MODELLING AND SIMULATIONS

RECAP OF LAPLACE TRANSFORMS, TRANSFER FUNCTIONS, STATE SPACE

TRANSFER FUNCTION

Transfer Function recap

The transfer function H(s) is the Laplace transform of the unit impulse response h(t)

Assuming that all initial condition of the system are 0

Where H(s) is the transfer gain from U(S) to Y(s)

i.e.

$$\frac{Y(s)}{U(s)} = H(s)$$

From the transfer function we can find the frequency response.

Transfer Function

We use Laplace transforms to go from time domain (t) to s domain (s)

To transform differential equations into 'easier-to-manipulate' algebraic from [1]

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

i.e.

$$Time - domain \overset{\mathcal{L}}{\Leftrightarrow} s - domain$$

Transfer Function

In practice we do not have to solve the integral to get to the Laplace transform

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

We can find the most common Laplace transform from tables such as the following:

Common Laplace Transforms

Table of Laplace Transforms

Number	F(s)	$f(t), t \geq 0$	
1	1	$\delta(t)$	
2	1/s	1(<i>t</i>)	
3	$1/s^2$	t	
4	$2!/s^3$	t ²	
5	3!/s ⁴	t^3	
6	$m!/s^{m+1}$	t^m	
7	$ \frac{1}{s+a} $ $ \frac{1}{(s+a)^2} $ $ \frac{1}{(s+a)^3} $ $ \frac{1}{(s+a)^m} $	e^{-at}	
8	$\frac{1}{(s+a)^2}$	te^{-at}	
9	$\frac{1}{(s+a)^3}$	te^{-at} $\frac{1}{2!}t^{2}e^{-at}$ $\frac{1}{(m-1)!}t^{m-1}e^{-at}$ $1-e^{-at}$	
10	$\frac{1}{(s+a)^m}$	$\frac{1}{(m-1)!}t^{m-1}e^{-at}$	
11	$\frac{a}{s(s+a)}$	$1-e^{-at}$	

Example of Laplace transform

Find the Laplace Transform of:

$$f(t) = 1 + 2\sin(\omega t)$$

We use the tables to find the most common Laplace transforms where:

$$\mathcal{L}\{1(t)\} = \frac{1}{s}, \qquad \mathcal{L}\{k \cdot \sin(at)\} = \frac{k \cdot a}{s^2 + a^2}$$

And thus we have:

$$\mathcal{L}{f(t)} = \frac{1}{s} + 2 \cdot \frac{\omega}{s^2 + \omega^2}$$

Example: Differential Equation to Transfer Function

Transfrom the following differential equation into a transfer function $\ddot{y} + \dot{y}a_1 + ya_2 = bu$

Show this on the black board

STATE SPACE

State Space

- Selection of states and organization into state form
- Choice of state is not unique

State-space definition (non-linear, time invariant)

State-space equations

State equation:

$$\frac{dx(t)}{dt} = f(x(t), u(t))$$

Output equation:

$$y(t) = h(x(t), u(t))$$

Explanation

- f(x(t), u(t)) is a nonlinear vector function of state and input
- h(x(t), u(t)) is a nonlinear vector function of state and input
- x(t) is the state
- u(t) is the input

State-space definition (linear, time invariant)

State-space equations

State equation:

$$\frac{dx(t)}{dt} = A \cdot x(t) + B \cdot u(t)$$

Output equation:

$$y(t) = C \cdot x(t) + D \cdot u(t)$$

Explanation

- $\mathbf{x}(t)$ is an $n \times 1$ vector representing the state (e.g., position and velocity variables in mechanical systems)
- $\mathbf{u}(t)$ is a $m \times 1$ vector representing the input
- $\mathbf{y}(t)$ is a $p \times 1$ vector representing the output
- The matrices $A(n \times n)$, $B(n \times m)$, and $C(p \times n)$, determine the relationships between the state and input and output variables. These are constant matrices.

State Space Block Diagram

The state space representation has the following block diagram.

Stability

Identify the location of the system poles

Transfer functions

The **poles** are the **roots** of the **denominator**, or in can be found through **factored form** of the **transfer function**:

$$G(s) = \frac{Y(s)}{U(s)} = K \frac{(s - z_1)(s - z_2) \dots (s - z_m)}{(s - p_1)(s - p_2) \dots (s - p_n)}$$

State Space

The eigenvalues λ of the matrix A are the poles of the system.

Note that the denominator of the transfer function is the characteristic polynomial and can be found by the:

$$\lambda(s) = |sI - A|$$

i.e. the determinant of sI - A

Example: Differential Equation to State Space

Convert the following differential equation into state space:

$$\ddot{y} + \dot{y}a_1 + ya_2 = bu$$

This is done on the blackboard

Conversion from state space to transfer function

The transfer function from state space equations is given by:

$$G(s) = \frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D$$

Show how this is obtained on the black board

Note: see Franklin p. 454

Example: State Space to Transfer Function

- 1. Show on black board how it is done by hand
- 2. Show Result in Matlab

Example: State Space to Transfer Function

- 1. Show on black board how it is done by hand
- 2. Show Result in Matlab

$$sys=b/(s^2 + a1*s + a2)$$

Laplace Transform of State Space

If we have a state space model:

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

And we take the Laplace transform, (with the assumption that all initial conditions on the system are zero):

$$sX(s) = Ax(s) + BU(s)$$

 $Y(s) = CX(s) + DU(s)$

State Space froms

- There are many ways to represent a system using state space
- One of the is the controllable Canonical form
- This form is very common
 - As it is useful for the pole placement controller design technique.
- This will be our focus

Given the transfer function:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^2 + 7s + 12}$$

We look at the transfer function as ratio of polynomials

Now we look at the transfer function using only isolated integrators as the dynamic elements, and

construct the following block diagram:

Given the transfer function:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^2 + 7s + 12}$$

We look at the transfer function as ratio of polynomials

Now we look at the transfer function using only isolated integrators as the dynamic elements, and

construct the following block diagram:

Given the transfer function:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^2 + 7s + 12}$$

We look at the transfer function as ratio of polynomials

Now we look at the transfer function using only isolated integrators as the dynamic elements, and construct the following block diagram:

W can now identify the state variables [x] and their derivatives $[\dot{x_n}]$

Given the transfer function:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^2 + 7s + 12}$$

We look at the transfer function as ratio of polynomials

Now we look at the transfer function using only isolated integrators as the dynamic elements, and construct the following block diagram:

The rest is shown on the black board

W can now identify the state variables [x] and their derivatives $[\dot{x_n}]$

TF to SS in Control Canonical Form (General Case)

Each state variable is connected by the feedback to the control input.

$$G(s) = \frac{Y(s)}{U(s)} = \frac{z_1 s^{n-1} + z_2 s^{n-2} + \dots + z_n}{s^n + p_1 s^{n-1} + p_2 s^{n-2} + \dots + p_n}$$

We construct this into the controllable canonical form:

$$\dot{x} = Ax + Bu = \begin{bmatrix} -p_1 & -p_2 & \cdots & -p_n \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & \vdots \\ 0 & \cdots & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} u$$

$$y = Cx + Du = \begin{bmatrix} z_1 & z_2 & \cdots & z_n \end{bmatrix} x + 0$$

This can also be fulfilled using Matlab function: TF2SS

Additional forms, not discussed in detail.

Modal Canonical Form

- We can also represent the transfer function in modal canonical form
- This is done through partial fraction expansion of the transfer function, i.e.

$$G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s^2+7s+12} = \frac{2}{s+4} + \frac{-1}{s+3}$$

For more information refer to. Franklin cha. 7.4

Observable Canonical Form

We also have the observable canonical form which has the following relationship to the control canonical form

$$A_{obs} = A_{cont}^{T}$$

$$B_{obs} = B_{cont}^{T}$$

$$C_{obs} = C_{cont}^{T}$$

$$D_{obs} = D_{cont}^{T}$$

Where all the feedback is from the output to the state variables

For more information refer to. Franklin cha. 7.7.1

Where to find more information

- State Space
 - [1] {7},[2] {3.4,A}
- Transfer Functions
 - [1] {3},[2]{3,A}
- Differential equations
 - [1] {2}, [2] {3.3}
- General modeling
 - [2]{1-7}
- Model analysis, stability
 - [2]{3}
- Simulations
 - [2]{11}
- Validation
 - [2]{12}
- Filtering and Frequency Analysis
 - [2] {8.4}[3]{7,B} and [3]{8, '8.1'}
- System Identification
 - [2] {8}

^[1] Franklin, Gene F., et al. *Feedback control of dynamic systems*. Vol. 3., MA: Addison-Wesley, 1994.

^[2] Ljung, Lennart, and Torkel Glad. "Modeling of dynamic systems." (1994).

^[3] Alan V. Oppenheim and Ronald W. Schafer. "Discrete-time Signal Processing.", Vol. 3., (2010,1989)

Exercise

Given the differential equation

$$\ddot{y} + \ddot{y}k_1 + \dot{y}k_2 + yk_3 = bu$$

- 1. Transform the differential equation into a state space:
- 2. Transform the differential equation into transfer function:

Given the Transfer Function:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{s^2 + s + 2}{s^3 + 2s^2 + 3s + 3}$$

- 3. Now go from transfer function into state space (Hint: use the General Case Control Canonical Form)
 - a) Compare your results to tf2ss
- 4. Now go from state space to transfer function (Hint: you can use Matlab to help with calculations)
 - a) Compare your results to ss2tf

