Tema 2 - Operaciones matemáticas básicas

M. en C. Gustavo Contreras Mayén

12 de marzo de 2013

- Método de Newton-RaphsonAlgoritmo
- Método de la falsa posición
- Método de la falsa posición modificado
- Método de la secante

- Método de Newton-Raphson
 - Algoritmo
- Método de la falsa posición
- Método de la falsa posición modificado
- Método de la secante

- Método de Newton-Raphson
 - Algoritmo
- Método de la falsa posición
- Método de la falsa posición modificado
- Método de la secante

- Método de Newton-Raphson
 - Algoritmo
- Método de la falsa posición
- Método de la falsa posición modificado
- Método de la secante

Método de Newton-Raphson

Este método se basa en el desarrollo de la serie de Taylor de f(x) alrededor de x

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + O(x - x_0)^2$$

Como se puede evidenciar, el pequeño detalle del método es que se tiene que usar f'(x), por tanto, los problemas a resolver con este algoritmo, deberá de contemplarse que la derivada sea fácil de calcularse.

Para resolver la ecuación f(x) = 0, se sustituye en la serie de Taylor

$$0 = f(x_0) + f'(x_0)(x - x_0) + O(x - x_0)^2$$

Si x_0 está cerca de la raíz de x, entonces sucede lo siguiente:

- $(x x_0)$ es pequeño.
- $(x x_0)^2$ es más pequeño.
- $(x-x_0)^3$ es todavía mucho más pequeño.

Para resolver la ecuación f(x) = 0, se sustituye en la serie de Taylor

$$0 = f(x_0) + f'(x_0)(x - x_0) + O(x - x_0)^2$$

Si x_0 está cerca de la raíz de x, entonces sucede lo siguiente:

- $(x x_0)$ es pequeño.
- $(x-x_0)^2$ es más pequeño.
- $(x-x_0)^3$ es todavía mucho más pequeño.

Para resolver la ecuación f(x) = 0, se sustituye en la serie de Taylor

$$0 = f(x_0) + f'(x_0)(x - x_0) + O(x - x_0)^2$$

Si x_0 está cerca de la raíz de x, entonces sucede lo siguiente:

- \bullet $(x x_0)$ es pequeño.
- $(x-x_0)^2$ es más pequeño.
- $(x-x_0)^3$ es todavía mucho más pequeño.

Al ignorar los términos de orden superior, tenemos que

$$f(x_0) + f'(x_0)(x - x_0) \simeq 0$$

ordenando los términos

$$x \simeq x_0 - \frac{f(x_0)}{f'(x_0)}$$

Algortimo

Al iterar la expresión anterior:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Esto significa que si tenemos un punto de inicio para x_0 , entonces podemos iterar la expresión hasta encontrar la raíz x estableciendo una tolerancia.

Ejemplo

Tenemos la función $f(x) = x^2$, sabemos que hay una raíz en el origen, por lo que

$$\frac{f(x)}{f'(x)} = \frac{x}{2}$$

Al aplicar la fórmula de Newton-Raphson con el punto de inicio en x = 0.1, obtenemos:

$$x \leftarrow x - \frac{f(x)}{f'(x)} = 0.1 - \frac{0.1}{2} = 0.1 - 0.05 = 0.05$$

$$x \leftarrow x - \frac{f(x)}{f'(x)} = 0.1 - \frac{0.1}{2} = 0.1 - 0.05 = 0.05$$

 $x \leftarrow x - \frac{f(x)}{f'(x)} = 0.25$

$$x \leftarrow x - \frac{f(x)}{f'(x)} = 0.1 - \frac{0.1}{2} = 0.1 - 0.05 = 0.05$$
$$x \leftarrow x - \frac{f(x)}{f'(x)} = 0.25$$
$$x \leftarrow x - \frac{f(x)}{f'(x)} = 0.125$$

$$x \leftarrow x - \frac{f(x)}{f'(x)} = 0.1 - \frac{0.1}{2} = 0.1 - 0.05 = 0.05$$

$$x \leftarrow x - \frac{f(x)}{f'(x)} = 0.25$$

$$x \leftarrow x - \frac{f(x)}{f'(x)} = 0.125$$

$$x \leftarrow x - \frac{f(x)}{f'(x)} = 0.00625$$

$$x \leftarrow x - \frac{f(x)}{f'(x)} = 0.1 - \frac{0.1}{2} = 0.1 - 0.05 = 0.05$$

$$x \leftarrow x - \frac{f(x)}{f'(x)} = 0.25$$

$$x \leftarrow x - \frac{f(x)}{f'(x)} = 0.125$$

$$x \leftarrow x - \frac{f(x)}{f'(x)} = 0.00625$$

Lo que nos indica que nos estamos acercando a la raíz en x=0

Representación gráfica

Podemos interpretar que x_{n+1} es el punto en donde la tangente de $f(x_n)$ cruza el eje de las x:

¿Qué tan bien funciona el método

Consideremos la función

$$g(x) = x^{1/3}$$

y sea el punto de inicio x = 0.1

¿Qué tan bien funciona el método

Consideremos la función

$$g(x)=x^{1/3}$$

y sea el punto de inicio x = 0.1

Ejercicio

Encontrar la raíz positiva más pequeña de

$$f(x) = x^4 - 6.4x^3 + 6.45x^2 + 20.538x - 31.752$$

Ejercicio

Encontrar la raíz positiva más pequeña de

$$f(x) = x^4 - 6.4x^3 + 6.45x^2 + 20.538x - 31.752$$


```
def f(x): return x**4 - 6.4*x**3 + 6.45*x**2 +
      20.538*x - 31.752
  def df(x): return 4.0*x**3 - 19.2*x**2 + 12.9*x + 10.4
      20.538
3
  def newtonRaphson(x, tol=1e-05):
       for i in range(50):
           dx = -f(x)/df(x)
           x = x + dx
8
           if abs(dx) < tol: return x, i
       print 'Son demasiadas iteraciones\n'
10
  raiz, numlter = newtonRaphson (2.0)
12
13 print 'Raiz = ', raiz
14 print 'Numero de iteraciones = ', numlter
```

Ejercicio para casa

Calcular la raíz positiva más pequeña de

$$y = \tan(x) - 0.5x$$

mediante el método de Newton-Raphson, con una tolerancia de $\epsilon=0.001$

Obtener la primera derivada de una función dada puede ser una tarea complicada.

En tal caso, se puede evaluar $f'(x_i)$ mediante una aproximación por diferencias en vez de la forma analítica.

Se puede aproximar $f'(x_{i-1})$ mediante la aproximación por diferencias hacia adelante:

$$f'(x_{i-1}) = \frac{f(x_{i-1} + h) - f(x_{i-1})}{h}$$

donde h es un valor pequeño.

Método de la falsa posición

Este método es parecido al de bisección, ya que el intervalo que contiene a la raíz se va reduciendo.

En vez de bisectar de manera monótona el intervalo, se utiliza una interpolación lineal ajustada a dos puntos extremos para encontrar la aproximación de la raíz.

Método de Newton-Raphson **Método de la falsa posición** Método de la falsa posición modificado Método de la secante

La función está bien aproximada por la interpolación lineal, con lo que las raíces tendrán una buena precisión; la iteración convergerá más rápido que como ocurre con el método de bisección.

Dado un intervalo [a, c] que contenga a la raíz, la función lineal que pasa por (a, f(a)) y (c, f(c)) se escribe como:

$$y = f(a) + \frac{f(c) - f(a)}{c - a}(x - a)$$

de donde se despeja x:

$$x = a + \frac{c - a}{f(c) - f(a)}(y - f(a))$$

La coordenada x en donde la línea intersecta al eje x se determina al hacer y=0 en la ecuación anterior, por tanto:

$$b = a - \frac{c - a}{f(c) - f(a)}f(a) = \frac{af(c) - cf(a)}{f(c) - f(a)}$$

Después de encontrar b, el intervalo [a, c] se divide en [a, b] y [b, c].

Si $f(a)f(b) \le 0$, la raíz se encuentra en [a, b]; en caso contrario, está en [b, c]. Los extremos del nuevo intervalo que contiene a la raíz se renombran para el siguiente paso como a y c.

El procedimiento de interpolación se repite hasta que las raíces estimadas convergen.

Método de la falsa posición

Método de la falsa posición

La desventaja de este método es que aparecen extremos fijos: uno de los extremos de la sucesión de intervalos no se mueve del punto original, por lo que las aproximaciones a la raíz, denotadas por b_1 , b_2 , b_3 , etc. convergen a la raíz exacta solamente por un lado.

Los extremos fijos no son deseables debido a que hacen más lenta la convergencia, en particular cuando el intervalo es grande o cuando la función se desvía de manera significativa de una línea recta en el intervalo.

¿Qué podemos hacer al respecto?

Método de la falsa posición modificado

En este método, el valor de f en un punto fijo se divide a la mitad si este punto se ha repetido más de dos veces.

El extremo que se repite se llama extremo fijo. La excepción para esta regla es que para i = 2, el valor de f en un extremo se divide entre 2 de inmediato si no se mueve.

Método de falsa posición modificado

Método de la falsa posición modificado

Método de la secante

A diferencia del método de Newton, el valor de f' se aproxima utilizando dos valores de iteraciones consecutivas de f. Con lo que se elimina la necesidad de evaluar tanto a f como a f' en cada iteración.

Las aproximaciones sucesivas para la raíz en el método de la secante están dadas por:

$$x_n = x_{n-1} - y_{n-1} \frac{x_{n-1} - x_{n-2}}{y_{n-1} - y_{n-1}}, \qquad n = 2, 3, \dots$$

donde x_0 y x_1 son dos suposiciones iniciales para comenzar la iteración.

Método de la secante

