MOVIE RECOMMENDER SYSTEM

INTRODUCTION

A recommendation system or recommendation engine is a model used for information filtering where it tries to predict the preferences of a user and provide suggestions based on these preferences. These systems have become increasingly popular nowadays and are widely used today in areas such as movies, music, books, videos, clothing, restaurants, food, places, and other utilities. These systems collect information about a user's preferences and behavior, then use this information to improve their suggestions in the future.

Movies can be easily differentiated through their genres comedy, thriller, animation, action, etc. Other ways to distinguish between movies can be either by releasing year, language, director, etc. Watching movies online, there are a number of movies to search for in our most liked movies. Movie Recommendation Systems help us to search our preferred movies among all of these different types of movies and hence reduce the trouble of spending a lot of time searching for our favorable movies. So, it requires that the movie recommendation system should be very reliable and should provide us with the recommendation of movies that are exactly the same or match our preferences.

A large number of companies are making use of recommendation systems to increase user interaction and enrich a user's shopping experience. Recommendation systems have several benefits, the most important being customer satisfaction and revenue. The movie Recommendation system is a very powerful and important system. But, due to the problems associated with a pure collaborative approach, movie recommendation systems also suffer from poor recommendation quality and scalability issues.

The ALS algorithm is one of the models of matrix factorization related to CF which is considered as the values in the item list of the user matrix. As there is a need to perform analysis on the ALS algorithm by selecting different parameters which can eventually help in building an efficient movie recommender engine.

PROBLEM STATEMENT

Some refer to the current period as the "era of abundance." As a result, thousands of options can be available for any product. Consider the following instances: social networking, online shopping, streaming videos, and more. Recommender systems assist in personalizing a platform and finding content. People always need more time with the myriad tasks they need to accomplish in the limited 24 hours. Therefore, recommendation systems are essential as they help them make the right choices without spending their cognitive resources.

From a business perspective, user engagement is higher the more relevant products they discover on the platform. Increasing platform revenue is a common outcome of this. Various sources claim that as much as 35–40% of the revenue of tech behemoths comes from just recommendations. To suggest the most well-liked items is the quickest and most straightforward way to accomplish this. However, we require specialized recommender systems to improve the user experience through personalized recommendations. The main focus of our recommendation system is to filter and predict only those movies that a user would prefer, given some data about the user.

LITERATURE REVIEW

In recent years, recommender systems have become widespread and are utilized in various fields. For example, some general applications incorporate music, books, movies, research papers, social labels, and items in general. Similarly, the journal recommendation system has also drawn considerable attention from the research community, which creates and disseminates books, patents, and research articles. Recommender system algorithms are widely used in e-commerce to offer more personalized and precise recommendations to online users. The recommender system based on Hadoop provides a solution to the information overload issue in e-commerce by combining the advantage of computational ability and scalability of MapReduce and hybrid recommendation algorithms. The algorithms either focus on the users, finding the nearest neighbors of a target user and making recommendations to the target user with his neighbors' purchases or preferences or focus on the products, recommending items similar to the items already purchased by the users. Some algorithms provide personalized recommendations to target users, while others make general recommendations. The commonly used algorithms are Collaborative Filtering, Content-based Filtering, and User Clustering Models.

DATASETS USED

We'll use the free MovieLens dataset from GroupLens for our own system. This dataset has 100K data points from different movies and users. This dataset (ml-25m) describes a 5-star rating and free-text tagging activity from MovieLens, a movie recommendation service. It contains

- 25,000,095 user ratings from 162,541 users (between 1995 and 2019)
- 62423 rated movies
- Table for linking MovieLens identifiers with IMDb and TMDb identifiers

Users were selected at random for inclusion. All selected users had rated at least 20 movies. No demographic information is included. An id represents each user, and no other information is provided. The data are contained in the files genome-scores.csv, genome-tags.csv, links.csv, movies.csv, ratings.csv, and tags.csv. This and other GroupLens data sets are publicly available for download at http://grouplens.org/datasets/.

++	++-		+	++	+
userId movieId rating timestamp	userId m	novieId	tag timestamp	movieId imdbId	tmdbId
++	++-	+	+	++	
1 296 5.0 1147880044	3	260	classic 1439472355	1 114709	862
1 306 3.5 1147868817	3	260	sci-fi 1439472256	2 113497	8844
1 307 5.0 1147868828	4	1732 dar	k comedy 1573943598	3 113228	15602
1 665 5.0 1147878820	4	1732 great	dialogue 1573943604	4 114885	31357
1 899 3.5 1147868510	4	7569 so bad i	t's good 1573943455	5 113041	11862
1 1088 4.0 1147868495	4	44665 unreliable n	arrators 1573943619	6 113277	949
1 1175 3.5 1147868826	4	115569	tense 1573943077	7 114319	11860
1 1217 3.5 1147878326	4	115713 artificial i	ntell 1573942979	8 112302	45325
1 1237 5.0 1147868839	4	115713 philo	sophical 1573943033	9 114576	9091
1 1250 4.0 1147868414	4	115713	tense 1573943042	10 113189	710
1 1260 3.5 1147877857	4	148426 so bad i	t's good 1573942965	11 112346	9087
1 1653 4.0 1147868097	4	164909	cliche 1573943721	12 112896	12110
1 2011 2.5 1147868079	4	164909	musical 1573943714	13 112453	21032
1 2012 2.5 1147868068	4	168250	horror 1573945163	14 113987	10858
1 2068 2.5 1147869044	4	168250 unpre	dictable 1573945171	15 112760	1408
1 2161 3.5 1147868609	19	2160 Oscar (Best	Suppo 1446909853	16 112641	524
1 2351 4.5 1147877957	19	7099 a	dventure 1445286141	17 114388	4584
1 2573 4.0 1147878923	19	7099	anime 1445286127	18 113101	5
1 2632 5.0 1147878248	19	7099	ecology 1445286153	19 112281	9273
1 2692 5.0 1147869100	19	7099	fantasy 1445286144	20 113845	11517
++	++-		+	++	+

+		++
movieId	title	genres
1 1	Tov Story (1995)	Adventure Animati
2		Adventure Childre
3		Comedy Romance
4	Waiting to Exhale	Comedy Drama Romance
5	Father of the Bri	Comedy
6	Heat (1995)	Action Crime Thri
7	Sabrina (1995)	Comedy Romance
8	Tom and Huck (1995)	Adventure Children
9		
10		Action Adventure
11	American Presiden	Comedy Drama Romance
12	Dracula: Dead and	Comedy Horror
13	Balto (1995)	Adventure Animati
14		
15		Action Adventure
16		
	Sense and Sensibi	
18	, , ,	
:	Ace Ventura: When	
20	Money Train (1995)	Action Comedy Cri
+		++

TECHNIQUES

POPULARITY-BASED RECOMMENDATION FILTERING

Popularity-based recommendation systems work with the trend by using the items which are in trend right now. With respect to our project, a movie featured in the recommendation chart if the movie scores higher than at least 90% of the movies in the dataset. The movies are recommended using the the ratings overall.

COLLABORATIVE FILTERING

Collaborative filtering technique allows filtering out items that a user might like by leveraging the ratings of similar users. The underlying assumption in recommendation using collaborative filtering is that, if user A and user B share a similar response (movie rating in our case) to a movie, then they are likely to share a similar response to any movie X, compared to any random user.

- Employed the model-based system of performing collaborative filtering on the MovieLens dataset.
- Implemented Alternating Least Square(ALS) with Spark. ALS is a matrix factorization technique to perform collaborative filtering. The objective function of ALS uses L1 regularization and optimizes the loss functions using Gradient Descent.

• The dataset contained movie_id and user_ratings in the format of a user-rating matrix shown as factors as given below:

Here, d would be the number of features we learned from each user and movie association. With ALS, we intend to minimize the error in the matrix calculation shown below:

$$\hat{R} = U \times V$$

And the error is given by the below equation:

$$RSS = \sum (R - U \times V)^2$$

We train the ALS model by tuning the below hyper-parameters:

- Rank: Indicating the number of latent factors generated in the matrix factorization
- regParam: The L1-regularization parameter used in ALS algorithm
- maxIter: The maximum number of iterations the algorithm is run

After tuning the parameters and implementing ALS with Cross-validation an optimal RMSE value of **0.8037 for 30 latent factors at the regParam value of 0.05 in 10 iterations.**

RESULTS

POPULARITY-BASED MODEL

We used group by function to select the movies which have the highest number of ratings. And then took the average ratings for each movie. Out of the shortlisted set of movies, we pulled the top 20 movies which would be recommended to new users based on the Avg. movie rating.

Avg(rating) as average from movie_ratings where title is not null and movieId in (select distinct movieId from most_watched limit 100) group by movieId

average	title	movieId
4.083479216009336	Taxi Driver (1976)	111
4.0791663372598626	Seven (a.k.a. Se7	47
4.03	Persuasion (1995)	28
4.027935943060498	Eat Drink Man Wom	232
3.948806325713417	Sense and Sensibi	17
3.893707794587238	Toy Story (1995)	1
3.854908898649748	Heat (1995)	6
3.847214137214137	Clerks (1994)	223
3.843413033286451	Richard III (1995)	41
3.8237068028689416	Casino (1995)	16
3.786777431637245	Beauty of the Day	154
3.7673501577287065	Bottle Rocket (1996)	101
3.7004504504504503	In the Bleak Midw	96
3.664388396868181	Ed Wood (1994)	235
3.6496350364963503	Lamerica (1994)	53
3.6267252195734003	Cry, the Beloved	40
3.606708513142409	Othello (1995)	26
3.6031917599186163	Babe (1995)	34
3.588200326943082	Dolores Claiborne	230
3.584600760456274	Browning Version,	211

COLLABORATIVE MODEL

We used the ALS model to predict the movies which have the highest number of ratings given by a user, with hyperparameters maxIter set to 4, rank set to 30, and regParam as 0.1. The image below highlights the recommendations of 5 different movies based on a collaborative filtering approach.

+			+	
movieId userId	rating		title	genres
194434 5 151989 5 202231 5	6.3395796 6.009604 5.8460293 5.768565 5.7514424	Adrenaline The Thorn	(1990) (no (1971) (2018)	Drama genres listed) Comedy Documentary Drama

User-Based

++	+
movieId	recommendations
++	+
1	[{89631, 5.296187}]
3	[{96471, 4.7021756}]
	[{131545, 4.711781}]
6	[{156252, 5.16390
9	[{87426, 4.8842115}]
++	+

Item-Base

POSSIBLE FUTURE WORK

There are plenty of ways to expand on the work done in this project. Firstly, the content-based method can be expanded to include more criteria to help categorize the movies. The most obvious idea is to add features to suggest movies with common actors, directors, or writers. In addition, movies released within the same time period could also receive a boost in the likelihood of a recommendation. Similarly, the movie's total gross could be used to identify a user's taste in terms of whether he/she prefers large-release blockbusters or smaller indie films. However, the above ideas may lead to overfitting, given that a user's taste can be highly varied, and we only have a guarantee that 20 movies (less than 0.2%) have been reviewed by the user. In addition, we could try to develop hybrid methods that try to combine the advantages of both content-based methods and collaborative filtering into one recommendation system.

REFERENCES

- 1. Verma, J. P., Patel, B., & Patel, A. (2015). Big data analysis: Recommendation system with Hadoop framework. In 2015 IEEE International Conference on Computational Intelligence & Communication Technology (CICT). IEEE.
- 2. Katarya, R., & Verma, O. P. (2016). A collaborative recommender system enhanced with particle swarm optimization technique. Multimedia Tools and Applications, 75(15), 9225–9239.
- 3. https://docs.databricks.com/_static/notebooks/cs100x-2015-introduction-to-big-data/mod-ule-5-machine-learning-lab.html.
- 4. Wei, J., et al. (2016). Collaborative filtering and deep learning based hybrid recommendation for cold start problem. In 2016 IEEE 14th International Conference on Dependable, Autonomic and Secure Computing, 14th International Conference on Pervasive Intelligence and Computing, 2nd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE.
- 5. Kupisz, B., & Unold, O. (2015). Collaborative filtering recommendation algorithm based on Hadoop and Spark. In 2015 IEEE International Conference on Industrial Technology (ICIT). IEEE.
- 6. Zeng, X., et al. (2016). Parallelization of latent group model for group recommendation algorithm. In IEEE International Conference on Data Science in Cyberspace (DSC). IEEE.
- 7. Ponnam, L. T., et al. (2016). Movie recommender system using item based collaborative filtering technique. In the International Conference on Emerging Trends in Engineering, Technology, and Science (ICETETS). IEEE.
- 8. Halder, S., Sarkar, A. M. J., & Lee, Y.-K. (2012). Movie recommendation system based on movie swarm. In 2012 Second International Conference on Cloud and Green Computing (CGC). IEEE.
- 9. Dev, A. V., & Mohan, A. (2016). Recommendation system for big data applications based on set similarity of user preferences. In the International Conference on Next Generation Intelligent Systems (ICNGIS). IEEE.
- 10. Chen, Y.-C., et al. (2016). User behavior analysis and commodity recommendation for point-earning apps. In 2016 Conference on Technologies and Applications of Artificial Intelligence (TAAI). IEEE. 294 M. F. Aljunid and D. H. Manjaiah
- 11. Zhou, Y. H., Wilkinson, D., & Schreiber, R. (2008). Large scale parallel collaborative filtering for the Netflix prize. In Proceedings of 4th International Conference on Algorithmic Aspects in Information and Management (pp. 337–348). Shanghai: Springer.
- 12. https://spark.apache.org/docs/latest/. Accessed March 10, 2017.
- 13. https://grouplens.org/datasets/movielens/. Accessed May 15, 2017.
- 14. Delgado, J. A. (2000, February). Agent-based information filtering and recommender systems on the internet (Ph.D. thesis). Nagoya Institute of Technology.

15. Mooney, R. J., & Roy, L. (1999). Content-based book recommendation using learning for text categorization. In Proceedings of the Workshop on Recommender Systems: Algorithms and Evaluation (SIGIR '99). Berkeley, CA, USA.