Coverage Calculation

QiongJia

2024-11-14

Contents

Design
Download BAM file
Quick estimate
Coverage calculation for each position
Step1: calculate the coverage at each genomic position
Step2: calculate the average coverage
Alternative calculation:
Other methods
bedtools
$mosdepth \dots \dots$
Runing time comparison

Design

To calculate the average coverage (sequencing depth) for the given sample BAM file, two approach are presented below.

1. The first one is based on the coverage calculation equation:

$$C = \frac{LN}{G}$$

where

- \bullet C is coverage.
- \bullet G is the haploid genome length.
- ullet L is the read length in the sequencing.
- ullet N is the number of reads.

The *samtool idxstats* can be used to get chromosome lengths and number of mapped reads.

- 2. The second one is more precise. The *samtool depth* can be used to calculate the coverage at each genomic position and the average coverage of the given BAM file.
- 3. At the end, two other tools $bedtools\ genomecov$ and mosdepth are presented briefly in coverage calculation.

Download BAM file

```
cd ~
mkdir TakeHomeFulgent
cd TakeHomeFulgent
wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/data/
NA12878/exome_alignment/
NA12878.mapped.illumina.mosaik.CEU.exome.20110411.bam
bam=NA12878.mapped.illumina.mosaik.CEU.exome.20110411.bam
```

Quick estimate

```
samtools idxstats $bam \
| awk -vreadlen=100 '
{
    len += $2
    nreads += $3
}
END {
    print nreads * readlen / len
}
```

The average coverage of given BAM file is: 5.26501.

However, we don't have the information of the read length and a arbitrary number is used here so the estimation is not accurate.

Coverage calculation for each position

Step1: calculate the coverage at each genomic position.

```
samtools depth -a $bam > NA12878_coverage.txt
```

Overlook the coverage output.

```
head -n 5 NA12878_coverage.txt
```

1	1	0
1	2	0
1	3	0
1	4	0
1	5	0

Each line represents a genomic position. Three columns are included int he coverage output:

- Chromosome;
- Position;
- Reads covered this position.

Step2: calculate the average coverage.

```
awk '{sum+=$3} END { print "Average coverage = ",sum/NR}' NA12878_coverage.txt
```

Average coverage = 3.64239

Alternative calculation:

The total length of the genome can also be calculated as below:

```
## QSQ is the reference sequence dictionary and LN in this line shows the reference sequence length. ## So the $tot here represent the totle length of sample genome tot=$(samtools view -H $bam | awk -vFS=: '/^QSQ/ {sum+=$3} END {print sum}') echo $tot # 3101804739
```

Then the average coverage is calculated as below:

```
sum=$(awk '{sum+=$3} END {print sum}' NA12878_coverage.txt)
echo $sum
# 11297985096
avg=$(echo "$sum/$tot" | bc -1)
echo $avg
# 3.64239
printf "The average coverage is: %.2f\n" "$avg"
```

The average coverage is: 3.64

Other methods

bedtools

 $bedtools\ genomecov\ ext{-}d$ also reports the genome coverage per base as below:

```
# To use -ibam flag in bedtools genomecov, the bam file is needed to be sorted by position samtools sort bam | bedtools genomecov - ibam stdin - d > NA12878_genomecov.txt
```

Then the average coverage would be:

```
awk '{sum+=$3} END { print "Average coverage = ",sum/NR}' NA12878_genomecov.txt
```

Average coverage = 3.99539

mosdepth

mosdepth can report coverage for both per-base and summary result at the same time.

```
mosdepth NA12878 $bam
```

The file ended with .mosdepth.summary.txt contain the average coverage result.

```
awk 'NR==1 {print} {last=$0} END {print last}' NA12878.mosdepth.summary.txt

## chrom length bases mean min max
## 85 total 3101804739 10082458770 3.25 0 4343

awk '{last=$4} END {print "Average coverage = ",last}' NA12878.mosdepth.summary.txt
```

Average coverage = 3.25

It can also report coverage based on the user defined region by using -by < bed/window >.

Runing time comparison

```
• samtools depth: 1348s;
  • bedtools genomecov: 21074s;
  • mosdepth : 433s;
## R version 4.2.3 (2023-03-15)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur ... 10.16
##
## Matrix products: default
          /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                    base
##
## loaded via a namespace (and not attached):
## [1] compiler_4.2.3
                          fastmap_1.2.0
                                            cli_3.6.3
                                                               tools_4.2.3
## [5] htmltools_0.5.8.1 rstudioapi_0.15.0 yaml_2.3.10
                                                               rmarkdown_2.28
## [9] knitr_1.48
                          xfun_0.47
                                            digest_0.6.37
                                                               rlang_1.1.4
## [13] evaluate_0.24.0
```