Σ_2^P : Multilevel Programming, Preprocessing and Counterexamples

Theja Tulabandhula Massachusetts Institute of Technology

Based on Johannes' PhD thesis: Ch 3,4,5.

Three sets of problems and Σ_2^P -C

BACKGROUND

BACKGROUND

MULTILEVEL PROGRAMMING

PREPROCESSING PROBLEMS

COUNTEREXAMPLES TO CONJECTURES

Running theme: We will exploit properties of NP-C transformations to show completeness or hardness at the second level.

BACKGROUND

- ► P, NP, coNP are at the bottom of the PH
- ▶ The next most interesting class is Σ_2^p

BACKGROUND

- ▶ Proving Σ_2^P -C is more interesting than just proving NP-hard.
- ► less abundant natural complete problems than NP
- ► If a complete problem is efficiently solvable, so are all the other members of the class.
- ▶ Σ_2^P -C gives us a sense of which problems may not be solved in (deterministic) polynomial time even if one had access to a NP oracle.

COUNTEREXAMPLES TO CONJECTURES

- ► First problem to be shown Σ_2^P -C is the 2-ALTERNATING QUANTIFIED SATISFIABILITY (B_2) by Meyer and Stockmeyer'72.
 - ► Instance: Two sets of boolean variables *X* and *Y*. DNF expression *E*.
 - ► Question: Is there a truth assignment to *X* such that for all truth assignments to *Y*, *E* is satisfied?
- ► Equivalent: CNF E and ask: is there a truth assignment to X such that for all assignments to Y, E is not satisfied. Defines B_2^{CNF} .
- ► Practical Σ₂^p-C problem (VLSI Design): DNF MINIMIZATION
 - ► Given a boolean DNF formula and integer *K*, is there an equivalent DNF formula with at most *k* occurrence of literals.

- ► Families of problems are Σ_2^p -C (Johannes' thesis). Technique based on established NP-C transformations.
- ► Example 4 classes of problems listed below:
 - 1 Adversarial Problems
 - 2 Multilevel Programming
 - 3 Preprocessing Problems
 - 4 Counterexamples to Conjectures
- ► Adversarial Problems: Every problem in this class is based on a combinatorial feasibility problem in NP and can be formulated using 0 − 1 variables.
- ► Consists of splitting the variable set into two sets *X* and *Y*
- ► Asks: Is there an assignment to *X* so that it is not possible to complete this assignment to a feasible solution no matter what we assign to *Y*.
- ► Example: B_2^{CNF} .

MULTILEVEL PROGRAMMING

- ▶ Under conditions, a poly time transform from SAT to another problem Π can be used to derive a poly time transformation from B_2^{CNF} to the adversarial version of Π .
- ▶ Thus, if adversarial version of Π is in Σ_2^P , then it is also Σ_{2}^{P} -C.
- ► Multilevel Programming In *k*-level programming, k levels with own set of variables.
- ▶ levels sequentially choose their variables, knowing objectives of lower levels.
- Bilevel integer programming and trilevel linear programming are Σ_2^P -C.

- Preprocessing Problems Given combinatorial optimization problem with flexible objective, ask if ∃ objective such that a particular element becomes a part of the optimal solution.
- ▶ If in the wiggle room, no objective allows the element, the element can be eliminated. Hence called "preprocessing".
- ► Applications: faster solutions.
- ► Counterexamples to Conjectures Explain why difficult to disprove conjectures using Σ_2^p theory.
- ▶ Finding counterexamples is Σ_2^P -C if deciding the existence of certain related objects is NP-C.

NOTATION

- ▶ Decision problem Π . Set of instances D_{Π} . Yes instances $Y_{\Pi} \subseteq D_{\Pi}$.
- Decision problem: Whether a given instance is a yes instance or not.
- ► Deterministic algorithm solves Π if
 - ▶ it halts $\forall I \in D_{\Pi}$
 - ▶ Returns "YES" iff $I \in Y_{\Pi}$ and "NO" otherwise.
 - ► If number of steps polynomial in input size, then polynomial time deterministic algorithm.
- ▶ Class P: class of Π for which there is a polynomial time deterministic algorithm that solves Π .

- ▶ nondeterministic algorithm has 2 parts: guessing and checking. Solves $I \in D_{\Pi}$
 - ▶ if $I \in Y_{\Pi}$, then there is a certificate S when guessed will lead to answering "YES".
 - ▶ if $I \notin Y_{\Pi}$, then there is no certificate S when guessed will lead to answering "YES".
 - ► said to operate in P time if deterministic checking works polynomial to the input size while answering "YES".
- ▶ Polynomial transformation $f: D_{\Pi_1} \to D_{\Pi_2}$ is such that
 - ▶ there is a P time deterministic algorithm that computes f
 - ▶ *I* is a "YES" instance in D_{Π_1} iff f(I) is a "YES" instance in D_{Π}
 - ▶ is transitive

MULTILEVEL PROGRAMMING

▶ Decision problem is complete for a class C (wrt polynomial transformability) if there is a f mapping to Π from every $\Pi' \in \mathcal{C}$

- ► Polynomial hierarchy (PH).
 - $\blacktriangleright \forall k \geq 1, \quad \Sigma_k^p = NP^{\Sigma_{k-1}^p}$

 - $\Sigma_0^{\tilde{p}} = \Pi_0^p = P$ $\Sigma_1^{\tilde{p}} = NP, \Pi_1^{\tilde{p}} = coNP$
 - $\Sigma_k^p \subseteq \Sigma_{k+1}^p, \Pi_k^p \subseteq \Pi_{k+1}^p, \Sigma_k^p \subseteq \Pi_{k+1}^p \text{ and } \Pi_k^p \subseteq \Sigma_{k+1}^p$
 - $ightharpoonup PH = \bigcup_{k \in \mathbb{N}} \Sigma_{k}^{p}$
- ► Each class is closed under polynomial transformation in PH. Thus, can assume the oracle solves a complete problem.
- ▶ *k*-ALTERNATING QUANTIFIER SAT B_k is Σ_{ν}^p -C.
- ▶ PH ⊂ PSPACE.

- ▶ B_k
 - ► Instance: boolean expression E over set $X = \{x_{ij}, i = 1, ..., k, j = 1, ..., m_i\}$
 - ► Question: Does

$$\exists x_{11}, ..., x_{1m_1}$$
 $\forall x_{21}, ..., x_{2m_2}$
 \vdots
 $Qx_{k1}, ..., x_{km_k}E$

where $Q = \exists$ if k is odd and \forall otherwise.

- k = 1 gives SAT which is NP-C
- k = 2 gives B_2 which is Σ_2^p -C.
- ► B_k is Σ_k^p -C.
- $ightharpoonup B_k$ is PSPACE-C if k is allowed to be unbounded.

MULTILEVEL PROGRAMMING

HIERARCHICAL STRUCTURE OF DECISIONS

- ► There is a hierarchy.
- Every level
 - makes decisions.
 - controls a subset of variables.
- Lower levels may have different objectives than the higher ones.
- ► How do they coordinate?

Many applications

Hierarchical decisions are involved in network design, toll setting, revenue management, utility planning etc.

AN EXAMPLE FROM PHD LIFE

BACKGROUND

WWW. PHDCOMICS. COM

► The professor optimizes his objective and sets certain variables knowing student will optimize her objective.

EACH LEVEL FIXES A SUBSET OF VARIABLES

- ► Assume lower level objectives known to higher levels.
- ► The process:

BACKGROUND

- Highest level fixes her set of variables.
- Next highest fixes hers.
- ▶ .
- ► Lowest level optimizes with higher level variables appearing as constants.
- ► The optimization:
 - Higher levels optimize knowing lower levels will optimize later.
 - They might incorporate anticipated responses while fixing variables.
 - ► Lower levels not dictated by higher levels.
 - ▶ They are influenced by fixed variables set by higher levels.

BILEVEL PROGRAMMING

- ▶ 1^{st} level influences but does not control actions of the 2^{nd} .
- ▶ 1^{st} level sets variables x first and then 2^{nd} level sets y.
- ► Shared feasible region $\{(x,y) \ge 0 : Ax + By \le b\}$
- ► Bilevel linear program:

$$\min_{x \ge 0} c_1 x + d_1 y$$
where y solves $\max_{y \ge 0} d_2 y$
such that $Ax + By \le b$

- ▶ Bilevel integer program: integer (x, y).
- \triangleright Solution: specified by higher level variable (x).

► BiLP

- ► Instance: Bilevel linear program, rational *K*.
- ► Question: Is there a solution such that objective of highest level ≤ *K*?
- ► NP-hard (1985). Strongly NP-Hard (1992).

▶ BiIP

- ► Instance: Bilevel integer program, integer *K*.
- ► Question: Is there a solution such that objective of highest level ≤ *K*?

► TriLP

- ► Instance: Trilevel linear program, rational *K*.
- ► Question: Is there a solution such that objective of highest level < *K*?

THEOREM: $\{0-1\}$ BIIP is Σ_2^P -HARD

- is in Σ_2^P .
- ▶ Polynomial transformation: $I \in D_{B_2^{CNF}}$ to $f(I) \in D_{BiIP}$.
 - \triangleright 3 binary variables x for higher and y, z for lower in f(I). $x \leftarrow \text{boolean } X \text{ of } B_2^{CNF}. \ y \leftarrow \text{boolean } Y \text{ of } B_2^{CNF}.$
 - ▶ For every clause $c_i \in C$ introduce z_i . Example:

$$c_j = (x_1 \vee \bar{x}_2 \vee y_1) \Rightarrow x_1 + (1 - x_1) + y_1 \ge z_j$$

If c_i satisfied then $z_i = 1$; 0 otherwise.

- ► Higher objective: $\min_{x} \sum_{i=1}^{|C|} z_{j}$. Lower: $\max_{j,z} \sum_{i=1}^{|C|} z_{j}$.
- Lower level trying to maximize clauses satisfied, higher tries minimizing.
- ► The objective of higher is less than |C| if and only if I is a "YES" instance.

THEOREM: TRILP IS Σ_2^P -HARD.

- ▶ Is in Σ_2^P since BiLP is NP-hard.
- ▶ formulate ADV-PRT¹ as BiIP $\stackrel{\text{pol. trans.}f}{\rightarrow}$ TriLP.
- ► Step 1
 - ▶ ADV-PRT is Σ_2^P -C. Given $X, Y, \{l(a); a \in X \cup Y\}$, does $\exists X^* \subseteq X$ so that $\forall Y^* \subseteq Y, \sum_{a \in X^* \cup Y^*} l(a) \neq \sum_{a \in \overline{X^* \cup Y^*}} l(a)$
 - ▶ Let $L = \frac{1}{2} \sum_{a \in X \cup Y} l(a)$. Let $I \in D_{ADV-PRT}$.
 - ► Then a corresponding bilevel integer program (■) is:

$$\min_{x \in \{0,1\}^X} \sum_{a \in X} x_a l(a) + \sum_{a \in Y} y_a l(a)$$
where y solves
$$\max_{y \in \{0,1\}^Y} \sum_{a \in X} x_a l(a) + \sum_{a \in Y} y_a l(a)$$
such that
$$\sum_{a \in Y} x_a l(a) + \sum_{a \in Y} y_a l(a) \le L$$

¹ADVERSARIAL PARTITION

- ▶ Two observations
 - ► Assume $\sum_{a \in X} x_a l(a) \leq L$.
 - ▶ If *I* is yes instance, then $\sum_{a \in X^*} x_a l(a) \neq L$.
- ► Step 2
- ► Lemma 1: The optimal objective of higher level in the integer program (\blacksquare) is < L if and only if $I \in D_{ADV-PRT}$ is a "YES" instance.
 - ▶ (⇒) Let $I \in D_{ADV-PRT}$ be a "YES" instance. $\exists X^*$.
 - ▶ Consider the 0-1 assignment of $f(I) \in D_{BiLP}$ with $x_a = 1$ if $a \in X^*$ and 0 otherwise.
 - ▶ If lower level succeeds in getting an objective equal to *L*, picking a corresponding to $y_a = 1$ leads to contradiction.
 - ▶ (\Leftarrow) Let $I \in D_{ADV-PRT}$ be a "NO" instance. $\forall X^*, \exists Y^*$ such that $\sum_{a \in X^* \cup Y^*} l(a) = L$. Set $y_a = 1$ if $a \in Y^*$. Then, $\sum_{a \in X} x_a \tilde{l}(a) + \sum_{a \in Y} y_a l(a) = L.$
- ► Second Proof that $\{0-1\}$ BiIP is Σ_2^P -C. Previous one was from B_2^{CNF} .

Step 3

- ► Transform (■) to a trilevel linear program (new level with **slack** variables *s*)
- s relate to distance of $\{x_a, y_a\}$ to nearest integers.

► Let
$$M = (\max_{a \in X \cup Y} l(a))^2$$
,
 $T_1(x, y) = \sum_{a \in X} x_a l(a) + \sum_{a \in Y} y_a l(a)$ and $T_2(s) = \sum_{a \in X \cup Y} s_a$.

$$\min_{x} T_1(x,y) + M T_2(s)$$

where *y* solves
$$\max_{y} T_1(x, y) - M T_2(s)$$

where s solves max $T_2(s)$ such that $T_1(x, y) \leq L$ $0 \le x_a \le 1 \ \forall a \in X; 0 \le y_a \le 1 \ \forall a \in Y$ $s_a \leq x_a, s_a \leq 1 - x_a \ \forall a \in X$: $s_a \leq y_a, s_a \leq 1 - y_a \ \forall a \in \Upsilon.$

- ▶ Lemma 2: For every feasible (x, y, s), which contains at least one fractional in x or y, there is a feasible (x^*, y^*, s^*) with one less fractional component with objectives of top two levels being same or better. Thus the optimal solution to trilevel program is integral.
 - ▶ W.L.O.G $M \ge 4$. Go by cases.
 - ► Case (a): If a frac. component $< 1 1/\sqrt{M}$, then set it to 0 to get (x^*, y^*, s^*) .
 - Case (b): If two components are $> 1 1/\sqrt{M}$ pick new values such that "contribution" to $T_1(x, y)$ is the same and one of them is 1 in (x^*, y^*, s^*) .
 - ► Case (c): If only one frac component $> 1 1/\sqrt{M}$, set it to 1 in (x^*, y^*, s^*) .
- Proof omitted.

- In cases (a) and (c), objectives of both top level players become strictly better.
- ► No fractional solution can become integral by just case (b)
- ► Thus, need to use case (a) or (c)
- Since each player is selfish, the optimal integer solution will be attained by the program.

► Summary:

- ► ADV-PRT to BiIP one to one.
- ► Bilevel integer to trilevel linear such that if latter feasible, will achieve optimal integral solution.

BACKGROUND

Preprocessing

- Related to partial inverse optimization problems (introduced by Orlin).
 - ► Requires minimal adjustment of objective to make given partial feasible solution optimal.
- ► In preprocessing,
 - ► Only 1 element given
 - ► Requires finding whether this is part of an optimal solution.
 - ► Assume objective is not fully known.
 - ► Our case: bounds on each component of objective given.
- ► What we will see: Preprocessing problems associated with many NP-C problems are Σ_2^p -C.

PROBLEM

- ▶ Given
 - ▶ Ground set Z
 - \blacktriangleright \mathcal{F} : Collection of subsets of Z
 - ▶ Problem: $\min_{S \in \mathcal{F}} \sum_{j \in S} c_j$
- ▶ Question: For input $e \in Z$, integer vectors l, u is there
 - ▶ an integer cost vector $l \le c' \le u$, and
 - ▶ a solution $S' \in \mathcal{F}$

such that $e \in S'$ and S' optimal to the problem $\min_{S \in \mathcal{F}} \sum_{i \in S} c'_i$.

- ▶ If answer is no, eliminate e and simplify problem.
- ► Applications: Real time optimization problems

PREPROCESSING SATISFIABILITY

- ► Recall B_2^{CNF} .
- ► PP 3SAT: PREPROCESSING 3SAT
 - ▶ Instance: Boolean set U, $\{(l(z), u(z)) \forall z \in U\}$. CNF expression E. $z^* \in U$.
 - ▶ Question: Does \exists a truth assignment S_U with $S_U(z^*) = 1$ and a cost vector c of length |U| with $l(z) \le c(z) \le u(z)$ such that $S_U \in \operatorname{argmin}_{S:\operatorname{satisfiable}} \sum_{z \in U} c(z)S(z)$?

Theorem

PP 3SAT is Σ_2^P -C.

▶ Proof via $B_2^{CNF} \rightarrow PP 4SAT \rightarrow PP 3SAT$.

PREPROCESSING VERTEX COVER

- ▶ PP-VC: PREPROCESSING VERTEX COVER.
 - ► Instance: $G = (V, E), v^* \in V, \{(l(v), u(v)) \ \forall v \in V\}$ and integer K.
 - ▶ Question: Is there a cost vector c of size |V| with $l(v) \le c(v) \le u(v)$ and a vertex cover of size at most K which includes v^* and is minimal with respect to c?

Theorem

PP-VC is Σ_2^P -C.

- ▶ A polynomial transformation from PP 3SAT to PP-VC shows latter is Σ_2^p -C.
- ► Finally, note that Preprocessing versions of 3DM and HC are also Σ_2^P -C.

COUNTEREXAMPLES TO CONJECTURES

COUNTEREXAMPLES TO NP CONJECTURES

- ► Characterization of graph properties that are NP-C to decide.
 - ► Example: *G* has a hamiltonian cycle.
- \triangleright Property \mathcal{P} is a sufficient condition for G to have hamiltonian cycle if, every G with \mathcal{P} is hamiltonian.
 - \blacktriangleright Example: If G 2-connected, and if dist(u, v) = 2, then either *u* or *v* has degree $\geq |V|/2$, then *G* has a hamiltonian cycle.

Conjecture I (refuted, 46 node counterexample)

Every 3-connected planar graph has a hamiltonian cycle.

Conjecture II (open)

Every 4-connected line graph is hamiltonian.

COMPLEXITY OF REFUTING CONJECTURES

- concerning NP-C graph properties.
- ► Concrete example: hamiltonicity of graphs.
 - ► How hard in complexity theoretic sense, is it to find a counterexample to a conjecture that suggests a sufficient condition for a graph to be hamiltonian?
- ▶ Let \mathcal{P} be some property and Conj.(\mathcal{P} , \mathcal{HC}) be the conjecture.
- ▶ Instance: Property \mathcal{P}
- ▶ Question: Is there a counterexample to conjecture Conj.(\mathcal{P} , \mathcal{HC})?
 - ► Input size?
 - relate the graphs of above instance to an instance of some decision problem.
 - Every *I* gives \mathcal{P}_I and related graphs are poly(size(*I*)).

COMPLEXITY OF REFUTING CONJECTURES

Theorem

COUNTEREXAMPLE HC (CExplHC) is Σ_2^P -C.

▶ $B_2^{CNF} \rightarrow CExplHC$.

- ► Given this result, appreciate the hardness of coming up with counterexamples for conjectures for Hamiltonicity.
- Similar result for counterexamples to vertex cover conjecture.

BACKGROUND

- Classes of Problems we did not look at:
 - ► Defining set problems (can the size-restricted partial solution be completed in a unique way)
 - Cost denying set problem (existence of partial solution of limited cost which cannot be extended to a feasible solution) Defining set and cost denying set problems are Σ_2^P -C.
 - Minimum integer programming equivalence is also Σ_2^P -C.
- We looked at Multilevel programming, preprocessing and counterexamples to conjectures problem and established their completeness in a couple of cases.