Notions abordées pour l'examen d'algèbre

Septembre 2025

Version française

Les notions suivantes sont à connaître et à maîtriser pour l'examen théorique mais aussi pour avoir une base solide pour aborder la modélisation statistique et machine learning :

- 1. Applications linéaires : Définition. Savoir montrer que $f: E \to F$ est linéaire, *i.e.*, savoir montrer que $f \in \mathcal{L}(E, F)$.
- 2. Lien entre une matrice et une application linéaire.
- 3. Lien entre un système linéaire et une matrice.
- 4. Pivot de Gauss : $(A \mid I_d) \sim (I_d \mid A^{-1})$. Conditions pour qu'une matrice soit inversible $(\det(A) \neq 0$ ou bien tout pivot non nul).
- 5. Trace et déterminant : Définitions et propriétés. Savoir développer un déterminant 3×3 ou 4×4 .
- 6. Transposée d'une matrice : Notée A^{\top} . Définition et propriété (application linéaire).
- 7. Noyau et Image : Définitions.
- 8. Montrer qu'un sous-ensemble de \mathbb{R}^n est un sous-espace vectoriel (contient le $0_{\mathbb{R}^n}$, et stable par combinaison linéaire).
- 9. **Théorème du rang**. Définition du rang d'une application linéaire (*i.e.*, d'une matrice) et égalité vérifiée par le théorème du rang.
- 10. En dimension finie : conditions nécessaires et suffisantes pour qu'une application linéaire $f \in \mathcal{L}(E, F)$ soit injective; surjective; bijective.
- 11. Valeurs propres et vecteurs propres : Définitions. Intérêt de la diagonalisation. Spectre d'une matrice Sp(A) et sous-espaces propres E_{λ_i} .
- 12. Polynôme caractéristique : Définition. Lien avec les valeurs propres.
- 13. Justifier que λ est valeur propre de A. Possible sans calcul. Si on trouve $v \in \mathbb{R}^n$ non nul tel que $Av = \lambda v$ alors v est vecteur propre associé à la valeur propre λ .
 - \rightarrow **Remarque**: Si on trouve un certain v non nul tel que $A^{\top}v = \lambda v$, alors λ est bien valeur propre de A (car $\mathrm{Sp}(A) = \mathrm{Sp}(A^{\top})$) mais attention, v est vecteur propre de A^{\top} mais pas (forcément) vecteur propre de A.
- 14. **Diagonalisation** : Conditions pour que A soit diagonalisable. Formule de changement de base : $A = PDP^{-1}$. Propriétés :

$$D = \operatorname{diag}((\lambda_i)_i), \quad \operatorname{Sp}(A) = \operatorname{Sp}(D), \quad A^t = PD^tP^{-1},$$

$$\operatorname{tr}(A) = \operatorname{tr}(D) = \sum_i \lambda_i, \quad \operatorname{det}(A) = \operatorname{det}(D) = \prod_i \lambda_i.$$

- 15. Matrices orthogonales : Définition.
- 16. Matrices symétriques : Théorème spectral et propriétés spectrales.
- 17. Systèmes stochastiques: Définition. Matrice stochastique (tous les éléments la constituant sont ≥ 0 et les sommes des éléments des colonnes (ou des lignes) donnent 1. Un système stochastique est donc gouverné par $v_{t+1} = Av_t$. Système stochastique à l'équilibre, partant d'un initial v_0 . Puisque $A^t = PD^tP^{-1}$, déterminer

$$v_{\infty} = \left(\lim_{t \to \infty} A^t\right) \cdot v_0.$$

English version

The following notions must be known and mastered for the theoretical exam, but also to build a solid foundation for statistical modeling and machine learning:

- 1. **Linear maps**: Definition. Be able to show that $f: E \to F$ is linear, *i.e.*, show that $f \in \mathcal{L}(E, F)$.
- 2. Link between a matrix and a linear map.
- 3. Link between a linear system and a matrix.
- 4. Gaussian pivot method : $(A \mid I_d) \sim (I_d \mid A^{-1})$. Conditions for a matrix to be invertible $(\det(A) \neq 0)$ or equivalently all pivots are nonzero).
- 5. Trace and determinant: Definitions and properties. Be able to expand a 3×3 or 4×4 determinant.
- 6. Transpose of a matrix: Denoted A^{\top} . Definition and property (linear map).
- 7. **Kernel and Image** : Definitions.
- 8. Show that a subset of \mathbb{R}^n is a subspace (it must contain $0_{\mathbb{R}^n}$ and be closed under linear combinations).
- 9. **Rank theorem**: Definition of the rank of a linear map (*i.e.*, of a matrix) and the equality stated by the rank theorem.
- 10. In finite dimension : necessary and sufficient conditions for a linear map $f \in \mathcal{L}(E, F)$ to be injective; surjective; bijective.
- 11. **Eigenvalues and eigenvectors**: Definitions. Motivation: diagonalization. Spectrum of a matrix Sp(A) and eigenspaces E_{λ_i} .
- 12. Characteristic polynomial: Definition. Relation with eigenvalues.
- 13. Justify that λ is an eigenvalue of A. This can sometimes be done without solving the full characteristic polynomial. If one finds $v \in \mathbb{R}^n$, $v \neq 0$, such that $Av = \lambda v$, then v is an eigenvector associated with λ .
 - \rightarrow **Remark**: If one finds $v \neq 0$ such that $A^{\top}v = \lambda v$, then λ is indeed an eigenvalue of A (since $\operatorname{Sp}(A) = \operatorname{Sp}(A^{\top})$). However, v is an eigenvector of A^{\top} , not necessarily of A.
- 14. **Diagonalization**: Conditions for A to be diagonalizable. Change-of-basis formula: $A = PDP^{-1}$. Properties:

$$D = \operatorname{diag}((\lambda_i)_i), \quad \operatorname{Sp}(A) = \operatorname{Sp}(D), \quad A^t = PD^t P^{-1},$$

$$\operatorname{tr}(A) = \operatorname{tr}(D) = \sum_i \lambda_i, \quad \operatorname{det}(A) = \operatorname{det}(D) = \prod_i \lambda_i.$$

- 15. Orthogonal matrices : Definition.
- 16. Symmetric matrices: Spectral theorem and spectral properties.
- 17. Stochastic systems: Definition. A stochastic matrix has all entries ≥ 0 and each column sum (or row sum) equals 1. A stochastic system is thus given by $v_{t+1} = Av_t$. Equilibrium stochastic system, starting from an initial v_0 . Since $A^t = PD^tP^{-1}$, compute

$$v_{\infty} = \left(\lim_{t \to \infty} A^t\right) \cdot v_0.$$