

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANSARDS 1903 A

Topostal hacterial bearing the second of the second and second and second and second and second as the second as

Woods Hole Oceanographic Institution

Data Tabulations and Analysis of Diurnal Sea Surface Temperature Variability Observed at LOTUS

by

Clarke M. Bowers, James F. Price, Robert A. Weller and Melbourne G. Briscoe

February 1986

Technical Report

Funding provided by the Office of Naval Research under contract Nos. N00014-76-C-0197, NR 083-400 and N00014-84-C-0134, NR 083-400

Approved for bubble release, a subulion unlater of

WHOI-86-5

Data Tabulations and Analysis of Diurnal Sea Surface Temperature Variability Observed at LOTUS

by

Clarke M. Bowers
James F. Price
Robert A. Weller
and
Melbourne G. Briscoe

Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543

February 1986

Technical Report

Funding was provided by the Office of Naval Research under contract Nos. N00014-76-C-0197, NR~083-400 and N00014-84-C-0134, NR~083-400.

Reproduction in whole or in part is permitted for any purpose of the United States government. This report should be cited as:
Woods Hole Oceanog. Inst. Tech. Rept. WHOI-86-5.

Approved for publication; distribution unlimited.

Approved for Distribution:

Robert C. Beardsley, Chairman

Robert C Beardsley

Department of Physical Oceanography

Abstract (d.2... T -10...)

11.

Air/sea measurements from the Long-Term Upper Ocean Study (LOTUS) buoy in the Sargasso Sea are analyzed to learn how the diurnal response of sea surface temperature, ΔT_s , is related to the surface heating, H, and the wind stress, S. Data are taken from the LOTUS-3 and LOTUS-5 records which span the summers of 1982 and 1983. The basic data are shown in monthly plots, and the analyzed daily values of ΔT_s , H, and S are given in tables and in figures.

Analyzed data show a clear trend of ΔT_s increasing with H and decreasing with S. A best-fit, three-parameter, empirical function can account for 90/percent of the variance in a screened subset of the LOTUS data (172 days) and 81/percent of the variance of the full data set (361 days).

The analyzed data are also compared with a theoretical model function now used for ocean predictions in the Diurnal Ocean Surface Layer model (DOSL) of Fleet Numerical Oceanography Center. The DOSL model function was derived from the assumption that wind-mixing occurs by a mechanism of shear flow instability. It is fully predictive and shows a parameter dependence consistent with the LOTUS data over a wide range of H and S. The DOSL model function can account for almost as much variance as the best-fit empirical function.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By
Distribution /

Availability Codes

Dist

Avail and / or
Special

TABLE OF CONTENTS

		Page
	Abstract	2
	List of Tables	4
	List of Figures	4
l.	Introduction	5
11.	LOTUS Data and Analysis Methods	5
	A. Sea Surface Temperature Response	6
	B. Daily Averages	б
	C. Insolation	7
	1) Maximum Observed Insolation	7
	2) Integrated Insolation	7
	3) Least Squares Fit to Insolation	8
	D. Horizontal Advection	8
III.	Results	9
IV.	Fit to and Comparison with Models	14
	A. Empirical Model	14
	B. Positive Bias of Analyzed ΔT _s	15
	C. Theoretical Model	15
٧.	Conclusions	20
	Acknowledgments	22
	References	23
	Appendix A, Monthly Time-Series Plots of LOTUS Data	24
	Appendix B, Listing of Analyzed Data	38
	Appendix C. FORTRAN Listing of DOSL Model Function	48

LIST OF TABLES

		Page
Ι.	Statistics of Data / Model Comparisons	16
	LIST OF FIGURES	
1.	Analyzed, full data set	10
2.	Data set with advection periods omitted	12
3.	Screened data set	13
4.	Screened data and best-fit model function	17
5.	Sea surface temperature response	
	at very low values of heating	19
6.	Screened data set and DOSL model function	19
7. A.1-	Residuals from the screened data set and DUSL model function	21
A.13	Monthly time-series plots of LOTUS data	25

I. INTRODUCTION

In this study we use oceanographic and meteorological field observations to examine the response of sea surface temperature to diurnal heating and wind stress. The data were acquired by the Long-Term Upper Ocean Study (LOTUS) buoy which was deployed in the northwestern Sargasso Sea (34°N, 70°W) from 1982 to 1984 (Briscoe and Weller, 1984; Deser, Weller and Briscoe, 1983; Tarbell, Montgomery and Briscoe, 1985). The LOTUS data are well suited for this study because the signal of local heat storage is generally large compared to the effects of horizontal advection, and because the LOTUS data provide high accuracy and temporal resolution.

The aim of the analysis is, first, to reduce the time series data to daily values of the heating, H, wind stress, S, and surface temperature response, ΔT_s , and second, to determine the dependence of ΔT_s upon H and S. There is a practical value to this result — the function $\Delta T_s(H,S)$ defined or verified by these data can be used to forecast or hindcast the diurnal cycle, and a scientific value — these data show how a rotating fluid responds to a stabilizing heat flux and an imposed stress.

The primary purpose of this technical report is to provide time series plots of the original LOTUS data, a tabulation of the analyzed data, and a listing of the FORTRAN program which evaluates a theoretical model function.

II. LOTUS DATA AND ANALYSIS METHODS

The LUTUS data used for this analysis are time series measurements of wind speed, insolation and ocean temperatures at 0.6, 5, 10, 15, 25, 50 and 75 m at 15 min intervals (Deser et al., 1983; Tarbell, Pennington and Briscoe, 1984). Estimates of the wind stress, τ , and surface heat flux, Q = I + L, where I is insolation and L is the heat loss, were made as described by Stramma et al. (1986). The data sets analyzed are from the deployments LOTUS-3 (May 14, 1982 through October 20, 1982) and LOTUS-5 (April 15, 1983 through October 30, 1983). Monthly plots of the full data set are in Appendix A. In Appendix B we list the analyzed daily values of the wind stress, wind speed, insolation, etc., so that other investigators will have ready access to our intermediate results.

A. Sea Surface Temperature Response

The ocean's response to the forcing of the winds and solar heating is characterized here by the amplitude of the sea surface temperature response, $\Delta T_{\rm S}$, where $T_{\rm S}$ is the LOTUS temperature at 0.6 m depth, and Δ indicates the change (increase) over a day. If the diurnal cycle is the dominant signal in $T_{\rm S}$, then the lowest $T_{\rm S}$ of the day will occur between 0500 and 0900 hours (all times quoted in the text are local solar; local noon is 1730 Z), and the highest $T_{\rm S}$ will occur between 1100 and 1800. We have estimated the diurnal response of sea surface by subtracting the lowest temperature observed between 0500 and 0900 from the highest temperature observed between 1100 and 1800. The result is listed in Appendix B as "DEL T".

This process of subtracting the lowest from the highest temperature will alias high frequency noise (compared to diurnal) into larger ΔT_s . In Section IV.B we will evaluate the resulting bias in the analyzed ΔT_s by inspection of the estimates available at very low values of surface heating.

B. Daily Averages

In the following analysis we compute a "daily" value as an average over the period during each day when $\, Q > 0 \,$. Let $\, t_1 \,$ be the time when $\, Q \,$ first becomes positive, and let $\, t_2 \,$ be the time when $\, Q \,$ becomes negative at sunset. Daily average is defined here as

$$\left(\frac{1}{2P_{Q}}\right) = \frac{1}{2P_{Q}} \int_{t_{1}}^{t_{2}} () dt ,$$

where $P_Q=1/2$ (t_2-t_1) . (On some days Q may become negative within the time interval $t_1 < t < t_2$ when increased cloud cover causes the insolation to drop below the value of the heat loss. A second, alternate, time scale, PQ_2 , (not used here) was defined to be literally the half time that Q was positive for each day.)

Daily average values are tabulated in Appendix B as: "U", daily average wind speed (m s $^{-1}$), "TAU", daily average wind stress (Pa), "L", average heat loss (W m $^{-2}$).

Standard deviations are also listed as "SD U", "SD TAU', and "SD L". In computing SD TAU we sum the standard deviations of the east and north components to take account of varying wind direction. In some of the later comparisons with models we will screen out those days having highly variable or irregular forcing and retain the days which have comparatively steady forcing.

C. Insolation

The amplitude of insolation has been estimated in three ways.

1) Maximum Observed Insolation

The maximum insolation observed on each day was extracted from the records, and is listed as I_1 . If there were no clouds, then I_1 together with the duration of the insolation, D, would completely characterize the insolation for any day. However, cloud-free days are the exception rather than the rule, and we have therefore defined two other more useful measures of insolation.

2) Integrated Insolation

The integral of the insolation has been used to define I_2 as

$$I_2 = \frac{\int_{t_3}^{t_4} I dt}{D \Gamma},$$

where

I = observed insolation,

 t_3 = the start of insolation,

 t_a = the end of insolation,

D = duration of the insolation, $t_4 - t_3$,

$$\Gamma = \frac{1}{DF_m} \int_{t_3}^{t_4} F(t, \phi, \alpha) dt = 0.57, \text{ a constant,}$$

 $F(t, \phi, \alpha)$ = theoretical clear sky insolation; function of year day, t, latitude $\phi = 34\,^\circ N$, and clear sky transmittance, $\alpha = 0.8$. F_m is the daily maximum (List, 1958).

Because the insolation records have some slight noise, t_3 was estimated to occur a half hour before $I \geq 30 \text{ W m}^{-2}$, and similarly t_4 was taken to be a half hour beyond $I \leq 30 \text{ W m}^{-2}$ in late afternoon. The error in defining the period of insolation in this manner is \pm 15 minutes for most days, which gives about 4 percent error in the computed amplitude (I_2) of the insolation.

3) Least Squares Fit to Insolation

As an alternative measure of insolation, we have also carried out a least squares fit of the normalized theoretical insolation function F onto observed insolation to compute the amplitude " I_3 " (Appendix B). The standard deviation of the fit, listed as "SD I_3 ", provides a convenient, objective measure of the variability of insolation due to cloud cover. In a later analysis we screen out days with highly variable insolation by setting an upper limit on the ratio, SD I_3/I_2 .

D. Horizontal Advection

The analysis thus far has been concerned only with the vertical fluxes of heat and momentum. Our implicit assumption of a local balance is valid as long as there is no horizontal advection occurring in the water column. However, the effects of horizontal advection are evident in the LOTUS data as occasions when the water column (above 75 m) underwent depth-independent temperature changes. Since we were unable to account for the effects of horizontal advection explicitly, we sought to identify at least the most obvious occurrences of horizontal advection so that we could eliminate the corresponding days from the analysis.

A local heat balance analysis was performed by comparing the net surface heat flux with the observed heat storage in the water column,

$$EPS = \frac{\int_{t_1}^{t_2} Q dt - \Delta B}{\int_{t_1}^{t_2} Q dt},$$

where B is the observed heat storage to 25 m depth, and $\Delta B = B(t_2) - B(c_1)$. The values of EPS are listed in Appendix B. This alone does not effectively identify horizontal advection since vertical advection can also cause significant changes in heat storage without changing T_S (note especially the period 10 to 30 September 1983, Figure A.12, when there were very large changes in temperature at 25 m and deeper, but no corresponding changes in the near surface). We have therefore used the tabulated EPS values as a guide, and proceeded to subjectively identify periods where norizontal advection seemed to be important. These were noted by setting the flag A = 1 (Appendix B), and included only 44 days (two periods in 1982 and three in 1983), or about 12 percent of the complete data set.

III. RESULTS

Our analysis of the full data set is presented graphically in Figure 1 where the diurnal response of sea surface temperature is plotted against independent variables proportional to the heating and wind stress. The "heating" variable was computed as:

$$H = \frac{Q P_Q}{\rho_O C_p} (C m)$$

where

$$Q = I_2 + \overline{L} (W m^{-2}),$$

 $\rho_0 = 1023 (kg m^{-3}), and$
 $C_p = 4183 (J kg^{-1} C^{-1}).$

The product Q P_Q is proportional to the (warming) heat flux supplied to the ocean; division by ρ_Q C_p gives kinematic units, C m, which are more readily interpreted. In a similar way the "stress" variable was computed as:

$$S = \frac{\overline{\tau} \rho_{\tau}}{\rho_{0}} (m^{2} s^{-1}),$$

where

= daily average wind stress (Pa), P_{t} = acceleration time scale = $1/f[2-2\cos(fP_{Q})]^{1/2}$ (s), and f = Coriolis parameter (s⁻¹).

Figure 1: The complete LOTUS-3 and LOTUS-5 data sets, one data point per day (361 days). (Note that what we term "stress" has the units of volume transport per unit length.)

In this final regard the scaling begins to follow the theory developed by Price, Weller and Pinkel (1986; hereafter, PWP) where the vertical mixing due to wind stress was presumed to occur through shear flow instability caused by wind-driven currents. [The amplitude of the wind-driven current (or diurnal jet) was estimated to be W/D where D is the trapping depth, and $\Delta T_{\rm S} \simeq {\rm H/D.}]$ The f-dependence of P_{τ} takes account of rotation which in this case is small enough that $P_{\tau} \simeq P_{\rm Q}.$ In effect, the heating rate Q and the wind stress τ are multiplied by nearly the same time scale (which does vary from day to day).

While there is a good deal of scatter in the data of Figure 1, it is also apparent that there is a significant functional dependence of ΔT_S upon H and S. Within the variable range sampled here, ΔT_S increases with increasing H and with decreasing S — the qualitative result expected.

Before we attempt to define or test a model function, we first screen the data to omit the days which one would expect, a priori, to be unsuitable for defining a function $\Delta T_S(H,S)$. That is, we assume that if the wind was steady during the day and H was regular (not intermittent due to cloud cover), then some function $\Delta T_S(H,S)$ should obtain. On the other hand, if the wind, say, were highly variable during a day, then there are additional degrees of freedom present, and a function dependent upon S alone might not be appropriate. The LOTUS data set is large enough that we can omit days with irregular or variable forcing and still retain a large sample spanning a wide parameter range.

In Figure 2 we have omitted the days identified as showing some effects of horizontal advection (discussed in Section II.D), and in Figure 3 we have also omitted days having either highly variable insolation, SD $I_3/I_2 \geq 1/2$, or highly variable wind stress, SD TAU/TAU $\geq 1/2$. The result of this screening is to eliminate some of the points which lie furthest from the mean trend of the data. The last version, Figure 3, will be used for model definition and testing, but we also make comparisons with the full data set.

Figure 2: Same as Figure 1 but omitting time periods identified as showing effects of horizontal advection (316 days remaining).

genes Technical Resident Resident Consider (Resident Resident Resident Resident Persident Resident Torright Resident

Figure 3: Same as Figure 2, but also omitting individual days naving highly variable wind stress or irregular insolation (172 days remaining). This is referred to as the screened data set.

IV. FIT TO AND COMPARISON WITH MODELS

These data may be used to define purely empirical model functions and to test theoretical model functions. To quantify data/model comparisons, we have calculated statistics of the deviations.

$$T' = \Delta T_S - \Delta T_m ,$$

where ΔT_{in} is ΔT evaluated by the best fit or theoretical model at the H, S of the corresponding, observed ΔT_{s} . The ensemble Average Deviation is

$$AD = \langle T' \rangle = \frac{1}{N} \sum T' ,$$

where N is the number of days; the Percentage of Variance accounted for by the model is

$$PV = 100 \left[1 - \frac{\langle T'^2 \rangle}{\langle \Delta T_s^2 \rangle} \right];$$

and the Correlation Coefficient is

$$CC = \frac{\langle \Delta \tilde{T}_{m} \Delta \tilde{T}_{s} \rangle}{\langle \Delta \tilde{T}_{m} \rangle \langle \Delta \tilde{T}_{s}^{2} \rangle},$$

where (°) indicates departure from the ensemble mean. (PV and CC differ in that CC is independent of bias error. Here the bias error is small compared to random errors, and we emphasize PV in our discussion.)

A. Empirical Model

A purely empirical model function is defined from the data by maximizing $\,$ PV $\,$ for the three parameter function,

$$\Delta T(H,S) = \alpha H^{\beta} \exp(-S/\gamma)$$
.

This functional form was chosen by inspection of the data, and under the assumption that ΔT should vanish as $H \Rightarrow 0$, and should be finite as $S \Rightarrow 0$. Values of α , β , γ which maximize PV were found by a searching method to be:

$$\alpha = 0.20 \pm 0.03$$
 (C),
 $\beta = 1.40 \pm 0.1$ and
 $\gamma = 0.80 \pm 0.05$ (Pa).

These give PV = 90 (see also Table I), showing that there is indeed a strong dependence of ΔT_S upon the presumed independent variables, H and S. This best fit function is plotted as a surface along with the screened data in Figure 4.

B. Positive Bias of ΔT_c

A consistent result of the data/model comparisons is that AD tends to be positive, i.e., on average the observed ΔT_S lie slightly above the model prediction (as can be seen in Figure 4). This is at least partially a result of a bias error inherent in the day-night differencing procedure used to estimate the diurnal response of surface temperature (Section II.A). To check this we have plotted the ΔT_S available at small values of H, Figure 5. Note that ΔT_S tends to remain slightly positive as H goes to zero; $\langle \Delta T_S \rangle = 0.07$ C for H $\langle 0.05$ C m, which is unphysical, and presumed to be a bias error of the analysis.

C. Theoretical Model

A theoretical model function derived by PWP and now in use at Fleet Numerical Oceanography Center as part of the Diurnal Ocean Surface Layer (DOSL) model may be tested using these data. The only additional parameters needed to evaluate the model (see Appendix C for model listing) are those that define the optical properties of the water. For the LOTUS site we use Type I parameters appropriate for very clear ocean waters (Stramma et al., 1986; Paulson and Simpson, 1977: long wave extinction scale, $\beta_1 = 0.35$ m; short wave extinction scale, $\beta_2 = 23$ m, and the fraction of long wave insolation, R = 0.58).

The statistics of this model/data comparison are in Table I, and the result is plotted in Figure 6. Note that AD is again slightly positive and

Table I
Statistics of Data / Model Comparisons

	Bes Empiri	t Fit, cal Model	DOSL Model	
	Full Data Set	Screened Data Set	Full Data Set	Screened Data Set
Number of Days	361	172	361	172
Average Deviation, C	0.06	0.04	0.08	0.07
Percent Variance	81	90	74	87
Cross- Correlation	0.82	0.91	0.80	0.89

Figure 4: Screened data set and the best-fit empirical model function shown as a surface. Data points which lie above the surface are solid, those below are open. Vertical lines connect the points to the model surface.

Figure 5: Sea surface temperature response at very low values of heating. Note that the estimates have a small mean value, ~ 0.07 C, as heating vanishes, probably because of a bias error inherent in the day/night differencing method used to define the diurnal response.

Figure 6: Screened data set and the DOSL model function.

that PV = 87, or nearly as successful as the best-fit empirical function. The empirical model function and the DOSL model function differ significantly only in the limit of very large H and vanishing S where there are not enough data to tell which is better.

The DOSL model function appears to follow the trend of the data reasonably well (suggested also by large PV). To check explicitly whether there may be coherent structure in the deviations, we have smoothed and interpolated T' to a regular grid, and plotted the resulting local average T' (local in H,S) as a surface in Figure 7 left. This surface lies slightly above O almost everywhere (by about 0.05 to 0.1 C), consistent with the bias noted before. There is no obvious low mode structure to the surface, which suggests that the model function dependence upon H and S is reasonably consistent with the H, S dependence of the LOTUS data. Said differently, the deviations do indeed appear to be random (aside from the bias of the analysis).

In a similar way the local average root mean square deviation was computed and plotted in Figure 7 right. This surface does have a significant low mode structure with the rms T' increasing as does ΔT_s . In the range where $\Delta T_s \approx 2$ C, the rms T' ≈ 0.4 C. (In the limit of small H, large S, the rms T' ≈ 0.1 C, which is essentially the statistics of the data itself.) A random error which increases with the signal might result from variable wind stress or insolation (recall that SD TAU/TAU is allowed to be as large as 1/2 here).

A statistical comparison of the DOSL model with the full data set shows that there is still a significant dependence of ΔT_S upon H and S (PV = 74, Table I), though on some specific days the deviation may be quite large.

v. CONCLUSIONS

The LOTUS-3 and LOTUS-5 data sets have been used to define and test model functions that relate the diurnal response of sea surface temperature to the imposed surface heat flux and wind stress. Either a best fit empirical function or the DOSL model function developed by PWP can account for roughly 80% of the ΔT_c variance observed in the LOTUS data set. The DOSL

Figure 7: The average (top) and root mean square (bottom) field of the deviations, T', from Figure 6. The surfaces were constructed by smoothing over neighboring values. The heavy border shows where deviation = 0.

Note that the average value tends to be about 0.1 C throughout the full range of H and S, with little evidence of low mode structure. On the other hand, the rms value is largest where ΔT_S is also largest. This suggests that there may be a "hidden variable" not accounted for by the present scaling and model assumptions (e.g., using only the daily mean value to represent the wind stress).

function has the advantage of showing explicit dependence upon sea water optical properties and latitude, while in the empirical function this dependence is implicit in the parameter values.

The DOSL model function was based upon the idea that the currents generated by wind stress cause vertical mixing by a mechanism of shear flow instability. The resulting function $\Delta T_S(H,S)$ which follows from this idea has a parameter dependence consistent with the LOTUS field data. This is indirect evidence that the mixing assumption was a good one (but to make a strong test requires sensitivity testing and alternate model testing not attempted here).

The tests of the DOSL model function made here do suggest that that function is appropriate physically. That is, if given accurate forecasts of heating and wind stress, the DOSL model should return an accurate upper ocean forecast. Of course, on any specific site or day, the ocean's response could be dominated more by advection, or by sub-mesoscale variability of the winds, than by the forecast diurnal response (recall the larger scatter in the full data set compared to the screened data set.) It may be that the large scale (atmospheric mesoscale) patterns of diurnal warming will be forecast more successfully than will the point-wise response studied here.

The most readily observable quantities are the cloud cover (needed to calculate H) and the sea surface temperature itself. This suggests that an inversion of $\Delta T_S(H,S)$ to estimate S (or wind speed) might be useful at least in the low S regime where there is some sensitivity. As a qualitative example, Stramma et al. (1986) have shown that regions of large ΔT_S are coincident with regions of weak sea surface pressure gradient, e.g., ridges of the marine high pressure systems. Thus, given a map of H and ΔT_S a forecaster, or an analysis program, could easily sketch in the locations and perhaps some measure of the width of low wind speed regions over the world ocean.

Acknowledgments

We are grateful to the Office of Naval Research for their support of the LOTUS project through contracts NOOO14-76-C-0197, NR 083-400 and NOOO14-84-C-0134, NR 083-400 with the Woods Hole Oceanographic Institution. CMB

was supported as a 1985 Lucretia Johnson Summer Fellow; JFP and RAW were supported by the ONR contracts mentioned above. Our thanks go also to Ms. Nancy Pennington who carried out much of the data reduction and plotting, and to Ms. Mary Ann Lucas and Ms. Barbara Gaffron who helped prepare the manuscript.

References

- Briscoe, M. G. and R. A. Weller, 1984. Preliminary results from the Long-Term Upper-Ocean Study (LOTUS). <u>Dynamics of Atmospheres and Oceans</u>, 8, 243-265.
- Deser, C., R. A. Weller and M. G. Briscoe, 1983. Long-Term Upper-Ocean Study (LOTUS) at 34°N, 70°W: Meteorological sensors, data and heat fluxes for May-October 1982 (LOTUS-3 and LOTUS-4). Wood Hole Oceano-graphic Institution Technical Report, WHOI-83-32, 68 pp.
- List, R. T., 1958. <u>Smithsonian Meteorological Tables</u>, sixth edition, Smithsonian Institution, Washington, D.C., 527 pp.
- Paulson, C. A. and J. J. Simpson, 1977. Irradiance measurements in the upper ocean. Journal of Physical Oceanography, 7, 952-956.
- Price, J. F., R. A. Weller and R. Pinkel, 1986. Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. <u>Journal of Geophysical Research</u>, in press.
- Stramma, L., P. Cornillon, R. A. Weller, J. F. Price and M. G. Briscoe, 1986.

 Large diurnal sea surface temperature variability: satellite and in situ measurements. Journal of Physical Oceanography, in press.
- Tarbell, S. A., N. J. Pennington and M. G. Briscoe, 1984. A compilation of moored current meter and wind recorder data. Volume XXXV, Long-Term Upper Ocean Study (LOTUS) (Moorings 764, 765, 766, 767, 770), May 1982 April 1983. Woods Hole Oceanographic Institution Technical Report WHOI-84-36, 154 pp.
- Tarbell, S. A., Montgomery, E. T. and M. G. Briscoe, 1985. A compilation of moored current meter and wind recorder data. Volume XXXVIII, Long-Term Upper Ocean Study (LOTUS) (Moorings 787, 788, 789, 790, 792), April 1983 May 1984. Woods Hole Oceanographic Institution Technical Report WHOI-85-39, 162 pp.

APPENDIX A

Monthly Time-Series Plots of LOTUS Data

Figure A.1: Monthly time series from May, 1982. The periods during which advection appears to be important (discussed in Section II.D) are denoted by the bar labelled A.

Figure A.2: Monthly time series from June, 1982.

Figure A.3: Monthly time series from July, 1982.

Figure A.4: Monthly time series from August, 1982.

Figure A.5: Monthly time series from September, 1982.

Figure A.6: Monthly time series from October, 1982.

Figure A.7: Monthly time series from April, 1983.

Figure A.8: Monthly time-series from May, 1983.

Figure A.9: Monthly time-series from June, 1983.

Figure A.10: Monthly time-series from July, 1983.

Figure A.11: Monthly time-series from August, 1983.

Figure A.12: Monthly time-series from September, 1983.

Figure A.13: Monthly time series from October, 1983.

APPENDIX B

Listing of Analyzed Data

STRES	9.8	80. 80.	0.57	0.59	0.55	1.13	1.10	1.41	0.45	4.	0 88.0	6.0	8 0	8	0 80	1.83	<u></u> 2	1.87	1.33	0.49	1.37	o.36	1.65	1.17	83 88	83 83	3.57	1.2]	1.10	0.15	1.12	0 8.	8	 8	2.27	2.9	8	1.74	2.16
HEATING	3.56 3.56	2.18	4. 5.	4 .08	4.37	4. 89.	4.45	4.93	5.05	4.7]	4.75	4.59	4.78	4.67	53.	2.12	3.98	1.16		3.53	4.37	3.88	1.45	3.75	1.93	1.18	3.2	ъ 4.	4.	4. 86.	4.36	4.46	4. S	4. 83.	% 88	2.3	3.67	3.03	3.26
Υ .	0 ~	-	-	-	-	0	0	0	0	0	0	0	0	0	~	-	-	-	-	~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EPS	0.848 6.835	8.731	-1.903	မ နှ	-2.104	0.29 29.29	-0.226	0.471	7 9 9	0.354	0.558	1.881	3.174	9. 83.	-2.506	-3.235	-7.496	-3.00]	7.258	7.669	1.448	0.342	-7.127	2.674	-0.208	0.250	0.850	080. 090.	0.973	-1.245	0.784	0.635	-0.876	86. 9	0.263	1.975	-0.651	-1.074	-0.173
8	5.88 5.25	<u>ئ</u> 8.8	8	8.	5.88	6.13	6.13	8. 8	6.13	6.25	6.25	6.13	6.25	6.25	6.25	5.25	5.75	5.8	4 .88	8.8	6.13	6.13	4.38	5.75	3.88	4.50 50	5.25	5.75	6.13	5.88 88	5.88	5.75	9.9	9. 8.	5.88	5.75	6.38	ა დ	8.8
87	5.88 5.25 5.25	5.13	8.8	.8 8	5.88	6.13	6.13	8.8	6.13	6.25	6.25	6.13	6.25	6.25	6.25	5.50	5.75	8.8	ა. 88	8. 8	6.13	6.13	9. 8.	5.88	4.13	4. 83.	5.25	5.75	6.13	გ. 88	5.88	5.75	9. 8.	8. 8	5.88	5.75	6.38	6.13	6.13
12-L	% 88.88	20	935	සූ	883 23	8	83	926	8	892	9 8	89	8	88	8	458	823	275	248	8	%	715	287	758	555	303	38	710	8	<u>2</u>	88	8	935	8	8 28 28	478	8	587	88
8	023	16	16	œ	<u>ლ</u>	4,	ഹ	ю	Ξ	ω	თ	ю	ഹ	4	~	ខ្ម	12	23	ß	4,	ю	임	4	18	g	23	14	വ	က	ន	۵-	ଷ	က	4	ત્ય	თ	9	7	ю
J.	6 8	148	6	28	8	88	88	ß	20	හි	2	6	ß	53	48	101	5	83	93	2	8	5	105	æ	2	148	103	84	£	8	75	10	8	40	53	æ	53	53	5
8 13	55 140	173	75	141	123	55	105 501	2	8	126	<u>5</u>	8	114	139	118	147	87	ß	133	140	8	129	191	149	181	8	129	215	114	124	8	74	69	104	120	125	186	243	106
13	965 958	835	8 8	835	89 89	1034	923	1045	88	8	<u>\$</u>	931	88	936	833	525	8	323	267	755	913	Ę	83	831	745	412	88	<u>8</u>	9 9 9	973	8	1015	1010	8	618	80	Ş	88 20	<u>0</u>
12	86.88 80.88	653	9 8	8	953	1035	88 88	1049	1033	8	978	626	973	ጀ	852	8	868	338	Z	8	8	759	393	5	735	45]	%	8	88	8 0 0	957	1024	1016	88	83	534	737	<u>2</u>	929
I	1012	8	1076	1067	1076	28	1106	1098	<u>66</u>	86	1081	98	1113	1166	900	8	1005	4	745	1065	1095	912	8	1095	1027	8	1038	1149	1148	1981	1080 080	1144	1082	<u>\$</u>	88	33	8	8	8 61
D D	0.8	9.0	7.	9.0		0.7	0.5	0.5	٥.7	4.0	8.0	4.0	0.3	0.7	6.0	8.0	0.5	5.1	1.7	o.3	9.0	 	1.4	8	8.0	9.0	٥.7	0.5	8.0	0.1	0.	.5	9.0	9.0	9.0	1.0	1.1	4.	7.0
Þ	2 K 2 K	8.1	ა დ	ა დ.	₩.	ა ა	5.4	6.3	3.3	3	4 .	5.1	4.	4 .	4 .0	7.4	2.5	7.7	5.9	3.5	6.1	4. છ	6.7	ა ა	9.8	9.8	10.3	ი მ	5.4		ე. ე	4 .	7.4	6.2	8.1	12.7	7.8	6.8	7.8
SD TAU	0.013	0.08 08	0.083	0.010	0.016	0.015	0.012	0.015	0.00	0.00	0.016	0.00	0.00	0.013	0.015	0.027	0.014	9.0	0.036	0.011	0.014	0.040	0.03	0.036	9.0	0.033	0.0	0.013	0.088	0.012	0.086	0.025	0.015	0.081	0.081	0.105	0.047	9. 4.	0.019
TAU	0.012																																						
DEL 1	2.377	960.0	1.251	0.381	1.201	0.459	0.586	0.401	1.216	1.153	969.0	0.911	1.202	0.805	0.787	0.345	1.522	1.732	0.057	0.128	0.238	0.722	0.095	0.281	0.226	90.0	0.042	0.251	0.680	3.095	0.324	0.406	0.600	0.681	0.172	0.003	0.368	0.231	0.248
DAY	-14 -15	-16	-17	-18	-19	8	-21	23	23	-24	-25	93-	-27	83	S _i	ည	-31	7	8	ध	Ÿ,	පි	8	8	8	පු	-10	-11	-12	-13	-14	-15	-16	-17	-18	-19	8-	-2]	3
æ Æ	> >																																						
ITR	8 8	8	8	88	첪	ઝ	8	8	æ	ळ	ळ	8	8	8	8	æ	8	8	9	8	8	8	æ	8	8	8	99	없	99	섫	ઝ	ळ	æ	없	성	쬤	紛	8	쩘

STRES	2.14	o 86.	0.30	1.2	8 6 8 6 8 6	9	0.33	8. 20	1.12	0.59	6. 6.	200	2	20.0	0.0 8.4 8.4	8	0.14	0.16	0.18	4.0	88	8 2	0 8	0.91	න :	9	0.14	8	5.	8.5	÷ 6	3.5 3.4
HEATING	0.98 4.24 43.45	8.8 .781	4. 2.	4. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	8.87 7.87 7.07	88	4.85	4.15	2.43	8	4. 1 5 ;	9	1.13	8.8	5. 4 5. 8	. 4. 9. 9.	8.8	4 .98	4. 8.	4. 8	ы. 24.	0.21	4.43	4. 8.	8	 86.	4 .	4 .	4.4	ა. გ. მ	N -	2.05
ч	000	00	0	00	> C	0	0	0	0	0	00	0	0	0	> C	0	0	0	0	0	00	0	0	0	0	0	0	0	0	0	> (0
EPS	2.721 -10.595 -0.274	3.010 0.152	0.955	8 9 9	0.45 1.45 1.85	2.413	0.782	0.610	1.775	0.787	0.00	0.528	-0.758	۰ ا	20.0	-1.061	0.112	-0.476	0.031	0.288	0.616	42.192	0.329	-0.575	-0.251	3.277	0.861	2.001	0.878	0.743	-2.40	4.755
8	4.25 3.88 6.13	ი წ.	6.25	6.13	5 2 2 3 5 5	5.83	6.13	6.13	5.13	ა გ	6.25	6.25	4.75	6.13	ა ი გ <u>.</u>	6.25	6.50	8.38	6.38	8	5.75	8	6.25	გ. ჯ	3.25	5.25	6.13	8.8	8		, u	. 4. . 88
2	5.00 6.38 5.13	88.83	6.25	6.13	0 10 0 10 0 10 10 10 10 10 10 10 10 10 10 10 10 10 1	8. 8	6.13	6.13	5.13	38	6.25	88	4.75	6.13	0 a	6.25	8.50	6.38	დ ფ	8.8	80.00 80.00	0 4 0 2 0 3	6.25	8.38	ა გ	ω 8	6.13	8.8	8	8.25 25.55	9 6	0. 4. 0. 88
12-L	88 88 188 188	සූ සූ	939	2	5 5 5 5	8	ऋ	8	8	587	893	9 0 0	88	Ø ;	3 8	88	920	931	917	917	88	6 8 8 8 8	Z	917	243	2	8	828	874	\$ 5	3 3 5 5 6	18 18
3	4.83 rv	25	13	ا ا	ოσ	ស្ត	13	13	ဖ	2	4. C	- 00	2	ဖ	, ,	0	, 7	ထ	O.	ଷ୍ଟ	83	4 7	σ	თ	2	12	4	23	100 1	io i	9	4:
а	888	នផ	8	2	₹8	3 8	2	49	8	7.	52	2 %	8	8	\$ 5	: 8	22	9	ß	8	3 3	3 2	20	52	011	8	8	8	ဆ	8	9 9	88
83 53	និធន	- 88 - 88	17	٤;	<u>n</u> 8	88	8	တ္ထ	6	4	23	38	175	133	\$ 8	3 %	13	4	6	8	8	39	9	51	ይ	199	4	\$	78	<u>\$</u>	38	38
13	277 150 911	896 715	96	28	78] 8	38	88	88	900	643	828	38	88 88	8	388	300	8	983	873	8	6	2 2 2 3 3 3 3	87.	957	365	424	8	8	946	88 88 18	8	2 88
12 13	294 277 194 150 913 911																															
11 12 13		888 725	1008	933 1	811 8011		1006	855	68 28	88	200 200 200 200 200 200 200 200 200 200	1019 2001	, S	831	210	1003	900	986	974	986 6	780	80 S	8	973	353	459	1010	945	626 620	867	89 G	200
0 U II IE	25 6 25 6 27 6 27 6	888 725	1008	933 1	811 8011		1067 1006	891 855	848 629	1001 662	1024 963	1043	28	1052 831	1227 710	1054 1003	1059	1024 996	1029 974	1107 986	1034 780	1088	1007	1024 973	624 353	844 459	1020 1010	1062 945	1071 959	986	789 568	200
U SD U II IE IS	25 6 25 6 27 6 27 6	0.9 1091 888 0.6 1052 725	1.0 1021 1008	1.2 1046 933	0.3 1037 811	1.5 1036 896	1.0 1067 1006	0.9 891 855	0.6 848 629	0.9 1001 662	0.7 1024 963	0.9 1050 1019	1.0 822 346	0.8 1052 831	0.4 1227 710	0.5 1054 1003	0.4 1059 1006	0.3 1024 996	0.3 1029 974	1.2 1107 986	1.7 1034 780	0.7 1082 983	1.1 1007 901	1.4 1024 973	0.5 624 353	1.1 844 459	0.6 1020 1010	1.2 1062 945	1.4 1071 959	0.4 986 867	1.0 789 568	0.3 636 522 1.1 967 597
0 U II IE	2.2 421 294 1.5 304 194 0.4 1056 913	018 4.8 0.9 1091 888 024 7.2 0.6 1052 725	012 2.8 1.0 1021 1008	032 5.6 1.2 1046 933	016 8.0 0.3 1037 811	031 4.3 1.7 1036 896	021 2.7 1.0 1067 1006	029 8.4 0.9 891 855	016 5.9 0.6 848 629	020 4.0 0.9 1001 662	016 4.2 0.7 1024 963	0.00 0.00 10.00 10.19	021 4.7 1.0 822 346	012 3.6 0.8 1052 831	007 3.6 0.4 1227 710	000 0.2 0.4 1001 1014 008 2.8 0.5 1054 1003	004 1.8 0.4 1059 1006	004 1.8 0.3 1024 996	003 1.9 0.3 1029 974	018 3.0 1.2 1107 986	039 5.0 1.7 1034 780	023 7.1 0.7 1082 928 059 87 12 881 239	017 3.4 1.1 1007 901	024 4.6 1.4 1024 973	019 7.7 0.5 624 353	034 4.6 1.1 844 459	008 1.6 0.6 1020 1010	022 4.5 1.2 1062 945	039 7.3 1.4 1071 959	019 9.2 0.4 986 867	027 6.4 1.0 789 568	021 10.0 0.3 636 522 056 10.3 1.1 967 597
TAU USDU II IL	066 8.1 2.2 421 294 001 4.2 1.5 304 194 012 5.4 0.4 1056 913	0.018 4.8 0.9 1091 888 0.024 7.2 0.6 1052 725	0.012 2.8 1.0 1021 1008	0.032 5.6 1.2 1046 933	0.016 8.0 0.3 1037 811	0.031 4.3 1.7 1036 896	0.021 2.7 1.0 1067 1006	0.029 8.4 0.9 891 855	0.016 5.9 0.6 848 629	0.020 4.0 0.9 1001 662	0.016 4.2 0.7 1024 963	0.008 5.5 0.5 1000 1019	0.021 4.7 1.0 822 346	0.012 3.6 0.8 1052 831	0.007 3.6 0.4 1227 710	0.000 5.8 0.4 1051 1014	0.004 1.6 0.4 1059 1006	0.004 1.8 0.3 1024 996	0.003 1.9 0.3 1029 974	0.018 3.0 1.2 1107 986	0.039 5.0 1.7 1034 780	0.023 7.1 0.7 1082 928	0.017 3.4 1.1 1007 901	0.024 4.6 1.4 1024 973	0.019 7.7 0.5 624 353	0.034 4.6 1.1 844 459	0.008 1.6 0.6 1020 1010	0.022 4.5 1.2 1062 945	0.039 7.3 1.4 1071 959	0.019 9.2 0.4 986 867	0.027 6.4 1.0 789 568	0.021 10.0 0.3 636 522 0.056 10.3 1.1 967 597
SO TAU U SO U II IL	0.066 8.1 2.2 421 294 0.031 4.2 1.5 304 194 0.012 6.4 0.4 1056 913	443 0.048 0.018 4.8 0.9 1091 888 291 0.101 0.024 7.2 0.6 1052 725	224 0.019 0.012 2.8 1.0 1021 1008	442 0.063 0.032 5.6 1.2 1046 933	298 0.122 0.016 8.0 0.3 1037 811	763 0.043 0.031 4.3 1.7 1036 896	325 0.017 0.021 2.7 1.0 1067 1006	160 0.135 0.029 8.4 0.9 891 855	311 0.068 0.016 5.9 0.6 848 629	456 0.035 0.020 4.0 0.9 1001 662	396 0.036 0.016 4.2 0.7 1024 963	555 U.C. U.C. U.C. 5.5 U.S 1055 1018	141 0.046 0.021 4.7 1.0 822 346	578 0.028 0.012 3.6 0.8 1052 831	393 0.027 0.007 3.6 0.4 1227 710	550 0.050 0.000 5.8 0.4 1051 1014	481 0.007 0.004 1.8 0.4 1059 1006	803 0.008 0.004 1.8 0.3 1024 996	598 0.009 0.003 1.9 0.3 1029 974	776 0.022 0.018 3.0 1.2 1107 986	430 0.054 0.039 5.0 1.7 1034 780	350 0.098 0.023 7.1 0.7 1082 928 140 0.149 0.059 8.7 1.2 881 232	756 0.026 0.017 3.4 1.1 1007 901	482 0.046 0.024 4.8 1.4 1024 973	018 0.113 0.019 7.7 0.5 624 353	306 0.044 0.034 4.6 1.1 844 459	216 0.007 0.008 1.6 0.6 1020 1010	554 0.044 0.022 4.5 1.2 1062 945	310 0.105 0.039 7.3 1.4 1071 959	161 0.160 0.019 9.2 0.4 986 867	219 0.080 0.027 8.4 1.0 789 568	049 0.195 0.021 10.0 0.3 636 522 039 0.218 0.056 10.3 1.1 967 597
T TAU SO TAU U SO U II IL	0.038 0.132 0.066 8.1 2.2 421 294 0.045 0.040 0.031 4.2 1.5 304 194 0.347 0.058 0.012 5.4 0.4 1056 913	0.443 0.048 0.018 4.8 0.9 1091 888 0.291 0.101 0.024 7.2 0.6 1052 725	1.024 0.019 0.012 2.8 1.0 1021 1008	0.442 0.063 0.032 5.6 1.2 1046 933	0.298 0.122 0.016 8.0 0.3 1037 811	0.763 0.043 0.031 4.3 1.7 1036 896	2.325 0.017 0.021 2.7 1.0 1067 1006	0.160 0.135 0.029 8.4 0.9 891 855	0.311 0.068 0.016 5.9 0.6 848 629	0.456 0.035 0.020 4.0 0.9 1001 662	0.696 0.036 0.016 4.2 0.7 1024 963	0.650 0.060 0.000 5.5 0.5 1050 1019	0.141 0.046 0.021 4.7 1.0 822 346	0.576 0.028 0.012 3.6 0.8 1052 831	0.693 0.027 0.007 3.6 0.4 1227 710	1.550 0.050 0.00 5.2 0.4 1051 1014	2.481 0.007 0.004 1.6 0.4 1059 1006	1.803 0.008 0.004 1.8 0.3 1024 996	1.698 0.009 0.003 1.9 0.3 1029 974	1.076 0.022 0.018 3.0 1.2 1107 986	0.430 0.054 0.039 5.0 1.7 1034 780	0.350 0.098 0.023 7.1 0.7 1082 928	0.756 0.026 0.017 3.4 1.1 1007 901	0.482 0.046 0.024 4.8 1.4 1024 973	-0.018 0.113 0.019 7.7 0.5 624 353	0.306 0.044 0.034 4.6 1.1 844 459	3.216 0.007 0.008 1.6 0.6 1020 1010	0.554 0.044 0.022 4.5 1.2 1062 945	0.310 0.105 0.039 7.3 1.4 1071 959	0.161 0.160 0.019 9.2 0.4 986 867	0.219 0.080 0.027 6.4 1.0 789 568	0.049 0.195 0.021 10.0 0.3 636 522 0.039 0.218 0.056 10.3 1.1 967 597
DEL T TAU SO TAU U SOU II 12	038 0.132 0.066 8.1 2.2 421 294 045 0.040 0.031 4.2 1.5 304 194 347 0.058 0.012 5.4 0.4 1056 913	VI -26 0.443 0.048 0.018 4.8 0.9 1091 888 VI -27 0.291 0.101 0.024 7.2 0.6 1052 725	VI -28 1.024 0.019 0.012 2.8 1.0 1021 1008	VI -29 0.442 0.063 0.032 5.6 1.2 1046 933	VI -30 0.298 0.122 0.016 8.0 0.3 1037 811	VII_O2 0.763 0.043 0.031 4.3 1.7 1036 896	VII-03 2.325 0.017 0.021 2.7 1.0 1067 1006	VII-04 0.160 0.135 0.029 8.4 0.9 891 855	VII-05 0.311 0.068 0.016 5.9 0.6 848 629	VII-06 0.456 0.035 0.020 4.0 0.9 1001 662	VII-07 0.696 0.036 0.016 4.2 0.7 1024 963	VII-US 0.600 0.000 0.000 6.5 0.5 1000 1019 VII-US 0.753 0.041 0.016 4 5 0.9 1043 1003	VII-10 0.141 0.046 0.021 4.7 1.0 822 346	VII-11 0.578 0.028 0.012 3.6 0.8 1052 831	VII-12 0.693 0.027 0.007 3.6 0.4 1227 710	VII-IS 1.531 0.063 0.005 5.2 0.4 1051 1014 VII-14 1.531 0.015 0.008 2.8 0.5 1054 1003	VII-15 2.481 0.007 0.004 1.8 0.4 1059 1006	VII-16 1.803 0.008 0.004 1.8 0.3 1024 996	VII-17 1.698 0.009 0.003 1.9 0.3 1029 974	VII-18 1.076 0.022 0.018 3.0 1.2 1107 986	VII-19 0.430 0.054 0.039 5.0 1.7 1034 780	VII-20 0.350 0.098 0.023 7.1 0.7 1082 928 VII-21 0.140 0.149 0.059 8.7 1.2 881 232	VII-22 0.756 0.026 0.017 3.4 1.1 1007 901	VII-23 0.482 0.046 0.024 4.6 1.4 1024 973	VII-24 -0.018 0.113 0.019 7.7 0.5 624 353	VII-25 0.306 0.044 0.034 4.6 1.1 844 459	VII-26 3.216 0.007 0.008 1.6 0.6 1020 1010	VII-27 0.554 0.044 0.022 4.5 1.2 1062 945	VII-28 0.310 0.105 0.039 7.3 1.4 1071 959	VII-29 0.161 0.160 0.019 9.2 0.4 986 867	VII-30 0.219 0.080 0.027 6.4 1.0 789 568	VII-31 0.049 0.195 0.021 10.0 0.3 636 522 VIII-01 0.039 0.218 0.056 10.3 1.1 967 597

STRES	00-0000000-00-00-00-4-1-1-1-1-00-4-1-00-00-00-00-00-00-00-00-00-00-00-00-0	⊒
HEATING		B
A HE		· >
S	498 499041-0011-1447-1101-00-00-00-00-11-1-1-1-1-1-1-1-1-1-	o.
8	សនាក្រកក្រកក្នុង ក្នុង ក្ន ស្ត្រាទ្ធ ស្តូស្គី ស្ត្រី ស្ត្	S
8	សង្គមកុខកុខកុខកុខកុខកុខកុខកុខកុខកុខកុខកុខកុខក	٠. و
12-L	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3
8	88:1562440458:4088:180650000000:1040474844.	4
่า	821248888888888888888888888888888888888	Š
SO 13	ฐឧ ខ 488888245888488888885555888885	ភ
13	44.9 88.9 88.9 88.9 88.9 88.9 88.9 88.9	878
123	555 555 555 555 555 555 555 555	23
ı	800 954 955 955 955 955 955 955 955 955 955	5
n Og	######################################	
Э	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	0. 4.
SO TAU	00000000000000000000000000000000000000	0.016
TAU	00000000000000000000000000000000000000	0.059
DEL T	28825.000.000.000.000.000.000.000.000.000.0	201
YR MO DAY	88 - 11 - 12 - 12 - 13 - 14 - 14 - 15 - 15 - 15 - 15 - 15 - 15	82- IX -10

Section services abrother reserves abrother

STRES	831888884428834496854466864884888648388444884	
HEATING	000444444646466666666666666666666666666	}
Y H		,
	8875-87878887881888788878888888888888888	•
Sda	28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1
8	48844444888888888888888888888888888888	;
2	4884448488884400484448444444484444888888	}
÷	25	
12-L	. % # _ # # # # # # # # # # # # # # # # #	;
8	- 0 a a c 3 a a c 3 a a c 4 4 4 8 a c 1 1 1 1 1 8 1 8 1 1 1 1 1 1 1 1 1 1 1)
ı	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	}
13	488986888623448 2489925588888888888888888888888888888888	3
13	240 240 240 240 240 240 240 240 240 240	2
12	333 332 332 332 332 332 332 333 333 333	3
11	804488888888888888844588888888888888888	3
D C	OOOOOOOOOOOOOOOOOOOOOOOO	
8	44F848F818F818B888B888B888B888B888B888B888B88	
SO TAU	00000000000000000000000000000000000000	3
TAU	0.000000000000000000000000000000000000	7.11.0
DEL T	20000000000000000000000000000000000000	5
DAY		
9	— Наминиченний и поставлений	
X.	នុនុនុនុនុនុនុនុនុនុនុនុនុនុនុនុនុនុនុ	Š

STRES	8:8:8:4:9:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0	0.1.20 0.3.72 0.1.20 0.2.73 0.1.03	00010000000000000000000000000000000000
REATING	4.1.1.1.8.0.0.0.8.8 6.0.0.0.0.8.8.8.4.8.8.8.8.8.8.8.8.8.8.8.8	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	%;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
₩	0000000	000000	00
SE SE	0.593 -1.497 0.882 -1.033 -0.124 0.370 0.147 0.147 1.001 -1.926	1.338 1.781	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
8			
2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	44.១១១១១១១១ ភេឌ្ឍសិល្ខិន្ទីសិស្តិ សន្ទិសិស្តិសិស្តិសិស្តិ	4
12-L	458 514 482 545 517 693 774 105 747	61.08.08.08.08.08.08.08.08.08.08.08.08.08.	996 4789 8818 882 883 872 872 873 873 873 873 873 873 873 873 873 873
8	11881188888888	0000 a 4 4 4 a 4 4	0 2 0 0 0 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0
ı	864102888888888888888888888888888888888888	ផ្ទេស្តិនិន្ទិន្ទិន្ទិន្ទិន្ទិន្ទិន្ទិន្ទិន្ទិន	\$£200002251440234855822 4 £8
83 13	88887788888888888888888888888888888888	22.28 22.28 23.28 35.28 35.28 36 36 36 36 36 36 36 36 36 36 36 36 36	3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
13	655 655 655 722 722 722 722 722 850 852 853 853 853 853 853 853 853 853 853 853	9674 674 674 892 892 892 893	25
21	28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8827388 88233388 8801 8801 8801	988 1001 1001 1001 1001 1001 1001 1001 1
11	88980 68888 8888 8888 8888 8888 8888 888	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	847 1023 1023 1023 1023 1023 1023 1023 1023
D (3)			000000000000000000000000000000000000000
Þ	@@4FF®ÖÖ4449 -@%®®®®@4%®	2007-45-25-05-05-05-05-05-05-05-05-05-05-05-05-05	v4F40480048846F0FF0480 v90-18880688FF88F4FFF00
SO TAU	80000000000000000000000000000000000000	00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000	0.000 0.000
TAU	0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093	0.043 0.043 0.043 0.048 0.061 0.067	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
1 1 1	0.058 0.038 0.153 0.153 0.039 0.039 0.039	0.184 0.036 0.382 0.382 0.242 0.273	0.215 0.0457 0.0457 0.095 0.095 0.185 0.220 0.220 0.285 0.28
DAY	51111111111111111111111111111111111111	1488888895	252488558801152445515685858
æ	**************************************		**************************************
æ	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	. 8 8 8 8 8 8 8 8 8 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

STRES	88888	0000 88000 88000	888	0.81	<u> </u>	 8.90 8.90	8.	1.71 0.87	1.00	1.16		5	0.16	0.14	0.18		9. 3	0.52	9 4	0 7 0 0 0 0	1.51	0.33	
HEATING S	00040 68224	4. 4. 4. 5. 8. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	385 385	4. 4. 8. 4.	9. 18. 8. 88.	ಕ್ಕ ಕ್ಕ	0.86	0.18 0.42	6.7. 7.8	3.61	3.55 18.52	3.11	4.55 4.01	4.28	 8.2	3.47	4.7]	3.91	4. 4 5. 6			2.28	
Y H	000						· ·		~ 0	0	00	0	00	0	00	0	0	00) () (0	00	
Sa	0.048 0.365 0.365 0.085 0.085 0.083																						
8	5.88 5.13 6.13 5.63	000°4 8888	. 4. r. 888	6.25 5.88	5.38 5.75	5.75 3.88	8.83	3.50 8.50	88.88	88	က် အ မ	88	6.25	6.13	ο. κ Ο 8	5.88	6.13	5.75	88	3 8	88	5.25 5.38	
8.	5.88 5.13 6.13 6.03	e e e e 8 8 8 8	888	6.25 5.88	5.50 5.75	5.75 0.05	5.13	4. 4. 8.8	0 8 8 8	8	0 0 0 0 0 0 0 0 0 0	8.00	6.25	6.13	ი. 4 86.5	5 88	6.13	5.75	88	9 a	. w	5.25 5.88	
12-L	742 647 752 784 717	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	888	857 857	8 8 8	88	8	60 64 60	88	8	88 5 58 58	616	3 8	831	8	ğ	913	88		8 8	3 2	515 256	
93	8 13 13 13	o, ∞ o, √	r [©] :	25	ထ ထ	လ ထ	23	28	<u>α</u> 6	41	r- 4	52	4 . ∞	o	<u>4</u> č	12	ន	8:	9 :	::	33	႘ၟၛ	
a	ខុខឧដ្ឋ	882	នួនខ្ល	88	116 101	නු දු	8	174 153	38	8	9 5	127	5. 7. 8. 8.	\$	8 8 8	7	8	22	3 8 18	8 5	12	8 5 5	
ED 13	882254	8848	ទីខ្លួន	81. 85	3 8	137 165	42	85	9 1 2 2 3 3 3	8	284	186	98 [5]	119	& <u>5</u>	34	60	<u>8</u> ;	\$ 6	5 E	361	131	
13	851 851 851	888 85 86 86	132	4 2	9 20 20 20	781 867	273	¥ 8	875 1961	8	ន្តន	8	8 88 85 83	88	38 20 20 20 20 20 20 20 20 20 20 20 20 20	25	86	8	<u>.</u>	8 2	878	88	
12 13	850 830 744 727 833 840 857 851 829 830						-			·				_				·		_	•	_	
		988 910 977	820 22	00 00 00 00 00 00 00 00 00 00 00 00 00	83 83	£ 5	88	3 8 8 8	888	8	- E &	4.	913	£8		828	1001	88	\$ 8	3 2		598 371	
	0.8 944 850 0.4 933 744 1.2 1058 833 1.0 986 857 0.7 1011 829	0.5 1022 826 0.5 1011 910 0.3 1045 977	0.7 1039 621 0.7 1094 956	0.7 1043 950 0.7 1030 950	0.7 1011 739 0.6 1075 903	0.3 1023 779	1.9 471 292	0.7 309 221 1.4 259 263	0.9 1024 888	0.3 1055 832	0.3 908 761	1.7 1252 744	1.1 1027 913 0.6 1057 836	0.5 1077 879	0.8 522 397	0.6 1052 856	1.5 1051 1001	1.1 1094 921	0.7	0.5 1005	0.8 1077 889	1.7 946 598 1.0 568 371	
u 11 12	6.8 0.8 944 850 6.7 0.4 933 744 4.1 1.2 1058 833 2.7 1.0 986 857 6.1 0.7 1011 829	3.0 0.6 1022 926 3.8 0.5 1011 910 5.4 0.3 1045 977	5.5 0.7 1039 621 7.0 0.7 1094 956	2.2 0.7 1043 950 4.1 0.7 1030 950	6.5 0.7 1011 739 6.4 0.6 1075 903	6.7 0.3 1023 779 8 8 0 0 046 642	4.9 1.9 471 292	7.9 0.7 309 221 5.4 1.4 259 263	5.3 0.9 1024 888	5.8 0.3 1055 832	6.5 0.3 908 761 7.2 0.3 1031 893	7.1 1.7 1252 744	1.8 1.1 1027 913 3.2 0.6 1057 836	1.8 0.5 1077 879	2.0 0.8 522 397	7.7 0.6 1052 856	3.1 1.5 1051 1001	3.9 1.1 1094 921	5.2 0.7 1108 104	1.9 0.0 1000 801	6.7 0.8 1077 889	3.0 1.7 946 598 4.3 1.0 568 371	
SO U 11 12	0.8 944 850 0.4 933 744 1.2 1058 833 1.0 986 857 0.7 1011 829	010 3.0 0.5 1022 926 018 3.8 0.5 1011 910 020 5.4 0.3 1045 977	027 5.5 0.7 1039 621 044 7.0 0.7 1094 956	008 2.2 0.7 1043 950 016 4.1 0.7 1030 950	033 6.5 0.7 1011 739 033 6.4 0.6 1075 903	031 6.7 0.3 1023 779	041 4.9 1.9 471 292	063 7.9 0.7 309 221 040 5.4 1.4 259 263	028 5.3 0.9 1024 888 025 5 8 0 5 1007 1078	017 5.8 0.3 1055 832	028 6.5 0.3 908 761 736 7.2 0.3 1031 893	063 7.1 1.7 1252 744	010 1.8 1.1 1027 913 012 3 2 0 6 1057 836	005 1.8 0.5 1077 879	008 2.0 0.8 522 397	046 7.7 0.6 1052 856	019 3.1 1.5 1051 1001	021 3.9 1.1 1094 921	264 5.2 0.7 1106 1044		0.00 5.00 5.00 1077 1049 1077 889	227 3.0 1.7 946 598 224 4.3 1.0 568 371	
TAU U SO U II I2	038 6.8 0.8 944 850 037 6.7 0.4 933 744 031 4.1 1.2 1058 833 011 2.7 1.0 986 857 030 6.1 0.7 1011 829	0.010 3.0 0.5 1022 926 0.018 3.8 0.5 1011 910 0.020 5.4 0.3 1045 977	0.027 5.5 0.7 1039 621 0.044 7.0 0.7 1094 956	0.008 2.2 0.7 1043 950 0.016 4.1 0.7 1030 950	0.033 6.5 0.7 1011 739 0.033 6.4 0.6 1075 903	0.031 6.7 0.3 1023 779	0.041 4.9 1.9 471 292	0.063 7.9 0.7 309 221 0.040 5.4 1.4 259 263	0.028 5.3 0.9 1024 888	0.017 5.8 0.3 1055 832	0.028 6.5 0.3 908 761 0.038 7.2 0.3 1031 823	0.063 7.1 1.7 1252 744	0.010 1.8 1.1 1027 913 0.012 3.2 0.6 1057 836	0.005 1.8 0.5 1077 879	0.008 2.0 0.8 522 397	0.046 7.7 0.6 1052 856	0.019 3.1 1.5 1051 1001	0.021 3.9 1.1 1094 921	0.084 5.2 0.7 1106 1044	0.000 1.9 0.5 1005 851	0.036 6.7 0.8 1077 889	0.027 3.0 1.7 946 598 0.024 4.3 1.0 568 371	
SD TAU U SD U 111 12	0.038 6.8 0.8 944 850 0.037 6.7 0.4 933 744 0.031 4.1 1.2 1058 833 0.011 2.7 1.0 986 857 0.030 6.1 0.7 1011 829	121 0.017 0.010 3.0 0.6 1022 826 812 0.027 0.018 3.8 0.5 1011 910 817 0.053 0.020 5.4 0.3 1045 977	221 0.053 0.027 5.5 0.7 1039 621 0.56 0.091 0.044 7.0 0.7 1094 956	310 0.011 0.008 2.2 0.7 1043 950 387 0.033 0.016 4.1 0.7 1030 950	199 0.076 0.033 6.5 0.7 1011 739 481 0.073 0.033 6.4 0.6 1075 903	041 0.083 0.031 6.7 0.3 1023 779 776 776 776 776 777 8 8 0 9 946 842	050 0.051 0.041 4.9 1.9 471 232	118 0.113 0.063 7.9 0.7 309 221 $241 0.057 0.040 5.4 1.4 259 263$	274 0.054 0.028 5.3 0.9 1024 888 536 0.083 0.085 6.8 0.5 1097 1078	336 0.063 0.017 5.8 0.3 1055 832	301 0.077 0.028 6.5 0.3 908 761	202 0.092 0.063 7.1 1.7 1252 744	917 0.008 0.010 1.8 1.1 1027 913 180 0.00 0.012 3.2 0.8 1057 838	906 0.007 0.005 1.8 0.5 1077 879	314 0.010 0.008 2.0 0.8 522 397	247 0.108 0.048 7.7 0.6 1052 856	942 0.022 0.019 3.1 1.5 1051 1001	550 0.032 0.021 3.9 1.1 1094 921	258 0.052 0.084 5.2 0.7 1106 1044 .	250 0.008 0.006 1.9 0.5 1065 361	242 0.021 0.020 5.2 0.8 1077 1045 5.4 0.8 1077 889	787 0.022 0.027 3.0 1.7 946 698 339 0.037 0.024 4.3 1.0 668 371	
T TAU SED TAU U SED U 111 I2	184 0.084 0.038 6.8 0.8 944 850 233 0.080 0.037 6.7 0.4 933 744 470 0.033 0.031 4.1 1.2 1058 833 892 0.016 0.011 2.7 1.0 986 857 296 0.087 0.030 6.1 0.7 1011 829	1.121 0.017 0.010 3.0 0.5 1022 926 0.812 0.027 0.018 3.8 0.5 1011 910 0.817 0.053 0.020 5.4 0.3 1045 977	-51 0.057 0.053 0.021 5.7 0.4 570 455 -01 0.221 0.053 0.027 5.5 0.7 1039 621 -02 0.056 0.091 0.044 7.0 0.7 1094 956	-03 1.310 0.011 0.008 2.2 0.7 1043 950 -04 0.387 0.033 0.016 4.1 0.7 1030 950	-05 0.199 0.076 0.033 6.5 0.7 1011 739 -08 0.481 0.073 0.033 6.4 0.6 1075 903	-07 0.041 0.083 0.031 6.7 0.3 1023 779	-09 0.050 0.051 0.041 4.9 1.9 471 292	-10 0.118 0.113 0.063 7.9 0.7 309 221 -11 0.241 0.057 0.040 5.4 1.4 259 263	-12 0.274 0.054 0.028 5.3 0.9 1024 888	-14 0.336 0.063 0.017 5.8 0.3 1055 832	-15 0.301 0.077 0.028 6.5 0.3 908 761	-17 0.202 0.082 0.063 7.1 1.7 1252 744	-18 1.917 0.008 0.010 1.8 1.1 1027 913 -10 1 180 0 000 0 012 3 2 0.8 1057 838	-20 1.906 0.007 0.005 1.8 0.5 1077 879	-21 0.314 0.010 0.008 2.0 0.8 522 397	-23 0.247 0.108 0.046 7.7 0.6 1052 856	-24 0.942 0.022 0.019 3.1 1.5 1051 1001	-25 0.550 0.032 0.021 3.9 1.1 1094 921	-26 0.258 0.052 0.084 5.2 0.7 1106 1044 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	-27 1.250 0.008 0.006 1.9 0.5 105 951	-20 0.250 0.051 0.050 5.4 0.8 1077 1050 -20 0.25 0.05 1077 889	-30 0.787 0.022 0.027 3.0 1.7 946 698 -0.0 0.339 0.037 0.024 4.3 1.0 668 371	
DEL T TAU STO TAU U STO U 11 12	0.184 0.084 0.038 6.8 0.8 944 850 0.233 0.080 0.037 6.7 0.4 933 744 0.470 0.033 0.031 4.1 1.2 1058 833 1.892 0.016 0.011 2.7 1.0 986 857 0.296 0.087 0.030 6.1 0.7 1011 829	V -28 1.121 0.017 0.010 3.0 0.5 1022 926 V -29 0.812 0.027 0.018 3.8 0.5 1011 910 V -30 0.517 0.053 0.020 5.4 0.3 1045 977	V -31 0.057 0.053 0.061 5.7 0.4 670 455 VI -01 0.221 0.053 0.027 5.5 0.7 1039 621 VI -02 0.056 0.091 0.044 7.0 0.7 1094 956	VI -03 1.310 0.011 0.008 2.2 0.7 1043 950 VI -04 0.387 0.033 0.016 4.1 0.7 1030 950	VI -05 0.199 0.076 0.033 6.5 0.7 1011 739 VI -06 0.481 0.073 0.033 6.4 0.6 1075 903	VI -07 0.041 0.083 0.031 6.7 0.3 1023 779	VI -09 0.050 0.051 0.041 4.9 1.9 471 2.92	VI -10 0.118 0.113 0.063 7.9 0.7 309 221 VI -11 0.241 0.057 0.040 5.4 1.4 259 263	VI -12 0.274 0.054 0.028 5.3 0.9 1024 888	VI -14 0.336 0.063 0.017 5.8 0.3 1055 832	VI -15 0.301 0.077 0.028 6.5 0.3 908 761	VI -17 0.202 0.082 0.063 7.1 1.7 1252 744	VI -18 1.917 0.008 0.010 1.8 1.1 1027 913	VI -20 1.906 0.007 0.005 1.8 0.5 1077 879	VI -21 0.314 0.010 0.008 2.0 0.8 522 397	VI -23 0.247 0.108 0.048 7.7 0.6 1052 856	VI -24 0.942 0.022 0.019 3.1 1.5 1051 1001	VI -25 0.550 0.032 0.021 3.9 1.1 1094 921	V28 0.258 0.052 0.084 5.2 0.7 1106 1044	11 - 27 1.250 0.008 0.005 1.9 0.5 1005 851	V1 -26 0.230 0.051 0.020 5.2 0.6 107 1030 0.1 10	VI -30 0.787 0.022 0.027 3.0 1.7 946 698 VII -01 0.339 0.037 0.024 4.3 1.0 668 371	

STRES	86.6	0.51	1.1	.3	88	0 4	0. 42	0.59	1.14	0.10	1.12	7.	o.3	1.16	<u></u>	<u>.</u> ස	1.35	1.74	1.7	 %	0.13	1.58	0.64	0.41	<u>.</u> ਲ	1.45	1.28	8	0.28	20	4	0.23	8.0	7.53	÷.	2.10	æ:	3	0.58
HEATING	4.08 7.08	4.43	સ જુ	8. 80.	0.93	œ.	 88	3.95	2.51	3.84	ы 2	2.45	4. 8	4. 83.	3.25	8 8	4.21	3.80	2.48	8	4.65	8.84	1.93	0.51	ည အ	ა ფ	3.95	4.16	4.58	4 .86	4 . හි	အ အ	1.2	٥ ک	8. 8.	 	1.51	8 8 0	4.01
H V	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sa	0.793																																						
8	5.75	5.88	5. 83	5.25	ა გ	5.25	4.13	S. 50	4.75	5.75	5. 8	8.8	6.25	5.75	ය හි	5. 50	5.75	8.50	8. 8	3.25	6.38	4.75	3.88	2.75	5.25	ය ගි	5.88	5.75 75	ა 88	S.88	გ. ფ	ა ფ	4.38	8 8	න න	8. B	ස ල	8	5. 83
8.	5.75 50	8.8	5.83	5.25	4 . 8.	5.25	4. 13.	5.50	4.75	5.75	5.50	2 .8	6.25	5.75	ა. წ	5.50	5.75	5.83	8.8	3.38	8.38	4.75	4.25	5.75	5.25	5.50	5.88	5.75	5.88 88	5.88	5.83	5.63	¥.8	3.38	5.50	4.38	8.8	2.75 75	5.83
12-L	838	878	8	<u>م</u>	275	8	4	853	83	675	8	581	8	88	£	&	8	929	20	212	8	220	530	<u>8</u>	83 83	ğ	8	8	88	8	8	æ	327	<u>%</u>	828	E	88	×	4
83	4 .č	22	19	ଝ	ጄ	=	2	ន	X	<u>લ</u>	7	13	S S	14	ω	မာ	Θ	0	Φ	윉	19	2	8	ጄ	19	4	ĸ	ιΩ	12	ഹ	14	O.	91	13	ထ	45	ĕ	প্ত	Φ
ı	85	8	114	127	<u></u>	8	138	128	8	8	28	151	æ	114	8	ઠ	<u>Ş</u>	128	125	136	4	<u>.</u>	193	8	<u>‡</u>	<u>1</u>	<u>3</u>	45	£	8	æ	8	128	88	112	8	185	<u>1</u> 88	æ
SD 13	101	153	80	88	161	88	S	53	148	145	105	8	8	55	ß	8	55	135	8	ይ	<u>8</u>	137	150	8	8	112	8	101	8	8	125	152	123	8	8	274	139	86	B
13	88	8	8	<u>8</u>	8	8	3	826	8	719	89 85	33	8	98 63	84.	Z	8	785	719	33	918	88	88	155	878	99 99 99	g	884	8	101	88	2	424	43	957	8	20	195 2	5 53
21	886	626	883	ğ	376	499 99	558	981	83 028	745	926	ğ	1006	<u>8</u>	8 2	737	974	8	715	<u>2</u>	8	ğ	64 5	213	8	99 88	8	90 20 20	1001	1006	98	859	4	435	28	553	573	231	88
:	1084	82	1006	1015	8	ğ	855	1043	88 86	86	1101	8	1118	1050	931	903 23	1019	<u>¥</u>	0 0 0	519	1145	9 8	961	365	1069	1081	1081	100	1045	1079	1000	1076	746	778	96 66	<u>\$</u>	83	8	<u>8</u>
D D	4.0	9.0	о. О	0 8	4.	0.5	<u>۰</u>	ю. О	1.1	9. 8	o. 0	4.0	ا. ت	ე წ	ට ව	0.5	o.3	ი. ა	0.5	8.	1.1	9.0	9.	7.6	1.0	o မ	1.6	4.0	0.	o.3	9.0	4.0	9.0	0.	0.5	0.	0.0	0.0	0.5
Þ	4. Q	16	5.7	8 .8		ы. Ө.	3.7	4.	9.1	4.	හ හ	٠ د	8 0	ა. დ	8. 8.	5.7	9	4.7	ۍ 8.	8	1.5		5.0	3	ය. ව	6.7	9. 0	0 8	8. 8	4.0	ය හ	% 4.	6.0	8.5	6.7	6.4	0. 0.	4.4	4. Si
SC TAU	0.017	0.0	9.88	0.84 4	0.85	0.016	0.015	0.08	0.038	0.00	680. 680.	9.08	0.018	0.0 450.0	<u>ර</u> න	0.08	0.038	0.045	0.055	0.085	9.0	0.048	0.059	0.082	0.042	88 88 88	0.038	98	0.012	0.010	0.012	98.0	0.029	0.057	0.8 2	8.0	9.0	0.065	0.015
TAU	988	8	0.088	0.081	80.0	0.085	9.08 0.08	9.8	0.074	90.0	0.084	0.095	0.019	0.0	8.	0.059	0.075	0.087	0.105	0.117	0.006	0.188	0.048	0.082	0.077	0.083	0.080 0.080	0.08	0.015	0.030	0.085	0.012	0.067	0.134	0.080	0.038	0.085	0.099	0.033
DEL T	484.0	88	0.246	0.083	0.368	0.656	0.385	0.313	0.139	0.753	0.3g	0.039	0.493	0.314	0.330	0.306	0.342	0.208	0.110	0.03	0.529	0.239	0.246	0.011	0.193	0.419	0.268	1.831	20.	0.716	0.917	0.945	-0.00.0	0.191	0.873	0.515	0.150	0.087	0.556
YR BO DAY	83- VII-02	85 VII 28	83- VII-08	83- VII-06	83- VII-09	83- VII-08	83- VII-09	83- VII-10	83- VII-::	83- VII-12	83- VII-13	83- VII-14	83- VII-15	83- VII-16	83- VII-17	83- VII-18	83- VII-19	83- VII-20	83- VII-21	83- VII-22	83- VII-23	83- VII-24	83- VII-25	83- VII-26	83- VII-27	83- VII-28	83- VII-29	83- VII-30	83- VII-31	83-VIII-01	83-VIII-02	83-VIII-03	83-VIII-04	83-VIII-05	83-VIII-08	63-VIII-07	83-VIII-08	83-VIII-09	83-VIII-10

STRES	95	8	8	14	.87	.63	88.	89	න න	S,	. 12	.95	88	.65	.3	.35	ଷ୍ଟ	36	3.	.7.	8.	Ĕ.	88	.91	.27	88	.37	.43	₹.	£.	.21	.	£.	8	. 10	8	47	0.15 0.35
HEATING	4.6	90	0.8	(S)	. .		4.	-	ည တ	ы ы.	4.5	8	3.	0.	ы 4.	4.	ъ. В.	ω. ω	3.	<u>~</u>	ы ы	 	1.7	ю ы	ы. В.	ж. Ө.	8.7	ю Ю	ю	3.	ы. Ө.	ა მ	ы ы.	 8	 0	9	8.0	8.8 8.8
<	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
EPS	0.075	2.2	3.242	0.180	0.000	0.014	0.086	-0.165	1.191	-1.524	0.500	2.358	0.895	3.365	0.488	8	0.245	4.424	9.0g	1.0%	0.342	0.729	0.670	0.103	0.147	8	0.265	0.783	0.319	0.808	0.154	1.268	1.349	1.403	27.933	115.810	28.285	0.080
8	5.75	8.5	3.38	4 .	8. 8	3.75	ა ზ.	3.88	ა გ	8 8	5.75	8	3.75	88	5.38	5.83	5.38	4 . ሜ	4.75	ა 8.	5. 8	3.38	4. 88.	5.13	5.38	5.25	5.25	5.13	5.25	8.8	5.13	5.13	8. 8	3.13	 8	0.13	4 .	5.63 5.13
2	5.75	. 4 . 13	4.38	4.75	ა გ	4.25	8	4. 8	ა გ	8. 8	5.75	5.13	3.88	2.75	5.38	ა ფ	5.38	4 .88	4.75	3.75	5.8	4.88	4 . 8	5.13	5.38	5.25	5.25	5.13	5.25	ۍ 8.	က တ	5.13	8	4 .	8	0.13	4 .5	5.63 5.13
13-L	88 2	13	og X	577	\$	8	2	310	2	38 28 28	88	83	28 28	75	Ę	918	2 25	8	783	471	788	311	473	2	826	817	2	6	745	8	%	835	8	88	8	8	2	67.8 87.8
8	60 0	8	4	4	ဗ္က	ß	12	으	æ	ιΩ	18	စ္တ	ß	18	Ξ	15	თ	18	႘	ጀ	27	લ	Φ	တ	15	17	Ξ	ୡ	으	တ	ĸ	4.	7	28	ß	4, (4 ;	16
.1	191	212	161	149	Ž	135	8	5	8	14	5	125	88	<u>8</u>	88	8	125	ģ	83	165	8	149	186	137	6	10	တ္တ	8	9	8	8	8	117	8	114	8	145	\$ 6
B 13	83	i 8	118	233	8	171	8	113	27	8	8	135	¥	28	22	8	8	136	<u>₹</u>	ଷ୍ଟ	æ	217	<u>¥</u>	120	111	88	78	8	8	B	130	88	8	189	2	8	14	<u> </u>
13	912	86	302	8	<u>ફ</u>	415	8	ģ	83	8	963 200	365	751	25 42	88	8 2	99 80	8	2	68 5	8	₹	8	88	916	දී	8	8	2	9 9 9	2	919	8	229	ଛ	159	8	8 8 8
12	88	38	නි	326	8	6	8	481	9 8 8	0 86	8	753	\$	88	808	80	g	813	865	83	88	4 61	629	910	8	88	<u>8</u>	88	852	2	847	88	83	8	213	165	824	55 52 52 53
=	.888	36	612	1052	990	675	1068	756	1025	98 18	1078	8	ጀ	980	8	3003	1020	86	1142	1012	26 66	965	96 66	1029	1017	8	1001	8 8 8	877	98 88	98 6	8	926	913	8	25	8	288 288 388
n B	6.0	9 8		1.3	1.5	0.7	1.1	٥. 8	1.1	ი ა	0.7	4. 4.	5.	9.0	6.0	6.0	0.5	0.1	0.0	4.	1.6	1.6	0.5	4.0	9.0	6.0	9.0	1.1	9.0	٥.7	0.	0.4	0.7	4.	9.0	0.1		0.0 0.7
Þ	10.00 10.40	r 0	5.3	6.2	о О	5.0	4.4	8 .5	8 8	6 .6	1.6	5.1	5.0	6.0	4 .0	3.1	6.4	9.2	ы ы	5.4	3.8	4.7	6.6	5.5	89 89	4 .3	ы ы	3.5	3.5	3.7	8	3.7	5.0	8.9	2.7	10.1	4.1	3.1
TAU	88	28	80	98	835	88	88	98	017	8	8	2	989	88	88	014	8	978	939	335	88	88	86	989	8	019	011	018	014	015	110	016	8	8	010	88	8	0.011
Ø																																						
TAU	0.08		0.10	6.0	<u>8</u>	9.0	0.0	0.18	8	80	9	ο Ο Ο	8	0.0	8	8	0.0	0.18	8	0.0	8	9.0	0.18	0.0	0.01	0.03	98	9	8	8	0.03	8	8	0.15	0.0	8	0.08	0.00
DEL T	434.0	88	0.00	0.193	0.231	0.0	0.490	0.108	0.710	0.601	1.455	0.173	0.214	0.172	0.323	96	0.283	0.150	0.741	000	0.615	9.14	0.074	0.311	0.845	0.633	0.765	2.0	0.683	0.417	1.111	0.398	0.190	0.082	0.138	0.085	0.433	0.671
DAY	-11-	2 15	-14	-15	-16	-17	-18	-19	នុ	-5 -5	ş	នុ	-24	52	9	5	Ŗ	នុ	S	F	Ş	8	8	Ş	8	8	ş	පු	8	01-	-11	-12	-13	-14	-15	-18	-17	-18
9	VIII		VIII-	VIII-	VIII-	VIII-	VIII-	VIII	VIII	VIII-	VIII-	VIII-	VIII-	VIII-	VIII-	VIII-	VIII-	VIII-	VIII	VIII-	X	X	X	X	H	X	H	H	H	H	H	H	Ħ	ä	H	H	X	83- IX -18 83- IX -19
æ	8	3 2	3	53	3	3	8	3	2	8	3	3	8	8	8	8	28	13	5	8	8	8	컮	格	帑	8	8	格	쭤	똮	쫎	8 p	똮	쫎	똮	젂	8	នុង

424658888842888648881444888888843681188448 088 9215 9215 9210 9210 92200 92200 9200 9200 9200 9200 9200 9200 9200 9200 9200 9200 9200 9200 9200 9200 920 9-9-4-9958-9-98-9-9-4-9-4-4-6-9-9-9-9-4-5-4-8-9-8-4-9-4-451198925458869258248858295558888888889651858 907 18893 1894 1894 1895 နယ်ဝတ်နှယ်စ်ဝယ်ထိုယ်ဝတ်စ်င်ဝန်ဝင်-ကိတ်စ်နှံနှံတိုင်းမှတ်တိတ်ဝတ်ယ်ဝတ်ယာဝနာဆ αυφωσίος - Εκασ44ασ4υσυρος τη 4ροφυρυρους - 4ροφυρ 0.000 0013 0.000 **************************

APPENDIX C

FURTRAN Listing of the DUSL (PWP) Model Function

```
SUBROUTINE DAYSCL(QI,QL,PQ,TAU,DSC,TSC,USC,ICON)
  THIS SUBROUTINE COMPUTES THE AMPLITUDE OF THE DIURNAL
  CYCLE FROM THE FOLLOWING INPUT DATA:
   QI, SOLAR INSOLATION MAXIMUM, WATTS PER METER SQUARED
C
C
   QL, HEAT LOSS, WATTS PER METER SQUARED (USUALLY NEGATIVE)
   PQ, HALF THE TIME INTERVAL DURING WHICH QI + QL > 0, SECONDS
C
   TAU, WIND STRESS, PASCALS
С
  OUTPUT VARIABLES ARE:
   DSC, MINIMUM TRAPPING DEPTH, METERS
C
C
   TSC, DIURNAL RANGE OF SEA SURFACE TEMPERATURE, CENTIGRADE
C
   USC, AMPLITUDE OF THE DIURNAL JET, METERS PER SECOND
C
   ICON, FLAG - 1 IF CONVECTION LIMIT WAS REACHED (VANISHING TAU)
C
С
  REFERENCE TO THEORY IS IN PRICE, WELLER AND PINKEL, JGR, 1986
  DOCUMENTED BY J. F. PRICE, JULY 2, 1985, W.H.O.I.
     COMMON/APLANE/BETA 1, BETA 2, R, F, ALPHA, G, CPW, RO
  THE COMMON APLANE DELIVERS PARAMETERS WHICH ARE SITE SPECIFIC:
   BETA1, EXTINCTION COEFFICIENT FOR LONGWAVE INSOLATION, METERS
C
   BEAT2, AS ABOVE FOR SHORTWAVE
C
   R, THE FRACTION OF INSOLATION ASCRIBED TO BETA 1, NON-D
C
   F, CORIOLIS PARAMETER, INVERSE SECONDS
C
   ALPHA, THERMAL EXPANSION COEFFICIENT, KILOGRAMS PER METER CUBED
C
    PER DEGREE CENTIGRADE (IN A LINEAR STATE EQUATION)
C
   G. ACCELERATION DUE TO GRAVITY, METERS PER SECOND SQUARED
С
   CPW, HEAT CAPACITY OF SEA WATER, JOULES PER KILOGRAMS SECOND
C
   RO, DENSITY OF SEA WATER, KILOGRAMS PER METER CUBED (CONSTANT)
C
     ICON - 0
  COMPUTE PS, THE ACCELERATION TIME SCALE
     PS = (SQRT(2.)/F)*SQRT(1. - COS(F*PQ))
C
     QNET - QI + QL
  CHECK THAT QNET AND PQ ARE > 0. IF NOT, RETURN
      IF(QNET.LT.O.OR.PQ.LT.O.1) THEN
      TSC - 0.
      USC - 0.
      DSC - 999.
      ICON - 9
      RETURN
      END IF
```

```
CONST = (1./RO)*SQRT(-ALPHA*G/CPW)
  EVALUATE THE SCALES IN THE STRESS-DOMINATED REGIME
    USC = 1.5*SQRT(QNET*PQ)*CONST
    DSC = 0.45*(1./RO)*TAU*PS/(SQRT(QNET*PQ)*CONST)
     TSC =1.5*(QNET*PQ)**1.5*CONST/(TAU*PS*CPW)
C TAKE ACCOUNT OF THE EFFECT OF PENETRATING INSOLATION
     RS1 = (1. - R)*(QI - QL)/QI
     HLAM = (1. - RS1*EXP(-DSC/BETA2))
C
     TSC - TSC*HLAM** 1.5
     USC = USC*HLAM**0.5
     DSC - DSC/HLAM**1.5
C NOW, CHECK TO SEE IF CONVECTION LIMIT IS REACHED
     CALL CDEP(QI,QL,R,BETA1,BETA2,CDZ,QDC,RIC)
C
     TCON - PQ*QDC/(RO*CPW)
     IF(TCONLT.TSC) THEN
C IF CONVECTION LIMIT WAS REACHED, THEN USE CONVECTION SCALES
     ICON - 1
     TSC - TCON
     USC - TAU*PS/(RO*CDZ)
     DSC - CDZ + (PQ/(RO*CPW))*RIC/TSC
C
     END IF
C
     RETURN
     END
C
C
```

```
SUBROUTINE CDEP(QI,QL,R,B1,B2,CD,QDC,RIC)
  THIS SUBROUTINE COMPUTES THE CONVECTION DEPTH FOR THE
   DIURNAL CYCLE.
  INPUT DATA ARE:
   QI, THE MAXIMUM SOLAR INSOLATION, WATTS PER METER SQUARED
   QL, HEAT LOSS, WATTS PER METER SQUARED
   R, FRACTION OF INSOLATION IN LONG WAVE COMPONENT, NON-D
   B1, EXTINCTION SCALE FOR LONG WAVE INSOLATION, METERS
   B2, EXTINCTION SCALE FOR SHORT WAVE INSOLATION, METERS
C
   THE OUTPUT DATA ARE:
C
   CD, THE DAILY MINIMUM CONVECTION DEPTH, METERS
   QDC, HEAT FLUX ABSORBED ABOVE CD, WATTS PER METER CUBED
Č
   RIC, THE SOALAR INSOLATION AT DEPTH CD, WATTS PER METER SQUARED
00000
   JIM PRICE, 1 JULY 1985, W.H.O.I.
     DZ = 0.05
C
   SET DEFAULT VALUES
     CD = 26.
     QDC = 0.1
     DO 4 J-1,500
     Z - FLOAT(J)*DZ
     RIZ = QI*(1. - (R*EXP(-Z/B1) + (1.-R)*EXP(-Z/B2)))
     DIDZ = QI*(R*EXP(-Z/B1)/B1 + (1.-R)*EXP(-Z/B2)/B2)
     ELS = (RIZ + QL)/Z
C
     IF(ELS.GE.DIDZ) GO TO 5
C
    4 CONTINUE
     GO TO 9
    5 CONTINUE
     CD - Z
     QDC - (ELS + DIDZ)/2.
     RIC - RIZ
C
    9 CONTINUE
     RETURN
```

END

C

DOCUMENT LIBRARY

April 9, 1985

DISTRIBUTION LIST FOR TECHNICAL REPORT EXCHANGE

Institute of Marine Sciences Library University of Alaska O'Neill Building 905 Koyukuk Ave., North Fairbanks, AK

Attn: Stella Sanchez-Wade Documents Section Scripps Institution of Oceanography Library, Mail Code C-075C La Jolla, CA 92093

Hancock Library of Biology & Oceanography Alan Hancock Laboratory University of Southern California University Park Los Angeles, CA 90089-0371

Gifts & Exchanges
Library
Bedford Institute of Oceanography
P.O. Box 1006
Dartmouth, NS, B2Y 4A2, CANADA

Office of the International
Ice Patrol
c/o Coast Guard R & D Center
Avery Point
Groton, CT 06340

Library
Physical Oceanographic Laboratory
Nova University
8000 N. Ocean Drive
Dania, FL 33304

NOAA/EDIS Miami Library Center 4301 Rickenbacker Causeway Miami, FL 33149

Library Skidaway Institute of Oceanography P.O. Box 13687 Savannah, GA 31416

Institute of Geophysics University of Hawaii Library Room 252 2525 Correa Road Honolulu, HI 96822

Library Chesapeake Bay Institute 4800 Atwell Road Shady Side, MD 20876 MIT Libraries Serial Journal Room 14E-210 Cambridge, MA 02139

Director, Ralph M. Parsons Laboratory Room 48-311 MIT Cambridge, MA 02139

Marine Resources Information Center Bldg. E38-320 MIT Cambridge, MA 02139

Library Lamont-Doherty Geological Observatory Colombia University Palisades, NY 10964

Library Serials Department Oregon State University Corvallis, OR 97331

Pell Marine Science Library University of Rhode Island Narragansett Bay Campus Narragansett, RI 02882

Working Collection Texas A&M University Dept. of Oceanography College Station, TX 77843

Library Virginia Institute of Marine Science Gloucester Point, VA 23062

Fisheries-Oceanography Library 151 Oceanography Teaching Bldg. University of Washington Seattle, WA 98195

Library R.S.M.A.S. University of Miami 4600 Rickenbacker Causeway Miami, FL 33149

MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, AND FINAL REPORTS
PUBLISHED BY OCEANOGRAPHIC CONTRACTORS OF THE OCEAN SCIENCE
AND TECHNOLOGY DIVISION OF THE OFFICE OF NAVAL RESEARCH

(Revised October 1983)

 Deputy Under Secretary of Defense (Research and Advanced Technology)
 Military Assistant for Environmental Science Room 3D129
 Washington, DC 20301

> Office of Naval Research 800 North Quincy Street Arlington, VA 22217

- 3 Attn: (Code applicable to Program) *
- 1 Attn: Code 420C
- 2 Attn: Code 102C

Commanding Officer Naval Research Laboratory Washington, DC 20375

- 6 Attn: Library Code 2627
- 1 Attn: Library Code 2620, Mr. Peter Imhof
- 12 Defense Technical Information Center Cameron Station Alexandria, VA 22314 Attn: DCA

Commander Naval Oceanographic Office NSTL Station Bay St. Louis, MS 39522

- l Attn: Code 8100
- 1 Attn: Code 6000
- 1 Attn: Code 3300
- 1 NODC/NOAA
 Code D781
 Wisconsin Avenue, N.W.
 Washington, DC 20235

^{*} Applicable Codes: 422 (PO); 422CB (Chem/Bio); 422CS (Coastal); 425 (G&G); 425AR (Arctic); 421 (OE); 421SP (Ships); 425OA (Ocean Acoustics); 425UA (Underwater Acoustics)

50272 - 101				
REPORT DOCUMENTATION PAGE	1. REPORT NO. WHOI-86-5	2.	3. Recipient's A	ccession No.
4. Title and Subtitle		· · · · · · · · · · · · · · · · · · ·	5. Report Date	
Data Tabulations and	Analysis of Diurnal Sea Surfac	e Temperature	Febura	ry 1986
Variability Observed		•	6.	
7. Author(s) Clarke M. Boy Melbourne G. Briscoe	wers, James F. Price, Robert A.	Weller and	& Performing O	Prganization Rept. No.
9. Performing Organization Name a			10. Project/Tasi	
Woods Hole Oceanogr				
Woods Hole, Massach			11. Contract(C)	or Grant(G) No.
, woods from mussuem	54010	•	(c) N00014	or Grant(G) No. 1-76-C-0197, NR
			083-40	0 and N00014-84-
1			(G) C-0134	, NR 083-400
12. Sponsoring Organization Name	and Address		13. Type of Rep	ort & Period Covered
Office of Neural Base	anah		Technic	cal
Office of Naval Rese				
Environmental Science			14.	11.000
Arlington, Virginia 2	2217			
15. Supplementary Notes				•
This report should be	cited as: Woods Hole Oceanog.	Inst. Tech. Rept. V	WHOI-86-5.	
1				
				e i e e e e e e e e e e e e e e e e e e
16. Abstract (Limit: 200 words)				
Air/sea measurem	nents from the Long-Term Up	ner Ocean Study (LOTUS) buoy	in the Sargasso
	learn how the diurnal respon			
	ng, H, and the wind stress, S.			
	the summers of 1982 and 198			
				in monthly plots,
	y values of ΔT_s , H, and S are gi			h C A host fit
	ow a clear trend of ΔT_S increa			
	npirical function can account			
	data (172 days) and 81 percent			
	ta are also compared with a			
	iurnal Ocean Surface Layer n			
	model function was derived			
	shear flow instability. It is ful			
	LOTUS data over a wide rang			del function can
account for almost as	s much variance as the best-fit	empirical function.	•	
1				
i				
17. Document Analysis a. Descrip	tors			
1. diurnal cycle				
2. sea surface tempe	Pratura			
3. upper ocean	a de de c			
o. upper ocean				
b. Identifiers/Open-Ended Terms	•			
b. Identiners/Open-Ended Terms	•			
1				
l				
c. COSATI Field/Group				
18. Availability Statemen;		19. Security Class (Ti	his Report)	21. No. of Pages
		UNCLASSIF		51
Approved for publicat	tion; distribution unlimited.	20. Security Class (Th		22. Price

DT IC FILMED) 4-86 F ND