Contents

- Plot absolute d-prime and p-val for increasing fingerprint length/size

- Display mean average precision (MAP) values

- Display realtive identification percentages: MZ, DZ, FS tables

Summary: 1. MATLAB demo function - generate sample plots reported in paper

Preprocessing required: * REQUIREMENTS: 1. report.txt files for each modality (see below) 2. twin/sibling pair ids (numeric id's between 1 to number of subjects/images based on the subject ordering/reading list) for example: MZ sub id set and MZ pair id set etc.. 3. Note: The randomized sample includes pairs of MZ; DZ; Full-Siblings (FS); Maternal Half Siblings (MHS) and Paternal Half Siblings (PHS)

```
NOTE: a sample set of report files and twin/sibling pair ids (randomized) have been included in data folder for illustration purposes
```

Brief Overview of pre-processing: 1. We assume that Bag-of-features (BoF) have been generated and approximate matching has been performed using the code available at http://www.matthewtoews.com/ THE PRE-PROCESSING involves running: i. featExtract.exe for each image (.nii files): output will be .key files containing 3D SIFT features ii. featMatchMultiple -t 2 -r- -n 20 *.key (for all .key files of a given modality): output will be multiple files including report.txt 2. report.txt generated for each modality will act as a input for the following analysis 3. We have included sample report files (Random permutation applied on our set) 4. Note: cross check the file order read in featMatchMultiple.exe and the sibling/twin pair IDs

```
ADDITIONAL processing/files:

1. feature match visualization requires 3D SIFT feature files (not included here)

2. Significance values (-log10 pvalues) in paper are based on sample size matches using bipartite matching (age-based);

However, sample illustration uses random sample size matching

3. Similarly hemisphere asymmetry analysis and pairwise feature correspondence analysis requires restricted data and thus have been excluded here
```

Reference: Multi-modal brain fingerprinting: a manifold approximation based framework Authors: Kuldeep Kumar (kkumar@livia.etsmtl.ca), Laurent Chauvin Matthew Toews (Matthew.Toews@etsmtl.ca) Olivier Colliot and Christian Desrosiers (christian.desrosiers@etsmtl.ca)

LIVIA, ETS Montreal, Canada January 2018

Standard figure parameters

```
Line_width = 3;
Marker_size= 14;
leg_FontSize=13;
gca_FontSize = 32;

color_option{1} = 'r';
color_option{2} = 'g';
color_option{3} = 'b';
color_option{4} = 'c';
color_option{5} = 'm';
color_option{6} = 'y';
color_option{6} = 'y';
color_option{7} = 'k';
```

```
marker_option{1} = '*';
marker_option{2} = 'o';
marker_option{3} = 'd';
marker_option{4} = 's';
marker_option{5} = 'x';
marker_option{6} = '^';
marker_option{7} = '+';
```

Flags and initializations

flag to display figure: 1: yes, 0: no

Load/Read twin/sibling pair info.

Load subject proximity graph:

```
max_modality_combinations= 9;
                                                                            % hard coded for illustration
cell_NxN_data_matrix = cell(max_modality_combinations,1);
\mbox{\%} Set of modalities used for illustration
cell modality{1} = 'FA';
cell_modality{2} = 'T1w 125mm';
cell_modality{3} = 'T2w 125mm';
cell modality{4} = 'rfMRI';
cell_modality{5} = 'T1w+FA';
cell_modality{6} = 'Tlw+rfMRI';
cell_modality{7} = 'FA+rfMRI';
cell modality{8} = 'T1w+T2w+FA';
cell_modality{9} = 'T1w+T2w+FA+rfMRI';
%DATA: load SAMPLE report files (feature match count) for each modality
cell_report_filename = { 'SAMPLE_report_FA.mat';
                          'SAMPLE_report_T1w_125mm';
                          'SAMPLE_report_T2w_125mm';
                          'SAMPLE rfMRI pairwise pearson corr ICA100'; };
% For report.txt files:
% 1. read feature match count files (report.txt)
% 2. Obtain Normalized Jaccard Similarity
cell_report_files = cell(3,1);
for loop_i=1:(length(cell_report_filename)-1)
    load(['../data/' cell_report_filename{loop_i}]);
    cell report files{loop i,1} = SAMPLE report mat;
    \verb|cell_NxN_data_matrix{loop_i}| = \verb|compute_normalized_jaccard_similarity_matrix(cell_report_files(loop_i,1)); \\
% read rfMRI NxN_data_matrix
load(['../data/' cell_report_filename{length(cell_report_filename)}]);
cell_NxN_data_matrix(length(cell_report_filename)) = SAMPLE_rfMRI_pairwise_pearson_corr_ICA100 ;
```

Create Modality combinations (Hard coded for illustration purpose)

```
% 1. Tlw + FA
loop i = 5;
cell_NxN_data_matrix{loop_i} = compute_normalized_jaccard_similarity_matrix(cell_report_files(1:2));
% 2. Tlw +rfMRI: (linear combination, with combination weights computed using a grid
% search, to optimize MAP values )
loop_i = 6;
lambda = 0.2;
cell NxN data matrix{loop i} = lambda*cell NxN data matrix{4}+(1-lambda)*cell NxN data matrix{2};
% 3. FA + rfMRI (linear combination, with combination weights computed using a grid
% search, to optimize MAP values )
loop i = 7;
lambda = 0.4;
cell NxN data matrix{loop i} = lambda*cell NxN data matrix{4}+(1-lambda)*cell NxN data matrix{2};
% 4. T1w + T2w + FA (1.25mm)
loop i=8;
cell_NxN_data_matrix{loop_i} = compute_normalized_jaccard_similarity_matrix(cell_report_files(1:3));
% 5. T1w + T2w + FA + rfMRI
loop i = 9;
lambda = 0.2;
cell NxN data matrix{loop i} = lambda*cell NxN data matrix{4}+(1-lambda)*cell NxN data matrix{8};
```

Example 1: Compact fingerprint generation

Example 2: Compact fingerprint analysis: d-prime and -log10 p-value MZ vs DZ plots (Fig 2.)

```
% compute d-prime and -log10 p-value for pairwise fingerprint distance: MZ vs DZ
 array_num_spect_component = (5:5:500)';
 array modality set = [1; 2; 5;];
                                                                            % FA, T1w and T1w + FA (all at 1.25mm resolution)
 num_sibtype_comparisons = (max_sib_type*(max_sib_type-1))/2;
                                                                           % 1. MZ vs DZ, 2: MZ vs FS, 3: DZ vs FS
 cell d prime = cell(length(array num spect component), num sibtype comparisons, length(array modality set));
 \verb|cell_pval_ttest2| = \verb|cell(length(array_num_spect_component), num_sibtype_comparisons, length(array_modality_set)); \\
 cell_pval_ranksum = cell(length(array_num_spect_component),num_sibtype_comparisons,length(array_modality_set));
for loop_i=1:length(array_modality_set)
    % compact fingerprint generation
   NxN_data_matrix = cell_NxN_data_matrix(array_modality_set(loop_i),1);
    temp_cell_compact_fingerprint = compute_compact_fingerprint_size_impact(NxN_data_matrix,array_num_spect_component);
    for loop_num_spect = 1:length(array_num_spect_component)
       % compute Euclidean Distance between fingerprint pairs for MZ, DZ, FS
       mat_compact_fingerprint = temp_cell_compact_fingerprint{loop_num_spect,1};
       cell_pairwise_distance = cell(max_sib_type,1);
       for loop sib type=1:max sib type
           sub id set = SAMPLE_cell_subID_and_sibpairID{loop_sib_type,1};
           pair_id_set = SAMPLE_cell_subID_and_sibpairID{loop_sib_type,2};
           [cell pairwise distance{loop sib type,1}] = compute pairwise fingerprint distance sibling pairs(sub id set,pair id set,mat compac
t fingerprint);
      end
```

```
% compute d-prime and pval for MZ vs DZ, MZ vs FS, and DZ vs FS
temp_count_loop_comparison =1;
for loop_sib_type_1 = 1: (max_sib_type=1)
    array_pairwise_distance_1 = cell_pairwise_distance{loop_sib_type_1,1};

for loop_sib_type_2 = (loop_sib_type_1 + 1):max_sib_type
    array_pairwise_distance_2 = cell_pairwise_distance{loop_sib_type_2,1};

    cell_d_prime{loop_num_spect, temp_count_loop_comparison,loop_i} = compute_d_prime(array_pairwise_distance_1, array_pairwise_distance_2);

    [cell_pval_ttest2{loop_num_spect,temp_count_loop_comparison,loop_i},cell_pval_ranksum{loop_num_spect,1,loop_i}] = compute_pval_ttest2_ranksum(array_pairwise_distance_1, array_pairwise_distance_2);
    temp_count_loop_comparison = temp_count_loop_comparison + 1;
    end
    end
end
end
```

Plot absolute d-prime and p-val for increasing fingerprint length/size

Absolute d-prime: MZ vs DZ

-log10 p-value (ttest2): MZ vs DZ

Example 3: Compact fingerprint comparison plots: MZ, DZ, FS pairs (Fig 3.)

```
array_modality_set = [ 1; 2; 5;];
                                                                           % FA, Tlw and Tlw + FA
num spect component = 150;
                                                                           % number of eigen vectors in fingerprint
cell_pairwise_distance = cell(max_sib_type,length(array_modality_set));
for loop_i=1:length(array_modality_set)
    % compact fingerprint generation
   NxN data_matrix = cell_NxN_data_matrix(array_modality_set(loop_i),1);
   mat_compact_fingerprint = compute_compact_fingerprint(NxN_data_matrix,num_spect_component);
    for loop sib type=1:max sib type
       sub_id_set = SAMPLE_cell_subID_and_sibpairID{loop_sib_type,1};
       pair_id_set = SAMPLE_cell_subID_and_sibpairID{loop_sib_type,2};
       [cell pairwise distance{loop sib type,loop i}] = compute pairwise fingerprint distance sibling pairs(sub id set,pair id set,mat comp
act_fingerprint);
    % get data for MZ, DZ, FS for a given modality
   cell_data = cell_pairwise_distance(:,loop_i);
    save_plot_name = [];
   modality = cell_modality(array_modality_set(loop_i));
    %count density histogram
    plot_compact_fingerprint_analysis_countdensity_histogram(cell_data,modality,save_plot_name);
```


Example 4: Rank Reterival Analysis: Mean Average Precision Table (Table 2, partial)

```
% compute rank reterival measures for each sibling type and a given modality/combination
            1. Mean Avg Precision and
            2. mean recall@10
           Additional outputs include detailed measures:
                     3. average precision array
                      4. recall@k (k=1 to num_sub -1)
                      5. precision@k (k=1 to num sub -1)
\ensuremath{\mathtt{\%}} Note: We can either use i) the subject proximity graphs directly or
% ii) compute pairwise Euclidean distance for compact fingerprints
flag_option_map = 1;
                                                                            % 1: subject proximity graphs 0: distance
array_modality_set = (1:9)';
num spect component = 150;
                                                                            % number of eigen vectors in fingerprint
cell_compact_fingerprint = cell(length(array_modality_set),1);
% rank reterival measures
mat_mean_avg_precision = zeros(length(array_modality_set), max_sib_type);
mat_mean_recall_at_10 = zeros(length(array_modality_set), max_sib_type);
% additional detailed measures
cell_array_avg_precision = cell(length(array_modality_set), max_sib_type);
cell_mat_recall_at_k = cell(length(array_modality_set), max_sib_type);
cell mat precision at k = cell(length(array_modality_set), max_sib_type);
 for loop_i=1:length(array_modality_set)
        if(flag_option_map==1)
            % subject proximity graphs: Normalized Jaccard Similarity measures
            NxN_data_matrix = cell_NxN_data_matrix{array_modality_set(loop_i),1};
            flag_distance_or_similarity = 1;
                                                                            %: 0-distance: 1-similarity
            % compact fingerprint generation
            NxN data matrix = compute compact fingerprint(cell NxN data matrix{array modality set(loop i),1},num spect component);
```

Display mean average precision (MAP) values

```
data_matrix = round(mat_mean_avg_precision,3);
cell_column = cell_sibling_type(1:max_sib_type);
cell_row_label = cell_modality;
display_table_values(data_matrix, cell_column, cell_row_label);
```

sTable =

	MZ DZ		FS	
FA	0.964	0.219	0.16	
T1w 125mm	0.831	0.136	0.121	
T2w 125mm	0.879	0.173	0.132	
rfMRI	0.968	0.352	0.205	
T1w+FA	0.977	0.279	0.21	
Tlw+rfMRI	0.984	0.352	0.229	
FA+rfMRI	0.99	0.439	0.276	
T1w+T2w+FA	0.991	0.354	0.247	
T1w+T2w+FA+rfMRI	0.997	0.546	0.371	

Example 4: Mean Recall@10 values (Supplement material Fig Table 8, partial)


```
% Display mean recall @ 10 values
data_matrix = round(mat_mean_recall_at_10,3);
cell_column = cell_sibling_type(1:max_sib_type);
cell_row_label = cell_modality;
display_table_values(data_matrix, cell_column, cell_row_label);
```

sTable =

	MZ DZ		FS	
FA	0.992	0.421	0.307	
T1w 125mm	0.903	0.317	0.22	
T2w 125mm	0.954	0.349	0.249	
rfMRI	0.975	0.524	0.369	
T1w+FA	0.996	0.508	0.372	
T1w+rfMRI	0.996	0.635	0.438	
FA+rfMRI	0.996	0.69	0.47	
T1w+T2w+FA	1	0.579	0.429	
T1w+T2w+FA+rfMRI	1	0.817	0.603	

Example 5: Mean Recall@k Plots (Supplement material Fig 1.)

```
temp_knn_value =50;
% number of nearest neighbors or k value
```

```
% get mean recall@k for k=1,2...., temp_knn_value
array modality set = [ 1; 2; 4; 5; 9;];
                                                                                     % see cell modality for index reference
mat_mean_recall_at_k = zeros(length(array_modality_set),temp_knn_value,max_sib_type);
% compute mean recall@k values using recal@k matrix
for loop_i=1:length(array_modality_set)
    for loop_sib_type =1:max_sib_type
         temp_mat = cell_mat_recall_at_k{array_modality_set(loop_i),loop_sib_type}(:,1:50);
         mat_mean_recall_at_k(loop_i,:,loop_sib_type) = mean(temp_mat);
    end
end
%plot for each twin/sibling type
for loop_sib_type =1:max_sib_type
    data_mat = mat_mean_recall_at_k(:,:,loop_sib_type);
    x_array = (1:50)';
    figure_title = ['mean recall@k plot: ', cell_sibling_type{loop_sib_type}];
    cell_label{1} = 'k';
    cell_label{2} = 'mean recall@k';
    leg location = 'southeast';
cell_legend = {'FA'; 'Tlw'; 'rfMRI'; 'Tlw+FA'; 'All MRI';};
    save_plot_name = [];
                                                                                         \mbox{\ensuremath{\$}} assign filename to save it else empty
    \verb|plot_mean_recall_at_k| (\texttt{data}_mat, \texttt{x}_array, \texttt{figure}_title, \texttt{cell}_legend, \texttt{leg}_location, \texttt{cell}_label, \texttt{save}_plot_name); \\
end
```



```
% Compute relative informativeness
 relative_identification_knn_value = 10;
                                                                           % number of nearest neighbors for realtive identification
                                                                           % identification considered success within these many neighbors o
 nly
 cell compare modality1 vs modality2 = { 'T1w vs T2w';
                                         'Tlw vs rfMRI';
                                         'FA vs rfMRI';
                                         'T1w vs T1w+T2w+FA+rfMRI';
                                         'T2w vs T1w+T2w+FA+rfMRI';
                                         'FA vs T1w+T2w+FA+rfMRI';
                                         'rfMRI vs T1w+T2w+FA+rfMRI';
 % hard code the modalities to be compared
 % indices are based on cell_modality
array_modality1_index = [ 2, 2; 2; 1; 2; 3; 1; 4; ];
array_modality2_index = [ 3; 1; 4; 4; 9; 9; 9; 9; ];
 mat_relative_identification_percent = zeros(length(array_modality1_index),4,max_sib_type);
 for loop_i=1:length(array_modality1_index)
      if(flag_option_map==1)
             % subject proximity graphs: Normalized Jaccard Similarity measures
             NxN_data_matrix_1 = cell_NxN_data_matrix{array_modality1_index(loop_i),1};
             NxN data matrix 2 = cell NxN data matrix{array modality2 index(loop i),1};
            flag distance or similarity = 1;
                                                                          %: 0-distance; 1-similarity
      else
             % compact fingerprint generation
            NxN_data_matrix_1 = compute_compact_fingerprint(cell_NxN_data_matrix{array_modality1_index(loop_i),1},num_spect_component);
            \label{local_normalized} NxN\_data\_matrix \{array\_modality2\_index(loop\_i),1\}, num\_spect\_component); \\
             flag_distance_or_similarity = 0;
                                                                           %: 0-distance; 1-similarity
      end
      nearest_neighbor_matrix_modl= compute_nearest_neighbor_matrix(NxN_data_matrix_1, relative_identification_knn_value, flag_distance_or_simi
 larity);
     nearest neighbor matrix mod2= compute nearest neighbor matrix(NxN data matrix 2, relative identification knn value, flag distance or simi
```

larity);
for loop_sib=1:max_sib_type
 sub_id_set = SAMPLE_cell_subID_and_sibpairID{loop_sib,1};

Display realtive identification percentages: MZ, DZ, FS tables

Relative Identification percentage for : $\ensuremath{\mathsf{MZ}}$

sTable =

end

	Both	Mod1	Mod2	None
T1w vs T2w	85.71	4.62	9.66	0
Tlw vs FA	90.34	0	8.82	0.84
Tlw vs rfMRI	88.24	2.1	9.24	0.42
FA vs rfMRI	96.64	2.52	0.84	0
T1w vs T1w+T2w+FA+rfMRI	90.34	0	9.66	0
T2w vs T1w+T2w+FA+rfMRI	95.38	0	4.62	0
FA vs T1w+T2w+FA+rfMRI	99.16	0	0.84	0
rfMRI vs T1w+T2w+FA+rfMRI	97.48	0	2.52	0

sTable =

	Both	Mod1	Mod2	None
T1w vs T2w	15.87	15.87	19.05	49.21
T1w vs FA	15.87	15.87	26.19	42.06
Tlw vs rfMRI	18.25	13.49	34.13	34.13
FA vs rfMRI	26.19	15.87	26.19	31.75
T1w vs T1w+T2w+FA+rfMRI	28.57	3.17	53.17	15.08
T2w vs T1w+T2w+FA+rfMRI	33.33	1.59	48.41	16.67
FA vs T1w+T2w+FA+rfMRI	39.68	2.38	42.06	15.87
rfMRI vs T1w+T2w+FA+rfMRI	49.21	3.17	32.54	15.08

Relative Identification percentage for : FS

sTable =

	Both	Modl	Mod2	None
T1w vs T2w	10.26	11.72	14.65	63.37
Tlw vs FA	10.62	11.36	20.05	57.97
Tlw vs rfMRI	9.52	12.45	27.38	50.64
FA vs rfMRI	12.91	17.77	23.99	45.33
T1w vs T1w+T2w+FA+rfMRI	18.96	3.02	41.3	36.72
T2w vs T1w+T2w+FA+rfMRI	21.98	2.93	38.28	36.81
FA vs T1w+T2w+FA+rfMRI	25.64	5.04	34.62	34.71
rfMRI vs T1w+T2w+FA+rfMRI	34.89	2.01	25.37	37.73

Published with MATLAB® R2015b