Modelling Nondeterminism, Probability and Termination

The story of Ralph's internship with his amazing supervisors Matteo and Valeria.

Ralph Sarkis

ENS de Lyon

March 25th, 2021

Overview of the presentation:

▶ **Set** monads and equational theories modelling

- Set monads and equational theories modelling
 - Nondeterministic choices

- Set monads and equational theories modelling
 - Nondeterministic choices
 - Probabilistic choices

- ▶ **Set** monads and equational theories modelling
 - Nondeterministic choices
 - Probabilistic choices
 - Termination

- Set monads and equational theories modelling
 - Nondeterministic choices
 - Probabilistic choices
 - Termination
 - Nondeterminism and probability

- Set monads and equational theories modelling
 - Nondeterministic choices
 - Probabilistic choices
 - Termination
 - Nondeterminism and probability
- ▶ 1Met monads and quantitative equational theories modelling

- Set monads and equational theories modelling
 - Nondeterministic choices
 - Probabilistic choices
 - ► Termination
 - Nondeterminism and probability
- ▶ 1Met monads and quantitative equational theories modelling
 - ► Nondeterministic choices

- Set monads and equational theories modelling
 - Nondeterministic choices
 - Probabilistic choices
 - Termination
 - Nondeterminism and probability
- ▶ 1Met monads and quantitative equational theories modelling
 - Nondeterministic choices
 - Probabilistic choices

- Set monads and equational theories modelling
 - Nondeterministic choices
 - Probabilistic choices
 - Termination
 - Nondeterminism and probability
- ▶ 1Met monads and quantitative equational theories modelling
 - Nondeterministic choices
 - Probabilistic choices
 - Termination

- Set monads and equational theories modelling
 - ► Nondeterministic choices
 - Probabilistic choices
 - Termination
 - Nondeterminism and probability
- ▶ 1Met monads and quantitative equational theories modelling
 - Nondeterministic choices
 - Probabilistic choices
 - Termination
 - Nondeterminism and probability

- Set monads and equational theories modelling
 - Nondeterministic choices
 - Probabilistic choices
 - Termination
 - Nondeterminism and probability
- ▶ 1Met monads and quantitative equational theories modelling
 - Nondeterministic choices
 - Probabilistic choices
 - Termination
 - Nondeterminism and probability
- Combining nondeterminism, probability and termination NEW!

Questions

► Are the two systems equivalent?

Questions

- ► Are the two systems equivalent?
- ► Are they close to each other?

Questions

- ► Are the two systems equivalent?
- ► Are they close to each other?
- ▶ What if the transition $x \rightarrow y$ is always chosen?

Questions

- ► Are the two systems equivalent?
- ► Are they close to each other?
- ▶ What if the transition $x \rightarrow y$ is always chosen?
- ▶ What if it is never chosen?

Categorically

Categorically

We use monads: functors with additional structure that is closely related to computation

Categorically

We use monads: functors with additional structure that is closely related to computation

Equationally

Categorically

We use monads: functors with additional structure that is closely related to computation

Equationally

We use equational theories: sets of operation symbols with axioms they satisfy

Categorically

We use monads: functors with additional structure that is closely related to computation

Equationally

We use equational theories: sets of operation symbols with axioms they satisfy

A link between these two pictures: **algebraic presentations of monads**.

Categorically

Categorically

▶ Powerset monad \mathcal{P} :

$$\mathcal{P}(X) = \{ \text{non-empty finite subsets of } X \}$$

$$\eta_X = x \mapsto \{x\}$$

$$\mu_X = \mathcal{F} \mapsto \bigcup_{S \in \mathcal{F}} S$$

Categorically

ightharpoonup Powerset monad \mathcal{P} :

$$\mathcal{P}(X) = \{ ext{non-empty finite subsets of } X \}$$
 $\eta_X = x \mapsto \{ x \}$
 $\mu_X = \mathcal{F} \mapsto \bigcup_{S \in \mathcal{F}} S$

▶ Transition system $t: X \to \mathcal{P}(X)$

$$t(x) = \{ y \in X \mid x \xrightarrow{t} y \}$$

Categorically

Equationally

ightharpoonup Powerset monad \mathcal{P} :

$$\mathcal{P}(X) = \{ ext{non-empty finite subsets of } X \}$$

$$\eta_X = x \mapsto \{ x \}$$

$$\mu_X = \mathcal{F} \mapsto \bigcup_{S \in \mathcal{F}} S$$

▶ Transition system $t: X \to \mathcal{P}(X)$

$$t(x) = \{ y \in X \mid x \xrightarrow{t} y \}$$

Categorically

ightharpoonup Powerset monad \mathcal{P} :

$$\mathcal{P}(X) = \{ ext{non-empty finite subsets of } X \}$$

$$\eta_X = x \mapsto \{ x \}$$

$$\mu_X = \mathcal{F} \mapsto \bigcup_{S \in \mathcal{F}} S$$

▶ Transition system $t: X \to \mathcal{P}(X)$

$$t(x) = \{ y \in X \mid x \xrightarrow{t} y \}$$

Equationally

► Theory of (sup-)semilattices: A binary operation ⊕ satisfying

$$x \oplus x = x$$
 I
 $x \oplus y = y \oplus x$ C
 $(x \oplus y) \oplus z = x \oplus (y \oplus z)$. A

Categorically

ightharpoonup Powerset monad \mathcal{P} :

$$\mathcal{P}(X) = \{ \text{non-empty finite subsets of } X \}$$

$$\eta_X = x \mapsto \{x\}$$

$$\mu_X = \mathcal{F} \mapsto \bigcup_{S \in \mathcal{F}} S$$

▶ Transition system $t: X \to \mathcal{P}(X)$

$$t(x) = \{ y \in X \mid x \xrightarrow{t} y \}$$

Equationally

► Theory of (sup-)semilattices: A binary operation ⊕ satisfying

$$x \oplus x = x$$
 I
 $x \oplus y = y \oplus x$ C
 $(x \oplus y) \oplus z = x \oplus (y \oplus z)$. A

Operational semantics

$$\frac{q \stackrel{\text{a}}{\rightarrow} r \qquad q \stackrel{\text{a}}{\rightarrow} s}{q \stackrel{\text{a}}{\rightarrow} r \oplus s} \qquad \frac{q \stackrel{\text{a}}{\rightarrow} r \qquad q' \stackrel{\text{a}}{\rightarrow} r'}{q \oplus q' \stackrel{\text{a}}{\rightarrow} r \oplus r'}$$
$$\frac{q \downarrow \text{accept}}{q \oplus r \downarrow \text{accept}}$$

Categorically

Categorically

ightharpoonup Distribution monad \mathcal{D} :

$$\mathcal{D}(X) = \{ \text{finitely supported} \\ \text{probability distributions on } X \}$$

$$\eta_X = x \mapsto \delta_x \text{ (Dirac)}$$

$$\mu_X = \Phi \mapsto \sum_{\varphi \in \text{supp}(\Phi)} \Phi(\varphi) \cdot \varphi$$

Categorically

 \triangleright Distribution monad \mathcal{D} :

$$\mathcal{D}(X) = \{ \text{finitely supported} \\ \text{probability distributions on } X \}$$

$$\eta_X = x \mapsto \delta_x \text{ (Dirac)}$$

$$\mu_X = \Phi \mapsto \sum_{\varphi \in \text{supp}(\Phi)} \Phi(\varphi) \cdot \varphi$$

▶ Transition system $t: X \to \mathcal{D}(X)$

$$t(x)(y) = \mathbb{P}[x \xrightarrow{t} y]$$

Categorically

Equationally

ightharpoonup Distribution monad \mathcal{D} :

$$\mathcal{D}(X) = \{ \text{finitely supported} \\ \text{probability distributions on } X \}$$

$$\eta_X = x \mapsto \delta_x \text{ (Dirac)}$$

$$\mu_X = \Phi \mapsto \sum_{\varphi \in \text{supp}(\Phi)} \Phi(\varphi) \cdot \varphi$$

▶ Transition system $t: X \to \mathcal{D}(X)$

$$t(x)(y) = \mathbb{P}[x \xrightarrow{t} y]$$

Categorically

 \triangleright Distribution monad \mathcal{D} :

$$\mathcal{D}(X) = \{ \text{finitely supported} \\ \text{probability distributions on } X \}$$

$$\eta_X = x \mapsto \delta_x \text{ (Dirac)}$$

$$\mu_X = \Phi \mapsto \sum_{\varphi \in \text{supp}(\Phi)} \Phi(\varphi) \cdot \varphi$$

▶ Transition system $t: X \to \mathcal{D}(X)$

$$t(x)(y) = \mathbb{P}[x \xrightarrow{t} y]$$

Equationally

► Theory of convex algebras: For each $p \in (0,1)$, a binary operation $+_p$ satisfying

$$x +_{p} x = x$$
 I_{p}
 $x +_{p} y = y +_{1-p} x$ C_{p}
 $(x +_{q} y) +_{p} z = x +_{pq} (y +_{\frac{p\overline{q}}{p\overline{q}}} z)$ A

Categorically

ightharpoonup Distribution monad \mathcal{D} :

$$\mathcal{D}(X) = \{ \text{finitely supported} \\ \text{probability distributions on } X \}$$

$$\eta_X = x \mapsto \delta_x \text{ (Dirac)}$$

$$\mu_X = \Phi \mapsto \sum_{\varphi \in \text{supp}(\Phi)} \Phi(\varphi) \cdot \varphi$$

▶ Transition system $t: X \to \mathcal{D}(X)$

$$t(x)(y) = \mathbb{P}[x \xrightarrow{t} y]$$

Equationally

► Theory of convex algebras: For each $p \in (0,1)$, a binary operation $+_p$ satisfying

$$x +_{p} x = x$$
 I_{p}
 $x +_{p} y = y +_{1-p} x$ C_{p}
 $(x +_{q} y) +_{p} z = x +_{pq} (y +_{\frac{pq}{pq}} z)$ A_{p}

Operational semantics

$$\frac{q \stackrel{\text{a},p}{\rightarrow} r \qquad q \stackrel{\text{a},1-p}{\rightarrow} s}{q \stackrel{\text{a}}{\rightarrow} r +_p s} \qquad \frac{q \stackrel{\text{a}}{\rightarrow} r \qquad q' \stackrel{\text{a}}{\rightarrow} r'}{q +_p q' \stackrel{\text{a}}{\rightarrow} r +_p r'}$$
$$\frac{q \downarrow o(q) \qquad r \downarrow o(r)}{q +_p r \downarrow po(q) + (1-p)o(r)}$$

Termination (in **Set**)

Categorically

Categorically

▶ Maybe monad \cdot + 1:

$$\begin{aligned} X+\mathbf{1} &= X \sqcup \{\star\} \\ \eta_X &= \mathsf{inl}^{X+\mathbf{1}} \\ \mu_X &= [\mathsf{inl}^{X+\mathbf{1}}, \mathsf{inr}^{X+\mathbf{1}}, \mathsf{inr}^{X+\mathbf{1}}] \end{aligned}$$

Categorically

▶ Maybe monad \cdot + 1:

$$\begin{split} X+\mathbf{1} &= X \sqcup \{\star\} \\ \eta_X &= \mathsf{inl}^{X+1} \\ \mu_X &= [\mathsf{inl}^{X+1}, \mathsf{inr}^{X+1}, \mathsf{inr}^{X+1}] \end{split}$$

▶ Transition system $t: X \to X + 1$

$$t(x) = \begin{cases} y & x \xrightarrow{t} y \\ \star & x \nrightarrow \end{cases}$$

Categorically

Maybe monad $\cdot + 1$:

$$\begin{split} X+\mathbf{1} &= X \sqcup \{\star\} \\ \eta_X &= \mathsf{inl}^{X+\mathbf{1}} \\ \mu_X &= [\mathsf{inl}^{X+\mathbf{1}}, \mathsf{inr}^{X+\mathbf{1}}, \mathsf{inr}^{X+\mathbf{1}}] \end{split}$$

▶ Transition system $t: X \to X + 1$

$$t(x) = \begin{cases} y & x \xrightarrow{t} y \\ \star & x \nrightarrow \end{cases}$$

Equationally

Categorically

► Maybe monad \cdot + 1:

$$\begin{split} X+\mathbf{1} &= X \sqcup \{\star\} \\ \eta_X &= \mathsf{inl}^{X+\mathbf{1}} \\ \mu_X &= [\mathsf{inl}^{X+\mathbf{1}}, \mathsf{inr}^{X+\mathbf{1}}, \mathsf{inr}^{X+\mathbf{1}}] \end{split}$$

► Transition system $t: X \to X + \mathbf{1}$

$$t(x) = \begin{cases} y & x \xrightarrow{t} y \\ \star & x \nrightarrow \end{cases}$$

Equationally

► Theory of pointed sets: A constant (0–ary) * with no axioms.

Categorically

► Maybe monad \cdot + 1:

$$\begin{split} X+\mathbf{1} &= X \sqcup \{\star\} \\ \eta_X &= \mathsf{inl}^{X+\mathbf{1}} \\ \mu_X &= [\mathsf{inl}^{X+\mathbf{1}}, \mathsf{inr}^{X+\mathbf{1}}, \mathsf{inr}^{X+\mathbf{1}}] \end{split}$$

► Transition system $t: X \to X + 1$

$$t(x) = \begin{cases} y & x \xrightarrow{t} y \\ \star & x \nrightarrow \end{cases}$$

Equationally

- ► Theory of pointed sets: A constant (0–ary) * with no axioms.
- ▶ Operational semantics

$$\frac{q \nrightarrow}{q \rightarrow \star}$$

Categorically

ightharpoonup Monad C:

$$C(X) = \{ \text{non-empty finitely generated}$$
 convex sets of distributions on $X \}$

$$\eta_X = x \mapsto \{\delta_x\}$$

$$\mu_X = F \mapsto \bigcup_{\Phi \in F} \left\{ \sum_{S \in \text{supp}(\Phi)} \Phi(S) \cdot \varphi_S \mid \varphi_S \in S \right\}$$

Categorically

ightharpoonup Monad C:

$$C(X) = \{ \text{non-empty finitely generated}$$
 convex sets of distributions on $X \}$

$$\eta_X = x \mapsto \{\delta_x\}$$

$$\mu_X = F \mapsto \bigcup_{\Phi \in F} \left\{ \sum_{S \in \text{supp}(\Phi)} \Phi(S) \cdot \varphi_S \mid \varphi_S \in S \right\}$$

▶ Transition system $t: X \to C(X)$

$$t(x) = \operatorname{conv}\{\varphi \in \mathcal{D}(X) \mid x \stackrel{t}{\to} \varphi\},\$$

where conv is the convex closure.

Categorically

Equationally

 \blacktriangleright Monad C:

$$C(X) = \{ \text{non-empty finitely generated}$$
 convex sets of distributions on $X \}$

$$\eta_X = x \mapsto \{\delta_x\}$$

$$\mu_X = F \mapsto \bigcup_{\Phi \in F} \left\{ \sum_{S \in \text{supp}(\Phi)} \Phi(S) \cdot \varphi_S \mid \varphi_S \in S \right\}$$

▶ Transition system $t: X \to C(X)$

$$t(x) = \operatorname{conv}\{\varphi \in \mathcal{D}(X) \mid x \stackrel{t}{\to} \varphi\},\$$

where conv is the convex closure.

Categorically

 \blacktriangleright Monad C:

$$\mathcal{C}(X) = \{ \text{non-empty finitely generated} \\ \text{convex sets of distributions on } X \}$$

$$\eta_X = x \mapsto \{\delta_x\}$$

$$\mu_X = F \mapsto \bigcup_{\Phi \in F} \left\{ \sum_{S \in \text{supp}(\Phi)} \Phi(S) \cdot \varphi_S \mid \varphi_S \in S \right\}$$

▶ Transition system $t: X \to C(X)$

$$t(x) = \operatorname{conv}\{\varphi \in \mathcal{D}(X) \mid x \xrightarrow{t} \varphi\},\$$

where conv is the convex closure.

Equationally

► Theory of convex semilattices: A semilattice operation and convex algebra operations that distribute

$$(x \oplus y) +_p z = (x +_p z) \oplus (y +_p z)$$

$$(D_p)$$

Categorically

 \blacktriangleright Monad \mathcal{C} :

$$C(X) = \{ \text{non-empty finitely generated} \\ \text{convex sets of distributions on } X \}$$

$$\eta_X = x \mapsto \{\delta_x\}$$

$$\mu_X = F \mapsto \bigcup_{\Phi \in F} \left\{ \sum_{S \in \text{supp}(\Phi)} \Phi(S) \cdot \varphi_S \mid \varphi_S \in S \right\}$$

▶ Transition system $t: X \to C(X)$

$$t(x) = \operatorname{conv}\{\varphi \in \mathcal{D}(X) \mid x \xrightarrow{t} \varphi\},\$$

where conv is the convex closure.

Equationally

[BSV19]

► Theory of convex semilattices: A semilattice operation and convex algebra operations that distribute

$$(x \oplus y) +_p z = (x +_p z) \oplus (y +_p z)$$

$$(D_p$$

Operational semantics: Combine all previous rules.

Categorically

▶ We switch from **Set** to **1Met**.

- ▶ We switch from **Set** to **1Met**.
- ightharpoonup Sets become metric spaces (X, d)which are 1-bounded, i.e.:

$$\forall x, y \in X, d(x, y) \leq 1.$$

- ▶ We switch from **Set** to **1Met**.
- Sets become metric spaces (X, d) which are 1-**bounded**, i.e.: $\forall x, y \in X, d(x, y) \leq 1$.
- ► Functions become **non-expansive** maps, i.e.: $f:(X, d_X) \rightarrow (Y, d_Y)$ satisfies

$$\forall x, x' \in X, d_Y(f(x), f(x')) \le d_X(x, x').$$

Categorically

- ▶ We switch from **Set** to **1Met**.
- Sets become metric spaces (X, d) which are 1**-bounded**, i.e.: $\forall x, y \in X, d(x, y) \leq 1$.
- ► Functions become **non-expansive** maps, i.e.: $f:(X, d_X) \rightarrow (Y, d_Y)$ satisfies

$$\forall x, x' \in X, d_Y(f(x), f(x')) \le d_X(x, x').$$

Equationally

Categorically

- ▶ We switch from **Set** to **1Met**.
- Sets become metric spaces (X, d) which are 1-**bounded**, i.e.: $\forall x, y \in X, d(x, y) \leq 1$.
- ► Functions become **non-expansive** maps, i.e.: $f:(X, d_X) \rightarrow (Y, d_Y)$ satisfies

$$\forall x, x' \in X, d_Y(f(x), f(x')) \le d_X(x, x').$$

Equationally

Equations become quantitative

$$x =_{\varepsilon} y \qquad (\varepsilon \in [0,1])$$

Categorically

- ▶ We switch from **Set** to **1Met**.
- Sets become metric spaces (X, d) which are 1**-bounded**, i.e.: $\forall x, y \in X, d(x, y) \leq 1$.
- ► Functions become **non-expansive** maps, i.e.: $f:(X, d_X) \rightarrow (Y, d_Y)$ satisfies

$$\forall x, x' \in X, d_Y(f(x), f(x')) \le d_X(x, x').$$

Equationally

► Equations become quantitative

$$x =_{\varepsilon} y \qquad (\varepsilon \in [0,1])$$

Quantitative equational logic

Quantitative Equational Logic

Introduced by Mardare, Panangaden and Plotkin [MPP16].

Categorically

▶ Hausdorff lifting of $d: X \times X \rightarrow [0,1]$ into $H(d): \mathcal{P}(X) \times \mathcal{P}(X) \rightarrow [0,1]$:

$$H(d)(S,T) = \max \left\{ \sup_{s \in S} \inf_{t \in T} d(s,t), \sup_{t \in T} \inf_{s \in S} d(s,t) \right\}$$

Categorically

▶ Hausdorff lifting of $d: X \times X \rightarrow [0,1]$ into $H(d): \mathcal{P}(X) \times \mathcal{P}(X) \rightarrow [0,1]$:

$$H(d)(S,T) = \max \left\{ \sup_{s \in S} \inf_{t \in T} d(s,t), \sup_{t \in T} \inf_{s \in S} d(s,t) \right\}$$

▶ Hausdorff lifting of \mathcal{P} : $\widehat{\mathcal{P}}(X,d) = (\mathcal{P}(X),H(d))$.

Categorically

▶ Hausdorff lifting of $d: X \times X \rightarrow [0,1]$ into $H(d): \mathcal{P}(X) \times \mathcal{P}(X) \rightarrow [0,1]$:

$$H(d)(S,T) = \max \left\{ \sup_{s \in S} \inf_{t \in T} d(s,t), \sup_{t \in T} \inf_{s \in S} d(s,t) \right\}$$

▶ Hausdorff lifting of \mathcal{P} : $\widehat{\mathcal{P}}(X,d) = (\mathcal{P}(X),H(d))$.

Equationally

Categorically

▶ Hausdorff lifting of $d: X \times X \to [0,1]$ into $H(d): \mathcal{P}(X) \times \mathcal{P}(X) \to [0,1]$:

$$H(d)(S,T) = \max \left\{ \sup_{s \in S} \inf_{t \in T} d(s,t), \sup_{t \in T} \inf_{s \in S} d(s,t) \right\}$$

▶ Hausdorff lifting of \mathcal{P} : $\widehat{\mathcal{P}}(X,d) = (\mathcal{P}(X),H(d))$.

Equationally

▶ Theory of quantitative (sup-)semilattices: binary operation ⊕ satisfying

$$\vdash x \oplus x =_{0} x \qquad I$$

$$\vdash x \oplus y =_{0} y \oplus x \qquad C$$

$$\vdash (x \oplus y) \oplus z =_{0} x \oplus (y \oplus z) \qquad A$$

$$x_{1} =_{\varepsilon_{1}} y_{1}, x_{2} =_{\varepsilon_{2}} y_{2} \vdash x_{1} \oplus x_{2} =_{\max\{\varepsilon_{1}, \varepsilon_{2}\}} y_{1} \oplus y_{2} \qquad H$$

Categorically

► Kantorovitch lifting of $d: X \times X \rightarrow [0,1]$ into $K(d): \mathcal{D}(X) \times \mathcal{D}(X) \rightarrow [0,1]$:

$$K(d)(\varphi,\psi) = \inf_{\omega} \sum_{x_1,x_2 \in X} \omega(x_1,x_2) \cdot d(x_1,x_2),$$

where ω ranges over couplings of φ and ψ .

Categorically

► Kantorovitch lifting of $d: X \times X \rightarrow [0,1]$ into $K(d): \mathcal{D}(X) \times \mathcal{D}(X) \rightarrow [0,1]$:

$$K(d)(\varphi,\psi) = \inf_{\omega} \sum_{x_1,x_2 \in X} \omega(x_1,x_2) \cdot d(x_1,x_2),$$

where ω ranges over couplings of φ and ψ .

► Kantorovitch lifting of \mathcal{D} : $\widehat{\mathcal{D}}(X,d) = (\mathcal{D}(X),K(d))$.

Categorically

► Kantorovitch lifting of $d: X \times X \rightarrow [0,1]$ into $K(d): \mathcal{D}(X) \times \mathcal{D}(X) \rightarrow [0,1]$:

$$K(d)(\varphi,\psi) = \inf_{\omega} \sum_{x_1,x_2 \in X} \omega(x_1,x_2) \cdot d(x_1,x_2),$$

where ω ranges over couplings of φ and ψ .

► Kantorovitch lifting of \mathcal{D} : $\widehat{\mathcal{D}}(X,d) = (\mathcal{D}(X),K(d))$.

Equationally

Categorically

► Kantorovitch lifting of $d: X \times X \to [0,1]$ into $K(d): \mathcal{D}(X) \times \mathcal{D}(X) \to [0,1]$:

$$K(d)(\varphi,\psi) = \inf_{\omega} \sum_{x_1,x_2 \in X} \omega(x_1,x_2) \cdot d(x_1,x_2),$$

where ω ranges over couplings of φ and ψ .

► Kantorovitch lifting of \mathcal{D} : $\widehat{\mathcal{D}}(X,d) = (\mathcal{D}(X),K(d))$.

Equationally

► Theory of quantitative convex algebras

Categorically

► The maybe monad $\cdot + \hat{1}$ puts \star at distance 1 from every other point:

$$X + \widehat{\mathbf{1}} = X \sqcup \{\star\}$$
$$(d + d_{\widehat{\mathbf{1}}})(x, y) = \begin{cases} 1 & x =_0 \star \lor y = \star \\ d(x, y) & \text{otherwise} \end{cases}$$

Categorically

Equationally

► The maybe monad $\cdot + \hat{1}$ puts \star at distance 1 from every other point:

$$X + \widehat{\mathbf{1}} = X \sqcup \{\star\}$$
$$(d + d_{\widehat{\mathbf{1}}})(x, y) = \begin{cases} 1 & x =_0 \star \lor y = \star \\ d(x, y) & \text{otherwise} \end{cases}$$

Categorically

► The maybe monad $\cdot + \hat{1}$ puts \star at distance 1 from every other point:

$$X+\widehat{\mathbf{1}}=X\sqcup\{\star\}$$

$$(d+d_{\widehat{\mathbf{1}}})(x,y)=\begin{cases} 1 & x=_0\star\vee y=\star\\ d(x,y) & \text{otherwise} \end{cases}$$

Equationally

► Theory of pointed spaces:

$$\vdash x =_1 \star$$

Categorically

Combine Kantorovitch and Hausdorff lifting of $d: X \times X \to [0,1]$ to obtain $\widehat{\mathcal{C}}(X,d) = (\mathcal{C}(X), HK(d)).$

Categorically

► Combine Kantorovitch and Hausdorff lifting of $d: X \times X \to [0,1]$ to obtain $\widehat{\mathcal{C}}(X,d) = (\mathcal{C}(X), HK(d)).$

Equationally

Nondeterminism and Probability (in 1Met)

Categorically

► Combine Kantorovitch and Hausdorff lifting of $d: X \times X \to [0,1]$ to obtain $\widehat{C}(X,d) = (C(X),HK(d))$.

Equationally

Quantitative theory of convex semilattices: combine all previous axioms plus

$$\vdash (x \oplus y) +_p z =_0 (x +_p z) \oplus (y +_p z) \qquad D_p$$

[MV20]

Categorically

Categorically

For any monad M, $M(\cdot + 1)$ is a monad.

Categorically

- For any monad M, $M(\cdot + 1)$ is a monad.
- ▶ On **Set**: $C(\cdot + 1)$ is the monad of non-empty finitely generated convex sets of *subdistributions* on X.

Categorically

- For any monad M, $M(\cdot + 1)$ is a monad.
- ▶ On **Set**: $C(\cdot + 1)$ is the monad of non-empty finitely generated convex sets of *subdistributions* on X.
- Similarly on **1Met**: the monad is $\widehat{C}(\cdot + \widehat{\mathbf{1}})$.

Categorically

- For any monad M, $M(\cdot + 1)$ is a monad.
- ▶ On **Set**: $C(\cdot + 1)$ is the monad of non-empty finitely generated convex sets of *subdistributions* on X.
- Similarly on **1Met**: the monad is $\widehat{C}(\cdot + \widehat{1})$.

Equationally

Categorically

- For any monad M, $M(\cdot + 1)$ is a monad.
- ▶ On **Set**: $C(\cdot + 1)$ is the monad of non-empty finitely generated convex sets of *subdistributions* on X.
- Similarly on **1Met**: the monad is $\widehat{C}(\cdot + \widehat{\mathbf{1}})$.

Equationally

▶ On **Set**: $C(\cdot + 1)$ is presented by the theory of pointed convex semilattices.

Categorically

- For any monad M, $M(\cdot + 1)$ is a monad.
- ➤ On Set: C(·+1) is the monad of non-empty finitely generated convex sets of *subdistributions* on X.
- Similarly on **1Met**: the monad is $\widehat{C}(\cdot + \widehat{\mathbf{1}})$.

Equationally

- ➤ On Set: C(·+1) is presented by the theory of pointed convex semilattices.
- ▶ On **1Met**: $\widehat{C}(\cdot + \widehat{\mathbf{1}})$ is presented by the theory of quantitative pointed convex semilattices.

On Set

▶ We define the monad $C + \mathbf{1}$ for *possibly empty* finitely generated convex sets of distributions on X.

- ▶ We define the monad C + 1 for *possibly empty* finitely generated convex sets of distributions on X.
- ▶ \star behaves like the empty set, i.e.: C + 1 is presented by convex semilattices with *bottom* and *black-hole*:

On Set

- ▶ We define the monad $C + \mathbf{1}$ for *possibly empty* finitely generated convex sets of distributions on X.
- ▶ \star behaves like the empty set, i.e.: C + 1 is presented by convex semilattices with *bottom* and *black-hole*:

On 1Met

On Set

- ▶ We define the monad C + 1 for *possibly empty* finitely generated convex sets of distributions on X.
- ▶ \star behaves like the empty set, i.e.: C + 1 is presented by convex semilattices with *bottom* and *black-hole*:

$$x \oplus \star = x$$
 (\perp) $x +_p \star = \star$ (BH_p)

On 1Met

► The black-hole equation trivializes the theory.

On Set

- ▶ We define the monad $C + \mathbf{1}$ for *possibly empty* finitely generated convex sets of distributions on X.
- ▶ \star behaves like the empty set, i.e.: C + 1 is presented by convex semilattices with *bottom* and *black-hole*:

$$x \oplus \star = x$$
 (\perp) $x +_p \star = \star$ (BH_p)

On 1Met

- ► The black-hole equation trivializes the theory.
- ▶ There is (probably) no monad C + 1 on **1Met**.

- ► Remove the black-hole equation.
- ▶ This theory presents the monad C^{\downarrow} for \bot -closed finitely generated convex sets of subdistributions on X.

- Remove the black-hole equation.
- ▶ This theory presents the monad C^{\downarrow} for \bot –closed finitely generated convex sets of subdistributions on X.
- ► $S \in C(X + 1)$ is \perp -closed iff $\forall \varphi \in S$,

$$\{\psi \in \mathcal{C}(X+\mathbf{1}) \mid \forall x \in X, \psi(x) \le \varphi(x)\} \subseteq S$$

- ► Remove the black-hole equation.
- ▶ This theory presents the monad C^{\downarrow} for \bot –closed finitely generated convex sets of subdistributions on X.
- ► $S \in \mathcal{C}(X+1)$ is \perp -closed iff $\forall \varphi \in S$, $\{\psi \in \mathcal{C}(X+1) \mid \forall x \in X, \psi(x) \leq \varphi(x)\} \subseteq S$

Figure 1: Examples of \perp -closed sets.

On Set

- Remove the black-hole equation.
- ▶ This theory presents the monad C^{\downarrow} for \bot -closed finitely generated convex sets of subdistributions on X.
- ► $S \in C(X + 1)$ is \perp -closed iff $\forall \varphi \in S$,

$$\{\psi \in \mathcal{C}(X+\mathbf{1}) \mid \forall x \in X, \psi(x) \le \varphi(x)\} \subseteq S$$

On 1Met

Figure 1: Examples of \perp -closed sets.

On Set

- ► Remove the black-hole equation.
- ▶ This theory presents the monad C^{\downarrow} for \bot –closed finitely generated convex sets of subdistributions on X.
- $S \in \mathcal{C}(X+1) \text{ is } \bot \text{-closed iff } \forall \varphi \in S,$

$$\{\psi \in \mathcal{C}(X+\mathbf{1}) \mid \forall x \in X, \psi(x) \le \varphi(x)\} \subseteq S$$

On 1Met

The theory of quantitative convex semilattices with bottom corresponds to C[↓] with the Kantorovitch and Hausdorff liftings of the metrics.

Figure 1: Examples of \perp -closed sets.

Summary

On Set		On 1Met	
$\overline{\mathcal{P}}$	Semilattices	$ \widehat{\mathcal{P}} $	Quantitative semilattices
${\cal D}$	Convex algebras	$\widehat{\mathcal{D}}$	Quantitative convex algebras
$\cdot + 1$	Pointed sets	$\cdot + \hat{1}$	Pointed spaces
$\mathcal C$	Convex semilattices (CS)	$\widehat{\mathcal{C}}$	Quantitative CS
$\mathcal{C}(\cdot + 1)$	Pointed CS	$\widehat{\mathcal{C}}(\cdot + \widehat{1})$	Quantitative pointed CS
$\mathcal{C}+1$	CS with \perp and black-hole	Trivial	Quantitative CS with \perp and black-hole
\mathcal{C}^{\downarrow}	CS with \perp	$\widehat{\mathcal{C}}^{\downarrow}$	Quantitative CS with \perp

Applications

See Section VI of preprint.

Future Work

► Can our results be obtained *compositionally*?

Future Work

► Can our results be obtained *compositionally*? Close to answering yes with Daniela Petrişan.

Future Work

- ► Can our results be obtained *compositionally*? Close to answering yes with Daniela Petrişan.
- ▶ Where can quantitative algebraic reasoning be applied?

References

- [BSV19] Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. "The Theory of Traces for Systems with Nondeterminism and Probability". In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. IEEE, 2019, pp. 1–14. DOI: 10.1109/LICS.2019.8785673.
- [MPP16] Radu Mardare, Prakash Panangaden, and Gordon D. Plotkin. "Quantitative Algebraic Reasoning". In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, New York, NY, USA, July 5-8, 2016. Ed. by Martin Grohe, Eric Koskinen, and Natarajan Shankar. ACM, 2016, pp. 700–709. DOI: 10.1145/2933575.2934518. URL: https://doi.org/10.1145/2933575.2934518.
- [MV20] Matteo Mio and Valeria Vignudelli. "Monads and Quantitative Equational Theories for Nondeterminism and Probability". In: *CoRR* abs/2005.07509 (2020). arXiv: 2005.07509. URL: https://arxiv.org/abs/2005.07509.

Merci!