AI智能体与6G通信

- 第8届、第9届未来网络发展大会《智能体激发6G网络新动能》《智能体通信网络(ACN)——6G网络新变革》系列报告
- □ 世界移动通信大会(MWC 2025)会发布《智能体通信网络(ACN)》 白皮书
- "6G是智能体互联网的爆发点,需要打破传统通信标准边界,推动 3GPP、ITU、IETF、CCSA、W3C等多组织协同制定统一框架,同时 加快围绕工业制造、智慧城市等场景开展智能体与6G融合验证。"

智能体主要特征

- □ 3GPP 6G需求研究项目定义:智能体(Agent)是一种具有自主能力的智能实体,具备与环境交互、上下文信息获取、推理、学习、决策、执行任务(单体或与其他智能体协作)等能力,以实现特定目标。
- □ 智能体包括控制、感知和行动等单元,具有自主性、反应性、主动性和交互性等特征

物理智能体

控制器(大脑)

> 智能体的核心,具备大模型 训练推理、知识存储和决策 等能力

感知并处理来自外部的多模 态信息

行动

▶ 赋予行动能力和使用工具 的能力

自主性

能够在没有人类或其他实体的直接 干预下运行

反应性

具备对环境中的即时变化和刺激做出 快速响应的能力

主动性

具备以任务为导向的能力,能够主 动采取行动

交互性

具备与其他智能体(包括人类)通过 多种模态进行交互的能力

面向智能体的6G系统设计思考

应对三大新变化,提出"1个架构+2大机制"使能6G智能体信息服务

一个架构

从端到端视角,体系化设计网络架构

■ 基于任务驱动的架构设计方法,通过"定任务、定要素、定层级、定连接"设计网络架构

两大机制

从通信角度思考智能体通信根本需求; 重点聚焦;

- 安全可信机制
- 通信组网机制

XX 络 本

一个架构:面向智能体的6G总体架构

端到端视角设计并提出"三体四层五面"6G总体架构,新增计算面、数据面和安全面, 增强控制面、用户面,使能多样化智能体信息服务

服务使能层

通信 服务

感知 服务 计算 服务

ΑI 服务 安全 服务

服务化功能层

控制面+ 用户面+ 数据面 计算面

连接与路由层

通信与算力层

感知资源

存储资源

管理编排体

能力开放

管理

数字孪生体

自治服务 设计

资源智能 编排

跨域质量 保障

跨域数据 管理

控制

孪牛 编排

孪牛 建模

孪生 实例

新增数据面

智能体数据采集、存储处理数据生命周期管理

新增计算面

聚合计算功能,智能体模型训练和推理

新增安全面

智能体数字身份管理及安全行为监管

增强控制面

智能体的接入控制、多智能体任务协作等

增强用户面

智能体信息交互的QoS 控制, 多模态流量转发

两大机制:安全可信机制

构建智能体统一数字身份认证和管理体系,使能智能体可信接入和安全行为监管

现实空间 | 虚拟空间

<mark>技术方向</mark> ▶ 用户可控的分布式数字<u>身份体系</u>

- ▶ 基于非对称凭证的智能体身份认证
- ▶ 基于零知识证明的智能体行为授权

技术挑战

- 如何支持数字身份的分布式管理及多方信任?
- 如何支持智能体自主行为可信认证及 溯源?

数字 智能体

两大机制:通信组网机制

面向智能体新型交互范式及协作需求, 重新设计通信组网机制

面向新型信息要素的 通信机制设计

技术挑战:

- ▶ 如何设计QoS 及信令协议,支持 模型、向量等新要素传输KPI需求
- 如何设计面向任务的新型资源控制机制?

技术方向:

- 新信息要素流量特征建模及分析
- ▶ 业务特征感知的QoS 增强
- ▶ 面向任务的多域资源融合调度

面向隐性流量的通信 机制设计

技术挑战:

如何支持隐性流量的识别及管控, 如传输过程中模态转换导致流量变 化、计算节点间网内交换流量?

技术方向:

- > 隐性流量识别及多智能体流量关联
- ▶ 隐性流量路径编排及传输时机优化

面向多智能协作的组网 _____机制设计

技术挑战:

- 如何支持子网动态创建以满足不同任务场景的信息交互需求?
- 如何设计跨子网高效信息交互 机制?

技术方向:

- ▶ 单用户子网内多智能体通信与协作
- ▶ 任务驱动的跨域跨用户级动态组网

演进趋势

智能体数量演进

预测,到2030年,智能体数量将超过人类总人口(85亿),成为数字经济高阶发展的核心驱动力。智能体将组成未来智能社会的基本单元,涵盖应用型(如手机APP、虚拟助理)与实体型(如机器人、无人机)。

通信演进历程

人与人通信→移动互联网→5G工业互联网→6G将迈向"智能体主导的智能互联网"

智能体演进路径

智能体演进路径: "单体智能"→"协同智能"→"群智协作"

智能体与6G的相互赋能

6G将成为智能时代的重要基础设施。这将为6G带来连接、赋能和管理三大新需求

管理

"管理"意味着满足智能体安全可信、任务协作需求,传统身份认证(SIM/eSIM)不适应数字化需求,6G网络需提供对智能体的身份标识、以任务为导向的动态授权等可信管理服务。

连接

"连接"意味着新流量、 新互联、新群组需求,要 求6G网络优化连接、降低 时延、提升带宽,从而支 持智能体间高效通信。

赋能

"赋能"意味着6G网络提供计算卸载、多模态数据处理能力,增强智能体算力。

智能体是6G内生智能的重要技术路径,应对多点、复杂任务协同智能挑战,实现网络自智化、网随需智动,6G从AI4NET向Agent4NET演进。

开展ACN验证实践

面向ACN的网络架构变革

- 近期:连接、赋能、管理三个方面使能智能体协作,网络按需引入单个智能体辅助网络功能(如动态参数调整、用户体验优化)
- 远期架构则可探索"智能体定义网络"愿景

国内外标准组织推动实践

- ➤ 3GPP、IETF、CCSA、W3C等均已开启智能体相关标准化研究
- ➤ 3GPP SA1 6G需求研究已明确智能体定义,智能体 是6G AI场景中最受关注的方向。
- ➤ 3GPP SA2 6G架构研究项目中,智能体也列为AI重要研究方向之一。
- ➤ CCSA TCS WG12已于2025年4月成立智能体网络 子工作组(SWG1)

三层实现架构演进

第一步: 网络使能智能体

第二步:智能体意图驱动网络

第三步:智能体定义网络

面向6G验证实践

- ➤ ACN概念验证
- ▶ 移动算网融合
- > 数据服务
- ▶ 首个ACN概念验证系统,支持标识管理、注册发现、灵活组网等关键技术验证