Math101

16. oktober 2018

Benjamin Støttrup benjamin@math.aau.dk

> Institut for matematiske fag Aalborg universitet Danmark

Agenda

Repetition af regneregler

Produkt-og kvotientientreglen

Kædereglen

Differentialregning Repetition af regneregler

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
Χ	1
x ⁿ	nx^{n-1}
e ^x	e^{x}
e ^{cx}	ce ^{cx}

f(x)	f'(x)	
a ^x	a ^x In a	
ln X	$\frac{1}{x}$	
cos X	— sin <i>X</i>	
sin X	cos X	
tan X	$1 + \tan^2(x)$	

► Samt (cf)'(x) = cf'(x) og $(f \pm g)'(x) = f'(x) \pm g'(x)$.

Differentialregning Repetition af regneregler

TOORG UNIVERSE

▶ Vi har følgende regneregler:

f(x)	f'(x)	
С	0	
X	1	
x ⁿ	nx ⁿ⁻¹	
e ^x	e ^x	
e ^{cx}	ce ^{cx}	

f(x)	f'(x)	
a ^x	a ^x In a	
ln X	$\frac{1}{x}$	
cos X	— sin <i>X</i>	
sin X	cos X	
tan X	$1 + \tan^2(x)$	

► Samt (cf)'(x) = cf'(x) og $(f \pm g)'(x) = f'(x) \pm g'(x)$.

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

 $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $h(x) = \cos(x)\sin(x)$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

 $(\frac{f}{g})'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $h(x) = \cos(x)\sin(x)$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $h(x) = \cos(x)\sin(x).$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $h(x) = \cos(x)\sin(x).$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $h(x) = \cos(x)\sin(x).$

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

► Eksempler: Differentier funktionerne

$$f(x) = \cos(x^2), \quad g(x) = e^{x^3 + 3x}, \quad h(x) = \sin^2(x^2 - 2x + 1)$$

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

► Eksempler: Differentier funktionerne

$$f(x) = \cos(x^2),$$
 $g(x) = e^{x^3 + 3x},$ $h(x) = \sin^2(x^2 - 2x + 1)$

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

► Eksempler: Differentier funktionerne

$$f(x) = \cos(x^2),$$
 $g(x) = e^{x^3 + 3x},$ $h(x) = \sin^2(x^2 - 2x + 1)$

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

► Eksempler: Differentier funktionerne

$$f(x) = \cos(x^2),$$
 $g(x) = e^{x^3 + 3x},$ $h(x) = \sin^2(x^2 - 2x + 1)$

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

► Eksempler: Differentier funktionerne

$$f(x) = \cos(x^2), \quad g(x) = e^{x^3 + 3x}, \quad h(x) = \sin^2(x^2 - 2x + 1)$$

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

► Eksempler: Differentier funktionerne

$$f(x) = \cos(x^2), \quad g(x) = e^{x^3 + 3x}, \quad h(x) = \sin^2(x^2 - 2x + 1)$$

Opgaveregning!

