FSM-Based Testing Part I

Mohammad Mousavi

Eindhoven University of Technology, The Netherlands

Software Testing, 2011

Outline

Finite State Machines

Testing problems

Homing and synchronizing sequence

State identification

State verification

Finite State Machines

Finite State Machine

$$M = (I, O, S, \delta, \lambda)$$

with

- I, O, and S finite and non-empty sets of input symbols, output symbols, and states
- ▶ state transition function $\delta : S \times I \rightarrow S$
- ▶ output function $\lambda : S \times I \rightarrow O$

Note that *M* is deterministic (and complete)

Representations of FSM

Notations I

$$\delta: S \times I^* \to S$$

Notations I

$$\delta: S \times I^* \to S$$

$$\delta(s, \epsilon) = s$$

$$\delta(s, \mathbf{a}, \mathbf{w}) = \delta(\delta(s, \mathbf{a}), \mathbf{w})$$

Notations I

$$\delta: S \times I^* \to S$$

$$\delta(s, \epsilon) = s$$

$$\delta(s, a w) = \delta(\delta(s, a), w)$$

$$\delta(s_1, bba) = \delta(\delta(s_1, b), ba)$$

$$= \delta(s_2, ba)$$

$$= \delta(\delta(s_2, b), a)$$

$$= \delta(s_3, a)$$

$$= s_3$$

Notations II

$$\lambda: S \times I^* \to O^*$$

Notations II

$$\lambda: S \times I^* \to O^*$$

$$\lambda(s, \epsilon) = \epsilon$$

$$\lambda(s, \mathbf{a} \ w) = \lambda(s, \mathbf{a}) \ \lambda(\delta(s, \mathbf{a}), \mathbf{w})$$

Notations II

$$\lambda: S \times I^* \to O^*$$

$$\lambda(s, \epsilon) = \epsilon$$

$$\lambda(s, a w) = \lambda(s, a) \lambda(\delta(s, a), w)$$

$$\lambda(s_1, bba) = \lambda(s_1, b) \lambda(\delta(s_1, b), ba)$$

= 1 $\lambda(s_2, ba)$
= 1 $\lambda(s_2, b) \lambda(\delta(s_2, b), a)$
= 1 1 $\lambda(s_3, a)$
= 1 1 0

Notations III

$$\delta: 2^{S} \times I^{*} \to 2^{S}$$
$$\delta(Q, x) = \{\delta(s, x) \mid s \in Q\}$$

$$\lambda: 2^{S} \times I^{*} \to 2^{O^{*}}$$
$$\lambda(Q, x) = \{\lambda(s, x) \mid s \in Q\}$$

Initial state uncertainty

 $\pi(x)$ for $x \in I^*$: those a partitioning of S, where s_i, s_j are in the same partition iff $\lambda(s_i, x) = \lambda(s_j, x)$.

Intuition: by observing output you cannot tell where you were

Initial state uncertainty

 $\pi(x)$ for $x \in I^*$: those a partitioning of S, where s_i, s_j are in the same partition iff $\lambda(s_i, x) = \lambda(s_i, x)$.

Intuition: by observing output you cannot tell where you were

$$\pi(b) = \{\{s_1, s_2\}, \{s_3\}\}\$$
 $\pi(aa) = \{\{s_1, s_3\}, \{s_2\}\}\$

Current state uncertainty

 $\sigma(x)$ for $x \in I^*$: a family of sets of states

$$\sigma(x) = \{ \delta(B, x) \mid B \in \pi(x) \}$$

Intuition: after applying x you do not know where you are

$$\pi(b) = \{ \{s_1, s_2\}, \{s_3\} \}$$

$$\pi(aa) = \{ \{s_1, s_3\}, \{s_2\} \}$$

$$\sigma(b) = \{ \{s_2, s_3\}, \{s_1\} \}$$

$$\sigma(aa) = \{ \{s_1, s_3\}, \{s_2\} \}$$

Equivalence

Let
$$M = (I, O, S, \delta, \lambda)$$
 and $M' = (I, O, S', \delta', \lambda')$

State equivalence for $s, s' \in S$:

$$s \approx s' \doteq \forall_{x \in I^*} \lambda(s, x) = \lambda(s', x)$$

Equivalence

Let
$$M = (I, O, S, \delta, \lambda)$$
 and $M' = (I, O, S', \delta', \lambda')$

State equivalence for $s, s' \in S$:

$$s \approx s' \doteq \forall_{x \in I^*} \lambda(s, x) = \lambda(s', x)$$

State equivalence: for $s \in S$ and $s' \in S'$

$$s \approx s' \doteq \forall_{x \in I^*} \lambda(s, x) = \lambda'(s', x)$$

Equivalence

Let
$$M = (I, O, S, \delta, \lambda)$$
 and $M' = (I, O, S', \delta', \lambda')$

State equivalence for $s, s' \in S$:

$$s \approx s' \doteq \forall_{x \in I^*} \lambda(s, x) = \lambda(s', x)$$

State equivalence: for $s \in S$ and $s' \in S'$

$$s \approx s' \doteq \forall_{x \in I^*} \lambda(s, x) = \lambda'(s', x)$$

Machine equivalence

$$M \approx M' \doteq \forall_{s \in S} \exists_{s' \in S'} s \approx s' \land \forall_{s' \in S'} \exists_{s \in S} s' \approx s$$

Minimization of FSM

- ▶ Let $[s]_{/\approx} = \{s' \in S \mid s \approx s'\}$.
- ▶ Define $S_{\min} = \{[s]_{/\approx} \mid s \in S\}$ to be the set of equivalence classes of S with respect to state equivalence.
- ▶ Define $\lambda_{\min}([s]_{/\approx}, a) = \lambda(s, a)$ for all s and a.
- ▶ Define $\delta_{\min}([s]_{/\approx}, a) = [\delta(s, a)]_{/\approx}$.

Minimization of FSM

- ▶ Let $[s]_{/\approx} = \{s' \in S \mid s \approx s'\}.$
- ▶ Define $S_{\min} = \{[s]_{/\approx} \mid s \in S\}$ to be the set of equivalence classes of S with respect to state equivalence.
- ▶ Define $\lambda_{\min}([s]_{/\approx}, a) = \lambda(s, a)$ for all s and a.
- ▶ Define $\delta_{\min}([s]_{/\approx}, a) = [\delta(s, a)]_{/\approx}$.

Property

Let $M = (I, O, S, \lambda, \delta)$ and $M_{\min} = (I, O, S_{\min}, \lambda_{\min}, \delta_{\min})$. Then $M \approx M_{\min}$.

Minimization of FSM

- ▶ Let $[s]_{/\approx} = \{s' \in S \mid s \approx s'\}.$
- ▶ Define $S_{\min} = \{[s]_{/\approx} \mid s \in S\}$ to be the set of equivalence classes of S with respect to state equivalence.
- ▶ Define $\lambda_{\min}([s]_{/\approx}, a) = \lambda(s, a)$ for all s and a.
- ▶ Define $\delta_{\min}([s]_{/\approx}, a) = [\delta(s, a)]_{/\approx}$.

Property

Let $M = (I, O, S, \lambda, \delta)$ and $M_{\min} = (I, O, S_{\min}, \lambda_{\min}, \delta_{\min})$. Then $M \approx M_{\min}$.

Property

Let $M = (I, O, S, \lambda, \delta)$ and $M_{\min} = (I, O, S_{\min}, \lambda_{\min}, \delta_{\min})$. Then M_{\min} is (one of) the smallest FSMs M' such that $M \approx M'$.

Outline

Finite State Machine

Testing problems

Homing and synchronizing sequence

State identification

State verification

A test is a sequence of input symbols

1. Homing/distinguishing sequences: Given *M*, determine the state after a test

- Homing/distinguishing sequences: Given M, determine the state after a test
- 2. State identification: Given M, identify the unknown initial state

- Homing/distinguishing sequences: Given M, determine the state after a test
- 2. State identification: Given *M*, identify the unknown initial state
- State verification: Given M and a state s, verify that M is in state s

- Homing/distinguishing sequences: Given M, determine the state after a test
- 2. State identification: Given *M*, identify the unknown initial state
- 3. State verification: Given *M* and a state *s*, verify that *M* is in state *s*
- Conformance testing: Given black-box M and FSM A (specification), determine whether M is equivalent to A

- Homing/distinguishing sequences: Given M, determine the state after a test
- 2. State identification: Given *M*, identify the unknown initial state
- 3. State verification: Given *M* and a state *s*, verify that *M* is in state *s*
- Conformance testing: Given black-box M and FSM A (specification), determine whether M is equivalent to A
- Machine identification: Identify unknown black-box machine M

Outline

Finite State Machines

Testing problems

Homing and synchronizing sequences

State identification

State verification

Homing sequences

<u>Problem</u>: Given a FSM, we do not know which state it is in <u>Solution</u>: Perform a test, observe output sequence and determine the <u>final</u> state of the machine

Homing sequences

<u>Problem</u>: Given a FSM, we do not know which state it is in <u>Solution</u>: Perform a test, observe output sequence and determine the <u>final</u> state of the machine

- Reduced FSM always has a homing sequence
- FSM that is not reduced may not have a homing sequence

Homing sequences

<u>Problem</u>: Given a FSM, we do not know which state it is in <u>Solution</u>: Perform a test, observe output sequence and determine the <u>final</u> state of the machine

- Reduced FSM always has a homing sequence
- FSM that is not reduced may not have a homing sequence

Property

x is a homing sequence if and only if all blocks in current state uncertainty $\sigma(x)$ are singletons

Determining a homing sequence

Algorithm: (for reduced machine)

1. let
$$x = \epsilon$$
,

Determining a homing sequence

Algorithm: (for reduced machine)

- 1. let $x = \epsilon$,
- 2. while there exists a $B \in \sigma(x)$ such that B > 1
 - 2.1 take two states $s, s' \in B$ (with $s \neq s'$)
 - 2.2 find a sequence y, separating s and s' i.e., $\lambda(s,y) \neq \lambda(s',y)$
 - 2.3 x := x y

Example

Finite State Machines

Partition of S: $\{\{s_1, s_2, s_3\}\}$

Take $B = \{s_1, s_2, s_3\}$

Take: s_1 and s_2

Separating sequence: a

Output sequences: $\lambda(s_1, a) = \lambda(s_3, a) = 0$ and $\lambda(s_2, a) = 1$

New partition: $\{\{s_1, s_3\}, \{s_2\}\}$

Example

Partition of *S*: $\{\{s_1, s_3\}, \{s_2\}\}$

Take $B = \{s_1, s_3\}$

Take: s_1 and s_3 .

Separating sequence: b

Output sequences: $\lambda(s_1, b) = 1$ and $\lambda(s_3, b) = 0$

New partition: $\{\{s_1\}, \{s_3\}, \{s_2\}\}$

State verification

Example

Partition of S: $\{\{s_1\}, \{s_3\}, \{s_2\}\}$

Homing sequence: a b

- ► Length of homing sequence: $(|S|-1)(|S|-1) = (|S|-1)^2$
- Finding shortest homing sequence: NP-hard
 Look up shortest homing sequence in successor tree.
 Consider input sequence associated with some node with discrete partition of S

A sequence *x* leading to the same final state regardless the initial state and output:

$$x$$
 is synchronizing $\dot{=}$ $\forall_{s,s'\in S} \delta(s,x) = \delta(s',x)$

A sequence x leading to the same final state regardless the initial state and output:

$$x$$
 is synchronizing $\dot{s} \forall_{s,s' \in S} \delta(s,x) = \delta(s',x)$

A synchronizing is a homing sequence (not the other way around!)

Existence of a synchronizing sequence

Construct graph with

- ▶ nodes $\{\{s, s'\} \mid s, s' \in S\}$
- edge from {s, s'} to {t, t'} with label a if there are transitions from s to t and from s' to t' with input symbol a

Existence of a synchronizing sequence

Construct graph with

- ▶ nodes $\{\{s, s'\} \mid s, s' \in S\}$
- edge from {s, s'} to {t, t'} with label a if there are transitions from s to t and from s' to t' with input symbol a

Property

An FSM has a synchronizing sequence iff for each $\{s, s'\}$ in the constructed graph (with $s \neq s'$) there is a path to some $\{t\}$.

Constructing a synchronizing sequence

1. let
$$x = \epsilon$$
,

Constructing a synchronizing sequence

- 1. let $x = \epsilon$,
- 2. while $|\delta(S,x)| > 1$
 - 2.1 take two states $s, s' \in \delta(S, x)$ (with $s \neq s'$)
 - 2.2 find a sequence y, merging s and s' i.e., $\delta(s,y) = \delta(s',y)$ (it may or may not exist)
 - 2.3 x := x y

- ▶ $S = \{s_1, s_2, s_3\}$. Take states s_2 and s_3 . Then $\{s_2, s_3\} \xrightarrow{a} \{s_2\}$. Then $S_1 = \delta(S, a) = \{s_1, s_2\}$
- ► $S_1 = \{s_1, s_2\}$. Take states s_1 and s_2 . Then $\{s_1, s_2\} \xrightarrow{ba} \{s_2\}$. Then $S_2 = \delta(S_1, ba) = \{s_2\}$.
- So aba is a synchronizing sequence

Using successor tree for synchronization sequence

Shortest synchronizing sequence can be found from successor tree. Label node reached by input sequence x with $\delta(S, x)$. Look for node with singleton label closest to root.

Outline

Finite State Machines

Testing problems

Homing and synchronizing sequences

State identification

State verification

State identification

<u>Problem</u>: Given a FSM, can we determine the initial state of the FSM?

An input sequence that solves this problem is a distinguishing sequence.

- Preset distinguishing sequences: input sequence is fixed
- Adaptive distinguishing sequences: decision tree (next input symbol depends on onserved outputs)

Preset distinguishing sequence

A preset distinguishing sequence for a machine is an input sequence x such that the output sequence in response to x is different for any pair of different states.

$$\forall_{s,s'\in S} \ \lambda(s,x) = \lambda(s',x) \Rightarrow s = s'$$

FSM that is not minimal cannot have a preset distinguishing sequence since equivalent states cannot be distinguished from each other by tests

Preset distinguishing sequences:

- not a a since $\lambda(s_1, aa) = \lambda(s_3, aa) = 00$
- ▶ a b since $\lambda(s_1, ab) = 01$, $\lambda(s_2, ab) = 11$ and $\lambda(s_3, ab) = 00$
- ▶ **b** a since $\lambda(s_1, ba) = 11$, $\lambda(s_2, ba) = 10$ and $\lambda(s_3, ba) = 00$
- ▶ **b** b since $\lambda(s_1, bb) = 11$, $\lambda(s_2, bb) = 10$ and $\lambda(s_3, bb) = 01$

Non-existence of preset distinguishing sequence

distinguishing sequence cannot start with a because then s₁ and s₂ are not distinguishable

$$\lambda(s_1, aw) = 0 \ \lambda(s_1, w) = \lambda(s_2, aw)$$

▶ distinguishing sequence cannot start with b because then s₂ and s_3 are not distinguishable

$$\lambda(s_2,bw)=1\ \lambda(s_2,w)=\lambda(s_3,bw)$$

Complexity

- Existence of preset distinguishing sequence: PSPACE-complete
- Length of preset distinguishing: exponential

Adaptive distinguishing sequence

An adaptive distinguishing sequence for a machine is a rooted tree T with exactly |S| leaves

- internal nodes are labeled with input symbols
- leaves are labeled with states
- edges are labeled with output symbols

such that

- for each node, the labels of the outgoing edges are different
- for each leaf, if x and y are input and output sequence on path from root to the leaf and the leaf is labeled by state s, then $\lambda(s,x)=y$

Non-existence of adaptive distinguishing sequence

- distinguishing sequence cannot start with a because then s₁ and s₂ are not distinguishable since from both s₁ is reached with output 0
- distinguishing sequence cannot start with b because then s₂ and s₃ are not distinguishable since from both s₂ is reached with output 1

Preset versus adaptive distinguishing sequences

- If FSM has preset distinguishing sequence, then it has an adaptive distinguishing sequence
- An FSM with an adaptive distinguishing sequence does not have to have a preset distinguishing sequence

Existence of adaptive distinguishing sequence

An input a is valid for a set C of states if it does not merge any two states s and s' from C without distinguishing them, i.e.,

$$\forall_{s,s'\in C} \ \lambda(s,a) \neq \lambda(s',a) \lor \delta(s,a) \neq \delta(s',a)$$

$$b/0$$

$$a/1 \qquad b/0$$

$$b/0 \qquad a/0$$

$$b/0 \qquad b/0 \qquad b/0$$

$$b/0 \qquad b/0 \qquad b/0$$

$$b/0 \qquad b/0 \qquad b/0$$

$$b/0 \qquad b/0$$

$$b/0 \qquad b/0$$

$$b/0 \qquad b/0$$

- Input symbol b is not valid for set of states S
- Input symbol a is valid for set of states S

State verification

Finite State Machines

Algorithm

- 1. Start with partition π of S with only one block $\{S\}$.
- 2. While there is a block $B \in \pi$ with |B| > 1,
 - 2.1 Take a valid input symbol $a \in I$ for B such that two states $s, s' \in B$ ($s \neq s'$), $\lambda(s, a) \neq \lambda(s', a)$ or move to states in different blocks of π ,
 - 2.2 refine the partition π by replacing block B by a set of new blocks, where two states in B are assigned to the same block in the new partition iff they produce the same output on a and move to the same block in π .

Property

A FSM has an adaptive distinguishing sequence iff the final partition is the discrete partition.

- Initial partition $\pi = \{S\}$
- Input symbol b is not valid
- Input symbol a is valid
- New partition:
 π = {{s₁, s₃, s₅}, {s₂, s₄, s₆}}

- ► Initial partition $\pi = \{\{s_1, s_3, s_5\}, \{s_2, s_4, s_6\}\}$
- Input symbol *b* is valid for {*s*₁, *s*₃, *s*₅}
- New partition:
 π = {{s₁}, {s₃, s₅}, {s₂, s₄, s₆}}

- Initial partition
 π = {{s₁}, {s₃, s₅}, {s₂, s₄, s₆}}
- Input symbol a is valid for {s₂, s₄, s₀}
- New partition: $\pi = \{\{s_1\}, \{s_3, s_5\}, \{s_2, s_4\}, \{s_6\}\}$

- Initial partition
 π = {{s₁}, {s₃, s₅}, {s₂, s₄}, {s₆}}
- Input symbol b is valid for {s₃, s₅}
- New partition: $\pi = \{\{s_1\}, \{s_3\}, \{s_5\}, \{s_2, s_4\}, \{s_6\}\}$

- ▶ Initial partition $\pi = \{\{s_1\}, \{s_3\}, \{s_5\}, \{s_2, s_4\}, \{s_6\}\}$
- ▶ Input symbol a is valid for {s₂, s₄}
- New partition: π = {{s₁}, {s₃}, {s₅}, {s₂}, {s₄}, {s₆}}
- Thus FSM has an adaptive distinguishing sequence

- Initial partition $\pi = \{\{s_1\}, \{s_3\}, \{s_5\}, \{s_2\}, \{s_4\}, \{s_6\}\}\}$
- Thus FSM has an adaptive distinguishing sequence

Construction of adaptive distinguishing sequence

- 1. split conservatively ⇒ construct splitting tree
- order of splitting (all blocks of largest cardinality simultaneously) ⇒ Construct adaptive distinguishing sequence from splitting tree

See Principles and Methods of Testing Finite State Machines – A Survey by D. Lee and M. Yannakakis for details.

Outline

Finite State Machines

Testing problems

Homing and synchronizing sequence

State identification

State verification

State verification

<u>Problem</u>: Given a FSM an a state s, can we verify by testing that s is the the initial state of the FSM?

This is possible if and only if the FSM has an UIO sequence

A Unique Input/Output (UIO) sequence of a state s is an input sequence x such that the output produced in response to x from any state other than s is different than from s

$$\forall_{s' \in S} \ \lambda(s, x) = \lambda(s', x) \Rightarrow s = s'$$

Property

x is a UIO sequence for state s if and only if $\{s\} \in \pi(x)$

State s_1 has UIO sequence bState s_2 does not have a UIO sequence State s_3 has UIO sequence a

Relationship with state identification

If FSM has (preset or) adaptive distinguishing sequence, then all states have UIO sequences

