Zarządzanie ruchem i jakością usług w sieciach komputerowych

Część 1 wykładu

SKO2

Mapa wykładu

- Wprowadzenie
 - o 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- □ Techniki QoS
 - O ATM
 - IEEE 802.1D
 - Integrated Services i Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii

Mapa wykładu

- Wprowadzenie
 - o 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- Techniki QoS
 - O ATM
 - Wstęp do sieci ATM
 - Adresowanie, sygnalizacja i kontrola dopuszczania połączeń w ATM
 - Ruting w ATM
 - Egzekwowanie kontraktu ruchowego w ATM
 - Zarządzanie ruchem i kontrola przeciążenia w ATM
 - Intersieci IP/ATM
 - IEEE 802.1D
 - Integrated Services i Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii

Egzekwowanie kontraktu

- Egzekwowanie kontraktu: wymuszanie, by ruch był zgodny z kontraktem
 - o ang. Traffic Shaping, policing
- Leaky bucket
- Algorytm ogólnej prędkości wysyłania komórek
 (ang. Generic Cell Rate Algorithm, GCRA)
- Wymagane dla algorytmu GCRA:
 - Alogrytm wirtualnego szeregowania
 - Algorytm leaky bucket

Egzekwowanie kontraktu

- Wykonywane na brzegu sieci
- □ Korzysta z parametrów kontraktu ruchowego, utworzonego przy tworzeniu połączenia przez UNI
 - Peak Cell Rate (PCR)
 Górne ograniczenie prędkości, z jaką ruch może być przesyłany przez połączenie
 - Sustainable Cell Rate (SCR)
 Górne ograniczenie średniej prędkości, z jaką ruch może być przesyłany przez połączenie
 - Maximum Burst Size (MBS)
 Maksymalna liczba komórek, które mogą być przesłane z prędkością PCR
 - Minimum Cell Rate
 Minimalna prędkość przesyłania ruchu przez połączenie
 - O PCR i SCR są mierzone w komórkach/sekundę

Egzekwowanie kontraktu

Parametry QoS w ATM

- Oprócz parametrów opisujących ruch (PCR, SCR, MBS, MCR) w ATM używane są parametry opisujące jakość komunikacji:
 - Cell Loss Rate (CLR) stosunek liczby utraconych komórek do liczby transmitowanych komórek
 - Maximum Cell Transfer Delay (maxCTD) najgorsze opóźnienie koniec-koniec
 - Peak-to-Peak Cell Delay Variation (CDV) zakres zmienności opóźnień

Leaky Bucket

- Służy do kształtowania ruchu
 - wchodzący ruch jest nieregularny
 - wychodzący ruch ma kontrolowaną prędkość
- Wymusza przestrzeganie zasad
 - użytkownicy będą wysyłali ruch z prędkością w ustalonym zakresie
- Ruch przekraczający kontrolowaną prędkość jest odrzucany lub wysyłany dalej z CLP=1

Algorytm GCRA

- Generic Cell Rate Algorithm: GCRA(I, L)
 - t(k): czas przybycia k-tej komórki
 - TAT: teoretyczny (przewidywany) czas przybycia

Algorytm CDMA z dziurawym kubełkiem

- □ GCRA(I, L) można implementować za pomocą "leaky bucket"
- Na początku, kubełek jest pusty

Wymuszanie PCR

□ Do wymuszania PCR służy GCRA (1/PCR, 0)

Wymuszanie PCV z CDV

Do wymuszania PCR z CDV służy GCRA(1/PCR, CDVT)

Wymuszanie SCR i MBS

- □ Do wymuszania SCR i MBS służy GCRA(1/SCR, BT)
- \square BT = (MBS-1) (1/SCR 1/PCR)

Wymuszanie wszystkich parametrów

- Wykonywane przez kilka równoległych kubełków
- Kształtowanie ruchu następuje oddzielnie dla komórek CLP=0 i CLP=1
 - jeśli komórka jest niezgodna z profilem dla CLP=0, to ustawiamy CLP=1 i sprawdzamy drugi profil
 - jeśli komórka jest niezgodna z profilem dla CLP=1, to jest odrzucana

Mapa wykładu

- Wprowadzenie
 - o 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- Techniki QoS
 - O ATM
 - Wstęp do sieci ATM
 - Adresowanie i sygnalizacja w ATM
 - Ruting w ATM
 - Kształtowanie ruchu w ATM
 - Zarządzanie ruchem i kontrola przeciążenia w ATM
 - Intersieci IP/ATM
 - IEEE 802.1D
 - Integrated Services i Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii

Zarządzanie ruchem i kontrola przeciążenia w ATM

- Czy w przyszłości nadal będziemy się zajmować przeciążeniem?
- □ Kontrola przeciążenia w ATM
- □ Rola sieci w kontroli przeciążenia
- □ Zarządzanie ruchem dla usługi ABR

Dlaczego przeciążenie jest problemem?

- Pytanie: Czy problem przeciążenia będzie rozwiązany, gdy:
 - o pamięć stanie się tania (nieskończone bufory)
 - łącza staną się tanie (superszybkie łącza)
 - o procesory stana się tanie?
- Odpowiedź: w żadnym wypadku.

Dlaczego przeciążenie jest problemem?

- Przeciążenie jest problemem powstającym dynamicznie
 - statyczne rozwiązania są niewystarczające
- Zwiększanie przepustowości sieci prowadzi do zmniejszenia równowagi w sieci
- □ Brak miejsca w buforach jest symptomem, a nie przyczyną przeciążenia

Ekonomiczne przyczyny przeciążenia

- Sieci są współdzielonym zasobem
 - ponieważ są drogie i używane raz na jakiś czas (jak samoloty, szpitale)
- □ Większość kosztów jest stała
 - koszty światłowodów, przełączników, instalacji i utrzymania nie zależą od ich wykorzystania
 - o z tego powodu, zbyt małe wykorzystanie jest drogie
- Lecz zbyt duże wykorzystanie (przeciążenie)
 prowadzi do zmniejszenia zadowolenia klientów
- Potrzebny jest sposób na utrzymywanie sieci w stanie bliskim maksymalnego wykorzystania

Rola sieci w kontroli przeciążenia

- □ Explicit Congestion Notification, ECN
 - o przełączniki udostępniają informację zwrotną hostom
 - host dostosowuje swoją prędkość na podstawie informacji zwrotnej uzyskanej z sieci
- □ Porównajmy z TCP:
 - o brak informacji o przeciążeniu od sieci IP
 - obserwacje przeciążenia na podstawie strat i opóźnień w systemach końcowych
 - o złożone algorytmy estymacji czasu RTT
 - złożony algorytm z ruchomym oknem wykorzystujący straty

Studium przypadku: kontrola przeciążeń w usłudze ABR sieci ATM

ABR: available bit rate:

- "usługa elastyczna"
- jeśli ścieżka nadawcy jest "niedociążona":
 - nadawca powinien używać dostępną przepustowość
- jeśli ścieżka nadawcy jest przeciążona:
 - nadawca jest ograniczany do minimalnej gwarantowanej przepustowości

Komórki RM (resource management):

- wysyłane przez nadawcę, przeplatane z komórkami danych
- bity w komórce RM ustawiane przez przełączniki sieci ("z pomocą sieci")
 - bit NI: nie zwiększaj szybkości (lekkie przeciążenie)
 - bit CI: wskazuje na przeciążenie
- komórki RM zwracane są do nadawcy przez odbiorcę bez zmian

Studium przypadku: kontrola przeciążeń w usłudze ABR sieci ATM

- dwubajtowe pole ER (explicit rate) w komórce RM
 - o przeciążony switch może zmniejszyć wartość ER w komórce
 - 🔾 z tego powodu, nadawca ma minimalną dostępną przepustowość na ścieżce
- bit EFCI w komórkach danych: ustawiany na 1 przez przeciążony switch
 - jeśli komórka danych poprzedzająca komórkę RM ma ustawiony bit EFCI, odbiorca ustawia bit CI w zwróconej komórce RM

Mapa wykładu

- Wprowadzenie
 - o 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- Techniki QoS
 - O ATM
 - Wstęp do sieci ATM
 - Adresowanie i sygnalizacja w ATM
 - Ruting w ATM
 - Kształtowanie ruchu w ATM
 - Zarządzanie ruchem i kontrola przeciążenia w ATM
 - Intersieci IP/ATM
 - IEEE 802.1D
 - Integrated Services i Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii

Intersieci IP/ATM

- W jaki sposób można łączyć sieci IP z sieciami ATM?
 - o nie zastępując istniejącej infrastruktury?
- Jest kilka możliwych odpowiedzi
 - w sieciach LAN: standardy LANE oraz MPOA
 - w sieciach WAN: standard IP over ATM
 - zastapienie protokołów ATM przez IP
 - zachowując te same urządzenia: switch ATM staje się ruterem IP
 - przypomnijcie sobie model partnerski dla sieci ATM...
- □ Jak zastapić protokoły ATM przez IP?
 - IP Switching
 - Tag Switching
 - MPLS ale o tym mowa później..

LAN Emulation (LANE)

- □ Standard LANE sieć ATM jako sieć lokalna
 - o połączenie ATM z Ethernet/Token Ring
 - użycie wyłącznie AAL5 rezygnacja z QoS (LANE 1.0)
 - o zarządzanie siecią w architekturze klient/serwer
 - o połączenia kontrolne
 - odwzorowanie adresów MAC na adres ATM
 - prefix ATM (13B) + MAC (6B) + 1B = adres ATM (20B)
- ☐ Kilka wersji standardu
 - LANE 1.0
 - LANE 2.0
 - · umożliwia użycie ABR
 - dodaje komunikację multicast
 - MPOA

Model warstwowy LANE

Architektura LANE (1.0)

- □ Klient: LAN Emulation Client (LEC)
 - o komunikacja danych z innymi klientami LEC
 - o rejestracja w serwerze LES
- □ Serwer: LAN Emulation Server (LES)
 - rejestracja klientów LEC
 - o utrzymywanie odwzorowania adresów MAC na ATM
- □ Serwer konfiguracyjny: LAN Emulation Configuration Server (LECS)
 - o działa na domyślnym adresie
 - o zna adresy serwerów LES i BUS, informacje o sieci ELAN
- Serwer broadcastowy: Broadcast and Unknown Server (BUS)
 - o gdy nie znamy adresu ATM dla danego adresu MAC

Architektura LANE (1.0)

□ Kanały sterujące

Architektura LANE (1.0)

□ Kanały komunikacji danych

MultiProtocol Over ATM (MPOA)

- "Przełączniki warstwy 3" (ang. L3 switch)
 - o rutujemy pierwszy pakiet "przepływu"
 - pozostałe pakiety przepływu są przełączane tak, jak wskazał pierwszy pakiet
- □ MPOA 1.1 (1999)
 - o funkcjonalność przełącznika warstwy 3 dla sieci LANE
 - o nadbudowa nad LANE 2.0 (uzupełnienie standardu)
 - o klient MPOA: funkcje przełącznika w. 3
 - o serwer MPAO: funkcje rutingu między sieciami LANE
- MPOA zapewnia:
 - bardziej wydajną komunikację między sieciami LANE
 - jeśli ruch pomiędzy sieciami LANE jest w jednej sieci ATM, to zostanie utworzone połączenie VCC skracające drogę dla tego ruchu z pominięciem rutingu IP

- Serwer MPOA umożliwia skrócenie drogi
 - o przez utworzone specjalnie VCC

IP over ATM

- Standard LANE stosuje się w sieciach lokalnych
- Standard IP over ATM dotyczy sieci rozległych
 - odwzorowanie pakietów IP na komórki ATM (RFC 1483)
 - odwzorowanie adresów ATM na adresy IP (RFC 2225)
- W sieci ATM definiowane są logiczne podsieci IP
 - LIS (ang. Logical IP Subnetwork)
 - o sieć lokalna, w której można używać protokołu IP
 - hosty podłączone do różnych LIS muszą komunikować się za pośrednictwem rutera
- □ IP over ATM nie pozwala na używanie QoS ATM
 - stosowana jest AAL5

- Odwzorowanie pakietów IP na komórki ATM
 - Komórki ATM mają stałą długość, zaś pakiety IP zmienną
 - enkapsulacja pakietów LLC/SNAP (RFC 1453)

Pakiet <i>IP over ATM</i>	0xAA-AA-03 3 B	LLC
	0x00-00-00 3 B	OUI
	0x-08-00 2 B	Ether Type
	do 9 kB	IP PDU
Dane generowane przez AAL5	0 - 47 B	PAD
	1 B	CPCS-UU
	1 B	CPI
	2 B	Length
	4 B	CRC

IP over ATM - 3

- Odwzorowanie adresów
 - po procesie zestawienia połączenia, adres IP jest mapowany na identyfikator wirtualnego połączenia
 - O IP -> ATM: ATMARP
 - ATM -> AP: InATMARP
 - o w klasycznym ARP, żądanie jest wysyłane przez broadcast
 - o w ATMARP, żądanie wysyłane jest do serwera ARP
 - o dla połączeń PVC: wystarczy statyczna konfiguracja
 - na stałe można przypisać adresy IP do identyfikatorów wirtualnych połączeń

IP Switching

- □ Zaproponowane przez firmę Ipsilon
- Już testowane w praktyce
- Podstawowa innowacja: Zdefiniowano protokół zarządzania przełącznikiem ATM (GSMP) oraz protokół tworzący odwzorowania etykiet zwany Ipsilon Flow Management Protocol (IFMP)
- □ Protokół General Switch Management Protocol (GSMP) - pozwala na zarządzanie przełącznikiem ATM przez "kontroler IP przełącznika"

Przeglad IP Switching

- □ IP over ATM jest złożone i niewydajne potrzeba dwóch warstw sieci
 - sygnalizacja i ruting ATM
 - o ruting IP routing i tłumaczenie adresów
- W porównaniu, IP Switching używa
 - IP oraz protokołu odwzorowywania etykiet
 - o całkowicie eliminuje warstwę ATM
- Cel: Zintegrowanie przełączników ATM z rutingiem IP w prosty i wydajny sposób
 - Rezygnacja z QoS
- □ Tworzenie etykiet: sterowane przepływem danych

Mapa wykładu

- Wprowadzenie
 - o 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- □ Techniki QoS
 - O ATM
 - IEEE 802.1D
 - Integrated Services i Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii