MEMO DETERMINANTS

I Déterminants		erminants	1
	I.1	Formes n -linéaires alternées sur E	1
	I.2	Déterminant dans la base \mathcal{B}	1
	I.3	Déterminant d'un endomorphisme, d'une matrice carrée	2
ΙΙ	Mét	hodes de calcul des déterminants	4

I. Déterminants

 $(\mathbb{K}, +, \times)$ désigne un sous-corps de \mathbb{C} , n un entier naturel non nul et $(E, +, \cdot)$ un espace vectoriel sur \mathbb{K} de dimension n. On note $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base de E.

I.1 Formes n-linéaires alternées sur E

Définition 1 Une application $\varphi: E^n \longrightarrow \mathbb{K}$ est appelée une forme n-linéaire sur E si elle est linéaire par rapport à chacune de ses variables.

Proposition I.1 L'ensemble $\mathcal{L}_n(E)$ des formes n-linéaires sur E est un espace vectoriel sur \mathbb{K} (en tant que sous-espace vectoriel de \mathbb{K}^{E^n}).

Remarque I.1 Pour $\sigma \in \mathcal{S}_n$ et $\varphi \in \mathcal{L}_n(E)$, on définit $\sigma * \varphi \in \mathcal{L}_n(E)$ en posant $\forall (x_1, \ldots, x_n) \in E^n$, $\sigma * \varphi(x_1, \ldots, x_n) = \varphi(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$ On a alors les propriétés suivantes :

- $\forall \sigma \in \mathcal{S}_n, \forall \varphi_1, \varphi_2 \in \mathcal{L}_n(E), \forall \lambda \in \mathbb{K}, \ \sigma * (\lambda \varphi_1 + \varphi_2) = \lambda \sigma * \varphi_1 + \sigma * \varphi_2$
- $\forall \sigma, \rho \in \mathcal{S}_n, \forall \varphi \in \mathcal{L}_n(E), (\sigma \rho) * \varphi = \sigma * (\rho * \varphi)$

Définition 2 Une forme n-linéaire φ sur E est dite :

- antisymétrique lorsque $\forall \sigma \in \mathcal{S}_p, \ \sigma * \varphi = \varepsilon(\sigma) \varphi$
- alternée lorsque pour tout n-uplet (x_1, x_2, \ldots, x_n) de E^n dont deux vecteurs sont égaux, on a $\varphi(x_1, x_2, \ldots, x_n) = 0$.

Proposition I.2 Soit $\varphi \in \mathcal{L}_n(E)$. Si φ est alternée, alors φ est antisymétrique. Réciproquement, comme \mathbb{K} est un sous-corps de \mathbb{C} , si φ est antisymétrique, alors φ est alternée.

Proposition I.3 L'ensemble $A_n(E)$ des formes n-linéaires alternées sur E est un sous-espace vectoriel de $\mathcal{L}_n(E)$.

I.2 Déterminant dans la base \mathcal{B}

Théorème 1 Il existe une et une seule forme n-linéaire alternée sur E prenant la valeur 1 sur \mathcal{B} . Elle est appelée déterminant dans la base \mathcal{B} et notée $\det_{\mathcal{B}}$.

Le \mathbb{K} -espace vectoriel $\mathcal{A}_n(E)$ est une droite vectorielle (c'est la droite vectorielle engendrée par $\det_{\mathcal{B}}$) et on $a: \forall \varphi \in \mathcal{A}_n(E), \ \varphi = \varphi(e_1, e_2, \dots, e_n) \det_{\mathcal{B}}$.

Pour tout $(x_1, \ldots, x_n) \in E^n$ avec $\forall j \in [1, n], x_j = \sum_{i=1}^n a_{ij} e_i$ le scalaire $\det_{\mathcal{B}}(x_1, \ldots, x_n)$ est appelé

déterminant dans la base $\mathcal B$ du système de vecteurs (x_1,\ldots,x_n) et a pour expression

$$\det_{\mathcal{B}}(x_1,\ldots,x_n) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \, a_{1\sigma(1)} \, a_{2\sigma(2)} \, \ldots a_{n\sigma(n)} = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \, a_{\sigma(1)1} \, a_{\sigma(2)2} \ldots a_{\sigma(n)n}$$

Proposition I.4 Une condition nécessaire et suffisante pour que le système de vecteurs (x_1, \ldots, x_n) soit libre (et donc une base de e) est : $\det_{\mathcal{B}}(x_1, \ldots, x_n) \neq 0$.

I.3 Déterminant d'un endomorphisme, d'une matrice carrée

Théorème 2 Soit $f \in \mathcal{L}(E)$. Il existe un et un seul scalaire, appelé déterminant de f et noté $\det(f)$ tel que $\forall \varphi \in \mathcal{A}_n(E), \forall (x_1, \dots, x_n) \in E^n, \varphi(f(x_1), \dots, f(x_n)) = \det(f) \varphi(x_1, \dots, x_n)$. On a l'expression de $\det(f)$ suivante $\det(f) = \det_{\mathcal{B}}(f(e_1), \dots, f(e_n))$.

Proposition I.5 On a les propriétés suivantes :

- $\det(\mathrm{id}_E) = 1$
- $\forall \lambda \in \mathbb{K}, \forall f \in \mathcal{L}(E), \det(\lambda f) = \lambda^n \det(f)$
- $\forall f, g \in \mathcal{L}(E), \det(g \circ f) = \det(g) \det(f)$

Proposition I.6 Soit $f \in \mathcal{L}(E)$. Une condition nécessaire et suffisante pour que f soit inversible est $\det(f) \neq 0$.

Dans ce cas, on $a | \det(f^{-1}) = (\det(f))^{-1} |$

Définition 3 L'application $GL(E) \longrightarrow \mathbb{K}^*$ est un morphisme de groupes. Son noyau est $f \longrightarrow \det(f)$

un sous-groupe de GL(E) appelé groupe spécial linéaire de E, noté SL(E). Ainsi $SL(E) = \{ f \in \mathcal{L}(E) \mid \det(f) = 1 \}$.

Définition 4 Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$. On appelle déterminant de A, noté $\det(A)$, le déterminant du système de vecteurs colonnes de A dans la base canonique de \mathbb{K}^n .

On note aussi
$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & & & a_{2n} \end{vmatrix}$$

$$\vdots & & \ddots & \vdots \\ \vdots & & & \ddots & \vdots \\ a_{n1} & \cdots & \cdots & a_{nn} \end{vmatrix}$$

Proposition I.7 Mêmes notations et hypothèses. On a

$$\det(A) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \, a_{1\sigma(1)} \, a_{2\sigma(2)} \, \dots a_{n\sigma(n)} = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \, a_{\sigma(1)1} \, a_{\sigma(2)2} \dots a_{\sigma(n)n}$$

 $et\ notamment\ \boxed{\det(A) = \det({}^tA)}$

Règles de calcul:

- Lorsque l'on échange deux lignes (ou deux colonnes) d'une matrice, son déterminant est changé en son opposé.
- Le déterminant d'une matrice est fonction linéaire de chacune de ses lignes (ou colonnes).
- Le déterminant d'une matrice est inchangé lorsque l'on ajoute à une ligne (ou colonne) une combinaison linéaire des autres.

Proposition I.8 Soit $f \in \mathcal{L}(E)$. Le déterminant de f est égal au déterminant de la matrice représentant f dans une base arbitraire de E.

Proposition I.9

• $\det(I_n) = 1$

- $\forall \lambda \in \mathbb{K}, \forall A \in \mathcal{M}_n(\mathbb{K}), \det(\lambda A) = \lambda^n \det(A)$
- $\forall A, B \in \mathcal{M}_n(\mathbb{K}), \det(AB) = \det(A) \det(B)$

Proposition I.10 Soit $A \in \mathcal{M}_n(\mathbb{K})$. Une condition nécessaire et suffisante pour que A soit inversible est $\det(A) \neq 0$.

versible est
$$\det(A) \neq 0$$
.
Dans ce cas $\det(A^{-1}) = (\det(A))^{-1}$.

Définition 5 L'application $GL_n(\mathbb{K}) \longrightarrow \mathbb{K}^*$ est un morphisme de groupes. Les matrices $A \longrightarrow \det(A)$

carrées d'ordre n inversibles de déterminant égal à 1 constituent un sous-groupe de $GL_n(\mathbb{K})$ appelé groupe spécial linéaire d'ordre n et noté $SL_n(\mathbb{K})$.

Proposition I.11 Formules de Cramer.

Considérons le système de Cramer AX = b, d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{K})$; il admet une et une seule solution. Celle-ci peut être calculée à l'aide des formules dites de Cramer

$$\forall j \in [1, n], x_j = (\det(A))^{-1} \det(C_1, C_2, \dots, C_{j-1}, b, C_{j+1}, \dots, C_n)$$

où C_1, C_2, \ldots, C_n sont les vecteurs colonnes de la matrice A.

II. Méthodes de calcul des déterminants

Théorème 3 Soit $p, q \in \mathbb{N}^*$, n = p + q et $M \in \mathcal{M}_n(\mathbb{K})$ de la forme $M = \begin{pmatrix} A & C \\ (0) & B \end{pmatrix}$ avec $A \in \mathcal{M}_p(\mathbb{K})$ et $B \in \mathcal{M}_q(\mathbb{K})$. On a alors $\det(M) = \det(A) \det(B)$.

Corollaire II.1 Le déterminant d'une matrice triangulaire (notamment diagonale) est le produit de ses termes diagonaux.

Désormais A désigne une matrice carrée d'ordre n à coefficients dans \mathbb{K} , $A = (a_{ij})_{1 \leq i,j \leq n}$.

Définition 6 On appelle mineur relatif au terme a_{ij} de la matrice A le déterminant D_{ij} de la matrice extraite de A en en supprimant la i^{me} ligne et la j^{me} colonne. On appelle cofacteur du terme a_{ij} le scalaire $\Delta_{ij} = (-1)^{i+j} D_{ij}$.

Proposition II.1 Pour tous
$$i, j \in [1, n]$$
 on a $\det(A) = \sum_{k=1}^{n} a_{kj} \Delta_{kj} = \sum_{k=1}^{n} a_{ik} \Delta_{ik}$.

On dit que l'on effectue le développement de $\det(\overline{A})$ suivant la j^{me} colonne ou suivant la i^{me} ligne.

Définition 7 On appelle comatrice de A la matrice des cofacteurs des termes de A, notée com(A), c'est-à-dire $com(A) = (\Delta_{ij})_{1 \le i,j \le n}$.

Proposition II.2 On a
$$A^{t}com(A) = {}^{t}com(A) A = det(A) I_{n}$$

Notamment, si A est inversible $A^{-1} = (det(A))^{-1} {}^{t}com(A)$.

Exemple 1 Déterminant de Van der Monde. Etant donnés des scalaires $\alpha_1, \alpha_2, \dots, \alpha_n$ on a

$$\begin{vmatrix} 1 & \alpha_1 & \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \cdots & \alpha_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & \alpha_n & \cdots & \alpha_n^{n-1} \end{vmatrix} = \prod_{1 \leqslant i < j \leqslant n} (\alpha_j - \alpha_i)$$