

Tree Models: Concepts and Doubts

Tree Models: Concepts

Temp

upGrad

Index الماريخ عمارة					
ρΓ	. ઉ.(૧				
	. G(00				

		. P.	
2 Pi(1-Pi)	=	1- 2 P; 21	K

$$G(play (hold)) = 1 - \left[\left(\frac{9}{14} \right)^{2} + \left(\frac{5}{14} \right)^{2} \right]$$

$$= 1 - \left[0.41 + 0.12 \right]$$

$$= 0.47$$

$$G(ouHook) = \frac{5}{17} \left[1 - \frac{1}{2} \left(\frac{2}{5} \right)^{2} + \left(\frac{3}{5} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{1}{7} \right)^{2} \right] + \frac{5}{17} \left[1 - \frac{1}{2} \left(\frac{3}{5} \right)^{2} + \left(\frac{3}{5} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[1 - \frac{1}{2} \left(\frac{3}{7} \right)^{2} \right] + \frac{1}{17} \left[\frac{3}{7} \left(\frac{3}{7} \right)^{2} \right] +$$

In the following questions we will try to calculate Gini Index

Question-1: Compute the Gini Index of the overall training example.

Question-2: Calculate the Gini Index of the gender attribute

Question-3: Calculate the Gini Index of the car_type attribute

$$G(Gender) = \frac{10}{20} \left[1 - \frac{10}{20} + \frac{10}{10} + \frac{10}{20} + \frac{10}{10} +$$

Co 1	<u>د ر</u>	
3 2	2 7 2	_
	3 3 2	Co C 1 3 2 3 4 2 12

Male

Customer ID	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	M	Sports	Medium	CO
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	_ C0
8	F	Sports	Small -	_ C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

Solution upGrad

$$\alpha (cor-type) = \frac{1}{20} \left[1 - \frac{1}{2} \left(\frac{1}{4} \right)^{2} + \left(\frac{3}{4} \right)^{2} \right] + \frac{8}{20} \left[1 - \left(\frac{6}{9} \right)^{2} \right] + \frac{1}{20} \left[1 - \frac{1}{2} \left(\frac{1}{6} \right)^{2} + \left(\frac{1}{6} \right)^{2} \right] \\
= 0.1625$$

$$\alpha (shirtsize) = \frac{5}{20} \left[1 - \frac{1}{2} \left(\frac{1}{4} \right)^{2} + \left(\frac{1}{4} \right)^{2} \right] + \frac{1}{20} \left[1 - \frac{1}{2} \left(\frac{1}{4} \right)^{2} + \left(\frac{1}{4} \right)^{2} \right] \\
+ \frac{1}{20} \left[1 - \frac{1}{2} \left(\frac{1}{4} \right)^{2} + \left(\frac{1}{4} \right)^{2} \right] \\
= 0.49$$

$$\Delta (0.5 - 0.48) = 0.02$$

$$\Delta (0.5 - 0.1615) = 0.33$$

$$\Delta (0.5 - 0.11) = 0.01$$

Question-4: Calculate the Gini Index of the shirt size attribute

Question-5: Among all the attributes, which attribute is better to use for the first split in te formation of the decision tree?

- 0.52
- 0.55
- 0.54

> use multiple tres Tree Models: Concepts -> Add bias at each free and also each node. **Random Forest** , Bootstrapped -> Creating samples with repetition Decision Tree -> High variance model - At each node a random

Tree Models: Concepts

Thank You!