Mathematical Logic in Computer Science Homework 2 2024-25

Simone Bianco, 1986936

Sapienza Università di Roma, Italy

 $\mathrm{May}\ 16,\ 2025$

Question 1 (Basic Concepts). Let R be a transitive relation on a finite set W. Prove that R is well-founded iff R is irreflexive. (R is called well-founded if there are no infinite paths ... $Rs_2Rs_1Rs_0$.)

Solution. Suppose that R is reflexive. Then, for any element $s \in W$ we can form a trivial infinite path of the form ... RsRsRsRs by taking the loop infinitely many times. Thus, R cannot be well-founded.

Vice versa, suppose that R is irreflexive. By way of contradiction, suppose that R is not well-founded. Let $P = \dots Rs_2Rs_1Rs_0$ be an infinite path on W. Since W is finite, the path P has to eventually loop, meaning that $\exists i, j$ with $i \leq |W| \leq j$ such that $s_iRs_j \dots s_{i+1}Rs_iR \dots Rs_2Rs_1Rs_0$. By transitivity, we get that s_iRs_i , contradicting the irreflexivity of R. Thus, R must be well-founded.

Question 2 (Models and Frames). Consider the basic temporal language and the frames $(\mathbb{Z}, <)$, $(\mathbb{Q}, <)$, and $(\mathbb{R}, >)$ (the integer, rational, and real numbers, respectively, all ordered by the usual less-than relation <). In this exercise we use $E\phi$ to abbreviate $P\phi \lor \phi \lor F\phi$ and $A\phi$ to abbreviate $H\phi \lor \phi \lor G\phi$. Which of the following formulas are valid on these frames?

1.
$$GGp \rightarrow p$$

2.
$$(p \wedge Hp) \rightarrow FHp$$

3.
$$(Ep \land E \neg p \land A(p \rightarrow Hp) \land A(\neg p \rightarrow G \neg p)) \rightarrow E(Hp \land G \neg p)$$

Solution. Let $\mathcal{Z} = (\mathbb{Z}, <)$, $\mathcal{Q} = (\mathbb{Q}, <)$, and $\mathcal{R} = (\mathbb{R}, >)$. The following table summarizes the validity of the formulas for each model.

We start by restricting our interest to \mathcal{Z} :

• We prove that the formula $GGp \to p$ is not valid in \mathbb{Z} by giving a model that doesn't satisfy it. Let $\mathfrak{M}_{\mathbb{Z}} = (\mathbb{Z}, V)$ be a model such that $V(p) = \{v \in \mathbb{Z} \mid 0 < v\}$. We observe that:

$$\mathfrak{M}_{\mathcal{Z}}, 0 \models GGp \iff \forall x \in \mathbb{Z} \text{ with } 0 < x, \ \mathfrak{M}_{\mathcal{Z}}, x \models Gp$$

 $\iff \forall x, y \in \mathbb{Z} \text{ with } 0 < x < y, \ \mathfrak{M}_{\mathcal{Z}}, y \models p$
 $\iff \forall x, y \in \mathbb{Z} \text{ with } 0 < x < m, \ y \in V(p)$

which is true by choice of m itself. However, we have that $\mathfrak{M}_{\mathcal{Z}}, 0 \not\models p$ because $0 \notin V(p)$, concluding that $\mathfrak{M}_{\mathcal{Z}}, 0 \not\models GGp \to p$

• We prove that the formula $(p \wedge Hp) \to FHp$ is valid in \mathcal{Z} . Let $\mathfrak{M}_{\mathcal{Z}} = (\mathcal{Z}, V)$ be any model of \mathcal{Z} . We observe that:

$$\mathfrak{M}_{\mathcal{Z}}, n \models p \land Hp \iff n \in V(p) \ \forall x \in \mathbb{Z} \text{ with } x < n \ \mathfrak{M}_{\mathcal{Z}}, x \models p$$

$$\iff n \in V(p) \ \forall x \in \mathbb{Z} \text{ with } x < n \ x \in V(p)$$

Thus, we know that p holds for n and all x such that x < n. Moreover, we observe that:

$$\mathfrak{M}_{\mathcal{Z}}, n \models FHp \iff \exists x \in \mathbb{Z} \text{ with } n < x \ \mathfrak{M}_{\mathcal{Z}}, x \models Hp$$

 $\iff \exists x, y \in \mathbb{Z} \text{ with } n < x \ \text{ and } y < x \ \mathfrak{M}_{\mathcal{Z}}, y \models p$
 $\iff \exists x, y \in \mathbb{Z} \text{ with } n < x \ \text{ and } y < x \ y \in V(p)$

Hence, x must be a successor of n such that p is true for all of x's predecessors. In \mathbb{Z} , picking x = n + 1 satisfies the formula since we already know that p holds for n and all n such that y < n.

- We prove that the formula $(Ep \wedge E \neg p \wedge A(p \to Hp) \wedge A(\neg p \to G \neg p)) \to E(Hp \wedge G \neg p)$ is valid in \mathcal{Z} . Let $\mathfrak{M}_{\mathcal{Z}} = (\mathcal{Z}, V)$ be any model of \mathcal{Z} . Let $Q \equiv Ep \wedge E \neg p \wedge A(p \to Hp) \wedge A(\neg p \to G \neg p)$. We observe that $\mathfrak{M}_{\mathcal{Z}}, n \models Q$ holds if all of the following hold for n:
 - There are two values $x, y \in \mathbb{Z}$ with $x \in V(p), y \notin V(p)$ and if $n \in V(p)$
 - For any value $m \in \mathbb{Z}$, if $m \in V(p)$ then for all $x' \in \mathbb{Z}$ with x' < m then $x' \in V(p)$
 - For any value $m \in \mathbb{Z}$, if $m \notin V(p)$ then for all $y' \in \mathbb{Z}$ with m < y' then $y' \notin V(p)$

In order for the three conditions to not clash, it must hold that:

- -x < y
- For all $x' \in \mathbb{Z}$ with x' < x it holds that $x' \in V(p)$
- For all $y' \in \mathbb{Z}$ with y < y' it holds that y'V(p)

But this is exactly the condition required by $E(Hp \wedge G \neg p)$ to be satisfied: x is a value such that p holds for all of its predecessors and