A Book of Abstract Algebra (2nd Edition)

Chapter 29, Problem 5EG

Bookmark

Show all steps: ON

Problem

Let $F \subseteq K$ and $a, b \in K$. We have seen on page 295 that if a and b are algebraic over F, then F(a, b) is a finite extension of F.

Use the above to prove part.

Conclusion: The roots of any polynomial whose coefficients are algebraic numbers are themselves algebraic numbers.

A field F is called algebraically closed if the roots of every polynomial in F[x] are in F. We have thus proved that is algebraically closed.

Step-by-step solution

Step 1 of 3

Consider a field Q and a field A of set of all algebraic numbers. Let

$$a(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbf{A}[x],$$

and c be any root of a(x). Let

$$Q(a_0, a_1, \ldots, a_n) = Q_1$$

Comment				
	Step 2 of 3			
Consider the follow	ring results:			
(1) Q_1 is a finite extension of Q .				
(2) $Q_1(c)$ is a finite extension of Q_1 as well as finite extension of Q .				
	c over Q_1 , and Q_1 is a finite extension of Q . Therefore, c is algebraic over Q et of all the algebraic numbers forms a field A . This implies that c will also be A .			
Comment				
	Step 3 of 3			