PERTEMUAN 15 LOGIKA INFORMATIKA FORMATIF

Disusun oleh:

Ananda Bagus Saputra

2022310045

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS INFORMATIKA
UNIVERSITAS BINA INSANI
BEKASI

2023

JAWABAN

1. a. Definisi Logika

Logika adalah sarana untuk berpikir sistematis, valid dan dapat dipertanggungjawabkan. Oleh karena itu, berpikir logis dapat diartikan dengan berpikir sesuai dengan aturan-aturan berpikir, seperti setengah tidak boleh lebih besar daripada satu. Logis dalam bahasa sehari-hari biasa disebut dengan masuk akal.

b. Tabel Kebenaran Konjungsi dan Implikasi

Tabel Kebenaran Konjungsi

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Tabel Kebenaran Implikasi

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

2. p: Ali sehat

q: Ali masuk sekolah

I. Ekspresi Logika

- a. Ali masuk sekolah jika dan hanya jika Ali sehat = $q \leftrightarrow p$
- b. Tidak benar jika Ali sehat maka Ali tidak masuk sekolah = $\neg (p \rightarrow q)$
- c. Ali masuk sekolah dan Ali sehat = $q \land p$

II. Bentuk Proposisi

- a. $\neg (p \land q) = Ali tidak sehat dan Ali tidak masuk sekolah$
- b. $p \rightarrow \neg q = \text{Jika Ali sehat maka Ali tidak masuk sekolah}$
- c. $q \leftrightarrow p$ = Ali masuk sekolah jika dan hanya jika Ali sehat

3. a. $((A \land B) \rightarrow C) \rightarrow A = Contingent$

A	В	С	$(A \wedge B)$	$((A \land B) \to C)$	$((A \land B) \to C) \to A$
T	T	T	T	T	T
T	T	F	T	F	Т
T	F	T	F	T	Т
T	F	F	F	T	Т
F	T	T	F	T	F
F	T	F	F	T	F
F	F	T	F	T	F
F	F	F	F	T	F

b. $(B \land (A \rightarrow B)) \rightarrow A = Contingent$

A	В	$(A \rightarrow B)$	$(B \wedge (A \rightarrow B))$	$(B \land (A \rightarrow B)) \rightarrow A$
T	T	T	T	T
T	F	F	F	T
F	T	T	T	F
F	F	T	F	Т

c. Contoh ekspresi logika bersifat kontradiksi

 $(A \wedge B) \wedge (A \rightarrow \neg B)$

A	В	$\neg A$	¬ B	$(A \wedge B)$	$(A \rightarrow \neg B)$	$(A \wedge B) \wedge (A \rightarrow \neg B)$
T	T	F	F	T	F	F
T	F	F	T	F	T	F
F	T	T	F	F	T	F
F	F	T	T	T	T	F

4. a. $A \rightarrow \neg A \rightarrow B = 1$

A	В	$\neg A$	$A \rightarrow \neg A$	$A \rightarrow \neg A \rightarrow B$			
T	T	F	F	T			
T	F	F	F	T			
F	T	T	T	T			
F F T T F				F			
	Tidak Ekuivalen						

b. $A \rightarrow B = \neg (A \land \neg B)$

A	В	¬ B	$A \rightarrow B$	$\neg (A \land \neg B)$		
T	T	F	T	T		
T	F	T	F	F		
F	T	F	T	T		
F	F	T	T	T		
			Ekuivalen			

c. p: Budi pandai

q: Budi sekolah

(1) Jika Budi tidak sekolah, maka Budi tidak akan pandai = $\neg q \rightarrow \neg p$

(2) Budi pandai jika dan hanya jika Budi sekolah = $p \leftrightarrow q$

p	q	$\neg p$	$\neg q$	$\neg q \rightarrow \neg p$	$p \leftrightarrow q$		
T	T	F	F	T	T		
T	F	F	T	F	F		
F	T	T	F	T	F		
F	F	T	T	T	T		
	Tidak Ekuivalen						

5. a. Pak Ali adalah seorang pedagang atau pemulung

p: Pak Ali seorang pedagang

q: Pak Ali kaya

Jika Pak Ali seorang pedagang, maka ia kaya = $p \rightarrow q$

Ternyata Pak Ali tidak kaya = $\neg q$

∴ Jadi, Pak Ali kaya = q

p	q	$\neg q$	$p \rightarrow q$
T	T	F	T
T	F	T	F
F	T	F	T
F	F	T	T

Metode inferensi tidak ditemukan, maka argumen tersebut INVALID

b. Jika listrik padam, mesin-mesin pabrik berhenti

p: listrik padam, mesin-mesin pabrik berhenti

q: pabrik rugi besar

Jika mesin-mesin pabrik berhenti, maka pabrik rugi besar = $p \rightarrow q$

Listrik padam = p

∴ Jadi, pabrik rugi besar = q

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Metode inferensi menggunakan metode ponen, maka argumen tersebut VALID

- c. p: Dita ada di sekolah
 - q: Dita ada di kampus

Dita ada di sekolah atau kampus = $p \lor q$

Dita tidak ada di sekolah = $\neg p$

∴ Jadi, Dita ada di kampus = q

p	q	¬ <i>p</i>	$p \lor q$
T	T	F	T
T	F	F	T
F	T	T	T
F	F	T	F

Metode inferensi menggunakan metode silogisme disjungtif, maka argumen tersebut VALID