1. Download the dataset: Dataset

2. Load the dataset.

```
import numpy as np
import pandas as pd
df = pd.read csv("/Churn Modelling.csv")
```

3. Perform Below Visualizations.

• Univariate Analysis

import seaborn as sns
sns.histplot(df.EstimatedSalary,kde=True)

• Bi - Variate Analysis

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.scatterplot(df.Balance,df.EstimatedSalary)
plt.ylim(0,15000)
```

C:\Users\ELCOT\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpr etation.

```
warnings.warn((0.0, 15000.0)
```


• Multi - Variate Analysis

import seaborn as sns
df=pd.read_csv("/Churn_Modelling.csv")
sns.pairplot(df)

4. Perform descriptive statistics on the dataset.

df=pd.read_csv("/Churn_Modelling.csv")
df.describe(include='all')

	Row Nu mbe r	Cust ome rId	Su rn am e	Cre ditS core	Geo gra phy	G en de r	Age	Ten ure	Bala nce	Num OfPr oduct s	Has CrC ard	IsActi veMe mber	Estim atedS alary	Exit ed
co u nt	1000 0.00 000	1.00 0000 e+04	10 00 0	1000 0.00 0000	100 00	10 00 0	1000 0.00 0000	1000 0.00 0000	1000 0.000 000	10000 .0000 00	100 00.0 000 0	10000 .0000 00	10000 .0000 00	1000 0.00 0000
u ni q ue	NaN	NaN	29 32	NaN	3	2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
to p	NaN	NaN	Sm ith	NaN	Fra nce	M ale	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
fr eq	NaN	NaN	32	NaN	501 4	54 57	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
m ea n	5000 .500 00	1.56 9094 e+07	Na N	650. 5288 00	Na N	Na N	38.9 2180 0	5.01 2800	7648 5.889 288	1.530 200	0.70 550	0.515 100	10009 0.239 881	0.20 3700
st d	2886 .895 68	7.19 3619 e+04	Na N	96.6 5329 9	Na N	Na N	10.4 8780 6	2.89 2174	6239 7.405 202	0.581 654	0.45 584	0.499 797	57510 .4928 18	0.40 2769
m in	1.00 000	1.55 6570 e+07	Na N	350. 0000 00	Na N	Na N	18.0 0000 0	0.00	0.000	1.000 000	0.00	0.000	11.58 0000	0.00
25 %	2500 .750 00	1.56 2853 e+07	Na N	584. 0000 00	Na N	Na N	32.0 0000 0	3.00 0000	0.000	1.000 000	0.00	0.000	51002 .1100 00	0.00
50 %	5000 .500 00	1.56 9074 e+07	Na N	652. 0000 00	Na N	Na N	37.0 0000 0	5.00 0000	9719 8.540 000	1.000 000	1.00 000	1.000	10019 3.915 000	0.00
75 %	7500 .250 00	1.57 5323 e+07	Na N	718. 0000 00	Na N	Na N	44.0 0000 0	7.00 0000	1276 44.24 0000	2.000	1.00 000	1.000 000	14938 8.247 500	0.00 0000
m ax	1000 0.00 000	1.58 1569 e+07	Na N	850. 0000 00	Na N	Na N	92.0 0000 0	10.0 0000 0	2508 98.09 0000	4.000 000	1.00 000	1.000	19999 2.480 000	1.00 0000

5. Handle the Missing values.

from ast import increment_lineno
import pandas as pd
import numpy as np

5. Handle the Missing values.

from ast import increment_lineno
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(color_codes=True)
df=pd.read_csv("/Churn_Modelling.csv")
df.head()

	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bal anc e	NumO fProdu cts	Has CrC ard	IsActiv eMemb er	Estima tedSala ry	Ex ite d
0	1	1563 4602	Har gra ve	619	Fran ce	Fe ma le	4 2	2	0.00	1	1	1	101348 .88	1
1	2	1564 7311	Hill	608	Spai n	Fe ma le	4	1	838 07.8 6	1	0	1	112542 .58	0
2	3	1561 9304	Oni o	502	Fran ce	Fe ma le	4 2	8	159 660. 80	3	1	0	113931 .57	1
3	4	1570 1354	Bon i	699	Fran ce	Fe ma le	3 9	1	0.00	2	0	0	93826. 63	0
4	5	1573 7888	Mit chel l	850	Spai n	Fe ma le	4 3	2	125 510. 82	1	1	1	79084. 10	0

6. Find the outliers and replace the outliers

```
import matplotlib
from matplotlib import pyplot as pyplot
%matplotlib inline
matplotlib.rcParams['figure.figsize']=(10,6)
df=pd.read_csv("/Churn_Modelling.csv")
df.sample(5)
```

Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	Ag e	Te nu re	Bal an ce	NumO fProdu cts	Has CrC ard	IsActiv eMem ber	Estima tedSal ary	Exit ed	
120	121	156 824 72	Culb reth	828	Fra nce	M ale	34	8	129433 .34	2	0	0	381 31.7 7	0
2504	2505	156 259 42	McD onald	619	Sp ain	Fe ma le	45	0	0.00	2	0	0	113 645. 40	0
8432	8433	155 825 19	Selez nyov	479	Fra nce	M ale	47	6	121797 .09	1	0	1	581 1.90	1
6931	6932	158 089 30	Mai	531	Fra nce	Fe ma le	37	1	0.00	1	1	0	460 6.97	0
1453	1454	157 142 27	Kelly	672	Fra nce	Fe ma le	53	7	0.00	1	1	1	136 910. 18	0

7. Check for Categorical columns and perform encoding.

```
df=pd.read_csv("/Churn_Modelling.csv")
df.columns
import pandas as pd
import numpy as np
headers=['RowNumber','CustomerID','Surname','CreditScore','Geography',
    'Gender','Age','Tenure','Balance','NumofProducts','HasCard'
    'IsActiveMember','EstimatedSalary','Exited']
import seaborn as sns
df.head()
```

	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bal anc e	NumO fProdu cts	Has CrC ard	IsActiv eMemb er	Estima tedSala ry	Ex ite d
0	1	1563 4602	Har gra ve	619	Fran ce	Fe ma le	4 2	2	0.00	1	1	1	101348 .88	1
1	2	1564 7311	Hill	608	Spai n	Fe ma le	4	1	838 07.8 6	1	0	1	112542 .58	0
2	3	1561 9304	Oni o	502	Fran ce	Fe ma le	4 2	8	159 660. 80	3	1	0	113931 .57	1
3	4	1570 1354	Bon i	699	Fran ce	Fe ma le	3 9	1	0.00	2	0	0	93826. 63	0
4	5	1573 7888	Mit chel l	850	Spai n	Fe ma le	4 3	2	125 510. 82	1	1	1	79084. 10	0

8. Split the data into dependent and independent variables.

```
x=df.iloc[:,:-1].values
print(x)
y=df.iloc[:,-1]._values
print(y)

[[1 15634602 'Hargrave' ... 1 1 101348.88]
  [2 15647311 'Hill' ... 0 1 112542.58]
  [3 15619304 'Onio' ... 1 0 113931.57]
  ...
  [9998 15584532 'Liu' ... 0 1 42085.58]
  [9999 15682355 'Sabbatini' ... 1 0 92888.52]
  [10000 15628319 'Walker' ... 1 0 38190.78]]
[1 0 1 ... 1 1 0]
```

9. Scale the independent variables

```
import seaborn as sns
df=pd.read_csv("/Churn_Modelling.csv")
dff=df[['Balance','Age']]
sns.heatmap(dff.corr(), annot=True)
```


10. Split the data into training and testing

```
from scipy.sparse.construct import random
x=df.iloc[:, 1:2].values
y=df.iloc[:,2].values
from sklearn.model_selection import train_test_split
x_train, x_test, y_train,
y_test=train_test_split(x,y,test_size=0.2,random_state=0)
print('Row count of x_train table'+'-'+str(f"{len(x_train):,}"))
print('Row count of y_train table'+'-'+str(f"{len(y_train):,}"))
print('Row count of x_test table'+'-'+str(f"{len(x_test):,}"))
print('Row count of y_test table'+'-'+str(f"{len(y_test):,}"))
Row count of x_train table-8,000
Row count of y_train table-8,000
Row count of y_test table-2,000
Row count of y_test table-2,000
Row count of y_test table-2,000
```