Lista 4 de Introdução à Física do Estado Sólido

I.R.Pagnossin irpagnossin@hotmail.com

21 de Novembro de 2000

1. No estado fundamental de um sistema bidimensional com elétrons livres, os orbitais ocupados podem ser representados por pontos no interior de um círculo no espaço $\vec{k} = (k_x, k_y)$ (veja fig.1). (a) Calcule, em unidades de $2\pi/a$, o raio do círculo no espaço \vec{k} de uma rede quadrada de lado a, considerando que cada uma dessas células primitivas contribua com m elétrons livres para o gás de férmions; (b) Construa uma tabela indicando quais as zonas de Brillouin que possuem elétrons e quais estão vazias para m=1,2,3 e 4; (c) Represente as superfícies de Fermi (que separam as regiões ocupadas das vazias) em cada zona usando a representação de zona reduzida e extendida para m=1,2,3 e 4.

A cada ponto \vec{k} do espaço recíproco associa-se uma área $4\pi^2/A$, sendo A a área total do material sob análise. E, como a cada um desses pontos associam-se dois estados quânticos de spin $(m_s=\pm 1/2)$ do elétron, N elétrons ocupam N/2 pontos \vec{k} , correspondendo a uma área $\pi\vec{k}^2$ do espaço recíproco, conforme a primeira ilustração:

$$\frac{1 \ ponto \ \vec{k}}{\frac{N}{2} \ pontos \ \vec{k}} = \frac{\frac{4\pi^2}{A}}{\pi \vec{k}^2} = \frac{2 \ e^-}{N \ e^-}$$

Esta é uma regra de três simples – embora pareça ser composta – devido à equivalência entre os termos dos extremos. Daí é simples obter

$$\vec{k}^2 = \frac{4\pi^2}{2\pi} \frac{N}{A} = 2\pi\sigma$$

sendo σ a densidade superficial de elétrons. Se a distribuição dos elétrons dentro do material for uniforme, então podemos garantir que esta densidade, válida para todo o sólido bidimensional, também é igual à densidade superficial de elétrons numa única célula primitiva, por exemplo. Neste caso em especial, sabemos que cada célula primitiva contribui com m elétrons. Logo, é claro que $\sigma = m/a^2$ e a identidade anterior se torna

$$\vec{k}^2 = \frac{2\pi m}{a^2} \implies k = \frac{\sqrt{2\pi m}}{a}$$

com k sendo o módulo do vetor \vec{k} . Dividindo a igualdade em ambos os lados por $2\pi/a$ simplificamo-la para

$$\xi = \frac{k}{2\pi/a} = \sqrt{\frac{m}{2\pi}}$$

Se N, anteriormente definido, for precisamente o número de elétrons presentes no gás de férmions do material, então ξ se torna ξ_F , o raio da esfera de Fermi em unidades de $2\pi/a$, limite da região populada no espaço \vec{k} :

$$\xi_F = \sqrt{\frac{m}{2\pi}},$$

a resposta ao **item** (a).

Substituindo os valores de m = 1, 2, 3 e 4 encontramos

I.R.Pagnossin

m	$\xi_F(m)$	zona de Brillouin
1	$1/\sqrt{2\pi} = 0.40$	1^a
2	$1/\sqrt{\pi} = 0,56$	$1^a e 2^a$
3	$\sqrt{3/2\pi} = 0,69$	$1^a e 2^a$
4	$\sqrt{2/\pi} = 0,78$	$1^a, 2^a, 3^a e 4^a$

tab.1: Ocupação dos pontos \vec{k} do espaço recíproco, variando conforme a contribuição de elétrons m de cada célula primitiva para o gás de férmions. A última linha, por exemplo, indica que se cada célula primitiva fornecesse 4 elétrons livres para a nuvem, então o processo de população dos níveis de energia correspondentes a \vec{k} terminaria na quarta zona de Brillouin, passando por todas as outras anteriores.

que á a resposta ao **item(b)**. Quanto ao **item(c)**, o que fazemos é simplesmente desenhar as circunferências correspondentes a cada m (esquema de zona extendida) e refletí-las nos limites da primeira zona de Brillouin (esquema de zona reduzida), conforme mostrado na **fig.2**.

2. Considere uma rede retangular de vetores primitivos $\vec{a}_1 = a\hat{i}$ e $\vec{a}_2 = 2a\hat{j}$. No contexto da aproximação da rede vazia determine (a) a expressão para o valores de energia deste sistema em unidades de $\frac{\hbar^2\pi^2}{2ma^2}$. Considere que os vetores de translação da rede recíproca são dados por $\vec{G} = m_x \vec{b}_1 + m_y \vec{b}_2$; (b) Represente a primeira zona de Brillouin e indique quais são as direções ΓL e ΓX ; (c) $D\hat{e}$ a expressão da energia para a direção ΓL , normalizada a $\frac{\hbar^2\pi^2}{2ma^2}$; (d) Desenhe, no esquema de zona reduzida, as faixas de energia correspondentes a m_x e m_y variando entre -1 e +1.

Dados os vetores da célula primitiva no espaço direto determinamos os vetores primitivos no espaço recíproco:

$$\vec{b}_{1} = \frac{2\pi \ \vec{a}_{2} \times \hat{k}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \hat{k}} = \frac{4\pi a \ \hat{j} \times \hat{k}}{2a^{2}(\hat{i} \cdot \hat{j} \times \hat{k})} = \frac{2\pi}{a}\hat{i}$$

$$\vec{b}_{2} = \frac{2\pi \ \hat{k} \times \vec{a}_{1}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \hat{k}} = \frac{2\pi a \ \hat{k} \times \hat{i}}{2a^{2}(\hat{i} \cdot \hat{j} \times \hat{k})} = \frac{\pi}{a}\hat{j}$$

para então escrevermos \vec{G} em termos dos versores canônicos $\{\hat{i},\hat{j},\hat{k}\}$:

$$\vec{G} = m_x \vec{b}_1 + m_y \vec{b}_2 = \frac{\pi}{a} (2m_x \hat{i} + m_y \hat{j})$$
$$= \frac{\pi}{a} (2m_x, m_y)$$

Na aproximação da rede vazia, a equação de Schödinger se simplifica para

$$\left[\frac{\hbar^2}{2m}(\vec{k} - \vec{G})^2 - E\right]c_{\vec{k} - \vec{G}} = 0$$

o que fornece a relação entre a energia e os vetores \vec{k} , da primeira zona de Brillouin, e \vec{G} , de translação da rede recíproca:

$$E = \frac{\hbar^2}{2m} (\vec{k} - \vec{G})^2$$

$$= \frac{\hbar^2}{2m} [(k_x, k_y) - \frac{\pi}{a} (2m_x, m_y)]^2$$

$$= \frac{\hbar^2 \pi^2}{2ma^2} |(\frac{k_x}{\pi/a} - 2m_x, \frac{k_y}{\pi/a} - m_y)|^2$$

$$= \frac{\hbar^2 \pi^2}{2ma^2} [(\xi_x - 2m_x)^2 + (\xi_y - m_y)^2]$$

$$\epsilon = (\xi_x - 2m_x)^2 + (\xi_y - m_y)^2$$

I.R.Pagnossin

com $E = \frac{\hbar^2 \pi^2}{2ma^2} \epsilon$ e $k_j = \frac{\pi}{a} \xi_j$. Esta é a solução do **item (a)**. A primeira zona de Brillouin é mostrada na **fig.3** (**item (b)**). Se escolhermos o caminho Γ L, fica claro, pela **fig.3**, que $\xi_x = 2\xi_y = 2\xi$ com $\xi \in [0, 1/2]$, e passamos a ter

$$\epsilon_{\Gamma L} = 4(\xi - m_x)^2 + (\xi - m_y)^2$$

solução do item (c). Logo, para m variando entre -1 e 1 teremos (item (d)),

m_x	m_y	$\epsilon_{\Gamma L}$
-1	-1	$4(\xi+1)^2-(\xi+2)^2$
-1	0	$4(\xi+1)^2-\xi^2$
-1	1	$4(\xi+1)^2-(\xi-2)^2$
0	-1	$4\xi^2 - (\xi + 2)^2$
0	0	$3\xi^2$
0	1	$4\xi^2 - (\xi - 2)^2$
1	-1	$4(\xi-1)^2-(\xi+2)^2$
1	0	$4(\xi-1)^2-\xi^2$
1	1	$4(\xi - 1)^2 - (\xi - 2)^2$

tab.2: As faixas de energia no percurso Γ L para diferentes vetores \vec{G} do espaço recíproco (veja fig.4).

3. Considere uma rede BCC de lado a. Na aproximação da rede vazia podemos escrever os níveis de energia para um dado \vec{k} na forma $E_k = \frac{\hbar^2}{2m} (\vec{k} - \vec{G})^2$. Determine o mais baixo valor de energia para $\vec{k} = \frac{\pi}{a} (1, 1, 0)$. No caso de degenerescência, indique a quais valores de \vec{G} correspondem as energias degeneradas.

Sabemos de cálculos anteriores que a rede recíproca de uma BCC é uma FCC, cujos vetores primitivos são

$$\vec{b}_1 = \frac{2\pi}{a}(1, 1, 0)$$

$$\vec{b}_2 = \frac{2\pi}{a}(1, 0, 1)$$

$$\vec{b}_3 = \frac{2\pi}{a}(0, 1, 1)$$

de modo que podemos escrever um vetor da rede recíproca $\vec{G}=m_1\vec{b}_1+m_2\vec{b}_2+m_3\vec{b}_3$ como

$$\vec{G} = m_1 \frac{2\pi}{a} (1, 1, 0) + m_2 \frac{2\pi}{a} (1, 0, 1) + m_3 \frac{2\pi}{a} (0, 1, 1)$$
$$= \frac{2\pi}{a} (m_1 + m_2, m_1 + m_3, m_2 + m_3)$$

E, posto que $\vec{k} = \frac{2\pi}{a}(\frac{1}{2}, \frac{1}{2}, 0)$, determinamos a expressão da energia como função do vetor \vec{G} :

$$E = \frac{\hbar^2}{2\pi} \left[\frac{4\pi}{a^2} \left[\left(\frac{1}{2} - m_1 - m_2, \frac{1}{2} - m_1 - m_3, -m_2 - m_3 \right) \right]^2 \right]$$

$$= \frac{2\hbar^2 \pi^2}{ma^2} \left[\left(\frac{1}{2} - m_1 - m_2 \right)^2 + \left(\frac{1}{2} - m_1 - m_3 \right)^2 + (m_2 + m_3)^2 \right]$$

$$\epsilon = \left(\frac{1}{2} - m_1 - m_2 \right)^2 + \left(\frac{1}{2} - m_1 - m_3 \right)^2 + (m_2 + m_3)^2$$

Utilizando uma planilha eletrônica como Excel ou Gnumeric Spreadsheet, por exemplo, fica fácil determinar que o mínimo de energia ocorre para $(m_1, m_2, m_3) = (0, 0, 0)$ e (1, 0, 0), dando $\epsilon = 0, 5^*$. Em outras palavras, os vetores \vec{G} que dão o mínimo de energia $E = \frac{\hbar^2 \pi^2}{ma^2}$ são $\vec{G} = \vec{0}$ e $\vec{G} = \vec{b}_1$.

^{*}Neste caso variamos m_j de -2 a +2 dando, ao todo, 125 situações diferentes.