vv214: Singular Value Decomposition. Low Rank Approximations.

Dr.Olga Danilkina

UM-SJTU Joint Institute

July 23, 2020

- 1. SVD
- 2. Frobenius norm
- 3. Low Rank Approximations
- 4. Pseudoinverses

SVD: Motivation

Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be linear, $L\bar{x} = A\bar{x}$.

$$(A^TA)^T = A^T(A^T)^T = A^TA \Rightarrow A^TA$$
 is symmetric

Spectral Theorem $\Rightarrow \exists$ an orthonormal basis \bar{v}_1 , \bar{v}_2 for A^TA

$$(A\bar{v}_1, A\bar{v}_2) = (A\bar{v}_1)^T A\bar{v}_2 = \bar{v}_1^T A^T A\bar{v}_2 = \bar{v}_1^T \lambda_2 \bar{v}_2 = \lambda_2(\bar{v}_1, \bar{v}_2) = 0$$

 $\Rightarrow A\bar{v}_1 \perp A\bar{v}_2$

SVD: Example

Let
$$L: \mathbb{R}^2 \to \mathbb{R}^2$$
, $L\bar{x} = A\bar{x}$, $A = \begin{pmatrix} 6 & 2 \\ -7 & 6 \end{pmatrix}$

$$A^{T}A = \begin{pmatrix} 6 & -7 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} 6 & 2 \\ -7 & 6 \end{pmatrix} = \begin{pmatrix} 85 & -30 \\ -30 & 40 \end{pmatrix}$$

Eigenvalues:
$$(85 - \lambda)(40 - \lambda) - 900 = 0 \Rightarrow \lambda_1 = 100, \lambda_2 = 25$$

Orthonormal eigenbasis:
$$\bar{v}_1=\frac{1}{\sqrt{5}}\left(\begin{array}{c}2\\-1\end{array}\right)\perp \bar{v}_2=\frac{1}{\sqrt{5}}\left(\begin{array}{c}1\\2\end{array}\right)$$

$$\label{eq:average} \textit{A}\bar{\textit{v}}_1 = \frac{1}{\sqrt{5}} \left(\begin{array}{c} 10 \\ -20 \end{array} \right) \perp \textit{A}\bar{\textit{v}}_2 = \frac{1}{\sqrt{5}} \left(\begin{array}{c} 10 \\ 5 \end{array} \right)$$

SVD: Example

Consider the unit circle

$$\bar{x} = \bar{v}_1 \cos t + \bar{v}_2 \sin t$$

What is its image under the linear map L?

$$L\bar{x} = A\bar{v}_1\cos t + A\bar{v}_2\sin t, A\bar{v}_1 \perp A\bar{v}_2$$

 $\Rightarrow L \bar{x}$ is an ellipse with semi-axes $||A \bar{v}_1||, ||A \bar{v}_2||$

$$||A\bar{v}_1||^2 = (A\bar{v}_1, A\bar{v}_1) = \lambda_1(\bar{v}_1, \bar{v}_1) = \lambda_1 \Rightarrow ||A\bar{v}_1|| = \sqrt{100} = 10$$

$$||A\bar{v}_2|| = \sqrt{25} = 5$$

The eigenvalues of A^TA define the ellipse as the image of the unit circle.

Singular Values

Definition: The singular values of a matrix $A_{n\times m}$ are the square roots of the eigenvalues of the symmetric matrix $(A^TA)_{m\times m}$ listed with their algebraic multiplicities:

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_m \geq 0$$

Theorem: Let $L \colon \mathbb{R}^2 \to \mathbb{R}^2$, $L\bar{x} = A\bar{x}$ be invertible. The image of the unit circle under the map L is an ellipse E. Singular values of A are the length of semi-axes of E.

Example

$$L \colon \mathbb{R}^3 \to \mathbb{R}^2, \ L\bar{x} = A\bar{x} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \bar{x}$$

$$A^{T}A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$(1 - \lambda)^2 (2 - \lambda) - 2 = 0 \Rightarrow \lambda_1 = 3, \ \lambda_2 = 1, \ \lambda_3 = 0$$

Singular Values are $\sigma_1 = \sqrt{3} > \sigma_2 = 1 > \sigma_3 = 0$

$$ar{v}_1 = rac{1}{\sqrt{6}} \left(egin{array}{c} 1 \ 2 \ 1 \end{array}
ight), ar{v}_2 = rac{1}{\sqrt{2}} \left(egin{array}{c} 1 \ 0 \ -1 \end{array}
ight), ar{v}_3 = rac{1}{\sqrt{3}} \left(egin{array}{c} 1 \ -1 \ 1 \end{array}
ight)$$

Example

$$A\bar{v}_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} 3 \\ 3 \end{pmatrix}, A\bar{v}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}, A\bar{v}_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$||A\bar{v}_1|| = \sqrt{3} = \sigma_1, ||A\bar{v}_2|| = 1 = \sigma_2, ||A\bar{v}_3|| = 0 = \sigma_3$$

The unit sphere in \mathbb{R}^3 is defined by

$$\bar{x} = c_1 \bar{v}_1 + c_2 \bar{v}_2 + c_3 \bar{v}_3, \quad c_1^2 + c_2^2 + c_3^2 = 1$$

The image of the unit sphere is

$$Lar x=c_1Lar v_1+c_2Lar v_2=c_1\lambda_1ar v_1+c_2\lambda_2ar v_2$$
 $c_1^2+c_2^2\le 1$ an ellipse

Singular Value Decomposition

Lemma: If $rank A_{n \times m} = r$, then its singular values

$$\sigma_1, \ldots, \sigma_r \neq 0$$
 and $\sigma_{r+1}, \ldots, \sigma_m = 0$

Theorem (SVD): Any matrix $A_{n \times m}$ can be represented in the form

$$A = U\Sigma V^T$$
,

U is an orthogonal $n \times n$ matrix, *V* is an orthogonal $m \times m$ matrix

 Σ is a matrix whose first r diagonal entries are nonzero singular values of A, $r=rank\,A$, and all other entries vanish

Singular Value Decomposition

Singular Value Decomposition: Remarks

Remark 1:

$$A\bar{v}_{i} = \sigma_{i}\bar{u}_{i}, \ i = 1, \dots, r \qquad A\bar{v}_{i} = \bar{0}, \ i = r+1, \dots, m$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Im A = span(\bar{u}_{1}, \dots, \bar{u}_{r}) \qquad Ker A = span(\bar{v}_{r+1}, \dots, \bar{v}_{m})$$

$$Remark 2: A = U\Sigma V^{T} \Rightarrow A^{T} = V\Sigma^{T} \underbrace{U^{T}}_{U^{-1}} \Rightarrow A^{T}U = V\Sigma^{T}$$

$$A^{T}\bar{u}_{i} = \sigma_{i}\bar{v}_{i}, \ i = 1, \dots, r \qquad A^{T}\bar{u}_{i} = \bar{0}, \ i = r+1, \dots, m$$

$$\downarrow \downarrow \qquad \qquad \downarrow \downarrow$$

$$Im A^{T} = span(\bar{v}_{1}, \dots, \bar{v}_{r}) \qquad Ker A^{T} = span(\bar{u}_{r+1}, \dots, \bar{u}_{m})$$

Singular Value Decomposition: Example 1

$$A = \begin{pmatrix} 6 & 2 \\ -7 & 6 \end{pmatrix}$$

$$\bar{v}_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \ \bar{v}_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Rightarrow V = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$$

$$\bar{u}_1 = \frac{1}{\sigma_1} A \bar{v}_1 = \frac{1}{10\sqrt{5}} \begin{pmatrix} 10 \\ -20 \end{pmatrix}, \ \bar{u}_2 = \frac{1}{\sigma_2} A \bar{v}_2 = \frac{1}{5\sqrt{5}} \begin{pmatrix} 10 \\ 5 \end{pmatrix}$$

$$\Rightarrow U = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 10 & 0 \\ 0 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 2 \\ -7 & 6 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 10 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$$

Singular Value Decomposition: Example 2

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\bar{v}_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \bar{v}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \bar{v}_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

$$egin{aligned} ar{u}_1 &= rac{1}{\sigma_1} A ar{v}_1 = rac{1}{\sqrt{3}\sqrt{6}} \left(egin{array}{c} 3 \\ 3 \end{array}
ight), \ ar{u}_2 &= rac{1}{\sigma_2} A ar{v}_2 = rac{1}{1 \cdot \sqrt{2}} \left(egin{array}{c} -1 \\ 1 \end{array}
ight) \ \Rightarrow U &= rac{1}{\sqrt{2}} \left(egin{array}{c} 1 & -1 \\ 1 & 1 \end{array}
ight), \ \Sigma &= \left(egin{array}{c} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{array}
ight) \end{aligned}$$

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{6} & 2/\sqrt{6} & 1/\sqrt{6} \\ 1/\sqrt{2} & 0 & -1\sqrt{2} \\ 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix}$$

MATLAB Commands

- texttts = svd(A) returns the singular values of matrix A in descending order.
- ▶ texttt[U,S,V] = svd(A) performs a singular value decomposition of matrix A, such that A = U * S * V'.
- ightharpoonup texttts = svds(A,k) returns the k largest singular values.

The Frobenius Norm

The Frobenius norm of a matrix $A_{n \times m}$ which is defined by

$$|A||_F = \sqrt{\sum_{i,j=1}^{n,m} a_{ij}^2} = \sqrt{trace(AA^T)} = \sqrt{trace(A^TA)},$$

can be also represented by

$$||A||_F = \sqrt{\sum_{i=1}^r \sigma_i^2}$$
, where σ_i are singular values of A

- ▶ Singular values $\sigma_1 \ge \sigma_2 \ge \sigma_n$ of a matrix $A_{n \times n}$ show how much distortion can occur under the linear transformation defined by A.
- ▶ Let $\exists A^{-1}$ and $S_2 = \{\bar{x} : ||\bar{x}||_2 = 1\}$ be a unit sphere in \mathbb{R}^n .
- $ightharpoonup A = U\Sigma V^T$, $D = diag(\sigma_1, \dots, \sigma_n) \Rightarrow A^{-1} = VD^{-1}U^T$
- $ightharpoonup orall ar{y} \in A(S_2) \, \exists ar{x} \in S_2 : \, ar{y} = Aar{x} \, \, ext{and foe} \, \, ar{w} = U^T ar{y}$

$$1 = ||\bar{x}||_2^2 = ||A^{-1}A\bar{x}||_2^2 = ||A^{-1}\bar{y}||_2^2 = ||VD^{-1}U^T\bar{y}||_2^2$$

$$= ||D^{-1}U^T\bar{y}||_2^2 = ||D^{-1}\bar{w}||_2^2 = \frac{w_1^2}{\sigma_1^2} + \frac{w_2^2}{\sigma_2^2} + \dots + \frac{w_n^2}{\sigma_n^2}$$

▶ $U^T A(S2)$ is an ellipsoid whose kth semiaxis has length σ_k .

- ▶ *U* is orthogonal $\Rightarrow ||U^T A(S2)|| = ||A(S_2)||$ and $A(S_2)$ is also an ellipsoid with *k*th semiaxis of length σ_k .
- ▶ The ellipsoid $U^T A(S_2)$ is in standard position and its axes are directed along the standard basis vectors.
- ▶ $UU^T A(S_2) = A(S_2) \Rightarrow$ The axes of $A(S_2)$ are directed along the left-hand singular vectors defined by the columns of U and the kth semiaxis of $A(S_2)$ is $\sigma_k \bar{u}_k$.
- ▶ The degree of distortion of the unit sphere under transformation by A is therefore measured by $\kappa = \frac{\sigma_1}{\sigma_n}$, the ratio of the largest singular value to the smallest singular value.

- $ightharpoonup \max_{||\bar{x}||_2=1} ||A\bar{x}||_2 = ||A||_2 = ||UDV^T||_2 = ||D||_2 = \sigma_1$
- ▶ $\min_{||\bar{x}||_2=1} ||A\bar{x}||_2 = \frac{1}{||A^{-1}||_2} = \frac{1}{||VD^{-1}U^T||_2} = \frac{1}{||D^{-1}||_2} = \sigma_n$
- ► The longest and shortest vectors on $A(S_2)$ have respective lengths σ_1 and σ_n and

$$\kappa_2 = \frac{\sigma_1}{\sigma_n}$$

is the 2-norm condition number.

ightharpoonup Different norms result in condition numbers with different values but with more or less the same order of magnitude as κ_2 .

Definition: Let a matrix A be invertible. The condition number of A is defined by

$$\kappa(A) = ||A|| \cdot ||A^{-1}||$$

▶ Define
$$M = ||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$
 and $m = \min_{x \neq 0} \frac{||Ax||}{||x||}$

$$m = \min_{x \neq 0} \frac{||Ax||}{||x||} = [y = Ax] = \min_{y \neq 0} \frac{||y||}{||A^{-1}y||} = \frac{1}{\max_{y \neq 0} \frac{||A^{-1}y||}{||y||}} = \frac{1}{||A^{-1}||}$$

$$\kappa(A) = \frac{M}{m} \Rightarrow \text{if } A^{-1} \text{ does not exist}$$

$$\Rightarrow \det A = 0 \Rightarrow \exists x \neq 0 : Ax = 0 \Rightarrow m = 0 \Rightarrow \kappa(A) \to \infty$$

A large condition number corresponds to the case when a matrix is close to being singular \Rightarrow an ill-conditioned matrix

III-conditioned Matrices

- ▶ Consider a linear system Ax = b and explore the effect of the error in the RHS Ax = b + e in the solution.
- ▶ Let A be invertible. Then

$$x = A^{-1}(b + e) = \underbrace{A^{-1}b}_{\text{solution}} + \underbrace{A^{-1}e}_{\text{error in the solution}}$$

▶ Define the relative error in the solution by $\frac{||A^{-1}e||}{||A^{-1}b||}$ and the

relative error in the RHS by
$$\frac{||e||}{|b||}$$

Consider the ratio of the relative errors:

$$\frac{\frac{||A^{-1}e||}{||A^{-1}b||}}{\frac{||e||}{||b||}} = \frac{||A^{-1}e||}{||e||} \cdot \frac{||b||}{||A^{-1}b||}$$

$$\max \frac{\frac{||A^{-1}e||}{||A^{-1}b||}}{\frac{||e||}{|b||}} = \max_{e \neq 0} \frac{||A^{-1}e||}{||e||} \max_{b \neq 0} \frac{||b||}{||A^{-1}b||} = \max_{e \neq 0} \frac{||A^{-1}e||}{||e||} \max_{y \neq 0} \frac{||Ay||}{||y||}$$

Eckort-Young-Mirsky Theorem

Question: For a given matrix $A_{n\times m}$ and a given integer number $s\geq 1$, find a matrix C with rank(C)=s which is closest to A, that is, find

$$\min_{C: rank C = s} ||A - C||$$

Answer: Let $1 \le s \le rank(A)$, $A_{n \times m}$. The truncated SVD

$$A_s = \sum_{i=1}^s \sigma_i \bar{u}_i \bar{v}_i^T$$

of a matrix $A_{n \times m}$ is the best rank s approximation to A and

$$\min ||A - C||_F = ||A - A_s||_F = \sqrt{\sum_{i>s} \sigma_i^2}$$

$$\min ||A - C||_2 = ||A - A_s||_2 = \sigma_{s+1}$$

Example: Find the best rank-1 approximation to the matrix

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right)$$

Eckort-Young-Mirsky Theorem: Example

Find the best rank-1 approximation to the matrix

$$\left(\begin{array}{cc}
0 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right)$$