www.slamtec.com

SLAMWARE

模块化自主定位导航解决方案

开发套装使用手册

型号:3.0

目录	1
SLAMWARE KIT 简介	3
简介	3
包含组件	
基本用法	5
模组连接	5
连接至 PC	6
相关接口介绍	9
BREAKOUT 特性	9
BREAKOUT 接口及引脚定义	10
开发参考	15
SDK	15
固件编译	15
固件烧录	15
工具	15
参考设计案例(基于 HCR 平台)	18
硬件平台	18
固件配置及烧录	20
调试及开发	22
机械设计	29
修订历史	30
附录	31
図主 志 己	24

简介

SLAMWARE 开发套件包含了方便用户对 SLAMWARE 模块化自主定位导航解决方案进行评估和早期开发所需的配套工具。用户只需将 SLAMWARE 核心导航模块固定至其接口扩展板 SLAMWARE BREAKOUT 上,然后将雷达,电源及PC 连接至扩展板对应接口,即可通过配套的图形工具观察结果并进行软硬件开发。

包含组件

SLAMWARE 模块化自主定位导航解决方案(简称 SLAMWARE 核心模块)

基于 RPLIDAR 提供实时定位和自主导航功能,同时支持串口和以太网交互导航信息。具体规格信息请参考 SLAMWARE CORE 数据手册。

SLAMWARE BREAKOUT

3/32

SLAMWARE 核心模块扩展板,用于提供可直接和 A1/A2 雷达,网络,PC,电机及各种传感器等连接通讯的接口,方便用户基于该核心模块进行相关硬件或软件开发。

RPLIDAR A1 或 RPLIDAR A2

用于实现二维平面内一定范围内的 360 度全方位激光测距扫描,实时产生的所在空间平面点云地图信息可由 SLAMWARE 核心模块用于实现实时定位和自主导航功能。具体规格信息及使用方法请参考 RPLIDAR 相关文档。

基本用法 SLAMTEC

模组连接

接口示意图

下图所示接口为常用接口,更多接口及引脚定义请参考"相关接口介绍"章节的接口与引脚定义

图表 2-1 SLAMWARE BREAKOUT 接口示意图

设备连接

图表 2-2 SLAMWARE 套件连接示意图

连接至 PC

将开发套件连接至 PC 有多种方式, Breakout 上设计了通用网口,可直接通过网线将开发套件连接至 PC 以方便用户进行调试。而基于实际开发应用的需要,该套件同时支持无线连接,分别有 AP 模式及 Station 模式。下面将基于无线连接对如何连接至 PC 进行介绍。

AP 模式

此模式下, SLAMWARE core 本身作为一个 WiFi 热点, 当用户设备通过 Wifi 或者有线网络连接该 WiFi 热点时, 会通过 DHCP 获得一个 IP 地址, 而后通过 192.168.11.1 来访问设备, 此模式为 SLAMWARE core 出厂的预置模式。

Station 模式

此模式下,SLAMWARE core 本身最为一个 WiFi 设备,连接到其他的 WiFi 热点上。同时 SLAMWARE core 会自动成为无线网桥,为 High Speed Bus 上的

设备分配 IP 地址并提供外网访问服务。

您可将 SLAMWARE 套件配置成 Station 模式连接外部局域网。具体步骤如下。

步骤 1 用电脑连上 SLAMWARE core 的 AP

图表 2-3 SLAMWARE Core 的 AP

步骤 2 用浏览器打开 http://192.168.11.1 (推荐使用 google 浏览器)

图表 2-4 http://192.168.11.1 页面

步骤 3 进入 Administration 菜单

图表 2-5 http://192.168.11.1 页面的 Administration 菜单

步骤 4 进入 Configurate WiFi 菜单:

图表 2-6 http://192.168.11.1 页面的 Configuration Wifi 菜单

步骤 5 输入 WiFi 配置参数并点击 Connect

Connect to a Hidden WiFi Network

图表 2-7 配置 Wifi 并连接

步骤 6 在路由器上就能看到 SLAMWARE core 已经成功的连接到了您的 Wifi 网络

图表 2-8 Wifi 连接成功

注意:此时 AP 模式仍然有效。

BREAKOUT 特性

最大额定值

项	范围
供电电压	9V ~24V
10 电压	-0.3V ~3.6V
工作温度/储藏温度	-20oC ~+60oC

图表 3-1 SLAMWARE Breakout 最大额定值

电气特性

符号	参数	最小值.	典型值.	最大值.	单位
V _{DD}	系统额定工作电压	4.75	5	5.25	V
lod	系统电流消耗	-	-	1000	mA
V _{DD_IO}	数字接口电压范围	2.6	3.3	3.6	V
l _{DD_10}	数字接口电流消耗	-	-	TBD	mA
VDIL	数字输入低电平	-	-	0.2*V _{DD_I0}	V
V _{DIH}	数字输入高电平	0.8*V _{DD_I0}	-	-	V
VDOL	数字输出低电平	-	-	0.2*V _{DD_IO}	V
V _{DOH}	数字输出高电平	0.8*V _{DD_I0}	-	-	V
ISTANDBY	电流消耗G关机模式	-	-	TBD	mA

图表 3-2 SLAMWARE Breakout 电气特性

Breakout 接口及引脚定义

图表 3-3 SLAMWARE Breakout 接口及引脚定义

接口概览

接口编号	接口名称	说明
J8	电源接口	GNDVCC 输入电压 9-24V , 电流 1A
SW1	开关接口	ON 表示 , OFF 表示关机
J9	网络接口	RJ45 标准 8 位模块化接口
A1	A1 雷达接口	详细引脚定义请参考 RPLIDAR A1 接口引脚定义

10/32

A2	A2 雷达接口	详细引脚定义请参考 RPLIDAR A2 接口引脚定义
J10	Mini PCI-E 接口	连接 SLAMWARE Core
J7	USB 接口	通过 CP2102 连接到 MCU 的 TX3 和 RX3。
J1 (MOTO)	电机接口	详细引脚定义请参考电机接口引脚定义
J3 (SONAR)	超声波接口	详细引脚定义请参考超声波传感器接口引脚定义
100	红外及碰撞传感器	详细引脚定义请参考红外及碰撞传感器接口引脚
J22	接口	定义
J21	GPIO 通用接口	详细引脚定义请参考通用接口引脚定义
J15	SWD 烧录接口	详细引脚定义请参考 SWD 烧录接口引脚定义

图表 3-4 SLAMWARE Breakout 接口概览

RPLIDAR A1 接口引脚定义

编号	名字	描述
1	VMOTO	RPLIDAR A1 电机供电, 5V
2	LPWM	RPLIDAR A1 电机 PWM 调速信号,高有效
3	GND	RPLIDAR A1 测距核心地线
4	5V	RPLIDAR A1 测距核心供电
5	RX	RPLIDAR A1 测距核心数据输入
6	TX	RPLIDAR A1 测距核心数据输出
7	GND	RPLIDAR A1 测距核心地线

图表 3-5 SLAMWARE Breakout RPLIDAR A1 接口引脚定义

RPLIDAR A2 接口引脚定义

编号	名字	描述
1	LPWM	RPLIDAR A2 电机 PWM 调速信号,高有效
2	GND	RPLIDAR A2 测距核心地线
3	TX	RPLIDAR A1 测距核心数据输出
4	RX	RPLIDAR A1 测距核心数据输入
5	VMOTO	RPLIDAR A1 电机供电 , 5V

图表 3-6 SLAMWARE Breakout RPLIDAR A2 接口引脚定义

电机接口引脚定义(J1)(分左右两组)

编号	丝印名(全称)	GPI0(复用功能)	描述
1	PWM (MOTO_L_PWM)	PE14	PWM 调速信号
2	PWM (MOTO_R_PWM)	PE13	PWM 调速信号
3	F_EN (MOTO_LF_EN)	PD4	正转使能
4	F_EN (MOTO_RF_EN)	PD6	正转使能

11/32

5	B_EN (MOTO_LB_EN)	PD9	反转使能
6	B_EN (MOTO_RB_EN)	PD7	反转使能
7	I_MON (MOTO_LI_MONITOR)	PD5	电机电流检测
8	I_MON (MOTO_RI_MONITOR)	PC5	电机电流检测
9	GND_DET (GND_L_DETECT)	PD1	电机抬起检测
10	GND_DET (GND_R_DETECT)	PD10	电机抬起检测
11	ENCD (ENCODER_L_SENSOR)	PD3	电机编码器输入
12	ENCD (ENCODER_R_SEN SOR)	PD2	电机编码器输入
13	GND	GND	电机地线
14	GND	GND	电机地线

图表 3-7 SLAMWARE Breakout 电机接口引脚定义

超声波传感器接口引脚定义[J3](共四组)

编号	丝印名(全称)	GPIO(复用功能)	描述
1	5V	5V	超声波电源
2	TRIG (SONAR_TRIG1)	PE10	控制端
3	ECHO (SONAR_ECHO1)	PE5	接收端
4	GND	GND	地线
5	5V	5V	超声波电源
6	TRIG (SONAR_TRIG2)	PE11	控制端
7	ECHO (SONAR_ECHO2)	PE7	接收端
8	GND	GND	地线
9	5V	5V	超声波电源
10	TRIG (SONAR_TRIG3)	PE12	控制端
11	ECHO (SONAR_ECHO3)	PE8	接收端
12	GND	GND	地线
13	5V	5V	超声波电源
14	TRIG (SONAR_TRIG)	PE15	控制端
15	ECHO (SONAR_ECHO4)	PE9	接收端
16	GND	GND	地线

图表 3-8 SLAMWARE Breakout 超声波传感器接口引脚定义

红外线及碰撞传感器[J22]引脚定义

编号	丝印名(全称)	GPIO(复用功能)	描述
1	HOME_IR_R3	PD14	充电桩 IR3 接收
2	HOME_IR_R2	PD13	充电桩 IR2 接收
3	HOME_IR_R1	PD12	充电桩 IR1 接收

4	BOTTOM_IR_R1	PC2	IR 接收 1
5	BOTTOM_IR_R2	PC1	IR 接收 2
6	BOTTOM_IR_R3	PC4	IR 接收 3
7	BOTTOM_IR_R4	PA4	IR 接收 4
8	BOTTOM_IR_EN	PC7	防跌落 IR 使能
9	BUMP_R (BUMP_DETECT_R)	PB13	右碰撞接口
10	BUMP_L (BUMP_DETECT_L)	PB5	左碰撞接口
11	TX2 (UART2_TX)	PA2	-
12	RX2 (UART2_RX)	PA3	-
13	GND	GND	地线
14	GND	GND	地线

图表 3-9 SLAMWARE Breakout 红外线及碰撞传感器接口引脚定义

SWD **烧录接口**(J15)**引脚定义**

编号	名字	描述
1	GND	地线
2	SWCLK	串行时钟输入
3	SWDIO	串行数据输入输出
4	NRST	复位

图表 3-10 SLAMWARE Breakout SWD 烧录接口引脚定义

通用 I/O 接口 (J21)

编号	丝印名(全称)	GPIO(复用功能)	描述
1	PA0	PA0	IO/ADC/PWM
2	PE4	PE4	10
3	PE3	PE3	10
4	PE2	PE2	10
5	PA6	PA6	IO/ADC/PWM
6	PB9	PB9	IO/PWM
7	PB8	PB8	IO/PWM
8	PC3	PC3	IO/ADC
9	PB15	PB15	10
10	GND	地线	地线

图表 3-11 SLAMWARE Breakout 通用 I/O 接口引脚定义

J23

编号	名字	描述
1	5V	5V
2	5V	5V

3	GND	GND
4	GND	GND

图表 3-12 SLAMWARE Breakout J23 接口引脚定义

J16

编号	名字	描述
1	VCC_3	3.3V 电源
2	ВООТО	单片机 boot0

图表 3-13 SLAMWARE Breakout J16 接口引脚定义

其他

BUTTON: 单片机 Reset

指示灯 D1:电源指示灯

U6:用户指示灯

SLAMWARE CORE 的电气特性及具体规格信息,请参考 SLAMWARE CORE 数据手册

RPLIDAR 的性能参数及规格请参考对应的 RPLIDAR 文档。

开发参考 SL\MTEC

SDK

要基于 SLAMWARE SDK 进行应用开发, SLAMTEC 提供了可支持 Windows, Linux, Android 等多个操作系统的配套 SDK。请参考相关 SDK 文档了解详情。

固件编译

我们提供了开源参考固件,请至 SLAMTEC 官网下载 SLAMWARE BREAKOUT 最新的开源固件。http://www.slamtec.com/cn/Slamware

开源固件基于 IAR 7.60 开发平台, IAR 官网下载 7.60 或以上版本并安装, 使用该开发环境需要 License, 请自行向 IAR 购买。

https://www.iar.com/iar-embedded-workbench/#!?architecture=ARM&device=STM32F103VB

搭建好 IAR 开发环境后,请打开参考固件目录 firmware\ref_public\base_ref\
下的 base_ref.eww 工程文件,即可开始固件开发。

用户可以直接在 IAR 程序中,点击菜单中的 Project->Make,来编译工程。如果无其他问题,在目录 firmware\ref_public\base_ref\output\debug\Exe\下将生成固件文件 base_ref.hex,具体的开发过程,请参考 IAR 及 STM32 的相关开发文档,这里不再赘述。

ARM STM32F103 文档资源 http://www.stmcu.org/document/list/index/category-147

固件烧录

如果需要将上述步骤中自行开发的固件 base_ref.hex 更新到 BREAKOUT 开发板上,用户需将 TTL 串口转 USB 转接线连接至 J14 的 TX 和 RX 脚, GND 连接至 J15 的 GND 脚,并短接 J16。关闭电源,并重新上电。此时,启动 STM32 的 Flash Loader,即可通过串口将新固件烧录到 BREAKOUT 的 STM 芯片中。

工具

下面为开发或调试过程中会用到的相关工具介绍。

图形工具 uicommander.exe

图表 4-1 uicommander.exe 工具图形界面

按钮	操作
0	增加操作
*	取消操作
	清除地图
	▲ 前进
	▼ 后退
	○ 顺时针旋转
	逆时针旋转
\odot	定位机器人
Ð	退出程序

图表 4-2 uicommander.exe 工具操作指南

Portal 功能概述

SLAMWARE 配备有 Portal 后台管理工具,用户可通过连接至设备的 ip 查看相关信息并进行相关管理操作。登陆该后台管理工具可参考"连接至 PC"小节说明。在其后台管理界面的 Status 页面可查看模块信息(如 SSID,LIDAR型号,设备 SN,固件版本等),在 Administration 页面可对模块进行一系列操作(如重启模块,更新固件,开启 Debug,配置 Wifi,SLAMWARE Core 诊断等)。

图表 4-3 Portal 管理后台 Status 页面

图表 4-4 Portal 管理后台 Administration 页面

硬件平台

系统组成

SLAMWARE core, Breakout 3.0, RPLIDAR A2, HCR 家用机器人开源项目平台, Arduino 四路电机驱动板,大电流锂聚合电池, 杜邦线若干, VCC/GND扩展板(自制)一块。

注:关于 HCR 家用机器人开源项目平台和 Arduino 四路电机驱动板安装及使用方法请参考如下链接了解更多详情:

HCR 家用机器人开源项目平台: http://www.dfrobot.com.cn/goods-442.html

Arduino 四路电机驱动板: http://www.dfrobot.com.cn/goods-1317.html

平台搭建

请参照 HCR 安装说明书搭建好 HCR 平台的下面两层,即完成左右电机,万向轮,碰撞传感器和超声波传感器的装配即可。

将 Breakout 3.0 , 电机驱动板,RPLIDAR A2 ,锂电池,VCC/GND 扩展板分别固定至 HCR 平台上。

注意:雷达在安装时,尽量不要挡住雷达的视野,以免影响雷达的扫描效果。

连接

Breakout 3.0 接口	对应连接组件	备注
J10	SLAMWARE core	请注意在 Slamware Core 上固定好天线
A2	RPLIDAR A2	*
J3	超声波	将每一组超声波传感器的 GND, Trig, ECHO和VCC四个引脚分别用杜邦线连接至 Breakout 3.0 的 J3 接口的对应位置(注:J3 接口最多可支持 4 组超声波传感器,如需要支持更多数量的超声波传感器,请通过 J21 的GPIO 接口进行扩展,固件最多可支持 8 组超声波传感器)。
J22	碰撞传感器 VCC/GND 扩展板	将每一组碰撞传感器 Data 引脚分别用杜邦线连接至 Breakout 3.0 的 J22 接口的 L 引脚和 R 引脚,然后将每 组碰撞传感器的 GND 和 VCC 引脚连接至 VCC/GND 扩

		展板的对应引脚(注:。	122 接口最多可支持 2 组碰撞传
		感器,如需要支持更多	数量的碰撞传感器,请通过 J21
		GPIO 接口进行扩展。如	四本案例增加第三组碰撞传感器
		时,将该组碰撞传感器的	的 Data 引脚连接至 J21 GPIO 接
		口的 PB8 引脚。固件最	多可支持8组碰撞传感器)。
		L 列 PWM 引脚	电机驱动板引脚 3
11	电机驱动板	L 列 B_EN 引脚	电机驱动板引脚 12
J1		R 列 PWM 引脚	电机驱动板引脚 4
		R 列 B_EN 引脚	电机驱动板引脚 11

图表 5-1 HCR 平台搭建组件连接表 1

HCR 左右轮电机,电机驱动板,VCC/GND 扩展板及 Breakout 3.0 的 J1 接口之间的连接如下:

HCR 电机引脚	电机驱动板/扩展板/J1 引脚
HCR L 电机引脚 moto- (黑)	L 电机驱动板 M2-
HCR L 电机引脚 moto+(红)	L 电机驱动板 M2+
HCR L 电机引脚 VCC (黄)	VCC/GND 扩展板的 VCC 脚
HCR L 电机引脚 GND (绿)	VCC/GND 扩展板的 GND 脚
HCR L 电机引脚 A(蓝)	不连接
HCR L 电机引脚 B(橙)	J1 接口 L 列的 ENCD 脚
HCR R 电机引脚 moto- (黑)	R 电机驱动板 M2-
HCR R 电机引脚 moto+(红)	R 电机驱动板 M2+
HCR R 电机引脚 VCC (黄)	VCC/GND 扩展板的 VCC 脚
HCR R 电机引脚 GND (绿)	VCC/GND 扩展板的 GND 脚
HCR R 电机引脚 A(蓝)	不连接
HCR R 电机引脚 B(橙)	J1 接口 R 列的 ENCD 脚

图表 5-2 HCR 平台搭建组件连接表 2

固件配置及烧录

STM32 **固件配置**

底盘的固件代码需要修改为适应当前底盘的具体参数,请使用slamware_config_tool.exe 工具来自动生成配置文件。打开slamware_config_tool.exe工具后请对如下主要参数进行配置。

对象	对应参数	单位	备注
Robot	Robot Diameter	m	请根据设备实际尺寸进行设置。
	X	m	
Bumper/ Sonar	у	m	
bullipel/ Solial	Z	m	- -
	Yaw	度	
LIDAR	X	m	
Installation	У	m	系统坐标系详情请参考后附示意图
Pose	Yaw	度	
Motion	Side Margin	m	请根据设备实际情况进行设置。
Planning	Bump Handle Strategy	-	可选 Default 或 Stop
	Has IR Tower	-	勾选表示设备配备有红外灯塔
	Automatically charging	-	勾选表示启动自动回充功能。
	Rattony Loyal to Co		取值于 0% 至 100%之间
Feature	Battery Level to Go Home	-	设置后,当底盘电量低于此参数时,
reature	поше		设备将自动返回充电座充电。
	Datton, Lovel to		取值于 0% 至 100%之间
	Battery Level to Resume	-	设置后,当底盘电量高于此参数时,
	NESUITE		设备将继续执行之前未完成任务。

图表 5-3 HCR 平台搭建固件参数配置表

图表 5-4 HCR 平台搭建固件系统坐标示意图

所有参数配置完成之后,点击右上角的 Export 按钮,保存配置文档为 binary_config.c, 并放入工程的源代码中。

代码修改

使用上述配置好的 binary_config.c 文件替换工程项目 source 中的 binary_config.c 文件。然后按照如下方法调节电机 PID 参数和每米脉冲数。

- a. PID 控制算法参数调试方法逐渐从 0 增大 P 值和 I 值,至小车能够快速响应 且未开始抖动。此实验平台的参考值为 P=1, I =0.2, D=0. 亦可自行设置 motor.c 中的 PID 参数达到理想效果。
- b. 每米脉冲数计算此电机可以输出每转 663 个脉冲反馈信号,轮子的直径为 13CM,计算可以得知每米相当于 2.45 转,所以每米脉冲数为 663 * 2.45 = 1624 (motor.h 中设置)

固件烧录

请使用 TTL 串口转 USB 转接线连接至 J14 的 TX 和 RX 脚, GND 连接至 J15 的 GND 脚,并短接 J16 BOOTO。接线图如下图所示:

正常接线状态

烧录固件时接线状态

图表 5-5 HCR 平台搭建固件烧录 Breakout 跳线示意图

然后使用烧录工具(如 FlyMcu, 本文档以该工具为例进行介绍)将改好的固件烧入MCU。烧录完毕后请将接线恢复至正常状态.

调试及开发

输出底盘调试信息

如需输出调试信息,在配置 MCU 固件代码时,可连接 J7 调试输出口至电脑 USB,然后使用串口输出工具(如 SSCOM 工具,本文以该工具为例进行介绍)查 看调试信息。

在底盘代码中加入 DBG_OUT(), 格式与 printf()一致。

```
\label{eq:decomposition} DBG\_OUT("odom &d: &d, &d\r\n", cnt, (int)\_lastEncoderTicksDelta[cnt], (int)\_lastOdometerSpeedAbs[cnt]);
```

然后连接 J7 和电脑的 COM 口,使用串口输出工具查看调试信息。

查看底盘状态

使用串口线连接底盘 Control Bus 串口和电脑 com 接口。

图表 5-6 HCR 平台搭建查看地盘状态时 Breakout 跳线示意图

然后使用 slamware_console.exe 测试底盘状态

图表 5-7 Slamware console 工具打开界面

如上图所示,可以用 slamware_console 工具来测试底盘的配置信息和所有传感器的状态。另外,可以用此工具的 run 命令(两轮电机可以用此命令,三轮全向轮需用 vrun 命令,具体步骤请见 slamware_console 工具操作指南)来测试电机的工作情况。

测试电机是否正常运行步骤:

参数说明: Run 左轮速度 mm/s 右轮速度 mm/s 运行时间 s

- (1) run 50 50 5 把速度设置为 50 时, 电机能正常响应;
- (2) run 100 100 5 把速度设置成 100 时, 电机能平稳行驶;
- (3)测试里程计是否准确:
- (a) run 300 300 5

返回值 pose(X 方向位移, Y 方向位移, 偏移角度), 单位是 (mm, mm ,degree)

X 方向正向为机器人前进方向, Y 方向正向为机器人左侧, 角度是以 X 方向为0, 逆时针的方向偏移角度。比较从初始位置 pose(0, 0, 0)到终止位置之间的反馈值与实际测量值之间的误差:

[rp.slamware.test.SlamwareBaseConsoleApplication] [INFO] dl=
5.00000 dr=5.00000 pose:(1297.28958, 189.31762, 6.8deg)
->(1302.15056, 190.48846, 6.8deg)

- (b) run 300 0 5 只让左轮运动(机器人顺时针旋转夹角),并测试差值
- (c) run 0 300 5 只让右轮运动(机器人逆时针旋转夹角),并测试差值
- 注:误差不能超过5%,否则会导致机器人导航误差较大且行为异常。

查看系统状态

1. 用电脑连接上 Slamware core 的 AP

图表 5-8 连接至 SLAMWARE core AP

2. 打开 Chrome 浏览器(必须使用 chrome, 否则无法正常显示),输入 192.168.11.1

图表 5-9 登录 Portal 管理工具

3. 点击右上角 Administration 后,打开左侧 diagnose slamware core, 然后点击 enable diagnosis, 注意,此时系统会重启。

图表 5-10 开启 Diagnose 诊断功能

- 4. 判断雷达是否有噪声,碰撞传感器和超声波传感器和实际情况相比,是否状态一致。
- 5. 下图中心的蓝色箭头为 HCR 平台的中心位置,箭头方向为前进方向,周围出现的一圈红点,为雷达探测出的障碍物的位置,箭头周围的黑色小方块,代表 cliff 传感器,超声波传感器以及碰撞传感器。应该从(a)安装位置是否正确(b)触发状态是否正常两个方面判断 sensor 是否能正常运行。

图表 5-11 Diagnose 诊断界面

使用 uicommander 工具控制

1. 使用 Slamware windows SDK 中 bin 目录下的 uicommander.exe 连接 HCR 平台。

图表 5-12 使用 uicommander 工具连接至 HCR 平台

2. 查看能否成功建图

图表 5-13 HCR 成功建图示意图

3. 方向控制:点击右侧方向控制图标,并点击方向键,查看 HCR 平台是否能按控制的方向来运动。

图表 5-14 HCR 方向控制示意图

4. 设置目标点(紫色十字位置),检测 HCR 小车(红色箭头位置)是否能沿着绿色的规划路径运动至目标点。

图表 5-15 HCR 自动导航至目标点示意图

机械设计 SLAMTEC

SLAMWARE CORE BREAKOUT 的机械外形结构如下图所示。

图表 6-1 SLAMWARE BREAKOUT 的机械外观

修订历史 <u>SL</u>\MTEC

日期	版本	描述
2016-10-15	1.8	初版

附录

图表索引

图表 2-1 SLAMWARE BREAKOUT 接口示意图	5
图表 2-2 SLAMWARE 套件连接示意图	6
图表 2-3 SLAMWARE CORE 的 AP	7
图表 2-4 HTTP://192.168.11.1 页面	7
图表 2-5 HTTP://192.168.11.1 页面的 ADMINISTRATION 菜单	7
图表 2-6 HTTP://192.168.11.1 页面的 CONFIGURATION WIFI 菜单	8
图表 2-7 配置 WIFI 并连接	8
图表 2-8 WIFI 连接成功	8
图表 3-1 SLAMWARE BREAKOUT 最大额定值	9
图表 3-2 SLAMWARE BREAKOUT 电气特性	9
图表 3-3 SLAMWARE BREAKOUT 接口及引脚定义	10
图表 3-4 SLAMWARE BREAKOUT 接口概览	11
图表 3-5 SLAMWARE BREAKOUT RPLIDAR A1 接口引脚定义	11
图表 3-6 SLAMWARE BREAKOUT RPLIDAR A2 接口引脚定义	11
图表 3-7 SLAMWARE BREAKOUT 电机接口引脚定义	12
图表 3-8 SLAMWARE BREAKOUT 超声波传感器接口引脚定义	12
图表 3-9 SLAMWARE BREAKOUT 红外线及碰撞传感器接口引脚定义	13
图表 3-10 SLAMWARE BREAKOUT SWD 烧录接口引脚定义	13
图表 3-11 SLAMWARE BREAKOUT 通用 I/O 接口引脚定义	13
图表 3-12 SLAMWARE BREAKOUT J23 接口引脚定义	14
图表 3-13 SLAMWARE BREAKOUT J16 接口引脚定义	14
图表 4-1 UICOMMANDER.EXE 工具图形界面	16
图表 4-2 UICOMMANDER.EXE 工具操作指南	16
图表 4-3 PORTAL 管理后台 STATUS 页面	17
图表 4-4 PORTAL 管理后台 ADMINISTRATION 页面	17
图表 5-1 HCR 平台搭建组件连接表 1	20
图表 5-2 HCR 平台搭建组件连接表 2	20
图表 5-3 HCR 平台搭建固件参数配置表	21
图表 5-4 HCR 平台搭建固件系统坐标示意图	21
图表 5-5 HCR 平台搭建固件烧录 BREAKOUT 跳线示意图	22
图表 5-6 HCR 平台搭建查看地盘状态时 BREAKOUT 跳线示意图	23
图表 5-7 SLAMWARE_CONSOLE 工具打开界面	24
图表 5-8 连接至 SLAMWARE CORE AP	25
图表 5-9 登录 PORTAL 管理工具	25
图表 5-10 开启 DIAGNOSE 诊断功能	26
图表 5-11 DIAGNOSE 诊断界面	26
图表 5-12 使用 UICOMMANDER 工具连接至 HCR 平台	27

<u>SL</u>\<u>MTEC</u>

图表 5-13 HCR 成功建图示意图	27
图表 5-14 HCR 方向控制示意图	28
图表 5-15 HCR 自动导航至目标点示意图	28
图表 6-1 SLAMWARE BREAKOUT 的机械外型	29