AI APPLICATIONS IN AGRICULTURE

Braxton, Lindabeth, Zach

AGENDA

Problem Statement

Research

Code Discussion

Ethical Concerns

Future

PROBLEM STATEMENT

How can AI be used in agriculture to improve inefficiencies and increase overall production?

RESEARCH

Applications of Artificial Intelligence in Agriculture

- Discusses different ways AI can be used: Soil management, crop management, weed management, disease management, etc.
- Summarizes Al techniques in agriculture listing potential benefits and limitations for each
- Lists potential challenges and the outlook for AI use in agriculture

RESEARCH

Assessment of Finishing Pig Weight

- Develops pig weight estimation methods from a handheld imaging system
- Traditional 3D image systems have used both CNN and ANN models in live weight estimation
- The use of a handheld, mobile imaging tool to collect depth data would reduce the need for "perfect positioning" and costly camera installations

AI IN AGRICULTURE

CODE DISCUSSION

Detecting Disease on Citrus Leaves

Step 1: Input TensorFlow citrus_leaves dataset

Step 2: Preprocessing

Step 3: Segmentation

Step 4: Feature Extraction

Step 5: Feature Selection

Step 6: Classification

AI IN AGRICULTURE

THE FUTURE

Meeting Growing Demand

- Improvement of land usage
- Building infrastructure
- User-friendly systems
- Robotics and autonomous systems

CITATIONS

Apply a Gauss filter to an image with Python. (2020, Dec 26). GeeksforGeeks. Retrieved April 10, 2023 from https://www.geeksforgeeks.org/apply-a-gauss-filter-to-an-image-with-python/

Aslam, N. (2022, June 08). Introduction to Saliency Map in an Image with TensorFlow 2.x API. *Analytics Vidhya*. Retrieved 2023, April 12 from https://www.analyticsvidhya.com/blog/2022/06/introduction-to-saliency-map-in-an-image-with-tensorflow-2-x-api/

Eli-Chukwu, N.C. (2019). Applications of Artificial Intelligence in Agriculture: A Review. *Engineering, Technology & Applied Science Research*, 9(4), 4377-4383. Retrieved 2023, April 10 from https://pdfs.semanticscholar.org/6e08/7108aa8048da8cfc82cdecb7071a55bab488.pdf

Image Classification. (2022, Dec 15). TensorFlow. Retrieved April 10, 2023 from https://www.tensorflow.org/tutorials/images/classification#load_data_using_a_keras_utility

Image Segmentation using Python's scikit-image module. (2022, Sep 21). GeeksforGeeks. Retrieved 2023, April 10 from https://www.geeksforgeeks.org/image-segmentation-using-python's scikit-image-module/

Kuznetsof, I. (2019, April 28). Image Augmentation in Numpy. The spell is simple but quite unbreakable. *Medium*. Retrieved 2023, April 12 from https://medium.com/@schattv/image-augmentation-in-numpy-the-spell-is-simple-but-quite-unbreakable-e1af57bb50fd

Nguyen, A.H., Holt, J.P., Knauer, M.T., Abner, V.A., Lobaton, E.J., Young, S.N. (2023). Towards rapid weight assessment of fnishing pigs using a handheld, mobile RGB-D camera. *Biosystems Engineering*, 226, 155-168. https://doi.org/10.1016/j.biosystemseng.2023.01.005. Retrieved 2023, April 09 from https://www.sciencedirect.com/science/article/abs/pii/S1537511023000107?dgcid=coauthor

Rauf, H.T., Saleem, B.A., Lali, M.I.U., Khan, M.A., Sharif, M., Bukhari, S.A.C. (2019). A Citrus Fruits and Leaves Dataset for Detection and Classification of Citrus Diseases Through Machine Learning. *Mendeley Data*. Retrieved 2023, April 09 from https://data.mendeley.com/datasets/3f83gxmv57/2

Rauf, H.T., Saleem, B.A., Lali, M.I.U., Khan, M.A., Sharif, M., Bukhari, S.A.C. (2019). A Citrus Fruits and Leaves Dataset for Detection and Classification of Citrus Diseases Through Machine Learning. *National Library of Medicine*. Retrieved 2023, April 09 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731382/

Top Hat and Black Hat Transform using Python-OpenCV. (2023, Jan 03). GeeksforGeeks. Retrieved April 11, 2023 from https://www.geeksforgeeks.org/top-hat-and-black-hat-transform-using-python-opency/