Statistics ST2334 Topic 4,5 addendum: Joint Distributions

2011/2012 Semester 2

Joint Distributions: Some Theory

Recall

- ▶ that a random variable X is a function that maps outcomes $\omega \in \Omega$ to $X(\omega) \in \mathbb{R}$.
- ▶ that a probability function P, maps events $A \subseteq \Omega$ to a number, and obeys the axioms of probability.
- ▶ that we can then apply P to X by specifying $P(X \in M) := P(\{\omega : X(\omega) \in M\})$ for $M \subseteq \mathbb{R}$.
- ▶ we then call this entire description of the values and the corresponding probability of *X* its probability distribution.

We can similarly define probability distributions for multiple random variables.

Joint Distributions: Some Theory

▶ Let *X*, *Y* be random variables, then

$$P(X \in M, Y \in N) := P(\{\omega : X(\omega) \in M\} \cap \{v : Y(v) \in N\})$$
 where $\omega, v \in \Omega$.

- ▶ Note that there is nothing new going on on the RHS. It is
- applying the probability function P on a subset of Ω .
- ► This description of possible values X, Y can take and their corresponding probabilities is called the *joint* probability distribution of X and Y.
- We can of course extend this definition to any n number of random variables.

Joint Distributions: Discrete Case

- ► For discrete random variables, we extend our probability mass function to a function of multiple variables.
- ▶ E.g. For two discrete variables X_1 and X_2 , their joint probability mass function is defined as

$$f(x_1, x_2) = P(X_1 = x_1, X_2 = x_2)$$

where x_1, x_2 are possible values of X_1, X_2 respectively.

▶ Similarly, For n discrete random variables X_1, \ldots, X_n , their joint probability mass function is simply

$$f(x_1,...,x_n) = P(X_1 = x_1,...,X_n = x_n)$$

Marginal Distributions: Discrete Case

- When given the joint distribution of say X₁, X₂, we call the distribution of X₁ (or X₂) alone the marginal distribution.
- Note that the marginal distributions are embedded in the joint distribution. We can recover the probability mass function f₁ of X₁ from the joint probability mass function f by

$$f_1(x_1) = P(X_1 = x_1) = \sum_{\text{all } x_2} P(X_1 = x_1, X_2 = x_2) = \sum_{\text{all } x_2} f(x_1, x_2)$$

▶ Similarly, if f is the joint probability mass function of X_1, \ldots, X_n , then the marginal probability mass functions are

$$f_i(x_i) = \sum_{x_1} \cdots \sum_{x_{i-1}} \sum_{x_{i+1}} \cdots \sum_{x_n} f(x_1, \dots, x_n)$$

Conditional Probability Distributions: Discrete Case

▶ Consistent with the definition of conditional probability of *events*, we can define the conditional probability distribution of X_1 given $X_2 = x_2$ as

$$f_1(x_1|x_2) = P(X_1 = x_1|X_2 = x_2) = \frac{P(X_1 = x_1, X_2 = x_2)}{P(X_2 = x_2)}$$
$$= \frac{f(x_1, x_2)}{f_2(x_2)}, \text{ provided } f_2(x_2) \neq 0$$

▶ If $f_1(x_1|x_2) = f_1(x_1)$ for all x_1 and x_2 , then we say X_1 and X_2 are independent. This is equivalent to

$$f(x_1, x_2) = f_1(x_1)f_2(x_2)$$

for all x_1 and x_2 .

Example: Discrete Case

Let X_1 and X_2 have the joint probability distribution in the table below.

$f(x_1,x_2)$					
			x_1		
		-1	0	1	
<i>X</i> ₂	-1	0.1	0.3	0.1	
	1	0.15	0.25	0.1	

Find $P(X_1 + X_2 > 1)$.

$$P(X_1 + X_2 > 1) = P(X_1 = 1, X_2 = 1) = 0.1$$

• Find $P(X_1X_2 = 0)$.

$$P(X_1X_2=0) = P(X_1=0) = 0.3 + 0.25 = 0.55$$

Example: Discrete Case (continued)

▶ Find the marginal distributions of X_1 and X_2 .

$$\begin{array}{c|cccc} & f_1(x_1) \\ \hline x_1 & -1 & 0 & 1 \\ \hline f_1(x_1) & 0.25 & 0.55 & 0.1 \\ \hline \end{array}$$

$f_2(x_2)$				
<i>x</i> ₂	-1	1		
$f_2(x_2)$	0.5	0.5		

▶ Find the conditional distribution of X_2 given $X_1 = -1$

$$P(X_2 = x_2 | X_1 = -1) = f_2(x_2 | -1) = \frac{f(-1, x_2)}{f_1(-1)}$$

 \blacktriangleright Are X_1 and X_2 independent?

Joint Distributions: Continuous Case

- As we did before for single random variables, we introduce probability density functions to handle continuous random variables.
- ▶ Suppose $X_1, X_2, ..., X_n$ are *n* continuous random variables. Then the joint probability density function of these variables $f(x_1, x_2, \dots, x_n)$ is such that

$$P(a_1 \le X_1 \le b_1, a_2 \le X_2 \le b_2, ..., a_n \le X_n \le b_n)$$

$$= \int_{a_1}^{b_1} \int_{a_2}^{b_2} ... \int_{a_n}^{b_n} f(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n$$

- For the axions of probability to hold, we need

 - ► $f(x_1, x_2, ..., x_n) \ge 0$ ► $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} f(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n = 1$

Joint Distributions: Continuous Case

We define

the joint cumulative distribution function

$$F(x_1, x_2, ..., x_n) := \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} ... \int_{-\infty}^{x_n} f(u_1, u_2, ..., u_n) du_1 du_2 ... du_n$$

 \triangleright the marginal probability density function for X_i

$$f_i(x_i) = \int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} f(u_1, u_2, ..., u_n) du_1 ... du_{i-1} du_{i+1} ... du_n$$

 \triangleright the marginal cdf for X_i

$$F_i(x_i) = \int_{-\infty}^{x_i} f_i(u_i) du_i$$

Conditional Distribution: Continuous Case

Just as we did for the probability mass functions, we define the conditional probability density function

$$f_1(x_1|x_2) = \frac{f(x_1,x_2)}{f_2(x_2)}$$

 \triangleright And continuous random variables X_1, X_2 are independent if

$$f(x_1, x_2) = f_1(x_1)f_2(x_2)$$

for all values of x_1, x_2 .

This is equivalent to

$$F(x_1, x_2) = F_1(x_1)F_2(x_2)$$

for all values of x_1, x_2 .

Example: Continuous Case

If two variables X_1 and X_2 have a joint density function

$$f(x_1, x_2) = \begin{cases} \frac{1}{18}e^{-x_1}x_2^2, & \text{for } x_1 > 0, -3 < x_2 < 3 \\ 0, & \text{otherwise} \end{cases}$$

find the probabilities that

(a) the first random variable will take on a value between 0 and 1 and the second random variable a value between 1 and 3:

$$\int_{0}^{1} \int_{1}^{3} f(x_{1}, x_{2}) dx_{1} dx_{2} = \int_{1}^{3} \left\{ \int_{0}^{1} \frac{1}{18} e^{-x_{1}} x_{2}^{2} dx_{1} \right\} dx_{2}$$

$$= \frac{1}{18} \int_{1}^{3} \left[-e^{-x_{1}} \right]_{0}^{1} x_{2}^{2} dx_{2}$$

$$= \frac{1}{18} \cdot (1 - e^{-1}) \left[\frac{1}{3} x_{2}^{3} \right]_{1}^{3}$$

$$= \dots = 0.304$$

Example: Continuous Case continued

(b) find the joint cumulative distribution function

$$F(x_1, x_2) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} f(x_1, x_2) \ dx_1 dx_2$$

we need to be careful about the limits: split into 3 regions

$$= \begin{cases} 0, & \text{if } x_1 \leq 0, x_2 \leq -3 \\ \int_0^{x_1} \int_{-3}^{x_2} \frac{1}{18} e^{-x_1} x_2^2 du_1 du_2, & \text{if } x_1 > 0, -3 < x_2 < 3 \\ \int_0^{x_1} \int_{-3}^3 \frac{1}{18} e^{-x_1} x_2^2 du_1 du_2, & \text{if } x_1 > 0, x_2 \geq 3 \end{cases}$$

$$= \begin{cases} 0, & \text{if } x_1 \leq 0, x_2 \leq -3 \\ \frac{1}{54} (1 - e^{-x_1})(x_2^3 + 27), & \text{if } x_1 > 0, -3 < x_2 < 3 \\ 1 - e^{-x_1}, & \text{if } x_1 > 0, x_2 \geq 3 \end{cases}$$

Example: Continuous Case continued continued

(c) are X_1 and X_2 independent?

$$\begin{array}{lcl} f_1(x_1) & = & \int_{-\infty}^{\infty} f(x_1,u_2) du_2 \\ & = & \begin{cases} \int_{-3}^{3} \frac{1}{18} e^{-x_1} u_2^2 \ du_2 = e^{-x_1}, & \text{if } x_1 > 0 \\ 0, & \text{otherwise} \end{cases} \end{array}$$

Similarly,

$$f_2(x_2) = \int_{-\infty}^{\infty} f(u_1, x_2) du_1 = \left\{ \begin{array}{ll} \frac{1}{18} x_2^2, & \text{ if } -3 < x_2 < 3 \\ 0, & \text{ otherwise} \end{array} \right.$$

Thus

$$f_1(x_1)f_2(x_2) = f(x_1, x_2)$$

They are independent.

Expectation of multiple random variables

▶ In the discrete case.

$$E[g(X_1, X_2, ..., X_n)] = \sum_{x_1} \sum_{x_2} ... \sum_{x_n} g(x_1, x_2, ..., x_n) f(x_1, x_2, ..., x_n)$$

▶ In the continuous case,

$$E[g(X_1, X_2, X_n)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} g(x_1, x_2, ..., x_n) \times f(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n$$

Expectation of multiple random variables continued

▶ For the previous example, taking $g(x_1, x_2) = x_1 + x_2$, we have

$$E(X_1 + X_2) = \int_0^\infty \int_{-3}^3 (x_1 + x_2) (\frac{1}{18} e^{-x_1} x_2^2) \ dx_1 dx_2$$

➤ You can work it out directly, but recall for linear functions we can use the following theorem:

For any random variables $X_1, ..., X_n$ and constants $a_0, a_1, ..., a_n$, we have

$$E(a_0 + a_1X_1 + ... + a_nX_n) = a_0 + a_1E(X_1) + ... + a_nE(X_n)$$

Covariance

▶ Define the covariance of X_i and X_j

$$Cov(X_i, X_j) = E\{(X_i - EX_i)(X_j - EX_j)\}\$$

▶ This can also be written as

$$Cov(X_i, X_j) = E(X_iX_j) - E(X_i)E(X_j)$$

▶ We have already seen that for discrete random variables: if X_i , X_j are independent, the above expression = 0 (Topic 4c slide 4).

Covariance continued

▶ Similarly, for continuous X_i, X_j , if they are independent, then

$$E(X_i X_j) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_i x_j f(x_i, x_j) dx_i dx_j$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_i x_j f_i(x_i) f_j(x_j) dx_i dx_j$$

$$= \int_{-\infty}^{\infty} x_i f_i(x_i) dx_i \int_{-\infty}^{\infty} x_j f_j(x_j) dx_j$$

$$= E(X_i) E(X_j)$$

Hence, X_i, X_j independent $\Rightarrow Cov(X_i, X_j) = 0$

▶ Note that the converse is NOT true. i.e. two random variables with covariance 0 are not necessarily independent.

Variance

▶ For any random variables $X_1, ..., X_n$, it's not hard to see

$$Var(X_1 + ... + X_n) = Var(X_1) + ... + Var(X_n) + 2\sum_{j>i} Cov(X_i, X_j)$$

▶ You can see now that our earlier identity follows: If $X_1, ..., X_n$ are independent, then

$$Var(X_1 + ... + X_n) = Var(X_1) + ... + Var(X_n)$$