Data Structures in Python Chapter 2

- Abstract Data Type(ADT)
- 2. Performance Analysis
- 3. Big-O Notation
- 4. Growth Rate
- 5. Growth Rate Examples

Agenda & Reading

- Performance Analysis
 - Introduction
 - Step Counts Counting Operations
- Big-O Notation Asymptotic Analysis
 - Properties of Big-O
 - Calculating Big-O
- Growth Rate
 - Comparison
 - Profiling and Prediction
- Growth Rate Examples
 - Python List & Dictionary
- References:
 - Textbook: Problem Solving with Algorithms and Data Structures
 - Chapter 3. <u>Analysis</u>
 - Textbook: <u>www.github.idebtor/DSpy</u>
 - Chapter 2.1 ~ 3

1 Growth Rate Comparison - Hypothetical Running Time

 The running time on a hypothetical computer that computes 10⁶ operations per second for varies problem sizes

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$$

	Notation		n = 10	n = 10 ²	n = 10 ³	n = 10 ⁴	n = 10 ⁵	n = 10 ⁶
O(1)	Constant	상수	1 µsec	1 µsec	1 µsec	1 µsec	1 µsec	1 µsec
O(log(n))	Logarithmic	대수 함수	3 µsec	7 µsec	10 µsec	13 µsec	17 µsec	20 µsec
O(n)	Linear	선형 함수	10 µsec	100 µsec	1 msec	10 msec	100 msec	1 sec
O(nlog(n))	N log N	선형 대수 함수	33 µsec	664 µsec	10 msec	13.3 msec	1.6 sec	20 sec
O(n ²)	Quadratic	2차 함수	100 µsec	10 msec	1 sec	1.7 min	16.7 min	11.6 days
O(n ³)	Cubic	3차 함수	1 msec	1 sec	16.7 min	11.6 days	31.7 years	31709 years
O(2 ⁿ)	Exponential	지수 함수	10 msec	3e17 years				

1 Growth Rate Comparison

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$$

A comparison of growth-rate functions in graphical form

1 Growth Rate Comparison

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$$

$$T(N) \approx aN^b$$

A comparison of growth-rate functions in graphical form

2 Growth Rate Examples - Constant Growth Rate - O(1)

• Time requirement is constant and, therefore, independent of the problem's size n.

```
def rate1(n):
    s = "SWEAR"
    for i in range(25):
       print("I must not ", s)
```


n	101	102	103	104	105	106
O(I)	1	1	1	1	I	I

2 Growth Rate Examples - Logarithmic Growth Rate - O(log n)

- Increase slowly as the problem size increases.
- If you square the problem size, you only double its time requirement.
- The base of the log does not affect a log growth rate, so you can omit it.

```
def rate2(n):
    s = "YELL"
    i = 1
    while i < n:
        print("I must not ", s)
        i = i * 2</pre>
```


n	101	102	103	104	105	106
O(log ₂ n)	3	6	9	13	16	19

2 Growth Rate Examples - Linear Growth Rate - O(n)

- The time increases directly with the sizes of the problem.
- If you square the problem size, you also square its time requirement.

```
def rate3(n):
    s = "FIGHT"
    for i in range(n):
        print("I must not ", s)
```


n	101	102	103	104	105	106
O(n)	10	102	103	104	105	106

2 Growth Rate Examples - n* log n Growth Rate - O(n log(n))

- The time requirement increases more rapidly than a linear algorithm.
- Such algorithms usually divide a problem into smaller problem that are each solved separately.

```
def rate4(n):
    s = "HIT"
    for i in range(n):
        j = n
        while j > 1:
        print("I must not ", s)
        j = j // 2
```


n	101	102	103	104	105	106
O(nlog(n))	30	664	9965	105	106	107

2 Growth Rate Examples - Quadratic Growth Rate - O(n2)

- The time requirement increases rapidly with the size of the problem.
- Algorithms that use two nested loops are often quadratic.

```
def rate5(n):
    s = "LIE"
    for i in range(n):
        for j in range(n):
            print("I must not ", s)
```


n	101	102	103	104	105	106
$O(n^2)$	102	104	106	108	1010	1012

2 Growth Rate Examples - Cubic Growth Rate - O(n³)

- The time requirement increases more rapidly with the size of the problem than the time requirement for a quadratic algorithm.
- Algorithms that use three nested loops are often quadratic and are practical only for small problems.

```
def rate6(n):
    s = "SPACE OUT IN CLASS"
    for i in range(n):
        for j in range(n):
            for k in range(n):
                print("I must not ", s)
```


n	101	102	103	104	105	106
$O(n^3)$	103	106	109	1012	1015	1018

2 Growth Rate Examples - Exponential Growth Rate - O(2ⁿ)

 As the size of a problem increases, the time requirement usually increases too rapidly to be practical.

```
def rate7(n):
    s = "ZONE OUT IN CLASS"
    for i in range(2 ** n):
        print("I must not ", s)
```


n	101	102	103	104	105	106
O(2 ⁿ)	103	1030	10301	103010	1030103	10301030

Exercise

What is the Big-O of the following statements?

```
for i in range(n):
    for j in range(10):
        print(i, j)
    executed n times
    executed 10 times
    constant time
```

- Running time, T(n) = n * 10 * 1 = 10n, Big-O =
- What is the Big-O of the following statements? Big-O =

```
for i in range(n):
    for j in range(n):
        print(i, j)

for k in range(n):
    print(k)
executed n times
executed n times
```

• The first set of nested loops is $O(n^2)$ and the second loop is O(n). This is $O(\max(n^2,n))$ Big-O =

Exercise

What is the Big-O of the following statements?

```
for i in range(n):
    for j in range(10):
        print(i, j)
    executed n times
    executed 10 times
    constant time
```

- Running time, T(n) = n * 10 * 1 = 10n, Big-O = O(n)
- What is the Big-O of the following statements? Big-O =

```
for i in range(n):
    for j in range(n):
        print(i, j)

for k in range(n):
    print(k)
executed n times
executed n times
```

• The first set of nested loops is $O(n^2)$ and the second loop is O(n). This is $O(\max(n^2,n))$ Big- $O=O(n^2)$

Quiz

What is the Big-O of the following statements?

```
for i in range(n):
    for j in range(i+1, n):
        print(i, j)
```

When i is 0, the inner loop executes (n - 1) times.
 When i is 1, the inner loop executes (n - 2) times.

When i is (n - 2), the inner loop executes once.

- The number of times the inner loop statements execute:
 - Running time, T(n) =
 - Big-O =

3 Profiling: Measuring Growth Rate

Problem: Predict the running time of a big data set (i.e., n = 1 million or 1 billion).

- Most algorithms approximately have the order of growth of the running time: $T(N) \approx a N^b$
- For example, we may compute the constant "a" and the growth rate "b" from data we got from profiling (i.e., performance analysis) as shown below.

N	sec
1000	0.000949
2000	0.001706
3000	0.002773
4000	0.004145
5000	0.004781
6000	0.005814
7000	0.006897
8000	0.008350
9000	0.009346
10000	0.009941

3 Profiling: Measuring Growth Rate

Problem: Predict the running time of a big data set (i.e., n = 1 million or 1 billion).

- Most algorithms approximately have the order of growth of the running time: $T(N) \approx a N^b$
- For example, we may compute the constant "a" and the growth rate "b" from data we got from profiling (i.e., performance analysis) as shown below.
- Since $T(N) \approx a N^b$, $T(2N) = a (2N)^b$, then

$$\frac{T(2N)}{T(N)} = \frac{a(2N)^b}{aN^b} = \frac{2^b(N)^b}{N^b} = 2^b$$

Take log both sides

$$log \frac{T(2N)}{T(N)} = log 2^{b}$$
$$b = log \frac{T(2N)}{T(N)}$$

3 Profiling: Measuring Growth Rate - Example

Example: let us choose N = 4000 or 2N = 8000, an average case of the insertion sort shown above. Recall that log we use here is **log base 2**.

$$b = log \frac{T(2N)}{T(N)} = log \frac{t2(8000)}{t1(4000)} = log \frac{0.036643}{0.011144} = 1.717$$

Now, we use this b=1.717 to solve for a when N=4000, T(N)=0.011144 in the following:

$$T(N) = a N^{1.717}$$

$$0.011144 = a (4000)^{1.717}$$

$$a = \frac{0.011144}{(4000)^{1.717}}$$

$$a = 7.27 \times 10^{-9}$$

• Therefore, we have the growth rate b = 1.717, the constant $a = 7.27x10^{-9}$ for the insertion sort average case.

Summary

- Performance analysis or profiling measures an algorithm's time requirement as a function of the problem size n by using a growth-rate function.
- The growth rates shown below are commonly used:

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$$

Generally, growth rates can be measured in a form of the following:

$$T(N) \approx aN^b$$