

Categorical Data Analysis Course overview

Michael Friendly Psych 6136

http://friendly.github.io/psy6136

Course goals

This course is designed as a broad, applied introduction to the statistical analysis of categorical data, with an emphasis on:

Emphasis: visualization methods

- exploratory graphics: see patterns, trends, anomalies in your data
- model diagnostic methods: assess violations of assumptions
- model summary methods: provide an interpretable summary of your data

Emphasis: theory \Rightarrow practice

- Understand how to translate research questions into statistical hypotheses and models
- Understand the difference between simple, non-parametric approaches (e.g., χ^2 test for indpendence) and model-based methods (logistic regression, GLM)
- Framework for thinking about categorical data analysis in visual terms

2

Course outline

1. Exploratory and hypothesis testing methods

- Week 1: Overview; Introduction to R
- Week 2: One-way tables and goodness-of-fit test
- Week 3: Two-way tables: independence and association
- Week 4: Two-way tables: ordinal data and dependent samples
- Week 5: Three-way tables: different types of independence
- Week 6: Correspondence analysis

2. Model-based methods

- Week 7: Logistic regression I
- Week 8: Logistic regression II
- Week 9: Multinomial logistic regression models
- Week 10: Log-linear models
- Week 11: Loglinear models: Advanced topics
- Week 12: Generalized Linear Models: Poisson regression
- Week 13: Course summary & additional topics

Textbooks

Main texts

- Friendly & Meyer (2016). Discrete Data Analysis with R: Visualizing & Modeling Techniques for Categorical & Count Data
 - 30% discount on Routledge web site (code: ADC22)
 - Draft chapters on http://euclid.psych.yorku.ca/www/psy6136
 - DDAR web site: https://ddar.datavis.ca
- Agresti (2007). *An Introduction to Categorical Data Analysis*, 3rd E. Wiley & Sons.

eBook available
PDF on course web site

Textbooks

Supplementary readings

- Agresti (2013). Categorical Data Analysis, 3rd ed. [More mathematical, but the current Bible of CDAl
 - PDF available: https://bityl.co/FG9c
- Fox (2016). Applied Regression Analysis and Generalized Linear Models, 3rd ed.

Expectations & grading

- I expect you will read chapters in DDAR & Agresti Intro each week
 - See Topic Schedule on course web site
 - R exercises: A few are listed as (ungraded) Assignments
 - Class discussion: Help make classes participatory
- Evaluation:
 - (2 x 40%) Two take-home projects: Analysis & research report, based on assignment problems or your own data
 - **(20%)**
 - Assignment portfolio: best work, enhanced
 - Research report on journal article(s) of theory / application of CDA
 - In-class presentation (~15 min) on application of general interest

What you need

R, version \geq 3.6 [R 4.2 is current]

Download from https://cran.r-project.org/

RStudio IDE, highly recommended

https://www.rstudio.com/products/rstudio/

R packages: see course web page

vcd

vcdExtra

car

effects

R script to install packages: https://friendly.github.io/6136/R/instal

What is categorical data?

A categorical variable is one for which the possible measured or assigned values consist of a discrete set of categories, which may be ordered or unordered. Some typical examples are:

- Gender, with categories {"male", "female", "trans"}
- Marital status: { "Never married", "Married", "Separated", "Divorced", "Widowed" }
- Party preference: {"NDP", "Liberal", "Conservative", "Green"}
- Treatment improvement: {"none", "some", "marked"}
- Age: {"0-9", "10-19", "20-29", "30-39", ... }.
- Number of children: 0,1,2,3,...

Questions:

- Which of these are ordered (ordinal)?
- Which could be treated as numeric? How?
- Which have missing categories, sometimes ignored, or treated as "Other"

Categorical data: Structures

Categorical (frequency) data appears in various forms

- Tables: often the result of table() or xtabs()
 - 1-way
 - 2-way 2 × 2, r × c
 - 3-way

Gender compared to handedness									
	Har	nded							
	Left	Right							
Female	7	46	53						
Male	5	63	68						
	12	109	121						

- Matrices: matrix(), with row & col names
- Arrays: array(), with dimnames()
- Data frames
 - Case form (individual observations)
 - Frequency form

9

1-way tables

Unordered factors

	Black	Brown	Red	Blond	
n	108	286	71	127	
용	0.18	0.48	0.12	0.21	

Hair color of 592 students

	BQ	Cons	Green	Liberal	NDP
n	104	392	126	404	174
용	0.087	0.33	0.1	0.34	0.14

Voting intentions in Harris-Decima poll, 8/21/08

Questions:

- Are all hair colors equally likely?
- · Aside from Brown hair, are others equally likely?
- Is there a diff in voting intentions for Liberal vs. Conservative

10

12

1-way tables

• Even here, simple graphs are more informative than tables

But these don't really answer the questions. Why?

1-way tables

- Ordered, quantitative factors
 - Number of sons in Saxony families with 12 children

Questions:

- What is the form of this distribution?
- Is it useful to think of this as a binomial distribution?
- If so, is Pr(male) = 0.5 reasonable to describe the data?
- How could familities have > 10 children?

1-way tables: graphs

For a particular distribution in mind:

- Plot the data together with the fitted frequencies
- Better still: hanging rootogram: freq on sqrt scale; hang bars from fitted values

2-way tables: 2 x 2 x ...

Two-way

	Gender	Male	Female
Admit			
Admitted		1198	557
Rejected		1493	1278

Admission to graduate programs at UC Berkeley

Three-way, stratified by another factor

... by Department

		Dept	A	В	C	D	E	F.
Admit	Gender							
Admitted	Male		512	353	120	138	53	22
	Female		89	17	202	131	94	24
Rejected	Male		313	207	205	279	138	351
	Female		19	8	391	244	299	317

Questions:

- Is admission associated with gender?
- Does admission rate vary with department?

14

16

Larger tables

<pre>> margin.table(HairEyeColor, 1)</pre>										
Eye										
Hair	Brown	Blue	Hazel	Green						
Black	68	20	15	5						
Brown	119	84	54	29						
Red	26	17	14	14						
Blond	7	94	10	16						

2-way Actually, this is a 2D margin of a 3-way table

> ftable(Eye ~ Sex + Hair, data=HairEyeColor) Eye Brown Blue Hazel Green Hair Sex 3 Black 32 Male Brown 53 15 10 10 Red 8 3 Blond 30 36 Female Black Brown 66 34 29 14 Red 16 Blond

3-way (& higher) can be "flattened" for a more convenient display

formula notation: row vars ~ col vars

Table form

- Table form is convenient for display, but information is implicit
 - a table has dimensions, dim() and dimnames()
 - the "observations" are the cells in the tables
 - the "variables" are the dimensions of the table (factors)
 - the cell value is the count or frequency

> dim(haireye) [1] 4 4 > dimnames(haireye) \$Hair	<pre>> names(dimnames(haireye [1] "Hair" "Eye" > prod(dim(haireye)) [1] 16</pre>)) # factor name # of cells
[1] "Black" "Brown" "Red" "Blond"	> sum(haireye) [1] 592	# total count
\$Eye [1] "Brown" "Blue" "Hazel" "Green"		

Datasets: frequency form

Another common format is a dataset in frequency form

```
> as.data.frame(haireye)
   Hair Eye Freq
1 Black Brown 68
  Brown Brown 119
    Red Brown 26
  Blond Brown
5 Black Blue
  Brown Blue
    Red Blue
8 Blond Blue
9 Black Hazel
10 Brown Hazel
11 Red Hazel
12 Blond Hazel
13 Black Green
14 Brown Green 29
15 Red Green 14
16 Blond Green 16
```

- Use as.data.frame(table)
- · One row for each cell
- Columns: factors + Freq or count

17

Datasets: case form

Raw data often arrives in case form

```
> expand.dft(as.data.frame(haireye)) |>
    as tibble() |>
   mutate(age = round( runif( n =
       sum(haireye), min=17, max=29)))
# A tibble: 592 x 3
   Hair Eye
 1 Black Brown
 2 Black Brown
 3 Black Brown
 4 Black Brown
 5 Black Brown
 6 Black Brown
 7 Black Brown 25
 8 Black Brown
 9 Black Brown
10 Black Brown
# ... with 582 more rows
```

- One obs. per case
- # rows = sum of counts
- vcdExtra::expand.dft() expands frequency form
- case form is required if there are continuous variables
- case form is tidy
- not all CDA functions play well with tibbles

18

Categorical data analysis: Methods

Methods for categorical data analysis fall into two main categories

Non-parametric, randomization-based methods

- Make minimal assumptions
- Useful for hypothesis-testing:
 - Are men more likely to be admitted than women?
 - Are hair color and eye color associated?
 - Does the binomial distribution fit these data?
- Mostly for two-way tables (possibly stratified)
- R:
 - Pearson Chi-square: chisq.test()
 - Fisher's exact test (for small expected frequencies): fisher.test()
 - Mantel-Haenszel tests (ordered categories: test for linear association):
 CMHtest()
- SAS: PROC FREQ can do all the above
- SPSS: Crosstabs

Categorical data analysis: Methods

Model-based methods

- Must assume random sample (possibly stratified)
- Useful for estimation purposes: Size of effects (std. errors, confidence intervals)
- More suitable for multi-way tables
- Greater flexibility; fitting specialized models
 - Symmetry, quasi-symmetry, structured associations for square tables
 - Models for ordinal variables
- R: glm() family, Packages: car, gnm, vcd, ...
 - estimate standard errors, covariances for model parameters
 - confidence intervals for parameters, predicted Pr{response}
- SAS: PROC LOGISTIC, CATMOD, GENMOD, INSIGHT (Fit YX), ...
- SPSS: Hiloglinear, Loglinear, Generalized linear models

Models: Response vs. Association

Response models

- Sometimes, one variable is a natural discrete response.
- Q: How does the response relate to explanatory variables?
 - Admit ∼ Gender + Dept
 - Party ∼ Age + Education + Urban
- ⇒ Logit models, logististic regression, generalized linear models

Association models

- Sometimes, the main interest is just association among variables
- Q: Which variables are associated, and how?
 - Berkeley data: [Admit Gender]? [Admit Dept]? [Gender Dept]
 - Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye, Sex]
- ⇒ Loglinear models

This is similar to the distinction between regression/ANOVA vs. correlation and factor analysis

21

Models: Response vs. Association

Response models

- Sometimes, one variable is a natural discrete response.
- Q: How does the response relate to explanatory variables?
 - Admit ∼ Gender + Dept
 - Party ∼ Age + Education + Urban
- ⇒ Logit models, logististic regression, generalized linear models

Association models

- Sometimes, the main interest is just association among variables
- Q: Which variables are associated, and how?
 - Berkeley data: [Admit Gender]? [Admit Dept]? [Gender Dept]
 - Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye, Sex]
- ⇒ Loglinear models

This is similar to the distinction between regression/ANOVA vs. correlation and factor analysis

22

Response models

Analysis methods for categorical outcome (response) variables have close parallels with those for quantitative outcomes

	Quantitative outcome	Categorical outcome
Continuous predictor	Regression: $Im(y \sim x1 + x2)$	Logistic regression: glm() Loglinear model: loglm() Ordered: prop. odds model: polr()
Categorical predictor	ANOVA: Im(y ~ A + B) Ordered: polynomial contrasts	χ^2 tests: chisq.test() Ordered: CMH tests, CMHtest() Loglinear model: logIm()
Both	ANCOVA: $Im(y \sim A + B + x)$	Logistic regression: glm() Loglinear model: loglm()

All use similar model formulas:

Response models

For quantitative outcomes, Im() for everything, formula notation

For categorical outcomes, different modeling functions for different outcome types

```
glm(binary ~ X + A, family="binomial")  # logistic regression
glm(Freq ~ X + A, family="poisson")  # poisson regression
MASS::polr(multicat ~ X + A)  # ordinal regression
nnet::multinom(multicat ~ X + A)  # multinomial regression
loglin(table, margins)  # loglinear model
MASS::loglm(Freq ~ .)  # loglinear model, . = A+B+C+ ...
MASS::loglm(Freq ~ .^2)  # + all two-way associations
```

Data display: Tables vs. Graphs

If I can't picture it. I can't understand it.

Albert Einstein

Getting information from a table is like extracting sunlight from a cu-Farquhar & Farquhar, 1891 cumber.

Tables vs. Graphs

- Tables are best suited for look-up and calculation—
 - read off exact numbers
 - show additional calculations (e.g., % change)
- Graphs are better for:
 - showing patterns, trends, anomalies,
 - making comparisons
 - seeing the unexpected!
- Visual presentation as communication:
 - what do you want to say or show?
 - \implies design graphs and tables to 'speak to the eyes'

Graphical methods: Communication goals

Different graphs for different audiences

- **Presentation**: A carefully crafted graph to appeal to a wide audience
- **Exploration, analysis:** Possibly many related graphs, different perspectives, narrow audience (often: just you!)

Presentation

26

Graphical methods: Presentation goals

Different presentation goals appeal to different design principles

Basic functions of data display

Think: What do I want to communicate? For what purpose?

Graphical methods: Quantitative data

Quantitative data (amounts) are naturally displayed in terms of magnitude \sim position along a scale

Scatterplot of Income vs. Experience

Boxplot of Income by Gender

Graphical methods: Categorical data

Frequency data (counts) are more naturally displayed in terms of ${\bf count} \sim {\bf area}$ (Friendly, 1995)

Mosaic plot for 3-way table

Friendly, M. (1995). Conceptual and visual models for categorical data. *American Statistician*, **49**: 153-160.

Principles of graphical display

• Effect ordering (Friendly and Kwan, 2003)—In tables and graphs, sort unordered factors according to the effects you want to see/show.

Friendly & Kwan (2003). <u>Corrgrams: Exploratory displays for correlation matrices</u>. *American Statistician*, **54**(4): 316-324.

30

32

Tabular displays

Effect ordering and high-lighting for tables

Table: Hair color - Eye color data: Alpha ordered

	Hair color						
Eye color	Blond	Black	Brown	Red			
Blue	94	20	17	84			
Brown	7	68	26	119			
Green	10	15	14	54			
Hazel	16	5	14	29			

Model:	Independence: [Hair][Eye] χ^2 (9)= 138.29							
Color coding:	<-4	<-2	<-1	0	>1	>2	>4	
n in each cell:	n < expected				<i>n</i> >	expe	cted	

There is an association, but it is hard to see the general pattern

Tabular displays

Effect ordering and high-lighting for tables

Table: Hair color - Eye color data: Effect ordered

	Hair color						
Eye color	Black	Brown	Red	Blond			
Brown	68	119	26	7			
Hazel	15	54	14	10			
Green	5	29	14	16			
Blue	20	84	17	94			

Model:	Independence: [Hair][Eye] χ^2 (9)= 138.29						
Color coding:	<-4	<-2	<-1	0	>1	>2	>4
<i>n</i> in each cell:	n < expected				n>	expe	cted

The pattern is clearer when the eye colors are permuted: light hair goes with light eyes & vice-versa

Sometimes, don't need numbers at all

COVID transmission risk ~ Occupancy * Ventilation * Activity * Mask? * Contact.time

A complex 5-way table, whose message is clearly shown w/o numbers

A semi-graphic table shows the patterns in the data

There are 1+ unusual cells here. Can you see them?

From: N.R. Jones et-al (2020). Two metres or one: what is the evidence for physical distancing in covid-19? *BMJ* 2020;370:m3223, *doi: https://doi.org/10.1136/bmj.m3223*

Visual table ideas: Heatmap shading

Heatmap shading: Shade the background of each cell according to some criterion

The trends in the US and Canada are made obvious

NB: Table rows are sorted by Jan. value, lending coherence

Background shading ~ value:

US & Canada are made to stand out.

Tech note: use white text on a darker background

Unemployment rate in selected countries

January-August 2020, sorted by the unemployment rate in January.

			Mar	Apr	May	Jun	Jul	Aug
Japan	2.4%	2.4%	2.5%	2.6%	2.9%	2.8%	2.9%	3.0%
Netherlands	3.0%	2.9%	2.9%	3.4%	3.6%	4.3%	4.5%	4.6%
Germany	3.4%	3.6%	3.8%	4.0%	4.2%	4.3%	4.4%	4.4%
Mexico	3.6%	3.6%	3.2%	4.8%	4.3%	5.4%	5.2%	5.0%
us	3.6%	3.5%	4.4%	14.7%	13.3%	11.1%	10.2%	8.4%
South Korea	4.0%	3.3%	3.8%	3.8%	4.5%	4.3%	4.2%	3.2%
Denmark	4.9%	4.9%	4.8%	4.9%	5.5%	6.0%	6.3%	6.1%
Belgium	5.1%	5.0%	5.0%	5.1%	5.0%	5.0%	5.0%	5.1%
Australia	5.3%	5.1%	5.2%	6.4%	7.1%	7.4%	7.5%	6.8%
Canada	5.5%	5.6%	7.8%	13.0%	13.7%	12.3%	10.9%	10.2%
Finland	6.8%	6.9%	7.0%	7.3%	7.5%	7.8%	8.0%	8.1%

Source: OECD • Get the data • Created with Datawrappe

34

Bertifier: Turning tables into graphs

attitudes & attributes

	Belg	Czech	Den	Finla	Fran	Gerr	Gree	Ita	None	Pola	Port	Ruse	Se	Swe	United
Household income	2687	16957	2468	2573	2831	2879	204	24	3145	1537	1936	1528	2	2624	26904
Women's suffrage date	1948	1920	1915	1906	1944	1918	1952	19	1913	1918	1976	1910	15	1921	1928
Against cohabitation w	12	42	4	18	8	20	30	46	12	39	17	39	16	6	19
Belief in God	61	36	63	69	52	63	93	91	56	96	86	77	76	46	65
Confidence in Govern	32	21	55	42	34	29	22	28	51	23	30	60	36	54	19
Confidence in the arm	50	34	72	63	73	58	70	75	57	63	75	73	57	41	89
Confidence in the chur	36	20	63	47	41	40	52	67	44	65	67	67	31	39	36
Confidence in the heal	91	42	75	73	78	34	39	54	74	44	58	51	79	75	80
Confidence in the justi	50	35	87	73	56	58	50	36	78	44	48	41	42	69	51
Important in a job: goo	60	85	54	58	58	73	94	76	56	93	88	93	77	62	75
Against abortion	56	51	28	40	44	60	65	72	42	75	61	63	57	25	57
Not as a neighbour: ho	7	22	5	12	5	16	30	21	6	52	21	61	5	7	10
Attend church at least	15	13	5	7	11	12	19	35	9	54	25	8	21	9	17

(a) Table: attitudes and attributes by country

(b) Visual: encode values by size, shape

(c) Sort & group by themes, country regions

Bertifier: Bertin's reorderable matrix See: http://www.aviz.fr/bertifier encode values by size & shape

33

Data, pictures, models & stories

Goal: Tell a credible story about some real data problem

Data, pictures, models & stories

Two paths to enlightenment

Data, pictures, models & stories

Now, tell the story!

Gender Bias at UC Berkeley?

Science, 1975, 187: 398--403

Sex Bias in Graduate Admissions: Data from Berkeley

Measuring bias is harder than is usually assumed, and the evidence is sometimes contrary to expectation.

P. J. Bickel, E. A. Hammel, J. W. O'Connell

Determining whether discrimination passage from one social status or locus to another is an important problem in our society today. It is legally importhe influences on the evaluators in the

deceision to admit or to deny admission. because of sex or ethnic identity is be- The question we wish to pursue is whething practiced against persons seeking er the decision to admit or to deny was influenced by the sex of the applicant. We cannot know with any certainty

by using a As already pitfalls ah but we ir one of the

We mu sumptions of the da approach. given disc plicants do intelligence ise, or ot mately per students. I that make meaningfu any differ plicants by differences ise as scho ly one co example, t

2 × 2 Frequency Tables: Fourfold displays

Table: Admissions to Berkeley graduate programs

	Admitted	Rejected	Total	% Admit	Odds(Admit)
Males	1198	1493	2691	44.52	0.802
Females	557	1278	1835	30.35	0.437
Total	1755	2771	4526	38.78	0.633

odds ratio $(\theta) \in 1.84$

Gender: Male 1198 1493 557 1278 Gender: Female

Males nearly twice as likely to be admitted

- Is this a "significant" association?
- · Is it evidence for gender bias?
- · How to measure strength of association?
- How to visualize?

Fourfold display:

- quarter circles, area ~ frequency
- ratio of areas: odds ratio (θ)
- confidence bands: overlap iff $\theta \approx 1$
- visualize significance!

$2 \times 2 \times k$ Stratified tables

The data arose from 6 graduate departments

No difference between males & females, except in Dept A where women more likely to be admitted!

Design:

- · small multiples
- encode direction by color
- encode signif. by shading

41

Mosaic matrices

Scatterplot matrix analog for categorical data

All pairwise views Small multiples → comparison

The answer: Simpson's Paradox

- Depts A, B were easiest
- Applicants to A, B mostly male
- ∴ Males more likely to be admitted overall

42

Graphical methods for categorical data

In general, these share similar ideas & scope with methods for quantitative data

Exploratory methods

- Minimal assumptions (like non-parametric methods)
- Show the data, not just summaries
- But can add summaries: smoothed curve(s), trend lines, ...
- Help detect patterns, trends, anomalies, suggest hypotheses

Plots for model-based methods

- Residual plots departures from model, omitted terms, ...
- Effect plots estimated probabilities of response or log odds
- Diagnostic plots influence, violation of assumptions

Summary

- Categorical data involves some new ideas
 - Discrete variables: unordered or ordered
 - Counts, frequencies
- New / different data structures & functions
 - tables 1-way, 2-way, 3-way, ... table(), xtabs()
 - similar in matrices or arrays matrix(), array()
 - datasets:
 - frequency form
 - case form
- Graphical methods: often use area ~ Freq
- Models: Most are ≈ natural extensions of lm()