Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №5 по дисциплине «Методы машинного обучения» на тему «Линейные модели, SVM и деревья решений»

Выполнил: студент группы ИУ5-22М Ромичева Е.

Рубежный контроль №1

Ромичева Е.В., ИУ5-22М

0.1.1. Задание:

Для заданного набора данных постройте основные графики, входящие в этап разведочного анализа данных. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Какие графики Вы построили и почему? Какие выводы о наборе данных Вы можете сделать на основании построенных графиков?

SOP

4.5

4.0

3.0

3.5

2.0

LOR

4.5

4.5

3.5

2.5

3.0

```
In [1]: import numpy as np
        import pandas as pd
        import sklearn
        import seaborn as sns
        import matplotlib.pyplot as plt
In [7]: data = pd.read csv(r'Admission Predict.csv', sep=",")
        data.head()
Out[7]:
           Serial No.
                       GRE Score TOEFL Score University Rating
                              337
                                           118
                    1
        1
                    2
                                           107
                              324
        2
                    3
                              316
                                           104
                                                                 3
        3
                    4
                                                                 3
                              322
                                           110
        4
                    5
                              314
                                           103
                                                                 2
           Research Chance of Admit
        0
                                  0.92
                  1
                  1
                                  0.76
        1
        2
                  1
                                  0.72
        3
                                  0.80
                  1
        4
                  0
                                  0.65
In [8]: data.shape
Out[8]: (400, 9)
In [9]: for col in data.columns:
            # Количество пустых значений - все значения заполнены
            temp_null_count = data[data[col].isnull()].shape[0]
            print('{} - {}'.format(col, temp_null_count))
Serial No. - 0
GRE Score - 0
TOEFL Score - 0
University Rating - 0
SOP - 0
LOR - 0
CGPA - 0
Research - 0
Chance of Admit - 0
```

In [11]: ax = sns.barplot(x="TOEFL Score", y="Chance of Admit ", data=data)

In [12]: ax = sns.barplot(x="GRE Score", y="Chance of Admit ", data=data)

In [36]: sns.boxplot('University Rating','TOEFL Score', data = data)

Out[36]: <matplotlib.axes._subplots.AxesSubplot at 0x1473e4400b8>

Serial No.

0.734523

1.000000

0.729593

0.718144

0.444029

0.675732

Out[29]:

University Rating

Chance of Admit

SOP

LOR

CGPA

Research

000[20].		3C. 141 110		0. 0 . 0	50010 01	in ver birey ina
	Serial No.	1.00000	0 -0.097	526 -0.	147932	-0.16
	GRE Score	-0.09752	6 1.000	000 0.	835977	0.66
	TOEFL Score	-0.14793	2 0.835	977 1.	000000	0.69
	University Rating	-0.16994	8 0.668	976 0.	695590	1.00
	SOP	-0.16693	2 0.612	831 0.	657981	0.73
	LOR	-0.08822	1 0.557	555 0.	567721	0.66
	CGPA	-0.04560	8 0.833	060 0.º	828417	0.74
	Research	-0.06313	8 0.580	391 0.	489858	0.44
	Chance of Admit	0.04233	6 0.802	610 0.	791594	0.71
		SOP	LOR	CGPA	Research	n Chance of
	Serial No.	-0.166932	-0.088221	-0.045608	-0.063138	3 0
	GRE Score	0.612831	0.557555	0.833060	0.580391	L 0
	TOEFL Score	0.657981	0.567721	0.828417	0.489858	3 0

0.660123

0.729593

1.000000

0.670211

0.396859

0.669889

GRE Score

TOEFL Score

0.746479

0.718144

0.670211

1.000000

0.521654

0.873289

0.447783

0.444029

0.396859

0.521654

1.000000

0.553202

University Rat

0.

0.

0.

0.

0.

1.

In [19]: sns.distplot(data['LOR '])

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x1473fbefa20>


```
In [33]: fig = sns.distplot(data['GRE Score'], kde=True)
    plt.show()

fig = sns.distplot(data['TOEFL Score'], kde=True)
    plt.show()

fig = sns.distplot(data['University Rating'], kde=True)
    plt.show()

fig = sns.distplot(data['SOP'], kde=True)
    plt.show()

fig = sns.distplot(data['CGPA'], kde=True)
    plt.show()
```


In [35]: data.describe()

	ty Rating	Universit	TOEFL Score	GRE Score	Serial No.]:	Out[35]:
400.00	000000	46	400.000000	400.000000	400.000000	count	
3.46	3.087500		107.410000	316.807500	200.500000	mean	
1.00	1.143728		6.069514	11.473646	115.614301	std	
1.00	1.000000		92.000000	290.000000	1.000000	min	
2.56	2.000000		103.000000	308.000000	100.750000	25%	
3.50	3.000000		107.000000	317.000000	200.500000	50%	
4.00	4.000000		112.000000	325.000000	300.250000	75%	
5.00	5.000000		120.000000	340.000000	400.000000	max	
	Admit	Chance of	Research	CGPA	LOR		
	.000000	400.	400.000000	400.000000	400.000000	count	
	.724350	0.	0.547500	8.598925	3.452500	mean	
	.142609	0.	0.498362	0.596317	0.898478	std	
	.340000	0.	0.000000	6.800000	1.000000	min	
	640000	0.	0.000000	8.170000	3.000000	25%	
	.730000	0.	1.000000	8.610000	3.500000	50%	
	.830000		1.000000	9.062500	4.000000	75%	

In []:

max

9.920000

1.000000

0.970000

5.000000