Weitere Aufgaben zur Linearfaktordarstelling S. 2815 a) f(x) = a(x-b)(x-c) quadrat there $x_1 = -1$ $x_2 = 3$ gegelben $= b f(x) = a \cdot (x+1)(x-3)$ P10/1) £(0) = 1 $a \cdot (0+1)(0-3) = 1$ a. (-3) =1 = f(x)=-{(x+1)(x-3) b) ... - I muss doppelte NST sein! 6) &(x)= k. (x-3) (x+1) Bestimme k: f(2) = 6 $4.(2-3)^{2}(2+1)=6$ R = $g(x) = -x^3$ X-p-00: f(x)-p+00 X-0+00: f(x)-0-00 firf gilf X-0-00: X-0+00: 5.28/7

5.30 /5 $f(x) = (x-a)^2(x-b)^2$ $g(x) = ax^{2}(x-b)^{2}$ $g(x) = x \cdot (x-a)(x-b)$ Dem Term von g kann man entnehmen, dass X=0 doppelte Nullstelle u. X= & doppelt. No Da das Schaubild von g an Chieseu.
Stellen nut berülist, kommt nut A in Frage und g(x) = ax? (x+2)2, da x=-2. P(-112) light auf A, mit Punktprobe a bestimmen: 9(-1) = 2 & (-1)2 (-1+2)2 = 2 =0a=2=0 g(x)=2 x2(x+2)2 Ebenso für f: Dem Ferni kann man entu. doss f(x) geliert also zu. organzen mit den NullStellen. Es ist also f(x)= Fir h bleibt Schaubild und damit lu(x)=

5.62 3c) $f(x) = x^{5} + \frac{1}{8}x^{4} - \frac{1}{3}x^{3} + x$ $f'(x) = 5x^{4} + 4 \cdot \frac{1}{8}x^{3} - \cdots$ 5.62 5a) $f(x) = 3x^{-1}$ $f(x) = -3x^{-2} \Rightarrow f'(1) = -3 \cdot 1^{-2} = -3$ 6) f(x)= 1+3= x-2+3 f(x)=31x-x2=3x2-x2 $f(x) = \frac{3}{3} - 3x^{2} + \frac{1}{x^{2}} = \frac{3}{3}$ 6B) f(x) = -12 = -12x-1 1'(x)= 12x-2 Lose f(x) = 3Cesuelet: Stelle X, au der Steigung 3 ist $12x^{-2}=3$ $\frac{12}{x^2} = 3 \cdot x^2$ 12 = 3x2 1:3 4 = X2... $X_{12} = \pm \sqrt{4}$ $X_1 = 2$ 12=-2

6d H3 X3+35X3+9X-11 $f'(x) = x^{2} + 7x + 9$ t'(x) = 3 $x^{2} + 7x + 9 = 3$ $x^{2} + 7x + 6 = 0$ $x_{1/2} = -7 \pm \sqrt{9} - 4.1.6$ F3 = -7±5 Ga) c) bitte rectuen 9a) $f(x) = 5x^2 - 3x$ 3(21f(2)) f'(x) = 10x - 3 $\ell'(2) = 20 - 3 = 17$ $\ell(2) = 5 \cdot 2^2 - 3 \cdot 2 = 20 - 6 = 14$ = 0t: y = 17(x-2)+14= 17x-34+14 t:y=17x-20 70) reclinea

2020-05-25 Aufgaben

LS/ S.28

- Sestimmen Sie die Parameter a, b und c so, dass die Funktion f mit f(x) = a(x b)(x c)
 - a) die Nullstellen -1 und 3 hat und der Graph von f durch den Punkt P(0|1) geht,
 - b) nur die Nullstelle -1 hat und f(0) = 10 gilt.
- 6 Beurteilen Sie, ob es eine Zahl k gibt, sodass der Graph von f mit $f(x) = k \cdot (x 3)^2(x + 1)$ durch den Punkt P(2|6) geht und f für $x \to \pm \infty$ dasselbe Verhalten wie die Funktion g mit g(x) = $-x^3$ hat.
- 7 Bestimmen Sie zu den Vorgaben des Graphen eine Funktion möglichst niedrigen Grades.

S.30

5 Bestimmen Sie die Parameter a und b so, dass die Funktion zu einem der Graphen A, B oder C in Fig. 2 gehört.

$$f(x) = (x - a)^2(x - b)^2$$

$$g(x) = ax^{2}(x - b)^{2}$$

$$h(x) = x(x - a)(x - b)$$

Fig. 2

Ordnen Sie jeder Funktion einen der Graphen in Fig. 3 zu. Begründen Sie Ihre Entscheidung. $f(x) = x^3 - x$

$$g(x) = x^4 - 2x^2 - 1$$

$$i(x) = (x + 3)^3$$

S.31

Ordnen Sie jedem der Graphen A und B eine passende Funktion zu. Begründen Sie Ihre Entscheidung.

$$f(x) = x^5 - x^3 + x^2$$

$$g(x) = -x^5 - 2x$$

$$h(x) = x^3 - x + 1$$

$$i(x) = -0.5x^3 - x^2$$

- 12 🗵 Skizzieren Sie den Graphen von f.
- - a) $f(x) = x^2(x + 2)$
- **b)** $f(x) = x^3 4x$
- c) $f(x) = x(x^2 + 1)$
- d) $f(x) = (x^2 4)^2$

- 17 Beschreiben Sie, für welche Zahlen a, b und c
 - a) der Graph von f mit $f(x) = a \cdot x^b + c$ achsensymmetrisch zur y-Achse ist,
 - b) der Graph von f mit f(x) = (x a)(x b)(x c) punktsymmetrisch zum Ursprung ist.
- 18 Imke untersucht, wie sich der Graph der Funktion f mit $f(x) = x(x 2)^n$ verändert, wenn man für n die Zahlen 2, 3, 4 ... einsetzt (vgl. Fig. 2).
 - a) Beschreiben Sie die Gemeinsamkeiten und Unterschiede der Graphen.
 - b) Skizzieren Sie die Graphen für n = 5 und für n = 6.

S.62

3 🗵 Leiten Sie ab.

a)
$$f(x) = x^4 + x^2$$

c)
$$f(x) = x^5 + \frac{1}{8}x^4 - \frac{1}{3}x^3 + x$$

b)
$$f(x) = 7x^2 - x + 5$$

d)
$$f(x) = 4x^3 + 6x^2 + x - 9$$

○ 5 ■ Leiten Sie die Funktion f ab und bestimmen Sie f'(1).

a)
$$f(x) = 3 \cdot x^{-1}$$

b)
$$f(x) = \frac{1}{x^2} + 3$$

c)
$$f(x) = 3\sqrt{x} - x^2$$

d)
$$f(x) = x^{\frac{3}{2}} - 3x^2 + \frac{1}{x^2}$$

○ 6 🗵 An welchen Stellen hat die Funktion f die Ableitung 3?

a)
$$f(x) = -x^2 + x + 6$$

b)
$$f(x) = -\frac{12}{x}$$

c)
$$f(x) = 0.4x^5 - 29x$$

d)
$$f(x) = \frac{1}{3}x^3 + 3.5x^2 + 9x - 11$$

○ 7 ■ Bestimmen Sie die Gleichung der Tangente an den Graphen der Funktion f im Punkt B.

a)
$$f(x) = 5x^2 - 3x$$
, $B(2|f(2))$

b)
$$f(x) = \frac{3}{y}$$
, B(3|f(3))

c)
$$f(x) = -x^3 + 8x$$
, $B(1|f(1))$

d)
$$f(x) = \sqrt{x}$$
, $B(4|f(4))$

2020-05-25 Lösungen S.28

5 a)
$$f(x) = -\frac{1}{3}(x+1)(x-3)$$
 b) $f(x) = 10(x+1)(x+1)$

6 Es gibt keine solche Zahl k. Begründung: Damit der Graph von f durch P(2|6) geht, muss k = 2 sein. Das Verhalten des Graphen von f für $x \to \pm \infty$ entspricht dann dem des Graphen von $y = x^3$.

7 Individuelle Lösung, z.B.:

- a) $f(x) = x(x + 3)^2$
- b) f(x) = -(x + 1)(x 1)(x 2)
- c) $f(x) = -(x-1)^2(x+1)^2$
- d) $f(x) = x(x + 1)^2(x 1)$

S.30

5

Zu f gehört C. Es ist a = 1 und b = 3 bzw. a = 3 und b = 1. Zu g gehört A. Es ist a = 2 und b = -2. Zu h gehört B. Es ist a = -1 und b = 2 bzw. a = 2 und b = -1.

9

A ist der um -3 in x-Richtung verschobene Graph von $y = x^3$; A gehört zu i.

B ist punktsymmetrisch zum Ursprung und zeigt ein Verhalten für $x \to \pm \infty$ wie $y = x^3$; B gehört zu f.

C ist achsensymmetrisch zur y-Achse und zeigt ein Verhalten für $x \to \pm \infty$ wie $y = x^4$; C gehört zu g.

Seite 31

11

Die zu A gehörende Funktion hat für $x \to \pm \infty$ ein Verhalten wie $y = -x^3$, A ist nicht punktsymmetrisch zum Ursprung und A hat bei $x_1 = -2$ und $x_2 = 0$ Nullstellen. A gehört zu i. Die zu B gehörende Funktion hat für $x \to \pm \infty$ ein Verhalten wie $y = x^5$ und eine Nullstelle bei $x_1 = 0$. B gehört zu f.

a)

- a) Es muss a, $c \in \mathbb{R}$ gelten und b muss eine gerade natürliche
- b) Es muss a + b + c = 0 und $a \cdot b \cdot c = 0$ gelten. Mindestens eine der Zahlen a, b oder c muss gleich null sein. Wenn zum Beispiel c = 0 gilt, muss a = -b gelten.

18

a) Alle Graphen schneiden die x-Achse im Punkt (0|0). Wenn n gerade ist, berühren alle Graphen die x-Achse im Punkt (2|0).

Wenn n ungerade ist, schneiden alle Graphen die x-Achse im Punkt (2|0).

Wenn n gerade ist, verhalten sich alle Graphen für $x \to \pm \infty$ wie der Graph von $y = x^3$ aus.

Wenn n ungerade ist, verhalten sich alle Graphen für $x \to \pm \infty$ wie der Graph von $y = x^4$ aus.

b)

S. 62

a)
$$f'(x) = 4x^3 + 2x$$

b)
$$f'(x) = 14x - 1$$

c)
$$f'(x) = 5x^4 + \frac{1}{2}x^3 - x^2 + 1$$
 d) $f'(x) = 12x^2 + 12x + 1$

d)
$$f'(x) = 12x^2 + 12x + 12x$$

a)
$$f'(x) = -3 \cdot x^{-2}$$
; $f'(1) = -3$

a)
$$f'(x) = -3 \cdot x^{-2}$$
; $f'(1) = -3$ b) $f'(x) = -\frac{2}{x^3}$; $f'(1) = -2$

c)
$$f'(x) = \frac{3}{2\sqrt{x}} - 2x$$
; $f'(1) = -\frac{1}{2}$ d) $f'(x) = \frac{3}{2}\sqrt{x} - 6x - \frac{2}{x^3}$;

d)
$$f'(x) = \frac{3}{2}\sqrt{x} - 6x - \frac{2}{x^3}$$
;
 $f'(1) = -6.5$

a)
$$f'(x) = -2x + 1 = 3 \Leftrightarrow x = -1$$

b)
$$f'(x) = \frac{12}{x^2} = 3 \iff x^2 = 4 \iff x_{1,2} = \pm 2$$

c)
$$f'(x) = 2x^4 - 29 = 3 \Leftrightarrow x^4 = 16 \Leftrightarrow x_{1,2} = \pm 2$$

d)
$$f'(x) = x^2 + 7x + 9 = 3 \Leftrightarrow x_1 = -1, x_2 = -6$$

a)
$$f'(x) = 10x - 3$$
, $f(2) = 14$, $f'(2) = 17$, $f'(3) = 17$, $f'(3) = 17$

b)
$$f(3) = 1$$
, $f'(3) = -\frac{1}{3}$, $t: y = -\frac{1}{3}(x - 3) + 1 = -\frac{1}{3}x + 2$

c)
$$f'(x) = -3x^2 + 8$$
, $f(1) = 7$, $f'(1) = 5$, $f'(1) = 5$, $f'(1) = 5$

d)
$$f'(x) = \frac{1}{2\sqrt{x}}$$
, $f(4) = 2$, $f'(4) = \frac{1}{4}$, $f'(4) = \frac{1}{4}$ $f'(4) = \frac{1}{4}$