Limits and Algebra

Intro

The graphs of $f(x) = \frac{x^2 - 6x - 7}{x - 7}$ and g(x) = x + 1 are not the same.

Intro

The graphs of
$$f(x) = \frac{x^2 - 6x - 7}{x - 7}$$
 and $g(x) = x + 1$ are not the same.

$$f(x) = \frac{x^2 - 6x - 7}{x - 7}$$

$$g(x) = x + 1$$

Objectives

Find Limits via Factoring

2 Limits with Complex Fractions

3 Limits with Radicals

Algebraic Limits

Some limits that can't be evaluated directly can be evaluated after cancelling out common factors.

Algebraic Limits

Some limits that can't be evaluated directly can be evaluated after cancelling out common factors.

This is called removable discontinuity.

(a) Evaluate
$$\lim_{x \to -3} \frac{x^2 + 4x + 3}{x + 3}$$

$$\lim_{x \to -3} \frac{x^2 + 4x + 3}{x + 3} = \lim_{x \to -3} \frac{(x + 3)(x + 1)}{x + 3}$$

$$\lim_{x \to -3} \frac{x^2 + 4x + 3}{x + 3} = \lim_{x \to -3} \frac{(x + 3)(x + 1)}{x + 3}$$
$$= \lim_{x \to -3} \frac{(x + 3)(x + 1)}{(x + 3)}$$

$$\lim_{x \to -3} \frac{x^2 + 4x + 3}{x + 3} = \lim_{x \to -3} \frac{(x + 3)(x + 1)}{x + 3}$$

$$= \lim_{x \to -3} \frac{\cancel{(x + 3)}(x + 1)}{\cancel{(x + 3)}}$$

$$= \lim_{x \to -3} (x + 1)$$

$$\lim_{x \to -3} \frac{x^2 + 4x + 3}{x + 3} = \lim_{x \to -3} \frac{(x + 3)(x + 1)}{x + 3}$$

$$= \lim_{x \to -3} \frac{\cancel{(x + 3)}(x + 1)}{\cancel{(x + 3)}}$$

$$= \lim_{x \to -3} (x + 1)$$

$$= -3 + 1$$

$$\lim_{x \to -3} \frac{x^2 + 4x + 3}{x + 3} = \lim_{x \to -3} \frac{(x + 3)(x + 1)}{x + 3}$$

$$= \lim_{x \to -3} \frac{\cancel{(x + 3)}(x + 1)}{\cancel{(x + 3)}}$$

$$= \lim_{x \to -3} (x + 1)$$

$$= -3 + 1$$

$$= -2$$

$$\lim_{x \to -2} \frac{x+2}{x^2 + 7x + 10} = \lim_{x \to -2} \frac{x+2}{(x+2)(x+5)}$$

$$\lim_{x \to -2} \frac{x+2}{x^2 + 7x + 10} = \lim_{x \to -2} \frac{x+2}{(x+2)(x+5)}$$
$$= \lim_{x \to -2} \frac{x+2}{(x+2)(x+5)}$$

$$\lim_{x \to -2} \frac{x+2}{x^2 + 7x + 10} = \lim_{x \to -2} \frac{x+2}{(x+2)(x+5)}$$

$$= \lim_{x \to -2} \frac{\cancel{x+2}}{\cancel{(x+2)}(x+5)}$$

$$= \lim_{x \to -2} \frac{1}{x+5}$$

$$\lim_{x \to -2} \frac{x+2}{x^2 + 7x + 10} = \lim_{x \to -2} \frac{x+2}{(x+2)(x+5)}$$

$$= \lim_{x \to -2} \frac{\cancel{x+2}}{\cancel{(x+2)}(x+5)}$$

$$= \lim_{x \to -2} \frac{1}{x+5}$$

$$= \frac{1}{-2+5}$$

$$\lim_{x \to -2} \frac{x+2}{x^2 + 7x + 10} = \lim_{x \to -2} \frac{x+2}{(x+2)(x+5)}$$

$$= \lim_{x \to -2} \frac{\cancel{x+2}}{\cancel{(x+2)}(x+5)}$$

$$= \lim_{x \to -2} \frac{1}{\cancel{x+5}}$$

$$= \frac{1}{-2+5}$$

$$= \frac{1}{3}$$

Objectives

Find Limits via Factoring

2 Limits with Complex Fractions

3 Limits with Radicals

Complex Fractions

Simplify the complex fraction by multiplying every term by the least common tiny denominator.

Evaluate each.

(a)
$$\lim_{x \to -5} \left(\frac{\frac{1}{x} + \frac{1}{5}}{x + 5} \right)$$

Evaluate each.

(a)
$$\lim_{x \to -5} \left(\frac{\frac{1}{x} + \frac{1}{5}}{x + 5} \right)$$

$$\lim_{x \to -5} \left(\frac{\frac{1}{x} + \frac{1}{5}}{x+5} \right) = \lim_{x \to -5} \left(\frac{\frac{1}{x} + \frac{1}{5}}{x+5} \right) \left(\frac{5x}{5x} \right)$$

Evaluate each.

(a)
$$\lim_{x \to -5} \left(\frac{\frac{1}{x} + \frac{1}{5}}{x + 5} \right)$$

$$\lim_{x \to -5} \left(\frac{\frac{1}{x} + \frac{1}{5}}{x+5} \right) = \lim_{x \to -5} \left(\frac{\frac{1}{x} + \frac{1}{5}}{x+5} \right) \left(\frac{5x}{5x} \right)$$
$$= \lim_{x \to -5} \frac{5+x}{5x(x+5)}$$

$$= \lim_{x \to -5} \frac{5+x}{5x(x+5)}$$

$$= \lim_{x \to -5} \frac{5+x}{5x(x+5)}$$
$$= \lim_{x \to -5} \frac{1}{5x}$$

$$= \lim_{x \to -5} \frac{\cancel{5} + \cancel{x}}{5\cancel{x}\cancel{(x+5)}}$$

$$= \lim_{x \to -5} \frac{1}{5\cancel{x}}$$

$$= \frac{1}{5(-5)}$$

$$= \lim_{x \to -5} \frac{5 + x}{5x(x + 5)}$$

$$= \lim_{x \to -5} \frac{1}{5x}$$

$$= \frac{1}{5(-5)}$$

$$= -\frac{1}{25}$$

(b)
$$\lim_{x \to 3} \left(\frac{\frac{1}{3} - \frac{1}{x}}{3 - x} \right)$$

(b)
$$\lim_{x \to 3} \left(\frac{\frac{1}{3} - \frac{1}{x}}{3 - x} \right)$$

$$\lim_{x \to 3} \left(\frac{\frac{1}{3} - \frac{1}{x}}{3 - x} \right) = \lim_{x \to 3} \left(\frac{\frac{1}{3} - \frac{1}{x}}{3 - x} \right) \left(\frac{3x}{3x} \right)$$

(b)
$$\lim_{x \to 3} \left(\frac{\frac{1}{3} - \frac{1}{x}}{3 - x} \right)$$

$$\lim_{x \to 3} \left(\frac{\frac{1}{3} - \frac{1}{x}}{3 - x} \right) = \lim_{x \to 3} \left(\frac{\frac{1}{3} - \frac{1}{x}}{3 - x} \right) \left(\frac{3x}{3x} \right)$$
$$= \lim_{x \to 3} \frac{3 - x}{3x(x - 3)}$$

$$= \lim_{x \to 3} \frac{3 - x}{3x(x - 3)}$$

$$= \lim_{x \to 3} \frac{3 - x}{3x(x - 3)}$$
$$= \lim_{x \to 3} \frac{-1}{3x}$$

$$= \lim_{x \to 3} \frac{3 - x}{3x(x - 3)}$$

$$= \lim_{x \to 3} \frac{-1}{3x}$$

$$= \frac{-1}{3(3)}$$

$$= \lim_{x \to 3} \frac{3 - x}{3x(x - 3)}$$

$$= \lim_{x \to 3} \frac{-1}{3x}$$

$$= \frac{-1}{3(3)}$$

$$= \frac{-1}{9}$$

Objectives

Find Limits via Factoring

2 Limits with Complex Fractions

3 Limits with Radicals