Traffic Of Recipe Recommend

Data Scientist Practical Exam DS601P

by Alice Lyu

Report Overview

Data Validation

Validation and cleaning steps for each column in the dataset.

Model Development

Reasons for selecting models and a statement of the problem type, including code to fit baseline and comparison models.

Exploratory Analysis

Graphics showing single and multiple variables to demonstrate data characteristics and relationships.

Model Evaluation

Description of model performance based on an appropriate metric.

Data Validation and Cleaning

- Dataset: 947 rows, 8 columns.
- Cleaning:
 - missing values in columns ('calories', 'carbohydrate', 'sugar', and 'protein') replaced with multi-index mean values.
 - 'high_traffic' missing values filled with 'Low'.
 - 'servings' standardized to integers.

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 947 entries, 0 to 946
Data columns (total 8 columns):
    Column
                  Non-Null Count Dtype
    recipe
                  947 non-null
                                  int64
    calories
                  947 non-null
                                  float64
                                 float64
    carbohydrate
                  947 non-null
                                  float64
    sugar
                  947 non-null
                                  float64
    protein
                  947 non-null
                  947 non-null
                                  object
    category
    servings
                  947 non-null
                                  int64
    high_traffic 947 non-null
                                  object
dtypes: float64(4), int64(2), object(2)
memory usage: 59.3+ KB
```

EDA

- Category Distribution: Breakfast and chicken breast recipes are the most frequent.
- 'High' traffic recipes are more than 'low' ones.

EDA

Certain nutrients are associated with specific dish categories

EDA

- There's no single variable showing a great correlation to the high traffic.
- Thus, we need to look into the nutrients as a combination and its relations with category and high traffic.

EDA — nutrients & traffic

- Cluster using the nutrients:
 - Cluster 0: Likely represents everyday, balanced recipes; could target health-conscious users.
 - Cluster 1: Represents rich, indulgent recipes; might attract users seeking treats or special occasions.
 - Cluster 2: Suggests protein-focused or main meals; could appeal to those seeking substantial or protein-heavy options.
- Cluster 1 and cluster 2 are more likely to related to high_traffic.
- Cluster 1 and cluster 2 are calory-heavy and protein-heavy foods.

EDA — nutrients & category & traffic

• The Chi-squared test shows that most categories are statistically significant with traffic, such as vegetable, potato, breakfast, pork, chicken, meat, etc. The p-value of these categories are way less than 0.05.

Model Development: Binary Classification

1

Problem Type

Binary Classification

2

Models

Logistic Regression: a simple and linear model estimates the probability of an outcome.

Decision Tree: captures non-linear relationships and handles feature interactions

Random Forest: more accurate & robust than single tree

3

Goal

Recall > 80% for High Traffic (Recall for High Traffic Recipes = Correctly predicting a high-traffic recipe / Total actual high-traffic recipes)

Model Evaluation and Comparison

Metrics of LR

Metrics of DT

Metrics of RF

	precision	recall	f1-score	support
High	0.72	0.86	0.78	113
Low	0.71	0.51	0.59	77
accuracy			0.72	190
macro avg	0.71	0.68	0.69	190
veighted avg	0.71	0.72	0.70	190

Business Metric

Business Goal

Display popular recipes

Metric

Recall for High Traffic Recipes

Value

85% (exceeds 80% target)

Final Summary and Recommendations

- **Logistic regression** is recommended for deployment, achieving 85% recall while maintaining reasonable precision.
- Prioritize high-traffic recipe types like **Meat, Chicken, and high calory-heavy and high protein** foods.
- Prefer recipes with four or more servings (family-sized).
- Monitor performance weekly and enhance model features with user ratings.
- Periodically retraining the model