Statistica A – Esercitazione 2

Esercizio 1. Data una verosimiglianza $(L_{\theta})_{\theta}$ coniugata rispetto ad una famiglia di distribuzioni \mathcal{P} , dimostrare che anche la famiglia di distribuzioni

$$\mathcal{P}^* := \{ \alpha \pi_1 + (1 - \alpha) \pi_2 : \pi_1, \pi_2 \in \mathcal{P} \}$$

è coniugata per la verosimiglianza ed inoltre che la posterior è la mistura delle posterior.

Esercizio 2. Sia $(X_i)_{i\geq 1}$ una successione bernoulliana scambiabile e sia $S_n=\sum_{i=1}^n X_i$. Dimostrare che

1. per ogni k = 0, 1, ..., n si ha

$$\mathbb{P}(S_n = k) = \binom{n}{k} \mathbb{P}(X_1 = \dots = X_k = 1, X_{k+1} = \dots = X_n = 0);$$

2. fissato m < n si ha

$$\mathbb{P}\left(\boldsymbol{X}_{m} = \boldsymbol{x}_{m} | S_{n} = s\right) = \frac{\binom{n - m}{s - \sum_{i=1}^{m} x_{i}}}{\binom{n}{s}}$$

se max $\{0, m-n+s\} \sum_{i=1}^m x_i \le \min\{s, m\}$ e 0 altrimenti.

Esercizio 3. Sia X_n una successione aleatoria scambiabile e A un insieme misurabile. Si dimostri che la successione $Y_n = \mathbb{I}_A(X_n)$ è scambiabile e se ne determini la rapresentazione della legge con il teorema di de Finetti.

Esercizio 4. Si ripete n volte il seguente esperimento: si lancia una moneta fino a che non esce testa, dopo di che si interrompe l'esperimento. Si indicano con X_i il numero di lanci effettuato fino a che non esce testa e con p la probabilità di ottenere testa in un lancio. Calcolare:

- 1. la distribuzione di X_i ;
- 2. la distribuzione di $Y_n := X_1 + \cdots + X_n$;
- 3. la funzione generatrice dei momenti di Y_n ;
- 4. $\mathbb{E}[Y_n]$ e $\text{Var}(Y_n)$ [che sono rispettivamente n(1-p)/p e $n(1-p)/p^2$].

Esercizio 5. Si assegna il seguente modello bayesiano: le osservazioni X_i condizionatamente al parametro incognito $\Theta = \theta$ sono i.i.d. con distribuzione geometrica di parametro θ e la distribuzione a priori per il parametro è una $Beta(\alpha, \beta)$.

- 1. Si costruisca il modello associato ad n osservazioni (Si specifichi spazio campionario, dei parametri, etc.).
- 2. Si calcoli la distribuzione predittiva a priori.
- 3. Si calcoli la distribuzione a posteriori e quella predittiva a posteriori.
- 4. Si confrontino i risultati con quelli ottenuti per il modello beta-binomiale e si stabilisca quali connessioni esistono tra i due modelli.

Esercizio 6. Sia \mathcal{U} un'urna contenente N palline marcate con 0 e 1, rispettivamente con numerosità N_0 e $N_1 := N - N_0$. Si compiono n estrazioni dall'urna senza reimmissione e si indicano i risultati con X_i , $i = 1, \ldots, n$ in cui $n \leq \min\{N_0, N_1\}$,

- 1. si calcoli la distribuzione di $(X_1, \ldots, X_m), m \leq n$;
- 2. si calcoli la distribuzione di $(X_{n-m+1}, \ldots, X_n), m \leq n$;
- 3. si calcoli la distribuzione di (X_{n-m+1},\ldots,X_n) condizionatamente a (X_1,\ldots,X_{n-m}) ;

- 4. (*) stabilire se la successione $(X_i)_i$ è finitamente scambiabile e si calcoli la distribuzione di $\sum_{i=1}^{n} X_i$.
- 5. (*) supposto che la numerosità dell'urna N tenda ad infinito e che $N_1/N \to p \in [0,1]$, calcolare la distribuzione di probabilità limite del numero di successi nelle n prove.

Esercizio 7. Sia \mathcal{U} un'urna contenente N marcate con 0 e 1, rispettivamente con numerosità N_0 e $N_1 := N - N_0$. Si compiono n estrazioni come segue:

- (A) si compie un'estrazione dall'urna e si registra il risultato X_i ;
- (B) si reimmette nell'urna la pallina estratta più r palline con lo stesso numero.

Supposto di compiere n osservazioni in queste condizioni:

- 1. si calcoli la distribuzione di $(X_1, \ldots, X_m), m \leq n$;
- 2. si calcoli la distribuzione di $(X_{n-m+1}, \ldots, X_n), m \leq n$;
- 3. si calcoli la distribuzione di (X_{n-m+1},\ldots,X_n) condizionata a (X_1,\ldots,X_{n-m}) ;
- 4. si calcoli la distribuzione di $\sum_{i=1}^{n} X_i$.;
- 5. si ripetano i punti precedenti nel caso in cui ad ogni estrazione, supponendo che si reintroducano r_i palline, se si estrae una pallina di tipo i.

Esercizio 8. Un'urna \mathcal{U} contiene N palline marcate con numeri che vanno da 0 a d-1 e di cui indichiamo le rispettive numerosità n_j , $j=0,\ldots,d-1$. Si compiono n estrazioni dall'urna con reimmissione e si indicano i risultati delle estrazioni con X_i , $i=1,\ldots,n$.

- 1. Si calcoli la distribuzione di X_1 e quella congiunta i X_1, \ldots, X_n .
- 2. Sia \mathbf{Y}_n il vettore aleatorio il cui j—esimo elemento è $Y_j := \sum_{i=1}^n [X_i = j]$, in cui per ogni evento A [A] = 1 se A è vero e 0 altrimenti. Si determini il supporto e si calcoli la distribuzione di \mathbf{Y}_n .

Esercizio 9. Un'urna \mathcal{U} contiene palline marcate con numeri che vanno da 0 a d-1, le proporzioni di palline di tipo j è Θ_j , $j=0,\ldots,d-1$ ($\Theta_j\geq 0,\sum_{i=1}^d\Theta_j=1$) sono incognite. Siamo interessati a studiare la proporzione delle palline nell'urna e a tal fine compiamo n estrazioni con reimmissione dall'urna e indicando i risultati con X_i , $i=1,\ldots,n$ in cui ogni $X_i\in\{0,\ldots,d-1\}$.

Sia $\Theta = (\Theta_1, \dots, \Theta_{d-1})$ il vettore dei parametri incogniti, assegnamo come distribuzione a priori la distribuzione di Dirichlet, $Dir(\alpha_1, \alpha_2, \dots, \alpha_d)$, cioè per ogni $\boldsymbol{\theta} \in \mathbb{R}^{d-1}$

$$\pi\left(\boldsymbol{\theta}\right) = \left[\frac{\Gamma\left(\sum_{i=1}^{d} \alpha_i\right)}{\prod_{i=1}^{d} \Gamma\left(\alpha_i\right)} \left(1 - \sum_{i=1}^{d-1} \theta_i\right)^{\alpha_d - 1} \prod_{i=1}^{d-1} \theta^{\alpha_i - 1}\right] \mathbb{I}_{S_{d-1}}(\boldsymbol{\theta})$$

in cui $S_{d-1} = \left\{ \boldsymbol{y} \in \mathbb{R}^{d-1} : y_i \ge 0, i = 1, \dots, d-1; \sum_{i=1}^{d-1} y_i \le 1 \right\}.$

- 1. Si costruisca il modello associato ad n osservazioni (Si specifichi spazio campionario, dei parametri, etc.).
- 2. Si calcoli la distribuzione predittiva a priori.
- 3. Si calcoli la distribuzione a posteriori e quella predittiva a posteriori.

Esercizio 10. Sia assegnato il seguente modello

$$X_i | \Theta \stackrel{i.i.d.}{\sim} f_{\theta} \in \Theta \sim f_{\Theta}, i \geq 1$$

Data la successione di osservazioni $(X_n)_{n\geq 1}$ (o $(x_i)_{i\geq 1}$), indichiamo con $\boldsymbol{X}_n=(X_1,X_2,\ldots,X_n)$ (rispettivamente $\boldsymbol{x}_n=(x_1,x_2,\ldots,x_n)$). Dimostrare che

- 1. $f_{\Theta|\mathbf{X}_{n+1}}(\theta|\mathbf{x}_{n+1}) \propto f_{X_{n+1}|\Theta}(x_{n+1}|\theta)\pi_{\Theta|\mathbf{x}_n};$
- 2. $f_{X_{n+1}|\mathbf{X}_n}(\mathbf{x}_{n+1}|\mathbf{x}_n) \propto \int_{\Theta} f_{X_1|\Theta}(x_1|\theta) f_{\Theta|\mathbf{X}_n}(\theta|\mathbf{x}_n) d\theta$

Esercizio 11 (*). Siano $Z = (Z_i)_{i \ge 1}$ una successione scambiabile e $\rho_{ij} = \frac{Cov(Z_i, Z_j)}{\sqrt{\operatorname{Var}(Z_i)\operatorname{Var}(Z_j)}}$ il coefficiente di correlazione di Z_i e Z_j . Dimostrare che

- 1. per ogni $m \in \mathbb{R}$ e per ogni $\sigma \in \mathbb{R}_+$ il vettore $[\sigma(Z_i m)]_{i=1}^N N$ è N-scambiabile;
- 2. $|\rho_{ij}| \leq 1$ e che se le variabili sono scambiabili, allora $\rho_{ij} = \rho$;
- 3. Var $(\sum_{i=1}^{n} Z_i) = N + N(N-1)\rho$ e dedurre che se la successione è N-scambiabile allora $\rho \ge -1/(N-1)$, mentre se è infinitamente scambiabile $\rho \ge 0$.

Esercizio 12 (*). Data una successione i.i.d. standardizzata $(\xi_i)_{i\geq 0}$ (i.e. $\mathbb{E}(\xi_1)=0$ e $\mathbb{E}[\xi_1^2]=1$) si definiscano le seguenti successioni:

$$Z_i = \xi + c \sum_{i=1}^{N} \xi_i \in \tilde{Z}_i = c\xi_0 + \xi_i$$

in cui c è una costante.

- 1. Si dimostri che, per ogni N e per ogni c fissati il vettore $\mathbf{Z}_N = (Z_1, \dots, Z_N)$ è N-scambiabile;
- 2. fissato $\rho_0 \in [-1/(N-1), 1]$ dimostrare che esiste un vettore scambiabile con tale struttura di correlazione;
- 3. Si dimostri che, per ogni N e per ogni c la successione \tilde{Z}_i è infinitamente scambiabile e se ne calcoli la funzione di correlazione;
- 4. fissato $\rho_0 \in [0, 1]$ dimostrare che esiste un vettore scambiabile con tale struttura di correlazione.
- 5. fissato

Esercizio 13. Siano $X \sim Gauss(0,1)$ e $V \sim \chi^2_{(n)}$ due variabili aleatorie indipendenti.

- 1. Si dimostri che la variabile aleatoria $T := X/\sqrt{V/n}$ ha distribuzione simmetrica rispetto all'origine e se ne calcoli la distribuzione. In questo caso diciamo che T ha distribuzione T di Student con n gradi di libertà e scriviamo $T \sim \mathcal{T}_{(n)}$;
- 2. Fissati $\alpha \in \mathbb{R}$ e $\beta > 0$ si calcoli la distribuzione di $\tilde{T} := \alpha + \beta T$. In questo caso diremo che \tilde{T} ha distribuzione T di Student con parametro di non centralità α e di scala β e scriviamo $\tilde{T} \sim \mathcal{T}_{n,\alpha,\beta}$.

Esercizio 14. Siano $X_i|\Sigma = \sigma^2 \stackrel{i.i.d.}{\sim} Gauss(\mu, \sigma^2)$ e $\Sigma \sim InvGamma(\nu_0/2, \nu_1/2)$ in cui $\mu \in \mathbb{R}$ è un parametro noto.

- 1. Dimostrare che $(X_1 \mu)/\nu_1$ ha una distribuzione $\mathcal{T}_{(\nu_0)}$.
- 2. Dimostrare che il modello è coniugato e sfruttare il risultato dell'Esercizio 10 per calcolare la distribuzione di $\Sigma | \mathbf{X}_n$.

Esercizio 15. Dato un modello statistico bayesiano \mathcal{M} con spazio dei parametri \mathbb{R} e distribuzione a priori π_{Θ} continua e strettamente monotona, dimostrare che lo stesso modello \mathcal{M} con parametro $\Phi := F_{\Theta}(\Theta)$ ha distribuzione iniziale uniforme su (0,1).

Esercizio 16. Si ottenga la distribuzione di Jeffreys, si stabilisca se è propria e si calcoli la distribuzione a posteriori per i seguenti modelli:

- 1. modello gaussiano con media nota e varianza incognita;
- 2. modello bernoulliano;
- 3. modello di Poisson.

Si confrontino i risultati con quelli ottenuti nei relativi modelli coniugati.

Esercizio 17. Data una verosimiglianza $f_{X|\Theta}(\cdot, |\theta)$, $\theta \in \Theta$, dimostrare che se $\theta \mapsto f_{X|\Theta}(x|\theta)$ è continua per ogni x è una verosimiglianza, allora la classe $\mathcal{P} \subset M_1(\Theta)$ delle distribuzioni continue è coniugata.

Esercizio 18. Sia $f_{X_n|\Theta}(x_n|\cdot)$ la verosimiglianza associata ad un campione $X_n = (X_1, \dots, X_n)$ i.i.d. condizionatamente a Θ . Dimostrare che, se $\mathcal{P} \subset M_1(\Theta)$ è coniugato rispetto $f_{X_1|\Theta}$, allora lo è anche rispetto a $f_{X_n|\Theta}$.

Esercizio 19. Sia $\mathcal{F} \subset M_1(X^{(n)})$ in cui $X^{(n)}$ è lo spazio campionario relativo alle prime n osservazioni (X_1, \ldots, X_n) . Diciamo che il modello è coniugato predittivamente se fissato un sistema di predittive a priori in \mathcal{F} , allora anche le predittive a posteriori appartengono allo stesso insieme \mathcal{F} . Dimostrare che se un modello è coniugato, allora è anche coniugato predittivamente.