Signal Processing – Analog Part

Submitted To:

Prof. Ulf Witkowski

South Westphalia University of Applied Sciences

Soest Campus

Presented by,

Md. Saiful Islam Sajol Matriculation no. 30042836

Task 1

$$\frac{V1}{Vin} = \frac{R_1R_3R_4 + R^2R_1^2R_4s^2C^2}{R_2R_3R_4 + R^2R_1R_2R_4s^2C^2 + RR_1R_2R_3sC}$$

Notch (Band Reject Filter)

$$\frac{V2}{Vin} = \frac{R^2R_1^2R_3s^2C^2}{RR_1R_2R_3sC+R_2R_3R_4+R^2R_1R_2R_4s^2C^2}$$

High Pass Filter

$$\frac{V3}{Vin} = \frac{-RR_1^2 R_3 s C}{RR_1 R_2 R_3 s C + R_2 R_3 R_4 + R^2 R_1 R_2 R_4 s^2 C^2}$$
 Band Pass Filter

$$\frac{V4}{Vin} = \frac{R_1^2 R_3}{R R_1 R_2 R_3 S C + R_2 R_3 R_4 + R^2 R_1 R_2 R_4 S^2 C^2} \longrightarrow \text{Low Pass Filter}$$

Task 2

voltage source generating the noisy signal.

frequency of the wanted signal, it is ftarget = 42KHz

Solution:

Finding parameters of High pass Filter Side

For simplicity,

We select $R_{B1}=R_{\Delta 1}=R_2=3.9k\Omega$ (arbitrary)

 $F_{c1} = 1/(2*pie*RC)$

C=1046pF ~1000pF (E-24 sequence)

 $C_{A1} = C_{B1} = C_{1} = 1000 pF$

R1/R2=0.586 (from chart)

 $f_{c2} = f_c^2 / f_{c1} = 42^2 / 39 = 45.23 \text{kHz}$

 $R1=0.586*3.9k=2.285k\Omega$

ſ	Values for the Butterworth response.										
		BOLL OFF	1ST STAGE			2ND STAGE			3RD STAGE		
	ORDER	ROLL-OFF DB/DECADE	POLES	DF	R_1/R_2	POLES	DF	R_3/R_4	POLES	DF	R_5/R_6
I	1	-20	1	Optional							
I	2	-40	2	1.414	0.586						
I	3	-60	2	1.00	1	1	1.00	1			
I	4	-80	2	1.848	0.152	2	0.765	1.235			
I	5	-100	2	1.00	1	2	1.618	0.382	1	0.618	1.382
	6	-120	2	1.932	0.068	2	1.414	0.586	2	0.518	1.482

Finding parameters of Low pass Filter Side

For simplicity,

We select $R_{B2}=R_{A2}=R_4=3.9k\Omega$ (arbitrary)

 $F_{c2}=1/(2*pie*RC)$

C=902.25pF ~910pF (E-24 sequence)

 $C_{A2} = C_{B2} = 910pF$

R3/R4=1 (from chart)

 $R3 = R4 = 3.9 k\Omega$

electronic-devices-9th-edition-by-floyd.pdf -

Time Domain

