

Product Specification AU OPTRONICS CORPORATION

() Preliminary Specifications

(V)	Final	Specifications

Module 10.1 Inch Color TFT-LCD	
Model Name	G101STN01.6

Customer Date	Approved by Date
	Grace Hung 2018/03/12
Checked & Approved by	Prepared by
	Kevin Tseng2018/03/12
Note: This Specification is subject to change without notice.	General Display Business Division / AU Optronics corporation

Product Specification AU OPTRONICS CORPORATION

Contents

1.	Operating Precautions	4
2.	General Description	5
	2.1 Display Characteristics	
	2.2 Optical Characteristics	6
3.	Functional Block Diagram	9
	Absolute Maximum Ratings	
	4.1 Absolute Ratings of TFT LCD Module	1(
	4.2 Absolute Ratings of Environment	
5.	Electrical Characteristics	
•	5.1 TFT LCD Module	
	5.2 Backlight Unit	
6.	Signal Characteristic	
•	6.1 Pixel Format Image	
	6.2 Scanning Direction	
	6.3 Signal Description	
	6.4 The Input Data Format	17
	6.5 Interface Timing	
	6.6 Power ON/OFF Sequence	
7.	Connector & Pin Assignment	20
	7.1 TFT LCD Module: LVDS Connector	20
8.	Reliability Test Criteria	21
	Mechanical Characteristics	
	9.1 LCM Outline Dimension (Front View)	22
	9.2 LCM Outline Dimension (Rear View)	23
10	. Label and Packaging	. 24
	10.1 Shipping Label (on the rear side of TFT-LCD display)	
	10.2 Customer Option Label	24
	10.3 Carton Package	25
11	. Safety	
	11.1 Sharp Edge Requirements	
	11.2 Materials	
	11.3 Capacitors	
	11.4 National Test Lab Requirement	
40	A	

AU OPTRONICS CORPORATION

Record of Revision									
Version and Date	Page	Old description	New Description						
0.0 Mar. 03, 2017	All	First draft specification	-						
0.1 Jan. 12, 2018	24	10.2 Catron Package	Modify & Add: 10.2 Customer Optional Label						
0.1 Jan. 12, 2018	5	Typical Power Consumption : 2.53 (Max)	Typical Power Consumption : 1.8 (Max)						
0.1 Jan. 12, 2018	6	ILED= 22.5 mA	ILED= 16.7 mA						
0.1 Jan. 12, 2018	10	LED_PWM : 5.3 (Max)	LED_PWM : 6 (Max)						
0.1 Jan. 12, 2018	10	LED_EN : 5.3 (Max)	LED_EN : 6 (Max)						
0.1 Jan. 12, 2018	13	I _{LED,} Input Current: 150(Typ)/165(Max)	I _{LED,} Input Current: 110(Typ)/125(Max)						
0.1 Jan. 12, 2018	13	P _{LED} , Power Consumption:(Typ)	P _{LED} , Power Consumption:1.32(Typ)						
0.1 Jan. 12, 2018	13	LED Forward Current (I _F): 22.5	LED Forward Current : 16.7.						
0.1 Jan. 12, 2018	13	LED Forward Voltage : 33.5	LED Forward Voltage : 32						
0.1 Jan. 12, 2018	13	LED Power Consumption: 0.75(Typ)/0.81(Max)	LED Power Consumption : 1.07(Typ)/1.2(Max)						
0.1 Jan. 12, 2018	18	6.5.1 Timing Characteristics	Signal						
		Signal⊕ Symbol⊕ Min.⊕ Typ.⊕ Max.⊕ Unit⊕	Period <i>ψ</i> T <i>ψ</i> 610 <i>ψ</i> 635 <i>ψ</i> 800 <i>ψ</i>						
		Periode Tve 610e 635e 800e +	Vertical Section Active 150 600 600 600 150						
			Periode Tye 1114e 1344e 1400e						
		Periodo THO 11140 13440 14000	Section						
		Active	Frame Rate ∂ → ∂ 50 ∂ 60 ∂ 70 ∂ Hz ∂ SSC Modulation Frequency SSCMF ∂ 23 ∂ ∂ 93 ∂ KHz ∂						
		Frame Rate	SSC Modulation Frequency SSCMRP 25 25 25 25 25 25 25 2						
0.1 Jan. 12, 2018	18	tours Input Timing Definition (DE Mode)	DOUX						
0.1 0411. 12, 2010		DOIGH							
		Input	Imput V Pixel						
		Te Tee	Thb Thd						
			DE Tvb >						
		06 1	i Tu						
1.0 Mar. 12, 2018	13	P _{LED} , Power Consumption:(Max.)	Add: P _{LED} , Power Consumption:1.5(Max.)						
1.0 Mar. 12, 2018	13	P _{LED} , Power Consumption: LED per string Power	P _{LED} , Power Consumption: (2 strings Power)						
1.0 Mar. 12, 2018	13	5.1.3 LVDS AC Electrical Characteristics	Delete:5.1.3 LVDS AC Electrical Characteristics						
	1								

AU OPTRONICS CORPORATION

1. Operating Precautions

- 1) Since front polarizer is easily damaged, please be cautious and not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or soft cloth.
- 5) Since the panel is made of glass, it may be broken or cracked if dropped or bumped on hard surface.
- 6) To avoid ESD (Electro Static Discharde) damage, be sure to ground yourself before handling TFT-LCD Module.
- 7) Do not open nor modify the module assembly.
- 8) Do not press the reflector sheet at the back of the module to any direction.
- 9) In case if a module has to be put back into the packing container slot after it was taken out from the container, do not press the center of the LED light bar edge. Instead, press at the far ends of the LED light bar edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) TFT-LCD Module is not allowed to be twisted & bent even force is added on module in a very short time. Please design your display product well to avoid external force applying to module by end-user directly.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Severe temperature condition may result in different luminance, response time and lamp ignition voltage.
- 14) Continuous operating TFT-LCD display under low temperature environment may accelerate lamp exhaustion and reduce luminance dramatically.
- 15) The data on this specification sheet is applicable when LCD module is placed in landscape position.
- 16) Continuous displaying fixed pattern may induce image sticking. It's recommended to use screen saver or shuffle content periodically if fixed pattern is displayed on the screen.

AU OPTRONICS CORPORATION

2. General Description

This specification applies to the Color Active Matrix Liquid Crystal Display G101STN01.6 composed of a TFT-LCD display, a driver and power supply circuit, and a LED backlight system. The screen format is intended to support Wide SVGA (1024(H) x 600(V)) screen and 262k/16.7M colors (LVDS 6/8-bits). And LED driving circuit for backlight unit is included in G101STN01.6.

All input signals are LVDS interface.

G101STN01.6 designed with wide viewing angle; wide temperature and long life LED backlight (15k hrs) is well suited for industial applications.

G101STN01.6 is a RoHS product.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 °C condition:

Items	Unit	Specifications
Screen Diagonal	[inch]	10.1
Active Area	[mm]	222.72(H) x 125.28(V)
Pixels H x V		1024 (RGB)x 600
Pixel Pitch	[mm]	0.2175(H)×0.2088(V)
Pixel Arrangement		R. G. B. Stripe
Display Mode		TN, Normally White
Nominal Input Voltage VCCS	[Volt]	3.3 (typ.)
Typical Power Consumption	[Watt]	1.8 W (max.)
Weight	[Grams]	180(typ.)
Physical Size	[mm]	235(H)x143(V)x4.9(T) (typ.)
Electrical Interface		LVDS
Surface Treatment		AG, (3H)
Color Gamut	%	45
Support Color		262K/16.7M colors
Temperature Range Operating Storage (Non-Operating)	[°C] [°C]	-10 to +60 -30 to +70
RoHS Compliance		RoHS Compliance

AU OPTRONICS CORPORATION

2.2 Optical CharacteristicsThe optical characteristics are measured under stable conditions at 25 °C (Room Temperature):

Item	Unit	Conditions	Min.	Тур.	Max.	Note	
White Luminance	[cd/m2]	ILED= 16.7 mA (center point)	200	250	-	1	
Uniformity	%	5 points	80	-	-	2,3	
Contrast Ratio			400	500	-	4	
	[msec]	Rising	-	7	10		
Response Time	[msec]	Falling	-	9	18	5	
	[msec]	Rising + Falling	-	16	28		
Viewing Angle	[degree] [degree]	Horizontal (Right) CR = 10 (Left)	60 60	70 70	-	6	
Viewing Angle	[degree] [degree]	Vertical (Upper) CR = 10 (Lower)	50 50	60 60	ı	U	
		Red x	0.524	0.574	0.624		
		Red y	0.285	0.335	0.385		
		Green x	0.280	0.330	0.380		
Color / Chromaticity Coordinates		Green y	0.525	0.575	0.625		
(CIE 1931)	-	Blue x	0.108	0.158	0.208	-	
		Blue y	0.09	0.140	0.190		
		White x	0.263	0.313	0.363		
		White y	0.279	0.329	0.379		

Note 1: Measurement method

Equipment Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter (SR_3 or equivalent)

Aperture 1° with 50cm viewing distance

Test Point Center Environment < 1 lux

AU OPTRONICS CORPORATION

Note 2: Definition of 5 points position (Display active area: 222.72(H) x 125.28(V)) Measure the luminance of gray level 63 at 5 points

 $\delta W_{5p} = \{Minimum [L (1) \sim L (5)] / Maximum [L (1) \sim L (5)]\}*100\%$

Note 3: The luminance uniformity of 5 points is defined by dividing the minimum luminance values by the maximum test point luminance

$$\delta_{W5} = \frac{\text{Minimum Brightness of five points}}{\text{Maximum Brightness of five points}}$$

Note 4: Definition of contrast ratio (CR):

Note 5: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "White" to "Black" (falling time) and from "Black" to "White" (rising time), respectively. The response time interval is between 10% and 90% of amplitudes. Please refer to the figure as below.

AU OPTRONICS CORPORATION

Note 6: Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as below: 90° (θ) horizontal left and right, and 90° (Φ) vertical high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated to its center to develop the desired measurement viewing angle.

AU OPTRONICS CORPORATION

3. Functional Block Diagram

The following diagram shows the functional block of the 10.1 inch color TFT/LCD module:

AU OPTRONICS CORPORATION

4. Absolute Maximum Ratings

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit
Logic/LCD drive Voltage	vccs	-0.3	4	[Volt]
EDID drive Voltage	VEDID	-0.3	4	[Volt]
Converter Input Voltage	LED_VCCS	-0.3	25	[Volt]
Converter Control Signal Voltage	LED_PWM	-0.3	6	[Volt]
Converter Control Signal Voltage	LED_EN	-0.3	6	[Volt]

4.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit
Operating Temperature	TOP	-10	60	[°C]
Storage Temperature	TST	-30	70	[°C]

Note: Maximum Wet-Bulb should be 39 °C and no condensation.

AU OPTRONICS CORPORATION

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are shown as follows;

Symbol	Parameter	Min	Тур	Max	Units	Remark
vccs	VCCS Logic/LCD Drive Voltage		3.3	3.6	[Volt]	
I _{vccs}	I _{VCCS} VCCS Current		140	160	[mA]	Black Pattern (VCCS=3.3V, at 60Hz)
Irush	Irush LCD Inrush Current		-	1.5	[A]	Note 1
P _{VCCS} VCCS Power		-	-	0.53	[Watt]	Black Pattern (VCCS=3.3V, at 60Hz)
VCCSrp	Allowable Logic/LCD Drive Ripple Voltage			100	[mV] p-p	

Note 1: Measurement condition:

VCCS rising time

Black pattern

AU OPTRONICS CORPORATION

5.1.2 LVDS DC Electrical Characteristics

Input signals shall be low or Hi-Z state when VCCS is off.

Symbol	l Item		Тур.	Max.	Unit	Remark
VTH	VTH Differential Input High Threshold		-	100	[mV]	
VTL	VTL Differential Input Low Threshold		-	ı	[mV]	
VID	Input Differential Voltage	100	-	600	[mV]	
VICM	Differential Input Common Mode Voltage	1.125	-	1.375	[V]	
ICRTC	LVDS Terminating Resistor	-	100	-	Ω	LVDS terminating resistor is embedded in LCD

Note: LVDS Signal Waveform.

AU OPTRONICS CORPORATION

5.2.1 Parameter guideline for LED

Following characteristics are measured under a stable condition using an inverter at 25°C (Room Temperature):

Symbol	Paran	neter	Min.	Тур.	Max.	Unit	Remark
LED_VCCS	Input Voltage		9	12	15	[Volt]	
I _{LEDRUSH}	Inrush Current		-	-	1.5	[A]	
I _{LED}	Input Current		-	110	125	[mA]	Note 2
P _{LED}	Power Co	nsumption	-	1.32	1.5	[Watt]	Note 2
	EN Control	BL On	2.3	-	5	[\/o +1	
LED_EN	Level	BL Off	0	-	0.5	- [Volt]	
F _{PWM}	PWM Control Frequency		190	-	2000	[Hz]	
D _{PWM}	PWM Control Duty Ratio		10	-	100	[%]	PWM Control
	PWM Control	High Level	2.3	-	5	[\/o \ 1	PWW Control
V _{PWM}	Level	Low Level	0	-	0.5	[Volt]	
I _F	LED Forwa	rd Current	-	16.7	-	[mA]	Ta = 25°C
V _F	LED Forwa	rd Voltage	-	32	36	[Volt]	I _F = 16.7mA,Ta = 25°C
	P _{LED} LED Power Consumption				1.20	20 [Watt]	I _F = 16.7mA,Ta = 25°C
P _{LED}			-	1.07			(2 strings Power)
Operation							
Life			15,000	1	1	Hrs	I_F =16.7mA, Ta = 25°C

Note 1: Ta means ambient temperature of TFT-LCD module.

Note 2: $I_{LEDRUSH}$, I_{LED} , P_{LED} are defined for LED backlight and tested when LED_VCCS = 12V and 100% duty of PWM dimming.

Note 3: I_F, V_F are defined for one channel LED. There are two LED channel in back light unit.

Note 4: If G101STN01.6 module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.

Note 5: Operating life means brightness goes down to 50% initial brightness. Minimum operating life time is estimated data.

AU OPTRONICS CORPORATION

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship between input signal and LCD pixel format.

6.2 Scanning Direction

The following figures show the image seen from the front view. The arrow indicates the direction of scan.

AU OPTRONICS CORPORATION

6.3 Signal Description

The module uses a LVDS receiver embedded in AUO's ASIC. LVDS is a differential signal technology for LCD interface and a high-speed data transfer device.

Pin no	Symbol	Function	Remark
1	NC	Maker ID0	2.2k pull-down resistance in LCM
2	vccs	Power Supply (3.3V typ.)	
3	vccs	Power Supply (3.3V typ.)	
4	VEDID	DDC 3.3V power	If EDID function is not used, please keep it floating
5	NC	No Connection (Reserved for AUO test)	100k pull-down resistance in LCM
6	CLKEDID	DDC clock	If EDID function is
7	DATAEDID	DDC data	not used, please keep it floating.
8	Rxin0-	LVDS differential data input	
9	Rxin0+	EVD3 dillerential data iliput	
10	VSS	Ground	
11	Rxin1-	LVDS differential data input	
12	Rxin1+	EVDO dinicientali data iriput	
13	VSS	Ground	
14	Rxin2-	LVDS Differential Data Input	
15	Rxin2+	EVDO Dincientali Data Input	
16	VSS	Ground	
17	RxCLK-	LVDS differential clock input	
18	RxCLK+	LVDS differential clock input	
19	VSS	Ground	
20	Rxin3-	LVDS receiver signal channel 3	
21	Rxin3+	pin20 & pin21 connect to GND or NC for 6bit LVDS Input	
22	VSS	Ground	
23	SEL68	6/8bits LVDS data input selection SEL68 ="H": 8bits / SEL68 ="L" or NC: 6bits	
24	REV	Scanning direction selection. REV ="H": inversion / REV ="L" or NC: normal	
25	VSS	Ground	
26	NC	No Connection	
27	NC	No Connection	
28	VSS	Ground	

Product Specification AU OPTRONICS CORPORATION

Pin no	Symbol	Function	Remark
29	NC	No Connection (Reserve)	
30	NC	Maker ID1	2.2k pull-down resistance in LCM
31	LED_GND	LED Ground	
32	LED_GND	LED Ground	
33	LED_GND	LED Ground	
34	NC	No Connection (Reserve)	
35	LED_PWM	PWM Control Signal of LED Converter	
36	LED_EN	Enable Control Signal of LED Converter	
37	NC	No Connection (Reserve)	
38	LED_VCCS	LED Power Supply (12V typ.)	
39	LED_VCCS	LED Power Supply (12V typ.)	
40	LED_VCCS	LED Power Supply (12V typ.)	

Note 1: Input Signals shall be in low status when VCCS is off.

Note 2: NC means "No Connection".

AU OPTRONICS CORPORATION

6.4 The Input Data Format

6.4.1 SEL68

SEL68 ="Low" o	or "NC" for 6 bits LVD	OS Input
RxCLK		
Rxin0 Go	R5 R4 R3	3 R2 R1 R0
Rxin1 BI	B0 G5 G4	G3 G2 G1
Rxin2 DE	B5	5 B4 B3 B2

SEL68 = "High" 8 bits LVDS Input

RxCLK		
Rxin0 G0	R5 R4 R3	R2 R1 R0
Rxin1 BI	B0 G5 G4	G3 G2 GI
Rxin2 DE	B5	B4 B3 B2
Rxin3	B7 B6 G7	G6 R7 R6

Signal Name	Description	Remark
R7	Red Data 7	Red-pixel Data
R6	Red Data 6	
R5	Red Data 5	For 8Bits LVDS input
R4	Red Data 4	MSB: R7 ; LSB: R0
R3	Red Data 3	
R2	Red Data 2	For 6Bits LVDS input
R1	Red Data 1	MSB: R5 ; LSB: R0
R0	Red Data 0	
G7	Green Data 7	Green-pixel Data
G6	Green Data 6	
G5	Green Data 5	For 8Bits LVDS input
G4	Green Data 4	MSB: G7 ; LSB: G0
G3	Green Data 3	
G2	Green Data 2	For 6Bits LVDS input
G1	Green Data 1	MSB: G5 ; LSB: G0
G0	Green Data 0	
B7	Blue Data 7	Blue-pixel Data
B6	Blue Data 6	
B5	Blue Data 5	For 8Bits LVDS input
B4	Blue Data 4	MSB: B7 ; LSB: B0
B3	Blue Data 3	
B2	Blue Data 2	For 6Bits LVDS input
B1	Blue Data 1	MSB: B5 ; LSB: B0
B0	Blue Data 0	
RxCLKIN	LVDS Data Clock	
DE	Data Enable Signal	When the signal is high, the pixel data
		shall be valid to be displayed.

Note1: Please follow PSWG.

Note2: Output signals from any system shall be low or Hi-Z state when VCCS is off.

AU OPTRONICS CORPORATION

6.5 Interface Timing

6.5.1 Timing Characteristics

Signal		Symbol	Min.	Тур.	Max.	Unit
Clock Freq	uency	DCLK	40.8	51.2	67.2	MHz
	Period	T_V	610	635	800	
Vertical Section	Active	T_{Vd}	600	600	600	T_{Line}
	Blanking	T_Vb	10	35	200	
	Period	T _h	1114	1344	1400	
Horizontal Section	Active	T_{hd}	1024	1024	1024	T_{dclk}
	Blanking	T_hb	90	320	376	
Frame Rate			50	60	70	Hz
SSC Modulation Frequency		SSC _{MF}	23		93	KHz
SSC Modulation Rate		SSC _{MR}	-	-	±3	%

Note: DE mode.

6.5.2 Input Timing Diagram

AU OPTRONICS CORPORATION

6.6 Power ON/OFF Sequence

VCCS power and lamp on/off sequence is as below. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VCCS is off.

Power ON/OFF sequence timing

rower On/Orr Sequence unning						
Parameter		Units				
rarameter	Min.	Тур.	Max.			
T1	0.5	-	10	[ms]		
T2	0	-	50	[ms]		
Т3	200	-	-	[ms]		
T4	200	-	-	[ms]		
T5	0	-	50	[ms]		
T6	0	-	10	[ms]		
Т7	500	-	-	[ms]		
Т8	10	-	-	[ms]		
Т9	10	-		[ms]		
T10	10	-	-	[ms]		
T11	10	-	-	[ms]		
T12	0.5	-	10	[ms]		

The above on/off sequence should be applied to avoid abnormal function in the display. Please make sure to turn off the power when you plug the cable into the input connector or pull the cable out of the connector.

AU OPTRONICS CORPORATION

7. Connector & Pin Assignment

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module: LVDS Connector

Connector Name / Designation	Signal Connector
Manufacturer	IPEX or compatible
Connector Model Number	IPEX 20455-040E-76 or compatible
Adaptable Plug	IPEX 20453-040T-01 or compatible

Pin No.	Symbol	Pin No.	Symbol
1	NC	21	Rxin3+
2	VCCS	22	VSS
3	VCCS	23	SEL68
4	VEDID	24	REV
5	NC	25	VSS
6	CLKEDID	26	NC
7	DATAEDID	27	NC
8	Rxin0-	28	VSS
9	Rxin0+	29	NC
10	VSS	30	NC
11	Rxin1-	31	LED_GND
12	Rxin1+	32	LED_GND
13	VSS	33	LED_GND
14	Rxin2-	34	NC
15	Rxin2+	35	LED_PWM
16	VSS	36	LED_EN
17	RxCLK-	37	NC
18	RxCLK+	38	LED_VCCS
19	VSS	39	LED_VCCS
20	Rxin3-	40	LED_VCCS

AU OPTRONICS CORPORATION

8. Reliability Test Criteria

Items	Required Condition	Note
Temperature Humidity Bias	40 °C /90%,300Hr	
High Temperature Operation	60 °C, 300Hr	
Low Temperature Operation	-10 °C, 300Hr	
Hot Storage	70 °C, 300 hours	
Cold Storage	-30 °C, 300 hours	
Thermal Shock Test	-30 °C /30 min ,70 °C /30 min ,100cycles	
Shock Test (Non-Operating)	50G,20ms,Half-sine wave,(+-X,+-Y,+-Z)	
Vibration Test (Non-Operating)	1.5G, 10~200~10Hz, Sine wave 30mins/axis, 3 direction (X, Y, Z)	
ESD	Contact Discharge = ± 8 kV, class B (R=330,C=150pF) Air Discharge = ± 15 kV, class B (R=330,C=150pF) 1sec, 9 points, 25 times/point	Note1

Note 1: According to EN61000-4-2, ESD Class B: Some performance degradation allowed. No data lost . Self-recoverable. No hardware failures.

Note 2: After reliability test, it is no function defect and occurrence of any new defective shall not be allowed.

Note 3:

- Water condensation is not allowed for each test items.
- Each test is done by new TFT-LCD module. Don't use the same TFT-LCD module repeatedly for reliability test.
- The reliability test is performed only to examine the TFT-LCD module capability.
- To inspect TFT-LCD module after reliability test, please store it at room temperature and room humidity for 24 hours at least in advance.

G101STN01.6

AU OPTRONICS CORPORATION

9. Mechanical Characteristics

9.1 LCM Outline Dimension (Front View)

AU OPTRONICS CORPORATION

9.2 LCM Outline Dimension (Rear View)

AU OPTRONICS CORPORATION

10. Label and Packaging

10.1 Shipping Label (on the rear side of TFT-LCD display)

10.2 Customer Option Label

AU OPTRONICS CORPORATION

Max capacity: 35 TFT-LCD module per carton

Max weight: 9.0 kg per carton

Outside dimension of carton: 484(L) * 328(W) * 257(H)mm

Pallet size: 1,150mm * 980mm * 138mm

Box stacked_Max

Module by air: (2 *3) *5 layers, one pallet put 30 boxes, total 1,050 pcs module

Module by sea: (2 *3) *5 layers + (2 *3) *2 layers , two pallet put 42 boxes, total 1,470 pcs module Module by sea_HQ: (2 *3) *5 layers+(2 *3) *3 layers, two pallet put 48 boxes, total 1,680 pcs module

AU OPTRONICS CORPORATION

11.1 Sharp Edge Requirements

There will be no sharp edges or comers on the display assembly that could cause injury.

11.2 Materials

11.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible AUO toxicologist.

11.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be printed on the printed circuit board.

11.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

11.4 National Test Lab Requirement

The display module will satisfy all requirements for compliance to:

UL 60950-1 second edition

U.S.A. Information Technology Equipment

AU OPTRONICS CORPORATION

Address	FUNCTION	Value	Value	Value	Note
HEX		HEX	BIN	DEC	
00	Header	00	00000000	0	
01		FF	11111111	255	
02		FF	11111111	255	
03		FF	11111111	255	
04		FF	11111111	255	
05		FF	11111111	255	
06		FF	11111111	255	
07		00	00000000	0	
08	EISA Manuf. Code LSB	06	00000110	6	
09	Compressed ASCII	AF	10101111	175	
0A	Product Code	D2	11010010	210	
0B	hex, LSB first	10	00010000	16	
OC	32-bit ser#	00	00000000	0	
0D		00	00000000	0	
0E		00	00000000	0	
0F		00	00000000	0	
10	Week of manufacture	30	00110000	48	
11	Year of manufacture	17	00010111	23	
12	EDID Structure Ver.	01	00000001	1	
13	EDID revision #	00	00000000	0	
14	Video input def. (digital I/P, non-TMDS, CRGB)	80	10000000	128	
15	Max H image size (rounded to cm)	16	00010110	22	
16	Max V image size (rounded to cm)	0D	00001101	13	
17	Display Gamma (=(gamma*100)-100)	78	01111000	120	
18	Feature support (no DPMS, Active OFF, RGB, tmg Blk#1)	0A	00001010	10	
19	Red/green low bits (Lower 2:2:2:2 bits)	15	00010101	21	
1A	Blue/white low bits (Lower 2:2:2:2 bits)	85	10000101	133	
1B	Red x (Upper 8 bits)	97	10010111	151	
1C	Red y/ highER 8 bits	58	01011000	88	
1D	Green x	53	01010011	83	
1E	Green y	8A	10001010	138	
1F	Blue x	26	00100110	38	
20	Blue y	25	00100101	37	
21	White x	50	01010000	80	
22	White y	54	01010100	84	
23	Established timing 1	00	00000000	0	
24	Established timing 2	00	00000000	0	
25	Established timing 3	00	00000000	0	
26	Standard timing #1	01	00000001	1	
27	Standard timing #1	01	00000001	1	
28	Standard timing #2	01	00000001	1	
29	otanaara tining #2	01	00000001	1	

Product Specification AU OPTRONICS CORPORATION

2A	Standard timing #3	01	00000001	1 1	
2B	Standard timing #5	01	0000001	1	
2C	Standard timing #4	01	0000001	1	
2D	Standard timing #4	01	00000001	1	
2E	Standard timing #5	01	00000001	1	
2F	Canada a mining no	01	00000001	1	
30	Standard timing #6	01	00000001	1	
31	· ·	01	00000001	1	
32	Standard timing #7	01	00000001	1	
33		01	00000001	1	
34	Standard timing #8	01	0000001	1	
35		01	0000001	1	
36	Pixel Clock/10000 LSB	2D	00101101	45	
37	Pixel Clock/10000 USB	11	00010001	17	
38	Horz active Lower 8bits	00	00000000	0	
39	Horz blanking Lower 8bits	A0	10100000	160	
3A	HorzAct:HorzBlnk Upper 4:4 bits	40	01000000	64	
3B	Vertical Active Lower 8bits	58	01011000	88	
3C	Vertical Blanking Lower 8bits	13	00010011	19	
	Vert Act : Vertical Blanking (upper				
3D	4:4 bit)	20	00100000	32	
3E	HorzSync. Offset	32	00110010	50	
3F	HorzSync.Width	20	00100000	32	
40	VertSync.Offset : VertSync.Width	26	00100110	38	
41	Horz‖ Sync Offset/Width Upper 2bits	00	00000000	0	
42	Horizontal Image Size Lower 8bits	DE	11011110	222	
43	Vertical Image Size Lower 8bits	7D	01111101	125	
44	Horizontal & Vertical Image Size (upper 4:4 bits)	00	00000000	0	
45	Horizontal Border (zero for internal LCD)	00	00000000	0	
46	Vertical Border (zero for internal LCD)	00	00000000	0	
47	Signal (non-intr, norm, no stero, sep sync, neg pol)	18	00011000	24	
48	Detailed timing/monitor	00	00000000	0	
49	descriptor #2	00	00000000	0	
4A		00	00000000	0	
4B		0F	00001111	15	
4C		00	00000000	0	
4D		00	00000000	0	
4E		00	00000000	0	
4F		00	00000000	0	
50 51		00	00000000	0	
51		00	00000000	0	
52		00	00000000		
53		00	00000000	0	
55		00	00000000	0	
			1		
56		00	00000000	0	

				_	
57		00	00000000	0	
58		00	00000000	0	
59		20	00100000	32	
5A	Detailed timing/monitor	00	00000000	0	
5B	descriptor #3	00	00000000	0	
5C		00	00000000	0	
5D		FE	11111110	254	
5E		00	00000000	0	
5F	Manufacture	41	01000001	65	Α
60	Manufacture	55	01010101	85	U
61	Manufacture	4F	01001111	79	0
62		0A	00001010	10	
63		20	00100000	32	
64		20	00100000	32	
65		20	00100000	32	
66		20	00100000	32	
67		20	00100000	32	
68		20	00100000	32	
69		20	00100000	32	
6A		20	00100000	32	
6B		20	00100000	32	
6C	Detailed timing/monitor	00	00000000	0	
6D	descriptor #4	00	00000000	0	
6E		00	00000000	0	
6F		FE	11111110	254	
70		00	00000000	0	
71	Manufacture P/N	47	01000111	71	G
72	Manufacture P/N	31	00110001	49	1
73	Manufacture P/N	30	00110000	48	0
74	Manufacture P/N	31	00110001	49	1
75	Manufacture P/N	53	01010011	83	S
76	Manufacture P/N	54	01010100	84	Т
77	Manufacture P/N	4E	01001110	78	N
78	Manufacture P/N	30	00110000	48	0
79	Manufacture P/N	31	00110001	49	1
7A	Manufacture P/N	2E	00101110	46	
7B	Manufacture P/N	30	00110000	48	0
7C		0A	00001010	10	
7D		20	00100000	32	
7E	Extension Flag	00	00000000	0	
7F	Checksum	18	00011000	24	