Um estudo sobre as curvas Geodésicas

Caio Lins

2 de junho de 2022

1 Isometrias

Quando estamos trabalhando com aplicações de \mathbb{R}^n em \mathbb{R}^m , isometrias são aquelas que preservam o comprimento de vetores. Ao mudar o ambiente de trabalho para superfícies, a definição de isometria faz referência à derivada da aplição e, consequentemente, aos espaços tangentes a essas superfícies. Mais explicitamente, temos:

Definição 1 (Isometria). Dadas superfícies regulares S_1 e S_2 , dizemos que uma aplicação $f: S_1 \to S_2$ é uma isometria se é um difeomorfismo e, para todo $p \in S_1$ e todos $w, v \in T_pS_1$ temos

$$\langle df_p w, df_p v \rangle = \langle w, v \rangle. \tag{1}$$

Ainda, dizemos que $f: S_1 \to S_2$ é uma isometria local se, para todo $p \in S_1$ existem abertos $V_1 \subseteq S_1$ e $V_2 \subseteq V_2$, tais que $p \in V_1, f(p) \in V_2$ e $f|_{V_1}: V_1 \to V_2$ é uma isometria.

Finalmente, duas superfícies regulares são ditas isométricas se existe uma isometria entre elas.

Agora, alguns comentários. Observe que, se f é isometria local e difeomorfismo, então é isometria. Também perceba que, pela $identidade\ de\ polarização$:

$$\langle w, v \rangle = \frac{\|w + v\|^2 - \|w - v\|^2}{4}$$

a condição (1) é equivalente a termos

$$||df_p w|| = ||w|| \tag{2}$$

para todo $w \in T_pS_1$.

Observe, ainda, que se $f: S_1 \to S_2$ cumpre (2) (ou, equivalentemente, (1), pelo que acabamos de mostrar), então, para todo $p \in S_1$, temos que df_p é um isomorfismo. De fato, a injetividade vem do fato de que se $df_p w = df_p v$, então

$$||w - v|| = ||df_p(w - v)|| = ||df_p w - df_p v|| = 0,$$

de modo que w=v. Agora, como $2=\dim T_{f(p)}S_2\geq \dim df_p(T_pS_1)=2$, necessariamente temos $T_{f(p)}S_2=df_p(T_pS_1)$, ou seja, df_p é sobrejetiva. Dessa forma, pelo Teorema da Função Inversa, para cada $p\in S_1$ existem vizinhanças $V_1\ni p$ e $V_2\ni f(p)$ em S_1 e S_2 , respectivamente, tais que $f|_{V_1}:V_1\to V_2$ é difeomorfismo. Ou seja, f é isometria local.

Com isso, provamos a seguinte proposição, que caracteriza as isometrias locais.

Proposição 1. Uma aplicação entre superfícies regulares é uma isometria local se, e somente se, preserva a primeira forma fundamental.

2 Geodésicas

Definição 2. Uma curva parametrizada diferenciável em uma superfície regular $S, \gamma : I \subseteq \mathbb{R} \to S$, é dita uma geodésica parametrizada se seu vetor aceleração é sempre perpendicular ao espaço tangente da superfície, ou seja, se para todo $p = \gamma(t) \in \gamma(I)$ temos $\gamma''(t) \in \{T_{\gamma(t)}S\}^{\perp}$. Analogamente, uma curva regular $C \subset S$ é dita uma geodésica de S se, para todo ponto $p \in C$, existe uma parametrização local $\gamma : I \subseteq \mathbb{R} \to C$, de C em p, tal que γ é uma geodésica parametrizada.

3 Aplicação Exponencial