COMPUTER SCIENCE 349A

Handout Number 7

STABILITY OF AN ALGORITHM

Textbook (page 100 of the 7th ed.; page 97 of the 6th): a computation is <u>numerically unstable</u> if the uncertainty of the input values is greatly magnified by the numerical method. The following is a more precise definition.

<u>Definition.</u> An algorithm is said to be <u>stable</u> (for a class of problems) if it determines a computed solution (using floating-point arithmetic) that is close to the exact solution of some (small) perturbation of the given problem.

If there exist data $\hat{d}_i \approx d_i$ (small ε_i for all i) such that $\hat{r}_i \approx r_i$ (for all i), then the algorithm is said to be **stable.**

If there exists <u>no set</u> of data $\{\hat{d}_i\}$ close to $\{d_i\}$ such that $\hat{r}_i \approx r_i$ for all i, then the algorithm is said to be **unstable**.

Meaning of numerical stability: the effect of uncertainty in the input data or of the floating-point arithmetic (the round-off error) is no worse than the effect of slightly perturbing the given problem, and solving the perturbed problem exactly.

Example 1

Approximate e^x when x = -5.5 using b = 10, k = 5 rounding floating-point arithmetic and the Taylor polynomial approximation (expanded about a = 0)

1

$$e^{x} \approx 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!}$$
.

The floating-point computation results in the summation of the following terms:

$$e^{-5.5} \approx 1.0000$$
 -5.5000
 $+15.125$
 -27.730
 $+38.129$
 -41.942
 $+38.446$
 -30.208
 $+20.768$
 -12.692
 $+6.9803$
 -3.4902
 $+1.5997$
and so on.

Using rounding floating-point arithmetic with b = 10 and k = 5, this sum equals 0.0026363 (or $+0.26363 \times 10^{-2}$) after summing 25 terms (that is, n = 24), and no further terms change this sum (as they are all $< 10^{-7}$).

However, the exact value of $e^{-5.5}$ is 0.00408677 (to 6 significant digits), so $f\ell(e^{-5.5})$ has no correct significant digits.

Stability Analysis of the above computation of $f\ell(e^{-5.5})$.

given problem, data
$$x = -5.5$$
 floating-point computation
$$e^{-5.5+\varepsilon} = e^{-5.5}e^{\varepsilon}$$
 perturbed problem,
$$\hat{x} = -5.5 + \varepsilon$$
 exact
$$exact = 0.00408677(1+\varepsilon+\frac{\varepsilon^2}{2}+\cdots)$$
 with $|\varepsilon/5.5|$ small computation
$$e^{-5.5+\varepsilon} \approx 0.00408677(1+\varepsilon)$$
 and this value is very close to 0.00408 for all small values of ε .

That is, there are \underline{no} small values of ε for which $e^{-5.5+\varepsilon}$ is close to 0.0026363, and thus the computation is **unstable**.

Another way to see this: if $e^{-5.5+\varepsilon} = 0.0026363$, then $\varepsilon = -0.43837\cdots$ and this value of ε is <u>not</u> small relative to -5.5 since $0.43837/5.5 \approx 0.08$ or 8%.

Note

A stable algorithm for computing $e^{-5.5}$ (and, in general, for computing e^x for x < 0):

$$e^{-5.5} = \frac{1}{e^{5.5}}$$

$$= \frac{1}{1 + 5.5 + \frac{(5.5)^2}{2} + \frac{(5.5)^3}{6} + \dots}$$

E.g., using b = 10, k = 5 floating-point arithmetic, this computation (using 18 terms of the Taylor polynomial approximation) gives a computed solution of 0.0040865 (which is very accurate).

Example 2

Consider the function

$$y(x) = \frac{1 - \cos x}{x^2}, \qquad x \neq 0.$$

Due to subtractive cancellation, the evaluation of y(x) will be inaccurate in floating-point arithmetic for values of x close to 0. For example, evaluation of $f\ell(y(0.009))$ using 4 decimal digit, idealized, <u>rounding</u> floating-point arithmetic gives a very inaccurate answer:

$$f\ell(\cos(0.009)) = f\ell(0.9999595\cdots) = 1.000 \text{ or } 0.1000 \times 10^{1}$$

 $f\ell(1-\cos(0.009)) = f\ell(1.000-1.000) = 0.0$
 $f\ell(0.009 \times 0.009) = 0.000081 \text{ or } 0.8100 \times 10^{-4}$
 $f\ell(y(0.009)) = f\ell(0.0/0.000081) = 0.0$

As the correct value of y(0.009) is 0.499996625..., the relative error in the above approximation is 1.0 or 100%.

To show that the above computation of $f\ell(y(0.009))$ is <u>unstable</u>, use a Taylor polynomial approximation in order to obtain a polynomial approximation to y(x) that is

very accurate for values of x close to 0. The order n = 4 Taylor polynomial approximation for $f(x) = \cos x$ expanded about a = 0 is

$$\cos x \approx 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4,$$

which gives the approximation

$$y(x) \approx \frac{1 - \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4\right)}{x^2} = \frac{1}{2} - \frac{1}{24}x^2.$$

Note that this approximation is very accurate for values of x close to 0.

STABILITY ANALYSIS

Given problem, computed solution
$$y(x) = \frac{1 - \cos x}{x^2}$$
, \Rightarrow $r = 0.0$ data $x = 0.009$

Perturbed problem, exact value of
$$y(0.009 + \varepsilon) = y(0.009 + \varepsilon) = \frac{1 - \cos(0.009 + \varepsilon)}{(0.009 + \varepsilon)^2}$$
 \Rightarrow
$$\frac{1 - \cos(0.009 + \varepsilon)}{(0.009 + \varepsilon)^2}$$
 is very close to
$$\frac{1}{2} - \frac{1}{24}(0.009 + \varepsilon)^2$$

using the above Taylor approximation (since $0.009 + \varepsilon$ is close to 0).

If there is any value of ε such that $\left|\frac{\varepsilon}{0.009}\right|$ is small and $y(0.009 + \varepsilon) \approx 0.0$, then the computation of $f\ell(y(0.009))$ is stable. Otherwise, it is unstable.

However,

$$\frac{1}{2} - \frac{1}{24} (0.009 + \varepsilon)^2 = 0.499996625 - 0.00075\varepsilon - \frac{\varepsilon^2}{24}$$

and the question now is whether or not there exists a small value of ε (that is, with $\left|\frac{\varepsilon}{0.009}\right|$ small) such that this is ≈ 0.0 .

Clearly $0.499996625 - 0.00075\varepsilon - \frac{\varepsilon^2}{24}$ is approximately equal to 0.4999 for <u>all</u> values of ε such that $\left| \frac{\varepsilon}{0.009} \right|$ is small. As 0.4999 is not close to 0, the computation is <u>unstable</u>.

Example 3

The polynomial

$$P(x) = (x-1)(x-2)(x-3)\cdots(x-20)$$

= $x^{20} - 210x^{19} + (\cdots)x^{18} + (\cdots)x^{17} + \cdots + (20!)$

clearly has zeros exactly equal to 1, 2, 3, ..., 20. Let Q(x) be identical to P(x) except that the coefficient of x^{19} is changed from -210 to $-210+2^{-23}$. Then some of the 20 zeros of Q(x) are approximately equal to

$$20.8469$$
 $19.502 \pm 1.94i$
 $16.73 \pm 2.81i$

Thus, the problem computing the zeros of P(x) is an extremely ill-conditioned problem.

Note: the zeros of P(x) are the roots of the equation P(x) = 0.