微积分

——副标题

LXY

2024年4月10日

前言

这是笔记的前言部分.

Dylaaan 2024 年 4 月 10 日

目录

第一章	重积分	
第二章	习题	2
2.1	级数	2

第一章 重积分

第二章 习题

2.1 级数

20-21 期中

12. 判別级数 $\sum_{n=1}^{\infty} \ln(1+\frac{(-1)^n}{n^p-(-1)^n})(0< p<1)$ 的敛散性 (要讨论是绝对收敛、条件收敛还是收敛)

$$\therefore \ln\left[1 + \frac{(-1)^n}{n^p - (-1)^n}\right] = \ln\frac{n^p}{n^p - (-1)^n} = -\ln\left[1 - \frac{(-1)^n}{n^p}\right]$$

$$= \frac{(-1)^n}{n^p} + \frac{1}{2n^{2p}} + o(\frac{1}{n^{2p}})$$

且 $\frac{(-1)^n}{n^p}$ 条件收敛 当 $\frac{1}{2} 时 <math>\frac{1}{2n^{2p}}$ 绝对收敛,则原级数条件收敛; 当 $0 时 <math>\frac{1}{2n^{2p}}$ 发散,则原级数发散

注:此处用到了二级结论:条件收敛 + 绝对收敛 = 条件收敛,证明如下:

设级数 $\sum a_n$ 条件收敛,级数 $\sum b_n$ 绝对收敛,下证级数 $\sum (a_n + b_n)$ 条件收敛

反证法: 假设级数 $\sum (a_n + b_n)$ 绝对收敛,

由题知:级数 $\sum a_n$ 收敛,级数 $\sum |a_n|$ 发散,级数 $\sum b_n$ 收敛,级数 $\sum |b_n|$ 收敛

第二章 习题 3

由绝对值不等式:

$$|a_n + b_n| \ge |b_n| - |a_n|$$

即:

$$|b_n| \le |a_n + b_n| + |a_n|$$

 \therefore 级数 $\sum |a_n + b_n|$ 收敛, 级数 $\sum |a_n|$ 收敛

 \therefore 级数 $\sum |b_n|$ 收敛,矛盾,则假设不成立

:. 级数 $\sum (a_n + b_n)$ 条件收敛