Estudo das Integrais Indefinidas

1 Introdução Para tratar do assunto de integrais, vou seguir a ordem de abordagem de Piskounov (1986). O livro original de Cálculo Diferencial e Integral deste autor foi escrito em russo, sua língua de origem. Possuo a 11^a edição em língua portuguesa, impressa em 1986. Você pode achar que é um livro muito antigo, mas o considero um bom material para se aprender o Cálculo Diferencial e Integral. Vamos começar o estudo de integrais, estudando o problema de se encontrar uma função f(x) tal que a sua derivada seja igual a f(x), isto é: f'(x) = f(x)

Primitiva de uma Função

Definição 2.1 Uma função F(x) é uma primitiva da função f(x) em [a,b] se, $\forall x \in [a,b]$, tivermos a igualdade F'(x) = f(x).

Exemplo 2.1 Encontre uma primitiva para a função f(x) = 4x3.

Usando a definição, temos que a primitiva procurada é $F(x) = x^4$, pois

$$\frac{d}{dx}f(x) = \frac{d}{dx}(x^4) = 4x^3$$

Integrais indefinidas

Da mesma forma que a adição e a subtração, a multiplicação e a divisão, a operação inversa da derivação é a **antiderivação** ou **integração indefinida**.

Dada uma função g(x), qualquer função f'(x) tal que f'(x) = g(x) é chamada integral indefinida ou antiderivada de f(x).

Exemplos:

- 1. Se $f(x) = \frac{x^5}{5}$, então $f'(x) = \frac{5x^4}{5} = x^4 = g(x)$ é a derivada de f(x). Uma das antiderivadas de $f'(x) = g(x) = x^4$ é $\frac{x^5}{5}$.
- 2. Se $f(x) = x^3$, então $f'(x) = 3x^2 = g(x)$. Uma das antiderivadas ou integrais indefinidas de $g(x) = 3x^2$ é $f(x) = x^3$.
- 3. Se $f(x) = x^3 + 4$, então $f'(x) = 3x^2 = g(x)$. Uma das antiderivadas ou integrais indefinidas de $g(x) = 3x^2$ é $f(x) = x^3 + 4$.

Nos exemplos 2 e 3 podemos observar que tanto \mathbf{x}^3 quando \mathbf{x}^3 +4 são integrais indefinidas para $3\mathbf{x}^2$. A diferença entre quaisquer destas funções (chamadas **funções primitivas**) é sempre uma constante, ou seja, a integral indefinida de $3\mathbf{x}^2$ é \mathbf{x}^3 +C, onde C é uma constante real.

Propriedades das integrais indefinidas

São imediatas as seguintes propriedades:

 $\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$, ou seja, a integral da soma ou diferença é a soma ou diferença das integrais.

 2^a . $\int kf(x) dx = k \int f(x) dx$, ou seja, a constante multiplicativa pode ser retirada do integrando.

 $\frac{d}{dx} \left[\int f(x) \ dx \right] = f(x)$, ou seja, a derivada da integral de uma função é a própria função.

As propriedades de Integrais seguem diretamente das regras do fatos constante, da soma e da diferença das derivadas .

Os teoremas abaixo consideram que F(x) e G(x) são integrais de f(x) e g(x) e c uma constante:

• Uma constante pode ser movida através do sinal de integração, como vemos abaixo:

$$\int cf(x) \, dx = c \int f(x) \, dx$$

• Uma integral de uma soma é a soma das integrais, isto é:

$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

• Uma integral de uma diferença é a diferença das integrais, logo:

$$\int [f(x) - g(x)] dx = \int f(x) dx - \int g(x) dx$$

Veja alguns exemplos para ilustrar melhor essas propriedades:

Para calcular a integral de, usamos a propriedade das constantes:

$$\int 4\cos x \, dx \rightarrow 4 \int \cos x \, dx = 4 \text{sen } x + C$$

Agora para resolvermos a integral , usamos a propriedade da soma, que é a mesma da subtração, só muda o sinal:

$$\int (x + x^2) dx \to \int x dx + \int x^2 dx = \frac{x^2}{2} + \frac{x^3}{3} + C$$

EXERCÍCIOS RESOLVIDOS DE INTEGRAIS INDEFINIDAS

1) Calcular as integrais indefinidas usando a definição e as propriedades

a)
$$\int (x^2 + x^3 - 2x) dx$$

$$\int x^2 dx + \int x^3 dx - 2 \int x dx = \frac{x^3}{3} + \frac{x^4}{4} - \frac{2x^2}{2} + C$$

b)
$$\int \left(\frac{1}{x^2} + \sqrt{x^3}\right) dx$$

$$\int \frac{1}{x^2} dx + \int \sqrt{x^3} dx = \int x^{-2} dx + \int x^{\frac{3}{2}} dx = \frac{x^{-2+1}}{-2+1} + \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1} + C$$
$$= \frac{x^{-1}}{-1} + \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + C = -\frac{1}{x} + \frac{2}{5}\sqrt{x^5} + C$$

c)
$$\int (2e^x + 2^x) dx$$

$$2\int e^x dx + \int 2^x dx = 2e^x + \frac{2^x}{\ln 2} + C$$

d)
$$\int \left(\cos x + \frac{1}{2} \cdot \sin x - \frac{1}{x}\right) dx$$

$$\int \cos x \, dx + \frac{1}{2} \int \sin x \, dx - - \int \frac{1}{x} \, dx = \sin x - \frac{1}{2} \cos x - \ln|x| + C$$

e)
$$\int \left(\frac{x-\sqrt{x}}{\sqrt{x}}\right) dx$$

$$\int \frac{x}{\sqrt{x}} dx - \int \frac{\sqrt{x}}{\sqrt{x}} dx = \int \sqrt{x} dx - \int dx = \int x^{\frac{1}{2}} dx - \int dx = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} - x + C$$