Digital Signal Processing for Music

Part 15: Digital Filters I

alexander lerch

Georgia Center for Music Tech Technology

filters introduction 1/2

intro

filter — broad description

system that amplifies or attenuates certain components/aspects of a signal

filter — narrow description

linear time-invariant system for changing the magnitude and phase of specific frequency regions

- example for other type of filters:
 - adaptive and time-variant (e.g., denoising)
- examples for "real-world" filters
 - reverberation
 - absorption
 - echo

filter — broad description

system that amplifies or attenuates certain components/aspects of a signal

filter — narrow description

linear time-invariant system for changing the magnitude and phase of specific frequency regions

- example for other type of filters:
 - adaptive and time-variant (e.g., denoising)
- examples for "real-world" filters
 - reverberation
 - absorption
 - echo

filter — broad description

system that amplifies or attenuates certain components/aspects of a signal

filter — narrow description

linear time-invariant system for changing the magnitude and phase of specific frequency regions

- example for other type of filters:
 - adaptive and time-variant (e.g., denoising)
- examples for "real-world" filters
 - reverberation
 - absorption
 - echo

Georgia Center for Music

filters introduction 2/2

intro 000

audio equalization

- parametric and graphic **EQs**
- removal of unwanted
 - remove DC. rumble
 - remove hum
 - remove hiss
- pre-emphasis/de-emphasis
 - Vinyl
 - old Dolby noise reduction
- weighting function
 - dBA, dBC, ...

- audio equalization
 - parametric and graphic EQs
- removal of unwanted components
 - remove DC, rumble
 - remove hum
 - remove hiss
- pre-emphasis/de-emphasis
 - Vinyl
 - old Dolby noise reduction systems
- weighting function
 - dBA. dBC. . . .

filters introduction 2/2

intro 000

audio equalization

- parametric and graphic **EQs**
- **removal** of unwanted components
 - remove DC, rumble
 - remove hum
 - remove hiss

■ pre-emphasis/de-emphasis

- Vinyl
- old Dolby noise reduction systems
- weighting function dBA, dBC, . . .

intro 000 filters

audio equalization

- parametric and graphic **EQs**
- **removal** of unwanted components
 - remove DC, rumble
 - remove hum
 - remove hiss

■ pre-emphasis/de-emphasis

- Vinyl
- old Dolby noise reduction systems
- **weighting** function
 - dBA, dBC, ...

matlab source: plotLoudnessWeighting.m

audio equalization

- parametric and graphic **EQs**
- **removal** of unwanted components
 - remove DC, rumble
 - remove hum
 - remove hiss

■ pre-emphasis/de-emphasis

- Vinyl
- old Dolby noise reduction systems
- **weighting** function
 - dBA, dBC, ...

lacktriangle output of a system (filter) y computed by **convolution** of input x and impulse response h

$$y(t) = x(t) * h(t)$$

■ this is equivalent to a frequency domain multiplication

$$Y(j\omega) = X(j\omega) \cdot H(j\omega)$$

 $H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$

- transfer function $H(j\omega)$ is complex, often represented as
 - magnitude $|H(j\omega)|$ and
 - phase $\Phi_{\rm H}({\rm j}\omega)$

reminder: system theory

lacktriangle output of a system (filter) y computed by **convolution** of input x and impulse response h

$$y(t) = x(t) * h(t)$$

■ this is equivalent to a frequency domain multiplication

$$Y(j\omega) = X(j\omega) \cdot H(j\omega)$$

 $H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$

- transfer function $H(j\omega)$ is complex, often represented as
 - magnitude $|H(j\omega)|$ and
 - phase $\Phi_{\rm H}({\rm j}\omega)$

lacktriangle output of a system (filter) y computed by **convolution** of input x and impulse response h

$$y(t) = x(t) * h(t)$$

this is equivalent to a frequency domain multiplication

$$Y(j\omega) = X(j\omega) \cdot H(j\omega)$$

 $H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$

- transfer function $H(j\omega)$ is complex, often represented as
 - magnitude $|H(j\omega)|$ and
 - phase $\Phi_{\rm H}({\rm j}\omega)$

filters common transfer function shapes

Georgia Center for Music Tech (Technology

what are typical filters/spectral filter shapes

what are typical filters/spectral filter shapes

- very common:
 - low/high pass

 $^{^{1}}$ U. Zölzer, Digital Audio Signal Processing, 2nd Edition. Stuttgart: John Wiley & Sons Ltd, 2008, ISBN: 978-0-470-99785-7.

- very common:
 - low/high pass
- common for non-audio/non-parametric:
 - band pass/band stop

 $^{^{1}}$ U. Zölzer, Digital Audio Signal Processing, 2nd Edition. Stuttgart: John Wiley & Sons Ltd, 2008, ISBN: 978-0-470-99785-7.

common transfer function shapes

what are typical filters/spectral filter shapes

- very common:
 - low/high pass
- common for non-audio/non-parametric:
 - band pass/band stop
- also common in audio apps:
 - low/high shelving

¹U. Zölzer, *Digital Audio Signal Processing*, 2nd Edition. Stuttgart: John Wiley & Sons Ltd, 2008, ISBN: 978-0-470-99785-7.

filters common transfer function shapes

what are typical filters/spectral filter shapes

- very common:
 - low/high pass
- common for non-audio/non-parametric:
 - band pass/band stop
- also common in audio apps:
 - low/high shelving
 - peak filter

¹U. Zölzer, *Digital Audio Signal Processing*, 2nd Edition. Stuttgart: John Wiley & Sons Ltd, 2008, ISBN: 978-0-470-99785-7.

common transfer function shapes

- very common:
 - low/high pass
- common for non-audio/non-parametric:
 - band pass/band stop
- also common in audio apps:
 - low/high shelving
 - peak filter
 - resonance/notch

¹U. Zölzer, *Digital Audio Signal Processing*, 2nd Edition. Stuttgart: John Wiley & Sons Ltd, 2008, ISBN: 978-0-470-99785-7.

filters filter banks — parallel connections

Georgia Center for Music Tech Market Technology

 $^{^2} U. \ Z\"{o}lzer, \textit{Digital Audio Signal Processing}, \ 2nd \ Edition. \ Stuttgart: \ John \ Wiley \& Sons \ Ltd, \ 2008, \ ISBN: \ 978-0-470-99785-7.$

filters filter banks — parallel connections

 $^{^2\}text{U. Z\"{o}lzer}, \textit{Digital Audio Signal Processing}, \text{ 2nd Edition. Stuttgart: John Wiley \& Sons Ltd, 2008, } \text{ISBN: } 978-0-470-99785-7.$

filters filter parameters — lowpass/highpass

- **cut-off** frequency f_c
 - frequency marking the transition of pass to stop band
 - -3 dB of pass band level
- **slope**/steepness
 - measured in dB/Octave or dB/Decade
 - typically directly related to filter order
- sometimes: resonance
 - level increase in narrow band around cut-off frequency

filter parameters — bandpass/bandstop

- **center** frequency f_c
 - frequency marking the center of the pass or stop band
- \blacksquare bandwidth $\triangle B$
 - width of the pass band
 - at -3 dB of max pass band level
- possibly: slope
 - typically directly related to filter order

en.wikipedia.org/wiki/File:Bandwidth_2.svg

- **center** frequency f_c
 - frequency marking the center of the peak
- \blacksquare **Q** factor or bandwidth $\triangle B$
 - width of the bell
 - at -3 dB of max gain

$$Q = rac{f_{
m c}}{\Delta B}$$

- gain
 - amplification/attenuation in dB

filters filter parameters — overview

parameter	lowpass	low shelving	band pass	peak	resonance
frequency	cut-off	cut-off	center	center	center
bandwidth/Q	res. gain	_	ΔB	Q	_
gain	_	yes	_	yes	_

$$H(\mathrm{j}\omega)=\mathfrak{F}\{h(t)\}$$

filter is defined by its

- lacktriangle complex transfer function $H(j\omega)$, or its
- impulse response h(t), or its
- list of pole and zero positions in the Z-plane

$$H(j\omega) = \mathfrak{F}\{h(t)\}$$

filter is defined by its

- lacktriangle complex transfer function $H(j\omega)$, or its
- impulse response h(t), or its
- list of pole and zero positions in the Z-plane

$$y(i) = 0.5 \cdot x(i) + 0.5 \cdot x(i-1)$$

$$y(i) = 0.5 \cdot x(i) + 0.5 \cdot x(i - 1)$$

$$H(z) = 0.5 + 0.5 \cdot z^{-1}$$

$$H(j\omega) = 0.5 + 0.5 \cdot e^{-j\omega}$$

$$|H(j\omega)| = 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \cdot \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \right| \cdot \left| \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= \left| \cos \left(\frac{\omega}{2} \right) \right|$$

Georgia Center for Music

example 1: transfer function 1/2

$$y(i) = 0.5 \cdot x(i) + 0.5 \cdot x(i - 1)$$

$$H(z) = 0.5 + 0.5 \cdot z^{-1}$$

$$H(j\omega) = 0.5 + 0.5 \cdot e^{-j\omega}$$

$$H(j\omega)| = 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \cdot \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \right| \cdot \left| \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= \left| \cos \left(\frac{\omega}{2} \right) \right|$$

$$y(i) = 0.5 \cdot x(i) + 0.5 \cdot x(i - 1)$$

$$H(z) = 0.5 + 0.5 \cdot z^{-1}$$

$$H(j\omega) = 0.5 + 0.5 \cdot e^{-j\omega}$$

$$|H(j\omega)| = 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \cdot \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \right| \cdot \left| \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= \left| \cos \left(\frac{\omega}{2} \right) \right|$$

$$y(i) = 0.5 \cdot x(i) + 0.5 \cdot x(i - 1)$$

$$H(z) = 0.5 + 0.5 \cdot z^{-1}$$

$$H(j\omega) = 0.5 + 0.5 \cdot e^{-j\omega}$$

$$|H(j\omega)| = 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \cdot \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \right| \cdot \left| \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= \left| \cos \left(\frac{\omega}{2} \right) \right|$$

$$y(i) = 0.5 \cdot x(i) + 0.5 \cdot x(i - 1)$$

$$H(z) = 0.5 + 0.5 \cdot z^{-1}$$

$$H(j\omega) = 0.5 + 0.5 \cdot e^{-j\omega}$$

$$|H(j\omega)| = 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \cdot \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \right| \cdot \left| \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= \left| \cos \left(\frac{\omega}{2} \right) \right|$$

$$y(i) = 0.5 \cdot x(i) - 0.5 \cdot x(i-1)$$

 $H(z) = 0.5 - 0.5 \cdot z^{-1}$

$$y(i) = 0.5 \cdot x(i) - 0.5 \cdot x(i-1)$$

$$H(z) = 0.5 - 0.5 \cdot z^{-1}$$

$$|H(j\omega)| = \left| \sin\left(\frac{\omega}{2}\right) \right|$$

matlab source: plotSimpleFilter.m

$$y(i) = 0.5 \cdot x(i) - 0.5 \cdot x(i - N)$$

 $H(z) = 0.5 - 0.5 \cdot z^{-N}$

$$y(i) = 0.5 \cdot x(i) - 0.5 \cdot x(i - N)$$

$$H(z) = 0.5 - 0.5 \cdot z^{-N}$$

$$|H(j\omega)| = 0.5 \cdot \left| e^{-j\frac{N\omega}{2}} \cdot \left(e^{j\frac{N\omega}{2}} - e^{-j\frac{N\omega}{2}} \right) \right|$$

$$y(i) = 0.5 \cdot x(i) - 0.5 \cdot x(i - N)$$

$$H(z) = 0.5 - 0.5 \cdot z^{-N}$$

$$|H(j\omega)| = 0.5 \cdot \left| e^{-j\frac{N\omega}{2}} \cdot \left(e^{j\frac{N\omega}{2}} - e^{-j\frac{N\omega}{2}} \right) \right|$$

$$= \left| \sin \left(\frac{N\omega}{2} \right) \right|$$

$$y(i) = \frac{1}{\mathcal{J}} \sum_{j=0}^{\mathcal{J}-1} x(i-j)$$

$$H(j\omega) = \mathrm{e}^{-\mathrm{j}\mathcal{J}rac{\omega}{2}}rac{\sin\left(\mathcal{J}\cdotrac{\omega}{2}
ight)}{\mathcal{J}\cdot\sin\left(rac{\omega}{2}
ight)}$$

Georgia Center for Music Tech || Technology

example 4: recursive implementation

$$y(i) = \sum_{j=0}^{\mathcal{J}-1} \frac{1}{\mathcal{J}} \cdot x(i-j)$$

$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i-\mathcal{J})) + \sum_{j=1}^{\mathcal{J}} \frac{1}{\mathcal{J}} \cdot x(i-j)$$

$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i-\mathcal{J})) + y(i-1)$$

y(i-1)

Georgia Center for Music

example 4: recursive implementation

$$y(i) = \sum_{j=0}^{\mathcal{J}-1} \frac{1}{\mathcal{J}} \cdot x(i-j)$$
$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i-\mathcal{J})) + \sum_{j=1}^{\mathcal{J}} \frac{1}{\mathcal{J}} \cdot x(i-j)$$

$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i - \mathcal{J})) + y(i - 1)$$

Georgia Center for Music

example 4: recursive implementation

$$y(i) = \sum_{j=0}^{\mathcal{J}-1} \frac{1}{\mathcal{J}} \cdot x(i-j)$$

$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i-\mathcal{J})) + \sum_{j=1}^{\mathcal{J}} \frac{1}{\mathcal{J}} \cdot x(i-j)$$

$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i-\mathcal{J})) + y(i-1)$$

Georgia Center for Music

example 4: recursive implementation

$$y(i) = \sum_{j=0}^{\mathcal{J}-1} \frac{1}{\mathcal{J}} \cdot x(i-j)$$

$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i-\mathcal{J})) + \sum_{j=1}^{\mathcal{J}} \frac{1}{\mathcal{J}} \cdot x(i-j)$$

$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i-\mathcal{J})) + y(i-1)$$

not applicable with windowed coefficients!

examples

000000000000000000

$$y(i) = (1-\alpha) \cdot x(i) + \alpha \cdot y(i-1)$$

= $x(i) + \alpha \cdot (y(i-1) - x(i))$

$$y(i) = (1 - \alpha) \cdot x(i) + \alpha \cdot y(i - 1)$$

$$H(z) = \frac{1 - \alpha}{1 - \alpha z^{-1}}$$

$$H(j\omega) = \frac{1 - \alpha}{1 - \alpha e^{-j\omega}}$$

$$|H(j\omega)| = \left| \frac{1 - \alpha}{1 - \alpha e^{-j\omega}} \right|$$

$$= \frac{1 - \alpha}{\sqrt{(1 + \alpha^2 - 2\alpha \cos(\omega))}}$$

$$y(i) = (1 - \alpha) \cdot x(i) + \alpha \cdot y(i - 1)$$

$$H(z) = \frac{1 - \alpha}{1 - \alpha z^{-1}}$$

$$H(j\omega) = \frac{1 - \alpha}{1 - \alpha e^{-j\omega}}$$

$$|H(j\omega)| = \left| \frac{1 - \alpha}{1 - \alpha e^{-j\omega}} \right|$$

$$= \frac{1 - \alpha}{\sqrt{(1 + \alpha^2 - 2\alpha \cos(\omega))}}$$

$$y(i) = (1 - \alpha) \cdot x(i) + \alpha \cdot y(i - 1)$$

$$H(z) = \frac{1 - \alpha}{1 - \alpha z^{-1}}$$

$$H(j\omega) = \frac{1 - \alpha}{1 - \alpha e^{-j\omega}}$$

$$|H(j\omega)| = \left| \frac{1 - \alpha}{1 - \alpha e^{-j\omega}} \right|$$

$$= \frac{1 - \alpha}{\sqrt{(1 + \alpha^2 - 2\alpha \cos(\omega))}}$$

Georgia Center for Music

$$y(i) = (1 - \alpha) \cdot x(i) + \alpha \cdot y(i - 1)$$

$$H(z) = \frac{1 - \alpha}{1 - \alpha z^{-1}}$$

$$H(j\omega) = \frac{1 - \alpha}{1 - \alpha e^{-j\omega}}$$

$$|H(j\omega)| = \left| \frac{1 - \alpha}{1 - \alpha e^{-j\omega}} \right|$$

$$= \frac{|1 - \alpha e^{-J\omega}|}{\sqrt{(1 + \alpha^2 - 2\alpha \cos(\omega))}}$$

$$y(i) = b_0 \cdot x(i) - a_N \cdot y(i - N)$$

$$H(j\omega) = \frac{b_0}{1 - a_N \cdot e^{-j\omega N}}$$

diff eq :
$$y(i) = \sum_{k=0}^{K_1} b_k \cdot x(i-k) + \sum_{k=1}^{K_2} -a_k \cdot y(i-k)$$

rans. fct : $H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{K_1} b_k \cdot z^{-k}}{1 + \sum_{k=0}^{K_2} a_k \cdot z^{-k}}$

$$\begin{array}{lll} \text{diff eq} : y(i) & = & \displaystyle \sum_{k=0}^{K_1} b_k \cdot x(i-k) + \sum_{k=1}^{K_2} -a_k \cdot y(i-k) \\ \\ \text{trans. fct} : H(z) & = & \displaystyle \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{K_1} b_k \cdot z^{-k}}{1 + \sum_{k=1}^{K_2} a_k \cdot z^{-k}} \end{array}$$

- filter (equalization) can be used for various tasks
 - changing the sound quality of a signal
 - hiding unwanted frequency components
 - smoothing
 - processing for measurement and transmission
- most common audio filter types are
 - low/high pass
 - peak
 - shelving
- filter parameters include
 - frequency (mid, cutoff)
 - bandwidth or Q
 - gain
- filter orders
 - typical orders are 1st, 2nd, maybe 4th
 - higher order give more flexibility wrt transfer function
 - higher orders are difficult to design and control

- filter (equalization) can be used for various tasks
 - changing the sound quality of a signal
 - hiding unwanted frequency components
 - smoothing
 - processing for measurement and transmission
 - most common audio filter types are
 - low/high pass
 - peak
 - shelving
 - filter parameters include
 - frequency (mid, cutoff)
 - bandwidth or Q
 - gain
- filter orders
 - typical orders are 1st, 2nd, maybe 4th
 - higher order give more flexibility wrt transfer function
 - higher orders are difficult to design and control

filters summary

- filter (equalization) can be used for various tasks
 - changing the sound quality of a signal
 - hiding unwanted frequency components
 - smoothing
 - processing for measurement and transmission
 - most common audio filter types are
 - low/high pass
 - peak
 - shelving
 - filter parameters include
 - frequency (mid, cutoff)
 - bandwidth or Q
 - gain
- filter orders
 - typical orders are 1st, 2nd, maybe 4th
 - higher order give more flexibility wrt transfer function
 - higher orders are difficult to design and control

- filter (equalization) can be used for various tasks
 - changing the sound quality of a signal
 - hiding unwanted frequency components
 - smoothing
 - processing for measurement and transmission
- most common audio filter types are
 - low/high pass
 - peak
 - shelving
- filter parameters include
 - frequency (mid, cutoff)
 - bandwidth or Q
 - gain
- filter orders
 - typical orders are 1st, 2nd, maybe 4th
 - higher order give more flexibility wrt transfer function
 - higher orders are difficult to design and control