

Catalano, Fasano, Fengler, Legramanti, Rebaudo

Metropolis-Hastings & Gibbs sampling for Bayesian inference

Overview

Independent MH for the mixture of two normal distributions

Gibbs sampling for a hierarchical normal model

Overview

Independent MH for the mixture of two normal distributions

Gibbs sampling for a hierarchical normal model

$$\mu_1 = 7$$
, $\mu_2 = 10$, $\sigma_1 = \sigma_2 = 0.5$

and unknown (random) mixing proportion δ .

Hence the model is:

$$y_1,\ldots,y_n \mid \delta \stackrel{i.i.d.}{\sim} \delta N(\mu_1,\sigma_1^2) + (1-\delta)N(\mu_2,\sigma_2^2)$$

We generate a sample of size n = 100 with $\delta = 0.7$.

We then sample from the posterior for δ with an **independent MH** using the prior as proposal distribution.

We expect the posterior to concentrate around the "true" value $\delta=0.7$.

- 1. **Initialization:** Set t = 0 and sample x_0 from a starting distribution
- 2. At (t+1)-th iteration:
 - ▶ sample the candidate x^* from the proposal distribution $g(\cdot \mid x_t)$ and compute the MH ratio

$$R(x_t, x^*) = \frac{f(x^*)g(x_t \mid x^*)}{f(x_t)g(x^* \mid x_t)}$$

- ▶ sample $u \sim U(0,1)$
- if $u < R(x_t, x^*)$ accept x^* as x_{t+1}
- ▶ else set $x_{t+1} = x_t$

If $g(\cdot \mid x_t) = g(\cdot)$, we have *independent MH*.

Here: f = posterior, $g = prior \implies R = likelihood ratio.$

Results: sample paths

We experimented with a Beta(1,1) = U(0,1) and a more skewed Beta(2,10) as priors. The start was fixed at $\delta_0 = 0.5$ for both.

With the uniform prior, the chain moves away from δ_0 quickly and explores the posterior support well (*good mixing*).

With the *Beta*(2, 10) prior, only a few unique values are accepted and the mixing is poor.

Results: histograms

We excluded the first 5000 iterations (burn-in).

With the uniform prior, we get a sample with posterior mean approximately equal to 0.7, the value we used to generate the data.

With the *Beta*(2, 10) prior, we have already seen that we get a lot of ties and the posterior approximation is not reliable.

Overview

Independent MH for the mixture of two normal distributions

Gibbs sampling for a hierarchical normal model

The bayesian analysis is taken from:

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). *Bayesian data analysis (Vol. 2)*. CRC press.

The data

Coagulation time in seconds for blood drawn from 24 animals randomly allocated to four different diets.

Diet	Measurements
A	62, 60, 63, 59
В	63, 67, 71, 64, 65, 66
\mathbf{C}	68, 66, 71, 67, 68, 68
D	56, 62, 60, 61, 63, 64, 63, 59

From Box, G. E., Hunter, W. G., & Hunter, J. S. (1978). *Statistics for experimenters: an introduction to design, data analysis, and model building (Vol. 1)*. New York: Wiley.

Hierarchical model

- ► *J* number of groups
- $ightharpoonup n_i$ number of observations for the group j
- ▶ y_{ii} *i*-th observation in group *j*
- \bullet θ_i parameters for the distribution of the samples in group j
- $ightharpoonup \eta$ hyperparameters for the distribution of the parameters, sampled from a fixed distribution

Hierarchical Normal Model and prior

$$y_{ij} \mid \theta, \sigma \sim N(\theta_j, \sigma^2)$$
 $i = 1, \dots, n_j$ $j = 1, \dots, J$
 $\theta_i \mid \mu, \tau \sim N(\mu, \tau^2)$

Prior: $p(\mu, \log \sigma, \log \tau) \propto \tau$

Joint posterior:

$$p(\theta, \mu, \log \sigma, \log \tau \mid y) \propto \tau \prod_{i=1}^{J} N(\theta_j \mid \mu, \tau^2) \prod_{i=1}^{J} \prod_{i=1}^{n_j} N(y_{ij} \mid \theta_j, \sigma^2)$$

Conditional posteriors:

where
$$\hat{\theta}_{j} = \frac{\frac{1}{\tau^{2}}\mu + \frac{n_{j}}{\sigma^{2}}\bar{y}_{,j}}{\frac{1}{\tau^{2}} + \frac{n_{j}}{\sigma^{2}}}$$
, $V_{\theta_{j}} = \frac{1}{\frac{1}{\tau^{2}} + \frac{n_{j}}{\sigma^{2}}}$ $\mu \mid \theta, \sigma, \tau, y \sim N\left(\hat{\mu}, \frac{\tau^{2}}{J}\right)$ where $\hat{\mu} = \frac{1}{J}\sum_{j=1}^{J}\theta_{j}$ $\sigma^{2} \mid \theta, \mu, \tau, y \sim Inv.\chi^{2}\left(n, \hat{\sigma}^{2}\right)$ where $\hat{\sigma}^{2} = \frac{1}{n}\sum_{j=1}^{J}\sum_{i=1}^{n_{j}}(y_{ij} - \theta_{j})^{2}$ $\tau^{2} \mid \theta, \mu, \sigma, y \sim Inv.\chi^{2}\left(J - 1, \hat{\tau}^{2}\right)$ where $\hat{\tau}^{2} = \frac{1}{J - 1}\sum_{i=1}^{J}(\theta_{j} - \mu)^{2}$

The Algorithm

- 1. Fix initial values for $\hat{\theta}_j$ for $j \in \{1, ..., J\}$. In our algorithm they are sampled from the initial data.
- 2. Initialize $\hat{\mu}$ with the mean of $\hat{\theta}$.

$$\hat{\mu} = \frac{1}{J} \sum_{j=1}^{J} \hat{\theta}_j \tag{1}$$

- 3. Sample $\hat{\sigma^2}$, $\hat{\tau^2}$, $\hat{\theta_j}$, $\hat{\mu}$ from the respective conditional distributions.
- 4. Repeat the previous point for 1000 iterations and throw away the first half of the estimates for the parameters (warm-up).
- 5. Repeat from point 1 to point 4 for 10 chains.

Posterior histograms: Gibbs vs STAN

Runtime Comparison: Gibbs vs STAN

	10	100	1000	10000
0 stan	0.002	0.042	0.108	0.737
1 gibbs	0.114	1.038	8.699	85.858

Diagnostic

Problems:

- early iterations reflect the starting points rather than the target distribution;
- within-sequence correlation can cause inefficient simulations.

Monitoring:

- simulating multiple sequences with starting points dispersed in the parameters space;
- comparing variation intra and inter different chains.

Solutions

- ► For initial-values dependence, warm-up.

 The length of the warm-up should depend on the problem. Rule of thumb: discard the first half of each chain (Gelman et al.).
- ► For intra-chain dependence, thinning. Keeping only every k-th draw from each sequence ⇒ storage advantages.
- ► for both problems, **graphical comparison**.

Chains

Diagnostic indexes

We can compare the estimated variance between chains (B) and within chains (W).

$$B = \frac{n}{m-1} \sum_{j=1}^{m} (\bar{\theta}_{,j} - \bar{\theta}_{,.})^{2}$$

$$W = \frac{1}{m} \sum_{j=1}^{m} s_{j}^{2}; \quad s_{j}^{2} = \frac{1}{n-1} \sum_{j=1}^{n} (\theta_{ij} - \bar{\theta}_{,j})^{2}$$

$$v\hat{a}r(\theta|y) = \frac{n-1}{n} W + \frac{1}{n} B$$

$$\hat{R} = \sqrt{v\hat{a}r(\theta|y)/W}$$

The potential scale reduction \hat{R} should be closed to 1.

Effective number of simulations

Since the approximation is not based on *i.i.d.* sample, we must consider the correlation between draws.

$$N_{ ext{eff}} = rac{m\,n}{1+2\sum_{t=1}^{\infty}
ho_t}$$

par	В	W	vâr	Ŕ	N_{eff}
θ_1	1.0032	1.49917	1.49719	0.999338	4254.08
θ_2	1.21471	1.00384	1.00468	1.00042	4673.61
θ_3	2.07662	1.00455	1.00884	1.00213	4276.09
θ_4	0.912064	0.742049	0.742729	1.00046	4345.45
μ	28.8446	32.1651	32.1518	0.999794	4900.98
σ	0.244715	0.164945	0.165265	1.00097	3199.1
τ	203.01	72.0278	72.5517	1.00363	1605.47

Thank you for your attention!