

Assessment Report

on

"Fashion Item Classifier"

submitted as partial fulfillment for the award of

BACHELOR OF TECHNOLOGY DEGREE

SESSION 2024-25

in

CSE(AIML)

By

Group No. 12:
Vishal Beniwal 202401100400213
Tarun Singh 202401100400198
Vineet Singh 202401100400212
Vidhu 202401100400209
Shivam Rai 202401100400177

Under the supervision of

"Abhishek Shukla"

KIET Group of Institutions, Ghaziabad May, 2025

1. Introduction

This project focuses on classifying fashion items into one of ten predefined categories using a feedforward neural network. The model is trained on image data derived from grayscale 28x28 pixel images and is capable of recognizing items such as T-shirts, trousers, and shoes.

2. Problem Statement

To develop and evaluate a machine learning model that can classify grayscale images of clothing items into 10 categories with high accuracy.

3. Objectives

- Load and preprocess the dataset containing fashion item images and labels.
- Build a neural network model using TensorFlow/Keras.
- Train the model on the dataset and validate performance.
- Evaluate the trained model using classification metrics.
- Visualize results using confusion matrix and sample predictions.

4. Methodology

- Upload and unzip the dataset.
- Load the data from a CSV file into a Pandas Data Frame.
- Normalize pixel values and one-hot encode the labels.
- Split the dataset into training and testing subsets.
- Design and compile a neural network model.
- Train the model for 10 epochs with validation.
- Evaluate the model using a confusion matrix and classification report.
- Visualize sample test predictions.

5. Data Preprocessing

The dataset is cleaned and prepared as follows

- The dataset was read from a CSV file extracted from a ZIP archive.
- Pixel values were normalized by dividing by 255.
- Labels were one-hot encoded using to categorical.
- Data was split into 80% training and 20% testing sets.
- Image data reshaped for visualization purposes (28x28 format).

6. Model Implementation

- A neural network was built using the Keras Sequential API.
- Architecture:
 - Input Layer: 784 neurons (flattened 28x28 images)
 - Hidden Layer 1: 128 neurons, ReLU activation
 - O Hidden Layer 2: 64 neurons, ReLU activation
 - Output Layer: 10 neurons, Softmax activation
- Optimizer: Adam
- Loss Function: Categorical Crossentropy
- Trained for 10 epochs using a batch size of 128 and a validation split of 10%.

7. Evaluation Metrics

- Accuracy: Overall percentage of correct predictions.
- **Precision, Recall, F1-Score**: Computed for each of the 10 classes using classification report.
- **Confusion Matrix**: Used to visualize correct and incorrect classifications across all categories.

8. Results and Analysis

- The model provided reasonable performance on the test set.
- The Random Forest model provided good classification accuracy and balanced performance across risk categories.
- The confusion matrix helped in understanding the prediction distribution.

9. Conclusion

- The trained model achieved good accuracy and generalization.
- The confusion matrix revealed specific classes with high misclassification, such as T-shirts and shirts.
- The classification report highlighted balanced performance across classes, with some variation depending on class similarity.
- Visualization of sample predictions showed clear model understanding for most categories.

10. References

- TensorFlow and Keras documentation
- scikit-learn metrics documentation
- pandas and matplotlib documentation
- Fashion MNIST Dataset
- Seaborn visualization library

