NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Постановка задачи

Хотим на основе картинок одного объекта, сделанных с разных ракурсов, научиться представлять 3D сцену

Процесс обучения

- На вход подается точка в пространстве $\mathbf{x}=(x,y,z)$ и направление взгляда (θ,ϕ)
- На выходе мы получаем цвет точки $\mathbf{c} = (R,G,B)$ и плотность в этой точке (volum σ :nsity)

Визуализация

Направление взгляда

На практике вместо двух углов (θ,ϕ) используется трехмерный единичный вектор d в декартовой системе координат

$$\mathbf{d} = egin{bmatrix} sin heta\cos\phi \ sin hetasin\phi \ cos heta \end{bmatrix}$$

Архитектура модели

Черные стрелки - слой с активацией ReLU, оранжевые - без активации, пунктирная - сигмоидная активация

- NeRF полносвязная сеть без сверток (MLP)
- σ величина от 0 до бесконечности, которая не зависит от направления взгляда
 - $oldsymbol{\circ}$ Цвет $oldsymbol{\mathbf{c}} = (R,G,B)$ зависит и от $oldsymbol{\mathbf{x}} = (x,y,z)$, и от $oldsymbol{\mathbf{d}}$

Предсказание цвета

Вероятность того, что луч пройдет из t_n в t, не встретив объект

Цвет в точке r(t) с позиции d

$$C(\mathbf{r}) = \int_{t_n}$$

 $C(\mathbf{r}) = \int_t^{t_f} T(t) \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{d}) dt$, где $T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s)) ds\right)$

Предсказанный цвет Плотность в точке

луч $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$

Иллюстрация предсказания цвета

Приближение интеграла

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i, \text{ where } T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$$

$$\delta_i = t_{i+1} - t_i$$
 -расстояние между соседними семплами на луче

 \mathbf{c}_i -значение $\mathbf{c}(\mathbf{r}(t),\mathbf{d})$ в точке t_i

$$t_i \sim \mathcal{U}\left[t_n + \frac{i-1}{N}(t_f - t_n), \ t_n + \frac{i}{N}(t_f - t_n)\right]$$

Визуализация результатов такой архитектуры

Оптимизация модели

- Positional encoding
- Hierarchical volume sampling

Positional encoding

Проблема: сеть, которая работает только с входными (\mathbf{x}, \mathbf{d}) плохо визуализирует изменения цвета и геометрии.

Positional encoding

$$F_{\Theta} = F'_{\Theta} \circ \gamma$$

$$L = 10 \text{ for } \gamma(\mathbf{x}) \text{ and } L = 4 \text{ for } \gamma(\mathbf{d})$$

 $\gamma(p) = (\sin(2^0\pi p), \cos(2^0\pi p), \cdots, \sin(2^{L-1}\pi p), \cos(2^{L-1}\pi p))$

Hierarchical volume sampling

Проблема: в текущем подходе, когда мы берем точки на луче равномерно получается много неинформативных точек, которые не дают вклад в цвет пикселя.

Hierarchical volume sampling

- Возьмем 2 сети: "coarse" (грубая) и "fine" (точную)
- Сгенерируем точки N_с как раньше равномерно и обучим на них "coarse" модель
- Получим предсказания о цвете и плотности от "coarse" модели
- Сгенерируем более информативные точки N_f, основываясь на этих предсказаниях
- Оценим цвет с помощью "fine " модели на N_f + N_c точках

Hierarchical volume sampling

Генерация новых значимых точек

Перепишем исходное равенство для N_c

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i, \text{ where } T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$$

$$\hat{C}_c(\mathbf{r}) = \sum_{i=1}^{N_c} w_i c_i \,, \qquad w_i = T_i (1 - \exp(-\sigma_i \delta_i))$$

Отнормировав веса $\hat{w}_i = w_i / \sum_{j=1}^{N_c} w_j$, получим кусочно-заданную функцию

плотности, из распределения которой будем генерировать точки N_f

Loss function

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

- ullet $\hat{C}_c(\mathbf{r})$ предсказание цвета пикселя моделью "coarse"
- ullet $\hat{C}_f(\mathbf{r})$ предсказание цвета пикселя моделью "fine"
- ullet $C({f r})$ настоящий цвет пикселя
- ullet набор лучей в batch-e

Визуализация полной архитектуры

Черные стрелки - слой с активацией ReLU, оранжевые - без активации, пунктирная - сигмоидная активация

Эксперименты

	Input	$\#\mathrm{Im}.$	L	$\left(N_c,N_f ight)$	PSNR↑	$SSIM\uparrow$	$\mathrm{LPIPS}{\downarrow}$
1) No PE, VD, H	xyz	100	-	(256, -)	26.67	0.906	0.136
2) No Pos. Encoding	$xyz heta\phi$	100	-	(64, 128)	28.77	0.924	0.108
3) No View Dependence	xyz	100	10	(64, 128)	27.66	0.925	0.117
4) No Hierarchical	$xyz heta\phi$	100	10	(256, -)	30.06	0.938	0.109
5) Far Fewer Images	$xyz heta\phi$	25	10	(64, 128)	27.78	0.925	0.107
6) Fewer Images	$xyz heta\phi$	50	10	(64, 128)	29.79	0.940	0.096
7) Fewer Frequencies	$xyz heta\phi$	100	5	(64, 128)	30.59	0.944	0.088
8) More Frequencies	$xyz heta\phi$	100	15	(64, 128)	30.81	0.946	0.096
9) Complete Model	$xyz heta\phi$	100	10	(64, 128)	31.01	0.947	0.081

Метрики:

- PSNR peak signal to noise ratio
- SSIM structural similarity index
- LPIPS learned perceptual image patch similarity

Сравнение с другими методами

	Diffuse Synthetic 360° [41]			Realisti	c Synthe	etic 360°	Real Forward-Facing [28]		
Method	PSNR↑	SSIM↑	$LPIPS \downarrow$	PSNR↑	$SSIM\uparrow$	$\mathrm{LPIPS}{\downarrow}$	PSNR↑	$SSIM\uparrow$	$\text{LPIPS}\!\!\downarrow$
SRN [42]	33.20	0.963	0.073	22.26	0.846	0.170	22.84	0.668	0.378
NV [24]	29.62	0.929	0.099	26.05	0.893	0.160	-	-	
LLFF [28]	34.38	0.985	0.048	24.88	0.911	0.114	24.13	0.798	0.212
Ours	40.15	0.991	0.023	31.01	0.947	0.081	26.50	0.811	0.250

Нейронные сети:

- SRN (scene representation networks) рекуррентная сеть
- NV (neural volumes) сверточная сеть, работает только с ограниченными сценами
- LLFF (local light field fusion) сверточная сеть, заточена под реальные сцены

Метрики:

- PSNR peak signal to noise ratio
- SSIM structural similarity index
- LPIPS learned perceptual image patch similarity

