

Abstract

Disclosed is a modular fluorescence sensor having the following general formula:

5

10

15

$$Fl-(CH_2)_n-N < (CH_2)_m-Bd_1$$
 $Sp N-(CH_2)_x-An$
 $|$
 $(CH_2)_y-Bd_2$

Where Fl is a fluorophore, N is a nitrogen atom, B_{d1} and B_{d2} are independently selected binding groups, Sp is an aliphatic spacer, and An is an anchor group for attaching the sensor to solid substrates. n = 1 or 2, m = 1 or 2. The binding groups are capable of binding an analyte molecule to form a stable 1:1 complex. In a preferred embodiment, the B_{d1} is R_1 -B(OH)₂ and B_{d2} is R_2 -B(OH)₂. R_1 and R_2 are aliphatic or aromatic functional groups selected independently from each other and B is a boron atom. The present invention also provides methods of synthesizing a modular fluorescence sensor and its use in labeling solid substrates.