AArch64
Instructions

Index by Encoding

External Registers

AMEVCNTR1<n>_EL0, Activity Monitors Event Counter Registers 1, n = 0 - 15

The AMEVCNTR1<n> EL0 characteristics are:

Purpose

Provides access to the auxiliary activity monitor event counters.

Configuration

AArch64 System register AMEVCNTR1<n>_EL0 bits [63:0] are architecturally mapped to AArch32 System register AMEVCNTR1<n>[63:0].

AArch64 System register AMEVCNTR1<n>_EL0 bits [63:0] are architecturally mapped to External register AMEVCNTR1<n>[63:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMEVCNTR1<n>_EL0 are undefined.

Attributes

AMEVCNTR1<n> EL0 is a 64-bit register.

Field descriptions

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ACNT ACNT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACNT, bits [63:0]

Auxiliary activity monitor event counter n.

Value of auxiliary activity monitor event counter n, where n is the number of this register and is a number from 0 to 15.

If FEAT_AMUv1p1 is implemented, <u>HCR_EL2</u>.AMVOFFEN is 1, <u>SCR_EL3</u>.AMVOFFEN is 1, <u>HCR_EL2</u>.{E2H, TGE} is not {1,1}, EL2 is implemented in the current Security state, and <u>AMCR_EL0</u>.CG1RZ is 0, reads to these registers at EL0 or EL1 return (PCount<63:0> - <u>AMEVCNTVOFF1<n> EL2<63:0></u>).

PCount is the physical count returned when AMEVCNTR1<n>_EL0 is read from EL2 or EL3.

If the counter is enabled, writes to this register have unpredictable results.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMEVCNTR1<n>_EL0

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of AMEVCNTR1<n>_EL0 are undefined.

Note

<u>AMCGCR_ELO</u>.CG1NC identifies the number of auxiliary activity monitor event counters.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMEVCNTR1<m>_EL0 ; Where m = 0-15

op0	op1	CRn	CRm	op2
0b11	0b011	0b1101	0b110:m[3]	m[2:0]

```
integer m = UInt(CRm<0>:op2<2:0>);
if m >= NUM_AMU_CG1_MONITORS then
    UNDEFINED;
elsif !IsG1ActivityMonitorImplemented(m) then
    UNDEFINED;
elsif PSTATE.EL == ELO then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
        UNDEFINED;
    elsif AMUSERENR ELO.EN == '0' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11'
```

```
&& IsFeatureImplemented(FEAT FGT) && (!HaveEL(EL3)
|| SCR EL3.FGTEn == '1') &&
HAFGRTR EL2.AMEVCNTR1<m> EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR EL3.TAM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif AMCR ELO.CG1RZ == '1' then
        X[t, 64] = Zeros(64);
    else
        X[t, 64] = AMEVCNTR1 EL0[m];
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR EL3.TAM == '1' then
        UNDEFINED;
    elsif EL2Enabled() && CPTR EL2.TAM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR EL3.FGTEn == '1') &&
HAFGRTR EL2.AMEVCNTR1<m> EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED:
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif !IsHighestEL(PSTATE.EL) && AMCR ELO.CG1RZ
== '1' then
        X[t, 64] = Zeros(64);
    else
        X[t, 64] = AMEVCNTR1 EL0[m];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
   elsif !IsHighestEL(PSTATE.EL) && AMCR_ELO.CG1RZ
== '1' then
        X[t, 64] = Zeros(64);
        X[t, 64] = AMEVCNTR1\_EL0[m];
elsif PSTATE.EL == EL3 then
    X[t, 64] = AMEVCNTR1\_EL0[m];
```

MSR AMEVCNTR1<m>_EL0, <Xt>; Where m = 0-15

op0	op1	CRn	CRm	op2
0b11	0b011	0b1101	0b110:m[3]	m[2:0]

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64
Instructions

Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.