

Idempotent Clifford Modules Ricardo Suarez Advisors: Dr. Ivona Grzegorczyk (CSUCI), Dr. Anna Fino (UNITO)

ABSTRACT+ Elementary Background

IDEMPOTENT CLIFFORD MODULES AND THOM CLASSES

RICARDO SUÁREZ

ABSTRACT. The aim of this paper is to construct examples orientation classes for oriented vector bundles E in the K - theory of their thom spaces $\tau(E)$. The method of constrction is the use of idempotent Clifford modules.

Definition 1.2. If X be a Riemannian manifold. A complex vector bundle $S \xrightarrow{\pi} X$ is called a Clifford module if it carries a fibrewise action, called Clifford multiplication

$$\mu : \mathbb{C}l(X) \to End_{\mathbb{C}}(S).$$

Definition 1.3. If an Oriented Riemannian vector bundle E has a spin structure it also has an associated real spinor bundle $S(E) = P_{spin}(E) \times_{\rho} M$, where M is a left Clifford module and $\rho: Spin(n) \to SO(M)$ is the left module multiplication by elements in the spin group. The complex spinor bundle is the complexification the real spinor bundle, that is $S_{\mathbb{C}}(E) = P_{spin}(E) \times_{\rho} (M \otimes \mathbb{C}), \text{ where } M \otimes \mathbb{C} \text{ is a complex left module for } Cl_n \otimes \mathbb{C}$

• Let $E \xrightarrow{\pi} X$ be a real 8m-dimensional vector bundle over a compact space X, then $\pi^*S(E)$ with its original \mathbb{Z}_2 grading inherited from the \mathbb{Z}_2 grading of the spinor bundle S(E), along with Clifford mulplication defined as

$$\mu : \pi^* S^{\pm}(E) \to \pi^* S^{\mp}(E)$$

, with $\mu_e \phi = e \cdot \phi$ is the fibrewise Clifford multiplication, for a given $e \in E_x$. Then the class $\theta(E) := [\pi^*S^+(E), \pi^*S^-(E), \mu] \in KO_{cpt}(E)$ is a KO theory orientation class for E. In particular the map

$$i_!: KO(X) \xrightarrow{\cong} KO_{cpt}(E),$$

 $i_!([E]) = [\pi^*E] \cdot \theta(E)$ is the Thom isomorphism in the KO-theory of E.

• If $E \xrightarrow{\pi} X$ be an oriented vector bundle of dimension 2m over a compact space, if E has a spin structure then the class

 $s(E) = [\pi^* \mathcal{S}^+_{\mathbb{C}}(E), \pi^* \mathcal{S}^-_{\mathbb{C}}(E), \mu] \in K_{cpt}(E)$

is a K-theory orientation for E. and the map

$$i_!:K(X)\xrightarrow{\cong} K_{cpt}(E)$$

, where $i_!([E]) = (\pi^*[E]) \cdot s(E)$ is a Thom isomorphism for the K theory of E.

Thus according to this theorem the classes $\theta(E)$, $\delta(E)$, s(E) are orientation. Thom classes for KO and K theory respectively and they generate the isomorphisms that make $K_{cpt}(E)$ (resp $KO_{cnt}(E)$) K(X) (resp KO(X)) modules, generated by corresponding Thom class.

Definition 2.4. Minimal left ideals of the form $Cl_{p,q} \cdot F$, where F is the idempotent F = $\frac{1+e_{\alpha_1}}{2} \cdot \dots \cdot \frac{1+e_{\alpha_k}}{2}$ constructed from the maximal set of commuting involutions, will be what we call idempotent Clifford modules or idempotent Spinor spaces.

Generic construction of the Thom classes

IDEMPOTENT CLIFFORD MODULES AND THOM CLASSES

For even dimensions the bundles $S(E) = P_{spin}(E) \times_{\rho} Cl_n \cdot F$ and $S^{\mathbb{C}}_n = P_{spin}(E) \times_{\rho} Cl_n \cdot F$ $Cl_n \cdot F \otimes \mathbb{C}$ decompose into Eigen bundles via the left multiplication endomorphism of the volume element, also these bundles inhert the natural \mathbb{Z}_2 ove grading over X from the Clifford algebras.

Now if if we E be an even dimensional oriented vector bundle with a spin structre over X a compact space, and D(E) is unit disk bundle with S(E) the unit sphere bundle. Then under the pull back diagram

Under Clifford multiplication have the isomorphism $\mu: (\pi^* \mathcal{S}_{2m}^{\mathbb{C}})^{\pm} \xrightarrow{\cong} (\pi^* \mathcal{S}_{2m}^{\mathbb{C}})^{\mp}$, over S(E)

The triple $\eta(E)_{\mathbb{C}} = [(\pi^* \mathcal{S}(E)_{2m}^{\mathbb{C}})^+, (\pi^* \mathcal{S}(E)_{2m}^{\mathbb{C}})^-, \mu] \in \tilde{K}(\tau(E))$ determines a class in the reduced complex K-theory of the Thom space $\tau(E) = D(E)/S(E)$.

Acknowledgements

Enter acknowledgements here...

5. Acknowledgments

Id like to thank my advisors Dr. Ivona Grzegorczyk and supervisor Dr. Anna Fino, and UNITO for financing my research and providing me guidance in this topic.

Dimension 2 example

Here we compute our examples in dimension 2. (In dimension 2 we express the representatives in terms of complexified quaternionic bundles.), In the paper we also come up with a dimension 4 example

As is well known $Cl_{0,2} \cong \mathbb{H}$, thus we choose $Cl_{0,2}$ as a \mathbb{Z}_2 graded Clifford module over itsef with $Cl_{0,2}^0 = span_{\mathbb{R}}\{1, e_{12}\}$, and $Cl_{0,2}^1 = span_{\mathbb{R}}\{e_1, e_2\}$. It also worth noting that $Cl_{0,2}^0 \cong \mathbb{C}$, with $Spin(2) \cong SO(2)$. When we complexify the Clfford algebra we get isomorphism $\mathbb{C}l_2 = Cl_{0,2} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C}(2) \cong \mathbb{C} \otimes \mathbb{H}$

Complexifying the Clifford module and choosing the primitive idempotent $F = \frac{1 \otimes 1 + e_{12} \otimes i}{2}$, gives us the complex Clifford module, $\mathbb{C}l_2 \cdot F = span_{\mathbb{R}}\{(1 \otimes 1) \cdot F, (e_1 \otimes 1) \cdot F, (e_2 \otimes 1) \cdot F\}$ $F, (e_{12} \otimes 1) \cdot F$, giving us the following equivalences that define Clifford multiplication;

- $(1 \otimes 1) \cdot F = (e_{12} \otimes i) \cdot F$
- $(e_1 \otimes 1) \cdot F = -(e_2 \otimes i) \cdot F$
- $(e_2 \otimes 1) \cdot F = (e_1 \otimes i) \cdot F$
- $(e_{12} \otimes 1) \cdot F = -(1 \otimes i) \cdot F$.

With the obvious grading and Clifford multiplication on the fibres defined by the module equivalences, we obtain for a Riemannian spin vector bundle of rank 2 over a compact Riemannian manifold X, the triple

 $\eta_{\mathbb{C}}(E) = [\pi^*(S(E))_{0,2}^{\mathbb{C}})^0, \pi^*(S(E)_{0,2}^{\mathbb{C}})^1, \mu].$

Giving us a representative of the Thom class in the reduced k-theory of the Thom space of

BIBLIOGRPPHY

Enter cited Literature here...

R. SUAREZ

- References M. Atiyah , K-Theory, Benjamin, New York 1967.
- [2] M. Atiyah, Bott Periodicity and index of Elliptic operators, Quart. J. Math Oxford, 19, 1968. [3] M. Atiyah, R. Bott and A. Shapiro, Clifford Modules, Topology 3, 1964.
- [4] A. Besse, Einstein Manifolds. Springer, 1987.
- A. Bilge, S. Koçak, and S. Uğuz, Canonical Bases for Real Representations of Clifford Algebras, Linear Algebra and Its Applications 2 (2008), 417-439.
- [6] R Bott , Lectures on K(X), Benjamin, New York 1969.
- R. Bott L. Tu , Differential Forms in Algebraic Topology . Springer , 1982. [8] G.Calvaruso, M.Castrillon Lopez, Pseudo Riemannian Homogeneous Structures. Springer Devel-
- opments in Mathematics, 2019. [9] A. Dimakis, A New Representation for Spinors in Real Clifford Algebras, Clifford Algebras and Their Applications in Mathematical Physics, Chisholm, J. S. R. Springer, Netherlands, 49-60, 1986.
- [10] G. Hile and P. Lounesto, Matrix Representations of Clifford Algebras, Linear Algebra and Its Appli-
- [11] F. Hirzebruch , Topological Methods in Algebraic Geometry, Springer-Verlag, New York 1978. [12] A. Hatcher Algebraic Topology, Cambridge University Press, Cambridge, 2002.
- [13] D. Hussenmoller , Fibre bundles, GTM, Springer, New York 1975. [14] D.Joyce, Riemannian Holonomy Groups and Calibrated Geometry. Oxford Graduate Texts In Math-
- ematics, 2007. [15] D.Joyce, Riemannian Holonomy Groups and Calibrated Geometry. Oxford Graduate Texts In Math-
- [16] M.Karoubi , K-Theory, an Introduction, Springer Verlag, Berlin-Heidelberg -New York 1978.
- [17] S.Kobayashi, Transformation Groups in Differential Geometry. Springer, 1995. [18] S.Kobayashi, K.Nomizu, Foundations of Differential Geometry Volume 1. Wiley Classics Library,
- [19] H.B.Lawson Jr. and M-L Michlsohn , Spin Geometry, Princeton University Press, Princeton ,NJ 1989.
- [20] P. Lounesto, Clifford Algebras and Spinors, Second Edition. Cambridge University Press, Cambridge,
- [21] P. Lounesto and G. Wene, Idempotent Structure of Clifford Algebras, Acta Applicandae Mathematica,(1987), 9.
- [22] E. Meinrenken, Clifford Algebras and Lie Theory. Springer, Berlin, 2013. [23] A. Mukherjee , Atiyah-Singer Theorem An Introduction. Hindustan Book Agency, 2013.
- [24] Ian R. Porteous, Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge,
- [25] L. Tu, An Introduction to Manifolds. Springer Universitext, 2011. [26] R.O. Wells Jr, Differential Analysis on Complex Manifolds, Springer Verlag, New York 1980.

DEPARTAMENT OF MATHEMATICS, UNITO , TORINO , ITALY Email address: ricardo.suarez532@myci.csuci.edu