Task 2

Name: Jaavanika L

- 1. Generate summary statistics (mean, median, std, etc.).
- 2. Create histograms and boxplots for numeric features.
- 3.Use pairplot/correlation matrix for feature relationships.
- 4.Identify patterns, trends, or anomalies in the data. 5.Make basic feature-level inferences from visuals

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

data = pd.read_csv("C:/Users/JAAVANIKA L/fall semester 22-23/Downloads/Titanic-Dataset.csv")

data.describe()
```

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75 %	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

data.median(numeric_only=True)

 PassengerId
 446.0000

 Survived
 0.0000

 Pclass
 3.0000

 Age
 28.0000

 SibSp
 0.0000

 Parch
 0.0000

 Fare
 14.4542

dtype: float64

```
numeric_cols = data.select_dtypes(include=['int64', 'float64']).columns
```

```
for col in numeric_cols:
    # Histogram
    plt.figure(figsize=(5, 3))
    plt.hist(data[col], bins=20, color='pink', edgecolor='black')
    plt.title(f'Histogram of {col}')
    plt.xlabel(col)
    plt.ylabel('Frequency')
    plt.tight_layout()
    plt.show()
```


Histogram of Fare 500 400 Frequency 300 200 100 0 400

200

0

100

```
plt.figure(figsize=(5, 2))
sns.boxplot(x=data[col], color='darkblue')
plt.title(f'Boxplot of {col}')
plt.tight_layout()
plt.show()
```

Fare

300

500

Boxplot of Fare


```
plt.figure(figsize=(10, 6))
sns.heatmap(data[numeric_cols].corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Correlation Matrix")
plt.show()
```

