ETHANOL AND WATER

MARGULES MODEL

Aim:

Use modified Raoult's law with activity coefficients given by Margules Model to study the "attached" system and then plot:

- a) isobaric T vs x, y diagram
- b) y vs x diagram.

Theory:

The modified Raoult's law has been used to study the liquid mixtures which includes the interactions between particles of liquid mixture by introducing another quantity – "Activity Coefficient". Margules Model is one of the most famous model which is used to compute activity coefficient. This model is based on the principle that $g^E/(RTx1x2)$ (g^E is excess Gibbs Energy) follows a linear relation with x1 and x2 .(x1 and x2 are the respective mole fractions in liquid phase.)

Equations Used:

1.

2. Antoine Vapor Pressure Equation

The Antoine vapor pressure equation is used in the following form:

$$log[p_i^0] = A - \frac{B}{t+C}$$
with $[p_i^0]$ vapor pressure of pure component i in mm Hg
t temperature in degrees Celsius (° C)

The Antoine constants A, B, and C are given with respective temperature regions (in ° C).

Note- Here it is log (Base 10).

Activity Coefficient Model -

Margules

Type of Equation	Parameters	In γ ₁ = In γ ₂ =		Notation of Para- meters in Data Sheet
Margules [6]	A ₁₂	$[A_{12} + 2(A_{21} - A_{12}) \times_1] \times_2^2$	(28a)	A 12
	A ₂₁	[A ₂₁ + 2(A ₁₂ - A ₂₁) × ₂] × ₁ ²	(28b)	A 21

3. Modified Rault's Law:

$$y_i P = x_i \gamma_i P_i^{set}$$

$$P=x_1\gamma_1P_1^{sat}+x_2\gamma_2P_2^{sat}$$

Constants used:

```
(1) ETHANOL C2H60

(2) WATER H20

+++++ ANTOINE CONSTANTS REGION +++++
(1) 8.11220 1592.864 225.184 20- 93 C METHOD 1 +
(2) 8.07131 1730.630 233.426 1-100 C METHOD 2 +

PRESSURE= 760.00 MM HG ( 1.013 BAR )
```

CHEM. EN	W. PRUS. 40,	100	100	OBJECTIVE		
CONSTANTS:	A12	A21	α ₁₂	71	72	FUNCTION
MARGULES	1.6721	.7462		5.32	2.11	.0743 G .0312 G

Procedure:

- 1. Start looping x1 (mole fraction of ethanol in liquid phase) from 0.0001 to 1.0000 ,considering upto 4 decimal places.
- 2. To accurately guess T value, use Antonie equation and use P as P1_sat to find T1_sat and similarly find T2_sat and then to finally evaluate T_guess ,use the formula :

- 3. Evaluate activity coefficients (Y1 and Y2) From Margules Model using x1,x2.
- 4. Evaluate P1 sat and P2 sat using T guess from Antoine Equation.
- 5. Then to find P1_sat ,use the relation :

P1 sat =
$$(P * P1 sat)/(x1 * Y1 * P1 sat + x2 * Y2 * P2 sat)$$

for simplifying calculations, let say "alpha" = P1_sat/P2_sat

So final relation becomes:

$$P1_sat = P/(x1*Y1+ (x2*Y2)/alpha)$$

- 6. From P1_sat calculated in step 5, evaluate Temperature.
- 7. Check error and repeat the above steps until error is less than 0.01%. This will indicate that Temperature converges.

Observation:

Following are the graphs that we get using the above procedure:

From the above T vs x1,y1 graph and x1 vs y1 graph ,we can easily observed that as soon as x1 reaches 0.95 , x1 and y1 both graph start to coincide at nearly at T \sim 78 degree C.This indicates the formation of *Azeotrope* .As the boiling point of both water(100 degree C) and ethanol (78.4 degree c) is more than this Temperature , so it would be *minimum Boiling Point Azeotrope*

Results obtained from above method has been compared with the given experimental data and we get the following plot:

Conclusion:

With the help of Margules Model and Iterative algorithm, we study system of Ethanol and Water and compare it with the experiment data.