Exercise 1: BusyPeriod in a Queueing system. Let $X_0=1$ represent the initial number of jobs in a queue and let $\{X_n,J_{n+1}\}$, where represent the remaining jobs and completed jobs sequence as in Exercise 2 of the previous lab session. That is, J_{n+1} equals the number of jobs completed as returned by the program 'JobsDoneInOneArrival (λ,μ,X_n) ' when the number of jobs remaining before this equal X_n and $X_{n+1}=(X_n-J_{n+1})+1$. Set $\lambda=0.1$ and $\mu=0.15$.

Now lets introduce the notion of time to this system. Start with system time, Time = 0. Let A_1 represent the time after which first customer arrives in 'JobsDoneInOneArrival (λ, μ, X_0)'. Update system time (immediately after this arrival) to $Time = Time + A_1$. Modify 'JobsDoneInOneArrival' program to also return A (along with J), these (inter) arrival times. In a similar fashion, let A_n represent the time duration (to be more precise inter arrival time) after the (n-1)-th arrival, at which n-th customer arrives, i.e., the second result returned by 'JobsDoneInOneArrival (λ, μ, X_n)'. Update the system $Time = Time + A_n$, at each such epoch. Note that the variable Time represents the arrival instance of the n-th arrival, once it is updated after 'JobsDoneInOneArrival (λ, μ, X_n)' is executed

We say that a busy period ends before arrival epoch n if $J_{n+1} = X_n$ (and if $X_{n+1} = 1$), i.e., if the waiting jobs are completed before the next arrival and if n is the first such epoch. Let τ represent the arrival instance Time of that arrival, at which a busy period ends. In other words,

$$\tau = \inf \left\{ n : \sum_{i=1}^{n} A_i \ge \sum_{i=0}^{n} \sum_{j=1}^{J_i} B_j^i \right\} \text{ (note } J_i \le X_{i-1}),$$

where B_j^i is the job size of the j-th job among the ones provided service in between (i-1)-th and i-th arrival. This τ represents the cycle during which one busy period and idle period elapses. Idle period is the time period, during which system remains idle, i.e., without service.

- 1. Repeat the above procedure 10000 times (independently) to compute 10000 independent realizations of the 'busy+idle' cycles, $\{\tau_1, \tau_2, \cdots, \tau_k, \cdots, \tau_{10000}\}$.
- 2. Find the sample mean of the above sequence to estimate the mean value of one cycle (when started with one customer).
- 3. Do you know how to compute the mean busy period using these estimates?