CS-210 Homework 5

Anusheh Zohair Mustafeez Student ID: 21100072

October 24, 2018

1 Problem 4b

Collaborated with: Hajira Zaman (21100057) and Safah Barak (21100092)

Proving expression is a multiple of 3 for all 'n's

 $P(n): (22^n-1)\%3=0$

Base Step: Proving first proposition is true:

For n=0

P(0): $(22^0 - 1)\%3$

=(1-1)%3

=0

Hence proved P(0) is true.

Inductive Hypothesis: Assuming any nth proposition is true:

P(n): $(22^n-1)\%3=0$ is assumed to be true for any n

Inductive Step: Proving n+1 proposition is true given that P(n) is true:

 $P(n+1): (22^{n+1}-1)\%3$

 $=((22^n)*(22-1)\%3$

 $=((22^n)*(21+1)-1)\%3$

 $=((22^n)*21 + 22^n -1)\%3$

Since both $(22^n)^*21$ and 22^n -1 are both divisible by 3, P(n+1) is a sum of two terms divisible by three hence is divisible too.

So P(n+1) is also proved to be true.

Hence concluding P(n) is true for all n.

2 Problem 9

Collaborated with: Hajira Zaman (21100057) and Safah Barak (21100092)

Proving that for any real number x > -1 and any positive integer n, $(1+x)^n \ge 1 + n^*x$

Base Step: Proving first proposition is true:

 $P(1): (1+x)^0 \ge 1 + (0) x$

 $1 \ge 1$

Hence proved P(0) is proved to be true.

Inductive Hypothesis: Assuming any nth proposition is true:

P(n): $(1+x)^n \ge 1 + n^*x$ is assumed to be true for any n.

If we add x to both sides, we get $(1+x)^n + x \ge 1 + n^*x + x$

So $x \ge \frac{1+n*x+x}{(1+x)^n}$ is assumed to be true for any n.

Inductive Step: Proving n+1 proposition is true given that P(n) ia true:

 $P(n+1): (1+x)^{n+1} \ge 1 + (n+1)^*x$ $((1+x)^n)^*(1+x) \ge 1 + n^*x + x$ $1+x \ge \frac{1+n^*x+x}{(1+x)^n}$

From our inductive hypothesis we know that $x \ge \frac{1+n*x+x}{(1+x)^n}$ is true and since x+1>x we can conclude $1+x \ge 1$ $\frac{1+n*x+x}{(1+x)^n}$ is also true.

So P(n+1) is also proved to be true.

Hence concluding P(n) is true for all n.

3 Problem 10

Collaborated with: Hajira Zaman (21100057) and Safah Barak (21100092)

Any amount of postage greater or equal to 18 cents can be formed using just 3 cent and 10 cent stamps. Proving P(n) by strong induction such that P(n): 3*x + 10*y = n where x and y are non negative integers and n is any integer such that $n \ge 18$:

Base Step: Proving first proposition is true:

P(18): 3*6 + 10*0 = 18

Hence P(18) is proved to be true.

Inductive Hypothesis: Assuming P(k) is true such that 19 < k < n:

P(k): 3*x + 10*y = k is assumed to be true for any k.

Inductive Step: Proving k+1 proposition is true given that P(k) is true such that $19 \le k \le n$:

To ensure P(k+1) is true for all P(k) we can divide the problem into two cases:

Case 1: Where there are at least three 3 cent stamps

In this case if P(k) can be made into P(k+1) by simply replacing the three 3 cent stamps (n = 3*3 = 9) with one 10 cent stamp (n+1=10*1=10) and the proposition would still remain true.

Case 2: Where there are at least two 10 cent stamps

In this case if P(k) can be made into P(k+1) by simply replacing the two 10 cent stamps (n = 10*2 = 20) with seven 3 cent stamps (n+1=3*7=21) and the proposition would still remain true.

This way each P(k+1) can be derived from P(k) using either case 1 or case 2 and P(k+1) is also proved to be true.

Concluding P(n) is true for all n.

Problem 13 4

Collaborated with: Hajira Zaman (21100057) and Safah Barak (21100092)

Proving P(n): $2^n < n!$ for all $n \in \mathbb{Z}_+$, n > 3.

Base Step: Proving first proposition is true:

 $P(4): 2^4 < 4!$ 16 < 4*3*2*1 16 < 24

Hence P(4) is proved to be true.

Inductive Hypothesis: Assuming any nth proposition is true:

P(n): $2^n < n!$ is assumed to be true for any n.

Inductive Step: Proving n+1 proposition is true:

 $P(n+1): 2^{n+1} < (n+1)!$

 $2*2^n < (n+1)*n!$

From the IH we know that $2^n < n!$ is true and we can also deduce that 2 < (n+1) is also true as the least value (n+1) can take is 5. Hence $2*2^n < (n+1)*n!$ is proved to be true.

So P(n+1) is true.

Concluding P(n) is true for all n.

5 Problem 17

Collaborated with: Hajira Zaman (21100057) and Safah Barak (21100092)

- 1. $a_2 = a_0 * a_1 = 1 * 2 = 2$
 - $a_3 = a_1 * a_2 = 2 * 2 = 4$
 - $a_4 = a_2 * a_3 = 2 * 4 = 8$
 - $a_5 = a_3 * a_4 = 4 * 8 = 32$
 - $a_6 = a_4 * a_5 = 8 * 32 = 256$
- 2. Proving that P(n): $a_n = 2^{F_n}$, where $F_0, F_1, F_2, ...$ is the Fibonacci sequence Fibonacci sequence: $F_0 = 0, F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for n > 1

Base Step: Proving first proposition is true:

P(0): $a_0 = 2^{F_0}$

 $1=2^{0}$

1=1

Hence P(0) is proved to be true.

Inductive Hypothesis: Assuming P(k) is true such that $1 \le k \le n$

P(k): $a_k = 2^{F_k}$ is assumed to be true for any k.

Inductive Step: Proving k+1 proposition is true:

P(k+1): $a_{k+1} = 2^{F_{k+1}}$

 $a_k * (a_{k-1}) = (2^{F_k})^* (2^{F_{k-1}})$ From the inductive hypothesis we've assumed that $a_k = 2^{F_k}$ and $a_{k-1} = 2^{F_{k-1}}$ so it can be concluded that $a_k * (a_{k-1}) = (2^{F_k})^* (2^{F_{k-1}})$ is true.

So P(n+1) is true.

Concluding P(n) is true for all n.

6 Problem 19c

Collaborated with: Hajira Zaman (21100057) and Safah Barak (21100092)

Obtaining closed formula of $a_n = a_{n-1} + 2 * n + 3$ with initial condition $a_0 = 4$

$$a_n = a_{n-1} + 2 * n + 3$$

$$a_n = (a_{n-2} + 2 * (n_1) + 3) + 2 * n + 3$$

```
a_n = ((a_{n-3} + 2 * (n-2) + 3) + 2 * (n-1) + 3) + 2 * n + 3
After unraveliing the recurrence formula n number of times, we'll get:
a_n = a_0 + 2 * ((n) + (n-1) + (n-2).... + (n-n)) + 3n
a_n = a_0 + 2 * (\frac{n*(n+1)}{2}) + 3n
a_n = a_0 + n * (n + 1) + 3n
a_n = a_0 + n^2 + n + 3n
a_n = a_0 + n^2 + 4n
Since a_0=4:
a_n = 4 + n^2 + 4n
a_n = (n+2)^2
```

Verification using induction:

Proving P(n): $a_n = (n+2)^2$

Base Step: Proving first proposition is true:

P(0): $a_0 = (0+2)^2 \ 4 = (2)^2$

4 = 4

Hence P(0) is proved to be true.

Inductive Hypothesis: Assuming P(k) is true for all such that $1 \le k \le n$: P(k): $a_k = (k+2)^2$ is assumed to be true for any k.

Inductive Step: Proving k+1 proposition is true:

P(k+1): $a_{k+1} = k^2 + 6 * k + 9$

 $a_{k+1} = k^2 + 4 * k + 4 + 2 * k + 5$

 $a_{k+1} = (k+2)^2 + 2 * k + 5$ where 2*k + 5 is the difference between a_{k+1} and a_k for any value of k.

Hence proved P(k+1) is true

Concluding P(n) is true for all n.

Problem 21

Collaborated with: None

1. $a_0 = 0$ $a_1 = 1$ $a_2 = 2$

 $a_n = n$

So total cars made in n months will be the sum of all cars made in that month and the previous months P(n): $T_n = n + (n-1) + (n-2) + ... + (n-n)$ where ((n-1) + (n-2) + ... + (n-n)) is T_{n-1} and ((n-2) + (n+3) + ... + (n-n))n)) is T_{n-2} and so on.

So recurrence relation of P(n) is $T_n = n + T_{n-1}$

- 2. Towards the end of the first year, n = 12 so $T_{12} = n + T_{11} = 12 + 11 + 10 + 9 \dots + 1 + 0 = 78$
- 3. Obtaining formula using recurrence relation:

$$T_n = n + T_{n-1}$$

 $T_n = n + ((n-1) + T_{n-2})$

 $T_n = n + ((n-1) + ((n-2) + T_{n-3}))$

After unraveliing the recurrence formula n number of times, we'll get:

$$T_n = n + (n-1) + (n-2) + \dots + (n-n)$$

 $T_n = \frac{n*(n+1)}{2}$
 $T_n = \frac{n^n + n}{2}$

8 Problem 24

Collaborated with: None

1. The market shares of A and B entering into a new year are dependent on their market shares in the previous year. According to the data given:

Market share retained by A when going into next year: $0.7 *a_{n-1}$

Market share retained by B when going into next year: $0.6 * (1 - a_{n-1})$

Market share gained by A from B: $0.4 * (1 - a_{n-1})$

Market share gained by B from A: $0.3 * a_{n-1}$

Total Market share of A in year n: $a_n = 0.7 * a_{n-1} + 0.4 * (1 - a_{n-1})$

Total Market share of B in year B: $1 - a_n = 0.6 * (1 - a_{n-1}) + 0.3 * (a_{n-1})$

We can use any of the above two closed formulas for our purpose.

Using A's market share as reference: $a_n = 0.7 * a_{n-1} + 0.4 * (1 - a_{n-1})$

$$a_n = 0.7 * a_{n-1} + 0.4 * (1 - a_{n-1})$$

$$a_n = 0.7 * a_{n-1} + 0.4 - 0.4 * a_{n-1}$$

$$a_n = 0.3 * a_{n-1} + 0.4$$

2. Obtaining closed formula from recurrence relation:

$$a_n = 0.3 * a_{n-1} + 0.4$$

$$a_n = 0.3*(0.3*a_{n-2} + 0.4) + 0.4$$

$$a_n = 0.3*(0.3*(0.3*a_{n-3} + 0.4) + 0.4) + 0.4$$

After unraveliing the recurrence formula n number of times, we'll get:

$$a_n = 0.3^n * a_0 + 0.4^*((0.3^{n-1}) + (0.3^{n-2}) + (0.3^{n-3}) + \dots + (0.3^{n-n}))$$

 $a_n = 0.3^n * a_0 + 0.4^* \sum_{i=0}^{n-1} 0.3^i$ where $0.4^* \sum_{i=0}^{n-1} 0.3^i$ is the sum of a geometric progression so: $a_n = 0.3^n * a_0 + 0.4^* \frac{0.3^n - 1}{0.3 - 1}$

$$a_n = 0.3^n * a_0 + 0.4^* \frac{0.3^n - 1}{0.2 \cdot 1}$$

$$a_n = 0.3^n * a_0 + \frac{0.4*0.3^n - 0.4}{-0.7}$$

$$a_n = 0.3^n * a_0 + \frac{0.4*0.3^n - 0.4}{-0.7}$$

$$a_n = 0.3^n * a_0 + \frac{0.4*0.3^n}{-0.7}$$

$$a_n = 0.3^n * a_0 + \frac{0.4*0.3^n - 0.4}{-0.7}$$

$$a_n = 0.3^n * a_0 - \frac{4}{7}*(0.3^n) + \frac{4}{7}$$

$$a_n = 0.3^n * (a_0 - \frac{4}{7}) + \frac{4}{7}$$

$$a_n = 0.3^n * (a_0 - \frac{4}{7}) + \frac{4}{7}$$

3.
$$a_n = 0.3^n * (a_0 - \frac{4}{7}) + \frac{4}{7}$$

When $n \to \infty$, $0.3^n \to 0$

When
$$n \to \infty$$
, $0.3^n \to$

So
$$a_n \to \frac{4}{7}$$

So in the long run, A's market share with become more or less constant at $\frac{4}{7}$ and become independent of its initial market share $a_0.a_n = 0.3^n * (a_0 - \frac{4}{7}) + \frac{4}{7}$

$$a_n = 0.3^n * (a_0 - \frac{4}{7}) + \frac{4}{7}$$