Comparison Tables: CEC BBOB 2015 Testbed in 20-D

The BBOBies

May 27, 2015

Abstract

This document provides tabular results of the special session on Black-Box Optimization Benchmarking at CEC 2015, see http://coco.gforge.inria.fr/doku.php?id=cec-bbob-2015. Overall, eight algorithms have been tested on 24 benchmark functions in dimensions between 2 and 20. A description of the used objective functions can be found in [6, 4]. The experimental set-up is described in [5].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm in BBOB-2009 (see [1]) if an algorithm from BBOB-2009 reached the given target function value. The ERT value is given otherwise (ERT $_{\rm best}$ is noted as infinite). See [5] for details on how ERT is obtained. Bold entries in the table correspond to values below 3 or the top-three best values. Table 1 gives an overview on all algorithms submitted to the noise-free testbed at CEC 2015.

Table 1: Names and references of all algorithms submitted for the noise-free testbed

algorithm short	paper	reference
name		
MATSuMoTo	Comparison of the MATSuMoTo Library for Expensive Optimization on the Noiseless Black-Box Optimization Benchmarking Testbed	[2]
R-DE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-DE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-SHADE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-SHADE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
RL-SHADE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
RL-SHADE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
SOO	Simultaneous Optimistic Optimization on the Noiseless BBOB Testbed	[3]

Table 2: 20-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

JOICEL CILID FOILGE	c arrage	a ~., a	TIOIIDIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f1	43	43	43	43	43	43	43	15/15
MATSUMOTO-	4.6 (3)*	63(83)	110(95)	112(178)	352(341)	∞	∞ 1000	0/15
R-DE-10e2-	7.0(1)	19(11)	39 (10)	164(237)	344(419)	∞	$\infty 2000$	0/15
R-DE-10e5-	21(3)	44(3)	68(3)	91 (4)	113 (7)	160 (5)	206 (8)	15/15
RL-SHADE-1	15(13)	88(80)	691(512)	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	119(19)	272(16)	395(8)	503(16)	599(17)	782(16)	960(13)	15/15
R-SHADE-10	10(1)	19 (2)	31 (3)	57 (26)	346(176)	∞	$\infty 2000$	0/15
R-SHADE-10	27(4)	59(8)	89(14)	119(14)	149 (5)	208 (21)	264 (15)	15/15
SOO-Derbel	15(7)	56(6)	111(22)	189(13)	279(14)	533(20)	847(20)	15/15

Table 3: 20-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	$1\dot{e0}$	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f2	385	386	387	388	390	391	393	15/15
MATSUMOTO-	$-\infty$	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	77(83)	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	11 (0.5)	13(0.7)	16 (1.0)	19 (0.8)	21 (0.7)	26 (0.9)	31 (1)	15/15
RL-SHADE-1	76(120)	∞	∞	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	74(2)	84(2)	94(3)	104(3)	114(1)	132(3)	150(2)	15/15
R-SHADE-10	38(104)	∞	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	18(2)	21 (2)	25 (2)	28 (2)	31 (3)	37 (3)	43 (2)	15/15
SOO-Derbel	2648(1305)	3897(2596)	6485(9905)	6482(1e4)	8388(1e4)	1.1e4(2e4)	3.5e4(4e4)	2/15

Table 4: 20-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

oddii diib vara	c arriac	a c, am	.icibicii.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f3	5066	7626	7635	7637	7643	7646	7651	15/15
MATSUMOTO-	$-\infty$	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	2.4 (0.5)	26(26)	194(202)	194(164)	194(202)	194(338)	194(295)	11/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	27(2)	23(0.7)	24(0.5)	25(0.4)	25(0.4)	26 (0.5)	26(0.4)	15/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	7.7(0.3)	7.1 (0.3)	7.7 (0.3)	7.9 (0.3)	8.1(0.3)	8.4(0.3)	8.7(0.2)	15/15
SOO-Derbel	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15

೮

Table 5: 20-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

outli tillo vala	c arriac	a by anno.	inoron.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f4	4722	7628	7666	7686	7700	7758	1.4e5	9/15
MATSUMOTO-	$-\infty$	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	3.9(2)	1952(1114)	∞	∞	∞	∞	$\infty~2e6$	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	32(1)	25(0.5)	27(0.5)	28(0.4)	28 (0.4)	28(0.5)	1.6(0.0)	15/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	9.4(0.3)	8.3 (0.6)	12 (5)	12 (11)	12 (5)	13 (3)	0.72 (0.0)	15/15
SOO-Derbel	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15

Table 6: 20-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f5	41	41	41	41	41	41	41	15/15
MATSUMOTO-	1.8 (0.1)*4 2.0 (0.2	$)^{*4}$ 2.1 (0.2)	*4 2.4 (0.1	.)*4 2.4 (3)*4	2.4 (0.1)	*4 2.4 (0.1)	*15/15
R-DE-10e2-	21(9)	47(35)	113(119)	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	46(2)	78(6)	110(5)	140(9)	173(8)	236(7)	300(11)	15/15
RL-SHADE-1	17(1)	30(26)	34(39)	37(40)	41 (6)	65(28)	142(257)	5/15
RL-SHADE-1	271(13)	442(13)	601(25)	754(29)	901(21)	1182(11)	1442(25)	15/15
R-SHADE-10	15 (2)	23 (1)	30 (2)	36 (5)	45(4)	739(616)	∞ 2000	0/15
R-SHADE-10	118(19)	215(18)	311(22)	403(16)	494(13)	686(41)	870(20)	15/15
SOO-Derbel	124(0)	312(0.0)	579(0.0)	928(0.0)	1349(0.0)	2439(0.0)	4028(0.0)	15/15

~1

Table 7: 20-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

JOSEPH CITED FORECT.	0 01111010	a ~,, a	TOTIOTOTI.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f6	1296	2343	3413	4255	5220	6728	8409	15/15
MATSUMOTO-	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	23(39)	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	13 (4)	18(5)	29(22)	116(116)	321(335)	951(941)	3363(2735)	1/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	18(0.5)	13(0.3)	11(0.4)	10(0.2)	10(0.4)	10(0.2)	9.3(0.3)	15/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	4.2(0.5)	4.0(0.4)	3.8 (0.5)	3.9(0.5)	3.9(0.4)	4.1(0.4)	4.1(0.3)	15/15
SOO-Derbel	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f7	1351	4274	9503	16523	16524	16524	16969	15/15
MATSUMOTO-	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	11 (10)	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	12(16)	1951(3855)	∞	∞	∞	∞	∞ 2e6	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	11(1)	5.3 (0.2)	3.0(0.1)	2.2(0.1)	2.2(0.2)	2.2(0.1)	2.2 (0.1)	15/15
R-SHADE-10	11(16)	∞	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	2.0(0.2)	29 (29)	72 (58)	1762(726)	1761 (1483)	1761(1483)	1715 (1238)	1/15
SOO-Derbel	59(83)	1603(936)	∞	∞	∞	∞	∞ 2e6	0/15

Table 9: 20-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f8	2039	3871	4040	4148	4219	4371	4484	15/15
MATSUMOTO-	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	594(463)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	$\infty 2000$	0/15
RL-SHADE-1	26 (2)	21 (0.6)	22(0.7)	23 (0.8)	23 (1.0)	24(0.7)	25(0.8)	15/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	11 (2)	14 (9)	15 (8)	15 (9)	15 (1)	16 (3)	16 (7)	15/15
SOO-Derbel	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15

Table 10: 20-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f9	1716	3102	3277	3379	3455	3594	3727	15/15
MATSUMOTO-	- ∞	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	3022(2609)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	33(2)	29 (0.6)	30 (1)	31 (2)	32 (1)	33 (0.9)	34 (0.6)	15/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	16 (5)	20 (2)	22 (3)	23 (8)	23 (7)	24 (3)	24 (7)	15/15
SOO-Derbel	5000(5763)	∞	∞	∞	∞	∞	∞ 2e6	0/15

11

Table 11: 20-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f10	7413	8661	10735	13641	14920	17073	17476	15/15
MATSUMOTO-	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	$\infty 2000$	0/15
RL-SHADE-1	5.5 (0.6)	5.5(0.4)	5.0(0.6)	4.3(0.6)	4.3(0.5)	4.3(0.3)	4.8(0.3)	15/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	16 (4)	22 (6)	25 (5)	26 (9)	29 (13)	32 (8)	40(14)	15/15
SOO-Derbel	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15

Table 12: 20-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f11	1002	2228	6278	8586	9762	12285	14831	15/15
MATSUMOTO-	$-\infty$	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	27 (4)	15 (2)	6.2(0.5)	5.2(0.4)	5.1(0.5)	4.9(0.3)	4.8(0.1)	15/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	7.6(5)	13 (6)	8.2(2)	8.4(1)	10 (1)	11 (3)	12 (3)	15/15
SOO-Derbel	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15

Table 13: 20-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f12	1042	1938	2740	3156	4140	12407	13827	15/15
MATSUMOTO-	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	31(26)	219(790)	468(438)	8877(7447)	6766(3019)	∞	$\infty~2e6$	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	$\infty 2000$	0/15
RL-SHADE-1	37(1)	24(0.5)	22 (9)	24 (8)	22 (9)	10 (1.0)	10 (2)	15/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	8.5(0.9)	18 (11)	23 (15)	26 (24)	25 (10)	12 (4)	13 (5)	15/15
SOO-Derbel	1110(1608)	1284(2100)	1597(3311)	2610(2421)	3190(2778)	∞	$\infty~2e6$	0/15

Table 14: 20-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

occorr orres corre	o ar, raca	~, GIIII	OI OII					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f13	652	2021	2751	3507	18749	24455	30201	15/15
MATSUMOTO-	23 (21)	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	45(122)	114(96)	641(328)	8017(8555)	∞	∞	$\infty~2e6$	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	38(0.9)	17(0.6)	17(0.9)	17(0.6)	3.7(0.1)	3.6(0.1)	3.6(0.1)	15/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	12 (8)	8.0 (4)	10 (4)	12 (3)	3.4(0.4)	5.2(1)	25 (26)	14/15
SOO-Derbel	1927(1591)	4490(5308)	∞	∞	∞	∞	$\infty~2e6$	0/15

Table 15: 20-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
75	239	304	451	932	1648	15661	15/15
2.9 (1)	14(17)	∞	∞	∞	∞	∞ 1000	0/15
4.5(5)	6.4 (5)	23(20)	∞	∞	∞	∞ 2000	0/15
9.4(2)	10(1)	13(1)	30 (4)	∞	∞	$\infty~2e6$	0/15
5.8(3)	40(36)	∞	∞	∞	∞	∞ 2000	0/15
40(13)	51(4)	61(3)	55(2)	34(0.9)	28(0.7)	3.9(0.1)	15/15
4.8(1.0)	3.8 (0.9)	4.8(0.7)	66(55)	∞	∞	∞ 2000	0/15
8.2(2)	9.4(2)	13(0.9)	13 (2)	11 (1)	58 (35)	1861(2618)	1/15
5.7(3)	55(65)	712(142)	2527(1995)	∞	∞	$\infty~2e6$	0/15
	75 2.9 (1) 4.5 (5) 9.4(2) 5.8(3) 40(13) 4.8(1.0) 8.2(2)	75 239 2.9 (1) 14(17) 4.5 (5) 6.4 (5) 9.4(2) 10(1) 5.8(3) 40(36) 40(13) 51(4) 4.8(1.0) 3.8 (0.9) 8.2(2) 9.4(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 16: 20-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

JOICEL CILID FOILGE	o arraca	~, GIIII.	TIOTOTT.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f15	30378	1.5e5	3.1e5	3.2e5	3.2e5	4.5e5	4.6e5	15/15
MATSUMOTO-	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	8.3(0.6)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	52 (36)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
SOO-Derbel	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15

Table 17: 20-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f16	1384	27265	77015	1.4e5	1.9e5	2.0e5	2.2e5	15/15
MATSUMOTO-	11(13)	∞	∞	∞	∞	∞	$\infty 1000$	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	236(174)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
RL-SHADE-1	6.8(7)	∞	∞	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	73(20)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
R-SHADE-10	22(18)	∞	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	27(9)	246 (317)	∞	∞	∞	∞	$\infty~2e6$	0/15
SOO-Derbel	1.6(0.6)	0.96 (0.5)	14(13)	204(427)	∞	∞	$\infty~2e6$	0/15

Table 18: 20-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f17	63	1030	4005	12242	30677	56288	80472	15/15
MATSUMOTO-	2.2 (2)	∞	∞	∞	∞	∞	$\infty 1000$	0/15
R-DE-10e2-	2.1(2)	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	4.1(2)	12 (10)	37(39)	2397(4003)	∞	∞	$\infty~2e6$	0/15
RL-SHADE-1	3.9(0.4)	∞	∞	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	13(7)	18(2)	8.1(0.6)	3.7 (0.1)	2.0 (0.1)	1.6(0.1)	7.1 (7)	13/15
R-SHADE-10	3.7(1)	29(32)	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	3.7(3)	3.4(0.6)	3.9 (7)	18 (32)	45 (36)	∞	$\infty~2e6$	0/15
SOO-Derbel	1.3(1)	16(12)	87(67)	1159(2859)	∞	∞	$\infty~2e6$	0/15

Table 19: 20-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f18	621	3972	19561	28555	67569	1.3e5	1.5e5	15/15
MATSUMOTO-	$-\infty$	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	8.4(8)	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	6.2(1.0)	324(172)	∞	∞	∞	∞	$\infty~2e6$	0/15
RL-SHADE-1	11(12)	∞	∞	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	17(2)	7.0 (0.3)	2.1(0.1)	2.1 (0.1)	1.9(3)	8.0(9)	41 (60)	4/15
R-SHADE-10	5.6(6)	∞	∞	∞	∞	∞	$\infty 2000$	0/15
R-SHADE-10	3.1(0.6)	2.0 (0.3)	30 (37)	1050 (1173)	∞	∞	$\infty~2e6$	0/15
SOO-Derbel	5.0 (2)	27(15)	241(293)	∞	∞	∞	$\infty~2e6$	0/15

Table 20: 20-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

occorr crimo recre	o arrana	.,	1011.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f19	1	1	3.4e5	4.7e6	6.2e6	6.7e6	6.7e6	15/15
MATSUMOTO-	417(808)	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	191 (79)	∞	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	670(246)	∞	∞	∞	∞	∞	∞ 2e6	0/15
RL-SHADE-1	453(125)	∞	∞	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	1800(463)	3.3e5(8e4)	∞	∞	∞	∞	$\infty~2e6$	0/15
R-SHADE-10	371(180)	∞	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	344(66)	1.1e6(8e5)	∞	∞	∞	∞	∞ 2e6	0/15
SOO-Derbel	1(0)*4	$1_{(0)}^{\star 4}$	3.2 (3)	∞	∞	∞	$\propto 2e6$	0/15

Table 21: 20-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
82	46150	3.1e6	5.5e6	5.5e6	5.6e6	5.6e6	14/15
4.5(2)	∞	∞	∞	∞	∞	∞ 1000	0/15
5.0 (4)	0.63 (0.8)	∞	∞	∞	∞	∞ 2000	0/15
14(3)	0.50(0.1)	0.18(0.2)	0.57 (0.6)	0.57(1)	0.56 (0.7)	0.56 (0.6)	7/15
11(4)	∞	∞	∞	∞	∞	∞ 2000	0/15
68(11)	3.3(0.5)	0.38 (0.4)	0.52 (0.5)	0.52 (0.7)	0.52 (0.6)	0.61(0.5)	7/15
6.7(1)	∞	∞	∞	∞	∞	∞ 2000	0/15
10(3)	1.3(0.2)	∞	∞	∞	∞	$\infty~2e6$	0/15
39(6e-3)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
	82 4.5(2) 5.0(4) 14(3) 11(4) 68(11) 6.7(1) 10(3)	$\begin{array}{cccc} 82 & 46150 \\ \textbf{4.5}(2) & \infty \\ \textbf{5.0}(4) & \textbf{0.63}(0.8) \\ 14(3) & \textbf{0.50}(0.1) \\ 11(4) & \infty \\ 68(11) & 3.3(0.5) \\ 6.7(1) & \infty \\ 10(3) & \textbf{1.3}(0.2) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 22: 20-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f21	561	6541	14103	14318	14643	15567	17589	15/15
MATSUMOTO-	0.83(1)	0.57(0.4	1.2(1)	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	1.9(3)	4.5(5)	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	18(14)	75(40)	57(82)	108(109)	138(76)	169(335)	187(61)	7/15
RL-SHADE-1	3.9(4)	4.4(4)	2.1 (3)	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	16(6)	150(184)	118(128)	116(133)	114 (103)	107 (142)	95 (97)	10/15
R-SHADE-10	4.0(2)	4.4(2)	2.1 (1)	2.1(2)	∞	∞	∞ 2000	0/15
R-SHADE-10	3.0(1)	6.6(8)	6.5(12)	6.5 (5)	6.4 (12)	6.1 (5)	5.5 (8)	15/15
SOO-Derbel	2.7 (0.9)	98(120)	100(106)	162(204)	232(274)	1893(1574)	$\infty~2e6$	0/15

Table 23: 20-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\#\mathrm{succ}$
12/15
0/15
0/15
0/15
0/15
0/15
0/15
1/15
0/15

Table 24: 20-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
3.2	1614	67457	3.7e5	4.9e5	8.1e5	8.4e5	15/15
2.0 (1)	∞	∞	∞	∞	∞	∞ 1000	0/15
2.2 (3)	∞	∞	∞	∞	∞	∞ 2000	0/15
2.2 (3)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
1.7(2)	∞	∞	∞	∞	∞	∞ 2000	0/15
1.6 (0.9)	116(28)	75(92)	∞	∞	∞	$\infty~2e6$	0/15
2.1 (3)	∞	∞	∞	∞	∞	∞ 2000	0/15
2.1(2)	95 (100)	12 (16)	∞	∞	∞	$\infty~2e6$	0/15
1.6 (2)	3.9 (1)	1.1(0.4)	∞	∞	∞	$\infty~2e6$	0/15
	3.2 2.0(1) 2.2(3) 2.2(3) 1.7(2) 1.6(0.9) 2.1(3) 2.1(2)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Table 25: 20-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f24	1.3e6	7.5e6	5.2e7	5.2e7	5.2e7	5.2e7	5.2e7	3/15
MATSUMOTO-	∞ 1000	0/15						
R-DE-10e2-	∞	∞	∞	∞	∞	∞	$\infty 2000$	0/15
R-DE-10e5-	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	$\infty 2000$	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	$\infty 2000$	0/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
SOO-Derbel	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15

References

- Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April 2010.
- [2] Dimo Brockhoff. Comparison of the matsumoto library for expensive optimization on the noiseless black-box optimization benchmarking testbed. In *Proceedings of the IEEE Congress on Evolutionary Computation, CEC* 2015, 25-28 May, Sendai, Japan, 2015.
- [3] Bilel Derbel and Philippe Preux. Simultaneous optimistic optimization on the noiseless bbob testbed. In *Proceedings of the IEEE Congress on Evolu*tionary Computation, CEC 2015, 25-28 May, Sendai, Japan, 2015.
- [4] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010
- [5] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
- [6] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [7] Ryoji Tanabe and Alex Fukunaga. Parameter tuning for differential evolution for cheap, medium, and expensive computational budgets. In *Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2015, 25-28 May, Sendai, Japan, 2015.*