Cognome	Nome	Matricola

23 giugno 2011

\Box 2 ^a prova di accertamento: solo esercizi 3, 4 e 5	
\square 1° appello: tutti gli esercizi	

Esercizio 1. Nello spazio vettoriale \mathbb{R}^4 sia U il sottospazio generato dal vettore u=(12,3,-2,0) e sia W il sottospazio di equazione $x_1-2x_2+3x_3-4x_4=0$.

- (a) Si dimostri che $U \subset W$ e si completi la base di U ad una base di W.
- (b) Sia $V \subset \mathbb{R}^4$ il sottospazio generato dai vettori $v_1 = (1, 2, 3, 0)$ e $v_2 = (2, 3, 4, -1)$. Si determini una base di $V \cap W$ e una base di V + W.
- (c) Dato il vettore $v_t = (t, 0, 1, 2)$, si determini il valore di t per cui i vettori v_1, v_2, v_t sono linearmente dipendenti.
- (d) Si dica se esiste una funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che si abbia $W = \operatorname{Ker} f \in U = \operatorname{Im} f$.

Esercizio 2. Siano dati i vettori $v_1 = (4, -2, 6), v_2 = (0, 4, 4), v_3 = (-1, 2, 0) \in \mathbb{R}^3$ e si consideri la funzione lineare $f : \mathbb{R}^4 \to \mathbb{R}^3$ definita da $f(1, 0, 1, 0) = v_1, f(1, 0, -1, 0) = v_2$ e tale che i vettori (0, 1, 0, 0) e (2, 0, -1, -3) appartengano a $f^{-1}(v_3)$.

- (a) Si scriva la matrice A di f rispetto alle basi canoniche e si determinino delle basi di Ker f e di Im f.
- (b) Sia $W \subset \mathbb{R}^4$ il sottospazio di equazione $x_1 + 3x_3 + x_4 = 0$. Si determini una base di W e una base di f(W). Si determini inoltre una base di $Ker(f) \cap W$.
- (c) Si scriva la matrice della funzione indotta da f, $f|_W:W\to\mathbb{R}^3$, rispetto alla base di W trovata nel punto (b) e alla base canonica del codominio.

Esercizio 3. Sia V uno spazio vettoriale di dimensione 4, con base v_1, v_2, v_3, v_4 . Sia $f: V \to V$ la funzione lineare definita da $f(v_1) = v_1 + 3v_3$, $f(v_2) = v_2 + v_4$, $f(v_3) = 2v_1 + 2v_3$, $f(v_4) = -2v_2 - 2v_4$.

- (a) Si stabilisca se f è suriettiva e si determini una base di Im f.
- (b) Si determini, se possibile, una base w_1, w_2, w_3, w_4 di V rispetto alla quale la matrice di f sia diagonale.
- (c) Si dica se esistono due vettori linearmente indipendenti $u_1, u_2 \in V$ tali che $f(u_1) = f(u_2)$.

Esercizio 4. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U generato dai vettori $u_1 = (2, 2, 0, 1), u_2 = (0, 1, 1, 0), u_3 = (1, 0, -4, -1).$

- (a) Dato il vettore v = (3, -2, 1, 2) si determini la sua proiezione ortogonale su U.
- (b) Si determini, se possibile, un sottospazio $L \subset \mathbb{R}^4$, $L \neq U^{\perp}$, tale che $U \oplus L = \mathbb{R}^4$.
- (c) Si determini una base ortonormale di U.
- (d) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare che ad ogni vettore $v \in \mathbb{R}^4$ associa la sua proiezione ortogonale f(v) sul sottospazio U. Si determini una base del nucleo di f.

Esercizio 5. Nello spazio affine euclideo tridimensionale, sono dati i punti A = (2, 1, -1), B = (4, -2, 0) e la retta r di equazioni x - 2y - 5 = 0 e 2y - z = 0.

- (a) Si determini l'equazione cartesiana del piano π che passa per i punti A e B e che interseca la retta r in un punto C equidistante da A e B.
- (b) Si determinino le equazioni cartesiane della retta s passante per il punto C, contenuta nel piano π e ortogonale alla retta r.
- (c) Si determini la proiezione ortogonale del punto A sulla retta r.

Cognome	Nome	Matricola

23 giugno 2011

$\sqcup 2^{a}$ prova di accertamento: solo esercizi 3, 4 e 5	
\square 1° appello: tutti gli esercizi	

Esercizio 1. Nello spazio vettoriale \mathbb{R}^4 sia U il sottospazio generato dal vettore u=(4,2,5,0) e sia W il sottospazio di equazione $x_1+3x_2-2x_3-5x_4=0$.

- (a) Si dimostri che $U \subset W$ e si completi la base di U ad una base di W.
- (b) Sia $V \subset \mathbb{R}^4$ il sottospazio generato dai vettori $v_1 = (2, -1, 2, 0)$ e $v_2 = (2, 3, -2, 1)$. Si determini una base di $V \cap W$ e una base di V + W.
- (c) Dato il vettore $v_t = (t, 3, 2, 2)$, si determini il valore di t per cui i vettori v_1, v_2, v_t sono linearmente dipendenti.
- (d) Si dica se esiste una funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che si abbia $W = \operatorname{Ker} f \in U = \operatorname{Im} f$.

Esercizio 2. Siano dati i vettori $v_1 = (-4, 4, 4), v_2 = (0, -2, -4), v_3 = (1, 1, 3) \in \mathbb{R}^3$ e si consideri la funzione lineare $f : \mathbb{R}^4 \to \mathbb{R}^3$ definita da $f(0, 1, 0, 1) = v_1, f(0, 1, 0, -1) = v_2$ e tale che i vettori (0, 0, 1, 0) e (-2, -1, 3, 1) appartengano a $f^{-1}(v_3)$.

- (a) Si scriva la matrice A di f rispetto alle basi canoniche e si determinino delle basi di Ker f e di Im f.
- (b) Sia $W \subset \mathbb{R}^4$ il sottospazio di equazione $x_1 + x_3 + x_4 = 0$. Si determini una base di W e una base di f(W). Si determini inoltre una base di $Ker(f) \cap W$.
- (c) Si scriva la matrice della funzione indotta da f, $f|_W:W\to\mathbb{R}^3$, rispetto alla base di W trovata nel punto (b) e alla base canonica del codominio.

Esercizio 3. Sia V uno spazio vettoriale di dimensione 4, con base v_1, v_2, v_3, v_4 . Sia $f: V \to V$ la funzione lineare definita da $f(v_1) = 2v_1 + 4v_3$, $f(v_2) = 2v_2 - 2v_4$, $f(v_3) = v_1 - v_3$, $f(v_4) = -v_2 + v_4$.

- (a) Si stabilisca se f è suriettiva e si determini una base di Im f.
- (b) Si determini, se possibile, una base w_1, w_2, w_3, w_4 di V rispetto alla quale la matrice di f sia diagonale.
- (c) Si dica se esistono due vettori linearmente indipendenti $u_1, u_2 \in V$ tali che $f(u_1) = f(u_2)$.

Esercizio 4. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U generato dai vettori $u_1 = (1, -2, 0, 2), u_2 = (0, 0, 1, 1), u_3 = (1, 1, 4, 0).$

- (a) Dato il vettore v = (2, -3, 1, -2) si determini la sua proiezione ortogonale su U.
- (b) Si determini, se possibile, un sottospazio $L \subset \mathbb{R}^4$, $L \neq U^{\perp}$, tale che $U \oplus L = \mathbb{R}^4$.
- (c) Si determini una base ortonormale di U.
- (d) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare che ad ogni vettore $v \in \mathbb{R}^4$ associa la sua proiezione ortogonale f(v) sul sottospazio U. Si determini una base del nucleo di f.

Esercizio 5. Nello spazio affine euclideo tridimensionale, sono dati i punti A = (1, -3, 0), B = (2, -1, 1) e la retta r di equazioni 2x + y - 4 = 0 e 2x - z - 7 = 0.

- (a) Si determini l'equazione cartesiana del piano π che passa per i punti A e B e che interseca la retta r in un punto C equidistante da A e B.
- (b) Si determinino le equazioni cartesiane della retta s passante per il punto C, contenuta nel piano π e ortogonale alla retta r.
- (c) Si determini la proiezione ortogonale del punto A sulla retta r.

Cognome	Nome	Matricola

23 giugno 2011

□ 2 ^a prova di accertamento: solo esercizi 3, 4 e 5	
\square 1º appello: tutti gli esercizi	

Esercizio 1. Nello spazio vettoriale \mathbb{R}^4 sia U il sottospazio generato dal vettore u=(1,4,5,0) e sia W il sottospazio di equazione $x_1-4x_2+3x_3+2x_4=0$.

- (a) Si dimostri che $U \subset W$ e si completi la base di U ad una base di W.
- (b) Sia $V \subset \mathbb{R}^4$ il sottospazio generato dai vettori $v_1 = (2, 4, -1, 1)$ e $v_2 = (-2, -1, 1, 0)$. Si determini una base di $V \cap W$ e una base di V + W.
- (c) Dato il vettore $v_t = (t, 5, 1, 2)$, si determini il valore di t per cui i vettori v_1, v_2, v_t sono linearmente dipendenti.
- (d) Si dica se esiste una funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che si abbia $W = \operatorname{Ker} f \in U = \operatorname{Im} f$.

Esercizio 2. Siano dati i vettori $v_1 = (6,3,0), v_2 = (0,-1,2), v_3 = (-1,-1,1) \in \mathbb{R}^3$ e si consideri la funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^3$ definita da $f(1,0,0,1) = v_1, f(1,0,0,-1) = v_2$ e tale che i vettori (0,1,0,0) e (2,1,1,-2) appartengano a $f^{-1}(v_3)$.

- (a) Si scriva la matrice A di f rispetto alle basi canoniche e si determinino delle basi di Ker f e di Im f.
- (b) Sia $W \subset \mathbb{R}^4$ il sottospazio di equazione $x_1 + x_2 + 3x_4 = 0$. Si determini una base di W e una base di f(W). Si determini inoltre una base di $Ker(f) \cap W$.
- (c) Si scriva la matrice della funzione indotta da f, $f|_W:W\to\mathbb{R}^3$, rispetto alla base di W trovata nel punto (b) e alla base canonica del codominio.

Esercizio 3. Sia V uno spazio vettoriale di dimensione 4, con base v_1, v_2, v_3, v_4 . Sia $f: V \to V$ la funzione lineare definita da $f(v_1) = 2v_1 - 3v_3$, $f(v_2) = -2v_2 - 2v_4$, $f(v_3) = v_1 - 2v_3$, $f(v_4) = 3v_2 + 3v_4$.

- (a) Si stabilisca se f è suriettiva e si determini una base di Im f.
- (b) Si determini, se possibile, una base w_1, w_2, w_3, w_4 di V rispetto alla quale la matrice di f sia diagonale.
- (c) Si dica se esistono due vettori linearmente indipendenti $u_1, u_2 \in V$ tali che $f(u_1) = f(u_2)$.

Esercizio 4. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U generato dai vettori $u_1 = (2, -2, 0, 1), u_2 = (1, 0, -1, 0), u_3 = (0, 1, -4, 1).$

- (a) Dato il vettore v = (3, 1, 2, -1) si determini la sua proiezione ortogonale su U.
- (b) Si determini, se possibile, un sottospazio $L \subset \mathbb{R}^4$, $L \neq U^{\perp}$, tale che $U \oplus L = \mathbb{R}^4$.
- (c) Si determini una base ortonormale di U.
- (d) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare che ad ogni vettore $v \in \mathbb{R}^4$ associa la sua proiezione ortogonale f(v) sul sottospazio U. Si determini una base del nucleo di f.

Esercizio 5. Nello spazio affine euclideo tridimensionale, sono dati i punti A = (2,0,3), B = (1,-2,4) e la retta r di equazioni 2x - y - 7 = 0 e 2x + z - 11 = 0.

- (a) Si determini l'equazione cartesiana del piano π che passa per i punti A e B e che interseca la retta r in un punto C equidistante da A e B.
- (b) Si determinino le equazioni cartesiane della retta s passante per il punto C, contenuta nel piano π e ortogonale alla retta r.
- (c) Si determini la proiezione ortogonale del punto A sulla retta r.

Cognome	Nome	Matricola

23 giugno 2011

□ 2 ^a prova di accertamento: solo esercizi 3, 4 e 5	
\square 1º appello: tutti gli esercizi	

Esercizio 1. Nello spazio vettoriale \mathbb{R}^4 sia U il sottospazio generato dal vettore u=(1,2,3,0) e sia W il sottospazio di equazione $x_1-5x_2+3x_3-4x_4=0$.

- (a) Si dimostri che $U \subset W$ e si completi la base di U ad una base di W.
- (b) Sia $V \subset \mathbb{R}^4$ il sottospazio generato dai vettori $v_1 = (1, -1, 1, 2)$ e $v_2 = (0, 4, -1, -5)$. Si determini una base di $V \cap W$ e una base di V + W.
- (c) Dato il vettore $v_t = (t, 8, 1, -7)$, si determini il valore di t per cui i vettori v_1, v_2, v_t sono linearmente dipendenti.
- (d) Si dica se esiste una funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che si abbia $W = \operatorname{Ker} f \in U = \operatorname{Im} f$.

Esercizio 2. Siano dati i vettori $v_1 = (-1, -1, -1), v_2 = (-5, -3, -7), v_3 = (0, -1, 1) \in \mathbb{R}^3$ e si consideri la funzione lineare $f : \mathbb{R}^4 \to \mathbb{R}^3$ definita da $f(0, 1, 1, 0) = v_1, f(0, 1, -1, 0) = v_2$ e tale che i vettori (0, 0, 0, 1) e (1, 1, 1, 3) appartengano a $f^{-1}(v_3)$.

- (a) Si scriva la matrice A di f rispetto alle basi canoniche e si determinino delle basi di Ker f e di Im f.
- (b) Sia $W \subset \mathbb{R}^4$ il sottospazio di equazione $2x_2 x_3 + x_4 = 0$. Si determini una base di W e una base di f(W). Si determini inoltre una base di $Ker(f) \cap W$.
- (c) Si scriva la matrice della funzione indotta da f, $f|_W:W\to\mathbb{R}^3$, rispetto alla base di W trovata nel punto (b) e alla base canonica del codominio.

Esercizio 3. Sia V uno spazio vettoriale di dimensione 4, con base v_1, v_2, v_3, v_4 . Sia $f: V \to V$ la funzione lineare definita da $f(v_1) = 2v_1 - 5v_3$, $f(v_2) = v_2 - v_4$, $f(v_3) = -v_1 - 2v_3$, $f(v_4) = 4v_2 - 4v_4$.

- (a) Si stabilisca se f è suriettiva e si determini una base di Im f.
- (b) Si determini, se possibile, una base w_1, w_2, w_3, w_4 di V rispetto alla quale la matrice di f sia diagonale.
- (c) Si dica se esistono due vettori linearmente indipendenti $u_1, u_2 \in V$ tali che $f(u_1) = f(u_2)$.

Esercizio 4. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U generato dai vettori $u_1 = (-2, 2, 1, 0), u_2 = (1, 0, 0, 1), u_3 = (0, 1, -1, 4).$

- (a) Dato il vettore v = (1, -3, 1, -2) si determini la sua proiezione ortogonale su U.
- (b) Si determini, se possibile, un sottospazio $L \subset \mathbb{R}^4$, $L \neq U^{\perp}$, tale che $U \oplus L = \mathbb{R}^4$.
- (c) Si determini una base ortonormale di U.
- (d) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare che ad ogni vettore $v \in \mathbb{R}^4$ associa la sua proiezione ortogonale f(v) sul sottospazio U. Si determini una base del nucleo di f.

Esercizio 5. Nello spazio affine euclideo tridimensionale, sono dati i punti A = (-1, 3, 1), B = (0, 2, 3) e la retta r di equazioni x - 2z + 3 = 0 e y + 2z - 8 = 0.

- (a) Si determini l'equazione cartesiana del piano π che passa per i punti A e B e che interseca la retta r in un punto C equidistante da A e B.
- (b) Si determinino le equazioni cartesiane della retta s passante per il punto C, contenuta nel piano π e ortogonale alla retta r.
- (c) Si determini la proiezione ortogonale del punto A sulla retta r.