

Principals and Elementary Models

Franck JAOTOMBO

Session 6 – Gradient Descent

How do we minimize Loss in Machine Learning

Course Architecture

Grades

Grades: extra 10-20% bonus points

- You may be in one or several of the following cases:
 - You love challenges and excellence
 - You already have a good background in Python / Machine Learning
 - You want to tackle a real-life problem head on and hone your skills in doing so
 - You love Coding / Machine Learning
- Then you may ask optional topics and subjects which will yield as many as 20% of extra points
 - So, in short if you take this option, you will be graded on 110-120 points over 100
 - Come and see me if you are interested, we will select something for you
 - Please, do not consider this option unless you are confident that you can really do well on the other parts of the class

Rules 1

Attendance

- One seriously justified missed class may be tolerated: beyond = FAIL course
- On campus attendance is the rule not online

Quizzes

- Quizzes are to be taken in class only not remotely
- Missing a quiz = 0

Homework

- Each homework is to be submitted individually and on time
- Failing to submit a homework = 0

Rules 2

Group Presentations

- Every team member must be able to explain each part of the project (code and concepts)
 - I will interrogate each of you on differents parts of the code and of the theoretical concepts
- The Project report is graded as a group work (20% of the final grade)
- The Presentation is graded individually (20% of the final grade)
- There is a bonus for having fun
- There is a bonus for asking good questions

Plagiarism

- The individual homeworks are *individual* ...!
- Plagiarism: 0 for the related works + possible disciplinary board
- Using Generative AI & Large Language Model (ChatGPT or else)
 - I have nothing against it, however it must be acknowledged
 - Please mention it in the introduction of the related work or as a disclaimer

Gradient Descent: general concept

Algorithm

- Given a learning rate $\alpha > 0$ and a Loss $\mathcal{L}(\boldsymbol{a})$
- Repeat until convergence:

$$a_j \leftarrow a_j - \alpha \frac{\partial \mathcal{L}(\boldsymbol{a})}{\partial a_j}$$

Where : $a = (a_0, ..., a_p)$

Gradient Descent: linear regression

Loss function for Linear Regression

$$h(X) = a_0 + a_1 X_i^1 + \dots + a_p X_i^p$$

$$\mathcal{L}(\boldsymbol{a}) = \frac{1}{2n} \sum_{i=1}^{n} [y - h(\boldsymbol{X})]^2$$

Gradient Descent in Action

Gradient Descent for Logistic Regression

Loss Function

$$h(X) = a_0 + a_1 X_i^1 + \dots + a_p X_i^p$$

$$\pi(x) = \sigma(\mathbf{X}\mathbf{a}) = \frac{1}{1 + e^{-h(\mathbf{X})}}$$

$$\mathcal{L}(\boldsymbol{a}) = \frac{1}{n} \sum_{i=1}^{n} [y_i \ln \pi_i(x) + (1 - y_i) \ln(1 - \pi_i(x))]$$

