Ecole Supérieure des Sciences de la Finance de l'Assurance et des Risques Epreuve de Mathématiques Concours d'entrée en Master 1 de Septembre 2020

Exercice 1. 4 points.

- 1. Soit la fonction f définie de \mathbb{R}^2 vers \mathbb{R} par $f(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$
 - (a) Soit u = (a, b) un vecteur de \mathbb{R}^2 . f admet-elle en (0, 0) une dérivée dans la direction de u? Déterminer sa valeur le cas échéant.
 - (b) f est-elle différentiable en (0,0)? Déterminer sa différentielle le cas échéant.
- 2. Soit la fonction g définie de \mathbb{R}^2 vers \mathbb{R} par $g(x,y)=x^3-3xy^2+y$. On admet que g est \mathcal{C}^{∞} sur \mathbb{R}^2 .
 - (a) Déterminer les points critiques de q.
 - (b) Déterminer la nature de chaque point critique.

Exercice 2. 6 points.

- 1. Soient (E, A, μ) un espace mesuré, $(f_n)_{n\geq 0}$ une suite de fonctions intégrables sur (E, A, μ) .
 - (a) Montrer que si $\sum_{n\geq 0} \int |f_n| d\mu < +\infty$, alors, on a $\sum_{n\geq 0} \int f_n d\mu = \int \left(\sum_{n\geq 0} f_n\right) d\mu$
 - (b) On considère l'intégrale $I=\int_0^1 \frac{\ln x}{1-x} dx$
 - i. Déterminer une suite (f_n) de fonctions intégrables sur $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \lambda)$ vérifiant $\sum_{n\geq 0} f_n = \frac{\ln x}{1-x}$.
 - ii. Calculer I.
- 2. On définit sur \mathbb{R} la suite de fonctions $(h_n)_{n\in\mathbb{N}}$ par la relation $h_n(x) = \begin{cases} e^{-nx} \sin x & \text{si } x \geq 0 \\ 0 & \text{sinon} \end{cases}$
 - (a) Montrer que $\forall n \in \mathbb{N}$, h_n est intégrable au sens de Lebesgue et calculer $u_n = \int h_n d\lambda$.
 - (b) Montrer clairement que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et calculer sa limite.
- 3. On définit la suite de fonction $(h_n)_{n\geq 1}$ sur [0,1] par $h_n(x) = \begin{cases} \sqrt{n} & \text{si } x \in [\frac{1}{n}, \frac{2}{n}] \\ 0 & \text{sinon} \end{cases}$
 - (a) Montrer que la suite de fonctions $(h_n)_{n\geq 1}$ converge λ presque partout vers une fonction h que l'on déterminera.
 - (b) Montrer que $\forall n \in \mathbb{N}^*$, $1_{[0,1]}h_n$ est λ -intégrable.
 - (c) Déterminer en vérifiant les hypothèses du théoème utilisé la limite de la suite $(v_n)_{n\geq 1}$ définie par $v_n=\int 1_{[1,+\infty]}h_nd\lambda$

Exercice 3. 6 points.

Formule de Poincaré et application :

1. Soit (Ω, F, P) un espace probabilisé, soient $A_1, ...$ et A_n n événements :

montrer que
$$P\left(\bigcup_{m=1}^{n} A_{m}\right) = \sum_{k=1}^{n} (-1)^{k-1} p_{k}$$
 où pour tout $k, p_{k} = \sum_{1 \leq i_{1} < ... < i_{k} \leq n} P(A_{i_{1}} \cap ... \cap A_{i_{k}})$

- 2. Un facteur possède n lettres adressées à n destinataires distincts. Il est totalement ivre et poste au hasard une lettre par boîte.
 - (a) Quelle est la probabilité d'obtenir la bonne répartition?
 - (b) Quelle est la probabilité qu'une lettre au moins arrive à la bonne adresse?
 - (c) Quelle est la probabilité qu'aucune lettre n'arrive à la bonne destination?
 - (d) Quel est le nombre d_n de manières différentes de poster les lettres de telle sorte qu'aucune n'arrive à destination?

Exercice 4. 4 points.

Des machines fabriquent des plaques de tôle destinées à être empilées.

1. Soit X la variable aléatoire «épaisseur de la plaque en mm»; on suppose que X suit une loi normale de paramètres m=0.3 et $\sigma=0.1$.

- (a) Calculez la probabilité pour que X soit inférieur à 0.36mm
- (b) Calculer la probabilité pour que X soit compris entre 0.25 et 0.35 mm.
- 2. L'utilisation de ces plaques consiste à en empiler n, numérotées de 1 à n en les prenant au hasard : soit X_i la variable aléatoire «épaisseur de la plaque numéro i en mm» et Z la variable aléatoire «épaisseur des n plaques en mm».
 - Pour n = 20, quelle est la loi de Z, son espérance et sa variance?
- 3. On effectue un contrôle de fabrication sur des pièces dont une proportion p=0.02 est défectueuse. On contrôle un lot de 1000 pièces : Déterminer la probabilité pour que le nombre de pièces défectueuses parmi 1000 soit compris (au sens large) entre 18 et 22.