

Shadows & occlusion

- Shadow occlusion duality
- Floor shadows
- Shadow buffer
- Soft shadows

Motivation

Visibility

- Most objects in a scene are hidden from any given view point
- Rendering them wastes GPU cycles
- Need efficient techniques for rejecting what is obviously hidden
 - Rejection tests can be exact, conservative (reject more), approximate

Shadows

- Objects in the shadow do not reflect direct illumination
- Want to know which light sources illuminate an object
- Need a quick test for being in the shadow

Visibility and shadows are defined in terms of occluders

- Surfaces or objects that may block the passage of light
- When placed between the object and the viewer/light

Shadows provide depth clues

Palmer, Stephen E. Vision Science: Photons to Phenomenology. MIT Press. May 1999. ISBN: 0-262-16183-4.

4x4 matrix formulation (review)

u	0	0	0
0	V	0	0
0	0	W	0
0	0	0	1

S(u,v,w)

1	0	0	u
0	1	0	V
0	0	1	W
0	0	0	1

U_x	V_{x}	$\mathbf{W}_{\mathbf{x}}$	0
U_y	V_y	\mathbf{W}_{y}	0
U_z	V_z	\mathbf{W}_{z}	0
0	0	0	1

T(u,v,w) R(U,V,W)

C	-S	0	0
S	C	0	0
0	0	1	0
0	0	0	1

 $R_{z}(a)$

M•P

Rotation matrix

 $\begin{array}{c|cccc} U_x & V_x & W_x & \mathbf{0} \\ \\ U_y & V_y & W_y & \mathbf{0} \\ \\ U_z & V_z & W_z & \mathbf{0} \\ \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \end{array}$

- ||U||=||V||=1
- $U \cdot V = 0$
- **W**=**U**×**V**
- $\blacksquare R = \{ UVW \}, 3x3 \text{ matrix}$
- $\mathbf{R'} = \mathbf{NR}$, inverse = transpose
- Rotation to map Z to W
 - U:=Y×W or X×W
 - **U:=U/||U||**
 - V:=WxU
 - $\mathbf{R}_{\mathbf{ZtoW}} = \{ \mathbf{U} \mathbf{V} \mathbf{W} \}$
- Rotation to map W to Z axis
 - R_{ZtoW}

Floor shadows

- Depth cue, realism, light position
- Draw object twice
 - Second time: projected on the ground
- Does not support self-shadows

1	0	L_x/L_z	0
0	1	L_y/L_z	0
0	0	0	0
0	0	0	1

$$S = P + (P_z/L_z) L$$

Shadow map (supports self-shadows)

- Pre-render from light : store z-buffer as shadow map (texture)
- While rendering, check whether fragments are in shadow
 - Use GPU to perform the check (compare z to texture)

Shadow volumes on GPU

- Heidmann (IRIS Universe 1991), Everitt (nVidia 2002)
 - Shadow volume = triangles facing light + silhouette extrusions
- Brabec-Seidel (EUROGRAPHICS 2003)
 - Add silhouette identification in hardware

Soft shadows (area light sources)

Polygonal area light source

Polygons cast curved shadows

How can we compute (pen)umbras?

 Difficult because they involve cells of 3D space partition by planes and curved surfaces (even if the shape and light source is polygonal)

Polygons cast curved shadows!

Soft Shadow volumes

Using graphics hardware

Ulf Assarsson¹,
Michael Dougherty²,
Michael Mounier²,
and Tomas Akenine-Möller¹

¹Department of Computer Engineering Chalmers University of Technology ²Xbox Advanced Technology Group, Microsoft

Shadow Volume

A wedge for each "silhouette" edge

Rasterize the edges

Results

www.ce.chalmers.se/staff/tomasm/soft/

