EE496: COMPUTATIONAL INTELLINGENCE NN02: GENERAL ARTIFICIAL NEURAL NETWORKS

UGUR HALICI

METU: Department of Electrical and Electronics Engineering (EEE)

METU-Hacettepe U: Neuroscience and Neurotechnology (NSNT)

Basic graph theoretic notions

A (directed) **graph** is a pair G = (V, E) consisting of a (finite) set V of **nodes** or **vertices** and a (finite) set $E \subseteq V \times V$ of **edges**.

We call an edge $e = (u, v) \in E$ directed from node u to node v.

Let G = (V,E) be a (directed) graph and $u \in V$ a node. Then the nodes of the set

$$pred(u) = \{v \in V \mid (v, u) \in E\}$$

are called the **predecessors** of the node u

and the nodes of the set

$$succ(u) = \{v \in V \mid (u, v) \in E\}$$

are called the **successors** of the node u.

General definition of a neural network

An (artificial) **neural network** is a (directed) graph G = (U,C), whose nodes $u \in U$ are called **neurons** or units and whose edges $c \in C$ are called **connections**.

The set U of nodes is partitioned into

- the set U_{in} of input neurons,
- the set U_{out} of **output neurons**, and
- the set U_{hidden} of **hidden neurons**.

It is

$$\begin{split} U &= U_{in} \ \cup \ U_{out} \ \cup \ U_{hidden}, \\ U_{in} &\neq \varnothing, \ U_{out} \neq \varnothing, \ U_{hidden} \cap (U_{in} \ \cup \ U_{out}) = \varnothing. \end{split}$$

General definition of a neural network

Each connection $(v, u) \in C$ possesses a **weight** w_{uv} (be careful on the notation, the order of subscripts may be different in different resources) and each neuron $u \in U$ possesses three (real-valued) state variables:

- the network input net_u,
- the activation act_u, and
- the output out_n .

Each input neuron $u \in U_{in}$ also possesses a fourth (real-valued) state variable:

• the external input ex_u .

(note: for feed forward NN act_u is same as net_u)

General definition of a neural network

Furthermore, each neuron $u \in U$ possesses three functions:

the network input function

$$f^{(u)}_{net}: R^{2|pred(u)|+\kappa I(u)} \rightarrow R$$

• the activation function

$$f^{(u)}_{act}: R^{\kappa 2(u)} \rightarrow R$$
, and

• the output function

$$f^{(u)}_{out}: R \rightarrow R$$
,

which are used to compute the values of the state variables.

Types of (artificial) neural networks

- If the graph of a neural network is acyclic, it is called a **feed-forward** network.
- If the graph of a neural network contains cycles (backward connections),
 it is called a recurrent network.

Representation of the connection weights by a matrix

Note: row i corresponds to the weight vector of node i, here i=2 . If the w_{uv} was used instead of w_{vu} to represent the connnection from unit u to v, then the column i would corresponds to the weight vector of node i,

General Neural Networks: Example

A simple recurrent neural network

Weight matrix of this network

$$\begin{pmatrix}
u_1 & u_2 & u_3 \\
0 & 0 & 4 \\
1 & 0 & 0 \\
-2 & 3 & 0
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}$$

Structure of a Generalized Neuron

A generalized neuron is a simple numeric processor.

General Neural Networks: Example

$$\mathbf{f}^{(u)}_{net} (\mathbf{\vec{w}}_u, \mathbf{\vec{n}}_u) = \sum_{v \in \operatorname{pred}(u)} w_{uv} i n_{uv} = \sum_{v \in \operatorname{pred}(u)} w_{uv} out_v$$

$$f^{(u)}_{act}(net_u, \theta) = net_u$$

$$f^{(u)}_{out}(act_u) = \begin{cases} 1, & \text{if } act_u \ge \theta, \\ 0, & \text{otherwise} \end{cases}$$

Updating the activations of the neurons

	u_1	u_2	u_3	
initial state	1	0	0	input phase
$net_{u3} = -2$	1	0	0	work phase
$net_{u1} = 0$	0	0	0	
$net_{u2}=0$	0	0	0	
$net_{u3}=0$	0	0	0	
$net_{u1} = 0$	0	0	0	
				converged

Order in which the neurons are updated:

$$u_3, u_1, u_2, u_3, u_1, u_2, u_3, \dots$$

- Input phase: activations and outputs of the initial state (first row)
- The activation of the currently neuron (bold) is calculated by considering the other neurons and weights.
- A stable state with a unique output is reached.

Updating the activations of the neurons

	u_1	u_2	u_3	
initial state	1	0	0	input phase
$net_{u3} = -2$	1	0	0	work phase
$net_{u2}=1$	1	1	0	
$net_{u1} = 0$	0	1	0	
$net_{u3} = 3$	0	1	1	
$net_{u2}=0$	0	0	1	
$net_{u1} = 4$	1	0	1	
$net_{u3} = -2$	1	0	0	

oscillates

Order in which the neurons are updated:

$$u_3, u_2, u_1, u_3, u_2, u_1, u_3, \dots$$

- Input phase: activations and outputs of the initial state (first row)
- The activation of the currently neuron (bold) is calculated by considering the other neurons and weights.
- A stable state with a unique output is reached.

Definition of learning tasks for a neural network

A fixed (i.e. supervised) learning task L_{fixed} for a neural network with

- n input neurons, i.e. $U_{in} = \{u_1, \ldots, u_n\}$, and
- m output neurons, i.e. $U_{\text{out}} = \{v_1, \dots, v_m\}$,

is a set of training patterns $L = (\vec{1}^{(l)}, \vec{0}^{(l)})$, each consisting of

- an input vector $\vec{1}^{(l)} = (ex^{(l)}_{u1}, \dots, ex^{(l)}_{un})$ and
- an output vector $\overrightarrow{o}(l) = (o^{(l)}_{v1}, \dots, o^{(l)}_{vm}).$

A fixed learning task is solved, if for all training patterns $L \in L_{\text{fixed}}$ the neural network computes from the external inputs contained in the input vector \vec{l} of a training pattern l, the outputs contained in the corresponding output vector \vec{l} of l

General Neural Networks: Training

Solving a fixed learning task: Error definition

- Measure how well a neural network solves a given fixed learning task.
- Compute differences between desired and actual outputs.
- Do not sum differences directly in order to avoid errors canceling each other.
- Square has favorable properties for deriving the adaptation rules.

$$e = \sum_{l \in Lfixed} e^{(l)} = \sum_{v \in Uout} e_{v} = \sum_{l \in Lfixed} \sum_{v \in Uout} e^{(l)}_{v}$$

i.e do summation for each pattern and for each output

where

$$e^{(l)}_{v} = (o^{(l)}_{v} - out^{(l)}_{v})^{2}$$

i.e. square of the difference beteen desired and actual output

Definition of learning tasks for a neural network

A free (i.e. unsupervised) learning task L_{free} for a neural network with

- an input vector $\vec{1}^{(l)} = (ex^{(l)}_{ul}, \dots, ex^{(l)}_{un})$ i.e. no desired output

Properties:

- There is no desired output for the training patterns.
- Outputs can be chosen freely by the training method.
- Solution idea: Similar inputs should lead to similar outputs.
 (clustering of input vectors)

Normalization of the input vectors

In order to avoid unit and scaling problems

Compute expected value and standard deviation for each input:

$$\mu_k = \frac{1}{|L|} \sum_{l \in L} \operatorname{ex}_{u_k}^{(l)} \quad \text{and} \quad \sigma_k = \sqrt{\frac{1}{|L|} \sum_{l \in L} \left(\operatorname{ex}_{u_k}^{(l)} - \mu_k \right)^2},$$

- Normalize the input vectors to
 - expected value 0 and
 - standard deviation 1:

$$ex_{u_k}^{(l)(\text{neu})} = \frac{ex_{u_k}^{(l)(\text{alt})} - \mu_k}{\sigma_k}$$

neu: new alt: old

 \odot