PROBLEMAS DEL CÁLCULO DE VARIACIONES

Fernando Mazzone

Dpto de Matemática
Facultad de Ciencias Exactas Físico-Químicas y Naturales
Universidad Nacional de Río Cuarto Dpto de Matemática
Facultad de Ciencias Exactas y Naturales
Universidad Nacional de La Pampa
CONICET

29 de julio de 2015

ÍNDICE

CÁLCULO DE VARIACIONES Y MECÁNICA

ÍNDICE

CÁLCULO DE VARIACIONES Y MECÁNICA

ECUACIONES DE NEWTON

Sistema mecánico: n-puntos masa en un espacio euclideano tridimensional. Supuesto un sistema de coordenadas cartesiano, sean $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^3$ las coordenadas de los puntos masa, $\mathbf{x}_i = (x_{i,1}, x_{i,2}, x_{i,3}), i = 1, \dots, n$. Vamos a poner $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) \in \mathbb{R}^{3n}$. Las variables \mathbf{x}_i dependen del tiempo t. A la función $t \mapsto \mathbf{x}(t)$ la denominamos un movimiento. **Fuerzas:** Supongamos que actúan fuerzas $\mathbf{f}_i = \mathbf{f}_i(t, \mathbf{x}(t), \dot{\mathbf{x}}(t))$ sobre cada masa m_i .

Leyes de movimiento de Newton

Suponiendo que el sistema satisface la segunda ley de Newton.

$$m_i\ddot{\boldsymbol{x}}_i=\boldsymbol{f}_i,\quad i=1,\ldots,n.$$
 (1)

SISTEMAS CONSERVATIVOS

DEFINICIÓN

El sistema se llama conservativo si existe una función $U = U(\mathbf{x}, \mathbf{y})$, con $U : \mathbb{R}^{3n} \times \mathbb{R}^{3n} \to \mathbb{R}$ tal que

$$f_i(\mathbf{x}, \dot{\mathbf{x}}) = -\left. \frac{\partial U}{\partial \mathbf{x}_i} \right|_{(\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \dot{\mathbf{x}})}, \quad i = 1, \dots, n.$$
 (2)

El signo menos en el segundo miembro es sólo una convención.

Las derivadas del miembro de la derecha en (2) hay que entenderlas como que presuponen las tres identidades escalares

$$f_{i,j}(\boldsymbol{x},\dot{\boldsymbol{x}}) = \frac{\partial U}{\partial x_{i,j}}\Big|_{(\boldsymbol{x},\boldsymbol{y})=(\boldsymbol{x},\dot{\boldsymbol{x}})}, \quad i=1,\ldots,n; j=1,2,3.$$

LAGRANGIANO

En un sistema conservativo se define la energía cinética $T: \mathbb{R}^{3n} \to \mathbb{R}$ por

$$T(\boldsymbol{y}) = \sum_{i=1}^{n} m_i \frac{|\boldsymbol{y}_i|}{2}, \quad \boldsymbol{y} = (\boldsymbol{y}_1, \dots, \boldsymbol{y}_n) \in \mathbb{R}^{3n}$$

y la energía potencial por *U*.

Vamos a definir la función de Lagrange o Lagrangiano por

$$L(t, \mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} m_i \frac{|\mathbf{y}_i|^2}{2} - U(\mathbf{x}, \mathbf{y})$$
 (3)

ECUACIONES DE EULER-LAGRANGE

Las ecuaciones de Newton (1) ahora se pueden escribir

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \mathbf{y}_i}\right) = \frac{\partial L}{\partial \mathbf{x}_i}, \quad i = 1, \dots, n.$$

O más sintéticamente

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \mathbf{y}}\right) = \frac{\partial L}{\partial \mathbf{x}} \tag{4}$$

Estas ecuaciones se denominan ecuaciones de Euler-Lagrange

EJEMPLO

Consideremos la ecuación del resorte u oscilador armónico

$$\ddot{x}(t) = -\omega^2 x(t).$$

En estas ecuaciones hemos dividido por la masa. Aquí el movimiento se realiza sobre una línea, de modo que un eje de coordenadas es suficiente para describir el movimiento $x(t) \in \mathbb{R}$. El sistema es conservativo, pues

$$f = -\omega^2 x = -\frac{dU}{dx}$$
, donde $U = \omega^2 \frac{x^2}{2}$.

El lagrangiano es

$$L(t,x,y)=\frac{y^2}{2}-\omega^2\frac{x^2}{2}.$$

INTEGRAL DE ACCIÓN, PRINCIPIO DE HAMILTON

DEFINICIÓN

La integral de acción depende sobre los movimientos $\mathbf{x}(t)$, para t en un intervalo [a,b], y se define por

$$I(\mathbf{x}) = \int_{a}^{b} L(t, \mathbf{x}(t), \dot{\mathbf{x}}(t)) dt$$
 (5)

PRINCIPIO DE MÍNIMA ACCIÓN DE HAMILTON

Las soluciones de (4) son puntos críticos de la integral de acción.

INTEGRAL DE ACCIÓN, PRINCIPIO DE HAMILTON

Dem. Como esta charla pretende dar una motivación para emprender el estudio de