РАДИОТЕХНИКА И ЭЛЕКТРОНИКА

(ОТДЕЛЬНЫЙ ОТТИСК)

T O M 4 4

Nº 4

I 9 9 9

MOCKBA

СТАТИСТИЧЕСКАЯ РАДИОФИЗИКА

УДК 621.391.01

ОЦЕНКА ЧАСТОТНЫХ ПАРАМЕТРОВ СЛУЧАЙНОГО РАДИОИМПУЛЬСА С НЕИЗВЕСТНЫМИ МОМЕНТАМИ ПОЯВЛЕНИЯ И ИСЧЕЗНОВЕНИЯ

© 1999 г. А. П. Трифонов, А. В. Захаров

Поступила в редакцию 26.03.97 г.

Получены асимптотически точные выражения для характеристик квазиправдоподобных и максимально правдоподобных совместных оценок минимальной, максимальной, центральной частоты и ширины полосы частот спектральной плотности случайного радиоимпульса. Найден проигрыш в точности квазиправдоподобных оценок вследствие незнания моментов появления и исчезновения сигнала.

ВВЕДЕНИЕ

В работе [1] исследована задача обнаружения, а в [2] — оценки математического ожидания и величины спектральной плотности случайного импульса с неизвестными моментами появления и исчезновения. Однако в ряде прикладных задач статистической радиофизики и радиотехники возникает необходимость в оценке минимальной и максимальной частот (центральной частоты и ширины полосы частот) случайного радиоимпульса [3-5] с неизвестными моментами появления и исчезновения.

Согласно [3-5], случайный радиоимпульс можно представить в виде

$$s(t) = \begin{cases} \xi(t) & \text{при } \Theta_{01} \le t \le \Theta_{02}, \\ 0 & \text{при } t < \Theta_{01} & \text{или } t > \Theta_{02}, \end{cases}$$
 (1)

где Θ_{01} и Θ_{02} – неизвестные моменты появления и исчезновения сигнала; $\xi(t)$ – реализация стационарного центрированного гауссовского случайного процесса со спектральной плотностью

$$G(\omega) = \frac{\gamma_0}{2} \begin{cases} 1 & \text{при } \omega_{01} \le |\omega| \le \omega_{02}, \\ 0 & \text{при } |\omega| < \omega_{01} \text{ или } |\omega| > \omega_{02}. \end{cases}$$
 (2)

Здесь γ_0 – величина, а ω_{01} и ω_{02} – неизвестные минимальная и максимальная частоты спектральной плотности процесса $\xi(t)$, подлежащие оценке. Обозначим $\Omega_0 = \omega_{02} - \omega_{01}$ ширину полосы частот и $\nu_0 = (\omega_{02} + \omega_{01})/2$ центральную частоту спектральной плотности (2). Будем полагать, что время корреляции $2\pi/\Omega_0$ случайного процесса $\xi(t)$ значительно меньше длительности $\tau_0 = \Theta_{02} - \Theta_{01}$ импульса (1), т.е. выполняется условие широкополосности [3–5]:

$$\mu_0 = \tau_0 \Omega_0 / 2\pi \gg 1. \tag{3}$$

При выполнении (3) параметры ω_{01} и ω_{02} определяют минимальную и максимальную частоты, а параметры ν_0 и Ω_0 – центральную частоту и ширину полосы частот (частотные параметры) случайного радиосигнала (1). Модель (1), (2) случайного радиоимпульса широко используется в практических приложениях статистической радиофизики и радиотехники [3-7].

Полагаем, что сигнал (1) наблюдается в течение времени [0; T] на фоне аддитивного гауссовского белого шума n(t) с односторонней спектральной плотностью N_0 , так что обработке доступна реализация

$$x(t) = s(t) + n(t), t \in [0; T],$$
 (4)

причем сигнал и шум статистически независимы. Априорную область возможных значений неизвестных параметров импульса (1) зададим соотношениями $\Omega_{i_{\text{МИН}}} \leq \omega_{0i} \leq \Omega_{i_{\text{МАК}}}$, $T_{i_{\text{МИН}}} \leq \Theta_{0i} \leq T_{i_{\text{МАК}}}$, i=1,2. Интервал наблюдения [0; T] выберем так, что $0 \leq T_{1_{\text{МИН}}} < T_{2_{\text{МАК}}} \leq T$, т.е. импульс (1) всегда находится внутри этого интервала. На основе наблюдаемой реализации (4) и имеющейся априорной информации необходимо оценить частотные параметры сигнала (1) с неизвестными моментами появления и исчезновения.

В работе [6] рассмотрена оценка полосы частот Ω_0 , а в [7] — оценка центральной частоты ν_0 сигнала (1), принимаемого на фоне шума n(t). Однако в [6, 7] предполагали, что моменты появления Θ_{01} и исчезновения Θ_{02} сигнала априори известны. Это не позволяет использовать результаты [6, 7] для оценивания частотных параметров сигнала (1) с неизвестными моментами появления и исчезновения. Ниже исследованы совместные оценки частотных параметров случайного радиомипульса (1) с неизвестными моментами появления и исчезновения.

1. КВАЗИПРАВДОПОДОБНЫЕ ОЦЕНКИ

Для синтеза алгоритма оценки воспользуемся методом максимального правдоподобия [3, 8]. Согласно этому методу, для наблюдаемой реализации (4) необходимо формировать логарифм функционала отношения правдоподобия (ФОП) $L_0(\omega_1, \omega_2)$ как функцию возможных значений ω_i , i=1,2, неизвестных параметров ω_{0i} импульса (1). Используя результаты [4, 5], при выполнении (3) получаем

$$L_{0}(\omega_{1}, \omega_{2}) = L(\omega_{1}, \omega_{2}, \Theta_{01}, \Theta_{02}) =$$

$$= \frac{q_{0}}{N_{0}(1+q_{0})} \int_{\Theta_{01}}^{\Theta_{02}} y^{2}(t, \omega_{1}, \omega_{2}) dt -$$

$$-\frac{(\Theta_{02} - \Theta_{01})(\omega_{2} - \omega_{1})}{2\pi} \ln(1+q_{0}),$$
(5)

где $q_0 = \gamma_0/N_0$; $y(t, \omega_1, \omega_2) = \int_{-\infty}^{\infty} x(t') \, H(t-t') dt'$ – отклик фильтра с импульсной переходной функцией H(t) на реализацию x(t) (4), причем передаточная функция $h(\omega)$ фильтра удовлетворяет условиям $|h(\omega)|^2 = 1$ при $\omega_1 \leq |\omega| \leq \omega_2$; $|h(\omega)|^2 = 0$ при $|\omega| < \omega_1$ или $|\omega| > \omega_2$. Тогда при известных моментах появления Θ_{01} и исчезновения Θ_{02} импульса (1) совместные оценки максимального правдоподобия (ОМП) ω_{im} , i=1,2, частотных параметров ω_{0i} определяются как координаты положения абсолютного максимума логарифма Φ ОП $L_0(\omega_1, \omega_2)$ (5) в области $\omega_1 \in [\Omega_{1\text{мин}}; \Omega_{1\text{макс}}], \omega_2 \in [\Omega_{2\text{мин}}; \Omega_{2\text{макс}}]$ [8].

Одно из возможных решений задачи оценки частотных параметров импульса (1) при неизвестных моментах его появления и исчезновения квазиправдоподобных применение (КПО) [9]. Для получения КПО используются ожидаемые (предполагаемые) значения Θ_1^* и Θ_2^* моментов появления и исчезновения импульса. Следовательно, в отличие от ОМП квазиправдоподобные оценки ω_{ia} параметров ω_{0i} представляют собой координаты положения абсолютного максимума функционала $L^*(\omega_1, \omega_2) = L(\omega_1, \omega_2,$ $\Theta_1^*, \; \Theta_2^*$) при $\omega_1 \in [\Omega_{1 \text{мин}}; \; \Omega_{1 \text{макс}}], \; \omega_2 \in [\Omega_{2 \text{мин}}; \; \Omega_{1 \text{макс}}], \; \omega_3 \in [\Omega_{2 \text{мин}}; \; \Omega_{1 \text{макс}}], \; \omega_3 \in [\Omega_{2 \text{мин}}; \; \Omega_{1 \text{макс}}], \; \omega_3 \in [\Omega_{2 \text{мин}}; \; \Omega_{2 \text{mun}}; \; \Omega_{2 \text{mun$ $\Omega_{\text{2макс}}$ [9]. Здесь $\Theta_2^* > \Theta_1^*$ и в общем случае $\Theta_i^* \neq \Theta_{0i}$. В частном случае, когда $\Theta_i^* = \Theta_{0i}$, КПО ω_{ia} переходят в ОМП ω_{im} . Соответствующие $\mathsf{K}\Pi\mathsf{O}\,\mathsf{v}_q$ и Ω_q параметров v_0 и Ω_0 нетрудно определить по формулам $\Omega_q = \omega_{2q} - \omega_{1q}$ и $v_q = (\omega_{2q} +$ $+\omega_{1a})/2$.

Найдем характеристики КПО частотных параметров случайного радиоимпульса. Принимая во внимание асимптотически (при $\mu_0 \longrightarrow \infty$) гауссовский характер функционала $L^*(\omega_1, \omega_2)$ [3–5],

ограничимся рассмотрением первых двух его моментов. Представим функционал $L^*(\omega_1, \omega_2)$ в виде

$$L^*(\omega_1, \omega_2) = S^*(\omega_1, \omega_2) + N^*(\omega_1, \omega_2),$$
 (6)

где $S^*(\omega_1, \omega_2) = \langle L^*(\omega_1, \omega_2) \rangle$ — сигнальная, а $N^*(\omega_1, \omega_2) = L^*(\omega_1, \omega_2) - \langle L^*(\omega_1, \omega_2) \rangle$ — шумовая функции, усреднение выполняется по реализациям наблюдаемых данных (4) при фиксированных ω_{0i} , Θ_{0i} [8]. Следуя [6, 7, 10], будем полагать, что ошибки оценивания частотных параметров сигнала (1) существенно больше величины $2\pi/\tau_0$. Это имеет место, когда выполняется условие (3) и величина q_0 не слишком велика. Тогда

$$S^*(\omega_1, \omega_2) = \langle L^*(\omega_1, \omega_2) \rangle =$$

$$= A_1^* C(\omega_1, \omega_1, \omega_{01}, \omega_2, \omega_2, \omega_{02}) / \Omega_0 -$$

$$- A_2^* (\omega_2 - \omega_1) / \Omega_0,$$
(7)

$$A_1^* = \mu_0 q_0^2 C(\Theta_1^*, \Theta_1^*, \Theta_{01}, \Theta_2^*, \Theta_2^*, \Theta_{02}) / \tau_0 (1 + q_0),$$

$$A_2^* = \mu_0 [\ln(1 + q_0) - q_0 / (1 + q_0)] (\Theta_2^* - \Theta_1^*) / \tau_0,$$

$$C(t_0, t_1, t_2, u_0, u_1, u_2) =$$

$$= \max[0; \min(u_0, u_1, u_2) - \max(t_0, t_1, t_2)],$$

а первые два момента шумовой функции $N^*(\omega_1, \omega_2)$ запишем в виде

$$\langle N^{*}(\omega_{1}, \omega_{2}) \rangle = 0,$$

$$B^{*}(\omega_{11}, \omega_{21}, \omega_{12}, \omega_{22}) =$$

$$= \langle N^{*}(\omega_{11}, \omega_{12}) N^{*}(\omega_{21}, \omega_{22}) \rangle =$$

$$= D_{1}^{*} C(\omega_{11}, \omega_{21}, \omega_{01}, \omega_{12}, \omega_{22}, \omega_{02}) / \Omega_{0} +$$

$$+ D_{2}^{*} C(\omega_{11}, \omega_{11}, \omega_{21}, \omega_{12}, \omega_{12}, \omega_{22}) / \Omega_{0},$$

$$D_{1}^{*} = \mu_{0} q_{0}^{3} (2 + q_{0}) \times$$

$$\times C(\Theta_{1}^{*}, \Theta_{1}^{*}, \Theta_{01}, \Theta_{2}^{*}, \Theta_{2}^{*}, \Theta_{02}) / \tau_{0} (1 + q_{0})^{2},$$

$$D_{2}^{*} = \mu_{0} q_{0}^{2} (\Theta_{2}^{*} - \Theta_{1}^{*}) / \tau_{0} (1 + q_{0})^{2}.$$
(8)

Отметим, что при $\Theta_1^* = \Theta_{01}$, $\Theta_2^* = \Theta_{02}$ функционал $L^*(\omega_1, \omega_2)$ переходит в логарифм Φ ОП $L_0(\omega_1, \omega_2)$ (5). Поэтому, полагая в (7), (8) $\Theta_i^* = \Theta_{0i}$, получаем как частный случай моменты функционала (5).

Из выражения (7) следует, что форма сигнальной функции $S^*(\omega_1, \omega_2)$ существенно зависит от соотношения между значениями Θ_i^* и Θ_{0i} , i=1,2. Нетрудно убедиться, что сигнальная функция (7) достигает наибольшего максимума при $\omega_i = \omega_{0i}$, только если

$$f(\Theta_1^*, \Theta_{01}, \Theta_2^*, \Theta_{02}) = A_1^* - A_2^* > 0.$$
 (9)

При $\Theta_i^* = \Theta_{0i}$ условие (9) выполняется. Если условие (9) не выполняется, то сигнальная функция (7) достигает наибольшего максимума при $\omega_i = 0$ вне зависимости от истинных значений ω_{0i} параметров принимаемого сигнала, так что КПО не являются состоятельными при $\mu_0 \longrightarrow \infty$ [8, 11]. Условие состоятельности (9) налагает ограничения на область допустимых значений моментов появления Θ_{01} и исчезновения Θ_{02} принимаемого сигнала (1) при фиксированных значениях Θ_1^* и Θ_2^* .

Область состоятельности КПО на плоскости параметров $\delta_1 = (\Theta_{01} - \Theta_1^*)/\tau_0$ и $\delta_2 = (\Theta_2^* - \Theta_{02})/\tau_0$ при различных значениях q_0 показана на рис. 1. Здесь сплошной линией показана зависимость, задаваемая уравнением $f(\Theta_1^*, \Theta_{01}, \Theta_2^*, \Theta_{02}) = 0$ с учетом условия $\Theta_2^* > \Theta_1^*$ и ограничивающая область состоятельности КПО при $q_0 = 2$, штриховой линией – при $q_0 = 1$, штрихпунктирной – при $q_0 = 0.5$. Пунктирной линией на рис. 1 показана предельная (при $q_0 \longrightarrow 0$) граница области состоятельности. Если точка с координатами (δ_1 , δ_2) лежит внутри области, ограниченной соответствующей кривой, то КПО являются состоятельными. Из рис. 1 следует, что с уменьшением q_0 область состоятельности КПО несколько сужается, однако остается симметричной относительно прямой $\delta_1 = \delta_2$.

Полагаем далее, что условие состоятельности (9) выполняется. Тогда моменты (7), (8) функционала $L^*(\omega_1, \omega_2)$ в малой окрестности точки максимума сигнальной функции, когда $\max(|\omega_1 - \omega_{01}|/\Omega_0, |\omega_2 - \omega_{02}|/\Omega_0) \le \Delta, \Delta \longrightarrow 0$, допускают аппроксимации:

$$S^*(\omega_1, \omega_2) + S^*(\omega_{01}, \omega_{02}) =$$

$$= S_1(\omega_1) + S_2(\omega_2) + o(\Delta),$$

$$B^*(\omega_{11}, \omega_{21}, \omega_{12}, \omega_{22}) + B^*(\omega_{01}, \omega_{01}, \omega_{02}, \omega_{02}) =$$

$$= B_1(\omega_{11}, \omega_{21}) + B_2(\omega_{12}, \omega_{22}) + o(\Delta),$$
(10)

где

9)

$$S_{i}(\omega_{i}) = A_{1}^{*} C_{3-i}(\omega_{0i}, \omega_{i}, \omega_{i}) -$$

$$-A_{2}^{*} |\omega_{0(3-i)} - \omega_{i}| / \Omega_{0}, \quad i = 1, 2,$$
(11)

$$B_{i}(\omega_{1i}, \omega_{2i}) = D_{1}^{*} C_{3-i}(\omega_{0i}, \omega_{1i}, \omega_{2i}) + D_{2}^{*} C_{3-i}(\omega_{1i}, \omega_{1i}, \omega_{2i}),$$

$$(12)$$

$$C_{j}(u_{1}, u_{2}, u_{3}) = \min(|\omega_{0j} - u_{1}|, |\omega_{0j} - u_{2}|, |\omega_{0j} - u_{3}|)/\Omega_{0},$$

$$j = 1, 2.$$

Рис. 1. Границы области состоятельности КПО.

Следовательно, при $\Delta \longrightarrow 0$ и $\mu_0 \longrightarrow \infty$ функционал $L^*(\omega_1, \omega_2)$ с учетом его асимптотически гауссовского характера можно представить как

$$L^*(\omega_1, \omega_2) + m^* \simeq L_1(\omega_1) + L_2(\omega_2),$$
 (13)

где m^* — гауссовская случайная величина с математическим ожиданием $S^*(\omega_{01}, \omega_{02})$ (7) и дисперсией $B^*(\omega_{01}, \omega_{01}, \omega_{02}, \omega_{02})$ (8). Случайная величина m^* и функционал $L^*(\omega_1, \omega_2)$ статистически независимы, а $L_i(\omega_i)$ — взаимно статистически независимые гауссовские случайные процессы с математическими ожиданиями $S_i(\omega_i)$ (11) и корреляционными функциями $B_i(\omega_{1i}, \omega_{2i})$ (12). Таким образом, в малой окрестности точки $(\omega_{01}, \omega_{02})$ функционал $L^*(\omega_1, \omega_2)$ может быть представлен в виде (13), причем точность аппроксимации (13) возрастает с увеличением μ_0 (3) и с уменьшением Δ .

В соответствии с (7) при выполнении условия (9) сигнальная функция $S^*(\omega_1, \omega_2)$ достигает наибольшего максимума при $\omega_i = \omega_{0i}$, а реализации шумовой функции $N^*(\omega_1, \omega_2)$ непрерывны с вероятностью 1. Тогда выходное отношение сигнал/шум (ОСШ) для алгоритма КПО запишем в виде [8]

$$z^{*2} = \frac{S^{*2}(\omega_{01}, \omega_{02})}{\langle N^{*2}(\omega_{01}, \omega_{02}) \rangle} = \frac{(A_1^* - A_2^*)^2}{D_1^* + D_2^*}.$$
 (14)

Следуя [6, 7], полагаем, что КПО имеют высокую апостериорную точность. Для этого необходимо, чтобы наряду с (3), (9) выполнялось условие $z^{*2} \gg 1$ [8]. Тогда КПО ω_{iq} будут лежать в малой окрестности значений ω_{0i} . Пусть величина z^{*2} (14) настолько велика, что для нахождения распределения КПО достаточно ограничиться анализом функционала $L^*(\omega_1, \omega_2)$ на интервалах $\omega_i \in [\omega_{0i} - \varepsilon_i; \omega_{0i} + \varepsilon_i]$, i = 1, 2, где величины ε_i настолько малы, что для функционала $L^*(\omega_1, \omega_2)$ справедлива аппроксимация (13). Тогда КПО ω_{iq} приближенно является координатой положения абсолютного максимума реализации случайного процесса $L_i(\omega_i)$ на интервале $[\omega_{0i} - \varepsilon_i; \omega_{0i} + \varepsilon_i]$, причем в силу

взаимной статистической независимости случайных процессов $L_i(\omega_i)$, i=1,2, оценки ω_{1q} и ω_{2q} приближенно взаимно статистически не зависимы. Формулы (11), (12) для моментов гауссовских случайных процессов $L_i(\omega_i)$ в условиях высокой апостериорной точности КПО позволяют воспользоваться результатами [10] и записать приближенные выражения для плотностей вероятности $W_i(\omega_i)$ оценок ω_{iq} :

$$W_{i}(\omega_{i}) = \frac{2}{\Omega_{0}} \begin{cases} z_{3-i}^{2} W[2z_{3-i}^{2}(\omega_{0i} - \omega_{i})/\Omega_{0}, R_{i}] \\ \text{при} -\infty < \omega_{i} < \omega_{0i}, \\ z_{i}^{2} W[2z_{i}^{2}(\omega_{i} - \omega_{0i})/\Omega_{0}, R_{3-i}] \\ \text{при} \ \omega_{0i} \leq \omega_{i} < \infty, \end{cases}$$
(15)

$$W(x, u) = \Phi(\sqrt{|x|/2}) - 1 + \frac{2+u}{u} \exp\left(|x|\frac{1+u}{u^2}\right) \left[1 - \Phi\left(\sqrt{|x|/2}\left[\frac{2+u}{u}\right]\right)\right],$$

где

$$z_1^2 = (A_1^* - A_2^*)^2 / (D_1^* + D_2^*) = z^{*2}, \quad z_2^2 = A_2^{*2} / D_2^*,$$
(16)

$$R_1 \equiv R = A_2^* (D_1^* + D_2^*) / (A_1^* - A_2^*) D_2^*, \quad R_2 = 1/R,$$

 $\Phi(x) = \int_{-\infty}^{x} \exp(-t^2/2) \, dt / \sqrt{2\pi}$ — интеграл вероятности; коэффициенты A_1^* , A_2^* , D_1^* , D_2^* определяются из (7), (8). Из выражений (15) следует существенно негауссовский характер распределений КПО даже при больших ОСШ (14). Используя (15), (16), находим выражения для нормированных смещений $b_{iq} = \langle \omega_{iq} - \omega_{0i} \rangle / \Omega_0$ и рассеяний $V_{iq} = \langle \omega_{iq} - \omega_{0i} \rangle / \Omega_0$ и рассеяний $V_{iq} = \langle \omega_{iq} - \omega_{0i} \rangle / \Omega_0$

Рис. 2. Потери в точности КПО по сравнению с ОМП.

= $\langle (\omega_{iq} - \omega_{0i})^2 \rangle / \Omega_0^2$ КПО ω_{iq} минимальной и максимальной частот случайного радиоимпульса:

$$b_{iq} = (-1)^{i} [z_{1}^{2} (2R+1) - z_{2}^{2} R(R+2)] / 2z_{1}^{2} z_{2}^{2} (R+1)^{2},$$

$$V_{iq} = [z_{1}^{4} (5R^{2} + 6R + 2) + (17) + z_{2}^{4} R(2R^{2} + 6R + 5)] / 2z_{1}^{4} z_{2}^{4} (R+1)^{3}.$$

Отметим, что оценки ω_{1q} , ω_{2q} и ν_q , Ω_q связаны линейными соотношениями $\nu_q = (\omega_{1q} + \omega_{2q})/2$, $\Omega_q = \omega_{2q} - \omega_{1q}$. Кроме того, при выполнении (3), (9) и $z^{*2} \gg 1$ оценки ω_{1q} и ω_{2q} приближенно статистически независимы. Поэтому, используя (16), (17), нетрудно получить выражения для нормированных смещений и рассеяний КПО ν_q и Ω_q центральной частоты и ширины полосы частот случайного радиоимпульса:

$$b_{\nu q} = \langle \nu_{q} - \nu_{0} \rangle / \Omega_{0} = (b_{1q} + b_{2q}) / 2 = 0,$$

$$b_{\Omega q} = \langle \Omega_{q} - \Omega_{0} \rangle / \Omega_{0} = b_{2q} - b_{1q} = -2b_{1q} =$$

$$= [z_{1}^{2}(2R+1) - z_{2}^{2}R(R+2)] / [z_{1}z_{2}(R+1)]^{2},$$

$$V_{\nu q} = \langle (\nu_{q} - \nu_{0})^{2} \rangle / \Omega_{0}^{2} = (V_{1q} + V_{2q} + 2b_{1q}b_{2q}) / 4 =$$

$$= (V_{1q} - b_{1q}^{2}) / 2 = 2\{z_{1}^{4}[(1+2R)^{3} + 2(1+R)^{3}] +$$

$$+ z_{2}^{4}R[(2+R)^{3} + 2(1+R)^{3}] + (18)$$

$$+ 2z_{1}^{2}z_{2}^{2}R(2+5R+2R^{2})\} / [2z_{1}z_{2}(1+R)]^{4},$$

$$V_{\Omega q} = \langle (\Omega_{q} - \Omega_{0})^{2} \rangle / \Omega_{0}^{2} = V_{1q} + V_{2q} - 2b_{1q}b_{2q} =$$

$$= 2(V_{1q} + b_{1q}^{2}) = 8\{z_{1}^{4}[(1+2R)^{2}(3+2R) +$$

$$+ 2(1+R)^{3}] + z_{2}^{4}R[(2+R)^{2}(2+3R) + 2(1+R)^{3}] -$$

$$-2z_{1}^{2}z_{2}^{2}R(2+5R+2R^{2})\} / [2z_{1}z_{2}(1+R)]^{4}.$$

Согласно [10], формулы (15), (17), (18) для характеристик КПО частотных параметров справедливы при выполнении условий (3), (9) и $z^{*2} \ge 1$ (14). Точность этих формул возрастает с увеличением μ_0 (3) и z^{*2} (14).

Выражения (15)—(18) позволяют оценить влияние отклонений ожидаемых значений Θ_i^* неизвестных моментов появления и исчезновения радиосигнала (1) от их истинных значений Θ_{0i} на точность КПО. Для этого введем в рассмотрение отношения χ_{Ω} и χ_{ν} рассеяний КПО ν_q и Ω_q к соответствующим рассеяниям этих же оценок при $\Theta_i^* = \Theta_{0i}$. На рис. 2 показаны зависимости отношений χ_{ν} (сплошные кривые) и χ_{Ω} (штриховые кривые) от величины $\delta = \delta_1 \equiv (\Theta_{01} - \Theta_1^*)/\tau_0$ при $q_0 = 1$ и $\delta_2 \equiv (\Theta_2^* - \Theta_{02})/\tau_0 = 0$ (кривая I), $q_0 = 0.1$ и $\delta_2 = 0$ (кривая I), I0 сроиз I1, I2 сроиз I3 сроиз I3 сроиз I3 сроиз I4 сроиз I5 сроиз I6 сроиз I7 сроиз I8 сроиз I9 сроиз I9

= 0.1 и δ_2 = -0.5 (кривая 4). Такой же вид имеют зависимости $\chi_{\rm v}$ и χ_{Ω} от величины $\delta=\delta_2$ при $q_0=1$ и $\delta_1=0$ (кривая 1), $q_0=0.1$ и $\delta_1=0$ (кривая 2), $q_0=0.1$ и $\delta_1=0.2$ (кривая 3), $q_0=0.1$ и $\delta_1=-0.5$ (кривая 4). Из рис. 2 следует, что проигрыш в точности КПО ν_q и Ω_q вследствие отклонений выбранных при синтезе значений Θ_i^* от Θ_{0i} возрастает с увеличением $|\delta_i|$, i=1,2, и может достигать значительных величин. При этом с уменьшением q_0 КПО оказываются более критичными к выбору ожидаемых значений Θ_1^* и Θ_2^* моментов появления и исчезновения сигнала (1).

2. ОЦЕНКИ МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ

Повысить точность оценок частотных параметров случайного радиоимпульса (1) можно, если одновременно с оценкой частотных параметров проводить оценку неизвестных моментов появления и исчезновения сигнала. В этом случае, согласно [8], ОМП ω_{ia} , i=1,2, параметров ω_{0i} определяются как координаты положения абсолютного максимума функционала

$$L_m(\omega_1, \omega_2) = \sup L(\omega_1, \omega_2, \Theta_1, \Theta_2),$$

$$\Theta_i \in [T_{i_{\text{MHH}}}; T_{i_{\text{MAKC}}}], \quad i = 1, 2,$$

$$(19)$$

на интервалах $\omega_i \in [\Omega_{i_{\text{МИИ}}}; \ \Omega_{i_{\text{МАКС}}}], \ i=1,\ 2.$ Здесь $L(\omega_1,\ \omega_2,\ \Theta_1,\ \Theta_2)$ – логарифм ФОП (5). Соответствующие ОМП ν_a и Ω_a параметров ν_0 и Ω_0 определяются как $\Omega_a = \omega_{2a} - \omega_{1a}$ и $\nu_a = (\omega_{2a} + \omega_{1a})/2$.

Найдем характеристики ОМП ω_{1a} , ω_{2a} , ν_{a} и Ω_{a} . Для этого представим логарифм ФОП (5) в виде суммы $L(\omega_{1}, \, \omega_{2}, \, \Theta_{1}, \, \Theta_{2}) = S(\omega_{1}, \, \omega_{2}, \, \Theta_{1}, \, \Theta_{2}) + N(\omega_{1}, \, \omega_{2}, \, \Theta_{1}, \, \Theta_{2})$ сигнальной $S(\omega_{1}, \, \omega_{2}, \, \Theta_{1}, \, \Theta_{2}) = \langle L(\omega_{1}, \, \omega_{2}, \, \Theta_{1}, \, \Theta_{2}) \rangle$ и шумовой $N(\omega_{1}, \, \omega_{2}, \, \Theta_{1}, \, \Theta_{2}) = L(\omega_{1}, \, \omega_{2}, \, \Theta_{1}, \, \Theta_{2}) - \langle L(\omega_{1}, \, \omega_{2}, \, \Theta_{1}, \, \Theta_{2}) \rangle$ функций [8]. Аналогично [10] и разд. 1 находим, что сигнальная функция $S(\omega_{1}, \, \omega_{2}, \, \Theta_{1}, \, \Theta_{2})$ достигает наибольшего максимума при $\omega_{i} = \omega_{0i}$, $\Theta_{i} = \Theta_{0i}$, i = 1, 2, а реализации шумовой функции $N(\omega_{1}, \, \omega_{2}, \, \Theta_{1}, \, \Theta_{2})$ непрерывны с вероятностью 1. При этом выходное ОСШ для алгоритма ОМП имеет вид [8]

$$z^{2} = S^{2}(\omega_{01}, \omega_{02}, \Theta_{01}, \Theta_{02}) / \langle N^{2}(\omega_{01}, \omega_{02}, \Theta_{01}, \Theta_{02}) \rangle =$$

$$= \mu_{0} [q_{0} - \ln(1 + q_{0})]^{2} / q_{0}^{2}. \tag{20}$$

Полагаем, что наряду с условием (3) выполняется условие $z^2 \gg 1$, так что ОМП имеют высокую апостериорную точность [6–8]. Тогда для нахождения характеристик ОМП достаточно исследовать поведение логарифма ФОП $L(\omega_1, \omega_2, \Theta_1, \Theta_2)$ (5) в малой окрестности значений $\omega_i = \omega_{0i}$, $\Theta_i = \Theta_{0i}$. Вычисляя аналогично (10)–(12) и [10] моменты функционала $L(\omega_1, \omega_2, \Theta_1, \Theta_2)$, получаем, что при $\max(|\omega_i - \omega_{0i}|/\Omega_0, |\Theta_i - \Theta_{0i}|/\tau_0) \le \Delta$, $i = 1, 2, \Delta \longrightarrow 0$ и $\mu_0 \longrightarrow \infty$ функционал $L(\omega_1, \omega_2, \Theta_1, \Theta_2)$ с учетом его

асимптотически гауссовского характера допускает представление

$$L(\omega_1, \omega_2, \Theta_1, \Theta_2) + m_0 \approx L_t(\omega_1, \omega_2) + L_t(\Theta_1, \Theta_2).$$
 (21)

Здесь m_0 – статистически независимая от функционала $L(\omega_1, \omega_2, \Theta_1, \Theta_2)$ гауссовская случайная величина; $L_f(\omega_1, \omega_2)$ и $L_f(\Theta_1, \Theta_2)$ – взаимно статистически независимые гауссовские случайные процессы. Математическое ожидание (сигнальная составляющая) $S_f(\omega_1, \omega_2) = \langle L_f(\omega_1, \omega_2) \rangle$ и корреляционная функция шумовой составляющей $N_f(\omega_1, \omega_2) = L_f(\omega_1, \omega_2) - \langle L_f(\omega_1, \omega_2) \rangle$ случайного процесса $L_f(\omega_1, \omega_2)$ имеют следующий вид:

$$S_{f}(\omega_{1}, \omega_{2}) = A_{1}C(\omega_{1}, \omega_{1}, \omega_{01}, \omega_{2}, \omega_{2}, \omega_{02})/\Omega_{0} - A_{2}(\omega_{2} - \omega_{1})/\Omega_{0},$$

$$A_{1} = \mu_{0}q_{0}^{2}/(1 + q_{0}),$$

$$A_{2} = \mu_{0}[\ln(1 + q_{0}) - q_{0}/(1 + q_{0})],$$
(22)

$$B_f(\omega_{11}, \omega_{21}, \omega_{12}, \omega_{22}) = \langle N_f(\omega_{11}, \omega_{12}) N_f(\omega_{21}, \omega_{22}) \rangle :$$

$$= D_1 C(\omega_{11}, \omega_{21}, \omega_{01}, \omega_{12}, \omega_{22}, \omega_{02}) / \Omega_0 +$$

$$+ D_2 C(\omega_{11}, \omega_{11}, \omega_{21}, \omega_{12}, \omega_{12}, \omega_{22}) / \Omega_0, \quad (23)$$

$$D_1 = \mu_0 q_0^3 (2 + q_0) / (1 + q_0)^2, \ D_2 = \mu_0 q_0^2 / (1 + q_0)^2,$$

где функция $C(t_0, t_1, t_2, u_0, u_1, u_2)$ определяется из (7). Тогда с учетом (21) получаем, что ОМП ω_{ia} , i = 1, 2, приближенно являются координатами положения абсолютного максимума функционала $L_t(\omega_1, \omega_2)$. Моменты (22), (23) случайного процесса $L_t(\omega_1, \omega_2)$ совпадают с соответствующими моментами (7), (8) асимптотически гауссовского случайного процесса $L^*(\omega_1, \omega_2) = L(\omega_1, \omega_2, \Theta_1^*,$ Θ_2^*), если в (7), (8) полагать $\Theta_i^* = \Theta_{0i}$, i = 1, 2. Следовательно, в условиях высокой апостериорной точности характеристики ОМП ω_{ia} , ν_a и Ω_a совпадают с характеристиками соответствующих КПО ω_{ia} , ν_a и Ω_a при $\Theta_i^* = \Theta_{0i}$. Поэтому для нахождения условных смещений $b_{ia} = \langle \omega_{ia} - \omega_{0i} \rangle / \Omega_0$, $b_{va} = \langle v_a - v_0 \rangle / \Omega_0$, $b_{\Omega a} = \langle \Omega_a - \Omega_0 \rangle / \Omega_0$ и рассеяний $V_{ia} = \langle (\omega_{ia} - \omega_{0i}) \rangle / \Omega_0$ $-\omega_{0i}$)² $/\Omega_0^2$, $V_{va} = \langle (v_a - v_0)^2 \rangle /\Omega_0^2$, $V_{\Omega a} = \langle (\Omega_a - \Omega_0)^2 \rangle /\Omega_0^2$ ОМП при выполнении условий (3) и $z^2 \gg 1$ можно воспользоваться формулами (18), где

$$z_1^2 = (A_1 - A_2)^2 / (D_1 + D_2) =$$

$$= \mu_0 [q_0 - \ln(1 + q_0)]^2 / q_0^2 = z^2,$$

$$z_2^2 = A_2^2 / D_2 = \mu_0 [q_0 - (1 + q_0) \ln(1 + q_0)]^2 / q_0^2, (24)$$

$$R = A_2 (D_1 + D_2) / (A_1 - A_2) D_2 =$$

$$= [(1 + q_0) \ln(1 + q_0) - q_0] (1 + q_0) / [q_0 - \ln(1 + q_0)].$$

Отметим, что отношения χ_{ν} и χ_{Ω} , зависимости которых от величин δ_2 и δ_1 показаны на рис. 2, совпадают с отношениями рассеяний КПО ν_q , Ω_q к соответствующим рассеяниям ОМП ν_a , Ω_a . Тем самым величины χ_{ν} и χ_{Ω} характеризуют выигрыш в точности ОМП ν_a, Ω_a по сравнению с КПО v_q, Ω_q при неизвестных моментах появления и исчезновения сигнала (1). Из рис. 2 следует, что выигрыш в точности ОМП может быть значительным. Однако аппаратурная реализация ОМП является более сложной, чем аппаратурная реализация КПО. Действительно, для получения КПО необходимо формировать случайное поле $L^*(\omega_1, \omega_2) = L(\omega_1, \omega_2, \Theta_1^*, \Theta_2^*)$ как функцию двух аргументов: ω_1 и ω_2 . В то же время для получения ОМП, согласно (19), необходимо формировать случайное поле $L(\omega_1, \omega_2, \Theta_1, \Theta_2)$ (5), зависящее от четырех аргументов. Последнее обстоятельство может привести к трудностям при аппаратурной реализации ОМП.

Найденные асимптотически точные выражения для характеристик оценок частотных параметров случайного радиоимпульса (1) позволяют сделать обоснованный выбор между рассмотренными в работе алгоритмами оценок в зависимости от имеющейся априорной информации и от требований, предъявляемых к точности оценок и к степени простоты их аппаратурной реализации.

Работа выполнена при поддержке Российского фонда фундаментальных исследований.

СПИСОК ЛИТЕРАТУРЫ

- Репин В.Г. // Пробл. передачи информ. 1991. Т. 27.
 № 1. С. 61.
- 2. Трифонов А.П., Захаров А.В. // РЭ. 1996. Т. 41. № 8. С. 972.
- 3. Ван-Трис, Гарри Л. Теория обнаружения, оценок и модуляции. М.: Сов. радио, 1977. Т. 3.
- 4. Бакут П.А., Большаков И.А., Герасимов Б.М. и др. Вопросы статистической теории радиолокации / Под ред. Тартаковского Г.П. М.: Сов. радио, 1963. Т. 1.
- Трифонов А.П., Нечаев Е.П., Парфенов В.И. Обнаружение стохастических сигналов с неизвестными параметрами. Воронеж: Изд-во Воронеж. унта, 1991.
- 6. Трифонов А.П., Галун С.А. // РЭ. 1982. Т. 27. № 8. С. 1554.
- 7. Трифонов А.П. // РЭ. 1980. Т. 25. № 4. С. 749.
- 8. *Куликов Е.И.*, *Трифонов А.П.* Оценка параметров сигналов на фоне помех. М.: Сов радио, 1978.
- Мудров В.И., Кушко В.Л. Методы обработки измерений: Квазиправдоподобные оценки. М.: Радио и связь, 1983.
- 10. Трифонов А.П., Захаров А.В. // РЭ. 1996. Т. 41. № 11. С. 1316.
- Левин Б.Р. Теоретические основы статистической радиотехники. М.: Радио и связь, 1989.
- 12. Трифонов А.П., Шинаков Ю.С. Совместное различение сигналов и оценка их параметров на фоне помех. М.: Радио и связь, 1986.
- 13. Шинаков Ю.С. // РЭ. 1974. Т. 19. № 3. С. 542.