1.Предполагается, что у студентов уже установлен Python. Версия и среда для сдачи заданий значения не имеют.

Если у Вас не установлен Python, можете по своему желанию установить интерпретатор+необходимые пакеты или воспользоваться дистрибутивом Anaconda.

Для установки scikit-learn воспользуйтесь менеджером пакетов pip или conda. Conda поставляется вместе с дистрибутивом Anaconda.

Команды для установки scikit-learn: pip install scikit-learn/conda install scikit-learn.

- 2. Демонстрационные задания созданы с помощью интерактивной среды Jupyter Notebook.
- 3. Библиотека scikit-learn имеет прекрасную документацию с примерами, пояснениями относительно алгоритмов и их параметров.
 - 4. Кратко простой случай работы с данными можно описать следующим образом:

Загружаем/создаём выборку	from sklearn.datasets import make_regression
	X,y=make_regression(n_samples=100,)
	from sklearn.datasets import load_boston
	$boston = load_boston()$
	pandas.read_csv()
Предобработка данных	pandas.DataFrame.fillna()
	scaler=sklearn.preprocessing.StandardScaler()
Разделение выборки на обучающую и	sklearn.cross_validation.train_test_split
контрольную	$X_{\text{train}}, X_{\text{test}}, y_{\text{train}}, y_{\text{test}} = 0$
	train_test_split()
Обучение модели	from sklearn.linear_model import LinearRegression
	regressor=LinearRegression()
	$regressor.fit(X_train,y_train)$
Проверка качества	$prediction = regressor.predict(X_test)$
	from sklearn.metrics import r2_score
	print r2_score(y_test, prediction)

Также может понадобиться кросс-валидация

Оценка качества по CV	$scores = cross_val_score(regressor, X, y, cv=5)$
Подбор параметров	sklearn.model_selection.GridSearchCV
	sklearn.model_selection.LassoCV
	sklearn.model_selection.RidgeCV
Стратегии кросс-валидации	sklearn.cross_validation.KFold
	sklearn.cross_validation.LeaveOneOut
	sklearn.cross_validation.ShuffleSplit

Подробнее в ноутбуках.

- 5. Для моделей (estimator object) существуют методы:
- estimator.fit()
- estimator.transform() [или estimator.fit_transform()] для моделей из preprocessing, feature_extraction, feature_selection
- estimator.predict() [или estimator.predict_proba() предсказание вероятностей] для моделей классификации и регрессии
- 6. Работа с категориальными признаками и спрямляющими пространствами (создании полиномиальных признаков, логарифмических и других преобразованиях) рассматривается в ноутбуках.