

CSE 2301 – Spring 2022

LAB 1: LOGICWORKS

GETTING TO LOGICWORKS

- Start by launching UCONN AnyWare.
 There will be a link for it in your lab instructions, which you should follow along with.
- Open LogicWorks 5 once you reach the Engineering VPC desktop.

LogicWorks will open with a frame like this.

Your design will go here.

You will choose components here.

Drag components from the parts palette to place them.

All your drawing and operational tools are here.

TOOLS IN LOGICWORKS

- Here are the tools you be using.
- You won't be using most of these. The zap, draw signal, text, and select tools are by far the most important.

LogicWorks 5: Icon guide

SYMBOLS IN LOGICWORKS

- The following "symbols", or components (interchangeable), will also be important.
- The names shown here are their names in LogicWorks, so that's that you should search in the parts palette.

COLORING LINES

- Coloring lines is relevant in the capacity that it makes your circuits easier to follow.
- Coloring serves no objective functional purpose. It is optional.

EXAMPLE:

A SIMPLE INPUT/OUTPUT
**SWITCH TO DEMONSTRATION

YOUR TASK:

EXERCISE 1

- Go ahead and try to replicate the figure seen on the left (from the instructions).
- You don't need to color your lines but it may help with organization.
- You don't need to understand how circuit this works yet, but know that it converts a number from one convention to another. Other circuits of this kind will look similar.

YOUR TASK:

EXERCISE 2

- In this exercise we're going to try to detect inputs, which is invaluable for many applications.
- That is, if the switches are in a certain configuration (or one of multiple), then a binary probe at the end will turn on.
- Using the information provided by the instructions, create a circuit detecting inputs **0010**, **1101**, and/or **0101**.

*Given as an example for what your circuit will look like (but with one less input). DO NOT COPY, THIS IS A DIFFERENT CIRCUIT.

OTHER NOTES

AND REPORT INFORMATION

- Remember to save all your work to the P: drive!
- The book is not required, nor is it recommended.
- You are required to get all of the hardware components, as well as the protoboard. You may be able to find a cheaper logic probe (relative to the bookstore one) online, or you can just use a multimeter, but we advise against getting small or used protoboards.
- You'll also be completing reports for each lab. These constitute a theory section, deliverables (diagrams/results), discussion, and exam practice questions. They are somewhat of a fusion between the kind of lab reports you might expect to see in a W course and a regular homework assignment.