Hybridization (A hypothetical concept for bonds)

A **hybrid** animal – Centaur – *Greek myth* with head, arms and torso of a man united to the body and legs of a horse

The valence orbitals (of central atom) undergo hybridization before making chemical bond.

sp 2 sp hybrid orbitals from mixing of a s and a p orbital

 sp^2 3 sp^2 hybrid orbitals from mixing of a s and 2 p orbital

 sp^3 4 sp^3 hybrid orbitals from mixing of a s and 3 p orbital

 sp^3d 5 sp^3d hybrid orbitals from mixing of a s and 3 p and a d orbital

The sp³ Hybridized Orbitals

- 109.5° with s and p
- Need 4 orbitals.
- We combine one s orbital and 3 p orbitals.
- Make sp³ hybrid
- sp³ hybridization has tetrahedral geometry.

Consider n atomic orbitals with wave functions $\psi_1 \dots \psi_n$ mix Mixing : makes linear combination n hybrid orbitals $\Psi_1 \dots \Psi_n$ are formed

$$\Psi_{1} = C_{1,1} \, \psi_{1} + C_{1,2} \, \psi_{2} \dots + C_{1,n} \psi_{n}$$

$$\Psi_{n} = C_{n,1} \, \psi_{1} + C_{n,2} \, \psi_{2} \dots + C_{n,n} \psi_{n}$$

How the coefficients are determined?

- •They should be so that <u>directional</u> properties of resultant hybrid orbitals are achieved
- •Constructive and destructive interference of the wave characteristics of the corresponding orbital
- •Square of coefficients should also give proportion of each atomic orbital in the hybrid

The sp³ Hybridized Orbitals

The hybridization of a s and three p orbitals lead to 4 sp^3 hybrid orbitals for bonding.

$$\Psi_{1} = (\frac{1}{2}) (\psi_{2s} + \psi_{2px} + \psi_{2py} + \psi_{2pz})$$

$$\Psi_{2} = (\frac{1}{2}) (\psi_{2s} + \psi_{2px} - \psi_{2py} - \psi_{2pz})$$

$$\Psi_{3} = (\frac{1}{2}) (\psi_{2s} - \psi_{2px} - \psi_{2py} + \psi_{2pz})$$

$$\Psi_{4} = (\frac{1}{2}) (\psi_{2s} - \psi_{2px} + \psi_{2py} - \psi_{2pz})$$

These arrange in a tetrahedral geometry with bond angle 109.5°

sp³ hybrids: Methane

Compounds involving sp^3 hybrid orbitals: CF_4 , CH_4 , : NH_3 , H_2O :, SiO_4^{4-} , SO_4^{2-} , ClO_4^{-} , etc.

sp² hybrids: Ethene H₂C=CH₂

Uses the three sp^2 orbitals to form σ bonds with 2H atoms and the other C atom.

Use the remaining unhybridized 2p orbitals on the two C atoms to form a π bond

Where is the P orbital?

- Perpendicular
- The overlap of orbitals makes a sigma bond (σ bonce)

examples of sp^2 hybridization

Compounds involving sp2 hybrid orbitals: BF₃, CO₃²⁻, H₂CO, H₂C=CH₂, NO₃⁻, etc

Total number of hybrid orbitals = total number of sigma bonds (of central atom) + lone pairs on central atom

Boron Trifluoride

sp hybridization

Hybridization of one s and one p orbitals = 2 sp hybrid orbitals

$$\Psi_{sp1} = (1/\sqrt{2}) (\psi_s + \psi_{p_z})$$

$$\Psi_{sp2} = (1/\sqrt{2}) (\psi_s - \psi_{p_z})$$

- end up with two lobes 180º apart.
- p orbitals are at right angles
- makes room for two π bonds and two sigma bonds.
- a triple bond or two double bonds

sp hybrids: Ethyne HC≡CH

- sp orbitals form σ -bonds (C-C and C-H)
- Note both lie along Z axis (180°)
- Remaining two p orbitals are on mutually perpendicular axis and form two perpendicular π bonds

CO_2

- C can make two σ and two π
- O can make one σ and one π

N_2

The sp^3d Hybridization

hybridization of s and p_x , p_y , p_z and d_{z2} orbitals = 5 sp^3d hybrid orbitals (trigonal bipyramid)

Some structures due to these type of orbitals are PF5, PClF₄, TeCl₄, and BrF₃.

The sp^3d^2 Hybrid Orbitals

Hybridization of one s, three p, and two d orbitals results in $6 \text{ sp}^3 d^2$ hybrid orbitals.

The arrangement of these orbitals is an octahedron.

Compounds using these type of orbitals are of the type: AX_6 , AX_5E , AX_4E_2

Draw backs of VBT

1. Does not tell anything about the excited states of molecule.

2. Not able to explain paramagnetic nature of O_2 molecule.

Paramagnetic compound: compounds/elements having unpaired electrons. Diamagnetic compound: All electrons are paired up, no unpaired electron.

3. Can't explain the delocalized pi-electrons in certain molecules. Ex-benzene.

Because of orbital overlap, the bonding electrons <u>localize</u> in the region between the bonding nuclei

- (i) It involves a number of assumptions.
- (ii) It does not give quantitative interpretation of magnetic data.
- (iii) It does not explain the color exhibited by coordination compounds.
- (iv) It does not give a quantitative interpretation of the thermodynamic or kinetic stabilities of coordination compounds.
- (v) It does not make exact predictions regarding the tetrahedral and square planar structures of 4-coordinate complexes.
- (vi) It does not distinguish between weak and strong ligands.

Linear sp hybrid orbitals

A 2s orbital superimposed on a 2p_x orbital

$$\Psi_1 = \frac{1}{\sqrt{2}} \phi_s + \frac{1}{\sqrt{2}} \phi_p$$

$$\Psi_2 = \frac{1}{\sqrt{2}}\,\varphi_s - \frac{1}{\sqrt{2}}\,\varphi_\rho$$

The two resultant sp hybrid orbitals that are directed along the X-axis (in this case)

The $1/\sqrt{2}$ are normalization coefficients.

Orthogonality and Normalization

This means that we must find normalization coefficients that satisfy these conditions.

Note that the atomic orbitals(ϕ) we use can be considered to be both orthogonal and normal or "orthonormal". $\int \Psi_n \Psi_n \partial \tau = 1$

Orthogonal means that the integral of the product of an orbital with any other orbital is equal to 0, i.e.:where n \neq m and $\delta\tau$ means that the integral is taken over "all of space"(everywhere).Normal means that the integral of the product of an orbital withitself is equal to 1,

The overlap integral

■The extent to which two atomic orbitals on different atom overlaps: the overlap integral

$$S = \int \psi_A^* \psi_B d\tau$$

Example of the orthogonality of Ψ1 and Ψ2

$$\Psi_1 = \frac{1}{\sqrt{2}} \phi_s + \frac{1}{\sqrt{2}} \phi_\rho \qquad \qquad \Psi_2 = \frac{1}{\sqrt{2}} \phi_s - \frac{1}{\sqrt{2}} \phi_\rho$$

$$\int \Psi_1 \Psi_2 \partial \tau = \int \!\! \left(\frac{1}{\sqrt{2}} \, \varphi_s + \frac{1}{\sqrt{2}} \, \varphi_\rho \right) \!\! \left(\frac{1}{\sqrt{2}} \, \varphi_s - \frac{1}{\sqrt{2}} \, \varphi_\rho \right) \!\! \partial \tau$$

$$\int \Psi_1 \Psi_2 \partial \tau = \frac{1}{2} \int \left(\varphi_s \varphi_s \right) \partial \tau - \frac{1}{2} \int \left(\varphi_s \varphi_\rho \right) \partial \tau + \frac{1}{2} \int \left(\varphi_s \varphi_\rho \right) \partial \tau - \frac{1}{2} \int \left(\varphi_\rho \varphi_\rho \right) \partial \tau$$

$$\int \Psi_1 \Psi_2 \partial \tau = \frac{1}{2} (1) - \frac{1}{2} (0) + \frac{1}{2} (0) - \frac{1}{2} (1)$$

$$\int \Psi_1 \Psi_2 \partial \tau = \frac{1}{2} - \frac{1}{2} = 0$$

Valence bond theory treatment of a trigonal planar molecule: the bonding in BH₃

This gives three sp² orbitals that are oriented 120° apart in the xy plane – be careful: the choice of axes in this example determines the set of coefficients.

$$\Psi_{1} = \frac{1}{\sqrt{3}} \phi_{s} - \frac{1}{\sqrt{6}} \phi_{\rho_{x}} + \frac{1}{\sqrt{2}} \phi_{\rho_{y}}$$

$$\Psi_{2} = \frac{1}{\sqrt{3}} \phi_{s} - \frac{1}{\sqrt{6}} \phi_{\rho_{x}} - \frac{1}{\sqrt{2}} \phi_{\rho_{y}}$$

$$\Psi_{3} = \frac{1}{\sqrt{3}} \phi_{s} + \frac{2}{\sqrt{6}} \phi_{\rho_{x}}$$

$$\Psi_{1} = \frac{1}{\sqrt{3}} \, \varphi_{s} - \frac{1}{\sqrt{6}} \, \varphi_{p_{x}} + \frac{1}{\sqrt{2}} \, \varphi_{p_{y}} \qquad \qquad \frac{1/3 + 1/6 + 1/2 = 1}{\text{So this hybrid is normal}}$$

$$\Psi_{2} = \frac{1}{\sqrt{3}} \, \varphi_{s} - \frac{1}{\sqrt{6}} \, \varphi_{p_{x}} - \frac{1}{\sqrt{2}} \, \varphi_{p_{y}} \qquad \qquad \frac{1/3 + 1/6 + 1/2 = 1}{\text{So this hybrid is normal}}$$

$$\Psi_{3} = \frac{1}{\sqrt{3}} \, \varphi_{s} + \frac{2}{\sqrt{6}} \, \varphi_{p_{x}} \qquad \qquad \frac{1/3 + 4/6 = 1}{\text{So this hybrid is normal}}$$

$$1/3 + 1/3 + 1/3 = 1 \qquad \qquad 1/6 + 1/6 + 4/6 = 1 \qquad \qquad 1/2 + 1/2 = 1$$
So the entire s orbital \quad So the entire p_x orbital \quad So the entire p_y orbital

has been used

has been used

has been used

The signs in front of the coefficients indicate the direction of the hybrid:

$$\Psi_1$$
: -x, +y

$$\Psi_2$$
: -x, -y

$$Ψ_3$$
: +x, 0y

Valence bond theory treatment of a tetrahedral molecule: the bonding in CH₄

This gives four sp³ orbitals that are oriented in a tetrahedral fashion.

$$\begin{split} \Psi_{1} &= \frac{1}{\sqrt{4}}\,\varphi_{s} + \frac{1}{\sqrt{4}}\,\varphi_{\rho_{x}} + \frac{1}{\sqrt{4}}\,\varphi_{\rho_{y}} + \frac{1}{\sqrt{4}}\,\varphi_{\rho_{z}} \\ \Psi_{2} &= \frac{1}{\sqrt{4}}\,\varphi_{s} + \frac{1}{\sqrt{4}}\,\varphi_{\rho_{x}} - \frac{1}{\sqrt{4}}\,\varphi_{\rho_{y}} - \frac{1}{\sqrt{4}}\,\varphi_{\rho_{z}} \\ \Psi_{3} &= \frac{1}{\sqrt{4}}\,\varphi_{s} - \frac{1}{\sqrt{4}}\,\varphi_{\rho_{x}} - \frac{1}{\sqrt{4}}\,\varphi_{\rho_{y}} + \frac{1}{\sqrt{4}}\,\varphi_{\rho_{z}} \\ \Psi_{4} &= \frac{1}{\sqrt{4}}\,\varphi_{s} - \frac{1}{\sqrt{4}}\,\varphi_{\rho_{x}} + \frac{1}{\sqrt{4}}\,\varphi_{\rho_{y}} - \frac{1}{\sqrt{4}}\,\varphi_{\rho_{z}} \end{split}$$

Valence bond theory treatment of a trigonal bipyramidal molecule: the bonding in PF₅

The appropriate mixture to form a trigonal bipyramidal arrangement of hybrids involves all them and probitals as well as then orbital.

The orbitals are treated in two different sets.

$$\Psi_1 = \frac{1}{\sqrt{3}} \phi_s + \frac{1}{\sqrt{6}} \phi_{\rho_x} + \frac{1}{\sqrt{2}} \phi_{\rho_y}$$
 These coefficients exactly the same a result for the trigor planar molecules because they are derived from the sorbitals (sp²)

These coefficients are exactly the same as the result for the trigonal derived from the same orbitals (sp²)

$$\Psi_{4} = \frac{1}{\sqrt{2}} \phi_{\rho_{z}} + \frac{1}{\sqrt{2}} \phi_{d_{z^{2}}}$$

$$\Psi_{5} = -\frac{1}{\sqrt{2}} \phi_{\rho_{z}} + \frac{1}{\sqrt{2}} \phi_{d_{z^{2}}}$$

These coefficients are similar to those for the sp hybrids because they are formed from a combination of two orbitals (pd).

Remember that d orbitals are more *diffuse* than s or p orbitals so VBT predicts that the bonds formed by hybrids involving d orbitals will be longer than those formed by s and p hybrids.

Ungerade or gerade?

- MOs in molecules that are centrosymmetric can be classified as (g) or (u)
 - Useful for predicting spectroscopic transitions etc.
 - (g) implies that the wavefunction does not change sign on inversion through the center of the molecule. (u) means that it does change sign

g- identical under inversion

u- not identical

Place labels g or u in this diagram

