Speaker Recognition Summary

Word Isolation (cont.)

Word Isolation – A Simple Approach

Moving average = convolution with sequence of ones

$$= s_n * \{ \cdots 1 1 1 \cdots \}$$

Training Phase

isolate sequence for each word

Training Phase (cont.)

calculate LP coefficients for each word

×10⁵
$$\mathbf{r} = \sum_{p+1}^{N} s_n \mathbf{s}_{n-1}$$

$$\mathbf{R} = \sum_{p+1}^{N} \mathbf{s}_{n-1} \mathbf{s}_{n-1}^{T}$$

$$\mathbf{s}_{n-1}^{T} = [s_{n-1} \ s_{n-2} \ \cdots \ s_{n-n}]$$

Training Phase (cont.)

calculate mean and covariance of features:

$$\mu = \frac{1}{15} \sum_{m=1}^{15} \mathbf{a}_m$$

$$\mathbf{C} = \frac{1}{15} \sum_{m=1}^{15} (\mathbf{a}_m - \mu) (\mathbf{a}_m - \mu)^T$$

Testing Phase

have data for 3 users: $\{\boldsymbol{\mu}_1, \mathbf{C}_1\}, \{\boldsymbol{\mu}_2, \mathbf{C}_2\}, \{\boldsymbol{\mu}_3, \mathbf{C}_3\}$

Testing Phase

have data for 3 users: $\{\mu_1, \mathbf{C}_1\}, \{\mu_2, \mathbf{C}_2\}, \{\mu_3, \mathbf{C}_3\}$

calculate LP coefficients for word not used for training: $\ensuremath{\mathbf{x}}$

Testing Phase

have data for 3 users: $\{\mu_1, \mathbf{C}_1\}, \{\mu_2, \mathbf{C}_2\}, \{\mu_3, \mathbf{C}_3\}$

calculate LP coefficients for word not used for training: x

find distance to determine speaker: $\min_i (\mathbf{x} - \boldsymbol{\mu}_i)^T \mathbf{C}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)$