Useful Data

A. Atomic Colors

B. Standard Thermodynamic Quantities for Selected Substances at 25 °C

Substance	$\Delta H_{\rm f}^{\circ}({ m kJ/mol})$	$\Delta G_{\rm f}^{\circ}({\rm kJ/mol})$	$S^{\circ}(J/mol \cdot K)$
Aluminum			
Al(s)	0	0	28.32
Al(g)	330.0	289.4	164.6
Al ³⁺ (aq)	-538.4	-4 83	- 325
AlCl ₃ (s)	-704.2	-628.8	109.3
$Al_2O_3(s)$	-1675.7	-1582.3	50.9
Barium			
Ba(<i>s</i>)	0	0	62.5
Ba(<i>g</i>)	180.0	146.0	170.2
Ba ²⁺ (<i>aq</i>)	- 537.6	-560.8	9.6
BaCO ₃ (s)	-1213.0	-1134.4	112.1
BaCl ₂ (s)	-855.0	-806.7	123.7
BaO(s)	-548.0	-520.3	72.1
Ba(OH) ₂ (s)	-944.7		
BaSO ₄ (s)	-1473.2	-1362.2	132.2

0	0	9.5
-609.4	-580.1	13.8
- 902.5	-815.0	45.5
0	0	56.7
-379.1	-315.0	177.0
- 573.9	-493.7	151.5
-143.1	-140.6	200.4
0	0	5.9
565.0	521.0	153.4
-403.8	-388.7	290.1
-1136.0	-1119.4	254.4
36.4	87.6	232.1
	-609.4 -902.5 0 -379.1 -573.9 -143.1 0 565.0 -403.8 -1136.0	-609.4

—(Continued on the next page)

Substance	$\Delta H_{\rm f}^{\circ}({\rm kJ/mol})$	$\Delta G_f^{\circ}(kJ/mol)$	S°(J/mol·K)
B ₂ O ₃ (s)	-1273.5	-1194.3	54.0
H ₃ BO ₃ (s)	-1094.3	- 968.9	90.0
Bromine			
Br(<i>g</i>)	111.9	82.4	175.0
Br ₂ (<i>I</i>)	0	0	152.2
$Br_2(g)$	30.9	3.1	245.5
Br ⁻ (aq)	-121.4	-102.8	80.71
HBr(g)	-36.3	-53.4	198.7
Cadmium			
Cd(s)	0	0	51.8
Cd(g)	111.8	77.3	167.7
$Cd^{2+}(aq)$	- 75.9	- 77.6	-73.2
$CdCl_2(s)$	-391.5	-343.9	115.3
CdO(s)	-258.4	-228.7	54.8
CdS(s)	-161.9		64.9
CdSO ₄ (s)	-933.3	-822.7	123.0
Calcium			
Ca(s)	0	0	41.6
Ca(<i>g</i>)	177.8	144.0	154.9
Ca ²⁺ (aq)	-542.8	-553.6	-53.1
CaC ₂ (s)	- 59.8	-64.9	70.0
CaCO ₃ (s)	-1207.6	-1129.1	91.7
CaCl ₂ (s)	-795.4	-748.8	108.4
CaF ₂ (s)	-1228.0	-1175.6	68.5
CaH ₂ (s)	-181.5	-142.5	41.4
Ca(NO ₃) ₂ (s)	-938.2	- 742.8	193.2
CaO(s)	-634.9	-603.3	38.1
Ca(OH) ₂ (s)	- 985.2	- 897.5	83.4
CaSO ₄ (s)	-1434.5	-1322.0	106.5
$Ca_3(PO_4)_2(s)$	-4120.8	-3884.7	236.0
Carbon			
C(s, graphite)	0	0	5.7
C(s, diamond)	1.88	2.9	2.4
C(g)	716.7	671.3	158.1
CH ₄ (<i>g</i>)	-74.6	-50.5	186.3
CH ₃ Cl(g)	-81.9	-60.2	234.6
$CH_2Cl_2(g)$	- 95.4		270.2
$CH_2Cl_2(I)$	-124.2	-63.2	177.8
CHCl ₃ (I)	-134.1	-73.7	201.7
CCl ₄ (g)	- 95.7	-62.3	309.7
CCl ₄ (<i>I</i>)	-128.2	-66.4	216.4
CH ₂ O(<i>g</i>)	-108.6	-102.5	218.8
CH ₂ O ₂	-425.0	-361.4	129.0
(I, formic acid)			
CH_3NH_2 (g, methylamine)	- 22.5	32.7	242.9
CH ₃ OH(I)	-238.6	-166.6	126.8
CH ₃ OH(g)	- 201.0	-162.3	239.9

Substance	$\Delta H_{\rm f}^{\circ}({\rm kJ/mol})$	$\Delta G_{\rm f}^{\circ}({\rm kJ/mol})$	S°(J/mol⋅K)
$C_2H_2(g)$	227.4	209.9	200.9
$C_2H_4(g)$	52.4	68.4	219.3
$C_2H_6(g)$	-84.68	-32.0	229.2
$C_2H_5OH(I)$	-277.6	-174.8	160.7
$C_2H_5OH(g)$	-234.8	-167.9	281.6
C ₂ H ₃ Cl	37.2	53.6	264.0
(g, vinyl chloride)			
C ₂ H ₄ Cl ₂	-166.8	-79.6	208.5
(1,			
dichloroethane)			
C_2H_4O	-166.2	-133.0	263.8
(g, acetaldehyde)		200.0	150.0
$C_2H_4O_2$ (<i>I</i> , acetic acid)	- 484.3	- 389.9	159.8
$C_3H_8(g)$	-103.85	-23.4	270.3
C ₃ H ₆ O	-248.4		199.8
(I, acetone)	240.4	155.0	177.0
C ₃ H ₇ OH	-318.1		181.1
(I, isopropanol)			
C ₄ H ₁₀ (<i>I</i>)	-147.3	-15.0	231.0
$C_4H_{10}(g)$	-125.7	-15.71	310.0
C ₆ H ₆ (I)	49.1	124.5	173.4
C ₆ H ₅ NH ₂	31.6	149.2	191.9
(I, aniline)			
C ₆ H ₅ OH	-165.1	-50.4	144.0
(s, phenol)			
$C_6H_{12}O_6$	-1273.3	- 910.4	212.1
(s, glucose)			
C ₁₀ H ₈	78.5	201.6	167.4
(s, naphthalene)	2227.1	1544.2	2/0.24
C ₁₂ H ₂₂ O ₁₁ (s, sucrose)	- 2226.1	- 1544.3	360.24
CO(g)	-110.5	-137.2	197.7
$CO_2(g)$	-393.5	-394.4	213.8
$CO_2(g)$	-4 13.8	-386.0	117.6
	-677.1	– 527.8	- 56.9
$CO_3^{2-}(aq)$ HCO ₃ $^{-}(aq)$	- 692.0		91.2
	-699.7	-623.2	187.4
$H_2CO_3(aq)$	151	166	118
CN ⁻ (aq)		125.0	112.8
HCN(I)	108.9		
HCN(g)	135.1	124.7	201.8
$CS_2(I)$	89.0	64.6	151.3 237.8
CS ₂ (g)	116.7 -219.1	67.1 -204.9	283.5
$COCl_2(g)$	2327.0	2302.0	426.0
C ₆₀ (s)	2327.0	2302.0	420.0
	0	0	0F 2
Cs(s)	77.5	0	85.2
Cs(g)	76.5	49.6	175.6
Cs ⁺ (aq)	-258.0	-292.0	132.1
CsBr(s)	-400	-387	117
CsCl(s)	-438	-414	101.2
CsF(s)	- 553.5	-525.5	92.8
CsI(s)	-342	-337	127

Chlorine Cl(g) 121.3 105.3 165.2 $Cl_2(g)$ 0 0 223.1 $Cl^-(aq)$ -167.1 -131.2 56.6 $HCl(g)$ -92.3 -95.3 186.9 $HCl(aq)$ -167.2 -131.2 56.5 $ClO_2(g)$ 102.5 120.5 256.8 $Cl_2O(g)$ 80.3 97.9 266.2 Chromium $Cr(g)$ 396.6 351.8 174.5 $Cr(g)$ 396.6 351.8 174.5 Cr^3 (aq) -1971 -1058.1 81.2 $Cr_2O_3^+$ (aq) -872.2 -717.1 44 $Cr_2O_3^+$ (aq) -1476 -1279 238 Cobslt $Co(s)$ 0 0 30.0 $Co(g)$ 424.7 380.3 179.5 $Co(g)$ 424.7 380.3 179.5 $Co(g)$ -237.9 -214.2 53.0 $Co(g)$ 337.4 297.7	Substance	$\Delta H_{\rm f}^{\circ}({\rm kJ/mol})$	$\Delta G_{\rm f}^{\circ}({\rm kJ/mol})$	S°(J/mol·K)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chlorine	,	. , ,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cl(g)	121.3	105.3	165.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	223.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-167.1	-131.2	56.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	200.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	23.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Cobalt Co(s) 0 0 30.0 Co(g) 424.7 380.3 179.5 CoO(s) -237.9 -214.2 53.0 Co(OH) ₂ (s) -539.7 -454.3 79.0 Copper -20 -244.3 79.0 Cu(s) 0 0 33.2 Cu(g) 337.4 297.7 166.4 Cu'(g) 51.9 50.2 -26 Cu ²⁺ (aq) 64.9 65.5 -98 CuCl(s) -137.2 -119.9 86.2 CuCl ₂ (s) -220.1 -175.7 108.1 CuO(s) -157.3 -129.7 42.6 CuS(s) -53.1 -53.6 66.5 CuSO ₄ (s) -771.4 -662.2 109.2 Cu ₂ O(s) -168.6 -146.0 93.1 Cu ₂ S(s) -79.5 -86.2 120.9 Fluorine F(g) 79.38 62.3 158.75 F ₂ (g) 0 0 202.79<				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1770	12//	200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	20.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Copper Cu(s) 0 0 33.2 Cu(g) 337.4 297.7 166.4 Cu+(aq) 51.9 50.2 -26 Cu^2+(aq) 64.9 65.5 -98 CuCl(s) -137.2 -119.9 86.2 CuCl ₂ (s) -220.1 -175.7 108.1 CuO(s) -157.3 -129.7 42.6 CuS(s) -53.1 -53.6 66.5 CuS(s) -53.1 -53.6 66.5 CuSO ₄ (s) -771.4 -662.2 109.2 Cu ₂ O(s) -168.6 -146.0 93.1 Cu ₂ S(s) -79.5 -86.2 120.9 Fluorine F(g) 79.38 62.3 158.75 F ₂ (g) 0 0 202.79 F ⁻ (aq) -335.35 -278.8 -13.8 HF(g) -273.3 -275.4 173.8 Gold Au(s) 0 0 47.4 Au(
Cu(s) 0 0 33.2 Cu(g) 337.4 297.7 166.4 Cu $^+(aq)$ 51.9 50.2 -26 Cu $^2+(aq)$ 64.9 65.5 -98 CuCl(s) -137.2 -119.9 86.2 CuCl(s) -220.1 -175.7 108.1 CuO(s) -157.3 -129.7 42.6 CuS(s) -53.1 -53.6 66.5 CuSO ₄ (s) -771.4 -662.2 109.2 Cu ₂ O(s) -168.6 -146.0 93.1 Cu ₂ O(s) -168.6 -146.0 93.1 Cu ₂ S(s) -79.5 -86.2 120.9 Fluorine F(g) 79.38 62.3 158.75 F ₂ (g) 0 0 202.79 F ⁻ (aq) -335.35 -278.8 -13.8 HF(g) -273.3 -275.4 173.8 Gold Au(s) 0 0 47.4 Au(g) 366.1 326.3 180.5		-539.7	-454.3	79.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•		00.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Fluorine $F(g)$ 79.3862.3158.75 $F_2(g)$ 00202.79 $F^-(aq)$ -335.35-278.8-13.8 $HF(g)$ -273.3-275.4173.8GoldGold $Au(s)$ 0047.4 $Au(g)$ 366.1326.3180.5HeliumHelium $He(g)$ 00126.2				
F(g)79.3862.3158.75 $F_2(g)$ 00202.79 $F^-(aq)$ -335.35-278.8-13.8 $HF(g)$ -273.3-275.4173.8GoldAu(s)0047.4Au(g)366.1326.3180.5Helium $He(g)$ 00126.2		77.5	00.2	120.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		79 38	62.3	158 75
F ⁻ (aq) -335.35 -278.8 -13.8 HF(g) -273.3 -275.4 173.8 Gold Au(s) 0 0 47.4 Au(g) 366.1 326.3 180.5 Helium He(g) 0 0 0 126.2				
HF(g) -273.3 -275.4 173.8 Gold Au(s) 0 0 47.4 Au(g) 366.1 326.3 180.5 Helium He(g) 0 0 126.2				
Gold Au(s) 0 0 47.4 Au(g) 366.1 326.3 180.5 Helium He(g) 0 0 126.2				
Au(s) 0 0 47.4 Au(g) 366.1 326.3 180.5 Helium He(g) 0 0 126.2		2/3.3	2/ J.4	173.0
Au(g) 366.1 326.3 180.5 Helium He(g) 0 0 126.2		0	0	A7 A
Helium He(g) 0 0 126.2				
He(g) 0 0 126.2		300.1	320.3	180.5
		0	0	12/ 2
TUGFOGOD	_	U	U	120.2
	Hydrogen	046.0	000.0	4447
H(g) 218.0 203.3 114.7				
H ⁺ (aq) 0 0 0				
H ⁻ (aq) 1536.3 1517.1 108.9				
$H_2(g)$ 0 0 130.7	H ₂ (g)	0	0	130.7

Substance	ΛH ^o (k I/mol)	$\Delta G_{\rm f}^{\circ}({\rm kJ/mol})$	S°(1/mol·K)
lodine	Δ 17†(κ3/11/01)	201(10)	3 (3/11101 14)
I(g)	106.76	70.2	180.79
l ₂ (s)	0	0	116.14
$I_2(g)$	62.42	19.3	260.69
I ⁻ (aq)	- 56.78		106.45
HI(g)	26.5	1.7	206.6
Iron			
Fe(s)	0	0	27.3
Fe(<i>g</i>)	416.3	370.7	180.5
Fe ²⁺ (aq)	-87.9	-84.94	-113.4
Fe ³⁺ (aq)	-47.69	-10.54	-293.3
FeCO ₃ (s)	-740.6	- 666.7	92.9
FeCl ₂ (s)	-341.8	-302.3	118.0
FeCl ₃ (s)	-399.5	-334.0	142.3
FeO(s)	-272.0	-255.2	60.75
Fe(OH) ₃ (s)	-823.0	-696.5	106.7
FeS ₂ (s)	-178.2	-166.9	52.9
Fe ₂ O ₃ (s)	-824.2	-742.2	87.4
Fe ₃ O ₄ (s)	-1118.4	-1015.4	146.4
Lead			
Pb(s)	0	0	64.8
Pb(<i>g</i>)	195.2	162.2	175.4
Pb ²⁺ (<i>aq</i>)	0.92	-24.4	18.5
PbBr ₂ (s)	- 278.7	-261.9	161.5
PbCO ₃ (s)	-699.1	-625.5	131.0
PbCl ₂ (s)	- 359.4	-314.1	136.0
Pbl ₂ (s)	- 175.5	-173.6	174.9
Pb(NO ₃) ₂ (s)	- 451.9		
PbO(s)	- 217.3	-187.9	68.7
PbO ₂ (s)	- 277.4	- 217.3	68.6
PbS(s)	-100.4	- 98.7	91.2
PbSO ₄ (s)	- 920.0	-813.0	148.5
Lithium			
Li(s)	0	0	29.1
Li(g)	159.3	126.6	138.8
Li ⁺ (aq)	-278.47	-293.3	12.24
LiBr(s)	-351.2	-342.0	74.3
LiCl(s)	-408.6	-384.4	59.3
LiF(s)	-616.0	-587.7	35.7
Lil(s)	- 270.4	-270.3	86.8
LiNO ₃ (s)	-483.1	-381.1	90.0
LiOH(s)	-487.5	-441.5	42.8
Li ₂ O(s)	-597.9	-561.2	37.6
Magnesium			
Mg(s)	0	0	32.7
Mg(<i>g</i>)	147.1	112.5	148.6
Mg ²⁺ (aq)	-467.0	-455.4	-137
MgCl ₂ (s)	-641.3	- 591.8	89.6
MgCO ₃ (s)	-1095.8	-1012.1	65.7
$\frac{MgF_{2}(s)}{MgF_{2}(s)}$	-1124.2	-1071.1	57.2
14191 2(3)	1127.2	10/1.1	57.2

Substance	ΔH2(kJ/mol)	$\Delta G_f^{\circ}(kJ/mol)$	S°(J/mol·K)
MgO(s)	-601.6	- 569.3	27.0
Mg(OH) ₂ (s)	- 924.5	-833.5	63.2
$\frac{\text{MgSO}_4(s)}{\text{MgSO}_4(s)}$	-1284.9	-1170.6	91.6
$\frac{Mg_3N_4(s)}{Mg_3N_2(s)}$	-461	-4 01	88
Manganese	401	401	
Mn(s)	0	0	32.0
Mn(g)	280.7	238.5	173.7
Mn ²⁺ (aq)	-219.4	-225.6	- 78.8
MnO(s)	-385.2	-362.9	59.7
$MnO_2(s)$	-520.0	-465.1	53.1
MnO ₄ ⁻ (aq)	-529.9	-436.2	190.6
Mercury			
Hg(I)	0	0	75.9
Hg(g)	61.4	31.8	175.0
Hg ²⁺ (aq)	170.21	164.4	- 36.19
Hg ₂ ²⁺ (aq)	166.87	153.5	65.74
HgCl ₂ (s)	-224.3	-178.6	146.0
HgO(s)	- 90.8	-58.5	70.3
HgS(s)	-58.2	-50.6	82.4
Hg ₂ Cl ₂ (s)	-265.4	- 210.7	191.6
Nickel			
Ni(s)	0	0	29.9
Ni(g)	429.7	384.5	182.2
NiCl ₂ (s)	-305.3	-259.0	97.7
NiO(s)	-239.7	-211.7	37.99
NiS(s)	- 82.0	- 79.5	53.0
Nitrogen			
N(g)	472.7	455.5	153.3
N ₂ (g)	0	0	191.6
NF ₃ (g)	-132.1	-90.6	260.8
NH ₃ (g)	-4 5.9	-16.4	192.8
NH ₃ (aq)	-80.29	-26.50	111.3
NH ₄ ⁺ (aq)	-133.26	- 79.31	111.17
NH ₄ Br(s)	- 270.8	-175.2	113.0
NH ₄ Cl(s)	-314.4	-202.9	94.6
NH ₄ CN(s)	0.4		
NH ₄ F(s)	-464.0	-348.7	72.0
NH ₄ HCO ₃ (s)	-849.4	- 665.9	120.9
NH ₄ I(s)	-201.4	-112.5	117.0
NH ₄ NO ₃ (s)	-365.6	-183.9	151.1
$NH_4NO_3(aq)$	-339.9	-190.6	259.8
HNO₃(g)	-133.9	- 73.5	266.9
HNO ₃ (aq)	- 207	-110.9	146
NO(g)	91.3	87.6	210.8
NO ₂ (g)	33.2	51.3	240.1
NO ₃ ⁻ (aq)	-206.85	-110.2	146.70
NOBr(g)	82.2	82.4	273.7
NOCI(g)	51.7	66.1	261.7
N ₂ H ₄ (<i>I</i>)	50.6	149.3	121.2
N ₂ H ₄ (g)	95.4	159.4	238.5
N ₂ O(<i>g</i>)	81.6	103.7	220.0

Substance	$\Delta H_{\rm f}^{\circ}({\rm kJ/mol})$	$\Delta G_{\rm f}^{\circ}({\rm kJ/mol})$	S°(J/mol⋅K)
N ₂ O ₄ (I)	- 19.5	97.5	209.2
$N_2O_4(g)$	9.16	99.8	304.4
N ₂ O ₅ (s)	-43.1	113.9	178.2
N ₂ O ₅ (g)	13.3	117.1	355.7
Oxygen			
O(g)	249.2	231.7	161.1
$O_2(g)$	0	0	205.2
$O_3(g)$	142.7	163.2	238.9
OH ⁻ (aq)	-230.02	-157.3	-10.90
H ₂ O(<i>l</i>)	-285.8	-237.1	70.0
$H_2O(g)$	-241.8	-228.6	188.8
$H_2O_2(I)$	-187.8	-120.4	109.6
$H_2O_2(g)$	-136.3	-105.6	232.7
Phosphorus			
P(s, white)	0	0	41.1
P(s, red)	-17.6	-12.1	22.8
P(g)	316.5	280.1	163.2
P ₂ (g)	144.0	103.5	218.1
P ₄ (g)	58.9	24.4	280.0
PCl ₃ (I)	-319.7	-272.3	217.1
PCl ₃ (g)	- 287.0	-267.8	311.8
PCl ₅ (s)	-4 43.5		
PCI ₅ (g)	-374.9	-305.0	364.6
PF ₅ (g)	-1594.4	-1520.7	300.8
PH ₃ (<i>g</i>)	5.4	13.5	210.2
POCl ₃ (I)	- 597.1	-520.8	222.5
POCl ₃ (g)	- 558.5	-512.9	325.5
PO ₄ ³⁻ (aq)	-1277.4	-1018.7	-220.5
$HPO_4^{2-}(aq)$	-1292.1	-1089.2	-33.5
$H_2PO_4^-(aq)$	-1296.3	-1130.2	90.4
H ₃ PO ₄ (s)	-1284.4	-1124.3	110.5
H ₃ PO ₄ (aq)	-1288.3	-1142.6	158.2
$P_4O_6(s)$	-1640.1	0.100	
P ₄ O ₁₀ (s)	- 2984	- 2698	228.9
Platinum			44.7
Pt(s)	0	0	41.6
Pt(g)	565.3	520.5	192.4
Potassium			
K(s)	0	0	64.7
K(g)	89.0	60.5	160.3
K ⁺ (aq)	-252.14	-283.3	101.2
KBr(s)	-393.8	-380.7	95.9
KCN(s)	-113.0	-101.9	128.5
KCl(s)	-436.5	-408.5	82.6
KCIO ₃ (s)	-397.7	-296.3	143.1
KClO ₄ (s)	-432.8	-303.1	151.0
KF(s)	- 567.3	- 537.8	66.6
KI(s)	-327.9	-324.9	106.3
KNO ₃ (s)	-494.6	-394.9	133.1

Substance	$\Delta H_{\rm f}^{\circ}(kJ/mol)$	$\Delta G^{\circ}_{f}(kJ/mol)$	S°(J/mol·K)
KOH(s)	-424.6	-379.4	81.2
KOH(aq)	-482.4	-440.5	91.6
KO ₂ (s)	-284.9	-239.4	116.7
K ₂ CO ₃ (s)	-1151.0	-1063.5	155.5
K ₂ O(s)	-361.5	-322.1	94.14
K ₂ O ₂ (s)	-494.1	-425.1	102.1
K ₂ SO ₄ (s)	-1437.8	-1321.4	175.6
Rubidium			
Rb(s)	0	0	76.8
Rb(<i>g</i>)	80.9	53.1	170.1
$Rb^+(aq)$	-251.12	-283.1	121.75
RbBr(s)	-394.6	-381.8	110.0
RbCl(s)	-435.4	-407.8	95.9
RbClO ₃ (s)	-392.4	-292.0	152
RbF(s)	-557.7		
RbI(s)	-333.8	-328.9	118.4
Scandium			
Sc(s)	0	0	34.6
Sc(g)	377.8	336.0	174.8
Selenium			
Se(s, gray)	0	0	42.4
Se(g)	227.1	187.0	176.7
H ₂ Se(g)	29.7	15.9	219.0
Silicon			
Si(s)	0	0	18.8
Si(g)	450.0	405.5	168.0
SiCl ₄ (I)	-687.0	-619.8	239.7
$SiF_4(g)$	-1615.0	-1572.8	282.8
$SiH_4(g)$	34.3	56.9	204.6
SiO ₂ (s, quartz)	- 910.7	-856.3	41.5
$Si_2H_6(g)$	80.3	127.3	272.7
Silver			
Ag(s)	0	0	42.6
Ag(<i>g</i>)	284.9	246.0	173.0
$Ag^{+}(aq)$	105.79	77.11	73.45
Ag (aq) AgBr(s)	-100.4	- 96.9	107.1
AgCl(s)	-127.0	-109.8	96.3
AgCi(s) AgF(s)	- 204.6	-107.8 -185	84
Agl(s)	-61.8	-66.2	115.5
AgNO ₃ (s)	-124.4	-33.4	140.9
Ag ₂ O(s)	-31.1	-11.2	121.3
Ag ₂ S(s)	-32.6	-40.7	144.0
Ag ₂ SO ₄ (s)	- 715.9	-618.4	200.4
Sodium			
Na(s)	0	0	51.3
Na(g)	107.5	77.0	153.7
Na ⁺ (<i>aq</i>)	-240.34	-261.9	58.45
NaBr(s)	-361.1	-349.0	86.8
NaCl(s)	-4 11.2	-384.1	72.1
NaCl(aq)	-407.2	-393.1	115.5

Substance	A 4 9/k 1 /m ol)	$\Delta G_{\rm f}^{\circ}({\rm kJ/mol})$	5°(1/mal.K)
NaClO ₃ (s)	-365.8	-262.3	123.4
NaF(s)			51.1
NaHCO ₃ (s)	-950.8		101.7
NaHSO ₄ (s)	-1125.5	-992.8	113.0
Nal(s)	-287.8	-286.1	98.5
NaNO ₃ (s)	-467.9	-367.0	116.5
$NaNO_3(aq)$	-447.5	-373.2	205.4
NaOH(s)	-425.8	-379.7	64.4
NaOH(aq)	-470.1	-4 19.2	48.2
NaO ₂ (s)	-260.2	-218.4	115.9
$Na_2CO_3(s)$	-1130.7	-1044.4	135.0
Na ₂ O(<i>s</i>)	-414.2	-375.5	75.1
$Na_2O_2(s)$	-510.9	-447.7	95.0
$Na_2SO_4(s)$	-1387.1	-1270.2	149.6
Na ₃ PO ₄ (s)	-1917	-1789	173.8
Strontium			
Sr(s)	0	0	55.0
Sr(g)	164.4	130.9	164.6
Sr ²⁺ (aq)	-545.51	- 557.3	- 39
SrCl ₂ (s)	-828.9	-781.1	114.9
SrCO ₃ (s)	-1220.1	-1140.1	97.1
SrO(s)	-592.0	-561.9	54.4
SrSO ₄ (s)	-1453.1	-1340.9	117.0
Sulfur			
S(s, rhombic)	0	0	32.1
S(s, monoclinic)	0.3	0.096	32.6
S(g)	277.2	236.7	167.8
S ₂ (g)	128.6	79.7	228.2
S ₈ (g)	102.3	49.7	430.9
S ²⁻ (aq)	41.8	83.7	22
SF ₆ (g)	-1220.5	-1116.5	291.5
HS ⁻ (aq)	-17.7	12.4	62.0
$H_2S(g)$	-20.6	-33.4	205.8
$H_2S(aq)$	-39.4	-27.7	122
SOCl ₂ (I)	-245.6		
SO ₂ (g)	-296.8	-300.1	248.2
SO ₃ (g)	-395.7	-371.1	256.8
SO ₄ ²⁻ (aq)	-909.3	- 744.6	18.5
$-3O_4$ (aq) HSO_4 (aq)	-886.5	-754.4	129.5
$H_2SO_4(I)$	- 814.0	-690.0	156.9
	-909.3	-744.6	18.5
$H_2SO_4(aq)$	-648.5		67
S ₂ O ₃ ²⁻ (aq)	-040.3		
Tin			51.0
Sn(s, white)	0	0	51.2
Sn(s, gray)	- 2.1	0.1	44.1
Sn(<i>g</i>)	301.2	266.2	168.5
SnCl ₄ (I)	– 511.3	-440.1	258.6
$SnCl_4(g)$	-471.5	-432.2	365.8
SnO(s)	-280.7	-251.9	57.2
SnO ₂ (s)	- 577.6	-515.8	49.0
		/C :: 1	

—(Continued on the next page)

Substance	$\Delta H_{\rm f}^{\circ}({ m kJ/mol})$	$\Delta G_{\mathrm{f}}^{\circ}(\mathrm{kJ/mol})$	S°(J/mol⋅K)
Titanium			
Ti(s)	0	0	30.7
Ti(g)	473.0	428.4	180.3
TiCl ₄ (I)	-804.2	-737.2	252.3
$TiCl_4(g)$	- 763.2	-726.3	353.2
TiO ₂ (s)	- 944.0	-888.8	50.6
Tungsten			
W(s)	0	0	32.6
W(g)	849.4	807.1	174.0
WO ₃ (s)	-842.9	-764.0	75.9
Uranium			
U(s)	0	0	50.2
U(g)	533.0	488.4	199.8
UF ₆ (s)	-2197.0	-2068.5	227.6

Substance	$\Delta H_{\rm f}^{\circ}({ m kJ/mol})$	$\Delta G_{\rm f}^{\circ}({\rm kJ/mol})$	S°(J/mol⋅K)
$UF_6(g)$	-2147.4	-2063.7	377.9
UO ₂ (s)	-1085.0	-1031.8	77.0
Vanadium			
V(s)	0	0	28.9
V(g)	514.2	754.4	182.3
Zinc			
Zn(s)	0	0	41.6
Zn(g)	130.4	94.8	161.0
Zn ²⁺ (<i>aq</i>)	-153.39	-147.1	-109.8
$ZnCl_2(s)$	- 415.1	-369.4	111.5
ZnO(s)	-350.5	-320.5	43.7
ZnS (s, zinc blende)	-206.0	-201.3	57.7
ZnSO ₄ (s)	- 982.8	- 871.5	110.5

C. Aqueous Equilibrium Constants1. Dissociation Constants for Acids at 25 °C

Name	Formula	K _{a1}	K _{a2}	K _{a3}
Acetic	$HC_2H_3O_2$	1.8×10^{-5}		
Acetylsalicylic	HC ₉ H ₇ O ₄	3.3×10^{-4}		
Adipic	H ₂ C ₆ H ₈ O ₄	3.9×10^{-5}	3.9×10^{-6}	
Arsenic	H ₃ AsO ₄	5.5×10^{-3}	1.7×10^{-7}	5.1×10^{-12}
Arsenous	H ₃ AsO ₃	5.1×10^{-10}		
Ascorbic	H ₂ C ₆ H ₆ O ₆	8.0×10^{-5}	1.6×10^{-12}	
Benzoic	$HC_7H_5O_2$	6.5×10^{-5}		
Boric	H_3BO_3	5.4×10^{-10}		
Butanoic	$HC_4H_7O_2$	1.5×10^{-5}		
Carbonic	H ₂ CO ₃	4.3×10^{-7}	5.6×10^{-11}	
Chloroacetic	HC ₂ H ₂ O ₂ Cl	1.4×10^{-3}		
Chlorous	HClO ₂	1.1×10^{-2}		
Citric	H ₃ C ₆ H ₅ O ₇	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
Cyanic	HCNO	2×10^{-4}		
Formic	HCHO ₂	1.8×10^{-4}		
Hydrazoic	HN ₃	2.5×10^{-5}		
Hydrocyanic	HCN	4.9×10^{-10}		
Hydrofluoric	HF	6.8×10^{-4}		
Hydrogen chromate ion	HCrO ₄ ⁻	3.0×10^{-7}		
Hydrogen peroxide	H ₂ O ₂	2.4×10^{-12}		
Hydrogen selenate ion	HSeO ₄ ⁻	2.2×10^{-2}		
Hydrosulfuric	H ₂ S	8.9 × 10 ⁻⁸	1 × 10 ⁻¹⁹	
Hydrotelluric	H ₂ Te	2.3×10^{-3}	1.6×10^{-11}	

Name	Formula	K a ₁	K_{a_2}	K_{a_3}
Hypobromous	HBrO	2.8×10^{-9}		
Hypochlorous	HCIO	2.9 × 10 ⁻⁸		
Hypoiodous	HIO	2.3×10^{-11}		
lodic	HIO ₃	1.7×10^{-1}		
Lactic	HC ₃ H ₅ O ₃	1.4 × 10 ⁻⁴		
Maleic	H ₂ C ₄ H ₂ O ₄	1.2 × 10 ⁻²	5.9×10^{-7}	
Malonic	H ₂ C ₃ H ₂ O ₄	1.5×10^{-3}	2.0×10^{-6}	
Nitrous	HNO ₂	4.6 × 10 ⁻⁴		
Oxalic	H ₂ C ₂ O ₄	6.0 × 10 ⁻²	6.1×10^{-5}	
Paraperiodic	H ₅ IO ₆	2.8×10^{-2}	5.3 × 10 ⁻⁹	
Phenol	HC ₆ H ₅ O	1.3×10^{-10}		
Phosphoric	H ₃ PO ₄	7.5×10^{-3}	6.2 × 10 ⁻⁸	4.2×10^{-13}
Phosphorous	H ₃ PO ₃	5 × 10 ⁻²	2.0×10^{-7}	
Propanoic	HC ₃ H ₅ O ₂	1.3 × 10 ⁻⁵		
Pyruvic	HC ₃ H ₃ O ₃	4.1×10^{-3}		
Pyrophosphoric	H ₄ P ₂ O ₇	1.2×10^{-1}	7.9×10^{-3}	2.0×10^{-7}
Selenous	H ₂ SeO ₃	2.4×10^{-3}	4.8 × 10 ⁻⁹	
Succinic	H ₂ C ₄ H ₄ O ₄	6.2 × 10 ⁻⁵	2.3×10^{-6}	
Sulfuric	H ₂ SO ₄	Strong acid	1.2×10^{-2}	
Sulfurous	H ₂ SO ₃	1.6 × 10 ⁻²	6.4 × 10 ⁻⁸	
Tartaric	H ₂ C ₄ H ₄ O ₆	1.0 × 10 ⁻³	4.6×10^{-5}	
Trichloroacetic	HC ₂ Cl ₃ O ₂	2.2×10^{-1}		
Trifluoroacetic acid	HC ₂ F ₃ O ₂	3.0 × 10 ⁻¹		

2. Dissociation Constants for Hydrated Metal lons at 25 $^{\circ}$ C

Cation	Hydrated Ion	K a
AI^{3+}	$AI(H_2O)_6^{3+}$	1.4×10^{-5}
Be ²⁺	Be(H ₂ O) ₆ ²⁺	3×10^{-7}
Co ²⁺	Co(H ₂ O) ₆ ²⁺	1.3 × 10 ⁻⁹
Cr ³⁺	Cr(H ₂ O) ₆ ³⁺	1.6 × 10 ⁻⁴
Cu ²⁺	Cu(H ₂ O) ₆ ²⁺	3×10^{-8}
Fe ²⁺	Fe(H ₂ O) ₆ ²⁺	3.2×10^{-10}

Cation	Hydrated Ion	K _a
Fe ³⁺	Fe(H ₂ O) ₆ ³⁺	6.3×10^{-3}
Ni ²⁺	Ni(H ₂ O) ₆ ²⁺	2.5×10^{-11}
Pb ²⁺	Pb(H ₂ O) ₆ ²⁺	3 × 10 ⁻⁸
Sn ²⁺	Sn(H ₂ O) ₆ ²⁺	4×10^{-4}
Zn ²⁺	Zn(H ₂ O) ₆ ²⁺	2.5×10^{-10}
	=::(:::2078	

3. Dissociation Constants for Bases at 25 °C

Name	Formula	K _b
Ammonia	NH_3	1.76×10^{-5}
Aniline	$C_6H_5NH_2$	3.9×10^{-10}
Bicarbonate ion	HCO ₃ ⁻	2.3×10^{-8}
Carbonate ion	CO ₃ ²⁻	1.8×10^{-4}
Codeine	C ₁₈ H ₂₁ NO ₃	1.6 × 10 ⁻⁶
Diethylamine	(C ₂ H ₅) ₂ NH	6.9 × 10 ⁻⁴
Dimethylamine	(CH ₃) ₂ NH	5.4×10^{-4}
Ethylamine	C ₂ H ₅ NH ₂	5.6 × 10 ⁻⁴
Ethylenediamine	C ₂ H ₈ N ₂	8.3 × 10 ⁻⁵
Hydrazine	H ₂ NNH ₂	1.3×10^{-6}
Hydroxylamine	HONH ₂	1.1 × 10 ⁻⁸

Formula	K_{b}
C ₁₃ H ₁₆ CINO	3×10^{-7}
CH ₃ NH ₂	4.4×10^{-4}
C ₁₇ H ₁₉ NO ₃	1.6×10^{-6}
C ₁₀ H ₁₄ N ₂	1.0×10^{-6}
C ₅ H ₁₀ NH	1.33×10^{-3}
C ₃ H ₇ NH ₂	3.5×10^{-4}
C ₅ H ₅ N	1.7×10^{-9}
C ₂₁ H ₂₂ N ₂ O ₂	1.8×10^{-6}
(C ₂ H ₅) ₃ N	5.6×10^{-4}
(CH ₃) ₃ N	6.4×10^{-5}
	$C_{13}H_{16}CINO$ CH_3NH_2 $C_{17}H_{19}NO_3$ $C_{10}H_{14}N_2$ $C_5H_{10}NH$ $C_3H_7NH_2$ C_5H_5N $C_{21}H_{22}N_2O_2$ $(C_2H_5)_3N$

4. Solubility Product Constants for Compounds at 25 °C

Compound	Formula	K_{sp}
Aluminum hydroxide	Al(OH) ₃	1.3×10^{-33}
Aluminum phosphate	AIPO ₄	9.84×10^{-21}
Barium carbonate	BaCO ₃	2.58×10^{-9}
Barium chromate	BaCrO ₄	1.17×10^{-10}
Barium fluoride	BaF ₂	2.45×10^{-5}
Barium hydroxide	Ba(OH) ₂	5.0×10^{-3}
Barium oxalate	BaC ₂ O ₄	1.6 × 10 ⁻⁶
Barium phosphate	Ba ₃ (PO ₄) ₂	6 × 10 ⁻³⁹
Barium sulfate	BaSO ₄	1.07×10^{-10}
Cadmium carbonate	CdCO ₃	1.0×10^{-12}
Cadmium hydroxide	Cd(OH) ₂	7.2×10^{-15}
Cadmium sulfide	CdS	8 × 10 ⁻²⁸
Calcium carbonate	CaCO ₃	4.96×10^{-9}
Calcium chromate	CaCrO ₄	7.1×10^{-4}
Calcium fluoride	CaF ₂	1.46×10^{-10}
Calcium hydroxide	Ca(OH) ₂	4.68×10^{-6}

Compound	Formula	K_{sp}
Calcium hydrogen phosphate	CaHPO₄	1 × 10 ⁻⁷
Calcium oxalate	CaC_2O_4	2.32×10^{-9}
Calcium phosphate	$Ca_3(PO_4)_2$	2.07×10^{-33}
Calcium sulfate	CaSO ₄	7.10×10^{-5}
Chromium(III) hydroxide	Cr(OH) ₃	6.3×10^{-31}
Cobalt(II) carbonate	CoCO ₃	1.0×10^{-10}
Cobalt(II) hydroxide	Co(OH) ₂	5.92×10^{-15}
Cobalt(II) sulfide	CoS	5 × 10 ⁻²²
Copper(I) bromide	CuBr	6.27×10^{-9}
Copper(I) chloride	CuCl	1.72×10^{-7}
Copper(I) cyanide	CuCN	3.47×10^{-20}
Copper(II) carbonate	CuCO ₃	2.4×10^{-10}
Copper(II) hydroxide	Cu(OH) ₂	2.2×10^{-20}
Copper(II) phosphate	Cu ₃ (PO ₄) ₂	1.40×10^{-37}
Copper(II) sulfide	CuS	1.27×10^{-36}
Iron(II) carbonate	FeCO ₃	3.07×10^{-11}

Compound	Formula	K_{sp}
Iron(II) hydroxide	Fe(OH) ₂	4.87×10^{-17}
Iron(II) sulfide	FeS	3.72×10^{-19}
Iron(III) hydroxide	Fe(OH) ₃	2.79×10^{-39}
Lanthanum fluoride	LaF ₃	2 × 10 ⁻¹⁹
Lanthanum iodate	La(IO ₃) ₃	7.50×10^{-12}
Lead(II) bromide	PbBr ₂	4.67×10^{-6}
Lead(II) carbonate	PbCO ₃	7.40×10^{-14}
Lead(II) chloride	PbCl ₂	1.17×10^{-5}
Lead(II) chromate	PbCrO ₄	2.8×10^{-13}
Lead(II) fluoride	PbF ₂	3.3 × 10 ⁻⁸
Lead(II) hydroxide	Pb(OH) ₂	1.43×10^{-20}
Lead(II) iodide	Pbl ₂	9.8 × 10 ⁻⁹
Lead(II) phosphate	Pb ₃ (PO ₄) ₂	1 × 10 ⁻⁵⁴
Lead(II) sulfate	PbSO ₄	1.82×10^{-8}
Lead(II) sulfide	PbS	9.04×10^{-29}
Magnesium carbonate	MgCO ₃	6.82×10^{-6}
Magnesium fluoride	MgF ₂	5.16×10^{-11}
Magnesium hydroxide	Mg(OH) ₂	2.06×10^{-13}
Magnesium oxalate	MgC ₂ O ₄	4.83×10^{-6}
Manganese(II) carbonate	MnCO ₃	2.24×10^{-11}
Manganese(II) hydroxide	Mn(OH) ₂	1.6×10^{-13}
Manganese(II) sulfide	MnS	2.3×10^{-13}
Mercury(I) bromide	Hg ₂ Br ₂	6.40×10^{-23}
Mercury(I) carbonate	Hg ₂ CO ₃	3.6×10^{-17}
Mercury(I) chloride	Hg ₂ Cl ₂	1.43×10^{-18}
Mercury(I) chromate	Hg ₂ CrO ₄	2 × 10 ⁻⁹
Mercury(I) cyanide	Hg ₂ (CN) ₂	5 × 10 ⁻⁴⁰

Compound	Formula	K_{sp}
Mercury(I) iodide	Hg_2I_2	5.2×10^{-29}
Mercury(II) hydroxide	Hg(OH) ₂	3.1×10^{-26}
Mercury(II) sulfide	HgS	1.6×10^{-54}
Nickel(II) carbonate	NiCO ₃	1.42×10^{-7}
Nickel(II) hydroxide	Ni(OH) ₂	5.48×10^{-16}
Nickel(II) sulfide	NiS	3×10^{-20}
Silver bromate	AgBrO ₃	5.38×10^{-5}
Silver bromide	AgBr	5.35×10^{-13}
Silver carbonate	Ag ₂ CO ₃	8.46×10^{-12}
Silver chloride	AgCl	1.77×10^{-10}
Silver chromate	Ag ₂ CrO ₄	1.12×10^{-12}
Silver cyanide	AgCN	5.97×10^{-17}
Silver iodide	Agl	8.51×10^{-17}
Silver phosphate	Ag ₃ PO ₄	8.89×10^{-17}
Silver sulfate	Ag ₂ SO ₄	1.20×10^{-5}
Silver sulfide	Ag ₂ S	6 × 10 ⁻⁵¹
Strontium carbonate	SrCO ₃	5.60×10^{-10}
Strontium chromate	SrCrO ₄	3.6×10^{-5}
Strontium phosphate	Sr ₃ (PO ₄) ₂	1 × 10 ⁻³¹
Strontium sulfate	SrSO ₄	3.44×10^{-7}
Tin(II) hydroxide	Sn(OH) ₂	5.45×10^{-27}
Tin(II) sulfide	SnS	1×10^{-26}
Zinc carbonate	ZnCO ₃	1.46×10^{-10}
Zinc hydroxide	Zn(OH) ₂	3×10^{-17}
Zinc oxalate	ZnC ₂ O ₄	2.7×10^{-8}
Zinc sulfide	ZnS	2×10^{-25}

5. Complex Ion Formation Constants in Water at 25 °C

Complex Ion	K_{f}
[Ag(CN) ₂] ⁻	1×10^{21}
[Ag(EDTA)] ³⁻	2.1×10^{7}
[Ag(en) ₂] ⁺	5.0×10^{7}
$[Ag(NH_3)_2]^+$	1.7×10^{7}
[Ag(SCN) ₄] ³⁻	1.2×10^{10}
$[Ag(S_2O_3)_2]^{3-}$	2.8×10^{13}
[Al(EDTA)] ⁻	1.3×10^{16}
[AIF ₆] ³⁻	7×10^{19}
[Al(OH) ₄] ⁻	3×10^{33}
[Al(ox) ₃] ³⁻	2×10^{16}
[CdBr ₄] ²⁻	5.5×10^{3}
$[Cd(CN)_4]^{2-}$	3×10^{18}

Complex Ion	K _f
[CdCl ₄] ²⁻	6.3×10^{2}
$[Cd(en)_3]^{2+}$	1.2×10^{12}
$[Cdl_4]^{2-}$	2×10^6
[Co(EDTA)] ²⁻	2.0×10^{16}
[Co(EDTA)] ⁻	1×10^{36}
$[Co(en)_3]^{2+}$	8.7×10^{13}
[Co(en) ₃] ³⁺	4.9×10^{48}
$[Co(NH_3)_6]^{2+}$	1.3×10^{5}
$[Co(NH_3)_6]^{3+}$	2.3×10^{33}
[Co(OH) ₄] ²⁻	5×10^9
$[Co(ox)_3]^{4-}$	5 × 10 ⁹
$[Co(ox)_3]^{3-}$	1×10^{20}

Complex Ion	K _f
$[Co(SCN)_4]^{2-}$	1×10^3
[Cr(EDTA)] ⁻	1×10^{23}
[Cr(OH) ₄] ⁻	8.0×10^{29}
[CuCl ₃] ²⁻	5×10^5
[Cu(CN) ₄] ²⁻	1.0×10^{25}
[Cu(EDTA)] ²⁻	5×10^{18}
[Cu(en) ₂] ²⁺	1×10^{20}
$[Cu(NH_3)_4]^{2+}$	1.7×10^{13}
$[Cu(ox)_2]^{2-}$	3×10^8
[Fe(CN) ₆] ⁴⁻	1.5×10^{35}
[Fe(CN) ₆] ³⁻	2×10^{43}
[Fe(EDTA)] ²⁻	2.1×10^{14}
[Fe(EDTA)] ⁻	1.7×10^{24}
$[Fe(en)_3]^{2+}$	5.0×10^{9}
$[Fe(ox)_3]^{4-}$	1.7×10^{5}
$[Fe(ox)_3]^{3-}$	2×10^{20}
$[Fe(SCN)]^{2+}$	8.9×10^2
$[Hg(CN)_4]^{2-}$	1.8×10^{41}
[HgCl ₄] ²⁻	1.1×10^{16}
[Hg(EDTA)] ²⁻	6.3×10^{21}
$[Hg(en)_2]^{2+}$	2×10^{23}
[Hgl ₄] ²⁻	$2 imes 10^{30}$

Complex Ion	K _f
$[Hg(ox)_2]^{2-}$	9.5 × 10 ⁶
[Ni(CN) ₄] ²⁻	2 × 10 ³¹
[Ni(EDTA)] ²⁻	3.6 × 10 ¹⁸
[Ni(en) ₃] ²⁺	2.1 × 10 ¹⁸
[Ni(NH ₃) ₆] ²⁺	2.0 × 10 ⁸
[Ni(ox) ₃] ⁴⁻	3×10^{8}
[PbCl ₃]	2.4×10^{1}
[Pb(EDTA)] ²⁻	2×10^{18}
[Pbl ₄] ²⁻	3.0×10^4
[Pb(OH) ₃] ⁻	8×10^{13}
$[Pb(ox)_2]^{2-}$	3.5×10^{6}
$[Pb(S_2O_3)_3]^{4-}$	2.2×10^{6}
[PtCl ₄] ²⁻	1×10^{16}
$[Pt(NH_3)_6]^{2+}$	2×10^{35}
[Sn(OH) ₃] ⁻	3×10^{25}
$[Zn(CN)_4]^{2-}$	2.1×10^{19}
[Zn(EDTA)] ²⁻	3×10^{16}
$[Zn(en)_3]^{2+}$	1.3×10^{14}
$[Zn(NH_3)_4]^{2+}$	2.8×10^{9}
[Zn(OH) ₄] ²⁻	2×10^{15}
$[Zn(ox)_3]^{4-}$	1.4×10^{8}

D. Standard Electrode Potentials at 25 °C

Half-Reaction	E°(V)
$F_2(g) + 2 e^- \longrightarrow 2 F^-(aq)$	2.87
$O_3(g) + 2 H^+(aq) + 2 e^- \longrightarrow O_2(g) + H_2(l)$	2.08
$Ag^{2+}(aq) + e^{-} \longrightarrow Ag^{+}(aq)$	1.98
$Co^{3+}(aq) + e^{-} \longrightarrow Co^{2+}(aq)$	1.82
$H_2O_2(aq) + 2 H^+(aq) + 2 e^- \longrightarrow 2 H_2O(I)$	1.78
$PbO_{2}(s) + 4 H^{+}(aq) + SO_{4}^{2-}aq) + 2 e^{-} \longrightarrow PbSO_{4}(s) + 2 H_{2}O(I)$	1.69
$MnO_4^-(\mathit{aq}) + 4 \; H^+(\mathit{aq}) + 3 \; e^- \longrightarrow MnO_2(\mathit{s}) + 2 \; H_2O(\mathit{l})$	1.68
$2 \text{ HCIO}(aq) + 2 \text{ H}^+(aq) + 2 \text{ e}^- \longrightarrow \text{Cl}_2(g) + 2 \text{ H}_2\text{O}(I)$	1.61
$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$	1.51
$Au^{3+}(aq) + 3 e^{-} \longrightarrow Au(s)$	1.50
$2 \text{ BrO}_3^-(aq) + 12 \text{ H}^+(aq) + 10 \text{ e}^- \longrightarrow \text{Br}_2(l) + 6 \text{ H}_2O(l)$	1.48
$PbO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Pb^{2+}(aq) + 2 H_2O(I)$	1.46
$\text{Cl}_2(g) + 2 e^- \longrightarrow 2 \text{Cl}^-(aq)$	1.36

H M P	E00.0
Half-Reaction	E°(V)
$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow$ 2 $Cr^{3+}(aq) + 7 H_2O(I)$	1.33
$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	1.23
$MnO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Mn^{2+}(aq) + 2 H_2O(I)$	1.21
$IO_3^-(aq) + 6 H^+(aq) + 5 e^- \longrightarrow \frac{1}{2} I_2(aq) + 3 H_2O(I)$	1.20
$Br_2(I) + 2 e^- \longrightarrow 2 Br^-(aq)$	1.09
$AuCl_4^-(aq) + 3 e^- \longrightarrow Au(s) + 4 Cl^-(aq)$	1.00
$VO_2^+(aq) + 2 H^+(aq) + e^- \longrightarrow VO^{2+}(aq) + H_2O(I)$	1.00
$HNO_2(aq) + H^+(aq) + e^- \longrightarrow NO(g) + 2 H_2O(I)$	0.98
$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(I)$	0.96
$CIO_2(g) + e^- \longrightarrow CIO_2^-(aq)$	0.95
$2 \text{ Hg}^{2+}(aq) + 2 e^- \longrightarrow 2 \text{ Hg}_2^{2+}(aq)$	0.92
$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	0.80
$Hg_2^{2+}(aq) + 2 e^- \longrightarrow 2 Hg(I)$	0.80

—(Continued on the next page)

Half-Reaction	E°(V)
$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	0.77
$PtCl_4^{2-}(aq) + 2 e^- \longrightarrow Pt(s) + 4 Cl^-(aq)$	0.76
$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$	0.70
$MnO_4^-(aq) + e^- \longrightarrow MnO_4^{2-}(aq)$	0.56
$I_2(s) + 2 e^- \longrightarrow 2 I^-(aq)$	0.54
$Cu^{+}(aq) + e^{-} \longrightarrow Cu(s)$	0.52
$O_2(g) + 2 H_2O(l) + 4 e^- \longrightarrow 4 OH^-(aq)$	0.40
$Cu^{2+}(aq) + 2 e^{-} \longrightarrow Cu(s)$	0.34
$BiO^{+}(aq) + 2 H^{+}(aq) + 3 e^{-} \longrightarrow Bi(s) + H_2O(I)$	0.32
$Hg_2Cl_2(s) + 2 e^- \longrightarrow 2 Hg(I) + 2 Cl^-(aq)$	0.27
$AgCl(s) + e^{-} \longrightarrow Ag(s) + Cl^{-}(aq)$	0.22
$SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^- \longrightarrow H_2SO_3(aq) + H_2O(I)$	0.20
$Cu^{2+}(aq) + e^{-} \longrightarrow Cu^{+}(aq)$	0.16
$\operatorname{Sn}^{4+}(aq) + 2 e^{-} \longrightarrow \operatorname{Sn}^{2+}(aq)$	0.15
$S(s) + 2 H^{+}(aq) + 2 e^{-} \longrightarrow H_2S(g)$	0.14
$AgBr(s) + e^{-} \longrightarrow Ag(s) + Br^{-}(aq)$	0.071
$2 H^{+}(aq) + 2 e^{-} \longrightarrow H_{2}(g)$	0.00
$Fe^{3+}(aq) + 3 e^{-} \longrightarrow Fe(s)$	-0.036
$Pb^{2+}(aq) + 2 e^{-} \longrightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Sn}(s)$	-0.14
$Agl(s) + e^{-} \longrightarrow Ag(s) + l^{-}(aq)$	-0.15

Half-Reaction	E°(V)
$N_2(g) + 5 H^+(aq) + 4 e^- \longrightarrow N_2 H_5^+(aq)$	-0.23
$Ni^{2+}(aq) + 2 e^{-} \longrightarrow Ni(s)$	-0.23
$Co^{2+}(aq) + 2 e^{-} \longrightarrow Co(s)$	-0.28
$PbSO_4(s) + 2 e^- \longrightarrow Pb(s) + SO_4^{2-}(aq)$	-0.36
$Cd^{2+}(aq) + 2 e^{-} \longrightarrow Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.45
$2 CO_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2C_2O_4(aq)$	-0.49
$\operatorname{Cr}^{3+}(aq) + \operatorname{e}^{-} \longrightarrow \operatorname{Cr}^{2+}(aq)$	-0.50
$Cr^{3+}(aq) + 3 e^{-} \longrightarrow Cr(s)$	-0.73
$Zn^{2+}(aq) + 2 e^{-} \longrightarrow Zn(s)$	-0.76
$2 H_2O(l) + 2 e^- \longrightarrow H_2(g) + 2 OH^-(aq)$	-0.83
$Mn^{2+}(aq) + 2 e^- \longrightarrow Mn(s)$	-1.18
$Al^{3+}(aq) + 3 e^{-} \longrightarrow Al(s)$	-1.66
$H_2(g) + 2 e^- \longrightarrow 2 H^-(aq)$	-2.23
$Mg^{2+}(aq) + 2 e^{-} \longrightarrow Mg(s)$	-2.37
$La^{3+}(aq) + 3 e^{-} \longrightarrow La(s)$	-2.38
$Na^+(aq) + e^- \longrightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \longrightarrow Ca(s)$	-2.76
$Ba^{2+}(aq) + 2 e^{-} \longrightarrow Ba(s)$	-2.90
$K^+(aq) + e^- \longrightarrow K(s)$	-2.92
$Li^+(aq) + e^- \longrightarrow Li(s)$	-3.04

E. Vapor Pressure of Water at Various Temperatures

T (°C)	P (torr)						
0	4.58	21	18.65	35	42.2	92	567.0
5	6.54	22	19.83	40	55.3	94	610.9
10	9.21	23	21.07	45	71.9	96	657.6
12	10.52	24	22.38	50	92.5	98	707.3
14	11.99	25	23.76	55	118.0	100	760.0
16	13.63	26	25.21	60	149.4	102	815.9
17	14.53	27	26.74	65	187.5	104	875.1
18	15.48	28	28.35	70	233.7	106	937.9
19	16.48	29	30.04	80	355.1	108	1004.4
20	17.54	30	31.82	90	525.8	110	1074.6

Answers to Selected Exercises APPENDIX III

Chapter 1

33. a. theory

b. observation

c. law

- d. observation
- 35. Several answers possible
- **37. a.** mixture, homogeneous
 - **b.** pure substance, compound
 - c. pure substance, element
 - d. mixture, heterogeneous

39.	Substance	Pure or Mixture	Туре	
	Aluminum	Pure	Element	
	Apple juice	Mixture	Homogeneous	
	Hydrogen peroxide	Pure	Compound	
	Chicken soup	Mixture	Heterogeneous	

- 41. a. pure substance, compound
 - **b.** mixture, heterogeneous
 - c. mixture, homogeneous
 - d. pure substance, element
- 43. physical, chemical, physical, physical
- 45. a. chemical
 - **c.** physical
- **b.** physical d. chemical

c. physical

b. −321 °F

d. 310.2 K

- 47. a. chemical
 - c. chemical
- **b.** physical d. chemical
- **49. a.** physical
- **b.** chemical
- **51. a.** 0 °C
 - **c.** −78.3 °F
- **53.** -89.2 °C, 184.0 K
- **55. a.** 1.2 nm
- **c.** 1.5 Gg
- **57. a.** 4.5×10^{-9} s
 - - **c.** $1.28 \times 10^{-10} \,\mathrm{m}$
- **b.** 22 fs
- **d.** 3.5 ML
- **b.** 1.8×10^{-14} s
- **d.** 3.5×10^{-5} m

59.	1245 kg	$1.245 \times 10^6 \mathrm{g}$	$1.245 \times 10^{9} \mathrm{mg}$
	515 km	$5.15 \times 10^6 \mathrm{dm}$	$5.15 \times 10^7 \mathrm{cm}$
	122.355 s	$1.22355 \times 10^5 \mathrm{ms}$	0.122355 ks
	3.345 kJ	$3.345 \times 10^{3} \mathrm{J}$	$3.345 \times 10^6 \mathrm{mJ}$

- **61. e.** 254.998 km
- **f.** $2.54998 \times 10^{-1} \,\mathrm{Mm}$
- **g.** $254998 \times 10^3 \,\mathrm{mm}$
- **h.** 254998×10^2 cm
- **63.** 10,000 1 cm squares
- **65.** no
- **67.** 1.26 g/cm^3
- **69. a.** 463 g

- **b.** 3.7 L
- **71.** $201. \times 10^3 \,\mathrm{g}$
- **73. a.** 73.7 mL
- **b.** 88.2 °C
- c. 647 mL
- **75. a.** 1,050,501
- **b.** 0.0020
- **c.** 0.0000000000000000002
- **d.** 0.001090

- **77. a.** 3
- b. ambiguous; without more information, assume three significant figures.
- **d.** 5
- e. ambiguous; without more information, assume one significant figure.

- 79. a. not exact
- b. exact
- c. not exact
- d. exact

b. 0.033

b. 133.5

d. 0.42

b. 1.1×10^4

d. 5.93×10^4

b. $1.898 \times 10^{-3} \,\mathrm{kg}$

b. 3.14×10^3 g

b. $1.95 \times 10^4 \, \text{dm}^2$

d. 4.29 in

d. 34

d. 156.9

c. 156.8

- **81. a.** 156.9 **83. a.** 1.84

b. 156.8

- **c.** 0.500 **85. a.** 41.4

 - **c.** 73.0
- **87. a.** 391.3
- c. 5.96
- **89.** $0.74 \, \text{g/mL}$
- **91. a.** $2.78 \times 10^4 \, \text{cm}^3$
 - **c.** 1.98×10^7 cm
- **93. a.** 60.6 in
 - **c.** 3.7 qt
- **95.** $5.0 \times 10^{1} \, \text{min}$
- **97.** $4.0 \times 10^1 \,\mathrm{mi/gal}$
- **99. a.** $1.95 \times 10^{-4} \,\mathrm{km^2}$
 - **c.** $1.95 \times 10^6 \, \text{cm}^2$
- **101.** 0.680 mi²
- **103.** 0.95 mL
- **105.** 3.1557×10^7 s/solar year
- 107. a. extensive

 - c. intensive

 - e. extensive
- **109.** −34 °F
- **111.** $F = kg(m/s^2) = N$ (for newton), kN, pN
- **113. a.** 2.2×10^{-6}
- **b.** 0.0159
- **c.** 6.9×10^4

b. intensive

d. intensive

- **115. a.** mass of can of gold = 1.9×10^4 g mass of can of sand = 3.0×10^3 g
 - **b.** Yes, the thief sets off the trap because the can of sand is lighter than the gold cylinder.
- **117.** 22 in³
- **119.** $7.6 \,\mathrm{g/cm^3}$
- **121.** 3.11×10^5 lb
- **123.** $3.3 \times 10^2 \, \text{km}$
- **125.** 6.8×10^{-15}
- **127.** $2.4 \times 10^{19} \,\mathrm{km}$
- **129.** 488 grams
- **131.** 0.661 Ω
- **133.** 0.492
- **135.** 18.2 atm
- **137.** $1 J = 1 \text{ kg m}^2/\text{s}^2$
 - - $m = \text{kg}, v^2 = (\text{m/s})^2 mv = \text{kg m}^2/\text{s}^2$ $P = N/m^2 = kg m/s^2/m^2 = kg/m s^2$
 - $V = m^2 PV = kg m^3/m s^2 = kg m^2/s^2$
- **139.** $9.0 \times 10^1 \,\mathrm{mg}\,\mathrm{CO}$
- **141.** 13% increase
- 143. No. Since the container is sealed, the atoms and molecules can move around, but they cannot leave. If no atoms or molecules can leave, the mass must be constant.