SHARP MANUEL DE SERVICE

Lingtron 4P-FR CHASSIS

TELEVISEUR COULEUR SYSTEME SECAM

MODELE C-1411FS/FD

Dans l'intérêt de la sécurité de l'utilisateur (exigé par les règlements de sécurité dans quelques pays), l'appareil devra être reconstitué dans sa condition première et seules des pièces identiques à celles spécifiées doivent être utilisées.

	TABLE DES MATIERES	
(Page	Page
	CARACTERISTIQUES ELECTRIQUES	. 29
	 NOTES IMPORTANTES DE REPARATION	
	DESCRIPTION DU NOUVEAU CIRCUIT	. 31
•	● REGLAGE 16 ● LISTE DES PIECES DE REMPLACEMENT	. 37
•	TABLEAU DE RECHERCHE DES PANNES	
	• TRACE DU CHASSIS	
/		

PROTECTION CONTRE LES **RAYONS X LORS DES INTERVEN-TIONS**

Ce récepteur est construit de telle sorte qu'un minimum absolu de radiation soit respecté, ceci, bien au-dessous des indications qui ont été établies par la CEI Pub. 65. Toutefois, certaines anomalies ou de mauvaises interventions peuvent être à l'origine de radiations potentiellement dangereuses, lors d'exposition prolongée à proximité de l'appareil. Les précautions suivantes doivent être respectées:

- 1) Ne pas ajuster le niveau de la très haute tension au dessus de 28kV à cible nulle.
- 2) Ne pas remplacer le tube image par un autre de type et/ou de marque non-autorisée qui pourrait causer un excès de rayonnement X.

NOTA: Les interventions sur ce récepteur seront faites par un personnel qualifié et familié et coutumié des précautions nécessaire à observer, lors de travaux sur des equipments à très haute tension. Ne pas faire fonctionner l'appareil avec le couvercle du coffret T.H.T. ouvert.

> Ne pas porter le tube image par le col. Utiliser des gants protecteurs et éloigner toute personne alentour qui ne serait pas équipée.

> Décharger le conducteur d'anode et le réceptacle sur le tube image avant de démonter ce dernier de l'appareil.

ATTENTION

L'utilisateur ne doit, en aucun cas, retirer le dos du téléviseur. Cette opération est du ressort exclusif d'un technicien qualifié.

SHARP CORPORATION

CARACTERISTIQUES ELECTRIQUES

Impédance d'entrée d'antenne 75 ohms asymétriques	Alimentation 220 volts CA 50Hz
Convergence Système à auto-convergence	Consommation63 Watts / 51W h
Foyer Electrostatique bipotentiel	Taille des haut-parleurs 10 cm (16 ohms à 400 Hz)
Régime de sortie de puissance acoustique 1,5 Watts	Déflexion de balayage Magnétique
(10% de distorsion)	Gamme d'accord Canaux VHF (FRANCE) A - C
Fréquences intermédiaires	1 – 6
Fréquence de porteuse FI d'image 32,7MHz	Canaux UHF (FRANCE) 21 - 69
Fréquence de porteuse Fl de son	

NOTES IMPORTANTES SUR L'ENTRETIEN

L'entretien et la réparation de ce récepteur doivent être uniquement effectués par un personnel de réparation qualifié.

REPARATION DU DISPOSITIF HAUTE-TENSION ET DU TUBE-IMAGE

Lors de la réparation du dispositif à haute tension, enlever la charge statique de l'appareil en branchant une Résistance de 10k ohms en série avec un fil isolé (comme une sonde d'essai) entre le film de graphite du tube et le 2 ème conducteur d'anode. (Le cordon d'alimentation CA doit être débranché de la prise du secteur).

- 1. Le tube-image de ce récepteur utilise une protection intégrale anti-implosion.
- 2. Pour assurer la même sécurité, le remplacer par un tube de même numéro de type.
- 3. Ne pas lever le tube-image par son col.
- 4. Après avoir entèrement déchargé la haute tension, ne manipuler le tube-image qu'en portant des lunettes de protection incassables.

RAYONS X

Ce récepteur est dessiné de telle sorte que les radiations des Rayones X soient maintenues dans les limites minimales absolues. Parce que certains mauvais fonctionnements ou réparations peuvent entraîner une radiation potentiellement dangereuse par une exposition prolongée et relativement prés, les précautions suivantes doivent être observées:

- 1. Lors de la réparation du circuit, s'assurer de ne pas régler le niveau de haute tension au-dessus de 25,2kV, (dans un faisceau de 720µA), sur cet appareil.
- 2. Pour garder cet appareil en état normal de marche, s'assurer de le faire fonctionner sur 20,5kV \pm 1,5kV (dans un faisceau de 720µA). Cet appareil a été réglé en usine sur la haute tension mentionnée ci-dessus.
 - .. A cause des réparations, s'il y a une possiblité de variation de la haute tension, ne jamais oublier de vérifier cette haute tension à la fin des réparations.
- 3. Ne jamais remplacer le tube-image par un tube de type et/ou de marque non-autorisé, ce qui peut entraîner une radiation excessive de Rayons X.

AVANT DE RESTITUER LE RECEPTEUR

Avant de restituer le récepteur à l'utilisateur, effectuer les vérifications de sécurité suivantes.

- 1. Vérifier tous les conducteurs pour s'assurer que les conducteurs ne sont pas pincés ou qu'il n'y a pas de pièce métallique introduite entre le châssis et les autres éléments métalliques du récepteur.
- 2. Vérifier tous les dispositifs de protection comme les boutons non-métalliques de commande, les pressphan d'isolation, les plaques arrière du coffret ou les blindages, les réseaux d'isolation résistance-capacité, les isolateurs mécaniques, etc.

DESCRIPTION DES NOUVEAUX CIRCUITS

SYSTEME D'ACCORD DU SYNTHETISEUR DE TENSION

1. DONNEES GENERALES

Le IC1002 (IX0442CE) est un microprocesseur 4 bits CMOS fonctionnant comme synthétiseur de tension. En combinaison avec la EAROM (IX0439CE), il constitue un système d'accord de TV efficace qui élimine la nécessité de la fonction de secours par pile.

Ses principales fonctions sont les suivantes:

- (1) Présélection de canal avec utilisation de touches manuelles de montée/descente et commutateur de gamme d'onde.
 - (Touche d'accord: T(+)/T(-), Touche d'accord fin: FT(+)/FT(-))
- (2) Accord direct jusqu'à 16 stations ou leur accord

séquentiel.

- (3) Réception contrôlée à distance
- (4) Convertisseur numérique-à-analogique 14 bits incorporé (pour contrôler la tension d'accord)
- (5) Convertisseur numérique-à-analogique 6 bits incorporé (pour contrôler le volume du son)
- (6) Affichage de numéro de programme sur l'écran par CI d'affichage TRC (IX0412CE)
- (7) Contrôle de sortie à bascule TV/VIDEO
- (8) Fonction de mémorisation de dernier programme
- (9) Minuterie de mise hors circuit (30 min., 60 min.)
- (10) Fonction de mémorisation du dernier volume

2. DIAGRAMME DE BLOC

Figure 1.

4. DESCRIPTION FONCTIONNELLE

4-1. Circuit d'oscillateur

Le IC1001 comprend un convertisseur CMOS et une grande résistance de rétroaction de manière à permettre la réalisation d'un circuit oscillateur en utilisant simplement un oscillateur céramique et deux condensateurs comme indiqué ci-dessous.

Figure 3. Circuit oscillateur

Tableau 1-1.

Sortie de balayage de touche Entrée de touche	C _o	C ₁	C ₂	C ₃
K _o	T(+)	T(-)	POW	_
K ₁	FT(+)	FT(-)	_	_
E ₀	Pr UP	Pr DN	_	_
VOL	VOL UP	VOL DN	TV/VTR	_

Pour toutes les touches mentionnées ci-dessus, si une touche est enfoncée pendant plus de 40 msec., son instruction est décodée et exécutée.

En ce qui concerne les touches $\boxed{\text{POW}}$ et $\boxed{\text{TV/VTR}}$, leur instruction sera exécutée une fois après une pression sur l'une d'elle. Si les deux touches sont enfoncées presque simultanément, aucune instruction n'est exécutée; à moins de relâcher les deux touches, la prochaine action d'une touche est mise hors circuit. Pour les touches $\boxed{\text{T(+/-)}}$, $\boxed{\text{FT(+/-)}}$, $\boxed{\text{Pr(UP/DOWN)}}$ et $\boxed{\text{VOL(UP/DOWN)}}$, si deux ou plus de ces touches sont enfoncées presque simultanément, la dernière touche enfoncée est effective et son instruction exécutée.

Lorsque l'instruction de la touche $\boxed{FT(+/-)}$ ou $\boxed{T(+/-)}$ est en train d'être exécutée, il n'est pas possible d'introduire l'instruction du commutateur de présélection ou du commutateur de gamme d'onde. Ceci signifie qu'une pression sur le commutateur de présélection ou le commutateur de gamme d'onde n'est effective qu'après la fin de l'instruction de la touche $\boxed{FT(+/-)}$ ou $\boxed{T(+/-)}$.

Tableau 1-2.

Balayage de touche Entrée de touche	Ko	К1
A ₃	VHF	UHF

Les deux commutateurs de gamme d'onde ci-dessus sont du type à verrou et il est recommandé d'en garder un enclenché ou les deux désenclenchés: éviter de les enfoncer en même temps. Lorsque l'un des commutateurs de gamme d'onde est enclenché, l'unité se place dans le mode de présélection et la gamme disponible correspond alors à celle désignée par ce commutateur. Lorsque les deux commutateurs de gamme sont désenclenchés, l'unité se trouve dans le mode normal.

4-3. Fonction de présélection

Figure 4.

Le commutateur de présélection et les commutateurs de gamme d'onde sont configurés de la manière indiquée à la Fig. 4. La conception permet à l'un des deux commutateurs de gamme d'onde d'être enclenché lorsque le commutateur de présélection est enclenché.

- Méthode de présélection
- (1) Placer le commutateur de sélecteur de mode sur la position PRESET (présélection).
 - L'unité se trouve alors dans le mode de présélection et la gamme disponible est celle choisie par le commutateur de gamme: à ce moment, la sortie de l'AFT reste éteinte. Le mode de présélection est alors affiché sur l'écran comme "V (ou U)-12".
- (2) Accorder à la position où l'on désire présélectionner une station.

- Lorsque la touche d'accord est enfoncée, seul le numéro de programme sur l'écran change, l'image étant maintenue inchangée.
- (3) Enfoncer le commutateur de gamme d'onde désirée.

La gamme correspodant au commutateur de gamme d'onde enfoncé est alors disponible et l'affichage de gamme sur l'écran change en conséquence.

La tension d'accord est réglée à sa valeur la plus basse.

Tableau 2. Vitesse de Balayage de Touches d'Accord (REF = "L")

Touche	T	(+/-)	FT(+/-)	
d'accord Gamme	Largeur de pas	Durée de balayage	Largeur de pas	Durée de balayage
VHFL	4	Environ 20 sec.	1	Environ 320 sec.
VHF _H	4	Environ 40 sec.	1	Environ 640 sec.
UHF	4	Environ 80 sec.	1	Environ 1280 sec.

(4) Enfoncer l'une des touches T(+), T(-), FT(+) et FT(-) en succession pour obtenir la tension d'accord désirée. Lorsque la touche T(+) ou T(-) est enfoncée de manière continue, le balayage de la tension d'accord prend place de la manière indiquée dans le Tableau 2. Lorsque la touche est relâchée, c'est dans l'adresse de EAROM, correspondant à la position choisie à ce moment, que l'information sur la gamme actuellement disponible, sa tension d'accord et AFT (ON) est écrit.

Dans le cas de présélection pour la gamme VHF_L ou VHF_H, si la tension d'accord atteint sa valeur la plus basse ou la plus élevée avec la touche d'accord enfoncée, la gamme est automatiquement changée de VHF_L en VHF_H ou vice versa. Dans le cas de présélection de gamme UHF, cependant, un tel changement de gamme ne prend pas place et lorsque la tension d'accord atteint sa valeur la plus haute, elle recommence à diminuer jusqu'à sa valeur la plus basse et vice-versa. L'affichage du programme continue à clignoter à environ 2 Hz tant que la touche d'accord est enfoncée.

Pour les touches $\boxed{FT(+)}$ et $\boxed{FT(-)}$, lorsqu'une touche est enfoncée, le balayage de la tension d'accord prend également place de la même manière qu'avec les touches $\boxed{T(+)}$ et $\boxed{T(-)}$ et à la vitesse indiquée dans le Tableau 2. Noter cependant que lorsque la tension d'accord atteint sa valeur la plus haute ou la plus basse avec une touche $\boxed{FT(+)}$ ou $\boxed{FT(-)}$ enfoncée, l'opération de balayage s'arrête.

Une répétition des étapes (2), (3) et (4) vous permet de présélectionner les positions désirées les unes après les autres.

(5) Lorsque l'opération de présélection est terminée, placer le commutateur de sélecteur de mode sur la position NORM. L'unité passera dans le mode normal, dans lequel la position actuellement affichée sur l'écran est accordée. Lorsque l'unité se trouve dans le mode normal, si une touche FT(+) ou FT(-) est enfoncée, AFT est désencienché et le balayage de la tension d'accord est effectué lentement à la vitesse indiquée dans le Tableau 2.

Lorsque la touche est relâchée, l'information sur la gamme actuellement disponible, sa tension d'accord et AFT (OFF) est écrit dans l'adresse de EAROM correspondant à la position actuellement choisie.

4-4. Opération d'Accord

Un maximum de 16 stations peuvent être accordées avec cette unité, soit directement et indépendamment, soit en séquence: l'accord direct est permis avec la commande à distance et l'accord séquentiel avec la commande à distance ou la matrice de touche.

Le numéro de programme accordé est affiché sur l'écran au moyen du IC1004 d'affichage de TRC (IX0412CE).

(1) Minutage de l'opération d'accord

Figure 5-1. Tableau de minutage de l'opération d'accord

(2) Accord séquentiel

Lorsque la touche PR UP ou PR DN, située sur la matrice de touche ou la commande à distance, est enfoncée de manière continue, les numéros de programme montent et descendent à des intervalles d'environ 0,7 secondes, les uns après les autres, et l'accord de la(les) station(s) désirée(s) est effectué.

(3) Affichage de numéro de programme

Lorsque l'unité se trouve dans la mode avec affichage TRC*, le numéro de programme accordé continue à être affiché jusqu'à ce que l'on place l'unité dans le mode sans affichage TRC*.

Lorsque l'unité se trouve dans le mode sans affichage TRC, le numéro de programme, si accordé, est affiché pendant environ 3 secondes, puis disparaît.

Pour les modes*, se reporter à la section "Appel de programme", décrite plus loin.

(4) Comment l'opération d'accord est-elle effectuée lorsque l'unité est accordée dans le mode d'attente. L'unité se trouvant dans le mode d'attente, si la touche POW de la commande à distance ou de la matrice de touche est enfoncée, l'opération d'accord est effectuée selon le minutage indiqué dans les Fig. 5-2 et 5-3.

Figure 5-2. Minutage d'accord lorsque l'unité est mise en marche pour la première fois après une opération d'effacement automatique

Figure 5-3. Minutage d'accord lorsque l'unité est mise en marche dans le mode d'attente

(5) Lorsque la touche POW est enfoncée une deuxième fois, l'alimentation de l'unité est coupée selon le minutage suivant.

Figure 5-4. Minutage d'arrêt

4-5. Réception de commande à distance

L'émetteur de commande à distance est fait de IX0187PA.

Lorsque l'unité reçoit le signal de commande de l'émetteur de commande à distance, le microprocesseur IC1001 juge si le code du signal est fait de deux mots ou d'un mot. Si le signal est fait de deux mots en série, le IC1001 le considère comme un signal correct et son instruction est exécutée. Lors de l'exécution de l'instruction du signal, lorsque l'émission de signal de l'émetteur de commande à distance est interrompue pendant environ 180 à 200 msec., l'unité sortira de la commande de l'émetteur de commande à distance.

Si le signal de la matrice de touche est appliquée à l'unité lors de la réception d'un signal de l'émetteur de commande à distance, l'instruction du signal de la matrice de touche est exécuté à la place de celui du signal de la commande à distance.

Tableau 3. Codes et Fonctions de Transmission de Commande à Distance (Emetteur de Commande à Distance: IX0187PA)

(Emetteur de Commande à Distance: IXVIO/PA)							
N°		Cod	e de tra	ensmiss	sion		Fonction
''	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	
1	0	0	0	0	0	1	TV/VTR
2	0	.0	0	0	1	0	_
3	0	0	0	0	1	1.	VOL UP (S-Vol.Up)
4	-0	0	0	1	0	0	VOL DN (S-Vol. Down)
5	0	0	0	1.	0	1	- ·
6	0	0	0	1	1	0	
7	0	0	0	1	1	1	
8	0	0	1	0	0	. 0	
9	0	0	1	0	0	1	MUTE
10	0	0	1	0	1	0	-
11	0 .	0	1	0	1	1	OFF TIMER
12	0	0	1	1	0	0	
13	0	0	1	1	0	1	CALL
14	0	0	1	1	1	0	POW (Power)
15	0	1	0	0	0	0	Pr 1
16	0	1	0	0	0	1	Pr 2
17	0	1	0	0	1	0	Pr 3
18	0	1	0	0	1	1	Pr 4
19	0	1	0	1	0	0	Pr 5
-20	0	1	0	1	0	1	Pr 6
21	0	1	0	1	1	0	Pr 7
22	0	1	0	1	1	1	Pr 8
23	0	1	1	0	0	0	Pr 9
24	0	1	1	0	0	. 1	Pr 10
25	0	1	1	0	1	0	Pr 11
26	. 0	1	1	0	1	1	Pr 12
27	0	1	1	1	0	0	Pr 13
28	0	1	1	1	0	1	Pr 14
29	0	1	1	1	1	0	Pr 15
30	0	1	1	1	1	1	Pr 16

4-6. Sortie de commande TV/VTR (VIDEO)

La touche TV/VTR permet une opération de bascule: c'est-à-dire, à chaque pression sur cette touche, la sortie de E₃ (Broche d'interface de connexion ⑤) est changée d'un niveau Haut à un niveau Bas et l'unité passe dans les modes TV ou VTR (VIDEO).

Lorsque le niveau de la sortie E_3 est haut, le signe "AV" est affiché sur l'écran TRC et, environ 3 secondes après, il, disparaît si l'unité a été mise dans le mode sans affichage TRC.

Lorsque l'unité passe dans le mode VTR (VIDEO), le niveau de la sortie E_0 devient Haut et une pression sur le commutateur de présélection, $\boxed{T(+)}$, $\boxed{T(-)}$, $\boxed{FT(+)}$ ou $\boxed{FT(-)}$ est rendue ineffective.

Lorsque l'unité se trouve dans le mode d'attente, le niveau de la sortie de E₀ reste inchangé.

Lorsque l'unité est mise en marche avec l'interrupteur d'alimentation principal, le niveau de la sortie E₀ devient Bas, ce qui signifie que l'unité se trouve dans le mode TV. Lorsque l'unité passe du mode TV dans le mode VTR et viceversa, une présourdine prend place pendant environ 20 msec. et une postsourdine pendant environ 60 msec.

4-7. Commande de volume de son (VDP)

Le volume de son est contrôlé par la sortie de l'interface de connexion VDP. La sortie de VDP est de PWM 6 bits, et ses formes d'onde de sortie sont celles modulées par impulsions en 64 pas (fréquence répétée: environ 1 kHz, largeur d'impulsion minimum: 16 µsec).

Lorsque l'unité se trouve dans le mode avec sourdine, la sortie de l'interface de connexion VDP est fixée à un niveau Bas.

Lorsque la touche VOL UP ou la touche VOL DN est enfoncée, la quantité analogique de volume sonore augmentera ou diminuera en 64 pas. Il faut environ 6 secondes pour que le volume le plus grand (le plus petit) atteigne le volume le plus petit (le plus grand).

Lorsque la touche VOL UP ou la touche VOL DN est relâchée, la quantité analogique de volume sonore disponible à ce moment est écrite dans la EAROM. (Dernière mémoire analogique.)

4-8. Appel de Programme

Une pression sur la touche CALL, sur la commande à distance ou la matrice de touche, permet une opération de bascule pour que le numéro de programme apparaisse ou disparaisse de l'écran TRC.

Chaque fois que la touche CALL est enfoncée, l'unité, si elle se trouve dans le mode avec affichage TRC, passe dans le mode sans affichage TRC, et, si elle se trouve dans le mode sans affichage TRC, passe dans le mode avec affichage TRC.

Lorsque l'unité se trouve dans le mode sans affichage TRC, si un programme TV est accordé, son numéro de programme peut apparaître sur l'écran pendant environ 3 secondes, puis disparaît. Lorsque l'interrupteur d'alimentation est enclenché, le numéro du dernier programme accordé apparaît sur l'écran pendant environ 8 secondes, puis disparaît. Si l'unité se trouvait dans le

mode avec affichage TRC, le numéro du programmne apparaît sur l'écran de manière constante.

Dans le cas où la minuterie d'arrêt est enclenchée (on), chaque fois que la touche CALL est enfoncée, l'unité passe alternativement dans trois modes, c.-à-d., le mode avec affichage de programme, le mode avec affichage de rappel de minuterie et le mode sans affichage TRC, les uns après les autres.

Dans le mode avec affichage de rappel de minuterie, la durée restante de la minuterie est affichée sur l'écran de manière constante avec décrément de 5 minutes.

4-9. Sortie de contrôle de gamme d'ondes

La sélection de gamme d'ondes de VHF_L, VHF_H ou UHF est effectuée avec la combinaison des signaux de haut niveau et de bas niveau disponibles sur les interfaces de connexion de sortie B₀ et B₁, comme indiqué dans le Tableau 4.

4-10. Minuterie d'arrêt (OFF)

Chaque fois que la touche OFF TIMER est enfoncée, la minuterie d'arrêt est réglée alternativement en trois positions, c.-à-d., les positions "60 minutes", "30 minutes" et "réinitialisation", l'une après l'autre.

Lorsque la touche OFF TIMER est enfoncée, le signe "60 M" ou "30 M" apparaît sur le coin droit supérieur de l'écran pendant approximativement 3 secondes, puis disparaît. Par après, la durée restante de la minuterie est affichée sur l'écran à des intervalles de 5 minutes: chaque affichage dure pendant environ 3 secondes.

Lorsque l'unité se trouve dans le mode avec affichage TRC, la durée restante de la minuterie se trouve dans l'affichage constant sur l'écran: l'affichage de la durée change toutes les 5 minutes. La fonction de minuterie d'arrêt est annulée losrque l'unité est éteinte ou lorsqu'elle est mise dans le mode de présélection.

Tableau 4

Gamme d'ondes	Interface de connexion de sortie			
Garrine d ondes	B ₀	B ₁		
VHFL	L	L		
VHF _H	Н	L		
UHF	L	Н		

4-11. Opération de mise en marche/arrêt

Lorsque l'interrupteur d'alimentation principal de l'unité est placé sur ON (mise en marche), l'opération d'effacement automatique prend place et l'unité passe dans le mode d'attente.

Dans le mode d'attente, lorsque la touche POW, située sur la commande à distance ou la matrice de touche, est enfoncée, la sortie d'alimentation est contrôlée de la manière indiquée dans le Tableau 5.

Tableau 5. Signaux de sortie à chaque interface de connexion dans le mode d'attente

Interface de connexion	Signal de sortie
B ₀ , B ₁ (sortie de gamme)	Maintenue tel quel*
B ₂ (Sortie AFT)	"L"
B ₃ (Sortie d'alimentation)	"L"
VDP (Sortie de volume)	"L"
E ₃ (TV/VTR)	Maintenue tel quel*
E ₁ (Sélection de puce de IX0412CE)	"H"
E ₂ (Sélection de puce de IX0439CE)	"H"
C ₀ , C ₁ , C ₂ , C ₃ (Sortie de contrôle de IX0439CE)	"H"
D/A (Tension d'accord)	"H"

Note *:

Juste après la fin de l'opération d'effacement automatique, les interfaces de connexion B₀ et B₁ reste à un niveau bas et l'interface de connexion E₃ reste également à un niveau bas.

4-12 Sortie de tension d'accord (D/A)

Comme indiqué dans la Fig. 7, des signaux modulés par impulsion sont provoqués à la broche $\overline{D/A}$ de IC (IC1001) et leur génération dépend de données d'information numériques de 14 bits.

La période T_0 (environ 122 Hz) est divisée en 64 sous-périodes, chacune appelée Ts (environ 7,6 kHz). La sous-période Ts est 256 fois plus grande que la largeur d'impulsion minimum $t_0 = 550$ nsec (2 MHz).

La longueur de chaque sous-période Ts est appelée Tm ($m=1\sim64$) et est décidée comme suit: Les données de 14 bits comprennent des données de 6 bits (LSB) et des données de 8 bits (MSB).

Supposons maintenant que la donnée de 8 bits soit de $LSB_{00110000}MSB$ et que la donnée de 6 bits soit de $LSB_{000000}MSB$. Dans ce cas, la longueur de Tm de chaque sous-période Ts sera 12 t_0 pour toutes les sous-périodes T_1 à T_{64} .

Ensuite, si la tension d'accord augmente d'un pas, la donnée de 6 bits sera 100000 et avec cette donnée donnée, la longueur de la sous-période T₃₂ sera de 13 t₀ alors que chacune des autres sous-périodes sera de 12 t₀. Si la tension d'accord est à nouveau augmentée d'un pas, la donnée de 6 bits sera 010000 et dans ce cas, les deux sous-périodes T₁₆ et T₄₈ seront de 13 t₀ alors que la longueur de chacune des autres sous-périodes sera de 12 t₀.

Si la tension d'accord est augmentée de cette manière jusqu'à ce que la donnée de 6 bits devienne 111111, la longueur de la sous-période T_{64} sera de 12 t_0 et la longueur des autres sous-périodes T_1 à T_{63} sera de 13 t_0 . Si elle est finalement augmentée d'un pas supplémentaire, la donnée de 8 bits deviendra 10110000 et la donnée de 6 bits passera à 000000. Dans ce cas, la longueur de toutes les sous-périodes T_1 à T_{64} sera de 13 t_0 . A partir de là, l'on peut voir que chacune des sous-périodes T_1 à T_{64} a une longueur de 12 t_0 ou de 13 t_0 et que leur fréquence répétée devient 7 kHz (approximativement la valeur calculée).

Le Tableau 6 représente la relation entre la donnée de 6 bits (LSB) et la valeur relative de Tm.

4-13. Circuit d'effacement automatique

Le circuit, comme cela est indiqué dans la Fig. 9, est fixé à la broche d'effacement automatique \overline{AC} du IC (IC1001) de manière à ce que toutes les fonctions du téléviseur soient dérivées pendant un instant lors de la mise sous tension. Avec l'opération du circuit d'effacement automatique, lorsque la tension d'alimentation V_{DD} dépasse 4,5 V, la tension V_{C} à la broche d'effacement automatique \overline{AC} commence à augmenter et finalement atteint la valeur de $V_{C} > V_{TH1}$. Le temps nécessaire pour que la V_{C} soit supérieure à la valeur de V_{TH1} est appelée T_{C} . Pour que le circuit d'effacement automatique fonctionne correctement, la durée T_{C} est réglée à plus de 1 msec pour ce modèle et elle est conçue pour que V_{C} ne devienne pas inférieure à V_{TH2} .

Tableau 6. Relation entre la donnée de 6 bits (LSB) et la valeur relative (Tm)

Donnée de 6 bits (LSB)	Sous-période ayant une longueur Tm de 13 T ₀
LSB100000 ^{MSB}	m = 32
010000	m = 16, 48
001000	m = 8, 24, 40, 56
000100	m = 4, 12, 20, 28, 36, 44, 52, 60
000010	m = 2, 6, 10 58, 62
000001	m = 1, 3, 5 61, 63

Donnée de 6 bits (LSB) LSB000000^{MSB}

Figure 7. Forme d'onde de Sortie D/A

Figure 8. Circuit de filtre

Figure 9. Circuit d'effacement automatique

Figure 10. Relation entre la Tension d'Alimentation (V_{DD}) et la tension de broche d'Effacement Automatique (V_C)

4-14. Cl de Mémoire 4-14-1.

Le Cl de mémoire (iX0439CE) est une EAROM de 20 mots × formation de 16 bits et son traitement N-MOS permet une transmission en série de l'adresse et de la donnée en utilisant un bus bi-direction unique; la désigantion d'une adresse est effectuée par deux codes "1-OF-4" qui sont transmis l'un après l'autre. Il y a huit modes disponibles avec ce Cl de mémoire tels que l'Entrée d'Adresse, l'Entrée d'Adresse LC, l'Entrée de Donnée, la Sortie de Donnée, l'Effacement, l'Ecriture, la Lecture et l'Attente. Chacun de ces modes est choisi par des signaux parallèles de 3 bits générés aux broches de contrôle de mode C₁, C₂ et C₃ à condition que la broche de sélecteur de puce (CS) soit réglée à un niveau Bas. Lorsque la broche CS se trouve à un niveau Haut, le Cl de mémoire est maintenu inopérant, même s'il reçoit l'entrée de sélection de mode ou l'entrée de signal de base de temps. Lorsque la broche CS est réglée à un niveau Bas, la génération de signal de base de temps ne s'arrête jamais car le Cl de mémoire n'offrirait pas sa propre fonction dynamique.

Si la broche CS est réglée une fois à un niveau Haut puis changée à un niveau Bas, il est nécessaire de donner à nouveau l'entrée d'adresse et l'entrée de donnée au Cl de mémoire.

4-14-2. Diagramme de Bloc

Figure 11. Diagramme de bloc de CI de Mémoire

4-14-3. Fonctions de broches de CI de Mémoire

Tableau 7

Broche	Désignation	Fonction	Fonction					
I/O	Entrée/ Sortie de Données	Dans l'entrée d'adresse, l'entrée d'adresse de LC ou le mod fonctionne comme broche d'entrée pour permettre l'opérat Dans le mode de sortie de données, cette broche fonctionne MOS NOS en action. Cette broche est maintenue inopérante d'Effacement et d'Ecriture.	ion d'entr e comme	rée d'adresse e broche sortie r	t de données. our mettre l'él	ément		
V _{ss}	Tension PWB	+5 V		411				
V_{GG}	Tension d'alime- nattion	−30 V		**************************************	:	1.75		
CLOCK	Entrée de base de temps	Il s'agit d'un signal de référence de minutage de 14 kHz dev modes.	ant être u	itilisé pour l'op	ération de tous	les		
C ₁ , C ₂ , C ₃	Sortie de contrôle de mode	Utilisés pour le contrôle de mode.						
GND	Tension de terre	0 V						
cs	Sélection de puce	La sélection de puce est effectuée lorsqu'il est à un niveau B	Bas.					

4-14-4. Sélection de mode

Tableau 8.

C ₁	C ₂	C ₃	Mode choisi
Н	Н	Н	Mode d'attente: Les contenus du registre d'adresse et du registre de données sont maintenus comme ils sont et la mémoire tampon de sortie est rendue inopérante.
Н	Н	L	Mode d'entrée d'adresse LC: Les données d'adresse LC disponibles à la broche I/O (E/S) sont transférées au registre d'adresse pour y être stockées. Cette adresse est de 4 mots.
Н	L	, н	Mode d'effacement: Le contenu du transistor de mémoire est effacé en fonction de la désignation de l'adresse par le registre d'adresse.
н	L	L	Mode d'entrée d'adresse: Les données d'adresse disponibles à la broche I/O (E/S) sont transférées dans le registre d'adresse pour y être stockées. Cette adresse est de 16 mots.
L	Н	Н	Mode de lecture: Le contenu de l'adresse désignée du transistor de mémoire des transféré dans le registre de données.
L	Н	L	Mode de sortie de données: Le contenu du registre de données est pris synchronisé avec le signal de base de temps.
L	L	Н	Mode d'écriture: Le contenu du registre de données est écrit dans le transistor de mémoire en fonction de la désignation d'adresse par le registre d'adresse.
L	L	L	Mode d'entrée de données: La donnée disponible à la broche I/O (E/S) est entrée dans le registre de données; le contenu du registre d'adresse reste comme il est.

4-15. Contrôle d'affichage de TRC (écran)

Le CI de commande d'affichage de TRC (iX0412CE) assure l'affichage du numéro de canal reçu et de la

durée présélectionnée de la minuterie sur l'écran TRC; l'affichage est représenté par des caractères de matrice de 5×7 points.

Circuit d'entrée R/V/B/(R/G/B) ET FONCTION DE SUPERPOSITION

Les signaux vidéo rouge, vert et bleu venant du connecteur de péri-télévision (21 broches) sont entrés dans le IC d'interface R/V/B/ (IC903). Ces signaux sont affichés seuls ou superposés à la production de l'image télé d'émission générale sur l'écran. Ce circuit permettra la sélection et aussi la commande de contraste et de luminosité. La Fig. 13-1 montre le diagramme du bloc du circuit d'interface (IC903).

(1) Matricage du signal télé et des signaux R/V/B

Le signal vidéo sorti de la broche (§) de IC901 et les signaux R-Y, G-Y et B-Y sortie des broches (§), (§) et (§) du IC902 sont alimentés à leurs broches respectives de IC903. Le signal vidéo (Y) et les signaux de différence de couleur (R-Y, V-Y et B-Y) sont matricés pour former les signaux primaires (R, V et B) par IC903 et entrés dans leurs insertions de donnée respectives.

Les signaux R, V et B de la péri-télévision sont également alimentés dans ce circuit d'insertion de donnée, commutant avec le signal de télévision, les modes de péri-télévision seulement et de superposition. Puis un couplage CC se produit. Les signaux R, V et B maintenant réglés sur le niveau noir sont sortis des broches ②, ③ et ⑥ de IC903 dans l'ensemble du TRC. Ici, les signaux sont amplifiés cc par Q851, Q852 et Q853 jusqu'à une amplitude suffisante pour entraîner le TRC. La luminosité est commandée par IC903 tandis que le contraste l'est par IC901 et IC903. Ainsi le IC903 (IX0372CE) permet la commande du contraste des signaux R, V, et B sortis de la péri-télévision.

(2) Matriçage des signaux de péri-télévision R/V/B/ et du signal de télévision et superposition des signaux R/V/B

Les signaux R, V et B alimentés par les broches ⑦, ⑥ et ⑤ du connecteur de péri-télévision et le signal de télévision sont matricés avec l'entrée du commutateur de données venant de la broche ⑥ du même connecteur.

Quand l'entrée du commutateur de donnée est de 0V ("L"), seul le mode du signal de télévision est pris. Entre 1 et 3V ("H") le mode seul du signal R/V/B/ est assuré. Si l'impulsion d'entrée du commutateur de donnée est synchronisée avec celle des signaux R/V/B/, les derniers signaux sont superposés sur l'image du signal de télévision.

(A) Fonction de superposition

Pour permettre la superposition de l'image de télévision ordinaire avec les signaux R/V/B de péritélévision, ces signaux et l'impulsion du commutateur de donnée doivent être synchronisés. Seulement quand la tension d'entrée du commutateur de donnée est de 1 à 3V ("H"), le IC903 supprime le signal de télévision et introduit les signaux R/V/B/ à

la place. Pendant ce mode, les signaux R/V/B/ et le signal d'entrée du commutateur de donnée doivent être synchronisés avec le signal vidéo de télévision. Pour cette raison, le dispositif branché externe ne peut pas assurer un effet de superposition à moins que les signaux R/V/B/ et que le signal d'entrée du commutateur de donnée, tous deux synchronisés avec le signal vidéo de télévision, soient appliqués aux broches ⑦ ①, ⑤ et ⑥ du connecteur de péri-télévision par le signal de sortie de la broche ⑥ du connecteur de péri-télévision.

(B) Fonction du mode seul du signal R/V/B

La fonction est la même que ci-dessus. Toutefois, quand la tension du signal d'entrée du commutateur de donnée est de 1 à 3V CC, le signal de télévision est supprimé pendant la durée pendant laquelle les signaux R/V/B seuls sont affichés sur le TRC. Parce que les signaux R, V et B ne contiennent pas de composante de signal de synchronisation, il est nécessaire d'appliquer le signal vidéo ou les impulsions de synchronisation horizontale à la broche 20 du connecteur de péri-télévision pour synchroniser l'appareil. Dans ce cas, la synchronisation demande la commutation EXT/INT (TV), mais cet appareil effectue automatiquement la commutation sur le mode ext en appliquant la tension de 9,5 à 12V cc de l'appareil externe à la broche ® du connecteur de péri-télévision.

Si l'appareil externe ne présente pas une alimentation (9,5 à 12V) de sélection de synchronisation, placer le numéro de canal de l'appareil sur 16 et la synchronisation sera automatiquement portée dans le mode EXT dans l'appareil. Cette action peut également être effectuée par la synchronisation de l'appareil avec le signal de sortie vidéo de la broche (9) du connecteur de péri-télévision. Les signaux d'entrée et de sortie applicables au connecteur de péri-télévision sont présentés dans la liste de la Fig. 13-3.

Figure 13-1. Diagramme du bloc interne de IC903

N° de broche du connec- teur de péri-télévision	Nom du signal	Mode de superposition	Mode de signal R/V/B/ seul Efficace Efficace	
Ø 10	Entrée bleue	Efficace		
	Entrée verte	Efficace		
19	Entrée rouge	Efficace	Effi	cace
16	Commutateur de données	A allumer pour l'opération sync.	1 à 3V CC	1 à 3V CC
8	Commutateur de télévision EXT	Position télé	Position télé.	Position EXT
19	Sortie vidéo télé.	Utilisé pour l'opération sync.	Utilisé pour l'opération sync.	Inefficace
20	Entrée vidéo externe	Inefficace	Non utilisé	Utilisé pour l'opération sync.

Figure 13-3. Signaux d'entrée/sortie au connecteur de péri-télévision

CIRCUITS VIDEO/AUDIO EXTERNES

Les diagammes de bloc des sections vidéo et audio sont individuellement présentés sur les Fig. 14 et 15.

a) Section vidéo externe (Fig. 14)

Le signal composite venant du IC401 est pré-amplifié par Q1401 et Q1402. Il est ensuite alimenté par l'amplificateur tampon (Q1403) pour alimenter le signal de télévision reçu à la broche (9) du connecteur de péri-télévision. Q1407 fonctionne comme un amplificateur présentant un gain d'environ 6dB pour que le signal d'entrée externe et que le signal de télévision soient au même niveau. Le signal d'entrée externe est entré à IC1402, sélectionné comme signal de télévision ou signal externe, et est ensuite alimenté au circuit vidéo. Cette commutation EXT/TV est effectuée par la broche (8) de péri-télévision et le signal AV du canal 16 du senseur. Le signal d'entrée externe est disponible par la sélection de la position EXT avec l'un des signaux.

b) Section audio externe (Fig. 15)

Le signal audio externe venant du IC304 sert à alimenter extérieurement le signal audio de télévision qui est reçu aux broches (1) et (3) de péritélévision. Noter que le même signal est fourni à ces broches. Le signal d'entrée audio externe des broches 2 et 6 de péri-télévision est tamponné par les résistances R1302 et R1304 en même temps que tous les signaux sont mixés et alimentés au IC1301. Aprés avoir été sélectionné comme signal de télévision ou signal EXT à IC1301, le volume du signal est commandé par IC302 et est amplifié par l'amplificateur de sortie audio (IC301) pour entraîner le hautparleur.

Figure 14. Diagramme du bloc du circuit côtés externe.

Figure 15. Diagramme du bloc du circuit audio EXT

REGLAGE D'ENTRETIEN

REGLAGE DES PIF/AFT/SIF

Bobine IFT du tuner:

T201 (dans RUNTK0072CEN1) déjà ajusté

- Recevoir le signal du canal F6.
 (Si la réception du signal du canal F6 n'est pas satisfaisante, recevoir le signal de la gamme VIII.)
- 2. Brancher le générateur de balayage au point d'essai du tuner.

(Utiliser une sonde de coupure CC de 75 ohms.)

Niveau de sortie de balayage: 80 dB

Note: Le fil de terre du générateur de balayage doit être mis à la terre à proximité du point d'essai.

 Brancher le fil de réponse (sonde d'impédance basse avec détecteur) au collecteur de Q201 (dans RUNTK0072CEN1).

- 4. Réglage de la tension de l'AGC PIF:
 Appliquer 3,9 V CC à la broche 4 de RUNTK0072CEN1.
- Réglage de la tension de l'AGC RF Appliquer 4 V CC à l'AGC du tuner.
- 6. Mettre TP601 et TP602 en court-circuit (pour arrêter le circuit du séparateur sync.)
- 7. Régler la bobine IF du tuner pour avoir la forme d'onde ci-dessous.

 Le signal d'image et le signal de porteuse doivent avoir le même niveau.

Filtre de porteuse de 32,7 MHz:

T204 (dans RUNTK0072CEN1) déjà ajusté

(dans RUNTK0072CEN1)

Niveau de sortie du générateur: 90 dB sans modulation (32,7 MHz).

Brancher le VTVM ou l'oscilloscope (gamme CC) à TP203: 3. Réglage de la tension de l'AGC PIF: Appliquer la tension CC (environ 5,0 V CC) à la broche 4 de RUNTK0072CEN1.

Note: La tension appliquée ne doit pas dépasser 7,0 V CC.

- 4. Régler T204 de telle sorte que la tension CC à T203 soit minimale.
 - A la fin du réglage, voir si une tension de 4 V CC apparaît à TP203.

Dans la négative, recommencer le réglage à partir du début.

Réglage grossier de l'AFT: T203 (dans RUNTK0072CEN1) déjà ajusté

Niveau de sortie du générateur: 90 dB

2. Brancher le fil de réponse à TP203.

- 3. Mettre TP601 et TP602 en court-circuit.
- 4. Réglage de la tension de l'AGC PIF: Régler la tension CC (environ 5,0 V) à la broche (4) de RUNTK0072CEN1 et régler pour avoir une forme d'onde de 1 V c. à c. sur l'oscilloscope.

Note: La tension appliquée ne doit pas dépasser 7 V

5. Régler T203 de telle sorte que le point en dépression de la forme d'onde soit à 32,7 MHz.

Forme d'onde globale

- Placer le sélecteur de gamme d'onde à la position V_H
 (III) et régler le contrôle d'accord pour obtenir une tension de sortie d'environ 13 V aux bornes V_T.
- Brancher le générateur de balayage au point d'essai du Tuner. (Utiliser une sonde de détection de l'étage initial.) Niveau de sortie du générateur: 70 dB
- 3. Brancher le fil de réponse à TP203. (Utiliser une sonde directe de 10 kohms utilisée dans le réglage grossier de l'AFT.)
- Réglage de la tension de l'AGC RF: Appliquer 4 V CC à l'AGC du tuner. AGC RF: environ -20 dB
- 5. Mettre TP601 et TP602 en court-circuit (pour arrêter le circuit du séparateur sync.)
- 6. Brancher une résistance d'amortissement de 120 ohms entre les broches ® et ② de IC201. (dans RUNTK0072CEN1)

Note: Les fils de la résistance d'amortissement doivent être aussi courts que possible.

- Pour le réglage de l'AGC PIF: Brancher la tension CC (environ 5 V) à la broche (4) de RUNTK0072CEN1 et régler de telle sorte que la forme d'onde de TP203 soit de 1 V c. à c.
- 8. Vérifier que la forme d'onde globale soit comme celle indiquée ci-dessous.

Réglage fin de l'AFT: T203

- Placer le commutateur de mode sur la position AUTO et recevoir le signal UHF (canal F6 ou au-dessus). Intensité d'entrée: Plus de 55 dB
- 2. Brancher un oscilloscope à TP203.
 Gamme de l'oscilloscope: 0,5 V/div.
 Temps de balayage: 20 µsec/div.
 Opération sync: Horizontale
- 3. Brancher la sortie du générateur de signal à la borne IF du Tuner.

Niveau de sortie du générateur: Environ 50 dB Fréquence de sortie du générateur: 32,7 MHz \pm 5 kHz

 Placer le commutateur de sélection de gamme sur la position de recherche; le circuit de l'AFT s'arrêtera automatiquement.

- 5. Régler le contrôle d'accord pour avoir le battement zéro sur l'oscilloscope.
- Placer le commutateur de sélection de gamme sur la position NORMAL; le circuit de l'AFT se mettra automatiquement en marche.
- 7. Régler T203 pour avoir le battement zéro sur l'oscilloscope.

Erreur de réglage: 32,7 MHz ± 25 kHz

ANTIFADING SECAM: R245

- 1) Recevoir le signal de mire couleur du SYSTEME FRANCE L
 - Puissance du demi signal de mire couleur (signal blanc de 100% contenu: 75 à 85 dB
- 2) Brancher l'oscilloscope à TP203.
 - Sensibilité verticale: 0,5 V/div.
 - Base de temps: 10 μs/div.
 - Opération sync: Horizontale
- Régler R245 pour que le niveau entre le centre de la porteuse blanche de 100% et la crête du signal sync. horizontal soit de 2,0 V c. à c. ± 0,1 V.

Note: L'antifading RF (R255) doit être déjà réglé.

Raccord de l'AGC RF: R255

- Recevoir le signal de gamme VIII.
 Intensité d'entrée: entre 75 dB et 85 dB
- Brancher un oscilloscope à TP203. Gamme de l'oscilloscope: 0,2 V/div. Temps de balayage: 20 µsec/div. Opération sync: Horizontale
- 3. Tourner R255 jusqu'à ce que le bruit apparaisse sur l'oscilloscope comme le montre la Fig. (a).
- 4. Tourner lentement R255 à l'envers jusqu'à ce que le bruit disparaisse de l'oscilloscope. A ce moment, le signal sync horizontal doit être maintenu au même niveau qu'auparavant. (Fig. (b))
- 5. Régler l'intensité du signal entre 90 et 95 dB et voir s'il n'y a pas de modulation transversale ou de battement de son sur l'oscilloscope.
- 6. Régler l'intensité du signal entre 60 et 65 dB et voir s'il n'y a pas de bruit sur l'oscilloscope.

Figure (b).

Réglage de SIF

Bobine du détecteur de son de 39,2 MHz (T322)

- Brancher le générateur de balayage à la broche (1) de IC301.
 - Niveau de sortie du générateur: Environ 80 dB
 - Gamme de balayage: 34 à 44 MHz
- 2) Appliquer la tension AVC d'environ 5 V CC à la broche (5) de IC301.

Régler la tension AVC pour avoir la forme d'onde de 0,6 V c. à c. sur l'oscilloscope.

- 3) Brancher le fil de réponse entre C343 et L322.
 - Gamme de l'oscilloscope: 1V pleine échelle.

 Régler T322 pour que la crête de la forme d'onde soit à 39,2 MHz.

Bobine d'égalisation du son de 39,2 MHz (T321)

- Brancher le générateur de balayage à la broche ① de T324
 - Niveau de sortie du générateur: Environ 70 dB
 - Gemme de balayage: 34 à 44 MHz
- Brancher le fil de réponse (avec une résistance en série de 10 k ohms, mais sans détecteur) entre C343 et L322.
 - Gamme de l'oscilloscope: 1V pleine échelle
- Appliquer la tension AVC d'environ 5 V CC à la broche 6 de lC301.

Régler la tension AVC pour avoir la forme d'onde de 0,6 c. à c. sur l'oscilloscope.

4) Régler T321 pour que la crête de la forme d'onde soit à 39,2 MHz.

Suppression I du son de 39.2 MHz (T323, T324)

- Brancher le générateur de balayage à la borne de sortie FI du tuner.
 - Niveau de sortie du générateur: environ 90 dB
 - Gamme de balavage: 37 à 41 MHz
- Brancher le fil de réponse (avec une résistance en série de 10 k ohms, mais sans détecteur) entre C343 et L322.
 - Gamme de l'oscilloscope: 1 V pleine échelle
- 3) Appliquer la tension AVC d'environ 5 V CC à la broche (5) de IC301.

Régler la tension AVC pour avoir la forme d'onde de 0.6V c. à c. sur l'oscilloscope.

4) Régler T323 et T324 pour assurer l'accord double avec 39,2 MHz au centree.

S'assurer que les marqueurs de 39,2 \pm 0,5 MHz soient au même niveau et à plus de 3dB.

■ RÉGLAGE DE LA CHROMINANCE SECAM Filtre cloche (T901)

- 1) Recevoir le signal de mire couleur SECAM.
- 2) Brancher l'oscolloscope à TP901
 - Sensibilité verticale: 5 mV/div. CA
 - Base de temps: 20 μs/div.
 - Opération sync: Horizontale
 - Sonde: 1/10 (30 pF, plus de 10 M ohms)
- Régler T901 pour que les composantes rouge et bleue du signal de mire couleur aient la même amplitude.

Filtre IDENT (T902)

- 1) Recevoir le signal de mire couleur SECAM.
- 2) Brancher l'oscilloscope à TP902.
 - Sensibilité verticale: 100 mV/div. CC
 - Base de temps: 20 μs/div.
 - Sonde: 1/10

Régler la position verticale pour que la ligne lumineuse apparaisse sur l'oscilloscope.

3) Régler T902 pour que sa tension CC soit maximale. (Valeur de référence: environ 9,5 V)

Détecteur B-Y (T903) et détecteur R-Y (T904)

- 1) Recevoir le signal de mire couleur SECAM.
- 2) Brancher l'oscilloscope à la broche ③ du connecteur (rouge) et à la broche ④ (bleue).
 - Sensibilité verticale: 100mV/div. CC
 - Base de temps: 10 μs/div.
 - Opération sync: Horizontale
- Régler les commandes de contraste (R422) et de luminosité (R438) sur la position MAX (10/10).

Précision du réglage: de l'ordre de ± 25 mV.

4) Régler T903 (B-Y) et T904 (R-Y) exactement pour que le niveau noir/blanc CC (A) à la fo avec la commande de couleur à MIN, et que (B) avec la commande de couleur à MAX, soient les mêmes.

Régler pour que les niveaux (A) et (B) soient les mêmes.

Vérification de la couleur SECAM Détecteur B-Y (T903) et détecteur R-Y (T904)

 Brancher le générateur de mire et recevoir le signal de mire couleur SECAM. Utiliser le type de sélection de mode de couleur-N/B. La fo de la sous-porteuse de son doit être de ± 50 Hz.

(R-Y: de l'ordre de 4.40625 MHz ± 50 Hz)

(B-Y: de l'ordre de 4.25000 MHz ± 50 Hz)

2) Commuter le générateur de mire entre les modes N/B et couleur.

S'assurer que les parties blanche et noire du mode N/B et celles du mode de couleur soient uniformes pour la valeur de fo. Si ces parties semblent rouge dans le mode de couleur, rerégler le détecteur R-Y (T904). Si elles semblent bleues, rerégler le détecteur B-Y (T903).

■ Réglage du circuit vidéo

Polarisation rouge (R853), polarisation verte (R859), polarisation bleue (R865), commande d'écran (FBT), commande de seuil (R1443), commande auxiliaire de tension constante de signal (R1484)

- 1) Recevoir le signal de couleur SECAM.
- 2) Brancher l'oscilloscope à TP de R1429, R1478 et C1426.

- Sensibilité verticale: 50 mV/div. CC
- Base de temps: 10 μs/div.
- · Opération sync.: Horizontale
- 3) Régler la commande de contraste sur la position 10/10 et régler sa commande auxiliaire (R1425) pour que le niveau entre la crête du signal de suppression et le signal blanc de 100% soit de 0,40 \pm 0,05 V c. à c. (Réglage grossier de R1425).
- 4) Régler la commande auxili. de tension constante (R1484) pour que le niveau entre la crête du signal de suppression et la tension constante soit de 70 ± 10 mV c. à c..

C-1411FS/FD

- 5) Recevoir le signal de mire monoscope. La puissance du signal doit être telle qu'aucun bruit n'apparaisse sur l'écran (sur environ 60 dB).
- 6) Effectuer les réglages suivants: Entraînement du vert (R857): 5/10 Entraînement du bleu (R863): 5/10 Polarisation rouge (R853): 0/10 Polarisation verte (R859): 0/10 Polarisation bleue (R865): 0/10
- 7) Régler la commande d'écran sur la position 0/10.
- 8) Court-circuiter TP401 et TP402.
- 9) Régler la commande de luminosité (R417) sur la position 10/10.
- 10) Brancher l'oscilloscope à TP852.
 - Sensibilité verticale: 0,5 V/div. CA
 - base de temps: 20 µs/div.
 - Opération sync.: Horozontale
 - Sonde: 1/10 (30 pF, plus de 10 m ohms)
- 11) Régler la commande de seuil (R1443) pour avoir la forme d'onde de 15 V c. à c. sur l'oscilloscope.
- 12) Régler la commande de luminosité (R417) pour avoir la forme d'onde de 10 V c. à c. sur l'oscilloscope.
- 13) Débrancher la sonde de l'oscilloscope de TP852.
- 14) Tourner lentement la commande d'écran en l'augmentant jusqu'à ce que la première trame horizontale apparaisse légèrement.
- 15) Maintenir la commande de polarisation appartenant à la première couleur, fixe à la position 0/10. Déplacer les deux autres commandes de polarisation jusqu'à ce que la trame horizontale devienne blanche.

Note: Faire attention à ne pas faire devenir la trame horizontale trop blanche.

 Tourner la commande d'écran jusqu'à ce que la trame horizontale disparaisse.

Régler la commande de seuil (R1443) pour avoir la forme d'onde de 15 V c. à c. (erreur de réglage de 15 \pm 1 V c. à c.)

Régler la commande de luminosité (R438) pour avoir la forme d'onde de 10 V c. à c.

Réglage de l'équilibrage et du fond blanc

Entraînement du vert (R857), entraînement du bleu (R863)

- Recevoir le signal de mire monoscope CCIR B/G. La puissance du signal doit être telle qu'aucun bruit apparaît sur l'écran (plus de 60 dB).
- 2) Régler la commande de contraste (R417) sur la position MAX.
- 3) Régler la commande de luminosité (R417) sur la position MAX.
- 4) Régler la commande de sous-contraste (R1425) pour que le courant du faisceau soit de 800 μA.
 - Connexions de l'ampèremètre du faisceau: Positive (+) à TP603
 Négative (-) à TP604.
- Régler les commandes d'entraînement (R857 et R863) pour que la température de couleur (blanche) soit à 6500°K.
- 6) Régler la commande de luminosité sur la position CENTER. Régler la commande de contraste pour que le courant de faisceau soit à 350 μA environ et vérifier si la température de couleur (fond) est de 6500°K. Sinon, rerégler depuis le début.

Réglage du sous-contraste (R1425)

Note: Allumer le commutateur de l'appareil. En faisant passer le courant du faisceau d'environ 800 μA, maintenir le vieillissement pendant 5 minutes environ. Puis procéder comme suit:

- 1) Recevoir le signal de mire monoscope.
 - Puissance du signal: plus de 60dB.
- Effectuer les réglages suivants:
 Commande de contraste (R422): 10/10
 Commande de luminosité (R438): 10/10
- 3) Brancher l'ampèremètre du faisceau (1 mA pleine échelle) comme suit:

Positive (+) à TP603 et négative (-) à TP604

 Régler R1425 pour que le courant du faisceau soit de 800 μA.

Réglage du foyer

Après le réglage de la commande de sous-contraste (avec le courant du faisceau de 800 µA) régler la commande du foyer pour obtenia le meilleur foyer.

REGLAGE DE SYNC/DEFLEXION

Réglage de H-fréq.: R611

- 1. Recevoir un signal de mire de monoscope.
- 2. Court-circuiter TP601 et TP602.
- 3. Régler R611 pour obtenir une bonne sync. horizontale.

Extrémité de dimension H

- Recevoir un signal de mire de monoscope.
 (lors de réception d'un signal L de système standard CCIR, sa mire doit être ajustée pour surbalayage.)
- 2. Disposer l'extrémité de dimension H pour que la dimension H soit à 8 % (10 % maxi.) du surbalayage.

Réglage de dimension V: R508

- Recevoir un signal de mire de monoscope.
 (lors de réception d'un signal L de système standard CCIR, sa mire doit être ajustée pour surbalayage.)
- Régler R508 pour obtenir une bonne dimension V.
 La dimension V doit être à 8 % (10 % maxi.) du surbalayage.

Réglage du centrage H: R647

- Recevoir un signal de mire de monoscope. (lors de réception d'un signal L de système standard CCIR, sa mire quadrillée doit être utilisée pour le réglage.)
- Régler R647 de manière à ce que le centre H de l'image se trouve au cetre géométrique du TRC (A = B).

Réglage de linéarité V: R510

- Recevoir un signal de mire de monoscope. (lors de réception d'un signal L de système standard CCIR, la linéarité de sa mire doit être observable.)
- 2. Régler R510 pour obtenir la meilleure linéarité V. Linéarité V: 0 \pm 5 %

REGLAGE DE L'ECRAN TRC

Commande de foyer

- 1. Recevoir le signal de mire monoscope.
- 2. Régler la commande de contraste sur la position NORMAL.
- Régler la commande de luminosité sur la position MAX (avec un courant de faisceau de 1100 μA.)
- Régler la commande de foyer pour avoir le meilleur foyer dans la partie centrale du TRC.

Aimant de pureté

- Recevoir le signal de mire monoscope. (lors de réception d'un signal L de système standard CCIR, son signal de mire blanche doit être utilisée pour le réglage.)
- 2. Dégausser le masque ombré du TRC avec la bobine de dégaussage.
- 3. Avant le réglage, faire fonctionner le récepteur pendant plus de 10 minutes.
- 4. Régler les aimants de pureté dans la position horizontale.
- 5. Placer la chape de déflexion aussi proche que possible de l'aimant de pureté.
- Régler R853 (polarisation R) et R865 (polarisation B) sur la position MIN, puis tourner R859 (polarisation V) jusqu'à ce que la trame verte apparaisse.
- Régler les aimants de pureté pour avoir une bande verte verticale uniforme au centre du TRC.
 Pour ce réglage, déplacer aussi peu que possible chaque aimant.
- Déplacer la chape de déflexion vers le TRC pour assurer une pureté verte uniforme sur tout l'écran du TRC.
- Effectuer l'opération d'équilibrage du blanc et voir si l'équilibrage du blanc est normal dans l'image.

Convergence

- 1. Recevoir le signal de mire quadrillée.
- Régler la commande de contraste sur la position MAX.
- 3. Régler la commande de luminosité sur la position

CENTER.

Convergence statique (centre):

- 4. Tourner l'aimant à 4 pôles sur les lignes rouge et bleue de convergence.
- 5. Après la fin de la convergence centrale rouge et bleue, tourner l'aimant à 6 pôles pour faire converger les lignes rouge, bleue et verte.

Convergence dynamique:

- La convergence des trois champs de couleur aux bords de l'écran du TRC est assurée en positionnant les cales de réglage d'inclinaison de la chape de déflexion.
- 7. Après le réglage, fixer la chape de déflexion à l'aide des cales.

REGLAGE DE L'AFFICHAGE DU TRC

Réglage de la position de caractère d'affichage de TRC: R1029

- 1. Recevoir le signal de mire quadrillée.
- 2. Accorder le poste au signal du canal 2.
- 3. Appuyer sur la touche d'appel de canal.
- 4. Ajuster R1029 pour que le rebord du caractère 2 se trouve à environ 40 mm du rebord du TRC.

Attention:

Pour le remplacement du coffret arrière après le dépannage, vérifier le fil qui relie la P.C.I. A et le haut-parleur. Il doit être bien accroché sur le support du coffret avant.

TABLEAU DE DEPANNAGE

ENSEMBLE DES PMI

(Toutes les PMI montrées ici sont vues depuis leur côté de câbloge.)

DESCRIPTION DU DIAGRAMME SCHEMATIQUE

PRECAUTION POUR L'ENTRETIEN:

La zone encadrée en pointillés (— - —) est directement branchée avec la tension secteur CA. Lors de l'entretien de cette zone, brancher un transformateur d'isolation entre le téléviseur et le cordon CA afin d'éliminer tout risque de secousse électrique

Les pièces portant la marque " \(\Lambda \) " (\(\) " (\(\) \) sont particulièrement importantes pour le maintien de la sécurité. S'assurer de les remplacer par des pièces du numéro de pièce spécifié pour maintenir la sécurité et la performance de l'appareil.

NOTES

- 1. L'unité des résistances est 1' "ohm" et est omise (k = 1000 ohms et M = 1 mégaohm).
- 2. Toutes les résistances sont de 1/8 watt à moins de spécification contraire.
- 3. Tous les condensateurs sont en μF à moins de spécification contraire, p-μμF.

Conditions de mesure des tensions

- 1. La tension donnée entre parenthèses représente la valeur mesurée avec une charge de signal de barres en couleurs.
- 2. La tension donnée entre parenthèses représente la valeur mesurée sans charge de signal.
- 3. Toutes les tensions à chaque point sont mesurées avec un voltmètre à tube cathodique.

Conditions de mesure des formes d'ondes

- Un signal de générateur de mire couleur de 1,9V crête à crête, est appliqué à la base de 0203.
- 2. Polarisation d'antifading d'environ 4,0V.

FORMES D'ONDES

,	LICTER	EC DIECEC		N° de réf.	N° de la pièce	Description	Code			
		ES PIECES		TRANSISTORS						
DETACHEES DE REMPLACEMENT Les pièces de rechange qui présentent des caractéristiques spéciales de sécurité sont identifiées dans ce manuel par la marque " △ " dans la liste des pièces détachées de remplacement. La substitution par des pièces de rechange qui ne présentent pas les mêmes caractéristiques de sécurité que les pièces de rechange recommandées par l'usine, peut entraîner une électrocution, un incendie ou d'autres dangers.					VS2SC1815GW- 1		AB			
		LEC DECEC DE DECHANCE"		1004 Q301	VS2SC1906//1E	2SC1906	AC			
"COMMENT COMMANDER LES PIECES DE RECHANGE" Pour que votre commande soit rapidement et correctement remplie, veuillez fournir les renseignements suivants:					VS2SC2271-D1A VS2SD1554//1E VS2SD880-G/-1	2SC2271 2SD1554	AD AL AF			
	1. NUMERO DU MODE 3. N° DE LA PIECE	ELE 2. N° DE REF. 4. DESCRIPTION		Q750 Q1003 Q1005	VS2SC2236Y/ - 1 VS2SC383 - WT - 1 VS2SC3399// - 1	2SC2236(Y) 2SC383 2SC3399	AD AE AB			
N° de réf.	N° de la pièce	Description	Code	Q1006	VS2SC3402//-1	2SC3402	АВ			
	TUBE	IMAGE								
Δ	VB370LGB22/-S	TRC		DIC	DDES					
<u>A</u> L703 <u>A</u> DY	RCi LGO 0 0 6 PEZZ RCi LHO 0 1 2 PEZZ PMAGF 3 0 0 6 CEZZ PSPAGO 0 3 1 CEZZ	Bobine de démagnétisation Bobine de déviation Aimant de pureté Cale	AU BK AK AC	D202 205, 401, 402,	RH- DX0179CEZZ	1SS177	AA			
(NE I		E DES PMI LES DE REMPLACEMENT) į	403, △ 608, △ 610, 615, 671,	.6					
PWB-B PWB-C	DUNT K 3 7 1 2 WE V 1 DUNT K 3 6 5 5 WE V 1	Ensemble de la douille du TRC Ensemble de chrominance	_	752, 753, 754, 1002,		1 2				
	PWB-A DUN	TK3654WEV0		1008 						
	UNITES D'ENSEM	IBLE ET DE TUNER		1011, 1013,						
е		tituent toutes un ensemble com contiennent ne sont pas préparés		1017, 1019 D206, 207	RH- DX0005GEZZ		AA			
Δ	VTUVTS-7F//// RUNTK0072CEN1	VHF/UHF Tuner Unité PIF/SIF	BK BB	D301,	RH- DX0130CEZZ		AE			
				D501, 603,	RH- DX0110CEZZ		АВ			
		N INTEGRES	Ī	. 701 . ∣						
IC202 IC203 IC204 IC301	RH- i X0260CEZZ RH- i X0037CEZZ RH- i X0257CEZZ RH- i X0250CEZZ	UPC574J	AF AF AF AK	⚠ 704, ⚠ 706 D502, 605	RH- DX0127CEZZ	1S5295G	AC			
IC302 IC303 IC501	RH- i X0241CEZZ RH- i X0050PAZZ RH- i X0065CEZZ		AF AQ AM	∆ D601 D602, ∆ 712	RH- EX0152CEZZ RH- DX0126CEZZ	Diode zéner	AE AC			
IC502	RH- i X0238CEZZ RH- i X0465CEZZ VHi UPC1373H- 1		AK AK AH	△ D604 D606, △ 709	RH- EX0022TAZZ RH- DX0202CEZZ		AB AD			
IC1002 IC1003 IC1004	RH- i X0442CEZZ RH- i X0439CEZZ RH- i X0412CEZZ		AQ AQ	D614	RH- EX0 0 5 1 CEZZ RH- DX0 1 2 3 CEZZ RH- DX0 1 6 4 CEZZ	TVR1D ES-1F	AB AC AC			
IC1005	VHi PST520C2-1		AT	D750 D751	RH- DX0 1 0 7 TAZZ RH- EX0 0 4 7 CEZZ		AF AB			

N° de réf.	N° de la pièce	Description	Code	N° de réf.	N° de la pièce		Desc	cription	Code
D1001	RH-PX0004AEZZ		AK	CONDENSATEURS					
D1003 D1004	RH- PX0146CEZZ RH- EX0020GEZZ		AE	0004	V00474405455W	T			T
TH1001	RH- HZ0004CEZZ		AE	C201	VCSATA1CE475K	1	16V	Tantale	AC
1111001	NH- HZ0004CEZZ	Thermistor	AB	C243	VCSATA1VE225K	1	35V	Tantale	AC
				C249	VCSATA1CE106K		16V	Tantale	AD
				C307	RC-QZA473TAYK			Mylar	AB
	CIRCUITS E	N ENSEMBLE		C308, 626,	VCEAAA1EW227M	220	25V	Electrolytique	AE
A =====	T			755					
⚠ POR701 X1001	RMPTP0028CEZZ		AG	C313,	VCEAAA1EW477M	470	25V	Electrolytique	AD
X1001	NFI LC0024GEZZ	Oscillateur céramique	AE	515 C316,	VCKVDAQUDAQQK	10000	. 500)/	04	
				516,	VCKYPA2HB102K	1000P	500V	Céramique	AA
			<u> </u>	617,					
	BOI	BINES		619,					
	1		т	625,					
L206,	VP- DF120K0000	12µH	AB	△ 714,					
211,				△ 717					
1003,				C317	VCEAAA1EW337M	330	25V	Electrolytique	AD
1004,				C323,	VCEAAA1CW107M	100	16V	Electrolytique	AB
1005				629,					
L301,	VP- CF3R3K0000	3.3µH	AB	630					
302,				C403	VCCSPA2HL120K	12P	500V	Céramique	AA
606				C503	VCSATA1VE335K	3.3	35V	Tantale	AC
L322	VP- DF220K0000	22μΗ	AB	C508	VCEAAA1CW227M	220	16V	Electrolytique	AC
L501,	VP- CF120K0000	12μΗ	AB	C510	VCEAAA1VW107M	100	35V	Electrolytique	AC
601				C517	VCEAAA1VW477M	470	35V	Electrolytique	AD
L605	RCi LP0054CEZZ		AD	C612	VCQPPB2JB272J	2700P	630V	Film de polypro	AB
L607	RCi LZ0001PEZZ		AL	C616	VCEAAA2CW105M	1	160V	Electrolytique	AB
L608	VP- DF471K0000	47μΗ	AB	△ C618	VCFPPD3CA682J	6800P	1.6KV	Polyester	AE
∆ L702	RCi LF0075CEZZ	Filtre de ligne	AH					métallisé	
∆ L705	VP- DF8R2K0000	8.2µH	AB	C621	VCQPSD2DA224K	0.22	200V	Film de polypro	AC
∆ L706	VP- CF821K0000	820μH	AB	C622	VCQPPB2DB334K		200V	Film de polypro	AD
⚠ L709, ⚠ 710	RCi LP0093CEZZ		AE	△ C628	VCEAAA0JW337M		6.3V	Electrolytique	AB
L1001	DC: 1: 040ECE77			C631	VCQPSC2DA104K		200V	Film de polypro	AC
L1001	RCi Li 0405CEZZ	33	AE	C635	VCEAAH2CW107M		160V	Electrolytique	AF
L1002	VF- DF330 K0000	33μΗ	AB	C639,	VCKYPH3DB561K	560P	2KV	Céramique	AC
				△ 726	VCKVDAGUDGGAK	0000	5001	٠.	
				C644	VCKYPA2HB221K	220P	500V	Céramique	AA
		·		△ C701	RC FZ0018CEZZ	0.22	AC250V	Polyester	АН
	TRANSFO	RMATEURS		∆ C702,	RC-KZ0029CEZZ	0.01	AC250V	métallisé 'Céramique	AC
				∆ 703	or	0.01	AC250V	Ceramique	70
T321	RCi Li 0449CEZZ	Equilibrage du son	AE		RC- KZ0016CEZZ	0.01	AC250V	Céramique	AC
T322	RCi LD0139CEZZ	Détecteur SIF	AE	△ C704,	RC- KZ0016CEZZ			Céramique	AC
T323	RCi Li 0446CEZZ	IN-1 SIF	AE	△ 722				- Corannique	
T324	RCi Li 0447CEZZ	IN-2 SIF	AE	△ C706	RC-EZ0078CEZZ	150	350V	Electrolytique	АМ
∆ T601	RTRNF1484CEZZ	Trasnfo de retour-du spot	ВВ	△ C709	VCEAAA2AW105M	1	100V	Electrolytique	AB
∆ T602	RTRNZ0179CEZZ		AE	△ C710	VCEAAA2AW106M	10	100V	Electrolytique	АВ
∆ T701	RTRNZ0004PEZZ		BA	△ C711	VCEAAA2AN106M	10	100V	Electrolytique	AC
⚠ T750	RTRNP0312CEZZ	Transformateur d'alimenattion	ΔQ	△ C712	VCQPSD2JA333K	0.033	630V	Film de polypro	AB
				△ C716	VCFYHA1HA473J	0.047	50V	Mylar	AB
				∆ C719,	RC-KZ0023CEZZ	4700P	2KV	Céramique	AD
			-	△ 720					
	COMM	ANDES		⚠ C721	VCCSPA2HL121K	120P		Céramique	AA
DOAF	DVD D5400055	OV(D) FIGURE		△ C723	VCKZPA1HB102K	1000P		Céramique	AA
R245		3K(B) FI-CAG	AB	△ C727	RC-KZ0024CEZZ	1000P		Céramique	AC
R255 ∆ R417		5K(B) FH-CAG	AE	C752	VCEAAA1HW107M	100	50V	Electrolytique	AC
△ N41/	RVR- B5200CEZZ	5K(B) Stabilite-V 10K(B)×3 Luminosite/	AH	C1015	VCEAAA1AW227M	220	10V	Electrolytique	AC
		Couleur/Contraste							
R508	RVR-B0001PEZZ	100(B) Dimension verticale	AD		1.				Ц—
R611	RVR-B5137CEZZ	5K(B) Fréquence	AB		RESIST	ANCES	;		
D647	DVD D54060==	horizontale							
R647		300(B) Centre horizontale	AB	R218	VRS-VV3DB123J	12K	2W	Oxyde	AA
R1029	RVR-M7133TAZZ	4.7K(B) Position de caractère	AC	A DECC	DD V70000			métallique	
				⚠ R529	RR- XZ0029CEZZ	3.3	1/2W	Résistance	AB
					1	I		fusible	

C-1411FS/FD C-1411FS/FD

N° de réf.	N° de la pièce		Desc	ription	Code	N° de réf.	N° de la pièce	Description	Code
R619	VRS- VV3DB103J	10K	2W	Oxyde	AA		ZERS		
R621	VRS- VU3LB392J	3.9K	3W	métallique Oxyde métallique	АВ	⚠ F701	QFS-C2022TAZZ QFSHD1002CEZZ	Fusible T2A Porte-fusible	AE AA
R622	VRS- VV3 AB271J	270	1W	Oxyde métallique	AA	FB601, 602,	RBL N- 0010 CEZZ	Barreau de ferrite	AC
R623 R624	VRW- KP3LC100K VRN- RV3AB1R2J	10 1.2	3W 1W	Ciment Film	AC AB	∆ 701, ∆ 702			
∆ R629	RR- XZ0016CEZZ		1/2W	métallique Résistance	AB	FB603	RBLN-0009CEZZ	Barreau de ferrite	AC
R630	VRS-PU2HB102J	1K	1/2W	fusible Oxyde	AA				
△ R632	VRD- RA2BE184J		1/8W	métallique Carbone	АА		DIVID D DUN	TV2742WEV4	
⚠ R633	VRD- RA2EE105J VRD- RA2BE103J	1M 10K	1/4W 1/8W	Carbone Carbone	AA AA	7	PWB-B DUN	TK3712WEV1	
⚠ R637, ⚠ 638 R640	VRS- VV3DB120J		2W	Oxyde	AA	!	TRANS	SISTORS	
A R643	VRN- VV3AB1R5J	1.5	1W	métallique Film	AA	Q851, 852,	VS2SC2229ō/1E	2SC2229(ō)	AD
△ R644	VRD- RA2BE472J		1/8W	métallique Carbone	AA	853			
⚠ R649	RR- XZ0027CEZZ	2.2	1/2W	Résistance fusible	АВ				
⚠ R701 ⚠ R702	VRW- KV3HC6R8K VRD- RA2HD823J		5W 1/2W	Ciment Carbone	AC AA				
							BOB	INES	
⚠ 707,⚠ 709,⚠ 710						L851	VP- CF681K0000	680µН	АВ
⚠ R708	VRS- VV3 AB272J	2.7K	1W	Oxyde métallique	AA				
∆ R711	VRD- RA2HD473J	47K	1/2W	Carbone	AA				
⚠ R712	VRD-RA2HD472J		1/2W	Carbone	AA		COMM	IANDES	
⚠ R713	VRD- RA2HD271J		1/2W	Carbone	AA	DOTO	DVD D45070577	EK(D) Deleter	AC
⚠ R714 ⚠ R716	VRD- RA2 HD3 3 1 J VRD- RA2 HD6 R8 J	330 6.8	1/2W 1/2W	Carbone Carbone	AA AA	R853, 859,	RVR-B4567CEZZ	5K(B) Polarisation-rouge Polarisation-vert	AC
⚠ R717, ⚠ 718,	VRD- RA2HD2R7J	2.7	1/2W	Carbone	AA	865 R857,	RVR- B4562CEZZ	Polarisation-bleu 300(B) Entraînement-vert	AC
△ 724 △ R719,	VRC- UA2HG825K	8.2M	1/2W	Solide	AA	863		Entraînement-bleu	
∆ 720 ∆ R722	RR- XZ0011GEZZ	47	1/2W	Résistance	AB				
△ R723	VRD- RA2HD8R2J	8.2	1/2W	fusible Carbone	АА		CONDEN	SATEURS	
R750	VRS-VV3AB102J	1K	1W	Oxyde métallique	AA	∆ C854	RC-KZ0023CEZZ	4700P 2KV Céramique	AD
•						C855	VCEAAA2CW106M	10 160V Electrolytique	AC
	COMMUTATE	URS ET	RELAIS						
S401	QSW- B0015CEZZ	Comm	utateur	de service	AC		DIV	'ERS	1
∆ S701	QSW- P0371CEZZ	princip	oal	alimentation	AK	Δ	QSōCV0818CEZZ	Douille du TRC	AK
∆ S1001	QSW- K0014CEZZ	Comm	utateur	UP/DOWN	AC				
∆ 1004, ∆ 1006							PWB-C DUN	TK3655WEV1	776-
	QSW- P0378CEZZ	Interru	inteur d'	alimentation	AE		CIRCUITS	INTEGRES	
∆ 31005, ∆ 1010	25 W- 1 03 / 6 CE ZZ		•	TV/VIDEO	AL.	IC901	RH- i X0458CEZZ		AT
S1011	QSW-S0048TAZZ			de vieillissement	AD	IC902	RH- i X0226CEZZ		AV
∆ S1012	QSW-R0029CEZZ			de gamme	AE	IC903	RH- i X0372CEZZ		AU
		d'onde				IC1301,	VHi LA7016//-1		АН
⚠ RY750	RRLYZ0021CEZZ	Relais			AN	1402			

N° de réf.	N° de la pièce	Description	Code	N° de réf.	N° de la pièce	Description	Code
	TRANS	SISTORS			TRANSFO	RMATEURS	
Q805, 902, 903, 904, 905, 1301, 1302,	VS2SC1815GW-1	2SC1815(GW)	АВ	T901 T902 T903, 904 T905	RCi Li 0364CEZZ RCi Li 0436CEZZ RCi Li 0435CEZZ RCi LZ0345CEZZ	Filtre de sonnerie Suppresseur Discriminateur	AD AE AE
1401, 1402, 1403,					COMN	IANDES	
1405, 1407 1410 0806, 1404, 1406	VS2SA1015Y/1E	2SA1015(Y)	AC	R1425 R1443 R1484	RVR- B0008PEZZ RVR- B0007PEZZ RVR- B4063GEZZ	10K(B) Support	AD AD AD
					CONDEN	ISATEURS	
				C808, 809,	VCEAAA1 CW1 0 7 M	100 16V Electrolytique	АВ
	DIC	DES		944, 1402,			
D804 809, 812, 1404 D811, 814, 815, 902, 904,	VHD1 SS119//-1	1SS119 1SS177	AA	1433 C818 C914 C1303, 1403, 1428, 1429	VCEAAA1 CW1 0 8 M VCEAAA1 CW3 3 7 M VCEAAA1 CW4 7 7 M	330 16V Electrolytique	AD AC AC
1405				7-2	сомми	JTATEUR	
				∆ S801	QSW-S0032CEZZ	Commutateur micon	AE
	вое	INES					
L901	VP- DF8R2K0000		AB		PIECES D	DIVERSES	
L903 L1401	VP- DF470K0000 VP- DF3R3K0000		AB AB	Δ	RRMCG0320CESA	Haut-parleur Emetteur de commande à distance (C-1411FS)	AL AP BC
	LIGNE	RETARD				Emetteur de commande à distance (C-1411FD)	ВС
DL901 DL1401	RCi LZ0320CEZZ RCi LZ0467CEZZ		AR AH	Δ	QSōCZ2104CEZZ QANTR0059CEZZ		AH

N° de réf.	N° de la pièce	Description	Code	N° de réf.	N° de la pièce	Description	Code
	ORGANES I	OU COFFRET		1-4	Hi NDM0069PESB	Indicateur (à l'intérieur de la porte) (C-1411FD)	AG
1	CCABA2002WEV0	Ensemble du coffret avant	BR	1-5	HI NDM2409CESA	Indicateur canal/volume	AC
		(C-1411FS)		1-6	HI NDP2239CESA	Fenêtre R/C	AD
1	CCABA2002WEV2	Ensemble du coffret avant	BR	1-7	JBTN-1238CESA	Bouton d'aller/retour	AF
		(C-1411FD)		1-8	JBTN-1236CESA	Bouton d'alimentation	AC
1-1	Non disponible	Coffret avant	_	1-9	MSPRC0068CEFW	Spring	AA
1-2	GDöRF0011PESC	Porte (C-1411FS)	AQ	1-10	HDECQ0245CESA	Cache de LED	AD
1-2	GDoRF0011PESD	Porte (C-1411FD)	AQ				
1-3	HBDGB1057AFSA	Etiquette "SHARP"	AD	2	GCABB6018PESA	Coffret arrière	BQ
1-4	Hi NDM0069PESA	Indicateur (à l'intérieur de la porte) (C-1411FS)	AG				

N° de réf.	N° de la pièce	Description	Code	N° de réf.	N° de la pièce	Description	Code				
PIECES		/RRMCG0320CESB E COMMANDE A DISTAN	Q3002 D3001,	VS2SD468-C/-1 95GSLR-932A	Transistor LED	AD AE					
IC3001 Q3001	RH- i X0187PAZZ VS2SC1815YW1E	·	AV AB	3002 CF3001	95 GKBR- 455 BTL	Oscillateur céramique	AE				

SHARP