Pisa Data Exploration

June 3, 2020

1 Pisa Data Exploration

1.1 by Samir Attyani

1.2 Preliminary Wrangling

PISA program overview

The Programme for International Student Assessment (PISA) is an international assessment of the skills and knowledge of 15-year-old students; in addition, it provides information about a range of factors that contribute to the success of students, schools, and education systems. PISA is a collaborative effort among member countries of the Organisation for Economic Co-operation and Development (OECD).

PISA covers three domains — reading, mathematics, and science. Although each assessment includes questions from all three domains, the focus shifts. In 2000, the emphasis was on reading, with mathematics and science as minor domains. In 2003, mathematics was the major domain, and in 2006, it was science. In 2009, the focus was again reading, and in 2012, mathematics. In the assessment of 2015, the focus was science once again. The repetition of the assessments at regular intervals yields timely data that can be compared internationally and over time.

As PISA is an international assessment, it measures skills that are generally recognized as key outcomes of the educational process. Rather than testing on facts, the assessment focuses on young people near the end of compulsory schooling and their ability to use their knowledge and skills to meet real-life challenges.

Participation

International participation in PISA has grown steadily — from 32 countries/economies in 2000 to 41 in 2003, 57 in 2006, 65 in 2009, and 65 in 2012. In the latest PISA cycle, in 2015, there were 72 countries/economies participating. Canada has participated in PISA since its inception, through a partnership among CMEC, Employment and Social Development Canada, and Statistics Canada.

All 10 provinces have participated in each assessment. Approximately 20,000 Canadian students from about 1,000 schools have taken part in each PISA assessment in either English or French. Schools and the students within schools are selected randomly for participation. This large sample size allows results to be reported for each province, as well as for both the French- and English-language school systems in Nova Scotia, New Brunswick, Quebec, Ontario, Manitoba, Alberta, and British Columbia. Currently, Yukon, Northwest Territories, and Nunavut do not participate in PISA, nor do Indigenous students from band-operated schools.

The results are valid only on the pan-Canadian and provincial levels. No results are attributed to individual schools or students. PISA does not assess individual student achievement.

The assessment

In addition to two hours of direct assessment of reading, mathematics, and science, students in Canada complete a background questionnaire about themselves and their homes, about information and communication technology, and about their school experiences, work activities, and relationships with others. School principals complete a separate questionnaire.

In order to determine the content of the assessment, experts from OECD Member countries developed definitions for each domain, which guided the preparation of the testing instruments:

Reading literacy: The capacity to understand, use, and reflect on written texts in order to achieve one's goals and potential, develop knowledge, and participate in society. Mathematics literacy: The capacity to identify, understand, and engage in mathematics, and make well-founded judgments about the role that mathematics plays in the private, occupational, and social lives of constructive, concerned, and reflective citizens. Scientific literacy: The capacity to use scientific knowledge, identify questions, and draw evidence-based conclusions in order to understand and help make decisions about the natural world and the changes made to it through human activity.

One other domain was included in the PISA 2015 cycle, financial literacy, which was administered as an option in some countries, including some Canadian provinces. PISA 2015 was completely computerized.

The benefits of PISA

Canada invests significant public resources in the provision of elementary and secondary education, and Canadians are concerned about the quality of education provided by schools. The skills acquired by the end of secondary school are the essential foundation for further learning and for meeting the social and economic challenges of the future. PISA examines the level of achievement of 15-year-olds, providing an indication of the knowledge and skills they have acquired and their preparedness for continuing their studies or entering the workforce.

Results from PISA are valuable to educators, governments, social-policy analysts, and advocacy groups. Comparative information helps in the evaluation of the effectiveness of existing programs and practices, as well as in the understanding of the influences of socioeconomic and other factors on educational success.

PISA results

On an international level, Canada has performed very well in all of the PISA assessments. For example, in the 2018 assessment, Canadian 15-year-olds placed well above the OECD average and were among the top performers in reading. Of the 79 countries and economies participating in the assessment, only three—Beijing, Shanghai, Jiangsu, Zhejiang (B-S-J-Z) (China), Singapore, and Macao (China)—outperformed Canada.

source: https://www.cmec.ca/251/Programme for International Student Assessment (PISA).html

```
[1]: # import all packages and set plots to be embedded inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

```
import seaborn as sb
       %matplotlib inline
           Load in your dataset and describe its properties through the questions below. Try and
           motivate your exploration goals through this section.
  [2]: # failed to read file as utf-8. changed to ISO-8859-1 instead.
       df_pisa=pd.read_csv('pisa2012.csv', encoding = "ISO-8859-1")
      C:\Users\saatt\AppData\Local\Continuum\anaconda3\lib\site-
      packages\IPython\core\interactiveshell.py:3063: DtypeWarning: Columns (15,16,17,
      21,22,23,24,25,26,30,31,36,37,45,65,123,155,156,157,158,159,160,161,162,163,164,
      165, 166, 167, 168, 169, 170, 171, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296,
      297,298,299,300,301,302,303,307,308,309,310,311,312,313,314,315,316,317,318,319,
      320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,
      340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,376,377,
      378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,
      398,399,400,401,402,403,475) have mixed types. Specify dtype option on import or
      set low_memory=False.
        interactivity=interactivity, compiler=compiler, result=result)
[280]: # read dataset dictionary
       df dict = pd.read csv('pisadict2012.csv',encoding = "ISO-8859-1")
[281]: df_pisa.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 485490 entries, 0 to 485489
      Columns: 636 entries, Unnamed: 0 to VER_STU
      dtypes: float64(250), int64(18), object(368)
      memory usage: 2.3+ GB
[283]: df dict.head()
                                              Country code 3-character
[283]:
               CNT
          SUBNATIO
                    Adjudicated sub-region code 7-digit code (3-di...
       1
           STRATUM
                    Stratum ID 7-character (cnt + region ID + orig...
       2
              OECD
                                                           OECD country
       3
                NC
                                          National Centre 6-digit Code
                    School ID 7-digit (region ID + stratum ID + 3-...
          SCHOOLID
  [6]: df_pisa.shape, df_dict.shape
  [6]: ((485490, 636), (635, 3))
```

[7]: df_pisa['ST04Q01'].value_counts()

```
[7]: Female
                245064
      Male
                240426
      Name: ST04Q01, dtype: int64
 [8]: # Age counts
      df_pisa['AGE'].value_counts()
 [8]: 15.58
               42762
      15.67
               42353
      15.75
               41664
      15.83
               41402
      15.92
               41084
      16.00
               41049
      15.42
               40437
      15.50
               40291
      16.08
               39313
      16.17
               38356
      15.33
               28354
      16.25
               26139
      15.25
               11986
      16.33
               10183
      15.17
                    1
      Name: AGE, dtype: int64
 [9]: df_pisa['CNT'].value_counts()
 [9]: Mexico
                                   33806
      Italy
                                   31073
      Spain
                                   25313
      Canada
                                   21544
      Brazil
                                   19204
      Florida (USA)
                                    1896
      Perm(Russian Federation)
                                    1761
      Massachusetts (USA)
                                    1723
      Connecticut (USA)
                                    1697
      Liechtenstein
                                     293
      Name: CNT, Length: 68, dtype: int64
[10]: # Unique countries
      df_pisa['CNT'].nunique()
[10]: 68
[11]: df_pisa.dtypes
```

```
[11]: Unnamed: 0
                       int64
      CNT
                      object
      SUBNATIO
                       int64
      STRATUM
                      object
      OECD
                      object
      W_FSTR80
                     float64
      WVARSTRR
                       int64
                       int64
      VAR_UNIT
      SENWGT_STU
                     float64
      VER_STU
                      object
      Length: 636, dtype: object
[12]:
      df_pisa.head()
[12]:
         Unnamed: 0
                                                                         SCHOOLID
                          CNT
                                SUBNATIO
                                          STRATUM
                                                         OECD
                                                                    NC
      0
                      Albania
                                   00008
                                          ALB0006
                                                    Non-OECD
                                                               Albania
                   2
                      Albania
                                   80000
                                                                                1
      1
                                          ALB0006
                                                    Non-OECD
                                                               Albania
      2
                   3
                      Albania
                                   00008
                                           ALB0006
                                                    Non-OECD
                                                               Albania
                                                                                1
      3
                   4
                                   80000
                                                                                1
                      Albania
                                          ALB0006
                                                    Non-OECD
                                                               Albania
      4
                      Albania
                                   80000
                                          ALB0006
                                                    Non-OECD
                                                               Albania
                                                                                1
         STIDSTD
                   ST01Q01
                             ST02Q01
                                         W_FSTR75
                                                    W_FSTR76 W_FSTR77 W_FSTR78 \
      0
                                 1.0
                                                               13.1249
                1
                        10
                                           13.7954
                                                     13.9235
                                                                         13.1249
                2
      1
                        10
                                 1.0
                                           13.7954
                                                     13.9235
                                                               13.1249
                                                                         13.1249
      2
                3
                                 1.0
                         9
                                           12.7307
                                                     12.7307
                                                               12.7307
                                                                         12.7307
      3
                4
                         9
                                 1.0 ...
                                           12.7307
                                                     12.7307
                                                               12.7307
                                                                         12.7307
      4
                5
                         9
                                 1.0
                                           12.7307
                                                     12.7307
                                                               12.7307
                                                                         12.7307
         W_FSTR79 W_FSTR80 WVARSTRR VAR_UNIT SENWGT_STU
                                                             VER_STU
      0
           4.3389
                    13.0829
                                              1
                                                             22NOV13
                                   19
                                                    0.2098
      1
           4.3389
                    13.0829
                                   19
                                              1
                                                    0.2098
                                                             22NOV13
      2
           4.2436
                                   19
                                              1
                    12.7307
                                                    0.1999
                                                             22NOV13
      3
           4.2436
                    12.7307
                                   19
                                              1
                                                    0.1999
                                                             22NOV13
           4.2436
                    12.7307
                                   19
                                              1
                                                    0.1999
                                                             22NOV13
      [5 rows x 636 columns]
[14]: df_pisa.NC.value_counts()
[14]: Mexico
                                     33806
      Italy
                                     31073
      Spain
                                     25313
      Canada
                                     21544
      Brazil
                                     19204
      New Zealand
                                      4291
```

Iceland 3508
United Kingdom (Scotland) 2945
Perm (Russian Federation) 1761
Liechtenstein 293
Name: NC, Length: 66, dtype: int64

[15]: df_pisa.info(verbose=True, null_counts=True)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 485490 entries, 0 to 485489
Data columns (total 636 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	485490 non-null	int64
1	CNT	485490 non-null	object
2	SUBNATIO	485490 non-null	int64
3	STRATUM	485490 non-null	object
4	OECD	485490 non-null	object
5	NC	485490 non-null	object
6	SCHOOLID	485490 non-null	int64
7	STIDSTD	485490 non-null	int64
8	ST01Q01	485490 non-null	int64
9	ST02Q01	485438 non-null	float64
10	ST03Q01	485490 non-null	int64
11	ST03Q02	485490 non-null	int64
12	ST04Q01	485490 non-null	object
13	ST05Q01	476166 non-null	object
14	ST06Q01	457994 non-null	float64
15	ST07Q01	436690 non-null	object
16	ST07Q02	431278 non-null	object
17	ST07Q03	305687 non-null	object
18	ST08Q01	479143 non-null	object
19	ST09Q01	479131 non-null	object
20	ST115Q01	479269 non-null	float64
21	ST11Q01	460559 non-null	object
22	ST11Q02	441036 non-null	object
23	ST11Q03	400076 non-null	object
24	ST11Q04	390768 non-null	object
25	ST11Q05	348180 non-null	object
26	ST11Q06	337638 non-null	object
27	ST13Q01	457979 non-null	object
28	ST14Q01	390481 non-null	object
29	ST14Q02	407641 non-null	object
30	ST14Q03	382441 non-null	object
31	ST14Q04	304215 non-null	object
32	ST15Q01	467751 non-null	object
33	ST17Q01	443261 non-null	object

34	ST18Q01	371415	non-null	object
35	ST18Q02	387796	non-null	object
36	ST18Q03	362834	non-null	object
37	ST18Q04	292093	non-null	object
38	ST19Q01	451410	non-null	object
39	ST20Q01	476363	non-null	object
40	ST20Q02	472518	non-null	object
41	ST20Q03	469141	non-null	object
42	ST21Q01	32728 r	non-null	float64
43	ST25Q01	465496	non-null	object
44	ST26Q01	473079	non-null	object
45	ST26Q02	469693	non-null	object
46	ST26Q03	472020	non-null	object
47	ST26Q04	473877	non-null	object
48	ST26Q05	463178	non-null	object
49	ST26Q06	473182	non-null	object
50	ST26Q07	465860	non-null	object
51	ST26Q08	467094	non-null	object
52	ST26Q09	467249	non-null	object
53	ST26Q10	471242	non-null	object
54	ST26Q11	463566	non-null	object
55	ST26Q12	474039	non-null	object
56	ST26Q13	469115	non-null	object
57	ST26Q14	474076	non-null	object
58	ST26Q15	485490	non-null	int64
59	ST26Q16	485490	non-null	int64
60	ST26Q17	485490	non-null	int64
61	ST27Q01	477079	non-null	object
62	ST27Q02	476548	non-null	object
63	ST27Q03	473459	non-null	object
64	ST27Q04	472499	non-null	object
65	ST27Q04 ST27Q05	469643	non-null	object
66	ST28Q01	473765	non-null	object
67	· ·	315911		ŭ
68	ST29Q01 ST29Q02	315473	non-null	object
	ST29Q02 ST29Q03			object
69 70	•	314928		object
70	ST29Q04	314737	non-null	object
71	ST29Q05	315231	non-null	object
72	ST29Q06	314746	non-null	object
73	ST29Q07	315066	non-null	object
74	ST29Q08	315232	non-null	object
75	ST35Q01	315860	non-null	object
76	ST35Q02	315315	non-null	object
77	ST35Q03	314873	non-null	object
78	ST35Q04	315160	non-null	object
79	ST35Q05	314843	non-null	object
80	ST35Q06	313389	non-null	object
81	ST37Q01	314644	non-null	object

82	ST37Q02	314624	non-null	object
83	ST37Q03	313883	non-null	object
84	ST37Q04	313416	non-null	object
85	ST37Q05	313970	non-null	object
86	ST37Q06	313678	non-null	object
87	ST37Q07	314070	non-null	object
88	ST37Q08	314112	non-null	object
89	ST42Q01	313855	non-null	object
90	ST42Q02	313502	non-null	object
91	ST42Q03	312176	non-null	object
92	ST42Q04	311980	non-null	object
93	ST42Q05	312624	non-null	object
94	ST42Q06	312327	non-null	object
95	ST42Q07	312583	non-null	object
96	ST42Q08	312456	non-null	object
97	ST42Q09	312223	non-null	object
98	ST42Q10	312853	non-null	object
99	ST43Q01	314971	non-null	object
100	ST43Q02	314182	non-null	object
101	ST43Q03	313494	non-null	object
102	ST43Q04	313420	non-null	object
103	ST43Q05	313228	non-null	object
104	ST43Q06	313470	non-null	object
105	ST44Q01	314119	non-null	object
106	ST44Q03	313405	non-null	object
107	ST44Q04	312645	non-null	object
108	ST44Q05	312996	non-null	object
109	ST44Q07	312970	non-null	object
110	ST44Q08	313374	non-null	object
111	ST46Q01	313898	non-null	object
112	ST46Q02	313567	non-null	object
113	ST46Q03	312994	non-null	object
114	ST46Q04	312997	non-null	object
115	ST46Q05	313043	non-null	object
116	ST46Q06	312900	non-null	object
117	ST46Q07	312854		object
118	ST46Q08	312989	non-null	object
119	ST46Q09	313040	non-null	object
120	ST48Q01	294410	non-null	object
	ST48Q02	289827	non-null	object
122	ST48Q03	298479		object
123		267716	non-null	object
124	·='	287992	non-null	object
	ST49Q01	313495	non-null	object
	ST49Q02	313025		object
	ST49Q03	312168		object
	ST49Q04	312378		object
	ST49Q05	312582		object
	- 4	-	-	J 3

130	ST49Q06	312571	non-null	object
133	1 ST49Q07	312425	non-null	object
132	2 ST49Q09	312752	non-null	object
133	3 ST53Q01	309947	non-null	object
134	1 ST53Q02	309880	non-null	object
135	5 ST53Q03	309272	non-null	object
136	5 ST53Q04	308931	non-null	object
137	7 ST55Q01	307761	non-null	object
138	3 ST55Q02	308171	non-null	object
139	9 ST55Q03	306090	non-null	object
140	ST55Q04	304130	non-null	object
14:	1 ST57Q01	301367	non-null	float64
142		269808	non-null	float64
143		283813	non-null	float64
144		279657	non-null	float64
145		289502	non-null	float64
146		289428	non-null	float64
147	7 ST61Q01	312799	non-null	object
148	3 ST61Q02	312284	non-null	object
149	9 ST61Q03	311616	non-null	object
150	ST61Q04	310304	non-null	object
15:	1 ST61Q05	311698	non-null	object
152	2 ST61Q06	311376	non-null	object
153	3 ST61Q07	311797	non-null	object
154	1 ST61Q08	311498	non-null	object
155	5 ST61Q09	309084	non-null	object
156	ST62Q01	306484	non-null	object
157	7 ST62Q02	307481	non-null	object
158	3 ST62Q03	306602	non-null	object
159	9 ST62Q04	306319	non-null	object
160	ST62Q06	306733	non-null	object
16:	1 ST62Q07	306627	non-null	object
162	2 ST62Q08	306640	non-null	object
163	3 ST62Q09	307479	non-null	object
164	1 ST62Q10	306316	non-null	object
165	5 ST62Q11	305550	non-null	object
166	5 ST62Q12	306327	non-null	object
167	7 ST62Q13	306158	non-null	object
168	3 ST62Q15	306297	non-null	object
169	9 ST62Q16	306406	non-null	object
170	ST62Q17	306784	non-null	object
17:	1 ST62Q19	307729	non-null	object
172	2 ST69Q01	299618	non-null	float64
173	3 ST69Q02	298601	non-null	float64
174	1 ST69Q03	291943	non-null	float64
175	5 ST70Q01	296878	non-null	float64
176	5 ST70Q02	298339	non-null	float64
177	7 ST70Q03	289068	non-null	float64

178	ST71Q01	255665	non-null	float64
179	ST72Q01	294163	non-null	float64
180	ST73Q01	309601	non-null	object
181	ST73Q02	308965	non-null	object
182	ST74Q01	309845	non-null	object
183	ST74Q02	309303	non-null	object
184	ST75Q01	309289	non-null	object
185	ST75Q02	308663	non-null	object
186	ST76Q01	308980	non-null	object
187	ST76Q02	308489	non-null	object
188	ST77Q01	315248	non-null	object
189	ST77Q02	314913	non-null	object
190	ST77Q04	314368	non-null	object
191	ST77Q05	314827	non-null	object
192	ST77Q06	314807	non-null	object
193	ST79Q01	314909	non-null	object
194	ST79Q02	314328	non-null	object
195	ST79Q03	313955	non-null	object
196	ST79Q04	313906	non-null	object
197	ST79Q05	313637	non-null	object
198	ST79Q06	313875	non-null	object
199	ST79Q07	314093	non-null	object
200	ST79Q08	314201	non-null	object
201	ST79Q10	313979	non-null	object
202	ST79Q11	313782	non-null	object
203	ST79Q12	313472	non-null	object
204	ST79Q15	313846	non-null	object
205	ST79Q17	314039	non-null	object
206	ST80Q01	314171	non-null	object
207	ST80Q04	313521	non-null	object
208	ST80Q05	312593	non-null	object
209	ST80Q06	312490	non-null	object
210	ST80Q07	312521	non-null	object
211	ST80Q08	312591	non-null	object
212	ST80Q09	311814	non-null	object
213	ST80Q10	312305	non-null	object
214	ST80Q11	312865	non-null	object
215	ST81Q01	313982	non-null	object
216	ST81Q02	313546	non-null	object
217	ST81Q03	312716	non-null	object
218	ST81Q04	312994	non-null	object
219	ST81Q05	313436	non-null	object
220	ST82Q01	311690	non-null	object
221	ST82Q02	311243	non-null	object
222	ST82Q03	310986	non-null	object
223	ST83Q01	313505	non-null	object
224	ST83Q02	313112	non-null	object
225	ST83Q03	312943	non-null	object

226	ST83Q04	312945	non-null	object
227	ST84Q01	310981	non-null	object
228	ST84Q02	311399	non-null	object
229	ST84Q03	310713	non-null	object
230	ST85Q01	312474	non-null	object
231	ST85Q02	312120	non-null	object
232	ST85Q03	311832	non-null	object
233	ST85Q04	311727	non-null	object
234	ST86Q01	313223	non-null	object
235	ST86Q02	312591	non-null	object
236	ST86Q03	312188	non-null	object
237	ST86Q04	312294	non-null	object
238	ST86Q05	311904	non-null	object
239	ST87Q01	311776	non-null	object
240	ST87Q02	312138	non-null	object
241	ST87Q03	310821	non-null	object
242	ST87Q04	310998	non-null	object
243	ST87Q05	310587	non-null	object
244	ST87Q06	310952	non-null	object
245	ST87Q07	310281	non-null	object
246	ST87Q08	310735	non-null	object
247	ST87Q09	311101	non-null	object
248	ST88Q01	311250	non-null	object
249	ST88Q02	310964	non-null	object
250	ST88Q03	310980	non-null	object
251	ST88Q04	311371	non-null	object
252	ST89Q02	311522	non-null	object
253	ST89Q03	311233	non-null	object
254		311243	non-null	object
255	ST89Q05	311138	non-null	object
256	ST91Q01	311430	non-null	object
257	ST91Q02	310396	non-null	object
258	ST91Q02	309826	non-null	object
259	•	309398	non-null	object
260		309610	non-null	object
261		309656	non-null	object
262		312856	non-null	object
263		312140	non-null	object
264	· ·	311311	non-null	object
265	ST93Q04 ST93Q06	312270	non-null	object
266	ST93Q00 ST93Q07	312259	non-null	object
267	ST94Q05	312404	non-null	object
268	ST94Q05 ST94Q06	312185	non-null	object
				_
269270	ST94Q10	311413 311747	non-null	object object
271	ST94Q14	312001	non-null	_
			non-null	object
272	ST96Q01	311381 311460	non-null	object
273	ST96Q02	211400	non-null	object

274	ST96Q03	311078	non-null	object
275	ST96Q05	311319	non-null	object
276	ST101Q01	311290	non-null	float64
277	ST101Q02	310906	non-null	float64
278	ST101Q03	310321	non-null	float64
279	ST101Q05	310655	non-null	float64
280	ST104Q01	310449	non-null	float64
281	ST104Q04	309969	non-null	float64
282	ST104Q05	310366	non-null	float64
283	ST104Q06	310156	non-null	float64
284	IC01Q01	296977	non-null	object
285	IC01Q02	297068	non-null	object
286	IC01Q03	295602	non-null	object
287	IC01Q04	297305	non-null	object
288	IC01Q05	296587	non-null	object
289	IC01Q06	294773	non-null	object
290	ICO1Q07	296116	non-null	object
291	IC01Q08	297109	non-null	object
292	ICO1QO9	296855	non-null	object
293	IC01Q10	297451	non-null	object
294	IC01Q11	295118	non-null	object
295	IC02Q01	296975	non-null	object
296	IC02Q02	295618	non-null	object
297	IC02Q03	294625	non-null	object
298	IC02Q04	296944	non-null	object
299	IC02Q05	296167	non-null	object
300	IC02Q06	295830	non-null	object
301	IC02Q07	294249	non-null	object
302	IC03Q01	293216	non-null	object
303	IC04Q01	296305	non-null	object
304	IC05Q01	485490	non-null	int64
305	IC06Q01	485490	non-null	int64
306	IC07Q01	485490	non-null	int64
307	IC08Q01	294123	non-null	object
308	IC08Q01	293646	non-null	object
309	IC08Q02	293162	non-null	object
310	IC08Q04	293249	non-null	object
311	IC08Q04	293822	non-null	object
312	IC08Q05	293744		J
313		293570	non-null	object
314	IC08Q07 IC08Q08	293053	non-null	object
	<u>=</u>			object
315	IC08Q09	293496	non-null	object
316	IC08Q11	293431	non-null	object
317	ICO9Q01	292880	non-null	object
318	IC09Q02	292463	non-null	object
319	IC09Q03	291964	non-null	object
320	ICO9Q04	292024	non-null	object
321	IC09Q05	291721	non-null	object

322	IC09Q06	291982	non-null	object
323	IC09Q07	292051	non-null	object
324	IC10Q01	291811	non-null	object
325	IC10Q02	291025	non-null	object
326	IC10Q03	290262	non-null	object
327	IC10Q04	290907	non-null	object
328	IC10Q05	291025	non-null	object
329	IC10Q06	290268	non-null	object
330	IC10Q07	290565	non-null	object
331	IC10Q08	290770	non-null	object
332	IC10Q09	290815	non-null	object
333	IC11Q01	289894	non-null	object
334	IC11Q02	289427	non-null	object
335	IC11Q03	288868	non-null	object
336	IC11Q04	289085	non-null	object
337	IC11Q05	289082	non-null	object
338	IC11Q06	289269	non-null	object
339	IC11Q07	289277	non-null	object
340	IC22Q01	290487	non-null	object
341	IC22Q02	290000	non-null	object
342	IC22Q04	289671	non-null	object
343	IC22Q06	289239	non-null	object
344	IC22Q07	288871	non-null	object
345	IC22Q08	288959	non-null	object
346	EC01Q01	156043	non-null	object
347	EC02Q01	156008	non-null	object
348	EC03Q01	160533	non-null	object
349	EC03Q02	165310	non-null	object
350	EC03Q03	165197	non-null	object
351	EC03Q04	165164	non-null	object
352	EC03Q05	164984	non-null	object
353	EC03Q06	164935	non-null	object
354	EC03Q07	165136	non-null	object
355	EC03Q08	164921	non-null	object
356	EC03Q09	164992	non-null	object
357	EC03Q10	132539	non-null	object
358	ECO4Q01A	169730	non-null	float64
359	EC04Q01B	169765	non-null	float64
360	EC04Q01C	169779	non-null	float64
361	EC04Q02A	169783	non-null	float64
362	EC04Q02B	169784	non-null	float64
363	EC04Q02C	169798	non-null	float64
364	EC04Q03A	169796	non-null	float64
365	EC04Q03B	169786	non-null	float64
366	EC04Q03C	169799	non-null	float64
367	ECO4QO4A	169655	non-null	float64
368	EC04Q04B	169641	non-null	float64
369	EC04Q04C	169656	non-null	float64

370	ECO4Q05A	169716 non-null	float64
371	EC04Q05B	169716 non-null	float64
372	EC04Q05C	169725 non-null	float64
373	ECO4QO6A	169643 non-null	float64
374	EC04Q06B	169640 non-null	float64
375	EC04Q06C	169636 non-null	float64
376	EC05Q01	129658 non-null	object
377	EC06Q01	40345 non-null	object
378	EC07Q01	44012 non-null	object
379	EC07Q02	43219 non-null	object
380	EC07Q03	42277 non-null	object
381	EC07Q04	42832 non-null	object
382	ECO7Q05	42864 non-null	object
383	EC08Q01	43633 non-null	object
384	EC08Q02	43393 non-null	object
385	EC08Q03	43489 non-null	object
386	EC08Q04	43330 non-null	object
387	EC09Q03	118588 non-null	object
388	EC10Q01	43293 non-null	object
389	EC11Q02	118637 non-null	object
390	EC11Q03	118659 non-null	object
391	EC12Q01	42909 non-null	object
392	ST22Q01	40721 non-null	object
393	ST23Q01	13730 non-null	object
394	ST23Q02	13512 non-null	object
395	ST23Q03	13497 non-null	object
396	ST23Q04	13411 non-null	object
397	ST23Q05	13450 non-null	object
398	ST23Q06	13373 non-null	object
399	ST23Q07	13411 non-null	object
400	ST23Q08	13382 non-null	object
401	ST24Q01	13457 non-null	object
402	ST24Q02	13351 non-null	object
	ST24Q03	13281 non-null	object
	CLCUSE1	412337 non-null	object
	CLCUSE301	485490 non-null	int64
	CLCUSE302	485490 non-null	int64
	DEFFORT	485490 non-null	int64
408		485490 non-null	object
	BOOKID	485490 non-null	object
	EASY	485490 non-null	object
411		485374 non-null	float64
	GRADE	484617 non-null	float64
	PROGN	485490 non-null	object
	ANXMAT	314764 non-null	float64
	ATSCHL	312584 non-null	float64
	ATTLNACT	311675 non-null	float64
	BELONG	313399 non-null	float64

418	BFMJ2	416150 non-null	float64
419	BMMJ1	364814 non-null	float64
420	CLSMAN	312708 non-null	float64
421	COBN_F	481825 non-null	object
422	COBN_M	481843 non-null	object
423	COBN_S	481836 non-null	object
424	COGACT	314557 non-null	float64
425	CULTDIST	13380 non-null	float64
426	CULTPOS	471357 non-null	float64
427	DISCLIMA	314777 non-null	float64
428	ENTUSE	295195 non-null	float64
429	ESCS	473648 non-null	float64
430	EXAPPLM	313279 non-null	float64
431	EXPUREM	312602 non-null	float64
432	FAILMAT	314448 non-null	float64
433	FAMCON	310304 non-null	float64
434	FAMCONC	308442 non-null	float64
435	FAMSTRUC	429058 non-null	float64
436	FISCED	452903 non-null	object
437	HEDRES	477772 non-null	float64
438	HERITCUL	13496 non-null	float64
439	HISCED	473091 non-null	object
440	HISEI	450621 non-null	float64
441	HOMEPOS	479807 non-null	float64
442	HOMSCH	293194 non-null	float64
443	HOSTCUL	13598 non-null	float64
444	ICTATTNEG	289744 non-null	float64
445	ICTATTPOS	290490 non-null	float64
446	ICTHOME	298740 non-null	float64
447	ICTRES	477754 non-null	float64
448	ICTSCH	297995 non-null	float64
449	IMMIG	471793 non-null	object
450	INFOCAR	165792 non-null	float64
451	INFOJOB1	83305 non-null	float64
452	INFOJOB2	83305 non-null	float64
453	INSTMOT	316322 non-null	
454	INTMAT	316708 non-null	float64
455	ISCEDD	485438 non-null	object
456	ISCEDL	485438 non-null	object
457	ISCED0	485438 non-null	object
458	LANGCOMM	44094 non-null	float64
459	LANGN	481765 non-null	object
	LANGRPPD	43137 non-null	float64
	LMINS	282866 non-null	float64
	MATBEH	313847 non-null	
	MATHEFF	315948 non-null	float64
	MATINTFC	301360 non-null	float64
465	MATWKETH	314501 non-null	float64

466	MISCED	467085	non-null	object
467		283303	non-null	float64
468	MTSUP	313599	non-null	float64
469	OCOD1	483887	non-null	object
470	OCOD2	482936	non-null	object
471	OPENPS	312766	non-null	float64
472	OUTHOURS	308799	non-null	float64
473	PARED	473091	non-null	float64
474	PERSEV	313172	non-null	float64
475	REPEAT	461117	non-null	object
476	SCMAT	314607	non-null	float64
477	SMINS	270914	non-null	float64
478	STUDREL	313860	non-null	float64
479	SUBNORM	316323	non-null	float64
480	TCHBEHFA	314678	non-null	float64
481	TCHBEHS0	315114	non-null	float64
482	TCHBEHTD	315519	non-null	float64
483	TEACHSUP	316371	non-null	float64
484	TESTLANG	484697	non-null	object
485	TIMEINT	297074	non-null	float64
486	USEMATH	290260	non-null	float64
487	USESCH	292585	non-null	float64
488	WEALTH	479597	non-null	float64
489	ANCATSCHL	306835	non-null	float64
490	ANCATTLNACT	306487	non-null	float64
491	ANCBELONG	307640	non-null	float64
492	ANCCLSMAN	308467	non-null	float64
493	ANCCOGACT	308150	non-null	float64
494	ANCINSTMOT	155221	non-null	float64
495	ANCINTMAT	155280	non-null	float64
496	ANCMATWKETH	153879	non-null	float64
497	ANCMTSUP	308631	non-null	float64
498	ANCSCMAT	306948	non-null	float64
499	ANCSTUDREL	308058	non-null	float64
500	ANCSUBNORM	155233	non-null	float64
	PV1MATH		non-null	float64
502	PV2MATH	485490	non-null	float64
503	PV3MATH	485490	non-null	float64
	PV4MATH	485490	non-null	float64
	PV5MATH	485490	non-null	float64
	PV1MACC	473031	non-null	float64
	PV2MACC	473031	non-null	float64
	PV3MACC	473031	non-null	float64
	PV4MACC	473031		float64
	PV5MACC	473031		float64
	PV1MACQ	473031	non-null	float64
	PV2MACQ	473031	non-null	float64
	PV3MACQ	473031		float64
	·			

514	PV4MACQ	473031	non-null	float64
515	PV5MACQ	473031	non-null	float64
516	PV1MACS	473031	non-null	float64
517	PV2MACS	473031	non-null	float64
518	PV3MACS	473031	non-null	float64
519	PV4MACS	473031	non-null	float64
520	PV5MACS	473031	non-null	float64
521	PV1MACU	473031	non-null	float64
522	PV2MACU	473031	non-null	float64
523	PV3MACU	473031	non-null	float64
524	PV4MACU	473031	non-null	float64
525	PV5MACU	473031	non-null	float64
526	PV1MAPE	471439	non-null	float64
527	PV2MAPE	471439	non-null	float64
528	PV3MAPE	471439	non-null	float64
529	PV4MAPE	471439	non-null	float64
530	PV5MAPE	471439	non-null	float64
531	PV1MAPF	471439	non-null	float64
532	PV2MAPF	471439	non-null	float64
533	PV3MAPF	471439	non-null	float64
534	PV4MAPF	471439	non-null	float64
535	PV5MAPF	471439	non-null	float64
536	PV1MAPI	471439	non-null	float64
537	PV2MAPI	471439	non-null	float64
538	PV3MAPI	471439	non-null	float64
539	PV4MAPI	471439	non-null	float64
540	PV5MAPI	471439	non-null	float64
541	PV1READ	485490	non-null	float64
542	PV2READ	485490	non-null	float64
543	PV3READ	485490	non-null	float64
544	PV4READ	485490	non-null	float64
545	PV5READ	485490	non-null	float64
546	PV1SCIE	485490	non-null	float64
547	PV2SCIE	485490	non-null	float64
548	PV3SCIE	485490	non-null	float64
549	PV4SCIE	485490	non-null	float64
550	PV5SCIE	485490	non-null	float64
551	W_FSTUWT	485490	non-null	float64
552	W_FSTR1	485490	non-null	float64
553	W_FSTR2	485490	non-null	float64
554	W_FSTR3	485490	non-null	float64
555	W_FSTR4	485490	non-null	float64
556	W_FSTR5	485490	non-null	float64
557	W_FSTR6	485490	non-null	float64
558	W_FSTR7	485490	non-null	float64
	W_FSTR8	485490	non-null	float64
	W_FSTR9	485490	non-null	float64
	W_FSTR10	485490	non-null	float64

```
562 W_FSTR11
                  485490 non-null
                                    float64
563 W_FSTR12
                  485490 non-null
                                    float64
564 W_FSTR13
                  485490 non-null
                                    float64
565 W_FSTR14
                  485490 non-null
                                    float64
566 W_FSTR15
                  485490 non-null
                                    float64
567 W_FSTR16
                  485490 non-null
                                    float64
568 W_FSTR17
                  485490 non-null
                                    float64
569 W_FSTR18
                  485490 non-null
                                    float64
570 W_FSTR19
                  485490 non-null
                                    float64
                                    float64
571 W_FSTR20
                  485490 non-null
572 W_FSTR21
                  485490 non-null
                                    float64
573 W_FSTR22
                  485490 non-null
                                    float64
574 W_FSTR23
                  485490 non-null
                                    float64
575 W_FSTR24
                  485490 non-null
                                    float64
576 W_FSTR25
                  485490 non-null
                                    float64
577 W_FSTR26
                  485490 non-null
                                    float64
578 W_FSTR27
                  485490 non-null
                                    float64
579 W_FSTR28
                  485490 non-null
                                    float64
580 W_FSTR29
                  485490 non-null
                                    float64
581 W_FSTR30
                  485490 non-null
                                    float64
582 W_FSTR31
                  485490 non-null
                                    float64
583 W_FSTR32
                  485490 non-null
                                    float64
584 W_FSTR33
                  485490 non-null
                                    float64
585 W_FSTR34
                  485490 non-null
                                    float64
                  485490 non-null
586 W_FSTR35
                                    float64
                  485490 non-null
587 W_FSTR36
                                    float64
588 W_FSTR37
                  485490 non-null
                                    float64
589 W_FSTR38
                  485490 non-null
                                    float64
590 W_FSTR39
                  485490 non-null
                                    float64
591 W_FSTR40
                                    float64
                  485490 non-null
592 W_FSTR41
                  485490 non-null
                                    float64
593 W_FSTR42
                  485490 non-null
                                    float64
594 W_FSTR43
                  485490 non-null
                                    float64
595 W_FSTR44
                  485490 non-null
                                    float64
596 W FSTR45
                  485490 non-null
                                    float64
597 W_FSTR46
                  485490 non-null
                                    float64
598 W_FSTR47
                  485490 non-null
                                    float64
599 W_FSTR48
                  485490 non-null
                                    float64
600 W_FSTR49
                  485490 non-null
                                    float64
                                    float64
                  485490 non-null
601 W_FSTR50
602 W_FSTR51
                  485490 non-null
                                    float64
603 W_FSTR52
                  485490 non-null
                                    float64
604 W_FSTR53
                  485490 non-null
                                    float64
605 W_FSTR54
                  485490 non-null
                                    float64
606 W_FSTR55
                  485490 non-null
                                    float64
607 W_FSTR56
                  485490 non-null
                                    float64
608 W_FSTR57
                  485490 non-null
                                    float64
609 W_FSTR58
                  485490 non-null
                                    float64
```

```
610 W_FSTR59
                  485490 non-null
                                    float64
 611 W_FSTR60
                  485490 non-null
                                    float64
 612 W_FSTR61
                  485490 non-null
                                    float64
 613 W_FSTR62
                  485490 non-null
                                    float64
 614 W FSTR63
                  485490 non-null
                                    float64
 615 W_FSTR64
                   485490 non-null
                                    float64
 616 W FSTR65
                   485490 non-null
                                    float64
 617 W_FSTR66
                   485490 non-null
                                    float64
 618 W_FSTR67
                   485490 non-null
                                    float64
 619 W_FSTR68
                  485490 non-null
                                    float64
 620 W_FSTR69
                  485490 non-null
                                    float64
                  485490 non-null
 621 W_FSTR70
                                    float64
 622 W_FSTR71
                  485490 non-null
                                    float64
 623 W_FSTR72
                  485490 non-null
                                    float64
 624 W_FSTR73
                  485490 non-null
                                    float64
 625 W_FSTR74
                  485490 non-null
                                    float64
 626 W_FSTR75
                  485490 non-null
                                    float64
 627 W_FSTR76
                  485490 non-null
                                    float64
 628 W_FSTR77
                  485490 non-null
                                    float64
 629 W FSTR78
                  485490 non-null
                                    float64
 630 W FSTR79
                  485490 non-null
                                    float64
 631 W FSTR80
                   485490 non-null
                                    float64
                  485490 non-null
 632 WVARSTRR
                                    int64
                  485490 non-null
 633 VAR_UNIT
                                    int64
 634 SENWGT_STU
                  485490 non-null
                                    float64
635 VER_STU
                  485490 non-null
                                    object
dtypes: float64(250), int64(18), object(368)
```

memory usage: 2.3+ GB

1.3 Quick data analysis

- 1. Dataset has 485490 rows, and 635 columns
- 2. this is a huge dataset, we need to filter out columns based on question we need to answer. since the focus of PISA is math, science and reading. we need to get columns with such important details or have impact. such as:
- math/reading/science score
- internet
- mother, father education
- gender
- mother still available and at home
- father still available and at home
- mother highest schooling
- father highest schooling
- Math scores (5 items)
- reading scores (5 items)
- science scores (5 items)
- 3. Ration of females to male also 50/50 (more female)

4. students coming from 68 countries (67 to be exact, USA represented by two records Connecticut & Massachusetts. Liechtenstein with total count of 293, while mixco comes first with total rows of 33806. Wonder why Mixco gets the lion share?

[]:

1.4 Data wrangling

During my analysis i will try answering the following quetions:

- 1. How will student from various countries perform in math, reading, and science cosidering mother, father education, work, availability of internet, and textbox?
- 2. Are there countries that perform better than others?
- 3. compare results based on gender?

```
[95]: #Rename some of the columns to be more intiuitive and useful cols=['CNT','STIDSTD','AGE','ST04Q01','ST11Q01',_\
\( \times'\) ST11Q02','ST13Q01','ST15Q01','ST17Q01','ST19Q01','ST26Q06','ST26Q10','PV1MATH','\)
\( \text{df_pisa_clean} = \text{pd.read_csv('pisa2012.csv', usecols=cols, encoding =_\( \text{\text{\text{od}}} \)
\( \text{\text{\text{\text{\text{csv}'}}} \)
```

C:\Users\saatt\AppData\Local\Continuum\anaconda3\lib\sitepackages\IPython\core\interactiveshell.py:3063: DtypeWarning: Columns (21,22)
have mixed types.Specify dtype option on import or set low_memory=False.
interactivity=interactivity, compiler=compiler, result=result)

```
[96]: df_pisa_clean.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 485490 entries, 0 to 485489
Data columns (total 27 columns):

#	Column	Non-Null Count	Dtype
0	CNT	485490 non-null	object
1	STIDSTD	485490 non-null	int64
2	ST04Q01	485490 non-null	object
3	ST11Q01	460559 non-null	object
4	ST11Q02	441036 non-null	object
5	ST13Q01	457979 non-null	object
6	ST15Q01	467751 non-null	object
7	ST17Q01	443261 non-null	object
8	ST19Q01	451410 non-null	object
9	ST26Q06	473182 non-null	object
10	ST26Q10	471242 non-null	object
11	AGE	485374 non-null	float64
12	PV1MATH	485490 non-null	float64
13	PV2MATH	485490 non-null	float64
14	PV3MATH	485490 non-null	float64
15	PV4MATH	485490 non-null	float64

```
16 PV5MATH 485490 non-null float64
17 PV1READ 485490 non-null float64
18 PV2READ 485490 non-null float64
19 PV3READ 485490 non-null float64
20 PV4READ 485490 non-null float64
21 PV5READ 485490 non-null float64
22 PV1SCIE 485490 non-null float64
23 PV2SCIE 485490 non-null float64
24 PV3SCIE 485490 non-null float64
25 PV4SCIE 485490 non-null float64
26 PV5SCIE 485490 non-null float64
dtypes: float64(16), int64(1), object(10)
memory usage: 100.0+ MB
```

1.5 fill columns with nan values as below

```
[97]: #fillna with 'unknown for nan values of mother at home: ST11Q01 & father at
      →home ST11Q02
      #mother at home with unknown
      df_pisa_clean['ST11Q01'].fillna('unknown', inplace=True)
      # fillna father at home with unknjown
      df_pisa_clean['ST11Q02'].fillna('unknown', inplace=True)
      #mother highest schooling
      df pisa clean['ST13Q01'].fillna('unknown', inplace=True)
      #mother current job with unknjown
      df_pisa_clean['ST15Q01'].fillna('unknown', inplace=True)
      #father highest schooling with unknjown
      df_pisa_clean['ST17Q01'].fillna('unknown', inplace=True)
      #father current job with unknjown
      df_pisa_clean['ST19Q01'].fillna('unknown', inplace=True)
      #internet with unknjown
      df_pisa_clean['ST26Q06'].fillna('unknown', inplace=True)
      #testbook with unknjown
      df_pisa_clean['ST26Q10'].fillna('unknown', inplace=True)
      #age with mean age
      mean=df_pisa_clean['AGE'].mean()
      df_pisa_clean['AGE'].fillna(mean, inplace=True)
```

```
[98]: df_pisa_clean.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 485490 entries, 0 to 485489
Data columns (total 27 columns):
# Column Non-Null Count Dtype
--- 0 CNT 485490 non-null object
1 STIDSTD 485490 non-null int64
2 ST04Q01 485490 non-null object
```

```
ST11Q01 485490 non-null object
      3
      4
         ST11Q02 485490 non-null object
      5
         ST13Q01 485490 non-null object
         ST15Q01 485490 non-null object
      6
      7
         ST17Q01 485490 non-null object
         ST19Q01 485490 non-null object
         ST26Q06 485490 non-null object
      10 ST26Q10 485490 non-null object
                  485490 non-null float64
      11 AGE
      12 PV1MATH 485490 non-null float64
      13 PV2MATH 485490 non-null float64
      14 PV3MATH 485490 non-null float64
      15 PV4MATH 485490 non-null float64
      16 PV5MATH 485490 non-null float64
      17 PV1READ 485490 non-null float64
      18 PV2READ 485490 non-null float64
      19 PV3READ 485490 non-null float64
      20 PV4READ 485490 non-null float64
      21 PV5READ 485490 non-null float64
      22 PV1SCIE 485490 non-null float64
      23 PV2SCIE 485490 non-null float64
      24 PV3SCIE 485490 non-null float64
      25 PV4SCIE 485490 non-null float64
      26 PV5SCIE 485490 non-null float64
     dtypes: float64(16), int64(1), object(10)
     memory usage: 100.0+ MB
[99]: df_pisa_clean['ST11Q02'].value_counts()
[99]: Yes
                372161
     No
                 68875
                 44454
     unknown
     Name: ST11Q02, dtype: int64
```

1.6 Rename columns to be more intuitive and easy to handle

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 485490 entries, 0 to 485489
Data columns (total 27 columns):

#	Column	Non-Null Count	Dtype	
0	country	485490 non-null	object	
1	student_id	485490 non-null	int64	
2	gender	485490 non-null	object	
3	mother_at_home	485490 non-null	object	
4	father_at_home	485490 non-null	object	
5	mother_grade	485490 non-null	object	
6	mother_job	485490 non-null	object	
7	father_grade	485490 non-null	object	
8	father_job	485490 non-null	object	
9	internet	485490 non-null	object	
10	textbook	485490 non-null	object	
11	age	485490 non-null	float64	
12	PV1MATH	485490 non-null	float64	
13	PV2MATH	485490 non-null	float64	
14	PV3MATH	485490 non-null	float64	
15	PV4MATH	485490 non-null	float64	
16	PV5MATH	485490 non-null	float64	
17	PV1READ	485490 non-null	float64	
18	PV2READ	485490 non-null	float64	
19	PV3READ	485490 non-null	float64	
20	PV4READ	485490 non-null	float64	
21	PV5READ	485490 non-null	float64	
22	PV1SCIE	485490 non-null	float64	
23	PV2SCIE	485490 non-null	float64	
24	PV3SCIE	485490 non-null	float64	
25	PV4SCIE	485490 non-null	float64	
26	PV5SCIE	485490 non-null	float64	
dtypes: float64(16),		int64(1), object(10)		
memory usage: 100.0+		MB		

-3

[102]: # calculate mean value for math, reading, science
 # add a new column for total of means

df_pisa_clean['math']=(df_pisa_clean['PV1MATH']+df_pisa_clean['PV2MATH']+df_pisa_clean['PV3MATH']+df_pisa_clean['PV3MATH']+df_pisa_clean['PV2READ']+df_pisa_clean['PV3MATH']+df_pisa_clean['PV3

```
[103]: |# since we are used the average value for each of Math, reading and science, no<sub>U</sub>
        \rightarrowneed to keep the old columns.
       df_pisa_clean.drop(columns=['PV1MATH','PV2MATH','PV3MATH','PV4MATH','PV5MATH',
                                   'PV1READ', 'PV2READ', 'PV3READ', 'PV4READ', 'PV5READ',
        → 'PV1SCIE', 'PV2SCIE', 'PV3SCIE', 'PV4SCIE', 'PV5SCIE'], inplace=True)
[104]: df_pisa_clean.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 485490 entries, 0 to 485489
      Data columns (total 16 columns):
           Column
                           Non-Null Count
                                             Dtype
                           -----
          _____
                           485490 non-null object
       0
           country
       1
           student_id
                           485490 non-null int64
       2
           gender
                           485490 non-null object
       3
           mother_at_home 485490 non-null object
           father_at_home 485490 non-null object
       5
           mother_grade
                           485490 non-null object
                           485490 non-null object
           mother_job
       7
           father_grade
                           485490 non-null object
           father_job
                           485490 non-null object
       9
           internet
                           485490 non-null object
       10
          textbook
                           485490 non-null object
                           485490 non-null float64
       11
           age
       12
                           485490 non-null float64
           math
                           485490 non-null float64
       13 reading
       14 science
                           485490 non-null float64
       15 total
                           485490 non-null float64
      dtypes: float64(5), int64(1), object(10)
      memory usage: 59.3+ MB
[105]: df_pisa_clean['mother_grade'].value_counts()
[105]: <ISCED level 3A>
                                                 236993
       <ISCED level 3B, 3C>
                                                  83048
       <ISCED level 2>
                                                  82614
       <ISCED level 1>
                                                  36556
       unknown
                                                  27511
       She did not complete <ISCED level 1>
                                                  18768
       Name: mother_grade, dtype: int64
[106]: df_pisa_clean['father_grade'].value_counts()
[106]: <ISCED level 3A>
                                               215280
       <ISCED level 3B, 3C>
                                                 91179
```

```
<ISCED level 2>
                                                  84329
       unknown
                                                  42229
       <ISCED level 1>
                                                  35938
       He did not complete <ISCED level 1>
                                                  16535
       Name: father_grade, dtype: int64
[107]: # replace values to be less wordy
       df_pisa_clean['mother_grade'].replace({'<ISCED level 3A> ':'ISCED 3A','<ISCED_
        \rightarrowlevel 3B, 3C> ': 'ISCED 3B-3C',
                                                '<ISCED level 2> ':'ISCED 2', '<ISCED
        →level 1> ':'ISCED 1',
                                                'She did not complete <ISCED level 1> ':
        →'incomplete ISCED 1'}, inplace=True)
       df_pisa_clean['father_grade'].replace({'<ISCED level 3A> ':'ISCED 3A','<ISCED_
        ⇒level 3B, 3C> ': 'ISCED 3B-3C',
                                                '<ISCED level 2> ':'ISCED 2', '<ISCED
        \hookrightarrowlevel 1> ':'ISCED 1',
                                                'He did not complete <ISCED level 1> ':
        →'incomplete ISCED 1'}, inplace=True)
[108]: df_pisa_clean['mother_grade'].value_counts()
[108]: ISCED 3A
                              236993
       ISCED 3B-3C
                               83048
       ISCED 2
                               82614
       ISCED 1
                               36556
       unknown
                               27511
       incomplete ISCED 1
                               18768
       Name: mother_grade, dtype: int64
[109]: df_pisa_clean['father_grade'].value_counts()
[109]: ISCED 3A
                              215280
       ISCED 3B-3C
                               91179
       ISCED 2
                               84329
       unknown
                               42229
       ISCED 1
                               35938
       incomplete ISCED 1
                               16535
       Name: father_grade, dtype: int64
[110]: df_pisa_clean['internet'].value_counts()
[110]: Yes
                  402040
       No
                   71142
       unknown
                   12308
       Name: internet, dtype: int64
```

```
[111]: df_pisa_clean['textbook'].value_counts()
[111]: Yes
                 389408
      No
                  81834
      unknown
                  14248
      Name: textbook, dtype: int64
[112]: df_pisa_clean['father_job'].value_counts()
[112]: Working full-time <for pay>
                                            339697
      Working part-time <for pay>
                                             49503
      Other (e.g. home duties, retired)
                                             40588
      unknown
                                             34080
      Not working, but looking for a job
                                             21622
      Name: father_job, dtype: int64
[113]: df_pisa_clean['mother_job'].value_counts()
[113]: Working full-time <for pay>
                                             219095
      Other (e.g. home duties, retired)
                                             138841
      Working part-time <for pay>
                                             78237
      Not working, but looking for a job
                                             31578
      unknown
                                              17739
      Name: mother_job, dtype: int64
[114]: # replace values to be less wordy
      df_pisa_clean['mother_job'].replace({'Working full-time <for pay> ' :u
       \hookrightarrow 'full-time',
                                           'Other (e.g. home duties, retired) ' :
       \hookrightarrow 'others',
                                           'Working part-time <for pay>' : ...
       'Not working, but looking for a job ':⊔
       df_pisa_clean['father_job'].replace({'Working full-time <for pay> ':u
       \hookrightarrow 'full-time',
                                           'Other (e.g. home duties, retired) ' :
       'Working part-time <for pay>' : __
       'Not working, but looking for a job' : ...
       [115]: df_pisa_clean['mother_job'].value_counts()
```

```
[115]: full-time
                    219095
      others
                    138841
      part-time
                     78237
      unemployed
                     31578
      unknown
                     17739
      Name: mother_job, dtype: int64
[116]: df_pisa_clean['father_job'].value_counts()
[116]: full-time
                    339697
      part-time
                     49503
      others
                     40588
      unknown
                     34080
      unemployed
                     21622
      Name: father_job, dtype: int64
[117]: \# grades is an ordinal category, assuming unknown as the lowest, and ISCED_{\sqcup}
       \rightarrow 3B-3C is the max
      grades_category=['unknown','incomplete ISCED 1','ISCED 1','ISCED 2','ISCED_L
       →3A','ISCED 3B-3C',]
      grades=pd.api.types.CategoricalDtype(ordered=True, categories=grades_category)
      df_pisa_clean['mother_grade'] = df_pisa_clean['mother_grade'] . astype(grades)
      df_pisa_clean['father_grade']=df_pisa_clean['father_grade'].astype(grades)
[118]: \# job category is more a nominal datatype, there is not sequence we can use to
       ⇒say this is higher than the other.
      job_category=['unknown', 'unemployed','part-time', 'full-time', 'others']
      jobs=pd.api.types.CategoricalDtype(ordered=False,categories=job_category)
      df_pisa_clean['mother_job']=df_pisa_clean['mother_job'].astype(jobs)
      df_pisa_clean['father_job']=df_pisa_clean['father_job'].astype(jobs)
[119]: | # modify type to category for internet, textbook, father_at_home, mother_at_home
      df_pisa_clean = df_pisa_clean.astype({'internet':'category', 'textbook':
       'gender':'category','mother_at_home':
       [120]: df_pisa_clean.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 485490 entries, 0 to 485489
      Data columns (total 16 columns):
           Column
                          Non-Null Count
                                           Dtype
      --- -----
                          -----
           country
                          485490 non-null object
```

```
2
           gender
                            485490 non-null
                                             category
       3
           mother_at_home
                            485490 non-null
                                             category
       4
           father_at_home
                            485490 non-null
                                             category
           mother grade
       5
                            485490 non-null category
       6
           mother_job
                            485490 non-null
                                              category
       7
           father grade
                            485490 non-null
                                             category
       8
           father_job
                            485490 non-null
                                             category
       9
           internet
                            485490 non-null category
       10
           textbook
                            485490 non-null
                                             category
                            485490 non-null
       11
           age
                                             float64
                            485490 non-null float64
       12
           math
       13
                            485490 non-null
           reading
                                              float64
                            485490 non-null
       14
           science
                                             float64
       15
          total
                            485490 non-null float64
      dtypes: category(9), float64(5), int64(1), object(1)
      memory usage: 30.1+ MB
[121]: df_pisa_clean.head()
[121]:
                   student_id
                               gender mother_at_home father_at_home
          country
         Albania
                             1
                                Female
                                                   Yes
                                                                  Yes
         Albania
                             2
                               Female
                                                   Yes
                                                                  Yes
       1
       2 Albania
                                Female
                                                   Yes
                                                                  Yes
                             3
       3
         Albania
                             4
                                Female
                                                   Yes
                                                                  Yes
         Albania
                               Female
                                                   Yes
                                                                  Yes
                mother_grade mother_job father_grade father_job internet textbook
                                                        part-time
       0
                    ISCED 3A
                                  others
                                             ISCED 3A
                                                                        No
                                                                                 Yes
       1
                    ISCED 3A
                               full-time
                                             ISCED 3A
                                                        full-time
                                                                       Yes
                                                                                 Yes
       2
                 ISCED 3B-3C
                               full-time
                                             ISCED 3A
                                                        full-time
                                                                       Yes
                                                                                 Yes
       3
                 ISCED 3B-3C
                               full-time
                                                                        Yes
                                             ISCED 3A
                                                        full-time
                                                                                 Yes
          incomplete ISCED 1
                               part-time
                                          ISCED 3B-3C
                                                        part-time
                                                                       Yes
                                                                                 Yes
                      math
                               reading
                                          science
                                                         total
            age
       0
          16.17
                 366.18634
                             261.01424
                                        371.91348
                                                    333.038020
          16.17
                 470.56396
                             384.68832
                                        478.12382
       1
                                                    444.458700
       2
          15.58
                 505.53824
                             405.18154
                                        486.60946
                                                    465.776413
       3
                             477.46376
                                        453.97240
                                                    460.296973
          15.67
                 449.45476
          15.50
                             256.01010
                 385.50398
                                        367.15778
                                                    336.223953
[378]:
      df_pisa_clean.to_csv('df_pisa_clean.csv', index=False)
```

485490 non-null

int64

1

student_id

1.6.1 What is the structure of your dataset?

the data structure is very wide, has consideration for many many cases and factors such as job of the father, job for mother, every aspect of living details like if child got a separte room, type of electornic devices, and so much more. Such details seems to have

purposes beyod the objectives of the project, and need deep analysis for optimal use, and probably other aspect which i am not aware of.

1.6.2 What is/are the main feature(s) of interest in your dataset?

Main aspect of my interest is math, science, and reading. this is where i will focus my analysis on.

1.6.3 What features in the dataset do you think will help support your investigation into your feature(s) of interest?

Math, science, and reading each has five separate scores. i have used the mean for each as a separate column. this new value will be used by focus my analysis on.

1.7 Univariate Exploration

In this section, investigate distributions of individual variables. If you see unusual points or outliers, take a deeper look to clean things up and prepare yourself to look at relationships between variables.

Make sure that, after every plot or related series of plots, that you include a Markdown cell with comments about what you observed, and what you plan on investigating next.

```
[122]: df_pisa_clean[['math','reading','science','total']].describe()
```

```
[122]:
                                                                      total
                        math
                                    reading
                                                    science
                              485490.000000
              485490.000000
                                              485490.000000
                                                              485490.000000
       count
                                 472.006964
       mean
                 469.651234
                                                 475.808094
                                                                 472.488764
                  100.786610
                                  98.863310
                                                  97.998470
                                                                  96.036271
       std
                  54.767080
                                   6.445400
                                                  25.158540
                                                                  77.114593
       min
       25%
                  396.019620
                                 405.044200
                                                 405.762800
                                                                 403.992595
       50%
                 465.734520
                                 475.477980
                                                 475.512860
                                                                 472.046460
       75%
                  540.123060
                                 542.831195
                                                 546.381920
                                                                 541.455700
                  903.107960
                                 849.359740
                                                 857.832900
                                                                 826.592027
       max
```

```
[123]: math_bins=np.arange(50,df_pisa_clean['math'].max()+10,10)
    reading_bins=np.arange(5,df_pisa_clean['reading'].max()+10,10)
    science_bins=np.arange(20,df_pisa_clean['science'].max()+10,10)

plt.figure(figsize=(30,8))
    plt.subplot(1, 3, 1)
    plt.hist(df_pisa_clean['math'],bins=math_bins);
    plt.title('Mathematics average',fontsize=30)

plt.subplot(1, 3, 2)
    plt.hist(df_pisa_clean['reading'],bins=reading_bins);
    plt.title('Reading average',fontsize=30)
```

```
plt.subplot(1, 3, 3)
plt.hist(df_pisa_clean['science'],bins=science_bins);
plt.title('Science average',fontsize=30);
```


- 1. All seems like normal ditribution
- 2. further investigation needs to be done considering country, and gender as well as other categorica variables like internet, mother/father grade, job, etc..

```
[124]: plt.figure(figsize=(30,8))
  plt.subplot(1, 4, 1)
  sb.boxplot(y=df_pisa_clean['math'])
  plt.title('Mathematics average',fontsize=30)

plt.subplot(1, 4, 2)
  sb.boxplot(y=df_pisa_clean['reading'])
  plt.title('Reading average',fontsize=30)

plt.subplot(1, 4, 3)
  sb.boxplot(y=df_pisa_clean['science'])
  plt.title('Science average',fontsize=30);

plt.subplot(1, 4, 4)
  sb.boxplot(y=df_pisa_clean['total'])
  plt.title('total average',fontsize=30);
```



```
[125]: color=sb.color_palette()[0]
  plt.figure(figsize=(18,4))

plt.subplot(1, 2, 1)
  sb.countplot(data=df_pisa_clean,x='mother_grade',color=color)
  plt.title('bar chart for mothers highest grades counts')
  plt.xticks(rotation=20)

plt.subplot(1, 2, 2)
  sb.countplot(data=df_pisa_clean,x='father_grade',color=color)
  plt.title('bar chart for fathers highest grades counts')
  plt.xticks(rotation=20)
```

[125]: (array([0, 1, 2, 3, 4, 5]), <a list of 6 Text xticklabel objects>)


```
[126]: color=sb.color_palette()[0]
plt.figure(figsize=(18,4))

plt.subplot(1, 2, 1)
sb.countplot(data=df_pisa_clean,x='mother_job',color=color);
plt.title('bar chart for mothers jobs counts');
plt.xticks(rotation=20);
```

```
plt.subplot(1, 2, 2)
sb.countplot(data=df_pisa_clean,x='father_job',color=color);
plt.title('bar chart for fathers jobs counts');
plt.xticks(rotation=20);
```



```
[127]: color=sb.color_palette()[0]
plt.figure(figsize=(18,4))

plt.subplot(1, 2, 1)
sb.countplot(data=df_pisa_clean,x='internet',color=color);
plt.title('bar chart for availability of internet');
plt.xticks(rotation=20);

plt.subplot(1, 2, 2)
sb.countplot(data=df_pisa_clean,x='textbook',color=color);
plt.title('bar chart for availability of textbooks');
plt.xticks(rotation=20);
```



```
[128]: color=sb.color_palette()[0]
plt.figure(figsize=(18,4))

plt.subplot(1, 2, 1)
sb.countplot(data=df_pisa_clean,x='mother_at_home',color=color);
plt.title('bar chart for mothers at home counts');
```

```
plt.xticks(rotation=20);

plt.subplot(1, 2, 2)
sb.countplot(data=df_pisa_clean,x='father_at_home',color=color);
plt.title('bar chart for fathers at home counts');
plt.xticks(rotation=20);
```


- 1. using boxplot we notice big range of outliars, this is also clear when we used the describe method for the three columns (math, reading, and science)
- 2. math average seems to have the lowest median
- 3. conclusion, we need to investigate data using bivariant exploration on country, gender, age, and other variables

1.7.1 Discuss the distribution(s) of your variable(s) of interest. Were there any unusual points? Did you need to perform any transformations?

using the average value along gives normal distribution, but there are many outliars which indicates variations based on other factors

1.7.2 Of the features you investigated, were there any unusual distributions? Did you perform any operations on the data to tidy, adjust, or change the form of the data? If so, why did you do this?

i used the mean for the three most important features math, reading, science to analyze the data

1.8 Bivariate Exploration

In this section, investigate relationships between pairs of variables in your data. Make sure the variables that you cover here have been introduced in some fashion in the previous section (univariate exploration).

check for math, reading, science average based on counties to find any relation between top permers and countries

```
[180]: df_pisa_countries = df_pisa_clean.

⇔groupby('country')[['math','reading','science','total']].mean()
```

```
[184]:
                                      reading
                                                   science
                                                                 total
                              math
      country
      China-Shanghai
                       611.438933
                                   568.629233
                                                579.556540
                                                           586.541569
      Hong Kong-China
                       561.052123
                                   544.521735
                                                554.986433
                                                            553.520097
      Singapore
                       568.546974 537.742138
                                                546.822920
                                                            551.037344
      Korea
                       553.752034 535.805221
                                                537.831998
                                                           542.463084
      Japan
                       535.925248 537.722484
                                               546.413455 540.020395
      Chinese Taipei
                       558.312010 522.185472
                                               522.356935
                                                           534.284806
      Liechtenstein
                       538.886608 518.275718
                                               527.598522 528.253616
      Estonia
                       522.340803 518.208090
                                               543.241849 527.930247
      Poland
                       520.522589 520.763584
                                               528.245169
                                                           523.177114
      Macao-China
                       538.319791 509.095969
                                               520.690411 522.702057
[185]: df_pisa_countries.sort_values(by='total', ascending=False).tail(10)
[185]:
                                 reading
                                              science
                                                            total
                        math
      country
      Montenegro
                  406.728296
                              419.983824 408.197858
                                                      411.636659
      Argentina
                   395.635711
                              403.596060 410.478404 403.236725
      Colombia
                  385.972409 414.221547 408.862431 403.018796
      Albania
                  394.878912 396.250245 398.916529 396.681895
      Tunisia
                  387.434260 403.614273 397.831316
                                                      396.293283
      Jordan
                  382.739077
                              396.514701 404.795878 394.683219
      Brazil
                  382.547146
                              400.421704 395.513221 392.827357
      Indonesia
                  375.621968
                              397.114815 382.744804 385.160529
      Qatar
                   376.339232
                              387.407142 383.531664
                                                       382.426012
      Peru
                  367.859676
                              384.453116 373.440303
                                                      375.251032
        1. Around 7 out of 10 top performer countries are in Far east, remaining 3 in Europe
        2. low performing countries range from south america
        3. more investigation on total average
[226]: order= df_pisa_clean['country'].value_counts().index
      plt.figure(figsize=[20,30])
      sb.countplot(data=df_pisa_clean,y='country',order=order)
      plt.title('Number of students per country', size=20);
```

[184]: df_pisa_countries.sort_values(by='total', ascending=False).head(10)


```
[206]: df_pisa_gender = df_pisa_clean.

⇒groupby('gender')[['math','reading','science','total']].mean().reset_index()

df_pisa_gender
```

```
reading
[206]:
         gender
                      math
                                                       total
                                          science
      0 Female 464.060962 489.719710 475.348653 476.376442
           Male 475.349347 453.952526 476.276398
                                                  468.526090
[386]: 489.719710-453.95252
[386]: 35.76719000000003
[383]: df_pisa_gender_melt
[383]:
         gender variable
                              value
        Female
                   math 464.060962
      0
      1
           Male
                   math 475.349347
      2
        Female reading 489.719710
      3
           Male reading 453.952526
        Female science 475.348653
      4
           Male science 476.276398
        Female
                  total 476.376442
      6
      7
           Male
                  total 468.526090
[382]: df_pisa_gender_melt[(df_pisa_gender_melt['variable'] == 'reading')&__
       [382]: Empty DataFrame
      Columns: [gender, variable, value]
      Index: []
[208]: sb.barplot(data=df_pisa_gender_melt, x="variable",y="value",hue="gender",__

→color=sb.color_palette()[0])
      plt.ylim(400, 600)
[208]: (400, 600)
```



```
[205]: df_pisa_internet = df_pisa_clean.

→groupby('internet')[['math', 'reading', 'science', 'total']].mean().
        →reset_index()
       df_pisa_internet
[205]:
         internet
                         math
                                  reading
                                              science
                                                            total
                  400.018756 408.247075 409.686776 405.984202
       0
               No
                  484.814701
                               486.403139
                                           490.411081 487.209640
       1
              Yes
                              370.298152 380.993168 376.038200
       2 unknown 376.823281
[210]: df_pisa_internet_melt = pd.melt(df_pisa_internet, id_vars=['internet'])
       df_pisa_internet_melt
[210]:
          internet variable
                                  value
       0
               No
                       math 400.018756
                       math 484.814701
       1
               Yes
       2
                       math 376.823281
           unknown
       3
               No
                   reading 408.247075
       4
               Yes
                   reading 486.403139
       5
                    reading 370.298152
           unknown
       6
                    science 409.686776
               No
       7
                    science 490.411081
               Yes
       8
           unknown
                    science 380.993168
       9
                      total 405.984202
                No
```

```
10 Yes total 487.209640
11 unknown total 376.038200
```

[224]: Text(0, 0.5, 'Average score values')

[151]: <seaborn.axisgrid.FacetGrid at 0x1f3394b58c8>


```
[152]: g = sb.FacetGrid(data = df_top_countries, col = 

→ 'father_grade',col_wrap=3,sharey=True)

g.map(plt.hist, "total",bins=math_bins)
```

[152]: <seaborn.axisgrid.FacetGrid at 0x1f2b67cf0c8>

[153]: <seaborn.axisgrid.FacetGrid at 0x1f3343d7348>

[154]: <seaborn.axisgrid.FacetGrid at 0x1f338199f88>

[155]: <seaborn.axisgrid.FacetGrid at 0x1f3393f5f88>

[156]: <seaborn.axisgrid.FacetGrid at 0x1f339586dc8>

- 1. Data shows that most of the students have parents (mother / father) that finished 'ISCED level 3A' level
- 2. same for full time working mom / dads
- 3. most people have internet, and textbook

1.8.1 Talk about some of the relationships you observed in this part of the investigation. How did the feature(s) of interest vary with other features in the dataset?

1. the internet had a huge impact on the scores compared with student who didn't have access to internet

1.8.2 Did you observe any interesting relationships between the other features (not the main feature(s) of interest)?

- 1. Females in generals had better scores specially in reading
- 2. Around 9 out of 10 top performer countries are in Far east, remaining 3 in Europe
- 3. low performing countries range from south america

1.9 Multivariate Exploration

Create plots of three or more variables to investigate your data even further. Make sure that your investigations are justified, and follow from your work in the previous sections.

```
[243]: df_pisa_clean_melt.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 1456470 entries, 0 to 1456469
      Data columns (total 14 columns):
           Column
                         Non-Null Count
                                             Dtype
                           _____
           ----
                           1456470 non-null object
       0
           country
       1
           student_id
                           1456470 non-null
                                            int64
       2
                           1456470 non-null category
           gender
       3
           mother_at_home 1456470 non-null category
           father_at_home 1456470 non-null category
                           1456470 non-null category
       5
          mother_grade
       6
           father_grade
                           1456470 non-null category
       7
           father_job
                           1456470 non-null category
       8
                           1456470 non-null category
           mother_job
       9
           internet
                           1456470 non-null category
       10
          textbook
                           1456470 non-null category
                           1456470 non-null float64
       11 age
       12 material
                           1456470 non-null object
                           1456470 non-null float64
       13 score
      dtypes: category(9), float64(2), int64(1), object(2)
      memory usage: 68.1+ MB
[330]: #source: https://stackoverflow.com/questions/30942577/
       \rightarrow seaborn-correlation-coefficient-on-pairgrid
      from scipy.stats import pearsonr
      def corrfunc(x,y, ax=None, **kws):
           """Plot the correlation coefficient in the top left hand corner of a plot.
          r, _ = pearsonr(x, y)
          ax = ax or plt.gca()
          # Unicode for lowercase rho ()
          rho = ' u03C1'
          ax.annotate(f'{rho} = {r:.2f}', xy=(.1, .9), xycoords=ax.transAxes)
      g = sb.pairplot(data = df_pisa_clean, vars=["math", "reading", "science"]);
      g.map_lower(corrfunc)
[330]: <seaborn.axisgrid.PairGrid at 0x1f346541948>
```

var_name='material', value_name='score')

we see stronge correlation for all plots, highest between math and science.

1.9.1 Talk about some of the relationships you observed in this part of the investigation. Were there features that strengthened each other in terms of looking at your feature(s) of interest?

The dataset used for analysis limited capabilities to make extensive relations for multivariant exploration. most of the details is already clear in the single / bivariant. the correlation diagram indicates stonge relation between scores in math, reading, science and score. highest between math and science.

1.9.2 Were there any interesting or surprising interactions between features?

most surpirsing is the impact on having internet on the students scores.