

แคชเชียร์ต้องการทอนเงินให้ลูกค้า โดยที่แคชเชียร์มีเงินทอนเป็นเหรียญเท่านั้น และเพื่อให้ลูกค้าพอใจ แคชเชียร์จะต้องทอนเงินโดยใช้จำนวนเหรียญให้น้อยที่สุด เช่น ถ้าเหรียญที่มีเป็นเหรียญ 10, 5, 2 และเหรียญ 1 ดอลลาร์ โดยแต่ละเหรียญมีจำนวนไม่จำกัด กรณีแคชเชียร์ต้องการทอนเงิน 38 ดอลลาร์ แคชเชียร์จะต้องใช้ เหรียญ 10 ดอลลาร์ จำนวน 3 เหรียญ เหรียญ 5 ดอลลาร์ จำนวน 1 เหรียญ เหรียญ 2 ดอลลาร์ จำนวน 1 เหรียญ และเหรียญ 1 ดอลลาร์ จำนวน 1 เหรียญ ดังนั้นแคชเชียร์ต้องทอนเงินโดยใช้เหรียญทั้งหมด 6 เหรียญ จงเขียนโปรแกรมเพื่อหาจำนวนเหรียญแต่ละเหรียญที่ต้องใช้ทอนเพื่อให้จำนวนเหรียญที่ใช้ทอนมีจำนวนน้อยที่สุด โดยเรียงตามชนิดเหรียญที่รับข้อมูลเข้ามา

ข้อมูลนำเข้า:

บรรทัดแรก เป็นจำนวนเต็ม 2 จำนวน คือ n (1 ≤ n ≤ 1000) ใช้กำหนดจำนวนเงินที่แคชเชียร์ต้องทอน และ k (1 ≤ k ≤ 10) แทนจำนวนชนิดเหรียญ บรรทัดที่สองมีจำนวนเต็ม k จำนวน เป็นมูลค่าของเหรียญ

ข้อมูลนำออก:

จำนวน k บรรทัด แสดงจำนวนเหรียญในแต่ละชนิดเหรียญ โดยเรียงตามชนิดเหรียญที่รับเข้ามา

Input	Output
8 4	0
1 4 5 10	2
	0
	0
38 4	0
1 5 4 10	0
	2
	3
18 3	1
15 3 1	1
	0

Dollars.c 4/17/2022 10:09 AM

```
#include <stdio.h>
2 #define MAXTOTAL 10000
 3 int nway[MAXTOTAL+1] = \{0\};
4 int detail[MAXTOTAL+1][10] = {0};
   int main() {
        int i, j, n, k,m, value, bestNumCoins, countCoins;
8
        int coin[10];
9
        int num[10],idx;
        scanf("%d %d",&n,&k);
        for (i=0;i<k;i++) scanf("%d",&coin[i]);</pre>
12
        for (i=1;i<=n;i++) {</pre>
13
             value = i;
14
             bestNumCoins = MAXTOTAL+1;
             for (j=0; j<k; j++) {</pre>
                   if (value - coin[j] >= 0) {
                       countCoins = nway[value - coin[j]] + 1;
18
                       if (countCoins < bestNumCoins) {</pre>
19
                              bestNumCoins = countCoins;
20
                              for (m=0;m<k;m++) num[m] = detail[value - coin[j]][m];</pre>
21
                              num[j]++;
                       }
23
                   }
24
             nway[i] = bestNumCoins;
25
26
             for (m=0; m < k; m++) detail[i][m] = num[m];</pre>
28
        for (m=0; m < k; m++) printf("%d\n", detail[n][m]);
29
        return 0;
```


แคชเชียร์ต้องการทอนเงินให้ลูกค้า โดยที่แคชเชียร์มีเงินทอนเป็นเหรียญเท่านั้น และเพื่อให้ลูกค้าพอใจ แคชเชียร์จะต้องทอนเงินโดยใช้จำนวนเหรียญให้น้อยที่สุด เช่น ถ้าเหรียญที่มีเป็นเหรียญ 10, 5, 2 และเหรียญ 1 บาท โดยแต่ละเหรียญมีจำนวนไม่จำกัด กรณีแคชเชียร์ต้องการทอนเงิน 38 บาท แคชเชียร์จะต้องใช้

เหรียญ 10 บาท จำนวน 3 เหรียญ เหรียญ 5 บาท จำนวน 1 เหรียญ

เหรียญ 2 บาท จำนวน 1 เหรียญ

เหรียญ 1 บาท จำนวน 1 เหรียญ

ดังนั้นแคชเชียร์ต้องทอนเงินโดยใช้เหรียญทั้งหมด 6 เหรียญ จงเขียนโปรแกรมเพื่อหาจำนวนเหรียญที่ น้อยที่สุดที่ใช้ในการทอนเงิน

ข้อมูลนำเข้า:

บรรทัดแรก เป็นจำนวนเต็ม 2 จำนวน คือ n (1 ≤ n ≤ 10,000) ใช้กำหนดจำนวนเงินที่แคชเชียร์ต้องทอน และ k (1 ≤ k ≤ 10) แทนจำนวนชนิดเหรียญ บรรทัดที่ 2 มีจำนวนเต็ม k จำนวน เป็นมูลค่าของแต่ละเหรียญที่มี ซึ่งจะ เป็นตัวเลขจำนวนเต็มไม่เกิน 100

ข้อมูลนำออก:

จำนวนหนึ่งบรรทัดแสดงจำนวนเหรียญที่น้อยที่สุดในการทอนเงินของแคชเชียร์

Input	Output
8 4	2
1 4 5 10	
	(หมายเหตุ 4 บาท 2 เหรียญ)
38 4	5
1 5 4 10	
	(หมายเหตุ 10 บาท 3 เหรียญ, 4 บาท 2 เหรียญ)
18 3	2
15 3 1	
	(หมายเหตุ 15 บาท 1 เหรียญ, 3 บาท 1 เหรียญ)

Coins.c 4/17/2022 9:48 AM

```
1 #include <stdio.h>
2 #define MAXTOTAL 10000
3 int nway[MAXTOTAL+1] = \{0\};
   int main() {
7
        int i, j, n, k, value, bestNumCoins, countCoins;
8
        int coin[10];
        scanf("%d %d",&n,&k);
9
        for (i=0;i<k;i++) scanf("%d",&coin[i]);</pre>
        for (i=1;i<=n;i++) {</pre>
             value = i;
12
13
             bestNumCoins = MAXTOTAL+1;
14
             for (j=0; j<k; j++) {</pre>
15
                   if (value - coin[j] >= 0) {
16
                       countCoins = nway[value - coin[j]] + 1;
                       if (countCoins < bestNumCoins) bestNumCoins = countCoins;</pre>
18
19
20
             nway[i] = bestNumCoins;
21
        printf("%d", nway[n]);
23
        return 0;
24
25
```


กำหนดให้ $\{a_1, a_2, ..., a_n\}$ เป็นลำดับของจำนวนเต็ม และกำหนดให้ $\{a_i, a_{i+1}, ..., a_j\}$ เป็นลำดับย่อยของ ลำดับดังกล่าวนี้ โดยที่ i และ j เป็นจำนวนเต็มบวก และ $1 \le i \le j \le n$ หรือกล่าวอีกนัยหนึ่งคือ สมาชิกทุกตัวของ ลำดับย่อยต้องมีตำแหน่งต่อเนื่องกัน ลำดับย่อยอาจมีได้หลายชุด เมื่อหาค่าผลบวกของสมาชิกทุกตัวในลำดับย่อย แต่ละชุดผลบวกที่ได้อาจมีค่าแตกต่างกัน ลำดับย่อยที่มีผลบวกของสมาชิกสูงสุดเรียกว่า "ลำดับย่อยที่มีค่าสูงสุด" ซึ่งอาจมีเพียงชุดเดียวหรืออาจมีหลายชุดก็ได้ ในกรณีที่ลำดับย่อยที่มีค่าสูงสุดมีค่าน้อยกว่าหรือเท่ากับศูนย์ เรียกว่า "ลำดับย่อยว่าง (Empty sequence)"

ตัวอย่าง

ลำดับ {4, -6, 3, -2, 6, -4, -6, 6} มีลำดับย่อยที่มีค่าสูงที่สุดเพียงชุดเดียว คือลำดับย่อย {3, -2, 6} โดยผลบวก ของลำดับย่อยมีค่าเท่ากับ 7

ลำดับ {-2, -3, -1} ไม่มีลำดับย่อยใดที่มีผลบวกมากกว่าศูนย์ ถือว่ามีลำดับย่อยว่าง โจทย์

จงเขียนโปรแกรมเพื่อรับจำนวนของสมาชิกในลำดับและรับค่าสมาชิกทุกตัวของลำดับนั้น จากนั้นทำการคำนวณ และแสดงผลเป็นลำดับย่อยที่มีค่าสูงสุด และผลบวกของสมาชิกของลำดับย่อยนั้นตามรูปแบบที่โจทย์กำหนด

ข้อมูลนำเข้า

บรรทัดแรกรับจำนวนเต็มบวก N ซึ่งเป็นจำนวนของสมาชิกในลำดับ โดยที่ $1 \le N \le 2500$ บรรทัดที่สอง รับค่าจำนวนเต็ม N ตัว, a_1 , a_2 , ..., a_N โดยที่ค่า a_i คือค่าของสมาชิกลำดับที่ i ของลำดับนี้ ค่าของ สมาชิกแต่ละตัวคั่นด้วยเครื่องหมายเว้นวรรคจำนวน 1 วรรค รับประกันว่า $-127 \le a_i \le +127$ สำหรับค่า a_i ใดๆ ในลำดับ

ข้อมูลส่งออก

ให้แสดงผลตามเงื่อนไขดังต่อไปนี้:

- 1. ในกรณีที่หาลำดับย่อยที่มีค่าสูงสุด ได้เพียงชุดเดียว ให้แสดงลำดับย่อยนั้น
- 2. ในกรณีที่หาลำดับย่อยที่มีค่าสูงสุดได้หลายชุด ให้แสดงเฉพาะชุดแรกที่พบเมื่อนับจากต้นลำดับ เช่นลำดับ {4,
- -6, 3, -2, 6, -4, -6, 6, -6, 4, -2, 5} มีลำดับย่อยที่มีค่าสูงสุด 2 ชุด คือ {3, -2, 6} และ {4, -2, 5}
- ซึ่งมีค่าผลบวกของลำดับย่อยเป็น 7 เท่ากัน ในกรณีนี้ให้แสดงคำตอบเพียงคำตอบเดียว คือลำดับย่อยชุดแรกที่ พบ คือ {3, -2, 6}
- 3. การแสดงลำดับย่อยที่มีค่าสูงสุดให้แสดงสมาชิกของลำดับย่อยทั้งหมดในบรรทัดแรก โดยใช้เครื่องหมายเว้น วรรคคั่นระหว่างสมาชิกแต่ละตัวจำนวน 1 วรรค
- 4. บรรทัดที่สองให้แสดงผลเป็นผลบวกของลำดับย่อยที่มีค่าสูงสุดนั้น

5. ในกรณีที่ลำดับย่อยที่มีค่าสูงสุดเป็นลำดับย่อยว่าง ให้แสดงข้อความ "Empty sequence" โดยไม่ต้องแสดง ลำดับย่อยและผลบวกของลำดับย่อยนั้น

Input	Output
8	3 -2 6
4 -6 3 -2 6 -4 -6 6	7
3 -2 -3 -1	Empty sequence

แหล่งที่มา การแข่งขันคอมพิวเตอร์โอลิมปิก สอวน. ครั้งที่ 2 มหาวิทยาลัยบูรพา

การ์ตูนเรื่อง Hunter x Hunter เป็นการ์ตูนที่ออกวางขายมาแล้ว N เล่ม ทางร้านไม่อยากขายการ์ตูนให้ ขาจร จึงได้ตั้งเงื่อนไขว่าถ้าต้องการซื้อเล่มที่ i จะต้องซื้อการ์ตูนตั้งแต่เล่มที่ 1 ถึงเล่มที่ i จะไม่มีการแบ่งขาย เป็นเล่มย่อยๆ คุณเดินเข้าร้านด้วยเงิน M บาท อยากรู้ว่าจะซื้อการ์ตูนไปอ่านมากที่สุดได้กี่เล่ม เกือบลืมบอกไป ว่าการ์ตูนแต่ละเล่มไม่จำเป็นต้องมีราคาเท่ากัน

ข้อมูลนำเข้า:

ข้อมูลนำออก:

มีทั้งสิ้น K บรรทัด บรรทัดที่ j ระบุว่าถ้ามีเงิน M_i บาท จะซื้อหนังสือการ์ตูนได้กี่เล่ม

Input	Output
3 3	1
10	2
20	0
30	
15	
30	
7	

Search sum 2

การ์ตูนเรื่อง Hunter x Hunter เป็นการ์ตูนที่ออกวางขายมาแล้ว N เล่ม ทางร้านไม่อยากขายการ์ตูนให้ ขาจร จึงได้ตั้งเงื่อนไขว่าถ้าต้องการซื้อหนังสือเล่มติดกัน เช่น ซื้อเล่มที่ 10 ถึงเล่มที่ 30 เป็นต้น กล่าวโดย ละเอียดคือ ในการซื้อการ์ตูนจะต้องระบุจำนวนเต็ม i และ j ที่ $1 \le i \le j \le N$ ในการซื้อดังกล่าวจะได้การ์ตูนเล่ม ที่ i ถึงเล่มที่ j คุณเดินเข้าร้านด้วยเงิน M บาท อยากรู้ว่าจะซื้อการ์ตูนไปอ่านมากที่สุดได้กี่เล่ม เกือบลืมบอกไปว่า การ์ตูนแต่ละเล่มไม่จำเป็นต้องมีราคาเท่ากัน

ข้อมูลนำเข้า:

บรรทัดแรกมีจำนวนเต็ม N และ K แทนจำนวนการ์ตูน และจำนวนครั้งที่คุณเดินเข้าร้านการ์ตูน ($1 \le N \le 100,000$; $1 \le K \le 100,000$) จากนั้น N บรรทัดจะระบุราคาของหนังสือการ์ตูน กล่าวคือ ในบรรทัดที่ 1+i จะ ระบุจำนวนเต็มบวก C_i ($1 \le C_i \le 10,000$) แทนราคาของหนังสือการ์ตูนเล่มที่ I_i อีกแต่ละ K บรรทัดถัดไประบุ จำนวนเต็มบวก แทนจำนวนเงินที่คุณมีในการเข้าร้าน กล่าวคือ ในบรรทัดที่ I_i N + I_i จะระบุจำนวน Mj (I_i M I_i I_i

ข้อมูลนำออก:

มีทั้งสิ้น K บรรทัด บรรทัดที่ j ระบุว่าถ้ามีเงิน M_i บาท จะซื้อหนังสือการ์ตูนได้กี่เล่ม

Input	Output
4 4	3
17	2
10	2
20	0
30	
50	
30	
29	
7	

ลำดับเพิ่มขึ้นที่ยาวที่สุด 1 (Longest1)

ให้ลำดับ S ที่มีสมาชิก N จำนวน คือ $x_1, x_2, ..., x_N$ ให้หาลำดับย่อยของ S ที่เป็นลำดับเพิ่มขึ้นที่ยาว ที่สุด โดยที่ลำดับเพิ่มขึ้น คือ ลำดับของจำนวน $a_1, a_2, ..., a_k$ ที่ $a_i < a_j$ สำหรับทุกดัชนี i และ j ที่ i < j

ข้อมูลนำเข้า:

บรรทัดแรกระบุจำนวนเต็ม N (1 < N < 1,000) จากนั้นอีก N บรรทัดระบุลำดับ S กล่าวคือบรรทัดที่ 1 + i สำหรับ 1
< i < N, จะระบุจำนวนเต็ม x_i η (-1,000,000 < x_i < 1,000,000)

ข้อมูลนำออก:

มีบรรทัดเดียวเป็นความยาวของลำดับเพิ่มขึ้นที่ยาวที่สุด

Input	Output
5	4
1	
2	
2	
3	
4	
5	3
1	
-1	
2	
-2	
3	

ลำดับเพิ่มขึ้นที่ยาวที่สุด 2 (Longest2)

ให้ลำดับ S ที่มีสมาชิก N จำนวน คือ $x_1, x_2, ..., x_N$ ให้หาลำดับย่อยของ S ที่เป็นลำดับเพิ่มขึ้นที่ยาวที่สุด โดยที่ลำดับเพิ่มขึ้น คือ ลำดับของจำนวน $a_1, a_2, ..., a_k$ ที่ $a_i < a_j$ สำหรับทุกดัชนี i และ j ที่ i < j

ข้อมูลนำเข้า:

บรรทัดแรกระบุจำนวนเต็ม N (1 < N < 1,000) จากนั้นอีก N บรรทัดระบุลำดับ S กล่าวคือ บรรทัดที่ 1 + i สำหรับ 1< i < N, จะระบุจำนวนเต็ม x_i (-1,000,000 < x_i < 1,000,000)

ข้อมูลนำออก:

มีสองบรรทัด บรรทัดแรกเป็นความยาวของลำดับเพิ่มขึ้นที่ยาวที่สุด ในบรรทัดที่สองให้ตอบลำดับเพิ่มขึ้นที่ยาว ที่สุดดังกล่าว โดยตอบจำนวนเต็มในลำดับนั้น ไล่ไปตามลำดับ คั่นระหว่างจำนวนด้วยช่องว่างหนึ่งช่อง ถ้ามีหลายคำตอบ ให้แสดงคำตอบที่ปรากฏขึ้นก่อนในลำดับตัวเลข

Input	Output
5	4
1	1 2 3 4
2	
2	
3	
4	
5	3
1	1 2 3
-1	
2	
-2	
3	

Jump game

กบตัวหนึ่งถูกเลี้ยงในกล่องที่มีช่องย่อย ๆ ติดต่อกันเป็นแนวยาวโดยแต่ละช่องจะมีจำนวนเม็ดอาหารไม่ เท่ากัน ถ้ากบกินอาหาร n เม็ดจะทำให้กบกระโดดได้ n ช่อง ซึ่งกบจะเลือกกินอาหารอย่างน้อย 1 เม็ด แต่ไม่เกิน จำนวนอาหารที่มีในช่องนั้น อยากทราบว่ากบต้องกินอาหารน้อยที่สุดกี่เม็ดจึงจะสามารถกระโดดไปยังช่องสุดท้าย ของกล่องได้ (เริ่มต้นกบอยู่ในช่องแรกของกล่อง และการันตีว่ากบจะสามารถกระโดดไปยังช่องสุดท้ายได้เสมอ)

ข้อมูลนำเข้า:

บรรทัดแรกระบุจำนวนช่อง N ($1 \le N \le 1,000$) จากนั้นอีก N บรรทัดระบุจำนวนอาหารในแต่ละช่อง กล่าวคือ บรรทัดที่ 1 + i สำหรับ $1 \le i \le N$, จะระบุจำนวนเต็ม x_i ($0 \le x_i \le 1,000,000$)

ข้อมูลนำออก:

มีหนึ่งบรรทัด แสดงจำนวนเม็ดอาหารที่น้อยที่สุดที่กบกิน

Input	Output
5	2
2	
3	
1	
1	
4	
5	1
4	
3	
2	
1	
4	

ห้องปฏิบัติการลับทางชีวภาพแห่งหนึ่งได้ทำการจัดเก็บรหัสพันธุกรรมของมนุษย์ต่างดาวที่มีการค้นพบใน แถบเทือกเขา แต่ด้วยความยากลำบากของการสกัดพันธุกรรมทำให้รหัสพันธุกรรมที่สกัดได้มีการชำรุดเสียหาย โดยรหัสพันธุกรรมจะประกอบด้วยตัวเลข 0 และ 9 ยาวต่อเนื่องกัน และเพื่อความก้าวหน้าทางวิทยาศาสตร์ใน อนาคต นักวิทยาศาสตร์ได้ทำการทดสอบการเข้ากันได้ของรหัสพันธุกรรม โดยนักวิทยาศาสตร์ต้องการทราบว่า รหัสพันธุกรรมสองรหัสมีความสัมพันธ์กันหรือไม่

ข้อมูลนำเข้า:

บรรทัดแรกจะเป็นจำนวนรหัสพันธุกรรม 1 ความยาวไม่เกิน 100 หลัก บรรทัดที่สองจะเป็นจำนวนรหัสพันธุกรรม 2 ความยาวไม่เกิน 100 หลัก

ข้อมูลนำออก:

จำนวนตำแหน่งที่รหัสพันธุกรรมทั้งสองเหมือนกัน

Input	Output
12345612	3
23489	
	คือ 234
67812123	4
81234	
	คือ 8123