3. ЕЛЕМЕНТИ МАТЕМАТИЧНОЇ ЛОГІКИ

Перемикальні функції.

Булева алгебра одного, двох аргументів.

Закони алгебри логіки.

Теоретичною основою цифрових автоматів ϵ алгебра логіки — наука, яка використовує математичні методи для розв'язування логічних задач. Алгебру логіки називають булевою на честь англійського математика Дж. Буля, який вніс великий вклад в розвиток цієї науки (1815-1864).

Основним предметом булевої алгебри ϵ висловлювання — просте твердження, про яке можна стверджувати: істинне воно (позначається символом 1) або хибне (позначають символом 0).

Прості висловлювання позначають буквами, наприклад X_1, X_2, X_m , які у цифровій техніці називають змінними (аргументами).

За допомогою логічних зв'язок НЕ, АБО, І, ЯКЩО .. ТО будують складні висловлювання, які називають (логічними) функціями і позначають буквами F, L, K, M, P та ін.

У даний час головна задача алгебри логіки – аналіз, синтез і структурне моделювання будь-яких дискретних скінчених систем.

Змінну із скінченим числом значень (станів) називають <u>перемикальною</u>, а з двома значеннями – булевою.

Функція, яка має як і кожна її змінна скінченне число значень, називається перемикальною (логічною).

Логічна функція, число можливих значень якої і кожної її незалежної змінної дорівнює двом ε булевою. Таким чином, булева функція — це окремий випадок перемикальної.

Операція – це чітко визначена дія над одним або декількома операндами, яка створює новий об'єкт (результат).

У булевій операції операнди і результат набувають "булевого значення 1" і "булевого значення 0".

Булеву операцію над одним операндом називають одномісною, над двома – двомісною і т.д.

Булеві функції можуть залежати від однієї, двох і в цілому від n- змінних. Запис $F(X_1, X_2, X_n)$ означає, що деяка булева функція F залежить від змінних X_1, X_2, X_n .

Основними булевими операціями є заперечення (операція НЕ, інверсія), диз'юнкція (операція АБО, логічне додавання, об'єднання) і кон'юнкція (операція І, логічне множення).

<u>Заперечення</u> — це одномісна булева операція F = x (читається "не X"), результатом якої є значення, протилежне значенню операнда.

<u>Диз'юнкція</u> — це булева операція $F = x_1 \lor x_2$ (читається x_1 або x_2) результатом якої є значення нуль тоді і тільки тоді, коли обидва операнди мають значення нуль.

Кон'юнкція — це булева операція $F = x_1 \wedge x_2$ (читається x_1 і x_2) результатом якої є значення одиниці тоді і тільки тоді, коли значення кожного операнда дорівнює одиниці у виразі $x_1 \wedge x_2$.

Операції заперечення, диз'юнкції і кон'юнкції можна задати допомогою таблиць істинності, у яких зліва подані значення операндів, а справа значення булевої функції.

х	F = x	
0	1	
1	0	

$\frac{\mathcal{X}}{1}$	<i>X</i> 2	$F = x_1 \vee x_2$	$F = x_1 \wedge x_2$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

Для булевих операцій заперечення, диз'юнкції і кон'юнкції справедливі такі закони, властивості й тотожності.

1) комутативність

$$x \lor y = y \lor x$$

$$x \wedge y = y \wedge x$$

2) асоціативність

$$x \lor (y \lor z) = (x \lor y) \lor z$$
 $x \land (y \land z) = (x \land y) \land z$

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$

3) дистрибутивність

$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z) \qquad x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

4) ідемпотентність

$$x \lor x \lor x \lor = x$$

$$x \wedge x \wedge x \wedge = x$$

5) закон поглинання

$$x \lor (x \land y) = x$$

$$x \wedge (x \vee y) = x$$

6) закон склеювання

$$(x \vee \overline{y}) \wedge (x \vee y) = x$$

$$(x \wedge \overline{y}) \vee (x \wedge y) = x$$

7) закон де Мограна

$$\overline{\mathbf{x} \vee \mathbf{y}} = \overline{\mathbf{x}} \wedge \overline{\mathbf{y}}$$

$$\overline{x \wedge y} = \overline{x} \vee \overline{y}$$

8) властивості заперечення і константи

$$x \lor \overline{x} = 1$$
 $x \land \overline{x} = 0$ $x \land 0 = 0$ $\overline{1} = 0, \overline{0} = 1$
 $x \lor 0 = x$ $x \land 1 = x$ $x \lor 1 = 1$ $x = x$

Справедливість наведених законів булевої алгебри перевіряється підстановкою в логічний вираз нуля і одиниці, як показано в табл. 3.1. для різних логічних функцій.

Таблиця 3.1 – Таблиці істинності логічних функцій.

X	у	$x \wedge y$	$\overline{x \wedge y}$	$\frac{-}{x}$	$\frac{\overline{y}}{y}$	$\overline{x} \vee \overline{y}$
0	0	0	1	1	1	0
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	1

Областю визначення булевої функції $F(x_1, x_2, ..., x_n)$ є скінчена множина різних двійкових наборів довжиною n, на кожному з яких указується значення функції нуль або одиниця.

Кількість різноманітних двійкових наборів дорівнює множині n - розрядних двійкових чисел $m=2^n$.

Наприклад для функції двох змінних x і y ϵ чотири двійкових набори: 00; 01; 10; 11.

Дві функції відрізняються одна від одної, якщо їхні значення будуть різними хоч би на одному наборі.

Число різноманітних булевих функцій від n змінних дорівнює 2^m , де $m=2^n$.

Довільну булеву функцію можна задати різними способами, часовими діаграмами, геометричними фігурами, графами, таблицями істинності та аналітичними виразами.

Словесний опис деякої булевої функції F(x, y) можна представити так: F=1 при $x \wedge y = 1$, і F=0, якщо $x \wedge y = 0$.

Таку функцію можна зобразити часовою діаграмою або геометрично за допомогою двовимірного куба у якому точками виділені одиничні вершини, а також графом, де вершини відображають значення нуля і одиниці, а на орієнтованих дугах змінні вказують на умови переходів (рис.3.1)

Рис. 3.1 – Способи зображення булевої функції

За допомогою таблиці істинності показують усі можливі функції однієї змінної (усього чотири функції) і двох змінних (усього 16 функцій). Для n=3 число можливих булевих функцій дорівнює 256, для n=4 їхня кількість — $2^{16}=65536$.

Булеві функції однієї змінної.

	х	Вираз	Назва функції
0	1		
0	0	$\int_{0}^{r} 0 = 0$	Константа –0
0	1	r $1 = x$	Повторення
1	0	$F_2 = x$	Заперечення
1	1	3 =1	Константа –1

<u>**Еквівалентність**</u> (рівнозначність) — двомісна булева операція, результатом якої ϵ одиниця тоді і тільки тоді, коли операнди набувають однакових значень.

<u>Імплікація</u> (включення) — двомісна булева операція, результатом якої ϵ значення нуль тоді і тільки тоді, коли значення одного з операндів дорівнює нулю, а іншого одиниці.

$$f = x \leftarrow x = x \lor x -;$$

$$11 \xrightarrow{1} \xrightarrow{2} \xrightarrow{1} \xrightarrow{2}$$

$$f_{13} = x_1 \rightarrow x_2 = x_1 \lor x_2.$$

$$f_2 = \underbrace{x_1 \wedge \overline{x_2}}_{1};$$

$$f_4 = \underbrace{x_1 \wedge x_2}_{1}.$$

Булеві функції двох змінних (табл.3.1)

Таблиця 3.2 – Структурні формули та назви логічних функцій

Аргументи			Функція	Назва логічної функції	
^x ₁ 0	0	1	1		
x 2 0	1	0	1		
0	0	0	0	$f_0 = 0$	Константа 0
0	0	0	1	$ \begin{array}{c c} 1 & x_1 \wedge x_2 \\ \hline \end{array} $	Кон'юнкція, (операція I)
0	0	1	0	$f_2 = x_1 \wedge \overline{x_2}$	Заборона по х2
0	0	1	1	$f_2 = x_1 \wedge x_2$ $f_3 = \underline{x_1}$	Повторення (тавтологія) х1
0	1	0	0	$f_4 = x_1 \wedge x_2$	Заборона по х1
0	1	0	1	$\int_{0}^{1} 5 = x \cdot 2$	Повторення (тавтологія) х 2
0	1	1	0	$f_6 = x_1 \oplus x_2 = $ $= (x_1 \land x_2) \lor (x_1 \land x_2)$	Виключаючи АБО (додавання по модулю 2)
0	1	1	1	$7 = x_1 \vee x_2$	Диз'юнкція (операція АБО);
1	0	0	0	$f_8 = x_1 \downarrow x_2 = $	Стрілка Пірса (операція АБО-НЕ)
1	0	0	1	$= x_1 \lor x_2 = x_1 \land x_2$ $= x_1 \sim x_2 = x_1 \land x_2$ $= (x_1 \land x_2) \lor (x_1 \land x_2)$	Еквівалентність
1	0	1	0	$\begin{bmatrix} 1 \\ 10 \end{bmatrix} = X_{2}$	Заперечення (інверсія) х2
1	0	1	1	$ \begin{array}{c} f = x_1 \leftarrow x_2 = \\ 11 & \underline{} \end{array} $	Імплікація від x до x 1 x
1	1	0	0	$= x_1 \lor x_2$ $J_{12} = x_1$	Заперечення (інверсія х1)
1	1	0	1	$13 = x1 \rightarrow x2 =$	Імплікація від x_1 до x_2
1	1	1	0	$ \begin{vmatrix} = x_1 \lor x_2 \\ 1 \\ 14 = x_1 \mid x_2 = \\ = x_1 \land x_2 = x_1 \lor x_2 \end{vmatrix} $	Штрих Шеффера (операція I-HE)
1	1	1	1	15 =1	Константа 1

Графічні позначення логічних елементів

Назва операції	Назва елементу	Умовне графічне по	означення
Заперечення	HE	1	-
Диз'юнкція	АБО	1	
Кон'юнкція	I	- & _	
Заперечення диз'юнкції	АБО-НЕ	1	
Заперечення кон'юнкції	I-HE	- & -	
Еквівалентність	Виключаючи АБО	=1	
Заперечення еквівалентності	Еквівалентність	=1	
Імплікація	якщо, то	1	-50-
Заборона	ЗАБОРОНА	- & -	

Рис.3.2 – Схеми заміщення логічних елементів: а) логічний елемент **АБО**; б) логічний елемент **I**.

Контрольні запитання

- 1. Дайте визначення логічних функцій: інверсії, диз'юнкції, кон'юнкції.
- 2. Зобразіть умовні графічні позначення логічних елементів.
- 3. Запишіть таблиці істинності заданих логічних елементів.
- 4. Визначте вихідний стан логічних елементів при заданих вхідних сигналах.
- 5. Визначте якому логічному елементу належить таблиця істинності.
- 6. Які логічні елементи можна використати в якості інвертора?
- 7. Запишіть закони алгебри логіки.
- 8. Спростіть логічний вираз:

8.1.
$$y = x_1 \wedge x_2 \wedge x_3 \vee x_1 \wedge x_2 \wedge x_3 \vee x_1 \wedge x_2 \wedge x_3 \vee x_1 \wedge x_2 \wedge x_3$$
.

8.2.
$$y = x_1 \wedge x_2 \wedge \overline{x_3} \vee x_1 \wedge x_2 \wedge x_3 \vee x_1 \wedge \overline{x_2} \wedge x_3 \vee x_1 \wedge \overline{x_2} \wedge x_3$$
.

8.3.
$$y = \overline{x_1} \wedge x_2 \wedge \overline{x_3} \vee \overline{x_1} \wedge x_2 \wedge x_3 \vee \overline{x_1} \wedge x_2 \wedge x_3 \vee \overline{x_1} \wedge x_2 \wedge x_3 \vee \overline{x_1} \wedge x_2 \wedge x_3$$
.

8.4.
$$y = x_1 \land x_2 \land x_3 \lor x_1 \land x_2 \land x_3 \lor x_1 \land x_2 \land x_3 \lor x_1 \land x_2 \land x_3$$
.

8.5.
$$y = x_1 \wedge x_2 \wedge x_3 \vee x_1 \wedge x_2 \wedge x_3 \vee x_1 \wedge x_2 \wedge x_3 \vee x_1 \wedge x_2 \wedge x_3$$
.

8.6.
$$y = x_1 \wedge x_2 \wedge \overline{x_3} \vee x_1 \wedge x_2 \wedge x_3 \vee \overline{x_1} \wedge \overline{x_2} \wedge x_3 \vee \overline{x_1} \wedge x_2 \wedge x_3 \vee x_1 \wedge x_2 \wedge x_3$$
.

8.7.
$$y = \overline{x_1} \wedge x_2 \wedge \overline{x_3} \vee \overline{x_1} \wedge x_2 \wedge x_3 \vee x_1 \wedge \overline{x_2} \wedge x_3 \vee x_1 \wedge \overline{x_2} \wedge x_3$$
.

8.8.
$$y = x_1 \land x_2 \land x_3 \lor x_1 \land x_2 \land x_3 \lor x_1 \land x_2 \land x_3 \lor x_1 \land x_2 \land x_3$$
.