SMART INVENTORY MANAGEMENT & OPTIMIZATION (SIMO)

Project S34 Review 2

OUR TEAM

Chester Lim Zi Hao

Olivia Chen Ken

Justin Peng Zheng Wei

Hour Youlinsereydevid

Sun Kairan

OVERVIEW

Company Background, Problem Framing, Problem Analysis, Milestones, User Needs & Constraints, Refined Problem Statement

TABLE OF CONTENTS

DESIGN DIRECTION

Concept Generation, Optimizations Research & Analysis, Web Application Design

RISK ASSESSMENT

Consequence Frequency Matrix, Potential Risk & Precautions

PROJECT MANAGEMENT

Project Task Allocation, Project Schedule, Budget Allocation

CONCLUSION

Overview

Company Background Problem Framing Problem Analysis Milestones **User Needs & Constraints Refined Problem Statement**

Company Background¹

- Singapore Airlines Engineering Company (SIAEC) is Asia's foremost maintenance, repair and overhaul (MRO) provider
- Delivers integrated solutions to large client bases consisting of both international airline and aerospace companies.
- Provides frontline maintenance services to more than 60 airlines* that fly through Singapore whilst ensuring a high level of punctuality for their customers' flight takeoffs.

Problem Framing

Despite efforts by SIAEC in deploying inventory management practices, the company *still overprovision rotables*, incurring *unnecessary capital*. The underlying causes of this overprovisioning include *inefficient inventory* management practices, forecasting techniques, and inflexible interface for managing inventory.

Problem Analysis

Goals for SIAEC

^{*}Rotables are aircraft components which are removed, replace or inspected at intervals and they consist a significant percentage in a typical commercial aircraft.

Milestone

Constraints

Needs

Constraints

Refined Problem Statement

This project aims to **create a web-based application** with dynamic features such as having **variable inputs**, **scenario-based optimization** and **data visualization** to help manage and optimize rotables in hopes of a more **user-friendly and cost-saving alternative** for the company to fit into their current workflow.

Design Direction

Concept Generation Optimizations Research & Analysis Web Application Design

Concept Generation

Operations Research & Analysis

Inventory Optimization

Long-term Provisioning Short-term Provisioning

Price Monitoring System

Price Acquisition
Performance
Price-performance Evaluation

Long-term Provisioning

Milestone

Milestone (Long-term Provisioning)

Long-Term Provisioning

Determine Number of Quantity to be topped up <u>6</u> months in advance for each type of rotable

Long-Term Provisioning

Approach A

Optimization model

Long-term Provisioning

Approach B

Improving Accuracy & Quality of Input Data

Approach C

Statistical Distribution of Demand

Approach A

Optimization model

Long-term Provisioning

Approach B

Improving Accuracy & Quality of Input Data

Approach C

Statistical Distribution of Demand

Optimization Model

Sift out rotable parts that are no longer applicable* +

Extract relevant data columns

Outputs

^{*} Applicable: Non-applicable rotable parts are parts that are no longer part of the contractual agreement between SIAEC and their customers hence, SIAEC will not need to provide for these parts to customer

Optimization Model (Formulation)

Optimization Model (Objective Function)

Optimization Model (Inputs)

Optimization Model (Constraints)

Optimization Model (Outputs)

Optimization Model (Experiment)

Optimization model Integer Binary Program Using lpsolve()* in R Using a **small test** sample size of 5 rotables + Assume **zero** on-hand inventories

Optimization Model (Experiment* result)

Class**	Part Number	Unit Price (\$)	Quantity to hold (SIAEC's method)	Quantity to hold (Our optimization model)
2	12-34	17,712	1	1
2	12-35	17,712	0	0
2	12-36	9501	1	0
2	12-37	4678	1	1
2	12-38	83,971	2	1

^{*}Experiment: To simplify our model, we have assumed on-hand inventory to be zero for this experiment
**Class: Class 2 rotables need to achieve on average a service level of 95%

Approach A

Optimization model

Long-term Provisioning

Approach B

Improving Accuracy & Quality of Input Data

Approach C

Statistical Distribution of Demand

Each rotable type will have a MTBUR value of its own

Machine Learning

Machine Learning

Machine Learning

Lack of these data

Simulation⁴

Approach A

Optimization model

Long-term Provisioning

Approach B

Improving Accuracy & Quality of Input Data

Approach C

Statistical Distribution of Demand⁶

Statistical Distribution of Demand⁶

Adapted from Syntetos, A.A., Babai, M.Z., Lengu, D., Altay, N. (2011). Distributional Assumptions for Parametric Forecasting of Intermittent Demand. In: Altay, N., Litteral, L. (eds) Service Parts Management. Springer, London. Distributional Assumptions for Parametric Forecasting of Intermittent Demand | SpringerLink

ADI

Milestone

Milestone

Milestone

Rotables Condition

- Freshly Repaired
- Optimal Condition (Tip-top condition)

- To preserve rotables
- Slow down the deterioration rate

So what are our approaches to forecasting for active rotables?

Figure 2: Time Series Forecasting. Adapted from Colin.catlin. (n.d.). Syllepsis. Retrieved April 12, 2022, from https://syllepsis.live/2019/10/08/time-series-forecasting-a-quick-reference/

Not Chosen Method

Design Criteria	Alternative Design Concepts	
	Parametric	Non-Parametric
Data Requirement	+	0
Accuracy	0	+
Time	+	0
Ease of implementation	+	0
Totals	+++	+

^{*} Further explanation of the Criteria used and assessment Rubrics can be find in Annex 1.1

Price Monitoring System (Price Acquisition)

Price Monitoring System

- Price monitoring or price intelligence refers to the awareness of pricing in the market and the response to these changes in pricing.
- Metasearch engine⁹ → Sending queries through multiple search engines and aggregating these results
 - Ranking
 - Combine

Price Monitoring System

Price Monitoring System

Price Monitoring System

Price Monitoring System (Price Acquisition)

Design Criteria	Alternative Design Concepts			
	Skuuudle	Priscync	BeautifulSoup	Selenium
Affordability	-	0	+	+
Ease of Integration	-	0	+	+
Adaptability	+	+	-	0
Total	-	+	+	++

^{*} Further explanation of the Criteria used and assessment Rubrics can be find in Annex 1.2

Price Monitoring System

Price Monitoring System (Price Forecasting)¹⁰

Price Monitoring System (Price Forecasting)¹⁰

Doolana Cultania	Alternative Design Concepts		
Design Criteria	Geometric Brownian Motion	ARIMA	
Data Requirement	+	+	
Accuracy	+	0	
Time	0	0	
Ease of implementation	+	+	
Totals	+++	++	

^{*} Further explanation of the Criteria used and assessment Rubrics can be find in Annex 1.3

Price Monitoring System

Price Monitoring System (Performance)

Time Lasted on Wing (TSI) across each vendor

Original Equipment Manufacturer (OEM) MTBUR

 $\frac{TSI}{MTBUR}$

Price Monitoring System (Price to Performance)

MTBUR v.s Time Lasted on Wing (TSI)

Price given by OEMs v.s. Prices quoted

MTBUR
Price given by OEMs

Benchmark

TSI Price quoted

Price Monitoring System

Summary

Concept Generation

Web Application Design

Software Architecture
User Interface
Tech stack

Client Serverless

Client Serverless

Page Flow

Dashboard page
Data page
Optimization Page
Status Page
Admin Page (for admin user only)

Dashboard

Inventory Management

Asset Management Live Price Monitoring Report and recommendation

Data Page

Data ManagementUpdate data file
View/Edit data file
Export data file

Optimization Page

Simulation Model

Select Scenario Set Constraints Save Simulation output Testing on temporary file

Supporting Features

Set new Scenarios Adjust parameter values

Status Page

Managing Reports

View/delete/publish report Export report files

Sharing of Results

Export published report files View published reports by other users

Prototypes Iterations

Navigation Bar¹³

Top Navigation Bar

Left Navigation Bar

Navigation Bar

Collapsible Left Bar

Improved Dashboard

Conceptual Model

Consolidate
Screen Contents

Navigation & Task flow

Explore Various Alternative

Functionality

Terminology

Tech Stack

Frontend

Backend

Database Service

General Approach

For frontend, backend, and database exploration

Design Criteria	Alternative Design Concepts		
	React	Angular	Vue
Ease of Learning	+	-	-
Performance	+	-	+
Applicability of Features	+	+	0
Total	+++	-	0

^{*} Further explanation of the Criteria used and assessment Rubrics can be find in Annex 1.4

Frontend Framework

	React	Angular	Vue
Ease of Learning	+	-	-
Familiarity to	Some team members have prior experience	No team members has experience	No team members has experience

Pros

Cons

		React	Angular	Vue
	Performance ¹⁴	+	-	+
•	Rendering speed Response speed	Only re-render when needed	MVC structure* allows separation of tasks	Bundle size and Tree-shaking
		Support server-side rendering	Slower response due to the number of features	Code splitting
		Virtual DOM* increases performance		

Pros

Cons

	React	Angular	Vue
Applicability of Features ¹⁴	+	+	0
 Number of relevant features 	Reusable components	Modular development	Template Syntax
	Unidirectional data flow	Code conventions	Track dependencies
	Changeable state	Real-time synchronization	

Pros

Cons

Design Criteria	Alternative Design Concepts		
	React	Angular	Vue
Ease of Learning	+	-	-
Performance	+	-	+
Applicability of Features	+	+	0
Total	+++	-	0

^{*} Further explanation of the Criteria used and assessment Rubrics can be find in Annex 1.4

Doolan Cultoria	Alternative Design Concepts		
Design Criteria	Golang Gin	Express.js	Django
Ease of Learning	-	+	0
Ease of Implementation	0	-	+
Performance	0	-	+
Total	-	-	++

^{*} Further explanation of the Criteria used and assessment Rubrics can be find in Annex 1.5

	Golang Gin	Express.js	Django
Ease of Learning	-	+	0
Familiarity to frameworkAvailable learning	Relative small community	Available learning resources	Available learning resources
resources	Relative bad documentation	Some team members have experience	No team members has experience

Pros

	Golang Gin ¹⁵	Express.js ¹⁶	Django ¹⁷
Ease of Implementation	0	+	+
Code sizeFlexibility	Syntax is relatively easy to learn	Same language for both frontend and backend	Readymade packages
	Easy to create middlewares	Heavy code changes due to unstable API	Model View Template
	Low reusability of code due to no OOP*	Callback functions are hard to read but needed	Lack of code conventions

Pros

	Golang Gin ¹⁸	Express.js ¹⁶	Django ¹⁹
Performance	0	-	+
Response timeProcessing speed	Radix tree	Event-driven	MTV Architecture
	Built to handle concurrent tasks	Unable to handle CPU intensive task	Same language as our optimization model
	Hard to integrate with optimization model (Python)		

Pros

Declara Cultonia	Alternative Design Concepts		
Design Criteria	Golang Gin	Express.js	Django
Ease of Learning	-	+	0
Ease of Implementation	0	-	+
Performance	0	-	+
Total	-	-	++

^{*} Further explanation of the Criteria used and assessment Rubrics can be find in Annex 1.5

	Alternative Design Concepts			
Design Criteria	Firebase	AWS RDS (Relational Database Service)	MongoDB Atlas	
Performance	-	+	+	
Applicability of Features	-	+	0	
Cost-Efficiency	-	0	0	
Total		++	+	

^{*} Further explanation of the Criteria used and assessment Rubrics can be find in Annex 1.6

	Firebase	AWS RDS (Relational Database Service)	MongoDB Atlas
Performance ²⁰	+	+	+

- Query speed
- Concurrency capabilities

Inefficient for complex queries

Instant provisioning and auto scaling with EC2*

Sharding for cloud-base storage

Pros

		Firebase	AWS RDS (Relational Database Service)	MongoDB Atlas
	Applicability of Features ²¹	-	+	0
•	Number of relevant features	Non-Relational	Data Replication (High Availability)	Data Replication (High Availability)
			Robust Security Support	Dynamic Schemas
			Convenient integration with AWS Redshift	Limited document size
	Pros Cons		Only vertical scaling which is costly	Non-Relational

	Firebase	AWS RDS (Relational Database Service)	MongoDB Atlas
Cost-Efficiency	-	0	0

• Monthly expenditure

> SGD 300

Between SGD 100 -300

Between SGD 300 - 100

Pros

	Alternative Design Concepts			
Design Criteria	Firebase	AWS RDS (Relational Database Service)	MongoDB Atlas	
Performance	-	+	+	
Applicability of Features	-	+	0	
Cost-Efficiency	-	0	0	
Total		++	+	

^{*} Further explanation of the Criteria used and assessment Rubrics can be find in Annex 1.6

Web Application Architecture Summary

Risk Assessment

Consequence Frequency Matrix Potential Risk & Precautions EHS

Consequence-frequency Matrix²²

		Impact		
		Small	Moderate	High
	Very High			
Frequency	High			
	Medium		Inaccurate Data Entry	Inaccurate Forecasting
	Low		Server Failure	Data Loss Security Breach

Potential Risk and Precautions

Event	Consequences	Mitigations
Inaccurate Forecasting	Potential increase in investment costs for SIAEC, leading to over provisioning	Writing test cases for algorithms
Inaccurate Data Entry	Inaccurate data displayed Decisions made based on incorrect data	Input validation
Security Breach	Stolen data Web application down	Follow the latest established security practices
Data Loss	Loss of valuable company data Web application unable to function	Data loss is hence mitigated by measures implemented by the cloud provider such as data replication
Server Failure	Web application would be down.	Will be using cloud service. Only physical disasters or virus attacks can result in a server failure

Low Risk

Moderate Risk

Moderate High
Risk

High Risk

^{*} More details can be found in Annex 1.7

Environment, Health & Safety

Safety	Sustainability
Security of Database	Ease of maintenance and update
Availability of service	Vulnerability of open source library
Confidentiality of user info	Flexibility to respond to future changes

Project Management

Conclusion

Project Management

Limitations due to Covid-19 Project Task Allocation Project Schedule Budget Allocation

Limitations due to COVID-19

Project Task Allocation

Respo	Responsibility Matrix (Exploration and Design Phase for Prototype) R - Responsible							
	Task	Justin	Olivia	Kairan	Chester	YuYing	Devid	Wenqi
1	UI/UX design	s	R					
2	Database Schema	R		R	s		s	R
3	Data Cleaning	R		R				R
4	Data Integration	R		R				
5	Operations Research				s	R	s	
6	Risk Management	R			R			
7	Project Management	R			R			
8	Updating of schedule	s			R			
9	Updates to budget		R				R	
10	Report	s	s	s	s	R	R	s
11	Slides	s	R	s	s	s	s	s
12	Exploration for frontend	s	R					
13	Exploration for database	R		s				
14	Exploration for backend	s		R				
15	Exploration for system architecture	s		R				

Project Schedule

	March			Ap	April			May			
Con	cept and app	lication selec	ction								
		Wirefrar	ne for UI								
		Research :	theory and a	pplication							
	Formulation and completion of Just In Ti			of Just In Tir	me Provision	ing					
					Database	Planning					
		Frontend and Backend Exploration									
			Review	2 Report and	d Slides						
					Just ir	Time Provis	ioning				
						Asset Ma	nagement				
										tend and Bac nplementatio Testing	
									Price Monitoring System		ystem

Project Schedule

June				August				
Fronter	nd and Backend I	mplementation ⁻	Testing					
Price Monitoring System								
Review	3 slides							
	Model Fine Tuning							
				Deploy Fronter	nd and Backend			
					User T	esting		
				Final Report	and software do	cumentation		
				Poster and summary of analysis result				
								Exhibition and Final Presentation

Expected Expenditure (SGD)	May	Jun	Jul	Aug		
Tools						
Jira	52.50	52.50	52.50	52.50		
Softwares						
RDS	200	200	200	200		
EC2	287.50	287.50	287.50	287.50		
Cloudfront	0	0	0	10		
SSL Cert	0	0	0	25		
Transportation	Transportation					
Taxi	100	100	100	100		
Total Expenditure	590	590	590	625		

Budget Allocation

	May	Jun	Jul	Aug
Total Fund Available (SGD)	4,000	3,410	2,820	2,230
Total Expenditure (SGD)	590	590	590	625
Total Fund Remaining (SGD)	3,410	2,820	2,230	1,605

Conclusion

Conclusion

Content

- 1. Our company profile. SIA Engineering Company. (n.d.). Retrieved March 2, 2022, from https://www.siaec.com.sg/company_profile.html
- 2. Ohri, A. (2017). 10 Popular Regression Algorithms In Machine Learning Of 2022. Retrieved 21 April 2022, from https://www.jigsawacademy.com/popular-regression-algorithms-ml/#:~:text=Regression%20is%20a%20type%20of,the%20most%20popular%20regression%20algorithms.
- 3. Wilkinson, G. (2020). Asset management optimization for repairable spare parts. Retrieved 21 April 2022, from https://www.anylogic.com/blog/asset-management-optimization-for-repairable-spare-parts/
- 4. Lye, K., & Chan, L. (2007). A Virtual Warehouse Simulation Tool for Aerospace Rotables Management. IEEE Aerospace Conference Proceedings.
- 5. Demand classification: Why forecastability matters frepple APS. frePPLe. (2021, February 16). Retrieved April 12, 2022, from https://frepple.com/blog/demand-classification/
- 6. Chawla, G., & Miceli, V. (1970, January 1). Demand forecasting and inventory management for Spare Parts. Demand Forecasting and Inventory Management for Spare Parts. Retrieved April 20, 2022, from https://dspace.mit.edu/handle/1721.1/121291
- 7. Syntetos, A. A., Babai, M. Z., Lengu, D., & Syntetos, A. A., Babai, M. A., Babai, M. A., Babai, M. A., Baba
- 8. Pinçe, Ç., Turrini, L., & Meissner, J. (2021, July 3). Intermittent demand forecasting for spare parts: A critical review. Omega. Retrieved March 27, 2022, from https://www.sciencedirect.com/science/article/pii/S0305048321001225
- 9. Ofiwe, M. (2021, October 28). Metasearch Engines. SEMrush. Retrieved April 21, 2022, from https://www.semrush.com/blog/metasearch-engine/

Content

- 10. Wattanarat, V., Phimphavong, P., & Matsumaru, M. (2011). Demand and Price Forecasting Models for Strategic and Planning Decisions in a Supply Chain.
- 11. Why use serverless computing? | Pros and cons of serverless. (n.d.). Cloudflare. Retrieved April 22, 2022, from https://www.cloudflare.com/en-gb/learning/serverless/why-use-serverless/
- 12. Lange, K. (2021, February 25). What's Serverless? Pros, Cons & How Serverless Computing Works. BMC Software. Retrieved April 22, 2022, from https://www.bmc.com/blogs/serverless-computing/
- 13. Bakusevych, T. (2021, March 2). *Top vs side navigation: Which one is better for your product?* UX Collective. Retrieved April 22, 2022, from https://uxdesign.cc/top-navigation-vs-side-navigation-wich-one-is-better-24aa5d835643
- 14. Borrelli, P. (2021, October 26). Angular vs. React vs. Vue.js: Comparing performance. LogRocket Blog. Retrieved April 21, 2022, from https://blog.logrocket.com/angular-vs-react-vs-vue-js-comparing-performance/
- 15. Jonah, V. (2021). 5 top Go web frameworks LogRocket Blog. Retrieved 21 April 2022, from https://blog.logrocket.com/5-top-go-web-frameworks/
- 16. Volodymyr, T. (2017). Express.js Mobile App Development: pros and cons of Node.js framework. Retrieved 21 April 2022, from https://apiko.com/blog/express-mobile-app-development/
- 17. Bhatt, S. (2020). Pros and Cons of Django Framework for App Development DZone Web Dev. Retrieved 21 April 2022, from https://dzone.com/articles/pros-and-cons-of-django-framework-for-app-developm
- 18. Gin Web Framework. Retrieved 21 April 2022, from https://gin-gonic.com/
- 19. DataFlair, Retrieved 21 April 2022, from https://data-flair.training/blogs/django-advantages-and-disadvantages/
- 20. Wodehouse, C. (2018). Firebase vs. AWS vs. MongoDB: 3 Technologies Behind Modern Software Stacks. Retrieved 21 April 2022, from https://www.business2community.com/brandviews/upwork/firebase-vs-aws-vs-mongodb-3-technologies-behind-modern-software-stacks-02147649

Content

- 21. Singh, M. (2021). Social Network for Programmers and Developers. Retrieved 21 April 2022, from https://morioh.com/p/fd327efa3b32
- 22. van Westen, C. (n.d.). 5.5 Risk assessment methods. Caribbean Disaster Emergency Management Agency CDEMA. Retrieved April 20, 2022, from https://www.cdema.org/virtuallibrary/index.php/charim-hbook/methodology/5-risk-assessment/5-5-risk-assessment-methods

Design Credit

Presentation template by Slidesgo

Icons by Flaticon

Infographics by Freepik

Images

https://www.simplilearn.com/data-analysis-methods-process-types-article https://www.123rf.com/photo_36638346_modern-notebook-computer-with-future-technology-media-symbols.html

Conclusion

Short-term Provisioning

Criteria\Score	-	0	+
Data Requirement	The method requires a few years of historical data	The method requires a few months a historical data	The method requires a month worth of historical data
Accuracy	The method produces poor accuracy result	The method produces acceptable accuracy result	The method produces exceptional accuracy result
Time	The method requires a lot of time to implement	The method uses moderate amount of time to implement	The method requires very little time to implement
Ease of implementation	The method is computationally intensive with many mathematical equations and concepts	The method is moderately easy to implement with fair amount of mathematical equations and concepts	The method is easy to implement with little mathematical equations and concepts

Price Monitoring System (Price Acquisition)

Criteria\Score	-	0	+
Affordability	Software costs more than SGD 100	Software costs less than SGD 100	This software is free to use
Ease of Integration	Software is difficult to integrate relative to the other alternatives	Software is reasonably difficult to integrate relative to the other alternatives	Software is easy to integrate relative to the other alternatives
Adaptability	Requires major tuning whenever website is changed relative to the other alternatives	Requires moderate tuning whenever website is changed relative to the other alternatives	Requires little to no tuning whenever website is changed relative to the other alternatives

Price Monitoring System (Price Forecasting)

Criteria\Score	-	0	+
Data Requirement	The method requires a few years of historical data	The method requires a few months a historical data	The method requires a month worth of historical data
Accuracy	The method produces poor accuracy result	The method produces acceptable accuracy result	The method produces exceptional accuracy result
Time	The method requires a lot of time to implement	The method uses moderate amount of time to implement	The method requires very little time to implement
Ease of implementation	The method is computationally intensive with many mathematical equations and concepts	The method is moderately easy to implement with fair amount of mathematical equations and concepts	The method is easy to implement with little mathematical equations and concepts

Frontend Framework

Criteria\Score	-	0	+
Ease of Learning	All team members have no prior knowledge with the framework	Some team members have some prior knowledge with the framework	Every members have prior experience with the framework
Performance	Has slow rendering speed, slower response speed with increased number of features relative to the other alternatives	Has a moderate rendering speed, no significant reduction in response speed with increased number of features relative to the other alternatives	Has fast rendering speed, no significant reduction in response speed with increased number of features relative to the other alternatives
Applicability of Features	Offers few relevant features fulfilling the needs and constraint of the project relative to the other alternatives	Offers some relevant features fulfilling the needs and constraint of the project relative to the other alternatives	Offers many relevant and useful features fulfilling the needs and constraint of the project relative to the other alternatives

Backend Framework

Criteria\Score	-	0	+
Ease of Learning	All team members have no experience with the framework, few learning resources available	All team members have no experience with the framework, some learning resources available	Some team members have experience with the framework, some learning resources available
Ease of Implementation	Framework requires a lot of code, rigid in implementation	Framework requires a moderate amount of code, relatively flexible in implementation	Framework requires a moderate amount of code, flexible in implementation
Performance	Slow response time relative to the other alternatives	Moderate response time relative to the other alternatives	Fast response time relative to the other alternatives

Database Service

Criteria\Score	-	0	+
Performance	Slow reads and writes with poor concurrency capabilities relative to the other alternatives	Fast reads and writes with moderate concurrency capabilities relative to the other alternatives	Fast reads and writes with good concurrency capabilities relative to the other alternatives
Applicability of Features	Has few relevant features offered by service provider relative to the other alternatives	Has some relevant features offered by service provider relative to the other alternatives	Has many relevant and useful features offered by service provider relative to the other alternatives
Cost-Efficiency	Monthly expenditure is above SGD 300	Monthly expenditure is between SGD 300 and SGD 100	Monthly expenditure is below SGD 100

Potential Risk and Precautions

Event	Description	Consequences	Mitigations
Inaccurate Forecasting	Caused by the algorithm's inaccuracy to forecast out the optimal number of parts for SIAEC to provision or to keep as active stock	Potential increase in investment costs for SIAEC, leading to over provisioning	Writing test cases for algorithms
Inaccurate Data Entry	Data input into the database is wrong	Inaccurate data displayed Decisions made based on incorrect data	Input validation
Security Breach	Caused by human error and loopholes in software.	Stolen data Web application down	Follow the latest established security practices
Data Loss	Caused by human error, viruses, natural disasters, power failure	Loss of valuable company data Web application unable to function	Data loss is hence mitigated by measures implemented by the cloud provider such as data replication
Server Failure	Caused by disk failure, virus attack, failed updates and physical disasters	Web application would be down.	Will be using cloud service. Only physical disasters or virus attacks can result in a server failure