DOCUMENTS ET CALCULATRICES INTERDITS.

Exercice 1 (5pts)

Soit la fonction F définie par : $F(x) = \int_{0}^{+\infty} f(t,x)dt$, où $f(t,x) = \frac{1 - e^{-xt^2}}{t^2}$, $x \ge 0$.

- 1) Montrer que $D_F = \mathbb{R}^+$. 2) On pose : $F_1(x) = \int_{0}^{1} f(t,x)dt$ et $F_2(x) = \int_{0}^{+\infty} f(t,x)dt$.
- a) Montrer que $1 + u e^u \le 0 \ \forall u \in \mathbb{R}$.
- b) Montrer que F_1 et F_2 sont continues sur \mathbb{R}^+ .
- Etudier la dérivabilité de F sur ℝ⁺_{*}.
- 4) En déduire que $F(x) = \sqrt{\pi x} \quad \forall x \ge 0$.

On rappelle que : $\int_{-\infty}^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Exercice 2 (5pts)

- 1) Calculer la transformée de Fourier de la fonction $e^{-|t|}$, puis en déduire la valeur de l'integrale $\int_{1+s^2}^{+\infty} \frac{\cos(st)}{1+s^2} ds$.
- 2) Trouver une solution de l'equation suivante dans $L^1(\mathbb{R}) \cap C^1(\mathbb{R})$:

$$y(t) + 3 \int_{-\infty}^{+\infty} y(t-u)e^{-|u|}du = e^{-|t|}.$$
Exercice 3 (5pts)

- 1) Calculer les limites suivantes: $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^2+y^4}$, $\lim_{(x,y)\to(1,1)} \frac{xe^x-ye^y}{x-y}$.
- 2) Soit f la fonction définie par :

$$f(x,y) = \begin{cases} \frac{e^{-(x^2+y^2)} - 1}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ -1 & \text{si } (x,y) \neq (0,0) \end{cases}$$

Etudier la différentiabilité de f en (0,0).

Exercice 4 (5pts)

Trouver les extrémums de la fonction suivante:

$$f(x,y) = (x-y)^2(1-x^2-y^2).$$