Let $\vec{f}(t)$ and $\vec{F}(t)$ be two vector functions of a scalar variable t such that $\frac{d}{dt}\vec{F}(t) = \vec{f}(t)$, then $\vec{F}(t)$ is called an integral of $\vec{f}(t)$ with respect to t and we write $\int \vec{f}(t) dt = \vec{F}(t)$

If \vec{c} is any arbitrary constant vector independent of t, then $\frac{d}{dt} \{\vec{F}(t) + \vec{c}\} = \vec{f}(t)$

This is equivalent to $\int \overrightarrow{f}(t) dt = \overrightarrow{F}(t) + \overrightarrow{c}$

 $\overrightarrow{F}(t)$ is called the *indefinite integral* of $\overrightarrow{f}(t)$. The constant vector \overrightarrow{c} is called the *constant* of integration and can be determined if some initial conditions are given.

The definite integral of $\vec{f}(t)$ between the limits t = a and t = b is written as

$$\int_{a}^{b} \overrightarrow{f}(t) dt = \left[\overrightarrow{F}(t)\right]_{a}^{b} = \overrightarrow{F}(b) - \overrightarrow{F}(a).$$

Note 1. If $\vec{f}(t) = f_1(t)\hat{i} + f_2(t)\hat{j} + f_3(t)\hat{k}$, then $\int \vec{f}(t) dt = \hat{i} \int f_1(t) dt + \hat{j} \int f_2(t) dt + \hat{k} \int f_3(t) dt.$

Thus in order to integrate a vector function, integrate its components.

Note 2. We can obtain some standard results for integration of vector functions by considering the derivatives of suitable vector functions. For example,

$$(i) \frac{d}{dt} (\vec{r} \cdot \vec{s}) = \frac{d\vec{r}}{dt} \cdot \vec{s} + \vec{r} \cdot \frac{d\vec{s}}{dt} \implies \int \left(\frac{d\vec{r}}{dt} \cdot \vec{s} + \vec{r} \cdot \frac{d\vec{s}}{dt} \right) dt = \vec{r} \cdot \vec{s} + c$$

Here c is a scalar quantity since the integrand is a scalar.

(ii) $\frac{d}{dt}(\vec{r}^2) = 2\vec{r} \cdot \frac{d\vec{r}}{dt} \implies \int \left(2\vec{r} \cdot \frac{d\vec{r}}{dt}\right) dt = \vec{r}^2 + c$ where c is a scalar quantity.

(iii)
$$\frac{d}{dt} \left(\overrightarrow{r} \times \frac{d\overrightarrow{r}}{dt} \right) = \frac{d\overrightarrow{r}}{dt} \times \frac{d\overrightarrow{r}}{dt} + \overrightarrow{r} \times \frac{d^{2}\overrightarrow{r}}{dt^{2}} = \overrightarrow{r} \times \frac{d^{2}\overrightarrow{r}}{dt^{2}} \implies \int \left(\overrightarrow{r} \times \frac{d^{2}\overrightarrow{r}}{dt^{2}} \right) dt = \overrightarrow{r} \times \frac{d\overrightarrow{r}}{dt} + \overrightarrow{c}$$

Here \overrightarrow{c} is a vector quantity since the integrand is a vector.

(iv) If
$$\overrightarrow{a}$$
 is a constant vector, then $\frac{d}{dt}(\overrightarrow{a} \times \overrightarrow{r}) = \frac{d\overrightarrow{a}}{dt} \times \overrightarrow{r} + \overrightarrow{a} \times \frac{d\overrightarrow{r}}{dt} = \overrightarrow{a} \times \frac{d\overrightarrow{r}}{dt}$

$$\Rightarrow \int \left(\overrightarrow{a} \times \frac{\overrightarrow{dr}}{dt}\right) dt = \overrightarrow{a} \times \overrightarrow{r} + \overrightarrow{c}, \text{ where } \overrightarrow{c} \text{ is a vector quantity.}$$

ILLUSTRATIVE EXAMPLES

Example 1. The acceleration of a particle at time t is given by $\vec{a} = 18 \cos 3t \ \hat{i} - 8 \sin 2t \ \hat{j} + 6t \ \hat{k}$.

If the velocity \overrightarrow{v} and displacement \overrightarrow{r} be zero at t = 0, find \overrightarrow{v} and \overrightarrow{r} at any point t.

Sol. Here
$$\vec{a} = \frac{d^2 \vec{r}}{dt^2} = 18 \cos 3t \hat{i} - 8 \sin 2t \hat{j} + 6t \hat{k}$$

Integrating, we have $\vec{v} = \frac{d\vec{r}}{dt} = \hat{i} \int 18 \cos 3t \, dt + \hat{j} \int 8 \sin 2t \, dt + \hat{k} \int 6t \, dt$

$$= 6 \sin 3t \hat{i} + 4 \cos 2t \hat{j} + 3t^2 \hat{k} + \vec{c}$$

At
$$t = 0$$
, $\vec{v} = \vec{0}$ \Rightarrow $\vec{0} = 4\hat{j} + \vec{c}$ \Rightarrow $\vec{c} = -4\hat{j}$

$$\vec{v} = \frac{\vec{dr}}{dt} = 6 \sin 3t\hat{i} + 4 (\cos 2t - 1)\hat{j} + 3t^2\hat{k}$$

Integrating again, we have $\vec{r} = \hat{i} \int 6 \sin 3t \ dt + \hat{j} \int 4 \left(\cos 2t - 1\right) dt + \hat{k} \int 3t^2 \ dt$

$$= -2\cos 3t\hat{i} + (2\sin 2t - 4t)\hat{j} + t^3\hat{k} + \vec{c}$$

At
$$t = 0$$
, $\vec{r} = \vec{0} \implies \vec{0} = -2\hat{i} + \vec{c} \implies \vec{c} = 2\hat{i}$

$$\vec{r} = 2(1 - \cos 3t)\hat{i} + 2(\sin 2t - 2t)\hat{j} + t^3\hat{k}.$$

Example 2. If $\vec{A}(t) = (3t^2 - 2t)\hat{i} + (6t - 4)\hat{j} + 4t\hat{k}$, evaluate $\int_{2}^{3} \vec{A}(t) dt$.

Sol.
$$\int_{2}^{3} \vec{A}(t) dt = \int_{2}^{3} [(3t^{2} - 2t)\hat{i} + (6t - 4)\hat{j} + 4t\hat{k}]dt$$
$$= \hat{i} \int_{2}^{3} (3t^{2} - 2t) dt + \hat{j} \int_{2}^{3} (6t - 4) dt + \hat{k} \int_{2}^{3} 4t dt$$
$$= \hat{i} \left[t^{3} - t^{2} \right]_{2}^{3} + \hat{j} \left[3t^{2} - 4t \right]_{2}^{3} + \hat{k} \left[2t^{2} \right]_{2}^{3} = 14\hat{i} + 11\hat{j} + 10\hat{k}.$$

Example 3. If
$$\vec{r}(t) = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$$
, prove that $\int_{1}^{2} \left(\vec{r} \times \frac{d^2\vec{r}}{dt^2} \right) dt = -14\hat{i} + 75\hat{j} - 15\hat{k}$.

Sol. Since
$$\frac{d}{dt} \left(\overrightarrow{r} \times \frac{\overrightarrow{dr}}{dt} \right) = \frac{\overrightarrow{dr}}{dt} \times \frac{\overrightarrow{dr}}{dt} + \overrightarrow{r} \times \frac{d^2\overrightarrow{r}}{dt^2} = \overrightarrow{r} \times \frac{d^2\overrightarrow{r}}{dt^2}$$

$$\therefore \int_{1}^{2} \left(\overrightarrow{r} \times \frac{d^{2} \overrightarrow{r}}{dt^{2}} \right) dt = \left[\overrightarrow{r} \times \frac{d \overrightarrow{r}}{dt} \right]_{1}^{2} \text{ is boundaries and some states and in the second of the second of$$

Let us now find $\overrightarrow{r} \times \frac{\overrightarrow{dr}}{dt}$.

$$\vec{r} \times \frac{d\vec{r}}{dt} = (5t^2\hat{i} + t\hat{j} - t^3\hat{k}) \times (10t\hat{i} + \hat{j} - 3t^2\hat{k})$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5t^2 & t & -t^3 \\ 10t & 1 & -3t^2 \end{vmatrix} = -2t^3\hat{i} + 5t^4\hat{j} - 5t^2\hat{k}$$

$$\therefore \text{ From (1), we have } \int_{1}^{2} \left(\overrightarrow{r} \times \frac{d^{2} \overrightarrow{r}}{dt^{2}} \right) dt = \left[-2t^{3} \hat{i} + 5t^{4} \hat{j} - 5t^{2} \hat{k} \right]_{1}^{2} \\
= \left[-2t^{3} \right]_{1}^{2} \hat{i} + \left[5t^{4} \right]_{1}^{2} \hat{j} - \left[-5t^{2} \right]_{1}^{2} \hat{k} = -14\hat{i} + 75\hat{j} - 15\hat{k}.$$

Example 4. Given that $\vec{r}(t) = \begin{cases} 2\hat{i} - \hat{j} + 2\hat{k}, & when \ t = 2 \\ 4\hat{i} - 2\hat{j} + 3\hat{k}, & when \ t = 3 \end{cases}$

show that

$$\int_{2}^{3} \left(\overrightarrow{r} \cdot \frac{\overrightarrow{dr}}{dt} \right) dt = 10.$$

Sol. Since
$$\frac{d}{dt}(\vec{r^2}) = 2\vec{r} \cdot \frac{d\vec{r}}{dt}$$

$$\therefore \int_{2}^{3} \left(\vec{r} \cdot \frac{d\vec{r}}{dt}\right) dt = \frac{1}{2} \left[\vec{r^2}\right]_{2}^{3}$$

When
$$t = 3$$
,
$$\vec{r}^2 = (4\hat{i} - 2\hat{j} + 3\hat{k}) \cdot (4\hat{i} - 2\hat{j} + 3\hat{k}) = 16 + 4 + 9 = 29$$

When
$$t = 2$$
, $\overrightarrow{r^2} = (2\hat{i} - \hat{j} + 2\hat{k}) \cdot (2\hat{i} - \hat{j} + 2\hat{k}) = 4 + 1 + 4 = 9$

From (1), we have
$$\int_{2}^{3} \left(\overrightarrow{r} \cdot \frac{d\overrightarrow{r}}{dt} \right) dt = \frac{1}{2} [29 - 9] = 10.$$

13.22. LINE INTEGRALS

Any integral which is to be evaluated along a curve is called a line integral.

Let $\overrightarrow{F}(P)$ be a continuous vector point function defined at every point of a curve C is space. Divide the curve C into n parts by the points

$$A = P_0, P_1, P_2, \dots, P_n = B$$

and let $\overrightarrow{R_0}$, $\overrightarrow{R_1}$, $\overrightarrow{R_2}$,, $\overrightarrow{R_n}$ be the position vectors of these \overrightarrow{A} points. Let Q_i be any point on the arc P_{i-1} P_i . Then the limit of the sum

...(1)

$$\sum_{i=1}^{n} \vec{F}(Q_{i}) \cdot \delta \vec{R}_{i} \quad \text{where} \quad \delta \vec{R}_{i} = \vec{R}_{i} - \vec{R}_{i-1}$$

as $n \to \infty$ and every $|\delta \vec{R_i}| \to 0$, if it exists, is called a line integral of \vec{F} along C and is denoted by

$$\int_{C} \vec{F} \cdot d\vec{R} \quad \text{or} \quad \int_{C} \vec{F} \cdot \frac{d\vec{R}}{dt} dt$$

Clearly, it is a scalar. It is called the tangential line integral of \vec{F} along C. If the scalar products in (1) are replaced by vector products, then the corresponding line integral is defined as $\int_{C} \vec{F} \times d\vec{R}$ which is a vector.

If the vector function \overrightarrow{F} is replaced by a scalar function ϕ , then the corresponding line integral is defined as $\int_C \phi \, d\overrightarrow{R}$, which is a vector.

If
$$\overrightarrow{F}(x, y, z) = f_1 \hat{i} + f_2 \hat{j} + f_3 \hat{k}$$
 and $\overrightarrow{R} = x \hat{i} + y \hat{j} + z \hat{k}$ then $\overrightarrow{dR} = \hat{i} dx + \hat{j} dy + \hat{k} dz$

$$\therefore \qquad \int_C \overrightarrow{F} \cdot \overrightarrow{dR} = \int_C (f_1 dx + f_2 dy + f_3 dz)$$

If the parametric equations of the curve C are x=x(t), y=y(t), z=z(t) and $t=t_1$ at A, $t=t_2$ at B, then

$$\int_{C} \overrightarrow{F} \cdot \overrightarrow{dR} = \int_{t_{1}}^{t_{2}} \left(f_{1} \frac{dx}{dt} + f_{2} \frac{dy}{dt} + f_{3} \frac{dz}{dt} \right) dt$$

If C is a closed curve, then the integral sign \int_C is replaced by \oint_C .

13.23. CIRCULATION

In fluid dynamics, if \overrightarrow{V} represents the velocity of a fluid particle and C is a closed curve, then the integral $\oint_C \overrightarrow{V} \cdot d\overrightarrow{R}$ is called the *circulation* of \overrightarrow{V} around the curve C.

If the circulation of \overrightarrow{V} around every closed curve in a region D vanishes, then \overrightarrow{V} is said to be *irrotational* in D.

13.24. WORK DONE BY A FORCE

Let \vec{F} represent the force acting on a particle moving along an arc AB. The work cone during a small displacement $\delta \vec{R}$ is \vec{F} . $\delta \vec{R}$.

The total work done by \vec{F} during displacement from A to B is given by $\int_A^B \vec{F} \cdot d\vec{R}$. If the force \vec{F} is conservative, then there exists a scalar function ϕ such that

$$\vec{F} = \nabla \phi = \hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z}$$

VECTOIL

The work done by
$$\vec{F}$$
 during displacement from A to B = $\int_{A}^{B} \vec{F} \cdot d\vec{R}$
= $\int_{A}^{B} \left(\hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z} \right) \times (\hat{i} dx + \hat{j} dy + \hat{k} dz)$
= $\int_{A}^{B} \left(\frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz \right) = \int_{A}^{B} d\phi = \left[\phi \right]^{B} = \phi_{B} - \phi_{A}$

Thus, in a conservative field, the work done depends on the value of ϕ at the end points A and B, and not on the path joining A and B.

ILLUSTRATIVE EXAMPLES

Example 1. If $\vec{F} = 3xy\hat{i} - y^2\hat{j}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$, where C is the arc of the parabola $y = 2x^2$ from (0, 0) to (1, 2).

Sol. Since the integration is performed in the xy-plane (z = 0), we take

$$\vec{r} = x\hat{i} + y\hat{j}$$
 so that $d\vec{r} = dx\hat{i} + dy\hat{j}$

$$\vec{F} \cdot d\vec{r} = (3xy\hat{i} - y^2\hat{j}) \cdot (dx\hat{i} + dy\hat{j}) = 3xy dx - y^2 dy$$

On C: $y = 2x^2$ from (0, 0) to (1, 2)

$$\vec{F} \cdot d\vec{r} = 3x(2x^2) dx - (2x^2)^2 (4x dx) = (6x^3 - 16x^5) dx$$

Also, x varies from 0 to 1.

$$\therefore \int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{0}^{1} (6x^{3} - 16x^{5}) dx = \left[\frac{6x^{4}}{4} - \frac{16x^{6}}{6} \right]_{0}^{1} = \frac{3}{2} - \frac{8}{3} = -\frac{7}{6}$$

Note that if the curve is traversed in the opposite sense, *i.e.*, from (1, 2) to (0, 0), the value of the integral would be $\frac{7}{6}$.

Second Method

Let x = t, then the parametric equations of the parabola $y = 2x^2$ are x = t, $y = 2t^2$.

At the point (0, 0), x = 0 and so t = 0

At the point (1, 2), x = 1 and so t = 1

If \vec{r} is the position vector of any point (x, y) on C, then $\vec{r} = x\hat{i} + y\hat{j} = t\hat{i} + 2t^2\hat{j}$

Also in terms of t, $\vec{F} = (3t \times 2t^2)\hat{i} - (2t^2)^2\hat{j} = 6t^3\hat{i} - 4t^4\hat{j}$

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} \left(\vec{F} \cdot \frac{dr}{dt} \right) dt = \int_{0}^{1} (6t^{3}\hat{i} - 4t^{4}\hat{j}) \cdot (\hat{i} + 4t\hat{j}) dt$$

$$= \int_{0}^{1} (6t^{3} - 16t^{5}) dt = \left[\frac{6t^{4}}{4} - \frac{16t^{6}}{6} \right]_{0}^{1} = \frac{3}{2} - \frac{8}{3} = -\frac{7}{6}.$$

Example 2. A vector field is given by $\vec{F} = (\sin y)\hat{i} + x(1 + \cos y)\hat{j}$. Evaluate the line integral over the circular path given by $x^2 + y^2 = a^2$, z = 0.

Sol. The parametric equations of the circular path are $x = a \cos t$, $y = a \sin t$, z = 0 where t varies from 0 to 2π .

Since the particle moves in the xy-plane (z = 0), we can take $\vec{r} = x\hat{i} + y\hat{j}$ so that $d\vec{r} = dx\hat{i} + dy\hat{j}$

Example 3. If $\vec{F} = 2y\hat{i} - z\hat{j} + x\hat{k}$, evaluate $\oint_C \vec{F} \times d\vec{r}$ along the curve $x = \cos t$, $y = \sin t$, $z = 2\cos t$ from t = 0 to $t = \frac{\pi}{2}$.

Sol.
$$\overrightarrow{F} \times \overrightarrow{dr} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2y & -z & x \\ dx & dy & dz \end{vmatrix} = (-zdz - x dy)\hat{i} + (x dx - 2y dz)\hat{j} + (2y dy + z dx)\hat{k}$$

In terms of t,

$$\vec{F} \times d\vec{r} = [-2\cos t(-2\sin t) dt - \cos t(\cos t) dt]\hat{i} + [\cos t(-\sin t) dt - 2\sin t(-2\sin t) dt]\hat{j} + [2\sin t(\cos t) dt + 2\cos t(-\sin t) dt]\hat{k} = [(4\cos t\sin t - \cos^2 t)\hat{i} + (4\sin^2 t - \cos t\sin t)\hat{j}] dt \therefore \int_{C} \vec{F} \times d\vec{r} = \int_{0}^{\pi/2} [(4\cos t\sin t - \cos^2 t)\hat{i} + (4\sin^2 t - \cos t\sin t)\hat{j}) dt$$

$$\int_{C} \mathbf{f} \times d\mathbf{r} = \int_{0}^{\pi} \frac{(4 \cos t \sin t - \cos^{2} t)i + (4 \sin^{2} t - \cos t \sin t)\hat{j} dt}{(4 \cdot \frac{1}{2} - \frac{1}{2} \cdot \frac{\pi}{2})\hat{i} + (4 \cdot \frac{1}{2} \cdot \frac{\pi}{2} - \frac{1}{2})\hat{j} = (2 - \frac{\pi}{4})\hat{i} + (\pi - \frac{1}{2})\hat{j}.$$

Example 4. Compute $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = \frac{\hat{i}y - \hat{j}x}{x^2 + y^2}$ and C is the circle $x^2 + y^2 = 1$ traversed counter clockwise.

Sol. For the circle $x^2 + y^2 = 1$ in the xy-plane, we take $\vec{r} = x\hat{i} + y\hat{j}$ so that $d\vec{r} = dx\hat{i} + dy\hat{j}$

$$\int_{\mathbf{C}} \vec{\mathbf{F}} \cdot d\vec{r} = \int_{\mathbf{C}} \left(\frac{\hat{i}y - \hat{j}x}{x^2 + y^2} \right) \cdot (dx \, \hat{i} + dy \hat{j})$$

$$= \int_{\mathbf{C}} \frac{y \, dx - x \, dy}{x^2 + y^2} = \int_{\mathbf{C}} (y \, dx - x \, dy)$$

$$[\because \quad x^2 + y^2 = 1]$$

Parametric equation of the circle $C: x^2 + y^2 = 1$ is $x = \cos \theta$, $y = \sin \theta$ so that $dx = -\sin \theta d\theta$, $dy = \cos \theta d\theta$ and θ varies from 0 to 2π .

$$\int_{\mathbf{C}} \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{r} = \int_{0}^{2\pi} \sin \theta \left(-\sin \theta \, d\theta \right) - \cos \theta \left(\cos \theta \, d\theta \right)$$
$$= -\int_{0}^{2\pi} (\sin^{2} \theta + \cos^{2} \theta) \, d\theta = -\int_{0}^{2\pi} d\theta$$
$$= -\left[\theta\right]_{0}^{2\pi} = -2\pi.$$

Example 5. Compute the line integral $\int_C (y^2 dx - x^2 dy)$ about the triangle whose vertices are (1, 0), (0, 1) and (-1, 0).

Sol. Here C is the triangle ABC.

Equation of AB is On AB

$$y - 0 = \frac{1 - 0}{0 - 1}(x - 1) \quad \text{or} \quad y = 1 - x$$
$$dy = -dx \text{ and } x \text{ varies from 1 to 0.}$$

Equation of BC is On BC

$$y - 1 = \frac{0 - 1}{-1 - 0}(x - 0) \quad \text{or} \quad y = 1 + x$$
$$dy = dx \text{ and } x \text{ varies from } 0 \text{ to } -1.$$

On CA y = 0 : dy = 0 and x varies from -1 to 1.

$$\int_{C} (y^{2}dx - x^{2}dy) = \int_{AB} (y^{2}dx - x^{2}dy) + \int_{BC} (y^{2}dx - x^{2}dy) + \int_{CA} (y^{2}dx - x^{2}dy)$$

$$= \int_{1}^{0} [(1-x)^{2}dx - x^{2}(-dx)] + \int_{0}^{-1} [(1+x)^{2}dx - x^{2}dx] + \int_{-1}^{1} 0 dx$$

$$= \int_{1}^{0} (2x^{2} - 2x + 1) dx + \int_{0}^{-1} (2x + 1) dx + 0$$

$$= \left[\frac{2x^{3}}{3} - \frac{2x^{2}}{2} + x \right]_{1}^{0} + \left[\frac{2x^{2}}{2} + x \right]_{0}^{-1}$$

$$= \left(-\frac{2}{3} + 1 - 1 \right) + (1 - 1) = -\frac{2}{3}$$

 $j+z\hat{k}$ along

(i) the straight line from (0, 0, 0) to (2, 1, 3)

(ii) the curve defined by $x^2 = 4y$, $3x^3 = 8z$ from x = 0 to x = 2.

Sol. Work done
$$= \int_{C} \vec{F} \cdot d\vec{r} = \int_{C} [3x^{2}\hat{i} + (2xz - y)\hat{j} + z\hat{k}] \cdot (dx\hat{i} + dy\hat{j} + dz\hat{k})$$

$$= \int_{C} [3x^{2}dx + (2xz - y)dy + zdz]$$

$$= \int_{C} [3x^{2}dx + (2xz - y)dy + zdz]$$
...(1)

(i) Equation of straight line from (0, 0, 0) to (2, 1, 3) are

$$\frac{x-0}{2-0} = \frac{y-0}{1-0} = \frac{z-0}{3-0}$$
 or $\frac{x}{2} = \frac{y}{1} = \frac{z}{3} = t$ (say)

$$\therefore C: x = 2t, y = t, z = 3t$$

so that

$$dx = 2dt, dy = dt, dz = 3dt$$

The points (0, 0, 0) and (2, 1, 3) correspond to t = 0 and t = 1 respectively.

From (1), we have

Work done =
$$\int_0^1 [3(2t)^2 2dt + \{2(2t)(3t) - t\} dt + (3t) 3dt]$$
=
$$\int_0^1 (24t^2 + 12t^2 - t + 9t) dt = \int_0^1 (36t^2 + 8t) dt$$
=
$$\left[12t^3 + 4t^2\right]_0^1 = 16$$

(ii) Let x = t, then $C : x = t, y = \frac{t^2}{4}, z = \frac{3t^3}{9}$

so that

$$dx = dt, dy = \frac{t}{2} dt, dz = \frac{9t^2}{8} dt$$

From x = 0 to x = 2, t varies from 0 to 2.

t=x

From (1), we have

Work done
$$= \int_0^2 \left[3t^2 dt + \left\{ 2(t) \left(\frac{3t^3}{8} \right) - \frac{t^2}{4} \right\} \left(\frac{t}{2} dt \right) + \frac{3t^3}{8} \left(\frac{9t^2}{8} dt \right) \right]$$

$$= \int_0^2 \left(3t^2 + \frac{3}{8}t^5 - \frac{1}{8}t^3 + \frac{27}{64}t^5 \right) dt = \int_0^2 \left(\frac{51}{64}t^5 - \frac{1}{8}t^3 + 3t^2 \right) dt$$

$$= \left[\frac{51}{64} \cdot \frac{t^6}{6} - \frac{t^4}{32} + t^3 \right]_0^2 = \frac{17}{2} - \frac{1}{2} + 8 = 16.$$

DEFINITION The **length** of a smooth curve $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, $a \le t \le b$, that is traced exactly once as t increases from t = a to t = b, is

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt.$$
 (1)

EXAMPLE 1 A glider is soaring upward along the helix $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}$. How long is the glider's path from t = 0 to $t = 2\pi$?

Solution The path segment during this time corresponds to one full turn of the helix (Figure 13.13). The length of this portion of the curve is

$$L = \int_{a}^{b} |\mathbf{v}| dt = \int_{0}^{2\pi} \sqrt{(-\sin t)^{2} + (\cos t)^{2} + (1)^{2}} dt$$
$$= \int_{0}^{2\pi} \sqrt{2} dt = 2\pi \sqrt{2} \text{ units of length.}$$