COVID-19 INDIA

Introduction: Business Problem

Since the beginning of 2020, India and many other countries around the world have been under attack by an invisible army called 'Novel Corona Virus', also known as 'Covid-19'. Every effort has been focusing on solving or minimizing problems, including Data Scientists. Data Scientists assessed the situations in places around the world, such as availability, amount, and geographical distribution (i.e. locations) of health infrastructures, such as virus testing centres and authorized hospitals to treat affected patients. In this project, we would like to present a simple analysis for determining strategic locations for the distribution of **masks and medical devices** for COVID-19 treatment, based on the current confirmed active cases and the red zone areas for "new normal" condition analysis.

Data

1. A few Identified factors that influence our decision are:

- 1. Covid-19 cases per state or union territory.
- 2. Total population in states or union territories.
- 3. 10 most population cities per state or union territory.
- 4. Hospitals and Nursing Homes for treatment of covid-19

2. The following data sources are needed to extract/generate the required information:

- 1. Processed covid-19 positive case data collection.
- 2. The distribution of mask sales based on the population in the India.
- 3. The distribution of mask sales based on 5 states or union territories with the most densely populated populations.
- 4. New datasets (to be created) that contains state or union territory, active cases, along with their latitudes and longitudes.
- 3. Let's start the Project by importing necessary Python libraries.
- 4. Read and show data Covid-19 cases per state or union territory.

Methodology

First, we create a new dataset of only cases from the Covid-19 Case table.

	State or Union Territory	Confirmed	Recovered	Deaths	Active
0	Total	2332908	1640362	46216	645857
1	Maharashtra	535601	368435	18306	148553
2	Tamil Nadu	308649	250680	5159	52810
3	Delhi	147391	132384	4139	10868
4	Karnataka	188611	105599	3398	79605

Show the total population data in India.

	State or Union Territory	Population
0	Uttar Pradesh	199812341
1	Maharashtra	112374333
2	Bihar	104099452
3	West Bengal	91276115
4	Madhya Pradesh	72626809
5	Tamil Nadu	72147030
6	Rajasthan	68548437
7	Karnataka	61095297
8	Gujarat	60439692
9	Andhra Pradesh	49577103
10	Odisha	41974219
11	Telangana	35003674
12	Kerala	33406061
13	Jharkhand	32988134
14	Assam	31205576
15	Punjab	27743338
16	Chhattisgarh	25545198
17	Haryana	25351462
18	Delhi	16787941
19	Jammu and Kashmir	12267032
20	Uttarakhand	10086292

The chart below show the population density in India

Get the latitude and longitude:

	State or Union Territory	Latitude	Longitude	Active
0	Andhra Pradesh	14.750429	78.570026	87597
1	Arunachal Pradesh	27.100399	93.616601	690
2	Assam	26.749981	94.216667	19175
3	Bihar	25.785414	87.479973	29307
4	Chhattisgarh	22.090420	82.159987	3642
5	Delhi	28.669993	77.230004	10868
6	Gujarat	22.309425	72.136230	14027
7	Himachal Pradesh	31.100025	77.166597	1179
8	Jharkhand	23.800393	86.419986	8720
9	Karnataka	12.570381	76.919997	79605
10	Kerala	8.900373	76.569993	12721

We have downloaded all the required dependencies earlier in the report, and now we are ready to use the FOLIUM API service as follows:

Next, we will use the above function (get_category_type) to extract information from the JSON file related to venues in the AIIMS Hospital neighbourhood.

	name	categories	lat	Ing
0	AIIMS Metro Station	Light Rail Station	28.568243	77.207946
1	Tanishq South Ex	Jewelry Store	28.569292	77.208228
2	Hazoorilal Legacy	Jewelry Store	28.568438	77.210653
3	Jet Airways Lounge	Airport Food Court	28.569645	77.206465
4	Strength Gym	Gym	28.569383	77.204601

Based on the results generated by the FOURSQUARE API, we can locate the business site around AIIMS hospital and identify affected business locations in the red zone.

	categories	name
0	Jewelry Store	2
1	Airport Food Court	1
2	Gym	1
3	Light Rail Station	1

The next set of challenges that we need to tackle is to gain slightly more insights (profile) of the AIIMS hospital area. To simplify our analysis, we will just use the Euclidian (distance-based) clustering technique which is part of the unsupervised machine learning technique. In particular, we will use K-means clustering.

To start, we need to decide the best K-value for our analysis. We will let the K-means clustering algorithm to calculate this for us. The following lines of code will carry out the task.

The X-axis of the plot shows various number of K-values that we can use for our clustering analysis. As we can see from the chart, the curve starts flattening out at K=3. Therefore, we will use a K=3 to cluster neighbourhoods surrounding our proposed Covid-19 testing centre. Also, to better visualize the clustering of our neighbourhood, we will need to create a custom function that we call 'regioncolors' that will assign a colour to each area within a 500-meter radius of our proposed facility. The following line of code should help us with this task.

color	cluster_label	Ing	lat	categories	name	
red	2	77.207946	28.568243	Light Rail Station	AIIMS Metro Station	0
red	2	77.208228	28.569292	Jewelry Store	Tanishq South Ex	1
orange	1	77.210653	28.568438	Jewelry Store	Hazoorilal Legacy	2
green	0	77.206465	28.569645	Airport Food Court	Jet Airways Lounge	3
green	0	77.204601	28.569383	Gym	Strength Gym	4

At this stage, we have assigned cluster labels to all of our neighborhood venues, and we have assigned unique colors to each cluster. Next, we can then visualize our clustering analysis to a Folium map to see how all of these venues are geographically distributed within the 500-meter radius that we specified surrounding the proposed facility.

Results and Conclusion

The purpose of this Project aims to create an analysis and visualization to help provide information to local people who must be alerted to go out of the house from the distribution of the COVID-19 case in India within their specific states and union territories. Also, to better visualize the clustering of our neighbourhood, we will be creating a custom function that we call 'regioncolors' that will assign a colour to each area within a 500-meter radius of our proposed facility firmly signifying their safety. It also aims to provide information on the states or union territories that are most needed for a lot of mask distribution, according to population density and number of increasing cases in that area.

Further, this project is also going to provide information to the medical equipments production companies or businesses on which state or union territory hospitals that need the most medical equipments for COVID-19 treatment, based on the number of patients or cases in their specific state or union territory, possibly even additional medical personnel (doctors and nurses). It also provides information on the business neighbourhood which shall implement COVID-19 health protocol with a high discipline when "new normal" comes.