V - Optimisation with ERM

Contents:

- Empirical risk minimization for parameter learning
- Gradient descent
- Stochastic gradient descent
- Backpropagation for computing gradients in neural networks

How to perform ERM in general?

Linear models

Principles of learning

Trees and ensembling

Neural networks

Risk optimization

• The aim of training in supervised learning is to compute

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} R(\boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\boldsymbol{\theta}}(\boldsymbol{\phi}^{(i)}), y^{(i)}).$$

- In linear regression, we could directly optimise the empirical risk in closed-form, but in general it is not possible.
- How to perform the Empirical Risk Minimisation (ERM) in general?

Naïve view and curse of dimensionality

Linear models

Principles of learning

Trees and ensembling

Neural networks

Risk optimization

- A naïve way of minimizing such functions could be to uniformly pave the parameter space and choose the one with the smallest value as being the minimum: this is **global optimization (grid search optimization)**
- This is where the **curse of dimensionality** kicks in (again). In general, we optimize models over many parameters $p \gg 1$ (imagine the pixels of an image) and all the points are far away from each other in high dimensions
- Sampling uniformly $[0,1]^{10}$ with a step of 0.01 requires 10^{20} evaluations (think of GPT-3 and its 175 billion parameters!)

Risk optimization

A solution: local, directed search to navigate in the landscape

>> Numerical optimisation by gradient descent

Note: the superscript does not have to do with the training example here but with the time step (θ is a parameter).

Algorithm: Gradient descent

- 1. Initialise θ_0 randomly
- 2. Compute $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} \eta \nabla_{\boldsymbol{\theta}} R(\boldsymbol{\theta}^{(t)})$
- Repeat 2 until a stopping criterion is satisfied

1D convex

1D non-convex

2D non-convex

Solutions in complex non-convex models depend on θ_0 : it is an **hyperparameter**

Example of stopping criterion: $\|\boldsymbol{\theta}^{(t+1)} - \boldsymbol{\theta}^{(t)}\|_{2}^{2} \le \epsilon$, or fixed number of steps

A word about hyperparameters

Linear models

Principles of learning

Trees and ensembling

Neural network

Risk optimization

- One **hyperparameter**: the learning rate η
- A value that is too large can lead to divergence while, when too small, the computational cost explodes (+ stuck in small asperities)

Hyperparameter: parameter that is **not learned** during the optimisation. Ex: depth of tree in DTs, # of trees in RFs, learning rates, etc.

appropriate η

Usually, we use grid search to find the hyperparameter performing best on a third dataset: the validation set (or use cross-validation)

Example: our first linear regression

Risk optimization

In linear regression, the empirical risk is

$$R(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \left(\theta_0 + \theta_1 x_1^{(i)} - y^{(i)} \right)^2 \qquad \boldsymbol{\theta} = [\theta_0, \theta_1]^{\mathrm{T}}$$

- Let's apply the gradient descent algorithm starting from $\boldsymbol{\theta}^{(0)}$ random
- Then, we need to compute the gradient $\nabla_{\boldsymbol{\theta}} R(\boldsymbol{\theta})$

$$\frac{\partial R(\boldsymbol{\theta})}{\partial \theta_0} = \frac{2}{n} \sum_{i=1}^n \left(\theta_0 + \theta_1 x_1^{(i)} - y^{(i)} \right),$$
$$\frac{\partial R(\boldsymbol{\theta})}{\partial \theta_1} = \frac{2}{n} \sum_{i=1}^n x_1^{(i)} (\theta_0 + \theta_1 x_1^{(i)} - y^{(i)})$$

Therefore, the update is

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \frac{2\eta}{n} \sum_{i=1}^n x_j^{(i)} (\theta_0 + \theta_1 x_1^{(i)} - y^{(i)})$$

where $\forall i \in [1, \dots, n] \ x_0^{(i)} = 1$

Note that I **standardized** the features. This is sometimes required when optimising some models. In GD, it allows faster convergence.

Stochastic gradient descent algorithm

Linear models

Principles of learning

Trees and ensembling

Neural network

Risk optimization

- Problem of gradient descent: we **need the entire dataset** to compute $\nabla_{\theta} R(\theta^{(t)})$
- Solution: what about using only a fraction γ of the dataset chosen randomly?

Algorithm: Stochastic gradient descent

- 1. Initialise $\boldsymbol{\theta}_0$ randomly
- 2. For $e \in [1, \dots, E]$
 - 2.1. Shuffle the dataset
 - 2.2. For $i \in [1, \dots, \lfloor \gamma n \rfloor]$ 2.2.1. Compute $\mathbf{\theta}^{(i+1)} = \mathbf{\theta}^{(i)} - \eta \widehat{\mathbf{\nabla}}_{\boldsymbol{\theta}} \mathbf{R}(\mathbf{\theta}^{(i)})$

where
$$\widehat{\nabla}R(\boldsymbol{\theta}) = \sum_{i=i \nu n}^{i \gamma n + \gamma n} \nabla R_i(\boldsymbol{\theta})$$

- e is called an epoch and a set of γn training examples is called a mini-batch
- Usually, SGD often converges faster than full-batch GD
- It may however oscillate around a true minimum
- Under some technical assumptions, SGD provides an almost sure convergence to a local (resp. global) in non-convex (resp. convex) landscapes

SGD landscapes on our linear regression

Linear models

Principles of learning

Trees and ensembling

Neural network

Risk optimization

• The problem with neural networks is they are compositions of non-linear functions

$$y_{j} = s^{[L+1]} \left(\mathbf{W}^{[L+1]} s^{[L]} \left(\mathbf{W}^{[L]} \dots s^{[1]} \left(\mathbf{W}^{[1]} \mathbf{x} \right) \right) \right)$$

$$\mathbf{W}^{[l]} = \left[\mathbf{w}_{1}^{[l]}, \mathbf{w}_{2}^{[l]}, \dots, \mathbf{w}_{h_{l}} \right]^{T} \in \mathbb{R}^{h_{l} \times (h_{l-1}+1)}$$

$$\mathbf{w}_{j}^{[l]} = \left[b_{j}^{[l]}, \mathbf{w}_{1j}^{[l]}, \mathbf{w}_{2j}^{[l]}, \dots, \mathbf{w}_{h_{l}j}^{[l]} \right]$$

- We however need to optimize the cost function to obtain the "best" values of W producing the closerto-optimal target values
- How to compute $\frac{\partial \ell(W^{[0]},...,W^{[L+1]})}{\partial w_{ij}^{[l]}}$?
- The backpropagation of errors: an application of the chain rule!

Output layer

Linear models

Principles of learning

Trees and ensembling

Neural networks

Risk optimization

• Take the example of a fully-connected network with d=3, one hidden layer, and two output neurons: $\hat{y} = s\left(\mathbf{W}^{[2]}s(\mathbf{W}^{[1]}x)\right)$ with $\mathbf{x} = [1, x_1, x_2, ..., x_d]^{\mathrm{T}}$

$$\boldsymbol{W}^{[1]} = \begin{bmatrix} b_1^{[1]} & w_{11}^{[1]} & w_{12}^{[1]} & w_{13}^{[1]} \\ b_2^{[1]} & w_{21}^{[1]} & w_{22}^{[1]} & w_{23}^{[1]} \end{bmatrix} \qquad \boldsymbol{W}^{[2]} = \begin{bmatrix} b_1^{[2]} & w_{11}^{[2]} & w_{12}^{[2]} \\ b_2^{[2]} & w_{21}^{[2]} & w_{22}^{[2]} \end{bmatrix}$$

Consider the squared error loss function for each training example i

$$\ell(\mathbf{W}^{[1]}, \mathbf{W}^{[2]}) = \frac{1}{2} \sum_{j=1}^{2} (y_j - \hat{y}_j)^2$$

- From the equation of $\widehat{\pmb{y}}$, we see the contribution of $\pmb{W}^{[2]}$ is "closer" to the output than $\pmb{W}^{[1]}$
- Let's compute $\frac{\partial \ell(\mathbf{W}^{[1]}, \mathbf{W}^{[2]})}{\partial w_{11}^{[2]}}$

An example *i* is propagated forward this way

Linear models

Principles of learning

Trees and ensembling

Neural networks

Risk optimization

• Using the chain rule

$$\frac{\partial \ell(\boldsymbol{W}^{[1]}, \boldsymbol{W}^{[2]})}{\partial w_{11}^{[2]}} = \frac{\partial \ell}{\partial u_{1}^{[2]}} \times \frac{\partial u_{1}^{[2]}}{\partial w_{11}^{[2]}}$$

where $u_1^{[2]}$ is the pre-activation of the unit 1 in layer 2 (here output layer)

$$u_1^{[2]} = w_{11}^{[2]} z_1^{[1]} + w_{21}^{[2]} z_2^{[1]} + b_1^{[2]}$$

- The second term is then easy to compute as $\frac{\partial u_1^{[2]}}{\partial w_{11}^{[2]}} = z_1^{[1]}$
- For the first term, use the chain rule again leads to

$$\delta_1^{[2]} = \frac{\partial \ell}{\partial u_1^{[2]}} = \frac{\partial \ell}{\partial \hat{y}_1} \frac{\partial \hat{y}_1}{\partial u_1^{[2]}}$$
with $\hat{y}_1 = s\left(u_1^{[2]}\right) = s\left(w_{11}^{[2]}z_1^{[1]} + w_{21}^{[2]}z_2^{[1]} + b_1^{[2]}\right)$

Finally,

$$\frac{\partial \ell(\mathbf{W}^{[1]}, \mathbf{W}^{[2]})}{\partial w_{11}^{[2]}} = -(y_1 - \hat{y}_1)s'(u_1^{[2]})z_1^{[1]}$$

$$\ell(\mathbf{W}^{[1]}, \mathbf{W}^{[2]}) = \frac{1}{2} \sum_{j=1}^{2} (y_j - \hat{y}_j)^2$$

An example *i* is propagated forward this way

$$\widehat{\mathbf{y}} = s\left(\mathbf{W}^{[2]}s(\mathbf{W}^{[1]}\mathbf{x})\right)$$

$$\boldsymbol{W}^{[1]} = \begin{bmatrix} b_1^{[1]} & w_{11}^{[1]} & w_{12}^{[1]} & w_{13}^{[1]} \\ b_2^{[1]} & w_{21}^{[1]} & w_{22}^{[1]} & w_{23}^{[1]} \end{bmatrix}$$

$$\boldsymbol{W}^{[2]} = \begin{bmatrix} b_1^{[2]} & w_{11}^{[2]} & w_{12}^{[2]} \\ b_2^{[2]} & w_{21}^{[2]} & w_{22}^{[2]} \end{bmatrix}$$

Linear models

Principles of learning

Trees and ensembling

Neural networks

Risk optimization

- You can proceed the same for all the weights linked to the output layer
- What about parameters in the hidden layers?
- Let's compute

$$\frac{\partial \ell(\boldsymbol{W}^{[1]}, \boldsymbol{W}^{[2]})}{\partial w_{11}^{[1]}} = \frac{\partial \ell}{\partial u_{1}^{[1]}} \times \frac{\partial u_{1}^{[1]}}{\partial w_{11}^{[1]}}$$

- The second term is still easy to compute
- For the first term, we have $u_1^{[1]} = w_{11}^{[1]}x_1 + w_{21}^{[1]}x_2 + b_1^{[1]}$ and observe that there are two paths to reach the weight $w_{11}^{[1]}$:

$$\delta_{1}^{[1]} = \frac{\partial \ell}{\partial u_{1}^{[2]}} \frac{\partial u_{1}^{[2]}}{\partial u_{1}^{[1]}} + \frac{\partial \ell}{\partial u_{2}^{[2]}} \frac{\partial u_{2}^{[2]}}{\partial u_{1}^{[1]}}$$
Already computed in the previous layer (hence the name "Backpropagation")

$$\ell(\mathbf{W}^{[1]}, \mathbf{W}^{[2]}) = \frac{1}{2} \sum_{j=1}^{2} (y_j - \hat{y}_j)^2$$

An example *i* is propagated forward this way

$$\widehat{\mathbf{y}} = s\left(\mathbf{W}^{[2]}s(\mathbf{W}^{[1]}\mathbf{x})\right)$$

$$\mathbf{W}^{[1]} = \begin{bmatrix} b_1^{[1]} & w_{11}^{[1]} & w_{12}^{[1]} & w_{13}^{[1]} \\ b_2^{[1]} & w_{21}^{[1]} & w_{22}^{[1]} & w_{23}^{[1]} \end{bmatrix}$$

$$\boldsymbol{W}^{[2]} = \begin{bmatrix} b_1^{[2]} & w_{11}^{[2]} & w_{12}^{[2]} \\ b_2^{[2]} & w_{21}^{[2]} & w_{22}^{[2]} \end{bmatrix}$$

Risk optimization

$$\delta_{1}^{[1]} = \frac{\partial \ell}{\partial u_{1}^{[2]}} \frac{\partial u_{1}^{[2]}}{\partial u_{1}^{[1]}} + \frac{\partial \ell}{\partial u_{2}^{[2]}} \frac{\partial u_{2}^{[2]}}{\partial u_{1}^{[1]}}$$

Already computed in the previous layer (hence the name "Backpropagation")

• To compute $\frac{\partial u_1^{[2]}}{\partial u_2^{[1]}}$ and $\frac{\partial u_2^{[2]}}{\partial u_2^{[1]}}$, we can use the same chain rule again giving

$$\frac{\partial u_1^{[2]}}{\partial u_1^{[1]}} = \frac{\partial u_1^{[2]}}{\partial z_1^{[1]}} \frac{\partial z_1^{[1]}}{\partial u_1^{[1]}} = w_{11}^{[2]} s' \left(u_1^{[1]} \right)$$

$$\frac{\partial u_1^{[2]}}{\partial u_1^{[1]}} = \frac{\partial u_1^{[2]}}{\partial z_1^{[1]}} \frac{\partial z_1^{[1]}}{\partial u_1^{[1]}} = w_{11}^{[2]} s' \left(u_1^{[1]} \right) \qquad \qquad \frac{\partial u_2^{[2]}}{\partial u_1^{[1]}} = \frac{\partial u_2^{[2]}}{\partial z_1^{[1]}} \frac{\partial z_1^{[1]}}{\partial u_1^{[1]}} = w_{21}^{[2]} s' \left(u_1^{[1]} \right)$$

Hence,

$$\frac{\partial \ell(\mathbf{W}^{[1]}, \mathbf{W}^{[2]})}{\partial w_{11}^{[1]}} = \left(\delta_1^{[2]} w_{11}^{[2]} + \delta_2^{[2]} w_{21}^{[2]}\right) s'\left(u_1^{[1]}\right) x_1$$

Where everything is known!

$$\ell(\mathbf{W}^{[1]}, \mathbf{W}^{[2]}) = \frac{1}{2} \sum_{j=1}^{2} (y_j - \hat{y}_j)^2$$

An example *i* is propagated forward this way

$$\widehat{\mathbf{y}} = s\left(\mathbf{W}^{[2]}s(\mathbf{W}^{[1]}\mathbf{x})\right)$$

$$\boldsymbol{W}^{[1]} = \begin{bmatrix} b_1^{[1]} & w_{11}^{[1]} & w_{12}^{[1]} & w_{13}^{[1]} \\ b_2^{[1]} & w_{21}^{[1]} & w_{22}^{[1]} & w_{23}^{[1]} \end{bmatrix}$$

$$\boldsymbol{W}^{[2]} = \begin{bmatrix} b_1^{[2]} & w_{11}^{[2]} & w_{12}^{[2]} \\ b_2^{[2]} & w_{21}^{[2]} & w_{22}^{[2]} \end{bmatrix}$$

Backprop: summary and conclusions

Linear models

Principles of learning

Trees and ensembling

Neural networks

Risk optimization

- 1. Writing those equations **propagating the errors from output to input recursively** for both weights and biases leads to the **backpropagation algorithm**.
- 2. Together with the SGD algorithm they allow to train efficiently networks with possibly many parameters.
- 3. Modern programming tools implement an automatic version of this algorithm called *automatic differentiation* generating the code for backward equations from forward propagation declaration.

$$\ell(\mathbf{W}^{[1]}, \mathbf{W}^{[2]}) = \frac{1}{2} \sum_{j=1}^{2} (y_j - \hat{y}_j)^2$$

An example *i* is propagated forward this way

$$\widehat{\mathbf{y}} = s\left(\mathbf{W}^{[2]}s(\mathbf{W}^{[1]}\mathbf{x})\right)$$

$$\boldsymbol{W}^{[1]} = \begin{bmatrix} b_1^{[1]} & w_{11}^{[1]} & w_{12}^{[1]} & w_{13}^{[1]} \\ b_2^{[1]} & w_{21}^{[1]} & w_{22}^{[1]} & w_{23}^{[1]} \end{bmatrix}$$

$$\boldsymbol{W}^{[2]} = \begin{bmatrix} b_1^{[2]} & w_{11}^{[2]} & w_{12}^{[2]} \\ b_2^{[2]} & w_{21}^{[2]} & w_{22}^{[2]} \end{bmatrix}$$