MOwNiT - Interpolacja cz2

1. Sprzęt

System operacyjny:

- Manjaro linux 22.0.4

Język:

- Python 3.10, numpy 1.24, matplotlib 3.7.1, jupyter

Procesor:

- AMD Ryzen 7 4700U

2. Treść zadania

Dla funkcji:

$$f(x) = \sin(2x) * \sin(2x^2/\pi), x \in (-2\pi, \pi)$$

Wyznacz dla zagadnienia Hermite'a wielomian interpolujący w wybrane. Interpolację przeprowadź dla różnej liczby węzłów (np. n = 3, 4, 5, 7, 10, 15, 20).

- Dla każdego przypadku interpolacji porównaj wyniki otrzymane dla różnego rozmieszczenia węzłów: równoodległe oraz Czebyszewa.
- Oceń dokładność, z jaką wielomian przybliża zadaną funkcję.
- Poszukaj wielomianu, który najlepiej przybliża zadaną funkcję.
- Wyszukaj stopień wielomianu, dla którego można zauważyć efekt Runge'go (dla równomiernego rozmieszczenia węzłów). Porównaj z wyznaczonym wielomianem dla węzłów Czebyszewa.

Uwaga: Zalecane jest rysowanie wykresów funkcji, wielomianów interpolujących, ..., czyli graficzne ilustrowanie przeprowadzonych eksperymentów numerycznych. W sprawozdaniu należy zamieścić wykresy jedynie dla wybranych przypadków!

3. Wykonanie ćwiczenia

Interpolacja została wykonana dla liczby węzłów: 3, 4, 5, 7, 10, 15, 20, 25, 50 i dla wag 2. Liczba punktów dla których liczone były wartości to 1000. Zastosowano postać Newtona.

Liczba węzłów	Równoodległe, błąd maksymalny,	Równoodległe, błąd kwadratowy	Czebyszew, błąd maksymalny	Czebyszew, błąd kwadratowy
3	3.425E+00	6.291E-02 3.290E+00		5.769E-02
4	9.494E-01	1.422E-02	3.579E+00	4.268E-02
5	9.636E+00	9.919E-02	3.654E+00	4.881E-02
7	1.261E+01	1.375E-01	1.262E+00	2.024E-02
10	1.739E+02	1.333E+00	1.829E+00	1.613E-02
15	1.317E+03	6.424E+00	3.659E-01	3.470E-03
20	2.886E+02	1.155E+00	3.388E-03	3.056E-05
25	1.540E+01	5.337E-02	3.380E-02	9.672E-05
50	2.285E+13	3.527E+10	5.621E+13	1.324E+11
Maksimum	2.285E+13	3.527E+10	5.621E+13	1.324E+11
Minimum	9.494E-01	1.422E-02	3.388E-03	3.056E-05

Tabela 1. Przedstawia błędy interpolacji w zagadnieniu Hermite'a.

Największe błędy we wszystkich metrykach uzyskano dla 50 węzłów jest to związane z błędami arytmetyki, efekty tych błędów błędów widać już dla 25 węzłów równoodległych, a dla węzłów Czebyszewa dopiero przy 50 węzłach.

Najlepszy wynik dla dla węzłów równoodległych uzyskano dla 4 węzłów w obu metrykach, a dla węzłów Czebyszewa najlepszy rezultat uzyskano dla 25 węzłów również jest to wynik najlepszy dla obu metryk.

Najlepszy rezultat dla węzłów równoodległych

Wykres 1. Przedstawia rezultat interpolacji dla 4 węzłów równoodległych.

Najgorszy rezultat dla węzłów równoodległych

Wykres 2. Przedstawia rezultat interpolacji dla 50 równoodległych węzłów.

Jak widać na wykresach 1 i 2 interpolacja Hermite'a przy zastosowaniu węzłów równoodległych nie daje rezultatów godnych uwagi nawet w najlepszym przypadku, natomiast dla najgorszego przypadku maksymalny błąd jest rzędu wielkości 10^13.

Najlepszy rezultat dla węzłów Czebyszewa

Wykres 3. Przedstawia rezultat interpolacji dla 25 węzłów Czebyszewa.

Najgorszy rezultat dla węzłów Czebyszewa

Wykres 4. Przedstawia rezultat interpolacji dla 50 węzłów Czebyszewa.

Jak widać na wykresie 3, udało się uzyskać wielomian w dobry sposób przybliżający zadaną funkcję w dalszej częsci pór. Natomiast najgorszy rezultat jest spowodowany błędami w arytmetyce, w swoim maksimum osiąga 10E+13.

Efekt Rungego

Najmniejszą liczbą węzłów dla której zaobserwowano efekt Rungego wyniosła 5.

Wykres 5. Przedstawia rezultat interpolacji metodą Hermite'a dla 5 równoodległych węzłów.

Wykres 6. Przedstawia rezultat interpolacji metodą Hermite'a dla 5 węzłów Czebyszewa.

Na wykresie 5 widoczne są duże odchyły wielomianu od funkcji zadanej przy końcach przedziału, jest to przykład efektu Rungego i zgodnie z przewidywaniami użycie węzłów Czebyszewa w miejsce węzłów równoodległych pozwala pozbyć się tego efektu jednak nadal mimo braku efektu Rungego nie uzyskano dobrego przybliżenia funkcji zadanej.

4. Porównanie wyników z zagadnieniem Lagrange'a

	Lagrange		Newton		Hermite	
Liczba węzłów	Błąd max	Błąd kwadratowy	Błąd max	Błąd kwadratowy	Błąd max	Błąd kwadratowy
3	1.63E+00	2.01E-02	1.63E+00	2.01E-02	3.29E+00	5.77E-02
4	1.28E+00	1.49E-02	1.28E+00	1.49E-02	3.58E+00	4.27E-02
5	1.08E+00	1.64E-02	1.08E+00	1.64E-02	3.65E+00	4.88E-02
7	1.77E+00	2.06E-02	1.77E+00	2.06E-02	1.26E+00	2.02E-02
10	1.46E+00	1.57E-02	1.46E+00	1.57E-02	1.83E+00	1.61E-02
15	1.02E+00	1.15E-02	1.02E+00	1.15E-02	3.66E-01	3.47E-03
20	9.91E-01	1.02E-02	9.91E-01	1.02E-02	3.39E-03	3.06E-05
25	8.72E-01	8.38E-03	8.72E-01	8.38E-03	3.38E-02	9.67E-05
50	1.84E-06	2.04E-08	1.38E-01	3.90E-04	5.62E+13	1.32E+11
Max	1.77E+00	2.06E-02	1.77E+00	2.06E-02	5.62E+13	1.32E+11
Min	1.84E-06	2.04E-08	1.38E-01	3.90E-04	3.39E-03	3.06E-05

Tabela 2. Przedstawia porównanie błędów interpolacji w zagadnieniu Lagrange'a dla wzorów Lagrange'a i Newtona oraz zagadnienie Hermite'a, dla węzłów Czebyszewa.

Jak widać w tabeli 2 mimo początkowo mniejszej dokładności zagadnienia Hermite'a dla 15, 20 i 25 węzłów radzi sobie lepiej niż obie postacie wielomianu z zagadnienia Lagrange'a dla tej samej liczby węzłów (dla 50 węzłów ze względu na wysoki stopień wielomianu dochodzi do błędów w arytmetyce).

Dodatkowo najlepsze rezultaty postaci Newtona w zagadnieniu Hermite'a są lepsze niż postaci Newtona w zagadnieniu Lagrange'a (dla postaci Newtona) dla tej samej ilości danych. Można to zobaczyć porównując błędy metody Newtona dla 50 węzłów (1.38E-01, 3.9E-04) i 25 węzłów dla metody Hermite'a (3.38E-02, 9.67E-05) jednak nadal są to wyniki gorsze niż dla postaci Lagrange'a (1.84E-06, 2.04E-08).

5. Wnioski

- Ze względu na szybki wzrost stopnia wielomianu interpolacyjnego metoda Hermite'a
 jest podatna na błędy w arytmetyce prowadzące do ogromnych niedokładności, które
 wynoszą nawet kilkanaście rzędów wielkości zatem należy ostrożnie dobierać liczbę
 węzłów interpolacji.
- Węzły równoodległe dają gorsze rezultaty niż węzły Czebyszewa i dodatkowo są podatne na efekt Rungego, który nie występuje dla tych drugich.
- Postać Newtona w zagadnieniu Hermite'a pod względem maksymalnej dokładności plasuje się pomiędzy postaciami Newtona i Lagrange'a w zagadnieniu Lagrange'a.