Given an array which contain five integers, int arr[] = {19, 7, 2, 11, 6}. How many swaps are performed by the Bubble Sort algorithm, if we sort the array in ascending order?

Given an array of 10 numbers, int a[] = {99, 27, 14, 2, 7, 14, 17, 5, 1, 44}. Let's use the selection sort algorithm, to sort the array in ascending order. If we inspect the contents of our array, when i == 3, what value will be stored at index four in the array after the swap was performed.

For your reference, here is the selection sort algorithm that was obtained from its Wikipedia page 2. Use this to trace the logic and determine what value will be in a[4]

```
/* a[0] to a[aLength-1] is the array to sort */
int a[] = {99, 27, 14, 2, 7, 14, 17, 5, 1, 44};
int i, j;
int aLength = 10; // initialize to a's length
/* advance the position through the entire array */
/* (could do i < aLength-1 because single element
is also min element) */
for (i = 0; i < aLength-1; i++)
{
    /* find the min element in the unsorted a[i .. a
Length-11 */
    /* assume the min is the first element */
    int jMin = i;
    /* test against elements after i to find the sma
llest */
    for (j = i+1; j < aLength; j++)
        /* if this element is less, then it is the n
ew minimum */
        if (a[j] < a[jMin])
        {
            /* found new minimum; remember its index
*/
            jMin = j;
```

```
/* a[0] to a[aLength-1] is the array to sort */
int a[] = \{99, 27, 14, 2, 7, 14, 17, 5, 1, 44\};
int i, j;
int aLength = 10; // initialize to a's length
/* advance the position through the entire array */
/* (could do i < aLength-1 because single element
is also min element) */
for (i = 0; i < aLength-1; i++)
{
    /* find the min element in the unsorted a[i .. a
Length-1] */
    /* assume the min is the first element */
    int jMin = i;
    /* test against elements after i to find the sma
llest */
    for (j = i+1; j < aLength; j++)
    {
        /* if this element is less, then it is the n
ew minimum */
        if (a[j] < a[jMin])
        {
            /* found new minimum; remember its index
*/
            jMin = j;
        }
    }
    if (jMin != i)
    {
        swap(a[i], a[jMin]);
//TODO: if i == 3, what value will be stored in a[4]
at this point in the code.
}
```

Which of the following algorithms are stable? Select all that apply.	
☐ Bubble Sort	
☐ Mergesort	
☐ Heapsort	
☐ Insertion Sort	
☐ Quick Sort	

Match each algorithm with its respective worst case time complexity.

Insertion Sort O(n^2)

Quick Sort

Bubble Sort

Merge Sort

Heap Sort

Binary Search Tree

Selection Sort

O(n log n)

O(n log n)

O(n^2)

O(n^2)

O(n^2)

O(n)

For the given graph, G, which of the following trees (labeled from a - h) are possible spanning trees. Select all that apply.

	a
	f
	b
	None of the above
	d
	h
	e
	g
1	All of the above
	С

	0	1	2	3	4
0	0	1	0	1	0
1	1	0	1	0	1
2	0	0	0	1	0
3	1	0	1	0	0
4	0	1	0	0	1
	0	1	2	3	4
0	0	1	0	1	0

 0
 1
 2
 3
 4

 0
 0
 1
 0
 1
 0

 1
 1
 0
 1
 1
 1

 2
 0
 1
 0
 1
 0

 3
 1
 1
 1
 0
 0

 4
 0
 1
 0
 0
 0

For the following graph, G, and its possible spanning trees labeled (a) to (h). What is the cost of the minimum spanning tree?

Given the following binary search tree, what is the resulting sequence if a *pre-order* traversal is performed? Ensure that your response is comma separated, e.g. 1,2,3,4

Given the following binary search tree, what is the resulting sequence if a breadth-first search traversal is performed? Ensure that your response is comma separated, e.g. 1,2,3,4

Given the diagram below, indicate which of the following is a Binary Tree? Select all that apply.

- ✓ C
- ✓ b
- ✓ e
- ✓ d
- ✓ a

>	Question 11	2 p
	For any given graph, G, there can only be one (1) minimum spanning tree.	
	○ True	
	○ False	

Does the following graph contain any cycles?

○ True

False

Deleting from a hashtable is ...

O(1)O(1)

depends on whether it is sorted

O(n)

Represents the best case runtime of an algorithm

Which of the following best describes asymptotic bounding?

Represents an approximation of runtime that is independent of input size

Is a function that classifies the runtime family than an algorithm belongs to.

Represents an target runtime that we do not want an algorithm to exceed

The RAM model of computation ...

- helps us reason about algorithmic memory requirements
- helps us reason about algorithmic performance
- helps us reason about algorithmic correctness
- helps us reason about the caching effects of an algorithm

Question 21	2 pts
Which of the following is not an example of a big-Oh runtim	e?
Polynomial	
○ Quadratic	
○ Linear	
○ Constant	

Which of the following is true about merge sort?

- merges the elements around a pivot
- ightharpoonup always results in a tree that has $\log_2 n$ levels
- can be implemented in place
- ightharpoonup does O(n) work at each level in the tree

Question 24	2 pts
Which of the following is an advantage that insertion sort has over merge sort?	
O None of the others	
○ It has a better runtime	
It only has to swap element once	
It can be done in place	

There are many sorting algorithms because ...

the best sorting algorithm depends on how easy it is to implement

the best sorting algorithm depends on the number of swaps it must perform

- the best sorting algorithm depends on the nature of the problem
- O the best sorting algorithm depends on the size of the input

The add function for trees	
 All of the others 	
always adds a leaf node	
○ is O(1)	
Offirst checks the root to see if it is null	

Which of the follo	wing are characteristics of a heap?
☐ a binary tree	
☐ the value in the p	parent is greater than the value in all of its children
☐ is complete	
□ value of left child	I < value of parent < value of right child

Question 27	2 pts
Which of the following are characteristics of a heap?	
✓ a binary tree	
☐ the value in the parent is greater than the value in all of it	s children
✓ is complete	

Question 31	2 pts
Which of the following is true about nodes in a binary tree?	
an have up to 2 children	
☐ can have 0 or 2 children	
☐ can have up to 2 parents	
an have up to 2 siblings	

2 pts

Why do we need to keep track of which nodes are visited (or discovered) when we are implementing a graph traversal?

- to detect when a graph has cycles
- to ensure that we do traverse each node exactly one time
- to avoid implementing the traversal recursively
- to make the algorithm different from traversing a tree

fewest interruptions	
o ends first	
o shortest interval	

Question 37	2 pts
Which of the following best describes when Dijkstra's Algorithm stops?	
when we have completed a DFS of the graph	
O when we find the shortest path	
when we have completed a BFS of the graph	
O when we have looked at all the edges	

Question 39	2 pts
Which of the following best describes dynamic programming strategy?	
solves the problem using the best possible local choice	
divides problem and solves the smaller version	
solves the problem using traversal strategies	
solves the problem using brute force	
	Which of the following best describes dynamic programming strategy? output solves the problem using the best possible local choice divides problem and solves the smaller version solves the problem using traversal strategies