Graphes: modélisation et parcours

OPTION INFORMATIQUE - TP nº 3.2 - Olivier Reynet

À la fin de ce chapitre, je sais :

- modéliser un graphe par liste d'adjacence
- modéliser un graphe par matrice d'adjacence
- passer d'une modélisation à une autre
- parcourir un graphe en largeur et en profondeur
- implémenter l'algorithme de Dijkstra

A Modélisation d'un graphe

Dans ce qui suit on peut considérer le graphe :

```
let g = [| [1;2] ; [0;3;4] ; [0;5;6] ; [1] ; [1] ; [2] ; [2] |] ;;
```

- A1. Sous quelle forme le graphe g est-il donné?
- A2. Dessiner le graphe g. Comment peut-on qualifier ce graphe?
- A3. On dispose d'un graphe sous la forme d'une liste d'adjacence. Écrire une fonction list_to_matrix qui transforme cette représentation en une matrice d'adjacence.
- A4. On dispose d'un graphe sous la forme d'une matrice d'adjacence. Écrire une fonction matrix_to_list qui transforme cette représentation en une liste d'adjacence.
- A5. On dispose d'un graphe orienté sous la forme d'une liste d'adjacence. Écrire une fonction desoriented_list qui transforme ce graphe en un graphe non orienté.
- A6. On dispose d'un graphe orienté sous la forme d'une matrice d'adjacence. Écrire une fonction desoriented_matrix qui transforme ce graphe en un graphe non orienté.

B Parcourir un graphe

Le parcours d'un graphe est une opération fondamentale et utilisée par de nombreux algorithmes, notamment Dijkstra et A*. On peut facilement mémoriser les différentes stratégies en observant les types d'ensemble qui sont utilisés pour stocker les sommets à parcourir au cours de l'algorithme :

- 1. Le parcours en **largeur** passe par tous les voisins d'un sommet avant de parcourir les descendants de ces voisins. Les sommets passent dans une **file** de type First In First Out.
- 2. Le parcours en **profondeur** passe par tous les descendants d'un voisin d'un sommet avant de parcourir tous les autres voisins de ce sommet. Les sommets passent dans une **pile** de type Last In First Out.

3. L'algorithme de **Dijkstra** passe par le voisin le plus proche d'un sommet avant de parcourir les autres voisins de ce sommet. C'est un parcours en largeur qui utilise une **file de priorités**: lorsqu'on insère un nouvel élément dans cette file, celui-ci est placé d'après son niveau de priorité, le plus prioritaire en premier. Dans notre cas, la priorité est la distance. La plus petite distance en tête donc.

Dans cette section, on suppose qu'on manipule un graphe sous la forme d'une liste d'adjacence.

B1. Écrire une fonction récursive de signature bfs : int list array -> int -> int list qui parcours en largeur un graphe et qui renvoie la liste des sommets parcourus. On pourra s'inspirer du code suivant:

```
let bfs g v0 =
let visited = Array.make (Array.length g) false in
let rec explore queue = (* queue -> file en anglais FIFO *)
match queue with
line in explore [v0];;
```

Tester l'algorithme sur le graphe suivant :

```
let g = [| [1;2]; [0;3;4]; [0;5;6]; [1]; [1]; [2]; [2] |];;
```

B2. Écrire une fonction récursive de signature dfs : int list array -> int -> int list qui parcours en profondeur un graphe et qui renvoie la liste des sommets parcourus.

C Plus courts chemins: algorithme de Dijkstra

```
Algorithme 1 Algorithme de Dijkstra, plus courts chemins à partir d'un sommet donné
```

```
1: Fonction DIJKSTRA(G = (V, E, w), a)
                                                                          \triangleright Trouver les plus courts chemins à partir de a \in V
         \Delta \leftarrow a
                                                        \triangleright \Delta est l'ensemble des sommets dont on connaît la distance à a
2:
                                                                \triangleright \Pi[s] est le parent de s dans le plus court chemin de a à s
3:
         \Pi \leftarrow \emptyset
4:
         d \leftarrow \emptyset
                                                                                        ▶ l'ensemble des distances au sommet a
5:
         \forall s \in V, d[s] \leftarrow w(a, s)
                                                                            \triangleright w(a, s) = +\infty si s n'est pas voisin de a, 0 si s = a
         tant que \bar{\Delta} n'est pas vide répéter
                                                                             \triangleright \bar{\Delta}: sommets dont la distance n'est pas connue
6:
              Choisir u dans \bar{\Delta} tel que d[u] = \min(d[v], v \in \bar{\Delta})
7:
                                                                                 \triangleright On prend la plus courte distance à a dans \bar{\Delta}
              \Delta = \Delta \cup \{u\}
8:
9:
              pour x \in \bar{\Delta} répéter
                                                                \triangleright Ou bien x \in \mathcal{N}_G(u) \cap \bar{\Delta}, pour tous les voisins de u dans \bar{\Delta}
                  si d[x] > d[u] + w(u, x) alors
10:
                       d[x] \leftarrow d[u] + w(u, x)
                                                                                          ▶ Mises à jour des distances des voisins
11:
                                                                                > Pour garder la tracer du chemin le plus court
12:
                       \Pi[x] \leftarrow u
          renvoyer d, \Pi
13:
```

C1. Démontrer la terminaison de l'algorithme de Dijkstra.

Solution : Terminaison de l'algorithme : avant la boucle tant que, $\bar{\Delta}$ possède n-1 éléments, si $n \in \mathbb{N}^{\star}$ est l'ordre du graphe. À chaque tour de boucle tant que, l'ensemble $\bar{\Delta}$ décroît strictement d'un élément et atteint donc nécessairement zéro. Le cardinal de $\bar{\Delta}$ est donc un variant de boucle. L'algorithme se termine lorsque le cardinal de $\bar{\Delta}$ atteint zéro.

C2. Démontrer la correction de l'algorithme de Dijkstra.

Solution : Correction de l'algorithme : à chaque étape de cet algorithme, on peut distinguer deux ensembles de sommets : l'ensemble Δ est constitué des éléments dont on connaît la distance la plus courte à a et l'ensemble complémentaire $\bar{\Delta}$ qui contient les autres sommets.

D'après le principe d'optimalité, tout chemin plus court vers un sommet de $\bar{\Delta}$ passera nécessairement par un sommet de Δ . Ceci s'écrit :

$$\forall u \in \bar{\Delta}, d[u] = \min(d[v] + w[v, u], v \in \Delta) \tag{1}$$

On souhaite montrer qu'à la fin de chaque tour de boucle tant que (lignes 6-12), d contient les distances les plus courtes vers tous les sommets de Δ . On peut formuler cet invariant de boucle. \Im : à chaque fin de tour de boucle on a

$$\forall u \in \Delta, d[u] = \delta_{au} \tag{2}$$

$$\forall u \in \bar{\Delta}, d[u] = \min(d[v] + w[v, u], v \in \Delta) \tag{3}$$

À l'entrée de la boucle, l'ensemble Δ ne contient que le sommet de départ a. On a d[a] = 0, ce qui est la distance minimale. Pour les autres sommets de $\bar{\Delta}$, d contient :

- une valeur infinie si ce sommet n'est pas un voisin de *a*, ce qui, à cette étape de l'algorithme est le mieux qu'on puisse trouver,
- le poids de l'arête venant de *a* s'il s'agit d'un voisin, ce qui, à cette étape de l'algorithme est le mieux que l'on puisse trouver également.

On peut donc affirmer que d contient les distances entre a et tous les sommets de Δ . L'invariant est vérifié à l'entrée de la boucle.

On se place maintenant à une étape quelconque de la boucle. Notre hypothèse $\mathcal H$ est que toutes les itérations précédentes sont correctes. À l'entrée de la boucle on sélectionne un sommet u, le premier de la file de priorités. Il nous alors montrer que $d[u] = \delta_{au}$.

u entre dans Δ , c'est à dire que $u \in \bar{\Delta}$ et $\forall v \in \bar{\Delta}$, $d[u] \leq d[v]$. Considérons un autre chemin de a à u passant par un sommet v de $\bar{\Delta}$. Comme on a $d[u] \leq d[v]$, cet autre chemin sera au moins aussi long que d[u], sauf s'il existe des arêtes de poids négatif (ce qui n'est pas le cas).

Formellement, on peut écrire cela ainsi

$$\delta_{au} = \delta_{av} + \delta_{vu} \tag{4}$$

$$\delta_{au} \geqslant \delta_{av}$$
 (5)

Par ailleurs, comme v appartient à $\bar{\Delta}$, il vérifie l'hypothèse d'induction. On a donc :

$$d[v] = \min(d[x] + w[x, v], x \in \Delta) \tag{6}$$

$$= \min \left(\delta_{ax} + w[x, v], x \in \Delta \right) \tag{7}$$

$$=\delta_{av} \tag{8}$$

la deuxième ligne étant obtenu grâce à l'hypothèse d'induction également.

$$d[u] \leqslant d[v] = \delta_{av} \tag{9}$$

$$\leq \delta_{av}$$
 (10)

$$\leq \delta_{au}$$
 (11)

Or, d[u] ne peut pas être plus petit que la distance de a à u. On a donc finalement $d[u] = \delta_{au}$. d contient donc les distances vers tous les sommets à la fin de l'exécution de l'algorithme.

C3. Quelle est la complexité de l'algorithme de Dikjstra?

Solution:

La complexité de l'algorithme de Dijsktra dépend de l'ordre n du graphe considéré et de sa taille m. La boucle tant que effectue exactement n-1 tours. La boucle pour effectue à chaque fois un nombre de tour égal au nombre d'arêtes non découvertes qui partent du sommet u considéré et vont vers un sommet voisin de $\bar{\Delta}$. On ne découvre une arête qu'une seule fois, puisque le sommet u est transféré dans Δ au début de la boucle. Au final, on exécute donc la mise à jour des distances un nombre de fois égal à la taille m du graphe, c'est à dire son nombre d'arêtes.

En notant le coût du transfert c_t , le coût de la mise à jour des distances c_d et en déroulant la boucle $tant \ que$, on peut écrire :

$$C(n,m) = (n-1)c_t + mc_d (12)$$

Les complexités c_d et c_t dépendent naturellement des structures de données utilisées pour implémenter l'algorithme.

Si on choisit une implémentation de d par un tableau, alors on a besoin de rechercher le minimum des distances pour effectuer le transfert : cela s'effectue au prix d'un tri du tableau au minimum en $c_t = O(n \log n)$. Un accès aux éléments du tableau pour la mise à jour est en $c_d = O(1)$. On a donc $C(n) = (n-1)O(n \log n) + mO(1) = O(n^2 \log n)$.

C4. Exécuter à la main l'algorithme de Dijsktra sur le graphe orienté suivant en complétant à la fois le tableau des distances et le tableau des parents qui permet de reconstruire le chemin a posteriori. Le tableau parent à la case i contient le sommet précédent sur le chemin.

```
let g = [| [(1,7);(2,1)] ; [(3,4); (5,1)] ; [(1,5);(4,2);(5,7)] ; [] ; [(1,2);(3,5)] ; [(4,3)] |] ;;
```

```
Solution: val d: int array = [0; 5; 1; 8; 3; 6] val p: int array = [0; 4; 0; 4; 2; 1]
```

C5. Compléter le code de la fonction récursive de signature dijkstra: (int * int)list array -> int array * int array qui renvoie les plus courtes distnaces à partir d'un sommet d'un graphe ainsi que les directions à prendre. La fonction insert_neighbours renvoie la file de sommets à explorer dans l'ordre d'exploration, la plus petite distance en premier. On pourra utiliser le tri par

insertion d'une file pour en faire une file de priorités. La fonction update_distances_and_parents met à jour les tableaux de résultats : les distances au sommet de départ et le parent de chaque sommet (pour savoir quel chemin prendre).

```
let diikstra g =
      let n = Array.length g in
2
      let distances = Array.make n max_int and
3
          visited = Array.make n false and
4
          parents = Array.make n max_int
      in distances.(0) <- 0; parents.(0) <- 0</pre>
      in let rec insert_neighbours sorted neighbours =
      in let update_distances_and_parents v =
10
      in let rec explore pq =
11
        match pq with
          [] -> distances, parents
          | (v,dv)::t when visited.(v) -> explore t
14
          | (v,dv)::t -> visited.(v) <- true;
15
                           update distances and parents v;
16
                           explore (insert_neighbours t g.(v));
17
      in explore [(0,0)];; (*you could choose another one !*)
```

C6. Exécuter l'algorithme de Dijkstra sur le graphe suivant :

```
let g = [| [(1,7);(2,1)];
[(0,7);(2,5);(3,4);(4,2);(5,1)];
[(0,1);(1,5);(4,2);(5,7)];
[(1,4);(4,5)];
[(1,2);(2,2);(3,5);(5,3)];
[(1,2);(2,7);(4,3)] |];;
```

Les résultats sont-ils cohérents?

C7. Est-ce qu'utiliser un tas binaire pour implémenter la file de priorités permettrait d'améliorer la complexité de l'algorithme?

Solution : Si d est implémentée par un tas, alors on a $c_t = O(\log n)$ et $c_d = O(\log n)$. La complexité est alors en $C(n) = (n+m)\log n$. Cependant, pour que le tas soit une implémentation pertinente, il est nécessaire que $m = O(\frac{n^2}{\log n})$, c'est à dire que le graphe ne soit pas complet, voire un peu creux!