Glenn Chia 1003118

50.042 Foundations of Cybersecurity Lab 5

1. Create a table for addition and multiplication for $GF(2^4)$, using $(x^4 + x^3 + 1)$ as the modulus.

For this test case we will use

• $g4 = x^3 + x^2 + 1$

• $g5 = x^2 + x$

Row	Powers	Operation	New Result	Reduction	After reduction (XOR)
1	x ⁰ . g ₄		x^3+x^2+1	N	
2	x ¹ . g ₄	$x \cdot x^3 + x^2 + 1$	$x^4 + x^3 + x$	Υ	x + 1
3	x ² . g ₄	x . x+1	x ² +x	N	

We then take the After reduction results associated with row 2, 3

Result = $(x^2 + x) + (x+1) = x^2+1$

Addition table

	x ⁰	x ¹	x ²	x ³
x ² + x	0	1	1	0
x+1	1	1	0	0
Result	1	0	1	0

Result is x^2+1

2. Second example with a different GF(2ⁿ)

For this part we will use the test case to illustrate

• $p1 = x^5 + x^2 + x$

• $p4 = x^7 + x^4 + x^3 + x^2 + x$

• $modp = x^8 + x^7 + x^5 + x^4 + 1$

Row	Powers	Operation	New Result	Reduction	After reduction (XOR)
1	x ⁰ . P ₄		$x^7 + x^4 + x^3 + x^2 + x$	N	
2	x ¹ . P ₄	$x \cdot x^7 + x^4 + x^3 + x^2 + x$	x ⁸ +x ⁵ +x ⁴ +x ³ +x ²	Υ	x ⁷ +x ³ +x ² +1
3	x ² . P ₄	$x \cdot x^7 + x^3 + x^2 + 1$	x ⁸ +x ⁴ +x ³ +x	Υ	x ⁷ +x ⁵ +x ³ +x+1
4	x ³ . P ₄	x . x ⁷ +x ⁵ +x ³ +x+1	$x^{8}+x^{6}+x^{4}+x^{2}+x$	Υ	$x^7 + x^6 + x^5 + x^2 + x + 1$
5	x ⁴ . P ₄	$x \cdot x^7 + x^6 + x^5 + x^2 + x + 1$	$x^{8}+x^{7}+x^{6}+x^{3}+x^{2}+x$	Υ	x ⁶ +x ⁵ +x ⁴ +x ³ +x ² +x+1
6	x ⁵ . P ₄	$x \cdot x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$	$x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x$	N	

We then take the After reduction results associated with row 2, 3, 6

Result = $(x^7 + x^3 + x^2 + 1) + (x^7 + x^5 + x^3 + x + 1) + (x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x) = x^7 + x^6 + x^4 + x^3 + x^4 + x^4$

Addition table

Doing the first addition

	x ⁰	x ¹	x ²	x ³	x ⁴	x ⁵	x ⁶	x ⁷
$x^7 + x^3 + x^2 + 1$	1		1	1				1
x ⁷ +x ⁵ +x ³ +x+1	1	1		1		1		1
Result	0	1	1	0	0	1	0	0

Doing the second addition

	x ⁰	x ¹	x ²	x ³	x ⁴	x ⁵	x ⁶	x ⁷
x ⁵ +x ² +x		1	1			1		
$x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x$		1	1	1	1	1	1	1
Result	0	0	0	1	1	0	1	1

The result is $x^7+x^6+x^4+x^3$

3. Lab's test case