Time Series Analysis and Models Lab 1 Report

Edison Murairi

October 13, 2023

Problem 1

We display the size of the train and test set.

- The size of the train set is 160
- The size of the test set is 41

Problem 2

Figure 1 shows the correlation map.

Figure 1: Correlation map

Some observations we make from this map is that some variables are strongly positively correlated with the price while other are strongly negatively correlated to the price. The variables that are strongly positively correlated to the price are the 'length', 'width', 'curb-weight', 'engine-size' and 'horsepower'. The ones that are the most strongly negatively correlated to 'price' are 'highway-mpg' and 'city-mpg'. So, we expect that these variables will be important in our model. Moreover, there are some parameters that are strongly correlated. For example, 'length' and 'city-mpg' are strongly negatively correlated. Therefore, we will try to find these variables in our feature selection.

Problem 3

(a): SVD

The eigenvalues obtained from SVD decomposition are:

$$\{7.28 \times 10^4, 6.97 \times 10^3, 4.13 \times 10^2, 2.25 \times 10^2, 1.23 \times 10^2, 6.93 \times 10^1, 3.67 \times 10^1, 2.94 \times 10^1 \\ 2.15 \times 10^1, 1.76 \times 10^1, 1.16 \times 10^1, 3.76, 2.42\}$$
 (1)

Our observation is that we do not expect a big co-linearity issue because the smallest eigenvalue we see is $\lambda_{\min} = 2.42$ which is different from zero. However, since $\lambda_{\min} = 2.42$ is small compared to the largest $\lambda_{\max} = 7.28 \times 10^4$, there must be some a strong degree of collinearity, which we will confirm from the condition number.

(b): Condition Number

The condition number is

$$k = \frac{\lambda_{max}}{\lambda_{min}} = 30040.45 \tag{2}$$

With such a large k > 100, we conclude that we have a severe degree of collinearity in our dataset.

(c): Number of variables to remove

If we want the collinearity to be moderate at worst, we want k < 1000. Therefore, we want to remove all the variables with $\lambda < \frac{\lambda_{max}}{1000} = 7.28 \times 10^1$. From Eq. 1, there are 7 variables with $\lambda < 7.28 \times 10^1$. Therefore, we will remove 7 variables to make sure that correlation is moderate at worst.

Problem 4

The dataset has been standardized.

Problem 5

The regression coefficients are

$$\{13453.49, 1043.56, -1504.92, 1395.17, 353.68, 1274.03, 4434.77 -100.05, -904.36, 1222.88, 1531.53, 1404.04, -1868.49, 1516.00\}$$
 (3)

Problem 6

Table 1 shows the results of the linear regression model when we consider all the predictors. We see that the regression coefficients agree with what we found in the previous problem.

Table 1:	Linear	Regression	Model	l with	all	the	predictors

	Table 1: Linear Regression Model with all the predictors								
Dep. Va	riable:	У		R-squa	\mathbf{red} :	0.841			
Model:		OLS	5	Adj. F	R-squared:	0.827			
Method	:	Least Sq	uares	F-stati	stic:	59.53			
Date:		Thu, 12 Oct 2023		Prob (Prob (F-statistic):				
Time:		16:46:	17	Log-Li	kelihood:	-1520.0			
No. Obs	servations:	160		AIC:	3068.				
Df Resid	duals:	146		BIC:		3111.			
Df Mod	el:	13							
Covaria	nce Type:	nonrob	ust						
	coef	std err	t	P> $ t $	[0.025]	0.975]			
const	1.345e + 04	267.558	50.282	0.000	1.29e + 04	1.4e + 04			
x1	1043.5589	722.888	1.444	0.151	-385.117	2472.235			
x2	-1504.9222	797.762	-1.886	0.061	-3081.575	71.731			
x3	1395.1717	659.123	2.117	0.036	92.516	2697.827			
x4	353.6814	396.861	0.891	0.374	-430.653	1138.016			
x5	1274.0268	1026.135	1.242	0.216	-753.970	3302.024			
x6	4434.7706	723.877	6.126	0.000	3004.139	5865.402			
x7	-100.0455	395.357	-0.253	0.801	-881.408	681.317			
x8	-904.3627	296.608	-3.049	0.003	-1490.562	-318.163			
x9	1222.8808	383.235	3.191	0.002	465.476	1980.286			
x10	1531.5339	811.564	1.887	0.061	-72.397	3135.465			
x11	1404.0386	398.006	3.528	0.001	617.442	2190.636			
x12	-1868.4934	1463.885	-1.276	0.204	-4761.637	1024.650			
x13	1516.0009	1428.070	1.062	0.290	-1306.360	4338.362			
On	nnibus:	17.759	Durk	oin-Wats	son: 2	2.208			
\mathbf{Pr}	ob(Omnibus	s): 0.000	Jarq	ue-Bera	(JB): 5	4.136			
$\mathbf{S}\mathbf{k}$	ew:	0.299	\mathbf{Prob}	(JB):	1.7	76e-12			
Ku	ırtosis:	5.786	Cond	l. No.		19.3			

Problem 7 (a): Backward regression with adjusted r^2

Table 2 shows the regression final regression when we use the adjusted r^2 has the metric, and we iteratively remove the predictor with the largest P-value. The final predictors are: wheel-base, length, width, curb-weight, engine-size, stroke, compression-ratio, horsepower, peak-rpm, city-mpg and highway-mpg.

Table 2: Final regression model after iteratively removing the predictor with the highest P-value and using the adjusted r^2 as the metric.

Dep. Va	ariable:	price	9	R-squa	ared:	0.840	
Model:		OLS	5	Adj. F	R-squared:	0.828	
Method	:	Least Sq	uares	F-stati	stic:	70.82	
Date:		Thu, 12 Oct 2023		Prob (Prob (F-statistic):		
Time:		23:13:	47	Log-Li	Log-Likelihood:		
No. Ob	servations:	160		AIC:		3065.	
Df Resi	duals:	148		BIC:		3102.	
Df Mod	el:	11					
Covaria	nce Type:	nonrob	ust				
	coef	std err	t	P> $ t $	[0.025]	0.975]	
const	1.345e+04	266.522	50.478	0.000	1.29e + 04	1.4e + 04	
x1	1262.7468	669.661	1.886	0.061	-60.585	2586.079	
x2	-1355.4501	771.794	-1.756	0.081	-2880.609	169.708	
x3	1270.4253	628.348	2.022	0.045	28.733	2512.118	
x4	1353.1621	1017.583	1.330	0.186	-657.706	3364.030	
x5	4373.6048	714.823	6.118	0.000	2961.028	5786.182	
x6	-938.3654	285.607	-3.286	0.001	-1502.759	-373.972	
x7	1210.1871	381.357	3.173	0.002	456.579	1963.796	
x8	1431.6507	781.387	1.832	0.069	-112.466	2975.767	
x9	1447.1458	367.673	3.936	0.000	720.580	2173.712	
x10	-1733.6651	1440.553	-1.203	0.231	-4580.374	1113.044	
x11	1498.1224	1419.636	1.055	0.293	-1307.252	4303.497	
Oı	nnibus:	18.158	Durk	oin-Wats	son: 2	.200	
	${ m cob}({ m Omnibus})$	s): 0.000		ue-Bera	(JB): 54	4.555	
$\mathbf{S}\mathbf{k}$	ew:	0.323	\mathbf{Prob}	(JB):	1.4	12e-12	
Kı	ırtosis:	5.787	Cond	l. No.	-	18.4	

Problem (b): Backward regression with AIC

Table 3 shows the final regression model using the AIC as the metric. The selected predictors are wheel-base, length, width, engine-size, strok, compression-ratio, horsepower, peak-rpm and curb-weight.

Table 3: Final linear regression model after iteratively removing predictors with the highest P-Value and using AIC as the metric

Ι	Dep. Va	ariable:	pric	e	R-squ	ared:	0.839
N	Iodel:		OLS	\mathbf{S}	Adj. I	R-squared:	0.829
N	Iethod	:	Least Sq	uares	F-stat	istic:	86.72
Ι	Date:		Thu, 12 O	ct 2023	Prob ((F-statistic)	6.80e-55
\mathbf{I}	lime:		23:13:	:47	Log-Li	ikelihood:	-1521.3
N	lo. Ob	servations:	160)	AIC:		3063.
Ι	of Resid	duals:	150)	BIC:		3093.
Ι	of Mod	el:	9				
C	Covaria	nce Type:	nonrob	oust			
		coef	std err	t	P> $ t $	[0.025]	0.975]
	const	1.345e + 04	266.032	50.571	0.000	1.29e + 04	1.4e + 04
	x1	1076.8714	650.001	1.657	0.100	-207.468	2361.211
	$\mathbf{x2}$	-1106.2411	738.560	-1.498	0.136	-2565.565	353.083
	x3	1277.4807	625.616	2.042	0.043	41.323	2513.639
	x4	1324.4560	895.441	1.479	0.141	-444.851	3093.763
	x5	4224.8997	672.820	6.279	0.000	2895.471	5554.328
	x6	-911.0149	283.480	-3.214	0.002	-1471.144	-350.886
	x7	1120.8269	323.648	3.463	0.001	481.329	1760.325
	x8	1679.5837	720.419	2.331	0.021	256.103	3103.064
	x9	1463.5389	363.094	4.031	0.000	746.100	2180.978
	Or	nnibus:	18.403	Dur	bin-Wat	son: 2	2.206
	\mathbf{Pr}	ob(Omnibus	s): 0.000	Jarq	ue-Bera	(JB): 5	6.487
	$\mathbf{S}\mathbf{k}$	ew:	0.321	Prob	o(JB):	5.4	42e-13
	Kι	ırtosis:	5.839	Con	d. No.		8.41

Problem 7 (c): Backward regression with BIC

The selected predictors are: width, engine-size, stroke, compression-ratio, peak-rpm and horsepower.

Table 4: Final linear regression model after iteratively removing predictors with the highest P-Value and using BIC as the metric

Г	ep.	Variable:	pric	e	R-squa	ared:	0.832		
\mathbf{N}	Iode	l:	OL	\mathbf{S}	Adj. I	R-squared:	0.825		
\mathbf{N}	1 etho	od:	Least Squares		F-stat	istic:	126.3		
Γ	ate:		Thu, 12 Oct 2023 Prob		Prob ((F-statistic): 1.12e-56		
\mathbf{T}	ime:		23:13	:47	$\operatorname{Log-Li}$	kelihood:	-1524.5		
N	lo. C	bservations:	160)	AIC:		3063.		
Γ	of Re	siduals:	153	}	BIC:		3085.		
Γ	of Mo	odel:	6						
Covariance Type:		nonrol	oust						
		coef	std err	t	P> $ t $	[0.025]	0.975]		
	con	st 1.345e+04	268.846	50.042	0.000	1.29e+04	1.4e + 04		
	x1	2013.7996	416.708	4.833	0.000	1190.555	2837.044		
	x2	4570.6618	647.835	7.055	0.000	3290.804	5850.519		
	x3	-845.6888	284.062	-2.977	0.003	-1406.879	-284.499		
	x4	1198.4789	319.675	3.749	0.000	566.932	1830.026		
	x5	1701.1253	643.013	2.646	0.009	430.795	2971.456		
	x6	1324.7155	361.861	3.661	0.000	609.826	2039.605		
•	(Omnibus:	14.730) Dur	bin-Wats	son:	2.132		
]	Prob(Omnibus	s): 0.001	Jarq	ue-Bera	(JB): 4	40.738		
	9	Skew:	0.222	\mathbf{Prol}	o(JB):	1.	1.43e-09		
		Kurtosis:	5.432	Con	d. No.		5.28		

Problem 8 (a): VIF Method with Adjusted r^2

The predictors selected are: engine-size, stroke, compression-ratio, peak-rpm, horsepower and width.

Table 5: Final regression using the VIF method with the adjusted r^2 as the metric

CO.		11 10510001011	451116 0110 1	II IIICUII	ou wrom or	ac adjubica i	Cas circ inc.	
	Dep. Va	riable:	pric		R-squa		0.832	
	$\mathbf{Model}:$		OLS	S	Adj. R	-squared:	0.825	
	Method	:	Least Squares		F-stati	stic:	126.3	
	Date:		Fri, 13 Oct 2023		Prob (1.12e-56		
	${f Time:}$		13:54:47		Log-Li	Log-Likelihood:		
	No. Obs	servations:	160		AIC:		3063.	
	Df Resid	duals:	153	}	BIC:		3085.	
Df Model:		6						
	Covaria	nce Type:	nonrob	oust				
		\mathbf{coef}	std err	t	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]	
	const	1.345e + 04	268.846	50.042	0.000	1.29e+04	1.4e + 04	
	x1	2013.7996	416.708	4.833	0.000	1190.555	2837.044	
	x2	4570.6618	647.835	7.055	0.000	3290.804	5850.519	
	x3	-845.6888	284.062	-2.977	0.003	-1406.879	-284.499	
	x4	1198.4789	319.675	3.749	0.000	566.932	1830.026	
	x5	1324.7155	361.861	3.661	0.000	609.826	2039.605	
	x6	1701.1253	643.013	2.646	0.009	430.795	2971.456	
	On	mibus:	14.730	Dur	bin-Wat	son: 2	.132	
	Pro	${ m ob}({ m Omnibus})$	s): 0.001		լue-Bera	(JB): 40	0.738	
	$\mathbf{Sk}\epsilon$	ew:	0.222	Prob(JB):		1.4	13e-09	
	Ku	${f rtosis:}$	5.432	Con	d. No.	į	5.28	

Problem 8 (b): VIF method with AIC

The predictors selected are: engine-size, stroke, compression-ratio, peak-rpm, horsepower and width.

TD 11 C T	¬. 1			. 1	T 7TT	41 1	• . 1	A TO	4.1	, .
Table 6: I	ınaı ı	regression	using	tne	VIF	metnoa	with	AIC	as tr	e metric

	. I mai regres						
Dep. Va	ariable:	pric	e	R-squa	red:	0.832	
Model:		OLS	\mathbf{S}	Adj. R	-squared:	0.825	
Method	:	Least Squares		F-stati	stic:	126.3	
Date:				Prob (: 1.12e-56		
Time:		13:54:47			Log-Likelihood:		
No. Ob	servations:	160)	AIC:		3063.	
Df Resi	duals:	153	3	BIC:		3085.	
Df Model:		6					
Covariance Type:		nonrol	oust				
	coef	std err	t	P> t	[0.025	0.975]	
const	1.345e + 04	268.846	50.042	0.000	1.29e + 04	1.4e + 04	
$\mathbf{x1}$	4570.6618	647.835	7.055	0.000	3290.804	5850.519	
x2	-845.6888	284.062	-2.977	0.003	-1406.879	-284.499	
x3	1198.4789	319.675	3.749	0.000	566.932	1830.026	
x4	1324.7155	361.861	3.661	0.000	609.826	2039.605	
x5	1701.1253	643.013	2.646	0.009	430.795	2971.456	
x6	2013.7996	416.708	4.833	0.000	1190.555	2837.044	
On	nnibus:	14.730 Durbin-Watson: 2.			son: 2	2.132	
On			3 0.001 Jarque-Bera (JB):				
	$\operatorname{ob}(\operatorname{Omnibus}$): 0.001	-	•	(JB): 4	0.738	
Pro		0.001 0.222	-	ue-Bera o(JB):	` /	0.738 43e-09	

Problem 8(c): VIF methid with BIC

The predictors selected are: engine-size, stroke, compression-ratio, peak-rpm, horsepower and width.

Table 7: Final regression with VIF method using the BIC as the metric.

Dep. '	Variable:	pric	price		R-squared:		
\mathbf{Model}	:	OL	S	Adj. R	k-squared:	0.825	
Metho	od:	Least Sc	quares	F-stati	stic:	126.3	
Date:		Fri, 13 Oct 2023		Prob (Prob (F-statistic):		
Time:		13:54:47		Log-Li	Log-Likelihood:		
No. O	bservations:	160)	AIC:		3063.	
Df Re	siduals:	153	}	BIC:		3085.	
Df Mo	del:	6					
Covari	Covariance Type:		oust				
	coef	std err	t	\mathbf{P} > $ \mathbf{t} $	[0.025]	0.975]	
cons	t 1.345e+04	268.846	50.042	0.000	1.29e+04	1.4e + 04	
x1	4570.6618	647.835	7.055	0.000	3290.804	5850.519	
$\mathbf{x2}$	-845.6888	284.062	-2.977	0.003	-1406.879	-284.499	
x3	1198.4789	319.675	3.749	0.000	566.932	1830.026	
x4	1324.7155	361.861	3.661	0.000	609.826	2039.605	
x5	1701.1253	643.013	2.646	0.009	430.795	2971.456	
x6	2013.7996	416.708	4.833	0.000	1190.555	2837.044	
O	mnibus:	14.730) Dur	bin-Wat	son:	2.132	
P	rob(Omnibus	s): 0.001	Jarq	ue-Bera	(JB):	10.738	
\mathbf{S}	kew:	0.222	Prol	o(JB):	1.	43e-09	
K	Turtosis:	5.432	Con	d. No.		5.28	

Problem 9

- In Problem 7, the model we select is the one that uses BIC. It has only 6 parameters while its adjusted r^2 is not drastically lower compared to the one of the AIC which uses 9 parameters.
 - The 6 parameters are: width, engine-size, stroke, compression-ratio, peak-rpm and horsepower

- \bullet In problem 8, all the models are similar. The final model has 6 parameters.
 - The 6 parameters are: width, engine-size, stroke, compression-ratio, peak-rpm and horsepower
- \bullet The parameters in the best models of Problem 7 and Problem 8 are all identical.

The best model in step (7) and (8) are identical, and we pick them as our final model.

Table 8: Final regression with VIF method using the BIC as the metric.								
Dep. Variable:	price	R-squared:	0.832					
Model:	OLS	Adj. R-squared:	0.825					
Method:	Least Squares	F-statistic:	126.3					
Date:	Fri, 13 Oct 2023	Prob (F-statistic):	1.12e-56					
Time:	13:54:47	Log-Likelihood:	-1524.5					
No. Observations:	160	AIC:	3063.					
Df Residuals:	153	BIC:	3085.					
Df Model:	6							
Covariance Type:	nonrobust							

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025	0.975]
const	1.345e + 04	268.846	50.042	0.000	1.29e + 04	1.4e+04
x1	4570.6618	647.835	7.055	0.000	3290.804	5850.519
$\mathbf{x2}$	-845.6888	284.062	-2.977	0.003	-1406.879	-284.499
x3	1198.4789	319.675	3.749	0.000	566.932	1830.026
x4	1324.7155	361.861	3.661	0.000	609.826	2039.605
x5	1701.1253	643.013	2.646	0.009	430.795	2971.456
x6	2013.7996	416.708	4.833	0.000	1190.555	2837.044

Omnibus:	14.730	Durbin-Watson:	2.132
Prob(Omnibus):	0.001	Jarque-Bera (JB):	40.738
Skew:	0.222	Prob(JB):	1.43e-09
Kurtosis:	5.432	Cond. No.	5.28

Figure 2 shows the plot.

Figure 2: Plot of prices for the training dataset, the test set and the predictions overlayed with the testing set.

Problem 12

Figure 3 shows the ACF plot of the prediction errors. This ACF plot is consistent with a white noise. We see that for $\tau \neq 0$, the ACF drops close to 0. Therefore, we expect that our model captures well the dynamics in the dataset.

Figure 3: ACF plot of the prediction error

T Test

Null Hypothesis: There is no difference between the mean of the test set price and the mean of the price predictions. For the T-Test between the test set and the predictions, we obtain

- T-Test = -0.7525
- P-Value = 0.45395

We use the significance level $\alpha = 0.05$. With P-value > 0.05, we fail to reject the null hypothesis. Therefore, we conclude that there is no difference, suggesting that the model performed well.

F-Test

Null Hypothesis: There is no difference between our model and the intercept-only model. For the F-Test between the test set and the predictions, we obtain

- F-Test = 466.037
- P-Value = 9.65×10^{-100}

With P-value < 0.05, we conclude that there is a difference between the intercept-only model and our model. Therefore, the predictors we included are useful in explaining the variations in the prices. Therefore, we conclude again that our model performs well.