

Analysis, Modelling and Implementation of a Domain-based...

Information Integration System of

Videogame Industry Sources

Longo Valerio 1655653 Papi Alessio 1761063

https://github.com/1655653/LSDM

TABLE OF CONTENTS

DATA SOURCES

21.

Ø4.

IMPLEMENTATION

GLOBAL SCHEMA

Ø2.

Ø5.

QUERIES

MODELLING

Ø3.

Ø6.

CONCLUSIONS

21.

DATA SOURCES

VGCHARTZ

VGChartz delivers comprehensive game chart coverage, including: sales data, news, reviews and game database for almost all game consoles.

From VGChartz we took:

- vgsales-2021-04-09_16_51_31 (csv) : list of the most sold 10000 games.
- sales-by-console (csv): collection of 27 files, each holding vgsales information specific to every console supported by VGChartz.

VGCHARTZ

GAMEDEV

Contains geographic-related information about videogame developing and publishing companies.

This dataset will be a crucial utility in the design of geographic and market related tasks.

From gamedev.net we took:

gamedev (csv)

X_Coord Y_Coord Name Type City Country Website

VGCHARTZ

METACRITIC

Metacritic is a website that aggregates reviews and averaged scores for films, TV shows, music albums, video games and formerly, books. We took from this source:

From metacritic we took:

• metacritic (json): A list of all 18000 games present in the catalog

This dataset stresses out the averaged user score (us) and the metacritic score (ms) for each game of the dataset.

datagenreX (json): 16 different json files (based on 16 different genres)

Id Title Genre

VGCHARTZ

GAMEDEV

METACRITIC

KAGGLE

Kaggle allows users to find and publish data sets, explore and build models in a web-based data-science environment.

From kaggle we took:

 HistoricalEsportData (csv): historical information about 500 games and related earnings in tournaments.

Date Game Earnings Players #Tournaments

• **GeneralEsportData (csv)**: general information about 500 games and related earnings in tournaments.

Game ReleaseDate Genre TotalEarnings OnlineEarnings PricedPlayers TotalTournaments

VGCHARTZ

CORGIS is a "collection of Real-time, Giant, Interesting, Situated Datasets".

From corgis we took:

sales_playtime_video_games (csv): list of 1200 games

VGCHARTZ

Source Schema

GLOBAL SCHEMA

Relational Schema

- SoftwareHouse(<u>name</u>,site)
- Location(<u>city,country</u>)
- LocatedIn(softwarehouse, city, country, x coord, y coord)
 - LocatedIn(<u>softwarehouse</u>) → SoftwareHouse(<u>name</u>)
 - LocatedIn(<u>city,country</u>) → Location(<u>city,country</u>)
- Videogame(<u>title</u>, genre)
- Console(<u>platform</u>)
- ReleasedFor(game, console, us, cs, sales, year, dev, pub)
 - ReleasedFor(game) → Videogame(title)
 - ReleasedFor(<u>console</u>) → Console(<u>platform</u>)
 - $\circ \qquad \mathsf{ReleasedFor}(\mathsf{dev}) \to \mathsf{Developer}(\underline{\mathsf{dev}})$
 - ReleasedFor(pub) → Publisher(<u>pub</u>)

- Developer(<u>name</u>)
 - o Developer($\underline{\text{name}}$) \rightarrow SoftwareHouse($\underline{\text{name}}$)
- Publisher(<u>name</u>)
 - Publisher(<u>name</u>) → SoftwareHouse(<u>name</u>)
- eSport(<u>title</u>,TotalEarnings,OnlineEarnings)
 - eSport(<u>title</u>) → Videogame(<u>title</u>)
- Tournament(<u>date,game</u>,earnings,#pricedplayers,#event)
 - Tournament(game) → eSport(title)

Global Schema Alphabet

- The set of all software houses:
- The set of all the Developing Software Houses:
- The set of all the Publishing Software Houses:
- The set of all Videogames:
- The set of all eSports Videogames:
- The set of eSports tournaments:
- The set of geographical locations
- Relation between software houses and their settlements:
- The set of all gaming consoles:
- Relation between the videogame and its console release:

SoftwareHouse_{/2}

Developer_{/1}

Publisher,

Videogame_{/2}

eSport_{/3}

Tournaments_{/5}

Location_{/2}

locatedIn_{/5}

Console_{/1}

releasedFor_{/8}

Global Schema Constraints (1)

Key constraints

- a1) $\forall \mathbf{t}. \forall ge. \forall ge'. \mathbf{Videogame}(\mathbf{t}, ge) \land \mathbf{Videogame}(\mathbf{t}, ge') \rightarrow ge = ge'$
- a2) $\forall \mathbf{n}. \forall w. \forall w'. \mathbf{SoftwareHouse}(\mathbf{n}, w) \land \mathbf{SoftwareHouse}(\mathbf{n}, w') \rightarrow w = w'$
- a3) $\forall \mathbf{g}. \forall \mathbf{c}. \forall us. \forall cs. \forall s. \forall y. \forall dev. \forall pub. \mathbf{ReleasedFor}(\mathbf{g}, \mathbf{c}, us, cs, s, y, dev, pub) \wedge \dots$

... $\land \forall us'. \forall cs'. \forall s'. \forall y'. \forall dev'. \forall pub'. \mathbf{ReleasedFor}(\mathbf{g}, \mathbf{c}, us', cs', s', y', dev', pub')$

$$\rightarrow us = us' \land cs = cs' \land s = s' \land y = y' \land dev = dev' \land pub = pub'$$

- a4) $\forall \mathbf{d}. \forall \mathbf{g}. \forall e. \forall pp. \forall ev. \forall e'. \forall pp'. \forall ev'. \mathbf{Tournament}(\mathbf{d}, \mathbf{g}, e, pp, ev') \wedge \dots$
 - ... \wedge Tournament(d, g, e', pp', ev') $\rightarrow e = e' \wedge pp = pp' \wedge ev = ev'$
- a5) $\forall \mathbf{t}. \forall te. \forall oe. \forall te'. \forall oe'. \mathbf{eSport}(\mathbf{t}, te, oe) \land \mathbf{eSport}(\mathbf{t}, te', oe') \rightarrow te = te' \land oe = oe'$

Multiplicity Constraints

a12) $\forall \mathbf{c}.\mathbf{Console}(\mathbf{c}) \to \exists g.\exists us.\exists cs.\exists s.\exists y.\exists dev.\exists pub.\mathbf{ReleasedFor}(g,\mathbf{c},us,cs,s,y,dev,pub)$

Global Schema Constraints (2)

```
Referential Integrity Constraints
  a6) \forall d. \mathbf{Developer}(d) \rightarrow \mathbf{SoftwareHouse}(d)
  a7) \forall p. \mathbf{Publisher}(p) \rightarrow \mathbf{SoftwareHouse}(p)
  a8) \forall t. \mathbf{eSport}(t) \rightarrow \mathbf{Videogame}(t)
  a9) \forall d. \forall g. \forall e. \forall pp. \forall ev. Tournament(d, g, e, pp, ev') \rightarrow eSport(g)
a10) \forall \mathbf{sh}. \forall \mathbf{ci}. \forall \mathbf{co}. \forall x. \forall y. \mathbf{LocatedIn}(\mathbf{sh}, \mathbf{ci}, \mathbf{co}, x, y) \rightarrow \mathbf{SoftwareHouse}(\mathbf{sh}) \wedge \mathbf{Location}(\mathbf{ci}, \mathbf{co})
a11) \forall \mathbf{g}. \forall \mathbf{c}. \forall us. \forall cs. \forall s. \forall y. \forall dev. \forall pub. \mathbf{ReleasedFor}(\mathbf{g}, \mathbf{c}, us, cs, s, y, dev, pub)
                 \rightarrow Console(c) \land \exists qe. Videogame(g, qe) \land Publisher(pub) \land Developer(dev)
```


MODELLING

Source-FOL, GLAV, Sound Mapping

SoftwareHouse, Publisher, Developer, Location

- m1) $\forall \mathbf{x}. \forall \mathbf{y}. \forall \mathbf{n}. \forall \mathbf{c}i. \forall \mathbf{c}o. \exists t. \exists w. \mathbf{gamedev}(\mathbf{x}, \mathbf{y}, \mathbf{n}, t, \mathbf{c}i, \mathbf{c}o, w) \rightarrow \mathbf{SoftwareHouse}(\mathbf{n}, w) \land \mathbf{locatedIn}(\mathbf{n}, \mathbf{c}i, \mathbf{c}o, \mathbf{x}, \mathbf{y}) \land \mathbf{Location}(\mathbf{c}i, \mathbf{c}o)$
- m2) $\forall \mathbf{n}. \forall \mathbf{t}. \exists x. \exists y. \exists ci. \exists co. \exists w. \mathbf{gamedev}(x, y, \mathbf{n}, \mathbf{t}, ci, co, w) \land (\mathbf{t} = publisher) \rightarrow \mathbf{Publisher}(\mathbf{n})$
- m3) $\forall \mathbf{n}. \forall \mathbf{t}. \exists x. \exists y. \exists ci. \exists co. \exists w. \mathbf{gamedev}(x, y, \mathbf{n}, \mathbf{t}, ci, co, w) \land (\mathbf{t} = developer) \rightarrow \mathbf{Developer}(\mathbf{n})$
- $m4) \ \forall \textbf{pub}. \exists id. \exists g. \exists c. \exists dev. \exists s. \exists y. \textbf{vgsales}(id, g, c, \textbf{pub}, dev, s, y) \land \neg (\textbf{pub} = NULL) \rightarrow \exists w. \textbf{SoftwareHouse}(\textbf{pub}, w) \land \textbf{Publisher}(\textbf{pub})$
- m5) $\forall \mathbf{dev}. \exists id. \exists g. \exists c. \exists pub. \exists s. \exists y. \mathbf{vgsales}(id, g, c, pub, \mathbf{dev}, s, y) \land \neg (\mathbf{dev} = NULL) \rightarrow \exists w. \mathbf{SoftwareHouse}(\mathbf{dev}, w) \land \mathbf{Developer}(\mathbf{dev})$
- m6) $\forall \mathbf{p}.\exists t.\exists g.\exists c.\mathbf{spvg}(t,g,\mathbf{p},c) \land \neg(\mathbf{p} = NULL) \rightarrow \mathbf{SoftwareHouse}(\mathbf{p}) \land \mathbf{Publisher}(\mathbf{p})$

```
Videogame, Console, ReleasedFor
  m7) \forall \mathbf{g}. \forall \mathbf{c}. \forall \mathbf{s}. \forall \mathbf{y}. \exists id. \exists pub. \exists dev. \mathbf{vgsales}(id, \mathbf{g}, \mathbf{c}, pub, dev, \mathbf{s}, \mathbf{y})
                            \rightarrow \exists ge. Videogame(g, ge) \land Console(c) \land \exists us. \exists cs. \exists dev. \exists pub. ReleasedFor(g, c, us, cs, s, y, dev, pub)
  m8) \forall \mathbf{g}. \forall \mathbf{c}. \forall \mathbf{dev}. \forall \mathbf{s}. \forall \mathbf{y}. \exists id. \exists pub. \mathbf{vgsales}(id, \mathbf{g}, \mathbf{c}, pub, \mathbf{dev}, \mathbf{s}, \mathbf{y}) \land \neg (\mathbf{dev} = NULL)
                                      \rightarrow \exists us. \exists cs. \exists pub. \mathbf{ReleasedFor}(\mathbf{g}, \mathbf{c}, us, cs, \mathbf{s}, \mathbf{y}, \mathbf{dev}, pub)
  m9) \forall \mathbf{g}. \forall \mathbf{c}. \forall \mathbf{pub}. \forall \mathbf{s}. \forall \mathbf{y}. \exists id. \exists dev. \mathbf{vgsales}(id, \mathbf{g}, \mathbf{c}, \mathbf{pub}, dev, \mathbf{s}, \mathbf{y}) \land \neg (\mathbf{pub} = NULL)
                                        \rightarrow \exists us. \exists cs. \exists dev. \mathbf{ReleasedFor}(\mathbf{g}, \mathbf{c}, us, cs, \mathbf{s}, \mathbf{y}, dev, \mathbf{pub})
m10) \forall \mathbf{t}. \forall \mathbf{ms}. \forall \mathbf{p}. \forall \mathbf{r}. \exists us. \mathbf{metacritic}(\mathbf{t}, us, \mathbf{ms}, \mathbf{p}, \mathbf{r})
                              \rightarrow \exists ge. Videogame(t, ge) \land Console(p) \land \exists us. \exists s. \exists dev. \exists pub. ReleasedFor(t, p, us, ms, s, r, dev, pub)
m11) \forall \mathbf{t}. \forall \mathbf{us}. \forall \mathbf{p}. \forall \mathbf{ms}. \forall \mathbf{r}. \mathbf{metacritic}(\mathbf{t}, \mathbf{us}, \mathbf{ms}, \mathbf{p}, \mathbf{r}) \land \neg (\mathbf{us} = tdb) \rightarrow \exists s. \exists dev. \exists pub. \mathbf{ReleasedFor}(\mathbf{t}, \mathbf{p}, \mathbf{us}, \mathbf{ms}, s, \mathbf{r}, dev, pub)
m12) \forall \mathbf{t}. \forall \mathbf{c}. \forall \mathbf{g}. \exists p. \mathbf{spvg}(\mathbf{t}, \mathbf{g}, p, \mathbf{c})
                                       \rightarrow Videogame(t, g) \land Console(c) \land \exists us. \exists ms. \exists s. \exists y. \exists dev. \exists pub. ReleasedFor(t, p, us, ms, s, y, dev, pub)
m13) \forall \mathbf{t}. \forall \mathbf{p}. \forall \mathbf{c}. \exists q. \mathbf{spvg}(\mathbf{t}, q, \mathbf{p}, \mathbf{c}) \land \neg (\mathbf{p} = NULL)
                            \rightarrow \exists us. \exists cs. \exists s. \exists y. \exists dev. \mathbf{ReleasedFor}(\mathbf{t}, \mathbf{c}, us, cs, s, y, dev, \mathbf{p})
m14) \forall \mathbf{t}. \forall \mathbf{g}. \mathbf{datagenreX}(\mathbf{t}, \mathbf{g}) \rightarrow \mathbf{Videogame}(\mathbf{t}, \mathbf{g})
|m15\rangle \ \forall \mathbf{g}. \forall \mathbf{g}. \exists r. \exists te. \exists oe. \exists pp. \exists tt. \mathbf{generalED}(\mathbf{g}, r, \mathbf{ge}, te, oe, pp, tt) \rightarrow \mathbf{Videogame}(\mathbf{g}, \mathbf{ge})
```

Source-FOL, GLAV, Sound Mapping (3)

```
eSport, Tournament
```

m16) $\forall \mathbf{g}. \forall \mathbf{t}e. \forall \mathbf{o}e. \exists r. \exists ge. \exists pp. \forall tt. \mathbf{generalED}(\mathbf{g}, r, ge, \mathbf{te}, \mathbf{o}e, pp, tt) \rightarrow \mathbf{eSport}(\mathbf{g}, \mathbf{te}, \mathbf{o}e)$

 $m17) \ \forall \mathbf{d}. \forall \mathbf{g}. \forall \mathbf{e}. \forall \mathbf{pp}. \forall \mathbf{ne}. \mathbf{historicalED}(\mathbf{d}, \mathbf{g}, \mathbf{e}, \mathbf{pp}, \mathbf{ne}) \rightarrow \mathbf{Tournament}(\mathbf{d}, \mathbf{g}, \mathbf{e}, \mathbf{pp}, \mathbf{ne})$

Ø4.

IMPLEMENTATION

Given our 1.1.S. J=<G={a1...a12}, M={m1...m17}, S=Ø>, being A the set of axioms over A_G (global schema constraints), being M our set of Source-FOL, GLAV, sound mapping assertions...

Materialization approach for computing Certain Answers:

- ETL: Pentaho
 - Winning Physical Heterogeneity (wrappers + extraction)
 - Winning Conceptual Heterogeneity (transformation)
 - PostgreSQL Materialization (loading)

Pentaho: VGChartz Transformation

Pentaho: Gamedev, SPVG

Pentaho: Videogame

Pentaho: ReleasedFor

PostgreSQL: Materialized Solution

~	Tables	(10)
		,

- > = console
- > developer
- > == esport
- > | locatedin
- > | location
- > == publisher
- > == released_for
- > == softwarehouse
- > tournament
- > \equiv videogame

Table name	Tuples inserted
console	39
developer	8,050
esport	513
locatedin	4,140
location	1,052
publisher	1,852
released_for	37,535
softwarehouse	8,491
tournament	484
videogame	34,591

Queries

Given our I.I.S. J=<G={a1...a12}, M={m1...m17}, S=Ø>, being A the set of axioms over A_G (global schema constraints), being M our set of Source-FOL, GLAV, sound mapping assertions...

We finally have a **materialized solution** (of the source database, w.r.t. the mapping M) to query in order to compute **certain answers**.

Note: being in a GLAV-materialization scenario, our expressive power is limited to **UCQ**s.

Query + Certain Answers (1)

WEBSITES OF SOFTWARE HOUSES THAT ARE BOTH DEVELOPERS AND PUBLISHERS

 $q = \{(w) | \exists x. Software House(x, w) \land Publisher(x) \land Developer(x) \}$ $PROJ_2(SEL_{1=3 \land 3=4}((Software House \times Developer) \times Publisher))$ SELECT website FROM Software House WHERE name IN (SELECT * FROM Publisher) AND name IN (SELECT * FROM Developer) AND website NOTNULL

	website character varying (300)
84	http://www.enmasse.com
85	http://www.encore.com
86	http://www.engine-software.c
87	http://www.epicgames.com
88	http://www.exorstudios.com
89	http://www.facepunchstudios
90	http://www.farsightstudios.co
91	http://www.fatshark.se
92	http://www.finji.co
~	Successfully run. Total query runtime: 134 msec. 337 rows affected.

VIDEOGAMES THAT WERE RELEASED BEFORE 2000, FOR ANY CONSOLE

 $q = \left\{ (x,y) \middle| \begin{array}{c} \exists ge. \textit{Videogame}(\textit{x},ge) \land (\textit{y} < 2000) \land \dots \\ \dots \land \exists c. \exists us. \exists cs. \exists s. \exists dev. \exists pub. \textit{ReleasedFor}(\textit{g},\textit{c},\textit{us},\textit{cs},\textit{s},\textit{y},\textit{dev},\textit{pub}) \end{array} \right\}$

 $PROJ_{1,8}(SEL_{1=3 \land 8 < "2000"}(Videogame \times ReleasedFor))$

SELECT title, release_date

FROM Videogame

NATURAL JOIN ReleasedFor

 $WHERE\ release_date < 2000$

4	title character varying (340)	release_date double precision
1	007 tomorrow never dies	1999
2	1 on 1	1998
3	10 pin bowling	1999
4	100 manyen quiz hunter	1998
5	10101 will the starship	1997
6	1080° teneighty snowboarding	1998
7	10yard fight	1985
0	1002 uana hatau valkau raaaha	1000

Query + Certain Answers (2)

✓ Successfully run. Total query runtime: 78 msec. 7841 rows affected.

Query + Certain Answers (3)

VIDEOGAMES DEVELOPED OR PUBLISHED BY SOFTWARE HOUSES LOCATED IN ITALY

```
\exists c. \exists us. \exists cs. \exists s. \exists y. \exists dev. \exists pub. ReleasedFor(x, c, us, cs, s, y, dev, pub) \land ...
 \land \exists ci. \exists x\_co. \exists y\_co. (locatedIn(dev, ci, "italy", x\_co, y\_co) \lor locatedIn(pub, ci, "italy", x\_co, y\_co)))
PROJ_1\left(SEL_{7=9\land11="italy"}(ReleasedFor \times locatedIn)\right) \cup PROJ_1\left(SEL_{7=9\land11="italy"}(ReleasedFor \times locatedIn)\right)
                                                              SELECT distinct title
                                                               FROM ReleasedFor
                                           IOIN locatedIn ON publisher = softwarehouse
                                                          WHERE\ country = "italy"
                                                                        UNION
                                                              SELECT distinct title
                                                               FROM ReleasedFor
                                          IOIN\ locatedIn\ ON\ developer = softwarehouse
                                                          WHERE country = "italy"
```

,_4	character varying (340)
13	rageball
14	miami nights singles in the city
15	we dare flirty fun for all
16	ozzy drix
17	srs street racing syndicate
18	motto me de unou o kitaeru s
19	tomb raider the prophecy
20	baldo

Successfully run. Total query runtime: 380 msec. 128 rows

affected.

Query + Certain Answers (4)

VIDEOGAMES PUBLISHED BY USA PUBLISHER

```
q = \left\{ (t, p) \middle| \begin{array}{l} \exists \textit{ci.} \exists \textit{x.} \exists \textit{y.} \exists \textit{w.} \exists \textit{y.} \exists \textit{p.} \exists \textit{r.} \exists \textit{us.} \exists \textit{ms.} \exists \textit{s.} \exists \textit{d.} \textit{LocatedIn}(p, \textit{ci., united states}, \textit{x.}, \textit{y}) \\ & \land (\textit{ReleasedFor}(t, pl, r, \textit{us.}, \textit{ms.}, \textit{s.}, \textit{d.}, p) \end{array} \right\}
PROJ_{1,6} \left( SEL_{1=13 \land 3="united states"}(LocatedIn \times ReleasedFor) \right)
SELECT \ distinct \ title, softwarehouse
FROM \ locatedin, released\_for
```

WHERE locatedin.softwarehouse = released for.publisher AND country = 'united states'

4	title character varying (340)	publisher character varying (400)
1	lizzie mcguire 2 lizzie diaries	disney interactive studios
2	un squadron	capcom
3	road not taken	spry fox
4	criminal girls 2 party favors	nis america
5	1942	capcom
6	ohno odyssey	big john games
7	the bridge	the quantum astrophysicists
8	dungeons dragons tower of d	capcom
9	harvest moon 3 gbc	natsume
10	will o wisp ds	idea factory
11	akira psychoball	atari
12	the occupation	humble bundle
13	blazblue continuum shift	aksys games
14	hakuoki reimeiroku omouhas	idea factory
15	disney epic mickey the power	disney interactive studios
16	ark survival evolved	studio wildcard
17	the witcher enhanced edition	atari
18	high school musical livin the	disney interactive studios
19	disneys meet the robinsons	disney interactive studios
20	disneys chip n dale rescue ran	capcom
21	zack wiki quest for barbaros t	capcom

Query – certain answer (5)

GENRES THAT ARE USED IN **ESPORT GAMES**

```
q = \{(ge) | \exists t. \exists te. Videogame(t, ge) \land Esport(t, te, oe)\}
PROJ_2(SEL_{1=3}((Videogame \times Esport)))
SELECT\ genre
FROM\ videogame
WHERE\ videogame.title\ IN\ (SELECT\ title\ FROM\ esport)
```

4	genre character varying (200)	
1	multiplayer online battle arena	
2	strategy	
3	collectible card game	
4	first-person shooter	
5	racing	
6	sports	
7	puzzle game	
8	role-playing game	
9	fighting game	
10	third-person shooter	
11	battle royale	

Query – certain answer (6)

VIDEOGAMES THAT WERE RELEASED BOTH FOR PS3 AND PC

```
q = \left\{ (x) \middle| \begin{array}{l} \exists c. \exists us. \exists cs. \exists s. \exists y. \exists dev. \exists pub. \textit{ReleasedFor}(\textit{x}, \textit{c}, us, cs, s, y, dev, pub) \land (\textit{c} = PS3) \land \dots \\ \dots \land \exists c'. \exists us'. \exists cs'. \exists s'. \exists y' \exists dev'. \exists pub'. \textit{ReleasedFor}(\textit{x}, \textit{c}', us', cs', s', y', dev', pub') \land (\textit{c}' = PC) \end{array} \right\}
                                     PROJ_1\left(SEL_{2="PS3"}(ReleasedFor)\right) \cap PROJ_1\left(SEL_{2="PC"}(ReleasedFor)\right)
                                                                                                   SELECT title
                                                                                            FROM ReleasedFor
                                                                                        WHERE\ console = "PC"
                                                                                                    INTERSECT
                                                                                                   SELECT title
                                                                                            FROM ReleasedFor
                                                                                      WHERE\ console = "PS3"
```

4	title character varying (340)
15	resident evil revelations 2
16	ruse
17	the elder scrolls v skyrim
18	timeshift
19	far cry 4
20	shovel knight
21	sleeping dogs
22	call of duty modern warfare 3
~	Successfully run. Total query runtime: 72 msec. 224 rows affected.

Query - insight (1)

CONSOLES WITH THE MOST SELLS AND THEIR RELATIVE MOST SELLED GAME

```
select t1.platform, max(t1.sales)as most_sells, foo.title as title_most_selled,count(foo.title) as Ngames
from released_for as t1
```

```
inner join (
    select title, sales, platform
    from released_for as t2
    where (platform, sales) IN
    (select platform, max(sales)
        from released_for
        group by(platform)
    )
) as foo
on t1.platform = foo.platform
group by(t1.platform, foo.title)
order by (most_sells) DESC
```

4	platform character varying (10)	most_sells double precision	title_most_selled character varying (340)	ngames bigint
1	PC	4000	counterstrike global offensive	1084
2	Wii	3738	mario kart wii	812
3	NS	3341	mario kart 8 deluxe	1653
4	GB	3138	pokémon red green blue vers	1473
5	DS	3080	new super mario bros	3153
6	NES	2831	duck hunt	839
7	X360	2400	kinect adventures	423
8	SNES	2061	super mario world	791
9	PS4	2000	marvels spiderman	997
10	3DS	1892	mario kart 7	1181
11	GBA	1622	pokémon ruby sapphire versi	1437
12	GEN	1500	sonic the hedgehog	643
13	PS2	1489	gran turismo 3 aspec	2655
14	PS3	1195	gran turismo 5	1182
15	N64	1191	super mario 64	284

Query - insight (2)

COUNTRIES WHO EARNED THE MOST FROM SALES PER YEAR

```
select release_date, country, concat(ceil(sum(sales)),' mln')
from (select distinct country, sales, release_date
    from hascountry
    ioin locatedin on hascountry.city = locatedin.city
    join publish on locatedin.softwarehouse = publish.publisher
    join released_for on videogame=title
    where sales not ull and release date not null) as x
group by country, x.release_date
having round(sum(sales)) >= (
    select round(sum(sales))
    from (select distinct country, sales, release_date
        from hascountry
        join locatedin on hascountry.city = locatedin.city
        join publish on locatedin.softwarehouse = publish.publisher
        join released for on videogame=title
        where sales notnull and release_date notnull) as v
    where x.release_date = y.release_date
    group by country
    order by round(sum(sales)) desc limit 1)
order by release_date desc
```

4	release_date double precision	country character varying (300)	
1	2021	japan	500 mln
2	2021	united states	500 mln
3	2020	japan	5547 mln
4	2019	japan	6259 mln
5	2018	japan	6943 mln
6	2017	japan	12336 mln
7	2016	japan	5294 mln
8	2015	japan	2843 mln
9	2014	japan	6025 mln
10	2013	japan	8136 mln
11	2012	japan	5540 mln
12	2011	japan	9785 mln
13	2010	united states	8731 mln
14	2009	japan	14516 mln
15	2008	japan	10753 mln
16	2007	japan	12328 mln
17	2006	japan	10687 mln

Query - insight (3)

COUNTRIES WHO EARNED THE MOST FROM TOURNAMENTS

```
select country, concat(ceil(sum(cast(totalearnings as decimal))/1000000),' mln')
from (
    select distinct country, totalearnings
    from hascountry
    join locatedin on hascountry.city = locatedin.city
    join publish on locatedin.softwarehouse = publish.publisher
    join esport on videogame=title) as x
group by country
order by sum(cast(totalearnings as decimal)) desc
```

4	country character varying (300)	concat text
1	united states	176 mln
2	china	35 mln
3	south korea	34 mln
4	singapore	33 mln
5	france	33 mln
6	italy	32 mln
7	spain	32 mln
8	netherlands	32 mln
9	brazil	32 mln
10	australia	32 mln
11	ireland	32 mln
12	taiwan	32 mln
13	japan	15 mln

Query - insight (4)

COUNTRIES WHO PUBLISHED MOST VIDEOGAMES

```
select country, count(*)
from (
    select distinct country, videogame
    from hascountry
    join locatedin on hascountry.city = locatedin.city
    join publish on locatedin.softwarehouse = publish.publisher
) as x
group by country
order by count(*) desc
```

4	country character varying (300)	gamespublished bigint
1	japan	3533
2	united states	2290
3	germany	1595
4	england	634
5	canada	525
6	france	121
7	netherlands	98
8	south korea	98
9	singapore	95
10	china	95
11	spain	81
12	italy	77
13	poland	66

Query - insight (5)

```
select country, count(name)
from softwarehouse
join locatedin on softwarehouse.name = locatedin.softwarehouse
join hascountry on locatedin.city = hascountry.city
group by country
order by count desc, country asc
```

4	country character varying (300)	Count bigint
1	united states	1423
2	canada	397
3	england	366
4	france	258
5	germany	190
6	japan	159
7	china	115
8	australia	92
9	sweden	90
10	spain	86

Query - insight (6)

PUBLISHERS WHO EARNED THE MOST FROM SALES PER YEAR

```
select release_date, publisher, concat(ceil(sum(sales)),' mln')
from (select distinct publisher, sales, release_date
   from publish
   join released_for on videogame=title
   where sales notnull and release date notnull) as x
group by publisher, release_date
having round(sum(sales)) >= (
    select round(sum(sales))
   from (select distinct publisher, sales, release_date
        from publish
       join released_for on videogame=title
        where sales notnull and release_date notnull) as y
   where x.release date = y.release date
    group by publisher
    order by round(sum(sales)) desc limit 1)
order by release_date desc
```

4	release_date double precision	publisher character varying (300)	
1	2021	capcom	500 mln
2	2020	nintendo	5503 mln
3	2019	nintendo	6250 mln
4	2018	nintendo	6545 mln
5	2017	nintendo	11321 mln
6	2016	nintendo	4228 mln
7	2015	nintendo	2107 mln
8	2014	nintendo	5463 mln
9	2013	nintendo	6938 mln
10	2012	nintendo	4989 mln
11	2011	nintendo	8174 mln
12	2010	nintendo	5522 mln
13	2009	nintendo	12394 mln

Ø5.

CONCLUSIONS

We presented an Information Integration System based on multiple videogame industry sources.

At first we gathered all the sources we needed, then we have organized them in order to build a global schema and through mapping, axioms and the ER-diagram, we realized all the fundamental formalisms in order to be capable of implementing a **robust** database built with Pentaho connected to PostgreSQL.

In the end we tested this system with different queries getting very interesting results.

Thanks for the attention!

Longo Valerio 1655653 Papi Alessio 1761063

