Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

CIS 468: Spring 2015

What is Frequent Pattern Analysis

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why is Frequent Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
 - Broad applications

Frequent Itemsets

- Frequently Bought Together
- Customers who hought this item also hought Frequently Bought Together

- This item: J.R.R. Tolkien 4-Book Boxed Set: The Hobbit and The Lord of the Rings (Movie Tie-in): The Hobbit, The ... by J.R.R. Tolkien Mass Market Paperback \$27.79
- ☑ Diary of a Wimpy Kid: Hard Luck, Book 8 by Jeff Kinney Hardcover \$7.86

Customers Who Bought This Item Also Bought

Mass Market Paperback \$31,55 **Prime**

The Silmarillion

> J.R.R. Tolkien

The Silmarillion (Pre-Lord of the ...

→ J.R.R. Tolkien

★★★★★ (1,069)

Mass Market Paperback

Tolkien Fantasy Tales Box Set (The Tolkien ... > J.R.R. Tolkien

Mass Market Paperback

\$19.18 **/Prime**

Chronicles of Narnia Box Set

C. S. Lewis

Paperback (67)

\$30.40 **/Prime**

Basic Concepts: Frequent Patterns

Tid	Items bought	
10	10 Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	40 Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- itemset: A set of one or more items
- k-itemset $X = \{x_1, ..., x_k\}$
- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is frequent if X's support is no less than a minsup threshold

Basic Concepts: Association Rules

Tid	Tid Items bought	
10	10 Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	40 Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- Find all the rules X → Y with minimum support and confidence
 - support, s, probability that a transaction contains X ∪ Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Let minsup = 50%, minconf = 50%
Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3

- Association rules: (many more!)
 - Beer \rightarrow Diaper (60%, 100%)
 - Diaper → Beer (60%, 75%)

Closed Patterns and Max Patterns

- A long pattern contains a combinatorial number of subpatterns
- Solution: Mine closed itemsets and max-itemsets instead
- An itemset X is closed if X is frequent and there exists no super-pattern $Y \supset X$, with the same support as X
- An itemset X is a max-itemset if X is frequent and there exists no frequent super-pattern Y ⊃ X
- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

Closed Itemset

- Problem with maximal frequent itemsets:
 - Support of their subsets is not known additional DB scans are needed
- An itemset is closed if none of its immediate supersets has the same support as the itemset

Itemset	Support
{A}	4 4
{B}	5
{C}	3 {A,B}
{D}	2 4{B,C D}
$\{A,B\}$	1 4 P (1,D)
{A,C}	4 2(A,D,D)
{A,D} └	5 TA,B,C ,D}
$\{B,C\}$	3
$\{B,D\}$	4
$\{C,D\}$	3

Itemset	Support
$\{A,B,C\}$	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
$\{B,C,D\}$	2
$\{A,B,C,D\}$	2

Maximal vs. Closed Itemsets

Maximal and Closed Frequent Itemsets

The Downward Closure Property and Scalable Mining Methods

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper} and {beer,nuts}
- The Apriori algorithm thrives on this property

Apriori: A Candidate Generation & Test Approach

 Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)

Method:

- Initially, scan DB once to get frequent 1-itemset
- Generate length (k+1) candidate itemsets from length k
 frequent itemsets
- Test the candidates against DB
- Terminate when no frequent or candidate set can be generated

Apriori Principle

Apriori Principle

Item	Count
Bread	4
Cola	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Cola or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

If every subset is considered,	
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$	
With support-based pruning,	
6 + 6 + 1 = 13	

Itemset	Count
{Bread,Milk,Diaper}	3

The Apriori Algorithm

 C_k : Candidate itemset of size k

```
L_k: frequent itemset of size k
L_1 = {frequent items};
for (k = 1; L_k != \emptyset; k++) do begin
  C_{k+1} = candidates generated from L_k;
  for each transaction t in database do
     increment the count of all candidates in C_{k+1} that are contained in t
  L_{k+1} = candidates in C_{k+1} with min_support
  end
return \bigcup_k L_k;
```

The Apriori Algorithm (Example)

Mango – M Onion – O Nintendo – N Key-chain – K Eggs – E Yo-yo – Y Doll – D Apple – A Umbrella – U Corn – C

Transaction ID	Items Bought
T1	{M, O, N, K, E, Y }
T2	{D, O, N, K, E, Y }
Т3	{M, A, K, E}
T4	{M, U, C, K, Y }
T5	{C, O, O, K, I, E}

The Apriori Algorithm (Step 1)

Count the <u>number of transactions</u> in which

each item

Mango – M

Onion - O

Nintendo – N

Key-chain – K

Eggs – E

Yo-yo - Y

Doll - D

Apple – A

Umbrella – U

Corn – C

ltem	No of transactions
M	3
0	3
N	2
K	5
E	4
Υ	3
D	1
А	1
U	1
С	2
I	1

Apriori Algorithm (Step 2)

- Let's say that an item is frequent if it occurs in 60% of the transactions.
- In step 2 we simply remove any items that are bought less than 3 times.

Mango – M Onion – O Nintendo – N Key-chain – K Eggs – E Yo-yo – Y Doll – D Apple – A Umbrella – U

Corn - C

ltem	Number of transactions
M	3
0	3
K	5
Е	4
Υ	3

Apriori Algorithm (Step 3)

 Start making pairs from the first item (M) and the second item (O) and so on...

Mango – M
Onion – O
Nintendo – N
Key-chain – K
Eggs – E
Yo-yo – Y
Doll – D
Apple – A
Umbrella – U
Corn – C

Item pairs
MO
MK
ME
MY
OK
OE
OY
KE
KY
EY

Apriori Algorithm (Step 4)

 Count how many times each pair appears together in a transaction

Mango – M
Onion – O
Nintendo – N
Key-chain – K
Eggs – E
Yo-yo – Y
Doll – D
Apple – A
Umbrella – U
Corn – C

Item Pairs	Number of transactions
MO	1
MK	3
ME	2
MY	2
OK	3
OE	3
OY	2
KE	4
KY	3
EY	2

Apriori Algorithm (Step 5)

 Remove all the L2 transaction pairs that occur less than 3 times and we are left with the following:

Mango – M

Onion - O

Nintendo - N

Key-chain – K

Eggs – E

Yo-yo - Y

Doll - D

Apple – A

Umbrella – U

Corn - C

Item Pairs	Number of transactions
MK	3
ОК	3
OE	3
KE	4
KY	3

Apriori Algorithm (Step 6)

- Form sets of three items using the self join rule.
- For each item pair we find two items with the same first item and join them
 - OK and OE = OKE

Item Set	Number of transactions
OKE	3
KEY	2

Association Rules

Body ==> Consequent [Support , Confidence]

- Body: represents the examined data.
- *Consequent*: represents a discovered property for the examined data.
- *Support*: represents the percentage of the records satisfying the *body* or the *consequent*.
- Confidence: represents the percentage of the records satisfying both the body and the consequent to those satisfying only the body.

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement
 - If {O,K,E} is a frequent itemset, candidate rules: {O,K} →{E}, {O,E} →{K}, {K,E} →{O}, {K} → {O,E}, {E} → {O,K}, {O} → {K,E}, {O} → {K}, {O} → {E}, {K} → {O}, {K} → {E}, {E} → {O}, {E} → {E}, {E
- If |L| = k, then there are $2^k 2$ candidates association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Confidence and Association Rules

 $\{O,K\} \rightarrow \{E\}$

Body ==> Consequent [Support , Confidence]

 $\{O,E\} \rightarrow \{K\}$

Confidence = Body and Consequent / Body

 $\{K,E\} \rightarrow \{O\}$

 $\{K\} \rightarrow \{O,E\}$

 $\{E\} \rightarrow \{O,K\}$

 $\{O\} \rightarrow \{K,E\}$

 ${O} \rightarrow {K}$

 ${O} \rightarrow {E}$

 $\{K\} \rightarrow \{O\}$

 $\{K\} \rightarrow \{E\}$

 $\{E\} \rightarrow \{O\}$

 $\{E\} \rightarrow \{K\}$

Transaction ID	Items Bought
T1	{M, O, N, K, E, Y }
T2	{D, O, N, K, E, Y }
Т3	{M, A, K, E}
T4	{M, U, C, K, Y }
T5	{C, O, O, K, I, E}

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an anti-monotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
- $e.g., L = {A,B,C,D}:$

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation

