Homework 4

Hussein Zamzami Math-321 Dr. David Carchedi G00737304

November 11, 2015

1 Herstein Section 3.3, problem 1

Find the parity of each permutation:

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 5 & 1 & 3 & 7 & 8 & 9 & 6 \end{pmatrix} = (12)(24)(35)(67)(78)(89) \ sgn(\sigma) = -1^r = -1^6 = 1$$
 therefore parity is even

b) (123456)(789) = (12)(23)(34)(45)(56)(78)(89) $sgn(\sigma) = -1^7 = -1$, therefore parity is odd

c)
$$(123456)(123457) = (1357)(246) = (13)(35)(57)(24)(46) \ sgn(\sigma) = -1^5 = -1$$
, so parity is odd

d)
$$(12)(123)(45)(568)(179) = (32)(5684)(179) = (32)(56)(68)(84)(17)(79)$$
, $sgn(\sigma) = -1^6 = 1$, therefore parity is even

2 Herstein Section 3.3, problem 6

If $n \geq 3$, show that every element in A_n is a product of 3-cycles.

Proof. Since every element in A_n is a product of even transpositions, what we must show is that every transposition is a product of 3-cycles. Let t_1, t_2 be transpositions with t_1t_2 their product, then either t_1, t_2 have no common elements in their cycles or they have one. Take the first case, then t_1, t_2 are of the form (ab), (cd) and $t_1t_2 = (dac)(abd)$. Taking the second case, then $t_1, t_2 = (ab), (ac)$ and $t_1t_2 = (acb)$. Therefore, since the product of any two transpositions is a product of 3-cycles and every element in A_n is a product of even transpositions, then every element in A_n is a product of 3-cycles.

3 Herstein Section 2.6, problem 11

If G is a group and Z(G) the center of G, show that if G/Z(G) is cyclic, then G is abelian.

Proof. Assume G/Z(G) is cyclic, then G/Z(G) is generated by an element $x \in G = \langle xZ(G) \rangle$ and any $g \in G = (xZ(G))^n = x^nZ(G)$, therefore $gZ(G) = x^nZ(G) \implies x^{n^{-1}}g \in Z(G) \implies x^{n^{-1}}g \in Z(G) \implies x^{n^{-1}}g = z \in Z(G)$ therefore, $g = zx^{n^{-1}} = x^nz$, therefore every element in G can be rewritten as x^az . Now take $g, h \in G$. $gh = x^{a_1}z_1x^{a_2}z_2 = x^{a_1}x^{a_2}z_1z_2 = x^{a_1+a_2}z_2z_1 = x^{a_2}x^{a_1}z_2z_1 = x^{a_2}z_2x^{a_1}z_1 = hg$ □

4 Herstein Section 2.7, problem 2

Let G be the group of all real-valued functions on the unit interval [0,1], where we define, for $f,g \in G$, addition by (f+g)(x) = f(x) + g(x) for every $x \in [0,1]$. If $N = \{f \in G | f(\frac{1}{4}) = 0\}$, prove that $G/N \simeq (\mathbb{R}, +)$

Proof. If we can show that there is a surjective homomorphism $\phi: G \to \mathbb{R}$ with $\ker(\phi) = N$, then by the first isomorphism theorem, we are done. Take the mapping $\phi: f \mapsto f(\frac{1}{4})$, this is a homomorphism as $(f+g)(\frac{1}{4}) = f(\frac{1}{4}) + g(\frac{1}{4})$. To show this is surjective, let $y \in \mathbb{R}$ be any real number and let f(x) = y, then $f(\frac{1}{4}) = y$ for all real numbers. Now we need to show that $\ker(\phi) = N$, i.e. $\phi(f) \mapsto 0$ iff $f(\frac{1}{4}) = 0$. Assume $\phi(f) = 0$, then, by definition of $\phi(f)$, $f(\frac{1}{4}) = 0$. Similarly, assume $f(\frac{1}{4}) = 0$, then $\phi(f) = f(\frac{1}{4}) = 0$. Therefore, $\ker(\phi) = N$, therefore, by the First Isomorphism Theorem, $G/N \simeq (\mathbb{R}, +)$.

5 Herstein Section 2.9, problem 2

If G_1 and G_2 are cyclic groups of orders m, n, respectively, prove that $G_1 \times G_2$ is cyclic iff gcd(m, n) = 1

Proof. (\Rightarrow) If G_1, G_2 are cyclic, then $\exists x \in G_1, y \in G_2$ with order m, n respectively. Now assume $L = G_1 \times G_2$ is cyclic, then $\exists (x,y) \in L$ with order mn, as $|L| = |G_1||G_2| = mn$. Assume $\gcd(m,n) \neq 1$, then $lcm(m,n) \neq mn$, therefore $\exists (a,b) \in L, a \in G_1, b \in G_2$ such that |a| = q|m, |b| = j|n and qp = jk = lcm(m,n) for some p,k. We will show that the order of an element in L is at most $lcm(m,n), (a^{qp},b^{jk}) = (a^{q^p},b^{j^k}) = (e_1^p,e_2^k) = (e_1,e_2)$ which is the identity in L, therefore, the order of any element $(a,b) \in L \leq lcm(m,n)$, but since we have that $\gcd(m,n) > 1$, then lcm(m,n) < mn, so the order of any element in L < mn which implies that L is not cyclic, as there is no generator, but this contradicts the assumption that L was cyclic. Therefore, L cyclic $\Longrightarrow \gcd(m,n) = 1$

(\Leftarrow) assume gcd(m,n)=1 and G_1,G_2 cyclic. Then lcm(m,n)=mn. By the above, we know the order of an element in L is at most mn=|L|. Take the element $(x,y) \in L$ such that $(x,y)^k = (e_1,e_2)$, we wish to show that this implies k=mn. Assume $\exists k, (x,y)^k = (e_1,e_2)$ then $x^k = e_1, y^k = e_2$ this implies that $x^k = x^{m^j}, y^k = y^{n^l}$ for some j,l, therefore k=mj, k=nl implying that k is a common multiple of m,n, and since lcm is the smallest such number and

from above, the order cannot be greater than the lcm, k = lcm(m, n) = mn. Therefore, |(x, y)| = mn = |L|, therefore L is cyclic.

6

Let $a \in \mathbb{Z}$ and define the map of sets $\sigma_a : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \ x \mapsto x^a$ prove the following:

a) σ_a is an automorphism of $\mathbb{Z}/n\mathbb{Z}$ iff gcd(a,n)=1

Proof. (\Rightarrow) assume σ_a is an automorphism, that is it defines a bijection from $\mathbb{Z}/n\mathbb{Z}$ onto $\mathbb{Z}/n\mathbb{Z}$. Assume $\gcd(a,n) \neq 1$, then a|n or n=ak, for some $0 < k < n \in \mathbb{Z}$. $\sigma(x) = x^a = x + \cdots + x$ a times, therefore $\sigma(x) = ax$ and x < n, by definition of $\mathbb{Z}/n\mathbb{Z}$, therefore, $\exists x \in \mathbb{Z}/n\mathbb{Z}, \sigma(x) = ax = n \equiv 0 \mod n$ and since $\sigma(0) = a0 = 0 \equiv 0 \mod n$, therefore meaning that σ_a is not injective, which contradicts the assumption that σ_a is an automorphism.

 (\Leftarrow) assume gcd(a,n)=1, if a=0, then gcd(a,n)=n, which contradicts the assumption, so assume $a \neq 0$. First, we need to check that σ_a defines a homomorphism. $\sigma_a(xy) = (xy)^a = x^a y^a = \sigma_a(x)\sigma_a(y)$, therefore σ_1 is a homomorphism. We wish to show that σ_a is both injective and surjective from $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. For injectivity, it is sufficient to show that $ker(\sigma_a) = \{0\}$. Assume $\sigma_a(x) = 0$ then $x^a = ax \equiv 0 \mod n$, which is only true when ax = 0or ax = n, but since $a, x \in \mathbb{Z}$, this implies either x = 0 or that x is a divisor of (a,n) if x=0, then it is in the kernel, trivially. Assume $x\neq 0$, if x=1, then $a = n \implies gcd(a, n) = n$, which is a contradiction, so 1 cannot be in the kernel of σ_a , now assume x > 1, then $ax = n \implies a|n \implies gcd(a,n) = a$ which contradicts the assumption that gcd(a, n) = 1, therefore x cannot be in the kernel of σ_a if x>1, therefore x is only in the kernel if x=0, which implies that σ_a is injective. For surjectivity, we have to show that every element $x \in \mathbb{Z}/n\mathbb{Z}$ can be rewritten as x^a for some a and since $\mathbb{Z}/n\mathbb{Z}$ is cyclic, then $\mathbb{Z}/n\mathbb{Z}$ has a generator x with order n, such that $\mathbb{Z}/n\mathbb{Z}=(e,x^1,\ldots,x^{n-1})$ and after applying σ_a to every element of $\mathbb{Z}/n\mathbb{Z}$, $(e^a, x^a, \dots, x^{a(n-1)}) = (e, x^{a^1}, \dots, x^{a^{n-1}})$, which is now the cyclic group $\mathbb{Z}/n\mathbb{Z}$ generated by $\langle x^a \rangle$, which also has order n, therefore $im(\sigma_a) = \mathbb{Z}/n\mathbb{Z}$ and since σ_a is both injective and surjective, it defines an automorphism from $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$.

b) For two integers, $a, b \sigma_a = \sigma_b$ iff $a \equiv b \mod n$.

Proof. (\Rightarrow) Assume $\sigma_a = \sigma_b$, then $\sigma_a(x) = \sigma_b(x) \forall x \in \mathbb{Z}/n\mathbb{Z} \implies x^a = x^b \implies ax = bx \implies a = b$, therefore $a \equiv b \mod n$

- (\Leftarrow) Assume $a \equiv b \mod n$, then n = aq + b, by Euclid's division algorithm
 - c) Every automorphism of $\mathbb{Z}/n\mathbb{Z}$ is equal to σ_a for some a.

Proof. Assume $\psi : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ defines an automorphism, then ψ has to be both injective and surjective. For ψ to be surjective, $im(\psi)$ be the whole of $\mathbb{Z}/n\mathbb{Z}$, therefore ψ maps every element x to exactly one element in $\mathbb{Z}/n\mathbb{Z}$, but

every element in $\mathbb{Z}/n\mathbb{Z}$ can be represented as x^a , for some generator $x \in \mathbb{Z}/n\mathbb{Z}$ and some a, therefore $\psi : x \mapsto x^a$, which is equal to σ_a .

d) There is an explicit isomorphism of groups $U_n = (\mathbb{Z}/n\mathbb{Z})^{\times} \xrightarrow{\sim} \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$

Proof. Let $\psi: (\mathbb{Z}/n\mathbb{Z})^{\times} \longrightarrow \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ be the map $\psi: a \mapsto \sigma_a$. First, we wish to show this map defines a homomorphism. $\psi(ab) = \sigma_{ab} = x^{ab} = x^a x^b = \psi(a)\psi(b)$. Now to show that this is injective, we will show that its kernel is trivial, i.e. $\ker(\psi) = \{1\}$, the multiplicative identity. Now, assume $\psi(a) = \sigma_a : x \mapsto x$, the identity mapping of $\mathbb{Z}/n\mathbb{Z}$, then $\sigma_a(x) = x^a = x \implies a = 1$, therefore if $a \in \ker(\psi)$, then a = 1. Now take $\psi(1) = \sigma_1 : x \mapsto x^1 = x$, which is the identity map, therefore if a = 1, it is in $\ker(\psi)$, which implies that $\ker(\psi) = 1$, therefore ψ is injective. Now we need to show that ψ is surjective, which follows from part a), as σ_a is an automorphism iff a, n are relatively prime and $\mathbb{Z}/n\mathbb{Z}^{\times}$ is the set of numbers relatively prime to n. Furthermore, an inverse mapping of ψ is given by $\psi^{-1}: \operatorname{Aut}\mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}^{\times}$ as the map $\psi^{-1}: \sigma_a \mapsto a$ and $\psi\psi^{-1}: \mathbb{Z}/n\mathbb{Z}^{\times} \to \mathbb{Z}/n\mathbb{Z}^{\times}$ is the map: $\psi\psi^{-1}: \sigma_a \mapsto a \mapsto \sigma_a$, which is the identity mapping. Therefore $\mathbb{Z}/n\mathbb{Z}^{\times} \xrightarrow{\sim} \operatorname{Aut} \mathbb{Z}/n\mathbb{Z}$ by the isomorphism $\psi: \mathbb{Z}/n\mathbb{Z}^{\times} \xrightarrow{\sim} \operatorname{Aut} \mathbb{Z}/n\mathbb{Z}$, which maps $\psi: a \mapsto \sigma_a$.

7 Bonus Problems

- 7.1 A
- 7.2 B
- 7.3 C