MTH 461

12. Review: Determinants

• Cofactor expansion. If A is an $n \times n$ matrix

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$

then for any $1 \le j \le n$ we have

$$\det A = (-1)^{1+j} a_{1j} \cdot \det A_{1j} + (-1)^{2+j} a_{2j} \cdot \det A_{2j} \cdots \cdots \cdots + (-1)^{n+1} a_{nj} \cdot \det A_{nj}$$

where A_{ij} is the matrix obtained by deleting the i^{th} row and j^{th} column of A.

Example.

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

• Cramer's Rule: If A is an $n \times n$ invertible matrix then

$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$$

where $C_{ij} = (-1)^{i+j} \det A_{ij}$

Proposition

Consider a matrix equation:

$$Ax = b$$

if A is an invertible matrix, $\det A = \pm 1$ and all entries of A and \mathbf{b} are integers, then the solution of this equation consists of integers.