

Brain Imaging Data Organisation

Dace Apšvalka [Datza]

COGNESTIC, 2025

Complexity of Brain Imaging Data

- A single study often involves:
 - Multiple imaging protocols
 - Many participants, sometimes across sessions
- Produces numerous files in diverse formats:
 - From simple text files (logs, metadata)
 - To large multidimensional images
- Datasets become large, diverse, and complex

Complexity of Brain Imaging Data

scans/


```
| Subject Trial | Enert Typ Code | Inial code Time | Invasion | In
```

```
subj01/
     — s01_t1w.nii.gz
      s01 bold1 run1.nii.gz
     — s01_bold1_run2.nii.gz
     — s01 fieldmap.nii.gz
   subj02/
       s02_t1w.nii.gz
       s02_bold1_run1.nii.gz
       s02_bold1_run2.nii.gz
       s02 fieldmap.nii.gz
   subj100/
    ├─ s100_t1w.nii.gz
logs/
  — subj01/
       events taskA run1.tsv
    events_taskA_run2.tsv
   subj02/
     — events taskA run1.tsv
       events taskA run2.tsv
   subj100/
protocols/
```

and even more files (more modalities, sessions, tasks)

Complexity of Brain Imaging Data


```
| subj01/
| subj01/
| s01_t1w.nii.gz
| s01_bold1_run1.nii.gz
| s01_bold1_run2.nii.gz
| s01_fieldmap.nii.gz
| subj02/
| s02_t1w.nii.gz
| s02_bold1_run1.nii.gz
| s02_bold1_run2.nii.gz
| s02_fieldmap.nii.gz
```

Many possible ways to name and refiles organise the data tasks)

```
| Malest | Post | Post
```

Inconsistent Data Organisation

- Difficult for others (and you!) to understand data and track changes
- Scripts must be adapted, can't be easily reused
- Huge effort to automate workflows, no way to automatically validate datasets
- Increased risk of errors (wrong files, outdated versions)
- Time wasted searching and reorganising
- Harder to reproduce results and collaborate

Inconsistent Data Organisation

 Difficult for others (and you!) to understand data and track changes

Wouldn't it be much easier if everybody organised the files in the same way?

- Time wasted searching and reorganising
- Harder to reproduce results and collaborate

Brain Imaging Data Structure (BIDS)

- A standard for organising data and metadata across various neuroscience modalities (MRI, MEG, EEG, PET)
- Enables easier sharing, reuse, and application of automated pipelines and quality assurance protocols

Brain Imaging Data Structure (BIDS)

- A standard for organising data and metadata across various neuroscience modalities (MRI, MEG, EEG, PET)
- Enables easier sharing, reuse, and application of automated pipelines and quality assurance protocols

PLOS | COMPUTATIONAL BIOLOGY

SUBJECT CATEGORIES » Data publication and » Research data

OPEN The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments

Daniel A. Handwerker¹⁴, Michael Hanke^{15,16}, David Keator¹⁷, Xiangrui Li¹⁸, Zachary Michael¹⁹, Ariel Rokem²⁵, Gunnar Schaefer^{1,26}, Vanessa Sochat²⁷, William Triplett¹, Jessica A. Turner^{3,28}, Published: 21 June 2016

Krzysztof J. Gorgolewski¹, Tibor Auer², Vince D. Calhoun^{3,4}, R. Cameron Craddock^{5,6}, Samir Das⁷, Eugene P. Duff⁸, Guillaume Flandin⁹, Satrajit S. Ghosh^{10,11}, Tristan Glatard^{7,12}, Yaroslav O. Halchenko¹³, Camille Maumet²⁰, B. Nolan Nichols^{21,22}, Thomas E. Nichols^{20,23}, John Pellman⁶, Jean-Baptiste Poline²⁴ Gaël Varoquaux29 & Russell A. Poldrack1

RESEARCH ARTICLE

BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods

Krzysztof J. Gorgolewski¹*, Fidel Alfaro-Almagro², Tibor Auer³, Pierre Bellec^{4,5}, Mihai Capotă⁶, M. Mallar Chakravarty^{7,8}, Nathan W. Churchill⁹, Alexander Li Cohen¹⁰, R. Cameron Craddock^{11,12}, Gabriel A. Devenyi^{7,8}, Anders Eklund^{13,14,15}, Oscar Esteban¹, Guillaume Flandin¹⁶, Satrajit S. Ghosh^{17,18}, J. Swaroop Guntupalli¹⁹, Mark Jenkinson², Anisha Keshavan²⁰, Gregory Kiar^{21,22}, Franziskus Liem²³, Pradeep Reddy Raamana^{24,25}, David Raffelt²⁶, Christopher J. Steele^{7,8}, Pierre-Olivier Quirion¹⁵, Robert E. Smith²⁶, Stephen C. Strother^{24,25}, Gaël Varoquaux²⁷, Yida Wang⁶, Tal Yarkoni²⁸, Russell A. Poldrack¹

```
sub-15
L- ses-mri
        anat
            sub-15 ses-mri T1w.json
           – sub-15 ses-mri T1w.nii.gz
        fmap
            sub-15 ses-mri acq-func magnitude1.json

    sub-15 ses-mri acq-func magnitude1.nii.gz

    sub-15 ses-mri acq-func magnitude2.json

            sub-15 ses-mri acq-func magnitude2.nii.gz

    sub-15 ses-mri acq-func phasediff.json

    sub-15 ses-mri acq-func phasediff.nii.gz

       - func

    sub-15 ses-mri task-facerecognition run-01 bold.json

    sub-15 ses-mri task-facerecognition run-01 bold.nii.gz

            sub-15 ses-mri task-facerecognition run-01 events.tsv
            sub-15 ses-mri task-facerecognition run-02 bold.json
            sub-15 ses-mri task-facerecognition run-02 bold.nii.gz
            sub-15 ses-mri task-facerecognition run-02 events.tsv

    sub-15 ses-mri task-facerecognition run-03 bold.json

    sub-15 ses-mri task-facerecognition run-03 bold.nii.gz

            sub-15 ses-mri task-facerecognition run-03 events.tsv

    sub-15 ses-mri task-facerecognition run-04 bold.json

    sub-15 ses-mri task-facerecognition run-04 bold.nii.gz

            sub-15 ses-mri task-facerecognition run-04 events.tsv
            sub-15 ses-mri task-facerecognition run-05 bold.json

    sub-15 ses-mri task-facerecognition run-05 bold.nii.gz

            sub-15 ses-mri task-facerecognition run-05 events.tsv
            sub-15 ses-mri task-facerecognition run-06 bold.json
            sub-15 ses-mri task-facerecognition run-06 bold.nii.gz
            sub-15 ses-mri task-facerecognition run-06 events.tsv

    sub-15 ses-mri task-facerecognition_run-07_bold.json

    sub-15 ses-mri task-facerecognition run-07 bold.nii.gz

            sub-15 ses-mri task-facerecognition run-07 events.tsv

    sub-15 ses-mri task-facerecognition run-08 bold.json

    sub-15 ses-mri task-facerecognition run-08 bold.nii.gz

            sub-15 ses-mri task-facerecognition run-08 events.tsv

    sub-15 ses-mri task-facerecognition run-09 bold.json

    sub-15 ses-mri task-facerecognition run-09 bold.nii.gz

            sub-15 ses-mri task-facerecognition run-09 events.tsv
        sub-15 ses-mri scans.tsv
```


Today's plan

MRI Data Organisation

MRI Data Manipulation

```
([[[ 0, 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0], [ 0, 0, 0, 0], ..., 0, 0, 0], [ 0, 0, 0, 0], ..., 0, 0, 0], [ 0, 0, 0, 0], ..., 0, 0, 0], [ 0, 0, 0, 0], ..., 0, 0, 0], [ 0, 0, 0, 0], ..., 0, 0, 0], [ 0, 0, 0, 0], ..., 0, 0, 0], [ 0, 28, 21, ..., 25, 25, 0], ..., [ 0, 26, 24, ..., 40, 20, 0], [ 0, 44, 28, ..., 30, 21, 0], [ 0, 44, 28, ..., 30, 21, 0], [ 0, 0, 0, 0, 0, ..., 0, 0, 0], [ 0, 28, 26, ..., 31, 29, 0], [ 0, 28, 26, ..., 31, 29, 0], [ 0, 32, 30, ..., 22, 21, 0], ..., [ 0, 27, 24, ..., 31, 30, 0], [ 0, 27, 24, ..., 31, 30, 0], [ 0, 30, 30, 23, ..., 37, 22, 0], [ 0, 0, 0, 0, ..., 0, 0, 0]],
```

. . . ,