

LOG1810

STRUCTURES DISCRÈTES

TD 4: ENSEMBLES ET FONCTIONS

E2025

SOLUTIONNAIRE

LOG1810-E2025 Travail dirigé 4

Rappels de Notations et Définitions Essentielles

Différence Symétrique

Pour deux ensembles A et B, la **différence symétrique**, notée $A\Delta B$, désigne l'ensemble des éléments qui appartiennent à A ou à B, mais pas à leur intersection.

$$-A\Delta B = (A-B) \cup (B-A)$$

Composition de Fonctions

Soient deux fonctions $f: X \to Y$ et $g: Y \to Z$. La **composition** de g et f, notée $g \circ f$ (se lit $\ll g$ rond $f \gg$), est une fonction de X vers Z.

Pour tout élément $x \in X$, l'image de x par $g \circ f$ est donnée par :

$$(g \circ f)(x) = g(f(x))$$

Cela signifie que l'on applique d'abord la fonction f à x, pour obtenir un élément $f(x) \in Y$, puis on applique la fonction g à ce résultat f(x), ce qui donne $g(f(x)) \in Z$.

Le domaine de la fonction composée $g \circ f$ est X, et son codomaine est Z.

Exercice 1:

Partie a) Vrai ou Faux?

Pour chaque proposition, déterminez si elle est vraie ou fausse, et justifiez votre réponse.

- a) Pour tout ensemble A, l'affirmation $\{\emptyset\} \subseteq \mathcal{P}(A)$ est-elle vraie? Vrai. $\mathcal{P}(A)$ est l'ensemble de tous les sous-ensembles de A. \emptyset est un sous-ensemble de tout ensemble A, donc $\emptyset \in \mathcal{P}(A)$. L'ensemble $\{\emptyset\}$ est un ensemble dont le seul élément est \emptyset . Pour que $\{\emptyset\} \subseteq \mathcal{P}(A)$, il faut que chaque élément de $\{\emptyset\}$ soit aussi un élément de $\mathcal{P}(A)$. Le seul élément de $\{\emptyset\}$ est \emptyset . Comme $\emptyset \in \mathcal{P}(A)$ (car $\emptyset \subseteq A$), l'affirmation est vraie.
- b) Soient f: X → Y et g: Y → X deux fonctions. Si g ∘ f = Id_X (La fonction identité sur X, notée Id_X: X → Y, est définie par Id_X(x) = x pour tout x ∈ X.), alors f est-elle nécessairement injective et g nécessairement surjective?
 Vrai. Injectivité de f: Supposons f(x₁) = f(x₂) pour x₁, x₂ ∈ X. Alors g(f(x₁)) = g(f(x₂)). Puisque g ∘ f = Id_X, cela signifie Id_X(x₁) = Id_X(x₂), donc x₁ = x₂. Ainsi, f est injective. Surjectivité de g: Soit x ∈ X. Nous devons trouver un y ∈ Y tel que g(y) = x. Posons y = f(x). Alors y ∈ Y. Calculons g(y) = g(f(x)) = (g ∘ f)(x) = Id_X(x) = x. Donc, pour tout x ∈ X, il existe y = f(x) ∈ Y tel que g(y) = x. Cela signifie que q est surjective (son image est X).
- c) Pour tous ensembles A, B, C, si $A \cup B = A \cup C$, alors a-t-on nécessairement B = C? Faux. Considérons un contre-exemple : Soit $A = \{1, 2\}$, $B = \{2\}$, et $C = \{1, 2\}$. Alors $A \cup B = \{1, 2\} \cup \{2\} = \{1, 2\}$. Et $A \cup C = \{1, 2\} \cup \{1, 2\} = \{1, 2\}$. Donc $A \cup B = A \cup C$. Cependant, $B = \{2\}$ et $C = \{1, 2\}$, donc $B \neq C$. Un autre contre-exemple : $A = \{1\}$, $B = \emptyset$, $C = \{1\}$. $A \cup B = \{1\}$, $A \cup C = \{1\}$. Mais $B \neq C$.
- d) Soient f: X → Y et g: Y → Z deux fonctions. Si la composée g ∘ f est surjective, la fonction f doit-elle obligatoirement être surjective?
 Faux. La fonction g doit être surjective, mais f ne l'est pas nécessairement. Contre-exemple : Soit X = {1}, Y = {a,b}, Z = {p}. Définissons f: X → Y par f(1) = a. f n'est pas surjective car b ∈ Y n'a pas d'antécédent par f. Définissons g: Y → Z par g(a) = p et g(b) = p. g est surjective. La composée (g ∘ f): X → Z est (g ∘ f)(1) = g(f(1)) = g(a) = p. L'image de g ∘ f est {p}, qui est égal au codomaine Z. Donc g ∘ f est surjective. Cependant, f n'est pas surjective.
- e) Pour tous ensembles A et B, si $\mathcal{P}(A) = \mathcal{P}(B)$, a-t-on nécessairement A = B? Vrai. Si $\mathcal{P}(A) = \mathcal{P}(B)$. Puisque A est un sous-ensemble de A, $A \in \mathcal{P}(A)$. Comme $\mathcal{P}(A) = \mathcal{P}(B)$, on a $A \in \mathcal{P}(B)$. Cela signifie que A est un sous-ensemble de B, i.e., $A \subseteq B$. De même, puisque B est un sous-ensemble de B, $B \in \mathcal{P}(B)$. Comme $\mathcal{P}(A) = \mathcal{P}(B)$, on a $B \in \mathcal{P}(A)$. Cela signifie que B est un sous-ensemble de A, i.e., $B \subseteq A$. Puisque $A \subseteq B$ et $B \subseteq A$, on conclut que A = B.
- f) Soit $f: E \to F$ une fonction. Si f est surjective, alors pour tout $B \subseteq F$, a-t-on $f(f^{-1}(B)) = B$? Vrai. Nous devons montrer deux inclusions : $f(f^{-1}(B)) \subseteq B$ et $B \subseteq f(f^{-1}(B))$. 1) $f(f^{-1}(B)) \subseteq B$: Soit $y \in f(f^{-1}(B))$. Par définition de l'image directe, il existe $x \in f^{-1}(B)$ tel que f(x) = y. Par définition de l'image réciproque, $x \in f^{-1}(B)$ signifie que $f(x) \in B$. Puisque f(x) = y, on a

 $y \in B$. Donc $f(f^{-1}(B)) \subseteq B$. (Cette inclusion est toujours vraie). 2) $B \subseteq f(f^{-1}(B))$ (nécessite la surjectivité de f): Soit $y \in B$. Puisque f est surjective, pour cet $y \in F$ (et donc $y \in B \subseteq F$), il existe au moins un $x \in E$ tel que f(x) = y. Comme f(x) = y et $y \in B$, on a $f(x) \in B$. Par définition de l'image réciproque, cela signifie que $x \in f^{-1}(B)$. Puisque $x \in f^{-1}(B)$, f(x) est un élément de $f(f^{-1}(B))$. Comme f(x) = y, on a $y \in f(f^{-1}(B))$. Donc $B \subseteq f(f^{-1}(B))$. Les deux inclusions étant prouvées, $f(f^{-1}(B)) = B$.

Partie b) Manipulations d'ensembles

Soit l'ensemble universel $U=\mathbb{Z}$. On définit les ensembles suivants :

- $-E_0 = \{n \in \mathbb{Z} \mid -2 \le n \le 2\}$
- $A_0 = \{n \in E_0 \mid n^2 1 \text{ est un nombre pair}\}$
- $--B_0 = \{ n \in E_0 \mid (\exists k \in \mathbb{Z}, n = 2k + 1) \lor n = 0 \}$

Déterminez les ensembles suivants par extension (listez leurs éléments) :

Par définition, nous avons donc :

$$E_0 = \{-2, -1, 0, 1, 2\}$$

$$A_0 = \{-1, 1\}$$

$$B_0 = \{-1, 0, 1\}$$

1) $A_0 \Delta B_0$

$$A_0 \Delta B_0 = (A_0 - B_0) \cup (B_0 - A_0).$$

$$A_0 - B_0 = \{-1, 1\} - \{-1, 0, 1\} = \emptyset.$$

$$B_0 - A_0 = \{-1, 0, 1\} - \{-1, 1\} = \{0\}.$$

$$A_0 \Delta B_0 = \emptyset \cup \{0\} = \{0\}.$$

 $2) \mathcal{P}(A_0)$

$$A_0 = \{-1, 1\}.$$

 $\mathcal{P}(A_0) = \{\emptyset, \{-1\}, \{1\}, \{-1, 1\}\}.$

3) $E_0 \times A_0$

$$E_0 = \{-2, -1, 0, 1, 2\}, A_0 = \{-1, 1\}.$$

 $E_0 \times A_0 = \{(-2, -1), (-2, 1), (-1, -1), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 1), (2, -1), (2, 1)\}.$

4)
$$(E_0 - B_0) \cap A_0$$

$$E_0 - B_0 = \{-2, -1, 0, 1, 2\} - \{-1, 0, 1\} = \{-2, 2\}.$$

$$(E_0 - B_0) \cap A_0 = \{-2, 2\} \cap \{-1, 1\} = \emptyset.$$

5)
$$\mathcal{P}(A_0 \cap B_0)$$
 et $(E_0 \times A_0) - (E_0 \times B_0)$.
 $A_0 \cap B_0 = \{-1, 1\} \cap \{-1, 0, 1\} = \{-1, 1\} = A_0$.
 $\mathcal{P}(A_0 \cap B_0) = \mathcal{P}(A_0) = \{\emptyset, \{-1\}, \{1\}, \{-1, 1\}\}$.

$$E_0 \times B_0 = \{(-2, -1), (-2, 0), (-2, 1), (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 0), (0, 1), (1, -1), (1, 0), (1, 1), (2, -1), (2, 0), (2, 1)\}$$

 $(E_0 \times A_0) - (E_0 \times B_0)$: On retire de $E_0 \times A_0$ les éléments qui sont aussi dans $E_0 \times B_0$. Les éléments de $E_0 \times A_0$ sont ceux où la deuxième composante est dans $A_0 = \{-1, 1\}$. Les éléments de $E_0 \times B_0$ sont ceux où la deuxième composante est dans $B_0 = \{-1, 0, 1\}$. Si un couple $(x, y) \in E_0 \times A_0$, alors $y \in A_0$. Puisque $A_0 \subseteq B_0$, on a $y \in B_0$. Donc, $(x, y) \in E_0 \times B_0$. Cela signifie que $E_0 \times A_0 \subseteq E_0 \times B_0$. Par conséquent, $(E_0 \times A_0) - (E_0 \times B_0) = \emptyset$.

Exercice 2:

1) Soit $f: X \to Y$ une fonction. Démontrer que f est injective si et seulement si pour tout $A \subseteq X$, $f^{-1}(f(A)) = A$.

Nous devons démontrer deux implications :

- (⇒) Supposons que f est injective. Soit $A \subseteq X$. Nous voulons montrer que $f^{-1}(f(A)) = A$. Pour cela, nous montrons deux inclusions : $A \subseteq f^{-1}(f(A))$ et $f^{-1}(f(A)) \subseteq A$.
- $A \subseteq f^{-1}(f(A))$: Soit $x \in A$. Alors $f(x) \in f(A)$. Par définition de l'image réciproque, $x \in f^{-1}(f(A))$. Donc $A \subseteq f^{-1}(f(A))$. (Cette inclusion est toujours vraie, même si f n'est pas injective).
- $f^{-1}(f(A)) \subseteq A$: Soit $x \in f^{-1}(f(A))$. Par définition de l'image réciproque, cela signifie que $f(x) \in f(A)$. Par définition de f(A), il existe $a \in A$ tel que f(x) = f(a). Puisque f est injective et f(x) = f(a), on a x = a. Comme $a \in A$, on a $x \in A$. Donc $f^{-1}(f(A)) \subseteq A$.

Ayant montré les deux inclusions, on conclut que $f^{-1}(f(A)) = A$ si f est injective.

- (\Leftarrow) Supposons que pour tout $A \subseteq X$, $f^{-1}(f(A)) = A$. Nous voulons montrer que f est injective. Soient $x_1, x_2 \in X$ tels que $f(x_1) = f(x_2)$. Considérons l'ensemble $A_1 = \{x_1\}$. Par hypothèse, $f^{-1}(f(A_1)) = A_1$. $f(A_1) = f(\{x_1\}) = \{f(x_1)\}$. Donc $f^{-1}(\{f(x_1)\}) = \{x_1\}$. Puisque $f(x_1) = f(x_2)$, on a $\{f(x_1)\} = \{f(x_2)\}$. Alors $x_2 \in f^{-1}(\{f(x_2)\}) = f^{-1}(\{f(x_1)\})$. Puisque $f^{-1}(\{f(x_1)\}) = \{x_1\}$, on a $x_2 \in \{x_1\}$. Cela signifie que $x_2 = x_1$. Donc, f est injective.
- 2) Soient A,B,C des ensembles. Démontrer que $A\times (B\Delta C)=(A\times B)\Delta (A\times C)$. Rappelons que $X\Delta Y=(X-Y)\cup (Y-X)=(X\cap\overline{Y})\cup (Y\cap\overline{X})$. Aussi, $X-Y=X\cap\overline{Y}$. Le membre de gauche est $A\times (B\Delta C)=A\times ((B-C)\cup (C-B))$. En utilisant la distributivité du produit cartésien sur l'union $(X\times (Y\cup Z)=(X\times Y)\cup (X\times Z)):A\times ((B-C)\cup (C-B))=(A\times (B-C))\cup (A\times (C-B))$. Nous savons aussi que $A\times (Y-Z)=(A\times Y)-(A\times Z)$. (Ceci peut être prouvé séparément : $(x,y)\in A\times (Y-Z)\Leftrightarrow x\in A\wedge y\in Y-Z\Leftrightarrow x\in A\wedge y\in Y\wedge y\notin Z$. Et $(x,y)\in (A\times Y)-(A\times Z)\Leftrightarrow (x,y)\in A\times Y\wedge (x,y)\notin A\times Z\Leftrightarrow x\in A\wedge y\in Y\wedge \neg (x\in A\wedge y\in Z)$. Si $x\in A$, alors $\neg (x\in A\wedge y\in Z)$ est équivalent à $y\notin Z$. Donc $x\in A\wedge y\in Y\wedge y\notin Z$. Et $(x,y)\in (A\times Y)$. Donc, $(x\in A)\in X$ 0 Donc, $(x\in A)\in X$ 1. Et $(x,y)\in X$ 2. Ceci est exactement la définition de $(x\in X)$ 3. Ceci est exactement la définition de $(x\in X)$ 4.

Donc, $A \times (B\Delta C) = (A \times B)\Delta(A \times C)$.

Exercice 3:

Répondez aux questions suivantes en justifiant :

- 1) L'ensemble $K = \{(-1,0), (1,1)\}$ est-il un élément de $\mathcal{P}(S)$?

 Oui. $\mathcal{P}(S)$ est l'ensemble de tous les sous-ensembles de S. $K = \{(-1,0), (1,1)\}$. Les éléments de K sont (-1,0) et (1,1). $(-1,0) \in S$ et $(1,1) \in S$. Donc, K est un sous-ensemble de S (c.-à-d. $K \subseteq S$). Par définition de l'ensemble des parties, si $K \subseteq S$, alors $K \in \mathcal{P}(S)$.
- 2) A-t-on $A_0 \subseteq \mathcal{P}(E_0)$?

Non. $A_0 = \{-1, 1\}$. Les éléments de A_0 sont des entiers. $\mathcal{P}(E_0)$ est l'ensemble des sous-ensembles de E_0 . Ses éléments sont des ensembles d'entiers. Par exemple, $\{-1\} \in \mathcal{P}(E_0)$, mais $-1 \notin \mathcal{P}(E_0)$ (sauf si E_0 contenait l'ensemble $\{-1\}$ comme élément, ce qui n'est pas le cas). Pour que $A_0 \subseteq \mathcal{P}(E_0)$, il faudrait que chaque élément de A_0 soit un sous-ensemble de E_0 . -1 n'est pas un sous-ensemble de E_0 (c'est un élément). $\{-1\}$ est un sous-ensemble de E_0 . Donc, l'affirmation est fausse.

3) Quelle est la cardinalité de $\mathcal{P}(\mathcal{P}(A_0))$? $A_0 = \{-1, 1\}, \, \text{donc} \, |A_0| = 2. \, |\mathcal{P}(A_0)| = 2^{|A_0|} = 2^2 = 4. \, \text{Les \'el\'ements de } \mathcal{P}(A_0) \, \text{sont } \emptyset, \{-1\}, \{1\}, \{-1, 1\}. \, \text{Soit } X = \mathcal{P}(A_0). \, \text{Alors } |X| = 4. \, |\mathcal{P}(\mathcal{P}(A_0))| = |\mathcal{P}(X)| = 2^{|X|} = 2^4 = 16.$

- 4) Soit $X = \{\emptyset, \{-1\}\}$. A-t-on $X \in \mathcal{P}(\mathcal{P}(A_0))$? Oui. Pour que $X \in \mathcal{P}(\mathcal{P}(A_0))$, il faut que $X \subseteq \mathcal{P}(A_0)$. Cela signifie que chaque élément de X doit être un élément de $\mathcal{P}(A_0)$. Les éléments de X sont \emptyset et $\{-1\}$. On a $\mathcal{P}(A_0) = \{\emptyset, \{-1\}, \{1\}, \{-1, 1\}\}$. Est-ce que $\emptyset \in \mathcal{P}(A_0)$? Oui, car $\emptyset \subseteq A_0$. Est-ce que $\{-1\} \in \mathcal{P}(A_0)$? Oui, car $\{-1\} \subseteq A_0$. Puisque tous les éléments de X sont dans $\mathcal{P}(A_0)$, on a $X \subseteq \mathcal{P}(A_0)$. Donc, $X \in \mathcal{P}(\mathcal{P}(A_0))$.
- 5) L'égalité $\mathcal{P}(A_0) \times \mathcal{P}(\emptyset) = \mathcal{P}(A_0)$ est-elle vraie? Non. $\mathcal{P}(\emptyset) = \{\emptyset\}$. C'est un ensemble contenant un seul élément, l'ensemble vide. Soit $Y = \mathcal{P}(A_0)$. On a |Y| = 4. $\mathcal{P}(A_0) \times \mathcal{P}(\emptyset) = Y \times \{\emptyset\} = \{(y,\emptyset) \mid y \in Y\}$. Les éléments de $\mathcal{P}(A_0) \times \mathcal{P}(\emptyset)$ sont des couples ordonnés, où le premier élément est un sous-ensemble de A_0 et le second est l'ensemble vide. Par exemple, $(\{-1\},\emptyset)$ est un élément de $\mathcal{P}(A_0) \times \mathcal{P}(\emptyset)$. Les éléments de $\mathcal{P}(A_0)$ sont des ensembles (des sous-ensembles de A_0), pas des couples. Par exemple, $\{-1\} \in \mathcal{P}(A_0)$. Clairement, $(\{-1\},\emptyset) \neq \{-1\}$. Donc, les deux ensembles ne sont pas égaux. De plus, $|\mathcal{P}(A_0) \times \mathcal{P}(\emptyset)| = |\mathcal{P}(A_0)| \times |\mathcal{P}(\emptyset)| = 4 \times 1 = 4$. $|\mathcal{P}(A_0)| = 4$. Bien que les cardinalités soient égales, les natures des éléments sont différentes.
- 6) Soit $Y = \{(s, \mathcal{P}(s)) \mid s \in \mathcal{P}(A_0)\}$. Quelle est la cardinalité de Y? Est-ce que $Y \subseteq \mathcal{P}(A_0) \times \mathcal{P}(\mathcal{P}(A_0))$? $\mathcal{P}(A_0) = \{\emptyset, \{-1\}, \{1\}, \{-1, 1\}\}\}$. Les éléments s de $\mathcal{P}(A_0)$ sont : 1. $s_1 = \emptyset$. $\mathcal{P}(s_1) = \mathcal{P}(\emptyset) = \{\emptyset\}$. L'élément de Y est $(\emptyset, \{\emptyset\})$. 2. $s_2 = \{-1\}$. $\mathcal{P}(s_2) = \{\emptyset, \{-1\}\}\}$. L'élément de Y est $(\{-1\}, \{\emptyset, \{-1\}\}\})$. 3. $s_3 = \{1\}$. $\mathcal{P}(s_3) = \{\emptyset, \{1\}\}\}$. L'élément de Y est $(\{1\}, \{\emptyset, \{1\}\})$. 4. $s_4 = \{-1, 1\}$. $\mathcal{P}(s_4) = \{\emptyset, \{-1\}, \{1\}, \{-1, 1\}\}\}$. L'élément de Y est $(\{-1, 1\}, \{\emptyset, \{-1\}, \{1\}, \{-1, 1\}\})$. $Y = \{(\emptyset, \{\emptyset\}), (\{-1\}, \{\emptyset, \{-1\}\}\})$, La cardinalité de Y est le nombre d'éléments dans $\mathcal{P}(A_0)$, donc $|Y| = |\mathcal{P}(A_0)| = 4$. Pour vérifier si $Y \subseteq \mathcal{P}(A_0) \times \mathcal{P}(\mathcal{P}(A_0))$: Un élément de Y est de la forme $(s, \mathcal{P}(s))$ où $s \in \mathcal{P}(A_0)$. Pour que $(s, \mathcal{P}(s))$ soit un élément de $\mathcal{P}(A_0) \times \mathcal{P}(\mathcal{P}(A_0))$, il faut que : 1. $s \in \mathcal{P}(A_0)$ (ce qui est vrai

par définition de s). 2. $\mathcal{P}(s) \in \mathcal{P}(\mathcal{P}(A_0))$. Pour que $\mathcal{P}(s) \in \mathcal{P}(\mathcal{P}(A_0))$, il faut que $\mathcal{P}(s) \subseteq \mathcal{P}(A_0)$.

Cela signifie que chaque élément de $\mathcal{P}(s)$ doit être un élément de $\mathcal{P}(A_0)$. Un élément de $\mathcal{P}(s)$ est un sous-ensemble de s. Un élément de $\mathcal{P}(A_0)$ est un sous-ensemble de A_0 . Donc, il faut que si $T \subseteq s$, alors $T \subseteq A_0$. Puisque $s \in \mathcal{P}(A_0)$, on a $s \subseteq A_0$. Si $T \subseteq s$ et $s \subseteq A_0$, alors par transitivité de l'inclusion, $T \subseteq A_0$. Donc, tout élément de $\mathcal{P}(s)$ est bien un sous-ensemble de A_0 , et donc un élément de $\mathcal{P}(A_0)$. Ainsi, $\mathcal{P}(s) \subseteq \mathcal{P}(A_0)$ est vrai pour tout $s \in \mathcal{P}(A_0)$. Par conséquent, $\mathcal{P}(s) \in \mathcal{P}(\mathcal{P}(A_0))$. Les deux conditions sont satisfaites, donc $Y \subseteq \mathcal{P}(A_0) \times \mathcal{P}(\mathcal{P}(A_0))$ est vrai. • Soient X et Y deux ensembles non vides. Prouvez que si $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$, alors $X \subseteq Y$.

Supposons que $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$. Pour montrer que $X \subseteq Y$, nous devons montrer que pour tout $x \in X$, on a $x \in Y$. Soit x un élément quelconque de X. Considérons l'ensemble $\{x\}$. Puisque $x \in X$, $\{x\}$ est un sous-ensemble de X. Donc, $\{x\} \in \mathcal{P}(X)$. Puisque $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$, tout élément de $\mathcal{P}(X)$ est aussi un élément de $\mathcal{P}(Y)$. Donc, $\{x\} \in \mathcal{P}(Y)$. Par définition de $\mathcal{P}(Y)$, si $\{x\} \in \mathcal{P}(Y)$, alors $\{x\}$ est un sous-ensemble de Y. Si $\{x\} \subseteq Y$, cela signifie que tout élément de $\{x\}$ est un élément de Y. Le seul élément de Y est Y est un élément de Y est un élément de Y. Puisque Y et ait un élément quelconque de Y, nous avons montré que tout élément de Y est un élément de Y. Par conséquent, $Y \subseteq Y$.

Exercice 4:

Pour chaque fonction ci-dessous, déterminez si elle est injective, surjective et/ou bijective. Justifiez vos réponses.

- 1) $f_1: E_0 \to \mathbb{Z}$, définie par $f_1(n) = n^2 2n$. Déterminez également $f_1^{-1}(\{0,3\})$. Calculons les images des éléments de $E_0: f_1(-2) = (-2)^2 2(-2) = 4 + 4 = 8$. $f_1(-1) = (-1)^2 2(-1) = 1 + 2 = 3$. $f_1(0) = (0)^2 2(0) = 0$. $f_1(1) = (1)^2 2(1) = 1 2 = -1$. $f_1(2) = (2)^2 2(2) = 4 4 = 0$. L'ensemble des images est $Im(f_1) = \{8, 3, 0, -1\}$. Injectivité: f_1 n'est pas injective car $f_1(0) = 0$ et $f_1(2) = 0$, mais $0 \neq 2$. Surjectivité: f_1 n'est pas surjective sur \mathbb{Z} car, par exemple, $1 \in \mathbb{Z}$ mais $1 \notin Im(f_1)$. Bijectivité: Puisque f_1 n'est ni injective ni surjective, elle n'est pas bijective. Détermination de $f_1^{-1}(\{0,3\}): f_1^{-1}(\{0,3\}) = \{n \in E_0 \mid f_1(n) \in \{0,3\}\} = \{n \in E_0 \mid f_1(n) = 0 \text{ ou } f_1(n) = 3\}$. Les $n \in E_0$ tels que $f_1(n) = 0$ sont n = 0 et n = 2. Le $n \in E_0$ tel que $f_1(n) = 3$ est n = -1. Donc, $f_1^{-1}(\{0,3\}) = \{0,2,-1\}$.
- 2) $f_2: \mathcal{P}_A \to B_0$, définie par $f_2(X) = \sum_{x \in X} x$ si $X \neq \emptyset$, et $f_2(\emptyset) = 0$. $\mathcal{P}_A = \{\emptyset, \{-1\}, \{1\}, \{-1, 1\}\}\}$. $B_0 = \{-1, 0, 1\}$. Calculons les images : $f_2(\emptyset) = 0$. $f_2(\{-1\}) = -1$. $f_2(\{1\}) = 1$. $f_2(\{-1, 1\}) = -1 + 1 = 0$. $Im(f_2) = \{0, -1, 1\} = B_0$. Injectivité : f_2 n'est pas injective car $f_2(\emptyset) = 0$ et $f_2(\{-1, 1\}) = 0$, mais $\emptyset \neq \{-1, 1\}$. Surjectivité : f_2 est surjective car $Im(f_2) = B_0$. Chaque élément de B_0 a au moins un antécédent. - 0 a pour antécédents \emptyset et $\{-1, 1\}$. - -1 a pour antécédent $\{-1\}$. - 1 a pour antécédent $\{1\}$. Bijectivité : Puisque f_2 n'est pas injective, elle n'est pas bijective.
- 3) $f_3: S \to \mathcal{P}(E_0)$, définie par $f_3((a,b)) = \{x \in E_0 \mid ax > b\}$. $S = \{(-1,0), (-1,1), (1,0), (1,1)\}$. $E_0 = \{-2,-1,0,1,2\}$. Calculons les images : $-f_3((-1,0)) = \{x \in E_0 \mid -x > 0\} = \{x \in E_0 \mid x < 0\} = \{-2,-1\}$. $-f_3((-1,1)) = \{x \in E_0 \mid -x > 1\} = \{x \in E_0 \mid x < -1\} = \{-2\}$. $-f_3((1,0)) = \{x \in E_0 \mid x > 0\} = \{1,2\}$. $-f_3((1,1)) = \{x \in E_0 \mid x > 1\} = \{2\}$. $Im(f_3) = \{\{-2,-1\}, \{-2\}, \{1,2\}, \{2\}\}$. Injectivité : Les quatre images sont distinctes. Donc f_3 est injective. Si $f_3((a,b)) = f_3((c,d))$, alors (a,b) = (c,d). Par inspection : $\{-2,-1\} \neq \{-2\} \neq \{1,2\} \neq \{2\}$. Toutes les images sont uniques. Surjectivité : f_3 n'est pas surjective sur $\mathcal{P}(E_0)$ car $|\mathcal{P}(E_0)| = 2^5 = 32$, alors que $|Im(f_3)| = 4$. Par exemple, $\emptyset \in \mathcal{P}(E_0)$ mais $\emptyset \notin Im(f_3)$. (Si ax > b devait être \emptyset , il faudrait qu'aucune valeur de x ne satisfasse la condition. Par exemple, si a = 1, b = 10, $\{x \in E_0 \mid x > 10\} = \emptyset$. Mais $(1,10) \notin S$). Bijectivité : Puisque f_3 n'est pas surjective, elle n'est pas bijective.
- 4) $f_4: B_0 \to \mathcal{P}(E_0)$, définie par $f_4(n) = \{x \in E_0 \mid x^2 \le n^2 \text{ et } x \cdot n \ge 0\}$. $B_0 = \{-1,0,1\}$. $E_0 = \{-2,-1,0,1,2\}$. Calculons les images : $-f_4(-1)$: n = -1. Condition $x^2 \le (-1)^2 = 1$ et $x \cdot (-1) \ge 0 \implies -x \ge 0 \implies x \le 0$. $x^2 \le 1 \implies x \in \{-1,0,1\}$. Combiné avec $x \le 0$: $x \in \{-1,0\}$. Donc $f_4(-1) = \{-1,0\}$. $-f_4(0) : n = 0$. Condition $x^2 \le 0^2 = 0$ et $x \cdot 0 \ge 0 \implies 0 \ge 0$ (toujours vrai). $x^2 \le 0 \implies x = 0$. Donc $f_4(0) = \{0\}$. $-f_4(1) : n = 1$. Condition $x^2 \le 1^2 = 1$ et $x \cdot 1 \ge 0 \implies x \ge 0$. $x^2 \le 1 \implies x \in \{-1,0,1\}$. Combiné avec $x \ge 0$: $x \in \{0,1\}$. Donc $f_4(1) = \{0,1\}$. $Im(f_4) = \{\{-1,0\},\{0\},\{0,1\}\}$. Injectivité : Les trois images sont distinctes. $f_4(-1) \ne f_4(0) \ne f_4(1)$. Donc f_4 est injective. Surjectivité : f_4 n'est pas surjective sur $\mathcal{P}(E_0)$ car $|\mathcal{P}(E_0)| = 32$, alors que $|Im(f_4)| = 3$. Par exemple, $\{1\} \in \mathcal{P}(E_0)$ mais $\{1\} \notin Im(f_4)$.

Bijectivité : Puisque f_4 n'est pas surjective, elle n'est pas bijective.

Exercice 5 (facultatif):

(Aucune preuve formelle n'est demandée pour les parties 1 et 2, mais les raisonnements doivent être clairs.)

Pour $n \in \mathbb{N}$ avec $n \geq 1$, on définit l'ensemble $E_n = \{k \in \mathbb{Z} \mid -n \leq k \leq n\}$. Soit $N \in \mathbb{N}^*$.

- 1. Séquence u_n : Soit $u_n = |\mathcal{P}(E_n)|$ pour $n \ge 1$.
 - a) Donnez l'expression du terme général u_n en fonction de n. $E_n = \{-n, -(n-1), \dots, 0, \dots, n-1, n\}.$ Le nombre d'éléments dans E_n est n-(-n)+1=2n+1. Donc $|E_n| = 2n+1$. $u_n = |\mathcal{P}(E_n)| = 2^{|E_n|} = 2^{2n+1}$.
 - b) Calculez u_2 . Pour $n=2, E_2=E_0=\{-2,-1,0,1,2\}$. $|E_2|=5$. $u_2=2^{2(2)+1}=2^5=32$. (Ceci correspond à $|\mathcal{P}(E_0)|$).
- 2. **Séquence** v_n : Pour $n \ge 1$, soient $A_n = \{x \in E_n \mid x \text{ est impair}\}$ et $B_n = \{x \in E_n \mid x \text{ est pair}\}$. Soit v_n le nombre de fonctions injectives de A_n vers B_n .
 - a) Calculez v_1 . Pour n = 1, $E_1 = \{-1, 0, 1\}$. $A_1 = \{x \in E_1 \mid x \text{ est impair}\} = \{-1, 1\}$. Donc $|A_1| = 2$. $B_1 = \{x \in E_1 \mid x \text{ est pair}\} = \{0\}$. Donc $|B_1| = 1$. Le nombre de fonctions injectives de A_1 vers B_1 est $P(|B_1|, |A_1|) = P(1, 2)$. Puisque $|A_1| > |B_1|$, il n'existe aucune fonction injective de A_1 vers B_1 . Donc $v_1 = 0$.
 - b) Calculez v_2 . Pour n = 2, $E_2 = \{-2, -1, 0, 1, 2\}$. $A_2 = \{x \in E_2 \mid x \text{ est impair}\} = \{-1, 1\}$. Donc $|A_2| = 2$. $B_2 = \{x \in E_2 \mid x \text{ est pair}\} = \{-2, 0, 2\}$. Donc $|B_2| = 3$. Le nombre de fonctions injectives de A_2 vers B_2 est $P(|B_2|, |A_2|) = P(3, 2) = \frac{3!}{(3-2)!} = \frac{3!}{1!} = 3 \times 2 = 6$. Donc $v_2 = 6$.
 - c) Pour quelle(s) valeur(s) de $n \ge 1$ a-t-on $v_n = 0$? Justifiez. $v_n = 0$ si et seulement si $|A_n| > |B_n|$. D'après l'analyse ci-dessus : Si n est impair : $|A_n| = n+1$ et $|B_n| = n$. Comme n+1 > n, on a $v_n = 0$. Si n est pair : $|A_n| = n$ et $|B_n| = n+1$. Comme $n \le n+1$, on a $v_n = P(n+1,n) = (n+1)! \ge 1$ (car $n \ge 1 \implies n+1 \ge 2$). Donc, $v_n = 0$ si et seulement si n est impair.
- 3. Les ensembles E_0, A_0, B_0 sont définis dans l'Exercice 1.b. Vous devrez justifier vos choix de paramètres avant de procéder aux calculs. Soit $N \in \mathbb{N}^*$.
 - a) Soit $(w_k)_{k\geq 1}$ une suite arithmétique. Son premier terme w_1 est le plus petit élément de B_0 . Sa raison r_a est la cardinalité de A_0 .
 - i) Donnez l'expression du terme général w_k .
 - ii) Calculez la somme $S_N^{(w)} = \sum_{k=1}^N w_k$.

Choix des paramètres : L'ensemble $B_0 = \{-1, 0, 1\}$. Le plus petit élément de B_0 est -1. Donc $w_1 = -1$. L'ensemble $A_0 = \{-1, 1\}$, donc sa cardinalité est $|A_0| = 2$. Donc $r_a = 2$.

- i) Terme général $w_k = w_1 + (k-1)r_a = -1 + (k-1)2 = -1 + 2k 2 = 2k 3$.
- ii) Somme $S_N^{(w)} = \frac{N}{2}(w_1 + w_N) = \frac{N}{2}(-1 + (2N 3)) = \frac{N}{2}(2N 4) = N(N 2).$ Alternativement, $S_N^{(w)} = \frac{N}{2}(2w_1 + (N - 1)r_a) = \frac{N}{2}(2(-1) + (N - 1)2) = \frac{N}{2}(-2 + 2N - 2) = \frac{N}{2}(2N - 4) = N(N - 2).$
- b) Soit $(z_k)_{k\geq 0}$ une suite géométrique. Son premier terme z_0 est le seul élément positif de A_0 . Sa raison r_g est le plus petit entier positif de E_0 qui est différent de 1.
 - i) Donnez l'expression du terme général z_k .
 - ii) Calculez la somme $S_N^{(z)} = \sum_{k=0}^N z_k$.

Choix des paramètres : L'ensemble $A_0 = \{-1, 1\}$. Le seul élément positif de A_0 est 1. Donc $z_0 = 1$. L'ensemble $E_0 = \{-2, -1, 0, 1, 2\}$. Les entiers positifs de E_0 sont $\{1, 2\}$. Le plus petit qui est différent de 1 est 2. Donc $r_g = 2$.

- i) Terme général $z_k=z_0\cdot (r_g)^k=1\cdot 2^k=2^k.$ ii) Somme $S_N^{(z)}=z_0\frac{(r_g)^{N+1}-1}{r_g-1}=1\cdot \frac{2^{N+1}-1}{2-1}=2^{N+1}-1.$
- c) Soit la suite $(s_m)_{m\geq 1}$ définie par $s_m=\sum_{j=1}^m (j\cdot c)$, où la constante c est la cardinalité de A_0 .
 - i) Exprimez s_m en fonction de m.
 - ii) Calculez $S'_N = \sum_{m=1}^N s_m$.

Détermination de c: L'ensemble $A_0 = \{-1, 1\}$, donc sa cardinalité est $|A_0| = 2$. Ainsi, c = 2. La suite est définie par $s_m = \sum_{j=1}^m (j \cdot 2)$.

- i) $s_m = 2 \sum_{j=1}^m j = 2 \cdot \frac{m(m+1)}{2} = m(m+1) = m^2 + m$.
- ii) $S_N' = \sum_{m=1}^N s_m = \sum_{m=1}^N (m^2 + m) = \sum_{m=1}^N m^2 + \sum_{m=1}^N m.$ On sait que $\sum_{m=1}^N m^2 = \frac{N(N+1)(2N+1)}{6} \text{ et } \sum_{m=1}^N m = \frac{N(N+1)}{2}.$ $S_N' = \frac{N(N+1)(2N+1)}{6} + \frac{N(N+1)}{2} = \frac{N(N+1)}{6} ((2N+1)+3) = \frac{N(N+1)(2N+4)}{6} = \frac{N(N+1)2(N+2)}{6} = \frac{N(N+1)(N+2)}{3}.$

Feuille supplémentaire