Aalto University Problem set 5

Department of Mathematics and Systems Analysis MS-C1541 — Metric spaces, 2021/III

K Kytölä & D Adame-Carrillo

(Exercise sessions: 11.-12.2.2021) Hand-in due: Tue 16.2.2021 at 23:59

Fill-in-the-blanks 1. In this exercise we work out an example, which shows:

In the definition of completeness it is not sufficient to consider only the distances $d(x_{k+1}, x_k)$ between consecutive members of a sequence, but one must consider all distances $d(x_k, x_\ell)$, for $k, \ell \geq n_0$.

Justification. Consider the sequence $(x_n)_{n\in\mathbb{N}}$ on the real line, which consists of the partial sums

$$x_n = \sum_{j=1}^n \frac{1}{j}$$

of the harmonic series. From Calculus-1, we know that the sequence $(x_n)_{n\in\mathbb{N}}$

Since \mathbb{R} is complete, the sequence $(x_n)_{n\in\mathbb{N}}$ therefore can not be Cauchy. Let us show that it nevertheless satisfies the following property: For all $\varepsilon > 0$ there exists an $n_0 \in \mathbb{N}$ such that

$$|x_{k+1} - x_k| < \varepsilon$$
 whenever $k \ge n_0$.

Let $\varepsilon > 0$. Since we have

$$|x_{k+1} - x_k| = \underline{\hspace{1cm}},$$

the condition $|x_{k+1} - x_k| < \varepsilon$ holds for all indices

$$k > \underline{\hspace{1cm}}$$
.

As n_0 , we can therefore choose any natural number greater than the real number on the right hand side above, and the asserted property then holds for $k \geq n_0$.

Fill-in-the-blanks 2. Complete the proof of the following claim.

Claim. Let (X, d) be a complete metric space, and $A \subset X$ a subset of it. Then $A \subset X$ is closed if and only if the subspace $A \subset X$ (with the inherited metric) is a complete metric space.

Remark: In determining the completeness of a subspace $A \subset X$, the limits of Cauchy sequences must lie in the subspace A itself (rather than the whole space X).

Proof.
"only if": Assume that $A \subset X$ is closed. Let $(a_n)_{n \in \mathbb{N}}$ be a Cauchy sequence in the subspace A . Then $(a_n)_{n \in \mathbb{N}}$ is a Cauchy sequence
also in the space, so it to a limit
$a = \lim_{n \to \infty} a_n \in$ Since A is closed, according to a charac-
terization of closedness, the limit satisfies This shows
that the subspace A is complete.
"if": Assume that the subspace A is complete. Then assume, by contrapositive, that $A \subset X$ is not closed, i.e., that $X \setminus A \subset X$ is not open. Then there exists a point $b \in X \setminus A$ such that for all $n \in \mathbb{N}$ we have
$\mathcal{B}_{1/n}(b) \cap A \neq \underline{\hspace{1cm}}$. Thus for each $n \in \mathbb{N}$ we can choose $a_n \in \mathcal{B}_{1/n}(b) \cap A$. This gives rise to a sequence $(a_n)_{n \in \mathbb{N}}$ in A . According to the choice, we have
$0 \le d(a_n, b) ___ \xrightarrow{n \to \infty} ___$, so the sequence $(a_n)_{n \in \mathbb{N}}$ converges to the limit $\lim_{n \to \infty} a_n = b$. Since a
convergent sequence $(a_n)_{n\in\mathbb{N}}$ is and the sub-
space A was assumed complete, we get that the limit satisfies
$\underline{\hspace{1cm}} \in \underline{\hspace{1cm}}$.
This is a contradiction, since we originally chose a point $b \in $