CS 47

Machine-Level Programming: Review

Topics

Machine Instructions

Repeating Digits

class14b.pptx

CS 47 Spring 2014

Address Computation Instruction

leal Src, Dest

- Src is address mode expression
- Set *Dest* to address denoted by expression

Uses

- Computing address <u>without</u> doing memory reference
 - E.g., translation of p = &x[i];
- Computing arithmetic expressions of the form x + k*y

• k = 1, 2, 4, or 8.

CS 47 Spring, 2014

Some Arithmetic Operations

Format Computation

Two Operand Instructions

```
addl Src, Dest
                  Dest = Dest + Src
subl Src, Dest
                  Dest = Dest - Src
imull Src, Dest
                  Dest = Dest * Src
sall Src, Dest
                  Dest = Dest << Src Also called shll
sarl Src,Dest
                 Dest = Dest >> Src Arithmetic
shrl Src, Dest
                 Dest = Dest >> Src Logical
                 Dest = Dest ^ Src
xorl Src, Dest
andl Src, Dest
                  Dest = Dest & Src
orl Src, Dest
                  Dest = Dest | Src
```

-3- CS 47 Spring, 2014

Some Arithmetic Operations

Format Computation

One Operand Instructions

CS 47 Spring, 2014

Examples

```
%eax = 00110101
                (53)
%ecx = 00001111
                 (15)
%edx = 11000011
                (-61) or (195)
%ebx = 00001001
                 (9)
addb %ecx, %eax
                     %eax = 01000100
                                       (68)
subb %ecx, %edx
                     %edx = 10110100
                                      (-76)
imulb %ebx, %ecx
                     %ecx = 10000111
                                       (135 -> -121)
salb $3, %ecx
                     %ecx = 01111000
                                      (120)
sarb $4, %edx
                     %edx = 111111100
                                       (-4)
shrb $4, %edx
                     %edx = 00001100
                                       (12)
```

-5 - CS 47 Spring, 2014

Examples

```
ext{%eax} = 00110101
                  (53)
%ecx = 00001111
                   (15)
%edx = 11000011
                   (-61)
%ebx = 00001001
                   (9)
xorb %ecx, %eax
                       %eax = 00111010
                                           (58)
andb %ecx, %eax
                       ext{eax} = 00000101
                                           (5)
orb %ecx, %eax
                       ext{%} = 00111111
                                           (63)
incb %ecx
                       %ecx = 00010000
                                           (16)
decb %edx
                       %edx = 11000010
                                           (-62)
negb %eax
                       ext{%} = 11001011
                                           (-53)
notb %ecx
                        ext{%eax} = 11110000
                                           (-16)
```

-6-

Evaluating Repeating Digits

Repeating binary expansion

$$x = 1.[011] = 1.011011011...$$

Notice that 1.25 < x < 1.5 (use this to check answer)

Shift left by period (3)

$$8x = 1011.[011]$$

$$8x - x = 7x = 1011 - 1 = 1010 = 10$$

$$x = 10/7 = 1.[428571]$$

-7- CS 47 Spring, 2014

Finding Repeating Digits

7/5 = 111/101 Do long division in binary

Check: 16x = 10110.[0110] 16x = 21 + x 15x = 21x = 21/15 = 7/5 = 1.4

-8 - CS 47 Spring, 2014

HW2 Problem 4

Address	Value
0x100	0xFD
0x104	0xB8
0x108	0x24
0x10c	0×44

Register	Value
%eax	0x100
%ecx	0x4
%edx	0x3

Instruction	Destination	Value
addl %edx, 8(%eax)	0x108	0x27
leal (%eax,%edx,2), %ecx	%ecx	0x106
orl \$0x120, %ecx	%ecx	0x124
negl 4(%eax)	0x104	0xFFFFFF48
shrl \$2, 12(%eax)	0x10C	0x11
orl %edx, 8(%eax)	0x108	0x27

-9- CS 47 Spring, 2014