An Accuracy Argument for Self-Trust

Giacomo Molinari giacomo.molinari@bristol.ac.uk

December 18, 2024 University of Bristol

Self-Doubt and Self-Trust

Rational Self-Doubt

It seems rational to doubt the accuracy of my own beliefs.

- Plenty of evidence that I have been wrong, and that my peers are wrong.
- Preface-like cases: I'm confident that some of my beliefs about biology are *false* (e.g. "Mammals don't lay eggs").
- Cartesian Circle: No non-circular way to rule out the possibility that our beliefs are thoroughly inaccurate.

Irrational Self-Doubt

Some cases of extreme self-doubt seem irrational.

E.g. believing a (commissive) Moorean sentence: "It's raining, but I believe it's not raining".

Questions

- Why are certain kinds of self-doubt irrational?
- How much may we rationally doubt ourselves?
- What about graded doxastic states?
 - Being very confident in "It's raining, and I'm very confident that it's not raining" seems nearly as bad as believing a Moorean sentence.

Goal: Use accuracy to answer these questions.

Notation

- $W = \{w_1, ..., w_n\}$ finite set of *possible worlds*.
- Greek letters π, γ denote *rigidly designated credence functions*, i.e. vectors in \mathbb{R}^n .
- Latin letters p, q denote definite descriptions of credence functions.
 - p is a function from possible worlds to credence functions. So $p(w_i)$ is a credence function for every $w_i \in \mathcal{W}$.
 - Can think of them as vector-valued random variables.
 - Abuse notation: p_i instead of $p(w_i)$.
- If ϕ is a property of credence functions, $[\phi(p)]$ is the proposition $\{w_i : \phi(p_i)\}$

Example

- p = My radiologist's credence function.
- B = I have a broken bone.

$$p_1 = p_2 = (.97, .01, .01, .01)$$
 $p_3 = p_4 = (.01, .01, .01, .97)$

A self-trust requirement

- Let *p* be a definite description of your credence function.
- Let π be your actual credence function (i.e. $\pi = p_i$ where w_i is the actual world)

Total Trust

 π Totally Trusts p iff:

$$\mathbb{E}_{\pi}(X|[\mathbb{E}_{\rho}(X) \ge r]) \ge r \tag{1}$$

whenever $X : \mathcal{W} \to \mathbb{R}$, $r \in \mathbb{R}$, and the above conditional expectation is defined.

Coherence + Total Trust entails that you cannot be very highly confident of both A and $[p(A) \le low]$.

An Accuracy Argument for Total

Trust

Measuring Accuracy

Generalised Strictly Proper (GSP) measures of accuracy can be used to measure the accuracy of a probability function π .

An Accuracy Argument for Total Trust

Theorem (Dorst et al. 2021, Th.3.2)

 π Totally Trusts p iff for every GSP measure of inaccuracy, π expects p to be at least as accurate as π .

- Suppose I don't Totally Trust myself, i.e. π does not Totally Trust p.
- Then there is a rigidly designated credence function π (e.g. (1/3, 1/3, 1/3)) that I think is more accurate than me under some GSP measure S.
- I expect that I would be more accurate, as measured by S, by having credence function π at all possible worlds!

Problem: Why care about that measure? Under most reasonable (GSP) measures, I may expect p to be more accurate than π .

Improving the Argument

From credences to desirability judgements

Represent opinions via sets of desirable gambles for more expressive power.

Subtle Point: We want to show that **rational** agents Totally Trust themselves.

- Rational agents have *coherent* and (for this talk) *precise* doxastic states.
- So we need to show that agents with coherent, precise doxastic states should trust themselves.
- Your beliefs are still representable by a coherent credence function π .
- Added expressive power lets us consider ways your beliefs could be that don't correspond to any coherent credence function.

From credences to desirability judgements

For any probability function π , $D_{\pi} = \{X : \mathbb{E}_{\pi}(X) > 0\}$ is the set of gambles an agent with credence function π finds desirable.

We can express Total Trust in desirability terms.

Total Trust

 π Totally Trusts p iff:

$$X \in D_{\pi(\cdot|[X \in D_p])} \tag{2}$$

whenever $X: \mathcal{W} \to \mathbb{R}$, $r \in \mathbb{R}$, and the above conditional expectation is defined.

From GSP to Error Loss measures of inaccuracy

We can measure inaccuracy of an *arbitrary set of desirable gambles* at a world using Jason's Error Loss measures.

- For every X which you find desirable, you get a penalty if X is not actually desirable.
- For every X which you don't find desirable, you get a penalty if X is actually desirable.

$$S(D, w_i) = \int_{D_{w_i} \sim D} x_i d\mu - \int_{D \sim D_{w_i}} x_i d\mu$$
 (3)

A useful fact

Fact 1

If Total Trust fails on some gamble, then it fails on some open set of gambles.

Example

- $W = \{w_1, w_2\}$
- w_2 is the actual world.
- X = (-4, 4)

Example

- $[X \in D_p] = \{w_1\}.$
- But $X(w_1) = -4$.
- So $X \notin D_{\pi(\cdot|[X \in D_p])}$, violating Total Trust.
- Similarly for nearby gambles.

New accuracy characterisation of Total Trust

- Suppose π does not Totally Trust p.
- Then there is some open set \mathcal{O} of gambles where Total Trust fails.
- Define:

$$\mathcal{O}^+ = \mathcal{O} \cap D_{\pi}, \quad \mathcal{O}^- = \mathcal{O} \cap D_{\pi}^c$$
 $D_p^* = (D_p \cup \mathcal{O}^+) \sim \mathcal{O}^-$

- You actually find the gambles in \mathcal{O}^+ desirable, and those in \mathcal{O}^- not desirable.
- D_p^* represents the opinions you would have if, at every possible world, you found the gambles in \mathcal{O}^+ desirable and those in \mathcal{O}^- not desirable.

Example

New accuracy characterisation of Total Trust

- **Note**: At some possible worlds, D_p^* denotes an **incoherent** set of desirable gambles!
- But with Error Loss measures we can measure its inaccuracy at all possible worlds!

Theorem

- 1. If π does not Totally Trust p, then there are measurable sets of gambles $\mathcal{O}^+, \mathcal{O}^-$ such that π expects $D_p^* = (D_p \cup \mathcal{O}^+) \sim \mathcal{O}^-$ to be strictly more accurate than D_p under every Error Loss measure of inaccuracy.
- 2. If π Totally Trusts p, then for any measurable sets of gambles \mathcal{O}^+ and \mathcal{O}^- , π expects D_p to be at least as accurate as D_p^* under every Error Loss measure of inaccuracy.

The New Argument

- Suppose π does not Totally Trust p.
- Then there are (rigidly designated!) set of gambles $\mathcal{O}^+, \mathcal{O}^-$ such that you think you would be more accurate, under every Error Loss measure of inaccuracy, if you found gambles in \mathcal{O}^+ desirable and gambles in \mathcal{O}^- not desirable at every possible world.
- There is a way to change your judgements which you expect would make you more accurate, no matter which measure of accuracy you use!

Many open questions...

- Is it really bad to expect some *possibly incoherent* definite description to be more accurate than you?
- How do we determine which doxastic states we should compare yours against when evaluating you?
- Self-trust requirements for imprecise probabilities?