NPS-PH-94-010

NAVAL POSTGRADUATE SCHOOL Monterey, California

THICKNESS and PACKING FRACTION OF AMMONIA USED IN SLAC E143 EXPERIMENT

by

D.R. Garvey and Xavier K. Maruyama

August 1994

Final Report for Period Apr 1993-Aug 1994

Approved for public release; distribution unlimited.

Prepared for:

Naval Postgraduate School Monterey, CA

94-30001

NAVAL POSTGRADUATE SCHOOL Monterey, Calfornia 93943-5000

Rear Admiral T.A. Mercer Superintendent

H. Shull **Provost**

This report was prepared for the Naval Postgraduate School as part of the Standford Linear Accelerator Center E143 "Nucleon Spin Structure" Experiment Calibration.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Professor of Physics

LT USN

Reviewed by:

Released by:

Chairman, Physics Department

Unclassified SECURITY CLASSIFICATION OF THIS PAGE						
REPORT (OCUMENTATIO	N PAGE			Form Approved OMB No 0704-0188	
1a REPORT SECURITY CLASSIFICATION		16 RESTRICTIVE	MARKINGS			
Unclassified		3 DISTRIBUTION	/AVAILABILITY OF	REPORT		
2a SECURITY CLASSIFICATION AUTHORITY		1			50.	
2b. DECLASSIFICATION / DOWNGRADING SCHEDU	LE	Approved for public release; distribution unlimited. 5 MONITORING ORGANIZATION REPORT NUMBER(S)				
4. PERFORMING ORGANIZATION REPORT NUMBER	ER(S)					
NPS-PH-94-010						
6a. NAME OF PERFORMING ORGANIZATION	6b OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORGA	NIZATION		
Naval Postgraduate School	PH			Cadol		
6c. ADDRESS (City, State, and ZIP Code) Monterey, CA 93943-5000			ty, State, and ZIP (
8a NAME OF FUNDING / SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9 PROCUREMEN	IT INSTRUMENT ID	ENTIFICATIO	N NUMBER	
Naval Postgraduate School 8c. ADDRESS (City, State, and ZIP Code)	<u> </u>	10 SOURCE OF	FUNDING NUMBER	RS		
Dept. of Physics		PROGRAM	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO	
Naval Postgraduate School		ELEMENT NO	NO	1	Teets source	
Monterey, CA 93943-5000				<u> </u>		
11 TITLE (Include Security Classification)						
Thickness and Packing Fraction	n of Ammonia us	ed in SLAC E	143 Experim	ent		
12 PERSONAL AUTHOR(S)						
David R. Garvey and Xavier K.		14 DATE OF REP	ORT (Year, Month,	Day) 15	PAGE COUNT	
13a TYPE OF REPORT 13b TIME (FROM 4)	793 _{TO 8/94}	18 August				
16 SUPPLEMENTARY NOTATION The views expressed in this re						
The views expressed in this repolicy or position of the Depa	eport are those	of the auth	ors and do	not ref.	lect the officia	
	18. SUBJECT TERMS	(Continue on rever	ise if necessary an	d identify b	y block number)	
17 COSATI CODES FIELD GROUP SUB-GROUP	SLAC, Ammonia	,X-ray atten	uation pack	ing fac	tor, E143	
, ices	experiment, N	ucleon Spin				
]					
19 ABSTRACT (Continue on reverse if necessar The ammonia target thick	y and identify by block nees used in th	number) e E143 "Nucl	ear Spin St	ructure	" experiemnt	
has been determined by the at	renuation of 60	KEV x-ravs	from 24/AM.	The a	mmonia	
thickness and packing fraction	n of each targe	ts has been	measured to	an acc	uracy of the	
order of 0.5%.	J					
		To destruct	SECURITY CLASSIFI	CATION		
20 DISTRIBUTION/AVAILABILITY OF ABSTRAC	T S RPT 🔲 DTIC USER	s linclass	sified			
22a NAME OF RESPONSIBLE INDIVIDUAL	, Dire Osek	22b TELEPHONE	(Include Area Cod			
X.K. Maruyama		408-656	-2431	_ l P⊦	I/Mx	

Thickness and Packing Fraction of Ammonia Used in SLAC E143 Experiment

D. R. Garvey and X. K. Maruyama

Department of Physics

Naval Postgraduate School

Monterey, CA, 93943

15 August, 1994

Abstract

The ammonia target thickness used in the E143 "Nucleon Spin Structure" experiment has been determined by the attenuation of 60 keV x-rays from ²⁴¹Am. The ammonia thickness and packing fraction for each target has been measured to an accuracy of better than 0.6%. Target thickness profiles for each of the targets are also presented.

	人物	
Accession For	The Ass	
TIS GRALI		
ARTO TAB	<u> </u>	
- ANDCOU		
Justification		
Distribution		
		Į
Availabil	and/or	1
l leman	ial	
Dist Spot	1	١
1011		1
IN I	\	* • * *

1. GENERAL

1.1 Introduction

The E143 "Nucleon Spin Structure" experiment used a polarized solid ammonia target as a source of polarized proton scattering centers. A value for the thickness of ammonia is necessary to derive the dilution factor "F", which is the ratio of the probability of scattering only from free protons to the probability of scattering from any nucleon in the target assembly. The dilution factor is used to determine the longitudinal asymmetry, " A_{max} ":

$$A_{\text{long}} = \frac{A_{\text{exp}}}{P_{\text{B}}P_{\text{T}}F(1+C)} = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}}$$
(1a)

or, equivalently,

$$A_{\rm exp} = A_{\rm long} \left[P_{\rm B} P_{\rm T} F (1 + C) \right] = \frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} \,. \tag{1b}$$

where " P_B " refers to the beam polarization; " P_T " refers to the target polarization; "C" is a correction for the effects of polarization of the unpaired proton in ¹⁵N; "sigma" is the polarized scattering cross section and "N" is the observed number of scattering events for the specified orientation of the beam and target polarization's, (opposite, $\uparrow \downarrow$, or or parallel, $\uparrow \uparrow$). Further discussion of the meaning of the longitudinal asymmetry and how it is used to derive the spin-dependent structure functions $g_1(x)$ and $g_2(x)$ is contained in the E143 proposal (MCC93). X-ray intensities are used to measure the thickness and resultant packing fraction for the ammonia targets. Reference values for the attenuation coefficients are generated by the program PHOTCOEF (AIC93).

The target used in End Station "A" (ESA) at SLAC for E143 contained grains of frozen ammonia that had been "radiation damaged" to produce "color centers" at various electron beam facilities including the Massachusetts Institute of Technology (MIT) Bates Laboratory, Stanford High Energy Physics Lab (HEPL), Naval Postgraduate

School (NPS) and Saskatchewan Accelerator Laboratory (SAL). The ammonia in the target is bombarded with microwaves at a frequency to cause spin-flip transitions to polarized states around the color centers. The target material and apparatus are described further by the target group (CRA90). The basic experimental setup of E143 in ESA is illustrated in Figure 1.

Figure 1. E143 experiment schematic

The ammonia target thickness measurements were made at SLAC from September 1993 through February 1994, by the NPS group and other members of the E143 Collaboration (SHA93), (SIC93).

1.2 Descriptive analysis of electromagnetic radiation attenuation in matter

A schematic representation of the quantities of interest is given in Figure 2.

The following is a list of symbolic notation for the quantities defined in Figure 2:

 $t_y =$ effective linear thickness of material "y" in cm

 t_{trgt} = stick cell measured value: 3.00 ± 0.03 cm t_{amm} = effective linear thickness of ammonia in target cell

$$\rho_y = \text{mass density of material "y" in } \frac{\text{grams}}{\text{cm}^3}$$

$$x_y \equiv \rho_y t_y \equiv \text{mass thickness of material "y" in } \frac{\text{grams}}{\text{cm}^2}$$

 $x_{\rm He}$ = thickness of ⁴He outside target cell

 x'_{He} = thickness of ⁴He inside target cell

 x_{cryo} = thickness of cryostat, target assembly, etc.

 x_{amm} = mass thickness of ammonia in target cell

 $\mu_y \equiv \text{linear attenuation coefficient of "y" in cm}^{-1}$

$$\left(\frac{\mu}{\rho}\right)_{y}$$
 = mass attenuation coefficient of "y" in $\frac{cm^{2}}{gram}$

 $f_y = \text{volume packing fraction of material "y"}$

$$f_{\text{amm}} = \text{ammonia fraction of target volume} = \frac{t_{\text{amm}}}{t_{\text{trgt}}} = \frac{x_{\text{amm}}}{\rho_{\text{amm}}t_{\text{trgt}}}$$

The mass-attenuation coefficients are calculated by identifying the target material by chemical symbol and defining the incident x-ray energy from the Americium 241 source as 59.53 keV. The calculated value for the mass attenuation coefficient for helium is

$$\left(\frac{\mu}{\rho}\right)_{He} = 0.16534 \frac{\text{cm}^2}{\text{gram}} \text{ at } 59.53 \text{ keV}$$

PHOTCOEF gives value for "normal" chemical compounds only and a correction is required for ammonia of different isotopic compositions. The photon interaction is an electromagnetic process governed by the charge distribution of a scattering center (molecule in this case). The actual values of the mass-attenuation coefficients, however, are derived in terms of interaction cross section per unit mass.

$$\left(\frac{\mu}{\rho}\right) = \frac{n\sigma}{\rho} = N_{Av} \left(\frac{\sigma}{A}\right) = \frac{\text{cross section}}{\text{unit mass}}$$
 (2a)

where A is the molecular weight and N_{av} is Avogadro's number of scattering centers per mole of substance. Expanding upon this definition, we derive an expression for the mass-attenuation coefficients for ¹⁵NH₃ and ¹⁵ND₃ in terms of the mass-attenuation coefficient for ¹⁴NH₃:

$$\left[\frac{\mu_{15_{\text{NH}_3}}}{\rho_{15_{\text{NH}_3}}}\right] = \left[\frac{\mu_{15_{\text{NH}_3}}}{\mu_{14_{\text{NH}_3}}}\right] \left[\frac{\rho_{14_{\text{NH}_3}}}{\rho_{15_{\text{NH}_3}}}\right] \left[\frac{\mu_{14_{\text{NH}_3}}}{\rho_{14_{\text{NH}_3}}}\right] = \left[\frac{(n\sigma)_{15_{\text{NH}_3}}}{(n\sigma)_{14_{\text{NH}_3}}}\right] \left[\frac{\rho_{14_{\text{NH}_3}}}{\rho_{15_{\text{NH}_3}}}\right] \left[\frac{\mu_{14_{\text{NH}_3}}}{\rho_{14_{\text{NH}_3}}}\right]$$
(2b)

where
$$n_y = N_{Av} \left(\frac{\rho}{A}\right)_y = \text{Number of center per unit volume}$$

The assumption that the scattering amplitudes are proportional to the charge distribution of the scattering center, independent of its mass, is expressed by assuming that the scattering cross sections are equal i.e.,

$$\sigma_{^{15}NH_3} \equiv \sigma_{^{14}NH_3}$$

$$\Rightarrow \left[\frac{\mu_{15_{\text{NH}_3}}}{\rho_{15_{\text{NH}_3}}}\right] = \left[\frac{\rho_{15_{\text{NH}_3}}}{\rho_{14_{\text{NH}_3}}}\right] \left[\frac{A_{14_{\text{NH}_3}}}{A_{15_{\text{NH}_3}}}\right] \left[\frac{\mu_{14_{\text{NH}_3}}}{\rho_{14_{\text{NH}_3}}}\right] = \left[\frac{A_{14_{\text{NH}_3}}}{A_{15_{\text{NH}_3}}}\right] \left[\frac{\mu_{14_{\text{NH}_3}}}{\rho_{14_{\text{NH}_3}}}\right] \left[\frac{\mu_{14_{\text{NH}_3}}}{\rho_{14_{\text{NH}_3}}}\right] \left[\frac{\mu_{14_{\text{NH}_3}}}{\rho_{14_{\text{NH}_3}}}\right] \left[\frac{\mu_{14_{\text{NH}_3}}}{\rho_{14_{\text{NH}_3}}}\right] = \left[\frac{A_{14_{\text{NH}_3}}}{A_{15_{\text{NH}_3}}}\right] \left[\frac{\mu_{14_{\text{NH}_3}}}{\rho_{14_{\text{NH}_3}}}\right] \left[\frac{\mu_{14_{\text{NH}_3}}$$

Note that it is the ratio of the molecular weights that determines the isotopic massattenuation coefficient. For "normal" ammonia

$$\left(\frac{\mu}{\rho}\right)_{14_{\text{NH}_3}} = 0.20798 \frac{\text{cm}^2}{\text{gram}} \text{ at } 59.53 \text{ keV}$$

From this value, we obtained the mass-attenuation coefficient for the isotopes used in the experiment corrected by the ratio of the number of nucleons. Binding energy corrections are negligible, amounting to less than 0.05% (WIL84).

$$\left(\frac{\mu}{\rho}\right)_{15_{\text{NH}_2}} = \left(\frac{17}{18}\right)\left(\frac{\mu}{\rho}\right)_{14_{\text{NH}_2}} = 0.19643 \frac{\text{cm}^2}{\text{gram}}$$

$$\left(\frac{\mu}{\rho}\right)_{13}_{ND_2} = \left(\frac{17}{21}\right)\left(\frac{\mu}{\rho}\right)_{13}_{NH_1} = 0.16836 \frac{\text{cm}^2}{\text{gram}}$$

The mass density values used throughout our calculations are:

$$\rho_{\text{He}} = 0.128 \pm 0.003 \frac{\text{grams}}{\text{cm}^3} \text{ at } 4.0 \pm 0.1^\circ \text{ K}$$

$$\rho_{\text{15}_{\text{NH}_3}} = 0.917 \pm 0.001 \frac{\text{grams}}{\text{cm}^3} \text{ at } 4.0 \pm 0.1^\circ \text{ K}$$

$$\rho_{\text{15}_{\text{ND}_3}} = 1.056 \pm 0.001 \frac{\text{grams}}{\text{cm}^3} \text{ at } 4.0 \pm 0.1^\circ \text{ K}$$

These ammonia densities were supplied by the UVA. target group (LMS93) and the helium value is for normal liquid helium at vapor pressure and the specified temperature (PVM93). The uncertainty in the temperature is a conservative estimate and the densities apply within the specified temperature range.

1.3 Relationships between experimental quantities

There are two experimental configurations which must be considered. In the first setup, the cryostat assembly is full of helium at 4 K with a target stick inserted. The x-ray beam is scanned across the face of a cell that contains the unknown thickness of solid ammonia. The second setup is identical except that the ammonia crystals have been removed and the target cell is empty. The exposure time for both configurations is the same, so Poisson statistics apply (TAY82). The resultant x-ray intensities, "I amm" and "I ampty", after traversing the targets are:

$$I_{amm} = I_{0}e^{-\left\{ \left(\frac{\mu}{\rho}\right)_{cryo} x_{cryo} + \left(\frac{\mu}{\rho}\right)_{He} (x_{He} + x'_{He}) + \left(\frac{\mu}{\rho}\right)_{amm} x_{amm} \right\}}$$

$$I_{empty} = I_{0}e^{-\left\{ \left(\frac{\mu}{\rho}\right)_{cryo} x_{cryo} + \left(\frac{\mu}{\rho}\right)_{He} (x_{He} + x'_{He} + x_{amm}) \right\}}$$

The terms with the subscript "cryo" refer to the effects of the experimental apparatus and include all support structure, NMR coils, wire baskets, etc. These are too complex

to be easily evaluated but they are identical for both situations. Consequently, taking the ratio cancels their effects:

$$\left(\frac{\mathbf{I}_{\text{empty}}}{\mathbf{I}_{\text{amm}}}\right) = e^{-f_{\text{amm}}t_{\text{trgl}}\rho_{\text{amm}}} \left(\left(\frac{\rho_{\text{He}}}{\rho_{\text{amm}}}\right)\left(\frac{\mu}{\rho}\right)_{\text{He}} - \left(\frac{\mu}{\rho}\right)_{\text{amm}}\right) .$$
(4)

Taking the logarithm of each side and rearranging terms gives the desired expression for the **volume packing fraction** in a target cell.

$$f_{\text{amm}} = \frac{\ell n \begin{pmatrix} I_{\text{empty}} \\ I_{\text{amm}} \end{pmatrix}}{t_{\text{trgt}} \rho_{\text{amm}} \left(\begin{pmatrix} \mu \\ \rho \end{pmatrix}_{\text{amm}} - \begin{pmatrix} \rho_{\text{He}} \\ \rho_{\text{amm}} \end{pmatrix} \begin{pmatrix} \mu \\ \rho \end{pmatrix}_{\text{He}} \right)}.$$
 (5)

The denominator in this expression can be computed independently of the x-ray measurement and has values of 0.47689 for the NH₃ and 0.46988 for the ND₃. The mass-thickness of ammonia in a target cell is consequently:

$$x_{\text{amm}} = t_{\text{trgt}} \rho_{\text{amm}} f_{\text{amm}} = \frac{\ell_n \left(\frac{I_{\text{empty}}}{I_{\text{amm}}} \right)}{\left(\left(\frac{\mu}{\rho} \right)_{\text{amn}} - \left(\frac{\rho_{\text{He}}}{\rho_{\text{amm}}} \right) \left(\frac{\mu}{\rho} \right)_{\text{He}} \right)}. \tag{6}$$

The denominator has a value of 0.17335 for the NH₃ and 0.14832 for the ND₃. Note that the effective mass-attenuation coefficient of helium in the denominator is supressed relative to the mass-attenuation coefficient of ammonia by a factor of the ratio of their densities (<0.143). Thus while each mass-attenuation coefficients is comparable in magnitude, the ammonia term contributes (1/0.143)=7 times more in the denominator. This observation will have implications in the next section.

1.4 Error analysis

We assume that if x,..., z are measurements used to compute the function q(x,..., z), and if the uncertainties in x,..., z are independent and random, then the uncertainty in the computed function q is given by (TAY82):

$$\delta \mathbf{q} = \sqrt{\left(\frac{\partial \mathbf{q}}{\partial \mathbf{x}} \, \delta \mathbf{x}\right)^2 + \dots + \left(\frac{\partial \mathbf{q}}{\partial \mathbf{z}} \, \delta \mathbf{z}\right)^2} \tag{7}$$

We treat the intensity measurements as satisfying equation (7). The uncertainty in the packing fraction, equation (5), and the mass-thickness, equation (6), result from uncertainties in 'he attenuation coefficients, material densities and the x-ray intensity measurements which are independent variables. The largest source of uncertainty is the calculated mass-attenuation coefficient for ammonia. This uncertaintey, however, is not random, but is a contribution to the systematic error. The contribution from the ammonia mass-attenuation coefficient is seven times more significant than that from helium. The accurate knowledge of the x-ray energy is also less significant. We maintain four digits of accuracy rather than round the source energy up to 60 keV but the effect of lack of precision in the x-ray energy is minimal. For example, using 60.00 keV, which is 0.8% higher than the actual x-ray energy, the denominator in equation (6) becomes 0.17400 resulting in a 0.4% decrease in thickness.. Ignoring the systematic errors, the fractional uncertainty in the mass-thickness is:

$$\frac{\delta x_{\text{amm}}}{x_{\text{amm}}} = \frac{\sqrt{\left(\frac{\delta I_{\text{empty}}}{I_{\text{empty}}}\right)^2 + \left(\frac{\delta I_{\text{amm}}}{I_{\text{amm}}}\right)^2}}{\ell n \binom{I_{\text{empty}}}{I_{\text{amm}}}}$$
(8)

Since identical counting times were used, we may evaluate the uncertainty in intensities the square root of the number of counts.

$$\left(\frac{\delta I_x}{I_x}\right)^2 = \left(\frac{\sqrt{I_x}}{I_x}\right)^2 = \left(\frac{1}{\sqrt{I_x}}\right)^2 = \frac{1}{I_x}$$
(9)

Combining these terms under the radical using the identity:

$$\frac{1}{I_{x}} + \frac{1}{I_{y}} \equiv \frac{I_{x} + I_{y}}{I_{x}I_{y}} \tag{10}$$

A final expression for the fractional uncertainty in the mass-thickness is:

$$\frac{\delta x_{\text{amm}}}{x_{\text{amm}}} = \frac{\sqrt{\left(I_{\text{empty}} + I_{\text{amm}}\right) / \left(I_{\text{empty}}I_{\text{amm}}\right)}}{\ell n \left(I_{\text{empty}}/I_{\text{amm}}\right)}.$$
(11)

The quantities of interest, mass-thickness and volume packing fraction, describe all of the material in a given basket. This means that the intensities used for our calculations are the sums of the 21 intensities from each scan position. This greatly improves the overall accuracy as point to point fluctuations are averaged throughout the entire volume of a cell. Note that the difference between the average of the logarithms of the intensity ratios and the logarithm of the average of the intensity ratios is within 0.6%. The statistical error on the final values ranges from 0.85% to 1.3%. The systematic uncertainty in the computer tabulated values of the attenuation cross sections are not well established experimentally, but theoretically, for small Z, they are expected to be in the 2-5% range (MCM67).

2. MEASUREMENT

2.1 Preparations

The ammonia samples to be measured were placed in a liquid helium cooled cryostat. The configuration for the thickness measurement is shown in Figure (3). The position of a target cell in relation to the lab table outside the cryostat was determined to better than 0.5 mm. The target was exposed to the ²⁴¹Am source for five minutes per scan point. One important difference of the target configuration used in the thickness measurement and in the electron beam runs is that the helium bath in the thickness measurement was at 4 K which is above the lambda point of helium (1.6 K), while that in the ESA runs was below the lambda point. In the ESA electron beam runs the helium density is approximately 13% greater than during the thickness measurement. Incorrectly applying the greater helium density of 0.145 grams per cubic cm would increase the denominator in equation (5) to 0.46847 for NH₃ and 0.46144 for ND₃.

resulting in a 1.8% increase in computed packing fraction. The packing fraction is a measurement of the physical dimmensions of the ammonia, irrespective of the surrounding helium. The packing fraction which we have measured is the value which should be used.

Figure 3. Thickness measurement schematic.

The source was set on one end of a rectangular steel support plate. A large notch was cut out of the side of the support plate in the center so that the tailpiece of the helium dewar could be set in. The support plate was mounted on a milling machine drive that allowed a Cartesian coordinate mapping of the target face by adjusting the support plate after each five minute scan point measurement. At several points along the beam path there are lead collimating plates with holes of five mm diameter. It is these holes that define the spots that overlap and cover the entire target face. The outermost one mm ring was not scanned by the electron beam in ESA and so was omitted from the thickness mapping. The face area of a target window is covered, with minimal overlap, by 21 scan points as shown in Figure (4).

Because of the presence of Cu/Ni wire coils for NMR measurements of the target polarization, the assignment of scan point centersmight have an inordinate influence on the target thickness measurement. To insure that this was not the case, new scan

point locations were assigned to point #'s 7, 9, 15 and 17. These new points are the "primed" point #'s 7', 9', 15', 17'. The primed scan points have the same horizontal coordinates as the unprimed points but are 0.03 inches closer to the center in the vertical direction. Stick #1 has no prime point measurements as it was done before this coverage effect was realized. As seen in Table #'s 6-15, the use of the original or the primed points results in very little difference in the final thickness results.

Figure 4. Pattern of 5 mm diameter scan points.

The detector was a Canberra Passivated Implanted Planar Silicon (PIPS) with associated FET input preamplifier (CNP89). The output signal was displayed with "Nucleus-II" personal computer analyzer software(OXT90). The distance from the ²⁴¹Am source to the detector was 28.5 cm.

2.3 Calculations and Tabulations

Our results were tabulated using "Excel" spreadsheet software (MSC93). There are seven data sets, each consisting of a top cell and a bottom cell entry. The data is divided as follows; The data set for stick #1, refers to the material radiated at Bates Lab at MIT. The data set for stick #2a is from early January 1994, that did not use the "prime" raster positions, refers to the material radiated at the Saskatchewan Accelerator Lab. The data set for stick #2b was taken later that month and did not use the primed scan points. The ND₃ for stick #2b was from Bates Lab but the NH₃ was the material radiated at the Naval Postgraduate School in Monterey. The data for stick

#2b' is identical to #2b except for using the values at the primed scan point locations. The data set for stick #3a is from early January, 1994, containing both ND₃ and NH₃ from NPS. The data set for stick #3b was taken in mid February, 1994 after final exposure in ESA. The material in stick #3b was all radiated at the Stanford High Energy Physics Lab 60 MeV linac. The data for stick #3b' is identical to #3b except for using the values at the primed scan point locations.

The columns of the data are arranged in tables as follows; "Scan Point" is the numbered position of the five mm diameter circle of the pattern of 21 used to cover the face of a target. The next two columns are grid coordinates of the relative positions of the scan points. The fourth column is the integrated intensity, including "background", of the "empty" target. Our assumption in including the "background" from the spectrum was that it was directional from the source due to our precautionary shielding of the detector and collimating of the beam. The fifth column is the same data for a corresponding "full" target, again including the background since we are subtracting logarithms and so must include the entire sum of intensities at the detector. The sixth column takes the logarithm of the ratio of the fourth to the fifth column. The "Mass-Thik" column performs equation (6) by dividing the sixth column by the given denominator to give a value for the mass thickness in grams per square centimeter. Column number eight gives a normalized value for the mass thickness by dividing each point by the average of the middle nine scan points (#'s 2, 3, 4, 7, 8, 9, 15, 16, 17). Column number nine gives the packing fraction corresponding to the thickness value in the seventh column by performing equation (5). The last column gives the fractional uncertainty in intensity.

The bottom two entries of column numbers four and five average the intensities above them over all 21 points, or only the center 9, while for the last five column calculations, the algebraic operation is performed on the averages derived in the bottom two entries of Column number six. The difference between the average of the

logarithms and the logarithm of the averages is negligible. This was determined by having the final values of column numbers six through ten calculated by averaging over the 21 points in the column above them rather than operating on the values up the row to their left. The numbers obtained either way differ by less than 0.2%.

3. CONCLUSION

3.1 Data presentation

The final results for the target thickness and packing fraction measurement are displayed, with their random errors, in Table (1) below.

Stick#	Sample	Cell Type	Thickness	RndmUnc	PacFract.	RndmUnc
1;	Bates	Top-NH3	1.79	0.009	0.651	0.003
	Bates	Bot-NH3	1.578	0.008	0.573	0.003
2a;	SAL	Top-ND3	1.82	0.01	0.575	0.003
Σα,	SAL	Bot-NH3	1.397	0.008	0.508	0.003
2b;	Bates	Top-ND3	1.85	0.01	0.583	0.003
	NPS	Bot-NH3	1.53	0.008	0.556	0.003
2b';	Bates	Top-ND3	1.84	0.01	0.58	0.003
	NPS	Bot-NH3	1.5	0.008	0.546	0.003
3a;	NPS	Top-ND3	1.643	0.009	0.519	0.003
	NPS	Bot-NH3	1.384	0.008	0.503	0.003
3b;	HEPL	Top-ND3	1.701	0.009	0.537	0.003
	HEPL	Bot-NH3	1.409	0.008	0.512	0.003
3b';	HEPL	Top-ND3	1.7	0.009	0.537	0.003
	HEPL	Bot-NH3	1.41	0.008	0.512	0.003

Table 1. Target thickness measurement results.

3.2 2-D Trend analysis

An important question about the experimental results is whether there was a settling effect and the average thickness decreases with height. Table #10 shows the data sets arranged by vertical elevation on the target face, averaged over horizontal scan points. It is seen that the effect of the primed scan points is minor and that the greatest difference due to using them over the unprimed points is of the order of 0.5%

for stick #3b and Stick #2b ND₃ and 2.0% for the NH₃ in stick #2b. In all four cases, the correction for primed scan points produced lower thickness values. Table #'s 11-15 show graphically the variation of target thickness as afunction of vertical position. The arrangement of the data sets into tables for display is shown in table (2).

Table #	Description
3	Stick #1 scan point value analysis
4	Stick #2a scan point value analysis
5	Stick #2b scan point value analysis
6	Stick #2b' scan point value analysis
7	Stick #3a scan point value analysis
8	Stick #3b scan point value analysis
9	Stick #3b' scan point value analysis
	Vertical average values of all sticks
11	Stick #1 2-D variation with height
12	Stick #2a 2-D variation with height
	Stick #2b' 2-D variation with height
14	Stick #3a 2-D variation with height
15	Stick #3b' 2-D variation with height

Table 2. Description of data display tables

The error bars shown are the <u>range</u> of the horizontal values at a given vertical height. Note that in Table #'s 11-15 the error range is larger for the central positions because there are more data points there and so the range of values spanned by the average is greater. All of the graphs appear to be consistent with thickness decreasing as height increases except stick #3b prime which appears relatively flat in comparison.

3.3 3-D Trend analysis

In order to visualize the non-uniformity of the target, Figure 5 shows the grid pattern of (unprimed) data points for for stick #1 bottom cell. Figure 6 presents a three dimensional view of the target thickness for the bottom cell of that stick, and Figure 7 is a contour plot of the same data. The primed scan points are shown in Figure 8. Figure #'s 9 and 10 are the three dimensional and contour view of the bottom cell of stick #3b prime and show a more uniform thickness which explains the relative flatness observed in table #14

3.4 Acknowledgments

We wish to thank the entire E143 Collaboration, especially the target group. In particular, Professor Janice Button-Shafer, UMASS, Amherst, who designed the measurement and attenuation setup, Professor Ingo Sick, University of Basel, Switzerland, and his student Beni Zihlmann, who established the measurement technique. Don Crabb, Oscar Rondon-Aramayo, Dave Zimmerman, Jim McCarthy and Todd Averett of UVA, Jim Johnson, University of Wisconsin, Ray Arnold, American University and Rainer Pitthan, SLAC, provided guidance and discussion for which we are very grateful. Don Snyder, Harold Reitdyk and Professor Fred Buskirk of NPS provided operation of the NPS LINAC during the ammonia irradiation.

References

AIC93	AIC Software of Grafton Mass., 1993. Compiled from
	The National Bureau of Standards (Berger and Hubbell, 1987),
	Los Alamos National Laboratory (Storm and Israel, 1967)
	and the Kaman Sciences Corporation (Viegele et al., 1971).
CNP89	Technical specifications are in the Canberra Nuclear Products Group
	of Meriden CT product Catalog, 8th edition, 1989.
CRA90	D.G. Crabb, Physical Review Letters, Volume #64 (1990), pg. #2627.
LMS93	L.M. Stuart "E143 target specifications summary" memo of 11/4/93.
MCC93	J. McCarthy, et al, E143 Collaboration Proposal of 1993.
MCM67	McMaster et al., UCRL-50174-Sec.1-Rev.1, 1967.
MSC93	Version 4.0 by Microsoft Corporation of Redmond WA, 1993
OXT90	"Nucleus PCA-II", by Oxford/Tennelec of Oak Ridge TN, 1990.
PVM93	Physics Vad Mecum, 2nd Ed., 1989, H.J. Anderson, Editor.
SHA93	Dr. J. Button-Shafer, Univ. of Mass., Amherst, designed and
	acquired the material for the measurement apparatus and was
	responsible for coordinating team member actions.
SIC93	Ingo Sick and Beni Zihlmann, E143 Tech Memo, 19 May, 1994.
TAY82	J. R. Taylor, "An Introduction to Error Analysis", 1982, Oxford.
WIL84	G. E. Chart of the Nuclides, 13th Ed., 1984, Williams, Editor.

Figure Captions

- Figure 1. E143 experiment schematic. Polarized electrons are scattered by a polarized ammonia target. Scattering asymmetry is measured.
- Figure 2. Target assembly in E143 experiment. Various components of the target are defined.
- Figure 3. Target thickness measurement schematic. 60 keV x-rays from a

 241 Am source are attenuated through the ammonia target. The

 distance from the x-ray source to the detector is 28.5 cm.
- Figure 4. Pattern of scan points. Each small scan point circle is five mm in diameter. 21 of these circles covered the area over which the incident electron beam was scanned during the experiment.
- Figure 5. Center of scan points for the "unprimed" scan centers #'s1-21.
- Figure 6. Thickness variation for stick #1, bottom cell, Bates NH₃ target.

 The data is presented in Table #1.
- Figure 7. Thickness contour for target shown in Figure 6.
- Figure 8. Center of scan points for the "primed" scan centers #'s 1-6, 7', 8, 9', 10-14, 15', 16, 17', 18-21.
- Figure 9. Thickness variation for stick #3b prime, bottom cell, HEPL NH₃ target.

 The data is presented in Table #9.
- Figure 10. Thickness contour for target shown in Figure 9.

TABLE3.XLS

Column#:	2	3	4	5	6	7	8	9	10
Col.Units:		inches	counts	counts		gr/cm^2	unitless	unitless	counts
	Horizontal		Run #s	Run #s			Nrm-Thik		<u></u>
Stick #1:		Bates	844-864	674-694		(/)0.17335		(/).47689	(Smlnv)/d
1	-0.35	0	16570	12311	0.297101			0.622996	
2	-0.18	0	15533	11371	0.311901	1.799253	1.004479	0.65403	0.022099
3	0	0	14008	10420	0.295902	1.70696	0.952954	0.620482	0.023782
4	0.18	0	15207	11967	0.239603	1.382192	0.771644	0.502428	0.024964
5	0.35	0	15730	12141	0.258982	1.493981	0.834053	0.543064	0.023738
6	-0.3	-0.17	16575	10301	0.475655	2.743897	1.53185	0.997409	0.018192
7	-0.15	-0.17	15245	10430	0.379565	2.189589	1.222394	0.795918	0.020626
8	0	-0.17	14400	10333	0.331886	1.91454	1.06884	0.695937	0.022379
9	0.15	-0.17	15205	11001	0.323638	1.866964		0.678643	0.022002
10	0.3	-0.17	14801	10286	0.363911	2.099285	1.171979	0.763092	0.021279
11	-0.25	-0.3	16264	9940	0.492387	2.840421	1.585737	1.032496	0.018144
12	0.17	-0.3	14288		0.250675		0.8073		
13	0	-0.35	15037	9257	0.485134				
14	-0.3	0.17	15736	12285	0.247572				
15	-0.15	0.17	15017		0.337258		1.086144		
16	0	0.17	13899	10269			0.974807		
17	0.15	0.17	14651		0.243641				
18	0.3	0.17	13477				0.534504		
19	-0.25	0.26	15528			1.592569			
20	0.17	0.26	15657			1.270044		0.461662	
21	0		15244				0.831286		
Cntr.9Avg		N/A	14796.11			1.769271	0.98774		
21CellAvg		N/A		11103.33		1.791231	1	0.651114	
Stick #1:	Bot NH3	Bates	873-893	696-716			(/)21ptAv		·
1	-0.35		16535				1.007168		
2	-0.18	0	16035	<u> </u>		1.716547		0.623967	
3	0	0	16093		0.334647			0.701728	· · · · · · · · · · · · · · · · · · ·
4	0.18	0	14832		0.299437				 _
5	0.35	0	15423		0.258482				
6	-0.3	-0.17	15637		0.331318			0.694748	
7	-0.15	-0.17	15887		0.333907			0.700177	
8							1.092002		
9	0.15				0.301639			0.632513	
10	0.3	-0.17	14806		0.314838		1.151231 1.204253		
11	-0.25	-0.3	15114		0.329339				
12	0.17	-0.3	15940		0.342526				
13	-0.3	-0.35 0.17	14290		0.288942			0.605889	
14		0.17	12707		0.166596				
15		0.17				0.953404	0.811665	0.346563	
16	0 15	0.17	15166						
17	0.15	0.17	14260 13927		0.210427				
1 4^	1 00		: 1.59//	17200	0.210266	1.212959	0.768855	0.440912	
18	0.3	0.17			0 462645	0.020075	0.504646	0.240004	これ んつんロファ
19	-0.25	0.26	14039	11932	0.162615		0.594616		
19 20	-0.25 0.17	0.26 0.26	14039 15290	11932 11197	0.311553	1.797249	1.139218	0.653302	0.022284
19 20 21	-0.25 0.17 0	0.26 0.26 0.31	14039 15290 15295	11932 11197 11681	0.311553 0.269562	1.797249 1.555018	1.139218 0.985676	0.653302 0.565251	0.022284 0.023667
19 20	-0.25 0.17 0 N/A	0.26 0.26	14039 15290	11932 11197 11681 11459.67	0.311553	1.797249 1.555018 1.581667	1.139218	0.653302 0.565251 0.574938	0.022284 0.023667

TABLE4.XLS

Column#:	2	3	4	5	6	7	8	9	10
Col.Units:	inches	inches	counts	counts	unitless	gr/cm^2	unitless	unitless	counts
ScanPoint	Horizontal	Vertical	Run #s	Run #s	Int. Ratio	Mass-Thik	Nrm-Thik	PackFract	"I"Uncert
Stick #2a	Top ND3	SAL	1121-114	593-613	Ln(le/lam)	(/)0.14832	(/)21ptAv	(/)0.46988	(Smlnv)/d
1	-0.35	0	15714	10434	0.409482	2.760803	1.514631	0.871462	0.019735
2	-0.18	0	12675	11083	0.134219	0.90493	0.496462	0.285646	0.035497
3	0	0	12810	10611	0.188335	1.269788	0.696631	0.400815	0.030247
4	0.18	0	13747	10326	0.286156		1.058459		0.024344
5	0.35	0	14501	10250	0.34694	2.339131	1.283294		0.021908
6	-0.3	-0.17	15144	10381	0.377627	2.54603	1.396803		0.020735
7		-0.17	14556	9976	0.377821	2.547337	1.39752		
8	0	-0.17	14309	10310	0.327774	2.209914			0.022564
9	0.15	-0.17	15302	10153					
10	0.3	-0.17	15024	10887	0.32208			0.685451	
11	-0.25		14366		0.301372			0.641381	0.023306
12	0.17	-0.3	14601	11052		1.877553			
13	0	-0.35	13599	9883	0.31918		1.180613		
14	-0.3	0.17	13330	11715					
15		0.17	13836	10970	0.23211			0.493976	
16		0.17	13309	11863				0.244778	
17			14761		0.259253			0.551743	
18	0.3	0.17	13833		0.154476			0.328756	
19	-0.25	0.26	15175	11810		1.690283		0.533546	
20	0.17	0.26	14968	10982	0.309657		1.145388	<u></u>	
21	0		14560	12468					0.030982
Cntr9Avg		N/A	13922.78		0.259324		0.95921		
21CellAvg		N/A	14291.43				1	3:3:3	
	Bot NH3	SAL		570-590				(/)0.47689	
1	-0.35	0	13382					0.217419	
2	-0.18	0	15356		0.437054		1.804655		0.019485
3	0	0	14434		0.347787		1.43606		
4	0.18	0	14439		0.293819			0.616114	
5	0.35	0	13127		0.146335				0.033514
6	-0.3	-0.17	13177	10977	0.182671			·	
7	-0.15	-0.17	13541	10915		1.243635		0.452063	
8		-0.17	14206	10918		1.518613			0.024806
9			15022				1.170506		0.02338
10	0.3	-0.17	13932		0.197422			0.413978	
11	-0.25	-0.3	13785	10781				0.515414	
12	0.17	-0.3	14786	11107					0.023475
13	0	-0.35	15424	9746					
14	-0.3	0.17	13807	10714	0.253624				
15	-0.15	0.17	15168	10980					0.022043
16 17	0 15	0.17	13839	10622	0.264563 0.125138				
	0.15	0.17	13322						
18	0.3	0.17	13870	11187					0.027408
19	-0.25	0.26	12345	12552	-0.01663				#NUM!
20	0.17	0.26	15357		0.250422				
21	0	0.31	14427	11681		1.217986			
Cntr.9Avg		N/A	14369.67		0.283723	1.030/0/	1.171531	0.594945	0.007965
21CellAvg	8 1 / A	N/A	14130.76	11091.43	0.040400	1.397067	1	0.507005	0.005625

TABLE5.XLS

Column#:	2	3	4	5	6	7	8	9	10
Col.Units:	inches	inches	counts	counts	unitless	gr/cm^2	unitless	unitless	counts
ScanPoint	Horizontal	Vertical	Run #s	Run #s	Int. Ratio	Mass-Thik	Nrm-Thik	PackFract	"I"Uncert
Stick #2b	Top ND3	Bates	1121-114	762-782	Ln(le/lam)	(/)0.14832	(/)21ptAv	(/)0.46988	(Sminv)/d
1	-0.35	0	15714	11983	0.271063	1.827556	0.98998	0.576877	0.023295
2	-0.18	0	12675	10319	0.205645	1.386493	0.751058	0.437654	0.029239
3	0	0	12810	10277	0.220318	1.485422	0.804647	0.468881	0.028213
4	0.18	0	13747	10609	0.259118	1.747019	0.946354	0.551456	0.025387
5	0.35	0	14501	11200	0.258304	1.741531	0.943381	0.549723	0.024752
6	-0.3	-0.17	15144	10403	0.37551	2.531757	1.371443	0.799162	0.020781
7	-0.15	-0.17	14556	10767	0.301517	2.032884	1.101206	0.64169	0.023149
8	0	-0.17	14309	10600	0.300035	2.022888	1.095791	0.638535	0.023396
9	0.15	-0.17	15302	10810	0.347512	2.342988	1.269188	0.739576	0.021313
10	0.3	-0.17	15024	10393	0.368516	2.484604	1.345901	0.784278	0.021017
11	-0.25	-0.3	14366	10636	0.30062	2.026833	1.097928	0.63978	0.02333
12	0.17	-0.3	14601	10840	0.297847	2.008138	1.087801	0.633879	0.023231
13	0	-0.35	13599	9437	0.365358	2.46331	1.334366	0.777556	0.022165
14	-0.3	0.17	13330	10149	0.272642	1.838201	0.995747	0.580237	0.02523
15	-0.15	0.17	13836	10691	0.257872	1.738617	0.941802	0.548803	0.025357
16	0	0.17	13309	10487	0.238304	1.606689	0.870337	0.507159	0.026748
17	0.15	0.17	14761	11663	0.235567	1.588236	0.860341	0.501335	0.025526
18	0.3	0.17	13833	11033	0.226166	1.524853	0.826007	0.481328	0.02684
19	-0.25	0.26	15175	12160	0.221497	1.493376	0.808956	0.471392	0.025861
20	0.17	0.26	14968	11779	0.239596	1.615401	0.875057	0.50991	0.025163
21	0	0.31	14560	11999	0.193455	1.304306	0.706538	0.411711	0.028033
Cntr9Avg	N/A	N/A	13922.78	10691.44	0.264082	1.780491	0.964485	0.562021	0.008341
21CellAvg	N/A	N/A	14291.43	10868.33	0.273807	1.846053	1	0.582716	0.005308
Stick #2b	Bot NH3	NPS	1095-111	789-809	Ln(le/lam)	(/)0.17335	(/)21ptAv	(/)0.47689	(Smlnv)/d
1	-0.35	0	13382	10198	0.271719	1.567458	1.024704	0.569773	0.025217
2	-0.18	0	15356	11018	0.331976	1.915062	1.251944	0.696127	0.021669
3	0	0	14434	10515	0.316784	1.827423	1.194652	0.66427	0.02278
4	0.18	0	14439	10084	0.358983	2.070856	1.353793	0.752758	0.02166
5	0.35	0	13127	10254	0.247003	1.424882	0.931496	0.517946	0.026519
6	-0.3	-0.17	13177	10149	0.261098	1.506188	0.984649	0.547501	0.025846
7	-0.15	-0.17	13541	10186	0.284708	1.642388	1.073688	0.59701	0.024581
8	0	-0.17	14206	9959	0.355188	2.048963	1.33948	0.7448	0.021929
9	0.15	-0.17	15022	10020	0.404933	2.335926	1.527078	0.849111	0.02027
10	0.3	-0.17	13932	10635	0.270038	1.557761	1.018364	0.566248	0.024779
11	-0.25	-0.3	13785	10441	0.277841	1.602773	1.04779	0.58261	0.024613
12	0.17	-0.3	14786	10988	0.296877	1.712587	1.11958	0.622527	0.023116
13	0	-0.35	15424	9723	0.461431	2.661843	1.740142	0.967583	0.019063
14	-0.3	0.17	13807	11823	0.155129	0.894889	0.585021	0.325293	0.031814
15	-0.15	0.17	15168	11229	0.300688	1.734573	1.133952	0.630519	0.022703
16	0	0.17	13839	11010	0.228687	1.31922	0.862421	0.479538	0.026705
17	0.15	0.17	13322	12387	0.072769	0.419782	0.274427	0.152591	0.04627
18	0.3	0.17	13870	11724			0.6339		0.0306
19	-0.25	0.26	12345	12020		0.153904			
20	0.17	0.26	15357	10585		2.146718			0.020709
21	0	0.31	14427	12679		0.74505			0.033873
Cntr.9Avg	N/A	N/A	14369.67		0.293755	1.694577	1.107805		0.007851
21CellAvg		N/A	14130.76	10839.38	0.265168	1.52967	1	0.556036	0.005411

TABLE6.XLS

Colum	nn#:	2	3	4	5	6	7	8	9	10
		inches	inches	counts	counts	unitless	gr/cm^2	unitless	unitless	counts
		Horizontal		Run #s	Run #s		Mass-Thik		PackFract	"I"Uncert
Stick :		Top ND3	Bates	1121-114	762-786	Ln(le/lam)	(/)0.14832	(/)21ptAv	(/)0.46988	
	1	-0.35	0	15714	11983	0.271063	1.827556	0.995357	0.576877	0.023295
	2	-0.18	0	12675	10319	0.205645	1.386493	0.755138	0.437654	0.029239
	3	0	0	12810	10277	0.220318	<u> </u>	 	0.468881	0.028213
	4	0.18	0	13747	10609	0.259118			0.551456	0.025387
	5	0.35	0	14501	11200	0.258304	1.741531	0.948505	0.549723	0.024752
	6	-0.3	-0.17	15144	10403	0.37551	2.531757	1.378892	0.799162	
7'		-0.15	-0.14	15024	10839			1.198918	0.694854	0.022055
i –	8	0.10	-0.17	14309	10600			1.101743		
9,		0.15	-0.14	15577	11440			1.133487	0.656933	
-	10	0.3	-0.17	15024	10393			1.353211	0.784278	
	11	-0.25	-0.3	14366	10636				0.63978	
 	12	0.17	-0.3	14601	10840		2.008138			
ļ	13	0.17	-0.35	13599	9437	0.365358	<u> </u>	1.341614		
<u> </u>	14	-0.3	0.17	13330	10149			1.001155	<u> </u>	0.02523
451	14		0.17	13531	10149			0.774485		
15'	46	-0.15				0.210914	<u> </u>			
4-71	16	0 15	0.17	13309	10487		1	0.875065		
17'	40	0.15	0.14	14658		0.261335		0.959634	L	
ļ	18	0.3	0.17	13833	11033			1	0.481328	0.02684
	19	-0.25	0.26	15175				0.81335		
ļ	20	0.17	0.26	14968		<u> </u>	<u> </u>	0.87981	0.50991	0.025163
	21	0	0.31	14560	11999		1.304306		0.411711	0.028033
Cntr9/	_		N/A	13960					0.554628	0.008377
21Cell			N/A	14307.38	10896.57	0.272327	1.83608	1 (0.04 - 1.4	0.579568	0.005317
Stick #		Bot NH3	NPS	1095-111	789-813		(/)0.17335		(/)0.47689	·
	1	-0.35	0	13382	10198	0.271719				
	2	-0.18	0	15356						0.021669
	3	0	0	14434	10515			1.217494	0.66427	0.02278
	4	0.18	0	14439	10084				0.752758	0.02166
<u> </u>	5	0.35	0	13127	10254				0.517946	
	6	-0.3	-0.17	13177	10149				0.547501	0.025846
7'		-0.15	-0.14	13307	10295	0.256632			0.538136	0.02591
	8	0	-0.17	14206	9959				0.7448	
9'		0.15	-0.14	14177			1.927019		0.700473	
	10	0.3	-0.17	13932		0.270038			0.566248	
	11	-0.25	-0.3	13785	10441	0.277841	1.602773		0.58261	0.024613
	12	0.17	-0.3	14786	10988	0.296877	1.712587	1.140987	0.622527	0.023116
	13	0	-0.35	15424	9723	0.461431	2.661843	1.773415	0.967583	0.019063
	14	-0.3	0.17	13807	11823	0.155129	0.894889	0.596207	0.325293	0.031814
15'		-0.15	0.14	14512			1.445721	0.963191	0.525521	0.025064
	16	0	0.17	13839			1.31922	0.878911	0.479538	
17'		0.15	0.14	13561	12063		0.675253		0.245455	
	18	0.3	0.17	13870		0.16809			0.352472	0.0306
 	19	-0.25	0.26	12345	12020					
 	20	0.17	0.26	15357		0.372133			0.780334	
 	21	0.17	0.31	14427		0.129154				
Cntr.9			N/A	14203.44		0.282307		1.084989		
21Cel			N/A	14059.52						0.005468
		1 4//3	1 11/7	17000.02	, ,,,,,,,	, J J J J J J J			, 5.575004	J. J

TABLE7.XLS

Column#:	2	3	4	5	6	7	8	9	10
Col.Units:		inches	counts	counts		gr/cm^2	unitless	unitless	counts
	Horizontal		Run #s	Run #s				PackFract	
Stick #3a	Top ND3	NPS	994-1014	472-492		(/)0.14832	L	(/)0.46988	
1	-0.35	0	16027	12308		1.780106			0.023325
2	-0.18	0	15958	10149			1.856802		0.018872
3	0	0	15380	10510			1.56205		0.02051
4	0.18	0	15923	11090		2.438786		0.769815	
5	0.35	0	15349					0.635808	
6	-0.3	-0.17	14715	12604				0.329559	
7	-0.15	-0.17	13762		0.095303			0.202824	
8	0	-0.17	13434		0.169805			0.36138	
9	0.15	-0.17	14069			1.407651		0.444332	
10	0.3	-0.17	13775	10737		1.679879	1.022217		
11	-0.25	-0.3	16142	10250			1.86321	0.966517	0.018741
12	0.17	-0.3	14385			1.301339		0.410774	
13		-0.35	13103		0.113338		<u> </u>	0.241206	
14	-0.3	0.17	14077			0.752157		0.237422	
15	-0.15	0.17	14078		0.125305			0.266675	
16	0.10	0.17	14189	11802		1.241896	L	0.392011	
17	0.15	0.17	14334	11679	0.204842	1.381081	0.840397		
18	0.13	0.17	14159					0.500069	
19	-0.25	0.26	13940	10736	0.26116			0.555801	
20	0.17	0.26	15285					0.637786	
21	0.17	0.20	15578		0.303078			0.645011	
Cntr.9Avg		N/A	14569.67		0.242263			0.515585	
21CellAvg		N/A		11481.48			· — — · · · · · · · · · · · · · · · · ·	0.518737	
	Bot NH3	NPS	1045-106				(/)21ptAv		
Olick #Ja	-0.35	0	13047	10379		1.319721			0.027499
2	-0.18	0	14011	11506			0.820879		
3	-0.10	0	13409	11106				0.395145	
4	0.18	0	15260				·		0.022967
5	0.35	0	14400	11776		1.160454	L	0.421826	
6	-0.3	-0.17	14587	12194		1.03367			0.027707
7	-0.15	-0.17	14891	12200		1.149819			0.027352
8	-0.15	-0.17	13578				0.711116		0.030717
9	0.15	-0.17	13613					0.33781	
10	0.13	-0.17	14541	11221				0.543491	
11	-0.25	-0.17	15658	10666					
12	0.17	-0.3	15055		0.363921			0.803031	
13	0.17	-0.35	13879		0.199926				0.024748
14	-0.3	0.17	15660		0.199926				0.020496
15	-0.15	0.17	15570	11140		1.931374		0.702057	
16	-0.15 0	0.17	15007	10302				0.788817	
17	0.15	0.17	16128	11073					0.020801
18	0.13	0.17	14066	11655				0.788341	
			13975	12540	~				0.02888
19	-0.25	0.26		<u> </u>					
20	0.17	0.26	13976	11739					
24		A 24	4 4070	4444	A 2544A2	1 4 860006 /	7 114 / ///-		
21	0	0.31	14679	11416		<u> </u>	1.047705		
21 Cntr.9Avg 21CellAvg	N/A	0.31 N/A N/A	14679 14607.67 14523.43	11381.33	0.249572	1.4397	1.047/05 1.040078	0.523332	0.008342 0.005571

TABLE8.XLS

Column#:	2	3	4	5	6	7	8	9	10
Col.Units:		inches	counts	counts		gr/cm^2	unitless	unitless	counts
	Horizontal		Run #s	Run #s				PackFract	
Stick #3b		HEPL	994-1014	902-922		(/)0.14832		(/)0.46988	
1	-0.35	0	16027	12099			1.114246		
2	-0.18	0	15958		0.277416		1.099441		
3	0	0	15380		0.284134		1.126064		·
4	0.18	0	15923	12137			1.076018	0.57782	
5	0.35	0	15349	11830			1.032049	0.554209	0.023975
6	-0.3	-0.17	14715				1.157851		0.023327
7	-0.15	-0.17	13762		0.272729				0.024827
8	0	-0.17	13434	10326	0.263124	1.774028	1.042798	0.559981	0.025514
9	0.15	-0.17	14069	10759	0.268231	1.808463	1.063039	0.57085	0.024729
10	0.3	-0.17	13775	10245	0.296066	1.996127			0.023977
11	-0.25	-0.3	16142	10864	0.39597	2.669701	1.569287	0.842705	0.019721
12	0.17	-0.3	14385	10142	0.349501	2.356397	1.385123	0.743809	0.021932
13	0	-0.35	13103	9808	0.289643			0.616419	0.024809
14	-0.3	0.17	14077		0.234539			0.499146	
15	-0.15	0.17	14078		0.259527				
16	0	0.17	14189	11488					
17	0.15	0.17	14334		0.220896				
18	0.3	0.17	14159		0.201416				
19	-0.25	0.26	13940		0.112721			0.239892	
20	0.17	0.26	15285		0.145368			0.309373	
21	0		15578		0.144133		' 	0.306745	
Contr OAsse	4444								
ICHTL. SAVQ	N/A	N/A	14569.67	11245.33	0.258989	1.746147	1.026409	0.55118	0.008222
Cntr.9Avg 21CellAvg			14569.67 14650.57			1.746147 1.701219			
21CellAvg	N/A	N/A	14650.57	11383.38	0.252325	1.701219	1	0.536999	0.005428
21CellAvg	N/A Bot NH3		14650.57 1045-106	11383.38 935-955	0.252325 Ln(le/lam)	1.701219 (/)0.17335	1 (/21pt.Avg	0.536999 (/)0.47689	0.005428 (Smlnv)/d
21CellAvg Stick #3b	N/A Bot NH3 -0.35	N/A HEPL	14650.57 1045-106 13047	11383.38 935-955 10309	0.252325 Ln(le/lam) 0.235541	1.701219 (/)0.17335 1.358759	1 (/21pt.Avg 0.964051	0.536999 (/)0.47689 0.49391	0.005428 (Smlnv)/d 0.027152
21CellAvg Stick #3b 1	N/A Bot NH3	N/A HEPL 0	14650.57 1045-106 13047 14011	11383.38 935-955 10309 10715	0.252325 Ln(le/lam) 0.235541 0.268198	1.701219 (/)0.17335 1.358759 1.547148	1 (/21pt.Avg 0.964051 1.097714	0.536999 (/)0.47689 0.49391 0.56239	0.005428 (Smlnv)/d 0.027152 0.024781
21CellAvg Stick #3b	N/A Bot NH3 -0.35 -0.18	N/A HEPL 0	14650.57 1045-106 13047 14011 13409	11383.38 935-955 10309	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825	1.701219 (/)0.17335 1.358759 1.547148 1.245022	1 (/21pt.Avg 0.964051 1.097714 0.883353	0.536999 (/)0.47689 0.49391 0.56239 0.452567	0.005428 (Smlnv)/d 0.027152
21CellAvg Stick #3b 1 2 3	N/A Bot NH3 -0.35 -0.18 0	N/A HEPL 0 0	14650.57 1045-106 13047 14011 13409 15260	11383.38 935-955 10309 10715 10806	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184	0.536999 (/)0.47689 0.49391 0.56239	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927
21CellAvg Stick #3b 1 2	N/A Bot NH3 -0.35 -0.18	N/A HEPL 0 0 0	14650.57 1045-106 13047 14011 13409	11383.38 935-955 10309 10715 10806 11726	0.252325 Ln(ie/lam) 0.235541 0.268198 0.215825 0.263426 0.284262	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927
21CellAvg Stick #3b 1 2 3 4	N/A Bot NH3 -0.35 -0.18 0.18 0.35 -0.3	N/A HEPL 0 0 0 0	14650.57 1045-106 13047 14011 13409 15260 14400	11383.38 935-955 10309 10715 10806 11726 10837	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023852 0.025105
21CellAvg Stick #3b 1 2 3 4 5	N/A Bot NH3 -0.35 -0.18 0.18 0.35 -0.3 -0.15	N/A HEPL 0 0 0 0 0 -0.17	14650.57 1045-106 13047 14011 13409 15260 14400 14587	11383.38 935-955 10309 10715 10806 11726 10837 11381	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023852 0.025105
21CellAvg Stick #3b 1 2 3 4 5 6	N/A Bot NH3 -0.35 -0.18 0.18 0.35 -0.3 -0.15	N/A HEPL 0 0 0 0 0 -0.17 -0.17	14650.57 1045-106 13047 14011 13409 15260 14400 14587 14891	11383.38 935-955 10309 10715 10806 11726 10837 11381 11371	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691 0.253653	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759 1.463241	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823 1.038182	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552 0.53189	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023852 0.025105 0.023981 0.025779
21CellAvg Stick #3b 1 2 3 4 5 6 7	N/A Bot NH3 -0.35 -0.18 0 0.18 0.35 -0.3 -0.15	N/A HEPL 0 0 0 0 -0.17 -0.17 -0.17	14650.57 1045-106 13047 14011 13409 15260 14400 14587 14891 13578	11383.38 935-955 10309 10715 10806 11726 10837 11381 11371 10536	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691 0.253653 0.229037	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759 1.463241 1.321239	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823 1.038182 0.93743	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552 0.53189	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023852 0.025105 0.023981 0.025779
21CellAvg Stick #3b 1 2 3 4 5 6 7 8	N/A Bot NH3 -0.35 -0.18 0 0.18 0.35 -0.3 -0.15	N/A HEPL 0 0 0 0 -0.17 -0.17 -0.17	14650.57 1045-106 13047 14011 13409 15260 14400 14587 14891 13578 13615	11383.38 935-955 10309 10715 10806 11726 10837 11381 11371 10536 10828	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691 0.253653 0.229037	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759 1.463241 1.321239 1.646204	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823 1.038182 0.93743 1.167995	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552 0.53189 0.480272	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023852 0.025105 0.023981 0.025779 0.026906
21CellAvg Stick #3b 1 2 3 4 5 6 7 8 9	N/A Bot NH3 -0.35 -0.18 0.18 0.35 -0.3 -0.15 0	N/A HEPL 0 0 0 0 -0.17 -0.17 -0.17 -0.17	14650.57 1045-106 13047 14011 13409 15260 14400 14587 14891 13578 13615 14541	11383.38 935-955 10309 10715 10806 11726 10837 11381 11371 10536 10828 10931	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691 0.253653 0.229037 0.285369 0.284494	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759 1.463241 1.321239 1.646204 1.641153	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823 1.038182 0.93743 1.167995 1.164412	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552 0.53189 0.480272 0.598397	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023852 0.025105 0.023981 0.025779 0.026906 0.023697
21CellAvg Stick #3b 1 2 3 4 5 6 7 8 9 10	N/A Bot NH3 -0.35 -0.18 0.35 -0.3 -0.15 0.15 0.33 -0.25	N/A HEPL 0 0 0 0 -0.17 -0.17 -0.17 -0.17 -0.17	14650.57 1045-106 13047 14011 13409 15260 14400 14587 14891 13578 13615 14541 15658	11383.38 935-955 10309 10715 10806 11726 10837 11381 11371 10536 10828 10931 11781	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691 0.253653 0.229037 0.285369 0.284494 0.242933	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759 1.463241 1.321239 1.646204 1.641153	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823 1.038182 0.93743 1.167995 1.164412 0.994306	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552 0.53189 0.480272 0.598397 0.596561 0.509411	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023852 0.025105 0.023981 0.025779 0.026906 0.023697 0.022866 0.024941
21CellAvg Stick #3b 1 2 3 4 5 6 7 8 9 10 11	N/A Bot NH3 -0.35 -0.18 0.35 -0.3 -0.15 0.15 0.3 -0.25 0.17	N/A HEPL 0 0 0 0 -0.17 -0.17 -0.17 -0.17 -0.3 -0.3	14650.57 1045-106 13047 14011 13409 15260 14400 14587 14891 13578 13615 14541 15658 15055	11383.38 935-955 10309 10715 10806 11726 10837 11381 11371 10536 10828 10931 11781 11808	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691 0.253653 0.229037 0.285369 0.284494 0.242933	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759 1.463241 1.321239 1.646204 1.641153 1.401401 1.696377	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823 1.038182 0.93743 1.167995 1.164412 0.994306 1.203593	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552 0.53189 0.480272 0.598397 0.596561 0.509411 0.616635	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023852 0.025105 0.023981 0.025779 0.026906 0.023697 0.022866 0.024941
21CellAvg Stick #3b 1 2 3 4 5 6 7 8 9 10 11 12 13	N/A Bot NH3 -0.35 -0.18 0.35 -0.35 -0.15 0.15 0.3 -0.25 0.17 0	N/A HEPL 0 0 0 0 -0.17 -0.17 -0.17 -0.17 -0.3 -0.3	14650.57 1045-106 13047 14011 13409 15260 14400 14587 14891 13578 13615 14541 15658 15055 13879	11383.38 935-955 10309 10715 10806 11726 10837 11381 11371 10536 10828 10931 11781 11808 10343	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691 0.253653 0.229037 0.285369 0.284494 0.242933 0.294067 0.244197	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759 1.463241 1.321239 1.646204 1.641153 1.401401 1.696377	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823 1.038182 0.93743 1.167995 1.164412 0.994306 1.203593 0.999479	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552 0.53189 0.480272 0.598397 0.596561 0.509411 0.616635 0.512061	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023852 0.025105 0.023981 0.025779 0.026906 0.023697 0.022866 0.024941 0.023954
21CellAvg Stick #3b 1 2 3 4 5 6 7 8 9 10 11 12 13	N/A Bot NH3 -0.35 -0.18 0.35 -0.3 -0.15 0.15 0.25 0.17	N/A HEPL 0 0 0 0 -0.17 -0.17 -0.17 -0.17 -0.3 -0.3 -0.35 0.17	14650.57 1045-106 13047 14011 13409 15260 14400 14587 14891 13578 13615 14541 15658 15055 13879 15660	11383.38 935-955 10309 10715 10806 11726 10837 11381 11371 10536 10828 10931 11781 11808 10343 12267 12148	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691 0.253653 0.229037 0.285369 0.284494 0.242933 0.294067 0.244197	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759 1.463241 1.321239 1.646204 1.641153 1.401401 1.696377 1.408693 1.431678	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823 1.038182 0.93743 1.167995 1.164412 0.994306 1.203593 0.999479 1.015788	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552 0.53189 0.480272 0.598397 0.596561 0.509411 0.616635 0.512061 0.520417	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023952 0.025105 0.025779 0.026906 0.023697 0.022866 0.024941 0.023954 0.024399
21CellAvg Stick #3b 1 2 3 4 5 6 7 8 9 10 11 12 13 14	N/A Bot NH3 -0.35 -0.18 0.35 -0.35 -0.15 0.15 0.33 -0.25 0.17 0 -0.3 -0.3	N/A HEPL 0 0 0 0 0 -0.17 -0.17 -0.17 -0.3 -0.35 0.17	14650.57 1045-106 13047 14011 13409 15260 14400 14587 14891 13578 13615 14541 15658 15055 13879 15660 15570	11383.38 935-955 10309 10715 10806 11726 10837 11381 11371 10536 10828 10931 11781 11808 10343 12267 12148	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691 0.253653 0.229037 0.285369 0.284494 0.242933 0.294067 0.244197 0.248181 0.248586	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759 1.463241 1.321239 1.646204 1.641153 1.401401 1.696377 1.408693 1.431678	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823 1.038182 0.93743 1.167995 1.164412 0.994306 1.203593 0.999479 1.015788 1.017444	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552 0.53189 0.480272 0.598397 0.596561 0.509411 0.616635 0.512061 0.520417 0.521265	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023952 0.025105 0.023981 0.025779 0.026906 0.023697 0.022866 0.024941 0.023954 0.024399 0.0243
21CellAvg Stick #3b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	N/A Bot NH3 -0.35 -0.18 0.35 -0.3 -0.15 0.15 0.3 -0.25 0.17 0 -0.3 -0.15	N/A HEPL 0 0 0 0 -0.17 -0.17 -0.17 -0.3 -0.3 -0.35 0.17 0.17	14650.57 1045-106 13047 14011 13409 15260 14400 14587 14891 13578 13615 14541 15658 15055 13879 15660 15570	11383.38 935-955 10309 10715 10806 11726 10837 11381 11371 10536 10828 10931 11781 11808 10343 12267 12148 11704 12590	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691 0.253653 0.229037 0.285369 0.284494 0.242933 0.294067 0.244197 0.248181 0.248586 0.247654	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759 1.463241 1.321239 1.646204 1.641153 1.401401 1.696377 1.408693 1.431678 1.434013 1.428636	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823 1.038182 0.93743 1.167995 1.164412 0.994306 1.203593 0.999479 1.015788 1.017444	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552 0.53189 0.480272 0.598397 0.596561 0.509411 0.616635 0.512061 0.520417 0.521265 0.519311	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023852 0.025105 0.023981 0.025779 0.026906 0.023697 0.022866 0.024941 0.023954 0.024399 0.02439
21CellAvg Stick #3b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	N/A Bot NH3 -0.35 -0.18 0.35 -0.3 -0.15 0.15 0.3 -0.25 0.17 0 -0.3 -0.15	N/A HEPL 0 0 0 0 -0.17 -0.17 -0.17 -0.3 -0.3 -0.35 0.17 0.17	14650.57 1045-106 13047 14011 13409 15260 14400 14587 14891 13578 13615 14541 15658 15055 13879 15660 15570 15007 16128	11383.38 935-955 10309 10715 10806 11726 10837 11381 11371 10536 10828 10931 11781 11808 10343 12267 12148 11704 12590 11304	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691 0.253653 0.229037 0.285369 0.284494 0.242933 0.294067 0.244197 0.248181 0.248586	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759 1.463241 1.321239 1.646204 1.641153 1.401401 1.696377 1.408693 1.431678 1.434013 1.428636 1.261055	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823 1.038182 0.93743 1.167995 1.164412 0.994306 1.203593 0.999479 1.015788 1.017444 1.013629 0.894729	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552 0.53189 0.480272 0.598397 0.596561 0.509411 0.616635 0.512061 0.520417 0.521265 0.519311 0.458395	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023852 0.025105 0.023981 0.025779 0.026906 0.023697 0.022866 0.024941 0.023954 0.024399 0.024734 0.023897 0.023897
21CellAvg Stick #3b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	N/A Bot NH3 -0.35 -0.18 0.35 -0.3 -0.15 0.15 0.17 0.25 0.17 0.25 0.17	N/A HEPL 0 0 0 0 -0.17 -0.17 -0.17 -0.3 -0.3 -0.35 0.17 0.17 0.17	14650.57 1045-106 13047 14011 13409 15260 14400 14587 14891 13578 13615 14541 15658 15055 13879 15660 15570 15007 16128 14066	11383.38 935-955 10309 10715 10806 11726 10837 11381 11371 10536 10828 10931 11781 11808 10343 12267 12148 11704 12590 11304 11610	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691 0.253653 0.229037 0.285369 0.284494 0.242933 0.294067 0.244197 0.248181 0.248586 0.247654 0.218604	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759 1.463241 1.321239 1.646204 1.641153 1.401401 1.696377 1.408693 1.431678 1.434013 1.428636 1.261055 1.069531	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823 1.038182 0.93743 1.167995 1.164412 0.994306 1.203593 0.999479 1.015788 1.017444 1.013629 0.894729 0.758841	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552 0.53189 0.480272 0.598397 0.596561 0.509411 0.616635 0.512061 0.520417 0.521265 0.519311 0.458395	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023852 0.025105 0.023981 0.025779 0.026906 0.023697 0.022866 0.024941 0.023954 0.024399 0.024734 0.023897 0.023897
21CellAvg Stick #3b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	N/A Bot NH3 -0.35 -0.18 0.35 -0.3 -0.15 0.15 0.3 -0.25 0.17 0 -0.3 -0.15 0.3 -0.25 0.17	N/A HEPL 0 0 0 0 0 -0.17 -0.17 -0.17 -0.3 -0.35 0.17 0.17 0.17 0.17	14650.57 1045-106 13047 14011 13409 15260 14400 14587 14891 13578 13615 14541 15658 15055 13879 15660 15570 15007 16128 14066 13975	11383.38 935-955 10309 10715 10806 11726 10837 11381 11371 10536 10828 10931 11781 11808 10343 12267 12148 11704 12590 11304 11610	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691 0.253653 0.229037 0.285369 0.284494 0.242933 0.294067 0.244197 0.248181 0.248586 0.247654 0.218604 0.185403	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759 1.463241 1.321239 1.646204 1.641153 1.401401 1.696377 1.408693 1.431678 1.434013 1.428636 1.261055 1.069531 1.206701	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823 1.038182 0.93743 1.167995 1.164412 0.994306 1.203593 0.999479 1.015788 1.017444 1.013629 0.894729 0.758841 0.856164	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552 0.53189 0.480272 0.598397 0.596561 0.509411 0.616635 0.512061 0.520417 0.521265 0.519311 0.458395 0.388776	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023952 0.025105 0.023981 0.025779 0.026906 0.023697 0.022866 0.024941 0.023954 0.024399 0.024399 0.024399 0.0243897 0.027017 0.029164 0.027635
21CellAvg Stick #3b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	N/A Bot NH3 -0.35 -0.18 0.35 -0.3 -0.15 0 0.15 0.3 -0.25 0.17 0 -0.3 -0.15 0 0.15 0 0.17 0 0 0.15	N/A HEPL 0 0 0 0 0 -0.17 -0.17 -0.17 -0.3 -0.35 0.17 0.17 0.17 0.17 0.26	14650.57 1045-106 13047 14011 13409 15260 14400 14587 14891 13578 13615 14541 15658 15055 13879 15660 15570 15007 16128 14066 13975 13976	11383.38 935-955 10309 10715 10806 11726 10837 11381 11371 10536 10828 10931 11781 11808 10343 12267 12148 11704 12590 11304 11610 11338	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691 0.253653 0.229037 0.285369 0.284494 0.242933 0.294067 0.244197 0.248181 0.248586 0.247654 0.218604 0.185403 0.209182	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759 1.463241 1.321239 1.646204 1.641153 1.401401 1.696377 1.408693 1.431678 1.434013 1.428636 1.261055 1.069531 1.206701	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823 1.038182 0.93743 1.167995 1.164412 0.994306 1.203593 0.999479 1.015788 1.017444 1.013629 0.894729 0.758841 0.856164 0.642328	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552 0.53189 0.480272 0.598397 0.596561 0.509411 0.616635 0.512061 0.520417 0.521265 0.519311 0.458395 0.438637	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023852 0.025105 0.023981 0.025779 0.026906 0.023697 0.022866 0.024941 0.023954 0.024399 0.024399 0.024734 0.023897 0.029164 0.027635 0.030691
21CellAvg Stick #3b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	N/A Bot NH3 -0.35 -0.18 0 0.18 0.35 -0.3 -0.15 0 0.15 0.3 -0.25 0.17 0 -0.3 -0.15 0 0.15 0 N/A	N/A HEPL 0 0 0 0 0 -0.17 -0.17 -0.17 -0.17 -0.3 -0.3 -0.35 0.17 0.17 0.17 0.17 0.26 0.26 0.31	14650.57 1045-106 13047 14011 13409 15260 14400 14587 14891 13578 13615 14541 15658 15055 13879 15660 15570 15007 16128 14066 13975 13976 14679	11383.38 935-955 10309 10715 10806 11726 10837 11381 11371 10536 10828 10931 11781 11808 10343 12267 12148 11704 12590 11304 11610 11338 12547 11380.44	0.252325 Ln(le/lam) 0.235541 0.268198 0.215825 0.263426 0.284262 0.248185 0.269691 0.253653 0.229037 0.285369 0.284494 0.242933 0.294067 0.244197 0.248181 0.248586 0.247654 0.218604 0.185403 0.209182 0.156936 0.24965	1.701219 (/)0.17335 1.358759 1.547148 1.245022 1.519622 1.639815 1.431701 1.555759 1.463241 1.321239 1.646204 1.641153 1.401401 1.696377 1.408693 1.431678 1.434013 1.428636 1.261055 1.069531 1.206701 0.905315 1.44015	1 (/21pt.Avg 0.964051 1.097714 0.883353 1.078184 1.163462 1.015804 1.103823 1.038182 0.93743 1.167995 1.164412 0.994306 1.203593 0.999479 1.015788 1.017444 1.013629 0.894729 0.758841 0.856164 0.642328	0.536999 (/)0.47689 0.49391 0.56239 0.452567 0.552384 0.596075 0.520425 0.56552 0.53189 0.480272 0.598397 0.596561 0.509411 0.616635 0.512061 0.520417 0.521265 0.519311 0.458395 0.438637 0.329083 0.523496	0.005428 (SmInv)/d 0.027152 0.024781 0.027827 0.023927 0.023952 0.025105 0.023981 0.025779 0.026906 0.023697 0.022866 0.024399 0.024399 0.024399 0.024399 0.024399 0.024399 0.024399 0.024399 0.024399 0.024399 0.024399 0.024399

TABLE9.XLS

Column#:	2	3	4	5	6	7	8	9	10
Col.Units:		inches	counts	counts	unitless	gr/cm^2	unitless	unitless	counts
	Horizontal		Run #s	Run #s		Mass-Thik		PackFract	"I"Uncert
Stick #3b'	Top ND3	HEPL	994-1018	902-926	Ln(le/lam)	(/)0.14832	(/)21ptAv	(/)0.46988	(Smlnv)/d
1	-0.35	0	16027	12099	0.281152			0.598349	0.022713
2	-0.18	0	15958	12092	0.277416	1.87039	1.100127	0.590398	0.022891
3		0	15380	11576	0.284134			0.604695	0.023084
4	0.18	0	15923	12137	0.271506	1.830542	1.076689	0.57782	0.023125
5		0	15349	11830			1.032693	0.554209	0.023975
6	-0.3	-0.17	14715	10987	0.292155		1.158574	0.621764	0.023327
7'	-0.15	-0.14	13076	10001	0.268093				0.025656
8		-0.17	13434	10326					0.025514
9'	0.15	-0.14	13778	10432					<u> </u>
10		-0.17	13775	10245					
11	-0.25	-0.3	16142	10864	0.39597	2.669701		0.842705	
12		-0.3	14385	10142		2.356397			
13		-0.35	13103	9808		1.952824			
14	-0.3	0.17	14077	11134					L
15'	-0.15	0.14	13572	10556					0.025887
16		0.17	14189	11488		1.423706		0.4494	
17'	0.15	0.14	14254	11423	0.221409	1.492777		0.471203	0.026688
18		0.17	14159	11576		1.357986		0.428655	0.02792
19		0.26	13940	12454		0.759982		0.239892	
20		0.26	15285	13217		0.980098			0.033123
21	0.17	0.31	15578	13487					
Cntr.9Avg		N/A	14396	11114.56		1.744167			
21CellAvg		N/A	14576.14	11327.33			1.023003	0.536664	
Stick #3b'		HEPL	1045-106	935-955		(/)0.17335	(A21ntAv	(/)0.47689	
1	-0.35	0	13047	10309	0.235541			0.49391	0.027152
2		0	14011	10715				0.56239	
3		0	13409	10806					0.027827
4		0	15260	11726		1.519622	1.077939		0.023927
5	0.35	0	14400	10837	0.284262	1.639815			0.023852
6	-0.3	-0.17	14587	11381	0.248185	1.431701	1.015573		0.025105
7'	-0.15	-0.14	14995	11597	0.25697	1.482379	1.05152		
8		-0.17	13578				1.037945		
9'	0.15	-0.17	13983		0.264053				
10		-0.14	14541		0.285369				
11		-0.17	15658	11781					0.023697
12		-0.3	15055		0.242933			0.596361	0.022868
13		-0.35	13879		0.294067				
13			15660	12267					0.023934
		0.17		12207	0.244197	1.503271			
16	-0.15	0.14	15841		0.248586				
. 10	^	N 47			U.Z40300	1.434013	1.01/212	U.JZ 1200	0.024/34
		0.17	15007			1 252742			0.025012
17'	0.15	0.14	15379	12377	0.217163		0.888629	0.455373	
17' 18	0.15 0.3	0.14 0.17	15379 14066	12377 11304	0.217163 0.218604	1.261055	0.888629 0.894525	0.455373 0.458395	0.027017
17' 18 19	0.15 0.3 -0.25	0.14 0.17 0.26	15379 14066 13975	12377 11304 11610	0.217163 0.218604 0.185403	1.261055 1.069531	0.888629 0.894525 0.758668	0.455373 0.458395 0.388776	0.027017 0.029164
17' 18 19 20	0.15 0.3 -0.25 0.17	0.14 0.17 0.26 0.26	15379 14066 13975 13976	12377 11304 11610 11338	0.217163 0.218604 0.185403 0.209182	1.261055 1.069531 1.206701	0.888629 0.894525 0.758668 0.855969	0.455373 0.458395 0.388776 0.438637	0.027017 0.029164 0.027635
17' 18 19 20 21	0.15 0.3 -0.25 0.17	0.14 0.17 0.26 0.26 0.31	15379 14066 13975 13976 14679	12377 11304 11610 11338 12547	0.217163 0.218604 0.185403 0.209182 0.156936	1.261055 1.069531 1.206701 0.905315	0.888629 0.894525 0.758668 0.855969 0.642182	0.455373 0.458395 0.388776 0.438637 0.329083	0.027017 0.029164 0.027635 0.030691
17' 18 19 20	0.15 0.3 -0.25 0.17 0 N/A	0.14 0.17 0.26 0.26	15379 14066 13975 13976	12377 11304 11610 11338	0.217163 0.218604 0.185403 0.209182 0.156936 0.24978	1.261055 1.069531 1.206701 0.905315 1.440901	0.888629 0.894525 0.758668 0.855969 0.642182 1.022098	0.455373 0.458395 0.388776 0.438637	0.027017 0.029164 0.027635 0.030691 0.00834

TABLE10.XLS

Stick#	Cell Type	y-coord	Avg.Thick	PacFract.	Stick#	Cell Type	y-coord	Avg.Thick	PacFract.
1,	Top-NH3	0.31		0.541258		Bot-NH3	0.31	1.555	0.565249
	at:	0.26	1.431	0.520174	Radiated	at:	0.26	1.368	0.497274
Bates Lab	(MIT)	0.17	1.497	0.544166	Bates Lab	(MIT)	0.17	1.124	0.408579
		0	1.619	0.588513			0	1.691	0.614686
		-0.17	2.163	0.78626			-0.17	1.823	0.662668
	· · · · · · · · · · · · · · · · · · ·	-0.3	2.143	0.778989			-0.3	1.938	0.704471
		-0.35	2.799	1.017448			-0.35	1.667	0.605961
2a	Top-ND3	0.31	1.046	0.330177		Bot-NH3	0.31	1.218	0.442748
Radiated	at:	0.26	1.889	0.596275	Radiated	at:	0.26	0.6743	0.245111
SAL	(Canada)	0.17	1.2	0.378788	SAL	(Canada)	0.17	1.363	
		0	1.841	0.581124			0	1.533	
		-0.17	2.448	0.772727			-0.17	1.318	and the second second
		-0.3	1.955				-0.3	1.534	
		-0.35	2.152	0.679293			-0.35	2.648	
2b	Top-ND3	0.31	1.304		L	Bot-NH3	0.31	0.7451	
Radiated	at:	0.26	1.554		Radiated	at:	0.26	1.15	
Bates Lab	(MIT)	0.17	1.659		NPS	(Monterey	0.17	1.068	
		0	1.638				0	1.761	
		-0.17	2.283	0.720644			-0.17	1.818	
		-0.3	2.018	0.636995			-0.3	1.658	
		-0.35	2.463	0.777462			-0.35	2.662	
2b'	Top-ND3	0.31	1.304	0.411616		Bot-NH3	0.31	0.7451	
Radiated	at:	0.26	1.554		Radiated	at:	0.26	1.15	0.41803
Bates Lab	(MIT)	0.14	1.631	0.514836	NPS	(Monterey	0.14	1.061	
		0	1.638	0.517045			0	1.761	0.640131
		-0.14	2.264				-0.14	1.704	
		-0.3	2.018				-0.3	1.658	
		-0.35	2.463	L			-0.35	2.662	
3a;	Top-ND3	0.31	2.043		L	Bot-NH3	0.31	1.45	
Radiated	at:	0.26	1.891	0.596907		at:	0.26	0.8156	
NPS	(Monterey	0.17	1.161	0.366477	NPS	(Monterey	0.17	1.901	0.691021
		0	2.37				0	1.276	
	·	-0.17	1.184	0.373737			-0.17	1.055	
		-0.3	2.182	0.688763			-0.3	1.821	0.661941
01	T 1:54	-0.35	0.7641			De4 511 10	-0.35		
3b;	Top-ND3	0.31		0.306755		Bot-NH3	0.31	0.9053	
Radiated	at:	0.26		0.274621		at:	0.26		
HEPL	(Stanford)	0.17		0.479798		(Stanford)	0.17		
		0 17		0.585227			0 17	1.462	
		-0.17		0.592487			-0.17	1.484	
		-0.3		0.793245			-0.3	<u> </u>	
Ohl.	Ton AID2	-0.35		0.616477		Bot-NH3	-0.35		
3b'; Radiated	Top-ND3	0.31		0.306755 0.274621		at:	0.31 0.26	0.9053 1.138	
	at: (Stanford)	0.26 0.14		0.274621		(Stanford)	0.26		
HEPL	(Stalliold)	0.14		0.585227		(Starriord)	0.14		
		-0.14		0.595013			-0.14		
		-0.14		0.393013			-0.14		
		-0.35		0.793243			-0.35		
		-0.35	1.953	0.0104//	<u> </u>	l	0.35	1.090	0.010303

TABLE11.XLS

Stick#2b'	-0.35	2.517679	2.408321	2.463	Stick#2b'	-0.35	2.712844	2.611156	2.662
Top Cell	-0.3	2.074229	1.961414	2.017	Bot Cell	-0.3		1.563566	1.658
15ND3	-0.14	2.584666	1.975662	2.283	15NH3	-0.14	2.383421	1.467145	1.818
Radiated	0	1.870592	1.345529	1.638	Radiated	0	2.115941	1.387238	1.761
at	0.14	1.884318	1.48413	1.659	at	0.14	1.774385	0.400363	1.068
Bates Lab	0.26	1.655698	1.454331	1.544	NPS	0.26	2.191443	0.141819	1.15
(MIT)	0.31	1.340512	1.267488	1.304	(Monterey	0.31	0.770359	0.719841	0.7451
3	,	 	}	•	2.5 - 2 - 1.5 - 1 - 0.5 -	ł			•
0.35	60.3	4 0	0.26	0.31	0.35		6 4 0	0.26	0.31
Stick#2b'	-0.35					-0.35			
Top Cell		0.661946					0.644138		0.60269
15ND3	-0.14		0.616895			-0.14			
Radiated	0	1				0		0.498679	0.640131
at	0.14					0.14			0.388222
Bates Lab	0.26			0.487374			0.805441	0.050981	0.41803
(MIT)	0.31	0.427796	0.39577	U.411616	(Monterey	0.31	0.283137	0.258766	0.270847
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1	þ			þ	1	+			P
-0.35	-0.3	0.14	0.14	0.31	-0.35	-0.3	0.14	0.14	0.31

DISTRIBUTION LIST

1.	Library, Code 52 Naval Postgraduate School Monterey, CA 93943-5002	2
2.	Professor Xavier K. Maruyama Department of Physics, Code PH/Mx Naval Postgraduate School Monterey, CA 93943	15
3.	LT David R. Garvey Combat Systems Curriculum, Code 33 Naval Postgraduate School Monterey, CA 93943	5
4.	Professor Fred R. Buskirk Department of Physics, Code PH/BS Naval Postgraduate School Monterey, CA 93943	1
5.	Mail Stop 94 Stanford Linear Accelerator Center P.O. Box 4349 Stanford, CA94309 Attn: Dr. Jim Johnson Dr. Ray Arnold Dr. Rainer Pitthan	3
6.	Department of Physics McCormick Road University of Virginia Charlottesville, VA, 22901 Attn: Prof. Oscar Rondon Prof. Richard A. Lindgren Prof. Donal Day Prof. James McCarthy Dr. Don Crabb Todd Averett T.J. Liu	7
7.	Prof. Janice Button-Shafer LGR Tower B Department of Physics University of Massachusetts Amherst, MA, 01003	1
8.	Department of Physics Universitat Basel 82 Klingelbergstrasse CH-46 Basel, Switzerland Attn: Prof. Ingo Sick	2