STAT 215A Fall 2023 Week 10

Chengzhong Ye

Announcements

- Congrats on completing the midterm!
- We'll go over midterm solutions next Tuesday
- Lab 4 will be released Today
 - o due 11/09 at 11:59pm
 - Reach out to your group members (will be announced on bcourse)!

Outline for today

- Regularization Pt. 2
- Data splitting and statistical learning pipeline
- Introduction to Lab 4

Regularization Part II: Lasso

Lasso motivation

Feature selection

- Want to find best subset of size s of variables for prediction (typically s << p)
 - Best for our purposes = smallest MSE
- Ridge doesn't perform automatic feature selection
 - Can use to order the importance of features via magnitude of their coefficients
 - Typically there are no exact 0's among the coefficients estimates
- Methods that provide more direct feature selection:
 - \circ Best subsets (L⁰) regression
 - Lasso

Best subsets regression

Goal: Find the best (smallest MSE) subset of size S of the features.

$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^0 \right\}$$

Problem:

Number of non-zero coefficients

- Computationally infeasible for moderate-sized problems¹
- Have to do an exhaustive search over $\binom{p}{s}$ regressions

Lasso

Uses an L^1 penalty (rather than the L^2 penalty that ridge uses).

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 \text{ subject to } \sum_{j=1}^{p} |\beta_j| \le t.$$

Equivalently:
$$\hat{\beta}^{\text{lasso}} = \operatorname*{argmin}_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

- Lasso is the "best convex relaxation" of the best subsets problem
- The L¹ penalty results in sparse solutions (many coefficients zero)
- More interpretable than ridge, but if the true data-generating process is not sparse then can result in worse prediction accuracy

Lasso with orthonormal design matrix

If the columns of the design matrix predictors X are orthonormal, then the lasso estimate is related to the OLS estimate by

$$\hat{eta}_j^{\mathrm{lasso}} = \mathrm{sign}(\hat{eta}_j)(|\hat{eta}_j| - \lambda)_+$$
OLS estimate

(0,0)

Compare that to what happens in the case of ridge:

$$\hat{\beta}_j^{\text{ridge}} = \hat{\beta}_j / (1 + \lambda)$$

Ridge

Lasso vs. ridge, non-orthogonal case

$$\hat{\beta}^{\text{lasso}} = \arg\min_{\beta} \|y - X\beta\|_2^2$$
 subject to
$$\|\beta\|_1 \le t$$

$$\beta_2 \qquad \qquad \hat{\beta}^{\bullet} \qquad \qquad |\beta_1| + |\beta_2| \le t$$

Lasso shrinkage profiles

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 \text{ subject to } \sum_{j=1}^{p} |\beta_j| \le t.$$

- If t is larger than $t_0 = \sum_1^p |\hat{\beta}_j|$ then the lasso solution is the same as the OLS solution.
- If $t=t_0/2$ then lasso shrinks the OLS coefficients by about 50% on average
- By default, the R package glmnet plots the coefficients vs. their L^1 norm, but you can have it plot λ on the x-axis instead.

Lasso in practice

- Great for feature selection and interpretability
- Tends to select one representative from a group of correlated features
 - Good if goal is a parsimonious model
 - Bad for data-driven discoveries
- Like ridge, don't forget to center and scale data
 - o glmnet () does this by default, but returns results on original scale
- ullet For large λ , the coefficients are heavily biased
 - Eventually the variance goes to zero (all 0 coefficients)

Warnings:

- Non-zero lasso coefficients ≠ statistically significant
- Don't fit OLS after doing lasso and interpret the p-values the same way; OLS inference no longer valid after model model selection

Other alternatives / modifications to lasso

- Weighted lasso: use the weighted penalty $\lambda \sum_{j=1}^{\nu} w_j |\beta_j|$
 - o If true β_j is large (small), want to penalize less (more) so w_j should be small (large)

• Adaptive lasso (Zou, 2006):
$$w_j = \left(\frac{1}{\left|\hat{oldsymbol{eta}}_j^{OLS/ridge}\right|}\right)^{\gamma} \quad (\gamma \in \{0.5, 1, 2\})$$

- Non-convex penalties:
 - SCAD (Fan, 2001)
 - MCP (<u>Zhang</u>, 2009)
- Randomized lasso (Meinshausen, 2010): combines stability via bootstrapping and randomized weights to handle correlated variables

Elastic net

$$\hat{\beta}^{\text{enet}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} (\alpha |\beta_j| + (1 - \alpha) \beta_j^2)$$

- ullet Compromise between ridge and lasso depending on choice of $~lpha \in [0,1]$
 - \circ Lasso: $\alpha=1$
 - \circ Ridge: $\alpha = 0$
- Can handle correlated features better than lasso, but enforces more sparsity than ridge
- Difficult to tune both α and λ in practice

Summary: OLS + Regularized Regression

	OLS	Ridge	Lasso	Elastic Net
Advantages	 Simple Can do inference (with all the caveats) 	 Good with correlated features MSE Existence Theorem (good for prediction) 	Feature selection and sparsityInterpretability	Compromise between ridge and Lasso
Disadvantages	• Major problems when p>n	 Dense model is not interpretable No automatic feature selection 	 Tends to choose 1 feature from correlated group Can give worse prediction results if truth is not sparse 	Difficult to tune two parameters in practice

Statistical learning

Goal: Learn insights about the current data that are *generalizable* to future data

- Typically, one of the following tasks in mind:
 - Prediction: outcome of interest
 - Data-driven discoveries: pattern recognition, feature selection, etc.
- Two main branches of statistical learning:
 - Unsupervised: no outcomes / response data
 - Clustering, dimension reduction, pattern recognition
 - Supervised: have the outcome / response
 - Classification categorical response
 - **Regression** continuous response

Data splitting: a way to assess generalizability

Simplest case:

Data splitting: a way to assess generalizability

With cross validation:

K-fold cross validation for choosing hyperparameters

Data splitting: a way to assess generalizability

With cross validation:

Data splitting + tuning hyperparameters + multiple methods

- Can repeat this data splitting B times to get a variance estimate of the test error
- This gives you an unbiased estimate of the prediction error for the statistical learning process, NOT a specific model

Lab 4: Remote sensing / cloud data

Lab 4: Remote sensing / cloud data

Feature engineering: CORR, SD, NDAI

Lab 4: Things to think about carefully

- Which methods/models?
 - Are they well-suited for this data? Why or why not?
 - What are the advantages/disadvantages and assumptions of the method(s) that you chose?
 - This can help you better identify the limitations of your prediction algorithm
- Data splitting scheme? Very important for generalizability
- Post-hoc EDA? Can provide insights into how to improve your prediction