- 1 Title: A derivation error that affects carbon balance models exists in the current implementation of
- 2 the Johnson et al. (1942) modified Arrhenius function
- 3 Running Title: Derivation error in modified Arrhenius model
- 4 Author: Bridget Murphy¹, Joseph R. Stinziano^{2,*}
- 5 Affiliations: ¹ Department of Biology, University of Western Ontario, London, ON, Canada;
- 6 ² Department of Biology, University of New Mexico, Albuquerque, NM, USA
- 8 *Corresponding author; Email: jstinziano@unm.edu; Tel: +1 (226) 678-1670
- 10 Article Type: Modelling/Theory
- 11 Word Count: 3,146
- 12 Introduction: 530
- 13 Description: 1321
- 14 Results: 671

9

- 15 Discussion: 598
- 16 Acknowledgments: 26
- 17 Number of Tables: 2
- 18 Number of Figures: 4
- 19 Supplementary Files: 1

Summary

21

25

26

27

28

29

30

31

32

33

34

35

36

- Understanding biological temperature responses is crucial to predicting global carbon fluxes.
 The current approach to modelling temperature responses of photosynthetic capacity in large
 scale modelling efforts uses a modified Arrhenius equation.
 - We rederived the modified Arrhenius equation from the source publication from 1942 and uncovered a missing term that was completely dropped by 2002. We compare fitted temperature response parameters between the new and old derivation of the modified Arrhenius equation.
 - We find that most parameters are minimally affected, though activation energy is impacted quite substantially. We then scaled the impact of these small errors to whole plant carbon balance and found that the impact of the rederivation of the Arrhenius on modelled daily carbon gain causes a meaningful deviation of ~18% day-1.
 - This suggests that the error in the derivation of the modified Arrhenius equation has impacted the accuracy of predictions of carbon fluxes at larger scales. We recommend that the derivation error be corrected in modelling efforts moving forward.

Keywords: Arrhenius, temperature, photosynthesis, gas exchange, modelling, carbon balance

<u>Introduction</u>

Globally, photosynthesis and autotrophic respiration are the largest biological carbon fluxes, with photosynthesis removing ~120 Gt C year⁻¹ from the atmosphere and autotrophic respiration releasing ~60 Gt C year⁻¹ back to the atmosphere (Amthor, 2000; Ciais et al., 2013). Given the temperature sensitivity of these large carbon fluxes (Lombardozzi et al., 2015), understanding how photosynthesis and respiration respond on acute, acclimatory, and adaptive timescales is crucial for predicting vegetative and carbon cycle responses to future global climates (Rogers et al., 2017; Stinziano et al., 2018). Biological temperature responses including photosynthesis and respiration are typically assumed to be exponential or peaked (Way & Yamori, 2014; Smith & Dukes, 2017; Kumarathunge et al., 2019). Exponential responses are usually modelled based on an Arrhenius-type curve (Arrhenius, 1915):

$$49 f(T) = A \exp\left(\frac{-E_a}{RT}\right)$$

Equation 1,

51 or equivalently,

53
$$f(T) = k_{25} \exp\left[\frac{E_a(T-298.15)}{RT298.15}\right]$$

Equation 2

where f(T) is the rate of the process at temperature T, A is a pre-exponential factor, T in K, k₂₅ is the rate of the process at 298.15 K, E_a is the activation energy in J mol⁻¹, R is the universal gas constant of 8.314 J mol⁻¹ K⁻¹, and 298.15 is the reference temperature in K. As for peaked responses, while a few options are available (Kruse *et al.*, 2008; Hobbs *et al.*, 2013; Heskel *et al.*, 2016), the most commonly implemented version is the modified Arrhenius model of Johnson *et al.* (1942) as presented in Medlyn *et al.* (2002):

62
$$f(T) = k_{25} \exp\left[\frac{E_a(T - 298.15)}{RT298.15}\right] \left[\frac{1 + \exp\left(\frac{298.15\Delta S - H_d}{298.15R}\right)}{1 + \exp\left(\frac{T\Delta S - H_d}{TR}\right)}\right]$$
 Equation 3

where H_d is the deactivation energy in J mol⁻¹, and ΔS is the entropy of the process in J mol⁻¹ K⁻¹.

Equation 3 is used for modelling the temperature responses of photosynthetic capacity (i.e. maximum carboxylation capacity of rubisco, V_{cmax}, maximum electron transport capacity, J_{max}, and triose phosphate utilization capacity (TPU); see Rogers *et al.*, 2017 for a review of models using Equation 3). These parameters are then used in ecophysiological studies to understand thermal acclimation of photosynthesis (see Kattge & Knorr, 2007; Smith & Dukes, 2017; and Kumarathunge *et al.*, 2019 for examples). Furthermore, this equation is also used in terrestrial biosphere models to predict the future carbon cycling (e.g. Rogers *et al.*, 2017).

Due to the ubiquity of Equation 3 in modelling temperature responses and the thermal acclimation of photosynthetic capacity (e.g. Kattge & Knorr, 2007; Rogers *et al.*, 2017; Smith & Dukes, 2017; Kumarathunge *et al.*, 2019), we revisited the original Johnson *et al.* (1942) modified Arrhenius function to rederive Equation 3. In the process of this rederivation, we uncovered a term that was completely dropped sometime between Johnson *et al.* (1942) and Medlyn *et al.* (2002) which causes a systematic error in the application of Equation 3 for modelling photosynthetic capacity in individual species (e.g. Medlyn *et al.*, 2002) to modelling global scale carbon uptake (e.g. Rogers *et al.*, 2017). We then refit a freely available dataset (Kumarathunge *et al.*, 2019), with both versions of the modified Arrhenius model, and fed the temperature response fits through a carbon balance model to estimate the impact of the derivation error on modelled plant carbon balance. We predicted that the derivation error would cause substantial variation in fitted temperature response parameters, and that these differences would propagate through to modelled daily carbon balance.

Description

Rederivation of the modified Arrhenius equation

Johnson *et al.* (1942, equation 24) describe the temperature response of the light intensity of a luciferase reaction as:

92
$$I = \frac{c'' T \exp\left(\frac{-\Delta H \ddagger}{RT}\right)}{1 + \exp\left(\frac{\Delta S}{R}\right) \exp\left(\frac{-\Delta H}{RT}\right)}$$
 Equation 4

where I is the intensity of the luciferase reaction, c" is not explicitly defined in Johnson *et al.* (1942), but appears to represent a constant based on the derivation of Equation 4, T is the temperature in K, R is the universal gas constant of 8.314 J mol⁻¹ K⁻¹, ΔH‡ is the activation energy in J mol⁻¹, ΔH is the deactivation energy in J mol⁻¹, and ΔS is the entropy in J mol⁻¹ K⁻¹. We can relativize the equation to a reference temperature by dividing Equation 4 at a hypothetical temperature by Equation 4 at a standard temperature (i.e. 25 °C):

100

101
$$\frac{I}{I_{25}} = \frac{\left[\frac{c'' T \exp\left(\frac{-\Delta H \pm}{RT}\right)}{1 + \exp\left(\frac{\Delta S}{R}\right) \exp\left(\frac{-\Delta H}{RT}\right)}\right]}{\left[\frac{c''_{298.15} \exp\left(\frac{-\Delta H \pm}{298.15R}\right)}{1 + \exp\left(\frac{\Delta S}{R}\right) \exp\left(\frac{-\Delta H}{298.15R}\right)}\right]}$$
Equation 5

102

103 Next, rearrange fractions for clarity:

104

$$105 \quad \frac{I}{I_{25}} = \left[\frac{c'' T \exp\left(\frac{-\Delta H \ddagger}{RT}\right) c'' T e^{\frac{-\Delta H \ddagger}{RT}}}{c'' 298.15 \exp\left(\frac{-\Delta H \ddagger}{298.15R}\right) c'' 298.15 e^{\frac{-\Delta H \ddagger}{R298.15}}} \right] \left[\frac{1 + \exp\left(\frac{\Delta S}{R}\right) \exp\left(\frac{-\Delta H}{298.15R}\right) 1 + e^{\frac{\Delta S}{R}} e^{\frac{-\Delta H}{R298.15}}}{1 + \exp\left(\frac{\Delta S}{R}\right) \exp\left(\frac{-\Delta H}{RT}\right) 1 + e^{\frac{\Delta S}{R}} e^{\frac{-\Delta H}{RT}}} \right]$$
Equation 6

106

107 Cancel out c", use exponent rules to simplify:

108

109
$$\frac{I}{I_{25}} = \frac{T}{298.15} \exp\left(\frac{-\Delta H^{\ddagger}}{RT} - \frac{-\Delta H^{\ddagger}}{R298.15}\right) \left[\frac{1 + e^{\frac{\Delta S}{R} + \frac{-\Delta H}{R298.15}} \exp\left(\frac{\Delta S}{R} + \frac{-\Delta H}{R298.15}\right)}{1 + e^{\frac{\Delta S}{R} + \frac{-\Delta H}{RT}} \exp\left(\frac{\Delta S}{R} + \frac{-\Delta H}{RT}\right)}\right]$$
 Equation 7

110

111 Simplify further by setting a common denominator within exponential terms:

112

113
$$I = I_{25} \frac{T}{298.15} \exp\left(\frac{-\Delta H \ddagger 298.15 \mp \Delta H \ddagger T}{RT298.15}\right) \left[\frac{1 + \exp\left(\frac{298.15\Delta S - \Delta H}{298.15R}\right)}{1 + \exp\left(\frac{T\Delta S - \Delta H}{TR}\right)}\right]$$
 Equation 8

114

115

Simplify exponential terms further:

117
$$I = I_{25} \frac{T}{298.15} \exp\left(\frac{\Delta H \ddagger (T - 298.15)}{RT298.15}\right) \left[\frac{1 + \exp\left(\frac{298.15\Delta S - \Delta H}{298.15R}\right)}{1 + \exp\left(\frac{T\Delta S - \Delta H}{TR}\right)}\right]$$
 Equation 9

Harmonizing the notation scheme to that typically used in plant ecophysiology:

120

121
$$f(T) = k_{25} \frac{T}{298.15} \exp\left(\frac{E_a(T - 298.15)}{RT298.15}\right) \left[\frac{1 + \exp\left(\frac{298.15\Delta S - H_d}{298.15R}\right)}{1 + \exp\left(\frac{T\Delta S - H_d}{TR}\right)}\right]$$
 Equation 10

122

123

- Note the difference between Equations 3 and 10: the term T / 298.15 is missing from Equation 3.
- 124 There are several alternative expressions of Equation 4 (e.g. Farguhar et al., 1980; Harley et al., 1986;
- Harley et al., 1992; Harley & Baldocchi, 1995; Lloyd, 1995), however when relativized to a common
- temperature, the equations presented in Farquhar et al. (1980), Harley et al. (1992), Harley &
- 127 Baldocchi (1995), and Lloyd (1995) are all identical to Eq. 3 when relativized by temperature, while the
- Harley et al. (1986) equation is identical to our derivation when relativized to a common temperature
- (see Appendix A for the relativizations of Farquhar et al. (1980), Harley et al. (1986), and Harley et al.
- 130 (1992); Harley & Baldocchi (1995) uses an identical equation to Eq. 18 from Medlyn et al. (2002),
- while Lloyd (1995) uses an identical equation to Eq. 17 from Medlyn et al. (2002)). This derivation
- error introduces multiple systematic errors. First, errors are introduced into the fitted parameters Ea,
- 133 H_d , and ΔS . Second, k_{25} is scaled using the wrong equation, introducing an error in f(T). And third,
- acclimation equations describing E_a, H_d, and ΔS will then be in error due to errors in the fitted
- parameters at each temperature. Here we focus on the impact of the dropped term on fitted
- temperature response parameters and modelling whole-plant carbon balance.

137138

Data analysis

- Using A-C_i curve data compiled in Kumarathunge et al. (2019), available from the Kumarathunge et al.
- (2018) repository, we used the {fitacis} function from the R package {plantecophys} (Duursma, 2015),
- setting fitmethod = "bilinear", Tcorrect = FALSE, and fitTPU = TRUE, to obtain V_{cmax} and J_{max}. We then
- 142 fit Equations 3 and 10 to the data, allowing H_d to be fit. To ensure that the curves could be fit (i.e. that
- there were enough data to fit 4 parameters), we only used data where A-C_i curves were measured at
- 5 or more temperatures. This reduced the number of candidate temperature responses from 729 to
- 403. We used the R package {minpack.lm} (Elzhov et al., 2016), using Equation 2 to obtain starting
- values for E_a and k_{25} , while the other initial parameters were $\Delta S = 0.650$ kJ mol⁻¹ K⁻¹, and H_d varying

from 1 to 1000 kJ mol⁻¹, followed by the {BIC} function to select the best model based on Bayesian Information Criteria. We obtained 341 and 337 successful V_{cmax} temperature response curve fits for Equations 3 and 10, respectively, and 241 and 242 successful J_{max} temperature response curve fits for Equations 3 and 10, respectively. This resulted in a total of 547 fitted temperature response curves which we filtered further, requiring that E_a , ΔS , and H_d were all positive values and that the V_{cmax} and J_{max} data were paired, resulting in 196 complete pairs of V_{cmax} and J_{max} temperature responses for analysis. The data covered a temperature range from 1 °C to 50 °C across all curves, with a median range of 14 °C to 42.6 °C.

Modelling

We modelled the impact of the Equations 3 and 10 on daily net plant carbon balance. Data for leaf area, root and shoot masses, as well as leaf dark respiration at 25 °C were taken for white spruce (Picea glauca) from Stinziano & Way (2017), while stomatal conductance model parameters were calculated with the gas exchange data reported in Stinziano & Way (2017). Briefly, Stinziano and Way (2017) grew white spruce in growth chambers under a simulated autumn treatment based on temperatures and photoperiods from Trenton, ON, with weekly harvesting of biomass and gas exchange measurements across 17 weeks as a control treatment, along with a warming treatment where temperatures were +5 °C of the control, a constant summer day/night temperature with declining photoperiod, and a constant summer photoperiod with ambient changes in temperature. Here we only used data from Stinziano & Way (2017) that were from the control treatment. Mean data were taken from the control treatment at weeks 0 and 12 to provide contrasting biomass allocation patterns such that week 0 is a low respiration scenario and week 12 is a high respiration scenario. These different respiration scenarios were used to reduce bias in any conclusions regarding the impact of Equations 3 and 10 on carbon balance, as the ratio of photosynthesis to respiration may alter the sensitivity of net carbon balance to the Arrhenius equation used. Root respiration for white spruce was taken from Weger & Guy (1991) and we assumed that stem respiration was equal to root respiration (Table 1).

For the full model structure and equations, please see the accompanying R package {arrhenius.comparison} ("arrhenius.comparison 1.0.1.tar.gz"; Stinziano & Murphy, 2020) (see Table 2

for equations). Briefly, we linked the Medlyn *et al.* (2011) stomatal conductance model with the Farquhar *et al.* (1980) C_3 photosynthesis model, assuming infinite mesophyll conductance to CO_2 as these assumptions were used in fitting the data from Kumarathunge *et al.* (2018). Photosynthetic capacity, both maximum rubisco carboxylation capacity, V_{cmax} , and maximum electron transport rate, J_{max} were scaled to temperature using either Equation 3 or 10, while respiration was scaled according to (Atkin & Tjoelker, 2003). Photosynthesis and respiration were summed across each modelled day to calculate daily plant carbon assimilation.

Modelling was performed on 18 total days of environmental data, with three days of data from three months (17th – 19th of May, August, and October, 2019) obtained from external irradiance sensors at the Biotron Experimental Climate Change Research Centre at the University of Western Ontario and the remaining environmental data from Environment Canada historical climate data for South London (43.01°N, 81.27°W, altitude: 251 m; temperature range: -0.1 – 27.9 °C) and the rooftop greenhouse at the University of New Mexico (35.08°N, 106.62°W, altitude: 1587 m; temperature range: 7.2 – 42.2 °C) to capture different levels of environmental variability (Fig. 1).

Overall, the modelling approach allows us to assess the relative differences between Equations 3 and 10 under a low- and high- respiration scenario across different ranges of seasonal variability.

Statistical analysis

Data were analyzed using the {Im} function in R v.3.6.2 (R Core Team, 2019), regressing the data obtained from Equation 3 against the data obtained from Equation 10 for each of $V_{cmax,25}$, $J_{max,25}$, $E_{a,Vcmax}$, $E_{a,Jmax}$, ΔS_{Vcmax} , ΔS_{Jmax} , $H_{d,Vcmax}$, $H_{d,Jmax}$, BIC values for the fits of Equations 3 and 10, daily photosynthesis, daily net carbon balance, and daily photosynthesis: daily respiration ratios. Intercepts in the regression, when significant, were interpreted as a bias in the parameter, while deviations in slope from a 1:1 relationship where interpreted as percentage over- or underestimation of the parameter (i.e. [parameter slope – 1] \cdot 100 = % estimation error). All p-values were corrected for multiple testing using the p.adjust() function in R with Holm's method. All code and data will be made freely available on GitHub upon publication in the {arrhenius.comparison} R package (Stinziano & Murphy, 2020).

```
207
```

208 **Results**

- 209 Equations 3 and 10 exhibited similar performance
- 210 The performance between Equations 3 and 10 for fitting V_{cmax} temperature responses were
- essentially identical when assessed based on BIC, with a slope of 1.001 \pm 0.001 ($F_{1,195} = 5.52 \cdot 10^5$, $R^2 =$
- 212 0.9996, $P < 2.2 \cdot 10^{-16}$; Fig. **2a**), as was the case for J_{max} with a slope of 1.001 ± 0.001 ($F_{1,195} = 2.43 \cdot 10^6$,
- 213 $R^2 = 0.9999$, $P < 2.2 \cdot 10^{-16}$; Fig. **2b**). However, while some fitted temperature responses appeared
- identical, there were some cases where the fitted shape differed (Figs. 2c-f).

215

- 216 Estimates of V_{cmax,25} were essentially identical between the Equation 3 fitting (y-axis) and the Equation
- 217 10 fitting (x-axis) with a slope of 1.002 \pm 0.004 ($F_{1,195} = 5.84 \cdot 10^4$, $R^2 = 0.9967$, $P < 2.2 \cdot 10^{-16}$; Fig. **3e**),
- as was the case for $J_{\text{max},25}$ with a slope of 1.001 \pm 0.001 ($F_{1,195}$ = 6.56 \cdot 10⁵, R^2 = 0.9997, $P < 2.2 \cdot 10^{-16}$;
- Fig. 3f). $E_{a,Vcmax}$ was generally underestimated with a slope of 0.847 \pm 0.024 and a positive bias of 9.73
- ± 2.59 kJ mol⁻¹ when using Equation 3 ($F_{1,194}$ = 1202, R^2 = 0.8610, $P < 2.2 \cdot 10^{-16}$; Fig. **3a**), while E_{a,Jmax}
- was underestimated with a slope of 0.832 \pm 0.013 and a positive bias of 5.98 \pm 1.06 kJ mol⁻¹ ($F_{1.194}$ =
- 3834, R^2 = 0.9518, $P < 2.2 \cdot 10^{-16}$; Fig. **3b**). ΔS_{Vcmax} was essentially identical between Equation 3 and 10
- with a slope of 1.000 \pm 0.0233 ($F_{1.195}$ = 1849, R^2 = 0.9046, $P < 2.2 \cdot 10^{-16}$; Fig. **3c**), as was the case with
- ΔS_{Jmax} with a slope of 0.988 \pm 0.033 ($F_{1.195}$ = 904, R^2 = 0.8226, $P < 2.2 \cdot 10^{-16}$; Fig. **3d**), and H_{d.Vcmax} with
- a slope of 1.002 \pm 0.005 ($F_{1,195} = 4.12 \cdot 10^4$, $R^2 = 0.9953$, $P < 2.2 \cdot 10^{-16}$; Fig. **3g**). However, H_{d,Jmax} was
- underestimated with a slope of 0.952 \pm 0.024 and a positive bias of 31.48 \pm 8.93 kJ mol⁻¹ ($F_{1.194}$ = 1592,
- 227 $R^2 = 0.8914$, $P < 2.2 \cdot 10^{-16}$; Fig. **3h**).

- 229 Impacts on modelled net carbon balance
- 230 In general, the differences in thermal response parameters were amplified when integrated at the
- 231 whole-plant level. For modelled daily photosynthesis (A), the slope for the low respiration model was
- 0.819 \pm 0.013 and the intercept was 0.018 \pm 0.002 g plant⁻¹ day⁻¹ (Eq. 3 versus Eq. 10; approximately
- 233 18% of modelled A) $(F_{1,3523} = 4.168 \cdot 10^3, R^2 = 0.5418; P < 2.2 \cdot 10^{-16})$ (Fig. 4a). For the high respiration
- model of daily A, the slope was 0.819 ± 0.013 and the intercept was 0.031 ± 0.003 g plant⁻¹ day⁻¹
- (approximately 18% of modelled A) $(F_{1,3523} = 4.168 \cdot 10^3, R^2 = 0.5418; P < 2.2 \cdot 10^{-16})$ (Fig. **4b**). The low
- respiration model of total daily carbon (C) gain had a slope of 0.836 ± 0.012 and an intercept of 0.012

237 \pm 0.001 g plant⁻¹ day⁻¹ (approximately 16% of modelled C gain) (Eq. 3 versus Eq. 10; $F_{1.3523}$ = 4.539 · 10³, $R^2 = 0.5629$; $P < 2.2 \cdot 10^{-16}$) (Fig. 4c). The high respiration of total C gain similarly had a slope of 238 0.859 ± 0.012 and an intercept of 0.011 ± 0.002 g plant⁻¹ day⁻¹ (approximately 14% of modelled C gain) 239 (Eq. 3 versus Eq. 10; $F_{1,3523} = 5.364 \cdot 10^3$, $R^2 = 0.6035$; $P < 2.2 \cdot 10^{-16}$) (Fig. 4d). The ratio of the total daily 240 photosynthesis: respiration (A/R) was also considered when comparing models. The low respiration 241 model of A/R had a slope of 0.982 ± 0.007 and the intercept was 0.146 ± 0.031 (approximately 2% of 242 modelled A/R) (Eq. 3 versus Eq. 10; $F_{1,3523} = 2.096 \cdot 10^4$, $R^2 = 0.8561$; $P < 2.2 \cdot 10^{-16}$) (Fig. **4e**). The high 243 respiration model had a similar slope of 0.982 ± 0.007 and the intercept was 0.082 ± 0.017 244 (approximately 2% of modelled A/R) (Eq. 3 versus Eq. 10; $F_{1,3523} = 2.097 \cdot 10^4$, $R^2 = 0.8562$; $P < 2.2 \cdot 10^{-1}$ 245 ¹⁶) (Fig. **4f**). 246

248 **Discussion**

247

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

We sought to determine whether the missing term in Equation 3 had a meaningful impact on fitted temperature response parameters due to its prevalence in photosynthetic temperature response data and vegetation modelling (Kattge & Knorr, 2007; Duursma & Medlyn, 2012; Rogers et al., 2017; Smith & Dukes, 2017; Stinziano et al., 2018; Stinziano et al., 2019; Kumarathunge et al., 2019). Our present analysis suggests that there is a large impact on E_a for both V_{cmax} and J_{max}, however there were minimal impacts on k_{25} , H_d , and ΔS (though note that H_d for Jmax was underestimated) (Fig. 3). In general, fitting Equation 3 instead of Equation 10 results in E_a reductions of around 15% with positive bias. These findings are promising in that one of the parameters to which modelled carbon gain is particularly sensitive, H_d (Stinziano et al., 2018), is minimally affected by the missing term. However, since temperature responses are non-linear, small changes in the shape of an accelerating curve can have a strong impact on the integral of the response (Jensen, 1906; i.e. changes in the shape of the temperature response of carbon assimilation can have strong impacts on total carbon fixation). Despite fit performance being nearly identical, the differences due to Ea values between the equations led to an 18% reduction in modelled daily photosynthesis for Equation 3 compared to Equation 10, leading ~14-16% reduction in modelled net daily carbon gain. Overall, comparisons of low-respiration to high-respiration scenarios resulted in similar percent changes in daily C balance with similar variation.

Not only did we compare the impact of the missing term in Equation 3 on different respiration scenarios, but we also modelled data across a range of environmental conditions to understand the impact on C balances of plants under different temperature regimes and how these impacts could scale up in global models. A ~15% reduction in net daily carbon gain is substantial by itself, but this difference would also be amplified over time for a single plant. Plant growth follows the compound interest law (Blackman, 1919). As leaf area increases with growth so does the rate of photosynthesis and thus the amount of carbon available to further increase growth and metabolism, hence why relative growth rates are commonly utilized in the literature (e.g. Shipley, 1989; Causton, 1991; Tjoelker *et al.*, 1999; Loveys *et al.*, 2003; Poorter *et al.*, 2012; Pommereng & Anders, 2015). A reduction of 18% in modelled daily photosynthesis caused by using the modified equation with the missing term (Eq. 3) would become compounded long-term with plant growth and may result in underestimations of future carbon uptake. It is thus likely that the differences we observed would accumulate to even larger carbon flux errors across large spatial and temporal scales with fluctuating temperatures.

Based on the above analysis, the impact of the missing term in the modified Arrhenius equation substantially alters E_a and net daily carbon balance at a whole-plant level. Given that carbon balance is the time integral of net CO₂ assimilation, this may lead to substantial impacts over a long time period. Despite the robust use of Equation 3 (e.g. Kattge & Knorr, 2007; Oikawa *et al.*, 2016; Rogers *et al.*, 2017; Smith & Dukes, 2017; Mercado *et al.*, 2018; Kumarathunge *et al.*, 2019), Equation 3 is still incorrect. We therefore recommend the switch from Equation 3 to Equation 10 because: 1) Equation 3 is the result of a derivation error, and 2) Equations 3 and 10 lead to different net daily carbon estimates due to the derivation error, which may currently be compensated by other factors in large-scale models.

<u>Acknowledgments</u>

We would like to thank Wesley J. Noe at the University of New Mexico for providing climate data. This research was supported by personal funds.

Author Contributions

Both authors contributed to all aspects of the study.

<u>Tables</u>

Table 1. Parameters used in modelling daily carbon gain.

Parameter	Group	Value	Reference
Respiration	R_{dark}	2.78 μmol m ⁻² s ⁻¹	Stinziano & Way, 2017
	R_{day}	0.7 * R _{dark}	Ayub <i>et al.,</i> 2011
	R_{root}	0.0095 μmol g ⁻¹ s ⁻¹	Weger & Guy, 1991
	R_{stem}	0.0095 μmol g ⁻¹ s ⁻¹	Assumed
	Q_{10}	2.015	Atkin & Tjoelker, 2003
Γ*	25 °C	42.75 μmol mol ⁻¹	Bernacchi et al., 2001
	E_a	37.83 kJ mol ⁻¹	Bernacchi et al., 2001
K _m	25 °C	718.4 μmol mol ⁻¹	Bernacchi et al., 2001
	E_a	65.51 kJ mol ⁻¹	Bernacchi et al., 2001
α		0.8	Norman & Campbell, 1998
ф		0.08	Norman & Campbell, 1998
Leaf Area	Low R	0.015 m^2	Stinziano & Way, 2017
	High R	0.025 m ²	Stinziano & Way, 2017
Stem Mass	Low R	0.496 g	Stinziano & Way, 2017
	High R	2.523 g	Stinziano & Way, 2017
Root Mass	Low R	0.498 g	Stinziano & Way, 2017
	High R	5.072 g	Stinziano & Way, 2017

Q₁₀: thermal sensitivity coefficient; Γ^* : photorespiratory CO₂ compensation point; K_m : apparent Michaelis-Menten constant for rubisco carboxylation in 21% O₂/air (i.e. $K_{c,air}$); α : absorbance of photosynthetically activation radiation; φ : maximum quantum efficiency of photosynthetic electron transport; E_a : activation energy; R_{dark} : leaf respiration in the dark; R_{day} : leaf respiration in the light; R_{root} : root respiration; R_{stem} : stem respiration; Low R: low respiration scenario; High R: high respiration scenario.

Table 2. Equations used in modelling daily carbon uptake.

Equation	Reference
$f(T) = k_{25} Q_{10}^{\frac{T - 298.15}{10}}$	Atkin & Tjoelker, 2003
$f(T) = k_{25}e^{\left[\frac{E_a(T - 298.15)}{RT298.15}\right]}$	Arrhenius, 1915
$f(T) = k_{25}e^{\left[\frac{E_a(T - 298.15)}{RT298.15}\right]} \left[\frac{1 + e^{\frac{298.15\Delta S - H_d}{298.15R}}}{1 + e^{\frac{T\Delta S - H_d}{TR}}}\right]$	Medlyn <i>et al.,</i> 2002

$$f(T) = k_{25} \frac{T}{298.15} e^{\left[\frac{E_a(T - 298.15)}{RT298.15}\right]} \left[\frac{1 + e^{\frac{298.15\Delta S - H_d}{298.15R}}}{1 + e^{\frac{T\Delta S - H_d}{TR}}}\right]$$
 Johnson *et al.*, 1942; this study
$$W_c = V_{cmax} \frac{C_i - \Gamma *}{C_i + K_m}$$
 Farquhar *et al.*, 1980
$$W_j = J\left(\frac{C_i - \Gamma *}{C_i + 2\Gamma *}\right)$$
 Farquhar *et al.*, 1980; Way et al., 2011

Where J is calculated as the minimum root of: $\theta J^2 - (0.5\alpha\phi Q_{in} + J_{max})J + 0.5\alpha\phi Q_{in}J_{max} = 0$

$$A_{gross} = min(W_c, W_j)$$

$$A_{net} = A_{gross} - R_{day}$$

$$g_s = g_0 + 1.6 \left(1 + \frac{g_1}{\sqrt{VPD}}\right) \left(\frac{A_{net}}{C_a}\right)$$

$$C_i = C_a - 1.6 \frac{A_{net}}{g_s}$$

$$A_{plant} = A_{net} \times LA - R_{dark} \times LA - R_{stem} \times SM$$

$$- R_{root} \times RM$$

$$C_{balance} = \sum A_{plant} \times 3600 \times \frac{12.01}{1,000,000}$$

f(T): rate of a process at a given temperature; T: temperature in K; k_{25} : rate of a process at 25 °C; Q_{10} : thermal sensitivity coefficient; E_a : activation energy in kJ mol⁻¹; ΔS : entropy parameter in kJ mol⁻¹; H_d : deactivation energy in kJ mol⁻¹; R: universal gas constant in 0.008314 kJ mol⁻¹ K⁻¹; W_c : rate of CO_2 -limited carboxylation in μ mol m⁻² s⁻¹; W_j : rate of RuBP regeneration-limited carboxylation in μ mol m⁻² s⁻¹; V_{cmax} : maximum rate of rubisco carboxylation capacity in μ mol m⁻² s⁻¹; V_{max} : maximum rate of electron transport in μ mol m⁻² s⁻¹; C_i : intercellular CO_2 concentration in μ mol mol⁻¹; Γ^* : photorespiratory CO_2 compensation point in μ mol mol⁻¹; K_m : Michaelis-Menten constant for rubisco in μ mol mol⁻¹; α : absorbance of photosynthetically active radiation; Φ : maximum quantum efficiency of electron transport; C_{in} : incident photosynthetically active radiation; A_{gross} : gross CO_2 assimilation in μ mol m⁻² s⁻¹; C_{in} : stomatal conductance to water in mol m⁻² s⁻¹; C_{in} : intercept for the Medlyn et al. 2011 model; C_{in} : slope for the Medlyn et al. 2011 model; VPD: vapor pressure deficit in kPa; C_{in} : C_{in} : concentration at the leaf surface in μ mol mol⁻¹; C_{in} : whole plant net CO_2 assimilation; LA: leaf area in m⁻²; C_{in} : leaf dark respiration in μ mol mol⁻² s⁻¹; C_{in} : stem respiration in C_{in} : C_{in}

root respiration in μmol m⁻² s⁻¹; SM: stem mass in g; RM: root mass in g; C_{balance}: whole plant daily 322 323 carbon balance in g plant⁻¹ day⁻¹. 324 325 **Figure Captions** Figure 1. Environmental data used to drive the model in Table 1 covering 3 days (17th, 18th, and 19th) 326 of 3 months. (a,c,e) Albuquerque, NM, USA (ABQ); (b,d,e) London, ON, Canada (LDN). 327 Environmental parameters include: a,b) temperature; c,d) vapour pressure deficit; and e,f) 328 irradiance (Qin). 329 330 331 Figure 2. Relative performance and fit for Equations 3 and 10 for temperature responses of V_{cmax} and J_{max} based on a,b) Bayesian Information Criterion (BIC), and c-f) visual inspection of curve fits. 332 333 Figure 3. The modified Arrhenius equation missing the term (Equation 3) compared to Equation 10 334 fits different values for E_a (a,b), but mostly similar values for ΔS (c,d), k_{25} (e,f) and H_d (f, g) for both 335 V_{cmax} (a, c, e, g) and J_{max} (c, d, f, h). E_a : activation energy, ΔS : entropy parameter, k_{25} : rate of the 336 process at 25 °C, H_d: deactivation energy, V_{cmax}: maximum capacity of rubisco carboxylation, J_{max}: 337 338 maximum rate of electron transport. Black line indicates 1:1 line and grey dashed line indicates 339 respective modelled slopes and intercepts. 340 Figure 4. The modified Arrhenius equation without the missing term (Equation 3) gives differences 341 in modelled daily carbon fluxes compared to Equation 10 for low R (a,c,e) and high R (b,d,f) under 342 343 scenarios where H_d is allowed to vary. Modelled carbon fluxes include: a,b) Total daily photosynthesis; c,d) total daily C gain; and e,f) total daily A/R. A: photosynthesis, R respiration, 344 345 Low R: low respiration, High R: high respiration. Black line indicates 1:1 line and grey dashed line 346 indicates respective modelled slopes and intercepts. 347

Figures

Figure 1. Environmental data used to drive the model in Table 1 covering 3 days (17th, 18th, and 19th) of 3 months. (a,c,e) Albuquerque, NM, USA (ABQ); (b,d,e) London, ON, Canada (LDN). Environmental parameters include: a,b) temperature; c,d) vapour pressure deficit; and e,f) irradiance (Q_{in}).

Figure 2. Relative performance and fit for Equations 3 and 10 for temperature responses of V_{cmax} and J_{max} based on a,b) Bayesian Information Criterion (BIC), and c-f) visual inspection of curve fits.

Figure 3. The modified Arrhenius equation missing the term (Equation 3) compared to Equation 10 fits different values for E_a (a,b), but mostly similar values for E_a (c,d), E_a (e,f) and E_a (f, g) for both E_a (a, c, e, g) and E_a (c, d, f, h). E_a : activation energy, E_a : entropy parameter, E_a : rate of the process at 25 °C, E_a : deactivation energy, E_a : maximum capacity of rubisco carboxylation, E_a : maximum rate of electron transport. Black line indicates 1:1 line and grey dashed line indicates respective modelled slopes and intercepts.

Figure 4. The modified Arrhenius equation without the missing term (Equation 3) gives differences in modelled daily carbon fluxes compared to Equation 10 for low R (a,c,e) and high R (b,d,f) under scenarios where H_d is allowed to vary. Modelled carbon fluxes include: a,b) Total daily photosynthesis; c,d) total daily C gain; and e,f) total daily A/R. A: photosynthesis, R respiration, Low R: low respiration, High R: high respiration. Black line indicates 1:1 line and grey dashed line indicates respective modelled slopes and intercepts.

372	
373	<u>References</u>
374	Amthor JS. 2000. Direct effect of elevated CO ₂ on nocturnal in situ leaf respiration in nine temperate
375	deciduous tree species is small. Tree Physiology 20: 139–144.
376	Arrhenius S. 1915. Quantitative laws in biological chemistry. Bell: London.
377	Atkin OK, Tjoelker MG. 2003. Thermal acclimation and the dynamic response of plant respiration to
378	temperature. Trends in Plant Science 8:343-351.
379	Ayub G, Smith RA, Tissue DT, Atkin OK. 2011. Impacts of drought on leaf respiration in darkness and
380	light in <i>Eucalyptus saligna</i> exposed to industrial-age atmospheric CO ₂ and growth temperature.
381	New Phytologist 190 : 1003-1018.
382	Bernacchi CJ, Singsaas EL, Pimentel C, Portis Jr AR, Long SP. 2001. Improved temperature response
383	functions for models of rubisco-limited photosynthesis. Plant Cell and Environment 24:253-259.
384	Blackman, VH. 1919. The compound interest and plant growth. Annals of Botany 33: 353-360.
385	Causton, DR. 1991. Plant-growth analysis: the variability of relative growth rate within a sample.
386	Annals of Botany 67 (2): 137-144.
387	Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann
388	M. 2013. Carbon and Other Biogeochemical Cycles. In: Heinze C, Tans P, Vesala T, eds. Climate
389	Change 2013: The Physical Science Basis. Cambridge, UK, and New York, NY, USA: Cambridge
390	University Press.
391	Duursma RA, Medlyn BE. 2012. MAESPA: a model to study interaction between water limitation,
392	environmental drivers and vegetation function at tree and stand levels, with an example
393	application to [CO ₂] x drought interactions. Geoscientific Model Development 5 :919-940.
394	Elzhov TV, Mullen KM, Spiess A-N, Bolker B. 2016. minpack.lm: R Interface to the Levenberg-
395	Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds. R
396	package version 1.2-1. https://CRAN.R-project.org/package=minpack.lm
397	Farquhar GD, et al. 1980. A biochemical model of photosynthetic CO ₂ assimilation in leaves of C ₃
398	species. <i>Planta</i> 149 : 78-90.
399	Harley PC, Baldocchi DD. 1995. Scaling carbon dioxide and water vapour exchange from leaf to

canopy in a deciduous forest. I. Leaf model parameterization. *Plant, Cell and Environment*

:1146-1156.

402	Harley PC, Thomas RB, Reynolds JF, Strain BR. 1992. Modelling photosynthesis of cotton grown in
403	elevated CO ₂ . Plant, Cell and Environment 15 :271-282.
404	Harley PC, Tenhunen JD, Lange OL. 1986. Use of an analytical model to study limitations on net
405	photosynthesis in Arbutus unedo under field conditions. Oecologia 70:393-401.
406	Heskel MA, O'Sullivan OS, Reich PB, Tjoelker MG, Weerasinghe LK, Penillard A, Egerton JJG, et al.
407	2016. Convergence in the temperature response of leaf respiration across biomes and plant
408	functional types. Proceedings of the National Academy of Sciences USA 113: 3832-3837.
409	Hobbs JK, Jiao W, Ester AD, Parker EJ, Schipper LA, Arcus VL. 2013. Change in heat capacity for
410	enzyme catalysis determines temperature dependence of enzyme catalyzed rates. ACS Chemical
411	Biology 8 :2388-2392.
412	Jensen JLWV. 1906. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta
413	Mathematica 30 : 175-193.
414	Johnson FH, Eyring H, Williams RW. 1942. The nature of enzyme inhibitions in bacterial
415	luminescence: sulfanilamide, urethane, temperature and pressure. Journal of Cellular and
416	Comparative Physiology 20 :247-268.
417	Kattge J, Knorr W. 2007. Temperature acclimation in a biochemical model of photosynthesis: a
418	reanalysis of data from 36 species. Plant, Cell and Environment 30:1176-1190.
419	Kruse J, Hopmans P, Adams MA. 2008. Temperature responses are a window to the physiology of
420	dark respiration: differences between CO_2 release and O_2 reduction shed light on energy
421	conservation. Plant, Cell and Environment 31: 901-914.
422	Kumarathunge DP, Medlyn BE, Drake JE, Tjoelker MG, Aspinwall MJ, Battaglia M, Cano FJ, Carter
423	KR, Molly AC, Lucas AC, et al. 2019. Acclimation and adaptation components of the
424	temperature dependence of plant photosynthesis at the global scale. New Phytologist 222:768-
425	784.
426	Kumarathunge DP, Medlyn BE, Drake JE, Tjoelker MG, Aspinwall MJ, Battaglia M, Cano FJ, Carter
427	KR, Molly AC, Lucas AC, et al. 2018. ACi-TGlob_V1.0: a global dataset of photosynthetic CO ₂
428	response curves of terrestrial plants. doi: 10.6084/m9.figshare.7283567.v1.
429	Lloyd J, Grace J, Miranda AC, Meir P, Wong SC, Miranda HS, Wright IR, Gash JHC, McIntyre J. 1995. A
430	simple calibrated model of Amazon rainforest productivity based on leaf biochemical
431	properties. Plant, Cell and Environment 18:1129-1145.

432	Lombardozzi DL, Bonan GB, Smith NG, Dukes JS, Fisher RA. 2015. Temperature acclimation of
433	photosynthesis and respiration: a key uncertainty in the carbon cycle-climate feedback.
434	Geophysical Research Letters 42 :8624-8631.
435	Loveys BR, Atkinson LJ, Sherlock DJ, Roberts RL, Fitter AH, Atkin OK. 2003. Thermal acclimation of
436	leaf and root respiration: An investigation comparing inherently fast- and slow-growing plant
437	species. Global Change Biology 9 (6): 895-910.
438	Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, et al. 2011.
439	Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global
440	Change Biology 17 :2134-2144.
441	Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum MUF, Le Roux X, et al.
442	2002. Temperature responses of parameters of a biochemically based model of photosynthesis.
443	II. A review of experimental data. Plant, Cell and Environment 25:1167-1179.
444	Mercado LM, Medlyn BE, Huntingford C, Oliver RJ, Clark DB, Sitch S, Zelazowski P, Kattge J, Harper
445	AB, Cox PM. 2018. Large sensitivity in land carbon storage due to geographical and temporal
446	variation in the thermal response of photosynthetic capacity. New Phytologist 218:1462-1477.
447	Norman JM, Campbell GS. 1998. An introduction to environmental biophysics. New York NY: Springer.
448	Oikawa PY, Jenerette GD, Knox SH, Sturtevant C, Verfaillie J, Dronova I, Poindexter CM, Eichelmann
449	E, Baldocchi DD. 2016. Evaluation of a hierarchy of models reveals importance of substrate
450	limitation for predicting carbon dioxide and methane exchange in restored wetlands. Journal of
451	Geophysical Research – Biogeosciences 122 :145-167.
452	Pommerening A, Muszta, A. 2015. Methods of modelling relative growth rate. Forest Ecosystems 2:5.
453	Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. 2012. Biomass allocation to leaves,
454	stem, and roots: meta-analyses of interspecific variation and environmental control. New
455	Phytologist 193 : 30-50.
456	R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for
457	Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
458	Rogers A, Medlyn BE, Dukes JS, Bonan G, von Caemmerer S, Dietze MC, Kattge J, et al. 2017. A
459	roadmap for improving the representation of photosynthesis in Earth system models. New
460	Phytologist 213:22-42.

461	Shipley, B. The use of above-ground maximum relative growth-rate as an accurate predictor of whole
462	plant maximum relative growth-rate. Functional Ecology 3(6): 771-775.
463	Smith NG, Dukes JS. 2017. Short-term acclimation to warmer temperatures accelerates leaf carbon
464	exchange processes across plant types. Global Change Biology 23:4840-4853.
465	Stinziano JR, Murphy BK. 2020. arrhenius.comparison: comparing versions of the modified Arrhenius
466	equation. R package version 1.0.0.
467	Stinziano JR, Way DA. 2017. Autumn photosynthetic decline and growth cessation in seedlings of
468	white spruce are decoupled under warming and photoperiod manipulations. Plant, Cell and
469	Environment 40: 1296-1316.
470	Stinziano JR, Way DA, Bauerle WL. 2018. Improving models of photosynthetic thermal acclimation:
471	which parameters are most important and how many should be modified? Global Change
472	Biology 24 :1580-1598.
473	Stinziano JR, Bauerle WL, Way DA. 2019. Modelled net carbon gain responses to climate change in
474	boreal trees: impacts of photosynthetic parameter selection and acclimation. Global Change
475	Biology 25 :1445-1465.
476	Tjoelker M, Oleksyn J, Reich P. 1999. Acclimation of respiration to temperature and CO ₂ in seedlings
477	of boreal tree species in relation to plant size and relative growth rate. Global Change Biology
478	49 (6): 679-691.
479	Way DA, Yamori W. 2014. Thermal acclimation of photosynthesis: on the importance of adjusting our
480	definitions and accounting for thermal acclimation of respiration. Photosynthesis Research
481	119 :89-100.
482	Weger HG, Guy RD. 1991. Cytochrome and alternative pathway respiration in white spruce (Picea
483	glauca) roots. Effects of growth and measurement temperature. Physiologia Plantarum 83:675-
484	681.