Natural Language Processing

Problem Set 1: Analytical

Linan Qiu (lq2137)

September 22, 2014

1 Linear Interpolation

Expanding the linear interpolation parameter function,

$$\begin{split} L(\lambda_1, \lambda_2, \lambda_3) &= \sum_{w_1, w_2, w_3} c'(w_1, w_2, w_3) \log q(w_3 | w_1, w_2) \\ &= \sum_{w_1, w_2, w_3} c'(w_1, w_2, w_3) \log \left(\lambda_1 q_{ML}(w_3 | w_1, w_2) + \lambda_2 q_{ML}(w_3 | w_2) + \lambda_3 q_{ML}(w_3)\right) \end{split}$$

On the other hand, perplexity is defined as 2^{-l} where

$$l = \frac{1}{M} \sum_{i=1}^{m} \log p(x^i)$$

where m is the number of sentences and $p(x^i)$ is the probability of sentence x^i occurring.

Minimizing perplexity means maximizing l. Expanding l for trigram models, where $p(x_j^i)$ is the probability of word x_j^i occurring in the sentence i

$$\begin{split} l &= \frac{1}{M} \sum_{i=1}^{m} \log p(x^{i}) \\ &= \frac{1}{M} \sum_{i=1}^{m} \left(\log p(x_{1}^{i}) + \log p(x_{2}^{i}) + \dots + \log p(x_{n}^{i}) \right) \\ &= \frac{1}{M} \sum_{i=1}^{m} \sum_{j=1}^{n} \log p(x_{j}^{i}) \\ &= \frac{1}{M} \sum_{i=1}^{m} \sum_{j=1}^{n} \log \left(\lambda_{1} q_{ML}(x_{j}^{i} | x_{j-2}^{i}, x_{j-1}^{i}) + \lambda_{2} q_{ML}(x_{j}^{i} | x_{j-1}^{i}) + \lambda_{3} q_{ML}(x_{j}^{i}) \right) \end{split}$$

To minimize perplexity would mean to maximize this with respect to $\lambda_1, \lambda_2, \lambda_3$.

$$\max_{\lambda_1, \lambda_2, \lambda_3} \frac{1}{M} \sum_{i=1}^{m} \sum_{j=1}^{n} \log \left(\lambda_1 q_{ML}(x_j^i | x_{j-2}^i, x_{j-1}^i) + \lambda_2 q_{ML}(x_j^i | x_{j-1}^i) + \lambda_3 q_{ML}(x_j^i) \right)$$

Since this includes duplicates, we can shorten portion to the right of $\sum_{j=1}^{n}$ to

$$\max_{\lambda_{1},\lambda_{2},\lambda_{3}} \frac{1}{M} \sum_{i=1}^{m} \sum_{\substack{x_{j-2}^{i}, x_{j-1}^{i}, x_{j}^{i} \\ \lambda_{1},\lambda_{2},\lambda_{3}}} c'(x_{j-2}^{i}, x_{j-1}^{i}, x_{j}^{i}) \log \left(\lambda_{1} q_{ML}(x_{j}^{i} | x_{j-2}^{i}, x_{j-1}^{i}) + \lambda_{2} q_{ML}(x_{j}^{i} | x_{j-1}^{i}) + \lambda_{3} q_{ML}(x_{j}^{i})\right) \\
= \max_{\lambda_{1},\lambda_{2},\lambda_{3}} L(\lambda_{1},\lambda_{2},\lambda_{3})$$

Hence, maximizing the parameters means maximizing l which means minimizing the perplexity.

2 Linear Interpolation with Bucketing

Defining Φ as a mapping of **trigram** into bins is erroneous as it will produce λ s that do not sum up to 1.

For a text sequence y_{i-2}, y_{i-1}, y_i , where

$$Count(y_{i-2}, y_{i-1}, y_i) = 0$$

 $Count(y_{i-1}, y_i) = 0$

We have to ensure that $\lambda_1^{\Phi(y_{i-2},y_{i-1},y_i)} = 0$ since $Count(y_{i-1},y_i) = 0$ and the trigram will be undefined.

However, the following counts

$$Count(y_{i-2}, y_{i-1}, y_i) = 0$$

 $Count(y_{i-1}, y_i) > 0$

will also generate the same $\lambda_1^{\Phi(y_{i-2},y_{i-1},y_i)} = 0$. However, we would not want $\lambda_1^{\Phi(y_{i-2},y_{i-1},y_i)} = 0$ since the trigram is still defined and $\lambda_1^{\Phi(y_{i-2},y_{i-1},y_i)}$ should have a non-zero weight.

Hence there is no way to ensure that the λ s will sum up to 1. We violate the constraint that $\lambda_1 + \lambda_2 + \lambda_3 = 1$.

3 Modified Viterbi

- Input: a sentence $x_1...x_n$, parameters q(s|u,v) and e(x|y)
- **Definitions:** Define T(x) to be the tag dictionary that lists the tags y such that e(x|y) > 0. Define S to be the set of possible tags. Define $S_{-1} = S_0 = \{*\}$. Define $S_k = T(x_k)$ for k = 1...n
- Initialization: Set $\pi(0, *, *) = 1$
- Algorithm:

$$- \text{ For } k = 1...n$$

$$* \text{ For } u \in S_{k-1}, \ v \in S_k,$$

$$\pi(k, u, v) = \max_{w \in S_{k-2}} \left(\pi(k-1, w, u) * q(v|w, u) * e(x_k|v) \right)$$

$$bp(k, u, v) = \arg\max_{w \in S_{k-2}} \left(\pi(k-1, w, u) * q(v|w, u) * e(x_k|v) \right)$$

$$- \text{ Set } (y_{n-1}, y_n) = \arg\max_{u \in S_{n-1}, v \in S_n} \left(\pi(n, u, v) * q(STOP|u, v) \right)$$

$$- \text{ For } k = (n-2)...1,$$

$$y_k = bp(k+2, y_{k+1}, y_{k+2})$$

• **Return** the tag sequence $y_1...y_n$