Homework 5

Jack Brolin, Abhiram Nallamalli

July 2023

P. 1 Consider the linear programming problem:

$$\begin{aligned} & \min \, x_1 - x_2 \\ & \text{s.t. } 2x_1 + 3x_2 - x_3 + x_4 \leq 0 \\ & 3x_1 + x_2 + 4x_3 - 2x_4 \geq 3 \\ & - x_1 - x_2 + 2x_3 + x_4 = 6 \\ & x_1 \leq 0 \\ & x_2, x_3 \geq 0. \end{aligned}$$

Write down the corresponding dual problem.

Following the table from section 4.2 of the text, the corresponding dual problem is as follows:

$$\begin{array}{l} \text{Max } 3p_2+6p_3\\ \text{s.t. } 2p_1+3p_2-p_3\geq 1\\ p_1+p_2-p_3\leq -1\\ -p_1+4p_2+2p_3\leq 0\\ p_1-2p_2-p_3=0\\ p_1\leq 0\\ p_2\geq 0\\ p_3 \text{ is free} \end{array}$$

- **P. 2** Consider a linear programming problem in standard form and assume that the rows of *A* are linearly independent. For each one of the following statements, provide either a proof or a counterexample.
 - a. Let x^* be a basic feasible solution. Suppose that for every basis corresponding to x^* , the associated basic solution to the dual is infeasible. Then, the optimal cost must be strictly less than $c'x^*$.
 - b. The dual of the auxiliary primal problem considered in Phase I of the simplex method is always feasible.
 - c. Let p_i be the dual variable associated with the i^{th} equality constraint in the primal. Eliminating the i^{th} primal equality constraint is equivalent to introducing the additional constraint $p_i = 0$ in the dual problem.
 - d. If the unboundedness criterion is satisfied when we solve the primal with the simplex method, then the dual problem is infeasible.
 - a. True. We know that the optimal cost of the dual is less than or equal to the optimal most of the primal. If x^* is a basic feasible solution of the primal but infeasible for the dial, the its cost me be greater than the cost of the dual.
 - b. True. Since the primal auxiliary problem is always feasible, the dual is feasible too.
 - c. True. Constraints are of the form $\sum p_i a_i$, so setting $p_i = 0$ effectively eliminates it.
 - d. True. If the primal cost goes to $-\infty$ than the dual is infeasible.

 ${f P.~3}$ Let A be a symmetric square matrix. Consider the linear programming problem:

$$\begin{array}{l} \text{minimize } c'x \\ \text{subject to } Ax \geq c \\ x \geq 0 \end{array}$$

Prove that if x^* satisfies $Ax^* = c$ and $x^* \ge 0$, then x^* is an optimal solution.

Proof. Consider the dual problem:

$$\max p'b$$
s.t. $p'A \le c'$

$$p \ge 0$$

Let x^* satisfy $Ax^*=c$ and $x^*\geq 0$. Since $A\in GL_n(\mathbb{R})$, basic linear algebra tells us $p'A\leq c'=A'p\leq c$. But A is a symmetric matrix, so A'=A and thus $A'p\leq c=Ap\leq c$ with $p\geq 0$. Now if we let $p^*=x^*$ we see $p^{*'}=c^*x$ so by corollary 4.2 x^* and p^* are optimal solutions.

P. 7 Consider the following pair of linear programming problems:

minimize
$$c'x$$
 maximize $p'b$ subject to $Ax \ge b$ subject to $p'A \le c'$ $x \ge 0$, $p \ge 0$.

Suppose at least one of these two problems has a feasible solution. Prove that the set of feasible solutions to at least one of the two problems is unbounded.

Proof. We are proving Clark's Lemma.

- 1. If the primal set us unbounded, the dual can be either bounded or unbounded.
- 2. If the primal set is bounded, consider the problem:

Say w is a solution to this problem, so $w'A \leq c'$ and $w \geq 0$. Say d is a solution to the original dual problem and let $\theta \geq 0$. If we take $d+\theta w$ and show that this is a feasible solution to the original dual problem, we get that the dual is unbounded. Indeed, $d+\theta w \geq 0$ as $d,\theta,w \geq 0$ and $d+\theta w'A \leq c'$ since $(\theta w)A \leq -c' \Rightarrow (d+\theta w)'A \leq c'$.

P. 10 Consider the problem:

$$\min \max_{i=1,\dots,m} (a_i' x - b_i)$$

s.t. $x \in \mathbb{R}^n$.

Let v be the optimal value of the above optimization problem, let A be the $m \times n$ matrix whose rows are a'_1, \ldots, a'_m , and let b be the vector whose components are b_1, \ldots, b_m .

- a. Consider any vector $p \in \mathbb{R}^m$ such that $p'A = 0', p \ge 0$, and $\sum_{i=1}^m p_i = 1$. Show that $-p'b \le v$.
- b. In order to obtain the best possible lower bound of the form obtained in part (a), we consider the linear program:

$$\max -p'b$$
s.t. $p'A = 0'$

$$\sum_{i=1}^{m} p_i = 1$$

$$p \ge 0.$$

Show that the optimal cost of the above linear program is v.

a. *Proof.* We first convert the problem into a linear programming problem following the same instructions we used in chapter 1. Thus, the given problem is equivalent to

min
$$z$$

s.t. $z \ge a'_1 x - b_1$
 \dots
 $z \ge a'_m x - b_m$

Then we can get the corresponding dual:

$$\max - p'b$$
s.t. $p'A = c' = 0$

$$\sum_{i=1}^{m} p_1 = 1$$

$$p \ge 0$$

By weak duality, $p'b \le c'x = v$.

b. *Proof.* From the above construction we can see that we have arrived at the dual, and thus string duality implies that the optimal costs are the same. i.e. v for the given problem.