find
                            4
                                                  0.0031746032
                                                                         0.005893936
                                                                         0.003789500
## 74
             current
                            4
                                 1.376322e-02
                                                  0.0029850746
## 78
              govern
                                 5.396681e-01
                                                  0.0031746032
                                                                         0.004767396
## 81
             potenti
                            4
                                 1.605709e-02
                                                  0.0029498525
                                                                         0.003639136
## 85
              design
                            4
                                 9.557793e-03
                                                  0.0029498525
                                                                         0.002885715
## 91
                            4
                                 6.594763e-02
                focus
                                                  0.0030959752
                                                                         0.003944894
## 96
                 abil
                                 9.557793e-03
                                                  0.0029498525
                                                                         0.002892331
                                 1.298246e-01
## 99
              essenti
                            4
                                                  0.0031347962
                                                                         0.003951226
## 113
                recov
                            4
                                 0.000000e+00
                                                  0.0029325513
                                                                         0.002800149
```

I'm debating if this should be included... I don't think so, because the previous network already doe

```
#### Unused Codes ####
```

```
# # Abstract Co-occurence Network, 2-grams
# abstract_terms = termExtraction(M, Field="AB", ngrams=2, verbose=F, stemming = TRUE) # need to first
# NetMatrix <- biblioNetwork(abstract_terms, analysis = "co-occurrences", network = "abstracts")
# net=networkPlot(NetMatrix, Title = "Abstract Co-occurence Network", type = "auto", size.cex=TRUE, siz
# # Co-word Analysis through Scopus Keyword co-occurences</pre>
```

```
# NetMatrix <- biblioNetwork(M, analysis = "co-occurrences", network = "keywords", sep = ";")
# net=networkPlot(NetMatrix, normalize="association", n = 50, Title = "Scopus Keywords Co-occurrences",
# # Historiograph. Better not to use this, because it is rather broken
# histResults = histNetwork(M, sep=";", min.citations = 1)
# net = histPlot(histResults, size=5, labelsize=4) # a lot of papers are not shown because there aren't a
# histResults$histData # shows direct citation results
# # bibliometrix:::histPlot #shows the source code for histPlot
# # Multiple Correspondence Analysis through abstracts
# suppressWarnings(
# CS <- conceptualStructure(M, method="MCA", field="AB", minDegree=11, clust="auto", stemming=T, labe
# ) #minDegree of 10 works the best
# # Metric Multidensional Scaling through abstracts
# suppressWarnings(
\# CS <- conceptualStructure(M, method="MDS", field="AB", minDegree=18, clust="auto", stemming=T, label conceptualStructure(M, method="MDS", field="auto", stemming=T, label conceptualStructure(M, method="auto", stemming=T, label con
# ) #minDegree of 10 works the best
# # Shiny Interface
# biblioshiny() #to use the Shiny interface.
```