Report regarding the ongoing research

1 Main

Definition 1 (Extended social argumentation frameworks). An extended social argumentation framework is a 4-tuple $F = \langle A, \mathcal{R}, V_A, V_{\mathcal{R}} \rangle$, where

- A is the set of arguments,
- $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$ is a binary attack relation between arguments,
- $V_A: A \to \mathbb{N} \times \mathbb{N}$ stores the crowd's pro and con votes for each argument.
- $V_{\mathcal{R}}: \mathcal{R} \to \mathbb{N} \times \mathbb{N}$ stores the crowd's pro and con votes for each attack.

Definition 2. [Vote Aggregation Function] Given a totally ordered set L with top and bottom elements \top , \bot , a vote aggregation function τ over L is any function such that $\tau : \mathbb{N}^2 \times \mathbb{N} \to L$.

Definition 3 (Semantic Framework). A semantic framework is a 6-tuple $\langle L, \lambda_1, \lambda_2, \Upsilon, \neg, \tau, \rangle$ where:

- L is a totally ordered set with top and bottom elements ⊤, ⊥, containing all possible valuations of an argument.
- $\Upsilon: L \times L \to L$, is a binary algebraic operation on argument valuations used to combine or aggregate valuations and strengths.
- $\neg: L \to L$ is a unary algebraic operation for computing a restricting value corresponding to a given valuation or strength.
- \bullet τ is a vote aggregation function, which aggregates positive and negative votes and the maximum number of total votes into a social support value.

Notation 1. Let $F = \langle \mathcal{A}, \mathcal{R}, V_{\mathcal{A}}, V_{\mathcal{R}} \rangle$ be an ESAF, $\mathcal{S} = \langle L, \lambda_1, \lambda_2, \Upsilon, \neg, \tau, \rangle$ a semantic framework. Then, let

• $\mathcal{R}^{-}(a) \triangleq \{a_i \in \mathcal{A} : (a_i, a) \in \mathcal{R}\}\$ be the set of direct attackers of an argument $a \in \mathcal{A}$,

- $-V_{\mathcal{A}}^+(a) \triangleq x$ denote the number of positive votes for argument a, $-V_{\mathcal{A}}^-(a) \triangleq y$ denote the number of negative votes for argument a, whenever $V_{\mathcal{A}}(a) = (x, y)$,
- $v^r : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a function s.t. $v^r(v^+, v^-) \triangleq \frac{v^+}{v^-}$ where $v^+, v^- \in \mathbb{N}$, that denotes the ratio of positive votes to negative votes for some argument or attack relation,
- $v^t : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a function s.t. $v^t(v^+, v^-) \triangleq v^+ + v^-$ where $v^+, v^- \in \mathbb{N}$, that denotes the total number of votes for some argument or attack relation,
- $v_{emax} \triangleq v^t(V_{\mathcal{A}}(b))$ where $b \in \mathcal{A}$ and $\forall a \in \mathcal{A}$, $v^t(V_{\mathcal{A}}(b)) \geq v^t(V_{\mathcal{A}}(a))$ denote the maximum total number of votes for an argument,
- $\tau(a) \triangleq \tau(V_A(a), v_{emax})$ denote the social support for an argument a via utilizing a vote aggregation function τ ,
- $-V_{\mathcal{R}}^+((a,b)) \triangleq x$ denote the number of positive votes for an attack relation between arguments a and b,
 - $-V_{\mathcal{R}}^{-}((a,b)) \triangleq y$ denote the number of negative votes for an attack relation between arguments a and b,

whenever $V_{\mathcal{R}}((a,b)) = (x,y),$

- $v_{rmax} \triangleq v^t(V_{\mathcal{R}}(y))$ where $y \in \mathcal{R}$ and $\forall x \in \mathcal{R}$, $v^t(V_{\mathcal{R}}(y)) \geq v^t(V_{\mathcal{R}}(x))$ denote the maximum total number of votes for an attack relation,
- $\tau((a,b)) \triangleq \tau(V_{\mathcal{R}}((a,b)), v_{rmax})$ denote the social support for an attack relation between arguments a and b via utilizing a vote aggregation function τ ,

$$\bigvee_{x \in R} x \triangleq (((x_1 \lor x_2) \lor \dots) \lor x_n)$$

 $R = \{x_1, x_2, ..., x_n\}$ denote the aggregation of a multiset of elements of L.

Definition 4 (Model). Let $F = \langle \mathcal{A}, \mathcal{R}, V_{\mathcal{A}}, V_{\mathcal{R}} \rangle$ be a social argumentation framework, $\mathcal{S} = \langle L, \lambda_1, \lambda_2, \Upsilon, \neg, \tau, \rangle$ be a semantic framework. A \mathcal{S} -model of F is a total mapping $M : \mathcal{A} \to L$ such that for all $a \in \mathcal{A}$,

$$M(a) = \tau(a) \curlywedge_{\mathcal{A}} \neg \bigvee_{a_i \in \mathcal{R}^{\cdot}(a)} (\tau((a_i, a)) \curlywedge_{\mathcal{R}} M(a_i))$$

Notation 2. Whenever a single spesific system $F = \langle \mathcal{A}, \mathcal{R}, V_{\mathcal{A}}, V_{\mathcal{R}} \rangle$ with some semantic framework $\mathcal{S} = \langle L, \lambda_1, \lambda_2, \Upsilon, \neg, \tau, \rangle$ is considered, we implicitly consider v_{emax} and v_{rmax} are constants and drop them from the respective function's argument list. Thus we update the two function definitions from Notation 1 as follows: $\tau(a) \triangleq \tau(V_{\mathcal{A}}(a))$ and $\tau((a,b)) \triangleq \tau(V_{\mathcal{R}}((a,b)))$, where $a \in \mathbb{A}$.

Definition 5. [Enhanced Vote Aggregation]

Enhanced vote aggregation function $\tau_e : \mathbb{N} \times \mathbb{N} \to [0,1]$ is the vote aggregation function such that

$$\tau_e(v^+, v^-) = \begin{cases} 0 & v_{max} = 0\\ \frac{v^+}{v^+ + v^- + \frac{1}{v_{max}}} & otherwise \end{cases}$$

Property 1. [Absolute argument freeness]

Let τ be a a vote aggregation function given L. We say that τ is 'absolute argument free' if

$$\forall n_1, n_2 \in \mathbb{N}, \ \tau(n_1, n_2) \neq \top.$$

The gist of the property can be captured in a verbal context with the following sentence: No argument enjoys perfect Social Support.

Property 2. [Precedence of the vote ratio]

Let τ be a a vote aggregation function given L. We say that τ is 'vote ratio precedent' if

$$\forall n_1, n_2, n_3, n_4 \in \mathbb{N},$$

$$(v^r(n_1, n_2) \ge v^r(n_3, n_4)) \implies (\tau(n_1, n_2) \ge \tau(n_3, n_4)).$$

$$just \ for \ convenience:$$

$$(v^r(a_1) \ge v^r(a_2)) \implies (\tau(a_1) \ge \tau(a_2)).$$

The gist of the property can be captured in a verbal context with the following sentence: If the value of the ratio of positive votes to the negative votes is higher for an argument a than an argument b; a's social support value exceeds the social support of b.

Property 3. [Precedence of the total number of votes]

Let τ be a a vote aggregation function given L. We say that τ is 'total votes precedent' if

$$\begin{array}{c} \forall n_1, n_2, n_3, n_4 \in \mathbb{N}, \\ ((v^r(n_1, n_2) = v^r(n_3, n_4)) \wedge (v^t(n_1, n_2) \geq (v^t(n_3, n_4))) \implies \\ (\tau(n_1, n_2) \geq \tau(n_3, n_4)). \\ \textit{just for convenience:} \\ ((v^r(a_1) = v^r(a_2)) \wedge (v^t(a_1) \geq (v^t(a_2))) \implies (\tau(a_1) \geq \tau(a_2)). \end{array}$$

The gist of the property can be captured in a verbal context with the following sentence: When the ratios are equal, the function should return a higher social support value for the one with the higher number of total votes.

Proposition 1. Enhanced Vote Aggregation function enjoys Property 1.

Proof. Trivial.

Let \mathcal{F} be an extended social argumentation framework with a semantic framework $\mathcal{S} = \langle L, \lambda_1, \lambda_2, \Upsilon, \neg, \tau, \rangle$ and $a \in \mathcal{A}$.

There are mainly two cases for a vote aggregation with respect to the value the constant v_{max} takes.

Firstly, if $v_{max} = 0$ then $\tau(a) = \tau(v^+, v^-) = 0 \le 1$.

Else if $v^+ \neq 0$, then $v_{max} \neq 0$ and since $v_{max} \in \mathbb{Z}^+$, then $\frac{1}{v_{max}} > 0$. Since the denominator of the sole term in the social support function is simply the sum of the numerator and some $r \in \mathbb{R}^+$, the denominator is bigger than the numerator and hence:

$$\frac{v^+}{v^+ + v^- + \frac{1}{v_{max}}} = \tau(v^+, v^-) \le 1.$$

2 Ongoing misc proofs

Theorem 1 (Relation of ESAF models and stable extensions). Let $AF = \langle \mathcal{A}, \mathcal{R} \rangle$ be an Abstract Argumentation Framework and $F = \langle \mathcal{A}, \mathcal{R}, V_{\mathcal{A}}, V_{\mathcal{R}} \rangle$ be an Extended Social Abstract Argumentation Framework. Let $\mathcal{S} = \langle L, \lambda_1, \lambda_2, \Upsilon, \neg, \tau \rangle$ and $V_{\mathcal{A}}, V_{\mathcal{R}}$ such that

- $\lambda = \lambda_1 = \lambda_2$
- $\bullet \ \ \top \ \curlyvee \ \top = \top \ \ and \ \top \ \curlyvee \ \bot = \top$
- $\forall_{x \in \mathcal{A}} \ \tau(x) = \top$
- $\forall_{(x,y)\in\mathcal{R}} \ \tau((x,y)) = \top$
- $l \land \neg \bot = l$, where $l \in L$
- $l \land \neg \top = \bot$, where $l \in L$
- $\top \land \top = \top \ and \ \top \land \bot = \top$

Then, $\exists S = \{x_1, ..., x_n\}$ s.t. S is a stable extension of AF iff $\exists M \in \mathcal{M}$ in F and $a \in S \Leftrightarrow M(a) = \top$ and $a \notin S \Leftrightarrow M(a) = \bot$.

Proof. We start by \Leftarrow direction via using proof by contradiction. Suppose there is an argument $a \in \mathcal{A}$ such that $M(a) = \top$ for some $M \in \mathcal{M}$ and for all stable extensions S of AF, $a \notin S$. The definition of stable semantics dictates $\exists a_i \in S$

s.t. $a_i \mathcal{R} a$. The model for a is thus

$$\begin{split} M(a) &= \tau(a) \curlywedge \neg \bigvee_{a_i \in \mathcal{R}^-(a)} \left(\left(\tau((a_i, a)) \curlywedge M(a_i) \right) \\ &= \top \curlywedge \neg \left(\left(\tau((a_1, a)) \curlywedge M(a_1) \right) \curlyvee \dots \curlyvee \left(\left(\tau((a_i, a)) \curlywedge M(a_i) \right) \curlyvee \dots \curlyvee \left(\left(\tau((a_n, a)) \curlywedge M(a_n) \right) \right) \\ &= \top \curlywedge \neg \left(\top \curlywedge M(a_1) \right) \curlyvee \dots \curlyvee \top \curlyvee \dots \curlyvee \left(\top \curlywedge M(a_n) \right) \right) \\ &= \top \curlywedge \neg \left(M(a_1) \curlyvee \dots \curlyvee \top \curlyvee \dots \curlyvee M(a_n) \right) \\ &= \top \curlywedge \neg \top \\ &= \bot \end{split}$$

Contradiction! Therefore, a must be contained in S.

We again use proof by contradiction for the \Rightarrow direction. Assume $\exists a \in S$ and $\forall M \in \mathcal{M}, M(a) = \bot$.

Let us inspect the model function of a:

$$\begin{split} M(a) &= \tau(a) \curlywedge \neg \bigvee_{a_i \in \mathcal{R}^-(a)} \left(\left(\tau((a_i, a)) \curlywedge M(a_i) \right) \\ &\perp = \top \curlywedge \neg \left(\left(\tau((a_1, a)) \curlywedge M(a_1) \right) \curlyvee \dots \curlyvee \left(\left(\tau((a_n, a)) \curlywedge M(a_n) \right) \right) \\ &\perp = \top \curlywedge \neg \left(\top \curlywedge M(a_1) \right) \curlyvee \dots \curlyvee \left(\top \curlywedge M(a_n) \right) \\ &\perp = \top \curlywedge \neg \left(M(a_1) \curlyvee \dots \curlyvee M(a_n) \right) \\ &\perp = \neg \left(M(a_1) \curlyvee \dots \curlyvee M(a_n) \right) \\ &\top = M(a_1) \curlyvee \dots \curlyvee M(a_n) \end{split}$$

Thus for some $i \in [1..n]$, $M(a_i) = \top$. And so it follows that $\exists a_i \in \mathcal{A} \text{ s.t. } a_i \mathcal{R} a$. But since $a \in S$, $\exists_{b \in S} b \mathcal{R} a_i$. Which results into $M(a_i) = \bot$. Contradiction!

5