

General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark Each

Q.1	"You are delaying the completion of the task. Send contributions at the earliest."
(A)	you are
(B)	your
(C)	you're
(D)	yore
Q.2	References : : : Guidelines : Implement (By word meaning)
(A)	Sight
(B)	Site
(C)	Cite
(D)	Plagiarise

Q.3 In the given figure, PQRS is a parallelogram with PS = 7 cm, PT = 4 cm and PV = 5 cm. What is the length of RS in cm? (The diagram is representative.)

- $(A) \qquad \boxed{\frac{20}{7}}$
- (B) $\frac{28}{5}$
- (C) $\frac{9}{2}$
- (D) $\frac{35}{4}$

Q.4	In 2022, June Huh was awarded the Fields medal, which is the highest prize in Mathematics.
	When he was younger, he was also a poet. He did not win any medals in the International Mathematics Olympiads. He dropped out of college.
	Based only on the above information, which one of the following statements can be logically inferred with <i>certainty</i> ?
(A)	Every Fields medalist has won a medal in an International Mathematics Olympiad.
(B)	Everyone who has dropped out of college has won the Fields medal.
(C)	All Fields medalists are part-time poets.
(D)	Some Fields medalists have dropped out of college.

Q.5 A line of symmetry is defined as a line that divides a figure into two parts in a way such that each part is a mirror image of the other part about that line. The given figure consists of 16 unit squares arranged as shown. In addition to the three black squares, what is the minimum number of squares that must be coloured black, such that both PQ and MN form lines of symmetry? (The figure is representative) Ρ ΙQ (A) 3 4 (B) (C) 5 (D) 6

Q.6 – Q.10 Carry TWO marks Each

Q.6	Human beings are one among many creatures that inhabit an imagined world. In this imagined world, some creatures are cruel. If in this imagined world, it is given that the statement "Some human beings are not cruel creatures" is FALSE, then which of the following set of statement(s) can be logically inferred with <i>certainty</i> ? (i) All human beings are cruel creatures. (ii) Some human beings are cruel creatures. (iii) Some creatures that are cruel are human beings. (iv) No human beings are cruel creatures.
(A)	only (i)
(B)	only (iii) and (iv)
(C)	only (i) and (ii)
(D)	(i), (ii) and (iii)

Q.7	To construct a wall, sand and cement are mixed in the ratio of 3:1. The cost of sand and that of cement are in the ratio of 1:2. If the total cost of sand and cement to construct the wall is 1000 rupees, then what is the cost (in rupees) of cement used?
(A)	400
(B)	600
(C)	800
(D)	200

Q.8	The World Bank has declared that it does not plan to offer new financing to Sri Lanka, which is battling its worst economic crisis in decades, until the country has an adequate macroeconomic policy framework in place. In a statement, the World Bank said Sri Lanka needed to adopt structural reforms that focus on economic stabilisation and tackle the root causes of its crisis. The latter has starved it of foreign exchange and led to shortages of food, fuel, and medicines. The bank is repurposing resources under existing loans to help alleviate shortages of essential items such as medicine, cooking gas, fertiliser, meals for children, and cash for vulnerable households.
	Based only on the above passage, which one of the following statements can be inferred with <i>certainty</i> ?
(A)	According to the World Bank, the root cause of Sri Lanka's economic crisis is that it does not have enough foreign exchange.
(B)	The World Bank has stated that it will advise the Sri Lankan government about how to tackle the root causes of its economic crisis.
(C)	According to the World Bank, Sri Lanka does not yet have an adequate macroeconomic policy framework.
(D)	The World Bank has stated that it will provide Sri Lanka with additional funds for essentials such as food, fuel, and medicines.

Q.9	The coefficient of x^4 in the polynomial $(x-1)^3(x-2)^3$ is equal to
(A)	33
(B)	-3
(C)	30
(D)	21

Q.10	Which one of the following shapes can be used to tile (completely cover by repeating) a flat plane, extending to infinity in all directions, without leaving any empty spaces in between them? The copies of the shape used to tile are identical and are not allowed to overlap.
(A)	circle
(B)	regular octagon
(C)	regular pentagon
(D)	rhombus

Q.11 – Q.35 Carry ONE mark Each

Q.11	Which one of the following is the CORRECT value of y , as defined by the expression given below?
	$y = \lim_{x \to 0} \frac{2x}{e^x - 1}$
(A)	1
(B)	2
(C)	0
(D)	∞
Q.12	The vector $\vec{\boldsymbol{v}}$ is defined as
	$\vec{v} = zx \hat{\imath} + 2xy \hat{\jmath} + 3yz \hat{k} .$
	Which one of the following is the CORRECT value of divergence of \vec{v} , evaluated at the point $(x, y, z) = (3, 2, 1)$?
(A)	0
(B)	3
(C)	14
(D)	13

Q.13	Given that	
		$F = \frac{ z_1 + z_2 }{ z_1 + z_2 } ,$

where $z_1=2+3i$ and $z_2=-2+3i$ with $i=\sqrt{-1}$, which one of the following options is CORRECT?

- (A) F < 0
- (B) F < 1
- (C) |F>1
- (D) F = 1

Q.14	For a two-dimensional plane, the unit vectors, $(\hat{e}_r, \hat{e}_\theta)$ of the polar coordinate
	system and (\hat{i}, \hat{j}) of the cartesian coordinate system, are related by the following two
	equations.

$$\hat{e}_r = \cos\theta \,\hat{\imath} + \sin\theta \,\hat{\jmath}$$

$$\hat{e}_{\theta} = -\sin\theta \,\,\hat{\imath} + \cos\theta \,\,\hat{\jmath}$$

Which one of the following is the CORRECT value of $\frac{\partial (\hat{e}_r + \hat{e}_\theta)}{\partial \theta}$?

(A)	1
(\mathbf{A})	
` /	

- (B) \hat{e}_{θ}
- (C) $\hat{e}_r + \hat{e}_\theta$
- (D) $\left| -\hat{e}_r + \hat{e}_\theta \right|$

Q.15	Which one of the following statements related to octane number is NOT correct?	
(A)	Linear alkanes with higher carbon number have higher octane number.	
(B)	Branching in linear alkanes increases their octane number.	
(C)	Catalytic reforming of hydrocarbons increases their octane number.	
(D)	Gasoline quality is measured in terms of octane number.	
Q.16	Which one of the following options represents the major components of oleum?	
(A)	Sulfuric acid and nitric acid	
(B)	Concentrated sulfuric acid and petroleum jelly	
(C)	Sulfuric acid and hydrochloric acid	
(D)	Sulfuric acid and sulfur trioxide	

Q.17	For a reversible endothermic chemical reaction with constant heat of reaction over the operating temperature range, K is the thermodynamic equilibrium constant. Which one of the following figures shows the CORRECT dependence of K on temperature T ?
(A)	$\uparrow (y) = 1/T \rightarrow 1/$
(B)	$\uparrow_{(y)}$
(C)	$ \uparrow (\cancel{y}) u \downarrow 1/T \rightarrow $
(D)	$\uparrow (y)$ $1/T \rightarrow$

Q.18	Nitrile rubber is manufactured via polymerization process. Which one of the following options is the CORRECT pair of monomers used in this process?
(A)	Acrylonitrile and styrene
(B)	Acrylonitrile and butadiene
(C)	Butadiene and styrene
(D)	Butadiene and isoprene
Q.19	John and Jane independently performed a thermodynamic experiment, in which \mathbf{X} and \mathbf{Y} represent the initial and final thermodynamic states of the system, respectively. John performed the experiment under reversible conditions, for which the change in entropy of the system was ΔS_{rev} . Jane performed the experiment under irreversible conditions, for which the change in entropy of the system was ΔS_{irr} . Which one of the following relationships is CORRECT?
(A)	$\Delta S_{rev} = \Delta S_{irr}$
(B)	$\Delta S_{rev} > \Delta S_{irr}$
(C)	$\Delta S_{rev} < \Delta S_{irr}$
(D)	$\Delta S_{rev} = 2\Delta S_{irr}$

Q.20	For a packed-bed comprising of uniform-sized spherical particles of diameter D_p , the pressure drop across the bed is given by the Kozeny-Carman equation when the particle Reynolds number (Re _p) < 1. Under this condition, minimum fluidization velocity is proportional to D_p^n . Which one of the following is the CORRECT value of exponent n ?
(A)	2
(B)	_1
(C)	-2
(D)	1

Match the quantities in Group 1 with their units in	Group 2 listed in the table below	V.
Group 1	Group 2	
P) Thermal conductivity	I) W. m ⁻² K ⁻¹	
Q) Convective heat transfer coefficient	II) W. m ⁻¹ K ⁻¹	
R) Stefan-Boltzmann constant	III) W. K ⁻¹	
S) Heat capacity rate	IV) W. m ⁻² K ⁻⁴	
P-II, Q-I, R-IV, S-III		
P-I, Q-II, R-III, S-IV		
P-III, Q-IV, R-II, S-I		
P-IV, Q-I, R-III, S-II		
	Group 1 P) Thermal conductivity Q) Convective heat transfer coefficient R) Stefan-Boltzmann constant S) Heat capacity rate P-II, Q-I, R-IV, S-III P-I, Q-II, R-III, S-IV P-III, Q-IV, R-II, S-I	P) Thermal conductivity I) W. m ⁻² K ⁻¹ Q) Convective heat transfer coefficient II) W. m ⁻¹ K ⁻¹ R) Stefan-Boltzmann constant III) W. K ⁻¹ S) Heat capacity rate IV) W. m ⁻² K ⁻⁴ P-II, Q-I, R-IV, S-III P-I, Q-II, R-III, S-IV P-III, Q-IV, R-II, S-I

Q.22 A slab of thickness L, as shown in the figure below, has cross-sectional area A and constant thermal conductivity k. T_1 and T_2 are the temperatures at x=0 and x=L, respectively. Which one of the following options is the CORRECT expression of the thermal resistance for steady-state one-dimensional heat conduction?

 $\begin{array}{c|c}
T_1 & T_2 \\
\hline
0 & L \\
\hline
\longrightarrow x
\end{array}$

- (A) $\frac{L}{kA}$
- (B) $\frac{k}{LA}$
- (C) $\frac{kA(T_1 T_2)}{L}$
- (D) $\frac{A}{Lk}$

Q.23	Spray dryers have many advantages. Which one of the following is NOT an advantage of a typical spray dryer?
(A)	Has short drying time
(B)	Produces hollow spherical particles
(C)	Has high heat efficiency
(D)	Is suitable for heat sensitive materials
Q.24	Which one of the following quantities of a flowing fluid is measured using a rotameter?
(A)	Static pressure
(B)	Dynamic pressure
(C)	Volumetric flow rate
(D)	Viscosity

Q.25	A liquid surge tank has F_{in} and F_{out} as the inlet and outlet flow rates respectively, as shown in the figure below. F_{out} is proportional to the square root of the liquid level h . The cross-sectional area of the tank is 20 cm^2 . Density of the liquid is constant everywhere in the system. At steady state, $F_{in} = F_{out} = 10 \text{ cm}^3 \text{s}^{-1}$ and $h = 16 \text{ cm}$. The variation of h with F_{in} is approximated as a first order transfer function. Which one of the following is the CORRECT value of the time constant (in seconds) of this system? $F_{in} = F_{out} = F_{out}$
(A)	20
(B)	32
(C)	64
(D)	128

Q.26	A packed distillation column, with vapor having an average molecular weight of 45 kg. kmol ⁻¹ , density of 2 kg. m ⁻³ and a molar flow rate of 0.1 kmol. s ⁻¹ , has a flooding velocity of 0.15 m. s ⁻¹ . The column is designed to operate at 60 % of the flooding velocity. Which one of the following is the CORRECT value for the column diameter (in m)?
(A)	$\frac{5}{\sqrt{\pi}}$
(B)	$5\sqrt{\pi}$
(C)	4π
(D)	$\frac{10}{\sqrt{\pi}}$

Q.27 An isothermal jacketed continous stirred tank reactor (CSTR) operating at $150\,^{\circ}$ C is shown in the figure below. The cold feed entering the system at $30\,^{\circ}$ C is preheated to a temperature T (T < $150\,^{\circ}$ C) using a heat exchanger HX_1 . This preheated feed is further heated to $150\,^{\circ}$ C using the utility heater HX_2 . The mass flow rate and heat capacity are same for all the process streams, and the overall heat transfer coefficient is independent of temperature. Which one of the following statements is the CORRECT action to take if it is desired to increase the value of T?

- (A) Increase both heat transfer area of HX_1 and heat duty of HX_2 .
- (B) Decrease both heat transfer area of HX_1 and heat duty of HX_2 .
- (C) Increase the heat transfer area of HX_1 and decrease the heat duty of HX_2 .
- (D) Decrease the heat transfer area of HX_1 and increase the heat duty of HX_2 .

Q.28	Consider a system where a Carnot engine is operating between a source and a sink. Which of the following statements about this system is/are NOT correct?
(A)	This engine is reversible.
(B)	The engine efficiency is independent of the source and sink temperatures.
(C)	This engine has the highest efficiency among all engines that operate between the same source and sink.
(D)	The total entropy of this system increases at the completion of each cycle of the engine.
Q.29	For a fully developed turbulent flow of an incompressible Newtonian fluid through a pipe of constant diameter, which of the following statements is/are CORRECT?
(A)	Reynolds stress, averaged over a sufficiently long time, is zero everywhere inside the pipe.
(B)	Reynolds stress at the pipe wall is zero.
(C)	Average velocity of the fluid is half of its center-line velocity.
(D)	Average pressure gradient in the flow direction is constant.

Q.30	Given that E (in W. m ⁻²) is the total hemispherical emissive power of a surface maintained at a certain temperature, which of the following statements is/are CORRECT?
(A)	E does not depend on the direction of the emission.
(B)	E depends on the viewfactor.
(C)	E depends on the wavelength of the emission.
(D)	E does not depend on the frequency of the emission.
Q.31	The position $x(t)$ of a particle, at constant ω , is described by the equation
	$\frac{d^2x}{dt^2} = -\omega^2 x .$
	The initial conditions are $x(t=0)=1$ and $\frac{dx}{dt}\Big _{t=0}=0$. The position of the
	particle at $t = (3 \pi/\omega)$ is (in integer).
Q.32	Burning of methane in a combustor yields carbon monoxide, carbon dioxide, and water vapor. Methane is fed to the combustor at 100 mol. hr ⁻¹ , of which 50 % reacts. The theoretical oxygen requirement (in mol. hr ⁻¹) is (rounded off to one decimal place).

Q.33	The viscosity of an incompressible Newtonian fluid is measured using a capillary tube of diameter 0.5 mm and length 1.5 m. The fluid flow is laminar, steady and fully developed. For a flow rate of $1 \text{ cm}^3\text{s}^{-1}$, the pressure drop across the length of the tube is 1 MPa . If the viscosity of the fluid is $k \times 10^{-3} \text{ Pa}$. s, the value of k is (rounded off to two decimal places).
Q.34	A liquid L containing a dissolved gas S is stripped in a countercurrent operation using a pure carrier gas V . The liquid phase inlet and outlet mole fractions of S are 0.1 and 0.01, respectively. The equilibrium distribution of S between V and L is governed by $y_e = x_e$, where y_e and x_e are the mole fractions of S in V and L , respectively. The molar feed rate of the carrier gas stream is twice as that of the liquid stream. Under dilute solution conditions, the minimum number of ideal stages required is (in integer).
Q.35	In a binary gas-liquid system, $N_{A,EMD}$ is the molar flux of a gas A for equimolar counter diffusion with a liquid B . $N_{A,UMD}$ is the molar flux of A for steady one-component diffusion through stagnant B . Using the mole fraction of A in the bulk of the gas phase as 0.2 and that at the gas-liquid interface as 0.1 for both the modes of diffusion, the ratio of $N_{A,UMD}$ to $N_{A,EMD}$ is equal to (rounded off to two decimal places).

Q.36 – Q.65 Carry TWO marks Each

Q.36	An exhibition was held in a hall on 15 August 2022 between 3 PM and 4 PM during which any person was allowed to enter only once. Visitors who entered before 3:40 PM exited the hall exactly after 20 minutes from their time of entry. Visitors who entered at or after 3:40 PM, exited exactly at 4 PM. The probability distribution of the arrival time of any visitor is uniform between 3 PM and 4 PM. Two persons <i>X</i> and <i>Y</i> entered the exhibition hall independent of each other. Which one of the following values is the probability that their visits to the exhibition overlapped with each other?
(A)	<u>5</u> 9
(B)	4 9
(C)	2 9
(D)	7 9

Q.37	Simpson's one-third rule is used to estimate the definite integral
------	--

$$I = \int_{-1}^{1} \sqrt{(1 - x^2)} dx$$

with an interval length of 0.5. Which one of the following is the CORRECT estimate of I obtained using this rule?

- (A) $\frac{1}{3} \frac{1}{\sqrt{3}}$
- (B) $\frac{1}{3} + \frac{2}{\sqrt{3}}$
- (C) $\frac{1}{3} + \frac{1}{\sqrt{3}}$
- $(D) \qquad \frac{1}{3} \frac{2}{\sqrt{3}}$

Q.38	Match the in the table		e manufacturing processes in Group 2 listed
		Group 1	Group 2
		P) Acetaldehyde	I) Sulfate process
		Q) Sulfuric acid	II) Electric furnace process
		R) Pulp	III) Wacker process
		S) Phosphorus	IV) Contact process
(A)	P-III, Q-IV	V, R-I, S-II	
(B)	P-III, Q-I,	R-IV, S-II	
(C)	P-IV, Q-I,	R-II, S-III	
(D)	P-I, Q-IV,	R-II, S-III	

	Match the reactions in Group 1 with the catalysts in Group 2 listed in the table
	below.

Group 1	Group 2
P) $C_6H_6 + Cl_2 \longrightarrow Chlorobenzene + HCl$	I) Mixed oxide of Mo and Fe
Q) $H_2C = CH_2 + \frac{1}{2}O_2 \longrightarrow$ Ethylene oxide	II) V ₂ O ₅
R) $CH_3OH + \frac{1}{2}O_2 \longrightarrow Formaldehyde + H_2O$	III) FeCl ₃
S) Naphthalene $+\frac{9}{2}O_2 \longrightarrow Phthalic Anhydride +2H_2O + 2CO_2$	IV) Ag ₂ O

- (A) P-III, Q-IV, R-II, S-I
- (B) P-III, Q-IV, R-I, S-II
- (C) P-IV, Q-II, R-I, S-III
- (D) P-IV, Q-III, R-I, S-II

Q.40	Water in a container at 290 K is exposed to air containing 3 % $\rm CO_2$ by volume. Air behaves like an ideal gas and is maintained at 100 kPa pressure. The liquid phase comprising of dissolved $\rm CO_2$ in water behaves like an ideal solution. Use Henry's constant of $\rm CO_2$ dissolved in water at 290 K as 12 MPa. Under equilibrium conditions, which one of the following is the CORRECT value of the mole fraction of $\rm CO_2$ dissolved in water?
(A)	2.9×10^{-4}
(B)	0.9×10^{-4}
(C)	2.5×10^{-4}
(D)	0.5×10^{-4}

Q.41	The enthalpy $(H, \text{ in J. mol}^{-1})$ of a binary liquid system at constant temperature and pressure is given as
	$H = 40x_1 + 60x_2 + x_1x_2(4x_1 + 2x_2) ,$
	where x_1 and x_2 represent the mole fractions of species 1 and 2 in the liquid, respectively. Which one of the following is the CORRECT value of the partial molar enthalpy of species 1 at infinite dilution, \overline{H}_1^{∞} (in J. mol ⁻¹)?
(A)	100
(B)	42
(C)	64
(D)	40
Q.42	Which one of the following represents the CORRECT effects of concentration polarization in a reverse osmosis process?
(A)	Reduced water flux and reduced solute rejection
(B)	Increased water flux and increased solute rejection
(C)	Reduced water flux and increased solute rejection
(D)	Increased water flux and reduced solute rejection

Q.43	CO and H_2 participate in a catalytic reaction. The partial pressures (in atm) of the reacting species CO and H_2 in the feed stream are p_{CO} and p_{H_2} , respectively. While CO undergoes molecular adsorption, H_2 adsorbs via dissociative adsorption, that is, as hydrogen atoms. The equilibrium constants (in atm ⁻¹) corresponding to adsorption of CO and H_2 to the catalyst sites are K_{CO} and K_{H_2} , respectively. Total molar concentration of active sites per unit mass of the catalyst is C_t (in mol. (g cat) ⁻¹). Both the adsorption steps are at equilibrium. Which one of the following expressions is the CORRECT ratio of the concentration of catalyst sites occupied by CO to that by hydrogen atoms?
(A)	$\frac{K_{\text{CO}}p_{\text{CO}}}{\sqrt{K_{\text{H}_2}p_{\text{H}_2}}}$
(B)	$\frac{K_{\text{CO}}}{\sqrt{K_{\text{H}_2}}}$
(C)	$\frac{p_{\mathrm{CO}}}{\sqrt{p_{\mathrm{H}_2}}}$
(D)	$\frac{K_{\rm CO}p_{\rm CO}}{K_{\rm H_2}p_{\rm H_2}}$

Q.44 A cascade control strategy is shown in the figure below. The transfer function between the output (y) and the secondary disturbance (d_2) is defined as

$$G_{d2}(s) = \frac{y(s)}{d_2(s)} .$$

Which one of the following is the CORRECT expression for the transfer function $G_{d2}(s)$?

- (A) $\frac{1}{(11s+21)(0.1s+1)}$
- (B) $\frac{1}{(s+1)(0.1s+1)}$
- (C) $\frac{(s+1)}{(s+2)(0.1s+1)}$
- (D) $\frac{(s+1)}{(s+1)(0.1s+1)}$

Q.45	Level (h) in a steam boiler is controlled by manipulating the flow rate (F) of the make-up (fresh) water using a proportional (P) controller. The transfer function between the output and the manipulated input is
	h(s) = 0.25(1-s)
	$\frac{h(s)}{F(s)} = \frac{0.25(1-s)}{s(2s+1)} \ .$
	The measurement and valve transfer functions are both equal to 1. A process engineer wants to tune the controller so that the closed-loop response gives decaying oscillations under servo mode. Which one of the following is the CORRECT value of the controller gain to be used by the engineer?
(A)	0.25
(B)	2
(C)	4
(D)	6
Q.46	Which of the following statements is/are CORRECT?
(A)	Bond number includes surface tension.
(B)	Jakob number includes latent heat.
(C)	Prandtl number includes liquid-vapor density difference.
(D)	Biot number includes gravity.

Q.47	If a matrix <i>M</i> is detequal to		0 6] 10	, the sur	n of al	I the e	igenvalues of M^3 is
Q.48	The first derivative	of the function					
		U(r) = 4	$4\left[\left(\frac{1}{r}\right)\right]$)12 -	$\left(\frac{1}{r}\right)^6$		
	evaluated at $r=1$	is (in in	nteger).				
Q.49	through a column o	f CaCl ₂ pellets. T lumn. The mole	he pell percen	ets remo	ve 50 ter vap	percen	tinuously passing it at of water from wet the product stream l places).
Q.50	given in the table b	elow. The humic gas is 0.07. The	lity mea	asureme fraction	nt reve	als th	sis) of a stack gas is at the mole fraction ated on a wet basis
]
		Species	N ₂	CO ₂	СО	02	
		mol %	65	15	10	10	

Q.53 A large tank is filled with water (density = $1 \, \mathrm{g.\,cm^{-3}}$) upto a height of 5 m. A 100 µm diameter solid spherical particle (density = $0.8 \, \mathrm{g.\,cm^{-3}}$) is released at the bottom of the tank. The particle attains its terminal velocity (v_t) after traveling to a certain height in the tank. Use acceleration due to gravity as $10 \, \mathrm{m.\,s^{-2}}$ and water viscosity as $10^{-3} \, \mathrm{Pa.\,s}$. Neglect wall effects on the particle. If Stokes law is applicable, the absolute value of v_t (in mm. s⁻¹) is _____ (rounded off to two decimal places).

Q.54 A fluid is flowing steadily under laminar conditions over a thin rectangular plate at temperature T_s as shown in the figure below. The velocity and temperature of the free stream are u_{∞} and T_{∞} , respectively. When the fluid flow is only in the x-direction, h_x is the local heat transfer coefficient. Similarly, when the fluid flow is only in the y-direction, h_y is the corresponding local heat transfer coefficient. Use the correlation Nu = 0.332 (Re)^{1/2} (Pr)^{1/3} for the local heat transfer coefficient, where, Nu, Re, and Pr, respectively are the appropriate Nusselt, Reynolds and Prandtl numbers. The average heat transfer coefficients are defined as $\bar{h}_l = \frac{1}{l} \int_0^l h_x \, dx$ and $\bar{h}_w = \frac{1}{w} \int_0^w h_y \, dy$. If w = 1 m and l = 4 m, the value of the ratio of \bar{h}_w to \bar{h}_l is _____ (in integer).

Partially saturated air at 1 bar and 50 °C is contacted with water in an adiabatic saturator. The air is cooled and humidified to saturation, and exits at 25 °C with an absolute humidity of 0.02 kg water per kg dry air. Use latent heat of vaporization of water as 2450 kJ. kg⁻¹, and average specific heat capacity for dry air and water, respectively as 1.01 kJ. kg⁻¹K⁻¹ and 4.18 kJ. kg⁻¹K⁻¹. If the absolute humidity of air entering the adiabatic saturator is $\mathcal{H} \times \mathbf{10^{-3}}$ kg water per kg dry air, the value of \mathcal{H} is _____ (rounded off to two decimal places).

Q.57 Distillation of a non-reactive binary mixture with components *A* and *B* is carried out in a batch still as shown in the figure below. The initial charge of the mixture in the still is 1 kmol. The initial and final amounts of *A* in the still are 0.1 kmol and 0.01 kmol, respectively. Use a constant relative volatility of 4.5. The mole fraction of *B* remaining in the vessel is _____ (rounded off to three decimal places).

Q.58 Fresh catalyst is loaded into a reactor before the start of the following catalytic reaction.

$A \longrightarrow products$

The catalyst gets deactivated over time. The instantaneous activity a(t), at time t, is defined as the ratio of the rate of reaction $-r'_A(t)$ (mol. (g cat)⁻¹hr⁻¹) to the rate of reaction with fresh catalyst. Controlled experimental measurements led to an empirical correlation

$$-r_A'(t) = -0.5t + 10$$

where t is in hours. The activity of the catalyst at t = 10 hr is _____ (rounded off to one decimal place).

the reaction below. This (STR) at the steady-state e CSTR is
5

Q.60 An irreversible liquid-phase second-order reaction

$$A \xrightarrow{k} B$$

with rate constant k = 0.2 liter. $\text{mol}^{-1}\text{min}^{-1}$, is carried out in an isothermal non-ideal reactor. A tracer experiment conducted on this reactor resulted in a residence time distribution (*E*-curve) as shown in the figure below. The areas of the rectangles (i), (ii), and (iii) are equal. Pure *A* at a concentration of 1.5 mol. liter⁻¹ is fed to the reactor. The segregated model mimics the nonideality of this reactor. The percentage conversion of *A* at the exit of the reactor is _____ (rounded off to the nearest integer).

Q.61	The outlet concentration C_A of a plug flow reactor (PFR) is controlled by
	manipulating the inlet concentration C_{A0} . The following transfer function describes
	the dynamics of this PFR.

$$\frac{C_A(s)}{C_{AO}(s)} = \exp\left[-\left(\frac{V}{F}\right)(k+s)\right]$$

In the above equation, $V = 1 \text{ m}^3$, $F = 0.1 \text{ m}^3\text{min}^{-1}$ and $k = 0.5 \text{ min}^{-1}$. The measurement and valve transfer functions are both equal to 1. The ultimate gain, defined as the proportional controller gain that produces sustained oscillations, for this system is _____ (rounded off to one decimal place).

Q.62 The transfer function of a measuring instrument is

$$G_m(s) = \frac{1.05}{2s+1} \exp(-s)$$
.

At time t = 0, a step change of +1 unit is introduced in the input of this instrument. The time taken by the instrument to show an increase of 1 unit in its output is _____ (rounded off to two decimal places).

Q.63	about the overall pla	engineer needs to purchase a membrane two available options, M1 and M2, and that an expected life of 7 years. If the ded annually, the difference in the net per lakhs of rupees, is (rounded of	re given in ne interest r present valu	the table bate is 8 % page (NPV) of	pelow. The per annum, f these two
			M1	M2	
		Purchase cost (in lakhs of rupees)	10	5	
		Expected life (years)	5	3	
Q.64	factor of 5 a fixed rat	ase cost of a new distillation column is 5.8. The cost of the capital is to be annuate of interest of 5 % per annum, comport rupees) of the installed capital is	alized over ounded ann	a period of ually. The a	6 years at annual cost

Q.65	Pumps A and B are being considered for purchase in a chemical plant. Cost deta for these two pumps are given in the table below. The interest rate is 10 % p annum, compounded annually. For both the pumps to have the same capitaliz cost, the salvage value (in Rs.) of pump B should be (rounded off to t nearest integer).					
	Item	Pump A	Pump B			
	Installed cost (Rs.)	16000	32000			
	Uniform end of year maintenance (Rs.)	2400	1600			
	Salvage value (Rs.)	1000	?			
	Service life (year(s))	1	2			

END OF QUESTION PAPER