Math 591 Lecture 40

Professor Alejandro Uribe-Ahumada

Transcribed by Thomas Cohn

12/18/20

We'll begin with a very brief look at the algebra behind cohomology.

Defn: A cochain complex \mathcal{A} of vector spaces is a sequence of linear maps

$$0 \longrightarrow A^0 \stackrel{d}{\longrightarrow} A^1 \stackrel{d}{\longrightarrow} A^2 \stackrel{d}{\longrightarrow} \cdots$$

s.t. $d \circ d = 0$ (whenever defined).

Defn: The cohomology of a cochain complex \mathcal{A} is, $\forall k \in \mathbb{N}$, $H^k(\mathcal{A}) = Z^k(\mathcal{A})/B^k(\mathcal{A})$, where $Z^k(\mathcal{A}) = \ker(d)$ (with $d: A^{k-1} \to A^k$).

Defn: If \mathcal{A} and \mathcal{B} are cochain complexes, a map $f: \mathcal{A} \to \mathcal{B}$ between them is a sequence: $\forall k \in \mathbb{N}$, we have $f_k: A^k \to B^k$ s.t. $d \circ f^k = f^k \circ d$. I.e., the following diagram commutes:

$$\cdots \xrightarrow{d} A^{k} \xrightarrow{d} A^{k+1} \xrightarrow{d} \cdots$$

$$\downarrow^{f^{k}} \qquad \downarrow^{f^{k+1}}$$

$$\cdots \xrightarrow{d} B^{k} \xrightarrow{d} B^{k+1} \xrightarrow{d} \cdots$$

Lemma: Such an $f: \mathcal{A} \to \mathcal{B}$ induces $f^{\sharp}: H^{k}(\mathcal{A}) \to H^{k}(\mathcal{B})$ by $f^{\sharp}[a] = [f(a)]$ for any $a \in Z^{k}(\mathcal{A})$, and f^{\sharp} is well-defined.

Observe:

- a) $(f \circ g)^{\sharp} = f^{\sharp} \circ g^{\sharp}$.
- b) For de Rham theory, if $F: M \to N$ is C^{∞} , then we get $f: \Omega^*(N) \to \Omega^*(M)$ ($\Omega^*(N)$) is the de Rham complex of N), where $\forall \alpha \in \Omega^k(N)$, $f(\alpha) = F^*\alpha$.

Homotopies between Maps of Cochain Complexes

Defn: Say $f, g: A \to \mathcal{B}$. A (<u>chain</u>) <u>homotopy</u> (<u>operator</u>) between them is a sequence of maps: $\forall k, h: A^k \to B^{k-1}$ s.t. the following diagram commutes:

$$\cdots \xrightarrow{d} A^{k} \xrightarrow{d} A^{k+1} \xrightarrow{d} \cdots$$

$$\downarrow^{h} \downarrow^{f-g} \downarrow^{h} \downarrow^{h} \cdots$$

$$\cdots \xrightarrow{d} B^{k-1} \xrightarrow{d} B^{k} \xrightarrow{d} \cdots$$

That is, $h \circ d + d \circ h = f - g$.

Lemma: If there exists a homotopy between f and q, then $f^{\sharp} = q^{\sharp}$.

Last time, we showed that for $X \in \mathfrak{X}(M)$, with φ the flow of X (which we assume to be complete), then $\forall \omega \in \Omega^k(M)$, $\frac{d}{dt}\varphi_t^*\omega = \varphi_t^*\mathcal{L}_X\omega = \varphi_t^*(\iota_X d\omega + d\iota_X\omega)$. Thus, $\varphi_1^*\omega - \omega = \int_0^1 \varphi_t^*(\iota_X d\omega + d\iota_X\omega) dt$.

Check: If we define $h(\omega) = \int_0^1 \varphi_t^*(\iota_X \omega) dt \in \Omega^{k-1}(M)$, hen the above formula shows that h is a chain homotopy between φ_1^* and the identity map.

1

Mayer-Vietoris Sequence

Motivation: How can we compute $H^*(S^2)$?

Well, we can describe S^2 as the union of U and V, where U and V are diffeomorphic to the open disk, and their intersection is diffeomorphic to the cylinder $S^1 \times (-1,1)$. Can we say anything about $H^*(S^2)$ in terms of $H^*(U)$, $H^*(V)$, and $H^*(U \cap V)$?

Hypothesis: In general, for U, V open with $M = U \cup V$, we have

We can then form, $\forall k \in \mathbb{N}$,

$$0 \longrightarrow \Omega^{k}(M) \xrightarrow{f} \Omega^{k}(U) \oplus \Omega^{k}(V) \xrightarrow{g} \Omega^{k}(U \cap V) \longrightarrow 0$$
$$(\alpha, \beta) \longmapsto (\alpha - \beta)|_{U \cap V}$$

where f is the pullback/restriction.

Lemma: $\forall k \in \mathbb{N}$, this is an exact sequence, i.e., the image of each map is the kernel of the next one. (This is true iff it's a complex with zero cohomology).

Proof: We have exactness at $\Omega^k(M)$ iff f is injective. This is true because $M = U \cup V$, and U and V are both open.

We have exactness at $\Omega^k(U) \oplus \Omega^k(V)$ iff $\operatorname{im}(f) = \ker(g)$. Well, $\operatorname{im}(f)$ is the set of restrictions of globally-defined forms, so we're still okay.

We have exactness at $\Omega^k(U \cap V)$ iff g is surjective. Let $\omega \in \Omega^k(U \cap V)$. We need to show $\exists \alpha \in \Omega^k(U), \beta \in \Omega^k(V)$ s.t. $(\alpha - \beta)|_{U \cap V} = \omega$. Let $\{\chi_U, \chi_V\}$ be a subordinate partition of unity to $\{U, V\}$. Define

$$\alpha(p) \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{ll} \chi_V \omega & p \in U \cap V \\ 0 & p \in U \setminus V \end{array} \right. \qquad \beta(p) \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{ll} -\chi_U \omega & p \in U \cap V \\ 0 & p \in V \setminus U \end{array} \right.$$

Then $(\alpha - \beta)|_{U \cap V} = \chi_V \omega + \chi_I \omega|_{U \cap V} = \omega$.

Observe: f and g are cochain maps – they commute with d!

Lemma: (Zig-Zag Lemma) Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be cochain complexes, and $f: \mathcal{A} \to \mathcal{B}, g: \mathcal{B} \to \mathcal{C}$ cochain maps, s.t. $\forall k \in \mathbb{N}$,

$$0 \longrightarrow A^k \stackrel{f}{\longrightarrow} B^k \stackrel{g}{\longrightarrow} C^k \longrightarrow 0$$

is exact. Then $\forall k, \exists \delta_k : H^k(\mathcal{C}) \to H^{k+1}(\mathcal{A})$, a linear map referred to as the connecting morphism, s.t. the following sequence is exact:

$$0 \longrightarrow H^0(\mathcal{A}) \xrightarrow{f^{\sharp}} H^0(\mathcal{B}) \xrightarrow{g^{\sharp}} H^0(\mathcal{C}) \longrightarrow$$

Observe: This applied to the case $M = U \cup V$ is precisely the Mayer-Vietoris sequence.

Sketch of the proof:

1. Check exactness at $H^k(\mathcal{B})$:

$$H^k(\mathcal{A}) \xrightarrow{f^{\sharp}} H^k(\mathcal{B}) \xrightarrow{g^{\sharp}} H^k(\mathcal{C})$$

We need to show $\operatorname{im}(f^{\sharp}) = \ker(g^{\sharp})$. Well, we know $0 = (g \circ f)^{\sharp} = g^{\sharp} \circ f^{\sharp}$, so $\operatorname{im}(f^{\sharp}) \subseteq \ker(g^{\sharp})$. For the reverse inclusion, let $[\beta] \in \ker(g^{\sharp})$, so $\beta \in Z^{k}(\mathcal{B})$. We rely on the following commutative diagram:

Assume that $g^{\sharp}[\beta] = 0$, i.e., $\exists c \in C^{k-1}$ s.t. $g(\beta) = dc$. Then $\exists b \in B^{k-1}$ s.t. g(b) = c. Thus, $g(\beta) = dc = dg(b) = gd(b)$. This means $g(\beta - db) = 0$, so $\exists a \in A^k$ s.t. $f(a) = \beta - db$, so $\beta = db + f(a)$. We need to show $[\beta] \in \operatorname{im} f^{\sharp}$, so we need to have da = 0. Well, 0 = df(a) = fda. Because f is injective, we must have da = 0. We conclude that $\beta = db + f(a)$ and da = 0, so $[\beta] = [f(a)] = f^{\sharp}[a]$.

2. Check existence of δ :

$$0 \longrightarrow A^{k} \longrightarrow B^{k} \longrightarrow C^{k} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow A^{k+1} \stackrel{\longleftarrow}{\longrightarrow} B^{k+1} \longrightarrow C^{k+1} \longrightarrow 0$$

Let $c \in Z^k(\mathcal{C})$, so $c \in C^k$, dc = 0. Then $\exists b \in B^k$ s.t. g(b) = c. So 0 = dc = dg(b) = g(db). Thus, $db \in \ker(g) = \operatorname{im}(f)$, so $\exists a \in A^{k+1}$ s.t. f(a) = db. In summary, c = g(b) and db = f(a). We claim:

- (i) da = 0.
- (ii) $[a] \in H^{k+1}(\mathcal{A})$ depends only on [c].

So we define $\delta([c]) = [a]$. Check:

- (i) fda = df(a) = ddb = 0. f is injective, so da = 0.
- (ii) This just requires more diagram chasing.

Cor: (Mayer-Vietoris Sequence) If $M = U \cup V$, there is an exact sequence

$$0 \longrightarrow H^0(M) \stackrel{f^{\sharp}}{\longrightarrow} H^0(U) \oplus H^0(V) \stackrel{g^{\sharp}}{\longrightarrow} H^0(U \cap V) \longrightarrow H^1(M) \stackrel{f^{\sharp}}{\longrightarrow} H^1(U) \oplus H^1(V) \stackrel{g^{\sharp}}{\longrightarrow} H^1(U \cap V) \longrightarrow \dots$$

with f^{\sharp} and g^{\sharp} given as above.

Application: $H^k(S^n) = \begin{cases} \mathbb{R} & k \in \{0, n\} \\ 0 & \text{otherwise} \end{cases}$ We can prove this using induction on n. For example, for n = 2,

We have the exact sequence $0 \to \mathbb{R} \to H^2(S^2) \to 0$, so the mapping from \mathbb{R} to $H^2(S^2)$ must be injective and surjective, so $H^2(S^2) = \mathbb{R}$. As for $H^1(S^2)$, the map $(x,y) \mapsto x-y$ is surjective, so the map into $H^1(S^2)$ must be the zero map. By exactness at $H^1(S^2)$, we must have the kernel of the map from $H^1(S^2)$ to 0 also be 0, so we must have $H^1(S^2) = 0$. Then, our inductive step uses the fact that the "equator" $U \cap V$ is homotopy equivalent to S^{n-1} .

3

Another example is the 2-torus, T^2 . We can cut the torus in half to get two components U, V, each of which is diffeomorphic to the cylinder, which in turn is homotopy equivalent to S^1 . The $U \cap V$ is the disjoint union of 2 cylinders. We then have

$$T^{2} \qquad U \sqcup V \qquad U \cap V$$

$$H^{0} \qquad \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R$$

Exer: Show that $H^k(T^2) = \begin{cases} \mathbb{R} & k \in \{0,2\} \\ \mathbb{R}^2 & k = 1 \end{cases}$, and that $H^1(T^2)$ is generated by $[dx^1]$ and $[dx^2]$.

Thm: If M is a compact, oriented, connected manifold (with $m = \dim M$), then

$$\int\limits_{M}:H^{k}(M)\to\mathbb{R}$$

is an isomorphism, so $H^m(M) \cong \mathbb{R}$.