# **DAFTAR ISI**

| DAFTAR ISI                                                      | i  |
|-----------------------------------------------------------------|----|
| DAFTAR GAMBAR                                                   | ii |
| DAFTAR TABEL                                                    | ii |
| BAB 1. PENDAHULUAN                                              | 1  |
| 1.1 Latar Belakang                                              | 1  |
| 1.2 Rumusan Masalah                                             | 2  |
| 1.3 Tujuan                                                      | 2  |
| 1.4 Luaran yang Diharapkan                                      | 2  |
| 1.5 Manfaat                                                     | 2  |
| BAB 2. TINJAUAN PUSTAKA                                         | 3  |
| 2.1 Machine Learning                                            | 3  |
| 2.2 Visi Komputer                                               | 3  |
| 2.3 OpenCV                                                      | 3  |
| 2.4 Raspberry Pi-4 Model B                                      | 4  |
| 2.5 Siaran                                                      | 4  |
| 2.6 Tensorflow                                                  | 4  |
| 2.7 Internet of Things(IoT)                                     | 5  |
| 2.8 Teknologi Service Fault yang Telah Ada                      | 5  |
| BAB 3. TAHAP PELAKSANAAN                                        | 6  |
| 3.1 Studi Literatur                                             | 6  |
| 3.2 Perancangan Desain <i>Prototype</i> dan Sistem              | 7  |
| 3.3 Pembuatan <i>Machine Learning</i>                           | 7  |
| 3.4 Pembuatan <i>Prototype</i>                                  | 8  |
| 3.5 Pengujian dan Evaluasi Prototype                            | 8  |
| 3.6 Pembuatan Laporan                                           | 8  |
| BAB IV. BIAYA DAN JADWAL KEGIATAN                               | 9  |
| 4.1 Anggaran Biaya                                              | 9  |
| 4.2 Jadwal Kegiatan                                             | 9  |
| DAFTAR PUSTAKA                                                  | 10 |
| LAMPIRAN                                                        | 11 |
| Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pembimbing        | 11 |
| Lampiran 2. Justifikasi Anggaran Kegiatan                       | 19 |
| Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas | 20 |
| Lampiran 4. Surat Pernyataan Ketua Pelaksana                    |    |
| Lampiran 5. Gambaran Teknologi yang akan Dikembangkan           | 22 |

# DAFTAR GAMBAR

| Gambar 2.1 Raspberry Pi-4 Model                                    | B               | •••••      |      |       | 4 |
|--------------------------------------------------------------------|-----------------|------------|------|-------|---|
| Gambar 3.1 Diagram Alir Pelaksar                                   | naan Kegiatan   |            |      |       | 6 |
| Gambar 3.2 Desain Prototype Pen                                    | deteksi Kesalal | han Servis | Badm | inton | 7 |
|                                                                    |                 |            |      |       |   |
| DA                                                                 | FTAR TABE       | EL         |      |       |   |
| Tabel 2.1. Perbandingan Sister<br>Perangkat yang Digunakan Saat In |                 |            |      | -     |   |
| Tabel 4.1. Rekapitulasi Rencana A                                  | nggaran Dana    |            |      |       | 9 |
| Tabel 4.2. Jadwal Kegiatan Pembu                                   | atan Alat       |            |      |       | 9 |

#### **BAB 1. PENDAHULUAN**

#### 1.1 Latar Belakang

Bulutangkis merupakan olahraga yang dimainkan oleh dua atau empat orang (single atau double) dengan menggunakan raket dan shuttlecock berupa bola gabus dikelilingi bulu agar pergerakannya stabil (Williyanto dkk, 2021). Banyaknya penyelenggaraan event atau kejuaraan bulutangkis dari tingkat daerah hingga internasional menunjukkan bahwa olahraga ini merupakan salah satu jenis olahraga terpopuler. Di Indonesia sendiri, sudah banyak dilakukan pencarian dan pengembangan bibit atlet bulutangkis sejak usia dini. Hal tersebut menunjukkan bahwa bulutangkis adalah olahraga yang mampu menjangkau semua kalangan, selalu berkembang, dan memiliki prospek yang menjanjikan.

Dalam permainan bulutangkis terdapat banyak teknik dasar yang harus dikuasai oleh pemain, salah satunya adalah servis yang harus dilakukan setiap mengawali permainan. Federasi yang mengatur tentang penyelenggaraan dan permainan bulutangkis dunia, Badminton World Federation (BWF), membuat beberapa peraturan terkait pukulan servis yang termaktub dalam *Section 4.1.1: Instructors to Technical Official (ITTO) Bab 7* mengenai *Instructions to Service Judges* dan *Section 1 A Laws of Badminton Bab 9-12.* Dalam peraturan tersebut telah dinyatakan dengan tegas bahwa pemain yang melakukan kesalahan dalam servis ialah pemain yang melakukan *service faults* dengan beberapa aspek regulasi. Di antara berbagai regulasi servis yang diterapkan dalam peraturan BWF di atas, salah satu aspek yang ditinjau yaitu ketinggian servis. Menurut *ITTO Law 9.1.6*, ketinggian keseluruhan bola bulutangkis saat pukulan servis harus di bawah 1.15 meter yang diukur dari permukaan lapangan. Pemain yang melakukan servis dengan ketinggian bola yang sama atau bahkan melebihi 1,15 meter akan dianggap melakukan pelanggaran dan memberi poin untuk lawan.

Seiring dengan adanya peraturan tersebut, BWF juga telah mengembangkan perangkat yang digunakan untuk meninjau tinggi servis permain, yaitu papan plastik transparan dengan garis hitam horizontal yang dipasang pada tiang logam. Fungsi garis hitam horizontal pada alat ini yaitu untuk menandakan ketinggian 1,15 meter dari permukaan lapangan (Badminton Insight, 2020). Dalam penggunaanya, alat ini digunakan sebagai alat bantu wasit untuk melihat tinggi servis pemain. Hal ini tentunya masih menjadi masalah karena tingkat terjadinya kesalahan dalam pengambilan keputusan akibat *human error* masih tinggi, terutama dari aspek sudut pandang wasit.

Berdasarkan hal tersebut, disusunlah Program Kreativitas Mahasiswa (PKM) dengan judul "Sistem Pendeteksi Kesalahan Servis (*service fault*) Bulutangkis pada Aspek Ketinggian Servis Berbasis Visi Komputer". Sistem ini merupakan rancangan sendiri yang mampu mendeteksi ketinggian bola saat servis dilakukan dengan menggunakan *machine learning*. Hasil dari pembacaan kamera ini akan menjadi data pendukung bagi wasit servis untuk memutuskan apakah servis pemain tersebut sah atau dinyatakan *fault*. Sistem yang dibuat ini diharap mampu menjadi

opsi yang dapat membantu penyelenggara pertandingan resmi bulutangkis (BWF) dalam mengurangi permasalahan *human error* pada pengamatan dan pengambilan keputusan wasit atas servis pemain.

#### 1.2 Rumusan Masalah

Berdasarkan latar belakang di atas, dirumuskan permasalahan sebagai berikut:

- 1. Bagaimanakah merancang sistem pendeteksi kesalahan servis (*service fault*) bulutangkis yang memanfaatkan teknologi visi komputer?
- 2. Bagaimanakah sistem pendeteksi kesalahan servis (*service fault*) pada bulutangkis yang memanfaatkan teknologi visi komputer dapat digunakan sebagai referensi pertimbangan (opini kedua), jika pengambilan keputusan pertama oleh wasit servis diperdebatkan?

#### 1.3 Tujuan

Tujuan yang ingin dicapai dari PKM-KC ini antara lain:

- 1. Merancang alat pendeteksi kesalahan servis (*service fault*) bulutangkis yang memanfaatkan teknologi visi komputer.
- Membuat sistem yang dapat menyajikan data dan mendeteksi ketinggian objek bola badminton saat servis sehingga hasil pembacaan sistem dapat dijadikan sebagai referensi atau opini kedua bagi wasit servis dalam pengambilan keputusan.

#### 1.4 Luaran yang Diharapkan

Luaran yang diharapkan dari penelitian ini antara lain:

- 1. Terciptanya produk berupa perangkat sistem pendeteksi kesalahan servis (*service fault*) bulutangkis pada aspek ketinggian servis berbasis visi komputer yang dapat digunakan pada pertandingan bulutangkis secara luas, khususnya pada agenda resmi pertandingan Badminton World Federation (BWF).
- 2. Laporan Kemajuan berjudul "Sistem Pendeteksi Kesalahan Servis (*service fault*) Bulutangkis pada Aspek Ketinggian Servis Berbasis Visi Komputer".
- 3. Laporan Akhir berjudul "Sistem Pendeteksi Kesalahan Servis (*service fault*) Bulutangkis pada Aspek Ketinggian Servis Berbasis Visi Komputer".
- 4. Artikel Ilmiah berjudul "Sistem Pendeteksi Kesalahan Servis (*service fault*) Bulutangkis pada Aspek Ketinggian Servis Berbasis Visi Komputer".

#### 1.5 Manfaat

Manfaat yang akan didapat dari penyusunan PKM-KC ini antara lain sebagai berikut:

- 1. Bagi pelaksana:
  - a. Tercapainya peran dan fungsi mahasiswa sebagai pemberi solusi permasalahan untuk masyarakat
  - b. Mengenal dan mempelajari tentang berbagai permasalahan yang sering terjadi, lalu dengan proses kreatif, mencari penyelesaiannya berdasarkan ilmu pengetahuan yang telah dimiliki
- 2. Bagi masyarakat dan umum:

- a. Memenuhi permintaan dari masyarakat selaku penonton dan para pemain yang bertanding untuk menciptakan alat bantu deteksi ketinggian servis sehingga mengurangi terjadinya kesalahan dalam pengambilan keputusan wasit servis.
- b. Data yang diperoleh dari sistem ini dapat membantu wasit servis dalam mengambil keputusan sah tidaknya sebuah servis pada pertandingan bulutangkis.
- c. Pemain badminton akan merasa lebih adil karena adanya data tambahan ketinggian servis dari sistem deteksi kesalahan servis pada aspek ketinggian berbasis visi komputer.

#### **BAB 2. TINJAUAN PUSTAKA**

#### 2.1 Machine Learning

Machine Learning atau dalam istilah lain pembelajaran mesin adalah suatu bagian dalam ilmu kecerdasan buatan yang saat ini banyak digunakan untuk menirukan kegiatan manusia dalam melakukan penyelesaian masalah secara otomatis. Machine Learning juga dapat diartikan sebagai tiruan dari kecerdasan manusia dalam mengolah informasi. Ada beberapa karakteristik utama yang dimiliki oleh machine learning, yaitu dilakukannya pembelajaran dan pelatihan (Ahmad, 2017). Machine learning bekerja layaknya otak manusia dalam melakukan pembelajaran. Semakin banyak manusia tersebut belajar, semakin tepat pula keputusan yang didapat. Dalam machine learning, sistem akan mengolah banyak data untuk disimpan dan diingat, lalu mengambil data tersebut lagi ketika dibutuhkan. Semakin banyak data yang diolah, semakin akurat pula keputusan yang diambil.

#### 2.2 Visi Komputer

Visi Komputer merupakan cabang ilmu komputer yang berfokus pada pengolahan citra digital yang memungkinkan sebuah komputer dapat melihat benda-benda maupun objek di sekitarnya dan dapat mengidentifikasinya. Pada sistem ini, teknologi visi komputer yang digunakan adalah *Object Detection. Object detection* atau deteksi objek adalah proses untuk menentukan keberadaan dan memetakan lokasi sebuah objek dalam sebuah gambar (Veeravalli dkk, 2019). Pada sistem ini, deteksi objek dilakukan dengan memindai setiap bagian bola badminton pada citra-citra yang ditangkap (*capture*) untuk melokalisasi bagian yang sifat fotometri atau geometrisnya cocok dengan target objek dalam basis data yang telah diatur. Hal ini dapat dicapai dengan memindai *template* bola badminton di gambar pada lokasi, skala, dan rotasi yang berbeda.

#### 2.3 OpenCV

OpenCV memiliki kepanjangan *Open Computer Vision*, yang merupakan suatu *library* yang digunakan untuk melakukan pemrosesan gambar pada komputer. *Computer Vision* dikembangkan oleh Gary Bradski di perusahaan Intel Corporation pada tahun 1999 dan kemudian rilis pada tahun 2000. Digunakannya library

OpenCV ini bertujuan agar perangkat keras seperti komputer dapat memiliki kemampuan dalam memproses suatu gambar atau pengolahan visual layaknya manusia. Dengan menggunakan opency, komputer dapat mengolah gambar maupun video dengan baik (Hendrawan dkk, 2016).

#### 2.4 Raspberry Pi-4 Model B

Raspberry Pi-4 Model B merupakan bagian dari sistem tertanam atau *Single Board Computer* (SBC) yang memiliki fungsi hampir sama dengan komputer. Raspberry Pi juga biasa disebut dengan mini pc, karena memiliki mikroprosesor, input/output, *Random Access Memory*, 2x micro HDMI, *port* audio, konektivitas ethernet, dan lain-lain. Raspberry Pi dijalankan dengan operasi *Linux*. Salah satu kelebihan yang dimiliki oleh Raspberry Pi-4 Model B ini yaitu memiliki RAM yang cukup besar, yaitu 4 atau 8 Gigabyte, sehingga dapat melakukan proses komputasi dengan baik dan cepat. Dalam sistem yang akan dikembangkan, penggunaan Raspberry pi yaitu untuk memproses gambar pada video, yang kemudian diproses oleh program *machine learning* untuk mengetahui apakah pemain melakukan *service fault* (Wijaya dkk, 2017).



Gambar 2.1 Raspberry Pi-4 Model B

#### 2.5 Siaran

Siaran adalah pesan atau rangkaian pesan dalam bentuk suara, gambar, atau suara dan gambar atau yang berbentuk grafis, karakter, baik yang bersifat interaktif maupun tidak, yang dapat diterima melalui perangkat penerima siaran (Utama, 2018). Sistem *broadcast* yang akan diaplikasikan pada sistem ini adalah, bahwa sistem pendeteksi kesalahan servis berbasis visi komputer ini akan dapat menampilkan cuplikan ulang saat servis, lalu menampilkan data ketinggian servis yang telah dilakukan oleh pemain badminton. Nantinya cuplikan ulang ini akan ditampilkan kepada penonton di rumah melalui perangkat elektronik yang digunakan untuk menonton.

#### 2.6 Tensorflow

Tensorflow merupakan salah satu pustaka *deep learning* yang digunakan pada bahasa pemrograman python. Tensorflow dapat digunakan sebagai media untuk merepresentasikan suatu algoritma *machine learning* (Nurfita, 2018). Pada sistem ini, tensorflow akan mengeksekusi perintah kode program yang menyimpan

informasi terkait objek bola badminton dan akan dapat membedakan objek tersebut dengan objek lainnya.

# 2.7 Internet of Things(IoT)

Internet of things dapat didefinisikan sebagai suatu benda yang terhubung dengan jaringan internet. Internet of Things juga memiliki arti yaitu konsep yang menggunakan koneksi internet yang senantiasa terhubung dan berkomunikasi antar perangkat satu dengan perangkat lainnya (Hasiholan dkk, 2018). Internet of Things memiliki suatu protokol untuk melakukan proses transfer data. Dengan adanya sistem IoT ini, diharapkan dapat membantu manusia dalam melakukan aktivitas maupun pekerjaan yang tidak memungkinkan dilakukan secara langsung ditempat, sehingga memerlukan suatu alat untuk mengontrol, memonitor suatu benda dari jarak jauh.

#### 2.8 Teknologi Service Fault yang Telah Ada

Alat ini merupakan bentuk dari pengembangan teknologi yang sudah ada. Berikut merupakan tabel dan gambar perbandingan antara teknologi yang sudah ada dengan pengembangan teknologi sistem deteksi kesalahan servis pada aspek ketinggian servis berbasis visi komputer.

**Tabel 2.1.** Perbandingan Sistem Pendeteksi Berbasis Visi Komputer dan Perangkat yang Digunakan Saat Ini

| 1 orangian yang Digunahan Suat ini                                                                                         |                                                                                                                                      |  |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Perangkat Pengecekan Servis<br>Konvensional (yang Telah Ada)                                                               | Sistem Pendeteksi Kesalahan Servis pada<br>Aspek Ketinggian Berbasis Visi<br>Komputer                                                |  |
| Wasit servis masih melakukan pemantauan servis pemain secara manual sehingga kemungkinan human error masih tinggi          |                                                                                                                                      |  |
| Hanya menggunakan garis hitam<br>horizontal yang ada pada papan<br>plastik transparan sebagai penanda<br>ketinggian servis | Menggunakan teknologi <i>object detection</i> yang dapat melihat keberadaan dan menentukan lokasi objek bola badminton secara detail |  |
| Tidak dapat menghasilkan data yang tepat perihal ketinggian servis                                                         | Dapat mendeteksi dan menampilkan<br>tinggi servis oleh pemain sehingga data<br>lebih jelas                                           |  |
| Tidak dapat memberikan tayangan ulang servis                                                                               | Dapat memberikan tayangan ulang saat<br>servis sehingga dapat menyampaikan<br>data yang lebih nyata dan memiliki unsur<br>hiburan    |  |

#### BAB 3. TAHAP PELAKSANAAN

Rencana tahapan pelaksanaan yang akan dilakukan untuk membuat PKM ini adalah dengan metode daring dan luring. Pada saat luring, pengerjaan PKM dilaksanakan di laboratorium Mikroelektronika dan Sistem Tertanam ITS dengan mematuhi protokol kesehatan yang telah ditetapkan oleh departemen Teknik Elektro ITS. Sementara itu, metode pengerjaan secara daring akan digunakan untuk mengadakan pertemuan harian untuk membahas perkembangan pengerjaan alat dengan menggunakan aplikasi *online* meet. Adapun rencana tahapan pelaksanaan Program Kreativitas Mahasiswa Karsa Cipta dapat dilihat melalui skema berikut:



Gambar 3.1 Diagram Alir Pelaksanaan Kegiatan

#### 3.1 Studi Literatur

Dalam studi literatur, hal yang dilakukan adalah mempelajari buku-buku literatur, jurnal-jurnal dan materi pada internet yang berhubungan dengan masalah yang dihadapi dalam pembuatan alat. Pada tahap studi literatur, dengan membaca referensi yang ada diharapkan akan dapat memahami komponen-komponen yang akan digunakan dalam pembuatan sistem dan *prototype*, serta bagaimana cara kerja setiap detail yang akan dikerjakan sehingga akan memudahkan dalam penyelesaian pembuatan alat. Studi literatur yang menjadi landasan Program Kreativitas

Mahasiswa ini berkaitan dengan *machine learning*, visi komputer, openCV, raspberry pi-4 model B, sistem *broadcast*, *Internet of Things* (IoT), serta perbandingan *prototype* dengan alat yang sudah ada.

#### 3.2 Perancangan Desain Prototype dan Sistem

Perancangan alat dilakukan untuk mendapatkan desain yang optimal dalam pembuatan dan pengoperasian alat. Alat pendeteksi kesalahan servis pada permainan badminton ini pada rencananya akan menggunakan kamera bertipe webcam, yang nantinya akan diletakkan di dalam sebuah kotak yang telah tehubung dengan tripod. Kamera juga akan disinkronisasi dengan machine learning yang telah dikembangkan agar dapat mendeteksi tinggi bola badminton saat pukulan servis. Kemudian, data mengenai ketinggian bola juga akan tercatat dan ditampilkan pada layar dihadapan wasit servis. Apabila ketinggian servis masih dibawah batas yang ditetapkan, maka indikator dari prototype seperti buzzer, tidak akan mengeluarkan bunyi, dan lampu aka berwarna hijau. Namun, bila terjadi kesalahan servis pada aspek ketinggian servis oleh pemain, maka indikator pada prototype, yaitu buzzer, akan mengeluarkan bunyi, dan lampu akan hidup dengan output berwarna merah. Apabila pemain ingin meninjau keputusan yang telah diambil, maka akan diputar tayangan ulang saat pemain melakukan servis dan data juga akan ditampilkan kepada perangkat penonton melalui sistem broadcast bersamaan dengan tampilan pada layar bagi wasit servis. Adapun skema sederhana dari perancangan alat dapat dilihat pada gambar berikut :



**Gambar 3.2** Desain *Prototype* Pendeteksi Kesalahan Servis Badminton **3.3** Pembuatan *Machine Learning* 

Pembuatan *machine learning* pada sistem pendeteksi kesalahan servis dilakukan dengan cara membuat dua model. Model yang pertama berisi kumpulan gambar kesalahan orang yang sedang melakukan kesalahan servis, model yang kedua yaitu orang yang tidak melakukan kesalahan servis. Kemudian dilakukan percobaan dan pengambilan data secara berulang sehingga sistem semakin akurat dan dapat membedakan dua model tersebut. Ketika kamera mendeteksi seorang yang melakukan pelanggaran servis fault, maka akan dengan mudah dapat dideteksi

dan segera memberikan peringatan notifikasi. Setelah *machine learning* dibuat, maka selanjutnya adalah mengintegrasikan sistem ini dengan *prototype* yang telah dikembangkan. Terdapat jenis-jenis dalam ilmu *machine learning*, salah satu yang tim kami gunakan yakni *Semi-Supervised Learning*. *Semi-Supervised Learning* memiliki algoritma dengan menggunakan data yang sudah berlabel dan tidak berlabel. Data berlabel adalah data yang sudah diberikan variabel mana yang digunakan sebagai input dan mana yang digunakan sebagai *output*.

# 3.4 Pembuatan *Prototype*

Pembuatan prototype adalah bentuk realisasi dari desain dan model sistem yang telah direncanakan sebelumnya. Pembuatan *prototype* dilakukan secara daring dan luring dengan perakitan *prototype* dilakukan oleh satu anggota kelompok. Bila diperlukan bantuan anggota lainnya, *prototype* dikemas dan dikirim lewat jasa pengiriman. Pada tahap ini dilakukan pengumpulan alat dan bahan yang dibutuhkan untuk membuat *prototype*. Perakitan *prototype* alat pendeteksi kesalahan servis (*service fault*) bulutangkis pada aspek ketinggian servis berbasis visi komputer, dilakukan dengan melakukan sinkronisasi sistem pada alat-alat yang telah dikumpulkan, pemrograman *machine learning* agar dapat mendeteksi ketinggian bola badminton saat pemain melakukan servis, serta mengintegrasikan pengaturan komponen Raspberry Pi-4 Model B dengan tablet sebagai media/perangkat yang berfungsi untuk menyampaikan data ketinggian servis dan tayangan ulang saat pemain melakukan servis kepada wasit servis, lalu menggunakan sistem *broadcast* yang dihubungkan dengan pihak penyiaran untuk menyampaikan hal tersebut melalui perangkat yang digunakan oleh masing-masing penonton.

#### 3.5 Pengujian dan Evaluasi Prototype

Pengujian dan evaluasi dalam metode ini berfungsi untuk melakukan pengujian dari keseluruhan alat dan membenahi apa saja kekurangan yang terjadi pada saat dilakukannya percobaan. Pengujian sistem dilakukan dengan simulasi penggunaan *prototype* dan *machine learning* untuk mendeteksi pukulan servis. Hal tersebut dilakukan dengan memberikan variasi seperti ketinggian bola saat servis, posisi saat melaukan servis, hingga pengumpulan data pukulan servis. Setelah itu, dilakukan pula peninjauan tingkat akurasi sistem dan ketahanannya. Hasil tersebut akan menentukan apakah hasil dari percobaan telah memenuhi harapan. Dengan adanya evaluasi, diharapkan alat yang dihasilkan akan semakin baik sehingga dapat diaplikasikan dan digunakan untuk membantu wasit servis untuk memutuskan apakah servis pemain tersebut sah atau dinyatakan *fault*.

#### 3.6 Pembuatan Laporan

Pada tahap akhir dilakukan pembuatan laporan setelah seluruh tahapan pelaksanaan terselesaikan. Pembuatan laporan beriringan dengan pembuatan alat, pengujian alat, pengumpulan data, serta analisis data yang didapat. Hal tersebut dilakukan agar isi dan hasil dalam laporan relevan dengan kegiatan yang telah dilakukan.

#### BAB IV. BIAYA DAN JADWAL KEGIATAN

# 4.1 Anggaran Biaya

Biaya yang dibutuhkan dalam melaksanakan penelitian ini adalah seperti tabel 4.1 berikut.

Tabel 4.1. Rekapitulasi Rencana Anggaran Dana

| No. | Jenis Pengeluaran  | Biaya (Rp)      |
|-----|--------------------|-----------------|
| 1   | Jenis Perlengkapan | Rp 284.000,00   |
| 2   | Bahan Habis Pakai  | Rp 6.451.000,00 |
| 3   | Perjalanan         | Rp 210.000,00   |
| 4   | Lain-lain          | Rp 1.484.000,00 |
|     | Total              | Rp 8.429.000,00 |

# 4.2 Jadwal Kegiatan

Jadwal kegiatan yang akan dilaksanakan akan seperti pada tabel 4.2 berikut. **Tabel 4.2.** Jadwal Kegiatan Pembuatan Alat

No Jenis Kegiatan Bulan Person Penanggun 1 2 3 4 g jawab Studi Literatur 1 Cherish Global Etnic 2 Perancangan Prototyp Muhamma Fadlan eAkbar Pembuatan Machine 3 Ilham Learning Wahyu Eko Prasetyo Pembuatan Prototype Muhammad 4 Fadlan Akbar 4 Pengujian Hanif Reza dan Evaluasi Prototype Wibowo 5 Pembuatan Laporan Nurul Sofia Dewi

#### DAFTAR PUSTAKA

- Ahmad, A., 2017. Mengenal Artificial Intelligence, Machine Learning, Neural Network, dan Deep Learning. *Jurnal Teknologi Indonesia*, 2, pp.4-5.
- Badminton Insight, 2020. Badminton Service Rules A quick and simple explanation of the 4 service rules in badminton!. URL: https://www.youtube.com/watch?v=GE8qjIubAbI. Diakses pada tanggal 8 Januari 2022.
- Hasiholan, C., Primananda, R. dan Amron, K., 2018. Implementasi Konsep Internet of Things pada Sistem Monitoring Banjir menggunakan Protokol MQTT. *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, 2 (2548-964X): 6128.
- Hendrawan, L., Ramdhani, M. dan Ramadan, D., 2016. Rancang Bangun Sistem Pelacakan Objek Secara Real Time Berdasarkan Warna. *e-Proceeding of Applied Science Telkom University*, 2(2442-5826), p.385.
- Instruction To Technical Officials (ITTO). 4.1.1.
- Laws of Badminton. 1A.
- Nurfita, R., 2018. Implementasi Deep Learning Berbasis Tensorflow Untuk Pengenalan Sidik Jari. *Publikasi Ilmiah Universitas Muhammadiyah Surakarta*, pp.2-3.
- Utama, Herry Satria. 2018. "SISTEM BROADCASTING TELEVISI (Teori Dan Perangkat Pendukung TV Broadcasting)." *Jurnal Nasional Belum Akreditasi* (1):1–16.
- Veeravalli, S., Rohith Sri Sai, M. dan Rella, S., 2019. Object Detection and Identification. *ResearchGate*, 1, pp.1-2.
- Wijaya, I., Nurhasan, U. dan Agung Barata, M., 2017. Implementasi Raspberry Pi Untuk Rancang Bangun Sistem Keamanan Pintu Ruang Server Dengan Pengenalan Wajah Menggunakan Metode Triangle Face. *Jurnal Informatika Polinema*, (2407-070X), p.10.
- Williyanto, S., Wiyanto, A., Santoso, N. dan Masri, M., 2021. Backhand Serve Test Model for Junior Badminton Athletes. *International Journal of Human Movement and Sports Sciences*, 9(4A), p.112

### LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pembimbing

#### 1. Biodata Ketua

#### A. Identitas Diri

| _1 | Nama Lengkap             | Muhammad Fadlan Akbar   |  |
|----|--------------------------|-------------------------|--|
| 2  | Jenis Kelamin            | L                       |  |
| 3  | Program Studi            | Teknik Elektro          |  |
| 4  | NIM :                    | 5022201171              |  |
| 5  | Tempat dan Tanggal Lahir | Pekanbaru, 3 April 2003 |  |
| 6  | 'Alamat E-mail           | akbarfadlan7@gmail.com  |  |
| 7  | Nomor Telepon/HP         | 082285379054            |  |

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah diikuti

| No | Jenis Kegiatan                               | Status Dalam Kegiatan | Waktu dan Tempat            |
|----|----------------------------------------------|-----------------------|-----------------------------|
| 1  | Laboratorium Tegangan<br>Tinggi ITS          | Asisten Laboratorium  | Teknik Elektro ITS,<br>2022 |
| 2  | Integrated Roadshow<br>ITS Back To Riau 2022 | Hubungan Masyarakat   | 2021-2022                   |
| 3  | Integrated Roadshow<br>ITS Back To Riau 2021 | Staff Dokumentasi     | 2020-2021                   |

C. Penghargaan Yang Pernah Diterima.

| No | Jenis Kegiatan                                                                          | Pihak Pemberi Penghargaan                                | Tahun |
|----|-----------------------------------------------------------------------------------------|----------------------------------------------------------|-------|
| 1  | Pendanaan PKM-KC 2021 "Aplikasi Vaksinasi Beserta Pendeteksi Orang yang Telah Divaksin" | Kementrian Riset, Teknologi,<br>dan Pendidikan Tinggi RI | 2021  |
| 2  |                                                                                         |                                                          |       |

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Surabaya, 13 Februari 2022 Ketua Tim

Muhammad Fadlan Akbar

#### 2. Biodata Anggota 1

#### A. Identitas Diri

| 1 | Nama Lengkap             | Ilham Wahyu Eko Prasetyo |
|---|--------------------------|--------------------------|
| 2 | Jenis Kelamin            | L                        |
| 3 | Program Studi            | S1 Teknik Elektro        |
| 4 | NIM                      | 5022201041               |
| 5 | Tempat dan Tanggal Lahir | Mojokerto,27 April 2001  |
| 6 | Alamat E-mail            | Ilhamwep.id@gmail.com    |
| 7 | Nomor Telepon/HP         | 085895090717             |

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah diikuti

| No | Jenis Kegiatan             | Status Dalam Kegiatan            | Waktu dan Tempat     |
|----|----------------------------|----------------------------------|----------------------|
| 1  | -                          | Project and Industry<br>Division | Januari 2022, Online |
| 1  | Skill-Up Career<br>Academy | Mentee                           | Januari 2022, Online |
| 3  | Intern Wave 5              | Mentee                           | Februari 2022        |

C. Penghargaan Yang Pernah Diterima

| No | Jenis Kegiatan               | Pihak Pemberi Penghargaan    | Tahun |
|----|------------------------------|------------------------------|-------|
| 1  | Gold Medalist International  | IYSA                         | 2021  |
|    | Applied Science Olympiad     |                              |       |
|    | (i2ASPO)                     |                              |       |
| 2  | Gold Medalist America's      | World Invention Intellectual | 2021  |
|    | Science and Invention Expo   | Property Associations        |       |
|    |                              | (WIIPA)                      |       |
| 3  | Gold Medalist International  | International Avicenna       | 2021  |
|    | Avicenna Youth Science Fair  | Research Centre (IARC)       |       |
| 4  | 3rd Winner International IoT | Universitas Negeri Sebelas   | 2021  |
|    | Challenge 2021               | Maret                        |       |
| 5  | 1* Winner Kompetisi          | Universitas Brawijaya        | 2021  |
|    | Wirausaha Indonesia          |                              |       |

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC

Surabaya, 13 Februari 2022 Anggota Tim

Ilham Wahyu Eko Prasetyo

# Biodata Anggota 2

#### A. Identitas Diri

| 1 | Nama Lengkap             | Hanif Reza Wibowo          |  |
|---|--------------------------|----------------------------|--|
| 2 | Jenis Kelamin            | L                          |  |
| 3 | Program Studi            | Teknik Elektro             |  |
| 4 | NIM                      | 5022201190                 |  |
| 5 | Tempat dan Tanggal Lahir | Cilacap, 8 April 2001      |  |
| 6 | Alamat E-mail            | Hanifrwibowo0804@gmail.com |  |
| 7 | Nomor Telepon/HP         | 085871870480               |  |

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah diikuti

| No | Jenis Kegiatan   | Status Dalam Kegiatan | Waktu dan Tempat |
|----|------------------|-----------------------|------------------|
| 1  | Hydrone ITS Team | Staff Energy          | Surabaya, 2022   |
| 2  | EVOLUTION 2022   | Staff Acara           | 2021-2022        |
| 3  | EVOLUTION 2021   | Liaison Officer       | 2021             |

# C. Penghargaan Yang Pernah Diterima

| No | Jenis Kegiatan             | Pihak Pemberi Penghargaan    | Tahun |
|----|----------------------------|------------------------------|-------|
| 1  | PIMNAS PKM-PM 2021         | Kementrian Riset, Teknologi, | 2021  |
|    | "Program Mitigasi Cerdas   | dan Pendidikan Tinggi RI     |       |
|    | Sambaran Petir untuk       |                              |       |
|    | Mengurangi Risiko          |                              |       |
|    | Tersambar Petir Bagi Warga |                              |       |
|    | Desa Tambaksari"           |                              |       |
| 2  |                            |                              |       |

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Surabaya, 13 Februari 2022

Hanif Reza Wibowo

# 4. Biodata Anggota 3

#### A. Identitas diri

| 1. | Nama Lengkap                | Nurul Sofia Dewi           |
|----|-----------------------------|----------------------------|
| 2. | Jenis Kelamin               | P                          |
| 3. | Progam Studi                | S1 Teknik Elektro          |
| 4. | NIM                         | 5022201251                 |
| 5. | Tempat dan Tanggal<br>Lahir | Tuban, 6 Maret 2002        |
| 6. | E-mail                      | nurul.205022@mhs.its.ac.id |
| 7. | Nomor Telepon/HP            | +62 856 48110770           |

# B. Kegiatan Mahasiswa yang Sedang/Pernah Diikuti

| No | Jenis Kegiatan        | Status dalam | Waktu dan Tempat |
|----|-----------------------|--------------|------------------|
|    |                       | Kegiatan     |                  |
| 1. | Pelatihan Karya Tulis | Peserta      | 28 November 2020 |
|    | Ilmiah Tingkat Dasar  |              |                  |
|    | 2020                  |              |                  |
| 2. | Pelatihan Karya Tulis | Pendamping   | 14 Oktober 2021  |
|    | Ilmiah Tingkat Dasar  | Keilmiahan   |                  |
|    | 2021                  |              |                  |
| 3. | Tim Kawal PKM ITS     | Intern Staff | November 2021    |
|    | (Kesatria Sepuluh     |              |                  |
|    | Nopember)             |              |                  |

# C. Perhargaan yang Pernah Diterima

| No | Jenis Penghargaan  | Pihak Pemberi             | Tahun |
|----|--------------------|---------------------------|-------|
|    |                    | Pernghargaan              |       |
| 1. | Finalis Lomba      | Universitas Internasional | 2020  |
|    | Karya Tulis Ilmiah | Semen Indonesia           |       |
|    | Nasional           |                           |       |
| 2. | Juara 1 Lomba      | Universitas Ronggolawe    | 2020  |
|    | Matematika         |                           |       |

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Surabaya, 12 Februari 2022

Anggota Tim

Nurul Sofia Dewi

#### 5. Biodata Anggota 4

#### A. Identitas Diri

| 1 | Nama Lengkap             | Cherish Global Etnic      |
|---|--------------------------|---------------------------|
| 2 | Jenis Kelamin            | P                         |
| 3 | Program Studi            | Teknik Kimia              |
| 4 | NIM                      | 5008211073                |
| 5 | Tempat dan Tanggal Lahir | Surabaya,23 November 2002 |
| 6 | Alamat E-mail            | cgetnic@gmail.com         |
| 7 | Nomor Telepon/HP         | 085839144489              |

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah diikuti

| No | Jenis Kegiatan    | Status Dalam Kegiatan | Waktu dan Tempat |
|----|-------------------|-----------------------|------------------|
| 1  | Ini Lho ITS! 2022 | Public Relation       | Surabaya, 2022   |
| 2  | Petrolida 2022    | External Relation     | Surabaya, 2022   |
| 3  | Chernival 2022    | Public Relation and   | Surabaya, 2022   |
|    |                   | Partnership           |                  |

# C. Penghargaan Yang Pernah Diterima

| No | Jenis Kegiatan           | Pihak Pemberi Penghargaan | Tahun |
|----|--------------------------|---------------------------|-------|
| 1  | Indonesian International | IYSA                      | 2021  |
|    | Applied Science Project  |                           |       |
|    | Olympiad                 |                           |       |
| 2  | LKTI Nasional            | Teknik Industri UPNVJ     | 2021  |

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC

Surabaya, 13 Februari 2022 Pengusul

(Cherish Global Etnic)

# Biodata Dosen Pembimbing

# A. Identitas diri

| 1 | Nama Lengkap             | Dr. Ir. Hendra Kusuma, M.Eng.Sc  |
|---|--------------------------|----------------------------------|
| 2 | Jenis Kelamin            | Laki-laki                        |
| 3 | Program Studi            | Teknik Elektro                   |
| 4 | NIP/NIDN                 | 19640902 198903 1 003/0002096405 |
| 5 | Tempat dan Tanggal Lahir | Surabaya, 02 September 1964      |
| 6 | E-mail                   | hendraks@ee.its.ac.id            |
| 7 | Nomor Telepon/HP         | +6231-5947302                    |

B. Riwayat Pendidikan

|                   | Sarjana            | S2/Magister       | S3/Doktor          |
|-------------------|--------------------|-------------------|--------------------|
| Nama Institusi    | Institut Teknologi | Curtin University | Institut Teknologi |
|                   | Sepuluh            | of Technology,    | Sepuluh Nopember   |
|                   | Nopember           | Western Australia |                    |
| Jurusan/Prodi     | Teknik Elektro     | Electronics –     | Biometric –        |
|                   |                    | Renewable         | Machine Learning   |
|                   |                    | Energy            |                    |
| Tahun Masuk-Lulus | 1983 – 1988        | 2000 - 2001       | 2008 - 2016        |

# C. Jejak Tri Darma Perguruan Tinggi C.1. Pendidikan/Pengajaran

| N | o | Nama Mata Kuliah                                                  | Wajib/Pilihan | SKS |
|---|---|-------------------------------------------------------------------|---------------|-----|
| 1 | l | Aljabar Linier dan<br>Struktur Diskrit                            | Wajib         | 3   |
| 2 | 2 |                                                                   | Wajib         | 3   |
| 3 |   | Lab. Elektronika, Dasar<br>Sistem Tenaga dan<br>Sistem Pengaturan | Wajib         | 3   |
| 4 | 1 | Rangkaian Listrik                                                 | Wajib         | 2   |
| 5 | 5 | Rangkaian Analog                                                  | Wajib         | 3   |

# C.2. Penelitian

| No | Judul Penelitian       | Penyandang Dana             | Tahun |
|----|------------------------|-----------------------------|-------|
| 1  | Pembuatan mesin        | Direktorat PMK, Dirjen      | 2021  |
|    | Cetak Huruf Braille    | Pendidikan usia dini, dasar |       |
|    | Gen. III - 2021        | dan menengah, Kemdikbud     |       |
| 2  | ExoFES: Methoda        | Lokal ITS 2021              | 2021  |
|    | Rehabilitasi Motorik   |                             |       |
|    | Pasca Stroke dengan    |                             |       |
|    | Exoskeleton dan        |                             |       |
|    | Functional Electrical  |                             |       |
|    | Stimulation (FES)      |                             |       |
|    | untuk upper limb       |                             |       |
| 3  | Pengembangan Indoor    | Lokal ITS 2021              | 2021  |
|    | Mapping System         |                             |       |
|    | Berbasis Sensor Fusion |                             |       |
|    | dan Machine Learning   |                             |       |

| 4 | Pengembangan         | Lokal ITS 2020 | 2020 |
|---|----------------------|----------------|------|
|   | Sistem Navigasi      |                |      |
|   | Cerdas untuk Boat    |                |      |
|   | Otonom ITS           |                |      |
| 5 | User Interface (UX)  | Lokal ITS 2020 | 2020 |
|   | dan Remote           |                |      |
|   | Command Control      |                |      |
|   | untuk Platform Mobil |                |      |
|   | Otonomous            |                |      |

C.3. Pengabdian Kepada Masyarakat

| No | Judul Pengabdian                          | Penyandang Dana | Tahun |
|----|-------------------------------------------|-----------------|-------|
|    | Kepada Masyarakat                         |                 |       |
| 1  | Sistem Peringatan Area                    |                 | 2021  |
|    | berbahaya Untuk                           |                 |       |
|    | Penyandang Tunanetra                      |                 |       |
|    | di SLB-A 'Aisyiyah di                     |                 |       |
|    | Kabupaten Ponorogo                        |                 |       |
| 2  | PELATIHAN SISTEM                          |                 | 2020  |
|    | DIGITAL DAN IOT                           |                 |       |
|    | UNTUK                                     |                 |       |
|    | MENDUKUNG                                 |                 |       |
|    | SMARTPESANTREN                            |                 |       |
|    | SECARA ONLINE                             |                 |       |
|    | DIMASA PANDEMI                            |                 |       |
|    | COVID-19 UNTUK                            |                 |       |
|    | SISWA DAN GURU                            |                 |       |
|    | SMA TRENSAINS                             |                 |       |
|    | TEBUIRENG                                 |                 |       |
|    | JOMBANG                                   |                 |       |
| 3  | Workshop Teknik                           |                 | 2020  |
|    | Pemeliharaan dan                          |                 |       |
|    | perbaikan Mesin Braille                   |                 |       |
|    | Bagi operator/guru SLB                    |                 |       |
|    | N Sentra Braille<br>Indonesia             |                 |       |
|    | Pelatihan IT di                           |                 | 2010  |
| 4  |                                           |                 | 2019  |
|    | Kelurahan Dr. Soetomo                     |                 |       |
| 5  | (KKN Tematik ITS)                         |                 | 2019  |
| 3  | Workshop on using<br>Braille Embosser and |                 | 2019  |
|    | Text Editor Software                      |                 |       |
|    | For the Blind and Visual                  |                 |       |
|    | 1                                         |                 |       |
|    | Impairment Student                        |                 |       |

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM-KC.

Surabaya, 14 Februari 2022 Dosen Pendamping

(Dr. Ir. Hendra Kusuma, M.Eng. Sc.)

Sundroup

Lampiran 2. Justifikasi Anggaran Kegiatan

| 1. Jenis Perlengkapan                                               | Volume       | Harga Satuan | Nilai (Rp)   |  |  |
|---------------------------------------------------------------------|--------------|--------------|--------------|--|--|
|                                                                     |              | (Rp)         |              |  |  |
| - Obeng Set Reparasi                                                | 1 set        | Rp 105.000   | Rp 105.000   |  |  |
| - Cutter                                                            | 2 buah       | Rp 15.000    | Rp 30.000    |  |  |
| - Tang Kombinasi                                                    | 2 buah       | Rp 15.000    | Rp 30.000    |  |  |
| - Stopkontak                                                        | 1 buah       | Rp 95.000    | Rp 95.000    |  |  |
| - Gunting                                                           | 2 buah       | Rp 12.000    | Rp 24.000    |  |  |
| SUB TOTA                                                            | Rp 284.000   |              |              |  |  |
| 2. Bahan Habis Pakai                                                | Volume       | Harga Satuan | Nilai (Rp)   |  |  |
|                                                                     |              | (Rp)         |              |  |  |
| - Mur Baut                                                          | 1 pack       | Rp 60.000    | Rp 60.000    |  |  |
| - Kabel Serabut 5 meter                                             | 1 roll       | Rp 100.000   | Rp 100.000   |  |  |
| - Raspberry Pi-4 Model B                                            | 1 buah       | Rp 2.790.000 | Rp 2.790.000 |  |  |
| - Webcam Logitech C920S                                             | 1 buah       | Rp 1.500.000 | Rp 1.500.000 |  |  |
| - Tripod                                                            | 1 buah       | Rp 300.000   | Rp 300.000   |  |  |
| - Sakelar                                                           | 2 buah       | Rp 13.000    | Rp 26.000    |  |  |
| - Buzzer                                                            | 1 buah       | Rp 25.000    | Rp 25.000    |  |  |
| - Lampu                                                             | 1 buah       | Rp 50.000    | Rp 50.000    |  |  |
| - Tablet PC 10.1 Inch                                               | 1 buah       | Rp 1.600.000 | Rp 1.600.000 |  |  |
| SUB TOTA                                                            | Rp 6.451.000 |              |              |  |  |
| 3. Perjalanan                                                       | Volume       | Harga Satuan | Nilai (Rp)   |  |  |
|                                                                     |              | (Rp)         |              |  |  |
| <ul> <li>Keperluan Pembelian Bahan<br/>(Biaya Ongkir)</li> </ul>    | 6 kali       | Rp 35.000    | Rp 210.000   |  |  |
| SUB TOTA                                                            | Rp 210.000   |              |              |  |  |
| 4. Lain-Lain                                                        | Volume       | Harga Satuan | Nilai (Rp)   |  |  |
|                                                                     |              | (Rp)         |              |  |  |
| - Biaya Berlangganan Internet                                       | 4 kali       | Rp 250.000   | Rp 1.000.000 |  |  |
| (5 Orang - Bulanan)                                                 |              |              |              |  |  |
| - Jasa 3D Printing                                                  | 1 buah       | Rp 185.000   | Rp 185.000   |  |  |
| - Canva Premium                                                     | 4 bulan      | Rp 47.000    | Rp 47.000    |  |  |
| - Zoom Premium                                                      | 4 bulan      | Rp 38.000    | Rp 152.000   |  |  |
| - Masker                                                            | 5 boks       | Rp 20.000    | Rp 100.000   |  |  |
| SUB TOTA                                                            | Rp 1.484.000 |              |              |  |  |
| TOTAL 1+2+.                                                         | Rp 8.429.000 |              |              |  |  |
| (Terbilang Delapan Juta Empat Ratus Dua Puluh Sembilan Ribu Rupiah) |              |              |              |  |  |

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas

| No | Nama/NRP      | Program | Bidang  | Alokasi      | Uraian Tugas           |
|----|---------------|---------|---------|--------------|------------------------|
|    |               | Studi   | Ilmu    | Waktu        |                        |
|    |               |         |         | (Jam/Minggu) |                        |
| 1  | Muhammad      | S-1     | Teknik  | 10           | Mengkoordinasi         |
|    | Fadlan Akbar/ |         | Elektro | Jam/Minggu   | Tim, merancang         |
|    | 5022201171    |         |         |              | desain dan             |
|    |               |         |         |              | membuat                |
|    |               |         |         |              | <i>prototype</i> alat. |
| 2  | Ilham Wahyu   | S-1     | Teknik  | 10           | Membuat                |
|    | Eko Prasetyo/ |         | Elektro | Jam/Minggu   | machine learning       |
|    | 5022201041    |         |         |              | dan pembelian          |
|    |               |         |         |              | alat                   |
| 3  | Hanif Reza    | S-1     | Teknik  | 10           | Melakukan              |
|    | Wibowo/       |         | Elektro | Jam/Minggu   | pengujian dan          |
|    | 5022201190    |         |         |              | evaluasi               |
|    |               |         |         |              | <i>prototype</i> alat  |
| 4  | Nurul Sofia   | S-1     | Teknik  | 10           | Administrasi tim       |
|    | Dewi/         |         | Elektro | Jam/Minggu   | dan membuat            |
|    | 5022201251    |         |         |              | laporan anggaran       |
| 5  | Cherish       | S-1     | Teknik  | 10           | Mencari dan            |
|    | Global Etnic/ |         | Elektro | Jam/Minggu   | Menyusun               |
|    | 5008211073    |         |         |              | literatur              |

# Lampiran 4. Surat Pernyataan Ketua Pelaksana

#### SURAT PERNYATAAN KETUA PELAKSANA

Yang bertanda tangan di bawah ini:

Nama

: Muhammad Fadlan Akbar

NRP

: 5022201171

Program Studi

: Teknik Elektro

Fakultas

: Fakultas Teknologi Elektro dan Informatika Cerdas

Dengan ini menyatakan bahwa proposal PKM-KC saya dengan judul "Sistem Pendeteksi Kesalahan Servis Bulutangkis (Service Fault) pada Aspek Ketinggian Servis Berbasis Visi Komputer", yang diusulkan untuk tahun anggaran 2022 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Surabaya, 13 Februari 2022

Yang Menyatakan,

0407AJX682752344

(Muhammad Fadlan Akbar)

NRP, 5022201171

Lampiran 5. Gambaran Teknologi yang akan Dikembangkan



Gambar Sketsa Alat
(a) Tampak Samping (b) Tampak Depan (c) Tampak Belakang

(c)

(a)