例8 设 G 是一个 $^{p(p\geq 3)}$ 个顶点的连通图。 u 和 v 是 G 的两个不邻接的顶点,并且 $^{\deg u+\deg v\geq p}$ 。

证明: G 是哈密顿图 $\Leftrightarrow G+uv$ 是哈密顿图。

证明: ⇒显然成立。

年假设 G 不是哈密顿图,则由题意知,在 G 中必有一条从 u 到 v 的哈密顿路。不妨设此路为 $u^{\nu_2\nu_3\cdots\nu_{p-1}\nu}$,令 deg u=k,deg v=l,则在 G 中与 u 邻接的顶点为 $u_{i_1},u_{i_2},\cdots,u_{i_1}$,其中 $2=i_1< i_2<\cdots< i_k\leq p-1$ 。此时顶点 $u_{i_1-1}(r=2,3,\cdots,k)$ 不能与顶点 v 邻接。否则 G 有哈密顿回路 $u^{\nu_2\cdots\nu_{i_r-1}\nu\nu_{p-1}\cdots\nu_{i_r}u}$,因此 v 至少与 u,v_2,\cdots,v_{p-1} 中的 k 个顶点不邻接。于是 $l\leq p-1-k$,从而 $k+l\leq p-1$,即 $deg u+deg v\leq p-1$,与题设矛盾。故假设不成立,因此 G 是哈密顿图。

例 9 设 G = (V, E) 是连通图且顶点数为 P ,最小度数为 S 。若 P > 2S ,则 G 中有一长至少为 S 的路。

证: 假设 G 中的最长路为 L : $^L = \nu_0 \nu_1 \cdots \nu_l$, 其长度为 $^l < 2\delta$ 。因为 $^{\deg \nu_0 \geq \delta}$, $^{\deg \nu_1 \geq \delta}$, 所以存在 $^{0 \leq i \leq l-1}$,使 $^{\nu_0 \nu_{i+1}}$ 与 $^{\nu_i \nu_1}$ 在 G 中相邻,得一长为 $^l + 1$ 的 回路: $^{\nu_0 \nu_1 \cdots \nu_i \nu_i \nu_{i-1} \cdots \nu_{i+1} \nu_0}$ 。

又因为G 连通,且G 的顶点数 $p>2\delta$,故存在 $v\neq v_i(0\leq i\leq l)$ 与回路上 $v_j(0\leq j\leq l)$ 相邻,则把回路在 v_j 处断开,并把v连入回路中,得到一条长为l+1 的路,矛盾。

所以G中有一长至少为 $^{2\delta}$ 的路。

例 10 设 G 为有 p 个顶点的简单无向图,证明:

- (1) 若G 的边数 $q = (p-1) \cdot (p-2)/2 + 2$,则G 为哈密顿图;
- (2) 若G 的边数 $q = (p-1) \cdot (p-2)/2+1$,则G 是否一定为哈密顿图?

证: (1) 首先证明 G 中任意两个不相邻的顶点的度数之和均大于等于 p ,否则存在 v_i,v_j 不相邻,且 $\deg(v_i)+\deg(v_j)\leq p-1$ 。

令 $V_1 = \{v_i, v_j\}$, $G_1 = G \setminus V_1$, 则 G_1 是有 p-2 个顶点图,它的边数 q 应满足:

 $q \ge (p-1)(p-2)/2 + 2 - (p-1) = (p-2)(p-3)/2 + 1$

所以 G 中任意两个互不相邻的顶点的度数之和均大于等于 p 。

根据定理可知, G 是哈密顿图。 (2)若 G 的边数 $^{q=(p-1)\bullet(p-2)/2+1}$,则 G 不一定是哈密顿图。

例如:如图7所示的两个图都不是哈密顿图。

例 11 证明: 完全图 K_9 中至少存在彼此无公共边的两条哈密顿回路和一条哈密顿 路?

证: 在 K_9 中, $\forall \nu \in V$, $\deg \nu = 8 \ge p/2$,由定理可知,必有一条哈密顿回路 C_1 ; 令 G_1 为 G_2 中删除 G_1 中全部边之后的图,则 G_2 中每个顶点的度均为 $\deg v = 6 \ge p/2$, 故 G_1 仍为哈密顿图,因而存在 G_1 中的哈密顿回路 G_2 , 显然 G_1 与 C_2 无公共边。再设 C_2 为 C_1 中删除 C_2 中的全部边后所得图,则 C_2 每个顶点的 度均为 $\deg v = 4$ 。又由定理可知 G_2 为半哈密顿图,因而 G_2 中存在哈密顿路。设 L为 G_2 中的一条哈密顿路,显然 C_1, C_2, L 无公共边。

例 12 已知 9 个人 $^{V_1,V_2,\cdots,V_9}$,其中 V_1 和两个人握过手, V_2,V_3,V_4,V_5 各和 3 个人握 过手, $^{\nu_0}$ 和 4 个人握过手, $^{\nu_1,\nu_2}$ 各和 5 个人握过手, $^{\nu_0}$ 和 6 个人握过手。证明 这 9 个人中一定可以找出 3 个人互相握过手。

证:设 $^{\nu_1,\nu_2,\cdots,\nu_9}$ 为图 G 的9个顶点, $^{\nu_i=\nu_j}$ 握过手就连一条边 $^{\nu_i\nu_j}$,于是得 到图G。根据题意有:

$$\deg(\nu_1) = 2, \deg(\nu_2) = \deg(\nu_3) = \deg(\nu_4) = \deg(\nu_5) = 3,$$

$$\deg(\nu_6) = 4, \deg(\nu_7) = \deg(\nu_8) = 5, \deg(\nu_9) = 6$$

与 ν_9 相邻的点有 6 个,其中必有一点 ν_k 为 ν_6, ν_7, ν_8 之一,因此有 $\deg(\nu_k) \ge 4$ 。

与 v_9 相邻的其余 5 个点中必存在一点 v_k 与 v_k 相邻如图 4 所示,否则有 $\deg(v_k) \leq 8-5=3$,矛盾。由此 v_9, v_k, v_k 三个人互相握过手。

例 13 某次会议有 20 人参加,其中每个人都至少有 10 个朋友,这 20 人围一圆桌入席,要想使与每个人相邻的两位都是朋友是否可能?根据什么?

例 14 图 G 是哈密顿图。试证明:若图中的哈密顿圈中含边 e1,则它一定同时也含 e2。

例 15 已知 a,b,c,d,e,f,g 7 个人中, a 会讲英语, b 会讲英语和汉语; c 会讲英语、意大利语和俄语; d 会讲汉语和日语; e 会讲意大利语和德语; f 会讲俄语、日语和法语; g 会讲德语和法语。能否将他们的座位安排在圆桌旁,使得每个人都能与他身边的人交谈?

证:用 a,b,c,d,e,f,g 7个顶点代表7个人,若两人能交谈(会讲同一种语言),就在代表他们的顶点之间连一条无向边,所得无向图如图 $^{(a)}$ 所示,此图中存在哈密顿回路: abdfgeca (如图 $^{(b)}$ 所示),于是按图 $^{(c)}$ 所示的顺序安排座位即可。

例 16 设 G = (V, E) 是 $p(p \ge 3)$ 个顶点的简单无向图,设 G 中最长的路 L 的长度为 $l(l \ge 2)$,起点与终点分别为 u ,v ,而且 $deg u + deg v \ge p$ 。证明:G 中必有与 L 不完全相同但长度也为 l 的路。

证: 设图 G 的最长的路 L 为: $^{uv_1\cdots v_{L1}v}$, 其长度为 l 。因 L 为最长的路,所以与 u , v 相邻的顶点必在 L 上。

若 u 和 v 相邻,则构成一个回路 $uv_1 \cdots v_{l-1}vu$,回路长为 l+1 ;

若u和v不相邻,设与u相邻的顶点为 $v_i,v_{i_2},\cdots,v_{i_r}$,其中

 $1=\nu_{i_1}<\nu_{i_2}<\dots<\nu_{i_r}< l-1$,则 ν 必与某个 $\nu_{i_r-1}(2\leq j\leq r)$ 邻接。否则, ν 至多与最长路上其余的顶点邻接,所以

$$\deg u + \deg v \le r + (p-1-r) < p$$

这是不可能的。于是 $^{uv_i,v_{i+1}\dots v_{i-1}vv_{i-1}v_{i-1}v_{i-1}v_{i-2}\dots v_1u}$ 是 G 中的一个回路,此回路长度为 $^{l+1}$ 。去掉这个回路的任意一条边,便得到一条相应的最长的路,所以对于这个回路有 $^{l+1}$ 个不同的最长的路目 $^{l\geq 2}$ 。

故 G 中必有与 L 不完全相同,但长度也为 l 的路。

例5 证明: 在一个连通图中,两条最长的路有一个公共的顶点。

证:设 L_1 与 L_2 是图中的两条最长的路, $^{L_1:\nu_1\nu_2\cdots\nu_i\cdots\nu_n}$, $^{L_2:u_1u_2\cdots u_j\cdots u_n}$ 。

假设 L_1 与 L_2 没有公共顶点,因为 G 是连通的,所以 L_1 与 L_2 之间必有一条路 P 连

接目 $|P| \ge 1$ 。令 $P = \frac{L_1}{1}$ 上的 $^{\nu_i}$ 连接,与 L_2 上的 u_j 连接,则

若 $^{i \leq j}$,则路 $^{u_1u_2\cdots u_jPv_iv_{i+1}\cdots v_n}$ 比 L_i 长,矛盾。

故假设不成立, 即两条最长的路必有公共顶点。

例 6 设 G 是图, 证明: 若 δ (G) \geq 2, 则 G 中包含长至少是 δ (G) +1 的圈。

例7设 G 为 p 阶简单无向图, $^p>^2$ 且 p 为奇数, G 和 G 的补图 G 中度数为奇数的顶点的个数是否一定相等?试证明你的结论。

解:一定相等。

因为 $^{p>2}$ 为奇数,则对于奇数个顶点的 p 阶无向完全图,每个顶点的度数必为偶数。若 G 的奇度数顶点为 p_1 个,则对应补图 $^{G'}$ 在这 p_1 个顶点的度数必为(偶数一奇数)=奇数。另外,对于 G 中度数为偶数的顶点,其在补图 $^{G'}$ 中,这些顶点的度数仍为(偶数一偶数)=偶数。所以, G 中度数为奇数的顶点个数相同。

例 8 在一个有 n 个人的宴会上,每个人至少有 m 个朋友 ($2 \le m \le n$)。试证:有不少于 m+1 个人,使得他们按某种方法坐在一张圆桌旁,使得他们按着某种方法坐在一张圆桌旁,每人的左、右均是他的朋友。

例 9 一个图 G 是连通的,当且仅当将 V 划分成两个非空子集 V1 和 V2 时,G 总有一条联结 V1 的一个顶点与 V2 的一个顶点的边。

例 10 设 G 是一个(p, q)图,证明:

(1) 若 $q \ge p$,则 G 中有圈; (2) 若 q > p + 4,则 G 包含两个边不重的圈; 例 11 图 G 的围长是 G 的最短圈的长; G 中若没圈,则定义 G 的围长为无穷大。证明: 围长为 4 的 k-正则图至少有 2k 个顶点,而且(同构意义下)在 2k 个顶点上恰好有一个这样的图。(Kk, k)

例 5 证明: r(3,4)=9。即证明: 任何 9 个人的团体里,或有 3 个人互相认识,或有 4 个互相不认识。但 8 个人的团体里,上述性质未必成立。

证: 这就是要证任何 9 个顶点的图 G 中,或 G 中包含 K_3 ,或 G 中包含 $^{K_4^C}$ 。并且有的 8 个顶点的图 H , H 中既不包含 K_3 也不包含 $^{K_4^C}$,图 2 中给出了这样的一个图。

设G = (V, E), |V| = 9。若 $\exists v \in V$, $\deg v \ge 4$, 则G 中有 4 个顶点 v_1, v_2, v_3, v_4 在

G中与 ν 邻接。这时若有 $^{i\neq j}$, $^{\nu_i\nu_j\in E}$,则 $^{\nu_i\nu_j\nu}$ 是G中的一个 K_3 ,否则 $^{\nu_1,\nu_2,\nu_3,\nu_4}$ 是G的互不相邻接的4个顶点,所以G包含 $^{K_4^C}$ 。

因此, r(3,4)=9。