

Redes de Computadores

Profº. Luis Gonzaga de Paulo

- Protocolo UDP
- Protocolo SCTP

- *User Datagram Protocol* é um protocolo simples da camada de transporte
- Permite que a aplicação escreva um datagrama encapsulado num pacote IPv4 ou IPv6, o qual é então enviado ao destino
- Não há qualquer tipo de garantia que o pacote será entregue

- O protocolo UDP não é confiável, e se for necessário garantir a entrega, é preciso implementar controles tais como timeouts, retransmissões, acknowlegments, controle de fluxo, etc.
- Cada datagrama UDP tem um tamanho e pode ser considerado como um registro indivisível
- O UDP é um serviço sem conexão, pois não há necessidade de manter uma ligação entre o cliente e o servidor

- Um cliente UDP pode criar um socket, enviar um datagrama para um servidor e imediatamente enviar outro datagrama com o mesmo socket para um servidor diferente.
- Da mesma forma, um servidor poderia ler datagramas vindos de diversos clientes, usando um único *socket*.
- O UDP também fornece os serviços de broadcast e multicast, permitindo que um único cliente envie pacotes para vários outros na rede

- Escolha adequada para fluxos de dados em tempo real, especialmente aqueles que admitem perda ou dano de parte de seu conteúdo, tais como vídeos ou voz (VoIP)
- Aplicações sensíveis a atrasos na rede, mas poucos sensíveis a perdas de pacotes, como jogos de computadores, também podem se utilizar do UDP.
- Suporta *broadcasting* e *multicasting*. Caso esses recursos sejam necessários, o UDP deverá necessariamente ser utilizado.
- Não perde tempo com criação ou destruição de conexões.
- Durante uma conexão, o UDP troca apenas 2 pacotes, enquanto no TCP esse número é superior a 10.

Portas conhecidas:

Porta	Protocolo	Descrição
7	Echo	Ecoa um datagram recebido de volta para o emissor
9	Discard	Descarta qualquer datagrama recebido
11	Users	Usuários ativos
13	Daytime	Retorna Data e Hora
17	Quote	Retorna um comentário do dia
19	Chargen	Retorna uma string de caracteres
53	Nameserver	Domain Name Services
67	BOOTPs	Servidor bootstrap
68	BOOTPc	Cliente bootstrap
69	TFTP	Trivial File Transfer Protocol
111	RPC	Remote Procedure Call
123	NTP	Network Time Protocol
161	SNMP	Simple Network Management Protocol
162	SNMP	Simple Network Management Protocol (trap)
162	SNMP	Simple Network Management Protocol (trap)
161	SNMP	Simple Network Management Protocol
123	NTP	Network Time Protocol

- Porta Fonte: corresponde à aplicação emissora do segmento UDP. Este campo representa um endereço de resposta para o destinatário.
- Porta Destino: corresponde à aplicação da máquina destinatária
- Comprimento: Este campo precisa o comprimento total do segmento, incluindo o cabeçalho
- Checksum: Trata-se de uma soma de controle realizada de maneira a poder controlar a integridade do segmento

0 15	16 3			
Porta de Origem	Porta de Destino			
Tamanho	Checksum			
Dados				

Quando é utilizado?

- Fluxo de dados em tempo real
- Multicasting
- Broadcasting
- Serviços que admitem certa perda de dados

Exemplos de uso

 Youtube e outros serviços de streaming, tanto de áudio quanto de vídeo

- P2P
- Skype e inúmeros serviços de VOIP.

SCTP

Stream Control Transmission Protocol é um protocolo de transporte confiável que opera sobre um serviço de pacotes não confiável e sem conexão, como é o caso do IP

- É orientado a mensagens
- Utiliza o conceito de associação
- Estabelece vários fluxos de comunicação
- Multihoming

SCTP

- Entrega confirmada de dados de usuário, livre de erros e não duplicados.
- Fragmentação de dados em conformidade com o MTU descoberto do caminho.
- Entrega sequencial de dados de usuário em múltiplos fluxos.
- Empacotamento opcional de múltiplas mensagens de usuário num único pacote SCTP.
- Tolerância a falhas de rede através do suporte a caminhos múltiplos (multihoming).
- O SCTP é rate adaptative, adaptando-se as variações da rede.

SCTP

- O SCTP provê transmissão confiável
 - Detecta quando os dados são descartados, reordenados, duplicados ou corrompidos, retransmitindo dados quando necessários
 - O SCTP é orientado a conexão
- O SCTP usa o conceito de associação
 - Mais amplo que a conexão TCP
 - Uma conexão TCP estabelece apenas um único fluxo full-duplex
 - Uma associação SCTP estabelece um número arbitrário de fluxos simplex
 - Para simular uma conexão TCP, basta criar um fluxo SCTP em cada direção
- O SCTP tem potencial de substituir o TCP em diversas aplicações
- Todas as portas reservadas pelo IANA ao TCP são automaticamente reservadas ao SCTP

- ✓ Protocolo UDP
- ✓ Protocolo SCTP

