Mrs. Rima S. & Mrs. Ayda K.
Coordinator: Mrs. Fatima I.
Grade 10; Section:

1. Acid Vs. Base

Type	Acid (HX)	Base (B or YOH)
Definition	A substance that produces H ⁺ ion in	A substance that captures H ⁺ ion or gives OH ⁻ ion in
	aqueous solution	aqueous solution.
Reaction		
in	$HX + H_2O \rightarrow H_3O^+ + X^-$	$B + H_2O \rightarrow BH^+ + OH^-$
Aqueous		
solution		
(water)		
Example	$HCl + H_2O \rightarrow H_3O^+ + Cl^-$	$NaOH \rightarrow Na^+ + OH^-$ (in the presence of water)
	$HBr + H_2O \rightarrow H_3O^+ + Br^-$	$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$
pН	pH < 7	pH > 7
[H ₃ O ⁺]	$[H_3O^+] > 10^{-7}$	$[H_3O^+] < 10^{-7}$
[OH-]	[OH ⁻] < 10 ⁻⁷	[OH ⁻] >10 ⁻⁷
Color	Red	Blue
change		
with		
litmus		
paper		

2. What is pH and how it can be measured?

pH is the measurement of the hydrogen ion $[H^+]$ or hydronium ion concentration $[H_3O^+]$. Every aqueous solution can be measured to determine its pH value. This value ranges from 0 to 14.

Measuring pH

H₃O⁺ concentrations can be measured with an:

- Electronic pH meter:
 - fast and accurate
 - preferred method.

- Acid-base Indicator:
 - substance that changes color within a narrow pH range
 - may have multiple color change (e.g. bromthymol blue)
 - one "color" may be colorless (e.g. phenolphthalein)
 - cheap and convenient.

How to check the pH of the solution?

Grade 10; Section:

3. Relation between concentration of hydronium ion ([H₃O⁺]) and pH.

$$[H_3O^+] = 10^{-pH}$$
 and $pH = -\log [H_3O^+]$

 $Kw = [H_3O^+][OH^-] = 10^{-14}$

Example.

Ex 1: A solution has pH = 3.2.

- 1. Calculate the concentration of hydronium ion that is presented in the solution.
- 2. Deduce the concentration of hydroxide ion that is presented in the solution.

Ex 2: A solution contains hydronium ions of concentration 0.01 mol/l.

- 1. Calculate the pH of this solution.
- 2. Deduce the concentration of hydroxide ions.

Ex 3: use the figure.

- 1. Indicate the pH of rain.
- 2. Deduce the nature of rain.
- 3. Calculate the concentration of hydronium ion and hydroxide ion that are presented in rain water.
- 4. Knowing that the average volume of a rain drop is 1 mL. Calculate the number of moles of hydronium ion that is presented in a rain drop.

Ex 4: The concentration of hydroxide ion in an unknown solution is $1.258 \times 10^{-6} \text{ mol/L}$

1. Use the figure to identify this solution.

