Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №2 Синтез помехоустойчивого кода Вариант №68

Выполнил: студент группы Р3108 Васильев Никита

Проверил: Балакшин Павел Валерьевич, доцент факультета ПИиКТ, кандидат технических наук

Содержание

Задание

Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.

Показать, исходя из выбранных вариантов сообщений (по 4 у каждого — часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.

Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.

Показать, исходя из выбранного варианта сообщений (по 1 у каждого — часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.

Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.

Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Вариант	1				2
68	50	87	12	91	68

Основные этапы вычисления

Код Хэмминга (7; 4)

Рисунок 1 – схема классического кода Хэмминга (7, 4)

Задание 1 – №50

	1	2	3	4	5	6	7
	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	\mathbf{i}_2	i ₃	i 4
50	1	0	0	1	0	1	1

 $s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 0 \bigoplus 1 = 0$

 $s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 1 \bigoplus 1 = 0$

 $s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 1 \bigoplus 1 = 1$

$s = 001 \to$ Согласно Рисунку 2 ошибка в бите $r_3 \to$ Правильное сообщение: 0011

	1	2	3	4	5	6	7	
2 ^x	r ₁	r_2	i ₁	r_3	i ₂	i ₃	İ4	S
1	Χ		Χ		Х		Χ	s ₁ 0
2		Χ	Χ			Χ	Χ	$s_2 0$
4				X	Χ	Χ	Χ	s ₃ 1

Рисунок 2 - Код Хэмминга с синдромом 001

Задание 2 - №87

	1	2	3	4	5	6	7
	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	\mathbf{i}_2	i ₃	i 4
87	0	0	1	1	1	1	0

 $s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 1 \bigoplus 0 = 0$

 $s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 1 \bigoplus 0 = 0$

 $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$

$s = 001 \to$ Согласно Рисунку 3 ошибка в бите $r_3 \to$ Правильное сообщение: 1110

	1	2	3	4	5	6	7	
2 ^x	r ₁	r_2	i ₁	r_3	i ₂	i ₃	İ ₄	S
1	Χ		Χ		Х		Χ	s ₁ 0
2		Χ	Χ			Χ	Χ	s ₂ 0
4				X	X	Х	Χ	s ₃ 1

Рисунок 3 - Код Хэмминга с синдромом 001

Задание 3 – №12

	1	2	3	4	5	6	7
	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	\mathbf{i}_2	i 3	i 4
12	1	1	0	0	0	0	0

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 0 \bigoplus 0 = 1$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 0 \bigoplus 0 = 0$$

 $s = 110 \rightarrow C$ огласно Рисунку 4 ошибка в бите $i_1 \rightarrow \Pi$ равильное сообщение: 1000

	1	2	3	4	5	6	7	
2 ^x	r ₁	r_2	i ₁	r_3	i ₂	i ₃	İ4	S
1	Х		Χ		Χ		Χ	s ₁ 1
2		Χ	Х			Χ	Χ	s ₂ 1
4				Х	Χ	Χ	Χ	s ₃ 0

Рисунок 4 - Код Хэмминга с синдромом 110

Задание 4 – №91

	1	2	3	4	5	6	7
	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i_2	i 3	i 4
91	0	1	1	1	1	1	0

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$$

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$$

$s = 011 \to \text{Согласно Рисунку 5}$ ошибка в бите $i_3 \to \Pi$ равильное сообщение: 1100

	1	2	3	4	5	6	7	
2 ^x	r ₁	r_2	i ₁	r_3	i ₂	i ₃	İ4	S
1	Χ		Χ		Χ		Χ	s ₁ 0
2		Χ	Χ			Х	Χ	s ₂ 1
4				Х	Χ	X	Χ	s ₃ 1

Рисунок 5 - Код Хэмминга с синдромом 011

Код Хэмминга (15; 11)

Задание 5 – №68

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i_2	i ₃	i ₄	r ₄	i 5	i_6	i ₇	i ₈	i 9	i ₁₀	i ₁₁
68	0	0	1	1	1	0	0	0	1	0	0	0	1	0	0

 $s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11} = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = 0$

 $s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 1$

 $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 0$

 $s_4 = r_4 \oplus i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 1$

 $s = 0101 \rightarrow Coгласно Рисунку 6 ошибка в бите <math>i_6 \rightarrow Правильное сообщение: 11001 100100$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^x	r ₁	r ₂	i ₁	r_3	i ₂	i ₃	İ4	r ₄	i 5	i_6	i ₇	i ₈	İ g	i ₁₀	i ₁₁	S
1	Χ		Х		Х		Х		Χ		Х		Х		Χ	s ₁ 0
2		Χ	Χ			Χ	Χ			Х	Х			Χ	Χ	s ₂ 1
4				Х	Х	Х	Х					Х	Х	Χ	Χ	S ₃ 0
8								Х	Χ	X	Х	Χ	Χ	Χ	Χ	S ₄ 1

Рисунок 6 – Код Хэмминга с синдромом 0101

Задание 6

Количество информационных разрядов $i = (50 + 87 + 12 + 91 + 68) \times 4 = 1232$.

Определение минимального числа контрольных разрядов $r: 2^r \ge r + i + 1$.

Найдём r, для которого будет верным неравенство: $2^r \ge r + 1233$.

Неравенство верно, начиная с r=11: $2^{11} \ge 1244$. Следовательно, необходимо 11 контрольных разрядов r.

Коэффициент избыточности = $r \div n = 11 \div 1243 \approx 0,00884956$.

Ответ: r = 11; коэффициент избыточности $\approx 0,00884956$.

Написание программы для определения ошибок в битах на языке программирования Python

```
ent_code = str(input("Введите код Хэмминга: "))

#определяем, является введенный код кодом Хэмминга

def code_is_code (ent_code):
    byte_code = True
    for i in ent_code:
        if i not in '01':
            byte_code = False
    if len(ent_code) != 7 or byte_code == False:
        return 'Bведенный код не является кодом Хэмминга'
    else:
        return code_Hemming(ent_code)

#coздаём словарь для хранения значений битов
bv = {}
bv['rl'], bv['r2'], bv['il'], bv['r3'], bv['i2'], bv['i3'], bv['i4'] =
ent_code[:7]

#cтроим синдромы
def code Hemming (ent_code):
    s1 = int(bv['r1']) ^ int(bv['i1']) ^ int(bv['i2']) ^ int(bv['i4'])
    s2 = int(bv['r2']) ^ int(bv['i1']) ^ int(bv['i3']) ^ int(bv['i4'])
    s = str(s1) + str(s2) + str(s3)
    if s == '000':
        return 'Ошибок нет'
    else:
        s = s[::-1]
        pos = int(s, 2)
        cnt = 0
```

Заключение

В ходе выполнения данной лабораторной работы я познакомился с помехоустойчивым кодированием, научился работать с кодом Хэмминга, определять ошибки, возникшие при передаче или хранении данных, вычислять необходимое количество контрольных разрядов и коэффициент избыточности.

Список литературы

Липницкий В. А. Чесалин Н. В. Линейные коды и коды последовательности [Книга]. - Минск : БГУ, 2008. - стр. 41.

Ромащенко А. Румянцев А., Шень А. Заметки по теории кодирования [Книга]. - Москва : МЦНМО, 2017. - 2-е : стр. 88.