Predicting Housing Prices - Project Proposal

Sabarinath Suriyamurthy (ss120), Sudha Natarajan (Sudha2), Raghav Rama (RR26)

7/6/2021

Contents

Introduction	1
Dataset	1
Motivation	2
Credits	2

Introduction

We propose to create a linear model that can predict residential home prices in Melbourne (Australia) based on several explanatory variables. This project is a practical example of using real world data that consists of a mix of different data types - nominal, ordinal, discrete, and continuous variables.

Our final project will incorporate the following topics covered in STAT420 Course:

- Data cleansing
- Variable manipulation
- Outlier identification
- Data analysis and interpretation
- Model building
- Model evaluation

Dataset

We're using the Melbourne Housing Prices dataset from the following Kaggle site: https://www.kaggle.com/anthonypino/melbourne-housing-market. This data pertains to the houses found in a given Melbourne (coastal capital of the southeastern Australian state of Victoria) area containing data from year 2016 to 2018.

Data Snippet

Here is a snippet of data with only first 10 columns considered.

Suburb	Address	Rooms	Type	Price	Method	SellerG	Date	Distance	Postcode
Abbotsford	68 Studley St	2	h	NA	SS	Jellis	3/09/2016	2.5	3067
Abbotsford	85 Turner St	2	h	1480000	\mathbf{S}	Biggin	3/12/2016	2.5	3067
Abbotsford	25 Bloomburg St	2	h	1035000	\mathbf{S}	Biggin	4/02/2016	2.5	3067
Abbotsford	18/659 Victoria St	3	u	NA	VB	Rounds	4/02/2016	2.5	3067
Abbotsford	5 Charles St	3	h	1465000	SP	Biggin	4/03/2017	2.5	3067
Abbotsford	40 Federation La	3	h	850000	PΙ	Biggin	4/03/2017	2.5	3067

Data Description

The raw dataset contains **34857** observations and **21** variables (X predictors and X response). Below is a list of few variables with descriptions taken from the original Kaggle site given above.

- Rooms: Number of rooms
- Price: Price in dollars
- Method: S property sold; SP property sold prior; PI property passed in; PN sold prior not disclosed; SN sold not disclosed; NB no bid; VB vendor bid; W withdrawn prior to auction; SA sold after auction; SS sold after auction price not disclosed. N/A price or highest bid not available.
- **Type**: br bedroom(s); h house,cottage,villa, semi,terrace; u unit, duplex; t townhouse; dev site development site; o res other residential.
- SellerG: Real Estate Agent
- Date: Date sold
- Distance: Distance from CBD
- Suburb: Suburb
- Address: House Address
- Regionname: General Region (West, North West, North, North east . . . etc)
- **Propertycount**: Number of properties that exist in the suburb.
- **Bedroom2**: # of Bedrooms
- Bathroom: Number of Bathrooms
- Car: Number of carspots
- Landsize: Land Size
- BuildingArea: Building Size
- CouncilArea: Governing council for the area

Requested Criteria

- A minimum 2000 observations
- At least 10 variables
- A numeric response variable Price
- At least one categorical predictor- Type
- At least two continuous numeric predictors Landsize & Propertycount

Motivation

- Hands on experince with real life datasets.
- Practice with all techniques learnt in STAT420 course.
- Discover how applied statistics can help us answer Housing price prediction.

Credits

• Anthony Pino - Melbourne Housing Dataset