# Algorithmics Final Exam #3 (P3)

Undergraduate  $2^{nd}$  year (s3) EPITA

22 Dec. 2015 - 9:30 (D.S. 308973.68 BW)

### Instructions (read it):

- □ You must answer on the answer sheets provided.
  - No other sheet will be picked up. Keep your rough drafts.
  - Answer within the provided space, answers outside will not be marked: Use your drafts!
  - Do not separate the sheets unless they can be re-stapled before handing in.
  - Penciled answers will not be marked.
- □ The presentation is negatively marked, which means that you are marked out of 20 points and the presentation points (maximum of 2) are taken off this grade.

### $\Box$ Algorithms:

- All algorithms must be written in the language Algo (no C, Caml or anything else).
- Any Algo code not indented will not be marked.
- All that you need (types, routines) is indicated in the **appendix** (last page)!
- $\square$  Duration : 2h



### Exercise 1 (Miscillaneous questions... – 3 points)

- 1. (a) If in a graph G there exist a chain between x and y, and a chain between y and z; does there exist in G a chain between x and z?
  - (b) Justify your answer graphically.
- 2. (a) If in a graph G there exist two chains between x et y. Do x and y belong to a same cycle of
  - (b) Justify your answer graphically.
- 3. Let C and C' be two distinct strongly connected components of a directed graph  $G = \langle S, A \rangle$ , Let  $x, y \in C$ . Let  $x', y' \in C'$ , and suppose there exist a path  $x \rightsquigarrow x'$  in G. Show that there can not also be a path  $y' \leadsto y$  in G.

### Exercise 2 (Directed acyclic graph...– 2.5 points)

- 1. Concerning the classification of arcs, what is the particularity of a directed acyclic graph?
- 2. Let  $G = \langle S, A \rangle$  be a directed acyclic graph, let os and op be the tables, containing respectively, the postorder number and the preorder number of all vertices of the graph G obtained during the depth-first search traversal of G. Show that for any pair of distinct vertices  $x, y \in S$ , if there exist an arc from x to y in G, then os[y] < os[x].

#### Exercise 3 (Red-black Trees – 4 points)



Figure 1: Red-black tree?

Remark: As usual, the red nodes are those with "double circles".

- 1. Is the tree in figure 1 a red-black tree? If this is not the case, which node (or nodes) has to be removed to make it a red-black tree?
- 2. Write an algorithm that calculates the size and height of the 2-4 tree represented by a red-black tree.

## Exercise 4 (Bipartite graph - 7 points)

A bipartite graph is a graph (undirected) G = < S, A > where vertices can be partitioned into two sets  $S_1$  et  $S_2$ , such that  $(u, v) \in A$  implies either  $u \in S_1$  and  $v \in S_2$ , or  $u \in S_2$  and  $v \in S_1$ . That is, no edge connects vertices in the same set.



Figure 2: Graph  $G_1$ 

Figure 3: Graph  $G_2$ 



Figure 4: Graph  $G_3$ 

- 1. Are the graphs of figures 2, 3 and 4 bipartite? For each bipartite graph give the two sets  $S_1$  and  $S_2$ .
- 2. Write an algorithm that tests, with a **depth-first traversal**, whether a graph is bipartite. The dynamic implementation has to be used.

### Exercise 5 (What is this? -5.5 points)

```
algorithm procedure build_graph
    local parameters
         t_graph_stat G
         integer
    global parameters
         t_graph_stat NG
    variables
         t_int_vect
                            map, dist
         t_queue
                                q
         integer
begin
    \mathbf{for}\ \mathtt{i}\ \leftarrow\ \mathtt{1}\ \mathbf{to}\ \mathtt{G}.\mathtt{order}\ \mathbf{do}
         \texttt{map[i]} \; \leftarrow \; 0
         dist[i] \leftarrow -1
                                                                                                           8
         for j \leftarrow 1 to G.order do
             NG.adj[i,j] \leftarrow 0
                                                                                         6
         end for
                                                                            5
    end for
                                                                                                                      10
    q ← new_queue()
    enqueue(s, q)
                                                                                                          7
    \texttt{dist[s]} \, \leftarrow \, \mathbf{0}
                                                                                        4
    NG.order \leftarrow 1
    map[s] \leftarrow 1
                                                                                                                   9
    do
                                                                                                  3
         s \leftarrow dequeue(q)
         \mathbf{for}\ \mathtt{i}\ \leftarrow\ \mathtt{1}\ \mathbf{to}\ \mathtt{G}.\mathtt{order}\ \mathbf{do}
                                                                                      2
             if G.adj[s,i] \Leftrightarrow 0 then
                  if (dist[i] = -1) and (dist[s] < n) then
                                                                                                         1
                      dist[i] \leftarrow dist[s] + 1
                      NG.order \leftarrow NG.order + 1
                                                                                           FIGURE 5 – Graph G_4
                      map[i] \leftarrow NG.order
                      enqueue(i, q)
                  end if
                  if dist[i] <> -1 then
                      NG.adj[map[s], map[i]] \leftarrow G.adj[s,i]
                      \texttt{NG.adj[map[i],map[s]]} \; \leftarrow \; \texttt{G.adj[i,s]}
                  end if
             end if
         end for
    while not is_empty(q)
end algorithm procedure build_graph
```

- 1. This algorithm is called with build\_graph( $G_4$ , 5, 2, NG) ( $G_4$  the graph in figure 5).
  - (a) Fill the array dist.
  - (b) Fill the array map.
  - (c) Draw the built graph (NG).
- 2.  $build\_graph(G, s, n, NG)$  is called with G any non-empty graph, s a vertex of G, and n a positive integer.
  - (a) During the execution, what does the array dist represent?
  - (b) During the execution, what is the array map used for?
  - (c) After the execution, what does the graph NG represent?

# Appendix

### Implementation of RB-Trees

### Graph implementations

The graphs we use have no cost. Thus we have removed them from the implementation.

| Static:                                      | Dynamic:                          |
|----------------------------------------------|-----------------------------------|
| constants                                    | types                             |
| Max = 100                                    | t_listsom = \(\frac{1}{2}\) s_som |
|                                              | t_listadj = ↑ s_ladj              |
| types                                        |                                   |
| $t_{edge_mat} = Max \times Max integer$      | s_som = record                    |
|                                              | integer som                       |
| $t_{graph_stat} = record$                    | t_listadj succ                    |
| boolean directed                             | t_listadj pred                    |
| integer order                                | t_listsom next                    |
| t_edge_mat edges                             | end record s_som                  |
| ${ m end}\ { m record}\ { m t\_graph\_stat}$ |                                   |
|                                              | s_ladj = record                   |
|                                              | t_listsom vsom                    |
| <b>T</b> 7                                   | integer nb                        |
| Vectors:                                     | t_listadj next                    |
| types $/*Max > order(G) */$                  | end record s_ladj                 |
| t_int_vect = Max integer                     |                                   |
| t_bool_vect = Max boolean                    | t_graph_dyn = record              |
|                                              | integer order                     |
|                                              | boolean directed                  |
|                                              | t_listsom lsom                    |
|                                              | end record t_graph_dyn            |

#### Authorized routines

All operations on queues and stacks can be used as long as you specify the type of elements.

# Queues

```
o new_queue():t_queue
o is_empty(t_queue q):boolean
o enqueue(t_queueElt e, t_queue q)
o dequeue(t_queue q):t_queueElt
o empty_queue(t_queue q)
```

#### Stacks

```
o new_stack():t_stack
o is_empty(t_stack p):boolean
o push(t_stackElt elt, t_stack p)
o pop(t_stack p):t_stackElt
o top(t_stack p):t_stackElt
```

### Other

 $\circ$  search(integer v, t\_graph\_dyn G):t\_listsom returns the pointer on the vertex number v in the graph G.