- **53**. Determine o valor médio da função f(x, y, z) = xyz no cubo com lados de comprimento L que está no primeiro octante, com um vértice na origem e arestas paralelas aos eixos coordenados.
- **54.** Encontre o valor médio da função $f(x, y, z) = x^2z + y^2z$ na região limitada pelo paraboloide $z = 1 x^2 y^2$ e pelo plano z = 0.
- **55.** (a) Determine a região E para a qual a integral tripla

$$\iiint_E (1 - x^2 - 2y^2 - 3z^2) \, dV$$

é máxima.

(b) Use um sistema de computação algébrica para calcular o valor máximo exato da integral tripla na parte (a)

PROJETO DE DESCOBERTA

VOLUMES DE HIPERESFERAS

Neste projeto, determinaremos as fórmulas para o volume limitado por uma hiperesfera em um espaço n-dimensional.

- **1.** Utilize uma integral dupla e substituições trigonométricas, juntamente com a Fórmula 64 da Tabela de Integrais, para determinar a área do círculo de raio *r*.
- **2.** Use uma integral tripla e substituições trigonométricas para determinar o volume da esfera de raio *r*.
- **3.** Utilize uma integral quádrupla para determinar o hipervolume limitado pela hiperesfera $x^2 + y^2 + z^2 + w^2 = r^2$ em \mathbb{R}^4 . (Use somente substituição trigonométrica e fórmulas de redução para $\int \sin^n x \, dx$ ou $\int \cos^n x \, dx$.)
- **4.** Use uma integral n-upla para determinar o volume limitado por uma hiperesfera de raio r no espaço n-dimensional \mathbb{R}^n . [Sugestão: As fórmulas são diferentes para n par e n impar.]

15.8

Integrais Triplas em Coordenadas Cilíndricas

FIGURA 1

Em geometria plana, o sistema de coordenadas polares é usado para dar uma descrição conveniente de certas curvas e regiões. (Veja a Seção 10.3.) A Figura 1 nos permite relembrar a ligação entre coordenadas polares e cartesianas. Se o ponto P tiver coordenadas cartesianas (x, y) e coordenadas polares (r, θ) , então, a partir da figura,

$$x = r \cos \theta$$
 $y = r \sin \theta$

$$r^2 = x^2 + y^2$$
 $\operatorname{tg} \theta = \frac{y}{x}$

Em três dimensões, há um sistema de coordenadas, chamado *coordenadas cilíndricas*, que é análogo às coordenadas polares e dá descrições convenientes de algumas superfícies e sólidos que ocorrem usualmente. Como veremos, algumas integrais triplas são muito mais fáceis de calcular em coordenadas cilíndricas.

Coordenadas Cilíndricas

No **sistema de coordenadas cilíndricas**, um ponto P no espaço tridimensional é representado pela tripla ordenada (r, θ, z) , onde r e θ são as coordenadas polares da projeção de P no plano xy e z é a distância orientada do plano xy a P. (Veja a Figura 2.)

Para convertermos de coordenadas cilíndricas para retangulares, usamos as equações

$$x = r\cos\theta \qquad y = r\sin\theta \qquad z = z$$

enquanto que para converter de coordenadas retangulares para cilíndricas, usamos

$$r^2 = x^2 + y^2 \qquad \text{tg } \theta = \frac{y}{x} \qquad z = z$$

EXEMPLO 1

- (a) Marque o ponto com coordenadas cilíndricas $(2, 2\pi/3, 1)$ e encontre suas coordenadas retangulares.
- (b) Encontre as coordenadas cilíndricas do ponto com coordenadas retangulares (3, -3, -7).

SOLUÇÃO

(a) O ponto com coordenadas cilíndricas $(2, 2\pi/3, 1)$ está marcado na Figura 3. Das Equações 1, suas coordenadas retangulares são

$$x = 2\cos\frac{2\pi}{3} = 2\left(-\frac{1}{2}\right) = -1$$
$$y = 2\sin\frac{2\pi}{3} = 2\left(\frac{\sqrt{3}}{2}\right) = \sqrt{3}$$

Logo, o ponto é $(-1, \sqrt{3}, 1)$ em coordenadas retangulares.

(b) Das Equações 2 temos

$$r = \sqrt{3^2 + (-3)^2} = 3\sqrt{2}$$

$$\operatorname{tg} \theta = \frac{-3}{3} = -1 \qquad \log 0 \qquad \theta = \frac{7\pi}{4} + 2n\pi$$

$$z = -7$$

Portanto, um conjunto de coordenadas cilíndricas é $(3\sqrt{2}, 7\pi/4, -7)$. Outro é $(3\sqrt{2}, -\pi/4, -7)$. Como no caso das coordenadas polares, existem infinitas escolhas.

Coordenadas cilíndricas são úteis em problemas que envolvem simetria em torno de um eixo e o eixo z é escolhido de modo a coincidir com o eixo de simetria. Por exemplo, o eixo do cilindro circular com equação cartesiana $x^2+y^2=c^2$ é o eixo z. Em coordenadas cilíndricas, este cilindro tem a equação muito simples r=c. (Veja a Figura 4.) Esta é a razão para o nome coordenadas "cilíndricas".

EXEMPLO 2 Descreva a superfície cuja equação em coordenadas cilíndricas é z = r.

SOLUÇÃO A equação diz que o valor z, ou altura, de cada ponto da superfície é o mesmo que r, a distância do ponto ao eixo z. Como θ não aparece, ele pode variar. Assim, qualquer corte horizontal no plano z=k (k>0) é um círculo de raio k. Esses cortes sugerem que a superfície é um cone. Essa previsão pode ser confirmada convertendo a equação para coordenadas retangulares. Da primeira equação em 2, temos

$$z^2 = r^2 = x^2 + y^2$$

Reconhecemos a equação $z^2 = x^2 + y^2$ (pela comparação com a Tabela 1 na Seção 12.6) como o cone circular cujo eixo é o eixo z. (Veja a Figura 5.)

Cálculo de Integrais Triplas com Coordenadas Cilíndricas

Suponha que E seja uma região do tipo 1, cuja projeção D no plano xy tenha uma representação conveniente em coordenadas polares (veja a Figura 6). Em particular, suponha que f seja contínua e

$$E = \{(x, y, z) \mid (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)\}$$

FIGURA 2
As coordenadas cilíndricas de um ponto *P*

FIGURA 3

FIGURA 4 r = c, um cilindro

FIGURA 5 z = r, um cone

onde D é dado em coordenadas polares por

FIGURA 6

Sabemos da Equação 15.7.6 que

$$\iiint\limits_E f(x,y,z) \ dV = \iint\limits_D \left[\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) \ dz \right] dA$$

Mas também sabemos como calcular integrais duplas em coordenadas polares. De fato, combinando a Equação 3 com a Equação 15.4.3, obtemos

$$\iiint\limits_E f(x,y,z) \ dV = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} \int_{u_1(r\cos\theta,r\sin\theta)}^{u_2(r\cos\theta,r\sin\theta)} f(r\cos\theta,r\sin\theta,z) \ r \ dz \ dr \ d\theta$$

A Fórmula 4 é a **fórmula para a integração tripla em coordenadas cilíndricas**. Ela nos diz que convertemos uma integral tripla em coordenadas retangulares para coordenadas cilíndricas escrevendo $x = r\cos\theta$, $y = r\sin\theta$ e deixando z como está, utilizando os limites apropriados de integração para z, $r \in \theta$, e trocando dV por $r dz dr d\theta$. (A Figura 7 mostra como lembrar disto.) É recomendável a utilização dessa fórmula quando E for uma região sólida cuja descrição é mais simples em coordenadas cilíndricas e, especialmente, quando a função f(x, y, z) envolver a expressão $x^2 + y^2$.

SOLUÇÃO Em coordenadas cilíndricas, o cilindro é r=1 e o paraboloide é $z=1-r^2$ e podemos escrever

$$E = \{ (r, \theta, z) \mid 0 \le \theta \le 2\pi, \ 0 \le r \le 1, \ 1 - r^2 \le z \le 4 \}$$

Como a densidade em (x, y, z) é proporcional à distância do eixo z, a função densidade é

$$f(x, y, z) = K\sqrt{x^2 + y^2} = Kr$$

onde K é a constante de proporcionalidade. Portanto, da Fórmula 15.7.13, a massa de E é

$$m = \iiint_E K\sqrt{x^2 + y^2} \, dV$$

$$= \int_0^{2\pi} \int_0^1 \int_{1-r^2}^4 (Kr) \, r \, dz \, dr \, d\theta$$

$$= \int_0^{2\pi} \int_0^1 Kr^2 [4 - (1 - r^2)] \, dr \, d\theta$$

$$= K \int_0^{2\pi} d\theta \int_0^1 (3r^2 + r^4) \, dr$$

FIGURA 7 Elemento de volume em coordenadas cilíndricas: $dV = r dz dr d\theta$

FIGURA 8

$$= 2\pi K \left[r^3 + \frac{r^5}{5} \right]_0^1 = \frac{12\pi K}{5}$$

EXEMPLO 4 Calcule $\int_{-7}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{2} (x^2 + y^2) dz dy dx$.

SOLUÇÃO Essa integral iterada é uma integral tripla sobre a região sólida

$$E = \left\{ (x, y, z) \mid -2 \le x \le 2, \ -\sqrt{4 - x^2} \le y \le \sqrt{4 - x^2}, \ \sqrt{x^2 + y^2} \le z \le 2 \right\}$$

e a projeção de E sobre o plano xy é o disco $x^2 + y^2 \le 4$. A superfície inferior de E é o cone $z = \sqrt{x^2 + y^2}$ e a superfície superior é o plano z = 2. (Veja a Figura 9.) Essa região tem uma descrição muito mais simples em coordenadas cilíndricas:

$$E = \{(r, \theta, z) \mid 0 \le \theta \le 2\pi, \ 0 \le r \le 2, \ r \le z \le 2\}$$

FIGURA 9

Portanto, temos

$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{2} (x^2 + y^2) \, dz \, dy \, dx = \iiint_{E} (x^2 + y^2) \, dV$$

$$= \int_{0}^{2\pi} \int_{0}^{2} \int_{r}^{2} r^2 r \, dz \, dr \, d\theta$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{2} r^3 (2 - r) \, dr$$

$$= 2\pi \left[\frac{1}{2} r^4 - \frac{1}{5} r^5 \right]_{0}^{2} = \frac{16}{5} \pi$$

Exercícios 15.8

1-2 Marque o ponto cujas coordenadas cilíndricas são dadas. A seguir, encontre as coordenadas retangulares do ponto.

- (a) $(4, \pi/3, -2)$
- (b) $(2, -\pi/2, 1)$
- (a) $(\sqrt{2}, 3\pi/4, 2)$
- (b) (1, 1, 1)

3-4 Mude de coordenadas retangulares para cilíndricas.

- 3. (a) (-1,1,1)
- (b) $(-2, 2\sqrt{3}, 3)$
- **4.** (a) $(2\sqrt{3}, 2, -1)$
- (b) (4, -3, 2)

5-6 Descreva com palavras a superfície cuja equação é dada.

- $\mathbf{5.} \quad \theta = \pi/4$
- 6. r = 5

7–8 Identifique a superfície cuja equação é dada.

- 7. $z = 4 r^2$
- 8. $2r^2 + z^2 = 1$

9-10 Escreva as equações em coordenadas cilíndricas.

- **9.** (a) $x^2 x + y^2 + z^2 = 1$ (b) $z = x^2 y^2$
- **10.** (a) 3x + 2y + z = 6 (b) $-x^2 y^2 + z^2 = 1$

11-12 Esboce o sólido descrito pelas desigualdades dadas.

- **11.** $0 \le r \le 2$, $-\pi/2 \le \theta \le \pi/2$, $0 \le z \le 1$
- **12.** $0 \le \theta \le \pi/2$, $r \le z \le 2$

13. Uma casca cilíndrica tem 20 cm de comprimento, com raio interno 6 cm e raio externo 7 cm. Escreva desigualdades que descrevam a casca em um sistema de coordenadas adequado. Explique como você posicionou o sistema de coordenadas em relação à casca.

14. Use uma ferramenta gráfica para desenhar o sólido limitado pelos paraboloides $z = x^2 + y^2$ e $z = 5 - x^2 - y^2$.

15-16 Esboce o sólido cujo volume é dado pela integral e calcule-a.

15.
$$\int_{-\pi/2}^{\pi/2} \int_{0}^{2} \int_{0}^{r^{2}} r \, dz \, dr \, d\theta$$

16.
$$\int_0^2 \int_0^{2\pi} \int_0^r r \, dz \, d\theta \, dr$$

17-28 Utilize coordenadas cilíndricas.

- 17. Calcule $\iiint_E \sqrt{x^2 + y^2} \ dV$, onde E é a região que está dentro do cilindro $x^2 + y^2 = 16$ e entre os planos z = -5 e z = 4.
- **18.** Calcule $\iiint_E z \, dV$, onde E é limitado pelo paraboloide $z = x^2 + y^2$ e o plano z = 4.
- **19.** Calcule $\iiint_E (x + y + z) dV$, onde E é o sólido do primeiro octante que está abaixo do paraboloide $z = 4 - x^2 - y^2$.
- **20.** Calcule $\iiint_E x \, dV$, onde E é limitado pelos planos z = 0 e z = x + y + 5 e pelos cilindros $x^2 + y^2 = 4$ e $x^2 + y^2 = 9$.
- **21**. Calcule $\iiint_E x^2 dV$, onde E é o sólido que está dentro do cilindro $x^2 + y^2 = 1$, acima do plano z = 0 e abaixo do cone $z^2 = 4x^2 + 4y^2$.