Approach 2 - Naive Deep Learning based Approach

What we will be covering in this module?

- Introduction is Image Segmentation
- How to solve Image Segmentation problems?
- Approaches for Image Segmentation
 Use Traditional Methods
 Leverage Deep Learning
- Understanding Deep Learning Architectures for Image Segmentation
- Project on Lane Segmentation for Self Driving Cars
- What's Next?

Approach to solve Blood Cell Segmentation

Recap - Approach to solve Blood Cell Detection

- **Step 1:** Divide image into patches
- Step 2: Classify each patch
- Step 3: Return Patch coordinates as

bounding box

 Step 1: Divide image into patches for every pixel

• Step 2: Classify each patch

Step 3: Return output as a heatmap of predictions

• **Step 4**: Threshold heatmap

Pros:

Not just based on color, extracts features in an intelligent way

Pros:

- Not just based on color, extracts features in an intelligent way
- May performs better than heuristics based approaches

Pros:

- Not just based on color, extracts features in an intelligent way
- May performs better than heuristics based approaches

Cons:

Too computationally expensive to even be feasible

Improvement:

A single CNN which works on input image and gives an output heatmap

Recap - CNN for Image Classification

CNN for Image Segmentation

Feature Extractor

Modified CNN for Image Segmentation

Feature Extractor

Modified CNN for Image Segmentation

Improvement:

A single CNN which works on input image and gives an output heatmap

Pros:

Computationally less expensive

Improvement:

A single CNN which works on input image and gives an output heatmap

Pros:

Computationally less expensive

Cons:

Output not of the same size

Improvements:

A single CNN which works on input image and gives an output heatmap

No pooling layer

Pros:

Computationally less expensive

Improvements:

A single CNN which works on input image and gives an output heatmap

No pooling layer

Pros:

Computationally less expensive

Cons:

Output not of same size (due to undefined padding, stride in conv layer)

Improvements:

- A single CNN which works on input image and gives an output heatmap
- No pooling layer, conv layer with stride as 1

Improvements:

- A single CNN which works on input image and gives an output heatmap
- No pooling layer, conv layer with stride as 1 (pad accordingly)

Improvements:

- A single CNN which works on input image and gives an output heatmap
- No pooling layer, conv layer with stride as 1 (pad accordingly)

Pros:

Computationally less expensive

Improvements:

- A single CNN which works on input image and gives an output heatmap
- No pooling layer, conv layer with stride as 1 (pad accordingly)

Pros:

- Computationally less expensive
- Output of same size

Improvements:

- A single CNN which works on input image and gives an output heatmap
- No pooling layer, conv layer with stride as 1 (pad accordingly)

Pros:

- Computationally less expensive
- Output of same size

Cons:

Options for DL architecture is limited

1. Data Loading and Preprocessing

1. Data Loading and Preprocessing

1.1 Load the Data

1. Data Loading and Preprocessing

- 1.1 Load the Data
- 1.2 Define custom dataset and dataloader

1. Data Loading and Preprocessing

- 1.1 Load the Data
- 1.2 Define custom dataset and dataloader
- 1.3 Data Exploration

1. Data Loading and Preprocessing

- 1.1 Load the Data
- 1.2 Define custom dataset and dataloader
- 1.3 Data Exploration

2. Image Segmentation through CNN based model

1. Data Loading and Preprocessing

- 1.1 Load the Data
- 1.2 Define custom dataset and dataloader
- 1.3 Data Exploration

2. Image Segmentation through CNN based model

2.1 Define model architecture

Steps for Image Segmentation using CNN based model

1. Data Loading and Preprocessing

- 1.1 Load the Data
- 1.2 Define custom dataset and dataloader
- 1.3 Data Exploration

2. Image Segmentation through CNN based model

- 2.1 Define model architecture
- 2.2 Train the model

Steps for Image Segmentation using CNN based model

1. Data Loading and Preprocessing

- 1.1 Load the Data
- 1.2 Define custom dataset and dataloader
- 1.3 Data Exploration

2. Image Segmentation through CNN based model

- 2.1 Define model architecture
- 2.2 Train the model
- 2.3 Calculate IoU score

Thank you tics idnya

Code Walkthrough of Improved Naive Approach

Pros:

Single CNN network (almost end to end)

Pros:

- Single CNN network (almost end to end)
- Performs better than heuristics based approaches

Vidhya

Pros:

- Single CNN network (almost end to end)
- Performs better than heuristics based approaches
- Generalizes well for unseen data

Pros:

- Single CNN network (almost end to end)
- Performs better than heuristics based approaches
- Generalizes well for unseen data

Cons:

Feasible but still computationally expensive (as no pooling layer is used)

Vidhya

Pros:

- Single CNN network (almost end to end)
- Performs better than heuristics based approaches
- Generalizes well for unseen data

Cons:

Feasible but still computationally expensive (as no pooling layer is used)

Vidhya

Options for DL architecture is limited

Pros:

- Single CNN network (almost end to end)
- Performs better than heuristics based approaches
- Generalizes well for unseen data

Cons:

Feasible but still computationally expensive (as no pooling layer is used)

Vidhya

- Options for DL architecture is limited
- Simplistic DL model, doesn't take ideas from complex networks

Approach to solve Blood Cell Segmentation

Thank you tics idnya