Week 4 Signal Processing Systems

Typical DSP Systems

Where Does the Signal Come From?

Where Does the Signal Come From?

☐ A sensor acquires a physical parameter and converts it into a signal suitable for processing

Where Does the Signal Come From?

- Sensors
 - **≻**Temperature Sensor
 - ► Light Sensor
 - **Accelerometer**
 - ➤ Magnetic Field Sensor
 - ➤ Ultrasonic Sensor
 - >Photogate
 - ➤ CO2 Gas Sensor

Sensors In a Smart Phone

Sensors In a Car

Temperature Sensor

thermal resistor "thermistor"

resistance changes with temperature

Light Sensor

photo-resistor

resistance changes with light intensity

Physical Principles

- ☐ Ampere's Law
 - A current carrying conductor in a magnetic field experiences a force (e.g. galvanometer)
- ☐ Faraday's Law of Induction
 - A coil resist a change in magnetic field by generating an opposing voltage/current (e.g. transformer)
- ☐ Photoconductive Effect
 - When light strikes certain semiconductor materials, the resistance of the material decreases (e.g. photoresistor)

Different Sensing Techniques

Piezoresistive MEMS accelerometer

Courtesy of JP Lynch, U Mich.

Capacitive MEMS accelerometer

Sensor Signal Conditioning

- ☐ Manipulation of an analog signal in such a way that it meets the requirements of the next stage for further processing
 - **Amplification**
 - **Limiting**
 - **Linearization**
 - >Anti-aliasing filtering
 - >...

EE111 Electric Circuits

From Analog to Digital

The World is Analog

☐ All the sensed signal is analog

The World is Analog

□ Common sensor output: voltage and current

Analog & Digital Signal

- □ Analog signal
 - Continuous-time signal with continuous-valued amplitude
 - ➤ Most of the natural signals are analog

- ☐ Digital signal
 - Discrete-time signal with discrete-valued amplitude
 - A digital signal is a quantized sampled-data signal

Digital Processing Has Many Advantages

- ☐ Digital processing has many advantages
 - Refer to slides of week 1

The Bridge Between Analog and Digital

□ Q1: can we recover the original continuous signal?

□ Q1: can we recover the original continuous signal?

□ Q1: can we recover the original continuous signal?

The Famous Nyquist Theorem

Birthdate

1889/02/07

Birthplace

Nilsby, Sweden

Death date

1976/04/04

Associated organizations

Bell Labs

Fields of study

Signal processing

Awards

IRE Medal of Honor, Stuart Ballantine Medal of the Franklin Institute, Mervin J. Kelly award

☐ The Nyquist Theorem states that in order to adequately reproduce the original signal it should be periodically sampled at a rate that is 2X the highest frequency you wish to record

Typical DSP Systems

□ Q2: how many bits we need to represent a sample?

☐ Commonly used ADC

➤8-bit, 10-bit, 12-bit, 14-bit, 16-bit, 24-bit

模拟电压Ui	量化结构	二进制码
0~1/8V	0V	0 0 0
1/8~2/8V	1/8V= △	0 0 1
2/8~3/8V	2/8V=2 ∆	0 1 0
3/8~4/8V	3/8V=3 ∆	0 1 1
4/8~5/8V	4/8V=4 ∆	1 0 0
5/8~6/8V	5/8V=5 ∆	1 0 1
6/8~7/8V	6/8V=6 ∆	1 1 0
7/8~8/8V	7/8V=7 △	微言 4 al n- 1 rina

How Does an ADC Work?

□ Sample & hold

How Does an ADC Work?

☐ Quantize & coding

模拟电压Ui	量化结构	二进制码
0~1/8V	0V	0 0 0
1/8~2/8V	1/8V= △	0 0 1
2/8~3/8V	2/8V=2 ∆	0 1 0
3/8~4/8V	3/8V=3 ∆	0 1 1
4/8~5/8V	4/8V=4 ∆	1 0 0
5/8~6/8V	5/8V=5 ∆	1 0 1
6/8~7/8V	6/8V=6 ∆	1 1 0
7/8~8/8V	7/8V=7 △	微言 4: e1 in- 1 ning

The Discrete-time System

☐ A given DSP algorithm can be implemented in various ways

The Discrete-time System

☐ Fixed point VS Floating point

Fixed Point Number

- ☐ Fixed-point arithmetic
 - >high speed
 - **►**Low complexity
- □ Represented by an integer with a scaling factor

$$X = x_{W-1}x_{W-2}...x_M \cdot x_{M-1}...x_0 = x_{W-1}x_{W-2}...x_0 \times r^{-M}$$

Decimal Number System

□ Decimal number system uses the 10 symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to represent a number

□ Example:

$$(456)_{10} = 4 \times 10^2 + 5 \times 10^1 + 6 \times 10^0$$

$$(3705.86)_{10} = 3 \times 10^{3} + 7 \times 10^{2} + 0 \times 10^{1} + 5 \times 10^{0} + 8 \times 10^{-1} + 6 \times 10^{-2}$$

Binary Number System

☐ In binary number system, 2 symbols (0 and 1) are used to represent a number

☐ Example:

$$(101.01)_2 = (2^2)_{10} + (2^0)_{10} + (2^{-2})_{10}$$

= $(4)_{10} + (1)_{10} + (0.25)_{10}$
= $(5.25)_{10}$

Binary Number System (cont'd)

☐ Unsigned binary

$$X = x_{W-1} x_{W-2} \dots x_0 = \sum_{k=0}^{W-1} x_k \cdot 2^k, \ x_k \in \{0, 1\}$$

- □ The range of an *N*-bit unsigned binary number is $[0, 2^N-1]$
 - The largest 4-bit number is $(1111)_2 = 16$
- Negative number is not represented. To represent negative numbers, an extra bit, called sign bit is needed

Negative Numbers

- ☐ Three approaches to represent negative numbers
 - ➤ Sign and magnitude
 - ➤ Two's-complement

☐ The two approaches represent positive numbers in the same way

Signed-Magnitude

- ☐ The most significant bit (MSB) is the sign bit
- □ Remaining bits are the number's magnitude

$$X = x_{W-1} x_{W-2} \dots x_0 = (-1)^{x_{W-1}} \sum_{k=0}^{W-2} x_k \cdot 2^k, \ x_k \in \{0, 1\}.$$

Sign and Magnitude (cont'd)

☐ Problem 1: Two representations of for zero

$$\rightarrow$$
 +0 = 0000 and -0 = 1000

☐ Problem 2: Arithmetic is cumbersome

$$>4-3 \neq 4+(-3)$$

	dd	
Δ	a	
4	uu	

Subtract

Compare and subtract

4	0100	4	0100	0100	- 4	1100	1100
+ 3	+ 0011	- 3	+ 1011	- 0011	+ 3	+ 0011	- 0011
= 7	= 0111	= 1	≠ 1111	= 0001	- 1	≠ 1111	= 1001

Two's complement

□ Negative number

>0111
$$\equiv 7_{10}$$

>1001 $\equiv -7_{10}$

☐ The value of a two's complement number is

$$X = x_{W-1}x_{W-2}...x_0 = -x_{W-1} \cdot 2^{W-1} + \sum_{k=0}^{W-2} x_k \cdot 2^k, \ x_k \in \{0, 1\}.$$

☐ The MSB carries a negative weight

$$(1101)_{2's} = -2^3 + 2^2 + 2^0 = -8 + 4 + 1 = -3$$

 $(1001)_{2's} = -2^3 + 2^0 = -8 + 1 = -7$
 $(0110)_{2's} = 2^2 + 2^1 = 4 + 2 = 6$
 $(110)_{2's} = -2^2 + 2^1 = -4 + 2 = -2$

Two's complement (cont'd)

- □ The range of an *N*-bit two's complement number is $[-2^{N-1}, 2^{N-1}-1]$
- ☐ For a 4-bit two's complement number

Two's complement (cont'd)

□ Benefits:

EE115 Analog and Digital Circuits

- >Simplified arithmetic
- ➤Only one zero!

	Add	Invert a	and add	Invert	and add
4	0100	4	0100	- 4	1100
+ 3	+ 0011	– 3	+ 1101	+ 3	+ 0011
= 7	= 0111	= 1	1 0001	- 1	1111
		drop carry	= 0001		

☐ As long as the results can be represented (no overflow)!

Floating Point Number

Example: 8934 can be written as 0.8934×10^4

Binary Representation of Floating Point Number

Binary Representation of Floating Point Number (cont'd)

□ For maximum precision, the number can be normalized until the first digit is "1"

Binary Representation of Floating Point Number (cont'd)

☐ Since the first digit is a "1", it is not necessary to record it

IEEE 754

- □ IEEE standard for binary floating-point arithmetic
- □ IEEE 754 specifies 4 formats
 - Single-precision (32-bit)
 - Double-precision (64-bit)
 - ➤ Signal-extended precision (≥43-bit, seldom used)
 - ➤ Double-extended precision (≥79-bit, usually 80-bit)

IEEE 754 Number Format

	Exponent	Mantissa
NaNs	2^{E} – 1, i.e. all 1s	non zero
Infinities	2^{E} – 1, i.e. all 1s	0
Zeroes	0, i.e. all 0s	0
Denormalized numbers	0, i.e. all 0s	non zero
Normalized numbers	1 to $2^E - 2$. Biased binary	Any number

IEEE 754 Number Format (cont'd)

- □ Sign bit
 - Number is positive if sign bit is "0"
 - Number is negative if sign bit is "1"
- ☐ Biased exponent
 - The exponent is a signed value
 - for large and small magnitudes
 - ➤ Two's complement is not used
 - \triangleright A constant $2^{E-1}-1$ is added to the exponent
 - E.g., for E=8, the exponent bias is 2^7 -1=127, if the exponent is -3, it will be recorded as -3+127=124, i.e., $(011111100)_2$

32-bit Single Precision Format

Value =
$$(-1)^S \times 2^{Exp-127} \times M$$

Where

Exp = Recorded exponent.

M = 1.(value represented by fractional bit).

The Mantissa Value

Mantissa value = 1.(value represented by fractional bit).

Example

23-bit mantissa

Fixed point VS Floating point

- ☐ Example: 32bit
- ☐ For fixed point

The smallest 1×2^{-N}

The largest $(2^{32}-1)\times 2^{-N}$

8-bit exponent 23-bit mantissa Sign bit
$$Value = (-1)^{S} \times 2^{Exp-127} \times M$$
 Where
$$Exp = \text{Recorded exponent.}$$

$$M = 1. \text{(value represented by fractional bit).}$$

23 22

Dynamic range
$$20\log(\frac{(2^{32}-1)\times 2^{-N}}{1\times 2^{-N}}) \approx 192dB$$

☐ For floating point

Dynamic range
$$20\log(\frac{3.402823\times10^{38}}{1.175494\times10^{-38}}) \approx 1667.6\text{dB}$$

Fixed point VS Floating point

- ☐ Fixed point
 - Limited dynamic range, fast, low-power
- ☐ Floating point
 - High dynamic range, complex, slow

- Example
 - Filter coefficient quantization

Question

☐ The word-length of commonly used ADCs are around 16 bit, why need such a large dynamic range?

- □ Answer
 - > Multiplications

Typical DSP Operations

□ Adders and multipliers are important components in DSP circuits

Other Number Systems

- ☐ Signed digit number system (SD)
- □ Residual number system (RNS)
- □ Logarithmic number system (LNS)

It Is Always a Tradeoff

☐ A number system with high dynamic range, high precision, low-complexity...

Does not exist!

NVIDIA T4 SPECIFICATIONS

Performance

TURING TENSOR CORES

320

NVIDIA CUDA® CORES

2,560

SINGLE PRECISION PERFORMANCE (FP32)

8.1 TFLOPS

MIXED PRECISION (FP16/FP32)

65 FP16 TFLOPS

INT8 PRECISION

130 INT8 TOPS

INT4 PRECISION

260 INT4 TOPS

Other Things

□ Other things you need to think about when implementing a DSP system

业界盛名的降噪技术

智能体验 智慧聆听

音频品质 实时提升

便捷操控 更懂你心

