

Algebra homologiczna

Zima 2023-24

1 Wstęp

1.1 Kompleksy łańcuchowe

Niech R będzie dowolnym pierścieniem, natomiast A, B, C będą R-modułami. Mając ciąg

$$A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C$$

mówimy, że jest on *dokładny*, jeśli ker(g) = im(f). W szczególności implikuje to, że g \circ f = gf : A \rightarrow C jest homomorfizmem zerowym.

Definicja 1.1: Kompleks łańcuchowy

Rozważmy rodzinę $C=\{C_n\}_{n\in\mathbb{Z}}$ R-modułów wraz z mapami $d=d_n:C_n\to C_{n-1}$ takimi, że każde złożenie

$$[\mathsf{d}_{n-1}\circ \mathsf{d}_n=]\mathsf{d}\circ \mathsf{d}:\mathsf{C}_n\to\mathsf{C}_{n-2}$$

jest zerowe. Wówczas każdą mapę d_n nazywamy **różniczkami** C, a rodzina C jest **kompleksem łańcuchowym**.

Jądra każdego d_n nazywamy n-*cyklami* C i oznaczamy $Z_n = Z_n(C)$, natomiast obraz każdego d_{n+1} jest nazywany n-*granicą* C i oznacza się jako $B_n = B_n(C)$. Ponieważ $d_n \circ d_{n+1} = 0$, to

$$0\subseteq B_n\subseteq Z_n\subseteq C_n.$$

Definicja 1.2: Homologia

n-tym modułem homologii kompleksu C nazywamy iloraz $H_n(C) = Z_n/B_n$.

Problem 1.1

Ustalmy $C_n = \mathbb{Z}/8$ dla $n \ge 0$ i $C_n = 0$ dla n < 0. Dla n > 0 niech d_n posyła $x \mod 8$ do $4x \mod 8$. Pokaż, że tak zdefiniowane C jest kompleksem łańcuchowym $\mathbb{Z}/8$ -modułów i policz moduły homologii.

Rozwiązanko

Zauważyć, że $d_{n-1}d_n=0$ jest nietrudno dla $n\leq 1$ ($d_{n-1}d_n:C_n\to C_{n-2}=0$). Z kolei dla dowolnego n>1 i dowolnego $x\in C_n$ wiemy, że $d_n(x)=4x\mod 8$. Jeśli x było oryginalnie liczbą parzystą, to od razu widać, że $d_n(x)=0$. Z kolei gdy x jest nieparzyste, to wówczas

$$d_{n-1}d_n(x) = d_{n-1}(4x \mod 8) = 16x \mod 8 = 8 \cdot (2x) \mod 8 = 0,$$

a więc $d_{n-1}d_n = 0$.

Homologie dla n < 2 są trywialne, natomiast dla n \geq 2 wszystkie są takie same (gdyż funkcje d_n jak i moduły C_n nie ulegają zmianie wraz z n). Wystarczy więc przyjrzeć się Z_1/B_1

$$C_0 = \mathbb{Z}/8 \leftarrow_{d_1} C_1 = \mathbb{Z}/8 \leftarrow_{d_2} C_2 = \mathbb{Z}/8$$

 Z_1 to liczby parzyste w \mathbb{Z} /8 (kernel d_1), natomiast B_1 to liczby podzielne przez 4, ale nie przez 8 w C_1 . W takim razie, $Z_1/B_1 = \{4\}$.

2 Równoważność kategorii

2.1 Presnop i snop

Niech X będzie przestrzenią topologiczną i związaną z nią kategorię **Otw(X)** zdefiniujemy ta<mark>k, że</mark>

- Ob $Otw(X) = \{U \subseteq X : U zbiór otwarty\}$
- morfizmy to włożenia identycznościowe

Wówczas funkctor kontrwariantny $Otw(X)^{op} \rightarrow Set$ to presnop na przestrzeni topologicznej X.

Zamiast kategorii **Set** zbiorów możemy też mieć snop na kategorię grup abelowych, przestrzeni liniowych etc.

Przykład(y) 2.1

1. Niech X będzie przestrzenią topologiczną, a U \subseteq X będzie dowolnym zbiorem otwartym. Funktor F : **Otw**(**X**)^{op} \rightarrow C(X) definiujemy na obiektach jako

$$F(U) = C(U) = \{f : U \rightarrow \mathbb{C} \mid f \text{ ciągła}\}\$$

Dla $V \subseteq U \subseteq X$ otwartych zbiorów mamy

$$\begin{array}{cccc} F(U) & \stackrel{\mathsf{obciecie}}{\longleftarrow} & F(V) \\ & & & & \\ C(U) & \longleftarrow & C(V) \end{array}$$

co w widoczny sposób spełnia $F(\phi\psi) = F(\phi)F(\psi)$.

Funktor jak wyżej jest nazywany presnopem funkcji ciągłych.

Definicja 2.1: Presnop, snop

Presnopem na kategorii C nazywamy dowolny funktor

$$F: \textbf{C}^{op} \to \textbf{Set}$$

Snopem nazywamy presnop, który dla wszystkich otwartych $U = \bigcup_{i \in I} U_i$ i dla wszystkich $s_i \in F(U_i)$ (które nazywamy *cięciem presnopu*) zachodzi, że jeśli dla dowolnych i, $j \in I$ mamy $s_i \upharpoonright (U_i \cap U_j) = s_j \upharpoonright (U_i \cap U_j)$, to istnieje jedyne cięcie $s \in F(U)$ takie, że dla wszystkich $i \in I$ s $\upharpoonright U_i = s_i$. Zapisując to na kwantyfikatorach:

$$(\forall \ U = \bigcup_{i \in I} U_i)(\forall \ s_i \in F(U_i)) \ \left[(\forall i, j \in I) \ s_i \upharpoonright (U_i \cap U_j) = s_j \upharpoonright (U_i \cap U_j) \right] \Rightarrow \\ \Rightarrow \left[(\exists ! \ s \in F(U))(\forall i \in I) \ s \upharpoonright U_i = s_i \right]$$

Przykład(y) 2.2

1. Przykład presnopa z wcześniej spełnia również warunek bycia snopem. Tutaj wchodzą kiełki gromadzące się nad snopem i zbierające się w większe źdźbła, ale ja sobie to odpuszczę.

2.2 Funktory wierne, pełne

Definicja 2.2: podkategoria C' kategorii C

To kategoria spełniająca następujące warunki:

 \bowtie $\mathsf{ObC}' \subset \mathsf{ObC}$

 \mapsto Hom_{**C**} $(X, Y) \subseteq$ Hom_{**C**}(X, Y)

 $id_X^{\textbf{C}'}=id_X^{\textbf{C}}$ zawsze gdy $X\in Ob\textbf{C}'$ złożenie morfizmów w C' zachowuje się tak samo jak w C

Mówimy, że podkategoria \mathbf{C}' jest *pełna*, gdy $\mathsf{Hom}_{\mathbf{C}'}(X,Y) = \mathsf{Hom}_{\mathbf{C}}(X,Y)$

Przykład(y) 2.3

- 1. Kategoria skończonych przestrzeni wektorowych nad ciałem K $\mathbf{Vect}_{\kappa}^{fin}$ jest podkategorią kategorii wszystkich przestrzeni liniowych **Vect**_K. Jest to pełna podkategoria.
- 2. Analogicznie, kategoria grup abelowych Ab jest pełną podkategorią kategorii Grp
- 3. Kategoria gładkich rozmaitości \mathbf{C}^{∞} **rozm** jest podkategorią kateogorii wszystkich przestrzeni topologicznych **Top**. Nie jest to jednak pełna podkategoria.

Definicja 2.3 : funktor wierny, pełny

Funkctor $F : \mathbf{C} \to \mathbf{D}$ jest

wierny gdy $F : Hom_{\mathbf{C}}(X, Y) \rightarrow Hom_{\mathbf{D}}(F(X), F(Y))$ jest bijekcją

pełny, gdy dla wszystkich X, Y \in Ob**C** przekształcenie F : Hom_C(X, Y) \rightarrow Hom_D(F(X), F(Y)) jest surjekcja

Przykład(y) 2.4

- 1. Włożenie podkategorii w kategorię jest funktorem wiernym
- 2. Jeśli podkategoria jest pełna, to taki włożeniowy funktor jest dodatkowo pełny.

Naturalne przekształcenia funktorów 2.3

Definicja 2.4: naturalne przekształcenie funktorów

Dla dwóch funktorów F, G : $\mathbf{C} \to \mathbf{D}$ układ morfizmów f : F \to G w \mathbf{D} taki, że dla każdego X \in Ob \mathbf{C} $f(X) : F(X) \rightarrow G(X)$ i dla każdego $\phi : X \rightarrow Y \in Hom_{\mathbf{C}}(X, Y)$ diagram

$$\begin{array}{ccc} F(X) & \stackrel{f(X)}{\longrightarrow} & G(X) \\ F(\phi) \downarrow & & \downarrow G(\phi) \\ F(Y) & \stackrel{f(Y)}{\longrightarrow} & G(Y) \end{array}$$

jest przemienny nazywamy naturalnym przekształceniem funktorów F i G.

Przykład(y) 2.5

1. Patrzymy na funktory Id, ab : **Grp** \rightarrow **Grp** (identyczność i abelianizacja ab(G) = G/[G, G]). Rozważmymy f : Id \rightarrow ab, wtedy Id(G) = G, więc sprawdzamy, czy następujący diagram komutuje:

Dla każdego $G \in Ob$ **Grp** zdefiniujemy $f(G) : Id(G) \rightarrow ab(G)$ jako

$$f(G):G\to G^{alb}=G/[G,G]$$

jako zwykłe przekształcenie ilorazowe. Wystarczy więc sprawdzić, że komutant w G przechodzi przez dowolny homomorfizm $\phi: \mathsf{G} \to \mathsf{H}$ na komutant w H:

$$(\forall g, h \in [G, G]) \phi(gh) = \phi(g)\phi(h) = \phi(h)\phi(g) = \phi(hg)$$

- 2. Z odrobiną znajomości topologii algebraicznej możemy pokazać, że istnieje naturalne przekształcenie funktorów H_n , Π_n : **Top** $_* \to \textbf{Grp}$. Jednak nie znam się na topologii algebraicznej, więc ja tego nie zrobię.
- 3. Pokażemy naturalne przekształcenie funktorów Id, $\star\star$: **Vect**_K \to **Vect**_K. Dla V \in **Vect**_K definiujemy

Chcemy sprawdzić, że diagram

$$\begin{array}{ccc} V & \stackrel{f(V)}{\longrightarrow} & V^{**} \\ \phi \downarrow & & \downarrow \phi^{**} \\ W & \stackrel{f(W)}{\longrightarrow} & W^{**} \end{array}$$

komutuje, czyli $f(V)\phi^{**} = \phi f(W)$.

$$(\phi^{**} \circ f(V))(v) = \phi^{**}(f(V)(v)) = \phi^{**}(\langle \cdot, v \rangle) =$$

$$= \langle \cdot, v \rangle \circ \phi^{*} = \langle \phi^{*}(\cdot), v \rangle =$$

$$= \langle \cdot \circ \phi, v \rangle = \langle \cdot, \phi(v) \rangle = f(W)(\phi(v)) =$$

$$= (f(W) \circ \phi)(v)$$

Czyli wszystko się zgadza!

Naturalne przekształcenia można składać. Powstaje wtedy (meta)kategoria, której elementy to funktory, a morfizmami są naturalne przejścia. Nie jest to prawdziwa kategoria, bo morfizmy nie zawsze są zbiorami w takim przypadku. Taki twór oznaczamy **Funct**(\mathbf{C} , \mathbf{D}) i mając naturalne przekształcenia funktorów $\mathbf{F} \stackrel{a}{\to} \mathbf{G} \stackrel{b}{\to} \mathbf{H}$, dowolne X, Y \in Ob \mathbf{C} oraz ϕ : X \to Y rysujemy

Definicja 2.5: izomorfizm funktorów

W metakategorii funktorów możemy rozważać izomorfizmy, które nazywamy **naturalnymi izomorfizmami funktorów**. Do ich definiowania można podejść na dwa, równoważne, sposoby:

- naturalne przekształcenia $f: F \to G$ dla których istnieje $g: G \to F$ takie, że $f \circ g = id_G$ oraz $g \circ f = id_F$
- przekształcenie $f: F \to G$ takie, że dla każdego $X \in C$ przekształcenie $f(X): F(X) \to G(X)$ jest izomorfizmem w kategorii **D**.

Przykład(y) 2.6

1. Przekształcenie funktorów Id, ** na kategorii przestrzeni wektorowych rozważane wyżej staje się izomorfizmem, gdy ograniczymy się do przestrzeni skończonego wymiaru.

2.4 Równoważność kategorii

Definicja 2.6: równoważność kategorii

Funktor $F: \mathbf{C} \to \mathbf{D}$ zadaje **równoważność kategorii**, jeśli istnieje $G: \mathbf{D} \to \mathbf{C}$ takie, że $F \circ G = \mathrm{id}_{\mathbf{D}}$ i $G \circ F = \mathrm{id}_{\mathbf{C}}$

Przykład(y) 2.7

1. Kategoria skończenie wymiarowych przestrzeni wektorowych **Vect**^{fin}_K jest równoważna kategorii $\mathbf{S}_{\mathbf{K}}$, której obiektami są $\mathsf{ObS}_{\mathbf{K}} = \{\mathsf{K}^0, \mathsf{K}^1, ..., \mathsf{K}^n, ...\}$ a morfizmy to wszystkie przekształcenia liniowe między nimi.

Włożenie F: $\mathbf{S_K} \to \mathbf{Vect_K^{fin}}$ jest oczywisty, gdyż każdy obiekt z $\mathbf{S_K}$ jest przestrzenią wektorową skończonego wymiaru. Aby znaleźć G: $\mathbf{Vect_K^{fin}} \to \mathbf{S_K}$ do niego odwrotne, musimy najpierw w każdej przestrzeni V $\in \mathbf{Vect_K^{fin}}$ znaleźć bazę b(V), którą poślemy w bazę standardową, tzn dostajemy

$$G(V):V \rightarrow K^{\dim V}.$$

Morfizmami na $\mathbf{Vect}^{\mathbf{fin}}_{\mathbf{K}}$ są macierze, więc wystarczy posłać je na ich odpowiedniki po zamianie bazy.

Twierdzenie 2.1

Funktor $\mathbf{C} \to \mathbf{D}$ jest równoważnością kategorii \iff jest on wierny, pełny i w zasadzie surjektywny, tzn. $(\forall \ Y \in \mathsf{Ob}\mathbf{D})(\exists \ X \in \mathsf{Ob}\mathbf{C}) \ \mathsf{F}(\mathsf{X}) \cong \mathsf{Y}.$

Dowód

_

Mając wiedzę o F będziemy konstruować G.

Dla Y \in Ob**D** wybieramy G(Y) \in Ob**C** takie, że istnieje izomorfizm $\iota_Y : Y \to F(G(Y))$. Niech $\phi : Y \to Y'$ będzie morfizmem obiektów w kategorii **D**. Chcemy sprawdzić istnienie G(ϕ) takie, że Id**D** \cong F \circ G

F jest wierny i pełny, więc

$$\mathsf{Hom}_{\boldsymbol{C}}(\mathsf{G}(\mathsf{Y}),\mathsf{G}(\mathsf{Y}')) \overset{\mathsf{F}}{\to} \mathsf{Hom}_{\boldsymbol{D}}(\mathsf{F}(\mathsf{G}(\mathsf{Y})),\mathsf{F}(\mathsf{G}(\mathsf{Y}')))$$

jest bijekcją, a więc istnieje jedyne $\psi = \mathrm{F}^{-1}(\iota_{\mathrm{Y'}}\phi\iota_{\mathrm{Y}}^{-1})$

