Week 2:

A: Professionalism / Teams

B: CLIs and Scripts

Professor David Lowe School of Computer Science

"Computer Science is no more about computers than astronomy is about telescopes."

Week 1 Recap

 UoS overview. Is everyone clear on the structure, expectations and resources available?

- Assessment
 - Self-Learning: Have you started thinking about your topic?
 - Skills: Are you in a team yet?
- Introductions lecturer, tutors, fellow students, team members.
- IT Professions varied, require wide range of skills to succeed.
- Future as an IT professional rapidly changing environment requires continuous learning.

Week 1 self-learning exercise...

- Drunkard's walk
 - Related to behaviours of stochastic processes
 And the assumptions we make...
 - Consider a "drunk" standing on the edge of a cliff...
 - If he randomly walks 1 meter towards or away from the cliff, then keeps repeating... then what is the chance he will fall off the edge?
 - What if he is not quite so drunk, and so there is a 2/3 likelihood he will walk away in each step?
 - Concept is used in:
 - Machine learning
 - Twitter algorithms related to suggestions as to who to follow!
 - Read
 - https://medium.com/i-math/the-drunkards-walk-explained-48a0205d304
- Week 2 concept...
 - What can you learn about: Big O Notation

Week 2:

A: Professionalism / Teams

B: CLIs and Scripts

"Computer Science is no more about computers than astronomy is about telescopes."

Week 2:

A: Professionalism / Teams

B: CLIs and Scripts

Professionalism

"Computer Science is no more about computers than astronomy is about telescopes."

Professionalism

- What does it mean to be a professional?
 - "Computer Science is no more about computers than astronomy is about telescopes."

Edsger W. Dijkstra

- "Computer Science is no more about coding than running a restaurant is about ingredients"

Felipe Jara

So what is it about?

Restaurant analogy

- What might you need to understand in order to setup and run a (great) restaurant?
- What are good quality ingredients (and where can I get them)?
 - Poor quality ingredients can lead to terrible (or even dangerous) food.
 - Poor quality code can lead to a terrible user experience, or even dangerous outcomes.
- What things can I prepurchase already partly made?
 - A restaurant owner is unlikely to own his own cows, grow his own rice
 - A developer won't create every single bit of a system from scratch
- What equipment might I need?
 - A chef will want a good oven, sharp knives, etc.
 - A developer will want to use good development tools
- What is a great meal?
 - Delivering great meals is about more than just the ingredients. What recipes might guide me?
 - Delivering good systems is about more than a coding instructions. How do I manage the development?
- Even with good recipes, you can still have a terrible meal?
 - What about cooking skills? Customer service? Restaurant ambience?
 - What about teamwork? Communications?
- How do I learn to run a restaurant?
 - A restaurant is a business. What about finances? Marketting? Hiring good staff?
 - Computing systems get used by people. What about business processes? ethics?

Professionalism

- Technical capability is fundamental, but not sufficient...
 - Is flour enough to make bread? Is bread enough to make a meal? Is a meal enough to have a great dining experience?

Week 2:

A: Professionalism / Teams

B: CLIs and Scripts

SFIA

"Computer Science is no more about computers than astronomy is about telescopes."

Professionalism

Skills Framework for the Information Age (SFIA)

Professional skill Knowledge Behavioural skill

The skills context

IT professional capability comes from a combination of professional skills, behavioural skills and knowledge. Experience and qualifications validate that overall capability.

Professional skills. Business process improvement and Database design are just two examples of almost 100 fundamental professional IT skills defined by SFIA.

Behavioural skills. Most organisations recognise a set of behavioural skills. These vary considerably from one organisation to another.

Knowledge. Technologies, products, internal systems, services, processes, methods and even legislation are all examples of areas where IT professionals are required to have knowledge.

Experience and qualifications. These validate the individual's capability. Qualifications certify elements of skill or knowledge; experience gives practical demonstration of capability. The right sort of experience also acts as a powerful force for learning, thereby enhancing capability.

Week 2:

A: Professionalism / Teams

B: CLIs and Scripts

Teamwork - part 1

"Computer Science is no more about computers than astronomy is about telescopes."

Skills - Team work

• As one tutor phrased it: we do lots of human-computer interfacing, but human-human interfacing is just as important.

Computing teams

- Team types
 - Development; operations; QA; support; security; ...
- Team topologies
 - Stream aligned; enabling; platform; ...
- Team roles:
 - Analyst; programmer; architect; tester; ...
- Team functioning
 - Pair programming?
- Have a read of:
 - https://relevant.software/blog/what-agile-software-developmentteam-structure-looks-like/

Team Work

- What is a team?
 - "A group of people with a full set of complementary skills required to complete a task, job, or project."
 http://www.businessdictionary.com/definition/team.html
 - "A group is an intact social system, complete with boundaries, interdependence for some shared purpose, and differentiated member roles" [Hackman et al]
 - "A team is a group of individuals working together to achieve a goal.
 A group does not necessarily constitute a team. Teams normally have members with complementary skills and generate synergy through a coordinated effort which allows each member to maximize their strengths and minimize their weaknesses."

https://en.wikipedia.org/wiki/Team

Week 2:

A: Professionalism / Teams

B: CLIs and Scripts

Teamwork - part 2

"Computer Science is no more about computers than astronomy is about telescopes."

Team Work - Mistaken Beliefs

- Teams that work together harmoniously perform better than those with lots of conflict.
 - "... grumpy orchestras played together slightly better than orchestras in which all the musicians were really quite happy"
 - https://hbr.org/video/5566537368001/the-explainer-how-management-teams-can-have-a-good-fight
 - https://hbr.org/video/5542728022001/whiteboard-session-clashing-with-a-coworker-heres-what-to-do
- Team dynamics are largely caused by the leader's style (authoritarian versus democratic).
- Larger teams perform better than small ones.
- Teams whose membership stays intact gradually deteriorate
 - "73% of the [airline] incidents ... occurred on a crew's first day of flying together" see https://hbr.org/2009/05/why-teams-dont-work

 We will come back to teamwork as we do our group project through the semester.

Team Work - Successful Teams

- Why are some groups successful?
- Hackman identified three attributes of such groups
 - They satisfy internal and external clients
 - They develop capabilities to perform in the future
 - Members find meaning and satisfaction
- And then five factors that increase the chances for success:
 - A real team (shared task; clear membership; stability; ...)
 - Compelling direction (SMART goals?)
 - Enabling Structure (size; internal structure; skills balance; ...)
 - Supportive Context (reward; development; information; ...)
 - Expert Coaching (support; mentoring; evaluation; ...)

[from Hackman] – see https://hbr.org/2009/05/why-teams-dont-work

Team Work for IT Professionals

- Multi-disciplinary
 - e.g. business; IT; creative design; ...
- Multi-faceted
 - e.g. analyst; architect; coder, tester; ...
- Collaborative
 - e.g. coder; coder; coder; ...
- Traditional plan-and-document structures
- Agile such as SCRUM or XP
 - e.g. pair programming (why???)

Week 2:

A: Professionalism / Teams

B: CLIs and Scripts

Teamwork - part 3

"Computer Science is no more about computers than astronomy is about telescopes."

Team Work for Students

- Why are student projects different from commercial development?
 - Lack of fully shared fate
 - Limited consequences
 - Different goals
 - Not the whole work => Different schedules

How do you deal with these issues?

Team Work - Successful Student Teams

- Characteristics of groups that worked effectively:
 - equal contributions
 - full discussion of issues
 - member support
 - ⇒ High quality result & high level of member satisfaction
- Common problems that prevent groups working effectively:
 - problems with logistics
 - problems with allocation of tasks
 - coordination of member contributions
 - lack of commitment from some group members
 - ⇒ Quality of group product lower than individual product, & high level of stress and dissatisfaction

Team Work - Successful Student Teams

Strategies for improving group dynamics

- Setting up the group. Positive organisational systems such as drawing up a team constitution and open discussion in the first meeting of your group can help the development of a good dynamic.
- Dealing with differences. In universities today, most groups are going to include people from different cultural backgrounds. Again, open discussion and tolerance are key factors for success here.
- Dealing with negative behaviour such as aggression, blocking, controlling, freeloading and discounting.

Week 2:

A: Professionalism / Teams

B: CLIs and Scripts

What is hard about software?

"Computer Science is no more about computers than astronomy is about telescopes."

Sidetrack.... Software projects

- Software project "failure"
 - $\sim 30\%$ success rate (correct, on time, on budget)
 - 50% poor outcomes (limited functionality, late, over budget)
 - 20% scrapped
- 2020 global cost of the IT failure rate
 - \$300B of projects scrapped
 - \$750B late and over budget
- Can you imagine if buildings, tunnels, vehicles, or devices had the same failure rate?

SO what is "wrong" or "hard" about software?

Week 2:

A: Professionalism / Teams

B: CLIs and Scripts

"Computer Science is no more about computers than astronomy is about telescopes."

Team Work – Diversity

Activity - BINGO

(will follow up on Ed)

Is an aunt or uncle	Has lived on a farm	Has eaten at a Thai restaurant recently	Is an only child	Is left handed
On a diet	Thinks cold pizza is great for breakfast	Buys most of their own clothes	Knows what Yom Kippur is	Does not have a driving license
Likes jazz music	Has three or more siblings	FREE	Has lived in more than 2 countries	Has had COVID
Member of a university club	Catholic	Speaks more than two languages	Born outside NSW	Knows sign language
Has worked at a place that requires uniforms	Is a vegetarian	Has all their close relatives living in Australia	Is married	Has red hair

Team Work - Diversity

- What perceptions and assumptions were made?
- How did you perceive others?
- What assumptions did you make about other people?
- How were you perceived by others?
- What assumptions were made about you?
- Which blocks were the easiest to fill?
- Were there characteristics about which you hesitated asking?
 Why?
- What other categories could have been included?

Team Work - Diversity

What do we mean by diversity?

"the inclusion of different types of people ... in a group or organization".

https://www.merriam-webster.com/dictionary/diversity

- We all have bias (explicit and implicit / conscious and unconscious), assumptions, generalisations.
 - (Quick test)
- Awareness of implicit bias.
 - https://www.youtube.com/watch?v=dVp9Z5k0dEE
 - https://www.projectimplicit.net/
- All teams are diverse and diversity matters.
 - https://twitter.com/nke_ise/status/897756900753891328

Week 2:

A: Professionalism / Teams

B: CLIs and Scripts

Command line interfaces

"Computer Science is no more about computers than astronomy is about telescopes."

Hardware

- Lots of different terminals / shells
 - powershell, bash, zsh
- Learn the commands!
 - Navigation: pwd, cd, ...
 - Directories: mkdir, rmdir
 - Files: del/rm, echo/cat
 - •
- Scripts
 - Used to automate a sequence of commands

Week 2:

A: Professionalism / Teams

B: CLIs and Scripts

CLI + Scripting Example

"Computer Science is no more about computers than astronomy is about telescopes."

Week 2:

A: Professionalism / Teams

B: CLIs and Scripts

Wrap-up

"Computer Science is no more about computers than astronomy is about telescopes."

Tutorial - Week 2

- Assignment overview
- How do teams make decisions?

Self-learning

Group Formation

- Project Teams
 - Groups for the project teams have been created on Canvas
 - These allow up to 4 students to join
- Each person should add themselves to a project team
 - If you know your team, then coordinate with each other to add yourselves to the same Project Team on Canvas.
 - Be careful to only add yourself to a Project Team for your tutorial
 - Anyone who isn't in a group can add themselves to a group that is not full
 - Ensure this is finalised by the end of week.
- Then, after the deadline...
 - We will lock down any further changes
 - Anyone who is not in a group will be added to one with space left
 - Any small groups might be merged.

Teams of 5?

- Ask you tutor, and if approved, then they can increase your Project Team on canvas to allow 5 members. BUT this will only be allowed if you agree to the following...
- If you do have a team of 5 and there is a small team left in your tutorial then you may be required to identify a member to move to the small team.