SEQUENCE LISTING

<110> Ganymed Pharmaceuticals AG
TURECI, Ozlem
SAHIN, Ugur
HELFTENBEIN, Gerd
SCHLUTER, Volker

<120> Identification of Tumour-Associated Cell Surface Antigens for Diagnosis and Therapy

- <130> VOS-203
- <140> US10/573,229
- <141> 2006-03-24
- <150> PCT/EP2004/010697
- <151> 2004-09-23
- <150> DE 103 44 799.7
- <151> 2003-09-26
- <160> 312
- <170> PatentIn Version 3.1
- <210> 1
- <211> 920
- <212> DNA
- <213> Homo sapiens

<400> 1

60 tctgtagagg ggaatggctg ctgtgtcatg ggggtgcatg agcagcccag tggagaggtg cacttggtga gaaaccgatg cctctgccaa ccacctgcac taacctgctg ggtctgagac tqaqccactt tqqaaqctqa tcttggagca ccagtcaagc ccttagctgg ctgcagccac 180 agccaacaac aagactgcaa cctcctgggg gatcctgagc cagaatcccc tggctaaatt 240 qctccttgat tcttaaccca cagaaattgt gtaagacctc catcaggtgt cgacaaggaa 300 gateceagta gggeaggaga caggageace tetgetgtgg ceaatgeagg aatgetggee 360 420 atcattgctt ctgctgggcg actgagaagc atcacccact tccccagaac cttttttacg 480 tggagtgaaa actttaaggg gctgtccagc taaacctcca acctccagat cccatgccaa tttctctgct tctgcaaaag gacttcaagt gaaagacatc tgcagctgtg aacgggggta 540 600 aaaccctccc tgccccaggc cccaagcaag gatttcccta gcggggagga aggtagaatc gagagacete taaceetggg agaggaggga gggaaatete egaggaceag ggttatgeaa 660 caacacaagg gaagtacctg ctgggttctg ggggttgggg aaggaaaatc cctactgccc 720 caagagccag ccccgaaccc aaggcacagc ttatactggc cccggggcct gggggggcac 780 gaaaaccttg aaaaaggggc gccttcccag cttccccggg ggtaagggct ttacccccca 840

gagg	19999	ggg 9	jaaaa	atco	g ag	gtggg	jatct	tto	ccaa	accg	ccga	agad	cta a	aaaco	tttaa	900
acco	ccaa	aag a	aaaco	ettet	a											920
<210 <211 <212 <213	.> { !> I	2 38 PRT Homo	sapi	iens									,			
<400)> 2	2														
Arg 1	Arg	Phe	Leu	Trp 5	Gly	Phe	Lys	Gly	Phe 10	Ser	Leu	Arg	Arg	Leu 15	Gly	
Lys	Ile	Pro	Leu 20	Gly	Phe	Phe	Pro	Pro 25	Pro	Leu	Gly	Gly	Lys 30	Ala	Leu	
Thr	Pro	Gly 35	Glu	Ala	Gly	Lys	Ala 40	Pro	Leu	Phe	Gln	Gly 45	Phe	Arg	Ala	
Pro	Pro 50	Gly	Pro	Gly	Ala	Ser 55	Ile	Ser	Cys	Ala	Leu 60	Gly	Ser	Gly	Leu	
Ala 65	Leu	Gly	Ala	Val	Gly 70	Ile	Phe	Leu	Pro	Gln 75	Pro	Pro	Glu	Pro	Ser 80	
Arg	Tyr	Phe	Pro	Cys 85	Val	Val	Ala				·					
<210 <211 <212 <213	-> 2 ?> I	3 22 ONA Artif	Eicia	al Se	equer	nce										
<220 <223		Oligo	onucl	leot	ide											
<400 gcag		3 cag (ccaa	caaca	aa ga	a										22
<210 <211 <212 <213	L> 2 2> I	25	ficia	al Se	equer	nce										
<220 <223		Oligo	onuc]	leot:	ide											
<400 acag		4 agg t	tgcto	cctgi	c to	cctg										25

<210> 5 <211> 2856 <212> DNA

<213> Homo sapiens

<400> 5 atggccaaaa gaaatctcag cactgtgaca gagttcattc ttgtagtctt cacagatcac 60 cctgaactgg cagttccact cttcctagtg tttctcagtt tctatcttgt cacttttctg 120 180 gggaatgggg ggatgatcat tctaatccaa gtggatgccc aactccacac ccccgtgtac ttcttcctga gccaccttgc tttcctggat gcctgctgtg cctcagtaat cacccctcag 240 attctggcca cactggccac agacaagaca gttatctcct atggctgccg tgctgtgcag 300 360 ttctctttct tcaccatatg tgcaggcaca gagtgttacc tgctgtcagt gatggcctat gaccgctttg ttgccattag caatccactg cactgtaaca tgaccatgac tccaggtacc 420 480 tgcagggtct ttttggccag tgccttcatc tgtggggtgt caggggccat tctgcatacc 540 acgtgcacct tcaccctctc cttctgttgt gacaatcaga tcaacttctt cttctgtgac 600 ctcccaccc tgctgaagct cgcctgcagc agcatgacac aaactgagat tgtcattctc ctttgtgcaa aatgcatgtt cctagccaat gtcatggtta tcctgatctg ctacatgctc 660 720 attatcagag ccattttgag ggtgaagtcg gcaggaggcc tcctgatagc atctgctcat ttcgatgcat atgtatatga gacaggcatc aactacaaca cagtttatgg ctcaggaaag 780 840 gcagtagggt ggtcctggag gagcctgcgg gaaaccaacc acatgagacc aggaaatact tcaaaacact cagcagccca gctgcatcaa tgcctcatcc agcaagttgg caggtggccc 900 ttgcagagca tgcccttccc cgtttctgca gggccacctt ataagtcagt gcagcctctc 960 1020 cctggagacc cccggcctct cctgtgcatc accggattat ttctgacttt gaagatgatg 1080 gggtgtgggc ccaggaggcc cagggacagg aagtctgact tcttcataaa cacagaccct ggtgcagggt caccagaaga acagaggtgt ggatgggaag ggcatccttc ccactcctat 1140 1200 accetgggge tgtetetgee agteaaette ggeetgaaat gteeatggtg gacaetatet ggacccccag ctacctgcca acgtccagac ctgcagacac cttctccacc aaaggagata 1260 tgttcatccg ggctgcgacc ccttacacac agcgctggac cagacagaag tcaagttcca 1320 gcagcctccg gagcagccac tatgctgaca aaggggctgc ccgacatcac tgtgggactg 1380 1440 cagatttatg actectgeat etcagggate caggetetgg ggageaceet ggeeetgetg tccaatcagc ttccacccac aaccaactat gcttgtggct cccagcaaca tctcctgggc 1500 1560 gtggttggag ggatgacett cetggagtea gageecatgt etgagetget etecatetae 1620 agagtecete agggeeaaag aeteaeeaaa aaetttgaag taaaagaaet tgtetgeaea

tatctggtag	gacagettee	ttatggcctg	gtcagttatg	acaacagcaa	ctttgagtgg	1680
ctggatcagc	agctgcagaa	gcagatcggg	ggcgagggac	ttcctgttgg	cgctgcgccc	1740
agccgtgtag	ccaggcaaca	gtctgatgag	gaagctgtgg	gaggagtgca	gggatacagg	1800
tggtctggat	taggggcttc	catccaaagt	gccagagaag	gggcttggca	tcgcacaggg	1860
ctggagaaca	tgaccactgc	ccacctgtct	gccttcaaac	ttcctgatct	aactgccact	1920
taccaagcct	acctggcagc	caaagccctg	tgggttgcct	atcagaactt	gatgtcctgc	1980
tctgagagag	agggaccatt	cctgggaggc	acgtatgcca	atgcatggga	agccaggctt	2040
tctcaggtta	acttcaccac	caaagcccaa	gaagaggttt	tcttcgccaa	agatggggaa	2100
gtgctgacaa	cgtttgacat	taaaaacatc	tatgttctcc	cagacctgtc	aggacagaca	2160
gccattgttg	gacactttga	cttcagagca	ccttctggaa	aagagcttct	gttggatgac	2220
agcgcaattg	tctgggcaga	aggaccctta	aagattagag	ctgagagaac	cctaagaacc	2280
aagaccacac	agcacctctc	acatcccaag	ctccaggagt	cccttcctct	gtctgcaacg	2340
aaaaacgtcc	tgtggaaacc	aggaagtcaa	ccctatttga	gaagtcaaaa	tgctgctaca	2400
aaagccttcc	ctgacccaga	agagaaatcg	caatgtcacc	agtttctctt	tctcccttca	2460
gatagtgttg	catgtcagaa	gtgctctgac	aaccagtggc	ccaatgtgca	gaagggcgag	2520
tgcatcccca	aaacccttga	cttcttgttc	tatcacaagc	cccttgacac	agcgttggct	2580
gtctgcacag	ccctgctctt	tctccttgcc	ctggccatct	taggcatctt	ccatgttgtc	2640
tgctcctgtg	tctgggtgtc	cttcatacct	gcccacatgc	atgcccacag	caaagacacc	2700
atggccatgg	aggtctttgt	catcttggca	tcagcaggag	gcctcatgtc	ctccctcttc	2760
ttttccaaat	gctacatcat	ccttctccat	cctgaaaaga	acacaaaaga	ccaaatgttt	2820
ggccggcatc	atcgcaagtg	ggaaaaactg	aagtga			2856

```
<210> 6
<211> 951
<212> PRT
```

Met Ala Lys Arg Asn Leu Ser Thr Val Thr Glu Phe Ile Leu Val Val 5

Phe Thr Asp His Pro Glu Leu Ala Val Pro Leu Phe Leu Val Phe Leu 25 20

Ser Phe Tyr Leu Val Thr Phe Leu Gly Asn Gly Gly Met Ile Ile Leu 35 40

<213> Homo sapiens

<400> 6

Il€	Gln 50	Val	Asp	Ala	Gln	Leu 55	His	Thr	Pro	Val	Tyr 60	Phe	Phe	Leu	Ser
His 65	Leu	Ala	Phe	Leu	Asp 70	Ala	Cys	Cys	Ala	Ser 75	Val	Ile	Thr	Pro	Gln 80
Ile	Leu	Ala	Thr	Leu 85	Ala	Thr	Asp	Lys	Thr 90	Val	Ile	Ser	Tyr	Gly 95	Cys
Arg	Ala	Val	Gln 100	Phe	Ser	Phe	Phe	Thr 105	Ile	Cys	Ala	Gly	Thr 110	Glu	Cys
Туг	Leu	Leu 115	Ser	Val	Met	Ala	Tyr 120	Asp	Arg	Phe	Val	Ala 125	Ile	Ser	Asn
Pro	Leu 130	His	Cys	Asn	Met	Thr 135	Met	Thr	Pro	Gly	Thr 140	Cys	Arg	Val	Phe
Leu 145	Ala	Ser	Ala	Phe	Ile 150	Cys	Gly	Val	Ser	Gly 155	Ala	Ile	Leu	His	Thr 160
Thr	. Cys	Thr	Phe	Thr 165	Leu	Ser	Phe	Cys	Cys 170	Asp	Asn	Gln	Ile	Asn 175	Phe
Ph€	Phe	Cys	Asp 180	Leu	Pro	Pro	Leu	Leu 185	Lys	Leu	Ala	Cys	Ser 190	Ser	Met
Thr	· Gln	Thr 195	Glu	Ile	Val	Ile	Leu 200	Leu	Cys	Ala	Lys	Cys 205	Met	Phe	Leu
Ala	Asn 210	Val	Met	Val	Ile	Leu 215	Ile	Cys	Tyr	Met	Leu 220	Ile	Ile	Arg	Ala
Ile 225	Leu	Arg	Val	Lys	Ser 230	Ala	Gly	Gly	Leu	Leu 235	Ile	Ala	Ser	Ala	His 240
Phe	a Asp	Ala	Tyr	Val 245	Tyr	Glu	Thr	Gly	Ile 250	Asn	Tyr	Asn	Thr	Val 255	Tyr
Gly	Ser	Gly	Lys 260	Ala	Val	Gly	Trp	Ser 265	Trp	Arg	Ser	Leu	Arg 270	Glu	Thr
Ası	His	Met 275	Arg	Pro	Gly	Asn	Thr 280	Ser	Lys Page		Ser	Ala 285	Ala	Gln	Leu

His	Gln 290	Cys	Leu	Ile	Gln	Gln 295	Val	Gly	Arg	Trp	Pro 300	Leu	Gln	Ser	Met
Pro 305	Phe	Pro	Val	Ser	Ala 310	Gly	Pro	Pro	Tyr	Lys 315	Ser	Val	Gln	Pro	Leu 320
Pro	Gly	Asp	Pro	Arg 325	Pro	Leu	Leu	Cys	Ile 330	Thr	Gly	Leu	Phe	Leu 335	Thr
Leu	Lys	Met	Met 340	Gly	Cys	Gly	Pro	Arg 345	Arg	Pro	Arg	Asp	Arg 350	Lys	Ser
Asp	Phe	Phe 355	Ile	Asn	Thr	Asp	Pro 360	Gly	Ala	Gly	Ser	Pro 365	Glu	Glu	Gln
Arg	Cys 370	Gly	Trp	Glu	Gly	His 375	Pro	Ser	His	Ser	Tyr 380	Thr	Leu	Gly	Leu
Ser 385	Leu	Pro	Val	Asn	Phe 390	Gly	Leu	Lys	Сув	Pro 395	Trp	Trp	Thr	Leu	Ser 400
Gly	Pro	Pro	Ala	Thr 405	Cys	Gln	Arg	Pro	Asp 410	Leu	Gln	Thr	Pro	Ser 415	Pro
Pro	Lys	Glu	Ile 420	Cys	Ser	Ser	Gly	Leu 425	Arg	Pro	Leu	Thr	His 430	Ser	Ala
Gly	Pro	Asp 435	Arg	Ser	Gln	Val	Pro 440	Ala	Ala	Ser	Gly	Ala 445	Ala	Thr	Met
Leu	Thr 450	Lys	Gly	Leu	Pro	Asp 455	Ile	Thr	Val	Gly	Leu 460	Gln	Ile	Tyr	Asp
Ser 465	Cys	Ile	Ser	Gly	Ile 470	Gln	Ala	Leu	Gly	Ser 475	Thr	Leu	Ala	Leu	Leu 480
Ser	Asn	Gln	Leu	Pro 485	Pro	Thr	Thr	Asn	Tyr 490	Ala	Cys	Gly	Ser	Gln 495	Gln
His	Leu	Leu	Gly 500	Val	Val	Gly	Gly	Met 505	Thr	Phe	Leu	Glu	Ser 510	Glu	Pro
Met	Ser	Glu 515	Leu	Leu	Ser	Ile	Tyr 520	Arg	Val Page		Gln	Gly 525	Gln	Arg	Leu

Thr	Lys 530	Asn	Phe	Glu	Val	Lys 535	Glu	Leu	Val	Cys	Thr 540	Tyr	Leu	Val	Gly
Gln 545	Leu	Pro	Tyr	Gly	Leu 550	Val	Ser	Tyr	Asp	Asn 555	Ser	Asn	Phe	Glu	Trp 560
Leu	Asp	Gln	Gln	Leu 565	Gln	Lys	Gln	Ile	Gly 570	Gly	Glu	Gly	Leu	Pro 575	Val
Gly	Ala	Ala	Pro 580	Ser	Arg	Val	Ala	Arg 585	Gln	Gln	Ser	Asp	Glu 590	Glu	Ala
Val	Gly	Gly 595	Val	Gln	Gly	Tyr	Arg 600	Trp	Ser	Gly	Leu	Gly 605	Ala	Ser	Ile
Gln	Ser 610	Ala	Arg	Glu	Gly	Ala 615	Trp	His	Arg	Thr	Gly 620	Leu	Glu	Asn	Met
Thr 625	Thr	Ala	His	Leu	Ser 630	Ala	Phe	Lys	Leu	Pro 635	Asp	Leu	Thr	Ala	Thr 640
Tyr	Gln	Ala	Tyr	Leu 645	Ala	Ala	Lys	Ala	Leu 650	Trp	Val	Ala	Tyr	Gln 655	Asn
Leu	Met	Ser	Cys 660	Ser	Glu	Arg	Glu	Gly 665	Pro	Phe	Leu	Gly	Gly 670	Thr	Tyr
Ala	Asn	Ala 675	Trp	Glu	Ala	Arg	Leu 680	Ser	Gln	Val	Asn	Phe 685	Thr	Thr	Lys
Ala	Gln 690	Glu	Glu	Val	Phe	Phe 695	Ala	Lys	Asp	Gly	Glu 700	Val	Leu	Thr	Thr
Phe 705	Asp	Ile	Lys	Asn	Ile 710	Tyr	Val	Leu	Pro	Asp 715	Leu	Ser	Gly	Gln	Thr 720
Ala	Ile	Val	Gly	His 725	Phe	Asp	Phe	Arg	Ala 730	Pro	Ser	Gly	Lys	Glu 735	Leu
Leu	Leu	Asp	Asp 740	Ser	Ala	Ile	Val	Trp 745	Ala	Glu	Gly	Pro	Leu 750	Lys	Ile
Arg	Ala	Glu 755	Arg	Thr	Leu	Arg	Thr 760	Lys	Thr Pag		Gln	His 765	Leu	Ser	His

Pro Lys Leu Gln Glu Ser Leu Pro Leu Ser Ala Thr Lys Asn Val Leu 770 780

Trp Lys Pro Gly Ser Gln Pro Tyr Leu Arg Ser Gln Asn Ala Ala Thr 785 790 795 800

Lys Ala Phe Pro Asp Pro Glu Glu Lys Ser Gln Cys His Gln Phe Leu 805 810 815

Phe Leu Pro Ser Asp Ser Val Ala Cys Gln Lys Cys Ser Asp Asn Gln 820 825 830

Trp Pro Asn Val Gln Lys Gly Glu Cys Ile Pro Lys Thr Leu Asp Phe 835 840 845

Leu Phe Tyr His Lys Pro Leu Asp Thr Ala Leu Ala Val Cys Thr Ala 850 855 860

Leu Leu Phe Leu Leu Ala Leu Ala Ile Leu Gly Ile Phe His Val Val 865 870 875 880

Cys Ser Cys Val Trp Val Ser Phe Ile Pro Ala His Met His Ala His 885 890 895

Ser Lys Asp Thr Met Ala Met Glu Val Phe Val Ile Leu Ala Ser Ala 900 905 910

Gly Gly Leu Met Ser Ser Leu Phe Phe Ser Lys Cys Tyr Ile Ile Leu 915 920 925

Leu His Pro Glu Lys Asn Thr Lys Asp Gln Met Phe Gly Arg His His 930 935 940

Arg Lys Trp Glu Lys Leu Lys 945 950

<210> 7

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 7

aggtggtgtg acgctgctgc ta

<210><211><212><213>	8 22 DNA Artificial Sequence	
<220> <223>	Oligonucleotide	
<400>' tcttctt	8 tggg ctttggtggt ga	22
<210><211><211><212><213>	9 543 DNA Homo sapiens	
<400>	9	
ataaago	eggg acaacacaga actteceagt tacaceagge atcetggeee a	aaagtttccc 60
aaatcca	aggc ggctagaggc ccactgcttc ccaactacca gctgaggggg t	ccgtcccga 120
gaaggga	agaa gaggccgaag aggaaacatg aacttctatt tactcctagc g	gagcagcatt 180
ctgtgtg	gcct tgattgtctt ctggaaatat cgccgctttc agagaaacac t	tggcgaaatg 240
tcatcaa	aatt caactgetet tgeactagtg agaccetett ettetgggtt a	aattaacagc 300
aatacag	gaca acaatettge agtetaegae eteteteggg atattttaaa t	taatttccca 360
cactcaa	atag ccaggcagaa gcgaatattg gtaaacctca gtatggtgga a	aaacaagctg 420
gttgaac	ctgg aacatactct acttagcaag ggtttcagag gtgcatcacc t	ccaccggaaa 480
tccacct	taaa agcgtacagg atgtaatgcc agtggtggaa atcattaaag a	acactttgag 540
tag		543
<210><211><211><212><213>	10 113 PRT Homo sapiens	
<400>		1
Met Asr 1	n Phe Tyr Leu Leu Leu Ala Ser Ser Ile Leu Cys Ala 5 10	Leu Ile 15
Val Phe	e Trp Lys Tyr Arg Arg Phe Gln Arg Asn Thr Gly Glu 20 25 30	Met Ser

Ser Asn Ser Thr Ala Leu Ala Leu Val Arg Pro Ser Ser Ser Gly Leu 35 40 45

Ile Asn Ser Asn Thr Asp Asn Asn Leu Ala 50 55	Val Tyr Asp Leu Ser Arg 60
Asp Ile Leu Asn Asn Phe Pro His Ser Ile 70	Ala Arg Gln Lys Arg Ile 75 80
Leu Val Asn Leu Ser Met Val Glu Asn Lys : 85 90	Leu Val Glu Leu Glu His 95
Thr Leu Leu Ser Lys Gly Phe Arg Gly Ala :	Ser Pro His Arg Lys Ser 110
Thr	· · · · · · · · · · · · · · · · · · ·
<210> 11 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 11 gtgtgccttg attgtcttct gg	22
<210> 12 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 12 cctggctatt gagtgtggg	19
<210> 13 <211> 2761 <212> DNA <213> Homo sapiens	
<400> 13 ctaggcctca gtctgtctgc atccaggtgc ttattaa	aac agtgtgttgc tccacaccgc 60
ctcgtgttgt ctgttggcgc gctctccggg ttccaac	caa tgcaagagcc ttggggctgg 120
ccctgaaacc tgcgaggggc ttccgtccac gtcccca	gtg gacctaccac ccctccatct 180
gggaaagcag gccacagcag ccggacaaag gaagctc	ctc agcctctagt cgcctctctg 240
tgcatgcaca tcggtcactg atctcgccta ctggcac	aga cgtgtttatc ggccaaactg 300

360 acceteacaa aaagetacea eegaagtgga caggeeeeta eaetgtgata eteageacae 420 caactgcagt gagagtccga ggactcccca actggatcca tcgcaccagg gtcaagctca cccccaaggc agettettee tecaaaacat taacagetaa gtgtttgtet gggccaattt 480 ctcctaccaa gtttaaatta accaacattt ttttcttaaa accaaaacac aaggaagact 540 600 aaccacgtgc ttccaggaat ggcctgtatc tacccaacca ctttctatac ctctcttcca accaaaagtc ttaatatggg aatatccctc accacgatcc taatactgtc agtagctgtc 660 720 ctgctgtcca cagcagcccc tccgagctgc cgtgagtgtt atcagtcttt gcactacaga ggggagatgc aacaatactt tacttaccat actcatatag aaagatcctg ttatggaaac 780 840 ttaatcgagg aatgtgttga atcaggaaag agttattata aagtaaagaa tctaggagta 900 tgtggcagtc gtaatggggc tatttgcccc agagggaagc agtggctttg cttcaccaaa 960 attggacaat ggggagtaaa cactcaggtg cttgaggaca taaagagaga acagattata gccaaagcca aagcctcaaa accaacaact ccccctgaaa atcgcccgcg gcatttccat 1020 1080 tcctttatac aaaaactata agcagatgca tcccttccta agccaggaaa aaatctgttt 1140 gtagatctag gagaaccatt gtgcttacca tgaatgtgtc caattgttgg gtatgcgggg 1200 gagetttatg agtgaacagt ggetgtggga egggatagae attececett aettacagge 1260 atcccaaaac cccagactca ctttcactcc tcaggaatgc ccgcagtcct ggacacttac 1320 caacccagta tgagggacgg tgtgcatatc ccgcaagtgg actgataaaa cccatcgcgc 1380 cqtaqqtqaa aacccgtcac caaaccctaa cagtcaatgc ctccatagct gagtggtggc 1440 caaggttacc ccctggagcc tggtctcctt ctaacttaag ctacctcaat tgtgtcttgt 1500 caaaaaaggc ctggtactgt acgaacacca ctaaccetta tgccgcatac ctccgcctaa gtgtactatg cgacaatcct aggaacacca gctgacaatg gactgccact gacggattcc 1560 1620 tgtggatatg gggaacccag gcttactcac agctacctta tcactggcaa ggtacttgct tectaggeae aatteaacet ggattetttt taetteegaa geaggeggge aacaeeetea 1680 gagtccctgt gtatgataac cagagaaaaa tgatccttgg aggtaggagg gagccaaaga 1740 ttgtgagagg acgagtggcc tctgcaacgg atcattgaat actatggtcc tgccacttgg 1800 1860 gcagaggatg gttcatgggg ttatcgcact cccatatata tgccaaatag agcgattaga ctacaagctg ttctagagat aatcactaac caaactgcct cagccctaga aatgctcgcg 1920 caacaacaaa accaaatgcg cgcggcaatt tatcaaaaca ggctggccct agactactta 1980 ttagcagaag agggtgcggg ctgtggtaag tttaacatct ccaattgctg tcttaacata 2040 ggcaataatg gagaagaggt tctggaaatc gcttcaaaca tcagaaaagt agcccgtgta 2100

ccaqtccaaa cctqqqaqqq atgggaccca gcaaaccttc taggagggtg gttctctaat 2160 ttaggaggat ttaaaatgct ggtggggaca gtcattttca tcactggggt cctcctgttt 2220 ctcccctgtg gtatcccatt aaaactcttg ttgaaactac agttaacctc ctgacaatcc 2280 agatgatgct cctgctacag cggcacgatg gataccaacc cgtctctcaa gaatacccca 2340 aaaattaagt ttttctttt ccaaggtgcc cacgccaccc ctatgtcacg cctgaagtag 2400 ttattgagaa agtcgtccct ttcccctttt ctataaccaa atagacagga atggaagatt 2460 ctcctcgggg cctgaaagct tgcgggatga ataactcctc ctcctcaggc ccagtcccaa 2520 2580 ggtacaaact tgcaccagca gcaagatagc agaggcagga agagagctgg ctggaagaca cgtaccccct gaagatcaag agggaggtcg ccctggtact acatagcagt cacgttaggc 2640 tgggacaatt cctgtttaca gaggactata aaacccctgc cccatcctca cttggggctg 2700 atgccatttt aggcctcagc ctgtctgcat gcaggcgctc attaaaacag catgttgctc 2760 2761

<210> 14

<211> 160

<212> PRT

<213> Homo sapiens

<400> 14

Met Ala Cys Ile Tyr Pro Thr Thr Phe Tyr Thr Ser Leu Pro Thr Lys

1 10 15

Ser Leu Asn Met Gly Ile Ser Leu Thr Thr Ile Leu Ile Leu Ser Val 20 25 30

Ala Val Leu Leu Ser Thr Ala Ala Pro Pro Ser Cys Arg Glu Cys Tyr 35 40 45

Gln Ser Leu His Tyr Arg Gly Glu Met Gln Gln Tyr Phe Thr Tyr His
50 55 60

Thr His Ile Glu Arg Ser Cys Tyr Gly Asn Leu Ile Glu Glu Cys Val 65 70 75 80

Glu Ser Gly Lys Ser Tyr Tyr Lys Val Lys Asn Leu Gly Val Cys Gly
85 90 95

Ser Arg Asn Gly Ala Ile Cys Pro Arg Gly Lys Gln Trp Leu Cys Phe 100 105 110

Thr	Lys	Ile 115	Gly	Gln	Trp	Gly	Val 120	Asn	Thr	Gln	Val	Leu 125	Glu	Asp	Ile	
Lys	Arg 130	Glu	Gln	Ile	Ile	Ala 135	Lys	Ala	Lys	Ala	Ser 140	Lys	Pro	Thr	Thr	
Pro 145	Pro	Glu	Asn	Arg	Pro 150	Arg	His	Phe	His	Ser 155	Phe	Ile	Gln	Lys	Leu 160	
<210 <211 <212 <213	.> 2 !> I	L5 21 DNA Artii	ficia	al Se	equer	nce										
<220 <223		oligo	onucl	Leoti	ide											
<400 cctc		L5 .cg (cctct	ctgt	g c											21
<210 <211 <212 <213	.> 1 !> I	l6 L7 DNA Artif	ficia	al Se	equer	nce										
<220 <223		oligo	onucl	leoti	de											
<400 acco		.gc g	gatgg	gat					-							17
<210 <211 <212 <213	.>] !> [17 1635 DNA Homo	sapi	lens												
<400 gcct		l7 ect g	geett	aagt	g co	ctact	ggat	c cc	eggga	ıgcc	tggg	gctgg	133 (cctgg	gcact	60
gctt	ccto	ct t	ggco	cctc	a gg	geeet	tgga	ago	cagaç	gaga	gaad	cctct	tg (cagat	cccag	120
gctc	gtco	ccc a	agcad	cagca	ag ac	cacca	aggaa	ı ggt	ggco	aga	gcct	cact	ga 🤅	gccga	accga	180
cggc	cgc	cca c	ccac	ccag	gg ct	ggag	gccat	gga	ataaa	ttc	cgca	tgct	ct 1	tccas	gcactt	240
ccag	rtcaa	igc t	cgga	agtcg	gg to	gatga	atgg	g cat	ctgo	ctg	ctgo	tgg	etg (cggto	caccgt	300
caag	rctgt	ac t	cct	ccttt	gad	ettea	acto	j tco	cctgo	ctg	gtgo	cacta	ıca a	atgca	actcta	360
cggc	ctg	gc o	ctgct	gctg	ga co	geee	ccgct	. cg	ccctg	jttt	ctct	gcgg	gcc 1	tccto	gccaa	420
ccgg	rcagt	ct g	gtggt	gato	gg to	gagg	gagto	g gcg	gccgg	JCCC	gcag	ggca	icc (ggagg	gaagga	480
ccca	aaca	atc a	atcac	atac	a to	tact	ccto	: tat	acto	rcag	agge	rcact	aa (ccaco	cccct	540

qqtctqqatc ctqctqqccc tccttqacqq qaagtgcttc gtgtgtgcct tcagcagctc 600 660 tqtqqaccct gagaagtttc tggactttgc caacatgacc cccagccagg tacagctctt cctqqccaaq qttccctqca aqqaqqatga gctggtcagg gatagccctg ctcggaaggc 720 agtgtctcgc tacctgcggt gcctgtcaca ggccatcggc tggagcgtca ccctgctgct 780 gatcatcgcg gccttcctgg cccgctgcct gaggccctgc ttcgaccaga cagtcttcct 840 900 gcagcgcaga tactggagca actacgtgga cctggagcag aagctcttcg acgagacctg ctgtgagcat gcgcgggact tcgcgcaccg ctgcgtgctg cacttctttg ccagcatgcg 960 1020 qaqtqaqctq caqqcqcqqq qgctgcgccg gggcaatgca ggcaggagac tcgagctccc 1080 cqcaqtqcct qaqccccaq aaqqcctgga tagtggaagt gggaaggccc acctgcgcgc aatctccagc cgggagcagg tggaccgcct cctaagcacg tggtactcca gcaagccgcc 1140 1200 gctggacctg gctgcatccc ccgggctctg cgggggtggc cttagccacc gcgcccctac 1260 cttggcactg ggcacgaggc tgtcacaaca caccgacgtg tagggtcctg gccaggcttg aaqcqqcaqt gttcgcaggt gaaatgccgc gctgacaaag ttctggagtc tttccaggcc 1320 gtggggaccc cacggcaggc accctaagtc ttgttagcct cctttttaaa gtagcccaat 1380 ctctgcctag tttctgggtg tggcctccag cgcgcttcac aaactttaat gtggactcgg 1440 ttcaccgagg gccttgttaa atacaggttc agacagtgta gccaggaccg agtctgagat 1500 tctqcatttt aaacaaqctc ctggaggctg atgtgctttt ggtcagtgaa ccaaactttg 1560 aqtaqcaaqa atctaaqtaa atctgccatg ggttctgggt tctagatgtc aattctaaat 1620 1635 aataataatg acctt

<210> 18

<211> 344

<212> PRT

<213> Homo sapiens

<400> 18

Met Asp Lys Phe Arg Met Leu Phe Gln His Phe Gln Ser Ser Glu
1 5 10 15

Ser Val Met Asn Gly Ile Cys Leu Leu Leu Ala Ala Val Thr Val Lys 20 25 30

Leu Tyr Ser Ser Phe Asp Phe Asn Cys Pro Cys Leu Val His Tyr Asn 35 40 45

Ala Leu Tyr Gly Leu Gly Leu Leu Leu Thr Pro Pro Leu Ala Leu Phe 50 55 60

Leu 65	Cys	Gly	Leu	Leu	Ala 70	Asn	Arg	Gln	Ser	Val 75	Val	Met	Val	Glu	Glu 80
Trp	Arg	Arg	Pro	Ala 85	Gly	His	Arg	Arg	Lys 90	Asp	Pro	Gly	Ile	Ile 95	Arg
Tyr	Met	Cys	Ser 100	Ser	Val	Leu	Gln	Arg 105	Ala	Leu	Ala	Ala	Pro 110	Leu	Val
Trp	Ile	Leu 115	Leu	Ala	Leu	Leu	Asp 120	Gly	Lys	Cys	Phe	Val 125	Cys	Ala	Phe
Ser	Ser 130	Ser	Val	Asp	Pro	Glu 135	Lys	Phe	Leu	Asp	Phe 140	Ala	Asn	Met	Thr
Pro 145	Ser	Gln	Val	Gln	Leu 150	Phe	Leu	Ala	Lys	Val 155	Pro	Cys	Lys	Glu	Asp 160
Glu	Leu	Val	Arg	Asp 165	Ser	Pro	Ala	Arg	Lys 170	Ala	Val	Ser	Arg	Tyr 175	Leu
Arg	Cys	Leu	Ser 180	Gln	Ala	Ile	Gly	Trp 185	Ser	Val	Thr	Leu	Leu 190	Leu	Ile
Ile	Ala	Ala 195	Phe	Leu	Ala	Arg	Cys 200	Leu	Arg	Pro	Cys	Phe 205	Asp	Gln	Thr
Val	Phe 210	Leu	Gln	Arg	Arg	Tyr 215	Trp	Ser	Asn	Tyr	Val 220	Asp	Leu	Glu	Gln
Lys 225	Leu	Phe	Asp	Glu	Thr 230	Cys	Cys	Glu	His	Ala 235	Arg	Asp	Phe	Ala	His 240
Arg	Cys	Val	Leu	His 245	Phe	Phe	Ala	Šer	Met 250	Arg	Ser	Glu	Leu	Gln 255	Ala
Arg	Gly	Leu	Arg 260	Arg	Gly	Asn	Ala	Gly 265	Arg	Arg	Leu	Glu	Leu 270	Pro	Ala
Val	Pro	Glu 275	Pro	Pro	Glu	Gly	Leu 280	Asp	Ser	Gly	Ser	Gly 285	Lys	Ala	His
Leu	Arg 290	Ala	Ile	Ser	Ser	Arg 295	Glu	Gln	Val Page		Arg 300	Leu	Leu	Ser	Thr

Trp Tyr Ser Ser Lys Pro Pro Leu Asp Leu Ala Ala Ser Pro Gly Leu 305 310 315 320	
Cys Gly Gly Leu Ser His Arg Ala Pro Thr Leu Ala Leu Gly Thr 325 330 335	
Arg Leu Ser Gln His Thr Asp Val	
<210> 19 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 19 gaggaaggac ccaggcatca	20
<210> 20 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 20 gaaggcacac acgaagcact	20
<210> 21 <211> 4556 <212> DNA <213> Homo sapiens	
<400> 21 geggeegeee catteecaga eeggeegeea geeeatetgg ttageteeeg eegeteegeg	60
ccgcccggga gtcggggagcc gcggggaacc gggcacctgc acccgcctct gggagtgagt	120
ggttccagct ggtgcctggc ctgtgtctct tggatgccct gtggcttcag tccgtctcct	180
gttgcccacc acctcgtccc tgggccgcct gataccccag cccaacagct aaggtgtgga	240
tggacagtag ggggctggct teteteactg gteaggggte tteteceetg tetgeeteee	300
ggagctagga ctgcagaggg gcctatcatg gtgcttgcag gccccctggc tgtctcgctg	360
ttgctgccca gcctcacact gctggtgtcc cacctctcca gctcccagga tgtctccagt	420
gagcccagca gtgagcagca gctgtgcgcc cttagcaagc accccaccgt ggcctttgaa	480

gacctgcage cgtgggtete taacttcace taccetggag ecegggattt eteceagetg 540 600 gctttggacc cctccgggaa ccagctcatc gtgggagcca ggaactacct cttcagactc 660 ageettgeea atgtetetet tetteaggee acagagtggg eeteeagtga ggacaegege cqctcctqcc aaagcaaagg gaagactgag gaggagtgtc agaactacgt gcgagtcctg 720 780 atcgtcgccg gccggaaggt gttcatgtgt ggaaccaatg ccttttcccc catgtgcacc 840 agcagacagg tggggaacct cagccggact attgagaaga tcaatggtgt ggcccgctgc ccctatgacc cacgccacaa ctccacagct gtcatctcct cccaggggga gctctatgca 900 960 gccacggtca tcgacttctc aggtcgggac cctgccatct accgcagcct gggcagtggg 1020 ccaccgcttc gcactgccca atataactcc aagtggctta atgagccaaa cttcgtggca 1080 gcctatgata ttgggctgtt tgcatacttc ttcctgcggg agaacgcagt ggagcacgac 1140 tgtggacgca ccgtgtactc tcgcgtggcc cgcgtgtgca agaatgacgt ggggggccga 1200 ttcctgctgg aggacacatg gaccacattc atgaaggccc ggctcaactg ctcccgcccg 1260 ggcgaggtcc ccttctacta taacgagctg cagagtgcct tccacttgcc ggagcaggac 1320 ctcatctatg gagttttcac aaccaacgta aacagcatcg cggcttctgc tgtctgcgcc 1380 ttcaacctca gtgctatctc ccaggctttc aatggcccat ttcgctacca ggagaacccc agggctgcct ggctccccat agccaacccc atccccaatt tccagtgtgg caccctgcct 1440 gagaccggtc ccaacgagaa cctgacggag cgcagcctgc aggacgcgca gcgcctcttc 1500 ctgatgagcg aggccgtgca gccggtgaca cccgagccct gtgtcaccca ggacagcgtg 1560 1620 cgcttctcac acctcgtggt ggacctggtg caggctaaag acacgctcta ccatgtactc 1680 tacattggca ccgagtcggg caccatcctg aaggcgctgt ccacggcgag ccgcagcctc 1740 cacggctgct acctggagga gctgcacgtg ctgccccccg ggcgccgcga gcccctgcgc agectgegea teetgeacag egecegegeg etettegtgg ggetgagaga eggegteetg 1800 cgggtcccac tggagaggtg cgccgcctac cgcagccagg gggcatgcct gggggcccgg 1860 1920 gacccgtact gtggctggga cgggaagcag caacgttgca gcacactcga ggacagctcc 1980 aacatgagcc tctggaccca gaacatcacc gcctgtcctg tgcggaatgt gacacgggat gggggcttcg gcccatggtc accatggcaa ccatgtgagc acttggatgg ggacaactca 2040 ggctcttgcc tgtgtcgagc tcgatcctgt gattcccctc gaccccgctg tgggggcctt 2100 gactgcctgg ggccagccat ccacatcgcc aactgctcca ggaatggggc gtggaccccg 2160 2220 tggtcatcgt gggcgctgtg cagcacgtcc tgtggcatcg gcttccaggt ccgccagcga agttgcagca accetgetee eegecacggg ggccgcatet gcgtgggcaa gagccgggag 2280

gaacggttct gtaatgagaa cacgccttgc ccggtgccca tcttctgggc ttcctggggc 2340 tcctggagca agtgcagcag caactgtgga gggggcatgc agtcgcggcg tcgggcctgc 2400 2460 gagaacggca actectgeet gggetgegge gtggagttea agaegtgeaa ceeegaggge tqccccgaag tgcggcgcaa caccccctgg acgccgtggc tgcccgtgaa cgtgacgcag 2520 2580 ggcggggcac ggcaggagca gcggttccgc ttcacctgcc gcgcgcccct tgcagacccg 2640 cacggcctgc agttcggcag gagaaggacc gagacgagga cctgtcccgc ggacggctcc ggctcctgcg acaccgacgc cctggtggag gtcctcctgc gcagcgggag cacctccccg 2700 cacacggtga gcgggggctg ggccgctgg ggcccgtggt cgtcctgctc ccgggactgc 2760 gagetggget teegegteeg caagagaaeg tgeactaaee eggageeeeg caaeggggge 2820 2880 etgecetgeg tgggegatge tgeegagtae eaggactgea acceeeagge ttgeecagtt 2940 eggggtgett ggteetgetg gaeeteatgg tetecatget eagetteetg tggtgggggt 3000 cactatcaac gcacccgttc ctgcaccagc cccgcaccct ccccaggtga ggacatctgt ctcgggctgc acacggagga ggcactatgt gccacacagg cctgcccaga aggctggtcg 3060 ccctggtctg agtggagtaa gtgcactgac gacggagccc agagccgaag ccggcactgt 3120 3180 gaggagetee teccagggte cagegeetgt getggaaaca geageeagag cegeecetge ccctacagcg agattcccgt catcctgcca gcctccagca tggaggaggc caccgactgt 3240 gcagggttca atctcatcca cttggtggcc acgggcatct cctgcttctt gggctctggg 3300 ctcctgaccc tagcagtgta cctgtcttgc cagcactgcc agcgtcagtc ccaggagtcc 3360 acactggtcc atcctgccac ccccaaccat ttgcactaca agggcggagg caccccgaag 3420 3480 aatgaaaagt acacacccat ggaattcaag accctgaaca agaataactt gatccctgat gacagagcca acttctaccc attgcagcag accaatgtgt acacgactac ttactaccca 3540 agececetga acaaacacag etteeggeee gaggeeteae etggacaaeg gtgetteeee 3600 3660 aacagctgat accgccgtcc tggggacttg ggcttcttgc cttcataagg cacagagcag 3720 atggagatgg gacagtggag ccagtttggt tttctccctc tgcactaggc caagaacttg ctgccttgcc tgtggggggt cccatccggc ttcagagagc tctggctggc attgaccatg 3780 ggggaaaggg ctggtttcag gctgacatat ggccgcaggt ccagttcagc ccaggtctct 3840 catggttatc ttccaaccca ctgtcacgct gacactatgc tgccatgcct gggctgtgga 3900 cctactgggc atttgaggaa ttggagaatg gagatggcaa gagggcaggc ttttaagttt 3960 gggttggaga caactteetg tggeececae aagetgagte tggeettete cagetggeee 4020 4080 caaaaaaggc ctttgctaca tcctgattat ctctgaaagt aatcaatcaa gtggctccag

tagctctgga	ttttctgcca	gggctgggcc	attgtggtgc	tgccccagta	tgacatggga	4140
ccaaggccag	cgcaggttat	ccacctctgc	ctggaagtct	atactctacc	cagggcatcc	4200
ctctggtcag	aggcagtgag	tactgggaac	tggaggctga	cctgtgctta	gaagtccttt	4260
aatctgggct	ggtacaggcc	tcagccttgc	cctcaatgca	cgaaaggtgg	cccaggagag	4320
aggatcaatg	ccataggagg	cagaagtctg	gcctctgtgc	ctctatggag	actatcttcc	4380
agttgctgct	caacagagtt	gttggctgag	acctgcttgg	gagtctctgc	tggcccttca	4440
tctgttcagg	aacacacaca	cacacacact	cacacacgca	cacacaatca	caatttgcta	4500
cagcaacaaa	aaagacattg	ggctgtggca	ttattaatta	aagatgatat	ccagtc	4556

<210> 22

<211> 1151

<212> PRT

<213> Homo sapiens

<400> 22

Met Pro Cys Gly Phe Ser Pro Ser Pro Val Ala His His Leu Val Pro 1 5 10 15

Gly Pro Pro Asp Thr Pro Ala Gln Gln Leu Arg Cys Gly Trp Thr Val 20 25 30

Gly Gly Trp Leu Leu Ser Leu Val Arg Gly Leu Leu Pro Cys Leu Pro 35 40 45

Pro Gly Ala Arg Thr Ala Glu Gly Pro Ile Met Val Leu Ala Gly Pro 50 55 60

Leu Ala Val Ser Leu Leu Leu Pro Ser Leu Thr Leu Leu Val Ser His 65 70 75 80

Leu Ser Ser Ser Gln Asp Val Ser Ser Glu Pro Ser Ser Glu Gln Gln 85 90 95

Leu Cys Ala Leu Ser Lys His Pro Thr Val Ala Phe Glu Asp Leu Gln
100 105 110

Pro Trp Val Ser Asn Phe Thr Tyr Pro Gly Ala Arg Asp Phe Ser Gln 115 120 125

Leu Ala Leu Asp Pro Ser Gly Asn Gln Leu Ile Val Gly Ala Arg Asn 130 135 140

Tyr 145	Leu	Phe	Arg	Leu	Ser 150	Leu	Ala	Asn	Val	Ser 155	Leu	Leu	Gln	Ala	Thr 160
Glu	Trp	Ala	Ser	Ser 165	Glu	Asp	Thr	Arg	Arg 170	Ser	Cys	Gln	Ser	Lys 175	Gly
Lys	Thr	Glu	Glu 180	Glu	Cys	Gln	Asn	Tyr 185	Val	Arg	Val	Leu	Ile 190	Val	Ala
Gly	Arg	Lys 195	Val	Phe	Met	Cys	Gly 200	Thr	Asn	Ala	Phe	Ser 205	Pro	Met	Cys
Thr	Ser 210	Arg	Gln	Val	Gly	Asn 215	Leu	Ser	Arg	Thr	Ile 220	Glu	Lys	Ile	Asn
Gly 225	Val	Ala	Arg	Cys	Pro 230	Tyr	Asp	Pro	Arg	His 235	Asn	Ser	Thr	Ala	Val 240
Ile	Ser	Ser	Gln	Gly 245	Glu	Leu	Tyr	Ala	Ala 250	Thr	Val	Ile	Asp	Phe 255	Ser
Gly	Arg	Asp	Pro 260	Ala	Ile	Tyr	Arg	Ser 265	Leu	Gly	Ser	Gly	Pro 270	Pro	Leu
Arg	Thr	Ala 275	Gln	Tyr	Asn	Ser	Lys 280	Trp	Leu	Asn	Glu	Pro 285	Asn	Phe	Val
Ala	Ala 290	Tyr	Asp	Ile	Gly	Leu 295	Phe	Ala	Tyr	Phe	Phe 300	Leu	Arg	Glu	Asn
Ala 305	Val	Glu	His	Asp	Cys 310	Gly	Arg	Thr	Val	Tyr 315	Ser	Arg	Val	Ala	Arg 320
Val	Cys	Lys	Asn	Asp 325	Val	Gly	Gly	Arg	Phe 330	Leu	Leu	Glu	Asp	Thr 335	Trp
Thr	Thr	Phe	Met 340	Lys	Ala	Arg	Leu	Asn 345	Cys	Ser	Arg	Pro	Gly 350	Glu	Val
Pro	Phe	Tyr 355	Tyr	Asn	Glu	Leu	Gln 360	Ser	Ala	Phe	His	Leu 365	Pro	Glu	Gln
Asp	Leu 370	Ile	Tyr	Gly	Val	Phe	Thr	Thr	Asn	Val	Asn 380	Ser	Ile	Ala	Ala

Ser 385	Ala	Val	Cys	Ala	Phe 390	Asn	Leu	Ser	Ala	Ile 395	Ser	Gln	Ala	Phe	Asn 400
Gly	Pro	Phe	Arg	Tyr 405	Gln	Glu	Asn	Pro	Arg 410	Ala	Ala	Trp	Leu	Pro 415	Ile
Ala	Asn	Pro	Ile 420	Pro	Asn	Phe	Gln	Cys 425	Gly	Thr	Leu	Pro	Glu 430	Thr	Gly
Pro	Asn	Glu 435	Asn	Leu	Thr	Glu	Arg 440	Ser	Leu	Gln	Asp	Ala 445	Gln	Arg	Leu
Phe	Leu 450	Met	Ser	Glu	Ala	Val 455	Gln	Pro	Val	Thr	Pro 460	Glu	Pro	Cys	Val
Thr 465	Gln	Asp	Ser	Val	Arg 470	Phe	Ser	His	Leu	Val 475	Val	Asp	Leu	Val	Gln 480
Ala	Lys	Asp	Thr	Leu 485	Tyr	His	Val	Leu	Tyr 490	Ile	Gly	Thr	Glu	Ser 495	Gly
Thr	Ile	Leu	Lys 500	Ala	Leu	Ser	Thr	Ala 505	Ser	Arg	Ser	Leu	His 510	Gly	Cys
Tyr	Leu	Glu 515	Glu	Leu	His	Val	Leu 520	Pro	Pro	Gly	Arg	Arg 525	Glu	Pro	Leu
Arg	Ser 530	Leu	Arg	Ile	Leu	His 535	Ser	Ala	Arg	Ala	Leu 540	Phe	Val	Gly	Leu
Arg 545	Asp	Gly	Val	Leu	Arg 550	Val	Pro	Leu	Glu	Arg 555	Cys	Ala	Ala	Tyr	Arg 560
Ser	Gln	Gly	Ala	Cys 565	Leu	Gly	Ala	Arg	Asp 570	Pro	Tyr	Cys	Gly	Trp 575	Asp
Gly	Lys	Gln	Gln 580	Arg	Cys	Ser	Thr	Leu 585	Glu	Asp	Ser	Ser	Asn 590	Met	Ser
Leu	Trp	Thr 595	Gln	Asn	Ile	Thr	Ala 600	Cys	Pro	Val	Arg	Asn 605	Val	Thr	Arg
Asp	Gly 610	Gly	Phe	Gly	Pro	Trp 615	Ser	Pro	Trp	Gln	Pro 620	Cys	Glu	His	Leu

Asp 625	Gly	Asp	Asn	Ser	Gly 630	Ser	Cys	Leu	Cys	Arg 635	Ala	Arg	Ser	Cys	Asp 640
Ser	Pro	Arg	Pro	Arg 645	Cys	Gly	Gly	Leu	Asp 650	Cys	Leu	Gly	Pro	Ala 655	Ile
His	Ile	Ala	Asn 660	Cys	Ser	Arg	Asn	Gly 665	Ala	Trp	Thr	Pro	Trp 670	Ser	Ser
Trp	Ala	Leu 675	Cys	Ser	Thr	Ser	Cys 680	Gly	Ile	Gly	Phe	Gln 685	Val	Arg	Gln
Arg	Ser 690	Cys	Ser	Asn	Pro	Ala 695	Pro	Arg	His	Gly	Gly 700	Arg	Ile	Cys	Val
Gly 705	Lys	Ser	Arg	Glu	Glu 710	Arg	Phe	Cys	Asn	Glu 715	Asn	Thr	Pro	Cys	Pro 720
Val	Pro	Ile	Phe	Trp 725	Ala	Ser	Trp	Gly	Ser 730	Trp	Ser	Lys	Cys	Ser 735	Ser
Asn	Cys	Gly	Gly 740	Gly	Met	Gln	Ser	Arg 745	Arg	Arg	Ala	Cys	Glu 750	Asn	Gly
Asn	Ser	Cys 755	Leu	Gly	Cys	Gly	Val 760	Glu	Phe	Lys	Thr	Cys 765	Asn	Pro	Glu
Gly	Cys 770	Pro	Glu	Val	Arg	Arg 775	Asn	Thr	Pro	Trp	Thr 780	Pro	Trp	Leu	Pro
Val 785	Asn	Val	Thr	Gln	Gly 790	Gly	Ala	Arg	Gln	Glu 795	Gln	Arg	Phe	Arg	Phe 800
Thr	Cys	Arg	Ala	Pro 805	Leu	Ala	Asp	Pro	His 810	Gly	Leu	Gln	Phe	Gly 815	Arg
Arg	Arg	Thr	Glu 820	Thr	Arg	Thr	Cys	Pro 825	Ala	Asp	Gly	Ser	Gly 830	Ser	Cys
Asp	Thr	Asp 835	Ala	Leu	Val	Glu	Val 840	Leu	Leu	Arg	Ser	Gly 845	Ser	Thr	Ser
Pro	His 850	Thr	Val	Ser	Gly	Gly 855	Trp	Ala	Ala	Trp	Gly 860	Pro	Trp	Ser	Ser

865	ser	Arg	Asp	Cys	870	ьeu	GIY	Pne	Arg	875	Arg	ьys	Arg	Inr	880	
Thr	Asn	Pro	Glu	Pro 885	Arg	Asn	Gly	Gly	Leu 890	Pro	Cys	Val	Gly	Asp 895		
Ala	Glu	Tyr	Gln 900	Asp	Cys	Asn	Pro	Gln 905	Ala	Cys	Pro	Val	Arg 910	Gly	Ala	
Trp	Ser	Cys 915	Trp	Thr	Ser	Trp	Ser 920	Pro	Cys	Ser	Ala	Ser 925		Gly	Gly	
Gly	His 930	Tyr	Gln	Arg	Thr	Arg 935	Ser	Cys	Thr	Ser	Pro 940	Ala	Pro	Ser	Pro	
Gly 945	Glu	Asp	Ile	Cys	Leu 950	Gly	Leu	His	Thr	Glu 955	Glu	Ala	Leu	Cys	Ala 960	
Thr	Gln	Ala	Cys	Pro 965	Glu	Gly	Trp	Ser	Pro 970	Trp	Ser	Glu	Trp	Ser 975	_	
Cys	Thr	Asp	Asp 980	Gly	Ala	Gln	Ser	Arg 985	Ser	Arg	His	Cys	Glu 990	Glu	Leu	
Leu	Pro	Gly 995	Ser	Ser	Ala	Cys	Ala 1000		y Ası	n Se:	r Se		n S 05	er A	rg Pr	၁
Cys	Pro 1010	-	s Ser	c Glu	ı Ile	Pro 101		al I	le L	eu P		la 020	Ser	Ser	Met	
Glu	Glu 1025		ı Thi	Asp	Cys	103		ly P	he A	sn L		le 035	His :	Leu	Val	
Ala	Thr 1040	-	/ Ile	e Sei	Cys	Phe 104		eu G	ly S	er G	_	eu 050	Leu '	Thr	Leu	
Ala	Val 1055	_	. Lei	ı Sei	c Cys	Glr 106		is C	ys G	ln A		ln 065	Ser	Gln	Glu	
Ser	Thr 1070		ı Val	l His	s Pro	107		nr P	ro A	sn H		eu 080	His '	Tyr	Lys	
Gly	Gly 1085	-	/ Thi	r Pro) Lys	Asr 109		lu L	ys T	yr T		ro 095	Met	Glu	Phe	

Lys Thr Leu Asn Lys Asn Asn Leu Ile Pro Asp Asp Arg Ala Asn 1100 1105 1110	
Phe Tyr Pro Leu Gln Gln Thr Asn Val Tyr Thr Thr Thr Tyr Tyr 1115 1120 1125	
Pro Ser Pro Leu Asn Lys His Ser Phe Arg Pro Glu Ala Ser Pro 1130 1135 1140	
Gly Gln Arg Cys Phe Pro Asn Ser 1145 1150	
<pre><210> 23 <211> 21 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Oligonucleotide	
<400> 23	
tgcagcacgt cctgtggcat c	21
<210> 24 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 24 gttgcacgtc ttgaactcca c	21
<pre><210> 25 <211> 1299 <212> DNA <213> Homo sapiens</pre>	
<400> 25 atgaaattca agetgettge tgagteetat tgeeggetge tgggageeag gagageeetg	60
aggagtagtc actcagtagc agctgacgcg tgggtccacc atgaactgga gtatctttga	120
gggacteetg agtggggtea acaagtaete cacageettt gggegeatet ggetgtetet	180
ggtetteate tteegegtge tggtgtaeet ggtgaeggee gagegtgtgt ggagtgatga	240
ccacaaggac ttcgactgca atactcgcca gcccggctgc tccaacgtct gctttgatga	300
gttcttccct gtgtcccatg tgcgcctctg ggccctgcag cttatcctgg tgacatgccc	360
ctcactgctc gtggtcatgc acgtggccta ccgggaggtt caggagaaga ggcaccgaga	420

agcccatggg gagaacagtg ggcgcctcta cctgaacccc ggcaagaagc ggggtgggct 480 ctggtggaca tatgtctgca gcctagtgtt caaggcgagc gtggacatcg cctttctcta 540 600 tqtqttccac tcattctacc ccaaatatat cctccctcct gtggtcaagt gccacgcaga 660 tccatqtccc aatataqtqq actgcttcat ctccaagccc tcagagaaga acattttcac 720 cctcttcatg gtggccacag ctgccatctg catcctgctc aacctcgtgg agctcatcta cctggtgagc aagagatgcc acgagtgcct ggcagcaagg aaagctcaag ccatgtgcac 780 840 aggtcatcac ccccacggta ccacctcttc ctgcaaacaa gacgacctcc tttcgggtga 900 cctcatcttt ctgggctcag acagtcatcc tcctctctta ccagaccgcc cccgagacca 960 tqtqaaqaaa accatcttgt gaggggctgc ctggactggt ctggcaggtt gggcctggat ggggaggete tageatetet cataggtgea acetgagagt gggggageta ageeatgagg 1020 1080 taggggcagg caagagagag gattcagacg ctctgggagc cagttcctag tcctcaactc cagccacctg ecccageteg aeggeactgg gecagtteec ectetgetet geageteggt 1140 1200 ttccttttct agaatggaaa tagtgagggc caatgcccag ggttggaggg aggagggcgt tcatagaaga acacacatgc gggcaccttc atcgtgtgtg gcccactgtc agaacttaat 1260 1299 aaaagtcaac tcatttgctg gaaaaaaaaa aaaaaaaaa

<210> 26

<211> 273

<212> PRT

<213> Homo sapiens

<400> 26

Met Asn Trp Ser Ile Phe Glu Gly Leu Leu Ser Gly Val Asn Lys Tyr 1 5 10 15

Ser Thr Ala Phe Gly Arg Ile Trp Leu Ser Leu Val Phe Ile Phe Arg 20 25 30

Val Leu Val Tyr Leu Val Thr Ala Glu Arg Val Trp Ser Asp Asp His 35 40 45

Lys Asp Phe Asp Cys Asn Thr Arg Gln Pro Gly Cys Ser Asn Val Cys 50 60

Phe Asp Glu Phe Phe Pro Val Ser His Val Arg Leu Trp Ala Leu Gln 65 70 75 80

Leu Ile Leu Val Thr Cys Pro Ser Leu Leu Val Val Met His Val Ala 85 90 95 Tyr Arg Glu Val Gln Glu Lys Arg His Arg Glu Ala His Gly Glu Asn 100 105 110

Ser Gly Arg Leu Tyr Leu Asn Pro Gly Lys Lys Arg Gly Gly Leu Trp 115 120 125

Trp Thr Tyr Val Cys Ser Leu Val Phe Lys Ala Ser Val Asp Ile Ala 130 135 140

Phe Leu Tyr Val Phe His Ser Phe Tyr Pro Lys Tyr Ile Leu Pro Pro 145 150 155 160

Val Val Lys Cys His Ala Asp Pro Cys Pro Asn Ile Val Asp Cys Phe 165 170 175

Ile Ser Lys Pro Ser Glu Lys Asn Ile Phe Thr Leu Phe Met Val Ala 180 185 190

Thr Ala Ala Ile Cys Ile Leu Leu Asn Leu Val Glu Leu Ile Tyr Leu
195 200 205

Val Ser Lys Arg Cys His Glu Cys Leu Ala Ala Arg Lys Ala Gln Ala 210 215 220

Met Cys Thr Gly His His Pro His Gly Thr Thr Ser Ser Cys Lys Gln 225 230 235 240

Asp Asp Leu Leu Ser Gly Asp Leu Ile Phe Leu Gly Ser Asp Ser His 245 250 255

Pro Pro Leu Leu Pro Asp Arg Pro Arg Asp His Val Lys Lys Thr Ile
260 265 270

Leu

<210> 27

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 27

ggagtagtca ctcagtagca gc

```
<210>
      28
<211>
      19
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 28
                                                                       19
gaactcatca aagcagacg
<210> 29
<211> 1528
<212> DNA
<213> Homo sapiens
<400>
      29
                                                                       60
qqaaqqcaca qqcctqagaa gtctgcggct gagctgggag caaatccccc accccctacc
                                                                      120
tgggggacag ggcaagtgag acctggtgag ggtggctcag caggaaggga aggagaggtg
                                                                      180
totgtgcgtc ctgcacccac atotttctct gtcccctcct tgccctgtct ggaggctgct
agactectat ettetgaatt etatagtgee tgggteteag egeagtgeeg atggtggeee
                                                                      240
                                                                     300
gtccttgtgg ttcctctcta cctggggaaa taaggtgcag cggccatggc tacagcaaga
cccccctgga tgtgggtgct ctgtgctctg atcacagcct tgcttctggg ggtcacagag
                                                                     360
                                                                      420
catgttctcg ccaacaatga tgtttcctgt gaccacccct ctaacaccgt gccctctggg
agcaaccagg acctgggagc tggggccggg gaagacgccc ggtcggatga cagcagcagc
                                                                      480
cgcatcatca atggatccga ctgcgatatg cacacccagc cgtggcaggc cgcgctgttg
                                                                      540
ctaaggccca accagctcta ctgcggggcg gtgttggtgc atccacagtg gctgctcacg
                                                                      600
geogeocact geaggaagaa agtitteaga gteegteteg geeactacte eetgteacca
                                                                      660
gtttatgaat ctgggcagca gatgttccag ggggtcaaat ccatcccca ccctggctac
                                                                      720
                                                                      780
teccaecetg gecaetetaa egaeeteatg eteateaaae tgaacagaag aattegteee
                                                                      840
actaaagatg tcagacccat caacgtctcc tctcattgtc cctctgctgg gacaaagtgc
ttggtgtctg gctgggggac aaccaagagc ccccaagtgc acttccctaa ggtcctccag
                                                                      900
tgcttgaata tcagcgtgct aagtcagaaa aggtgcgagg atgcttaccc gagacagata
                                                                      960
gatgacacca tgttctgcgc cggtgacaaa gcaggtagag actcctgcca gggtgattct
                                                                     1020
ggggggcctg tggtctgcaa tggctccctg cagggactcg tgtcctgggg agattaccct
                                                                     1080
tgtgcccggc ccaacagacc gggtgtctac acgaacctct gcaagttcac caagtggatc
                                                                     1140
                                                                     1200
caggaaacca tecaggecaa etectgagte ateccaggae teageacace ggeatececa
```

cctgctgcag	ggacagccct	gacactcctt	tcagaccctc	attccttccc	agagatgttg	1260
agaatgttca	tctctccagc	ccctgacccc	atgtctcctg	gactcagggt	ctgcttcccc	1320
cacattgggc	tgaccgtgtc	tctctagttg	aaccctggga	acaatttcca	aaactgtcca	1380
gggcgggggt	tgcgtctcaa	tctccctggg	gcactttcat	cctcaagctc	agggcccatc	1440
ccttctctgc	agctctgacc	caaatttagt	cccagaaata	aactgagaag	tggaaaaaaa	1500
aaaaaaaaa	aaaaaaaaa	aaaaaaa				1528

<210> 30

<211> 293

<212> PRT

<213> Homo sapiens

<400> 30

Met Ala Thr Ala Arg Pro Pro Trp Met Trp Val Leu Cys Ala Leu Ile 1 5 10 15

Thr Ala Leu Leu Gly Val Thr Glu His Val Leu Ala Asn Asn Asp 20 25 30

Val Ser Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly Ser Asn Gln 35 40 45

Asp Leu Gly Ala Gly Ala Gly Glu Asp Ala Arg Ser Asp Asp Ser Ser 50 55 60

Ser Arg Ile Ile Asn Gly Ser Asp Cys Asp Met His Thr Gln Pro Trp 65 70 75 80

Gln Ala Ala Leu Leu Arg Pro Asn Gln Leu Tyr Cys Gly Ala Val 85 90 95

Leu Val His Pro Gln Trp Leu Leu Thr Ala Ala His Cys Arg Lys Lys 100 105 110

Val Phe Arg Val Arg Leu Gly His Tyr Ser Leu Ser Pro Val Tyr Glu 115 120 125

Ser Gly Gln Gln Met Phe Gln Gly Val Lys Ser Ile Pro His Pro Gly 130 135 140

Tyr Ser His Pro Gly His Ser Asn Asp Leu Met Leu Ile Lys Leu Asn 145 150 155 160

Arg	Arg	Ile	Arg	Pro 165	Thr	Lys	Asp	Val	Arg 170	Pro	Ile	Asn	Val	Ser 175	Ser	
His	Cys	Pro	Ser 180	Ala	Gly	Thr	Lys	Cys 185	Leu	Val	Ser	Gly	Trp 190	Gly	Thr	
Thr	Lys	Ser 195	Pro	Gln	Val	His	Phe 200	Pro	Lys	Val	Leu	Gln 205	Cys	Leu	Asn	
Ile	Ser 210	Val	Leu	Ser	Gln	Lys 215	Arg	Cys	Glu	Asp	Ala 220	Tyr	Pro	Arg	Gln	
Ile 225	Asp	Asp	Thr	Met	Phe 230	Cys	Ala	Gly	Asp	Lys 235	Ala	Gly	Arg	Asp	Ser 240	
Cys	Gln	Gly	Asp	Ser 245	Gly	Gly	Pro	Val	Val 250	Cys	Asn	Gly	Ser	Leu 255	Gln	
Gly	Leu	Val	Ser 260	Trp	Gly	Asp	Tyr	Pro 265	Cys	Ala	Arg	Pro	Asn 270	Arg	Pro	
Gly	Val	Tyr 275	Thr	Asn	Leu	Cys	Lys 280	Phe	Thr	Lys	Trp	Ile 285	Gln	Glu	Thr	
Ile	Gln 290	Ala	Asn	Ser												
<210 <211 <212 <213	.> 1 !> I	31 L9 DNA Artii	ficia	al Se	equer	nce										
<220 <223		Oligo	onuc]	leot:	ide											
<400 caga		31 ggt g	gcgag	ggato	Ð.											19
<210 <211 <212 <213	.> 2 !> I	32 21 DNA Artii	Eicia	al Se	equer	nce										
<220 <223		Oligo	onuc	leot:	ide											
<400 ctgg		32 gac t	cag	gagti	eg g											21

<210>	33	
<211>	636	
<212>	DNA	
<213>	Homo	sapiens

<400> 33 60 atqacaqaaq caqcatcgct tgtccctaag aggccaagga ggctcagagg cagccacaag ctgcgagttc tggcatggcc agtggtcgtg gtggtgaact ttgtttggca gtgcaacggc 120 180 agcattgctc acaccttcct ggagctaagc ttcgcctgcc ctggaggaag gtacgcaggc agtegeecag ceeeggttge agggatggae egegaecage agagggeaga aagtgeetgt 240 300 gtcccccatt ctcgatcccg gggccccaac ctcccatcgg ctcagtcccc cgcccaatct 360 ctgccaggcc cggagctttc ccagacccct cacccacact ccaggctcac tccccgttcc 420 tqqqcctqqq cccccttgc acgagtccag ggccagccgt cctcgccttc tgcccgcccc 480 cgtccttcgt tcctgggagc cggccctctc cgcggaccaa gcggccccga gcaggcgccg 540 ccgcccgggg gactccgact cagcccccgc gacctacctc ggccgacagt cgggggttcc 600 caaqcqqcca ctcccggccg gcgccgtccc ctggcggagc cgccgcgctc cctgccgtcc 636 gcgcagtctg gcctcgctcg gggccactcc tcgtag

<210> 34 <211> 211 <212> PRT <213> Homo sapiens

<400> 34

Met Thr Glu Ala Ala Ser Leu Val Pro Lys Arg Pro Arg Arg Leu Arg 1 5 10 15

Gly Ser His Lys Leu Arg Val Leu Ala Trp Pro Val Val Val Val Val 20 25 30

Asn Phe Val Trp Gln Cys Asn Gly Ser Ile Ala His Thr Phe Leu Glu 35 40 45

Leu Ser Phe Ala Cys Pro Gly Gly Arg Tyr Ala Gly Ser Arg Pro Ala 50 55 60

Pro Val Ala Gly Met Asp Arg Asp Gln Gln Arg Ala Glu Ser Ala Cys 65 70 75 80

Val Pro His Ser Arg Ser Arg Gly Pro Asn Leu Pro Ser Ala Gln Ser 85 90 95

Pro Ala Gln Ser Leu Pro Gly Pro Glu Leu Ser Gln Thr Pro His Pro 100 105 110	
His Ser Arg Leu Thr Pro Arg Ser Trp Ala Trp Ala Pro Leu Ala Arg 115 120 125	
Val Gln Gly Gln Pro Ser Ser Pro Ser Ala Arg Pro Arg Pro Ser Phe 130 135 140	
Leu Gly Ala Gly Pro Leu Arg Gly Pro Ser Gly Pro Glu Gln Ala Pro 145 150 155 160	
Pro Pro Gly Gly Leu Arg Leu Ser Pro Arg Asp Leu Pro Arg Pro Thr 165 170 175	
Val Gly Gly Ser Gln Ala Ala Thr Pro Gly Arg Arg Pro Leu Ala 180 185 190	
Glu Pro Pro Arg Ser Leu Pro Ser Ala Gln Ser Gly Leu Ala Arg Gly 195 200 205	
His Ser Ser 210	
<210> 35 <211> 21	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Oligonucleotide	
<400> 35 tgctctcact gtggtcctca g	21
<210> 36 <211> 21	
<pre><211> 21 <212> DNA <213> Artificial Sequence</pre>	
<220>	
<223> Oligonucleotide	
<400> 36 tttgtaaagc tccagcgcta c	21
<210> 37 <211> 969	
<212> DNA	
<213> Homo sapiens	

```
<400> 37
atgaaggact gtaggaacaa tggcaaggat tgtcaaagtg cccctgcaac acgtaggcac
                                                                       60
                                                                      120
ctettetetg aagetgeeet geeecettat egtettteee aagggeaett eeteaeagee
ctggggggcc tcatggcggt gccattcatc ctggccaagg acctgtgcct gcagcaggac
                                                                      180
                                                                      240
cccctgacac agagetacct catcagcacc attttctttg ctccagcatc tgcatgctcc
                                                                      300
tgcaagetge ccatteecca gggaggtaeg tttgettttg tggtaattte tetggecatg
ctctcccttc cctcctggaa ttgccctgag tggacactca gtgccagcca ggtgaacacc
                                                                      360
                                                                      420
aactttccag aattcactca gaaatggcag aagaggatcc aagagggtgc tatcatggtc
                                                                      480
acttectqtq teeggatqet ggtgggette teaggeetga etggetttet catgggttte
                                                                      540
atctqctcct tqqccqttqc tccaactaac tgcctagtgg ccctgcccct cttggattct
                                                                      600
gcaggcaata atgccgggat ccagtggggg atttctgcca tgtattgctt cgtgttgcgt
cttcgcaagg atgagctctg gccatttggt tctccacggc tgcgtttgcc accatcccca
                                                                      660
                                                                      720
ccccgtgatc ggaggcatgt ccccacccc gtgatcggag gcatgaccct gtttggggtc
atcactqccq tqqqqatctc caatctqcag tacgtggaca tgaacttgtc caggagcctc
                                                                      780
                                                                      840
ttcqcctttq qcttctccat ctactgtggg ctcaccattc ccaaccgggt gagcaaaaac
cccgagatgc tccagacagg gattctccag ccggaccagg ttgttcagat gctgctgacc
                                                                      900
atgggcatgt tcatcagtgg atttctgggt tttcttctag acaacaccat ccccgagctc
                                                                      960
                                                                      969
cttcaataa
```

<210> 38

<211> 322

<212> PRT

<213> Homo sapiens

<400> 38

Met Lys Asp Cys Arg Asn Asn Gly Lys Asp Cys Gln Ser Ala Pro Ala 1 5 10 15

Thr Arg Arg His Leu Phe Ser Glu Ala Ala Leu Pro Pro Tyr Arg Leu 20 25 30

Ser Gln Gly His Phe Leu Thr Ala Leu Gly Gly Leu Met Ala Val Pro 35 40 45

Phe Ile Leu Ala Lys Asp Leu Cys Leu Gln Gln Asp Pro Leu Thr Gln 50 55 60

Ser 65	Tyr	Leu	Ile	Ser	Thr 70	Ile	Phe	Phe	Ala	Pro 75	Ala	Ser	Ala	Cys	Ser 80
Cys	Lys	Leu	Pro	Ile 85	Pro	Gln	Gly	Gly	Thr 90	Phe	Ala	Phe	Val	Val 95	Ile
Ser	Leu	Ala	Met 100	Leu	Ser	Leu	Pro	Ser 105	Trp	Asn	Cys	Pro	Glu 110	Trp	Thr
Leu	Ser	Ala 115	Ser	Gln	Val	Asn	Thr 120	Asn	Phe	Pro	Glu	Phe 125	Thr	Gln	Lys
Trp	Gln 130	Lys	Arg	Ile	Gln	Glu 135	Gly	Ala	Ile	Met	Val 140	Thr	Ser	Сув	Val
Arg 145	Met	Leu	Val	Gly	Phe 150	Ser	Gly	Leu	Thr	Gly 155	Phe	Leu	Met	Gly	Phe 160
Ile	Cys	Ser	Leu	Ala 165	Val	Ala	Pro	Thr	Asn 170	Сув	Leu	Val	Ala	Leu 175	Pro
Leu	Leu	Asp	Ser 180	Ala	Gly	Asn	Asn	Ala 185	Gly	Ile	Gln	Trp	Gly 190	Ile	Ser
Ala	Met	Tyr 195	Cys	Phe	Val	Leu	Arg 200	Leu	Arg	Lys	Asp	Glu 205	Leu	Trp	Pro
	210					215					220			Asp	
225					230			_	_	235		•		Gly	240
				245					250					Asn 255	
	J		260				_	265			_	_	270	Leu	
		275					280					285		Gly	
Leu	Gln 290	Pro	Asp	Gln	Val	Val 295	Gln	Met	Leu	Leu	Thr 300	Met	Gly	Met	Phe

Leu Gl	n					
<210><211><212><212><213>	39 20 DNA Artificial Seq	uence				
<220> <223>	Oligonucleotid	e				
<400> atggcg	39 gtgc cattcatcct					20
<210><211><212><212><213>	40 20 DNA Artificial Sequ	uence				
<220> <223>	Oligonucleotide	e				
<400> caggagg	40 ggaa gggagagcat					20
<210><211><212><213>						,
<400> gaggagg	41 gege gegtegeege	cccgcgtccc	gcctgcggcc	cgcgccccg	gcgtcaccgc	60
ctcctg	cccg cctgcccgcc	tgcccgcctg	cccgcctacc	cgcctacccg	cctacccgcc	120
tacccc	cetg ceggeetgee	gtccttccac	gcggagagcc	atggagggag	tgagcgcgct	180
gctggc	ccgc tgccccacgg	ccggcctggc	cggcggcctg	ggggtcacgg	cgtgcgccgc	240
ggccgg	egtg ttgctctacc	ggatcgcgcg	gaggatgaag	ccaacgcaca	cgatggtcaa	300
ctgctg	gttc tgcaaccagg	atacgctggt	gccctatggg	aaccgcaact	gctgggactg	360
tcccca	ctgc gagcagtaca	acggcttcca	ggagaacggc	gactacaaca	agccgatccc	420
cgccca	gtac ttggagcacc	tgaaccacgt	ggtgagcagc	gcgcccagcc	tgcgcgaccc	480
ttcgca	geeg cageagtggg	tgagcagcca	agtcctgctg	tgcaagaggt	gcaaccacca	540
ccagac	cacc aagatcaagc	agctggccgc	cttcgctccc	cgcgaggagg	gcaggtatga	600
cgaggag	ggtc gaggtgtacc	ggcatcacct	ggagcagatg	tacaagctgt	gccggccgtg	660

Ile Ser Gly Phe Leu Gly Phe Leu Leu Asp Asn Thr Ile Pro Glu Leu

310

305

ccaagcggct	gtggagtact	acatcaagca	ccagaaccgc	cagctgcgcg	ccctgttgct	720
cagccaccag	ttcaagcgcc	gggaggccga	ccagacccac	gcacagaact	tctcctccgc	780
cgtgaagtcc	ccggtccagg	tcatcctgct	ccgtgccctc	gccttcctgg	cctgcgcctt	840
cctactgacc	accgcgctgt	atggggccag	cggacacttc	gccccaggca	ccactgtgcc	900
cctggccctg	ccacctggtg	gcaatggctc	agccacacct	gacaatggca	ccacccctgg	960
ggccgagggc	tggcggcagt	tgctgggcct	actccccgag	cacatggcgg	agaagctgtg	1020
tgaggcctgg	gcctttgggc	agagccacca	gacgggcgtc	gtggcactgg	gcctactcac	1080
ctgcctgctg	gcaatgctgc	tggctggccg	catcaggctc	cggaggatcg	atgccttctg	1140
cacctgcctg	tgggccctgc	tgctggggct	gcacctggct	gagcagcacc	tgcaggccgc	1200
ctcgcctagc	tggctagaca	cgctcaagtt	cagcaccaca	tctttgtgct	gcctggttgg	1260
cttcacggcg	gctgtggcca	caaggaaggc	aacgggccca	cggaggttcc	ggccccgaag	1320
gtcagagaag	cagccatgac	tgcgggggga	ggacacacgg	atgctcaggc	ccaggctttg	1380
ccaggtccga	agcgggcccc	tetetgteet	gcctcttttc	acctgctcac	gccctcccac	1440
ccccacccta	cagccccagg	tcctggccca	gtccctccac	tgcctcgaag	agtcagtctg	1500
ccctgccttt	tcctttcggg	caccaccagc	catccccgag	tgccctgtag	ccactcacca	1560
ctgctgccac	ctctctggcc	aatggccctt	tcactggcct	ggtgactgga	atgtgggcag	1620
cgcccacaca	ggctctggcc	catggcttcc	tactggcagc	tccaggcacc	cccctctca	1679

<210> 42

<400> 42

Met Glu Gly Val Ser Ala Leu Leu Ala Arg Cys Pro Thr Ala Gly Leu 1 5 10 15

Ala Gly Gly Leu Gly Val Thr Ala Cys Ala Ala Ala Gly Val Leu Leu 20 25 30

Tyr Arg Ile Ala Arg Arg Met Lys Pro Thr His Thr Met Val Asn Cys
35 40 45

Trp Phe Cys Asn Gln Asp Thr Leu Val Pro Tyr Gly Asn Arg Asn Cys 50 55 60

Trp Asp Cys Pro His Cys Glu Gln Tyr Asn Gly Phe Gln Glu Asn Gly 65 70 75 80

<211> 392

<212> PRT

<213> Homo sapiens

Asp	Tyr	Asn	Lys	Pro 85	Ile	Pro	Ala	Gln	Tyr 90	Leu	Glu	His	Leu	Asn 95	His
Val	Val	Ser	Ser 100	Ala	Pro	Ser	Leu	Arg 105	Asp	Pro	Ser	Gln	Pro 110	Gln	Gln
Trp	Val	Ser 115	Ser	Gln	Val	Leu	Leu 120	Cys	Lys	Arg	Cys	Asn 125	His	His	Gln
Thr	Thr 130	Lys	Ile	Lys	Gln	Leu 135	Ala	Ala	Phe	Ala	Pro 140	Arg	Glu	Glu	Gly
Arg 145	Tyr	Asp	Glu	Glu	Val 150	Glu	Val	Tyr	Arg	His 155	His	Leu	Glu	Gln	Met 160
Tyr	Lys	Leu	Cys	Arg 165	Pro	Cys	Gln	Ala	Ala 170	Val	Glu	Tyr	Tyr	Ile 175	Lys
His	Gln	Asn	Arg 180	Gln	Leu	Arg	Ala	Leu 185	Leu	Leu	Ser	His	Gln 190	Phe	Lys
Arg	Arg	Glu 195	Ala	Asp	Gln	Thr	His 200	Ala	Gln	Asn	Phe	Ser 205	Ser	Ala	Val
Lys	Ser 210	Pro	Val	Gln	Val	Ile 215	Leu	Leu	Arg	Ala	Leu 220	Ala	Phe	Leu	Ala
Cys 225	Ala	Phe	Leu	Leu	Thr 230	Thr	Ala	Leu	Tyr	Gly 235	Ala	Ser	Gly	His	Phe 240
Ala	Pro	Gly	Thr	Thr 245	Val	Pro	Leu	Ala	Leu 250	Pro	Pro	Gly	Gly	Asn 255	Gly
Ser	Ala	Thr	Pro 260	Asp	Asn	Gly	Thr	Thr 265	Pro	Gly	Ala	Glu	Gly 270	Trp	Arg
Gln	Leu	Leu 275	Gly	Leu	Leu	Pro	Glu 280	His	Met	Ala	Glu	Lys 285	Leu	Cys	Glu
Ala	Trp 290	Ala	Phe	Gly	Gln	Ser 295	His	Gln	Thr	Gly	Val 300	Val	Ala	Leu	Gly
Leu 305	Leu	Thr	Cys	Leu	Leu 310	Ala	Met		Leu Page	315	Gly	Arg	Ile	Arg	Leu 320

Arg Arg Ile Asp Ala Phe Cys Thr Cys Leu Trp Ala Leu Leu Gly 325 330 335	
Leu His Leu Ala Glu Gln His Leu Gln Ala Ala Ser Pro Ser Trp Leu . 340 345 350	
Asp Thr Leu Lys Phe Ser Thr Thr Ser Leu Cys Cys Leu Val Gly Phe 355 360 365	
Thr Ala Ala Val Ala Thr Arg Lys Ala Thr Gly Pro Arg Arg Phe Arg 370 380	
Pro Arg Arg Ser Glu Lys Gln Pro 385 390	
<210> 43 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 43 ctacatcaag caccagaacc gcc	23
<210> 44 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 44 ggacttcacg gcggaggag	19
<210> 45 <211> 727 <212> DNA <213> Homo sapiens	
<400> 45 aggcagttgc gggttgcagg agttcaggaa aggaggtggg actagagtca acctggaata	60
gctctacagt aacaatggca gcctttttgt tgctgggaca tccatacagg caacttagct	120
ggtgaaagga ctctggattg gttggcagtc tgcttttttt tttccaaggt gatcacttta	180

240

ctgtagaaga aatgaggtta acagaaaaga gtgagggaga acaacaactc aagcccaaca

actctaatgc	acccaatgaa	gatcaagaag	aagaaatcca	acagtcagaa	cagcatactc	300
cagcaaggca	gcgaacacaa	agagcagaca	cacagccatc	cagatgtcga	ttgccttcac	360
gtaggacacc	tacaacatcc	agcgacagaa	cgatcaacct	tcttgaagtc	cttccgtggc	420
ctactgagtg	gattttcaac	ccctatcgat	tgcctgctct	ttttgagctt	tatcctgaat	480
ttcttctggt	gtttaaagaa	gccttccatg	acatatccca	ttgtctgaaa	gcccagatgg	540
aaaagatcgg	actgcccatc	atactccacc	tcttcgcact	ctccaccctc	tacttctaca	600
agtttttcct	tcctacaatt	ctttcccttt	ctttctttat	tcttcttgta	cttctgcttc	660
tgctttttat	tattgtcttc	attctgatct	tcttctgatt	cttttgtttc	aataaacagc	720
aatgagc						727

<210> 46

<211> 168

<212> PRT

<213> Homo sapiens

<400> 46

Met Arg Leu Thr Glu Lys Ser Glu Gly Glu Gln Gln Leu Lys Pro Asn 1 5 10 15

Asn Ser Asn Ala Pro Asn Glu Asp Gln Glu Glu Glu Ile Gln Gln Ser 20 25 30

Glu Gln His Thr Pro Ala Arg Gln Arg Thr Gln Arg Ala Asp Thr Gln 35 40 45

Pro Ser Arg Cys Arg Leu Pro Ser Arg Arg Thr Pro Thr Thr Ser Ser 50 55 60

Asp Arg Thr Ile Asn Leu Leu Glu Val Leu Pro Trp Pro Thr Glu Trp 65 70 75 80

Ile Phe Asn Pro Tyr Arg Leu Pro Ala Leu Phe Glu Leu Tyr Pro Glu 85 90 95

Phe Leu Leu Val Phe Lys Glu Ala Phe His Asp Ile Ser His Cys Leu 100 105 110

Lys Ala Gln Met Glu Lys Ile Gly Leu Pro Ile Ile Leu His Leu Phe 115 120 125

Ala Leu Ser Thr Leu Tyr Phe Tyr Lys Phe Phe Leu Pro Thr Ile Leu 130 135 140

Ile Val	l Phe	e Ile Leu I 165	le Phe Phe				
<210><211><212><212><213>	47 20 DNA Arti	ficial Seq	uence				
<220> <223>	Olig	gonucleotid	e				
<400> gctggtg	47 gaaa	ggactctgga					20
<210><211><211><212><213>	48 20 DNA Arti	ificial Seq	uence				
<220> <223>	Olig	gonucleotid	e				
<400> tcgctgg	48 gatg	ttgtaggtgt					20
<210><211><211><212><213>	49 950 DNA Homo	o sapiens				·	
<400> gcgagco	49 ccga	gcaggcagac	gcgcggccgg	cggtctgggg	gegegeegee	tcccggtccc	60
caaaat	gtga	agcggggagg	gcggagacgc	agagacggcc	cggccgggcg	ccctcgccgc	120
cctccg	gcag	ccgcgccgct	ccctccgctg	cacgcccagg	cctgagcagc	gaggccaccg	180
ggccgcg	gcgc	tcccagcttc	gctcggacgc	ggcttcggcc	cgcagagggt	tcgtggcccg	240
gacgcgg	gcga	gagctgggcc	caggacggtg	cgtccggcct	cgcccgcggc	tgctcgcacc	300
aacaagt	tttg	aacaatgatc	accgtcaacc	ccgatgggaa	gataatggtc	agaagatgcc	360
tggtcad	ccct	gagacccttt	cggctttttg	tcctgggcat	cggcttcttc	actctctgct	420
tcctgat	tgac	gtctctggga	ggccagttct	cggcccggcg	cctgggggac	tcgccattca	480
ccatcc	gcac	agaagtgatg	gggggccccg	agtcccgcgg	cgtcctgcgc	aagatgagcg	540
acctgc	tgga	gctgatggtg	aagcgcatgg	acgcactggc	caggctggag	aacagcagtg	600

Ser Leu Ser Phe Phe Ile Leu Leu Val Leu Leu Leu Leu Phe Ile

155

150

145

agctgcaccg ggccggcggc gacctgcact ttcccgcaga caggatgccc cctggggccg 660 gcctcatgga gcggatccag gctattgccc agaacgtctc cgacatcgct gtgaaggtgg 720 accagatcct gcgccacagt ctgctcctgc acagcaaggt gtcagaaggc cggcgggacc 780 agtgtgaggc acccagtgac cccaagttcc ctgactgctc agggaaggtg gcagtggatg 840 cgtgcccgct ggacctctga cccctgctac gccttctttg gggtggacgg caccgagtgc 900 tccttcctca tctacctcag tgaggtcgag tggttctgcc ccccgctgcc 950

<210> 50

<211> 181

<212> PRT

<213> Homo sapiens

<400> 50

Met Ile Thr Val Asn Pro Asp Gly Lys Ile Met Val Arg Arg Cys Leu 1 5 10 15

Val Thr Leu Arg Pro Phe Arg Leu Phe Val Leu Gly Ile Gly Phe Phe 20 25 30

Thr Leu Cys Phe Leu Met Thr Ser Leu Gly Gly Gln Phe Ser Ala Arg
35 40 45

Arg Leu Gly Asp Ser Pro Phe Thr Ile Arg Thr Glu Val Met Gly Gly 50 55 60

Pro Glu Ser Arg Gly Val Leu Arg Lys Met Ser Asp Leu Leu Glu Leu 65 70 75 80

Met Val Lys Arg Met Asp Ala Leu Ala Arg Leu Glu Asn Ser Ser Glu 85 90 95

Leu His Arg Ala Gly Gly Asp Leu His Phe Pro Ala Asp Arg Met Pro
100 105 110

Pro Gly Ala Gly Leu Met Glu Arg Ile Gln Ala Ile Ala Gln Asn Val 115 120 125

Ser Asp Ile Ala Val Lys Val Asp Gln Ile Leu Arg His Ser Leu Leu 130 135 140

Leu His Ser Lys Val Ser Glu Gly Arg Arg Asp Gln Cys Glu Ala Pro 145 150 155 160

Cys Pro	Cys Pro Leu Asp Leu 180								
<210><211><212><212><213>	51 21 DNA Artificial Sequence								
<220> <223>	Oligonucleotide								
<400> agatgco	51 ctgg tcaccctgag a	21							
<210><211><212><212><213>	52 20 DNA Artificial Sequence								
<220> <223>	Oligonucleotide								
<400> ggcccc	52 ccat cacttctgtg	20							
	53 396 DNA Homo sapiens								
<400> ctgcaag	53 gacc gcatcgccac gttcttcttc ccaaaaggca tgatgctcac cacggctgcg	60							
ctgatgo	ctct tcttcttaca cctgggcatc ttcatcagág acgtgcacaa cttctgcatc	120							
acctaco	cact atgaccacat gagettteae tacaeggteg teetgatgtt eteecaggtg	180							
atcagca	atct gctgggctgc catggggtca ctctatgctg agatgacaga aaacaatgct	240							
caacgga	agcc atgttettea acegeetgte ettggagttt etggeeateg agtaceggga	300							
ggagcad	ccac tgaggcctgg ggagtcggaa cagggctaag gagggggaag caaaaggctg	360							
cctcggg	gtgt tttaataaag ttgttgttta tttcca	396							
<210><211><211><212><213>	54 99 PRT Homo sapiens								

Ser Asp Pro Lys Phe Pro Asp Cys Ser Gly Lys Val Ala Val Asp Ala

165

<400> 54

170

Met Met Leu Thr Thr Ala Ala Leu Met Leu Phe Phe Leu His Leu Gly 1 5 10 15										
Ile Phe Ile Arg Asp Val His Asn Phe Cys Ile Thr Tyr His Tyr Asp 20 25 30										
His Met Ser Phe His Tyr Thr Val Val Leu Met Phe Ser Gln Val Ile 35 40 45										
Ser Ile Cys Trp Ala Ala Met Gly Ser Leu Tyr Ala Glu Met Thr Glu 50 55 60										
Asn Asn Ala Gln Arg Ser His Val Leu Gln Pro Pro Val Leu Gly Val 65 70 75 80										
Ser Gly His Arg Val Pro Gly Gly Ala Pro Leu Arg Pro Gly Glu Ser 85 90 95										
Glu Gln Gly										
<210> 55 <211> 22 <212> DNA <213> Artificial Sequence										
<220> <223> Oligonucleotide										
<400> 55 ccgttgagca ttgttttctg tc	22									
<210> 56 <211> 22 <212> DNA <213> Artificial Sequence										
<220> <223> Oligonucleotide										
<400> 56 tgctcttctt cttacacctg gg 22										
<210> 57 <211> 539 <212> DNA <213> Homo sapiens										
<400> 57 ggtgccttaa tgtttgtggc atggatgact actgttagca taggtgtact ggttgcccgg	60									

ttcttcaaqc caqtttqqtc aaaaqctttc ttgcttggtg aagcagcttg gtttcaggtg 120 categgatge teatqtteae cacaactgte etcacetgea ttgettttgt tatgeegttt 180 atatacaggg gaggctggag taggcatgca ggttaccacc catacctcgg ctgtatagtg 240 atgactttgg cagttcttca gcctcttctg gcagtcttca ggccaccttt acatgaccca 300 agaaggcaaa tgtttaactg gactcattgg agtatgggaa cagctgctag aataatagca 360 gacttaaaac aatctggaaa atgtgggtgc atctctttta aggattggta gattacgcag 420 480 ccataaaaaa gaatgaagtc atgtcttttg tagcaacatg gatgctgctg gaagtgatta tcctacatga attaatgcag aaacagaaaa tcacatacca catgttctca cttataaat 539

<210> 58

<211> 133

<212> PRT

<213> Homo sapiens

<400> 58

Met Phe Val Ala Trp Met Thr Thr Val Ser Ile Gly Val Leu Val Ala 1 5 10 15

Arg Phe Phe Lys Pro Val Trp Ser Lys Ala Phe Leu Leu Gly Glu Ala 20 25 30

Ala Trp Phe Gln Val His Arg Met Leu Met Phe Thr Thr Val Leu 35 40 45

Thr Cys Ile Ala Phe Val Met Pro Phe Ile Tyr Arg Gly Gly Trp Ser 50 60

Arg His Ala Gly Tyr His Pro Tyr Leu Gly Cys Ile Val Met Thr Leu 65 70 75 80

Ala Val Leu Gln Pro Leu Leu Ala Val Phe Arg Pro Pro Leu His Asp 85 90 95

Pro Arg Arg Gln Met Phe Asn Trp Thr His Trp Ser Met Gly Thr Ala 100 105 110

Ala Arg Ile Ile Ala Asp Leu Lys Gln Ser Gly Lys Cys Gly Cys Ile 115 120 125

Ser Phe Lys Asp Trp 130

<210>	59			•			
<211>	20						
<212> <213>	DNA	ificial Sec	a10240				
<213>	AI U.	riiciai sec	Idence				
<220>							
<223>	Olig	gonucleotic	le				
<400>	59						
		gatgactact	:				20
		-					
<210>	60						
<211>	20						
<212>	DNA						
<213>	Arti	ificial Sec	[uence				
<220>							
<223>	Olig	gonucleotic	le				
400							
<400>	60 ata	cagccgaggt					20
caccac	Jucu	cageegagg	•				
<210>	61	7					
<211><212>	3317 DNA	/					
<213>		sapiens					
<400>	61	cccatcagct	caaagaatac	gcatggggac	aageetaggg	ggccgtctga	60
acaccy	-900	cccaccage	· caaagaacac	5000555500	aageee3333	33003000	
gagtcc	cca	accctggato	cccacggcag	ccccactgt	tgggtttttc	agtggctggt	120
ataccct	aaa	ctggtcacct	ctgcattttg	ctctactaga	agtttgctcc	tggccctcca	180
acagcgo	cctc	ctctgtgagg	aggaactcct	gttcccgtgg	ctctgctggc	tctggaggct	240
ggagtto	ccg	tgctgggcc	: tcctgggcgg	gttctctctt	gctgccgcca	gtaccctgcc	300
catata	rt cc	tectaggtag	r cctgggagga	atggcagaag	aaagcagtga	agccaggtag	360
cccccg	,	ccccgggcag	, cccgggagga	acggeagaag	aaagoagoga	ageeaggeag	
cagtago	ccg	gccaccccac	caggctctgc	tgtaggctgg	gctctcaagg	cagctgctcc	420
2002000	1000	ccctaggaa	ggactgccac	actectogga	acattectaa	cccctccag	480
aggagg	gee	ccccaggaag	ggaeegeeae	accccggga	303000033	coccocca	
tgcaaat	gac	cctgggccc	aaggctccga	acacccgccc	ctctgctcca	ggctagcttg	540
actaaa	cca	atgettetea	aggtgaggag	aacatcctta	aagcctccgg	ccaccccaca	600
ccaagga	agct	ttcagggcag	gaaatgtgat	cgggcagctg	atttatctcc	ttacctggtc	660
tttatta	-202	acctaactca	ggccccccac	cctactacaa	gacccgagga	catctcccca	720
cccgccc	Jaca	geeeggeee	ggcccccac	cccgccgcag	550005055	og socooou	, = 0
ggggtc	ccca	cctcggtctc	: cttgggggga	ctgtgctgag	cccagctgcc	tctgtgagat	780
gaagata	enee	addcdaadad	: atgaagggcc	tacctagaga	cagtctggct	ttcttgcagg	840
Jungare				-995555			
ggggctg	gcac	ctggttccct	cctccctctc	gctggcagcc	tgcggggtgg	tgaggatgaa	900

ggggctgtgg	ggccggggtg	cagggattag	agggaggtga	ctgccatctc	ttcctcctca	960
tcgtgttttt	cacctcttaa	gtcaacttta	gattctcgga	ctcagagttc	tctcctgacg	1020
gtggcagggt	cctcagatca	ccggtgcaga	cagggccaga	cagggccaat	gtggggaccc	1080
actcagcctg	tggcctctgc	aggagggagg	tcggaggcct	cagcagccac	cccggccacc	1140
tcctgaaaca	gtgaatgtcc	ttcattttca	gctggcaagc	tctgatctta	caacgaggta	1200
tggaactgtt	cagaaaactt	tcagcagacg	ttcgagggaa	aacagctcag	cttcccatgc	1260
ccccacctc	tgccaggagc	gaccccatat	ccccaaaca	gaattctggt	agcccgggac	1320
cacagggtct	tcctgtgcct	cccctgccag	ctctgcatga	ctttgtcacg	tacttgagtg	1380
ctggctgaga	tgatgctacc	gctaccaaac	aggtgggagg	ccagccccag	ccccagcccc	1440
agccccaccg	gggccggagc	tcccggtgaa	gaagcgtctg	cctggttcgc	aggtgtccag	1500
gacacaccag	tcgcctgact	cccggtcagg	caaacgcaca	catcaagttc	ttgcaagcca	1560
gggctctgct	ggcatcttca	agaggaggga	gggtcctggc	cctgaccaca	gggctccctt	1620
aacaggagga	gttacaaact	cggcttcctg	gggggcatcg	tggggtgtgc	tgcctgccag	1680
gagaccccac	tcctggtcac	ggggttccgt	cccacacagt	ggcaggagcc	atgcatgatt	1740
cttggctgaa	gaagaacccg	cacagctatg	tggtctgccg	cccagcaggg	aagcccccac	1800
atcagcccta	agggaacttc	ccaaagctca	gcaggtgcct	cttcctgcca	tccgctaggt	1860
cttctcttgg	cccctctccc	aagccttgac	ccatagctga	cacttctaga	aaagtcttta	1920
ccgagaaacg	gaccggctgc	atgggtggtg	aggagggcag	ttgcccaggg	cctggcatca	1980
gaggggcctg	tggctaaggc	tgtcctgaaa	ttcttaatca	ttttacctct	gaacttgcgg	2040
gtttttgttg	ttgttttttg	aggcagagtc	ttgctctgtc	acccaggctg	gagtgcagtg	2100
gtgcgatctt	ggcttactgc	aacttccgac	tcccaggttc	aagcgattct	cctgcctcag	2160
cctcccgagt	agctgggact	acagaagtgc	accaccacac	ccggttaatt	tttgtatttt	2220
tagtagagac	ggggtttcac	catgttggcc	aggctgatct	caaactcctg	atacacccgc	2280
ctcggcctct	caaagcactg	ggattacagg	tgtgagccac	cgcgcccggc	ccttttcctg	2340
cctcctaaac	aagtggccag	gaattctcct	cctgcaccgg	gtccccagat	tgtgtggcaa	2400
gccctgcaga	tggcacaggg	gactggttct	tcctcgtgga	aagccaggcc	cggacacctc	2460
tcgggcatcg	cctgttgggg	tgaccctccc	acacccagcc	tggaacccta	gccagctcag	2520
cctccgtccg	ctgagaaatc	aaggtgacct	tgtggctcag	ccctcagggg	gcactcacca	2580
cacaagagtt	ccctttcaag	accccctgtt	cggggctggg	gcccccagga	acggttgggg	2640
caccttcctg	gggccctgtt	tttccccagg	agcggggcct	gggagctgag	ggcgtctcat	2700

ctccccacag	gcatctgctg	ctgctcctgg	ctgccactca	cccctgtgag	atgctgaggg	2760
caggatacct	gtctgtgcgg	ggcgtgggaa	aaagggagaa	agcctggcag	agggttgggg	2820
gctaagaagc	aaagggcgtg	gaagggccac	cgtgcacttt	tgaagtctct	acttgccagt	2880
ggccacccca	cctctccctg	ccctcatcca	aggacggaca	ggcctggcag	gtggaccgga	2940
gctgtggggc	agaagcatcc	caggcctggc	ctcagaggag	ggaggccatg	gtgaaagtgg	3000
aggctgtctg	catccacctc	cccagccttt	gtcaccggga	cctcagcctg	accccaggcc	3060
caccccaggc	tgctcaccga	ggtgggtacc	ctgcccaccg	ccagctcaga	tgcggtgtgt	3120
ggactccctt	ctctctgggg	gtgagcggga	gttccctccc	ctccacatca	ggagctgggg	3180
gagagctgga	gggccctggg	atccccttga	ccctggtcat	cagccccagc	cctgacaggc	3240
cctgcgtgtg	ccatgtgtgg	cctgggtttg	gagctcagca	ccctgcggga	attctattaa	3300
atctccgatt	ttatctg					3317

<210> 62

<211> 129

<212> PRT

<213> Homo sapiens

<400> 62

Met Leu Leu Lys Val Arg Arg Ala Ser Leu Lys Pro Pro Ala Thr Pro 1 5. 10 15

His Gln Gly Ala Phe Arg Ala Gly Asn Val Ile Gly Gln Leu Ile Tyr 20 25 30

Leu Leu Thr Trp Ser Leu Phe Thr Ala Trp Leu Arg Pro Pro Thr Leu
35 40 45

Leu Gln Gly Pro Arg Thr Ser Pro Gln Gly Ser Pro Pro Arg Ser Pro 50 55 60

Trp Gly Asp Cys Ala Glu Pro Ser Cys Leu Cys Glu Met Lys Ile Arg 65 70 75 80

Arg Arg Arg His Glu Gly Pro Ala Trp Gly Gln Ser Gly Phe Leu Ala 85 90 95

Gly Gly Leu His Leu Val Pro Ser Ser Leu Ser Leu Ala Ala Cys Gly
100 105 110

Val Val Arg Met Lys Gly Leu Trp Gly Arg Gly Ala Gly Ile Arg Gly
115 120 125

<210><211><212><212><213>	63 20 DNA Arti	ficial Sequ	ıence				
<220> <223>	Olig	gonucleotide	:				
<400> ccccaa	63 ggct	ccgaacaccc	·				20
<210><211><212><213>	64 20 DNA Arti	ificial Sequ	ience				
<220> <223>	Olig	gonucleotide	2				
<400> cccgato	64 caca	tttcctgccc					20
<210><211><212><212><213>		sapiens					
<400> gtaggaa	65 agta	tatgggtagg	gtcagataat	atttctgaaa	ggaaacaccc	aggagtatcc	60
caagtta	aatg	acattttaga	ccctccaaca	accacacaag	tcagctcctt	ggaaagactc	120
tggttad	cttt	tacaaagcaa	accaggagaa	ttttcataat	acctgataac	tatgtaagac	180
ttggaat	tatt	tgaatttcta	ggacatggga	ttgtgcaacc	attcatttta	tcccataata	240
ttgaaa	tctc	cctcagataa	gcctctcggc	acctaataga	gttttcttag	tgaagggcta	300
cctttc	tgtg	ggtaacaggg	aagggcaaaa	taaacaacca	aataatatca	taatcacgag	360
tgtcaat	tgat	tgctggaaca	ggtgggggtt	ggtcattaaa	ttctagttgt	ttccactatt	420
ccagtag	ggag	ttgtgtgaat	gttagcaaaa	gaccagggtg	ttacgatctg	actgtgtttc	480
atcaati	tgcc	ttgacttttg	gatgaaatgc	gatttgagga	catatcatta	ttagatttgc	540
cacaga	ttcc	aattttttc	tctaatatga	ggctaaccat	gatgtccttt	cccaggaagg	600
acaatc	tctc	ctttatcagg	gaaaaatcag	taggggcttc	ctcaattttc	tccttcatcc	660
ccacca	caga	gtcatagagg	tcaagtcctt	ttcttgtgaa	acctaaaaaa	tgcaaattcc	720

aaggttgctg ctatggtgta ctaattttgt cacagtgaca tgccctgtca cagggcgtat 780 840 gtgttctgtt atacagttga aatattggtt atactattga aatgtttttg tactattgaa 900 atcccaaata aacttaattc taaaagaagc atgacctcaa cagcctcaca cctacttata 960 tcttgtagtt ctttctgtct aatgctggca atctaagcat gttccaggca agcaacattc 1020 aatagcgttt tactgctcca ataagttggt tcaattagca atgtcaaaagg cagtcactaa 1080 atagatagtg tataaccttc atacaatctc gtattatttt ccactaatta ctatagaaaa 1140 atcgatgaag tttcattaca atggaataac ttcaatcaca cttcaaaaac tacatacgga agatagccac aacttgctgc tctcaaaaaa cacagagatg gcatctttac tttgtttcaa 1200 1260 atccccaacc ctggtggcgg tccaaagtta tggcagttat aaccccttat gtcattataa 1320 ggaggaaggg taaatattaa gtcaacatcc tttaaagcta agagtatgac tacagtgggg 1380 tggaatttgg gacttcatgc ccactccctg tttctgttct attttacctt tcctgacctc taagccaaca ggagagggg aagggccaca cttttgtgac ccttgttaaa gaattgtgag 1440 tttaggaaac aaagatggac ttctgagggg gtagttgagg atgggctgaa ggcacagaag 1500 aaaccagctg gtgtgcccct ctccccacta gcagaccctt cttcctcatt ggttcagggc 1560 aaacaatccc ccaaaaattc aagaaaacta acttagagtt attttctgtt atttctcttt 1620 1680 tccttgatct ggagccaatg cagaaagaaa tctaaaggtg aaggaaaggc agcgttcagc 1740 actgagcaag tccatgttgg agaaagttca cagggaattg gaaatccttg tcttcgtggt 1800 tectggetea geaggaeeee tgtggggeet etecetetet tgggaaagag attgetetag aaggtttact acaccagtga ggagaagatg agcgcaaggg ggattggccg gctgagggcg 1860 1920 aaatcaagac tggagccaag tgcgctgagc tctcacatga ggtcctttgc tcctgttccc 1980 tggaggcata agtggctggg gtagagagaa gcaggggtat ttcttctgtc ctttcttgct tagggattgg gggtggaaat ctccccgcat ctaaggaaat ttgaaaagac aaactatggc 2040 2100 tgcttcttca agcaaaccac ctcaccacac tatccagggg ataaaacccg cttgctgctg 2160 ctaaattatg ccaagagaga acattctgat atttctcctc aattctaggc atgacagcgt gacttggtgc ttaaaggcat ggagttttga gttgcagacc taggtttgag tgctgaatct 2220 2280 actagettea gggtgttaaa aaagtttett aateteteta aacettattt tteteaaaga 2340 taaaaaactg ggtgtagttg tgagtatagt gaatgcacat agtatgtgcc tttggcatgt taattcacta ttattctgga cataatttct cctaagaaaa aggatgaact aattgcaggg 2400 2460 cctagcctaa gctctgagaa gtcattcgtt atagcatttc agtccatagt aaacaagaag 2520 aaatgaggta aagagtttaa accagggaag gcatagctgt ggtcaccaaa caacctgtta

aaggcgagct gtaggcacca aaaaacctat tatggactga attgtgttcc tcaaattcat 2580 atgttgaagt gctaacccca agtaccaaat gtgactgtat ttggggatag ggtccctgaa 2640 gaagtcactc agctggaagg agtcatattg gattaggtgt tgggaattgg ctggccaagg 2700 gagaaatcaa ggctggaacc aagtgctgaa ctctcacatc aggtcctttg ctcctgttcc 2760 2820 ctggacccta atccaatatg actggcatct ttatatgaag aggaagaggc accagagggt 2880 acacacgcag agaaaaggcc atgtgtggac acagtaagat gacggacatc tgtaagccaa ggagggaaac ctcagaagaa accagccttg cctgcacctt gatcttggag gtccagtctc 2940 cagaactgtg aaaaaaatga actggtgttg tttaaatccc ccagtcgtgg tattttgtca 3000 tggtggccct agaagacaat atacaaccca aaggaatatt ctttccactt tctccctctt 3060 3120 ccactttata qttttttctc cttcgtttct ttctttttct cttttacttt ccttttcttc tcttctcttt cctctggttt ttaattttaa ttttaatttt tggccttcct atacctccat 3180 ttgcctctcc aggaagctga attccagaca attaatcatt catctcatca gttcagcaaa 3240 gcaaatgccc tcaatggttt cttttgtgat tcgattatta tgggatcaga atgtatctta 3300 3338 ttcctctggg aaaaatgaaa cataaaaatt tcagaaat

<210> 66

<211> 122

<212> PRT

<213> Homo sapiens

<400> 66

Met Asn Trp Cys Cys Leu Asn Pro Pro Val Val Val Phe Cys His Gly
1 5 10 15

Gly Pro Arg Arg Gln Tyr Thr Thr Gln Arg Asn Ile Leu Ser Thr Phe 20 25 30

Ser Leu Phe His Phe Ile Val Phe Ser Pro Ser Phe Leu Ser Phe Ser 35 40 45

Leu Leu Leu Ser Phe Ser Ser Leu Leu Phe Pro Leu Val Phe Asn Phe 50 55 60

Asn Phe Asn Phe Trp Pro Ser Tyr Thr Ser Ile Cys Leu Ser Arg Lys 65 70 75 80

Leu Asn Ser Arg Gln Leu Ile Ile His Leu Ile Ser Ser Ala Lys Gln 85 90 95

Val Ser Tyr Ser Ser Gly Lys Asn Glu Thr 115 120	
<210> 67 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 67 ctaaaggtga aggaaaggc	19
<210> 68 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 68 cgctcatctt ctcctca	17
<210> 69 <211> 1119 <212> DNA <213> Homo sapiens	
<400> 69 tcaccctcct ggccaattgt gttgcacctt gggcactgaa tcacatgagc cgtcgactaa	60
gccagatgct tctcatgttc ctactggcaa cctgccttct ggccatcata tttgtgcctc	120
aagaaatgca gaccctgcgt gtggttttgg caaccctggg tgtgggagct gcttctcttg	180
gcattacctg ttctactgcc caagaaaatg aactaattcc ttccataatc aggtacaaaa	240
gtttatgtgt gctctgtcat tctcaaaatg gacctgtctc aaccaattga cacttaacaa	300
gggaaaaaaa tccaagacaa gttagttaaa aaacaatcaa atgtaatagt cataaaaaca	360
acaaattaca gcccaagttt atatcaagct gactttgttc cagacgctgc attaagtctt	420
ttaatgcagt atcccatgta ccttctgaac cacctgaaag gttgatgtta aggaaaatag	480
cattttgtaa atgataaaaa tgtgtctaat tcacttgtga atctaaaata aattgctagc	540
aaataagaga aaatttcaaa agcaagagta tgttatcacc tccatgtgtt taagtgctca	600
tccataatca cagcaaaatg ataaatcaca aattatatgt atgattttta acaacttttc	660

Met Pro Ser Met Val Ser Phe Val Ile Arg Leu Leu Trp Asp Gln Asn 100 105 110

ctctgttgct gtttttactc caaggggaag agctactgga atcactggaa actttgctaa 720 tattqqqqqa gccctggctt ccctcatgat gatcctaagc atatattctc gacccctgcc 780 840 ctggatcatc tatggagtct ttgccatcct ctctggcctt gttgtcctcc tccttcctga 900 aaccaqqaac caqcctcttc ttgacagcat ccaggatgtg gaaaatgagg gagtaaatag cctagctgcc cctcagagga gctctgtgct ataggtctgt gctgaggaaa gcaaaacacc 960 1020 atttagggct accatecece aaaaaggett agatetggge tatteecatg tagteagtge ctttgccttt ggtgtatcct catcccttcc acagtgacct catacatccc ctgagcctca 1080 1119 ctagatcaca cagaccatct ctgcccagcc tgtccagga

<210> 70

<211> 97

<212> PRT

<213> Homo sapiens

<400> 70

Met Ile Phe Asn Asn Phe Ser Ser Val Ala Val Phe Thr Pro Arg Gly
1 5 10 15

Arg Ala Thr Gly Ile Thr Gly Asn Phe Ala Asn Ile Gly Gly Ala Leu 20 25 30

Ala Ser Leu Met Met Ile Leu Ser Ile Tyr Ser Arg Pro Leu Pro Trp 35 40 45

Ile Ile Tyr Gly Val Phe Ala Ile Leu Ser Gly Leu Val Val Leu Leu 50 55 60

Leu Pro Glu Thr Arg Asn Gln Pro Leu Leu Asp Ser Ile Gln Asp Val 65 70 75 80

Glu Asn Glu Gly Val Asn Ser Leu Ala Ala Pro Gln Arg Ser Ser Val 85 90 95

Leu

<210> 71

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 71 ttctggccat	catatttgtg	С				21			
<210> 72 <211> 21 <212> DNA <213> Artificial Sequence									
<220> <223> Oli	gonucleotide	e							
<400> 72 agtgattccc	agtagctctt	С				21			
<210> 73 <211> 283 <212> DNA <213> Hom									
<400> 73 atatcacctc	ctaggaaata	tgcagtaaga	tggattgtgt	gtctaaaggt	taaactcttt	60			
	tggatctagg					120			
	agtgggatgt					180			
gtgaatttaa	aacttgtaat	gccattagat	gagcttctag	cacagtttca	gtcatgttac	240			
catgaggatt	ggtgtgacct	gttccatatt	ccgtggtcca	ttatttggtg	ctgaaagaga	300			
ccatctacct	cctagaagtg	tgtggtgggt	ctcttccaaa	tactcctgaa	ggaaacttta	360			
cttctcctgg	ctatgatgga	gtcaggaatt	actcgagaaa	cctaaactgt	gaatggactc	420			
tcagcaatco	aaatcaggga	aattcatcta	tttatattca	ttttgaagat	ttttacctag	480			
aaagtcacca	agactgtcaa	tttgatgtcc	ttgagtttcg	agtgggtttg	ttaagagcct	540			
ggtaagaagt	gcaagattga	caaaggtaag	gttagtagcg	gaggtaagtg	aaagcttgaa	600			
tataggaaac	cttggaccac	ttgccattgc	agtggataaa	attttcaaga	tttcgttgaa	660			
tttgaaagto	aaagattcca	ttttaaagcc	attgactacc	attgtccagt	cgctattggg	720			
gccaggccat	gttacaaagg	atattgaacg	tttgggctta	atgtgagggc	ttgtgaccta	780			
gagtctggag	gttgcaaggg	agacagccaa	gtgatgtgtc	atggggaaac	cttcttcagg	840			
tggattttga	ggcttcactg	caatactagc	ttcctgttgc	tgctgcaaca	aattattatt	900			
attattatta	ttattattat	tattattatt	ttcagatgga	gtctcgctct	gtcactcagg	960			
ctggagtgca	gtggtgcgat	ctcagctcgt	tgcaagctcc	gccttgtggg	ttcatgccat	1020			
tctcgtgcct	cagcctccca	agtagctggg	actacaggaa	cccgccacca	cacctggcta	1080			
atgtttcgta	tttttagtag	aggtggggtt	tcatcgtgtt	agccaggatg	gtctcggtct	1140			

cctgacctag tgattcacct gtcttggcct cccaaagttc tgggattaca ggcgtgagcc 1200 1260 acacacttag tgtctttaaa caacatatat gtattctctc acagttctgg aggccagaat 1320 tctaaattcc ctcccactga gtcaaggtgg gagcagggca agtgccttcg gaggctctgt qqqaqaatcc atttcctggc tctggaggca gcctgcactc ctcgactttt gatgccctcc 1380 1440 ttgaatgact ccaatttctc gcttccatca ctacacctcc caccactctc ccatcacctg 1500 ctctgctctt acaaggatca gtgagtacat caacttgcca cctaaagaag ccgggataat cttccctgcc aaaggtcctt aacttcatta catctgcaaa gcttctttta ccatataagg 1560 1620 tgcaccgggt acttcttgag cattgggatg atctgcttca cctccagtca cacagcttcc 1680 aggcactggg agtggtcctc ctgcaggatg ttcagcttcg acttggccag agaaatggaa 1740 tggttgcatc acttatctac gtaaacaatt gaagaattgt ctgaaagaaa agcagaagga 1800 acatetgaag gaacacetga tgaggetgea eeettggegg aaagaacace tgacatgget 1860 qaaagcttgg tggaaaaacc acctgatgag gctgcaccct tggtggaggg aacagctgac 1920 aaaattcaat gtttggggaa agcaacatct ggaaagtttg aacagtcagc agaagaaaca cctaagaaaa ttatgaggac tgcaaaagaa acatctaaga aatttgcatg gccagcaaaa 1980 gaaagaccta ggaagatcac atgggaggaa aaataaacat ctgtaaagac tgaatgcgtg 2040 gcaggagtaa tacctaataa aactgaagtt ttggaaaaag gaacatctaa gatgctcacg 2100 tgtcctacaa aagaaacatc tacaaaagca agtacaaatg tggatgtgag ttctgtagag 2160 2220 totatattoa gagtotoaco otgtoacoca ggotggaatg caatggcacg atotoggoto 2280 actgcaacct ccacctccca gaaggaagca acaaagacag caactgaaca acaagaaaat 2340 gatattggaa ttattgaatg agcgccataa gatctaacaa ataagatgcc cacatcagag tcaggacaaa aagaagatac gaaatcacct tcagtttctg aggtcacagc tatggatgtg 2400 gaagagatag gaaaggcctc accacttaag atagaagcag cagctgcata gtggtaacag 2460 caatgagtgg atgtcaaaag acagattcaa ctagcctatc aatattcttg ggtgcagttc 2520 cttctcatga aagagcaagg gaacttaaaa aatatcactg tgaacaactt acagcaaaaa 2580 2640 taaaacaaat gaaaaataag ttttgggtac tacaaaagga actatcagaa gcaaaaataa 2700 aattgcagta agtgaatcaa aaggttaaat gggaacaaga gctctgcagt gtgagcttgg 2760 aatgaagttg ataatagtga gaccttgttg gtacaagact atgtaacaca acctgcactt ctcaacaaaa aattgctttt ctgacttctg cactcagtag gtatctttgg aaaataatct 2820 2837 cctattggta ctgaggc

```
<213> Homo sapiens
<400> 74
Met Cys His Gly Glu Thr Phe Phe Arg Trp Ile Leu Arg Leu His Cys
                                   10
Asn Thr Ser Phe Leu Leu Leu Gln Gln Ile Ile Ile Ile Ile Ile
           20
Ile Ile Ile Ile Ile Ile Phe Arg Trp Ser Leu Ala Leu Ser Leu
        35
Arg Leu Glu Cys Ser Gly Ala Ile Ser Ala Arg Cys Lys Leu Arg Leu
    50
                       55
                                           60
Val Gly Ser Cys His Ser Arg Ala Ser Ala Ser Gln Val Ala Gly Thr
                   70
Thr Gly Thr Arg His His Thr Trp Leu Met Phe Arg Ile Phe Ser Arg
Gly Gly Val Ser Ser Cys
<210> 75
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 75
                                                                     21
catctacctc ctagaagtgt g
<210> 76
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 76
cactcgaaac tcaaggacat c
                                                                     21
<210> 77
<211> 5868
```

<211> 102 <212> PRT

<400> 77 60 gatctctccc atgaagtgac caggatagag aagcaccaga accgccaaaa gtatgggctg tgcgtcatct tcctttcctg taccatgatg cccaacttta aagagctgat ccatttcgag 120 180 gtcagcatcg gtcactatgg gaacaagatg gacctgaatt acaagcctct agtctcaagc 240 acaccgtaca gcccagtgat atatgatggg aacatctacc attatgtgcc ctggtacaac accaagectg tegtggeegt gaceteeaac tgggaggaeg teagetteeg catgaactge 300 360 ctcaacctcc tccacttcac tcgggaccgc ctgaaagcca acctggacac cctgaaatcc acgcggaatc cgaaggatcc agctctcctc taccagtggg agaaactgct gagggagctg 420 480 gcagaggact gcaagcgccc tctgccctgc atgacctatc agcccaaagc caccagcctg 540 gacaggaaga ggtggcagct ccgcagcctc ctcctgcagg aactggccca aaaggccaag caagccaagc ccaaggacat ggtggccaca gcggaggact ggctgtaccg cctcaacacc 600 gtgctccctg agccccagat gggcctccct gacgtgatga tttggctggt ggccaaggag 660 cagcgagtgg cctatgcaca gtacccagag ggtgaaggac agaaggatgt gctcccagct 720 780 cacctccggg tctgcatgtg gcttggcaat gtcacagaca gcaaggacct gcagctgctc 840 cgccagggtg acacagcggt gtacgccgag atggtgagtg tatgagaatc aggccaagta 900 taaagaccag tgggggcagc aggggctgta tcactgcccc aacttctcgg atgtcatggg gaacaagacc ctccccatga cggatttcca accacccctg ggatggcact ggcaggacag 960 ctggacagtg gaacctcaga gaaggctcct cctggacata gacatcaaca agagccaggt 1020 gctggaggag gtatatgaga accagggccg tgacaccaga ggggcctggg ggcctgccgc 1080 catcccaaac acagacgtga atggacagcc catggaggcc cgggagaacg tgaagtgccc 1140 ccaaggctgg cactttaaga aggactgggt ggtggagctg aaccacgcag tggacagtaa 1200 1260 gggctgggag tatggagtgg ggatcccacc gtcgggcctg ccccaggtct ggagcccggt 1320 ggagaagacc taccactcgt gccgccgccg gcgctgggcg cgtgtgcgct tcaggaacca 1380 tggggagctg agccacgagc aggagaccct ctccttcctg cagctgggcc tggccaaggg 1440 cqaqqaqqaq ggctgggagt atgacacctt cggctccaag ttccacctca accctcagcc 1500 ccagageegg tteegeegee getgetggeg eegeaggetg geeeceaaca aggacaaggg catcgcgccc atattcctcc tggaggggtc cttggctatg gatctgaaat accacgctgg 1560 1620 gaaggaagag gacagcaaga catggccatg gggtctggac agacagttca gggaccccca gaggcaggac acceggecce ceaacttgee etteatetae tgeaeettea ataageecea 1680

1740 ctactaccag ctcttctgct acatctacca ggcccggaac ctggtgtcca atcagatcct gacattccaa gggcccttca ttcgggtggt cttcctgaac cacagccagt gcacccaaac 1800 cctgaggagc tctgcaggcc ccacatgggc ccagacactc atcttccagc acctccttct 1860 gtacgagaac ccacaggaca ccaaagagag cccaccgctt gtggtgctgg agctgtggca 1920 gcgtgacttc tggggcaagg agagcttgtg gggacggagc gtgtggcccc caatggtctg 1980 gctggatctc caggaccgga tcctgccccc catgaggtgg catccccttg taaaggagtt 2040 2100 ggggaaggaa gagggcgaga tcttggcatc ctgtgagctg atcctccaga ctgagaagct 2160 tggagagaag cagctgccta tcttaagcgt tccctggaag aatggggcat acacactccc caagagcatc cagcccacga taaagaggat ggccattgag gtgctggcga tgtgggatgg 2220 2280 ggacggtggg caggacaggc gggggtggtc tggagtgcgc tgcagccttc tgctggtcct 2340 ccctgactac tggatccaaa gctcacaccc cgaaaaagac tacctgggag gtggagggag 2400 acaggagaga aacgaagagg ttctggtgta acactggaaa tcattttacc acaaacctct gcagtgagga gtaggcaaag ggctgtagca tgcatgatca cttgtgggac tcacgctgcc 2460 2520 cctgcgcagt agcaactact ttgcagagaa ggaaatagag gctccaagag ataacacatt ccacgcacag tgatgcaggg actaactgac agggccattt aggcccagcc ctgtctgact 2580 2640 gcagatgcca ggatgttgct cacctctctt ctgagagtag catgagggtc ctcattcaga 2700 agctgtgtgc cctgccgcaa atgtggcaaa gagcacaaga cggtcaggcc tctgggactg aaggetteee caagateagg caaettgget ggtteeeget ttaggeeeeg aggaggeeea 2760 2820 aagtcagggt gcagctattt cctggcagga tgccaggtca ctgaatggcc atggggtcct caatgagcta gacggcacag gggccctgag aaatccaggc acttcctgct tcttcaggcc 2880 tcagaggcag tcggcttcag gaactcctac ctgagaactg atgaggccag acaaggcagc 2940 gggtgaggag gggcaatgcc tgcgggctat ggaggtcagt ggaggatgca gccagtggcc 3000 agaggtcacc tccctcatgg gttgggggac agcgtcccag ccccgagggc aagcactgat 3060 ccctcacagg acggggaagc ctgtccttgt gcgccttcag acactggctc ctctgcagcc 3120 ccattccctg gccctgcagg ctcctgctgc accgctattg cccctcagcc cccttctctg 3180 gccaggaccc cattacagag gcgctgcctg ccccttgtcc tgccctcctt ctttgttctg 3240 gtagatectg geetggggee tteggaacat gaagaaggeg ageteeece ageteetggt 3300 ggaattcggg gaagagtccc tgaggacaga acccatcagg gactttcaga ccaaccccaa 3360 cttccccgag tctgagtctg tcctagtcct cacagtgctc atgccgacgg aggaggccta 3420 tgcactgccc ctcgtggtga aggtggtaga caactgggcc ttcggccagc agaccgtgac 3480 gggccaggcc aacatcgact tcctccagcc ctacttctgt gacccctggg ctcaagacta 3540 3600 tatgcaccca aagcttccaa cgctgtctga gaagaagcac caagacttcc taggctacct 3660 ctacagaaag ttctggttca agtccagtaa agcagaggat gagtatgagc atgaggtgga ctggtggagc aagctgttct gggccacaga tgagcacaag tccctgaagt acaagtacaa 3720 3780 agactaccac acceteaagg tgtatgagtg tgagetggag geegtgeeag cetteeaggg 3840 cctgcaggac ttctgccaga ccttcaaact ctaccaggag cagcccaagt tggacagcc 3900 cgtggtaggg gagttcaagg gccttttccg catctacccc tttcctgaga atccagaagc 3960 cccaaagccc ccgctgcagt tcttggtttg gccagagaga gaggacttcc cccagccgtg 4020 cttggtgcgg gtgtacatgg tacgagccat caacctgcag ccccaggact acaatggcct 4080 gtgtgaccct tatgtgatcc tgaaactggg caagacagag cttggcaacc gggacatgta 4140 ccagcccaac actctggatc ccatctttgg catgatgttt gaactcacct gcaacatacc 4200 cctggagaag gacctagaga tccagctcta tgacttcgac ctattttcac ctgatgataa gataggaacc acagtcatcg accttgaaaa ccgactccta tctggctttg gagctcattg 4260 tgggctctcc aaatcctact gccagtcagg gccctttaga tggcgggatc agatgccccc 4320 aagctacctc ctagaacgct atgccaagcg gaaagggcta cctccgcctc tgttcagtcc 4380 4440 tgaggaagat gctgttttct ataatgggaa aaagttcaag ctgcaaagct ttgagcccaa 4500 aacccctact gttcatggtt tgggacccaa gaaggaacgc cttgcactgt acctcctgca 4560 cacccagggg ctggtacctg agcacgtgga gacccgcaca ctgtacagcc acagccagcc aggcatcgac cagggaaagg tgcaaatgtg ggtggacatc ttccccaaga agctggggcc 4620 4680 tectggeece caagteaaca teaaceecag aaageetaaa eggtatgage tgegatgeat catctggaag actgccaatg tggacctggt ggatgacaat ttaagtagag agaagacgag 4740 cgacatctac atcaaagggt ggttatacgg gctggagaag gacatgcaga agacagacat 4800 ccactaccac tcgctgactg gggaggccga cttcaactgg cggttcatct ttaccatgga 4860 ctacctggcg gcggagcgca cgtgtgtcca gagccagaag gattacatat ggagcctgga 4920 4980 tgccacgtcc atgaagttcc cagcccgact tatcatccag gtctgggaca atgacatctt ctcccccgac gacttcctag gggtcctgga gctggatttg tctgacatgc ccctcccggc 5040 teggeacgee aageagtget ceateaggat gatggaegee gacceeaagt ggeeetattt 5100 catccaatac aagcacttct ccctctttaa gaagaagact gtgactggct ggtggccttg 5160 ccaggtcctc gatggtggca aatggcgctt gtcgggcaag gtgaagatga gcctggagat 5220 5280 tctgtcagag aaggaagcct taatcaagcc agccgggcga ggccagtcgg aacccaacca

qtaccccaca cttcatcctc ccctacgcac caacacctct ttcacgtggc tgcggtcacc 5340 agttcaaaac ttctgctata ttttctggaa acgctatcgc ttcaaactca tagcctttat 5400 5460 qqtcatatcq attatagcac ttatgctgtt taacttcatc tattcagctc cgcactattt 5520 qqccatqaqc tqqatcaaac ctcaacttca gctgtatcct cccattaaaa tattcaatat catcaattca ctaaacacca gcaacgccag ctcttccatc cttcccaccc aggatccaaa 5580 cctaaagcct acaatagacc atgagtggaa actccaccca ggacccacaa atcacctgag 5640 tgatattttc ccagaacttc cagccccagg agactaatta gtccatgctg cctggctttc 5700 ctcctgctac caacagccct ccccttgggc tggctaccag ttctttgttt ctatcttcta 5760 5820 qaatatatgc aagatgctag gaatattctg gctattgtgt tcagaaatca ctttcaacaa 5868 qacqaqcaqa qctgtaattt tccactgaaa taaacaagtt ctataaca

<210> 78

<211> 802

<212> PRT

<213> Homo sapiens

<400> 78

Met Lys Lys Ala Ser Ser Pro Gln Leu Leu Val Glu Phe Gly Glu Glu 1 5 10 15

Ser Leu Arg Thr Glu Pro Ile Arg Asp Phe Gln Thr Asn Pro Asn Phe 20 25 30

Pro Glu Ser Glu Ser Val Leu Val Leu Thr Val Leu Met Pro Thr Glu 35 40 45

Glu Ala Tyr Ala Leu Pro Leu Val Val Lys Val Val Asp Asn Trp Ala 50 55 60

Phe Gly Gln Gln Thr Val Thr Gly Gln Ala Asn Ile Asp Phe Leu Gln 65 70 75 80

Pro Tyr Phe Cys Asp Pro Trp Ala Gln Asp Tyr Met His Pro Lys Leu 85 90 95

Pro Thr Leu Ser Glu Lys Lys His Gln Asp Phe Leu Gly Tyr Leu Tyr 100 105 110

Arg Lys Phe Trp Phe Lys Ser Ser Lys Ala Glu Asp Glu Tyr Glu His 115 120 125

Glu	Val 130	Asp	Trp	Trp	Ser	Lys 135	Leu	Phe	Trp	Ala	Thr 140	Asp	Glu	His	Lys
Ser 145	Leu	Lys	Tyr	Lys	Tyr 150	Lys	Asp	Tyr	His	Thr 155	Leu	Lys	Val	Tyr	Glu 160
Cys	Glu	Leu	Glu	Ala 165	Val	Pro	Ala	Phe	Gln 170	Gly	Leu	Gln	Asp	Phe 175	Cys
Gln	Thr	Phe	Lys 180	Leu	Tyr	Gln	Glu	Gln 185	Pro	Lys	Leu	Asp	Ser 190	Pro	Val
Val	Gly	Glu 195	Phe	Lys	Gly	Leu	Phe 200	Arg	Ile	Tyr	Pro	Phe 205	Pro	Glu	Asn
Pro	Glu 210	Ala	Pro	Lys	Pro	Pro 215	Leu	Gln	Phe	Leu	Val 220	Trp	Pro	Glu	Arg
Glu 225	Asp	Phe	Pro	Gln	Pro 230	Cys	Leu	Val	Arg	Val 235	Tyr	Met	Val	Arg	Ala 240
Ile	Asn	Leu	Gln	Pro 245	Gln	Asp	Tyr	Asn	Gly 250	Leu	Cys	Asp	Pro	Tyr 255	Val
Ile	Leu	Lys	Leu 260	Gly	Lys	Thr	Glu	Leu 265	Gly	Asn	Arg	Asp	Met 270	Tyr	Gln
Pro	Asn	Thr 275	Leu	Asp	Pro	Ile	Phe 280	Gly	Met	Met	Phe	Glu 285	Leu	Thr	Cys
Asn	Ile 290	Pro	Leu	Glu	Lys	Asp 295	Leu	Glu	Ile	Gln	Leu 300	Tyr	Asp	Phe	Asp
Leu 305	Phe	Ser	Pro	Asp	Asp 310	Lys	Ile	Gly	Thr	Thr 315	Val	Ile	Asp	Leu	Glu 320
Asn	Arg	Leu	Leu	Ser 325	Gly	Phe	Gly	Ala	His 330	Cys	Gly	Leu	Ser	Lys 335	Ser
Tyr	Cys	Gln	Ser 340	Gly	Pro	Phe	Arg	Trp 345	Arg	Asp	Gln	Met	Pro 350	Pro	Ser
Tyr	Leu	Leu 355	Glu	Arg	Tyr	Ala	Lys 360	Arg	Lys	Gly	Leu	Pro 365	Pro	Pro	Leu

Phe	Ser 370	Pro	Glu	Glu	Asp	Ala 375	Val	Phe	Tyr	Asn	Gly 380	Lys	Lys	Phe	Lys
Leu 385	Gln	Ser	Phe	Glu	Pro 390	Lys	Thr	Pro	Thr	Val 395	His	Gly	Leu	Gly	Pro 400
Lys	Lys	Glu	Arg	Leu 405	Ala	Leu	Tyr	Leu	Leu 410	His	Thr	Gln	Gly	Leu 415	Val
Pro	Glu	His	Val 420	Glu	Thr	Arg	Thr	Leu 425	Tyr	Ser	His	Ser	Gln 430	Pro	Gly
Ile	Asp	Gln 435	Gly	Lys	Val	Gln	Met 440	Trp	Val	Asp	Ile	Phe 445	Pro	Lys	Lys
Leu	Gly 450	Pro	Pro	Gly	Pro	Gln 455	Val	Asn	Ile	Asn	Pro 460	Arg	Lys	Pro	Lys
Arg 465	Tyr	Glu	Leu	Arg	Cys 470	Ile	Ile	Trp	Lys	Thr 475	Ala	Asn	Val	Asp	Leu 480
Val	Asp	Asp	Asn	Leu 485	Ser	Arg	Glu	Lys	Thr 490	Ser	Asp	Ile	Tyr	Ile 495	Lys
Gly	Trp	Leu	Tyr 500	Gly	Leu	Glu	Lys	Asp 505	Met	Gln	Lys	Thr	Asp 510	Ile	His
Tyr	His	Ser 515	Leu	Thr	Gly	Glu	Ala 520	Asp	Phe	Asn	Trp	Arg 525	Phe	Ile	Phe
Thr	Met 530	Asp	Tyr	Leu	Ala	Ala 535	Glu	Arg	Thr	Cys	Val 540	Gln	Ser	Gln.	Lys
Asp 545	Tyr	Ile	Trp	Ser	Leu 550	Asp	Ala	Thr	Ser	Met 555	Lys	Phe	Pro	Ala	Arg 560
Leu	Ile	Ile	Gln	Val 565	Trp	Asp	Asn	Asp	Ile 570	Phe	Ser	Pro	Asp	Asp 575	Phe
Leu	Gly	Val	Leu 580	Glu	Leu	Asp	Leu	Ser 585	Asp	Met	Pro	Leu	Pro 590	Ala	Arg
His	Ala	Lys 595	Gln	Cys	Ser	Ile	Arg 600	Met	Met	Asp	Ala	Asp 605	Pro	Lys	Trp

Pro Tyr Phe Ile Gln Tyr Lys His Phe Ser Leu Phe Lys Lys Lys Thr 610 620
Val Thr Gly Trp Trp Pro Cys Gln Val Leu Asp Gly Gly Lys Trp Arg 625 630 635 640
Leu Ser Gly Lys Val Lys Met Ser Leu Glu Ile Leu Ser Glu Lys Glu 645 650 655
Ala Leu Ile Lys Pro Ala Gly Arg Gly Gln Ser Glu Pro Asn Gln Tyr 660 665 670
Pro Thr Leu His Pro Pro Leu Arg Thr Asn Thr Ser Phe Thr Trp Leu 675 680 685
Arg Ser Pro Val Gln Asn Phe Cys Tyr Ile Phe Trp Lys Arg Tyr Arg 690 695 700
Phe Lys Leu Ile Ala Phe Met Val Ile Ser Ile Ile Ala Leu Met Leu 705 710 715 720
Phe Asn Phe Ile Tyr Ser Ala Pro His Tyr Leu Ala Met Ser Trp Ile 725 730 735
Lys Pro Gln Leu Gln Leu Tyr Pro Pro Ile Lys Ile Phe Asn Ile Ile 740 745 750
Asn Ser Leu Asn Thr Ser Asn Ala Ser Ser Ser Ile Leu Pro Thr Gln 755 760 765
Asp Pro Asn Leu Lys Pro Thr Ile Asp His Glu Trp Lys Leu His Pro 770 775 780
Gly Pro Thr Asn His Leu Ser Asp Ile Phe Pro Glu Leu Pro Ala Pro 785 790 795 800
Gly Asp
<210> 79 <211> 21 <212> DNA <213> Artificial Sequence
<220> <223> Oligonucleotide

<pre><210> 80 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 80 atgatgcatc gcagctcata c 21 <210> 81 <211> 3170 <212> DNA <212> DNA <213> Homo sapiens <400> 81 ggctcaccga caacttcatc gccgccgtgc gccgcgaga cttcgccaac atgaccagcc tggtgcacct cactctctcc cggaacacca tcggccaggt ggcagctggc gccttcgccg acctgcgtgc cctccgggcc ctgcacctgg acagcaaccg cctggcggag gtgcggggg 180</pre>
<pre><223> Oligonucleotide <400> 80 atgatgcatc gcagctcata c</pre>
atgatgcatc gcagctcata c 21 <210> 81 <211> 3170 <212> DNA <213> Homo sapiens <400> 81 ggctcaccga caacttcatc gccgccgtgc gccgccgaga cttcgccaac atgaccagcc 60 tggtgcacct cactctctc cggaacacca tcggccagt ggcagctggc gccttcgccg 120 acctgcgtgc cctccgggcc ctgcacctgg acagcaaccg cctggcggag gtgcgcggcg 180
<pre><211> 3170 <212> DNA <213> Homo sapiens <400> 81 ggctcaccga caacttcatc gccgccgtgc gccgccgaga cttcgccaac atgaccagcc 60 tggtgcacct cactctctcc cggaacacca tcggccaggt ggcagctggc gccttcgccg 120 acctgcgtgc cctccgggcc ctgcacctgg acagcaaccg cctggcggag gtgcgcggcg 180</pre>
ggctcaccga caacttcatc gccgccgtgc gccgccgaga cttcgccaac atgaccagcc 60 tggtgcacct cactctctcc cggaacacca tcggccaggt ggcagctggc gccttcgccg 120 acctgcgtgc cctccgggcc ctgcacctgg acagcaaccg cctggcggag gtgcgcggcg 180
tggtgcacct cactetetee eggaacacca teggecaggt ggcagetgge gcettegeeg 120 acetgegtge ceteegggee etgeacetgg acageaaceg eetggeggag gtgcgeggeg 180
acctgcgtgc cctccgggcc ctgcacctgg acagcaaccg cctggcggag gtgcgcggcg 180
accageteeg eggeetegge aaceteegee acetgateet tggaaacaac cagateegee 240
gggtggagtc ggcggccttt gacgccttcc tgtccaccgt ggaggacctg gatctgtcct 300
acaacaacct ggaggccctg ccgtgggagg cggtgggcca gatggtgaac ctaaacaccc 360
tcacgctgga ccacaacctc atcgaccaca tcgcggaggg gaccttcgtg cagcttcaca 420
agetggteeg tetggacatg acetecaace geetgeataa acteeegeee gaegggetet 480
teetgaggte geagggeace gggeeeaage egeceacece getgacegte agetteggeg 540
geaaccccct geactgeaac tgegagetge tetggetgeg geggetgace egegaggaeg 600
acttagagac ctgcgccacg cccgaacacc tcaccgaccg ctacttctgg tccatccccg 660
aggaggagtt cctgtgtgag cccccgctga tcacacggca ggcggggggc cgggccctgg 720
tggtggaagg ccaggcggtg agcctgcgct gccgagcggt gggtgacccc gagccggtgg 780
tgcactggt ggcacctgat gggcggctgc tggggaactc cagccggacc cgggtccggg 840
gggacgggac gctggatgtg accatcacca ccttgaggga cagtggcacc ttcacttgta 900
tegectecaa tgetgetggg gaagegaegg egecegtgga ggtgtgegtg gtacetetge 960
ctctgatggc accccgccg gctgccccgc cgcctctcac cgagcccggc tcctctgaca 1020
tegecaegee gggeagacea ggtgecaaeg attetgegge tgagegtegg etegtggeag 1080
ccgagctcac ctcgaactcc gtgctcatcc gctggccagc ccagaggcct gtgcccggaa 1140

tacgcatgta ccaggttcag tacaacagtt ccgttgatga ctccctcgtc tacaggatga 1200 1260 tecegteeae cagteagace tteetggtga atgacetgge ggegggeegt geetaegaet 1320 tgtgcgtgct ggcggtctac gacgacgggg ccacagcgct gccggcaacg cgagtggtgg gctgtgtaca gttcaccacc gctggggatc cggcgccctg ccgccgctg agggcccatt 1380 1440 tettgggegg caccatgate ategecateg ggggegteat egtegeeteg gteetegtet 1500 tcatcgttct gctcatgatc cgctataagg tgtatggcga cggggacagc cgccgcgtca agggetecag gtegeteceg egggteagee aegtgtgete geagaceaae ggegeaggea 1560 caggogogge acaggococg goodtgoogg cocaggacca ctacgaggog ctgcgcgagg 1620 1680 tggagtccca ggctgcccc gccgtcgccg tcgaggccaa ggccatggag gccgagacgg catccgcgga gccggaggtg gtccttggac gttctctggg cggctcggcc acctcgctgt 1740 1800 gcctgctgcc atccgaggaa acttccgggg aggagtctcg ggccgcggtg ggccctcgaa 1860 ggagccgatc cggcgccctg gagccaccaa cctcggcgcc ccctactcta gctctagttc ctgggggagc cgcggcccgg ccgaggccgc agcagcgcta ttcgttcgac ggggactacg 1920 gggcactatt ccagagccac agttacccgc gccgcgcccg gcggacaaag cgccaccggt 1980 ccacgccgca cctggacggg gctggagggg gcgcgggccgg ggaggatgga gacctggggc 2040 2100 tgggctccgc cagggcgtgc ctggctttca ccagcaccga gtggatgctg gagagtaccg 2160 tgtgagegge gggegggege egggaegeet gggtgeegea gaeeaaaege eeageegeae 2220 ggacgetggg gegggaetgg gagaaagege agegeeaaga cattggaeea gagtggagae gegeeettgt eeeegggagg gggeggggea geeteggget geggetegag geeaegeeee 2280 2340 cgtgcccagg gcggggttcg gggaccggct gccggcctcc cttcccctat ggactcctcg accecetee tacceetece etegegeget egeggacete getggageeg gtgcettaca 2400 cagegaageg eggggagggg cagggeeece tgacaetgea geaetgagae aegageeece 2460 2520 tececeagee egteaceegg ggeeggggeg aggggeeeat ttettgtate tggetggaet agatectatt etgteeegeg geggeeteea aageeteeea eeceaeeeea egeaeattee 2580 2640 tggtccggtc gggtctggct tggggtcccc ctttctctgt ttccctcgtt tgtctctatc cegecetett gtegtetete tgtagtgeet gtettteeet atttgeetet cetttetete 2700 tgtcctgtcg tctcttgtcc ctcggccctc cctggttttg tctagtctcc ctgtctctcc 2760 tgatttette tetttaetea tteteceggg caggteecae tggaaggace agaeteteee 2820 2880 aaataaatcc ccacacgaac aaaatccaaa accaaatccc cctccctacc ggagccggga 2940 ccctccgccg cagcagaatt aaactttttt ctgtgtctga ggccctgctg acctgtgtgt

gigicigia	i gigigi	.eege gr	gtagtgtg	, racara	cgcg	cgcg	regeg	jug	-g c g c	gegeg		
tgtgtgttg	g gggagg	gtga cc	tagattgo	agcata	.agga	ctct	aagt	ga g	gacto	gaagga		
agatgggaa	g atgact	aact gg	ggccggag	g gagact	ggca	gaca	ıggct	tt. t	atco	ctctga		
gagacttaga ggtggggaat aatcacaaaa ataaaatgat cataatagct												
<210> 82 <211> 68 <212> PR <213> Ho	4	ens										
<400> 82												
Met Thr S	er Leu V 5		Leu Thr	Leu Ser 10	Arg	Asn	Thr	Ile	Gly 15	Gln		
Val Ala A	la Gly A 20	ala Phe i	Ala Asp	Leu Arg 25	Ala	Leu	Arg	Ala 30	Leu	His		
Leu Asp S	er Asn A 5	arg Leu i	Ala Glu 40	Val Arg	Gly	Asp	Gln 45	Leu	Arg	Gly		
Leu Gly A 50	sn Leu A	_	Leu Ile 55	Leu Gly	Asn	Asn 60	Gln	Ile	Arg	Arg		
Val Glu S 65	er Ala A	ala Phe 2 70	Asp Ala	Phe Leu	Ser 75	Thr	Val	Glu	Asp	Leu 80		
Asp Leu S	_	sn Asn 1 5	Leu Glu	Ala Leu 90	ı Pro	Trp	Glu	Ala	Val 95	Gly		
Gln Met V	al Asn L 100	eu Asn '	Thr Leu	Thr Leu 105	ı Asp	His	Asn	Leu 110	Ile	Asp		
His Ile A	la Glu G .15	Sly Thr	Phe Val 120	Gln Leu	ı His	Lys	Leu 125	Val	Arg	Leu		
Asp Met T	hr Ser A		Leu His 135	Lys Let	ı Pro	Pro 140	Asp	Gly	Leu	Phe		
Leu Arg S 145	er Gln G	Sly Thr (Gly Pro	Lys Pro	Pro 155	Thr	Pro	Leu	Thr	Val 160		
Ser Phe G		asn Pro 1 .65	Leu His	Cys Asr		Glu	Leu	Leu	Trp 175	Leu		

Arg	Arg	Leu	Thr 180	Arg	Glu	Asp	Asp	Leu 185	Glu	Thr	Cys	Ala	Thr 190	Pro	Glu
His	Leu	Thr 195	Asp	Arg	Tyr	Phe	Trp 200	Ser	Ile	Pro	Glu	Glu 205	Glu	Phe	Leu
Cys	Glu 210	Pro	Pro	Leu	Ile	Thr 215	Arg	Gln	Ala	Gly	Gly 220	Arg	Ala	Leu	Val
Val 225	Glu	Gly	Gln	Ala	Val 230	Ser	Leu	Arg	Cys	Arg 235	Ala	Val	Gly	Asp	Pro 240
Glu	Pro	Val	Val	His 245	Trp	Val	Ala	Pro	Asp 250	Gly	Arg	Leu	Leu	Gly 255	Asn
Ser	Ser	Arg	Thr 260	Arg	Val	Arg	Gly	Asp 265	Gly	Thr	Leu	Asp	Val 270	Thr	Ile
Thr	Thr	Leu 275	Arg	Asp	Ser	Gly	Thr 280	Phe	Thr	Cys	Ile	Ala 285	Ser	Asn	Ala
Ala	Gly 290	Glu	Ala	Thr	Ala	Pro 295	Val	Glu	Val	Cys	Val 300	Val	Pro	Leu	Pro
Leu 305	Met	Ala	Pro	Pro	Pro 310	Ala	Ala	Pro	Pro	Pro 315	Leu	Thr	Glu	Pro	Gly 320
Ser	Ser	Asp	Ile	Ala 325	Thr	Pro	Gly	Arg	Pro 330	Gly	Ala	Asn	Asp	Ser 335	Ala
Ala	Glu	_	Arg 340						Leu	Thr	Ser	Asn	Ser 350	Val	Leu
Ile	Arg	Trp 355	Pro	Ala	Gln	Arg	Pro 360	Val	Pro	Gly	Ile	Arg 365	Met	Tyr	Gln
Val	Gln 370	Tyr	Asn	Ser	Ser	Val 375	Asp	Asp	Ser	Leu	Val 380	Tyr	Arg	Met	Ile
Pro 385	Ser	Thr	Ser	Gln	Thr 390	Phe	Leu	Val	Asn	Asp 395	Leu	Ala	Ala	Gly	Arg 400
Ala	Tyr	Asp	Leu	Cys 405	Val	Leu	Ala	Val	Tyr 410	Asp	Asp	Gly	Ala	Thr 415	Ala

Leu	Pro	Ala	Thr 420	Arg	Val	Val	Gly	Cys 425	Val	Gln	Phe	Thr	Thr 430,		Gly
Asp	Pro	Ala 435	Pro	Cys	Arg	Pro	Leu 440	Arg	Ala	His	Phe	Leu 445	Gly	Gly	Thr
Met	Ile 450	Ile	Ala	Ile	Gly	Gly 455	Val	Ile	Val	Ala	Ser 460	Val	Leu	Val	Phe
Ile 465	Val	Leu	Leu	Met	Ile 470	Arg	Tyr	Lys	Val	Tyr 475	Gly	Asp	Gly	Asp	Ser 480
Arg	Arg	Val	Lys	Gly 485	Ser	Arg	Ser	Leu	Pro 490	Arg	Val	Ser	His	Val 495	Cys
Ser	Gln	Thr	Asn 500	Gly	Ala	Gly	Thr	Gly 505	Ala	Ala	Gln	Ala	Pro 510	Ala	Leu
Pro	Ala	Gln 515	Asp	His	Tyr	Glu	Ala 520	Leu	Arg	Glu	Val	Glu 525	Ser	Gln	Ala
Ala	Pro 530	Ala	Val	Ala	Val	Glu 535	Ala	Lys	Ala	Met	Glu 540	Ala	Glu	Thr	Ala
Ser 545	Ala	Glu	Pro	Glu	Val 550	Val	Leu	Gly	Arg	Ser 555	Leu	Gly	Gly	Ser	Ala 560
Thr	Ser	Leu	Cys	Leu 565	Leu	Pro	Ser	Glu	Glu 570	Thr	Ser	Gly	Glu	Glu 575	Ser
Arg	Ala	Ala	Val 580	Gly	Pro	Arg	Arg	Ser 585	Arg	Ser	Gly	Ala	Leu 590	Glu	Pro
Pro	Thr	Ser 595	Ala	Pro	Pro	Thr	Leu 600	Ala	Leu	Val	Pro	Gly 605	Gly	Ala	Ala
Ala	Arg 610	Pro	Arg	Pro	Gln	Gln 615	Arg	Tyr	Ser	Phe	Asp 620	Gly	Asp	Tyr	Gly
Ala 625	Leu	Phe	Gln	Ser	His 630	Ser	Tyr	Pro	Arg	Arg 635	Ala	Arg	Arg	Thr	Lys 640
Arg	His	Arg	Ser	Thr 645	Pro	His	Leu	Asp	Gly 650	Ala	Gly	Gly	Gly	Ala 655	Ala

Phe Thr Ser Thr Glu Trp Met Leu Glu Ser Thr Val <210> 83 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 83 17 cgaactccgt gctcatc <210> 84 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 84 17 cgcacaagtc gtaggca <210> 85 <211> 2206 <212> DNA <213> Homo sapiens <400> 85 cgacaacgtc acccgcagac cggccaatcc cgccaggccg cggcccagtg gcgccggcgc 60 acaccgaaga cgacaccagc catccggcca atcccgcccc gccgcgcccc gcaggcccgc 120 ccactecteg ettetecact tecetteteg aagtgteegg tegetteteg eaggeggege 180 gcttgctggg tcacagtgag gcggctccgc gcaggcgcag ccgggcgggc gaggagcggg 240 300 gaagetgaet cagggetgeg geeggggtee tgeggggtag gagegegagg ceggeetgag ggaggaggcc tagcgaccca teeggegeet eeegeeeegg geaeeegeee geggeegege 360 atcctgcggg ccccaggagg cctccatctc aaaacaacgt gtttttagga tctcatccac 420 tatcacagtt tcagctttcc ccaaactgga atgtgtcttt gcagacgccc atccttatta 480 aagggcaaag acttctcata cacctaggat ggatcttata ttcttggcgg gactgcagag 540 aaggtgccgt gtcctgagtc ctcatgtcag ggcacaggct tccagccagt tctacctggg 600

Gly Glu Asp Gly Asp Leu Gly Leu Gly Ser Ala Arg Ala Cys Leu Ala

660

660

ttatgtttat ctcaattccc tggtggtatt ggtgtctgct gggttttgcc agaatgaaga

caccgtgttt	tcatttgtca	gttgattcgt	attttccagg	aagacattct	gagattacag	720
cattgtctta	gtcaaggtgc	tgcagaagga	cagaactaat	aggatatatg	tacatatgaa	780
agaaagttta	tgaagaactg	gctcacacca	tcacaaggca	aagtcccatg	acaggccatc	840
tgcaagctga	ggagcgagga	agccagcagt	ggctcagccg	gagtccaaca	gcctcaaacg	900
gaatccaaca	gttcaggctt	cagtctgtgg	ccaaatgccc	agagaccccg	gaaagctact	960
ggtgttagtc	ccagagccgg	aaggccaaag	aacctggagt	gtgatgtcca	agggcaggag	1020
gaatggacag	aagcatccag	catggggtaa	agacgaaagc	cagaagactc	agcaagctag	1080
cttacctact	ttcttctgcc	tgccttgttc	tagccgcgct	ggcagccggt	tggagggtgc	1140
ccacccccac	tgagggtgga	tcttcctctc	ctagtccact	gactcaaatt	tcagtctctc	1200
tgggagcacc	atcacaccag	aaacaatacc	agccatctag	ccacccttca	gttcaccatc	1260
acaaccattg	tcttattcat	gaaacttctg	cagacccacc	ttaacctcca	tcggtgactt	1320
ctacctgaag	ccctctgatt	gttgcccagt	ggtgcttttt	aaaataattt	ccatagtttc	1380
ttctacacct	ttagttggca	ttctactgta	aaggagagat	tttattttct	tactcattta	1440
tttgttagtt	tatagtcacc	accatatgga	tgcagagttc	tgtctcattc	actgggaagt	1500
attctattgc	agtcatgatt	tattttgatg	ttcacatccc	agagttggtg	agtgagcgcc	1560
ccttcacgct	ggctcccgag	tgctgacgtg	tccccgtcct	tctctgcact	tttccttacc	1620
tectggeete	agatattcca	gggtcatttg	ttctctccct	gctccaaccc	tgcagtcagc	1680
catctcccta	gggacgttgg	ttcctttatg	gaaggtggca	tttagaagcc	aggatttggg	1740
ctgagcactg	tggctcatgc	ttgtaatccc	agcacttggg	gaggccgaag	tgggcggatc	1800
gctggaggcc	aagagtctga	gaccagcctg	gctaacatgg	tgaaaccctt	ccccgtctct	1860
actacaaata	aaaaattagc	tgggtgtgtt	ggcacgtgcc	tgtaatccca	gttactcagg	1920
aggctgaagc	accagaatct	cttgaaccca	ggaggccgag	gttgcagtga	gccaagattg	1980
caccactgca	ctacagcttg	ggtgacagcg	cgagacaccg	tctcaaaaag	gataataatt	2040
taaaaaacag	caggatttgg	gtgagcagtg	cgctcattgc	ttctgggctc	tctcggtgga	2100
cataggctag	gaatgtaaga	tgtatgtgcc	tgtgtatata	cacacgtctg	tagctatgtc	2160
tatgttgcat	acatgtgttt	ttccaaaaac	caaatccata	accatg		2206

<210> 86 <211> 93 <212> PRT <213> Homo sapiens <400> 86

Met Asp 1	Arg	Ser	Ile 5	Gln	His	GIY	Val	Lys 10	Thr	rys	Ala	Arg	Arg 15	Leu		
Ser Lys	. Leu	Ala 20	Tyr	Leu	Leu	Ser	Ser 25	Ala	Cys	Leu	Val	Leu 30	Ala	Ala		
Leu Ala	Ala 35	Gly	Trp	Arg	Val	Pro 40	Thr	Pro	Thr	Glu	Gly 45	Gly	Ser	Ser		
Ser Pro	Ser	Pro	Leu	Thr	Gln 55	Ile	Ser	Val	Ser	Leu 60	Gly	Ala	Pro	Ser		
His Glr 65	Lys	Gln	Tyr	Gln 70	Pro	Ser	Ser	His	Pro 75	Ser	Val	His	His	His 80		
Asn His	cys	Leu	Ile 85	His	Glu	Thr	Ser	Ala 90	Asp	Pro	Pro					
<210><211><212><212><213>		ficia	al Se	equei	nce											
<220> <223>	Olig	onuc.	leot:	ide												
<400> aaactac	87 gtg	tggc	cagga	at c												21
	88 21 DNA Arti	ficia	al Se	equei	nce											
<220> <223>	Olig	onuc:	leot:	ide												
<400> cgacatg	88 Jagg	actca	agga	ca c												21
		sap	iens													
<400> gtgaaga	89 Icag	ggag	ctca	ag t	gacct	taata	ca	gggta	atat	agci	tgtgg	jtg :	tggga	agca	t	60
catgaga																120
cagcaga	ıtca -	gcag	gtga	ga at	ttcaa	actgt	. cca	agata	agaa	agg	tggad	at	ggaaa	aatt	g	180

ggctttgcaa atggtcaccc aattcttgcc ttcctggtct ccagatcacc cttcctatac	240
cgccactctg gagaaagaag tacagaacgc taacaaggat ggcttggagt tgcagtggtc	300
acctcagate ttaaggtcae tttggagatg gaaceeetgt gaetaggaat ggeagaagag	360
aaaggtagaa agagattgag teetggggat gtggeagage accateetag eecegtaetg	420
cgtacttctg gacttccttt aaattgagag aaaca	455
<210> 90 <211> 61 <212> PRT <213> Homo sapiens	
<400> 90	
Cys Phe Ser Gln Phe Lys Gly Ser Pro Glu Val Arg Ser Thr Gly Leu 1 5 10 15	
Gly Trp Cys Ser Ala Thr Ser Pro Gly Leu Asn Leu Phe Leu Pro Phe 20 25 30	
Ser Ser Ala Ile Pro Ser His Arg Gly Ser Ile Ser Lys Val Thr Leu 35 40 45	
Arg Ser Glu Val Thr Thr Ala Thr Pro Ser His Pro Cys 50 55 60	
<210> 91 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 91 gaacacggtc tttgatgggg	20
<210> 92 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 92 gccatcettg ttagegttet g	21
<210> 93	

<211> 1230

<400> 93 aggggcagag gggtcttc	cc aaccetacce	ctattttcgg	tgatttttgt	gtgagaatat	60
taatattaaa aataaacg	ga gaaaaaaaaat	cctgtttcgc	taacggctgg	tggtagcagg	120
ttgagtaccg ggagggct	jc aagaccgtga	ttgatgggga	ggactgcgca	gaccctggcg	180
agggtgagcc cctccccg	ga ggcgcctgtg	gaatgtccag	ggctctggtc	cgctcctcgg	240
gatgggggt gcctaatc	ct agagccgcat	tccaggataa	ggggggtggg	gagaggctgg	300
gccgggggag gggcaggaa	a gagggctata	agggcagcgg	cccaggcggg	cgggatccag	360
gcgggccatg gcggatgt	cc ccggggcaca	gcgagcggtt	cctggtgacg	gcccagagcc	420
ccgggacccc ctggactg	t gggcctgcgc	tgttcttgta	acagcccaga	atctgctggt	480
ggctgccttc aatcttct	c tgctggtgct	ggtgctaggg	accatcttgc	tacccgctgt	540
caccatgctg ggcttcgg	ct tcctctgcca	ctctcagttc	ctgcgctccc	aggcaccccc	600
ttgcaccgcg cacctgcgg	gg accccggttt	cacggcccta	ctggtcaccg	gattcctgct	660
cctcgtgccg ctgctcgtg	ge ttgetetgge	cagctaccgc	cgcctctgcc	tgcgcctccg	720
cctagccgat tgcctcgt	jc cctacagccg	agccctttat	cggcgtcggc	gcgccccgca	780
gccgcggcaa atccgggc	ct caccagggtc	ccaggccgtt	cccacatcag	gaaaggtctg	840
ggtctaatga ccctcgag	c aagaacaacc	ctgacggctg	ccctccctct	tattcggccc	900
aaggacttga agcccggca	it cttccgacct	gccctgcccc	cacccctgcc	tgagcggagt	960
cctagcatcc ccttgggag	gc agcagcgtca	gtggacccag	tgctgagaaa	agcccccaca	1020
tcccggaaaa cccacttt	cc tttcacgacc	cacatctcaa	tcctgaacat	ctaggctgga	1080
acctgcacac ctccccct	a gctccgtcgt	gaatgggaca	acaatctcgt	gccctcgttt	1140
tatggtgcag cttctctag	t atttctgggg	ctggggggcg	gggctggagg	ggaaggagtg	1200

<212> PRT

<213> Homo sapiens

tccacgcatc aataaagatt taacgaactg

<400> 94

Met Ala Asp Val Pro Gly Ala Gln Arg Ala Val Pro Gly Asp Gly Pro 1 5 10 15

Glu Pro Arg Asp Pro Leu Asp Cys Trp Ala Cys Ala Val Leu Val Thr 20 25 30

1230

<210> 94 <211> 159

Ala Gln Asn Leu Leu Val Ala Ala Phe Asn Leu Leu Leu Val Leu Val Leu Gly Thr Ile Leu Leu Pro Ala Val Thr Met Leu Gly Phe Gly Phe Leu Cys His Ser Gln Phe Leu Arg Ser Gln Ala Pro Pro Cys Thr Ala His Leu Arg Asp Pro Gly Phe Thr Ala Leu Leu Val Thr Gly Phe 85 Leu Leu Val Pro Leu Leu Val Leu Ala Leu Ala Ser Tyr Arg Arg 105 100 Leu Cys Leu Arg Leu Arg Leu Ala Asp Cys Leu Val Pro Tyr Ser Arg 115 Ala Leu Tyr Arg Arg Arg Ala Pro Gln Pro Arg Gln Ile Arg Ala 130 135 Ser Pro Gly Ser Gln Ala Val Pro Thr Ser Gly Lys Val Trp Val 150 145 <210> 95 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 95 21 ttcctctgcc actctcagtt c <210> 96 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 96 21 cgataaaggg ctcggctgta g <210> 97

<211> 1020

<400> 97

atggaggagg	aggaggagga	tgatgactat	gagaactcaa	cacctcccta	caaggacctt	60
cctcccaagc	cagggaccat	ggaggaggag	gaggaggatg	atgactatga	gaactcaaca	120
cctccctaca	aggaccttcc	tcccaagcca	gggaccatgg	aggaggagga	ggaggatgát	180
gactatgaga	actcaacacc	tccctacaag	gaccttcctc	ccaagccagg	ttcaagtgct	240
ccaccaagac	ctccaagggc	agcaaaggaa	acagagaaac	ccccacttcc	ttgcaagccc	300
cggaacatga	caggcctgga	cctcgccgct	gtcacctgtc	cacctcctca	actggctgtg	360
aatcttgagc	cttctccatt	gcagccatcc	ctggccgcaa	ctccagtccc	ctggctcaat	420
cagaggtctg	gaggtcctgg	ctgctgccag	aagaggtgga	tggtgtacct	gtgtctgctg	480
gtggtgactt	ccctgttcct	gggctgcctt	ggtctcactg	tgaccctgat	taagttgact	540
ggcatggcag	ggctagctgg	cctgaagcat	gacattgccc	gtgtaagagc	tgacaccaac	600
cagtccctgg	tggaactttg	gggcttatta	gactgccgcc	gaattacctg	tcctgaaggc	660
tggctgccct	ttgagggcaa	gtgttactac	ttctccccaa	gcaccaagtc	atgggatgag	720
gcccggatgt	tctgccagga	gaattactct	cacttggtca	tcatcaatag	ctttgctgag	780
cacaattttg	tggccaaggc	ccatggctct	ccacgggtgt	actggctggg	gctgaatgac	840
agggcccagg	aaggggactg	gaggtggctg	gatgggtctc	ctgtgacatt	aaggcaacca	900
gaggaaccca	ataacatcca	cgatgaggac	tgtgctacca	tgaacaaagg	tggcacctgg	960
aatgatctct	cttgctacaa	aactacgtat	tggatttgtg	agcggaaatg	ttcctgttga	1020

<210> 98 <211> 339 <212> PRT <213> Homo sapiens

<400> 98

Met Glu Glu Glu Glu Glu Asp Asp Tyr Glu Asn Ser Thr Pro Pro 10 5

Tyr Lys Asp Leu Pro Pro Lys Pro Gly Thr Met Glu Glu Glu Glu Glu 25 20

Asp Asp Asp Tyr Glu Asn Ser Thr Pro Pro Tyr Lys Asp Leu Pro Pro 35 40 45

Lys Pro Gly Thr Met Glu Glu Glu Glu Asp Asp Asp Tyr Glu Asn 60

Ser 65	Thr	Pro	Pro	Tyr	Lys 70	Asp	Leu	Pro	Pro	Lys 75	Pro	Gly	Ser	Ser	Ala 80
Pro	Pro	Arg	Pro	Pro 85	Arg	Ala	Ala	Lys	Glu 90	Thr	Glu	Lys	Pro	Pro 95	Leu
Pro	Cys	Lys	Pro 100	Arg	Asn	Met	Thr	Gly 105	Leu	Asp	Leu	Ala	Ala 110	Val	Thr
Cys	Pro	Pro 115	Pro	Gln	Leu	Ala	Val 120	Asn	Leu	Glu	Pro	Ser 125	Pro	Leu	Gln
Pro	Ser 130	Leu	Ala	Ala	Thr	Pro 135	Val	Pro	Trp	Leu	Asn 140	Gln	Arg	Ser	Gly
Gly 145	Pro	Gly	Cys	Cys	Gln 150	Lys	Arg	Trp	Met	Val 155	Tyr	Leu	Cys	Leu	Leu 160
Val	Val	Thr	Ser	Leu 165	Phe	Leu	Gly	Cys	Leu 170	Gly	Leu	Thr	Val	Thr 175	Leu
Ile	Lys	Leu	Thr 180	Gly	Met	Ala	Gly	Leu 185	Ala	Gly	Leu	Lys	His 190	Asp	Ile
Ala	Arg	Val 195	Arg	Ala	Asp	Thr	Asn 200	Gln	Ser	Leu	Val	Glu 205	Leu	Trp	Gly
Leu	Leu 210	Asp	Cys	Arg	Arg	Ile 215	Thr	Cys	Pro	Glu	Gly 220	Trp	Leu	Pro	Phe
Glu 225	Gly	Lys	Сув	Tyr	Tyr 230		Ser	Pro		Thr 235		Ser	Trp	Asp	Glu 240
Ala	Arg	Met	Phe	Cys 245	Gln	Glu	Asn	Tyr	Ser 250	His	Leu	Val	Ile	Ile 255	Asn
Ser	Phe	Ala	Glu 260	His.	Asn	Phe	Val	Ala 265	Lys	Ala	His	Gly	Ser 270	Pro	Arg
Val	Tyr	Trp 275	Leu	Gly	Leu	Asn	Asp 280	Arg	Ala	Gln	Glu	Gly 285	Asp	Trp	Arg
Trp	Leu 290	Asp	Gly	Ser	Pro	Val 295	Thr		Arg Page	_	Pro 300	Glu	Glu	Pro	Asn

Asn Ile His Asp Glu Asp Cys Ala Thr Met Asn Lys Gly Gly Thr Trp 305 310 315 320	
Asn Asp Leu Ser Cys Tyr Lys Thr Thr Tyr Trp Ile Cys Glu Arg Lys 325 330 335	
Cys Ser Cys	
<210> 99 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 99 atagetttge tgageacett e	21
<210> 100 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 100 aagagacact cagatatgga c	21
<210> 101 <211> 1680 <212> DNA <213> Homo sapiens	
<400> 101 atggccaatg tcaccttggt gacaggattt cttcttatgg ggttttctaa tatccagaag	60
ctgcggattt tatatggtgt gctcttccta ctgatttacc tggcagccct aatgagtaac	120
cttctcatca ttactctcat taccctggac gtaaagctcc aaacacccat gtacttcttc	180
ctgaagaact tatccttttt ggatgtcttc ctggtgtctg ttccaatccc aaaattcatt	240
gtcaacaacc taacccacaa caattccatt tccattctag gatgtgcctt ccagctactt	300
ttaatgactt ccttctcagc aggagagata tttatcctca ctgccatgtc ctatgaccgc	360
tatgtagcca tctgctgtcc cctgaactac gaggtaatca tgaatactgg agtctgtgtg	420
ttaatggcaa gtgtttcctg ggccattgga gggctctttg gtactgcgta cacagctggc	480

acattttcca tqcctttctq tqqctccagt gtgattccac agtttttctg tgatgttcct 540 tcattactaa qqatttcctq ttctqaaaca ctaatqqtaa tttatqcaqq tattqqaqtt 600 qqtqcatqtt taaqcatttc ttqtttcatc tgtattgtga tctcttacat ttatatcttc 660 tocactgtac tgaagatooc taccactaaa ggactgtgtg attgggttaa agggotcagt 720 geggggaete tgttttetgg ttteagtace acaatggaea caggeaacaa aactetgeee 780 caggactttc tcttactggg ctttcctggt tctcaaactc ttcagctctc tctctttatg 840 900 ctttttctgg tgatgtacat cctcacagtt agtggtaatg tggctatctt gatgttggtg agcacctccc atcagttgca tacccccatg tacttctttc tgagcaacct ctccttcctg 960 1020 qaqatttqqt ataccacaqc aqcaqtqccc aaaqcactgg ccatcctact ggggagaagt 1080 cagaccatat catttacaag ctgtcttttg cagatgtact ttgttttctc attaggctgc 1140 acagaqtact tecteetgge agecatgget tatgaceget gtettgeeat etgetateet ttacactacg gagccatcat gagtagcctg ctctcagcgc agctggccct gggctcctgg 1200 gtgtgtgtt tcgtggccat tgcagtgccc acagccctca tcagtggcct gtccttctgt 1260 1320 ggcccccgtg ccatcaacca cttcttctgt gacattgcac cctggattgc cctggcctgc accaacacac aggcagtaga gcttgtggcc tttgtgattg ctgttgtggt tatcctgagt 1380 1440 teatquetea teacetttqt etectatqtq tacateatea geaceatect caggateece 1500 tetgecagtq qeeqqaqeaa aqeettetee acqtqcteet eqeateteac egtggtgete atttqqtatq qqtccacagt tttccttcac gtccgcacct ctatcaaaga tgccttggat 1560 ctgatcaaag ctgtccacgt cctgaacact gtggtgactc cagttttaaa ccccttcatc 1620 1680 tatacgcttc gtaataagga agtaagagag actctgctga agaaatggaa gggaaaataa

Met Ala Asn Val Thr Leu Val Thr Gly Phe Leu Leu Met Gly Phe Ser 1 10 15

Asn Ile Gln Lys Leu Arg Ile Leu Tyr Gly Val Leu Phe Leu Leu Ile 20 25 30

Tyr Leu Ala Ala Leu Met Ser Asn Leu Leu Ile Ile Thr Leu Ile Thr 35 40 45

<210> 102

<211> 559

<212> PRT

<213> Homo sapiens

<400> 102

Leu	Asp 50	Val	Lys	Leu	Gln	Thr 55	Pro	Met	Tyr	Phe	Phe 60	Leu	Lys	Asn	Leu
Ser 65	Phe	Leu	Asp	Val	Phe 70	Leu	Val	Ser	Val	Pro 75	Ile	Pro	Lys	Phe	Ile 80
Val	Asn	Asn	Leu	Thr 85	His	Asn	Asn	Ser	Ile 90	Ser	Ile	Leu	Gly	Cys 95	Ala
Phe	Gln	Leu	Leu 100	Leu	Met	Thr	Ser	Phe 105	Ser	Ala	Gly	Glu	Ile 110	Phe	Ile
Leu	Thr	Ala 115	Met	Ser	Tyr	Asp	Arg 120	Tyr	Val	Ala	Ile	Cys 125	Cys	Pro	Leu
Asn	Tyr 130	Glu	Val	Ile	Met	Asn 135	Thr	Gly	Val	Cys	Val 140	Leu	Met	Ala	Ser
Val 145	Ser	Trp	Ala	Ile	Gly 150	Gly	Leu	Phe	Gly	Thr 155	Ala	Tyr	Thr	Ala	Gly 160
Thr	Phe	Ser	Met	Pro 165	Phe	Cys	Gly	Ser	Ser 170	Val	Ile	Pro	Gln	Phe 175	Phe
Cys	Asp	Val	Pro 180	Ser	Leu	Leu	Arg	Ile 185	Ser	Cys	Ser	Glu	Thr 190	Leu	Met
Val	Ile	Tyr 195	Ala	Gly	Ile	Gly	Val 200	Gly	Ala	Cys	Leu	Ser 205	Ile	Ser	Cys
Phe			Ile						Tyr		Phe 220	Ser	Thr	Val	Leu
Lys 225	Ile	Pro	Thr	Thr	Lys 230	Gly	Leu	Cys	Asp	Trp 235	Val	Lys	Gly	Leu	Ser 240
Ala	Gly	Thr	Leu	Phe 245	Ser	Gly	Phe	Ser	Thr 250	Thr	Met	Asp	Thr	Gly 255	Asn
Lys	Thr	Leu	Pro 260	Gln	Asp	Phe	Leu	Leu 265	Leu	Gly	Phe	Pro	Gly 270	Ser	Gln
Thr	Leu	Gln 275	Leu	Ser	Leu	Phe	Met 280	Leu	Phe	Leu	Val	Met 285	Tyr	Ile	Leu

Thr	Val 290	Ser	Gly	Asn	Val	Ala 295	Ile	Leu	Met	Leu	Val 300	Ser	Thr	Ser	His
Gln 305	Leu	His	Thr	Pro	Met 310	Tyr	Phe	Phe	Leu	Ser 315	Asn	Leu	Ser	Phe	Leu 320
Glu	Ile	Trp	Tyr	Thr 325	Thr	Ala	Ala	Val	Pro 330	Lys	Ala	Leu	Ala	Ile 335	Leu
Leu	Gly	Arg	Ser 340	Gln	Thr	Ile	Ser	Phe 345	Thr	Ser	Cys	Leu	Leu 350	Gln	Met
Tyr	Phe	Val 355	Phe	Ser	Leu	Gly	Cys 360	Thr	Glu	Tyr	Phe	Leu 365	Leu	Ala	Ala
Met	Ala 370	Tyr	Asp	Arg	Cys	Leu 375	Ala	Ile	Cys	Tyr	Pro 380	Leu	His	Tyr	Gly
Ala 385	Ile	Met	Ser	Ser	Leu 390	Leu	Ser	Ala	Gln	Leu 395	Ala	Leu	Gly	Ser	Trp 400
Val	Cys	Gly	Phe	Val 405	Ala	Ile	Ala	Val	Pro 410	Thr	Ala	Leu	Ile	Ser 415	Gly
Leu	Ser	Phe	Cys 420	Gly	Pro	Arg	Ala	Ile 425	Asn	His	Phe	Phe	Cys 430	Asp	Ile
Ala	Pro	Trp 435	Ile	Ala	Leu	Ala	Cys 440	Thr	Asn	Thr	Gln	Ala 445	Val	Glu	Leu
Val	Ala 450	Phe	Val	Ile	Ala	Val 455	Val	Val	Ile	Leu	Ser 460	Ser	Cys	Leu	Ile
Thr 465	Phe	Val	Ser	Tyr	Val 470	Tyr	Ile	Ile	Ser	Thr 475	Ile	Leu	Arg	Ile	Pro 480
Ser	Ala	Ser	Gly	Arg 485	Ser	Lys	Ala	Phe	Ser 490	Thr	Cys	Ser	Ser	His 495	Leu
Thr	Val	Val	Leu 500	Ile	Trp	Tyr	Gly	Ser 505	Thr	Val	Phe	Leu	His 510	Val	Arg
Thr	Ser	Ile 515	Lys	Asp	Ala	Leu	Asp 520	Leu	Ile	Lys	Ala	Val 525	His	Val	Leu

>

Asn Thr Val Val Thr Pro Val Leu Asn Pro Phe Ile Tyr Thr Leu Arg 530 535 540	
Asn Lys Glu Val Arg Glu Thr Leu Leu Lys Lys Trp Lys Gly Lys 545 550 555	
<210> 103 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 103 catttcttgt ttcatctgta ttgtg	25
<210> 104 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 104 tgttgcctgt gtccattgtg	20
<210> 105 <211> 499 <212> DNA <213> Homo sapiens	
<400> 105 acacccacat ggtcggcgtg caggatattt cgctggaccc tagaaaagcc accacgacct	60
gtgggccatg atgctacccc aatggctgct gctgctgttc cttctcttct	120
cctcctcacc aggggctcac tttctccaac aaaatacaac cttttggagc tcaaggagtc	180
ttgcatccgg aaccaggact gcgagactgg ctgctgccaa cgtgctccag acaattgcga	240
gtcgcactgc gcggagaagg ggtccgaggg cagtctgtgt caaacgcagg tgttctttgg	300
ccaatataga gcgtgtccct gcctgcggaa cctgacttgt atatattcaa agaatgagaa	360
atggcttagc atcgcctatg gccgttgtca gaaaattgga aggcagaagt tggctaagaa	420
aatgttette tagtgeteee teettettge tgeeteetee teeteeacet geteteetee	480
ctacccagag ctctgtgtt	499
<210> 106 <211> 121 <212> PRT	

```
Met Met Leu Pro Gln Trp Leu Leu Leu Phe Leu Leu Phe Phe Phe
Leu Phe Leu Leu Thr Arg Gly Ser Leu Ser Pro Thr Lys Tyr Asn Leu
Leu Glu Leu Lys Glu Ser Cys Ile Arg Asn Gln Asp Cys Glu Thr Gly
Cys Cys Gln Arg Ala Pro Asp Asn Cys Glu Ser His Cys Ala Glu Lys
   50
Gly Ser Glu Gly Ser Leu Cys Gln Thr Gln Val Phe Phe Gly Gln Tyr
                   70
Arg Ala Cys Pro Cys Leu Arg Asn Leu Thr Cys Ile Tyr Ser Lys Asn
               85
Glu Lys Trp Leu Ser Ile Ala Tyr Gly Arg Cys Gln Lys Ile Gly Arg
                               105
Gln Lys Leu Ala Lys Lys Met Phe Phe
<210> 107
<211> 17
<212> DNA
<213> Artificial Sequence
<223> Oligonucleotide
<400> 107
                                                                     17
tgtgtcaaac gcaggtg
<210> 108
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 108
                                                                     20
ggagggagca ctagaagaac
```

<213> Homo sapiens

<400> 106

<210> 109 <211> 659 <212> DNA <213> Homo sapiens	
<400> 109 agcaaattac accattaatg tcatcctggc gaatgaaaca agagaatagt atttatcaga	60
gaaagtctgg tgagttgaag tccaagaccc caggaaacaa ctagccctgc tgggctgccc	120
ctccttcgga gtgggactat atgatcctca tcaggccaat ccacgtcaca gaatggtcta	180
ggcattggat gagtgcctca atctgagcca atgaaggtca ttgctgagac attttactgg	240
ttgccagget gcaggeatee caggetteet getgeeetea tgtctacaae etgtegtetg	300
gaacattcca ggagccactt ttatcacttg cagcaatctt cttcagtgag ttccccagga	360
cttgatttca tcttacaatc tgattccatg tgtctcccat attttaagga ttctttatta	420
tttctggctt acagagaaca aacattattt tttgctttcc tggtctgttc tagattttca	480
aaaataactc tgtcacttct gttatatggt atcattgctt gtaattatct atttacttat	540
ctgtctctgg actggactct ttacagacag gcaataacta attatctgtc tgtctggcat	600
ttggtagtca ctcataaatc gtttattgca ttactaacta aataaaaaag ttgaccttg	659
<210> 110 <211> 144 <212> PRT <213> Homo sapiens <400> 110	
Met Lys Val Ile Ala Glu Thr Phe Tyr Trp Leu Pro Gly Cys Arg His 1 5 10 15	
Pro Arg Leu Pro Ala Ala Leu Met Ser Thr Thr Cys Arg Leu Glu His 20 25 30	

Ser Arg Ser His Phe Tyr His Leu Gln Gln Ser Ser Ser Val Ser Ser

Pro Gly Leu Asp Phe Ile Leu Gln Ser Asp Ser Met Cys Leu Pro Tyr

Phe Lys Asp Ser Leu Leu Phe Leu Ala Tyr Arg Glu Gln Thr Leu Phe

Phe Ala Phe Leu Val Cys Ser Arg Phe Ser Lys Ile Thr Leu Ser Leu

	100					
Leu Asp Trp		Tyr Arg Glr 120		Thr Asn Tyr Le 125	u Ser Val	
Trp His Let	u Val Val T	Thr His Lys 135	Ser Phe I	Ile Ala Leu Le 140	u Thr Lys	
<210> 111 <211> 25 <212> DNA <213> Arts	ificial Sec	quence				
<220> <223> Olig	gonucleotic	le			•	
<400> 111 atcctggcga	atgaaacaag	g agaat				25
<210> 112 <211> 26 <212> DNA <213> Art:	ificial Seç	quence				
<220> <223> Olig	gonucleotid	le				
<400> 112 gcaaccagta	aaatgtctca	gcaatg			:	26
<210> 113 <211> 831 <212> DNA <213> Homo	o sapiens					
<400> 113 atgcgaagaa	agaacctcac	agaggtaac	a gagtttgt	tt tcctgggatt	ctccagattc	60
cacaaacatc	acatcactct	ctttgtggt	t tttctcat	cc tgtacacatt	aactgtggct	120
ggcaatgcca	tcatcatgac	catcatctg	c attgacco	tc acctccacac	tcccatgtac	180
ttcttcctga	gcatgctggc	: tagctcaaa	g acagtgta	aca cactgttcat	cattccacag	240
atgctctcca	gcttcgtaac	ccagaccca	g ccaatcto	cc tagcaggttg	taccacccaa	300
acgttcttct	ttgttacctt	ggccatcaa	c aattgctt	ct tgctcacagt	gatgggctat	360
gaccactata	tggccatctg	g caatccctt	g agatacag	ggg tcattacgag	caagaaggtg	420
tgtgtccagc	tggtgtgtg	g agcctttag	c attggcct	gg ccatggcagc	tgtccaggta	480
acatccatat	ttaccttacc	tttttgtca	c acggtggt	tg gtcatttctt	ctgtgacatc	540

Leu Leu Tyr Gly Ile Ile Ala Cys Asn Tyr Leu Phe Thr Tyr Leu Ser

ctccctgtca tgaaactctc ctgtattaat accactatca atgagataat caattttgtt												
gtcaggttat ttgtcatcct ggtccccatg ggtctggtct												
atctccactg tcctcaagat tgcctcagct gagggttgga agaagacctt tgccacctgt												
gccttccacc tcactgtggt cattgtccat tatggctgtg cttccattgc ctacctcatg												
cccaagtcag aaaactctat agaacaagac ctccttctct cagtgaccta a												
<210> 114 <211> 276 <212> PRT <213> Homo sapiens												
Met Arg Arg Lys Asn Leu Thr Glu Val Thr Glu Phe Val Phe Leu Gly												
1 5 10 15												
Phe Ser Arg Phe His Lys His His Ile Thr Leu Phe Val Val Phe Leu 20 25 30												
Ile Leu Tyr Thr Leu Thr Val Ala Gly Asn Ala Ile Ile Met Thr Ile 35 40 45												
Ile Cys Ile Asp Arg His Leu His Thr Pro Met Tyr Phe Phe Leu Ser 50 55 60												
Met Leu Ala Ser Ser Lys Thr Val Tyr Thr Leu Phe Ile Ile Pro Gln 65 70 75 80												
Met Leu Ser Ser Phe Val Thr Gln Thr Gln Pro Ile Ser Leu Ala Gly 85 90 95												
Cys Thr Thr Gln Thr Phe Phe Phe Val Thr Leu Ala Ile Asn Asn Cys 100 105 110												
Phe Leu Leu Thr Val Met Gly Tyr Asp His Tyr Met Ala Ile Cys Asn 115 120 125												
Pro Leu Arg Tyr Arg Val Ile Thr Ser Lys Lys Val Cys Val Gln Leu 130 135 140												
Val Cys Gly Ala Phe Ser Ile Gly Leu Ala Met Ala Ala Val Gln Val 145 150 155 160												

Thr Ser Ile Phe Thr Leu Pro Phe Cys His Thr Val Val Gly His Phe 165 170 175

Pile	Cys	Asp	180	пец	FLO	vai	nec	185	БСи	501	СуБ	110	190	1111	1111	
Ile	Asn	Glu 195	Ile	Ile	Asn	Phe	Val 200	Val	Arg	Leu	Phe	Val 205	Ile	Leu	Val	
Pro	Met 210	Gly	Leu	Val	Phe	Ile 215	Ser	Tyr	Val	Leu	Ile 220	Ile	Ser	Thr	Val	
Leu 225	Lys	Ile	Ala	Ser	Ala 230	Glu	Gly	Trp	Lys	Lys 235	Thr	Phe	Ala	Thr	Cys 240	
Ala	Phe	His	Leu	Thr 245	Val	Val	Ile	Val	His 250	Tyr	Gly	Cys	Ala	Ser 255	Ile	
Ala	Tyr	Leu	Met 260	Pro	Lys	Ser	Glu	Asn 265	Ser	Ile	Glu	Glņ	Asp 270	Leu	Leu	
Leu	Ser	Val 275	Thr										· .			
<210 <211 <212 <213	.> : !>]	115 18 DNA Artii	ficia	al Se	equei	nce							;			
<220 <223		Oligo	onuc:	leot:	ide											
<400 cttc		115 acc (caga	ccca									:			18
<210 <211 <212 <213	.> : !>]	116 18 DNA Arti:	ficia	al Se	equei	nce							÷			
<220 <223		Olig	onuc:	leot:	ide											
<400 cttg		116 gta a	atga	ccct												18
<210 <211 <212 <213	.> : !> :	117 1233 DNA Homo	sap:	iens												
<400)> :	117														

Phe Cys Asp Ile Leu Pro Val Met Lys Leu Ser Cys Ile Asn Thr Thr

Ÿ

gaagcagcca ccaccat	ctt gggagctctg	ggagcaagga	cccctgtaac	acattcatcc	60
ttgaatgaca aaatgtc	tgg tccagcatgg	tattataaca	taaacatgaa	gaggaagaga	120
catgagagat acgcaca	gtg aagagaccaa	gctgggacac	agtacgaagg	tggcatctgc	180
acgccaagca gagggac	ctc agaagaaact	gagccagcca	gcaccccacc	ttcgtctttg	240
acctccagcc tccagaa	cta aggatagago	tcttcatctc	tgttagaaac	gaccatcaaa	300
aagatacatc aattcat	tag aatcaaaagg	acatgagtta	tcagaattct	ttctcctgaa	360
agaaagtgga gatcaaa	ggt aaaacttcta	gagaatgaga	tgaaggcaga	tgaaagaagt	420
taacaagaca ttacatg	act tgataatatt	gcatgtatgc	aaaaacctta	tgaaatcaac	480
tgtgttctag cgaccac	ttg tttttcttt	tgtcataata	ctttttattc	tcttgcaatg	540
atattgattc atctgca	cct gacatcaact	ctgcatttgt	agaaggtgat	aagaatacag	600
ggaaatggaa taagtgg	ctt tgcctgcaat	cccgcagcag	cagaaatgtc	catttcctct	660
ctcctgaata atactac	att ctccactggg	ttccacaagt	ttcgaggtaa	aagcatgaac	720
atacacgaag tcaccat	cac taccctcacc	accaccacca	ttatttccac	catattcacc	780
cttttaatac gcaaact	tcc tccaaggctt	cctgaagtca	cccagaaatg	catttcccca	840
agagtgagtt gtgctaa	cat tgtatcctat	ggaactctgg	gaagctaccc	agatcctcaa	900
ctcttggagt cttgctg	act gcatgttcca	. ggctccacat	ttaagctcca	gtgactgctg	960
atgactgcat gacctaa	cac atgtcctcaa	tcctttcttg	gcctcagttt	cttcaccagt	1020
gaattctgaa tgctgga	att ggcaatattt	caggttcttt	ccaactggaa	atacccatgc	1080
taataatttt agtaagt	caa tagccataga	aacctactga	caaaatgagt	attttaacag	1140
agacagttgt actttct	taa tttttagcag	aagggaatgc	atatgtataa	tatctatgtt	1200
gccttctatg tgtaaaa	ata aatacacaga	cac			1233

<210> 118 <211> 90 <212> PRT <213> Homo sapiens

<400> 118

Met Ser Ile Ser Ser Leu Leu Asn Asn Thr Thr Phe Ser Thr Gly Phe

His Lys Phe Arg Gly Lys Ser Met Asn Ile His Glu Val Thr Ile Thr

Thr Leu Thr Thr Thr Ile Ile Ser Thr Ile Phe Thr Leu Leu Ile

Pro Arq Val Ser Cys Ala Asn Ile Val Ser Tyr Gly Thr Leu Gly Ser 70 Tyr Pro Asp Pro Gln Leu Leu Glu Ser Cys 85 <210> 119 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 119 19 caccccacct tcgtctttg <210> 120 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 120 24 gttttacctt tgatctccac tttc <210> 121 <211> 4209 <212> DNA <213> Homo sapiens <400> 121 agttgcttga aagcaacgtg cctattcaca tggagaatct tccctttcct ttaaaattac 60 ttaqtqcctc atcgctaaac gcccccagct ccacaccatg ggtgttggat atcttcctca 120 180 ccttgqtqtt tqccctgggg ttcttcttcc tattactccc ctacttatct tacttccatt gtgatgaccc accctcacca tcgcctggga agagaaagtg tccagtaggg cggaggcgga 240 ggcccagagg caggatgaaa aaccacagtc tgagagctgg tagagagtgc ccgagaggcc 300 tggaggagac ttcggacctt ctttcacaac tgcagagcct cctggggcca caccttgaca 360 aaggtgactt tggtcagctc tccggtccag acccccagg tgaggtgggc gaaagagcac 420 ctgatggagc ctcccagtcc tctcatgagc ctatggaaga tgctgctccc attctctccc 480

Arg Lys Leu Pro Pro Arg Leu Pro Glu Val Thr Gln Lys Cys Ile Ser

55

50

cgttagcttc cccggatcct caagccaagc atcctcagga tctggcctcc accccatcac 540 caggeccaat gaccacetea gtetectece taagtgeete ecagecacea gaacetteee 600 ttcccctaga acacccctca cccgagccac ctgcactttt ccctcaccca ccacacaccc 660 ctgatcctct ggcctgctct ccgcctcctc caaaaggctt cactgctcct cccctgcggg 720 780 actocacact gataactoca totcactgtg actoagtggc acttocactg ggcaccgtcc 840 ctcaaagctt gtctccacat gaggatttgg tggcttctgt cccagccatc tcaggccttg gtggctcaaa cagtcatgtt tctgcctcct cccggtggca ggagactgcc agaacctcgt 900 960 gegeetttaa eteateagte eageaagate etettteeeg eeaceacea gagacetgte 1020 agatggaagc tggtagcctg tttttgctca gctctgatgg ccagaatgtc.gtggggatac aagtcacaga aacagccaag gtcaacattt gggaagaaaa agaaaatgtt ggatcattta 1080 1140 caaatcaaat gaccccagaa aagcacttaa attctttggg gaatttggct aaatcattgg 1200 atgctgagca ggacaccaca aacccaaaac ccttctggaa catgggagag aactcgaaac 1260 agctgcccgg acctcagaag tgctcagatc ctaggctctt gcaggaaagt ttttggaaga attatagcca gcttttctgg ggcctcccct ctctgcacag cgagtccctg gtggctaacg 1320 cctgggtaac tgacaggtct tatactttac agtctcctcc tttcttgttc aatgaaatgt 1380 ccaatgtctg cccaattcaa agggagacta caatgtcccc actgcttttc caggcccagc 1440 1500 ccctgtccca ccgccaaccc tttatttcat ccacacccca attcctgccc acacctatgg ctcaggccga ggctcaggcc catcttcagt cttctttccc agtcctatct cctgcttttc 1560 calcoctgat taagaacact ggagtagett geeetgeate geagaataaa gtgcaagete 1620 1680 tctccctacc tgaaactcag caccctgaat ggcctttgtt gaggaaacaa ctagaaggta ggttggcttt accctctagg gtccaaaaat ctcaggacgt ctttagtgtc tccactccta 1740 accttcccca ggaaagtttg acatccattc tgcctgagaa ctttccagtc agtcctgaac 1800 1860 tccggagaca actggagcaa cacataaaaa agtggatcat ccaacactgg ggcaacctgg 1920 gaaggatcca agagtctctg gatctgatgc agcttcggga cgaatcacca gggacaagtc 1980 aggccaaggg caaacccagt ccctggcagt cctccacgtc cacaggtgaa agcagcaagg 2040 aggcacagaa ggtgaagttc cagctagaga gggacctgtg cccacatctg gggcaaattc 2100 tgggtgagac cccacaaaat ctatccaggg acatgaaaag cttcccacgg aaggttctgg gggtgacttc tgaggagtcg gaaaggaact tgaggaagcc cttgaggagt gactcgggaa 2160 gtgatttatt aagatgcaca gagaggactc atatagaaaa catcctgaaa gcccacatgg 2220 gcaggaactt gggccagacc aacgagggct tgatccccgt gcgtgtgcgt cgatcctggc 2280

2340 ttgctgtcaa ccaggctctt cccgtgtcca acacccatgt gaaaaccagc aatctagcag ccccgaaaag tgggaaagcc tgtgtgaaca cagcccaggt gctttccttc ctcgagccgt 2400 gtactcagca ggggttggga gcccatattg tgaggttttg ggccaaacac aggtggggtc 2460 2520 tacccctcag ggtcctcaag cccattcagt gctttaaact ggaaaaggtt tcatccttgt 2580 cccttacgca gcttgctggt ccctcctcag ccacctgtga atctggggct ggctcagaag ttgaggtgga catgttcctt agaaagccac caatggcaag tctgagaaag caggtgctga 2640 ccaaagcatc tgatcacatg ccagagagtc ttctggcctc ctcacctgca tggaagcagt 2700 2760 tccagagggc accgcgagga atcccatctt ggaatgatca tgggcccttg aagcctcctc 2820 cagctggaca ggagggcagg tggccatcta agcccctcac gtacagcctc acaggcagca 2880 cccagcagag caggagctta ggagcccaat cttcaaaggc tggagagaca agggaggcag 2940 tgccacaatg cagagtcccc ttggaaacct gtatgctggc aaacctccaa gccacaagtg 3000 aggatgtgca tggtttcgag gctccaggga ccagcaaaag ctctctacac cctagagtgt 3060 ctgtctccca agatccaaga aagctgtgtc ttatggagga ggttgttagt gaatttgagc ctggaatggc cacaaagtca gagacccagc ctcaagtttg tgccgctgtt gtgctccttc 3120 3180 cagatgggca agcatctgtt gtgccccacg cttcagagaa tttggtttct caagtgcccc 3240 agggccatct ccagagcatg cctactggga acatgcgggc ttcccaggag ctacatgacc 3300 tcatggcage cagaaggage aaactggtge aagaggagee cagaaaceca aactgtcaag 3360 gctcatgcaa gagccaaagg ccaatgtttc cccctattca caagagtgag aagtctagga 3420 agcccaactt agaaaaacat gaagaaaggc ttgaaggatt gaggactcct caacttaccc 34**8**0 cagtcaggaa aacagaagac acccatcagg atgaaggcgt ccagctactg ccatcaaaga aacagcctcc ttcagtaagc cactttggag aaaacatcaa gcaatttttt cagtggattt 3540 tttcaaagaa aaaaagcaag ccagcaccag tcactgctga gagccaaaaa acagtaaaaa 3600 3660 acagatcatg tgtgtacagc agcagtgctg aagctcaggg tctcatgacg gcagttggac 3720 aaatgctgga caagaaaatg tcactttgcc atgcgcacca tgcctcgaag gtaaatcagc 3780 acaaacagaa gtttcaagcc ccagtctgtg ggtttccctg caaccacagg cacctcttct 3840 actcagaaca tggcagaata ctgagctatg cagccagcag tcaacaagcc actctcaaga gccagggttg tcccaacaga gacaggcaaa tcagaaatca acagcccttg aaaagtgtgc 3900 3960 ggtgcaacaa tgagcaatgg ggcctgcgac atccccaaat cttgcacccc aagaaagctg tatececagt cagtececet cageactgge egaagacate eggtgeetet agecaceate 4020 accactgtcc aaggcactgt cttctttggg aaggtatctg atttggtcag tcacaaattc 4080

tttt	ttag	gcc t	tccc	tgga	ıg aa	aaac	aagt	ccc	caag	aaa	aaat	tcac	tc t	atgt	agaga	4140
aaaa	atai	tt t	cctct	cate	jt ta	ıgtaa	atgo	aga	acat	tta	atat	tcca	ca a	atata	tatgg	4200
tttt	ttat	t														4209
<210 <211 <212 <213	.> : !> :	122 1343 PRT Homo	sapi	.ens												
<400)> :	122														
Met 1	Glu	Asn	Leu	Pro 5	Phe	Pro	Leu	Lys	Leu 10	Leu	Ser	Ala	Ser	Ser 15	Leu	
Asn	Ala	Pro	Ser 20	Ser	Thr	Pro	Trp	Val 25	Leu	Asp	Ile	Phe	Leu 30	Thr	Leu	
Val	Phe	Ala 35	Leu	Gly	Phe	Phe	Phe 40	Leu	Leu	Leu	Pro	Tyr 45	Leu	Ser	Tyr	
Phe	His 50	Cys	Asp	Asp	Pro	Pro 55	Ser	Pro	Ser	Pro	Gly 60	Lys	Arg	Lys	Cys	
Pro 65	Val	Gly	Arg	Arg	Arg 70	Arg	Pro	Arg	Gly	Arg 75	Met	Lys	Asn	His	Ser 80	
Leu	Arg	Ala	Gly	Arg 85	Glu	Cys	Pro	Arg	Gly 90	Leu	Glu	Glu	Thr	Ser 95	Asp	
Leu	Leu	Ser	Gln 100	Leu	Gln	Ser	Leu	Leu 105	Gly	Pro	His	Leu	Asp 110	Lys	Gly	
Asp	Phe	Gly 115	Gln	Leu	Ser	Gly	Pro 120	Asp	Pro	Pro	Gly	Glu 125	Val	Gly	Glu	
Arg	Ala 130	Pro	Asp	Gly	Ala	Ser 135	Gln	Ser	Ser	His	Glu 140	Pro	Met ,	Glu	Asp	
Ala 145	Ala	Pro	Ile	Leu	Ser 150	Pro	Leu	Ala	Ser	Pro 155	Asp	Pro	Gln	Ala	Lys 160	
His	Pro	Gln	Asp	Leu 165	Ala	Ser	Thr	Pro	Ser 170	Pro	Gly	Pro	Met	Thr 175	Thr	
Ser	Val	Ser	Ser 180	Leu	Ser	Ala	Ser	Gln 185	Pro	Pro	Glu	Pro	Ser 190	Leu	Pro	

Leu	Glu	His 195	Pro	Ser	Pro	Glu	Pro 200	Pro	Ala	Leu	Phe	Pro 205	His	Pro	Pro
His	Thr 210	Pro	Asp	Pro	Leu	Ala 215	Cys	Ser	Pro	Pro	Pro 220	Pro	Lys	Gly	Phe
Thr 225	Ala	Pro	Pro	Leu	Arg 230	Asp	Ser	Thr	Leu	Ile 235	Thr	Pro	Ser	His	Cys 240
Asp	Ser	Val	Ala	Leu 245	Pro	Leu	Gly	Thr	Val 250	Pro	Gln	Ser	Leu	Ser 255	Pro
His	Glu	Asp	Leu 260	Val	Ala	Ser	Val	Pro 265	Ala	Ile	Ser	Gly	Leu 270	Gly	Gly
Ser	Asn	Ser 275	His	Val	Ser	Ala	Ser 280	Ser	Arg	Trp	Gln	Glu 285	Thr	Ala	Arg
Thr	Ser 290	Cys	Ala	Phe	Asn	Ser 295	Ser	Val	Gln	Gln	Asp 300	Pro	Leu	Ser	Arg
His 305	Pro	Pro	Glu	Thr	Cys 310	Gln	Met	Glu	Ala	Gly 315	Ser	Leu	Phe	Leu	Leu 320
Ser	Ser	Asp	Gly	Gln 325	Asn	Val	Val	Gly	Ile 330	Gln	Val	Thr		Thr 335	Ala
Lys	Val	Asn	Ile 340	Trp	Glu	Glu	Lys	Glu 345	Asn	Val	Gly	Ser	Phe 350	Thr	Asn
Gln	Met	Thr 355	Pro	Glu	Lys	His	Leu 360	Asn	Ser	Leu	Gly	Asn 365	Leu	Ala	Lys
Ser	Leu 370	Asp	Ala	Glu	Gln	Asp 375	Thr	Thr	Asn	Pro	Lys 380	Pro	Phe	Trp	Asn
Met 385	Gly	Glu	Asn	Ser	Lys 390	Gln	Leu	Pro	Gly	Pro 395	Gln	Lys	Cys	Ser	Asp 400
Pro	Arg	Leu	Leu	Gln 405	Glu	Ser	Phe	Trp	Lys 410	Asn	Tyr	Ser	Gln	Leu 415	Phe
Trp	Gly	Leu	Pro 420	Ser	Leu	His	Ser	425	Ser Page		Val	Ala	Asn 430	Ala	Trp

Val	Thr	Asp 435	Arg	Ser	Tyr	Thr	Leu 440	Gln	Ser	Pro	Pro	Phe 445	Leu	Phe	Asn
Glu	Met 450	Ser	Asn	Val	Cys	Pro 455	Ile	Gln	Arg	Glu	Thr 460	Thr	Met	Ser	Pro
Leu 465	Leu	Phe	Gln	Ala	Gln 470	Pro	Leu	Ser	His	Arg 475	Gln	Pro	Phe	Ile	Ser 480
Ser	Thr	Pro	Gln	Phe 485	Leu	Pro	Thr	Pro	Met 490	Ala	Gln	Ala	Glu	Ala 495	Gln
Ala	His	Leu	Gln 500	Ser	Ser	Phe	Pro	Val 505	Leu	Ser	Pro	Ala	Phe 510	Pro	Ser
Leu	Ile	Lys 515	Asn	Thr	Gly	Val	Ala 520	Cys	Pro	Ala	Ser	Gln 525	Asn	Lys	Val
Gln	Ala 530	Leu	Ser	Leu	Pro	Glu 535	Thr	Gln	His	Pro	Glu 540	Trp	Pro:	Leu	Leu
Arg 545	Lys	Gln	Leu	Glu	Gly 550	Arg	Leu	Ala	Leu	Pro 555	Ser	Arg	Val	Gln	Lys 560
Ser	Gln	Asp	Val	Phe 565	Ser	Val	Ser	Thr	Pro 570	Asn	Leu	Pro	Gln	Glu 575	Ser
Leu	Thr	Ser	Ile 580	Leu	Pro	Glu	Asn	Phe 585	Pro	Val	Ser	Pro	Glu 590	Leu	Arg
Arg	Gln	Leu 595	Glu	Gln	His	Ile	Lys 600	Lys	Trp	Ile	Ile	Gln 605	His	Trp	Gly
Asn	Leu 610	Gly	Arg	Ile	Gln	Glu 615	Ser	Leu	Asp	Leu	Met 620	Gln	Leu	Arg	Asp
Glu 625	Ser	Pro	Gly	Thr	Ser 630	Gln	Ala	Lys	Gly	Lys 635	Pro	Ser	Pro;	Trp	Gln 640
Ser	Ser	Thr	Ser	Thr 645	Gly	Glu	Ser	Ser	Lys 650	Glu	Ala	Gln	Lys	Val 655	Lys
Phe	Gln	Leu	Glu 660	Arg	Asp	Leu	Cys	665	His Page		Gly	Gln	Ile 670	Leu	Gly

Glu	Thr	Pro 675	Gln	Asn	Leu	Ser	Arg 680	Asp	Met	Lys	Ser	Phe 685	Pro	Arg	Lys
Val	Leu 690	Gly	Val	Thr	Ser	Glu 695	Glu	Ser	Glu	Arg	Asn 700	Leu	Arg	Lys	Pro
Leu 705	Arg	Ser	Asp	Ser	Gly 710	Ser	Asp	Leu	Leu	Arg 715	Cys	Thr	Glu	Arg	Thr 720
His	Ile	Glu	Asn	Ile 725	Leu	Lys	Ala	His	Met 730	Gly	Arg	Asn	Leu	Gly 735	Gln
Thr	Asn	Glu	Gly 740	Leu	Ile	Pro	Val	Arg 745	Val	Arg	Arg	Ser	Trp 750	Leu	Ala
Val	Asn	Gln 755	Ala	Leu	Pro	Val	Ser 760	Asn	Thr	His	Val	Lys 765	Thr	Ser	Asn
Leu	Ala 770	Ala	Pro	Lys	Ser	Gly 775	Lys	Ala	Cys	Val	Asn 780	Thr	Ala	Gln	Val
Leu 785	Ser	Phe	Leu	Glu	Pro 790	Cys	Thr	Gln	Gln	Gly 795	Leu	Gly	Ala	His	Ile 800
Val	Arg	Phe	Trp	Ala 805	Lys	His	Arg	Trp	Gly 810	Leu	Pro	Leu	Arg	Val 815	Leu
Lys	Pro	Ile	Gln 820	Cys	Phe	Lys	Leu	Glu 825	Lys	Val	Ser	Ser	Leu 830	Ser	Leu
Thr	Gln	Leu 835	Ala	Gly	Pro	Ser	Ser 840	Ala	Thr	Cys	Glu	Ser 845	Gly	Ala	Gly
Ser	Glu 850	Val	Glu	Val	Asp	Met 855	Phe	Leu	Arg	Lys	Pro 860	Pro	Met	Ala	Ser
Leu 865	Arg	Lys	Gln	Val	Leu 870	Thr	Lys	Ala	Ser	Asp 875	His	Met	Pro	Glu	Ser 880
Leu	Leu	Ala	Ser	Ser 885	Pro	Ala	Trp	Lys	Gln 890	Phe	Gln	Arg	Ala	Pro 895	Arg
Gly	Ile	Pro	Ser 900	Trp	Asn	Asp	His	905	Pro Page		Lys	Pro	Pro 910	Pro	Ala

Gly	Gln	Glu 915	Gly	Arg	Trp	Pro	Ser 920	Lys	Pro	Leu	Thr	Tyr 925		Leu	Thr
Gly	Ser 930	Thr	Gln	Gln		Arg 935	Ser	Leu	Gly	Ala	Gln 940	Ser	Ser	Lys	Ala
Gly 945	Glu	Thr	Arg	Glu	Ala 950	Val	Pro	Gln	Cys	Arg 955	Val	Pro	Leu	Glu	Thr 960
Cys	Met	Leu	Ala	Asn 965	Leu	Gln	Ala	Thr	Ser 970	Glu	Asp	Val	His	Gly 975	Phe
Glu	Ala	Pro	Gly 980	Thr	Ser	Lys	Ser	Ser 985	Leu	His	Pro	Arg	Val 990		Val
Ser	Gln	Asp 995	Pro	Arg	Lys	Leu	Cys 100		u Me	t Gl	u Gl		1 V 05	al S	er Glu
Phe	Glu 1010		Gly	Met	Ala	Thr 101		ys S	er G	lu T		ln 020	Pro	Gln	Val
Cys	Ala 1025		Val	. Val	Leu	Leu 103		ro A	sp G	ly G		la 035	Ser	Val	Val
Pro	His 1040		Ser	Glu	Asn	Leu 104		al S	er G	ln V		ro 050	Gln	Gly	His
Leu	Gln 1055		Met	: Pro	Thr	Gly 106		sn Mo	et A	rg A		er 065	Gln	Glu	Leu
His	Asp 1070		ı Met	: Ala	Ala	Arg 107		rg S	er L	ys L		al 080		Glu	Glu
Pro	Arg 1085		n Pro) Asn	Cys	Glr 109		ly S	er C	ys L		er 095			Pro
Met	Phe 1100		Pro	o Ile	His	Lys 110		er G	lu L	ys S		rg 110	Lys	Pro	Asn
Leu	Glu 1115	_	. His	s Glu	ı Glu	Arg 112		eu G	lu G	ly L		rg 125	Thr	Pro	Gln
Leu	Thr 1130		Val	l Arg	l Lys	Th:		lu A				ln 140	Asp	Glu	Gly
									Page	, ,,,					

Val	Gln 1145	Leu	Leu	Pro	Ser	Lys 1150		Gln	Pro	Pro	Ser 1155	Val	Ser	His
Phe	Gly 1160	Glu	Asn	Ile		Gln 1165		Phe	Gln	Trp	Ile 1170		Ser	Lys
Lys	Lys 1175	Ser	Lys	Pro	Ala	Pro 1180	Val	Thr	Ala	Glu	Ser 1185	Gln	Lys	Thr
Val	Lys 1190	Asn	Arg	Ser	Cys	Val 1195		Ser	Ser	Ser	Ala 1200	Glu	Ala	Gln
Gly	Leu 1205	Met	Thr	Ala	Val	Gly 1210	Gln	Met	Leu	Asp	Lys 1215	Lys	Met	Ser
	1220					1225		_			Gln 1230		_	
-	1235					1240	_			_	Asn 1245			
	1250	-				1255	_				Tyr 1260			
	1265					1270			_	_	Pro 1275			
_	1280		_			1285					Val 1290 Leu			
	1295			_		1300					1305 Trp			
-	1310					1315					1320 Arg			
	1325 Trp					1330			4 -		1335			
	1340	~	1										•	

<210> 123 <211> 24

<212> <213>	DNA Arti	ficial Se	quence			•.	
<220> <223>	Olig	gonucleoti	de				
<400> ctattac	123 ctcc	cctacttat	c ttac				24
<210><211><211><212><213>	124 18 DNA Arti	lficial Se	quence				
<220> <223>	Olig	gonucleoti	de				
<400> tttcgco	124 ccac	ctcacctg					18
<210><211><211><212><213>	125 3136 DNA Homo	s sapiens					
<400> gtcgccg	125 gccg	ctaccgccg	c cgccgccgca	gggcccgccg	ctgggatgcc	gagcgcccgc	60
gccgccg	gctg	cctctgtcc	t ccgcgcgctg	ctcagctgaa	ggcgcacagg	attcaattac	120
tggactt	tgtc	aactctgcc	a gtgtacgtgc	catttctctt	ccactatgag	aggaccgatt	180
gtattgo	caca	tttgtctgg	c tttctgtagc	cttctgcttt	tcagcgttgc	cacacaatgt	240
ctggcct	ttcc	ccaaaatag	a aaggaggagg	gagatagcac	atgttcatgc	ggaaaaaggg	300
cagtccg	gata	agatgaaca	c cgatgaccta	gaaaatagct	ctgttacctc	aaagcagact	360
ccccaa	ctgg	tggtctctg	a agatccaatg	atgatgtcag	cagtaccatc	ggcaacatca	420
ttaaata	aaag	cattctcga	t taacaaagaa	acccagcctg	gacaagctgg	gctcatgcaa	480
acagaad	egce	ctggtgttt	c cacacctact	gagtcaggtg	tcccctcagc	tgaagaagta	540
tttggtt	tcca	gccagccag	a gagaatatct	cctgaaagtg	gacttgccaa	ggccatgtta	600
accatt	gcta	tcactgcga	c teettetetg	actgttgatg	aaaaggagga	actccttaca	660
agcacta	aact	ttcagccca	t tgtagaagag	atcacagaaa	ccacaaaagg	ttttctgaag	720
tatatg	gata	atcaatcat	t tgcaactgaa	agtcaggaag	gagttggttt	gggacattca	780
ccttcat	tcct	atgtgaata	c taaggaaatg	ctaaccacca	atccaaagac	tgagaaattt	840
gaagcag	gaca	cagaccaca	g gacaacttct	tttcctggtg	ctgagtccac	agcaggcagt	900
gagcct	ggaa	gcctcacco	c tgataaggag	aagccttcgc	agatgacagc	tgataacacc	960

caggetgetg ccaccaagca accactegaa actteegagt acaccetgag tgttgageca 1020 1080 gaaactgata gtctgctggg agccccagaa gtcacagtga gtgtcagcac agctgttcca 1140 gctgcctctg ccttaagtga tgagtgggat gacaccaaat tagagagtgt aagccggata 1200 aggacececa agettggaga caatgaagag aeteaggtga gaaeggagat gteteagaea 1260 gcacaagtaa gccatgaggg tatggaagga ggccagcctt ggacagaggc tgcacaggtg 1320 gctctggggc tgcctgaagg ggaaacacac acgggcacag ccctgctaat agcgcatggg aatgagagat cacctgcttt cactgatcaa agttccttta cccccacaag tctgatggaa 1380 1440 gacatgaaag tttccattgt gaacttgctc caaagtacgg gagacttcac ggaatccacc 1500 aaggaaaacg atgccctgtt tttcttagaa accactgttt ctgtctctgt atatgagtct 1560 gaggcagacc aactgttggg aaatacaatg aaagacatca tcactcaaga gatgacaaca 1620 gctgttcaag agccagatgc cactttatcc atggtgacac aagagcaggt tgctaccctc 1680 gagettatea gagaeagtgg caagaetgag gaagaaaagg aggaeeeete teetgtgtet 1740 gacgttcctg gtgttactca gctgtcaaga agatgggagc ctctggccac tacaatttca actacagtcg tecettigte tittgaagtt acteceactg tggaagaaca aatggacaca 1800 1860 gtcacagggc caaatgagga gttcacacca gttctgggat ctccagtgac acctcctgga 1920 ataatggtgg gggaacccag catttcccct gcacttcctg ctttggaggc atcctctgag 1980 agaagaactg ttgttccatc tattactcgt gttaatacag ctgcctcata tggcctggac caacttgaat ctgaagaggg acaagaagat gaggatgaag aggatgaaga agatgaagat 2040 2100 gaagaagagg aagatgagga agaagatgag gaagataaag atgcagactc gctggatgag 2160 ggcttggatg gtgacactga gctgccaggt tttaccctcc ctggtatcac atcccaggaa 2220 ccaggcttag aggagggaaa catggacctg ttggagggag ctacctacca ggtgccagat 2280 gccctcgagt gggaacagca gaatcaaggc ctggtgagaa gctggatgga aaaattaaaa 2340 gacaaggctg gttacatgtc tgggatgctg gtgcctgtag gggttgggat agctggagcc 2400 ttgttcatct tgggagccct ctacagcatt aaggttatga atcgccgaag gagaaatggc 2460 ttcaaaaggc ataaaagaaa gcagagagaa ttcaacagca tgcaagatcg agtaatgctc 2520 ttagccgaca gctctgaaga tgaattttga attggactgg gttttaattg ggatattcaa cgatgctact attctaattt ttattttgga gcagaaaaaa aaaaagaaca acctgccaca 2580 2640 ttgctgctat caggccgtta gtcctagtgt ctgctgggtg ctgggtagta gatttttctt gtactgagca gaaatggcat gttgtatact aaacgtatca tgcagtattt ggttttattc 2700 tgtagtgaat tttccacaac cgtgggctac aactcataaa tatgcaacat atatgttttt 2760

cagtaggagt	tgctacatta	ggcagagtaa	atattttgta	gttttccaca	gtgtcttttc	2820
cttggtttga	attacctgca	ttgagaataa	tgattgttgc	caccaaggca	tgcttgactc	2880
tgagatataa	atcttaacaa	agaataactt	ctcaagatat	actctaccta	cttgaaacca	2940
cagggttgtg	ggccatggta	catactgcat	ttgcatcaaa	ctagcagtaa	ctcagaatga	3000
aatcattttc	attaagaagc	tctctcagca	tattaggatt	atatgtagat	ttgtatgtat	3060
tttgcattat	gtacttcagt	ctcctagttt	tattattctc	accttccgtt	ttattcttgg	3120
cgaggaaaaa	aatgca					3136

<210> 126

<211> 774

<212> PRT

<213> Homo sapiens

<400> 126

Met Arg Gly Pro Ile Val Leu His Ile Cys Leu Ala Phe Cys Ser Leu 1 5 10 15

Leu Leu Phe Ser Val Ala Thr Gln Cys Leu Ala Phe Pro Lys Ile Glu 20 25 30

Arg Arg Glu Ile Ala His Val His Ala Glu Lys Gly Gln Ser Asp 35 40 45

Lys Met Asn Thr Asp Asp Leu Glu Asn Ser Ser Val Thr Ser Lys Gln 50 55 60

Thr Pro Gln Leu Val Val Ser Glu Asp Pro Met Met Ser Ala Val 65 70 75 80

Pro Ser Ala Thr Ser Leu Asn Lys Ala Phe Ser Ile Asn Lys Glu Thr 85 90 95

Gln Pro Gly Gln Ala Gly Leu Met Gln Thr Glu Arg Pro Gly Val Ser 100 105 110

Thr Pro Thr Glu Ser Gly Val Pro Ser Ala Glu Glu Val Phe Gly Ser 115 120 125

Ser Gln Pro Glu Arg Ile Ser Pro Glu Ser Gly Leu Ala Lys Ala Met 130 135 140

Leu Thr Ile Ala Ile Thr Ala Thr Pro Ser Leu Thr Val Asp Glu Lys 145 150 155 160

Glu	Glu	Leu	Leu	Thr 165	Ser	Thr	Asn	Phe	Gln 170	Pro	Ile	Val	Glu [°]	Glu 175	Ile
Thr	Glu	Thr	Thr 180	Lys	Gly	Phe	Leu	Lys 185	Tyr	Met	Asp	Asn	Gln 190	Ser	Phe
Ala	Thr	Glu 195	Ser	Gln	Glu	Gly	Val 200	Gly	Leu	Gly	His	Ser 205	Pro	Ser	Ser
Tyr	Val 210	Asn	Thr	Lys	Glu	Met 215	Leu	Thr	Thr	Asn	Pro 220	Lys	Thr	Glu	Lys
Phe 225	Glu	Ala	Asp	Thr	Asp 230	His	Arg	Thr	Thr	Ser 235	Phe	Pro	Gly	Ala	Glu 240
Ser	Thr	Ala	Gly	Ser 245	Glu	Pro	Gly	Ser	Leu 250	Thr	Pro	Asp	Lys	Glu 255	Lys
Pro	Ser	Gln	Met 260	Thr	Ala	Asp	Asn	Thr 265	Gln	Ala	Ala	Ala	Thr 270	Lys	Gln
Pro	Leu	Glu 275	Thr	Ser	Glu	Tyr	Thr 280	Leu	Ser	Val	Glu	Pro 285	Glu	Thr	Asp
Ser	Leu 290	Leu	Gly	Ala	Pro	Glu 295	Val	Thr	Val	Ser	Val 300	Ser	Thr	Ala	Val
Pro 305	Ala	Ala	Ser	Ala	Leu 310	Ser	Asp	Glu	Trp	Asp 315	Asp	Thr	Lys	Leu	Glu 320
Ser	Val	Ser	Arg	Ile 325	Arg	Thr	Pro	Lys	Leu 330	Gly	Asp	Asn	Glu	Glu 335	Thr
Gln	Val	Arg	Thr 340	Glu	Met	Ser	Gln	Thr 345	Ala	Gln	Val	Ser	His 350	Glu	Gly
Met	Glu	Gly 355	Gly	Gln	Pro	Trp	Thr 360	Glu	Ala	Ala	Gln	Val 365	Ala	Leu	Gly
Leu	Pro 370	Glu	Gly	Glu	Thr	His 375	Thr	Gly	Thr	Ala	Leu 380	Leu	Ile	Ala	His
Gly 385	Asn	Glu	Arg	Ser	Pro 390	Ala	Phe		Asp Page	395	Ser	Ser	Phe	Thr	Pro 400

Thr	Ser	Leu	Met	Glu 405	Asp	Met	Lys	Val	Ser 410	Ile	Val	Asn	Leu	Leu 415	Gln
Ser	Thr	Gly	Asp 420	Phe	Thr	Glu	Ser	Thr 425	Lys	Glu	Asn	Asp	Ala 430	Leu	Phe
Phe	Leu	Glu 435	Thr	Thr	Val	Ser	Val 440	Ser	Val	Tyr	Glu	Ser 445	Glu	Ala	Asp
Gln	Leu 450	Leu	Gly	Asn	Thr	Met 455	Lys	Asp	Ile	Ile	Thr 460	Gln	Glu	Met	Thr
Thr 465	Ala	Val	Gln	Glu	Pro 470	Asp	Ala	Thr	Leu	Ser 475	Met	Val	Thr	Gln	Glu 480
Gln	Val	Ala	Thr	Leu 485	Glu	Leu	Ile	Arg	Asp 490	Ser	Gly	Lys	Thr	Glu 495	Glu
Glu	Lys	Glu	Asp 500	Pro	Ser	Pro	Val	Ser 505	Asp	Val	Pro	Gly	Val 510	Thr	Gln
Leu	Ser	Arg 515	Arg	Trp	Glu	Pro	Leu 520	Ala	Thr	Thr	Ile	Ser 525	Thr	Thr	Val
Val	Pro 530	Leu	Ser	Phe	Glu	Val 535	Thr	Pro	Thr	Val	Glu 540	Glu	Gln	Met	Asp
Thr 545	Val	Thr	Gly	Pro	Asn 550	Glu	Glu	Phe	Thr	Pro 555	Val	Leu	Gly	Ser	Pro 560
Val	Thr	Pro	Pro	Gly 565	Ile	Met	Val	Gly	Glu 570	Pro	Ser	Ile	Ser	Pro 575	Ala
Leu	Pro	Ala	Leu 580	Glu	Ala	Ser	Ser	Glu 585	Arg	Arg	Thr	Val	Val 590	Pro	Ser
Ile	Thr	Arg 595	Val	Asn	Thr	Ala	Ala 600	Ser	Tyr	Gly	Leu	Asp 605	Gln	Leu	Glu
Ser	Glu 610	Glu	Gly	Gln	Glu	Asp 615	Glu	Asp	Glu	Glu	Asp 620	Glu	Glu	Asp	Glu
Asp 625	Glu	Glu	Glu	Glu	Asp 630	Glu	Glu		Asp Page	635	Glu	Asp	Lys	Asp	Ala 640

Asp Ser Leu Asp Glu Gly Leu Asp Gly Asp Thr Glu Leu Pro Gly Phe 645 650 Thr Leu Pro Gly Ile Thr Ser Gln Glu Pro Gly Leu Glu Glu Gly Asn Met Asp Leu Leu Glu Gly Ala Thr Tyr Gln Val Pro Asp Ala Leu Glu 675 680 Trp Glu Gln Gln Asn Gln Gly Leu Val Arg Ser Trp Met Glu Lys Leu 695 690 Lys Asp Lys Ala Gly Tyr Met Ser Gly Met Leu Val Pro Val Gly Val 710 715 705 Gly Ile Ala Gly Ala Leu Phe Ile Leu Gly Ala Leu Tyr Ser Ile Lys 725 730 Val Met Asn Arg Arg Arg Asn Gly Phe Lys Arg His Lys Arg Lys 740 745 Gln Arq Glu Phe Asn Ser Met Gln Asp Arg Val Met Leu Leu Ala Asp 755 760 Ser Ser Glu Asp Glu Phe 770 <210> 127 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 127 18 ccctccctgg tatcacat <210> 128 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 128 18 caccagcatc ccagacat

Page 100

<210> 129 3627 <211> DNA

<213> Homo sapiens

<400> 129

gggactgggg ggttcccaga tccttgaagc tcactccgcc tcctcactct cactgcattt 60 cccaccttcc tgtgggcctt gcggcatctt catcactgag gcacctggtt acgcttcacc 120 tettgtttee tgeecteact geatteecte acetetacet ttttateett ceacectagg 180 240 cttctctcct ccctcttccc tcactcctga ctcttcctct tcccagcgga cggctggagg 300 acception testing to the testing testing the testing testing the testing testing the testing testing testing testing the testing testi tecetecetg estettett tetgeteest cattetetee esaceactet ettetegtgg 360 420 ecceettgee egegegeet ettecettee cettgeetea eteteteage tttetteeea 480 cagttgagct cgggcagctc tttctgggga tagctatggg gctttggggg aagaaaggga 540 cagtggctcc ccatgaccag agtccaagac gaagacctaa aaaagggctt atcaagaaaa 600 aaatggtgaa gagggaaaaa cagaagcgca atatggagga actgaagaag gaagtggtca 660 tggatgatca caaattaacc ttggaagagc tgagcaccaa gtactccgtg gacctgacaa agggccatag ccaccaaagg gcaaaggaaa tcctgactcg aggtggaccc aatactgtta 720 780 ccccacccc caccactcca gaatgggtca aattetgtaa gcaactgttc ggaggcttct ccctcctact atggactggg gccattctct gctttgtggc ctacagcatc cagatatatt 840 tcaatgagga gcctaccaaa gacaacctct acctgagcat cgtactgtcc gtcgtggtca 900 960 tegteactgg etgettetee tattateagg aggeeaagag etceaagate atggagtett 1020 ttaagaacat ggtgcctcag caagctctgg taattcgagg aggagagaag atgcaaatta 1080 atgtacaaga ggtggtgttg ggagacctgg tggaaatcaa gggtggagac cgagtccctg 1140 ctgacctccg gcttatctct gcacaaggat gtaaggtgga caactcatcc ttgactgggg 1200 agtcagaacc ccagagccgc tcccctgact tcacccatga gaaccctctg gagacccgaa 1260 acatetgett ettttecace aactgtgtgg aaggaacege eeggggtatt gtgattgeta cgggagactc cacagtgatg ggcagaattg cctccctgac gtcaggcctg gcggttggcc 1320 agacacctat cgctgctgag atcgaacact tcatccatct gatcactgtg gtggccgtct 1380 1440 teettggtgt cactttttt gegeteteae ttetettggg etatggttgg etggaggeta tcatttttct cattggcatc attgtggcca atgtgcctga ggggctgttg gccacagtca 1500 ctgtgtgcct gaccctcaca gccaagcgca tggcgcggaa gaactgcctg gtgaagaacc 1560

v

tggaggcggt ggagacgctg	ggctccacgt	ccaccatctg	ctcagacaag	acgggcaccc	1620
tcacccagaa ccgcatgacc	gtcgcccaca	tgtggtttga	tatgaccgtg	tatgaggccg	1680
acaccactga agaacagact	ggaaaaacat	ttaccaagag	ctctgatacc	tggtttatgc	1740
tggcccgaat cgctggcctc	tgcaaccggg	ctgactttaa	ggctaatcag	gagatcctgc	1800
ccattgctaa gagggccaca	acaggtgatg	cttccgagtc	agccctcctc	aagttcatcg	1860
agcagtctta cagctctgtg	gcggagatga	gagagaaaaa	ccccaaggtg	gcagagattc	1920
cctttaattc taccaacaag	taccagatgt	ccatccacct	tcgggaggac	agctcccaga	1980
cccacgtact gatgatgaag	ggtgctccgg	agaggatctt	ggagttttgt	tctacctttc	2040
ttctgaatgg gcaggagtac	tcaatgaacg	atgaaatgaa	ggaagccttc	caaaatgcct	2100
acttagaact gggaggtctg	ggggaacgtg	tgctaggctt	ctgcttcttg	aatctgccta	2160
gcagcttctc caagggattc	ccatttaata	cagatgaaat	aaatttcccc	atggacaacc	2220
tttgttttgt gggcctcata	tccatgattg	accctccccg	agctgcagtg	cctgatgctg	2280
tgagcaagtg tcgcagtgca	ggaattaagg	tgatcatggt	aacaggagat	catcccatta	2340
cagctaaggc cattgccaag	ggtgtgggca	tcatctcaga	aggcactgag	acggcagagg	2400
aagtcgctgc ccggcttaag	atccctatca	gcaaggtcga	tgccagtgct	gccaaagcca	2460
ttgtggtgca tggtgcagaa	ctgaaggaca	tacagtccaa	gcagcttgat	cagatcctcc	2520
agaaccaccc tgagatcgtg	tttgctcgga	cctcccctca	gcagaagctc	atcattgtcg	2580
agggatgtca gaggctggga	gccgttgtgg	ccgtgacagg	tgacggggtg	aacgactccc	2640
ctgcgctgaa gaaggctgac	attggcattg	ccatgggcat	ctctggctct	gacgtctcta	2700
agcaggcagc cgacatgatc	ctgctggatg	acaactttgc	ctccatcgtc	acgggggtgg	2760
aggagggccg cctgatcttt	gacaacctga	agaaatccat	catgtacacc	ctgaccagca	2820
acateceega gateaegeee	ttcctgatgt	tcatcatcct	cggtataccc	ctgcctctgg	2880
gaaccataac catcctctgc	attgatctcg	gcactgacat	ggtccctgcc	atctccttgg	2940
cttatgagtc agctgaaagc	gacatcatga	agaggcttcc	aaggaaccca	aagacggata	3000
atctggtgaa ccaccgtctc	attggcatgg	cctatggaca	gattgggatg	atccaggctc	3060
tggctggatt ctttacctac	tttgtaatcc	tggctgagaa	tggttttagg	cctgttgatc	3120
tgctgggcat ccgcctccac	tgggaagata	aatacttgaa	tgacctggag	gacagctacg	3180
gacagcagtg gacctatgag	caacgaaaag	ttgtggagtt	cacatgccaa	acggcctttt	3240
ttgtcaccat cgtggttgtg	cagtgggcgg	atctcatcat	ctccaagact	cgccgcaact	3300
cacttttcca gcagggcatg	agaaacaaag	tcttaatatt	tgggatcctg	gaggagacac	3360

tcttggctgc	atttctgtcc	tacactccag	gcatggacgt	ggccctgcga	atgtacccac	3420
tcaagataac	ctggtggctc	tgtgccattc	cctacagtat	tctcatcttc	gtctatgatg	3480
aaatcagaaa	actcctcatc	cgtcagcacc	cggatggctg	ggtggaaagg	gagacgtact	3540
actaaactca	gcagatgaag	agcttcatgt	gacacagggg	tgttgtgaga	gctgggatgg	3600
ggccagagat	tataagtttg	acacaac				3627

<210> 130

<211> 1029

<212> PRT

<213> Homo sapiens

<400> 130

Met Gly Leu Trp Gly Lys Lys Gly Thr Val Ala Pro His Asp Gln Ser 1 10 15

Pro Arg Arg Pro Lys Lys Gly Leu Ile Lys Lys Lys Met Val Lys 20 25 30

Arg Glu Lys Gln Lys Arg Asn Met Glu Glu Leu Lys Lys Glu Val Val 35 40 45

Met Asp Asp His Lys Leu Thr Leu Glu Glu Leu Ser Thr Lys Tyr Ser 50 55 60

Val Asp Leu Thr Lys Gly His Ser His Gln Arg Ala Lys Glu Ile Leu 65 70 75 80

Thr Arg Gly Gly Pro Asn Thr Val Thr Pro Pro Pro Thr Thr Pro Glu
85 90 95

Trp Val Lys Phe Cys Lys Gln Leu Phe Gly Gly Phe Ser Leu Leu Leu 100 105 110

Trp Thr Gly Ala Ile Leu Cys Phe Val Ala Tyr Ser Ile Gln Ile Tyr 115 120 125

Phe Asn Glu Glu Pro Thr Lys Asp Asn Leu Tyr Leu Ser Ile Val Leu 130 135 140

Ser Val Val Val Ile Val Thr Gly Cys Phe Ser Tyr Tyr Gln Glu Ala 145 150 155 160

Lys Ser Ser Lys Ile Met Glu Ser Phe Lys Asn Met Val Pro Gln Gln 165 170 175

Ala	Leu	Val	Ile 180	Arg	Gly	Gly	Glu	Lys 185	Met	Gln	Ile	Asn	Val 190	Gln	Glu
Val	Val	Leu 195	Gly	Asp	Leu	Val	Glu 200	Ile	Lys	Gly	Gly	Asp 205	Arg	Val	Pro
Ala	Asp 210	Leu	Arg	Leu	Ile	Ser 215	Ala	Gln	Gly	Cys	Lys 220	Val	Asp	Asn	Ser
Ser 225	Leu	Thr	Gly	Glu	Ser 230	Glu	Pro	Gln	Ser	Arg 235	Ser	Pro	Asp	Phe	Thr 240
His	Glu	Asn	Pro	Leu 245	Glu	Thr	Arg	Asn	Ile 250	Cys	Phe	Phe	Ser	Thr 255	Asn
Cys	Val	Glu	Gly 260	Thr	Ala	Arg	Gly	Ile 265	Val	Ile	Ala	Thr	Gly 270	Asp	Ser
Thr	Val	Met 275	Gly	Arg	Ile	Ala	Ser 280	Leu	Thr	Ser	Gly	Leu 285	Ala	Val	Gly
Gln	Thr 290	Pro	Ile	Ala	Ala	Glu 295	Ile	Glu	His	Phe	Ile 300	His	Leu	Ile	Thr
Val 305	Val	Ala	Val	Phe	Leu 310	Gly	Val	Thr	Phe	Phe 315	Ala	Leu	Ser	Leu	Leu 320
Leu	Gly	Tyr	Gly	Trp 325	Leu	Glu	Ala	Ile	Ile 330	Phe	Leu	Ile	Gly	Ile 335	Ile
Val	Ala	Asn	Val 340	Pro	Glu	Gly	Leu			Thr		Thr	Val 350	Cys	Leu
Thr	Leu	Thr 355	Ala	Lys	Arg	Met	Ala 360	Arg	Lys	Asn	Cys	Leu 365	Val	Lys	Asn
Leu	Glu 370	Ala	Val	Glu	Thr	Leu 375	Gly	Ser	Thr	Ser	Thr 380	Ile	Cys	Ser	Asp
Lys 385	Thr	Gly	Thr	Leu	Thr 390	Gln	Asn	Arg	Met	Thr 395	Val	Ala	His	Met	Trp 400
Phe	Asp	Met	Thr	Val 405	Tyr	Glu	Ala		Thr 410 Page		Glu	Glu	Gln	Thr 415	Gly

Lys	Thr	Phe	Thr 420	Lys	Ser	Ser	Asp	Thr 425	Trp	Phe	Met	Leu	Ala 430	Arg	Ile
Ala	Gly	Leu 435	Cys	Asn	Arg	Ala	Asp 440	Phe	Lys	Ala	Asn	Gln 445	Glu	Ile	Leu
Pro	Ile 450	Ala	Lys	Arg	Ala	Thr 455	Thr	Gly	Asp	Ala	Ser 460	Glu	Ser	Ala	Leu
Leu 465	Lys	Phe	Ile	Glu	Gln 470	Ser	Tyr	Ser	Ser	Val 475	Ala	Glu	Met	Arg	Glu 480
Lys	Asn	Pro	Lys	Val 485	Ala	Glu	Ile	Pro	Phe 490	Asn	Ser	Thr	Asn	Lys 495	Tyr
Gln	Met	Ser	Ile 500	His	Leu	Arg	Glu	Asp 505	Ser	Ser	Gln	Thr	His 510	Val	Leu
Met	Met	Lys 515	Gly	Ala	Pro	Glu	Arg 520	Ile	Leu	Glu	Phe	Cys 525	Ser	Thr	Phe
Leu	Leu 530	Asn	Ğly	Gln	Glu	Tyr 535	Ser	Met	Asn	Asp	Glu 540	Met	Lys	Glu	Ala
Phe 545	Gln	Asn	Ala	Tyr	Leu 550	Glu	Leu	Gly	Gly	Leu 555	Gly	Glu	Arg	Val	Leu 560
Gly	Phe	Cys	Phe	Leu 565	Asn	Leu	Pro	Ser	Ser 570	Phe	Ser	Lys	Gly	Phe 575	Pro
Phe	Asn	Thr	_		Ile			Pro 585	Met	Asp	Asn	Leu	Cys 590	Phe	Val
Gly	Leu	Ile 595	Ser	Met	Ile	Asp	Pro 600	Pro	Arg	Ala	Ala	Val 605	Pro	Asp	Ala
Val	Ser 610	Lys	Cys	Arg	Ser	Ala 615	Gly	Ile	Lys	Val	Ile 620	Met	Val	Thr	Gly
Asp 625	His	Pro	Ile	Thr	Ala 630	Lys	Ala	Ile	Ala	Lys 635	Gly	Val	Gly	Ile	Ile 640
Ser	Glu	Gly	Thr	Glu 645	Thr	Ala	Glu		Val 650 Page		Ala	Arg	Leu	Lys 655	Ile

Pro	Ile	Ser	Lys 660	Val	Asp	Ala	Ser	Ala 665	Ala	Lys	Ala	Ile	Val 670	Val	His
Gly	Ala	Glu 675	Leu	Lys	Asp	Ile	Gln 680	Ser	Lys	Gln	Leu	Asp 685	Gln	Ile	Leu
Gln	Asn 690	His	Pro	Glu	Ile	Val 695	Phe	Ala	Arg	Thr	Ser 700	Pro	Gln	Gln	Lys
Leu 705	Ile	Ile	Val	Glu	Gly 710	Cys	Gln	Arg	Leu	Gly 715	Ala	Val	Val	Ala	Val 720
Thr	Gly	Asp	Gly	Val 725	Asn	Asp	Ser	Pro	Ala 730	Leu	Lys	Lys	Ala	Asp 735	Ile
Gly	Ile	Ala	Met 740	Gly	Ile	Ser	Gly	Ser 745	Asp	Val	Ser	Lys	Gln 750	Ala	Ala
Asp	Met	Ile 755	Leu	Leu	Asp	Asp	Asn 760	Phe	Ala	Ser	Ile	Val 765	Thr	Gly	Val
Glu	Glu 770	Gly	Arg	Leu	Ile	Phe 775	Asp	Asn	Leu	Lys	Lys 780	Ser	Ile	Met	Tyr
Thr 785	Leu	Thr	Ser	Asn	Ile 790	Pro	Glu	Ile	Thr	Pro 795	Phe	Leu	Met	Phe	Ile 800
Ile	Leu	Gly	Ile	Pro 805	Leu	Pro	Leu	Gly	Thr 810	Ile	Thr	Ile	Leu	Cys 815	Ile
Asp	Leu	Gly	Thr 820	Asp	Met	Val	Pro	Ala 825	Ile	Ser	Leu	Ala	Tyr 830	Glu	Ser
Ala	Glu	Ser 835	Asp	Ile	Met	Lys	Arg 840	Leu	Pro	Arg	Asn	Pro 845	Lys	Thr	Asp
Asn	Leu 850	Val	Asn	His	Arg	Leu 855	Ile	Gly	Met	Ala	Tyr 860	Gly	Gln	Ile	Gly
Met 865	Ile	Gln	Ala	Leu	Ala 870	Gly	Phe	Phe	Thr	Tyr 875	Phe	Val	Ile	Leu	Ala 880
Glu	Asn	Gly	Phe	Arg 885	Pro	Val	Asp		890		Ile	Arg	Leu	His 895	Trp
								I	Page	106					

Glu Asp Lys Tyr Leu Asn Asp Leu Glu Asp Ser Tyr Gly Gln Gln Trp 905 900 Thr Tyr Glu Gln Arg Lys Val Val Glu Phe Thr Cys Gln Thr Ala Phe 915 920 Phe Val Thr Ile Val Val Val Gln Trp Ala Asp Leu Ile Ile Ser Lys 930 935 Thr Arg Arg Asn Ser Leu Phe Gln Gln Gly Met Arg Asn Lys Val Leu 950 955 945 Ile Phe Gly Ile Leu Glu Glu Thr Leu Leu Ala Ala Phe Leu Ser Tyr 965 970 Thr Pro Gly Met Asp Val Ala Leu Arg Met Tyr Pro Leu Lys Ile Thr 990 980 985 Trp Trp Leu Cys Ala Ile Pro Tyr Ser Ile Leu Ile Phe Val Tyr Asp 995 1000 Glu Ile Arg Lys Leu Leu Ile Arg Gln His Pro Asp Gly Trp Val 1010 1015 1020 Glu Arg Glu Thr Tyr Tyr 1025 <210> 131 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 131 21 tgtaatcctg gctgagaatg g <210> 132 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 132

aagtgagttg cggcgagt

<210> 133 <211> 279 <212> DNA <213> Homo sapiens
<400> 133 atgtatgtaa aaattgcaaa acatctcaat gatgtttatg cccccagaa ggtactgtgt 60
cacgggatct catatattct ggctgtcatt gtcataataa gccactcttg gtcatatgga 120
aaagcattca gctgctccct gcctttgctc acagcgtgtg gtactctctt agaagctatt 180
cctgtcctat ttaggcagtt attcctgctt cttgtgttgg acctgaagtc aacagggcca 240
gcaatagaga agaaagatga tgtgaaggag agcaactga 279
<210> 134 <211> 92 <212> PRT <213> Homo sapiens
<400> 134
Met Tyr Val Lys Ile Ala Lys His Leu Asn Asp Val Tyr Ala Pro Gln 1 5 10 15
Lys Val Leu Cys His Gly Ile Ser Tyr Ile Leu Ala Val Ile Val Ile 20 25 30
Ile Ser His Ser Trp Ser Tyr Gly Lys Ala Phe Ser Cys Ser Leu Pro 35 40 45
Leu Leu Thr Ala Cys Gly Thr Leu Leu Glu Ala Ile Pro Val Leu Phe 50 55 60
Arg Gln Leu Phe Leu Leu Leu Val Leu Asp Leu Lys Ser Thr Gly Pro 75 80
Ala Ile Glu Lys Lys Asp Asp Val Lys Glu Ser Asn 85 90
<210> 135 <211> 20 <212> DNA <213> Artificial Sequence
<223> Oligonucleotide

<400> 135

tgctccctgc ctttgctcac

```
<210> 136
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 136
                                                                      24
ggtacttggt ctcgaacgat gatc
<210> 137
<211> 1569
<212> DNA
<213> Homo sapiens
<400> 137
                                                                      60
atgcctgtag ggggtggccc tgagagtgtg ggcaggtgca atggctgtca atgccacata
                                                                     120
aagggcaagg ggatctacat cctaaacagt gaaagaccag tgcccggaga ctacatctac
                                                                     180
atcaggaaga agaagcagca aaattetgac ecacageeca agaggggteg gggcagcaga
acctcagcca cagccaatca cagcggggtc cttcggggag gggcgtggcc tgacaacttc
                                                                     240
ggcgacgcgg ctggaccaat ccggacggag gagagcgaag ctcctctgca ctgggcccag
                                                                     300
gtgcgctcct cagcgtctcc gggtggcggg gcgcgcggga tggaggagtc ttgggaggct
                                                                     360
                                                                     420
gcgcccggag gccaagccgg ggcagagctc ccaatggagc ccgtgggaag cctggtcccc
                                                                     480
acgctggagc agccgcaggt gcccgcgaag gtgcgacaac ctgaaggtcc cgaaagcagc
ccaagtccgg ccggggccgt ggagaaggcg gcgggcgcag gcctggagcc ctcgagcaag
                                                                     540
                                                                     600
aaaaagccgc cttcgcctcg ccccgggtcc ccgcgcgtgc cgccgctcag cctgggctac
ggggtctgcc ccgagccgcc gtcaccgggc cctgccttgg tcaagctgcc ccggaatggc
                                                                     660
gaggegeeeg gggetgagee tgegeeeage geetgggege ceatggaget geaggtagat
                                                                     720
                                                                     780
gtgcgcgtga agcccgtggg cgcggccggt ggcagcagca cgccatcgcc caggccctcc
acgcgcttcc tcaaggtgcc ggtgcccgag tcccctgcct tctcccgcca cgcggacccg
                                                                     840
                                                                     900
gegeaceage teetgetgeg egeaceatee cagggeggea egtggggeeg eegetegeeg
                                                                     960
ctggctgcag cccggacgga gagcggctgc gacgcagagg gccgggccag ccccgcggaa
                                                                    1020
ggaagegeeg geteeeeggg etceeecacg tgetgeeget geaaggaget ggggetggag
                                                                    1080
aaggaggatg cggcgctgtt gccccgcgcg gggttggacg gcgacgagaa gctgccccgg
gccgtaacgc ttacggggct acccatgtac gtgaagtccc tgtactgggc cctggcgttc
                                                                    1140
                                                                    1200
```

atggctgtgc tcctggcagt ctctggggtt gtcattgtgg tcctggcctc aagagcagga

gccagatgcc agcagtgccc	cccaggctgg	gtgttgtccg	aggagcactg	ttactacttc	1260
tctgcagaag cgcaggcctg	ggaagccagc	caggctttct	gctcagccta	ccacgctacc	1320
ctcccctgc taagccacac	ccaggacttc	ctgggcagat	acccagtctc	caggcactcc	1380
tgggtggggg cctggcgagg	ccccagggc	tggcactgga	tcgacgaggc	cccactcccg	1440
ccccagctac tccctgagga	cggcgaggac	aatctggata	tcaactgtgg	ggccctggag	1500
gaaggcacgc tggtggctgc a	aaactgcagc	actccaagac	cctgggtctg	tgccaagggg	1560
acccagtga					1569
<210> 138 <211> 522 <212> PRT <213> Homo sapiens					
<400> 138					

Met Pro Val Gly Gly Pro Glu Ser Val Gly Arg Cys Asn Gly Cys

Gln Cys His Ile Lys Gly Lys Gly Ile Tyr Ile Leu Asn Ser Glu Arg 20 25 30

Pro Val Pro Gly Asp Tyr Ile Tyr Ile Arg Lys Lys Gln Gln Asn 35 40 45

Ser Asp Pro Gln Pro Lys Arg Gly Arg Gly Ser Arg Thr Ser Ala Thr 50 55 60

Ala Asn His Ser Gly Val Leu Arg Gly Gly Ala Trp Pro Asp Asn Phe 65 70 75 80

Gly Asp Ala Ala Gly Pro Ile Arg Thr Glu Glu Ser Glu Ala Pro Leu 85 90 95

His Trp Ala Gln Val Arg Ser Ser Ala Ser Pro Gly Gly Ala Arg
100 105 110

Gly Met Glu Glu Ser Trp Glu Ala Ala Pro Gly Gly Gln Ala Gly Ala 115 120 125

Glu Leu Pro Met Glu Pro Val Gly Ser Leu Val Pro Thr Leu Glu Gln 130 135 140

Pro Gln Val Pro Ala Lys Val Arg Gln Pro Glu Gly Pro Glu Ser Ser 145 150 155 160

Pro	Ser	Pro	Ala	Gly 165	Ala	Val	Glu	Lys	Ala 170	Ala	Gly	Ala	Gly	Leu 175	Glu		
Pro	Ser	Ser	Lys 180	Lys	Lys	Pro	Pro	Ser 185	Pro	Arg	Pro	Gly	Ser 190	Pro	Arg		
Val	Pro	Pro 195	Leu	Ser	Leu	Gly	Tyr 200	Gly	Val	Cys	Pro	Glu 205	Pro	Pro	Ser		
Pro	Gly 210	Pro	Ala	Leu	Val	Lys 215	Leu	Pro	Arg	Asn	Gly 220	Glu	Ala	Pro	Gly		
Ala 225	Glu	Pro	Ala	Pro	Ser 230	Ala	Trp	Ala	Pro	Met 235	Glu	Leu	Gln	Val	Asp 240		
Val	Arg	Val	Lys	Pro 245	Val	Gly	Ala	Ala	Gly 250	Gly	Ser	Ser	Thr	Pro 255	Ser		
Pro	Arg	Pro	Ser 260	Thr	Arg	Phe	Leu	Lys 265	Val	Pro	Val	Pro	Glu 270	Ser	Pro		
Ala	Phe	Ser 275	Arg	His	Ala	Asp	Pro 280	Ala	His	Gln	Leu	Leu 285	Leu	Arg	Ala		
Pro	Ser 290	Gln	Gly	Gly	Thr	Trp 295	Gly	Arg	Arg	Ser	Pro 300	Leu	Ala	Ala	Ala		
Arg 305	Thr	Glu	Ser	Gly	Cys 310	Asp	Ala	Glu	Gly	Arg 315	Ala	Ser	Pro	Ala	Glu 320		
Gly	Ser	Ala	_			_	Ser		Thr 330					Lys 335	Glu		
Leu	Gly	Leu	Glu 340	Lys	Glu	Asp	Ala	Ala 345	Leu	Leu	Pro	Arg	Ala 350	Gly	Leu		
Asp	Gly	Asp 355	Glu	Lys	Leu	Pro	Arg 360	Ala	Val	Thr	Leu	Thr 365	Gly	Leu	Pro		
Met	Tyr 370	Val	Lys	Ser	Leu	Tyr 375	Trp	Ala	Leu	Ala	Phe 380	Met	Ala	Val	Leu		
Leu 385	Ala	Val	Ser	Gly	Val 390	Val	Ile		Val Page	395	Ala	Ser	Arg	Ala	Gly 400		

*

Ala Ar	g Cys	Gln	Gln 405	Cys	Pro	Pro	Gly	Trp 410	Val	Leu	Ser	Glu	Glu 415	His	
Cys Ty	r Tyr	Phe 420	Ser	Ala	Glu	Ala	Gln 425	Ala	Trp	Glu	Ala	Ser 430	Gln	Ala	
Phe Cy	s Ser 435		Tyr	His	Ala	Thr 440	Leu	Pro	Leu	Leu	Ser 445	His	Thr	Gln	
Asp Ph 45		Gly	Arg	Tyr	Pro 455	Val	Ser	Arg	His	Ser 460	Trp	Val	Gly	Ala	
Trp Ar 465	g Gly	Pro	Gln	Gly 470	Trp	His	Trp	Ile	Asp 475	Glu	Ala	Pro	Leu	Pro 480	
Pro Gl	n Leu	Leu	Pro 485	Glu	Asp	Gly	Glu	Asp 490	Asn	Leu	Asp	Ile	Asn 495	Cys	
Gly Al	a Leu	Glu 500	Glu	Gly	Thr	Leu	Val 505	Ala	Ala	Asn	Cys	Ser 510	Thr	Pro	
Arg Pr	o Trp 515		Cys	Ala	Lys	Gly 520	Thr	Gln							
<210>	139 18														
<212> <213>	DNA	fici	al Se	equer	nce										
<220> <223>	Olig	onuc:	leot:	ide											
<400> gagaag	139 gagg	atgc	ggcg												18
<210>	140														
<211>	21														
<212> <213>		fici	al S	equei	nce										
<220> <223>	Olig	onuc	leot	ide											
<400> ggacca	140 caat	gaca	accc	ca g											21
<210> <211>															

<213> Homo sapiens

<400> 60 atggtttgca cgttcgattc tgagcttctg aattgtcaaa ggaaagatga atataatcag ttccagactt atcgggccca taaaataaaa gccaaaagaa gcatagccac tcctgaaaac 120 180 ctgaagaaat tattgccacg tgttcccaaa aacagtgccc tgagtgatga aatgacaaag 240 cttcacaaag gagctaagcc atgcaaatca aatacatttg gatgttttcc tattcatcag gctgtacttt caggttccaa agaatgcatg gaaataatat tgaagtttgg tgaagagcac 300 360 gggtacagca gacagtgtca catcaacttt gtggataacg ggaaagccag ccctctccat 420 ctggctgtgc aaaatggtga cttggaaatg atgaaaatgt gcctggacaa tggtgtacaa 480 atagacctag tggagatgca acagatcaaa gagctggtaa tggatgaaga caacgatggg 540 tgtactcctc tacattatgc atgtagacag gggggccctg gttctgtaaa taacctactt 600 ggctttaatg tgtccattca ttccaaaagc aaagataaga aatcacctct gcattttgca 660 gccagttatg ggcgtatcaa tacctgtcag aggctcctac aagacataag tgatacgagg cttctgaatg aaggggacct tcatggaatg actcctctcc atctggcagc aaagaatgga 720 catgataaag tagttcagct tcttctgaaa aaaggtgcat tgtttctcag atgggatgaa 780 tgtcttaagg tttttagtca ttattctcca aacaataaat gtccaatttt ggaaatgatc 840 900 gaatacctcc ctgaatgcat gaagaaagtt ctacccttct tttctaatgt tcacgtaaga 960 cctgctccaa accagaatca aataaaccat ggagaacaca ggttggctta cggatttata 1020 gcccatatga taaatctagg attttactgt cttggtctca taccaatgac ctttcttgtt 1080 gtcagaataa aaccaggaat ggctttcaac tctgctggaa tcatcaataa aactagtgat cattcagaaa tactagataa catgaattca agtctaataa caatttgtat gattttagtt 1140 1200 ttttgctcaa gtatattagg gtatgtcaaa gaagtggttc aaattttcca acagaaaagg 1260 aattacttta tggatattag cagtagtact gaatggatta tcaacacgat gggccccatt 1320 ttagtgctgc ccttgttcac tgaaatagca gcccatctgc aatttgagaa ttgtggaatt 1380 ttcattgtta tattggaggt aatttttaaa actttgttga ggtctgcagt tgtatttttc 1440 ttccttcttt tggcttttgg actcagcttt tacgtcctcc tgaatttaca gtccttccta gaaccatttc tgaagaataa attggcacat ccagttctgt cctttgcaca gcttatttcc 1500 1560 ttcacagtat ttgccccaat tgtcctcatg aatttactta ttggtttggc agttggtgac 1620 attgctgagg tccagaaaca tgcatcattg aagaggatag ctatgcagaa gctgccatgc tgttgcatac gcaaagtgga tcggaaatcc accgccgtat gtcccaacaa acccagatgt 1680

gatgggacat	tatttcaagt	cctactcgct	ctaggccccc	tacccctaga	agaaaataga	1740
aacataaaaa	gttttcttcc	tactgagatc	actgttaaga	ggactcacga	acaccttcct	1800
tctgcaggtt	ttggtcatca	tgggaaacat	accttgtcct	tgcttttggt	agaagagtgg	1860
cttcctctga	atgtagtaca	ctcctcttgc	tctgccttca	gagtggttgg	ccagatcttt	1920
cccattagac	attttcagtg	gattcatgtg	aatgagccgc	acactggcaa	tttaaaagag	1980
aaattggctg	ctccatacat	cactcaccag	atcaagccat	tcttgcgagc	agctggtttt	2040
tgcacagtga	aggtggtcca	gagagatgac	atctctgtgt	ggagtgtgga	tttcaggtgg	2100
ctcaatgcat	gggaagcagc	gattcgaaag	cagtctctca	gacaatctga	gatggaggaa	2160
ctgagctgct	cgctgctgct	gcgtgtcact	gatgtgcaca	caagaagctt	gtattag	2217

<210> 142

<211> 738

<212> PRT

<213> Homo sapiens

<400> 142

Met Val Cys Thr Phe Asp Ser Glu Leu Leu Asn Cys Gln Arg Lys Asp 1 5 10 15

Glu Tyr Asn Gln Phe Gln Thr Tyr Arg Ala His Lys Ile Lys Ala Lys 20 25 30

Arg Ser Ile Ala Thr Pro Glu Asn Leu Lys Lys Leu Leu Pro Arg Val 35 40 45

Pro Lys Asn Ser Ala Leu Ser Asp Glu Met Thr Lys Leu His Lys Gly 50 60

Ala Lys Pro Cys Lys Ser Asn Thr Phe Gly Cys Phe Pro Ile His Gln 65 70 75 80

Ala Val Leu Ser Gly Ser Lys Glu Cys Met Glu Ile Ile Leu Lys Phe 85 90 95

Gly Glu Glu His Gly Tyr Ser Arg Gln Cys His Ile Asn Phe Val Asp 100 105 110

Asn Gly Lys Ala Ser Pro Leu His Leu Ala Val Gln Asn Gly Asp Leu 115 120 125

Glu Met Met Lys Met Cys Leu Asp Asn Gly Val Gln Ile Asp Leu Val 130 135 140

	160
Cys Thr Pro Leu His Tyr Ala Cys Arg Gln Gly Gly Pro 0 165 170	Gly Ser Val 175
Asn Asn Leu Leu Gly Phe Asn Val Ser Ile His Ser Lys S	Ser Lys Asp 190
Lys Lys Ser Pro Leu His Phe Ala Ala Ser Tyr Gly Arg 195 200 205	Ile Asn Thr
Cys Gln Arg Leu Leu Gln Asp Ile Ser Asp Thr Arg Leu 1 210 215 220	Leu Asn Glu
Gly Asp Leu His Gly Met Thr Pro Leu His Leu Ala Ala 1 225 230 235	Lys Asn Gly 240
His Asp Lys Val Val Gln Leu Leu Leu Lys Lys Gly Ala 1 245 250	Leu Phe Leu 255
Arg Trp Asp Glu Cys Leu Lys Val Phe Ser His Tyr Ser 1	Pro Asn Asn 270
Lys Cys Pro Ile Leu Glu Met Ile Glu Tyr Leu Pro Glu C 275 280 285	Cys Met Lys
Lys Val Leu Pro Phe Phe Ser Asn Val His Val Arg Pro 2 290 295 300	Ala Pro Asn
Gln Asn Gln Ile Asn His Gly Glu His Arg Leu Ala Tyr (305 310 315	Gly Phe Ile 320
Ala His Met Ile Asn Leu Gly Phe Tyr Cys Leu Gly Leu 325 330	Ile Pro Met 335
Thr Phe Leu Val Val Arg Ile Lys Pro Gly Met Ala Phe 340 345	Asn Ser Ala 350
	Asp Asn Met
Gly Ile Ile Asn Lys Thr Ser Asp His Ser Glu Ile Leu 3 355 360 365	

Ile 385	Leu	Gly	Tyr	Val	Lys 390	Glu	Val	Val	Gln	Ile 395	Phe	Gln	Gln	Lys	Arg 400
Asn	Tyr	Phe	Met	Asp 405	Ile	Ser	Ser	Ser	Thr 410	Glu	Trp	Ile	Ile	Asn 415	Thr
Met	Gly	Pro	Ile 420	Leu	Val	Leu	Pro	Leu 425	Phe	Thr	Glu	Ile	Ala 430	Ala	His
Leu	Gln	Phe 435	Glu	Asn	Cys	Gly	Ile 440	Phe	Ile	Val	Ile	Leu 445	Glu	Val	Ile
Phe	Lys 450	Thr	Leu	Leu	Arg	Ser 455	Ala	Val	Val	Phe	Phe 460	Phe	Leu	Leu	Leu
Ala 465	Phe	Gly	Leu	Ser	Phe 470	Tyr	Val	Leu	Leu	Asn 475	Leu	Gln	Ser	Phe	Leu 480
Glu	Pro	Phe	Leu	Lys 485	Asn	Lys	Leu	Ala	His 490	Pro	Val	Leu	Ser	Phe 495	Ala
Gln	Leu	Ile	Ser 500	Phe	Thr	Val	Phe	Ala 505	Pro	Ile	Val	Leu	Met 510	Asn	Leu
Leu	Ile	Gly 515	Leu	Ala	Val	Gly	Asp 520	Ile	Ala	Glu	Val	Gln 525	Lys	His	Ala
Ser	Leu 530	Lys	Arg	Ile	Ala	Met 535	Gln	Lys	Leu	Pro	Cys 540	Суз	Cys	Ile	Arg
Lys 545	Val	Asp	Arg	Lys	Ser 550	Thr	Ala	Val	Cys	Pro 555	Asn	Lys	Pro	Arg	Cys 560
Asp	Gly	Thr	Leu	Phe 565	Gln	Val	Leu	Leu	Ala 570	Leu	Gly	Pro	Leu	Pro 575	Leu
Glu	Glu	Asn	Arg 580	Asn	Ile	Lys	Ser	Phe 585	Leu	Pro	Thr	Glu	Ile 590	Thr	Val
Lys	Arg	Thr 595	His	Glu	His	Leu	Pro 600	Ser	Ala	Gly	Phe	Gly 605	His	His	Gly
Lys	His 610	Thr	Leu	Ser	Leu	Leu 615	Leu		Glu Page		Trp 620	Leu	Pro	Leu	Asn

Val Val His Ser Ser Cys Ser Ala Phe Arg Val Val Gly Gln Ile Phe 625 630 635 640	
Pro Ile Arg His Phe Gln Trp Ile His Val Asn Glu Pro His Thr Gly 645 650 655	
Asn Leu Lys Glu Lys Leu Ala Ala Pro Tyr Ile Thr His Gln Ile Lys 660 665 670	
Pro Phe Leu Arg Ala Ala Gly Phe Cys Thr Val Lys Val Val Gln Arg 675 680 685	
Asp Asp Ile Ser Val Trp Ser Val Asp Phe Arg Trp Leu Asn Ala Trp 690 695 700	
Glu Ala Ala Ile Arg Lys Gln Ser Leu Arg Gln Ser Glu Met Glu Glu 705 710 715 720	
Leu Ser Cys Ser Leu Leu Leu Arg Val Thr Asp Val His Thr Arg Ser 725 730 735	
Leu Tyr	
<210> 143 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 143 ttccttactc tccgctttcc	20
<210> 144 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 144 aactttgtgg ataacgggaa	20
<210> 145 <211> 1155	

Page 117

<400> 145 atgcagtctc tcatctcgcc ggtgaccaag gcgatcctgg tggccctctt catcttcgcc atcctcctca tcctctacqt qatcctctqq qacqcaccqq qgaqaqcqqqq tqaqtqcqct cgtgcgggcg ctttgggggg ccacggttgg ggagccccaa cttcggggag gacgcggaat ccggacgcgg gactgaaccc gaggattcac ggagcccggg gctcccctat ggggcacggg aagcggcaga tgcgcgtgca gagaggtccg tcccacccac cccctgggcg ccttgggtcc

aaqqcqcata qqcqctcccq cctgtgqccq ccaccgqtgc aqcagaacgc gggctctcgg

qtqqqtccaa tqcqctatqq cacaccaggc gctatcgggt ccctagccct ctgctccggc 420 480

60

120

180

240

300

360

780

ggtggggacc ccgcactcaa gttccctata acctccatgg acaaacacgg aaaaatcatg tcttggaaga acagcatcgc cctacagata cagactaggc actttgcaca tgaaacaaga 540

600 qtcccaqaaa tttctagaag caaatctcgc attcgtgacc gccagaccta cgggatgtac

cactttggga attttggaga agaaagaata aaggcagaaa tgaggataca gaaagcatgt 660

cacttgaaga tcaagaagtc aagcttggat gccaatggta aagtggatga tggtgaggat 720

gatgatggtg aggatgatga tggtgaggat gatgatggtg atgatgatgg tgaggatgat 840 qatqqtqaqq atqatqatqq tgaggatgat gatggtgagg atgatggtga ggatgatgat

900 qqtqatqatg atggtgagga tgatgatggt gatgatgatg gtgatgatga tggtgaggat

gatgatggtg aggatgatga tggtgacagt gaggatgatg gtgaggatgg tgatgatgat 960

ggtgaggatg atgatggtga cagtgaggat gatggcgatg atggtgatga tgatggtgag 1020

gatgatgatc atggtgatga tgtgaggatg atgatgatga tggtgatgac agtgacgatg 1080

atgaagaatg ttgttggtaa ttacagactt cctgagctac caacttggac atctgtacaa 1140

cgatacaaat tttga 1155

146 <210>

<211> 384 PRT <212>

Homo sapiens <213>

146 <400>

Met Gln Ser Leu Ile Ser Pro Val Thr Lys Ala Ile Leu Val Ala Leu 5

Phe Ile Phe Ala Ile Leu Leu Ile Leu Tyr Val Ile Leu Trp Asp Ala 20

Pro	Gly	Arg 35	Ala	Gly	Glu	Cys	Ala 40	Arg	Ala	Gly	Ala	Leu 45	Gly	Gly	His
Gly	Trp 50	Gly	Ala	Pro	Thr	Ser 55	Gly	Arg	Thr	Arg	Asn 60	Pro	Asp	Ala	Gly
Leu 65	Asn	Pro	Arg	Ile	His 70	Gly	Ala	Arg	Gly	Ser 75	Pro	Met	Gly	His	Gly 80
Lys	Arg	Gln	Met	Arg 85	Val	Gln	Arg	Gly	Pro 90	Ser	His	Pro	Pro	Pro 95	Gly
Arg	Leu	Gly	Ser 100	Lys	Ala	His	Arg	Arg 105	Ser	Arg	Leu	Trp	Pro 110	Pro	Pro
Val	Gln	Gln 115	Asn	Ala	Gly	Ser	Arg 120	Val	Gly	Pro	Met	Arg 125	Tyr	Gly	Thr
Pro	Gly 130	Ala	Ile	Gly	Ser	Leu 135	Ala	Leu	Cys	Ser	Gly 140	Gly	Gly	Asp	Pro
Ala 145	Leu	Lys	Phe	Pro	Ile 150	Thr	Ser	Met	Asp	Lys 155	His	Gly	Lys	Ile	Met 160
Ser	Trp	Lys	Asn	Ser 165	Ile	Ala	Leu	Gln	Ile 170	Gln	Thr	Arg	His	Phe 175	Ala
His	Glu	Thr	Arg 180	Val	Pro	Glu	Ile	Ser 185	Arg	Ser	Lys	Ser	Arg 190	Ile	Arg
Asp	Arg	Gln 195	Thr	Tyr	Gly	Met	Tyr 200	His	Phe	Gly	Asn	Phe 205	Gly	Glu	Glu
Arg	Ile 210	Lys	Ala	Glu	Met	Arg 215	Ile	Gln	Lys	Ala	Cys 220	His	Leu	Lys	Ile
Lys 225	Lys	Ser	Ser	Leu	Asp 230	Ala	Asn	Gly	Lys	Val 235	Asp	Asp	Gly	Glu	Asp 240
Asp	Asp	Gly	Glu	Asp 245	Asp	Asp	Gly	Glu	Asp 250	Asp	Asp	Gly	Asp	Asp 255	Asp
Gly	Glu	Asp	Asp 260	Asp	Gly	Glu	Asp	Asp 265	Asp	Gly	Glu	Asp	Asp 270	Asp	Gly

Glu Asp Asp Gly Glu Asp Asp Asp Gly Asp Asp Gly Glu Asp Asp 275 280 285	
Asp Gly Asp Asp Gly Asp Asp Gly Glu Asp Asp Gly Glu 290 295 300	
Asp Asp Asp Gly Asp Ser Glu Asp Asp Gly Glu Asp Gly Asp Asp Asp 305 310 315 320	
Gly Glu Asp Asp Asp Gly Asp Ser Glu Asp Asp Gly Asp Asp 335	
Asp Asp Gly Glu Asp Asp Asp His Gly Asp Asp Val Arg Met Met Met 340 345 350	
Met Met Val Met Thr Val Thr Met Met Lys Asn Val Val Gly Asn Tyr 355 360 365	
Arg Leu Pro Glu Leu Pro Thr Trp Thr Ser Val Gln Arg Tyr Lys Phe 370 375 380	
<210> 147 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 147 tccatgctgc cagcttcata c	21
<210> 148 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 148 ctcacaagtg atgagattga g	21
<210> 149 <211> 4384 <212> DNA <213> Homo sapiens	
<400> 149 aaacagacgc ataactgtgc attgttcttt gggattttga gagccttcat ctcaatttca	60

120 actitaaagc agcitaatci tiaaggaaca tatcictgat cigggiaatt igiagaacit 180 aatttgaggg tcattacatg tgaggatagc aggagttgaa gatgccaagg acctgaaggg 240 ctactggagg gacaggtgaa gtgatttgaa gatgtagcat tttgaatctc tttctggccc 300 atcctctgct tcacaccaga atcattgtga cctgtagacc tgcaaaacaa aggaccaaag 360 gttagcatgc agaagtgaaa gtgtcaataa taaccaaacc actccatcaa gttaggtctg 420 gggaaaagca gcagcaaaaa tgagttctta cttctgggca caaaatgaaa gtaacagacc 480 tgatttactc tgcgggcagc cagctgacta ccttgttgaa gagaaacatt tcacaacgct 540 tgtatgcttc attgttgttt tgggagggct tttgaagatg tgtttaaaga attgtgaagt 600 cattgttttg acgattcttt ctctatcagg attcgtgata ggacacatgg cctacaattc tgttgaggtg caccaaattg tctaccctct tctaagaaca tcaagttttt cactttattc 660 720 ttacttttca cctttaatta tatttatggt tgctttggat gtagaatttt atacactcaa 780 gaaaatgttt tggcaggtct tgttaactgg attaattagc ttttctacag caagcatcat 840 aattggatat gtcgttataa aattcaataa agattcatgg gatttgcaat cttgcctact ctttagcatc acccttggca ttatagatcc tcttcgttct gtgaattcac taaaaactat 900 tggcatttct aaaatataca ttgatctcat tagaggagaa tcattgatca tttgtagcat 960 cgcatcaatt ttttttggaa attttcgggg caacagaatc cacttttcta tttttagaga 1020 tttacatgta ggcattgaac tcagctatga cattttggga agcataatat ttggatattg 1080 1140 gtgtgcaaaa atcattcagt gtatattggc tgacgttttt agcaatatgc tgactaatat cattctctgc ttttcaatgg tgtacatgac tttctatatt gtggaatttt taggaatgtc 1200 aggcactctt gccttagccg ctgtaggact gaatttagat tctttaactt ttaaaccgaa 1260 1320 gatcgaactt gtaattacta agttcttaag aattttttca tctgtatatg aacatttaat 1380 atatgettte tttggcattg tgattggatg tggagaacte agecactatg aatttcacae 1440 tatacctttc atattcattt tatttacaac agtgaatttg gtaaggttgc ttactatttt 1500 gttagtgagc cctattttga tgcattcaaa ttatgaatat aattggcgat ggggagttgt 1560 aatcacgtgg tctggaatta aaggagtttt taatttactc tgggctcctg atgtttataa 1620 tctcgctgaa cgaaaagtgg aagtaccaca aatgtttata ctctatgtac aagtaatatc attattgaca atgggaataa attcatacgt gatgactcag tcagccagga agttagattt 1680 gtgtgttctt tccctcccaa gacaaatgat cttgcaaaat gccactcagc acatacagga 1740 1800 gatagtacag aacacaataa ctttatttaa aacagaaaaa attttgacaa atgttaactg gaccttagta gaagataaaa cgaggatcga atacattcct ttttcccacg tttcacataa 1860

tgatatgaag	acagaatcca	caacagatga	agctttaatg	gaggaagcca	gattgcatgt	1920
agctgcaata	caaatgagta	gctttgaaaa	acagcgtaac	aatggaattc	ttgaaataga	1980
ggcagcccgg	atattaattg	gtgcagcaaa	atgctattac	tccatccaag	gaaaattcat	2040
gagtatttat	gatgtttcaa	cttatatgag	aactagaagt	tggcttataa	agtttaaaaa	2100
tgttttaact	ttcttggaat	attgtataga	aaagatacat	tttattccac	ctgagagtaa	2160
tacatttctg	acttttatat	ttcacatagt	attttctgaa	gaatttgaat	atacaggaca	2220
gattataaat	ttgatatata	tttatcctat	gataatacat	ctgtggccaa	tggcaagagg	2280
tttaaatgta	tcagcactga	tatcaataaa	ctactatttt	atgtttttat	atgtattaga	2340
atcaacattg	aagataataa	ttttgaaaag	gaaatatttt	caacaatgtt	ggaatacttt	2400
ggaattttt	atcctggtta	ttggaatcat	tgatatcttt	tgtgtatact	ttgtgaaatt	2460
gagaccagac	aacttggctc	ttatacagct	tacagtaata	atgggatatt	taagaataat	2520
taggtttctt	cctctcttca	agataatagt	accaatactg	ataagaattg	cagatgtgca	2580
gatcaaaaag	cgcctcagct	tgatgtatag	tattacaaaa	ggctatatca	aaagtcaaga	2640
agatgccaaa	cttctaataa	aacaaatagc	tgtctgtgaa	tcaatatatc	agaaactatg	2700
tgaaattttg	gaaaccaaca	aacaggatgc	tgtcaaagaa	ttagtactca	tggagcatga	2760
gggtcgtgat	gttgtcattg	ctttgaagac	taaacaggca	atccggaatg	tgattgctaa	2820
agctctaaaa	aatctcacct	tecttigtte	aagaggcatt	attgataagc	atgaagtcat	2880
tgagataaat	aaggtacttc	ttaaaaaatt	aaaagcacta	aataactttc	caaaggcaat	2940
cccaccccca	actcctgaca	tataccttca	caacatcatt	tggctggaag	gtaaagatgt	3000
tctcattgac	ttcttcaagg	aaagagccaa	acttgcctgt	tttgactctg	gagataccat	3060
ttgtaaagga	ggtgaaatgc	cacaaggaat	ctacttaatt	atttcaggaa	tggcaatttt	3120
gcatagttta	tctcctacct	ttggaataga	gagtaatcaa	aggtgtgata	gagggtccag	3180
agacatgttt	acagagttct	gtactactgg	ggacataatt	ggagagctaa	gctgtctgct	3240
taagcgtgaa	attgaatata	ccgtcatctg	tgaaactagt	ttacaggcct	gctttatctc	3300
cctggaggat	ttatatgaag	gctttgatgc	cttctggcca	tctctggaat	ataaaatatg	3360
gctaaagctt	gctctcagta	ctgcctatca	gtattttgaa	tcaagtctta	ttgatgagga	3420
cttaaggttt	cagaactgtg	tgatgttcaa	tcaagcatat	gtggaaactt	tatcaagcta	3480
tagtgacatg	attattgata	atatgaccat	gaaatttgtt	atcattgtgt	atggcagtgt	3540
aattgatact	aagacagagg	aaccatattt	tgcaccttgc	attataccta	caacctgtga	3600
gcaggttcag	ggaacttctg	atttaagcaa	gctgctgata	atccaagcat	ctgagcttac	3660

ccaaagaaat agtaacacca atgtcatggc ctcagtcaac acggtctttg aacaaccagg 3720 3780 aaaqaatata aatqqaaqac aaaagatgag ttgaaaactg gataccattt tagaaaaggg tattaatqat acaaatatqa tqtqtqqaqt caggttaaaq accaaactac tttcctcgct 3840 caaatactaa aggattatct gcaaggagtt tacttagaag ctactgaaac aggttactgc 3900 3960 tgcatttagt ttataagcaa tggatggact tctgtaaaac ttcttaattt taagtagttg cattatattt gggatgttaa aaaagtcttc aggataatat aaaatacact gaaacatatg 4020 4080 tcctaccaaa tqaaaccctq tttccagcta agagcaaatt ttaacatagt gcattataaa aagtgttgta taactgatat gttactctct aaagcataga acctgtaatt ttcatttgtg 4140 aaattgttat aattagtgcc tccctaatat tttcccgagt atagctattc tccccttccc 4200 4260 agtttqqtaa atattqaaaa acagaattat attccacaat cttagtaact ttcagtaagt 4320 aaqtaacttt tqctttcaqt qaaatttaqg agaaattaat attctcatat tgcatagtac tqtttqatqt cacctttcat tttattttta aaaatcaaat aaagttgagt tttatggttg 4380 4384 tcta

<210> 150

<211> 1124

<212> PRT

<213> Homo sapiens

<400> 150

Met Ser Ser Tyr Phe Trp Ala Gln Asn Glu Ser Asn Arg Pro Asp Leu 1 5 10 15

Leu Cys Gly Gln Pro Ala Asp Tyr Leu Val Glu Glu Lys His Phe Thr 20 25 30

Thr Leu Val Cys Phe Ile Val Val Leu Gly Gly Leu Leu Lys Met Cys 35 40 45

Leu Lys Asn Cys Glu Val Ile Val Leu Thr Ile Leu Ser Leu Ser Gly 50 55 60

Phe Val Ile Gly His Met Ala Tyr Asn Ser Val Glu Val His Gln Ile 65 70 75 80

Val Tyr Pro Leu Leu Arg Thr Ser Ser Phe Ser Leu Tyr Ser Tyr Phe 85 90 95

Ser Pro Leu Ile Ile Phe Met Val Ala Leu Asp Val Glu Phe Tyr Thr

Leu	Lys	Lys 115	Met	Phe	Trp	Gln	Val 120	Leu	Leu	Thr	Gly	Leu 125	Ile	Ser	Phe
Ser	Thr 130	Ala	Ser	Ile	Ile	Ile 135	Gly	Tyr	Val	Val	Ile 140	Lys	Phe	Asn	Lys
Asp 145	Ser	Trp	Asp	Leu	Gln 150	Ser	Cys	Leu	Leu	Phe 155	Ser	Ile	Thr	Leu	Gly 160
Ile	Ile	Asp	Pro	Leu 165	Arg	Ser	Val	Asn	Ser 170	Leu	Lys	Thr	Ile	Gly 175	Ile
Ser	Lys	Ile	Tyr 180	Ile	Asp	Leu	Ile	Arg 185	Gly	Glu	Ser	Leu	Ile 190	Ile	Cys
Ser	Ile	Ala 195	Ser	Ile	Phe	Phe	Gly 200	Asn	Phe	Arg	Gly	Asn 205	Arg	Ile	His
Phe	Ser 210	Ile	Phe	Arg	Asp	Leu 215	His	Val	Gly	Ile	Glu 220	Leu	Ser	Tyr	Asp
Ile 225	Leu	Gly	Ser	Ile	Ile 230	Phe	Gly	Tyr	Trp	Cys 235	Ala	Lys	Ile	Ile	Gln 240
Cys	Ile	Leu	Ala	Asp 245	Val	Phe	Ser	Asn	Met 250	Leu	Thr	Asn	Ile	Ile 255	Leu
Cys	Phe	Ser	Met 260	Val	Tyr	Met	Thr	Phe 265	Tyr	Ile	Val	Glu	Phe 270	Leu	Gly
Met	Ser	Gly 275	Thr	Leu	Ala	Leu	Ala 280	Ala	Val	Gly	Leu	Asn 285	Leu	Asp	Ser
Leu	Thr 290	Phe	Lys	Pro	Lys	Ile 295	Glu	Leu	Val	Ile	Thr 300	Lys	Phe	Leu	Arg
Ile 305	Phe	Ser	Ser	Val	Tyr 310	Glu	His	Leu	Ile	Tyr 315	Ala	Phe	Phe	Gly	Ile 320
Val	Ile	Gly	Cys	Gly 325	Glu	Leu	Ser	His	Tyr 330	Glu	Phe	His	Thr	Ile 335	Pro
Phe	Ile	Phe	Ile 340	Leu	Phe	Thr	Thr	345	Asn Page		Val	Arg	Leu 350	Leu	Thr

Ile Leu Leu Val Ser Pro Ile Leu Met His Ser Asn Tyr Glu T 355 360 365	yr Asn
Trp Arg Trp Gly Val Val Ile Thr Trp Ser Gly Ile Lys Gly V 370 375 380	al Phe
Asn Leu Leu Trp Ala Pro Asp Val Tyr Asn Leu Ala Glu Arg L 385 390 395	ys Val 400
Glu Val Pro Gln Met Phe Ile Leu Tyr Val Gln Val Ile Ser L 405 410 4	eu Leu 15
Thr Met Gly Ile Asn Ser Tyr Val Met Thr Gln Ser Ala Arg L 420 425 430	ys Leu
Asp Leu Cys Val Leu Ser Leu Pro Arg Gln Met Ile Leu Gln A 435 440 445	sn Ala
Thr Gln His Ile Gln Glu Ile Val Gln Asn Thr Ile Thr Leu P 450 455 460	ne Lys
Thr Glu Lys Ile Leu Thr Asn Val Asn Trp Thr Leu Val Glu A 465 470 475	sp Lys 480
Thr Arg Ile Glu Tyr Ile Pro Phe Ser His Val Ser His Asn A 485 490 4	sp Met 95
Lys Thr Glu Ser Thr Thr Asp Glu Ala Leu Met Glu Glu Ala A 500 505 510	rg Leu
His Val Ala Ala Ile Gln Met Ser Ser Phe Glu Lys Gln Arg A 515 520 525	sn Asn
Gly Ile Leu Glu Ile Glu Ala Ala Arg Ile Leu Ile Gly Ala A 530 535 540	la Lys
Cys Tyr Tyr Ser Ile Gln Gly Lys Phe Met Ser Ile Tyr Asp V 545 550 555	al Ser 560
Thr Tyr Met Arg Thr Arg Ser Trp Leu Ile Lys Phe Lys Asn V 565 570 5	al Leu 75

Ser	Asn	Thr 595	Phe	Leu	Thr	Phe	Ile 600	Phe	His	Ile	Val	Phe 605	Ser	Glu	Glu
Phe	Glu 610	Tyr	Thr	Gly	Gln	Ile 615	Ile	Asn	Leu	Ile	Tyr 620	Ile	Tyr	Pro	Met
Ile 625	Ile	His	Leu	Trp	Pro 630	Met	Ala	Arg	Gly	Leu 635	Asn	Val	Ser	Ala	Leu 640
Ile	Ser	Ile	Asn	Tyr 645	Tyr	Phe	Met	Phe	Leu 650	Tyr	Val	Leu	Glu	Ser 655	Thr
Leu	Lys	Ile	Ile 660	Ile	Leu	Lys	Arg	Lys 665	Tyr	Phe	Gln	Gln	Cys 670	Trp	Asn
Thr	Leu	Glu 675	Phe	Phe	Ile	Leu	Val 680	Ile	Gly	Ile	Ile	Asp 685	Ile	Phe	Cys
Val	Tyr 690	Phe	Val	Lys	Leu	Arg 695	Pro	Asp	Asn	Leu	Ala 700	Leu	Ile	Gln	Leu
Thr 705	Val	Ile	Met	Gly	Tyr 710	Leu	Arg	Ile	Ile	Arg 715	Phe	Leu	Pro	Leu	Phe 720
Lys	Ile	Ile	Val	Pro 725	Ile	Leu	Ile	Arg	Ile 730	Ala	Asp	Val	Gln	Ile 735	Lys
Lys	Arg	Leu	Ser 740	Leu	Met	Tyr	Ser	Ile 745	Thr	Lys	Gly	Tyr	Ile 750	Lys	Ser
Gln	Glu	Asp 755	Ala	Lys	Leu	Leu	Ile 760	Lys	Gln	Ile	Ala	Val 765	Cys	Glu	Ser
Ile	Tyr 770	Gln	Lys	Leu	Cys	Glu 775	Ile	Leu	Glu	Thr	Asn 780	Lys	Gln	Asp	Ala
Val 785	Lys	Glu	Leu	Val	Leu 790	Met	Glu	His	Glu	Gly 795	Arg	Asp	Val	Val	Ile 800
Ala	Leu	Lys	Thr	Lys 805	Gln	Ala	Ile	Arg	Asn 810	Val	Ile	Ala	Lys	Ala 815	Leu
Lys	Asn	Leu	Thr 820	Phe	Leu	Суѕ	Ser	825	Gly Page		Ile	Asp	Lys 830	His	Glu

Val	Ile	Glu 835	Ile	Asn	Lys	Val	Leu 840	Leu	Lys	Lys	Leu	Lys 845	Ala	Leu	Asn
Asn	Phe 850	Pro	Lys	Ala	Ile	Pro 855	Pro	Pro	Thr	Pro	Asp 860	Ile	Tyr	Leu	His
Asn 865	Ile	Ile	Trp	Leu	Glu 870	Gly	Lys	Asp	Val	Leu 875	Ile	Asp	Phe	Phe	Lys 880
Glu	Arg	Ala	Lys	Leu 885	Ala	Cys	Phe	Asp	Ser 890	Gly	Asp	Thr	Ile	Cys 895	Lys
Gly	Gly	Glu	Met 900	Pro	Gln	Gly	Ile	Tyr 905	Leu	Ile	Ile	Ser	Gly 910	Met	Ala
Ile	Leu	His 915	Ser	Leu	Ser	Pro	Thr 920	Phe	Gly	Ile	Glu	Ser 925	Asn	Gln	Arg
Cys	Asp 930	Arg	Gly	Ser	Arg	Asp 935	Met	Phe	Thr	Glu	Phe 940	Cys	Thr	Thr	Gly
Asp 945	Ile	Ile	Gly	Glu	Leu 950	Ser	Cys	Leu	Leu	Lys 955	Arg	Glu	Ile	Glu	Tyr 960
Thr	Val	Ile	Cys	Glu 965	Thr	Ser	Leu	Gln	Ala 970	Cys	Phe	Ile	Ser	Leu 975	Glu
Asp	Leu	Tyr	Glu 980	Gly	Phe	Asp	Ala	Phe 985	Trp	Pro	Ser	Leu	Glu 990	Tyr	Lys
Ile	Trp	Leu 995	Lys	Leu	Ala	Leu	Ser 1000		r Ala	а Туз	r Gli	n Ty:		he G	lu Ser
Ser	Leu 1010		e Asp	o Glu	ı Ası	p Let 10:		rg Pl	he G	ln As		ys ' 020	Val I	Met 1	Phe
Asn	Gln 1025		а Туг	r Val	l Gli	10:		eu Se	er Se	er Ty		er 2 035	Asp 1	Met :	Ile
Ile	Asp 1040		n Met	t Thi	r Me	Ly:		ne V	al I	le I		al '	Tyr (Gly :	Ser
Val	Ile 1055		o Thi	r Ly:	s Th:	r Gli 10		lu P	ro T	yr Pl		la 065	Pro (Cys	Ile

Page 127

Ile Pro Thr Thr Cys Glu Gln Val Gln Gly Thr Ser Asp Leu Ser 1070 1075 1080	
Lys Leu Leu Ile Ile Gln Ala Ser Glu Leu Thr Gln Arg Asn Ser 1085 1090 1095	
Asn Thr Asn Val Met Ala Ser Val Asn Thr Val Phe Glu Gln Pro 1100 1105 1110	
Gly Lys Asn Ile Asn Gly Arg Gln Lys Met Ser 1115 1120	
<210> 151 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 151 ctacaacctg tgagcaggtt c	21
<210> 152 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 152 cctgtttcag tggcttctaa g	21
<210> 153 <211> 1189 <212> DNA <213> Homo sapiens	
<400> 153 ctatgccttc tgaccccgtc ttggacttca actgggagaa tgtggagcca tttgaacagg	60
ctcctcttct ggagcatatt ttcttctgtc acttgtagaa aagctgtatt ggattgtgag	120
gcaatgaaaa caaatgaatt cccttctcca tgtttggact caaagactaa ggtggttatg	180
aagggtcaaa atgtatctat gttttgttcc cataagaaca aatcactgca gatcacctat	240
tcattgtttc gacgtaagac acacctggga acccaggatg gaaaaggtga acctgcgatt	300
tttaacctaa gcatcacaga agcccatgaa tcaggcccct acaaatgcaa agcccaagtt	360

accagetgtt caaaatacag tegtgaette agetteaega ttgtegaeee ggtgaettee 420 ccaqtqctqa acattatqqt cattcaaaca gaaacagacc gacatataac attacattgc 480 ctctcagtca atggctcgct gcccatcaat tacactttct ttgaaaacca tgttgccata 540 600 tcaccaqcta tttccaaqta tgacagggag cctgctgaat ttaacttaac caagaagaat 660 cctggagaag aggaagagta taggtgtgaa gctaaaaaca gattgcctaa ctatgcaaca tacaqtcacc ctgtcaccat gccctcaaca ggcggagaca gctgtccttt ctgtctgaag 720 ctactacttc cagggttatt actgttgctg gtggtgataa tcctaattct ggctttttgg 780 gtactgccca aatacaaaac aagaaaagct atgagaaata atgtgcccag ggaccgtgga 840 gacacagcca tggaagttgg aatctatgca aatatccttg aaaaacaagc aaaggaggaa 900 960 tctqtqccaq aaqtgggatc caggccgtgt gtttccacag cccaagatga ggccaaacac 1020 tcccaqqaqc tacaqtatqc cacccccgtg ttccaggagg tggcaccaag agagcaagaa qcctqtgatt cttataaatc tggatatgtc tattctgaat cctgacctca gatgatctgc 1080 ctgcctcggc ctcccaaagt gctggaacta caagcctgag ccaccgtgcc cggccctgaa 1140 tcgctttagt aaataaaggg tctccaagaa taaattcatc cgaacatgc 1189

<210> 154

<211> 341

<212> PRT

<213> Homo sapiens

<400> 154

Met Trp Ser His Leu Asn Arg Leu Leu Phe Trp Ser Ile Phe Ser Ser 1 5 10 15

Val Thr Cys Arg Lys Ala Val Leu Asp Cys Glu Ala Met Lys Thr Asn 20 25 30

Glu Phe Pro Ser Pro Cys Leu Asp Ser Lys Thr Lys Val Val Met Lys 35 40 45

Gly Gln Asn Val Ser Met Phe Cys Ser His Lys Asn Lys Ser Leu Gln 50 55 60

Ile Thr Tyr Ser Leu Phe Arg Arg Lys Thr His Leu Gly Thr Gln Asp 70 75 80

Gly Lys Gly Glu Pro Ala Ile Phe Asn Leu Ser Ile Thr Glu Ala His 85 90 95

Glu	Ser	Gly	Pro 100	Tyr	Lys	Cys	Lys	Ala 105	Gln	Val	Thr	Ser	Cys: 110	Ser	Lys
Tyr	Ser	Arg 115	Asp	Phe	Ser	Phe	Thr 120	Ile	Val	Asp	Pro	Val 125	Thr	Ser	Pro
Val	Leu 130	Asn	Ile	Met	Val	Ile 135	Gln	Thr	Glu	Thr	Asp 140	Arg	His	Ile	Thr
Leu 145	His	Cys	Leu	Ser	Val 150	Asn	Gly	Ser	Leu	Pro 155	Ile	Asn	Tyr	Thr	Phe 160
Phe	Glu	Asn	His	Val 165	Ala	Ile	Ser	Pro	Ala 170	Ile	Ser	Lys	Tyr	Asp 175	Arg
Glu	Pro	Ala	Glu 180	Phe	Asn	Leu	Thr	Lys 185	Lys	Asn	Pro	Gly	Glu 190	Glu	Glu
Glu	Tyr	Arg 195	Cys	Glu	Ala	Lys	Asn 200	Arg	Leu	Pro	Asn	Tyr 205	Ala	Thr	Tyr
Ser	His 210	Pro	Val	Thr	Met	Pro 215	Ser	Thr	Gly	Gly	Asp 220	Ser	Cys	Pro	Phe
Cys 225	Leu	Lys	Leu	Leu	Leu 230	Pro	Gly	Leu	Leu	Leu 235	Leu	Leu	Val	Val	Ile 240
Ile	Leu	Ile	Leu	Ala 245	Phe	Trp	Val	Leu	Pro 250	Lys	Tyr	Lys	Thr	Arg 255	Lys
Ala	Met	Arg	Asn 260	Asn	Val	Pro	Arg	Asp 265	Arg	Gly	Asp	Thr	Ala 270	Met	Glu
Val	Gly	Ile 275	Tyr	Ala	Asn	Ile	Leu 280	Glu	Lys	Gln	Ala	Lys 285	Glu	Glu	Ser
Val	Pro 290	Glu	Val	Gly	Ser	Arg 295	Pro	Cys	Val	Ser	Thr 300	Ala	Gln	Asp	Glu
Ala 305	Lys	His	Ser	Gln	Glu 310	Leu	Gln	Tyr	Ala	Thr 315	Pro	Val	Phe	Gln	Glu 320
Val	Ala	Pro	Arg	Glu 325	Gln	Glu	Ala	Cys	Asp 330	Ser	Tyr	Lys	Ser	Gly 335	Tyr

Val Tyr Ser Glu Ser 340	
<210> 155 <211> 21 <212> DNA	
<213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 155 gaggaatctg tgccagaagt g	21
<210> 156 <211> 21 <212> DNA	
<213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 156	
acagagtgag actccatcct g	21
<210> 157 <211> 2713 <212> DNA <213> Homo sapiens	
<400> 157 gggcttggct ggggtgctca gcccaatttt ccgtgtaggg agcgggcggc ggcgggggag	60
gcagaggcgg aggcggagtc aagagcgcac cgccgcgccc gccgtgccgg gcctgagctg	120
gagccgggcg tgagtcgcag caggagccgc agccggagtc acagccgcag ccagagccgc	180
agccaaagcc tcagagagca ggagttggag cgcaggccct gctggatccg cgcctagctc	240
gccgccaggc accggccgga ggacgggccg tggtgtcagc tcactgcccg ggcgctgtgg	300
gaggcagcga gcccgcgacc ccccgggccg ggcaccgcca ggcgcggagc ccagatcgcc	360
cccctgccag gcctggtcac ggccagagca cgcaggagtt cccagggtct ggatctgcgc	420
gcaccctaat gacctgggga ctgaagagaa aaaaggaacg aggatttcat ctaaaagcat	480
aacgtgggca ctaggcgagg aggaaagtgg agaccacctg gcacggggca gaggtgcctg	540
gageceaege ttgageateg gagaecetgg cateetagea geegegaeet tggetetgee	600
ctgtctgagc tggaaacaca gcttagcttc tagacatcgc tggcacaggc ctggcacaag	660
taagcagtgt cctcacctgt ctgaaacggg acacggggtc ggaggaacca ggatctagcc	720
tggccccaag cggaactctc tggtggccca gaggtcgtca ctggggagcc cgcctcctgc	780

cctagcctca ctggtgcg	ga tgtgccgctg	cccgccggag	caccatgatg	gcaggatgac	840
ctcagccgaa gtaggago	ag cagctggtgg	tgctcaggcg	gctgggcccc	ccgagtggcc	900
ccctggcagc cctcaggc	cc tccggcagcc	tggccgggcc	cgagtggcca	tggcagcact	960
ggtgtggctg ctggcggg	ag ccagcatgtc	aagcctcaac	aagtggatct	tcacagtgca	1020
cggctttggg cggcccct	gc tgctgtcggc	cctgcacatg	ctggtggcag	ccctggcatg	1080
ccaccggggg gcacggcg	cc ccatgccagg	cggcactcgc	tgccgagtcc	tactgctcag	1140
tctcaccttt ggcacgto	ca tggcctgcgg	caacgtgggc	ctaagggctg	tgcccctgga	1200
cctggcacaa ctggttac	ta ccaccacacc	tctgttcacc	ctggccctgt	cggcgctgct	1260
gctgggccgc cgccacca	.cc cacttcagtt	ggccgccatg	ggtccgctct	gcctgggggc	1320
cgcctgcagc ctggctgg	ag agttccggac	accccctacc	ggctgtggct	teetgetege	1380
agccacctgc ctccgcgg	ac tcaagtcggt	tcagcaaagt	gccctgctgc	aggaggagag	1440
gctggacgcg gtgaccct	gc tttacgccac	ctcgctgccc	agcttctgcc	tgctggcggg	1500
tgcagccctg gtgctgga	gg ctggcgttgc	cccaccgccc	actgctggcg	actctcgcct	1560
ctgggcctgc atcctgct	ca gctgcctcct	gtctgttctc	tataacctgg	ccagcttctc	1620
cctgctggcc ctcaccto	tg ccctcaccgt	ccacgtcctg	ggcaacctca	ccgtggtggg	1680
caacctcatc ctgtcccg	gc tgttgtttgg	cagccgcctc	agtgccctca	gctacgtggg	1740
catcgcactc actctttc	ag gaatgttcct	ttaccacaac	tgcgagttcg	tggcctcctg	1800
ggctgcccgt cgggggct	gt ggcggaggga	ccagcccagc	aagggtcttt	gagacctggg	1860
ggatctcagg agccacct	gg gatggccctg	gcctgaatcc	agcctccgct	gtggccatag	1920
aaggaatgga gaacaggg	ct gggcatggtg	gctcacgcct	ataatcccag	cacttccaga	1980
gtccgaggtg ggtggatc	ac ctgaggccag	gagttcgaga	ccagcctggc	taacatggca	2040
aaacctcatc tctactaa	aa atagaaaaat	tagctgggca	tggtggcgcg	tgcctatagt	2100
cccagctaca tgggaggd	ta aggtgggagg	atcacttgag	ccctggagat	cgaggctgca	2160
gtaagccaag atcgcat	ct actgcactco	agcctgggag	acagagcgag	acgctgtctc	2220
aattaaaaaa aaaaaaaa	gt ggagaactgg	cagtgacctc	tactgggggc	catggcaggg	2280
aggggagcct tctggaag	ıgg ctgccttgga	gattggaatg	gggactccca	gggagacctg	2340
cgttccatcc ctgcctg	ct cacccctgcc	acagactctg	cacaccactg	gatggtgggt	2400
ccaagcctgg cacagtco	ct gtgcttgtca	gagtcattat	tatgattaat	atcaattacg	2460
atgccaaaaa ttgctggg	rca aactttgaag	acctcaactt	gttacaatga	cgatgatgat	2520
gattcttggc ggttacac	aa teetteetee	tgggggggag	gcagctagga	ggcccagcag	2580

gggg	gctt	ct a	tgct	gct	gg go	etecc	ctag	g gga	gttg	1999	tagt	ctgt	gc o	caact	ccagg	2640
cago	etget	gt g	gcct	caco	cc ct	ggg	cccc	caa	tttt	ggg	tcat	ccat	cc t	caaa	atacac	2700
tatt	tttg	gct t	gt													2713
<210 <211 <212 <213	l> 3 2> I	L58 350 PRT Homo	sapi	iens												
<400)> 1	158														
Met 1	Cys	Arg	Cys	Pro 5	Pro	Glu	His	His	Asp 10	Gly	Arg	Met	Thr	Ser 15	Ala	
Glu	Val	Gly	Ala 20	Ala	Ala	Gly	Gly	Ala 25	Gln	Ala	Ala	Gly	Pro 30	Pro	Glu	
Trp	Pro	Pro 35	Gly	Ser	Pro	Gln	Ala 40	Leu	Arg	Gln	Pro	Gly 45	Arg	Ala	Arg	
Val	Ala 50	Met	Ala	Ala	Leu	Val 55	Trp	Leu	Leu	Ala	Gly 60	Ala	Ser	Met	Ser	
Ser 65	Leu	Asn	Lys	Trp	Ile 70	Phe	Thr	Val	His	Gly 75	Phe	Gly	Arg	Pro	Leu 80	
Leu	Leu	Ser	Ala	Leu 85	His	Met	Leu	Val	Ala 90	Ala	Leu	Ala	Cys	His 95	Arg	
Gly	Ala	Arg	Arg 100	Pro	Met	Pro	Gly	Gly 105	Thr	Arg	Cys	Arg	Val 110	Leu	Leu	
Leu	Ser	Leu 115	Thr	Phe	Gly	Thr	Ser 120	Met	Ala	Cys	Gly	Asn 125	Val	Gly	Leu	
Arg	Ala 130	Val	Pro	Leu	Asp	Leu 135	Ala	Gln	Leu	Val	Thr 140	Thr	Thr	Thr	Pro	
Leu 145	Phe	Thr	Leu	Ala	Leu 150	Ser	Ala	Leu	Leu	Leu 155	Gly	Arg	Arg	His	His 160	
Pro	Leu	Gln	Leu	Ala 165	Ala	Met	Gly	Pro	Leu 170	Cys	Leu	Gly	Ala	Ala 175	Cys	
Ser	Leu	Ala	Gly 180	Glu	Phe	Arg	Thr	Pro 185	Pro	Thr	Gly	Cys	Gly 190	Phe	Leu	

Leu Ala Ala Thr Cys Leu Arg Gly Leu Lys Ser Val Gln Gln Ser Ala 200 Leu Leu Gln Glu Glu Arg Leu Asp Ala Val Thr Leu Leu Tyr Ala Thr 210 215 Ser Leu Pro Ser Phe Cys Leu Leu Ala Gly Ala Ala Leu Val Leu Glu 230 235 225 Ala Gly Val Ala Pro Pro Pro Thr Ala Gly Asp Ser Arg Leu Trp Ala 250 245 Cys Ile Leu Leu Ser Cys Leu Leu Ser Val Leu Tyr Asn Leu Ala Ser 265 Phe Ser Leu Leu Ala Leu Thr Ser Ala Leu Thr Val His Val Leu Gly 275 280 Asn Leu Thr Val Val Gly Asn Leu Ile Leu Ser Arg Leu Leu Phe Gly 290 295 300 Ser Arg Leu Ser Ala Leu Ser Tyr Val Gly Ile Ala Leu Thr Leu Ser 305 Gly Met Phe Leu Tyr His Asn Cys Glu Phe Val Ala Ser Trp Ala Ala 325 Arg Arg Gly Leu Trp Arg Arg Asp Gln Pro Ser Lys Gly Leu <210> 159 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 159 21 caagtcggtt cagcaaagtg c <210> 160 <211> 21 <212> DNA <213> Artificial Sequence

<220>

<223> Oligonucleotide											
<400> 160 cctgaaagag tgagtgcgat g	21										
<210> 161 <211> 963 <212> DNA <213> Homo sapiens											
<400> 161 gactacacaa ggactgaacc agaaggaaga ggacagagca aagccatgaa catcatccta	60										
gaaateette tgettetgat caccateate tacteetact tggagtegtt ggtgaagttt	120										
ttcattcctc agaggagaaa atctgtggct ggggagattg ttctcattac tggagctggg	180										
catggaatag gcaggcagac tacttatgaa tttgcaaaac gacagagcat attggttctg	240										
tgggatatta ataagcgcgg tgtggaggaa actgcagctg agtgccgaaa actaggcgtc	300										
actgcgcatg cgtatgtggt agactgcagc aacagagaag agatctatcg ctctctaaat	360										
caggtgaaga aagaagtggg tgatgtaaca atcgtggtga ataatgctgg gacagtatat	420										
ccagccgatc ttctcagcac caaggatgaa gagattacca agacatttga ggtcaacatc	480										
ctaggacatt tttggatcac aaaagcactt cttccatcga tgatggagag aaatcatggc	540										
cacatcgtca cagtggcttc agtgtgcggc cacgaaggga ttccttacct catcccatat	600										
tgttccagca aatttgccgc tgttggcttt cacagaggtc tgacatcaga acttcaggcc	660										
ttgggaaaaa ctggtatcaa aacctcatgt ctctgcccag tttttgtgaa tactgggttc	720										
accaaaaatc caagcacaag attatggcct gtattggaga cagatgaagt cgtaagaagt	780										
ctgatagatg gaatacttac caataagaaa atgatttttg ttccatcgta tatcaatatc	840										
tttctgagac tacagaatcc tgataatatt aaaaacattg gtttggcact agcagcagtc	900										
aaacgaacaa gattaattac ctgtcttcct gtttctcaag aatatttacg tagtttttca	960										
tag	963										
<210> 162 <211> 305 <212> PRT <213> Homo sapiens <400> 162											
Met Asn Ile Ile Leu Glu Ile Leu Leu Leu Leu Ile Thr Ile Ile Tyr 1 5 10 15											

Ser Tyr Leu Glu Ser Leu Val Lys Phe Phe Ile Pro Gln Arg Arg Lys 20 25 30

Ser	vai	35	GIY	GIU	11e	vai	40	116	THE	GIY	Ala	45	HIS	GIÀ	TIE
Gly	Arg 50	Gln	Thr	Thr	Tyr	Glu 55	Phe	Ala	Lys	Arg	Gln 60	Ser	Ile	Leu	Val
Leu 65	Trp	Asp	Ile	Asn	Lys 70	Arg	Gly	Val	Glu	Glu 75	Thr	Ala	Ala	Glu	Cys 80
Arg	Lys	Leu	Gly	Val 85	Thr	Ala	His	Ala	Tyr 90	Val	Val	Asp	Cys	Ser 95	Asn
Arg	Glu	Glu	Ile 100	Tyr	Arg	Ser	Leu	Asn 105	Gln	Val	Lys	Lys	Glu 110	Val	Gly
Asp	Val	Thr 115	Ile	Val	Val	Asn	Asn 120	Ala	Gly	Thr	Val	Tyr 125	Pro	Ala	Asp
Leu	Leu 130	Ser	Thr	Lys	Asp	Glu 135	Glu	Ile	Thr	Lys	Thr 140	Phe	Glu	Val	Asn
Ile 145	Leu	Gly	His	Phe	Trp 150	Ile	Thr	Lys	Ala	Leu 155	Leu	Pro	Ser	Met	Met 160
Glu	Arg	Asn	His	Gly 165	His	Ile	Val	Thr	Val 170	Ala	Ser	Val	Cys	Gly 175	His
Glu	Gly	Ile	Pro 180	Tyr	Leu	Ile	Pro	Tyr 185	Cys	Ser	Ser	Lys	Phe 190	Ala	Ala
Val	Gly	Phe 195	His	Arg	Gly	Leu	Thr 200	Ser	Glu	Leu	Gln	Ala 205	Leu	Gly	Lys
Thr	Gly 210	Ile	Lys	Thr	Ser	Cys 215	Leu	Cys	Pro	Val	Phe 220	Val	Asn	Thr	Gly
Phe 225	Thr	Lys	Asn	Pro	Ser 230	Thr	Arg	Leu	Trp	Pro 235	Val	Leu	Glu	Thr	Asp 240
Glu	Val	Val	Arg	Ser 245	Leu	Ile	Asp	Gly	Ile 250	Leu	Thr	Asn	Lys	Lys 255	Met
Ile	Phe	Val	Pro 260	Ser	Tyr	Ile	Asn	265			Arg	Leu	Gln 270	Asn	Pro
								1	Page	TOO					

Arg Leu Ile Thr Cys Leu Pro Val Ser Gln Glu Tyr Leu Arg Ser Phe 295 Ser 305 <210> 163 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 163 21 ggtctgacat cagaacttca g <210> 164 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 164 21 tgcatacatc tctggctgga g <210> 165 <211> 6014 <212> DNA <213> Homo sapiens <400> 165 cacccggaag gagcggtgtg agcggtccaa ggagccccgc aggtttgcct cggagatgaa 60 geagtgtgte eggetgaegg tecateceaa caatatetee gteteteagt acaaegtget 120 qctqqtcctq gagacqtaca atgtcccgga gctgtcagct ggcgtcaact gcacctttga 180 ggacctgtca gagatggatg ggctggtcgt gggcaatcag atccagtgct actcccctgc 240 agccaaggag gtgccccgga tcatcacaga gaatggggac caccatgtcg tacagcttca 300 gctcaaatca aaggagaccg gcatgacctt cgccagcacc agctttgtct tctacaattg 360 cagcgtccac aattcgtgcc tgtcctgcgt ggagagtcca taccgctgcc actggtgtaa 420

Asp Asn Ile Lys Asn Ile Gly Leu Ala Leu Ala Val Lys Arg Thr

275

480

ataccggcat gtctgcaccc atgaccccaa gacctgctcc ttccaggaag gccgagtgaa

gctgcccgag gactgccccc agctgctgcg agtggacaag atcctggtgc ccgtggaggt 540 600 gatcaagcct atcacgctga aggccaagaa cctcccccag ccccagtctg ggcagcgtgg 660 ctacgaatgc atcctcaaca ttcagggcag cgagcagcga gtgcccgccc tgcgcttcaa cagetecage gtacagtgee agaacacete ttatteetat gaagggatgg agateaacaa 720 780 cctgcccgtg gagttgacag tcgtgtggaa tgggcacttc aacattgaca acccagctca gaataaagtt cacctctaca agtgtggagc catgcgtgag agctgcgggc tgtgcctcaa 840 900 ggctgaccca gacttcgcat gtggctggtg ccagggccca ggccagtgca ccctgcgcca 960 qcactgccct gcccaggaga gccagtggct ggagctgtct ggtgccaaaa gcaagtgcac 1020 aaacccccqc atcacagaga taatcccggt gacaggcccc cgggaagggg gcaccaaggt cactatccga ggggagaacc tgggcctgga atttcgcgac atcgcctccc atgtcaaggt 1080 1140 tgctgqcgtg gagtgcagcc ctttagtgga tggttacatc cctgcagaac agatcgtgtg tgagatgggg gaggccaagc ccagccagca tgcaggcttc gtggagatct gcgtggctgt 1200 1260 gtgtcggcct gaattcatgg cccggtcctc acagctctat tacttcatga cactgactct 1320 ctcagatctg aagcccagcc gggggcccat gtccggaggg acccaagtga ccatcacagg 1380 caccaacctg aatgccggaa gcaacgtggt ggtgatgttt ggaaagcagc cctgtctctt 1440 ccacaggcga totocatoot acattgtotg caacaccaca tootcagatg aggtgotaga gatgaaggtg tcggtgcagg tggacagggc caagatccac caggacctgg tctttcagta 1500 tgtggaagac cccaccatcg tgcggattga gccagaatgg agcattgtca gtggaaacac 1560 1620 acccatcgcc gtatggggga cccacctgga cctcatacag aacccccaga tccgtgccaa 1680 gcatggaggg aaggagcaca tcaatatctg tgaggttctg aacgctactg agatgacctg 1740 tcaggcgccc gccctcgctc tgggtcctga ccaccagtca gacctgaccg agaggcccga 1800 ggagtttggc ttcatcctgg acaacgtcca gtccctgctc atcctcaaca agaccaactt cacctactat cccaacccgg tgtttgaggc ctttggtccc tcaggaatcc tggagctcaa 1860 gcctggcacg cccatcatcc taaagggcaa gaacctgatc ccgcctgtgg ctgggggcaa 1920 cgtgaagctg aactacactg tgctggttgg ggagaagccg tgcaccgtga ccgtgtcaga 1980 2040 tqtccagctg ctctgcgagt cccccaacct catcggcagg cacaaagtga tggcccgtgt cggtggcatg gagtactccc cggggatggt gtacattgcc ccggacagcc cgctcagcct 2100 gcccgccatc gtcagcatcg cagtggctgg cggcctcctc atcattttca tcgtggccgt 2160 gctcattgcc tataaacgca agtcccgcga aagtgacctc acgctgaagc ggctgcagat 2220 gcagatggac aacctggagt cccgtgtggc cctggagtgc aaggaaggta ctgagtggcc 2280 ccatgctgga ggccatgtgt gtgtgcgtgt gtgcatatgt gtgtgcatgc acatctgtgt 2340 2400 atgtgtatgc atatgtttca tatacaaaca agcaggctgg gcagcagtgg gcagtgctgg 2460 aggctggcgg tgtgtgtct tgtgcgaatg tgtgtgtgt catgtgtgtg tgtgcacatc 2520 tgtatgtata tatgtttcat atacaagcaa gcaggccggg cagcagtgag cagtgctgga 2580 ggctgtatat gtgtctgtgt gcgtgcgcat ctgtgtatgt gtatatgttt catgtacaag 2640 caagcaggcc gggcagcagt gggcagtgct ggaggctctg tgtgtgcgtg tgcatgtgtg tgtatgtatg tgtatgtgtt ccatttacaa gcaagcaggc caggcaactg tgagcagtgc 2700 2760 tggaggctgt gtgcgcgtgt gtgtgtgtat gtgtatgtgt ttcatttaca agcaagcagg 2820 ccaggcagct gtgagcagtg ctggaggctg tgtgtgtgt tgtgtgagca cgcacgtgtg 2880 tgagcacgca cgtgtatgtg tatgtgtgtc atttacaagc aagcaggcca ggcagctgtg 2940 3000 qtatqtgttt catttacaag caagcaggcc aggcagctgt gggcagtgct ggaggctgtg 3060 tgtgtgtgca cgtgtgtgta tgcgtatgtg tttcatttac aagcaagcag gccaggcagc tgtgggcagt gctggaggct gtgtgtgtgt gtgtgtgtg gtgtgtgtat atatgtgtat 3120 3180 gtgtatgtgt ttcatttaca agcaagcagc ccaggcagct gtgggcagtg ctggaggctg 3240 tgtgtgtgtg tgtgtgtgtg tgtgtatgtg tttcatttac aagtgtgtgt gtgtgtgt 3300 atgtgtatgt gtatgtgttt catttacaag caagcaggcc aggcagctgt gggcaatgct 3360 ggaggetgtg catectacet geatacetge aaageetete actetatagt ceetatgeet qtqtcccaga ccacacccat acccaagcag gccccaccct ggcaacacca gagaggccaa 3420 3480 ggtctccttg ccctctcctt gaaggtgtag tgattagaat ctcttttatg tgtggcaggc acacagettt gaatgttgga ggegettggt gaettaaagg aaagetgeag actgataaaa 3540 agccaactcc ctccttctgc tccctgtggg ccgagcaccc caactgggag ggggcagccg 3600 aggggagete ceacceagga ttgteacett caccecacta gageacette accecactag 3660 agcagcctcc atacctggaa tcctggttga gtgggttttg cactctactc gaggggaggt 3720 ctgggggtgt cttaacatga cgcatttcag caatctccag ctttcttcct ctagcaggaa 3780 ggtaaggctg tagggctgat ctgtgattta gaaggaaggg tgtttcaaag cttgtattaa 3840 aaaaattaca aacaccacca taaagtgaaa tcagctgcac taaatccaag aaggaaattt 3900 aggagtcaga ctcttgtaac ccccaggata tcattttgtg actcatcctg ggaggatctg 3960 agctggttct ttgctgtaga tttgtacatg gagtaaatcc ggccccatac ctggggctct 4020 cacttcacac cgattcccac cagggcagcc acggctcttt ttgatgggga agtggatcca 4080

ttccatcccc tctctacatc cttcagctgt caacacagca tccgccttgt gggactgtta 4140 attactgcct tttattatat ttacgctgct taattttttt ctccgcaatg tactctttcc 4200 4260 tctaattagg tgtagtgatt agaatctctt ttatgtgtgg caggcacgca gctttgaatg 4320 ttggaggcgc ttggtgactt aaaggaaagc tgcagactga taaaaagcca acaccctcct 4380 tetgeteect gtgggeegag caccecaact gggagggage ageegatggg ageteecace 4440 caggattgtc agctgaggcc ccaggaggaa accttggctt cagactttag gggcgagcta tgctgtgcac gtaggaagaa ggggtcttac agcaaaggac ttgtcagact agccacagag 4500 4560 gcactttgca gcttgcccag agccagccac tgaacgttta cagggctgca ctggcccaag ccaaggggtc tccttgaaga cttcacagca agccaggacg tcctctacac aaactcagaa 4620 4680 gacacccagc tgggcccttc atgggcctaa gcttctgata tataaacata cccgtgtatt 4740 tacaaacact cccacacagg cccacacacc ctcactgaca tacactcatg gactcacaca 4800 tacactcaca tgcacacatg catgcacact cacatacact cactcgtgca ctcacacata catgcccaca catagtgaca tgctcacaca ctcatgcttt cacatacata cactcactga 4860 catacactca tgtgctcaca cgctcatgta ctcacattcg tacacacaca ctgacatata 4920 4980 cttacacact cacacttgca catgcataca catgcactca catgcacaca tgcatgcaca ctcatacact cacgcactca acttgcaggc gtgcacacac atgcccacat actcatgcac 5040 tcacattcac acatgcgtgc acacatagac gcatgcactc acacatgcat acacacagac 5100 atacacatgc actcacattc gtacttgcat acacaccaac acacatatgc acactcacac 5160 tgacaagcat acacacacac tcatgcactc acacccacgc aggcactcac attcacacac 5220 5280 atacacacte attgacatac atteatteac atecatgeac teacatteac acatgeatac acactgacat tcacacttgc acatgcctac acactcactg acatacacac acacatgcag 5340 tcatacacac tccctgacat gctcacacac tgtcatactc acacactccc tgacatgctc 5400 acacactgtc acactcacac actcacatac actccctgac atacacactc agacaagtgc 5460 ccatgcaccc acacctatgc tcatgcacat gttcccacac tctcttataa gcatacacac 5520 5580 ccatgttcct cactcaggac acacatgaat gttccccagg gcatcatgtg acatcgcaga 5640 ggacagatgg tggaaaagac atgagcaacc taatgggaag aggaaaatgg gaaacaatgc 5700 attggaagag gaagaaaaa aataaataac caaaggtttt ggcaagtgca gtaccaggtg gagaagettg acttttetat cettgateat tttatteeet eecaagaagt cagteacagg 5760 5820 acctggaagg ccagaaaggg tacatgtggg agacggtctg aggaagtacc tcggtcacta 5880 caatattttt gcacatataa agggttgggg aggaaagaga cacaaacgta tttaacacag

attt	gct	gga t	ggaa	gctg	gc gt	gtgt	gaac	gtg	gtgta	atga	gtga	gtgo	at 1	tttga	attttt	5940
tttt	tttt	tt t	ttgc	cacag	gt ta	agag	jaaaa	aat	caaa	ıcaa	gcaç	gaaaa	aa a	aaaag	gaaaaa	6000
agad	cttat	ca d	ggt										,			6014
<210 <211 <212 <213	L> 8 2> I	L66 317 PRT Homo	sapi	ens												
<400)>]	L66														
Met 1	Lys	Gln	Cys	Val 5	Arg	Leu	Thr	Val	His 10	Pro	Asn	Asn	Ile	Ser 15	Val	
Ser	Gln	Tyr	Asn 20	Val	Leu	Leu	Val	Leu 25	Glu	Thr	Tyr	Asn	Val 30	Pro	Glu	
Leu	Ser	Ala 35	Gly	Val	Asn	Cys	Thr 40	Phe	Glu	Asp	Leu	Ser 45	Glu	Met	Asp	
Gly	Leu 50	Val	Val	Gly	Asn	Gln 55	Ile	Gln	Cys	Tyr	Ser 60	Pro	Ala	Ala	Lys	
Glu 65	Val	Pro	Arg	Ile	Ile 70	Thr	Glu	Asn	Gly	Asp 75	His	His	Val	Val	Gln 80	
Leu	Gln	Leu	Lys	Ser 85	Lys	Glu	Thr	Gly	Met 90	Thr	Phe	Ala	Ser	Thr 95	Ser	
Phe	Val	Phe	Tyr 100	Asn	Cys	Ser	Val	His 105	Asn	Ser	Cys	Leu	Ser 110	Cys	Val	
Glu	Ser	Pro 115	Tyr	Arg	Cys	His	Trp 120	Cys	Lys	Tyr	Arg	His 125	Val	Cys	Thr	
His	Asp 130	Pro	Lys	Thr	Cys	Ser 135	Phe	Gln	Glu	Gly	Arg 140	Val	Lys	Leu	Pro	
Glu 145	Asp	Cys	Pro	Gln	Leu 150	Leu	Arg	Val	Asp	Lys 155	Ile	Leu	Val	Pro	Val 160	
Glu	Val	Ile	Lys	Pro 165	Ile	Thr	Leu	Lys	Ala 170	Lys	Asn	Leu	Pro	Gln 175	Pro	
Gln	Ser	Gly	Gln 180	Arg	Gly	Tyr	Glu	Cys 185	Ile	Leu	Asn	Ile	Gln 190	Gly	Ser	

Glu Gl	ın Arg 195		Pro	Ala	Leu	Arg 200	Phe	Asn	Ser	Ser	Ser 205	Val	Gln	Cys
Gln As		Ser	Tyr	Ser	Tyr 215	Glu	Gly	Met	Glu	Ile 220	Asn	Asn	Leu	Pro
Val G] 225	lu Leu	Thr	Val	Val 230	Trp	Asn	Gly	His	Phe 235	Asn	Ile	Asp	Asn	Pro 240
Ala Gl	ln Asn	Lys	Val 245	His	Leu	Tyr	Lys	Cys 250	Gly	Ala	Met	Arg	Glu 255	Ser
Cys G	ly Leu	Cys 260	Leu	Lys	Ala	Asp	Pro 265	Asp	Phe	Ala		Gly 270	Trp	Cys
Gln G	ly Pro 275		Gln	Cys	Thr	Leu 280	Arg	Gln	His	Cys	Pro 285	Ala	Gln	Glu
Ser Gl	_	Leu	Glu	Leu	Ser 295	Gly	Ala	Lys	Ser	Lys 300	Cys	Thr	Asn	Pro
Arg I] 305	le Thr	Glu	Ile	Ile 310	Pro	Val	Thr	Gly	Pro 315	Arg	Glu	Gly	Gly	Thr 320
Lys Va	al Thr	Ile	Arg 325	Gly	Glu	Asn	Leu	Gly 330	Leu	Glu	Phe	Arg	Asp 335	Ile
Ala Se	er His	Val 340	Lys	Val	Ala	Gly	Val 345	Glu	Cys	Ser	Pro	Leu 350	Val	Asp
Gly Ty	r Ile 355		Ala	Glu	Gln	Ile 360	Val	Cys	Glu	Met	Gly 365	Glu	Ala	Lys
Pro Se		His	Ala	Gly	Phe 375	Val	Glu	Ile	Cys	Val 380	Ala	Val	Cys	Arg
Pro GI 385	lu Phe	Met	Ala	Arg 390	Ser	Ser	Gln	Leu	Tyr 395	Tyr	Phe	Met	Thr	Leu 400
Thr Le	eu Ser	Asp	Leu 405	Lys	Pro	Ser	Arg	Gly 410	Pro	Met	Ser	Gly	Gly 415	Thr
Gln Va	al Thr	Ile 420	Thr	Gly	Thr	Asn	425	Asn Page		Gly	Ser	Asn 430	Val	Val
								-						

Val	Met	Phe 435	Gly	Lys	Gln	Pro	Cys 440	Leu	Phe	His	Arg	Arg 445	Ser	Pro	Ser
Tyr	Ile 450	Val	Cys	Asn	Thr	Thr 455	Ser	Ser	Asp	Glu	Val 460	Leu	Glu	Met	Lys
Val 465	Ser	Val	Gln	Val	Asp 470	Arg	Ala	Lys	Ile	His 475	Gln	Asp	Leu	Val	Phe 480
Gln	Tyr	Val	Glu	Asp 485	Pro	Thr	Ile	Val	Arg 490	Ile	Glu	Pro	Glu	Trp 495	Ser
Ile	Val	Ser	Gly 500	Asn	Thr	Pro	Ile	Ala 505	Val	Trp	Gly	Thr	His 510	Leu	Asp
Leu	Ile	Gln 515	Asn	Pro	Gln	Ile	Arg 520	Ala	Lys	His	Gly	Gly 525	Lys	Glu	His
Ile	Asn 530	Ile	Cys	Glu	Val	Leu 535	Asn	Ala	Thr	Glu	Met 540	Thr	Cys	Gln	Ala
Pro 545	Ala	Leu	Ala	Leu	Gly 550	Pro	Asp	His	Gln	Ser 555	Asp	Leu	Thr	Glu	Arg 560
Pro	Glu	Glu	Phe	Gly 565	Phe	Ile	Leu	Asp	Asn 570	Val	Gln	Ser	Leu	Leu 575	Ile
Leu	Asn	Lys	Thr 580	Asn	Phe	Thr	Tyr	Tyr 585	Pro	Asn	Pro	Val	Phe 590	Glu	Ala
Phe	Gly	Pro 595	Ser	Gly	Ile	Leu	Glu 600	Leu	Lys	Pro	Gly	Thr 605	Pro	Ile	Ile
Leu	Lys 610	Gly	Lys	Asn	Leu	Ile 615	Pro	Pro	Val	Ala	Gly 620	Gly	Asn	Val	Lys
Leu 625	Asn	Tyr	Thr	Val	Leu 630	Val	Gly	Glu	Lys	Pro 635	Cys	Thr	Val	Thr	Val 640
Ser	Asp	Val	Gln	Leu 645	Leu	Cys	Glu	Ser	Pro 650	Asn	Leu	Ile	Gly	Arg 655	His
Lys	Val	Met	Ala 660	Arg	Val	Gly	Gly	665	Glu Page		Ser	Pro	Gly 670	Met	Val

.1

Tyr Ile Ala Pro Asp Ser Pro Leu Ser Leu Pro Ala Ile Val Ser Ile 675 680 685

Ala Val Ala Gly Gly Leu Leu Ile Ile Phe Ile Val Ala Val Leu Ile 690 695 700

Ala Tyr Lys Arg Lys Ser Arg Glu Ser Asp Leu Thr Leu Lys Arg Leu 705 710 715 720

Gln Met Gln Met Asp Asn Leu Glu Ser Arg Val Ala Leu Glu Cys Lys
725 730 735

Glu Gly Thr Glu Trp Pro His Ala Gly Gly His Val Cys Val Arg Val 740 745 750

Cys Ile Cys Val Cys Met His Ile Cys Val Cys Val Cys Ile Cys Phe 755 760 765

Ile Tyr Lys Gln Ala Gly Trp Ala Ala Val Gly Ser Ala Gly Gly Trp 770 775 780

Arg Cys Val Cys Leu Cys Glu Cys Val Cys Val His Val Cys Val Cys 785 790 795 800

Thr Ser Val Cys Ile Tyr Val Ser Tyr Thr Ser Lys Gln Ala Gly Gln 805 810 815

Gln

<210> 167

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 167

gcaccaaggt cactatccga g

<210> 168

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

21

<400> 168 tctgagagag tcagtgtcat g

21

1440

<210> 169 <211> 2565 <212> DNA

<213> Homo sapiens

<400> 169 actgcgacgg taccggggcg gcggggaagg accgagaggc gggaggagca gcggctcagg 60 120 cgcctgcaaa ctggtggcct gaacgaggta gaccatgact gtggtttcag tggcgtcact cgctgggctg ctcttcctga ggttttccta agccatcccc tggcggaacc gcccccagta 180 tggactccaa ttgccttgac agtgttttta gtggctgttg caacattatg taaagaacaa 240 300 ggaataacag ttgtaggaat ttgctgtgtg tatgaagtgt ttattgccca ggggtatact 360 ttgccattac tatgtactac tgctggacag tttctccgtg gaaagggtag cattccattt tctatgctgc agacactagt aaaactcatt gtcttgatgt tcagtacatt attacttgtt 420 gtgattagag tccaggttat tcaatcccaa cttccagtat tcaccaggtt tgataaccca 480 540 gctgctgtaa gcccaactcc tacaaggcaa ctaactttta actacctcct tcctgtgaat gcttggttgt tattaaatcc ttcagagctc tgctgtgatt ggaccatggg aacaatacca 600 cttatagagt cattactaga tattcgaaat ctggccacat ttactttctt ttgttttctg 660 720 gggatgttgg gagtattcag tatcagatac tctggtgatt cctccaagac tgttttaatg ttgcctgcta aaactgacat gggtcaaaaa tttgagaaaa gtagtgaaga ttcaaagcag 780 840 tcaagaagag tggaaggaac tttccagaga aacctagaaa tcccaaacag tcttaaggat aaatttgaac ttggtgctca tgcttttatg acagtattaa tctgttcagc tttgggactt 900 tctctagcag tgcgttgcca ctctgttgga tttgttgttg ccgagcgagt attatatgtt 960 cccagcatgg ggttctgtat tttggtagcc catggatggc agaaaatatc aacaaaagt 1020 1080 gtatttaaaa agctatcctg gatttgtctg tctatggtga tactcactca ttccttaaaa acattccaca gaaattggga ttgggagtct gaatatacat tgtttatgtc agccttgaag 1140 1200 gtaaataaaa ataatgccaa actttggaat aatgtgggtc atgctctgga aaatgaaaag 1260 aactttgaga gagctttgaa atacttctta caggctaccc atgttcagcc agatgatatt ggtgcccata tgaatgtagg aagaacttat aaaaatttaa atagaaccaa agaagctgaa 1320 1380 gaatettaca tgatggetaa ateaetgatg eetcaaatta tteetggtaa aaaatatgea

gccagaattg cccctaacca cctaaatgtt tatatcaatc tggctaacct gatccgagca

aatgagtccc gactggaaga	agcagatcag	ctgtaccgtc	aagcaataag	catgaggccc	1500
gacttcaagc aggcttacat	tagcagagga	gaattgcttt	taaaaatgaa	taaacctctt	1560
aaagcaaagg aagcatatct	taaagcacta	gagctggaca	gaaataatgc	agatctttgg	1620
tacaacttgg caattgtaca	tattgaactt	aaagaaccaa	atgaagccct	aaaaaacttt	1680
aatcgtgctc tggaactaaa	tccaaagcat	aaactagcat	tattcaactc	tgctatagta	1740
atgcaagaat caggtgaggt	taaactcaga	cctgaagcta	gaaaacgact	tctaagttat	1800
ataaatgaag agccactaga	tgctaatggg	tatttcaatt	tgggaatgct	tgccatggat	1860
gacaaaaagg acaatgaagc	agagatttgg	atgaagaaag	ccataaagtt	acaagccgac	1920
ttccgaagtg ctttgtttaa	tctggctctc	ctgtattccc	agactgcaaa	ggaattaaag	1980
gctttgccaa ttttggagga	gttactcaga	tactaccctg	atcatatcaa	gggcctcatt	2040
ttaaaaggag acattctgat	gaatcaaaag	aaagatatac	taggagcaaa	aaaatgtttt	2100
gaaaggattt tggagatgga	tccaagcaat	gtgcaaggaa	aacacaatct	ttgtgttgtt	2160
tattttgaag aaaaagactt	attaaaagct	gaaagatgcc	ttcttgaaac	actggcatta	2220
gcaccacatg aagaatatat	tcagcgccat	ttgaatatag	tcagggataa	gatttcctca	2280
tctagtttta tagagccaat	attcccaacc	agtaagattt	caagtgtgga	aggaaagaaa	2340
attccaactg aaagtgtaaa	agaaattaga	ggtgaatcca	gacaaacaca	aatagtaaaa	2400
acaagtgata ataaaagtca	gtctaaatcc	aacaaacaat	taggaaaaaa	tggagacgaa	2460
gagacacccc acaaaacaac	aaaagacatc	aaagaaattg	agaagaaaag	agttgctgct	2520
ttaaaaagac tagaagagat	tgaacgtatt	ttaaatggtg	aataa		2565

<211> 733 <212> PRT <213> Homo sapiens

<400> 170

Met Leu Gln Thr Leu Val Lys Leu Ile Val Leu Met Phe Ser Thr Leu 5 10

Leu Leu Val Val Ile Arg Val Gln Val Ile Gln Ser Gln Leu Pro Val 25 20

Phe Thr Arg Phe Asp Asn Pro Ala Ala Val Ser Pro Thr Pro Thr Arg 35 40

Gln Leu Thr Phe Asn Tyr Leu Leu Pro Val Asn Ala Trp Leu Leu 50 55

Asn 65	Pro	Ser	Glu	Leu	Cys 70	Cys	Asp	Trp	Thr	Met 75	Gly	Thr	Ile	Pro	Leu 80
Ile	Glu	Ser	Leu	Leu 85	Asp	Ile	Arg	Asn	Leu 90	Ala	Thr	Phe		Phe 95	Phe
Cys	Phe	Leu	Gly 100	Met	Leu	Gly	Val	Phe 105	Ser	Ile	Arg	Tyr	Ser 110		Asp
Ser	Ser	Lys 115	Thr	Val	Leu	Met	Leu 120	Pro	Ala	Lys	Thr	Asp 125	Met	Gly	Gln
Lys	Phe 130	Glu	Lys	Ser	Ser	Glu 135	Asp	Ser	Lys	Gln	Ser 140	Arg	Arg	Val	Glu
Gly 145	Thr	Phe	Gln	Arg	Asn 150	Leu	Glu	Ile	Pro	Asn 155	Ser	Leu	Lys	Asp	Lys 160
Phe	Glu	Leu	Gly	Ala 165	His	Ala	Phe	Met	Thr 170	Val	Leu	Ile	Cys	Ser 175	Ala
Leu	Gly	Leu	Ser 180	Leu	Ala	Val	Arg	Cys 185	His	Ser	Val	Gly	Phe 190	Val	Val
Ala	Glu	Arg 195	Val	Leu	Tyr	Val	Pro 200	Ser	Met	Gly	Phe	Cys 205	Ile	Leu	Val
Ala	His 210	Gly	Trp	Gln	Lys	Ile 215	Ser	Thr	Lys	Ser	Val 220	Phe	Lys	Lys	Leu
Ser 225	Trp	Ile	Cys		Ser 230		Val	Ile	Leu	Thr 235		Ser	Leu	Lys	Thr 240
Phe	His	Arg	Asn	Trp 245	Asp	Trp	Glu	Ser	Glu 250	Tyr	Thr	Leu	Phe	Met 255	Ser
Ala	Leu	Lys	Val 260	Asn	Lys	Asn	Asn	Ala 265	Lys	Leu	Trp	Asn	Asn 270	Val	Gly
His	Ala	Leu 275	Glu	Asn	Glu	Lys	Asn 280	Phe	Glu	Arg	Ala	Leu 285	Lys	Tyr	Phe
Leu	Gln 290	Ala	Thr	His	Val	Gln 295	Pro		Asp Page		Gly 300	Ala	His	Met	Asn

Val 305	Gly	Arg	Thr	Tyr	Lys 310	Asn	Leu	Asn	Arg	Thr 315	Lys	Glu	Ala	Glu	Glu 320
Ser	Tyr	Met	Met	Ala 325	Lys	Ser	Leu	Met	Pro 330	Gln	Ile	Ile	Pro	Gly 335	Lys
Lys	Tyr	Ala	Ala 340	Arg	Ile	Ala	Pro	Asn 345	His	Leu	Asn	Val	Tyr 350	Ile	Asn
Leu	Ala	Asn 355	Leu	Ile	Arg	Ala	Asn 360	Glu	Ser	Arg	Leu	Glu 365	Glu	Ala	Asp
Gln	Leu 370	Tyr	Arg	Gln	Ala	Ile 375	Ser	Met	Arg	Pro	Asp 380	Phe	Lys	Gln	Ala
Tyr 385	Ile	Ser	Arg	Gly	Glu 390	Leu	Leu	Leu	Lys	Met 395	Asn	Lys	Pro	Leu	Lys 400
Ala	Lys	Glu	Ala	Tyr 405	Leu	Lys	Ala	Leu	Glu 410	Leu	Asp	Arg	Asn	Asn 415	Ala
Asp	Leu	Trp	Tyr 420	Asn	Leu	Ala	Ile	Val 425	His	Ile	Glu	Leu	Lys 430	Glu	Pro
Asn	Glu	Ala 435	Leu	Lys	Asn	Phe	Asn 440	Arg	Ala	Leu	Glu	Leu 445	Asn	Pro	Lys
His	Lys 450	Leu	Ala	Leu	Phe	Asn 455	Ser	Ala	Ile	Val	Met 460	Gln	Glu	Ser	Gly
Glu 465	Val	Lys	Leu	Arg	Pro 470	Glu	Ala	Arg	Lys	Arg 475	Leu	Leu	Ser	Tyr	Ile 480
Asn	Glu	Glu	Pro	Leu 485	Asp	Ala	Asn	Gly	Tyr 490	Phe	Asn	Leu	Gly	Met 495	Leu
Ala	Met	Asp	Asp 500	Lys	Lys	Asp	Asn	Glu 505	Ala	Glu	Ile	Trp	Met 510	Lys	Lys
Ala	Ile	Lys 515	Leu	Gln	Ala	Asp	Phe 520	Arg	Ser	Ala	Leu	Phe 525	Asn	Leu	Ala
Leu	Leu 530	Tyr	Ser	Gln	Thr	Ala 535	Lys		Leu Page		Ala 540	Leu	Pro	Ile	Leu

Glu Glu Leu Leu Arg Tyr Tyr Pro Asp His Ile Lys Gly Leu Ile Leu 545 550 555 560

Lys Gly Asp Ile Leu Met Asn Gln Lys Lys Asp Ile Leu Gly Ala Lys 565 570 575

Lys Cys Phe Glu Arg Ile Leu Glu Met Asp Pro Ser Asn Val Gln Gly 580 585 590

Lys His Asn Leu Cys Val Val Tyr Phe Glu Glu Lys Asp Leu Leu Lys 595 600 605

Ala Glu Arg Cys Leu Leu Glu Thr Leu Ala Leu Ala Pro His Glu Glu 610 620

Tyr Ile Gln Arg His Leu Asn Ile Val Arg Asp Lys Ile Ser Ser Ser 625 630 635 640

Ser Phe Ile Glu Pro Ile Phe Pro Thr Ser Lys Ile Ser Ser Val Glu 645 650 655

Gly Lys Lys Ile Pro Thr Glu Ser Val Lys Glu Ile Arg Gly Glu Ser 660 665 670

Arg Gln Thr Gln Ile Val Lys Thr Ser Asp Asn Lys Ser Gln Ser Lys 675 680 685

Ser Asn Lys Gln Leu Gly Lys Asn Gly Asp Glu Glu Thr Pro His Lys 690 695 700

Thr Thr Lys Asp Ile Lys Glu Ile Glu Lys Lys Arg Val Ala Ala Leu 705 710 715 720

Lys Arg Leu Glu Glu Ile Glu Arg Ile Leu Asn Gly Glu
725 730

<210> 171

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 171

aggcttacat tagcagagga g

```
<210>
      172
<211>
       21
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 172
                                                                       21
cgttttctag cttcaggtct g
<210>
       173
<211>
       3296
<212>
       DNA
<213> Homo sapiens
<400> 173
                                                                       60
tqaattcaaa acagttactc tgaatggtct ttgctaagaa caatttaatg attaagtaag
gtcagtgtcc ttggaagtcc aaactctagc cagatttccc tggtctacac ccctagggat
                                                                      120
aaggtaaatg tttaagcaca cagtgaactt cctgaggccc ccaaatctaa tggaactagc
                                                                      180
tattgagggc taaaagagga tggttttttt agaaaactcg aagcaaatct ctcaggctgg
                                                                      240
                                                                      300
ggatatttca aagactacta ctattattat taataacaat tgcaatattt gttgagtccc
taaatgaagc taaaactttg ttctaataaa tttaatcttt acagcaacct atgaggtaga
                                                                      360
                                                                      420
taatattqtc attcccatga gggagctaag gatcagagaa ggtaagtcac ttgtctaagg
tcacatagct agcatgttat gcaatcagga gtcaaacctg gtttgtctga atctgaagtc
                                                                      480
catctgctct gtgcactttt ataccgtctg ctttttcctt tattcctaac cttcttccat
                                                                      540
tctgattccc actgagtagt ggacaggaac cactgaagtt tgcctgacac catcaaccag
                                                                      600
gccctagtca cctggctttg cctttgccct gctgtgtgat cttagctccc tgcccaggcc
                                                                      660
cacagocatg gocatggood agaaactcag coacctcotg cogagtotgo ggcaggtoat
                                                                      720
                                                                      780
ccaggagcct cagctatctc tgcagccaga gcctgtcttc acggtggatc gagctgaggt
                                                                      840
geogeogete ttetggaage egtacateta tgegggetae eggeegetge ateagacetg
                                                                      900
qcqcttctat ttccqcacgc tgttccagca gcacaacgag gccgtgaatg tctggaccca
                                                                      960
cctgctggcg gccctggtac tgctgctgcg gctggccctc tttgtggaga ccgtggactt
ctggggagac ccacacgece tgeceetett cateattgte ettgeetett teacetacet
                                                                     1020
                                                                     1080
ctccttcagt gccttggctc acctcctgca ggccaagtct gagttctggc attacagctt
cttcttcctg gactatgtgg gggtggccgt gtaccagttt ggcagtgcct tggcacactt
                                                                     1140
```

1200

ctactatgct atcgagcccg cctggcatgc ccaggtgcag gctgtttttc tgcccatggc

tgcctttctc gcctggcttt	cctgcattgg	ctcctgctat	aacaagtaca	tccagaaacc	1260
aggcctgctg ggccgcacat	gccaggaggt	gccctccgtc	ctggcctacg	'cactggacat	1320
tagtcctgtg gtgcatcgta	tcttcgtgtc	ctccgacccc	accacggatg	atccagctct	1380
tctctaccac aagtgccagg	tggtcttctt	tctgctggct	gctgccttct	tctctacctt	1440
catgcccgag cgctggttcc	ctggcagctg	ccatgtcttc	gggcagggcc	accaactttt	1500
ccacatcttc ttggtgctgt	gcacgctggc	tcagctggag	gctgtggcac	tggactatga	1560
ggcccgacgg cccatctatg	agcctctgca	cacgcactgg	cctcacaact	tttctggcct	1620
cttcctgctc acggtgggca	gcagcatcct	cactgcattc	ctcctgagcc	agctggtaca	1680
gcgcaaactt gatcagaaga	ccaagtgaag	ggggatggca	tctggtaggg	agggaggtat	1740
agttggggga caggggtctg	ggtttggctc	caggtgggaa	caaggcctgg	taaagttgtt	1800
tgtgtctggc ccacagtgac	tctctgtgca	cgactcaact	gccaagggca	tcactggcca	1860
attcttggat ttagggattg	gctaggagtt	gctggggtcc	actcctgggc	ctgccccagc	1920
teettgeeca gggagaggga	aagagttaac	ggtgtgggcc	actccagctt	gcccttccac	1980
tgccactcac tggggtgagg	ctgggggtca	gcttggtgag	gattggggct	tctagattgt	2040
ctaggcagga ggtgaaactt	aggccagagt	cagatttgag	ctgagccagg	ggaggccttg	2100
gcaacctact tctactcaga	tttcattgct	ggatgcggaa	ggggtaggcc	caaaatatat	2160
acaggatett actgteeett	gaagcccagc	cacaagtgtt	ggagctgcag	agagacccca	2220
aaggtagtag attgtgccag	atacaaatgg	gtcccatcca	gtgcttcata	ctccttcagt	2280
cactatccca gacagtgagc	cccagatctc	ctagctctgg	cttctgtgtc	ccacacggcc	2340
tgttcccagc ttctctcctg	gttcccttgt	tacggattca	tttatccatt	cagtgtttcc	2400
tgggcctctg ctcagaggca	ggtcaccact	gggccctgtg	gatcaatgca	agatgacaaa	2460
ggctttttt tttttttt	tttttttt	ttttgaggag	tttcgctctt	gttggctagg	2520
ctggagtaaa atggtgcgat	ctcggctcac	tgcacctccg	cctcccaggt	tcaagcgatt	2580
ttcctgcctc agcctcccga	gtagctgggg	ttacaggcat	gcaccaccat	gcctggctaa	2640
ttttctgtat ttttagtaga	gacggggttt	ctccatgttg	gtcaggctgg	tcttgaactc	2700
ctgacctcag gtgatctgcc	cgtctcggcc	tcccaaagtg	ctgggattac	cggcatgagc	2760
cactgcgcct ggccgacaaa	ggctttgata	tcagaatgaa	ctgtcaaggg	aggtgctgga	2820
gagggattaa cctgtgctgc	ctgggaccct	cagggtctta	ggttggggag	tgtgaatagg	2880
agtttgcaga tggagaatag	gaagggcatt	ccaggcagag	ggaaacctgt	gcagagacca	2940
agaggtgtgg aaggaaaagt	ggggttgggg	ctgggtggtc	tggattatgg	cctggatgca	3000

ataaagtact	gtgacagtag	ccacctcttt	gttttttgtc	tcctgtttcc	gggaggggcc	3060
cctgctcaca	ttactggagg	ttttccggag	gaagctgggg	cccctgggag	tggacacagg	3120
gtgcagggag	cagttcttgt	tttatctttg	ctgggggatg	gggttggggc	cttatatacc	3180
atatctatat	atacaaaatt	tgtttggcaa	gggagtgggc	ggcagtttta	ttactaaagt	3240
tttataagta	gttaaaataa	tgtgtttaaa	atatgataat	cccactttat	gatctg	3296

<211> 346

<212> PRT

<213> Homo sapiens

<400> 174

Met Ala Met Ala Gln Lys Leu Ser His Leu Leu Pro Ser Leu Arg Gln 1 5 10 15

Val Ile Gln Glu Pro Gln Leu Ser Leu Gln Pro Glu Pro Val Phe Thr
20 25 30

Val Asp Arg Ala Glu Val Pro Pro Leu Phe Trp Lys Pro Tyr Ile Tyr 35 40 45

Ala Gly Tyr Arg Pro Leu His Gln Thr Trp Arg Phe Tyr Phe Arg Thr 50 55 60

Leu Phe Gln Gln His Asn Glu Ala Val Asn Val Trp Thr His Leu Leu 65 70 75 80

Ala Ala Leu Val Leu Leu Leu Arg Leu Ala Leu Phe Val Glu Thr Val
85 90 95

Asp Phe Trp Gly Asp Pro His Ala Leu Pro Leu Phe Ile Ile Val Leu 100 105 110

Ala Ser Phe Thr Tyr Leu Ser Phe Ser Ala Leu Ala His Leu Leu Gln
115 120 125

Ala Lys Ser Glu Phe Trp His Tyr Ser Phe Phe Leu Asp Tyr Val 130 135 140

Gly Val Ala Val Tyr Gln Phe Gly Ser Ala Leu Ala His Phe Tyr Tyr 145 150 155 160

Ala Ile Glu Pro Ala Trp His Ala Gln Val Gln Ala Val Phe Leu Pro 165 170 175

Met	Ala	Ala	Phe 180	Leu	Ala	Trp	Leu	Ser 185	Cys	Ile	Gly	Ser	Cys 190	Tyr	Asn		
Lys	Tyr	Ile 195	Gln	Lys	Pro	Gly	Leu 200	Leu	Gly	Arg	Thr	Cys 205	Gln	Glu	Val		
Pro	Ser 210	Val	Leu	Ala	Tyr	Ala 215	Leu	Asp	Ile	Ser	Pro 220	Val	Val	His	Arg		
Ile 225	Phe	Val	Ser	Ser	Asp 230	Pro	Thr	Thr	Asp	Asp 235	Pro	Ala	Leu	Leu	Tyr 240		
His	Lys	Cys	Gln	Val 245	Val	Phe	Phe	Leu	Leu 250	Ala	Ala	Ala	Phe	Phe 255	Ser		
Thr	Phe	Met	Pro 260	Glu	Arg	Trp	Phe	Pro 265	Gly	Ser	Cys	His	Val 270	Phe	Gly		
Gln	Gly	His 275	Gln	Leu	Phe	His	Ile 280	Phe	Leu	Val	Leu	Cys 285	Thr	Leu	Ala		
Gln	Leu 290	Glu	Ala	Val	Ala	Leu 295	Asp	Tyr	Glu	Ala	Arg 300	Arg	Pro	Ile	Tyr		
Glu 305	Pro	Leu	His	Thr	His 310	Trp	Pro	His	Asn	Phe 315	Ser	Gly	Leu	Phe	Leu 320		
Leu	Thr	Val	Gly	Ser 325	Ser	Ile	Leu	Thr	Ala 330	Phe	Leu	Leu	Ser	Gln 335	Leu		
Val	Gln	Arg	Lys 340	Leu	Asp	Gln	Lys	Thr 345	Lys								
<21: <21: <21: <21:	1> 2 2> 1	175 2858 DNA Homo	sap:	iens													
<40 agt	• •	175 ggg (aagca	aaag	ca ca	agga	geget	t gt	ggtg	ccag	cgg	ccgg	gct a	aggga	acgact		60
ggc	gggti	ttg (cgct	ggac	ec ga	accc	cgag	g gc	gggc	gcaa	gggg	ggcg	ggc (gctgo	ccgtac	1	.20
tca	ggcc	gcg (gggc	cagg	gc gg	ggcc	ggcc	g gc	3333	catt	taaa	accc	ege '	tgaca	agccag	1	.80
tcc	agcc	cgg (gaca	cgcg	CC C	agcto	ctgta	a gc	ctcci	ccg	tcga	actca	agc (cttag	ggtacc	2	24(

ggtcaggcaa aatgcggtcc tccctggctc cgggagtctg gttcttccgg gccttctcca 300 gggacagetg gttccgagge ctcatectge tgctgacett cetaatttae geetgetate 360 acatgtccag gaagcctatc agtatcgtca agagccgtct gcaccagaac tgctcggagc 420 480 agatcaaacc catcaatgat actcacagtc tcaatgacac catgtggtgc agctgggccc 540 catttgacaa ggacaactat aaggagttac tagggggcgt ggacaacgcc ttcctcatcg 600 cctatgccat cggcatgttc atcagtgggg tttttgggga gcggcttccg ctccgttact acctctcage tggaatgetg ctcagtggee ttttcaecte getetttgge etgggatatt 660 720 tctggaacat ccacgagete tggtaetttg tggteateea ggtetgtaat ggaetegtee 780 agaccacagg ctggccctct gtggtgacct gtgttggcaa ctggttcggg aaggggaagc 840 gggggttcat catgggcatc tggaattccc acacatctgt gggcaacatc ctgggctccc 900 tgatcgccgg catctgggtg aacgggcagt ggggcctgtc gttcatcgtg cctggcatca 960 ttactgccgt catgggcgtc atcaccttcc tcttcctcat cgaacaccca gaagatgtgg 1020 actgcgcccc tcctcagcac cacggtgagc cagctgagaa ccaggacaac cctgaggacc 1080 ctgggaacag tccctgctct atcagggaga gcggccttga gactgtggcc aaatgctcca 1140 aggggccatg cgaagagcct gctgccatca gcttctttgg ggcgctccgg atcccaggcg 1200 tggtcgagtt ctctctgtgt ctgctgtttg ccaagctggt cagttacacc ttcctctact ggctgccct ctacatcgcc aatgtggctc actttagtgc caaggaggct ggggacctgt 1260 1320 ctacactctt cgatgttggt ggcatcatag gcggcatcgt ggcagggctc gtctctgact 1380 acaccaatgg cagggccacc acttgctgtg tcatgctcat cttggctgcc cccatgatgt 1440 tcctgtacaa ctacattggc caggacggga ttgccagctc catagtgatg ctgatcatct gtgggggcct ggtcaatggc ccatacgcgc tcatcaccac tgctgtctct gctgatctgg 1500 ggactcacaa gagcctgaag ggcaacgcca aagccctgtc cacggtcacg gccatcattg 1560 1620 acggcaccgg ctccataggt gcggctctgg ggcctctgct ggctgggctc atctccccca cgggctggaa caatgtcttc tacatgctca tctctgccga cgtcctagcc tgcttgctcc 1680 tttgccggtt agtatacaaa gagatcttgg cctggaaggt gtccctgagc agaggcagcg 1740 ggtataaaga aatatgaggc cccaattgga acagcagcat ggagggtccc agttgggtcc 1800 1860 ccaacgtgct ccccatgggc aagacaatgg aaacttccac aagcagggaa ggcaaaccct ctttattgaa cattagccag cccagcccag accccagggc tgcctaagga cacagagatt 1920 1980 ctccatggga aggggactgc caagcatgag gaaatagaag attcaggggc ctgagctctg gaagctgcaa gcaaaaggga tgggactagg gctgagttgt gtctccattt tgataaggaa 2040 aggatatqct cagactcttq cttqttcaga ttccaagaca gaaggcttca caaggccaac 2100 qcctqqaaaa tgggcatctc tccttcccat gttaagcttt aacctctgta atctgcctgt 2160 atctataggt gggcatctca ctccaccaaa ggagcccagc ctctctttgt ccctctatcc 2220 atgcaacagt cttctctgtg catttcccca agctgggccc tcttctactc tccatttagg 2280 cctgttgata actccattac ccgcccatca ctgctgttcc tccagggcca gcactcgggc 2340 gaggcagggg agctgccttc ggtacataat ttgaaggggc actccctctt gggcacatgc 2400 2460 eggeeetgag tgeeteeett geeteactet gateetggee ecataatgte eteagtggaa ggtgatgggg gccggtgctg tggggagagt agaaagaggg gttggcatga ctaaaaatac 2520 caqtatqtqt attaaqtatt ttqaqaatga aatgccaagg agtgcctact atatgccagc 2580 tctaggaatg gagtagacag tggacacaag aaggacttac gccctgagca caggtgccaa 2640 tggtgacaag actggcaaga cgtgagggca tgaatggttc attcaggcag ctgctgcaga 2700 tgtggtcacc tggtgccatc tgctgctccc ttttccactt ttctatgtcc tccttccacc 2760 ccaaqtcccq gatcactcgc tgttttctgg ctagetcttg gcatctccat ctgagectaa 2820 2858 agttqcccac tqgcaccaat agattctgtt tgacctgc

<210> 176

<211> 501

<212> PRT

<213> Homo sapiens

<400> 176

Met Arg Ser Ser Leu Ala Pro Gly Val Trp Phe Phe Arg Ala Phe Ser 1 5 10 15

Arg Asp Ser Trp Phe Arg Gly Leu Ile Leu Leu Leu Thr Phe Leu Ile 20 25 30

Tyr Ala Cys Tyr His Met Ser Arg Lys Pro Ile Ser Ile Val Lys Ser 35 40 45

Arg Leu His Gln Asn Cys Ser Glu Gln Ile Lys Pro Ile Asn Asp Thr 50 55 60

His Ser Leu Asn Asp Thr Met Trp Cys Ser Trp Ala Pro Phe Asp Lys 65 70 75 80

Asp Asn Tyr Lys Glu Leu Leu Gly Gly Val Asp Asn Ala Phe Leu Ile 85 90 95

Ala Tyr Al	a Ile Gly 100	Met Phe		Ser Gly 105	Val Phe		Glu Arg 110	Leu
Pro Leu Ar 11		Leu Ser	Ala 0	Gly Met	Leu Leu	Ser (Gly Leu	Phe
Thr Ser Le	u Phe Gly	Leu Gly 135		Phe Trp	Asn Ile 140	His (Glu Leu	Trp
Tyr Phe Va	l Val Ile	Gln Val 150	Cys A	Asn Gly	Leu Val 155	Gln '	Thr Thr	Gly 160
Trp Pro Se	r Val Val 165	_	Val (Gly Asn 170	Trp Phe	Gly :	Lys Gly 175	
Arg Gly Ph	e Ile Met 180	Gly Ile		Asn Ser 185	His Thr		Val Gly 190	Asn
Ile Leu Gl	-	Ile Ala	Gly 1	Ile Trp	Val Asn	Gly (Gln Trp	Gly
Leu Ser Ph	e Ile Val	Pro Gly 215		Ile Thr	Ala Val 220	Met (Gly Val	Ile
Thr Phe Le	u Phe Leu	Ile Glu 230	His I	Pro Glu	Asp Val 235	Asp (Cys Ala	Pro 240
Pro Gln Hi	s His Gly 245		Ala G	Glu Asn 250	Gln Asp	Asn :	Pro Glu 255	
Pro Gly As	n Ser Pro 260				Ser Gly		Glu Thr 270	Val
Ala Lys Cy 27	_	Gly Pro	Cys (Glu Glu	Pro Ala	Ala : 285	Ile Ser	Phe
Phe Gly Al 290	a Leu Arg	Ile Pro 295		Val Val	Glu Phe 300	Ser :	Leu Cys	Leu
Leu Phe Al	a Lys Leu	Val Ser 310	Tyr 1	Thr Phe	Leu Tyr 315	Trp	Leu Pro	Leu 320
Tyr Ile Al	a Asn Val 325		Phe S	Ser Ala 330	Lys Glu	Ala	Gly Asp 335	

Ser Thr Leu Phe Asp Val Gly Gly Ile Ile Gly Gly Ile Val Ala Gly Leu Val Ser Asp Tyr Thr Asn Gly Arg Ala Thr Thr Cys Cys Val Met Leu Ile Leu Ala Ala Pro Met Met Phe Leu Tyr Asn Tyr Ile Gly Gln 375 Asp Gly Ile Ala Ser Ser Ile Val Met Leu Ile Ile Cys Gly Gly Leu 390 395 Val Asn Gly Pro Tyr Ala Leu Ile Thr Thr Ala Val Ser Ala Asp Leu 405 Gly Thr His Lys Ser Leu Lys Gly Asn Ala Lys Ala Leu Ser Thr Val 425 Thr Ala Ile Ile Asp Gly Thr Gly Ser Ile Gly Ala Ala Leu Gly Pro Leu Leu Ala Gly Leu Ile Ser Pro Thr Gly Trp Asn Asn Val Phe Tyr 450 Met Leu Ile Ser Ala Asp Val Leu Ala Cys Leu Leu Cys Arg Leu 465 470 Val Tyr Lys Glu Ile Leu Ala Trp Lys Val Ser Leu Ser Arg Gly Ser Gly Tyr Lys Glu Ile 500 <210> 177 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 177 tctacatcgc caatgtggct c <210> 178 <211> 21 <212> DNA

Page 157

<213> Artificial Sequence

21

<220>	
<400> 178 cagatgatca gcatcactat g	21
<210> 179 <211> 4892 <212> DNA <213> Homo sapiens	
<400> 179 atagaaacct taaaagggca acacaaagtt ttgaatagaa gaggccaagc agcctc	gece 60
agaagctgat gtttgtgaat gtactgggcc ttctaaagcg gcgcttcaca cacctt	ttca 120
cttcttggca caggtaggaa aggatgatat tacaagggtc aaaatggggg taaaca	gaag 180
aggetgetee tgeagaagge tteetgeaga ageeettgea ettggaggge tgggaa	gacc 240
catgctgtat ctgcatccct gtcattcgtt tcacggcatc cagttgggaa gctctg	ctta 300
aagetttgte tggeaegttt tettagetae attttteeae teeagetgag actgee	tcac 360
tgagttgtca acacttggtc ttcttcagca gtgaggaacc aacaagacag gaggct	gggt 420
caatactcaa cttggcaaac tccaggaaat ggtgcttaaa acgtttggct tcttga	atgg 480
aattcatggt actgctccca gcctgcacct gggttctcca acttgagaca atttct	ccc 540
gcatcccccc accettccct ggctttcact cactagcaag tgggctgctt ctactt	tctt 600
teteacatte atttettagg teeattetea gageggttag gattactgtt taattag	gcct 660
cataatcata totatgatgg caaaatcaag aaacaattta aacatgatto ttaaaa	gtaa 720
ggagataaat accagagaca tagaaggtga aagaatttgc ctctaggaag caggaa	ttta 780
aatttgggga agacagggtg gagcaaggga tataaatcta gtccattttt cttttc	tttt 840
cttttctttt ttttttattt ttaagataga gtctcactct gtcgcccagg ctggag	tgca 900
gtggcatgat cttggctcac tgcaacctct gcctccttcg ttcaagcgat tctccc	acct 960
cagcctccct agtaactggg attacaagtg actgccacta tgcccagcta attttg	tatt 1020
tttagtagag acgaggtttc accatgttgg ccaggctggt ctcgaactcc tgacct	cagg 1080
ggatccgccc agctcagcct cccaaagtgc taggattcca ggcgtgagcc actgca	cctg 1140
gcggaatcta gtccattttc cactttgcta ccacacatct gcagggtttc ttgctt	gctt 1200
aaaagettte attggeteee aatetetgat aatateaaga geaagtteet gaacaa	ctca 1260
ttcaagaccc atcacccctc gcatctgtca actctgcccc ttgaatatta cacctc	attt 1320
tactacacca catctagttc cctgaatatg caaacagatt tcatacattt gcacct	ttat 1380

acatgttatt gcttttgcct gggagagtat tctcttgctg ctataataat agctaatgac 1440 1500 actgtgctaa gtactttctg tgatttataa ctgttaattc ttacatcaac cctatggtaa 1560 atgttactgt tatctccatt ttataaacaa gaaaactaag acttaaagag tttaagtgat ttgcagaaat atgtagtatt tggtgaggct aaatttgaac ccagcaatct gactccagga 1620 1680 ctaacataat attacctatt catccttcta aaatgtttcc cagacactaa atttgaacag 1740 gattaaaaga tttaaatgtt tttaagtctt aaaagggcaa ggagaaaata caagtgaatt gcttttaatc tcaaactaag catgaaacaa cggctgaaat tacaaaggaa aagtgacaga 1800 1860 tctgactgtt gaacttttaa cttcttttat ccaaaaaaaa accccataga ataaaattta aaaacaagta aaaattacaa aaaatttgca atatacatga cagataagca taacattaaa 1920 gagaacttag aaagaaaaaa tagcctacta aaaatgagca aaatgcaaat tcgtcatcat 1980 2040 gagagaaaaa tgtaaatggc caaacatttt taagagaagt aaaaacttaa aacgataatg 2100 caccatcaaa ttgagaataa aataatactc agagctagta atttgggcca gtgacccttg gagtaggatg tatagcaact aaagaaactc atacattact gagaagggtg taaattggct 2160 caacgattct ggagagcaat ttgacagaat gtagtgaaag cgtcaaaaat gttcacacac 2220 tttgacttaa aaattacatt cctggaaatt tataatacaa acattttcta taaaaggtca 2280 gatggcaaat actttgggct ttgaaggcca catatgtctc tgtggctttt cttttgtgtg 2340 tgtgtttaaa aaaaaaaaa actgcccccc ctccccccac ccttgttagg ccattcttgc 2400 2460 attactataa agaaatacct gaggctggtt aatttatatg aaaagaggtt taactggctc 2520 atggttctgc aggctgtaca ggaagcataa tgccatctgc ttctgggggg gcctcaggaa gcttccaatc atgctggaag gtgatgggga gcagatgtct cacatggtga gaacgggagc 2580 aagaaggagt tgggggggag gagccacata aacaatgaga tccctgtgag ctcagagtga 2640 gagcacactt atcaccaagg agatggccca agctattcat gagggatccg cccctatgat 2700 ccaaacacct cccaccaggc tccacctcca acactggaga ttatatctca acatgaaatt 2760 tgaatgggac atccaaactg tatcaccccc aaaatgtaaa gtctcatcac agtacatttg 2820 2880 gtaatggcca aaagagaaac caaactaaat gtccgagaat aaaaattagt tacaactaga 2940 tacacggagg caagttttta aaaagtgtta aaattttaaa atgttgcaga atggtatcta 3000 ttggataaaa tagtatttat gatttattaa gtggaaaata cagtttacaa aataatatgg 3060 tgtgatcccg aaaacaacat aatcatgtgt gtataaatgc atagaaaaaa atctggaaag atataaacag atatttatag tggtctaggg caggggatgg aattgtagat atttgctttt 3120 tgttttatgt atatgtttcc cataatgaaa tgtattgttt atataattaa aaaatatacg 3180

3240 aaactttgct tgggggacaa caaagcacct catttgttaa tttgggaaaa tcttttatta 3300 caatctctgt aaggagttgg ttgctctctc ttctgtactc cctgattaca taatgctctt 3360 ctgagcactt ttatttaata gcagaatggt tgatatcatt atttagttaa ggtttcctct 3420 attatcgaac atctgagttc ccagtacact agtctcccct tatctgtggt tttgcttcca aggtttcagt tatgatcaac caagatctga aaatattaaa tgaaaaattc cagaaataaa 3480 acaattcata agttttacat tgtgcaccat cctgctgtat cctgtccagg ccatgggtca 3540 3600 tecetettgt teagtgtgte caeactgtag atgeteceet gtetgttagt caetttgtag 3660 ttggcttggt tgtcagacct actgtcaagg tattgcagta cttatgtcca agtaacactt atttaactta ataatggccc ctaaacacaa gagtagtaat gttggcaatt tgggtatgcc 3720 3780 aaagaaaagt cataaagtgc ttcttttaag tgaaaaccca aaagtttttg aattagtaag 3840 qaaagaaaaa aatccatatg ctgaggtcgc taagatctat gataagaatg aatcttctac 3900 ctgtgaaatt gtgaaggaaa aagaaattca cgttagtttt gctgttgtac ctcaaactgc aaaagttatg gccacagtgt ataactttta ttaaaatata tttgtataac tgttcttatt 3960 ttacttttct gttttatttt tagagacagg gcttcattct gtcacccagg ctggagtgca 4020 aaggtgcaat catagctcac tgcagcctca aactctttgg ctcaagtgat cttcctgcct 4080 4140 cagcetecca agtagetggg actgeaggtg tgeateacta egeceageta atttttaat 4200 tttttgtgca gatggagtct gactctgttg cccaggaact cctggcctca agtaatcctc 4260 ccgcctcggt tttccaaaga gctgggatta caggcatgag ccactgtgcc tggctattct 4320 attitattag cagtaattgt tgttaatctc ttattgtgcc ttatttatat taataactta 4380 atcatagata gatatgtata ggaaaaaaca ttgtatataa agggttcagt actatctgca 4440 gtttcagata tccatgaggg gtcttgaaac gtatccccca caggtaaggg gggacttgta tttctctgtt ataaatatgc tggttattct ccacttgttg tgttttagtg ccatcttctg 4500 ctcttctctg ctagactctg tgcctcagaa ggtggaattt ttcataaact attccagctg 4560 gggtctcatg ccagttggtt ttgaccaatg ggtaacacca tcagtagatt ggaggatgga 4620 aaaggaaaaa aggttaggat atgtttcacc acctcttttc ctgcttctgg ctgggttctg 4680 4740 atggtggctt tgtcccttga aggctcctcc tgcaaggcag ccctgctcca ctgtgccagc cttcactggg ctctactaac gtgattccct ccccttattt cttcaggcct agctgtgcta 4800 actcctaggt acctccatgt ttcttgtttc ctttcatcca accctaaccc taacttctat 4860 4892 aaatagttcc cgcaataaag tctcttcagc tg

```
<212> PRT
<213> Homo sapiens
<400> 180
Met Arg Gly Leu Glu Thr Tyr Pro Pro Gln Val Arg Gly Asp Leu Tyr
                                   10
Phe Ser Val Ile Asn Met Leu Val Ile Leu His Leu Leu Cys Phe Ser
                               25
           20
Ala Ile Phe Cys Ser Ser Leu Leu Asp Ser Val Pro Gln Lys Val Glu
                           40
Phe Phe Ile Asn Tyr Ser Ser Trp Gly Leu Met Pro Val Gly Phe Asp
    50
Gln Trp Val Thr Pro Ser Val Asp Trp Arg Met Glu Lys Glu Lys Arg
                   70
                                       75
Leu Gly Tyr Val Ser Pro Pro Leu Phe Leu Leu Ala Gly Phe
                                   90
<210> 181
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 181
                                                                  . 15
gctcaacgat tctgg
<210> 182
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 182
                                                                     15
atgtggcctt caaag
<210> 183
<211> 501
<212> DNA
<213> Homo sapiens
<400> 183
```

<211> 95

atgaacagaa	gcatctatga	ccgacagttg	ctctgtgtcc	ttctagcctc	gcaggagttt	60
ccagctcatg	agggcagagg	agatgaagag	aggccgatcg	acgtgagggt	tgtgcaggcg	120
gcccctctga	ggtgtgactc	cactcctcct	gagggtgctg	taggagacat	ctgcaaaaaa	180
gaagatgctg	gcaatatgcc	atcaacctca	gaggggagta	tttaccctga	aatggctcac	240
ttcctgagga	acaaacttgc	tggatctagt	gtacggaaac	ctgattctgg	gttcctttgg	300
gaaggagcat	tacgggcctg	gttatttctc	atcctaatag	ttctcaccca	catcatgtgg	360
gtcccattag	tacaggtatc	tccgaatgct	ccactcttcc	attacattga	gtcaattgct	420
catgaccttg	ggcctccaat	tggggctatt	ttcctgctat	ccatctcctg	gtctatagta	480
aaagagccaa	tgagcagata	a				501

<211> 166

<212> PRT

<213> Homo sapiens

<400> 184

Met Asn Arg Ser Ile Tyr Asp Arg Gln Leu Leu Cys Val Leu Leu Ala 1 5 10 15

Ser Gln Glu Phe Pro Ala His Glu Gly Arg Gly Asp Glu Glu Arg Pro 20 25 30

Ile Asp Val Arg Val Val Gln Ala Ala Pro Leu Arg Cys Asp Ser Thr 35 40 45

Pro Pro Glu Gly Ala Val Gly Asp Ile Cys Lys Lys Glu Asp Ala Gly 50 55 60

Asn Met Pro Ser Thr Ser Glu Gly Ser Ile Tyr Pro Glu Met Ala His 65 70 75 80

Phe Leu Arg Asn Lys Leu Ala Gly Ser Ser Val Arg Lys Pro Asp Ser 85 90 95

Gly Phe Leu Trp Glu Gly Ala Leu Arg Ala Trp Leu Phe Leu Ile Leu 100 105 110

Ile Val Leu Thr His Ile Met Trp Val Pro Leu Val Gln Val Ser Pro 115 120 125

Asn Ala Pro Leu Phe His Tyr Ile Glu Ser Ile Ala His Asp Leu Gly 130 135

Lys Glu	ı Pro	Met Ser Ar 165	g				
	185 20 DNA Arti	ficial Sequ	ience				
<220> <223>	Olig	gonucleotide	2				
<400> ctgaggg	185 stgc	tgtaggagac					20
	186 15 DNA Arti	ficial Sequ	uence				
<220> <223>	Olig	gonucleotide	2				
<400> ggcccgt	186 aat	gctcc					15
<212>	187 3978 DNA Homo	sapiens					
<400> agactag	187 1999	cgagtttgga	gcaagtaact	gtcagtgagg	ttgcagttgg	tctgggctgt	60
ttggctg	ıtga	gcgaaatagc	tgcccccac	ttctcacttg	cacaccacgg	gatactcctc	120
ctgaggc	ctcc	ggatgattca	gatggactgt	gaaaaacaac	aagatggatg	atcatatgga	180
gattgct	tct	aacataaatc	tgcataaaaa	tttttctgaa	acatggctgg	aatatttaag	240
gagtttt	ttt	tcagtactga	ggacctccct	gaagtcattc	taacattgtc	tttgatcagc	300
tccatto	ggag	catttttgaa	ccggcacttg	gaagactttc	caattcctgt	ccctgtgata	360
ttattt	tac	ttggatgcag	ttttgaagta	ttaagcttta	catcttcaca	ggtccaaaga	420
tacgcaa	aacg	ccatacaatg	gatgagtcca	gacttatttt	ttcgtatatt	tacaccagta	480
gttttct	tta	ctactgcatt	tgacatggat	acgtacatgc	ttcaaaagtt	attttggcag	540
atactt	taa	tttcaattcc	cggctttttg	gttaattata	tcttagttct	ttggcatctg	600

Pro Pro Ile Gly Ala Ile Phe Leu Leu Ser Ile Ser Trp Ser Ile Val 145 150 150

gcatctgtaa atca	aattact tttgaagcc	t acccaatggt	tattattttc	agctatcctt	660
gtgagttcag atco	ccatgct aaccgcagc	t gctataagag	accttgggct	ttctagaagc	720
ctcatcagtt taat	ttaatgg agaaagtct	g atgacctctg	ttatatcatt	aattacattt	780
actagtatta tgga	attttga ccaaagact	a caaagtaaaa	gaaaccatac	cttagctgaa	840
gagatcgtgg gtgg	gaatttg ttcatatat	atagcaagtt	tcttgtttgg	aattctaagt	900
tcaaaactga ttca	aattttg gatgtcaac	t gtttttggtg	atgatgtcaa	tcatataagt	960
ctcatctttt caat	ttctgta tctcatctt	t tatatttgtg	agttagttgg	aatgtcagga	1020
atatttactc tggc	ccattgt gggacttct	t ttaaattcta	caagttttaa	agcagcaatt	1080
gaagaaacac ttct	ttcttga atttctgac	c cttcttttaa	taagccctgt	tttgtctcga	1140
gttggtcatg agtt	tcagttg gcgctggat	a ttcataatgg	tctgtagtga	aatgaagggg	1200
atgcctaata taaa	acatggc ccttctgct	c gcctactctg	atctttattt	tggatctgac	1260
aaagaaaaat ctca	aaatatt atttcatgg	a gtgttagtat	gcctaataac	ccttgttgtc	1320
aatagattta tttt	tgccagt ggcagttac	t atactaggtc	ttcgtgatgc	cacatcaaca	1380
aaatataaat cggt	tttgttg cacatttca	a cactttcaag	agctaaccaa	gtctgcagcc	1440
tctgccctta aatt	ttgacaa agatettge	aatgctgatt	ggaacatgat	tgagaaagca	1500
attacacttg aaaa	acccata catgttgaa	c gaagaagaaa	caacagaaca	tcagaaggtg	1560
aaatgtccac actg	gtaacaa ggaaataga	gagatettta	acactgaagc	aatggagctg	1620
gccaacaggc gtct	tcttgtc agcacaaat	a gcaagctacc	agagacaata	caggaatgag	1680
attctgtccc agag	gtgctgt ccaggtgtt	g gttggtgcag	cagaaagttt	tggtgagaag	1740
aagggaaaat gtat	tgagtct tgatacaat	a aagaattatt	ctgaaagcca	aaaaacagtt	1800
acctttgcta gaaa	aactact acttaattg	g gtgtataata	ccagaaagga	aaaagagggc	1860
ccatcaaaat actt	tcttttt tcgtatatg	c catacaatag	tatttactga	ggaatttgaa	1920
catgttggat acct	ttgtgat attaatgaa	atatttccct	ttataatctc	ttggatatcc	1980
cagttaaatg taat	tctacca cagcgaatt	a aaacacacta	actactgttt	tcttacactt	2040
tatattctag aggo	cactact taagatage	a gcaatgagga	aggacttttt	ttcacatgcc	2100
tggaacatat tcga	agttagc aattacatt	a attggcatct	tacatgtaat	acttattgaa	2160
atagacacca ttaa	agtatat ttttaatga	g actgaagtaa	tagtctttat	aaaagttgtt	2220
caattttttc gtat	tactacg cattttcaa	g ctcatagcac	caaagttgct	gcaaataata	2280
gataaaagaa tgag	gtcatca gaagacctt	t tggtatggaa	tactaaaagg	ctatgtccaa	2340
ggcgaagcag acat	taatgac cataattga	t cagattacaa	gttctaaaca	gattaaacag	2400

atgttattaa	agcaagtgat	aaggaatatg	gaacatgcta	taaaagagct	aggctactta	2460
gagtatgatc	acccagaaat	tgctgtcact	gtgaaaacaa	aggaagaaat	taatgttatg	2520
ctcaatatgg	ctacagaaat	tcttaaggct	tttggcttaa	aaggaattat	tagtaaaact	2580
gaaggtgctg	gaattaataa	gttaatcatg	gccaaaaaga	aagaggtgct	tgattctcaa	2640
tctattatca	ggcctcttac	tgttgaagaa	gttctatatc	atattccgtg	gctagataaa	2700
aacaaagatt	atataaactt	cattcaggaa	aaagccaaag	ttgtaacatt	tgattgtgga	2760
aatgatatat	ttgaagaagg	tgatgagccc	aaaggaatct	atatcattat	ttcaggcatg	2820
gtaaagcttg	aaaaatcaaa	gccaggttta	gggattgatc	aaatggtgga	gtcaaaggag	2880
aaagattttc	cgataattga	cacagactat	atgctcagtg	gagaaataat	aggagagata	2940
aactgcttaa	ctaatgaacc	tatgaaatat	tctgccacct	gcaaaactgt	agtggagaca	3000
tgttttattc	ccaaaactca	cttgtatgat	gcttttgagc	aatgctctcc	tctcattaaa	3060
caaaaaatgt	ggctaaaact	tggactcgct	attacagcca	gaaaaatcag	agaacactta	3120
tcttatgagg	attggaacta	caatatgcaa	ctaaagctct	ctaatattta	tgtagtagat	3180
ataccaatga	gtaccaaaac	tgatatttat	gatgaaaatc	taatctatgt	tatcctcata	3240
catggagctg	tagaagattg	tctgttacga	aaaacttata	gagcaccttt	cttaattcct	3300
ataacatgcc	atcagataca	aagtattgaa	gatttcacaa	aagtagtgat	tattcaaact	3360
ccgattaaca	tgaaaacatt	cagaaggaat	attagaaagt	ttgttcctaa	acataaaagt	3420
tatcttacac	caggattaat	aggttcagtt	ggaacattgg	aagaaggcat	tcaagaagaa	3480
agaaatgtta	aggaggatgg	agcacacagt	gccgccactg	ccaggagtcc	ccagccttgc	3540
tecetgetgg	ggacaaagtt	caactgtaag	gagtccccta	gaataaacct	aaggaaagtc	3600
aggaaagagt	aagactgtta	agaagaccga	agcatgtatt	aatgctgtgg	ctatgagagg	3660
cctcctgctg	cagaaacaca	cttccctaca	tcaagaagga	gtaacttcag	gttggatcct	3720
gtgtggatga	tcttggtgct	aagcagaaaa	gaaatttgga	ccttgaaacc	agcagttcaa	3780
catatatact	ttttgcaaaa	tttccttgat	ttaaaatatt	tgttatttta	aatatacaaa	3840
acattttaga	aaatcttaga	gtaaatttta	gtcttaaagc	cagaaaataa	gtttatagcc	3900
atctagatat	tttgcatatt	gctcttacag	caataatggt	ttggttcact	ttatgaaaaa	3960
taaaatgtat	taaaatat					3978

<210> 188 <211> 1129 <212> PRT <213> Homo sapiens

<400>	188
-------	-----

Met Ala Gly Ile Phe Lys Glu Phe Phe Phe Ser Thr Glu Asp Leu Pro 1 5 10 15

Glu Val Ile Leu Thr Leu Ser Leu Ile Ser Ser Ile Gly Ala Phe Leu 20 25 30

Asn Arg His Leu Glu Asp Phe Pro Ile Pro Val Pro Val Ile Leu Phe 35 40 45

Leu Leu Gly Cys Ser Phe Glu Val Leu Ser Phe Thr Ser Ser Gln Val 50 55 60

Gln Arg Tyr Ala Asn Ala Ile Gln Trp Met Ser Pro Asp Leu Phe Phe 65 70 75 80

Arg Ile Phe Thr Pro Val Val Phe Phe Thr Thr Ala Phe Asp Met Asp 85 90 95

Thr Tyr Met Leu Gln Lys Leu Phe Trp Gln Ile Leu Leu Ile Ser Ile 100 105 110

Pro Gly Phe Leu Val Asn Tyr Ile Leu Val Leu Trp His Leu Ala Ser 115 120 125

Val Asn Gln Leu Leu Leu Lys Pro Thr Gln Trp Leu Leu Phe Ser Ala 130 135 140

Ile Leu Val Ser Ser Asp Pro Met Leu Thr Ala Ala Ile Arg Asp 145 150 155 160

Leu Gly Leu Ser Arg Ser Leu Ile Ser Leu Ile Asn Gly Glu Ser Leu 165 170 175

Met Thr Ser Val Ile Ser Leu Ile Thr Phe Thr Ser Ile Met Asp Phe 180 185 190

Asp Gln Arg Leu Gln Ser Lys Arg Asn His Thr Leu Ala Glu Glu Ile 195 200 205

Val Gly Gly Ile Cys Ser Tyr Ile Ile Ala Ser Phe Leu Phe Gly Ile 210 215 220

Leu Ser Ser Lys Leu Ile Gln Phe Trp Met Ser Thr Val Phe Gly Asp 225 230 235 240

													14		
Asp	Val	Asn	His	Ile 245	Ser	Leu	Ile	Phe	Ser 250	Ile	Leu	Tyr	Leu	Ile 255	Phe
Tyr	Ile	Cys	Glu 260	Leu	Val	Gly	Met	Ser 265	Gly	Ile	Phe	Thr	Leu 270	Ala	Ile
Val	Gly	Leu 275	Leu	Leu	Asn	Ser	Thr 280	Ser	Phe	Lys	Ala	Ala 285	Ile	Glu	Glu
Thr	Leu 290	Leu	Leu	Glu	Phe	Leu 295	Thr	Leu	Leu	Leu	Ile 300	Ser	Pro	Val	Leu
Ser 305	Arg	Val	Gly	His	Glu 310	Phe	Ser	Trp	Arg	Trp 315	Ile	Phe	Ile	Met	Val 320
Cys	Ser	Glu	Met	Lys 325	Gly	Met	Pro	Asn	Ile 330	Asn	Met	Ala	Leu	Leu 335	Leu
Ala	Tyr	Ser	Asp 340	Leu	Tyr	Phe	Gly	Ser 345	Asp	Lys	Glu	Lys	Ser 350	Gln	Ile
Leu	Phe	His 355	Gly	Val	Leu	Val	Cys 360	Leu	Ile	Thr	Leu	Val 365	Val	Asn	Arg
Phe	Ile 370	Leu	Pro	Val	Ala	Val 375	Thr	Ile	Leu	Gly	Leu 380	Arg	Asp	Ala	Thr
Ser 385	Thr	Lys	Tyr	Lys	Ser 390	Val	Cys	Cys	Thr	Phe 395	Gln	His	Phe	Gln	Glu 400
Leu	Thr	Lys	Ser	Ala 405	Ala	Ser	Ala	Leu	Lys 410	Phe	Asp	Lys	Asp	Leu 415	Ala
Asn	Ala	Asp	Trp 420	Asn	Met	Ile	Glu	Lys 425	Ala	Ile	Thr	Leu	Glu 430	Asn	Pro
Tyr	Met	Leu 435	Asn	Glu	Glu	Glu	Thr 440	Thr	Glu	His	Gln	Lys 445	Val	Lys	Cys
Pro	His 450	Cys	Asn	Lys	Glu	Ile 455	Asp	Glu	Ile	Phe	Asn 460	Thr	Glu	Ala	Met
Glu 465	Leu	Ala	Asn	Arg	Arg 470	Leu	Leu		Ala Page	475	Ile	Ala	Ser	Tyr	Gln 480

													÷,		
Arg	Gln	Tyr	Arg	Asn 485	Glu	Ile	Leu	Ser	Gln 490	Ser	Ala	Val	Gln	Val 495	Leu
Val	Gly	Ala	Ala 500	Glu	Ser	Phe	Gly	Glu 505	Lys	Lys	Gly	Lys	Cys 510	Met	Ser
Leu	Asp	Thr 515	Ile	Lys	Asn	Tyr	Ser 520	Glu	Ser	Gln	Lys	Thr 525	Val	Thr	Phe
Ala	Arg 530	Lys	Leu	Leu	Leu	Asn 535	Trp	Val	Tyr	Asn	Thr 540	Arg	Lys	Glu	Lys
Glu 545	Gly	Pro	Ser	Lys	Tyr 550	Phe	Phe	Phe	Arg	Ile 555	Cys	His	Thr	Ile	Val 560
Phe	Thr	Glu	Glu	Phe 565	Glu	His	Val	Gly	Tyr 570	Leu	Val	Ile	Leu	Met 575	Asn
Ile	Phe	Pro	Phe 580	Ile	Ile	Ser	Trp	Ile 585	Ser	Gln	Leu	Asn	Val 590	Ile	Tyr
His	Ser	Glu 595	Leu	Lys	His	Thr	Asn 600	Tyr	Cys	Phe	Leu	Thr 605	Leu	Tyr	Ile
Leu	Glu 610	Ala	Leu	Leu	Lys	Ile 615	Ala	Ala	Met	Arg	Lys 620	Asp	Phe	Phe	Ser
His 625	Ala	Trp	Asn	Ile	Phe 630	Glu	Leu	Ala	Ile	Thr 635	Leu	Ile	Gly	Ile	Leu 640
His	Val	Ile	Leu	Ile 645	Glu	Ile	Asp	Thr	Ile 650	Lys	Tyr	Ile	Phe	Asn 655	Glu
Thr	Glu	Val	Ile 660	Val	Phe	Ile	Lys	Val 665	Val	Gln	Phe	Phe	Arg 670	Ile	Leu
Arg	Ile	Phe 675	Lys	Leu	Ile	Ala	Pro 680	Lys	Leu	Leu	Gln	Ile 685	Ile	Asp	Lys
Arg	Met 690	Ser	His	Gln	Lys	Thr 695	Phe	Trp	Tyr	Gly	Ile 700	Leu	Lys	Gly	Tyr
Val 705	Gln	Gly	Glu	Ala	Asp 710	Ile	Met		Ile Page	715	Asp	Gln	Ile	Thr	Ser 720

Ser	Lys	Gln	Ile	Lys 725	Gln	Met	Leu	Leu	Lys 730	Gln	Val	Ile	Arg	Asn 735	Met
Glu	His	Ala	Ile 740	Lys	Glu	Leu	Gly	Tyr 745	Leu	Glu	Tyr	Asp	His 750	Pro	Glu
Ile	Ala	Val 755	Thr	Val	Lys	Thr	Lys 760	Glu	Glu	Ile	Asn	Val 765	Met	Leu	Asn
Met	Ala 770	Thr	Glu	Ile	Leu	Lys 775	Ala	Phe	Gly	Leu	Lys 780	Gly	Ile	Ile	Ser
Lys 785	Thr	Glu	Gly	Ala	Gly 790	Ile	Asn	Lys	Leu	Ile 795	Met	Ala	Lys	Lys	Lys 800
Glu	Val	Leu	Asp	Ser 805	Gln	Ser	Ile	Ile	Arg 810	Pro	Leu	Thr	Val	Glu 815	Glu
Val	Leu	Tyr	His 820	Ile	Pro	Trp	Leu	Asp 825	Lys	Asn	Lys	Asp	Tyr 830	Ile	Asn
Phe	Ile	Gln 835	Glu	Lys	Ala	Lys	Val 840	Val	Thr	Phe	Asp	Cys 845	Gly	Asn	Asp
Ile	Phe 850	Glu	Glu	Gly	Asp	Glu 855	Pro	Lys	Gly	Ile	Tyr 860	Ile	Ile	Ile	Ser
Gly 865	Met	Val	Lys	Leu	Glu 870	Lys	Ser	Lys	Pro	Gly 875	Leu	Gly	Ile	Asp	Gln 880
Met	Val	Glu	Ser	Lys 885	Glu	Lys	Asp	Phe	Pro 890	Ile	Ile	Asp	Thr	Asp 895	Tyr
Met	Leu	Ser	Gly 900	Glu	Ile	Ile	Gly	Glu 905	Ile	Asn	Cys	Leu	Thr 910	Asn	Glu
Pro	Met	Lys 915	Tyr	Ser	Ala	Thr	Cys 920	Lys	Thr	Val	Val	Glu 925	Thr	Cys	Phe
Ile	Pro 930	Lys	Thr	His	Leu	Tyr 935	Asp	Ala	Phe	Glu	Gln 940	Суѕ	Ser	Pro	Leu
Ile 945	Lys	Gln	Lys	Met	Trp 950	Leu	Lys		Gly Page	955	Ala	Ile	Thr	Ala	Arg 960

Lys Ile Arg Glu His Leu Ser Tyr Glu Asp Trp Asn Tyr Asn Met Gln 965 970 975

Leu Lys Leu Ser Asn Ile Tyr Val Val Asp Ile Pro Met Ser Thr Lys 980 985 990

Thr Asp Ile Tyr Asp Glu Asn Leu Ile Tyr Val Ile Leu Ile His Gly
995 1000 1005

Ala Val Glu Asp Cys Leu Leu Arg Lys Thr Tyr Arg Ala Pro Phe 1010 1015 1020

Leu Ile Pro Ile Thr Cys His Gln Ile Gln Ser Ile Glu Asp Phe 1025 1030 1035

Thr Lys Val Val Ile Ile Gln Thr Pro Ile Asn Met Lys Thr Phe 1040 1045 1050

Arg Arg Asn Ile Arg Lys Phe Val Pro Lys His Lys Ser Tyr Leu 1055 1060 1065

Thr Pro Gly Leu Ile Gly Ser Val Gly Thr Leu Glu Glu Gly Ile 1070 1075 1080

Gln Glu Glu Arg Asn Val Lys Glu Asp Gly Ala His Ser Ala Ala 1085 1090 1095

Thr Ala Arg Ser Pro Gln Pro Cys Ser Leu Leu Gly Thr Lys Phe 1100 1105 1110

Asn Cys Lys Glu Ser Pro Arg Ile Asn Leu Arg Lys Val Arg Lys 1115 1120 1125

Glu

<210> 189

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 189

tttgaaccgg cacttgg

```
<210>
      190
<211>
       23
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 190
                                                                       23
tcaaatgcag tagtaaagaa aac
<210> 191
<211> 2898
<212> DNA
<213> Homo sapiens
<400> 191
                                                                       60
atqtqqqtqc qqtgtqcact cctggttgca cgcgactgtg gctgtgctga gcgcgtgtgc
                                                                      120
ccgtctgtgg tgcgtgaccg cgtgtgtgtt gtgggggcgg ggaaaattca tacaaaagaa
aaaaatatag cacatctctt ggaaatgaaa tacttcaagt ttaatatctc tcttgctaat
                                                                      180
gcagaattta tcagccaaga cagctggctg gcctgggtgg ggtttgttaa agttgtcaag
                                                                      240
                                                                      300
tataaggcct actgtaagag ataccaagtg acttttagaa gacagtgtga gggtaaaact
                                                                      360
gattactatg cttggaaaca cttagtggta caggataaaa ataagtctaa cacacacaaa
                                                                      420
tacagaatga ttatttgtgt gataaataca gataccattt gtgagatggc ttatgcccat
                                                                      480
atagaatggg acatgatagt ctgtgcagct tatgcacacg aacttccaaa atacggtgta
aaggttggcc tgacaaatga tgctgcagca tgttgtactg gcctgctgct ggcatgcagg
                                                                      540
                                                                      600
cttctcagta ggtttggcat ggacaagatc tataaaggcc aagtggaggt aaccagagat
gaatacaacg tgggaagcac tgatggtcag ccaggtgcct ttacctgctg tttggatgca
                                                                      660
ggccttgcca gaaccaccac tgacaataaa gtttttgggg ctctgagagt gctgtggatg
                                                                      720
                                                                      780
gaggtttctc tatccctcac agtgcctaac gattccctga gtaaagggaa gcctggcccc
                                                                      840
aggaaggagc agctgcctgc aagagggagc ctgagccgtg gagtcctggg agcctttgag
                                                                      900
gtgggcagcc agggcgtgga ggcagcagca agcccaaacg gtcaatacgg gcccagctgg
                                                                      960
ggcctggcgg cggagggcac ggagggagct aggccacagg caccaaagcg ggatttgtcc
tatagcagga ctgactctca cagagactgt tctcctgtct gtcacaacat gtccctgagg
                                                                     1020
                                                                     1080
ggtcaccttg tccccaagaa gccctcaaag gagaagcagg gacagcagaa actggacagc
                                                                     1140
aagttttatg agagetggge cacageettg etcacageta tatteeeggt gettggeate
ttggtgcttg ttgaatcttt gctgatgaat gacccaatgc gtgaatgcat cctcagcacc
                                                                     1200
```

tctggcttct	cagggcctcg	cgccaggctc	ctgggggtcc	tggccctggg	cgggcttcct	1260
ctccatcttg	gtgcacctgt	tattgtaatg	gcgtggattg	tccttgcttt	gctattcaca	1320
cggagcagga	ccagggctga	tcctgcagac	gtgctgcccc	ctggtgcatt	tgagaagact	1380
cgcatgcatg	cactgccccc	gcctcttggt	ttgactttag	atgacggtga	agtgatcacc	1440
acaagattgc	tcactgatgc	ttctgtgcaa	aaagtcgtgg	tccggatatc	tgaatcctcc	1500
tectgeetee	acaatgggct	gctatccggt	aacggctgtg	aggtccatta	ccgcagggcg	1560
aggctcttcc	aggacgctca	gatgcctgct	cagagcccag	cttatcgggg	ggatctgcga	1620
gctcctgtca	acgccctgag	aattcagaac	cggagtcagc	tcagcccagg	tggaaagatc	1680
aagtggcggc	agcacaggca	gctggaaggt	acccacagaa	agaaatcgag	cactatgttc	1740
agaaagatcc	actccatctt	taactccagc	ccacagagaa	agacggcggc	cgagagcccc	1800
ttctacgaag	gagccagccc	cgcagtgaag	ctgattcgaa	gcagttccat	gtatgtggtc	1860
ggggaccacg	gggagaaatt	cagcgagtcc	ttaaagaagt	acaaaagcac	cagtagcatg	1920
gacaccagcc	tgtactacct	gcggcaggag	gaggaccggg	cgtggatgta	ttcgcgcacc	1980
caggactgcc	tgcagtacct	gcaggagctg	ctggccttgc	gcaaaaaata	tctcagcagc	2040
ttcagtgatc	tgaagcccca	ccgcacccag	gggatttcct	caacctcctc	caaatcctcc	2100
aagggaggga	aaaagactcc	tgtccggtct	actcccaaag	aaataaagaa	agcaacccca	2160
aagaaatact	cgcagttcag	tgctgatgtg	gccgaggcca	ttgccttctt	tgactccatc	2220
attgcagagc	tggatacaga	gagacgaccc	cgggctgctg	aggccagcct	gccaaatgaa	2280
gatgtggact	ttgacgtggc	caccagctcc	agggagcaca	gcttgcattc	taactggatc	2340
ctgcgggcac	cgcgcagaca	ctccgaggat	atcgctgccc	acactgtgca	tactgtagac	2400
ggccagtttc	gaaggagcac	cgagcacagg	accgtgggca	ctcagaggag	actcgagagg	2460
caccccattt	atttgcccaa	ggctgtggaa	ggggccttca	acacctggaa	atttaagccc	2520
aaagcctgca	aaaaagacct	ggggagctcc	agacagatcc	ttttcaactt	ctcaggagaa	2580
gatatggagt	gggatgcaga	gctctttgcg	ttggagcccc	agttgtctcc	tggggaggac	2640
tactatgaga	cagagaaccc	caaaggacag	tggctgcttc	gagaaagact	ttgggagcgg	2700
acgactgggt	ccctgagaag	ctgtccgctt	tcagcgcagc	atgaggtatt	tggtagagtt	2760
gaaaatgcca	attgtaacac	agtcaaccca	ctcagcacac	tgcctgctgg	tgccgtgcca	2820
gtgccaaaca	gacctgtggc	ttcccagggg	acaggtctca	ggacactctc	agagcttgag	2880
tttctctgcg	tgggctga					2898

<211> 965
<212> PRT
<213> Homo sapiens
<400> 192

Met Trp Val Arg Cys
1 5

Glu Arg Val Cys Pro
20

Ala Gly Lys Ile His

Met Trp Val Arg Cys Ala Leu Leu Val Ala Arg Asp Cys Gly Cys Ala 1 5 10 15

Glu Arg Val Cys Pro Ser Val Val Arg Asp Arg Val Cys Val Val Gly
20 25 30

Ala Gly Lys Ile His Thr Lys Glu Lys Asn Ile Ala His Leu Leu Glu 35 40 45

Met Lys Tyr Phe Lys Phe Asn Ile Ser Leu Ala Asn Ala Glu Phe Ile 50 55 60

Ser Gln Asp Ser Trp Leu Ala Trp Val Gly Phe Val Lys Val Val Lys 65 70 75 80

Tyr Lys Ala Tyr Cys Lys Arg Tyr Gln Val Thr Phe Arg Arg Gln Cys 85 90 95

Glu Gly Lys Thr Asp Tyr Tyr Ala Trp Lys His Leu Val Val Gln Asp 100 105 110

Lys Asn Lys Ser Asn Thr His Lys Tyr Arg Met Ile Ile Cys Val Ile
115 120 125

Asn Thr Asp Thr Ile Cys Glu Met Ala Tyr Ala His Ile Glu Trp Asp 130 135 140

Met Ile Val Cys Ala Ala Tyr Ala His Glu Leu Pro Lys Tyr Gly Val 145 150 155 160

Lys Val Gly Leu Thr Asn Asp Ala Ala Cys Cys Thr Gly Leu Leu 165 170 175

Leu Ala Cys Arg Leu Leu Ser Arg Phe Gly Met Asp Lys Ile Tyr Lys 180 185 190

Gly Gln Val Glu Val Thr Arg Asp Glu Tyr Asn Val Gly Ser Thr Asp 195 200 205

Gly Gln Pro Gly Ala Phe Thr Cys Cys Leu Asp Ala Gly Leu Ala Arg 210 215 220

Page 173

Thr 225	Thr	Thr	Asp	Asn	Lys 230	Val	Phe	Gly	Ala	Leu 235	Arg	Val	Leu	Trp	Met 240
Glu	Val	Ser	Leu	Ser 245	Leu	Thr	Val	Pro	Asn 250	Asp	Ser	Leu	Ser	Lys 255	Gly
Lys	Pro	Gly	Pro 260	Arg	Lys	Glu	Gln	Leu 265	Pro	Ala	Arg	Gly	Ser 270	Leu	Ser
Arg	Gly	Val 275	Leu	Gly	Ala	Phe	Glu 280	Val	Gly	Ser	Gln	Gly 285	Val	Glu	Ala
Ala	Ala 290	Ser	Pro	Asn	Gly	Gln 295	Tyr	Gly	Pro	Ser	Trp 300	Gly	Leu	Ala	Ala
Glu 305	Gly	Thr	Glu	Gly	Ala 310	Arg	Pro	Gln	Ala	Pro 315	Lys	Arg	Asp	Leu	Ser 320
Tyr	Ser	Arg	Thr	Asp 325	Ser	His	Arg	Asp	Cys 330	Ser	Pro	Val	Cys	His 335	Asn
Met	Ser	Leu	Arg 340	Gly	His	Leu	Val	Pro 345	Lys	Lys	Pro	Ser	Lys 350	Glu	Lys
Gln	Gly	Gln 355	Gln	Lys	Leu	Asp	Ser 360	Lys	Phe	Tyr	Glu	Ser 365	Trp	Ala	Thr
Ala	Leu 370	Leu	Thr	Ala	Ile	Phe 375	Pro	Val	Leu	Gly	Ile 380	Leu	Val	Leu	Val
Glu 385	Ser	Leu	Leu	Met	Asn 390	Asp	Pro	Met	Arg	Glu 395	Cys	Ile	Leu	Ser	Thr 400
Ser	Gly	Phe	Ser	Gly 405	Pro	Arg	Ala	Arg	Leu 410	Leu	Gly	Val	Leu	Ala 415	Leu
Gly	Gly	Leu	Pro 420	Leu	His	Leu	Gly	Ala 425	Pro	Val	Ile	Val	Met 430	Ala	Trp
Ile	Val	Leu 435	Ala	Leu	Leu	Phe	Thr 440	Arg	Ser	Arg	Thr	Arg 445	Ala	Asp	Pro
Ala	Asp 450	Val	Leu	Pro	Pro	Gly 455	Ala		Glu Page		Thr 460	Arg	Met	His	Ala

Leu 465	Pro	Pro	Pro	Leu	Gly 470	Leu	Thr	Leu	Asp	Asp 475	Gly	Glu	Val	Ile	Thr 480
Thr	Arg	Leu	Leu	Thr 485	Asp	Ala	Ser	Val	Gln 490	Lys	Val	Val	Val	Arg 495	Ile
Ser	Glu	Ser	Ser 500	Ser	Cys	Leu	His	Asn 505	Gly	Leu	Leu	Ser	Gly 510	Asn	Gly
Cys	Glu	Val 515	His	Tyr	Arg	Arg	Ala 520	Arg	Leu	Phe	Gln	Asp 525	Ala	Gln	Met
Pro	Ala 530	Gln	Ser	Pro	Ala	Tyr 535	Arg	Gly	Asp	Leu	Arg 540	Ala	Pro	Val	Asn
Ala 545	Leu	Arg	Ile	Gln	Asn 550	Arg	Ser	Gln	Leu	Ser 555	Pro	Gly	Gly	Lys	Ile 560
Lys	Trp	Arg	Gln	His 565	Arg	Gln	Leu	Glu	Gly 570	Thr	His	Arg	Lys	Lys 575	Ser
Ser	Thr	Met	Phe 580	Arg	Lys	Ile	His	Ser 585	Ile	Phe	Asn	Ser	Ser 590	Pro	Gln
Arg	Lys	Thr 595	Ala	Ala	Glu	Ser	Pro 600	Phe	Tyr	Glu	Gly	Ala 605	Ser	Pro	Ala
Val	Lys 610	Leu	Ile	Arg	Ser	Ser 615	Ser	Met	Tyr	Val	Val 620	Gly	Asp	His	Gly
Glu 625	Lys	Phe	Ser		Ser 630	Leu	Lys	Lys		Lys 635		Thr	Ser	Ser	Met 640
Asp	Thr	Ser	Leu	Tyr 645	Tyr	Leu	Arg	Gln	Glu 650	Glu	Asp	Arg	Ala	Trp 655	Met
Tyr	Ser	Arg	Thr 660	Gln	Asp	Cys	Leu	Gln 665	Tyr	Leu	Gln	Glu	Leu 670	Leu	Ala
Leu	Arg	Lys 675	Lys	Tyr	Leu	Ser	Ser 680	Phe	Ser	Asp	Leu	Lys 685	Pro	His	Arg
Thr	Gln 690	Gly	Ile	Ser	Ser	Thr 695	Ser		Lys Page		Ser 700	Lys	Gly	Gly	Lys

Lys 705	Thr	Pro	Val	Arg	Ser 710	Thr	Pro	Lys	Glu	Ile 715	Lys	Lys	Ala	Thr	Pro 720
Lys	Lys	Tyr	Ser	Gln 725	Phe	Ser	Ala	Asp	Val 730	Ala	Glu	Ala	Ile	Ala 735	Phe
Phe	Asp	Ser	Ile 740	Ile	Ala	Glu	Leu	Asp 745	Thr	Glu	Arg	Arg	Pro 750	Arg	Ala
Ala	Glu	Ala 755	Ser	Leu	Pro	Asn	Glu 760	Asp	Val	Asp	Phe	Asp 765	Val	Ala	Thr
Ser	Ser 770	Arg	Glu	His	Ser	Leu 775	His	Ser	Asn	Trp	Ile 780	Leu	Arg	Ala	Pro
Arg 785	Arg	His	Ser	Glu	Asp 790	Ile	Ala	Ala	His	Thr 795	Val	His	Thr	Val	Asp 800
Gly	Gln	Phe	Arg	Arg 805	Ser	Thr	Glu	His	Arg 810	Thr	Val	Gly	Thr	Gln 815	Arg
Arg	Leu	Glu	Arg 820	His	Pro	Ile	Tyr	Leu 825	Pro	Lys	Ala	Val	Glu 830	Gly	Ala
Phe	Asn	Thr 835	Trp	Lys	Phe	Lys	Pro 840	Lys	Ala	Cys	Lys	Lys 845	Asp	Leu	Gly
Ser	Ser 850	Arg	Gln	Ile	Leu	Phe 855	Asn	Phe	Ser	Gly	Glu 860	Asp	Met	Glu	Trp
Asp 865	Ala	Glu	Leu		Ala 870		Glu	Pro		Leu 875		Pro	Gly	Glu	Asp 880
Tyr	Tyr	Glu	Thr	Glu 885	Asn	Pro	Lys	Gly	Gln 890	Trp	Leu	Leu	Arg	Glu 895	Arg
Leu	Trp	Glu	Arg 900	Thr	Thr	Gly	Ser	Leu 905	Arg	Ser	Cys	Pro	Leu 910	Ser	Ala
Gln	His	Glu 915	Val	Phe	Gly	Arg	Val 920	Glu	Asn	Ala	Asn	Cys 925	Asn	Thr	Val
Asn	Pro 930	Leu	Ser	Thr	Leu	Pro 935	Ala		Ala Page		Pro 940	Val	Pro	Asn	Arg

Phe Let	ı Cys	S Val Gly 965					
<210><211><211><212><213>	193 22 DNA Arti	ificial Sequ	ıence				
<220> <223>	Olig	gonucleotide	e				
<400> cgagago	193 gcac	cccatttatt	tg				22
<210><211><211><212><213>	194 26 DNA Arti	ificial Sequ	ıence				
<220> <223>	Olig	gonucleotide	e				
<400> ttctctg	194 gtct	catagtagtc	ctcccc				26
<210><211><211><212><213>	195 1363 DNA Homo	sapiens					
<400> aacaggo	195 cccc	atgctgctct	ggacggctgt	gctgctcttt	ggtaagtcaa	cgagcatggg	60
catccc	ctct	tggagcacta	aggaccttcc	ctgtgttggg	aaaactgtct	ggctgtacct	120
ccaagc	ctgg	ccaaaccctg	tgtttgaagg	agatgccctg	actctgcgat	gtcagggatg	180
gaagaat	taca	ccactgtctc	aggtgaagtt	ctacagagat	ggaaaattcc	ttcatttctc	240
taaggaa	aaac	cagactctgt	ccatgggagc	agcaacagtg	cagagccgtg	gccagtacag	300
ctgctct	tggg	caggtgatgt	atattccaca	gacattcaca	caaacttcag	agactgccat	360
ggttcaa	agtc	caagagctgt	ttccacctcc	tgtgctgagt	gccatcccct	ctcctgagcc	420
ccgagag	gggt	agcctggtga	ccctgagatg	tcagacaaag	ctgcaccccc	tgaggtcagc	480
cttgagg	gctc	cttttctcct	tccacaagga	cggccacacc	ttgcaggaca	ggggccctca	540
cccagaa	actc	tacateceaa	gagccaagga	gggagactct	gggctttact	ggtgtgaggt	600

Pro Val Ala Ser Gln Gly Thr Gly Leu Arg Thr Leu Ser Glu Leu Glu 945 950 955 960

ggcccctgag	ggtggccagg	tccagaagca	gagcccccag	ctggaggtca	gagtgcaggc	660
tcctgtatcc	cgtcctgtgc	tcactctgca	ccacgggcct	gctgaccctg	ctgtggggga	720
catggtgcag	ctcctctgtg	aggcacagag	gggctcccct	ccgatcctgt	attccttcta	780
ccttgatgag	aagattgtgg	ggaaccactc	agctccctgt	ggtggaacca	cctccctcct	840
cttcccagtg	aagtcagaac	aggatgctgg	gaactactcc	tgcgaggctg	agaacagtgt	900
ctccagagag	aggagtgagc	ccaagaagct	gtctctgaag	ggttctcaag	tcttgttcac	960
tcccgccagc	aactggctgg	ttccttggct	tcctgcgagc	ctgcttggcc	tgatggttat	1020
tgctgctgca	cttctggttt	atgtgagatc	ctggagaaaa	gctgggcccc	ttccatccca	1080
gataccaccc	acagctccag	gtggagagca	gtgcccacta	tatgccaacg	tgcatcacca	1140
gaaagggaaa	gatgaaggtg	ttgtctactc	tgtggtgcat	agaacctcaa	agaggagtga	1200
agccaggtct	gctgagttca	ccgtggggag	aaagcacaaa	gcttcaccca	aattccaccc	1260
caccctggat	ctccacacca	agcggctcag	ggttaatggt	cgagttcagg	aagcttatgt	1320
ggccttggtc	aacacctgct	ccctcacccc	cagcctgaag	tga		1363

<211> 450

<212> PRT

<213> Homo sapiens

<400> 196

Met Leu Leu Trp Thr Ala Val Leu Leu Phe Gly Lys Ser Thr Ser Met 1 5 10 15

Gly Ile Pro Ser Trp Ser Thr Lys Asp Leu Pro Cys Val Gly Lys Thr 20 25 30

Val Trp Leu Tyr Leu Gln Ala Trp Pro Asn Pro Val Phe Glu Gly Asp 35 40 45

Ala Leu Thr Leu Arg Cys Gln Gly Trp Lys Asn Thr Pro Leu Ser Gln 50 55 60

Val Lys Phe Tyr Arg Asp Gly Lys Phe Leu His Phe Ser Lys Glu Asn 65 70 75 80

Gln Thr Leu Ser Met Gly Ala Ala Thr Val Gln Ser Arg Gly Gln Tyr 85 90 95

Ser Cys Ser Gly Gln Val Met Tyr Ile Pro Gln Thr Phe Thr Gln Thr

Ser	Glu	Thr 115	Ala	Met	Val	Gln	Val 120	Gln	Glu	Leu	Phe	Pro 125	Pro	Pro	Val
Leu	Ser 130	Ala	Ile	Pro	Ser	Pro 135	Glu	Pro	Arg	Glu	Gly 140	Ser	Leu	Val	Thr
Leu 145	Arg	Cys	Gln	Thr	Lys 150	Leu	His	Pro	Leu	Arg 155	Ser	Ala	Leu	Arg	Leu 160
Leu	Phe	Ser	Phe	His 165	Lys	Asp	Gly	His	Thr 170	Leu	Gln	Asp	Arg	Gly 175	Pro
His	Pro	Glu	Leu 180	Cys	Ile	Pro	Gly	Ala 185	Lys	Glu	Gly	Asp	Ser 190	Gly	Leu
Tyr	Trp	Cys 195	Glu	Val	Ala	Pro	Glu 200	Gly	Gly	Gln	Val	Gln 205	Lys	Gln	Ser
Pro	Gln 210	Leu	Glu	Val	Arg	Val 215	Gln	Ala	Pro	Val	Ser 220	Arg	Pro	Val	Leu
Thr 225	Leu	His	His	Gly	Pro 230	Ala	Asp	Pro	Ala	Val 235	Gly	Asp	Met	Val	Gln 240
Leu	Leu	Cys	Glu	Ala 245	Gln	Arg	Gly	Ser	Pro 250	Pro	Ile	Leu	Tyr	Ser 255	Phe
Tyr	Leu	Asp	Glu 260	Lys	Ile	Val	Gly	Asn 265	His	Ser	Ala	Pro	Cys 270	Gly	Gly
Thr	Thr	Ser 275	Leu	Leu	Phe		Val 280		Ser	Glu		Asp 285		Gly	Asn
Tyr	Ser 290	Cys	Glu	Ala	Glu	Asn 295	Ser	Val	Ser	Arg	Glu 300	Arg	Ser	Glu	Pro
Lys 305	Lys	Leu	Ser	Leu	Lys 310	Gly	Ser	Gln	Val	Leu 315	Phe	Thr	Pro	Ala	Ser 320
Asn	Trp	Leu	Val	Pro 325	Trp	Leu	Pro	Ala	Ser 330	Leu	Leu	Gly	Leu	Met 335	Val
Ile	Ala	Ala	Ala 340	Leu	Leu	Val	Tyr	345	Arg Page		Trp	Arg	Lys 350	Ala	Gly

Pro Leu Pro Ser Gln Ile Pro Pro Thr Ala Pro Gly Gly Glu Gln Cys 360 355 Pro Leu Tyr Ala Asn Val His His Gln Lys Gly Lys Asp Glu Gly Val 370 375 Val Tyr Ser Val Val His Arg Thr Ser Lys Arg Ser Glu Ala Arg Ser 395 385 390 Ala Glu Phe Thr Val Gly Arg Lys His Lys Ala Ser Pro Lys Phe His 405 410 Pro Thr Leu Asp Leu His Thr Lys Arg Leu Arg Val Asn Gly Arg Val 425 Gln Glu Ala Tyr Val Ala Leu Val Asn Thr Cys Ser Leu Thr Pro Ser Leu Lys 450 <210> 197 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 197 19 gtcagggatg gaagaatac <210> 198 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 198 18 acaggaggtg gaaacagc <210> 199 <211> 534 <212> DNA <213> Homo sapiens <400> 199

acaattqtqt cttcttccaq atgtcatcgc tataaggagt ggggctttca tcacctcctt 60 qacqtaggat gtgtacatgg ctctccaggt cagagttgct ccaagcaagg ttgttttgca 120 gaagtttett etatgtgtea ttettteta eactgtgtae tatgtgteee tgageatggg 180 ctgcgtgatg tttgaggtgc atgagttgaa tgtcctggct ccatttgatt tcaaaacaaa 240 tccctcatgg ctcaacataa actataaagt tcttttagtt tcaacagagg tcacctactt 300 tgtttgtgga ttgttttttg ttccagttgt ggaagaatgg gtttgggatt atgctatttc 360 agtcactatt cttcatgttg ccatcacttc aactgttatg ttggaattcc ccttgacatc 420 acattqqtqq qctgctttag gtatatcaaa attgcttgtt tagattctct aatgcacaga 480 aataatgtta aatagaataa ctgtggaaat atattttatt ttctcataga tttt 534

<210> 200

<211> 128

<212> PRT

<213> Homo sapiens

<400> 200

Met Ala Leu Gln Val Arg Val Ala Pro Ser Lys Val Val Leu Gln Lys 1 5 10 15

Phe Leu Cys Val Ile Leu Phe Tyr Thr Val Tyr Tyr Val Ser Leu 20 25 30

Ser Met Gly Cys Val Met Phe Glu Val His Glu Leu Asn Val Leu Ala 35 40 45

Pro Phe Asp Phe Lys Thr Asn Pro Ser Trp Leu Asn Ile Asn Tyr Lys 50 55 60

Val Leu Leu Val Ser Thr Glu Val Thr Tyr Phe Val Cys Gly Leu Phe 65 70 75 80

Phe Val Pro Val Val Glu Glu Trp Val Trp Asp Tyr Ala Ile Ser Val 85 90 95

Thr Ile Leu His Val Ala Ile Thr Ser Thr Val Met Leu Glu Phe Pro 100 105 110

Leu Thr Ser His Trp Trp Ala Ala Leu Gly Ile Ser Lys Leu Leu Val

<210> 201 <211> 20

<212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 201 tcaaacatca cgcagcccat	20
<210> 202 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 202 tggggctttc atcacctcct tg	22
<210> 203 <211> 615 <212> DNA <213> Homo sapiens	
<400> 203 ggggatgtga tgtcaggctt gattgtgggc atattattgg tgccccagtc cattgcttat	60
tecetgetgg etggeeaaga acetgtetat ggtetgtaca eatettttt tgeeageate	120
atttattttc tcttgggtac ctcccgtcac atctctgtgg gcatttttgg agtactgtgc	180
cttatgattg gtgagacagt tgaccgagaa ctacagaaag ctggctatga caatgcccat	240
agtgctcctt ccttaggaat ggtttcaaat gggagcacat tattaaatca tacatcagac	300
aggatatgtg acaaaagttg ctatgcaatt atggttggca gcactgtaac ctttatagct	360
ggagtttatc agtgattgtt ttgttaatgt ggaagcaaca ttttctatga ttaatctgct	420
gttacctgtt ttgactgagc tactacaaaa agaaaaatca ctgaattgct atgggtttct	480
gaaatatcca aaaaattaac ctgaagcagg gggaaaaatg acatcacacc attagcaggt	540
attgtgtgaa acttctaaaa atgaaactga catttatctg acttattagg aataaatact	600
ctctaatgaa ctctc	615
<pre><210> 204 <211> 121 <212> PRT <213> Homo sapiens <400> 204 Met Ser Gly Leu Ile Val Gly Ile Leu Leu Val Pro Gln Ser Ile Ala</pre>	
1 5 10 15 Page 182	

Tyr Ser Leu Leu Ala Gly Gln Glu Pro Val Tyr Gly Leu Tyr Thr Ser 25 20 Phe Phe Ala Ser Ile Ile Tyr Phe Leu Leu Gly Thr Ser Arg His Ile 35 40 Ser Val Gly Ile Phe Gly Val Leu Cys Leu Met Ile Gly Glu Thr Val 50 Asp Arg Glu Leu Gln Lys Ala Gly Tyr Asp Asn Ala His Ser Ala Pro 70 75 Ser Leu Gly Met Val Ser Asn Gly Ser Thr Leu Leu Asn His Thr Ser 85 90 Asp Arg Ile Cys Asp Lys Ser Cys Tyr Ala Ile Met Val Gly Ser Thr 100 105 Val Thr Phe Ile Ala Gly Val Tyr Gln <210> 205 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 205 20 taaatcatac atcagacagg <210> 206 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 206 20 aaaacaggta acagcagatt <210> 207 <211> 513 <212> DNA <213> Homo sapiens

<400> 207

atggcggcgg	ccgctctcgc	gagaattcgg	cccgtcgggc	tccaagcccg	gcgcctggcg	60
tcggagggaa	agactcgagc	cgaaagcccc	atctctgacc	ctagcaactc	atacccttct	120
ggcttccctt	tagcaaagcg	cctggacgtc	atcccctctt	cagatacccc	aggcctcgtc	180
ctggccactg	gcttgactat	tgcaggagag	cctgataaga	tgggacacgg	ctccaccttg	240
cattcagcaa	gtcgttatcc	tgcaactacg	atgcaccagg	aagaggatgt	ggtgaggcca	300
gcttttccat	atgcagttag	gcatcgaagg	gaagatctgc	tgtacctaag	tggggtgggc	360
atttcatttt	tagggaccgt	ctttgttaaa	ataatttggg	acctcataaa	gcctccagcc	420
attcctgatc	aggacatagc	ttacaacagc	agcctggtgc	ccataacctg	gacagcctgg	480
agtgaagtca	cactcccaga	cttgatgttc	taa			513

<210> 208 -

<211> 170

<212> PRT

<213> Homo sapiens

<400> 208

Met Ala Ala Ala Leu Ala Arg Ile Arg Pro Val Gly Leu Gln Ala 1 5 10 15

Arg Arg Leu Ala Ser Glu Gly Lys Thr Arg Ala Glu Ser Pro Ile Ser 20 25 30

Asp Pro Ser Asn Ser Tyr Pro Ser Gly Phe Pro Leu Ala Lys Arg Leu 35 40 45

Asp Val Ile Pro Ser Ser Asp Thr Pro Gly Leu Val Leu Ala Thr Gly 50 55 60

Leu Thr Ile Ala Gly Glu Pro Asp Lys Met Gly His Gly Ser Thr Leu 65 70 75 80

His Ser Ala Ser Arg Tyr Pro Ala Thr Thr Met His Gln Glu Glu Asp 85 90 95

Val Val Arg Pro Ala Phe Pro Tyr Ala Val Arg His Arg Arg Glu Asp 100 105 110

Leu Leu Tyr Leu Ser Gly Val Gly Ile Ser Phe Leu Gly Thr Val Phe 115 120 125

Val Lys Ile Ile Trp Asp Leu Ile Lys Pro Pro Ala Ile Pro Asp Gln 130 135 140

145 150 155 160	
Ser Glu Val Thr Leu Pro Asp Leu Met Phe 165 170	
<210> 209 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 209 tgagccctag atatacttgg	20
<210> 210 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 210 cagtcagcct ccatttct	18
<210> 211 <211> 508 <212> DNA <213> Homo sapiens	
<400> 211 tgagccctag atatacttgg cttgcattta ggggccatga tgtttagaga tgaataatgc	60
cttacatgct ggagtcaccc tcagtttgtc aaagtgttca cactgtgaga ggctcacaga	120
aatggaggct gactgaagga agagcagatt cacatctttc atcccttctt tatgctcatg	180
cttctaattt ttgttcccat gttttcttgc ccctcctctt cttagcattt attttgtctg	240
tttctctttc ccctcttctg gctccctctc catctctcct gagcacagaa atgcggctac	300
tgtatttaat ccacagtggc cccctctggc cccctctttg tgtctcctga gcacaggccc	360
tggccccctc tccatctctc ctgacctcct gatccgccca cctcggccag ttattgctgt	420
tttataagga aaatgttttc tagtaccaca cttgtctccc tggaagggat agaagaagga	480
gggaaggaag tagggaggca gggaagag	508

Asp Ile Ala Tyr Asn Ser Ser Leu Val Pro Ile Thr Trp Thr Ala Trp

```
<212> PRT
<213> Homo sapiens
<400> 212
Met Pro Tyr Met Leu Glu Ser Pro Ser Val Cys Gln Ser Val His Thr
                                    10
Val Arg Gly Ser Gln Lys Trp Arg Leu Thr Glu Gly Arg Ala Asp Ser
His Leu Ser Ser Leu Leu Tyr Ala His Ala Ser Asn Phe Cys Ser His
       35
                            40
Val Phe Leu Pro Leu Leu Phe Leu Ala Phe Ile Leu Ser Val Ser Leu
    50
                        55
Ser Pro Leu Leu Ala Pro Ser Pro Ser Leu Leu Ser Thr Glu Met Arg
                    70
Leu Leu Tyr Leu Ile His Ser Gly Pro Leu Trp Pro Pro Leu Cys Val
                                    90
Ser
<210> 213
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 213
                                                                      25
ctgtatttaa tccacagtgg ccccc
<210> 214
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 214
                                                                      27
tccctacttc cttccctcct tcttcta
<210> 215
```

<211> 97

<211> 1321

<212> DNA

<213> Homo sapiens

<400> 215 cagtgcccag gcaagcccag gagttgacat ttctctgccc agccatgggc ctcaccctgc 60 tettgetget geteetggga etagaaggte agggeatagt tggeageete eetgaggtge 120 180 tgcaggcacc cgtgggaagc tccattctgg tgcagtgcca ctacaggctc caggatgtca 240 aagctcagaa ggtgtggtgc cggttcttgc cggaggggtg ccagcccctg gtgtcctcag ctgtggatcg cagageteca gegggeagge gtaegtttet caeagaeetg ggtgggggee 300 tgctgcaggt ggaaatggtt accctgcagg aagaggatgc tggcgagtat ggctgcatgg 360 tggatggggc cagggggccc cagattttgc acagagtctc tctgaacata ctgcccccag 420 aggaagaaga agagacccat aagattggca gtctggctga gaacgcattc tcagaccctg 480 540 caggcagtgc caaccetttg gaacceagee aggatgagaa gagcateeee ttgatetggg 600 gtgctgtgct cctggtaggt ctgctggtgg cagcggtggt gctgtttgct gtgatggcca agaggaaaca agggaacagg cttggtgtct gtggccgatt cctgagcagc agagtttcag 660 gcatgaatcc ctcctcagtg gtccaccacg tcagtgactc tggaccggct gctgaattgc 720 780 ctttggatgt accacatt aggettgaet caccacette atttgacaat accacetaca ccagcctacc tettgattec ccatcaggaa aacetteact cccageteca teeteattge 840 900 cccctctacc tcctaaggtc ctggtctgct ccaagcctgt gacatatgcc acagtaatct tcccgggagg gaacaagggt ggagggacct cgtgtgggcc agcccagaat ccacctaaca 960 atcagactcc atccagctaa gctgctcatc acactttaaa ctcatgagga ccatccctag 1020 gggttctgtg catccatcca gccagctcat gccctaggat ccttaggata tctgagcaac 1080 1140 cagggacttt aagatctaat ccaatgtcct aactttacta gggaaagtga cgctcagaca tgactgagat gtcttgggga agacctccct gcacccaact cccccactgg ttcttctacc 1200 1260 attacacact gggctaaata aaccctaata atgatgtgca aactcttaat ggctgaatgg 1320 gaaaggaaac tgcccaagtt tgactaattg cttggcctgt gaatggaaaa gactctggtc 1321

<400> 216

Met Gly Leu Thr Leu Leu Leu Leu Leu Leu Gly Leu Glu Gly Gln
1 5 10 15

<210> 216 <211> 311 <212> PRT <213> Homo sapiens

эту	TIE	vai	20 20	ser	Leu	Pro	GIU	25	Leu	GIII	Ala	PIO	30	GIÀ	sei
Ser	Ile	Leu 35	Val	Gln	Суѕ	His	Tyr 40	Arg	Leu	Gln	Asp	Val 45	Lys	Ala	Gln
ys	Val 50	Trp	Cys	Arg	Phe	Leu 55	Pro	Glu	Gly	Cys	Gln 60	Pro	Leu	Val	Ser
Ser 55	Ala	Val	Asp	Arg	Arg 70	Ala	Pro	Ala	Gly	Arg 75	Arg	Thr	Phe	Leu	Thr 80
qa.	Leu	Gly	Gly	Gly 85	Leu	Leu	Gln	Val	Glu 90	Met	Val	Thr	Leu	Gln 95	Glu
∃lu	Asp	Ala	Gly 100	Glu	Tyr	Gly	Cys	Met 105	Val	Asp	Gly	Ala	Arg 110	Gly	Pro
In	Ile	Leu 115	His	Arg	Val	Ser	Leu 120	Asn	Ile	Leu	Pro	Pro 125	Glu	Glu	Glu
3lu	Glu 130	Thr	His	Lys	Ile	Gly 135	Ser	Leu	Ala	Glu	Asn 140	Ala	Phe	Ser	Asp
Pro L45	Ala	Gly	Ser	Ala	Asn 150	Pro	Leu	Glu	Pro	Ser 155	Gln	Asp	Glu	Lys	Ser 160
Ile	Pro	Leu	Ile	Trp 165	Gly	Ala	Val	Leu	Leu 170	Val	Gly	Leu	Leu	Val 175	Ala
Ala	Val	Val	Leu 180	Phe	Ala	Val	Met	Ala 185	Lys	Arg	Lys	Gln	Gly 190	Asn	Arg
Leu	Gly	Val 195	Cys	Gly	Arg	Phe	Leu 200	Ser	Ser	Arg	Val	Ser 205	Gly	Met	Asn
Pro	Ser 210	Ser	Val	Val	His	His 215	Val	Ser	Asp	Ser	Gly 220	Pro	Ala	Ala	Glu
Leu 225	Pro	Leu	Asp	Val	Pro 230	His	Ile	Arg	Leu	Asp 235	Ser	Pro	Pro	Ser	Phe 240
Asp	Asn	Thr	Thr	Tyr 245	Thr	Ser	Leu		Leu 250 Page		Ser	Pro	Ser	Gly 255	Lys

Pro Ser Leu Pro Ala Pro Ser Ser Leu Pro Pro Leu Pro Pro 260 265 27	ro Lys Val 70
Leu Val Cys Ser Lys Pro Val Thr Tyr Ala Thr Val Ile Pi 275 280 285	he Pro Gly
Gly Asn Lys Gly Gly Gly Thr Ser Cys Gly Pro Ala Gln As 290 295 300	sn Pro Pro
Asn Asn Gln Thr Pro Ser Ser 305 310	
<210> 217 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 217 aggaagaaga agagaccc	18
<210> 218 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 218 catcacagca aacagcac	18
<210> 219 <211> 3874 <212> DNA <213> Homo sapiens	
<400> 219 gagaactggg gcggcgcgc gcggcgcggt gcatttccag gcgctgctc	t ccgtcgcaga 60
gaaccctgag ctcggcgcgc cgagagtccc agcagggcaa gggggcgcg	g cgtcctggtc 120
ctcgagcttg ggagacagat gcgcatgggc gtgggggcat gcggaccta	a gctcgggtga 180
agctctcggg aagggcaaga ctgcggcgac gagatgcgag cagaggagc	c ctgcgccccc 240
ggggccccca gcgccctggg agcccagcgc acgccgggcc ccgagctgc	g cctgtccagc 300
cagetgetge eegagetetg tacettegtg gtgegegtge tgttetace	t ggggcctgtc 360

tacctagctg gctacctggg	gctcagcata	acctggttgc	tgctcggcgc	cctgctgtgg	420
atgtggtggc gcaggaaccg	ccgcgggaag	cttgggcgcc	tggccgccgc	cttcgaattc	480
cttgacaatg aacgcgagtt	catcagccgc	gagctgcggg	gccagcacct	gccagcctgg	540
atccacttcc cggacgtgga	gcgggtcgag	tgggccaaca	agatcatctc	tcagacctgg	600
ccctacctaa gcatgatcat	ggaaagcaag	ttccgggaga	aacttgagcc	caagatccga	660
gagaagagca tccacctgag	gacctttacc	tttaccaagc	tctactttgg	acagaagtgt	720
cccagggtca acggtgtcaa	ggcacacact	aatacgtgca	accgaagacg	tgtgactgtg	780
gacctgcaga tctgctacat	cggggactgt	gagatcagtg	tggagctgca	gaagattcag	840
gctggtgtga acgggatcca	gttgcagggc	accctgcggg	tcatcctgga	gcccctccta	900
gtggacaagc cctttgtggg	agccgtgact	gtgttcttcc	ttcagaagca	gcacctacag	960
atcaactgga ctggcctgac	caacctgctg	gatgcgccgg	gaatcaatga	tgtgtcagac	1020
agcttactgg aggacctcat	tgccacccac	ctggtgctgc	ccaaccgtgt	gactgtgcct	1080
gtgaagaagg ggctggatct	gaccaacctg	cgcttccctc	tgccctgtgg	ggtgatcaga	1140
gtgcacttgc tggaggcaga	gcagctggcc	cagaaggaca	actttctggg	gctccgaggc	1200
aagtcagatc cctacgccaa	ggtgagcatc	ggcctacagc	atttccggag	taggaccatc	1260
tacaggaacc tgaaccccac	ctggaacgaa	gtgtttgagt	tcatggtgta	cgaagtccct	1320
ggacaggacc tggaggtaga	cctgtatgat	gaggataccg	acagggatga	cttcctgggc	1380
agcctgcaga tctgccttgg	agatgtcatg	accaacagag	tggtggatga	gtggtttgtc	1440
ctgaatgaca caaccagcgg	gcggctgcac	ctgcggctgg	agtggctttc	attgcttact	1500
gaccaagaag ttctgactga	ggaccatggt	ggcctttcca	ctgccattct	cgtggtcttc	1560
ttggagagtg cctgcaactt	gccgagaaac	ccttttgact	acctgaatgg	tgaatatcga	1620
gccaaaaaac tctccaggtt	tgccagagtg	aaacaaggtc	agcaaagacc	cttcttccta	1680
tgtcaaacta tctgtaggca	agaagacaca	tacaagtaag	acctgtcccc	acaacaagga	1740
ccctgtgtgg agccaggtgt	tctccttctt	tgtgcacaat	gtggccactg	agcggctcca	1800
tctgaaggtt tgatggaaga	agggctcttg	aaacagagtt	aagaggtttt	taagccaggc	1860
gggctgggaa gcttgaagtg	caccttgagc	aggttctcct	ggcagcgttt	aaagtcagcc	1920
ccttgtatgt aagagaggac	actgaggccc	cacaaggcct	catctcctta	aggctagtgc	1980
ctgaggtcac tgtatagggg	gatgtgggag	gataaatcct	caagtccctt	gactttccct	2040
gcaaaagggt ctttatattt	gctacacagt	acccagagca	gcctatctac	acaggacatt	2100
aataatggtg tactttaaaa	aatatatgtt	tcatttaatc	ttcacaaaag	atctgtagag	2160

taagcaaaga gaggcaaaaa	caatgtcttg	tccaagatct	catgaccaac	aagtggtgga	2220
gctgggatct tttagggccc	tgagccctgc	ctggagagca	gcacagctca	tcagtcccca	2280
aagccccctg gctctgggca	tttgacagac	tagctcatac	agatcataat	tgcctctact	2340
ctgagtcact atcttccctg	acagaagaca	aggaccaggt	ctggcctgat	cccattctag	2400
ttttcagaat aggaccagat	gcccatagaa	gcacagtaca	gactgaagta	aacccaaact	2460
tggctggggc tcagatacta	gtagtggagt	ggtggggctt	ggttatcctc	ttgttttgtg	2520
actggaccac tgcccaggtg	cttgatgatg	accaggagtg	tgctctggga	atgctggagg	2580
teceetgtg ccagateete	ccctatgctg	acctcactct	tgagcagcgc	tttcagctgg	2640
accactcagg cctggacagc	ctcatctcca	tgaggctggt	gcttgcagtt	cctgcaagtg	2700
gaggaacgag agctggggag	cccatacaca	ggacctgaag	ccctaaagaa	aggccctctg	2760
ctcatcaaga aagtggctac	caaccagggt	cccaaagccc	aacctcagga	agaaggccct	2820
acagatttgc catgtccccc	agaccctgct	tctgatacta	aggacgtatc	caggagtacc	2880
acaaccacca ccagtgctac	caccgttgcc	actgagccca	catcccaaga	gacaggccca	2940
gagcctaaag gcaaggacag	tgccaaaagg	ttctgtgagc	ccatcgggga	gaagaagagt	3000
ccagccacca tcttcctgac	tgtcccaggt	ccccactctc	cagggcccat	caagtcaccc	3060
agacccatga aatgccctgc	ctccccattc	gcatggccgc	ccaagaggct	ggctcccagc	3120
atgtcctcgc tcaactcctt	ggcctcttct	tgctttgacc	tggcagatat	cagcctcaac	3180
attgagtatg cacctctctg	cttaatcttt	tctaaaatcg	cctgtatgaa	aaatacctcg	3240
ctggatggaa aagtagatat	gaacttacat	ttctgtgcaa	gttgttttt	cacaaaatat	3300
cttcctaaga ggcagcatgg	tgtggtagaa	agaacacagg	acaagggaga	gagagccaaa	3360
caggctgttt atggctctag	ctgcgtactg	actataaaat	agatgctgga	ctctggttga	3420
ggtggggacc tcaggcgacg	gcagctgggt	gagattcagc	tcacagtgcg	ctatgtgtgt	3480
ctgcggcgct gcctcagcgt	gctaatcaat	ggctgcagaa	acctaacacc	atgtaccagc	3540
agtggagctg atccctacgt	ccgtgtctac	ttgttgccag	aaaggaagtg	ggcatgtcgt	3600
aagaagactt cagtgaagcg	gaagaccttg	gaacccctgt	ttgatgagac	atttgaattt	3660
tttgttccca tggaagaagt	aaagaagagg	tcactagatg	ttgcagtgaa	aaatagtagg	3720
ccacttggct cacacagaag	aaaggagtta	ggaaaagtac	tgattgactt	atcaaaagaa	3780
gatctgatta agggcttttc	acaatggtaa	gtgtgccctt	tcattttatc	actgttatcc	3840
tgctattcaa gacagttttc	ccttttcagt	actg		,	3874

<211> 501 <212> PRT <213> Homo sapiens <400> 220 Met Arg Ala Glu Glu Pro Cys Ala Pro Gly Ala Pro Ser Ala Leu Gly

Ala Gln Arg Thr Pro Gly Pro Glu Leu Arg Leu Ser Ser Gln Leu Leu

Pro Glu Leu Cys Thr Phe Val Val Arg Val Leu Phe Tyr Leu Gly Pro 40

Val Tyr Leu Ala Gly Tyr Leu Gly Leu Ser Ile Thr Trp Leu Leu Leu 50

Gly Ala Leu Leu Trp Met Trp Trp Arg Arg Asn Arg Arg Gly Lys Leu

Gly Arg Leu Ala Ala Ala Phe Glu Phe Leu Asp Asn Glu Arg Glu Phe

Ile Ser Arg Glu Leu Arg Gly Gln His Leu Pro Ala Trp Ile His Phe

Pro Asp Val Glu Arg Val Glu Trp Ala Asn Lys Ile Ile Ser Gln Thr 115 125

Trp Pro Tyr Leu Ser Met Ile Met Glu Ser Lys Phe Arg Glu Lys Leu 130 135

Glu Pro Lys Ile Arg Glu Lys Ser Ile His Leu Arg Thr Phe Thr Phe 145

Thr Lys Leu Tyr Phe Gly Gln Lys Cys Pro Arg Val Asn Gly Val Lys 175

Ala His Thr Asn Thr Cys Asn Arg Arg Arg Val Thr Val Asp Leu Gln 180

Ile Cys Tyr Ile Gly Asp Cys Glu Ile Ser Val Glu Leu Gln Lys Ile

Gln Ala Gly Val Asn Gly Ile Gln Leu Gln Gly Thr Leu Arg Val Ile 210

Leu 225	Glu	Pro	Leu	Leu	Val 230	Asp	Lys	Pro	Phe	Val 235	Gly	Ala	Val	Thr	Val 240
Phe	Phe	Leu	Gln	Lys 245	Gln	His	Leu	Gln	Ile 250	Asn	Trp	Thr	Gly.	Leu 255	Thr
Asn	Leu	Leu	Asp 260	Ala	Pro	Gly	Ile	Asn 265	Asp	Val	Ser	Asp	Ser 270	Leu	Leu
Glu	Asp	Leu 275	Ile	Ala	Thr	His	Leu 280	Val	Leu	Pro	Asn	Arg 285	Val	Thr	Val
Pro	Val 290	Lys	Lys	Gly	Leu	Asp 295	Leu	Thr	Asn	Leu	Arg 300	Phe	Pro	Leu	Pro
Cys 305	Gly	Val	Ile	Arg	Val 310	His	Leu	Leu	Glu	Ala 315	Glu	Gln	Leu	Ala	Gln 320
Lys	Asp	Asn	Phe	Leu 325	Gly	Leu	Arg	Gly	Lys 330	Ser	Asp	Pro	Tyr	Ala 335	Lys
Val	Ser	Ile	Gly 340	Leu	Gln	His	Phe	Arg 345	Ser	Arg	Thr	Ile	Tyr 350	Arg	Asn
Leu	Asn	Pro 355	Thr	Trp	Asn	Glu	Val 360	Phe	Glu	Phe	Met	Val 365	Tyr	Glu	Val
Pro	Gly 370	Gln	Asp	Leu	Glu	Val 375	Asp	Leu	Tyr	Asp	Glu 380	Asp	Thr	Asp	Arg
Asp 385	Asp	Phe	Leu	Gly	Ser 390	Leu	Gln	Ile	Cys	Leu 395	Gly	Asp	Val	Met	Thr 400
Asn	Arg	Val	Val	Asp 405	Glu	Trp	Phe	Val	Leu 410	Asn	Asp	Thr	Thr	Ser 415	Gly
Arg	Leu	His	Leu 420	Arg	Leu	Glu	Trp	Leu 425	Ser	Leu	Leu	Thr	Asp 430	Gln	Glu
Val	Leu	Thr 435	Glu	Asp	His	Gly	Gly 440	Leu	Ser	Thr	Ala	Ile 445	Leu	Val	Val
Phe	Leu 450	Glu	Ser	Ala	Cys	Asn 455	Leu		Arg Page		Pro 460	Phe	Asp	Tyr	Leu
									-						

Asn Gly Glu Tyr Arg Ala Lys Lys Leu Ser Arg Phe Ala Arg Val Lys 465 470 475 480	
Gln Gly Gln Gln Arg Pro Phe Phe Leu Cys Gln Thr Ile Cys Arg Gln 485 490 495	
Glu Asp Thr Tyr Lys 500	
<210> 221 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 221 tggggcctgt ctacctagct	20
<210> 222 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 222 tettgttgge ceaetegae	19
<210> 223 <211> 1020 <212> DNA <213> Homo sapiens	
<400> 223 agacacagga cctgctgggc cacagaaagg aggctctggg tagacgcact agattactgg	60
ataaatcact tcaatttccc aatgaatttt atattgttta tttttatacc tggagttttt	120
tccttaaaaa gtagcacttt gaagcctact attgaagcat tgcctaatgt gctaccttta	180
aatgaagatg ttaataagca ggaagaaaag aatgaagatc atactcccaa ttatgctcct	240
gctaatgaga aaaatggcaa ttattataaa gatataaaac aatatgtgtt cacaacacaa	300
aatccaaatg gcactgagtc tgaaatatct gtgagagcca caactgacct gaattttgct	360
ctaaaaaacg ataaaactgt caatgcaact acatatgaaa aatccaccat tgaagaagaa	420
acaactacta gcgaaccctc tcataaaaat attcaaagat caaccccaaa cgtgcctgca	480

ttttggacaa	tgttagctaa	agctataaat	ggaacagcag	tggtcatgga	tgataaagat	540
caattatttc	acccaattcc	agagtctgat	gtgaatgcta	cacagggaga	aaatcagcca	600
gatctagagg	atctgaagat	caaaataatg	ctgggaatct	cgttgatgac	cctcctcctc	660
tttgtggtcc	tcttggcatt	ctgtagtgct	acactgtaca	aactgaggca	tctgagttat	720
aaaagttgtg	agagtcagta	ctctgtcaac	ccagagctgg	ccacgatgtc	ttactttcat	780
ccatcagaag	gtgtttcaga	tacatccttt	tccaagagtg	cagagagcag	cacatttttg	840
ggtaccactt	cttcagatat	gagaagatca	ggcacaagaa	catcagaatc	taagataatg	900
acggatatca	tttccatagg	ctcagataat	gagatgcatg	aaaacgatga	gtcggttacc	960
cggtgaagaa	atcaaggaac	ccggtgaaga	aatcttattg	atgaataaat	aactttaatt	1020

<210> 224

<211> 294

<212> PRT

<213> Homo sapiens

<400> 224

Met Asn Phe Ile Leu Phe Ile Phe Ile Pro Gly Val Phe Ser Leu Lys 1 5 10 15

Ser Ser Thr Leu Lys Pro Thr Ile Glu Ala Leu Pro Asn Val Leu Pro 20 25 30

Leu Asn Glu Asp Val Asn Lys Gln Glu Glu Lys Asn Glu Asp His Thr 35 40 45

Pro Asn Tyr Ala Pro Ala Asn Glu Lys Asn Gly Asn Tyr Tyr Lys Asp 50 55 60

Ile Lys Gln Tyr Val Phe Thr Thr Gln Asn Pro Asn Gly Thr Glu Ser 70 75 80

Glu Ile Ser Val Arg Ala Thr Thr Asp Leu Asn Phe Ala Leu Lys Asn 85 90 95

Asp Lys Thr Val Asn Ala Thr Thr Tyr Glu Lys Ser Thr Ile Glu Glu
100 105 110

Glu Thr Thr Thr Ser Glu Pro Ser His Lys Asn Ile Gln Arg Ser Thr 115 120 125

Pro Asn Val Pro Ala Phe Trp Thr Met Leu Ala Lys Ala Ile Asn Gly 130 135 140

Thr Ala Val Val Met Asp Asp Lys Asp Gln Leu Phe His Pro Ile Pro 150 155 145 Glu Ser Asp Val Asn Ala Thr Gln Gly Glu Asn Gln Pro Asp Leu Glu 170 165 Asp Leu Lys Ile Lys Ile Met Leu Gly Ile Ser Leu Met Thr Leu Leu 185 180 Leu Phe Val Val Leu Leu Ala Phe Cys Ser Ala Thr Leu Tyr Lys Leu 195 200 Arg His Leu Ser Tyr Lys Ser Cys Glu Ser Gln Tyr Ser Val Asn Pro 210 215 Glu Leu Ala Thr Met Ser Tyr Phe His Pro Ser Glu Gly Val Ser Asp 235 240 225 230 Thr Ser Phe Ser Lys Ser Ala Glu Ser Ser Thr Phe Leu Gly Thr Thr 245 250 Ser Ser Asp Met Arg Arg Ser Gly Thr Arg Thr Ser Glu Ser Lys Ile 260 265 Met Thr Asp Ile Ile Ser Ile Gly Ser Asp Asn Glu Met His Glu Asn 275 280 Asp Glu Ser Val Thr Arg 290 <210> 225 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 225 24 tgaatgctac acagggagaa aatc <210> 226 <211> 21 <212> DNA <213> Artificial Sequence

<220>

<400> 226 tgaaagtaag acatcgtggc c	21
<210> 227 <211> 309 <212> DNA <213> Homo sapiens	
<400> 227 atgaccacag ccacccctct gggggatacc accttcttct cactgaacat gaccaccagg	60
ggagaagact teetgtataa gagttetgga geeattgttg etgeegttgt ggtggttgte	120
atcatcatct tcaccgtggt tctgatcctg ctgaagatgt acaacaggaa aatgaggacg	180
aggegggaac tagageecaa gggeeecaag eeaacegeee ettetgeegt gggeecaaae	240
agcaacggca gccaacaccc agcaactgtg accttcagtc ctgttgacgt ccaggtggag	300
acgcgatga	309
<210> 228 <211> 102 <212> PRT <213> Homo sapiens	
<400> 228	
Met Thr Thr Ala Thr Pro Leu Gly Asp Thr Thr Phe Phe Ser Leu Asn 1 5 10 15	
1 5 10 15 Met Thr Thr Arg Gly Glu Asp Phe Leu Tyr Lys Ser Ser Gly Ala Ile	
1 5 10 15 Met Thr Thr Arg Gly Glu Asp Phe Leu Tyr Lys Ser Ser Gly Ala Ile 20 Val Ala Ala Val Val Val Val Ile Ile Ile Phe Thr Val Val Leu	
Met Thr Thr Arg Gly Glu Asp Phe Leu Tyr Lys Ser Ser Gly Ala Ile 20 Val Ala Ala Val Val Val Val Val Ile Ile Ile Phe Thr Val Val Leu 45 Ile Leu Leu Lys Met Tyr Asn Arg Lys Met Arg Thr Arg Arg Glu Leu	

Val Gln Val Glu Thr Arg

```
<210> 229
<211>
      19
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 229
                                                                      19
ggggatacca ccttcttct
<210>
      230
<211>
      18
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 230
                                                                      18
agttgctggg tgttggct
<210>
      231
<211> 2510
<212> DNA
<213> Homo sapiens
<400> 231
gactttttaa taatagtcgt tctgactgat gtgaaatgga gtctctttgt ggttctgatt
                                                                      60
tgcatctctg atgatgcatg atgttgacca gtttttaata tgtttgttga ctgcttgtat
                                                                     120
qtcttctttt aagaagtgtc tgttcatatc ctttgccctt tcgcttctat gcaccaataa
                                                                     180
cacccaggct gagagtcaaa ccaagaacac aatcctgact acagtagcca taaagaaaat
                                                                     240
gaaatacctg ggaatacacc taatcaaaaa catgaaagca ctctctagag ggagaactac
                                                                     300
aaaacattgc tgaaagaaat cagagatgat tctctgaaaa agaagtcaga ttagaaatga
                                                                     360
ttctctgaaa aagaaatcat ctctgatttc tttcagcagt gtgttttttg tttgtttgtt
                                                                     420
                                                                     480
tgttttgaga cagagtcttg ctctgtcgcc aaggctggag ggcaatggca tgatttcagc
                                                                     540
tcactacaac ctcctgctcc tgggttcgag cgattctcct acctcagcct cccgagtagc
                                                                     600
tgqqattaca ggaggctgag aaaatgttag aaattggggg agacaagttt cccttagaga
gcaggaagtt actaagtagt cctggaaaga acatcagttg cagatgtgac ccctctgaga
                                                                     660
ttaatatatc tgatgaaatg cctaaaacta cagtttggaa agctctcagt atgaattctg
                                                                     720
gaaatgcaaa ggaaaagagt ctcttcaact aagagtcttt gctgggatgg aagatttggg
                                                                     780
ccgtgtggtg cctcagggaa gttctggtta cagagaaaat ggcgagtctc tcagagaaga
                                                                     840
agcaagacca agtctggccc tgtccttggt catctcaaag ccatgccgaa gcattcagtt
                                                                     900
```

attcttggtg	tgcattggaa	ggcatccagc	tatccccata	ccagcagcca	gtcaccagat	960
gtgaatgtgg	aagcagaaga	ccacctcctg	ttggttcttc	tcctcttcct	tctttttctc	1020
tttagaacgg	ccaccattga	agacctagct	tcccattttc	cagacgtttt	ctctgaaatt	1080
ctctgctggc	ctgccaagcc	atatggattc	attctgccac	tgaggagtcc	ttcagtgagg	1140
tccctcttcc	taaaggacag	agtggggagt	aggagggaa	cagagaggac	atcctctctg	1200
gctctccagt	gctcttagtg	tctacaggct	cctaggcagc	cctgggcctt	ggtttgatta	1260
cctcccctgg	gggatgctgg	tcagacccag	aggttgtcag	gaggtcagct	accaggaaga	1320
tccatgatct	gggcattggc	agtgcctgcc	accacagcca	ggaagatgcc	tctgacctgg	1380
gtgcatctcc	atcactcctt	agcagcagcc	tgcataactg	gcaagaatct	tggatgatac	1440
aagagccaag	aagggacatt	tgagttgtgt	cgcttagata	ggaaagggat	ccagggaaaa	1500
tcaacagtaa	gtgaggatga	gcagtgtctc	ttggttttca	ttgaggatag	agtaagagat	1560
tgagtttaga	ttgcaacaga	aggaattagt	ttagatacca	ggaagaactt	cctagcctga	1620
agatttgtca	tagtgtctgc	tttctagata	tctgggaaag	atttgataat	agttgtttgt	1680
gaatagaaag	gaggatatga	tgtttttatt	ggccattttg	cgggactctt	cgacttcttg	1740
ctgctgtctc	ttgaggatac	attccaattc	catcctggcg	agatccaagt	gcttacgtac	1800
tgtctcctta	gctgccttag	agtaaacgat	catcagttca	atggaccaaa	atcaccttca	1860
gccatgtggt	ttcttcatca	tcatggattt	cttttggttg	acaaacattc	tggctctcag	1920
atgcaaaaag	tcacactggg	aaatgaactg	taagtggtga	aattagtttt	ggtatttaat	1980
ttaaaactac	atttatagtt	tttctcttct	cttctatgtt	gcaatgaatg	taaagtattt	2040
gggatccagt	gcttataaac	ctttccttcc	tttgtgcaca	gaatgtaact	agcaagccca	2100
ttagcaccca	gataattcta	tcatgttagt	ttcccatcct	ggaaaatctt	tgtacagtgg	2160
gaagttcccc	gatgtgtttt	tctttcttag	gtgaagggtt	ggctatatca	ctttattgaa	2220
ttttgcattc	cttagacttt	taaaatatac	taatgtattc	tagtcttact	ctaaagacct	2280
ttgatgttaa	aggaatcctt	catttatttc	atattcccta	tctcataggg	ccacaattat	2340
tttaatacag	agatgatttt	caaaatattt	taacaactgg	tacaggacag	atgccagcca	2400
ctcagaaggg	atgcctgctg	taaacaagca	gtatgtatgg	ttgtaccaat	gcctattggc	2460
tgaacattat	gctactttca	gatattaaaa	tggtgttcct	ttgaatcgtg		2510

<210> 232 <211> 164 <212> PRT <213> Homo sapiens

<400> 232

Met Gln Arg Lys Arg Val Ser Ser Thr Lys Ser Leu Cys Trp Asp Gly
1 5 10 15

Arg Phe Gly Pro Cys Gly Ala Ser Gly Lys Phe Trp Leu Gln Arg Lys 20 25 30

Trp Arg Val Ser Gln Arg Arg Ser Lys Thr Lys Ser Gly Pro Val Leu 35 40 45

Gly His Leu Lys Ala Met Pro Lys His Ser Val Ile Leu Gly Val His 50 60

Trp Lys Ala Ser Ser Tyr Pro His Thr Ser Ser Gln Ser Pro Asp Val 65 70 75 80

Asn Val Glu Ala Glu Asp His Leu Leu Leu Val Leu Leu Leu Phe Leu 85 90 95

Leu Phe Leu Phe Arg Thr Ala Thr Ile Glu Asp Leu Ala Ser His Phe
100 105 110

Pro Asp Val Phe Ser Glu Ile Leu Cys Trp Pro Ala Lys Pro Tyr Gly
115 120 125

Phe Ile Leu Pro Leu Arg Ser Pro Ser Val Arg Ser Leu Phe Leu Lys 130 135 140

Asp Arg Val Gly Ser Arg Arg Gly Thr Glu Arg Thr Ser Ser Leu Ala 145 150 155 160

Leu Gln Cys Ser

<210> 233

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 233

gaggctgaga aaatgttaga

<210> 234 <211> 18 20

<212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 234 18 tccatcccag caaagact <210> 235 1977 <211> <212> DNA <213> Homo sapiens <400> 235 cgtgggcttg aggacctgga gagagtagat cctgaagaac tttttcagtc tgctgaagag 60 120 cttqqaaqac tqqaqacaga aggcagagtc tcaggctctg aaggtataag gagtgtgagt 180 tcctqtqaqa aacactcatt tgattgtgaa aagacttgaa ttctatgcta agcagggttc caaqtaqcta aatgaatgat ctcagcaagt ctctcttgct gctgctgcta ctcgtttaca 240 tttattgatt acttacgatg attcaggtac tgttgtaagt gctttacatg ctgttatacg 300 agactcttgg gagaaatcac tttaatgaag cttgagacac atggcattgc catgcaatga 360 tttttccccc ctcttcacgg gatcagaggg aactaataga atgtgacaat gattctttag 420 cagggactgc tgaggcttct ggttcctttt taagatctgc agtgaaagaa gatgagaaac 480 atggatatgc ccttcttttg gtccccctct tcctttattt gatctctact tccttctata 540 aatatattag ggctacattg tccctttgta tttcaaacaa ggcaaaaaga ggttgtaatt 600 acactttact gcaatcctca gtttctccag ggaacaggaa tgcaaaggct ttgaaggcct 660 ctctatttgc tgacatggtc agctgggtgc catgggccaa gtccttctgt tgccctcctc 720 tgtcaccaag taagctaggt cctttctgag gctcaggttt gctgtgatga tgatcacttt 780 840 taggcagaag gttagaggcc tcatgagtgc tatatggact ttattaggct ttagatttga 900 tggggaataa gggatgtgat ttgtcttttg ggaactcatc tttgattcat cattgtctct 960 tggtatcttg gaatttccat gtcattacag tctacagaat gaaagagtaa cctgtcccag 1020 aggagaggca ggtgaaagac tccacagcat gctcattctc attctgtctt ctcagtgaca 1080 ccgaggttta ctgagtgccc actatgtgcc aagcactgtg ctcagggctt tctttgtatg catgatetea gtgaatetea ecaageetea tetggaaaae ggggacaaat taacaacagg 1140 atggcaaatt gaaaaacacg taaccatgtt ctacagatgg aaaggggtgc ttggttatta 1200 tgaaggcccc ctcgcaagcg tgtgggacat gggtgtgttc tctgggttgt actgatcaga 1260

tcaaqqacct ccccaccct tctcacactc tgcccacttc cgccctttgc ttatcagacc

1320

cttagccagt	gactcattcc	agaaccagaa	ccttggtgaa	atctcaaccg	acaccagaga	1380
tcggtgtctt	cagtcctaga	ctgatggaga	aaatccagaa	tatatactag	aagctccaaa	1440
tgctctgggt	ttcagctcct	ctgtgctgtg	gacactgact	ttggctcaga	actccgattt	1500
agtacaaaag	gctcattttt	atttcagggg	cactcttcct	aaagcaaacc	taataaatga	1560
aatatggaat	tcacagatac	acacacacat	taaaaaatta	acctagtgta	tctgtgagga	1620
gtaggcagaa	attcactgta	taaaagaatg	cttcatttca	tagagaattt	gtgttaagat	1680
tccattagat	agtacatttc	tcaaagattt	ttgaggttgt	atttgcttta	ccaaaacttg	1740
gtttatgtaa	gtggaaaaag	catgttgcaa	aataacttgg	tgtctatgat	tcagtttatg .	1800
taaaataata	aatgtatgta	ggaatacgtg	tgttgaaaga	tgtacatcaa	tttgctaaca	1860
atggttatct	ctgacgtggt	gggatttgag	atgtgtttt	ctttttggtt	gtatttttct	1920
ctattgtttg	acttaacaca	gaacatgttt	ggttacaaca	ataaagttat	tgaagac	1977

<210> 236

<211> 130

<212> PRT

<213> Homo sapiens

<400> 236

Met Ile Phe Pro Pro Ser Ser Arg Asp Gln Arg Glu Leu Ile Glu Cys 1 5 10 15

Asp Asn Asp Ser Leu Ala Gly Thr Ala Glu Ala Ser Gly Ser Phe Leu 20 25 30

Arg Ser Ala Val Lys Glu Asp Glu Lys His Gly Tyr Ala Leu Leu Leu 35 40 45

Val Pro Leu Phe Leu Tyr Leu Ile Ser Thr Ser Phe Tyr Lys Tyr Ile
50 55 60

Arg Ala Thr Leu Ser Leu Cys Ile Ser Asn Lys Ala Lys Arg Gly Cys 65 70 75 80

Asn Tyr Thr Leu Leu Gln Ser Ser Val Ser Pro Gly Asn Arg Asn Ala 85 90 95

Lys Ala Leu Lys Ala Ser Leu Phe Ala Asp Met Val Ser Trp Val Pro 100 105 110

Trp Ala Lys Ser Phe Cys Cys Pro Pro Leu Ser Pro Ser Lys Leu Gly
115 120 125

Pro 1	Phe 130						
<210: <211: <212: <213:	> 18 > DNA	ificial Sequ	ience				
<220:		gonucleotide	e				
<400: atgat		agcaggga					18
<210: <211: <212: <213:	> 18 > DNA		ience				
<220: <223:		gonucleotide	e				
<400:		cttgtttg					18
<210: <211: <212: <213:	> 129 > DNA	3					
<400: aggc		gttcggcgac	gcggagggag	ggagagtctg	ggccgcgcgg	gagccgcagg	60
gcgc	cctage	cttcgcagaa	acgatggcgg	aggaagaagg	accacctgta	gagctgcgcc	120
aaaga	aaaaaa	gccaaagtct	tcagaaaata	aggaatctgc	caaagaagag	aaaatcagtg	180
acati	tccaat	tcctgaaaga	gctccaaaac	atgtattatt	tcaacgcttt	gcaaagattt	240
tcati	tggctg	tcttgcagcg	gttactagtg	gtatgatgta	tgctctctac	ttatcagcat	300
accat	tgaacg	gaaattctgg	ttttccaaca	ggcaggagct	tgaacgggaa	atcacgtttc	360
agggt	tgacag	tgccatttat	tactcctatt	ataaagatat	gttaaaggca	ccttcatttg	420
aaaga	aggtgt	ttacgaactg	acacacaata	acaaaactgt	atctctgaag	actataaatg	480
cagt	gcagca	aatgtctctg	tatccggaac	ttattgctag	cattttatat	caagccactg	540
gtag	caatga	gattattgag	ccagtgtatt	tctatattgg	cattgttttt	ggattgcaag	600
gaata	atatgt	tactgcttta	tttgttacaa	gttggcttat	gagtggaaca	tggctagcag	660
gaat	gcttac	tgttgcgtgg	ttcgttatta	acagttgcac	agacccctgg	tacagtgtgg	720

.

gaggtgacaa	cacaggatat	taataccagg	aggcaggaat	cattgggacc	gtcttggagg	780
ctggctacca	cattcaatta	actttgctat	taatttcatg	taatccctat	atctgtcttc	840
atatttgaag	aggaaaagat	actttctcat	gtaaacataa	tggttttaaa	gaataagact	900
ctcttatgct	acttaaacaa	aagaataaga	ctctctttag	agatcttagt	gagaattgta	960
agaaataaaa	taaacagaag	tctgactgcc	ttatttgatg	tcactgatgt	atgttgtatt	1020
gctggagtag	aagttaaata	gaaaaattga	cctggtatat	tctactcaaa	tgtatctttt	1080
gacaattgaa	atgttcttaa	tagctaagtt	ttaaaaaatg	cgtttgtttg	ctttttgttt	1140
atattttatt	ggtatgtatc	ttgtactgca	aaatacattt	taatgccatg	aaagaatatg	1200
ctgtctcttt	attcatcagc	tttatagctt	ttatttatat	atgacttctt	agaaaagtat	1260
aaaaagatat	taaagtcatt	ccattatatt	atg		•	1293

<210> 240

<211> 219

<212> PRT

<213> Homo sapiens

<400> 240

Met Ala Glu Glu Glu Gly Pro Pro Val Glu Leu Arg Gln Arg Lys Lys 1 5 10 15

Pro Lys Ser Ser Glu Asn Lys Glu Ser Ala Lys Glu Glu Lys Ile Ser 20 25 30

Asp Ile Pro Ile Pro Glu Arg Ala Pro Lys His Val Leu Phe Gln Arg 35 40 45

Phe Ala Lys Ile Phe Ile Gly Cys Leu Ala Ala Val Thr Ser Gly Met 50 55 60

Met Tyr Ala Leu Tyr Leu Ser Ala Tyr His Glu Arg Lys Phe Trp Phe 65 70 75 80

Ser Asn Arg Gln Glu Leu Glu Arg Glu Ile Thr Phe Gln Gly Asp Ser 85 90 95

Ala Ile Tyr Tyr Ser Tyr Tyr Lys Asp Met Leu Lys Ala Pro Ser Phe 100 105 110

Glu Arg Gly Val Tyr Glu Leu Thr His Asn Asn Lys Thr Val Ser Leu 115 120 125

130 135 140									
Ala Ser Ile Leu Tyr Gln Ala Thr Gly Ser Asn Glu Ile Ile Glu Pro 145 150 155 160									
Val Tyr Phe Tyr Ile Gly Ile Val Phe Gly Leu Gln Gly Ile Tyr Val 165 170 175									
Thr Ala Leu Phe Val Thr Ser Trp Leu Met Ser Gly Thr Trp Leu Ala 180 185 190									
Gly Met Leu Thr Val Ala Trp Phe Val Ile Asn Ser Cys Thr Asp Pro 195 200 205									
Trp Tyr Ser Val Gly Gly Asp Asn Thr Gly Tyr 210 215									
<210> 241 <211> 19 <212> DNA <213> Artificial Sequence									
<220> <223> Oligonucleotide									
<400> 241 accgctgcaa gacagccaa	19								
<210> 242 <211> 20 <212> DNA <213> Artificial Sequence									
<220> <223> Oligonucleotide									
<400> 242 gcagaaacga tggcggagga	20								
<210> 243 <211> 1291 <212> DNA <213> Homo sapiens									
<400> 243 atcatgtatt ccattgccac tggaggcttg gttttgatgg cagtgtttta tacacagaaa	60								
gacagctgca tggaaaacaa aattctgctg ggagtaaatg gaggcctgtg cctgcttata	120								
tcattggtag ccatctcacc ctgggtccaa aatcgacagc cacactcggg gctcttacaa	180								

tcaqqqqtca taaqctqcta tqtcacctac ctcaccttct cagctctqtc cagcaaacct 240 qcaqaaqtaq ttctaqatqa acatqqqaaa aatgttacaa tctgtgtgcc tgactttggt 300 360 caagacctgt acagagatga aaacttggtg actatactgg ggaccagcct cttaatcgga tqtatcttqt attcatqttt qacatcaaca acaagatcga gttctgacgc tctgcagggg 420 cgatacgcag ctcctgaatt ggagatagct cgctgttgtt tttgcttcag tcctggtgga 480 gaggacactg aagagcagca gccggggaag gagggaccac gggtcattta tgacgagaag 540 aaaggcaccg tctacatcta ctcctacttc cacttcgtgt tcttcctagc ttccctgtat 600 gtgatgatga ccgtcaccaa ctggttcaac tacgaaagtg ccaacatcga gagcttcttc 660 aqcqqqaqct qqtccatctt ctgggtcaag atggcctcct gctggatatg cgtgctgttg 720 tacctqtqta cqctqqtcqc tcccctctqc tqccccaccc gggagttctc tgtgtgatga 780 840 tateggeggt cecetggget ttgtgggeet acageetgga aagtgeeate ttttgaacag tgtccccggg gcagggactg gcgccctgtg cctgagtggg tctgaaaaag ctttgagaga 900 gaaaaaaaaa aatctcctga ttagcttttt acttttgaaa ttcaaaaaga aactaccagt 960 ttgtcccaaa ggaattgaaa ttttcaacca aactgatcat ggttgaaata tcttacccct 1020 1080 aggaactgga taccagttat gttgacttcc ttctgcatgt ttttgccaaa acagaatttg qqqcacaqca tcttttcaca gggataaaaa tatcttgtgg ggccagtcat tctcatcctc 1140 qqaataqaaa aacatqccaa aatcttqaqt ccccaqcqcc taacagaatc cagacccctc 1200 tcactcactt ccqcctctta gagccttgtc cccagggggc tttgaggaca ggactcagcc 1260 tgcagggccc ctggtattta tagggtccaa g 1291

<210> 244

<211> 257

<212> PRT

<213> Homo sapiens

<400> 244

Met Tyr Ser Ile Ala Thr Gly Gly Leu Val Leu Met Ala Val Phe Tyr 1 5 10 15

Thr Gln Lys Asp Ser Cys Met Glu Asn Lys Ile Leu Leu Gly Val Asn 20 25 30

Gly Gly Leu Cys Leu Leu Ile Ser Leu Val Ala Ile Ser Pro Trp Val 35 40 45

Gln Asn Arg Gln Pro His Ser Gly Leu Leu Gln Ser Gly Val Ile Ser

Cys Tyr Val Thr Tyr Leu Thr Phe Ser Ala Leu Ser Ser Lys Pro Ala Glu Val Val Leu Asp Glu His Gly Lys Asn Val Thr Ile Cys Val Pro Asp Phe Gly Gln Asp Leu Tyr Arg Asp Glu Asn Leu Val Thr Ile Leu 105 Gly Thr Ser Leu Leu Ile Gly Cys Ile Leu Tyr Ser Cys Leu Thr Ser 115 Thr Thr Arg Ser Ser Ser Asp Ala Leu Gln Gly Arg Tyr Ala Ala Pro 130 135 Glu Leu Glu Ile Ala Arg Cys Cys Phe Cys Phe Ser Pro Gly Gly Glu 145 Asp Thr Glu Glu Gln Gln Pro Gly Lys Glu Gly Pro Arg Val Ile Tyr 170 Asp Glu Lys Lys Gly Thr Val Tyr Ile Tyr Ser Tyr Phe His Phe Val 180 Phe Phe Leu Ala Ser Leu Tyr Val Met Met Thr Val Thr Asn Trp Phe 195 Asn Tyr Glu Ser Ala Asn Ile Glu Ser Phe Phe Ser Gly Ser Trp Ser 210 Ile Phe Trp Val Lys Met Ala Ser Cys Trp Ile Cys Val Leu Leu Tyr 240 225 230 Leu Cys Thr Leu Val Ala Pro Leu Cys Cys Pro Thr Arg Glu Phe Ser 245 Val

<210> 245 <211> 18 <212> DNA <213> Artificial Sequence

<220>

<223> Oli	gonucleotide	2				
<400> 245 agtcaggcac	acagattg					18
<210> 246 <211> 18 <212> DNA <213> Art	ificial Sequ	ıence				
<220> <223> Oli	gonucleotide	e				
<400> 246 ttctgctggg	agtaaatg					18
<210> 247 <211> 241 <212> DNA <213> Home	2 o sapiens					
<400> 247 gaacccaggc	atcctgggct	ccagctgaaa	ccattgcatg	tggctttccc	catccctggc	60
cccgtgactc	agtccctctg	aagggagcag	ccctctttt	tggcaatcac	cagggaggtg	120
gggggaggag	gaggggagct	aggtggtgac	atcacagtcg	aaggttataa	aagcttccag	180
ccaaacggca	ttgaagttga	agatacaacc	tgacagcaca	gcctgagatc	ttggggatcc	240
ctcagcctaa	cacccacaga	cgtcagctgg	tggattcccg	ctgcatcaag	gcctacccac	300
tgtctccatg	ctgggctctc	cctgccttct	gtggctcctg	gccgtgacct	tcttggttcc	360
cagagctcag	cccttggccc	ctcaagactt	tgaagaagag	gaggcagatg	agactgagac	420
ggcgtggccg	cctttgccgg	ctgtcccctg	cgactacgac	cactgccgac	acctgcaggt	480
gccctgcaag	gagctacaga	gggtcgggcc	ggcggcctgc	ctgtgcccag	gactctccag	540
ccccgcccag	ccgcccgacc	cgccgcgcat	gggagaagtg	cgcattgcgg	ccgaagaggg	600
ccgcgcagtg	gtccactggt	gtgccccctt	ctccccggtc	ctccactact	ggctgctgct	660
ttgggacggc	agcgaggctg	cgcagaaggg	gcccccgctg	aacgctacgg	tccgcagagc	720
cgaactgaag	gggctgaagc	cagggggcat	ttatgtcgtt	tgcgtagtgg	ccgctaacga	780
ggccggggca	agccgcgtgc	cccaggctgg	aggagagggc	ctcgaggggg	ccgacatccc	840
tgccttcggg	ccttgcagcc	gccttgcggt	gccgcccaac	ccccgcactc	tggtccacgc	900
ggccgtcggg	gtgggcacgg	ccctggccct	gctaagctgt	gccgccctgg	tgtggcactt	960
ctgcctgcgc	gatcgctggg	gctgcccgcg	ccgagccgcc	gcccgagccg	caggggcgct	1020
ctgaaagggg	cctgggggca	tctcgggcac	agacagcccc	acctggggcg	ctcagcctgg	1080

ccccgggaa agaggaaaac	ccgctgcctc	cagggagggc	tggacggcga	gctgggagcc	1140
agccccaggc tccagggcca	cggcggagtc	atggttctca	ggactgagcg	cttgtttagg	1200
tccggtactt ggcgctttgt	ttcctggctg	aggtctggga	aggaatagaa	aggggccccc	1260
aattttttt taagcggcca	gataataaat	aatgtaacct	ttgcggttta	agaggataaa	1320
atggaggata ttattatgtg	ggtatttata	tgacctttgt	aaccatttaa	aaatgtaaaa	1380
acgacctgac ttagtaatgc	gaacctatag	tagcagctac	tccagaggct	gaaatgggag	1440
gatctcttga gcccaggagt	tggagtccag	tccagccagg	gcaacacagc	cagacgccct	1500
tgtttttat tttgttttgt	tttggttttt	tgttttttga	ggagtttccc	tctgtcacac	1560
aagctggagg gcaatggcgc	catctcagct	cactgcaacg	tccacctcct	gggttcaagc	1620
gattctcctg cctcagcatc	ctaattagtt	gggattacag	gcgcccacca	ccatgcccgg	1680
ctaatttttg tgtttttta	gtagagacgg	ggtttcacca	tgttgtcagg	ctggtctcaa	1740
actcctgacc tcaggtactc	cacccgcctt	ggtctctcaa	agtgctggga	ttacaggcat	1800
aagccactgt gcccaggcag	acccccttct	ttaaagatgt	aaaacccggc	cgggcgcggt	1860
ggctcacgcc tgtaatccca	gcactttggg	aggctgaggc	gggcagatca	cgaagtcagg	1920
agatcgagac catcctggct	aacacggtga	aaccccgtct	ctactaaaaa	tacaaaaatt	1980
agccgggcat ggtggtgggt	acctgtagtc	ccagctactc	cggaggctga	ggcaggagaa	2040
tggcgtgaac ccgggaggcg	gatcttgcag	tgagcggaga	ttgcaccact	gcactccagc	2100
ctgggtgaca gagcaagact	ccctctcaaa	agaaaaagaa	aaaagatgta	aaaaccattc	2160
ttagtttgtg ggccttacaa	atcaggccac	tggcccattg	cttgtagtta	gttgatccat	2220
gtcatgcacc ctaaaaatgg	ctctgtcact	gtgagtggct	tcagtaggat	tttgagaata	2280
agtttatatt cttgctaggt	aaaacaaaac	aaaaacgaca	gtaataccaa	ggaatctccc	2340
ccccctttta ccctccattt	gtgtttattg	catatccact	ataacaacat	taaaggacct	2400
ttaaaaggaa gt					2412

<210> 248

<211> 238

<212> PRT

<213> Homo sapiens

<400> 248

Met Leu Gly Ser Pro Cys Leu Leu Trp Leu Leu Ala Val Thr Phe Leu 1 5 10 15

Val Pro Arg Ala Gln Pro Leu Ala Pro Gln Asp Phe Glu Glu Glu Glu 20 25 30

Ala Asp Glu Thr Glu Thr Ala Trp Pro Pro Leu Pro Ala Val Pro Cys 40 Asp Tyr Asp His Cys Arg His Leu Gln Val Pro Cys Lys Glu Leu Gln 50 Arg Val Gly Pro Ala Ala Cys Leu Cys Pro Gly Leu Ser Ser Pro Ala 70 Gln Pro Pro Asp Pro Pro Arg Met Gly Glu Val Arg Ile Ala Ala Glu Glu Gly Arg Ala Val Val His Trp Cys Ala Pro Phe Ser Pro Val Leu 105 His Tyr Trp Leu Leu Trp Asp Gly Ser Glu Ala Ala Gln Lys Gly 115 Pro Pro Leu Asn Ala Thr Val Arg Arg Ala Glu Leu Lys Gly Leu Lys 130 Pro Gly Gly Ile Tyr Val Val Cys Val Val Ala Ala Asn Glu Ala Gly 145 Ala Ser Arg Val Pro Gln Ala Gly Gly Glu Gly Leu Glu Gly Ala Asp Ile Pro Ala Phe Gly Pro Cys Ser Arg Leu Ala Val Pro Pro Asn Pro 180 Arg Thr Leu Val His Ala Ala Val Gly Val Gly Thr Ala Leu Ala Leu 195 Leu Ser Cys Ala Ala Leu Val Trp His Phe Cys Leu Arg Asp Arg Trp 210 Gly Cys Pro Arg Arg Ala Ala Ala Arg Ala Ala Gly Ala Leu 225 230 <210> 249

<211> 18 <212> DNA

<220>

<213> Artificial Sequence

<223> Oligor	nucleotide	•			14	
<400> 249 atccctcagc ct	caacacc					18
<210> 250 <211> 18 <212> DNA <213> Artifi	icial Sequ	ience				
<220> <223> Oligor	nucleotide	2	÷			
<400> 250 gccgtctcag to	ctcatct					18
<210> 251 <211> 1024 <212> DNA <213> Homo s	sapiens					
<400> 251 gagcgccagg gg	gttccagct	gcacgtccca	ggctctccag	cgcgcggcag	gccggggcgg	60
gacgaggaga go	ctgcgggga	caacgcctgt	ggctgggtcc	ggaggtgcgg	gtgcggcgcg	120
ggacaagcgg go	cagcatgct	cagggcggtc	gggagcctac	tgcgccttgg	ccgcgggcta	180
acagtccgct go	eggeceegg	ggcgcctctc	gaggccacgc	gacggcccgc	accggctctt	240
ccgccccggg gt	ctcccctg	ctactccagc	ggcggggccc	ccagcaattc	tgggccccaa	300
ggtcacgggg ag	gattcaccg	agtccccacg	cagcgcaggc	cttcgcagtt	cgacaagaaa	360
atcctgctgt gg	gacagggcg	tttcaaatcg	atggaggaga	tcccgcctcg	gatcccgcca	420
gaaatgatag ac	caccgcaag	aaacaaagct	cgagtgaaag	cttgttacat	aatgattgga	480
ctcacaatta to	egectgett	tgctgtgata	gtgtcagcca	aaagggctgt	agaacgacat	540
gaatccttaa ca	aagttggaa	cttggcaaag	aaagctaagt	ggcgtgaaga	agctgcattg	600
gctgcacagg ct	taaagctaa	atgatattct	aagtgacaaa	gtgttcacct	gaataccatc	660
cctgtcatca go	caacagtag	aagatgggaa	aaatagaata	tttaccaaaa	tatctgccat	720
ggttttattt tg	ggtaacaag	aagcacaatg	tcttttttat	ttttatttt	tagtaaactt	780
ttactgaagt at	taccatgca	ttcaaaaagt	ggacaaaact	gtatacagtc	tgatagatat	840
ttatgtcgtg aa	acacctgtg	taaccactgc	caaagtgaag	atgtagaata	ttggcaacac	900
ttcacagcct ca	attcctgcc	ttttctcagc	cattacctcc	caaacatagc	agtttttctg	960
agtttcatca co	ctttgattc	attttgcctg	tttttgaact	ttatataaat	ggatttatac	1020
atta						1024

<210> 252 <211> 162 <212> PRT <213> Homo sapiens <400> 252 Met Leu Arg Ala Val Gly Ser Leu Leu Arg Leu Gly Arg Gly Leu Thr Val Arg Cys Gly Pro Gly Ala Pro Leu Glu Ala Thr Arg Arg Pro Ala 20 Pro Ala Leu Pro Pro Arg Gly Leu Pro Cys Tyr Ser Ser Gly Gly Ala 35 Pro Ser Asn Ser Gly Pro Gln Gly His Gly Glu Ile His Arg Val Pro 50 Thr Gln Arg Arg Pro Ser Gln Phe Asp Lys Lys Ile Leu Leu Trp Thr 65 75 Gly Arg Phe Lys Ser Met Glu Glu Ile Pro Pro Arg Ile Pro Pro Glu Met Ile Asp Thr Ala Arg Asn Lys Ala Arg Val Lys Ala Cys Tyr Ile 100 Met Ile Gly Leu Thr Ile Ile Ala Cys Phe Ala Val Ile Val Ser Ala 115 Lys Arg Ala Val Glu Arg His Glu Ser Leu Thr Ser Trp Asn Leu Ala 130 Lys Lys Ala Lys Trp Arg Glu Glu Ala Ala Leu Ala Ala Gln Ala Lys 160 145 150 Ala Lys <210> 253 <211> 19 <212> DNA <213> Artificial Sequence <220>

<223> Oligonucleotide

<400> 253 attategeet getttgetg	19
<210> 254 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 254 ttcccatctt ctactgttgc tg	22
<210> 255 <211> 852 <212> DNA <213> Homo sapiens	
<400> 255 ttagggcgag tttaaggcac tgtggcagct gtgagataaa gtctggttcc tccccagctg	60
gctcaggaaa tgttcgcgga tacaacggcg gccccctctg ggcatacctg cctgtggagc	120
ggagagtgga cggtgtgagg gggaccggga gaggcaccaa atctggcctg ggggcccgag	180
aagetteete teagtgacea caatatgaat gggaacagea agatggeaaa agettgetga	240
	300
gtggtacagc gccagcctgg gtagtggcct ccccagcaag ttgcatgtca ctagcttcct	360
gtggctgtca ctcctgggcc caggcacctc cgaagatcag cacctcctca tgggctcaag	
cgaggacagg agcccgtcac ccatgagctc tcaagggcag agccactgtc ctgtctcgat	420
ggctccaccg tgactccagt ggactttgga cagtggggag caggcccaac agggccactc	480
ggatgtggtc actctggatt tgggtggatc agcaccaagc tagactcatc cccagcccc	540
aggtgctgtt gctgctcctg cgtgaggccc catccacagc tgcagctgtg gcagggtggc	600
tagtggtggc cagcatggcc ctgctgcagc tccacgctgt ggggggcgtg gccctgacca	660
gcagccaccc ctccatgtgg gccacagggg aggagcttag gaagccgcct tggcaaggtt	720
ccgcaggetc tgcgtctggt gtggaagagc tcacggggaa gcactcctgc ccaggacccg	780
aggagccggc caccgttcag aaggccccag cttgaaggcc tggagagccg cccagcagca	840
caacacaggg aa	852
•	
<210> 256 <211> 110 <212> PRT <213> Homo sapiens	
<400> 256	

Met Trp 1	Ser	Leu	Trp 5	Ile	Trp	Val	Asp	Gln 10	His	Gln	Ala	Arg	Leu 15	Ile		
Pro Sei	r Pro	Gln 20	Val	Leu	Leu	Leu	Leu 25	Leu	Arg	Glu	Ala	Pro 30	Ser	Thr		
Ala Ala	a Ala 35	Val	Ala	Gly	Trp	Leu 40	Val	Val	Ala	Ser	Met 45	Ala	Leu	Leu		
Gln Let 50	ı His	Ala	Val	Gly	Gly 55	Val	Ala	Leu	Thr	Ser 60	Ser	His	Pro	Ser		
Met Try 65	Ala	Thr	Gly	Glu 70	Glu	Leu	Arg	Lys	Pro 75	Pro	Trp	Gln	Gly	Ser 80		
Ala Gly	/ Ser	Ala	Ser 85	Gly	Val	Glu	Glu	Leu 90	Thr	Gly	Lys	His	Ser 95	Cys		
Pro Gly	/ Pro	Glu 100	Glu	Pro	Ala	Thr	Val 105	Gln	Lys	Ala	Pro	Ala 110				
<210><211><211><212><213>	<211> 18 <212> DNA															
<220> <223>	Olig	onuc:	leot:	ide												
<400> ttgctgt	257 tcc	catto	cata													18
<210> <211> <212> <213>	258 19 DNA Arti	ficia	al Se	equei	nce											
<220> <223>	Olig	onuc:	leot:	ide												
<400> gataaaq	258 gtct	ggtt	cctc	C												19
	259 4231 DNA Homo		iens													
<400> gcggccg	259 ject	ttgca	aaggi	tt g	ctgga	acaga	a tg	gaact	tgga	agg	gcago	ccg 1	ctg	ccgcc	С	60

acgaacacct	tctcaagcac	tttgagtgac	cacggettge	aagctggtgg	ctaaccccc	120
	ctctgaggca					180
	ctcacctgct					240
cctccaggat	gcaggtcccg	aacagcaccg	gcccggacaa	cgcgacgctg	cagatgctgc	300
ggaacccggc	gatcgcggtg	gccctgcccg	tggtgtactc	gctggtggcg	gcggtcagca	360
tcccgggcaa	cctcttctct	ctgtgggtgc	tgtgccggcg	catggggccc	agatccccgt	420
cggtcatctt	catgatcaac	ctgagcgtca	cggacctgat	gctggccagc	gtgttgcctt	480
tccaaatcta	ctaccattgc	aaccgccacc	actgggtatt	cggggtgctg	ctttgcaacg	540
tggtgaccgt	ggccttttac	gcaaacatgt	attccagcat	cctcaccatg	acctgtatca	600
gcgtggagcg	cttcctgggg	gtcctgtacc	cgctcagctc	caagcgctgg	cgccgccgtc	660
gttacgcggt	ggccgcgtgt	gcagggacct	ggctgctgct	cctgaccgcc	ctgtccccgc	720
tggcgcgcac	cgatctcacc	tacccggtgc	acgccctggg	catcatcacc	tgcttcgacg	780
tcctcaagtg	gacgatgctc	cccagcgtgg	ccatgtgggc	cgtgttcctc	ttcaccatct	840
tcatcctgct	gttcctcatc	ccgttcgtga	tcaccgtggc	ttgttacacg	gccaccatcc	900
tcaagctgtt	gcgcacggag	gaggcgcacg	gccgggagca	gcggaggcgc	gcggtgggcc	960
tggccgcggt	ggtcttgctg	gcctttgtca	cctgcttcgc	ccccaacaac	ttcgtgctcc	1020
tggcgcacat	cgtgagccgc	ctgttctacg	gcaagagcta	ctaccacgtg	tacaagctca	1080
cgctgtgtct	cagctgcctc	aacaactgtc	tggacccgtt	tgtttattac	tttgcgtccc	1140
gggaattcca	gctgcgcctg	cgggaatatt	tgggctgccg	ccgggtgccc	agagacaccc	1200
tggacacgcg	ccgcgagagc	ctcttctccg	ccaggaccac	gtccgtgcgc	tccgaggccg	1260
gtgcgcaccc	tgaagggatg	gagggagcca	ccaggcccgg	cctccagagg	caggagagtg	1320
tgttctgagt	cccgggggcg	cagcttggag	agccgggggc	gcagcttgga	gatccagggg	1380
cgcatggaga	ggccacggtg	ccagaggttc	agggagaaca	gctgcgttgc	tcccaggcac	1440
tgcagaggcc	cggtggggaa	gggtctccag	gctttattcc	tcccaggcac	tgcagaggca	1500
ccggtgagga	agggtctcca	ggcttcactc	agggtagaga	aacaagcaaa	gcccagcagc	1560
gcacagggtg	cttgttatcc	tgcagagggt	gcctctgcct	ctctgtgtca	ggggacagct	1620
tgtgtcacca	cgcccggcta	atttttgtat	tttttttagt	agagctgggc	tgtcaccccc	1680
gagctcctta	gacactcctc	acacctgtcc	atacccgagg	gtggatattc	aaccagcccc	1740
accgcctacc	cgactcggtt	tctggatatc	ctccgtgggc	gaactgcgag	ccccattccc	1800
agctcttctc	cctgctgaca	tcgtccctta	gttgtggttc	tggccttctc	cattctcctc	1860
					•	

caggggttct	ggtctccgta	gcccggtgca	cgccgaaatt	tctgtttatt	tcactcaggg	1920
gcactgtggt	tgctgtggtt	ggaattcttc	tttcagagga	gcgcctgggg	ctcctgcaag	1980
tcagctactc	tccgtgccca	cttcccccca	cacacacacc	ccaccctgtt	gctgaccaag	2040
gtgatttttg	gcacatttgt	tctggcctgg	cttggtggga	ccccacccct	attctgcttc	2100
tgtgagtccc	tgatagagaa	ggaggtccca	tcaggcccct	ggaacacact	caggcttccc	2160
tgactcagga	caaggaccac	gggaggccca	ggtgcggaaa	ggaggctccg	tgagatgggg	2220
tccagcccat	cccaacacaa	gggtgcagct	tgattcggga	gttccccacc	tcctgcccat	2280
tctccgcgtc	cttttacccc	atggagagcc	tcagccatgg	caagtccatc	tggagtccag	2340
gaagcaggca	actggcctga	cccatgagac	cgtttggaga	ccaagcagca	gatgcaggtg	2400
tggaccccag	gaacctacag	gggtgtcagc	cgctgagccc	cctccctgct	gtgtgggtgg	2460
tgagcaggct	gggtctttgt	ctgtcttctt	ctacacggca	tgtgcctgca	ccagccccaa	2520
cacctgagct	ggtttagcgc	aaagaagagc	tctgactctc	caggggtgct	gggacatcac	2580
gtggaattgg	atcccaggct	ctcttgggcg	agaaagacca	ttctggaggt	gggagtggga	2640
gagctgcctg	tctgcccacg	ggctctgcgt	ctccgcagtg	ggtggccttg	gatgcccggc	2700
ccctcccttt	ctgtgcactg	gggacgctga	tggaggctga	agctgctgtt	cggaggccct	2760
ctattggtgc	ctctctcctg	ccgtcatcac	tatggcagga	aaacagagat	ggtttagtaa	2820
tgaattatca	ttcccaaacc	cgtgtccacc	tggaacatca	ggatgggacc	atgtttgaaa	2880
atcgggtctt	tccaaatgta	attaagtaag	gcgaggccat	actgcattta	caatgggccc	2940
aatccagtgt	ccctatgaga	gacggaagag	gagacacaga	cacaaagcag	gaggccacat	3000
aaagacagag	gcagagactg	aagtgatgct	gccccaagcc	cagggatgcc	tggagtcccc	3060
aggagctggg	agaggcagga	aggaccctcc	cctagagtct	ctggagggaa	ctggatacaa	3120
ttgcagagtg	cactaaacag	ttgccccaga	aagacatgtc	ttgttttaaa	gcccagaacc	3180
tgaaattatt	atagatttta	ttcggtaata	aggaactttg	catgtgtaat	tacttaagga	3240
tatgaagatg	agattgtgct	ggattattaa	gcaccctaaa	tgccatgaca	ggtgtccttc	3300
caagagacag	aagaggagac	acagacacag	agcaggagga	cacgtggaga	cagaggcaga	3360
ctggagtgat	gcggccacaa	gcccagggac	acctggagcc	cccaggagct	gggagaggca	3420
ggaaggatcc	tcccctagag	cctccagggg	gaactggagg	atgcgtaaga	gacccagaac	3480
ttccacagaa	ggaggaaaat	taacctcctg	cttctctaga	ctgttccaaa	gctgaaccct	3540
agaaagcaaa	gctgatacag	aagcatccag	gctgcaggag	tacaggtcgc	aagtgctgag	3600
cgtgggcctt	gggtgtgtct	catgggggaa	aaaaaactgt	gaaaaacctc	agagtagcat	3660

cttcacagta acgcacg	gac gatccctaaa	ctgccttgta	aacaaaaatg	agagcttgag	3720
tcagaggaag ccgagaca	aat atccttcctc	gacaacgtgc	gagaaccctg	acgtccccca	3780
gcaaaggaag acgttgca	aag caggcaaaat	gcgtcgattt	ttttttttg	tcagtatgat	3840
gatttttgca gccactt	ggc tatggagagc	agccgacacc	ccctcttaca	gccgtggatg	3900
tttcctggaa gctgacto	cag tctgttcact	ggttgagctt	tgagtgaaaa	gataacacag	3960
gtctattgac tcacacac	cat gttttaagat	ggaaaacttt	acttctgttc	ttggcaggac	4020
atggagagag ggaggga	tc caaaaagtct	cagcctccat	caaggcgtgg	cagctcatgc	4080
cggtaatctc agcactt	gg gaggeteagg	cgggaggact	gattgagtcc	gggtgttcaa	4140
gggccaacct aggcaaca	aca gtgagaactc	atctctgtaa	aaaataaaaa	taaaacatta	4200
aaaaaaaaca tgagctt	ga agtgcacagg	g			4231

<210> 260

<211> 359

<212> PRT

<213> Homo sapiens

<400> 260

Met Gln Val Pro Asn Ser Thr Gly Pro Asp Asn Ala Thr Leu Gln Met
1 5 10 15

Leu Arg Asn Pro Ala Ile Ala Val Ala Leu Pro Val Val Tyr Ser Leu 20 25 30

Val Ala Ala Val Ser Ile Pro Gly Asn Leu Phe Ser Leu Trp Val Leu 35 40 45

Cys Arg Arg Met Gly Pro Arg Ser Pro Ser Val Ile Phe Met Ile Asn 50 55 60

Leu Ser Val Thr Asp Leu Met Leu Ala Ser Val Leu Pro Phe Gln Ile 65 70 75 80

Tyr Tyr His Cys Asn Arg His His Trp Val Phe Gly Val Leu Leu Cys 85 90 95

Asn Val Val Thr Val Ala Phe Tyr Ala Asn Met Tyr Ser Ser Ile Leu 100 105 110

Thr Met Thr Cys Ile Ser Val Glu Arg Phe Leu Gly Val Leu Tyr Pro 115 120 125

Leu	Ser 130	Ser	Lys	Arg	Trp	Arg 135	Arg	Arg	Arg	Tyr	Ala 140	Val	Ala	Ala	Cys
Ala 145	Gly	Thr	Trp	Leu	Leu 150	Leu	Leu	Thr	Ala	Leu 155	Ser	Pro	Leu	Ala	Arg 160
Thr	Asp	Leu	Thr	Tyr 165	Pro	Val	His	Ala	Leu 170	Gly	Ile	Ile	Thr	Cys 175	Phe
Asp	Val	Leu	Lys 180	Trp	Thr	Met	Leu	Pro 185	Ser	Val	Ala	Met	Trp 190	Ala	Val
Phe	Leu	Phe 195	Thr	Ile	Phe	Ile	Leu 200	Leu	Phe	Leu	Ile	Pro 205	Phe	Val	Ile
Thr	Val 210	Ala	Cys	Tyr	Thr	Ala 215	Thr	Ile	Leu	Lys	Leu 220	Leu	Arg	Thr	Glu
Glu 225	Ala	His	Gly	Arg	Glu 230	Gln	Arg	Arg	Arg	Ala 235	Val	Gly	Leu	Ala	Ala 240
Val	Val	Leu	Leu	Ala 245	Phe	Val	Thr	Cys	Phe 250	Ala	Pro	Asn	Asn	Phe 255	Val
Leu	Leu	Ala	His 260	Ile	Val	Ser	Arg	Leu 265	Phe	Tyr	Gly	Lys	Ser 270	Tyr	Tyr
His	Val	Tyr 275	Lys	Leu	Thr	Leu	Cys 280	Leu	Ser	Суз	Leu	Asn 285	Asn	Cys	Leu
Asp	Pro 290	Phe	Val	Tyr	Tyr	Phe 295	Ala	Ser	Arg	Glu	Phe 300	Gln	Leu	Arg	Leu
Arg 305	Glu	Tyr	Leu	Gly	Cys 310	Arg	Arg	Val	Pro	Arg 315	Asp	Thr	Leu	Asp	Thr 320
Arg	Arg	Glu	Ser	Leu 325	Phe	Ser	Ala	Arg	Thr 330	Thr	Ser	Val	Arg	Ser 335	Glu
Ala	Gly	Ala	His 340	Pro	Glu	Gly	Met	Glu 345	Gly	Ala	Thr	Arg	Pro 350	Gly	Leu
Gln	Arg	Gln 355	Glu	Ser	Val	Phe									

```
<210> 261
<211>
      19
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 261
                                                                     19
cctgttacct ggagaccct
<210> 262
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 262
                                                                     18
accagcgagt acaccacg
<210> 263
<211> 717
<212> DNA
<213> Homo sapiens
<400> 263
ggccgggctg gggcttcagc gggaggcagc agaggggaag tggtcagcgt ggcgaatgac
                                                                     60
ggaagaaact cgcattgtct actggatcaa ggacagacag ctcaccaacc gtgacagcac
                                                                    120
catactggaa cttcaaaaag ttctgaaaac atgttgtgct cagagcatga aaattttctg
                                                                    180
ctgtctttgg aactttgtct acaaacagtt agaagatgca gcccaagggc tcaccatggg
                                                                    240
tggcgatgtt gaagaacatg aagaccttac tgctgatagc accatcttca aatttgtgga
                                                                    300
agcttataca gagtgggagg tgaagaggtg gtcagacaac aatctgataa tgaaacaaac
                                                                    360
aaatgtgaag agaagacgct tagatgatgt tggccctgaa ttggaaaagg ctgtctggga
                                                                    420
gctcggctgc ccacccagca ttcagtgtct gctacctcct gtctgttatg cttgtgtctg
                                                                    480
gttttttcaa gttttaattt tttttttaat tcttagtttt tgtgggtaca tagtaggtgt
                                                                    540
                                                                     600
atatatttat qqqttacatq agatgttttg atacaggcat gcaatatgta ataatcacct
catggagaat ggggtaccca tcacatcaag catttatcct ttgtgttaca aacggtccag
                                                                     660
ttagactctt ttagttatta ttaaaatgta caattaaatt atttttgact atagtca
                                                                    717
<210>
      264
<211> 171
<212> PRT
```

<213> Homo sapiens

<400> 264

Met Thr Glu Glu Thr Arg Ile Val Tyr Trp Ile Lys Asp Arg Gln Leu 1 5 10 15

Thr Asn Arg Asp Ser Thr Ile Leu Glu Leu Gln Lys Val Leu Lys Thr 20 25 30

Cys Cys Ala Gln Ser Met Lys Ile Phe Cys Cys Leu Trp Asn Phe Val

Tyr Lys Gln Leu Glu Asp Ala Ala Gln Gly Leu Thr Met Gly Gly Asp 50 55 60

Val Glu Glu His Glu Asp Leu Thr Ala Asp Ser Thr Ile Phe Lys Phe 65 70 75 80

Val Glu Ala Tyr Thr Glu Trp Glu Val Lys Arg Trp Ser Asp Asn Asn 85 90 95

Leu Ile Met Lys Gln Thr Asn Val Lys Arg Arg Leu Asp Asp Val
100 105 110

Gly Pro Glu Leu Glu Lys Ala Val Trp Glu Leu Gly Cys Pro Pro Ser 115 120 125

Ile Gln Cys Leu Leu Pro Pro Val Cys Tyr Ala Cys Val Trp Phe Phe 130 135 140

Gln Val Leu Ile Phe Phe Leu Ile Leu Ser Phe Cys Gly Tyr Ile Val 145 150 155 160

Gly Val Tyr Ile Tyr Gly Leu His Glu Met Phe 165 170

<210> 265

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 265

ttcaacatcg ccacccat

<210> 266 <211> 20

<213>	DNA Artifi	icial S	equer	nce										
<220> <223>	Oligor	nucleot	ide											
<400> cagcag	266 aggg ga	aagtggt	ca											20
<210><211><211><212><213>	267 390 DNA Homo s	sapiens												
<400> atggaa	267 gtga ta	attacca	ga ca	aaco	ctcaç	g gta	agato	gcac	tgg	cctt	cct a	agcto	gctgtc	: 60
accatg	ctgt g	gataacg	ct go	ccat	gagt	cct	tttt	gcag	aago	caga	gaa a	attgg	gcatgg	120
gatctg	gagg tt	ggaggt	tt ag	gctgg	gacag	g cco	cctta	aaag	tttt	cact	cc a	acgta	aaaaaa	180
ggttct	gggg aa	agtgggt	ga to	gette	ctcag	g to	gccca	igca	gaag	gcaat	ga 1	tggco	cagcat	240
tcctgc	attg go	ccacago	ag ag	gatct	ctgo	tgo	ctaca	ectg	ctca	agaco	cct (cataa	atctcc	300
tacaca	tcaa at	ggtctt	tc to	cttt	agca	a act	ccac	cct	tcca	accct	at 1	tccts	ggaaac	360
tgctac	gaca gt	gttgat	ta ta	aaat	cataç	j								390
<210>	268													
<211> <212> <213>	129 PRT Homo s	sapiens												
<211><212><213><400>	129 PRT Homo s	_											_,	
<211><212><213><400>	129 PRT Homo s	sapiens Ile Leu 5		Asp	Lys	Pro	Gln 10	Val	Asp	Ala	Leu	Ala 15	Phe	
<211><212><212><213> 400 Met Glu 1	129 PRT Homo s 268 u Val l	Ile Leu	Pro		_		10					15		
<211> <212> <213> <400> Met Glu 1	129 PRT HOMO S 268 u Val I	Ile Leu 5 Val Thr	Pro	Leu	Trp	Ile 25	10 Thr	Leu	Pro	Met	Ser 30	15 Pro	Phe	
<211> <212> <213> <400> Met Gli Leu Ala Ala Gli	129 PRT HOMO s 268 u Val l a Ala V 2 u Ala C 35	Ile Leu 5 Val Thr	Pro Met Leu	Leu Ala	Trp Trp 40	Ile 25 Asp	10 Thr Leu	Leu Glu	Pro Val	Met Gly 45	Ser 30 Gly	Pro	Phe Ala	
<211> <212> <213> <400> Met Glu Leu Ala Ala Glu Gly Glu 50	129 PRT Homo s 268 u Val 1 a Ala V 2 u Ala C 35	Ile Leu 5 Val Thr 20	Pro Met Leu Val	Leu Ala Phe 55	Trp Trp 40	Ile 25 Asp	10 Thr Leu Arg	Leu Glu Lys	Pro Val Lys 60	Met Gly 45	Ser 30 Gly Ser	Pro Leu Gly	Phe Ala Glu	

Leu Ile Ile Ser Tyr Thr Ser Asn Gly Leu Ser Pro Leu Ala Thr Pro
100 105 110

Pro Phe His Pro Ile Pro Gly Asn Cys Tyr Asp Ser Val Asp Tyr Lys 115 120 125

Ile

<210> 269 <211> 2856 <212> DNA <213> Homo sapiens

<400> 269 atggccaaaa gaaatctcag cactgtgaca gagttcattc ttgtagtctt cacagatcac 60 cctgaactgg cagttccact cttcctagtg tttctcagtt tctatcttgt cacttttctg 120 gggaatgggg ggatgatcat tctaatccaa gtggatgccc aactccacac ccccgtgtac 180 ttcttcctga gccaccttgc tttcctggat gcctgctgtg cctcagtaat cacccctcag 240 attctggcca cactggccac agacaagaca gttatctcct atggctgccg tgctgtgcag 300 ttctctttct tcaccatatg tgcaggcaca gagtgttacc tgctgtcagt gatggcctat 360 gaccgctttg ttgccattag caatccactg cactgtaaca tgaccatgac tccaggtacc 420 480 tgcagggtct ttttggccag tgccttcatc tgtggggtgt caggggccat tctgcatacc acgtgcacct tcaccctctc cttctgttgt gacaatcaga tcaacttctt cttctgtgac 540 600 ctcccaccc tgctgaagct cgcctgcagc agcatgacac aaactgagat tgtcattctc ctttgtgcaa aatgcatgtt cctagccaat gtcatggtta tcctgatctg ctacatgctc 660 attatcagag ccattttgag ggtgaagtcg gcaggaggcc tcctgatagc atctgctcat 720 ttcgatgcat atgtatatga gacaggcatc aactacaaca cagtttatgg ctcaggaaag 780 840 qcaqtagggt ggtcctggag gagcctgcgg gaaaccaacc acatgagacc aggaaatact 900 tcaaaacact caqcagccca gctgcatcaa tgcctcatcc agcaagttgg caggtggccc 960 ttgcagagca tgcccttccc cgtttctgca gggccacctt ataagtcagt gcagcctctc cctggagacc cccggcctct cctgtgcatc accggattat ttctgacttt gaagatgatg 1020 gggtgtgggc ccaggaggcc cagggacagg aagtctgact tcttcataaa cacagaccct 1080 ggtgcagggt caccagaaga acagaggtgt ggatgggaag ggcatccttc ccactcctat 1140

1200

accetgggge tgtetetgee agteaactte ggeetgaaat gteeatggtg gacactatet

ggacccccag	ctacctgcca	acgtccagac	ctgcagacac	cttctccacc	aaaggagata	1260
tgttcatccg	ggctgcgacc	ccttacacac	agcgctggac	cagacagaag	tcaagttcca	1320
gcagcctccg	gagcagccac	tatgctgaca	aaggggctgc	ccgacatcac	tgtgggactg	1380
cagatttatg	actcctgcat	ctcagggatc	caggctctgg	ggagcaccct	ggccctgctg	1440
tccaatcagc	ttccacccac	aaccaactat	gcttgtggct	cccagcaaca	tctcctgggc	1500
gtggttggag	ggatgacctt	cctggagtca	gagcccatgt	ctgagctgct	ctccatctac	1560
agagtccctc	agggccaaag	actcaccaaa	aactttgaag	taaaagaact	tgtctgcaca	1620
tatctggtag	gacagcttcc	ttatggcctg	gtcagttatg	acaacagcaa	ctttgagtgg	1680
ctggatcagc	agctgcagaa	gcagatcggg	ggcgagggac	ttcctgttgg	cgctgcgccc	1740
agccgtgtag	ccaggcaaca	gtctgatgag	gaagctgtgg	gaggagtgca	gggatacagg	1800
tggtctggat	taggggcttc	catccaaagt	gccagagaag	gggcttggca	tcgcacaggg	1860
ctggagaaca	tgaccactgc	ccacctgtct	gccttcaaac	ttcctgatct	aactgccact	1920
taccaagcct	acctggcagc	caaagccctg	tgggttgcct	atcagaactt	gatgtcctgc	1980
tctgagagag	agggaccatt	cctgggaggc	acgtatgcca	atgcatggga	agccaggctt	2040
tctcaggtta	acttcaccac	caaagcccaa	gaagaggttt	tcttcgccaa	agatggggaa	2100
gtgctgacaa	cgtttgacat	taaaaacatc	tatgttctcc	cagacctgtc	aggacagaca	2160
gccattgttg	gacactttga	cttcagagca	ccttctggaa	aagagcttct	gttggatgac	2220
agcgcaattg	tctgggcaga	aggaccctta	aagattagag	ctgagagaac	cctaagaacc	2280
aagaccacac	agcacctctc	acatcccaag	ctccaggagt	cccttcctct	gtctgcaacg	2340
aaaaacgtcc	tgtggaaacc	aggaagtcaa	ccctatttga	gaagtcaaaa	tgctgctaca	2400
aaagccttcc	ctgacccaga	agagaaatcg	caatgtcacc	agtttctctt	tctcccttca	2460
gatagtgttg	catgtcagaa	gtgctctgac	aaccagtggc	ccaatgtgca	gaagggcgag	2520
tgcatcccca	aaacccttga	cttcttgttc	tatcacaagc	cccttgacac	agcgttggct	2580
gtctgcacag	ccctgctctt	tctccttgcc	ctggccatct	taggcatctt	ccatgttgtc	2640
tgctcctgtg	tctgggtgtc	cttcatacct	gcccacatgc	atgcccacag	caaagacacc	2700
atggccatgg	aggtctttgt	catcttggca	tcagcaggag	gcctcatgtc	ctccctcttc	2760
ttttccaaat	gctacatcat	ccttctccat	cctgaaaaga	acacaaaaga	ccaaatgttt	2820
ggccggcatc	atcgcaagtg	ggaaaaactg	aagtga		•	2856

<210> 270 <211> 951 <212> PRT

<213> Homo sapiens

<400> 270

Met Ala Lys Arg Asn Leu Ser Thr Val Thr Glu Phe Ile Leu Val Val 1 5 10 15

Phe Thr Asp His Pro Glu Leu Ala Val Pro Leu Phe Leu Val Phe Leu 20 25 30

Ser Phe Tyr Leu Val Thr Phe Leu Gly Asn Gly Gly Met Ile Ile Leu 35 40 45

Ile Gln Val Asp Ala Gln Leu His Thr Pro Val Tyr Phe Phe Leu Ser 50 55 60

His Leu Ala Phe Leu Asp Ala Cys Cys Ala Ser Val Ile Thr Pro Gln 65 70 75 80

Ile Leu Ala Thr Leu Ala Thr Asp Lys Thr Val Ile Ser Tyr Gly Cys
85 90 95

Arg Ala Val Gln Phe Ser Phe Phe Thr Ile Cys Ala Gly Thr Glu Cys
100 105 110

Tyr Leu Leu Ser Val Met Ala Tyr Asp Arg Phe Val Ala Ile Ser Asn 115 120 125

Pro Leu His Cys Asn Met Thr Met Thr Pro Gly Thr Cys Arg Val Phe 130 135 140

Leu Ala Ser Ala Phe Ile Cys Gly Val Ser Gly Ala Ile Leu His Thr 145 150 155 160

Thr Cys Thr Phe Thr Leu Ser Phe Cys Cys Asp Asn Gln Ile Asn Phe 165 170 175

Phe Phe Cys Asp Leu Pro Pro Leu Leu Lys Leu Ala Cys Ser Ser Met 180 185 190

Thr Gln Thr Glu Ile Val Ile Leu Leu Cys Ala Lys Cys Met Phe Leu 195 200 205

Ala Asn Val Met Val Ile Leu Ile Cys Tyr Met Leu Ile Ile Arg Ala 210 215 220

Ile 225	Leu	Arg	Val	Lys	Ser 230	Ala	Gly	Gly	Leu	Leu 235	Ile	Ala	Ser	Ala	His 240
Phe	Asp	Ala	Tyr	Val 245	Tyr	Glu	Thr	Gly	Ile 250	Asn	Tyr	Asn	Thr	Val 255	Tyr
Gly	Ser	Gly	Lys 260	Ala	Val	Gly	Trp	Ser 265	Trp	Arg	Ser	Leu	Arg 270	Glu	Thr
Asn	His	Met 275	Arg	Pro	Gly	Asn	Thr 280	Ser	Lys	His	Ser	Ala 285	Ala	Gln	Leu
His	Gln 290	Cys	Leu	Ile	Gln	Gln 295	Val	Gly	Arg	Trp	Pro 300	Leu	Gln	Ser	Met
Pro 305	Phe	Pro	Val	Ser	Ala 310	Gly	Pro	Pro	Tyr	Lys 315	Ser	Val	Gln	Pro	Leu 320
Pro	Gly	Asp	Pro	Arg 325	Pro	Leu	Leu	Cys	Ile 330	Thr	Gly	Leu	Phe	Leu 335	Thr
Leu	Lys	Met	Met 340	Gly	Суз	Gly	Pro	Arg 345	Arg	Pro	Arg	Asp	Arg 350	Lys	Ser
Asp	Phe	Phe 355	Ile	Asn	Thr	Asp	Pro 360	Gly	Ala	Gly	Ser	Pro 365	Glu	Glu	Gln
Arg	Cys 370	Gly	Trp	Glu	Gly	His 375	Pro	Ser	His	Ser	Tyr 380	Thr	Leu	Gly	Leu
Ser 385	Leu	Pro	Val	Asn	Phe 390	Gly	Leu	Lys	Cys	Pro 395	Trp	Trp	Thr	Leu	Ser 400
Gly	Pro	Pro	Ala	Thr 405	Cys	Gln	Arg	Pro	Asp 410	Leu	Gln	Thr	Pro	Ser 415	Pro
Pro	Lys	Glu	Ile 420	Cys	Ser	Ser	Gly	Leu 425	Arg	Pro	Leu	Thr	His 430	Ser	Ala
Gly	Pro	Asp 435	Arg	Ser	Gln	Val	Pro 440	Ala	Ala	Ser	Gly	Ala 445	Ala	Thr	Met
Leu	Thr 450	Lys	Gly	Leu	Pro	Asp 455	Ile	Thr	Val	Gly	Leu 460	Gln	Ile	Tyr	Asp

Ser 465	Cys	Ile	Ser	Gly	11e 470	Gln	Ala	Leu	Gly	Ser 475	Thr	Leu	Ala,	Leu	Leu 480
Ser	Asn	Gln	Leu	Pro 485	Pro	Thr	Thr	Asn	Tyr 490	Ala	Сув	Gly	Ser	Gln 495	Gln
His	Leu	Leu	Gly 500	Val	Val	Gly	Gly	Met 505	Thr	Phe	Leu	Glu	Ser 510	Glu	Pro
Met	Ser	Glu 515	Leu	Leu	Ser	Ile	Tyr 520	Arg	Val	Pro	Gln	Gly 525	Gln	Arg	Leu
Thr	Lys 530	Asn	Phe	Glu	Val	Lys 535	Glu	Leu	Val	Cys	Thr 540	Tyr	Leu	Val	Gly
Gln 545	Leu	Pro	Tyr	Gly	Leu 550	Val	Ser	Tyr	Asp	Asn 555	Ser	Asn	Phe	Glu	Trp 560
Leu	Asp	Gln	Gln	Leu 565	Gln	Lys	Gln	Ile	Gly 570	Gly	Glu	Gly	Leu	Pro 575	Val
Gly	Ala	Ala	Pro 580	Ser	Arg	Val	Ala	Arg 585	Gln	Gln	Ser	Asp	Glu 590	Glu	Ala
Val	Gly	Gly 595	Val	Gln	Gly	Tyr	Arg 600	Trp	Ser	Gly	Leu	Gly 605	Ala	Ser	Ile
Gln	Ser 610	Ala	Arg	Glu	Gly	Ala 615	Trp	His	Arg	Thr	Gly 620	Leu	Glu	Asn	Met
Thr 625	Thr	Ala	His	Leu	Ser 630	Ala	Phe	Lys	Leu	Pro 635	Asp	Leu	Thr	Ala	Thr 640
Tyr	Gln	Ala	Tyr	Leu 645	Ala	Ala	Lys	Ala	Leu 650	Trp	Val	Ala	Tyr	Gln 655	Asn
Leu	Met	Ser	Cys 660	Ser	Glu	Arg	Glu	Gly 665	Pro	Phe	Leu	Gly	Gly 670	Thr	Tyr
Ala	Asn	Ala 675	Trp	Glu	Ala	Arg	Leu 680	Ser	Gln	Val	Asn	Phe 685		Thr	Lys
Ala	Gln 690	Glu	Glu	Val	Phe	Phe 695	Ala	Lys	Asp	Gly	Glu 700	Val	Leu	Thr	Thr

Phe 705	Asp	Ile	Lys	Asn	Ile 710	Tyr	Val	Leu	Pro	Asp 715	Leu	Ser	Gly	Gln	Thr 720
Ala	Ile	Val	Gly	His 725	Phe	Asp	Phe	Arg	Ala 730	Pro	Ser	Gly	Lys	Glu 735	Leu
Leu	Leu	Asp	Asp 740	Ser	Ala	Ile	Val	Trp 745	Ala	Glu	Gly	Pro	Leu 750	Lys	Ile
Arg	Ala	Glu 755	Arg	Thr	Leu	Arg	Thr 760	Lys	Thr	Thr	Gln	His 765	Leu	Ser	His
Pro	Lys 770	Leu	Gln	Glu	Ser	Leu 775	Pro	Leu	Ser	Ala	Thr 780	Lys	Asn	Val	Leu
Trp 785	Lys	Pro	Gly	Ser	Gln 790	Pro	Tyr	Leu	Arg	Ser 795	Gln	Asn	Ala	Ala	Thr 800
Lys	Ala	Phe	Pro	Asp 805	Pro	Glu	Glu	Lys	Ser 810	Gln	Cys	His	Gln	Phe 815	Leu
Phe	Leu	Pro	Ser 820	Asp	Ser	Val	Ala	Cys 825	Gln	Lys	Cys	Ser	Asp 830	Asn	Gln
Trp	Pro	Asn 835	Val	Gln	Lys	Gly	Glu 840	Cys	Ile	Pro	Lys	Thr 845	Leu	Asp	Phe
Leu	Phe 850	Tyr	His	Lys	Pro	Leu 855	Asp	Thr	Ala	Leu	Ala 860	Val	Cys	Thr	Ala
Leu 865	Leu	Phe	Leu	Leu	Ala 870		Ala	Ile	Leu	Gly 875	Ile	Phe	His	Val	Val 880
Cys	Ser	Cys	Val	Trp 885	Val	Ser	Phe	Ile	Pro 890	Ala	His	Met	His	Ala 895	His
Ser	Lys	Asp	Thr 900	Met	Ala	Met	Glu	Val 905	Phe	Val	Ile	Leu	Ala 910	Ser	Ala
Gly	Gly	Leu 915	Met	Ser	Ser	Leu	Phe 920	Phe	Ser	Lys	Cys	Tyr 925	Ile	Ile	Leu
Leu	His 930	Pro	Glu	Lys	Asn	Thr 935	Lys	Asp	Gln	Met	Phe 940	Gly	Arg	His	His

<210> 271 <211> 956 <212> DNA

<213> Homo sapiens

<400> 271

gccgcgctgt atggggccag cggacacttc gccccaggca ccactgtgcc cctggccctg 60 ccacctggtg gcaatggctc agccacacct gacaatggca ccaccctgg ggccgagggc 120 180 tggcggcagt tgctgggcct actccccgag cacatggcgg agaagctgtg tgaggcctgg 240 gcctttgggc agagccacca gacgggcgtc gtggcactgg gcctactcac ctgcctgctg 300 qcaatgctgc tggctggccg catcaggctc cggaggatcg atgccttctg cacctgcctg 360 tgggccctgc tgctggggct gcacctggct gagcagcacc tgcaggccgc ctcgcctagc tggctagaca cgctcaagtt cagcaccaca tctttgtgct gcctggttgg cttcacggcg 420 gctgtggcca caaggaaggc aacgggccca cggaggttcc ggccccgaag gttcttccca 480 540 qqaqactctq ccqqcctttt ccccaccagc cccagcttgg ccatccctca cccgagtgtc 600 qqaqqctctc caqcqtctct gttcatcccc agcccgccca gcttcctgcc cctcgccaac caagcagete tteeggtete etegaeggae eteaceetee teatttgeet ggeegeetea 660 gccgggccct ctctctggga accataccct ctctgactcg agcagactcc ggctatctgt 720 tcagcggtag ccgcccacca tctcaggtgt ctcgatctgg gggagtttcc tgttttcaga 780 ttacttctct cttcttgtcg gggaagctgc ccctccgtcc catcctttcc cagggccttc 840 900 egggggegge teggtgggee teeagteegg etetetggee aegggaggee eteateagee tqccqqtcaa cctgagggac gaagtgtgtt gtccggcacc cctggagagg cccaaa 956

<210> 272

<211> 231

<212> PRT

<213> Homo sapiens

<400> 272

Ala Ala Leu Tyr Gly Ala Ser Gly His Phe Ala Pro Gly Thr Thr Val 1 5 10 15

Pro Leu Ala Leu Pro Pro Gly Gly Asn Gly Ser Ala Thr Pro Asp Asn 20 25 30

Gly Thr Thr Pro Gly Ala Glu Gly Trp Arg Gln Leu Leu Gly Leu Leu
35 40 45

Ser His Gln Thr Gly Val Val Ala Leu Gly Leu Leu Thr Cys Leu Leu 70 Ala Met Leu Leu Ala Gly Arg Ile Arg Leu Arg Arg Ile Asp Ala Phe 95 85 90 Cys Thr Cys Leu Trp Ala Leu Leu Gly Leu His Leu Ala Glu Gln 100 His Leu Gln Ala Ala Ser Pro Ser Trp Leu Asp Thr Leu Lys Phe Ser 115 125 Thr Thr Ser Leu Cys Cys Leu Val Gly Phe Thr Ala Ala Val Ala Thr 130 Arg Lys Ala Thr Gly Pro Arg Arg Phe Arg Pro Arg Arg Phe Phe Pro 150 145 Gly Asp Ser Ala Gly Leu Phe Pro Thr Ser Pro Ser Leu Ala Ile Pro 165 His Pro Ser Val Gly Gly Ser Pro Ala Ser Leu Phe Ile Pro Ser Pro 180 Pro Ser Phe Leu Pro Leu Ala Asn Gln Ala Ala Leu Pro Val Ser Ser 195 200 205 Thr Asp Leu Thr Leu Leu Ile Cys Leu Ala Ala Ser Ala Gly Pro Ser 210 215 Leu Trp Glu Pro Tyr Pro Leu 225 230 <210> 273 <211> 1806 <212> DNA <213> Homo sapiens <400> 273 gaggaggege gegtegeege eeegegteee geetgeggee egegeeeeeg gegteaeege 60 ctectqcccq cetqcccqcc tgcccqcctg cccgcctacc cgcctacccg cctacccgcc 120

Pro Glu His Met Ala Glu Lys Leu Cys Glu Ala Trp Ala Phe Gly Gln

55

taccccctq	ccaacctacc	gtccttccac	acaaaaaacc	atggagggag	tgagcgcgct	180
						240
				ggggtcacgg -		
ggccggcgtg	ttgctctacc	ggatcgcgcg	gaggatgaag	ccaacgcaca	cgatggtcaa	300
ctgctggttc	tgcaaccagg	atacgctggt	gccctatggg	aaccgcaact	gctgggactg	360
tccccactgc	gagcagtaca	acggcttcca	ggagaacggc	gactacaaca	agccgatccc	420
cgcccagtac	ttggagcacc	tgaaccacgt	ggtgagcagc	gcgcccagcc	tgcgcgaccc	480
ttcgcagccg	cagcagtggg	tgagcagcca	agtcctgctg	tgcaagaggt	gcaaccacca	540
ccagaccacc	aagatcaagc	agctggccgc	cttcgctccc	cgcgaggagg	gcaggtatga	600
cgaggaggtc	gaggtgtacc	ggcatcacct	ggagcagatg	tacaagctgt	gccggccgtg	660
ccaagcggct	gtggagtact	acatcaagca	ccagaaccgc	cagctgcgcg	ccctgttgct	720
cagccaccag	ttcaagcgcc	gggaggccga	ccagacccac	gcacagaact	tetecteege	780
cgtgaagtcc	ccggtccagg	tcatcctgct	ccgtgccctc	gccttcctgg	cctgcgcctt	840
cctactgacc	accgcgctgt	atggggccag	cggacacttc	gccccaggca	ccactgtgcc	900
cctggccctg	ccacctggtg	gcaatggctc	agccacacct	gacaatggca	ccacccctgg	960
ggccgagggc	tggcggcagt	tgctgggcct	actccccgag	cacatggcgg	agaagctgtg	1020
tgaggcctgg	gcctttgggc	agagccacca	gacgggcgtc	gtggcactgg	gcctactcac	1080
ctgcctgctg	gcaatgctgc	tggctggccg	catcaggctc	cggaggatcg	atgccttctg	1140
cacctgcctg	tgggccctgc	tgctggggct	gcacctggct	gagcagcacc	tgcaggccgc	1200
ctcgcctagc	tggctagaca	cgctcaagtt	cagcaccaca	tctttgtgct	gcctggttgg	1260
cttcacggcg	gctgtggcca	caaggaaggc	aacgggccca	cggaggttcc	ggccccgaag	1320
gttcttccca	ggagactctg	ccggcctttt	ccccaccagc	cccagcttgg	ccatccctca	1380
cccgagtgtc	ggaggctctc	cagcgtctct	gttcatcccc	agcccgccca	gcttcctgcc	1440
cctcgccaac	caagcagctc	ttccggtctc	ctcgacggac	ctcaccctcc	tcatttgcct	1500
ggccgcctca	gccgggccct	ctctctggga	accataccct	ctctgactcg	agcagactcc	1560
ggctatctgt	tcagcggtag	ccgcccacca	tctcaggtgt	ctcgatctgg	gggagtttcc	1620
tgttttcaga	ttacttctct	cttcttgtcg	gggaagctgc	ccctccgtcc	catcctttcc	1680
cagggccttc	cgggggcggc	tcggtgggcc	tccagtccgg	ctctctggcc	acgggaggcc	1740
ctcatcagcc	tgccggtcaa	cctgagggac	gaagtgtgtt	gtccggcacc	cctggagagg	1800
cccaaa						1806

<211> 461

<212> PRT

<213> Homo sapiens

<400> 274

Met Glu Gly Val Ser Ala Leu Leu Ala Arg Cys Pro Thr Ala Gly Leu 1 5 10 15

Ala Gly Gly Leu Gly Val Thr Ala Cys Ala Ala Ala Gly Val Leu Leu 20 25 30

Tyr Arg Ile Ala Arg Arg Met Lys Pro Thr His Thr Met Val Asn Cys
35 40 45

Trp Phe Cys Asn Gln Asp Thr Leu Val Pro Tyr Gly Asn Arg Asn Cys 50 55 60

Trp Asp Cys Pro His Cys Glu Gln Tyr Asn Gly Phe Gln Glu Asn Gly 65 70 75 80

Asp Tyr Asn Lys Pro Ile Pro Ala Gln Tyr Leu Glu His Leu Asn His
85 90 95

Val Val Ser Ser Ala Pro Ser Leu Arg Asp Pro Ser Gln Pro Gln Gln
100 105 110

Trp Val Ser Ser Gln Val Leu Leu Cys Lys Arg Cys Asn His His Gln
115 120 125

Thr Thr Lys Ile Lys Gln Leu Ala Ala Phe Ala Pro Arg Glu Glu Gly 130 135 140

Arg Tyr Asp Glu Glu Val Glu Val Tyr Arg His His Leu Glu Gln Met 145 150 155 160

Tyr Lys Leu Cys Arg Pro Cys Gln Ala Ala Val Glu Tyr Tyr Ile Lys 165 170 175

His Gln Asn Arg Gln Leu Arg Ala Leu Leu Leu Ser His Gln Phe Lys 180 185 190

Arg Arg Glu Ala Asp Gln Thr His Ala Gln Asn Phe Ser Ser Ala Val 195 200 205

Lys Ser Pro Val Gln Val Ile Leu Leu Arg Ala Leu Ala Phe Leu Ala 210 215 220

Cys 225	Ala	Phe	Leu	Leu	Thr 230	Thr	Ala	Leu	Tyr	Gly 235	Ala	Ser	Gly	His	Phe 240
Ala	Pro	Gly	Thr	Thr 245	Val	Pro	Leu	Ala	Leu 250	Pro	Pro	Gly	Gly	Asn 255	Gly
Ser	Ala	Thr	Pro 260	Asp	Asn	Gly	Thr	Thr 265	Pro	Gly	Ala	Glu	Gly 270	Trp	Arg
Gln	Leu	Leu 275	Gly	Leu	Leu	Pro	Glu 280	His	Met	Ala	Glu	Lys 285	Leu	Cys	Glu
Ala	Trp 290	Ala	Phe	Gly	Gln	Ser 295	His	Gln	Thr	Gly	Val 300	Val	Ala	Leu	Gly
Leu 305	Leu	Thr	Cys	Leu	Leu 310	Ala	Met	Leu	Leu	Ala 315	Gly	Arg	Ile	Arg	Leu 320
Arg	Arg	Ile	Asp	Ala 325	Phe	Cys	Thr	Cys	Leu 330	Trp	Ala	Leu	Leu	Leu 335	Gly
Leu	His	Leu	Ala 340	Glu	Gln	His	Leu	Gln 345	Ala	Ala	Ser	Pro	Ser 350	Trp	Leu
Asp	Thr	Leu 355	Lys	Phe	Ser	Thr	Thr 360	Ser	Leu	Cys	Cys	Leu 365	Val	Gly	Phe
Thr	Ala 370	Ala	Val	Ala	Thr	Arg 375	Lys	Ala	Thr	Gly	Pro 380	Arg	Arg	Phe	Arg
Pro 385	Arg	Arg	Phe	Phe	Pro 390	Gly	Asp	Ser		Gly 395	Leu	Phe	Pro	Thr	Ser 400
Pro	Ser	Leu	Ala	Ile 405	Pro	His	Pro	Ser	Val 410	Gly	Gly	Ser	Pro	Ala 415	Ser
Leu	Phe	Ile	Pro 420	Ser	Pro	Pro	Ser	Phe 425	Leu	Pro	Leu	Ala	Asn 430	Gln	Ala
Ala	Leu	Pro 435	Val	Ser	Ser	Thr	Asp 440	Leu	Thr	Leu	Leu	Ile 445	Cys	Leu	Ala
Ala	Ser 450	Ala	Gly	Pro	Ser	Leu 455	Trp		Pro Page		Pro 460	Leu			

```
<210> 275
<211> 600
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (460)..(460)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (530)..(530)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (574)..(574)
<223> n is a, c, g, t.or u
<220>
<221> misc feature
<222> (577)..(577)
<223> n is a, c, g, t or u
<400> 275
tcaagtctga cttgcatcta cactgcgggc aagatgcggc tgcaagaccg catcgccacg
                                                                     60
ttcttcttcc caaaaggcat gatgctcacc acggctgcgc tgatgctctt cttcttacac
                                                                    120
ctqqqcatct tcatcaqaqa cqtqcacaac ttctqcatca cctaccacta tqaccacatq
                                                                    180
agettteact acaeggtegt cetgatgtte teccaggtga teageatetg etgggetgee
                                                                    240
atggggtcac tctatgctga gatgacagaa aacaagtacg tctgcttctc cgccctgacc
                                                                    300
atcctgagtg agtggcagga gggggagggt gcaagaggga gcggggagct ttggaaccct
                                                                    360
gagatgtggc aaggagtagc cagggaaggg tactgggggt catggggggc tctgtccccc
                                                                    420
gcccagtgct caacggagcc atgctcttca accgcctgtn cttggagttt ctggccatcg
                                                                    480
aqtaccqqqa ggagcaccac tgaggcctgg ggagtcggaa cagggctaan gagggggaag
                                                                    540
caaaaqqctq cctcqqqtqt tttaataaaq ctgntgntta tttccaaaaa aaaaaaaaa
                                                                    600
<210> 276
<211> 174
<212> PRT
<213> Homo sapiens
<220>
<221> UNSURE
<222> (128)..(128)
<223> Xaa is S, P, T or A
```

```
<220>
<221> UNSURE
<222> (151)..(151)
<223> Xaa is M, T, K or R
<220>
<221> UNSURE
<222> (166)..(166)
<223> Xaa is L, M or V
<220>
<221> UNSURE
<222> (167)..(167)
<223> Xaa is F, L, I or V
<400> 276
Met Met Leu Thr Thr Ala Ala Leu Met Leu Phe Phe Leu His Leu Gly
Ile Phe Ile Arg Asp Val His Asn Phe Cys Ile Thr Tyr His Tyr Asp
His Met Ser Phe His Tyr Thr Val Val Leu Met Phe Ser Gln Val Ile
Ser Ile Cys Trp Ala Ala Met Gly Ser Leu Tyr Ala Glu Met Thr Glu
Asn Lys Tyr Val Cys Phe Ser Ala Leu Thr Ile Leu Ser Glu Trp Gln
Glu Gly Glu Gly Ala Arg Gly Ser Gly Glu Leu Trp Asn Pro Glu Met
Trp Gln Gly Val Ala Arg Glu Gly Tyr Trp Gly Ser Trp Gly Ala Leu
            100
Ser Pro Ala Gln Cys Ser Thr Glu Pro Cys Ser Ser Thr Ala Cys Xaa
                            120
        115
Trp Ser Phe Trp Pro Ser Ser Thr Gly Arg Ser Thr Thr Glu Ala Trp
    130
                        135
Gly Val Gly Thr Gly Leu Xaa Arg Gly Lys Gln Lys Ala Ala Ser Gly
145
                    150
                                        155
Val Leu Ile Lys Leu Xaa Xaa Ile Ser Lys Lys Lys Lys
```

170

<210> 277 <211> 457 <212> DNA <213> Homo sapiens
<400> 277 aaacactgca ggctacgaat cggtcattgc ataggttttc catgaatcag gaagattcag
tcctggtaaa ttcattccca ggaacatcgc tgccactgct attattctag cagctgttcc
catactccaa tgagtccagt taaacatttg ccttcttggg tcatgtaaag gtggcctgaa
gactgccaga agaggctgaa gaactgccaa agtcatcact atacagccga ggtatgggtg
gtaacctgca tgcctactcc agcctcccct gtatataaac ggcataacaa aagcaatgca
ggtgaggaca gttgtggtga acatgagcat ccgatgcacc tgaaaccaag ctgcttcacc
aagcaagaaa gcttttgacc aaactggctt gaagaaccgg gcaaccagta cacctatgct
aacagtagtc atccatgcca caaacattaa ggcacca
<210> 278 <211> 144 <212> PRT <213> Homo sapiens
<400> 278
Met Phe Val Ala Trp Met Thr Thr Val Ser Ile Gly Val Leu Val Ala 1 5 10 15
Arg Phe Phe Lys Pro Val Trp Ser Lys Ala Phe Leu Leu Gly Glu Ala 20 25 30
Ala Trp Phe Gln Val His Arg Met Leu Met Phe Thr Thr Thr Val Leu 35 40 45
Thr Cys Ile Ala Phe Val Met Pro Phe Ile Tyr Arg Gly Gly Trp Ser 50 55 60
Arg His Ala Gly Tyr His Pro Tyr Leu Gly Cys Ile Val Met Thr Leu 65 70 75 80
Ala Val Leu Gln Pro Leu Leu Ala Val Phe Arg Pro Pro Leu His Asp 85 90 95
Pro Arg Arg Gln Met Phe Asn Trp Thr His Trp Ser Met Gly Thr Ala 100 105 110

Ala Arg Ile Ile Ala Val Ala Ala Met Phe Leu Gly Met As
n Leu Pro $$\operatorname{\textbf{Page}}$$ 235

Gly Leu Asn Leu Pro Asp Ser Trp Lys Thr Tyr Ala Met Thr Asp Ser

130 135 140
<210> 279 <211> 293 <212> DNA <213> Homo sapiens
<400> 279 tttttttttt ttttttaag gctgaagcaa ataggaacgt atatttctca tgaatccaaa 60
gcaaagacac aggaagtgct ggcattcttt tggtggctgg tagctcttga ccttctcttc 120
aaggttgcca catgccttag cagcagctca tgacttcacg ttctcaccgt attcgaaggc 180
aggaagcatg gagtagctgg cagctgcgtt tgacacagac tgccctcgga ccccttctcc 240
gcgcagtgcg actcgcaatt gtctggagca cgttggcagc agccctcgtg ccg 293
<210> 280 <211> 45 <212> PRT <213> Homo sapiens
<400> 280
Arg His Glu Gly Cys Cys Gln Arg Ala Pro Asp Asn Cys Glu Ser His 1 5 10 15
Cys Ala Glu Lys Gly Ser Glu Gly Ser Leu Cys Gln Thr Gln Leu Pro 20 25 30
Ala Thr Pro Cys Phe Leu Pro Ser Asn Thr Val Arg Thr 35 40 45
<210> 281 <211> 15 <212> PRT <213> Homo sapiens
<400> 281
Cys Gln Lys Gln Arg Asn Trp His Gly Ile Trp Arg Leu Glu Val 1 5 10 15
<210> 282 <211> 13 <212> PRT <213> Homo sapiens
<400> 282

```
Met Ala Lys Gln Gly Glu Met Asn Thr Ser Thr Ser Cys
<210> 283
<211> 13
<212> PRT
<213> Homo sapiens
<400> 283
Pro Lys Arg Gly Gly Arg Ala Gly Arg Glu His Ser Cys
               5
<210> 284
<211> 91
<212> PRT
<213> Homo sapiens
<400> 284
Arg Phe Gln Arg Asn Thr Gly Glu Met Ser Ser Asn Ser Thr Ala Leu
Ala Leu Val Arg Pro Ser Ser Ser Gly Leu Ile Asn Ser Asn Thr Asp
Asn Asn Leu Ala Val Tyr Asp Leu Ser Arg Asp Ile Leu Asn Asn Phe
Pro His Ser Ile Ala Arg Gln Lys Arg Ile Leu Val Asn Leu Ser Met
Val Glu Asn Lys Leu Val Glu Leu Glu His Thr Leu Leu Ser Lys Gly
65
Phe Arg Gly Ala Ser Pro His Arg Lys Ser Thr
                85
<210> 285
<211> 15
<212> PRT
<213> Homo sapiens
<400> 285
Cys Lys Tyr Arg Arg Phe Gln Arg Asn Thr Gly Glu Met Ser Ser
                5
<210> 286
<211> 14
```

<212> PRT

<213> Homo sapiens

<400> 286

Cys Lys Gly Phe Arg Gly Ala Ser Pro His Arg Lys Ser Thr 1 5 10

<210> 287

<211> 19

<212> PRT

<213> Homo sapiens

<400> 287

Met Ala Cys Ile Tyr Pro Thr Thr Phe Tyr Thr Ser Leu Pro Thr Lys
1 10 15

Ser Leu Asn

<210> 288

<211> 121

<212> PRT

<213> Homo sapiens

<400> 288

Ala Pro Pro Ser Cys Arg Glu Cys Tyr Gln Ser Leu His Tyr Arg Gly
1 5 10 15

Glu Met Gln Gln Tyr Phe Thr Tyr His Thr His Ile Glu Arg Ser Cys
20 25 30

Tyr Gly Asn Leu Ile Glu Glu Cys Val Glu Ser Gly Lys Ser Tyr Tyr 35 40 45

Lys Val Lys Asn Leu Gly Val Cys Gly Ser Arg Asn Gly Ala Ile Cys
50 60

Pro Arg Gly Lys Gln Trp Leu Cys Phe Thr Lys Ile Gly Gln Trp Gly 65 70 75 80

Val Asn Thr Gln Val Leu Glu Asp Ile Lys Arg Glu Gln Ile Ile Ala 85 90 95

Lys Ala Lys Ala Ser Lys Pro Thr Thr Pro Pro Glu Asn Arg Pro Arg

His Phe His Ser Phe Ile Gln Lys Leu

```
<210> 289
<211> 15
<212> PRT
<213> Homo sapiens
<400> 289
Cys Glu Asn Arg Pro Arg His Phe His Ser Phe Ile Gln Lys Leu
<210> 290
<211> 13
<212> PRT
<213> Homo sapiens
<400> 290
Cys Ile Tyr Pro Thr Thr Phe Tyr Thr Ser Leu Pro Thr
<210> 291
<211> 14
<212> PRT
<213> Homo sapiens
<400> 291
Cys Lys Glu Asp Glu Leu Val Arg Asp Ser Pro Ala Arg Lys
              5
<210> 292
<211> 12
<212> PRT
<213> Homo sapiens
<400> 292
Ala Leu Gly Thr Arg Leu Ser Gln His Thr Asp Val
<210> 293
<211> 11
<212> PRT
<213> Homo sapiens
<400> 293
Asp Phe Asn Cys Pro Cys Leu Val His Tyr Asn
                5
<210> 294
```

<211> 53

<212> PRT <213> Homo sapiens <400> 294 Ser Ser Ser Val Asp 1 5

Ser Ser Ser Val Asp Pro Glu Lys Phe Leu Asp Phe Ala Asn Met Thr 1 5 10 15

Pro Ser Gln Val Gln Leu Phe Leu Ala Lys Val Pro Cys Lys Glu Asp 20 25 30

Glu Leu Val Arg Asp Ser Pro Ala Arg Lys Ala Val Ser Arg Tyr Leu 35 40 45

Arg Cys Leu Ser Gln 50

<210> 295 <211> 146 <212> PRT <213> Homo sapiens

<400> 295

Arg Cys Leu Arg Pro Cys Phe Asp Gln Thr Val Phe Leu Gln Arg Arg 1 5 10 15

Tyr Trp Ser Asn Tyr Val Asp Leu Glu Gln Lys Leu Phe Asp Glu Thr 20 25 30

Cys Cys Glu His Ala Arg Asp Phe Ala His Arg Cys Val Leu His Phe 35 40 45

Phe Ala Ser Met Arg Ser Glu Leu Gln Ala Arg Gly Leu Arg Arg Gly 50 55 60

Asn Ala Gly Arg Arg Leu Glu Leu Pro Ala Val Pro Glu Pro Pro Glu 65 70 75 80

Gly Leu Asp Ser Gly Ser Gly Lys Ala His Leu Arg Ala Ile Ser Ser 85 90 95

Arg Glu Gln Val Asp Arg Leu Leu Ser Thr Trp Tyr Ser Ser Lys Pro 100 105 110

Pro Leu Asp Leu Ala Ala Ser Pro Gly Leu Cys Gly Gly Leu Ser 115 120 125 His Arg Ala Pro Thr Leu Ala Leu Gly Thr Arg Leu Ser Gln His Thr 130 135 140

Asp Val

<210> 296

<211> 1035

<212> PRT

<213> Homo sapiens

<400> 296

Met Pro Cys Gly Phe Ser Pro Ser Pro Val Ala His His Leu Val Pro 1 5 10 15

Gly Pro Pro Asp Thr Pro Ala Gln Gln Leu Arg Cys Gly Trp Thr Val 20 25 30

Gly Gly Trp Leu Leu Ser Leu Val Arg Gly Leu Leu Pro Cys Leu Pro 35 40 45

Pro Gly Ala Arg Thr Ala Glu Gly Pro Ile Met Val Leu Ala Gly Pro 50 60

Leu Ala Val Ser Leu Leu Pro Ser Leu Thr Leu Leu Val Ser His 65 70 75 80

Leu Ser Ser Gln Asp Val Ser Ser Glu Pro Ser Ser Glu Gln Gln 85 90 95

Leu Cys Ala Leu Ser Lys His Pro Thr Val Ala Phe Glu Asp Leu Gln
100 105 110

Pro Trp Val Ser Asn Phe Thr Tyr Pro Gly Ala Arg Asp Phe Ser Gln 115 120 125

Leu Ala Leu Asp Pro Ser Gly Asn Gln Leu Ile Val Gly Ala Arg Asn 130 135 140

Tyr Leu Phe Arg Leu Ser Leu Ala Asn Val Ser Leu Leu Gln Ala Thr 145 150 155 160

Glu Trp Ala Ser Ser Glu Asp Thr Arg Arg Ser Cys Gln Ser Lys Gly
165 170 175

Lys Thr Glu Glu Cys Gln Asn Tyr Val Arg Val Leu Ile Val Ala Page 241 180 185 190

- Gly Arg Lys Val Phe Met Cys Gly Thr Asn Ala Phe Ser Pro Met Cys 195 200 205
- Thr Ser Arg Gln Val Gly Asn Leu Ser Arg Thr Ile Glu Lys Ile Asn 210 215 220
- Gly Val Ala Arg Cys Pro Tyr Asp Pro Arg His Asn Ser Thr Ala Val 225 230 235 240
- Ile Ser Ser Gln Gly Glu Leu Tyr Ala Ala Thr Val Ile Asp Phe Ser 245 250 255
- Gly Arg Asp Pro Ala Ile Tyr Arg Ser Leu Gly Ser Gly Pro Pro Leu 260 · 265 270
- Arg Thr Ala Gln Tyr Asn Ser Lys Trp Leu Asn Glu Pro Asn Phe Val 275 280 285
- Ala Ala Tyr Asp Ile Gly Leu Phe Ala Tyr Phe Phe Leu Arg Glu Asn 290 295 300
- Ala Val Glu His Asp Cys Gly Arg Thr Val Tyr Ser Arg Val Ala Arg 305 310 315 320
- Val Cys Lys Asn Asp Val Gly Gly Arg Phe Leu Leu Glu Asp Thr Trp 325 330 335
- Thr Thr Phe Met Lys Ala Arg Leu Asn Cys Ser Arg Pro Gly Glu Val 340 345 350
- Pro Phe Tyr Tyr Asn Glu Leu Gln Ser Ala Phe His Leu Pro Glu Gln 355 360 365
- Asp Leu Ile Tyr Gly Val Phe Thr Thr Asn Val Asn Ser Ile Ala Ala 370 375 380
- Ser Ala Val Cys Ala Phe Asn Leu Ser Ala Ile Ser Gln Ala Phe Asn 385 390 395 400
- Gly Pro Phe Arg Tyr Gln Glu Asn Pro Arg Ala Ala Trp Leu Pro Ile 405 410 415
- Ala Asn Pro Ile Pro Asn Phe Gln Cys Gly Thr Leu Pro Glu Thr Gly Page 242

Pro Asn Glu Asn Leu Thr Glu Arg Ser Leu Gln Asp Ala Gln Arg Leu Phe Leu Met Ser Glu Ala Val Gln Pro Val Thr Pro Glu Pro Cys Val Thr Gln Asp Ser Val Arg Phe Ser His Leu Val Val Asp Leu Val Gln Ala Lys Asp Thr Leu Tyr His Val Leu Tyr Ile Gly Thr Glu Ser Gly Thr Ile Leu Lys Ala Leu Ser Thr Ala Ser Arg Ser Leu His Gly Cys Tyr Leu Glu Glu Leu His Val Leu Pro Pro Gly Arg Arg Glu Pro Leu Arg Ser Leu Arg Ile Leu His Ser Ala Arg Ala Leu Phe Val Gly Leu Arg Asp Gly Val Leu Arg Val Pro Leu Glu Arg Cys Ala Ala Tyr Arg Ser Gln Gly Ala Cys Leu Gly Ala Arg Asp Pro Tyr Cys Gly Trp Asp Gly Lys Gln Gln Arg Cys Ser Thr Leu Glu Asp Ser Ser Asn Met Ser Leu Trp Thr Gln Asn Ile Thr Ala Cys Pro Val Arg Asn Val Thr Arg Asp Gly Gly Phe Gly Pro Trp Ser Pro Trp Gln Pro Cys Glu His Leu Asp Gly Asp Asn Ser Gly Ser Cys Leu Cys Arg Ala Arg Ser Cys Asp Ser Pro Arg Pro Arg Cys Gly Gly Leu Asp Cys Leu Gly Pro Ala Ile

His Ile Ala Asn Cys Ser Arg Asn Gly Ala Trp Thr Pro Trp Ser Ser

Page 243

660	665	670

Trp	Ala	Leu 675	Cys	Ser	Thr	Ser	Cys 680	Gly	Ile	Gly	Phe	Gln 685	Val	Arg	Glr
Arg	Ser 690	Cys	Ser	Asn	Pro	Ala 695	Pro	Arg	His	Gly	Gly 700	Arg	Ile	Cys	Val
Gly. 705	Lys	Ser	Arg	Glu	Glu 710	Arg	Phe	Cys	Asn	Glu 715	Asn	Thr	Pro	Cys	Pro 720
Val	Pro	Ile	Phe	Trp 725	Ala	Ser	Trp	Gly	Ser 730	Trp	Ser	Lys	Cys	Ser 735	Ser
Asn	Cys	Gly	Gly 740	Gly	Met	Gln	Ser	Arg 745	Arg	Arg	Ala	Cys	Glu 750	Asn	Gly
Asn	Ser	Cys 755	Leu	Gly	Cys	Gly	Val 760	Glu	Phe	Lys	Thr	Cys 765	Asn	Pro	Glu
Gly	Cys 770	Pro	Glu	Val	Arg	Arg 775	Asn	Thr	Pro	Trp	Thr 780	Pro	Trp	Leu	Pro
Val 785	Asn	Val	Thr	Gln	Gly 790	Gly	Ala	Arg	Gln	Glu 795	Gln	Arg	Phe	Arg	Phe 800
Thr	Cys	Arg	Ala	Pro 805	Leu	Ala	Asp	Pro	His 810	Gly	Leu	Gln	Phe	Gly 815	Arg
Arg	Arg	Thr	Glu 820	Thr	Arg	Thr	Cys	Pro 825	Ala	Asp	Gly	Ser	Gly 830	Ser	Cys
Asp	Thr	Asp 835	Ala	Leu	Val	Glu	Val 840	Leu	Leu	Arg	Ser	Gly 845	Ser	Thr	Ser
Pro	His 850	Thr	Val	Ser	Gly	Gly 855	Trp	Ala	Ala	Trp	Gly 860	Pro	Trp	Ser	Ser
Cys 865	Ser	Arg	Asp	Суѕ	Glu 870	Leu	Gly	Phe	Arg	Val 875	Arg	Lys	Arg	Thr	Cys 880
Thr	Asn	Pro	Glu	Pro 885	Arg	Asn	Gly	Gly	Leu 890	Pro	Cys	Val	Gly	Asp 895	Ala
Ala	Glu	Tyr	Gln	Asp	Cys	Asn	Pro		Ala Page		Pro	Val	Arg	Gly	Ala

900 905 910

Trp Ser Cys Trp Thr Ser Trp Ser Pro Cys Ser Ala Ser Cys Gly Gly
915 920 925

Gly His Tyr Gln Arg Thr Arg Ser Cys Thr Ser Pro Ala Pro Ser Pro 930 935 940

Gly Glu Asp Ile Cys Leu Gly Leu His Thr Glu Glu Ala Leu Cys Ala 945 950 955 960

Thr Gln Ala Cys Pro Glu Gly Trp Ser Pro Trp Ser Glu Trp Ser Lys 965 970 975

Cys Thr Asp Asp Gly Ala Gln Ser Arg Ser Arg His Cys Glu Glu Leu 980 985 990

Leu Pro Gly Ser Ser Ala Cys Ala Gly Asn Ser Ser Gln Ser Arg Pro 995 1000 1005

Cys Pro Tyr Ser Glu Ile Pro Val Ile Leu Pro Ala Ser Ser Met 1010 1015 1020

Glu Glu Ala Thr Asp Cys Ala Gly Phe Asn Leu Ile 1025 1030 1035

<210> 297

<211> 16

<212> PRT

<213> Homo sapiens

<400> 297

Cys Pro Tyr Asp Pro Arg His Asn Ser Thr Ala Val Ile Ser Ser Gln 1 5 10 15

<210> 298

<211> 11

<212> PRT

<213> Homo sapiens

<400> 298

Cys Pro Glu Val Arg Arg Asn Thr Pro Trp Thr 1 5 10

<210> 299

<211> 35

<212> PRT

٠,

```
<213> Homo sapiens
<400> 299
Glu Arg Val Trp Ser Asp Asp His Lys Asp Phe Asp Cys Asn Thr Arg
Gln Pro Gly Cys Ser Asn Val Cys Phe Asp Glu Phe Pro Val Ser
His Val Arg
<210> 300
<211> 38
<212> PRT
<213> Homo sapiens
<400> 300
His Ser Phe Tyr Pro Lys Tyr Ile Leu Pro Pro Val Val Lys Cys His
Ala Asp Pro Cys Pro Asn Ile Val Asp Cys Phe Ile Ser Lys Pro Ser
                               25
Glu Lys Asn Ile Phe Thr
<210> 301
<211> 15
<212> PRT
<213> Homo sapiens
<400> 301
Cys Leu Pro Asp Arg Pro Arg Asp His Val Lys Lys Thr Ile Leu
               5
<210> 302
<211> 13
<212> PRT
<213> Homo sapiens
<400> 302
Glu Arg Val Trp Ser Asp Asp His Lys Asp Phe Asp Cys
<210> 303
<211> 38
<212> PRT
```

```
<213> Homo sapiens
<400> 303
Asn Asn Asp Val Ser Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly
Ser Asn Gln Asp Leu Gly Ala Gly Ala Gly Glu Asp Ala Arg Ser Asp
Asp Ser Ser Ser Arg Ile
       35
<210> 304
<211> 15
<212> PRT
<213> Homo sapiens
<400> 304
Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly Ser Asn Gln Asp
<210> 305
<211> 12
<212> PRT
<213> Homo sapiens
<400> 305
Cys Val Pro His Ser Arg Ser Arg Gly Pro Asn Leu
<210> 306
<211> 12
<212> PRT
<213> Homo sapiens
<400> 306
Cys Glu Leu Ser Gln Thr Pro His Pro His Ser Arg
               5
<210> 307
<211> 14
<212> PRT
<213> Homo sapiens
<400> 307
Cys Leu Asp Ser Ala Gly Asn Asn Ala Gly Ile Gln Trp Gly
```

<211> <212> PRT <213> Homo sapiens 308 <400> Cys Asn Arg Val Ser Lys Asn Pro Glu Met Leu Gln Thr Gly <210> 309 <211> 2115 <212> DNA <213> Homo sapiens <400> 309 atgcgtatat gttatgaatg ccaaaatgaa agaacattgt ggcgatgtgt ttcccaggat 60 qqqqctqact acaqtqtqqq cqtqtqtc cctqattctt gtqctqaaqa ggatqtqact 120 180 ctgatgtctc ggctggatac tttaagattc agaaatactt catttttggc cccttccctc tttcttttta caataaattc ttcctccttg tctggtggga gtgtgaccag atgtgctgct 240 ggaaagatcc ccctggacac atttgctgcc gtatgtctgt tcatcacctt gctgggtctc 300 atcctccctc cggctggaac agtctgcgtg gcagctaggg aatgggggtc agcctgcagg 360 acatcgcggg aacacgggga acctctggcc acttacggga gtctgccact gagcgaggcg 420 gagagcaatg aacaaagaag cagaatccca cggacacact gccgggcaca tctcctcctg 480 tcagcagcct ccagcagagg aaaaaggttt ctaggagccg tggctcatgc tctggagtgc 540 600 ttttcttggc agaagaatgt gccagccatc tggactacaa aggcaccagg tggcacctgc 660 tctgcactga atggcattcg tgtcttgagt cttctttgga tcatctcggg acacaccagt 720 cagatgactg catggctgtc tttgggatgg aaagatggag ggcacgaaag gccactggtc atgtctgggc catcagtggg aatcggagac accagagaag ccacgagtgg ttggttaagt 780 840 gcaagttcgt ttttaaagat gcatcagaat tcagacaaag gaataacccc caaaggcata 900 ctcagatact ttctcagtca cctggtaagg ttgcagcctc ttcacctgta ttcaatgtgc ttqttqqttq gactqttctc tcttqttccc tggggacctg tctgggaaat gcccaaattc 960 1020 cactgggata actgccggca agcatggtgg acgaatctgc tgttgctaaa taactttgtg 1080 teggteaaga atgegtgeaa tggetggace tggtacettg ceaatgaett ceagtteeae ctcaccacac cagtgattat cttcatccat gtaaagagta cacagatcct catcctcctt 1140 1200 ggggccatgc tgttcttggc atctttcaca gccactgctc tgatcacctt ggcatataaa cttcctgtcg tggctccatc agaaaccagg acttcccggg gagggctgct gaatgccagg 1260 ctgttcaccc tgtgcccttt ggttcatgga aaaagtgggt atgaaacttt tggtctggat 1320 Page 248

<210>

308

1380 gggaaagctg attgccttct tgcttccaaa cttctgaacc tttcaacctg cactggaaat qaacaaqtgt gccctaaatg tacctttggg cttgctgatt attccaatgg acatctcagg 1440 gatttggatt ccctttgcca tgtccagatc aaacataaca ttttggctta tttccttgta 1500 1560 tttttcaqtq aaqaqqcqat tqtattqtat ttcgtggagt actacacaaa gccctactgc cqatttqqqc caqttcttqt gggcctcttt ctgagcattt acatgcacca aaaccaccag 1620 gaaaacattc tcagaaccaa gctgcagctc tctaccaagc cctccaccgg accctgtggg 1680 eggeggetgt gggetgagte etetttgegt gecaeggagg atatggaggt atggaagegg 1740 ctccaggctt tgctgtcggg ttcacaccct gttcctttaa aggtgacaaa tcgaacacac 1800 aggagagcca agcagataaa aggcttcaat ggaaaagaat cttctccagg tctggtgaac 1860 cgtgtgcttt cttgggacat ctggagtttc ctgtccagca tcagttatgc tcgctacttg 1920 gtgcatccga ttctgatcat cctttacaat ggccttcagg aaacacttat tcaccacact 1980 gacaccaaca tgttctatct tttctctgga caccgtgtgc tgaccttcgt cactgggctg 2040 gccctgacgc tgttcattga gaaaccatgt caggaactga agcagcacct gctgggccat 2100 2115 gaatgttctg gttaa

<210> 310

<211> 704

<212> PRT

<213> Homo sapiens

<400> 310

Met Arg Ile Cys Tyr Glu Cys Gln Asn Glu Arg Thr Leu Trp Arg Cys 1 5 10 15

Val Ser Gln Asp Gly Ala Asp Tyr Ser Val Gly Val Cys Val Pro Asp 20 25 30

Ser Cys Ala Glu Glu Asp Val Thr Leu Met Ser Arg Leu Asp Thr Leu 35 40 45

Arg Phe Arg Asn Thr Ser Phe Leu Ala Pro Ser Leu Phe Leu Phe Thr 50 55 60

Ile Asn Ser Ser Ser Leu Ser Gly Gly Ser Val Thr Arg Cys Ala Ala 65 70 75 80

Gly Lys Ile Pro Leu Asp Thr Phe Ala Ala Val Cys Leu Phe Ile Thr 85 90 95

Leu Leu (Gly Leu 100	Ile Leu	Pro	Pro	Ala 105	Gly	Thr	Val	Cys	Val 110	Ala	Ala
Arg Glu	Trp Gly 115	Ser Ala	Суѕ	Arg 120	Thr	Ser	Arg	Glu	His 125	Gly	Glu	Pro
Leu Ala 1	Thr Tyr	Gly Ser	Leu 135	Pro	Leu	Ser	Glu	Ala 140	Glu	Ser	Asn	Glu
Gln Arg S	Ser Arg	Ile Pro 150	Arg	Thr	His	Cys	Arg 155	Ala	His	Leu	Leu	Leu 160
Ser Ala A	Ala Ser	Ser Arg 165	Gly	Lys	Arg	Phe 170	Leu	Gly	Ala	Val	Ala 175	His
Ala Leu (Glu Cys 180	Phe Ser	Trp	Gln	Lys 185	Asn	Val	Pro	Ala	Ile 190	Trp	Thr
Thr Lys I	Ala Pro 195	Gly Gly	Thr	Cys 200	Ser	Ala	Leu	Asn	Gly 205	Ile	Arg	Val
Leu Ser 1 210	Leu Leu	Trp Ile	Ile 215	Ser	Gly	His	Thr	Ser 220	Gln	Met	Thr	Ala
Trp Leu S 225	Ser Leu	Gly Trp 230	Lys	Asp	Gly	Gly	His 235	Glu	Arg	Pro	Leu	Val 240
Met Ser (Gly Pro	Ser Val 245	Gly	Ile	Gly	Asp 250	Thr	Arg	Glu	Ala	Thr 255	Ser
Gly Trp	Leu Ser 260	Ala Ser	Ser	Phe	Leu 265	Lys	Met	His	Gln	Asn 270	Ser	Asp
Lys Gly	Ile Thr 275	Pro Lys	Gly	Ile 280	Leu	Arg	Tyr	Phe	Leu 285	Ser	His	Leu
Val Arg 1 290	Leu Gln	Pro Leu	His 295	Leu	Tyr	Ser	Met	Cys 300	Leu	Leu	Val	Gly
Leu Phe 3	Ser Leu	Val Pro 310	Trp	Gly	Pro	Val	Trp 315	Glu	Met	Pro	Lys	Phe 320
His Trp A	Asp Asn	Cys Arg 325	Gln	Ala	Trp	Trp 330	Thr	Asn	Leu	Leu	Leu 335	Leu

Asn	Asn	Phe	Val 340	Ser	Val	Lys	Asn	Ala 345	Cys	Asn	Gly	Trp	Thr 350	Trp	Tyr
Leu	Ala	Asn 355	Asp	Phe	Gln	Phe	His 360	Leu	Thr	Thr	Pro	Val 365	Ile	Ile	Phe
Ile	His 370	Val	Lys	Ser	Thr	Gln 375	Ile	Leu	Ile	Leu	Leu 380	Gly	Ala	Met	Leu
Phe 385	Leu	Ala	Ser	Phe	Thr 390	Ala	Thr	Ala	Leu	Ile 395	Thr	Leu	Ala	Tyr	Lys 400
Leu	Pro	Val	Val	Ala 405	Pro	Ser	Glu	Thr	Arg 410	Thr	Ser	Arg		Gly 415	Leu
Leu	Asn	Ala	Arg 420	Leu	Phe	Thr	Leu	Cys 425	Pro	Leu	Val	His	Gly 430	Lys	Ser
Gly	Tyr	Glu 435	Thr	Phe	Gly	Leu	Asp 440	Gly	Lys	Ala	Asp	Cys 445	Leu	Leu	Ala
Ser	Lys 450	Leu	Leu	Asn	Leu	Ser 455	Thr	Cys	Thr	Gly	Asn 460	Glu	Gln	Val	Cys
Pro 465	Lys	Cys	Thr	Phe	Gly 470	Leu	Ala	Asp	Tyr	Ser 475	Asn	Gly	His	Leu	Arg 480
Asp	Leu	Asp	Ser	Leu 485	Cys	His	Val	Gln	Ile 490	Lys	His	Asn	Ile	Leu 495	Ala
Tyr	Phe	Leu	Val 500	Phe	Phe	Ser	Glu	Glu 505	Ala	Ile	Val	Leu	Tyr 510	Phe	Val
Glu	Tyr	Tyr 515	Thr	Lys	Pro	Tyr	Cys 520	Arg	Phe	Gly	Pro	Val 525	Leu	Val	Gly
Leu	Phe 530	Leu	Ser	Ile	Tyr	Met 535	His	Gln	Asn	His	Gln 540	Glu	Asn	Ile	Leu
Arg 545	Thr	Lys	Leu	Gln	Leu 550	Ser	Thr	Lys	Pro	Ser 555	Thr	Gly	Pro	Cys	Gly 560
Arg	Arg	Leu	Trp	Ala 565	Glu	Ser	Ser	Leu	Arg 570	Ala	Thr	Glu	Asp	Met 575	Glu

val II	р гур	580		GIII	AIA	пец	585	561	Gly	261	nis	590	vai	FIO		
Leu Ly	s Val 595	Thr	Asn	Arg	Thr	His 600	Arg	Arg	Ala	Lys	Gln 605	Ile	Lys	Gly		
Phe As:		Lys	Glu	Ser	Ser 615	Pro	Gly	Leu	Val	Asn 620	Arg	Val	Leu	Ser		
Trp As	p Ile	Trp	Ser	Phe 630	Leu	Ser	Ser	Ile	Ser 635	Tyr	Ala	Arg	Tyr	Leu 640		
Val Hi	s Pro	Ile	Leu 645	Ile	Ile	Leu	Tyr	Asn 650	Gly	Leu	Gln		Thr 655	Leu		
Ile Hi	s His	Thr 660	Asp	Thr	Asn	Met	Phe 665	Tyr	Leu	Phe	Ser	Gly 670	His	Arg		
Val Le	u Thr 675	Phe	Val	Thr	Gly	Leu 680	Ala	Leu	Thr	Leu	Phe 685	Ile	Glu	Lys		
Pro Cy 69		Gľu	Leu	Lys	Gln 695	His	Leu	Leu	Gly	His 700	Glu	Cys	Ser	Gly		
<210><211><212><212><213>	311 21 DNA Arti	ficia	al Se	equei	nce											
<220> <223>	Olig	onuc:	leot:	ide												
<400> aaccgt	311 gtgc	tttc	ttgg	ga c										,	21	
<210><211><212><212><213>	312 19 DNA Arti	ficia	al Se	equei	nce											
<220> <223>	Olig	onuc	leot	ide												
<400> acattc	312 atgg	ccca	gcag	3											19	