# MA22004 Statistics II - Lecture Notes

Dr Eric Hall (ehall001@dundee.ac.uk)

2020-07-15

### Contents

| 1 | Preliminaries: Special distributions | 1 |
|---|--------------------------------------|---|
|   | 1.1 Normal distribution              | 1 |
|   | 1.2 Computations with normals        | 1 |
|   | 1.3 Properties of normals            | 5 |

## 1 Preliminaries: Special distributions

### 1.1 Normal distribution

A random variable X with this distribution takes the form of a symmetric bell-shaped curve. The location (position) and dispersion (spread) of the distribution depends on the mean  $\mu$  and variance  $\sigma^2$ , respectively. We write  $X \sim \mathcal{N}(\mu, \sigma^2)$ . Recall the standard deviation is the square root of the variance, i.e.,  $\sigma$ .

### 1.2 Computations with normals

The standard normal variable Z has mean  $\mu = 0$  and variance  $\sigma^2 = 1$ . Probability values such as  $P(Z \le z)$  can be looked up in standard normal tables.

A random variable  $X \sim \mathcal{N}(\mu, \sigma^2)$  can be transformed into a standard normal using the transformation,

$$Z = \frac{X - \mu}{\sigma} \,. \tag{1}$$

**Example 1.1.** Compute the probability that the random variable  $X \sim \mathcal{N}(5,9)$  exceeds 5.5.

We first transform  $X \mapsto Z$  using (1) and then look up the probability value up in a table of standard normal values (Z-score).

$$P(X \ge 5.5) = P\left(Z \ge \frac{5.5 - 5}{3}\right)$$
$$= P(Z \ge 0.167)$$
$$= P(Z \le -0.167)$$
$$= 0.4364 - 0.0028$$
$$= 0.4346.$$

Alternatively, we can use the code:

#### [1] 0.4778479

Here we use the option lower.tail=FALSE as we are interested in the upper tail probability in this instance.

**Example 1.2.** Compute the probability that the random variable  $X \sim \mathcal{N}(5,9)$  is between....



Figure 1: Two normal variates with different means and same variance.



Figure 2: Two normal variates with different variance and same means.



Figure 3: Standard normal Z and the X

1.3 Properties of normals