Физико-технический мегафакультет

Физический факультет

Группа <u>М3</u> 304	_К работе допущен
Студент Васильков Д.А, Лавренов Д.А.	Работа выполнена
Преподаватель Шоев В.И.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №5.08

"Дифракция электронов на кристалле графита"

- 1) Цель работы
 - 1. Экспериментально получить дифракционную картину
 - 2. Рассчитать межплоскостные расстояния в поликристаллической решетке графита
 - 3. Рассчитать постоянную Планка
- 2) Задачи, решаемые при выполнении работы
 - 1. Измерение диаметров дифракционных колец
 - 2. Определение зависимости диаметров колец от ускоряющего напряжения электронов
 - 3. Экспериментальное определение межплоскостных расстояний в графите и определение постоянной Планка
- 3) Объект исследования

Дифракция электронов на кристалле графита

4) Метод экспериментального исследования

Измерение дифракционной картины электронов.

- 5) Рабочие формулы и исходные данные
 - 1. Формула Планка:

$$E = h\nu$$
$$p = \frac{h\nu}{c} = \frac{h}{\lambda}$$

2. Длина волны де-Бройля электрона:

$$\lambda_{ extit{дб}} = rac{h}{p} = rac{h\sqrt{1-rac{v^2}{c^2}}}{mv}$$

3. Угол скольжения:

$$\sin \vartheta_{1/2} = \sin \left(1/2 \cdot \arctan \frac{D_{1/2}}{2L} \right)$$

4. Экспериментальная длина волны электронов:

$$2d_{1/2} \cdot \sin \vartheta_{1/2} = n\lambda$$

6) Измерительные приборы

№ п/п	Наименование	Тип прибора	Используемый	Погрешность
			диапазон	прибора
1	Штангенциркуль	Электронный	0-50 мм	0,1 мм

7) Схема установки.

Рис. 1. Схема рабочей установки

Установка состоит из источника высокого напряжения $0 \div 5$ кВ и электронного дифракционного прибора (трубка).

8) Результаты прямых измерений и их обработки.

Таблица 1: Измерение диаметра дифракционных колец штангенциркулем

U , κ B	D_{11} ,мм	D_{12} ,мм	D_1 ,mm	D_{21} ,MM	D_{22} ,мм	D_2 ,мм	λ,пм
5	18,60	23,40	21,00	5,20	8,70	6,95	17,25
4,5	19,50	24,20	21,85	5,40	9,20	7,30	18,19
4	19,50	25,50	22,50	6,00	10,00	8,00	19,29
3,5	21,60	26,20	23,90	6,60	10,50	8,55	20,62
3	21,60	27,00	24,30	6,80	10,70	8,75	22,27
2,5	22,20	30,20	26,20	7,00	11,00	9,00	24,40

$$D_1 = \frac{D_{11} + D_{12}}{2} = 21$$
 мм $D_2 = \frac{D_{21} + D_{22}}{2} = 6,95$ мм $\lambda = \left(\frac{1,22}{\sqrt{U \cdot 10^3}} \cdot 10^{-9}\right) \cdot 10^{12} = 17,25$ пм

9) Расчёт косвенных измерений.

Таблица 2: Измерение межплоскостного расстояния, длины волны Де-Бройля и импульса электрона по первому кольцу

<i>U</i> ,ĸB	$sin artheta_1$	d_1 ,пм	λ_1 ,пм	$log \lambda_1$	p_1 ,кг \cdot м/с	$log p_1$	h ,Дж \cdot с
5	0,040	214,135	9,910	0,996	$382,03 \cdot 10^{-25}$	2,582	$3,786 \cdot 10^{-34}$
4,5	0,042	216,981	10,309	1,013	$362,425 \cdot 10^{-25}$	2,559	$3,736 \cdot 10^{-34}$
4	0,043	223,530	10,614	1,026	$341,698 \cdot 10^{-25}$	2,534	$3,627 \cdot 10^{-34}$
3,5	0,046	225,046	11,271	1,052	$319,629 \cdot 10^{-25}$	2,505	$3,603 \cdot 10^{-34}$
3	0,047	239,102	11,458	1,059	$295,919 \cdot 10^{-25}$	2,471	$3,391 \cdot 10^{-34}$
2,5	0,050	243,057	12,348	1,092	$270,136 \cdot 10^{-25}$	2,432	$3,336 \cdot 10^{-34}$

$$d_1 = \frac{\lambda}{2 sin \vartheta_1} = 142,\!13\,$$
 пм $\lambda_1 = d_{1\,\mathrm{Teop}} \cdot 2 sin \vartheta_1 = 9,\!910\,$ пм $p_1 = \sqrt{2U} \cdot \sqrt{m_e e} = 382,\!03 \cdot 10^{-25}\,$ кг \cdot м/с $h = \lambda_1 \cdot p_1 = 3,\!786 \cdot 10^{-34}\,$ Дж \cdot с

Таблица 3: Измерение межплоскостного расстояния, длины волны Де-Бройля и импульса

электрона по второму кольцу

		7 17					
U,кВ	$sin \vartheta_2$	d_2 ,пм	λ_2 ,пм	$log\lambda_2$	p_2 ,кг \cdot м/с	$log p_2$	<i>h</i> ,Дж∙с
5	0,013	645,624	5,692	0,755	$382,030 \cdot 10^{-25}$	2,582	$2,175\cdot 10^{-34}$
4,5	0,014	647,936	5,979	0,777	$362,425 \cdot 10^{-25}$	2,559	$2,167 \cdot 10^{-34}$
4	0,015	627,144	6,552	0,816	$341,698 \cdot 10^{-25}$	2,534	$2,239 \cdot 10^{-34}$
3,5	0,016	627,349	7,002	0,845	$319,629 \cdot 10^{-25}$	2,505	$2,238 \cdot 10^{-34}$
3	0,017	662,139	7,165	0,855	$295,919 \cdot 10^{-25}$	2,471	$2,120\cdot 10^{-34}$
2,5	0,017	705,206	7,370	0,867	$270,136 \cdot 10^{-25}$	2,432	$1,991 \cdot 10^{-34}$

$$d_2 = \frac{\lambda}{2sin\vartheta_2} = 253,21~\text{пм}$$
 $\lambda_2 = d_{2~\text{Teop}} \cdot 2sin\vartheta_2 = 5,692~\text{пм}$ $p_2 = \sqrt{2U} \cdot \sqrt{m_e e} = 382,03 \cdot 10^{-25}~\text{кг} \cdot \text{м/c}$ $h = \lambda_2 \cdot p_2 = 2,175 \cdot 10^{-34}~\text{Дж} \cdot \text{c}$

10)Графики.

 Γ рафик 1. Γ рафик зависимости $log\lambda(log\ p)$

График 2. График зависимости $log\lambda(log\ p\)$ продленный до пересечения с осями

График 3. Соотношение между значениями длины волн

Постоянная Планка $h = 4,212 \cdot 10^{-34}$ Дж \cdot с

11) Расчет погрешностей

Для U = 5 кB:

$$\varepsilon_{d} = \sqrt{\varepsilon^{2}\lambda + (-\varepsilon\sin\nu)^{2}} = \sqrt{\varepsilon^{2} + \left(-(\varepsilon_{\Delta}^{2} + (-\varepsilon_{L})^{2})\right)^{2}} = \sqrt{0.03^{2} + \left(-(0.04^{2} + (-0.02)^{2})\right)^{2}} = 0.03$$

$$\Delta d = \varepsilon_{d}d_{1} = 214.135 \cdot 0.11 = 26.34 \,\text{fm}$$

 $S_h=1,934\cdot 10^{-35}$ Дж · с – среднеквадратическое отклонение $t_{a,n}$ – коэффициент Стьюдента для n=12, a=2,2 $\Delta h=t_{a,n}\cdot S_h=1,934\cdot 10^{-35}\cdot 2,2=4,25\cdot 10^{-35}$ Дж · с

12)Окончательные результаты

Межплоскостные расстояния в поликристаллической решётке графита:

- $d_1 = 142,13 \pm 26,34 \, \text{пм}$
- $d_2 = 253,21 \pm 26,34 \,\text{пм}$

Постоянная Планка $h = 4,212 \pm 0,425 \cdot 10^{-34}$ Дж · с

13)Выводы и анализ результатов работы.

В ходе эксперимента мы получили дифракционные картины электронов на кристалле графита и рассчитали межплоскостные расстояния и постоянную Планка.

Итоговые значения постоянной Планка и второго межплоскостного расстояния совпали с теоретическими данными, что подтверждает точность эксперимента. Это видно на графиках, где наши данные близки к теоретическим линиям.

Однако, измеренное значение первого межплоскостного расстояния отличается от теоретического. Это расхождение, скорее всего, связано с погрешностями в измерениях.