Lecture 13

Properties of the Fourier transform

Preview of today's lecture

- ◆ Fourier transform properties
 - Understand important connections between signal operations in the time and frequency domains
 - → Use the table of common transform pairs and the table of common properties to compute transforms without doing integration
- Fourier symmetry properties
 - → Connect signal properties like symmetric, even and odd in both time and frequency domains

Summarizing the Fourier transform and its inverse

X(E)

domin

time

Fourier transform (analysis)

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Inverse Fourier transform (synthesis)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} d\omega$$

domain scor

 $x(t) \leftrightarrow X(j\omega)$

Connections back to ECE 45

Lectures 2 - 3 working with signals

Essential Fourier transforms

Key points

Know these important FT pairs

UC San Diego

(more pairs in the book)

Basic Fourier transform pairs 1/3

RC circuit e 4/20 (16)

		TO Glair E
	Time domain x(t)	Frequency domain <i>X(j ω)</i>
Delta	$\delta(t)$	2π
Constant	$rac{1}{2\pi}$	$\delta(\omega)$ $\delta(\omega)$
Complex sinusoid	$\frac{e^{j\omega_0t}}{2\pi}$	$\delta(\omega-\omega_0)$
Causal exponential	$e^{-at}u(t)$ $\operatorname{Re}\{a\} > 0$	$\frac{1}{a+j\omega}$

(more pairs in the book)

Basic Fourier transform pairs 2/3

	Time domain <i>x(t)</i>	Frequency domain X(j @)
Cosine	$\cos \omega_0 t$	$\pi\delta(\omega-\omega_0)+\pi\delta(\omega+\omega_0)$
Sine	$\sin \omega_0 t$	$\pi j(\delta(\omega+\omega_0)-\delta(\omega-\omega_0))$
Periodic signal w/ period T	x(t)	$2\pi\sum_{k=-\infty}^{\infty}a_k\delta(\omega-k\omega_0)$ Number

tomus varioles

(more pairs in the book)

Basic Fourier transform pairs 3/3

	Time domain x(t)	Frequency domain X(j \omega)
Rectangle	$\operatorname{rect}(t)$	$\frac{\sin\frac{\omega}{2}}{\frac{\omega}{2}} = \operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$
Scaled rectangle	$\operatorname{rect}\left(\frac{t}{2T_1}\right)$	$2T_1 \frac{\sin(\omega)}{\omega} = 2T_1 \operatorname{sinc}\left(\frac{\omega T_1}{\pi}\right)$
Sinc	$\operatorname{sinc}(t)$	$\operatorname{rect}\left(\frac{\omega}{2\pi}\right)$
Scaled sinc	$\frac{B}{2\pi}\mathrm{sinc}\left(\frac{Bt}{2\pi}\right)$	$\operatorname{rect}\left(\frac{\omega}{B}\right)$

Fourier transform properties

Key points

- Use FT properties to simplify calculation & build intuition
- Analyze problems that include FT properties

Fourier transform properties $\mathbf{I} \ x(t) \overset{\mathcal{F}}{\longleftrightarrow} X(j\omega) \ y(t) \overset{\mathcal{F}}{\longleftrightarrow} Y(j\omega)$

	Time domain	Fourier transform
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
Time shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
Differentiation	$\frac{dx}{dt}$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(j\omega)$

Fourier transform properties 2 $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$

	Time domain	Fourier transform
Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Frequency scaling	$\frac{1}{ b }x\left(\frac{t}{b}\right)$	$X(jb\omega)$
Frequency shifting	$x(t)e^{j\omega_0t}$	$X(j(\omega-\omega_0))$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2^2}$	$\frac{1}{\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$

Fourier transform properties 3

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega) \quad y(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(j\omega)$$

 $h(t) \stackrel{\mathcal{F}}{\longleftrightarrow} H(j\omega)$

These last two properties are important and feature in future lectures

Linearity

♦ If

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega), \quad y(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(j\omega)$$

◆ Then

$$ax(t) + by(t) \leftrightarrow aX(j\omega) + bY(j\omega)$$

$$\int_{00}^{\infty} (a\chi(t) + by(t)) e^{\int wt} dt = \int_{00}^{\infty} a\chi(t) e^{\int wt} dt + \int_{00}^{\infty} by(t) e^{\int wt} dt$$

$$= a \chi(u) + b \chi(w)$$

Sums in time lead to sums in frequency

Time shifting

♦ If

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$
 linear -wt.

◆ Then

$$x(t-t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j\omega t_0} X(j\omega)$$

Time shifting does not change the magnitude in the freq. domain

$$|X(j\omega)e^{-j\omega t_0}| = |X(j\omega)||e^{-j\omega t_0}|$$

ullet Phase changes are linear with frequency ω and shift t_0

$$\angle(X(j\omega)e^{-j\omega t_0}) = \angle X(j\omega) - \omega t_0$$

Shift in time leads to linear phase shift in frequency

recrit t-16)

Very little

new work

required,

recrit t-16)

recrit t-16)

Nery little

required,

required

recrit t-16)

Per Sinc (w/27)

recrit t-16)

Per Very little

required

required

recrit t-16)

Per Sinc (w/27)

Per Sinc (w/27)

Per Sinc (w/27)

UC San Diego

Time shifting example

◆ Find the Fourier transform of

- lacktriangle This signal is just a shifted rectangle function $\ensuremath{\operatorname{rect}}(t-1/2)$
- Using the time shifting property

$$\operatorname{rect}(t-1/2) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j\omega/2} \operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$$

Differentiation

- Then
- Proof

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$

$$\frac{dx}{dt} \leftrightarrow \int j\omega X(j\omega)$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \frac{d}{dt} (e^{j\omega t}) d\omega$$

Differentiation example

↓ ⟨⟨⟨⟨⟩⟩ ⟨⟨⟨⟨⟩⟩ ⟨⟨⟨⟨⟩⟩ ⟨⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟩⟩⟩ ⟨⟨⟩⟩⟩ ⟨⟨⟩⟩ |⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ |⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ |⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ |⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ |⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩ |⟨⟩⟩ ⟨⟨⟩⟩ |⟨⟩⟩ |⟨⟩⟩ ⟨⟨⟩⟩ |⟨

$$\frac{dy}{dt} + ay(t) = x(t)$$

$$\int w \, y(yu) \, + a \, y(yu) = x(t)$$

- Solution:
 - → Take FT of both sides

$$e^{-at}u(t)$$

 $Re\{a\} > 0$

$$j\omega Y(j\omega) + aY(j\omega) = X(j\omega)$$
$$(j\omega + a)Y(j\omega) = X(j\omega)$$

Therefore $H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} \neq \frac{1}{j\omega + a}$

Integration

If

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$

Then

Then
$$\chi(\tau) d\tau \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{j\omega} X(j\omega) + \pi X(0)\delta(\omega)$$

DC component

Time scaling

♦ If

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$

◆ Then

$$x(at) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{|a|} X \left(\frac{j\omega}{a}\right)$$

Time expansion |a|<1 leads to frequency compression

Time compression |a|>1 leads to frequency expansion

Sinc (W/211) 2.% = 1 $\Rightarrow = e^{-5} \text{Wy}_{SM} \left(\text{W/y}_{T} \right)$ $2e^{-j\sqrt{k}} S_{ch}(\sqrt{\frac{4\sqrt{2}}{29}})$ $\rightarrow 2e^{-j\sqrt{k}} S_{ch}(\sqrt{4\sqrt{\pi}})$ pltle

Frequency scaling

♦ If

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$

◆ Then

$$\frac{1}{|b|}x\left(\frac{t}{b}\right) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jb\omega)$$

Frequency expansion |b|<1 leads to time compression

Frequency compression |b|>1 leads to time expansion

UC San Diego

Shift and scaling example

• Find the FT of 1

♦ To start, notice that

• Shifting gives our function $q(t) = \text{rect}\left(\frac{t-1}{2}\right) = \text{rect}\left(\frac{t}{2} - \frac{1}{2}\right)$

P(E) = recT(E-1/2) => Sinc (W/271) g(t) = p(t/2) = rect(t/2 - 1/2)rect(t/2) 2 Sinc (W.2 2 2 Sin (W/TI)

Hoproach 2 $g(t) = \rho(t/2) = rect(t/2 - 1/2)$) $p(t) \iff e^{jwl_2} Sin(lul_2\pi)$ $p(tQ) \iff 2 \cdot P(jw \cdot 2)$ 1020 ju sinc (4.2) que en 20 ju sinc (w/t)

pploach 2 2 = p(t/2) = rect(t/2 - t/2) $\frac{1}{2} = rect \left(\frac{6-1}{2}\right)$ rect(tb) \Leftrightarrow 2 $\sin(d \cdot w/2\pi)$ Rille) \Leftrightarrow 2 $\sin(d \cdot w/2\pi)$ 2) q(t)= recr(5=1) = r(6-1) es es Kliw)

Shift and scaling example (continued)

From the scaling property

$$\operatorname{rect}\left(\frac{t}{2}\right) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\operatorname{sinc}\left(\frac{2\omega}{2\pi}\right) = 2\operatorname{sinc}\left(\frac{\omega}{\pi}\right)$$

◆ From the shift property

$$\operatorname{rect}\left(\frac{t-1}{2}\right) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j\omega} 2\operatorname{sinc}\left(\frac{\omega}{\pi}\right)$$

UC San Diego

Another scaling example

- lacktriangle What is the inverse Fourier transform of $\operatorname{sinc}(\omega)$?
- We know that
 - → From the rect-sinc Fourier pair
 - → From the scaling law
- Using the scaling property

$$\operatorname{rect}(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$$

$$= 1 \quad (i\omega)$$

$$x(at) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{|a|} X \left(\frac{j\omega}{a} \right) \quad \text{and} \quad$$

$$\operatorname{rect}(t/2\pi) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi \operatorname{sinc}(\omega)$$

UC San Diego

Inversion (time reversal)

- lacktriangle Find the FT of x(-t)
- ◆ This is just a special case of time and frequency scaling

$$x(at) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{|a|} X \left(\frac{j\omega}{a}\right)$$

lacktriangle With a=-1

$$x(-t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(-j\omega)$$

Example using scaling and time shift

lacktriangle Determine the Fourier transform of sinc(1-2t)

$$x(t) = \operatorname{sinc}(1 - 2t)$$

$$= y(2t)$$

$$y(t) = \operatorname{sinc}(1 - t)$$

$$= \operatorname{sinc}(-(t - 1))$$

$$= z(t - 1)$$

$$= z(t)$$

$$= \operatorname{sinc}(t)$$

$$= \operatorname{sinc}(t)$$

Frequency shifting

If

Then

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$

$$x(t) \stackrel{j\omega_0 t}{\longleftrightarrow} X(j(\omega - \omega_0))$$

this is called modulation $\bullet \ \, \textbf{Corollary} \quad x(t) \cos \omega_0 t \overset{\mathcal{F}}{\longleftrightarrow} \frac{1}{2} X(j(\omega-\omega_0)) + \frac{1}{2} X(j(\omega+\omega_0))$

Modulate in time leads to shift in frequency

Example combining shift and scaling

◆ Determine the inverse Fourier transform of

$$X(j\omega) = \frac{2\sin(3(\omega - 2\pi))}{(\omega - 2\pi)}$$

Example (continued)

Given

$$X(j\omega) = \frac{2\sin(3(\omega - 2\pi))}{(\omega - 2\pi)}$$

Use the following fact

$$\operatorname{rect}(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{sinc}\left(\frac{\omega}{2\pi}\right) = \frac{\sin(\omega/2)}{\omega/2}$$

- $R(j\omega) = \frac{\sin(\omega/2)}{\omega/2}$ For convenience let
- Rewrite as another shifted function

$$X(j\omega) = Y(j(\omega - 2\pi))$$
$$Y(j\omega) = \frac{2\sin(3\omega)}{\omega}$$

UC San Diego

Example (continued)

◆ Rewrite again as

$$Y(j\omega) = 3 \frac{2\sin(6\omega/2)}{6\omega/2}$$
$$= 6R(j6\omega)$$

Using the scaling property

$$Y(j\omega) = 6R(j6\omega)$$
 $y(t) = \text{rect}(t/6)$ \Rightarrow Scale

Using the shift property

$$X(j\omega) = Y(j(\omega - 2\pi)) \qquad \qquad x(t) = e^{j2\pi t} \operatorname{rect}(t/6)$$

Parseval's theorem

$$\int_{-\infty}^{\infty}|x(t)|^2dt=\int_{-\infty}^{\infty}|X(j\omega)|^2d\omega$$
 Energy of the signal in

the frequency domain

◆ This is a result of conservation of energy

the time domain

Scaling factor is because of radians

Example using Parseval's theorem

• If the signal x(t) has the FT below $X(j\omega)$

$$x(t) = t \left(\frac{\sin t}{\pi t}\right)^2 \qquad X(j\omega) = \begin{cases} \frac{j}{2\pi}, & -2 \le \omega < 0\\ -\frac{j}{2\pi}, & 0 \le \omega \le 2\\ 0, & \text{otherwise} \end{cases}$$

◆ Calculate

$$A = \int_{-\infty}^{\infty} t^2 \left(\frac{\sin t}{\pi t}\right)^4 dt$$

$$\times^2 \left(6\right) dt$$

Example with Parseval's theorem (cont.)

$$\int_{-\infty}^{\infty} t^2 \left(\frac{\sin(t)}{\pi t}\right)^4 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$$

Duality in the Fourier transform

If

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$

Then

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$

$$X(jt) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi x(-\omega)$$

If you know one Fourier pair then you know the other Fourier pair

recr (e) \iff Sinc(wb π)

Sinc($t/2\pi$) \iff 2π rect (-6) \iff 2π rect (b)

Applications of duality

- Reproving frequency shift
 - **→** Consider

$$x(t-t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j\omega t_0} X(j\omega)$$

→ Then

$$x(t)e^{j\omega_0t} \stackrel{\mathcal{F}}{\longleftrightarrow} X(j(\omega-\omega_0))$$

- Impulse in time and frequency
 - + Consider

$$\delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 1$$

→ Then

$$1 \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi\delta(\omega)$$

Duality example

◆ Consider

$$\operatorname{rect}(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$$

◆ Then

$$\operatorname{sinc}\left(\frac{t}{2\pi}\right) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi \cdot \operatorname{rect}(-\omega)$$
$$= 2\pi \cdot \operatorname{rect}(j\omega)x(t - t_0)$$

Since rect is an even function

Symmetry, even, and odd

Key points

 Connect signal properties like symmetric, even and odd in both time and frequency domains

Even and odd

Can decompose a signal into even and odd components

$$x(t) = e(t) + o(t)$$

- x(t) = e(t) + o(t) $\text{Even part is} \quad \text{Conjugate Symmetry}$ $e(t) = \frac{1}{2}(x(t) + x^*(-t))$
- Odd part is $\left(\begin{array}{cc} \text{CPD of } & \text{OSSMUTIC} \\ o(t) = \frac{1}{2}(x(t) x^*(-t)) \end{array} \right)$
- Can similarly decompose

$$X(j\omega) = E(j\omega) + O(j\omega)$$

Connecting the properties

- Implications
 - \star Conjugate symmetry x(t) is real $\to X(j\omega) = X^*(-j\omega)$
 - lacktriangle Real signals are even in amplitude since $|X(j\omega)|=|X(-j\omega)|$

UC San Diego

Summarizing symmetry

- Key symmetry equation relates real, imaginary, even, and odd in the time and frequency domains
- ◆ Can determine signal characteristics in one domain by inspecting the other domain