ТВиМС

Содержание

1	Случайная величина			2
	1.1	1.1 Числовые характеристики случайных величин		
		1.1.1	Распределение Бернулли	3
		1.1.2	Биномиальное распределение	3
		1.1.3	Геометрическое распределение	3
		1.1.4	Гипергеометрическое распределение	4
		1.1.5	Распределение Паскаля	5
2	2 Ковариация		5	
3	Корреляция			6
4	4 Мера Жордана			6

1 Случайная величина

Определение 1. Случайной величиной ξ называется функция, заданная на множестве Ω , принимающая значения в \mathbb{R} .

Задать случайную величину, значит указать все ее реализации и соответственные вероятности.

Определение 2. Индикатором события A называется случайная величина $\mathbb{I}(A) \sim \begin{pmatrix} 0 & 1 \\ 1 - \mathbb{P}(A) & \mathbb{P}(A) \end{pmatrix}$.

Определение 3. Законом распределения случайной величины называется некоторое правило, позволяющее однозначно определить значение вероятности по значению случайной величины.

1.1 Числовые характеристики случайных величин

Определение 4. Математическим ожиданием дискретной случайной величины, если оно существует, называется число:

$$\mathbb{E}(\xi) = \sum_{i=1}^{n} \omega_i \cdot \mathbb{P}(\xi = \omega_i)$$

Определение 5. Дисперсией случайной величины называется $\mathbb{D}(\xi) = \mathbb{E}(\xi - \mathbb{E}(\xi))^2$.

Теорема 1.1. $\mathbb{E}(a\xi + b\eta + c) = a\mathbb{E}(\xi) + b\mathbb{E}(\xi) + c; \ a, b, c \in \mathbb{R}$

Доказательство.

$$\mathbb{E}(a\xi + b\eta + c) =$$

$$= \sum_{i=1}^{n} \hat{\omega}_{i} \cdot \mathbb{P}(a\xi + b\eta + c = \hat{\omega}_{i}) =$$

$$= c + \sum_{i=1}^{n} \hat{\omega}_{i}^{c} \cdot \mathbb{P}(a\xi + b\eta = \hat{\omega}_{i}^{c}) =$$

$$= c + \sum_{i=1}^{n} \omega_{i}^{\xi} \cdot \mathbb{P}(a\xi = \omega_{i}^{\xi}) + \sum_{i=1}^{n} \omega_{i}^{\eta} \cdot \mathbb{P}(b\eta = \omega_{i}^{\eta}) =$$

$$= c + a\mathbb{E}(\xi) + b\mathbb{E}(\eta)$$

Теорема 1.2. Дисперсия случайной величины ξ может быть вычислена, как $\mathbb{D}(\xi) = \mathbb{E}(\xi^2) - (\mathbb{E}(\xi))^2$

Доказательство.

$$\mathbb{D}(\xi) = \mathbb{E}(\xi - \mathbb{E}(\xi))^2 =$$

$$= \mathbb{E}(\xi^2 - 2\xi \mathbb{E}(\xi) + (\mathbb{E}(\xi))^2) =$$

$$= \mathbb{E}(\xi^2) - 2(\mathbb{E}(\xi))^2 + (\mathbb{E}(\xi))^2 =$$

$$= \mathbb{E}(\xi^2) - (\mathbb{E}(\xi))^2$$

Определение 6. Стандартным отклонением случайной величины ξ называется $\sigma(\xi) = \sqrt{\mathbb{D}(\xi)}$.

1.1.1 Распределение Бернулли

Определение 7. Случайная величина ξ распределена по Бернулли, если ее распределение суть индикатор.

$$Ber(p) \sim \begin{pmatrix} 0 & 1 \\ 1 - p & p \end{pmatrix}$$

1.1.2 Биномиальное распределение

Определение 8. Случайная величина ξ распределена биномиально, если она моделирует схему испытаний Бернулли или является суммой бернулиевых случайных величин.

$$B(p, n) \sim \begin{pmatrix} 0 & \dots & k & \dots & n \\ (1-p)^n & \dots & C_n^k p^k (1-p)^{n-k} & \dots & p^n \end{pmatrix}$$

Теорема 1.3. Математическое ожидание биномиально распределенной случайной величины ξ может быть вычислено, как $\mathbb{E}(\xi) = np$.

Доказательство.

$$\mathbb{E}(\xi) = C_n^1 p q^{n-1} + 2C_n^2 p^2 q^{n-2} + \ldots + kC_n^k p^k q^{n-k} + \ldots + nC_n^n p^n =$$

$$= np \cdot (C_{n-1}^0 q^{n-1} + C_{n-1}^1 p q^{n-2} + \ldots + C_{n-1}^{k-1} p^{k-1} q^{n-k} + \ldots + C_{n-1}^{n-1} p^{n-1}) =$$

$$= np \cdot (q+p)^{n-1} =$$

$$= np$$

Теорема 1.4. Дисперсия независимых случайных величин линейна: $\mathbb{D}(\xi + \eta) = \mathbb{D}(\xi) + \mathbb{D}(\eta)$

Лемма 1.5. Дисперсия биномиально распределенной случайной величины ξ может быть вычислена, как $\mathbb{D}(\xi)=npq$.

Доказательство. Пусть η — число успехов в одном испытании Бернули. Тогда:

$$\eta \sim B(p, 1) \sim \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}$$

В таком случае $\mathbb{D}(\eta) = \mathbb{E}(\eta^2) - (\mathbb{E}(\eta))^2 = p - p^2 = pq$. Тогда по теореме 1.4:

$$\mathbb{D}(\xi) = \sum_{i=1}^{n} \mathbb{D}(\xi_i) = pq \cdot n = npq$$

1.1.3 Геометрическое распределение

Определение 9. Случайная величина ξ распределена геометрически, если она моделирует схему испытаний до первого успеха с вероятностью p.

$$Geom(p) \sim \begin{pmatrix} 1 & 2 & \dots & n & \dots \\ p & qp & \dots & q^{n-1}p & \dots \end{pmatrix}$$

Лемма 1.6. Математическое ожидание геометрически распределенной случайной величины ξ может быть вычислено, как $\mathbb{E}(\xi) = \frac{1}{n}$.

Доказательство.

$$\mathbb{E}(\xi) = p + 2qp + 2q^{2}p + \dots + kq^{k-1}p + \dots =$$

$$= (p + qp + q^{2}p + \dots + q^{k-1}p + \dots) + (qp + 2q^{2}p + \dots + (k-1)q^{k-1}p + \dots) =$$

$$= \frac{p}{1-q} + q(p + 2pq + \dots + (k-1)q^{k-2}p + \dots)$$

$$\mathbb{E}(\xi) = 1 + q\mathbb{E}(\xi)$$

$$\mathbb{E}(\xi)(1-q) = 1$$

$$\mathbb{E}(\xi) = \frac{1}{p}$$

Лемма 1.7. Дисперсия геометрически распределенной случайной величины ξ может быть вычислена, как $\mathbb{D}(\xi) = \frac{q}{p^2}$.

Доказательство.

$$\mathbb{D}(\xi) = \mathbb{E}(\xi^2) - (\mathbb{E}(\xi))^2$$

$$\mathbb{E}(\xi^2) = p + 2qp + 9q^2p + \dots + k^2q^{k-1}p + \dots =$$

$$= p + qp + 3qp + 4q^2p + 5q^2p + \dots =$$

$$= (qp + 4q^2p + \dots) + (p + 3qp + 5q^2p + \dots)$$

$$\mathbb{E}(\xi^2) = q\mathbb{E}(\xi^2) + \mathbb{E}(2\xi - 1) =$$

$$= (1 - p)\mathbb{E}(\xi^2) + \frac{2}{p} - 1 =$$

$$= \frac{2 - p}{p^2}$$

$$\mathbb{D}(\xi) = \frac{2 - p}{p^2} - \frac{1}{p^2} =$$

$$= \frac{q}{p^2}$$

1.1.4 Гипергеометрическое распределение

Определение 10. Случайная величина ξ распределена гипергеометрически, если она моделирует выбор n элементов из множества мощности N с K помеченными и является числом помеченных в выборке.

$$\xi \sim HG(N, K, n)$$
$$\mathbb{P}(\xi = k) = \frac{C_K^k \cdot C_{N-K}^{n-k}}{C_N^n}$$

Утверждение 1.8. Математическое ожидание гипергеометрически распределенной случайной величины ξ может быть вычислено, как $\mathbb{E}(\xi) = \frac{n \cdot K}{N}$.

Доказательство.

$$\xi = \mathbb{I}(A_1) + \mathbb{I}(A_2) + \ldots + \mathbb{I}(A_n)$$
, где $A_i = \{i$ -ый элемент выборки помечен $\}$ $\mathbb{I}(A_i) \sim \begin{pmatrix} 0 & 1 \\ 1 - \frac{K}{N} & \frac{K}{N} \end{pmatrix}$ $\mathbb{E}(\xi) = \sum_{i=1}^n \mathbb{E}(\mathbb{I}(A_i)) = n \cdot \frac{K}{N}$

1.1.5 Распределение Паскаля

Определение 11. Случайная величина ξ распределена по Паскалю, если она моделирует испытания до первых k успехов.

Определение 12.

$$\xi \sim NB(p, k),$$
 если $\xi = \sum_{i=1}^k \eta_i$: $\forall i \in \{1, 2, ..., k\}$: $\eta_i \sim Geom(p)$
$$\mathbb{P}(\xi = n) = C_{n-1}^{k-1} p^k q^{n-k}$$

Утверждение 1.9. Математическое ожидание случайной величины ξ , распределенной по Паскалю, может быть вычислено, как $\mathbb{E}(\xi) = \frac{k}{n}$.

Доказательство. Поскольку математическое ожидание линейно:

$$\mathbb{E}(\xi) = \sum_{i=1}^{k} \mathbb{E}(\xi_i) = \frac{1}{p} \cdot k = \frac{k}{p}$$

2 Ковариация

Определение 13. Пусть ξ и η – случайные величины, тогда ковариацией называется:

$$cov(\xi; \eta) = \mathbb{E}((\xi - \mathbb{E}(\xi))(\eta - \mathbb{E}(\eta)))$$

Теорема 2.1. Для $cov(\xi; \eta)$ выполняются свойства:

1.
$$cov(\xi; \xi) \ge 0$$

2.
$$cov(\xi; \eta) = cov(\eta; \xi)$$

3.
$$cov(\lambda \xi; \eta) = \lambda \cdot cov(\xi; \eta)$$

4.
$$cov(\xi_1 + \xi_2; \eta) = cov(\xi_1; \eta) + cov(\xi_2; \eta)$$

5.
$$cov(\xi; \eta) \leq \mathbb{D}(\xi) \cdot \mathbb{D}(\eta)$$

Теорема 2.2.

$$cov(\xi; \eta) = \mathbb{E}(\xi \cdot \eta) - \mathbb{E}(\xi) \cdot \mathbb{E}(\eta)$$

Доказательство.

$$\begin{split} &\mathbb{E}((\xi - \mathbb{E}(\xi))(\eta - \mathbb{E}(\eta))) = \\ = &\mathbb{E}(\xi \cdot \eta - \xi \mathbb{E}(\eta) - \eta \mathbb{E}(\xi) + \mathbb{E}(\xi) \cdot \mathbb{E}(\eta)) = \\ = &\mathbb{E}(\xi \cdot \eta) - \mathbb{E}(\xi \mathbb{E}(\eta)) - \mathbb{E}(\eta \mathbb{E}(\xi)) + \mathbb{E}(\xi) \cdot \mathbb{E}(\eta) = \\ = &\mathbb{E}(\xi \cdot \eta) - \mathbb{E}(\xi) \cdot \mathbb{E}(\eta) \end{split}$$

Теорема 2.3.

$$\mathbb{D}(\xi + \eta) = \mathbb{D}(\xi) + \mathbb{D}(\eta) + 2 \cdot cov(\xi; \eta)$$

3 Корреляция

Определение 14. Пусть ξ и η – случайные величины: $\mathbb{D}(\xi) \neq 0$, $\mathbb{D}(\eta) \neq 0$, $cov(\xi; \eta)$ определена корректно. Тогда коэффициентом корреляции ξ и η называется:

$$corr(\xi; \eta) = r_{\xi\eta} = \frac{cov(\xi; \eta)}{\sigma(\xi) \cdot \sigma(\eta)}$$

Свойства:

1.
$$|r_{\xi\eta}| \le 1$$

2. $|r_{\xi\eta}| = 1 \iff \exists \ k \ne 0, \ b: \ \eta = k\xi + b \ ($ почти наверное $).$

4 Мера Жордана

Определение 15. *А* измеримо по Жордану, если $\mu^{j}(A) = \mu_{j}(A)$, где $\mu^{j}(A) = \inf\{\mu(\Delta) : A \subset \Delta\}$, $\mu_{j}(A) = \sup\{\mu(\Delta) : \Delta \subset A\}$

Определение 16. Пусть $A \subset \Omega$, тогда $\mathbb{P}(x \in A) = \frac{\mu(A)}{\mu(\Omega)}$.