

Younghoon Kim

(nongaussian@hanyang.ac.kr)

QUERY PROCESSING WITH AN INVERTED INDEX

Google's Query Language Model

- Boolean and positional model
 - Boolean query
 - Conjunction: Hanyang University
 - Disjunction: Hanyang | University
 - Negation: Hanyang -University
 - Phrase query
 - "Hanyang University"
 - Phrase query with wildcards
 - "Hanyang * University"

- Query language model
 - Simple conjunctive Boolean and positional query language
 - E.g.,
 - Conjunction: Hanyang University
 - Phrase search: "Hanyang University "

Query Processing

"Hanyang University"

Query parsing

Merging inverted lists

https://www.hanyang.ac.kr > 1 Home - Hanyang Ur To promote international inter leaders, Hanyang University International Programs (Seou

> https://www.hanyang.ac.kr 한양대학교: 한양대 COPYRIGHT c 2021 HAN' 다면 챗봇에게 물어 보세요. st

https://www.hanyang.ac.kr Seoul Campus - H

... 표절검색 ithenticate · 표절 회. GO. COPYRIGHT c 20

Query processing: AND

Consider processing the query:

Brutus AND **Caesar**

- Locate Brutus in the Dictionary;
 - Retrieve its postings.
- Locate Caesar in the Dictionary;
 - Retrieve its postings.
- "Merge" the two postings (intersect the document sets):

Merge of Unsorted Posting Lists

4 1 6 9 3 2 : len = x

5 3 4 7 9 8 1 :len = y

Merge of Sorted Posting Lists

 Walk through the two postings simultaneously, outputs the common doc IDs

Outputs:

2 8

Crucial: postings sorted by docID.

Intersecting two posting lists (a "merge" algorithm)

```
INTERSECT(p_1, p_2)
      answer \leftarrow \langle \ \rangle
  2 while p_1 \neq \text{NIL} and p_2 \neq \text{NIL}
      do if docID(p_1) = docID(p_2)
              then ADD(answer, doclD(p_1))
                      p_1 \leftarrow next(p_1)
  5
                      p_2 \leftarrow next(p_2)
              else if doclD(p_1) < doclD(p_2)
                         then p_1 \leftarrow next(p_1)
                         else p_2 \leftarrow next(p_2)
       return answer
```

Time Complexity

 For the intersection of two of lengths x and y,

Time complexity = O(x + y)

Exercise

- Write an algorithm to process an OR query
- or (p₁, p₂)
 - answer ← <>
 - while p₁ is not null and p₂ is not null
 - if $doclD(p_1) < doclD(p_2)$
 - Add(answer, p₁)
 - $p_1 \leftarrow next(p_1)$
 - else if docID(p₁) > docID(p₂)
 - Add(answer, p₂)
 - $p_2 \leftarrow next(p_2)$
 - else
 - Add(answer, p₁)
 - $p_1 \leftarrow next(p_1)$
 - $p_2 \leftarrow next(p_2)$

Exercise

- Write an algorithm to process an AND-NOT query
- $and-not (p_1, p_2)$
 - answer ← <>
 - while p_1 is not null and p_2 is not null
 - if $doclD(p_1) < doclD(p_2)$
 - Add(answer, p₁)
 - $p_1 \leftarrow next(p_1)$
 - else if $doclD(p_1) > doclD(p_2)$
 - $p_2 \leftarrow next(p_2)$
 - else
 - $p_1 \leftarrow next(p_1)$
 - $p_2 \leftarrow next(p_2)$
 - while p₁ is not null
 - Add(answer, p₁)
 - $p_1 \leftarrow next(p_1)$

N-Way Merge

- Remind that
 - We have merged multiple runs more than two at a time using n-way merge in external mergesort
- N-way merge in intersection
 - A merge of runs in external sort aggregates all runs and the total length is not reduced
 - But intersection may produce <u>a much shorter</u> output → smaller intermediate runs to be materialized on disk

Binary vs. N-Way Merges

- N-way merge
 - Beneficial when the merged list are still so large that it should be written temporary on disk
- Binary merge
 - Advantageous if a binary merge can reduce the intermediate result enough to be maintained in main memory

PHRASE QUERIES AND POSITIONAL INDEXES

Phrase queries

- We want to be able to answer queries such as "Hanyang university" – as a phrase
- Thus, the sentence "I went to university near Hanyang high school" is not a match.
 - The concept of phrase queries has proven easily understood by users; one of the few "advanced search" ideas that works
 - Many more queries are implicit phrase queries
- For this, it no longer suffices to store only
 < term : docs > entries

Solution 1: Biword Indexes

- Index every consecutive pair of terms in the text as a phrase
- For example, the text "Friends, Romans, Countrymen" would generate the biwords
 - friends romans
 - romans countrymen
- <u>Each of these biwords is now a dictionary</u>
 <u>term</u>
- Two-word phrase query-processing is now immediate.

Longer Phrase Queries

- Longer phrases can be processed by breaking them down
- Hanyang university at Ansan can be broken into the Boolean query on biwords:

"Hanyang university" AND "university at" AND "at Ansan"

Without the docs, we cannot verify that the docs matching the above Boolean query do contain the phrase.

Can have false positives!

Issues For Biword Indexes

- False positives, as noted before
- Index blowup due to bigger dictionary
 - Infeasible for more than biwords, big even for them

 Biword indexes are not the standard solution (for all biwords) but can be part of a compound strategy

Solution 2: Positional indexes

In the postings, store, for each *term* the position(s) in which tokens of it appear:

Dictionary

Posting list

Example: Positional Inverted List

Which of docs 1,2,4,5 could contain "to be or not to be"?

- For phrase queries, we use a merge algorithm recursively at the document level
- But we now need to deal with more than just equality

Processing a phrase query

- Extract inverted index entries for each distinct term: *to, be, or, not.*
- Merge their doc:position lists to enumerate all positions with "to be or not to be".

Same general method for proximity searches

Processing a phrase query with two keywords

" to be".

Processing a phrase query with two keywords

" to be".

Processing a phrase query with multiple keywords

"to be or not to".

Processing a phrase query with multiple keywords

"to be or not to be".

Exercise

- Write a pseudocode for processing phrase query with two terms (distanced by d)
- **proximity** (p₁, p₂, d)
 - // p_1 , p_2 : cursor on each posting list
 - // d: the distance of terms for p_1 and p_2 in query
 - // DocID(p₁) : doc. ID pointed by the current cursor
 - // Pos(q₁) : position pointed by a secondary cursor

Exercise

- **proximity** (p_1, p_2, d)
 - answer ← <>
 - while p₁ is not null and p₂ is not null
 - if docID(p₁) < docID(p₂)
 - $p_1 \leftarrow next(p_1)$
 - else if docID(p₁) > docID(p₂)
 - $p_2 \leftarrow next(p_2)$
 - else
 - $q_1 \leftarrow init(p_1), q_2 \leftarrow init(p_2)$
 - While q₁ is not null and q₂ is not null
 - » If $Pos(q_1) + d < Pos(q_2)$ then $q_1 \leftarrow next(q_1)$
 - » Else if $Pos(q_1) + > Pos(q_2)$ then $q_2 \leftarrow next(q_2)$
 - » Else Add(answer, docID(p₁)) and exit while loop

Positional Index Size

- A positional index expands postings storage substantially
 - Even though indices can be compressed

Nevertheless, a positional index is now standardly used because of the power and usefulness of phrase and proximity queries ... whether used explicitly or implicitly in a ranking retrieval system.

Rules of Thumb

- A positional index is 2–4 times as large as a non-positional index
- Positional index size 35–50% of volume of original text
 - Caveat: all of this holds for "English-like" languages

QUERY PROCESSING OPTIMIZATION

Query optimization

- What is the best order for query processing?
- Consider a query that is an AND of n terms.
- For each of the n terms, get its postings, then AND them together.

Query: (Brutus AND Caesar) AND Calpurnia

$$O(n_1 + n_2 + n_{1+2} + n_3)$$

Query optimization example

- Process in order of increasing freq:
 - Heuristic: start with smallest set, then keep cutting further.

This is one of the reasons we kept document freq. in dictionary

Execute the query as (Calpurnia AND Brutus) AND Caesar.

More general optimization

e.g., (madding OR crowd) AND ignoble

Z

- Optimization algorithm
 - Get doc. freq.'s for all terms.
 - Estimate the size of each merge by the sum of its doc. freq.'s (conservative).
 - Process in increasing order of *posting list* sizes.

$$O(x+y+2)$$

More general optimization

e.g., (madding AND ignoble) OR (crowd AND ignoble)

Z

- Optimization algorithm
 - Enumerate all equivalent forms with the given query
 - Choose the one with smallest cost

O(?

Better if max(x,y) > z + min(x,z) + min(y,z)

Optimizing

- Limitation
 - Simple Boolean operation set
 - Simple summary information about a posting lists such as size and min / max doc IDs
- Optimization
 - Simple heuristic only possible
 - What if there is an advanced method to estimate the size of intersection more exact?
 - the order of merges really matters!

Exercise

- Find an optimal order for
 - Hanyang AND University AND ERICA
- Given information

Term	Freq.	Min DocID	Max DocID
Hanyang	100	1	115
University	290	89	782
ERICA	40	3	456

Intersection Size Estimation

- Given two terms t_1 and t_2
 - Minimum of
 - min (freq(t₁), freq(t₂))
 - min (MaxDocID(t₁), MaxDocID(t₂))
 - $\max (MinDocID(t_1), MinDocID(t_2)) + 1$

Term	Freq.	Min DocID	Max DocID	
Hanyang	100	1	115	
University	290	89	782	
Estimate size	Min = 100	Max = 89	Min = 115	
		115-89+1 = 27		
	Min(100, 87) = 27			
Min DocID	89	Max DocID	115	

Intersection Size Estimation

Term	Freq.	Min DocID	Max DocID
Hanyang	100	1	115
ERICA	40	3	456
Estimate size	Min = 40	Max = 3	Min = 115
		115-3+1 = 113	
	Min(40, 113) = 40		
Min DoclD	3	Max DocID	115

Intersection Size Estimation

Term	Freq.	Min DocID	Max DocID
University	290	89	782
ERICA	40	3	456
Estimate size	Min = 40	Max = 89	Min = 456
		456-89+1 = 368	
	Min(40, 368) = 40		
		,	
Min DoclD	89	Max DocID	456

Repeating two intermediate results must be materialized by one of following trees:

 Repeating two intermediate results must be materialized by one of following trees:

- How many query plan trees are there for
 - Hanyang AND University AND ERICA AND Ansan?
- Let us
 - Count all different query trees without considering equivalents

- 1. Enumerate all possible trees
- 2. For each tree, put n terms with all leaf nodes for all possible permutations

- Let
 - C_k: the number of all possible trees for merging k+1 posting list by k merge operations

Let

 - C_k: the number of all possible trees for merging k+1 posting list by k merge operations

X1 X2 X4

$$- C_3 = C_2 + C_0 +$$

$$\mathbf{C}_3 = \mathbf{C}_2 + \mathbf{C}_0 + \mathbf{C}_1 + \mathbf{C}_1 + \mathbf{C}_1$$

$$- C_3 = C_2 + C_0 + C_1 + C_1 + C_0 + C_2$$

Number of Query Plan Trees

- Consider finding the best merge-order for n posting lists r_1 r_2 . . . r_n
- There are (2(n-1))!/(n-1)! different merge orders for above expression. With n = 7, the number is 665280, with n = 10, the number is greater than 176 billion!

How Many Such Combinations Are There?

Slide from https://db inf uni-tuebingen de/staticfiles/teaching/ws1011/db2/db2-optimization pdf

- A join over n + 1 relations R_1, \ldots, R_{n+1} requires n binary joins.
- Its **root-level operator** joins sub-plans of k and n-k-1 join operators ($0 \le k \le n-1$):

 Let C_i be the number of possibilities to construct a binary tree of i inner nodes (join operators):

$$C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1}$$
.

Catalan Numbers

This recurrence relation is satisfied by **Catalan numbers**:

$$C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1} = \frac{(2n)!}{(n+1)!n!}$$
,

describing the number of ordered binary trees with n + 1 leaves.

For **each** of these trees, we can **permute** the input relations (why?) R_1, \ldots, R_{n+1} , leading to:

Number of possible join trees for an (n + 1)-way relational join

$$\frac{(2n)!}{(n+1)!n!}\cdot (n+1)! = \frac{(2n)!}{n!}$$

Cost-Based Optimization

- Consider finding the best merge-order for n posting lists r_1 r_2 . . . r_n
- There are (2(n-1))!/(n-1)! different merge orders for above expression. With n = 7, the number is 665280, with n = 10, the number is greater than 176 billion!
- No need to generate all the join orders. Using dynamic programming, the least-cost join order for any subset of $\{r_1, r_2, \dots r_n\}$ is computed only once and stored for future use.

Dynamic Programming in Optimization

- To find best merge tree for a set of *n* relations:
 - To find best plan for a set S of n relations, consider all possible plans of the form: $S_1 \bowtie (S S_1)$ where S_1 is any nonempty subset of S
 - Recursively compute costs for merging subsets of S to find the cost of each plan. Choose the cheapest of the $2^n 1$ alternatives
 - When plan for any subset is computed, store it and reuse it when it is required again, instead of re-computing it

Optimization Algorithm

```
procedure <u>findbestplan(</u>S)
   if (bestplan[S].cost \neq \infty)
         return bestplan[S]
   // else bestplan[S] has not been computed earlier, compute it now
   if (S contains only 1 relation)
          set bestplan[S].plan and bestplan[S].cost based on the best way
          of accessing S (= size of S)
   else for each non-empty subset S1 of S such that S1 \neq S
         P1 = findbestplan(S1)
         P2 = findbestplan(S - S1)
         A = best algorithm for merging results of P1 and P2
         cost = P1.cost + P2.cost + cost of A
         if cost < bestplan[S].cost
                  bestplan[S].cost = cost
                  bestplan[S].plan = "execute P1.plan; execute P2.plan;
                                        join results of P1 and P2 using A"
   return bestplan[S]
```

Optimization Algorithm

```
procedure \underline{\text{findbestplan}}(S) T(n)
    if (bestplan[S].cost ≠ ∞)
             return bestplan[S]
     // else bestplan[S] has not been computed earlier, compute it now
     if (S contains only 1 relation)
               set bestplan[S].plan and bestplan[S].cost based on the best way of accessing S (= size \ of \ S) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}
else for each non-empty subset S1 of S such that S1 \neq S

T(K) P1 = findbestplan(S1)

T(n-k)P2 = findbestplan(S - S1)
             A = best algorithm for merging results of P1 and P2
             cost = P1.\overline{cost} + P2.\overline{cost} + \overline{cost} of A
             if cost < bestplan[S].cost
                         bestplan[S].cost = cost
                         bestplan[S].plan = "execute P1.plan; execute P2.plan;
                                                    join results of P1 and P2 using A"
     return bestplan[S]
                       T(n) = \sum_{k=0}^{\infty} {n \choose k} 2^k 1^{n-k} = 3^n
```


Cost of Optimization

- With dynamic programming, time complexity of optimization with bushy trees is $O(3^n)$.
 - With n = 10, this number is 59000 instead of 176 billion!
 - time complexity of an algorithm quantifies the amount of time taken by an algorithm to run as a function of the length of the string representing the input
- Space complexity is $O(2^n)$
 - space complexity = amount of memory an algorithm needs

Left Deep Trees

In **left-deeptrees**, the right-hand-side input for each join is a relation, not the result of an intermediate merge

See http://iggyfernandez.wordpress.com/2010/11/27/sql-101-deep-left-trees-deep-right-trees-and-bushy-trees-oh-my/ for a discussion of tree types and optimization

Left-Deep Merge Optimization Algorithm

```
procedure findbestplan(S)
   if (bestplan[S].cost \neq \infty)
        return bestplan[S]
   // else bestplan[S] has not been computed earlier, compute it now
   if (S contains only 1 relation)
          set bestplan[S].plan and bestplan[S].cost based on the best way
          of accessing S (= size of S)
   else for each non-empty subset S1 of S such that |S1| = 1
         P1 = findbestplan(S1)
        P2 = findbestplan(S - S1)
        A = best algorithm for merging results of P1 and P2
         cost = P1.cost + P2.cost + cost of A
        if cost < bestplan[S].cost
                  bestplan[S].cost = cost
                  bestplan[S].plan = "execute P1.plan; execute P2.plan;
                                       join results of P1 and P2 using A"
   return bestplan[S]
```


Cost of Optimization

- To find best left-deep join tree for a set of *n* relations:
 - Consider n alternatives with one relation as right-hand side input and the other relations as left-hand side input.
 - Using (recursively computed and stored) least-cost join order for each alternative on left-hand-side, choose the cheapest of the n alternatives.
- If only left-deep trees are considered, time complexity of finding best join order is $O(n \ 2^n)$
 - Space complexity remains at $O(2^n)$
- Cost-based optimization is expensive, but worthwhile for queries on large datasets (typical queries have small n, generally < 10)