Abiturprüfung ab 2024	Berufliches Gymnasium (TG)	Anlage 7.1
Formelsammlung	1.5.2 Informationstechnik	Š

Formelsammlung

1.5.2 TG Informationstechnik

Version: V 4.30

Gültig ab Abitur 2024

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

Inhaltsverzeichnis:

1	Beschreibung von Systemzuständen mit UML-Zustandsdiagrammen	4
	.1 UML-Zustandsdiagramme (allgemein)	2
	.2 Begriffserklärung für UML-Zustandsdiagramme	5
	.3 Ergänzungen für Mikrocontroller	5
	1.3.1 Zustandsdefinition in C/CPP	5
	1.3.2 Zustandsvariable C/CPP	5
	1.3.3 Der Start-Pseudozustand	6
	1.3.4 Verhalten	6
	1.3.5 Zustandsübergang mit Wächterbedingung	6
	1.3.6 Zustandsübergang mit Ereignis und Wächterbedingung	7
	1.3.7 Selbsttransition und internes Ereignis	
	1.3.8 Varianten von Transitionen	
2	Hardware - Digitaltechnik	9
	.1 Logikgatter	
	.2 Schaltnetze	
	.3 Schaltwerke	
	2.3.1 Taktgenerator	11
	2.3.2 Flip-Flops	
	2.3.3 RAM	11
	2.3.4 ROM	11
	2.3.5 Schieberegister	12
	2.3.6 Zähler (Blockschaltbild)	12
	2.3.7 Zähler (4-Bit)	12
	.4 Sensoren	12
	.5 Aktoren	13
3	Hardware - Mikrocontrollertechnik	13
	.1 Blockschaltbild "Prüfungscontroller"	13
	.2 Prozessorarchitektur	
	3.2.1 Programmiermodell	14
	3.2.2 Prozessorkern CPU	14
	3.2.3 Blockschaltbild Mikrocontroller	15
	3.2.4 Befehlspipeline einer RISC-CPU	15
	3.2.5 Speicherarchitektur	15
	.3 Onchip Peripherie	16
	3.3.1 Externer Interrupt	16
	3.3.2 Timer	16
	3.3.3 Puls-Weiten-Modulation (PWM)	17
	3.3.4 Analog – Digital – Wandlung	17
	3.3.5 Digital – Analog – Wandlung	17
	.4 Externe Kommunikationsmöglichkeiten	18
	3.4.1 Serial Peripheral Interface (SPI)	
	3.4.2 Universal Asynchronous Receiver Transmitter (UART)	18
	3.4.3 Inter-Integrated Circuit (I ² C) SCL (Serial Clock): Taktleitung SDA (Serial Data): Datenleitung	19
	.5 Glossar	20
4	Programmentwicklung und Objektorientierter Entwurf	22
	.1 Vergleichsoperatoren für Bedingungen (Pseudocode)	
	.2 Kontrollstrukturen (Pseudocode)	
	.3 Datentypen	
	4.3.1 Elementare Datentypen	
	4.3.2 Komplexe Datentypen	23

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

	4.4	Klassen	24
	4.4.	Attribute	24
	4.4.2		
	4.4.3	·	
	4.4.4		
	4.5	Vererbung	
	4.6	Abstrakte Klassen und Schnittstellen	26
	4.7	Objektdiagramme	27
	4.8	Sequenzdiagramme	
	4.9	Zustandsdiagramme	
5	Date	enstrukturen	31
	5.1	Verkettete Liste	
	5.2	Stapel	31
	5.3	Warteschlange	
	5.4	Binärbaum	
	5.4.	Beispiel für einen Binärbaum der Tiefe 3	32
	5.4.2		
	5.4.3	B Operation ausgebenDatenInorder() der Klasse Knoten in Pseudocode	33
6	Kür	stliche Intelligenz	
	6.1	Klassifikation	
7	Date	enbanken	
•	7.1	Datenbankmanagementsystem	
	7.2	Entity-Relationship-Diagramm (ER-Diagramm)	
	7.3	Relationenmodell	
	7.4	Abfrageformulierung mit SQL	
	7.4.		
	7.4.2	-,	
	7.4.3		
	7.4.4		
	7.4.5		
	7.4.6		
	7.4.7	• •	
8	Ver	netzte Systeme	
_	8.1	Netzwerktechnik	
	8.1.	Netzwerksymbole	41
	8.1.2		
	8.1.3		
	8.1.4	Aufbau IPv6-Adresse	42
	8.2	Schichtenmodelle	43
	8.2.	ISO-OSI-7-Schichtenmodell	43
	8.2.2	2 TCP-IP-Schichtenmodell	43
	8.3	Header	43
	8.3.	Ethernet II	43
	8.3.2	Pv4-Header	43
	8.3.3		
	8.3.4	TCP –Header	44
	8.3.5	5 UDP –Header	44
	8.4	Internet der Dinge (IoT)	
	8.4.		
	8.4.2		

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

1 Beschreibung von Systemzuständen mit UML-Zustandsdiagrammen

1.1 UML-Zustandsdiagramme (allgemein)

/ Verhalten

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

1.2 Begriffserklärung für UML-Zustandsdiagramme

1.3 Ergänzungen für Mikrocontroller

Hinweis: Die folgenden Codebeispiele sind nicht verbindlich

1.3.1 Zustandsdefinition in C/CPP

Zustände sollten aus Gründen der Übersichtlichkeit Namen gegeben werden. Dadurch wird der Zusammenhang von Zustandsdiagramm und Programm verdeutlicht.

Allgemein	Beispiel
#define Zustandsname Zustandsnummer	#define Init 0 #define Blinken 1
oder	
<pre>enum zustandstyp {Zustandsname=Zustandsnummer, }</pre>	<pre>enum zustandstyp {Init=0, Blinken=1,};</pre>

1.3.2 Zustandsvariable C/CPP

Ein Zustand kann durch eine Zustandsvariable gekennzeichnet werden:

Beispiele	Erklärung
int zustand;	Zustandsvariable vom Typ int
PortOut zustand(PortC,0xFF);	Eine Portkonfiguration repräsentiert den Zustand
zustandstyp zustand;	Zustandsvariable als enum (siehe oben)

Hinweis: Eine Zustandsvariable kann auch ein Ausgangsport des Mikrocontrollers sein (2. Beispiel). In diesem Fall bewirkt ein Zustandswechsel gleichzeitig, dass die Ausgänge entsprechend dem neuen Zustand angepasst werden.

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

1.3.3 Der Start-Pseudozustand

Die meisten Zustandsdiagramme beginnen mit einem Start-Pseudozustand:

Der ausgefüllte Kreis symbolisiert den Startpunkt des Zustandsdiagramms. Oft ist er mit dem Start des Mikrocontrollerprogramms gleich zu setzen. Die Transition vom Startpunkt zum ersten Zustand ist immer unbeschriftet.

1.3.4 Verhalten

Verhalten sind Operationen oder Anweisungen, die an bestimmten Stellen des Zustandsdiagramms ausgeführt werden

Verhalten	Ausführung	Beispiel
Entry-Verhalten	bei Eintritt in einen Zustand	op1()
Do-Verhalten	andauernd, solange der Zustand anhält	op2()
Exit-Verhalten	bei Verlassen des Zustands	op3()
Verhalten an der Transition	beim Zustandswechsel	op4()
Verhalten am internen Ereignis	Wenn das interne Ereignis eintritt und gegebenenfalls eine Wächterbedingung erfüllt ist	op5()

1.3.5 Zustandsübergang mit Wächterbedingung

```
int main() {
                                while(true) {
                                   switch (zustand) {
       Α
                                      case A:
exit/exitA()
                                          if (Wächterbedingung) {
                                             exitA();
                                             transitionAB();
 [Wächterbedingung]
                                             zustand=B;
 /transitionAB()
                                             entryB();
                                          break;
       В
                                      case B:
entry/entryB()
                                          break;
                                   }
                                }
                             }
```

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

In der Endlosschleife wird zuerst der Zustand geprüft. Falls sich der Mikrocontroller im Zustand A befindet, wird die Wächterbedingung an der Transition überprüft. Falls die Wächterbedingung erfüllt ist, erfolgt der Zustandswechsel. Es werden dann in folgender Reihenfolge die Verhalten ausgeführt:

1. Exit-Verhalten von Zustand A: exitA()

Verhalten an der Transition: transitionAB()
 Zustandswechsel: zustand=B

4. Entry-Verhalten von Zustand B: entryB()

1.3.6 Zustandsübergang mit Ereignis und Wächterbedingung

```
void ereignis() {
                                switch (zustand) {
                                   case A:
exit/exitA()
                                       if (Wächterbedingung) {
                                          exitA();
 ereianis()
                                          transitionAB();
 [Wächterbedingung]
                                          zustand=B;
 /transitionAB()
                                          entryB();
                                       }
       В
                                       break;
                                    case B:
entry/entryB()
                                       break;
                                }
```

Es gibt **Aufruf-** und **Signal-Ereignisse**. Bei Signal-Ereignissen handelt es sich um Interrupts. Als Ereignisbezeichnung wird der Name der **Interrupt Service Routine** (**ISR**) verwendet.

In der ISR wird zuerst der Zustand geprüft. Falls sich der Mikrocontroller im Zustand A befindet, wird die Wächterbedingung an der Transition überprüft. Falls die Wächterbedingung erfüllt ist, erfolgt der Zustandswechsel. Es wird dann in folgender Reihenfolge das Verhalten ausgeführt:

Exit-Verhalten von Zustand A: exitA()

2. Verhalten an der Transition: transitionAB()

3. Zustandswechsel: zustand=B

4. Entry-Verhalten von Zustand B: entryB()

1.3.7 Selbsttransition und internes Ereignis

Selbsttransition

In der ISR ereignis() wird zuerst der Zustand geprüft. Falls sich der Mikrocontroller im Zustand A befindet, wird die Wächterbedingung, falls vorhanden, an der Transition überprüft. Falls die Wächterbedingung erfüllt ist, erfolgt der Zustandswechsel wieder nach A. Es werden nacheinander die exit-, Transitions- und entry-Verhalten ausgeführt.

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

Internes Ereignis

```
ereignis()[Waechterbedingung]\bearbeite()

| Switch (zustand) {
| case B: | | if (Waechterbedingung) | bearbeite(); | break; | }
| }
```

In der ISR ereignis() wird zuerst der Zustand geprüft. Falls sich der Mikrocontroller im Zustand B befindet, wird die Wächterbedingung, falls vorhanden, an der Transition überprüft. Falls die Wächterbedingung erfüllt ist, wird der Code, der zu diesem Ereignis in diesem Zustand gehört ausgeführt.

1.3.8 Varianten von Transitionen

Transitionen bezeichnen Zustandsübergänge und werden als Pfeil mit offener Spitze vom Ausgangszustand zum Zielzustand gezeichnet.

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

2 Hardware - Digitaltechnik

2.1 Logikgatter

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

2.2 Schaltnetze

BCD zu 7 Seg

Vergleicher

BSB Codewandler

Halbaddierer

Volladdierer

MUX (8 zu 1)

С	В	Α	CS	Υ
Х	Х	Х	1	0
0	0	0	0	D0
0	0	1	0	D1
0	1	0	0	D2
0	1	1	0	D3
1	0	0	0	D4
1	0	1	0	D5
1	1	0	0	D6
1	1	1	0	D7

x $\hat{=}$ don't care

Adress- und Datenleitungen können auch zusammen-gefasst werden

CS = chip select (low active)

DEMUX (1 zu 4) **Decodierer**

В	Α	CS	Y3	Y2	Y1	Y0
Χ	Χ	1	0	0	0	0
0	0	0	0	0	0	S
0	1	0	0	0	S	0
1	0	0	0	S	0	0
1	1	0	S	0	0	0

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

2.3 Schaltwerke

2.3.1 Taktgenerator

2.3.2 Flip-Flops

D-Flip-Flop

Takt	D	Qn+1
1	0	0
1	1	1
sonst	Χ	Qn

RS-Flip-Flop

Takt	R	S	Q ⁿ⁺¹
1	0	0	Q ⁿ
1	1	0	0
1	0	1	1
1	1	1	Undefiniert
sonst	Χ	Χ	Q ⁿ

2.3.3 RAM

Schreib-Lese-Speicher mit 64 mal 4 Bit

- 4-Bit Registerbreite
- 64 Register gesamt
- A0-A5: Adresseingänge
- **D0-D3**: Ein-/Ausgabe des Speicherinhalts
- WR=0: lesen (von D0-D3 in den Speicher)
 - WR=1: schreiben (vom Speicher an D0-D3)
- **OE=1**: Tri-State
- **OE=0**: Speicherinhalt lesen
- EN=0: aktiviert den Baustein

2.3.4 ROM

Festwertspeicher mit 1024 (1KiBi) mal 4 Bit

- A0-A9: Adresseingänge
- **OE=1:** Tri-State
- **OE=0:** Speicherinhalt lesen
- **EN=0**: aktiviert den Baustein
- Q0-Q3: Wert der Speicherzelle an Adresse A

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

2.3.5 Schieberegister

Beispiel: Seriell In => Parallel Out

2.3.6 Zähler (Blockschaltbild)

Mit jeder steigenden Flanke an **CLK** wird der Zählerwert um 1 erhöht. Nach dem maximalen Wert wird der Zählwert wieder auf 0 gesetzt.

- CTR: Zähler (counter)
- **DIV 4:** 4 verschiedene binäre Zustände
- CLR = 0 setzt den Counter auf den Wert 0 zurück
- Q_n gibt den Zählerzustand aus

2.3.7 Zähler (4-Bit)

- CTR: Zähler (counter)
- DIV 16: 16 verschiedene binäre Zustände
- Vorwärtszähler (+)
- EN = 1 und die positive Taktflanke führen zum nächsten Zählzustand
- Mit **LOAD** = **0** kann ein Anfangszustand geladen werden
- **CLR = 0** setzt den Counter auf den Wert 0 zurück

2.4 Sensoren

Taster mit Pull-Up-Widerstand

Taster mit Pull-Down Widerstand

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

2.5 Aktoren

3 Hardware - Mikrocontrollertechnik

3.1 Blockschaltbild "Prüfungscontroller"

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

3.2 Prozessorarchitektur

3.2.1 Programmiermodell

3.2.2 Prozessorkern CPU

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

3.2.3 Blockschaltbild Mikrocontroller

3.2.4 Befehlspipeline einer RISC-CPU

3.2.5 Speicherarchitektur

15

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

3.3 Onchip Peripherie

3.3.1 Externer Interrupt

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

3.3.3 Puls-Weiten-Modulation (PWM)

3.3.4 Analog - Digital - Wandlung

Berechnungsformeln

Rohwandelwert =
$$\frac{U_e}{U_{max}} \cdot \left(2^{Bitzahl} - 1\right)$$
 z.B. $\frac{U_e}{3,3V} \cdot 4095$ Wandelwert als Kommazahl: $x = (Ue/Umax)$ z.B. $x = (Ue/3.3)$ Stufung (analoge Auflösung): Umax/4095 z.B. $3,3V/4095$ Wandelwert als Ganzzahl linksbündig: unsigned short $x = (Ue/Umax) * 65535$

3.3.5 Digital - Analog - Wandlung

Berechnungsformeln

float x:
$$U_a = x \cdot 3,3V$$
 unsigned short x:
$$U_a = \frac{x \cdot 3,3V}{65535}$$

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

3.4 Externe Kommunikationsmöglichkeiten

3.4.1 Serial Peripheral Interface (SPI)

Das **Serial Peripheral Interface** (**SPI**) dient der Kommunikation des Mikrocontrollers mit **Modulen** auf der Platine. Module sind

- Anzeigen,
- Speicher,
- LAN-Bausteine
- •

Signale

MOSI (Master Out Slave In): Sendeleitung

MISO (Master In Slave Out): Empfangsleitung

SCLK (Serial Clock): Taktleitung

SS (Slave Select): Auswahl des Slaves (Lowaktiv)

3.4.2 Universal Asynchronous Receiver Transmitter (UART)

Frame

Eine UART-Übertragung beginnt immer mit einem Startbit (Low). Darauf folgen

- 5-8 **Datenbits** (Standard = 8)
- 0 oder 1 **Paritybit** (Standard = 0 none)
- 1 oder 2 **Stopbits** (Standard =1)

Falls ein Paritybit programmiert wurde, kann es gerade Parity (even) oder ungerade Parity (odd) anzeigen.

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

3.4.3 Inter-Integrated Circuit (I²C) SCL (Serial Clock): Taktleitung SDA (Serial Data): Datenleitung

Frame:

Beispielhaft aufgeführte I²C-Bausteine bzw. Auszug Datenblätter _{Quelle: www.alldatasheet.com} **LM 75:**

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
1	0	0	1	A2	A1	A0	RD/W

	UPPER BYTE									L	OWER	BYTE			
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Sign bit 1= Negative 0 = Positive	MSB 64°C	32°C	16°C	8°C	4°C	2°C	1°C	LSB 0.5°C	Х	Х	Х	Х	Х	X	Х

X = Don't care.

PCF 8574 ACK From Slave Start ACK ACK Condition From Slave From Slave R/W Slave Address Data Data 0 Po Α P7 Po A2 A1

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

3.5 Glossar

Acknowlege	Quittierung
AD-Wandler	Analog-Digital-Wandler
ALU	Arithmetisch-Logische Einheit
AnalogIn	Analogeingang Pin
AnalogOut	,Analogausgang Pin
BCD	Binär Codiert Dezimal
BLDC-Motor	Bürstenloser Gleichstrommotor, Brushless DC-Motor
Bluetooth	Funkstandard zur Datenübertragung
Carry	Übertrag
CISC	Complex Instructionset Computer
CLK	Clock, Takt
CPU	Central Processing Unit
CS	Steuerleitung für Chip Select
CTR	Counter
DA-Wandler	Digital-Analog-Wandler
DEMUX	Demultiplexer
DigitalIn	Digitaleingang Pin
DigitalInOut	Digital Input Output Pin bidirektional
DigitalOut	Digitalausgang Pin
DIV16	Modulo 16
EN	Enable, Freigabe
EPROM	Erasable Programmable Read Only Memory
EVA	Eingabe Verarbeitung Ausgabe
Even	gerade
Frame	Rahmen
GPIO	General Purpose Input Output
Hardware Timer	16-Bit Timer
I2C	Inter-Integrated Circuit
InterruptIn	Interrupteingang Pin
LED	Light Emitting Diode Leuchtdiode
LOAD	laden
MISO	MasterIn – SlaveOut
MOSI	MasterOut – SlaveIn
MUX	Multiplexer
NVIC	Nested Vector Interrupt Controller
Odd	Ungerade
OE	Steuerleitung für Output Enable
Overflow	Überlauf
Parity	Geradzahligkeit

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

Periode	Periodendauer
PortIn	Digitaleingang Port
PortInOut	Digital Input Output Port bidirektional
PortOut	Digitalausgang Port
Poti	Potentiometer Einstellwiderstand für analoge Eingabe
Pulsewidth	Pulsbreite
PWM	Puls-Weiten-Modulation
R0 usw.	Prozessorregister
RAM	Random Access Memory
RD	Steuerleitung für lesen
RISC	Reduced Instructionset Computer
ROM	Read Only Memory
Rx	Receive
SCL(K)	Serial Clock
SDA	Serial Data
SPI	Serial Peripheral Interface
SRG	Schieberegister
SS	Slave Select
Stack	Stapel
Stackpointer	Stapelzeiger
Tx	Transmit
UART	Universal Synchronous Asynchonous Receiver Transmitter
WR	Steuerleitung für schreiben

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

4 Programmentwicklung und Objektorientierter Entwurf

4.1 Vergleichsoperatoren für Bedingungen (Pseudocode)

```
<, <=, >, >=, == oder =, ≠ oder !=
```

Anmerkung: Die Operatoren für Vergleiche und Wertzuweisungen müssen unterschieden werden können.

4.2 Kontrollstrukturen (Pseudocode)

Zuweisung

```
dieVariable ← derAusdruck
dieVariable := derAusdruck
dieVariable = derAusdruck
```

Sequenz

anweisung1
anweisung2
anweisung3

Auswahl

Einseitige Auswahl

WENN bedingung anweisung1 ... ENDE WENN

Zweiseitige Auswahl

WENN bedingung anweisungA1 ... SONST anweisungB1 ... ENDE WENN

Mehrfachauswahl

FALLS variable GLEICH
bedingung1: anweisungA1
...
bedingung2: anweisungB1
...
bedingung3: anweisungC1
...
SONST: anweisungD1
...
FNDF FALLS

Schleife (Iteration)

Schleife mit Eintrittsbedingung

SOLANGE bedingung anweisung1 ... ENDE SOLANGE

Schleife mit Austrittsbedingung

WIEDERHOLE
anweisung1
...
SOLANGE bedingung

Zählschleife

FÜR i←0 BIS n SCHRITT s anweisung1 ... FNDF FÜR

Schleife über Kollektion

FÜR element IN kollektion anweisung1 ... ENDE FÜR

Schleife mit Abbruchbedingung

FÜR element IN kollektion anweisungA1 ... WENN bedingung ABBRUCH ENDE WENN anweisungB1 ... ENDE FÜR

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

4.3 Datentypen

4.3.1 Elementare Datentypen

Datentyp	Abkürzungen	Werte
Boolscher Datentyp	Boolean, boolean, bool,	wahr, falsch, true, false
Ganzzahliger Datentyp	GZ, Integer, int,24, 0, 123,	
Fließkomma-Datentyp	FKZ, Real, double,	-3.567, 0.0, 3.141,
Zeichen-Datentyp	Zeichen, char,	'Z', 'a', '&',
Text-Datentyp	Text, String, string,	"Hello world!!!",

Für den Datentyp Text ist als Vergleichsoperator nur == bzw. = definiert. Außerdem kann der Operator + für die Verbindung von zwei Texten verwendet werden. Auch bei Texten muss der Vergleich und die Zuweisung eindeutig unterschieden werden können (vgl. 4.1).

4.3.2 Komplexe Datentypen

Zeit
+Zeit() +Zeit(pStunde:GZ,pMinute:GZ,pSekunde:GZ) +gibStunde():GZ +gibMinute():GZ +gibSekunde():GZ +istVor(pZeit:Zeit):Boolean +istNach(pZeit:Zeit):Boolean +zeitMinusSekunden(pSekunden:GZ):Zeit +zeitPlusSekunden(pSekunden:GZ):Zeit +gibText():Text

Liste <typ></typ>
+Liste <typ>() +gibLaenge():GZ +gib(pIndex:GZ):Typ +ersetzen(pIndex:GZ,pElement:Typ) +einfuegen(pIndex:GZ,pElement:Typ) +anhaengen(pElement:Typ) +verketten(pListe:Liste<typ>) +entfernen(pIndex:GZ):Typ</typ></typ>
+entfernen(pElement:Typ) +enthaelt(pElement:Typ):Boolean +kopieren():Liste <typ></typ>

Datum
+Datum()
+Datum(pTag:GZ,pMonat:GZ,pJahr)
+gibTag():GZ
+gibMonat():GZ
+gibJahr():GZ
+istVor(pDatum:Datum):Boolean
+istNach(pDatum:Datum):Boolean
+anzahlTageBis(pDatum:Datum):GZ
+anzahlTageSeit(pDatum:Datum):GZ
+gibText():Text

Listen beinhalten Daten vom gleichen Typ. Dabei kann es sich um elementare oder komplexe Datentypen (Klassen) handeln, z.B. Liste<GZ> oder Liste<Person>.

Die Operationen ersetzen und einfuegen unterscheiden sich dadurch, dass beim Ersetzen das Element am Index pIndex ersetzt wird und die Liste somit ihre Länge behält, während beim Einfügen die Liste verlängert wird, da das Element pElement die nachfolgenden Elemente um eine Position nach hinten verschiebt.

Die Operation entfernen ist überladen. Wird sie mit einer ganzzahligen Löschposition als Argument aufgerufen, gibt die Operation das gelöschte Objekt vom Datentyp Typ zurück. Wird entfernen mit einem Argument vom Datentyp Typ aufgerufen, wird dieses Objekt in der Liste von vorne gesucht und das erste gefundene Objekt, falls vorhanden, gelöscht.

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

Alternative Notationen für Listen

Liste highscore vom Datentyp Liste<GZ>

Standardnotation	Alternative Notation	Bedeutung
highscore ← NEU Liste <gz>()</gz>	highscore ← []	Leere Liste anlegen.
highscore ← NEU Liste <gz>() FÜR i←0 BIS 2 SCHRITT 1 highscore.anhaengen(0)</gz>	highscore ← [0, 0, 0]	Liste mit drei Elementen anlegen.
h ← highscore.gib(0)	h ← highscore[0]	Element einer Liste lesen.
highscore.ersetzen(3,5)	highscore[3] ← 5	Element einer Liste schreiben.

Notationen für Felder

Standardnotation	Bedeutung	
highscore ← NEU GZ[10]	Feld für 10 Highscores anlegen.	
highscore[0] ← 15	Ersten Highscore auf 15 setzen.	

4.4 Klassen

Klasse

	Klasse
#geschüt +öffentlich -attributM -attributM -attributK	Attribut:Typ ztesAttribut:Typ hesAttribut:Typ itZusicherung:Typ {Zusicherung} itAnfangswert:Typ = Anfangswert ollektion:Typ[anzElemente] Attribut:Typ
-privateO #geschüt +öffentlicl +operatio +operatio) pParameter:Typ) peration() zteOperation() heOperation() n1(pParameter:Typ) n2():Ergebnistyp Operation()

4.4.1 Attribute

Die Bezeichner von Attributen beginnen mit einem Kleinbuchstaben (vgl. UML-Standard). Attribute haben im Klassendiagramm folgenden Aufbau:

Sichtbarkeit bezeichner:Typ<[Multiplizität]><=Anfangswert><{Zusicherung}>

Die in spitzen Klammern notierten Inhalte, z.B. <[Multiplizität]>, sind optionale Bestandteile der Attribute.

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

Sichtbarkeit	Zeichen
privat	-
geschützt	#
öffentlich	+

Тур	
Elementarer Datentyp	
Komplexer Datentyp (Klasse)	

Anfangswert

Wert den das Attribut bei der Erzeugung des Objekts annimmt.

Zusicherung Vorschriften für Attribute {wert>0}, {read only}.

4.4.2 Operationen

Prozeduren bzw. Funktionen von Programmiersprachen nennt man im Kontext der Objektorientierung Operationen. Ihre Bezeichner starten, wenn möglich, mit einem Verb. Wie bei Attributen ist der erste Buchstabe ein Kleinbuchstabe. Operationen haben im Klassendiagramm folgenden Aufbau:

Sichtbarkeit operationsbezeichner(<Parameterliste>)<:Rückgabetyp>

Eine Parameterliste kann leer sein oder einen oder mehrere Parameter enthalten. Die Parameter werden nach folgendem Schema definiert:

pName:Typ, ...

Die in spitzen Klammern notierten Inhalte, z.B. <Parameterliste>, sind optionale Bestandteile der Operationsdeklaration.

4.4.3 Assoziationen, Rollennamen und Multiplizitäten

Gerichtete Assoziation

Bidirektionale Assoziation

Multiplizität	Bedeutung
1	genau 1
01	0 oder 1
36	3, 4, 5 oder 6
*	0 bis viele
2*	2 bis viele

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

4.4.4 Beispiel einer Operation mit einer Kollektion in Pseudocode

OPERATION anlegenPerson(pName:Text,personen:Liste<Person>):Boolean

Lokale Variablen: gefunden:Boolean, neuePerson:Person, person:Person

```
gefunden ← falsch
FÜR person IN personen
  WENN person.gibName() = pName
    gefunden ← wahr
    ABBRUCH
  ENDE WENN
ENDE FÜR
WENN gefunden = falsch
  neuePerson ← NEU Person(pName)
  personen.anhaengen(neuePerson)
ENDE WENN
RÜCKGABE gefunden
```

4.5 Vererbung

Oberklassen sind Generalisierungen und Unterklassen Spezialisierungen.

4.6 Abstrakte Klassen und Schnittstellen

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

4.7 Objektdiagramme

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

4.8 Sequenzdiagramme

Allgemeines:

• Es wird nicht zwischen unterstrichenen und nicht-unterstrichenen Objekten im Sequenzdiagramm unterschieden.

Erzeugung von Objekten

Ein Objekt kann im Sequenzdiagramm immer mit einem spezifischen Konstruktor erzeugt werden. Ist die Auswahl des Konstruktors nicht bedeutsam, so wird die Objekterzeugung durch <<create>> dargestellt.

Selbstdelegation (alternative Darstellungen)

Wechselseitige Botschaften (alternative Darstellungen)

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

Option – einseitige Verzweigung

Alternative - mehrseitige Verzweigung

Zählschleife

Schleife mit Abbruch

Kopfgesteuerte Schleife

Fußgesteuerte Schleife

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

Schleife über Kollektion

Nachricht, bei welcher der Sender nicht spezifiziert ist.

4.9 Zustandsdiagramme

Zustandsdiagramme siehe Kapitel 1

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

5 Datenstrukturen

5.1 Verkettete Liste

5.2 Stapel

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

5.3 Warteschlange

5.4 Binärbaum

5.4.1 Beispiel für einen Binärbaum der Tiefe 3

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

5.4.2 Datenstruktur

5.4.3 Operation ausgebenDatenInorder() der Klasse Knoten in Pseudocode

OPERATION ausgebenDatenInorder() der Klasse Knoten

```
WENN linkerTeilbaum != NICHTS
    linkerTeilbaum.ausgebenDatenInorder()
ENDE WENN
inhalt.ausgebenDaten()
WENN rechterTeilbaum != NICHTS
    rechterTeilbaum.ausgebenDatenInorder()
ENDE WENN
```

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

6 Künstliche Intelligenz

6.1 Klassifikation

Distanzfunktionen für $x = (x_1, ..., x_n)$ und $y = (y_1, ..., y_n)$

- Euklidische Distanz $d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
- Manhattan-Distanz $d(x,y) = \sum_{i=1}^{n} |x_i y_i|$
- Maximum-Distanz $d(x, y) = max(|x_i y_i|)$

Anmerkung: Mit der Erweiterung des KI-Themenumfangs in zukünftigen Abiturprüfungen durch Anforderungserlässe wird auch in den nächsten Jahren die Formelsammlung im Bereich Künstliche Intelligenz erweitert.

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

7 Datenbanken

7.1 Datenbankmanagementsystem

7.2 Entity-Relationship-Diagramm (ER-Diagramm)

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

7.3 Relationenmodell

Alle Entitätstypen des Entity-Relationship-Diagramms mit Primär- und Fremdschlüsseln und allen Attributen der Entitätstypen in folgender Form:

Entitätstyp(Primärschlüssel, Attribut1, Attribut2, ..., Fremdschlüssel1, ...)

Beispiel: Schülerinnen, die ein Mädchengymnasium besuchen.

Entity-Relationship-Diagramm

Schule

Schule

N

Ort

N

Relationenmodell

Ort(OrtsNr, PLZ, Name)
Schule(SchulNr, Schulname, Straße, OrtsNr)
Schülerin(SchuelerinNr, Vorname, Name, Straße, OrtsNr, SchulNr)

7.4 Abfrageformulierung mit SQL

7.4.1 Projektion und Formatierung

Auswahl aller Spalten einer Tabelle

Syntax: SELECT *

FROM <Tabelle>;

Auswahl mehrerer Spalten einer Tabelle

Syntax: SELECT <Spalte1>, <Spalte2>, <Spalte3>

FROM <Tabelle>;

Auswahl ohne mehrfaches Auftreten derselben Zeile

Syntax: SELECT DISTINCT <Spalte>

FROM <Tabelle>;

Umbenennen von Spalten bei der Ausgabe

Syntax: SELECT <Spalte> AS <neuer Spaltenname>

FROM <Tabelle>;

Sortierung aufsteigend (ASC (optional)) oder absteigend (DESC)

Syntax: SELECT <Spalte>

FROM <Tabelle>

ORDER BY <Spalte> [ASC];

ORDER BY <Spalte> DESC;

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

```
Beispiel Relationenmodell
                          Schüler (SID, Vorname, Name, Klasse)
      SELECT
               Schüler
      FROM
      ORDER BY Name, Vorname;
               Vorname, Name
      SELECT
      FROM
               Schüler
      ORDER BY Name ASC;
      SELECT DISTINCT Klasse
               Schüler
      FROM
      ORDER BY Klasse DESC;
      SELECT Name AS "Nachname", Vorname
      FROM
             Schüler;
```

7.4.2 Selektion

Auswahl von Zeilen

```
Syntax:
             SELECT
                        <Spalte>
             FROM
                        <Tabelle>
             WHERE
                        <Bedingung>;
Vergleichsoperatoren
                                                         ( <> ungleich)
                         =, <>, >, <, >=, <=
                         BETWEEN wert1 AND wert2
                         LIKE ' ...%' oder " ...%"
                                                         (_ein Zeichen
                                                           % beliebig viele Zeichen)
                                                         IN ("Wert1","Wert2")
                         IN ('Wert1','Wert2') oder
                         NOT IN ('Wert1', 'Wert2', 'Wert3')
                         IS NULL
```

IS NOT NULL

Logische Operatoren AND, OR, NOT

```
Beispiel Relationenmodell Schüler (SID, Vorname, Name, Klasse)

SELECT *
FROM Schüler

Alle Schüler der TGI-J2
WHERE Klasse = "TGI-J2";

Alle Schüler der TG-Klassen
WHERE Klasse LIKE 'TG%';

Alle Schüler der TGI-Klassen
WHERE Klasse IN ('TGI-E','TGI-J1','TGI-J2');

Alle Schüler, die noch keiner Klasse zugeordnet sind
WHERE Klasse IS NULL;
```

```
Beispiel Relationenmodell Laborübung(<u>LID</u>, Thema, Dauer)
```

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

```
SELECT *
FROM Laborübung

Alle Laborübungen die mindestens 60 und höchstens 90 Minuten (60 ≤ Dauer ≤ 90) gedauert haben
WHERE Dauer BETWEEN 60 AND 90;

Alle Laborübungen, deren Themen nichts mit Radioaktivität oder Atmosphärenchemie zu tun haben
WHERE Thema NOT IN ("Radioaktivität", "Atmosphärenchemie");

Alle Laborübungen zur Organik, die kürzer als 60 Minuten waren
WHERE Thema = "Organik"
AND Dauer < 60;
```

7.4.3 Verbund von Tabellen

Equi-Join

Syntax: SELECT <Spalte1>,<Spalte2>

FROM <Tabelle1>,<Tabelle2> WHERE <Join-Bedingung>;

In der Join-Bedingung wird festgelegt, dass der Inhalt bestimmter Spalten identisch sein muss.

```
Beispiel Relationenmodell
                           Schüler (SID, Vorname, Name, Klasse)
                    Teilnahme(<u>TID</u>, <u>SID</u>, <u>LID</u>, Datum, Punkte)
                    Laborübung(LID, Thema, Dauer)
      SELECT Vorname, Name, Datum, Punkte
              Schüler, Teilnahme
      FROM
      WHERE Schüler.SID = Teilnahme.SID;
      Anmerkung: Tabellennamen können in FROM durch Aliase abgekürzt werden.
      SELECT Vorname, Name, Datum, Punkte
              Schüler S, Teilnahme T
      FROM
      WHERE S.SID = T.SID;
      SELECT Vorname, Name, Datum, Thema, Dauer
              Schüler S, Teilnahme T, Laborübung L
      FROM
      WHERE S.SID = T.SID
         AND L.LID = T.LID;
```

Inner Join mit zwei Tabellen

```
Syntax: SELECT A.<Spalte1>,B.<Spalte2>
```

FROM <Tabelle1> A INNER JOIN <Tabelle2> B

ON A.<Spalte1> = B.<Spalte2>

```
Beispiel Relationenmodell Schüler (<u>SID</u>, Vorname, Name, Klasse)

Teilnahme(<u>TID</u>, <u>SID</u>, Datum, Punkte)

SELECT Vorname, Name, Datum, Punkte

FROM Schüler S INNER JOIN Teilnahme T ON S.SID = T.SID;
```

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)	
Formelsammlung	1.5.2 Informationstechnik	

7.4.4 Aggregatfunktion

Aggregatfunktionen können auf einer ganzen Tabelle bzw. Zwischentabelle ausgeführt werden. Ihre Ergebnistabelle besteht dann aus einer Zelle.

Syntax: SELECT Aggregatfunktion(<Spalte>)

FROM <Tabelle>;

SUM Summierung der numerischen Werte in der Spalte

MIN Minimum der Spalte MAX Maximum der Spalte

AVG Durchschnitt der numerischen Werte in der Spalte COUNT Anzahl der Zeilen des Zwischenergebnisses

Hinweis: NULL-Werte werden vor der Auswertung einer Aggregatfunktion eliminiert.

```
Schüler (SID, Vorname, Name, Klasse)
Beispiel Relationenmodell
                    Teilnahme(<u>TID</u>, <u>SID</u>, Datum, Punkte)
      Summe der von den Schülern der Klasse TGI-E am 24.07.2021 erreichten Punkte
      SELECT SUM(Punkte) AS "Gesamtpunktzahl der Klasse TGI-E am 24.07.21"
              Schüler S, Teilnahme T
      FROM
      WHERE S.SID = T.SID
        AND Klasse = "TGI-E"
        AND Datum = #24/07/2021#;
      Maximal erreichte Punktezahl
      SELECT MAX(Punkte) AS "Max. Punkte"
      FROM
              Teilnahme;
      Datum der ersten Teilnahme, d.h. des ersten Termins der Veranstaltung
      SELECT MIN(Datum) AS "Startdatum"
              Teilnahme;
      FROM
      Punktedurchschnitt der Klasse TGI-E
      SELECT AVG(Punkte) AS "Klassendurchschnitt TGI-E"
      FROM
              Schüler S, Teilnahme T
      WHERE S.SID = T.SID
        AND Klasse = "TGI-E";
      Anzahl der Schüler in der Klasse TGI-E
      SELECT COUNT(*) AS "Anzahl Schüler TGI-E"
              Schüler
      FROM
      WHERE Klasse = "TGI-E";
```

Spezialfall: COUNT(DISTINCT ...)

```
Beispiel Relationenmodell Schüler (<u>SID</u>, Vorname, Name, Klasse)

Teilnahme(<u>TID</u>, <u>SID</u>, Datum, Punkte)

Anzahl Klassen

SELECT COUNT(DISTINCT Klasse) AS "Anzahl Klassen"

FROM Schüler S, Teilnahme T

WHERE S.SID = T.SID;
```

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)	
Formelsammlung	1.5.2 Informationstechnik	

7.4.5 Aggregatfunktion mit Gruppierung

Mit GROUP BY werden Abfrageergebnisse nach bestimmten Kriterien in Gruppen zusammengefasst. Auf jeder Gruppe wird einzeln die Aggregatfunktion ausgewertet und ein eigener Wert berechnet. Somit besteht die Ergebnistabelle aus den Aggregatwerten der einzelnen Gruppen.

```
Beispiel Relationenmodell
                            Schüler (<u>SID</u>, Vorname, Name, Klasse)
                     Teilnahme(<u>TID</u>, <u>SID</u>, Datum, Punkte)
       Punktedurchschnitte pro Klasse
                 Klasse, AVG(Punkte) AS "Gesamtpunktzahl pro Klasse"
       SELECT
                 Schüler S, Teilnahme T
       FROM
                 S.SID = T.SID
       WHERE
       GROUP BY Klasse;
       Beste Leistung pro Tag
       SELECT
                 Datum, MAX(Punkte) AS "Bestes Tagesergebnis"
       FROM
                 Teilnahme T
       GROUP BY Datum;
```

7.4.6 Selektion von Gruppen

Im Unterschied zur einfachen Selektion mit SELECT können mit HAVING Abfrageergebnisse von Aggregatfunktionen auf Gruppen selektiert werden.

7.4.7 Komplette SQL-Anweisung

```
Syntax: SELECT ...
FROM ...
WHERE ...
GROUP BY ...
HAVING ...
ORDER BY ...;
```

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

8 Vernetzte Systeme

8.1 Netzwerktechnik

8.1.1 Netzwerksymbole

DMZ (demilitarized zone)

8.1.2 Routing-Tabelle (IPv4)

Die Routingtabelle des Router R2 sieht folgendermaßen aus:

Netzadresse	Subnetzmaske	Gateway
141.91.7.0	/30	*
10.1.0.0	/16	*
192.168.1.0	/24	10.1.0.253
0.0.0.0	0.0.0.0	141.91.7.2

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)		
Formelsammlung	1.5.2 Informationstechnik		

8.1.3 Aufbau IPv4-Adresse

IP-Adresse (dotted-decimal-format): z.B. 177 . 17 . 223 . 1 IP-Adresse (binär): 10110001.00010001.11011111.00000001

8 Bit = 1 Oktett

32 Bit = 4 Bytes

IP-Adresse z.B. 192.168. 1 . 1 Netzmaske z.B. /24 = 255.255.255. 0 Netz-ID 192.168. 1 . 0

→ 11000000.10101000.00000001.00000001 → 1111111.11111111.111111111.00000000

← 11000000.10101000.00000001.00000000
← 00000000.00000000.00000000.00000001

Alle Host-ID-Bits = 0: Netz-Adresse, hier 192.168.1.0

0.0.0.1

Alle Host-ID-Bits = 1: Broadcast-Adresse, hier 192.168.1.255

8.1.4 Aufbau IPv6-Adresse

IP-Adresse (hexadezimal): z.B. 2001:07C0:8280:0253:0000:0000:0020

16 Bit

8 Blöcke (16 Bit) = 128 Bit

xxxx:xxxx:xxxx:xxxx:0000:0000:0000:0020

Weitere IPv6-Schreibweise:

Führende Nullen können ausgelassen werden → 2001:7C0:8280:253:0:0:0:20

Aufeinanderfolgende Null-Blöcke können → 2001:7C0:8280:253::20 durch zwei Doppelpunkte einmal ersetzt

werden

Host-ID

IPv4-Adressen können in IPv6-Adressen → 0:0:0:0:0:0:0:192.168.1.1

eingebettet werden, z.B. 192.168.1.1 → ::192.168.1.1 → ::C0A80101

Adressformat:

64 Bits	64 Bits
Netzwerk Präfix	Interface Identifier (IID)

48 Bits 16 Bits

Global Routing Präfix Subnetz ID

Netzwerk-Präfix: Interface Identifier:

2001:07C0:8280:0253 → Global Routing

Präfix

2001:07C0:8280:0253 → Subnetz Identifier

Adressbereich-Zuweisung: 2001:07C0:8280:0253::/64 2001:07C0:8280:0200::/56

2001:07C0:8280::/48

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)		
Formelsammlung	1.5.2 Informationstechnik		

2001:07C0::/32

8.2 Schichtenmodelle

8.2.1 ISO-OSI-7-Schichtenmodell

8.2.2 TCP-IP-Schichtenmodell

OSI-Schicht	TCP/IP-Schicht	Protokoll-Beispiele
7		HTTP, FTP, SMTP, Telnet, DHCP, MQTT,
6	Anwendungen	
5		TLS
4	Transport	TCP, UDP
3	Internet	IP (IPv4, IPv6), ICMP
2	Netzzugang	Ethernet
1		

8.3 Header

8.3.1 Ethernet II

Präambel	Zieladresse	Absenderadresse	Тур	Daten	Link Trailer
8	6	6	2	461500	4 Byte

8.3.2 IPv4-Header

Byte	Inhalt		
0	Version		IHL
1	TOS		
2-3	Paketlänge		
4-5	Identifikation		
6	Flags Fragmentabstand		
7	Fragmentabstand	Fragmentabstand	
8	Time To Live (TTL)	Time To Live (TTL)	
9	Protokoll		
10-11	Kopf-Prüfsumme	Kopf-Prüfsumme	
12-15	IP-Sendeadresse	IP-Sendeadresse	
16-19	IP-Empfängeradresse		

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)	
Formelsammlung	1.5.2 Informationstechnik	

20	Optionen (mit evtl. Füllzeichen)	
----	----------------------------------	--

IPv4-Paketstruktur:

IPv4-Header	Upper Layer Protocol Data Unit
20-60 Bytes	(TCP, UDP, ICMP,)
variabel	

8.3.3 IPv6-Header

Byte	Inhalt				
0-3	Version	Traffic	c Class		Flow Label
4-7	Payloa	d Length	h Next Header		Hop Limit
8-23		Source Address			
24-39		Destination Address			

IPv6-Paketstruktur:

	IPv6-Header	Extension	Upper Layer Protocol Data Unit
	40 Bytes	Headers	(TCP, UDP, ICMP,)
$\overline{}$		1	
	fest	optional	

8.3.4 TCP -Header

Byte	Inhalt						
0-1	Source Port	Source Port					
2-3	Destination Port	Destination Port					
4-7	Sequenznummer	Sequenznummer					
8-11	Quittungsfeld (Piggy	Quittungsfeld (Piggyback, Acknowledge			ımber)		
12	Header-Länge	Header-Länge			reserviert		
13	reserviert	URG	ACK	PSH	RST	SYN	FIN
14-15	Fenster Größe						
16-17	Prüfsumme						
18-19	Urgent Zeiger						
20	Optionen (evtl. mit F	üllzeicher	n)				

8.3.5 UDP -Header

Byte	Inhalt
0-1	Source Port
2-3	Destination Port
4-5	Länge des Datagramms
6-7	Check-Summe

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

8.4 Internet der Dinge (IoT)

8.4.1 MQTT-Protokoll (Message Queuing Telemetry Transport)

Ports:

1883: MQTT, unverschlüsselt **8884**: MQTT, verschlüsselt, Client Zertifikat

8883 : MQTT, verschlüsselt notwendig

8080 : MQTT über WebSockets, unverschlüsselt

MQTT -Header: (Beispiel - Publish Message)

Byte	Inhalt			
0	Nachrichtentyp (4 Bit)	Dub-Flag	Quality of Service	Retain-Flag
1	Länge des restlichen MQTT-Pakets			
	MQTT-Topic → Topi	c-Länge / T	opic / Payload	

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

8.4.2 HTTP-Protokoll (Hypertext Transfer Protocol)

Kommunikationsprinzip:

URL (Uniform Resource Locator):

OILE (Olimo	min recoduled Lo	cator).
Protokoll	Domain	Pfad
https://	gsoe.de	/bildungsangebote/technisches-gymnasium/

HTTP-Header

Inhalt

Ports:

80 : HTTP, unverschlüsselt 443 : HTTPS, verschlüsselt

Abiturprüfung ab 2024	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

Request HTTP 1/1

Methode	Pfad	Protokoll
GET	/wp/content/uploads/2020/11/pixels-fauxels.jpg	HTTP/1.1\r\n

HTTP-Header - Name: Wert (Beispiele)		
Host:	→ Domain-Name des Servers	
User-Agent:	→ User-Agent des Clients	
Accept:	→ Welche Inhaltstypen der Client verarbeiten kann	
z.B.	 Accept-Charset: → Welche Zeichensätze der Client anzeigen kann. 	
	 Accept-Encoding: → Welche komprimierten Formate der Client unterstützt. 	
	• Accept-Language: → Gewünschte Sprachversion	
Date:	→ Datum und Zeit des Requests	
Connection:	→ Bevorzugte Art der Verbindung	
Referrer:	→ URL der Ressource, von der aus verlinkt wurde.	
Content-Length:	→ Länge des Request-Bodys	
Content-Type:	→ MIME-Typ des Bodys (bei POST- und PUT-Requests)	

Response HTTP 1/1

Protokoll	Status-Code
HTTP/1.1	200 OK\r\n

HTTP-Header - Name: Wert (Beispiele)		
Date:	→ Zeitpunkt der Response	
Server:	→ Kennung des Servers	
Accept-Ranges:	→ Welche Einheiten der Server akzeptiert	
Allow:	→ Erlaubte Request-Typen (Methoden)	
Connection:	→ Bevorzugte Art der Verbindung	

Status-Codes	(Beispiele)
100 199:	Information
200 299:	Client-Anfrage erfolgreich
	z.B. 200 – OK
300 399:	Client-Anfrage umgeleitet
	z.B. 301 – Moved Permanently
	302 – Moved Temporarily
400 499:	Fehlen des Dokuments
	z.B. 403 – Forbidden
	404 – Not Found
500 599:	Serverfehler