机器学习方法概论

- 1. 机器学习的对象是: 具有一定的统计规律的数据。
- 2. 机器学习根据任务类型,可以划分为:
 - 监督学习任务:从已标记的训练数据来训练模型。主要分为:分类任务、回归任务、序列标注任务。
 - 无监督学习任务:从未标记的训练数据来训练模型。主要分为:聚类任务、降维任务。
 - 半监督学习任务: 用大量的未标记训练数据和少量的已标记数据来训练模型。
 - 强化学习任务: 从系统与环境的大量交互知识中训练模型。
- 3. 机器学习根据算法类型,可以划分为:
 - 。 传统统计学习:基于数学模型的机器学习方法。包括 SVM 、逻辑回归、决策树等。 这一类算法基于严格的数学推理,具有可解释性强、运行速度快、可应用于小规模数据集的特点。
 - 深度学习:基于神经网络的机器学习方法。包括前馈神经网络、卷积神经网络、递归神经网络等。这一类算法基于神经网络,可解释性较差,强烈依赖于数据集规模。但是这类算法在语音、视觉、自然语言等领域非常成功。
- 4. 没有免费的午餐 定理(No Free Lunch Theorem:NFL): 对于一个学习算法 A , 如果在某些问题上它比算法 B 好,那么必然存在另一些问题,在那些问题中 B 比 A 更好。

因此不存在这样的算法:它在所有的问题上都取得最佳的性能。因此要谈论算法的优劣必须基于具体的学习问题。

一、基本概念

1.1 特征空间

- 1. 输入空间: 所有输入的可能取值; 输出空间: 所有输出的可能取值。 特征向量表示每个具体的输入, 所有特征向量构成特征空间。
- 2. 特征空间的每一个维度对应一种特征。
- 3. 可以将输入空间等同于特征空间,但是也可以不同。绝大多数情况下,输入空间等于特征空间。 模型是定义在特征空间上的。

1.2 样本表示

- 1. 通常输入实例用 \vec{x} 表示,真实标记用 \hat{y} 表示,模型的预测值用 \hat{y} 表示。 具体的输入取值记作 $\vec{x}_1, \vec{x}_2, \cdots$,具体的标记取值记作 $\hat{y}_1, \hat{y}_2, \cdots$,具体的模型预测取值记作 $\hat{y}_1, \hat{y}_2, \cdots$ 。
- 2. 所有的向量均为列向量,其中输入实例 \vec{x} 的特征向量记作 (假设特征空间为 n 维):

$$ec{\mathbf{x}} = egin{bmatrix} x^{(1)} \ x^{(2)} \ dots \ x^{(n)} \end{bmatrix}$$

这里 $x^{(i)}$ 为 $\vec{\mathbf{x}}$ 的第 i 个特征的取值。第 i 个输入记作 $\vec{\mathbf{x}}_i$,它的意义不同于 $x^{(i)}$ 。

2022/4/27 0_introduction

- 3. 训练数据由输入、标记对组成。通常训练集表示为: $\mathbb{D} = \{ (\vec{\mathbf{x}}_1, \tilde{y}_1), (\vec{\mathbf{x}}_2, \tilde{y}_2), \cdots, (\vec{\mathbf{x}}_N, \tilde{y}_N) \}$ 。
 - 輸入、标记对又称作样本点。
 - 。 假设每对输入、标记对是独立同分布产生的。
- 4. 输入 \vec{x} 和标记 \tilde{y} 可以是连续的,也可以是离散的。
 - \circ \tilde{y} 为连续的:这一类问题称为回归问题。
 - \circ \tilde{y} 为离散的,且是有限的:这一类问题称之为分类问题。
 - \circ **x** 和 \tilde{y} 均为序列: 这一类问题称为序列标注问题。

二、监督学习

2.1 监督学习

- 1. 监督学习中,训练数据的每个样本都含有标记,该标记由人工打标,所以称之为 监督 。
- 2. 监督学习假设输入 $\vec{\mathbf{x}}$ 与标记 \tilde{y} 遵循联合概率分布 $p(\vec{\mathbf{x}},y)$,训练数据和测试数据依联合概率分布 $p(\vec{\mathbf{x}},y)$ 独立同分布产生。

学习过程中, 假定这个联合概率分布存在, 但是具体定义未知。

3. 监督学习的目的在于学习一个由输入到输出的映射,该映射由模型表示。

模型属于由输入空间到输出空间的映射的集合,该集合就是解空间。解空间的确定意味着学习范围的确定。

- 4. 监督学习的模型可以为概率模型或者非概率模型:
 - 概率模型由条件概率分布 $p(y \mid \vec{x})$ 表示。
 - 非概率模型由决策函数 $y = f(\vec{x})$ 表示。
- 5. 监督学习分为学习和预测两个过程。

给定训练集 $\mathbb{D}=\{(\vec{\mathbf{x}}_1,\tilde{y}_1),(\vec{\mathbf{x}}_2,\tilde{y}_2),\cdots,(\vec{\mathbf{x}}_N,\tilde{y}_N)\}$,其中 $\vec{\mathbf{x}}_i\in\mathcal{X}$ 为输入值, $\tilde{y}_i\in\mathcal{Y}$ 是标记值。假设训练数据与测试数据是依据联合概率分布 $p(\vec{\mathbf{x}},y)$ 独立同分布的产生的。

- 。 学习过程: 在给定的训练集 $\mathbb D$ 上,通过学习训练得到一个模型。该模型表示为条件概率分布 $p(y\mid \vec{\mathbf x})$ 或者决策函数 $y=f(\vec{\mathbf x})$
- \circ 预测过程:对给定的测试样本 $\vec{\mathbf{x}}_{test}$,给出其预测结果:
 - lacktriangle 对于概率模型,其预测值为: $\hat{y}_{test} = rg_y \max p(y \mid \vec{\mathbf{x}}_{test})$
 - 对于非概率模型,其预测值为: $\hat{y}_{test} = f(\vec{\mathbf{x}}_{test})$
- 6. 可以通过无监督学习来求解监督学习问题 $p(y \mid \vec{x})$:
 - 。 首先求解无监督学习问题来学习联合概率分布 $p(\vec{\mathbf{x}},y)$
 - o 然后计算: $p(y \mid \vec{\mathbf{x}}) = \frac{p(\vec{\mathbf{x}},y)}{\sum_{x'} p(\vec{\mathbf{x}},y')}$ 。

2.2 生成模型和判别模型

- 1. 监督学习又分为生成方法和判别方法,所用到的模型分别称为生成模型和判别模型。
- 2. 生成方法: 通过数据学习联合概率分布 $p(\vec{\mathbf{x}},y)$,然后求出条件概率分布 $p(y\mid\vec{\mathbf{x}})$ 作为预测的模型。 即生成模型为:

$$p(y \mid \vec{\mathbf{x}}) = rac{p(\vec{\mathbf{x}}, y)}{p(\vec{\mathbf{x}})}$$

- \circ 生成方法的优点: 能还原联合概率分布 $p(\vec{\mathbf{x}},y)$, 收敛速度快, 且当存在隐变量时只能用生成方法。
- 生成方法有: 朴素贝叶斯法, 隐马尔可夫链。

- 3. 判别方法: 直接学习决策函数 $f(\vec{x})$ 或者条件概率分布 $p(y \mid \vec{x})$ 的模型。
 - 判别方法的优点:直接预测,一般准确率更高,且一般比较简化问题。
 - 判别方法有:逻辑回归,决策树。

三、机器学习三要素

1. 机器学习三要素:模型、策略、算法。

3.1 模型

1. 模型定义了解空间。监督学习中,模型就是要学习的条件概率分布或者决策函数。

模型的解空间包含了所有可能的条件概率分布或者决策函数,因此解空间中的模型有无穷多个。

。 模型为一个条件概率分布:

解空间为条件概率的集合: $\mathcal{F}=\{p\mid p(y\mid \vec{\mathbf{x}})\}$ 。其中: $\vec{\mathbf{x}}\in\mathcal{X},y\in\mathcal{Y}$ 为随机变量, \mathcal{X} 为输入空间, \mathcal{Y} 为输出空间。

通常 \mathcal{F} 是由一个参数向量 $\vec{\theta}=(\theta_1,\cdots,\theta_n)$ 决定的概率分布族: $\mathcal{F}=\{p\mid p_{\vec{\theta}}(y\mid\vec{\mathbf{x}}),\vec{\theta}\in\mathbb{R}^n\}$ 。其中: $p_{\vec{\theta}}$ 只与 $\vec{\theta}$ 有关,称 $\vec{\theta}$ 为参数空间。

○ 模型为一个决策函数:

解空间为决策函数的集合: $\mathcal{F}=\{f\mid y=f(\vec{\mathbf{x}})\}$ 。其中: $\vec{\mathbf{x}}\in\mathcal{X},y\in\mathcal{Y}$ 为变量, \mathcal{X} 为输入空间, \mathcal{Y} 为输出空间。

通常 \mathcal{F} 是由一个参数向量 $\vec{\theta}=(\theta_1,\cdots,\theta_n)$ 决定的函数族: $\mathcal{F}=\{f\mid y=f_{\vec{\theta}}(\vec{\mathbf{x}}),\vec{\theta}\in\mathbb{R}^n\}$ 。其中: $f_{\vec{\theta}}$ 只与 $\vec{\theta}$ 有关,称 $\vec{\theta}$ 为参数空间。

2. 解的表示一旦确定,解空间以及解空间的规模大小就确定了。

如:一旦确定解的表示为: $f(y) = \sum \theta_i x_i = \vec{\theta} \cdot \vec{\mathbf{x}}$,则解空间就是特征的所有可能的线性组合,其规模大小就是所有可能的线性组合的数量。

3. 将学习过程看作一个在解空间中进行搜索的过程, 搜索目标就是找到与训练集匹配的解。

3.2 策略

1. 策略考虑的是按照什么样的准则学习,从而定义优化目标。

3.2.1 损失函数

- 1. 对于给定的输入 $\vec{\mathbf{x}}$,由模型预测的输出值 \hat{y} 与真实的标记值 \hat{y} 可能不一致。此时,用损失函数度量错误的程度,记作 $L(\hat{y},\hat{y})$,也称作代价函数。
- 2. 常用损失函数:
 - 0-1 损失函数:

$$L(ilde{y}, \hat{y}) = egin{cases} 1, & ext{if } \hat{y}
eq ilde{y} \ 0, & ext{if } \hat{y} = ilde{y} \end{cases}$$

 \circ 平方损失函数 MSE : $L(ilde{y}, \hat{y}) = (ilde{y} - \hat{y})^2$

 \circ 绝对损失函数 MAE : $L(ilde{y}, \hat{y}) = | ilde{y} - \hat{y}|$

o 对数损失函数: $L(\tilde{y}, \hat{y}) = -\log p(\tilde{y} \mid \vec{x})$ 。

2022/4/27 0_introduction

- 其物理意义是: 二分类问题的真实分布与模型分布之间的交叉熵。
- 一个简单的解释:因为样本 $(\vec{\mathbf{x}}, \tilde{y})$ 易经出现,所以理论上 $p(\tilde{y} \mid \vec{\mathbf{x}}) = 1$ 。如果它不为 1,则说明预测存在误差。越远离1,说明误差越大。
- 3. 训练时采用的损失函数不一定是评估时的损失函数。但通常二者是一致的。因为目标是需要预测未知数据的性能足够好,而不是对已知的训练数据拟合最好。

3.2.2 风险函数

1. 通常损失函数值越小,模型就越好。但是由于模型的输入、标记都是随机变量,遵从联合分布 $p(\vec{\mathbf{x}},y)$, 因此 定义风险函数为损失函数的期望:

$$R_{exp} = \mathbb{E}_P\left[L(ilde{y}, \hat{y})
ight] = \int_{\mathcal{X} imes \mathcal{Y}} L(ilde{y}, \hat{y}) p(ec{\mathbf{x}}, y) dec{\mathbf{x}} dy$$

其中X, Y分别为输入空间和输出空间。

- 2. 学习的目标是选择风险函数最小的模型。
- 3. 求 R_{exp} 的过程中要用到 $p(\vec{\mathbf{x}},y)$,但是 $p(\vec{\mathbf{x}},y)$ 是未知的。 实际上如果它已知,则可以轻而易举求得条件概率分布,也就不需要学习。

3.2.3 经验风险

1. 经验风险也叫经验损失。

给定训练集 $\mathbb{D}=\{(\vec{\mathbf{x}}_1,\tilde{y}_1),(\vec{\mathbf{x}}_2,\tilde{y}_2),\cdots,(\vec{\mathbf{x}}_N,\tilde{y}_N)\}$,模型关于 \mathbb{D} 的经验风险定义为:

$$R_{emp} = rac{1}{N} \sum_{i=1}^{N} L(ilde{y}_i, \hat{y}_i)$$

经验风险最小化 (empirical risk minimization: ERM) 策略认为: 经验风险最小的模型就是最优的模型。即:

$$\min_{f \in \mathcal{F}} rac{1}{N} \sum_{i=1}^{N} L(ilde{y}_i, f(ec{\mathbf{x}}_i))$$

- 2. 经验风险是模型在 $\mathbb D$ 上的平均损失。根据大数定律,当 $N \to \infty$ 时 $R_{emp} \to R_{exp}$ 。但是由于现实中训练集中样本数量有限,甚至很小,所以需要对经验风险进行矫正。
- 3. 结构风险是在经验风险上叠加表示模型复杂度的正则化项(或者称之为罚项)。它是为了防止过拟合而提出 的。

给定训练集 $\mathbb{D} = \{(\vec{\mathbf{x}}_1, \tilde{y}_1), (\vec{\mathbf{x}}_2, \tilde{y}_2), \cdots, (\vec{\mathbf{x}}_N, \tilde{y}_N)\}$,模型关于 \mathbb{D} 的结构风险定义为:

$$R_{srm} = rac{1}{N} \sum_{i=1}^{N} L(ilde{y}_i, \hat{y}_i) + \lambda J(f)$$

其中:

- \circ J(f) 为模型复杂度,是定义在解空间 $\mathcal F$ 上的泛函。 f 越复杂,则 J(f) 越大。
- 4. 结构风险最小化(structurel risk minimization: SRM)策略认为:结构风险最小的模型是最优的模型。即:

2022/4/27 0_introduction

$$\min_{f \in \mathcal{F}} rac{1}{N} \sum_{i=1}^{N} L(ilde{y}_i, f(ec{\mathbf{x}}_i)) + \lambda J(f)$$

5. 结构风险最小化策略符合奥卡姆剃刀原理:能够很好的解释已知数据,且十分简单才是最好的模型。

3.2.4 极大似然估计

- 1. 极大似然估计就是经验风险最小化的例子。
- 2. 已知训练集 $\mathbb{D}=\{(\vec{\mathbf{x}}_1,\tilde{y}_1),(\vec{\mathbf{x}}_2,\tilde{y}_2),\cdots,(\vec{\mathbf{x}}_N,\tilde{y}_N)\}$,则出现这种训练集的概率为: $\prod_{i=1}^N p(\tilde{y}_i\mid\vec{\mathbf{x}}_i)$ 。 根据 \mathbb{D} 出现概率最大,有:

$$\max \prod_{i=1}^N p(ilde{y}_i \mid \mathbf{ec{x}}_i)
ightarrow \max \sum_{i=1}^N \log p(ilde{y}_i \mid \mathbf{ec{x}}_i)
ightarrow \min \sum_{i=1}^N (-\log p(ilde{y}_i \mid \mathbf{ec{x}}_i))$$

定义损失函数为: $L(\tilde{y},\hat{y}) = -\log p(\tilde{y}\mid \vec{\mathbf{x}})$, 则有:

$$\min \sum_{i=1}^N (-\log p(ilde{y}_i \mid ec{\mathbf{x}}_i)) o \min \sum_{i=1}^N L(ilde{y}_i, \hat{y}_i) o \min rac{1}{N} \sum_{i=1}^N L(ilde{y}_i, \hat{y}_i)$$

即:极大似然估计 = 经验风险最小化。

3.2.5 最大后验估计

- 1. 最大后验估计就是结构风险最小化的例子。
- 2. 已知训练集 $\mathbb{D}=\{(\vec{\mathbf{x}}_1,\tilde{y}_1),(\vec{\mathbf{x}}_2,\tilde{y}_2),\cdots,(\vec{\mathbf{x}}_N,\tilde{y}_N)\}$,假设已知参数 θ 的先验分布为 $g(\theta)$,则出现这种训练集的概率为: $\prod_{i=1}^N p(\tilde{y}_i\mid\vec{\mathbf{x}}_i)g(\theta)$ 。

根据 □ 出现概率最大:

$$egin{aligned} \max \prod_{i=1}^N p(ilde{y}_i \mid ec{\mathbf{x}}_i) g(heta) &
ightarrow \max \sum_{i=1}^N \log p(ilde{y}_i \mid ec{\mathbf{x}}_i) + \log g(heta) \ &
ightarrow \min \sum_{i=1}^N (-\log p(ilde{y}_i \mid ec{\mathbf{x}}_i)) + \log rac{1}{g(heta)} \end{aligned}$$

定义损失函数为: $L(\tilde{y},\hat{y})=-\log p(\tilde{y}\mid\vec{\mathbf{x}})$; 定义模型复杂度为 $J(f)=\log\frac{1}{g(\theta)}$; 定义正则化系数为 $\lambda=\frac{1}{N}$ 。则有:

$$egin{aligned} \min \sum_{i=1}^N (-\log p(ilde{y}_i \mid ec{\mathbf{x}}_i)) + \log rac{1}{g(heta)} &
ightarrow \min \sum_{i=1}^N L(ilde{y}_i, \hat{y}_i) + J(f) \ &
ightarrow \min rac{1}{N} \sum_{i=1}^N L(ilde{y}_i, \hat{y}_i) + \lambda J(f) \end{aligned}$$

即:最大后验估计=结构风险最小化。

3.3 **算法**

1. 算法指学习模型的具体计算方法。通常采用数值计算的方法求解,如:梯度下降法。