Cognoms:	 Nom:	
DNI:		

EXAMEN PARCIAL D'EC 4 de novembre de 2021

- L'examen consta de 5 preguntes, que s'han de contestar als mateixos fulls de l'enunciat. No oblidis posar el teu nom i cognoms a tots els fulls.
- La durada de l'examen és de 1:30 hores (90 minuts)
- Les notes, la solució i el procediment de revisió es publicaran al Racó el dia 12 de novembre.

Pregunta 1 (2,50 punts)

Donades les següents declaracions de funcions en C:

```
int f(short *a, int *b, char c);
int g(int j, char *k) {
    short arr[3];
    int x, y;

    y = j + f(&arr[1], &x, *k);
    return y * 2;
}
```

a) Dibuixa el bloc d'activació (stack frame) de g, indicant a quina posició apunta el registre \$sp un cop reservat l'espai necessari a la pila, així com el nom de cada registre o variable que es guardi a la pila i la seva posició respecte a \$sp (\$sp + n bytes).

b) Tradueix el codi de la subrutina g.

```
g:
              $sp, $sp, -20
$s0, 12($sp)
    addiu
    sw
              $ra, 16($sp)
$s0, $a0
    sw
    move
              $a0, $sp, 2
    addiu
              $a2, 0($a1)
    1b
    addiu
              $a1, $sp, 8
    jal
              £
    addu
              $v0, $v0, $s0
    addu
              $v0, $v0, $v0
              $ra, 16($sp)
    lw
              $s0, 12($sp)
    lw
              $sp, $sp, 20
    addiu
    jr
              $ra
```

Pregunta 2 (1. 75 punts)

Considera la següent subrutina programada en assemblador MIPS:

```
func:
            ble
                   $a2, $a1, et1
                   $a0, $a1, et2
            bgt
et1:
                   $a2, $zero, et4
            blt
                  $v0, $a0
et2:
            move
et3:
            b
                   et5
et4:
                   $v0, $a2
            move
et5:
            jr
                   $ra
```

Completa el següent codi escrit en C omplint les caselles en blanc perquè sigui equivalent a l'anterior codi en assemblador:

```
int func(int x, int y, int z) {
    int res;
    if ( (( z > y )&&( x > y )) || ( z >= 0 ) ) {
        res = x;
    } else {
        res = z;
    }
    return res;
}
```

Pregunta 3 (1.75 punts)

Donat el següent codi en C que es tradueix a MIPS just a sota es demana que omplis les caselles buides del codi MIPS en funció de la constant N.

Codi C

```
#define N 1000
int m[N][N];

void main(){
  int i, suma=0;

  for (i=N-1; i>0; i-=2)
      suma += m[i][N-i];
}
```

Codi MIPS

```
move $t1, $zero
main:
              $t0, N - 1
        li
              $t2, m + 4 * N * (N-1) + 4
        la
for:
              $t3, 0($t2)
        lw
        addu $t1, $t1, $t3
        addiu $t0, $t0, -2
        addiu $t2, $t2, 8 * (1-N)
              $t0, $zero, for
        bgt
        jr
              $ra
```

Pregunta 4 (2 punts)

Donada la següent declaració de variables globals, que s'ubica a memòria a partir de l'adreça 0x10010000:

```
.data
a1:
      .byte
               '5'
                                 # el codi ascii de '0' és 48
      .align
               2
a2:
      .space
a3:
      .asciiz "2026"
a4:
      .half
               1, 0x37, -5
a5:
      .word
               a3
a6:
      .half
               0x7fff
```

a) Omple la següent taula amb el contingut de memòria **en hexadecimal**. Les posicions de memòria sense inicialitzar es deixen en blanc.

@Memòria	Dada	@Memòria	Dada	@Memòria	Dada	@Memòria	Dada
0x10010000	0x35	0x10010008	0x30	0x10010010	0xFB	0x10010018	0xFF
0x10010001		0x10010009	0x32	0x10010011	0xFF	0x10010019	0x07
0x10010002		0x1001000A	0x36	0x10010012		0x1001001A	
0x10010003		0x1001000B	0x00	0x10010013		0x1001001B	
0x10010004	0x00	0x1001000C	0x01	0x10010014	0x07	0x1001001C	
0x10010005	0x00	0x1001000D	0x00	0x10010015	0x00	0x1001001D	
0x10010006	0x00	0x1001000E	0x37	0x10010016	0x01	0x1001001E	
0x10010007	0x32	0x1001000F	0x00	0x10010017	0x10	0x1001001F	

b) Donat el següent codi que fa referència a l'anterior declaració:

```
main:
         $t0, a5
   la
         $t0,0($t0)
   lw
         $t1,3($t0)
   lb
         $t2, a4
   la
         $t2, 4($t2)
   lh
         $t1, $t1, $t2
   addu
         $t1,3($t0)
   sb
         $t3, $zero
   move
         $t4, 0x0a
   li
         $t0, a3
   la
         $t1, 3
   li
loop:
         $t3, $t4
   mult
   mflo
         $t3
         $t5, 0($t0)
   lb
   andi
         $t5, $t5, 0x0f
   addu
         $t3, $t3, $t5
   addiu $t1, $t1, -1
   addiu $t0, $t0, 1
   ble
         $zero, $t1, loop
   jr
```

Omple la següent taula amb el valor en decimal dels registres \$t1 i \$t3 just ABANS d'executar la instrucció en negreta (cal usar una fila de la taula per cada iteració que es faci) i els valors dels mateixos registres en sortir del bucle:

	\$t1	\$t3
la iter.:	3	0
2a iter.:	2	2
• • •	1	20
	0	202
en sortir:	-1	2021

Pregunta 5 (2 punts)

Hem executat un programa que estem analitzant en un nou processador MIPS que funciona a una freqüència de 2 GHz. El programa té la següent distribució d'instruccions segons el seu CPI:

Tipus	СРІ	% Instruccions
Accés a memòria (load/store)	8	20 %
Aritmètiques (add/sub/)	2	50 %
Branches	4	30 %

Sabem que el nombre total d'instruccions del programa és de 109, i que la potència que dissipa el processador és de 100W.

a) Quin temps d'execució té el nostre programa en aquesta CPU (en segons), i quina quantitat d'energia necessitarà la seva execució (en Joules)?

Temps (s)	1,9 s
Energia (J)	190 J

Els nostres enginyers diuen que abans de llençar el nou processador MIPS al mercat hi ha temps per reduir el CPI d'un dels tipus d'instrucció a la meitat (CPI_{nou} = CPI_{vell} / 2).

b) Quin CPI hauríem de reduir per obtenir el màxim speedup en l'execució del nostre programa? Quin speedup obtindríem (pots deixar-ho en format de fracció)?

Instrucció a millorar	Memòria	
Speedup obtingut	~1,27 (38/30 o 19/15)	

Com a resultat de millorar el CPI, per mantenir la mateixa freqüència els enginyers han estimat que caldrà augmentar el voltatge del processador un 10%.

c) Suposant que la potència estàtica que dissipa el processador és zero (abans i després de la millora), quina serà la nova potència dissipada pel processador? Quanta energia consumirem ara en executar el nostre programa?

Potència (W)	121 W
Energia (J)	181,5 J