National Water

UNITED STATES
Department of the Interior
Geological Survey

CANADA
Department of the Environment
Water Resources Branch

Conditions

FEBRUARY 1988

Low streamflow persisted in the Pacific Northwest for the 11th consecutive month as most of the West had an unusually dry February. Monthly mean flows were in the below-normal range at 15 of the 17 index streamflow stations in Montana, Idaho, Washington, and Oregon.

Streamflow was in the normal to above-normal range at 75 percent of the 190 reporting index stations in southern Canada, the United States, and Puerto Rico, about the same as the 74 percent of 191 reporting stations in those ranges for last month. Below-normal streamflow persisted in a large area from southern British Columbia to northwestern Nebraska, and flows moved into the below-normal range to the southwest of that area. Above-normal streamflow persisted in one large area centered on western Texas, and also in several smaller areas, the two largest centered on western lowa and Lake Michigan. Only one February low and one February high occurred at streamflow index stations.

Mean February elevations at the four master gages on the Great Lakes (provisional National Ocean Service data) were in the normal range except on Lake Erie, which rose into the above-normal range.

The level of Utah's Great Salt Lake was 4,209.55 feet above National Geodetic Vertical Datum of 1929 on February 29.

The combined flow of the 3 largest rivers in the lower 48 States--Mississippi, St. Lawrence, and Columbia--was in the normal range during February, after decrease by 4 percent from January to February.

Contents of 74 percent of reporting reservoirs were near or above average for the end of February, about the same as for the end of January (75 percent).

SURFACE-WATER CONDITIONS DURING FEBRUARY 1988

Low streamflow persisted in the Pacific Northwest for the 11th consecutive month as most of the West had an unusually dry February--less than 40 percent of average precipitation fell during the month over much of the West. Total precipitation in the Pacific Northwest States of Oregon, Washington, Idaho, and Montana for December 1987 through February 1988 ranged from 1.26 inches above average (Yakima, Washington) to 14.59 inches below average (Quillayute, Washington). Monthly mean flows were in the below-normal range at 15 of the 17 index streamflow stations in Montana, Idaho, Washington, and Oregon. Total February mean flow at the 17 index stations in the States of Oregon, Washington, Idaho, and Montana was 129,930 cubic feet per second (cfs), 44 percent below the total median, and has been at least 18 percent below the total median for every month from January 1986 through February 1988 (with the exception of March 1987, when flow was 5 percent above median). Bar graphs comparing total mean with total median from September 1985 through December 1988 for the index stations in those four states are on page 3. These graphs show that streamflow for May and June 1987, usually the months of highest streamflow, was well below normal, reflecting the below-average precipitation of the preceding winter.

The only other area in which similar dry conditions have occurred during the same period is in the Southeast (those States in the area from the Mississippi River to the Atlantic Ocean and south of the Ohio River-Pennsylvania State Line). The same type of bar graphs are used to show conditions at 39 index stations (excluding those on the Mississippi River and Ohio River) in the Southeast for the same period. In contrast to the Pacific Northwest, streamflow in the Southeast was higher in the 1987 water year than in the 1986 water year. However, total monthly mean flows for the 1988 water year are lower than those of the 1987 water year for each month except January 1988.

Flows generally decreased from January to February in about a third of the Provinces and States: seasonally in Alaska, Oregon, Quebec, Florida, and Puerto Rico; variably in Hawaii, California, Montana, Texas, and Alabama; and contraseasonally in Utah, Kansas, Oklahoma, Arkansas, Tennessee, the

Carolinas, Virginia, and West Virginia. Flows changed seasonally in Wyoming and Ontario, and variably in Colorado, North Dakota, Minnesota, Georgia, Maryland, and New Brunswick. Streamflow generally increased in the rest of southern Canada and the United States: variably in Washington, Wisconsin, Michigan, and Maine; contraseasonally in British Columbia, Alberta, Saskatchewan, South Dakota, New York, Massachusetts, New Hampshire, Vermont, and Nova Scotia; and seasonally in all other areas.

Streamflow was in the normal to above-normal range at 75 percent of the 190 reporting index stations in southern Canada, the United States, and Puerto Rico, about the same as the 74 percent of 191 reporting stations in those ranges for last month. This is the second lowest percentage of stations with flow in the normal to above-normal range for February in the last 6 years. About 72 percent of 191 stations were in the normal to above-normal range in February 1987 and, at the opposite extreme, about 95 percent of 191 stations were in those ranges in February 1983. Total February flow of 2,122,400 cfs for the 180 index stations in the conterminous United States and southern Canada was 4.8 percent above median, and the second lowest for February in the last 6 years: only February 1987 was lower.

Below-normal streamflow persisted in a large area from southern British Columbia to northwestern Nebraska, and moved into the below-normal range to the southwest of that area. Below-normal flows also persisted in parts of Colorado; a contiguous area including parts of Manitoba, Ontario, Minnesota, Wisconsin, with flows moving into the below-normal range north of that area; Long Island, New York; and also in parts of several Southeastern States, with flows moving into the below-normal range in much of the rest of the Southeast. Above-normal streamflow persisted in one large area centered on western Texas, and also in several smaller areas, the two largest centered on western lowa and Lake Michigan. Flows increased into the above-normal range in several areas, the three largest being parts of New Mexico and Arizona; an area from northern Missouri to southern Indiana; and Nova Scotia.

(Continued on page 7.)

CONTENTS	Page
Streamflow (map)	1
Surface-water conditions	
Streamflow in the Pacific Northwest and in the Southeast, September 1985 through February 1988	3
Monthly mean discharge of selected streams (graphs)	
Great Lakes elevations (graphs).	6
Fluctuations of the Great Salt Lake, February 1981-February 1988 (graph)	6
Hydrographs for the "Big 3" rivers - combined and individual flows (graphs).	8
Dissolved solids and water temperatures at downstream sites on five large rivers	8
Flow of large rivers	9
Usable contents of selected reservoirs (graphs)	
Usable contents of selected reservoirs	11
Ground-water conditions	
Total Precipitation and Percentage of Normal Precipitation (maps).	14
Temperature and precipitation outlooks for March through May 1988 (maps).	15
Explanation of data	15

STREAMFLOW IN THE PACIFIC NORTHWEST AND IN THE SOUTHEAST, SEPTEMBER 1985 THROUGH FEBRUARY 1988

DISCHARGE, IN THOUSAND CUBIC FEET PER SECOND

PERSISTENCE IN, OR MOVEMENT INTO, THE BELOW-NORMAL OR ABOVE-NORMAL

SUMMARY OF FEBRUARY 1988 STREAMFLOW FLOW RANGES

COMPARISON OF TOTAL MONTHLY MEANS WITH TOTAL MONTHLY MEDIANS (Cubic Feet per Second)

MONTHLY MEAN DISCHARGE OF SELECTED STREAMS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period.

GREAT LAKES ELEVATIONS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period. Data from National Ocean Service.

Fluctuations of Great Salt Lake, February 1981 through February 1988

(Continued from page 2.)

Only one February low and one February high occurred at streamflow index stations. Monthly mean flow was the highest of record for February on the Rio Grande De Manati at Highway 2, near Manati, Puerto Rico (drainage area 197 square miles), where the monthly mean flow of 422 cfs (112 percent above median) was the highest for February in 17 years of record. Monthly mean flow was the lowest of record for the month on the Niobrara River above Box Butte Reservoir, Nebraska (drainage area 1,400 square miles), where the monthly mean flow of 23.0 cfs (43 percent below median) was the lowest in 41 years of record. Hydrographs of streamflow at eight index stations, including those at which new February extremes occurred are on page 5. The hydrographs on the left are for stations at which flows are in the above-normal to normal range, while those on the right are for stations at which flows are in the below-normal range.

Mean February elevations at the four master gages on the Great Lakes (provisional National Ocean Service data) were in the normal range except on Lake Erie, which rose into the above-normal range. Levels rose from those for last month except on Lake Superior, which declined 0.21 foot, and was in the normal range for the 11th consecutive month. Lake Huron declined 0.02 foot, and was in the normal range for the seventh consecutive month. Lake Erie rose 0.05 foot, and was in the above-normal range again after a normal January which ended 43 consecutive months of levels in the above-normal range (June 1984 - December 1987). Lake Ontario rose 0.21 foot and was in the normal range for the fourth consecutive month. Levels ranged from 0.89 foot (Lake Superior) to 1.60 feet (Lake Huron) lower than those for February 1987. Stage hydrographs at the master gages for Lakes Superior, Huron, Erie, and Ontario are on page 6.

The level of Utah's Great Salt Lake (see graph on page 6) rose to 4,209.55 feet above National Geodetic Vertical Datum (NGVD) of 1929 on February 15, and was also at that elevation on February 29. The monthend level is 2.10 feet lower than that of February 28, 1987, but is still the third highest recorded for the end of February, below only those of February 1986 and February 1987.

The combined flow of the 3 largest rivers in the lower 48 States--Mississippi, St. Lawrence, and Columbia--averaged a normal 1,162,100 cfs (12 percent above median) during February, after a 4 percent decrease from January to February. This month's combined flow was the third highest for February in the last 6 years and 178,800 cfs (18 percent) higher than that for February 1987. Mean flow of the Mississippi River at Vicksburg, Mississippi, decreased by 8 percent from that for January, and was in the normal range after an above-normal January. Mean flow of the St. Lawrence River at Cornwall, Ontario, increased by 6 percent from that for January and was in the normal range for

the second month. Mean flow of the Columbia River at The Dalles, Oregon, was in the below-normal range for the ninth consecutive month despite increasing by 9 percent from January to February. Flow hydrographs for both the combined and individual flows of the "Big 3" are shown on page 8. Dissolved solids and water temperatures at five large river stations are given on page 8. February flows of the "Big 3" and other large rivers are given in the Flow of Large Rivers table on page 9.

Contents of 74 percent of reporting reservoirs were near or above average for the end of February, about the same as for the end of January (75 percent). Most reporting reservoirs in Nova Scotia, Wisconsin, Oklahoma, Texas, Colorado, New Mexico, and Arizona had contents that were more than 5 percent of normal maximum contents above the average for the end of February. In contrast, most reporting reservoirs in Maine, North Carolina, North Dakota, Montana, Idaho, Washington, and California had contents that were more than 5 percent of normal maximum contents below the average for the end of February. Reservoirs or reservoir systems which had both a decline of more than 5 percent of normal maximum contents during the month and monthend contents more than 5 percent of normal maximum contents below monthend averages were: Gouin (Quebec), Maine's seven resrvoir systems, High Rock Lake (North Carolina), Keystone (Oklahoma), Hungry Horse (Montana), Ross and Chelan (Washington), and also Lake Berryessa and Millerton Lake (California). Nova Scotia's reservoirs and New Jersey's Wanaque reservoir were the only sites that had both an increase of more than 5 percent of normal maximum contents during the month and monthend contents that were more than 5 percent of normal maximum contents above monthend averages. Graphs of contents for seven reservoirs are shown on page 10 with contents for the 99 reporting reservoirs given on page 11.

February precipitation (provisional National Weather Service data) was generally an inch or more below normal in Hawaii, coastal areas from Washington to northern California, southeastern Texas, southern Florida, and most of an area centered on western South Carolina and extending over parts of five States. Precipitation was generally an inch or more above normal in southern Alaska, along the Gulf Coast from extreme eastern Texas to the Florida panhandle, and at several sites scattered from southern Ohio to Rhode Island. There were no record-high February precipitation amounts. Record-low precipitation (amounts in inches) fell at Lewiston, Idaho (0.17); Duluth (0.13) and International Falls (0.14), Minnesota; Medford (0.20) and Salem (0.75), Oregon; Victoria, Texas (0.23); and Seattle-Tacoma (0.71) and Spokane (0.35), Washington. Total Precipitation and Percentage of Normal Precipitation maps for February are on page 14. March through May 1988 outlook maps for both temperature and precipitation are on page 15.

HYDROGRAPHS FOR THE "BIG THREE" RIVERS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period.

JF MA MJJAS ON DJF M AMJJ AS ONDJF M

1987

1986

Provisional data; subject to revision

DISSOLVED SOLIDS AND WATER TEMPERATURES, FOR FEBRUARY 1988, AT **DOWNSTREAM SITES ON FIVE LARGE RIVERS**

Station number	Station name	February data of following calendar years	Stream discharge during month Mean (cfs)	Dissolved-solids concentration*		Dissolved-solids discharge*			Water temperature ^b		
				Mini- mum (mg/L)	Mini- mum (mg/L)	Mean	Mini- mum tons per da	Mini- mum	Mean in °C	Mini- mum in °C	Mini- mum in °C
						(tons per day)			in C	in C	III C
01483500	Delaware River at Trenton, N.J. (Morrisville, Pa.)	1988 1945-87 (Extreme yr)	14,000 13,500	79 61 (1954)	118 144 (1977)	3,620	2,210 647 (1976)	6,800 15,600 (1984)	2.0	0.0	4.0 8.5
07289000	Mississippi River at Vicksburg, Miss.	1988 1976-87 (Extreme yr)	°12,240 848,700 628,900	203 155 (1982)	244 288 (1986)	495,000 351,700	435,100 108,000 (1977)	563,200 628,200 (1986)	5.0 5.0	4.0 0.0	7.0 10.5
03612500	Ohio River at lock and dam 53, near Grand Chain, III. (stream- flow station at Metropolis, III.)	1988 1955-87 (Extreme yr)	°672,800 391,000 433,000	185 98 (1957)	263 308 (1967)	***	109,000 44,900 (1955)	301,000 419,000 (1974)		3.0	4.5
06934500	Missouri River at Hermann, Mo. (60 miles west of St. Louis, Mo.)	1988 1976-87 (Extreme yr)	c410,900 76,200 71,930	327 205 (1985)	449 537 (1985)	78,700 73,240	57,000 23,500 (1977)	110,000 237,000 (1985)	3.0 3.5	2.0	6.0
14128910	Columbia River at Warrendale, Oreg. (streamflow station at The Dalles, Oreg.)	1988 1976-87 (Extreme yr)	°49,190 138,000 177,200 °104,800	100 87 (1976)	106 128 (1977, 1986)	33,500 52,600	30,000 24,800 (1977)	52.400 106,500 (1982)	4.5	4.0 0.5	

^{*}Dissolved-solids concentrations, when not analyzed directly, are calculated on basis of measurements of specific conductance.

*To convert °C to °F: [(1.8 X °C) + 32] = °F.

^{*}Median of monthly values for 30-year reference period, water years 1951-80, for comparison with data for current month.

FLOW OF LARGE RIVERS DURING FEBRUARY 1988

Station number				February 1988							
	Stream and place of determination	Drainage area (square miles)	Average discharge through September 1980 (cubic feet per second)	Monthly mean dis- charge (cubic	Percent of median monthly discharge, 1951-80	Change in dis- charge from previous month (percent)	Discharge near end of month				
	i de la companya de			feet per second)			Cubic feet per second	Million gallons per day	Da		
01014000	St. John River below Fish River at Fort Kent, Maine	5,690	9,647	2,643	134	-19	2,350	1,518	2		
01318500	Hudson River at Hadley, N.Y	1,664	2,909	1,450	85	+10	1,020	659	2		
1357500	Mohawk River at Cohoes, N.Y	3,456 6,780	5,734	4,540	91	+76	3,000	1,900	2		
1463500	Delaware River at Trenton, N.J	6,780	11,750	14,000	114	+103	3,000 9,220	5,959	2		
1570500	Susquehanna River at Harrisburg, Pa.	24,100	34,530	48,270	119	+55	23,600	15,250	2		
1646500	Potomac River near Washington, D.C.	11,560	111,490	112,770	80	-9	8,540	5,519	2		
2105500	Cape Fear River at William O. Huske Lock near Tarheel, N.C.	4,810	5,005	4,370	49	-26					
2131000	Pee Dee River at Peedee, S.C	8,830	9,851	9,517	63	-35	5,320	3,438	2		
	Altamaha River at Doctortown, Ga	13,600	13,880	15,600	71	+107	21,300	13,770	2		
	Suwannee River at Branford, Fl	7,880	6,987	4,250	53	+46	3,570	2,307	2		
2358000	Apalachicola River at Chattahoochee, Fl.	17,200	22,570	23,700	74	+20	18,300	11,830	2		
2467000	Tombigbee River at Demopolis lock and dam near Coatopa, Ala.	15,400	23,300	22,980	51	+14	6,600	4,270	2		
2489500	Pearl River near Bogalusa, La	6,630	9,768	14,540	85	+186	7,310	4,724	1 2		
3049500	Allegheny River at Natrona, Pa	11,410	119,480	130,800	120	+66	31,600	20,420	1 2		
3085000	Monongahela River at Braddock, Pa	7,337	112,510	120,500	111	+19	17,700	11,440	1 2		
3193000	Kanawha River at Kanawha Falls, W.Va.	8,367	12,590	10,320	54	-21	7,660	4,950	2		
3234500	Scioto River at Higby, Ohio	5,131	4,547	8,215	114	+518	3,330	2,152	1 2		
3294500	Ohio River at Louisville, Ky.2	91,170	11,600	193,900	111	+66	112,200	72,520	13		
3377500	Wabash River at Mount Carmel, Ill	28,635	27,220	61,050	164	+112	48,600	31,410	1		
3469000	French Broad River below Douglas Dam, Tenn.	4,543	6,798	5,567	54	+14			1		
	Fox River at Rapide Croche Dam, near Wrightstown, Wis. ²	6,150	4,163	4,963	137	+10	4,290	2,772			
	St. Lawrence River at Cornwall, Ontario-near Massena, N.Y. ³	298,800	242,700	252,000	108	+6	263,000	170,000	1		
4.11	St. Maurice River at Grand Mere, Quebec	16,300	25,150	6,510	106	-14	19,700	12,730			
	Red River of the North at Grand Forks, N.Dak.	30,100	2,551	541	49	+20	620	400	1		
15133500	Rainy River at Manitou Rapids, Minn	19,400	11,830	6,000	64	-15	5,500	3,550	1		
5330000		16,200	3,402	488	97	-7	610	394			
5331000	Mississippi River at St. Paul, Minn	36,800	110,610	3,702	75	+9	3,500	2,260			
5365500	Falls, Wis.	5,600	5,100	1,491	45	-25	1,500	970			
3407000	Wisconsin River at Muscoda, Wis	10,300 9,551	8,617	8,200 11,000	119 248	+23	6,800 11,200	4,390 7,240			
15474500	Rock River near Joslin, Ill	119,000	5,873 62,620	55,500	134	+18	54,000	34,900			
	Yellowstone River at Billings, Mont	11,796	7,038	2,040	75	-2	2,230	1,441			
06934500	Missouri River at Hermann, Mo	524,200	79,490	76,300	155	+12	80,000	52,000			
	Mississippi River at Vicksburg, Miss.4		576,600	848,700	126	-8	726,000	469,200			
7331000	Washita River near Dickson, Okla	7,202	1,368	1,547	375	-52	2,600	1,680			
	Rio Grande below Taos Junction Bridge, near Taos, N.Mex.	9,730	725	603	125	+8	663	428			
9315000			6,298	3,568	119	-9	. 3,710	2,400			
	Sacramento River at Verona, Calif	21,257	18,820	11,180	29	-53	8,300	5,360			
	Snake River at Weiser, Idaho	69,200	18,050	11,300	58	+6	11,900	7,690			
	Salmon River at White Bird, Idaho	13,550	11,250	3,230	. 70	+6	3,470	2,242			
	Clearwater River at Spalding, Idaho	9,570	15,480	4,390	44	+33	4,800	3,100			
	Columbia River at The Dalles, Oreg.5	237,000	1193,100	161,400	59	+9	125,000	80,800			
	Willamette River at Salem, Oreg		123,510	125,300	55	-49	11,300	7,300			
	Tanana River at Nenana, Alaska Fraser River at Hope, British Columbia.	25,600 83,800	23,460 96,290	6,475 22,530	101 66	-6 +2	6,400 25,000	4,140 16,160			

¹Adjusted.

Records furnished by Corps of Engineers.

Records furnished by Buffalo District, Corps of Engineers, through International St. Lawrence River Board of Control. Discharges shown are considered to be the same as discharge at Ogdensburg, N.Y. when adjusted for storage in Lake St. Lawrence.

Records of daily discharge computed jointly by Corps of Engineers and Geological Survey.

Discharge determined from information furnished by Bureau of Reclamation, Corps of Engineers, and Geological Survey.

USABLE CONTENTS OF SELECTED RESERVOIRS AND RESERVOIR SYSTEMS

USABLE CONTENTS OF SELECTED RESERVOIRS NEAR END OF FEBRUARY 1988

P-Power R-Recreation W-Industrial		Percent of normal maximum			New	Principal uses: F-Flood control	Percent of Normal maximum				
		End of of for end of Jan. 1988 1987 Feb. 1988		Normal maximum _a (acre-feet)	I-Irrigation M-Municipal P-Power R-Recreation W-Industrial	End of Feb. 1988	End of Feb. 1987	Average for end of Feb.	End of Jan. 1988	Normal maximum _a (acre-feet)	
NOVA SCOTIA Rossignol, Mulgrave, Falls Lake, St. Margaret's Bay, Black, and Ponhook					b	NEBRASKA Lake McConaughy (IP)	79	82	75	77	1,948,000
Reservoirs(P)OUEBEC	65	35	59	47	^b 226,300	OKLAHOMA Eufaula (FRP)	97 82	102 109	87 93	106 105	2,378,000
Allard (P)	76 31	27 65	30 52	16 40	280,600 6,954,000	Keystone (FPR)	103 101 90	106 101 112	91 51 82	110 100 95	661,000 628,200 133,000 1,492,000
MAINE Seven reservoir systems (MP)	33	29	40	43	4,107,000	OKLAHOMA—TEXAS Lake Texoma (FMPRW)	92	100	88	100	2,722,000
NEW HAMPSHIRE First Connecticut Lake (P) Lake Francis (FPR) Lake Winnipesaukee (PR)	32 39 55	29 26 44	20 31 51	41 50 50	76,450 99,310 165,700	TEXAS Bridgeport (IMW). Canyon (FMR) International Amistad (FIMPW) International Falcon (FIMPW) Livingston (IMW) Possum Kingdom (IMPRW) Red Bluff (PI) Toledo Bend (P) Twin Buttes (FIM) Lake Kemp (IMW) Lake Mredith (FWM) Lake Travis (FIMPRW)	81 95 101	97 99 84	48 80 83	82 92 101	386,400 385,600 3,497,000
Harriman (P)	45 54	25 45	32 51	53 61	116,200 57,390	International Falcon (FIMPW) Livingston (IMW) Possum Kingdom (IMPRW) Red Bluff (PI)	107 103 66 73 91	99 84 79 103 97 87 94 55 101	48 80 83 72 89 95 31 87 32 86 36 82	104	3,497,000 2,668,000 1,788,000 570,200 307,000
MASSACHUSETTS Cobble Mountain and Borden Brook (MP)	78	72	70	75	77,920	Twin Buttes (FIM). Lake Kemp (IMW). Lake Meredith (FWM).	84 87 36 97	55 101 29 99	32 86 36	66 72 93 82 87 36 95	307,000 4,472,000 177,800 268,000 796,900 1,144,000
NEW YORK Great Sacandaga Lake (FPR) Indian Lake (FMP) New York City reservoir system (MW)	35 52 87	29 57 83	36 42 83	45 53 85	786,700 103,300 1,680,000	Canvon Ferry (FIMPR)	71	76	78	71	2,043,000
Wanaque (M)	87	90	80	78	85,100	Fort Peck (FPR)	78 41	84 67	81 64	79 55	18,910,000 3,451,000
PENNSYLVANIA Allegheny (FPR)	87	28 72 68 49	26 86 56 51	26 82 67 53	1,180,000 188,000 761,900 157,800	Ross (PR)	65 14 55	31 94 25 55 99	42 69 36 83 96	38 71 29 50 101	1,052,000 5,022,000 676,100 359,500 245,600
MARYLAND Baltimore municipal system (M)		74	88	87	261,900	IDAHO Boise River (4 reservoirs) (FIP) Coeur d'Alene Lake (P) Pend Oreille Lake (FP)		67 32 35	64 53 53	25 12 33	1,235,000 238,500 1,561,000
NORTH CAROLINA Bridgewater (Lake James) (P) Narrows (Badin Lake) (P) High Rock Lake (P)	84 92 38	90 100 83	84 100 75	87 90 54	288,800 128,900 234,800	IDAHO—WYOMING Upper Snake River (8 reservoirs) (MP)	59	35	71	33	4,401,000
SOUTH CAROLINA Lake Murray (P) Lakes Marion and Moultrie (P)	85 72	86 69	71 76.	84 65	1,614,000 1,862,000	Boysen (FIP)	71 47 41	74 65 36	67 62 43	74 46 40	802,000 421,300 193,800
SOUTH CAROLINA—GEORGIA Clark Hill (FP)	43	75	68	38	1,730,000	Keyhole (F). Pathfinder, Seminoe, Alcova, Kortes, Glendo, and Guernsey Reservoirs (I)	60	71	52	59	3,056,000
GEORGIA Burton (PR)	91	82 100 52	68 87 57	66 89 44	104,000 214,000 1,686,000	COLORADO John Martin (FIR) Taylor Park (IR) Colorado-Big Thompson project (I)	71	82 71 69	22 56 57	78 71 69	364,400 106,200 730,300
Lake Martin (P)	74	82	76	74	1,375,000	COLORADO RIVER STORAGE PROJECT Lake Powell; Flaming Gorge, Fontenelle, Navajo, and Blue Mesa			14		
TENNESSEE VALLEY Clinch Projects: Norris and Melton Hill Lakes (FPR) Douglas Lake (FPR)	35 15	41 23	40 22	32 18	2,293,000 1,394,000	UTAH—IDAHO	84	83		86	31,620,000
Hiwassee Projects: Chatuge, Nottely, Hiwassee, Apalachia, Blue Ridge, Ocoee 3, and Parksville						Bear Lake (IPR)		74	59	71	1,421,000
Holston Projects: South Holston, Watauga, Boone, Fort Patrick Henry,		52	50	55	1,012,000	Hetch Hetchy (MP)	39	34	30	39 43 26	1,000,000 360,400 568,100
and Cherokee Lakes (FPR) Little Tennessee Projects: Nantahala, Thorpe, Fontana, and Chilhowee	42			38		Pine Flat (FI)	72	64 77 77	58 80 53	25 69 68	1,001,000 2,438,000 1,036,000
Lakes (FPR)	1	47		45	1,478,000	Millerton Lake (FI)	62 45 81	85 31 77	88	68 77 52 76	1,600,000 503,200 4,377,000
Chippewa and Flambeau (PR) Wisconsin River (21 reservoirs) (PR)	81 35	59 25	27 19	84 55	365,000 399,000	CALIFORNIA—NEVADA Lake Tahoe (IPR)				32	744,600
MINNESOTA Mississippi River headwater system (FMR)	. 25	22	18	28	1,640,000	Rye Patch (I)	. 32	75	63	31	194,300
NORTH DAKOTA Lake Sakakawea (Garrison) (FIPR)	. 74	84	80	78	22,700,000	ARIZONA—NEVADA Lake Mead and Lake Mohave (FIMP)	. 94	94	70	94	27,970,000
SOUTH DAKOTA Angostura (I)	. 70	94 74 72 83	74 54 77	69 68 67	185 200	ARIZONA San Carlos (IP) Salt and Verde River system (IMPR)	. 60			58 84	935,10 2,019,10
Belle Fourche (I). Lake Francis Case (FIP). Lake Oahe (FIP). Lake Sharpe (FIP). Lewis and Clark Lake (FIP).	73 73 84 102 87	100 78	99	67 81 104 98	1,097,000	Conchas (FIR)	. 88			88 95	

^al acre-foot = 0.04356 million cubic feet = 0.326 million gallons = 0.504 cubic feet per second day.

Thousands of kilowatt-hours (the potential electric power that could be generated by the volume of water in storage).

GROUND-WATER CONDITIONS DURING FEBRUARY 1988

Ground-water levels rose seasonally in most of the central and western parts of the Northeast. (See map.) Elsewhere in the region, levels generally remained about the same or declined slightly. Levels rose slightly on Long Island, New York, but remained below average. Levels near the end of the month were below average also in eastern Maine and in most of Maryland and Delaware. Levels were above average in parts of central and southern New England. Levels were the highest for February in two key observation wells: one in northeastern Massachusetts (52 years of record); and one in northeastern Rhode Island (42 years of record).

In the Southeastern States, ground-water levels rose in Louisiana and Mississippi. Net changes in levels were mixed in Kentucky, West Virginia, Virginia, North Carolina, and Georgia. Water levels were above long-term averages in Kentucky and North Carolina, and below average in Arkansas and Louisiana. Levels were mixed with respect to average in West Virginia and Virginia. New low levels for February occurred in the key well in Memphis, Tennessee, and in the Cockspur Island well in the Savannah area of Georgia. A new February low occurred also in the Stuttgart well in Arkansas, despite a net rise of nearly 6 feet during the month.

In the central and western Great Lakes States, ground-water levels rose in Indiana and Ohio, declined in Minnesota, and changed variably in Michigan and Iowa.

Map showing ground-water storage near end of February and change in ground-water storage from end of January to end of February.

MONTHEND GROUND-WATER LEVELS IN KEY WELLS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates average of monthly levels in previous years. Heavy line indicates level for current period.

J F MA MJ J A SO ND J F MA M J J A S ON D J F W

1987

1988

1986

Levels were in the normal range in Indiana, and normal and below average in Ohio. Levels were mixed with respect to average in Michigan and Iowa, and below average in Minnesota. A new high level for February occurred in the key well at Princeton, Illinois, despite a net decline of more than a foot during the month.

In the Western States, ground-water levels generally declined in Idaho and North Dakota. Mixed water-level changes occurred in Washington, Nebraska, southern California, Nevada, Utah, Kansas, Arizona, New Mexico, and Texas. Water levels were above long-term averages in Nebraska, and below average in Arizona and in most of the key wells in Idaho. Levels were mixed with respect

to average in Washington, North Dakota, southern California, Nevada, Utah, Kansas, New Mexico, and Texas. A new February high level occurred in the Dunning well in Nebraska. New all-time high levels were reached in the Steptoe Valley well in Nevada (38 years of record), and in the Berrendo-Smith key well in New Mexico (22 years of record). A new February low level occurred in the Las Vegas Valley well in Nevada. Despite net rises during the month, new February lows also occurred in the Holladay well in Utah, in the Kansas Agricultural Experiment Station key well in Colby, Kansas, and in the key well in the El Paso area in western Texas.

Provisional data; subject to revision

WATER LEVELS IN KEY OBSERVATION WELLS IN SOME REPRESENTATIVE AQUIFERS IN THE CONTERMINOUS UNITED STATES-FEBRUARY 1988

	Water level in feet with ref- erence to land-	Departure from average	Net chang level in fe		Year records began	
Aquifer and Location	surface datum	in feet	Last month	Last year		Remarks
Glacial drift at Hanska, south-central Minnesota	-14.05	-5.17	-0.93	-7.23	1942	
Glacial drift at Roscommon in north-central part of Lower Peninsula, Michigan.	-4.84	+0.12	+0.17	-0.03	1935	
Glacial drift at Marion, Iowa	-4.08	+1.71	-1.25	+0.52	1941	
Glacial drift at Princeton in northwestern Illinois	-5.85	+6.46	-1.15	+2.5	1943	Feb. high.
Petersburg Granite, southeastern Piedmont near Fall Zone, Colonial Heights, Virginia.	-15.32	-0.56	+1.48	-2.63	1939	
Glacial outwash sand and gravel, Louisville, Kentucky (U.S. well no. 2).	-19.62	+5.54	-0.33	-0.99	1946	
500-foot sand aquifer near Memphis, Tennessee (U.S. well no. 2).	-106.04	-16.49	-0.48	-0.60	1941	Feb. low.
Weathered granite, Mocksville area, Davie County, western Piedmont, North Carolina.	-17.60	+1.92	0.0	-0.09	1932	
Sparta Sand in Pine Bluff industrial area, Arkansas	-234.10	-25.97	-2.60	-3.65	1958	
Eutaw Formation in the City of Montgomery, Alabama (U.S. well no. 4).	-25.4	+3.3	+3.3	-2.6	1952	
Limestone aquifer on Cockspur Island, Savannah area, Georgia (U.S. well no. 6).	-34.53	-8.66	-0.21	-3.25	1956	Feb. low.
Sand and gravel in Puget Trough, Tacoma, Washington.	-102.86	+4.94	+0.33	-2.20	1952	
Pleistocene glacial outwash gravel, North Pole, northern Idaho (U.S. well no. 3).	-467.7	-5.8	-0.9	-2.6	1929	
Snake River Group: Snake River Plain Aquifer, at Eden, Idaho (U.S. well no. 4).	-123.5	-3.1	-1.4	-2.1	1957	
Alluvial valley fill in Flowell area, Millard County, Utah (U.S. well no. 9).	-15.62	+8.18	+0.48	-8.90	1929	
Alluvial sand and gravel, Platte River Valley, Ashland, Nebraska (U.S. well no. 6).	-5.08	+0.18	-0.23	-1.33	1935	
Alluvial valley fill in Steptoe Valley, Nevada	-6.55	+5.83	+0.25	+0.34	1950	All-time high
Pleistocene terrace deposits in Kansas River valley, at Lawrence, northeastern Kansas.	-20.34	+0.74	-0.13	-2.82	1953	
Alluvium and Paso Robles clay, sand, and gravel, Santa Maria, California.	-129.25	+14.05	-2.67	+3.05	1957	
Valley fill, Elfrida area, Douglas, Arizona (U.S. well no. 15).	-102.2	-21.9	+0.1	+0.4	1951	
Hueco bolson, El Paso area, Texas	-266.42	-19.20	+0.47	-1.63	1965	Feb. low.
Evangeline aquifer, Houston area, Texas		+1.03	+4.26	+16.16	1965	

(From Weekly Weather and Crop Bulletin prepared and published by the NOAA/USDA Joint Agricultural Weather Facility)

NATIONAL WATER CONDITIONS

FEBRUARY 1988

Based on reports from the Canadian and U.S. Field offices; completed March 21, 1988

TECHNICAL STAFF Thomas G. Ross, Editor Carroll W. Saboe John C. Kammerer Allen Sinnott Krishnaveni V. Sarma

COPY PREPARATION

Carole J. Marlow

GRAPHICS

Krishnaveni V. Sarma Carole J. Marlow

The National Water Conditions is published monthly. Subscriptions are free on application to the U.S. Geological Survey, 419 National Center, Reston, VA 22092.

EXPLANATION OF DATA (Revised January 1988)

Cover map shows generalized pattern of streamflow for the month based on provisional data from 183 index gaging stations--18 in Canada, 163 in the United States, and 2 in the Commonwealth of Puerto Rico. Alaska, Hawaii, and Puerto Rico inset maps show streamflow only at the index gaging stations that are located near the point shown by the arrows. Classifications on map are based on comparison of streamflow for the current month at each index station with the flow for the same month in the 30-year reference period, 1951-80. Shorter reference periods are used for one Canadian index station, two Kansas index stations, one New York index station, and the Puerto Rico index stations because of the limited records available.

The persistence/change map shows where streamflow has persisted in the above- or below-normal range from last month to this month and also where streamflow is in the above- or below-normal range this month after being in a different range last month. The pie charts show percent of stations reporting discharges in each flow range for the conterminous United States, southern Canada, the two areas combined, and also the percent of area in each flow range for the conterminous United States and southern Canada. The bar graph shows total mean and total median flow for all reporting stations in the conterminous United States and southern Canada.

The comparative data are obtained by ranking the 30 flows for each month of the reference period in order of decreasing magnitude--the

highest flow is given a ranking of 1 and the lowest flow is given a ranking of 30. Quartiles (25-percent points) are computed by averaging the 7th and 8th highest flows (upper quartile). 15th and 16th highest flows (middle quartile and median), and the 23rd and 24th highest flows (lower quartile). The upper and lower quartiles set off the highest 25 percent of flows, respectively, for the reference period. The median (middle quartile) is the middle value by definition. For the reference period, 50 percent of the flows are greater than the median, 50 percent are less than the median, 50 percent are between the upper and lower quartiles (in the normal range), 25 percent are greater than the upper quartile (above normal), and 25 percent are less than the lower quartile (below normal). Flow for the current month is then classified as: above normal if it is greater than the upper quartile, in the normal range if it is between the upper and lower quartiles, and below normal if it is less than the lower quartile. Change in flow from the previous month to the current month is classified as seasonal if the change is in the same direction as the change in the median. If the change is in the opposite direction of the change in the median, the change is classified as contraseasonal (opposite to the seasonal change). For example: at a particular index station, the January median is greater than the December median; if: flow for the current January increased from December (the previous month), the increase is seasonal; if flow for the current January decreased from December, the decrease is contraseasonal.

Flood frequency analyses define the relation of flood peak magnitude to probability of occurrence or recurrence interval. Probability of occurrence is the chance that a given flood magnitude will be exceeded in any one year. Recurrence interval is the reciprocal of probability of occurrence and is the average number of years between occurrences. For example, a flood having a probability of occurrence of 0.01 (1 percent) has a recurrence interval of 100 years. Recurrence intervals imply no regularity of occurrence, a 100-year flood might be exceeded in consecutive years or it might not be exceeded in a 100-year period.

Statements about ground-water levels refer to conditions near the end of the month. The water level in each key observation well is compared with average level for the end of the month determined from the 30-year reference period, 1951-80, or from the entire past record for that well when only limited records are available. Comparative data for ground-water levels are obtained in the same manner as comparative data for streamflow. Changes in ground-water levels, unless described otherwise, are from the end of the previous month to the end of the current month.

Dissolved solids and temperature data for February are given for five stream-sampling sites that are part of the National Stream Quality Accounting Network (NASQAN). Dissolved solids are minerals dissolved in water and usually consist predominately of silica and ions of calcium, magnesium, sodium, potassium, carbonate, bicarbonate, sulfate, chloride, and nitrate. Dissolved-solids discharge represents the total daily amount of dissolved minerals carried by the stream. Dissolved-solids concentrations are generally higher during periods of low streamflow, but the highest dissolved-solids discharges occur during periods of high streamflow because the total quantities of water, and therefore total load of dissolved minerals, are so much greater than at times of low flow.

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY
NATIONAL CENTER, STOP 419
RESTON, VIRGINIA 22092

OFFICIAL BUSINESS

Return this sheet to above address, if you do NOT wish to receive this material , or if change of address is needed (indicate change, including ZIP code).

U.S. DEPARTMENT OF THE INTERIOR

FIRST CLASS

SPECIAL PROCESSING DEPT MARCIA KOZLOWSKI XEROX/UNIVERSITY MICROFILMS ANN ARBOR, MI 48106

