

PROJECTO DE SISTEMAS DIGITAIS

Laboratório 2

Escalonamento e Partilha de Recursos

Rafael Gonçalves, 73786

Gonçalo Ribeiro, 73294

Conteúdo

1	Optimização do Algoritmo	2
2	Fluxo de Dados	2
3	Partilha de Recursos	3
	3.1 Partilha Óptima de Registos	3
	3.2 Partilha Óptima de Operadores	4

1 Optimização do Algoritmo

De maneira a minimizar o número de multiplicações utilizado no algoritmo, reorganizámos a expressão aritmeticamente.

$$\begin{aligned} |A| &= \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \Leftrightarrow \\ \Leftrightarrow |A| &= aei - afh - bdi + cdh + bfg - ceg \Leftrightarrow \\ \Leftrightarrow |A| &= a \cdot (ei - fh) + b \cdot (fg - di) + c \cdot (dh - eg) \end{aligned}$$

Isto é, passámos de um algoritmo com 12 produtos para um algoritmo de 9 produtos.

2 Fluxo de Dados

Figura 1: grafo de fluxo de dados e caminhos críticos

Operação	Tipo	Prioridade		
1	х	5		
2	х	5		
3	х	5		
4	х	5		
7	-	4	\leftarrow 1 , 2	
8	-	4	\leftarrow 3 , 4	
5	х	4		
6	х	4		
10	х	3	← 7	
11	х	3	← 8	
9	_	3	\leftarrow 5 , 6	
13	+	2	← 10 , 11	
12	х	2	← 9	
14	+	1	← 12 , 13	

Tabela 1: lista de prioridades correspondente à Figura 1

Ciclo	MUL 1	MUL 2	$\mathrm{ADD/SUB}$
1	1	2	-
2	3	4	7
3	5	6	8
4	10	11	9
5	12	-	13
6	-	-	14

Tabela 2: escalonamento para 1 somador e 2 multiplicadores

3 Partilha de Recursos

3.1 Partilha Óptima de Registos

Ciclo	R_A	R_{B}	R_{C}	R_{D}
2	M1 (z1)	M2 (z2)	-	-
3	M1 (z3)	M2 (z4)	A/S (z5)	-
4	M1 (z6)	M2 (z7)		A/S (z8)
5	M1 (z9)	M2 (z10)	A/S (z11)	-
6	-	M2 (z12)	A/S (z13)	-

Tabela 3: partilha óptima dos registos

Ciclo	M1		M2		A/S	
1	е	i	f	h	-	_
2	g	f	d	i	R_{A}	R_{B}
3	d	h	е	g	R_{A}	R_{B}
4	b	R_{D}	a	$R_{\rm C}$	R_{A}	R_{B}
5	-	-	С	$R_{\rm C}$	R_{A}	R_{B}
6	-	-	-	-	$R_{\rm C}$	R_{B}

Tabela 4: partilha dos operadores condicionada à partilha da tab:Tabela 3

Podemos observar que fazendo a partilha dos recursos desta forma necessitamos de:

- 1 multiplexer de 2 entradas;
- 1 multiplexer de 5 entradas (1 de 2 entradas e 1 de 4);
- 3 multiplexers de 4 entradas;

Isto é equivalente a 10 multiplexers de 2 entradas.

3.2 Partilha Óptima de Operadores

Ciclo	M1		M2		A/S				
1	е	i	(z1)	f	h	(z2)	-	-	-
2	d	i	(z4)	f	g	(z3)	R_{A}	R_{B}	(z5)
3	d	h	(z6)	е	g	(z7)	R_{A}	R_{B}	(z8)
4	b	R_{D}	(z9)	a	$R_{\rm C}$	(z10)	R_{A}	R_{B}	(z11)
5	-	-	-	c	$R_{\rm C}$	(z12)	R_{A}	R_{B}	(z13)
6	-	-	-	-	-	-	R_{A}	R_{B}	(R)

Tabela 5: partilha óptima dos operadores

Ciclo	R_{A}	R_{B}	$R_{\rm C}$	R_{D}
2	M1 (z1)	M2 (z2)	-	=
3	M2 (z3)	M1 (z4)	A/S (z5)	-
4	M1 (z6)	M2 (z7)		A/S (z8)
5	M2 (z10)	M1 (z9)	A/S (z11)	-
6	A/S (z13)	M2 (z12)	-	-

Tabela 6: partilha dos registos condicionada à Tabela 5

Partilhando primeiro os operadores e restringindo a partilha dos registos a essa escolha são precisos:

- ullet 1 multiplexer de 2 entradas;
- 1 multiplexer de 4 entradas;

• 4 multiplexers de 3 entradas (2 de 2 entradas).

Isto é equivalente a 11 multiplexers de 2 entradas. Esta alternativa é então pior do que a apresentada em $3.1~(10~{\rm MUX}~{\rm de}~2~{\rm entradas})$. Como tal vamos usar a segunda.