A. Alternating Sum

time limit per test: 1 second memory limit per test: 256 megabytes

input: standard input output: standard output

You are given two integers a and b. Moreover, you are given a sequence

s₀, s₁, ..., s_n. All

values in s are integers 1 or -1. It's known that sequence is k-periodic and k divides n + 1. In other words, for each k \leq i \leq n it's satisfied that $s_i = s_{i-k}$.

Find out the **non-negative** remainder of division of $n\sum i=0$ s_i $a^{n-i}b^i$ by 10^9+9 .

Note that the modulo is unusual!

Input

The first line contains four integers n, a, b and k (1 \leq n \leq 10 9 , 1 \leq a, b \leq 10 9 , 1 \leq k \leq 10 5).

The second line contains a sequence of length k consisting of characters '+' and '-'.

If the i-th character (0-indexed) is '+', then $s_i = 1$, otherwise $s_i = -1$.

Note that only the first k members of the sequence are given, the rest can be obtained using the periodicity property.

Output

Output a single integer — value of given expression modulo 10⁹ + 9.

Examples

input	
2 2 3 3 +-+	
output	
7	

input

4 1 5 1

-

output

999999228

Note

In the first example:

$$(n\sum_{i=0}^{i=0}s_{i}a^{n-i}b^{i}) = 2^{2}3^{0} - 2^{1}3^{1} + 2^{0}3^{2} = 7$$

In the second example:

(\sum \limits_{i=0}^{n} s_{i} a^{n - i} b^{i}) = -1^{4} 5^{0} - 1^{3} 5^{1} - 1^{2} 5^{2} - 1^{1} 5^{3} - 1^{0} 5^{4} = -781 \cdot 9999999228 \cdot 10^{9} + 9.