

CSCE 3110 Data Structures and Algorithms

Algorithm Analysis I (cont.)

Reading: Weiss, chap. 2

Exact Analysis is Hard!

• It easier to talk about upper and lower bounds of the function.

Asymptotic notation $(0, \Omega, \Theta)$ are adopted to deal with complexity functions.

Asymptotic Notation

- Asymptotic notation
 - Big Oh
 - Big Omega
 - Big Theta
 - Little Oh
 - Little Omega

Asymptotic Notation

- Asymptotic notation
 - Big Oh
 - Big Omega
 - Big Theta
 - Little Oh
 - Little Omega

- 0 ≈ ≤
- Some constant multiple of g(n) is an asymptotic upper bound of f(n), possibly not tight

$$O(g(n)) = \{f(n): \exists c > 0, \exists n_0 \ s.t. \ \forall n \ge n_0: 0 \le f(n) \le cg(n)\}$$

- In plain English: O(g(n)) are all functions f(n) for which there exists two positive constants c and n_0 such that for all $n \ge n_0$, $0 \le f(n) \le cg(n)$
 - -g(n) is an asymptotic <u>upper bound</u> for f(n)
- Intuitively, you can think of O as " \leq " for functions
- If $f(n) \in O(g(n))$, we write f(n) = O(g(n))

NOTE: The definitions imply a constant n_0 beyond which they are satisfied. We do not care about small values of n.

• Examples

Is
$$2^{n+1} = O(2^n)$$
?

Is
$$2^{2n} = O(2^n)$$
?

• Examples

$$2^{n+1} = O(2^n)$$

$$2^{2n} \neq O(2^n)$$

- More examples
 - $2n^2 = O(n^3)$

More examples

- $2n^2 = O(n^3)$
- $= n = O(n^2)$
- $n^{1.999} = O(n^2)$

• More examples

■
$$2n^2 = O(n^3)$$

$$= n = O(n^2)$$

$$n^{1.999} = O(n^2)$$

$$n^2 + n = O(n^2)$$

$$n^2 + 1000n = O(n^2)$$

$$1000n^2 + 1000n = O(n^2)$$

Asymptotic Notation

- Asymptotic notation
 - Big Oh
 - Big Omega
 - Big Theta
 - Little Oh
 - Little Omega

- O ≈ ≥
- Some constant multiple of g(n) is an asymptotic lower bound of f(n), possibly not tight

$$\Omega(g(n)) = \{f(n): \exists c > 0, \exists n_0 \ s.t. \ \forall n \ge n_0: 0 \le cg(n) \le f(n)\}$$

- In plain English: $\Omega(g(n))$ are all functions f(n) for which there exists two positive constants c and n_0 such that for all $n \ge n_0$, $0 \le cg(n) \le f(n)$
 - -g(n) is an asymptotic <u>lower bound</u> for f(n)
- Intuitively, you can think of Ω as "\geq" for functions
- If $f(n) \in \Omega(g(n))$, we write $f(n) = \Omega(g(n))$

NOTE: The definitions imply a constant n_0 beyond which they are satisfied. We do not care about small values of n.

- Examples
 - $n^3 = \Omega(n^2)$
 - $n^{2.0001} = \Omega(n^2)$

• Examples

- $n^3 = \Omega(n^2)$
- $n^{2.0001} = \Omega(n^2)$
- $n^2 = \Omega(n^2)$
- $n^2 + n = \Omega(n^2)$
- $1000n^2 + n = \Omega(n^2)$
- $1000n^2 + 1000n = \Omega(n^2)$
- $\sqrt{n} = \Omega(\log n)$

Asymptotic Notation

- Asymptotic notation
 - Big Oh
 - Big Omega
 - Big Theta
 - Little Oh
 - Little Omega

- ⊕ ≈ =
- Some constant multiple of g(n) is an asymptotic tight bound of f(n)

$$\Theta(g(n)) = \{ f(n) : \exists c_1 > 0, \exists c_2 > 0, \exists n_0 \ s.t. \ \forall n \ge n_0 : \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$$

- In plain English: $\Theta(g(n))$ are all functions f(n) for which there exists three positive constants c_1 , c_2 and n_0 such that for all $n \ge n_0$, $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$
 - -g(n) is an asymptotic <u>tight bound</u> for f(n) (same growth rate)
- Intuitively, you can think of Ω as "=" for functions
- If $f(n) \in \Theta(g(n))$, we write $f(n) = \Theta(g(n))$

NOTE: The definitions imply a constant n_0 beyond which they are satisfied. We do not care about small values of n.

Theorem

$$f(n) = \Theta(g(n))$$
 if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

• Examples

$$n^2 - 2n = \Theta(n^2)$$
?

$$6n^3 = \Theta(n^2)?$$

• Examples

$$n^2 - 2n = \Theta(n^2)$$

$$6n^3 \neq \Theta(n^2)$$

• Examples

Show that for any real constants a and b, where b > 0, $(n + a)^b = \Theta(n^b)$

Names of Bounding Functions

g(n) = O(f(n)) means $C \times f(n)$ is an *upper bound* on g(n).

 $g(n) = \Omega(f(n))$ means $C \times f(n)$ is a lower bound on g(n).

 $g(n) = \Theta(f(n))$ means $C_1 \times f(n)$ is an upper bound on g(n) and $C_2 \times f(n)$ is a lower bound on g(n).

C, C_1 , and C_2 are all constants independent of n.

Asymptotic Notation in Equations and Inequalities

• On the right-hand side alone of an equation (or inequality) \equiv a set of functions

Ex.,
$$n = O(n^2) \leftrightarrow n \in O(n^2)$$

 In general, in a formula, stands for some anonymous function that we do not care to name

Ex.,
$$2n^2 + 3n + 1 = 2n^2 + \Theta(n) \leftrightarrow 2n^2 + 3n + 1 = 2n^2 + f(n)$$
, where $f(n) = \Theta(n)$

Next Class

Algorithm Analysis I (cont.)

Reading: Weiss, chap. 2