1 | Типовой расчет

Задача 1

Найти все целочисленные решения уравнения $ax^k - by^k = 1$, или доказать, что их нет.

N	a	b	k	N	a	b	k	N	a	b	k
1	3	14	2	9	10	11	2	17	13	10	2
2	13	5	1	10	19	14	1	18	24	13	1
3	13	5	2	11	11	14	2	19	13	14	2
4	16	9	1	12	19	15	1	20	24	17	1
5	5	17	2	13	10	7	2	21	13	16	2
6	17	12	1	14	23	17	1	22	24	19	1
7	6	17	2	15	13	7	2	23	19	7	2
8	17	14	1	16	23	19	1	24	27	16	1
								25	2	13	2

Задача 2

Найти в Z_n все решения уравнения $ax^k+b=c,$ или доказать, что их нет.

N	a	b	С	n	k	N	a	b	С	n	k
1	9	15	4	19	1	13	8	13	3	17	1
2	1	9	3	19	2	14	1	8	6	16	2
3	8	5	2	19	1	15	9	10	7	16	1
4	1	8	6	19	2	16	1	14	3	16	2
5	5	16	2	18	1	17	13	8	7	16	1
6	1	11	3	18	2	18	1	10	5	15	2
7	13	16	8	18	1	19	11	14	2	15	1
8	1	12	1	18	2	20	1	13	4	15	2
9	6	9	5	17	1	21	3	10	4	14	1
10	1	10	8	17	2	22	1	9	6	14	2
11	7	9	4	17	1	23	9	6	2	14	1
12	1	7	3	17	2	24	1	8	2	14	2
						25	8	7	3	13	1

Задача 3

Доказать, что данное подмножество $H \subset \mathbb{Z}_n$ является группой по умножению. Найти ее порядок. Представить ее в виде произведения циклических групп.

N	Н	n	N	Н	n	N	Н	n
1	A	11	9	C	20	17	A	26
2	B	12	10	A	12	18	A	16
3	B	17	11	B	13	19	\overline{A}	22
4	A	7	12	B	8	20	A	18
5	C	24	13	C	30	21	A	20
6	A	14	14	C	16	22	A	8
7	A	13	15	A	24	23	A	30
8	A	15	16	A	10	24	A	9
			26	B	16	25	B	15

Подмножество Н:

A: Все обратимые элементы в кольце \mathbb{Z}_n

B: Все решения уравнения $x^4 = 1$ в кольце \mathbb{Z}_n

C: Все решения уравнения $x^2=1$ в кольце \mathbb{Z}_n

Задача 4

Перечислить возможно большее число неизоморфных групп порядка N_1 и N_2 . Доказать, что перечисленные группы попарно не изоморфны.

N	N_1	N_2	N	N_1	N_2	N	N_1	N_2
1	5	28	9	13	20	17	21	16
2	6	26	10	14	19	18	22	15
3	7	27	11	15	18	19	23	10
4	8	23	12	16	17	20	24	7
5	9	22	13	17	12	21	25	14
6	10	25	14	18	11	22	26	9
7	11	24	15	19	8	23	27	4
8	12	21	16	20	5	24	28	13
						25	29	6

Задача 5

Доказать, что отображение φ абелевой группы $G=Z_a\times Z_b$ в себя, задаваемое формулой $\varphi(x)=cx$, является гомоморфизмом. Найти его ядро и образ. Найти факторгруппу $G/Ker\varphi$.

N	a	b	С	N	a	b	c	N	a	b	c
1	4	6	3	9	3	15	5	17	4	14	2
2	5	35	7	10	25	10	5	18	4	10	2
3	9	6	2	11	4	14	14	19	4	14	4
4	2	14	7	12	9	15	15	20	25	10	10
5	2	10	5	13	3	6	2	21	9	15	5
6	25	10	2	14	9	6	3	22	25	10	25
7	4	10	5	15	4	6	2	23	3	15	3
8	4	14	7	16	2	6	3	24	5	35	5
								25	9	15	3

Задача 6

- 1) Пусть $G \subseteq S_n$ подгруппа, порожденная перестановками α и β . Найти |G|. Коммутативна ли она? Какой из известных вам групп она изоморфна?
- 2) Является ли подгруппа группы G, порожденная элементом α , нормальной подгруппой? Если да, найти фактор-группу по ней.
- 3) То же задание для подгруппы, порожденной элементом β .

N	n	α	β	N	n	α	β
1	8	(1326)(4578)	(1427)(3865)	13	6	(132)	(645)
2	7	(134)	(567)	14	5	(25)(34)	(12)(35)
3	5	(12345)	(25)(34)	15	6	(162)(345)	(62)(34)
4	9	(12345)	(67)	16	6	(123456)	(14)(25)(36)
5	5	(12345)	(14253)	17	8	(1234)(57)	(68)
6	6	(1234)(56)	(13)	18	7	(64125)	(65)(24)(37)
7	8	(123)(456)	(78)	19	8	(12345678)	(14)(58)(23)(67)
8	5	(12345)	(13524)	20	9	(12345)	(67)(89)
9	6	(1243)	(14)(56)	21	5	(453)	(45)(12)
10	5	(15)	(53)(24)	22	6	(1234)	(13)(24)(65)
11	9	(4753)(2196)	(4259)(7631)	23	6	(12356)	(32)(15)
12	7	(1234)(567)	(1432)	24	8	(14)(7865)	(5687)
26	6	(123)(56)	(23)(56)	25	9	(123)(456)	(798)

Задача 7

Пусть G множество матриц $A \in GL(n, \mathbb{Z}_p)$, удовлетворяющих указанным условиям. Доказать, что G является группой относительно операции умножения матриц. Найти |G|. Коммутативна ли она? Какой из известных Вам групп она изоморфна?

N	n	р	Условие на матрицы А
1	2	3	Верхнетреугольные матрицы $A \in SL(2, \mathbb{Z}_3)$, т.е. $A =$
			$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, удовлетворяющие условию $\det(A)=1$.
2	2	5	Верхнетреугольные матрицы $A \in GL(2, \mathbb{Z}_5)$ вида $A =$
			$\left(\begin{array}{cc} \pm 1 & a \\ 0 & 1 \end{array}\right).$
3	2	3	Матрицы $A \in GL(2, \mathbb{Z}_3)$ вида $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$.
4	2	3	$O(2,\mathbb{Z}_3)$ — ортогональные матрицы $A\in GL(2,\mathbb{Z}_3)$, т.е.
			$AA^t = E$.
5	2	3	Верхнетреугольные матрицы $A \in GL(2, \mathbb{Z}_3)$, т.е. $A = \{1, 2, 3, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,$
			$\left(egin{array}{cc} a & b \\ 0 & c \end{array} \right)$.
6	2	7	Матрицы $A \in GL(2,\mathbb{Z}_7)$ вида $A = \left(egin{array}{cc} a & 0 \\ 0 & a \end{array} \right)$ или $A = \left(egin{array}{cc} a & 0 \\ 0 & a \end{array} \right)$
			$\left[\left(\begin{array}{cc} 0 & b \\ b & 0 \end{array} \right) .$
7	3	2	Верхнетреугольные матрицы $A \in GL(3, \mathbb{Z}_2)$, т.е. $A =$
			$\left[\begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix} \right].$
			` /

8	2	5	Матрицы $A \in SL(2,\mathbb{Z}_5)$ вида $A = \left(egin{array}{cc} a & 0 \\ 0 & b \end{array} \right)$ или $A = \left(egin{array}{cc} a & 0 \\ 0 & b \end{array} \right)$
			$\begin{pmatrix} 0 & c \\ d & 0 \end{pmatrix}$, т.е. $ab=1$ и $cd=-1$.
9	3	3	Верхнетреугольные матрицы $A \in GL(3, \mathbb{Z}_3)$ вида $A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}$.
10	2	5	Матрицы $A \in GL(2, \mathbb{Z}_5)$ вида $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$,
			удовлетворяющие условию $\det(A) = \pm 1$.
11	2	7	Матрицы $A \in SL(2,\mathbb{Z}_7)$ вида $A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$, т.е
12	3	2	удовлетворяющие условию $\det(A)=1$. $O(3,\mathbb{Z}_2)$ — ортогональные матрицы $A\in GL(3,\mathbb{Z}_2)$, т.е.
12	0		$AA^t = E$.
13	2	5	$O(2,\mathbb{Z}_5)$ — ортогональные матрицы $A\in GL(2,\mathbb{Z}_5)$, т.е. $AA^t=E$.
14	2	5	Матрицы $A \in GL(2,\mathbb{Z}_5)$ вида $A = \left(egin{array}{cc} a & 0 \\ 0 & a \end{array} \right)$ или $A = \left(egin{array}{cc} a & 0 \\ 0 & a \end{array} \right)$
			$\left[\left(\begin{array}{cc} 0 & b \\ b & 0 \end{array} \right).$
15	2	11	Матрицы $A \in SL(2,\mathbb{Z}_{11})$ вида $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, т.е
			удовлетворяющие условию $\det(A)=1$.
16	2	11	Верхнетреугольные матрицы $A \in GL(2,\mathbb{Z}_{11})$ вида
			$A = \begin{pmatrix} \pm 1 & a \\ 0 & 1 \end{pmatrix}.$
17	2	3	Матрицы $A \in GL(2,\mathbb{Z}_3)$ вида $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ или $=$
			$\left(egin{array}{cc} 0 & c \\ d & 0 \end{array} ight)$ т.е. $ab=1$ и $cd=1$.

18	2	7	Матрицы $A \in SL(2,\mathbb{Z}_7)$ вида $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, т.е
			удовлетворяющие условию $\det(A)=1$.
19	2	3	Верхнетреугольные матрицы $A \in GL(2,\mathbb{Z}_3)$ вида $A =$
			$\left(\begin{array}{cc} a & b \\ 0 & 1 \end{array}\right)$.
20	2	7	Верхнетреугольные матрицы $A \in GL(2,\mathbb{Z}_7)$ вида $A =$
			$(\pm 1 \ a)$
			$\left(\begin{array}{cc} \pm 1 & a \\ 0 & 1 \end{array} \right)$
			(a,b)
21	2	11	Матрицы $A \in SL(2,\mathbb{Z}_{11})$ вида $A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$, т.е
			удовлетворяющие условию det(A)=1.
22	4	2	Верхнетреугольные матрицы $A \in GL(4, \mathbb{Z}_2)$ вида $A =$
			$\int 1 \ a \ b \ c \setminus$
			$\begin{bmatrix} 1 & 0 & 1 & a & b \end{bmatrix}$
			$\begin{bmatrix} 1 & 0 & 0 & 1 & a \end{bmatrix}$.
			$\begin{pmatrix} 1 & a & b & c \\ 0 & 1 & a & b \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{pmatrix}.$
			/ 1 \
23	2	7	Матрицы $A \in SL(2,\mathbb{Z}_7)$ вида $A = \begin{pmatrix} a & b \\ 2b & a \end{pmatrix}$, т.е
0.4			удовлетворяющие условию det(A)=1.
24	2		Верхнетреугольные матрицы $A \in GL(2, \mathbb{Z}_7)$ вида $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
			$\left(\begin{array}{cc} \pm 1 & a \end{array}\right)$
			(0 1)
25	2	5	Верхнетреугольные матрицы $A \in GL(2, \mathbb{Z}_5)$ вида $A = $
			$\left \left(\begin{array}{cc} \pm 1 & a \end{array} \right) \right $
			$ \setminus 0 1 \int$
26	2	<u> </u>	$M_{\text{ACTIVITY}} A \subset SI(2,7)$
26	2	5	Матрицы $A \in SL(2,\mathbb{Z}_5)$ вида $A = \begin{pmatrix} a & b \\ 2b & a \end{pmatrix}$, т.е
			удовлетворяющие условию det(A)=1.

Задача 8

- 1) Какой цикленный тип могут иметь элементы порядка k в S_n ? Какие из них четные, а какие нечетные? Выпишите по одной подстановке каждого типа и найдите количество подстановок каждого типа.
- 2) Для одной из выписанных подстановок α найти множество подстановок β , перестеновочных с α (т.е. $\alpha\beta=\beta\alpha$). Доказать, что это группа, найти ее порядок и определить, какой из известных групп она изоморфна.

N	n	k	N	n	k	N	n	k
1	18	7	9	8	6	17	19	7
2	8	4	10	17	7	18	11	8
3	12	8	11	6	6	19	6	4
4	7	3	12	6	3	20	13	5
5	9	10	13	10	5	21	10	8
6	11	5	14	13	8	22	15	7
7	7	6	15	7	4	23	5	2
8	9	4	16	8	3	24	10	10
			26	10	12	25	9	12

Литература

- 1. Винберг Э. Б. Курс алгебры. М.: МЦНМО, 2013.
- 2. Головина Л. И. Линейная алгебра и некоторые ее приложения. М.: Книга по Требованию, 2012.
- 3. Кострикин А. И. Введение в алгебру. Часть I: Основы алгебры. М.: МЦНМО, 2012.
- 4. Кострикин А.И. Введение в алгебру. Часть II: Линейная алгебра. М.: МЦНМО, 2012.
- 5. Кострикин А.И. Введение в алгебру. Часть III: Основные структуры. М.: МЦНМО, 2012.
- 6. Кострикин А. И. Сборник задач по алгебре. М.: МЦНМО, 2009.
- 7. Богопольский О. В. Введение в теорию групп. Москва-Ижевск: Институт компьютерных исследований, 2002.