언어의 이해 2강. 언어의 소리와 음성학

김미경

2025.9.10

목차

말소리

음성학

발음 기관 발동부 발성부 조음부

말소리

발성과 말소리

발성(vocalization)

- ▶ 동물의 호흡계의 움직임을 통해 생성된, 의사소통에 사용되는 모든 소리
- ▶ 개구리, 악어, 도마뱀, 새, 포유류 등의 발성을 특히 음성(vocal sound)으로 지칭하는 경우가 많음

<u>브리태니커 백과사전 'Vocalization' 항목</u>, 2025.9.4 접속

말소리(speech sound)

- ▶ 인간이 언어적 의사소통에 사용하는 음성
- ▶ 언어를 이루는 가장 작은 요소

말소리의 특징

말소리

- ▶ 분절성 (문 = ㅁ, ㅜ, ㄴ)
- ▶ 대립성 & 변별성 (문 vs. 눈)
- ▶ 결합성 (□, ⊤, L → 문, 눔, 뭄, 눈)

다른 동물의 음성

거의 대부분 통짜 신호

참고. 박새의 사례

- ▶ '경계하라'와 '이리로 와'를 조합해서 '경계하며 이리로 오라' 표현 가능
- ▶ 분절과 결합을 사용할 수 있다는 증거?

Suzuki, T., Wheatcroft, D. & Griesser, M.(2016), 2025.9.4 접속

말소리의 특징

분절성이 있는데 대립성/변별성이 없다면?

농구팀 선수들의 등번호 체계

- ▶ 4번, 14번, 10번은 각 선수들을 분절함
- ▶ 10번이 채치수였다가 강백호가 되어도 북산고교 농구부가 다른 농구부가 되지 않음

분절성이 있는데 결합성이 없다면?

화학물질 경고 기호

- ▶ 💹 독극물
- ▶ 🔥 인화성 물질
- ▶ ♦ ● ○ <a href=
 - '불에 탔을 때만 독극물' 등의 의미를 표현할 수 없음

말소리에 대한 지식

말소리는 언어 지식의 일부

- ▶ 화자가 인간 언어에서 사용되는 모든 말소리를 아는 것은 아님
- ▶ 자기 언어에서 사용되는 말소리의 특징과 목록은 언어 지식의 일부
- ▶ 자기 언어에서 사용되는 말소리의 특징들만 구분함
- ▶ 자기 언어에서 사용되지 않는 말소리의 특징은 구현하기 어려움

철자에 대한 지식과 다름!

- ▶ 밭이 [바.치] vs. [밭.이]
- ▶ sea [i], see [i], scene [i], receive [i], thief [i], amoeba [i], machine [i]
- ▶ sign [s], pleasure [ʒ], resign [z]
- \blacktriangleright lock [k], that [δ], book [υ], mountain [ι], shop [\mathfrak{f}], apple [\mathfrak{p}], special [\mathfrak{f}]

말소리 표기하기

같은 단어의 다른 발음 - 어떻게 구분해야?

『Let's call the whole thing off - 작사 George Gershwin, Ira Gershwin

"...You like potato and I like potahto You like tomato and I like tomahto..."

문자나 기호를 잘 조합해 보면 어떨까...?

철자	Gershwin	Webster's	American Heritage
tomato	tomato	tə ['] mātō	təmā'tō
tomato	tomahto	tə ['] måtō	təmä'tō

참고: **Tronunciation** respelling for English

말소리 표기하기

국제음성기호(International Phonetic Alphabet)

- ▶ 국제음성학협회(International Phonetic Association)에서 1886년부터 제안 및 개발
- ▶ 전세계 모든 언어의 말소리 표시 기호
- ▶ 1기호 1소리 원칙
- ▶ 발음 기호(phonetic alphabet)와 발음 구별 기호(diacritic)의 조합
- ▶ 간략한 수준(중요한 특징)부터 정밀한 수준(모든 특징)까지 구분 가능

참고

- ▶ 置국제음성학협회 국제음성기호(최신: 2020년판)
- ▶ ■국립국어원 (2020) 국제음성기호 점자(IPA 촉각 표기 최신판)

말소리 표기하기

주요 발음 기호들			
?	glottal stop	영어 uh-oh!	
θ	theta	영어 tee th	
ð	eth [eð]	영어 that	
ſ	esh [εʃ]	영어 sh oes	
3	ezh [εʒ]	영어 pleasure	
ŋ	engma [εŋma]	영어 thi ng	
ſ	flap	미국영어 butter	
j	jod [joud]	영어 yes	
ε	epsilon	영어 bet, guest	
ə	schwa	영어 among	

주요 발음 구별 기호들

h 유기음 예: [pʰ] 유기음 p

~ 비음 예: [ã] 비모음 a

w 원순음 예: [kʷ] 원순음 k

j 구개음 예: [t] 구개음 t

 무성음 예: [n] 무성음 n

성절음 예: [n] 성절음 n

'○○음'이 뭔지는 곧 배워요!

음성학

음성학의 하위 분야

조음음성학(articulatory)

음성이 발음될 때 발음 기관의 모양에 따라 분류하고 과정을 기술

■발음 기관의 움직임 살펴보기

화자의 발음:

[həpɛ], [hətɛ], [həkɛ], [həpa], [həta], [həka], [hədɛ], [hənɛ], [həsɛ], [həsɛ], [həsa], [hep], [het], [hak], [hat], [hətɪ], [hətæ], [hətu], [hətu], [hətet], [hətet], [hətet], [hətek], [həpɛn], [hidi], [hida], [higa], [ia]

Why did Ken put the soggy net on top of his desk? I have put blood on her two clean yellow shoes.

음성학의 하위 분야

음향음성학(acoustic phonetics)

소리 자체의 물리적 특성(주파수, 파장 등) 연구 (물리학 연계)

'nineteenth century'의 스펙트로그램(spectrogram)

음성학의 하위 분야

청취음성학(auditory phonetics)

귀로 소리를 듣고 음성으로 파악하는 과정 연구 (신경의학, 의학, 언어병리학 연계)

발음 기관

발동부, 발성부, 조음부

발동부

공기의 흐름을 만드는 기관

발성부

소리의 울림과 높낮이를 결정하는 기관

조음부

소리의 특징을 빚어내는 기관

From Lieberman and Blumstein, Speech physiology, speech perception, and acoustic phonetics (1988), p. 4. Copyright 1988 Cambridge University Press. All rights reserved. Reprinted with permission.

발동부

폐 기류(pulmonic airstream)

- ▶ **기관:** 폐(lungs)
- ▶ 원리: 폐의 움직임을 통해 공기의 흐름을 만듦
- ▶ 방향에 따른 구분
 - ▶ 날숨 기류 (Egressive): 공기를 밖으로 내보냄 →말소리를 만드는 가장 보편적인 방식
 - ▶ 들숨 기류 (Ingressive): 공기를 안으로 들여보냄 →말소리를 만들 때 쓰이는 경우는 거의 없음
- ▶ 특징: 호흡에 얹혀가는 방식이라 효율적이고, 공기의 양과 속도를 제어하기 쉬움

참조: 국제음성기호 차트의 Consonants(Pulmonic) 파트

발동부

성문 기류(glottalic airstream)

- ▶ 기관: 성문(glottis)
- ▶ 원리: 닫힌 성문을 피스톤처럼 위아래로 움직여 공기 압축/희박화
- ▶ 방출음(ejectives), 내파음(implosives) 등 특수한 자음 생성

참조: 국제음성기호 차트의 Consonants(Non-pulmonic) 파트

방출음(ejectives)

- ▶ 성문 날숨 기류를 이용해 내는 소리
- ▶ ['] 구별 기호를 덧붙여 표기
- ▶ 🖳 영어의 수의적 [k']

내파음(implosives)

- ▶ 성문 들숨 기류를 이용해 내는 소리
- ▶ 기호 위쪽에 오른쪽으로 꺾인 갈고리를 부착해서 표기 [6, d, g]
- ▶ 🔈 Sindhi 어의 내파음

발동부

연구개 기류(Velaric Airstream)

- ▶ 기관: 혀와 연구개(tongue, velum)
- ▶ 원리: 혀와 연구개로 입안에 진공 상태를 만들어 공기를 안으로 빨아들임
- ▶ 흡착음(clicks) 등 특수한 자음 생성

참조: 국제음성기호 차트의 Consonants(Non-pulmonic) 파트

흡착음(clicks)

- ▶ 연구개 들숨 기류를 이용해 내는 소리
- ▶ 조음 위치에 따라 [⊙] []] [‖] [ǂ] [!] 등의 기호를 붙여서 표시
- ▶ 🔈 줄루어의 흡착음

발성부

성대(vocal cords)

- ▶ 후두에 있는 한 쌍의 근육
- ▶ 열어두거나, 밀착시키거나, 좁힐 수 있음
- ▶ 모양을 길게 늘리거나 짧게 줄일 수 있음

성문

성대 근육 사이의 공간

발성부

무성음(voiceless)

- ▶ 성대 근육 열기 →성문 개방 →울림 없는 소리
- ▶ IPA 차트 내 왼쪽 소리

유성음(voiced)

- ▶ 성대 근육 밀착 →성문 개폐 빠르게 반복 →성대 진동 →울림을 동반하는 소리
- ▶ IPA 차트 내 오른쪽 소리

성문 개방 정도에 따른 성대의 모양

속삭임 소리

성대 근육 좁히기 →성문 반만 개방 →울림은 없으나 마찰음을 동반하는 소리

높낮이

성대의 모양과 긴장 상태를 조절하여 소리의 기본 주파수를 바꿀 수 있음

성대(120Hz)

성대(200Hz)

소리 높이에 따른 성대의 모양(좌: 낮은 소리, 우: 높은 소리) 강범모 (2020) 《언어:풀어쓴 언어학 개론》

조음부

분절음(segments)

발성부를 거친 소리를 이용해서 만들어지는, 나뉘어져서 인식되는 소리

- ▶ 자음(consonants): 공기의 흐름이 막히거나 방해받아서 나는 소리
- ▶ 모음(vowels): 공기의 흐름이 막히지 않고 흐를 때 나는 소리

참고: 초분절음(suprasegments)

여러 분절음에 걸쳐서 부여되는 소리의 특성. 발동부, 발성부, 조음부의 협업으로 결정됨

- ▶ 강세: 크기(loudness). 폐가 내보내는 공기의 압력으로 결정
- ▶ 성조, 액센트, 억양: 높낮이(pitch). 성대의 진동 속도를 조절하여 결정
- ▶ 음장: 길이(duration). 발동부의 공기 공급과 조음부의 상태 유지 시간에 따라 결정

조음부: 자음

자음의 분류

- ▶ 조음 위치: 공기의 흐름이 어디에서 방해받는가?
- ▶ 조음 방법: 공기의 흐름이 어떻게 방해받는가?
- 🖳 분류별 자음의 조음 과정 살펴보기

방해

기류가 빠져나가는 중앙 통로가 모음 /i/를 조음할 때보다 좁아지면 '방해받는다'고 봄

- ▶ 각 조음 위치와 명칭을 외워 둡시다!
- ▶ 각 조음 위치별로 어떤 소리들이 있는지 IPA 차트를 확인해 보세요.

양순음(bilabial)

- ▶ 위아래 입술이 작용하여 나는 소리
- ▶ [p], [b], [m], [φ], [β], [в] 등

순치음(labiodental)

- ▶ 윗니와 아랫입술이 작용하여 나는 소리
- ▶ [f], [v]

치음(dental)

- ▶ 혀끝이 윗니와 아랫니 사이에 끼어서 나는 소리
- \blacktriangleright [θ], [δ], [t], [d], [s], [z]

치경음(alveolar)

- ▶ 혓날과 치경이 작용하여 나는 소리
- ► [t], [d], [n], [s], [z], [f], [r], [1], [l]

경구개치경음/후치경음(postalveolar)

- ▶ 혓날과 치경의 뒷쪽이 작용하여 나는 소리
- ► [ʃ], [ʃ^w] [ʒ], [tʃ], [dʒ]

치경경구개음/전경구개음(prepalatal)

- ▶ 혀 앞부분과 경구개의 앞쪽이 작용하여 나는 소리
- \blacktriangleright [¢], [\bar{x}], [\bar{t} ¢], [\bar{d} \bar{z}]

권설음(retroflex)

- ▶ 혀를 말아서 혀의 아랫부분과 치경과 경구개 사이가 작용하여 나는 소리
- ► [t], [d], [η], [ş], [z], [ц], [t]

경구개음(palatal)

- ▶ 혓몸과 경구개가 작용하여 나는 소리
- ► [c], [j], [n], [ʎ], [ç], [j]

연구개음(velar)

- ▶ 혀의 뒷부분과 연구개가 작용하여 나는 소리
- \blacktriangleright [k], [g], [ŋ], [x], [y]

구개수음(uvular)

- ► 목젖과 혀의 뒷부분이 작용하여 나는 소리
- ightharpoonup [d], [e], [N], [X], [R]

인두음(pharyngeal)

- ▶ 혀뿌리와 인두벽이 작용하여 나는 소리
- ► [ħ], [ʕ]

성문음(glottal)

- ▶ 성문이 닫히거나 좁혀져서 나는 소리.
- ▶ 이 소리를 만들 때에는 성대가 조음 기관으로 사용됨
- ► [?], [h], [ĥ]

- ▶ 조음 방법들을 외워 둡시다!
- ▶ 각 조음 방법별로 어떤 소리들이 있는지 IPA 차트를 확인해 보세요.

파열음(plosive)

- ▶ 조음기관끼리 닿아서 공기의 흐름을 차단했다가 터뜨려 내는 소리
- ▶ [p], [b], [t], [d], [k], [g]...

실습: 한국어와 영어의 양순파열음을 찾아보세요!

비음(nasal consonants)

- ▶ 파열음과 같지만 입천장을 내려서 비강으로 통하는 공기길을 열어두고 내는 소리
- ► [m], [n], [ŋ]

실습: 한국어와 영어의 연구개 비음을 찾아 보세요!

전동음(trill)

- ▶ 조음기관을 떨면서 내는 소리
- ► [B], [r], [R]

실습: 양순전동음을 발음해 보세요!

탄설음(tap/flap)

- ▶ 혀를 치경 부분에 한번 탁 부딪혀 내는 소리
- ▶ [t]

실습: 한국어의 탄설음을 찾아 보세요!

마찰음(fricative)

- ▶ 조음기관들을 가까이 접근시켜 공기를 그 사이로 통과시키면서 마찰을 일으켜 내는 소리
- ▶ 이 방법으로 모든 위치에서 조음할 수 있음
- [φ], [β], [f], [v], [θ], [δ], [s], [ʃ], [ʒ], [¢], [z], [ş], [z], [x], [γ], [h]

설측음(lateral)

- ▶ 혀 가운데로 공기의 흐름을 막고, 혀의 옆으로 공기를 내보내며 내는 소리
- ▶ 설측마찰음과 설측접근음이 있음
- ► [4], [⅓], [1], [ʎ]

접근음(approximant)

- ▶ 조음기관들이 마찰음보다는 덜 가깝게, 간격을 두고 접근할 때 나는 소리
- ▶ [1], [j]

파찰음(affricate)

- ▶ 파열음과 마찰음을 연속시켜 내는 소리
- ▶ 파열음과 마찰음 기호를 연속해서 표기
- ▶ 파찰음의 조음위치는 마찰음 부분에 따름
- ightharpoonup [fs], [dz] [tʃ], [dʒ], [t¢], [dz]

조음부: 자음의 분류 실습

다음 설명에 따라 해당하는 IPA 기호를 IPA 차트에서 찾아봅시다!

- ▶ 유성 경구개 접근음 voiced palatal approximant []
- ▶ 무성 후치경 파찰음 voiceless post-alveolar affricate []
- ▶ 유성 연구개 비음 voiced velar nasal []
- ▶ 무성 성문 마찰음 voiceless glottal fricative []
- ▶ 유성 순치 마찰음 voiced labiodental fricative []
- ▶ 유성 치 마찰음 voiced interdental fricative []
- ▶ 유성 후치경 마찰음 voiced post-alveolar fricative []
- ▶ 유성 치조 설측접근음 voiced alveolar lateral approximant []

조음부: 모음

모음의 생성 원리

조음기관의 모양 변형 \rightarrow 소리의 공명 공간 변화 \rightarrow 소리의 공명주파수 변화 \rightarrow 소리의 음향적 특성 변화 \rightarrow 모음의 변화

조음부: 모음

모음의 분류

- ▶ 단모음(monophthongs): 조음되는 동안 조음 동작의 변화가 없는 모음
- ▶ 이중모음(diphthong): 조음되는 동안 조음 동작의 변화가 생겨서 두 개의 조음 동작으로 만들어지는 모음
- 🖳 단모음의 조음 과정 살펴보기

이중모음의 예시

영어 eye [aɪ], brown [aʊ], boy [ɔɪ], house [oʊ], bait [eɪ] 등의 모음

조음부: 단모음

모음사각도

- ▶ 각 모음별로 발음할 때 혀의 가장 높은 지점의 위치를 상대적으로 표시한 그림
- ▶ 왼쪽은 평순, 오른쪽은 원순

조음부: 단모음의 분류

개구도와 혀의 높이

- ▶ 고모음/폐모음[i], [y], [ɨ], [ʉ] [ɯ], [u]
- ▶ 반폐모음[e], [ø], [o]
- ▶ 반개모음[ε], [œ], [ʌ],[ɔ]
- ▶ 저모음/개모음 [a], [ɒ]

혀의 앞뒤 위치

- ► 전설모음 [i], [y], [e], [ø], [ε], [œ], [a]
- ▶ 후설모음 [w], [u], [o], [ʌ],[ɔ], [ɒ]

입술 모양

- ▶ 평순모음 [i], [e],[ɛ], [a], [ш], [ʌ]
- ▶ 원순모음 [y], [ø], [œ], [u], [o], [ɔ], [ɒ]

비강 개방 여부

- ▶ 구강모음: 모음 기호로 표시
- ▶ 비모음: 모음 기호에 [~] 구별 기호 결합

참고문헌

- ▶ Department of Linguistics, The Ohio State University (2022) *Language Files*, 13th ed. Ohio State University Press. Chapter 2.
- ▶ 신지영 (2022) 《말소리의 이해》, 2판. 한국문화사