Practica 4

Ivan Vercinsky

Ejercicio 1

Nos dicen que $v \nvDash p_1$ ni $v \nvDash p_2$ ni $v \nvDash p_3$. Nos preguntan si podemos argumentar si es posible decidir si $v \vDash \alpha$ o $v \nvDash \alpha$

- 1. $\alpha = \neg p_1$
 - Sabemos que $v \nvDash p_1 \to v \vDash \neg p_1$, por definición de la valuación, $\to v \vDash \alpha$
- 2. $\alpha = ((p_5 \vee p_3) \to p_1)$
 - Para que $v \vDash \alpha$ tiene que pasar que $v \vDash \neg (p_5 \lor p_3)$ o $v \vDash p_1$
 - $v \nvDash p_1$ ni $v \nvDash p_3$ entonces para que $v \vDash \alpha$ tiene que pasar que $v \nvDash p_5$
 - En cambio, si $v \vDash p_5 \rightarrow v \vDash (p_5 \lor p_3) \rightarrow v \nvDash \alpha$
- 3. $\alpha = ((p_1 \vee p_2) \to p_3)$
 - $v \nvDash p_1$ ni $v \nvDash p_2$ entonces $v \nvDash (p_1 \vee p_2) \to v \vDash \neg (p_1 \vee p_2) \to v \vDash \alpha$
- 4. $\alpha = \neg p_4$
 - Depende de p_4 . No sabemos que sucede con $v(p_4)$.
 - Si $v \vDash p_4 \rightarrow v \nvDash \alpha$
 - Si $v \nvDash p_4 \rightarrow v \vDash \alpha$
- 5. $\alpha = ((p_8 \to p_5) \to (p_8 \land p_0))$
 - El consecuente siempre es falso porque $v(p_0) = 0$ por el enunciado.
 - Hay que ver cuando el antecedente es verdadero o falso. Si es falso entonces $v \models \alpha$ y sino $v \not\models \alpha$
 - Luego si $v \vDash p_8$ y $v \nvDash p_5$ entonces $v \vDash \alpha$
 - Para los demás casos $v \nvDash \alpha$

Ejercicio 2

Ejercicio 3

Sean α , $\beta \in FORM$ Probar las siguientes proposiciónes:

- 1. α es tautología sii $\neg \alpha$ no es satisfacible
 - $\blacksquare \Rightarrow$
 - $\bullet\,$ Sabemos que α es tautología
 - Entonces $v \vDash \alpha \ \forall v \in VAL$
 - Que es lo mismo que decir
 - $\nexists v \in VAL / v \nvDash \alpha \leftrightarrow \nexists v \in VAL / v \vDash \neg \alpha$
 - O sea, $\neg \alpha$ no es satisfacible
 - ←
 - Sabemos que $\nexists v \in VAL / v \models \neg \alpha \leftrightarrow \nexists v \in VAL / v \not\models \alpha$
 - Entonces $v \vDash \alpha \ \forall v \in VAL$
 - \bullet Entonces α es tautología
- 2. $(\alpha \wedge \beta)$ es tautología si
i α es tautología y β es tautología
 - ⇒
 - Sabemos que $(\alpha \wedge \beta)$ es tautología
 - Entonces $v \vDash (\alpha \land \beta) \forall v \in VAL$
 - Entonces $v \vDash \alpha \ \forall v \in VAL \ y \ v \vDash \beta \ \forall v \in VAL$
 - \bullet Entonces α es tautología y β esta tautología
 - ←
 - Sabemos α es tautología y β esta tautología
 - Entonces $v \vDash \alpha \ \forall v \in VAL \ y \ v \vDash \beta \ \forall v \in VAL$
 - Entonces $v \vDash (\alpha \land \beta) \ \forall v \in VAL$
 - Sabemos que $(\alpha \wedge \beta)$ es tautología

- 3. $(\alpha \lor \beta)$ es contradicción si
i α es contradicción y β es contradicción
 - $\blacksquare \Rightarrow$
 - Sabemos que $(\alpha \vee \beta)$ es contradicción
 - Entonces $v \nvDash (\alpha \vee \beta) \forall v \in VAL$
 - Entonces $v \nvDash \alpha \ \forall v \in VAL \ y \ v \nvDash \beta \ \forall v \in VAL$
 - Entonces α es contradicción y β esta contradicción
 - ←
 - Sabemos α es contradicción y β esta contradicción
 - Entonces $v \nvDash \alpha \ \forall v \in VAL \ y \ v \nvDash \beta \ \forall v \in VAL$
 - Entonces $v \nvDash (\alpha \vee \beta) \forall v \in VAL$
 - Sabemos que $(\alpha \vee \beta)$ es contradicción
- 4. $(\alpha \to \beta)$ es contradicción sii α es tautología y β es contradicción
 - **■** ⇒
 - Sabemos que $(\alpha \to \beta)$ es contradicción
 - Entonces $v \vDash \alpha \ \forall v \in VAL \ y \ v \nvDash \beta \ \forall v \in VAL$
 - Entonces α es tautología y β esta contradicción
 - =
 - Sabemos α es tautología y β esta contradicción
 - Entonces $v \vDash \alpha \ \forall v \in VAL \ y \ v \nvDash \beta \ \forall v \in VAL$
 - Entonces $v \nvDash (\alpha \to \beta) \ \forall v \in VAL$
 - Sabemos que $(\alpha \to \beta)$ es contradicción

Ejercicio 4

Sean $\alpha, \beta \in FORM$ Probar las siguientes proposiciónes:

- 1. Si $(\alpha \wedge \beta)$ es contingencia, entonces α es contingencia o β es contingencia
 - Sabemos que $(\alpha \land \beta)$ es contingencia, entonces $v_1, v_2 \in VAL / v_1 \vDash (\alpha \land \beta)$ y $v_2 \nvDash (\alpha \land \beta)$
 - Luego $v_1 \vDash \alpha$ y $v_1 \vDash \beta$
 - Además con v_2 pueden pasar 2 cosas. O, bien, $v_2 \vDash \alpha$ y $v_2 \nvDash \beta$ o $v_2 \nvDash \alpha$ y $v_2 \vDash \beta$
 - Luego por v_2 se puede concluir que α y β son contingencias
- 2. Dadas dos valuaciones v y v', probar que si $v(p_i) = v'(p_i)$ para toda $p_i \in Var(\alpha)$ entonces $v \models \alpha \leftrightarrow v' \models \alpha$
 - lacktriangle Lo probamos por inducción en lpha
 - Caso Base
 - $\alpha \in PROP$ entonces $Var(\alpha) = p$
 - Sabemos que v(p) = v'(p) por definición.
 - Luego como $\alpha = p$
 - entonces si $v \models \alpha \leftrightarrow v(p) = 1 \leftrightarrow v'(p) = 1 \leftrightarrow v' \models \alpha$
 - entonces si $v \nvDash \alpha \leftrightarrow v(p) = 0 \leftrightarrow v'(p) = 0 \leftrightarrow v' \nvDash \alpha$
 - Pasos Inductivos
 - α es $\neg \beta$
 - \circ Entonces $Var(\alpha) = Var(\beta)$ ya que la negación no agrega variables
 - Sabemos por definicion que $v(p_i) = v'(p_i)$ para toda $p_i \in Var(\beta)$
 - Entonces
 - o $v \vDash \alpha \leftrightarrow v \nvDash \beta$ por Definición
 - o $v \nvDash \beta \leftrightarrow v' \nvDash \beta$ por Hipotesis Inductiva
 - $\circ v' \nvDash \beta \leftrightarrow v' \vDash \alpha \text{ por Definición}$
 - α es $(\beta \to \phi)$
 - Entonces $Var(\alpha) = Var(\beta) \bigcup Var(\phi)$ ya que la implicación agrega 2 variables
 - Sabemos por definición que $v(p_i) = v'(p_i)$ para toda $p_i \in Var(\beta) \bigcup Var(\phi)$
 - o Entonces
 - o $v \nvDash \alpha \leftrightarrow v \vDash \beta$ y $v \nvDash \phi$ por Definición
 - o $v \vDash \beta \leftrightarrow v' \vDash \beta$ por Hipotesis Inductiva
 - o $v \nvDash \phi \leftrightarrow v' \nvDash \phi$ por Hipotesis Inductiva
 - $\circ v' \vDash \beta \ y \ v' \nvDash \phi \leftrightarrow v' \vDash \alpha \ por Definición$
 - o Luego, es fácil ver que para el resto de los casos se comprueba la hipotesis. Hay que ir usando la definición de satisfacibilidad de la implicación e ir probando los casos para que β y ϕ satisfagan α o no

- 3. Si $Var(\alpha) \cap Var(\beta) = \emptyset$ entonces $(\alpha \to \beta)$ es tautología $\leftrightarrow \alpha$ es contradicción o β es tautología
 - lacktriangle Consultar
 - $\blacksquare \Rightarrow$ entiendo que sale sin usar que no comparten variables. Ya que usas la def de $v \vDash p \to q$
 - ← entiendo que hay que usar que no comparten variables para poder hablar decir que dos forms != pueden ser contradiccion o tautologia sin caer en el absurdo ya que no comparten variables
- 4. α y β contingencias y no comparten variables $\rightarrow (\alpha \land \beta)$ contingencia
 - Como no comparten variables entonces no se puede implicar que si $v \models \alpha \rightarrow v \models \beta$
 - \blacksquare En particular, no puede pasar que $\alpha = \neg \beta$ porque comparten todas las variables