Unsupervised Domain Adaptation for Remote Sensing Images Using Metric Learning and Correlation

Alignment

THEIR THE OF TECHNOLOGY RICH

Aniruddha Mahapatra¹ Biplab Banerjee²

¹Indian Institute of Technology Roorkee, India

²Indian Institute of Technology Bombay, India

Overview

- Domain Adaptation is a problem in Remote Sensing image analysis.
- Models proposed till now consider only one of :
- the discriminativeness of the embedding space
- usefulness of a manifold distance is pulling the domains closer

not both together.

Goal: To learn a latent space that aligns of similar classes across different domains with high precision.

Vector b/w Source-Source Source Vector Contrastive Source Vector Neural Source-Source/ CORAL/LogCORAL Network Source-Target Loss output feature Target vector Pair from Vector different domains

Figure 2:Overview of our model

Problem Statement

- Given:
- source domain items with class labels.
- target domain items without class labels.
- Task: Predict class labels for items in target domain (ground truth not available)

Motivation

- Clustering improves classification.
- The feature space should be discriminative.
 - Less intraclass more interclass distance

Metric Learning

Figure 3:Process of clustering

- Class labels of source data items is the basis of creation of clusters.
- Contrastive loss used for minimising the distance between similar class objects and increase the distance between dissimilar class objects in euclidean manifold.

Datasets

Dataset	Domain	Train	Test
2*Botswana	Domain1	1242	1252
	Domain2	2621	627
2*Pavia	Pavia Centre	50000	22933
	Pavia University	20000	19332

Table 1:Table mentioning features of 2 datasets used for evaluation of our algorithm

- The number of spectral bands in both the datasets are :
- ①Botswana (Domain 1): 10
- 2 Botswana (Domain 2): 10
- 3 Pavia Centre: 102
- 4 Pavia University: 103

Correlation Alignment

- To align source and target domain, we reduce covariance between them.
- Used 2 types of loss functions:
- **1 CORAL:** minimize distance between covariance matrices of source and target domain in Euclidean space.

$$L_{CORAL} = \frac{1}{4d^2} ||\mathbf{C_S} - \mathbf{C_T}||^2 \qquad (1)$$

2 logCORAL: minimize distance between covarinace matrices of source and target domain in Riemannian manifold.

$$L_{logCORAL} = \frac{1}{4d^2} ||log(\mathbf{C_S}) - log(\mathbf{C_T})||^2$$
(2)

• Where C_S is the covariance matrix of source domain and C_T is the covariance matrix of the target domain

Method

- Minimizing the Clustering loss itself is going to over-fit for the source domain and give poor clustering for the target domain.
- reducing the Covariance loss would lead to degenerate features as the network will project all the source and target data to a single point leading to zero Covariance.
- We jointly train the network on Covariance loss with Clustering loss to learn the desirable domain invariant mapping.
- The two losses play counterparts and reach an equilibrium at the end of the training, where the final features are expected to work well on the target domain.

Figure 4:Loss curves of (a) Contrastive loss with CORAL loss and (b) Contrastive loss logCORAL loss

Quantative Results

Model	$ extbf{TR1} ightarrow extbf{TS2}$	$ ext{TR2} ightarrow ext{TS1}$
TCA	69.88	61.00
GFK	72.89	65.50
CORAL	54.54	47.36
SA	72.88	68.52
STK	75.28	70.20
BDA	62.52	50.72
Auto-Encoder	67.46	62.69
Deep-LogCORAL	75.09	68.48
our(CORAL)	76.08	69.73
our(LogCORAL)	$\boldsymbol{76.24}$	$\boldsymbol{71.09}$

Table 2:Performance comparison of our model with baseline models in domain adaptation on Botswana dataset.

\mathbf{Model}	$PaviaC \rightarrow PaviaU$	$PaviaU \rightarrow PaviaC$
Auto-Encoder	46.14	46.64
Deep-LogCORAL	47.57	51.28
our(CORAL)	47.72	45.86
our(LogCORAL)	47.81	56.32

Table 3:Performance comparison of our model with Auto-Encoder(w/ Auxiliary Loss) on Pavia dataset.

Conclusion & Future Work

- Similarity learning with reduced co-variance better than simple classification or ML based approaches.
- We look forward to applying different approaches like
- 1 Similarity learning based on data distribution, not just class labels
- 2 Expanding our method to other standard domain adaptation datasets.

Figure 1:Motivation behind our approach with example of bags and headphones