16-350 Planning Techniques for Robotics

Search Algorithms: Multi-goal A*, IDA*

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

Agenda

• A* with multiple goals

• Iterative Deepening A* (IDA*)

Support for Multiple Goal Candidates

- How to compute a least-cost path to any one of the possible goals?
 - Example 1: Computing a least-cost path to a parking spot given multiple parking spaces (some are better, some are worse, some are closer, some are further)
 - Example 2: Catching a moving target whose future trajectory is known (i.e., multiple potential intercept points)
 - Example 3: Mapping/exploration (next class)

A* Search

Main function

```
g(s_{start}) = 0; all other g-values are infinite; OPEN = \{s_{start}\}; ComputePath(); publish solution;
```

ComputePath function

```
while (s_{goal}) is not expanded and OPEN \neq 0)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED

if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```


h=1

How to find a least-cost path that is lowest across all possible goals?

h=0

Introducing "imaginary" goal

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$;

ComputePath();

publish solution;

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$)

remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;

insert s into CLOSED;

for every successor s' of s such that s' not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

$$g(s') = g(s) + c(s,s');$$

insert s' into *OPEN*;

Equivalent problem but with a single goal!

Introducing "imaginary" goal

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$;

ComputePath();

publish solution;

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$)

remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*;

insert s into CLOSED;

for every successor s' of s such that s' not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

$$g(s') = g(s) + c(s,s');$$

insert s' into OPEN;

Equivalent problem but with a single goal!

How to prove it?

Main function

```
g(s_{start}) = 0; all other g-values are infinite; OPEN = \{s_{start}\}; ComputePath(); publish solution; ComputePath function while(s_{goal} is not expanded and OPEN \neq 0)
```

remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;

insert s into CLOSED;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s')$;
insert s' into OPEN;

What if some goals are better than others?

Main function

```
g(s_{start}) = 0; all other g-values are infinite; OPEN = \{s_{start}\};
ComputePath();
publish solution;
ComputePath function
```

while(s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;

insert s into CLOSED;

for every successor s' of s such that s' not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s')$;
insert s' into OPEN;

What if some goals are better than others?

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$;

ComputePath();

publish solution;

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$)

remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*;

insert s into CLOSED;

for every successor s' of s such that s' not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

$$g(s') = g(s) + c(s,s');$$

insert s' into OPEN;

Equivalent problem but with a single goal!

How to prove it?

Main function

```
g(s_{start}) = 0; all other g-values are infinite; OPEN = \{s_{start}\};
ComputePath();
publish solution;
```

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED; for every successor s' of s such that s' not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s')$;
insert s' into OPEN;

Once the graph transformation is done, you can run either forward or backwards search

 $g = \infty$

h=0

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$; ComputePath(); publish solution;

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*:

insert s into CLOSED;

for every successor s' of s such that s' not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s')$;
insert s' into OPEN:

Once the graph transformation is done, you can run either forward or backwards search

Any impact on how

heuristics is computed?

 $g = \infty$

h=0

Agenda

• A* with multiple goals

• Iterative Deepening A* (IDA*)

Memory Issues

• A* does provably minimum number of expansions (O(n)) for finding a provably optimal solution

Memory requirements of weighted A* are often but not always better

- Depth-First Search (w/o coloring all expanded states):
 - explore each every possible path one at a time avoiding looping and keeping in the memory only the best path discovered so far

DFS function

```
LIFO list = \{s_{start}\}; //stack
bestpathsofar = NONE;
While (list != 0)
s = list.pop();
if (s = s_{goal})
if (cost of the found path from <math>s_{start} to s < cost of bestpathsofar)
set bestpathsofar to the current path from <math>s_{start} to s
else
for every successor s' of s
list.push(s');
return bestpathsofar;
```

- Depth-First Search (w/o coloring all expanded states):
 - explore each every possible path one at a time avoiding looping and keeping in the memory only the best path discovered so far

```
DFS function
LIFO\ list = \{s_{start}\};\ //stack
bestpathsofar = NONE;
While\ (list\ !=\ 0)
s = list.pop();
if\ (s = s_{goal})
if\ (cost\ of\ the\ found\ path\ from\ s_{start}\ to\ s < cost\ of\ bestpathsofar)
set\ bestpathsofar\ to\ the\ current\ path\ from\ s_{start}\ to\ s
else
for\ every\ successor\ s'\ of\ s
list.push(s');
return\ bestpathsofar;
```

What is memory complexity?

What are its disadvantages?

- Depth-First Search (w/o coloring all expanded states):
 - explore each every possible path one at a time avoiding looping and keeping in the memory only the best path discovered so far
 - Complete and optimal (assuming finite state-spaces)
 - Memory: O(bm), where $b \max$ branching factor, $m \max$ pathlength in graph
 - Complexity: $O(b^m)$, since it will repeatedly re-expand states

- Depth-First Search (w/o coloring all expanded states):
 - explore each every possible path one at a time avoiding looping and keeping in the memory only the best path discovered so far
 - Complete and optimal (assuming finite state-spaces)
 - Memory: O(bm), where $b \max$ branching factor, $m \max$ pathlength in graph
 - Complexity: $O(b^m)$, since it will repeatedly re-expand states
 - Example:
 - graph: a 4-connected grid of 40 by 40 cells, start: center of the grid
 - A* expands up to 800 states, DFS may expand way over $4^{20} > 10^{12}$ states

- Depth-First Search (w/o coloring all expanded states):
 - explore each every possible path one at a time avoiding looping and keeping in the memory only the best path discovered so far
 - Complete and optimal (assuming finite state-spaces)
 - Memory: O(bm), where $b \max$ branching factor m may pathlength in graph
 - Complexity: $O(b^m)$, since it

What if goal is few steps away in a huge state-space?

- Example:
 - graph: a 4-connected grid of 40 by 40 cells, start: center of the grid
 - A* expands up to 800 states, DFS may expand way over $4^{20} > 10^{12}$ states

- IDA* (Iterative Deepening A*) [Korf, '85]:
 - 1. $set f_{max} = 1$ (or some other small value)
 - 2. execute (previously explained) DFS that does not expand states with $f > f_{max}$
 - 3. If DFS returns a path to the goal, return it
 - 4. Otherwise $f_{max} = f_{max} + 1$ (or larger increment) and go to step 2

- IDA* (Iterative Deepening A*) [Korf, '85]:
 - 1. $set f_{max} = 1$ (or some other small value)
 - 2. execute (previously explained) DFS that does not expand states with $f > f_{max}$
 - 3. If DFS returns a path to the goal, return it
 - 4. Otherwise $f_{max} = f_{max} + 1$ (or larger increment) and go to step 2

- Complete and optimal in any state-space (with positive costs)
- Memory: O(bl), where $b \max$ branching factor, l length of optimal path
- Complexity: $O(kb^l)$, where k is the number of times DFS is called

Summary

- Support for multiple potential goals is a common problem in robotics and can often be easily tacked by the graph transformation (introducing "imaginary" goal)
- In the worst case, memory requirements of A* are the full size of the graph
- Iterative Deepening A* (IDA*) simple alternative with memory requirements linear in the length of the optimal path to the goal.
 - It can perform substantially more work than A* though