

# Explaining Spatial Profiles of Line Emission in the Horsehead Nebula Using Cloud Surface Curvature

Student Ducheng Lu Supervisors Franck Le Petit (LERMA) Emeric Bron (LERMA)

Jan 2025

# Photodissociation Regions (PDRs)

Interstellar medium (ISM): gas and dust between stars in galaxies

 $\bullet \sim 10\%$  of the total baryonic mass

main site of star formation

PDR: regions of neutral gas in the ISM where far-ultraviolet radiation dominates the

chemical and heating processes

diagnostic of the ISM

• stellar feedback

Heating: photoelectric effect, cosmic rays

Cooling: line emission

infrared and line emission

 $\Rightarrow \mathsf{physical}\ \mathsf{conditions}\ \mathsf{in}\ \mathsf{PDRs}$ 



Credit: JWST

## The Horsehead Nebula



Credit: Hernández-Vera et al. 2023

Jan 2025

 $\bullet$  observed  $edge\text{-}on \Rightarrow$  observational access to the chemical stratification

part of a collaboration between JPL, Paris Observatory, IRAM, and CSIC Madrid to study the presence of water in the Horsehead Nebula

#### Data



observations along a cut through the Horsehead Nebula

• C<sup>+</sup>, C, CO and its isotopologues, and H<sub>2</sub>O



## Motivation

#### 1D PDR models

- infinite and uniform in two dimensions, depth-dependent only
   allows for a detailed study of the physical and chemical processes
- cannot be compared directly to edge-on observations





## Motivation

#### 1D PDR models

- infinite and uniform in two dimensions, depth-dependent only
   allows for a detailed study of the physical and chemical processes
- cannot be compared directly to edge-on observations

#### **Proposed Solution:**

- approximate edge-on regions with curvature radius.
- a spherical geometry wrapper for the MeudonPDR code





## Motivation

#### 1D PDR models

- infinite and uniform in two dimensions, depth-dependent only
   allows for a detailed study of the physical and chemical processes
- cannot be compared directly to edge-on observations

#### **Proposed Solution:**

- approximate edge-on regions with curvature radius.
- a spherical geometry wrapper for the MeudonPDR code
  - spatial profiles of column densities
  - solve radiative transfer for line intensities
  - **convolution** with the instrument resolution



## The MeudonPDR Code

#### stationary 1D PDR code

- radiative transfer chemical balance
- level populations
   thermal balance



| Cloud size $(A_{V,\max})$     | 40                                                   |  |
|-------------------------------|------------------------------------------------------|--|
| Proton density $(n_H)$        | $3 	imes 10^4$ – $3 	imes 10^6  \mathrm{cm}^{-3}$    |  |
| Pressure $(P)$                | $1 	imes 10^6$ – $1 	imes 10^7  { m K  cm}^{-3}$     |  |
| ISRF                          | shape: Mathis, geometry: beam_isot                   |  |
| ISRF scaling factor           | $G_0^{\text{obs}} = 100, \ G_0^{\text{back}} = 0.04$ |  |
| UV radiative transfer method  | FGK approximation, or                                |  |
|                               | exact H <sub>2</sub> self- and mutual shielding      |  |
| Turbulent velocity dispersion | $2\mathrm{km}\mathrm{s}^{-1}$                        |  |
| Extinction Curve              | HD38087                                              |  |
| $R_V = A_V / E(B - V)$        | 5.50                                                 |  |
| $C_D = N_H / E(B - V)$        | $1.57 \times 10^{22}$                                |  |

## The MeudonPDR Code

#### stationary 1D PDR code

- radiative transfer chemical balance
- level populations thermal balance



| Cloud size $(A_{V,\max})$     | 40                                                   |           |
|-------------------------------|------------------------------------------------------|-----------|
| Proton density $(n_H)$        |                                                      |           |
| Pressure $(P)$                | $5 \times 10^6  \mathrm{K  cm^{-3}}$                 |           |
| ISRF                          | shape: Mathis, geometry:                             | beam_isot |
| ISRF scaling factor           | $G_0^{\text{obs}} = 100, \ G_0^{\text{back}} = 0.04$ |           |
| UV radiative transfer method  | exact H <sub>2</sub> self- and mutual shielding      |           |
| Turbulent velocity dispersion | $2\mathrm{km}\mathrm{s}^{-1}$                        |           |
| Extinction Curve              | HD38087                                              |           |
|                               |                                                      |           |
| $R_V = A_V / E(B - V)$        | 5.50                                                 |           |
| $C_D = N_H / E(B - V)$        | $1.57 \times 10^{22}$                                |           |

+ surface chemistry



# From Slab to Spherical Geometry

#### Input:

- level number density  $n_X(d)$
- cloud radius R (free parameter)
- ullet LoS impact parameter b

#### Algorithm:

- interpolation of  $n_X(d) = f(d)$  to allow computation of  $n_X$  at any depth
- $d = R \sqrt{s^2 + b^2} \Rightarrow n_X(s)$
- integrate along the LoS

$$N_X(b) = 2 \int_0^{s_{\text{max}}} n_X(s') \mathrm{d}s'$$

For optically thin lines,  $I_{\nu} \propto N_X$ 



#### Algorithm

• interpolate the model grids to uniform ones x\_uniform, y\_uniform

#### Algorithm

- interpolate the model grids to uniform ones x\_uniform, y\_uniform
- Gaussian kernel with the given resolution, full width half maximum (FWHM)

$$\sigma = \text{FWHM} / (2\sqrt{2\ln 2}), \ g(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{x^2}{2\sigma^2})$$

#### Algorithm

- interpolate the model grids to uniform ones x\_uniform, y\_uniform
- Gaussian kernel with the given resolution, full width half maximum (FWHM)

$$\sigma = \text{FWHM} / (2\sqrt{2\ln 2}), \ g(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{x^2}{2\sigma^2})$$

#### Algorithm

- interpolate the model grids to uniform ones x\_uniform, y\_uniform
- Gaussian kernel with the given resolution, full width half maximum (FWHM)

$$\sigma = \text{FWHM} / (2\sqrt{2\ln 2}), \ g(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{x^2}{2\sigma^2})$$

• convolution with truncation at  $3\sigma$ , padding y\_uniform with 0



#### step 1: slab vs spherical geometry



#### spherical geometry: the peaks shift to deeper locations within the cloud



## spherical geometry: the peaks shift to deeper locations within the cloud



step 2: convolved vs unconvolved column densities



## spherical geometry: the peaks shift to deeper locations within the cloud



## convolution: line spatial profiles are smoothed and further extended



# Compare Column Densities with Observations

## convolved column densities from spherical models match observations better





# Compare Column Densities with Observations

#### convolved column densities from spherical models match observations better



profile width  $\checkmark$ , shape on the front side  $\checkmark$ , shape on the back side  $\times$ 

# Compare Column Densities with Observations

#### convolved column densities from spherical models match observations better



profile width  $\checkmark$ , shape on the front side  $\checkmark$ , shape on the back side  $\times$  Can cloud radius make a difference?





The differences in column density profiles are trivial



The differences in column density profiles are trivial

Tail shape  $\times$ ,  $I_{\nu} \not\propto N_X$ ?

Jan 2025



The differences in column density profiles are trivial

tive transfer equation

# Solving the Radiative Transfer Equation along LoS

The radiative transfer equation (neglecting dusts, scattering)

$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}s} = A_{ul}n_{u}\frac{h\nu}{4\pi}\phi(\nu) + B_{ul}n_{u}\frac{h\nu}{4\pi}I_{\nu}\phi(\nu) - B_{lu}n_{l}\frac{h\nu}{4\pi}I_{\nu}\phi(\nu),$$

with a thermal and turbulent broadening line profile  $\phi(\nu)$ 

# Solving the Radiative Transfer Equation along LoS

The radiative transfer equation (neglecting dusts, scattering)

$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}s} = A_{ul}n_{u}\frac{h\nu}{4\pi}\phi(\nu) + B_{ul}n_{u}\frac{h\nu}{4\pi}I_{\nu}\phi(\nu) - B_{lu}n_{l}\frac{h\nu}{4\pi}I_{\nu}\phi(\nu),$$

with a thermal and turbulent broadening line profile  $\phi(\nu)$ 

For a toy problem with constant lower and uppper level populations

$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}s}=c_{1}+c_{2}I_{\nu}, \text{ with } c_{1},c_{2} \text{ constants}$$



#### MeudonPDR wrapper

- column densities in spherical geometry
- convolution with the instrument resolution
- comparison with observations

radiative transfer for line intensities

#### MeudonPDR wrapper

- column densities in spherical geometry
   ⇒ extended profiles with peaks shifted to greater depths
- convolution with the instrument resolution
- comparison with observations

radiative transfer for line intensities

#### MeudonPDR wrapper

- column densities in spherical geometry
   extended profiles with peaks shifted to greater depths
- convolution with the instrument resolution
   ⇒ further smooths and extends the line spatial profiles
- comparison with observations

radiative transfer for line intensities

#### MeudonPDR wrapper

- column densities in spherical geometry
  - ⇒ extended profiles with peaks shifted to greater depths
- convolution with the instrument resolution
  - ⇒ further smooths and extends the line spatial profiles
- comparison with observations
  - ⇒ convolved column density profiles match the observation better cloud radius has a trivial effect
- radiative transfer for line intensities

#### MeudonPDR wrapper

- column densities in spherical geometry
  - ⇒ extended profiles with peaks shifted to greater depths
- convolution with the instrument resolution
  - ⇒ further smooths and extends the line spatial profiles
- comparison with observations
  - ⇒ convolved column density profiles match the observation better cloud radius has a trivial effect
  - radiative transfer equation needs to be solved
- radiative transfer for line intensities

#### MeudonPDR wrapper

- column densities in spherical geometry
  - ⇒ extended profiles with peaks shifted to greater depths
- convolution with the instrument resolution
  - ⇒ further smooths and extends the line spatial profiles
- comparison with observations
  - ⇒ convolved column density profiles match the observation better cloud radius has a trivial effect
  - radiative transfer equation needs to be solved
- radiative transfer for line intensities
  - solver for the radiative transfer equation
  - preliminary results at the line centers

#### MeudonPDR wrapper

- column densities in spherical geometry
  - ⇒ extended profiles with peaks shifted to greater depths
- convolution with the instrument resolution
  - ⇒ further smooths and extends the line spatial profiles
- comparison with observations
  - ⇒ convolved column density profiles match the observation better cloud radius has a trivial effect

radiative transfer equation needs to be solved

- radiative transfer for line intensities
  - solver for the radiative transfer equation
  - preliminary results at the line centers
  - full solution with line broadening

## Thank you!

- 1 Introduction
  - Photodissociation Regions (PDRs)
    The Horsehead Nebula
- 2 Data
- 3 Motivation
- 4 Methods

The MeudonPDR Code
Column Densities in a Spherical PDR
Convolution with the Instrument Resolution

- 6 Results
  - Convolved Column Densities from Spherical Models
    Effect of Cloud Radius on Column Densities
- 6 Solving the Radiative Transfer Equation along LoS



# Mutiple Peaks in the Observed Profiles



Credit: Maillard, 2023

# Exact H2 Self- and Mutual Shielding



# Preliminary results of solving RTE at the line centers

