Particle Filtering and MCMC Methods for Population Dynamics Modeling

Bilal Benhana, Mourad Chikhi, Côme Nadler January 10, 2025

Overview of the Paper

Main Contributions:

- Proposal of the Particle Filter Metropolis-Hastings (PFMCMC) method.
- Application to analyze red kangaroo population dynamics using the general stochastic differential equation (SDE):

$$\frac{dX_t}{X_t} = \left(r + \frac{\sigma^2}{2} - bX_t\right)dt + \sigma dW_t,$$

with three specific models derived from this equation:

- 1. Density-dependent logistic model (M1): Simulated using Euler Discretization, as no closed form exists for $P(X_{t+1}|X_t)$.
 - 2. Stochastic exponential growth (M2):

$$X_{t+1} = X_t e^{r+\sigma Z_t}, Z_t \sim \mathcal{N}(0,1)$$

- Corresponds to b = 0 and follows a log-normal distribution.
- 3. Random-walk model (M3):

$$X_{t+1} = X_t e^{\sigma Z_t}$$

- A simplified case with r = 0 and b = 0.
- Model comparison based on Bayes factors and posterior probabilities.

Particle Filter Metropolis-Hastings (PFMCMC)

Motivation:

- Many real-world systems involve state-space models with hidden states X_t and observations Y_t.
- Simultaneous estimation of:
 - 1. Hidden states X_t using sequential methods.
 - 2. **Model parameters** θ using Bayesian inference.
- The challenge: Efficiently approximating the marginal likelihood $p(Y_{1:T}|\theta)$ for complex models.

Solution: PFMCMC

- Combines Particle Filters (for X_t estimation) and MCMC (for θ estimation).
- Provides a practical framework for state-space models in ecology.

Particle Filter Workflow

Particle Filter Steps:

1. **Prediction:** Simulate particles $X_t^{(i)}$ from the transition model:

$$X_t^{(i)} \sim P_{\theta}(X_t|X_{t-1}).$$

2. Weighting: Compute importance weights:

$$w_t^{(i)} \propto f_{\theta}(Y_t|X_t^{(i)}),$$

where $f_{\theta}(Y_t|X_t^{(i)})$ is the observation likelihood.

3. **Resampling:** Resample particles proportional to their weights to approximate the filtering distribution:

$$P(X_t = X_t^{(i)}) = \frac{w_t^{(i)}}{\sum_{j=1}^{N} w_t^{(j)}}.$$

Purpose:

- Provides an unbiased approximation of the likelihood $\hat{p}_{\theta}(Y_{1:T})$.
- Enables sequential estimation of latent states X_t .

Particle Filter Metropolis-Hastings (PFMCMC) - Definition and Steps

Definition: Combines **Particle Filters (PF)** for state estimation and **Metropolis-Hastings (MCMC)** for parameter inference.

- 1. **Propose new parameters** θ' : Draw candidate parameters using an MCMC proposal distribution.
- 2. **Estimate the likelihood** $p(Y_{1:T}|\theta')$: Use a Particle Filter to approximate:

$$\hat{\rho}_{\theta}(Y_{1:T}) = \prod_{t=1}^{T} \hat{\rho}_{\theta}(Y_{t}|Y_{1:t-1}),$$

where:

$$\hat{\rho}_{\theta}(Y_t|Y_{1:t-1}) \approx \frac{1}{N} \sum_{i=1}^{N} w_t^{(i)}.$$

 $w_t^{(i)}$ represents the relative importance of particle $X_t^{(i)}$ given the observation Y_t . $w_t^{(i)} \propto f_\theta(Y_t|X_t^{(i)})$ is normalized to ensure $\sum_{i=1}^N w_t^{(i)} = 1$

Particle Filter Metropolis-Hastings (PFMCMC) - Definition and Steps

3. **Accept/reject** θ' : Decide whether to accept the proposed parameter based on the Metropolis-Hastings rule:

$$\alpha = \min \left(1, \frac{\hat{p}_{\theta'}(Y_{1:T})\pi(\theta')g_{\theta'}(\theta^{(k)})}{\hat{p}_{\theta^{(k)}}(Y_{1:T})\pi(\theta^{(k)})g_{\theta^{(k)}}(\theta')}\right),$$

where:

- $\hat{p}_{\theta'}(Y_{1:T})$: Approximate likelihood obtained from the PF for parameter θ' .
- $\pi(\theta')$: Prior distribution of the proposed parameter.
- $g_{\theta'}(\theta^{(k)})$: Proposal distribution used to propose the current param $\theta^{(k)}$ given θ' .
- $g_{\theta^{(k)}}(\theta')$: Proposal distribution used to propose θ' from the current param $\theta^{(k)}$.

Advantages of PFMCMC:

- Efficiently handles non-linear, non-Gaussian models.
- Combines sequential state estimation (via PF) and Bayesian parameter exploration (via MCMC).
- Provides a framework for **model comparison** using marginal likelihoods.

Model M1 (Density-Dependent Logistic Growth)

Figure 1: (Left) Trace plots for parameters. (Right) State estimates.

- Parameter estimates show variability, with some distributions appearing multimodal, suggesting potential issues with convergence or identifiability.
- State estimates follow the overall trends in the observations but exhibit oscillations that are not fully aligned with the data.
- Narrow confidence intervals suggest low variability in the estimates, but the model may lack flexibility to capture complex dynamics in the dataset.

Model M2 (Stochastic Exponential Growth)

Figure 2: (Left) Trace plots for parameters. (Right) State estimates.

- Parameters converge after burn-in, but the exponential growth model leads to high uncertainty over time.
- Dynamics are overly sensitive to initial conditions and stochastic effects.

Model M3 (Random Walk): Parameter and State Dynamics

Figure 3: (Left) Trace plots for parameters. (Right) State estimates

- Parameters stabilize after burn-in, showing adequate exploration.
- The random walk model captures observed fluctuations but lacks a mechanism for population growth or decline.

Bayes Factor: Definition and Formula

Definition: The Bayes Factor compares the relative probabilities of the data under two models M_i and M_j :

$$BF_{ij} = \frac{p(Y_{1:T}|M_i)}{p(Y_{1:T}|M_j)}$$

where $p(Y_{1:T}|M)$ is the marginal likelihood of the data under model M.

Interpretation:

- $BF_{ij} > 1$: Model M_i is preferred over M_j .
- Larger values indicate stronger evidence in favor of M_i .

Bayes Factor Matrix:

Model	M1	M2	M3
M1	-	6.90×10^{-2}	6.54×10^{-4}
M2	1.45×10^{1}	-	9.48×10^{-3}
M3	1.53×10^{3}	1.05×10^{2}	-

Table 1: Bayes Factors comparing models M1, M2, and M3.

Observations and Conclusion

Observations:

- M3 (Random Walk): Strongly preferred over both M1 and M2.
 Demonstrates robustness in capturing short-term fluctuations while being simple and effective.
- M2 (Exponential Growth): Outperforms M1 and is moderately effective, but remains inferior to M3. It shows sensitivity to initial conditions and lacks robustness for long-term predictions.
- M1 (Logistic Growth): The least favored model, consistently outperformed by both M2 and M3. It appears to struggle with alignment to the dataset.

Conclusion:

- Based on the Bayes Factors, the Random Walk is the most suitable model for this dataset, as it offers the best fit and simplicity.
- M2 is moderately effective but less reliable than M3 for this dataset.
- M1 is not recommended, as it consistently underperforms compared to the other models.