Naive Bayes

Samuel Clark

In collaboration with the WHO VA Reference Group Columbus, Ohio November, 2018

Outline

- Background
- Derive Naive Bayes for Verbal Autopsy
- The Naive Bayes Relationship in Practice
- NBC Algorithm for VA

Naive Bayes is at the heart of three available algorithms

- Naive Bayes Classifier for VA from Toronto group [3]
- InterVA from Peter Byass [1]
- InSilicoVA from our group [2]

Naive Bayes is at the heart of three available algorithms

- Naive Bayes Classifier for VA from Toronto group [3]
- InterVA from Peter Byass [1]
- InSilicoVA from our group [2]

With a simplifying assumption, naive Bayes provides an analytical relationship for the probability of something being true in a specific circumstance when something else is true

Naive Bayes is at the heart of three available algorithms

- Naive Bayes Classifier for VA from Toronto group [3]
- InterVA from Peter Byass [1]
- InSilicoVA from our group [2]

With a simplifying assumption, naive Bayes provides an analytical relationship for the probability of something being true in a specific circumstance when something else is true

Formally, this can be expressed as a *conditional probability*: the probability of the outcome given a set of conditions, or

Pr(outcome|conditions)

Derive Naive Bayes for Verbal Autopsy

The Naive Bayes Relationship in Practice

NBC Algorithm for VA

Notation

• C causes of death indexed by c

Notation

- C causes of death indexed by c
- S binary-coded symptoms indexed by s

Notation

- C causes of death indexed by c
- S binary-coded symptoms indexed by s
- **s**: for a given death, *S*-element vector with one binary value (0=absent, 1=present) for each symptom

Bayes' Rule

Using Bayes' Rule for conditional probabilities, for a single death the joint probability of a specific cause c and a specific vector of symptoms \mathbf{s} is

$$Pr(c, \mathbf{s}) = Pr(c|\mathbf{s}) Pr(\mathbf{s}) = Pr(\mathbf{s}|c) Pr(c), \qquad (1)$$

Bayes' Rule

Using Bayes' Rule for conditional probabilities, for a single death the joint probability of a specific cause c and a specific vector of symptoms \mathbf{s} is

$$Pr(c, \mathbf{s}) = Pr(c|\mathbf{s}) Pr(\mathbf{s}) = Pr(\mathbf{s}|c) Pr(c), \qquad (1)$$

and the conditional probability of a cause c given \mathbf{s} is

$$Pr(c|\mathbf{s}) = \frac{Pr(c)Pr(\mathbf{s}|c)}{Pr(\mathbf{s})}.$$
 (2)

Bayes' Rule

Using Bayes' Rule for conditional probabilities, for a single death the joint probability of a specific cause c and a specific vector of symptoms \mathbf{s} is

$$Pr(c, \mathbf{s}) = Pr(c|\mathbf{s}) Pr(\mathbf{s}) = Pr(\mathbf{s}|c) Pr(c), \qquad (1)$$

and the conditional probability of a cause c given \mathbf{s} is

$$Pr(c|\mathbf{s}) = \frac{Pr(c)Pr(\mathbf{s}|c)}{Pr(\mathbf{s})}.$$
 (2)

Our job is to define the factors in the RHS of Eq 2.

Conditional Independence

Making the assumption that observed symptoms are independent of each other for each cause of death, the probability of a given vector **s** of symptom indicators if the cause of death is *c* is

$$\Pr(\mathbf{s}|c) = \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s} . \tag{3}$$

Conditional Independence

Making the assumption that observed symptoms are independent of each other for each cause of death, the probability of a given vector **s** of symptom indicators if the cause of death is *c* is

$$\Pr(\mathbf{s}|c) = \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s} . \tag{3}$$

This is **not** realistic, but it greatly simplifies things.

Probability of a Vector of Symptom Indicators

The probability of a given vector of symptoms \mathbf{s} no matter what the cause is found by summing over the causes c in Equation 1. Combining that with Equation 3 results in

$$Pr(\mathbf{s}) = \sum_{c} Pr(\mathbf{s}|c) Pr(c) ,$$

$$Pr(\mathbf{s}) = \sum_{c} Pr(c) \prod_{s} Pr(s|c)^{s} (1 - Pr(s|c))^{1-s} .$$
(4)

$Pr(c|\mathbf{s})$

Substituting the expressions we have just identified (Eqs 3 and 4) into Eq 2 produces a tractable expression for the conditional probability that the cause is c given the observed vector of symptoms \mathbf{s}

$$\Pr(c|\mathbf{s}) = \frac{\Pr(c) \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}}{\sum_{c} \Pr(c) \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}}.$$
 (5)

$Pr(c|\mathbf{s})$

Substituting the expressions we have just identified (Eqs 3 and 4) into Eq 2 produces a tractable expression for the conditional probability that the cause is c given the observed vector of symptoms \mathbf{s}

$$\Pr(c|\mathbf{s}) = \frac{\Pr(c) \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}}{\sum_{c} \Pr(c) \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}}.$$
 (5)

This requires information on both the **presence** and **absence** of a given symptom - i.e. there must be a value for each element in **s** and both possible values must have meaning.

2 Derive Naive Bayes for Verbal Autopsy

- The Naive Bayes Relationship in Practice
- NBC Algorithm for VA

$$\Pr(c|\mathbf{s}) = \frac{\Pr(c) \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}}{\sum_{c} \Pr(c) \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}}$$

 $\Pr(c|\mathbf{s})$ is conditional probability of cause of death c given vector of symptoms \mathbf{s}

$$\Pr(c|\mathbf{s}) = \frac{\Pr(c) \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}}{\sum_{c} \Pr(c) \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}}$$

 $\Pr(c|\mathbf{s})$ is conditional probability of cause of death c given vector of symptoms \mathbf{s}

Pr(c) is probability of cause of death c regardless of symptoms – e.g. the **cause-specific mortality fractions**

$$\Pr(c|\mathbf{s}) = \frac{\Pr(c) \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}}{\sum_{c} \Pr(c) \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}}$$

 $\Pr(c|\mathbf{s})$ is conditional probability of cause of death c given vector of symptoms \mathbf{s}

Pr(c) is probability of cause of death c regardless of symptoms – e.g. the **cause-specific mortality fractions**

 $\prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}$ is probability of vector of symptoms **s** given cause of death *c* assuming independence among symptoms

$$\Pr(c|\mathbf{s}) = \frac{\Pr(c) \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}}{\sum_{c} \Pr(c) \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}}$$

 $\Pr(c|\mathbf{s})$ is conditional probability of cause of death c given vector of symptoms \mathbf{s}

 $\Pr(c)$ is probability of cause of death c regardless of symptoms – e.g. the **cause-specific mortality fractions**

 $\prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}$ is probability of vector of symptoms **s** given cause of death *c* assuming independence among symptoms

 $\sum_{c} \Pr(c) \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}$ is probability of symptom vector **s** regardless of cause of death

Recall that 'Symptom-Cause Information' (SCI) is information that describes the relationship between symptoms and causes

Recall that 'Symptom-Cause Information' (SCI) is information that describes the relationship between symptoms and causes

SCI come from an external source such as *physicians* or a *'gold standard' dataset* that contains both VA symptoms and a cause(s) of death assigned through an unrelated mechanism, e.g. de-biased physician codes or medical record review

Recall that 'Symptom-Cause Information' (SCI) is information that describes the relationship between symptoms and causes

SCI come from an external source such as *physicians* or a *'gold standard' dataset* that contains both VA symptoms and a cause(s) of death assigned through an unrelated mechanism, e.g. de-biased physician codes or medical record review

SCI appear in the naive Bayes relationship in the form of $\Pr(s|c)$

Recall that 'Symptom-Cause Information' (SCI) is information that describes the relationship between symptoms and causes

SCI come from an external source such as *physicians* or a *'gold standard' dataset* that contains both VA symptoms and a cause(s) of death assigned through an unrelated mechanism, e.g. de-biased physician codes or medical record review

SCI appear in the naive Bayes relationship in the form of $\Pr(s|c)$

$$\Pr(c|\mathbf{s}) = \frac{\Pr(c) \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}}{\sum_{c} \Pr(c) \prod_{s} \Pr(s|c)^{s} (1 - \Pr(s|c))^{1-s}}$$

2 Derive Naive Bayes for Verbal Autopsy

The Naive Bayes Relationship in Practice

MBC Algorithm for VA

NBC Algorithm for VA

Prabhat Jha's group in Toronto has developed an automated cause-assignment algorithm for VA based on the naive Bayes relationshiop [3] called NBC for verbal autopsy

NBC Algorithm for VA

Prabhat Jha's group in Toronto has developed an automated cause-assignment algorithm for VA based on the naive Bayes relationshiop [3] called NBC for verbal autopsy

- Uses SCI in the form of $\Pr(s|c)$ derived from Indian death data using Jha group's custom VA tools and validation data
- For each death, algorithm calculates $\Pr(c|\mathbf{s})$ for each cause and identifies the cause with the highest probability as the most likely cause for the death
- Publicly available, open-source R package on CRAN called https://cran.r-project.org/package=nbc4va
- Was actually developed and implemented after both InterVA and InSilicoVA

References I

- [1] Peter Byass, Daniel Chandramohan, Samuel J Clark, Lucia D'Ambruoso, Edward Fottrell, Wendy J Graham, Abraham J Herbst, Abraham Hodgson, Sennen Hounton, Kathleen Kahn, et al. Strengthening standardised interpretation of verbal autopsy data: The new interva-4 tool. *Global Health Action*, 5(19281):doi: 10.3402/gha.v5i0.19281, 2012.
- [2] Tyler H McCormick, Zehang Richard Li, Clara Calvert, Amelia C Crampin, Kathleen Kahn, and Samuel J Clark. Probabilistic cause-of-death assignment using verbal autopsies. *Journal of the American Statistical Association*, 111(515):1036–1049, 2016.
- [3] Pierre Miasnikof, Vasily Giannakeas, Mireille Gomes, Lukasz Aleksandrowicz, Alexander Y Shestopaloff, Dewan Alam, Stephen Tollman, Akram Samarikhalaj, and Prabhat Jha. Naive bayes classifiers for verbal autopsies: comparison to physician-based classification for 21,000 child and adult deaths. *BMC medicine*, 13(1):286, 2015.