Interval Scheduling

Arash Rafiey

Interval Scheduling Problem

Problem Statement: We have a resource and many people request to use the resource for periods of time.

Conditions:

- the resource can be used by at most one person at a time.
- we can accept only *compatible* requests (overlap-free).

Goal: maximize the number of *compatible* requests accepted.

Key Idea: greedy approach.

Greedy Algorithm for Interval Scheduling Problem

- (1) Initially let R be the set of all requests, and let A be empty;
- (2) While R is not empty:
 - (i) Choose a request $i \in R$ that has the smallest finishing time
 - (ii) Add request *i* to *A*;
 - (iii) Delete all requests from R that are not compatible with request i
- (3) EndWhile
- (4) Return the set A as the set of accepted requests

Example

Example

Example

Example(Con.)

Example(Con.)

Example(Con.)

Let I be the first interval from left to right that is in S but not in OPT.

Let I be the first interval from left to right that is in S but not in OPT.

Suppose J is the interval in OPT that has been considered instead of I. We know that the right end of J is not before the right end of I.

Let I be the first interval from left to right that is in S but not in OPT.

Suppose J is the interval in OPT that has been considered instead of I. We know that the right end of J is not before the right end of I.

In other words, the finish time of J is not smaller than the finish time of I.

Let I be the first interval from left to right that is in S but not in OPT.

Suppose J is the interval in OPT that has been considered instead of I. We know that the right end of J is not before the right end of I.

In other words, the finish time of J is not smaller than the finish time of I.

Now obtain OPT1 by removing J from OPT and adding I. It is clear that no interval after J in OPT has overlap with I. Therefore OPT1 is a valid scheduling and have the same number of intervals as OPT. Therefore OPT_1 is optimal.

Let I be the first interval from left to right that is in S but not in OPT.

Suppose J is the interval in OPT that has been considered instead of I. We know that the right end of J is not before the right end of I.

In other words, the finish time of J is not smaller than the finish time of I.

Now obtain OPT1 by removing J from OPT and adding I. It is clear that no interval after J in OPT has overlap with I. Therefore OPT1 is a valid scheduling and have the same number of intervals as OPT. Therefore OPT_1 is optimal.

By keep repeading the above procedure we eventually get OPT_r that is the same as S. Therefore S is optimal.

How many resources do we need to finish all the requests? (minimum number of compatible sets of all the requests (in each set there is no overlap))

Problem Statement: We have a resource and many people request to use the resource for periods of time.

Conditions:

- the resource can be used by at most one person at a time.
- we can accept only *compatible* requests (overlap-free).
- the request i has deadline d_i , and it requires time interval of length t_i .
- <u>lateness</u> of each request i is $f(i) d_i$ (f(i) finish time of i)

Notation: we assign each request an interval [s(i), f(i)] where $t_i = f(i) - s(i)$.

Goal: minimize the maximum lateness.

Key Idea: Earliest Deadline First.

Key Idea: Earliest Deadline First.

Algorithm

- (i) Order the jobs in order of their deadlines $d_1 \leq d_2 \leq \cdots \leq d_n$;
- (ii) Initially f = s;
- (iii) for jobs $i = 1, \dots, n$: Do job i in the time interval [s(i), f(i)] where s(i) = f and $f(i) = s(i) + t_i$; Let $f = f + t_i$;
- (iv) return intervals [s(i), f(i)] for $i = 1, \dots, n$;

Why this works?

Why this works?

(*)Let assume there is an optimal solution with no idle time.

Why this works?

(*)Let assume there is an optimal solution with no idle time.

Definition

A schedule A' has an <u>inversion</u> if a job i with deadline d_i is scheduled before another job j with earlier deadline $d_j < d_i$.

Why this works?

(*)Let assume there is an optimal solution with no idle time.

Definition

A schedule A' has an <u>inversion</u> if a job i with deadline d_i is scheduled before another job j with earlier deadline $d_j < d_i$.

Lemma

All schedules with no inversions and no idle time have the same maximum lateness.

Why this works?

(*)Let assume there is an optimal solution with no idle time.

Definition

A schedule A' has an <u>inversion</u> if a job i with deadline d_i is scheduled before another job j with earlier deadline $d_j < d_i$.

Lemma

All schedules with no inversions and no idle time have the same maximum lateness.

Theorem

There is an optimal solution that has no inversions and no idle time.

Let L_i be the lateness of J_i and L_j be the lateness of J_j . By definition $L_i = t + t_i - d_i$ and $L_j = t + t_i + t_j - d_j$ Since $d_i < d_i$ we have $L_i < L_i$.

Let L_i be the lateness of J_i and L_j be the lateness of J_j . By definition $L_i = t + t_i - d_i$ and $L_j = t + t_i + t_j - d_j$ Since $d_i < d_i$ we have $L_i < L_i$.

Now consider a solution S obtained from optimal by exchanging J_i and J_j at time t (all the other jobs remained unchanged).

Let L_i be the lateness of J_i and L_j be the lateness of J_j . By definition $L_i=t+t_i-d_i$ and $L_j=t+t_i+t_j-d_j$

Since $d_j < d_i$ we have $L_i < L_j$.

Now consider a solution S obtained from optimal by exchanging J_i and J_j at time t (all the other jobs remained unchanged).

Let L_i' be the lateness of J_i and L_j' be the lateness of J_j in S. By definition $L_i' = t + t_j + t_i - d_i$ and $L_j' = t + t_j - d_j$ $L_i' \le L_i$ because $t + t_i - d_i < t + t_i + t_j - d_i$.

Let L_i be the lateness of J_i and L_j be the lateness of J_j . By definition $L_i=t+t_i-d_i$ and $L_j=t+t_i+t_j-d_j$

Since $d_j < d_i$ we have $L_i < L_j$.

Now consider a solution S obtained from optimal by exchanging J_i and J_i at time t (all the other jobs remained unchanged).

Let L_i' be the lateness of J_i and L_j' be the lateness of J_j in S. By definition $L_i' = t + t_j + t_i - d_i$ and $L_j' = t + t_j - d_j$

$$L'_j \leq L_j$$
 because $t + t_j - d_j < t + t_i + t_j - d_j$.

Case 1. $L'_i < L'_j$: Then we can consider S instead of optimal (the maximum lateness does not happen at time t).

Let L_i be the lateness of J_i and L_j be the lateness of J_j . By definition $L_i=t+t_i-d_i$ and $L_j=t+t_i+t_j-d_j$

Since $d_j < d_i$ we have $L_i < L_j$.

Now consider a solution S obtained from optimal by exchanging J_i and J_i at time t (all the other jobs remained unchanged).

Let L'_i be the lateness of J_i and L'_j be the lateness of J_j in S. By definition $L'_i = t + t_j + t_i - d_i$ and $L'_j = t + t_j - d_j$ $L'_i \le L_j$ because $t + t_j - d_j < t + t_i + t_j - d_j$.

Case 1. $L'_i < L'_j$: Then we can consider S instead of optimal (the maximum lateness does not happen at time t).

Case 2 $L'_{j} < L'_{i}$:

Now $L'_i < L_j$ because $t + t_j + t_i - d_i < t + t_i + t_j - d_j$.

Therefore we consider S instead of optimal (S is also good).

Scheduling Jobs with Deadlines and Profits

Problem Statement: We have a resource and many people request to use the resource for periods of time.

Conditions:

- the resource can be used by at most one person at a time.
- we can accept only compatible requests (overlap-free).
- the request *i* has deadline *d_i*, and it has to be done before its deadline.
- each job has a profit g_i .
- each job has a unit length.

Goal: find a feasible schedule with maximum profit .

Key Idea: Find the best place for the job with maximum profit.

Key Idea: Find the best place for the job with maximum profit.

Algorithm

- (i) Sort the jobs so that: $g_1 \geq g_2 \geq \cdots \geq g_n$;
- (ii) for jobs $i = 1, \dots, n$: schedule job i in the <u>latest</u> possible free slot meeting its deadline; if there is no such slot, do not schedule i:
 - if there is no such slot, do not schedule i;
- (iv) return intervals [s(i), f(i)] for $i = 1, \dots, n$;

Minimizing the Average Completion Time

Problem Definition:

- We are given a set of n jobs J_1, J_2, \ldots, J_n
- **2** Each job J_i , $1 \le i \le n$ has a processing time p_i
- **3** Each job J_i , $1 \le i \le n$ has weight $w_i \ge 0$

Goal:

Scheduling of the jobs to minimize :

$$\sum_{i=1}^{i=n} w_i C_i$$

Here C_i is the completion time of job J_i .

Order the jobs based on $\frac{p_i}{w_i}$.

Suppose
$$\frac{p_1}{w_1} \le \frac{p_2}{w_2} \le \dots \frac{p_{n-1}}{w_{n-1}} \le \frac{p_n}{w_n}$$

Then the ordering of the jobs is J_1, J_2, \ldots, J_n .

Proof : Let OPT be the optimal solution in which J_j is right before J_i and $\frac{p_j}{w_i} > \frac{p_i}{w_i}$. Otherwise, our ordering is optimal.

Let X be the value average completion time of OPT.

Let OPT1 be the schedule in which we switch J_i and J_j (J_i comes right before J_j in OPT1).

We compare X and X1 (which is the average time of OPT1).

Suppose job J_j starts at time t in OPT. Thus, we have

$$X = U + (t + p_j)w_j + (t + p_j + p_i)w_i + V$$
 and
 $X1 = U + (t + p_i)w_i + (t + p_i + p_j)w_j + V$.

Here $t + p_j$ is the C_j (finish time of J_j), and $C_i = t + p_i + p_j$ is the finish time of J_i in OPT. Similarly $(t + p_i)$ and $(t + p_i + p_j)$ are the finish time of J_i and J_j in OPT1.

Now $X - X1 = p_j w_i - p_i w_j > 0$, because $\frac{p_j}{w_j} > \frac{p_i}{w_i}$. Therefore, OPT1 has a smaller average time which is a contradiction to OPT being optimal.

