Naïve Bayes - ML

Modified from Weka book notes

Bayes's rule

•Probability of class C given evidence E:

$$P(C \mid E) = \frac{P(E \mid C)P(C)}{P(E)}$$

- A priori probability of C:
 - Probability of event before evidence is seen
- A posteriori probability of C:
 - Probability of event after evidence is seen

Naïve Bayes for classification

- Classification learning: what's the probability of the class given an instance?
 - Evidence E = instance
 - Event C = class value for instance
- Naïve assumption: evidence splits into parts (i.e. attributes) that are independent so for s attributes

$$P[C \mid E] = \frac{P[E_1 \mid C]P[E_2 \mid C]...P[E_s \mid C]P(C)}{P[E]}$$

Probabilities for Weka weather data

Oı	utlook		Tempe	rature		Ηu	ımidity		V	Vindy		Pla	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5			Outloo	ok Temn	Hun	nidity	Windy	Play

Outlook	remp	Humidity	winay	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Probabilities for weather data

Ou	tlook		Tempe	rature		Hu	ımidity			Windy		Р	lay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5								

A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Likelihood of the two classes

For "yes" =

For "no" =

Probabilities for weather data

Ou	tlook		Tempe	rature		Hu	ımidity			Windy		Р	lay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5								

A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Discriminant for the two classes

For "yes" = $\log 2/9 + \log 3/9 + \log 3/9 + \log 3/9 + \log 9/14 = -5.24174$ For "no" = $\log 3/5 + \log 1/5 + \log 4/5 + \log 3/5 + \log 5/14 = -3.88385$ Choose Which? Highest value (No).

Probabilities for weather data

Ou	tlook		Tempe	rature		Hu	ımidity			Windy		Р	lay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5								

A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Likelihood of the two classes

For "yes" = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

For "no" = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Conversion into a probability by normalization:

P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205

P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

Weather data example

Outlook	Temp.	Humidity	Windy	Play	Evidence E
Sunny	Cool	High	True	?	LVIdelice L

$$P[yes \mid E] = P[Outlook = Sunny \mid yes] \times P[Temperature = Cool \mid yes]$$

$$P[Humidity = High \mid yes] \times P[Windy = True \mid yes]$$

$$P[Sunny \mid Cool \mid High \mid rue \mid ?$$

$$P[yes \mid E] = P[Outlook = Sunny \mid yes] \times P[Windy = True \mid yes]$$

$$P[Humidity = High \mid yes] \times P[Windy = True \mid yes]$$

$$P[Sunny \mid Ves \mid$$

$$= \frac{\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14}}{P[E]}$$

The "zero-frequency problem"

- What if an attribute value doesn't occur with every class value?
 (e.g. "Humidity = high" for class "yes")
 - Probability will be zero!
 - A posteriori probability will also be zero!
 (No matter how likely the other values are!)
- Remedy: add 1 to the count for every attribute value-class combination (*Laplace estimator*)
- Result: probabilities will never be zero! (also: stabilizes probability estimates)

Modified probability estimates

- In some cases adding a constant different from 1 might be more appropriate
- Example: attribute outlook for class yes

$$(2 + \mu p_1)/(9 + \mu)$$
 $(4 + \mu p_2)/(9 + \mu)$ $(3 + \mu p_3)/(9 + \mu)$
Sunny Overcast Rainy

• Weights don't need to be equal (but they must sum to 1) and above they will, if p_i =1/3 and μ = 1 or μ =3.

Modified probability estimates

Example: attribute outlook for class yes

$$(2 + \mu p_1)/(9 + \mu)$$
 $(4 + \mu p_2)/(9 + \mu)$ $(3 + \mu p_3)/(9 + \mu)$ **Sunny Overcast Rainy**

- If $p_i=1/3$ and $\mu=3$. We have
- 3/12, 5/12 and 4/12 which sum to 1.
- If p_i =1/3 and μ =1. We have
- 2.33/10, 4.33/10 and 3.33/10 which sum to 1
- What is effect of $p_1=1/3$, $p_2=1/2$, $p_3=1/6$, $\mu=10$
- Differential weights with original value of rainy reduced. Still sum to 1.