Legged Robotics, HW 7

Homework due on 03-11-2021, Topic: Learning a controller from simulation. Email solutions to pranav@uic.edu.

1. Walker with controlled foot placement.

Model: Figure 1 shows point mass model of walker with massless legs of length ℓ , hip mass M, walking down a ramp of slope γ . Gravity is g and points downwards. The angle between the stance leg and the normal to the ramp is θ . The states of the walker are θ and $\dot{\theta}$ and the control input is the angle between the legs, ϕ . The swing leg dynamics are neglected so that the foot placement angle can be set instantaneously fast.

Control: Assume the Poincaré section is at $\theta_i = 0$ where i is the step number. The Poincaré map may be written as $\dot{\theta}_{i+1} = F(\dot{\theta}_i, \phi_i)$. The goal is to find foot placement angle ϕ_i such that the robot can track a given reference (or desired) velocity at the Poincaré section ϕ_i^{des} .

Figure 1: Walker with controllable foot placement angle ϕ

Controller design: You will do the controller design in two stages.

- (a) In stage 1, you will use the file $walker_data_generation.m$ for data generation. You will input $\dot{\theta}_i$ and ϕ_i which will produce the output $\dot{\theta}_{i+1}$. Note that there will be some inputs that will lead to failure or the output $\dot{\theta}_{i+1}$ will be incorrect. You can monitor these cases by checking the output of flag. If it has all zeros, you can trust the output else not.
- (b) In stage 2, you will use $walker_main.m$ to define the reference (or desired) velocity $\dot{\theta}_{i+1}^{des}$ (see walker.thetadot_des and note that for forward walking these values are negative) and then write a controller in the file controller.m which has its input θ_i (see thetadot in controller.m) and $\dot{\theta}_{i+1}^{des}$ (see thetadot_des in controller.m) to produce the output ϕ_i (see phi in controller.m). That is $\phi_i = f(\dot{\theta}_i, \dot{\theta}_{i+1}^{des})$. In particular you are going to follow two approaches: (1) a look-up table (2) an explicit function f such as a polynomial, neural network, gaussian process regression.

Compare the results you get with respect to velocity tracking for both approaches.