

| AD |  |
|----|--|
| AU |  |

MIPR NO: 92MM2525

TITLE: SUBCHRONIC TOXICITY STUDIES ON 1,3,5-TRINITROBENZENE,

1,3-DINITROBENZENE, AND TETRYL IN RATS

SUBTITLE: 90 Day Toxicity Evaluation of 1,3-Dinitrobenzene (DNB)

in Fischer 344 Rats

PRINCIPAL INVESTIGATOR: Tirumuru V. Reddy, Ph.D.

CONTRACTING

ORGANIZATION: Environmental Monitoring Systems Laboratory

U.S. Environmental Protection Agency

26 W. Martin Luther King Drive Cincinnati, Ohio 45268-0001

REPORT DATE: February 1, 1995

TYPE OF REPORT: Final Report

PREPARED FOR: U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release;

distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

19950814 102

DITC QUALITY INSPECTED 1



# REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Adjointon, VA, 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC, 20503.

| Highway, Suite 1204, Arlington, VA 22202-                       | 4302, and to the | Office of Management and Bu              |         |                            |               |                          |         |
|-----------------------------------------------------------------|------------------|------------------------------------------|---------|----------------------------|---------------|--------------------------|---------|
| 1. AGENCY USE ONLY (Leave                                       | blank)           | 2. REPORT DATE                           |         | 3. REPORT TYPE             |               |                          |         |
|                                                                 |                  | 1 February 1995                          |         | Final Rep                  |               | 1/15/92 - 9/20/94        |         |
|                                                                 |                  | Toxicity Studies on                      |         |                            | 5.            | FUNDING NUMBERS          |         |
|                                                                 |                  | nzene, and Tetryl i                      |         |                            |               |                          |         |
| SUBTITLE: 90 Day Toxio                                          |                  | on of 1,3-Dinitrober                     | izene   | (DNR)                      |               | MIPR No. 92MM2525        |         |
| in Fischer 34                                                   | 4 Rats           |                                          |         |                            | 1             |                          |         |
| 6. AUTHOR(S)                                                    | V Roddy F        | . B. Daniel, M. Rob                      | inson   |                            |               |                          |         |
|                                                                 |                  | man, G. Reddy                            |         |                            |               |                          |         |
| 7. PERFORMING ORGANIZATIO                                       |                  |                                          |         |                            | 8.            | PERFORMING ORGANIZATIO   | N       |
|                                                                 |                  |                                          |         |                            | 1             | REPORT NUMBER            |         |
| Environmental Monit                                             |                  |                                          |         |                            |               |                          | İ       |
| U.S. Environmental I                                            |                  | gency                                    |         | -                          |               |                          |         |
| 26 W. Martin Luther                                             |                  |                                          |         |                            | 1             |                          |         |
| Cincinnati, Ohio 45                                             | 268-0001         |                                          |         |                            |               |                          |         |
| 9. SPONSORING / MONITORING                                      | AGENCY NA        | ME(S) AND ADDRESS(                       | ES)     |                            | 10.           | SPONSORING / MONITORING  | G       |
|                                                                 |                  |                                          |         |                            | 1             | AGENCY REPORT NUMBER     |         |
| U.S. Army Medical R                                             |                  |                                          |         |                            |               |                          | ļ       |
| Fort Detrick, Maryla                                            | nd 21702-        | 5012                                     |         |                            |               |                          |         |
| 11. SUPPLEMENTARY NOTES                                         |                  |                                          |         |                            | 1             |                          |         |
|                                                                 |                  |                                          |         |                            |               |                          |         |
| 40. DIOTOIDUTION / AVAILABILIT                                  | TV CTATELIES     | IT                                       |         |                            | 125           | DISTRIBUTION CODE        |         |
| 12a. DISTRIBUTION / AVAILABILITATION / APPROVED for public ref  |                  |                                          |         |                            | '             |                          |         |
|                                                                 |                  |                                          |         |                            |               |                          |         |
| 13. ABSTRACT To                                                 | oxic effects     | of 1,3-dinitrobenze                      | ne (1   | 3-DNB) in male             | and           | female Fischer 344 rats  | s were  |
| evaluated by feeding powde                                      | red certified    | laboratory chow su                       | ıpplem  | ented with varied          | cond          | centrations of 1,3-DNB ( | 0, 1, 6 |
| and 30 mg/kg diet) for ninety                                   | days. The        | e average daily 1,3-                     | DNB d   | oses consumed w            | ere           | 0.07, 0.39 and 1.93 mg/l | kg b.w. |
| for females and 0.06, 0.35                                      | and 1.73 fo      | r males. Food and                        | wate    | r consumption we           | re n          | ot significantly changed | ma/kg   |
| group. Final body weights                                       | were not a       | itered but relative                      | organ   | weights were sign          | OV E          | tudies done at 45 and 9  | 0 dave  |
| dose group involving the spl<br>indicated significantly increas | een (males       | and remaies) and t                       | rlohin  | in the 30 and 6 n          | gy s<br>na/kr | dose groups and reticu   | locytes |
| in the 30 mg/kg group whil                                      | eu values r      | lood cell count he                       | moajo.  | oin and hematocr           | it lev        | vels were decreased in   | the 30  |
| mg/kg dose group. Clinic                                        | al chemistr      | z analyses reveale                       | d no    | biologically mean          | inafı         | ul changes. Histopatho   | logical |
| evaluations suggested that                                      | susceptible      | e organs for 1,3-D                       | NB to   | exicity were kidne         | eys           | (cytoplasmic droplets),  | spleen  |
| (erythroid cell hyperplasia)                                    | and testes       | (seminiferous tubul                      | ar deg  | generation). The           | se c          | hanges were noted in a   | animals |
| receiving 30 mg/kg DNB.                                         | The lowest of    | observed adverse e                       | ffect l | evel (LOAEL) of (          | ).35          | mg DNB/kg b.w./day ba    | sea on  |
| decreased hemoglobin and in                                     | creased me       | themoglobin and a r                      | no obs  | erved adverse effe         | ct le         | vel (NOAEL) of .060 mg   | DNB/kg  |
| b.w./day were established.                                      |                  |                                          |         |                            |               |                          |         |
| 14. SUBJECT TERMS                                               |                  |                                          |         |                            |               | 15. NUMBER OF PAGES      |         |
|                                                                 |                  | 00 0                                     |         | ataa                       |               | 152                      |         |
| Oral Toxicity                                                   |                  | 90 Day                                   |         | stes                       |               | 16. PRICE CODE           |         |
| Fischer 344 Rats                                                |                  | Clinical Chemistry<br>1,3-Dinitrobenzene |         | dneys<br>ytoplasmic drople | te            |                          |         |
| Hematology                                                      |                  | 1,3-Dinitiobenzene                       | · C     | Atobiasimo diobie          | 13            |                          |         |
| 17. SECURITY CLASSIFICATION                                     | 18. SECUR        | ITY CLASSIFICATION                       | 19. 8   | ECURITY CLASSIFICA         | MOIT          | 20. LIMITATION OF ABS    | TRACT   |
| OF REPORT                                                       |                  | SPAGE                                    | 1       | F ABSTRACT                 |               |                          |         |
| Unclassified                                                    | Uncla            | ssified                                  | l       | Inclassified               |               | Unlimited                |         |

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

## Study Personnel

Principal Investigator: Tirumuru V. Reddy, Ph.D.

Co-Principal Investigator: F.Bernard Daniel, Ph.D.

Biochemist: Barry E. Wiechman, B.S., M.S.

Pathologist: Greg R. Olson, D.V.M., Ph.D.

Biostatistician: Joni A. Torsella, Ph.D.

Study Biological Technician: Bradley Peterson, A.S.

Histology Laboratory Supervisor: Sheree Lovelace, A.S.

Contract Officer Representative: Gunda Reddy, Ph.D.

## Study Timetable:

Study Initiation: August 9, 1994

Initiation of Dosing: August 22 and 23, 1994

Completion of Necropsy: November 22 and 23, 1994



#### QUALITY ASSURANCE STATEMENT

The portions of this toxicology project performed and reported by Pathology Associates, Inc. has been inspected and audited by the quality assurance unit as required by the Good Laboratory Practice (GLP) standards promulgated by the U.S. Environmental Protection Agency. The following table is a record of the inspections/audits performed and reported by the QAU.

| Date of<br>Inspection | Phase Inspected        | Date Findings Reported<br>to Management<br>and Study Director |
|-----------------------|------------------------|---------------------------------------------------------------|
| 07-20-95              | Final Report           | 07-20-95                                                      |
| 02-06-95              | Draft Report           | 02-06-95                                                      |
| 02-06-95              | Data                   | 02-06-95                                                      |
| 01-31-95              | Draft Report           | 01-31-95                                                      |
| 01-31-95              | Data                   | 01-31-95                                                      |
| 12-09-94              | Quality Control        | 12-09-94                                                      |
| 11-28-94              | Trimming               | 11-28-94                                                      |
| 11-22-94              | Necropsy               | 11-23-94                                                      |
| 09-13-94              | Food/Water Consumption | 09-14-94                                                      |
| 09-13-94              | Weighing               | 09-13-94                                                      |

Willa Fox, MA

Quality Assurance Unit

PAI-Cin

7-31-95 Date

Study Number: 94-004

### Compliance Statement

This study was conducted in compliance with the Good Laboratory Practice Regulations as set forth in Title 21 of the U.S. Code of Federal Regulations Part 792 issued August 17, 1989. All deviations from the protocol and/or GLPs are listed in Appendix J. There were no deviations from the aforementioned regulations which affected the quality or integrity of the study or the interpretation of the results in the report.

| Tanima V. Retor                                                  | 7.31.95         |
|------------------------------------------------------------------|-----------------|
| Tirumuru V. Reddy, Ph.D.<br>U.S. Environmental Protection Agency | Date            |
| Aug R. Olm                                                       | 7-31-95         |
| Greg R. Olson, D.V.M., Ph.D. Pathology Associates, Inc.          | Date            |
| \ · 1 H 14                                                       | 7-21 05         |
| Joni A. Josella, Ph.D.  U.S. Environmental Protection Agency     | 7-31-95<br>Date |
|                                                                  |                 |
| Barry E Wiechman                                                 | 7-31-95         |
| Barry E/Wiechman, B.S., M.S. Pathology Associates, Inc.          | Date            |

# TABLE OF CONTENTS

|                      |                                                            | Page Number                  |
|----------------------|------------------------------------------------------------|------------------------------|
| Mate<br>Resu<br>Sumr | mary<br>rences                                             | 1<br>2<br>5<br>9<br>10<br>11 |
| Append               | ices                                                       |                              |
| A.                   | Food and Water Consumption Data                            | 24                           |
| В.                   | Body Weights                                               | 37                           |
| C.                   | Organ Weights                                              | 42                           |
| D.                   | Hematology Data                                            | 49                           |
| E.                   | Clinical Chemistry Data                                    | 58                           |
| F.                   | Clinical Observations                                      | 67                           |
| G.                   | Ophthalmology Data                                         | 70                           |
| Н.                   | Gross and Histopathology Data                              | 73                           |
| I.                   | Chemical Analyses                                          | 129                          |
| J.                   | Protocol and Amendments Deviations from GLP's and Protocol | 140                          |

#### INTRODUCTION

Nitroaromatics, such as 1,3-dinitrobenzene (DNB), 1,3,5-trinitrobenzene (TNB), and N-methyl-N,2,4,6-tetranitroaniline (tetryl), have been detected as environmental contaminants of groundwater and soil near production sites and in some instances at military test grounds. DNB is formed as a by-product during 2,4,6-trinitrotoluene (TNT) production. It is also formed through photochemical oxidative degradation of 2,4-dinitrotoluene a by-product released into the environment from TNT manufacturing (Spanggord et.al., 1980). DNB and TNB are not easily biodegradable, persist in the environment, eventually leach out, and contaminate groundwater near waste disposal sites. Tetryl is an explosive that has been in use, largely for military purposes, since 1906. Wastewaters and soil at the original production sites and other plants devoted to munitions assembly, contain large quantities of these compounds (Walsh and Jenkins, 1992).

Toxicity data on these compounds are limited. The oral LD50 of DNB, TNB and tetryl were 59 mg/kg, 284 mg/kg and greater than 5 g/kg, respectively, in rats for combined sexes. TNB and tetryl were not toxic at 2 g/kg when applied to rabbit skin for 24 hours. However, the dermal LD50 of DNB was 1.99 g/kg for combined sexes of rabbits. None of these compounds produced skin irritation but positive (DNB) and severe (TNB, tetryl) eye irritation potentials in rabbits were noted. The sensitization tests showed that DNB and tetryl are not skin sensitizers while TNB caused mild allergic reaction in guinea pigs (Fitzgerald et. al., 1992 a,b,c). Some of the toxicological effects of DNB are: formation of methemoglobin, testicular degeneration and reproductive failure, weight loss and anemia in hamsters, rats and mice. Neurological and hematological disorders have also been reported in dogs. DNB is toxic to humans; the estimated lethal dose range is 5-50 mg/kg. It is readily absorbed through the skin (Von Burg, 1989). Tetryl was observed to be a powerful skin sensitizer in ammunition plant Dermatitis, liver atrophy, spleen effects, headaches, weight loss and respiratory irritation were reported following tetryl exposure (U.S. EPA, 1990). Atmospheric concentration of 1.5 mg/m<sup>3</sup> or below did not produce systemic poisoning in persons working with tetryl. DNB, TNB and tetryl have been shown to be genotoxic in the Salmonella mutagenesis assay (McGregor et. al., 1989). TNB and DNB have been shown to form adducts of blood proteins and tissue DNA in rats (Reddy et. al.; 1991, 1995).

# Objective of the Study

This study was conducted in order to evaluate the toxicity of DNB when administered in the diet for 90 days.

#### MATERIALS AND METHODS

## Test Material Preparation

1,3-Dinitrobenzene powder (CAS #99-65-0) was prepared by Fluka Chemical Corp. (Ronkonkoma, New York). The purity (99.15%) was confirmed by the U.S. EPA, Cincinnati. Certified powdered Purina Laboratory Chow 5002 was purchased (Ralston-Purina Co., St. Louis, MO) and stored at 4°C until used. DNB diets were prepared weekly. First, 45 mg of DNB was added to 25 g of powdered diet in a mortar and thoroughly ground with a pestle. Afterwards, the remaining diet 1475 g was added and mixed for 120 minutes in a mechanical mixer (Kitchen Aid, St. Joseph, MI)) for uniform distribution of DNB in the diet. This was verified by determining the DNB concentration in the diet, taken from each of the 1 kg mixtures, by quantitative analysis done by HPLC. The premixed diet (30 mg/kg) was further diluted with fresh powdered diet to obtain the desired DNB concentration in the lower dose groups. The diet feeders were refilled twice a week and changed weekly.

Analyses of the DNB-feed mixtures were carried out on acetone extracts of the mixtures, utilizing a Waters 600E chromatography system (Waters, Milford, MA), equipped with a 490E programmable multiwavelength detector, operating at 230 nm. The entire chromatography system was interfaced with a Berthold HPLC computer program, Version 1.65 (Berthold, Nashua, NH). The DNB was eluted from a Zorbax C-8 column (9.4 mm x 25 cm) (MAC-DOD Analytical, Chadds Ford, PA) with a watermethanol gradient, at a flow rate of 3 ml/min. The gradient had an initial condition of 20% methanol which was increased in a linear fashion from 20% to 50% in 15 minutes and then to 65% in 25 minutes, and finally to 100% in 10 minutes. The column was washed for an additional 5 minutes and brought back to 20% methanol by reverse gradient and equilibrated for an additional 10 minutes at initial conditions before the next sample was injected. Working standards were prepared in Burdick and Jackson HPLC grade high purity methanol (Baxter, Obetz, OH). Analytical data of these mixtures is present in Appendix I.

#### Animals and Maintenance

Male and female Fischer 344 rats, confirmed free of viral antibodies, bacteria and parasites, were obtained from Charles River Laboratories, Kingston, New York. The animals, 6 weeks old and weighing approximately 120-125 g when delivered, were held for 2 weeks in quarantine prior to initiation of treatment. The animals were housed in a temperature (20-22°C) and humidity (40-60%) controlled room on a 12:12 hour light:dark cycle. For the study, they were housed individually in polycarbonate cages and water was administered ad libitum. Animal identification was done using electronic implants (Bio Medic, Maywood, NJ) with the rats assigned to control and treatment groups according to a computer-generated set of random numbers. The weight variation of the animals of each sex used did not exceed ± 2 s.d. of the mean weight at the time of delivery. The cages were identified with a color-coded identification card indicating the animal and treatment group. All aspects of the study were conducted in compliance with the guidelines of the American Association for Accreditation of Laboratory Animal Care.

All rats were observed twice daily for physiological and behavioral responses as well as for mortality or morbidity. Food and water consumption were recorded twice weekly. Body weights were taken prior to the start of the study, once weekly during the study and at the final sacrifice.

#### Experiment Design

| Group | No. of Animals | Sex | Diet Concentration (mg DNB/kg diet) |
|-------|----------------|-----|-------------------------------------|
| 1     | 15             | F   | 30                                  |
| 2     | 15             | F   | 6                                   |
| 3     | 15             | F   | 1 .                                 |
| 4     | 15             | F   | 0 .                                 |
| 5     | 15             | M   | 30                                  |
| 6     | 15             | M   | 6                                   |
| 7     | 15             | M   | 1                                   |
| 8     | 15             | . M | 0                                   |

#### Hematology and Clinical Chemistry

Hematology and clinical chemistry analyses were carried out at 45 days (5 rats/group) and at 90 days (10 rats/group).

Hematology parameters were assessed using a Serono-Baker Hematology Analyzer, Model 9000. Total red and white blood cell counts, platelet count, reticulocyte count, differential leukocyte count, hemoglobin and packed cell volume were measured and computed. Methemoglobin samples were analyzed on a IL 482 Co-Oximeter. Heinz bodies were determined using the crystal violet procedure (Lee et. al., 1993) with microscopic examination for positive cells (>5 Heinz bodies).

Clinical chemistry was performed using a COBAS Fara II centrifugal analyzer (Roche, Nutley, NJ) with a non-selective electrode (ISE) module. Clinical chemistry analytes included sodium, potassium, total protein, albumin, calcium, phosphorus, total bilirubin, blood urea nitrogen, creatinine, alanine aminotransferase, cholesterol, triglycerides, aspartate aminotransferase, glucose and alkaline phosphatase.

#### Statistical Evaluation

Males and females were considered separately in all statistical analyses. A one-factor (dose) analysis of variance (ANOVA) was used to analyze normally distributed measures: body weights, organ weights, organ weight ratios, food and water consumption, hematology and clinical chemistry. When a treatment effect was noted (p  $\leq$ 0.05, F-test) the difference between the control and the treatment groups was probed using a multiple comparison procedure (Dunnett's t-test).

#### Necropsy and Histopathology

Prior to necropsy, the animals were anesthetized with pentobarbital (60 mg/kg b.w., i. p.) and blood samples were collected via cardiac puncture after the body weight was recorded. Following euthanasia via exsanguination, all external surfaces, orifices, external surface of the brain, cervical tissues, all organs, and the thoracic, abdominal and pelvic cavities were examined for gross lesions.

During necropsy the following tissues were weighed: brain, liver, spleen, kidneys, adrenals, lungs, thymus, testes w/epididymides, ovaries, and heart.

The following tissues were harvested from each animal and preserved in 10% neutral buffered formalin:

skin mandibular and mesenteric lymph nodes mammary glands thigh muscle sciatic nerve sternum with marrow femur with marrow thymus trachea lunas with bronchi heart and aorta thyroid parathyroids esophagus stomach duodenum jejunum tonque salivary gland ileum

harderian gland

colon
cecum
rectum
liver
pancreas
spleen
kidneys
adrenals
urinary bladder
seminal vesicles
prostate
testes, including epididymides
ovaries
uterus
nasal cavity with turbinates

pituitary preputial or clitoral glands

Zymbal's gland thoracic spinal cord

eves

brain

Subsequently, these tissues were trimmed, processed and embedded in paraffin. Blocks were sectioned at  $5\mu$  and slides were prepared and stained with hematoxylin and eosin. All tissues were examined in the high dose and control groups of both sexes. The spleen of both sexes and the testes and kidneys of males were identified as target organs and examined in the appropriate groups.

The inflammatory and degenerative lesions were graded according to severity using a scale of one to four (minimal, mild, moderate or marked). Data were tabulated according to individual animal and summarized by group. In addition, the gross observations and microscopic diagnoses were correlated for each animal. Labcat histopathology software was used for data management.

## Specimen, Raw data, and Final Report Storage

All tissue specimens, blocks and slides, raw data and final report will be placed in the U.S. EPA storage facility.

#### RESULTS

#### Food and Water Consumption

Food and water consumption data are listed in Table 1, while individual data are presented in Appendix A. There were no significant differences amongst groups for either food or water consumption.

Using the food consumption data, the average daily DNB dose levels received by group (see Experimental Design) are presented in Table 2. The average daily DNB doses consumed (mg/kg b.w.) were, 0.07, 0.39 and 1.93 for females and 0.06, 0.35 and 1.73 for males.

#### Body Weights, Organ Weights and Weight Ratios

The mean group values for body weights are listed in Table 3, while mean group organ weights (heart, brain, spleen, adrenals, thymus, ovaries/testes, kidneys, lungs and liver) are given in Table 4. Mean group values for organ to body weight ratios and terminal body weights are present in Table 5. Individual body weights are found in Appendix B with individual organ weights present in Appendix C.

No significant changes from control terminal body weights were noted in any of the treated groups.

Organ weights as a percent of the total body weight were significantly (p  $\leq$  0.05) different from controls for the following organs:

Spleen - The 30 mg DNB dose group of both sexes had increased values.

Testes - The male 30 mg DNB dose group had a decreased value.

# <u>Hematology</u>

Hematology analyses performed were total white blood cell count (WBC), platelet count, red blood count (RBC), methemoglobin, hemoglobin (HGB), hematocrit (HCT), reticulocytes, Heinz bodies and differential leukocyte count. Group data for 45 and 90 days are summarized in Tables 6-9. Individual data are listed in Appendix D.

#### 1. WBC and Differential:

There were no significant differences in total white cell count or differentials amongst the groups in either sex at 45 or 90 days.

#### 2. RBC:

A significant decrease (p  $\leq$  0.05) in red blood cell count was present in both sexes receiving 30 mg DNB diet at 45 and 90 days.

#### 3. Hemoglobin:

A significant decrease (p  $\leq$  0.05) was noted in hemoglobin levels in both sexes in the 30 mg DNB dose group at both 45 days and 90 days. Hemoglobin was also decreased in the 6 mg DNB male group at 90 days.

#### 4. Hematocrit:

A significant decrease (p  $\leq$  0.05) was present in both sexes in the 30 mg DNB dose group at 45 and 90 days.

#### Platelets:

There were no significant changes in total platelets in any treatment group at 45 days but at 90 days the 30 mg DNB female group was significantly increased.

#### 6. Reticulocytes:

A significant increase (p  $\leq$  0.05) was noted in both sexes in the 30 mg DNB dose group at 45 and 90 days. A significant increase was also noted in the male 6 mg DNB dose group at 45 days.

# 7. Methemoglobin:

A significant increase (p  $\leq$  0.05) was present in both sexes receiving 30 and 6 mg DNB diet at 45 and 90 days except for males in the 6 mg dose group at 45 days.

#### 8. Heinz Bodies:

Heinz bodies were not evident in any treatment group.

# Clinical Chemistry

The mean group values for each analyte are compiled in Tables 10-13. Individual data are present in Appendix E.

#### 1. Total Protein:

There were no significant differences amongst the groups at either 45 or 90 days except for a slight increase in the male 6 mg DNB dose group at 45 days.

#### 2. Albumin:

There were no significant differences amongst the groups at either 45 or 90 days except for a slight increase in the male 6 mg DNB dose group at 45 days.

#### 3. Calcium:

A significant increase (p $\le$ 0.05) was present in females receiving 30 mg DNB diet for 45 days while a decrease was noted in males receiving 30 mg DNB for 90 days.

#### 4. Total Bilirubin:

There were no significant differences amongst the groups in either sex at 45 or 90 days.

#### 5. Blood Urea Nitrogen (BUN):

A significant increase (p≤0.05) was noted in males receiving 6 and 1 mg DNB diet for 45 days while a decrease was evident in males receiving 30 and 6 mg DNB for 90 days.

#### 6. Creatinine:

A significant increase (p≤0.05) was present in males receiving 6 mg DNB diet for 45 days.

#### 7. Aspartate Aminotransferase (AST):

There were no significant differences amongst the groups in either sex at 45 or 90 days.

## 8. Alanine Aminotransferase (ALT):

There were no significant differences amongst the groups in either sex at 45 or 90 days.

# 9. Alkaline Phosphatase (ALK Phos):

A significant decrease (p≤0.05) was noted in males receiving 30 mg DNB diet for 90 days.

#### 10. Sodium:

There were no significant differences amongst the groups in either sex at 45 or 90 days.

#### 11. Potassium:

There were no significant differences amongst the groups in either sex at 45 or 90 days.

#### 12. Glucose:

A significant increase ( $p \le 0.05$ ) was noted in females receiving 1 mg DNB diet for 45 days.

#### 13. Phosphorus:

There were no significant differences amongst the groups in either sex at 45 or 90 days.

#### 14. Cholesterol:

A significant decrease (p≤0.05) was noted in females receiving 1 mg DNB diet for 45 days.

#### 15. Triglycerides:

There were no significant differences amongst the groups in either sex at 45 or 90 days.

#### Clinical Observations

Clinical observations are listed in Appendix F. There were no clinical observations that were meaningful.

# Ophthalmology Data (Appendix G)

All animals used in this study were affected with mild corneal dystrophy prior to the initiation of the study. Corneal dystrophy is a common finding in Fischer 344 rats of both sexes. Progression of the corneal dystrophy was not observed to occur and the dystrophy did not interfere with ophthalmic examination in this study. Conjunctivitis was observed in a single animal and is unassociated with treatment. There was no treatment-related ophthalmic effect observed in the animals on this study.

# **Mortality**

There were no early deaths in any of the groups.

# Gross Pathology

Treatment related gross changes noted at the terminal sacrifice were confined to the male 30 mg DNB dose group. This change was a prominent decrease in testicular size.

#### Histopathology (Appendix H)

All tissues were histopathologically examined in control and high dose animals of both sexes while the spleen, testes and kidneys were examined in all the appropriate remaining dose groups.

Significant changes were confined to the high dose (30 mg DNB/kg diet) group of both sexes involving the spleen and kidneys while testicular changes were noted in high dose males. The spleen was characterized by a minimal to mild enythroid cell hyperplasia and pigment deposition (hemosiderin). Only the spleen was examined in all the animals even though this same compensatory change can be noted in multiple organs. Regenerative anemia, as noted by the hematology results was the probable initiating factor for this response. The kidneys exhibited an increased deposition of cytoplasmic droplets in renal cortical tubular epithelial cells. These droplets were morphologically similar to the hyaline droplets noted in the 14 day DNB study except for a diminished intensity of eosinophilic staining in males while those noted in females were yellow-brown in color. The severity of this change was minimal to mild in the high dose groups only. The droplets stained positive with Mallory's Heidenhain protein stain. In addition to the deposition of hyaline droplets, the presence of early chronic progressive nephropathy was evident in both treated as well as control male rats. This change was characterized by an increased incidence of tubular degeneration and regeneration as well as mineralized foci.

The testes were characterized by severe seminiferous tubular degeneration. The affected tubules were lined by fewer spermatogenic cells and contained a reduced number of mature spermatides. Cell debris and some multinucleated cells were also present in the tubules as well as in the ducts of the epididymis. The diameter of the affected tubules was decreased with the interstitium being more condensed and prominent. The remaining diagnoses were considered spontaneous since their incidence levels were significantly low.

#### SUMMARY

The administration to Fischer 344 rats of 1,3-dinitrobenzene at various doses in the diet for ninety days resulted in the following significant findings:

- 1. Relative and absolute spleen weights were increased in both sexes in the 30 mg DNB dose groups while testicular weights were decreased in the male 30 mg group.
- 2. A significant decrease in red blood cell count, hemoglobin and hematocrit levels were apparent in both sexes receiving 30 mg DNB diet while reticulocyte levels were increased in these same groups. Methemoglobin levels were increased in both sexes receiving 30 and 6 mg DNB diet.
- 3. Microscopic examination revealed significant changes in the testes (seminiferous tubular degeneration) in males, spleen (erythroid cell hyperplasia) and kidneys (cytoplasmic droplet deposition) of male and female animals receiving 30 mg DNB/kg diet.

4. A LOAEL of 0.35 mg DNB/kg b.w./day based on hematological effects and a NOAEL of 0.060 mg DNB/kg b.w./day has been established.

#### REFERENCES

Spanggord, R.J., T. Mill, T.W. Chou, W.R. Mabey, J.H. Smith, and S. Lee 1980. Environmental fate studies on certain munitions wastewater constituents. Final report, Phase I. Literature review. Project No. LSU-7934. Contract No. DAMD 17-78-C8081. SRI International. Frederick, MD: U.S. Army Medical Research and Development Command, Fort Detrick.

Fitzgerald, G.B., Austin, A., Desai, L.S. and Reddy, G. (1992a). Acute Toxicological Evaluation of N-Methyl-N, 2,4,6-Tetranitroaniline. J. Amer. Coll., Toxicol. Acute Toxicity Data: Part B. 1, 167-168.

Fitzgerald, G.B., DiGiulio, N., Desai, L.S. and Reddy, G. (1992b). Acute Toxicological Evaluation of 1,3-Dinitrobenzene. J. Amer. Coll., Toxicol. Acute Toxicity Data: Part B. 1, 168-169.

Lee, R.G., Bithell, T.C., and Foerster, J. (1993). Wintrobe's Clinical Hematology, p.1048.

Fitzgerald, G. B., DiGiulio, N., Desai, L. S. and Reddy, G. (1992c). Acute Toxicological Evaluation of 1,3,5-Trinitrobenzene. J. Amer. Coll., Toxicol. Acute Toxicity Data: Part B. 1, 169-170.

McGregor, D.B., Riach, C.G., Hastwell, R.M. and Dacre, J.C. (1980). Genotoxic Activity in Microorganisms of Tetryl, 1,3-Dinitrobenzene and 1,3,5-Trinitrobenzene. Environ. Mut. 2, 531-541.

Reddy, T.V., Wan, L., Lin, E.L.C., Daniel, F.B. and Reddy, G. (1991). Formation and Persistence of 1,3,5-Trinitrobenzene Adducts with Blood Proteins and Tissue DNA. Toxicologist, 11, 131.

Reddy, T.V., Daniel, F.B., Weichman, B.E., Wang, H. and Reddy, G. (1995). The Formation and Persistence of 1,3-Dinitrobenzene Adducts with Rat Blood Proteins and Tissue DNA. Inter. Congress of Toxicol., Abstract C-P-3.

U.S. EPA. (1990). Health and Environmental Effects Document for Trinitrophenylmethylnitramine. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ECAO-CIN-GO91.

Von Burg, R. (1989). Toxicology Update: Dinitrobenzene. J. Appl. Toxicol. 9, 199-202.

Walsh, M.E. and Jenkins, T.F. (1992). Identification of TNT Transformation Products in Soil. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Special Report 92-16.

Table 1: Food and Water Consumption

| Dose             | Food             | Water             |
|------------------|------------------|-------------------|
| (mg DNB/kg diet) | (g/kg b.w./day)  | (g/kg b.w./day)   |
|                  | Fem              | ales              |
| 30               | 65.45 ± 0.68     | 103.79 ± 2.88     |
| 6                | $65.27 \pm 0.56$ | $102.82 \pm 3.68$ |
| 1                | $66.46 \pm 0.76$ | $95.03 \pm 1.92$  |
| 0                | $66.29 \pm 0.66$ | 102.42 ± 3.33     |
|                  | Ma               | les               |
| 30               | 58.51 ± 0.25     | 72.50 ± 1.32      |
| 6                | $59.29 \pm 0.34$ | 77.22 ± 1.17      |
| 1                | $59.40 \pm 0.31$ | 76.12 ± 1.14      |
| 0                | $59.68 \pm 0.55$ | 76.71 ± 0.88      |

Table 2: Calculated Daily DNB Consumption

| Dose             | Calculated Dose  |                 |  |  |
|------------------|------------------|-----------------|--|--|
| (mg DNB/kg diet) | (mg DNB/kg b.w.) |                 |  |  |
|                  | Females          | Males           |  |  |
| 30               | 1.93 ± 0.02      | 1.73 ± 0.01     |  |  |
| 6                | $0.39 \pm 0.00$  | $0.35 \pm 0.00$ |  |  |
| 1                | $0.07 \pm 0.00$  | $0.06 \pm 0.00$ |  |  |
| 0                | $0.00 \pm 0.00$  | $0.00 \pm 0.00$ |  |  |

Table 3: Body Weights (grams)

|       |             | Dose Groups   |             |            |
|-------|-------------|---------------|-------------|------------|
|       | •           | mg DNB/kg die |             | ^          |
| Weeks | 30          | 6             | 1           | 0          |
|       |             | Females       |             |            |
| 1     | 140.24±1.16 | 141.34±1.64   | 141.15±1.83 | 139.71±0.9 |
| 2     | 147.27±1.79 | 149.18±1.74   | 150.06±2.28 | 147.51±0.8 |
| 3     | 155.74±2.10 | 156.12±1.86   | 157.57±2.52 | 156.59±0.9 |
| 4     | 159.51±2.51 | 159.93±1.79   | 160.57±2.58 | 158.90±1.2 |
| 5     | 164.19±2.32 | 164.54±2.23   | 166.04±2.48 | 163.93±1.3 |
| 6     | 169.59±2.89 | 168.70±2.27   | 172.51±2.97 | 169.03±1.6 |
| 7     | 173.88±2.87 | 175.38±2.51   | 177.10±3.04 | 173.71±1.8 |
| 8     | 176.80±3.13 | 177.82±2.74   | 179.67±3.25 | 174.75±2.0 |
| 9     | 177.45±3.11 | 176.50±2.56   | 180.23±3.29 | 176.00±1.8 |
| 10    | 179.49±3.38 | 179.57±3.00   | 183.22±3.59 | 175.80±1.8 |
| 11    | 180.75±3.26 | 181.83±2.78   | 184.81±3.44 | 178.81±2.2 |
| 12    | 186.48±3.59 | 187.50±3.28   | 189.15±3.51 | 185.69±2.5 |
| 13    | 182.64±3.41 | 183.34±2.86   | 187.08±3.54 | 181.88±2.5 |
|       |             | Males         |             |            |
| 1     | 190.63±2.77 | 194.88±2.66   | 191.35±1.71 | 192.90±2.3 |
| 2     | 211.80±3.56 | 216.82±2.83   | 211.91±1.78 | 216.34±2.4 |
| 3     | 234.12±4.30 | 241.58±2.86   | 236.41±1.83 | 238.81±2.5 |
| 4     | 247.30±4.86 | 258.41±3.52   | 252.49±2.34 | 256.49±2.6 |
| 5     | 260.55±5.47 | 274.97±3.95   | 267.70±2.76 | 270.95±3.2 |
| 6     | 273.20±6.02 | 292.58±4.18   | 281.71±3.43 | 287.17±3.8 |
| 7     | 287.54±7.10 | 307.91±4.90   | 295.59±4.22 | 301.13±4.3 |
| 8     | 293.22±6.53 | 313.06±5.74   | 298.37±3.72 | 305.01±4.4 |
| 9     | 296.02±7.00 | 316.19±5.64   | 301.87±4.28 | 306.82±5.9 |
| 10    | 300.94±7.31 | 322.98±6.30   | 310.30±3.83 | 313.28±6.0 |
| 11    | 306.14±8.09 | 329.92±6.62   | 317.46±5.00 | 317.89±7.2 |
| 12    | 316.51±7.94 | 338.31±7.22   | 326.65±4.69 | 327.56±8.4 |
| 13    | 315.58±8.28 | 337.12±7.48   | 326.16±4.80 | 324.90±8.4 |

Table 4: Organ Weights (grams)

|          | Dose Groups (mg DNB/kg diet) |             |           |           |  |
|----------|------------------------------|-------------|-----------|-----------|--|
|          | 30                           | 6           | 1         | 0         |  |
|          |                              | Fema        | les       |           |  |
| Kidneys  | 1.23±0.03                    | 1.18±0.02   | 1.18±0.02 | 1.17±0.02 |  |
| Liver    | 4.66±0.10                    | 4.58±0.08   | 4.59±0.11 | 4.53±0.10 |  |
| Brain    | 1.76±0.02                    | 1.78±0.01   | 1.75±0.01 | 1.74±0.01 |  |
| Spleen   | 0.52±0.02 *                  | 0.43±0.01   | 0.42±0.01 | 0.45±0.01 |  |
| Adrenals | 0.06±0.00                    | 0.06±0.00   | 0.06±0.00 | 0.07±0.00 |  |
| Thymus   | 0.20±0.01                    | 0.21±0.01   | 0.20±0.01 | 0.20±0.01 |  |
| Lung     | 0.93±0.03                    | 0.96±0.03   | 0.92±0.02 | 0.97±0.03 |  |
| Ovaries  | 0.12±0.01                    | 0.14±0.01   | 0.14±0.01 | 0.14±0.01 |  |
| Heart    | 0.68±0.02                    | 0.64±0.02   | 0.67±0.02 | 0.64±0.01 |  |
|          |                              |             |           |           |  |
|          |                              | Male        | s         |           |  |
| Kidneys  | 2.03±0.06                    | 2.25±0.06   | 2.16±0.05 | 2.10±0.06 |  |
| Liver    | 8.43±0.36                    | 9.00±0.26   | 8.84±0.24 | 8.74±0.35 |  |
| Brain    | 1.87±0.03                    | 1.87±0.02   | 1.92±0.01 | 1.92±0.01 |  |
| Spleen   | 0.73±0.02 *                  | 0.66±0.02   | 0.60±0.01 | 0.62±0.02 |  |
| Adrenals | 0.05±0.00                    | 0.07±0.01   | 0.05±0.01 | 0.06±0.00 |  |
| Thymus   | 0.26±0.02                    | 0.28±0.03   | 0.29±0.02 | 0.25±0.01 |  |
| Testes   | 2.90±0.22 *                  | 5.84±0.33 * | 4.82±0.27 | 4.73±0.34 |  |
| Heart    | 0.92±0.03                    | 1.05±0.03   | 0.98±0.02 | 0.96±0.03 |  |
| Lung     | 1.29±0.03                    | 1.48±0.04   | 1.30±0.04 | 1.37±0.06 |  |

<sup>\*</sup> Significantly different from the control group (p $\leq$ 0.05) by Dunnett's test.

Table 5: Organ-to-Body Weight Ratios

|                | Dose Groups (mg DNB/kg diet) |             |             |             |
|----------------|------------------------------|-------------|-------------|-------------|
| •              | 30                           | 6           | 1           | 0           |
|                |                              | Fema        | ales        |             |
| Body Weight(g) | 176.33±3.30                  | 174.47±2.69 | 177.43±3.18 | 172.48±2.23 |
| Kidneys (%)    | 0.70±0.01                    | 0.67±0.01   | 0.67±0.01   | 0.68±0.01   |
| Lung (%)       | 0.53±0.02                    | 0.55±0.02   | 0.52±0.01   | 0.56±0.01   |
| Liver (%)      | 2.65±0.04                    | 2.63±0.03   | 2.59±0.05   | 2.63±0.04   |
| Heart (%)      | 0.39±0.01                    | 0.37±0.01   | 0.38±0.01   | 0.37±0.01   |
| Brain (%)      | 1.00±0.02                    | 1.02±0.02   | 0.99±0.01   | 1.01±0.01   |
| Spleen (%)     | 0.30±0.01 *                  | 0.25±0.00   | 0.24±0.00   | 0.26±0.01   |
| Adrenals (%)   | 0.03±0.00                    | 0.04±0.00   | 0.03±0.00   | 0.04±0.00   |
| Thymus (%)     | 0.11±0.01                    | 0.12±0.01   | 0.11±0.01   | 0.12±0.00   |
| Ovaries (%)    | 0.07±0.00                    | 0.08±0.00   | 0.08±0.01   | 0.08±0.01   |
|                |                              | Mal         | es          |             |
| Body Weight(g) | 302.73±8.12                  | 322.34±7.25 | 314.22±4.55 | 310.58±8.08 |
| Kidneys (%)    | 0.67±0.01                    | 0.70±0.01   | 0.69±0.01   | 0.68±0.01   |
| Lung (%)       | 0.43±0.01                    | 0.46±0.01   | 0.41±0.01   | 0.44±0.01   |
| Liver (%)      | 2.78±0.06                    | 2.79±0.03   | 2.81±0.04   | 2.81±0.05   |
| Heart (%)      | 0.30±0.00                    | 0.33±0.01   | 0.31±0.00   | 0.31±0.01   |
| Brain (%)      | 0.62±0.01                    | 0.58±0.01   | 0.61±0.01   | 0.62±0.01   |
| Spleen (%)     | 0.24±0.00 *                  | 0.21±0.00   | 0.19±0.00   | 0.20±0.01   |
| Adrenals (%)   | 0.02±0.00                    | 0.02±0.00   | 0.02±0.00   | 0.02±0.00   |
| Thymus (%)     | 0.09±0.01                    | 0.09±0.01   | 0.09±0.01   | 0.08±0.00   |
| Testes (%)     | 0.97±0.09 *                  | 1.81±0.09   | 1.54±0.09   | 1.51±0.08   |

<sup>\*</sup> Significantly different from the control group (p $\leq$  0.05) by Dunnett's test.

Table 6: Hematology Values/Females 45 Days

|                        |         | Groups (r | ng DNB/kg | diet)  |
|------------------------|---------|-----------|-----------|--------|
|                        | 30      | 6         | 1         | 0      |
| RBC                    | 7.38 *  | 8.06      | 7.92      | 8.10   |
| (x10 <sup>6</sup> /μl) | ±0.09   | ±0.17     | ±0.17     | ±0.20  |
| Hemoglobin             | 13.96 * | 15.06     | 14.78     | 15.06  |
| (g/dl)                 | ±0.15   | ±0.40     | ±0.33     | -±0.31 |
| Hematocrit             | 40.28 * | 42.34     | 41.68     | 42.42  |
| (%)                    | ±0.58   | ±1.25     | ±1.43     | ±0.99  |
| VBC                    | 3.90    | 3.46      | 3.04      | 3.14   |
| (x10 <sup>3</sup> /μl) | ±0.57   | ±0.57     | ±0.52     | ±0.45  |
| Platelets              | 814.00  | 777.80    | 779.80    | 759.00 |
| (x10 <sup>3</sup> /µl) | ±46.45  | ±11.95    | ±30.59    | ±44.03 |
| Neutrophilis           | 15.68   | 18.74     | 18.96     | 18.48  |
| (%)                    | ±4.34   | ±4.10     | ±5.43     | ±1.49  |
| ymphocytes (%)         | 80.56   | 78.28     | 77.32     | 77.90  |
|                        | ±5.42   | ±3.63     | ±5.41     | ±1.24  |
| MCV                    | 54.60 * | 52.54     | 52.66     | 52.36  |
| (cumicr)               | ±0.66   | ±0.50     | ±0.78     | ±0.44  |
| ИСН                    | 18.92 * | 18.68     | 18.68     | 18.58  |
| (picogm)               | ±0.08   | ±0.15     | ±0.11     | ±0.08  |
| ИСНС                   | 34.68 * | 35.56     | 35.44     | 35.48  |
| (g/dl)                 | ±0.35   | ±0.26     | ±0.59     | ±0.16  |
| Reticulocytes          | 4.60 *  | 2.56      | 2.34      | 2.14   |
| (%)                    | ±0.41   | ±0.13     | ±0.32     | ±0.50  |
| /letHb                 | 4.06 *  | 1.50 *    | 0.70      | 0.66   |
| (%)                    | ±0.59   | ±0.10     | ±0.32     | ±0.42  |

Mean ± Standard Deviation
\* Significantly different from the control group (P≤ 0.05) by the Dunnett's test.

Table 7: Hematology Values/Males 45 Days

|                        | Dose    | Groups (n | ng DNB/kg | diet)  |
|------------------------|---------|-----------|-----------|--------|
|                        | 30      | 6         | 1         | 0      |
| RBC                    | 8.24 *  | 8.95      | 8.94      | 8.98   |
| (x10 <sup>6</sup> /μl) | ±0.13   | ±0.22     | ±0.14     | ±0.11  |
| demoglobin             | 14.24 * | 15.08     | 15.22     | ±0.24  |
| (g/dl)                 | ±0.22   | ±0.43     | ±0.26     |        |
| Hematocrit             | 42.36 * | 44.44     | 44.44     | 44.32  |
| (%)                    | ±0.82   | ±1.12     | ±0.99     | ±0.43  |
| VBC                    | 4.50    | 4.44      | 4.04      | 4.12   |
| (x10 <sup>3</sup> /μl) | ±0.99   | ±0.96     | ±0.83     | ±0.90  |
| Platelets              | 701.40  | 751.00    | 777.60    | 761.40 |
| (x10 <sup>3</sup> /μL) | ±108.6  | ±64.82    | ±78.51    | ±22.59 |
| Neutrophilis           | 18.66   | 23.16     | 22.32     | 23.70  |
| (%)                    | ±1.95   | ±4.30     | ±2.37     | ±3.79  |
| ymphocytes             | 78.24   | 73.56     | 74.50     | 72.76  |
| (%)                    | ±2.18   | ±4.70     | ±2.65     | ±3.84  |
| MCV                    | 51.42   | 43.66     | 49.70     | 49.34  |
| (cumicr)               | ±0.38   | ±13.45    | ±0.63     | ±0.43  |
| MCH                    | 17.26 * | 16.86     | 17.04     | 16.98  |
| (picogm)               | ±0.05   | ±0.13     | ±0.21     | ±0.08  |
| MCHC                   | 33.58 * | 33.90     | 34.28     | 34.44  |
| (g/dl)                 | ±0.31   | ±0.33     | ±0.36     | ±0.38  |
| Reticulocytes          | 4.50 *  | 3.20*     | 2.82      | 2.50   |
| (%)                    | ±0.40   | ±0.25     | ±0.51     | ±0.19  |
| MetHb                  | 4.44 *  | 1.30      | 0.78      | 0.58   |
| (%)                    | ±1.00   | ±0.66     | ±0.42     | ±0.26  |

Mean ± Standard Deviation
\* Significantly different from the control group (P≤ 0.05) by the Dunnett's test.

Table 8: Hematology Values/Females 90 Days

|                        | Dose     | Groups (r | ng DNB/kg | diet)  |
|------------------------|----------|-----------|-----------|--------|
|                        | 30       | 6         | 1         | 0      |
| RBC                    | 7.33 *   | 7.81      | 8.02      | 7.91   |
| (x10 <sup>6</sup> /μl) | ±0.19    | ±0.19     | ±0.15     | ±0.17  |
| Hemoglobin             | 14.21 *  | 15.13     | 15.44     | 15.33  |
| (g/dl)                 | ±0.30    | ±0.29     | ±0.13     | ±0.35  |
| Hematocrit             | 39.61 *  | 40.88     | 41.96     | 41.45  |
| (%)                    | ±1.43    | ±1.11     | ±1.11     | ±0.72  |
| NBC                    | 3.72     | 3.03      | 3.03      | 3.47   |
| (x10 <sup>3</sup> /μl) | ±0.61    | ±0.73     | ±0.70     | ±0.67  |
| Platelets              | 697.40 * | 648.10    | 626.40    | 642.30 |
| (x10 <sup>3</sup> /μl) | ±26.79   | ±44.17    | ±40.84    | ±39.61 |
| Neutrophilis           | 17.29    | 19.87     | 20.62     | 19.41  |
| (%)                    | ±6.61    | ±5.22     | ±6.37     | ±4.27  |
| ymphocytes (%)         | 75.65    | 76.37     | 72.84     | 77.37  |
|                        | ±5.56    | ±5.98     | ±7.16     | ±4.80  |
| MCV                    | 54.03 *  | 52.31     | 52.27     | 52.36  |
| (cumicr)               | ±0.87    | ±0.31     | ±0.53     | ±0.70  |
| MCH                    | 19.40    | 19.37     | 19.33     | 19.36  |
| (picogm)               | ±0.19    | ±0.16     | ±0.32     | ±0.20  |
| MCHC                   | 35.79 *  | 36.97     | 36.98     | 36.96  |
| (g/dl)                 | ±0.68    | ±0.39     | ±0.94     | ±0.49  |
| Reticulocytes          | 3.56 *   | 1.92      | 1.83      | 1.74   |
| (%)                    | ±0.57    | ±0.15     | ±0.19     | ±0.35  |
| MetHb                  | 3.77 *   | 1.59*     | 1.11      | 0.72   |
| (%)                    | ±0.23    | ±0.27     | ±0.50     | ±0.40  |

Mean ± Standard Deviation
\* Significantly different from the control group (P≤ 0.05) by the Dunnett's test.

Table 9: Hematology Values/Males 90 Days

|                        | Dose    | Groups (m | g DNB/kg | diet)  |
|------------------------|---------|-----------|----------|--------|
|                        | 30      | 6         | 1        | 0      |
| RBC                    | 8.14 *  | 8.93      | 9.00     | 8.99   |
| (x10 <sup>6</sup> /μl) | ±0.16   | ±0.24     | ±0.26    | ±0.20  |
| Hemoglobin             | 14.48 * | 15.31 *   | 15.56    | 15.64  |
| (g/dl)                 | ±0.21   | ±0.32     | ±0.30    | ±0.25  |
| Hematocrit             | 41.25 * | 43.13     | 43.94    | 44.10  |
| (%)                    | ±0.80   | ±1.54     | ±1.11    | ±0.89  |
| WBC                    | 4.26    | 3.55      | 3.49     | 4.12   |
| (x10 <sup>3</sup> /μl) | ±1.13   | ±1.01     | ±0.56    | ±0.93  |
| Platelets              | 659.60  | 635.33    | 606.11   | 675.00 |
| (x10 <sup>3</sup> /μL) | ±46.47  | ±48.83    | ±48.84   | ±142.5 |
| Neutrophilis           | 19.94   | 20.53     | 21.03    | 20.88  |
| (%)                    | ±3.91   | ±3.97     | ±3.44    | ±3.03  |
| Lymphocytes            | 77.13   | 75.33     | 75.48    | 75.64  |
| (%)                    | ±4.07   | ±3.62     | ±3.92    | ±3.25  |
| MCV                    | 50.68 * | 48.31 *   | 48.81    | 49.06  |
| (cumicr)               | ±0.67   | ±0.64     | ±0.47    | ±0.67  |
| MCH                    | 17.79 * | 17.15     | 17.27    | 17.41  |
| (picogm)               | ±0.26   | ±0.21     | ±0.29    | ±0.26  |
| MCHC                   | 35.09   | 35.50     | 35.40    | 35.47  |
| (g/dl)                 | ±0.41   | ±0.73     | ±0.42    | ±0.53  |
| Reticulocytes (%)      | 3.15 *  | 1.95      | 1.73     | 1.73   |
|                        | ±0.50   | ±0.40     | ±0.15    | ±0.34  |
| MetHb                  | 4.11 *  | 1.46*     | 0.78     | 0.75   |
| (%)                    | ±0.45   | ±0.43     | ±0.35    | ±0.14  |

Mean ± Standard Deviation
\* Significantly different from the control group (P≤ 0.05) by the Dunnett's test.

Table 10: Clinical Chemistry Values/Females 45 Days

|                         |                 | Dose Groups (    | mg DNB/kg diet) |                   |
|-------------------------|-----------------|------------------|-----------------|-------------------|
|                         | 30              | 6                | 1               | 0                 |
| Glucose (mg/dl)         | 106.20 ± 8.93   | 117.60 ± 13.07   | 129.00 ± 22.99* | 102.60 ± 12.20    |
| BUN (mg/dl)             | 21.80 ± 2.59    | 22.80 ± 1.64     | 22.60 ± 2.30    | 20.00 ± 2.55      |
| Creatinine (mg/dl)      | $0.58 \pm 0.04$ | $0.54 \pm 0.05$  | $0.50 \pm 0.00$ | $0.56 \pm 0.05$   |
| ALK Phos. (U/L)         | 105.40 ± 11.24  | 114.80 ± 11.67   | 108.20 ± 7.22   | 105.00 ± 14.70    |
| AST (U/L)               | 156.60 ± 40.43  | 159.20 ± 47.61   | 138.60 ± 35.87  | 146.00 ± 23.38    |
| ALT (U/L)               | 56.40 ± 21.92   | 68.80 ± 25.05    | 56.00 ± 15.54   | 49.40 ± 17.01     |
| Potassium (mmol/L)      | $4.38 \pm 0.28$ | $4.36 \pm 0.32$  | $4.70 \pm 0.65$ | 4.32 ± 0.18       |
| Albumin (g/dl)          | $4.62 \pm 0.13$ | $4.62 \pm 0.08$  | $4.36 \pm 0.18$ | $4.46 \pm 0.13$   |
| Calcium (mg/dl)         | 10.18 ± 0.08*   | $9.98 \pm 0.13$  | $9.86 \pm 0.23$ | 9.92 ± 0.15       |
| Sodium (mmol/dl)        | 140.00 ± 0.71   | 140.80 ± 0.84    | 140.60 ± 0.89   | $140.80 \pm 0.45$ |
| Total Bilirubin (mg/dl) | $0.14 \pm 0.05$ | $0.16 \pm 0.09$  | $0.16 \pm 0.05$ | $0.16 \pm 0.05$   |
| Total Protein (g/dl)    | $6.02 \pm 0.13$ | $6.06 \pm 0.11$  | $5.74 \pm 0.19$ | $5.90 \pm 0.19$   |
| Cholesterol (mg/dl)     | 94.00 ± 3.39    | $90.80 \pm 4.60$ | 79.80 ± 2.86*   | 89.00 ± 5.24      |
| Phosphorus (mg/dl)      | $9.06 \pm 0.89$ | 7.86 ± 1.07      | 8.20 ± 1.31     | $8.60 \pm 0.86$   |
| Triglyceride (mg/dl)    | 33.80 ± 4.66    | 33.80 ± 3.96     | 28.00 ± 3.54    | 29.80 ± 3.56      |

<sup>\*</sup>Significantly different from the control group (p $\leq$ 0.05) by the Dunnett's test.

Table 11: Clinical Chemistry Values/Males 45 Days

|                         | ************************************** | Dose Groups (     | mg DNB/kg diet)   |                    |
|-------------------------|----------------------------------------|-------------------|-------------------|--------------------|
|                         | 30                                     | 6                 | 1                 | 0                  |
| Glucose (mg/dl)         | 168.20 ± 10.96                         | 177.80 ± 16.02    | 173.00 ± 10.27    | $159.80 \pm 18.70$ |
| BUN (mg/dl)             | 19.80 ± 1.10                           | 20.80 ± 1.64*     | 20.20 ± 1.30*     | $17.60 \pm 1.52$   |
| Creatinine (mg/dl)      | $0.56 \pm 0.05$                        | $0.58 \pm 0.04^*$ | $0.56 \pm 0.05$   | $0.50 \pm 0.00$    |
| ALK Phos. (U/L)         | 117.00 ± 8.86                          | 128.00 ± 7.84     | 129.20 ± 6.06     | 115.20 ± 8.90      |
| AST (U/L)               | 227.60 ± 126.94                        | 205.60 ± 92.62    | 157.80 ± 18.57    | 159.60 ± 30.93     |
| ALT (U/L)               | 147.40 ± 143.04                        | 126.20 ± 105.46   | 69.20 ± 10.83     | 81.00 ± 24.11      |
| Potassium (mmol/L)      | $4.72 \pm 0.13$                        | $5.08 \pm 0.33$   | $5.12 \pm 0.36$   | $5.12 \pm 0.23$    |
| Albumin (g/dl)          | 4.64 ± 0.11                            | 4.78 ± 0.08*      | $4.54 \pm 0.09$   | $4.50 \pm 0.07$    |
| Calcium (mg/dl)         | 10.36 ± 0.17                           | 10.52 ± 0.15      | $10.40 \pm 0.24$  | $10.40 \pm 0.10$   |
| Sodium (mmol/dl)        | $140.80 \pm 0.45$                      | 142.40 ± 5.41     | $140.20 \pm 0.84$ | $139.60 \pm 0.55$  |
| Total Bilirubin (mg/dl) | $0.10 \pm 0.00$                        | $0.12 \pm 0.04$   | $0.10 \pm 0.00$   | $0.10 \pm 0.00$    |
| Total Protein (g/dl)    | $6.32 \pm 0.13$                        | 6.56 ± 0.26*      | $6.18 \pm 0.24$   | $6.22 \pm 0.11$    |
| Cholesterol (mg/dl)     | 57.60 ± 5.94                           | 57.00 ± 3.46      | $53.20 \pm 4.02$  | $54.00 \pm 2.65$   |
| Phosphorus (mg/di)      | 9.36 ± 0.31                            | $9.42 \pm 0.52$   | $9.78 \pm 0.67$   | $9.68 \pm 0.31$    |
| Triglyceride (mg/dl)    | 81.60 ± 38.60                          | 105.80 ± 28.67    | 95.80 ± 28.27     | 75.20 ± 15.29      |

<sup>\*</sup>Significantly different from the control group (p≤0.05) by the Dunnett's test.

Table 12: Clinical Chemistry Values/Females 90 Days

|                         |                 | Dose Groups (   | mg DNB/kg diet) |                 |
|-------------------------|-----------------|-----------------|-----------------|-----------------|
|                         | 30              | 6               | 1               | 0               |
| Glucose (mg/dl)         | 111.00 ± 10.38  | 108.40 ± 9.37   | 115.10 ± 9.79   | 118.70 ± 12.37  |
| BUN (mg/dl)             | 19.40 ± 1.71    | 17.60 ± 1.65    | 17.90 ± 1.91    | 17.80 ± 1.81    |
| Creatinine (mg/dl)      | $0.58 \pm 0.08$ | $0.57 \pm 0.05$ | $0.60 \pm 0.05$ | $0.59 \pm 0.06$ |
| ALK Phos. (U/L)         | 80.00 ± 13.11   | 73.10 ± 17.65   | 78.50 ± 13.28   | 78.70 ± 9.92    |
| AST (U/L)               | 157.00 ± 26.89  | 165.00 ± 25.25  | 157.80 ± 34.42  | 149.90 ± 33.37  |
| ALT (U/L)               | 67.00 ± 16.04   | 64.00 ± 14.62   | 76.40 ± 31.10   | 65.40 ± 17.61   |
| Potassium (mmol/L)      | $4.18 \pm 0.38$ | 4.06 ± 0.28     | $4.27 \pm 0.31$ | 4.29 ± 0.39     |
| Albumin (g/dl)          | $4.51 \pm 0.23$ | $4.34 \pm 0.15$ | $4.43 \pm 0.30$ | $4.38 \pm 0.18$ |
| Calcium (mg/dl)         | $9.90 \pm 0.25$ | 9.85 ± 0.22     | $9.86 \pm 0.16$ | $9.83 \pm 0.14$ |
| Sodium (mmol/dl)        | 143.56 ± 1.13   | 143.40 ± 1.26   | 143.20 ± 0.79   | 143.10 ± 1.20   |
| Total Bilirubin (mg/dl) | $0.16 \pm 0.13$ | $0.11 \pm 0.03$ | $0.12 \pm 0.04$ | $0.10 \pm 0.00$ |
| Total Protein (g/dl)    | $6.30 \pm 0.36$ | 6.12 ± 0.20     | $6.25 \pm 0.42$ | $6.20 \pm 0.29$ |
| Cholesterol (mg/dl)     | 107.80 ± 20.24  | 108.00 ± 6.39   | 106.40 ± 9.35   | 102.80 ± 9.45   |
| Phosphorus (mg/dl)      | 8.70 ± 0.67     | 7.70 ± 1.23     | 7.71 ± 1.17     | 7.96 ± 1.10     |
| Triglyceride (mg/dl)    | 33.22 ± 8.44    | 35.60 ± 6.93    | 34.80 ± 6.97    | 31.10 ± 4.70    |

Table 13: Clinical Chemistry Values/Males 90 Days

|                         |                   | Dose Groups (I  | mg DNB/kg diet)    |                    |
|-------------------------|-------------------|-----------------|--------------------|--------------------|
|                         | 30                | 6               | 1                  | 0                  |
| Glucose (mg/dl)         | 164.60 ± 16.80    | 149.80 ± 11.13  | 154.10 ± 15.01     | 155.20 ± 19.99     |
| BUN (mg/dl)             | 18.30 ± 2.16*     | 18.90 ± 2.92*   | $20.90 \pm 2.08$   | $21.70 \pm 2.50$   |
| Creatinine (mg/dl)      | $0.62 \pm 0.04$   | $0.61 \pm 0.06$ | $0.60 \pm 0.05$    | $0.62 \pm 0.04$    |
| ALK Phos. (U/L)         | 86.70 ± 11.67*    | 90.20 ± 14.47   | 104.20 ± 11.47     | $102.40 \pm 13.18$ |
| AST (U/L)               | 214.90 ± 78.29    | 218.90 ± 51.60  | 220.10 ± 27.41     | $235.50 \pm 49.49$ |
| ALT (U/L)               | 116.20 ± 48.81    | 106.80 ± 30.43  | $107.80 \pm 23.67$ | 126.10 ± 45.11     |
| Potassium (mmol/L)      | $4.43 \pm 0.41$   | $4.61 \pm 0.33$ | $4.41 \pm 0.25$    | $4.58 \pm 0.37$    |
| Albumin (g/dl)          | $4.52 \pm 0.18$   | $4.46 \pm 0.14$ | $4.59 \pm 0.14$    | $4.58 \pm 0.14$    |
| Calcium (mg/dl)         | 10.01 ± 0.15*     | 10.20 ± 0.19    | $10.22 \pm 0.20$   | $10.22 \pm 0.20$   |
| Sodium (mmol/dl)        | $143.00 \pm 0.82$ | 143.10 ± 1.10   | 143.00 ± 0.82      | $143.80 \pm 0.92$  |
| Total Bilirubin (mg/dl) | $0.10 \pm 0.00$   | $0.10 \pm 0.00$ | $0.10 \pm 0.00$    | $0.09 \pm 0.03$    |
| Total Protein (g/dl)    | $6.32 \pm 0.22$   | 6.48 ± 0.20     | $6.56 \pm 0.22$    | $6.55 \pm 0.20$    |
| Cholesterol (mg/dl)     | 73.60 ± 8.02      | 79.60 ± 8.73    | 76.20 ± 10.14      | 81.60 ± 12.19      |
| Phosphorus (mg/dl)      | 8.26 ± 0.56       | $8.33 \pm 0.54$ | $7.97 \pm 0.47$    | 8.34 ± 0.51        |
| Triglyceride (mg/dl)    | 59.80 ± 29.36     | 69.20 ± 27.03   | 88.10 ± 34.17      | 79.50 ± 21.57      |

<sup>\*</sup>Significantly different from the control group (p≤0.05) by the Dunnett's test.

# APPENDIX A

# FOOD AND WATER CONSUMPTION

## Females

|                  |        |        | Food (g/wk) |        |         |         |         | Water (g/wk) |               |        |        |  |
|------------------|--------|--------|-------------|--------|---------|---------|---------|--------------|---------------|--------|--------|--|
| Dose Group       | Animal | Mook   | Mook        | Mook O | Manla A | Mark 5  | 1411-4  | W 10         |               |        |        |  |
| (mg DNB/kg diet) | Number | week i | vveek 2     | week 3 | week 4  | vveek 5 | vveek 1 | Week 2       | Week 3        | Week 4 | Week 5 |  |
| 30               | 1      | 78.5   | 79.6        | 84.6   | 88.1    | 84.9    | 1,19.4  | 124.1        | 115.4         | 130.7  | 134.9  |  |
|                  | 2      | 71.3   | 120.5       | 122.2  | 104.7   | 73.7    | 111.0   | 138.3        | 151.2         | 212.2  | 181.5  |  |
|                  | 3      | 81.7   | 89.5        | 119.5  | 98.2    | 93.5    | 126.9   | 171.3        | 160.4         | 225.7  | 171.5  |  |
|                  | 4      | 70.9   | 93.7        | 99.1   | 135.8   | 98.6    | 115.4   | 181.0        | 176.0         | 251.2  | 187.6  |  |
|                  | 5      | 74.1   | 70.3        | 99.5   | 89.6    | 95.1    | 127.2   | 150.5        | 154. <b>1</b> | 224.8  | 181.5  |  |
|                  | 6      | 71.3   | 30.6        | 68.5   | 110.8   | 101.5   | 117.0   | 282.8        | 230.6         | 235.2  | 188.9  |  |
|                  | 7      | 79.0   | 112.9       | 99.4   | 109.3   | 92.4    | 125.7   | 145.4        | 142.3         | 205.1  | 166.4  |  |
|                  | 8      | 77.5   | 88.1        | 121.9  | 100.6   | 111.1   | 126.0   | 163.0        | 153.3         | 217.5  | 188.2  |  |
|                  | 9      | 73.7   | 91.8        | 120.0  | 74.6    | 113.3   | 126.4   | 185.6        | 194.4         | 260.2  | 210.1  |  |
|                  | 10     | 75.6   | 92.1        | 80.8   | 76.6    | 89.3    | 114.7   | 190.1        | 191.4         | 240.1  | 186.4  |  |
|                  |        |        |             |        |         |         |         |              |               |        |        |  |
| 6                | 11     | 82.3   | 140.5       | 111.7  | 90.0    | 115.4   | 115.3   | 192.8        | 202.4         | 252.1  | 216.3  |  |
|                  | 12     | 83.8   | 112.5       | 120.2  | 113.3   | 105.4   | 116.6   | 145.1        | 182.9         | 243.7  | 184.9  |  |
|                  | 13     | 76.1   | 97.1        | 100.8  | 74.7    | 88.5    | 125.6   | 143.1        | 143.8         | 229.0  | 212.1  |  |
|                  | 14     | 80.9   | 111.6       | 122.2  | 100.2   | 93.0    | 122.4   | 216.1        | 242.9         | 262.4  | 232.3  |  |
|                  | 15     | 69.9   | 104.2       | 100.8  | 83.0    | 119.4   | 116.5   | 168.5        | 186.6         | 227.1  | 192.8  |  |
|                  | 16     | 73.3   | 126.9       | 79.6   | 79.6    | 98.1    | 95.1    | 172.7        | 173.0         | 212.9  | 177.1  |  |
|                  | 17     | 76.9   | 93.3        | 89.0   | 137.8   | 108.7   | 129.8   | 187.7        | 174.8         | 239.7  | 198.0  |  |
|                  | 18     | 72.5   | 99.9        | 118.8  | 84.9    | 83.6    | 130.9   | 191.3        | 201.5         | 259.6  | 228.5  |  |
|                  | 19     | 74.9   | 112.8       | 102.2  | 97.3    | 95.7    | 107.0   | 119.3        | 136.0         | 195.7  | 179.6  |  |
|                  | 20     | 85.9   | 87.1        | 84.3   | 93.4    | 132.8   | 103.1   | 143.7        | 156.9         | 168.9  | 160.6  |  |

## Females

|                                |                  |        | F      | ood (g/wl | k)     |         | Water (g/wk) |        |        |        |         |
|--------------------------------|------------------|--------|--------|-----------|--------|---------|--------------|--------|--------|--------|---------|
| Dose Group<br>(mg DNB/kg diet) | Animal<br>Number | Week 6 | Week 7 | Week 8    | Week 9 | Week 10 | Week 6       | Week 7 | Week 8 | Week 9 | Week 10 |
| 30                             | 1                | 33.3   | 63.9   | 65.0      | 59.5   | 98.2    | 58.1         | 96.4   | 114.7  | 95.5   | 143.2   |
|                                | 2                | 72.6   | 128.0  | 107.5     | 74.3   | 144.0   | 126.5        | 174.1  | 176.1  | 173.8  | 249.4   |
|                                | 3                | 83.5   | 59.5   | 104.4     | 76.4   | 98.1    | 135.2        | 155.1  | 178.3  | 171.2  | 244.1   |
|                                | 4                | 98.8   | 112.5  | 61.4      | 84.6   | 114.9   | 164.7        | 187.3  | 198.1  | 189.8  | 253.8   |
|                                | 5                | 80.2   | 152.8  | 131.7     | 97.8   | 117.9   | 129.7        | 173.7  | 173.9  | 166.7  | 255.5   |
|                                | 6                | 92.4   | 105.3  | 80.9      | 56.9   | 103.9   | 147.3        | 170.6  | 186.4  | 191.5  | 250.0   |
|                                | 7                | 100.3  | 100.6  | 98.9      | 52.4   | 65.2    | 124.3        | 159.0  | 150.4  | 159.9  | 187.8   |
|                                | 8                | 94.7   | 114.4  | 171.5     | 69.2   | 116.9   | 133.3        | 132.1  | 181.6  | 154.7  | 215.5   |
|                                | 9                | 116.6  | 107.9  | 70.3      | 81.4   | 147.5   | 161.3        | 153.8  | 201.0  | 207.0  | 254.2   |
|                                | 10               | 109.9  | 108.7  | 78.4      | 82.4   | 114.0   | 162.7        | 126.2  | 161.1  | 187.2  | 234.7   |
| 6                              | 11               | 103.5  | 149.8  | 98.3      | 79.4   | 139.8   | 183.9        | 179.9  | 166.0  | 179.8  | 239.1   |
|                                | 12               | 93.4   | 99.9   | 131.4     | 97.4   | 133.4   | 163.3        | 164.2  | 203.0  | 191.8  | 257.8   |
|                                | 13               | 89.6   | 81.9   | 111.1     | 119.7  | 103.9   | 141.1        | 152.8  | 136.8  | 168.9  | 213.1   |
|                                | 14               | 97.7   | 71.6   | 88.3      | 98.0   | 74.7    | 154.6        | 190.4  | 246.5  | 207.1  | 267.6   |
|                                | 15               | 120.6  | 78.9   | 64.9      | 89.4   | 91.3    | 135.6        | 131.0  | 162.7  | 169.6  | 191.7   |
|                                | 16               | 44.6   | 100.5  | 87.3      | 81.8   | 153.2   | 153.4        | 119.8  | 168.3  | 181.0  | 215.1   |
|                                | 17               | 107.4  | 128.0  | 109.3     | 104.8  | 127.8   | 163.6        | 143.5  | 165.9  | 169.5  | 232.8   |
|                                | 18               | 83.7   | 132.3  | 89.4      | 102.2  | 121.0   | 184.9        | 180.2  | 213.4  | 207.4  | 244.8   |
|                                | 19               | 76.0   | 141.5  | 76.2      | 61.8   | 86.3    | 135.9        | 138.4  | 129.5  | 148.1  | 194.4   |
|                                | 20               | 75.1   | 100.6  | 105.8     | 54.3   | 83.7    | 130.0        | 85.4   | 136.5  | 126.9  | 169.5   |

## Females

|                 |          | F        | ood (g/wk | )          | Water (g/wk) |            |          |  |
|-----------------|----------|----------|-----------|------------|--------------|------------|----------|--|
| Dose Group      | Animal   | 18/00/44 | Mark 10   | We als 101 | Mante del    | Ma - 1- 40 | M        |  |
| (mg DNB/kg diet | ) Number | weekii   | Week 12   | week 13    | weekii       | Week 12    | Week 13. |  |
| 30              | 1        | 38.9     | 63.5      | 37.4       | 62.3         | 108.8      | 63.0     |  |
|                 | 2        | 68.1     | 113.5     | 34.3       | 152.0        | 181.8      | 47.9     |  |
|                 | 3        | 63.0     | 99.6      | 32.2       | 149.8        | 176.2      | 51.5     |  |
|                 | 4        | 55.9     | 79.7      | 32.8       | 185.2        | 196.5      | 49.2     |  |
|                 | 5        | 81.7     | 77.1      | 36.4       | 182.1        | 175.2      | 50.8     |  |
|                 | 6        | 106.1    | 94.5      | 32.6       | 181.5        | 207.3      | 57.2     |  |
|                 | 7        | 91.6     | 74.8      | 36.8       | 138.7        | 188.1      | 51.7     |  |
|                 | 8        | 119.1    | 137.8     | 39.5       | 134.2        | 180.9      | 53.5     |  |
|                 | 9        | 96.3     | 111.9     | 37.8       | 171.1        | 211.5      | 55.4     |  |
|                 | 10       | 100.4    | 75.3      | 35.7       | 156.2        | 168.3      | 44.7     |  |
|                 |          |          |           |            |              |            |          |  |
| 6               | 11       | 91.8     | 172.2     | 34.4       | 166.4        | 186.8      | 51.3     |  |
|                 | 12       | 60.5     | 92.9      | 31.2       | 171.4        | 184.8      | 49.1     |  |
|                 | 13       | 45.0     | 128.5     | 34.3       | 123.2        | 191.3      | 50.6     |  |
| •               | 14       | 35.7     | 120.7     | 39.4       | 149.7        | 244.6      | 66.7     |  |
|                 | 15       | 87.5     | 67.3      | 30.6       | 110.8        | 157.9      | 48.1     |  |
|                 | 16       | 103.6    | 108.4     | 31.3       | 136.8        | 155.6      | 48.0     |  |
|                 | 17       | 92.6     | 124.2     | 31.3       | 139.2        | 188.9      | 48.7     |  |
|                 | 18       | 89.7     | 115.8     | 33.8       | 152.1        | 219.1      | 60.5     |  |
|                 | 19       | 75.9     | 85.1      | 32.5       | 114.7        | 177.8      | 49.8     |  |
|                 | 20       | 75.2     | 121.1     | 30.4       | 101.8        | 146.7      | 34.0     |  |

\*Week 13 is only 5 days

## Females

|                             |                  |        | Food (g/wk) |        |        |        |        | Water (g/wk) |        |        |        |  |
|-----------------------------|------------------|--------|-------------|--------|--------|--------|--------|--------------|--------|--------|--------|--|
| Dose Group (mg DNB/kg diet) | Animal<br>Number | Week 1 | Week 2      | Week 3 | Week 4 | Week 5 | Week 1 | Week 2       | Week 3 | Week 4 | Week 5 |  |
| 1                           | 21               | 82.8   | 117.0       | 98.2   | 120.0  | 141.3  | 136.3  | 160.9        | 155.1  | 194.1  | 195.6  |  |
|                             | 22               | 77.6   | 95.7        | 78.1   | 94.3   | 100.7  | 125.7  | 160.1        | 173.7  | 197.6  | 187.0  |  |
|                             | 23               | 81.5   | 120.4       | 94.5   | 94.4   | 102.6  | 123.1  | 170.0        | 168.6  | 193.2  | 174.9  |  |
|                             | 24               | 81.8   | 104.9       | 108.8  | 79.3   | 96.9   | 126.2  | 186.0        | 187.4  | 214.7  | 203.3  |  |
|                             | 25               | 82.8   | 116.1       | 127.8  | 83.9   | 90.2   | 117.8  | 163.2        | 127.1  | 165.9  | 167.5  |  |
|                             | 26               | 85.5   | 132.8       | 118.3  | 107.1  | 84.9   | 125.0  | 156.3        | 132.5  | 212.6  | 237.9  |  |
|                             | 27               | 77.3   | 97.7        | 82.1   | 85.6   | 78.1   | 108.7  | 138.1        | 120.8  | 189.9  | 212.9  |  |
|                             | 28               | 76.8   | 108.5       | 101.6  | 105.4  | 110.6  | 117.3  | 179.9        | 164.1  | 211.1  | 230.0  |  |
|                             | 29               | 75.0   | 74.0        | 111.8  | 77.3   | 86.0   | 111.5  | 151.3        | 124.5  | 160.6  | 209.8  |  |
|                             | 30               | 76.0   | 127.3       | 67.1   | 91.6   | 96.5   | 90.6   | 121.5        | 104.4  | 155.7  | 192.1  |  |
| 0                           | 31               | 75.9   | 117.0       | 100.9  | 86.3   | 111.6  | 108.2  | 130.4        | 127.3  | 170.6  | 206.2  |  |
|                             | 32               | 72.0   | 100.3       | 74.8   | 100.0  | 100.0  | 123.3  | 173.6        | 160.6  | 200.8  | 229.7  |  |
|                             | 33               | 73.6   | 97.5        | 71.5   | 91.8   | 105.4  | 131.7  | 202.6        | 171.5  | 241.4  | 241.8  |  |
|                             | 34               | 72.2   | 143.4       | 92.6   | 92.4   | 94.2   | 131.4  | 215.0        | 153.4  | 207.9  | 231.9  |  |
|                             | 35               | 76.9   | 107.6       | 106.7  | 104.8  | 90.0   | 115.6  | 163.1        | 135.3  | 163.1  | 194.7  |  |
|                             | 36               | 63.5   | 84.0        | 118.8  | 76.8   | 73.9   | 126.1  | 182.4        | 155.8  | 201.4  | 225.3  |  |
|                             | 37               | 75.6   | 85.4        | 93.4   | 80.3   | 124.3  | 97.7   | 129.8        | 121.4  | 151.9  | 143.3  |  |
|                             | 38               | 77.5   | 101.9       | 131.6  | 81.0   | 112.3  | 110.6  | 162.8        | 167.1  | 218.9  | 223.0  |  |
|                             | 39               | 72.3   | 103.9       | 102.9  | 81.4   | 118.4  | 124.5  | 191.9        | 161.8  | 221.1  | 244.4  |  |
|                             | 40               | 74.2   | 89.5        | 71.7   | 102.5  | 69.4   | 104.3  | 169.8        | 127.5  | 175.7  | 194.4  |  |

# Females

|                                |                |        | F      | Food (g/wl | k)           |                                         | Water (g/wk) |        |        |        |         |
|--------------------------------|----------------|--------|--------|------------|--------------|-----------------------------------------|--------------|--------|--------|--------|---------|
| Dose Group<br>(mg DNB/kg diet) | Animal  Number | Week 6 | Week 7 | Week 8     | Week 9       | Week 10                                 | Week 6       | Week 7 | Week 8 | Week 9 | Week 10 |
| (mg = · · · · · · ·            |                |        |        |            | *******      | *************************************** | ·            | 1100   | TTOOKS | VVECKO | WEEK 15 |
| 1                              | 21             | 120.6  | 104.3  | 155.2      | 113.8        | 139.5                                   | 148.6        | 124.9  | 162.1  | 159.4  | 183.1   |
|                                | 22             | 121.5  | 85.1   | 94.9       | 74.0         | 94.9                                    | 140.4        | 114.6  | 161.6  | 145.2  | 189.1   |
|                                | 23             | 104.1  | 105.6  | 118.8      | 103.5        | 161.5                                   | 126.2        | 118.5  | 153.8  | 141.9  | 179.5   |
|                                | 24             | 145.5  | 120.8  | 111.4      | 101.3        | 151.3                                   | 167.3        | 140.2  | 197.6  | 167.3  | 208.2   |
|                                | 25             | 95.4   | 116.9  | 105.2      | 89. <b>1</b> | 111.3                                   | 108.9        | 140.2  | 130.5  | 152.7  | 203.8   |
|                                | 26             | 84.9   | 113.9  | 67.9       | 53.6         | 100.3                                   | 128.6        | 190.8  | 175.2  | 176.3  | 236.8   |
|                                | 27             | 79.4   | 104.8  | 93.3       | 87.2         | 132.9                                   | 99.2         | 178.2  | 153.2  | 164.7  | 223.9   |
|                                | 28             | 97.1   | 81.2   | 106.4      | 73.6         | 81.0                                    | 120.7        | 210.0  | 185.3  | 190.9  | 264.9   |
|                                | 29             | 87.6   | 80.6   | 88.5       | 90.0         | 92.2                                    | 81.1         | 171.3  | 122.6  | 152.6  | 215.1   |
|                                | 30             | 87.9   | 51.6   | 65.4       | 147.3        | 124.1                                   | 92.4         | 165.1  | 139.3  | 159.8  | 205.2   |
|                                |                |        |        |            |              |                                         |              |        |        |        |         |
| 0                              | 31             | 99.5   | 119.2  | 104.3      | 79.4         | 104.3                                   | 79.0         | 198.2  | 158.2  | 171.6  | 254.0   |
|                                | 32             | 78.6   | 85.1   | 102.1      | 54.3         | 104.8                                   | 98.7         | 198.6  | 182.0  | 182.3  | 253.8   |
|                                | - 33           | 107.3  | 84.0   | 89.6       | 93.2         | 123.5                                   | 134.6        | 216.0  | 193.4  | 190.6  | 258.5   |
|                                | 34             | 121.9  | 77.9   | 91.9       | 68.7         | 84.9                                    | 123.5        | 231.3  | 196.8  | 212.3  | 275.0   |
|                                | 35             | 106.6  | 99.5   | 100.2      | 101.2        | 99.5                                    | 87.5         | 224.6  | 174.1  | 180.3  | 278.4   |
|                                | 36             | 105.6  | 64.0   | 93.5       | 107.1        | 89.7                                    | 112.3        | 207.3  | 173.8  | 212.4  | 239.5   |
|                                | 37             | 176.1  | 81.9   | 98.2       | 74.7         | 107.0                                   | 41.9         | 157.5  | 99.6   | 151.2  | 211.6   |
|                                | 38             | 120.4  | 103.7  | 97.2       | 83.9         | 88.2                                    | 104.7        | 168.4  | 158.4  | 170.0  | 203.3   |
|                                | 39             | 103.8  | 86.3   | 88.8       | 85.0         | 120.5                                   | 128.4        | 198.0  | 180.1  | 189.5  | 248.8   |
|                                | 40             | 96.1   | 65.3   | 85.2       | 97.6         | 75.3                                    | 96.9         | 160.6  | 134.1  | 138.0  | 167.2   |

## Females

|                  |        | Food (g/wk) |         |          | Water (g/wk) |         |              |
|------------------|--------|-------------|---------|----------|--------------|---------|--------------|
| Dose Group       | Animal |             |         |          |              |         |              |
| (mg DNB/kg diet) | Number | Week 11     | Week 12 | Week 13* | Week 11      | Week 12 | Week 13*     |
|                  |        |             |         | •        |              |         |              |
| 1                | 21     | 90.4        | 157.6   | 36.3     | 107.8        | 191.2   | 65.6         |
|                  | 22     | 58.4        | 77.7    | 32.5     | 117.9        | 175.7   | 49.9         |
|                  | 23     | 110.8       | 89.2    | 34.5     | 98.5         | 157.9   | 48.1         |
|                  | 24     | 139.3       | 152.8   | 35.0     | 128.4        | 184.8   | 50.8         |
|                  | 25     | 69.4        | 116.8   | 30.7     | 123.2        | 165.6   | 47.1         |
|                  | 26     | 47.2        | 75.0    | 29.9     | 150.8        | 190.0   | 49. <b>1</b> |
|                  | 27     | 108.0       | 113.5   | 46.8     | 155.1        | 179.9   | 49.3         |
|                  | 28     | 78.8        | 104.5   | 30.5     | 180.2        | 219.6   | 52.0         |
|                  | 29     | 50.2        | 86.4    | 32.0     | 142.0        | 164.5   | 44.8         |
|                  | 30     | 82.1        | 89.3    | 31.5     | 145.4        | 164.6   | 41.9         |
|                  |        |             |         |          |              |         |              |
| 0                | 31     | 52.6        | 159.2   | 31.6     | 163.1        | 198.4   | 49.1         |
|                  | 32     | 84.3        | 60.0    | 34.5     | 193.5        | 204.4   | 57.9         |
|                  | 33     | 114.8       | 160.7   | 33.7     | 193.7        | 204.6   | 57.7         |
|                  | 34     | 86.6        | 112.2   | 30.5     | 204.5        | 217.3   | 64.4         |
|                  | 35     | 70.0        | 132.7   | 35.8     | 166.4        | 185.8   | 50.3         |
|                  | 36     | 93.5        | 98.9    | 32.0     | 187.7        | 199.2   | 59.6         |
|                  | 37     | 87.1        | 140.8   | 37.1     | 141.9        | 183.1   | 48.8         |
|                  | 38     | 63.5        | 84.9    | 35.1     | 141.7        | 173.6   | 49.0         |
|                  | 39     | 99.3        | 104.6   | 34.5     | 163.6        | 211.0   | 59.7         |
|                  | 40     | 94.9        | 72.0    | 27.8     | 146.0        | 138.3   | 37.6         |

\*Week 13 is only 5 days

|                  |        |        | F      | ood (g/wl | k)     |        | Water (g/wk) |        |        |        |        |
|------------------|--------|--------|--------|-----------|--------|--------|--------------|--------|--------|--------|--------|
| Dose Group       | Animal |        |        |           |        |        |              |        |        |        |        |
| (mg DNB/kg diet) | Number | Week 1 | Week 2 | Week 3    | Week 4 | Week 5 | Week 1       | Week 2 | Week 3 | Week 4 | Week 5 |
|                  |        |        |        |           |        |        |              |        |        |        |        |
| 30               | 41     | 94.8   | 114.8  | 161.3     | 135.4  | 153.5  | 136.7        | 256.7  | 216.6  | 239.6  | 285.4  |
|                  | 42     | 94.6   | 109.6  | 161.6     | 155.1  | 149.1  | 119.2        | 219.4  | 200.1  | 225.6  | 242.9  |
|                  | 43     | 110.0  | 169.7  | 158.0     | 177.3  | 153.5  | 148.3        | 223.0  | 191.1  | 207.2  | 251.2  |
|                  | 44     | 104.0  | 169.7  | 183.3     | 188.9  | 159.3  | 126.0        | 227.1  | 215.1  | 231.8  | 253.0  |
|                  | 45     | 98.8   | 184.8  | 169.8     | 147.6  | 126.5  | 135.5        | 207.7  | 158.2  | 199.0  | 216.2  |
|                  | 46     | 97.3   | 185.3  | 177.8     | 157.8  | 149.6  | 124.6        | 190.1  | 158.4  | 197.5  | 208.8  |
|                  | 47     | 92.7   | 163.8  | 132.2     | 212.0  | 94.4   | 98.7         | 146.6  | 138.1  | 172.9  | 186.5  |
|                  | 48     | 94.0   | 162.8  | 158.8     | 165.9  | 151.1  | 130.9        | 220.5  | 190.5  | 249.4  | 244.6  |
|                  | 49     | 98.4   | 165.2  | 172.3     | 202.4  | 174.4  | 130.8        | 207.9  | 228.6  | 249.2  | 248.5  |
|                  | 50     | 83.2   | 138.8  | 138.6     | 130.9  | 153.3  | 110.1        | 170.4  | 193.9  | 168.4  | 227.1  |
|                  |        |        |        |           |        |        |              |        |        |        |        |
| 6                | 51     | 110.7  | 201.4  | 170.5     | 190.3  | 211.6  | 146.4        | 232.8  | 254.2  | 218.6  | 279.3  |
|                  | 52     | 92.4   | 169.9  | 192.5     | 144.2  | 161.9  | 130.2        | 242.4  | 258.9  | 190.9  | 270.7  |
|                  | 53     | 97.8   | 170.9  | 168.6     | 156.6  | 166.6  | 138.3        | 226.3  | 235.6  | 173.3  | 264.3  |
|                  | 54     | 94.0   | 148.6  | 165.3     | 157.3  | 142.2  | 130.4        | 231.6  | 248.2  | 206.3  | 279.8  |
|                  | 55     | 98.7   | 180.0  | 191.2     | 147.0  | 154.5  | 139.1        | 216.9  | 239.3  | 250.1  | 273.2  |
|                  | 56     | 84.9   | 137.0  | 192.8     | 222.8  | 149.4  | 147.6        | 233.0  | 250.7  | 253.4  | 282.4  |
|                  | 57     | 109.2  | 117.0  | 160.9     | 138.4  | 143.6  | 153.2        | 241.2  | 229.2  | 221.1  | 247.2  |
|                  | 58     | 100.5  | 189.8  | 192.7     | 162.2  | 175.8  | 140.4        | 279.7  | 271.9  | 235.7  | 300.5  |
|                  | 59     | 100.3  | 178.3  | 175.7     | 177.8  | 182.8  | 130.5        | 212.4  | 216.2  | 180.4  | 248.7  |
| <del></del>      | 60     | 95.1   | 175.7  | 171.6     | 163.2  | 147.6  | 135.0        | 248.6  | 253.7  | 187.3  | 271.4  |

|                                |                  |        | F      | ood (g/wl | k)     |         | Water (g/wk) |        |        |        |         |  |
|--------------------------------|------------------|--------|--------|-----------|--------|---------|--------------|--------|--------|--------|---------|--|
| Dose Group<br>(mg DNB/kg diet) | Animal<br>Number | Week 6 | Week 7 | Week 8    | Week 9 | Week 10 | Week 6       | Week 7 | Week 8 | Week 9 | Week 10 |  |
| 30                             | 41               | 136.2  | 146.0  | 153.3     | 130.4  | 184.2   | 146.9        | 232.1  | 215.2  | 207.0  | 270.2   |  |
|                                | 42               | 112.7  | 159.0  | 135.3     | 112.2  | 192.2   | 131.2        | 238.5  | 193.1  | 198.5  | 243.8   |  |
|                                | 43               | 127.7  | 207.3  | 104.7     | 99.4   | 216.9   | 95.5         | 196.9  | 151.6  | 163.0  | 247.1   |  |
|                                | 44               | 109.5  | 188.1  | 142.4     | 102.3  | 215.0   | 150.5        | 199.8  | 202.4  | 181.4  | 245.0   |  |
|                                | 45               | 97.9   | 190.5  | 131.2     | 106.9  | 168.2   | 106.5        | 175.4  | 172.2  | 144.0  | 212.8   |  |
|                                | 46               | 53.4   | 213.2  | 92.2      | 121.1  | 222.5   | 116.9        | 167.3  | 182.8  | 138.9  | 212.7   |  |
|                                | 47               | 64.0   | 140.1  | 100.3     | 132.3  | 165.2   | 104.2        | 144.6  | 160.6  | 141.2  | 216.7   |  |
|                                | 48               | 120.5  | 165.6  | 122.3     | 92.0   | 183.3   | 175.0        | 221.2  | 228.7  | 193.0  | 247.1   |  |
|                                | 49               | 139.4  | 183.1  | 178.8     | 139.1  | 224.7   | 151.3        | 190.6  | 209.2  | 170.0  | 260.7   |  |
|                                | 50               | 120.6  | 126.8  | 92.0      | 86.4   | 144.2   | 153.0        | 148.8  | 212.8  | 145.2  | 230.7   |  |
| 6                              | 51               | 173.7  | 195.4  | 202.0     | 122.8  | 216.6   | 207.5        | 207.8  | 257.7  | 177.0  | 285.3   |  |
|                                | 52               | 149.4  | 171.9  | 158.7     | 144.9  | 213.9   | 210.6        | 216.1  | 289.6  | 216.6  | 347.0   |  |
|                                | 53               | 131.1  | 159.1  | 103.0     | 133.6  | 175.9   | 202.5        | 176.4  | 214.1  | 169.5  | 242.2   |  |
|                                | 54               | 142.5  | 187.6  | 184.0     | 100.6  | 223.7   | 203.1        | 189.2  | 258.5  | 190.4  | 303.2   |  |
|                                | 55               | 144.7  | 174.2  | 147.0     | 107.4  | 122.7   | 196.1        | 204.1  | 219.8  | 161.6  | 259.3   |  |
|                                | 56               | 125.5  | 172.1  | 144.8     | 145.6  | 183.5   | 186.0        | 218.2  | 300.8  | 194.6  | 301.8   |  |
|                                | 57               | 143.6  | 178.0  | 130.9     | 113.7  | 200.3   | 208.0        | 202.8  | 245.7  | 189.8  | 271.4   |  |
|                                | 58               | 145.7  | 182.9  | 143.7     | 125.6  | 187.7   | 218.0        | 210.0  | 265.6  | 208.4  | 287.5   |  |
|                                | 59               | 144.2  | 148.1  | 131.9     | 129.1  | 169.1   | 189.2        | 168.3  | 216.7  | 177.5  | 271.9   |  |
|                                | 60               | 121.8  | 172.1  | 148.4     | 112.3  | 133.1   | 199.6        | 188.3  | 258.0  | 191.4  | 289.4   |  |

#### Males

|                  |        | Į.      | Food (g/wk) | )        | Water (g/wk) |         |             |  |
|------------------|--------|---------|-------------|----------|--------------|---------|-------------|--|
| Dose Group       | Animal |         |             |          |              |         |             |  |
| (mg DNB/kg diet) | Number | Week 11 | Week 12     | Week 13* | Week 11      | Week 12 | Week 13*    |  |
|                  |        |         |             |          |              |         |             |  |
| 30               | 41     | 112.9   | 153.8       | 49.3     | 187.8        | 214.2   | 59.4        |  |
|                  | 42     | 128.7   | 96.6        | 44.4     | 186.6        | 198.4   | <b>57.1</b> |  |
|                  | 43     | 152.1   | 141.4       | 54.0     | 163.8        | 214.0   | 61.7        |  |
|                  | 44     | 154.7   | 163.0       | 49.9     | 166.4        | 236.6   | 57.4        |  |
|                  | 45     | 83.1    | 76.4        | 47.8     | 124.1        | 169.3   | 53.6        |  |
|                  | 46     | 159.1   | 178.2       | 44.0     | 139.6        | 197.0   | 49.2        |  |
|                  | 47     | 107.7   | 133.1       | 44.2     | 126.0        | 186.6   | 50.4        |  |
|                  | 48     | 118.6   | 111.7       | 45.7     | 169.0        | 216.3   | 56.1        |  |
|                  | 49     | 148.8   | 149.6       | 56.8     | 156.3        | 203.0   | 58.0        |  |
|                  | 50     | 116.9   | 144.3       | 36.3     | 165.7        | 182.6   | 49.3        |  |
|                  |        |         |             |          |              |         |             |  |
| 6                | 51     | 132.4   | 190.8       | 59.7     | 173.1        | 224.8   | 63.3        |  |
|                  | 52     | 105.7   | 206.9       | 54.1     | 222.7        | 255.6   | 66.1        |  |
|                  | 53     | 134.1   | 115.6       | 45.8     | 157.9        | 213.4   | 57.6        |  |
|                  | 54     | 171.6   | 191.7       | 52.4     | 191.1        | 226.2   | 63.5        |  |
|                  | 55     | 52.2    | 132.4       | 44.0     | 157.3        | 209.0   | 54.0        |  |
|                  | 56     | 157.7   | 148.5       | 49.1     | 180.0        | 229.5   | 64.8        |  |
|                  | 57     | 113.0   | 131.1       | 47.6     | 163.6        | 210.4   | 57.0        |  |
|                  | 58     | 96.6    | 133.3       | 45.8     | 185.3        | 204.7   | 54.7        |  |
|                  | 59     | 136.5   | 198.3       | 48.6     | 150.6        | 217.7   | 58.8        |  |
|                  | 60     | 75.5    | 134.3       | 49.5     | 179.0        | 217.5   | 57.8        |  |

\*Week 13 is only 5 days

|                                |                  |        | F      | ood (g/wl | <b>&lt;</b> ) |        | Water (g/wk) |        |        |        |        |
|--------------------------------|------------------|--------|--------|-----------|---------------|--------|--------------|--------|--------|--------|--------|
| Dose Group<br>(mg DNB/kg diet) | Animal<br>Number | Week 1 | Week 2 | Week 3    | Week 4        | Week 5 | Week 1       | Week 2 | Week 3 | Week 4 | Week 5 |
|                                |                  |        |        |           |               |        |              |        |        |        |        |
| 1                              | 61               | 86.6   | 159.5  | 202.5     | 185.7         | 160.0  | 133.2        | 213.0  | 221.6  | 205.0  | 232.1  |
|                                | 62               | 99.5   | 177.6  | 191.3     | 159.3         | 160.5  | 129.7        | 212.5  | 191.6  | 223.0  | 238.2  |
|                                | 63               | 94.6   | 184.6  | 154.7     | 167.7         | 175.2  | 128.4        | 227.6  | 211.2  | 226.8  | 238.3  |
|                                | 64               | 88.7   | 150.9  | 170.2     | 164.5         | 170.0  | 137.1        | 246.4  | 222.2  | 223.6  | 259.0  |
|                                | 65               | 94.1   | 153.7  | 182.1     | 139.3         | 141.1  | 121.1        | 226.5  | 207.4  | 178.5  | 203.9  |
|                                | 66               | 89.2   | 175.1  | 186.4     | 178.6         | 171.9  | 124.2        | 242.1  | 259.0  | 221.8  | 279.5  |
|                                | 67               | 99.4   | 146.5  | 165.2     | 159.3         | 174.7  | 121.0        | 193.7  | 191.1  | 197.7  | 208.9  |
|                                | 68               | 91.0   | 193.6  | 187.1     | 180.5         | 199.5  | 126.0        | 201.0  | 178.4  | 225.3  | 228.5  |
|                                | 69               | 99.3   | 157.6  | 161.9     | 156.3         | 161.9  | 141.7        | 213.7  | 177.3  | 263.5  | 254.4  |
|                                | 70               | 83.2   | 179.1  | 152.0     | 204.4         | 164.5  | 136.8        | 230.8  | 196.6  | 262.4  | 266.7  |
|                                |                  |        |        |           |               |        |              |        |        |        |        |
| 0                              | 71               | 102.7  | 131.6  | 158.5     | 181.5         | 167.4  | 126.4        | 211.5  | 190.0  | 256.9  | 257.4  |
|                                | 72               | 113.5  | 167.4  | 122.0     | 177.1         | 182.9  | 152.5        | 235.6  | 197.2  | 215.8  | 227.6  |
|                                | 73               | 99.2   | 160.1  | 189.1     | 142.8         | 114.6  | 119.2        | 196.0  | 188.8  | 187.5  | 234.7  |
|                                | 74               | 99.6   | 143.7  | 170.5     | 154.4         | 124.1  | 132.7        | 196.3  | 254.1  | 216.9  | 270.4  |
|                                | 75               | 101.5  | 173.7  | 196.0     | 133.6         | 154.2  | 126.9        | 184.6  | 243.7  | 246.8  | 256.3  |
|                                | 76               | 99.9   | 150.6  | 175.2     | 153.1         | 193.3  | 137.3        | 251.7  | 313.0  | 291.8  | 297.0  |
|                                | 77               | 99.9   | 170.6  | 173.4     | 146.8         | 185.9  | 150.0        | 216.3  | 262.4  | 268.4  | 284.6  |
|                                | 78               | 105.4  | 194.3  | 172.2     | 142.1         | 156.2  | 144.8        | 220.7  | 276.1  | 265.5  | 277.4  |
|                                | 79               | 89.0   | 138.5  | 184.1     | 165.4         | 115.4  | 126.1        | 180.1  | 254.1  | 248.2  | 252.0  |
|                                | 80               | 92.1   | 166.2  | 152.0     | 152.4         | 135.6  | 125.8        | 187.1  | 231.0  | 194.1  | 243.3  |

|                  |        |        | F      | ood (g/wl | k)     |         | Water (g/wk) |        |        |        |         |
|------------------|--------|--------|--------|-----------|--------|---------|--------------|--------|--------|--------|---------|
| Dose Group       | Animal |        |        |           |        |         |              |        |        |        |         |
| (mg DNB/kg diet) | Number | Week 6 | Week 7 | Week 8    | Week 9 | Week 10 | Week 6       | Week 7 | Week 8 | Week 9 | Week 10 |
|                  |        |        |        |           |        |         |              |        |        |        |         |
| 1                | 61     | 107.6  | 138.7  | 141.8     | 117.1  | 172.8   | 167.1        | 197.2  | 228.2  | 173.4  | 291.8   |
|                  | 62     | 139.9  | 167.4  | 143.6     | 124.4  | 189.1   | 173.7        | 208.5  | 260.1  | 186.8  | 275.6   |
|                  | 63     | 149.0  | 136.6  | 131.7     | 94.9   | 172.4   | 182.4        | 206.7  | 269.4  | 203.9  | 273.6   |
|                  | 64     | 180.6  | 137.4  | 153.5     | 101.3  | 163.6   | 194.5        | 192.2  | 234.7  | 200.7  | 260.1   |
|                  | 65     | 128.6  | 155.3  | 117.6     | 76.1   | 153.5   | 168.0        | 169.3  | 189.2  | 181.5  | 229.2   |
|                  | 66     | 121.5  | 178.0  | 157.3     | 120.5  | 226.3   | 195.7        | 203.5  | 253.8  | 216.9  | 301.9   |
|                  | 67     | 133.1  | 121.2  | 115.4     | 119.6  | 176.5   | 165.3        | 161.3  | 169.1  | 156.2  | 238.5   |
|                  | 68     | 154.3  | 175.5  | 124.3     | 111.1  | 197.8   | 165.4        | 199.2  | 223.9  | 177.6  | 250.7   |
|                  | 69     | 124.5  | 169.4  | 149.4     | 97.2   | 156.0   | 151.4        | 121.8  | 231.8  | 161.0  | 241.7   |
|                  | 70     | 123.4  | 181.6  | 152.3     | 74.7   | 165.2   | 192.5        | 206.1  | 242.6  | 186.6  | 255.1   |
|                  |        |        |        |           |        |         |              |        |        |        |         |
| 0                | 71     | 140.5  | 143.0  | 199.8     | 110.7  | 143.7   | 163.0        | 185.8  | 215.5  | 164.7  | 245.5   |
|                  | 72     | 184.4  | 171.1  | 157.7     | 130.0  | 175.5   | 194.8        | 173.4  | 245.7  | 179.6  | 245.7   |
|                  | 73     | 112.6  | 131.8  | 139.4     | 86.5   | 162.8   | 172.8        | 179.8  | 178.8  | 156.8  | 245.7   |
|                  | 74     | 170.5  | 147.8  | 160.5     | 108.3  | 178.1   | 181.8        | 210.3  | 232.0  | 174.8  | 286.0   |
|                  | 75     | 138.3  | 161.4  | 142.9     | 107.6  | 179.9   | 185.0        | 240.9  | 215.6  | 184.7  | 273.5   |
|                  | 76     | 172.2  | 232.9  | 146.7     | 133.4  | 212.1   | 200.8        | 281.3  | 250.8  | 225.9  | 335.1   |
|                  | 77     | 142.2  | 188.7  | 163.0     | 103.0  | 156.5   | 168.1        | 254.1  | 213.6  | 196.9  | 311.5   |
|                  | 78     | 159.0  | 176.2  | 186.2     | 102.5  | 206.9   | 193.3        | 253.1  | 245.1  | 215.5  | 303.9   |
|                  | 79     | 137.1  | 127.9  | 125.4     | 132.6  | 111.7   | 157.8        | 207.0  | 205.1  | 179.7  | 262.4   |
|                  | 80     | 182.6  | 157.3  | 126.5     | 84.4   | 139.6   | 167.1        | 199.7  | 216.7  | 163.5  | 260.3   |

#### Males

|                  |        | F       | Food (g/wk | )        | Water (g/wk) |         |          |  |
|------------------|--------|---------|------------|----------|--------------|---------|----------|--|
| Dose Group       | Animal |         |            |          |              |         |          |  |
| (mg DNB/kg diet) | Number | Week 11 | Week 12    | Week 13* | Week 11      | Week 12 | Week 13* |  |
|                  |        |         |            |          |              |         |          |  |
| 1                | 61     | 121.5   | 177.7      | 60.1     | 151.7        | 219.5   | 67.2     |  |
|                  | 62     | 134.6   | 168.7      | 51.9     | 146.2        | 226.3   | 56.1     |  |
|                  | 63     | 139.2   | 150.8      | 52.3     | 158.5        | 244.1   | 67.0     |  |
|                  | 64     | 128.6   | 137.1      | 44.4     | 152.8        | 223.5   | 53.9     |  |
|                  | 65     | 95.6    | 141.9      | 50.4     | 127.5        | 211.4   | 55.2     |  |
|                  | 66     | 154.7   | 191.4      | 48.9     | 167.9        | 236.3   | 59.2     |  |
|                  | 67     | 111.3   | 179.6      | 50.2     | 134.5        | 224.8   | 55.7     |  |
|                  | 68     | 100.8   | 185.1      | 50.9     | 135.6        | 216.9   | 56.0     |  |
|                  | 69     | 123.6   | 134.9      | 46.4     | 138.9        | 216.2   | 51.3     |  |
|                  | 70     | 125.9   | 114.3      | **       | 142.1        | 224.4   | 59.6     |  |
|                  |        |         |            |          |              |         |          |  |
| 0                | 71     | 110.9   | 145.6      | 61.7     | 147.2        | 211.0   | 52.9     |  |
|                  | 72     | 111.7   | 160.5      | 56.4     | 144.6        | 229.0   | 66.3     |  |
|                  | 73     | 107.2   | 107.2      | 46.2     | 155.7        | 202.2   | 51.4     |  |
|                  | 74     | 165.2   | 119.3      | 59.7     | 180.7        | 228.6   | 61.7     |  |
|                  | 75     | 138.5   | 200.6      | 37.1     | 176.5        | 226.5   | 51.1     |  |
|                  | 76     | 161.6   | 198.5      | 58.2     | 216.2        | 247.0   | 65.3     |  |
|                  | 77     | 141.8   | 160.8      | 55.5     | 185.5        | 231.4   | 65.7     |  |
|                  | 78     | 126.4   | 172.2      | 50.9     | 193.0        | 221.7   | 60.1     |  |
|                  | 79     | 51.4    | 113.3      | 42.5     | 156.8        | 198.1   | 55.4     |  |
|                  | 80     | 122.4   | 177.7      | 44.8     | 163.4        | 197.8   | 54.2     |  |

\*Week 13 is only 5 days, \*\*Data Unavailable

APPENDIX B
BODY WEIGHTS

Weekly Body Weights (grams)/Females

| Dose             | Animal |       |       |       | We    | eks   | , <del>, , , , , , , , , , , , , , , , , , </del> |       |                |
|------------------|--------|-------|-------|-------|-------|-------|---------------------------------------------------|-------|----------------|
| (mg DNB/kg diet) | Number | 1     | 2     | 3     | 4     | 5     | 6                                                 | 7     | 8              |
| 30               | 1      | 141.7 | 150.6 | 159.9 | 164.3 | 169.5 | 178.8                                             | 181.6 | 107.0          |
| 50               | 2      | 145.4 | 153.4 | 162.2 | 166.3 | 170.2 | 176.7                                             | 180.7 | 187.2<br>186.1 |
|                  | 3      | 143.7 | 155.4 | 165.0 | 170.7 | 174.9 | 180.6                                             | 185.1 | 186.8          |
|                  | 4      | 136.7 | 138.7 | 149.1 | 149.3 | 156.0 | 160.7                                             | 162.7 | 165.8          |
|                  | 5      | 136.3 | 140.2 | 145.9 | 149.3 | 155.7 | 154.7                                             | 160.6 | 162.6          |
|                  | 6      | 144.4 | 147.2 | 154.8 | 156.1 | 161.4 | 169.9                                             | 170.6 | 175.7          |
|                  | 7      | 139.7 | 148.3 | 153.5 | 161.7 | 166.4 | 170.6                                             | 173.8 | 176.1          |
|                  | 8      | 140.7 | 149.7 | 160.8 | 162.4 | 165.1 | 172.6                                             | 179.6 | 181.8          |
|                  | 9      | 139.3 | 148.5 | 158.9 | 165.6 | 169.6 | 174.4                                             | 180.9 | 183.2          |
|                  | 10     | 134.5 | 140.7 | 147.3 | 149.4 | 153.1 | 156.9                                             | 163.2 | 162.7          |
| 6                | 11     | 148.1 | 157.7 | 165.9 | 169.5 | 175.7 | 178.0                                             | 185.8 | 100.0          |
| 0                | 12     | 150.5 | 156.1 | 164.9 | 167.2 | 173.7 | 179.4                                             | 186.1 | 189.2<br>191.2 |
|                  | 13     | 145.0 | 152.7 | 158.6 | 161.6 | 172.0 | 173.4                                             | 178.1 | 180.6          |
|                  | 14     | 143.3 | 150.7 | 158.7 | 162.6 | 164.1 | 169.5                                             | 176.1 | 178.8          |
|                  | 15     | 135.6 | 139.8 | 148.9 | 151.4 | 152.4 | 156.1                                             | 161.9 | 164.7          |
|                  | 16     | 137.5 | 145.8 | 150.5 | 155:6 | 158.7 | 162.9                                             | 165.4 | 168.0          |
|                  | 17     | 140.8 | 149.8 | 155.4 | 161.0 | 167.6 | 172.6                                             | 181.0 | 182.7          |
|                  | 18     | 138.9 | 146.8 | 150.6 | 156.4 | 160.5 | 165.4                                             | 171.8 | 177.0          |
|                  | 19     | 136.7 | 143.5 | 153.0 | 154.5 | 160.7 | 163.2                                             | 172.1 | 170.0          |
|                  | 20     | 137.0 | 148.9 | 154.7 | 159.5 | 162.7 | 167.7                                             | 175.1 | 176.0          |
| 1                | 21     | 146.7 | 154.1 | 161.3 | 165.9 | 171.2 | 180.9                                             | 186.3 | 188.0          |
| ·                | 22     | 147.3 | 159.0 | 165.5 | 166.1 | 169.0 | 179.0                                             | 183.6 | 182.2          |
|                  | 23     | 143.9 | 155.6 | 165.8 | 171.5 | 175.9 | 182.6                                             | 188.6 | 191.9          |
|                  | 24     | 143.2 | 152.0 | 159.0 | 162.2 | 171.3 | 179.3                                             | 182.8 | 187.5          |
| . ,              | 25     | 142.9 | 153.3 | 163.0 | 164.8 | 168.9 | 175.2                                             | 179.4 | 185.5          |
| ;                | 26     | 144.8 | 156.1 | 164.6 | 168.0 | 172.5 | 176.8                                             | 180.9 | 184.8          |
|                  | 27     | 137.9 | 143.5 | 148.4 | 151.6 | 157.0 | 164.4                                             | 168.2 | 172.0          |
| . *              | 28     | 142.1 | 149.0 | 155.7 | 156.9 | 165.1 | 171.3                                             | 175.9 | 178.2          |
|                  | 29     | 131.0 | 139.4 | 147.1 | 150.0 | 156.4 | 160.0                                             | 165.8 | 165.2          |
|                  | 30     | 131.7 | 138.6 | 145.3 | 148.7 | 153.1 | 155.6                                             | 159.5 | 161.4          |
| 0                | 31     | 143.4 | 150.4 | 159.3 | 164.7 | 169.6 | 175.0                                             | 178.5 | 182.5          |
|                  | 32     | 139.9 | 149.2 | 158.1 | 158.3 | 164.9 | 171.5                                             | 174.0 | 170.6          |
|                  | 33     | 140.2 | 148.7 | 156.5 | 158.0 | 165.3 | 172.7                                             | 178.5 | 178.1          |
|                  | 34     | 143.0 | 149.5 | 154.5 | 155.7 | 160.0 | 164.4                                             | 169.0 | 166.4          |
|                  | 35     | 136.6 | 143.5 | 152.8 | 159.9 | 157.9 | 162.9                                             | 168.1 | 173.7          |
|                  | 36     | 141.4 | 148.0 | 159.2 | 159.2 | 165.1 | 168.8                                             | 176.6 | 177.7          |
|                  | 37     | 142.1 | 147.5 | 159.6 | 160.9 | 167.6 | 172.6                                             | 179.1 | 180.7          |
|                  | 38     | 136.7 | 148.3 | 159.1 | 164.7 | 168.4 | 173.2                                             | 179.8 | 179.1          |
|                  | 39     | 139.8 | 148.1 | 156.1 | 155.0 | 162.6 | 169.4                                             | 170.5 | 176.1          |
|                  | 40     | 134.0 | 141.9 | 150.7 | 152.6 | 157.9 | 159.8                                             | 163.0 | 162.6          |

Weekly Body Weights (grams)/Females

| Dose             | Animal | -     |                                         | Weeks |       |       |
|------------------|--------|-------|-----------------------------------------|-------|-------|-------|
| (mg DNB/kg diet) |        | 9     | 10                                      | 11    | 12    | 13    |
| <u></u>          |        |       | *************************************** |       |       |       |
| 30               | 1      | 187.0 | 189.7                                   | 189.0 | 194.9 | 190.3 |
|                  | 2      | 185.5 | 186.9                                   | 189.7 | 195.0 | 188.4 |
|                  | 3      | 188.1 | 189.8                                   | 191.6 | 196.1 | 189.8 |
|                  | 4      | 166.3 | 169.7                                   | 168.4 | 171.2 | 168.4 |
|                  | 5      | 163.4 | 165.4                                   | 169.0 | 172.7 | 169.8 |
|                  | 6      | 174.1 | 174.7                                   | 172.8 | 185.0 | 180.6 |
|                  | 7      | 178.9 | 181.5                                   | 183.1 | 186.0 | 184.5 |
|                  | 8      | 185.2 | 188.9                                   | 191.4 | 193.5 | 192.7 |
|                  | 9      | 182.1 | 186.3                                   | 185.7 | 200.1 | 195.5 |
|                  | 10     | 163.9 | 162.0                                   | 166.8 | 170.3 | 166.4 |
| 6                | 11     | 186.5 | 191.4                                   | 193.4 | 201.6 | 194.4 |
|                  | 12     | 187.5 | 190.4                                   | 190.9 | 196.6 | 192.3 |
|                  | 13     | 180.2 | 188.9                                   | 188.1 | 197.0 | 189.9 |
|                  | 14     | 179.0 | 181.2                                   | 185.5 | 191.1 | 188.6 |
|                  | 15     | 162.0 | 164.4                                   | 165.7 | 170.7 | 169.6 |
|                  | 16     | 168.3 | 171.6                                   | 178.0 | 176.7 | 174.8 |
|                  | 17     | 181.8 | 185.8                                   | 188.6 | 194.2 | 190.5 |
|                  | 18     | 175.5 | 178.6                                   | 178.1 | 188.8 | 183.2 |
|                  | 19     | 170.7 | 170.2                                   | 174.8 | 178.3 | 172.7 |
|                  | 20     | 173.5 | 173.2                                   | 175.2 | 180.0 | 177.4 |
| 1                | 21     | 191.8 | 194.2                                   | 193.6 | 199.1 | 197.4 |
|                  | 22     | 185.9 | 184.0                                   | 187.4 | 191.1 | 190.2 |
|                  | 23     | 192.4 | 201.5                                   | 203.0 | 203.3 | 200.7 |
|                  | 24     | 186.4 | 190.8                                   | 192.8 | 201.7 | 199.8 |
|                  | 25     | 183.4 | 187.5                                   | 188.1 | 191.9 | 191.6 |
|                  | 26     | 185.4 | 184.7                                   | 187.6 | 191.0 | 188.7 |
|                  | 27     | 170.2 | 171.2                                   | 176.0 | 175.3 | 177.7 |
|                  | 28     | 176.3 | 182.4                                   | 180.1 | 189.1 | 183.0 |
|                  | 29     | 168.2 | 170.6                                   | 172.2 | 177.6 | 173.2 |
|                  | 30     | 162.3 | 165.3                                   | 167.3 | 171.4 | 168.5 |
| 0                | 31     | 182.8 | 181.5                                   | 187.1 | 193.8 | 189.6 |
|                  | 32     | 173.1 | 170.1                                   | 173.5 | 178.4 | 172.1 |
|                  | 33     | 178.9 | 177.9                                   | 183.9 | 191.4 | 187.5 |
|                  | 34     | 165.7 | 168.6                                   | 168.1 | 175.5 | 172.2 |
|                  | 35     | 173.4 | 172.2                                   | 174.6 | 183.1 | 181.1 |
|                  | 36     | 178.6 | 178.0                                   | 180.7 | 186.8 | 181.8 |
|                  | 37     | 183.6 | 184.8                                   | 186.9 | 197.3 | 194.3 |
|                  | 38     | 178.0 | 178.4                                   | 180.0 | 186.8 | 182.6 |
|                  | 39     | 178.3 | 178.6                                   | 183.9 | 190.3 | 187.0 |
|                  | 40     | 167.6 | 167.9                                   | 169.4 | 173.5 | 170.6 |

Weekly Body Weights (grams)/Males

| Dose             | Animal |       |       |       | We    | eks   | ······································ |       |       |
|------------------|--------|-------|-------|-------|-------|-------|----------------------------------------|-------|-------|
| (mg DNB/kg diet) |        | 1     | 2     | 3     | 4     | 5     | 6                                      | 7     | 8     |
| <del></del>      |        |       |       |       |       |       |                                        |       |       |
| 30               | 41     | 199.7 | 218.6 | 244.1 | 258.1 | 275.0 | 289.3                                  | 303.5 | 308.4 |
|                  | 42     | 189.0 | 202.2 | 220.8 | 234.2 | 246.3 | 254.0                                  | 268.8 | 271.9 |
|                  | 43     | 194.6 | 221.2 | 247.6 | 259.5 | 276.7 | 293.8                                  | 305.0 | 309.6 |
|                  | 44     | 203.2 | 222.8 | 245.0 | 263.9 | 274.6 | 289.7                                  | 311.3 | 315.6 |
|                  | 45     | 183.8 | 209.9 | 233.6 | 245.4 | 255.6 | 261.2                                  | 276.4 | 286.4 |
|                  | 46     | 192.5 | 210.9 | 233.7 | 245.7 | 260.5 | 274.8                                  | 285.3 | 291.6 |
|                  | 47     | 183.8 | 202.6 | 222.4 | 235.9 | 247.3 | 252.4                                  | 259.5 | 273.4 |
|                  | 48     | 189.2 | 218.2 | 236.6 | 252.4 | 266.2 | 281.3                                  | 300.2 | 300.0 |
|                  | 49     | 197.0 | 223.0 | 249.7 | 262.5 | 278.4 | 292.6                                  | 313.8 | 317.9 |
|                  | 50     | 173.5 | 188.6 | 207.7 | 215.4 | 224.9 | 242.9                                  | 251.6 | 257.4 |
| 6                | 51     | 213.8 | 236.4 | 263.6 | 279.4 | 301.1 | 317.5                                  | 338.3 | 350.2 |
|                  | 52     | 199.2 | 221.8 | 244.8 | 263.2 | 276.1 | 300.6                                  | 314.1 | 319.4 |
|                  | 53     | 183.7 | 205.5 | 229.2 | 235.9 | 251.3 | 267.0                                  | 277.4 | 279.1 |
|                  | 54     | 193.1 | 218.2 | 241.4 | 257.0 | 275.5 | 290.0                                  | 308.1 | 312.5 |
|                  | 55     | 193.4 | 210.7 | 235.7 | 252.4 | 266.8 | 285.6                                  | 299.2 | 302.0 |
|                  | 56     | 187.8 | 208.5 | 236.8 | 257.6 | 274.4 | 289.1                                  | 304.2 | 315.6 |
|                  | 57     | 200.0 | 222.3 | 242.2 | 256.8 | 271.2 | 288.7                                  | 305.8 | 306.0 |
|                  | 58     | 197.6 | 219.9 | 244.7 | 267.6 | 283.4 | 303.7                                  | 316.7 | 321.7 |
|                  | 59     | 190.6 | 212.6 | 240.3 | 259.7 | 277.1 | 295.3                                  | 314.6 | 320.3 |
|                  | 60     | 189.6 | 212.3 | 237.1 | 254.5 | 272.8 | 288.3                                  | 300.7 | 303.8 |
| 1                | 61     | 200.8 | 217.2 | 241.1 | 261.3 | 275.8 | 292.4                                  | 309.0 | 309.3 |
|                  | 62     | 199.1 | 219.1 | 238.7 | 253.7 | 271.9 | 285.5                                  | 304.0 | 303.3 |
|                  | 63     | 194.5 | 215.7 | 235.3 | 251.4 | 263.4 | 283.7                                  | 297.5 | 300.3 |
|                  | 64     | 192.7 | 217.3 | 235.3 | 252.8 | 265.4 | 276.5                                  | 280.4 | 288.3 |
|                  | 65     | 186.4 | 202.5 | 224.8 | 239.2 | 248.4 | 256.3                                  | 266.9 | 273.9 |
|                  | 66     | 187.6 | 211.2 | 243.5 | 261.7 | 276.2 | 295.2                                  | 309.8 | 312.2 |
|                  | 67     | 191.0 | 213.2 | 241.4 | 255.1 | 272.1 | 282.7                                  | 297.1 | 291.6 |
| ·                | 68     | 188.1 | 210.7 | 240.3 | 258.4 | 273.6 | 288.5                                  | 304.1 | 310.1 |
|                  | 69     | 184.4 | 207.4 | 230.5 | 248.3 | 270.8 | 278.0                                  | 295.5 | 300.7 |
|                  | 70     | 188.9 | 204.8 | 233.2 | 243.0 | 259.4 | 278.3                                  | 291.6 | 294.0 |
| 0                | 71     | 202.6 | 217.4 | 235.2 | 256.2 | 266.4 | 278.1                                  | 291.8 | 295.6 |
|                  | 72     | 187.2 | 225.9 | 244.6 | 261.4 | 280.1 | 296.4                                  | 313.7 | 315.6 |
|                  | 73     | 190.8 | 209.9 | 232.4 | 249.1 | 260.9 | 272.1                                  | 282.3 | 285.4 |
|                  | 74     | 193.8 | 217.6 | 240.0 | 254.1 | 271.1 | 287.0                                  | 297.2 | 299.1 |
|                  | 75     | 193.0 | 218.3 | 239.2 | 256.0 | 270.1 | 284.0                                  | 303.2 | 310.5 |
|                  | 76     | 203.1 | 225.3 | 252.5 | 269.7 | 283.8 | 304.6                                  | 322.5 | 324.0 |
|                  | 77     | 198.5 | 224.9 | 249.8 | 269.8 | 289.5 | 308.4                                  | 320.1 | 328.3 |
|                  | 78     | 192.3 | 212.4 | 233.8 | 253.4 | 264.2 | 286.4                                  | 298.5 | 299.9 |
|                  | 79     | 178.8 | 202.6 | 228.1 | 250.1 | 263.4 | 276.6                                  | 287.8 | 294.1 |
|                  | 80     | 188.9 | 209.1 | 232.5 | 245.1 | 260.0 | 278.1                                  | 294.2 | 297.6 |

Weekly Body Weights (grams)/Males

| Dose               | Animal   |                |                | Weeks          |        |       |
|--------------------|----------|----------------|----------------|----------------|--------|-------|
| (mg DNB/kg diet)   |          | 9              | 10             | 11             | 12     | 13    |
| (Ing Divb/kg diet) | TTOTTIDE |                |                |                |        |       |
| 30                 | 41       | 310.0          | 316.5          | 319.4          | 330.8  | 332.0 |
|                    | 42       | 273.1          | 279.1          | 282.7          | 293.5  | 289.4 |
|                    | 43       | 321.0          | 324.8          | 333.7          | 346.0  | 343.8 |
|                    | 44       | 320.0          | 328.7          | 337.6          | 347.7  | 346.5 |
|                    | 45       | 283.2          | 288.1          | 286.5          | 301.6  | 296.5 |
|                    | 46       | 293.2          | 295.6          | 300.3          | 309.8  | 312.1 |
|                    | 47       | 277.6          | 284.3          | 290.7          | 299.3  | 300.9 |
|                    | 48       | 300.4          | 307.0          | 312.3          | 317.1  | 317.6 |
|                    | 49       | 321.7          | 325.1          | 335.3          | 344.6  | 345.7 |
|                    | 50       | 260.0          | 260.2          | 262.9          | 274.7  | 271.3 |
|                    |          | 040.7          | 257.4          | 262.6          | 377.0  | 378.0 |
| 6                  | 51       | 348.7          | 357.1<br>335.9 | 363.6<br>348.5 | 360.3  | 359.9 |
|                    | 52       | 326.3          | 285.8          | 289.0          | 296.6  | 296.3 |
|                    | 53<br>54 | 282.8<br>318.7 | 326.4          | 333.8          | 343.0  | 343.6 |
|                    |          | 304.8          | 303.2          | 309.4          | 315.2  | 312.8 |
|                    | 55<br>56 | 304.6          | 334.2          | 338.4          | 344.9  | 346.6 |
|                    | 56<br>57 | 302.5          | 311.9          | 319.5          | 327.5  | 329.6 |
|                    |          | 302.5          | 331.0          | 332.6          | 336.5  | 326.3 |
|                    | 58<br>50 | 323.3          | 330.6          | 340.9          | 351.8  | 350.8 |
|                    | 59<br>60 | 306.7          | 313.7          | 323.5          | 330.3  | 327.3 |
|                    | 60       | 300.7          | 313.7          | 323.3          | 0.00.0 | 027.0 |
| 1                  | 61       | 315.2          | 324.1          | 334.2          | 339.7  | 342.8 |
|                    | 62       | 312.0          | 315.8          | 323.6          | 336.6  | 339.6 |
|                    | 63       | 308.8          | 315.2          | 329.0          | 342.3  | 338.6 |
|                    | 64       | 288.0          | 302.4          | 307.2          | 312.6  | 317.1 |
|                    | 65       | 276.1          | 288.6          | 295.0          | 308.2  | 313.1 |
|                    | 66       | 314.1          | 326.3          | 333.6          | 344.0  | 339.9 |
|                    | 67       | 291.3          | 301.2          | 306.2          | 316.1  | 309.8 |
|                    | 68       | 314.1          | 321.0          | 336.3          | 338.8  | 340.0 |
|                    | 69       | 302.4          | 306.6          | 312.6          | 319.3  | 315.8 |
|                    | 70       | 295.9          | 301.8          | 296.9          | 308.9  | 304.9 |
| 0                  | 71       | 295.2          | 300.3          | 301.1          | 308.4  | 309.8 |
| U                  | 72       | 319.9          | 324.2          | 337.4          | 352.7  | 349.8 |
|                    | 73       | 283.5          | 291.5          | 292.1          | 292.4  | 290.4 |
|                    | 74       | 296.3          | 301.3          | 308.3          | 321.5  | 319.8 |
|                    | 75       | 307.7          | 317.8          | 319.3          | 342.2  | 338.1 |
|                    | 76       | 334.1          | 346.7          | 357.6          | 364.4  | 366.7 |
|                    | 77       | 339.9          | 343.4          | 349.1          | 364.3  | 358.0 |
|                    | 78       | 302.7          | 307.7          | 312.7          | 316.1  | 314.9 |
|                    | 79       | 290.2          | 298.9          | 292.7          | 295.3  | 292.2 |
|                    | 80       | 298.7          | 301.0          | 308.6          | 318.3  | 309.3 |

APPENDIX C
ORGAN WEIGHTS

|                       | ANI      |                  | KIDNEY |        |        | %              | %     | %     |
|-----------------------|----------|------------------|--------|--------|--------|----------------|-------|-------|
| NUM                   | BER      | WEIGHT           | WEIGHT | WEIGHT | WEIGHT | KIDNEY         | LUNGS | LIVER |
|                       |          |                  |        |        |        |                |       |       |
| 1                     | 1        | 183.29           |        | 1.027  |        | 0.719          | 0.560 | 2.689 |
| 1                     | 2        | 185.59           |        | 0.937  |        | 0.748          | 0.505 | 2.765 |
| 1                     | 3        | 182.61           | 1.203  | 0.883  | 4.926  | 0.659          | 0.484 | 2.698 |
| 1                     | 4        | 166.16           | 1.254  | 1.065  |        | 0.755          | 0.641 | 2.761 |
| 1                     | 5<br>6   | 161.76           |        | 0.805  |        | 0.684          | 0.498 | 2.534 |
| 1                     | 6        | 172.44           |        | 0.845  |        | 0.704          | 0.490 | 2.647 |
| 1                     | 7        | 178.98           |        | 1.057  |        | 0.669          | 0.591 | 2.425 |
| 1                     | 8        | 185.83           |        | 0.943  |        |                | 0.507 | 2.458 |
| 1                     | 9        | 186.79           |        | 0.918  |        | 0.646          | 0.491 | 2.694 |
| 1                     | 10       | 159.86           |        |        |        | 0.704          | 0.527 |       |
| 2                     | 11       | 186.22           |        | 1.085  |        | 0.720          | 0.583 | 2.588 |
| 2                     | 12       | 181.42           |        | 0.983  |        | 0.640          | 0.542 | 2.726 |
| 2 2 2                 | 13       | 180.32           |        | 0.868  |        |                | 0.481 | 2.465 |
| 2                     | 14       | 182.73           |        |        |        |                | 0.532 | 2.533 |
| 2                     | 15       | 163.68           |        |        |        |                | 0.518 |       |
| 2                     | 16       | 167.23           |        |        |        |                | 0.538 | 2.558 |
| 2                     | 17       | 179.38           |        |        |        | 0.649          | 0.586 | 2.657 |
| 2                     | 18       | 171.97           |        |        |        | 0.701          | 0.497 | 2.794 |
| 2 2 3 3 3 3 3 3 3 3 3 | 19       | 163.37           |        |        |        |                | 0.627 | 2.633 |
| 2                     | 20       | 168.33           |        |        |        | 0.705          | 0.630 | 2.751 |
| 3                     | 21       | 187.17           |        | 0.984  |        |                | 0.526 | 2.620 |
| 3                     | 22       | 180.68           |        |        |        |                | 0.515 | 2.405 |
| 3                     | 23       | 190.36           |        | 0.997  |        | 0.647          | 0.524 | 2.488 |
| 3                     | 24       | 191.90           |        |        |        | 0.670          | 0.505 | 2.503 |
| 3                     | 25       | 183.40           | 1.179  | 0.814  |        |                | 0.444 | 2.457 |
| 3                     | 26       | 179.02           | 1.196  | 0.964  |        | 0.668          | 0.538 | 2.751 |
| 3                     | 27       | 168.04           |        | 0.990  |        | 0.678          | 0.589 | 2.617 |
| 3                     | 28       | 174.28           |        |        |        | 0.674          | 0.545 | 2.917 |
| 3                     | 29       | 165.00           | 1.045  | 0.789  |        | 0.633          | 0.478 | 2.359 |
| 3                     |          | 159.92           |        | 0.863  |        |                | 0.540 | 2.539 |
| 4                     | 31       | 178.56           |        |        |        | 0.659          | 0.506 | 2.585 |
| 4                     | 32       | 166.47           |        |        |        |                | 0.551 | 2.794 |
| 4                     | 33       | 178.65           | 1.169  | 1.014  | 4.576  | 0.654          | 0.568 | 2.561 |
| 4                     | 34       | 163.44           | 1.087  | 1.004  | 4.297  | 0.665          | 0.614 | 2.629 |
| 4                     | 35       | 169.47           | 1.136  | 0.937  | 4.701  | 0.670          | 0.553 | 2.774 |
| 4                     | 36       | 173.50           | 1.236  | 0.950  | 4.601  | 0.712          | 0.548 | 2.652 |
| 4                     | 37       | 180.23           | 1.239  | 1.179  | 4.996  | 0.687          | 0.654 | 2.772 |
| 4<br>4                | 38<br>39 | 174.38           | 1.191  | 0.970  | 4.402  | 0.683          | 0.556 | 2.524 |
| 4                     | 40       | 179.29<br>160.85 | 1.240  | 0.996  | 4.617  | 0.692<br>0.688 | 0.556 | 2.575 |
| **                    | 40       | 100.05           | 1.100  | 0.853  | 3.850  | 0.000          | 0.530 | 2.394 |
|                       |          |                  |        |        |        |                |       |       |

| GP-ANI<br>NUMBER | BODY<br>WEIGHT   | HEART<br>WEIGHT                                                                                                                                                                                         |                                                                                                                                                                                         | SPLEEN<br>WEIGHT                                                                                                                                                                                                                | %<br>HEART                                                                                                                                                                                                                                                                                                                     | %<br>BRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | %<br>SPLEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                  | WEIGHT  0.668 0.735 0.632 0.634 0.660 0.611 0.765 0.765 0.765 0.765 0.619 0.610 0.629 0.610 0.648 0.716 0.648 0.716 0.648 0.648 0.648 0.648 0.648 0.648 0.648 0.648 0.648 0.648 0.648 0.658 0.656 0.674 | WEIGHT  1.728 1.785 1.851 1.797 1.756 1.772 1.875 1.626 1.698 1.848 1.793 1.745 1.745 1.745 1.745 1.745 1.745 1.745 1.754 1.754 1.754 1.754 1.754 1.7693 1.7732 1.781 1.793 1.793 1.793 | WEIGHT  0.586 0.571 0.510 0.500 0.420 0.515 0.567 0.492 0.421 0.437 0.443 0.426 0.435 0.427 0.436 0.439 0.431 0.427 0.431 0.432 0.439 0.410 0.432 0.439 0.410 0.432 0.439 0.410 0.432 0.439 0.410 0.432 0.439 0.410 0.427 0.436 | HEART  0.364 0.396 0.346 0.382 0.408 0.379 0.479 0.389 0.327 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0.365 | 0.943<br>0.962<br>1.081<br>1.086<br>1.028<br>0.965<br>1.002<br>0.965<br>1.062<br>0.9984<br>0.9984<br>0.9994<br>1.062<br>1.047<br>0.973<br>1.015<br>1.052<br>0.9942<br>1.052<br>0.9942<br>1.052<br>0.9942<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.0965<br>1.09 | 0.320<br>0.320<br>0.308<br>0.280<br>0.307<br>0.244<br>0.288<br>0.305<br>0.292<br>0.308<br>0.2241<br>0.225<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253<br>0.2253 |
| 4 39<br>4 40     | 179.29<br>160.85 |                                                                                                                                                                                                         |                                                                                                                                                                                         |                                                                                                                                                                                                                                 | 0.359                                                                                                                                                                                                                                                                                                                          | 0.977<br>1.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| GP-ANI BO<br>NUMBER WEI |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                           | S %<br>ADRENAL                                                                                                                                                                                                       | %<br>THYMUS                                                                                                                                                                                                                                     | %<br>OVARIES                                                                                                                                                                                                |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 1 183                 | .29 0.070<br>.59 0.053<br>.61 0.059<br>.16 0.074<br>.76 0.045<br>.44 0.059<br>.98 0.072<br>.83 0.056<br>.79 0.056<br>.86 0.054<br>.22 0.091<br>.42 0.046<br>.32 0.053<br>.73 0.069<br>.68 0.060<br>.23 0.066<br>.38 0.060<br>.23 0.053<br>.37 0.053<br>.38 0.065<br>.17 0.057<br>.68 0.043<br>.36 0.063<br>.90 0.058<br>.40 0.048<br>.02 0.066<br>.04 0.057<br>.28 0.077<br>.28 0.077<br>.28 0.077<br>.28 0.075<br>.37 0.055<br>.40 0.046<br>.92 0.066<br>.92 0.062<br>.47 0.055<br>.50 0.071<br>.47 0.065<br>.50 0.073<br>.38 0.074 | 0.203<br>0.236<br>0.143<br>0.189<br>0.188<br>0.238<br>0.237<br>0.200<br>0.184<br>0.242<br>0.242<br>0.254<br>0.169<br>0.171<br>0.206<br>0.212<br>0.238<br>0.213<br>0.214<br>0.169<br>0.171<br>0.206<br>0.212<br>0.238<br>0.214<br>0.169<br>0.215<br>0.206<br>0.212<br>0.238<br>0.215<br>0.206<br>0.216<br>0.206<br>0.217<br>0.206<br>0.217<br>0.206<br>0.206<br>0.206<br>0.207<br>0.206<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207<br>0.207 | 0.121<br>0.153<br>0.119<br>0.143<br>0.127<br>0.102<br>0.121<br>0.120<br>0.093<br>0.099<br>0.213<br>0.125<br>0.129<br>0.139<br>0.132<br>0.135<br>0.129<br>0.135<br>0.129<br>0.135<br>0.129 | 0.038<br>0.029<br>0.032<br>0.045<br>0.028<br>0.034<br>0.040<br>0.030<br>0.030<br>0.034<br>0.025<br>0.029<br>0.038<br>0.037<br>0.033<br>0.034<br>0.032<br>0.033<br>0.034<br>0.032<br>0.033<br>0.034<br>0.030<br>0.030 | 0.111<br>0.127<br>0.078<br>0.127<br>0.086<br>0.133<br>0.128<br>0.107<br>0.115<br>0.133<br>0.131<br>0.119<br>0.132<br>0.155<br>0.113<br>0.119<br>0.098<br>0.105<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.121<br>0.159<br>0.098<br>0.105 | 0.066<br>0.085<br>0.085<br>0.086<br>0.059<br>0.058<br>0.052<br>0.052<br>0.076<br>0.075<br>0.075<br>0.085<br>0.054<br>0.074<br>0.075<br>0.075<br>0.075<br>0.075<br>0.075<br>0.075<br>0.075<br>0.075<br>0.075 |
| 4 40 160                | .85 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.090                                                                                                                                                                                     | 0.037                                                                                                                                                                                                                | 0.117                                                                                                                                                                                                                                           | 0.056                                                                                                                                                                                                       |

| GP-ANI<br>NUMBER                                                          | BODY<br>WEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LUNGS<br>WEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LIVER<br>WEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %<br>KIDNEY                                                                                                                                                                                                                                                        | %<br>LUNGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %<br>LIVER                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1234456789012345678901234567890123456777777777777777777777777777777777777 | 318.39<br>279.33<br>330.64<br>331.32<br>287.04<br>283.91<br>3287.03<br>303.85<br>303.91<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>328.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>329.38<br>3 | 1.981<br>1.758<br>2.207<br>2.334<br>2.006<br>2.003<br>1.879<br>1.987<br>2.255<br>1.936<br>2.589<br>2.440<br>1.996<br>2.123<br>2.330<br>2.127<br>2.330<br>2.127<br>2.330<br>2.127<br>2.365<br>2.354<br>2.354<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105<br>2.105 | 1.172<br>1.278<br>1.205<br>1.365<br>1.365<br>1.362<br>1.362<br>1.362<br>1.362<br>1.479<br>1.6274<br>1.6274<br>1.379<br>1.6274<br>1.346<br>1.346<br>1.346<br>1.346<br>1.346<br>1.346<br>1.347<br>1.392<br>1.479<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.437<br>1.4 | 8.701<br>7.444<br>9.737<br>10.593<br>8.426<br>7.405<br>8.996<br>6.686<br>10.062<br>9.8584<br>9.461<br>7.793<br>9.349<br>8.461<br>7.793<br>9.349<br>8.253<br>9.349<br>8.253<br>9.542<br>8.3228<br>7.964<br>8.3228<br>7.964<br>8.3228<br>7.964<br>8.3228<br>7.326<br>8.3228<br>7.326<br>8.3228<br>7.326<br>8.326<br>8.326<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.436<br>9.4 | 0.622<br>0.629<br>0.667<br>0.704<br>0.698<br>0.668<br>0.662<br>0.654<br>0.675<br>0.716<br>0.707<br>0.654<br>0.660<br>0.678<br>0.736<br>0.736<br>0.722<br>0.712<br>0.722<br>0.712<br>0.683<br>0.6694<br>0.660<br>0.673<br>0.694<br>0.694<br>0.694<br>0.693<br>0.693 | 0.368<br>0.458<br>0.364<br>0.449<br>0.472<br>0.393<br>0.460<br>0.448<br>0.383<br>0.482<br>0.429<br>0.429<br>0.429<br>0.427<br>0.429<br>0.439<br>0.427<br>0.439<br>0.451<br>0.429<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451<br>0.451 | 2.733<br>2.665<br>2.945<br>3.197<br>2.877<br>2.808<br>2.6693<br>2.6693<br>2.586<br>2.586<br>2.586<br>2.915<br>2.615<br>2.823<br>2.760<br>2.785<br>2.760<br>2.785<br>2.957<br>2.760<br>2.785<br>2.957<br>2.925<br>2.663<br>2.784<br>2.793<br>2.784<br>2.793<br>2.785<br>2.783<br>2.851<br>2.851 |
| 8 79<br>8 80                                                              | 285.36<br>294.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.403<br>7.890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.649<br>0.666                                                                                                                                                                                                                                                     | 0.406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.594 2.683                                                                                                                                                                                                                                                                                    |

| GP-AN<br>NUMBEI                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HEART<br>WEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BRAIN<br>WEIGHT                                                                                                                                    | SPLEEN<br>WEIGHT                                                                                                                                                      | %<br>HEART                                                                                                                                                                                                                                                                                             | %<br>BRAIN                                                                                                                                                                   | %<br>SPLEEN                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NUMBER 5 4: 5 4: 5 5 4: 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 | R WEIGHT  318.39 279.33 330.64 331.32 287.23 300.85 3334.56 3334.56 343.98 334.56 343.98 334.56 343.98 334.57 316.57 316.77 316.77 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.27 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316.37 316. | WEIGHT  1.004 0.843 1.048 0.938 0.885 0.911 0.807 0.881 1.038 0.809 1.247 1.057 0.912 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.07 | WEIGHT  1.970 1.740 2.004 1.864 1.864 1.850 1.811 1.991 1.892 1.8943 1.943 1.943 1.945 1.945 1.945 1.945 1.946 1.947 1.920 1.845 1.946 1.920 1.844 | WEIGHT  0.711 0.688 0.794 0.768 0.672 0.7759 0.892 0.6892 0.688 0.622 0.688 0.6281 0.6882 0.6630 0.6655 0.6655 0.6655 0.6655 0.6655 0.6655 0.6655 0.6655 0.6655 0.673 | 0.315<br>0.302<br>0.317<br>0.283<br>0.308<br>0.304<br>0.284<br>0.290<br>0.311<br>0.313<br>0.345<br>0.307<br>0.323<br>0.339<br>0.345<br>0.302<br>0.345<br>0.302<br>0.345<br>0.302<br>0.345<br>0.302<br>0.311<br>0.313<br>0.345<br>0.302<br>0.311<br>0.313<br>0.325<br>0.305<br>0.311<br>0.3125<br>0.305 | DRAIN  0.619 0.623 0.606 0.5549 0.638 0.629 0.638 0.629 0.5641 0.613 0.6413 0.6413 0.644 0.5552 0.6413 0.5593 0.6553 0.6559 0.6583 0.6583 0.6583 0.6583 0.6583 0.6583 0.6583 | 0.223<br>0.246<br>0.240<br>0.232<br>0.234<br>0.267<br>0.233<br>0.242<br>0.268<br>0.199<br>0.199<br>0.201<br>0.193<br>0.195<br>0.206<br>0.197<br>0.221<br>0.231<br>0.215<br>0.178<br>0.184<br>0.193<br>0.193<br>0.193<br>0.193<br>0.207<br>0.198<br>0.199<br>0.207<br>0.236 |
| 8 76<br>8 77<br>8 78<br>8 79<br>8 80                            | 353.19<br>7 345.70<br>3 300.20<br>9 285.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.139<br>1.090<br>0.893<br>0.982<br>0.980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.954<br>1.981<br>1.924<br>1.924<br>1.816                                                                                                          | 0.669<br>0.667<br>0.567<br>0.542<br>0.535                                                                                                                             | 0.322<br>0.315<br>0.297<br>0.344<br>0.333                                                                                                                                                                                                                                                              | 0.553<br>0.573<br>0.641<br>0.674<br>0.618                                                                                                                                    | 0.189<br>0.193<br>0.189<br>0.190<br>0.182                                                                                                                                                                                                                                  |

| GP-                                          | ANI<br>BER                                | BODY<br>WEIGHT                                                                                                                                                                                                                                                                           | ADRENAL<br>WEIGHT                                                                                                                                                                       |                                                                                                                                                                                                                                       |                                                                                                                                     | %<br>ADRENAL                                                                                                                                                                                                | %<br>THYMUS                                                                                                                                                                           | %<br>TESTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NUM 5555555555666666666667777777777778888888 | E 444444555555555555666666667777777777777 | WEIGHT  318.39 279.33 330.64 331.32 287.23 300.85 3334.07 258.54 361.56 343.98 282.38 298.35 316.57 316.57 316.25 327.53 326.18 3298.53 326.18 3298.53 326.18 3298.53 326.18 3298.53 326.18 3298.53 326.18 3298.53 326.18 3298.53 326.18 3298.53 3298.53 3298.53 3298.35 3299.63 3299.63 | WEIGHT  0.062 0.046 0.057 0.050 0.054 0.053 0.052 0.047 0.053 0.052 0.047 0.053 0.073 0.0652 0.048 0.073 0.0692 0.048 0.038 0.040 0.043 0.040 0.043 0.043 0.055 0.048 0.055 0.048 0.055 | WEIGHT  0.251 0.290 0.256 0.239 0.231 0.189 0.240 0.377 0.280 0.256 0.313 0.259 0.256 0.313 0.263 0.263 0.263 0.263 0.263 0.263 0.276 0.285 0.263 0.276 0.285 0.263 0.276 0.285 0.272 0.380 0.275 0.272 0.380 0.275 0.272 0.380 0.299 | WEIGHT  1.361 2.756 2.804 3.578 3.0700 2.485 3.0702 2.485 3.0702 4.085 3.788 4.789 4.550 4.510 4.710 4.394 4.4839 4.711 4.839 4.574 | O.019 O.016 O.017 O.015 O.019 O.016 O.019 O.017 O.014 O.022 O.021 O.021 O.023 O.028 O.020 O.014 O.025 O.026 O.011 O.020 O.011 O.020 O.012 O.028 O.011 O.013 O.013 O.013 O.013 O.015 O.019 O.015 O.019 O.017 | THYMUS  0.079 0.104 0.077 0.072 0.080 0.063 0.085 0.124 0.084 0.088 0.090 0.075 0.091 0.096 0.088 0.132 0.035 0.089 0.083 0.075 0.099 0.077 0.065 0.078 0.138 0.092 0.076 0.092 0.076 | TESTES  0.427 0.987 0.848 1.069 1.034 0.828 1.196 0.808 1.555 1.986 1.899 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.42 |
| 8<br>8<br>8<br>8                             | 76<br>77<br>78<br>79<br>80                | 353.19<br>345.70<br>300.20<br>285.36<br>294.04                                                                                                                                                                                                                                           | 0.096<br>0.065<br>0.043<br>0.060<br>0.056                                                                                                                                               | 0.312<br>0.217<br>0.231                                                                                                                                                                                                               | 4.853<br>4.388<br>3.460                                                                                                             | 0.019<br>0.014<br>0.021                                                                                                                                                                                     | 0.068<br>0.090<br>0.072<br>0.081<br>0.088                                                                                                                                             | 2.139<br>1.404<br>1.462<br>1.213<br>1.359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

APPENDIX D

HEMATOLOGY DATA

Hematology Data/Females 45 Day

| DOSE        |         |       | WBC   | RBC   |      |      |        |
|-------------|---------|-------|-------|-------|------|------|--------|
| GROUPS      | ANIMALS | METHB | COUNT | COUNT | HGB  | HCT  | MCV    |
| (mg DNB/kg) |         |       | thsn/ | mill/ |      |      |        |
| diet        | #       | %     | cu mm | cu mm | g/dl | %    | cumicr |
| 30          | 1-361   | 3.9   | 3.7   | 7.45  | 14.1 | 40.9 | 54.9   |
|             | 1-362   | 3.9   | 3.2   | 7.38  | 14.0 | 40.2 | 54.5   |
|             | 1-363   | 4.9   | 4.7   | 7.35  | 13.8 | 39.4 | 53.7   |
|             | 1-364   | 4.3   | 3.7   | 7.25  | 13.8 | 40.2 | 55.5   |
|             | 1-365   | 3.3   | 4.2   | 7.48  | 14.1 | 40.7 | 54.4   |
|             |         |       |       |       |      |      |        |
| 6           | 2-366   | 1.4   | 4.3   | 8.07  | 15.0 | 42.4 | 52.5   |
|             | 2-367   | 1.4   | 3.1   | 7.89  | 14.8 | 41.0 | 52.0   |
|             | 2-368   | 1.5   | 3.5   | 7.91  | 14.6 | 41.2 | 52.2   |
|             | 2-369   | 1.6   | 3.6   | 8.10  | 15.3 | 43.2 | 53.3   |
|             | 2-370   | 1.6   | 2.8   | 8.32  | 15.6 | 43.9 | 52.7   |
|             |         |       |       |       |      |      |        |
| 1           | 3-371   | 0.7   | 3.7   | 7.99  | 15.0 | 41.9 | 52.5   |
|             | 3-372   | 0.8   | 2.7   | 8.13  | 15.1 | 43.9 | 54.0   |
|             | 3-373   | 0.2   | 2.4   | 7.69  | 14.3 | 40.2 | 52.3   |
|             | 3-374   | 0.7   | 3.0   | 7.83  | 14.6 | 40.7 | 52.0   |
|             | 3-375   | 1.1   | 3.4   | 7.94  | 14.9 | 41.7 | 52.5   |
|             |         |       |       |       |      |      |        |
| 0           | 4-376   | 0.2   | 3.5   | 8.22  | 15.2 | 42.5 | 51.7   |
|             | 4-377   | 0.4   | 3.2   | 7.93  | 14.9 | 42.0 | 52.9   |
|             | 4-378   | 0.8   | 2.4   | 7.86  | 14.6 | 41.0 | 52.2   |
|             | 4-379   | 1.3   | 3.5   | 8.19  | 15.2 | 43.0 | 52.5   |
|             | 4-380   | 0.6   | 3.1   | 8.31  | 15.4 | 43.6 | 52.5   |
|             |         |       |       |       |      |      |        |

## Hematology Data/Females 45 Day

| DOSE        |         |        |      |       | NEUTRO- | LYMPHO- |       | HEINZ     |
|-------------|---------|--------|------|-------|---------|---------|-------|-----------|
| GROUPS      | ANIMALS | MCH    | MCHC | PLAT  | PHILS   | CYTES   | RETIC | BODIES    |
| (mg DNB/kg) |         |        |      | thsn/ |         |         |       |           |
| diet        | #       | picogm | g/dl | cu mm | %       | %       | %     | <u></u> % |
| 30          | 1-361   | 18.9   | 34.5 | 812   | 13.7    | 81.8    | 5.1   | 0.0       |
|             | 1-362   | 19.0   | 34.9 | 881   | 22.8    | 71.7    | 4.8   | 0.0       |
|             | 1-363   | 18.8   | 35.1 | 818   | 11.8    | 85.5    | 4.0   | 0.0       |
|             | 1-364   | 19.0   | 34.2 | 809   | 16.6    | 79.7    | 4.5   | 0.0       |
|             | 1-365   | 18.9   | 34.7 | 750   | 13.5    | 84.1    | 4.6   | 0.0       |
|             |         |        |      |       |         |         |       |           |
| 6           | 2-366   | 18.6   | 35.3 | 797   | 21.0    | 76.5    | 2.4   | 0.0       |
|             | 2-367   | 18.7   | 36.0 | 767   | 12.5    | 84.1    | 2.7   | 0.0       |
|             | 2-368   | 18.5   | 35.5 | 776   | 18.0    | ·· 78.8 | 2.5   | 0.0       |
|             | 2-369   | 18.9   | 35.5 | 780   | 23.5    | 74.4    | 2.5   | 0.0       |
|             | 2-370   | 18.7   | 35.5 | 769   | 18.7    | 77.6    | 2.7   | 0.0       |
|             |         |        |      |       |         |         |       |           |
| 1           | 3-371   | 18.8   | 35.8 | 808   | 17.1    | 79.0    | 2.2   | 0.0       |
|             | 3-372   | 18.6   | 34.4 | 757   | 26.6    | 69.7    | 2.3   | 0.0       |
|             | 3-373   | 18.6   | 35.5 | 783   | 14.0    | 82.6    | 2.2   | 0.0       |
|             | 3-374   | 18.6   | 35.8 | 741   | 14.6    | 81.4    | 2.1   | 0.0       |
|             | 3-375   | 18.8   | 35.7 | 810   | 22.5    | 73.9    | 2.9   | 0.0       |
|             |         |        |      |       | •       |         |       |           |
| 0           | 4-376   | 18.5   | 35.7 | 722   | 18.3    | 77.4    | 1.8   | 0.0       |
|             | 4-377   | 18.7   | 35.4 | 748   | 19.8    | 77.1    | 2.1   | 0.0       |
| •           | 4-378   | 18.6   | 35.6 | 738   | 16.9    | 79.5    | 2.0   | 0.0       |
|             | 4-379   | 18.6   | 35.4 | 835   | 17.2    | 78.9    | 3.0   | 0.0       |
|             | 4-380   | 18.5   | 35.3 | 752   | 20.2    | 76.6    | 1.8   | 0.0       |

Hematology Data/Females 90 Day

| DOSE        |         |       | WBC   | RBC          |      |      |        |
|-------------|---------|-------|-------|--------------|------|------|--------|
| GROUPS      | ANIMALS | METHB | COUNT | COUNT        | HGB  | HCT  | MCV    |
| (mg DNB/kg) |         |       | thsn/ | mill/        |      |      |        |
| diet        | #       | %     | cu mm | cu mm        | g/dl | %    | cumicr |
| 30          | 1-01    | 4.0   | 4.1   | 7.26         | 14.2 | 39.8 | 54.8   |
|             | 1-02    | 4.1   | 3.6   | 7.07         | 13.9 | 38.3 | 54.2   |
|             | 1-03    | 3.5   | 3.8   | 7.19         | 14.0 | 38.4 | 53.3   |
|             | 1-04    | 3.9   | 3.8   | 7.34         | *    | 39.1 | 53.3   |
|             | 1-05    | 3.8   | 2.6   | 7.24         | 14.1 | 39.3 | 54.3   |
|             | 1-06    | 3.4   | 3.7   | 7.41         | 14.2 | 39.3 | 53.0   |
|             | 1-07    | 3.9   | 4.3   | 7.32         | *    | 38.8 | 53.1   |
|             | 1-08    | 3.6   | 2.9   | 7.29         | 14.2 | 39.3 | 53.9   |
|             | 1-09    | 3.6   | 4.7   | 7.77         | 14.9 | 43.2 | 55.6   |
|             | 1-10    | 3.9   | 3.7   | 7.41         | 14.2 | 40.6 | 54.8   |
|             |         |       |       |              |      |      |        |
| 6           | 2-11    | 1.6   | 2.9   | 7.76         | 15.1 | 40.8 | 52.6   |
|             | 2-12    | 1.6   | 3.0   | 7.77         | 15.0 | 40.7 | 52.4   |
| *           | 2-13    | 1.8   | 4.4   | 7.89         | 15.4 | 41.8 | 52.9   |
|             | 2-14    | 1.8   | 3.3   | 8.01         | 15.4 | 41.7 | 52     |
|             | 2-15    | 1.9   | 3.8   | 8.04         | 15.5 | 42.3 | 52.6   |
|             | 2-16    | 1.4   | 3.0   | 7.77         | 15.0 | 40.6 | 52.3   |
|             | 2-17    | 1.8   | 2.8   | 7.54         | 14.8 | 39.3 | 52.1   |
|             | 2-18    | 1.6   | 2.0   | 7.97         | 15.2 | 41.5 | 52.1   |
|             | 2-19    | 1.0   | 3.1   | 7.47         | 14.6 | 38.8 | 51.9   |
|             | 2-20    | 1.4   | 2.0   | 7.92         | 15.3 | 41.3 | 52.2   |
|             |         |       |       |              |      |      |        |
| 1           | 3-21    | 1.7   | 2.7   | 7.94         | 15.5 | 41.8 | 52.6   |
|             | 3-22    | 0.9   | 1.6   | 7.74         | 15.3 | 39.6 | 51.2   |
|             | 3-23    | 0.6   | 2.5   | 8.19         | 15.5 | 42.8 | 52.3   |
|             | 3-24    | 1.0   | 3.4   | 7.91         | 15.6 | 41.2 | 52.1   |
|             | 3-25    | 1.1   | 3.3   | 7.94         | 15.4 | 41.3 | 51.9   |
|             | 3-26    | 0.5   | 3.6   | 8.16         | 15.6 | 43.2 | 52.9   |
|             | 3-27    | 1.4   | 3.5   | 8.00         | 15.5 | 41.6 | 52.1   |
|             | 3-28    | 1.0   | 2.8   | 8.04         | 15.2 | 42.7 | 53.1   |
|             | 3-29    | 2.1   | 4.1   | 8.26         | *    | 43.2 | 52.2   |
|             | 3-30    | 0.8   | 2.8   | 8.06         | 15.4 | 42.2 | 52.3   |
|             |         |       |       |              |      |      |        |
| 0           | 4-31    | 0.3   | 3.3   | 8.02         | 15.3 | 42.0 | 52.4   |
|             | 4-32    | 0.5   | 3.6   | 7.65         | 14.7 | 40.3 | 52.6   |
|             | 4-33    | 0.6   | 3.8   | 7.91         | 15.4 | 40.8 | 51.5   |
|             | 4-34    | 0.1   | 2.2   | 7.70         | 15.2 | 41.6 | 54.0   |
|             | 4-35    | 1.0   | 3.7   | 7.95         | 15.5 | 41.9 | 52.6   |
|             | 4-36    | 0.5   | 3.6   | 7.76         | 14.9 | 40.7 | 52.5   |
|             | 4-37    | 1.2   | 3.1   | 8.02         | 15.6 | 41.4 | 51.6   |
|             | 4-38    | 0.7   | 2.8   | 7.88         | 15.2 | 41.1 | 52.2   |
|             | 4-39    | 0.9   | 4.0   | 8.13         |      | 42.2 | 51.9   |
|             | 4-40    | 1.4   | 4.6   | 8.12         | 15.8 | 42.5 | 52.3   |
|             |         |       | * 0   | ata unavaila | ble  |      |        |
|             |         |       |       |              |      |      |        |

Hematology Data/Females 90 Day

| DOSE        |              |              |      | ,          | NEUTRO-               | LYMPHO-      |        | HEINZ  |
|-------------|--------------|--------------|------|------------|-----------------------|--------------|--------|--------|
| GROUPS      | ANIMALS      | мсн          | мснс | PLAT       | PHILS                 | CYTES        | RETIC  | BODIES |
| (mg DNB/kg) | AMINALS      | WCH          | WICH | thsn/      | 111120                | CTTEG        | 112110 | DODIEG |
| diet        | #            | picogm       | g/dl | cu mm      | %                     | %            | %      | %      |
| 30          | 1-01         | 19.6         | 35.8 | 729        | 18.3                  | 77.9         | 3.7    | 0.0    |
| 30          | 1-02         | 19.7         | 36.3 | 703        | 21.2                  | 75.8         | 3.5    | 0.0    |
|             | 1-02         | 19.4         | 36.4 | 704        | 21.4                  | 75.7         | 2.9    | 0.0    |
|             | 1-03         | *            | *    | 723        | 5.9                   | 74.0         | 2.8    | 0.0    |
|             | 1-04         |              | 35.8 | 709        | 17.0                  | 79.9         | 4.7    | 0.0    |
|             |              | 19.4<br>19.2 | 36.2 | 631        | 18.1                  | 79.4         | 3.7    | 0.0    |
|             | 1-06         | 19.2         | *    | 703        | 8.8                   | 66.8         | 4.2    | 0.0    |
|             | 1-07         |              |      |            |                       |              | 3.6    | 0.0    |
|             | 1-08         | 19.5         | 36.3 | 694        | 28.8                  | 66.1         |        |        |
|             | 1-09         | 19.2         | 34.6 | 688        | 20.2                  | 77.1         | 3.3    | 0.0    |
|             | 1-10         | 19.2         | 34.9 | 690        | 13.2                  | · 83.8       | 3.2    | 0.0    |
| 6           | 2-11         | 19.5         | 37.1 | 660        | 17.1                  | 79.0         | 1.9    | 0.0    |
|             | 2-12         | 19.3         | 36.8 | 617        | 17.7                  | 77.9         | 1.7    | 0.0    |
|             | 2-13         | 19.5         | 36.9 | 717        | 15.2                  | 82.1         | 2.1    | 0.0    |
|             | 2-14         | 19.2         | 36.9 | 682        | 20.5                  | 76.9         | 1.9    | 0.0    |
|             | 2-15         | 19.3         | 36.6 | 597        | 16.8                  | 79.7         | 2.1    | 0.0    |
|             | 2-16         | 19.3         | 36.9 | 632        | 15.6                  | 81.6         | 1.8    | 0.0    |
|             | 2-17         | 19.6         | 37.6 | 639        | 19.2                  | 76.6         | 1.7    | 0.0    |
|             | 2-18         | 19.1         | 36.6 | 642        | 31.5                  | 62.8         | 2.0    | 0.0    |
|             | 2-19         | 19.5         | 37.5 | 709        | 26.6                  | 69.0         | 2.1    | 0.0    |
|             | 2-20         | 19.4         | 37.1 | 586        | 18.5                  | 78.1         | 1.9    | 0.0    |
| 1           | 3-21         | 19.6         | 37.2 | 649        | 21.6                  | 73.9         | 1.9    | 0.0    |
| •           | 3-22         | 19.8         | 38.7 | 622        | 20.7                  | 75.6         | 1.8    | 0.0    |
|             | 3-23         | 19.0         | 36.2 | 574        | 31.4                  | 56.7         | 1.5    | 0.0    |
|             | 3-24         | 19.7         | 37.8 | 641        | 17.5                  | 78.8         | 1.7    | 0.0    |
|             | 3-25         | 19.4         | 37.3 | 652        | 23.6                  | 72.1         | 2.0    | 0.0    |
|             | 3-26         | 19.1         | 36.1 | 659        | 18.2                  | 78.0         | 1.6    | 0.0    |
|             | 3-27         | 19.4         | 37.2 | 678        | 28.2                  | 68.0         | 2.1    | 0.0    |
|             | 3-28         | 18.9         | 35.7 | 599        | 21.0                  | 75.4         | 1.8    | 0.0    |
|             | 3-29         | *            | *    | 548        | 9.1                   | 68.2         | 2.0    | 0.0    |
| •           | 3-30         | 19.1         | 36.6 | 642        | 14.9                  | 81.7         | 1.9    | 0.0    |
| 0           | 4-31         | 19.1         | 36.4 | 664        | 23.6                  | 73.3         | 1.5    | 0.0    |
| 0           | 4-31         | 19.1         | 36.4 | 685        | 22.3                  | 73.7         | 2.4    | 0.0    |
|             | 4-32<br>4-33 | 19.4         | 37.8 | 685        | 22.4                  | 74.0         | 1.7    | 0.0    |
|             | 4-33<br>4-34 | 19.4         | 36.6 | 645        | 21.3                  | 75.0         | 1.4    | 0.0    |
|             | 4-34<br>4-35 | 19.6         | 36.9 | 577        | 14.9                  | 82.7         | 1.6    | 0.0    |
|             | 4-35<br>4-36 | 19.4         | 36.5 | 673        | 18.9                  | 78.2         | 1.3    | 0.0    |
|             | 4-36<br>4-37 | 19.2         | 37.6 | 603        | 24.2                  | 71.6         | 2.0    | 0.0    |
|             |              |              |      | 632        | 24.2<br>20.4          | 71.6<br>76.6 | 2.2    | 0.0    |
|             | 4-38         | 19.3         | 37.0 |            |                       | 85.0         | 1.7    | 0.0    |
|             | 4-39         | 19.3         | 37.2 | 667<br>592 | 12.8                  | 83.6         | 1.6    | 0.0    |
|             | 4-40         | 19.5         | 37.2 |            | 13.3<br>Data unavaila |              | 1.0    | 0.0    |
|             |              |              |      | - 1        | Jata unavalla         | BUIG         |        |        |

Hematology Data/Males 45 Day

| DOSE        |         |       | WBC   | RBC   |      |      |        |
|-------------|---------|-------|-------|-------|------|------|--------|
| GROUPS      | ANIMALS | METHB | COUNT | COUNT | HGB  | HCT  | MCV    |
| (mg DNB/kg) |         |       | thsn/ | mill/ |      |      |        |
| diet        | #       | %     | cu mm | cu mm | g/dl | %    | cumicr |
| 30          | 5-381   | 6.1   | 4.3   | 8.22  | 14.2 | 41.9 | 51.0   |
|             | 5-382   | 4.3   | 5.0   | 8.39  | 14.5 | 43.6 | 52.0   |
|             | 5-383   | 3.4   | 4.8   | 8.31  | 14.3 | 42.7 | 51.4   |
|             | 5-384   | 4.1   | 5.5   | 8.23  | 14.3 | 42.1 | 51.2   |
|             | 5-385   | 4.3   | 2.9   | 8.05  | 13.9 | 41.5 | 51.5   |
| 6           | 6-386   | 1.0   | 5.9   | 8.59  | 14.4 | 42.5 | 49.5   |
| O           | 6-387   | 1.1   | 4.1   | 8.95  | 15.2 | 44.7 | 50.0   |
|             | 6-388   | 0.5   | 4.1   | 9.04  | 15.2 | 44.7 |        |
|             | 6-389   |       |       |       |      |      | 19.6   |
|             |         | 2.2   | 3.7   | 9.19  | 15.6 | 45.4 | 49.4   |
|             | 6-390   | 1.7   | 3.6   | 8.99  | 15.1 | 44.7 | 49.8   |
| 1           | 7-391   | 0.9   | 2.9   | 8.78  | 14.9 | 43.6 | 49.6   |
|             | 7-392   | 0.4   | 5.0   | 9.03  | 15.3 | 45.0 | 49.9   |
|             | 7-393   | 0.3   | 3.5   | 8.85  | 15.0 | 43.2 | 48.7   |
|             | 7-394   | 1.3   | 4.4   | 8.91  | 15.5 | 44.9 | 50.4   |
|             | 7-395   | 1.0   | 4.4   | 9.12  | 15.4 | 45.5 | 49.9   |
| 0           | 8-396   | 0.5   | 3.4   | 9.16  | 15.6 | 44.7 | 48.8   |
| Ŭ           | 8-397   | 0.9   | 3.4   | 8.88  | 15.0 | 43.6 | 49.1   |
|             | 8-398   | 0.2   | 4.2   | 8.98  | 15.4 | 44.3 | 49.3   |
|             | 8-399   | 0.7   | 5.6   | 8.96  | 15.2 | 44.4 | 49.6   |
|             | 8-400   | 0.6   | 4.0   | 8.93  | 15.1 | 44.6 | 49.9   |
|             | 0 .00   | 0.0   | 1.0   | 0.00  |      |      | 40.0   |

Hematology Data/Males 45 Day

| DOSE        |         |        |      |       | NEUTRO- | LYMPHO- |       | HEINZ  |
|-------------|---------|--------|------|-------|---------|---------|-------|--------|
| GROUPS      | ANIMALS | MCH    | MCHC | PLAT  | PHILS   | CYTES   | RETIC | BODIES |
| (mg DNB/kg) |         |        |      | thsn/ |         |         |       |        |
| diet        | #       | picogm | g/dl | cu mm | %       | %       | %     | %      |
| 30          | 5-381   | 17.2   | 33.8 | 727   | 18.6    | 78.2    | 4.0   | 0.0    |
|             | 5-382   | 17.2   | 33.1 | 657   | 17.0    | 79.6    | 5.0   | 0.0    |
|             | 5-383   | 17.3   | 33.6 | 804   | 22.0    | 74.5    | 4.4   | 0.0    |
|             | 5-384   | 17.3   | 33.9 | 783   | 17.9    | 79.1    | 4.8   | 0.0    |
|             | 5-385   | 17.3   | 33.5 | 536   | 17.8    | 79.8    | 4.3   | 0.0    |
|             |         |        |      |       |         |         |       |        |
| 6           | 6-386   | 16.8   | 33.9 | 792   | 27.4    | 69.1    | 3.3   | 0.0    |
|             | 6-387   | 17.0   | 34.0 | 770   | 25.1    | 71.6    | 3.5   | 0.0    |
|             | 6-388   | 16.7   | 33.6 | 775   | 21.0    | 75.6    | 3.2   | 0.0    |
|             | 6-389   | 17.0   | 34.4 | 636   | 16.7    | 80.8    | 2.8   | 0.0    |
|             | 6-390   | 16.8   | 33.6 | 782   | 25.6    | 70.7    | 3.2   | 0.0    |
|             |         |        |      |       |         |         |       |        |
| 1           | 7-391   | 17.0   | 34.2 | 824   | 23.2    | 73.5    | 3.3   | 0.0    |
|             | 7-392   | 17.0   | 34.0 | 879   | 25.8    | 70.5    | 3.0   | 0.0    |
|             | 7-393   | 16.9   | 34.7 | 747   | 21.4    | 75.6    | 2.5   | 0.0    |
|             | 7-394   | 17.4   | 34.6 | 672   | 19.4    | 77.5    | 2.1   | 0.0    |
|             | 7-395   | 16.9   | 33.9 | 766   | 21.8    | 75.4    | 3.2   | 0.0    |
|             |         |        |      |       |         |         |       |        |
| 0           | 8-396   | 17.0   | 34.8 | 757   | 22.2    | 74.2    | 2.5   | 0.0    |
|             | 8-397   | 16.9   | 34.4 | 780   | 21.0    | 75.4    | 2.4   | 0.0    |
|             | 8-398   | 17.1   | 34.8 | 736   | 26.1    | 70.5    | 2.8   | 0.0    |
|             | 8-399   | 17.0   | 34.3 | 789   | 29.1    | 67.2    | 2.3   | 0.0    |
|             | 8-400   | 16.9   | 33.9 | 745   | 20.1    | 76.5    | 2.5   | 0.0    |

Hematology Data/Males 90 Day

| DOSE        |         |       | WBC   | RBC   |      |      |        |
|-------------|---------|-------|-------|-------|------|------|--------|
| GROUPS      | ANIMALS | METHB | COUNT | COUNT | HGB  | HCT  | MCV    |
| (mg DNB/kg) |         |       | thsn/ | mill/ | ,    |      |        |
| diet        | #       | %     | cu mm | cu mm | g/dl | %    | cumicr |
| 30          | 5-41    | 4.3   | 5.5   | 8.47  | 14.9 | 42.4 | 50.2   |
|             | 5-42    | 3.7   | 4.5   | 8.17  | 14.7 | 42.5 | 52.0   |
|             | 5-43    | 5.2   | 6.6   | 8.17  | 14.2 | 40.6 | 49.7   |
|             | 5-44    | 4.1   | 3.8   | 8.27  | 14.4 | 41.3 | 50.0   |
|             | 5-45    | 3.8   | 4.1   | 8.05  | 14.4 | 41.0 | 50.9   |
|             | 5-46    | 4.0   | 3.5   | 8.26  | 14.6 | 42.1 | 50.9   |
|             | 5-47    | 4.3   | 3.4   | 7.99  | 14.5 | 40.9 | 51.1   |
|             | 5-48    | 3.8   | 4.9   | 8.00  | 14.2 | 40.9 | 51.1   |
|             | 5-49    | 4.2   | 3.2   | 8.06  | 14.5 | 40.5 | 50.3   |
|             | 5-50    | 3.7   | 3.1   | 7.97  | 14.4 | 40.3 | 50.6   |
| 6           | 6-51    | 2.0   | 4.6   | 9.07  | 15.3 | 43.1 | 47.5   |
|             | 6-52    | 1.9   | 2.3   | 8.67  | 15.0 | 41.5 | 47.8   |
|             | 6-53    | 0.8   | 2.4   | 9.26  | 15.8 | 45.7 | 49.4   |
|             | 6-54    | 1.5   | 3.9   | 8.94  | 15.2 | 43.6 | 48.8   |
|             | 6-55    | 1.2   | 3.0   | 8.55  | 14.8 | 40.8 | 47.7   |
|             | 6-56    | 1.6   | 4.0   | 9.12  | 15.6 | 44.4 | 48.7   |
|             | 6-57    | 1.3   | 4.3   | 8.98  | 15.4 | 43.0 | 47.9   |
|             | 6-58    | 1.6   | 2.4   | 8.71  | 15.3 | 41.6 | 47.8   |
|             | 6-59    | 1.9   | 3.4   | 8.79  | 15.0 | 42.9 | 48.8   |
|             | 6-60    | 0.8   | 5.2   | 9.17  | 15.7 | 44.7 | 48.7   |
| 1           | 7-61    | 0.9   | 3.8   | 9.34  | 15.8 | 45.1 | 48.3   |
|             | 7-62    | 0.9   | 4.6   | 9.31  | 15.9 | 44.8 | 48.2   |
|             | 7-63    | 0.6   | 3.6   | 8.90  | 15.2 | 43.1 | 48.4   |
|             | 7-64    | 0.9   | 3.7   | 8.88  | 15.6 | 44.0 | 49.5   |
|             | 7-65    | 0.6   | 2.4   | 8.43  | 15.1 | 41.4 | 49.1   |
|             | 7-66    | 1.6   | 3.2   | 9.06  | 15.6 | 44.3 | 48.9   |
|             | 7-67    | 0.4   | 3.3   | 8.92  | 15.5 | 43.8 | 49.0   |
|             | 7-68    | 0.7   | 3.3   | 9.22  | 15.9 | 44.7 | 48.5   |
| •           | 7-69    | 8.0   | 3.7   | 9.05  | 15.8 | 44.8 | 49.5   |
|             | 7-70    | 0.4   | 3.3   | 8.90  | 15.2 | 43.4 | 48.7   |
| 0           | 8-71    | 0.7   | 3.2   | 9.20  | 16.1 | 45.6 | 49.6   |
|             | 8-72    | 0.8   | 3.3   | 9.15  | 15.7 | 45.0 | 49.2   |
|             | 8-73    | 0.6   | 6.2   | 8.80  | 15.6 | 43.6 | 49.6   |
|             | 8-74    | 8.0   | 3.1   | 8.79  | 15.3 | 43.1 | 49.0   |
|             | 8-75    | 0.6   | 4.7   | 8.81  | 15.3 | 43.9 | 49.8   |
|             | 8-76    | 0.8   | 4.2   | 9.32  | 15.8 | 44.8 | 48.0   |
|             | 8-77    | 0.6   | 3.9   | 9.09  | 15.8 | 44.9 | 49.4   |
|             | 8-78    | 0.9   | 4.2   | 9.06  | 15.6 | 43.5 | 48.0   |
|             | 8-79    | 0.7   | 4.7   | 8.76  | 15.4 | 43.4 | 49.5   |
|             | 8-80    | 1.0   | 3.7   | 8.90  | 15.8 | 43.2 | 48.5   |
|             |         |       |       |       |      |      |        |

Hematology Data/Males 90 Day

| DOSE        |         |        |      |           | NEUTRO-               | LYMPHO-      |       | HEINZ      |
|-------------|---------|--------|------|-----------|-----------------------|--------------|-------|------------|
| GROUPS      | ANIMALS | мсн    | мснс | PLAT      | PHILS                 | CYTES        | RETIC | BODIES     |
| (mg DNB/kg) |         |        |      | thsn/     |                       |              |       |            |
| diet        | #       | picogm | g/dl | cu mm     | %                     | %            | %     | %          |
| 30          | 5-41    | 17.6   | 35.1 | 704       | 22.5                  | 74.5         | 2.7   | 0.0        |
|             | 5-42    | 78.0   | 34.6 | 643       | 19.0                  | 77.8         | 3.5   | 0.0        |
|             | 5-43    | 17.4   | 35.0 | 666       | 16.2                  | 81.3         | 3.4   | 0.0        |
|             | 5-44    | 17.4   | 34.7 | 645       | 25.2                  | 72.3         | 3.0   | 0.0        |
|             | 5-45    | 17.9   | 35.2 | 563       | 23.1                  | 74.0         | 3.2   | 0.0        |
|             | 5-46    | 17.7   | 34.7 | 662       | 20.9                  | 75.9         | 2.4   | 0.0        |
|             | 5-47    | 18.1   | 35.4 | 711       | 16.9                  | 80.5         | 3.0   | 0.0        |
|             | 5-48    | 17.8   | 34.8 | 611       | 12.1                  | 85.3         | 3.5   | 0.0        |
|             | 5-49    | 17.9   | 35.7 | 693       | 21.8                  | - 74.2       | 4.1   | 0.0        |
|             | 5-50    | 18.1   | 35.7 | 698       | 21.7                  | 75.5         | 2.7   | 0.0        |
| 6           | 6-51    | 16.8   | 35.4 | 663       | 20.4                  | 75.8         | 1.7   | 0.0        |
|             | 6-52    | 17.3   | 36.1 | 678       | 24.1                  | 72.0         | 1.8   | 0.0        |
|             | 6-53    | 17.1   | 34.5 | 645       | 21.5                  | 74.7         | 2.6   | 0.0        |
|             | 6-54    | 17.0   | 34.8 | 602       | 20.1                  | 77.0         | 1.8   | 0.0        |
|             | 6-55    | 17.3   | 36.3 | 596       | 24.3                  | 71.5         | 2.0   | 0.0        |
|             | 6-56    | 17.1   | 35.2 | 635       | 15.4                  | 80.5         | 2.0   | 0.0        |
|             | 6-57    | 17.1   | 35.8 | 724       | 18.0                  | 78.4         | 1.4   | 0.0        |
|             | 6-58    | 17.6   | 36.8 | *         | 27.2                  | 69.0         | 1.5   | 0.0        |
|             | 6-59    | 17.1   | 35.0 | 562       | 19.8                  | 75.5         | 2.5   | 0.0        |
|             | 6-60    | 17.1   | 35.1 | 613       | 14.5                  | 78.9         | 2.2   | 0.0        |
| 1           | 7-61    | 16.9   | 35.1 | 583       | 27.2                  | 68.4         | 1.6   | 0.0        |
|             | 7-62    | 17.1   | 35.5 | 633       | 19.6                  | 78.0         | 1.5   | 0.0        |
|             | 7-63    | 17.0   | 35.2 | 655       | 17.9                  | 78.7         | 1.9   | 0.0        |
|             | 7-64    | 17.5   | 35.3 | 657       | 22.9                  | 72.7         | 1.6   | 0.0        |
|             | 7-65    | 17.9   | 36.5 | 638       | 25.4                  | 71.8         | 1.7   | 0.0        |
|             | 7-66    | 17.3   | 35.3 | 592       | 16.9                  | 80.4         | 1.8   | 0.0        |
|             | 7-67    | 17.3   | 35.3 | 613       | 23.2                  | 72.1         | 1.7   | 0.0        |
|             | 7-68    | 17.2   | 35.6 | 583       | 19.5                  | 77.4         | 1.7   | 0.0        |
|             | 7-69    | 17.4   | 35.2 | *<br>504  | 19.4                  | 76.9         | 2.0   | 0.0        |
|             | 7-70    | 17.1   | 35.0 | 501       | 18.3                  | 78.4         | 1.8   | 0.0        |
| 0           | 8-71    | 17.5   | 35.3 | 530       | 20.9                  | 76.2         | 1.9   | 0.0        |
|             | 8-72    | 17.2   | 34.9 | 641       | 20.6                  | 76.4         | 1.6   | 0.0        |
|             | 8-73    | 17.8   | 35.8 | 628       | 16.5                  | 80.4         | 1.5   | 0.0        |
|             | 8-74    | 17.4   | 35.5 | 691       | 26.6                  | 69.9         | 1.8   | 0.0        |
|             | 8-75    | 17.3   | 34.8 | 1014      | 24.8                  | 70.5         | 1.9   | 0.0        |
|             | 8-76    | 17.0   | 35.3 | 721       | 19.4                  | 76.7         | 1.2   | 0.0        |
|             | 8-77    | 17.3   | 35.1 | 671       | 19.5                  | 76.2         | 2.2   | 0.0        |
|             | 8-78    | 17.2   | 35.8 | 645       | 21.5                  | 76.3         | 2.2   | 0.0        |
|             | 8-79    | 17.6   | 35.6 | #<br>E24  | 17.6                  | 78.8         | 1.7   | 0.0<br>0.0 |
|             | 8-80    | 17.8   | 36.6 | 534<br>*[ | 21.4<br>Data unavaila | 75.0<br>able | 1.3   | 0.0        |
|             |         |        |      |           |                       | , T          |       |            |

# APPENDIX E CLINICAL CHEMISTRY DATA

## Clinical Chemistries/Females 45 Day

| DOSE        |         |         |       |       |        |           |       |
|-------------|---------|---------|-------|-------|--------|-----------|-------|
| GROUPS      | ANIMALS | GLUCOSE | BUN   | CREAT | SODIUM | POTASSIUM | CHOL  |
| (mg DNB/kg) |         |         |       |       |        |           |       |
| diet        | #       | mg/dl   | mg/dl | mg/dl | mmol/l | mmol/l    | mg/dl |
| 30          | 1-361   | 108     | 21    | 0.6   | 140    | 4.8       | 96    |
|             | 1-362   | 102     | 19    | 0.5   | 140    | 4.3       | 98    |
|             | 1-363   | 99      | 26    | 0.6   | 140    | 4.1       | 91    |
|             | 1-364   | 101     | 21    | 0.6   | 139    | 4.5       | 95    |
|             | 1-365   | 121     | 22    | 0.6   | 141    | 4.2       | 90    |
|             |         |         |       |       |        |           |       |
| 6           | 2-366   | 133     | 25    | 0.5   | 141    | 3.9       | 86    |
|             | 2-367   | 107     | 21    | 0.5   | 140    | 4.4       | 96    |
|             | 2-368   | 130     | 24    | 0.5   | 140    | 4.2       | 86    |
|             | 2-369   | 113     | 22    | 0.6   | 141    | 4.6       | 94    |
|             | 2-370   | 105     | 22    | 0.6   | 142    | 4.7       | 92    |
|             |         |         |       |       |        |           |       |
| 1           | 3-371   | 125     | 21    | 0.5   | 141    | 4.4       | 82    |
|             | 3-372   | 166     | 26    | 0.5   | 140    | 5.8       | 82    |
|             | 3-373   | 104     | 20    | 0.5   | 142    | 4.1       | 75    |
|             | 3-374   | 119     | 23    | 0.5   | 140    | 4.6       | 80    |
|             | 3-375   | 131     | 23    | 0.5   | 140    | 4.6       | 80    |
|             |         |         |       |       |        |           |       |
| 0           | 4-376   | 104     | 20    | 0.6   | 141    | 4.5       | 85    |
|             | 4-377   | 92      | 17    | 0.5   | 141    | 4.1       | 94    |
|             | 4-378   | 90      | 19    | 0.5   | 141    | 4.3       | 91    |
|             | 4-379   | 107     | 24    | 0.6   | 141    | 4.5       | 82    |
|             | 4-380   | 120     | 20    | 0.6   | 140    | 4.2       | 93    |

## Clinical Chemistries/Females 45 Day

| DOSE<br>GROUPS | ANIMALS | AST   | A 1 T | PHOS  | AP   | Ca    | TOTAL<br>BILIRUBIN | TOTAL PROTEIN | ALB   | TRIG  |
|----------------|---------|-------|-------|-------|------|-------|--------------------|---------------|-------|-------|
|                | AMINALS | ASI   | ALT   | PHUS  | AF   | Ca    | BILINOBIN          | THOTEIN       | VER   | THIG  |
| (mg DNB/kg)    |         | 1.1.0 | 110   |       | 11/1 | /dl   | ma/dl              | o /dl         | a /dl | ma/dl |
| diet           | #       | U/L   | U/L   | mg/dl | U/L  | mg/dl | mg/dl              | g/dl          | g/dl  | mg/dl |
| 30             | 1-361   | 181   | 74    | 9.7   | 106  | 10.1  | 0.2                | 5.9           | 4.5   | 37    |
|                | 1-362   | 118   | 32    | 8.3   | 91   | 10.3  | 0.1                | 6.2           | 4.8   | 31    |
|                | 1-363   | 118   | 39    | 8.5   | 101  | 10.2  | 0.1                | 6.0           | 4.6   | 36    |
|                | 1-364   | 211   | 83    | 10.3  | 122  | 10.2  | 0.1                | 5.9           | 4.5   | 27    |
|                | 1-365   | 155   | 54    | 8.5   | 107  | 10.1  | 0.2                | 6.1           | 4.7   | 38    |
|                |         |       |       |       |      |       |                    |               |       |       |
| 6              | 2-366   | 105   | 51    | 7.1   | 105  | 9.8   | 0.1                | 6.2           | 4.6   | 30    |
|                | 2-367   | 157   | 62    | 7.9   | 102  | 10.1  | 0.1                | 6.0           | 4.6   | 33    |
|                | 2-368   | 120   | 44    | 6.5   | 131  | 10.0  | -0.1               | 5.9           | 4.5   | 40    |
|                | 2-369   | 210   | 81    | 8.8   | 119  | 10.1  | 0.3                | 6.1           | 4.7   | 35    |
|                | 2-370   | 204   | 106   | 9.0   | 117  | 9.9   | 0.2                | 6.1           | 4.7   | · 31  |
|                |         |       |       |       |      |       |                    |               |       |       |
| 1              | 3-371   | 134   | 52    | 7.0   | 104  | 9.7   | 0.1                | 5.6           | 4.2   | 27    |
| •              | 3-372   | 192   | 82    | 10.2  | 106  | 10.2  | 0.2                | 6.0           | 4.6   | 30    |
|                | 3-373   | 136   | 53    | 7.1   | 118  | 9.6   | 0.2                | 5.8           | 4.3   | 24    |
|                | 3-374   | 91    | 40    | 8.6   | 100  | 9.9   | 0.1                | 5.5           | 4.2   | 26    |
|                | 3-37-5  | 140   | 53    | 8.1   | 113  | 9.9   | 0.2                | 5.8           | 4.5   | 33    |
|                | 3-373   | 140   | 55    | 0.1   | 115  | 3.5   | 0.2                | 0.0           | 7.0   | •     |
| 0              | 4-376   | 180   | 78    | 9.5   | 96   | 10.1  | 0.2                | 5.7           | 4.4   | 28    |
| U              |         |       |       |       |      | 9.9   | 0.2                | 5.7           | 4.4   | 29    |
|                | 4-377   | 119   | 37    | 8.3   | 110  |       |                    |               |       |       |
|                | 4-378   | 140   | 41    | 7.3   | 84   | 9.7   | 0.1                | 5.9           | 4.3   | 27    |
|                | 4-379   | 134   | 39    | 9.2   | 119  | 10.0  | 0.2                | 6.2           | 4.6   | 29    |
|                | 4-380   | 157   | 52    | 8.7   | 116  | 9.9   | 0.2                | 5.8           | 4.6   | 36    |

## Clinical Chemistries/Females 90 Day

|                     |              |         |       | эо рау |          |            |       |
|---------------------|--------------|---------|-------|--------|----------|------------|-------|
| DOSE                |              |         |       |        |          |            |       |
| GROUPS              | ANIMALS      | GLUCOSE | BUN   | CREAT  | SODIUM   | POTASSIUM  | CHOL  |
| (mg DNB/kg)<br>diet | #            |         |       | /I     |          |            | (.11  |
| 30                  |              | mg/dl   | mg/dl | mg/dl  | mmol/l   | mmol/l     | mg/dl |
| 30                  | 1-01<br>1-02 | 113     | 19    | 0.6    | 142      | 3.9        | 117   |
|                     |              | 120     | 19    | 0.5    | 143      | 4.7        | 121   |
|                     | 1-03         | 124     | 19    | 0.6    | 144      | 3.7        | 113   |
|                     | 1-04         | 114     | 22    | 0.5    | 142      | 4.2        | 108   |
|                     | 1-05         | 98      | 19    | 0.7    | 145<br>* | 4.0<br>*   | 111   |
|                     | 1-06         | 125     | 17    | 0.5    |          |            | 53    |
|                     | 1-07         | 105     | 20    | 0.5    | 144      | 3.7        | 115   |
|                     | 1-08         | 95      | 20    | 0.6    | 143      | 4.3        | 112   |
|                     | 1-09         | 104     | 17    | 0.7    | 145      | 4.5        | 125   |
|                     | 1-10         | 112     | 22    | 0.6    | 144      | 4.6        | 103   |
| 6                   | 2-11         | 114     | 15    | 0.6    | 143      | 4.2        | 115   |
|                     | 2-12         | 110     | 19    | 0.6    | 143      | 4.3        | 109   |
|                     | 2-13         | 92      | 18    | 0.6    | 143      | 4.1        | 119   |
|                     | 2-14         | 107     | 19    | 0.5    | 143      | 3.7        | 105   |
|                     | 2-15         | 113     | 19    | 0.5    | 144      | 3.9        | 105   |
|                     | 2-16         | 102     | 19    | 0.6    | 144      | 4.0        | 105   |
|                     | 2-17         | 120     | 15    | 0.6    | 141      | 3.7        | 112   |
|                     | 2-18         | 108     | 16    | 0.6    | 146      | 3.9        | 111   |
|                     | 2-19         | 97      | 18    | 0.5    | 144      | 4.6        | 99    |
|                     | 2-20         | 121     | 18    | 0.6    | 143      | 4.2        | 100   |
| 1                   | 3-21         | 120     | 15    | 0.6    | 144      | 4.5        | 107   |
| ·                   | 3-22         | 104     | 15    | 0.5    | 143      | 3.9        | 97    |
|                     | 3-23         | 115     | 20    | 0.6    | 144      | 4.4        | 115   |
|                     | 3-24         | 106     | 20    | 0.6    | 142      | 3.9        | 111   |
|                     | 3-25         | 122     | 16    | 0.6    | 142      | 4.6        | 101   |
|                     | 3-26         | 130     | 19    | 0.7    | 143      | 4.4        | 125   |
| 4                   | 3-27         | 113     | 18    | 0.6    | 144      | 3.9        | 109   |
|                     | 3-28         | 106     | 18    | 0.6    | 143      | 4.7        | 106   |
|                     | 3-29         | 106     | 19    | 0.6    | 144      | 4.0        | 100   |
|                     | 3-30         | 129     | 19    | 0.6    | 143      | 4.4        | 93    |
| 0                   | 4-31         | 109     | 20    | 0.6    | 144      | 3.7        | 99    |
| O                   | 4-32         | 141     | 17    | 0.6    | 142      | 4.3        | 109   |
|                     | 4-33         | 125     | 15    | 0.6    | 142      | 4.3<br>3.8 | 103   |
|                     | 4-34         | 120     | 17    | 0.0    | 142      | 4.7        | 82    |
|                     | 4-35         | 131     | 20    | 0.7    | 143      | 4.1        | 103   |
|                     | 4-36         | 100     | 19    | 0.6    | 144      | 4.2        | 103   |
|                     | 4-37         | 126     | 16    | 0.5    | 144      | 4.5        | 110   |
|                     | 4-38         | 107     | 17    | 0.6    | 143      | 4.4        | 109   |
|                     | 4-39         | 112     | 17    | 0.5    | 143      | 4.2        | 115   |
|                     | 4-40         | 116     | 20    | 0.6    | 145      | 5.0        | 94    |
|                     |              |         |       | -      |          |            | - •   |

## Clinical Chemistries/Females 90 Day

| DOSE        |         |     |     |       |     |       | TOTAL     | TOTAL   |      |       |
|-------------|---------|-----|-----|-------|-----|-------|-----------|---------|------|-------|
| GROUPS      | ANIMALS | AST | ALT | PHOS  | AP  | Ca    | BILIRUBIN | PROTEIN | ALB  | TRIG  |
| (mg DNB/kg) |         |     |     |       |     |       |           |         |      |       |
| diet        | . #     | U/L | U/L | mg/dl | U/L | mg/dl | mg/dl     | g/dl    | g/di | mg/dl |
| 30          | 1-01    | 148 | 57  | 8.8   | 69  | 10.0  | 0.1       | 6.5     | 4.6  | 33    |
|             | 1-02    | 122 | 54  | 8.5   | 88  | 10.2  | 0.2       | 6.8     | 4.8  | 34    |
|             | 1-03    | 133 | 67  | 7.9   | 77  | 9.9   | 0.1       | 6.6     | 4.4  | 44    |
|             | 1-04    | 175 | 73  | 9.2   | 99  | 9.9   | 0.1       | 5.9     | 4.2  | 31    |
|             | 1-05    | 148 | 56  | 8.9   | 75  | 9.4   | 0.1       | 5.8     | 4.2  | 20    |
|             | 1-06    | *   | 61  | 7.6   | 103 | *     | 0.5       | 5.9     | *    | •     |
|             | 1-07    | 145 | 59  | 8.3   | 82  | 9.6   | 0.1       | 6.2     | 4.6  | 42    |
|             | 1-08    | 175 | 56  | 8.7   | 69  | 10.0  | 0.1       | 6.4     | 4.6  | 34    |
|             | 1-09    | 155 | 82  | 9.2   | 63  | 10.1  | 0.1       | 6.7     | 4.8  | 40    |
|             | 1-10    | 212 | 105 | 9.9   | 75  | 10.0  | .0.2      | 6.2     | 4.4  | 21    |
| 6           | 2-11    | 150 | 62  | 5.7   | 59  | 9.8   | 0.1       | 6.1     | 4.3  | 43    |
|             | 2-12    | 183 | 58  | 8.0   | 75  | 10.1  | 0.2       | 6.3     | 4.4  | 36    |
|             | 2-13    | 164 | 55  | 8.4   | 78  | 9.8   | 0.1       | 6.4     | 4.4  | 43    |
|             | 2-14    | 150 | 52  | 7.8   | 81  | 9.5   | 0.1       | 6.1     | 4.4  | 32    |
|             | 2-15    | 134 | 60  | 9.3   | 114 | 9.7   | 0.1       | 6.3     | 4.6  | 31    |
|             | 2-16    | 214 | 104 | 7.6   | 80  | 9.7   | 0.1       | 6.2     | 4.3  | 31    |
|             | 2-17    | 142 | 60  | 8.1   | 54  | 10.1  | 0.1       | 6.1     | 4.4  | 35    |
|             | 2-18    | 190 | 61  | 5.5   | 57  | 9.9   | 0.1       | 6.0     | 4.3  | 36    |
|             | 2-19    | 147 | 61  | 8.9   | 73  | 10.2  | 0.1       | 6.0     | 4.3  | 23    |
|             | 2-20    | 176 | 67  | 7.7   | 60  | 9.7   | 0.1       | 5.7     | 4.0  | 46    |
| 1           | 3-21    | 132 | 55  | 7.1   | 65  | 9.9   | 0.1       | 6.4     | 4.6  | 35    |
|             | 3-22    | 126 | 46  | 6.3   | 62  | 9.8   | 0.1       | 6.0     | 4.4  | 30    |
|             | 3-23    | 153 | 57  | 7.9   | 89  | 9.7   | 0.2       | 6.5     | 4.4  | 29    |
|             | 3-24    | 153 | 62  | 8.0   | 94  | 9.8   | 0.1       | 6.3     | 4.5  | 43    |
|             | 3-25    | 146 | 69  | 7.1   | 74  | 9.9   | 0.1       | 5.7     | 4.0  | 48    |
|             | 3-26    | 140 | 60  | 8.7   | 74  | 10.2  | 0.1       | 7.1     | 5.1  | 40    |
|             | 3-27    | 148 | 69  | 5.6   | 71  | 10.0  | 0.1       | 6.6     | 4.6  | 34    |
|             | 3-28    | 237 | 144 | 9.0   | 67  | 9.9   | 0.1       | 6.2     | 4.3  | 29    |
|             | 3-29    | 201 | 118 | 9.1   | 99  | 9.6   | 0.2       | 5.9     | 4.2  | 34    |
|             | 3-30    | 142 | 84  | 8.3   | 90  | 9.8   | 0.1       | 5.8     | 4.2  | 26    |
| 0           | 4-31    | 114 | 49  | 8.2   | 75  | 9.8   | 0.1       | 6.4     | 4.5  | 34    |
|             | 4-32    | 126 | 63  | 7.3   | 90  | 9.9   | 0.1       | 5.6     | 4.0  | 28    |
|             | 4-33    | 124 | 48  | 6.0   | 72  | 10.0  | 0.1       | 6.2     | 4.4  | 29    |
|             | 4-34    | 215 | 87  | 9.7   | 76  | 9.8   | 0.1       | 6.1     | 4.3  | 25    |
|             | 4-35    | 171 | 91  | 8.5   | 78  | 9.8   | 0.1       | 6.3     | 4.5  | 38    |
|             | 4-36    | 157 | 62  | 8.7   | 92  | 9.8   | 0.1       | 6.2     | 4.3  | 26    |
|             | 4-37    | 161 | 65  | 7.1   | 76  | 9.6   | 0.1       | 6.3     | 4.4  | 32    |
|             | 4-38    | 182 | 87  | 6.9   | 58  | 9.8   | 0.1       | 5.9     | 4.3  | 39    |
|             | 4-39    | 112 | 41  | 8.7   | 85  | 10.1  | 0.1       | 6.7     | 4.7  | 30    |
|             | 4-40    | 137 | 61  | 8.5   | 85  | 9.7   | 0.1       | 6.3     | 4.4  | 30    |
|             |         |     |     |       |     |       |           |         |      |       |

Clinical Chemistries/Males 45 Day

| DOSE        |         |         |       |       |        |           |       |
|-------------|---------|---------|-------|-------|--------|-----------|-------|
| GROUPS      | ANIMALS | GLUCOSE | BUN   | CREAT | SODIUM | POTASSIUM | CHOL  |
| (mg DNB/kg) |         |         |       |       |        |           |       |
| diet        | #       | mg/dl   | mg/dl | mg/dl | mmol/l | mmol/l    | mg/dl |
| 30          | 5-381   | 152     | 20    | 0.5   | 141    | 4.5       | 67    |
|             | 5-382   | 176     | 20    | 0.6   | 141    | 4.8       | 58    |
|             | 5-383   | 164     | 18    | 0.5   | 141    | 4.8       | 52    |
|             | 5-384   | 169     | 21    | 0.6   | 141    | 4.8       | 58    |
|             | 5-385   | 180     | 20    | 0.6   | 140    | 4.7       | 53    |
|             |         |         |       |       |        |           |       |
| 6           | 6-386   | 163     | 19    | 0.5   | 140    | 5.0       | 58    |
|             | 6-387   | 169     | 23    | 0.6   | 152    | 5.1       | 58    |
|             | 6-388   | 181     | 20    | 0.6   | 140    | 5.0       | 60    |
|             | 6-389   | 204     | 22    | 0.6   | 141    | 4.7       | 51    |
|             | 6-390   | 172     | 20    | 0.6   | 139    | 5.6       | 58    |
|             |         |         |       |       |        |           |       |
| 1           | 7-391   | 172     | 21    | 0.5   | 140    | 5.4       | 53    |
|             | 7-392   | 183     | 21    | 0.6   | 141    | 5.5       | 55    |
|             | 7-393   | 181     | 20    | 0.6   | 141    | 4.7       | 58    |
|             | 7-394   | 172     | 21    | 0.5   | 140    | 4.8       | 53    |
|             | 7-395   | 157     | 18    | 0.6   | 139    | 5.2       | 47    |
|             |         |         |       |       |        |           |       |
| 0           | 8-396   | 187     | 18    | 0.5   | 140    | 4.8       | 53    |
|             | 8-397   | 135     | 17    | 0.5   | 139    | 5.2       | 58    |
|             | 8-398   | 154     | 17    | 0.5   | 139    | 5.2       | 51    |
|             | 8-399   | 160     | 16    | 0.5   | 140    | 5.4       | 53    |
|             | 8-400   | 163     | 20    | 0.5   | 140    | 5.0       | 55    |
|             |         |         |       |       |        |           |       |

Clinical Chemistries/Males 45 Day

| DOSE        |         |     |     | DUOG  | A.D. | <b>C</b> - | TOTAL     | TOTAL   | ALB    | TRIC  |
|-------------|---------|-----|-----|-------|------|------------|-----------|---------|--------|-------|
| GROUPS      | ANIMALS | AST | ALT | PHOS  | AP   | Ca         | BILIRUBIN | PROTEIN | ALB    | TRIG  |
| (mg DNB/kg) | -       |     |     |       |      |            | 1-11      | 1-11    | - (-11 |       |
| diet        | #       | U/L | U/L | mg/dl | U/L  | mg/dl      | mg/dl     | g/dl    | g/dl   | mg/dl |
| 30          | 5-381   | 213 | 98  | 9.7   | 117  | 10.5       | 0.1       | 6.4     | 4.7    | 85    |
|             | 5-382   | 209 | 96  | 9.2   | 125  | 10.5       | 0.1       | 6.5     | 4.8    | 144   |
|             | 5-383   | 124 | 63  | 9.1   | 126  | 10.4       | 0.1       | 6.3     | 4.6    | 79    |
|             | 5-384   | 148 | 78  | 9.1   | 105  | 10.3       | 0.1       | 6.2     | 4.6    | 55    |
|             | 5-385   | 444 | 402 | 9.7   | 112  | 10.1       | 0.1       | 6.2     | 4.5    | 45    |
|             |         |     |     |       |      |            |           |         |        |       |
| 6           | 6-386   | 173 | 80  | 9.6   | 120  | 10.5       | 0.1       | 6.5     | 4.7    | 87    |
|             | 6-387   | 148 | 61  | 9.4   | 140  | 10.5       | 0.1       | 6.9     | 4.9    | 126   |
|             | 6-388   | 196 | 102 | 9.0   | 129  | 10.6       | 0.1       | 6.5     | 4.8    | 107   |
|             | 6-389   | 367 | 313 | 8.9   | 129  | 10.3       | 0.2       | 6.2     | 4.7    | 140   |
|             | 6-390   | 144 | 75  | 10.2  | 122  | 10.7       | 0.1       | 6.7     | 4.8    | 69    |
| 1           | 7-391   | 156 | 62  | 10.7  | 124  | 10.5       | 0.1       | 6.4     | 4.7    | 49    |
| -           | 7-392   | 137 | 62  | 9.6   | 131  | 10.5       | 0.1       | 6.3     | 4.5    | 106   |
|             | 7-393   | 155 | 66  | 9.0   | 138  | 10.2       | 0.1       | 6.3     | 4.5    | 124   |
|             | 7-394   | 153 | 68  | 9.4   | 123  | 10.1       | 0.1       | 5.8     | 4.5    | 106   |
|             | 7-395   | 188 | 88  | 10.2  | 130  | 10.7       | 0.1       | 6.1     | 4.5    | 94    |
| 0           | 8-396   | 124 | 54  | 9.2   | 125  | 10.5       | 0.1       | 6.1     | 4.5    | 88    |
| · ·         | 8-397   | 149 | 74  | 9.7   | 101  | 10.3       | 0.1       | 6.2     | 4.5    | 70    |
|             | 8-398   | 191 | 95  | 10.0  | 119  | 10.3       | 0.1       | 6.2     | 4.6    | 74    |
|             | 8-399   | 141 | 67  | 9.9   | 117  | 10.5       | 0.1       | 6.2     | 4.4    | 53    |
|             | 8-400   | 193 | 115 | 9.6   | 114  | 10.4       | 0.1       | 6.4     | 4.5    | 91    |
|             | 0-400   | 133 | 113 | 9.0   | 117  | 10.4       | 0.1       | V. T    | 1.5    | • ,   |

Clinical Chemistries/Males 90 Day

| DOSE        |         |         |       |       |        |           |       |
|-------------|---------|---------|-------|-------|--------|-----------|-------|
| GROUPS      | ANIMALS | GLUCOSE | BUN   | CREAT | SODIUM | POTASSIUM | CHOL  |
| (mg DNB/kg) |         |         |       | 0     |        |           |       |
| diet        | #       | mg/dl   | mg/dl | mg/dl | mmol/l | mmol/l    | mg/dl |
| 30          | 5-41    | 187     | 19    | 0.6   | 142    | 4.3       | 81    |
|             | 5-42    | 150     | 22    | 0.7   | 144    | 4.4       | 85    |
|             | 5-43    | 170     | 19    | 0.6   | 143    | 4.5       | 82    |
|             | 5-44    | 175     | 19    | 0.6   | 143    | 3.7       | 79    |
|             | 5-45    | 182     | 19    | 0.7   | 144    | 4.5       | 72    |
|             | 5-46    | 183     | 19    | 0.6   | 142    | 4.9       | 64    |
|             | 5-47    | 155     | 17    | 0.6   | 143    | 4.8       | 68    |
|             | 5-48    | 140     | 19    | 0.6   | 144    | 3.8       | 75    |
|             | 5-49    | 156     | 14    | 0.6   | 143    | 4.8       | 68    |
|             | 5-50    | 148     | 16    | 0.6   | 142    | 4.6       | 62    |
| 6           | 6-51    | 141     | 18    | 0.6   | 143    | 5.0       | 75    |
|             | 6-52    | 144     | 16    | 0.6   | 142    | 4.4       | 77    |
|             | 6-53    | 155     | 22    | 0.7   | 145    | 4.8       | 98    |
|             | 6-54    | 161     | 19    | 0.6   | 143    | 5.2       | 79    |
|             | 6-55    | 155     | 14    | 0.6   | 143    | 4.5       | 72    |
|             | 6-56    | 141     | 23    | 0.7   | 144    | 4.7       | 91    |
|             | 6-57    | 167     | 19    | 0.5   | 141    | 4.4       | 70    |
|             | 6-58    | 157     | 16    | 0.6   | 143    | 4.7       | 82    |
|             | 6-59    | 130     | 21    | 0.6   | 143    | 4.2       | 78    |
|             | 6-60    | 147     | 21    | 0.6   | 144    | 4.2       | 74    |
| 1           | 7-61    | 161     | 21    | 0.6   | 144    | 4.6       | 89    |
|             | 7-62    | 176     | 20    | 0.5   | 142    | 4.4       | 69    |
|             | 7-63    | 149     | 21    | 0.6   | 143    | 4.6       | 72    |
|             | 7-64    | 136     | 21    | 0.6   | 144    | 4.6       | 72    |
|             | 7-65    | 133     | 16    | 0.6   | 142    | 4.1       | 62    |
|             | 7-66    | 162     | 21    | 0.6   | 144    | 4.0       | 97    |
|             | 7-67    | 162     | 21    | 0.6   | 143    | 4.3       | 77    |
|             | 7-68    | 154     | 21    | 0.6   | 142    | 4.6       | 77    |
| •           | 7-69    | 137     | 24    | 0.7   | 143    | 4.2       | 70    |
|             | 7-70    | 171     | 23    | 0.6   | 143    | 4.7       | 77    |
| 0           | 8-71    | 164     | 23    | 0.6   | 145    | 4.1       | 73    |
|             | 8-72    | 177     | 22    | 0.6   | 143    | 5.0       | 83    |
|             | 8-73    | 179     | 21    | 0.6   | 144    | 4.1       | 95    |
|             | 8-74    | 163     | 18    | 0.6   | 143    | 4.4       | 70    |
|             | 8-75    | 113     | 27    | 0.7   | 143    | 4.5       | 98    |
|             | 8-76    | 149     | 20    | 0.6   | 143    | 5.0       | 70    |
|             | 8-77    | 134     | 22    | 0.6   | 145    | 4.9       | 99    |
|             | 8-78    | 149     | 22    | 0.6   | 144    | 4.2       | 67    |
|             | 8-79    | 159     | 23    | 0.7   | 143    | 4.9       | 84    |
|             | 8-80    | 165     | 19    | 0.6   | 145    | 4.7       | 77    |
|             |         |         |       |       |        |           |       |

Clinical Chemistries/Males 90 Day

| DOSE        |         |     |     |       |     |       | TOTAL     | TOTAL     |      |       |
|-------------|---------|-----|-----|-------|-----|-------|-----------|-----------|------|-------|
| GROUPS      | ANIMALS | AST | ALT | PHOS  | AP  | Ca    | BILIRUBIN | PROTEIN   | ALB  | TRIG  |
| (mg DNB/kg) |         | ASI | ALI | FHOS  | 71  | Ca    | BIEINOBIN | 711012114 | ALD  | 11110 |
| diet        | #       | U/L | U/L | mg/dl | U/L | mg/dl | mg/dl     | g/dl      | g/dl | mg/dl |
| 30          | 5-41    | 169 | 105 | 8.5   | 82  | 10.1  | 0.1       | 6.4       | 4.5  | 102   |
|             | 5-42    | 209 | 97  | 8.3   | 101 | 9.9   | 0.1       | 6.5       | 4.5  | 74    |
|             | 5-43    | 345 | 185 | 8.4   | 86  | 10.2  | 0.1       | 6.5       | 4.7  | 69    |
|             | 5-44    | 339 | 191 | 7.8   | 92  | 10.0  | 0.1       | 6.5       | 4.7  | 91    |
|             | 5-45    | 251 | 146 | 8.5   | 94  | 10.0  | 0.1       | 6.4       | 4.5  | 71    |
|             | 5-46    | 238 | 151 | 8.9   | 101 | 10.1  | 0.1       | 6.3       | 4.6  | 42    |
|             | 5-47    | 135 | 62  | 7.6   | 72  | 10.0  | 0.1       | 6.1       | 4.4  | 24    |
|             | 5-48    | 129 | 66  | 7.2   | 94  | 10.2  | 0.1       | 6.4       | 4.7  | 75    |
|             | 5-49    | 151 | 66  | 8.5   | 77  | 9.9   | 0.1       | 6.3       | 4.5  | 38    |
|             | 5-50    | 183 | 93  | 8.9   | 68  | 9.7   | 0.1       | 5.8       | 4.1  | 12    |
| 6           | 6-51    | 228 | 103 | 8.9   | 88  | 10.1  | 0.1       | 6.5       | 4.5  | 66    |
|             | 6-52    | 148 | 69  | 8.9   | 69  | 10.2  | 0.1       | 6.4       | 4.4  | 43    |
|             | 6-53    | 256 | 105 | 8.1   | 102 | 10.5  | 0.1       | 6.7       | 4.6  | 72    |
|             | 6-54    | 301 | 163 | 8.6   | 91  | 10.4  | 0.1       | 6.8       | 4.6  | 66    |
|             | 6-55    | 189 | 92  | 7.5   | 81  | 9.9   | 0.1       | 6.3       | 4.2  | 34    |
|             | 6-56    | 269 | 148 | 9.0   | 95  | 10.4  | 0.1       | 6.6       | 4.6  | 82    |
|             | 6-57    | 158 | 84  | 8.5   | 91  | 10.2  | 0.1       | 6.5       | 4.4  | 98    |
|             | 6-58    | 168 | 77  | 7.9   | 69  | 10.0  | 0.1       | 6.2       | 4.4  | 36    |
|             | 6-59    | 251 | 126 | 8.3   | 101 | 10.1  | 0.1       | 6.2       | 4.3  | 76    |
|             | 6-60    | 221 | 101 | 7.6   | 115 | 10.2  | 0.1       | 6.6       | 4.6  | 119   |
| 1           | 7-61    | 235 | 103 | 7.3   | 101 | 10.3  | 0.1       | 6.8       | 4.5  | 99    |
|             | 7-62    | 245 | 127 | 8.2   | 110 | 10.2  | 0.1       | 6.5       | 4.6  | 66    |
|             | 7-63    | 239 | 101 | 8.4   | 99  | 10.2  | 0.1       | 6.7       | 4.8  | 83    |
|             | 7-64    | 194 | 75  | 8.4   | 102 | 10.5  | 0.1       | 6.8       | 4.8  | 75    |
|             | 7-65    | 192 | 86  | 7.5   | 88  | 9.9   | 0.1       | 6.5       | 4.5  | 28    |
|             | 7-66    | 215 | 100 | 7.9   | 88  | 10.4  | 0.1       | 6.6       | 4.6  | 134   |
|             | 7-67    | 176 | 96  | 7.9   | 107 | 10.2  | 0.1       | 6.3       | 4.4  | 132   |
|             | 7-68    | 248 | 123 | 8.0   | 106 | 10.4  | 0.1       | 6.8       | 4.7  | 95    |
| •           | 7-69    | 204 | 108 | 7.4   | 116 | 10.2  | 0.1       | 6.4       | 4.6  | 116   |
|             | 7-70    | 253 | 159 | 8.7   | 125 | 9.9   | 0.1       | 6.2       | 4.4  | 53    |
| 0           | 8-71    | 287 | 192 | 8.3   | 124 | 10.2  | 0.1       | 6.8       | 4.7  | 81    |
|             | 8-72    | 271 | 148 | 8.9   | 115 | 10.2  | 0.1       | 6.6       | 4.6  | 108   |
|             | 8-73    | 142 | 82  | 8.4   | 111 | 10.1  | 0.1       | 6.6       | 4.7  | 94    |
|             | 8-74    | 177 | 89  | 8.0   | 80  | 10.0  | 0.0       | 6.4       | 4.4  | 31    |
|             | 8-75    | 198 | 67  | 9.0   | 92  | 10.4  | 0.1       | 6.6       | 4.6  | 75    |
|             | 8-76    | 264 | 123 | 8.6   | 102 | 10.5  | 0.1       | 6.8       | 4.6  | 60    |
|             | 8-77    | 237 | 112 | 8.7   | 96  | 10.5  | 0.1       | 6.7       | 4.7  | 78    |
|             | 8-78    | 239 | 125 | 7.7   | 97  | 9.9   | 0.1       | 6.2       | 4.3  | 81    |
|             | 8-79    | 296 | 206 | 8.4   | 113 | 10.2  | 0.1       | 6.3       | 4.5  | 96    |
|             | 8-80    | 244 | 117 | 7.4   | 94  | 10.2  | 0.1       | 6.5       | 4.7  | 91    |
|             |         |     |     |       |     |       |           |           |      |       |

# APPENDIX F CLINICAL OBSERVATIONS

# CLINICAL OBSERVATIONS

# DATE

| 08/23/94 | Study started today for the females. All animals   |
|----------|----------------------------------------------------|
| 00/01/01 | look normal.                                       |
| 08/24/94 | Study started today for the males. All animals     |
|          | look normal.                                       |
| 08/25/94 | All animals look normal.                           |
| 08/26/94 | All animals look normal.                           |
| 08/29/94 | All animals look normal.                           |
| 08/30/94 | Some of the animals have small skin lesions at the |
|          | site of injection of ID implant. All other animals |
|          | look normal.                                       |
| 08/31/94 | All animals look normal.                           |
| 09/01/94 | All animals look normal.                           |
| 09/02/94 | All animals look normal.                           |
| 09/06/94 | All animals look normal.                           |
| 09/07/94 | All animals look normal.                           |
| 09/09/94 | All animals look normal.                           |
| 09/12/94 | All animals look normal.                           |
| 09/13/94 | All animals look normal.                           |
| 09/14/94 | All animals look normal.                           |
| 09/15/94 | All animals look normal.                           |
| 09/16/94 | All animals look normal.                           |
| 09/19/94 | All animals look normal.                           |
| 09/20/94 | All animals look normal.                           |
| 09/21/94 | All animals look normal.                           |
| 09/22/94 | All animals look normal.                           |
| 09/23/94 | All animals look normal.                           |
| 09/26/94 | All animals look normal.                           |
| 09/27/94 | All animals look normal.                           |
| 09/28/94 | All animals look normal.                           |
| 09/29/94 | All animals look normal.                           |
| 09/30/94 | All animals look normal.                           |
| 10/04/94 | All animals look normal.                           |
| 10/05/94 | All animals look normal.                           |
| 10/06/94 | All animals look normal.                           |
| 10/07/94 | All animals look normal.                           |
| 10/11/94 | All animals look normal.                           |
| 10/12/94 | All animals look normal.                           |
| 10/13/94 | All animals look normal.                           |
| 10/14/94 | All animals look normal.                           |
| 10/17/94 | All animals look normal.                           |
| 10/18/94 | All animals look normal.                           |
| 10/19/94 | All animals look normal.                           |
| 10/20/94 | All animals look normal.                           |
| 10/24/94 | All animals look normal.                           |
| 10/25/94 | All animals look normal.                           |

# CLINICAL OBSERVATIONS

# DATE

| 10/26/94 | All animals look normal.                               |
|----------|--------------------------------------------------------|
| 10/27/94 | All animals look normal.                               |
| 10/28/94 | All animals look normal.                               |
| 10/31/94 | All animals look normal.                               |
| 11/01/94 | All animals look normal.                               |
| 11/02/94 | All animals look normal.                               |
| 11/03/94 | All animals look normal.                               |
| 11/04/94 | All animals look normal.                               |
| 11/08/94 | All animals look normal.                               |
| 11/09/94 | All animals look normal.                               |
| 11/10/94 | All animals look normal.                               |
| 11/11/94 | All animals look normal.                               |
| 11/14/94 | All animals look normal.                               |
| 11/15/94 | All animals look normal.                               |
| 11/16/94 | All animals look normal.                               |
| 11/17/94 | All animals look normal.                               |
| 11/18/94 | All animals look normal.                               |
| 11/21/94 | Eye exams were performed today. 40 females and 10      |
|          | males were fasted in the afternoon. All animals look   |
|          | normal.                                                |
| 11/22/94 | 40 males and 10 females were removed for necropsy.     |
|          | The remaining 30 females were fasted in the afternoon. |
|          | All animals look normal.                               |
| 11/23/94 | The final 30 males were necropsied today.              |

# APPENDIX G OPHTHALMOLOGY DATA

# Ophthalmology Report

# David A. Wilkie DVM, MS Diplomate ACVO

### Introduction

The following are results of ocular examinations. All ocular examinations were performed by a Board-Certified Veterinary Ophthalmologist.

### Materials and Methods

An final ophthalmic examination was performed on the eyes of all rats by Dr David Wilkie DVM, MS, Dip. ACVO prior to completion of the study. Examinations included:

Biomicroscopic examination, using a Zeiss HSO-10 biomicroscope, following dilation of the pupils with 1.0% tropicamide (Mydriacyl®).

2. Indirect ophthalmoscopic examination, using a 30 diopter lens, following dilation of the pupils with 1.0% tropicamide (Mydriacyl®).

### Results

### Final Examination

Corneal dystrophy (crystals) -

The eyes of all animals examined were affected by

Date: 11/17/54

corneal dystrophy/crystals. All animals were affected with mild corneal dystrophy OU.

Conjunctivitis OU -

Animal # 44 affected with mild conjunctivitis.

### Conclusions

All animals used in this study were affected with mild corneal dystrophy prior to the initiation of the study. Corneal dystrophy is a common finding in Fisher 344 rats of both sexes. Progression of the corneal dystrophy was not observed to occur and the dystrophy did not interfere with ophthalmic examination in this study. Conjunctivitis was observed in a single animal and is unassociated with treatment. There was no treatment-related ophthalmic effect observed in the animals on this study.

David A. Wilkie DVM, MS

Diplomate ACVO

Associate Professor

Department of Veterinary Clinical Sciences

The Ohio State University

601 Vernon L. Tharp Street

Columbus, Ohio 43210

### Ophthalmology Report

### David A. Wilkie DVM, MS Diplomate ACVO

### Introduction

The following are results of ocular examinations. All ocular examinations were performed by a Board-Certified Veterinary Ophthalmologist.

### Materials and Methods

An initial ophthalmic examination was performed on the eyes of all rats by Dr David Wilkie DVM, MS, Dip. ACVO prior to initiation of the study. Examinations included:

- 1. Biomicroscopic examination, using a Zeiss HSO-10 biomicroscope, following dilation of the pupils with 1.0% tropicamide (Mydriacyl®).
- 2. Indirect ophthalmoscopic examination, using a 30 diopter lens, following dilation of the pupils with 1.0% tropicamide (Mydriacyl®).

### Results

### Initial Examination

Corneal dystrophy (crystals) -

The eyes of all animals examined were affected by corneal dystrophy/crystals. All animals were affected with mild corneal dystrophy OU.

Date: 8/12/94

### Conclusions

All animals to be used in this study are affected with mild corneal dystrophy prior to the initiation of the study. Corneal dystrophy is a common finding in Fisher 344 rats of both sexes. Progression of the corneal dystrophy will occur, but should not interfere with ophthalmic examination in a study of this length.

David A. Wilkie DVM, MS

Diplomate ACVO

Assistant Professor

Department of Veterinary Clinical Sciences

The Ohio State University

1935 Coffey Road

Columbus, Ohio 43210

# APPENDIX H

GROSS AND HISTOPATHOLOGY DATA

# REPORTS CODE TABLE

- N Tissues within normal histological limits
- A Autolysis precluding adequate evaluation
- U Tissues unavailable/unsuitable for evaluation
- Tissues not examined/not required by protocol
- 1 Minimal
- 2 Mild
- 3 Moderate
- 4 Marked

Abbreviation List

NOS

Not Otherwise Specified

(End of Report)

10

# Pathology Associates, Inc. Study Number 94-004 90 Day 1,3-Dinitrobenzene Exposure in Fischer 344 Rats

PROJECT SUMMARY

STUDY ID : 90 Day DNB STUDY NUMBER: 94-004

FATE: ALL

DAYS ON TEST: ALL

INCIDENCE OF NEOPLASTIC and NON-NEOPLASTIC MICROSCOPIC FINDINGS

| GROUP: NUMBER OF ANIMALS: |      |    | 1<br>10 |   | 2<br>10 : |   | 3<br>10 |    | 4<br>10 |  |
|---------------------------|------|----|---------|---|-----------|---|---------|----|---------|--|
|                           |      | #  | *       | # | *         | # | %       | #  | ×       |  |
| BRAIN                     | # EX | 10 |         | 1 |           | 0 |         | 10 |         |  |
| Astrocytoma               |      | 0  | 0.0     | 1 | 100.0     | 0 | 0.0     | 0  | 0.0     |  |
| SCIATIC NERVE             | # EX | 10 |         | 0 |           | 0 |         | 10 |         |  |
| SPINAL CORD               | # EX | 10 |         | 0 |           | 0 |         | 10 |         |  |
| SALIVARY GLAND            | # EX | 10 |         | 0 |           | 0 |         | 10 |         |  |
| PANCREAS                  | # EX | 10 |         | 0 |           | 0 |         | 10 |         |  |
| MANDIBULAR LYMPH NODE     | # EX | 10 |         | 0 |           | 0 |         | 10 |         |  |
| Plasmacytosis             |      | 1  | 10.0    | 0 | 0.0       | 0 | 0.0     | 0  | 0.0     |  |
| Inflammation, Chronic     |      | 0  | 0.0     | 0 | 0.0       | 0 | 0.0     | 1  |         |  |
| Hyperplasia, Lymphoid     |      | 0  | 0.0     | 0 | 0.0       | 0 | 0.0     | 1  | 10.0    |  |
| ZYMBAL'S GLAND            | # EX | 10 |         | 0 |           | 0 |         | 10 |         |  |
| PITUITARY                 | # EX | 10 |         | 0 |           | 0 |         | 10 |         |  |
| ADRENALS                  | # EX | 10 |         | 0 |           | Ō |         | 10 |         |  |

# EX 10

# EX 10

# EX 10

# EX 10

Incidence Calculated by No. of Tissues Scored

THYROID

TRACHEA

**ESOPHAGUS** 

PARATHYROID

| PROJECT | STIMMARY |
|---------|----------|
|         |          |

| STUDY ID : 90 Day DNB                |                  |       |          |       |         |       | 5    | YQUT | NUMBER: | 94-00 |
|--------------------------------------|------------------|-------|----------|-------|---------|-------|------|------|---------|-------|
| ATE: ALL                             |                  |       |          |       |         |       |      |      |         |       |
| AYS ON TEST: ALL INCIDENCE OF NEOPLA | STIC and NON-NEG | OPLAS | STIC MIC | ROSCO | PIC FIN | DINGS | 5    |      | SEX:    | FEMAL |
| GROUP:                               |                  |       | 1        |       | 2       |       | 3    |      | 4       |       |
| NUMBER OF ANIMALS:                   |                  |       | 10       |       | 10      |       | 10   |      | 10      |       |
|                                      |                  | #     | %        | #     | *       | #     | *    | #    | ×       | ••••• |
| THYMUS                               | # EX             | 10    |          | 0     |         | 0     |      | 10   |         |       |
| Hemorrhage                           |                  | 0     | 0.0      | O     | 0.0     | 0     | 0.0  | 1    | 10.0    |       |
| HEART                                | # EX             | 10    |          | 0     |         | 0     |      | 10   |         |       |
| Inflammation, Chronic                |                  | 2     | 20.0     | 0     | 0.0     | 0     | 0.0  | 1    | 10.0    |       |
| COLON                                | # EX             | 10    |          | 0     |         | 0     |      | 10   |         |       |
| JEJUNUM                              | # EX             | 10    |          | 0     |         | 0     |      | 10   |         |       |
| AORTA                                | # EX             | 10    |          | 0     |         | 0     |      | 10   |         |       |
| LIVER                                | # EX             | 10    |          | 0     |         | 0     |      | 10   |         |       |
| Inflammation, Chronic                |                  | 1     | 10.0     | 0     | 0.0     | 0     | 0.0  | 0    | 0.0     |       |
| Hepatodiaphragmatic Nodule           |                  | 0     | 0.0      | 0     | 0.0     | 0     | 0.0  | 1    | 10.0    |       |
| SPLEEN                               | # EX             |       |          | 10    |         | 10    |      | 10   |         |       |
| Hyperplasia, Erythroid Cell          |                  |       | 80.0     | 0     | 0.0     | 0     | 0.0  | 0    | 0.0     |       |
| Pigmentation, NOS                    |                  | 9     | 90.0     | 1     | 10.0    | 3     | 30.0 | 0    | 0.0     |       |
| TONGUE                               | # EX             | 10    |          | 0     |         | 0     |      | 10   |         |       |
| SKELETAL MÜSCLE                      | # EX             | 10    |          | 0     |         | 0     |      | 10   |         |       |
| LUNGS                                | # EX             | 10    |          | 0     |         | 0     |      | 10   |         |       |
| Inflammation, Chronic                |                  | 1     | 10.0     | 0     | 0.0     | 0     | 0.0  | 0    | 0.0     |       |
| KIDNEY                               | # EX             | 10    |          | 10    |         | 10    |      | 10   |         |       |
| Lymphocytic Infiltrates              |                  | 0     | 0.0      | 0     | 0.0     | 1     | 10.0 | Ō    | 0.0     |       |
| Pigmentation, NOS                    |                  | 10    | 100.0    | 0     | 0.0     | 0     | 0.0  | 3    | 30.0    |       |
| Hyaline Droplets                     |                  | 9     | 90.0     | 0     | 0.0     | 0     | 0.0  | 0    | 0.0     |       |

Incidence Calculated by No. of Tissues Scored

PROJECT SUMMARY

STUDY ID : 90 Day DNB STUDY NUMBER: 94-004

FATE: ALL

DAYS ON TEST: ALL

INCIDENCE OF NEOPLASTIC and NON-NEOPLASTIC MICROSCOPIC FINDINGS

| GROUP:                                   |      |     | 1     |    | 2     |    | 3            |    | 4    |
|------------------------------------------|------|-----|-------|----|-------|----|--------------|----|------|
| NUMBER OF ANIMALS:                       |      |     | 10    |    | 10 :  |    | 10           |    | 10   |
|                                          |      | #   | ×     | #  | x     | #  | ×            | #  | ×    |
| KIDNEY                                   | # EX |     |       | 10 |       | 10 |              | 10 |      |
| Mineralization, NOS                      |      | 10  | 100.0 | 10 | 100.0 | 10 | 100.0        | 9  | 90.0 |
| URINARY BLADDER                          | # EX | 10  |       | 0  |       | 0  |              | 10 |      |
| STOMACH                                  | # EX | 10  |       | 0  |       | 0  |              | 10 |      |
| DUODENUM                                 | # EX | 10  |       | 0  |       | 0  |              | 10 |      |
| ILEUM                                    | # EX | 10  |       | 0  |       | 0  |              | 10 |      |
| CECUM                                    | # EX | 10  |       | 0  |       | 0  |              | 10 |      |
| RECTUM                                   | # EX | 10  |       | 0  |       | 0  |              | 10 |      |
| MESENTERIC LYMPH NODE                    | # EX | 10  |       | 0  |       | 0  |              | 10 |      |
| Inflammation, Chronic                    |      | 2   | 20.0  | 0  | 0.0   | 0  | 0.0          | 3  | 30.0 |
| Hyperplasia, Lymphoid                    |      | 1   | 10.0  | 0  | 0.0   | 0  | 0.0          | 0  | 0.0  |
| OVARIES                                  | # EX | 10  |       | 0  |       | 2  |              | 10 |      |
| Cyst, NOS                                |      | 0   | 0.0   | 0  |       | 1  | 50.0         | 0  |      |
| Inflammation, Chronic/Active, Parovarian |      | 0   | 0.0   | 0  |       | 1  |              | 0  |      |
| Necrosis, Parovarian                     |      | 0   | 0.0   | 0  |       | 1  | 50. <b>0</b> | 0  | 0.0  |
| Bursal Cyst                              |      | . 0 | 0.0   | 0  | 0.0   | 0  | 0.0          | 1  | 10.0 |
| UTERUS                                   | # EX | 10  |       | 0  |       | 0  |              | 10 |      |
|                                          |      |     |       |    |       | _  |              | _  |      |

Incidence Calculated by No. of Tissues Scored

Dilatation, Bilateral

SKIN

(REPORT CONTINUED)

4 40.0 0 0.0

# EX 10 D

0 0.0 2 20.0

10

0

| _                                       | ROJECT S       |      |          |       |         |       |     |       |         |       |
|-----------------------------------------|----------------|------|----------|-------|---------|-------|-----|-------|---------|-------|
| TUDY ID : 90 Day DNB ATE: ALL           |                | **** | •••••    |       |         |       |     | STUDY | NUMBER: | 94-00 |
| AYS ON TEST: ALL INCIDENCE OF NEOPLAST: | IC and NON-NEC | PLAS | TIC MICE | ROSCO | PIC FIN | DINGS |     |       | SEX:    | FEMAL |
| GROUP:                                  |                |      | 1        |       | 2       |       |     |       | 4       | ••••• |
| NUMBER OF ANIMALS:                      |                |      | 10       |       | 10      |       | 10  |       | 10      |       |
|                                         |                |      | *        | #     | *       | #     | ×   | #     | *       |       |
| CLITORAL GLAND                          | # EX           | 10   |          | O     |         | 0     |     | 10    |         |       |
| Lymphocytic Infiltrates                 |                | 6    | 60.0     | 0     | 0.0     | 0     | 0.0 | 4     | 40.0    |       |
| Inflammation, Suppurative               |                | 1    | 10.0     | 0     | 0.0     | 0     | 0.0 | 0     | 0.0     |       |
| Inflammation, Chronic/Active            |                | 1    | 10.0     | 0     | 0.0     | 0     | 0.0 | 0     | 0.0     |       |
| EYES                                    | # EX           | 10   |          | 0     |         | 0     |     | 10    |         |       |
| Microgranuloma, Cornea                  |                | 4    | 40.0     | 0     | 0.0     | 0     | 0.0 | 2     | 20.0    |       |
| HARDERIAN GLAND                         | # EX           | 10   |          | 0     |         | 0     |     | 10    |         |       |
| Lymphocytic Infiltrates                 |                | 4    | 40.0     | 0     | 0.0     | 0     | 0.0 | 2     | 20.0    |       |
| FEMUR/STERNUM                           | # EX           | 10   |          | 0     |         | 0     |     | 10    |         |       |
| Hyperplasia, Erythroid Cell             |                | 2    | 20.0     | 0     | 0.0     | 0     | 0.0 | 0     | 0.0     |       |
| NASAL                                   | # EX           | 10   |          | 0     |         | 0     |     | 10    |         |       |
|                                         |                |      |          |       |         |       |     |       |         |       |

# EX 10

Incidence Calculated by No. of Tissues Scored

MAMMARY GLAND

(Report Continued)

PROJECT SUMMARY

STUDY ID : 90 Day DNB STUDY NUMBER: 94-004

FATE: ALL

DAYS ON TEST: ALL

| ON TEST: ALL<br>INCIDENCE OF NEOP | LASTIC and NON-NEC | PLAS | TIC MICE | ROSCO | PIC FINE | INGS |       |    | SEX: |
|-----------------------------------|--------------------|------|----------|-------|----------|------|-------|----|------|
| GROUP:                            |                    |      | 5        |       | 6        |      | 7     |    | 8    |
| NUMBER OF ANIMALS:                |                    |      | 10       |       | 10 :     |      | 10    |    | 10   |
|                                   |                    | #    | *        |       | *        |      |       | #  | *    |
| BRAIN                             | # EX               | 10   |          | 0     |          | 0    |       | 10 |      |
| SCIATIC NERVE                     | # EX               | 10   |          | 0     |          | 0    |       | 10 |      |
| SPINAL CORD                       | # EX               | 10   |          | 0     |          | 0    |       | 10 |      |
| SALIVARY GLAND                    | # EX               | 10   |          | 0     |          | 0    |       | 10 |      |
| PANCREAS                          | # EX               | 10   |          | O     |          | 0    |       | 10 |      |
| Degeneration, Acinar              |                    | 0    | 0.0      | 0     | 0.0      | 0    | 0.0   | 2  | 20.0 |
| MANDIBULAR LYMPH NODE             | # EX               |      |          | 0     |          | 0    |       | 10 |      |
| Plasmacytosis                     |                    |      | 30.0     | 0     | 0.0      | 0    | 0.0   |    | 30.0 |
| Hyperplasia, Lymphoid             |                    | 1    | 10.0     | 0     | 0.0      | 0    | 0.0   | 1  | 10.0 |
| ZYMBAL'S GLAND                    | # EX               | 8    |          | 0     |          | 0    |       | 9  |      |
| PITUITARY                         | # EX               | 10   |          | 0     |          | 0    |       | 10 |      |
| ADRENALS                          | # EX               | 10   |          | 0     |          | 0    |       | 10 |      |
| THYROID .                         | # EX               | 10   |          | 0     |          | 0    |       | 10 |      |
| PARATHYROID                       | # EX               | 10   |          | 0     |          | 0    |       | 9  |      |
| TRACHEA                           | # EX               | 10   |          | Ō     |          | 0    |       | 10 |      |
| ESOPHAGUS                         | # EX               | 10   |          | 0     |          | 0    |       | 10 |      |
| THYMUS                            | # EX               | 10   |          | 1     |          | 2    |       | 10 |      |
| Hemorrhage                        |                    | 0    | 0.0      | 1     | 100.0    | 2    | 100.0 | 2  | 20.0 |

Incidence Calculated by No. of Tissues Scored

| Pl                                       | ROJECT S      | MU   | MARY     |       |         |          |       |           |              |
|------------------------------------------|---------------|------|----------|-------|---------|----------|-------|-----------|--------------|
| STUDY ID : 90 Day DNB                    |               |      |          |       |         |          |       | YQUT      | NUMBER: 94-0 |
| FATE: ALL                                |               |      |          |       |         |          |       |           |              |
| DAYS ON TEST: ALL INCIDENCE OF NEOPLASTI | C and NON-NEC | PLAS | STIC MIC | ROSCO | PIC FIN | ID I NGS | 3     |           | SEX: MA      |
|                                          |               |      |          | ••••  |         |          |       | • • • • • |              |
| GROUP:                                   |               |      | 5        |       | 6       |          | 7     |           | 8            |
| NUMBER OF ANIMALS:                       |               |      | 10       |       | 10 .    |          | 10    |           | 10           |
|                                          |               | #    | *        | #     | *       | #        | ×     | #         | ×            |
| HEART                                    | # EX          | 10   |          | 0     |         | 0        |       | 10        |              |
| Inflammation, Chronic                    |               | 4    | 40.0     | 0     | 0.0     | 0        | 0.0   | 4         | 40.0         |
| COLON                                    | # EX          | 10   |          | 0     |         | 0        |       | 10        |              |
| JEJUNUM                                  | # EX          | 10   |          | 0     |         | 0        |       | 10        |              |
| AORTA                                    | # EX          | 10   |          | 0     |         | 0        |       | 10        |              |
| LIVER                                    | # EX          | 10   |          | 0     |         | 0        | ,     | 10        |              |
| Lymphocytic Infiltrates                  |               | 1    | 10.0     | 0     | 0.0     | 0        | 0.0   | 1         | 10.0         |
| Inflammation, Chronic                    |               | 0    | 0.0      | 0     | 0.0     | 0        | 0.0   | 1         | 10.0         |
| Inflammation, Chronic/Active             |               | 1    | 10.0     | 0     | 0.0     | 0        | 0.0   | 0         | 0.0          |
| Hepatodiaphragmatic Nodule               |               | 0    | 0.0      | 0     | 0.0     | 0        | 0.0   | 1         | 10.0         |
| SPLEEN                                   | # EX          | 10   |          | 10    |         | 10       |       | 10        |              |
| Fibrosis                                 |               | 0    | 0.0      | 0     | 0.0     | 0        | 0.0   | 1         | 10.0         |
| Hyperplasia, Lymphocytic                 |               | 0    | 0.0      | 0     | 0.0     | 0        | 0.0   | 1         | 10.0         |
| Hyperplasia, Erythroid Cell              |               | 8    | 80.0     | 0     | 0.0     | 0        | 0.0   | 0         | 0.0          |
| Pigmentation, NOS                        |               | 10   | 100.0    | 0     | 0.0     | 0        | 0.0   | 0         | 0.0          |
| TONGUE                                   | # EX          | 10   |          | 0     |         | 0        |       | 10        |              |
| SKELETAL MUSCLE                          | # EX          | 10   |          | 0     |         | 0        |       | 10        |              |
| LUNGS                                    | # EX          | 10   |          | 0     |         | 0        |       | 10        |              |
| Inflammation, Chronic                    |               | 2    | 20.0     | 0     | 0.0     | 0        | 0.0   | 6         | 60.0         |
| KIDNEY                                   | # EX          | 10   |          | 10    |         | 10       |       | 10        |              |
| Regeneration, Tubular                    |               | 10   | 100.0    | 10    | 100.0   | 10       | 100.0 | 10        | 100.0        |
| Degeneration, Tubular                    |               | 10   | 100.0    | 10    | 100.0   | 10       | 100.0 | 10        | 100.0        |

Incidence Calculated by No. of Tissues Scored

PROJECT SUMMARY STUDY ID : 90 Day DNB STUDY NUMBER: 94-004 FATE: ALL DAYS ON TEST: ALL SEX: MALE INCIDENCE OF NEOPLASTIC and NON-NEOPLASTIC MICROSCOPIC FINDINGS 6 7 GROUP: NUMBER OF ANIMALS: 10 10 10 # % # X # % # EX 10 KIDNEY 10 10 10 10 100.0 0.0 0.0 Cytoplasmic Droplets 10 100.0 10 100.0 10 100.0 Mineralization, NOS 10 100.0 1 10.0 0.0 0.0 Hyaline Casts URINARY BLADDER # EX 10 0.0 0.0 0.0 2 22.0 Urolith, NOS PROSTATE # EX 10 1 10.0 0.0 0.0 0 0.0 Inflammation, Suppurative 0.0 0.0 0.0 Inflammation, Chronic/Active 0 STOMACH # EX 10 ٥ 0 10 DUDDENUM # EX 10 0 10 ILEUN # EX 10 0 10 CECUM # EX 10 10 RECTUN # EX 10 0 0 10 MESENTERIC LYMPH NODE # EX 10 10 0.0 0.0 1 10.0 Inflammation, Chronic 0.0 Inflammation, Chronic/Active, Mesentery 0.0 0.0 0.0 # EX 10 TESTES 10 10 Degeneration, Seminiferous Tubule 10 100.0 0.0 0.0 EPIDIDYMIDES # EX 10 0.0 0.0 10 100.0 0.0 Hypospermia:

Incidence Calculated by No. of Tissues Scored

PROJECT SUMMARY

STUDY ID: 90 Day DNB

| : ALL ON TEST: ALL           |                |      |          |       |         |       |     |    | SEX: |
|------------------------------|----------------|------|----------|-------|---------|-------|-----|----|------|
| INCIDENCE OF NEOPLAST        | IC and NON-NEC | PLAS | STIC MIC | ROSCO | PIC FIN | DINGS |     |    | JLA. |
| GROUP:                       |                |      | 5        | ••••  | 6       |       | 7   |    | 8    |
| NUMBER OF ANIMALS:           |                |      | 10       |       | 10      |       | 10  |    | 10   |
|                              | •              | #    | ×        | #     | %       | #     | *   | #  | *    |
| SEMINAL VESICLE              | # EX           | 10   |          | 0     |         | 0     |     | 10 |      |
| SKIN                         | # EX           | 10   |          | 0     |         | 0     |     | 10 |      |
| PREPUTIAL GLAND              | # EX           | 10   |          | 0     |         | 0     |     | 10 |      |
| Inflammation, Chronic/Active |                | 3    | 30.0     | 0     | 0.0     | 0     | 0.0 | 4  | 40.0 |
| Inflammation, Suppurative    |                | 0    | 0.0      | 0     | 0.0     | 0     | 0.0 | 1  | 10.0 |
| Lymphocytic Infiltrates      |                | 5    | 50.0     | 0     | 0.0     | 0     | 0.0 | 8  | 80.0 |
| EYES                         | # EX           | 10   |          | 0     |         | 0     |     | 10 |      |
| Microgranuloma, Cornea       |                | 7    | 70.0     | 0     | 0.0     | 0     | 0.0 | 5  | 50.0 |
| HARDERIAN GLAND              | # EX           | 10   |          | 0     |         | 0     |     | 10 |      |
| FEMUR/STERNUM                | # EX           | 10   |          | 0     |         | 0     |     | 10 |      |
| Hyperplasia, Erythroid Cell  |                | 5    | 50.0     | 0     | 0.0     | 0     | 0.0 | 0  | 0.0  |
| NASAL                        | # EX           | 10   |          | 0     |         | 0     |     | 10 |      |
|                              |                |      |          |       |         |       |     |    |      |

Incidence Calculated by No. of Tissues Scored

(End of Report)

### SEVERITY SUMMARY

STUDY NUMBER: 94-004 STUDY ID : 90 Day DNB FATE: ALL SEX: FEMALE DAYS ON TEST: ALL 3 2 GROUP: 10 10 10 10 NUMBER OF ANIMALS: # SEV -# SEV # SEV # SEV # EX 10 0 10 BRAIN 0 10 # EX 10 SCIATIC NERVE 10 # EX 10 SPINAL CORD 0 10 # EX 10 SALIVARY GLAND 0 10 # EX 10 **PANCREAS** 0 10 # EX 10 0 MANDIBULAR LYMPH NODE 1 0.20 0 0.00 0 0.00 0 0.00 Plasmacytosis 0 0.00 0 0.00 0 0.00 1 0.20 Inflammation, Chronic 0 0.00 1 0.10 0 0.00 0 0.00 Hyperplasia, Lymphoid ZYMBAL'S GLAND # EX 10 10 10 # EX 10 0 PITUITARY # EX 10 0 10 **ADRENALS** Ō 0 10 THYROID # EX 10 0 0 10 # EX 10 PARATHYROID 0 0 10 # EX 10 TRACHEA 10 **ESOPHAGUS** # EX 10 10 # EX 10 THYMUS 0 0.00 0 0.00 0 0.00 1 0.10 Hemorrhage

Severity Calculated by No. of Tissues Scored

### SEVERTTY SUMMARY

| TUDY ID : 90 Day DNB        |                           |         |         |         | STUDY NUMBER: 94-00 |
|-----------------------------|---------------------------|---------|---------|---------|---------------------|
| ATE: ALL                    |                           |         |         |         |                     |
| AYS ON TEST: ALL            |                           |         |         |         | SEX: FEMAL          |
| GROUP:                      |                           | 1       | 2       | 3       | 4                   |
| NUMBER OF ANIMALS:          |                           | 10      | 10      | 10      | 10                  |
|                             | • • • • • • • • • • • • • | # SEV   | # SEV   | # SEV   | # SEV               |
| HEART                       | # EX                      | 10      | 0       | 0       | 10                  |
| Inflammation, Chronic       |                           | 2 0.20  | 0 0.00  | 0 0.00  | 1 0.10              |
| COLON                       | # EX                      | 10      | 0       | 0       | 10                  |
| JEJUNUM                     | # EX                      | 10      | 0       | O       | 10                  |
| AORTA                       | # EX                      | 10      | 0       | 0       | 10                  |
| LIVER                       | # EX                      | 10      | 0       | 0       | 10                  |
| Inflammation, Chronic       |                           | 1 0.10  | 0 0.00  | 0 0.00  | 0 0.00              |
| SPLEEN                      | # EX                      | 10      | 10      | 10      | 10                  |
| Hyperplasia, Erythroid Cell |                           | 8 1.40  | 0 0.00  | 0 0.00  | 0 0.00              |
| Pigmentation, NOS           |                           | 9 1.10  | 1 0.10  | 3 0.30  | 0 0.00              |
| TONGUE                      | # EX                      | 10      | 0       | 0       | 10                  |
| SKELETAL MUSCLE             | # EX                      | 10      | 0       | 0       | 10                  |
| LUNGS                       | # EX                      | 10      | 0       | 0       | 10                  |
| Inflammation, Chronic       |                           | 1 0.10  | 0 0.00  | 0 0.00  | 0 0.00              |
| KIDNEY                      | # EX                      | 10      | 10      | 10      | 10                  |
| Lymphocytic Infiltrates     |                           | 0 0.00  | 0 0.00  | 1 0.10  | 0 0.00              |
| Pigmentation, NOS           |                           | 10 1.00 | 0 0.00  | 0 0.00  | 3 0.30              |
| Hyaline Droplets            |                           | 9 1.10  | 0 0.00  | 0 0.00  | 0 0.00              |
| Mineralization, NOS         |                           | 10 1.00 | 10 1.20 | 10 1.30 | 9 0.90              |
| URINARY BLADDER             | # EX                      | 10      | 0       | 0       | 10                  |

Severity Calculated by No. of Tissues Scored

### SEVERITY SUMMARY

| SEVERI                                   | ITY S | MUS  | MARY |   |      |   |      |       |            |      |
|------------------------------------------|-------|------|------|---|------|---|------|-------|------------|------|
| STUDY ID : 90 Day DNB<br>FATE: ALL       |       |      |      |   |      |   |      | STUDY | NUMBER: 94 |      |
| DAYS ON TEST: ALL                        |       |      |      |   |      |   |      |       | SEX: FEI   | MALE |
| GROUP:                                   |       |      | 1    |   | 2    |   | 3    |       | 4          |      |
| NUMBER OF ANIMALS:                       |       |      | 10   |   | 10   |   | 10   |       | 10         |      |
|                                          |       | #    | SEV  | # | SEV  | # | SEV  | #     | SEV        |      |
| STOMACH                                  | # EX  | 10   |      | 0 |      | 0 |      | 10    |            |      |
| DUODENUM                                 | # EX  | 10   |      | 0 |      | 0 |      | 10    |            |      |
| ILEUM                                    | # EX  | 10   |      | 0 |      | 0 |      | 10    |            |      |
| CECUM                                    | # EX  | 10   |      | 0 |      | 0 |      | 10    |            |      |
| RECTUM                                   | # EX  | 10   |      | 0 |      | 0 |      | 10    |            |      |
| MESENTERIC LYMPH NODE                    | # EX  |      |      | 0 |      | 0 |      | 10    |            |      |
| Inflammation, Chronic                    |       | _    | 0.30 | _ | 0.00 | _ | 0.00 |       | 0.40       |      |
| Hyperplasia, Lymphoid                    |       | 1    | 0.20 | 0 | 0.00 | 0 | 0.00 | 0     | 0.00       |      |
| OVARIES                                  | # EX  | 10   |      | 0 |      | 2 |      | 10    |            |      |
| Inflammation, Chronic/Active, Parovarian |       | 0    | 0.00 | 0 | 0.00 | 1 | 2.00 | 0     | 0.00       |      |
| Necrosis, Parovarian                     |       | 0    | 0.00 | 0 | 0.00 | 1 | 1.50 | 0     | 0.00       |      |
| UTERUS                                   | # EX  | 10   |      | ٥ |      | 0 |      | 10    |            |      |
| Dilatation, Bilateral                    |       | 4    | 1.00 | 0 | 0.00 | 0 | 0.00 | 2     | 0.20       |      |
| SKIN                                     | # EX  | 10   |      | 0 |      | D |      | 10    |            |      |
| CLITORAL GEÁND                           | # EX  | 10   |      | 0 |      | 0 |      | 10    |            |      |
| Lymphocytic Infiltrates                  |       | 6    | 0.60 | 0 | 0.00 | 0 | 0.00 | 4     | 0.40       |      |
| Inflammation, Suppurative                |       | 1    | 0.10 | 0 | 0.00 | 0 | 0.00 | 0     | 0.00       |      |
| Inflammation, Chronic/Active             |       | 1    | 0.20 | 0 | 0.00 | 0 | 0.00 | 0     | 0.00       |      |
| EYES                                     | # EX  | ( 10 |      | 0 |      | 0 |      | 10    | 1          |      |
| Microgranuloma, Cornea                   |       | 4    | 0.40 | 0 | 0.00 | 0 | 0.00 | 2     | 0.20       |      |

Severity Calculated by No. of Tissues Scored

| SEVER | ITY | SUMMARY |
|-------|-----|---------|
|       |     |         |

| 5                                  | SEVERITY S | UMMARY |        |        |                 |        |
|------------------------------------|------------|--------|--------|--------|-----------------|--------|
| STUDY ID : 90 Day DNB<br>FATE: ALL |            |        |        |        | STUDY NUMBER: 9 | 94-004 |
| DAYS ON TEST: ALL                  |            |        |        |        | SEX: I          | EMALE  |
| GROUP:                             |            | 1      | 2      | 3      | 4               |        |
| NUMBER OF ANIMALS:                 |            | 10     | 10     | 10     | 10              |        |
|                                    |            | # SEV  | # SEV  | # SEV  | # SEV           |        |
| HARDERIAN GLAND                    | # EX       | 10     | 0      | 0      | 10              |        |
| Lymphocytic Infiltrates            |            | 4 0.50 | 0 0.00 | 0 0.00 | 2 0.20          |        |
| FEMUR/STERNUM                      | # EX       | 10     | 0      | 0      | 10              |        |
| Hyperplasia, Erythroid Cell        |            | 2 0.30 | 0 0.00 | 0 0.00 | 0 0.00          |        |
| NASAL                              | # EX       | 10     | 0      | 0      | 10              |        |
| MAMMARY GLAND                      | # EX       | 10     | 0      | o      | 10              |        |

Severity Calculated by No. of Tissues Scored

(Report Continued)

CENTED TOV CIMMADV

|                                    | SEVERITY S | UMMARY |        |        |                    |
|------------------------------------|------------|--------|--------|--------|--------------------|
| STUDY 1D : 90 Day DNB<br>FATE: ALL |            |        |        | !      | STUDY NUMBER: 94-0 |
| DAYS ON TEST: ALL                  |            |        |        |        | SEX: MA            |
| GROUP:                             |            | 5      | 6      | 7      | 8                  |
| NUMBER OF ANIMALS:                 |            | 10     | 10     | 10     | 10                 |
|                                    |            | # SEV  | •_     |        | # SEV              |
| BRAIN                              | # EX       | 10     | 0      | 0      | 10                 |
| SCIATIC NERVE                      | # EX       | 10     | 0      | 0      | 10                 |
| SPINAL CORD                        | # EX       | 10     | 0      | 0      | 10                 |
| SALIVARY GLAND                     | # EX       | 10     | 0      | 0      | 10                 |
| PANCREAS                           | # EX       | 10     | 0      | 0      | 10                 |
| Degeneration, Acinar               |            | 0 0.00 | 0 0.00 | 0 0.00 | 2 0.20             |
| MANDIBULAR LYMPH NODE              | # EX       | 10     | 0      | 0      | 10                 |
| Plasmacytosis                      |            | 3 0.50 |        | 0 0.00 | 3 0.60             |
| Hyperplasia, Lymphoid              |            | 1 0.20 | 0 0.00 | 0 0.00 | 1 0.20             |
| ZYMBAL'S GLAND                     | # EX       | 8      | 0      | 0      | 9                  |
| PITUITARY                          | # EX       | 10     | 0      | 0      | 10                 |
| ADRENALS                           | # EX       | 10     | Ō      | 0      | 10                 |
| THYROID                            | # EX       | 10     | 0      | 0      | 10                 |
| PARATHYROID                        | # EX       | 10     | 0      | 0      | 9                  |
| TRACHEA                            | # EX       | 10     | 0      | 0      | 10                 |
| ESOPHAGUS                          | # EX       | 10     | 0      | 0      | 10                 |
| THYMUS                             | # EX       |        | 1      | 2      | 10                 |
| Hemorrhage                         |            | 0 0.00 | 1 2.00 | 2 2.50 | 2 0.30             |

Severity Calculated by No. of Tissues Scored

| TUDY ID : 90 Day DNB         |       |         |         |         | STUDY NUMBER: 94-00 |
|------------------------------|-------|---------|---------|---------|---------------------|
| ATE: ALL<br>AYS ON TEST: ALL |       |         |         |         | SEX: MAI            |
| GROUP:                       |       | 5       | 6       | <br>7   | 8                   |
| NUMBER OF ANIMALS:           |       | 10      | 10      | 10      | 10                  |
|                              | ***** | # SEV   | # SEV   | # SEV   | # SEV               |
| HEART                        | # EX  | 10      | 0       | 0       | 10                  |
| Inflammation, Chronic        |       | 4 0.50  | 0 0.00  | 0 0.00  | 4 0.40              |
| COLON                        | # EX  | 10      | 0       | 0       | 10                  |
| JEJUNUM                      | # EX  | 10      | 0       | 0       | 10                  |
| AORTA                        | # EX  | 10      | 0       | 0       | 10                  |
| LIVER                        | # EX  | 10      | 0       | 0       | 10                  |
| Lymphocytic Infiltrates      |       | 1 0.10  | 0 0.00  | 0 0.00  | 1 0.10              |
| Inflammation, Chronic        |       | 0 0.00  | 0 0.00  | 0 0.00  | 1 0.10              |
| Inflammation, Chronic/Active |       | 1 0.10  | 0 0.00  | 0 0.00  | 0 0.00              |
| SPLEEN                       | # EX  | 10      | 10      | 10      | 10                  |
| Fibrosis                     |       | 0 0.00  | 0 0.00  | 0 0.00  | 1 0.10              |
| Hyperplasia, Lymphocytic     |       | 0 0.00  | 0 0.00  | 0 0.00  | 1 0.20              |
| Hyperplasia, Erythroid Cell  |       | 8 1.30  | 0 0.00  | 0 0.00  | 0 0.00              |
| Pigmentation, NOS            |       | 10 1.30 | 0 0.00  | 0 0.00  | 0 0.00              |
| TONGUE                       | # EX  | 10      | 0       | 0       | 10                  |
| SKELETAL MUSCLE              | # EX  | 10      | 0       | 0       | 10                  |
| LUNGS                        | # EX  | 10      | 0       | 0       | 10                  |
| Inflammation, Chronic        |       | 2 0.20  | 0 0.00  | 0 0.00  | 6 0.60              |
| KIDNEY                       | # EX  | 10      | 10      | 10      | 10                  |
| Regeneration, Tubular        |       | 10 1.50 | 10 1.60 | 10 1.80 | 10 1.40             |
| Degeneration, Tubular        |       | 10 1.80 | 10 2.00 | 10 2.00 | 10 1.80             |
| Cytoplasmic Droplets         |       | 10 1.70 | 0 0.00  | 0 0.00  | 0 0.00              |
| Mineralization, NOS          |       | 10 1.80 | 10 1.70 | 10 1.50 | 10 1.50             |

Severity Calculated by No. of Tissues Scored

## SEVERITY SUMMARY

| TUDY ID : 90 Day DNB                    |      |         |        |        | STUDY NUMBER: 94-00 |
|-----------------------------------------|------|---------|--------|--------|---------------------|
| ATE: ALL<br>AYS ON TEST: ALL            |      |         |        |        | SEX: MAI            |
| GROUP:                                  |      | 5       | 6      | 7      | 8                   |
| NUMBER OF ANIMALS:                      |      | 10      | 10     | 10     | 10                  |
|                                         |      | # SEV   | # SEV  | # SEV  | # SEV               |
| KIDNEY                                  | # EX | 10      | 10     | 10     | 10                  |
| Hyaline Casts                           |      | 1 0.10  | 0 0.00 | 0 0.00 | 0 0.00              |
| URINARY BLADDER                         | # EX | 10      | 0      | 0      | 9                   |
| PROSTATE                                | # EX | 10      | 0      | 0      | 9                   |
| Inflammation, Suppurative               |      | 1 0.20  | 0 0.00 | 0 0.00 | 0 0.00              |
| Inflammation, Chronic/Active            |      | 0 0.00  | 0 0.00 | 0 0.00 | 1 0.22              |
| STOMACH                                 | # EX | 10      | 0      | 0      | 10                  |
| DUODENUM                                | # EX | 10      | 0      | 0      | 10                  |
| ILEUM                                   | # EX | 10      | 0      | 0      | 10                  |
| CECUM                                   | # EX | 10      | 0      | 0      | 10                  |
| RECTUM                                  | # EX | 10      | 0      | 0      | 10                  |
| MESENTERIC LYMPH NODE                   | # EX | 10      | 0      | 0      | 10                  |
| Inflammation, Chronic                   |      | 0 0.00  | 0 0.00 | 0 0.00 | 1 0.20              |
| Inflammation, Chronic/Active, Mesentery |      | 0 0.00  | 0 0.00 | 0 0.00 | 1 0.20              |
| TESTES                                  | # EX | 10      | 10     | 10     | 10                  |
| Degeneration, Seminiferous Tubule       |      | 10 4.00 | 0 0.00 | 0 0.00 | 0 0.00              |
| EPIDIDYMIDES                            | # EX | 10      | 0      | 0      | 10                  |
| Hypospermia                             |      | 10 4.00 | 0 0.00 | 0 0.00 | 0 0.00              |
| SEMINAL VESICLE                         | # EX | 10      | 0      | Ō      | 10                  |

Severity Calculated by No. of Tissues Scored

SEVERTTY SUMMARY

| 5                                  | SEVERITY S | UMMARY |        |        |                      |
|------------------------------------|------------|--------|--------|--------|----------------------|
| STUDY ID : 90 Day DNB<br>FATE: ALL |            |        |        |        | STUDY NUMBER: 94-004 |
| DAYS ON TEST: ALL                  |            |        |        |        | SEX: MALE            |
| GROUP:                             |            | 5      | 6      | 7      | 8                    |
| NUMBER OF ANIMALS:                 |            | 10     | 10     | 10     | 10                   |
|                                    |            | # SEV  | # SEV  | # SEV  | # SEV                |
| SKIN                               | # EX       | 10     | 0      | 0      | 10                   |
| PREPUTIAL GLAND                    | # EX       | 10     | 0      | 0      | 10                   |
| Inflammation, Chronic/Active       |            | 3 0.80 | 0 0.00 | 0 0.00 | 4 0.90               |
| Inflammation, Suppurative          |            | 0 0.00 | 0 0.00 | 0 0.00 | 1 0.30               |
| Lymphocytic Infiltrates            |            | 5 0.50 | 0 0.00 | 0 0.00 | 8 1.30               |
| EYES                               | # EX       | 10     | 0      | 0      | 10                   |
| Microgranuloma, Cornea             |            | 7 1.10 | 0 0.00 | 0 0.00 | 5 0.80               |
| HARDERIAN GLAND                    | # EX       | 10     | 0      | 0      | 10                   |
| FEMUR/STERNUM                      | # EX       | 10     | 0      | 0      | 10                   |
| Hyperplasia, Erythroid Cell        |            | 5 0.80 | 0 0.00 | 0 0.00 | 0 0.00               |
| NASAL                              | # EX       | 10     | 0      | 0      | 10                   |
| MAMMARY GLAND                      | # EX       | 10     | 0      | 0      | 10                   |

Severity Calculated by No. of Tissues Scored

(END OF REPORT)

### TABULATED ANIMAL DATA

| STUDY ID : 90 Day DNB<br>FATE: ALL<br>DAYS ON TEST: ALL |        |        |        |        |        |        |        |        | 'UDY NU | GROUP: 1 SEX: FEMALE | ı   |
|---------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|----------------------|-----|
| ANIMAL ID:                                              |        |        | 1-03   |        |        |        |        |        | 1-09    | 1-10                 | ••• |
| BRAIN                                                   | N      | N      | N      | N      | N      | N.     | N      | N      | N       | N                    |     |
| SCIATIC NERVE                                           | N      | N      | N      | N      | N      | N      | N      | N      | N       | N                    |     |
| SPINAL CORD                                             | N      | N      | N      | N      | N      | N      | N      | N      | N       | N                    |     |
| SALIVARY GLAND                                          | N      | N      | N      | N      | N      | N      | N      | N      | N       | N                    |     |
| PANCREAS                                                | N      | N      | N      | N      | N      | N      | N      | N      | N       | N                    |     |
| MANDIBULAR LYMPH NODE Plasmacytosis                     | N<br>- | 2       | N<br>-               |     |
| ZYMBAL'S GLAND                                          | N      | N      | N      | N      | N      | N      | N      | N      | N       | N                    |     |
| PITUITARY                                               | N      | N      | N      | N      | N      | N      | N      | N      | N       | N                    |     |
| ADRENALS                                                | N      | N      | N      | N      | N      | N      | N      | N      | N       | N                    |     |
| THYROID                                                 | N      | N      | N      | N      | N      | N      | N      | N      | N       | N                    |     |
| PARATHYROID                                             | N      | N .    | N      | N      | N      | N      | N      | N      | N       | N                    |     |
| TRACHEA                                                 | N      | N      | N      | N      | N      | N      | N      | N      | N       | N                    |     |
| ESOPHAGUS                                               | N      | N      | N      | N      | N      | N      | N      | N      | N       | N                    |     |
| THYMUS                                                  | N      | N      | N      | N      | N      | N      | N      | N      | N       | N                    |     |
|                                                         |        |        |        |        |        |        |        |        |         |                      |     |

See Reports Code Table for Symbol Definitions

**HEART** 

| TABUL | ATED | ANIMAL | DATA |
|-------|------|--------|------|
|       |      |        |      |

| STUDY ID : 90 Day DNB                            |        |        |        |        |        |      |        | ST     | UDY NU | MBER: 94-004 |
|--------------------------------------------------|--------|--------|--------|--------|--------|------|--------|--------|--------|--------------|
| FATE: ALL<br>DAYS ON TEST: ALL                   |        |        |        |        |        |      |        |        |        | GROUP: 1     |
| ANIMAL ID:                                       |        |        |        |        | 1-05   | 1-06 | 1-07   | 1-08   | 1-09   |              |
|                                                  |        |        |        |        |        |      |        |        |        |              |
| HEART<br>Inflammation, Chronic                   | 1      | N<br>- | N<br>- | N<br>- | N<br>- | N    | N<br>- | N<br>- | 1      | א<br>-       |
| COLON                                            | N      | N      | N      | N      | N      | N    | N      | N      | N      | N            |
| PEJUNUM                                          | N      | N      | N      | N      | N      | N    | N      | N      | N      | N            |
| AORTA                                            | N      | N      | Ņ      | N      | N      | N    | N      | N      | N      | N            |
| IVER                                             | N      |        | N      | N      | N      | N    | N      | N      | N      | N            |
| Inflammation, Chronic                            | -      | 1      | -      | •      | -      | -    | -      | •      | -      | -            |
| SPLEEN                                           |        |        |        |        |        | N    |        |        |        |              |
| Hyperplasia, Erythroid Cell<br>Pigmentation, NOS | 2<br>1 | 2      | 1      | 1      | 2<br>1 | -    | 2<br>2 | 2<br>1 | 1      | 2<br>1       |
| ONGUE                                            | N      | N      | N      | N      | N      | N    | N      | N      | N      | N            |
| KELETAL MUSCLE                                   | N      | N      | N      | N      | N      | N    | N      | N      | N      | N            |
| ungs                                             |        | N      | N      | N      | N      | N    | N      | N      | N      | N            |
| Inflammation, Chronic                            | 1      | -      | -      | -      | -      | -    | •      | -      | -      | -            |
| CIDNEY                                           |        |        |        |        |        |      |        |        |        |              |
| Pigmentation, NOS                                | 1      | 1      | 1      | 1      | 1      | 1    | 1      | 1      | 1      | 1            |
| Hyaline Droplets :                               | 2      | 1      | 1      | -      | 1      | 1    | 2      | 1      | 1      | 1            |
| Mineralization, NOS                              | 1      | 1      | 1      | 1      | 1      | 1    | 1      | 1      | 1      | 1            |
| RINARY BLADDER                                   | N      | N      | N      | N      | N      | N    | N      | N      | N      | N            |
| TOMACH                                           | N      | N      | N      | N      | N      | Ñ    | N      | N      | N      | N            |

See Reports Code Table for Symbol Definitions

### TABULATED ANIMAL DATA

| AND AN AREA OF THE PARTY.          |      |      |      |      |      |      |      |      | ווח א אווי | JMBER: 94-004 |
|------------------------------------|------|------|------|------|------|------|------|------|------------|---------------|
| STUDY ID : 90 Day DNB<br>FATE: ALL |      |      |      |      |      |      |      | 31   | וא ועט     | GROUP: 1      |
| DAYS ON TEST: ALL                  |      |      |      |      |      |      |      |      |            | SEX: FEMALE   |
|                                    |      |      |      |      |      |      |      |      |            |               |
| ANIMAL ID:                         | 1-01 | 1-02 | 1-03 | 1-04 | 1-05 | 1-06 | 1-07 | 1-08 | 1-09       | 1-10          |
| DUODENUM                           | N    | N    | N    | N    | N    | N .  | N    | N    | N          | N             |
| ILEUM                              | N    | N    | N    | N    | N    | N    | N    | N    | N          | N             |
| CECUM                              | N    | N    | N    | N    | N    | N    | N    | N    | N          | N             |
| RECTUM                             | N    | N    | N    | N    | N    | N    | N    | N    | N          | N             |
| MESENTERIC LYMPH NODE              |      | N    | N    | N    | N    | N    | N    | N    |            | N             |
| Inflammation, Chronic              | 1    | -    | -    |      | -    | -    | -    | -    | 2          | -             |
| Hyperplasia, Lymphoid              | -    | -    | -    | -    | -    | •    | -    | •    | 2          | •             |
| OVARIES                            | N    | N    | N    | N    | N    | N    | N    | N    | N          | N             |
| UTERUS                             | N    | N    | N    |      |      | N    | N    |      |            | N             |
| Dilatation, Bilateral              | -    | -    | -    | 4    | 1    | -    | -    | 3    | 2          | •             |
| SKIN                               | N    | N    | N    | N    | N    | N    | N    | N    | N          | N             |
| CLITORAL GLAND                     | N    |      |      |      |      | N    |      |      |            |               |
| Lymphocytic Infiltrates            | -    | 1    | 1    | 1    | -    | -    | -    | 1    | 1          | 1             |
| Inflammation, Suppurative          | -    | -    | -    | -    | -    | -    | 1    | -    | •          | -             |
| Inflammation, Chronic/Active       | -    | •    | -    | -    | 2    | -    | -    | -    | -          | -             |
| EYES                               | N    |      | N    | N    | N    |      |      | N    | N          |               |
| Microgranuloma, Cornea             | -    | 1    | -    | •    | -    | 1    | 1    | -    | •          | 1             |
| HARDERIAN GLAND                    | N    | N    |      |      |      | N    | N    |      | N          | N             |
| Lymphocytic Infiltrates            | -    | -    | 2    | 1    | 1    | -    | -    | 1    | •          | -             |
| FEMUR/STERNUM                      |      | N    | N    | N    | N    | N    | N    |      | N          | N             |
| Hyperplasia, Erythroid Cell        | 2    | -    | -    | -    | •    | -    | •    | 1    | -          | •             |

See Reports Code Table for Symbol Definitions

|                                                         | TABULATE | D AN | IMA  | L DA | TA   |       |       |      |        |                                      |
|---------------------------------------------------------|----------|------|------|------|------|-------|-------|------|--------|--------------------------------------|
| STUDY ID : 90 Day DNB<br>FATE: ALL<br>DAYS ON TEST: ALL |          | •    |      |      |      | ••••• | ***** | ST   | UDY NU | JMBER: 94-00<br>GROUP:<br>SEX: FEMAL |
| ANIMAL ID:                                              | 1-01     | 1-02 | 1-03 | 1-04 | 1-05 | 1-06  | 1-07  | 1-08 | 1-09   | 1-10                                 |
| NASAL                                                   | N        | N    | N    | N    | N    | N     | N     | N    | N      | N                                    |
| MAMMARY GLAND                                           | N        | N    | N    | N    | N    | N     | N     | N    | N      | N                                    |

See Reports Code Table for Symbol Definitions

## TABULATED ANIMAL DATA

| STUDY ID : 90 Day DNB  FATE: ALL  DAYS ON TEST: ALL |   |        | ••••• | ••••• |   |         |        | ST     | UDY NU | JMBER: 94-<br>GROUP<br>SEX: FEM | -004<br>-: 2<br>MALE |
|-----------------------------------------------------|---|--------|-------|-------|---|---------|--------|--------|--------|---------------------------------|----------------------|
| ANIMAL ID:                                          |   |        | 2-13  |       |   |         |        |        |        |                                 |                      |
| BRAIN<br>Astrocytoma                                |   | •<br>- | *     | P     | • | *.<br>- | *<br>- | *<br>- | •      | *<br>-                          |                      |
| SCIATIC NERVE                                       | * | *      | *     | *     | * | *       | *      | *      | *      | •                               |                      |
| SPINAL CORD                                         | * | *      | *     | *     | * | *       | *      | *      | *      | *                               |                      |
| SALIVARY GLAND                                      | • | *      | *     | *     | * | *       | •      | *      | *      | *                               |                      |
| PANCREAS                                            | * | *      | *     | *     | * | •       | *      | *      | *      | *                               |                      |
| MANDIBULAR LYMPH NODE                               | * | *      | •     | *     | * | •       | *      | *      | *      | . *                             |                      |
| ZYMBAL'S GLAND                                      | * | *      | *     | •     | * | *       | *      | *      | *      | *                               |                      |
| PITUITARY                                           | • | *      | *     | *     | * | •       | *      | *      | *      | *                               |                      |
| ADRENALS                                            | * | *      | *     | *     | * | *       | *      | *      | *      | *                               |                      |
| THYROID                                             | • | *      | *     | *     | * | *       | *      | *      | *      | * .                             | 1                    |
| PARATHYROID                                         | * | *      | *     | *     | * | #       | •      | *      | *      | *                               |                      |
| TRACHEA                                             | • | *      | *     | •     | * | •       | *      | *      | •      | •                               |                      |
| ESOPHAGUS                                           | • | *      | *     | *     | * | *       | *      | *      | *      | *                               |                      |
| THYMUS                                              | • | •      | *     | •     | * | *       | *      | *      | *      | •                               |                      |
| HEART                                               | • | *      | *     | *     | * | •       | *      | *      | *      | •                               |                      |
| COLON                                               | • | *      | *     | *     | * | *       | •      | *      | *      | •                               |                      |

See Reports Code Table for Symbol Definitions

### TABULATED ANIMAL DATA

|                                                         | TABULATE | D AN   | IAMI | L DA   | TA     |        |      |        |        |        |                            |
|---------------------------------------------------------|----------|--------|------|--------|--------|--------|------|--------|--------|--------|----------------------------|
| STUDY ID : 90 Day DNB<br>FATE: ALL<br>DAYS ON TEST: ALL |          |        |      |        |        |        |      | ST     | UDY NU |        | 94-004<br>OUP: 2<br>FEMALE |
| ANIMAL ID:                                              |          |        | 2-13 | 2-14   | 2-15   | 2-16   | 2-17 | 2-18   | 2-19   | 2-20   |                            |
| JEJUNUM                                                 | *        | *      | *    | *      | *      | *·.    | *    | *      | *      | *      |                            |
| AORTA                                                   | •        | *      | *    | *      | *      | *      | *    | *      | *      |        |                            |
| LIVER                                                   | •        | *      | *    | *      | •      | •      | *    | *      | *      | *      |                            |
| SPLEEN Pigmentation, NOS                                | N -      | N<br>- | 1    | N<br>- | N<br>- | N<br>- | N    | N<br>- | N<br>- | N<br>- |                            |
| TONGUE                                                  |          | *      | *    | *      | *      | *      | *    | *      | *      | *      |                            |
| SKELETAL MUSCLE                                         | •        | *      | *    | •      | *      | *      | *    | *      | •      | *      |                            |
| LUNGS                                                   | •        | *      | *    | *      | *      | *      | *    | *      | •      | •      |                            |
| KIDNEY Mineralization, NOS                              | 1        | 1      | 1    | 1      | 1      | 2      | 1    | 1      | 2      | 1      |                            |
| URINARY BLADDER                                         | •        | *      | *    | *      | *      | *      | *    | *      | *      | •      |                            |
| STOMACH                                                 | •        | #      | *    | *      | *      | *      | *    | *      | •      | •      |                            |
| DUODENUM                                                | •        | •      | *    | •      | •      | *      | •    | •      | •      | •      |                            |
| I LEUM .                                                | •        | *      | •    | *      | *      | *      | *    | *      | *      | •      |                            |
| CECUM                                                   | *        | •      | •    | *      | *      | *      | *    | •      | •      | *      |                            |
| RECTUM                                                  | *        | *      | *    | •      | *      | •      | *    | *      | •      | •      |                            |
| MESENTERIC LYMPH NODE                                   | •        | *      | *    | *      | *      | *      | *    | •      | •      |        |                            |

See Reports Code Table for Symbol Definitions

### TABULATED ANIMAL DATA

|                                                         | INDULATED | WI/T | IVITAL | . DA | <u> </u> |      |      |      |        |                         |
|---------------------------------------------------------|-----------|------|--------|------|----------|------|------|------|--------|-------------------------|
| STUDY ID : 90 Day DNB<br>FATE: ALL<br>DAYS ON TEST: ALL |           |      |        |      |          |      |      | ST   | UDY NU | GROUP: 2<br>SEX: FEMALE |
| ANIMAL ID:                                              | 2-11      | 2-12 | 2-13   | 2-14 | 2-15     | 2-16 | 2-17 | 2-18 | 2-19   | 2-20                    |
| OVARIES                                                 | *         | *    | *      | *    | *        | *.   | *    | *    | *      | *                       |
| UTERUS                                                  | •         | *    | *      | *    | *        | *    | *    | *    | *      | *                       |
| SKIN                                                    | *         | •    | * .    | *    | *        | *    | *    | *    | *      | *                       |
| CLITORAL GLAND                                          | *         | *    | *      | *    | *        | *    | •    | *    | *      | *                       |
| EYES                                                    | *         | •    | *      | *    | *        | *    | *    | *    | *      | *                       |
| HARDERIAN GLAND                                         | •         | *    | *      | *    | *        | •    | *    | *    | *      | *                       |
| FEMUR/STERNUM                                           | *         | *    | *      | *    | *        | *    | *    | *    | *      | *                       |
| NASAL                                                   | *         | *    | *      | *    | *        | *    | *    | *    | *      | *                       |
| MAMMARY GLAND                                           | •         | *    | *      | *    | *        | *    | *    | *    | *      | *                       |

See Reports Code Table for Symbol Definitions

TABULATED ANIMAL DATA

| STUDY ID : 90 Day DNB | STUDY NUMBER: 94-004 |
|-----------------------|----------------------|
| FATE: ALL             | GROUP: 3             |
| DAYS ON TEST: ALL     | SEX: FEMALE          |

| AN           | IIMAL ID: | 3-21 | 3-22 | 3-23 | 3-24 | 3-25 | 3-26 | 3-27 | 3-28 | 3-29 | 3-30 |  |
|--------------|-----------|------|------|------|------|------|------|------|------|------|------|--|
| BRAIN        |           | *    | *    | •    | *    |      | *    | •    | •    | •    | •    |  |
| SCIATIC NERV | /E        | *    | *    | *    | *    | *    | •    | •    | *    | *    | *    |  |
| SPINAL CORD  |           | *    | *    | •    | *    | •    | •    | *    | •    | *    | •    |  |
| SALIVARY GLA | ND        | *    | *    | *    | *    | *    | •    | *    | *    | *    | •    |  |
| PANCREAS     |           | *    | *    | •    | *    | •    | *    | *    | *    | •    | *    |  |
| MANDIBULAR L | YMPH NODE | *    | *    | *    | *    | •    | •    | •    | •    | •    | •    |  |
| ZYMBAL'S GLA | ND        | *    | *    | *    | *    | •    | •    | •    | •    | •    | •    |  |
| PITUITARY    |           | *    | *    | *    | •    | *    | •    | •    | •    | •    | •    |  |
| ADRENALS     |           | *    | *    | *    | •    | •    | *    | •    | •    | *    | •    |  |
| THYROID      |           | *    | *    | *    | *    | •    | *    | *    | •    | *    | •    |  |
| PARATHYROID  |           | *    | *    | •    | •    | •    | •    | •    | •    | •    | *    |  |
| TRACHEA      |           | *    | *    | •    | *    | •    | •    | •    | •    | •    | •    |  |
| ESOPHAGUS    |           | *    | *    | •    | *    | *    | •    | *    | *    | *    | •    |  |
| THYMUS       |           | *    | *    | •    | •    | *    | •    | •    | •    | •    | •    |  |
| HEART        |           | *    | •    | •    | *    | *    | *    | •    | •    | •    | •    |  |
| COLON        |           | *    | *    | •    | •    | *    | •    | *    | *    | •    | *    |  |

See Reports Code Table for Symbol Definitions

### TABULATED ANIMAL DATA

| *************************************** |   |   |   |   |   |    |   |      |        |                       |  |
|-----------------------------------------|---|---|---|---|---|----|---|------|--------|-----------------------|--|
| STUDY 1D : 90 Day DNB<br>FATE: ALL      |   |   |   |   |   |    |   | ST   | UDY NU | JMBER: 94-0<br>GROUP: |  |
| DAYS ON TEST: ALL                       |   |   |   |   |   |    |   |      |        | SEX: FEMA             |  |
| ANIMAL ID:                              |   |   |   |   |   |    |   | 3-28 |        |                       |  |
| JEJUNUM                                 | * | * | * | • | * | *. | * | *    | *      | •                     |  |
| AORTA                                   | • | * | * | * | * | *  | • | *    | •      | *                     |  |
| LIVER                                   | * | * | * | * | * | *  | * | *    | *      | *                     |  |
| SPLEEN                                  |   | N | N | N | N |    |   | N    | N      | N                     |  |
| Pigmentation, NOS                       | 1 | - | - | - | - | 1  | 1 | -    | -      | -                     |  |
| TONGUE                                  |   | * | * | * | * | *  | • | *    | •      | *                     |  |
| SKELETAL MUSCLE                         | * | * | • | • | * | *  | * | *    | *      | *                     |  |
| LUNGS                                   | • | • | * | * | * | *  | * | •    | •      | •                     |  |
| KIDNEY                                  |   |   |   |   |   |    |   |      |        |                       |  |
| Lymphocytic Infiltrates                 | • | - | 1 | - | • | -  | • | -    | -      | •                     |  |
| Mineralization, NOS                     | 2 | 1 | 1 | 1 | 1 | 2  | 1 | 1    | 2      | 1                     |  |
| URINARY BLADDER                         | * | * | * | * | * | *  | * | *    | •      | *                     |  |
| STOMACH                                 | • | * | * | * | * | *  | * | •    | •      | *                     |  |
| DUODENUM                                | * | * | * | * | * | *  | * | *    | •      | *                     |  |
| ILEUM                                   | * | * | * | * | * | *  | • | *    | *      | •                     |  |
| CECUM                                   | • | * | * | • | * | *  | * | *    | •      | *                     |  |
| RECTUM                                  | • | * | * | * | * | *  | • | •    | •      | •                     |  |
| MESENTERIC LYMPH NODE                   | • | * | * | • | * | *  | * | *    | •      | •                     |  |

See Reports Code Table for Symbol Definitions

| TABULATED | WHITT | DWIW |
|-----------|-------|------|
|           |       |      |

| TABI                                                    | JLATE: | D AN | IIMAI | L DA | TA   |      |      |      |         |                                          |
|---------------------------------------------------------|--------|------|-------|------|------|------|------|------|---------|------------------------------------------|
| STUDY ID : 90 Day DNB<br>FATE: ALL<br>DAYS ON TEST: ALL |        |      |       |      |      |      | •••• | Sī   | TUDY NI | JMBER: 94-004<br>GROUP: 3<br>SEX: FEMALE |
| ANIMAL ID:                                              |        | 3-22 | 3-23  | 3-24 | 3-25 | 3-26 | 3-27 | 3-28 | 3-29    | 3-30                                     |
| OVARIES                                                 | *      | *    | *     | *    |      | *.   | *    | *    |         | *                                        |
| Cyst, NOS                                               | -      | -    | -     | -    | •    | -    | -    | -    | P       | •                                        |
| Inflammation, Chronic/Active, Parovarian                | •      | -    | -     | -    | 4    | -    | -    | -    | -       | -                                        |
| Necrosis, Parovarian                                    | •      | -    | -     | -    | 3    | -    | -    | -    | -       | •                                        |
| JTERUS                                                  | *      | *    | *     | *    | *    | *    | *    | *    | *       | *                                        |
| SKIN                                                    | *      | •    | *     | *    | *    | •    | *    | *    | *       | *                                        |
| CLITORAL GLAND                                          | *      | *    | *     | *    | •    | *    | *    | *    | *       | •                                        |
| YES                                                     | *      | *    | *     | *    | •    | *    | *    | *    | *       | *                                        |
| HARDERIAN GLAND                                         | •      | *    | *     | *    | *    | *    | *    | *    | *       | *                                        |
| FEMUR/STERNUM                                           | *      | •    | *     | *    | *    | *    | *    | *    | *       | *                                        |
| NASAL                                                   | *      | *    | *     | *    | *    | *    | *    | *    | *       | •                                        |
| MAMMARY GLAND                                           | *      | *    | *     | *    | *    | *    | *    | •    | *       | *                                        |

See Reports Code Table for Symbol Definitions

### TABULATED ANIMAL DATA

| STUDY ID : 90 Day DNB  FATE: ALL  DAYS ON TEST: ALL               |        |             |             |             |             |             |             | ST          | UDY NU      | GROUP: 4 SEX: FEMALE |
|-------------------------------------------------------------------|--------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------------|
| ANIMAL ID:                                                        |        | 4-32        | 4-33        | 4-34        | 4-35        | 4-36        | 4-37        | 4-38        | 4-39        | 4-40                 |
| BRAIN                                                             | N      | N           | N           | N           | N           | N :         | N           | N           | N           | N                    |
| SCIATIC NERVE                                                     | N      | N           | N           | N           | N           | N           | N           | N           | N           | N                    |
| SPINAL CORD                                                       | N      | N           | N           | N           | N           | N           | N           | N           | N           | N                    |
| SALIVARY GLAND                                                    | N      | N           | N           | N           | N           | N           | N           | N           | N           | N                    |
| PANCREAS                                                          | N      | N           | N           | N           | N           | N           | N           | N           | N           | N                    |
| MANDIBULAR LYMPH NODE Inflammation, Chronic Hyperplasia, Lymphoid | 2      | N<br>-<br>-          |
| ZYMBAL'S GLAND                                                    | N      | N           | N           | N           | N           | N           | N           | N           | N           | N                    |
| PITUITARY                                                         | N      | N           | N           | N           | N           | N           | N           | N           | N           | N                    |
| ADRENALS                                                          | N      | N           | N           | N           | N           | N           | N           | N           | N           | N                    |
| THYROID                                                           | N      | N           | N           | N           | N           | N           | N           | ĸ           | N           | N                    |
| PARATHYROID                                                       | N      | N           | N           | N           | N           | N           | N           | N           | N           | N                    |
| TRACHEA                                                           | N      | N           | N           | N           | N           | N           | N           | N           | N           | N                    |
| ESOPHAGUS                                                         | N      | N           | N           | N           | N           | N           | N           | N           | N           | N                    |
| THYMUS<br>Hemorrhage                                              | N<br>- | N<br>-      | N<br>-      | N<br>-      | N<br>-      | N<br>-      | 1           | N<br>-      | N<br>-      | N<br>-               |
| HEART                                                             | N      | N           | N           | N           | N           | N           | N           | N           |             | N                    |

See Reports Code Table for Symbol Definitions

| TABULAT | ED AN | VTMAT. | ATAG |
|---------|-------|--------|------|
|---------|-------|--------|------|

| STUDY ID : 90 Day DNB      | ********** |      |      |      |      |      |      | SI   | UDY NU | MBER: 94-004 |
|----------------------------|------------|------|------|------|------|------|------|------|--------|--------------|
| FATE: ALL                  |            |      |      |      |      |      |      |      |        | GROUP: 4     |
| DAYS ON TEST: ALL          |            |      |      |      |      |      |      |      |        | SEX: FEMALE  |
| ANIMAL ID:                 | 4-31       | 4-32 | 4-33 | 4-34 | 4-35 | 4-36 | 4-37 | 4-38 | 4-39   | 4-40         |
| HEART                      | N          | Ņ    | N    | N    | N    | N    | N    | N    |        | N            |
| Inflammation, Chronic      | -          | •    | -    | -    | -    | •    | -    | -    | 1      | -            |
| COLON                      | N          | N    | N    | N    | N    | N    | N    | N    | N      | Ň            |
| JEJUNUM                    | N          | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| AORTA                      | N          | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| LIVER                      | N          | N    | N    |      | N    | N    | N    | N    | N      | N            |
| Hepatodiaphragmatic Nodule | -          | -    | -    | P    | -    | -    | -    | -    | -      | -            |
| SPLEEN                     | N          | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| TONGUE                     | N          | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| SKELETAL MUSCLE            | N          | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| LUNGS                      | N          | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| KIDNEY                     |            |      |      |      |      | N    |      |      |        |              |
| Pigmentation, NOS          | -          | 1    | -    | 1    | -    | -    | 1    | -    | -      | -            |
| Mineralization, NOS        | 1          | 1    | 1    | 1    | 1    | -    | 1    | 1    | 1      | 1            |
| URINARY BLADDER            | N          | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| STOMACH                    | N          | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| DUODENUM                   | N          | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| ILEUM                      | N          | N    | N    | N    | N    | N    | N    | N    | N      | N            |

See Reports Code Table for Symbol Definitions

| TABULATED | ANTMAT. | בדבת |
|-----------|---------|------|
|           |         |      |

| STUDY 1D : 90 Day DNB<br>FATE: ALL |      |            |      |      |      |      |      | ST   | א צמטי |      | OUP: 4 |
|------------------------------------|------|------------|------|------|------|------|------|------|--------|------|--------|
| DAYS ON TEST: ALL                  |      |            |      |      |      |      |      |      |        | SEX: | FEMALE |
| ANIMAL ID:                         | 4-31 | 4-32       | 4-33 | 4-34 | 4-35 | 4-36 | 4-37 | 4-38 | 4-39   | 4-40 | •••••  |
| CECUM                              | N    | N          | N    | N    | N    | N:   | N    | N    | N      | N    |        |
| RECTUM                             | N    | N          | N    | N    | N    | N    | N    | N    | N      | N    |        |
| MESENTERIC LYMPH NODE              |      | N          | N    | N    | N    | N    | N    |      |        | N    |        |
| Inflammation, Chronic              | 2    | -          | -    | -    | -    | -    | -    | 1    | 1      | -    |        |
| OVARIES                            | N    | N          | N    |      | N    | N    | - N  | N    | N      | N    |        |
| Bursal Cyst                        | •    | -          | -    | P    | -    | -    | •    | -    | •      | -    |        |
| UTERUS                             | N    | N          | . N  | N    |      | N    | N    | N    | N      |      |        |
| Dilatation, Bilateral              | -    | -          | -    | -    | 1    | -    | -    | -    | •      | 1    |        |
| SKIN                               | N    | N          | N    | N    | N    | N    | N    | N    | N      | N    |        |
| CLITORAL GLAND                     |      | N          | N    | N    |      | N    |      | N    |        | N    |        |
| Lymphocytic Infiltrates            | 1    | . <b>-</b> | -    | •    | 1    | -    | 1    | -    | 1      | •    |        |
| EYES                               | N    |            | N    | N    | N    | N    | N    | N    |        | N    |        |
| Microgranuloma, Cornea             | -    | 1          | -    | -    | -    | -    | •    | -    | 1      | •    |        |
| HARDERIAN GLAND                    | N    |            | N    | N    |      | N    | N    | N    | · N    | N    |        |
| Lymphocytic Infiltrates            | -    | 1          | -    | •    | 1    | -    | •    | -    | •      | -    |        |
| FEMUR/STERNUM                      | N    | N          | N    | N    | N    | N    | N    | N    | N      | N    |        |
| NASAL                              | N    | N          | N    | N    | N    | N    | N    | N    | N      | N    |        |
| MAMMARY GLAND                      | N    | N          | N    | N    | N    | N    | N    | N    | N      | N    |        |

See Reports Code Table for Symbol Definitions

### TABULATED ANIMAL DATA

|                                                           |      |             |             | ם בת        | 11     |      |             |             |             |                                        |
|-----------------------------------------------------------|------|-------------|-------------|-------------|--------|------|-------------|-------------|-------------|----------------------------------------|
| STUDY ID : 90 Day DNB FATE: ALL DAYS ON TEST: ALL         |      |             |             |             |        |      |             | \$1         | TUDY NI     | JMBER: 94-004<br>GROUP: 5<br>SEX: MALE |
| ANIMAL ID:                                                | 5-41 | 5-42        | 5-43        | 5-44        | 5-45   | 5-46 | 5-47        | 5-48        | 5-49        | 5-50                                   |
| BRAIN                                                     | И    | N           | N           | N           | N      | N    | N           | N           | N           | N                                      |
| SCIATIC NERVE                                             | N    | N           | N           | N           | N      | N    | N           | N           | N           | N                                      |
| SPINAL CORD                                               | N    | N           | N           | N           | N      | N    | N           | N           | N           | N                                      |
| SALIVARY GLAND                                            | N    | N           | N           | N           | N      | N    | N           | N           | N           | N                                      |
| PANCREAS                                                  | N    | N           | N           | N           | N      | N    | N           | N           | N           | N                                      |
| MANDIBULAR LYMPH NODE Plasmacytosis Hyperplasia, Lymphoid | 2 .  | N<br>-<br>- | N<br>-<br>- | N<br>-<br>- | 2      | 1    | N<br>-<br>- | N<br>-<br>- | N<br>-<br>- | - 2                                    |
| ZYMBAL'S GLAND                                            | N    | υ           | N           | N           | N      | N    | N           | N           | U           | N                                      |
| PITUITARY                                                 | N    | N           | N           | N           | N      | N    | N           | N           | N           | N                                      |
| ADRENALS                                                  | N    | N           | N           | N           | N      | N    | N           | N           | N           | N                                      |
| THYROID                                                   | N    | N           | N           | N           | N      | N    | N           | N           | N           | N                                      |
| PARATHYROID                                               | N    | N           | N           | N           | N      | N    | N           | N           | N           | N                                      |
| TRACHEA                                                   | N    | N           | N           | N           | N      | N    | N           | N           | N           | N                                      |
| ESOPHAGUS                                                 | N    | N           | N           | N           | N      | N    | N           | N           | N           | N                                      |
| THYMUS                                                    | N    | N           | N           | N           | N      | N    | N           | N           | N           | N                                      |
| HEART<br>Inflammation, Chronic                            | 1    | 1           | N<br>-      | N<br>-      | N<br>- | 2    | 1           | N<br>-      | N<br>-      | N<br>-                                 |

See Reports Code Table for Symbol Definitions

TABULATED ANIMAL DATA

|                                                         | TABULATE | D AN | ILMAI | L DA | TA   |      |      |      |         |                                        |
|---------------------------------------------------------|----------|------|-------|------|------|------|------|------|---------|----------------------------------------|
| STUDY ID : 90 Day DNB<br>FATE: ALL<br>DAYS ON TEST: ALL |          |      |       |      |      |      |      | Sì   | TUDY NI | JMBER: 94-004<br>GROUP: 5<br>SEX: MALE |
| ANIMAL ID:                                              | 5-41     | 5-42 | 5-43  | 5-44 | 5-45 | 5-46 | 5-47 | 5-48 | 5-49    | 5-50                                   |
| COLON                                                   | N        | N    | N     | N    | N    | N_   | N    | N    | N       | N                                      |
| JEJUNUM                                                 | N        | N    | N     | N    | N    | N    | N    | N    | N       | N                                      |
| AORTA                                                   | N        | N    | N     | N    | N    | N    | N    | N    | N       | N                                      |
| LIVER                                                   | N        |      | N     |      | N    | N    | N    | N    | N       | N                                      |
| Lymphocytic Infiltrates                                 |          | 1    | -     | -    | -    | -    | -    | -    | -       | -                                      |
| Inflammation, Chronic/Active                            | -        | -    | •     | 1    | •    | -    | •    | -    | -       | -                                      |
| SPLEEN                                                  |          |      |       |      |      |      |      |      |         |                                        |
| Hyperplasia, Erythroid Cell                             | 2        | -    | 2     | 2    | 1    | 2    | 1    | 2    | 1       | -                                      |
| Pigmentation, NOS                                       | 2        | 1    | 2     | 1    | 1    | 1    | 1    | 2    | 1       | 1                                      |
| TONGUE                                                  | N        | N    | N     | N    | N    | N    | N    | N    | N       | N                                      |
| SKELETAL MUSCLE                                         | N        | N    | N     | N    | N    | N    | N    | N    | N       | N                                      |
| LUNGS                                                   |          | N    | N     | N    | N    | N    | N    | N    |         | N                                      |
| Inflammation, Chronic                                   | 1        | •    | -     | -    | -    | -    | -    | -    | 1       | -                                      |
| KIDNEY                                                  |          |      |       |      |      |      |      |      |         |                                        |
| Regeneration, Tubular                                   | 1        | 1    | 1     | 2    | 2    | 2    | 2    | 1    | 1       | 2                                      |
| Degeneration, Tubular                                   | 3        | 2    | 2     | 2    | 2    | 2    | 1    | 1    | 1       | 2                                      |
| Hyaline Droplets                                        | 2        | 2    | 2     | 2    | 2    | 2    | 1    | 1    | 1       | 2                                      |
| Mineralization, NOS                                     | 2        | 2    | 2     | 2    | 2    | 2    | 2    | 1    | 1       | 2                                      |
| Hyaline Casts                                           | -        | -    | -     | -    | 1    | -    | -    | •    | -       | -                                      |
| URINARY BLADDER                                         | N        | N    | N     | N    | N    | N    | N    | N    | N       | N                                      |
| PROSTATE                                                | N        | N    | N     | N    | N    |      | N    | N    | N       | N                                      |
| Inflammation, Suppurative                               | -        | -    | . •   | -    | -    | 2    | -    | -    | •       | •                                      |

See Reports Code Table for Symbol Definitions

### TABULATED ANIMAL DATA

| STUDY ID : 90 Day DNB<br>FATE: ALL<br>DAYS ON TEST: ALL |   |      |      |      |      |      |      | Sī   | LUDY NI | JMBER: 94-08<br>GROUP:<br>SEX: MAI | 5 |
|---------------------------------------------------------|---|------|------|------|------|------|------|------|---------|------------------------------------|---|
| ANIMAL ID:                                              |   | 5-42 | 5-43 | 5-44 | 5-45 | 5-46 | 5-47 | 5-48 | 5-49    | 5-50                               |   |
| STOMACH                                                 | N | N    | N    | N    | N    | N .  | N    | N    | N       | N                                  |   |
| DUODENUM                                                | N | N    | N    | N    | N    | N    | N    | N    | N       | N                                  |   |
| ILEUM                                                   | N | N    | N    | N    | N    | N    | N    | N    | N       | N                                  |   |
| CECUM                                                   | N | N    | N    | N    | N    | N    | N    | N    | N       | N                                  |   |
| RECTUM                                                  | N | N    | N    | N    | N    | N    | N    | N    | N       | N                                  |   |
| MESENTERIC LYMPH NODE                                   | N | N    | N    | N    | N    | N    | N    | N    | N       | N                                  |   |
| TESTES Degeneration, Seminiferous Tubule                | 4 | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4       | 4                                  |   |
| EPIDIDYMIDES                                            |   |      |      |      |      |      |      |      |         |                                    |   |
| Hypospermia                                             | 4 | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4       | 4                                  |   |
| SEMINAL VESICLE                                         | N | N    | N    | N    | N    | N    | N    | N    | N       | N                                  |   |
| SKIN                                                    | N | N    | N    | N    | N    | N    | N    | N    | N       | N                                  |   |
| PREPUTIAL GLAND                                         |   |      |      |      |      | N    |      |      | N       |                                    |   |
| Inflammation, Chronic/Active                            | 3 | 3    | 2    | -    | -    | -    | -    | -    | •       | -                                  |   |
| Lymphocytic Infiltrates                                 | - | -    | •    | 1    | 1    | -    | 1    | 1    | -       | 1                                  |   |
| EYES                                                    | N |      | N    | N    |      |      |      |      |         |                                    |   |
| Microgranuloma, Cornea                                  | - | 2    | -    | -    | 1    | 2    | 2    | 1    | 1       | 2                                  |   |
| HARDERIAN GLAND                                         | N | N    | N    | N    | N    | N    | N    | N    | N       | N                                  |   |
| FEMUR/STERNUM                                           |   |      |      |      | N    | N    | N    | N    | N       |                                    |   |

See Reports Code Table for Symbol Definitions

| TARIILATED ANIMAL DAT | דע. זוזא ביד | רותי | ANTM | ΔT. | DATE |
|-----------------------|--------------|------|------|-----|------|
|-----------------------|--------------|------|------|-----|------|

| STUDY ID : 90 Day DNB<br>FATE: ALL<br>DAYS ON TEST: ALL |      |      |      |      |      |      |      | ST   | TUDY NU | GROUP: 5<br>SEX: MALE |
|---------------------------------------------------------|------|------|------|------|------|------|------|------|---------|-----------------------|
| ANIMAL ID:                                              | 5-41 | 5-42 | 5-43 | 5-44 | 5-45 | 5-46 | 5-47 | 5-48 | 5-49    | 5-50                  |
| FEMUR/STERNUM                                           |      |      |      |      | N    | N    | N    | N    | N       |                       |
| Hyperplasia, Erythroid Cell                             | 2    | 1    | 2    | 2    | -    | 2.*  | -    | •    | •       | 1                     |
| NASAL                                                   | N    | N    | N    | N    | N    | N    | N    | N    | N       | N                     |
| MAMMARY GLAND                                           | N    | N    | N    | · N  | N    | N    | N    | N    | N       | N                     |

See Reports Code Table for Symbol Definitions

### TABULATED ANIMAL DATA

|                                                         | TABULATE | D AN | IIMAI | L DA |   |      |      |      |        |                               |      |
|---------------------------------------------------------|----------|------|-------|------|---|------|------|------|--------|-------------------------------|------|
| STUDY ID : 90 Day DNB<br>FATE: ALL<br>DAYS ON TEST: ALL |          |      |       |      |   |      |      |      | UDY NL | JMBER: 94-<br>GROUP<br>SEX: M | : 6  |
| ANIMAL ID:                                              |          |      | 6-53  |      |   | 6-56 | 6-57 | 6-58 | 6-59   | 6-60                          | •••• |
| BRAIN                                                   | *        | *    | *     | *    | * | * _  | *    | *    | *      | •                             |      |
| SCIATIC NERVE                                           | •        | *    | •     | *    | * | *    | *    | *    | •      | •                             |      |
| SPINAL CORD                                             | *        | *    | *     | *    | * | *    | *    | *    | •      |                               |      |
| SALIVARY GLAND                                          | *        | *    | *     | *    | • | *    | *    | *    | *      | •                             |      |
| PANCREAS                                                | *        | *    | *     | •    | * | *    | *    | *    | *      | •                             |      |
| MANDIBULAR LYMPH NODE                                   | •        | *    | *     | *    | * | *    | •    | *    | *      | *                             |      |
| ZYMBAL'S GLAND                                          | •        | *    | *     | *    | * | •    | *    | •    | •      | •                             |      |
| PITUITARY                                               | •        | *    | •     | •    | • | •    | •    | •    | •      |                               |      |
| ADRENALS                                                | •        | *    | *     | •    | * | •    | *    | *    | *      | *                             |      |
| THYROID                                                 | *        | *    | *     | •    | * | *    | *    | •    | •      | *                             |      |
| PARATHYROID                                             | *        | •    | *     | •    | * | •    | *    | •    | •      | •                             |      |
| TRACHEA                                                 | •        | *    | *     | •    | * | *    | •    | *    | *      | *                             |      |
| ESOPHAGUS                                               | •        | *    | •     | •    | * | *    | •    | *    | *      | *                             |      |
| THYMUS                                                  | •        | *    | •     | *    | * | *    | •    | *    | _      | *                             |      |
| Hemorrhage                                              | -        |      |       | -    | - | -    | -    | •    | 2      | -                             |      |
| HEART                                                   |          |      | -     | *    | * | •    | •    | •    | •      | *                             |      |
| COLON                                                   | *        | *    | *     | *    | * | *    | *    | *    | *      | *                             |      |

See Reports Code Table for Symbol Definitions

\_\_\_\_\_\_

|                                                         | TABULATE | D AN |      |   |   |      |      |      |        |                                        |
|---------------------------------------------------------|----------|------|------|---|---|------|------|------|--------|----------------------------------------|
| STUDY ID : 90 Day DNB<br>FATE: ALL<br>DAYS ON TEST: ALL |          |      |      |   |   |      |      |      | UDY NU | JMBER: 94-004<br>GROUP: 6<br>SEX: MALE |
| ANIMAL ID:                                              |          |      | 6-53 |   |   | 6-56 | 6-57 | 6-58 | 6-59   | 6-60                                   |
| JEJUNUM                                                 |          | •    | *    | • | * | *    | *    | *    | *      | *                                      |
| AORTA                                                   | •        | *    | *    | * | * | *    | •    | *    | •      | •                                      |
| LIVER                                                   | •        | *    | *    | • | • | *    | *    | •    | •      | *                                      |
| SPLEEN                                                  | N        | N    | N    | N | N | N    | N    | N    | N      | N                                      |
| TONGUE                                                  | •        | •    | •    | * | * | •    | *    | •    | •      | *                                      |
| SKELETAL MUSCLE                                         | •        | •    | *    | • | * | *    | *    | *    | •      | *                                      |
| LUNGS                                                   | •        | *    | *    | • | ٠ | •    | *    | *    | *      | •                                      |
| KIDNEY                                                  |          |      |      |   |   |      |      |      |        | `                                      |
| Regeneration, Tubular                                   | 1        | 2    | 2    | 1 | 1 | 2    | 1    | 2    | 2      | 2                                      |
| Degeneration, Tubular                                   | 2        | 2    | 2    | 2 | 2 | 2    | 2    | 2    | 2      | 2                                      |
| Mineralization, NOS                                     | 1        | 2    | 2    | 2 | 1 | 2    | 1    | 2    | 2      | 2                                      |
| URINARY BLADDER                                         | *        | *    | *    | * | * | •    | .*   | *    | *      | *                                      |
| PROSTATE                                                | •        | *    | *    | • | • | •    | *    | •    | *      | •                                      |
| STOMACH                                                 | •        | •    | *    | * | * | *    | •    | •    | •      | *                                      |
| DUODENUM .                                              | •        | *    | *    | * | * | *    | •    | *    | *      | •                                      |
| ILEUM                                                   | *        | *    | *    | • | * | *    | *    | *    | •      | •                                      |
| CECUM                                                   | *        | *    | •    | • | • | *    | •    | •    | ٠      | •                                      |
| RECTUM                                                  | •        | *    | *    | • | * | *    | •    | •    | ٠      | •                                      |

See Reports Code Table for Symbol Definitions

| LMAL | DATA |
|------|------|
|      | LMAL |

|                                                         | TABULATI | IA CE | ILMA. | L DA | TA   |      |      |      |        |                                      |   |
|---------------------------------------------------------|----------|-------|-------|------|------|------|------|------|--------|--------------------------------------|---|
| STUDY ID : 90 Day DNB<br>FATE: ALL<br>DAYS ON TEST: ALL |          |       |       |      |      |      |      | SI   | UDY NL | JMBER: 94-00<br>GROUP: 6<br>SEX: MAL | 6 |
| ANIMAL ID:                                              | 6-51     | 6-52  | 6-53  | 6-54 | 6-55 | 6-56 | 6-57 | 6-58 | 6-59   | 6-60                                 |   |
| MESENTERIC LYMPH NODE                                   |          | *     | *     | *    | *    | * _  | *    | *    | *      | *                                    |   |
| TESTES                                                  | N        | N     | N     | N    | N    | N    | N    | N    | N      | N                                    |   |
| EPIDIDYMIDES                                            | •        | •     | *     | *    | *    | *    | *    | •    | *      | *                                    |   |
| SEMINAL VESICLE                                         | •        | •     | *     | *    | *    | *    | *    | *    | *      | •                                    |   |
| SKIN                                                    | •        | *     | *     | *    | *    | *    | *    | •    | *      | *                                    |   |
| PREPUTIAL GLAND                                         | *        | •     | *     | *    | *    | •    | *    | *    | •      | *                                    |   |
| EYES                                                    | •        | •     | *     | *    | *    | *    | *    | *    | •      | *                                    |   |
| HARDERIAN GLAND                                         | •        | •     | *     | *    | *    | *    | *    | *    | •      | *                                    |   |
| FEMUR/STERNUM                                           | •        | *     | *     | *    | *    | *    | •    | *    | *      |                                      |   |
| NASAL                                                   | •        | *     | *     | *    | *    | *    | *    | •    | *      | *                                    |   |
| MAMMARY GLAND                                           |          |       | *     | *    | *    | *    | *    | •    | *      | •                                    |   |

See Reports Code Table for Symbol Definitions

TABULATED ANIMAL DATA

| STUDY ID : 90 Day DNB<br>FATE: ALL |   |   | ••••• |   |   |      |   |   |   | JMBER: 94-004<br>GROUP: 7 |
|------------------------------------|---|---|-------|---|---|------|---|---|---|---------------------------|
| DAYS ON TEST: ALL                  |   |   |       |   |   |      |   |   |   | SEX: MALE                 |
| ANIMAL ID:                         |   |   |       |   |   | 7-66 |   |   |   |                           |
| BRAIN                              | • | * | *     | * | * | *    | * | * | • | *                         |
| SCIATIC NERVE                      | • | * | *     | • | * | *    | * | * | * | *                         |
| SPINAL CORD                        | * | • | *     | • | * | *    | * | * | * | •                         |
| SALIVARY GLAND                     | * | * | •     | * | • | *    | * | * | * | *                         |
| PANCREAS                           | • | • | •     | * | * | *    | * | * | * | *                         |
| MANDIBULAR LYMPH NODE              | * | * | *     | * | * | •    | • | • | * | *                         |
| ZYMBAL'S GLAND                     | • | • | •     | • | * | *    | • | * | * | *                         |
| PITUITARY                          | * | • | •     | • | * | ٠    | * | * | * | *                         |
| ADRENALS                           | * | • | •     | * | * | *    | * | * | * | •                         |
| THYROID                            | • | • | •     | * | * | *    | • | • | • | •                         |
| PARATHYROID                        | * | • | •     | * | * | •    | * | * | * | •                         |
| TRACHEA                            | • | * | *     | • | * | *    | • | * | * | •                         |
| ESOPHAGUS                          | * | • | •     | • | • | *    | • | * | * | •                         |
| TKYMUS Hemorrhage                  | * | • | •     | • | * | 2    | • | * | 3 | *                         |
| HEART                              | * | • | *     | • | * | *    | * | * |   | *                         |
| COLON                              | * |   | *     | * | * | *    | * | * |   | •                         |
|                                    |   |   |       |   |   |      |   |   |   |                           |

See Reports Code Table for Symbol Definitions

| TABULATED ANIMAL D | )A.I | Ľ |
|--------------------|------|---|
|--------------------|------|---|

| TABU                                                                      | LATE        | תא ת        | ITMAI       |             |             |             |       |       |             |                                        |
|---------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|-------|-------------|----------------------------------------|
| STUDY ID : 90 Day DNB<br>FATE: ALL<br>DAYS ON TEST: ALL                   |             |             |             |             |             |             |       |       | UDY NL      | JMBER: 94-004<br>GROUP: 7<br>SEX: MALE |
| ANIMAL ID:                                                                |             |             | 7-63        | 7-64        | 7-65        | 7-66        | 7-67  | 7-68  | 7-69        | 7-70                                   |
| JEJUNUM                                                                   | *           | *           | *           | *           | *           |             | *     | *     | *           | •                                      |
| AORTA                                                                     | *           | •           | *           | •           | •           | *           | *     | *     | *           | •                                      |
| LIVER                                                                     | •           | •           | *           | *           | *           | *           | *     | •     | *           | •                                      |
| SPLEEN                                                                    | N           | N           | N           | N           | N           | N           | N     | N     | N           | N                                      |
| TONGUE                                                                    | *           | •           | *           | *           | *           | •           | *     | •     | *           | •                                      |
| SKELETAL MUSCLE                                                           | *           | •           | *           | *           | *           | •           | *     | *     | •           | *                                      |
| LUNGS                                                                     | •           | •           | *           | •           | •           | *           | *     | *     | *           | •                                      |
| KIDNEY  Regeneration, Tubular  Degeneration, Tubular  Mineralization, NOS | 2<br>2<br>1 | 2<br>2<br>1 | 1<br>2<br>1 | 2<br>2<br>2 | 1<br>2<br>1 | 2<br>2<br>2 | 2 2 2 | 2 2 2 | 2<br>2<br>2 | 2<br>2<br>1                            |
| URINARY BLADDER                                                           | *           | *           | *           | *           | *           | *           | *     | *     | *           | •                                      |
| PROSTATE                                                                  | ٠           | ٠           | *           | •           | *           | *           | •     | *     | •           | •                                      |
| STOMACH                                                                   | •           | •           | *           | •           | *           | *           | *     | *     | *           | •                                      |
| DUODENUM                                                                  | •           | •           | *           | *           | *           | •           | *     | *     | *           | *                                      |
| ILEUM                                                                     | *           | *           | *           | *           | *           | *           | *     | *     | •           | •                                      |
| CECUM                                                                     | *           | *           | *           | *           | •           | *           | *     | •     | *           | •                                      |
| RECTUM                                                                    | *           | ٠           | *           | *           | *           | *           | •     | *     | *           | •                                      |

See Reports Code Table for Symbol Definitions

| Т                                                 | ABULATE | D AN | IMAI | DA   | TA   |      |      |      |        |                                 |   |
|---------------------------------------------------|---------|------|------|------|------|------|------|------|--------|---------------------------------|---|
| STUDY ID : 90 Day DNB FATE: ALL DAYS ON TEST: ALL |         |      |      |      |      |      |      | ST   | UDY NU | MBER: 94-0<br>GROUP:<br>SEX: MA | 7 |
| ANIMAL ID:                                        | 7-61    | 7-62 | 7-63 | 7-64 | 7-65 | 7-66 | 7-67 | 7-68 | 7-69   | 7-70                            |   |
| MESENTERIC LYMPH NODE                             | *       | *    | *    | *    | *    | *.   | *    | *    | *      | *                               |   |
| TESTES                                            | N       | N    | N    | N    | N    | N    | N    | N    | N      | N                               |   |
| EPIDIDYMIDES                                      | *       | *    | *    | *    | *    | *    | *    | *    | *      | *                               |   |
| SEMINAL VESICLE                                   | *       | *    | *    | *    | *    | *    | *    | *    | *      | *                               |   |
| SKIN                                              | *       | *    | *    | *    | *    | *    | *    | *    | *      | *                               |   |
| PREPUTIAL GLAND                                   | •       | *    | *    | *    | *    | *    | *    | *    | *      | *                               |   |
| EYES                                              | *       | *    | *    | *    | *    | *    | *    | *    | *      | *                               |   |
| HARDERIAN GLAND                                   | *       | *    | *    | *    | *    | *    | *    | *    | *      | *                               |   |
| FEMUR/STERNUM                                     | *       | *    | *    | *    | *    | *    | *    | *    | *      | *                               |   |
| NASAL                                             | *       | *    | *    | *    | *    | *    | *    | *    | *      | *                               |   |
| MAMMARY GLAND                                     | *       | *    | *    | *    | *    | *    | *    | *    | *      | *                               |   |

See Reports Code Table for Symbol Definitions

| ጥል | BIII | תשיד ב | ANIMA | T. | בדבת. |
|----|------|--------|-------|----|-------|
|    |      |        |       |    |       |

|                                                           | TABULATE | D AN        | ILMAI       | J DA        | TA     |               |             |        |        |                                        |   |
|-----------------------------------------------------------|----------|-------------|-------------|-------------|--------|---------------|-------------|--------|--------|----------------------------------------|---|
| STUDY ID : 90 Day DNB<br>FATE: ALL<br>DAYS ON TEST: ALL   | •        |             |             |             |        |               |             | S1     | UDY NU | JMBER: 94-004<br>GROUP: 8<br>SEX: MALE | • |
| ANIMAL ID:                                                |          |             |             |             |        |               |             | 8-78   | 8-79   | 8-80                                   | - |
| BRAIN                                                     | N        | N           | N           | N           | N      | N _           | N           | N      | N      | N                                      |   |
| SCIATIC NERVE                                             | N        | N           | N           | N           | N      | N             | N           | N      | N      | N                                      |   |
| SPINAL CORD                                               | N        | N           | N           | N           | N      | N             | N           | N      | N      | N                                      |   |
| SALIVARY GLAND                                            | N        | N           | N           | N           | N      | N             | N           | N      | N      | N                                      |   |
| PANCREAS Degeneration, Acinar                             | N<br>-   | N<br>-      | N<br>-      | N<br>-      | N<br>- | N<br>-        | 1           | 1      | N<br>- | N<br>-                                 |   |
| MANDIBULAR LYMPH NODE Plasmacytosis Hyperplasia, Lymphoid | 2 -      | N<br>-<br>- | N<br>-<br>- | N<br>-<br>- | 2 -    | N<br>-<br>-   | N<br>-<br>- | 2      | - 2    | N<br>-<br>-                            |   |
| ZYMBAL'S GLAND                                            | N        | N           | N           | N           | N      | υ             | N           | N      | N      | N                                      |   |
| PITUITARY                                                 | N        | N           | N           | N           | N      | N             | N           | N      | N      | N                                      |   |
| ADRENALS                                                  | N        | N           | N           | N           | N      | N             | N           | N      | N      | N                                      |   |
| THYROID                                                   | N        | N           | N           | N           | N      | N             | N           | N      | N      | N                                      |   |
| PARATHYROID                                               | N        | U           | N           | N           | N      | N             | N           | N      | N      | N                                      |   |
| TRACHEA                                                   | N        | N           | N           | N           | N      | N             | N           | N      | N      | N                                      |   |
| ESOPHAGUS                                                 | N        | N           | N           | N           | N      | N             | N           | N      | N      | N                                      |   |
| THYMUS<br>Hemorrhage                                      | N<br>-   | N<br>-      | N<br>-      | 1           | N<br>- | <b>N</b><br>- | N<br>-      | N<br>- | 2      | N<br>-                                 |   |

See Reports Code Table for Symbol Definitions

TABULATED ANIMAL DATA

| STUDY ID : 90 Day DNB<br>FATE: ALL<br>DAYS ON TEST: ALL | STUDY NU |      |      |      |      |      |      |      | NUMBER: 94-004<br>GROUP: 8<br>SEX: MALE |      |  |
|---------------------------------------------------------|----------|------|------|------|------|------|------|------|-----------------------------------------|------|--|
| ANIMAL ID:                                              | 8-71     | 8-72 | 8-73 | 8-74 | 8-75 | 8-76 | 8-77 | 8-78 | 8-79                                    | 8-80 |  |
| HEART                                                   | N        | N    |      |      | N    |      | N    | N    | N                                       |      |  |
| Inflammation, Chronic                                   | -        | -    | 1    | 1    | -    | 1    | -    | -    | -                                       | 1    |  |
| COLON                                                   | N        | N    | N    | N    | N    | N    | N    | N    | N                                       | N    |  |
| JEJUNUM                                                 | N        | N    | N    | N    | N    | N    | N    | N    | N                                       | N    |  |
| AORTA                                                   | N        | N    | N    | N    | N    | N    | N    | N    | N                                       | N    |  |
| LIVER                                                   | N        | N    | N    |      | N    | N    | N    | N    |                                         |      |  |
| Lymphocytic Infiltrates                                 | -        | -    | -    | -    | -    | -    | -    | -    | 1                                       | -    |  |
| Inflammation, Chronic                                   | -        | •    | -    | 1    | -    | -    | -    | -    | •                                       | -    |  |
| Hepatodiaphragmatic Nodule                              | -        | -    | •    | -    | •    | -    | -    | -    | -                                       | P    |  |
| SPLEEN                                                  | N        | N    |      | N    | N    | N    | N    | N    | N                                       |      |  |
| Fibrosis                                                | -        | -    | -    | -    | -    | -    | -    | -    | -                                       | 1    |  |
| Hyperplasia, Lymphocytic                                | -        | -    | 2    | -    | •    |      | -    | -    | -                                       | -    |  |
| TONGUE                                                  | N        | N    | N    | N    | N    | N    | N    | N    | N                                       | N    |  |
| SKELETAL MUSCLE                                         | N        | N    | N    | N    | N    | N    | N.   | N    | N                                       | N    |  |
| LUNGS                                                   | N        | N    |      | N    |      |      |      |      | N                                       |      |  |
| Inflammation, Chronic                                   | •        | -    | 1    | -    | 1    | 1    | 1    | 1    | -                                       | 1    |  |
| KIDNEY                                                  |          |      |      |      |      |      |      |      |                                         |      |  |
| Regeneration, Tubular                                   | 2        | 1    | 1    | 2    | 1    | 1    | 2    | 1    | 2                                       | 1    |  |
| Degeneration, Tubular                                   | 2        | 1    | 2    | 2    | 1    | 2    | 2    | 2    | 2                                       | 2    |  |
| Mineralization, NOS                                     | 1        | 1    | 1    | 2    | 1    | 2    | 2    | 2    | 2                                       | 1    |  |
| URINARY BLADDER                                         |          | N    | N    | N    | N    | N    | N    | N    |                                         | U    |  |
| Urolith, NOS                                            | P        | -    | -    | •    | -    | -    | •    | •    | P                                       | •    |  |

See Reports Code Table for Symbol Definitions

| TABULATED | ANTMAT. | אידי א כד |
|-----------|---------|-----------|
|           |         |           |

| STUDY ID: 90 Day DNB                    |      |      |      |      |      |      |      | ST   | UDY NU | MBER: 94-004 |
|-----------------------------------------|------|------|------|------|------|------|------|------|--------|--------------|
| FATE: ALL DAYS ON TEST: ALL             |      |      |      |      |      |      |      |      |        | GROUP: 8     |
| DATS ON TEST: ALL                       |      |      |      |      |      |      |      |      |        | SEX: MALE    |
| ANIMAL ID:                              | 8-71 | 8-72 | 8-73 | 8-74 | 8-75 | 8-76 | 8-77 | 8-78 | 8-79   | 8-80         |
| PROSTATE                                | N    | N    | N    | N    | N    | N_   |      | N    | N      | บ            |
| Inflammation, Chronic/Active            | -    | -    | -    | -    | -    | -    | 2    | -    | -      | -            |
| STOMACH                                 | N    | N    | Ŋ    | N    | N    | N    | N    | N    | N      | N            |
| DUODENUM                                | N    | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| ILEUM                                   | N    | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| CECUM                                   | N    | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| RECTUM                                  | N    | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| MESENTERIC LYMPH NODE                   | N    | N    | N    | N    | N    |      |      | N    | N      | N ·          |
| Inflammation, Chronic                   | -    | -    | -    | -    | -    | -    | 2    | -    | -      | -            |
| Inflammation, Chronic/Active, Mesentery | -    | -    | -    | -    | -    | 2    | -    | -    | -      | -            |
| TESTES                                  | N    | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| EPIDIDYMIDES                            | N    | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| SEMINAL VESICLE                         | N    | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| SKIN                                    | N    | N    | N    | N    | N    | N    | N    | N    | N      | N            |
| PREPUTIAL GLAND                         |      |      |      |      |      |      | N    |      | N      |              |
| Inflammation, Chronic/Active            | -    | -    | 3    | -    | -    | 2    | -    | 2    | -      | 2            |
| Inflammation, Suppurative               | -    | -    | •    | 3    | -    | -    | -    | -    | -      | -            |
| Lymphocytic Infiltrates                 | 1    | 2    | 2    | 2    | 1    | 2    | -    | 1    | -      | 2            |
| EYES                                    | N    |      |      |      | N    | N    | N    | N    |        |              |
| Microgranuloma, Cornea                  | •    | 2    | 2    | 1    | •    | -    | -    | -    | 1      | 2            |

See Reports Code Table for Symbol Definitions

|                                                         | TABULAT | red  | AN  | IMAI | L DA | TA   |      |      |      |          |                  |      |
|---------------------------------------------------------|---------|------|-----|------|------|------|------|------|------|----------|------------------|------|
| STUDY ID : 90 Day DNB<br>FATE: ALL<br>DAYS ON TEST: ALL |         |      |     |      |      |      |      |      | ST   | טא אַסטי | MBER: 94<br>GROU | P: 8 |
| ANIMAL ID:                                              | 8-      | 71 8 | -72 | 8-73 | 8-74 | 8-75 | 8-76 | 8-77 | 8-78 | 8-79     | 8-80             |      |
| HARDERIAN GLAND                                         | N       | i    | N   | N    | N    | N    | N.   | N .  | N    | N        | N                |      |
| FEMUR/STERNUM                                           | N       | ı    | N   | N    | N    | N    | N    | N    | N    | N        | N                |      |
| NASAL                                                   | . N     | i    | N   | N    | N    | N    | N    | N    | N    | N        | N                |      |
| MAMMARY GLAND                                           | N       | ı    | N   | N    | N    | N    | N    | N    | N    | N        | N                |      |

See Reports Code Table for Symbol Definitions

(END OF REPORT)

### Pathology Associates, Inc. Study Number 94-004 90 Day 1,3-Dinitrobenzene Exposure in Fischer 344 Rats

CORRELATION OF GROSS & MICRO

STUDY 1D : 90 Day DNB

STUDY NUMBER: 94-004

FATE: ALL

GROUP: 1

DAYS ON TEST: ALL

SEX: FEMALE

No Gross Observations for any animal in this group

CORRELATION OF GROSS & MICRO

STUDY ID : 90 Day DNB

STUDY NUMBER: 94-004

FATE: ALL

GROUP: 2

DAYS ON TEST: ALL

SEX: FEMALE

Animal ID: 2-14

Pathologist: GRO

Animal Fate: Terminal Sacrifice

Days on Test: 90

Reference to Necropsy Record:
BRAIN - Discoloration, 2mm x 4mm, 1, Irregular, Brown

Related Histopathology:

BRAIN - Astrocytoma

CORRELATION OF GROSS & MICRO

STUDY ID : 90 Day DNB

STUDY NUMBER: 94-004

FATE: ALL

GROUP: 3

DAYS ON TEST: ALL

SEX: FEMALE

Animal ID: 3-25

Pathologist: GRO

Animal Fate: Terminal Sacrifice

Days on Test: 90

Reference to Necropsy Record:

Related Histopathology:

Red/Tan, Periovary

OVARIES - Right, Discolored, 15x10x5 mm, 1, Irregular, OVARIES - Necrosis, Parovarian; OVARIES - Inflammation,

Chronic/Active, Parovarian

Pathologist: GRO

Animal Fate: Terminal Sacrifice

Days on Test: 90

Reference to Necropsy Record: OVARIES - Left, Cyst, 5x3x3 mm, 1, Round, Red Related Histopathology: OVARIES - Cyst, NOS

CORRELATION OF GROSS & MICRO

STUDY ID : 90 Day DNB

STUDY NUMBER: 94-004

FATE: ALL

GROUP: 4

DAYS ON TEST: ALL

SEX: FEMALE

Animal 10: 4-34

Pathologist: GRO

Animal Fate: Terminal Sacrifice

Days on Test: 90

Reference to Necropsy Record:

OVARIES - Right, Cyst, 4x3x3 mm, 1, Round, Red

Related Histopathology: OVARIES - Bursal Cyst

LIVER - Median, 5x6x1 mm, 1, Round, Tan

LIVER - Hepatodiaphragmatic Nodule

CORRELATION OF GROSS & MICRO STUDY ID : 90 Day DNB STUDY NUMBER: 94-004 FATE: ALL GROUP: 5 DAYS ON TEST: ALL SEX: MALE Animal ID: 5-41 Pathologist: GRO Animal Fate: Terminal Sacrifice Days on Test: 90 Reference to Necropsy Record: Related Histopathology: TESTES - Bilateral, Decreased in Size, (Right) TESTES - Degeneration, Seminiferous Tubule 18x10x10 mm, (Left) 20x10x10 mm Animal 10: 5-42 Pathologist: GRO Animal Fate: Terminal Sacrifice Days on Test: 90 Reference to Necropsy Record: Related Histopathology: TESTES - Bilateral, Small, 16x9x9 mm, 2 TESTES - Degeneration, Seminiferous Tubule Animal ID: 5-43 Pathologist: GRO Animal Fate: Terminal Sacrifice Days on Test: 90 Reference to Necropsy Record: Related Histopathology: TESTES - Bilateral, Decreased in Size, (Left) 18x11x8 TESTES - Degeneration, Seminiferous Tubule mm, (Right) 10x17x7 mm Animal ID: 5-44 Pathologist: GRO Animal Fate: Terminal Sacrifice Days on Test: 90 Reference to Necropsy Record: Related Histopathology: TESTES - Bilateral, Small, 15x9x9 mm, 2 TESTES - Degeneration, Seminiferous Tubule (REPORT CONTINUED)

CORRELATION OF GROSS & MICRO STUDY NUMBER: 94-004 STUDY ID : 90 Day DNB GROUP: 5 FATE: ALL SEX: MALE DAYS ON TEST: ALL Pathologist: GRO Days on Test: 90 Animal Fate: Terminal Sacrifice Related Histopathology: Reference to Necropsy Record: TESTES - Bilateral, Decreased in Size, 15x8x9 mm, 2 TESTES - Degeneration, Seminiferous Tubule Pathologist: GRO Animal ID: 5-46 Days on Test: 90 Animal Fate: Terminal Sacrifice Related Histopathology: Reference to Necropsy Record: mm. (Right) 17x10x8 mm Pathologist: GRO Animal 1D: 5-47 Days on Test: 90 Animal Fate: Terminal Sacrifice Related Histopathology: Reference to Necropsy Record: TESTES - Bilateral, Decreased in Size, 11x8x9 mm, 2 TESTES - Degeneration, Seminiferous Tubule Pathologist: GRO Animal ID: 5-48 Days on Test: 90 Animal Fate: Terminal Sacrifice Related Histopathology: Reference to Necropsy Record: TESTES - Degeneration, Seminiferous Tubule TESTES - Bilateral, Small, 13x7x7 mm, 2

Pathologist: GRO

Days on Test: 90

### Pathology Associates, Inc. Study Number 94-004 90 Day 1,3-Dinitrobenzene Exposure in Fischer 344 Rats

CORRELATION OF GROSS & MICRO

STUDY ID: 90 Day DNB

FATE: ALL

DAYS ON TEST: ALL

Animal ID: 5-49

Animal Fate: Terminal Sacrifice

Reference to Necropsy Record:

TESTES - Bilateral, Decreased in Size, 13x10x9 mm, 2

RESTES - Degeneration, Seminiferous Tubule

Reference to Necropsy Record:

Animal Fate: Terminal Sacrifice

Animal ID: 5-50

TESTES - Bilateral, Decreased in Size, 14x9x8 mm, 2

Related Histopathology:

TESTES - Degeneration, Seminiferous Tubule

### Pathology Associates, Inc. Study Number 94-004 90 Day 1,3-Dinitrobenzene Exposure in Fischer 344 Rats

CORRELATION OF GROSS & MICRO

STUDY ID : 90 Day DNB

STUDY NUMBER: 94-004

FATE: ALL

GROUP: 6

DAYS ON TEST: ALL

SEX: MALE

Animal ID: 6-59

Pathologist: GRO Days on Test: 90

Animal Fate: Terminal Sacrifice

Related Histopathology:

THYMUS - Discolored, Red

Reference to Necropsy Record:

THYMUS - Hemorrhage

### Pathology Associates, Inc. Study Number 94-004 90 Day 1,3-Dinitrobenzene Exposure in Fischer 344 Rats

CORRELATION OF GROSS & MICRO STUDY ID : 90 Day DNB STUDY NUMBER: 94-004 FATE: ALL GROUP: 7 DAYS ON TEST: ALL SEX: MALE Animal ID: 7-66 Pathologist: GRO Animal Fate: Terminal Sacrifice Days on Test: 90 Reference to Necropsy Record: Related Histopathology: THYMUS - Discolored, Red THYMUS - Hemorrhage Animal ID: 7-69 Pathologist: GRO Animal Fate: Terminal Sacrifice Days on Test: 90

Reference to Necropsy Record: THYMUS - Discolored, Red Related Histopathology: THYMUS - Hemorrhage

### Pathology Associates, Inc. Study Number 94-004 90 Day 1,3-Dinitrobenzene Exposure in Fischer 344 Rats

CORRELATION OF GROSS & MICRO

STUDY ID : 90 Day DNB

STUDY NUMBER: 94-004

FATE: ALL

GROUP: 8

DAYS ON TEST: ALL

Animal ID: 8-78

Pathologist: GRO

Animal Fate: Terminal Sacrifice

Days on Test: 90

Reference to Necropsy Record:

Related Histopathology:

KIDNEY - Degeneration, Tubular

Animal ID: 8-79 Animal Fate: Terminal Sacrifice Pathologist: GRO

Days on Test: 90

Pathologist: GRO

Days on Test: 90

Reference to Necropsy Record:

Related Histopathology:

THYMUS - Hemorrhage

THYMUS - Discolored, Red

SEMINAL VESICLE - Decreased in Size, Moderate

SEMINAL VESICLE - No Corollary change detected

Animal ID: 8-80

KIDNEY - Left, Discolored, 5x3 mm, 1, Irregular, Tan

Animal Fate: Terminal Sacrifice

Reference to Necropsy Record:

LIVER - Median Lobe, Nodule, 6x8x4 mm, 1, Irregular, LIVER - Hepatodiaphragmatic Nodule

Related Histopathology:

Firm

(END OF REPORT)

# APPENDIX I CHEMICAL ANALYSES

Determination of Homogeneity of 1,3-Dinitrobenzene in the Diet

| Target Diet<br>Concentration<br>(mg/kg) | Site of<br>Sampling     | Concentration<br>by Analysis<br>(mg/kg) | Mean<br>Concentration<br>(mg/kg) | Deviation<br>from Mean<br>(%) |
|-----------------------------------------|-------------------------|-----------------------------------------|----------------------------------|-------------------------------|
|                                         |                         | WEEK 1                                  |                                  | <del></del>                   |
| 30                                      | Top<br>Middle<br>Bottom | 29.1<br>28.8<br>29.0                    | 29.0                             | 0.38<br>0.60<br>0.22          |
| 6                                       | Top<br>Middle<br>Bottom | 6.09<br>5.93<br>6.02                    | 6.01                             | 1.25<br>1.44<br>0.18          |
| 1                                       | Top<br>Middle<br>Bottom | 0.98<br>0.91<br>1.04                    | 0.98                             | 0.42<br>6.70<br>6.28          |
|                                         |                         | WEEK 2                                  |                                  |                               |
| 30                                      | Top<br>Middle<br>Bottom | 28.5<br>28.7<br>28.5                    | 28.6                             | 0.14<br>0.31<br>0.17          |
| 6                                       | Top<br>Middle<br>Bottom | 5.90<br>6.46<br>5.82                    | 6.06                             | 2.59<br>6.63<br>4.05          |
| 1                                       | Top<br>Middle<br>Bottom | 1.00<br>0.91<br>1.03                    | 0.98                             | 2.24<br>6.90<br>4.66          |

Determination of Homogeneity of 1,3-Dinitrobenzene in the Diet

| Target Diet<br>Concentration<br>(mg/kg) | Site of<br>Sampling     | Concentration<br>by Analysis<br>(mg/kg) | Mean<br>Concentration<br>(mg/kg) | Deviation<br>from Mean<br>(%) |
|-----------------------------------------|-------------------------|-----------------------------------------|----------------------------------|-------------------------------|
| 107 - 17 - 18                           |                         | WEEK 3                                  |                                  |                               |
| 30                                      | Top<br>Middle<br>Bottom | 28.4<br>28.2<br>29.7                    | 28.8                             | 1.18<br>2.14<br>3.33          |
| 6                                       | Top<br>Middle<br>Bottom | 5.83<br>5.85<br>5.62                    | 5.76                             | 1.06<br>1.48<br>2.54          |
| 1                                       | Top<br>Middle<br>Bottom | 1.01<br>1.05<br>1.02                    | 1.03                             | 1.26<br>2.25<br>0.99          |
|                                         |                         | WEEK 4                                  |                                  |                               |
| 30                                      | Top<br>Middle<br>Bottom | 29.6<br>28.6<br>28.2                    | 28.8                             | 2.88<br>0.71<br>2.17          |
| 6                                       | Top<br>Middle<br>Bottom | 5.86<br>6.09<br>6.25                    | 6.06                             | 3.40<br>0.39<br>3.01          |
| 1                                       | Top<br>Middle<br>Bottom | 0.95<br>0.93<br>1.01                    | 0.96                             | 1.41<br>3.65<br>5.05          |

Determination of Homogeneity of 1,3-Dinitrobenzene in the Diet

| Target Diet<br>Concentration<br>(mg/kg) | Site of<br>Sampling     | Concentration<br>by Analysis<br>(mg/kg) | Mean<br>Concentration<br>(mg/kg) | Deviation<br>from Mean<br>(%) |
|-----------------------------------------|-------------------------|-----------------------------------------|----------------------------------|-------------------------------|
|                                         |                         | WEEK 5                                  |                                  |                               |
| 30                                      | Top<br>Middle<br>Bottom | 29.9<br>31.2<br>31.2                    | 30.8                             | 2.70<br>1.30<br>1.41          |
| 6                                       | Top<br>Middle<br>Bottom | 6.23<br>5.56<br>5.59                    | 5.79                             | 7.59<br>4.05<br>3.54          |
| 1                                       | Top<br>Middle<br>Bottom | 0.99<br>1.00<br>1.03                    | 1.01                             | 1.78<br>0.47<br>2.24          |
|                                         |                         | WEEK 6                                  |                                  |                               |
| 30                                      | Top<br>Middle<br>Bottom | 29.0<br>29.8<br>29.5                    | 29.4                             | 1.45<br>1.40<br>0.05          |
| 6                                       | Top<br>Middle<br>Bottom | 5.89<br>6.09<br>6.15                    | 6.04                             | 2.54<br>0.74<br>1.81          |
| 1                                       | Top<br>Middle<br>Bottom | 0.96<br>0.99<br>1.00                    | 0.99                             | 2.40<br>0.70<br>1.70          |

Determination of Homogeneity of 1,3-Dinitrobenzene in the Diet

| Target Diet<br>Concentration<br>(mg/kg) | Site of<br>Sampling | Concentration<br>by Analysis<br>(mg/kg) | Mean<br>Concentration<br>(mg/kg) | Deviation<br>from Mean<br>(%) |
|-----------------------------------------|---------------------|-----------------------------------------|----------------------------------|-------------------------------|
|                                         |                     | WEEK 7                                  |                                  |                               |
|                                         | Top                 | 27.8                                    |                                  | 2.49                          |
| 30                                      | Middle              | 29.3                                    | 28.5                             | 2.54                          |
|                                         | Bottom              | 28.5                                    |                                  | 0.05                          |
|                                         | Top                 | 5.98                                    |                                  | 1.33                          |
| 6                                       | Middle              | 6.29                                    | 6.06                             | 3.87                          |
|                                         | Bottom              | 5.90                                    |                                  | 2.54                          |
|                                         | Top                 | 1.03                                    |                                  | 1.90                          |
| 1                                       | Middle              | 0.98                                    | 1.01                             | 2.63                          |
|                                         | Bottom              | 1.01                                    |                                  | 0.73                          |
|                                         |                     | WEEK 8                                  |                                  |                               |
|                                         | Top                 | 30.1                                    |                                  | 2.51                          |
| 30                                      | Middle              | 29.7                                    | 29.3                             | 1.27                          |
|                                         | Bottom              | 28.2                                    |                                  | 3.78                          |
|                                         | Top                 | 6.43                                    |                                  | 2.33                          |
| 6                                       | Middle              | 6.20                                    | 6.28                             | 1.30                          |
|                                         | Bottom              | 6.22                                    |                                  | 1.03                          |
|                                         | Top                 | 1.06                                    |                                  | 3.03                          |
| 1                                       | Middle              | 0.97                                    | 1.03                             | 5.61                          |
|                                         | Bottom              | 1.06                                    |                                  | 2.58                          |

Determination of Homogeneity of 1,3-Dinitrobenzene in the Diet

| Target Diet<br>Concentration<br>(mg/kg) | Site of<br>Sampling     | Concentration<br>by Analysis<br>(mg/kg) | Mean<br>Concentration<br>(mg/kg) | Deviation<br>from Mean<br>(%) |
|-----------------------------------------|-------------------------|-----------------------------------------|----------------------------------|-------------------------------|
|                                         |                         | WEEK 9                                  |                                  |                               |
| 30                                      | Top<br>Middle<br>Bottom | 29.0<br>27.7<br>31.8                    | 29.5                             | 1.81<br>6.12<br>7.93          |
|                                         | Top                     | 6.37                                    |                                  | 4.42                          |
| 6                                       | Middle<br>Bottom        | 5.79<br>6.15                            | 6.10                             | 5.18<br>0.76                  |
| 1                                       | Top<br>Middle<br>Bottom | 1.04<br>1.03<br>0.98                    | 1.01                             | 2.46<br>1.33<br>3.79          |
|                                         |                         | WEEK 10                                 |                                  |                               |
| 30                                      | Top<br>Middle<br>Bottom | 29.4<br>32.1<br>30.1                    | 30.5                             | 3.54<br>5.00<br>1.47          |
| 6                                       | Top<br>Middle<br>Bottom | 6.35<br>5.51<br>6.32                    | 6.06                             | 4.80<br>9.05<br>4.26          |
| 1                                       | Top<br>Middle<br>Bottom | 1.02<br>0.99<br>1.08                    | 1.03                             | 0.87<br>4.32<br>5.19          |

Determination of Homogeneity of 1,3-Dinitrobenzene in the Diet

| Target Diet<br>Concentration<br>(mg/kg) | Site of<br>Sampling     | Concentration<br>by Analysis<br>(mg/kg) | Mean<br>Concentration<br>(mg/kg) | Deviation<br>from Mean<br>(%) |
|-----------------------------------------|-------------------------|-----------------------------------------|----------------------------------|-------------------------------|
|                                         |                         | WEEK 11                                 |                                  |                               |
| 30                                      | Top<br>Middle<br>Bottom | 29.7<br>29.0<br>28.8                    | 29.2                             | 1.73<br>0.43<br>1.30          |
| 6                                       | Top<br>Middle<br>Bottom | 6.07<br>5.74<br>5.67                    | 5.83                             | 4.25<br>1.52<br>2.74          |
| 1                                       | Top<br>Middle<br>Bottom | 0.95<br>1.06<br>0.96                    | 0.99                             | 4.20<br>7.08<br>2.88          |
|                                         |                         | WEEK 12                                 |                                  |                               |
| 30                                      | Top<br>Middle<br>Bottom | 30.0<br>31.8<br>30.0                    | 30.6                             | 1.95<br>3.84<br>1.89          |
| 6                                       | Top<br>Middle<br>Bottom | 5.57<br>5.76<br>5.80                    | 5.71                             | 2.46<br>0.86<br>1.59          |
| 1                                       | Top<br>Middle<br>Bottom | 1.02<br>0.97<br>1.02                    | 1.01                             | 1.88<br>3.18<br>1.30          |

Determination of Homogeneity of 1,3-Dinitrobenzene in the Diet

| Target Diet<br>Concentration<br>(mg/kg) | Site of<br>Sampling     | Concentration<br>by Analysis<br>(mg/kg) | Mean<br>Concentration<br>(mg/kg) | Deviation<br>from Mean<br>(%) |
|-----------------------------------------|-------------------------|-----------------------------------------|----------------------------------|-------------------------------|
|                                         |                         | WEEK 13                                 |                                  |                               |
| 3 0                                     | Top<br>Middle<br>Bottom | 30.4<br>30.1<br>30.7                    | 30.4                             | 0.03<br>1.00<br>1.03          |
| 6                                       | Top<br>Middle<br>Bottom | 5.78<br>5.69<br>6.45                    | 5.97                             | 3.25<br>4.79<br>8.04          |
| 1                                       | Top<br>Middle<br>Bottom | 1.03<br>1.03<br>1.06                    | 1.04                             | 0.69<br>1.17<br>1.86          |

Analysis of Feed Mixtures of 1,3-Dinitrobenzene

| Target Diet<br>Concentration<br>(mg/kg) | Date<br>Prepared         | Date<br>Analyzed       | Concentration<br>by Analysis<br>(mg/kg) | %<br>Error   |
|-----------------------------------------|--------------------------|------------------------|-----------------------------------------|--------------|
|                                         |                          | Week 1                 |                                         |              |
| 30                                      | 19 Aug 94                |                        | 29.0                                    | 3.40         |
| 6<br>1                                  | 17 Aug 94<br>15 Aug 94   | 22 Aug 94<br>23 Aug 94 | 6.01<br>0.98                            | 0.22<br>2.04 |
|                                         |                          | Week 2                 |                                         |              |
| 30                                      | 26 Aug 94                | _                      | 28.6                                    | 4.77         |
| 6<br>1                                  | 24 Aug 94<br>22 Aug 94   | 2 Sep 94<br>6 Sep 94   | 6.06<br>0.98                            | 1.00<br>1.87 |
|                                         |                          | Week 3                 |                                         |              |
| 30                                      | 2 Sep 94                 | 8 Sep 94               | 28.8                                    | 4.06         |
| 6<br>1                                  | 31 Aug 9 4<br>29 Aug 9 4 | 8 Sep 94<br>8 Sep 94   | 5.76<br>1.03                            | 3.94<br>2.53 |
|                                         |                          | Week 4                 |                                         |              |
| 30                                      | 9 Sep 94                 | 19 Sep 94              | 28.8                                    | 3.94         |
| 6<br>-1                                 | 7 Sep 94<br>8 Sep 94     | •                      | 6.06<br>0.96                            | 1.06<br>3.99 |
|                                         | -                        | Week 5                 |                                         |              |
| 30                                      | 16 Sep 94                | -                      | 30.8                                    | 2.57         |
| 6<br>1                                  | 14 Sep 94<br>12 Sep 94   | •                      | 5.79<br>1.01                            | 3.48<br>0.89 |

Analysis of Feed Mixtures of 1,3-Dinitrobenzene

| Target Diet Concentration (mg/kg) | Date<br>Prepared       | Date<br>Analyzed       | Concentration<br>by Analysis<br>(mg/kg) | %<br>Error     |
|-----------------------------------|------------------------|------------------------|-----------------------------------------|----------------|
|                                   |                        | Week 6                 | *************************************** |                |
| 30                                | 20 Sep 94              | 3 Oct 94               | 29.4                                    | 1.88           |
| 6<br>1                            | 19 Sep 94<br>16 Sep 94 | 3 Oct 94<br>4 Oct 94   | 6.04<br>0.99                            | $0.71 \\ 1.20$ |
|                                   |                        | Week 7                 |                                         |                |
| 30                                | 26 Sep 94              | 6 Oct 94               | 28.5                                    | 4.89           |
| 6<br>1                            | 28 Sep 94<br>30 Sep 94 | 4 Oct 94<br>5 Oct 94   | 6.06<br>1.01                            | 0.95<br>0.69   |
|                                   | •                      | Week 8                 |                                         |                |
| 30                                | 7 Oct 94               | 13 Oct 94              | 29.3                                    | 2.19           |
| 6<br>1                            | 7 Oct 94<br>3 Oct 94   | 13 Oct 94<br>13 Oct 94 | 6.28<br>1.03                            | 4.73<br>3.05   |
|                                   |                        | Week 9                 |                                         |                |
| 3 0<br>6                          | 11 Oct 94<br>11 Oct 94 | 19 Oct 94<br>19 Oct 94 | 29.5<br>6.10                            | 1.68<br>1.73   |
| -1                                | 12 Oct 94              | 17 Oct 94              | 1.01                                    | 1.36           |
|                                   |                        | Week 10                |                                         |                |
| 30                                | 20 Oct 94              | 25 Oct 94              | 30.5                                    | 1.76           |
| 6<br>1                            | 20 Oct 94<br>20 Oct 94 | 26 Oct 94<br>26 Oct 94 | 6.06<br>1.03                            | 1.05<br>2.97   |

Analysis of Feed Mixtures of 1,3-Dinitrobenzene

| Target Diet Concentration (mg/kg) | Date<br>Prepared                    | Date<br>Analyzed                    | Concentration<br>by Analysis<br>(mg/kg) | %<br>Error           |  |  |  |  |
|-----------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------|----------------------|--|--|--|--|
| Week 11                           |                                     |                                     |                                         |                      |  |  |  |  |
| 3 0<br>6<br>1                     | 24 Oct 94<br>24 Oct 94<br>24 Oct 94 | 2 Nov 94<br>2 Nov 94<br>3 Nov 94    | 29.2<br>5.83<br>0.99                    | 2.77<br>2.89<br>0.84 |  |  |  |  |
|                                   |                                     | Week 12                             |                                         |                      |  |  |  |  |
| 3 0<br>6<br>1                     | 31 Oct 94<br>31 Oct 94<br>31 Oct 94 | 9 Nov 94<br>9 Nov 94<br>8 Nov 94    | 30.6<br>5.71<br>1.01                    | 2.09<br>4.87<br>0.59 |  |  |  |  |
|                                   |                                     | Week 13                             |                                         |                      |  |  |  |  |
| 3 0<br>6<br>1                     | 9 Nov 94<br>10 Nov 94<br>10 Nov 94  | 16 Nov 94<br>16 Nov 94<br>16 Nov 94 | 30.4<br>5.97<br>1.04                    | 1.28<br>0.48<br>3.78 |  |  |  |  |

# APPENDIX J

PROTOCOL AND AMENDMENTS

#### PROTOCOL

#### 90 Day Subchronic Toxicity Evaluation of 1,3-Dinitrobenzene (DNB) in Fischer (F344) Rats

This study will be conducted in agreement with Good Laboratory Practice Standards, Environmental Protection Agency, Toxic Substances Control Act (TSCA) 40 CFR Part 792 (Federal Register, Vol 54, No. 158, August 17, 1989, pp. 34034 - 34050). All aspects of the studies will be conducted in accordance with written Standard Operating Procedures (SOP) of the performing unit and all raw data and performance documents will be maintained in agreement with GLP. An administratively separate quality assurance unit (QAU from PAI) will monitor the studies to assure adherence to good laboratory practices and the approved SOPs. Any deviation from the protocol or GLP will be noted in the raw data and reflected in the final report.

Testing Facility A.W. Breidenbach Environmental Research Center U.S. Environmental Protection Agency Cincinnati, OH 45268

Prime Contractor (Sponsor) U.S. Army Biomedical Research and Development Laboratory, Fort Detrick Frederick, Maryland 21701-5010

Principal Investigator T.V. Reddy, Ph.D.

Project Manager

G.R. Olson, DVM, Ph.D. Pathology Associates, Inc.

Quality Assurance W.R. Fox, MA

Pathology Associates, Inc.

# 90-DAY SUBCHRONIC TOXICITY EVALUATION OF 1,3-DINITROBENZENE (DNB) IN FISCHER (F344) RATS

#### RESEARCH PROTOCOL

Tirumuru V. Reddy, Ph.D. Principal Investigator

F. Bernard Daniel, Ph.D. Co-Principal Investigator

Ecological Monitoring Research Division Environmental Monitoring Systems Laboratory U.S. Environmental Protection Agency Cincinnati, Ohio 45268

August 16, 1994

August 16, 1994 Page 1 TITLE:

# 90 DAY SUBCHRONIC TOXICITY EVALUATION OF 1,3-DINITRONBENZENE (DNB) IN FISCHER RATS

BACKGROUND: Nitroaromatics, such as 1,3-dinitrobenzene (DNB), 1,3,5-trinitrobenzene (TNB), and N-methyl-N,2,4,6-tetranitroaniline (tetryl), have been detected as environmental contaminants of groundwater and soil near production sites and in some instances at military test grounds. The wastewaters discharged from trinitrotoluene (TNT) manufacturing processes contain a variety of aromatic compounds, including DNB and TNB. TNB is formed during the nitration step of TNT synthesis as a result of oxidation of methyl groups. Although the complete mechanism of TNB formation during TNT photolysis is unknown, Burlinson (1980) suggested that it is produced by decarboxylation of 2,4,6-trinitrobenzaldehyde, a major TNT photoproduct. It is also found in aquatic systems and surface soils as a by-products of photolysis of TNT. DNB and TNB are not easily biodegradable, persist in the environment, eventually leach out, and contaminate groundwater near waste disposal sites. Tetryl is an explosive that has been in use, largely for military purposes, since 1906. Wastewaters and soil at the original production sites and other plants devoted to munitions assembly, contain large quantities of tetryl. A recent estimate of tetryl in wastewaters generated from the production of tetryl at Joliet Army Ammunition Plant was about 36 lb/day of each production line.

Toxicity data on these compounds are limited. The oral LD50 of DNB, TNB and tetryl were 59 mg/kg, 284 mg/kg and greater than 5 g/kg, respectively, in rats for combined sexes. TNB and tetryl were not toxic at 2 g/kg when applied to rabbit skin for 24 hours. However, the dermal LD50 of DNB was 1.99 g/kg for combined sexes of rabbits. None of these compounds produced skin irritation potentials but positive (DNB) and severe (TNB, tetryl) eye irritation potentials in rabbits. The sensitization tests showed that DNB and tetryl are not skin sensitizers while TNB caused mild allergic reaction in guinea pigs. Some of the toxicological and behavioral effects of DNB are; formation of methemoglobin, testicular degeneration and reproductive failure, and weight loss and anemia in hamsters, rats and mice. Neurological and hematological disorders have also been reported in dogs. DNB is rather toxic to humans; the estimated lethal dose range is 5-50 mg/kg. It is readily absorbed through the skin. Fetal doses (amount and route of administration are not given) of tetryl produced toxic degeneration (necrosis) in the kidneys of dogs and rabbits and liver necrosis in dogs (not in rabbits). Tetryl was observed to be a powerful skin sensitizer in ammunition plant workers. Hardy and Maloof (1950) reported effects from accidental exposure of 11 people to tetryl: two died, one was disabled and eight did not detect permanent disability. They also reported irreversible liver damage, dermatitis, and upper respiratory irritation following tetryl exposure. The effects of tetryl exposure include gastrointestinal symptoms and epidermal, respiratory, nervous system, hematopoietic and circulatory injury. Atmospheric concentration of 1.5 mg/m3 or below did not produce systemic poisoning in persons working with tetryl. DNB, TNB, and tetryl have been shown to be genotoxic in Salmonella mutagenesis assay. TNB has been shown to form adducts of blood proteins and tissue DNA in rats.

#### PROTOCOL.

1. Study: 90-day Subchronic toxicity evaluation of DNB in F344 male

and female rats. Starting date August 22 and 23, 1994 and

the termination on November 22 and 23, 1994.

2. Purpose: To evaluate subchronic toxicity of DNB when administered in

the diet for 90-days.

3. Study Location: Andrew W. Breidenbach Environmental Research Center, U.S.

Environmental Protection Agency, Cincinnati, OH 45268

4. Sponsor and Address: U.S. Army Biomedical Research and Development Laboratory,

Fort Detrick, Frederick, Maryland 21701-5010

5. Principal Investigator: T.V. Reddy, Ph.D., Research Chemist Environmental

Monitoring Systems Laboratory, U.S. Environmental

Protection Agency, Cincinnati, Ohio 45268

6. Co-Principal Investigator: F. Bernard Daniel, Ph.D., Environmental Monitoring Systems

Laboratory, U.S. Environmental Protection Agency,

Cincinnati, Ohio 45268

7. Study Coordinator: Barry Wiechman, MS., Pathology Associates (PAI)

8. Project Manager: G.R. Olson, DVM, Ph.D., Pathology Associates (PAI)

9. Regulatory Compliance: This study is carried out according to U.S. EPA Health Effects

testing guidelines (40 CFR 798) in compliance with GLP (40

CFR 792)

10. Quality Assurance: The protocol in life phase and final report will be audited by

the Quality Assurance Office in accordance with SOP's at

Pathology Associates, West Chester, Ohio 45069.

11. Test Material: 1,3-Dinitrobenzene(DNB). Powder, (CAS#99-65-0), purchased

from Fluka, USA and purity is more than 99%. The purity was

further confirmed by HPLC.

12. Experimental Design:

A. Selection of Dose: Toxicon Corporation (Woburn, MA 01801) has conducted acute txicity studies on DNB. They administered DNB in corn oil to rats at a single oral dose and observed the clinical signs for 14 days following dosing. Based on the results they have established that 59 mg/kg BW, as the LD50 dose for combined sexes. Based on the results from the 14 day range finding experiment, the following three dose levels; 30,

- 6, 1 mg 1,3-DNB/kg diet were selected for the 90 day subchronic toxicity study. Control rats are fed only powdered chow diet 5002. There are no known contaminants in the food that would affect the outcome of the study.
- B. Preparation of the Diet: Certified powdered Purina laboratory chow purchased from Purina labs and stored at 4°C will be used. DNB diets are prepared once a week. Just before the diet preparation, DNB is removed from the storage shelves (kept in designated carcinogen room), weighed in the carcinogen room and mixed with the powdered diet (30 mg/kg diet). First, 30 mg DNB will be added to 250g powdered diet and mixed for 15 min. Then an additional 250 g of powdered diet is added and mixed for an additional 15 min. Then the remaining diet will be added to bring the DNB concentration to 30 mg/kg; then mixed for an additional hour in a mechanical stirrer (Kitchen Aid Model No. K5SS) for uniform distribution of DNB in the diet. This is also verified by determining the DNB concentration in the diet taken from three different depths (top, middle and bottom layer) of the mixing chamber. Quantitative analysis of DNB is done by HPLC.

The premixed diet (30 mg/kg) is further diluted with fresh powdered diet(0, 5 and 30 times) to obtain the desired DNB concentration. Individual diet concentrations are determined as described before. The diet feeders are refilled twice a week and changed weekly. DNB concentrations are manipulated in such a way that each rat(caged individually) will receive the desired amount of DNB. This is determined by calculating the daily average intake, followed by an adjustment of DNB content in the diet. Dietary intake and water consumption are measured twice a week. Body weights are recorded once a week.

- C. Animals: 65 male and 65 female F344 rats (6 week old) with body weight range (110-125  $\pm$ 5g) will be purchased and held for 2 weeks for quarantine. Male and female rats, after quarantine, are housed individually in clear polycarbonate shoe boxes in drawer rack cages with aspen bedding (San I Chips supplied by P.J. Murphy, Forest Products Corporation, NJ). Shoe boxes and bedding are changed along with food and water (2 times a week). Water is provided with 16 ounce bottles and stoppers with sippers tubes. There are no known contaminants in the water that would affect the outcome of the study. At all times the animal rooms are maintained on a 12 hour light/dark cycle at 22-23 C with a relative humidity range of 40-60%. All rats are identified by electronic implants.
- D. Randomization: Using computer-generated random numbers with assignment to groups. At the time of randomization, the weight variation of the animals of each sex used should not exceed  $\pm$  2 S $\pm$ D of the mean weight, and the mean body weights for each group of each sex will not be statistically different.
  - E. Justification: Rats historically have been used in safety evaluation studies and are recommended by appropriate regulatory agencies.

### G. Group designation and dose levels for 90-day toxicity study.

| Group | No. of<br>Rats | Sex    | mg DNB/kg diet | Sacrifice<br>Time (days) |
|-------|----------------|--------|----------------|--------------------------|
| 1     | 15             | Male   | 30             | 90                       |
| 2     | 15             | =      | 6              | 90                       |
| 3     | 15             |        | 1              | 90                       |
| 4     | 15             | =      | 0              | 90                       |
| 5     | 15             | Female | 30             | 90                       |
| 6     | 15             | •      | 6              | 90                       |
| 7     | 15             | •      | 1              | 90                       |
| 8     | 15             | •      | 0              | 90                       |

<sup>\*</sup> Five rats from each group (1-8) will be sacrificed after 45 days for hematology and clinical chemistry. The remaining 10 rats are sacrificed after 90 days of DNB exposure.

H. Analysis of the Diet: The homogeneity of DNB in the diet is determined by analyzing the DNB content (by HPLC) in the diet, soon after diet preparation.I. Observation of Animals:

#### (1) Clinical Observations:

Twice daily - mortality and morbidity check.

Once daily - cageside observation for obvious indications of a toxic effect; these effects will be recorded as they are observed.

Data for mortality and morbidity checks and cageside observations will be recorded on the same form. Because these are cageside animal checks, the observations will not be as specific and may not necessarily duplicate those observations recorded on body weight days when thorough physical examinations are conducted.

- (2) Physical Examinations: At each weighing interval These observations will include, but not be limited to, changes in: skin and fur; eyes and mucous membranes; respiratory, circulatory, autonomic and central nervous systems; some motor activity and behavior.
- (3) Body Weight: Prior to treatment and weekly, thereafter.

(4) Food Consumption: Twice weekly

(5) Water Consumption: Twice weekly

(6) Opthalmoscopic examination: Prior to the treatment and at termination by a board certified opthamologist

#### J. Clinical pathology

(1) Frequency: 45 days and 90 days.

(2) Number of Animals: five animals per group at 45 days and 10 animals per group at 90 days.

#### K. Tests:

#### (1) Hematology:

leukocyte count erythrocyte count heinz bodies hemoglobin methemoglobin
hematocrit
platelet count
differential leukocyte count

#### (2) Blood Chemistry:

glucose sodium potassium total protein phosphorus albumin calcium total bilirubin urea nitrogen creatinine

aspartate aminotransferase alkaline phosphatase alanine aminotransferase cholesterol triglycerides

#### L. Termination:

- (1) Unscheduled Sacrifices and Deaths: Necropsies by trained personnel using procedures approved by board-certified pathologists will be conducted on all moribund animals and on all animals that die.
- (2) Sacrifice: After 90 days of treatment, all surviving animals will be weighed, anesthetized with sodium pentobarbital, and exsanguinated. Necropsies will be conducted on each animal in a random order to eliminate bias. Animals will be fasted for 12 hrs before sacrifice. A pathologist will be readily available for consultation (further participation by a pathologist is available).

#### M. Postmortem Procedures:

#### (1) Gross Necropsy:

The necropsy will include examination of:

External surfaces
All orifices
Cranial cavity
Carcass
External surface of the brain (at necropsy) - cut surfaces of the brain
The thoracic, abdominal and pelvic cavities and their viscera
The cervical tissues and organs

#### (2) Organ Weights:

For each terminally sacrificed animal, the following organs will be weighed following careful dissection and trimming to remove fat and other contiguous tissue in a uniform manner:

brain lungs
liver thymus
spleen testes with epididymides/ovaries
kidneys heart
adrenals

(3) Tissue Preservation: The following tissues (when present) from each animal will be preserved in 10% neutral buffered formalin:

ileum skin mandibular lymph nodes colon cecum mesenteric lymph nodes rectum mammary glands liver thigh muscle pancreas sciatic nerve splæn sternum with marrow kidneys femur with marrow adrenals larynx urinary bladder thymus seminal vesicles trachea prostate lungs and bronchi testes, including epididymis heart and aorta ovaries . thyroid uterus parathyroids

kaytorotocoNetryl.tvf

esophagus stomach

duodenum

jejunum tongue

salivary gland

nasal cavity/ turbinates

brain pituitary

preputial or clitoral glands

Zymbal's gland thoracic spinal cord

#### N. Histopathology:

(1) Following necropsy, a list of all gross lesions recorded will be submitted to the project officer at U.S. Army Biomedical Research and Development Laboratory for his evaluation and for any additional histopathology other than those described below.

Histopathological evaluations are to be done on the following tissues from all the animals (male and female from the highest dose group and untreated controls). The tissues examined under a light microscope are as follows:

cerebrum
cerebellum
trachea
thyroid
parathyroid
esophagus
salivary gland

harderian gland heart

aorta lung thymus spleen

mesenteric lymph node

liver kidneys urinary bladder duodenum jejunum

ileum

pancreas

cecum colon rectum stomach

skeletal muscle sciatic nerve

tongue skin

mammary gland nasal region sternum femur

spinal cord adrenals pituitary eye(s)

FEMALE

zymbal's gland

MALE

accessory sex glands epididymis

testes

uterus ovaries

> August 16, 1994 Page 8

An average of 12 slides will be prepared for each rat covering all the tissues shown above (3 or 4 tissues are fixed on each slide). A total of 480 slides from 40 rats from the 90-day study will be examined. Based on the results from high dose group tissues, examination of tissues from other dose groups will be conducted as needed. Following completion of each study, all wet tissues, paraffin blocks and slides will be placed in the EPA archives.

#### O. Final Report:

Four months after the termination of the in-life phase of the study, 8 copies of the final report which includes the following information (as appropriate) will be prepared and submitted to the project officer at EPA:

- (1) Experimental Design and Methods:
- (2) Results:

mortality
clinical observations
body weights
food and liquid consumption
clinical pathology tests

organ weights and organ/body weight ratios gross pathology histopathology

#### Statistical Evaluation:

Dunnet's t-test will be used for comparing the treatment groups. Kruskal-Wallis rank sums will be used, if needed, to examine the differences among the treatment groups and Wilcoxon rank sum test will be used to analyze pairwise differences between the control and each dose group.

## Deviations from GLP's and Protocol

| 1. | Diet preparation as<br>better utilize technic |      | ne narrative | of this | report | was   | adapted | in | order | to |
|----|-----------------------------------------------|------|--------------|---------|--------|-------|---------|----|-------|----|
|    |                                               |      |              |         |        |       |         |    |       |    |
|    |                                               |      |              |         |        |       |         |    |       |    |
|    |                                               |      |              |         |        |       |         |    |       |    |
|    |                                               |      |              |         |        |       |         |    |       |    |
| 1  | mimur v. fel                                  | de   |              |         | 7.3    | 31-95 | 5       |    |       |    |
| T  | irumuru V. Reddy, P                           | h.D. | •            |         |        | Date  |         |    |       |    |

#### **DISTRIBUTION LIST**

Commander

ATTN: SGRD-UBZ-C

U.S. Army Biomedical Research and Development Laboratory

Fort Detrick, Frederick, MD 21702-5010

Commander

ATTN: MCMR-RMI-S

U.S. Army Medical Research and Materiel Command -

Fort Detrick, Frederick, MD 21702-5012

Commander/Director

U.S. Army Corps of Engineers

Construction Engineering Research Laboratory

Environmental Division

P.O. Box 4005

Champaign, IL 61820

Commandant

Academy of Health Sciences, U.S. Army

ATTN: DRXTH-ES

Aberdeen Proving Ground, MD 21010-5000

Commander

U.S. Army Center for Health Promotion and Preventive Medicine

ATTN: Library

Aberdeen Proving Ground, MD 21020-5000

Commander

U.S. Army Environmental Center

ATTN: S-FIM-AEC-TSS (Mr. R. L. Muhly)

Aberdeen Proving Ground, MD 21010-5401