P1. Să se stabilească formulele

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$
$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$$

derivând formula de interpolare a lui Lagrange.

P2. (a) Considerăm iterația $x_{n+1}=F(x_n)$ cu punctul fix α , care diverge deoarece $|F'(\alpha)|>1$. Arătați că iterația

$$x_{n+1} = F^{-1}(x_n)$$

converge către α .

(b) Aplicați rezultatul de mai sus pentru a calcula cea mai mică rădăcină pozitivă a ecuației $x - \tan x = 0$.

P1. Să se stabilească formulele

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$
$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$$

derivând formula de interpolare a lui Lagrange.

P2. (a) Considerăm iterația $x_{n+1}=F(x_n)$ cu punctul fix α , care diverge deoarece $|F'(\alpha)|>1$. Arătați că iterația

$$x_{n+1} = F^{-1}(x_n)$$

converge către α .

(b) Aplicați rezultatul de mai sus pentru a calcula cea mai mică rădăcină pozitivă a ecuației $x - \tan x = 0$.

1