

Prova Escrita de Física e Química A

10º Ano de Escolaridade	Turma MDI/AQB2	9 páginas
Duração da Prova : 90 minutos		
21 de janeiro 2021		
Nome:		Nº
Classificação:		
Professor:		

Encarregado de Educação: _____

	18	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,29	86 Rn [222,02]					
	_	17	9 F 19,00	17 Q 35,45	35 Br 79,90	53 I 126,90	85 At [209,99]		71 Lu 174,98	103 Lr [262]		
		16	8 O 16,00	16 S 32,07	34 Se 78,96	52 Te 127,60	84 Po [208,98]		70 Yb 173,04	102 No [259]		
		15	7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,76	83 Bi 208,98		69 Tm 168,93	101 Md [258]		
		14	6 C 12,01	14 Si 28,09	32 Ge 72,64	50 Sn 118,71	82 Pb 207,21		68 Er 167,26	100 Fm [257]		
		13	5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 T ¢ 204,38		67 Ho 164,93	99 Es [252]		
				12	30 Zn 65,41	48 Cd 112,41	80 Hg 200,59		66 Dy 162,50	98 Cf [251]		
olcA				11	29 Cu 63,55	47 Ag 107,87	79 Au 196,97	111 Rg [272]	65 Tb 158,92	97 Bk [247]		
TABELA PERIODICA				10	28 Ni 58,69	46 Pd 106,42	78 Pt 195,08	110 Ds [271]	64 Gd 157,25	96 Cm [247]		
SELA P				6	27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt [268]	63 Eu 151,96	95 Am [243]		
TAE				∞	26 Fe 55,85	44 Ru 101,07	76 Os 190,23	108 Hs [277]	62 Sm 150,36	94 Pu [244]		
				٢	25 Mn 54,94	43 Tc 97,91	75 Re 186,21	107 Bh [264]	61 Pm [145]	93 Np [237]		
			atómico nento	co lativa	a	9	24 Cr 52,00	42 Mo 95,94	74 W 183,84	106 Sg [266]	60 Nd 144,24	92 U 238,03
					w	23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db [262]	59 Pr 140,91	91 Pa 231,04	
	Númer	Númen Eler Massa ató	4	22 Ti 47,87	40 Zr 91,22	72 Hf 178,49	104 Rf [261]	 58 Ce 140,12	90 Th 232,04			
				m	21 Sc 44,96	39 Y 88,91	57-71 Lantanídeos	89-103 Actinídeos	 57 La 138,91	89 Ac [227]		
		2	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,33	88 Ra [226]				
-	-	T ,0,1	3 Li 6,94	11 Na 22,99	19 X 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr [223]				

Grupo I

Considere os elementos químicos X, Y e Z, em que as letras não representam os verdadeiros símbolos químicos dos elementos, com as seguintes configurações eletrónicas:

(6 pts) 1. Associe um elemento (X, Y ou Z) a cada um dos espetros A e B.

Espetro A: ____

Espetro B: _____

(6 pts) 2. Um átomo do elemento químico X possui...

- (A) 10 orbitais, 4 energias de remoção diferentes e 10 valores de energia de ionização.
- (B) 6 orbitais, 6 energias de remoção diferentes e 19 valores de energia de ionização.
- (C) 10 orbitais, 6 energias de remoção diferentes e 19 valores de energia de ionização.
- (D) 6 orbitais, 4 energias de remoção diferentes e 10 valores de energia de ionização.

(6 pts) 3. Selecione a opção que contém os termos que completam a seguinte frase.

Os eletrões do átomo do elemento X estão distribuídos por _____ níveis e _____ subníveis.

- (A) ... 2 ... 3 ...
- **(B)** ... 4 ... 6 ...
- (C) ... 3 ... 2 ...
- (D) ... 3 ... 4 ...

Grupo II

1. Mendeleev usou o prefixo eka- para nomear provisoriamente elementos desconhecidos que viriam a ocupar, na Tabela Periódica, o lugar abaixo de elementos já conhecidos na época. Dois desses elementos foram o eka-alumínio e do eka-silício.

(6 pts) 1.1. As propostas de Mendeleev para a organização dos elementos químicos numa tabela

- (A) ... eram fechadas à incorporação de novos elementos.
- (B) ... incluíam todos os elementos conhecidos atualmente.
- (C) ... não incluíam a existência de lugares vazios.
- (D) ... previam a existência de novos elementos.

1.2. Abaixo pode ver um excerto da Tabela Periódica dos elementos químicos.

21	22	23	24	25	26	27	28	29	30
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
44,96	47,87	50,94	52,00	54,85	55,85	58,93	58,69	63,55	65,41

(6 pts) 1.2.1. Na Tabela Periódica os elementos químicos estão ordenados por ordem crescente de ...

- (A) ... massa atómica relativa, uma consequência dos trabalhos de Mendeleev.
- (B) ... massa atómica relativa, uma consequência dos trabalhos de Moseley.
- (C) ... número atómico, uma consequência dos trabalhos de Mendeleev.
- (D) ... número atómico, uma consequência dos trabalhos de Moseley.

(6)	ots) 1.2.2.	Selecione a	opção que	permite com	pletar a seguinte f	frase
-----	-------------	-------------	-----------	-------------	---------------------	-------

A Tabela Periódica atual está organizada em _____ grupos, ____ períodos e em ____ blocos de acordo com a configuração eletrónica dos 118 elementos que a constituem.

- (A) ... dezoito ... sete ... três ...
- (B) ... dezoito ... sete ... quatro ...
- (C) ... sete ... dezoito ... três ...
- (D) ... sete ... dezoito ... quatro ...

Grupo III

Quando olhamos à nossa volta, por exemplo num passeio pelo campo, podemos ver rochas, a água que corre num rio, ou respirar o ar. As rochas poderão ter silício, cálcio e carbono. A água é constituída por moléculas com dois átomos de hidrogénio e um de oxigénio, e pode ter dissolvidos minerais, como o magnésio, ou o sódio. Ao respirarmos inalamos moléculas de oxigénio, que irão fluir no nosso sangue, onde também corre ferro. Têm cálcio os nossos ossos, flúor os nossos dentes, magnésio os músculos e fósforo o nosso cérebro. Tudo à nossa volta e nós mesmos somos constituídos por átomos.

Adaptado de https://divulgacao.iastro.pt/pt/feature/estrelas-que-brilham-no-tempo-fred-hoyle-e-william-fowler/

(6 pts)	1. Dos	elementos	químicos	apresentados	no texto	identifique:
---------	--------	-----------	----------	--------------	----------	--------------

Um metal alcalino	e um halogénio	

(6 pts) 2. Um elemento químico que apresente a configuração eletrónica $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^3$ localiza-se, na Tabela Periódica, no...

- (A) ... 5° período e no grupo 3.
- (B) ... 3º período e no grupo 5.
- (C) ... 3º período e no grupo 13.
- (D) ... 3º período e no grupo 15.

- (6 pts) 3. A opção que corresponde à ordenação dos raios atómicos, r, dos átomos dos elementos silício, carbono e oxigénio é...
 - (A) ... r (silício) > r (carbono) > r (oxigénio).
 - **(B)** ... r (silício) > r (oxigénio) > r (carbono).
 - (C) ... r (carbono) > r (oxigénio) > r (silício).
 - **(D)** ... r (oxigénio) > r (carbono) > r (silício).
- (6 pts) 4. Um ião dipositivo, no estado fundamental, tem a configuração eletrónica [Ne] $3s^2$ $3p^6$. Indique o símbolo químico do elemento representativo que pode formar este ião.

Grupo IV

Considere o excerto de Tabela Periódica representado na figura seguinte.

(6 pts) 1. Selecione a opção que completa corretamente a seguinte frase.

Da distribuição eletrónica do oxigénio, ⁸O, e do flúor, ⁹F, pode concluir-se que...

- ... têm diferente número de eletrões de valência e igual número de orbitais totalmente preenchidas. (A)
- (B) ... têm o mesmo número de eletrões de valência e diferente número de subníveis eletrónicos.
- ... têm diferente número de eletrões no cerne e igual número de níveis eletrónicos. (C)
- ... têm o mesmo número de eletrões no cerne e diferente número de protões. (D)
- (6 pts) 2. Das seguintes afirmações selecione a verdadeira.
 - (A) O néon possui uma baixa reatividade por apresentar seis eletrões no último nível.
 - (B) O néon possui uma elevada reatividade por apresentar uma configuração eletrónica quimicamente estável.
 - (C) O néon possui uma elevada reatividade por apresentar seis eletrões no último subnível.
 - (D) O néon possui uma baixa reatividade por apresentar uma configuração eletrónica quimicamente estável.
- (6 pts) 3. Uma configuração eletrónica possível para um átomo do elemento químico Na, num possível estado excitado, é...
 - (A) ... $1s^2 2s^2 2p^6 3s^1$
 - **(B)** ... $1s^2 2s^1 2p^6 3s^2$
 - (C) ... $1s^2 2s^1 2p^7 3s^1$
 - **(D)** ... $1s^2 2s^2 2p^6$

(10 pts) 4. Explique porque é que o átomo de flúor apresenta maior energia de ionização do que o átomo de oxigénio. Tenha em consideração as configurações eletrónicas desses átomos no estado fundamental.

(6 pts) 5. A energia de ionização é uma propriedade ...

- (A) ... das substâncias elementares e o ponto de fusão é uma propriedade dos elementos.
- (B) ... das substâncias elementares e o ponto de fusão também.
- (C) ... dos elementos e o ponto de fusão é uma propriedade das substâncias elementares.
- (D) ... dos elementos e o ponto de fusão também.

(6 pts) 6. Complete o esquema seguinte de modo a obter uma equação química que traduza a ionização de um átomo de lítio, no estado fundamental, isolado e em fase gasosa.

Grupo V

Uma das grandes vantagens da organização dos elementos na Tabela Periódica é permitir inferir as propriedades de um dado elemento a partir da sua posição nessa tabela.

O gráfico seguinte representa a variação do raio atómico em função do número atómico para os elementos químicos até Z = 20.

(10 pts) 1. Com base na análise do gráfico e na configuração eletrónica dos elementos aí representados, indique, justificando convenientemente, como varia o raio atómico do conjunto de elementos de números atómicos compreendidos entre 3 e 10.

(10 pts) 2. Compare, justificando, o raio da espécie 11 Na+ com o raio do átomo que lhe deu origem.

Grupo VI

1. Na figura abaixo pode observar-se o gráfico da energia potencial, Ep, em função da distância internuclear, r, entre dois átomos de hidrogénio.

- (6 pts) 1.1. O comprimento de ligação na molécula de hidrogénio é ...
 - (A) ... 45 pm e o valor da energia de ligação é aproximadamente 144 kJ/mol.
 - (B) ... 74 pm e o valor da energia de ligação é 432 kJ/mol.
 - (C) ... 150 pm e o valor da energia de ligação é aproximadamente 278 kJ/mol.
 - (D) ... 350 pm e o valor da energia de ligação é 0 kJ/mol.

- (6 pts) 1.2. Indique o tipo de interações, de repulsão ou de atração, que predominam quando os átomos se encontram à distância de 45 pm.
- 2. Numa transformação química as substâncias reagem entre si e originam novas substâncias. Neste processo rompemse e formam-se ligações. É o caso da combustão do metano:

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(I)$$

(12 pts) 2.1. Escreva as fórmulas de estrutura de Lewis de cada um dos reagentes e dos produtos da reação de combustão do metano (CH₄, O₂, CO₂ e H₂O).

- (6 pts) 3.O número de eletrões de valência numa molécula de água é ...
 - (A) ... dez, dos quais cinco são não ligantes.
 - (B) ... dez, dos quais quatro são não ligantes.
 - (C) ... oito, dos quais cinco são não ligantes.
 - (D) ... oito, dos quais quatro são não ligantes.
- (10 pts) 4. Preveja, justificando com base nas posições relativas dos elementos oxigénio e enxofre na tabela periódica, qual das ligações, H_O ou H_S, presentes moléculas de água, H₂O, e de sulfureto de hidrogénio, H₂S, terá maior comprimento, na respetiva molécula.

5. O amoníaco, NH₃, é uma substância inorgânica importante, sendo um dos compostos de nitrogénio melhor conhecidos. (6 pts) 5.1. O que evidencia a representação da molécula de NH₃ através da notação de Lewis?

- (6 pts) 5.2. A molécula de amoníaco, NH₃, possui um número de eletrões de valência igual a...
 - (A) ... 8, dos quais 6 são ligantes e 2 são não ligantes.
 - (B) ... 8, dos quais 6 pares são ligantes e 2 pares são não ligantes.
 - (C) ... 4, dos quais 3 são ligantes e 1 é não ligante.
 - (D) ... 4, dos quais 3 pares são ligantes e 1 par é não ligante.
- (6 pts) 5.2. Selecione a opção que apresenta o tipo de ligação química estabelecida entre os átomos (ou iões) que constituem o ferro, Fe, o dióxido de carbono, CO₂ (g), e o cloreto de sódio, NaCℓ, respetivamente.
 - (A) Metálica, iónica e covalente.
 - (B) Iónica, metálica e covalente.
 - (C) Covalente, metálica e iónica.
 - (D) Metálica, covalente e iónica.
- (6 pts) 6. Com base nas fórmulas de estrutura de Lewis das moléculas de diflúor, F₂, de dinitrogénio, N₂, e de dioxigénio, O₂, selecione a opção correta.
 - (A) Na molécula de diflúor, existe o mesmo número de eletrões ligantes e de eletrões não ligantes.
 - (B) Na molécula de dioxigénio, existem quatro eletrões ligantes e dois pares de eletrões não ligantes.
 - (C) Na molécula de dinitrogénio, existem três pares de eletrões ligantes e dois pares de eletrões não ligantes.
 - (D) As três moléculas possuem o mesmo número de eletrões de valência.
- (6 pts) 7. Comparando as ligações C-C e C=C, a ligação C=C apresenta ...
 - (A) ... maior energia de ligação e menor comprimento de ligação.
 - (B) ... menor energia de ligação e menor comprimento de ligação.
 - (C) ... maior energia de ligação e maior comprimento de ligação.
 - (D) ... menor energia de ligação e maior comprimento de ligação.
- **8.** O ácido etanoico, vulgarmente conhecido por ácido acético, é um dos componentes do vinagre. A sua fórmula de estrutura é:

- (4 pts) 8.1. Que tipo de ligação se estabelece em cada ligação carbono-oxigénio?
- (3 pts) 8.2. Indique o número de eletrões não partilhados que existem nesta molécula
- (3 pts) 8.3. Quantos pares eletrónicos de valência contribuem para a ligação química em cada molécula de ácido acético?

FIM

