Music Synthesis via Chord Progression Generation

Benjamin Geyer bgeyer3@gmu.edu

Problem Overview

- Goal:
 - Generate pleasing sounding music
- Problem
 - Tough to evaluate new music without human scoring
- Solution
 - Utilize music theory to produce theoretically good music
- Proposed Method
 - o Train a model to generate chord progressions for a given song melody

Dataset

- Lead Sheet Database
 - 11,000 Songs Total
 - Pianoroll: timesteps x pitches
 - 1300 Songs

Input:

```
[{"note":"A", "duration":2},

{"note":"B", "duration":1},

{"note":"C", "duration":0.25},

{"note":"D", "duration":0.5},

{"note":"A", "duration":1}]
```


Output:

[{"chord":"C.E.G", "duration":2},

{"chord":"A.D.E", "duration":1},

{"chord":"C.F.G", "duration":0.25},

{"chord":"A.D.G", "duration":0.5}]

Example

Methodology

- Feed melody to the network
- Get a chord progression as output

- Evaluate quality:
 - Compare generated chords to the known chords of the song
 - Also investigated predicting melody along with chords
 - Next note per timestep

Model Architecture

- Embedding from notes/chords to vectors
- LSTM / BiLSTM
- Hidden Layers repeated
 - o Dropout, Dense, ReLU
- Melody, Chord Prediction Layers
 - Take hidden layer output
 - o Dropout, Dense, ReLU
 - Predict most likely next note/chord via softmax activation

Evaluation

- Loss: Negative Log Likelihood
 - Chord Predictions
 - Melody Predictions

- Metrics:
 - Accuracy
 - Top-K Accuracy (K=3)

Experiments

- Combined loss for chord and melody vs just chords
- BiLSTM vs LSTM

- Tensorboard for tracking and visualization
- Up to 100 epochs, patience of 10 epochs

Results

Results

Results

Overfitting

Melody Metrics

Findings and Discussion

Combination of Chord and Melody loss was best

- BiLSTM was better than LSTM
 - Only applicable in some situations

Lots of Overfitting

Conclusion

Yes, a machine can learn to generate pleasing music

- Caveats for my project:
 - Limited to two pieces, melody and a chord progression
 - Not polyphonic / multiple instruments
 - Live composition is tricky with BiLSTM

Future Work

Overfitting prevention such as Dropout

BiLSTM with masking for use in live scenarios

- Adaptive Loss Function
 - Melody + Chord loss to just Chord as time goes on

- More advanced model architecture
 - Attention, Transformers, etc

Thank You