Informe 1 2025

Detección de Heavy Hitters usando Sketches

Ignacio Barría Concha - Nicolás Jarpa Jeldres - Nicolás Pino Leal

Los archivos asociados a este trabajo con el objetivo de identificar kmers canonicos como heavy hitters usando sketches estan en el siguiente enlace: https://github.com/Pinox084/Tarea1TMGVD

Actividad 1: Preparación de datos y ground truth

Objetivo

El objetivo de esta actividad fue definir el conjunto de *k-mers*, calcular un *ground truth* de frecuencias exactas en un subconjunto de datos representativo y establecer umbrales de *heavy hitters (HH)*.

Metodología

1. Procesamiento de genomas

- Se trabajó con archivos de genomas en formato FASTA.
- Se limpiaron las secuencias dejando únicamente bases A, C, G, T, descartando aquellas posiciones con caracteres ambiguos como N.
- Cada archivo listado en listaarchivos.txt fue procesado de manera independiente.
- Conservábamos un 1MB de memoria para HH de cada archivo FASTA y los juntamos en un solo archivo.

2. Extracción de k-mers canónicos

- Se implemento un archivo principal llamado kmersheader.hpp para almacenar funciones que permiten codificar los kmers en base 2 y obtener sus formas canónicas.
- La función que entrega los kmers canónicos recibe una sola una línea string de tamaño k que compara el kmer y su complemento y retornar su forma canónica.

• Se consideró tanto el *k-mer* como su reverso complementario, guardando siempre el **canónico** (el menor en orden lexicográfico).

3. Cálculo de frecuencias exactas

- Se desarrolló el código que realiza un **conteo exacto de k-mers** utilizando un unordered_map<u64,uint64_t>. Donde estas, se obtienen sus frecuencias exactas, del archivo GTExacto.cpp.
- El resultado es un archivo con todas las frecuencias exactas (out_exact.txt), donde cada línea contiene:

KMER	Frecuencia
	•••
112230021210212110112	10

Guardados en formato de 2 bits

4. Definición de umbral φ y obtención de heavy hitters

• El umbral se definió como:

$$f(x) \ge \varphi N$$

donde f(x) es la frecuencia de un k-mer y N el total de k-mers válidos procesados en el archivo.

- Se probaron valores de φ, y coincidimos en el φ fijo de 2e-6, esto gracias a ensayo y error en los algoritmos de countSketch y towerSketch con CountMin y Conservative Update (TS CMCU). Esto debido a que en los dos scripts de la actividad 2 el phi afectaba mucho más de lo que afectaba en la actividad 1, por tanto, llegamos a una conclusión de que teniendo un φ=2e-6 dejaría buenos resultados para todo lo pedido.
- El conjunto de heavy hitters de cada archivo se guardó en HHexactos.txt y HHexactos21.txt, respectivamente para un K=31 y un K=21.
- Para cumplir con la restricción de memoria, se implementó un límite de 1 MB por archivo, y se junta en los txt resultantes HHexactos.txt y HHexactos21.txt.

Resultados

- 1. Frecuencias exactas (Ground Truth)
- Se obtuvo para cada archivo el conteo exacto de todos los *k-mers* .
- Esto constituye el **ground truth** que servirá para evaluar la precisión de los algoritmos de sketch.

2. Heavy Hitters

- Para cada archivo se generó la lista de HH exactos con su frecuencia.
- Los resultados se almacenaron en un único archivo de salida HHexactos.txt (para k=31) y HHexactos21.txt (para k=21), con secciones separadas por archivo.
- Cada bloque contiene como máximo 1 MB de información para cumplir con las restricciones de la actividad.

3. Medición de memoria

 Se registró la memoria aproximada utilizada por el unordered_map durante el conteo exacto.

Actividad 2

Se implementaron las estructuras CS y TS-CMCU con funciones insert(kmer) y estimate(kmer) considerando múltiples filas por tamaño de contadores, a continuación, se presenta el seudocódigo de ambas implementaciones.

```
Pseudocódigo – Count Sketch

Estructura CountSketch(d, w):

tabla[d][w] ← 0

hashSeeds[j] ← valores distintos para cada fila j

signSeeds[j] ← valores distintos para cada fila j

Función SIGN(key, j):

h ← Hash(key, signSeeds[j])

Si (h es impar) retornar +1

Si (h es par) retornar -1
```

```
Procedimiento UPDATE(key, delta):
```

```
Para cada fila j = 0 \dots d-1:

h \leftarrow Hash(key, hashSeeds[j])

col \leftarrow h \mod w

s \leftarrow SIGN(key, j)

tabla[j][col] \leftarrow tabla[j][col] + delta * s
```

Función ESTIMATE(key):

```
Para cada fila j = 0 \dots d-1:

h \leftarrow Hash(key, hashSeeds[j])

col \leftarrow h \mod w

s \leftarrow SIGN(key, j)

est[j] \leftarrow tabla[j][col] * s

retornar mediana(est[0..d-1])

update(key, delta) \rightarrow Inserción / actualización
```

Para cada una de las "d" filas de la tabla:

- 1. Se calcula una posición hash col para la clave.
- 2. Se obtiene un signo aleatorio determinístico +1 o -1 usando otra función hash.
- 3. Se actualiza el contador de la celda correspondiente con delta * signo.

Esto permite compensar colisiones: si dos claves distintas caen en la misma celda, sus contribuciones pueden tener signos distintos, reduciendo el sesgo.

```
estimate(key) → Estimación de frecuencia
```

Para cada fila:

- 1. Se calcula la misma celda y el mismo signo que se usó en la inserción.
- 2. Se recupera el valor almacenado y se multiplica por el signo → esto "deshace" el efecto del signo aplicado en update.
- 3. Se toma la mediana de las d estimaciones → esto reduce el efecto de posibles colisiones grandes en alguna fila.

El resultado es una estimación no sesgada de la frecuencia de la clave, con alta probabilidad de estar cerca del valor real si "d" y "w" son lo suficientemente grandes.

```
Pseudocódigo -TS-CMCU
Estructura CountMinCU(width, rows):
   tabla[rows][width] \leftarrow 0
   seeds[r] \leftarrow valores distintos para cada fila r
Procedimiento INSERT(key):
   Para cada fila r = 0 ... rows-1:
      h \leftarrow \text{Hash(key, seeds[r])}
      idx[r] \leftarrow h \mod width
   \min v \leftarrow \infty
   Para cada fila r:
      minv \leftarrow min(minv, tabla[r][idx[r]])
   Para cada fila r:
      Si tabla[r][idx[r]] == minv:
        tabla[r][idx[r]] \leftarrow tabla[r][idx[r]] + 1
Función ESTIMATE(key):
   ans \leftarrow \infty
   Para cada fila r:
```

 $h \leftarrow \text{Hash(key, seeds[r])}$

```
idx \leftarrow h \mod width

ans \leftarrow min(ans, tabla[r][idx])

Si ans == \infty retornar 0
```

insert(key) → Inserción con Conservative Update

- 1. Se calcula en qué posición (idx) cae la clave en cada una de las rows filas.
- 2. Se busca el mínimo valor actual entre esas posiciones.
- 3. Se incrementan solo las celdas que tienen el valor mínimo.

Esto evita **sobreestimaciones innecesarias**: en el Count-Min clásico se incrementan todas las celdas, lo que puede amplificar errores por colisiones. Con Conservative Update solo se incrementan las celdas más "rezagadas", manteniendo las otras igual.

```
estimate(key) → Estimación
```

- 1. Se calcula la celda correspondiente en cada fila.
- 2. Se devuelve el **mínimo de todos los contadores** asociados a la clave.

El mínimo actúa como una cota superior del conteo real, ya que por colisiones el valor en cada celda solo puede **sobreestimar**, nunca subestimar. Tomar el mínimo entre varias filas reduce el error.

Estructura TowerSketch(widths[], rows per level[], seed0):

Para cada nivel i:

```
Crear CountMinCU con width = widths[i], rows = rows_per_level[i], seed = seed0 + i

Añadirlo a levels
```

Procedimiento INSERT(key):

Para cada nivel en levels:

```
nivel.INSERT(key)
```

```
Función ESTIMATE(key):

best \leftarrow \infty

Para cada nivel en levels:

e \leftarrow \text{nivel.ESTIMATE(key)}

best \leftarrow \text{min(best, e)}

Si best == \infty retornar 0

retornar best
```

Tower Sketch combina varios Count-Min Sketch con distintos anchos y números de filas (niveles).

- Cada inserción se propaga por todos los niveles.
- Para estimar, se toma el mínimo entre las estimaciones de todos los niveles.

Esto mejora la precisión y estabilidad respecto a usar un único sketch, especialmente en rangos amplios de frecuencias (muy útiles para heavy hitters o k-mers con distribuciones sesgadas).

Calibraciones

Count Sketch:

Se calibra probando distintas combinaciones de número de filas (d) y ancho de tabla (w). Para cada configuración, se insertan todos los k-mers de un grupo seleccionado de archivos y se comparan las estimaciones con las frecuencias reales, midiendo error (MAE/MRE) y calidad en la detección de heavy hitters (Precisión, Recall, F1). Los parametros utilizados son los siguientes:

```
vector<int> ds = {9, 10, 11, 15, 20};
vector<int> ws = {10000, 20000, 50000, 100000, 200000, 500000, 1000000, 2000000};
```

A continuación, se muestra "d" y "w" de prueba para un φ de 2e-06 de tamaños del k-mer de 21.

N°	d	w	Tamaño (bytes)	MAE	MRE	Precisió n	Recall	F1
1	9	1 000 000	72 000 000	0.254 749	0.2541 63	0.080717 5	1.000	0.1493 78
2	15	500 000	60 000 000	0.350 795	0.3500 06	0.038095	0.667	0.0720 721
3	20	2 000 000	320 000 000	0.022 5919	0.0225 223	0.18	1.000	0.3050 85
4	10	100 000	8 000 000	1.248 64	1.2458 6	8.51396e -05	0.667	0.0001 703
5	11	500 000	44 000 000	0.432 045	0.4310 76	0.024163 6	0.722	0.0467 626
6	9	200 000	14 400 000	0.858 456	0.8565 42	0.000476 304	0.556	0.0009 518
7	20	1 000 000	160 000 000	0.107 176	0.1069 25	0.130435	1.000	0.2307 69
8	15	1 000 000	120 000 000	0.147 619	0.1472 80	0.112583	0.944	0.2011 83
9	10	500 000	40 000 000	0.490 636	0.4895 26	0.009451 8	0.833	0.0186 916
10	9	50 000	3 600 000	1.786 61	1.7826 7	2.92946e -05	0.333	5.8584 e-05

A continuación, se muestra "d" y "w" de prueba para un φ de 2e-06 de tamaños del k-mer de 31.

N°	d	w	Tamaño (bytes)	MAE	MRE	Precis ión	Recall	F1
1	20	500 000	80 000 000	0.2401 39	0.239809	0.003 48172	0.875	0.00693 584
2	9	500 000	36 000 000	0.4237 60	0.423208	0.000 96125 4	0.8125	0.00192 024
3	11	200 000	17 600 000	0.6946 83	0.693736	0.000 20577 6	0.875	0.00041 146
4	15	20 000	2 400 000	2.0172 30	2.014600	0.000 02558 6	0.5625	0.00005 117
5	9	1 000 000	72 000 000	0.1995 86	0.199306	0.005 50863 0	0.9375	0.01095 290
6	11	10 000	880 000	3.3141 40	3.309930	0.000 01988 9	0.5625	0.00003 978
7	20	1 000 000	160 000 000	0.0718 52	0.071729	0.011 51080 0	1.0000	0.02275 960
8	15	500 000	60 000 000	0.2944 62	0.294074	0.003 39751 0	0.9375	0.00677 048
9	10	10 000	800 000	3.6521 50	3.647460	0.000 01627 4	0.625	0.00003 255
10	11	1 000 000	88 000 000	0.1587 30	0.158496	0.007 81250 0	1.0000	0.01550 390

Tower Sketch:

Se calibra definiendo varios niveles con anchos decrecientes y filas fijas, ajustando los parámetros según ϕ , δ y la memoria disponible. Se evalúa igual que Count Sketch, tomando métricas de error y heavy hitters para comparar configuraciones. Los parámetros utilizados fueron los siguientes

```
vector<vector<size_t>> configs_widths = {

{1<<20, 1<<19, 1<<18, 1<<17, 1<<16},

{1<<21, 1<<20, 1<<19, 1<<18, 1<<17},

{1<<23, 1<<22, 1<<21, 1<<20, 1<<19},

{1<<24, 1<<23, 1<<22, 1<<21, 1<<20, 1<<19, 1<<18}

}

vector<vector<size_t>> configs_rows = {

{5, 5, 4, 4, 3},

{6, 5, 5, 4, 4},

{7, 6, 6, 5, 5},

{10, 8, 7, 7, 6, 6, 5}

}
```

A continuación, se muestra d y w de prueba para un φ de 2e-06 de tamaños del k-mer de 21.

Co nfi g	N	MAE	RMS E	Max Abs Error	Max Rel Error	Precision	Recall	F1Score
cfg 1	1302461	0.004 09202	0.074 2833	12	12	0.323442	1	0.488789
cfg 3	1514500	0.013 299	0.121 375	6	6	0.188119	1	0.316667
cfg 2	3982388	0.018 5966	0.209 265	35	35	0.390465	1	0.561633

cfg 0	2277733	0.174 591	0.454 005	29	29	0.460581	1	0.630682
cfg 1	1942545	0.009 11808	0.251 977	41	41	0.240964	1	0.38835
cfg 2	1580689	0.002 05053	0.047 1459	7	7	0.638889	1	0.779661
cfg 1	3980036	0.100 015	0.372 99	76	76	0.0797721	1	0.147757
cfg 2	2284665	0.006 94263	0.098 1644	12	12	0.0740741	1	0.137931
cfg 0	1514500	0.053 1368	0.234 341	6	6	0.180952	1	0.306452
cfg 3	3982388	0.018 5958	0.209 263	35	35	0.390465	1	0.561633

A continuación, se muestra d y w de prueba para un φ de 2e-06 de tamaños del k-mer de 31.

Co nfi g	Z	MAE	RMSE	Max Abs Error		Precision	Reca ll	F1Score
cfg 2	1260 958	0.012 9983	0.1198 78	7	7	0.0264026	1	0.0514469
cfg 1	1084 253	0.003 7918	0.0759 957	9	9	0.186047	1	0.313725
cfg 3	1316 363	0.002 0622 7	0.0472 008	5	5	0.121212	1	0.216216
cfg 0	3318 223	0.454 088	0.7172 79	29	29	0.193969	1	0.324915
cfg 1	1897 122	0.018 3609	0.2808 1	25	25	0.209479	1	0.346395

cfg 3	1903 784	0.006 1672 5	0.0950 366	11	11	0.278607	1	0.435798
cfg 0	1618 601	0.063 3776	0.4062 76	35	35	0.0786651	1	0.145856
cfg 0	7978 64	0.002 8542 6	0.0545 628	2	2	0.0462527	1	0.0884159
cfg 1	3316 461	0.058 5379	0.3212 62	52	52	0.0018832 4	1	0.0037594
cfg 2	3318 223	0.018 6584	0.2329 47	29	29	0.199664	1	0.332867

Actividad 3: Detección de Heavy Hitters y Validación

Se ejecutan las dos estructuras usando los parametros con mejor rendimiento que se obtuvieron tras la calibración, para la detección de heavy hitters se usaron los siguientes parametros:

- $\Phi = 2e-6 (0.000002)$
- Count Sketch: d= 11, witdth = 2.000.000
- TS-CMCU: widths = {1<<22, 1<<21, 1<<20, 1<<19, 1<<18}, rows = {6, 6, 5, 5, 4}

TS-CMCU con k = 21

id	name	TP	FP	F	precis	rec	f1	hh_ex	hh_
x				N	ion	all		act	est
	GCA_006152045.1_ASM615204v1		52		0,001		0,003		
1	_genomic.fna	1	4	0	905	1	802	1	525
	GCA_018421455.1_ASM1842145v	23	95		0,199		0,332		119
2	1_genomic.fna	8	4	0	664	1	867	238	2
	GCA_020118255.1_ASM2011825v		11		0,045		0,087		122
3	1_genomic.fna	56	72	0	603	1	227	56	8
	GCA_021919605.1_PDT001092240		91		0,043				
4	.1_genomic.fna	42	6	0	841	1	0,084	42	958
	GCA_021953145.1_PDT001020446		74		0,022		0,043		
5	.1_genomic.fna	17	6	0	28	1	59	17	763
	GCA_021972575.1_PDT001013406		79		0,017		0,034		
6	.1_genomic.fna	14	5	0	305	1	022	14	809
	GCA_022062785.1_PDT000876120		77		0,037		0,071		
7	.1_genomic.fna	30	6	0	221	1	77	30	806

	CC4 000045075 0 DDT004000604		00	1	0.040		0.006		
	GCA_023315275.2_PDT001299634		90		0,018		0,036		
8	.2_genomic.fna	17	4	0	458	1	247	17	921
	GCA_024452925.1_PDT001370221		92		0,056		0,106		
9	.1_genomic.fna	55	7	0	800	1	075	55	982
1	GCA_024732165.1_PDT001378927		82		0,050		0,096		
0	.1_genomic.fna	44	5	0	633	1	386	44	869
1	GCA_026006075.1_ASM2600607v	49	10		0,330		0,496		149
1	1_genomic.fna	5	04	0	22	1	489	495	9
1	GCA_026006095.1_ASM2600609v	53	95		0,358		0,527		148
2	1_genomic.fna	3	4	0	44	1	723	533	7
1	GCA_026305215.1_PDT001493239		55		0,001		0,003		
3	.1_genomic.fna	1	5	0	799	1	591	1	556
1	GCA_031045075.2_PDT001744190		91		0,055		0,104		
4	.2_genomic.fna	53	0	0	036	1	331	53	963
1	GCA 032567175.1 ASM3256717v		85		0,053		0,100		
5	1_genomic.fna	48	5	0	156	1	946	48	903
1	GCA_033106465.1_PDT001960943	10	94		0,056		0,106	10	303
6	.1_genomic.fna	56	0	0	225	1	464	56	996
1	GCA_037052065.1_ASM3705206v	30	41		223		707	30	330
7	1_genomic.fna	0	1	0	0	0	0	0	411
1		11	94	U		U		0	105
8	GCA_037203645.1_ASM3720364v	1	3	0	0,105 313	1	0,190 558	111	
	1_genomic.fna	1	1	0		1		111	4
1	GCA_043678295.1_ASM4367829v	00	93		0,078	1	0,145	00	101
9	1_genomic.fna	80	7	0	663	1	852	80	7
2	GCA_043678335.1_ASM4367833v	30	98		0,237	4	0,384	200	128
0	1_genomic.fna	6	0	0	947	1	422	306	6
2	GCA_043678355.1_ASM4367835v	60	89		0,402		0,574	600	149
1	1_genomic.fna	3	5	0	537	1	012	603	8
2	GCA_043678375.1_ASM4367837v	48	10		0,325		0,491		148
2	1_genomic.fna	3	00	0	691	1	353	483	3
2	GCA_043950085.1_ASM4395008v		55		0,034		0,067		
3	1_genomic.fna	20	5	0	783	1	227	20	575
2	GCA_943323015.2_HRS-ES2-bin-	57	34		0,142		0,250		403
4	440_genomic.fna	6	54	0	928	1	109	576	0
2	GCA_943323415.2_HRS-ES4-bin-	23	36		0,395		0,566		598
5	10_genomic.fna	66	22	0	124	1	435	2366	8
2	GCA_943323865.2_HRS-ES8-bin-	50	33		0,129		0,229		388
6	118_genomic.fna	4	80	0	763	1	717	504	4
2	GCA_943325355.2_HRSG-E10-bin-		65		0,012		0,023		
7	12_genomic.fna	8	6	0	048	1	81	8	664
2	GCA_943326675.2_HRSG-E12-bin-		66		0,096		0,176		
8	108_genomic.fna	71	4	0	599	1	179	71	735
2	GCA_943327095.2_HRSG-E11-bin-		40		0,028		0,056		
9	71_genomic.fna	12	3	0	916	1	206	12	415
3	GCA_943327695.2_HRS-HS3-bin-		10		0,009		0,018		
0	186_genomic.fna	1	6	0	346	1	519	1	107
<u> </u>							1		

3	GCA_943329525.2_HRS-HS6-bin-	10	11		0,087		0,160		123
1	101 genomic.fna	8	31	0	167	1	356	108	9
3	GCA_943329805.2_HRSG-H13-bin-	44	16	Ť	0,209	_	0,346		211
2	193_genomic.fna	2	68	0	479	1	395	442	0
3	GCA_943331045.1_HRSG-E2-bin-		11		0,121		0,216	1	
3	118_genomic.fna	16	6	0	212	1	216	16	132
3	GCA_943331235.2_HRSG-H12-bin-		49		0,046		0,088		
4	94_genomic.fna	24	6	0	154	1	235	24	520
3	GCA_943332185.1_HRS-HS9-bin-		12		0,052		0,099		127
5	103_genomic.fna	67	10	0	467	1	702	67	7
3	GCA_943332625.1_HRS-HS9-bin-		15		0,065		0,122		
6	149_genomic.fna	11	7	0	476	1	905	11	168
3	GCA_943333245.1_HRSG-E1-bin-	16	85		0,163		0,280		102
7	8_genomic.fna	73	81	0	156	1	54	1673	54
3	GCA_943333305.2_HRSG-H6-bin-		26		0,009		0,019		263
8	46_genomic.fna	26	13	0	852	1	512	26	9
3	GCA_943334125.2_HRSG-E6-bin-	14	16		0,082		0,152		174
9	23_genomic.fna	4	02	0	474	1	381	144	6
4	GCA_943334475.2_HRSG-H3-bin-	18	46		0,039		0,075		479
0	66_genomic.fna	8	02	0	248	1	532	188	0
4	GCA_943334715.2_HRSG-H6-bin-		14		0,278		0,435		
1	64_genomic.fna	56	5	0	607	1	798	56	201
4	GCA_943334795.2_HRSG-H6-bin-		21		0,186		0,313		
2	28_genomic.fna	48	0	0	047	1	725	48	258
4	GCA_945860935.1_GE-03apr19-		34						
3	182_genomic.fna	0	4	0	0	0	0	0	344
4	GCA_945867275.1_TH-11nov19-		69		0,055		0,104		
4	195_genomic.fna	41	9	0	405	1	994	41	740
4	GCA_945870865.1_TrH-03may19-	10	10		0,096		0,175		112
5	115_genomic.fna	8	14	0	257	1	61	108	2
4	GCA_945870955.1_MoE-23oct19-		75		0,080		0,148		
6	325_genomic.fna	66	4	0	488	1	984	66	820
4	GCA_945872895.1_MaE-04nov19-		59		0,026		0,051		
7	161_genomic.fna	16	0	0	403	1	447	16	606
4	GCA_945874295.1_AH-24oct19-		15		0,142				
8	10_genomic.fna	25	0	0	857	1	0,25	25	175
4	GCA_945877175.1_ZE-13nov19-	17	34		0,048		0,092		358
9	95_genomic.fna	4	10	0	549	1	602	174	4
5	GCA_945902215.1_MoH-23oct19-	20	14		0,122		0,217		167
0	118_genomic.fna	5	72	0	242	1	853	205	7

Count Sketch con k = 21

id	name	TP	FP	F	precis	recall	f1	hh_e	hh_
х				N	ion			xact	est
	GCA_006152045.1_ASM615204v				0,001		0,003		
1	1_genomic.fna	1	515	0	938	1	868	1	516
	GCA_018421455.1_ASM1842145	23			0,191	0,970	0,320		120
2	v1_genomic.fna	1	973	7	86	588	388	238	4
	GCA_020118255.1_ASM2011825		119		0,042	0,946	0,081		124
3	v1_genomic.fna	53	0	3	639	429	601	56	3
	GCA_021919605.1_PDT0010922				0,043		0,083		
4	40.1_genomic.fna	42	925	0	433	1	251	42	967
	GCA_021953145.1_PDT0010204				0,022		0,044		
5	46.1_genomic.fna	17	726	0	88	1	737	17	743
	GCA_021972575.1_PDT0010134				0,016	0,928	0,032		
6	06.1_genomic.fna	13	762	1	774	571	953	14	775
	GCA_022062785.1_PDT0008761				0,035	0,966	0,069		
7	20.1_genomic.fna	29	780	1	847	667	13	30	809
	GCA_023315275.2_PDT0012996				0,018		0,035		
8	34.2_genomic.fna	17	924	0	066	1	491	17	941
	GCA_024452925.1_PDT0013702				0,056	0,981	0,107		
9	21.1_genomic.fna	54	898	1	723	818	249	55	952
1	GCA_024732165.1_PDT0013789				0,046	0,909	0,088		
0	27.1_genomic.fna	40	818	4	62	091	692	44	858
1	GCA_026006075.1_ASM2600607	46	102	3	0,311	0,935	0,467		148
1	v1_genomic.fna	3	1	2	995	354	913	495	4
1	GCA_026006095.1_ASM2600609	50		3	0,335	0,938	0,493		149
2	v1_genomic.fna	0	992	3	121	086	827	533	2
1	GCA_026305215.1_PDT0014932				0,001		0,003		
3	39.1_genomic.fna	1	541	0	845	1	683	1	542
1	GCA_031045075.2_PDT0017441				0,052	0,943	0,099		
4	90.2_genomic.fna	50	905	3	356	396	206	53	955
1	GCA_032567175.1_ASM3256717				0,049	0,958	0,094		
5	v1_genomic.fna	46	880	2	676	333	456	48	926
1	GCA_033106465.1_PDT0019609				0,052	0,910	0,099		
6	43.1_genomic.fna	51	915	5	795	714	804	56	966
1	GCA_037052065.1_ASM3705206								
7	v1_genomic.fna	0	428	0	0	0	0	0	428
1	GCA_037203645.1_ASM3720364	10			0,096	0,918	0,174		105
8	v1_genomic.fna	2	953	9	682	919	957	111	5
1	GCA_043678295.1_ASM4367829		104		0,068	0,962	0,127		112
9	v1_genomic.fna	77	8	3	444	5	801	80	5
2	GCA_043678335.1_ASM4367833	27	111	3	0,197	0,895	0,323		138
0	v1_genomic.fna	4	5	2	264	425	304	306	9
2	GCA_043678355.1_ASM4367835	55	102	4	0,353	0,923	0,511		157
1	v1_genomic.fna	7	0	6	202	715	009	603	7

2		44	114	4	0,279	0,915	0,428		158
2	GCA_043678375.1_ASM4367837 v1 genomic.fna	2	0	1	393	114	087	483	2
2	GCA 043950085.1 ASM4395008				0,031		0,060	100	
3	v1_genomic.fna	18	556	2	359	0,9	606	20	574
2	GCA_943323015.2_HRS-ES2-bin-	57	631		0,083	0,994	0,153		689
4	440_genomic.fna	3	8	3	152	792	475	576	1
2	GCA 943323415.2 HRS-ES4-bin-	23	666	_	0,261	0,996	0,414		902
5	10_genomic.fna	58	4	8	361	619	12	2366	2
2	GCA_943323865.2_HRS-ES8-bin-	50	689		0,067	0,998	0,127		740
6	118_genomic.fna	3	7	1	973	016	277	504	0
2	GCA_943325355.2_HRSG-E10-				0,009		0,019		
7	bin-12_genomic.fna	8	826	0	592	1	002	8	834
2	GCA_943326675.2_HRSG-E12-				0,080	0,957	0,147		
8	bin-108_genomic.fna	68	781	3	094	746	826	71	849
2	GCA 943327095.2 HRSG-E11-				0,014	0,916	0,028		
9	bin-71_genomic.fna	11	762	1	23	667	025	12	773
3	GCA_943327695.2_HRS-HS3-bin-				0,008		0,017		
0	186_genomic.fna	1	111	0	929	1	699	1	112
3	GCA_943329525.2_HRS-HS6-bin-	10	334		0,031	0,990	0,060		345
1	101_genomic.fna	7	4	1	006	741	129	108	1
3	GCA_943329805.2_HRSG-H13-	44	170		0,205	0,995	0,340		214
2	bin-193_genomic.fna	0	2	2	415	475	557	442	2
3	GCA_943331045.1_HRSG-E2-bin-				0,099	_	0,180		
3	118_genomic.fna	16	145	0	379	1	791	16	161
3	GCA_943331235.2_HRSG-H12-				0,042		0,081		
4	bin-94_genomic.fna	24	539	0	629	1	772	24	563
3	GCA_943332185.1_HRS-HS9-bin-		135		0,046	0,985	0,088		142
5	103_genomic.fna	66	6	1	414	075	65	67	2
3	GCA_943332625.1_HRS-HS9-bin-				0,062		0,117		
6	 149_genomic.fna	11	165	0	5	1	647	11	176
3	GCA 943333245.1 HRSG-E1-bin-	16	102		0,140	0,998	0,246		118
7	8_genomic.fna	71	12	2	621	805	533	1673	83
3	GCA_943333305.2_HRSG-H6-bin-		262		0,009	0,961	0,018		265
8	46_genomic.fna	25	7	1	427	538	671	26	2
3	GCA_943334125.2_HRSG-E6-bin-	14	163		0,080	0,993	0,148		177
9	23_genomic.fna	3	6	1	382	056	726	144	9
4	GCA_943334475.2_HRSG-H3-bin-	18	466		0,038		0,074		485
0	66_genomic.fna	8	8	0	715	1	544	188	6
4	GCA_943334715.2_HRSG-H6-bin-				0,252	0,982	0,401		
1	64_genomic.fna	55	163	1	294	143	46	56	218
4	GCA_943334795.2_HRSG-H6-bin-				0,177		0,300		
2	28_genomic.fna	48	223	0	122	1	94	48	271
4	GCA_945860935.1_GE-03apr19-								
3	182_genomic.fna	0	379	0	0	0	0	0	379
4	GCA_945867275.1_TH-11nov19-				0,053		0,100		
4	195_genomic.fna	41	730	0	178	1	985	41	771

4	GCA_945870865.1_TrH-	10	110		0,088		0,163		121
5	03may19-115_genomic.fna	8	9	0	743	1	019	108	7
4	GCA_945870955.1_MoE-				0,079		0,146		
6	23oct19-325_genomic.fna	66	768	0	137	1	667	66	834
4	GCA_945872895.1_MaE-				0,018		0,036		
7	04nov19-161_genomic.fna	16	837	0	757	1	824	16	853
4	GCA_945874295.1_AH-24oct19-				0,137		0,241		
8	10_genomic.fna	25	157	0	363	1	546	25	182
4	GCA_945877175.1_ZE-13nov19-	17	343		0,047	0,977	0,090		360
9	95_genomic.fna	0	2	4	196	011	042	174	2
5	GCA_945902215.1_MoH-	20	149		0,119	0,990	0,213		169
0	23oct19-118_genomic.fna	3	6	2	482	244	235	205	9

TS-CMCU con k= 31

id	name	TP	FP	F	precis	rec	f1	hh_ex	hh_
x				N	ion	all		act	est
	GCA_006152045.1_ASM615204v1		52		0,001		0,003		
1	_genomic.fna	1	4	0	905	1	802	1	525
	GCA_018421455.1_ASM1842145v	23	95		0,199		0,332		119
2	1_genomic.fna	8	4	0	664	1	867	238	2
	GCA_020118255.1_ASM2011825v		11		0,045		0,087		122
3	1_genomic.fna	56	72	0	603	1	227	56	8
	GCA_021919605.1_PDT001092240		91		0,043				
4	.1_genomic.fna	42	6	0	841	1	0,084	42	958
	GCA_021953145.1_PDT001020446		74		0,022		0,043		
5	.1_genomic.fna	17	6	0	28	1	59	17	763
	GCA_021972575.1_PDT001013406		79		0,017		0,034		
6	.1_genomic.fna	14	5	0	305	1	022	14	809
	GCA_022062785.1_PDT000876120		77		0,037		0,071		
7	.1_genomic.fna	30	6	0	221	1	77	30	806
	GCA_023315275.2_PDT001299634		90		0,018		0,036		
8	.2_genomic.fna	17	4	0	458	1	247	17	921
	GCA_024452925.1_PDT001370221		92		0,056		0,106		
9	.1_genomic.fna	55	7	0	800	1	075	55	982
1	GCA_024732165.1_PDT001378927		82		0,050		0,096		
0	.1_genomic.fna	44	5	0	633	1	386	44	869
1	GCA_026006075.1_ASM2600607v	49	10		0,330		0,496		149
1	1_genomic.fna	5	04	0	22	1	489	495	9
1	GCA_026006095.1_ASM2600609v	53	95		0,358		0,527		148
2	1_genomic.fna	3	4	0	44	1	723	533	7
1	GCA_026305215.1_PDT001493239		55		0,001		0,003		
3	.1_genomic.fna	1	5	0	799	1	591	1	556
1	GCA_031045075.2_PDT001744190		91		0,055		0,104		
4	.2_genomic.fna	53	0	0	036	1	331	53	963

1	GCA_032567175.1_ASM3256717v		85		0,053		0,100		
5	1_genomic.fna	48	5	0	156	1	946	48	903
1	GCA_033106465.1_PDT001960943	70	94		0,056		0,106	70	303
6	.1_genomic.fna	56	0	0	225	1	464	56	996
1	GCA_037052065.1_ASM3705206v	30	41		223		404	30	330
7	1_genomic.fna	0	1	0	0	0	0	0	411
1	GCA_037203645.1_ASM3720364v	11	94	U	0,105	U	0,190	U	105
8	1 genomic.fna	1	3	0	313	1	558	111	4
1	GCA_043678295.1_ASM4367829v		93	U	0,078		0,145	111	101
9	1_genomic.fna	80	7	0	663	1	852	80	7
2		30	98	U	0,237		0,384	80	128
0	GCA_043678335.1_ASM4367833v	6	0	0	947	1	422	206	6
2	1_genomic.fna	60	89	U		1		306	149
	GCA_043678355.1_ASM4367835v				0,402	1	0,574 012	602	
1	1_genomic.fna	3	5	0	537	1		603	8
2	GCA_043678375.1_ASM4367837v	48	10		0,325	1	0,491	402	148
2	1_genomic.fna	3	00	0	691	1	353	483	3
2	GCA_043950085.1_ASM4395008v	20	55		0,034	4	0,067	20	F 7 F
3	1_genomic.fna	20	5	0	783	1	227	20	575
2	GCA_943323015.2_HRS-ES2-bin-	57	34		0,142	_	0,250	F76	403
4	440_genomic.fna	6	54	0	928	1	109	576	0
2	GCA_943323415.2_HRS-ES4-bin-	23	36		0,395	_	0,566	2266	598
5	10_genomic.fna	66	22	0	124	1	435	2366	8
2	GCA_943323865.2_HRS-ES8-bin-	50	33		0,129		0,229	504	388
6	118_genomic.fna	4	80	0	763	1	717	504	4
2	GCA_943325355.2_HRSG-E10-bin-		65		0,012		0,023		
7	12_genomic.fna	8	6	0	048	1	81	8	664
2	GCA_943326675.2_HRSG-E12-bin-		66		0,096		0,176		
8	108_genomic.fna	71	4	0	599	1	179	71	735
2	GCA_943327095.2_HRSG-E11-bin-		40		0,028		0,056		
9	71_genomic.fna	12	3	0	916	1	206	12	415
3	GCA_943327695.2_HRS-HS3-bin-		10		0,009		0,018		
0	186_genomic.fna	1	6	0	346	1	519	1	107
3	GCA_943329525.2_HRS-HS6-bin-	10	11		0,087		0,160		123
1	101_genomic.fna	8	31	0	167	1	356	108	9
3	GCA_943329805.2_HRSG-H13-bin-	44	16		0,209		0,346		211
2	193_genomic.fna	2	68	0	479	1	395	442	0
3	GCA_943331045.1_HRSG-E2-bin-		11		0,121		0,216		
3	118_genomic.fna	16	6	0	212	1	216	16	132
3	GCA_943331235.2_HRSG-H12-bin-		49		0,046		0,088		
4	94_genomic.fna	24	6	0	154	1	235	24	520
3	GCA_943332185.1_HRS-HS9-bin-		12		0,052		0,099		127
5	103_genomic.fna	67	10	0	467	1	702	67	7
3	GCA_943332625.1_HRS-HS9-bin-		15		0,065		0,122		
6	149_genomic.fna	11	7	0	476	1	905	11	168
3	GCA_943333245.1_HRSG-E1-bin-	16	85		0,163		0,280		102
7	8_genomic.fna	73	81	0	156	1	54	1673	54

3	GCA_943333305.2_HRSG-H6-bin-		26		0,009		0,019		263
8	46_genomic.fna	26	13	0	852	1	512	26	9
3	GCA_943334125.2_HRSG-E6-bin-	14	16		0,082		0,152		174
9	23_genomic.fna	4	02	0	474	1	381	144	6
4	GCA_943334475.2_HRSG-H3-bin-	18	46		0,039		0,075		479
0	66_genomic.fna	8	02	0	248	1	532	188	0
4	GCA_943334715.2_HRSG-H6-bin-		14		0,278		0,435		
1	64_genomic.fna	56	5	0	607	1	798	56	201
4	GCA_943334795.2_HRSG-H6-bin-		21		0,186		0,313		
2	28_genomic.fna	48	0	0	047	1	725	48	258
4	GCA_945860935.1_GE-03apr19-		34						
3	182_genomic.fna	0	4	0	0	0	0	0	344
4	GCA_945867275.1_TH-11nov19-		69		0,055		0,104		
4	195_genomic.fna	41	9	0	405	1	994	41	740
4	GCA_945870865.1_TrH-03may19-	10	10		0,096		0,175		112
5	115_genomic.fna	8	14	0	257	1	61	108	2
4	GCA_945870955.1_MoE-23oct19-		75		0,080		0,148		
6	325_genomic.fna	66	4	0	488	1	984	66	820
4	GCA_945872895.1_MaE-04nov19-		59		0,026		0,051		
7	161_genomic.fna	16	0	0	403	1	447	16	606
4	GCA_945874295.1_AH-24oct19-		15		0,142				
8	10_genomic.fna	25	0	0	857	1	0,25	25	175
4	GCA_945877175.1_ZE-13nov19-	17	34		0,048		0,092		358
9	95_genomic.fna	4	10	0	549	1	602	174	4
5	GCA_945902215.1_MoH-23oct19-	20	14		0,122		0,217		167
0	118_genomic.fna	5	72	0	242	1	853	205	7

Count Sketch con k = 31

id	name	TP	FP	F	precis	recall	f1	hh_e	hh_
x				N	ion			xact	est
	GCA_006152045.1_ASM615204v				0,001		0,003		
1	1_genomic.fna	1	515	0	938	1	868	1	516
	GCA_018421455.1_ASM1842145	23			0,191	0,970	0,320		120
2	v1_genomic.fna	1	973	7	86	588	388	238	4
	GCA_020118255.1_ASM2011825		119		0,042	0,946	0,081		124
3	v1_genomic.fna	53	0	3	639	429	601	56	3
	GCA_021919605.1_PDT0010922				0,043		0,083		
4	40.1_genomic.fna	42	925	0	433	1	251	42	967
	GCA_021953145.1_PDT0010204				0,022		0,044		
5	46.1_genomic.fna	17	726	0	88	1	737	17	743
	GCA_021972575.1_PDT0010134				0,016	0,928	0,032		
6	06.1_genomic.fna	13	762	1	774	571	953	14	775
	GCA_022062785.1_PDT0008761				0,035	0,966	0,069		
7	20.1_genomic.fna	29	780	1	847	667	13	30	809

	GCA_023315275.2_PDT0012996				0,018		0,035		
8	34.2_genomic.fna	17	924	0	066	1	491	17	941
	GCA 024452925.1 PDT0013702	1	324		0,056	0,981	0,107	1,	341
9	21.1_genomic.fna	54	898	1	723	818	249	55	952
1	GCA 024732165.1 PDT0013789	34	050	-	0,046	0,909	0,088	33	332
0	27.1_genomic.fna	40	818	4	62	091	692	44	858
1	GCA 026006075.1 ASM2600607	46	102	3	0,311	0,935	0,467		148
1	v1_genomic.fna	3	1	2	995	354	913	495	4
1	GCA_026006095.1_ASM2600609	50		3	0,335	0,938	0,493	133	149
2	v1_genomic.fna	0	992	3	121	086	827	533	2
1	GCA 026305215.1 PDT0014932				0,001		0,003		
3	39.1_genomic.fna	1	541	0	845	1	683	1	542
1	GCA 031045075.2 PDT0017441	_	3.1		0,052	0,943	0,099	_	312
4	90.2_genomic.fna	50	905	3	356	396	206	53	955
1	GCA 032567175.1 ASM3256717	30	303		0,049	0,958	0,094	33	333
5	v1_genomic.fna	46	880	2	676	333	456	48	926
1	GCA 033106465.1 PDT0019609	70	000		0,052	0,910	0,099	40	320
6	43.1_genomic.fna	51	915	5	795	714	804	56	966
1	GCA 037052065.1 ASM3705206	J1	313		755	717	004	1 30	300
7	v1_genomic.fna	0	428	0	0	0	0	0	428
1	GCA 037203645.1 ASM3720364	10	120	_	0,096	0,918	0,174		105
8	v1_genomic.fna	2	953	9	682	919	957	111	5
1	GCA_043678295.1_ASM4367829	_	104		0,068	0,962	0,127		112
9	v1_genomic.fna	77	8	3	444	5	801	80	5
2	GCA_043678335.1_ASM4367833	27	111	3	0,197	0,895	0,323		138
0	v1_genomic.fna	4	5	2	264	425	304	306	9
2	GCA_043678355.1_ASM4367835	55	102	4	0,353	0,923	0,511		157
1	v1_genomic.fna	7	0	6	202	715	009	603	7
2	GCA_043678375.1_ASM4367837	44	114	4	0,279	0,915	0,428		158
2	v1_genomic.fna	2	0	1	393	114	087	483	2
2	GCA_043950085.1_ASM4395008				0,031		0,060		
3	v1_genomic.fna	18	556	2	359	0,9	606	20	574
2	GCA_943323015.2_HRS-ES2-bin-	57	631		0,083	0,994	0,153		689
4	440_genomic.fna	3	8	3	152	792	475	576	1
2	GCA_943323415.2_HRS-ES4-bin-	23	666		0,261	0,996	0,414		902
5	10_genomic.fna	58	4	8	361	619	12	2366	2
2	GCA_943323865.2_HRS-ES8-bin-	50	689		0,067	0,998	0,127		740
6	118_genomic.fna	3	7	1	973	016	277	504	0
2	GCA_943325355.2_HRSG-E10-				0,009		0,019		
7	bin-12_genomic.fna	8	826	0	592	1	002	8	834
2	GCA_943326675.2_HRSG-E12-				0,080	0,957	0,147		
8	bin-108_genomic.fna	68	781	3	094	746	826	71	849
2	GCA_943327095.2_HRSG-E11-				0,014	0,916	0,028		
9	bin-71_genomic.fna	11	762	1	23	667	025	12	773
3	GCA_943327695.2_HRS-HS3-bin-				0,008		0,017		
0	186 genomic.fna	1	111	0	929	1	699	1	112

3	GCA 943329525.2 HRS-HS6-bin-	10	334		0,031	0,990	0,060		345
1	101 genomic.fna	7	4	1	006	741	129	108	1
3	GCA_943329805.2_HRSG-H13-	44	170		0,205	0,995	0,340		214
2	bin-193_genomic.fna	0	2	2	415	475	557	442	2
3	GCA 943331045.1 HRSG-E2-bin-		_	_	0,099		0,180		_
3	118_genomic.fna	16	145	0	379	1	791	16	161
3	GCA_943331235.2_HRSG-H12-				0,042		0,081		
4	bin-94_genomic.fna	24	539	0	629	1	772	24	563
3	GCA 943332185.1 HRS-HS9-bin-		135		0,046	0,985	0,088		142
5	103_genomic.fna	66	6	1	414	075	65	67	2
3	GCA_943332625.1_HRS-HS9-bin-			_	0,062	0.0	0,117	0,	_
6	149_genomic.fna	11	165	0	5	1	647	11	176
3	GCA_943333245.1_HRSG-E1-bin-	16	102		0,140	0,998	0,246		118
7	8_genomic.fna	71	12	2	621	805	533	1673	83
3	GCA 943333305.2 HRSG-H6-bin-	, -	262	_	0,009	0,961	0,018	1073	265
8	46 genomic.fna	25	7	1	427	538	671	26	2
3	GCA_943334125.2_HRSG-E6-bin-	14	163	_	0,080	0,993	0,148	20	177
9	23_genomic.fna	3	6	1	382	056	726	144	9
4	GCA 943334475.2 HRSG-H3-bin-	18	466	_	0,038	030	0,074	1-1-1	485
0	66_genomic.fna	8	8	0	715	1	544	188	6
4	GCA 943334715.2 HRSG-H6-bin-				0,252	0,982	0,401	100	
1	64_genomic.fna	55	163	1	294	143	46	56	218
4	GCA 943334795.2 HRSG-H6-bin-		100	_	0,177	1.0	0,300	"	
2	28_genomic.fna	48	223	0	122	1	94	48	271
4	GCA 945860935.1 GE-03apr19-					_		1.0	
3	182_genomic.fna	0	379	0	0	0	0	0	379
4	GCA_945867275.1_TH-11nov19-		3,3	_	0,053		0,100		3,3
4	195_genomic.fna	41	730	0	178	1	985	41	771
4	GCA 945870865.1 TrH-	10	110		0,088	1	0,163		121
5	03may19-115_genomic.fna	8	9	0	743	1	019	108	7
4	GCA 945870955.1 MoE-				0,079	1	0,146	100	,
6	23oct19-325_genomic.fna	66	768	0	137	1	667	66	834
4	GCA_945872895.1_MaE-		700		0,018	1	0,036	00	03 1
7	04nov19-161_genomic.fna	16	837	0	757	1	824	16	853
4	GCA 945874295.1 AH-24oct19-	10	037		0,137	-	0,241	10	033
8	10 genomic.fna	25	157	0	363	1	546	25	182
4	GCA 945877175.1 ZE-13nov19-	17	343		0,047	0,977	0,090	23	360
9	95_genomic.fna	0	2	4	196	0,577	0,030	174	2
5	GCA 945902215.1 MoH-	20	149	-	0,119	0,990	0,213	1,7	169
0	23oct19-118 genomic.fna	3	6	2	482	244	235	205	9
	230ct13 110_5ciloillic.ilia	ر			702	L T T	233	203)

Gráfico 1: Comparación entre los heavy hitters de k-mers 21 con phi 2e-06

Gráfico 2: Comparación entre los heavy hitters de k-mers 31 con phi 2e-06

Análisis comparativo

Estructura y funcionamiento

- CountSketch (CS):
 - Usa funciones hash y un conjunto de contadores con signo (+1, -1).
 - o La estimación se obtiene tomando la mediana de los valores acumulados.
 - Permite compensar ruido y manejar bien distribuciones sesgadas, reduciendo el sesgo de las colisiones.
- TowerSketch (TS-CMCU):
 - Extiende CountMin Sketch, organizando los contadores en "niveles" o torres de diferente tamaño.
 - o Aplica conservative update, es decir, al insertar un k-mer solo se actualizan los contadores mínimos, evitando inflar artificialmente las frecuencias.
 - o Maneja mejor los heavy hitters y distribuye el error de manera controlada.

Precisión y error

- CS: ofrece estimaciones simétricas, lo que reduce el error relativo, pero puede generar más variabilidad en los resultados.
- TS-CMCU: tiende a mejorar la precisión práctica gracias al conservative update, reduciendo falsos positivos en los heavy hitters.

Uso de memoria

- CS: Requiere un tamaño de sketch definido por parámetros (d, w). El error decrece con más memoria, pero no diferencia la importancia entre elementos.
- TS-CMCU: Usa memoria de forma más eficiente porque concentra contadores en distintos niveles, logrando un mejor balance entre exactitud y espacio.

Ventajas y desventajas

- CS:
 - o Buen rendimiento teórico para distribuciones con gran dispersión.
 - o Simétrico: maneja bien valores positivos y negativos.

o Puede tener alta varianza en la estimación.

• TS-CMCU:

- Más preciso en la práctica para heavy hitters.
- o Conservative update evita sobreestimación.
- Mayor complejidad de implementación y ajuste de parámetros.

Aplicación en k-mers

- CS: adecuado cuando se requiere una primera aproximación rápida al conteo de kmers frecuentes en secuencias genómicas.
- TS-CMCU: preferible cuando se busca un equilibrio más fuerte entre bajo error y uso razonable de memoria, especialmente útil en conjuntos de datos grandes y ruidosos.

Conclusión

Los resultados obtenidos muestran que el algoritmo logra identificar un número considerable de heavy hitters en los archivos genómicos, aunque con un nivel variable de exactitud. Se observa que, en la mayoría de los casos, el recall es cercano a 1, lo que indica que casi todos los heavy hitters reales son detectados. Sin embargo, la precisión es significativamente menor, reflejando que junto a los verdaderos positivos aparecen también muchos falsos positivos. Esto provoca que el valor F1, que equilibra precisión y recall, sea generalmente bajo.

En términos prácticos, esto significa que el método es eficaz para no perder k-mers frecuentes (alta sensibilidad), pero menos fiable para discriminar cuáles son realmente representativos (baja especificidad). Por lo tanto, se requiere una calibración más fina de los parámetros del sketch y posiblemente la combinación con otras técnicas, a fin de reducir falsos positivos y mejorar la precisión sin sacrificar el recall.