CN-IMPO

Module 5 (5 Marks Each)

1. Domain Name Server (DNS):

Elaborate on the core functionalities of DNS, its role in internet architecture, and how it resolves domain names to IP addresses. Include examples of common DNS records and their significance.

2. Assigning Automatic IP Addresses:

Explain the process and protocols involved in assigning IP addresses automatically to devices within a network. Discuss the advantages and potential challenges of using such mechanisms.

3. DNS and DLS Servers:

Analyze the combined functionality of DNS and DLS servers in network environments. Highlight scenarios where these servers work in tandem and the practical implications of their integration.

4. Telnet Protocols in Application:

Discuss the application of Telnet protocols in modern computing environments, focusing on their use, advantages, limitations, and reasons for declining popularity compared to SSH.

5. HTTP vs. HTTPS:

Compare and contrast HTTP and HTTPS in terms of functionality, security features, performance impact, and practical applications. Discuss the role of SSL/TLS in this context.

6. Public Key vs. Private Key Cryptography:

Differentiate between public and private key cryptography, illustrating their roles in encryption and decryption processes. Provide examples to explain their significance in secure communication.

7. DNS vs. DHCP:

Outline the differences between DNS and DHCP protocols, emphasizing their distinct purposes in network communication. Explore how these two protocols complement each other in managing networks efficiently.

Module 4 (5- and 12-Marks Questions)

1. Types of IP Addressing:

Define and compare the two primary types of IP addressing (static and dynamic) with detailed explanations. Incorporate diagrams or charts to illustrate their use cases and impact on network management.

2. IPv4 vs. IPv6:

Discuss the key differences between IPv4 and IPv6 addressing schemes. Include an in-depth analysis of their structures, addressing capacity, and suitability for modern internet requirements.

3. Numericals in Networking Layers:

Solve numerical problems related to network addressing and subnets for both IPv4 and IPv6. Provide step-by-step explanations to determine network IDs, broadcast addresses, and usable host ranges.

4. Network ID Identification:

Analyze the impact of subnet masks on network ID identification. Explore nuanced scenarios where varying subnet mask lengths influence network segmentation and design.

5. Types of Routing Algorithms:

Explain the three primary types of routing algorithms—distance vector, linkstate, and hybrid routing. Include detailed examples and diagrams illustrating their functioning in real-world networks.

6. Port Addressing vs. Socket Addressing:

Differentiate between port addressing and socket addressing in network communication. Provide 4-5 examples of practical scenarios where each type is utilized effectively.

7. Congestion Control Mechanisms:

Describe congestion control mechanisms in networking. Discuss how these mechanisms ensure optimal data transmission and address challenges like network overload.

8. TCP vs. UDP in the Transport Layer:

Compare TCP and UDP protocols in terms of reliability, speed, and application use cases. Highlight scenarios where each protocol is more advantageous.