ULTRAVIOLET-VISIBLE SPECTROSCOPY

WHAT HAPPENS WHEN A MOLECULE ABSORBS UV-VISIBLE RADIATION?

- * When a molecule absorbs light having sufficient energy (e.g. UV-Vis radiation) to cause an electronic transitions, additional vibration and rotation transitions also occur
- * Molecule can absorb one photon of just the right energy to cause the following simultaneous changes:

- 1. A transition from the ground <u>electronic state</u> E_0 to the E_1 excited electronic state
- 2. A change in the <u>vibrational energy</u> from the ground vibrational state of E_0 to an excited vibrational state of E_1
- 3. A transition from one <u>rotational state</u> of E_0 to a different rotational state of E_1
- 4. All the above transitions are quantized which means that they required certain exact amount of energy
- 5. Thus, total energy absorbed = $E_{elec} + E_{vib} + E_{rot}$ $\Delta E_{elec} >> \Delta E_{vib} >> \Delta E_{rot}$

As a result, a large numbers of photons of certain wavelengths are absorbed by a molecule. These individual wavelengths are too numerous and too close to each other and a spectrum of broad bands of absorbed wavelengths are obtained

Spectrum (a graph that shows how absorbance varies with wavelength)

ELECTRONIC TRANSITIONS

POSSIBLE ELECTRONIC TRANSITIONS

IMPORTANT ELECTRONIC TRANSITIONS

Within UV-Visible range and important

CHROMOPHORE

The part of a molecule responsible for imparting color, are called as chromophores.

CHROMOPHORE

The functional groups containing multiple bonds capable of absorbing radiations.

e.g. NO_2 , N=O, C=O, C=N, C=N, C=C, C=S

CHROMOPHORE

Chromophore	Example	Excitation	λ _{max} , nm	ε	Solvent
C=C	Ethene	π> π*	171	15,000	hexane
C≣C	1-Hexyne	π> π*	180	10,000	hexane
C=O	Ethanal	n> π* π> π*	290 180	15 10,000	hexane hexane
N=O	Nitromethane	n> π* π> π*	275 200	17 5,000	ethanol ethanol
C-X X=Br X=I	Methyl bromide Methyl lodide	n> σ* n> σ*	205 255	200 360	hexane hexane

AUXOCHROME

The functional groups attached to a chromophore which modifies the ability of the chromophore to absorb light, altering the wavelength or intensity of absorption.

OR

The functional group with non-bonding electrons that does not absorb radiation in near UV region but when attached to a chromophore alters the wavelength & intensity of absorption.

AUXOCHROME

Benzene λ_{max} = 255 nm

Phenol $\lambda_{max} = 270 \text{ nm}$

Aniline $\lambda_{max} = 280 \text{ nm}$

Wavelength (λ) (nm)

EFFECT OF CONJUGATION

Effect of Conjugation

 $CH_2 = CH_2$

Ethene

CH₂=CH-CH=CH₂

1,3-Butadiene

CH₂=CH-CH=CH-CH=CH₂

1,3,5-Hexatriene

Molecule	λ_{max} (nm)	
CH ₂ =CH ₂	171	
CH ₂ =CH-CH=CH ₂	217	
CH ₂ =CH-CH=CH-CH=CH ₂	258	

Effect of Conjugation

Beta-Carotene

Wavelength (λ) (nm)

B- Carotene

Lycopene

ABSORPTION & INTENSITY SHIFTS

 Bathochromic Shift (Red Shift) Hypsochromic Shift (Blue Shift) Hyperchromic Effect Hypochromic Effect

Bathochromic Shift (Red Shift)

- When absorption maxima (λ_{max}) of a compound shifts to longer wavelength, it is known as bathochromic shift or red shift.
- The effect is due to presence of an auxochrome or by the change of solvent.
- e.g. An auxochrome group like –OH, -OCH₃ causes absorption of compound at longer wavelength.

Hypsochromic Shift (Blue Shift)

• When absorption maxima (λ_{max}) of a compound shifts to shorter wavelength, it is known as hypsochromic shift or blue shift.

 The effect is due to presence of an group causes removal of conjugation or by the change of solvent.

Hyperchromic Effect

- When absorption intensity (ε) of a compound is increased, it is known as hyperchromic shift.
- If auxochrome introduces to the compound, the intensity of absorption increases.

Pyridine $\lambda_{max} = 257 \text{ nm}$ $\epsilon = 2750$

2-methyl pyridine $\lambda_{max} = 260 \text{ nm}$ $\epsilon = 3560$

4 • Hypochromic Effect

 When absorption intensity (ε) of a compound is decreased, it is known as hypochromic shift.

Shifts and Effects

ULTRAVIOLET-VISIBLE SPECTROSCOPY OF INORGANIC COMPOUNDS

COMPOUNDS OF TRANSITION METAL COMPLEXES SOLUTION

$$\begin{split} [\text{Fe}(\text{H}_2\text{O})_6]^{3+} & [\text{Ni}(\text{H}_2\text{O})_6]^{2+} \\ & [\text{Co}(\text{H}_2\text{O})_6]^{2+} \\ & [\text{Cu}(\text{H}_2\text{O})_6]^{2+} \end{split}$$

Spectrochemical Series

 $I - < Br - < S^2 - < SCN - < CI - < N_3^-, F - < urea, OH - < ox, O^2 - < H_2O < NCS^- < py, NH_3 < en < bpy, phen < NO_2^- < CH_3^-, C_6H_5^- < CN^- < CO.$

An artist's wheel

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Absorbed color and observed colors

Absorbed Color	λ (nm)	Observed Color	λ (nm)
Violet	400	Green-yellow	560
Blue	450	Yellow	600
Blue-green	490	Red	620
Yellow-green	570	Violet	410
Yellow	580	Dark blue	430
Orange	600	Blue	450
Red	650	Green	520

 $Cu[(H_2O)6]^{2+}$ $Cu[(NH_3)]^{2+}$

 $[Ni(NH_3)_6]^{2+}$

 $[NiCl_4]^{2-}$

 $Fe[(H_2O)6]^{3+}$

 $Fe[(H_2O)6]^{2+}$

FIVE BASIC OPTICAL INSTRUMENT COMPONENTS

- 1)**Source** A stable source of radiant energy at the desired wavelength (or λ range).
- 2) <u>Sample Holder</u> A transparent container used to hold the sample (cells, cuvettes, etc.).
- 3) Wavelength Selector A device that isolates a restricted region of the EM spectrum used for measurement (monochromators, prisms, & filters).
- 4) **<u>Detector</u>** Converts the radiant energy into a useable signal (usually electrical).
- 5) Signal Processor & Readout Amplifies or attenuates the transduced signal and sends it to a readout device such as a meter, digital readout, chart recorder, computer, etc.

