

West Nile Virus: Prediction & Prevention

Serene, Evan, Yu Fung

Birds

Host

Mosquitoes

Carrier

Humans

Infected

- 8 in 10 are asymptomatic
- 1 in 5 develop symptoms
 - Fever, headache, tiredness, body aches, nausea, vomiting, rash
- 1 in 150 develop serious complications that can result in death
- No vaccine available

 As mosquito control is an expensive exercise, the state would like our team to propose a cost-effective plan for pesticide deployment.

Trap

- Locations and WNV test results
- May to October; 2007, 2009, 2011,
 2013
- Spray
 - GIS data for spray efforts
 - 2011 and 2013
- Weather
 - Weather conditions from 2 weather stations
 - 2007 to 2014

Our Problem-Solving Process

EDA

Modelling

Cost-benefit analysis

Conclusion & Recommendation

Limitation—Imbalanced Dataset

Limitation – Possible solutions (**Oversampling**)

Limitation – Possible solutions (**Emphasize features**)

Based on research about ideal conditions:

- 1. Higher humidity ->
- 2. Stagnant water is ideal ->
- 3. Weather conditions ->
- 4. Virus thrives in the sun ->
- 5. Temperature (70-80F) ->

Limitation – Possible solutions (**Emphasize features**)

Based on research about ideal conditions:

- 1. Higher humidity -> WetBulb, DewPoint
- 2. Stagnant water is ideal -> Wind speeds
- 3. Weather conditions -> Seasons -> months/weeks
- 4. Virus thrives in the sun -> Daytime
- 5. Temperature (70-80F) -> Tavg

Limitation – Possible solutions (Emphasize features)

Based on research about ideal conditions:

- 1. Higher humidity ->
- WetBulb, DewPoint
- 2. Stagnant water is ideal -> Wind speeds
- 3. Weather conditions -> Seasons -> months/weeks
- 4. Virus thrives in the sun -> Daytime
- 5. Temperature (70-80F) -> Tavq

Limitation—Train dataset measured periods and sample size

Practice caution when analysing data due to skewed dataset.

Limitation—Train dataset measured periods and sample size

Practice caution when analysing data due to skewed dataset.

Through June to August were the peak months for mosquitoes breeding, while August to September were the peak for WNV.

Chart: Periods with highest average no of mosquitoes & WNV

WMV was widely spread in 2007 and 2009. The situation was controlled in 2011 but got worse in 2013

Chart: Location heatmap of WNV in Y2007, 2009, 2011 and 2013

Spraying doesn't seem to be very effective in controlling the spread of WNV.

Chart: Location heatmap of spraying activities in Y2011 and 2013

Average no. of mosquitoes drop after Jul-13 after the start of spraying activities. This suggests time of spray could be crucial to prevent mosquitoes breeding.

Chart: Periods with highest average no of mosquitoes & WMV

Our Modelling Strategy

Avoid GIGO Situation

By doing necessary data cleaning and feature engineering

Baseline

Have a baseline model on hand for comparison

Best Parameters

Finding the best parameters for each model

Ensemble

Combine the force of multiple models with their best parameters

Our Evaluation Metric

ROC-AUC and

F1 score

Our Models

Logistic Regression

True Negatives: 1791 False Positives: 703 False Negatives: 417 True Positives: 2067

Precision: 0.7462093862815884 Recall: 0.8321256038647343 F1 score: 0.7868290826037306

roc_auc_score: 0.8543011278598427

Kaggle: 0.64

Logistic Regression + SVM

True Negatives: 1756 False Positives: 738 False Negatives: 345 True Positives: 2139

Precision: 0.7434827945776851 Recall: 0.8611111111111112 F1 score: 0.7979854504756575

roc auc score: 0.8543011278598427

Kaggle: 0.74

Better F₁ Score

Features Importance

Costs of Inaccuracy

WNV detected when there is not

- Ecological impact from unnecessary spraying
- Productivity loss from extra clinic visits
- Reduced tourism activities

No WNV detected when there is

- Risk of WNV epidemic
- Strain on healthcare resources
- Loss of confidence in public health officials

Cost-Benefit to Spraying

Cost

- \$ 701k
 - Aerial Spray

Benefit

- \$16k
 - Medical care
- \$3k
 - Lost productivity
- \$300k
 - Lifetime lost productivity (death)

1 spray: 37 non-death cases or;

1 spray: 2.5 death cases

- WNV remediation efforts would be more effective in limiting illness and death associated with human infection if before the occurrence of WNV.
- What can we do with our model?
 - Identify locations that are more susceptible to mosquitoes breading and WNV and perform preventive measures – such as spraying activities.
- One thing to note is that there are different kind of spraying treatments, hence it would also be good to know the development stages of the mosquitoes collected so that spraying treatments can be more targeted and effective.

Future Developments

How will we scale in the future

Feature Engineer

- Research on weather variables further to use them more effectively
- Add ARMA (Auto Regressive Moving Average)

Gradient Boosting

 Try gradient boosting to optimize model

Spray Data

 Insufficient data to conclude effects of spray

References

Barber, L. M., Schleier, J. J., & Peterson, R. K. (2010). Economic Cost Analysis of West Nile Virus Outbreak, Sacramento County, California, USA, 2005. *Emerging Infectious Diseases*, 16(3), 480-486. https://dx.doi.org/10.3201/eid1603.090667.

Staples, J. E., Shankar, M. B., Sejvar, J. J., Meltzer, M. I., & Fischer, M. (2014). Initial and long-term costs of patients hospitalized with West Nile virus disease. *The American journal of tropical medicine and hygiene*, 90(3), 402–409. doi:10.4269/ajtmh.13-0206

