Analisi di Sensibilità e Ottimizzazione dei Parametri

Lorenzo Principi

September 3, 2024

$$P(rate_{fp} + rate_{tp} > th)$$
 (1)

$$rate_{fp} = \mathcal{N}_{fp}(\mu_{fp}, \sigma_{fp}) \tag{2}$$

$$rate_{tp} = \mathcal{N}_{tp}(\mu_{tp}, \sigma_{tp}) \tag{3}$$

► FPA, False Positive Alert:

$$P(rate_{fp} + rate_{tp} \ge th) \cap P(rate_{tp} = 0)$$
 (4)

► TPA, True Positive Alert:

$$P(rate_{fp} + rate_{tp} > th) \cap P(rate_{tp} > 0)$$
 (5)

Simulazione

Si generano randomicamente:

- ightharpoonup n false positives (fps).
- ightharpoonup m true positives (tps), m < n.

adottando una distribuzione normale $\mathcal{N}(\mu, \sigma)$.

Simulazione /2

Si utilizzano i seguenti parametri:

- $ightharpoonup \mu_{fp}$ viene scelta arbitrariamente e mantenuta fissa.
- σ_{fp} viene ottenuta dal rapporto σ_{fp}/μ_{fp} , il quale varia in un insieme di valori come, ad esempio, $\{0.1, 0.5, 1.0, 2.0\}$.
- μ_{tp} viene ottenuta dal rapporto μ_{tp}/μ_{fp} , il quale varia in un insieme di valori come, ad esempio, $\{0.5, 1.0, 3.0\}$.
- $ightharpoonup \sigma_{tp}$ si ottiene allo stesso modo di σ_{fp} .

parametro	calcolo	set
μ_{fp}	arbitrario e fisso	$\mu_{\mathit{fp}} \in 100$
$\mu_{ extit{tp}}$	$=\mu_{fp}*\mu_{r}$	$\mu_{r} = \mu_{tp}/\mu_{fp} \in \{0.5, 1, 3\}$
σ_{fp}	$= \mu_{fp} * \mu_r = \mu_{fp} * r_{fp}$	$r_{fp} = \sigma_{fp}/\mu_{fp} \in \{0.1, 0.5, 1, 2\}$
$\sigma_{ extit{tp}}$	$=\mu_{tp}*r_{tp}$	$r_{tp} = \sigma_{tp}/\mu_{tp} \in \{0.1, 0.5, 1, 2\}$

Simulazione /3

- ► Calcolo della ROC curve per ogni set di parametri: la ROC curve analizza tutte le soglie disponibili th e mostra quali valori di FPR e TPR si ottengono per ciascuna di esse.
- ► Limitazione FPR: siccome nella NIDS il numero di falsi positivi deve essere minimo, la ROC curve che varia tra 0.0 e 1.0 è qui limitata a 0.0 e 0.25.

Simulazione con tps veri

- ► Capture reali: invece di generare i *tps*, utilizziamo le capture di Stratosphere.
- ➤ **Suddivisione in slot**: si suddivide la timeline di ogni capture in slot (finestre temporali adiacenti di lunghezza fissa).
- Ogni slot contiene:
 - ► Il numero di predicted positive (pp), ovvero numero di domini per cui la rete LSTM ha calcolato una probabilità > 0.5 di essere DGA-generated.

Simulazione con tps veri /2

- Si considerano w-slots di tps.
- ➤ **Si generano** *w*-**slots di fps**, randomicamente adottando una distribuzione normale.
- Overlapping di fps e tps: si calcola la curva ROC.
- ▶ Rolling con step di uno slot: si esegue questo overlap per tutta la timeline della capture malevola, scorrendo di uno slot per volta.

Simulazione con tps veri /3

In questo caso i parametri precedenti saranno:

- $\blacktriangleright \mu_{tp_i}$ e σ_{tp_i} : calcolati dai dati reali della *i*-esima finestra.
- $\blacktriangleright \mu_{fp} = \mu_r \cdot \mu_{tp_i}$: quindi μ_{fp} viene ottenuto da μ_{tp_i} .
- $ightharpoonup \sigma_{fp}$ viene calcolato allo stesso modo di prima.

I parametri che possiamo variare sono quindi:

- $\blacktriangleright \mu_r$, per ottenere μ_{fp} da μ_{tp} .
- $ightharpoonup r_{fp}$, per ottenere σ_{fp} da μ_{fp} .

Simulazione con tps veri /4

Abbiamo scelto 4 capture per i seguenti malware:

- caphaw, simda, unknown, zbot.
- , con i seguenti parametri:
 - $\mu_r = \mu_{tp}/\mu_{fp} \in \{0.5, 1.0, 1.5\}.$
 - $ightharpoonup r_{fp} = \sigma_{fp}/\mu_{fp} \in \{0.1, 0.5, 1, 2, 4\}.$

