

南开大学

计算机学院和密码与网络空间安全学院

《并行程序设计》实验报告

作业三: NTT 算法 SIMD 并行优化

姓名:梁景铭

学号: 2312632

专业:计算机科学与技术

指导教师:王刚

2025年4月26日

摘要

本文聚焦 NTT 算法优化,基于 SIMD 并行技术实现向量化 Montgomery 模乘与蝴蝶变换,通过数据对齐和指令集加速降低计算开销,实验验证其显著提升多项式乘法效率。实验代码及图片已全部上传至:

https://github.com/eprogressing/NKU_COSC0025_Parallel 关键字: NTT, SIMD, Montgomery 模乘,蝴蝶变换

目录

1	问题		1
	1.1	期末选题	1
	1.2	本次题目选题	1
		1.2.1 实验要求	1
2	NT'	T 算法	2
	2.1	FTT、NTT 算法对比分析	2
		2.1.1 关键公式	2
		2.1.2 FFT, NTT 计算开销对比	3
	2.2	NTT 算法分析	3
		2.2.1 数论前置知识	3
	2.3	NTT 串行算法实现	4
3	NT'	T 算法优化	7
	3.1	Montgomery 模乘	7
		3.1.1 理论分析	7
		3.1.2 参数预计算	7
		3.1.3 标量运算优化	7
		3.1.4 数据格式转换流程	8
	3.2	蝴蝶变换	8
	3.3	四分 NTT	9
	3.4	SIMD 并行优化分析	11
		3.4.1 数据对齐	11
			11
		3.4.3 向量化蝴蝶变换	12
	3.5	越界问题处理	12
4	实验	全和结果分析	13
	4.1		13
			13
			14
	4 2		14

1 问题描述

1.1 期末选题

NTT, Number Theoretic Transform,数论变换。这种算法是以数论为基础,对样本点的数论变换,按时间抽取的方法,得到一组等价的迭代方程,有效高速地简化了方程中的计算公式。与直接计算相比,大大减少了运算次数。数论变换是一种计算卷积的快速算法。

NTT 具有高效性、适用性和可扩展性等特点,可以应用于信号处理、图像处理、密码学等领域。相比于传统的算法,NTT 能够大大减少计算运算次数,提高计算效率,是解决一些特定问题的有力工具。在期末大作业中,拟在之前实验基础上探索更多的 NTT 优化算法 [1],对比不同并行环境下不同算法的性能,并在特定的场景下应用。

NTT 的计算流程图,如图 1.1 所示。

图 1.1: NTT 计算流程图 [2]

这张图直观展示了 NTT 的分治计算流程:通过递归模运算将复杂多项式拆解为线性因子,最终组合得到变换结果。右侧的树形结构体现了分治的层次性,左侧步骤则具体说明了每层分解的操作。

1.2 本次题目选题

1.2.1 实验要求

本实验主要探索在 SIMD 指令集下对 NTT 进行优化实现的可行性与效果。NTT 的 SIMD 优化需要解决两个主要难点:

- 1. NEON 等 SIMD 指令不支持取模运算,因此需要手动实现模运算逻辑
- 2. 在递归实现 NTT 时,循环主体涉及大量蝶形变换,向量内部的数据需进行手动交换和重排。

实验的基础部分是完成蝶形运算的向量化实现,这部分较为简单,配合已有的 NTT 代码即可完成。相比之下,模乘操作是 NTT 中最为耗时的一环,但由于普通模乘难以直接向量化,因此实验中引入 Montgomery 模乘算法来提升效率。该算法通过引入与模数相关的参数 r,将 $a \times b \times r^{-1} \mod p$ 的运算转化为一系列加法、减法和位运算,从而避免使用直接取模操作,适合在 SIMD 环境中实现。

在完成基本优化的基础上,探索更高级的 NTT 优化方案,本次实验我采用四分 NTT SIMD 指令优势的变体算法,进一步提高性能。

2 NTT 算法

2.1 FTT、NTT 算法对比分析

在算法导论课中,我们已经学习过 FFT 算法,这里只做简单的描述。快速傅里叶变换 (FFT) 是 离散傅里叶变换 (DFT) 的高效算法,可将复杂度从 $O(N^2)$ 降至 $O(N \log N)$ 。

- ▶ 分治法:将 DFT 分解为更小的 DFT
- ▶ 利用旋转因子 $W_N^{nk} = e^{-j2\pi nk/N}$ 的对称性和周期性
- ▶ 常用 Cooley-Tukey 算法

2.1.1 关键公式

DFT 定义:

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot W_N^{nk}, \quad 0 \le k \le N-1$$

FFT 通过分解为:

$$\begin{cases} X[2r] = \sum_{m=0}^{N/2-1} (x[m] + x[m+N/2]) \cdot W_{N/2}^{mr} \\ X[2r+1] = \sum_{m=0}^{N/2-1} (x[m] - x[m+N/2]) \cdot W_N^m \cdot W_{N/2}^{mr} \end{cases}$$

图 2.2: FFT 算法解释图

而 NTT 是 FFT 在数论基础上的实现。尽管 FFT 在多项式乘法等计算问题中具有 $O(n \log n)$ 的优良时间复杂度,但其仍存在一些不足之处。

首先,FFT 依赖于复数域的离散傅里叶变换,其计算过程中不可避免地使用了浮点数。在实际计算中容易造成含入误差的积累,尤其在进行正变换和逆变换之后,误差可能导致结果偏离整数,影响精度。在一些对数值结果要求严格的场景,如大整数乘法、组合计数或模意义下的系数计算中,这种精度问题尤为突出。

此外,FFT 的实现涉及大量复数运算,包括旋转因子的计算、实部与虚部的处理等,增加了实现的复杂性,并导致程序运行中的常数较大。这在对运行效率要求极高的场景中可能成为瓶颈。

为了解决上述问题,引入了数论变换(NTT)。NTT 与 FFT 在理论结构上非常相似,但其运算完全基于模 p 的整数域,使用整数单位根替代复数单位根,从而彻底避免了浮点数带来的精度误差。同时,由于所有运算均为整数加法、减法与乘法,NTT 在实现上更加简洁,且具有更小的常数开销。在许多面向整数计算的问题中,NTT 不仅保证了结果的准确性,也提升了整体的计算效率。

2.1.2 FFT, NTT 计算开销对比

这里我通过 Leetcode 第 43 题字符串相乘运行程序,对比 FFT 和 NTT 之间的开销,结果如下:

图 2.3: FFT 和 NTT 程序性能对比

可以看到在执行用时分布和内存消耗分布上, NTT 都比 FTT 有更加明显的优势。

2.2 NTT 算法分析

2.2.1 数论前置知识

欧拉函数和欧拉定理 欧拉函数 $\varphi(n)$ 表示小于等于 n 且与 n 互素的正整数的个数。特别地,当 n 是素数时,有:

$$\varphi(n) = n - 1.$$

欧拉定理指出:对于任意整数 $a \in \mathbb{Z}$ 和正整数 $m \in \mathbb{N}^*$,若 gcd(a,m) = 1,则有:

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$
.

在 NTT 中,通常需要在模一个质数 p 的意义下进行运算。此时, $\varphi(p) = p-1$,欧拉定理保证了对于任意与 p 互素的 a,有 $a^{p-1} \equiv 1 \pmod{p}$ 。这一性质使得我们可以选取一个原根 g,通过 $g^{(p-1)/n}$ 构造出 n 次单位根,从而实现模 p 的快速数论变换。

费马小定理 费马小定理指出: 若 p 为素数,且 gcd(a,p) = 1,则有

$$a^{p-1} \equiv 1 \pmod{p}$$
.

等价地,对于任意整数 a,有

$$a^p \equiv a \pmod{p}$$
.

在数论变换中,为了进行模 p 意义下的除法操作,常常需要求某个数的逆元。由费马小定理可得,当 a 与 p 互素时,其模逆元为

$$a^{-1} \equiv a^{p-2} \pmod{p}.$$

这使得我们可以通过快速幂算法高效地求出逆元,从而完成 NTT 中对多项式系数的归一化处理。

阶 由欧拉定理可知,若 gcd(a, m) = 1,则存在最小的正整数 n 使得

$$a^n \equiv 1 \pmod{m}$$
.

这个最小的 n 称为 a 模 m 的**阶**,记作 $\delta_m(a)$ 或 $ord_m(a)$ 。

阶具有以下两个重要性质:

- ▶ **性质 1:** $a, a^2, ..., a^{\delta_m(a)}$ 在模 m 意义下两两不同余,之后将进入周期性重复;
- ▶ 性质 2: 若 $a^n \equiv 1 \pmod{m}$,则 $\delta_m(a) \mid n$,从而可推得若 $a^p \equiv a^q \pmod{m}$,则 $p \equiv q \pmod{\delta_m(a)}$ 。 在 NTT 中,为了构造 n 次单位根 ω ,需选择一个模 p 的原根 g,使得 $ord_p(g) = p - 1$,再令 $\omega = g^{(p-1)/n}$,确保 ω 的阶为 n,从而能够生成 n 个不同的单位根,满足数论变换的需求。

原根 设 $n \in \mathbb{N}^*$, $g \in \mathbb{Z}$, 若 gcd(g,m) = 1 且 $\delta_m(g) = \varphi(m)$, 则称 g 为模 m 的**原根**。

当 m 为素数时,有 $\varphi(m) = m - 1$,此时 $g^i \mod m$ 对于 0 < i < m 两两不同。

原根个数: 若模数 m 存在原根,则原根的个数为 $\varphi(\varphi(m))$ 。

原根存在定理: 模数 m 存在原根当且仅当 $m=2,4,p^a,2p^a$, 其中 p 为奇素数, $a \in \mathbb{N}^*$ 。

原根的性质:

- ▶ 不重性: $\forall 0 \le i < j < \varphi(p)$, 有 $g^i \not\equiv g^j \pmod{p}$;
- **折半性:** 定义 $g_n = g^{\frac{p-1}{n}}$, 则有 $g_{an}^{ak} \equiv g_n^k \pmod{p}$;
- **对称性:** $g_{2n}^{k+n} \equiv -g_{2n}^k \pmod{p}$;
- **水和性:** $\sum_{i=0}^{n-1} (g_n)^{ki} \equiv n[k=0] \pmod{p}$, 其中 [k=0]=1, 否则为 0。

原根与模数的选择: 为了支持多次二分变换,模数 p 一般选取为形如 $p = q \cdot 2^k + 1$ 的素数,其中 q 为奇素数,k 控制可支持的最大变换长度 2^k 。

原根 g 模数 p 分解形式 模数的阶 3 469762049 $7 \times 2^{26} + 1$ 2^{26} 3 998244353 $119 \times 2^{23} + 1$ 2^{23} 3 2281701377 $17 \times 2^{27} + 1$ 2^{27}

表 1: 常用模数与原根

2.3 NTT 串行算法实现

现在给出迭代版本的算法,不难发现除了将单位根替换为原根,增加模运算,以及增加了参数,原根 g,模数 p 外与 FFT 并无太大区别。

Algorithm 1 Iteration NTT

```
Input: Array A = [a_0, a_1, \dots, a_{n-1}], length n = 2^k, primitive root g, prime modulus p Output: NTT transformed array P
```

```
n \leftarrow \text{len}(A) \ P \leftarrow \text{BitReverseCopy}(A) \ \textbf{for} \ s = 1 \ \textbf{to} \ \log n \ \textbf{do}
```

```
m \leftarrow 2^{s} \quad g_{m} \leftarrow g^{n/m} \mod p \quad \text{for } k = 0 \text{ to } n - 1 \text{ } m \text{ do}
\varphi \leftarrow 1 \quad \text{for } j = 0 \text{ to } \frac{m}{2} - 1 \text{ do}
t \leftarrow \varphi \cdot P[k + j + \frac{m}{2}] \mod p \quad u \leftarrow P[k + j] \mod p \quad P[k + j] \leftarrow (u + t) \mod p \quad P[k + j + \frac{m}{2}] \leftarrow (u - t) \mod p \quad \varphi \leftarrow (\varphi \cdot g_{m}) \mod p
```

return P

NTT 串行算法的整体代码如下:

```
#include <iostream>
   #include <cstring>
   using namespace std;
   using int64 = long long;
   const int MAXN = 1 << 23; // 8,388,608, 足以为 lim 达到 2~23
   const int64 p = 998244353; // NTT友好的模数: 998244353 = 2^23 * 119 + 1
   int64 A[MAXN], B[MAXN];
  int rev[MAXN], ans[MAXN];
   int lim = 1, log2_lim = 0;
   inline int64 pow(int64 b, int64 e) {
      int64 res = 1;
11
      while (e) {
         if (e & 1) res = res * b % p; // 模乘法
         b = b * b % p;
                                    // 基数平方
          e >>= 1;
16
      return res;
   }
18
   inline void swap(int64& c1, int64& c2) {
      int64 t = c1; c1 = c2; c2 = t;
   }
21
   void NTT(int64* c, int flag) {
22
      for (int i = 0; i < lim; i++)</pre>
23
          if (i < rev[i])</pre>
             swap(c[i], c[rev[i]]); // 位反转置换
      for (int j = 1; j < lim; j <<= 1) {</pre>
          int j2 = j << 1;
          int64 w = pow(3, (p - 1) / j2); // 原根的幂
          if (flag == -1) w = pow(w, p - 2); // 逆变换的逆元
29
         for (int k = 0; k < lim; k += j2) {</pre>
30
             int64 t = 1;
             for (int l = 0; l < j; l++, t = t * w % p) {</pre>
                 int kl = k + 1;
                 int64 Nx = c[kl], Ny = t * c[kl + j] % p;
                 c[kl] = (Nx + Ny) % p; // 蝶形运算: 偶数部分
35
                 c[kl + j] = (Nx - Ny + p) % p; // 蝶形运算: 奇数部分, 确保 >= 0
36
             }
          }
39
      if (flag == -1) {
40
```

```
int64 inv = pow(lim, p - 2); // lim 的乘法逆元
         for (int i = 0; i < lim; i++)</pre>
42
             c[i] = c[i] * inv % p; // 归一化逆 NTT
43
      }
  }
  int main() {
      string s1_str, s2_str;
47
      cin >> s1_str >> s2_str;
      int len_A = s1_str.length(), len_B = s2_str.length();
49
      for (int i = 0; i < len_A; i++)</pre>
50
         A[i] = s1 str[len A - 1 - i] - '0'; // 反转并转换为数字
      for (int i = 0; i < len_B; i++)</pre>
         B[i] = s2_str[len_B - 1 - i] - '0'; // 反转并转换为数字
53
      int len_AB = len_A + len_B;
      while (lim < len_AB) lim <<= 1, log2_lim++; // 将 lim 设置为下一个 2 的幂
      for (int i = 1; i < lim; i++)</pre>
         rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (log2_lim - 1)); // 预计算 rev
      NTT(A, 1); NTT(B, 1); // 正向 NTT
      for (int i = 0; i < lim; i++)</pre>
         A[i] = A[i] * B[i] % p;
                                  // 点对点乘法
60
      NTT(A, -1);
                                   // 逆 NTT
61
      for (int i = 0; i < lim; i++) {</pre>
62
         ans[i] += A[i];
         if (ans[i] >= 10) {
             ans[i + 1] += ans[i] / 10; // 进位传播
             ans[i] %= 10;
                                   // 保留 0-9 的数字
66
         }
67
68
      int max_lim = lim - 1;
      while (max_lim > 0 && ans[max_lim] == 0) max_lim--; // 找到最高的非零数字
      if (max lim == -1) cout << "0"; // 处理零乘积
      else {
         for (int i = max lim; i >= 0; i--)
73
            cout << ans[i]; // 从最高有效位到最低有效位打印结果
74
      }
75
      return 0;
76
77 }
```

自此,关于 NTT 算法的介绍和分析就结束了,下面的部分将根据实验要求和上面的叙述,进行 代码的优化和 SIMD 并行操作。

3 NTT 算法优化

3.1 Montgomery 模乘

3.1.1 理论分析

由于 Neon 的向量化指令不支持直接取模运算,本实验采用 Montgomery 规约方法,将模乘转化为适合 SIMD 优化的操作。Montgomery 规约通过引入一个大于模数 n 且与之互质的参数 r,将数值映射到 Montgomery 空间。在此空间中,加减法与常规一致,而乘法则需经过特殊处理。

具体而言,若 x,y 在 Montgomery 空间中表示为 $\overline{x}=x\cdot r \bmod n$ 和 $\overline{y}=y\cdot r \bmod n$,则它们的乘积可以通过下式计算:

$$\overline{x} * \overline{y} = (\overline{x} \cdot \overline{y} \cdot r^{-1}) \bmod n$$

为了避免显式除法操作,使用预先计算好的参数 n',将模乘规约简化为加减、乘法和移位运算。例如,对于 32 位情况,规约过程可以表示为:

$$q = (x \times n') \bmod r$$
$$m = q \times n$$
$$y = (x - m) \gg 32$$

若 x < m,则输出 y + n,否则输出 y。这一过程中的所有操作均可使用 SIMD 指令优化,从而 大幅提升大规模 NTT 计算的性能。

3.1.2 参数预计算

在算法初始化阶段,系统预计算关键参数以支持快速 Montgomery 运算。选定 $R=2^{32}$ 作为规约基数,该值匹配处理器的 32 位字长特性。通过扩展欧几里得算法计算模数 p 的逆元 $p^{-1} \mod R$,随后生成核心参数 $mont_factor = -p^{-1} \mod R$ 。该参数将用于后续乘法运算中的快速约简计算,其预计算过程如代码所示:

```
const u64 R = 1ULL << 32;
const u32 R_mod = R % p;
const u64 inv = mod_inverse(p, R);
const u32 mont_factor = (u32)(R - inv);</pre>
```

参数间的数学关系确保了后续运算的正确性。其中 $R \cdot R^{-1} \equiv 1 \mod p$ 的成立性通过逆元算法保证,而 $mont_factor$ 的构造使得乘法运算中的中间值约简无需实际除法操作。

3.1.3 标量运算优化

基础标量运算采用经典的 Montgomery 乘法四步法实现。对于输入值 $a,b \in \mathbb{Z}_p$,其 Montgomery 乘积计算过程为:

$$t = a \cdot b \tag{1}$$

$$m = (t \cdot \mathtt{mont_factor}) \mod R$$

$$u = \left| \frac{t + m \cdot p}{R} \right|$$

Result =
$$\begin{cases} u - p, & \text{if } u \ge p \\ u, & \text{otherwise} \end{cases}$$

对应的代码实现通过 64 位中间变量避免溢出,并利用位运算替代除法。关键代码段展示了对乘积的高效处理:

```
u32 montgomery_mul_scalar(u32 a, u32 b, u32 mod, u32 mont_factor) {
    u64 t = (u64)a * b;
    u32 m = (u32)t * mont_factor;
    u64 u = (t + (u64)m * mod) >> 32;
    return (u >= mod) ? u - mod : u;
}
```

此实现将传统模乘的1次除法、1次乘法优化为2次乘法和1次移位操作。

3.1.4 数据格式转换流程

系统采用分层转换策略确保数据一致性:

- **输入阶段**: 将多项式系数 a_i 转换为 Montgomery 形式 $a_i' = a_i \cdot R \mod p$,消除后续运算中的重复 转换开销
- ▶ 运算阶段: 所有 NTT 蝶形运算均在 Montgomery 数域内进行,避免传统实现中的频繁格式转换
- ▶ **输出阶段**: 通过 mont_mul(*a'_i*, 1) 将结果转换回标准数域,保证与其他系统的兼容性 完整的数据流可抽象为:

$$\mathbb{Z}_p \xrightarrow{\times R} \mathbb{M}_p \xrightarrow{\mathrm{NTT}} \mathbb{M}_p \xrightarrow{\times R^{-1}} \mathbb{Z}_p$$

其中 \mathbb{M}_p 表示 Montgomery 数域,该设计使得运算在 \mathbb{M}_p 内完成,显著减少格式转换次数。

3.2 蝴蝶变换

Algorithm 2 Butterfly Operation with Montgomery Multiplication

Input: Array $A = [a_0, a_1, \dots, a_{n-1}]$, length n, modulus m, twiddle factors W_n , precomputed Montgomery factors wn_mont , Montgomery factor $mont_factor$

Output: Transformed array A after butterfly operation

 $\underline{\mathbf{return}\ A}$

在整个蝶形计算过程中, 我们按照如下步骤进行:

首先,使用分层分治的方法逐步处理数据。外层循环中,变量 mid 从 2^0 , 2^1 , 2^2 , ... 开始,每次翻倍,直到覆盖整个数组长度 limit。在每一层中,将数组划分为若干长度为 2mid 的小段,分别对每段执行蝶形变换。在每个小段处理前,旋转因子 w 初始化为单位元 1,其中 W_n 是模 m 意义下的本原单位根。随着内层循环 k 推进,旋转因子更新为

$$w \leftarrow (w \cdot W_n) \bmod m$$
,

以保证不同位置对应的旋转角度正确。

接下来进行数据加载与旋转:对于索引对(j,k),取出原数组元素

$$x = a[j+k], \quad y = a[j+k+\text{mid}],$$

并调用

$$y_w = montgomery_mul_scalar(y, wn_mont[offset + k], m, mont_factor)$$

蝶形合并操作更新公式为

$$\begin{cases} u = (x + y_w) \bmod m, \\ v = (x - y_w + m) \bmod m, \end{cases}$$

确保结果始终落在 [0, m) 范围内。计算结果写回数组:

$$a[j+k] \leftarrow u, \quad a[j+k+\mathrm{mid}] \leftarrow v.$$

每层蝶形操作结束后,更新旋转因子表偏移量:

$$offset \leftarrow offset + mid.$$

3.3 四分 NTT

在函数 $ntt_butterfly_neon$ 中,当每个阶段的步长 $mid \ge 4$ 时,使用 NEON 向量指令一次处理 4 个蝶形对:

```
uint32x4_t sum_mask =
             vcgeq_u32(x, vsubq_u32(vdupq_n_u32(mod), yw));
          sum = vbslq u32(sum mask, sum, vaddq u32(x, yw));
         // 计算 v = (x - yw) mod p
         uint32x4_t diff = vsubq_u32(x, yw);
          diff = vaddq_u32(diff, vdupq_n_u32(mod));
         uint32x4_t diff_mask =
             vcgeq_u32(diff, vdupq_n_u32(mod));
          diff = vbslq_u32(diff_mask,
                        vsubq_u32(diff, vdupq_n_u32(mod)),
                        diff);
26
          // 并行写回
27
          vst1q_u32(a + j + k, sum);
          vst1q_u32(a + j + mid + k, diff);
      }
   }
31
```

对应的数学表达如下。记向量

$$\mathbf{X} = (x_0, x_1, x_2, x_3), \quad \mathbf{Y} = (y_0, y_1, y_2, y_3), \quad \boldsymbol{\omega} = (\omega_0, \omega_1, \omega_2, \omega_3).$$

则对每个分量 i=0,1,2,3,标准蝶形操作为

$$\begin{cases} u_i = x_i + y_i \,\omega_i \pmod{p}, \\ v_i = x_i - y_i \,\omega_i \pmod{p}. \end{cases}$$

在向量化形式中, 记逐分量的 Montgomery 乘积为

$$\mathbf{Y}\mathbf{W} = \mathbf{Y} \odot \boldsymbol{\omega},$$

则一次指令即可完成四个蝶形:

$$\mathbf{U} = (\mathbf{X} + \mathbf{Y}\mathbf{W}) \bmod p, \qquad \mathbf{V} = (\mathbf{X} - \mathbf{Y}\mathbf{W}) \bmod p,$$

并通过条件选择指令保证结果落在区间 [0, p) 内。

这种四路并行蝶形的优势在于:

- ▶ 减少循环开销:每次迭代处理 4 个元素,循环次数减小为原来的四分之一。
- ▶ **高效内存访问**: 一次加载/存回 128 bit (4×32 bit) 的数据。
- ▶ 流水线并行: 充分利用 ARM NEON 的 SIMD 单元,同时执行多次乘加运算。

由此,整体 NTT 时间复杂度依然为 $O(n\log n)$,但常数因子显著下降,实现了高效的 "四分 NTT" 优化。

3.4 SIMD 并行优化分析

在本实现中,我们利用 ARM NEON 的 128 位向量寄存器,通过 SIMD 指令对 NTT 的核心步骤进行加速。

3.4.1 数据对齐

首先,所有需要通过 NEON 加载和存储的数组都使用如下接口以 32 字节对齐方式分配,确保每次 vld1q_u32 和 vst1q_u32 均在对齐边界上完成,从而最大化 SIMD 内存带宽:

```
static void* aligned_malloc(size_t alignment, size_t size) {
   void* ptr = nullptr;
   if (posix_memalign(&ptr, alignment, size) != 0)
      ptr = nullptr;
   return ptr;
}
```

3.4.2 向量化 Montgomery 乘积

在蝴蝶运算中,当子块长度 $mid \ge 4$ 时,我们一次性加载四个相邻元素向量 \mathbf{x} 和 \mathbf{y} ,以及旋转因子向量 \mathbf{w} ,均为 $uint32x4_t$ 类型,并调用下述 SIMD 版 Montgomery 乘积函数:

```
uint32x4_t montgomery_mul_neon(uint32x4_t a, uint32x4_t b,
                            u32 mod, u32 mont_factor) {
      // 拆分低/高两对以做并行 64×32 位乘法
      uint32x2_t a_lo = vget_low_u32(a), a_hi = vget_high_u32(a);
      uint32x2_t b_lo = vget_low_u32(b), b_hi = vget_high_u32(b);
      // vmull_u32 同时计算两对乘积, 得到 uint64x2_t 向量
      uint64x2_t t_lo = vmull_u32(a_lo, b_lo),
               t_hi = vmull_u32(a_hi, b_hi);
      // vmovn_u64 提取低 32 位, vcombine_u32 合并为四路中间值
      uint32x4_t t_low = vcombine_u32(vmovn_u64(t_lo), vmovn_u64(t_hi));
      // 并行计算 m i = (t i mod 2~32) * mont factor
      uint32x4_t m_vec = vmulq_n_u32(t_low, mont_factor);
      // 并行计算 t i + m i * mod
13
      uint64x2_t prod_lo = vmull_u32(vget_low_u32(m_vec), vdup_n_u32(mod));
14
      uint64x2_t prod hi = vmull_u32(vget_high_u32(m_vec), vdup_n_u32(mod));
      uint64x2_t sum_lo = vaddq_u64(t_lo, prod_lo),
               sum_hi = vaddq_u64(t_hi, prod_hi);
      // vshrn_n_u64 右移 32 位提取高半字,再用 vbslq_u32 条件减法完成模约化
      uint32x4_t u_vec = vcombine_u32(vshrn_n_u64(sum_lo, 32),
19
                               vshrn_n_u64(sum_hi, 32));
20
      uint32x4_t mask = vcgeq_u32(u_vec, vdupq_n_u32(mod));
      return vbslq_u32(mask,
```

```
vsubq_u32(u_vec, vdupq_n_u32(mod)),
u_vec);
}
```

该函数一次调用即可完成四对 (a_i,b_i) 的乘法、累加以及条件减模,从而获得很大程度的 SIMD 并行性能提升。

3.4.3 向量化蝴蝶变换

在 ntt_butterfly_neon 中,我们将四路 Montgomery 乘积结果与原向量并行求和与求差,并在同一循环体内通过 SIMD 指令完成模约化和写回:

```
for (int k = 0; k < mid; k += 4) {
      uint32x4_t x = vld1q_u32(a + j + k);
      uint32x4_t y = vld1q_u32(a + j + mid + k);
      uint32x4_t w = vld1q_u32(wn_mont + offset + k);
      uint32x4_t yw = montgomery_mul_neon(y, w, mod, mont_factor);
      // 并行加法与模约化
      uint32x4_t sum = vaddq_u32(x, yw);
      uint32x4_t sum_mask = vcgeq_u32(sum, vdupq_n_u32(mod));
      sum = vbslq_u32(sum_mask, vsubq_u32(sum, vdupq_n_u32(mod)), sum);
      // 并行减法与模约化
      uint32x4_t diff = vsubq_u32(x, yw);
      diff = vaddq_u32(diff, vdupq_n_u32(mod));
      uint32x4_t diff_mask = vcgeq_u32(diff, vdupq_n_u32(mod));
      diff = vbslq_u32(diff_mask, vsubq_u32(diff, vdupq_n_u32(mod)), diff);
14
      vst1q_u32(a + j + k,
      vst1q_u32(a + j + mid + k, diff);
16
  }
17
```

这样,蝴蝶操作的循环次数被缩减为原来的 1/4, SIMD 指令在一次循环内完成四路并行计算。当 mid < 4 时,出于安全考虑,算法会自动回退到标量版本,从而避免向量加载越界。通过以上对齐分配、Montgomery乘法及蝴蝶运算的三大 SIMD 优化,NTT 主循环在理论上获得了很好的性能提升。

3.5 越界问题处理

在引入第四个模数 $p_4=263882790666241>2^{32}$ 后,原有基于 32 位整型的实现已无法正确表示模数及其中间乘积。我们的解决方案是在整个 NTT 流程中将与 p_4 相关的变量全部升级为 64 位类型,并利用 128 位中间计算保证乘法精度。在后续期末大作业中,会实现大模数 NTT 更加准确的算法。

```
多项式乘法结果正确
average latency for n = 131072 p = 469762049 : 64.5254 (us)
多项式乘法结果错误
average latency for n = 131072 p = 2147483647 : 62.0255 (us)
```

图 3.4: 模数为 263882790666241 发生错误

4 实验和结果分析

4.1 Profiling

4.1.1 Perf 多项指标分析

下表展示了使用 perf record + perf report 对程序 main 采样分析后的热点函数分布:

表	1:	热点函数采样结果

% Samples	进程名	对象	函数名 / 符号
33.86%	main	main	ntt_butterfly_neon
14.45%	main	libstdc++.so.6.0.28	std::num_get <char>::_M_extract_int<long></long></char>
10.87%	$_{\mathrm{main}}$	main	bit_reverse
7.61%	main	main	poly_multiply
6.84%	$_{\mathrm{main}}$	libstdc++.so.6.0.28	(地址符号)
3.69%	main	libstdc++.so.6.0.28	std::istream::sentry::sentry
3.62%	main	libstdc++.so.6.0.28	(地址符号)
3.51%	main	libstdc++.so.6.0.28	std::basic_streambuf<
		,	>::xsputn@plt
3.39%	main	libstdc++.so.6.0.28	std::ostream::_M_insert <long></long>
3.35%	main	main	std::ostream::operator«@plt
3.29%	main	libstdc++.so.6.0.28	std::ostream_insert <char, ···=""></char,>
3.28%	main	libc.so.6	(地址符号)

图 4.5: 热点函数分布

从表中可以看出,程序的时间主要消耗在蝴蝶变换和位反转上:

▶ ntt_butterfly_neon: 33.86%

bit_reverse: 10.87%poly_multiply: 7.61%

这三者合计超过50%,是优化的重点,原因我会在下面的个人思考中具体阐述。

下表展示了执行命令

perf stat -e cycles, instructions, cache-misses ./main

得到的关键性能计数器结果:

- ▶ IPC = 2.20: 表示平均每个周期能执行约 2.2 条指令,说明流水线利用率较高。
- > 缓存未命中率:

$$\frac{\text{cache-misses}}{\text{instructions}} = \frac{1,000,814}{728,003,742} \approx 0.14\%$$

说明每百条指令大约有 0.14 次缓存未命中,整体缓存命中率良好。

指标	数值	单位	备注
总 CPU 周期 指令数 指令 / 周期 缓存未命中次数	330,941,684 728,003,742 2.20 1,000,814	cycles:u instructions:u insn/cycle cache-misses:u	用户态累计周期数 用户态执行指令总数 IPC (Instructions Per Cycle) L1/L2 等缓存未命中总数
运行总时长 用户态时间 内核态时间	0.1635 0.1275 0.0164	s s s	

表 2: 关键性能指标统计

▶ **用户态 vs 内核态**: 用户态耗时约 0.1275 s, 内核态(系统调用、上下文切换等)仅约 0.0164 s, 占 比不到 11%, 说明程序主要在用户态计算, 系统开销较低。

1

4.1.2 和朴素多项式乘法性能对比

算法	n	p	平均延迟 (us)	结果正确性
	4	7340033	0.00021	正确
 朴素算法(暴力)	131 072	7 340 033	95673.6	正确
作系异仏(茶月)	131 072	104 857 601	101 832	正确
	131 072	469 762 049	106271	正确
	4	7340033	0.01715	正确
并行 + 优化后	131 072	7340033	65.0948	正确
<u> </u>	131 072	104857601	64.8335	正确
	131 072	469 762 049	64.4712	正确

▶ 小规模输入 (n = 4):

$$T_{\text{Abg}} = 0.00021 \ us, \quad T_{\text{Afg} + \text{file}} = 0.01715 \ us$$

并行初始化开销使得并行版本比朴素版本慢约80×。

▶ 大规模输入 (n = 131 072):

算法	$p = 7.34 \times 10^6$	$p = 1.048 \times 10^8$	$p = 4.6976 \times 10^8$
朴素	$95,\!673.6\ us$	$101,\!832~us$	$106,\!271\ us$
并行 + 优化	65.095~us	64.834~us	$64.471\ us$

加速比约在 1.5×10^3 到 1.65×10^3 之间,且与模数 p 大小几乎无关。

所以若 n 特别小的情况下,建议使用简单的朴素算法,避免并行化的初始化开销;当 n 规模特别大时,使用并行 + 优化算法,可获得千倍级性能提升。

4.2 一些个人思考及未来优化部分

对于长度为 $N=2^m$ 的多项式系数序列

$$a = (a[0], a[1], \dots, a[N-1]),$$

传统的 Cooley-Tukey NTT 实现需在输入端进行一次下标的位反转,即

$$a_{rev}[i] = a(bitrev(i)),$$

随后在 a_{rev} 上执行分层蝶形运算,最后再对结果做一次逆位反转,才能恢复到自然序列。这两次全序列的非连续下标重排在大规模数据下,会带来严重的缓存不命中与额外的访存开销。

在合并 DIT 与 DIF 的方案中, 我们仅在初始阶段进行一次位反转:

$$a_{rev}[i] = a(bitrev(i)),$$

然后先后执行时间抽取(DIT)和频率抽取(DIF)的蝶形网络,最终直接得到按自然序排列的输出,无需再次调用 bitrev。在 DIT 阶段,对于每一层 $\ell=1,2,\ldots,m$,块长度为 2^{ℓ} ,下标遍历分块后在块内执行:

$$u = a_{\text{rev}}[k], \quad v = a_{\text{rev}}[k + 2^{\ell-1}] \cdot \omega^{j2^{m-\ell}},$$

$$a_{\text{rev}}[k] \leftarrow u + v, \quad a_{\text{rev}}[k + 2^{\ell - 1}] \leftarrow u - v.$$

随后,在 DIF 阶段反向遍历层数 $\ell=m,m-1,\ldots,1$,同样按块长度 2^ℓ 连续扫描:

$$u = a_{\text{rev}}[k], \quad v = a_{\text{rev}}[k+2^{\ell-1}],$$

$$a_{\text{rev}}[k] \leftarrow u + v, \quad a_{\text{rev}}[k+2^{\ell-1}] \leftarrow (u-v) \, \omega^{-j2^{m-\ell}}.$$

该过程与标准 DIT 蝶形网络在算术操作上等价,但在内存访问层面,仅一次长度为 N 的位反转意味着省去一次 N 次的不连续读写,时间开销会更小,后续将使用此方法进行进一步优化。

参考文献

- [1] https://blog.csdn.net/weixi_44885334/article/details/134532078
- [2] V4: The Number-Theoretic Transform (NTT) [Slide presentation]. © Alfred Menezes.