DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS CONFORMÉMENT À LA RÈGLE 17.1.a) OU b)

REC'D 16 FEB 2000 WIPO PCT

7FR00/00188

TR00/

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 0 1 FEV. 2000

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

Martine PLANCHE

SIEGE

INSTITUT NATIONAL DE A PROPRIETE 26 bis, rue de Saint Petersbourg 75800 PARIS Cédex 08 Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

ETARLISEEMENT DURING NATIONA

CREE PAR LA LOI Nº 51-444 DU 19 AVRIL 1951

Best Available Copy

This Page Blank (uspto)

La loi nº78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

BREVET D'INVENTION, CERTIFICAT D'UTILITE

Code de la propriété intellectuelle-Livre VI

N° 55 -1328

REQUÊTE EN DÉLIVRANCE

•	

26 bis.	rue d	e Saint	Pétersbour
75900	Oncie	Cadas	00

75800 Télépho

6 bis, rue de Saint Fetersbourg 5800 Paris Cedex 08 éléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30		Cet imprime est a remptir a l'encre noire en lettres capitales		
DATE DE REMISE DES PIÈCES		1 NOM ET ADRESSE DU DEMANDEUR OU DU MANDATAIRE		
N° D'ENREGISTREMENT NATIONAL 9912465		Patrice VIDON Cabinet Patrice VIDON		
DÉPARTEMENT DE DÉPÔT		Immeuble Germanium		
DATE DE DÉPÔT	1: N. P. I. RENNES	80 avenue des Buttes de Coësmes 35700 RENNES		

DÉPARTEMENT DE DÉPÔT DATE DE DÉPÔT OALAO 1999 RENNES	Cabinet Patrice VIDON Immeuble Germanium 80 avenue des Buttes de Coësmes 35700 RENNES
2 DEMANDE Nature du titre de propriété industrielle brevet d'invention demande divisionnaire certificat d'utilité transformation d'une demande de brevet européen	n°du pouvoir permanent références du correspondant 5343 ter 02.99.38.23.00
brevet d'invention Établissement du rapport de recherche différé immédiat Le demandeur, personne physique, requiert le paiement échelonné de la redevance	certificat d'utilité n° date
Titre de l'invention (200 caractères maximum) Procédé, système, dispositif destinés à l'intégrité et/ou l'authenticité d'un message	
3 DEMANDEUR (S) n° SIREN Nom et prénams (souligner le pour patropymique) ou dénomination	Société Anonyme
2. TELEDIFFUSION DE FRANCE 3. MATH RIZK	Société Anonyme SPRL (Société de droit belge)
75015 PARIS B-	erte Voie, 20 – Boîte 5 Pays France (1,2) -1348 LOUVAIN-LA-NEUVE elgique Belgique (3)
	fisance de place, poursuivre sur papier libre

2. 10, rue d'Oradour-sur- 75732 PARIS Cédex 15			
	En cas d'insu	ffisance de place, poursuivre sur	papier libre
INVENTEUR (S) Les inventeurs sont les demandeurs	oui 🔀 non	Si la réponse est non, four	nir une désignation séparée
RÉDUCTION DU TAUX DES REDEVANCES	requise pour la 1ère fois	requise antérieur	ement au dépôt : joindre copie de la décision d'admission
DÉCLARATION DE PRIORITÉ OU REQUÊTE DU BÉNÉFI pays d'origine numér		'UNE DEMANDE ANTÉRI date de dépôt	EURE nature de la demande
Emanas	00 01065		27 ionation 1000

99 01065 27 janvier 1999 France 99 03770 23 mars 1999 France

_						
7	DIVISIONS	antérieures à la présente demande	n°	date	n°	date

8 SIGNATURE DU DEMANDEUR OU DU LA DATAIRE (nom et qualité du signataire)
P. VIDON
(CPI 92-1256) SIGNATURE DU PRÉPOSÉ À LA RÉCEPTION SIGNATURE APRÈS ENREGISTREMENT DE LA DEMANDE À L'INPI

(si le demandeur n'est pas l'inventeur ou l'unique inventeur)

N° D'ENREGISTREMENT NATIONAL

99 12 465

DEPARTEMENT DES BREVETS

26bis, rue de Saint-Pétersbourg 75800 Paris Cédex 08

Tél.: 01 53 04 53 04 - Télécopie: 01 42 93 59 30

TITRE DE L'INVENTION:

Procédé, système, dispositif destinés à prouver l'authenticité d'une entité et/ou l'intégrité et/ou l'authenticité d'un message

LE(S) SOUSSIGNÉ(S)

Patrice VIDON

Cabinet Patrice VIDON Immeuble Germanium

80 avenue des Buttes de Coësmes

35700 RENNES

DÉSIGNE(NT) EN TANT QU'INVENTEUR(S) (indiquer nom, prénoms, adresse et souligner le nom patronymique) :

M. Louis <u>GUILLOU</u>
16 rue de l'Ise
35230 BOURGBARRE
FRANCE

M. Jean-Jacques <u>QUISQUATER</u>
3 avenue des canards
B-1640 Rhode Saint Genèse
BELGIQUE

NOTA: A titre exceptionnel, le nom de l'inventeur peut être suivi de celui de la société à laquelle il appartient (société d'appartenance) lorsque celle-ci est différente de la société déposante ou titulaire.

Date et signature (s) du (des) demandeur (s) ou du mandataire

le 1er og tobre 1999

P. VIDON/(CPI/92-1250)

708/11/2/14/09/7

Procédé, système, dispositif destinés à prouver l'authenticité d'une entité et/ou l'intégrité et/ou l'authenticité d'un message.

La présente invention concerne les procédés, les systèmes ainsi que les dispositifs destinés à prouver l'authenticité d'une entité et/ou l'intégrité et/ou l'authenticité d'un message.

5

10

15

20

25

Le brevet EP 0 311 470 B1 dont les inventeurs sont Louis Guillou et Jean-Jacques Quisquater décrit un tel procédé. On y fera ci-après référence en le désignant par les termes : "brevet GQ" ou "procédé GQ". Par la suite on désignera parfois par "GQ2", "invention GQ2" ou "technologie GQ2" la présente invention.

Selon le procédé GQ, une entité appelée "autorité de confiance" attribue une identité à chaque entité appelée "témoin" et en calcule la signature RSA; durant un processus de personnalisation, l'autorité de confiance donne identité et signature au témoin. Par la suite, le témoin proclame : "Voici mon identité ; j'en connais la signature RSA." Le témoin prouve sans la révéler qu'il connaît la signature RSA de son identité. Grâce à la clé publique de vérification RSA distribuée par l'autorité de confiance, une entité appelée "contrôleur" vérifie sans en prendre connaissance, une signature RSA correspond à l'identité proclamée. Les mécanismes utilisant le procédé GQ se déroulent "sans transfert de connaissance". Selon le procédé GQ, le témoin ne connaît pas la clé privée RSA avec laquelle l'autorité de confiance signe un grand nombre d'identités.

Le procédé GQ met en œuvre des calculs modulo des nombres de 512 bits ou davantage. Ces calculs concernent des nombres ayant sensiblement la même taille élevés à des puissances de l'ordre de 2¹⁶ + 1. Or les infrastructures microélectroniques existantes, notamment dans le domaine des cartes bancaires, font usage de microprocesseurs auto-programmables monolithiques dépourvus de coprocesseurs arithmétiques. La charge de travail liée aux multiples opérations arithmétiques impliquées par des

procédés tels que le procédé GQ, entraîne des temps de calcul qui dans certains cas s'avèrent pénalisant pour les consommateurs utilisant des cartes bancaires pour acquitter leurs achats. Il est rappelé ici, qu'en cherchant à accroître la sécurité des cartes de paiement, les autorités bancaires posent un problème particulièrement délicat à résoudre. En effet, il faut traiter deux questions apparemment contradictoires : augmenter la sécurité en utilisant des clés de plus en plus longues et distinctes pour chaque carte tout en évitant que la charge de travail n'entraîne des temps de calcul prohibitifs pour les utilisateurs. Ce problème prend un relief particulier dans la mesure où, en outre, il convient de tenir compte de l'infrastructure en place et des composants microprocesseurs existants.

5

10

15

20

25

La technologie GQ précédemment décrite fait appel à la technologie RSA. Mais si la technologie RSA dépend bel et bien de la factorisation du module n, cette dépendance n'est pas une équivalence, loin s'en faut, comme le démontrent les attaques dites "multiplicatives" contre les diverses normes de signature numérique mettant en oeuvre la technologie RSA.

L'objectif de la technologie GQ2 est double : d'une part, améliorer les performances par rapport à la technologie RSA; d'autre part, éviter les problèmes inhérents à la technologie RSA. La connaissance de la clé privée GQ2 est équivalente à la connaissance de la factorisation du module n. Toute attaque au niveau des triplets GQ2 se ramène à la factorisation du module n : il y a cette fois équivalence. Avec la technologie GQ2, la charge de travail est réduite, tant pour l'entité qui signe ou qui s'authentifie que pour celle qui contrôle. Grâce à un meilleur usage du problème de la factorisation, tant en sécurité qu'en performance, la technologie GQ2 évite les inconvénients présentés par la technologie RSA.

Procédé

Méthode des restes chinois appliquée à la famille GQ

Plus particulièrement, l'invention concerne un procédé destiné à prouver à une entité contrôleur,

- l'authenticité d'une entité et/ou
- l'intégrité d'un message M associé à cette entité.

Cette preuve est établie au moyen de tout ou partie des paramètres suivants ou dérivés de ceux-ci:

- m couples de valeurs privées Q_1 , Q_2 , ... Q_m et publiques G_1 , G_2 , ... G_m (m étant supérieur ou égal à 1),
- un module public \mathbf{n} constitué par le produit de \mathbf{f} facteurs premiers \mathbf{p}_1 , \mathbf{p}_2 , ... \mathbf{p}_f (\mathbf{f} étant supérieur ou égal à 2),
 - un exposant public v.

5

10

15

20

25

Ledit module, ledit exposant et lesdites valeurs sont liés par des relations du type :

$G_i \cdot Q_i^{\nu} \equiv 1 \cdot \text{mod } n \text{ ou } G_i \equiv Q_i^{\nu} \text{mod } n ;$

Ledit procédé met en œuvre selon les étapes ci-après définies une entité appelée témoin disposant des f facteurs premiers p_i et/ou des paramètres des restes chinois des facteurs premiers et/ou du module public n et/ou des m valeurs privées Q_i et/ou des f.m composantes $Q_{i, j}$ ($Q_{i, j} \equiv Q_i \mod p_j$) des valeurs privées Q_i et de l'exposant public v.

Le témoin calcule des engagements R dans l'anneau des entiers modulo n. Chaque engagement est calculé en effectuant des opérations du type

$$R_i \equiv r_i^{\ v} \mod p_i$$

où r_i est un aléa associé au nombre premier p_i tel que $0 < r_i < p_i$, chaque r_i appartenant à une collection d'aléas $\{r_1, r_2, \dots r_f\}$, puis en appliquant la méthode des restes chinois,

Ainsi, le nombre d'opérations arithmétiques modulo $\mathbf{p_i}$ à effectuer pour calculer chacun des engagements $\mathbf{R_i}$ pour chacun des $\mathbf{p_i}$ est réduit par rapport à ce qu'il serait si les opérations étaient effectuées modulo n.

Le témoin reçoit un ou plusieurs défis d. Chaque défi d comportant m

entiers \mathbf{d}_i ci-après appelés défis élémentaires. Le témoin calcule à partir de chaque défi \mathbf{d} une réponse \mathbf{D} , en effectuant des opérations du type :

$$D_{i} \equiv r_{i} \cdot Q_{i,1}^{-d1} \cdot Q_{i,2}^{-d2} \cdot \dots \cdot Q_{i,m}^{-dm} \ mod \ p_{i}$$

puis en appliquant la méthode des restes chinois.

5

10

15

20

25

Ainsi, le nombre d'opérations arithmétiques modulo $\mathbf{p_i}$ à effectuer pour calculer chacune des réponses $\mathbf{D_i}$ pour chacun des $\mathbf{p_i}$ est réduit par rapport à ce qu'il serait si les opérations étaient effectuées modulo n.

Le procédé est tel qu'il y a autant de réponses D que de défis d que d'engagements R, chaque groupe de nombres R, d, D constituant un triplet noté $\{R, d, D\}$.

Cas de la preuve de l'authenticité d'une entité

Dans une première variante de réalisation le procédé selon l'invention est destiné à prouver l'authenticité d'une entité appelée démonstrateur à une entité appelée contrôleur. Ladite entité démonstrateur comprend le témoin. Les dites entités démonstrateur et contrôleur exécutent les étapes suivantes:

• étape 1 : acte d'engagement R

A chaque appel, le témoin calcule chaque engagement R en appliquant le processus spécifié ci-dessus. Le démonstrateur transmet au contrôleur tout ou partie de chaque engagement R.

• étape 2 : acte de défi d

Le contrôleur, après avoir reçu tout ou partie de chaque engagement \mathbf{R} , produit des défis \mathbf{d} en nombre égal au nombre d'engagements \mathbf{R} et transmet les défis \mathbf{d} au démonstrateur.

• étape 3 : acte de réponse D

Le témoin calcule des réponses D à partir des défis d en appliquant le processus spécifié ci-dessus.

• étape 4 : acte de contrôle

Le démonstrateur transmet chaque réponse D au contrôleur.

Premier cas : le démonstrateur a transmis une partie de chaque engagement R

Dans le cas où le démonstrateur a transmis une partie de chaque engagement R, le contrôleur, disposant des m valeurs publiques G_1 , G_2 , ... G_m , calcule à partir de chaque défi d et de chaque réponse D un engagement reconstruit R' satisfaisant à une relation du type :

$$\mathbf{R'} \equiv \mathbf{G_1}^{d1} \cdot \mathbf{G_2}^{d2} \cdot \dots \cdot \mathbf{G_m}^{dm} \cdot \mathbf{D^v} \mod \mathbf{n}$$

ou à une relation du type,

10

15

20

25

$$R^{\text{\tiny 7}} \equiv D^{\text{\tiny V}} \, / \, G_1^{\ \text{\tiny d1}}$$
 , $G_2^{\ \text{\tiny d2}} \ldots \, G_m^{\ \text{\tiny dm}}$, mod n .

Le contrôleur vérifie que chaque engagement reconstruit R' reproduit tout ou partie de chaque engagement R qui lui a été transmis.

Deuxième cas : le démonstrateur a transmis l'intégralité de chaque engagement R

Dans le cas où le démonstrateur a transmis l'intégralité de chaque engagement R, le contrôleur, disposant des m valeurs publiques G_1 , G_2 , ... G_m , vérifie que chaque engagement R satisfait à une relation du type :

$$R \equiv G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot D^v \mod n$$

ou à une relation du type,

$$R \equiv D^{v} / G_1^{d1} \cdot G_2^{d2} \cdot ... \cdot G_m^{dm} \cdot mod n$$
.

Cas de la preuve de l'intégrité d'un message

dans une deuxième variante de réalisation susceptible d'être combinée avec la première, le procédé selon l'invention est destiné à prouver à une entité appelée contrôleur l'intégrité d'un message M associé à une entité appelée démonstrateur. Ladite entité démonstrateur comprend le témoin.

Les dites entités démonstrateur et contrôleur exécutent les étapes suivantes:

• étape 1 : acte d'engagement R

A chaque appel, le témoin calcule chaque engagement R en appliquant le processus spécifié ci-dessus.

• étape 2 : acte de défi d

5

10

15

20

25

Le démonstrateur applique une fonction de hachage h ayant comme arguments le message M et tout ou partie de chaque engagement R pour calculer au moins un jeton T. Le démonstrateur transmet le jeton T au contrôleur. Le contrôleur, après avoir reçu un jeton T, produit des défis d en nombre égal au nombre d'engagements R et transmet les défis d au démonstrateur.

• étape 3 : acte de réponse D

Le témoin calcule des réponses D à partir des défis d en appliquant le processus spécifié ci-dessus.

• étape 4 : acte de contrôle

Le démonstrateur transmet chaque réponse D au contrôleur Le contrôleur, disposant des m valeurs publiques $G_1, G_2, \ldots G_m$, calcule à partir de chaque défi d et de chaque réponse D un engagement reconstruit R' satisfaisant à une relation du type :

$$R' \equiv G_1^{\ d1}$$
 . $G_2^{\ d2}$ $G_m^{\ dm}$. $D^v \ mod \ n$

ou à une relation du type :

$$R'\equiv D^{v}\,/\,G_{1}^{-dl}$$
 , $G_{2}^{-d2},\ldots\,G_{m}^{-dm}$. $mod\ n.$

Puis, le contrôleur applique la fonction de hachage h ayant comme arguments le message M et tout ou partie de chaque engagement reconstruit R' pour reconstruire le jeton T'. Puis, le contrôleur vérifie que le jeton T' est identique au jeton T transmis.

Signature numérique d'un message et preuve de son authenticité Opération de signature

Dans une troisième variante de réalisation susceptible d'être prise en combinaison avec l'une et/ou l'autre des autres variantes de réalisation, le procédé selon l'invention est destiné à produire la signature numérique d'un message M par une entité appelée entité signataire. Ladite entité signataire comprend le témoin.

Ladite entité signataire exécute une opération de signature en vue d'obtenir un message signé comprenant :

- le message M,
- les défis d et/ou les engagements R,
- les réponses D.

Ladite entité signataire exécute l'opération de signature en mettant en oeuvre les étapes suivantes :

• étape 1 : acte d'engagement R

A chaque appel, le témoin calcule chaque engagement R en appliquant le processus spécifié ci-dessus.

• étape 2 : acte de défi d

Le signataire applique une fonction de hachage h ayant comme arguments le message M et chaque engagement R pour obtenir un train binaire. Le signataire extrait de ce train binaire des défis d en nombre égal au nombre d'engagements R.

• étape 3 : acte de réponse D

Le témoin calcule des réponses D à partir des défis d en appliquant le processus spécifié ci-dessus.

Opération de contrôle

Pour l'authenticité du message M, une entité, appelée contrôleur, contrôle le message signé. Ladite entité contrôleur disposant du message signé exécute une opération de contrôle en procédant comme ci-après décrit.

• cas où le contrôleur dispose des engagements R, des défis d, des réponses D,

Dans le cas où le contrôleur dispose des engagements **R**, des défis **d**, des réponses **D**, le contrôleur vérifie que les engagements **R**, les défis **d** et les réponses **D** satisfont à des relations du type

$$R \equiv G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot D^v \mod n$$

ou à des relations du type :

10

5

20

25

15

$$R \equiv D^{v} / G_1^{d1} \cdot G_2^{d2} \cdot ... \cdot G_m^{dm} \cdot mod n$$

Puis, le contrôleur vérifie que le message M, les défis d et les engagements R satisfont à la fonction de hachage

$$d = h(M, R)$$

· cas où le contrôleur dispose des défis d et des réponses D

Dans le cas où le contrôleur dispose des défis d et des réponses D, le contrôleur reconstruit, à partir de chaque défi d et de chaque réponse D, des engagements R' satisfaisant à des relations du type :

$$R' \equiv G_1^{\ d1}$$
 , $G_2^{\ d2}$, ... $G_m^{\ dm}$, $D^v \ mod \ n$

ou à des relations du type :

5

10

15

20

25

$$R' \equiv D^{v} / G_1^{d1} \cdot G_2^{d2} \cdot ... \cdot G_m^{dm} \cdot mod n$$

Puis, le contrôleur vérifie que le message M et les défis d satisfont à la fonction de hachage

$$d = h(M, R')$$

• cas où le contrôleur dispose des engagements R et des réponses D

Dans le cas où le contrôleur dispose des engagements R et des réponses D, le contrôleur applique la fonction de hachage et reconstruit d'

$$d' = h (M, R)$$

Puis, le contrôleur vérifie que les engagements R, les défis d' et les réponses D, satisfont à des relations du type:

$$R \equiv G_1^{\ d'1}$$
 . $G_2^{\ d'2}$ $G_m^{\ d'm}$. $D^v \ mod \ n$

ou à des relations du type:

$$R \equiv D^{v} / G_1^{d'1} \cdot G_2^{d'2} \cdot ... G_m^{d'm} \cdot mod n.$$

Cas où on choisit la valeur privée Q en premier et où on déduit la valeur publique G de la valeur privée Q

Dans certains, notamment afin de faciliter la production des couples de valeurs privées Q et publiques G, on choisit la valeur privée Q en premier et on déduit la valeur publique G de la valeur privée Q. Plus particulièrement dans ce cas, le procédé selon l'invention est tel que les

composantes $Q_{i,1}$, $Q_{i,2}$, ... $Q_{i,f}$ des valeurs privées $Q_{i,f}$ sont des nombres tirés au hasard à raison d'une composante $Q_{i,j}$ ($Q_{i,j} \equiv Q_i \mod p_j$) pour chacun desdits facteurs premiers p_j . Lesdites valeurs privées Q_i peuvent être calculées à partir desdites composantes $Q_{i,1}$, $Q_{i,2}$, ... $Q_{i,f}$ par la méthode des restes chinois. Lesdites valeurs publiques G_i , sont calculées en effectuant des opérations du type

$$G_{i,j} \equiv Q_{i,j}^{v} \mod p_{j}$$

puis, en appliquant la méthode des restes chinois pour établir Gi tel que

$$G_i \cdot Q_i^{v} \equiv 1 \cdot \text{mod } n \text{ ou } G_i \equiv Q_i^{v} \text{mod } n;$$

Ainsi, le nombre d'opérations arithmétiques modulo $\mathbf{p_i}$ à effectuer pour calculer chacun des $\mathbf{G_{i,j}}$ pour chacun des $\mathbf{p_j}$ est réduit par rapport à ce qu'il serait si les opérations étaient effectuées modulo \mathbf{n} .

Avantageusement dans ce cas, le procédé selon l'invention est tel que l'exposant public de vérification v est un nombre premier. On démontre que la sécurité est équivalente à la connaissance de la valeur privée Q_i .

Cas où on choisit la valeur publique G en premier et où on déduit la valeur privée Q de la valeur publique G.

De préférence dans ce cas, ledit exposant v est tel que

$$v = 2^k$$

où k est un paramètre de sécurité plus grand que 1.

Ladite valeur publique G_i est le carré g_i^2 d'un nombre de base g_i inférieur aux f facteurs premiers $p_1, p_2, \dots p_f$. Le nombre de base g_i est tel que les deux équations :

$$x^2 \equiv g_i \mod n$$
 et $x^2 \equiv -g_i \mod n$

n'ont pas de solution en x dans l'anneau des entiers modulo n et tel que l'équation :

$$x^v \equiv g_i^2 \mod n$$

a des solutions en x dans l'anneau des entiers modulo n.

Système

10

5

15

20

25

La présente invention concerne également un système destiné à prouver à un serveur contrôleur,

- l'authenticité d'une entité et/ou
- l'intégrité d'un message M associé à cette entité.

Cette preuve est établie au moyen de tout ou partie des paramètres suivants ou dérivés de ceux-ci:

- m couples de valeurs privées $Q_1, Q_2, ... Q_m$ et publiques $G_1, G_2, ...$ G_m (m étant supérieur ou égal à 1),
- un module public n constitué par le produit de f facteurs premiers p_1 , p_2 , ... p_f (f étant supérieur ou égal à 2),
 - un exposant public v.

5

10

15

20

25

Ledit module, ledit exposant et lesdites valeurs étant liés par des relations du type :

$$G_i \cdot Q_i^v \equiv 1 \cdot \text{mod } n \text{ ou } G_i \equiv Q_i^v \text{mod } n$$
.

Ledit système comprend un dispositif témoin, notamment contenu dans un objet nomade se présentant par exemple sous la forme d'une carte bancaire à microprocesseur. Le dispositif témoin comporte une zone mémoire contenant les f facteurs premiers p_i et/ou des paramètres des restes chinois des facteurs premiers et/ou du module public n et/ou des m valeurs privées Q_i et/ou des f.m composantes $Q_{i,j}$ ($Q_{i,j} \equiv Q_i \mod p_j$) des valeurs privées Q_i et de l'exposant public v. Le dispositif témoin comporte aussi :

- des moyens de production d'aléas, ci-après désignés les moyens de production d'aléas du dispositif témoin,
- des moyens de calcul, ci-après désignés les moyens de calcul des engagements R du dispositif témoin, pour calculer des engagements R dans l'anneau des entiers modulo n. Chaque engagement est calculé en effectuant des opérations du type

$$R_i \equiv r_i^{\ v} \, mod \, \, p_i$$

où r_i est un aléa associé au nombre premier p_i tel que $0 < r_i < p_i$, chaque r_i

appartenant à une collection d'aléas $\{r_1, r_2, \dots r_f\}$ produits par les moyens de production d'aléas, puis en appliquant la méthode des restes chinois.

Ainsi, le nombre d'opérations arithmétiques modulo $\mathbf{p_i}$ à effectuer pour calculer chacun des engagements $\mathbf{R_i}$ pour chacun des $\mathbf{p_i}$ est réduit par rapport à ce qu'il serait si les opérations étaient effectuées modulo n.

Le dispositif témoin comporte aussi :

- des moyens de réception, ci-après désignés les moyens de réception des défis d du dispositif témoin, pour recevoir un ou plusieurs défis d ; chaque défi d comportant m entiers d, ci-après appelés défis élémentaires ;
- des moyens de calcul, ci-après désignés les moyens de calcul des réponses **D** du dispositif témoin, pour calculer à partir de chaque défi **d** une réponse **D** en effectuant des opérations du type :

$$D_{i} \equiv r_{i} \cdot Q_{i,1}^{d1} \cdot Q_{i,2}^{d2} \cdot \dots \cdot Q_{i,m}^{dm} \mod p_{i}$$

puis, en appliquant la méthode des restes chinois.

Ainsi, le nombre d'opérations arithmétiques modulo p_i à effectuer pour calculer chacune des réponses D_i pour chacun des p_i est réduit par rapport à ce qu'il serait si les opérations étaient effectuées modulo n.

Ledit dispositif témoin comporte aussi des moyens de transmission pour transmettre un ou plusieurs engagements **R** et une ou plusieurs réponses **D**. Il y a autant de réponses **D** que de défis **d** que d'engagements **R**. Chaque groupe de nombres **R**, **d**, **D** constituant un triplet noté {**R**, **d**, **D**}.

Cas de la preuve de l'authenticité d'une entité

Dans une première variante de réalisation le système selon l'invention est destiné à prouver l'authenticité d'une entité appelée démonstrateur à une entité appelée contrôleur.

Ledit système est tel qu'il comporte un dispositif démonstrateur associé à l'entité démonstrateur. Ledit dispositif démonstrateur est interconnecté au dispositif témoin par des moyens d'interconnexion. Il peut se présenter

10

15

20

25

notamment sous la forme de microcircuits logiques dans un objet nomade par exemple sous la forme d'un microprocesseur dans une carte bancaire à microprocesseur.

Ledit système comporte aussi un dispositif contrôleur associé à l'entité contrôleur. Ledit dispositif contrôleur se présente notamment sous la forme d'un terminal ou d'un serveur distant. Ledit dispositif contrôleur comporte électriquement, connecter le connexion pour de moyens manière acoustique, optiquement de ou électromagnétiquement, notamment via un réseau de communication informatique, au dispositif démonstrateur.

Ledit système permet d'exécuter les étapes suivantes :

• étape 1 : acte d'engagement R

5

10

15

20

25

A chaque appel, les moyens de calcul des engagements R du dispositif témoin calculent chaque engagement R en appliquant le processus spécifié ci-dessus. Le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif témoin, pour transmettre tout ou partie de chaque engagement R au dispositif démonstrateur, via les moyens d'interconnexion. Le dispositif démonstrateur comporte aussi des moyens de transmission, ci-après désigné les moyens de transmission du dispositif démonstrateur, pour transmettre tout ou partie de chaque engagement R au dispositif contrôleur, via les moyens de connexion.

• étape 2 : acte de défi d

Le dispositif contrôleur comporte des moyens de productions de défis pour produire, après avoir reçu tout ou partie de chaque engagement **R**, des défis **d** en nombre égal au nombre d'engagements **R**. Le dispositif contrôleur comporte aussi des moyens de transmission, ci-après désignés les moyens de transmission du contrôleur, pour transmettre les défis **d** au démonstrateur, via les moyens de connexion.

• étape 3 : acte de réponse D

Les moyens de réception des défis d du dispositif témoin, reçoivent chaque défi d provenant du dispositif démonstrateur, via les moyens d'interconnexion. Les moyens de calcul des réponses D du dispositif témoin calculent les réponses D à partir des défis d en appliquant le processus spécifié ci-dessus.

• étape 4 : acte de contrôle

5

10

15

20

25

Les moyens de transmission du démonstrateur transmettent chaque réponse D au contrôleur. Le dispositif contrôleur comporte aussi

- des moyens de calcul, ci-après désignés les moyens de calcul du dispositif contrôleur,
- des moyens de comparaison, ci-après désignés les moyens de comparaison du dispositif contrôleur.

Premier cas : le démonstrateur a transmis une partie de chaque engagement R

Dans le cas où les moyens de transmission du démonstrateur ont transmis une partie de chaque engagement \mathbf{R} , les moyens de calcul du dispositif contrôleur, disposant des \mathbf{m} valeurs publiques $\mathbf{G}_1, \, \mathbf{G}_2, \, \dots \, \mathbf{G}_m$, calculent à partir de chaque défi \mathbf{d} et de chaque réponse \mathbf{D} un engagement reconstruit \mathbf{R} ' satisfaisant à une relation du type :

$$\mathbf{R'} \equiv \mathbf{G_1}^{d1} \cdot \mathbf{G_2}^{d2} \cdot \dots \cdot \mathbf{G_m}^{dm} \cdot \mathbf{D^v} \mod \mathbf{n}$$

ou à une relation du type,

$$R' \equiv D^v \, / \, G_1^{\ d1} \, . \, G_2^{\ d2} . \, \ldots \, G_m^{\ dm} \, . \, \, mod \, \, n \, \, .$$

Les moyens de comparaison du dispositif contrôleur comparent chaque engagement reconstruit R' à tout ou partie de chaque engagement R reçu. cas où le démonstrateur a transmis l'intégralité de chaque engagement R

Dans le cas où les moyens de transmission du démonstrateur ont transmis l'intégralité de chaque engagement R, les moyens de calcul et les moyens

de comparaison du dispositif contrôleur, disposant des m valeurs publiques $G_1, G_2, \dots G_m$, vérifient que chaque engagement R satisfait à une relation du type :

$$R \equiv G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot D^v \mod n$$

ou à une relation du type,

5

10

15

20

25

$$R \equiv D^{v} / G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot mod n .$$

Cas de la preuve de l'intégrité d'un message

Dans une deuxième variante de réalisation susceptible d'être combinée avec la première, le système selon l'invention est destiné à prouver à une entité appelée contrôleur l'intégrité d'un message M associé à une entité appelée démonstrateur. Ledit système est tel qu'il comporte un dispositif Ledit démonstrateur. l'entité à associé démonstrateur démonstrateur est interconnecté au dispositif témoin par des moyens d'interconnexion. Il peut se présenter notamment sous la forme de microcircuits logiques dans un objet nomade par exemple sous la forme d'un microprocesseur dans une carte bancaire à microprocesseur. Ledit système comporte aussi un dispositif contrôleur associé à l'entité contrôleur. Ledit dispositif contrôleur se présente notamment sous la forme d'un terminal ou d'un serveur distant. Ledit dispositif contrôleur comporte électriquement, connecter le connexion pour de moyens des acoustique, manière de optiquement ou électromagnétiquement, notamment via un réseau de communication informatique, au dispositif démonstrateur.

Ledit système exécute les étapes suivantes :

• étape 1 : acte d'engagement R

A chaque appel, les moyens de calcul des engagements R du dispositif témoin calculent chaque engagement R en appliquant le processus spécifié ci-dessus. Le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif témoin, pour

transmettre tout ou partie de chaque engagement R au dispositif démonstrateur, via les moyens d'interconnexion.

• étape 2 : acte de défi d

5

10

15

20

25

Le dispositif démonstrateur comporte des moyens de calcul, ci-après désignés les moyens de calcul du dispositif démonstrateur, appliquant une fonction de hachage h ayant comme arguments le message M et tout ou partie de chaque engagement R pour calculer au moins un jeton T. Le dispositif démonstrateur comporte aussi des moyens de transmission, ci-après désignés les moyens de transmission du démonstrateur, pour transmettre chaque jeton T, via les moyens de connexion, au dispositif au contrôleur. Le dispositif contrôleur comporte aussi des moyens de productions de défis pour produire, après avoir reçu le jeton T, des défis d en nombre égal au nombre d'engagements R, Le dispositif contrôleur comporte aussi des moyens de transmission, ci-après désignés les moyens de transmission du dispositif contrôleur, pour transmettre les défis d au démonstrateur, via les moyens de connexion.

• étape 3 : acte de réponse D

Les moyens de réception des défis d du dispositif témoin, reçoivent chaque défi d provenant du dispositif démonstrateur, via les moyens d'interconnexion. Les moyens de calcul des réponses D du dispositif témoin calculent les réponses D à partir des défis d en appliquant le processus spécifié ci-dessus.

• étape 4 : acte de contrôle

Les moyens de transmission du démonstrateur transmettent chaque réponse \mathbf{D} au contrôleur. Le dispositif contrôleur comporte aussi des moyens de calcul, ci-après désignés les moyens de calcul du dispositif contrôleur, disposant des \mathbf{m} valeurs publiques $\mathbf{G_1}, \mathbf{G_2}, \ldots \mathbf{G_m}$, pour d'une part, calculer à partir de chaque défi \mathbf{d} et de chaque réponse \mathbf{D} un engagement reconstruit \mathbf{R} ' satisfaisant à une relation du type :

$$R' \equiv G_1^{d1} \cdot G_2^{d2} \cdot ... \cdot G_m^{dm} \cdot D^v \mod n$$

ou à une relation du type :

5

10

15

20

25

$$R' \equiv D^{v} / G_1^{d1} \cdot G_2^{d2} \cdot ... G_m^{dm} \cdot mod n$$

puis d'autre part, calculer en appliquant la fonction de hachage h ayant comme arguments le message M et tout ou partie de chaque engagement reconstruit R', un jeton T'.

Le dispositif contrôleur comporte aussi des moyens de comparaison, ciaprès désignés les moyens de comparaison du dispositif contrôleur, pour comparer le jeton T' au jeton T reçu.

Signature numérique d'un message et preuve de son authenticité Opération de signature

Dans une troisième variante de réalisation, susceptible d'être combinée à l'une et/ou à l'autre des deux autres, le système selon l'invention est destiné à produire la signature numérique d'un message M, ci après désigné le message signé, par une entité appelée entité signataire.

Le message signé comprend :

- le message M,
- les défis d et/ou les engagements R,
- les réponses D .

Ledit système est tel qu'il comporte un dispositif signataire associé à l'entité signataire. Ledit dispositif signataire est interconnecté au dispositif témoin par des moyens d'interconnexion et peut se présenter notamment sous la forme de microcircuits logiques dans un objet nomade par exemple sous la forme d'un microprocesseur dans une carte bancaire à microprocesseur.

Ledit système permet d'exécuter les étapes suivantes :

• étape 1 : acte d'engagement R

A chaque appel, les moyens de calcul des engagements R du dispositif témoin calculent chaque engagement R en appliquant le processus spécifié ci-dessus.

5

10

15

20

25

Le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif témoin, pour transmettre tout ou partie de chaque engagement **R** au dispositif signataire, via les moyens d'interconnexion.

• étape 2 : acte de défi d

Le dispositif signataire comporte des moyens de calcul, ci-après désignés les moyens de calcul du dispositif signataire, appliquant une fonction d hachage h ayant comme arguments le message M et tout ou partie de chaque engagement R pour calculer un train binaire et extraire de ce train binaire des défis d en nombre égal au nombre d'engagements R.

• étape 3 : acte de réponse D

Les moyens de réception des défis d du dispositif témoin, reçoivent chaque défi d provenant du dispositif signataire, via les moyens d'interconnexion. Les moyens de calcul des réponses D du dispositif témoin calculent les réponses D à partir des défis d en appliquant le processus spécifié cidessus.

Le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif témoin, pour transmettre les réponses D au dispositif signataire, via les moyens d'interconnexion.

Opération de contrôle

Pour prouver l'authenticité du message M, par une entité appelée contrôleur, contrôle le message signé.

Le système comporte un dispositif contrôleur associé à l'entité contrôleur. Ledit dispositif contrôleur se présente notamment sous la forme d'un terminal ou d'un serveur distant. Ledit dispositif contrôleur comporte des électriquement, de le connecter connexion pour moyens manière acoustique, électromagnétiquement, optiquement ou de notamment via un réseau de communication informatique, au dispositif démonstrateur.

5

10

15

20

25

Ledit dispositif signataire associé à l'entité signataire comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif signataire, pour transmettre au dispositif contrôleur, le message signé, via les moyens de connexion. Ainsi, le dispositif contrôleur dispose d'un message signé comprenant:

- le message M,
- les défis d et/ou les engagements R,
- les réponse D.

Le dispositif contrôleur comporte :

- des moyens de calcul, ci-après désignés les moyens de calcul du dispositif contrôleur,
- des moyens de comparaison, ci-après désignés les moyens de comparaison du dispositif contrôleur.
- cas où le contrôleur dispose des engagements R, des défis d, des réponses D,

Dans le cas où le dispositif contrôleur dispose des engagements R, des défis d, des réponses D, les moyens de calcul et de comparaison du dispositif contrôleur vérifient que les engagements R, les défis d et les réponses D satisfont à des relations du type

$$R \equiv G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot D^v \mod n$$

ou à des relations du type :

$$R \equiv D^{v} / G_1^{d1} \cdot G_2^{d2} \cdot ... \cdot G_m^{dm} \cdot mod n$$

Puis, les moyens de calcul et de comparaison du dispositif contrôleur vérifient que le message M, les défis d et les engagements R satisfont à la fonction de hachage

$$d = h (M, R)$$

• cas où le contrôleur dispose des défis d et des réponses D

Dans le cas où le dispositif contrôleur dispose des défis d et des réponses

D, les moyens de calcul du dispositif contrôleur calculent, à partir de chaque défi d et de chaque réponse **D**, des engagements **R'** satisfaisant à des relations du type :

$$\mathbf{R'} \equiv \mathbf{G_1}^{d1} \cdot \mathbf{G_2}^{d2} \cdot \dots \cdot \mathbf{G_m}^{dm} \cdot \mathbf{D^v} \mod \mathbf{n}$$

ou à des relations du type :

5

10

15

20

25

$$R' \equiv D^{v} / G_1^{d1} \cdot G_2^{d2} \cdot ... \cdot G_m^{dm} \cdot mod n$$

Puis, les moyens de calcul et de comparaison du dispositif contrôleur vérifie que le message M et les défis d satisfont à la fonction de hachage

$$d = h(M, R')$$

• cas où le contrôleur dispose des engagements R et des réponses D

Dans le cas où le dispositif contrôleur dispose des engagements R et des réponses D, les moyens de calcul du dispositif contrôleur appliquent la fonction de hachage et calculent d' tel que

$$d' = h(M, R)$$

Puis, les moyens de calcul et de comparaison du dispositif contrôleur vérifient que les engagements **R**, les défis **d'** et les réponses **D**, satisfont à des relations du type :

$$R \equiv G_1^{d'1} \cdot G_2^{d'2} \cdot ... \cdot G_m^{d'm} \cdot D^v \mod n$$

ou à des relations du type :

$$R \equiv D^{\nu} \, / \, G_1^{\ d'1}$$
 . $G_2^{\ d'2}$ $G_m^{\ d'm}$. $\ mod \ n$

Cas où on choisit la valeur privée Q en premier et où on déduit la valeur publique G de la valeur privée Q

Dans certains, notamment afin de faciliter la production des couples de valeurs privées Q et publiques G, on choisit la valeur privée Q en premier et on déduit la valeur publique G de la valeur privée Q. Plus particulièrement dans ce cas, le système selon l'invention est tel que les composantes $Q_{i,1}, Q_{i,2}, \dots Q_{i,f}$ des valeurs privées Q_i , sont des nombres tirés au hasard à raison d'une composante $Q_{i,j}$ ($Q_{i,j} \equiv Q_i \mod p_j$) pour chacun desdits facteurs premiers p_j . Lesdites valeurs privées Q_i peuvent

être calculées à partir desdites composantes $Q_{i, 1}$, $Q_{i, 2}$... $Q_{i, f}$ par la méthode des restes chinois. Lesdites valeurs publiques G_i , sont calculées en effectuant des opérations du type

$$G_{i,\,j} \equiv \left. Q_{i,\,j} \right.^{v} mod \ p_{j}$$

puis, en appliquant la méthode des restes chinois pour établir Gi tel que

$$G_i \cdot Q_i^v \equiv 1 \cdot \text{mod } n \text{ ou } G_i \equiv Q_i^v \text{mod } n$$
;

Ainsi, le nombre d'opérations arithmétiques modulo $\mathbf{p_i}$ à effectuer pour calculer chacun des $\mathbf{G_{i,j}}$ pour chacun des $\mathbf{p_j}$ est réduit par rapport à ce qu'il serait si les opérations étaient effectuées modulo \mathbf{n} .

Avantageusement dans ce cas, le système selon l'invention est tel que l'exposant public de vérification ${\bf v}$ est un nombre premier. On démontre que la sécurité est équivalente à la connaissance de la valeur privée ${\bf Q_i}$.

Cas où on choisit la valeur publique G en premier et où on déduit la valeur privée Q de la valeur publique G.

De préférence dans ce cas, ledit exposant v est tel que

5

10

15

20

25

$$v = 2^k$$

où k est un paramètre de sécurité plus grand que 1. Ladite valeur publique G_i est le carré g_i^2 d'un nombre de base g_i inférieur aux f facteurs premiers $p_1, p_2, \dots p_f$. Le nombre de base g_i est tel que les deux équations :

$$x^2 \equiv g_i \mod n$$
 et $x^2 \equiv -g_i \mod n$

n'ont pas de solution en x dans l'anneau des entiers modulo n et tel que l'équation :

$$x^v \equiv g_i^2 \mod n$$

a des solutions en x dans l'anneau des entiers modulo \mathbf{n} .

Dispositif terminal

Méthode des restes chinois appliquée à la famille GQ

L'invention concerne aussi un dispositif terminal associé à une entité. Le dispositif terminal se présente notamment sous la forme d'un objet nomade par exemple sous la forme d'une carte bancaire à microprocesseur. Le

dispositif terminal est destiné à prouver à dispositif contrôleur :

- l'authenticité d'une entité et/ou
- l'intégrité d'un message M associé à cette entité.

Cette preuve est établie au moyen de tout ou partie des paramètres suivants ou dérivés de ceux-ci:

- m couples de valeurs privées $Q_1, Q_2, ... Q_m$ et publiques $G_1, G_2, ...$ G_m (m étant supérieur ou égal à 1),
- un module public n constitué par le produit de f facteurs premiers p_1 , p_2 , ... p_f (f étant supérieur ou égal à 2),
 - un exposant public v.

Ledit module, ledit exposant et lesdites valeurs sont liés par des relations du type :

$$G_i \cdot Q_i^{\ \nu} \equiv 1 \cdot \text{mod } n \text{ ou } G_i \equiv Q_i^{\ \nu} \text{mod } n$$
.

Ledit dispositif terminal comprend un dispositif témoin comportant une zone mémoire contenant les f facteurs premiers p_i et/ou les paramètres des restes chinois des facteurs premiers et/ou du module public n et/ou les m valeurs privées Q_i et/ou les f composantes $Q_{i,j}$ ($Q_{i,j} \equiv Q_i \mod p_j$) des valeurs privées Q_i et de l'exposant public v. Le dispositif témoin comporte aussi :

- des moyens de production d'aléas, ci-après désignés les moyens de production d'aléas du dispositif témoin,
- des moyens de calcul, ci-après désignés les moyens de calcul des engagements R du dispositif témoin.

Les moyens de calcul permettent de calculer des engagements R dans l'anneau des entiers modulo n. Chaque engagement est calculé en effectuant des opérations du type

$$\mathbf{R}_{\mathbf{i}} \equiv \mathbf{r}_{\mathbf{i}}^{\mathbf{v}} \mathbf{mod} \ \mathbf{p}_{\mathbf{i}}$$

où \mathbf{r}_i est un aléa associé au nombre premier \mathbf{p}_i tel que $0 < \mathbf{r}_i < \mathbf{p}_i$, chaque \mathbf{r}_i appartenant à une collection d'aléas $\{\mathbf{r}_1, \mathbf{r}_2, \dots \mathbf{r}_f\}$ produits par les

10

5

20

25

15

moyens de production d'aléas, puis en appliquant la méthode des restes chinois.

Ainsi, le nombre d'opérations arithmétiques modulo $\mathbf{p_i}$ à effectuer pour calculer chacun des engagements $\mathbf{R_i}$ pour chacun des $\mathbf{p_i}$ est réduit par rapport à ce qu'il serait si les opérations étaient effectuées modulo n.

Le dispositif témoin comporte aussi :

5

10

15

25

- des moyens de réception, ci-après désignés les moyens de réception des défis d du dispositif témoin, pour recevoir un ou plusieurs défis d, chaque défi d comportant m entiers d_i ci-après appelés défis élémentaires ;
- des moyens de calcul, ci-après désignés les moyens de calcul des réponses **D** du dispositif témoin, pour calculer à partir de chaque défi **d** une réponse **D** en effectuant des opérations du type :

$$D_i \equiv r_i$$
 , $Q_{i,1}^{\quad di}$, $Q_{i,2}^{\quad d2}$, ... $Q_{i,m}^{\quad dm} \; mod \; p_i$

puis, en appliquant la méthode des restes chinois.

Ainsi, le nombre d'opérations arithmétiques modulo $\mathbf{p_i}$ à effectuer pour calculer chacune des réponses $\mathbf{D_i}$ pour chacun des $\mathbf{p_i}$ est réduit par rapport à ce qu'il serait si les opérations étaient effectuées modulo n.

Le dispositif témoin comporte aussi des moyens de transmission pour transmettre un ou plusieurs engagements R et une ou plusieurs réponses D. Il y a autant de réponses D que de défis d que d'engagements R. Chaque groupe de nombres R, d, D constituant un triplet noté {R, d, D}.

Cas de la preuve de l'authenticité d'une entité

Dans une première variante de réalisation, le dispositif terminal selon l'invention est destiné à prouver l'authenticité d'une entité appelée démonstrateur à une entité appelée contrôleur.

Ledit dispositif terminal est tel qu'il comporte un dispositif démonstrateur associé à l'entité démonstrateur. Ledit dispositif démonstrateur est interconnecté au dispositif témoin par des moyens d'interconnexion. Il peut se présenter notamment sous la forme de microcircuits logiques dans

un objet nomade par exemple sous la forme d'un microprocesseur dans une carte bancaire à microprocesseur.

Ledit dispositif démonstrateur comporte des moyens de connexion pour le connecter électriquement, électromagnétiquement, optiquement ou de manière acoustique, notamment via un réseau de communication informatique, à un dispositif contrôleur associé à l'entité contrôleur. Ledit dispositif contrôleur se présente notamment sous la forme d'un terminal ou d'un serveur distant.

Ledit dispositif terminal permet d'exécuter les étapes suivantes :

• étape 1 : acte d'engagement R

A chaque appel, les moyens de calcul des engagements R du dispositif témoin calculent chaque engagement R en appliquant le processus spécifié ci-dessus.

Le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif témoin, pour transmettre tout ou partie de chaque engagement R au dispositif démonstrateur, via les moyens d'interconnexion. Le dispositif démonstrateur comporte aussi des moyens de transmission, ci-après désignés les moyens de transmission du démonstrateur, pour transmettre tout ou partie de chaque engagement R au dispositif contrôleur, via les moyens de connexion.

• étape 2 et 3 : acte de défi d, acte de réponse D

Les moyens de réception des défis d du dispositif témoin, reçoivent chaque défi d provenant du dispositif contrôleur via les moyens de connexion entre le dispositif contrôleur et le dispositif démonstrateur et via les moyens d'interconnexion entre le dispositif démonstrateur et le dispositif témoin. Les moyens de calcul des réponses D du dispositif témoin calculent les réponses D à partir des défis d en appliquant le processus spécifié cidessus.

• étape 4 : acte de contrôle

10

5

15

20

25

Les moyens de transmission du démonstrateur transmettent chaque réponse **D** au dispositif contrôleur qui procède au contrôle.

Cas de la preuve de l'intégrité d'un message

Dans une deuxième variante de réalisation, susceptible d'être combinée aux autres variantes de réalisation, le dispositif terminal selon l'invention est destiné à prouver à une entité appelée contrôleur l'intégrité d'un message M associé à une entité appelée démonstrateur. Ledit dispositif terminal est tel qu'il comporte un dispositif démonstrateur associé à l'entité démonstrateur. Ledit dispositif démonstrateur est interconnecté au dispositif témoin par des moyens d'interconnexion. Il peut se présenter notamment sous la forme de microcircuits logiques dans un objet nomade par exemple sous la forme d'un microprocesseur dans une carte bancaire à microprocesseur. Ledit dispositif démonstrateur comporte des moyens de connexion pour le connecter électriquement, électromagnétiquement, optiquement ou de manière acoustique, notamment via un réseau de communication informatique, à un dispositif contrôleur associé à l'entité contrôleur. Ledit dispositif contrôleur se présente notamment sous la forme d'un terminal ou d'un serveur distant.

Ledit dispositif terminal permet d'exécuter les étapes suivantes :

• étape 1 : acte d'engagement R

5

10

15

20

25

A chaque appel, les moyens de calcul des engagements R du dispositif témoin calculent chaque engagement R en appliquant le processus spécifié ci-dessus. Le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif témoin, pour transmettre tout ou partie de chaque engagement R au dispositif démonstrateur, via les moyens d'interconnexion.

• étape 2 et 3 : acte de défi d, acte de réponse

Le dispositif démonstrateur comporte des moyens de calcul, ci-après désignés les moyens de calcul du dispositif démonstrateur, appliquant

fonction de hachage h ayant comme arguments le message M et tout ou partie de chaque engagement R pour calculer au moins un jeton T. Le dispositif démonstrateur comporte aussi des moyens de transmission, ciaprès désignés les moyens de transmission du démonstrateur, pour transmettre chaque jeton T, via les moyens de connexion, au dispositif au contrôleur.

Ledit dispositif contrôleur produit, après avoir reçu le jeton T, des défis d en nombre égal au nombre d'engagements R.

Les moyens de réception des défis d du dispositif témoin, reçoivent chaque défi d provenant du dispositif démonstrateur, via les moyens d'interconnexion entre le dispositif démonstrateur et le dispositif témoin. Les moyens de calcul des réponses D du dispositif témoin calculent les réponses D à partir des défis d en appliquant le processus spécifié cidessus.

• étape 4 : acte de contrôle

5

10

15

20

25

Les moyens de transmission du démonstrateur transmettent chaque réponse D au dispositif contrôleur qui procède au contrôle.

Signature numérique d'un message et preuve de son authenticité

Opération de signature

Dans une troisième variante de réalisation, susceptible d'être combinée aux autres, le dispositif terminal selon l'invention est destiné à produire la signature numérique d'un message M, ci après désigné le message signé, par une entité appelée entité signataire.

Le message signé comprend :

- le message M,
- les défis d et/ou les engagements R,
- les réponses D.

Ledit dispositif terminal étant tel qu'il comporte un dispositif signataire associé à l'entité signataire. Ledit dispositif signataire est interconnecté au

dispositif témoin par des moyens d'interconnexion. Il peut se présenter notamment sous la forme de microcircuits logiques dans un objet nomade par exemple sous la forme d'un microprocesseur dans une carte bancaire à microprocesseur. Ledit dispositif signataire comporte des moyens de connexion pour le connecter électriquement, électromagnétiquement, optiquement ou de manière acoustique, notamment via un réseau de communication informatique, à un dispositif contrôleur associé à l'entité contrôleur. Ledit dispositif contrôleur se présente notamment sous la forme d'un terminal ou d'un serveur distant.

Ledit dispositif terminal permet d'exécuter les étapes suivantes :

• étape 1 : acte d'engagement R

5

10

15

20

25

A chaque appel, les moyens de calcul des engagements R du dispositif témoin calculent chaque engagement R en appliquant le processus spécifié ci-dessus. Le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif témoin, pour transmettre tout ou partie de chaque engagement R au dispositif signataire, via les moyens d'interconnexion.

• étape 2 : acte de défi d

Le dispositif signataire comporte des moyens de calcul, ci-après désignés les moyens de calcul du dispositif signataire, appliquant une fonction d hachage h ayant comme arguments le message M et tout ou partie de chaque engagement R pour calculer un train binaire et extraire de ce train binaire des défis d en nombre égal au nombre d'engagements R.

• étape 3 : acte de réponse D

Les moyens de réception des défis d reçoivent les défis d provenant du dispositif signataire, via les moyens d'interconnexion. Les moyens de calcul des réponses D du dispositif témoin calculent les réponses D à partir des défis d en appliquant le processus spécifié ci-dessus. Le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens

de transmission du dispositif témoin, pour transmettre les réponses **D** au dispositif signataire, via les moyens d'interconnexion.

Dispositif contrôleur

Méthode des restes chinois appliquée à toute la famille GQ

L'invention concerne aussi un dispositif contrôleur. Le dispositif contrôleur peut se présenter notamment sous la forme d'un terminal ou d'un serveur distant associé à une entité contrôleur. Le dispositif contrôleur est destiné à prouver à un serveur contrôleur :

- l'authenticité d'une entité et/ou
- l'intégrité d'un message M associé à cette entité.

Cette preuve est établie au moyen de tout ou partie des paramètres suivants ou dérivés de ceux-ci:

- m couples de valeurs privées $Q_1, Q_2, \dots Q_m$ et publiques G_1, G_2, \dots G_m (m étant supérieur ou égal à 1),
- un module public n constitué par le produit de f facteurs premiers p_1 , p_2 , ... p_f (f étant supérieur ou égal à 2),
 - un exposant public v.

Ledit module, ledit exposant et lesdites valeurs sont liés par des relations du type:

$G_i \cdot Q_i^{\nu} \equiv 1 \cdot mod \ n \ ou \ G_i \equiv Q_i^{\nu} mod \ n$;

où Q_i désigne une valeur privée, inconnue du dispositif contrôleur, associée à la valeur publique G_i .

Cas de la preuve de l'authenticité d'une entité

Dans une première variante de réalisation, susceptible d'être combinée avec les autres, le dispositif contrôleur selon l'invention est destiné à prouver l'authenticité d'une entité appelée démonstrateur à une entité appelée contrôleur.

Ledit dispositif contrôleur comporte des moyens de connexion pour le connecter électriquement, électromagnétiquement, optiquement ou de

10

5

15

20

25

manière acoustique, notamment via un réseau de communication informatique, à un dispositif démonstrateur associé à l'entité démonstrateur.

Ledit dispositif contrôleur permet d'exécuter les étapes suivantes :

• étape 1 et 2 : acte d'engagement R, acte de défi

Ledit dispositif contrôleur comporte aussi des moyens de réception de tout ou partie des engagements R provenant du dispositif démonstrateur, via les moyens de connexion.

Le dispositif contrôleur comporte des moyens de productions de défis pour produire, après avoir reçu tout ou partie de chaque engagement \mathbf{R} , des défis \mathbf{d} en nombre égal au nombre d'engagements \mathbf{R} , chaque défi \mathbf{d} comportant \mathbf{m} entiers \mathbf{d}_i , ci-après appelés défis élémentaires.

Le dispositif contrôleur comporte aussi des moyens de transmission, ciaprès désignés les moyens de transmission du dispositif contrôleur, pour transmettre les défis d au démonstrateur, via les moyens de connexion.

• étapes 3 et 4 : acte de réponse, acte de contrôle

Le dispositif contrôleur comporte aussi

- des moyens de réception des réponses D provenant du dispositif démonstrateur, via les moyens de connexion,
- des moyens de calcul, ci-après désignés les moyens de calcul du dispositif contrôleur,
- des moyens de comparaison, ci-après désignés les moyens de comparaison du dispositif contrôleur.

Premier cas : le démonstrateur a transmis une partie de chaque engagement R

Dans le cas où les moyens de réception du dispositif contrôleur ont reçus une partie de chaque engagement \mathbf{R} , les moyens de calcul du dispositif contrôleur, disposant des \mathbf{m} valeurs publiques $\mathbf{G_1}$, $\mathbf{G_2}$, ... $\mathbf{G_m}$, calculent à partir de chaque défi \mathbf{d} et de chaque réponse \mathbf{D} un engagement reconstruit

15

10

5

20

25

R' satisfaisant à une relation du type :

$$R' \equiv G_1^{\ d1}$$
 . $G_2^{\ d2}$ $G_m^{\ dm}$. $D^v \ mod \ n$

ou à une relation du type,

5

10

15

20

25

$$R' \equiv D^{v} / G_1^{d1} \cdot G_2^{d2} \cdot ... \cdot G_m^{dm} \cdot mod n$$
.

Les moyens de comparaison du dispositif contrôleur comparent chaque engagement reconstruit R' à tout ou partie de chaque engagement R reçu.

Deuxième cas : le démonstrateur a transmis l'intégralité de chaque engagement R

Dans le cas où les moyens de réception du dispositif contrôleur ont reçus l'intégralité de chaque engagement \mathbf{R} , les moyens de calcul et les moyens de comparaison du dispositif contrôleur, disposant des \mathbf{m} valeurs publiques $\mathbf{G_1}, \mathbf{G_2}, \ldots \mathbf{G_m}$, vérifient que chaque engagement \mathbf{R} satisfait à une relation du type :

$$R \equiv G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot D^v \mod n$$

ou à une relation du type,

$$R \equiv D^v \, / \, G_1^{\ d1}$$
 , $G_2^{\ d2}$, ... $G_m^{\ dm}$, mod n .

Cas de la preuve de l'intégrité d'un message

Dans une deuxième variante de réalisation, susceptible d'être combinée avec les autres, le dispositif contrôleur selon l'invention est destiné à prouver l'intégrité d'un message M associé à une entité appelée démonstrateur.

Ledit dispositif contrôleur comporte des moyens de connexion pour le connecter électriquement, électromagnétiquement, optiquement ou de manière acoustique, notamment via un réseau de communication informatique, à un dispositif démonstrateur associé à l'entité démonstrateur.

Ledit dispositif contrôleur permet d'exécuter les étapes suivantes :

• étapes 1 et 2 : acte d'engagement R, acte de défi

Ledit dispositif contrôleur comporte aussi des moyens de réception de

jetons T provenant du démonstrateur, via les moyens de connexion. Le dispositif contrôleur comporte aussi des moyens de productions de défis pour produire, après avoir reçu le jeton T, défis d en nombre égal au nombre d'engagements R, chaque défi d comportant m entiers, ci-après appelés les défis élémentaires. Le dispositif contrôleur comporte aussi des moyens de transmission, ci-après désignés les moyens de transmission du dispositif contrôleur, pour transmettre les défis d au démonstrateur, via les moyens de connexion.

• étapes 3 et 4 : acte de réponse D, acte de contrôle

Le dispositif contrôleur comporte des moyens de réception des réponses D provenant du dispositif démonstrateur, via les moyens de connexion. Le dispositif contrôleur comporte aussi des moyens de calcul, ci-après désignés les moyens de calcul du dispositif contrôleur, disposant des m valeurs publiques $G_1, G_2, \ldots G_m$, pour d'une part, calculer à partir de chaque défi d et de chaque réponse D un engagement reconstruit R' satisfaisant à une relation du type :

$$R' \equiv G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot D^v \bmod n$$

ou à une relation du type :

5

10

15

20

25

$$R' \equiv D^{v} / G_1^{d1} \cdot G_2^{d2} \cdot ... \cdot G_m^{dm} \cdot mod n$$

puis d'autre part, calculer en appliquant la fonction de hachage h ayant comme arguments le message M et tout ou partie de chaque engagement reconstruit R', un jeton T'.

Le dispositif contrôleur comporte aussi des moyens de comparaison, ciaprès désignés les moyens de comparaison du dispositif contrôleur, pour comparer le jeton T' au jeton T reçu.

Signature numérique d'un message et preuve de son authenticité

Dans une troisième variante de réalisation, susceptible d'être combinée aux autres variantes de réalisation, le dispositif contrôleur selon l'invention est destiné à prouver l'authenticité du message M en contrôlant, par une entité

appelée contrôleur, le message signé.

Le message signé, émis par un dispositif signataire associé à une entité signataire disposant d'une fonction de hachage h (M, R); comprend:

- le message M,

5

10

15

20

25

- les défis d et/ou les engagements R,
- les réponse D.

Ledit dispositif contrôleur comporte des moyens de connexion pour le connecter électriquement, électromagnétiquement, optiquement ou de manière acoustique, notamment via un réseau de communication informatique, à un dispositif signataire associé à l'entité signataire. Ledit dispositif contrôleur reçoit le message signé du dispositif signataire, via les moyens de connexion.

Le dispositif contrôleur comporte :

- des moyens de calcul, ci-après désignés les moyens de calcul du dispositif contrôleur,
- des moyens de comparaison, ci-après désignés les moyens de comparaison du dispositif contrôleur.
- cas où le contrôleur dispose des engagements le des défis d, des réponses D,

Dans le cas où le dispositif contrôleur dispose des engagements **R**, des défis **d**, des réponses **D**, les moyens de calcul et de comparaison du dispositif contrôleur vérifient que les engagements **R**, les défis **d** et les réponses **D** satisfont à des relations du type

$$R \equiv G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot D^v \mod n$$

ou à des relations du type :

$$R \equiv D^{\nu} / G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot mod n$$

Puis, les moyens de calcul et de comparaison du dispositif contrôleur vérifient que le message M, les défis d et les engagements R satisfont à la fonction de hachage

d = h(M, R)

• cas où le contrôleur dispose des défis d et des réponses D

Dans le cas où le dispositif contrôleur dispose des défis d et des réponses D, les moyens de calcul du dispositif contrôleur calculent, à partir de chaque défi d et de chaque réponse D, des engagements R' satisfaisant à des relations du type :

$$\mathbf{R'} \equiv \mathbf{G_1}^{d1} \cdot \mathbf{G_2}^{d2} \cdot \dots \cdot \mathbf{G_m}^{dm} \cdot \mathbf{D^v} \bmod \mathbf{n}$$

ou à des relations du type :

5

10

15

20

25

$$\mathbf{R'} \equiv \mathbf{D^{\text{v}}} / \mathbf{G_1}^{\text{d1}} \cdot \mathbf{G_2}^{\text{d2}} \cdot \dots \cdot \mathbf{G_m}^{\text{dm}} \cdot \text{mod n}$$

Puis, les moyens de calcul et de comparaison du dispositif contrôleur vérifient que le message M et les défis d satisfont à la fonction de hachage

$$d = h(M, R')$$

· cas où le contrôleur dispose des engagements R et des réponses D

Dans le cas où le dispositif contrôleur dispose des engagements R et des réponses D, les moyens de calcul du dispositif contrôleur appliquent la fonction de hachage et calculent d' tel que

$$d' = h(M, R)$$

Puis, les moyens de calcul et de comparaison du dispositif contrôleur vérifient que les engagements R, les défis d' et les réponses D, satisfont à des relations du type :

$$R \equiv G_1^{d'1} \cdot G_2^{d'2} \cdot ... \cdot G_m^{d'm} \cdot D^v \mod n$$

ou à des relations du type:

$$R \equiv D^{v} / G_1^{d'1} \cdot G_2^{d'2} \cdot ... G_m^{d'm} \cdot mod n$$

Description détaillée de la variante de réalisation dans le cas où l'exposant public $v=2^{\ k}$

Description -

5

10

15

20

25

Rappelons l'objectif de la technologie GQ: l'authentification dynamique d'entités et de messages associés, ainsi que la signature numérique de messages.

La version classique de la technologie GQ fait appel à la technologie RSA. Mais, si la technologie RSA dépend bel et bien de la factorisation, cette dépendance n'est pas une équivalence, loin s'en faut, comme le démontrent les attaques dites « multiplicatives » contre diverses normes de signature numérique mettant en œuvre la technologie RSA.

Dans le cadre de la technologie GQ2, la présente partie de l'invention porte plus précisément sur <u>l'utilisation des jeux de clés GQ2</u> dans le cadre de l'authentification dynamique et de la signature numérique. La technologie GQ2 ne fait pas appel à la technologie RSA. L'objectif est double : d'une part, améliorer les performances par rapport à la technologie RSA ; d'autre part, éviter les problèmes inhérents à la technologie RSA. La clé privée GQ2 est la factorisation du module n. Toute attaque au niveau de striplets GQ2 se ramène à la factorisation du module n : il y a cette fois équivalence. Avec la technologie GQ2, la charge de travail est réduite, tant pour l'entité qui signe ou qui s'authentifie que pour celle qui contrôle. Grâce à un meilleur usage du problème de la factorisation, tant en sécurité qu'en performance, la technologie GQ2 concurrence la technologie RSA.

La technologie GQ2 utilise un ou plusieurs petits nombres entiers plus grands que 1, disons m petits nombres entiers $(m \ge 1)$ appelés « nombres de base » et notés par g_i . Les nombres de base étant fixés de g_1 à g_m avec $m \ge 1$, une clé publique de vérification $\langle v, n \rangle$ est choisie de la manière suivante. L'exposant public de vérification v est 2^k où k est un petit nombre entier plus grand que 1 $(k \ge 2)$. Le module public n est le produit d'au moins deux facteurs premiers plus grands que les nombres de base, disons f facteurs premiers $(f \ge 2)$ notés par p_j , de $p_1 \dots p_f$ Les f facteurs premiers sont choisis

de façon à ce que le module public n ait les propriétés suivantes par rapport à chacun des m nombres de base de g_1 à g_m .

- D'une part, les équations (1) et (2) n'ont pas de solution en x dans l'anneau des entiers modulo n, c'est-à-dire que g_i et $-g_i$ sont deux résidus non quadratiques (mod n).

5

10

15

20

25

$$x^2 \equiv g_i \pmod{n} \tag{1}$$

$$x^2 \equiv -g_i \pmod{n} \tag{2}$$

D'autre part, l'équation (3) a des solutions en x dans l'anneau des entiers modulo n.

$$x^{2^k} \equiv g_i^2 \pmod{n} \tag{3}$$

La clé publique de vérification $\langle v, n \rangle$ étant fixée selon les nombres de base de g_1 à g_m avec $m \geq 1$, chaque nombre de base g_i détermine un couple de valeurs GQ2 comprenant une valeur publique G_i et une valeur privée Q_i : soit m couples notés de G_1 Q_1 à G_m Q_m . La valeur publique G_i est le carré du nombre de base g_i : soit $G_i = g_i^2$. La valeur privée Q_i est une des solutions à l'équation (3) ou bien l'inverse (mod n) d'une telle solution.

De même que le module n se décompose en f facteurs premiers, l'anneau des entiers modulo n se décompose en f corps de Galois, de $CG(p_j)$ à $CG(p_j)$. Voici les projections des équations (1), (2) et (3) dans $CG(p_j)$.

$$x^2 \equiv g_i \pmod{p_j} \tag{1.a}$$

$$x^2 \equiv -g_i \pmod{p_j} \tag{2.a}$$

$$x^{2^k} \equiv g_i^2 \pmod{p_j} \tag{3.a}$$

Chaque valeur privée Q_i peut se représenter de manière unique par f composantes privées, une par facteur premier : $Q_{i,j} \equiv Q_i \pmod{p_j}$. Chaque composante privée $Q_{i,j}$ est une solution à l'équation (3.a) ou bien l'inverse (mod p_j) d'une telle solution. Après que toutes les solutions possibles à chaque équation (3.a) aient été calculées, la technique des restes chinois permet d'établir toutes les valeurs possibles pour chaque valeur privée Q_i à partir de f composantes de $Q_{i,1}$ à $Q_{i,j}$: Q_i = Restes Chinois ($Q_{i,1}$, $Q_{i,2}$, ... $Q_{i,j}$)

de manière à obtenir toutes les solutions possibles à l'équation (3).

10

15

20

25

Voici la technique des restes chinois : soient deux nombres entiers positifs premiers entre eux a et b tels que 0 < a < b, et deux composantes X_a de 0 à a-1 et X_b de 0 à b-1; il s'agit de déterminer X= Restes Chinois (X_a, X_b) , c'est-à-dire, le nombre unique X de 0 à a.b-1 tel que $X_a \equiv X \pmod{a}$ et $X_b \equiv X \pmod{b}$. Voici le paramètre des restes chinois : $\alpha \equiv \{b \pmod{a}\}^{-1} \pmod{a}$. Voici l'opération des restes chinois : $\epsilon \equiv X_b \pmod{a}$; $\delta = X_a - \epsilon$; si δ est négatif, remplacer δ par $\delta + a$; $\gamma \equiv \alpha$. $\delta \pmod{a}$; $X = \gamma \cdot b + X_b$.

Lorsque les facteurs premiers sont rangés dans l'ordre croissant, du plus petit p_1 au plus grand p_p , les paramètres des restes chinois peuvent être les suivants (il y en a f-1, c'est-à-dire, un de moins que de facteurs premiers). Le premier paramètre des restes chinois est $\alpha \equiv \{p_2 \pmod{p_1}\}^{-1} \pmod{p_1}$. Le second paramètre des restes chinois est $\beta \equiv \{p_1, p_2 \pmod{p_1}\}^{-1} \pmod{p_1}$. Le i ième paramètre des restes chinois est $\lambda \equiv \{p_1, p_2 \pmod{p_3}\}^{-1} \pmod{p_3}$. Le i ième paramètre des restes chinois est $\lambda \equiv \{p_1, p_2, \dots, p_{i-1} \pmod{p_i}\}^{-1} \pmod{p_i}$. Et ainsi de suite. Ensuite, en f-1 opérations des restes chinois, on établit un premier résultat $\pmod{p_2}$ fois p_1) avec le premier paramètre, puis, un second résultat $\pmod{p_1,p_2}$ fois p_2 , avec le second paramètre, et ainsi de suite, jusqu'à un résultat $\pmod{p_1,p_2}$ fois p_2 , c'est-à-dire, $\pmod{p_2}$

Il y a plusieurs représentations possibles de la clé privée GQ2, ce qui traduit le polymorphisme de la clé privée GQ2. Les diverses représentations s'avèrent équivalentes: elles se ramènent toutes à la connaissance de la factorisation du module n qui est la véritable clé privée GQ2. Si la représentation affecte bien le comportement de l'entité qui signe ou qui s'authentifie, elle n'affecte pas le comportement de l'entité qui contrôle.

Voici les trois principales représentations possibles de la clé privée GQ2.

1) <u>La représentation classique en technologie GQ</u> consiste à stocker m valeurs privées Q_i et la clé publique de vérification $\langle v, n \rangle$; en technologie GQ2, cette représentation est concurrencée par les deux suivantes. 2) <u>La représentation optimale en termes de charges de travail</u> consiste à stocker

l'exposant public v, les f facteurs premiers p_j , m.f composantes privées Q_{ij} et f-1 paramètres des restes chinois. 3) <u>La représentation optimale en termes</u> de taille de clé privée consiste à stocker l'exposant public v, les m nombres de base g_i et les f facteurs premiers p_j , puis, à commencer chaque utilisation en établissant ou bien m valeurs privées Q_i et le module n pour se ramener à la première représentation, ou bien m.f composantes privées Q_{ij} et f-1 paramètres des restes chinois pour se ramener à la seconde.

5

10

15

20

25

Les entités qui signent ou s'authentifient peuvent toutes utiliser les mêmes nombres de base; sauf contre indication, les m nombres de base de g_1 à g_m peuvent alors avantageusement être les m premiers nombres premiers.

Parce que la sécurité du mécanisme d'authentification dynamique ou de signature numérique équivaut à la connaissance d'une décomposition du module, la technologie GQ2 ne permet pas de distinguer simplement deux entités utilisant le même module. Généralement, chaque entité qui s'authentifie ou signe dispose de son propre module GQ2. Toutefois, on peut spécifier des modules GQ2 à quatre facteurs premiers dont deux sont connus d'une entité et les deux autres d'une autre.

Voici un premier jeu de clés GQ2 avec k = 6, soit v = 64, m = 3, soit trois nombres de base: $g_1 = 3$, $g_2 = 5$ et $g_3 = 7$, et f = 3, soit un module à trois facteurs premiers: deux congrus à 3 (mod 4) et un à 5 (mod 8). Notons que g = 2 est incompatible avec un facteur premier congru à 5 (mod 8).

 $p_1 = 03\text{CD}2\text{F}4\text{F}21\text{E}0\text{E}\text{A}\text{D}60266\text{D}5\text{CFCEBB}6954683493\text{E}2\text{E}833$

 $p_2 = 0583B097E8D8D777BAB3874F2E76659BB614F985EC1B$

 $p_3 = 0\text{C}363\text{C}D93\text{D}6B3\text{FE}C78\text{EE}13D7BE9D84354B8FDD6DA1FD}$

 $n = p_1 \cdot p_2 \cdot p_3 = FFFF81CEA149DCF2F72EB449C5724742FE2A3630D9$ 02CC00EAFEE1B957F3BDC49BE9CBD4D94467B72AF28CFBB26144 CDF4BBDBA3C97578E29CC9BBEE8FB6DDDD

 $Q_{1,1} = 0279C60D216696CD6F7526E23512DAE090CFF879FDDE$

 $Q_{2,1} = 7\text{C}977\text{FC}38\text{F}8413\text{A}284\text{E}9\text{CE}4\text{E}D\text{E}\text{F}4\text{A}\text{E}\text{F}35\text{B}\text{F}7793\text{B}89$

$Q_{3,1} = 6$ FB3B9C05A03D7CADA9A3425571EF5ECC54D7A7B6F
$Q_{1,2} = 0388EC6AA1E87613D832E2B80E5AE8C1DF2E74BFF502$
$Q_{2,2} = 04792CE70284D16E9A158C688A7B3FEAF9C40056469E$
$Q_{3,2}$ = FDC4A8E53E185A4BA793E93BEE5C636DA731BDCA4E
$Q_{13} = 07BC1AB048A2EAFDAB59BD40CCF2F657AD8A6B573BDE$
$Q_{23} = 0$ AE8551E116A3AC089566DFDB3AE003CF174FC4E4877
$Q_{13} = 01682D490041913A4EA5B80D16B685E4A6DD88070501$
$Q_1 = D7E1CAF28192CED6549FF457708D50A7481572DD5F2C335D8$
C69E22521B510B64454FB7A19AEC8D06985558E764C6991B05FC2A
C74D9743435AB4D7CF0FF6557
Q_2 = CB1ED6B1DD649B89B9638DC33876C98AC7AF689E9D1359E4
DB17563B9B3DC582D5271949F3DBA5A70C108F561A274405A5CB8
82288273ADE67353A5BC316C093
$Q_3 = 09AA6F4930E51A70CCDFA77442B10770DD1CD77490E3398A$
AD9DC50249C34312915E55917A1ED4D83AA3D607E3EB5C8B197
697238537FE7A0195C5E8373EB74D
Voici un second jeu de clés GQ2, avec $k = 9$, soit $v = 512$, $m = 2$, soit deux
nombres de base : $g_1 = 2$ et $g_2 = 3$, et $f = 3$, soit un module à trois facteurs
premiers congrus à 3 (mod 4).
$p_1 = 03852103E40CD4F06FA7BAA9CC8D5BCE96E3984570CB$
$p_2 = 062AC9EC42AA3E688DC2BC871C8315CB939089B61DD7$
$p_3 = 0$ BCADEC219F1DFBB8AB5FE808A0FFCB53458284ED8E3
$n = p_1 \cdot p_2 \cdot p_3 = FFFF5401ECD9E537F167A80C0A9111986F7A8EBA4D$
6698AD68FF670DE5D9D77DFF00716DC7539F7CBBCF969E73A0C49
761B276A8E6B6977A21D51669D039F1D7
$Q_{1,1} = 0260BC7243C22450D566B5C6EF74AA29F2B927AF68E1$
$Q_{21} = 0326C12FC7991ECDC9BB8D7C1C4501BE1BAE9485300E$
$Q_{12} = 02D0B4CC95A2DD435D0E22BFBB29C59418306F6CD00A$
$Q_{cs} = 045$ ECB881387582E7C556887784D2671CA118E22FCF2

 $Q_{13} = B0C2B1F808D24F6376E3A534EB555EF54E6AEF5982$

 $Q_{2,3} = 0$ AB9F81DF462F58A52D937E6D81F48FFA4A87A9935AB

 $Q_1 = 27F7B9FC82C19ACAE47F3FE9560C3536A7E90F8C3C51E13C$

35F32FD8C6823DF753685DD63555D2146FCDB9B28DA367327DD6

EDDA092D0CF108D0AB708405DA46

 $Q_2 = 230\text{D}0\text{B}9595\text{E}5\text{A}D388\text{F}1\text{F}447\text{A}69918905\text{E}B\text{F}B05910582\text{E}5\text{B}A64$ 9C94B0B2661E49DF3C9B42FEF1F37A7909B1C2DD54113ACF87C6 F11F19874DE7DC5D1DF2A9252D

Authentification dynamique

5

10

15

20

25

Le mécanisme d'authentification dynamique est destiné à prouver à une entité appelée contrôleur l'authenticité d'une autre entité appelée démonstrateur ainsi que l'authenticité d'un éventuel message associé M, de sorte que le contrôleur s'assure qu'il s'agit bien du démonstrateur et éventuellement que lui et le démonstrateur parlent bien du même message M. Le message associé M est optionnel, ce qui signifie qu'il peut être vide. Le mécanisme d'authentification dynamique est une séquence de quatre actes : un acte d'engagement, un acte de défi, un acte de réponse et un acte de contrôle. Le démonstrateur joue les actes d'engagement et de réponse. Le contrôleur joue les actes de défi et de contrôle.

Au sein du démonstrateur, on peut isoler un témoin, de manière à isoler les paramètres et les fonctions les plus sensibles du démonstrateur, c'est-àdire, la production des engagements et des réponses. Le témoin dispose du paramètre k et de la clé privée GQ2, c'est-à-dire, de la factorisation du module n selon l'une des trois représentations évoquées ci-dessus : • les ffacteurs premiers et les m nombres de base, • les m.f composantes privées, les f facteurs premiers et f-1 paramètres des restes chinois, • les m valeurs privées et le module n.

Le témoin peut correspondre à une réalisation particulière, par exemple, • une carte à puce reliée à un PC formant ensemble le démonstrateur, ou encore, • des programmes particulièrement protégés au sein d'un PC, ou encore, • des programmes particulièrement protégés au sein d'une carte à puce. Le témoin ainsi isolé est semblable au témoin défini ci-après au sein du signataire. A chaque exécution du mécanisme, le témoin produit un ou plusieurs engagements R, puis, autant de réponses D à autant de défis d. Chaque ensemble $\{R, d, D\}$ constitue un **triplet GQ2**.

Outre qu'il comprend le témoin, le démonstrateur dispose également, le cas échéant, d'une fonction de hachage et d'un message M.

Le contrôleur dispose du module n et des paramètres k et m; le cas échéant, il dispose également de la même fonction de hachage et d'un message M'. Le contrôleur est apte à reconstituer un engagement R' à partir de n'importe quel défi d et de n'importe quelle réponse D. Les paramètres k et mrenseignent le contrôleur. Faute d'indication contraire, les m nombres de base de g_1 à g_m sont les m premiers nombres premiers. Chaque défi d doit comporter m défis élémentaires notés de d_1 à d_m : un par nombre de base. Chaque défi élémentaire de d_1 à d_m doit prendre une valeur de 0 à $2^{k-1}-1$ (les valeurs de v/2 à v-1 ne sont pas utilisées). Typiquement, chaque défi est codé par m fois k—its (et non pas m fois k bits). Par exemple, avec k = 6et m = 3 et les nombres de base 3, 5 et 7, chaque défi comporte 15 bits transmis sur deux octets; avec k = 9, m = 2 et les nombres de base 2 et 3, chaque défi comporte 16 bits transmis sur deux octets. Lorsque les (k-1).m défis possibles sont également probables, la valeur (k-1).m détermine la sécurité apportée par chaque triplet GQ2 : un imposteur qui, par définition, ne connaît pas la factorisation du module n a exactement une chance de succès sur $2^{(k-1).m}$. Lorsque (k-1).m vaut de 15 à 20, un triplet suffit à assurer raisonnablement l'authentification dynamique. Pour atteindre n'importe quel niveau de sécurité, on peut produire des triplets en parallèle; on peut également en produire en séquence, c'est-à-dire, répéter l'exécution du mécanisme.

25

20

5

10

1) L'acte d'engagement comprend les opérations suivantes.

Lorsque le témoin dispose des m valeurs privées de Q_1 à Q_m et du module n, il tire au hasard et en privé un ou plusieurs aléas r (0 < r < n); puis, par kélévations successives au carré (mod n), il transforme chaque aléa r en un engagement R.

$$R \equiv r^{\nu} \pmod{n}$$

Voici un exemple avec le premier jeu de clés avec k = 6.

5

10

15

20

25

r = B8AD426C1AC0165E94B894AC2437C1B1797EF562CFA53A4AF843131FF1C89CFDA131207194710EF9C010E8F09C60D9815121981260 919967C3E2FB4B4566088E

R = FFDD736B666F41FB771776D9D50DB7CDF03F3D976471B25C56D3AF07BE692CB1FE4EE70FA77032BECD8411B813B4C21210C6B04 49CC4292E5DD2BDB00828AF18

Lorsque le témoin dispose des f facteurs premiers de p_1 à p_f et des m.fcomposantes privées Q_{ij} , il tire au hasard et en privé une ou plusieurs collections de f aléas : chaque collection comporte un aléa r_i par facteur premier p_i (0 < r_i < p_i); puis, par k élévations successives au carré (mod p_i), il transforme chaque aléa r_i en une composante d'engagement R_i .

$$R_i \equiv r_i^{\nu} \pmod{p_i}$$

Voici un exemple avec le second jeu de clés avec k = 9.

 $r_1 = B0418EABEBADF0553A28903F74472CD49EE8C82D86$

 $R_1 = 022B365F0BEA8E157E94A9DEB0512827FFD5149880F1$

 $r_2 = 75A8DA8FE0E60BD55D28A218E31347732339F1D667$

 $R_2 = 057E43A242C485FC20DEEF291C774CF1B30F0163DEC2$

 $r_3 = 0$ D74D2BDA5302CF8BE2F6D406249D148C6960A7D27

 $R_3 = 06E14C8FC4DD312BA3B475F1F40CF01ACE2A88D5BB3C$

Pour chaque collection de f composantes d'engagement, le témoin établit un engagement selon la technique des restes chinois. Il y a autant d'engagements que de collections d'aléas.

 $R = \text{Restes Chinois}(R_1, R_2, \dots R_p)$

R = 28AA7F12259BFBA81368EB49C93EEAB3F3EC6BF73B0EBD7 D3FC8395CFA1AD7FC0F9DAC169A4F6F1C46FB4C3458D1E37C9 9123B56446F6C928736B17B4BA4A529

Dans les deux cas, le démonstrateur transmet au contrôleur tout ou partie de chaque engagement R, ou bien, un code de hachage H obtenu en hachant chaque engagement R et un message M.

2) L'acte de défi consiste à tirer au hasard un ou plusieurs défis d composés chacun de m défis élémentaires d_1 d_2 ... d_m ; chaque défi élémentaire d_i prend l'une des valeurs de 0 à v/2-1.

$$d = d_1 d_2 \dots d_m$$

Voici un exemple pour le premier jeu de clés avec k = 6 et m = 3.

$$d_1 = 10110 = 22 = '16'; d_2 = 00111 = 7; d_3 = 00010 = 2,$$

 $d = 0 \mid \mid d_1 \mid \mid d_2 \mid \mid d_3 = 0101100011100010 = 58 E2$

Voici un exemple pour le second jeu de clés avec k = 9 et m = 2.

$$d = d_1 \mid d_2 = 58 \text{ E2} = \text{soit en décimal}, 88 \text{ et } 226$$

Le contrôleur transmet au démonstrateur chaque défi d.

10

15

20

25

3) L'acte de réponse comporte les opérations suivantes.

Lorsque le témoin dispose des m valeurs privées de Q_1 à Q_m et du module n, il calcule une ou plusieurs réponses D en utilisant chaque aléa r de l'acte d'engagement et les valeurs privées selon les défis élémentaires.

$$X \equiv Q_1^{d_1}.Q_2^{d_2}...Q_m^{d_m} \pmod{n}$$
$$D \equiv r.X \pmod{n}$$

Voici un exemple pour le premier jeu de clés.

D = FF257422ECD3C7A03706B9A7B28EE3FC3A4E974AEDCDF386 5EEF38760B859FDB5333E904BBDD37B097A989F69085FE8EF6480 A2C6A290273479FEC9171990A17

Lorsque le témoin dispose des f facteurs premiers de p_1 à p_f et des m.f composantes privées $Q_{i,j}$, il calcule une ou plusieurs collections de f

composantes de réponse en utilisant chaque collection d'aléas de l'acte d'engagement : chaque collection de composantes de réponse comporte une composante par facteur premier.

ar premier.

$$X_i \equiv Q_{1,i}^{d_1} . Q_{2,i}^{d_2} ... Q_{m,i}^{d_m} \pmod{p_i}$$

$$D_i \equiv r_i . X_i \pmod{p_i}$$

Voici un exemple pour le second jeu de clés.

Voici un exemper :
$$D_1 = r_1 \cdot Q_{1,1}^{d_1} \cdot Q_{2,1}^{d_2} \pmod{p_1} = 0$$

5

10

15

20

25

02660ADF3C73B6DC15E196152322DDE8EB5B35775E38

$$D_2 = r_2 \cdot Q_{12}^{\text{dl}} \cdot Q_{22}^{\text{dl}} \pmod{p_2} =$$

04C15028E5FD1175724376C11BE77052205F7C62AE3B

$$D_3 = r_3 \cdot Q_{1,3}^{d1} \cdot Q_{2,3}^{d2} \pmod{p_3} = 0$$

0903D20D0C306C8EDA9D8FB5B3BEB55E061AB39CCF52

Pour chaque collection de composantes de réponse, le témoin établit une réponse selon la technique des restes chinois. Il y a autant de réponses que de défis.

$$D = \text{Restes Chinois}(D_1, D_2, \dots D_p)$$

D = 85C3B00296426E97897F73C7DC6341FB8FFE6E879AE12EF1F364CBB55BC44DEC437208CF530F8402BD9C511F5FB3B3A309257A00 195A7305C6FF3323F72DC1AB

Dans les deux cas, le démonstrateur transmet chaque réponse D au

4) L'acte de contrôle consiste à contrôler que chaque triplet {R, d, D} contrôleur. vérifie une équation du type suivant pour une valeur non nulle,

ifie une équation du type suivant pour une variet
$$R = D^{2^k} \cdot \prod_{i=1}^m G_i^{d_i} \pmod{n}$$
 ou bien $R \equiv D^{2^k} \cdot \prod_{i=1}^m G_i^{d_i} \pmod{n}$

ou bien, à rétablir chaque engagement : aucun ne doit être nul.

bien, à rétablir chaque engagement : aucun me solution
$$R' \equiv D^{2^k} / \prod_{i=1}^m G_i^{d_i} \pmod{n}$$
 ou bien $R' \equiv D^{2^k} . \prod_{i=1}^m G_i^{d_i} \pmod{n}$

Eventuellement, le contrôleur calcule ensuite un code de hachage H' en

hachant chaque engagement rétabli R' et un message M'. L'authentification dynamique est réussie lorsque le contrôleur retrouve ainsi ce qu'il a reçu à l'issue de l'acte d'engagement, c'est-à-dire, tout ou partie de chaque engagement R, ou bien, le code de hachage H.

Par exemple, une séquence d'opérations élémentaires transforme la réponse D en un engagement R'. La séquence comprend k carrés (mod n) séparés par k-1 divisions ou multiplications (mod n) par des nombres de base. Pour la i ième division ou multiplication, qui s'effectue entre le i ième carré et le i+1 ième carré, le i ième bit du défi élémentaire d_1 indique s'il faut utiliser g_1 , le i ième bit du défi élémentaire d_2 indique s'il faut utiliser g_2 , ... jusqu'au i ième bit du défi élémentaire d_m qui indique s'il faut utiliser g_m . Voici un exemple pour le premier jeu de clés.

 $D^2 \pmod{n}$ = FD12E8E1F1370AEC9C7BA2E05C80AD2B692D341D46F3 2B93948715491F0EB091B7606CA1E744E0688367D7BB998F7B73D5F7 FDA95D5BD6347DC8B978CA217733

- $3 \cdot D^2 \pmod{n} = F739B708911166DFE715800D8A9D78FC3F332FF622D$ 3EAB8E7977C68AD44962BEE4DAE3C0345D1CB34526D3B67EBE8BF 98704 664852890D83FC6B48D3EF6A9DF
- 3². D⁴ (mod n) = 682A7AF280C49FE230BEE354BF6FFB30B7519E3C8 92DD07E5A781225BBD33920E5ADABBCD7284966D71141EAA17AF 8826635790743EA7D9A15A33ACC7491D4A7
- 3⁴ . D⁸ (mod n) = BE9D828989A2C184E34BA8FE0F384811642B7B548F 870699E7869F8ED851FC3DB3830B2400C516511A0C28AFDD210EC3 939E69D413F0BABC6DEC441974B1A291
- $3^5 \cdot 5 \cdot D^8 \pmod{n} = 2B40122E225CD858B26D27B768632923F2BBE5$ DB15CA9EFA77EFA667E554A02AD1A1E4F6B59BD9E1AE4A537D 4AC1E89C2235C363830EBF4DB42CEA3DA98CFE00
- $3^{10} \cdot 5^2 \cdot D^{16} \pmod{n} = \text{BDD3B34C90ABBC870C604E27E7F2E9DB2D383}$ 68EA46C931C66F6C7509B118E3C162811A98169C30D4DEF768397DD

10

5

15

20

B8F6526B6714218DEB627E11FACA4B9DB268

5

10

20

- $3^{11} \cdot 5^3 \cdot 7 \cdot D^{16} \pmod{n} = DBFA7F40D338DE4FBA73D42DBF427BBF195$ C13D02AB0FA5F8C8DDB5025E34282311CEF80BACDCE5D0C433444 A2AF2B15318C36FE2AE02F3C8CB25637C9AD712F
- $3^{22} \cdot 5^6 \cdot 7^2 \cdot D^{32} \pmod{n} = C60CA9C4A11F8AA89D9242CE717E3DC6C1$ A95D5D09A2278F8FEE1DFD94EE84D09D000EA8633B53C4A0E7F0A EECB70509667A3CB052029C94EDF27611FAE286A7
- $3^{22} \cdot 5^7 \cdot 7^2 \cdot D^{32} \pmod{n} = DE40CB6B41C01E722E4F312AE7205F18CDD$ 0303EA52261CB0EA9F0C7E0CD5EC53D42E5CB645B6BB1A3B00C77 886F4AC5222F9C863DACA440CF5F1A8E374807AC
- $3^{44} \cdot 5^{14} \cdot 7^4 \cdot D^{64} \pmod{n}$, c'est-à-dire, $3^{2c} \cdot 5^E \cdot 7^4 \cdot D^{40} \pmod{n}$ avec les exposants en hexa = FFDD736B666F41FB771776D9D50DB7CDF03F3D9 76471B25C56D3AF07BE692CB1FE4EE70FA77032BECD8411B813B4C 21210C6B0449CC4292E5DD2BDB00828AF18
- On retrouve bien l'engagement R. L'authentification est réussie. Voici un exemple pour le second jeu de clés. $D^2 \pmod{n} = C66E585D8F132F7067617BC6D00BA699ABD74FB9D13E$ 15
 - 24E6A6692CC8D2FC7B57352D66D34F5273C13F20E3FAA228D70AEC 693F8395ACEF9206B172A8A2C2CCBB
 - $3 \cdot D^2 \pmod{n} = 534C6114D385C3E15355233C5B00D09C2490D1B8D8E$ D3D59213CB83EAD41C309A187519E5F501C4A45C37EB2FF38FBF20 1D6D138F3999FC1D06A2B2647D48283
 - $3^2 \cdot D^4 \pmod{n} = A9DC8DEA867697E76B4C18527DFFC49F4658473D03$ 4EC1DDE0EB21F6F65978BE477C4231AC9B1EBD93D5D49422408E47 15919023B16BC3C6C46A92BBD326AADF
 - $2.3^3.D^4 \pmod{n} = FB2D57796039DFC4AF9199CAD44B66F257A1FF$ 3F2BA4C12B0A8496A0148B4DFBAFE838E0B5A7D9FB4394379D72A 107E45C51FCDB7462D03A35002D29823A2BB5
 - $2^2 \cdot 3^6 \cdot D^8 \pmod{n} = 4C210F96FF6C77541910623B1E49533206DFB9E91$

6521F305F12C5DB054D4E1BF3A37FA293854DF02B49283B6DE5E5D 82ACB23DAF1A0D5A721A1890D03A00BD8 $2^2 \cdot 3^7 \cdot D^8 \pmod{n} = E4632EC4FE4565FC4B3126B15ADBF996149F2D$ BB42F65D911D3851910FE7EA53DAEA7EE7BA8FE9D081DB78B249 B1B18880616B90D4E280F564E49B270AE02388 $2^4 \cdot 3^{14} \cdot D^{16} \pmod{n} = ED3DDC716AE3D1EA74C5AF935DE814BCC$ 2C78B12A6BB29FA542F9981C5D954F53D153B9F0198BA82690EF 665C17C399607DEA54E218C2C01A890D422EDA16FA3 $2^5 \cdot 3^{14} \cdot D^{16} \pmod{n} = DA7C64E0E8EDBE9CF823B71AB13F17E1161487$ 6B000FBB473F5FCBF5A5D8D26C7B2A05D03BDDD588164E562D0F5 7AE94AE0AD3F35C61C0892F4C91DC0B08ED6F $2^{10} \cdot 3^{28} \cdot D^{32} \pmod{n} = 6ED6AFC5A87D2DD117B0D89072C99FB9DC9$ 5D558F65B6A1967E6207D4ADBBA32001D3828A35069B256A07C3D 722F17DA30088E6E739FBC419FD7282D16CD6542 $2^{11} \cdot 3^{28} \cdot D^{32} \pmod{n} = DDAD5F8B50FA5BA22F61B120E5933F73B92$ BAAB1ECB6D432CFCC40FA95B77464003A705146A0D364AD40F8 7AE45E2FB460111CDCE73F78833FAE505A2D9ACA84 $2^{22} \cdot 3^{56} \cdot D^{64} \pmod{n} = A466D0CB17614EFD961000BD9EABF4F021$ 36F8307101882BC1764DBAACB715EFBF5D8309AE001EB5DEDA 8F000E44B3D4578E5CA55797FD4BD1F8E919BE787BD0 $2^{44} \cdot 3^{112} \cdot D^{128} \pmod{n} = 925B0EDF5047EFEC5AFABDC03A830919761$ B8FBDD2BF934E2A8A31E29B976274D513007EF1269E4638B4F65F 8FDEC740778BDC178AD7AF2968689B930D5A2359 $2^{44} \cdot 3^{113} \cdot D^{128} \pmod{n} = B711D89C03FDEA8D1F889134A4F809B3F2D$ 8207F2AD8213D169F2E99ECEC4FE08038900F0C203B55EE4F4C803 BFB912A04F11D9DB9D076021764BC4F57D47834 $2^{88} \cdot 3^{226} \cdot D^{256} \pmod{n} = 41A83F119FFE4A2F4AC7E5597A5D0BEB4D4C$ 08D19E597FD034FE720235894363A19D6BC5AF323D24B1B7FCFD8D FCC628021B4648D7EF757A3E461EF0CFF0EA13

10

15

20

 $2^{176} \cdot 3^{452} \cdot D^{512} \pmod{n}$, soit $4^{88} \cdot 9^{226} \cdot D^{512} \pmod{n} = 28AA7F12259BFBA8$ 1368EB49C93EEAB3F3EC6BF73B0EBD7D3FC8395CFA1AD7FC0F9D AC169A4F6F1C46FB4C3458D1E37C99123B56446F6C928736B17B4BA

On retrouve bien l'engagement R. L'authentification est réussie. 4A529

5

10

15

20

25

Le mécanisme de signature numérique permet à une entité appelée signataire de produire des messages signés et à une entité appelée ${\bf contrôleur}$ de vérifier des messages signés. Le message M est une séquence binaire quelconque: il peut être vide. Le message M est signé en lui adjoignant un appendice de signature qui comprend un ou plusieurs engagements et / ou défis, ainsi que les réponses correspondantes.

Le contrôleur dispose de la même fonction de hachage, des paramètres k et m et du module n. Les paramètres k et m renseignent le contrôleur. D'une part, chaque défi élémentaire, de d_1 à d_m , doit prendre une valeur de 0 à 2^{k-1} 1 (les valeurs de v/2 à v-1 ne sont pas utilisées). D'autre part, chaque défi ddoit comporter m défis élémentaires notés de d_1 à d_m , autant que de nombres de base. En outre, faute d'indication contraire, les m nombres de base, de g_1 a g_m , sont les m premiers nombres premiers. Avec (k-1).m valant de 15 à 20, on peut signer avec quatre triplets GQ2 produits en parallèle; avec (k-1).m valant 60 ou plus, on peut signer avec un seul triplet GQ2. Par exemple, avec k = 9 et m = 8, un seul triplet GQ2 suffit; chaque défi comporte huit octets et les nombres de base sont 2, 3, 5, 7, 11, 13, 17 et 19.

L'opération de signature est une séquence de trois actes : un acte d'engagement, un acte de défi et un acte de réponse. Chaque acte produit un ou plusieurs triplets GQ2 comprenant chacun : un engagement $R \neq 0$, un défi d composé de m défis élémentaires notés par $d_1, d_2, \ldots d_m$ et une réponse $D \neq 0$.

Le signataire dispose d'une fonction de hachage, du paramètre k et de la clé

privée GQ2, c'est-à-dire, de la factorisation du module n selon l'une des trois représentations évoquées ci-dessus. Au sein du signataire, on peut isoler un témoin qui exécute les actes d'engagement et de réponse, de manière à isoler les fonctions et les paramètres les plus sensibles du démonstrateur. Pour calculer engagements et réponses, le témoin dispose du paramètre k et de la clé privée GQ2, c'est-à-dire, de la factorisation du module n selon l'une des trois représentations évoquées ci-dessus. Le témoin ainsi isolé est semblable au témoin défini au sein du démonstrateur. Il peut correspondre à une réalisation particulière, par exemple, • une carte à puce reliée à un PC formant ensemble le signataire, ou encore, • des programmes particulièrement protégés au sein d'une carte à puce.

1) L'acte d'engagement comprend les opérations suivantes.

5

10

15

20

25

Lorsque le témoin dispose des m valeurs privées de Q_1 à Q_m et du module n, il tire au hasard et en privé un ou plusieurs aléas r (0 < r < n); puis, par k élévations successives au carré (mod n), il transforme chaque aléa r en un engagement R.

$$R \equiv r^{\mathbf{v}} \pmod{n}$$

Lorsque le témoin dispose des f facteurs premiers de p_i à p_f et des m.f composantes privées $Q_{i,j}$, il tire au hasard et en privé une ou plusieurs collections de f aléas: chaque collection comporte un aléa r_i par facteur premier p_i ($0 < r_i < p_i$); puis, par k élévations successives au carré (mod p_i), il transforme chaque aléa r_i en une composante d'engagement R_i .

$$R_i \equiv r_i^{\nu} \pmod{p_i}$$

Pour chaque collection de f composantes d'engagement, le témoin établit un engagement selon la technique des restes chinois. Il y a autant d'engagements que de collections d'aléas.

$$R = \text{Restes Chinois}(R_1, R_2, \dots R_p)$$

2) L'acte de défi consiste à hacher tous les engagements R et le message à

signer M pour obtenir un code de hachage à partir duquel le signataire forme un ou plusieurs défis comprenant chacun m défis élémentaires; chaque défi élémentaire prend une valeur de 0 à $\nu/2-1$; par exemple, avec k = 9 et m = 8, chaque défi comporte huit octets. Il y a autant de défis que d'engagements.

$$d = d_1 d_2 \dots d_m$$
, extraits du résultat Hash (M, R)

3) L'acte de réponse comporte les opérations suivantes.

5

10

15

20

25

Lorsque la témoin dispose des m valeurs privées de Q_1 à Q_m et du module n, il calcule une ou plusieurs réponses D en utilisant chaque aléa r de l'acte d'engagement et les valeurs privées selon les défis élémentaires.

where
$$X \equiv Q_1^{d_1} \cdot Q_2^{d_2} \cdot ... Q_m^{d_m} \pmod{n}$$

$$D \equiv r \cdot X \pmod{n}$$

Lorsque le témoin dispose des f facteurs premiers de p_1 à p_f et des m.fcomposantes privées Q_{ij} , il calcule une ou plusieurs collections de fcomposantes de réponse en utilisant chaque collection d'aléas de l'acte d'engagement : chaque collection de composantes de réponse comporte une composante par facteur premier.

The prender:

$$X_i \equiv Q_{1,i}^{d_1}.Q_{2,i}^{d_2}...Q_{m,i}^{d_m} \pmod{p_i}$$

$$D_i \equiv r_i.X_i \pmod{p_i}$$

Pour chaque collection de composantes de réponse, le témoin établit une réponse selon la technique des restes chinois. Il y a autant de réponses que de défis.

$$D = \text{Restes Chinois}(D_1, D_2, \dots D_p)$$

Le signataire signe le message M en lui adjoignant un appendice de signature comprenant:

- ou bien, chaque triplet GQ2, c'est-à-dire, chaque engagement R, chaque défi d et chaque réponse D,
- ou bien, chaque engagement R et chaque réponse D correspondante,
- ou bien, chaque défi d et chaque réponse D correspondante.

Le déroulement de l'opération de vérification dépend du contenu de l'appendice de signature. On distingue les trois cas.

Au cas où l'appendice comprend un ou plusieurs triplets, l'opération de contrôle comporte deux processus indépendants dont la chronologie est indifférente. Le contrôleur accepte le message signé si et seulement si les deux conditions suivantes sont remplies.

5

10

15

20

25

D'une part, chaque triplet doit être cohérent (une relation appropriée du type suivant doit être vérifiée) et recevable (la comparaison doit se faire sur une valeur non nulle).

$$R.\prod_{i=1}^{m}G_{i}^{d_{i}}\equiv D^{2^{k}}\pmod{n}\quad\text{ou bien}\quad R\equiv D^{2^{k}}.\prod_{i=1}^{m}G_{i}^{d_{i}}\pmod{n}$$

Par exemple, on transforme la réponse D par une séquence d'opérations élémentaires : k carrés (mod n) séparés par k-1 multiplications ou divisions (mod n) par des nombres de base. Pour la i ième multiplication ou division, qui s'effectue entre le i ième carré et le i+1 ième carré, le i ième bit du défi élémentaire d_1 indique s'il faut utiliser g_1 , le i ième bit du défi élémentaire d_2 indique s'il faut utiliser g_2 , ... jusqu'au i ième bit du défi élémentaire d_m qui indique s'il faut utiliser g_m . On doit ainsi retrouver chaque engagement R présent dans l'appendice de signature.

D'autre part, le ou les triplets doivent être liés au message M. En hachant tous les engagements R et le message M, on obtient un code de hachage à partir duquel on doit retrouver chaque défi d.

$$d = d_1 d_2 \dots d_m$$
, identiques à ceux extraits du résultat Hash (M, R)

Au cas où l'appendice ne comprend pas de défi, l'opération de contrôle commence par la reconstitution de un ou plusieurs défis d' en hachant tous les engagements R et le message M.

$$d' = d'_1 d'_2 \dots d'_m$$
, extraits du résultat Hash (M, R)

Ensuite, le contrôleur accepte le message signé si et seulement si chaque triplet est cohérent (une relation appropriée du type suivant est vérifiée) et

recevable (la comparaison se fait sur une valeur non nulle).

5

10

15

20

25

(-

evable (la comparation se factors
$$R.\prod_{i=1}^{m} G_i^{d'i} \equiv D^{2^k} \pmod{n} \quad \text{ou bien} \quad R \equiv D^{2^k}.\prod_{i=1}^{m} G_i^{d'i} \pmod{n}$$

Au cas où l'appendice ne comprend pas d'engagement, l'opération de contrôle commence par la reconstitution de un ou plusieurs engagements R' selon une des deux formules suivantes, celle qui est appropriée. Aucun engagement rétabli ne doit être nul.

R'
$$\equiv D^{2^k} / \prod_{i=1}^m G_i^{d_i} \pmod{n}$$
 ou bien $R' \equiv D^{2^k} \cdot \prod_{i=1}^m G_i^{d_i} \pmod{n}$

Ensuite, le contrôleur doit hacher tous les engagements R' et le message M de façon à reconstituer chaque défis d.

 $d = d_1 \ d_2 \dots d_m$, identiques à ceux extraits du résultat $\operatorname{Hash}(M, R')$ Le contrôleur accepte le message signé si et seulement si chaque défi reconstitué est identique au défi correspondant figurant en appendice.

Dans la présente demande, on a montré qu'il existait des couples de valeurs privée Q et publique G permettant de mettre en œuvre le procédé, le système et le dispositif selon l'invention destiné à prouver l'authenticité d'une entité et/ou l'intégrité et/ou l'authenticité d'un message.

Dans la demande pendante déposée le même jour que la présente demande par France Télécom, TDF et la Société Math RiZK et ayant pour inventeurs Louis Guillou et Jean-Jacques Quisquater, on a décrit un procédé pour produire des jeux de clés GQ2, à savoir, des modules n et des couples de valeurs publique G et privée Q dans le cas où l'exposant v est égal à 2^k . Elle est incorporée ici par référence.

Cette description détaillée de l'invention dans le cas où $v = 2^k$ est susceptible d'être généralisée à d'autres valeurs de v. C'est d'ailleurs ce qui a été exposé, en contrepoint aux revendications, dans les premières pages de la description concernant le cas où v est différent de 2^k . Pour autant que cela soit nécessaire, notamment pour des raisons ressortant des règles d'écriture d'une demande de brevet, et qu'il faille également dans cette partie de la description expliciter l'invention dans le cas où v est différent de 2^k , les premières pages de la description seront également supposées avoir été insérées à la suite de ce paragraphe.

Revendications

- 1. Procédé destiné à prouver à une entité contrôleur,
- l'authenticité d'une entité et/ou

5

10

15

20

25

- l'intégrité d'un message M associé à cette entité, au moyen de tout ou partie des paramètres suivants ou dérivés de ceux-ci:
- m couples de valeurs privées $Q_1, Q_2, \dots Q_m$ et publiques G_1, G_2, \dots G_m (m étant supérieur ou égal à 1),
- un module public n constitué par le produit de f facteurs premiers $p_1, p_2, \dots p_f$ (f étant supérieur ou égal à 2),
- un exposant public v;
 ledit module, ledit exposant et lesdites valeurs étant liés par des relations du
 type :

$$G_i \cdot Q_i^{v} \equiv 1 \cdot \text{mod } n \text{ ou } G_i \equiv Q_i^{v} \text{mod } n;$$

ledit procédé met en œuvre selon les étapes suivantes une entité appelée témoin disposant des f facteurs premiers p_i et/ou des paramètres des restes chinois des facteurs premiers et/ou du module public n et/ou des m valeurs privées Q_i et/ou des f.m composantes $Q_{i,j}$ ($Q_{i,j} \equiv Q_i \mod p_j$) des valeurs privées Q_i et de l'exposant public v;

- le témoin calcule des engagements ${\bf R}$ dans l'anneau des entiers modulo ${\bf n}$; chaque engagement étant calculé en effectuant des opérations du type

$$R_i \equiv r_i^{\ v} \, mod \, p_i$$

où \mathbf{r}_i est un aléa associé au nombre premier \mathbf{p}_i tel que $0 < \mathbf{r}_i < \mathbf{p}_i$, chaque \mathbf{r}_i appartenant à une collection d'aléas $\{\mathbf{r}_1, \mathbf{r}_2, \dots \mathbf{r}_f\}$, puis en appliquant la méthode des restes chinois,

- le témoin reçoit un ou plusieurs défis \mathbf{d} ; chaque défi \mathbf{d} comportant \mathbf{m} entiers \mathbf{d}_i ci-après appelés défis élémentaires; le témoin calcule à partir de chaque défi \mathbf{d} une réponse \mathbf{D} en effectuant des opérations du type :

$$D_{i} \equiv r_{i} \cdot Q_{i,1}^{d1} \cdot Q_{i,2}^{d2} \cdot \dots \cdot Q_{i,m}^{dm} \mod p_{i}$$

puis en appliquant la méthode des restes chinois;

ledit procédé étant tel qu'il y a autant de réponses **D** que de défis **d** que d'engagements **R**, chaque groupe de nombres **R**, **d**, **D** constituant un triplet noté {**R**, **d**, **D**}.

2. Procédé selon la revendication 1 destiné à prouver l'authenticité d'une entité appelée démonstrateur à une entité appelée contrôleur, ladite entité démonstrateur comprenant le témoin ;

les dites entités démonstrateur et contrôleur exécutant les étapes suivantes :

• étape 1 : acte d'engagement R

- à chaque appel, le témoin calcule chaque engagement R en appliquant le processus spécifié selon la revendication 1,
- le démonstrateur transmet au contrôleur tout ou partie de chaque engagement R,

• étape 2 : acte de défi d

- le contrôleur, après avoir reçu tout ou partie de chaque engagement \mathbf{R} , produit des défis \mathbf{d} en nombre égal au nombre d'engagements \mathbf{R} et transmet les défis \mathbf{d} au démonstrateur,
 - étape 3 : acte de réponse D
- le témoin calcule des réponses D à partir des défis d en appliquant le processus spécifié selon la revendication 1,

• étape 4 : acte de contrôle

- le démonstrateur transmet chaque réponse D au contrôleur,

cas où le démonstrateur a transmis une partie de chaque engagement R dans le cas où le démonstrateur a transmis une partie de chaque engagement R, le contrôleur, disposant des m valeurs publiques G_1 , G_2 , ... G_m , calcule à partir de chaque défi d et de chaque réponse D un engagement reconstruit R' satisfaisant à une relation du type :

$$R' \equiv G_1^{\ d1}$$
 , $G_2^{\ d2}$, ... $G_m^{\ dm}$, $D^v \ mod \ n$

ou à une relation du type,

5

10

15

20

$$\mathbf{R'} \equiv \mathbf{D^{v}} / \mathbf{G_1}^{d1} \cdot \mathbf{G_2}^{d2} \cdot \dots \cdot \mathbf{G_m}^{dm} \cdot \mathbf{mod} \mathbf{n}$$

le contrôleur vérifie que chaque engagement reconstruit R' reproduit tout ou partie de chaque engagement R qui lui a été transmis,

cas où le démonstrateur a transmis l'intégralité de chaque engagement R

dans le cas où le démonstrateur a transmis l'intégralité de chaque engagement R, le contrôleur, disposant des m valeurs publiques G_1 , G_2 , ... G_m , vérifie que chaque engagement R satisfait à une relation du type :

$$R \equiv G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot D^v \mod n$$

ou à une relation du type,

5

10

15

20

$$R \equiv D^{v} / G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot mod n$$
.

- 3. Procédé selon la revendication 1 destiné à prouver à une entité appelée contrôleur l'intégrité d'un message M associé à une entité appelée démonstrateur, ladite entité démonstrateur comprenant le témoin ;
- lesdites entités démonstrateur et contrôleur exécutant les étapes suivantes :
 - étape 1 : acte d'engagement R
- à chaque appel, le témoin calcule chaque engagement R en appliquant le processus spécifié selon la revendication 1,
 - étape 2 : acte de défi d
- le démonstrateur applique une fonction de hachage h ayant comme arguments le message M et tout ou partie de chaque engagement R pour calculer au moins un jeton T,
- le démonstrateur transmet le jeton T au contrôleur,
- le contrôleur, après avoir reçu un jeton T, produit des défis d en nombre égal au nombre d'engagements R et transmet les défis d au démonstrateur,
 - étape 3 : acte de réponse D
- le témoin calcule des réponses D à partir des défis d en appliquant le processus spécifié selon la revendication 1,
 - étape 4 : acte de contrôle

- le démonstrateur transmet chaque réponse D au contrôleur,
- le contrôleur, disposant des m valeurs publiques $G_1, G_2, ... G_m$, calcule à partir de chaque défi d et de chaque réponse D un engagement reconstruit R' satisfaisant à une relation du type :

$$\mathbf{R'} \equiv \mathbf{G_1}^{d1} \cdot \mathbf{G_2}^{d2} \cdot \dots \cdot \mathbf{G_m}^{dm} \cdot \mathbf{D^v} \mod \mathbf{n}$$

ou à une relation du type :

5

10

15

20

25

$$R' \equiv D^{v} / G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot mod n$$

- puis le contrôleur applique la fonction de hachage **h** ayant comme arguments le message **M** et tout ou partie de chaque engagement reconstruit **R'** pour reconstruire le jeton **T'**,
- puis le contrôleur vérifie que le jeton T' est identique au jeton T transmis.
- 4. Procédé selon la revendication 1 destiné à produire la signature numérique d'un message M par une entité appelée entité signataire, ladite entité signataire comprenant le témoin ;
- ladite entité signataire exécute une opération de signature en vue d'obtenir un message signé comprenant :
 - le message M,
 - les défis d et/ou les engagements R,
 - les réponses **D**;

ladite entité signataire exécute l'opération de signature en mettant en oeuvre les étapes suivantes :

• étape 1 : acte d'engagement R

- à chaque appel, le témoin calcule chaque engagement R en appliquant le processus spécifié selon la revendication 1,
 - étape 2 : acte de défi d
- le signataire applique une fonction de hachage h ayant comme arguments le message M et chaque engagement R pour obtenir un train binaire,
- le signataire extrait de ce train binaire des défis d en nombre égal au nombre d'engagements R,

• étape 3 : acte de réponse D

- le témoin calcule des réponses **D** à partir des défis **d** en appliquant le processus spécifié selon la revendication 1.
- 5. Procédé selon la revendication 4 destiné à prouver l'authenticité du message M en contrôlant, par une entité appelée contrôleur, le message signé;

ladite entité contrôleur disposant du message signé exécute une opération de contrôle en procédant comme suit :

• cas où le contrôleur dispose des engagements R, des défis d, des réponses D,

dans le cas où le contrôleur dispose des engagements \mathbf{R} , des défis \mathbf{d} , des réponses \mathbf{D} ,

• • le contrôleur vérifie que les engagements R, les défis d et les réponses D satisfont à des relations du type

$$R \equiv G_1^{\ d1}$$
 . $G_2^{\ d2}$ $G_m^{\ dm}$. D^v mod n

ou à des relations du type :

$$R \equiv D^{v} / G_1^{d1} \cdot G_2^{d2} \cdot ... \cdot G_m^{dm} \cdot mod n$$

•• le contrôleur vérifie que le message M, les défis d et les engagements R satisfont à la fonction de hachage

$$d = h(M, R)$$

cas où le contrôleur dispose des défis d et des réponses D

dans le cas où le contrôleur dispose des défis d et des réponses D,

 \bullet • le contrôleur reconstruit, à partir de chaque défi d et de chaque réponse D, des engagements R' satisfaisant à des relations du type :

$$R' \equiv G_1^{\ d1}$$
 . $G_2^{\ d2}$ $G_m^{\ dm}$. $D^v \ mod \ n$

ou à des relations du type :

$$R' \equiv D^{v} / G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot mod n$$

• • le contrôleur vérifie que le message M et les défis d satisfont à la fonction de hachage

15

10

5

20

d = h (M, R')

- cas où le contrôleur dispose des engagements R et des réponses D dans le cas où le contrôleur dispose des engagements R et des réponses D,
 - • le contrôleur applique la fonction de hachage et reconstruit d'

$$d' = h(M, R)$$

• le contrôleur vérifie que les engagements R, les défis d' et les réponses D, satisfont à des relations du type :

$$R \equiv G_1^{d'1} \cdot G_2^{d'2} \cdot ... \cdot G_m^{d'm} \cdot D^v \mod n$$

ou à des relations du type :

$$R \equiv D^{v} / G_1^{d'1} . G_2^{d'2} G_m^{d'm} . \mod n$$

6. Procédé selon l'une quelconque des revendications 1 à 5 tel que les composantes $Q_{i,1}, Q_{i,2}, \dots Q_{i,f}$ des valeurs privées $Q_{i,j}$ sont des nombres tirés au hasard à raison d'une composante $Q_{i,j}$ ($Q_{i,j} \equiv Q_i \mod p_j$) pour chacun desdits facteurs premiers p_j , lesdites valeurs privées Q_i pouvant être calculées à partir desdites composantes $Q_{i,1}, Q_{i,2}, \dots Q_{i,f}$ par la méthode des restes chinois,

lesdites valeurs publiques G, étant calculées

• en effectuant des opérations du type

$$G_{i,j} \equiv Q_{i,j}^{\ \ v} \mod p_j$$

• puis en appliquant la méthode des restes chinois pour établir G_i tel que

$$G_i \cdot Q_i^v \equiv 1 \cdot \text{mod } n \text{ ou } G_i \equiv Q_i^v \text{mod } n;$$

- 7. Procédé selon la revendication 6 tel que l'exposant public de vérification v est un nombre premier,
- 8. Procédé selon l'une quelconque des revendications 1 à 5 ledit exposant v étant tel que

$$v=2^k$$

où k est un paramètre de sécurité plus grand que 1; ladite valeur publique G_i étant le carré g_i^2 d'un nombre de base g_i inférieur aux f facteurs premiers $p_1, p_2, \dots p_f$; le nombre de base g_i étant tel que :

5

10

15

20

les deux équations:

$$x^2 \equiv g_i \mod n$$
 et $x^2 \equiv -g_i \mod n$

n'ont pas de solution en x dans l'anneau des entiers modulo n et tel que :

l'équation:

$x^v \equiv g_i^2 \mod n$

a des solutions en x dans l'anneau des entiers modulo n.

- 9. Système destiné à prouver à un serveur contrôleur,
- l'authenticité d'une entité et/ou
- l'intégrité d'un message M associé à cette entité, au moyen de tout ou partie des paramètres suivants ou dérivés de ceux-ci:
- m couples de valeurs privées $Q_1, Q_2, \dots Q_m$ et publiques G_1, G_2, \dots G_m (m étant supérieur ou égal à 1),
- un module public n constitué par le produit de f facteurs premiers $p_1, p_2, \dots p_f$ (f étant supérieur ou égal à 2),
 - un exposant public v;

ledit module, ledit exposant et lesdites valeurs étant liés par des relations du type :

$$G_i \cdot Q_i^v \equiv 1 \cdot \text{mod } n \text{ ou } G_i \equiv Q_i^v \text{mod } n ;$$

ledit système comprend un dispositif témoin, notamment contenu dans un objet nomade se présentant par exemple sous la forme d'une carte bancaire à microprocesseur,

le dispositif témoin comporte une zone mémoire contenant les f facteurs premiers p_i et/ou des paramètres des restes chinois des facteurs premiers et/ou du module public n et/ou des m valeurs privées Q_i et/ou des f composantes $Q_{i,j}$ ($Q_{i,j} \equiv Q_i \mod p_j$) des valeurs privées Q_i et de l'exposant public v;

le dispositif témoin comporte aussi :

- des moyens de production d'aléas, ci-après désignés les moyens de

15

5

10

* 5. A

25

production d'aléas du dispositif témoin,

- des moyens de calcul, ci-après désignés les moyens de calcul des engagements R du dispositif témoin, pour calculer des engagements R dans l'anneau des entiers modulo n ; chaque engagement étant calculé en effectuant des opérations du type

$$\mathbf{R}_{i} \equiv \mathbf{r}_{i}^{\mathbf{v}} \mathbf{mod} \mathbf{p}_{i}$$

où \mathbf{r}_i est un aléa associé au nombre premier \mathbf{p}_i tel que $0 < \mathbf{r}_i < \mathbf{p}_i$, chaque \mathbf{r}_i appartenant à une collection d'aléas $\{\mathbf{r}_1, \mathbf{r}_2, \dots \mathbf{r}_f\}$ produits par les moyens de production d'aléas, puis en appliquant la méthode des restes chinois;

le dispositif témoin comporte aussi :

- des moyens de réception, ci-après désignés les moyens de réception des défis \mathbf{d} du dispositif témoin, pour recevoir un ou plusieurs défis \mathbf{d} ; chaque défi \mathbf{d} comportant \mathbf{m} entiers \mathbf{d}_i ci-après appelés défis élémentaires;
- des moyens de calcul, ci-après désignés les moyens de calcul des réponses **D** du dispositif témoin, pour calculer à partir de chaque défi d une réponse **D** en effectuant des opérations du type :

$$D_i \equiv r_i$$
 . $Q_{i,1}^{\ d1}$. $Q_{i,2}^{\ d2}$ $Q_{i,m}^{\ dm} \ mod \ p_i$

puis, en appliquant la méthode des restes chinois ;

- des moyens de transmission pour transmettre un ou plusieurs engagements ${\bf R}$ et une ou plusieurs réponses ${\bf D}$;

il y a autant de réponses D que de défis d que d'engagements R, chaque groupe de nombres R, d, D constituant un triplet noté {R, d, D}.

- 10. Système selon la revendication 9 destiné à prouver l'authenticité d'une entité appelée démonstrateur à une entité appelée contrôleur; ledit système étant tel qu'il comporte
- un dispositif démonstrateur associé à l'entité démonstrateur, ledit dispositif démonstrateur étant interconnecté au dispositif témoin par des

10

5

15

20

moyens d'interconnexion et pouvant se présenter notamment sous la forme de microcircuits logiques dans un objet nomade par exemple sous la forme d'un microprocesseur dans une carte bancaire à microprocesseur,

- un dispositif contrôleur associé à l'entité contrôleur ; ledit dispositif contrôleur se présentant notamment sous la forme d'un terminal ou d'un serveur distant ; ledit dispositif contrôleur comportant des moyens de connexion pour le connecter électriquement, électromagnétiquement, optiquement ou de manière acoustique, notamment via un réseau de communication informatique, au dispositif démonstrateur ;

ledit système permettant d'exécuter les étapes suivantes :

• étape 1 : acte d'engagement R

- à chaque appel, les moyens de calcul des engagements R du dispositif témoin calculent chaque engagement R en appliquant le processus spécifié selon la revendication 9,
- le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif témoin, pour transmettre tout ou partie de chaque engagement R au dispositif démonstrateur, via les moyens d'interconnexion;
- le dispositif démonstrateur comporte aussi des moyens de transmission, ciaprès désigné les moyens de transmission du dispositif démonstrateur, pour transmettre tout ou partie de chaque engagement **R** au dispositif contrôleur, via les moyens de connexion;

• étape 2 : acte de défi d

le dispositif contrôleur comporte des moyens de productions de défis pour produire, après avoir reçu tout ou partie de chaque engagement \mathbf{R} , des défis \mathbf{d} en nombre égal au nombre d'engagements \mathbf{R} ,

le dispositif contrôleur comporte aussi des moyens de transmission, ci-après désignés les moyens de transmission du contrôleur, pour transmettre les défis d au démonstrateur,

10

5

15

20

• étape 3 : acte de réponse D

les moyens de réception des défis d du dispositif témoin, reçoivent chaque défi d provenant du dispositif démonstrateur, via les moyens d'interconnexion,

les moyens de calcul des réponses **D** du dispositif témoin calculent les réponses **D** à partir des défis **d** en appliquant le processus spécifié selon la revendication 9,

• étape 4 : acte de contrôle

les moyens de transmission du démonstrateur transmettent chaque réponse **D** au contrôleur

le dispositif contrôleur comporte aussi

- des moyens de calcul, ci-après désignés les moyens de calcul du dispositif contrôleur,
- des moyens de comparaison, ci-après désignés les moyens de comparaison du dispositif contrôleur,

cas où le démonstrateur a transmis une partie de chaque engagement R dans le cas où les moyens de transmission du démonstrateur ont transmis une partie de chaque engagement R, les moyens de calcul du dispositif contrôleur, disposant des m valeurs publiques G_1 , G_2 , ... G_m , calculent à partir de chaque défi d et de chaque réponse D un engagement reconstruit R' satisfaisant à une relation du type :

$$R' \equiv G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot D^v \mod n$$

ou à une relation du type,

$$R'\equiv D^{\rm v}\,/\,\,G_1^{\ d1}$$
 , $G_2^{\ d2},\,\ldots\,G_m^{\ dm}$, mod n ,

les moyens de comparaison du dispositif contrôleur comparent chaque engagement reconstruit R' à tout ou partie de chaque engagement R reçus, cas où le démonstrateur a transmis l'intégralité de chaque engagement R

dans le cas où les moyens de transmission du démonstrateur ont transmis

10

5

15

20

l'intégralité de chaque engagement R, les moyens de calcul et les moyens de comparaison du dispositif contrôleur, disposant des m valeurs publiques $G_1, G_2, ... G_m$, vérifient que chaque engagement R satisfait à une relation du type :

 $R \equiv G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot D^v \mod n$

ou à une relation du type,

5

10

15

20

25

$$R \equiv D^{v}/G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot mod n$$
.

11. Système selon la revendication 9 destiné à prouver à une entité appelée contrôleur l'intégrité d'un message M associé à une entité appelée démonstrateur,

ledit système étant tel qu'il comporte

- un dispositif démonstrateur associé à l'entité démonstrateur, ledit dispositif démonstrateur étant interconnecté au dispositif témoin par des moyens d'interconnexion et pouvant se présenter notamment sous la forme de microcircuits logiques dans un objet nomade par exemple sous la forme d'un microprocesseur dans une carte bancaire à microprocesseur,
- un dispositif contrôleur associé à l'entité contrôleur; ledit dispositif contrôleur se présentant notamment sous la forme d'un terminal ou d'un serveur distant, l'edit dispositif contrôleur comportant des moyens de connexion pour le connecter électriquement, électromagnétiquement, optiquement ou de manière acoustique, notamment via un réseau de communication informatique, au dispositif démonstrateur;

ledit système permettant d'exécuter les étapes suivantes :

• étape 1 : acte d'engagement R

- à chaque appel, les moyens de calcul des engagements R du dispositif témoin calculent chaque engagement R en appliquant le processus spécifié selon la revendication 9,
- le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif témoin, pour transmettre

tout ou partie de chaque engagement R au dispositif démonstrateur, via les moyens d'interconnexion;

• étape 2 : acte de défi d

le dispositif démonstrateur comporte des moyens de calcul, ci-après désignés les moyens de calcul du dispositif démonstrateur, appliquant fonction de hachage **h** ayant comme arguments le message **M** et tout ou partie de chaque engagement **R** pour calculer au moins un jeton **T**,

le dispositif démonstrateur comporte aussi des moyens de transmission, ciaprès désignés les moyens de transmission du démonstrateur, pour transmettre chaque jeton T, via les moyens de connexion, au dispositif au contrôleur,

le dispositif contrôleur comporte aussi des moyens de productions de défis pour produire, après avoir reçu le jeton T, les défis d en nombre égal au nombre d'engagements R,

le dispositif contrôleur comporte aussi des moyens de transmission, ci-après désignés les moyens de transmission du dispositif contrôleur, pour transmettre les défis d au démonstrateur,

• étape 3 : acte de réponse D

les moyens de réception des défis d du dispositif témoin, reçoivent chaque défi d provenant du dispositif démonstrateur, via les moyens d'interconnexion,

les moyens de calcul des réponses **D** du dispositif témoin calculent les réponses **D** à partir des défis **d** en appliquant le processus spécifié selon la revendication 9,

• étape 4 : acte de contrôle

les moyens de transmission du démonstrateur transmettent chaque réponse **D** au contrôleur,

le dispositif contrôleur comporte aussi des moyens de calcul, ci-après désignés les moyens de calcul du dispositif contrôleur, disposant des m

10

5

15

20

valeurs publiques G_1 , G_2 , ... G_m , pour d'une part, calculer à partir de chaque défi d et de chaque réponse D un engagement reconstruit R' satisfaisant à une relation du type :

$$\mathbf{R'} \equiv \mathbf{G_1}^{d1} \cdot \mathbf{G_2}^{d2} \cdot \dots \cdot \mathbf{G_m}^{dm} \cdot \mathbf{D^r} \mod \mathbf{n}$$

ou à une relation du type:

5

10

15

20

25

$$R'\equiv D^v\,/\,G_1^{\ d1}$$
 , $G_2^{\ d2}$, ... $G_m^{\ dm}$, mod n

puis d'autre part, calculer en appliquant la fonction de hachage h ayant comme arguments le message M et tout ou partie de chaque engagement reconstruit R', un jeton T',

le dispositif contrôleur comporte aussi des moyens de comparaison, ci-après désignés les moyens de comparaison du dispositif contrôleur, pour comparer le jeton T' au jeton T reçu.

12. Système selon la revendication 9 destiné à produire la signature numérique d'un message M, ci après désigné le message signé, par une entité appelée entité signataire,

le message signé comprenant :

- le message M,
- les défis d et/ou les engagements R,
- les réponses D;

ledit système étant tel qu'il comporte un dispositif signataire associé à l'entité signataire, ledit dispositif signataire étant interconnecté au dispositif témoin par des moyens d'interconnexion et pouvant se présenter notamment sous la forme de microcircuits logiques dans un objet nomade par exemple sous la forme d'un microprocesseur dans une carte bancaire à microprocesseur,

ledit système permettant d'exécuter les étapes suivantes :

• étape 1 : acte d'engagement R

à chaque appel, les moyens de calcul des engagements R du dispositif témoin calculent chaque engagement R en appliquant le processus spécifié

selon la revendication 9,

le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif témoin, pour transmettre tout ou partie de chaque engagement **R** au dispositif signataire, via les moyens d'interconnexion;

• étape 2 : acte de défi d

le dispositif signataire comporte des moyens de calcul, ci-après désignés les moyens de calcul du dispositif signataire, appliquant une fonction d hachage h ayant comme arguments le message M et chaque engagement R pour calculer un train binaire et extraire de ce train binaire des défis d en nombre égal au nombre d'engagements R,

• étape 3 : acte de réponse D

les moyens de réception des défis d, reçoivent chaque défi d provenant du dispositif signataire, via les moyens d'interconnexion,

les moyens de calcul des réponses **D** du dispositif témoin calculent les réponses **D** à partir des défis d en appliquant le processus spécifié selon la revendication 9,

le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif témoin, pour transmettre les réponses D au dispositif signataire, via les moyens d'interconnexion.

13. Système selon la revendication 11 destiné à prouver l'authenticité du message M en contrôlant, par une entité appelée contrôleur, le message signé;

ledit système étant tel qu'il comporte un dispositif contrôleur associé à l'entité contrôleur ; ledit dispositif contrôleur se présentant notamment sous la forme d'un terminal ou d'un serveur distant ; ledit dispositif contrôleur comportant des moyens de connexion pour le connecter électriquement, électromagnétiquement, optiquement ou de manière acoustique, notamment via un réseau de communication informatique, au

10

5

15

20

dispositif démonstrateur;

ledit dispositif signataire associé à l'entité signataire comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif signataire, pour transmettre au dispositif contrôleur, le message signé, via les moyens de connexion, de telle sorte que le dispositif contrôleur dispose d'un message signé comprenant:

- le message M,
 - les défis d et/ou les engagements R,
 - les réponse D

10 le dispositif contrôleur comporte :

- des moyens de calcul, ci-après désignés les moyens de calcul du dispositif contrôleur,
- des moyens de comparaison, ci-après désignés les moyens de comparaison du dispositif contrôleur,
- cas où le contrôleur dispose des engagements R, des défis d, des réponses D,

dans le cas où le dispositif contrôleur dispose des engagements R, des défis d, des réponses D,

• • les moyens de calcul et de comparaison du dispositif contrôleur vérifient que les engagements **R**, les défis **d** et les réponses **D** satisfont à des relations du type

$$R \equiv G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot D^v \mod n$$

ou à des relations du type :

$$R \equiv D^{v} / G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot mod n$$

• • les moyens de calcul et de comparaison du dispositif contrôleur vérifient que le message M, les défis d et les engagements R satisfont à la fonction de hachage

$$d = h (M, R)$$

• cas où le contrôleur dispose des défis d et des réponses D

5

15

20

dans le cas où le dispositif contrôleur dispose des défis d et des réponses D,

• • les moyens de calcul du dispositif contrôleur calculent, à partir de chaque défi d et de chaque réponse D, des engagements R' satisfaisant à des relations du type :

$$\mathbf{R'} \equiv \mathbf{G_1}^{d1} \cdot \mathbf{G_2}^{d2} \cdot \dots \cdot \mathbf{G_m}^{dm} \cdot \mathbf{D^v} \mod \mathbf{n}$$

ou à des relations du type :

5

10

15

20

25

$$R' \equiv D^{v} / G_1^{d1} \cdot G_2^{d2} \cdot ... \cdot G_m^{dm} \cdot mod n$$

• • les moyens de calcul et de comparaison du dispositif contrôleur vérifie que le message M et les défis d satisfont à la fonction de hachage

$$d = h(M, R')$$

- cas où le contrôleur dispose des engagements R et des réponses D dans le cas où le dispositif contrôleur dispose des engagements R et des réponses D,
- • les moyens de calcul du dispositif contrôleur appliquent la fonction de hachage et calculent d' tel que

$$\mathbf{d'} = \mathbf{h} \ (\mathbf{M}, \mathbf{R})$$

• • les moyens de calcul et de comparaison du dispositif contrôleur vérifient que les engagements R, les défis d' et les réponses D, satisfont à des relations du type :

$$R \equiv G_1^{d'1} \cdot G_2^{d'2} \cdot \dots \cdot G_m^{d'm} \cdot D^v \mod n$$

ou à des relations du type :

$$R \equiv D^{v} \, / \, G_1^{\ d'1}$$
 , $G_2^{\ d'2}$, ... $G_m^{\ d'm}$, $mod \ n$

14. Système selon l'une quelconque des revendications 9 à 13 tel que les composantes $Q_{i,1}, Q_{i,2}, \dots Q_{i,f}$ des valeurs privées $Q_{i,j}$ sont des nombres tirés au hasard à raison d'une composante $Q_{i,j}$ ($Q_{i,j} \equiv Q_i \mod p_j$) pour chacun desdits facteurs premiers p_j , lesdites valeurs privées Q_i pouvant être calculées à partir desdites composantes $Q_{i,1}, Q_{i,2}, \dots Q_{i,f}$ par la méthode des restes chinois,

lesdites valeurs publiques Gi, étant calculées

• en effectuant des opérations du type

$$G_{i,j} \equiv Q_{i,j}^{v} \mod p_{j}$$

• puis en appliquant la méthode des restes chinois pour établir Gi tel que

$$G_i \cdot Q_i^{\ v} \equiv 1 \cdot \text{mod } n \text{ ou } G_i \equiv Q_i^{\ v} \text{mod } n ;$$

15. Système selon la revendication 14 tel que l'exposant public de vérification v est un nombre premier,

16. Système selon l'une quelconque des revendications 9 à 13 ledit exposant v étant tel que

$$v = 2^k$$

où k est un paramètre de sécurité plus grand que 1; ladite valeur publique G_i étant le carré g_i^2 d'un nombre de base g_i inférieur aux f facteurs premiers $p_1, p_2, \dots p_f$; le nombre de base g_i étant tel que :

les deux équations :

$$x^2 \equiv g_i \mod n$$
 et $x^2 \equiv -g_i \mod n$

n'ont pas de solution en x dans l'anneau des entiers modulo n et tel que :

l'équation:

$$x^v \equiv g_i^2 \mod n$$

a des solutions en x dans l'anneau des entiers modulo n.

- 17. Dispositif terminal associé à une entité, se présentant notamment sous la forme d'un objet nomade par exemple sous la forme d'une carte bancaire à microprocesseur, destiné à prouver à dispositif contrôleur,
 - l'authenticité d'une entité et/ou
 - l'intégrité d'un message M associé à cette entité,

au moyen de tout ou partie des paramètres suivants ou dérivés de ceux-ci:

- m couples de valeurs privées $Q_1, Q_2, ... Q_m$ et publiques $G_1, G_2, ...$ G_m (m étant supérieur ou égal à 1),
- un module public **n** constitué par le produit de **f** facteurs premiers $\mathbf{p_1}, \mathbf{p_2}, \dots \mathbf{p_f}$ (**f** étant supérieur ou égal à 2),

5

15

20

- un exposant public v;

ledit module, ledit exposant et lesdites valeurs étant liés par des relations du type :

$$G_i \cdot Q_i^v \equiv 1 \cdot \text{mod } n \text{ ou } G_i \equiv Q_i^v \text{mod } n$$
;

ledit dispositif terminal comprend un dispositif témoin comportant une zone mémoire contenant les f facteurs premiers p_i et/ou des paramètres des restes chinois des facteurs premiers et/ou du module public n et/ou des m valeurs privées Q_i et/ou des f.m composantes $Q_{i,j}$ ($Q_{i,j} \equiv Q_i \mod p_j$) des valeurs privées Q_i et de l'exposant public v;

le dispositif témoin comporte aussi :

- des moyens de production d'aléas, ci-après désignés les moyens de production d'aléas du dispositif témoin,
- des moyens de calcul, ci-après désignés les moyens de calcul des engagements ${\bf R}$ du dispositif témoin, pour calculer des engagements ${\bf R}$ dans l'anneau des entiers modulo ${\bf n}$; chaque engagement étant calculé en effectuant des opérations du type

$$R_i \equiv r_i^{\ v} \mod p_i$$

où \mathbf{r}_i est un aléa associé au nombre premier \mathbf{p}_i tel que $0 < \mathbf{r}_i < \mathbf{p}_i$, chaque \mathbf{r}_i appartenant à une collection d'aléas $\{\mathbf{r}_1, \mathbf{r}_2, \dots \mathbf{r}_f\}$ produits par les moyens de production d'aléas, puis en appliquant la méthode des restes chinois;

le dispositif témoin comporte aussi :

- des moyens de réception, ci-après désignés les moyens de réception des défis \mathbf{d} du dispositif témoin, pour recevoir un ou plusieurs défis \mathbf{d} ; chaque défi \mathbf{d} comportant \mathbf{m} entiers \mathbf{d}_i ci-après appelés défis élémentaires;
- des moyens de calcul, ci-après désignés les moyens de calcul des réponses **D** du dispositif témoin, pour calculer à partir de chaque défi **d** une réponse **D** en effectuant des opérations du type :

10

5

15

20

25

--

$$\mathbf{P}_{i} \equiv \mathbf{r}_{i} \cdot \mathbf{Q}_{i,1}^{d1} \cdot \mathbf{Q}_{i,2}^{d2} \cdot \dots \cdot \mathbf{Q}_{i,m}^{dm} \mod \mathbf{p}_{i}$$

puis, en appliquant la méthode des restes chinois;

5

10

15

20

25

- des moyens de transmission pour transmettre un ou plusieurs engagements ${\bf R}$ et une ou plusieurs réponses ${\bf D}$;

il y a autant de réponses D que de défis d que d'engagements R, chaque groupe de nombres R, d, D constituant un triplet noté {R, d, D}.

18. Dispositif terminal selon la revendication 17 destiné à prouver l'authenticité d'une entité appelée démonstrateur à une entité appelée contrôleur;

ledit dispositif terminal étant tel qu'il comporte un dispositif démonstrateur associé à l'entité démonstrateur, ledit dispositif démonstrateur étant interconnecté au dispositif témoin par des moyens d'interconnexion et pouvant se présenter notamment sous la forme de microcircuits logiques dans un objet nomade par exemple sous la forme d'un microprocesseur dans une carte bancaire à microprocesseur,

ledit dispositif démonstrateur comportant des moyens de connexion pour le connecter électriquement, électromagnétiquement, optiquement ou de manière acoustique, notamment via un réseau de communication informatique, à un dispositif contrôleur associé à l'entité contrôleur ; ledit dispositif contrôleur se présentant notamment sous la forme d'un terminal ou d'un serveur distant ;

ledit dispositif terminal permettant d'exécuter les étapes suivantes :

• étape 1 : acte d'engagement R

- à chaque appel, les moyens de calcul des engagements **R** du dispositif témoin calculent chaque engagement **R** en appliquant le processus spécifié selon la revendication 17,
- le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif témoin, pour transmettre tout ou partie de chaque engagement R au dispositif démonstrateur, via les

moyens d'interconnexion;

le dispositif démonstrateur comporte aussi des moyens de transmission, ciaprès désignés les moyens de transmission du démonstrateur, pour transmettre tout ou partie de chaque engagement **R** au dispositif contrôleur, via les moyens de connexion,

• étape 2 et 3 : acte de défi d, acte de réponse D

les moyens de réception des défis d du dispositif témoin, reçoivent chaque défi d provenant du dispositif contrôleur via les moyens de connexion entre le dispositif contrôleur et le dispositif démonstrateur et via les moyens d'interconnexion entre le dispositif démonstrateur et le dispositif témoin, les moyens de calcul des réponses D du dispositif témoin calculent les réponses D à partir des défis d en appliquant le processus spécifié selon la revendication 17,

• étape 4 : acte de contrôle

les moyens de transmission du démonstrateur transmettent chaque réponse **D** au dispositif contrôleur qui procède au contrôle.

19. Dispositif terminal selon la revendication 17 destiné à prouver à une entité appelée contrôleur l'intégrité d'un message M associé à une entité appelée démonstrateur,

ledit dispositif terminal étant tel qu'il comporte un dispositif démonstrateur associé à l'entité démonstrateur, ledit dispositif démonstrateur étant interconnecté au dispositif témoin par des moyens d'interconnexion et pouvant se présenter notamment sous la forme de microcircuits logiques dans un objet nomade par exemple sous la forme d'un microprocesseur dans une carte bancaire à microprocesseur,

ledit dispositif démonstrateur comportant des moyens de connexion pour le connecter électriquement, électromagnétiquement, optiquement ou de manière acoustique, notamment via un réseau de communication informatique, à un dispositif contrôleur associé à l'entité contrôleur ; ledit

10

5

15

20

dispositif contrôleur se présentant notamment sous la forme d'un terminal ou d'un serveur distant ;

ledit dispositif terminal permettant d'exécuter les étapes suivantes :

• étape 1 : acte d'engagement R

5

10

15

20

25

- à chaque appel, les moyens de calcul des engagements R du dispositif témoin calculent chaque engagement R en appliquant le processus spécifié selon la revendication 17,
- le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif témoin, pour transmettre tout ou partie de chaque engagement **R** au dispositif démonstrateur, via les moyens d'interconnexion ;

• étape 2 et 3 : acte de défi d, acte de réponse

le dispositif démonstrateur comporte des moyens de calcul, ci-après désignés les moyens de calcul du dispositif démonstrateur, appliquant fonction de hachage h ayant comme arguments le message M et tout ou partie de chaque engagement R pour calculer au moins un jeton T,

le dispositif démonstrateur comporte aussi des moyens de transmission, ciaprès désignés les moyens de transmission du démonstrateur, pour transmettre chaque jeton T, via les moyens de connexion, au dispositif au contrôleur,

les moyens de réception des défis d du dispositif témoin, reçoivent chaque défi d provenant du dispositif démonstrateur, via les moyens d'interconnexion,

les moyens de calcul des réponses **D** du dispositif témoin calculent les réponses **D** à partir des défis d en appliquant le processus spécifié selon la revendication 17,

• étape 4 : acte de contrôle

les moyens de transmission du démonstrateur transmettent chaque réponse D au dispositif contrôleur qui procède au contrôle. 20. Dispositif terminal selon la revendication 17 destiné à produire la signature numérique d'un message M, ci après désigné le message signé, par une entité appelée entité signataire,

le message signé comprenant :

- le message M,
- les défis d et/ou les engagements R,
- les réponses **D**;

ledit dispositif terminal étant tel qu'il comporte un dispositif signataire associé à l'entité signataire, ledit dispositif signataire étant interconnecté au dispositif témoin par des moyens d'interconnexion et pouvant se présenter notamment sous la forme de microcircuits logiques dans un objet nomade par exemple sous la forme d'un microprocesseur dans une carte bancaire à microprocesseur,

ledit dispositif signataire comportant des moyens de connexion pour le connecter électriquement, électromagnétiquement, optiquement ou de manière acoustique, notamment via un réseau de communication informatique, à un dispositif contrôleur associé à l'entité contrôleur ; ledit dispositif contrôleur se présentant notamment sous la forme d'un terminal ou d'un serveur distant ;

ledit dispositif terminal permettant d'exécuter les étapes suivantes :

• étape 1 : acte d'engagement R

à chaque appel, les moyens de calcul des engagements R du dispositif témoin calculent chaque engagement R en appliquant le processus spécifié selon la revendication 17,

le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif témoin, pour transmettre tout ou partie de chaque engagement R au dispositif signataire, via les moyens d'interconnexion;

• étape 2 : acte de défi d

10

5

15

20

le dispositif signataire comporte des moyens de calcul, ci-après désignés les moyens de calcul du dispositif signataire, appliquant une fonction d hachage h ayant comme arguments le message M et chaque engagement R pour calculer un train binaire et extraire de ce train binaire des défis d en nombre égal au nombre d'engagements R,

• étape 3 : acte de réponse D

5

10

15

20

25

les moyens de réception des défis d reçoivent les défis d provenant du dispositif signataire, via les moyens d'interconnexion,

les moyens de calcul des réponses **D** du dispositif témoin calculent les réponses **D** à partir des défis **d** en appliquant le processus spécifié selon la revendication 9,

le dispositif témoin comporte des moyens de transmission, ci-après désignés les moyens de transmission du dispositif témoin, pour transmettre les réponses **D** au dispositif signataire, via les moyens d'interconnexion.

- 22. Dispositif contrôleur, se présentant notamment sous la forme d'un terminal ou d'un serveur distant, associé à une entité contrôleur, destiné à prouver à un serveur contrôleur,
 - l'authenticité d'une entité et/ou
 - l'intégrité d'un message M associé à cette entité,

au moyen de tout ou partie des paramètres suivants ou dérivés de ceux-ci:

- m couples de valeurs privées $Q_1, Q_2, \dots Q_m$ et publiques G_1, G_2, \dots G_m (m étant supérieur ou égal à 1),
- un module public n constitué par le produit de f facteurs premiers $p_1, p_2, \dots p_f$ (f étant supérieur ou égal à 2),
 - un exposant public v;

ledit module, ledit exposant et lesdites valeurs étant liés par des relations du type :

$G_i \cdot Q_i^v \equiv 1 \cdot \text{mod } n \text{ ou } G_i \equiv Q_i^v \text{mod } n;$

où Qi désigne une valeur privée, inconnue du dispositif contrôleur,

associée à la valeur publique G_i.

23. Dispositif contrôleur selon la revendication 22 destiné à prouver l'authenticité d'une entité appelée démonstrateur à une entité appelée contrôleur;

ledit dispositif contrôleur comportant des moyens de connexion pour le connecter électriquement, électromagnétiquement, optiquement ou de manière acoustique, notamment via un réseau de communication informatique, à un dispositif démonstrateur associé à l'entité démonstrateur;

ledit dispositif contrôleur permettant d'exécuter les étapes suivantes :

• étape 1 et 2 : acte d'engagement R, acte de défi

ledit dispositif contrôleur comporte aussi des moyens de réception de tout ou partie des engagements R provenant du dispositif démonstrateur, via les moyens de connexion,

le dispositif contrôleur comporte des moyens de productions de défis pour produire, après avoir reçu tout ou partie de chaque engagement **R**, des défis d en nombre égal au nombre d'engagements **R**, chaque défi d comportant m entiers d_i, ci-après appelés défis élémentaires

le dispositif contrôleur comporte aussi des moyens de transmission, ci-après désignés les moyens de transmission du dispositif contrôleur, pour transmettre les défis d au démonstrateur, via les moyens de connexion,

- étapes 3 et 4 : acte de réponse, acte de contrôle le dispositif contrôleur comporte aussi
- des moyens de réception des réponses **D** provenant du dispositif démonstrateur, via les moyens de connexion,
- des moyens de calcul, ci-après désignés les moyens de calcul du dispositif contrôleur,
- des moyens de comparaison, ci-après désignés les moyens de comparaison du dispositif contrôleur,

15

10

5

20

cas où le démonstrateur a transmis une partie de chaque engagement R dans le cas où les moyens de réception du dispositif contrôleur ont reçus une partie de chaque engagement R, les moyens de calcul du dispositif contrôleur, disposant des m valeurs publiques G_1 , G_2 , ... G_m , calculent à partir de chaque défi d et de chaque réponse D un engagement reconstruit R' satisfaisant à une relation du type :

$$R' \equiv G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot D^v \bmod n$$

ou à une relation du type,

• 5

10

15

20

25

$$R^{\prime}\equiv D^{v}\,/\,\,G_{1}^{\ d1}$$
 , $G_{2}^{\ d2}$, ... , $G_{m}^{\ dm}$, mod n ,

les moyens de comparaison du dispositif contrôleur comparent chaque engagement reconstruit R' à tout ou partie de chaque engagement R reçus, cas où le démonstrateur a transmis l'intégralité de chaque engagement R

dans le cas où les moyens de réception du dispositif contrôleur ont reçus l'intégralité de chaque engagement \mathbf{R} , les moyens de calcul et les moyens de comparaison du dispositif contrôleur, disposant des \mathbf{m} valeurs publiques $\mathbf{G}_1, \mathbf{G}_2, \ldots \mathbf{G}_m$, vérifient que chaque engagement \mathbf{R} satisfait à une relation du type :

 $R \equiv G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot D^v \bmod n$

ou à une relation du type,

$$R \equiv D^v \, / \, G_1^{-d1}$$
 , G_2^{-d2} , ... G_m^{-dm} , mod n .

24. Dispositif contrôleur selon la revendication 22 destiné à prouver l'intégrité d'un message M associé à une entité appelée démonstrateur, ledit dispositif contrôleur comportant des moyens de connexion pour le connecter électriquement, électromagnétiquement, optiquement ou de manière acoustique, notamment via un réseau de communication informatique, à un dispositif démonstrateur associé à l'entité démonstrateur;

ledit dispositif contrôleur permettant d'exécuter les étapes suivantes :

• étapes 1 et 2 : acte d'engagement R, acte de défi

ledit dispositif contrôleur comporte aussi des moyens de réception de jetons T provenant du démonstrateur, via les moyens de connexion,

le dispositif contrôleur comporte aussi des moyens de productions de défis pour produire, après avoir reçu le jeton T, des défis d en nombre égal au nombre d'engagements R, chaque défi d comportant m entiers, ci-après appelés les défis élémentaires,

le dispositif contrôleur comporte aussi des moyens de transmission, ci-après désignés les moyens de transmission du dispositif contrôleur, pour transmettre les défis d au démonstrateur, via les moyens de connexion,

- étapes 3 et 4 : acte de réponse D, acte de contrôle le dispositif contrôleur comporte aussi :
- des moyens de réception des réponses **D** provenant du dispositif démonstrateur, via les moyens de connexion, le dispositif contrôleur comporte aussi
- des moyens de calcul, ci-après désignés les moyens de calcul du dispositif contrôleur, disposant des m valeurs publiques G_1 , G_2 , G_m , pour d'une part, calculer à partir de chaque défi d et de chaque répérse D un engagement reconstruit R' satisfaisant à une relation du type :

$$\mathbf{R'} \equiv \mathbf{G_1}^{d1} \cdot \mathbf{G_2}^{d2} \cdot \dots \cdot \mathbf{G_m}^{dm} \cdot \mathbf{D^v} \mod \mathbf{n}$$

ou à une relation du type :

$$R'\equiv D^{v}\,/\,\,G_{1}^{\ d1}$$
 , $G_{2}^{\ d2}$, ... $G_{m}^{\ dm}$, $\ mod\ n$

puis d'autre part, calculer en appliquant la fonction de hachage h ayant comme arguments le message M et tout ou partie de chaque engagement reconstruit R', un jeton T',

le dispositif contrôleur comporte aussi des moyens de comparaison, ci-après désignés les moyens de comparaison du dispositif contrôleur, pour comparer le jeton T' au jeton T reçu.

25. Dispositif contrôleur selon la revendication 22 destiné à prouver

10.

5

15

20

l'authenticité du message M en contrôlant, par une entité appelée contrôleur, le message signé;

le message signé, émis par un dispositif signataire associé à une entité signataire disposant d'une fonction de hachage h (M, R); comprenant:

- le message M,

5

10

15

20

25

- les défis d et/ou les engagements R,
- les réponse D;

ledit dispositif contrôleur comportant des moyens de connexion pour le connecter électriquement, électromagnétiquement, optiquement ou de manière acoustique, notamment via un réseau de communication informatique, à un dispositif signataire associé à l'entité signataire;

ledit dispositif contrôleur ayant reçu le message signé du dispositif signataire, via les moyens de connexion,

le dispositif contrôleur comporte:

- des moyens de calcul, ci-après désignés les moyens de calcul du dispositif contrôleur,
- des moyens de comparaison, ci-après désignés les moyens de comparaison du dispositif contrôleur,
- cas où le contrôleur dispose des engagements R, des défis d, des réponses D,

dans le cas où le dispositif contrôleur dispose des engagements R, des défis d, des réponses D,

• • les moyens de calcul et de comparaison du dispositif contrôleur vérifient que les engagements R, les défis d et les réponses D satisfont à des relations du type

$$R \equiv G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot D^v \mod n$$

ou à des relations du type:

$$R \equiv D^v / G_1^{d1} \cdot G_2^{d2} \cdot \dots \cdot G_m^{dm} \cdot mod n$$

• • les moyens de calcul et de comparaison du dispositif contrôleur

vérifient que le message M, les défis d et les engagements R satisfont à la fonction de hachage

$$d = h(M, R)$$

• cas où le contrôleur dispose des défis d et des réponses D

dans le cas où le dispositif contrôleur dispose des défis d et des réponses D,

• • les moyens de calcul du dispositif contrôleur calculent, à partir de chaque défi d et de chaque réponse D, des engagements R' satisfaisant à des relations du type :

$$\mathbf{R'} \equiv \mathbf{G_1}^{d1} \cdot \mathbf{G_2}^{d2} \cdot \dots \cdot \mathbf{G_m}^{dm} \cdot \mathbf{D^v} \mod \mathbf{n}$$

ou à des relations du type :

$$R^{2} \equiv D^{v} / G_{1}^{d1} \cdot G_{2}^{d2} \cdot ... \cdot G_{m}^{dm} \cdot mod n$$

• • les moyens de calcul et de comparaison du dispositif contrôleur vérifie que le message M et les défis d satisfont à la fonction de hachage

$$d = h(M, R')$$

- cas où le contrôleur dispose des engagements R et des réponses D dans le cas où le dispositif contrôleur dispose des engagements R et des réponses D,
- • les moyens de calcul du dispositif contrôleur appliquent la fonction de hachage et calculent d' tel que

$$d' = h(M, R)$$

• • les moyens de calcul et de comparaison du dispositif contrôleur vérifient que les engagements **R**, les défis **d'** et les réponses **D**, satisfont à des relations du type :

$$R \equiv G_1^{d'1} \cdot G_2^{d'2} \cdot \dots \cdot G_m^{d'm} \cdot D^v \mod n$$

ou à des relations du type :

$$R \equiv D^{v} / G_1^{d'1} \cdot G_2^{d'2} \cdot \dots \cdot G_m^{d'm}$$
 . mod n

15

10

5

20

Page Blank (uspto)

¥.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)