Notas Taller Topología Algebraica

Cristo Daniel Alvarado

25 de agosto de 2024

Índice general

1.	Grupos Libres y Productos de Grupos Libres	2
	1.1. Producto Débil de Grupos	2

Capítulo 1

Grupos Libres y Productos de Grupos Libres

En los capítulos siguientes será indispensable el tratar con este tipo de grupos dada la naturaleza del grupo fundamental de los espacios topológicos.

1.1. Producto Débil de Grupos

Definición 1.1.1

Sea $\mathcal{G} = \{G_i\}_{i \in I}$ una familia arbitraria no vacía de grupos. Se define el **producto directo de la familia** \mathcal{G} por:

$$\prod \mathcal{G} = \left\{ x : I \to \prod_{i \in I} G_i \middle| \varphi \text{ es función} \right\}$$

y en ocasiones se denotará simplemente por $\prod_{i \in I} G_i$. Se dota a este conjunto de la siguiente operación: si $x, y \in \prod \mathcal{G}$, entonces $x \cdot y : I \to \prod_{i \in I} G_i$ es la función tal que

$$(x \cdot y)(i) = x(i) \cdot y(i)$$

para todo $i \in I$, siendo la multiplicación respectiva en cada grupo.

Definición 1.1.2

Sea $\mathcal{G} = \{G_i\}_{i \in I}$ una familia arbitraria no vacía de grupos. Se define el **producto débil de la familia** \mathcal{G} como el subgrupo de $\prod \mathcal{G}$ dado por:

$$\prod \mathcal{G}^* = \left\{ x \in \prod \mathcal{G} \middle| x(i) = e_i \, \forall i \in I \right\}$$

donde e_i denota la identidad de G_i para cada $i \in I$.

Observación 1.1.1

Note que ambas definiciones coinciden si I es un conjunto finito.

Ejercicio 1.1.1

Pruebe que el conjunto de la definición anterior es un subgrupo de $\prod \mathcal{G}$.

Definición 1.1.3

En las condiciones de la definición anterior, para cada índice $i \in I$ definimos un **monomorfismo** natural $\varphi_i : G_i \to \prod \mathcal{G}^*$ definido como sigue: $\forall g \in G_i$ y para todo $j \in I$:

$$(\varphi_i(g))(j) = \begin{cases} g & \text{si} \quad i = j \\ e_j & \text{si} \quad i \neq j \end{cases}$$

En el caso en que cada G_i sea un grupo abeliano, el siguiente teorema da una caracterización importante de su producto débil y de los monomorfismos φ_i .

Teorema 1.1.1