VI

Сучасний функціональний аналіз

Частина VI: Зміст

27	7 Лінійні оператори і функціонали	147
	27.1 Лінійні оператори, обмеженість і неперервність	147
	27.2 Лінійні функціонали і їхні ядра	148
	27.3 Скінченновимірні простори і координатні функціонали	148
	27.4 Література	149
	21.4 viiicparypa	143
28	В Напівнорми і топології	151
	28.1 Локальна опуклість, опуклі комбінація і оболонка	151
	28.2 Напівнорми, одиничні кулі і функіонал Мінковського	151
	28.3 Лінійно-опукла топологія породжена сім'єю напівнорм	152
	28.4 Література	153
29	9 Слабка топологія	155
	29.1 Слабка топологія: означення і властивості	155
	29.2 Леми про перетин ядер і обмеженість на підпросторі	155
	29.3 Неперервність функціоналів у слабкій топології	156
	29.4 Література	157
30) Двоїстість	159
30	30.1 Двоїстість, дуальні пари і слабка топологія	159
	30.2 Поляра і аннулятор множини, їхні власивості	160
	30.3 Література	161
	зо.з литература	101
31	. Біполяра	163
	31.1 Абсолютна опуклість і біполяра	163
	31.2 Література	164
32	2 Спряжений оператор	165
32	32.1 Алгебраїчно спряжний і спряжений оператори	165
	32.2 Література	166
	92.2 γπτορατγρα	100

27 Лінійні оператори і функціонали

Нехай X і E — топологічні векторні простори.

§27.1 Лінійні оператори, обмеженість і неперервність

Теорема 27.1

Лінійний оператор $T:X\to E$ є неперервним тоді і лише тоді, коли він є неперервним в точці x=0.

Доведення. **Необхідність.** Неперервний оператор є неперервним у будь-якій точці простору, зокрема у нулі.

Достатність. Припустимо, що оператор T є неперервним в нулі. Доведемо, що він є неперервним у довільній точці $x_0 \in X$. Нехай V — довільний окіл точки Tx_0 у просторі E. Тоді $V - Tx_0$ — окіл нуля в E. За умовою теореми, $T^{-1}(V - Tx_0)$ — окіл нуля в X. Оскільки оператор T є лінійним, маємо

$$T^{-1}(V) = T^{-1}(V - Tx_0) + x_0,$$

отже $T^{-1}(V)$ — окіл точки x_0 .

Означення 27.1. Лінійний оператор $T: X \to E$ називається **обмеженим**, якщо образ будь-якої обмеженої множини під дією T в X є обмеженою множиною в E.

Теорема 27.2

Кожний неперервний лінійний оператор $T: X \to E$ є обмеженим.

Доведения. Нехай A — обмежена множина в X. Доведемо обмеженість множини T(A). Нехай V — довільний окіл нуля в E і U — такий окіл нуля в X, що $T(U)\subset V$. Оскільки A — обмежена множина, то існує таке число N>0, що $\forall t>N$ $A\subset tU$. Тоді

$$\forall t > N \quad T(A) \subset tT(U) \subset tV.$$

Теорема 27.3

Нехай оператор $T:X\to E$ переводить деякий окіл U простору X в обмежену множину. Тоді оператор T є неперервним.

Доведення. Нехай T(U) — обмежена множина. Для довільного околу V нуля в E існує число t>0, що $T(U)\subset tU$. Тоді $t^{-1}U\subset T^{-1}(V)$, тобто $T^{-1}(V)$ є околом нуля у просторі X.

§27.2 Лінійні функціонали і їхні ядра

Теорема 27.4

Для ненульового лінійного функціонала f, заданого на топологічному просторі X, наступні умови є еквівалентними.

- 1. Функціонал f є неперервним.
- 2. Ядро функціонала $f \in$ замкненим.
- 3. Ядро функціонала f не є щільним в X.
- 4. Існує окіл нуля U: f(U) обмежена множина.

Доведення. $1 \implies 2$. ker $f = f^{-1}(0)$. Оскільки $\{0\}$ — замкнена множина, а f — неперервний функціонал, то, оскільки прообраз замкненої множини під дією неперервного функціонала є замкненим, ker f є замкненою множиною.

- $2 \implies 3$. (Від супротивного.) Якщо ядро функціонала є замкненим і щільним в X, то ker f = X, тобто $f \equiv 0$, але за умовою теореми f ненульовий функціонал.
- $3 \implies 4$. Нехай ядро не є щільним. Тоді існує точка $x \in X$ і врівноважений окіл нуля U, такі що $(U+x) \cap \ker f = \emptyset$. Це значить, функціонал f в жодній точці $y \in U$ не може набувати значення -f(x). Отже, f(U) врівноважена множина чисел, що відрізняється від числової прямої (точніше, відрізок, симетричний відносно нуля).

$$4 \implies 1$$
. Випливає з теорем. 27.3

Позначимо через X^* множину усіх неперервних лінійних функціоналів на X.

§27.3 Скінченновимірні простори і координатні функціонали

Означення 27.2. Нехай $\{x_k\}_{k=1}^{\infty}$ — базис банахового простору X і $x \in X$. Коефіцієнти розкладу $f_n(x)$ елемента x по базису $\{f_k\}_{k=1}^{\infty}$ називаються координатними функціоналами, що визначені на просторі X: $x = \sum_{k=1}^{\infty} f_n(x) x_k$.

Теорема 27.5

Нехай X — хаусдорфовий ТВП із $\dim X = n$. Тоді:

- 1. Будь-який лінійний функціонал на X є неперервним.
- 2. Для будь-якого топологічного векторного простору E будь-який лінійний оператор $T:X\to E$ є неперервним.
- 3. Простір X є ізоморфним n-вимірному гільбертовому простору ℓ_2^n .
- 4. Простір $X \in \text{повним}$.

Доведення. $1 \implies 2$. Обираючи в X базис $\{x_k\}_{k=1}^n$ з координатними функціоналами $\{f_k\}_{k=1}^n$, оператор T можна подати у вигляді

$$T(x) = T\left(\sum_{k=1}^{n} f_k(x)x_k\right) = \sum_{k=1}^{n} f_k(x)Tx_k.$$

Отже, обчислення T(x) зводиться до обчислення скалярів $f_k(x)$, де f — неперервний функціонал, множенню їх на фіксовані вектори Tx_k і додаванню добутків. В результаті отримуємо неперервний оператор T.

- $2 \Longrightarrow 3$. Оскільки обидва простори X і ℓ_2^n мають однакову розмірність n, то існує лінійна бієкція $T: X \to \ell_2^n$. За умовою оператори T і T^{-1} є неперервними, отже, існує ізоморфізм $T: X \to \ell_2^n$.
 - $3 \implies 4$. Випливає з повноти простору ℓ_2^n .
- $4 \implies 1$. Скористаємось математичною індукцією по n. При n=0 простір X містить лише нульовий елемент, тому твердження є тривіальним. Доведемо тепер крок індукції: нехай $\dim X = n+1$ і f ненульовий функціонал на X. Тоді $\dim \ker f = n$. За імплікаціями $1 \implies 2 \implies 3 \implies 4$ отримуємо, що $\ker f$ повний простір. Отже, $\ker f$ є замкнений в X і за теорем. 27.4 функціонал f є неперервним.

§27.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 507–510).

28 Напівнорми і топології

 ${
m Hexa}$ й X — топологічний векторний простір.

§28.1 Локальна опуклість, опуклі комбінація і оболонка

Означення 28.1. ТВП X називається **локально опуклим**, якщо для будь-якого околу нуля U існує опуклий окіл нуля V, що міститься в U.

Зауваження 28.1 — Інакше кажучи, топологічний векторний простір X є локально опуклим, якщо система околів нуля \mathfrak{R}_0 містить базу, що складається з опуклих множин.

Означення 28.2. Нехай $\{x_k\}_{k=1}^n$ — довільний скінчений набір елементів лінійного простору X. Елемент вигляду $x = \sum_{k=1}^n \lambda_k x_k$ називається опуклою комбінацією елементів x_k , якщо $\lambda_k > 0$, $\forall k = 1, \ldots, n$ і $\sum_{k=1}^n \lambda_k = 1$.

Означення 28.3. Нехай A — довільна підмножина лінійного простору X. Множина усіх опуклих комбінацій елементів з A називається **опуклою оболонкою** множини A і позначається як conv A.

Означення 28.4. Нагадаємо, що підмножина $A \subset X$ називається **урівноваженою**, якщо для будь-якого скаляра λ із $|\lambda| \leq 1$ виконане включення $\lambda A \subset A$.

Теорема 28.1

Кожний опуклий окіл нуля U містить опуклий врівноважений відкритий окіл нуля V.

Доведення. За теорем. 25.2 у кожному відкритому околі нуля U міститься відкритий врівноважений окіл нуля V.

- 1. Покажемо, що conv $V \subset U$. Опуклість цієї множини є очевидною (за означенням опуклої оболонки).
- 2. Покажемо, що conv $V \subset \mathfrak{R}_0$. $V \in \mathfrak{R}_0$, $V \subset \operatorname{conv} V \implies \operatorname{conv} V \in \mathfrak{R}_0$.
- 3. Покажемо, що conv V є врівноваженим околом. Нехай $|\lambda| \leq 1$. V врівноважений окіл нуля $\implies \lambda V \subset V \implies \lambda \operatorname{conv} V = \operatorname{conv}(\lambda V) \subset \operatorname{conv} V$
- 4. Покажемо, що conv V є відкритою множиною. $V \in \tau$, операції множення на скаляр і суми множин замкнені відносно відкритих множин $\Longrightarrow \sum_{k=1}^n \lambda_k V \in \tau$, де $n \in \mathbb{N}$, $\lambda_k > 0$ і $\sum_{k=1}^n \lambda_k = 1 \Longrightarrow \operatorname{conv} V = \bigcup_{n=1}^\infty \sum_{k=1}^n \lambda_k V \in \tau$.

§28.2 Напівнорми, одиничні кулі і функіонал Мінковського

Означення 28.5. Функція $p: X \to \mathbb{R}$ називається **напівнормою**, якщо

- 1. $p(x) \ge 0, \forall x \in X$;
- 2. $p(\lambda x) = |\lambda| p(x), \forall x \in X, \lambda \in \mathbb{R};$
- 3. $p(x+y) \le p(x) + p(y), \forall x, y \in X$.

Зауваження 28.2 — Напівнорма відрізняється від норми тим, що вона напівнорма маже дорівнювати нулю на деяких ненульових елементах $x \in X$.

Означення 28.6. Одиничною кулею напівнорми p називається множина $B_p = \{x \in X : p(x) < 1\}.$

Зауваження 28.3 — Множина B_p є опуклою врівноваженою множиною.

Означення 28.7. Функціоналом Мінковського опуклої поглинаючої множини в лінійному просторі X називається дійсна функція, задана на X формулою

$$\varphi_A(x) = \inf\{t > 0 : t^{-1}x \in A\}.$$

Зауваження 28.4 — Функціонал φ_A пов'язаний з множиною A такими співвідношеннями:

- 1. $x \in A \implies \varphi_A(x) \le 1$;
- $2. \ \varphi_A(x) < 1 \implies x \in A.$

Зауваження 28.5 — Якщо A — опукла поглинаюча множина в лінійному просторі X, то φ_A — опуклий функціонал, що набуває невід'ємні значення.

Теорема 28.2

Напівнорма p на топологічному векторному просторі X є неперервною тоді і лише тоді, коли B_p — окіл нуля.

Доведення. **Необхідність.** $B_p = p^{-1}(-1,1)$ — прообраз відкритої множини. Якщо p — неперервна функція, то прообраз відкритої множини є відкритим.

Достатність. Нехай B_p — окіл нуля. Доведено неперервність напівнорми. Для будь-якого $x \in X$ і будь-якого $\varepsilon > 0$ треба знайти такий окіл U точки x, що

$$p(U) \subset (p9x) - \varepsilon, p(x) + \varepsilon$$
.

Таким околом є $U = x + \varepsilon B_p$. Дійсно,

$$\forall y \in U \quad y = x + \varepsilon z, \quad p(z) < 1.$$

Отже, за нерівністю трикутника

$$p(x) - \varepsilon < p(y) < p(x) + \varepsilon$$
.

§28.3 Лінійно-опукла топологія породжена сім'єю напівнорм

Означення 28.8. Нехай G — сім'я напівнорм на лінійному просторі X. Позначимо через \mathfrak{D}_G систему усіх скінчених перетинів множин вигляду rB_p , де $p \in G$ і r > 0.

Лінійно-опуклою топологією, породженою сім'єю напівнорм G, називається топологія τ_G на X, у якій базою околів точки $x \in X$ є сім'я множин вигляду x + U, де $U \in \mathfrak{D}_G$.

Зауваження 28.6 — Тобто, \mathfrak{D}_G є базою околів нуля топології τ_G .

Означення 28.9. Сім'я напівнорм G називається **невиродженою**, якщо для будьякого $x \in X \setminus \{0\}$ існує $p \in G$ з $p(x) \neq 0$.

Теорема 28.3

Нехай $G-\mathrm{cim}$ 'я напівнорм на лінійному просторі X. Тоді мають місце такі твердження:

- 1. топологія τ_G , породжена сім'єю G, узгоджується з лінійною структурою і є локально опуклою;
- 2. топологія τ_G є віддільною тоді і лише тоді, коли сім'я напівнорм G є невиродженою;
- 3. топологічний векторний простір X є локально опуклим тоді і лише тоді, коли його топологія породжується деякою сім'єю напівнорм.

Теорема 28.4

Нехай X — топологічний векторний простір, а f — лінійний функціонал на X. Для неперервності функціонала f необхідно і достатньо, щоб існувала така неперервна напівнорма p на X, що $|f(x)| \leq p(x) \ \forall x \in X$.

Доведення. **Необхідність.** Нехай f — неперервний. Тоді шукана напівнорма задається формулою p(x) = |f(x)|.

Достатність. Нехай $|f(x)| \le p(x) \ \forall x \in X \ i \ p$ — неперервна напівнорма. Тоді функціонал f є обмеженим в околі нуля B_p .

Теорема 28.5 (теорема Хана-Банаха в локально опуклих просторах)

Нехай f — лінійний непепервний функціонал, заданий на підпросторі Y локально опуклого простору X. Тоді функціонал f можна продовжити на весь простір X зі збереженням його лінійності і неперервності.

§28.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 512–515).

29 Слабка топологія

§29.1 Слабка топологія: означення і властивості

Означення 29.1. Нехай X — лінійний простір, X' — алгебраїчно спряжений до нього простір (тобто простір усіх лінійних функціоналів, заданих на X), $E \subset X'$ — деяка підмножина.

Слабкою топологією на X, породженою множиною функціоналів E, називається найслабкіша топологія, в якій функціонали з E є неперервними.

Зауваження 29.1 — Ця топологія є частковим випадком топології, породженою сім'єю відображень, тому для неї використовується те ж позначення $\sigma(X, E)$.

Для будь-якого скінченого набору функціоналів $G=(g_1,g_2,\ldots,g_n)$ і будь-якого $\varepsilon>0$ введемо позначення

$$U_{G,\varepsilon} = \bigcap_{g \in G} \{x \in X : |g(x)| < \varepsilon\} = \{x \in X : \max_{g \in G} |g(x)| < \varepsilon\}.$$

Сім'я множин вигляду $U_{G,\varepsilon}$, де $G=(g_1,g_2,\ldots,g_n)\subset E$ і $\varepsilon>0$, утворює базу околів нуля топології $\sigma(X,E)$. Базу околів будь-якого елемента $x_0\in X$ утворюють множини вигляду

$$\bigcap_{g \in G} \{ x \in X : |g(x - x_0)| < \varepsilon \} = x_0 + U_{G,\varepsilon}.$$

Звідси випливає, що топологія $\sigma(X, E)$ — це локально-опукла топологія, що породжена сім'єю напівнорм $p_G(x) = \max_{g \in G} |g(x)|$, де G пробігає усі скінчені підмножини множини E. Для того щоб ця топологія була віддільною, необхідно і достатньо, щоб сім'я функціоналів E розділяла точки простору X.

Як зазначалося в попередніх лекціях, фільтр \mathfrak{F} на X збігається в топології $\sigma(X,E)$ до елемента x тоді і лише тоді, коли $\lim_{\mathfrak{F}} f = f(x)$ для всіх $f \in E$. Зокрема, цей критерій збіжності є слушним і для послідовностей: $x_n \to x$ в топології $\sigma(X,E)$, якщо $f(x_n) \to f(x)$ для всіх $f \in E$.

§29.2 Леми про перетин ядер і обмеженість на підпросторі

Лема 29.1

Нехай $f,\{f_k\}_{k=1}^n$ — лінійні функціонали на X і $\ker f\supset \bigcap_{k=1}^n\ker f_k$. Тоді $f\in \lim(f_1,f_2,\ldots,f_n)$.

Доведення. Застосуємо індукцію по n, поклавши як базу n=1.

Якщо $f_1 = 0$, то $\ker f \supset \ker f_1 = X$, тобто f = 0.

Якщо $f_1 \neq 0$, то $Y = \ker f_1$ — це гіперплощина в X. Отже, існує вектор $e \in X \setminus Y$ такий, що $\lim(e,Y) = X$. Позначимо a = f(e) і $b = f_1(e)$. Функціонал $f - ab^{-1}f_1$

дорівнює нулю як на Y, так і точці e. Отже, функціонал $f - ab^{-1}f_1$ дорівнює нулю на всьому просторі X = lin(e, Y), тобто $f \in \text{lin}(f_1)$.

Індукційний перехід $n \to n+1$. Розглянемо підпростір $Y = \bigcap_{k=1}^n \ker f_k$. Умова $\ker f \supset \bigcap_{k=1}^{n+1} \ker f_k$ означає, що ядро звуження функціонала f на Y містить ядро звуження функціонала f_{n+1} на Y. Отже (випадок n=1), існує такий скаляр α , що $f - \alpha f_{n+1}$ дорівнює нулю на всьому $Y = \bigcap_{k=1}^n \ker f_k$. Отже,

$$\ker(f - \alpha f_{n+1}) \supset Y = \bigcap_{k=1}^{n} \ker f_k.$$

За припущенням індукції, $f - \alpha f_{n+1} \in \lim(f_1, \dots, f_n)$, тобто $f \in \lim(f_1, \dots, f_{n+1})$.

Лема 29.2

Нехай Y — підпростір лінійного простору $X, f \in X'$ і існує таке a > 0, що $|f(y)| \le a$ на всьому підпросторі Y. Тоді f(y) = 0 для всіх $y \in Y$.

Доведення. Нехай існує $y_0 \in Y$ такий що $f(y_0) \neq 0$.

Тоді на елементі $y = 2af(y_0)^{-1}y_0 \in Y$ маємо |f(y)| = 2a > a.

§29.3 Неперервність функціоналів у слабкій топології

Теорема 29.1

Функціонал $f \in X'$ є неперервним в топології $\sigma(X, E)$, тоді і лише тоді, коли $f \in \text{lin}(E)$.

Зауваження 29.2 — Зокрема, якщо $E\subset X'$ — лінійний підпростір, множина $(X,\sigma(X,E))^*$ усіх функціоналів, неперервних в топології $\sigma(X,E)$ на X, збігається з E.

Доведення. **Необхідність.** За означенням топології $\sigma(X, E)$, усі елементи множини E є функціоналами, неперервними в топології $\sigma(X, E)$. Отже, неперервними будуть і їх лінійні комбінації.

Достатність. Нехай функціонал $f \in X'$ є неперервним в $\sigma(X, E)$. Тоді існує скінчена множина функціоналів $G = \{g_1, g_2, \dots, g_n\} \subset E$ і таке $\varepsilon > 0$, що в околі

$$U_{G,\varepsilon} = \{x \in X : \max_{g \in G} |g(x)| < \varepsilon\}.$$

усі значення функціонала f є обмеженими за модулем деяким числом a>0. Цим же число будуть обмежені значення функціонала на підпросторі

$$Y = \bigcap_{k=1}^{n} \ker f_k \subset U_{G,\varepsilon}.$$

За лемм. 29.2 функціонал f обертається на нуль на просторі Y, що за лемм. 29.1 значить, що $f \in \text{lin}(g_1, g_2, \dots, g_n) \subset \text{lin}(E)$.

29 Слабка топологія 157

§29.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — X.: XHУ им. В. Н. Каразина, 2006. (стр. 516–518).

30 Двоїстість

§30.1 Двоїстість, дуальні пари і слабка топологія

Означення 30.1. Нехай X, Y — лінійні простори. Відображення, що ставить кожній парі елементів $(x, y) \in X \times Y$ комплексне число (x, y) називається **двоїстістю**, якщо

1. $\langle x, y \rangle$ — білінійна форма, тобто

$$\langle a_1 x_1 + a_2 x_2, y \rangle = a_1 \langle x_1, y \rangle + a_2 \langle x_2, y \rangle,$$

$$\langle x, a_1 y_1 + a_2 y_2 \rangle = a_1 \langle x, y_1 \rangle + a_2 \langle x, y_2 \rangle.$$

2. $\langle x, y \rangle$ задовольняє умови невиродженості:

$$\forall x \in X \setminus \{0\} \quad \exists y \in Y : \quad \langle x, y \rangle \neq 0,$$

 $\forall y \in Y \setminus \{0\} \quad \exists x \in X : \quad \langle x, y \rangle \neq 0.$

Означення 30.2. Пара просторів X, Y із заданою на них двоїстістю називаються **дуальною парою**, або *парою просторів* у *двоїстюсті*.

Означення 30.3. Нехай X, Y — пара просторів у двоїстості. По кожному $y \in Y$ визначимо функціонал на X за правилом $y(x) = \langle x, y \rangle$, тобто $Y \subset X'$.

Слабкою топологією на X називатимемо топологію $\sigma(X,Y)$, тобто базу околів нуля топології $\sigma(X,Y)$ задає сім'я множин $\{x \in X : \max_{y \in G} |\langle x,y \rangle| < \varepsilon\}$, де $\varepsilon > 0$, а G пробігає всі скінчені підмножини простору Y.

Зауваження 30.1 — Друга аксіома дуальної пари гарантує віддільність слабкої топології. За теоремою 12.1 $(X, \sigma(X, E))^* = Y$, тобто будь-яку дуальну пару можна вважати парою вигляду (X, X^*) .

Зауваження 30.2 — Особливістю загального визначення дуальної пари є рівноправність просторів X і Y. Елементи x також можна вважати функціоналами на Y і розглядати слабку топологію $\sigma(Y,X)$ на просторі Y.

Зауваження 30.3 — Топологія $\sigma(X,Y)$ — це найслабкіша топологія, в якій усі функціонали $y(x) = \langle x,y \rangle$ є неперервними. Зокрема, якщо X — локально опуклий простір, то $\sigma(X,X^\star)$ слабкіше вихідної топології (звідси і назва).

Теорема 30.1

Кожна опукла замкнена множина локально опуклого простору X є замкненою і в слабкій топології $\sigma(X, X^*)$. Зокрема, кожний замкнений підпростір локально опуклого підпростору X є $\sigma(X, X^*)$ -замкненим.

Доведення. Без доведення.

§30.2 Поляра і аннулятор множини, їхні власивості

Означення 30.4. Нехай X,Y — дуальна пара. Полярою множини $A \subset X$ називаеться множина $A^0 \subset Y$, що визначається за правилом: $y \in A^0$ якщо $|\langle x,y \rangle| \leq 1$ для всіх $x \in A$. Аналогічно визначається поляра $A^0 \subset X$ множини $A \subset Y$.

Означення 30.5. Аннулятором множини $A \subset X$ називається множина $A^{\perp} \subset Y$, що складається з тих $y \in Y$, якщо $\langle x,y \rangle = 0$ для всіх $x \in A$. Очевидно, $A^{\perp} \subset A^0$ і згідно леми 12.2, якщо A — лінійний підпростір, то $A^{\perp} \subset A$. Крім того, $A^{\perp} = (\ln A)^{\perp}$.

Приклад 30.1

Розглянемо пару (X, X^*) , де X — банахів простір. Тоді $(B_X)^0 = B_{X^*}^0$. Дійсно,

$$f \in \overline{B}_{X^{\star}} \iff \|f\| \le 1 \iff \sup_{x \in B_X} |f(x)| \le 1 \iff f \in (B_X)^0.$$

Теорема 30.2

Поляри мають такі властивості:

- 1. якщо $A \subset B$, то $A^0 \supset B^0$;
- 2. $\{0_X\}^0 = Y$, $\{0_Y\}^0 = X$, де 0_X і 0_Y нульові елементи X і Y відповідно;
- 3. $(\lambda A)^0 = \lambda^{-1} A^0$ при $\lambda \neq 0$;
- 4. $(\bigcup_{A\in\mathfrak{C}}A)^0=\bigcap_{A\in\mathfrak{C}}A^0$ для будь-якої сім'ї \mathfrak{C} підмножин простору X.
- 5. $\{x\}^0$ опуклий, врівноважений $\sigma(X,Y)$ -замкнений окіл нуля;
- 6. A^0 опукла врівноважена $\sigma(X,Y)$ -замкнена множина;
- 7. множини вигляду A^0 , де A пробігає усі скінчені підмножини простору X, утворюють базу околів нуля в топології $\sigma(X,Y)$.

Доведення. Властивості 1-4 є очевидними. Опуклість і врівноваженість множини

$$\{x\}^0 = \{y \in Y : |\langle x, y \rangle| \le 1\} = \{y \in Y : |x(y)| \le 1\} = x^{-1}\{\lambda \in \mathbb{C} : |\lambda| \le 1\}$$

випливають з лінійності x як функціонала на Y. Оскільки $C_1 = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$ — це замкнений окіл нуля в \mathbb{C} , а функціонал x є неперервним в топології $\sigma(X,Y)$, то ця формула означає, що $\{x\}^0$ — це $\sigma(X,Y)$ -замкнений окіл нуля. Із цього випливає властивість 5).

Властивість 6) випливає з 5) внаслідок властивості 4): $A^0 = \bigcap_{x \in A} \{x\}^0$, а операція перетину не порушує опуклості, замкненості і врівноваженості.

Для доведення властивості 7) зауважимо таке: якщо підмножина $A \subset X$ є скінченою, то $A^0 = \bigcap_{x \in A} \{x\}^0$ — це скінчений перетин $\sigma(X,Y)$ -околів. Отже, поляра скінченої множини — це слабкий окіл. Далі, за означенням, будь-який $\sigma(X,Y)$ -окіл містить множину вигляду

$$U_{G,\varepsilon} = \{ y \in Y : \max_{g \in G} |g(x)| < \varepsilon \}, \quad G = \{ g_1, \dots, g_n \} \subset X, \quad \varepsilon > 0.$$

Для $A=(2\varepsilon)^{-1}G$ маємо $U_{G,\varepsilon}\supset A$. Отже, будь-який $\sigma(X,Y)$ -окіл містить множину вигляду A^0 , де $A\subset X$ є скінченою множиною.

30 Двоїстість 161

Наслідок 30.1

Аннулятор довільної $A\subset X$ є $\sigma(X,Y)$ -замкненим лінійним підпростором.

Доведення. Лінійність перевіряється безпосереднью, а $\sigma(X,Y)$ -замкненість випливає з властивості 6) і формули $A^{\perp} = (\ln A)^{\perp} = (\ln A)^{0}$.

§30.3 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 528-531).

31 Біполяра

§31.1 Абсолютна опуклість і біполяра

Означення 31.1. Нехай X — лінійний простір.

Абсолютно опуклою комбінацією набору елементів $\{x_k\}_{k=1}^n \subset X$ називається будь-яка сума вигляду $\sum_{k=1}^n \lambda_k x_k$, де $\sum_{k=1}^n |\lambda_k| \le 1$.

Означення 31.2. Абсолютно опуклою оболонкою множини A в лінійному просторі X називається множина усіх абсолютно опуклих комбінацій скінченняшя числа елементів множини A. Позначається абсолютно опукла оболонка як асопу A.

Нехай (X,Y) — дуальна пара, $A \subset X$. Тоді $A^0 \subset Y$ і у цієї множини теж можна розглянути поляру.

Означення 31.3. Множина $(A^0)^0 \subset X$ називається **біполярою** множини $A \subset X$ і позначається як A^{00} .

Теорема 31.1

Біполяра A^{00} множини $A\subset X$ збігається з $\sigma(X,Y)$ -замиканням абсолютно опуклої оболонки множини A.

Доведення. Зауважимо, що $A^{00}\supset A$. Дійсно, якщо $x\in A$, то за означенням множини A^0 :

$$\forall y \in A^0 \quad |\langle x, y \rangle| \le 1.$$

Це означає, що $X \in A^{00}$.

Далі, біполяра — частковий приклад поляри. Отже, відповідно до пункту 6) теореми 13.2 A^{00} — опукла врівноважена $\sigma(X,Y)$ -замкнена множина. Відповідно, A^{00} $\supset \overline{aconv}$ A

Для доведення оберненого включання візьмемо довільну точку $x_0 \in X \setminus \overline{\text{асопv}} A$ і переконаємося, що $x_0 \notin A^{00}$. Дійсно, оскільки $x_0 \in \overline{\text{асопv}} A$ і $\overline{\text{асопv}} A$ — це опукла врівноважена $\sigma(X,Y)$ -замкнена множина, тому за теоремою Хана—Банаха (теорем. 28.5) існує такий $\sigma(X,Y)$ -неперервний лінійний функціонал y на X, що

- 1. $|y(x)| \le 1 \ \forall x \in \overline{\text{aconv}} A$;
- 2. $|y(x_0)| > 1$.

Будь-який $\sigma(X,Y)$ -неперервний лінійний функціонал — це елемент простору Y. Умова 1 означає, що $y \in (\overline{\text{aconv}} A)^0 \subset A^0$. Тоді друга умова означає, що $x_0 \notin A^{00}$. \square

Наслідок 31.1

Якщо $A\subset X-\sigma(X,Y)$ -замкнена врівноважена множина, то $A^{00}=A.$ Зокрема, $B^{000}=B^0$ $\forall B\subset Y.$

Наслідок 31.2

 $A^{\perp\perp}=\overline{\lim}\,A\ \forall A\subset X.$ Якщо A — лінійний підпростір, то $A^{\perp\perp}=\overline{A}.$ Нарешті, $B^{\perp\perp\perp}=B^\perp\ \forall B\subset Y.$

Доведення.

$$A^{\perp \perp} = (A^{\perp})^{\perp} = ((\operatorname{lin} A)^{\perp})^{\perp}) = (\operatorname{lin} A)^{00} = \overline{\operatorname{lin}} A.$$

Наслідок 31.3

Якщо $A_1,A_2\subset X-\sigma(X,Y)$ -замкнені врівноважені множини, то $A_1=A_2\Longleftrightarrow A_1^0=A_2^0$. Якщо до того ж $A_1=A_2-$ підпростори, то $A_1=A_2\Longleftrightarrow A_1^\perp=A_2^\perp$

З іншого боку, якщо $A_1^0=A_2^0$, то $A_1^{00}=A_2^{00}$ і можна застосувати теорему про біполяру.

Теорема 31.2

Нехай (X,Y) — дуальна пара і $A\subset X$. Тоді наступні умови є еквівалентними:

- 1. Множина функціоналів $A \subset X$ розділяє точки простору X.
- 2. $A^{\perp} = \{0\};$
- 3. $A^{\perp \perp} = X$;
- 4. Лінійна оболонка множини $A \in \sigma(Y, X)$ -щільною в Y.

Доведення. 1 \implies 2. Включення $A^{\perp} \supset \{0\}$ виконано завжди. Якщо ж $x \in X \setminus \{0\}$, то за умовою існує $y \in A$ такий, що $\langle x, y \rangle \neq 0$. У цьому випадку $x \notin A^{\perp}$.

- $2 \implies 1.$ Нехай $x \in X \setminus \{0\}.$ Тоді $x \notin A^\perp,$ отже існує $y \in A,$ такий що $\langle x,y \rangle \neq 0.$
- $2\iff 3$. Оскільки A^\perp і $\{0\}$ це $\sigma(X,Y)$ -замкнені підпростори, можна скористатися наслідком 11.3.

$$3 \iff 4$$
. За наслідком $11.2 \ A^{\perp \perp} = \overline{\lim} \ A$.

§31.2 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 533-535).

32 Спряжений оператор

§32.1 Алгебраїчно спряжний і спряжений оператори

Означення 32.1. Нехай X, Y — лінійні простори, $T: X \to Y$ — лінійний оператор. Алгебраїчно спряженим оператором до T називається оператор $T': Y' \to X'$, що діє за правилом $T'f = f \circ T$.

Означення 32.2. Нехай $(X_1, Y_1), (X_2, Y_2)$ — дуальні пари. Будемо говорити, що у оператора T існує **спряжений оператор** $T^*: Y_2 \to Y_1$, якщо для будь-якого $y \in Y_2$ існує такий елемент $T^*y \in Y_1$, що $\langle Tx, y \rangle = \langle x, T^*, y \rangle$ для всіх $x_1 \in X$.

Трактуючи елементи просторів Y_1 , Y_2 як функціонали на X_1 і X_2 відповідно, бачимо, що $T^*y = y \circ T$. Очевидно, що спряжений оператор до T існує тоді і лише тоді, коли $T'(Y_2) \subset Y_1$. У цьому випадку T^* — це звуження алгебраїчно спряженого оператора T' на Y_2 . Для дуальних пар (X_1, X_1^*) , (X_2, X_2^*) , де X_1, X_2 — банахові простори, то нове означення спряженого оператора збігається з відомим означенням спряженого до оператору в банахових просторах.

Теорема 32.1

Нехай X_1 і X_2 — локально опуклі простори, $T: X_1 \to X_2$ — лінійний неперервний оператор. Тоді у T існує спряжений $T^*: X_2^* \to X_1^*$.

Доведення. Нехай $f \in X_2^*$. Тоді функціонал $T'f = f \circ T$ є неперервним як композиція двох неперервних відображень. Отже, $T'(X_2^*) \subset X_1^*$.

Теорема 32.2

Нехай $(X_1,Y_1),\ (X_2,Y_2)$ — дуальні пари, $T:X_1\to X_2$ — лінійний оператор, $T^\star:Y_2\to Y_1$ — спряжений оператор. Тоді для довільного $A\subset Y_2$

$$T^{-1}(A^0) = (T^*A)^0.$$

Доведення.

$$x \in T^{-1}(A^0) \iff Tx \in A^0 \iff \forall y \in A \, |\langle Tx, y \rangle| \le 1 \iff \\ \iff \forall y \in A \, |\langle x, T^{\star}y \rangle| \le 1 \iff \forall z \in T^{\star}A \, |\langle x, z \rangle| \le 1 \iff x \in (T^{\star}A)^0. \quad \Box$$

Теорема 32.3

Нехай $(X_1,Y_1), (X_2,Y_2)$ — дуальні пари, $T:X_1\to X_2$ — лінійний оператор. Тоді наступні умови є еквівалентними:

- 1. У оператора T існує спряжений.
- 2. T слабко неперервний оператор, тобто він є неперервним як оператор, що діє з $(X_1, \sigma(X_1, Y_1))$ і $(X_2, \sigma(X_2, Y_2))$.

Доведення. $1 \implies 2$. Внаслідок лінійності достатньо перевірити неперервність оператору в нулі. За теоремою 13.2 базу околів нуля в топології $\sigma(X_2, Y_2)$ утворюють поляри скінчених множин $A \subset Y$. За формулою

$$T^{-1}(A^0) = (T^*A)^0$$

прообраз $T^{-1}(A^0)$ околу A^0 — це знову поляра $(T^\star A)^0$ скінченої множини $T^\star A \subset Y_1$. Отже, $T^{-1}(A^0)$ — це окіл нуля в топології $\sigma(X_1,Y_1)$.

Наслідок 32.1

Нехай X_1, X_2 — локально опуклі простори, $T: X_1 \to X_2$ — лінійний неперервний оператор. Тоді T — слабко неперервний оператор в топологіях $\sigma(X_1, X_1^\star)$ і $\sigma(X_2, X_2^\star)$.

§32.2 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 535–538).