Cenni circuiti, reti combinatorie, reti sequenziali

Porte logiche di base

Α	Х
0	1
1	0

Α	В	Х
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	Х
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	1

NOT

OR

Quindi NAND o NOR sono complete \rightarrow circuiti con solo porte NAND o solo porte NOR.

Reti combinatorie

- Rete combinatoria: insieme di porte logiche connesse il cui output in un certo istante è funzione solo dell'input in quell'istante
- N input binari e m output binari
- Ad ogni combinazione di valori di ingresso corrisponde una ed una sola combinazione di valori di uscita

M

Reti combinatorie (segue)

- Vediamo alcuni esempi di circuiti:
 - I segnali sono discretizzati e di solito assumono solo due stati:

✓ I circuiti più complessi sono realizzati attraverso la combinazione di circuiti semplici (porte logiche)

Reti combinatorie (segue)

- Porte Logiche:
 - Sono realizzate tramite transistor (sono in pratica interruttori automatici)

Multiplexer (o selettore) 2ⁿ a 1

- Solo uno degli ingressi viene trasferito all'output
- n ingressi di controllo: indicano l'ingresso da trasferire
 - ✓ 2ⁿ linee di input

$$(D_0 - D_7)$$

√ n linee di controllo

- √ 1 linea di output (F)
- ✓ Per ogni combinazione degli ingressi di controllo, 2ⁿ -1 delle porte AND hanno uscita 0, l'altra fa uscire l'ingresso

Comparatore a più bit

- Comparatori ad
 1 bit vengono
 collegati tramite
 una porta NOR
- ✓ L'output vale 1 solo se tutti gli output dei singoli comparatori ad 1 bit valgono 0
- ✓ (Ai=Bi) per ognii, cioè A=B

Traslatore (shifter)

✓ Trasla i bit in ingresso (D) di una posizione, a sinistra o a destra a seconda del valore del bit di controllo (C) (C=1 shift a destra)

ALU a 1 bit

- ALU ad 1bit che realizza 4 operazioni (selezionate da F₀ e F₁)
- AB, A or B, not(B), A+B
- ENA, ENB: per forzare a 0 gli input A e B
- INVA, INVB: per invertire gli input

ALU a n bit

- ✓ Si ottiene concatenando n ALU ad 1 bit.
- √ F₀ e F₁ collegati a tutte le ALU
- Riporto intermedio propagato da una ALU alla successiva
- ✓ INC (corrispondente al carry in della ALU "0") permette di sommare 1 al risultato in caso di addizione

Reti combinatorie

- Utili per implementare la ALU e la connessione tra parti della CPU
- Non sono in grado di memorizzare uno stato, quindi non possono essere usate per implementare la memoria
- Per questo servono le reti sequenziali
 - L'output dipende non solo dall'input corrente, ma anche dalla storia passata degli input

Flip flop

- Forma più semplice di una rete sequenziale
- Tanti tipi, ma due proprietà per tutti:
 - □ Bistabili:
 - Possono trovarsi in uno di due stati diversi
 - In assenza di input, rimangono nello stato in cui sono
 - Memoria per un bit
 - □ Due output
 - Uno è sempre il complemento dell'altro

Flip flop D

- Un solo input (D)
- Usa segnale di clock per stabilizzare l'output (sincronizzazione)
- Quando clock =0, gli output dei due AND sono 0 (stato stabile)
- Quando clock=1, gli input sono uno l'opposto dell'altro → Q=D

Registro di tipo D

- è il circuito sincrono più semplice che realizza un registro
- Memorizzazione (store): dati presentati in ingresso e clock da 0 a 1 (uscita riproduce ingresso)
- Mantenimento (hold): clock da 1 a 0 (poi costante); l'uscita rimane invariata indipendentemente dal valore degli ingressi