CS271-Optimization Techniques Simplex

Suraj S Warrier 2101CS75

MATLAB:

Code for MATLAB:

```
f=[-1 -2 -3 +1]
f =
 -1 -2 -3 1
 A=[1 2 3 0; 2 1 5 0; 1 2 1 1]
A =
  1
     2 3 0
  2
    1
        5 0
     2
       1
 B=[15 20 10]
B =
 15 20 10
 Aeq=A
Aeq =
  1
     2
        3 0
  2
    1 5 0
     2
  1
       1 1
 Beq=B
Beq =
 15 20 10
 lb=[0 0 0 0]
lb=
 0 0 0 0
 ub=[]
ub=
```

[]

[X, Z]=linprog(f,A,B,Aeq,Beq,lb,ub)

Optimal solution found.

```
X =
2.5000
2.5000
2.5000
0
Z =
-15
Z = Z^*(-1)
Z =
15
```

Output for MATLAB:-

```
Optimal solution found.

X =
        2.5000
        2.5000
        2.5000
        0

Z =
        -15
>> Z=Z*(-1)

Z =
        15
```

<u>TORA</u> :-

Input Table

INPUT GRID - LINEAR PROGRAMMING						
	x1	x2	х3	х4	Enter <, >, or =	R.H.S.
Var. Name						
Maximize	1.00	2.00	3.00	-1.00		
Constr 1	1.00	2.00	3.00	0.00	=	15.00
Constr 2	2.00	1.00	5.00	0.00	=	20.00
Constr 3	1.00	2.00	1.00	1.00	=	10.00
Lower Bound	0.00	0.00	0.00	0.00		
Upper Bound	infinity	infinity	infinity	infinity		
Unrestr'd (y/n)?	n	n	n	n		

LINEAR PROGRAM – ORIGINAL DATA

	x1	x2	x3	x4		
Maximize	1.00	2.00	3.00	-1.00		
Subject to						
(1)	1.00	2.00	3.00	0.00	=	15.00
(2)	2.00	1.00	5.00	0.00	=	20.00
(3)	1.00	2.00	1.00	1.00	=	10.00
Lower Bound	0.00	0.00	0.00	0.00		
Upper Bound	infinity	infinity	infinity	infinity		
Unrestr'd (y/n)?	'n	'n	'n	'n		

OUTPUT for TORA:

LINEAR PROGRAMMING OUTPUT SUMMARY

Final Iteration No.: 7 Objective Value = 15

Variable	Value	Obj Coeff	Obj Val Contrib	
x1:	2.50	1.00	2.50	
x2:	2.50	2.00	5.00	
x3:	2.50	3.00	7.50	
x4:	0.00	-1.00	0.00	
Constraint	RHS	Slack-/Surplus+		
1 (=)	15.00	0.00		
2 (=)	20.00	0.00		
3 (=)	10.00	0.00		

Sensitivity Analysis

Variable	Current Obj Coeff	Min Obj Coeff	Max Obj Coeff	Reduced Cost
x1:	1.00	0.14	infinity	0.00
x2:	2.00	-4.00	infinity	0.00
x3:	3.00	-infinity	5.0Ó	0.00
x4:	-1.00	-infinity	0.00	1.00
Constraint	Current RHS	Min RHS	Max RHS	Dual Price
1 (=)	15.00	10.00	16.67	1.00
2 (=)	20.00	16.25	27.50	0.00
3 (=)	10.00	7.86	15.00	0.00