

Pontifícia Universidade Católica do Paraná Plano de Ensino

Escola/ Câmpus:	Politécnica					
Curso:	Ciência d	Ciência da Computação Ano/Semestre: 2022/1				2022/1
Código/Nome da disciplina:	Experiên	Experiência Criativa: Pesquisa Aplicada				
Carga Horária:	120 h.a.	120 h.a.				
Requisitos:	Não há.	Não há.				
Créditos:	Período: 3 Turma: Turno:					
Professores Responsáveis:	Edson J. R. Justino e Alcides Calsavara					

1. Ementa:

Esta disciplina é ofertada aos estudantes do 3o. Período do Curso de Ciência da Computação. Durante o semestre, o estudante desenvolve suas aptidões criativas por meio de projetos que utilizam as competências adquiridas durante os dois primeiros semestres do curso. O estudante experimenta novas tecnologias para o desenvolvimento de projetos de automação de processos industriais, de robótica e em dispositivos móveis. O estudante utiliza diferentes ferramentas de prototipação de dispositivos de automatização e Internet das Coisas (Internet of Things IoT), tais como as Plataformas de Prototipagem Eletrônica EPP (*Electronic Prototyping Platform*), simuladores para aprendizado por meio de STEM (*Science, Technology, Engineering and Mathematics*), tecnologias de computadores de pequeno porte e de baixo custo TLCCT (*Tiny and Low-Cost Computer Technology*) e plataforma IFTTT (*If This, Then That*) para IoT. Ao final da disciplina, o estudante é capaz de criar protótipos e aplicações de baixa e média complexidade para IoT e automação. Para o bom aproveitamento da disciplina, o estudante deve conhecer linguagem de programação, ter noções básicas de sistemas operacionais e de bases numéricas.

2. Relação com disciplinas precedentes e posteriores

- 1º Raciocínio Algorítmico;
 2º Fundamentos de Sistemas Ciberfísicos;
 5º Conectividade e Sistemas Ciberfísicos;

3. Temas de estudo

4. Resultados de Aprendizagem

Competência A: Desenvolver sistemas computacionais com qualidade de processo e de produto, considerando boas práticas de engenharia de software, aspectos éticos, legais e impactos ambientais de forma responsável.				
Elemento de Competência A1: Selecionar configuração	Elemento de Competência A1: Selecionar configuração adequada de hardware e software na solução de problemas computacionais.			
RA A1.1: Construir protótipos simples usando	TE : Fundamentos de circuitos elétricos.			
plataformas EPP.	TE : Arquitetura básica de microcontroladores.			
	TE: Plataformas EPP.			
	TE: Ferramentas de simulação de EPP.			
	TE: Programação de EPP.			
RA A1.2: Construir protótipos em EPP com sensores e	TE: Sensores e atuadores.			
atuadores.	TE : Simulação de EPP com uso de sensores e atuadores.			
	TE : Programação de EPP com o uso de sensores e atuadores.			
RA A1.3: Construir protótipos em EPP com interfaces	TE : Programação de interface USB em EPP.			
de comunicação.	TE : Programação de interface Bluetooth em EPP.			
	TE : Programação de interface Wi-Fi em EPP.			
RA A1.4: Construir protótipos em EPP com	TE : Programação de aplicativos para dispositivos móveis.			
gerenciamento remoto por meio de aplicativos em	TE : Programação de protocolo de comunicação entre protótipo em EPP e aplicativo			
dispositivos móveis.	em dispositivo móvel.			
Elemento de Competência A2: Integrar arquiteturas, redes, sistemas operacionais e nuvem computacional para suportar aplicações diversas.				
RA 2.1: Construir protótipos em EPP com interação com	TE: Fundamentos de IoT (Internet das Coisas).			
serviços de IoT.	TE: Serviços de IoT.			
	TE: Cidades Inteligentes.			

5. Mapa Mental

Linguagem Python

6. Metodologia e Avaliação

(A forma de avaliação foi adaptada na versão COVID-19 de maneira a substituir as provas tradicionalmente aplicadas por trabalhos na forma de PBL. Além disso, a entrega dos trabalhos na forma de PBL, tanto com avaliação somativa como formativa, serão consideradas para fins de validação de presença.)

Resultado de aprendizagem	Indicadores de desempenho	Métodos ou técnicas empregados	Processos de Avaliação
RA 1.1: Construir protótipos simples usando plataformas EPP.	1.1.1 Opera circuitos elétricos básicos, portas digitais e analógicas. 1.1.2 Identifica e caracteriza os Microcontroladores e seu uso em Plataformas EPP's. 1.1.3 Opera o Simulador Circuits (AutoDesk) para EPP Arduino na criação de protótipos funcionais. 1.1.4 Programa em IDE para EPP Arduino na criação de protótipos.	- Peer Instruction; - PBL.	 Correção coletiva das atividades do <i>Peer Instruction</i> – formativa. Avaliação de desempenho por pares nas atividades em equipe – formativa. Avaliação de desempenho do grupo – somativa (PBL). Avaliação de desempenho individual – somativa (PBL).
RA 1.2: Construir protótipos em EPP com sensores e atuadores.	1.2.1 Opera Sensores e atuadores em aplicações EPP's. 1.2.2 Projeta protótipos em simulador Circuits (AutoDesk) usando sensores e atuadores. 1.2.3 Desenvolver protótipo para Plataformas EPP Arduino usando sensores e atuadores.	- Peer Instruction; - PjBL.	 Correção coletiva das atividades do Peer Instruction – formativa. Avaliação de desempenho por pares nas atividades em equipe – formativa. Avaliação de desempenho do grupo – somativa (PJBL). Avaliação de desempenho individual – somativa (PJBL).
RA 1.3: Construir protótipos em EPP com	1.3.1 Desenvolver protótipo para Plataformas EPP Arduino usando conectividade USB.	- Peer Instruction; - PBL.	 Correção coletiva das atividades do Peer Instruction – formativa. Avaliação de desempenho por pares nas atividades em equipe – formativa.

interfaces de comunicação.	 1.3.2 Desenvolver protótipo para Plataformas EPP Arduino usando conectividade Bluetooth. 1.3.3 Desenvolver protótipo para Plataformas EPP Arduino usando conectividade Wi-Fi. 		 Avaliação de desempenho do grupo – somativa (PBL). Avaliação de desempenho individual – somativa (PBL).
RA 1.4: Construir protótipos em EPP com gerenciamento remoto por meio de aplicativos em dispositivos móveis.	1.4.1 Desenvolve aplicação App para Smartphones (Androide/ IOS) usando MIT App Inventor para controlar Rover com Sensoriamento (usando LEGO MINDSTORMS Education EV).	- Peer Instruction; - PjBL.	 Correção coletiva das atividades do <i>Peer Instruction</i> – formativa. Avaliação de desempenho por pares nas atividades em equipe – formativa. Avaliação de desempenho do grupo – somativa (PJBL). Avaliação de desempenho individual – somativa (PJBL).
RA 2.1: Construir protótipos em EPP com interação com serviços de loT.	2.1.1 Aplica os conceitos de loT. 2.1.2 Implementa soluções usando IFTTT para integração do TLCCT em aplicações de loT.	- Peer Instruction; - PjBL.	 Correção coletiva das atividades do <i>Peer Instruction</i> – formativa. Avaliação de desempenho por pares nas atividades em equipe – formativa. Avaliação de desempenho do grupo – somativa (PJBL). Avaliação de desempenho individual – somativa (PJBL).

A nota semestral será calculada a partir das notas obtidas nas avaliações somativas realizadas ao longo do semestre, conforme cronograma no Seção 7. A tabela abaixo mostra o peso de cada avaliação somativa (AS) na composição da nota semestral.

AS	Peso
1	20%
2	20%
3	20%
4	20%
5	20%

O estudante (ou equipe) que tiver nota inferior a 7,0 (sete) em alguma atividade somativa poderá reapresentar a atividade em até duas semanas após o prazo regular para fins de recuperação.

7. Cronograma de atividades

Turma da Manhã:

		Terça	
	8	1	1
Marco	15	2	2
Março	22	3	3
	29	4	4
	5	5	5
Abril	12	6	6
Abili	19	7	7
	26	8	8
	3	9	9
	10	10	10
Maio	17	11	11
	24	12	12
	31	13	13
	7	14	14
Junho	14	15	15
	21	16	16
		Semana	
	Dia do mês	do	Encontro
		semestre	

Turma da Noite:

		Quarta	
	9	1	1
Marco	16	2	2
Março	23	3	3
	30	4	4
	6	5	5
Abril	13	6	6
Abili	20	7	7
	27	8	8
	4	9	9
Maio	11	10	10
IVIAIU	18	11	11
	25	12	12
	1	13	13
Junho	8	14	14
Julilo	15	15	15
	22	16	16
	Dia do mês	Semana do semestre	Encontro

Encontro	Temas de Estudo	Atividade Formativa (AF)	Atividade Somativa (AS)
1	Ferramentas para construção de protótipos de sistemas baseados em circuitos elétricos com unidade de contole (Arduino)	AF 0: Primeiros contatos com com a programação de microcontroladores. Três atividade hands-on: LED RGB, sensor de luminosidade e servo-motor.	
2	Circuitos elétricos: conceitos básicos e ferramenta de simulação. Circuitos elétricos: diodo e LED.	AF 1: aplicação da Lei de Ohm. AF 2: circuito com uma série de LEDs de cores distintas simultaneamente iluminados com uso de duas baterias de 9V.	
3	EPP (Eletronics Prototyping Platform) - Arduino: arquitetura e programação. Atividade Formativa: circuito com uma série de LEDs de cores distintas iluminados em sequência de forma circular infinita.	AF 3: Sequência de LEDs. AF 4: Calculadora Binária com LEDs.	
4	Potenciômetro. Estados de um sistema.		AS 1: Semáforos (Parte 1)
5	Controle de sistema com Interrupção.		AS 1: Botões de interrupção para o semáforo (Parte 2)

6	Interrupção com Keypad. Compartilhamento de Porta de Interrupção. Atividades Formativa: Circuito de 10 botões em uma porta de interrupção. Barra de LEDs. Atividade Formativa: Circuito com barra de LEDs.		AS 2: Elevador
7			Continuação da Atividade AS 2
8	Keyppad. LCD. Atividade Formativa: Circuito com LCD. Diagrama de Estados.	IAF 5: Calculadora Decimal	AS 3: Calculadora e Conversor de Bases Numéricas
9			Continuação da Atividade AS 3
10	Comunicação ponto-a-ponto entre dois microprocessadores.	AF 6: Comunicação serial via USB com o Arduino	AS 4: Jogo da Velha Distribuído

11		Continuação da Atividade AS 4
	Protocolo de comunicação serial mestre-escravo.	AS 5: Projeto Final - proposta
13		AS 5: Projeto Final - arquitetura e hardware (projeto físico)
14		AS 5: Projeto Final - diagramas de estados, algoritmos.
15		AS 5: Projeto Final - protocolos de comunicação (projeto lógico)

16			AS 5: Projeto Final - implementação e documentação final
----	--	--	---

TDE	Atividade Pedagógica	Carga Horária (HA)	RA	Período
1	Semana de Planejamento Acadêmico (TDE Institucional – Oficina de Ambientação do AVA: Bem-Estar e Vivência Acadêmica + Pacto Educativo Global)	6	1	21 a 25/2/2022
2	Pesquisa sobre IoT	10	RA2.1	2/4 a 23/4
3	Pesquisa sobre Sensores e Atuadores	8	RA1.2	17/5 a 4/6

8. Referências

- 1. Arduino Home Page: https://www.arduino.cc
- 2. Hapbarry Home Page: https://www.raspberrypi.org
- 3. Lego Midstorms Home Page: https://www.lego.com/en-us/mindstorms
- 4. AutoDesk ThinkerCad Home Page: https://www.tinkercad.com
- 5. IFTTT Home Page: https://www.tinkercad.com

9. Acessibilidade**

não houve necessidade de adaptação

^{**} conforme nota técnica conjunta número 17/2020 CGLNRS/DPR/SERES/SERES