Exercise Set 1

DISCRETE MATHEMATICS

For the following list of problems, let $a, b, c, d \in \mathbb{Z}$ and $m \in \mathbb{N}_+$ be arbitrary, and let φ be Euler's totient function.

1. Warm-up

- (a) Show that $gcd(a, b) \mid a$.
- (b) Show that $a \mid b$ implies either a is odd or b is even.
- (c) Show that if $c \neq 0$ then $(ac \mid bc) \Rightarrow (a \mid b)$.

2. Easy

- (a) Show that, if $3 \nmid a$, then $3 \mid (a+1)(a+2)$.
- (b) Show that $4 \nmid a^2 + 2$.
- (c) Show that $b \equiv c \pmod{\varphi(m)} \not\Rightarrow a^b \equiv a^c \pmod{m}$.
- (d) Is it the case that $((a \mid bc) \land a \neq 0) \Rightarrow ((a \mid b) \lor (a \mid c))$?
- (e) If $p \neq q$ are both prime, show that $(p \mid a) \land (q \mid a) \Rightarrow pq \mid a$.

3. Medium

- (a) Show that $b \equiv c \pmod{m} \not\Rightarrow a^b \equiv a^c \pmod{m}$.
- (b) Show that if $\gcd(a,b) > 2$ then $(\forall n \in \mathbb{N}) (n > 2 \implies n^2 \nmid \gcd(a,b))$.
- (c) Show that if gcd(a, b) > 2 then gcd(a, b) is a product of distinct primes.
- (d) Show that if $a \neq 0$ and $b \neq 0$ then $a \equiv b \pmod{m} \Rightarrow \gcd(a, m) = \gcd(b, m)$.

4. Hard

- (a) Let p be prime. Show $a^p \equiv a \pmod{p}$.
- (b) Let lcm(a, b) be the least common multiple of a and b. Show that $ab = \gcd(a, b) lcm(a, b)$.

1. Algorithm practice

- (a) Verify by hand that gcd(69,51) = 3 by computing gcd(69,51).
- (b) Verify by hand that gcd(234, 44) = 2 by computing gcd(234, 44).

2. Programming practice

- (a) Verify that gcd(69, 51) = 3 and $3 = 2 \cdot 69 9 \cdot 15$ by computing egcd(69, 51).
- (b) Verify that gcd(234, 44) = 2 and $2 = -3 \cdot 234 + 16 \cdot 44$ by computing gcd(234, 44).