Lex - A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt

ABSTRACT

Lex helps write programs whose control flow is directed by instances of regular expressions in the input stream. It is well suited for editor-script type transformations and for segmenting input in preparation for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is translated to a program which reads an input stream, copying it to an output stream and partitioning the input into strings which match the given expressions. As each such string is recognized the corresponding program fragment is executed. The recognition of the expressions is performed by a deterministic finite automaton generated by Lex. The program fragments written by the user are executed in the order in which the corresponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and choose the longest match possible at each input point. If necessary, substantial lookahead is performed on the input, but the input stream will be backed up to the end of the current partition, so that the user has general freedom to manipulate it.

Lex can generate analyzers in either C or Ratfor, a language which can be translated automatically to portable Fortran. It is available on the PDP-11 UNIX, Honeywell GCOS, and IBM OS systems. This manual, however, will only discuss generating analyzers in C on the UNIX system, which is the only supported form of Lex under UNIX Version 7. Lex is designed to simplify interfacing with Yacc, for those with access to this compiler-compiler system.

1. Introduction.

Lex is a program generator designed for lexical processing of character input streams. It accepts a high-level, problem oriented specification for character string matching, and produces a program in a general purpose language which recognizes regular expressions. The regular expressions are specified by the user in the source specifications given to Lex. The Lex written code recognizes these expressions in an input stream and partitions the input stream into strings matching the expressions. At the boundaries between strings program sections provided by the user are executed. The Lex source file associates the regular expressions and the program fragments. As each expression appears in the input to the program written by Lex, the corresponding fragment is executed.

The user supplies the additional code beyond expression matching needed to complete his tasks, possibly including code written by other generators. The program that recognizes the expressions is generated in the general purpose programming language employed for the user's program fragments. Thus, a high level expression language is provided to write the string expressions to be matched while the user's freedom to write actions is unimpaired. This avoids forcing the user who wishes to use a string manipulation language for input analysis to write processing programs in the same and often inappropriate string handling language.

Lex is not a complete language, but rather a generator representing a new language feature which can be added to different programming languages, called `host languages." Just as general purpose languages can produce code to run on different computer hardware, Lex can write code in different host languages. The host language is used for the output code generated by Lex and also for the program fragments added by the user. Compatible run-time libraries for the different host languages are also provided. This makes Lex adaptable to different environments and different users. Each application may be directed to the combination of hardware and host language appropriate to the task, the user's background, and the properties of local implementations. At present, the only supported host language is C, although Fortran (in the form of Ratfor [2] has been available in the past. Lex itself exists on UNIX, GCOS, and OS/370; but the code generated by Lex may be taken anywhere the appropriate compilers exist.

Lex turns the user's expressions and actions (called source in this memo) into the host general-purpose language; the generated program is named yylex. The yylex program will recognize expressions in a stream (called input in this memo) and perform the specified actions for each expression as it is detected. See Figure 1.

For a trivial example, consider a program to delete from the input all blanks or tabs at the ends of lines.

is all that is required. The program contains a %% delimiter to mark the beginning of the rules, and one rule. This rule contains a regular expression which matches one or more instances of the characters blank or tab (written \t for visibility, in accordance with the C language convention) just prior to the end of a line. The brackets indicate the character class made of blank and tab; the + indicates ``one or more ..."; and the \$ indicates ``end of line," as in QED. No action is specified, so the program generated by Lex (yylex) will

ignore these characters. Everything else will be copied. To change any remaining string of blanks or tabs to a single blank, add another rule:

```
%%
[\t]+$;
[\t]+ printf("");
```

The finite automaton generated for this source will scan for both rules at once, observing at the termination of the string of blanks or tabs whether or not there is a newline character, and executing the desired rule action. The first rule matches all strings of blanks or tabs at the end of lines, and the second rule all remaining strings of blanks or tabs.

Lex can be used alone for simple transformations, or for analysis and statistics gathering on a lexical level. Lex can also be used with a parser generator to perform the lexical analysis phase; it is particularly easy to interface Lex and Yacc [3]. Lex programs recognize only regular expressions; Yacc writes parsers that accept a large class of context free grammars, but require a lower level analyzer to recognize input tokens. Thus, a combination of Lex and Yacc is often appropriate. When used as a preprocessor for a later parser generator, Lex is used to partition the input stream, and the parser generator assigns structure to the resulting pieces. The flow of control in such a case (which might be the first half of a compiler, for example) is shown in Figure 2. Additional programs, written by other generators or by hand, can be added easily to programs written by Lex.

Lex with Yacc Figure 2

Yacc users will realize that the name yylex is what Yacc expects its lexical analyzer to be named, so that the use of this name by Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the regular expressions in the source [4]. The automaton is interpreted, rather than compiled, in order to save space. The result is still a fast analyzer. In particular, the time taken by a Lex program to recognize and partition an input stream is proportional to the length of the input. The number of Lex rules or the complexity of the rules is not important in determining speed, unless rules which include forward context require a significant amount of rescanning. What does increase with the number and complexity of rules is the size of the finite automaton, and therefore the size of the program generated by Lex.

In the program written by Lex, the user's fragments (representing the actions to be performed as each regular expression is found) are gathered as cases of a switch. The automaton interpreter directs the control flow. Opportunity is provided for the user to insert either declarations or additional statements in the routine containing the actions, or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted on the basis of one character lookahead. For example, if there are two rules, one looking for ab and another for abcdefg, and the input stream is abcdefh, Lex will recognize ab and leave the input pointer just before cd. . Such backup is more costly than the processing of simpler languages.

2. Lex Source.

The general format of Lex source is:

```
{definitions}
%%
{rules}
%%
{user subroutines}
```

where the definitions and the user subroutines are often omitted. The second %% is optional, but the first is required to mark the beginning of the rules. The absolute minimum Lex program is thus

```
%%
```

(no definitions, no rules) which translates into a program which copies the input to the output unchanged.

In the outline of Lex programs shown above, the rules represent the user's control decisions; they are a table, in which the left column contains regular expressions (see section 3) and the right column contains actions, program fragments to be executed when the expressions are recognized. Thus an individual rule might appear

```
integer printf("found keyword INT");
```

to look for the string integer in the input stream and print the message ``found keyword INT" whenever it appears. In this example the host procedural language is C and the C library function printf is used to print the string. The end of the expression is indicated by the first blank or tab character. If the action is merely a single C expression, it can just be given on the right side of the line; if it is compound, or takes more than a line, it should be enclosed in braces. As a slightly more useful example, suppose it is desired to change a number of words from British to American spelling. Lex rules such as

```
colour printf("color");
mechanise printf("mechanize");
petrol printf("gas");
```

would be a start. These rules are not quite enough, since the word petroleum would become gaseum; a way of dealing with this will be described later.

3. Lex Regular Expressions.

The definitions of regular expressions are very similar to those in QED [5]. A regular expression specifies a set of strings to be matched. It contains text characters (which match the corresponding characters in the strings being compared) and operator characters (which specify repetitions, choices, and other features). The letters of the alphabet and the digits are always text characters; thus the regular expression

integer

matches the string integer wherever it appears and the expression

a57D

looks for the string a57D.

Operators. The operator characters are

and if they are to be used as text characters, an escape should be used. The quotation mark operator (") indicates that whatever is contained between a pair of quotes is to be taken as text characters. Thus

matches the string xyz++ when it appears. Note that a part of a string may be quoted. It is harmless but unnecessary to quote an ordinary text character; the expression

is the same as the one above. Thus by quoting every non-alphanumeric character being used as a text character, the user can avoid remembering the list above of current operator characters, and is safe should further extensions to Lex lengthen the list.

An operator character may also be turned into a text character by preceding it with \ as in

$$xyz\backslash +\backslash +$$

which is another, less readable, equivalent of the above expressions. Another use of the quoting mechanism is to get a blank into an expression; normally, as explained above, blanks or tabs end a rule. Any blank character not contained within [] (see below) must be quoted. Several normal C escapes with \ are recognized: \n is newline, \t is tab, and \b is backspace. To enter \ itself, use \\. Since newline is illegal in an expression, \n must be used; it is not required to escape tab and backspace. Every character but blank, tab, newline and the list above is always a text character.

Character classes. Classes of characters can be specified using the operator pair []. The construction [abc] matches a single character, which may be a, b, or c. Within square brackets, most operator meanings are ignored. Only three characters are special: these are \ - and \ ^. The - character indicates ranges. For example,

indicates the character class containing all the lower case letters, the digits, the angle brackets, and underline. Ranges may be given in either order. Using - between any pair of characters which are not both upper case letters, both lower case letters, or both digits is implementation dependent and will get a warning message. (E.g., [0-z] in ASCII is many more characters than it is in EBCDIC). If it is desired to include the character - in a character class, it should be first or last; thus

matches all the digits and the two signs.

In character classes, the ^ operator must appear as the first character after the left bracket; it indicates that the resulting string is to be complemented with respect to the computer character set. Thus

[^abc]

matches all characters except a, b, or c, including all special or control characters; or [^a-zA-Z]

is any character which is not a letter. The \ character provides the usual escapes within character class brackets.

Arbitrary character. To match almost any character, the operator character . is the class of all characters except newline. Escaping into octal is possible although non-portable:

[\40-\176]

matches all printable characters in the ASCII character set, from octal 40 (blank) to octal 176 (tilde).

Optional expressions. The operator ? indicates an optional element of an expression. Thus

ab?c

matches either ac or abc.

Repeated expressions. Repetitions of classes are indicated by the operators * and +.

a*

is any number of consecutive a characters, including zero; while

a+

is one or more instances of a. For example,

[a-z]+

is all strings of lower case letters. And

[A-Za-z][A-Za-z0-9]*

indicates all alphanumeric strings with a leading alphabetic character. This is a typical expression for recognizing identifiers in computer languages.

Alternation and Grouping. The operator | indicates alternation:

(ab|cd)

matches either ab or cd. Note that parentheses are used for grouping, although they are not necessary on the outside level;

ab|cd

would have sufficed. Parentheses can be used for more complex expressions:

(ab|cd+)?(ef)*

matches such strings as abefef, efefef, cdef, or cddd; but not abc, abcd, or abcdef.

Context sensitivity. Lex will recognize a small amount of surrounding context. The two simplest operators for this are ^ and \$. If the first character of an expression is ^, the

expression will only be matched at the beginning of a line (after a newline character, or at the beginning of the input stream). This can never conflict with the other meaning of ^, complementation of character classes, since that only applies within the [] operators. If the very last character is \$, the expression will only be matched at the end of a line (when immediately followed by newline). The latter operator is a special case of the / operator character, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Thus

ab\$

is the same as

ab/\n

Left context is handled in Lex by start conditions as explained in section 10. If a rule is only to be executed when the Lex automaton interpreter is in start condition x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we considered `being at the beginning of a line" to be start condition ONE, then the ^ operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

Repetitions and Definitions. The operators {} specify either repetitions (if they enclose numbers) or definition expansion (if they enclose a name). For example

{digit}

looks for a predefined string named digit and inserts it at that point in the expression. The definitions are given in the first part of the Lex input, before the rules. In contrast,

a{1.5}

looks for 1 to 5 occurrences of a.

Finally, initial % is special, being the separator for Lex source segments.

4. Lex Actions.

When an expression written as above is matched, Lex executes the corresponding action. This section describes some features of Lex which aid in writing actions. Note that there is a default action, which consists of copying the input to the output. This is performed on all strings not otherwise matched. Thus the Lex user who wishes to absorb the entire input, without producing any output, must provide rules to match everything. When Lex is being used with Yacc, this is the normal situation. One may consider that actions are what is done instead of copying the input to the output; thus, in general, a rule which merely copies can be omitted. Also, a character combination which is omitted from the rules and which appears as input is likely to be printed on the output, thus calling attention to the gap in the rules.

One of the simplest things that can be done is to ignore the input. Specifying a C null statement, ; as an action causes this result. A frequent rule is

$$[\t \n] ;$$

which causes the three spacing characters (blank, tab, and newline) to be ignored.

Another easy way to avoid writing actions is the action character |, which indicates that the action for this rule is the action for the next rule. The previous example could also have been written

with the same result, although in different style. The quotes around \n and \t are not required.

In more complex actions, the user will often want to know the actual text that matched some expression like [a-z]+. Lex leaves this text in an external character array named vytext. Thus, to print the name found, a rule like

```
[a-z]+ printf("%s", yytext);
```

will print the string in yytext. The C function printf accepts a format argument and data to be printed; in this case, the format is "print string" (% indicating data conversion, and s indicating string type), and the data are the characters in yytext. So this just places the matched string on the output. This action is so common that it may be written as ECHO:

is the same as the above. Since the default action is just to print the characters found, one might ask why give a rule, like this one, which merely specifies the default action? Such rules are often required to avoid matching some other rule which is not desired. For example, if there is a rule which matches read it will normally match the instances of read contained in bread or readjust; to avoid this, a rule of the form [a-z]+ is needed. This is explained further below.

Sometimes it is more convenient to know the end of what has been found; hence Lex also provides a count yyleng of the number of characters matched. To count both the number of words and the number of characters in words in the input, the user might write [a-zA-Z]+ {words++; chars += yyleng;} which accumulates in chars the number of characters in the words recognized. The last character in the string matched can be accessed by

Occasionally, a Lex action may decide that a rule has not recognized the correct span of characters. Two routines are provided to aid with this situation. First, yymore() can be called to indicate that the next input expression recognized is to be tacked on to the end of this input. Normally, the next input string would overwrite the current entry in yytext. Second, yyless (n) may be called to indicate that not all the characters matched by the currently successful expression are wanted right now. The argument n indicates the number of characters in yytext to be retained. Further characters previously matched are returned to the input. This provides the same sort of lookahead offered by the / operator, but in a different form.

Example: Consider a language which defines a string as a set of characters between quotation (") marks, and provides that to include a " in a string it must be preceded by a \setminus . The regular expression which matches that is somewhat confusing, so that it might be preferable to write

```
\"[^"]* {
    if (yytext[yyleng-1] == '\\')
       yymore();
    else
       ... normal user processing
}
```

which will, when faced with a string such as "abc\"def" first match the five characters "abc\; then the call to yymore() will cause the next part of the string, "def, to be tacked on the end. Note that the final quote terminating the string should be picked up in the code labeled ``normal processing".

The function yyless() might be used to reprocess text in various circumstances. Consider the C problem of distinguishing the ambiguity of ``=-a". Suppose it is desired to treat this as ``=- a" but print a message. A rule might be

```
=-[a-zA-Z] {
    printf("Op (=-) ambiguous\n");
    yyless(yyleng-1);
    ... action for =- ...
}
```

which prints a message, returns the letter after the operator to the input stream, and treats the operator as ``=-". Alternatively it might be desired to treat this as ``= -a". To do this, just return the minus sign as well as the letter to the input:

```
=-[a-zA-Z] {
    printf("Op (=-) ambiguous\n");
    yyless(yyleng-2);
    ... action for = ...
}
```

will perform the other interpretation. Note that the expressions for the two cases might more easily be written

```
=-/[A-Za-z]
```

in the first case and

$$=/-[A-Za-z]$$

in the second; no backup would be required in the rule action. It is not necessary to recognize the whole identifier to observe the ambiguity. The possibility of ``=-3", however, makes

```
=-/[^ \t n]
```

a still better rule.

In addition to these routines, Lex also permits access to the I/O routines it uses. They are:

- 1) input() which returns the next input character;
- 2) output(c) which writes the character c on the output; and

3) unput(c) pushes the character c back onto the input stream to be read later by input().

By default these routines are provided as macro definitions, but the user can override them and supply private versions. These routines define the relationship between external files and internal characters, and must all be retained or modified consistently. They may be redefined, to cause input or output to be transmitted to or from strange places, including other programs or internal memory; but the character set used must be consistent in all routines; a value of zero returned by input must mean end of file; and the relationship between unput and input must be retained or the Lex lookahead will not work. Lex does not look ahead at all if it does not have to, but every rule ending in +*? or \$ or containing / implies lookahead. Lookahead is also necessary to match an expression that is a prefix of another expression. See below for a discussion of the character set used by Lex. The standard Lex library imposes a 100 character limit on backup.

Another Lex library routine that the user will sometimes want to redefine is yywrap() which is called whenever Lex reaches an end-of-file. If yywrap returns a 1, Lex continues with the normal wrapup on end of input. Sometimes, however, it is convenient to arrange for more input to arrive from a new source. In this case, the user should provide a yywrap which arranges for new input and returns 0. This instructs Lex to continue processing. The default yywrap always returns 1.

This routine is also a convenient place to print tables, summaries, etc. at the end of a program. Note that it is not possible to write a normal rule which recognizes end-of-file; the only access to this condition is through yywrap. In fact, unless a private version of input() is supplied a file containing nulls cannot be handled, since a value of 0 returned by input is taken to be end-of-file.

5. Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more than one expression can match the current input, Lex chooses as follows:

- 1) The longest match is preferred.
- 2) Among rules which matched the same number of characters, the rule given first is preferred.

Thus, suppose the rules

```
integer keyword action ...; [a-z]+ identifier action ...;
```

to be given in that order. If the input is integers, it is taken as an identifier, because [a-z]+ matches 8 characters while integer matches only 7. If the input is integer, both rules match 7 characters, and the keyword rule is selected because it was given first. Anything

shorter (e.g. int) will not match the expression integer and so the identifier interpretation is used.

The principle of preferring the longest match makes rules containing expressions like .* dangerous. For example, '.*' might seem a good way of recognizing a string in single quotes. But it is an invitation for the program to read far ahead, looking for a distant single quote. Presented with the input

which, on the above input, will stop after 'first'. The consequences of errors like this are mitigated by the fact that the . operator will not match newline. Thus expressions like .* stop on the current line. Don't try to defeat this with expressions like $(.|\n)$ + or equivalents; the Lex generated program will try to read the entire input file, causing internal buffer overflows.

Note that Lex is normally partitioning the input stream, not searching for all possible matches of each expression. This means that each character is accounted for once and only once. For example, suppose it is desired to count occurrences of both she and he in an input text. Some Lex rules to do this might be

```
\begin{array}{ccc} she & s++;\\ he & h++;\\ \backslash n & |\\ & \cdot \end{array}
```

where the last two rules ignore everything besides he and she. Remember that . does not include newline. Since she includes he, Lex will normally not recognize the instances of he included in she, since once it has passed a she those characters are gone.

Sometimes the user would like to override this choice. The action REJECT means ``go do the next alternative." It causes whatever rule was second choice after the current rule to be executed. The position of the input pointer is adjusted accordingly. Suppose the user really wants to count the included instances of he:

```
she \{s++; REJECT;\}
he \{h++; REJECT;\}
\n |
```

these rules are one way of changing the previous example to do just that. After counting each expression, it is rejected; whenever appropriate, the other expression will then be counted. In this example, of course, the user could note that she includes he but not vice versa, and omit the REJECT action on he; in other cases, however, it would not be possible a priori to tell which input characters were in both classes.

Consider the two rules

```
a[bc]+ { ...; REJECT;} a[cd]+ { ...; REJECT;}
```

If the input is ab, only the first rule matches, and on ad only the second matches. The input string accb matches the first rule for four characters and then the second rule for three characters. In contrast, the input accd agrees with the second rule for four characters and then the first rule for three.

In general, REJECT is useful whenever the purpose of Lex is not to partition the input stream but to detect all examples of some items in the input, and the instances of these items may overlap or include each other. Suppose a digram table of the input is desired; normally the digrams overlap, that is the word the is considered to contain both th and he. Assuming a two-dimensional array named digram to be incremented, the appropriate source is

where the REJECT is necessary to pick up a letter pair beginning at every character, rather than at every other character.

6. Lex Source Definitions.

Remember the format of the Lex source:

```
{definitions}
%%
{rules}
%%
{user routines}
```

So far only the rules have been described. The user needs additional options, though, to define variables for use in his program and for use by Lex. These can go either in the definitions section or in the rules section.

Remember that Lex is turning the rules into a program. Any source not intercepted by Lex is copied into the generated program. There are three classes of such things.

1) Any line which is not part of a Lex rule or action which begins with a blank or tab is copied into the Lex generated program. Such source input prior to the first %% delimiter will be external to any function in the code; if it appears immediately after the first %%, it appears in an appropriate place for declarations in the function written by Lex which contains the actions. This material must look like program fragments, and should precede the first Lex rule. As a side effect of the above, lines which begin with a blank or tab, and which contain a comment, are passed through to the generated program. This can be used to include comments in either the Lex source or the generated code. The comments should follow the host language convention.

- 2) Anything included between lines containing only % { and % } is copied out as above. The delimiters are discarded. This format permits entering text like preprocessor statements that must begin in column 1, or copying lines that do not look like programs.
- 3) Anything after the third %% delimiter, regardless of formats, etc., is copied out after the Lex output.

Definitions intended for Lex are given before the first %% delimiter. Any line in this section not contained between % { and % }, and begining in column 1, is assumed to define Lex substitution strings. The format of such lines is name translation and it causes the string given as a translation to be associated with the name. The name and translation must be separated by at least one blank or tab, and the name must begin with a letter. The translation can then be called out by the {name} syntax in a rule. Using {D} for the digits and {E} for an exponent field, for example, might abbreviate rules to recognize numbers:

```
D [0-9]
E [DEde][-+]?{D}+
%%
{D}+ printf("integer");
{D}+"."{D}*({E})? |
{D}*"."{D}+({E})? |
{D}+{E}
```

Note the first two rules for real numbers; both require a decimal point and contain an optional exponent field, but the first requires at least one digit before the decimal point and the second requires at least one digit after the decimal point. To correctly handle the problem posed by a Fortran expression such as 35.EQ.I, which does not contain a real number, a context-sensitive rule such as

```
[0-9]+/"."EQ printf("integer");
```

could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including the selection of a host language, a character set table, a list of start conditions, or adjustments to the default size of arrays within Lex itself for larger source programs. These possibilities are discussed below under ``Summary of Source Format," section 12.

7. Usage.

There are two steps in compiling a Lex source program. First, the Lex source must be turned into a generated program in the host general purpose language. Then this program must be compiled and loaded, usually with a library of Lex subroutines. The generated program is on a file named lex.yy.c. The I/O library is defined in terms of the C standard library [6].

The C programs generated by Lex are slightly different on OS/370, because the OS compiler is less powerful than the UNIX or GCOS compilers, and does less at compile time. C programs generated on GCOS and UNIX are the same.

UNIX. The library is accessed by the loader flag -ll. So an appropriate set of commands is lex source cc lex.yy.c -ll The resulting program is placed on the usual file a.out for later execution. To use Lex with Yacc see below. Although the default Lex I/O routines use the C standard library, the Lex automata themselves do not do so; if private versions of input, output and unput are given, the library can be avoided.

8. Lex and Yacc.

If you want to use Lex with Yacc, note that what Lex writes is a program named yylex(), the name required by Yacc for its analyzer. Normally, the default main program on the Lex library calls this routine, but if Yacc is loaded, and its main program is used, Yacc will call yylex(). In this case each Lex rule should end with

```
return(token);
```

where the appropriate token value is returned. An easy way to get access to Yacc's names for tokens is to compile the Lex output file as part of the Yacc output file by placing the line # include "lex.yy.c" in the last section of Yacc input. Supposing the grammar to be named ``good" and the lexical rules to be named ``better" the UNIX command sequence can just be:

```
yacc good
lex better
cc y.tab.c -ly -ll
```

The Yacc library (-ly) should be loaded before the Lex library, to obtain a main program which invokes the Yacc parser. The generations of Lex and Yacc programs can be done in either order.

9. Examples.

As a trivial problem, consider copying an input file while adding 3 to every positive number divisible by 7. Here is a suitable Lex source program

```
%%
    int k;
[0-9]+ {
        k = atoi(yytext);
        if (k%7 == 0)
            printf("%d", k+3);
        else
            printf("%d",k);
        }
```

to do just that. The rule [0-9]+ recognizes strings of digits; atoi converts the digits to binary and stores the result in k. The operator % (remainder) is used to check whether k is divisible by 7; if it is, it is incremented by 3 as it is written out. It may be objected that this program will alter such input items as 49.63 or X7. Furthermore, it increments the absolute value of all negative numbers divisible by 7. To avoid this, just add a few more rules after the active one, as here:

```
\begin{array}{c} printf("\%d",\\ k\%7 == 0\ ?\ k+3:k);\\ \\ -?[0-9.]+ & ECHO;\\ [A-Za-z][A-Za-z0-9]+ & ECHO; \end{array}
```

Numerical strings containing a ``." or preceded by a letter will be picked up by one of the last two rules, and not changed. The if-else has been replaced by a C conditional expression to save space; the form a?b:c means ``if a then b else c".

For an example of statistics gathering, here is a program which histograms the lengths of words, where a word is defined as a string of letters.

This program accumulates the histogram, while producing no output. At the end of the input it prints the table. The final statement return(1); indicates that Lex is to perform wrapup. If yywrap returns zero (false) it implies that further input is available and the program is to continue reading and processing. To provide a yywrap that never returns true causes an infinite loop.

As a larger example, here are some parts of a program written by N. L. Schryer to convert double precision Fortran to single precision Fortran. Because Fortran does not distinguish upper and lower case letters, this routine begins by defining a set of classes including both cases of each letter:

```
a [aA]
b [bB]
c [cC]
...
z [zZ]
```

An additional class recognizes white space:

```
W [ t]*
```

The first rule changes "double precision" to "real", or "DOUBLE PRECISION" to "REAL".

```
 \begin{array}{l} \{d\}\{o\}\{u\}\{b\}\{l\}\{e\}\{W\}\{p\}\{r\}\{e\}\{c\}\{i\}\{s\}\{i\}\{o\}\{n\} \ \{printf(yytext[0]=='d'? \ "real" : "REAL"); \ \\ \} \end{array}
```

Care is taken throughout this program to preserve the case (upper or lower) of the original program. The conditional operator is used to select the proper form of the keyword. The next rule copies continuation card indications to avoid confusing them with constants:

```
^" "[^0] ECHO;
```

In the regular expression, the quotes surround the blanks. It is interpreted as "beginning of line, then five blanks, then anything but blank or zero." Note the two different meanings of ^. There follow some rules to change double precision constants to ordinary floating constants.

After the floating point constant is recognized, it is scanned by the for loop to find the letter d or D. The program than adds 'e'-'d', which converts it to the next letter of the alphabet. The modified constant, now single-precision, is written out again. There follow a series of names which must be respelled to remove their initial d. By using the array yytext the same action suffices for all the names (only a sample of a rather long list is given here).

```
{d}{s}{i}{n} | 

{d}{c}{o}{s} | 

{d}{s}{q}{r}{t} | 

{d}{a}{t}{a}{n} | 

... 

{d}{f}{l}{o}{a}{t} printf("%s",yytext+1);
```

Another list of names must have initial d changed to initial a:

```
{d}{l}{o}{g} |

{d}{l}{o}{g}10 |

{d}{m}{i}{n}1 |

{d}{m}{a}{x}1 {

yytext[0] =+ 'a' - 'd';

ECHO;
```

And one routine must have initial d changed to initial r:

```
\{d\}1\{m\}\{a\}\{c\}\{h\}  {yytext[0] =+ 'r' - 'd';
```

To avoid such names as dsinx being detected as instances of dsin, some final rules pick up longer words as identifiers and copy some surviving characters:

```
[A-Za-z][A-Za-z0-9]* |

[0-9]+ |

\n |

ECHO;
```

Note that this program is not complete; it does not deal with the spacing problems in Fortran or with the use of keywords as identifiers.

10. Left Context Sensitivity.

Sometimes it is desirable to have several sets of lexical rules to be applied at different times in the input. For example, a compiler preprocessor might distinguish preprocessor statements and analyze them differently from ordinary statements. This requires sensitivity to prior context, and there are several ways of handling such problems. The ^ operator, for example, is a prior context operator, recognizing immediately preceding left context just as \$ recognizes immediately following right context. Adjacent left context could be extended, to produce a facility similar to that for adjacent right context, but it is unlikely to be as useful, since often the relevant left context appeared some time earlier, such as at the beginning of a line.

This section describes three means of dealing with different environments: a simple use of flags, when only a few rules change from one environment to another, the use of start conditions on rules, and the possibility of making multiple lexical analyzers all run together. In each case, there are rules which recognize the need to change the environment in which the following input text is analyzed, and set some parameter to reflect the change. This may be a flag explicitly tested by the user's action code; such a flag is the simplest way of dealing with the problem, since Lex is not involved at all. It may be more convenient, however, to have Lex remember the flags as initial conditions on the rules. Any rule may be associated with a start condition. It will only be recognized when Lex is in that start condition. The current start condition may be changed at any time. Finally, if the sets of rules for the different environments are very dissimilar, clarity may be best achieved by writing several distinct lexical analyzers, and switching from one to another as desired.

Consider the following problem: copy the input to the output, changing the word magic to first on every line which began with the letter a, changing magic to second on every line which began with the letter b, and changing magic to third on every line which began with the letter c. All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this job is with a flag:

```
int flag;
%%

^a {flag = 'a'; ECHO;}
^b {flag = 'b'; ECHO;}
^c {flag = 'c'; ECHO;}
\n {flag = 0; ECHO;}

magic {
    switch (flag)
    {
      case 'a': printf("first"); break;
      case 'c': printf("third"); break;
      default: ECHO; break;
    }
}
```

should be adequate.

To handle the same problem with start conditions, each start condition must be introduced to Lex in the definitions section with a line reading

```
%Start name1 name2 ...
```

where the conditions may be named in any order. The word Start may be abbreviated to s or S. The conditions may be referenced at the head of a rule with the <> brackets:

```
<name1>expression
```

is a rule which is only recognized when Lex is in the start condition name1. To enter a start condition, execute the action statement

```
BEGIN name1;
```

which changes the start condition to name1. To resume the normal state,

```
BEGIN 0;
```

resets the initial condition of the Lex automaton interpreter. A rule may be active in several start conditions: <name1,name2,name3> is a legal prefix. Any rule not beginning with the <> prefix operator is always active.

The same example as before can be written:

```
%START AA BB CC
%%

^a {ECHO; BEGIN AA;}
^b {ECHO; BEGIN BB;}
^c {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0;}
<AA>magic printf("first");
<BB>magic printf("second");
<CC>magic printf("third");
```

where the logic is exactly the same as in the previous method of handling the problem, but Lex does the work rather than the user's code.

11. Character Set.

The programs generated by Lex handle character I/O only through the routines input, output, and unput. Thus the character representation provided in these routines is accepted by Lex and employed to return values in yytext. For internal use a character is represented as a small integer which, if the standard library is used, has a value equal to the integer value of the bit pattern representing the character on the host computer. Normally, the letter a is represented as the same form as the character constant 'a'. If this interpretation is changed, by providing I/O routines which translate the characters, Lex must be told about it, by giving a translation table. This table must be in the definitions section, and must be bracketed by lines containing only ``%T". The table contains lines of the form

```
{integer} {character string}
```

which indicate the value associated with each character. Thus the next example

```
%T
1 Aa
2 Bb
```

```
26 Zz
27 \n
28 +
29 -
30 0
31 1
...
39 9
%T
```

Sample character table.

maps the lower and upper case letters together into the integers 1 through 26, newline into 27, + and - into 28 and 29, and the digits into 30 through 39. Note the escape for newline. If a table is supplied, every character that is to appear either in the rules or in any valid input must be included in the table. No character may be assigned the number 0, and no character may be assigned a bigger number than the size of the hardware character set.

12. Summary of Source Format.

The general form of a Lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

- 1) Definitions, in the form ``name space translation''.
- 2) Included code, in the form ``space code".
- 3) Included code, in the form

% {
code
% }

4) Start conditions, given in the form

%S name1 name2 ...

5) Character set tables, in the form

%T number space character-string ... %T

6) Changes to internal array sizes, in the form

%x nnr

where nnn is a decimal integer representing an array size and x selects the parameter as follows:

```
Letter Parameter p positions
```

```
n states
```

- e tree nodes
- a transitions
- k packed character classes
- o output array size

Lines in the rules section have the form "expression action" where the action may be continued on succeeding lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

```
the character "x"
"x"
       an "x", even if x is an operator.
      an "x", even if x is an operator.
\x
[xy] the character x or y.
[x-z] the characters x, y or z.
[^{x}] any character but x.
     any character but newline.
     an x at the beginning of a line.
<y>x an x when Lex is in start condition y.
     an x at the end of a line.
x$
\mathbf{x}?
      an optional x.
       0,1,2,... instances of x.
      1,2,3,... instances of x.
\mathbf{x}|\mathbf{y}
     an x or a y.
(x) an x.
x/y an x but only if followed by y.
\{xx\} the translation of xx from the
     definitions section.
x\{m,n\} m through n occurrences of x
```

13. Caveats and Bugs.

There are pathological expressions which produce exponential growth of the tables when converted to deterministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the previous scan. This means that if a rule with trailing context is found, and REJECT executed, the user must not have used unput to change the characters forthcoming from the input stream. This is the only restriction on the user's ability to manipulate the not-yet-processed input.

14. Acknowledgments.

As should be obvious from the above, the outside of Lex is patterned on Yacc and the inside on Aho's string matching routines. Therefore, both S. C. Johnson and A. V. Aho are really originators of much of Lex, as well as debuggers of it. Many thanks are due to both.

The code of the current version of Lex was designed, written, and debugged by Eric Schmidt.

Lex Manual Page

NAME

lex – generator of lexical analysis programs

SYNOPSIS

lex [-tvn9] [file ...]

DESCRIPTION

Lex generates programs to be used in simple lexical analysis of text. The input files (standard input default) contain regular expressions to be searched for and actions written in C to be executed when expressions are found.

A C source program, lex.yy.c is generated. This program, when run, copies unrecognized portions of the input to the output, and executes the associated C action for each regular expression that is recognized.

The options have the following meanings.

- -t Place the result on the standard output instead of in file lex.yy.c.
- -v Print a one-line summary of statistics of the generated analyzer.
- -n Opposite of -v; -n is default.
- -9 Adds code to be able to compile through the native C compilers.

EXAMPLES

This program converts upper case to lower, removes blanks at the end of lines, and replaces multiple blanks by single blanks.

[A–Z]	putchar(yytext[0]+'a'-'A');
[]+\$	
[]+ putch	ar(' ');
FILES	
lex.yy.c	output
/sys/lib/lex	x/ncform template

SOURCE

/sys/src/cmd/lex

BUGS

Cannot handle UTF.

The asteroid to kill this dinosaur is still in orbit.

Yacc: Yet Another Compiler-Compiler

Stephen C. Johnson AT&T Bell Laboratories Murray Hill, New Jersey 07974

ABSTRACT

Computer program input generally has some structure; in fact, every computer program that does input can be thought of as defining an "input language" which it accepts. An input language may be as complex as a programming language, or as simple as a sequence of numbers. Unfortunately, usual input facilities are limited, difficult to use, and often are lax about checking their inputs for validity.

Yacc provides a general tool for describing the input to a computer program. The Yacc user specifies the structures of his input, together with code to be invoked as each such structure is recognized. Yacc turns such a specification into a subroutine that handles the input process; frequently, it is convenient and appropriate to have most of the flow of control in the user's application handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to return the next basic input item. Thus, the user can specify his input in terms of individual input characters, or in terms of higher level constructs such as names and numbers. The user-supplied routine may also handle idiomatic features such as comment and continuation conventions, which typically defy easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a very general one: LALR(1) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also been used for less conventional languages, including a phototypesetter language, several desk calculator languages, a document retrieval system, and a Fortran debugging system.

0: Introduction

Yacc provides a general tool for imposing structure on the input to a computer program. The Yacc user prepares a specification of the input process; this includes rules describing the input structure, code to be invoked when these rules are recognized, and a low-level routine to do the basic input. Yacc then generates a function to control the input process. This function, called a parser, calls the user-supplied low-level input routine (the lexical analyzer) to pick up the basic items (called tokens) from the input stream. These tokens are organized according to the input structure rules, called grammar rules; when one of these rules has been recognized, then user code supplied for this rule, an action, is invoked; actions have the ability to return values and make use of the values of other actions.

Yacc is written in a portable dialect of C[1] and the actions, and output subroutine, are in C as well. Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes an allowable structure and gives it a name. For example, one grammar rule might be

```
date : month name day ',' year ;
```

Here, date, month_name, day, and year represent structures of interest in the input process; presumably, month_name, day, and year are defined elsewhere. The comma ``," is enclosed in single quotes; this implies that the comma is to appear literally in the input. The colon and semicolon merely serve as punctuation in the rule, and have no significance in controlling the input. Thus, with proper definitions, the input

```
July 4, 1776
```

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user routine reads the input stream, recognizing the lower level structures, and communicates these tokens to the parser. For historical reasons, a structure recognized by the lexical analyzer is called a terminal symbol, while the structure recognized by the parser is called a nonterminal symbol. To avoid confusion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using the lexical analyzer or grammar rules. For example, the rules

```
month_name : 'J' 'a' 'n' ;
month_name : 'F' 'e' 'b' ;

. . .
month name : 'D' 'e' 'c' ;
```

might be used in the above example. The lexical analyzer would only need to recognize individual letters, and month_name would be a nonterminal symbol. Such low-level rules tend to waste time and space, and may complicate the specification beyond Yacc's ability to deal with it. Usually, the lexical analyzer would recognize the month names, and return an indication that a month_name was seen; in this case, month_name would be a token.

Literal characters such as ``," must also be passed through the lexical analyzer, and are also considered tokens.

Specification files are very flexible. It is realively easy to add to the above example the rule

```
date : month '/' day '/' year ; allowing 7 / 4 / 1776 as a synonym for
```

July 4, 1776

In most cases, this new rule could be "slipped in" to a working system with minimal effort, and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are detected as early as is theoretically possible with a left-to-right scan; thus, not only is the chance of reading and computing with bad input data substantially reduced, but the bad data can usually be quickly found. Error handling, provided as part of the input specifications, permits the reentry of bad data, or the continuation of the input process after skipping over the bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For example, the specifications may be self contradictory, or they may require a more powerful recognition mechanism than that available to Yacc. The former cases represent design errors; the latter cases can often be corrected by making the lexical analyzer more powerful, or by rewriting some of the grammar rules. While Yacc cannot handle all possible specifications, its power compares favorably with similar systems; moreover, the constructions which are difficult for Yacc to

handle are also frequently difficult for human beings to handle. Some users have reported that the discipline of formulating valid Yacc specifications for their input revealed errors of conception or design early in the program development.

The theory underlying Yacc has been described elsewhere.[2, 3, 4] Yacc has been extensively used in numerous practical applications, including lint,[5] the Portable C Compiler,[6] and a system for typesetting mathematics.[7]

The next several sections describe the basic process of preparing a Yacc specification; Section 1 describes the preparation of grammar rules, Section 2 the preparation of the user supplied actions associated with these rules, and Section 3 the preparation of lexical analyzers. Section 4 describes the operation of the parser. Section 5 discusses various reasons why Yacc may be unable to produce a parser from a specification, and what to do about it. Section 6 describes a simple mechanism for handling operator precedences in arithmetic expressions. Section 7 discusses error detection and recovery. Section 8 discusses the operating environment and special features of the parsers Yacc produces. Section 9 gives some suggestions which should improve the style and efficiency of the specifications. Section 10 discusses some advanced topics, and Section 11 gives acknowledgements. Appendix A has a brief example, and Appendix B gives a summary of the Yacc input syntax. Appendix C gives an example using some of the more advanced features of Yacc, and, finally, Appendix D describes mechanisms and syntax no longer actively supported, but provided for historical continuity with older versions of Yacc.

1: Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be declared as such. In addition, for reasons discussed in Section 3, it is often desirable to include the lexical analyzer as part of the specification file; it may be useful to include

other programs as well. Thus, every specification file consists of three sections: the declarations, (grammar) rules, and programs. The sections are separated by double percent ``%%" marks. (The percent ``%" is generally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like

```
declarations
%%
rules
%%
programs
```

The declaration section may be empty. Moreover, if the programs section is omitted, the second %% mark may be omitted also;

thus, the smallest legal Yacc specification is

```
%%
rules
```

Blanks, tabs, and newlines are ignored except that they may not appear in names or multi-character reserved symbols. Comments may appear wherever a name is legal; they are enclosed in /* . . . */, as in C and PL/I.

The rules section is made up of one or more grammar rules. A grammar rule has the form:

```
A : BODY
```

A represents a nonterminal name, and BODY represents a sequence of zero or more names and literals. The colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ``.", underscore ``_", and non-initial digits. Upper and lower case letters are distinct. The names used in the body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes ``". As in C, the backslash ``\" is an escape character within literals, and all the C escapes are recognized. Thus

```
'\n' newline
'\r' return
'\'' single quote ``'''
'\t' backslash ``\''
'\t' tab
'\b' backspace
'\f' form feed
'\xxx' ``xxx'' in octal
```

For a number of technical reasons, the NUL character ('\0' or 0) should never be used in grammar rules.

If there are several grammar rules with the same left hand side, the vertical bar ``|" can be used to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule can be dropped before a vertical bar. Thus the grammar rules

```
A : B C D ;
A : E F ;
A : G ;

can be given to Yacc as
A : B C D
| E F |
| G ;
```

It is not necessary that all grammar rules with the same left side appear together in the grammar rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious way:

```
empty: ;
```

Names representing tokens must be declared; this is most simply done by writing

```
*token name1 name2 . . . in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name not defined in the declarations section is assumed to represent a nonterminal symbol. Every nonterminal symbol must appear on the left side of at least one rule.
```

Of all the nonterminal symbols, one, called the start symbol, has particular importance. The parser is designed to recognize the start symbol; thus, this symbol represents the largest, most general structure described by the grammar rules. By default, the start symbol is taken to be the left hand side of the first grammar rule in the rules section. It is possible, and in fact desirable, to declare the start symbol explicitly in the declarations section using the %start keyword:

```
%start symbol
```

The end of the input to the parser is signaled by a special token, called the endmarker. If the tokens up to, but not including, the endmarker form a structure which matches the start symbol, the parser function returns to its caller after the endmarker is seen; it accepts the input. If the endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropriate; see section 3, below. Usually the endmarker represents some reasonably obvious I/O status, such as ``end-of-file" or ``end-of-record".

2: Actions

With each grammar rule, the user may associate actions to be

performed each time the rule is recognized in the input process. These actions may return values, and may obtain the values returned by previous actions. Moreover, the lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subprograms, and alter external vectors and variables. An action is specified by one or more statements, enclosed in curly braces ``{" and ``}". For example,

```
A : '(' B ')' { hello(1, "abc"); } and 

XXX : YYY ZZZ { printf("a message\n"); flag = 25; }
```

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action statements are altered slightly. The symbol "dollar sign" "\$" is used as a signal to Yacc in this context.

To return a value, the action normally sets the pseudovariable ``\$\$" to some value. For example, an action that does nothing but return the value 1 is

```
\{ \$\$ = 1; \}
```

To obtain the values returned by previous actions and the lexical analyzer, the action may use the pseudo-variables \$1, \$2, . . ., which refer to the values returned by the components of the right side of a rule, reading from left to right. Thus, if the rule is

```
A : B C D ; for example, then $2 has the value returned by C, and $3 the value returned by D.
```

As a more concrete example, consider the rule

```
expr : '(' expr ')' ;
The value returned by this rule is usually the value of the expr in parentheses. This can be indicated by

expr : '(' expr ')' \{ $$ = $2; \}
```

By default, the value of a rule is the value of the first element in it (\$1). Thus, grammar rules of the form

```
A : B ; frequently need not have an explicit action.
```

In the examples above, all the actions came at the end of their rules. Sometimes, it is desirable to get control before a rule is fully parsed. Yacc permits an action to be written in the middle of a rule as well as at the end. This rule is assumed to return a value, accessible through the usual mechanism by the actions to the right of it. In turn, it may access the values returned by the symbols to its left. Thus, in the rule

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new nonterminal symbol name, and a new rule matching this name to the empty string. The interior action is the action triggered off by recognizing this added rule. Yacc actually treats the above example as if it had been written:

In many applications, output is not done directly by the actions; rather, a data structure, such as a parse tree, is constructed in memory, and transformations are applied to it before output is generated. Parse trees are particularly easy to construct, given routines to build and maintain the tree structure desired. For example, suppose there is a C function node, written so that the call

```
node( L, n1, n2 )
```

creates a node with label L, and descendants n1 and n2, and returns the index of the newly created node. Then parse tree can be built by supplying actions such as:

```
expr : expr '+' expr { $$ = node( '+', $1, $3 ); }
```

in the specification.

The user may define other variables to be used by the actions. Declarations and definitions can appear in the declarations section, enclosed in the marks ``%{" and ``%}". These declarations and definitions have global scope, so they are known to the action statements and the lexical analyzer. For example,

```
%{ int variable = 0; %}
```

could be placed in the declarations section, making variable accessible to all of the actions. The Yacc parser uses only names beginning in "yy"; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be found in Section 10.

3: Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate tokens (with values, if desired) to the parser. The lexical analyzer is an integer-valued function called yylex. The function returns an integer, the token number, representing the kind of token read. If there is a value associated with that token, it should be assigned to the external variable yylval.

The parser and the lexical analyzer must agree on these token numbers in order for communication between them to take place. The numbers may be chosen by Yacc, or chosen by the user. In either case, the ``# define" mechanism of C is used to allow the lexical analyzer to return these numbers symbolically. For example, suppose that the token name DIGIT has been defined in the declarations section of the Yacc specification file. The relevant portion of the lexical analyzer might look like:

The intent is to return a token number of DIGIT, and a value equal to the numerical value of the digit. Provided that the lexical analyzer code is placed in the programs section of the specification file, the identifier DIGIT will be defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the need to avoid using any token names in the grammar that are reserved or significant in C or the parser; for example, the use of token names if or while will almost certainly cause severe difficulties when the lexical analyzer is compiled. The token name error is reserved for error handling, and should not be used naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the default situation, the numbers are chosen by Yacc. The default token number for a literal

character is the numerical value of the character in the local character set. Other names are assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the token name or literal in the declarations section can be immediately followed by a nonnegative integer. This integer is taken to be the token number of the name or literal. Names and literals not defined by this mechanism retain their default definition. It is important that all token numbers be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This token number cannot be redefined by the user; thus, all lexical analyzers should be prepared to return 0 or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Lex program developed by Mike Lesk.[8] These lexical analyzers are designed to work in close harmony with Yacc parsers. The specifications for these lexical analyzers use regular expressions instead of grammar rules. Lex can be easily used to produce quite complicated lexical analyzers, but there remain some languages (such as FORTRAN) which do not fit any theoretical framework, and whose lexical analyzers must be crafted by hand.

4: How the Parser Works

Yacc turns the specification file into a C program, which parses the input according to the specification given. The algorithm used to go from the specification to the parser is complex, and will not be discussed here (see the references for more information). The parser itself, however, is relatively simple, and understanding how it works, while not strictly necessary, will nevertheless make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parser is also capable of reading and remembering the next input token (called the lookahead token). The current state is always the one on the top of the stack. The states of the finite state machine are given small integer labels; initially, the machine is in state 0, the stack contains only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error. A move of the parser is done as follows:

- 1. Based on its current state, the parser decides whether it needs a lookahead token to decide what action should be done; if it needs one, and does not have one, it calls yylex to obtain the next token.
- 2. Using the current state, and the lookahead token if needed, the parser decides on its next action, and carries it out. This may result in states being pushed onto the stack, or popped off of the stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is taken, there is always a lookahead token. For example, in state 56 there may be an action:

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on the stack, and state 34 becomes the current state (on the top of the stack). The lookahead token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are appropriate when the parser has seen the right hand side of a grammar rule, and is prepared to announce that it has seen an instance of the rule, replacing the right hand side by the left hand side. It may be necessary to consult the lookahead token to decide whether to reduce, but usually it is not; in fact, the default action (represented by a ``.") is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are also given small integer numbers, leading to some confusion. The action

. reduce 18 refers to grammar rule 18, while the action $_{
m IF}$ shift 34

refers to state 34.

Suppose the rule being reduced is

A: x y z;

The reduce action depends on the left hand symbol (A in this case), and the number of symbols on the right hand side (three in this case). To reduce, first pop off the top three states from the stack (In general, the number of states popped equals the number of symbols on the right side of the rule). In effect, these states were the ones put on the stack while recognizing x, y, and z, and no longer serve any useful purpose. After popping these states, a state is uncovered which was the state the parser was in before beginning to process the rule. Using this uncovered state, and the symbol on the left side of the rule, perform what is in effect a shift of A. A new state is obtained, pushed onto the stack, and parsing continues. There are significant differences between the processing of the left hand symbol and an ordinary shift of a token, however, so this action is called a goto action. In particular, the lookahead token is cleared by a shift, and is not affected by a goto. In any case, the uncovered state contains an entry such as:

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action ``turns back the clock" in the parse, popping the states off the stack to go back to the state where the right hand side of the rule was first seen. The parser then behaves as if it had seen the left side at that time. If the right hand side of the

rule is empty, no states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values. When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted. In addition to the stack holding the states, another stack, running in parallel with it, holds the values returned from the lexical analyzer and the actions. When a shift takes place, the external variable yylval is copied onto the value stack. After the return from the user code, the reduction is carried out. When the goto action is done, the external variable yyval is copied onto the value stack. The pseudo-variables \$1, \$2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates that the entire input has been seen and that it matches the specification. This action appears only when the lookahead token is the endmarker, and indicates that the parser has successfully done its job. The error action, on the other hand, represents a place where the parser can no longer continue parsing according to the specification. The input

tokens it has seen, together with the lookahead token, cannot be followed by anything that would result in a legal input. The parser reports an error, and attempts to recover the situation and resume parsing: the error recovery (as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

```
%token DING DONG DELL
%%
rhyme : sound place
;
sound : DING DONG
;
place : DELL
;
```

When Yacc is invoked with the -v option, a file called youtput is produced, with a human-readable description of the parser. The youtput file corresponding to the above grammar (with some statistics stripped off the end) is:

```
$end accept
       . error
state 2
       rhyme : sound place
       DELL shift 5
       . error
       place goto 4
state 3
       sound :
                 DING_DONG
       DONG shift 6
       . error
state 4
       rhyme : sound place_ (1)
          reduce 1
state 5
       place :
                DELL
                         (3)
          reduce 3
state 6
       sound :
                 DING DONG_
                               (2)
          reduce 2
```

Notice that, in addition to the actions for each state, there is a description of the parsing rules being processed in each state. The _ character is used to indicate what has been seen, and what is yet to come, in each rule. Suppose the input is

```
DING DONG DELL
```

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0. The parser needs to refer to the input in order to decide between the actions available in state 0, so the first token, DING, is read, becoming the lookahead token. The action in state 0 on DING is is ``shift 3", so state 3 is pushed onto the stack, and the lookahead token is cleared. State 3 becomes the current state. The next token, DONG, is read, becoming the lookahead token. The action in state 3 on the token DONG is ``shift 6", so state 6 is pushed onto the stack, and the lookahead is cleared. The stack now contains 0, 3, and 6. In state 6, without even consulting the lookahead, the parser reduces by rule 2.

```
sound : DING DONG
```

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the stack, uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

```
sound goto 2
```

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is "shift 5", so state 5 is pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In state 5, the only action is to reduce by rule 3. This has one symbol on the right hand side, so one state, 5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side of rule 3, is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1. There are two symbols on the right, so the top two states are popped off, uncovering state 0 again. In state 0, there is a goto on rhyme causing the parser to enter state 1. In state 1, the input is read; the endmarker is obtained, indicated by "\$end" in the youtput file. The action in state 1 when the endmarker is seen is to accept, successfully ending the parse.

The reader is urged to consider how the parser works when confronted with such incorrect strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes spend with this and other simple examples will probably be repaid when problems arise in more complicated contexts.

5: Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured in two or more different ways. For example, the grammar rule

```
expr : expr '-' expr
```

is a natural way of expressing the fact that one way of forming an arithmetic expression is to put two other expressions together

with a minus sign between them. Unfortunately, this grammar rule does not completely specify the way that all complex inputs should be structured. For example, if the input is

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to consider the problem that confronts the parser when it is given an input such as

```
expr - expr - expr
```

When the parser has read the second expr, the input that it has seen:

```
expr - expr
```

matches the right side of the grammar rule above. The parser could reduce the input by applying this rule; after applying the rule; the input is reduced to expr(the left side of the rule). The parser would then read the final part of the input:

```
expr
```

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen

```
expr - expr
```

it could defer the immediate application of the rule, and continue reading the input until it had seen

```
expr - expr - expr
```

It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving

```
expr - expr
```

Now the rule can be reduced once more; the effect is to take the right associative interpretation. Thus, having read

```
expr - expr
```

the parser can do two legal things, a shift or a reduction, and has no way of deciding between them. This is called a shift / reduce conflict. It may also happen that the parser has a choice of two legal reductions; this is called a reduce / reduce conflict. Note that there are never any ``Shift/shift" conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It does this by selecting one of the valid steps wherever it has a choice. A rule describing which choice to make in a given situation is called a disambiguating rule.

Yacc invokes two disambiguating rules by default:

- 1. In a shift/reduce conflict, the default is to do the shift.
- 2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts. Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules, while consistent, require a more complex parser than Yacc can construct. The use of actions within rules can also cause conflicts, if the action must be done before the parser can be sure which rule is being recognized. In these cases, the application of disambiguating rules is inappropriate, and leads to an incorrect parser. For this reason, Yacc always reports the number of shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct parser, it is also possible to rewrite the grammar rules so that the same inputs are read but there are no conflicts. For this reason, most previous parser generators have considered conflicts to be fatal errors. Our experience has suggested that this rewriting is somewhat unnatural, and produces slower parsers; thus, Yacc will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a programming language involving an ``if-then-else" construction:

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional (logical) expressions, and stat is a nonterminal symbol describing statements. The first rule will be called the simple-if rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input of the form

IF (C1) stat ELSE S2

The second interpretation is the one given in most programming languages having this construct. Each ELSE is associated with the last preceding ``un-ELSE'd" IF. In this example, consider the situation where the parser has seen

```
and is looking at the ELSE. It can immediately reduce by the simple-if rule to get IF ( C1 ) stat and then read the remaining input,

ELSE S2 and reduce
```

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of

```
IF ( C1 ) IF ( C2 ) S1 ELSE S2 can be reduced by the if-else rule to get

IF ( C1 ) stat
```

which can be reduced by the simple-if rule. This leads to the second of the above groupings of the input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict. The application of disambiguating rule 1 tells the parser to shift in this case, which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol, ELSE, and particular inputs already seen, such as

```
IF ( C1 ) IF ( C2 ) S1
```

In general, there may be many conflicts, and each one will be associated with an input symbol and a set of previously read inputs. The previously read inputs are characterized by the state of the parser.

The conflict messages of Yacc are best understood by examining the verbose (-v) option output file. For example, the output corresponding to the above conflict state might be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

```
stat: IF (cond) stat_(18) stat: IF (cond) stat_ELSE stat
```

ELSE shift 45 . reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state description follows, giving the grammar rules active in the state, and the parser actions. Recall that the underline marks the portion of the grammar rules which has been seen. Thus in the example, in state 23 the parser has seen input corresponding to

```
IF ( cond ) stat
```

and the two grammar rules shown are active at this time. The parser can do two possible things. If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as part of its description, the line

```
stat : IF ( cond ) stat ELSE_stat
```

since the ELSE will have been shifted in this state. Back in state 23, the alternative action, described by ``.", is to be done if the input symbol is not mentioned explicitly in the above actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule 18:

```
stat : IF '(' cond ')' stat
```

Once again, notice that the numbers following "shift" commands refer to other states, while the numbers following "reduce" commands refer to grammar rule numbers. In the youtput file, the rule numbers are printed after those rules which can be reduced. In most one states, there will be at most reduce action possible in the state, and this will be the default command. The user who encounters unexpected shift/reduce conflicts will probably want to look at the verbose output to decide whether the default actions are appropriate. In really tough cases, the user might need to know more about the behavior and construction of the parser than can be covered here. In this case, one of the theoretical references[2, 3, 4] might be consulted; the services of a local guru might also be appropriate.

6: Precedence

There is one common situation where the rules given above for resolving conflicts are not sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used constructions for arithmetic expressions can be naturally described by the notion of precedence levels for operators, together with information about left or right associativity. It turns out that ambiguous grammars with appropriate disambiguating rules can be used to create parsers that are faster and easier to write than parsers constructed from unambiguous grammars. The basic notion is to write grammar rules of the form

```
expr : expr OP expr
and
expr : UNARY expr
```

for all binary and unary operators desired. This creates a very ambiguous grammar, with many parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding strength, of all the operators, and the associativity of the binary operators. This information is sufficient to allow Yacc to resolve the parsing conflicts in accordance with these rules, and construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section. This is done by a series of lines beginning with a Yacc keyword: %left, %right, or %nonassoc, followed by a list of tokens. All of the tokens on the same line

are assumed to have the same precedence level and associativity; the lines are listed in order of increasing precedence or binding strength. Thus,

```
%left '+' '-' %left '*' '/'
```

describes the precedence and associativity of the four arithmetic operators. Plus and minus are left associative, and have lower precedence than star and slash, which are also left associative. The keyword %right is used to describe right associative operators, and the keyword %nonassoc is used to describe operators, like the operator .LT. in Fortran, that may not associate with themselves; thus,

```
A .LT. B .LT. C
```

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in Yacc. As an example of the behavior of these declarations, the description

might be used to structure the input

```
a = b = c*d - e - f*g
as follows:
a = ( b = ( ((c*d)-e) - (f*g) ) )
```

When this mechanism is used, unary operators must, in general, be given a precedence. Sometimes a unary operator and a binary operator have the same symbolic representation, but different precedences. An example is unary and binary '-'; unary minus may be given the same strength as multiplication, or even higher, while binary minus has a lower strength than multiplication. The keyword, %prec, changes the precedence level associated with a particular grammar rule. %prec appears immediately after the body of the grammar rule, before the action or closing semicolon, and is followed by a token name or literal. It causes the precedence of the grammar rule to become that of the following token

name or literal. For example, to make unary minus have the same precedence as multiplication the rules might resemble:

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by %token as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give rise to disambiguating rules. Formally, the rules work as follows:

- 1. The precedences and associativities are recorded for those tokens and literals that have them.
- 2. A precedence and associativity is associated with each grammar rule; it is the precedence and associativity of the last token or literal in the body of the rule. If the %prec construction is used, it overrides this default. Some grammar rules may have no precedence and associativity associated with them.
- 3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the input symbol or the grammar rule has no precedence and associativity, then the two disambiguating rules given at the beginning of the section are used, and the conflicts are reported.
- 4. If there is a shift/reduce conflict, and both the grammar rule and the input character have precedence and associativity associated with them, then the conflict is resolved in favor of the action (shift or reduce) associated with the higher precedence. If the precedences are the same, then the associativity is used; left associative implies reduce, right associative implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of precedences may disguise errors in the input grammar; it is a good idea to be sparing with precedences, and use them in an

essentially ``cookbook" fashion, until some experience has been gained. The youtput file is very useful in deciding whether the parser is actually doing what was intended.

7: Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic ones. When an error is found, for example, it may be necessary to reclaim parse tree storage, delete or alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to continue scanning the input to find further syntax errors. This leads to the problem of getting the parser ``restarted" after an error. A general class of algorithms to do this involves discarding a number of tokens from the input string, and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably general, feature. The token name ``error" is reserved for error handling. This name can be used in grammar rules; in effect, it suggests places where errors are expected, and recovery might take place. The parser pops its stack until it enters a state where the token ``error" is legal. It then behaves as if the token ``error" were the current lookahead token, and performs the action encountered. The lookahead token is then reset to the token that

caused the error. If no special error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error, remains in error state until three tokens have been successfully read and shifted. If an error is detected when the parser is already in error state, no message is given, and the input token is quietly deleted.

As an example, a rule of the form

```
stat : error
```

would, in effect, mean that on a syntax error the parser would attempt to skip over the statement in which the error was seen. More precisely, the parser will scan ahead, looking for three tokens that might legally follow a statement, and start processing at the first of these; if the beginnings of statements are not sufficiently distinctive, it may make a false start in the middle of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reinitialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier are rules such as

```
stat : error ';'
```

Here, when there is an error, the parser attempts to skip over the statement, but will do so by skipping to the next ';'. All tokens after the error and before the next ';' cannot be shifted, and are discarded. When the ';' is seen, this rule will be reduced, and any ``cleanup'' action associated with it performed.

Another form of error rule arises in interactive applications, where it may be desirable to permit a line to be reentered after an error. A possible error rule might be

There is one potential difficulty with this approach; the parser must correctly process three input tokens before it admits that it has correctly resynchronized after the error. If the reentered line contains an error in the first two tokens, the parser deletes the offending tokens, and gives no message; this is clearly unacceptable. For this reason, there is a mechanism that can be used to force the parser to believe that an error has been fully recovered from. The statement

```
yyerrok ;
```

in an action resets the parser to its normal mode. The last example is better written

As mentioned above, the token seen immediately after the ``error" symbol is the input token at which the error was discovered. Sometimes, this is inappropriate; for example, an error recovery action might take upon itself the job of finding the correct place to resume input. In this case, the previous lookahead token must be cleared. The statement

```
yyclearin ;
```

in an action will have this effect. For example, suppose the action after error were to call some sophisticated resynchronization routine, supplied by the user, that attempted to advance the input to the beginning of the next valid statement. After this routine was called, the next token returned by yylex would

presumably be the first token in a legal statement; the old, illegal token must be discarded, and the error state reset. This could be done by a rule like

These mechanisms are admittedly crude, but do allow for a simple, fairly effective recovery of the parser from many errors; moreover, the user can get control to deal with the error actions required by other portions of the program.

8: The Yacc Environment

When the user inputs a specification to Yacc, the output is a file of C programs, called y.tab.c on most systems (due to local file system conventions, the names may differ from installation to installation). The function produced by Yacc is called yyparse; it is an integer valued function. When it is called, it in turn repeatedly calls yylex, the lexical analyzer supplied by the user (see Section 3) to obtain input tokens. Eventually, either an error is detected, in which case (if no error recovery is possible) yyparse returns the value 1, or the lexical analyzer returns the endmarker token and the parser accepts. In this case, yyparse returns the value 0.

The user must provide a certain amount of environment for this parser in order to obtain a working program. For example, as with every C program, a program called main must be defined, that eventually calls yyparse. In addition, a routine called yyerror prints a message when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the initial effort of using Yacc, a library has been provided with default versions of main and yyerror. The name of this library is system dependent; on many systems the library is

accessed by a -ly argument to the loader. To show the triviality of these default programs, the source is given below:

The argument to yyerror is a string containing an error message, usually the string ``syntax error". The average application will want to do better than this. Ordinarily, the program should keep track of the input line number, and print it along with the message when a syntax error is detected. The external integer variable yychar contains the lookahead token number at the time the error was detected; this may be of some interest in giving better diagnostics. Since the main program is probably supplied by the user (to read arguments, etc.) the Yacc library is useful only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero value, the parser will output a verbose description of its actions, including a discussion of which input symbols have been read, and what the parser actions are. Depending on the operating environment, it may be possible to set this variable by using a debugging system.

9: Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and clear specifications. The individual subsections are more or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable specification file. The following style hints owe much to Brian Kernighan.

- a. Use all capital letters for token names, all lower case letters for nonterminal names. This rule comes under the heading of ``knowing who to blame when things go wrong."
- b. Put grammar rules and actions on separate lines. This allows either to be changed without an automatic need to change the other.
- c. Put all rules with the same left hand side together. Put the left hand side in only once, and let all following rules begin with a vertical bar.
- d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon on a separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the text of this paper (where space permits). The user must make up his own mind about these stylistic questions; the central problem, however, is to make the rules visible through the morass of action code.

Left Recursion

The algorithm used by the Yacc parser encourages so called ``left recursive" grammar rules: rules of the form

In each of these cases, the first rule will be reduced for the first item only, and the second rule will be reduced for the second and all succeeding items.

With right recursive rules, such as

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left. More seriously, an internal stack in the parser would be in danger of overflowing if a very long sequence were read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so, consider writing the sequence specification with an empty rule:

Once again, the first rule would always be reduced exactly once, before the first item was read, and then the second rule would be reduced once for each item read. Permitting empty sequences often leads to increased generality. However, conflicts might arise if Yacc is asked to decide which empty sequence it has seen, when it hasn't seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the

lexical analyzer might want to delete blanks normally, but not within quoted strings. Or names might be entered into a symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical analyzer, and set by actions. For example, suppose a program consists of 0 or more declarations, followed by 0 or more statements. Consider:

The flag dflag is now 0 when reading statements, and 1 when reading declarations, except for the first token in the first statement. This token must be seen by the parser before it can tell that the declaration section has ended and the statements have begun. In many cases, this single token exception does not affect the lexical scan.

This kind of "backdoor" approach can be elaborated to a noxious degree. Nevertheless, it represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words

Some programming languages permit the user to use words like ``if", which are normally reserved, as label or variable names, provided that such use does not conflict with the legal use of these names in the programming language. This is extremely hard to do in the framework of Yacc; it is difficult to pass information to the lexical analyzer telling it ``this instance of `if' is a keyword, and that instance is a variable". The user can make a stab at it, using the mechanism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better that the keywords be reserved; that is, be forbidden for use as variable names. There are powerful stylistic reasons for preferring this, anyway.

10: Advanced Topics

This section discusses a number of advanced features of Yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros YYACCEPT and YYERROR. YYACCEPT causes yyparse to return the value 0; YYERROR causes the parser to behave as if the current input symbol had been a syntax error; yyerror is called, and error recovery takes place. These mechanisms can be used to simulate parsers with multiple endmarkers or context-sensitive syntax checking.

Accessing Values in Enclosing Rules.

An action may refer to values returned by actions to the left of the current rule. The mechanism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in this case the digit may be 0 or negative. Consider

In the action following the word CRONE, a check is made that the preceding token shifted was not YOUNG. Obviously, this is only possible when a great deal is known about what might precede the symbol noun in the input. There is also a distinctly unstructured flavor about this. Nevertheless, at times this mechanism will save a great deal of trouble, especially when a few combinations are to be excluded from an otherwise regular structure.

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Yacc can also support values of other types, including structures. In addition, Yacc keeps track of the types, and inserts appropriate union member names so that the resulting parser will be strictly type checked. The Yacc value stack (see Section 4) is declared to be a union of

the various types of values desired. The user declares the union, and associates union member names to each token and nonterminal symbol having a value. When the value is referenced through a \$\$ or \$n construction, Yacc will automatically insert the appropriate union name, so that no unwanted conversions will take place. In addition, type checking commands such as Lint[5] will be far more silent.

There are three mechanisms used to provide for this typing. First, there is a way of defining the union; this must be done by the user since other programs, notably the lexical analyzer, must know about the union member names. Second, there is a way of associating a union member name with tokens and nonterminals. Finally, there is a mechanism for describing the type of those few values where Yacc can not easily determine the type.

To declare the union, the user includes in the declaration section:

```
%union {
    body of union ...
}
```

This declares the Yacc value stack, and the external variables yylval and yyval, to have type equal to this union. If Yacc was invoked with the -d option, the union declaration is copied onto the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef used to define the variable YYSTYPE to represent this union. Thus, the header file might also have said:

```
typedef union {
    body of union ...
} YYSTYPE;
```

The header file must be included in the declarations section, by use of % { and % }.

Once YYSTYPE is defined, the union member names must be associated with the various terminal and nonterminal names. The construction

```
< name >
```

is used to indicate a union member name. If this follows one of the keywords %token, %left, %right, and %nonassoc, the union

member name is associated with the tokens listed. Thus, saying

```
%left <optype> '+' '-'
```

will cause any reference to values returned by these two tokens to be tagged with the union member name optype. Another keyword, %type, is used similarly to associate union member names with nonterminals. Thus, one might say

```
%type <nodetype> expr stat
```

There remain a couple of cases where these mechanisms are insufficient. If there is an action within a rule, the value returned by this action has no a priori type. Similarly, reference to left context values (such as \$0 - see the previous subsection) leaves Yacc with no easy way of knowing the type. In this case, a type can be imposed on the

reference by inserting a union member name, between < and >, immediately after the first \$. An example of this usage is

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix C. The facilities in this subsection are not triggered until they are used: in particular, the use of %type will turn on these mechanisms. When they are used, there is a fairly strict level of checking. For example, use of \$n or \$\$ to refer to something with no defined type is diagnosed. If these facilities are not triggered, the Yacc value stack is used to hold int's, as was true historically.

11: Acknowledgements

Yacc owes much to a most stimulating collection of users, who have goaded me beyond my inclination, and frequently beyond my ability, in their endless search for ``one more feature". Their irritating unwillingness to learn how to do things my way has usually led to my doing things their way; most of the time, they have been right. B. W. Kernighan, P. J. Plauger, S. I. Feldman, C. Imagna, M. E. Lesk, and A. Snyder will recognize some of their ideas in the current version of Yacc. C. B. Haley contributed to the error recovery algorithm. D. M. Ritchie, B. W. Kernighan, and M. O. Harris helped translate this document into English. Al Aho also deserves special credit for bringing the mountain to Mohammed, and other favors.

References

- 1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs, New Jersey, 1978.
- 2. A. V. Aho and S. C. Johnson, "LR Parsing," Comp. Surveys, vol. 6, no. 2, pp. 99-124, June 1974.
- 3. A. V. Aho, S. C. Johnson, and J. D. Ullman, "Deterministic Parsing of Ambiguous Grammars," Comm. Assoc. Comp. Mach., vol. 18, no. 8, pp. 441-452, August 1975.
- 4. A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading, Mass., 1977.
- 5. S. C. Johnson, "Lint, a C Program Checker," Comp. Sci. Tech. Rep. No. 65, 1978 .]. updated version TM 78-1273-3
- 6. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on Principles of Programming Languages, pp. 97-104, January 1978.

- 7. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm. Assoc. Comp. Mach., vol. 18, pp. 151-157, Bell Laboratories, Murray Hill, New Jersey, March 1975.].
- 8. M. E. Lesk, "Lex A Lexical Analyzer Generator," Comp. Sci. Tech. Rep. No. 39, Bell Laboratories, Murray Hill, New Jersey, October 1975.].

Appendix A: A Simple Example

This example gives the complete Yacc specification for a small desk calculator; the desk calculator has 26 registers, labeled `a" through `z", and accepts arithmetic expressions made up of the operators +, -, *, /, % (mod operator), & (bitwise and), | (bitwise or), and assignment. If an expression at the top level is an assignment, the value is not printed; otherwise it is. As in C, an integer that begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of showing how precedences and ambiguities are used, and demonstrating simple error recovery. The major oversimplifications are that the lexical analysis phase is much simpler than for most applications, and the output is produced immediately, line by line. Note the way that decimal and octal integers are read in by the grammar rules; This job is probably better done by the lexical analyzer.

```
응 {
  include <stdio.h>
# include <ctype.h>
int regs[26];
int base;
용 }
%start list
%token DIGIT LETTER
%left '|'
%left
       ا & '
%left
      ' + '
           ' - '
      1 * 1
           '/'
%left
                1 2 1
                      supplies precedence for unary minus */
응응
           beginning of rules section */
          /* empty */
         list stat '\n'
         list error '\n'
                   yyerrok; }
stat :
         expr
                   printf( "%d\n", $1 ); }
```

```
LETTER '=' expr
         \{ regs[\$1] = \$3; \}
       '(' expr ')'
expr :
           {    $$ = $2; }
        expr '+' expr
        { $$ = $1 + $3; }
        expr '-' expr
               $$ = $1 - $3; }
        expr '*' expr
               $$ = $1 * $3;
        expr '/' expr
              $$ = $1 / $3; }
        expr '%' expr
        { $$ = $1 % $3; }
        expr '&' expr
        { $$ = $1 & $3; }
        expr '|' expr
               $$ = $1 | $3; }
        '-' expr
                     %prec UMINUS
           { $$ = - $2; }
        LETTER
         \{ $$ = regs[$1]; }
        number
number
       : DIGIT
           \{ $$ = $1; base = ($1==0) ? 8 : 10; \}
        number DIGIT
        \{ $$ = base * $1 + $2; }
%% /* start of programs */
yylex() {      /* lexical analysis routine */
           /* returns LETTER for a lower case letter, yylval
= 0 through 25 */
           /* return DIGIT for a digit, yylval = 0 through 9
* /
           /* all other characters are returned immediately
* /
    int c;
    while( (c=getchar()) == ' ' ) {/* skip blanks */ }
    /* c is now nonblank */
    if( islower( c ) ) {
        yylval = c - 'a';
       return ( LETTER );
    if( isdigit( c ) ) {
        yylval = c - '0';
       return( DIGIT );
```

```
return( c );
}
```

Appendix B: Yacc Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Context dependencies, etc., are not considered. Ironically, the Yacc input specification language is most naturally specified as an LR(2) grammar; the sticky part comes when an identifier is seen in a rule, immediately following an action. If this identifier is followed by a colon, it is the start of the next rule; otherwise it is a continuation of the current rule, which just happens to have an action embedded in it. As implemented, the lexical analyzer looks ahead after seeing an identifier, and decide whether the next token (skipping blanks, newlines, comments, etc.) is a colon. If so, it returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of C_IDENTIFIERs.

```
grammar for the input to Yacc */
         basic entities
%token
            IDENTIFIER
                       /*
                             includes
                                       identifiers
                                                     and
                                                          literals */
                                 /*
%token
             C IDENTIFIER
                                        identifier
                                                     (but
                                                           not
                                                                literal)
followed by colon
%token
           NUMBER
                                    [0-9]+
          reserved
                    words:
                               %type
                                      =>
                                          TYPE,
                                                  %left
                                                             LEFT,
                                                                     etc.
%token
                         NONASSOC
            LEFT
                 RIGHT
                                  TOKEN
                                          PREC TYPE
                                                      START
                                                             UNION
%token
            MARK
                  /*
                      the
                           응응
                               mark
                                     * /
%token
            LCURL /*
                      the
                           용 {
                               mark
%token
            RCURL /*
                      the
                           용}
                               mark
          ascii character literals stand for
                                                  themselves
%start
            spec
응응
            defs MARK rules
spec
tail
            MARK
                            this
                                   action,
                                            eat
                                                up
                                                      the
                                                          rest
                                                                      the
file
                empty:
                        the
                             second MARK is optional
defs
                empty
            defs def
def
            START
                  IDENTIFIER
            UNION
                      Copy union definition to output
                      Copy C code to output file
```

```
ndefs rword tag nlist
rword :
           TOKEN
           LEFT
           RIGHT
           NONASSOC
           TYPE
tag
               empty: union tag is optional */
                IDENTIFIER '>'
nlist:
           nmno
           nlist
                 nmno
           nlist
                 ',' nmno
nmno
           IDENTIFIER
                                 NOTE:
                                        literal illegal with
* /
                                     NOTE: illegal with %type */
           IDENTIFIER NUMBER
                                  /*
         rules section
rules:
           C IDENTIFIER
                        rbody prec
           rules rule
rule
           C_IDENTIFIER rbody prec
           '|' rbody
                      prec
rbody:
           /* empty */
           rbody IDENTIFIER
           rbody act
                  Copy action, translate $$, etc. } '}'
act
prec
           /* empty */
           PREC
                 IDENTIFIER
           PREC
                 IDENTIFIER act
           prec
                ';'
```

Appendix C: An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features discussed in Section 10. The desk calculator example in Appendix A is modified to provide a desk calculator that does floating point interval arithmetic. The calculator understands floating point constants, the arithmetic operations +, -, *, /, unary -, and =

(assignment), and has 26 floating point variables, "a" through "z". Moreover, it also understands intervals, written

where x is less than or equal to y. There are 26 interval valued variables ``A" through ``Z" that may also be used. The usage is similar to that in Appendix A; assignments return no value, and print nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are represented by a structure, consisting of the left and right endpoint values, stored as double's. This structure is given a type name, INTERVAL, by using typedef. The Yacc value stack can also contain floating point scalars, and integers (used to index into the arrays holding the variable values). Notice that this entire strategy depends strongly on being able to assign structures and unions in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an interval containing 0, and an interval presented in the wrong order. In effect, the error recovery mechanism of Yacc is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate expressions. Note that a scalar can be automatically promoted to an interval if the context demands an interval value. This causes a large number of conflicts when the grammar is run through Yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at the two input lines:

Notice that the 2.5 is to be used in an interval valued expression in the second example, but this fact is not known until the ``," is read; by this time, 2.5 is finished, and the parser cannot go back and change its mind. More generally, it might be

necessary to look ahead an arbitrary number of tokens to decide whether to convert a scalar to an interval. This problem is evaded by having two rules for each binary interval valued operator: one when the left operand is a scalar, and one when the left operand is an interval. In the second case, the right operand must be an interval, so the conversion will be applied automatically. Despite this evasion, there are still many cases where the conversion may be applied or not, leading to the above conflicts. They are resolved by listing the rules that yield scalars first in the specification file; in this way, the conflicts will be resolved in the direction of keeping scalar valued expressions scalar valued until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there were many kinds of expression types, instead of just two, the number of rules needed would increase dramatically, and the conflicts even more dramatically. Thus, while this

example is instructive, it is better practice in a more normal programming language environment to keep the type information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of floating point constants. The C library routine atof is used to do the actual conversion from a character string to a double precision value. If the lexical analyzer detects an error, it responds by returning a token that is illegal in the grammar, provoking a syntax error in the parser, and thence error recovery.

```
응 {
# include <stdio.h>
# include <ctype.h>
typedef struct interval {
       double lo, hi;
       } INTERVAL;
INTERVAL vmul(), vdiv();
double atof();
double dreg[ 26 ];
INTERVAL vreg[ 26 ];
용 }
%start
         lines
         {
%union
       int ival;
       double dval;
       INTERVAL vval;
%token <ival> DREG VREG
                                   indices into dreg, vreg arrays
* /
%token <dval> CONST
                              /* floating point constant */
                                 expression */
%type <dval> dexp
                                 interval expression */
%type <vval> vexp
                              /*
       /* precedence information about the operators */
%left
       1 * 1
           '/'
%left
%left
       UMINUS
                    /* precedence for unary minus */
응응
lines :
              /* empty */
```

```
lines line
line :
              dexp
                   '\n'
                            printf( "%15.8f\n", $1 ); }
              vexp
                    '\n'
                    {
                             printf( "(%15.8f , %15.8f )\n",
$1.lo, $1.hi
             ); }
                    '=' dexp '\n'
              DREG
                            dreg[$1] = $3;
                       vexp '\n'
              VREG
                    ' = '
                            vreg[\$1] = \$3;
                    '\n'
              error
                             yyerrok; }
dexp
              CONST
              DREG
                             $$ = dreg[$1]; }
              dexp
                        dexp
                                         $3; }
                             $$ =
                                   $1 +
              dexp
                    ^{1}-^{1}
                        dexp
                             $$
                                   $1 -
                                         $3;
                    1 * 1
              dexp
                        dexp
                             $$ =
                                   $1 *
                                         $3;
                   1/1
              dexp
                        dexp
                             $$ = $1 /
                                         $3;
                             %prec UMINUS
                   dexp
                             $$ = - $2; 
              '('
                        ')'
                   dexp
                             $$ = $2; }
              dexp
vexp
                            $$.hi = $$.lo = $1; }
                  dexp ',' dexp ')'
              ' ( '
                     $$.lo = $2;
                     $$.hi = $4;
                     if( $$.lo > $$.hi ){
                            printf( "interval out of order\n"
);
                             YYERROR;
              VREG
                             $$ = vreg[$1]; }
              vexp
                        vexp
                             $$.hi = $1.hi + $3.hi;
                             $$.lo = $1.lo + $3.lo; }
              dexp
                        vexp
                             $$.hi = $1 + $3.hi;
                             $$.lo = $1 + $3.lo; }
                    ' = '
              vexp
                        vexp
                             $$.hi = $1.hi - $3.lo;
                             $$.lo = $1.lo - $3.hi; }
                    '-' vexp
              dexp
```

```
$$.hi = $1 - $3.lo;
                            $$.lo = $1 - $3.hi; }
                   '*' vexp
              vexp
                           $$ = vmul( $1.lo, $1.hi, $3 ); }
                   '*' vexp
              dexp
                            $$ = vmul( $1, $1, $3 ); }
              vexp
                   '/'
                        vexp
                            if( dcheck( $3 ) ) YYERROR;
                            $$ = vdiv( $1.lo, $1.hi, $3 ); }
              dexp
                   '/' vexp
                            if( dcheck( $3 ) ) YYERROR;
                            $$ = vdiv( $1, $1, $3 ); }
                            %prec UMINUS
                  vexp
                            $$.hi = -$2.lo; $$.lo = -$2.hi;
}
              '(' vexp ')'
                           $$ = $2; }
       ;
응응
# define BSZ 50
                    /* buffer size for floating point
numbers */
       /* lexical analysis */
yylex(){
       register c;
       while( (c=getchar()) == ' ' ){ /* skip over blanks */
}
       if( isupper( c ) ){
             yylval.ival = c - 'A';
              return( VREG );
       if( islower( c ) ){
     yylval.ival = c - 'a';
              return( DREG );
           isdigit( c ) || c=='.' ){
              /* gobble up digits, points, exponents */
              char buf[BSZ+1], *cp = buf;
              int dot = 0, exp = 0;
              for( ; (cp-buf) < BSZ ; ++cp, c=getchar() ) {</pre>
                     *cp = c;
                     if( isdigit( c ) ) continue;
if( c == '.' ){
                           if( dot++ || exp ) return( '.'
); /* will cause syntax error */
                            continue;
                            }
```

```
if( c == 'e' ){
                          if( exp++ ) return( 'e' ); /*
will cause syntax error */
                          continue;
                   /* end of number */
                   break;
             *cp = ' \ 0';
             if( (cp-buf) >= BSZ ) printf( "constant too
long: truncated\n" );
             else ungetc( c, stdin ); /* push back last
char read */
             yylval.dval = atof( buf );
             return( CONST );
      return( c );
      }
INTERVAL hilo( a, b, c, d ) double a, b, c, d; {
     /* returns the smallest interval containing a, b, c,
and d */
      /* used by *, / routines */
      INTERVAL v;
      if( a>b ) { v.hi = a; v.lo = b; }
      else { v.hi = b; v.lo = a; }
      if( c>d ) {
             if( c>v.hi ) v.hi = c;
             if( d < v.lo ) v.lo = d;
      else {
             if(d>v.hi)v.hi = d;
             if( c < v.lo ) v.lo = c;
      return( v );
INTERVAL vmul( a, b, v ) double a, b; INTERVAL v; {
      return( hilo( a*v.hi, a*v.lo, b*v.hi, b*v.lo ) );
dcheck( v ) INTERVAL v; {
      if( v.hi >= 0. && v.lo <= 0. ){
             printf( "divisor interval contains 0.\n" );
             return( 1 );
      return( 0 );
INTERVAL vdiv( a, b, v ) double a, b; INTERVAL v; {
      return( hilo( a/v.hi, a/v.lo, b/v.hi, b/v.lo ) );
      }
```

Appendix D: Old Features Supported but not Encouraged

This Appendix mentions synonyms and features which are supported for historical continuity, but, for various reasons, are not encouraged.

- 1. Literals may also be delimited by double quotes "".
- 2. Literals may be more than one character long. If all the characters are alphabetic, numeric, or _, the type number of the literal is defined, just as if the literal did not have the quotes around it. Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

- 3. Most places where % is legal, backslash $\$ may be used. In particular, $\$ is the same as %%, $\$ left the same as %left, etc.
- 4. There are a number of other synonyms:

```
%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec
```

5. Actions may also have the form

```
={ . . . }
```

and the curly braces can be dropped if the action is a single C statement.

6. C code between % { and % } used to be permitted at the head of the rules section, as well as in the declaration section.

YACC Manual Page

NAME

yacc – yet another compiler–compiler

SYNOPSIS

```
yacc [ option ... ] grammar
```

DESCRIPTION

Yacc converts a context–free grammar and translation code into a set of tables for an LR(1) parser and translator. The grammar may be ambiguous; specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a program yyparse. This program must be loaded with a lexical analyzer function, yylex(void) (often generated by lex(1)), with a main(int argc, char *argv[]) program, and with an error handling routine, yyerror(char*).

The options are

- -o output Direct output to the specified file instead of y.tab.c.
- -Dn Create file y.debug, containing diagnostic messages. To incorporate them in the parser, compile it with preprocessor symbol yydebug defined. The amount of diagnostic output from the parser is regulated by value n. The value 0 reports errors; 1 reports reductions; higher values (up to 4) include more information about state transitions.

_

- v Create file y.output, containing a description of the parsing tables and of conflicts arising from ambiguities in the grammar.
- -d Create file y.tab.h, containing #define statements that associate yacc-assigned `token codes' with user-declared `token names'. Include it in source files other than y.tab.c to give access to the token codes.
- -s stem Change the prefix y of the file names y.tab.c, y.tab.h, y.debug, and y.output to stem.
- -S Write a parser that uses Stdio instead of the print routines in libc.

The specification of yacc itself is essentially the same as the UNIX version described in the references mentioned below. Besides the –D option, the main relevant differences are:

The interface to the C environment is by default through libc.h> rather than <stdio.h>; the –S option reverses this.

The parser accepts UTF input text (see utf(6)), which has a couple of effects. First, the return value of yylex() no longer fits in a short; second, the starting value for non-terminals is now 0xE000 rather than 257.

The generated parser can be recursive: actions can call yyparse, for example to implement a sort of #include statement in an interpreter.

Finally, some undocumented inner workings of the parser have been changed, which may affect programs that know too much about its structure.

FILES

y.output

y.tab.c

y.tab.h

y.debug

y.tmp.* temporary file

y.acts.* temporary file

/sys/lib/yaccpar parser prototype

/sys/lib/yaccpars parser prototype using stdio

SOURCE

/sys/src/cmd/yacc.c

BUGS

The parser may not have full information when it writes to y.debug so that the names of the tokens returned by yylex may be missing.

Compiler Construction Kits

COCKTAIL

Program generators for nearly all phases of a compiler: REX, a scanner generator; the parser generators LALR and ELL; AST, a generator for abstract syntax trees; AG, an attribute evaluator generator; PUMA, a transformation tool based on pattern matching.

ELI

Eli offers solutions for most of the tasks that must be carried out to implement a language. They range from structural analysis through analysis of names, types and values, to storage of translation data structures and production of the target text.

GENTLE

An integrated system that covers the full spectrum of compiler construction. Gentle supports language recognition, definition of abstract syntax trees, construction of tree walkers based on pattern matching, smart traversal, optimal code selection for microprocessors, and simple unparsing for source-to-source translation.

PCCTS

PCCTS is a public domain tool set that aids in the construction of language recognizers and translators; it is comprised of three tools: ANTLR, a parser generator that functions like yacc, but is based on predicated LL(k); DLG, a simple lexical analyzer (scanner) generator in the spirit of lex. SORCERER, a tree-parser generator that allows the programmer to specify the structure of a tree data-structure via a grammar.

Lexer and Parser Generators

ACCENT

A parser generator that works for all grammars without any restrictions. Accent can be used like Yacc and it cooperates with Lex. However, Accent avoids the problems of LALR parsers (e.g. when faced with shift/reduce and reduce/reduce conflicts) and LL parsers (e.g. when confronted with left-recursive rules); grammars don't have to be adapted to a particular parsing technology.

AFLEX & AYACC

Aflex and Ayacc are similar to the Unix tools Lex and Yacc, but they are written in Ada and generate Ada output.

ALE

The Attribute-Logic Engine integrates phrase structure parsing and constraint logic programming with typed feature structures as terms.

ANAGRAM

LALR parser generator with optional automatic resynchronization after syntax errors. Separate lexical scanners are usually unnecessary.

BISON

GNU's free version of the parser generator Yacc

BISON/EIFFEL

The Bison parser generator with an option for Eiffel output.

BTYACC

BTYACC is a modified version of yacc that supports automatic backtracking and semantic disambiguation to parse ambiguous grammars, as well as syntactic sugar for inherited attributes.

BYACC

Berkeley Yacc is a public domain LALR(1) parser generator. It has been made as compatible as possible with AT&T Yacc.

COGENCEE

A compiler generator for Delphi that was developed from a variant of Coco

COCO

Coco/R generates recursive descent parsers and their associated scanners from attributed grammars.

DEPOT4

A top-down parser generator that supports specifications in a style similar to syntax-directed translation schemes. The specification language is based on EBNF. Depot4 is intended for use by non-experts implementing domain-specific languages.

FLEX

GNU's free version of the scanner generator Lex

GOBO EIFFEL LEX & YACC

Lex and Yacc implementations for Eiffel.

HAPPY

Happy is a parser generator system for Haskell, similar to the tool Yacc for C. Like Yacc, it takes a file containing an annotated BNF specification of a grammar and produces a Haskell module containing a parser for the grammar.

HOLUB

The Software for Allen Holub's "Compiler Design in C" (LeX, occs, LLama, and the compiler in visible-parser form).

LEX

AT&T Lex is the classical scanner generator that comes with Unix

LLGEN

LLgen is a tool for generating an efficient recursive descent parser from an ELL(1) grammar. The grammar may be ambiguous or more general than ELL(1): there are both static and dynamic facilities to resolve the ambiguities.

MKS LEX & YACC

Lex compatible scanner generator and Yacc compatible parser generator for PC's

PCYACC

PCYACC is primarily used to develop embedded languages in third party products using languages such as SQL or SGML. It includes language engines for most common languages in source code form.

PRECC

PRECC eXtended is an infinite-lookahead compiler compiler for context dependent grammars. Specification scripts are in very EBNF with inherited and synthetic attributes allowed.

PROGRAMMAR

The ProGrammar Developer's Toolkit is an integrated suite of tools and utilities for building, testing and debugging parsers. Its features include an object-oriented grammar definition language, visual development environment, and interactive debugging with stepping and breakpoints.

QUEX

A lexer generator that provides inheritance and controlled transitions for lexer modes. Special events support analysers for indentation-based languages such as Python.

RDP

RDP compiles attributed LL(1) grammars decorated with C-language semantic actions into recursive descent compilers.

TP LEX AND YACC

Scanner and Parser Generator for Turbo Pascal

VISUALPARSE++

Visual Parse++ provides a visual interface which lets any programmer learn and utilize lexing and parsing technology interactively.

YACC

AT&T Yacc is the classical parser generator that comes with Unix

YACC++

Not just a set of C++ wrappers around lex and yacc output, Yacc++ and the Language Objects Library is an O-O rewrite of lex and yacc. Features include grammar classes with inheritance, regular expressions efficiently integrated into LR parsing, and solutions to include files, substring keywords, nested comments, and more.

Sources of this Documents

http://dinosaur.compilertools.net/lex/index.html

http://plan9.bell-labs.com/magic/man2html/1/lex

http://dinosaur.compilertools.net/yacc/index.html

http://plan9.bell-labs.com/magic/man2html/1/yacc

http://catalog.compilertools.net/kits.html