

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

STATISTICS 4040/12

Paper 1 October/November 2011

2 hours 15 minutes

Candidates answer on the question paper.

Additional Materials: Mathematical tables

Pair of compasses

Protractor

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions in Section A and not more than four questions from Section B.

If working is needed for any question it must be shown below that question.

The use of an electronic calculator is expected in this paper.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Section A [36 marks]

Answer all of the questions 1 to 6.

1 In a biological experiment, a scientist measured the heights of a large number of plants. She calculated the following statistical measures for the heights.

12.3 cm

Median

			Lower quartile	7.9 cm	
			Upper quartile	16.5 cm	
			90th percentile	18.1 cm	
(i)	Wri	te down the percent	age of plants whose	e height is	
	(a)	less than 12.3cm,			
					[1]
	(b)	more than 7.9 cm,			
					[1]
	(c)	between 16.5 cm a	nd 18.1 cm,		
					[1]
	(d)	less than 7.9 cm or	more than 18.1 cm.		
					[1]
(ii)	to b	•	as the median, sma	er you would expect the me aller than the median, or lar	
					[0]

2

	n a school class there are 10 boys and 20 girls. The teacher selects a sample of 6 pupils from the class.
(i) In each case, write down the one word which best describes the method of sampling used if she
	(a) selects every 5th pupil from the class register,
	[1]
	(b) selects 2 of the boys and 4 of the girls at random from the class register,
	[1]
	(c) selects the first 3 boys and the first 3 girls who arrive for a lesson.
	[1]
H	laving selected the sample, the teacher collects data from each pupil by asking three questions.
A	How many brothers and sisters do you have?
E	Is there a computer in your home?
C	How much time did you spend doing your homework yesterday?
(i	i) In each case, state whether the data obtained from these questions is either qualitative or quantitative, and is either discrete or continuous.
	For <i>A</i> , and
	For <i>B</i> , and
	For <i>C</i> , and [3]

3 The diagram below shows the number of people at an international conference who speak one or more of the languages Arabic, French and Urdu.

Use this information to find the number of people who speak

(i) Arabic,

		[1]
(ii)	Urdu and French but not Arabic,	
,,,, ,		[1]
(iii)	French and Urdu,	[1]
(iv)	exactly two of these languages,	
(v)	Arabic or Urdu (or both).	[1]

.....[2]

+	the	can) is 450 g asured accur	j. A sample	e of 8 cans	was cho	sen, and	the actual	mass of	•	
		452.3	451.6	448.5	450.0	451.9	449.3	453.2	447.1	
	(i)	Using an as		ean equal	to the no	ominal ma	ass, find th	ne mean a	nd standard	deviation
						Me	nan –			
					Standa					
	(ii)	The empty of the total			ass of 180					
					Standa					

	a game, a turn involves throwing an unbiased six-sided die is thrown, a disc is chosen from a bag containing 1 black	
	ections from the bag are made with replacement, and the sthe game.	ne person who chooses the black disc
Cai	rlo and Dean throw alternately, with Carlo throwing first.	
Fin	d the probability that	
(i)	Carlo does not choose a disc from the bag on his first to	ırn,
		[1]
(ii)	Carlo does not win on his first turn,	
		[2]
(iii)	Dean wins on his second turn.	
		[3]

6 A team composed of equal numbers of men and women enters an athletics competition. In each event it is possible to win a gold, silver or bronze medal. The team wins 25 medals, of which 3 are gold, as shown in the following table.

	Medals won by men	Medals won by women	TOTAL
Gold			3
Silver			
Bronze			
TOTAL			25

			men	women	TOTAL	
		Gold			3	
		Silver				
		Bronze				
		TOTAL			25	
(i)		wins equal into the tabl		nd bronze medals. Us	se this infor	mation to insert two
						[1]
(ii)		en win one into the tabl		the men. Use this i	nformation	to insert two more
						[1]
(iii)			one gold medal, burmation to complete	ut they win twice as the table.	many silver	medals as bronze
						[2]
(iv)	gold med	al, 2 points	for a silver medal, a	sing performance ov and 1 point for a bro ave performed better,	nze medal.	Using this method,
						[2]

Section B [64 marks]

Answer not more than **four** of the questions 7 to 11.

Each question in this section carries 16 marks.

7 In this question give your answers either as fractions, or as decimals correct to 3 significant figures.

In a hotel there are 25 rooms. The following table shows the number of guests staying in these rooms on one particular night.

Number of guests	0	1	2	3	4
Number of rooms	3	4	12	5	1

For example, 5 rooms each have 3 guests staying in them.

(i) Find the total number of guests staying in the hotel on this nig	(i	i)	Find the total	number of	quests	staving in	the hotel	on this	night
--	----	----	----------------	-----------	--------	------------	-----------	---------	-------

	[3]
(ii)	The hotel manager chooses a room at random to check the standard of cleaning. Find the probability that
	(a) it is an unoccupied room,
	[1] (b) it has at most 3 guests staying in it.
	[2]

(iii)		e manager chooses a guest at random to ask if they like at this guest is staying in a room	e their room. Fi	nd the probability
	(a)	with 2 other guests,		
	<i>a</i> >			[3]
	(b)	with at least 2 other guests.		
				[0]
(iv)	The	e manager chooses two guests at random. Find the prob		are staying in the
	san	me room.		
				[4]

8 A travel company collected data on the ages, *x* years, of the people who booked holidays with the company. The results were formed into the following grouped frequency distribution.

Age, x (years)	Number of people		
20 – under 25	7		
25 – under 35	16		
35 – under 40	12		
40 – under 45	14		
45 – under 60	21		
60 – under 80	10		

(i)	Estimate, to 3 significant figures, the mean and the standard deviation of the ages of th	е
	people who booked holidays with the company.	

Mean =	
Standard deviation =	[8]

(ii) On the following grid draw a histogram to illustrate the data in the table above. The rectangle representing the 35 – under 40 class has already been drawn for you.

(iii)	On the same grid, draw a frequency polygon to represent the data.	[1]
(iv)	One year later the company repeated the research and found that the mean and stand deviation of the ages were now 40.7 years and 16.1 years respectively. Explain briefly we these values tell you about how the ages of people booking holidays had changed.	

[5]

9 A large company recorded the time spent travelling in one particular week by the 40 people in its sales team. These times are illustrated in the cumulative frequency curve below.

(i) Use	the	graph	to	estimat	e
١	,	••••	9.00			

(a)	the	median	of the	travelling	times
-----	-----	--------	--------	------------	-------

hours	[1]	l

(b) the interquartile range of the travelling times,

..... hours [4]

(c) the 80th percentile of the travelling times.

..... hours [2]

(ii)	Use the gr travelling.	raph to estimate	the number of s	alespeople who spent m	ore than 12.5 hours
Boo	eause of the	ovnonce the co	mnany wantod to	reduce the time spent b	
trav tech	elling. The s	sales team were table below show	given a training o	course on using the inter- of the team's travelling ti	net to improve sales
		Travelling time (hours)	Number of salespeople	Cumulative frequency	
		under 5	7		=
		5 – under 10	13		
		10 – under 15	13		
		15 – under 20	5		
		20 – under 25	2		
		25 – under 30	0		
(iii)	Enter the c	umulative frequen	icies for this distril	oution in the table.	[1]
		·			
(iv)		cumulative freque frequency curve.	ncy curve for thi	s distribution on the san	ne grid as the given [2]
(v)		-	. •	luction in the number of sang. Give your answer to 2	
					[3]

10 Abdul is considering buying a particular model of new car. To see how well the car will keep its value, he collects information on the price of old cars of this model. The information is given in the following table.

Age of car (years), x	1.5	3.0	3.5	4.5	6.25	7.0	8.75	10.0
Price (thousands of \$), y	13.2	11.8	10.5	9.4	7.0	6.8	4.4	2.6

(i) Draw a scatter diagram of these data on the grid below.

(ii) Calculate the overall mean and the two semi-averages of the data, and plot them on your graph.

[5]

(iii)	Use your plotted averages to draw a line of best fit, and find its equation in the form $y = mx + c$.
	[4]
(iv)	Use your equation to estimate the price of a car of this model which is 5 years old.
	\$[2]
()	
(v)	Interpret the point at which the line of best fit meets the <i>y</i> -axis.
	[1]
	dul's friend Bruno also wants to buy a new car, but of a different model. Bruno does a similar
inve	estigation on his chosen model of car, and obtains a line of best fit with equation $y = 0.93x + 16.2$.
(vi)	Explain briefly why Bruno has probably made a mistake in his calculation.
	[1]

11 In this question calculate all death rates per thousand. Where values do not work out exactly give your answers to two decimal places.

The table below gives information on the population and deaths in the town of Bosco for the year 2010, together with the standard population of the area in which Bosco is situated.

	Age group	Deaths	Population	Age group death rate	Standard population (%)
	0 – 20	9	3600		18
	21 – 50	33	7500		40
	51 – 70	45	4000		30
	Over 70	63	1750		12
Cald	culate the deatl	h rate for each	age group, an		lues in the table a

.....[4]

Riva and Techno are two other towns in the same area. The table below gives data for these towns, also for 2010.

Town	Population	Crude Death Rate (per thousand)	Standardised Death Rate (per thousand)
Riva	18200	8.79	8.21
Techno	15000	9.60	9.65

(iv)	Showing all your working, find which of the three towns experienced the largest number o)f
	otal deaths in 2010.	

	[3]
(v)	State, giving a reason, which of the three towns appears to have the healthiest environment.
	[2]
(vi)	Considering your answers to parts (iv) and (v) together, explain briefly what has caused this situation to occur.
	[1]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.