- 1. Considereu les següents reaccions, que es donen a través de la interacció forta:
 - (a) $\pi^- + p \to \Lambda + K^0$
 - (b) $\pi^0 + p \to \Lambda + K^+$
 - (c) $\pi^- + p \to \Sigma^0 + K^0$
 - (d) $\pi^- + p \to \Sigma^- + K^+$
 - (e) $\pi^+ + p \to \Sigma^+ + K^+$
 - (f) $\pi^- + p \to \Xi^- + K^0 + K^+$
 - (g) $\pi^- + p \to \Xi^0 + K^0 + K^0$
 - (h) $\pi^+ + p \to \Xi^0 + K^+ + K^+$
 - (i) $\pi^- + p \to n + K^+ + K^-$
 - (j) $\pi^- + p \to n + K^0 + \bar{K}^0$

Sabent que, per conveni, es pren $S(p) = S(n) = S(\pi) = 0$, i $S(K^+) = 1$, deduïu els valors de l'estranyesa de les altres partícules presents.

- 2. Trobeu el contingut en quarks de totes les partícules que apareixen al diagrames de *L'octava via* de Gell-Mann.
- 3. Cadascuna de les reaccions que hi ha a continuació no és permesa. Determineu la llei de conservació que es viola en cada cas.
 - (a) $p + \overline{p} \rightarrow \mu^+ + e^-$
 - (b) $\pi^- + p \to p + \pi^+$
 - (c) $p+p \rightarrow p+p+n$
 - (d) $p+p \rightarrow p+\pi^+$
 - (e) $\gamma + p \rightarrow n + \pi^0$
- 4. Les següents reaccions involucren neutrins o antineutrins. Afegiu els que calguin.
 - (a) $\pi^- \to \mu^- + ?$
 - (b) $K^+ \to \mu^+ + ?$
 - (c) $? + p \rightarrow n + e^+$
 - (d) $? + n \to p + e^{-}$
 - (e) $? + n \rightarrow p + \mu^- + ?$
 - (f) $\mu^- \to e^- + ? + ?$

- 5. Considereu les reaccions següents:
 - (a) $\bar{p} + p \to \pi^+ + \pi^- + \pi^0$

(b)
$$p + K^- \to \Sigma^+ + \pi^- + \pi^0$$

(c)
$$p + K^- \to n + K^+ + \pi^-$$

(d)
$$\bar{\nu}_{\mu} + p \to \mu^{+} + n$$

(e)
$$\bar{\nu}_e + p \rightarrow e^+ + \Lambda$$

(f)
$$\tau^- \rightarrow \nu_\tau + K^-$$

(g)
$$\pi^0 \to \gamma + \gamma$$

(h)
$$e^+ + e^- \to \pi^+ + \pi^-$$

Comproveu si es conserven els nombres quàntics rellevants. Indiqueu si la reacció és possible, i quina interacció (forta, electromagnètica o feble) la produeix.

6. Trobeu la partícula que falta en cadascuna de les reaccions següents.

(a)
$$p + \overline{p} \rightarrow n + ?$$

(b)
$$p+p \rightarrow p + \Lambda^0 + ?$$

(c)
$$\pi^0 + p \rightarrow \Sigma + ?$$

(d)
$$K^- + n \rightarrow \Lambda^0 + ?$$

(e)
$$\tau^+ \to e^+ + \nu_e + ?$$

(f)
$$\overline{\nu}_e + p \rightarrow n + ?$$

7. Decidiu si cada reacció és possible i quina interacció la governa.

(a)
$$\pi^+ + p \rightarrow \Delta^{++}$$

(b)
$$\Omega^- \to \Xi^0 + \pi^-$$

(c)
$$\Omega^- \to \Lambda^0 + K^-$$

(d)
$$\mu^- \to e^- + \nu_e + \nu_\mu$$

(e)
$$\Lambda^0 \to n + \pi^0$$

(f)
$$\Sigma^- \to n + \pi^-$$

(g)
$$\pi^+ + p \rightarrow p + p + \overline{n}$$

- 8. Considereu els següents hadrons encantats:
 - (a) D^{+}
 - (b) D^{-}
 - (c) D^0
 - (d) \bar{D}^0
 - (e) Λ_c^+ (és un barió)

Trobeu el seu contingut en quarks sabent que no tenen estranyesa i que no contenen cap altre quark pesant.

- 9. Considereu els següents hadrons amb bellesa:
 - (a) B^{+}
 - (b) B^{-}
 - (c) B^0
 - (d) \bar{B}^{0}
 - (e) Λ_b^0 (és un barió)

Trobeu el seu contingut en quarks sabent que no tenen estranyesa i que no contenen cap altre quark pesant.

