Jade Hochschule Wilhelmshaven

2-stufiges schrägverzahntes koaxiales Getriebe

Abgabe Testat 1 Gruppe 4 – 03.12.2021

Prof. Dr. Lindner

Jade Hochschule Wilhelmshaven

Inhaltsverzeichnis

- 1.0 Anforderungsliste
- 2.0 Skizzen
 - 2.1 Prinzip-Skizze
 - 2.2 Entwurf-Skizze
- 3.0 Berechnungen
 - 3.1 Übersetzungsverhältnis
 - 3.2 Profilverschiebung
 - 3.3 Zusammenfassung der Parameter der Zahnräder
 - 3.4 Welle-Nabe-Verbindung Passfeder

Jade Hochschule Wilhelmshaven

Anforderungsliste 2-stufiges schrägverzahntes koaxiales Getriebe

Eingangsparameter

Antrieb T_{an} = 50 [Nm]
 Abtrieb T_{ab} = 500 [Nm]
 Schaltdreh. n_s = 1400 [min^-1]
 Antrieb n_{an} = 2000 [min^-1]
 Abtrieb FB = 3 [kN]

Anforderungen

- Zweiteiliges Getriebegehäuse zur einfachen Montage & Wartung sowie einer möglichst wirtschaftlichen Fertigung z.B. als Gussteil
- Koaxiale Bauweise mit Vorgelegewelle
- Getriebegehäuse mit Ölablassschraube für Ölwechsel bei Wartung und/oder Inspektion
- Schrägverzahnung der Stirnräder für einen ruhigen Lauf (β=20°)
- Fliehkraftkupplung zum Schutz des Motors (Lastfreier Anlauf), die Schaltdrehzahl liegt bei ca.
 1400min^-1
- Ölschmierung des Getriebes mit zugehörigen Wellendichtringen etc.
- Die Standzeit der Wälzlager soll mindestens L₁₀>10000h sein
- Erreichung der Zielparameter (Drehmoment Abtrieb etc.) mit einer maximalen Abweichung von 0,5% über dem geforderten Soll-Wert
- Dauerfest SD>1,5 für alle Wellen an je einer Schwachstelle
- Möglichst Verwendung von Kauf-/Normteilen

Zusätzliche Wünsche für die Konstruktion

- Eine gut zugängliche Wartungsklappe um möglichst Bedienerfreundlich zu sein
- Kompakte & vertikale Bauweise bei hoher Leistungsdichte (bei niedrigem Gewicht z.B. Aluminiumguss)
- Möglichst lange Standzeit bei Belastung der Ausgangswelle durch Bohrvorgang mit max. 3kN
- Beständig gegenüber äußeren Einflüssen wie Staub & Korrosion

Prinzip-Skizze

Bezeichnung	Name
Z1	Zahnrad 1
Z2	Zahnrad 2
Z3	Zahnrad 3
Z4	Zahnrad 4
WL1	Wälzlager 1
WL2	Wälzlager 2
WL3	Wälzlager 3
WL4	Wälzlager 4
WL5	Wälzlager 5
WL6	Wälzlager 6
D1	Radialwellendichtring
D2	Radialwellendichtring
K1	Fliehkraftkupplung
n _{an}	Antreibswelle
n _{ab}	Abtriebswelle

Jade Hochschule Wilhelmshaven

Entwurf-Skizze

2-stufiges schrägverzahntes koaxiales Getriebe

Alle im Folgenden auftretenden Angaben zu Seitenzahlen, Tabellen und Gleichungen beziehen sich auf "Roloff/Matek Maschinenelemente (24. Auflage)"

Konstanten per Vorgabe

D	-oh	ma	mo	nt	Λnt	trieh
1 71	-11	111()	1116	'1 11	AIII	11(-1)

$$T_{qn} \coloneqq 50 \ \boldsymbol{N \cdot m}$$

$$T_{ab} \coloneqq 500 \ \mathbf{N} \cdot \mathbf{m}$$

$$n_{an} \coloneqq 2000 \,\, extbf{min}^{-1}$$

$$F_B \coloneqq 3 \ kN$$

$$K_A\!\coloneqq\!2$$

$$\beta = 20$$
 °

$$\alpha_n \coloneqq 20$$

$$au_{tzul} = 50 \; rac{ extbf{\textit{N}}}{ extbf{\textit{mm}}^2}$$

Überschlägiger Belastungswert

$$B_{zul} := 4 \frac{N}{mm^2}$$

theoretisches Übersetzungsverhältnis

$$i_{ges} \coloneqq \frac{T_{ab}}{T_{cm}} = 10$$

$$i_{12} = 3.4$$

$$i_{23} = \frac{i_{ges}}{i_{12}} = 2.941$$

$$i_{ges}\!\coloneqq\!i_{12}\!\cdot\!i_{23}\!=\!10$$

gewählt nach TB21-11

Ritzelzähnezahlen

$$z_1 \coloneqq 21$$
 $z_2 \coloneqq z_1 \cdot i_{12} = 71.4$ $z_2 \coloneqq 71$

$$z_2 := 71$$

$$z_0 := 28$$

$$z_3 \coloneqq 28$$
 $z_4 \coloneqq z_3 \cdot i_{23} = 82$ $z_4 \coloneqq 83$

$$z_4 := 83$$

wirkliches Übersetzungsverhältnis

$$i_{12} := \frac{z_2}{z_1} = 3.381$$
 $i_{23} := \frac{z_4}{z_2} = 2.964$

$$i_{23} = \frac{z_4}{z_2} = 2.964$$

$$i_{ges}\!\coloneqq\!i_{12}\!\cdot\!i_{23}\!=\!10.022$$

$$T_{ab}\!\coloneqq\!T_{an}\!\boldsymbol{\cdot}\!i_{ges}\!=\!501.105\;\boldsymbol{N}\!\boldsymbol{\cdot}\!\boldsymbol{m}$$

$$\frac{500 \cdot N \cdot m}{T_{ab}} = 0.998$$

Abweichung von 0,2% vom geforderten

Abtriebsdrehmoment

Durchmesser Antriebswelle

$$d_{min1} \coloneqq \sqrt[3]{rac{16 \cdot T_{an} \cdot K_A}{\pi \cdot \tau_{trul}}} = 21.677 \, \, extbf{mm}$$
 $d_{W1} \coloneqq 30 \, \, extbf{mm}$

$$_{V1} := 30 \ mm$$

Formel nach Vereinbarung

Durchmesser Vorlegewelle

$$d_{min2} \coloneqq \sqrt[3]{\frac{16 \cdot T_{an} \cdot i_{12} \cdot K_A}{\pi \cdot \tau_{tzul}}} = 32.535 \ \textit{mm} \qquad \qquad d_{W2} \coloneqq 40 \ \textit{mm}$$

$$d_{W2} \coloneqq 40 \ mm$$

Formel nach Vereinbarung

Durchmesser Abtriebswelle

$$d_{min3} \coloneqq \sqrt[3]{\frac{16 \cdot T_{an} \cdot i_{ges} \cdot K_A}{\pi \cdot \tau_{tzul}}} = 46.736 \ \textit{mm} \qquad \qquad d_{W3} \coloneqq 55 \ \textit{mm}$$

$$d_{W3} = 55 \, \, mm$$

Formel nach Vereinbarung

gewählt aufgrund von Passfededer-/ & Lagerabmaßen (TB12-2)

Modul 1;2

$$m_{n12} \coloneqq \frac{1.8 \cdot d_{W1} \cdot \cos(\beta)}{z_1 - 2.5} = 2.743 \text{ mm}$$
 $m_{n12} \coloneqq 3 \text{ mm}$

$$m_{n12} \coloneqq 3 \, \, \boldsymbol{mn}$$

Zahnradbreite

$$b_1 \coloneqq \frac{2 \cdot T_{an}}{{d_{W_1}}^2 \cdot B_{cul}} = 27.778 \; m{mm}$$

$$b_1 \coloneqq 30 \ mm$$

$$b_1 = 30 \ mm$$
 orientiert an TB21-13b

$$b_2\!\coloneqq\!b_1$$

$$b_3 \coloneqq \frac{2 \cdot T_{an} \cdot i_{12}}{d_{W2}^2 \cdot B_{rad}} = 52.827 \ mm$$

$$b_3 = 55 \, mm$$

 $b_4 \coloneqq b_3$

$$b_3 = 55 \, mm$$
 orientiert an TB21-13b

$$d_{T1} = z_1 \cdot \frac{m_{n12}}{\cos(\beta)} = 67.043 \ mm$$

$$d_{T2} = z_2 \cdot \frac{3 \ mm}{\cos(\beta)} = 226.67 \ mm$$

Achsabstand 1;2

$$a_{d12} \coloneqq \frac{d_{T1} + d_{T2}}{2} = 146.857 \ \textit{mm}$$

Gl.21.42

Modul 3;4

$$m_{n34} \coloneqq \frac{2 \cdot a_{d12} \cdot \cos(\beta)}{(1 + i_{23}) \cdot z_3} = 2.486 \; mm$$

$$m_{n34}\!\coloneqq\!2.5$$
 mm

Teilkreis 3 & 4

$$d_{T3} = z_3 \cdot \frac{m_{n34}}{\cos(\beta)} = 74.492 \ mm$$

$$d_{T4} \coloneqq z_4 \cdot \frac{m_{n34}}{\cos(\beta)} = 220.817 \ \textit{mm}$$

Gl.21.38

Achsabstand 3;4

$$a_{d34} \coloneqq \frac{d_{T3} + d_{T4}}{2} = 147.655 \ \textit{mm}$$
 $a_{d12} \neq a_{ad34}$ $a_{d12} - a_{d34} = -0.798 \ \textit{mm}$

$$a_{d12} \neq a_{ad34}$$

$$a_{d12} - a_{d34} = -0.798$$
 mm

Gl.21.42

Fazit: Es ist eine Profilverschiebung notwendig, um die Differenz der Achsabstände auszugleichen! Es wird eine positive Profilverschiebung gewählt, um den Zahnfuß zu stärken und die Tragfähigkeit der Zähne wird erhöht.

Stirneingreifswinkel

$$\alpha_t := \operatorname{atan}\left(\frac{\tan\left(\alpha_n\right)}{\cos\left(\beta\right)}\right) = 21.173$$
°

Gl. 21.35

Betriebseingriffswinkel

$$\alpha_w \coloneqq \operatorname{acos}\left(\cos\left(\alpha_t\right) \cdot \frac{a_{d12}}{a_{d34}}\right) = 21.959$$
°

Gl. 21.31

Summe Profilverschiebungsfaktoren

$$inv\alpha_w := \tan\left(\alpha_w\right) - \alpha_w \cdot \frac{\pi}{180} = 0.01994$$

$$inv\alpha_t := \tan\left(\alpha_t\right) - \alpha_t \cdot \frac{\pi}{180^{\circ}} = 0.01779$$

$$\Sigma x \coloneqq \frac{inv\alpha_w - inv\alpha_t}{2 \cdot \tan\left(\alpha_n\right)} \cdot \left(z_1 + z_2\right) = 0.271$$

Gl. 21.56

Ersatzzähnezahlen

$$\beta_b = \operatorname{acos}\left(\cos\left(\beta\right) \cdot \frac{\cos\left(\alpha_n\right)}{\cos\left(\alpha_t\right)}\right) = 18.747$$
°

Gl. 21.36

$$\cos\left(eta_b
ight)^2 = 0.897$$
 vgl. mit Additionstheorem $xyz \coloneqq \frac{1}{2}\left(1 + \cos\left(2 \cdot \beta_b\right)\right) = 0.897$

$$z_{n1} = \frac{z_1}{\cos\left(\beta_b\right)^2 \cdot \cos\left(\beta\right)} = 24.922$$

$$z_{n2} \coloneqq \frac{z_2}{\cos\left(eta_b\right)^2 \cdot \cos\left(eta\right)} = 84.26$$

Gl. 21.47

sinnvolle Wahl von x (z_2)

$$x_1 \coloneqq \frac{\Sigma x}{2} + \left(\frac{1}{2} - \frac{\Sigma x}{2}\right) \cdot \frac{\log\left(\frac{z_2}{z_1}\right)}{\log\left(\frac{z_{n1} \cdot z_{n2}}{100}\right)} = 0.28128$$

Gl. 21.33

$$x_2\!\coloneqq\! \Sigma x\!-\!x_1\!=\!-0.0105$$

Beide Räder nach TB 21-3 ausführbar!

Gl. 21.56

Verschiebungen

$$V_1\!\coloneqq\!x_1\!\cdot\!m_{n12}\!=\!0.844~\textbf{mm}$$

$$V_2 := x_2 \cdot m_{n12} = -0.031 \ mm$$

$$V_3 = 0 \ mm$$

$$V_4 \coloneqq 0 \ \boldsymbol{mm}$$

Gl. 21.49

Kontrolle Achsabstand

Betriebswälzkreisdurchmesser

$$d_{w1} \coloneqq d_{T1} \cdot \frac{\cos\left(lpha_t
ight)}{\cos\left(lpha_w
ight)} = 67.408 \; m{mm}$$

$$d_{w2} \coloneqq d_{T2} \cdot \frac{\cos\left(lpha_t
ight)}{\cos\left(lpha_w
ight)} = 227.902 \; m{mm}$$

Gl. 21.22u

$$a := \frac{d_{w1} + d_{w2}}{2} = 147.655$$
 mm

vgl.: $a_{d34} = 147.655 \ mm$

Kopfspiel Soll

$$c_{12Soll} = 0.25 \cdot m_{n12} = 0.75 \ mm$$

$$c_{34} \coloneqq 0.25 \cdot m_{n34} = 0.625 \ mm$$

Kopfhöhenänderung: k := a

$$k \coloneqq a - a_{d12} - m_{n12} \cdot (x_1 + x_2) = -0.014 \ mm$$

Gl.21-23

vgl. S. 794

Zahnräder		
Zahnrad Nr.1:		
$d_{T1} = 67.043 \; mm$		
Betriebswälzkreisdurchmesser	$d_{w1} \coloneqq \frac{2 \cdot z_1}{z_1 + z_2} \cdot a = 67.408 \; mm$	Gl.21-22a
Grundkreisdurchmesser	$d_{b1} \coloneqq z_1 \cdot \frac{m_{n12} \cdot \cos\left(lpha_t ight)}{\cos\left(eta ight)} = 62.517 extbf{mm}$	Gl.21-39
Kopfkreisdurchmesser	$d_{a1} := d_{T1} + 2 \cdot (m_{n12} + V_1 + k) = 74.702 \ mm$	Gl.21-24
Fußkreisdurchmesser	$d_{f1}\!\coloneqq\!d_{T1}\!-\!2ulletig(ig(m_{n12}\!+\!c_{12Soll}ig)\!-\!V_1ig)\!=\!61.231$ 7	<i>nm</i> Gl.21-25
Zahnrad Nr.2:		
$d_{T2} = 226.67 \; \pmb{mm}$		
$d_{w2} \coloneqq \frac{2 \cdot z_2}{z_1 + z_2} \cdot a = 227.902 \ \textit{mm}$		Gl.21-22b
$d_{b2} \coloneqq z_2 \cdot \frac{m_{n12} \cdot \cos\left(\alpha_t\right)}{\cos\left(\beta\right)} = 211.3$	369 <i>mm</i>	Gl.21-39
$d_{a2} \coloneqq d_{T2} + 2 \cdot \left(m_{n12} + V_2 + k \right) =$	232.578 <i>mm</i>	Gl.21-24
$d_{f2} \coloneqq d_{T2} - 2 \cdot \left(\left(m_{n12} + c_{12Soll} \right) - \right.$	$(V_2) = 219.107 \ mm$	Gl.21-25
Zahnrad Nr.3:		
$d_{T3} = 74.492 \; mm$		
$d_{w3} \coloneqq \frac{2 \cdot z_3}{z_3 + z_4} \cdot a = 74.492 \ mm$		Gl.21-22a
$\begin{aligned} d_{w3} &\coloneqq \frac{2 \cdot z_3}{z_3 + z_4} \cdot a = 74.492 \ \textit{mm} \\ d_{b3} &\coloneqq z_3 \cdot \frac{m_{n34} \cdot \cos{(\alpha_t)}}{\cos{(\beta)}} = 69.46 \end{aligned}$	34 <i>mm</i>	Gl.21-39
$d_{a3} := d_{T3} + 2 \cdot (m_{n34} + V_2 + k) =$		Gl.21-40
$d_{f3}\!\coloneqq\!d_{T3}\!-\!2.5\!\cdot\!m_{n34}\!=\!68.242$ 1	nm	Gl.21-41

Jade Hochschule Wilhelmshaven

Zahnrad Nr.4:	
$d_{T4} = 220.817 \; \pmb{mm}$	
$d_{w3} \coloneqq \frac{2 \cdot z_4}{z_3 + z_4} \cdot a = 220.817 \ \textit{mm}$	Gl.21-22b
$d_{b4} \coloneqq z_4 \cdot \frac{m_{n34} \cdot \cos\left(\alpha_t\right)}{\cos\left(\beta\right)} = 205.911 \ \boldsymbol{mm}$	Gl.21-39
$d_{a4} := d_{T4} + 2 \cdot (m_{n34} + V_2 + k) = 225.725 \ mm$	Gl.21-40
$d_{f4} \coloneqq d_{T4} - 2.5 \cdot m_{n34} = 214.567 \ \textit{mm}$	Gl.21-41
Kopfspiel nach Profilverschiebung	
$c_{12Ist} \coloneqq a - 0.5 \cdot \left(d_{a1} + d_{f2}\right) = 0.75 \textit{mm}$ $c_{12Soll} - c_{12Ist} = -6.505 \cdot 10^{-16} \textit{mm}$	
Keine relevante Abweichung! Stirnmodul	vgl. S. 794
$m_{t12} \coloneqq \frac{m_{n12}}{\cos{(eta)}} = 3.193 \; extbf{\textit{mm}} \hspace{1cm} m_{t34} \coloneqq \frac{m_{n34}}{\cos{(eta)}} = 2.66 \; extbf{\textit{mm}}$	Gl.21-23
Profilüberdeckung	
$c_{\alpha12} := \frac{0.5 \cdot \left(\sqrt{{d_{a1}}^2 - {d_{b1}}^2} + \frac{z_2}{ z_2 } \cdot \sqrt{{d_{a2}}^2 - {d_{b2}}^2}\right) - a \cdot \sin\left(\alpha_w\right)}{\pi \cdot m_{t12} \cdot \cos\left(\alpha_t\right)} = 1.47$	Gl.21-57
Laut S.787 ist der Wert für ε_{lpha} gut.	GI.21-57
$\varepsilon_{\beta 12} \coloneqq \frac{b_1 \cdot \sin(\beta)}{\pi \cdot m_{n12}} = 1.089$	Gl.21-44
$\text{Gesamt:} \varepsilon_{\gamma 12} \coloneqq \varepsilon_{\alpha 12} + \varepsilon_{\beta 12} = 2.559$	
$0.5 \cdot \left(\sqrt{{d_{a3}}^2 - {d_{b3}}^2} + \frac{z_4}{1} \cdot \sqrt{{d_{a4}}^2 - {d_{b4}}^2} \right) - a \cdot \sin \left({lpha_w} ight)$	
$\varepsilon_{\alpha 3 4} \coloneqq \frac{0.5 \cdot \left(\sqrt{d_{a 3}^{2} - d_{b 3}^{2}} + \frac{z_{4}}{\left z_{4}\right } \cdot \sqrt{d_{a 4}^{2} - d_{b 4}^{2}}\right) - a \cdot \sin\left(\alpha_{w}\right)}{\pi \cdot m_{t 3 4} \cdot \cos\left(\alpha_{t}\right)} = 1.316$	Gl.21-57
Laut S.787 ist der Wert für $arepsilon_{lpha}$ gut.	
$arepsilon_{eta34}\coloneqq rac{b_3\cdot\sin\left(eta ight)}{\pi\cdot m_{n34}}\!=\!2.395$	Gl.21-44
$\text{Gesamt:} \varepsilon_{\gamma34} \coloneqq \varepsilon_{\alpha34} + \varepsilon_{\beta34} = 3.711$	

Jade Hochschule Wilhelmshaven

Zusammen	iassung								
				d_f					z
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
$Zahnrad_1$	67.04	62.52	74.78	61.196	67.41	30	3	0.844	21
$Zahnrad_2$	226.67	211.37	232.61	219.032	227.66	30	3	-0.031	71
$Zahnrad_3$	74.49	69.46	79.49	68.24	74.49	55	2.5	0	28
$Zahnrad_4$	220.82	205.92	225.82	214.57	220.82	55	2.5	0	83
Passfederv	erbindu	ngen	TB 12-	2					
D 207	N		-	R_e	N N		-		
$R_e \coloneqq 295 \cdot \frac{1}{m}$	m^2	$_{F}\coloneqq 1.1$	η_{zul} := -	$\overline{S_F}$ = 268.	182 —	$\frac{-}{2}$ φ) := 1	$n \coloneqq 1$	
$d_{tr1} \coloneqq \frac{1}{d_{W1} \cdot 3}$	$2 ullet T_{an}$	_	· 1 1/13 m	nga h	- 8 mm	1 _	h-19 1	13 mm	
$\overline{d_{W1}\!\cdot\!3}$	$m{mm} \cdot \eta_{zu}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	4.145		_ 0 116116	tr1	70-12.	145 116116	
			Antrie	bswelle:	Passfede	er DIN 6	885 - A8	8x7x14	
$d_{tr2} \coloneqq rac{2}{d_{W2} \cdot 3}$	$2 {f \cdot} T_{an} {f \cdot} i_{12}$	<u> </u>	:10.506 1	mm b :	=12 <i>mm</i>	l _{tern} -	- b = 22.5	506 mm	
$d_{W2} \cdot 3$	$m{mm} \cdot \eta_{zu}$	$_{l}ulletarphiullet n$				612			
			Vorle	gewelle:	Passfede	r DIN 68	885 - A12	2x8x25	
$d_{tr3} \coloneqq rac{2 \cdot d_{W3} \cdot 4}{d_{W3} \cdot 4}$	$T_{an}\!\cdot\!i_{12}\!\cdot\!i_{mm}\!\cdot\!\eta_{zu}$	$\frac{i_{23}}{i_l \cdot \varphi \cdot n} =$:16.987	mm b:	=16 <i>mm</i>	l_{tr3} -	- b = 32.9	987 mm	
				ebswelle:					