Chemical Property Prediction via Graph Knowledge Transfer

Zhenbang Wu^{12*}, Haonan Wang^{2*}, Yizhou Sun³

¹ Zhejiang University

² University of Illinois at Urbana-Champaign

³ University of California, Los Angeles

* Equal Contribution

MOTIVATION

- Current deep learning frameworks require large amounts of data.
- In chemical and biomedical domain, the cost of fully labeling a dataset is usually unaffordable [1].
- Because measurements of some properties are more expensive than the others, label ratio between properties is usually imbalanced [2].

Insight: Leveraging chemical graph structure, knowledge extracted from fully labeled properties can be efficiently transferred to enhance the representation learning of properties with few labels.

ToxCast dataset. x: no label.				
Property	ESRE	APR		
	BLA	HepG2		
Mol 1	1	X		
Mol 2	0	0		
Mol 3	0	X		
Mol 4	1	1		
Mol 5	1	X		
•••	•••	• • •		
Mol 8597	0	X		
Mol 8598	1	X		
Label	0.84	0.12		
Ratio	0.84			

METHOD

Our model **transfers** and **fuses** the knowledge between tasks to enhance the performance on target task.

Chemical graph will first be mapped to task-specific embedding space separately. Then, node embeddings of helping task will be transferred by a powerful transfer layer (red arrow) to the target task embedding space.

MODEL DETAIL

Stage I: Node Embedding

$$Conv(A, X) = \hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2} X \Theta$$

$$BN(X) = \frac{X - E[X]}{\sqrt{Var[X] + \epsilon}} * \gamma + \beta$$

$$Pool(v) = \max\{\max_{(u,v)\in E}\{u,v\}\}\$$

Stage II: Knowledge Transfer

Two linear layers with ReLU activation transfer the node embeddings from helping task to target task.

Neural Tensor Network models the node-level interaction and decides the transfer weights.

Stage III: Graph Embedding

FCN

Original and weighted transferred embeddings are concatenated and fed into Set2Set module to get the graph-level representation.

$$\mathbf{q}_{t} = \text{LSTM}(\mathbf{q}_{t-1}^{*})$$

$$\alpha_{i,t} = \text{softmax}(\mathbf{x}_{i} \cdot \mathbf{q}_{t})$$

$$\mathbf{r}_{t} = \sum_{i=1}^{N} \alpha_{i,t} \mathbf{x}_{i}$$

$$\mathbf{q}_{t}^{*} = \mathbf{q}_{t} \| \mathbf{r}_{t},$$

Predicted Target

Task Score

RESULTS

<u> </u>	TOX21		SIDER			
Model	Target Task	Helping Task	Target Task	Helping Task		
	(10% Training)	(90% Training)	(10% Training)	(90% Training)		
		Single-task Model				
GCN [3]	0.6776	0.8638	0.5938	0.6266		
MoleculeNet [4]	0.7156	0.8315	0.6189	0.6294		
Our	0.7385	0.9096	0.6266	0.8212		
Multi-task Model						
MoleculeNet [4]	0.7298	0.8382	0.6315	0.6503		
Our	0.7762	0.9233	0.6569	0.8037		

We select SR-ARE (TOX21) and Investigations (SIDER) as target tasks; SR-MMP (TOX21) and Vascular Disorders (SIDER) as helping tasks.

ACKNOWLEDGEMENTS

We would like to thank Yunsheng Bai for helpful discussions and useful poster templates.

CONCLUSION

In this work, we make the following contributions:

- Identify imbalanced labeling issues on chemical and biomedical tasks.
- Introduce novel graph neural network to extract, transfer and fuse knowledge between tasks.
- Improve AUC-ROC score by 6.9% without fine tuning.

REFERENCE

- [1] H. Altae-Tran, B. Ramsundar, A. S. Pappu, V. Pande. Low Data Drug Discovery with One-Shot Learning. ACS Cent. Sci. 2017, 3 (4), 283–293.
- [2] W. Lin, D. Xu, Imbalanced multi-label learning for identifying antimicrobial peptides and their functional types. Bioinformatics, Volume 32, Issue 24, 15 December 2016, Pages 3745.
- [3] Kipf, T. N., and Welling, M. Semi-supervised classification with graph convolutional networks, 2016. arXiv preprint arXiv:1609.02907.
- [4] Z. Wu, B. Ramsundar, E. N. Feinberg; J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing, V. Pande. MoleculeNet: A Benchmark for Molecular Machine Learning, 2017. https://arxiv.org/abs/1703.00564.