# Course 4



# Regular grammars

• G =  $(N, \Sigma, P, S)$  right linear grammar if

 $\forall p \in P: A \rightarrow aB \text{ or } A \rightarrow b$ , where A,B  $\in N$  and a,b  $\in \Sigma$ 

- G =  $(N, \Sigma, P, S)$  regular grammar if
  - G is right linear grammar and
  - $A \rightarrow \varepsilon \notin P$ , with the exception that  $S \rightarrow \varepsilon \in P$ , in which case S does not appear in the rhs (right hand side) of any other production
- $L(G) = \{w \in \Sigma^* \mid S^* = > w\}$  right linear language

```
A->aA|a ok \checkmark
S->aA| \epsilon and A->b ok \checkmark
S->aA| \epsilon and A->\epsilon NOT ok \checkmark
S->aA| \epsilon and A->bS|a NOT ok \checkmark
```

**Theorem 1**: For any regular grammar  $G=(N, \Sigma, P, S)$  there exists a FA  $M=(Q, \Sigma, \delta, q_0, F)$  such that L(G) = L(M)

Proof: construct M based on G

$$Q = N \cup \{K\}, K \notin N$$

$$q_0 = S$$

$$F = \{K\} \cup \{S \mid \text{if } S \rightarrow \varepsilon \in P\}$$

$$\delta$$
: if A  $\rightarrow$ aB  $\in$  P then  $\delta$ (A,a) = B if A  $\rightarrow$ a  $\in$  P then  $\delta$ (A,a) = K

# **Theorem 1**: For any regular grammar $G=(N, \Sigma, P, S)$ there exists a FA $M=(Q, \Sigma, \delta, q_0, F)$ such that L(G) = L(M)

```
Proof: construct M based on G

Q = N U {K}, K \notin N

q_0 = S

F = {K} U {S| if S\rightarrow \varepsilon \in P}
```

$$\delta$$
: if A  $\rightarrow$ aB  $\in$  P then  $\delta$ (A,a) = B if A  $\rightarrow$ a  $\in$  P then  $\delta$ (A,a) = K

```
Prove that L(G) = L(M) (w \in L(G) \Leftrightarrow w \in L(M)):

S \stackrel{*}{\Rightarrow} w \Leftrightarrow (S, w) \stackrel{*}{\vdash} (qf, \varepsilon)

w = \varepsilon : S \stackrel{*}{\Rightarrow} \varepsilon \Leftrightarrow (S, \varepsilon) \stackrel{*}{\vdash} (S, \varepsilon) - \text{true}

w = a_1 a_2 \dots a_n : S \stackrel{*}{\Rightarrow} w \Leftrightarrow (S, w) \stackrel{*}{\vdash} (K, \varepsilon)

S \Rightarrow a_1 A_1 \Rightarrow a_1 a_2 A_2 \Rightarrow \dots \Rightarrow a_1 a_2 \dots a_{n-1} A_{n-1} \Rightarrow a_1 a_2 \dots a_{n-1} a_n

S \Rightarrow a_1 A_1 \text{ exists if } S \Rightarrow a_1 A_1 \text{ and then } \delta(S, a_1) = A_1

A_1 \Rightarrow a_2 A_2 : \delta(A_1, a_2) = A_2 \dots

A_{n-1} \Rightarrow a_n : \delta(A_{n-1}, a_n) = K

(S, a_1 a_2 \dots a_n) \vdash (A_1, a_2 \dots a_n) \vdash (A_2, a_3 \dots a_n) \vdash \dots \vdash (A_{n-1}, a_n) \vdash (K, \varepsilon), K \in F
```

## EX 1

$$G = ({S,A}, {0,1}, P, S)$$

P: 
$$S \rightarrow OS \mid OA$$

$$Q = \{S,A,K\}$$

$$q_0 = S$$

$$F = \{K\}$$

δ

|   | 0    | 1   |
|---|------|-----|
| S | S, A |     |
| А |      | A,K |
| K |      |     |

**Theorem 2**: For any FA M=(Q,  $\Sigma$ ,  $\delta$ , q<sub>0</sub>,F) there exists a right linear grammar G=(N,  $\Sigma$ , P, S) such that L(G) = L(M)

Proof: construct G based on M

$$N = Q$$

$$S = q_0$$

P: if  $\delta(q,a) = p$  then  $q \rightarrow ap \in P$ if  $p \in F$  then  $q \rightarrow a \in P$ if  $q_0 \in F$  then  $S \rightarrow \varepsilon$ 

# **Theorem 2**: For any FA M=(Q, $\Sigma$ , $\delta$ , q<sub>0</sub>,F) there exists a right linear grammar G=(N, $\Sigma$ , P, S) such that L(G) = L(M)

P: if  $\delta(q,a) = p$  then  $q \rightarrow ap \in P$ 

```
if p \in F then q \rightarrow a \in P
N = Q
                                                                                                                       if q_0 \in F then S \rightarrow \varepsilon
S = q_0
Prove that L(M) = L(G) (w \in L(M) \Leftrightarrow w \in L(G)):
P(i): q \stackrel{i+1}{\Rightarrow} x \Leftrightarrow (q,x) \stackrel{i}{\vdash} (q_f, \varepsilon), q_f \in F -prove by induction
Apply P: q_0 \stackrel{i+1}{\Rightarrow} w \Leftrightarrow (q_0,w) \stackrel{i}{\vdash} (q_f, \varepsilon), q_f \in F
If i=0: q \Rightarrow x \Leftrightarrow (q,x) \stackrel{\mathbf{0}}{\vdash} (q_f, \varepsilon) (x = \varepsilon, q = q_f) q \Rightarrow \varepsilon \Leftrightarrow q_0 \rightarrow \varepsilon, q_0 \in F
Assume ∀ k≤i P is true
q \stackrel{i+1}{\Rightarrow} x \Leftrightarrow (q,x) \stackrel{i}{\vdash} (q_f, \varepsilon)
For q \in N apply "\Rightarrow": q \Rightarrow ap \Rightarrow ax
If q \Rightarrow ap then \delta(q,a) = p; if p \stackrel{i}{\Rightarrow} ax then (p,x) \stackrel{i-1}{\vdash} (q_f, \varepsilon), qf \in F
THEN (q,ax) \stackrel{i}{\vdash} (q_f, \varepsilon), qf \in F
```

Proof: construct G based on M

M:  

$$Q = \{S,A,K\}$$
  
 $q_0 = S$   
 $F = \{K\}$   
 $\delta$ 

|   | 0    | 1   |
|---|------|-----|
| S | S, A |     |
| Α |      | A,K |
| K |      |     |

```
N = \{S,A,K\}
S = S
P:
          S-> 0S | 0A
          A -> 1A | 1K | 1
```

## Regular sets

**Definition**: Let  $\Sigma$  be a finite alphabet. We define <u>regular sets</u> over  $\Sigma$  recursively in the following way:

- 1.  $\phi$  is a regular set over  $\Sigma$  (empty set)
- 2.  $\{\boldsymbol{\varepsilon}\}$  is a regular set over  $\boldsymbol{\Sigma}$
- 3. {a} is a regular set over  $\Sigma$ ,  $\forall$  a  $\in \Sigma$
- 4. If P, Q are regular sets over  $\Sigma$ , then PUQ, PQ, P\* are regular sets over  $\Sigma$
- 5. Nothing else is a regular set over  $\Sigma$

# Regular expressions

**Definition**: Let  $\Sigma$  be a finite alphabet. We define <u>regular expressions</u> over  $\Sigma$  recursively in the following way:

- 1.  $\phi$  is a regular expression denoting the regular set  $\phi$  (empty set)
- 2.  $\varepsilon$  is a regular expression denoting the regular set  $\{\varepsilon\}$
- **3.** a is a regular expression denoting the regular set  $\{a\}$ ,  $\forall$   $a \in \Sigma$
- 4. If **p,q** are regular expression denoting the regular sets P, Q then:
  - p+q is a regular expression denoting the regular set PUQ,
  - pq is a regular expression denoting the regular set PQ,
  - p\* is a regular expression denoting the regular set P\*
- 5. Nothing else is a regular expression

#### Remarks:

- 1.  $p^+ = pp^*$
- 2. Use paranthesis to avoid ambiguity
- 3. Priority of operations: \*, concat, + (from high to low)
- 4. For each regular set we can find at least one regular exp to denote it (there is an infinity of reg exp denoting them)
- 5. For each regular exp, we can construct the corresponding regular set
- 6. 2 regular expressions are equivalent iff they denote the same regular set

#### Examples

```
O1* denotes {0,01,011, 0111,...}
(01)* denotes {ε, 01, 0101,...}
0*1* denotes {ε,0,1,01,00,11,...}
01+10* denotes {01, 1,10,100,...}
```

# Algebraic properties of regular exp

#### Let $\alpha$ , $\beta$ , $\gamma$ be regular expressions.

1. 
$$\alpha + \beta = \beta + \alpha$$

2. 
$$\boldsymbol{\phi}^* = \boldsymbol{\varepsilon}$$

3. 
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$

4. 
$$\alpha(\beta\gamma) = (\alpha\beta)\gamma$$

5. 
$$\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma$$

6. 
$$(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$$

7. 
$$\alpha \varepsilon = \varepsilon \alpha = \alpha$$

8. 
$$\phi \alpha = \alpha \phi = \phi$$

9. 
$$\alpha^* = \alpha + \alpha^*$$

$$10.(\alpha^*)^* = \alpha^*$$

$$11.\alpha + \alpha = \alpha$$

$$12.\alpha + \Phi = \alpha$$

# Reg exp equations

• Normal form: 
$$X = aX + b$$

• Solution: 
$$X = a*b$$

$$a a * b + b = (aa * + \varepsilon)b = a * b$$

System of reg exp equations:

$$\begin{cases} X = a_1 X + a_2 Y + a_3 \\ Y = b_1 X + b_2 Y + b_3 \end{cases}$$

Solution: Gauss method (replace X<sub>i</sub> and solve X<sub>n</sub>)



# **Prop**:Regular sets are right linear languages

**Lemma 1**:  $\phi$ ,  $\{\varepsilon\}$ ,  $\{a\}$ ,  $\forall a \in \Sigma$  are right linear languages

#### **Proof: constructive**

i.  $G = (\{S\}, \Sigma, \Phi, S)$  – regular grammar such that  $L(G) = \Phi$ 

ii.  $G = (\{S\}, \Sigma, \{S \rightarrow \varepsilon\}, S) - \text{regular grammar such that } L(G) = \{\varepsilon\}$ 

iii.  $G = (\{S\}, \Sigma, \{S \rightarrow a\}, S) - regular grammar such that L(G) = \{a\}$ 

### Lemma 2: If $L_1$ and $L_2$ are right linear languages then: $L_1 \cup L_2$ , $L_1L_2$ and $L_1^*$ are right linear languages.

#### **Proof: constructive**

 $L_1, L_2$  right linear languages =>  $\exists G_1, G_2$  such that

$$G_1 = (N_1, \Sigma_1, P_1, S_1)$$
 and  $L_1 = L(G_1)$ 

$$G_2 = (N_2, \Sigma_2, P_2, S_2)$$
 and  $L_2 = L(G_2)$  assume  $N_1 \cap N_2 = \emptyset$ 

i. 
$$G_3 = (N_3, \Sigma, P_3, S_3)$$

$$N_3 = N_1 U N_2 U \{S_3\}; \Sigma_3 = \Sigma_1 U \Sigma_2$$

$$P_3 = P_1 U P_2 U \{S_3 \rightarrow S_1 \mid S_2\}$$

$$\{S_3 \rightarrow \alpha_1 \mid S_1 \rightarrow \alpha_1 \in P_1\} \cup \{S_3 \rightarrow \alpha_2 \mid S_2 \rightarrow \alpha_2 \in P_2\}$$

G<sub>3</sub> – right linear language and

$$L(G_3) = L(G_1) \cup L(G_2)$$

**PROOF!!! Homework** 

ii. 
$$G_4 = (N_4, \Sigma, P_4, S_4)$$

$$N_4 = N_1 U N_2$$
;  $S_4 = S_{1}, \Sigma_4 = \Sigma_1 U \Sigma_2$ 

$$P_4 = \{A \rightarrow aB \mid if A \rightarrow aB \in P_1\} \cup \{A \rightarrow aS_2 \mid if A \rightarrow a \in P_1\} \cup P_2 \cup \{S_1 \rightarrow bA_2 \mid if S_2 \rightarrow bA_2 \in P_2 \text{ and } S_1 \rightarrow \epsilon\}$$

G<sub>4</sub> – right linear language and

$$L(G_4) = L(G_1) L(G_2)$$

**PROOF!!!** Homework

iii. 
$$G_5 = (N_5, \Sigma_1, P_5, S_5)$$

//IDEA: concatenate L<sub>1</sub> with itself

$$N_5 = N_1 U \{S_5\};$$

$$P_{5} = P_{1} \cup \{S_{5} \rightarrow \boldsymbol{\varepsilon}\} \cup \{S_{5} \rightarrow \boldsymbol{\alpha}_{1} | S_{1} \rightarrow \boldsymbol{\alpha}_{1} \in P_{1}\} \cup \{A \rightarrow aS_{1} | if A \rightarrow a \in P_{1}\}$$

G<sub>5</sub> – right linear language and

$$L(G_5) = L(G_1)^*$$

**PROOF!!! Homework** 

# Theorem: A language is a regular set if and only if is a right linear language

#### Proof:

- => Apply lemma 1 and lemma 2
- <= construct a system of regular exp equations where:
- Indeterminants nonterminals
- Coefficients terminals
- Equation for A: all the possible rewritings of A Example: G=({S,A,B},{0,1}, P, S)

P: 
$$S \rightarrow 0A \mid 1B \mid \epsilon$$
  
 $A \rightarrow 0B \mid 1A$   
 $B \rightarrow 0S \mid 1$   

$$\begin{cases} S = 0A + 1B + \epsilon \\ A = 0B + 1A \\ B = 0S + 1 \end{cases}$$

Regular exp = solution corresponding to S

# **Theorem**: A language is a regular set if and only if is accepted by a FA

#### Proof:

=> Apply lemma 1' and lemma 2' (to follow, similar to RG)

<= construct a system of regular exp equations where:

- Indeterminants states
- Coefficients terminals
- Equation for A: all the possibilities that put the FA in state
   A
- Equation of the form: X=Xa+b => solution X=ba\*



$$\begin{cases} q_1 = q_3 1 + \mathbf{\varepsilon} \\ q_2 = q_1 0 + q_1 1 + q_2 0 + q_3 0 \\ q_3 = q_2 1 \end{cases}$$

Regular exp = union of solutions corresponding to final states