Data Set

The table on next slide shows the average numbers of days absent by program type and seems to suggest that program type is a good candidate for predicting the number of days absent, our outcome variable, because the mean value of the outcome appears to vary by prog.

Programme	Mean	Std.Deviation
	Days Absent	Days Absent
General	10.65	8.20
Academic	6.95	7.45
Vocational	2.67	3.73

Data Set

- The variances within each level of prog are higher than the means within some of the levels.
- These are the conditional means and variances. These differences suggest that over-dispersion is present and that a Negative Binomial model would be appropriate.

Negative binomial regression analysis

We will use the glm.nb function from the MASS package to estimate a negative binomial regression.

- R first displays the call and the deviance residuals.
- Next, we see the regression coefficients for each of the variables, along with standard errors, z-scores, and p-values.

Coefficients:

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '

- ► The variable math has a coefficient of -0.006, which is statistically significant.
- ► This means that for each one-unit increase in math, the expected log count of the number of days absent decreases by 0.006.
- ➤ The indicator variable shown as **progAcademic** is the expected difference in log count between group 2 and the reference group (prog=1).

- ► The expected log count for level 2 of prog is 0.44 lower than the expected log count for level 1.
- ► The indicator variable for **progVocational** is the expected difference in log count between group 3 and the reference group.

- ► The expected log count for level 3 of prog is 1.28 lower than the expected log count for level 1.
- To determine if prog itself, overall, is statistically significant, we can compare a model with and without prog.
- ► The reason it is important to fit separate models, is that unless we do, the overdispersion parameter is held constant.

```
m2 <- update(m1, . ~ . - prog)</pre>
anova(m1, m2)
## Likelihood ratio tests of Negative Binomial Models
##
## Response: daysabs
          Model theta Resid. df
##
                                    2 x log-lik. Test
## 1 math 0.8559
                             312
                                          -1776
                                           -1731 1 vs 2
## 2 math + prog 1.0327
                             310
##
      Pr(Chi)
## 1
## 2 1.652e-10
```

- The two degree-of-freedom chi-square test indicates that prog is a statistically significant predictor of daysabs.
- ► The null deviance is calculated from an intercept-only model with 313 degrees of freedom.
- ► Then we see the residual deviance, the deviance from the full model.
- ▶ We are also shown the AIC and 2*log likelihood.

The theta parameter shown is the dispersion parameter.

```
## (Dispersion parameter for Negative Binomial(1.033)
## family taken to be 1)
##
##
       Null deviance: 427.54 on 313 degrees of freedom
## Residual deviance: 358.52 on 310 degrees of freedom
## AIC: 1741
##
## Number of Fisher Scoring iterations: 1
##
##
                 Theta: 1.033
##
             Std. Err.: 0.106
##
   2 x log-likelihood: -1731.258
##
```

Confidence Intervals

We can get the confidence intervals for the coefficients by profiling the likelihood function.

```
(est <- cbind(Estimate = coef(m1), confint(m1)))
## Waiting for profiling to be done...
## Estimate 2.5 % 97.5 %
## (Intercept) 2.615265 2.2421 3.012936
## math -0.005993 -0.0109 -0.001067
## progAcademic -0.440760 -0.8101 -0.092643
## progVocational -1.278651 -1.6835 -0.890078</pre>
```

Incidence Rate Ratios

- We might be interested in looking at incident rate ratios rather than coefficients.
- To do this, we can exponentiate our model coefficients.
- The same applies to the confidence intervals.

```
exp(est)
## Estimate 2.5 % 97.5 %
## (Intercept) 13.6708 9.4127 20.3470
## math 0.9940 0.9892 0.9989
## progAcademic 0.6435 0.4448 0.9115
## progVocational 0.2784 0.1857 0.4106
```

- ► The output above indicates that the incident rate for prog = 2 is 0.64 times the incident rate for the reference group (prog = 1).
- ► Likewise, the incident rate for prog = 3 is 0.28 times the incident rate for the reference group holding the other variables constant.
- ► The percent change in the incident rate of daysabs is a 1% decrease for every unit increase in math.

- The form of the model equation for negative binomial regression is the same as that for Poisson regression.
- ► The log of the outcome is predicted with a linear combination of the predictors:

$$\log(\widehat{daysabs_i}) = Intercept + b_1(prog_i = 2) + b_2(prog_i = 3) + b_2(prog_i = 3)$$

$$\widehat{daysabs_i} = e^{Intercept + b_1(prog_i=2) + b_2(prog_i=3) + b_3 math_i}$$

$$= e^{Intercept} e^{b_1(prog_i=2)} e^{b_2(prog_i=3)} e^{b_3 math_i}$$

- ► The coefficients have an additive effect in the In(y) scale and the IRR have a multiplicative effect in the y scale.
- The dispersion parameter in negative binomial regression does not effect the expected counts, but it does effect the estimated variance of the expected counts.

