CMPE 212 Principles of Digital Design

Lecture 6

Logic Gates

February 10, 2016

www.csee.umbc.edu/~younis/CMPE212/CMPE212.htm

Lecture's Overview

Previous Lecture:

- → Multiplication and division of binary numbers (unsigned numbers, determining the sign of the results)
- → Binary codes (BCD, Character representation) (BCD, ASCII, EBCDIC, Unicode, Gray, etc.)
- → Representations for floating point numbers (Format, scientific notation, standard notation)
- → Error detect and correction codes (weight, Hamming distance, Hamming codes)

☐ This Lecture:

- → Logic gates
- → Relay and transistor based implementation of logic gates

Example: Automobile Ignition

Engine turns on when: Ignition key is applied AND

 Car is in parking gear <u>OR</u> Brake pedal is on AND

Seat belt fastened

OR Car is in parking gear

Automobile Ignition Control

Define Boolean Variables

Write Boolean Function

$$M = KAND (PORB) AND (SORP)$$

$$= K(P + B)(S + P)$$

Slide contents is curtsey of Vishwani Agrawal

Automobile Ignition Control

Simplify Boolean Function

$$M = K(P + B)(S + P)$$

= $K(P + B)(P + S)$ Commutativity
= $K(P + B S)$ Distributivity

6 Construct an Optimum Circuit

Slide contents is curtsey of Vishwani Agrawal

Implementing the Ignition Control

- ☐ Switching Devices
 - Electromechanical relays (1940s)
 - Vacuum tubes (1950s)
 - Bipolar transistors (1960 1980)
 - Field effect transistors (1980)
 - Nanotechnology devices (future)

- Implement the Ignition control using relays
 - An electromechanical relay contains:
 - Electromagnet
 - Current source
 - A switch, spring-loaded, normally open or closed
 - Switch has two states, open (0) or closed (1).
 - The state of switch is controlled by "not applying" or "applying" current to electromagnet

One Switch Controlling Another

- Switches X and Y are normally open
- Y cannot close unless a current is applied to X

Inverting Switch

- Normally switch X is closed and Y is open
- Y cannot open unless a current is applied to X

Boolean Operations

AND – Series connected relays.

Relay Computers Conrad Zuse (1910-1995)

Z1 (1938)

Z3 (1941)

Electronic Switching Devices

Electron Tube Fleming, 1904 de Forest, 1906

Point Contact Trans Bardeen, Brattain, Sh 1948, Nobel Prize, ransistor Shockley, e, 1956

CSEF
Corpore Science / Bestral Equipments
UMBC

Slide contents is curtsey of Vishwani Agrawal

Bipolar Junction Transistor

- Dipolar: Charges flow through the base
- MOSFET: the base becomes a gate

MOSFET

Metal Oxide Semiconductor

Source

Field Effect Transistor

Problem: When Gate is on current leakage causes power dissipation

Solution: Complementary MOS

Slide contents is curtsey of Vishwani Agrawal

MOS Transistors

Voltage Controlled resistance

PMOS

Increase V_{gs} → Increase R_{ds}

NMOS

Increase V_{qs} → Decrease R_{ds}

CMOS means using PMOS and NMOS transistors in a complementary way

CMOS Logic Gate: Inverter

Switch Model

□ PMOS and NMOS transistors can be viewed as switches controlled by voltage level applied to the transistor gate

Alternative Transistor Symbols

Notice the bubble at the p-channel transistor

CMOS NAND Gate

 $V_{\rm DD}$

3-Input CMOS NAND Gate

Basically, 3 inverters connected in parallel (OR configuration of relays)

2-Input CMOS NOR Gate

☐ Like NAND -- 2n transistors for n-input gate

2-Input CMOS AND Gate

Transistor Count in CMOS Gates

Logic function	Number of transistors	
	1 or 2 inputs	N inputs
NOT	2	_
AND	6	2N + 2
OR	6	2N + 2
NAND	4	2N
NOR	4	2N

Optimized Ignition Logic

3 gates, 20 transistors. Can we reduce transistors?

Further Optimization

= KP + KBS

(Theorem 3, involution)

NAND gates
4+6 transistors

= KP·KBS

(De Morgan's theorem)

3 gates, 14 transistors.

Conclusion

- ☐ Summary
 - → Logic Gates
 (famous gates, gate symbols)
 - → Circuit implementation of logic gates (TTL transistors, logic equivalent voltage level, CMOS implementation)
- □ Next Lecture
 - → Switching Functions

Reading supplement from Wakely's Book