2. 3线-8线译码器

高电平有效 3-8 译码器

符号

译码器:輸入数码是二进制数几,第八号输出就是<u>唯一的有效电平</u>,其余输出皆为无效电平

低电平有效 3-8 译码器: IC 74138

数据输出

- 3 数据输入
- 8 输出
- 3 使能输入

$$\begin{cases}
S_A & \text{Active-high} \\
\overline{S}_B \\
\overline{S}_C
\end{cases}$$
Active-law

国标符号

74138: MSI (Medium Scale Integration)

管脚图

查手册 管脚图 功能表

3. 二进制译码器的应用

例1: 用译码器和逻辑门实现下列一组函数

$$F_1(A, B, C) = A\overline{B}C + B\overline{C} + \overline{A} \cdot \overline{C}$$

$$F_2(A, B, C) = (A + \overline{B} + C)(\overline{B} + \overline{C})$$

$$F_1(A, B, C) = \sum (0, 2, 5, 6) = \prod (1, 3, 4, 7)$$
$$F_2(A, B, C) = \sum (0, 1, 4, 5, 6) = \prod (2, 3, 7)$$

$$F_2(A, B, C) = \sum (0,1,4,5,6) = \prod (2,3,7)$$

方法 1: 译码器 + 或门

标准与或式

$$F_1(A, B, C) = \sum (0, 2, 5, 6)$$
$$F_2(A, B, C) = \sum (0, 1, 4, 5, 6)$$

输出: 最小项

高电平有效译码器

或门→最小项编号

方法2: 译码器 + 与非门

与或式 → 与非门

$$F_{1}(A,B,C) = m_{0} + m_{2} + m_{5} + m_{6}$$

$$= \overline{m_{0} + m_{2} + m_{5} + m_{6}}$$

$$= \overline{m_{0} \cdot m_{2} \cdot m_{5} \cdot m_{6}}$$

低电平有效译码器 (74138)

与非门 → 最小项编号

$$F_1(A, B, C) = \sum (0, 2, 5, 6)$$
$$F_2(A, B, C) = \sum (0, 1, 4, 5, 6)$$

方法 3: 译码器 + 与门

标准或与式

$$F_1(A, B, C) = \sum (0, 2, 5, 6)$$
$$F_2(A, B, C) = \sum (0, 1, 4, 5, 6)$$

低电平有效译码器

$$F_{1}(A,B,C) = \Pi (1,3,4,7)$$

$$= M_{1} \cdot M_{3} \cdot M_{4} \cdot M_{7}$$

$$= \overline{m}_{1} \cdot \overline{m}_{3} \cdot \overline{m}_{4} \cdot \overline{m}_{7}$$

$$F_2(A,B,C) = \prod (2,3,7)$$

$$= M_2 \cdot M_3 \cdot M_7$$

$$= \overline{m}_2 \cdot \overline{m}_3 \cdot \overline{m}_7$$

与门 → 最大项编号

结论:

用一个译码器实现一组函数

高电平有效译码器 + 或门

低电平有效译码器 +与门(与非门)

最大项编号

最小项编号

4. 二进制译码器的应用——用3-8线译码器扩展成4-16 线译码器

4-16线译码器

$$S_A(I)=1$$

 D_3 : S_A (II)接 S_B (I),作为4-16线译码器MSB S_A (II)、 S_C (II)、 S_C (I)作为4-16线译码器使能端

总使能端

5. 二进制译码器的应用——用74138构成地址译码器

6. 二进制译码器的应用——用74138构成数据分配器

由总线来的数字信号输送到不同的下级电路中去

思考: 为什么数据从E2 输入?

§ 4.4.2 BCD码转十进制译码器

BCD-to-Decimal Decoders

功能: 将 BCD 码转换成十进制码

4-10线译码器 IC 7442

注意:

输出:低电平有效

输入:有效输入0000-1001

无效输入 1010-1111

输入资码是几,第几号输出就是唯一的低电平0

4线10线译码器7442管脚图和符号图

§ 4.4.3 显示译码器 (/驱动器)

Display Decoder (/Driver)

1. 7段数码管

连接方式不同分成共阴极和共阳极两种

共阳极

二极管 → 逻辑低 → 亮

2. 显示译码器

要显示0-9十个数字,需要用译码器来驱动

显示译码器/驱动器 7448

输入 4 线 4 位二进制数 / 8421 BCD 码

输出7线 —— 驱动7-段数码管

输出高有效, 驱动共阴极管

不一定只有一个输出端高(或低)有效

7448的逻辑功能

- (1) 正常译码显示。LT=1, BI/RBO=1时,对输入为 十进制数1~15的二进制码(0001~1111)进行译码 ,产生对应的七段显示码
- (2) 灭零。当LT=1,而输入为0的二进制码0000时, 只有当RBI =1时,才产生0的七段显示码;如果此 时RBI = 0 ,则译码器的 $a \sim g$ 输出全0,负显示器全 灭: 所以RBI称为灭零输入端

- (3) 试灯。当LT=0时,无论输入怎样, $a \sim g$ 输出全1,数码管七段全亮。由 此可以检测显示器七个发光段的好坏。 LT称为试灯输入端。
- (4) 特殊控制端BI/RBO。BI/RBO可以作输入端,也可以作输出端。
- 作输入使用时,如果BI=0时,不管其他输入端为何值, $a\sim g$ 均输出0,显示 器全灭。这此BI称为灭灯输入端
- 作输出强使用时,受控于RBI。当RBI=0,输入为0的二进制码0000时, RBO=0,用以指示该片正处于灭零状态。所以,RBO 又称为灭零输出端

显示译码 器内部电 路设计

Display

分别做7个卡诺图

$$Y_a = A + \overline{B} \cdot \overline{D} + BD + CD$$
$$= A + CD - \overline{B} \oplus \overline{D}$$

§ 4.5 多路 (数据) 选择器 MUX

Multiplexers (Data Selectors)

功能: 在多路输入数据中选择一路进行输出

1. 4线-1线 MUX

4个数据 *D*₀, *D*₁, *D*₂, *D*₃中选一个输出, 选择开关由地址 *A B* 控制

AB: 控制输入(地址输入)

n 位地址线可以控制 2n 个数据输入

真值表 $(AB \, \Pi \, D_i \, (i=0...3)$ 当作输入,F为输出)

	\boldsymbol{A}	В	$D_{\rm i}$	F
	0	0	0	0
	0	0	1	1
	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

控制码是几、就把第几号数据送到唯一的输出端

AB任取一열时,最多只有一个与门输出1(D),其他为0,取或之后为F

Decoder + Data lines + OR gate

MSI 4 - 1 MUX 74153 (一芯片上有 2 个 4 - 1 MUX)

符号

ST Select Transform 选通端,低电平有效

A₁A₀: 地址线 (控制输入)

双4选1数据选择器——74153

2. 8线-1线 MUX 74151 (MSI)

位地址线: $A_2A_1A_0$; 8 条数据线: D_0 - D_7

3. MUX实现逻辑函数

例 1: 用MUX 实现函数

$$F(A,B,C) = \overline{ABC} + B\overline{C} + A\overline{B}C$$

解: 3 变量 $\begin{bmatrix} 57 \\ 67 \end{bmatrix}$ MUX $\begin{bmatrix} 27 \\ 67 \end{bmatrix}$ F AB $\begin{bmatrix} 0 \\ -41 \\ -42 \\ 0 \end{bmatrix}$ G $\begin{bmatrix} 0 \\ 7 \\ -4 \end{bmatrix}$ F $\begin{bmatrix} 0 \\ -41 \\ -42 \\ 0 \end{bmatrix}$ C $\begin{bmatrix} 00 \\ 01 \\ 1 \end{bmatrix}$ C $\begin{bmatrix} 00 \\ -11 \\ 1 \end{bmatrix}$

一个 MUX 只能实现一个逻辑函数

例 2: 用双4选1 MUX 74153 实现下列函数

例 3: 用一片 74151 实现下列函数

$$F(A,B,C,D) = ABCD + A\overline{B}C\overline{D} + \overline{A}BCD + \overline{A}\ \overline{B}\ \overline{C} + ABC\overline{D}$$

解:

$$D \rightarrow VEM$$

例 4. 用一片4-1 MUX实现

$$F(A,B,C,D) = \overline{ABCD} + AB + \overline{A} \cdot \overline{B} \cdot \overline{C} + A\overline{B} \cdot \overline{D}$$

解:

- 4-1 MUX 2 变量
- 2 变量 C、 $D \rightarrow VEM$

数据分配器 Demultiplexers (DEMUX) (Data Distributors)

$A B V_0 Y_1 Y_2 Y_3$								
6 0		9	0	0				
9 1	0	D	0	0				
10	0	0	D	0				
	0	0	0	D				

控制数码是几,就把输入数据送到第几路输出端

1-4 DEMUX

1-8 DEMUX

1-16 DEMUX

Decoder +Data 常用译码器实现数据分配

例: 用74138实现1-8DEMUX

一个使能端S。作为数据输入

A₂A₁A₀作为地址输入

如A₂A₁A₀=110, Y₆为输出端

$$\overline{S}_c = D = 0$$
, 译码器工作, $\overline{Y}_6 = 0$

$$\overline{S}_c = D = 1$$
, 译码器被锁住, $\overline{Y}_6 = 1$

MUX 应用

- 1) 实现逻辑函数
- 2) 多路数字开关

路由选择,将 MUX 和 DEMUX 结合使用,实现时分多路数据通信。

BUS
$$= B_1B_0$$

$$= B_1B_0$$
DEMUX

3) 数据并行/串行转换

MUX和计数器

计数器以 $900 \sim 111$ 循环,使MUX 依次选择 $D_0 \sim D_7$ 输出。

智能压力传感器框图

