Bundesministerium Bildung, Wissenschaft und Forschung

SRDP Standardisierte Reife- und Diplomprüfung

Schulklassen*

a) Ein Klassenzimmer ist mit einer Leinwand ausgestattet (siehe nachstehende modellhafte Abbildung in der Ansicht von oben, alle Abmessungen in cm). Ein Schüler befindet sich im Punkt *P* und betrachtet die Leinwand.

$$y = [0/1 P.]$$

2) Stellen Sie mithilfe von x und y eine Formel zur Berechnung von α auf.

$$\alpha = \underline{\hspace{1cm}} [0/1 P.]$$

3) Kennzeichnen Sie in der obigen Abbildung einen Winkel β , der durch den nachstehenden Ausdruck berechnet werden kann.

$$\sin(\beta) = \frac{\sin(\alpha) \cdot x}{220}$$
 [0/1 P.]

Es gilt:

h = 275 cm und v = 250 cm

4) Berechnen Sie β . [0/1 P.]

Bundesministerium Bildung, Wissenschaft und Forschung

b) Die Körpergröße von Maturanten kann als annähernd normalverteilt mit der Standardabweichung $\sigma=10$ cm angenommen werden.

Eine Stichprobe vom Umfang n = 7 ergab folgende Messwerte (in cm): 163, 170, 173, 174, 177, 179, 195

- 1) Ermitteln Sie das zweiseitige 95-%-Konfidenzintervall für den Erwartungswert μ dieser Normalverteilung. [0/1 P.]
- 2) Ergänzen Sie die Textlücken im nachstehenden Satz durch Ankreuzen des jeweils zutreffenden Satzteils so, dass eine richtige Aussage entsteht. [0/1 P.]

Würde man die Körpergrößen von _______ so vielen Maturanten erheben, dann wäre das zugehörige 95-%-Konfidenzintervall für den Erwartungswert ______ so breit.

1	
8-mal	
4-mal	
doppelt	

2	
4-mal	
doppelt	
halb	

BundesministeriumBildung Wissonschaf

Bildung, Wissenschaft und Forschung

SRDP Standardisierte Reife- und Diplomprüfung

Möglicher Lösungsweg

a1)
$$y = \sqrt{v^2 + (h + 220)^2}$$

a2)
$$\alpha = \arccos\left(\frac{x^2 + y^2 - 220^2}{2 \cdot x \cdot y}\right)$$

a3)

Ein Einzeichnen eines anderen Winkels mit dem gleichen Winkelmaß ist ebenfalls als richtig zu werten.

a4)
$$\beta = \arctan\left(\frac{250}{275 + 220}\right) = 26,79...^{\circ}$$

- a1) Ein Punkt für das richtige Aufstellen der Formel zur Berechnung von y.
- a2) Ein Punkt für das richtige Aufstellen der Formel zur Berechnung von α .
- a3) Ein Punkt für das Kennzeichnen des richtigen Winkels β .
- **a4)** Ein Punkt für das richtige Berechnen von β .

b1) Berechnung mittels Technologieeinsatz:

$$\bar{x} = 175,85...$$

$$Z_{0.975} = 1,959...$$

$$\mu_{\text{unten}} = \overline{X} - Z_{0,975} \cdot \frac{\sigma}{\sqrt{7}} = 168,44...$$

$$\mu_{\text{oben}} = \overline{x} + z_{0,975} \cdot \frac{\sigma}{\sqrt{7}} = 183,26...$$

zweiseitiges 95-%-Konfidenzintervall für den Erwartungswert in cm: [168,44...; 183,26...]

b2)

1)	
4-mal	\boxtimes

2	
halb	\boxtimes

- b1) Ein Punkt für das richtige Ermitteln des zweiseitigen 95-%-Konfidenzintervalls.
- b2) Ein Punkt für das Ankreuzen der beiden richtigen Satzteile.