Responsible AI: Understanding Bias in ML

Aythami Morales

http://aythami.me

Responsible AI: <u>Understanding</u> Bias in ML

Aythami Morales

http://aythami.me

The Standard Model

From Classical Programming to Machine Learning

From Classical Programming to Machine Learning

From Classical Programming to Machine Learning

From Human Behavior to Machine Behavior

Machine Behavior

From Human Behavior to Machine Behavior

From Human Behavior to Machine Behavior

What is Algorithmic Discrimination?

Constitución Española:

• Artículo 14: los españoles son iguales ante la ley, sin que pueda prevalecer **discriminación** alguna por razón de nacimiento, raza, sexo, religión, opinión o cualquier otra condición o circunstancia personal o social.

Universal Declaration of Human Rights

 All are entitled to equal protection against any discrimination in violation of this Declaration and against any incitement to such discrimination.

General Data Protection Regulation (GDPR)

 According to paragraph 71 of GDPR, data controllers who process sensible data have to "implement appropriate technical and organizational measures..." that "...prevent, inter alia, discriminatory effects".

What is Algorithmic Discrimination?

Constitución Española:

• Artículo 14: los españoles son iguales ante la ley, sin que pueda prevalecer **discriminación** alguna por razón de nacimiento, raza, sexo, religión, opinión o cualquier otra condición o circunstancia personal o social.

Universal Declaration of Human Rights

 All are entitled to equal protection against any discrimination in violation of this Declaration and against any incitement to such discrimination.

General Data Protection Regulation (GDPR)

 According to paragraph 71 of GDPR, data controllers who process sensible data have to "implement appropriate technical and organizational measures..." that "...prevent, inter alia, discriminatory effects".

THE RIGHT TO NON DISCRIMIANTION IS A FUNDAMENTAL RIGHT

Structured and Unstrutered Sensitive Information

Audio

- ID
- Language
- Accent
- Age
- Gender
- Context
- ...

Image

- Context
- ID
- Age
- Ethnicity
- Gender
- ...

Text

- Language
- Script
- Context
- Social & Cultural
- Ideas
- ...

Structured and Unstrutered Sensitive Information

Audio

- ID
- Language
- Accent
- Age
- Gender
- Context

• ..

Image

- Context
- ID
- Age
- Ethnicity
- Gender
- ...

Text

- Language
- Script
- Context
- Social & Cultural
- Ideas
- ...

How Algorithmic Discrimination appears?

How Algorithmic Discrimination appears?

Limitations of the Standard Model

2 systems (and categories of cognitive tasks):

System 1

- Intuitive, fast, UNCONSCIOUS, non-linguistic, habitual
- Current DL

2 systems (and categories of cognitive tasks):

Manipulates high-level /
semantic concepts, which can
be recombined
combinatorially

System 1

- Intuitive, fast, UNCONSCIOUS, non-linguistic, habitual
- Current DL

System 2

- Slow, logical, sequential, **CONSCIOUS**, linguistic, algorithmic, planning, reasoning
- Future DL.

System 1:

• Shape detection, color detection, positioning.

System 2:

Interaction inference

System 1:

Shape detection, color detection, positioning.

System 2:

Interaction inference

How AI See: An Example with Adversarial Attacks

How AI See: An Example with Adversarial Attacks

How Al See: An Example with Adversarial Attacks

Remember Artificial Intelligence is not Human Intelligence

How AI See: An Example with Adversarial Attacks

How Al See: An Example with Adversarial Attacks

Measuring the Bias

Data

Problem: Shape recognition triangle or square?

Problem: Shape recognition triangle or square?

Accuracy: 90%

\triangle	
95	5
15	85

Problem: Shape recognition triangle or square?

Accuracy: 90%

95	5
15	85

Are all triangles and squares the same? Assumption of homogeneous population

Problem: Shape recognition triangle or square?

Accuracy: 90%

95	5
15	85

Biased databases imply a double penalty for underrepresented classes:

- Models are trained according to non-representative diversity.
- Models are tested on privileged classes

Problem: Shape recognition triangle or square?

Accuracy: 85%

90	10
20	80

Color does not affect the shape...

Therefore, performance should be the same

Heterogeneous populations might produce heterogeneous performances

Problem: Shape recognition triangle or square?

Blue Accuracy: 90%

95	5
15	85

Orange Accuracy: 80%

85	15
25	75

How to Measure Fairness

We consider supervised deep learning tasks in which the task is to predict an output variable Y given an input variable X, while remaining unbiased with respect to some variable Z. We refer to Z as the protected/sensitive variable.

$$X$$
= image Y = shape (triangle or square)

Z = color (orange or blue)

How to Measure Fairness

We consider supervised deep learning tasks in which the task is to predict an output variable Y given an input variable X, while remaining unbiased with respect to some variable Z. We refer to Z as the protected/sensitive variable.

X= image

Z = color (orange or blue)

Equality of Opportunity: a predictor \hat{Y} satisfies equality of opportunity with respect to a class y if \hat{Y} and Z are independent conditioned on Y = y.

Same performance for orange and blue objects

$$P(\hat{Y} = \hat{y}|Y = y) = P(\hat{Y} = \hat{y}|Z = z, Y = y)$$

Representation Level is the Key

Task: Shape recognition, triangle or square?

Input Space

Representation Level is the Key

Task: Shape recognition, triangle or square?

Input Space

Learned Feature Space

Representation Level is the Key

Task: Shape recognition, triangle or square?

Input Space

Learned Feature Space

Representation Level is the Key

Task: Shape recognition, triangle or square?

Input Space

Learned Feature Space

Agnostic Learned Feature Space

Discrimination-aware Learning Frameworks: a Simple Example

From Standard Als to Responsible Als

$$\min_{\mathbf{w}} \sum_{\mathbf{x}^j \in S} \mathcal{L}(O(\mathbf{x}^j | \mathbf{w}), T^j)$$

From Standard Als to Responsible Als

Is not only justice, it is also performance

CASE STUDY: Face Recognition Performance

Caucassian Asian		Black	Avg.	Std	
3.36%	5.52%	5.62%	4.95%	1.03	

ResNet50

$$\min_{\mathbf{w}} \left(\sum_{\mathbf{x}^{j} \in S} \mathcal{L}(O(\mathbf{x}^{j} | \mathbf{w}), T^{j}) \right)$$

Is not only justice, it is also performance

CASE STUDY: Face Recognition Performance

ResNet50

$$\min_{\mathbf{w}} \left(\sum_{\mathbf{x}^{j} \in S^{1}} \mathcal{L}(O(\mathbf{x}^{j}|\mathbf{w}), T^{j}) + \sum_{\mathbf{x}^{j} \in S^{2}} \mathcal{L}(O(\mathbf{x}^{j}|\mathbf{w}), T^{j}) + \sum_{\mathbf{x}^{j} \in S^{3}} \mathcal{L}(O(\mathbf{x}^{j}|\mathbf{w}), T^{j}) \right)$$

Is not only justice, it is also performance

CASE STUDY: Face Recognition Performance

	Caucassian	Asian	Black	Black Avg.	
	3.36%	5.52%	5.62%	4.95%	1.03
I	2.72%	3.78%	3.66%	3.34% (↓30%)	0.42% (↓54%)

ResNet50
ResNet50-RAI

Responsible AI might improves your models

Understanding Bias
in Data-driven Learning Approaches

Material from Ignacio de la Serna

Analysis of Biased Performance

Face Databases

Dataset [ref]	# images	# identities	Caucasian		African/Indian		Asian	
			Male	Female	Male	Female	Male	Female
FRVT2018 [28]	27M	12M	48.4%	16.5%	19.9%	7.4%	1.2%	0.4%
MSCeleb1M [29]	8.5M	100K	52.4%	19.2%	12.1%	3.9%	7.7%	4.5%
MegaFace [30]	4.7M	660K	40.0%	30.3%	6.2%	4.7%	10.6%	8.1%
VGGFace2 [31]	3.3M	9K	45.9%	30.2%	10.5%	6.3%	3.4%	3.6%
VGGFace [32]	2.6M	2.6K	43.7%	38.6%	5.8%	6.9%	2.1%	2.9%
YouTube [33]	621K	1.6K	56.9%	20.3%	7.7%	4.0%	7.9%	3.0%
CASIA [34]	500K	10.5K	48.8%	33.2%	7.2%	5.7%	2.6%	2.6%
CelebA [35]	203K	10.2K	33.9%	41.5%	6.4%	8.2%	4.4%	5.5%
PubFig [36]	58K	200	49.5%	35.5%	6.5%	5.5%	2.0%	1.0%
IJB-C [37]	21K	3.5K	40.3%	30.2%	11.8%	6.0%	5.4%	6.2%
UTKface [38]	24K	-	26.2%	20.0%	21.5%	16.3%	7.1%	8.9%
LFW [39]	13K	5.7K	58.9%	18.7%	9.6%	3.3%	7.2%	2.2%
BioSecure [40]	2.7K	667	50.1%	36%	3.1%	2.1%	4.3%	4.5%
Average			46%	29%	10%	6%	5%	4%
Databases for discr	imination-awar	e learning						
BUPT-B [18]	1.3M	28K	33	.33%	33	.33%	33	.33%
DiveFace [41]	125K	24K	16.7%	16.7%	16.7%	16.7%	16.7%	16.7%
FairFace [27]	100K	-	25.0%	20.0%	14.4%	13.9%	13.6%	13.1%
RFW [25]	40K	12K	33	.33%	33	.33%	33	.33%
DemogPairs [15]	10.8K	600	16.7%	16.7%	16.7%	16.7%	16.7%	16.7%

I. Serna, A. Morales, J. Fierrez and N. Obradovich, "SensitiveLoss: Improving Accuracy and Fairness of Face Representations with Discrimination-Aware Deep Learning", *Artificial Intelligence*, vol. 305, pp. 103682, April 2022.

Analysis of Biased Performance

ResNet-50 performance

EER (Equal Error Rate)

Asian	Black	Caucassian	Avg.	Std
5.75%	5.96%	3.62%	5.11%	1.06

I. Serna, A. Morales, J. Fierrez and N. Obradovich, "SensitiveLoss: Improving Accuracy and Fairness of Face Representations with Discrimination-Aware Deep Learning", *Artificial Intelligence*, vol. 305, pp. 103682, April 2022.

ResNet-50 performance

EER (Equal Error Rate)

Projections of the embeddings into the 2D space generated with t-SNE.

I. Serna, A. Morales, J. Fierrez and N. Obradovich, "SensitiveLoss: Improving Accuracy and Fairness of Face Representations with Discrimination-Aware Deep Learning", *Artificial Intelligence*, vol. 305, pp. 103682, April 2022.

ResNet-50 performance

EER (Equal Error Rate)

Projections of the embeddings into the 2D space generated with t-SNE.

Score distributions

I. Serna, A. Morales, J. Fierrez and N. Obradovich, "SensitiveLoss: Improving Accuracy and Fairness of Face Representations with Discrimination-Aware Deep Learning", *Artificial Intelligence*, vol. 305, pp. 103682, April 2022.

Performance on RFW (Racial Faces in the Wild)

Responsible Al Improves the Recognition Performance

Asian Black		Caucassian	Avg.	Std	
5.75%	5.96%	3.62%	5.11%	1.06	
3.99%	3.83%	3.02%	3.61% (↓30%)	0.42% (↓60%)	

Without RAI
With RAI

$$\min_{\Omega} \left(\sum_{\mathbf{x} \in S^1} \mathcal{L}(\phi(\mathbf{x}|\Omega), T) + \sum_{\mathbf{x} \in S^2} \mathcal{L}(\phi(\mathbf{x}|\Omega), T) + \sum_{\mathbf{x} \in S^3} \mathcal{L}(\phi(\mathbf{x}|\Omega), T) \right)$$

Grad-CAM and Distribution Scores

I. Serna, A. Morales, J. Fierrez and N. Obradovich, "SensitiveLoss: Improving Accuracy and Fairness of Face Representations with Discrimination-Aware Deep Learning", *Artificial Intelligence*, vol. 305, pp. 103682, April 2022.

Limitations:

• You have to know in advance the variable of bias.

Activation Level Bias Analysis

InsideBias

Accuracy (%) in gender calssification

Model	Α	В	С	
Biased (A)	96.8	94.1	94.5	
Balanced	95.5	95.3	96.1	

• Group A: Asian

Group B: Black

• Group C: Caucasian

InsideBias

Accuracy (%) in gender calssification

Model	Α	В	С	
Biased (A)	96.8	94.1	94.5	
Balanced	95.5	95.3	96.1	

Group A: Asian

Group B: Black

• Group C: Caucasian

I. Serna, A. Peña, A. Morales and J. Fierrez, "InsideBias: Measuring Bias in Deep Networks and Application to Face Gender Biometrics", in *IAPR Intl. Conf. on Pattern Recognition (ICPR)*, January 2021.

InsideBias

Novel bias detection method based on the analysis of the filter's activation of deep networks.

 We show how bias impacts in the activations of gender detection models based on face images.

I. Serna, A. Peña, A. Morales and J. Fierrez, "InsideBias: Measuring Bias in Deep Networks and Application to Face Gender Biometrics", in *IAPR Intl. Conf. on Pattern Recognition (ICPR)*, January 2021.

Experiments: Detecting Bias with Very Few Samples

Experiments: Detecting Bias with Very Few Samples

Limitations and challenges:

You have to know in advance the variable of bias.

• It is dependent on the input data.

Bias Analysis of Weights

InputData-Independent Bias Detection

InputData-Independent Bias Detection

I. Serna, A. Morales, J. Fierrez and J. Ortega-Garcia, "IFBiD: Inference-Free Bias Detection", in *AAAI Workshop on Artificial Intelligence Safety (SafeAI)*, CEUR, vol. 3087, Vancouver, Canada, February 2022.

DigitWdb and GenderWdb

ColoredMNIST¹

Train 24K models of 50K params each with 2 levels of bias:

≜very high bias

<u>≜</u>very low bias

- 1. B. Kim et al., "Learning Not to Learn: Training Deep Neural Networks With Biased Data," CVPR 2019
- 2. A. Morales et al., "SensitiveNets: Learning Agnostic Representations with Application to Face Images," IEEE T-PAMI, 2021

DigitWdb and GenderWdb

ColoredMNIST¹ DiveFace² Train 36K models of 100K params each with 3 classes of bias: Train 24K models Asian of 50K params each African/Indian DigitWdb with 2 levels of bias: *GenderWdb* **≜**very high bias Caucasian ≜very low bias

- 1. B. Kim et al., "Learning Not to Learn: Training Deep Neural Networks With Biased Data," CVPR 2019
- 2. A. Morales et al., "SensitiveNets: Learning Agnostic Representations with Application to Face Images," IEEE T-PAMI, 2021

Results: Bias Detection

Bias in Digit Classifier

- 20K training models:
 - ▲ 10K very high bias
 - △ 10K very low bias
- 4K test models:
 - $\triangleq 2k \triangleq 2k$

Bias in Gender Classifier

30K training models:

10K asian biased

10K african/indian biased

10K caucasian biased

6k test models:

Results: Bias Detection

Bias in Digit Classifier

- 20K training models:
 - ▲ 10K very high bias
 - △ 10K very low bias
- 4K test models:
 - $\triangleq 2k \triangleq 2k$

Classification *accuracy* obtained:

- Multi-layer perceptron: 96.5 %
- Convolutional Block: 99.7 %

Bias in Gender Classifier

30K training models:

10K asian biased

10K african/indian biased

10K caucasian biased

6k test models:

Accuracy obtained:

- Multi-layer perceptron: 60.8 %
- Convolutional Block: 89.9 %

THE DETECTOR

THE DETECTOR

Limitations and Future Work

Limitations:

• It is still not free of conflated biases.

This work poses two fundamental challenges:

- Finding a way to translate our approach to other problems, such as face recognition. E.g., architecture-independent detector.
- Automatically detecting bias covariates.

Case Study on Multimodal Bias: Automatic Recruitment Tools

Material from Alejandro Peña

What else does your resume data reveal?

FairCVdb: Research dataset for multimodal Al

- **24K Profiles** including:
 - 12 features obtained from 5 information blocks (merits)
 - 2 demographic attributes (gender and ethnicity)
 - 1 face image from **DiveFace** database¹
 - 1 candidate score (human resources equation)

Candidate competencies

Candidate score

$$\mathbf{x}^j = [x_1^j, \dots, x_n^j] \longrightarrow T^j = \beta^j + \sum_{i=1}^n \alpha_i x_i^j$$

FairCVdb: Research dataset for multimodal Al

• 24K Profiles including:

- 12 features obtained from 5 information blocks (merits)
- 2 demographic attributes (gender and ethnicity)
- 1 face image from **DiveFace** database¹
- 1 candidate score (human resources equation)

Candidate competencies (Unbiased)

Candidate score (Biased)

$$\mathbf{x}^j = [x_1^j, ..., x_n^j]$$
 \longrightarrow $T^j = \beta^j + \sum_{i=1}^n \alpha_i x_i^j$ + Bias (Gender and Ethnicity)

https://github.com/BiDAlab/FairCVtest

Aluna Doe

Data Chief Officer at XXXX

Boston, USA

Short Bio: She helps leaders and organizations thrive with disruption as an expert on digital transformation and leadership expert.

Experience:

- 2017- Senior Consultant
- 20014-2017 Junior Consultant

Education:

Skills:

- Master (2014) Language: English, Kenia
- Bachelor (2012) Programming: C++, Python

Merits (education, experience, languages, others) = 12 features (**Scenario 3**)

Distribution of the **top 100** candidates

Scenario	Bias	Input Features			Gender		Δ.
		Merits	Dem.	Face	Male	Female	Δ
3	yes	yes	no	no	50%	50%	0%

Aluna Doe

Data Chief Officer at XXXX

Boston, USA

Short Bio: She helps leaders and organizations thrive with disruption as an expert on digital transformation and leadership expert.

Experience:

- 2017- Senior Consultant
- 20014-2017 Junior Consultant

Education:

Skills:

- Master (2014) Language: English, Kenia
- Bachelor (2012) Programming: C++, Python

Merits (education, experience, languages, others) = 12 features

Demographic attributes (gender and ethnicity) = 2 features (**Scenarios 1 and 2**)

Distribution of the **top 100** candidates

Scenario	Bias	Input Features			Gender		Δ.
		Merits	Dem.	Face	Male	Female	Δ
2	yes	yes	yes	no	87%	13%	74%

Distribution of the **top 100** candidates

Scenario	Bias	Input Features			Gender		Δ
		Merits	Dem.	Face	Male	Female	Δ
4	yes	yes	no	yes	77%	23%	54%

Scenario	Bias	Input Features			Gender		Δ.
		Merits	Dem.	Face	Male	Female	Δ
Agnostic	yes	yes	no	yes	50%	50%	0%

¹ A. Morales, J. Fierrez, R. Vera-Rodriguez, R. Tolosana. SensitiveNets: Learning Agnostic Representations with Application to Face Images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2020. [pdf][GitHub]

Bias Detection and Mitigation in Machine Learning

Aythami Morales

http://aythami.me

Generator

Objective: Training the best representation possible

D. Madras, E.Creager, T. Pitassi, R. Zemel, "Learning Adversarially Fair and Transferable Representations," *Proc. of the Int. Conf. on Machine Learning*, pp. 3384-3393, 2018.

A. Morales, J. Fierrez, R. Vera-Rodriguez, R. Tolosana. SensitiveNets: Learning Agnostic Representations with Application to Face Images. *IEEE Transactions on Pattern Analisys and Machine Intelligence*, 2020. [pdf][GitHub]

$$\min_{\mathbf{w}} \sum_{\mathbf{x}^j \in S} (\mathcal{L}(O(\mathbf{x}^j | \mathbf{w}), T^j) + \Delta^j)$$

Loss Function Primary Task (Generator)

$$\min_{\mathbf{w}} \sum_{\mathbf{x}^{j} \in S} (\mathcal{L}(O(\mathbf{x}^{j} | \mathbf{w}), T^{j}) + \Delta^{j})$$

Sensitive Regularizer: Secondary Taks (**Detector**)

Loss Function Primary Task (Generator)

$$\mathcal{L} = \text{Triplet Loss}$$

$$\min_{\mathbf{w}} \sum_{\mathbf{x}^{j} \in S} (\mathcal{L}(O(\mathbf{x}^{j} | \mathbf{w}), T^{j}) + \Delta^{j})$$

Sensitive Regularizer: Secondary Taks (**Detector**)

$$\Delta^j = \left| 0.9 - P_k(\mathbf{x}^j) \right|$$

Sensitive Regularizer: Secondary Taks (**Detector**)

$$\Delta^j = \left| 0.9 - P_k(\mathbf{x}^j) \right|$$

Agnostic Learned Feature Space