(19) World Intellectual Property Organization

International Bureau

PCT

(10) International Publication Number WO 2004/007992 A1

(51) International Patent Classification7: F16H 55/36, F16F 15/126

F16F 15/14,

(21) International Application Number:

PCT/IT2003/000432

(22) International Filing Date:

10 July 2003 (10.07.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: T02002A000622

16 July 2002 (16.07.2002)

- (71) Applicant (for all designated States except US): DAYCO EUROPE S.R.L. [IT/IT]; Zona Industriale Vallecupa, I-64010 Colonnella (IT).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): RIU, Hervé [FR/FR]; 14, Le Petit Bois, F-38140 La Murette (FR).

- (74) Agents: JORIO, Paolo et al.; c/o Studio Torta S.r.l., Via Viotti, 9, I-10121 Torino (IT).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: AN INTEGRATED PULLEY-TORSIONAL DAMPER ASSEMBLY

(57) Abstract: An integrated pulley-torsional damper assembly (1) comprises a hub (2) designed for being rigidly connected to a drive member (3), a pulley (4) connected to the hub (2) by means of a first ring (5) made of elastomeric material having the function of filter for the torsional oscillations, and an inertia ring (6), connected to the hub (2) by means of a second ring (7) made of elastomeric material, which defines with the inertia ring (6) a damping system. The first elastomeric ring is connected to the hub by mans of a coupling flange (25), which can be pack-tightened between an internal annular flange (10) of the hub and the drive member (3), the hub (2) comprising a first cylindrical wall (11) and a second cylindrical wall (12), which are coaxial with respect to one another and define between them an annular cavity (9) housing the first elastomeric ring (5), the external cylindrical wall (12) defining a support for the second elastomeric ring (7).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

15

20

AN INTEGRATED PULLEY-TORSIONAL DAMPER ASSEMBLY

TECHNICAL FIELD

5 The present invention relates to an integrated pulley-torsional damper assembly.

BACKGROUND ART

Integrated pulley-torsional damper assemblies are known, which comprise a hub designed for being rigidly connected to a drive member, for example the drive shaft of an internal-combustion engine, a pulley connected to the hub by means of a first ring made of elastomeric material having the function of filter for torsional oscillations, and a inertia ring, connected to the hub by means of a second ring made of elastomeric material, which defines with the inertia ring a damping system.

Integrated assemblies of the type described briefly above are used, for instance, in the automotive sector and are connected, at one end of the drive shaft of an internal-combustion engine, to enable driving, by means of a belt transmission, of auxiliary members of the engine, for example, an alternator, a fan and/or a compressor, and enable, at the same time, damping of the torsional oscillations of the drive shaft.

25 DISCLOSURE OF INVENTION

The purpose of the present invention is to provide

an integrated pulley-damper assembly of an improved type, which has a particularly small number of components and presents contained axial dimensions.

The aforesaid purpose is achieved by the present invention, in so far as it relates to an integrated 5 pulley-torsional damper assembly, which comprises a hub designed for being rigidly connected to a drive member, a pulley connected to the hub by means of a first ring made of elastomeric material having the function of filter for torsional oscillations, a inertia ring, 10 connected to the hub by means of a second ring made of elastomeric material, which defines with the inertia ring a damping system, the said hub comprising an internal annular flange designed for connection to said drive member, characterized in that said hub comprises, 15 integrally with said flange, an annular coupling portion having a substantially C-shaped cross section, which is open axially on the side where said flange is located and forms a cavity housing said first elastomeric ring, said coupling portion comprising an outer tubular wall, 20 on which is fitted said second elastomeric ring, a bearing being set between said outer tubular wall and said pulley for radial and axial support of said pulley with respect to said hub.

BRIEF DESCRIPTION OF THE DRAWING

For a better understanding of the present

10

15

20

25

invention, there follows a description of a preferred embodiment, provided purely by way of non-limiting example, and with reference to the attached drawing, which illustrates a radial cross section of the assembly.

BEST MODE FOR CARRYING OUT THE INVENTION

With reference to the figure, the number 1 designates, as a whole, a pulley-torsional damper assembly according to the present invention.

The assembly 1 comprises a hub 2 designed for being rigidly connected to a drive member 3, for example, the drive shaft or a gear of the distribution rigidly constrained thereto, a pulley 4 angularly connected to the hub 2 by means of a first ring 5 made of elastomeric material (hereinafter referred to 'simply as "first elastomeric ring 5") having the function of filter for torsional oscillations, and a inertia ring 6 connected to the hub 2 by means of a second annular element 7 made of elastomeric material (hereinafter referred to simply as "second elastomeric ring 7"), which defines with the inertia ring 6 a damping system.

In greater detail, the hub 2 is made of stamped sheet metal and comprises integrally an internal annular flange 10 designed for connection to the drive member 3, an internal tubular wall 11 extending axially on the side opposite to the drive member 3 and co-operating

25

radially with the second elastomeric ring 7, an external tubular wall 12, which is coaxial with respect to the internal tubular wall 11, and an end wall 13, which is plane, and connects integrally the tubular walls 11 and 12 together. The walls 11, 12 and 13 form, as a whole, an annular coupling portion 14 of the hub 2, which presents a substantially C-shaped cross section open on the side where the flange 10 is located and defines an annular cavity 9.

The inertia ring 6 is mounted on the outer tubular wall 12, with interposition in a forced way of the second elastomeric ring 7, and is withheld on the aforesaid wall exclusively as a result of the friction generated by the radial compression of the second elastomeric ring 7.

The pulley 4, which is conveniently of the type having multiple grooves (poly-V type), is conveniently made of sheet metal by means of successive pressing and rolling operations and comprises integrally a substantially cylindrical peripheral crown 15, which defines, on one of its outer surfaces, a plurality of V-shaped grooves 16, which are symmetrical with respect to a median plane M, and an annular flange 17, which extends integrally inwards from an axial end 18 of the crown 15, which faces the drive member 3.

The flange 17 basically comprises a plane outer

20

25

annular portion 19, an intermediate tubular wall 20, which is coaxial with respect to the crown 15 and is internal thereto, and an inner annular flange 21, which extends from an axial end of the tubular wall 20 opposite to the outer annular portion 19. Conveniently, the flange 21 has a conical profile converging in the direction of the plane outer annular portion 19 towards the drive member 3. The flange 21 is fitted to the first elastomeric ring 5, with which it forms a single body. Conveniently, the first elastomeric ring 5 has an outer lip 22, which adheres to the inner face of the tubular wall 20 of the flange 17 of the pulley 4.

According to a preferred embodiment of the invention, the assembly 1 comprises a coupling flange 25 having the function of connecting the first elastomeric ring 5 to the hub 2.

In greater detail, the coupling flange 25 comprises an inner annular wall 26 set so that it bears axially upon the flange 10 and of the hub, 2, and a conical annular edge 27 radiused to the inner annular wall 26 by means of a step-shaped portion 28. The conical annular edge 27 is set facing the flange 21 of the pulley 4, diverges outwards with respect to the latter, and is fitted to the first elastomeric ring 5 on the axially opposite side.

On account of the conicity of the flange 21 and of

25

the annular edge 27 of the coupling flange 25, the first elastomeric ring 5 has a substantially trapezoidal cross section, which diverges outwards. Connection of the pulley 4 and the coupling flange 25 to the first elastomeric ring 5 is obtained in a vulcanization mould (not illustrated). After vulcanization, the coupling flange 25, the first elastomeric ring 5, and the pulley 4 define a transmission member 30 in the form of a single body.

The first elastomeric ring 5 is made of a relatively "soft" elastomeric material, i.e., one with a sufficiently low modulus of elasticity. The resulting high torsional deformability enables "filtration" of the pulse-like variations of torque and resistant torque, thus providing a sort of "flexible coupling" between the drive member 3 and the pulley 4.

The transmission member 30 is mounted on the coupling portion 14 of the hub 2 with interposition of a bushing 34 having the function of a radial and axial bearing for supporting the pulley 4 with respect to the hub 2 with a minimum friction between the two. In particular, the bushing 34 comprises integrally a tubular portion 35, which is set radially between the outer tubular wall 12 of the hub 2 and the intermediate tubular wall 20 of the pulley 4, and a flange 36, which is set axially between the plane outer annular portion

10

15

20

25

19 of the flange 17 of the pulley 4 and a free edge of the outer tubular wall 12 of the hub 2.

The bushing 34 is conveniently made of a plastic material having a low coefficient of friction, such as, for example, a fluoropolymer.

Once assembly is completed, the first elastomeric ring 5 is housed inside the cavity 9 of the coupling portion 14 of the hub 2. In an altogether similar way, the second elastomeric ring 7 and the inertia ring 6 are housed inside the crown 16 of the pulley 4. The assembly 1 is therefore particularly compact in the axial direction.

Installation of the assembly 1 on the drive member 3 is obtained by means of a single axial tap screw 37, which pack-tightens the flange 10 of the hub 2 and the annular wall 26 of the coupling flange 25, and is axially screwed into the drive member 3.

In use, the pulley 4 is fitted rotationally to the hub 2 and to the drive member 3 by means of the first elastomeric ring 5, which filters any lack of uniformity in the angular velocity of the drive shaft and filters any instantaneous variations of resistant torque. The inertia ring 6 and the second elastomeric ring 7 are sized, in terms of moment of inertia of the former and torsional elasticity of the latter, to obtain pre-set damping characteristics.

From an examination of the characteristics of the assembly 1 built according to the present invention, the advantages that the said invention enables emerge evidently.

In the first place, the arrangement of the hub 2, of the pulley 4 and of the bushing 34 enables a reduction in the total number of components (seven in the example illustrated), as well as a simultaneous reduction of the axial dimensions.

10 Furthermore, the axial position of the pulley 4 is defined accurately and does not require the need for any subsequent machining operations once assembly complete, since it depends upon a small combination of tolerances, which can be easily controlled during 15 production. In particular, there are only parameters subject to tolerance which condition the axial position of the grooves of the pulley, namely, the distance between the median plane M of the grooves 16 of the pulley 4 and the inner face of the plane outer annular portion 19 of the flange 17 of the pulley 4, the 20 thickness of the flange 36 of the bushing 34, the distance between the free edge of the outer tubular wall 12 and the plane of the outer face of the flange 10 of the hub 2, and the thickness of the coupling flange 25.

25 Finally, the noise of the device is attenuated since the pulley 4 is "shielded" by the inertia ring 6,

which is not in rigid connection with the drive shaft and, hence, is isolated from any causes of forced oscillation.

A further advantage is represented by the fact that the bushing 34, thanks to its arrangement, is protected from external agents (water, dirt).

Finally, it is clear that modifications and variations can be made to the integrated assembly 1 described herein, without thereby departing from the sphere of protection of the ensuing claims.

CLAIMS

- 1. An integrated pulley-torsional damper assembly, which comprises a hub (2) designed for being rigidly connected to a drive member (3), a pulley (4) connected to the hub (2) by means of a first ring (5) made of elastomeric material having the function of filter for torsional oscillations, a inertia ring (6), connected to the hub (2) by means of a second ring (7) made of 10 elastomeric material, which defines with the inertia ring (6) a damping system, the said hub (2) comprising an internal annular flange (10) designed for connection to said drive member (3), said assembly characterized in that said hub (2) comprises, integrally 15 with said flange (10), an annular coupling portion (14) having a substantially C-shaped cross section, which is open axially on the side where said flange (10) located and forms a cavity (9) housing said first elastomeric ring (5), said coupling portion 20 comprising an outer tubular wall (12), on which is fitted said second elastomeric ring (7), a bearing (34) being set between said outer tubular wall (12) and said pulley (4) for radial and axial support of said pulley (4) with respect to said hub (2).
- 2. The assembly according to Claim 1, characterized in that it comprises a coupling flange (25), provided

15

20

25

with an inner annular wall (26), which bears axially upon said flange (10) of said hub (2), and with a peripheral annular edge (17), said first elastomeric ring (5) being fitted to said pulley (4) and to said peripheral annular edge (17) of said coupling flange (25).

- 3. The assembly according to Claim 1 or Claim 2, characterized in that said pulley (4) comprises a peripheral crown (16) and a flange (17), which extends radially towards the inside from said peripheral crown (16), said flange (17) comprising an external annular portion (19), an intermediate tubular wall (20) coaxial with respect to said crown (16) and internal thereto, and an internal annular flange (21), which extends from an axial end of the tubular wall (20) opposite to the external annular portion (19) and connected to said first elastomeric ring (5).
- 4. The assembly according to Claim 3, characterized in that said first elastomeric ring (5) is set axially between said flange (16) of said pulley (4) and said external flange (12) of said hub (2), and forms a single body with them.
- 5. The assembly according to Claim 3 or Claim 4, characterized in that said bearing (34) comprises integrally a tubular portion (35), radially set between said external tubular wall (12) of said hub (2) and said

intermediate tubular wall (20) of said pulley (4), and a flange (36), axially set between said external annular portion (19) of said flange (17) of said pulley (4) and said outer tubular wall (12) of said hub (2).

5

INTERNATIONAL SEARCH REPORT

Internat Application No IŤ 03/00432

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 F16F15/14 F16H55/36 F16F15/126

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 F16F F16H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	US 5 516 331 A (HOENLINGER HERWIG ET AL) 14 May 1996 (1996-05-14) figure 4	1,5
X	US 5 637 041 A (HAMAEKERS ARNO ET AL) 10 June 1997 (1997-06-10) figure 1	1,5
A	WO 96 25611 A (RIU HERVE ;HOLSET ENGINEERING CO (GB)) 22 August 1996 (1996-08-22) figure 1	2,4
A	DE 199 38 461 A (FREUDENBERG CARL FA) 22 March 2001 (2001-03-22) figure 4	1
	-/	

χ Patent family members are listed in annex.
 "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of mailing of the International search report 27/10/2003
Authorized officer Beaumont, A

INTERNATIONAL SEARCH REPORT

Internati Application No
IT 03/00432

	nuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A	FR 2 771 791 A (SOFEDIT) 4 June 1999 (1999-06-04)		

INTERNATIONAL SEARCH REPORT

mation on patent family members IT 03/00432 Patent document Publication Patent family Publication cited in search report date member(s) date US 5516331 Α 14-05-1996 DE 4312577 C1 18-08-1994 BR 9401495 A 22-11-1994 DE 59400565 D1 10-10-1996 EP 0621413 A1 26-10-1994 ES 2093460 T3 16-12-1996 JP 2648451 B2 27-08-1997 JP 6330957 A 29-11-1994 KR 9704920 B1 08-04-1997 US 5637041 Α 10-06-1997 DE 4408474 C1 20-04-1995 BR 9500645 A 17-10-1995 EP 0671570 A2 13-09-1995 ES 2120554 T3 01-11-1998 JP 2680280 B2 19-11-1997 JP 7269588 A 17-10-1995 WO 9625611 Α 22-08-1996 FR 2730782 A1 23-08-1996 AU 4725496 A 04-09-1996 DE 69608251 D1 15-06-2000 DE 69608251 T2 04-01-2001 EP 0808431 A1 26-11-1997 ES 2148732 T3 16-10-2000 WO 9625611 A1 22-08-1996 JP 3155280 B2 09-04-2001 JP 10508084 T 04-08-1998 PT 808431 T 31-10-2000 US 5988015 A 23-11-1999 DE 19938461 Α 22-03-2001 DE 19938461 A1 22-03-2001

FR

2771791 A1

Internati

Application No

04-06-1999

FR 2771791

A

04-06-1999