# How is CCM useful?

### 1 Example System

The continuous system is

$$\frac{dI}{dt} = \frac{V(t)}{L} - \frac{R(t)}{L}I,\tag{1}$$

where I is the current at time t, V(t) is the voltage at time t, R(t) is the resistance at time t, and L is the inductance (which is also constant in these examples), and it can be approximated as

$$\dot{I} = \frac{V(t)}{L} - \frac{R(t)}{L}I \Rightarrow I_{t+1} - I_t = \frac{V_t}{L} - \frac{R_t}{L}I_t.$$
 (2)

Rearranging leads to

$$I_{t+1} = \frac{V_t}{L} + I_t \left( 1 - \frac{R_t}{L} \right), \tag{3}$$

$$V_t = L\left(I_{t+1} - I_t\left(1 - \frac{R_t}{L}\right)\right),\tag{4}$$

and

$$R_t = L\left(I_t - I_{t+1} + \frac{V_t}{L}\right). (5)$$

All of the plots of I seen below are produced by using MATLAB's ode45 to solve Eqn. 1 (i.e. not using the discrete approximation shown). The time series V(t) and R(t) are created by defining values at fixed points and using linear interpolation (i.e. MATLAB's interp1) to find the time steps required by the ODE solver (i.e. MATLAB's ode45).

# 2 Changing V(t)

Consider the situation where R(t) is constant.

Physical intuition is that V drives I, so we expect to find V CCM causes I  $(C_{VI} > C_{IV})$ .

For this example, the voltage is described by

$$V(t) = A_v \sin(f_v t + \phi_v) + O_v, \tag{6}$$

where  $A_v$  is the amplitude,  $f_v$  is the frequency,  $\phi_v$  is the phase, and  $O_v$  is the offset voltage.

#### 2.1 Changing $A_v$

Consider evaluating the CCM correlations  $C_{VI}$  and  $C_{IV}$  for each  $A_v \in [0.01, 2.0]$  in steps of 0.01. For reference, both V(t) and I(t) are plotted for different  $A_v$  in Figure 1.

Figure 1: Reference plots for changing  $A_v$ .

The CCM correlations are each plotted in Figure 2 along with the corresponding PAI elements  $P_{\theta}$  and |P|.



Figure 2: Changing  $A_v$ .

# 2.2 Changing $f_v$

Consider evaluating the CCM correlations  $C_{VI}$  and  $C_{IV}$  for each  $f_v \in [0.01, 2.0]$  in steps of 0.01. For reference, both V(t) and I(t) are plotted for different  $f_v$  in Figure 3.

Figure 3: Reference plots for changing  $f_v$ .

The CCM correlations are each plotted in Figure 4 along with the corresponding PAI elements  $P_{\theta}$  and |P|.



Figure 4: Changing  $f_v$ .

## 2.3 Changing $\phi_v$

Consider evaluating the CCM correlations  $C_{VI}$  and  $C_{IV}$  for each  $\phi_v \in [0.01, 2.0]$  in steps of 0.01. For reference, both V(t) and I(t) are plotted for different  $\phi_v$  in Figure 5.

Figure 5: Reference plots for changing  $\phi_v$ .

The CCM correlations are each plotted in Figure 16 along with the corresponding PAI elements  $P_{\theta}$  and |P|.



Figure 6: Changing  $\phi_v$ .

## 2.4 Changing $O_v$

Consider evaluating the CCM correlations  $C_{VI}$  and  $C_{IV}$  for each  $O_v \in [0.01, 2.0]$  in steps of 0.01. For reference, both V(t) and I(t) are plotted for different  $O_v$  in Figure 7.

Figure 7: Reference plots for changing  $O_v$ .

The CCM correlations are each plotted in Figure 8 along with the corresponding PAI elements  $P_{\theta}$  and |P|.



Figure 8: Changing  $O_v$ .

Figure 9 shows the effect of increasing the library length from  $2 \times 10^3$  (i.e. tspan = [0:0.5:1000];) to  $10^4$  (i.e. tspan = [0:0.5:5000];), and Figure 10 extends the above plots to  $O_v \in [0.01, 10.0]$  in steps of 0.05.



Figure 9: Changing  $O_v$  (longer library length).



Figure 10: Changing  $O_v$  (larger domain for  $O_v$ ).