2007《操作系统》考试试卷 A

一. . (单项选择题(每小题 1 分,)1. 不是基		2		
	A. 批处理操作系统				
	C. 实时操作系统	D. M给探作			
() 2. 下列的进程状态变体	化中,	变化是	不可能发生的。	
		B. 运行→		1 11000 = 110	, (\
	C. 等待→运行	D. 等待→ī			
	o. 414 ~211	D: (110 %	17u~¤		
() 3. 进程的并发执行是	指若干个进程		0	
	A. 同一时刻执行	_	B. 同一时[- 间段内向前推进	
	C. 推进的时间不可重叠		D. 并行执行		
	1,45,644,414,1,455		= 1) 14 4 (
() 4. 设有 n 个进程共享·	一程序段,而	每次最多允许	Fm(m <n)个进< th=""><th>程进入该程</th></n)个进<>	程进入该程
序段	,则信号量的取值范围是_		0-		
	A. [n-m, n]				
	C. [m-n, m]	D. [m-n, n]	X		
() 5. 下面关于 FCFS 处理	机调度算法的	」描述中		0
	A. 对长作业有利,不利于	短作业			
	B. 有利于需 CPU 时间长的	」作业 ●			
	C. 也有利于需要 I/O 时间]长的作业			
	D. 可能造成系统中 CPU 和	11/0设备的利]用率低		
		On			
() 6. 当设备输入输出操	作正常结束时	,操作系统料	将请求该设备的	进程的状态
设置					
1	A. 等待状态 B. 运行	状态 C. ?	挂起状态	D. 就绪状态	
	1/2-				
()7. 对资源采用按序分配	配策略能达到_		的目的。	
	A. 预防死锁 B. 避免	死锁 C. 🤊	检测死锁	D. 解除死锁	
Xz,	<i>Y//</i> //				
)8. 设系统中仅有一类				
N. N.	其中各进程对该类资源的量	最大需求量为	W。当 M、N、'	₩分别取下列	组
值时	,可能会发生死锁。				
		B. M=3			
	C. M=3, N=2, W=3	D. $M=5$	N=3, $W=2$		
	A TABLES AND				
()9. 支持紧凑处理的地	_			
	A. 页式地址转换		3. 段式地址转		
	C. 静态重定位	I). 动态重定位	<u>.</u>	
) 10	12.44 17.44 17			
()10.采用 SPOOLing 技	7 小的目的是	0		

A. 提高独占设备的利用率 C. 减轻用户编程负担	B. 提高共享设备利用率 D. 减轻操作系统的负担
假定某时刻用户进程的 0 , 1 , 2 , 3 页地址 0 A5C(H)所对应的物理地址是_	空间共 32 个页面,每页为 1KB,内存为 16KB。 面在内存物理块 5,10,4,7 中存放,则逻辑 。
A. 2A5C B. 1A5C C. 165C D. 125C	
() 12.产生系统死锁的原因可能	是由于
A. 进程释放资源 C. 一个进程进入死循环	B. 多个进程竞争资源出现了循环等待 D. 多个进程竞争共享型设备
()13. 分段存储系统中,每次存 。	从主存中取指令或取操作数,最多要访问主
A. 0次 B. 1次 C. 2岁	大 D. 3 次
() 14. 由于实现页面置: 换算法 算法。	换算法的成本高,通常使用一种近似的页面置
A. Optimal LRU B. LR	RU Clock lock 改进的Clock
源的利用率。	能够减少对 CPU 的次数,从而提高资 C. 控制 D. 依赖
()16.下面有关 I/O 设备数据传A. DMA 控制方式下输入的数据通过B. 程序控制方式下设备传输数据时C. 中断控制方式一次可以传送一个D. DMA 控制方式和通道控制方式都	大,CPU 是空闲的 数据块
() 17. 文件的存取方法依赖于 A. 文件的物理结构 C. A 和 B	。 B. 存放文件的存储设备的特性 D. 文件的逻辑结构
() 18. 通过可以共A. 符号链接 B. 索引节点 C. 氢	等全球任何地方的机器上的任何文件。 基本文件目录表 D. 文件目录
A. 维持在目态 B.	时,中断装置将使中央处理器工作。 从目态转换到管态 从管态转换到目态
() 20. UNIX 系统中,文件存储匀	区间的管理采用。

	A. 位图法 C. 成组链接法	B. 空闲块表法 D. 块链接法	
	它题(每小题 2 分,共 20 统中引入多道程序设计技		和系统吞吐量。
2. 进程	实体由程序代码段、数据	居段和	组成。
			正在运行进程的 CPU,这种调度g Time,SRT)调度算法。
先级, []			问,并为每个队列赋予不同的优 问中调度出来执行的进程,其执
5. 最具	代表性的	算法是 Di jkstra	的银行家算法。
	,某内存块,其开始地址 。	上为 d, 长度为 2 ^k ,	且 d % 2 ^{k+1} =0, 则其伙伴地址
	的数据传输过程采用 DMA 寄存器和		需要对 DMA 进行初始化,应预置
-	,又称设备 里设备无关。	各无关性,是指用户约	扁制程序时使用的设备与实际使
9. 输入	井和输出井是在	~ 中开辟出来	的两个存储区域。
	定磁盘块大小为 2KB,若矿 「需占用空间为	硬盘容量为 2GB,每 _ 。	个 FAT 表项占空间,
三. 判践 1. (2. (3. (4. (5. (所正误并说明理由: (每人)系统中所有进程均处)缺页中断和其它中断)引入目录的目的是为)可变式分区仍然没有)只要系统资源分配图	于阻塞状态,则系统 一样,都是在一条指 了实现按名存取。 解决碎片问题。	於于瘫痪状态。 令执行完后被检测到并被处理。
e, f, g;	释放命令分别为 a-、b- 其活动分别为:	e f g e- f- g-	其申请命令分别为 a、b、c、d、 ;又设系统中有 P1、P2、P3 三

P3 活动: c d c- d- e g f e- f- g- 试分析当 P1、P2、P3 并发执行时,是否有发生死锁的可能性,并说明原因。(12 分)

五. 假定磁盘有 200 个柱面,编号 0~199,当前存取臂的位置在 142 号柱面上,并向磁道号增加的方向移动,如果请求队列的先后顺序是:86,147,91,177,94,150,102,175,130;试向:为完成上述请求,下列算法存取臂移动的总量是多少?并指出存取臂移动的顺序。(12 分)

- 1) 最短查找时间优先算法 SSTF;
- 2) 扫描算法 SCAN。

六. 假定执行表中所列作业,且所有作业按作业号的顺序,依次到达,每一个作业到达的时间如表所示。试分别用时间片轮转算法(时间片为 1)、非抢占优先权调度算法(其中:优先数越小,优先权越高)算出各作业的周转时间。(10 分)

作业号	到达时间	执行时间	优先权
1	0	8	3
2	1	1	1)
3	2	2	3
4	3	1	4
5	4	5	2

七. 设玩具车间生产小组在一个工作台边工作,工作台上有 N 个位置(N≥3)用于存放车架或车轮,且每个位置只能放一件车架或车轮;又设生产小组有 3 个工人,其活动分别为:

工人1活动:

do

{加工1个车架;车架放于工作台上;}

while (1)

工人2活动:

do

{加工1个车轮;车轮放于工作台上;}

while (1)

工人3活动:

do

{从工作台上取1车架;从工作台上取2车轮;组装为一辆车;}

while (1)

试用信号灯与 P、V 操作实现三个工人的合作,要求解中不含死锁。(共 16 分)

2007 操作系统试卷 A 参考答案

- 一、选择题: (每小题 1 分, 共 20 分)
- 1. D 2. C 3. B 4. C 5. C 6. D 7. A 8. C 9. D 10. A
- 11. D 12. B 13. C 14. B 15. A 16. D 17. C 18. A 19. B 20. C
- 二、填空题(每小题 2 分, 共 20 分)
- 1. CPU 或者系统资源
- 2. PCB 或进程控制块
- 3. 抢占(或剥夺) 剥夺(或抢占)
- 4. 越短
- 5. 死锁避免
- 6. $d+2^{K}$
- 7. MAR(内存地址寄存器) 、DC(计数寄存器)
- 8. 设备独立性
- 9. 磁盘
- 10. 2.5B 2.5MB
- 三、(每小题2分,判断1分,说明1分)
- 1. 错。不一定,只要有某个阻塞进程陷入等待的原因不是因为资源请求得不到满足,如等待数据传输过程结束,进程可转为就绪就能立即投入运行,那么系统就不是瘫痪状态。
- 2. 错。缺页中断是指令被解释执行时在地址转换的过程中产生并处理的。
- 3. 对。在目录中包含文件名及文件在外存的存放地址,因此操作系统可以通过文件名找到文件。
- 4. 对。随着进程不断进入和退出内存,内存可能被划分成越来越多的小块,当这些块不能用时, 就成为碎片。
- 5. 错。需要进一步判定环中的各类资源数量均为1。

四、(12分)

3进程不会陷入死锁。(6分)

因为 P1、P2、P3 三进程都是分两段来申请资源的,在前一阶段的资源释放后才开始申请第二阶段的资源。

从 3 进程第一阶段的资源请求来看,若 3 进程各占有一个资源,在申请第二个资源时,仅 P3 的请求获得满足,不久,P3 又释放所占有的资源,P2 可以推进,之后,P1 也可推进,3 进程 进入第二阶段的资源请求,第二阶段,P2 所请求资源与其它两进程不同,P1 与 P3 所请求相同 资源 efg,但两进程都先请求同一个资源 e,必有一个进程阻塞,另一个进程能继续请求剩余资源,都能得到满足,所以能顺利结束,释放资源,被阻塞进程被唤醒,也可以继续推进直至结束。不会出现死锁。(每段不出现死锁的原因各 3 分,共 6 分)

3 进程并发执行的其它情况,如: P1、P2 各占一个资源,P3 还未提出资源请求,接下来,P2 请求资源 C 可以得到满足,随之又释放所占有资源,P1 被唤醒,之后 P1、P2 进入第二阶段的资源请求,也均不会出现死锁。

五、(12分)

1) SSTF: 读写臂移动的顺序为 147, 150, 130, 102, 94, 91, 86, 175, 177 (2分)

跨磁道数: 5+3+20+28+8+3+5+89+2=163 (4分)

2) SCAN 由题意,磁头正向磁道号增加的方向移动,读写臂移动的顺序为:

147, 150, 175, 177, 130, 102, 94, 91, 86 (2分)

跨磁道数: 5+3+25+2+47+28+8+3+5=126 (4分)

六、时间片轮转(5分,每个周转时间1分)

作业号	执行时间	优先权	完成时间	周转时间
1	8	3	17	17
2	1	1	2	1
3	2	3	8	6
4	1	4	5	2
5	5	2	16	12

非抢占优先级调度(5分,每个周转时间1分)

作业号	执行时间	优先权	完成时间	周转时间
1	8	3	8	8
2	1	1	9	8
3	2	3	16	14
4	1	4	17	14
5	5	2	14	10

七、为防止死锁的发生,工作台中车架的数量不可超过 N-2, 车轮的数量不可超过 N-1, 这些限制可以用两个信号灯来表达。

semaphore s1=N-2; semaphore s2=N-1; $(2 \frac{1}{2})$

其余信号量: frame=0 为车架数量; wheel=0 为车轮数量; empty=N 为工作台上的空位($\frac{2}{9}$) 不含死锁的解法如下:

```
工人 1活动: (3分)
```

do {

加工1个车架;

P(s1); P(empty);

车架放入工作台中; V(frame);

} while (1)

工人 2活动: (3分)

do {

加工1个车轮;

P(s2);

P(empty);

车轮放入工作台中; V(wheel);

} while (1)

工人 3 活动: (6分)

do {

P(frame);

从工作台中取1车架;

V(empty); V(s1);

P(wheel); P(wheel);

从工作台中取2车轮;

V(empty); V(empty);

V(s2); V(s2);

组装为1台车;

} while (1)

2008《操作系统》考试试卷(A)

	、选择题(若有多个符合,选最好的一个,每空1分,共20分)
1.	在操作系统中,并发性是指若干事件 发生。
	A. 在同一时刻 B. 一定在不同时刻
	C. 依次在不同时间间隔内 D. 在某一时间间隔内
2.	分时系统中为了使多个用户能同时与系统交互,关键的问题是。
	A. 计算机具有足够快的 CPU B. 及时接收和处理多个用户的输入
	C. 内外存间的信息交换足够快 D. 短时间内所有用户程序都能运行
3.	下列进程状态变化中, 变化是不可能发生的。
	A. 运行→就绪 B. 运行→等待
	C. 等待→运行 D. 等待→就绪
4.	一个进程包含多个线程,下面那一项不是线程独立拥有的资源。
	A. 地址空间 B. 线程控制块 C. 运行栈 D. 执行状态
5.	P、V 操作是 。
	A. 两条低级进程通信原语 B. 两组不同的机器指令
	C. 两条系统调用命令 D. 两条高级进程通信原语
6.	下述哪个选项不是管程的组成部分。
	A. 局部于管程的共享数据结构
	B. 对管程内数据结构进行操作的一组过程
	C. 管程外过程调用管程内数据结构的说明
	D. 对局部于管程的数据结构设置初值的语句
7.	设 m 为同类资源数, n 为系统中并发进程数。当 n 个进程共享 m 个互斥资源时,每个进程的
	最大需求是 w,则下列情况会出现死锁的是。
	A. m=2, n=1, w=2 B. m=2, n=2, w=1
	C. m=4, n=3, w=2 D. m=4, n=2, w=3
8.	下列调度算法中,不是作业调度的算法有。
	A. 先来先服务 B. 时间片轮转
	C. 优先权 D. 响应比高者优先
9.	动态重定位是在作业的 中进行的。
	A. 编译过程
10	. 外部碎片出现在 。
X	A. 固定分区分配 B. 分页存储管理
/ /	C. 动态分区分配 D. 段页式存储管理
	. 实现虚拟存储器的目的是。
	A. 实现存储保护 B. 实现地址映射
	C. 扩充辅存容量 D. 扩充主存容量 T. 不不得的 2. 不不用的 2. 不不知的 2. 不不不知的 2. 不不不不知的 2. 不不不知的 2. 不不不不知的 2. 不不不不知的 2. 不不不知的 2. 不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
	2. 在请求分页系统中,页面置换算法会产生异常现象。
	A.先进先出 B.最近最久未使用 C.最佳 D.页面缓冲
	. 按 可以将设备分为字符设备和块设备。
	A. 从属关系 B. 操作特性 C. 共享属性 D. 信息交换单位
	. 下述数据结构中,不是设备管理的数据结构。
	A. FAT B. DCT C. SDT D. CHCT TAPABER 答法可能是对其他进程中从加速现在
15	. 下述 磁盘调度算法可能导致某些进程发生饥饿现象。

A. 先来先服务 B. 最短寻道时间优先 C. 扫描 D. 循环扫描 16. 若利用 10 行 20 列的位示图来标志盘块的分配现状,盘块号 143 对应的位示图的行列号为 。(注意行、列号均从 0 开始,盘块号也从 0 开始) A. 7 行 2 列 B. 7 行 3 列 C. 7 行 4 列 D. 7 行 5 列 17. 存放在磁盘上的文件 。 A. 既可随机访问,又可顺序访问 B. 只能随机访问 C. 只能顺序访问 D. 不能随机访问
18. 操作系统提供给程序员的接口是。 A. 键盘命令 B. 系统调用 C. 汇编指令 D. 标准函数 19. 银行家算法在解决死锁问题中是用于。
A. 预防死锁 B. 避免死锁 C. 检测死锁 D. 解除死锁 20. 动态分区分配中,回收空闲区时,造成空闲区数目减 1 的情况是。 A. 上邻接空闲区 B. 下邻接空闲区 C. 上下邻接空闲区 D. 不邻接空闲区
二、填空题(每空 1 分,共 20 分) 1. 进程的特征是: 动态性、并发性、独立性、、。 2. 程序顺序执行的特征有: 顺序性、、。 3. 进程的高级通信方式有:、、。 4. 按层次可以将处理机调度分为:、、。 5. 动态分区分配算法有: 首次适应算法、、。 6. 段页式系统中,要想访问信息需要次访问主存,其中第二访问。 7. 根据系统设置的缓冲个数,可以将缓冲技术分为: 单缓冲、、、。 8. 文件的逻辑结构分为:。
三. 判断正误,若错误请改正(每小题 2 分,共 10 分) 1. 用户程序执行时机器处于核心态。 2. 互斥使用及循环等待是死锁产生的原因。 3. 虚存系统中频繁的页面置换现象称为抖动。 4. 通道分为与 CPU 的接口、与设备的接口以及 I/0 处理逻辑三种类型。 5. FAT 格式的文件系统中,外存分配采用的是索引分配方式。

四、问答题(每小题5分,共10分)

- 1. 什么是操作系统? 操作系统包含哪几类资源管理功能?
- 2. 什么是设备独立性? 常见的输入/输出控制方式有哪几种?

五、设有四道作业,它们的到达时间和计算时间如下表所示:

作业	到达时间	计算时间
1	8:00	70 分钟
2	8:20	40 分钟
3	9:00	10 分钟
4	9:10	30 分钟

若这四道作业在一台处理机上按单道方式运行,(1)计算采用先来先服务调度算法时,作业的平均周转时间和平均带权周转时间。(2)计算采用短作业优先调度算法时,作业的平均周转时间和平均带权周转时间。(10分)

六、假定系统中有五个进程 P0、P1、P2、P3、P4 和三种类型的资源 R1、R2、R3, 在 T0 时刻的资源分配情况如下表所示:

资源情况	Max		Allocation		Available		able		
进程	R1	R2	R3	R1	R2	R3	R1	R2	R3
P0	7	7	3	0	2	0	3	3	1
P1	3	3	2	2	1	0			
P2	9	1	2	3	0	2			
Р3	2	3	3	2	1	2		- /	
P4	4	3	4	0	1	2	6	<u> </u>	

试问: T0 时刻是否安全? 若 P2 发出请求向量 Request₂ (4, 1, 0),系统能否将资源分配给它? (要求写出安全性检测过程, 10 分)

七、有一请求分页存储管理系统,页面大小为每页 100 字节。有一个 50 × 50 的整型数组按列连续存放,每个整数占两个字节,将数组初始化为 0 的程序描述如下:

```
int a[50][50];
int i, j;
for (i=0; i<=49; i++)
  for (j=0; j<=49; j++)
   a[i][j] =0;</pre>
```

若在程序执行时内存中只有一个存储块用来存放数组信息,试问该程序执行时产生多少次缺页中断? (10分)

八、多个进程共享一个文件,其中只读文件的称为读者,只写文件的称为写者。读者可以同时读,但写者只能独立写。试(1)用 P、V 操作写出其同步算法。(2)修改上述的同步算法,使得它对写者优先,即一旦有写者到达,后续的读者必须等待。(10分)

操作系统 2008A 参考答案

一、选择题(每小题1分,共20分)

1.D 2. B 3.C 4.A 5. A 6. C 7.D 8.B 9.D 10.C 11..D 12.A 13.D 14.A 15.B 16.B 17.A 18.B 19.B 20.C

二、填空题(每空1分,共20分)

1.制约性(异步性)、结构性

- 2. 封闭性、可再现性
- 3.共享存储器、消息系统、管道(共享文件) 4.作业调度(高级调度、长程调度、宏观调度)、中级调度(交换调度、中程调度)、进程调度(低级调度、短程调度、微观调度)
- 5.循环首次适应算法、最佳适应算法、最坏适应算法
- 6. 3、页表

7.双缓冲、循环缓冲、缓冲池

- 8.记录式文件、流式文件
- 三、判断改错(每小题2分,若错误改正1分)
- 1.错,用户程序执行时机器处于用户态。

平均带权周转时间 W=1.895 2.5 分

- 2.错, 互斥使用及循环等待是死锁产生的必要条件
- 3.对。
- 4.错,设备控制器由与 CPU 的接口、与设备的接口以及 I/O 处理逻辑三部分组成。
- 5.错,FAT格式的文件系统中,外存分配采用的是链接分配方式。

四、问答题

1. 操作系统是一组控制和管理计算机软硬件资源、合理地组织计算机工作流程、以及方便用户的程序的集合 1分

操作系统有处理机管理、存储器管理、设备管理及文件管理四大资源管理功能。 4分2.设备独立性是指程序中所使用的设备与具体物理设备无关。 1分

I/O 控制方式有:程序直接控制方式、中断控制方式、DMA 控制方式、通道控制方式。 4分

五、先来先服务

作业	提交时间	运行时间	开始时间	完成时间	周转时间	带权周转时间
1	8:00	70	8:00	9:10	70	1
2_/	8:20	40	9:10	9:50	90	2.25
3	9:00	10	9:50	10:00	60	6
4	9:10	30	10:00	10:30	80	2.67
平均周	 转时间	2.5 分				
平均带	持权周转时间	W=2.98	2.5 分			
短作业优						
作业	提交时间	运行时间	开始时间	完成时间	周转时间	带权周转时间
1	8:00	70	8:00	9:10	70	1
2	8:20	40	9:50	10:30	130	3.25
3	9:00	10	9:10	9:20	20	2
4	9:10	30	9:20	9:50	40	1.33
平均周	引转时间 T=65	2.5 分				

满绩小铺QQ: 1433397577, 搜集整理不易,资料自用就好,谢谢!

六、状态安全结论(3分)、安全序列(2分)、检测过程(2分)、无法分配(2分)原因(1分)

根据题设条件可得 need 矩阵如下:

利用安全性算法对此时刻的资源分配情况进行分析,可得到如下表所示的安全性检测情况。 从中可以看出,存在安全序列 P3、P1、P0、P2、P4,故该系统状态安全。

进程	Work	Need	Allocation	Work+Allocation	Finish
Р3	3 3 1	0 2 1	2 1 2	5 4 3	true
P1	5 4 3	1 2 2	2 1 0	7 5 3	true
P0	7 5 3	7 5 3	0 2 0	7 7 3	true
P2	7 7 3	6 1 0	3 0 2	10 7 5	true
P4	10 7 5	4 2 2	0 1 2	10 8 7	true

若 P2 发出请求向量 Request₂ (3, 1, 1):

因 Request₂ (4, 1, 0)小于 Need₂(6,1,0),

Request₂ (4, 1, 0)不小于 Available(3,3,1),系统没有足够的资源满足 P2 的申请要求,因此系统暂时无法将资源分配给 P2。

七、每个整数占2字节,每页大小100字节,1列有50个整数,所以1列刚好放在1页中由于数组初始化程序是按行进行的,而数组是按列存放,因此每次缺页中断调进一页后,位于该页内的1个数组元素赋予0值,然后再调入下一页,所以涉及的页面走向为m, m+1, ···, m+49, 故内层循环缺页次数为50次

外层循环50次, 故缺页共2500次

```
八、(1) semaphore mutex=1;
                                   4分
   semaphore write=1;
   int count=0;
   main()
       cobegin
          reader();
          writer();
       coend }
   reader()
     while(true)
       { p(mutex);
          if(count==0) p(write);
          count ++;
          v(mutex);
          读文件;
          p(mutex);
          count -- ;
```

```
if (count==0) v(write);
      v(mutex); } }
writer()
{ while(true)
   { p(write);
      写文件;
      v(write); }
(2) 6分:
semaphore mutex=1;
semaphore write=1;
semaphore s=1;
int count=0;
main()
    cobegin
      reader();
      writer();
   coend }
reader()
{ while(true)
   { p(s);
      p(mutex);
      if(count==0) p(write);
      count ++;
      v(mutex);
      v(s);
      读文件;
      p(mutex);
      count -- ;
      if(count==0) v(write);
      v(mutex);
writer()
    while(true)
   { p(s);
      p(write);
      写文件;
      v(write);
      v(s); }
```

2009《操作系统》考试试卷 A

_	. 单项选择题(每项1分,共20分)
	操作系统的基本类型主要有
	A、批处理操作系统、分时操作系统和多任务系统
	B、实时操作系统、批处理操作系统和分时操作系统
	C、单用户系统、多用户系统和批处理操作系统
	D、实时操作系统、分时操作系统和多用户系统
2.	在单 CPU、多道程序环境下的各道程序在宏观上是并行,在微观上则是。
	A、并行 B、并发 C、串行 D、串发
3.	进程从执行状态到阻塞状态可能是由于。
•	A、进程调度程序的调度 B、现运行进程的时间片用完
	C、现运行进程执行了 P 操作 D、现运行进程执行了 V 操作
4.	下述选项中体现原语特点的是。
	A、并发性 B、共享性 C、结构性 D、不可分割性
5.	对信号量 X 执行 P 操作中,若 则进程进入等待状态。
	A, $X-1<0$ B, $X-1<=0$ C, $X-1>0$ D, $X-1>=0$
6.	某通信方式通过共享存储区来实现,其属于。
	A、消息通信 B、低级通信 C、管道通信 D、高级通信
7.	所有操作系统中都必须配置的调度是。
	A、作业调度 B、进程调度 C、交换调度 D、中级调度
8.	有序资源分配方法属于方法。
	A、死锁预防 B、死锁避免 C、死锁检测 D、死锁解除
9.	计算机系统中设置联想存储器的目的是。
	A、增加系统可控内存空间 B、存放 OS 内核
	C、提高地址变换速度 D、提高文件访问速度
10	. 下述存储管理方法中, 有外部碎片的是 。
	A、分页存储管理 B、固定分区存储管理 C、分段存储管理 D、段页式存储管理系统
	C、分段存储管理 D、段页式存储管理系统
11	. 会产生 Be lady 异常现象的页面置换算法是。
	A、最佳页面置换算法 B、先进先出页面置换算法
	C、最近最久未使用置换算法 D、最少使用页面置换算法
12	. 虚拟存储器的实现基础是程序执行的理论。
	A、全局性 B、动态性 C、虚拟性 D、局部性
13	. 下述 I/O 控制方式中,需要 CPU 干预最少的方式是。
Y	A、程序直接控制方式 B、中断控制方式
	A、程序直接控制方式 B、中断控制方式 C、DMA 控制方式 D、通道控制方式
	. 设备的打开、关闭、读、写等操作是由 完成的。
	A、设备驱动程序 B、编译程序 C、设备分配程序 D、用户程序
15	. 在假脱机 I/O 技术中,对打印机的操作实际上是对磁盘存储的访问。那么,用
_ 3	以替代打印机的部分通常称作。
	A、共享设备 B、独占设备 C、虚拟设备 D、物理设备
16	. 按 分类,可以将设备分为字符设备和块设备。
	A、从属关系 B、操作特性 C、共享属性 D、信息交换单位

17.	相同名字的文件应允许在	三一个系统中存在	,解决该问题的	方法是。
	A、采用索引文件	B、通过文	7件共享	
	C、采用多级目录管理	D、利用文	工件分级安全	
18.	通过计算机网络,可以共	 字世界上任何机	器中的文件,所	f用到的方法是。
	A、基于索引节点实现文件	井享 B、暑	基于符号链接实:	现文件共享
	C、绕弯路法	D、基	基本文件目录表:	实现文件共享
19.	文件按逻辑结构可以划分			
	A、记录式文件和流式文件		系统文件和用户	文件
	C、源文件和目标文件		链接文件和索引	
20.	在用户使用完文件后必须			0
	A、把文件信息从辅存读到		,,,	
	B、把文件当前的控制管理	* **	辅存	
	C、把位示图的信息从主有	***	110 13	
	D、把超级块的当前信息从	• • • • • • • • • • • • • • • • • • • •		
		✓ 丁.11 → 1.11(1)		
_	、填空题(每空1分,共20	分)		
	操作系统的主要功能包括		和和	
	从结构上看,进程由			
	多个相互合作的进程在一		17/	文种相互制约关系称为
υ.	; 当一个进程正在访			
	——; 与 一处程正征》 待该进程用完资源释放后。			
1	当一个进程正在处理机上:			
4.	机,则立即暂停正在执行			
	程调度的方式称为			
5	某段表的内容如下:	,力作进往响应		
υ.		Tru 2411		7
	段号	段首址	段长度	
	0	200	150	
	1	400	200	
	2	750	100	
	3	900	300	
	一逻辑地址为(3, 154), i	亥地址是否合法:	,它对应的	
	(括号内的第一个元素为	段号,第二个元素	(大段内地址)	
6.	根据碎片出现的位置可以	将其分为:	和。	
7.	与设备分配相关的数据结	构有设备控制表、	\	和。
8.	常见的文件存储空间分配	方法有、_	和	0
1				
三、	、判断题(每题2分,如果	具有错,请改正,	共 10 分)	
1.	设备独立性是指用户程序中	中使用的设备与具	:体物理设备无法	ŧ.
2.	最佳适应算法要求空闲区技	安地址递增的次序	排列。	
3.	进程推进顺序非法是死锁产	产生的必要条件之	· · ·	
4.	程序顺序执行时具有: 顺序	字性、封闭性、可	再现性。	
5.	动态重定位是在程序装入口	内存时完成地址变	换。	

四、在某个计算机系统中,磁头当前在15柱面,移臂方向为从小到大。磁盘访问请求序列为: 15、20、9、16、24、13、29。请给出最短寻道时间优先算法和电梯调度算法的柱面移动数。(要求写出简单的计算过程,12分)

五、有 5 个任务 A, B, C, D, E, 它们的到达时间依次是 1, 3, 4, 5, 7, 预计它们的运行时间为 8, 6, 3, 5, 10min。其优先级分别为 3, 5, 2, 4 和 1, 这里 5 为最高优先级。对于下列每一种调度算法,计算其平均周转时间。(要求写出简单的计算过程, 12 分)(1)先来先服务算法。

(2) 抢占式的优先级调度算法。

六、现有五个进程 A, B, C, D, E 共享 R1, R2, R3, R4 这四类资源, 进程对资源的 需求量和目前分配情况如下表所示, 若系统还剩余资源数分别为 R1 类 2 个, R2 类 6 个, R3 类 2 个和 R4 类 1 个, 请按银行家算法回答下列问题(要求写出安全性检测过程, 10 分): (1)目前系统是否处于安全状态?

(2) 现在如果进程 D 提出申请(2,6,0,1),系统是否能为它分配资源?

2#10	已占资源数				最大需求数			
进程	R1	R2	R3	R4	R1	R2	R3	R4
A	3	6	2	0	5	6	2	0
В	1	0	2	0	1	0	2	0
C	1	0	4	0	5	6	6	0
D	0	0	0	1	5	7	0	1
E	5	3	4	1	5	3	6	2

七、下图给出了 5 个进程合作完成某一任务的前趋图,试用 P、V 操作描述它。(10分)

八、一座最多只能承受两个人的小桥横跨南北两岸,任意时刻同一方向只允许一人过桥,南侧桥段和北侧桥桥段较窄只能通过一人,桥中央一处宽敞,允许两个人通过或歇息。试用信号量和 P、V 原语写出南、北两岸过桥的同步算法。(6分)

2009《操作系统》试卷 A 参考答案

- 一. 单项选择题(20分,每题1分)
- 2. C 3. C 4. D 6. D 1. B 5. A 7. B
- 9. C 10. C 11. B 12. D 13. D 14. A 15. C
- 16. D 17. C 18. B 19. A 20. B
- 二、填空题(20分,每空1分)
- 1. 存储器管理、设备管理、文件管理 2. 程序、数据、进程控制块
- 3. 进程同步、互斥
- 5. 合法、1054
- 4. 抢占方式, 非抢占方式
- 6. 内部碎片、外部碎片
- 7. 控制器控制表、系统设备表、通道控制表 8. 连续分配、链接分配、索引分配

- 三、判断题(10分,各2分)
- 对、错、错、对、错
- 四、 按照最短寻道时间优先算法, 柱面的访问次序是:

最短寻道时间优先算法的柱面移动数为: 1+3+4+11+4+5=28。(6分) 按照电梯调度算法,柱面的访问次序是:

15, 16, 20, 24, 29, 13, 9

电梯调度算法的柱面移动数为: 1+4+4+5+16+4=34。(6分)

五、

(1) 采用先来先服务调度算法时,5个任务在系统中完成时间及周转时间如下表 所示。

作业	到达时间	运行时间	开始时间	完成时间	周转时间
A	21	8	1	9	8
В	3	6	9	15	12
C	4	3	15	18	14
D /	5	5	18	23	18
E	7	10	23	33	26

根据表中的计算结果,5个进程的平均周转时间T为:

$$T=(8+12+14+18+26)/5=15.6min$$
 (6 $\%$)

(2) 采用优先级调度算法时,5个任务在系统中的完成时间及周转时间如下表所 示。

作业	到达时间	运行时间	优先级	开始时间	完成时间	周转时间
A	1	8	3	1	20	19
В	3	6	5	3	9	6
С	4	3	2	20	23	19
D	5	5	4	9	14	9

Е	7	10	1	23	33	26

它们的平均周转时间为:

$$T=(19+6+19+9+26)/5=15.8min$$
 6分

六、状态安全结论(3 分)、安全序列(2 分)、检测过程(2 分)、无法分配(2 分)原因(1 分)

(1)利用安全性算法对此时刻的资源分配情况进行分析,可得到如下表所示的安全性检测情况。从中可以看出,存在安全序列 A、B、C、D、E,故该系统状态安全。

资源情况 进程	Work	Need	Allocation	Work+Allocation	Finish
A	2 6 2 1	2 0 0 0	3 6 2 0	5 12 4 1	true
В	5 12 4 1	0 0 0 0	1 0 2 0	6 12 6 1	true
С	6 12 6 1	4 6 2 0	1 0 4 0	7 12 10 1	true
D	7 12 10 1	5 7 0 0	0 0 0 1	7 12 10 2	true
Е	7 12 10 2	0 0 2 1	5 3 4 1	12 15 14 3	true

- (2) 进程 D 提出申请(2,6,0,1),按银行家算法进行检查:
- Request_D $(2, 6, 0, 1) \leq \text{Need}_{D} (5, 7, 0, 0)$
- 故申请不合法, 此时系统不能将资源分配给 D。

```
七、10分
semaphore f1=f2=f3=f4=0; 1分
  main()
   { cobegin
             S2(); S3(); S4(); S5(); 1分
      S1();
     coend }
                                  下面共8分
   S1()
     执行代码;
      v(f1);
      v(f1);
   }
   S2()
      执行代码;
      v(f2);
```

```
}
    S3()
         p(f1);
         执行代码;
         v(f3);
    }
    S4()
         p(f1);
         p(f2);
         执行代码;
         v(f4);
    S5()
         p(f3);
         p(f4);
         执行代码;
   八、同步描述如下: 6分
解:
Semaphore load=2; //定义初值 1 分
Semaphore north=1;
Semaphore south=1;
main()
    { cobegin
        tosouth();
                       tonorth();
                                       1分
       coend
tosouth()
         2分
  P(load);
  P(north);
  走过桥北半段到桥中央;
  V(north);
  P(south)
  走过桥南半段;
  V(south);
  V(load);
}
                2分
tonorth()
{
  P(load);
  P(south);
```

```
走过桥南半段到桥中央;
  V(south);
  P(north)
  走过桥北半段;
  V(north);
  V(load);
}
```