

Model Optimization and Tuning Phase Report

Model	Tuned Hyperparameters	Optimal Values			
LOGISTICS REGRESSIO N	_	-			

	-	
Random		-
Forest		

Date	06-06-2024
Team ID	739759
Project Title	DETECTION OF PHISHING WEBSITE FROM URLS
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

```
knn_classifier = KNeighborsClassifier()

# Define the hyperparameters and their possible values for tuning param_grid = {
    'n_neighbors': [3, 5, 7, 9],
    'weights': ['uniform', 'distance'],
    'p': [1, 2]
}

# Evaluate the performance of the tuned model accuracy = accu
```



```
# Define the Gradient Boosting classifier
gb_classifier = GradientBoostingClassifier()

# Define the hyperparameters and their possible values for tuning
param_grid = {
    'n_estimators': [50, 100, 200],
    'learning_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 4, 5],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'subsample': [0.8, 1.0]
}

# Define the Gradient Boosting Classifier
gb_classifier = GradientBoostingClassifier()

# Define the hyperparameters and their possible values for tuning
param_grid = {
    'n_estimators': [50, 100, 200],
    'learning_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 4, 5],
    'min_samples_split': [2, 5, 10],
    'subsample': [0.8, 1.0]
}

# Define the hyperparameters and their possible values for tuning
param_grid = {
    'n_estimators': [50, 100, 200],
    'learning_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 4, 5],
    'max_depth': [3, 4, 5],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'subsample': [0.8, 1.0]
}

# Define the hyperparameters and their possible values for tuning
param_grid = {
    'n_estimators': [50, 100, 200],
    'learning_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 4, 5],
    'max_depth': [3, 4, 5],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'subsample': [0.8, 1.0]
}

# Define the hyperparameters and their possible values for tuning
param_grid = {
    'n_estimators': [50, 100, 200],
    'learning_rate': [6.01, 0.1, 0.2],
    'max_depth': [6.
```

Performance Metrics Comparison Report (2 Marks):

Model
Decision Tree

	<pre>print(classification_report</pre>	rt(y_test,y_p	red))		
		precision	recall	f1-score	support
	Loan will be Approved	0.71	0.83	0.77	75
	Loan will not be Approved	0.84	0.73	0.78	94
	accuracy			0.78	169
Random Forest	macro avg	0.78	0.78	0.77	169
Kandom Forest	weighted avg	0.78	0.78	0.78	169
	confusion_matrix(y_test,y	_pred)			
	array([[62, 13], [25, 69]])				

Final Model Selection Justification (2 Marks):

Final Model Reasoning	
Gradient Boosting	The Gradient Boosting model was selected for its superior performance, exhibiting high accuracy during hyperparameter tuning. Its ability to handle complex relationships, minimize overfitting, and optimize predictive accuracy aligns with project objectives, justifying its selection as the final model.

