# Especialização em Mineração de Dados Análise de Dados

Thiago H Silva



## Linguagens apropriadas ajudam







#### Neste curso:





## Dataframe



## Suportam variáveis de vários tipos

Exemplo baseado nos dados "businessToronto.csv"

| city    | state | postal_code | latitude  | longitude  | stars | review_count | is_open |
|---------|-------|-------------|-----------|------------|-------|--------------|---------|
| Toronto | ON    | M5V 1K4     | 43.645041 | -79.395799 | 4.0   | 23           | 1       |
| Toronto | ON    | M6J 1J5     | 43.642889 | -79.425429 | 3.0   | 57           | 1       |
| Toronto | ON    | M5R 2C7     | 43.670744 | -79.391385 | 5.0   | 12           | 1       |
|         |       |             |           |            |       |              |         |

Podem ter tipos diferentesem cada coluna

## Dataframe



## Fácil manipulação e sumarização de dados

```
dfBusiToronto['stars']
         4.0
         3.0
         5.0
         3.5
         4.5
18901
        3.5
18902
       4.0
18903
       3.5
18904
       4.0
18905
       4.5
Name: stars, Length: 18906, dtype: float64
```

## Tendências centrais



# A média é a medida mais comum de localização de um conjunto de pontos

- No entanto, é muito sensível a outliers
- Assim, a mediana é também muito usada

$$\overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

> dfBusiToronto['stars'].mean()

3.444

> dfBusiToronto['stars'].median()
3.5

Mediana =  $\{(m + 1) \div 2\}$ ésimo valor.

Onde m é o número de valores.

{25.0, 25.2, 25.6, 25.7, 26.1.}

$$= (5 + 1) \div 2$$
  
= 3

Se o valor não é inteiro calcular a média dos valores do intervalo em que se encontra

## Tendências centrais



Visualização em diferentes distribuições

Medidas que podem ser úteis, por exemplo, para a criação de atributos





# Visualização



Visualização de dados é uma das formas mais poderosas e atraentes de exploração de dados

- Humanos tem boa habilidade para analisar grandes quantidades de dados apresentadas visualmente
- Podemos detectar padrões e tendências
- Ajuda a detectar outliers e padrões incomuns



Passo essencial em análises de dados

## Histograma



Divide os valores em intervalos (bins) e mostra um gráfico de barras do número de objetos em cada bin

A altura da barra indica o número de objetos

O formato do histograma depende do número de bins

sns.histplot(dfBusiToronto['stars'])



# Histograma



#### Definindo os bins

sns.histplot(dfBusiToronto['stars'], bins=3)



## **CDF**



# Função de Distribuição Cumulativa (CDF cumulative distribution function)

Mapeia um valor para uma probabilidade cujo resultado é menor ou igual a x:

$$F_X(x) = \mathrm{P}(X \leq x),$$

Probabilidade de uma variável aleatória X assumir um valor menor ou igual a x

## CDF



ax = sns.ecdfplot(data = dfBusiToronto, x='review\_count', log\_scale=True ) ax.set(ylabel=r' $P(X \leq x)$ ) plt.show()



## Box plot



### Outra forma de mostrar uma distribuição de dados



## Box plot



## Outra forma de mostrar uma distribuição de dados



> sns.boxplot(data=dfBusiToronto, y='stars')



## Scatter plot



Os valores dos atributos determinam a posição do objeto



Qual é a tendência observada?

# Heatmaps





# Heatmaps







# Séries temporais





# Séries temporais





## Séries temporais







## Informações complementares



Outros exemplos de visualizações: http://www.datavizcatalogue.com/

### Exemplos de análise de dados:

An Empirical Study of Geographic User Activity Patterns in Foursquare. ICWSM 2011

A picture of Instagram is Worth More than a Thousand Words: Workload Characterization and Application. DCOSS 2013