Foundations Homework 10

TJ Liggett

18 November 2019

Chapter Three

Exercise 22 For each sequence, write out the first few terms of each sequence, and determine which of these sequences is a subsequence of another.

- $\{a_n\} = \{\frac{n}{n+1}\} = \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots\}$
- $\{b_n\} = \{\frac{2n}{2n+1}\} = \{\frac{2}{3}, \frac{4}{5}, \frac{6}{7}, \frac{8}{9}, \dots\}$
- $\{c_n\} = \{(-1)^n \frac{n}{n+1}\} = \{-\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, \frac{4}{5}, \dots\}$
- $\{d_n\} = \{\frac{n^2}{n^2+1}\} = \{\frac{1}{2}, \frac{4}{5}, \frac{9}{10}, \frac{16}{17}, \dots\}$
- $\{e_n\} = \{\frac{n-(-1)^n}{n+1-(-1)^n}\} = \{\frac{2}{3}, \frac{1}{2}, \frac{4}{5}, \frac{3}{4}, \dots\}$
- $\{f_n\} = \{\frac{4n}{4n+1}\} = \{\frac{4}{5}, \frac{8}{9}, \frac{12}{13}, \frac{16}{17}, \dots\}$

 $\{b_n\}$ is a subsequence of $\{a_n\}$, $\{c_n\}$, and $\{e_n\}$. $\{d_n\}$ is a subsequence of $\{a_n\}$, $\{e_n\}$. $\{f_n\}$ is a subsequence of $\{a_n\}$, $\{b_n\}$, $\{e_n\}$.

Exercise 23 Notice that in Exercise 3.22, $\{b_n\} = \{a_{2n}\}$. Is $\{a_{kn}\}$ always a subsequence of $\{a_n\}$? What conditions must a function f(n) satisfy so that $\{a_{f(n)}\}$ is a subsequence of $\{a_n\}$?

 $\{a_{kn}\}\$ is always a subsequence of $\{a_n\}$. A function f(n) must be continuous so that $\{a_{f(n)}\}\$ is a subsequence of $\{a_n\}$.

Exercise 24 Write out Σ_1, Σ_2 , and Σ_3 . How many elements are in Σ_4 ? In Σ_{10} ?

$$\begin{split} &\Sigma_1 = \{\{0\}, \{1\}\} \\ &\Sigma_2 = \{\{0, 0\}, \{0, 1\}, \{1, 0\}, \{1, 1\}\} \\ &\Sigma_3 = \{\{0, 0, 0\}, \{0, 0, 1\}, \{0, 1, 0\}, \{0, 1, 1\}, \{1, 0, 0\}, \{1, 0, 1\}, \{1, 1, 0\}\} \end{split}$$

 Σ_4 has $2^4 = 16$ elements. Σ_{10} has $2^{10} = 1024$ elements.

Exercise 25 Let $\mathbb{N}_k = \{n \in \mathbb{N} | n \leq k\} = \{1, 2, ..., k\}$. List the elements in $P(\mathbb{N}_1)$, $P(\mathbb{N}_2)$, and $P(\mathbb{N}_3)$. How many elements are in $P(\mathbb{N}_4)$? In $P(\mathbb{N}_{10})$?

$$P(\mathbb{N}_1) = \{\emptyset, \{1\}\}\}$$

$$P(\mathbb{N}_2) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}\}$$

$$P(\mathbb{N}_3) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}$$

 $P(\mathbb{N}_4)$ has $2^4 = 16$ elements. $P(\mathbb{N}_{10})$ has $2^{10} = 1024$ elements.

Assignment 26 Prove that $P(\mathbb{N}) \sim \Sigma$, where Σ is the set of all infinite sequences whose range is contained in $\{0,1\}$.

Observe the function,

$$F: P(\mathbb{N}) \to \Sigma$$
 given by $F = \{(S, \{a_1, a_2, a_3, \dots\}) | S \in P(\mathbb{N}), a_n = 1 \text{ if } n \in S, 0 \text{ otherwise}\}$

Let $S, T \in P(\mathbb{N})$ where F(S) = F(T), $F(S) = s_1, s_2, s_3, \ldots$, $F(T) = t_1, t_2, t_3, \ldots$ Then $s_1 = t_1, s_2 = t_2, \ldots$, and so if a natural number $n \in S$, then $n \in T$, and vice versa. Therefore, $S \equiv T$, and F is one-to-one.

Let a_i be a sequence in Σ . Observe that a corresponding set $S \in P(\mathbb{N})$ can be obtained from the items in a_i equal to one. This can be done for any such sequence in Σ , and thus F is onto. Since F is onto and one-to-one, it follows that the domain and range of F have the same cardinality. Therefore, $P(\mathbb{N}) \sim \Sigma$, where Σ is the set of all infinite sequences whose range is contained in $\{0, 1\}$.

Assignment 27 Prove (by contradiction) that Σ is not countably infinite.

Assume, by way of contradiction, that Σ is countably infinite. Then then elements of Σ can be arranged in an infinite sequence, in example $\{s_1, s_2, s_3, s_4, \dots\}$, where:

$$s_1 = \{0, 1, 0, 1, 0, \dots\}$$

$$s_2 = \{0, 0, 0, 1, 0, \dots\}$$

$$s_3 = \{0, 1, 1, 1, 0, \dots\}$$

$$s_4 = \{1, 1, 1, 1, 0, \dots\}$$

. . .

Observe that we can obtain the sequence t_k , where $t_k^j = s_j^j + 1 \pmod{2}$ with subscripts representing an item of the sequence and superscripts representing an element of said subsequence. for any arbitrary infinite sequence of Σ . However, since t_k has a uniquely different element from s_1, s_2, s_3, \ldots , it follows that t_k is not in this sequence – and hence not in Σ – which is a contradiction. Therefore, Σ is not countably infinite.

Assignment 28 Prove that if $A_1, A_2, A_3, ...$ is a sequence of countably infinite sets, then $A = \bigcup_{n=1}^{\infty} A_n$ is also countably infinite.

Let $F: \mathbb{N} \times \mathbb{N} \to A$ given by $F = \{((n, m), a_n^m) | (n, m) \in \mathbb{N} \times \mathbb{N}, a_n^m \in A\}$, and a_n^m is the mth item in A_n .

Consider $F(n_1, m_1) = F(n_2, m_2)$. Then $a_{n_1}^{m_1} = a_{n_2}^{m_2}$. While the values of these numbers may exist at other points in sequences, each value of F maps to a distinct element of a distinct sequence A_n . Thus, $|A| \leq |\mathbb{N} \times \mathbb{N}|$.

Observe that for a given element a_n^m of A, the corresponding element in $\mathbb{N} \times \mathbb{N}$ can be found as (n, m). Thus, F is onto.

Since $|A| \leq |\mathbb{N} \times \mathbb{N}|$ and F is onto, it follows that A and $\mathbb{N} \times \mathbb{N}$ have the same cardinality. Therefore, A is countably infinite.

Exercise 1 Give three elements (a, b) of \mathbb{N}^2 which satisfy $(a, b) \sim (2, 5)$. Determine whether (12, 26) and (57, 71) are equivalent.

$$(2,5) \sim (4,7) \sim (1,4) \sim (10,13)$$

 $12 + 71 = 83 = 26 + 57$. By definition, $(12,26) \sim (57,71)$

Assignment 2 Verify that \sim is an equivalence relation on \mathbb{N}^2 .

For \sim to be an equivalence relation, it must be reflexive, symmetric, and transitive. Let $(a,b) \in \mathbb{N}^2$. Since a+b=a+b, it follows that $(a,b) \sim (a,b)$. Thus, \sim is reflexive. Let $(a,b) \sim (c,d)$, (a,b), $(c,d) \in \mathbb{N}^2$. Then a+d=b+c. Since addition is commutative, c+b=d+a, and it follows that $(c,d) \sim (a,b)$. Hence, \sim is symmetric. Let (a,b), (c,d), $(e,f) \in \mathbb{N}^2$, with $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$. Then

$$a+d=b+c, c+f=d+e$$

$$a-b=c-d, c-d=e-f$$

$$a-b=e-f \rightarrow a+f=b+e$$

Since a+f=b+e, $(a,b)\sim(e,f)$. Thus, \sim is transitive. \sim is reflexive, symmetric, and transitive. Therefore, \sim is an equivalence relation.

Exercise 3 The relation S on \mathbb{N}^2 given by (m, n)S(m', n') if and only if gcd(m, n) = gcd(m', n') is also an equivalence relation.

- (a) Give three elements of the \mathbb{N}^2 which are equivalent to (2,5). $(3,4),\,(5,6),\,(5,19)$.
- (b) Give three elements of the \mathbb{N}^2 which are equivalent to (15,9) (3,18),(6,21),(9,12).

Assignment 4 Show that

- (a) $(m+1, n+1) \sim (m, n)$. Let $(m, n) \in \mathbb{N}^2$. Observe that m+1+n=m+n+1, and thus $(m+1, n+1) \sim (m, n)$.
- (b) $(m-1, n-1) \sim (m, n)$ unless m = 1 and/or n = 1. Let $(m, n) \in \mathbb{N}^2$, m > 1, n > 1. Since m - 1 + n = m + n - 1, it follows that $(m-1, n-1) \sim (m, n)$.

Exercise 5 Using the above definitions for addition and subtraction, complete the following:

- (a) Compute [(2,5)] + [(4,9)] and [(12,7)] + [(3,8)]
 - [(2,5)] + [(4,9)] = [(6,14)]
 - [(12,7)] + [(3,8)] = [15,15]
- (b) Verify that $(2,5) \sim (10,13) \sim (4,7)$ and that $(4,9) \sim (2,7) \sim (12,17)$. Then compute [(10,13)] + [(2,7)] and [(4,7)] + [(12,17)], and check that the sum is the same \sim equivalence class computed in part (a).
 - 2 + 13 = 15 = 5 + 10, and 10 + 7 = 17 = 13 + 4. Thus, $(2,5) \sim (10,13) \sim (4,7)$. Likewise, since 4 + 7 = 11 = 9 + 2 and 2 + 17 = 19 = 7 + 12, it follows that $(4,9) \sim (2,7) \sim (12,17)$.
 - [(10,13)] + [(2,7)] = [(12,20)]. 12 + 14 = 26 = 20 + 6, so $(12,20) \sim (6,14)$.
 - [(4,7)] + [(12,17)] = [(16,24)]. 16 + 14 = 30 = 24 + 6, so $(16,24) \sim (6,14)$.
- (c) We identify the integer 3 with \sim equivalence class [(2,5)]. What integers are identified with the equivalence classes \sim equivalence classes [(4,9)], [(12,7)], and [(3,8)]? Translate the two additions of \sim equivalence classes from part(a) into additions of integers.
 - $[(4,9)] \to 5$
 - $[(12,7)] \to -5$
 - $[(2,5)] + [(4,9)] = [(6,14)] \rightarrow 3 + 5 = 8$
 - $[(12,7)] + [(3,8)] = [15,15] \rightarrow -5 + 5 = 0$
- (d) Compute [(12,7)] [(3,8)]. Translate to a subtraction of integers.
 - [(12,7)] [(3,8)] = [(12,7)] + [(8,3)] = [(20,10)]
 - $\bullet \ -5 5 = -10$