(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 February 2001 (15.02.2001)

PCT

(10) International Publication Number WO 01/11029 A1

(51) International Patent Classification7: 15/82, C07K 14/24, C12N 15/11

C12N 9/52,

PCT/US00/22237

(74) Agent: STUART, Donald, R.; Dow AgroSciences LLC. 9330 Zionsville Road, Indianapolis, IN 46268 (US).

(21) International Application Number:

•

(22) International Filing Date: 11 August 2000 (11.08.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60,148,356

11 August 1999 (11.08.1999) US

- (71) Applicant: DOW AGROSCIENCES LLC [US/US]; 9330 Zionsville Road, Indianapolis, IN 46268 (US).
- (72) Inventors: PETELL, James, K.; 16825 Meyer Lane, Grass Valley, CA 95949 (US). MERLO, Donald, J.; 11845 Durbin Drive, Carmel, IN 46032 (US). HERMAN, Rod, A.; 11153 West 500 South, New Ross, IN 47968 (US). ROBERTS, Jean, L.; 26035 State Road 19, Arcadia, IN 46030 (US). GUO, Lining; 3212 Summit Ridge Loop, Morrissville, NC 27560 (US). SCHAFER, Barry, W.; 1429 Lighthouse Point, Cicero, IN 46034 (US). SUKHAPINDA, Kitisri; 4748 Ashwood Court, Zionsville, IN 46077 (US). MERLO, Ann, Owens; 11845 Durbin Drive, Carmel, IN 46032 (US).
- (81) Designated States (national): AE. AG. AL. AM. AT. AU. AZ. BA. BB. BG. BR. BY. CA. CH. CN. CR. CU. CZ. DE. DK. DM. EE. ES. FI. GB. GD. GE. GH. GM. HR. HU. ID. IL. IS. JP. KE. KG. KR. KZ. LC. LK. LR. LS. LT. LU. LV. MA. MD. MG. MK. MN. MW. MX. MZ. NO. NZ. PL. PT. RO. RU. SD. SE. SG. SI. SK. SL. TJ. TM. TR. TT. TZ. UA. UG. UZ. VN. YU. ZA. ZW.
- (84) Designated States (regional): ARIPO patent (GH. GM, KE. LS, MW, MZ, SD, SL. SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

EST AVAILABLE COPY

 $1029 \ /$

(54) Title: TRANSGENIC PLANTS EXPRESSING PHOTORHABDUS TOXIN

(57) Abstract: Novel polynucleotide sequences that encode insect toxins TcdA and TcbA have base compositions that differ substantially from the native genes, making them more similar to plant genes. The new sequences are suitable for use for high expression in both monocots and dicots. Transgenic plants with a genome comprising a nucleic acid of SEQ ID NO: 3 or SEQ ID NO:4 are insect resistant.

TRANSGENIC PLANTS EXPRESSING PHOTORHABDUS TOXIN BACKGROUND OF THE INVENTION

As reported in WO98/08932, protein toxins from the genus *Photorhabdus* have been shown to have oral toxicity against insects. The toxin complex produced by *Photorhabdus luminescens* (W-14), for example, has been shown to contain ten to fourteen proteins, and it is known that these are produced by expression of genes from four distinct genomic regions: *tca*, *tcb*, *tcc*, and *tcd*. WO98/08932 discloses nucleotide sequences for the native toxin genes.

Of the separate toxins isolated from Photorhabdus luminescens (W-14), those designated Toxin A and Toxin B are especially potent against target insect species of interest, for example corn rootworm. Toxin A is 15 comprised of two different subunits. The native gene tcdA (SEQ ID NO:1) encodes protoxin TcdA (see SEQ ID NO:1). As determined by mass spectrometry, TcdA is processed by one or more proteases to provide Toxin A. More specifically, TcdA is an approximately 282.9 kDA 20 protein (2516 aa) that is processed to provide TcdAii, an approximately 208.2 kDA (1849 aa) protein encoded by nucleotides 265-5811 of SEQ ID NO:1, and TcdAiii, an approximately 63.5 kDA (579 aa) protein encoded by nucleotides 5812-7551 of SEQ ID NO:1. 25

Toxin B is similarly comprised of two different subunits. The native gene tcbA (SEQ ID NO:2) encodes protoxin TcbA (see SEQ ID NO:2). As determined by mass spectrometry, TcbA is processed by one or more proteases to provide Toxin B. More specifically, TcbA is an approximately 280.6 kDA (2504 aa) protein that is processed to provide TcbAii, an approximately 207.7 kDA (1844 aa) protein encoded by nucleotides 262-5793 of SEQ ID NO:2 and TcbAiii, an approximately 62.9 kDA (573 aa) protein encoded by nucleotides 5794-7512 of SEQ ID NO:2.

30

35

The native tcdA and tcbA genes are not well suited for high level expression in plants. They encode multiple destabilization sequences, mRNA splice sites, polyA addition sites and other possibly detrimental sequence motifs. In addition, the codon compositions are not like those of plant genes. W098/08932 gives general guidance on how the toxin genes could be reengineered to more efficiently expressed in the cytoplasm of plants, and describes how plants can be transformed to incorporate the Photorhabdus toxin genes into their genomes.

SUMMARY OF THE INVENTION

In a preferred embodiment, the invention provides novel polynucleotide sequences that encode TcdA and TcbA. The novel sequences have base compositions that differ substantially from the native genes, making them more similar to plant genes. The new sequences are suitable for use for high expression in both monocots and dicots, and this feature is designated by referring to the sequences as the "hemicot" criteria, which is set forth in detail hereinafter. Other important features of the sequences are that potentially deleterious sequences have been eliminated, and unique restriction sites have been built in to enable adding or changing expression elements, organellar targeting signals, engineered protease sites and the like, if desired.

In a particularly preferred embodiment, the invention provides polynucleotide sequences that satisfy hemicot criteria and that comprise a sequence encoding an endoplasmic reticulum signal or similar targeting sequence for a cellular organelle in combination with a sequence encoding TcdA or TdbA.

More broadly, the invention provides engineered nucleic acids encoding functional *Photorhabdus* toxins wherein the sequences satisfy hemicot criteria.

10

15

20

30

The invention also provides transgenic plants with genomes comprising a novel sequence of the invention that imparts functional activity against insects.

5 BRIEF DESCRIPTION OF SEQUENCES

SEQ ID NO:1 is the native tcdA DNA sequence together with the corresponding encoded amino acid sequence for TcdA.

SEQ ID NO:2 is the native *tcbA* DNA sequence together with the corresponding encoded amino acid sequence for TcbA.

SEQ ID NO:3 is an artificial sequence encoding TcdA that is suitable for expression in monocot and dicot . plants.

15 SEQ ID NO:4 is an artificial sequence encoding TdbA that is suitable for expression in monocot and dicot plants.

SEQ ID NO:5 is an artificial hemicot sequence that encodes the 21 amino acid ER signal peptide of 15 kDa zein from Black Mexican Sweet maize.

SEQ ID NO:6 is an artificial hemicot sequence that encodes for the full-length native TcdA protein (amino acids 22-2537) fused to the modified 15 kDa zein endoplasmic reticulum signal peptide (amino acids 1-21).

25 DETAILED DESCRIPTION

The native *Photorhabdus* toxins are protein complexes that are produced and secreted by growing bacteria cells of the genus *Photorhabdus*. Of particular interest are the proteins produced by the species *Photorhabdus* luminescens. The protein complexes have a molecular size of approximately 1,000 kDa and can be separated by SDS-PAGE gel analysis into numerous component proteins. The toxins contain no hemolysin, lipase, type C phospholipase, or nuclease activities. The toxins exhibit significant toxicity upon ingestion by a number of insects.

20

30

A unique feature of *Photorhabdus* is its bioluminescence. *Photorhabdus* may be isolated from a variety of sources. One such source is nematodes, more particularly nematodes of the genus *Heterorhabditis*.

- Another such source is from human clinical samples from wounds, see Farmer et al. 1989 J. Clin. Microbiol. 27 pp. 1594-1600. These saprohytic strains are deposited in the American Type Culture Collection (Rockville, MD) ATCC #s 43948, 43949, 43950, 43951, and 43952, and are
- incorporated herein by reference. It is possible that other sources could harbor *Photorhabdus* bacteria that produce insecticidal toxins. Such sources in the environment could be either terrestrial or aquatic based.

The genus *Photorhabdus* is taxonomically defined as a member of the Family *Enterobacteriaceae*, although it has certain traits atypical of this family. For example, strains of this genus are nitrate reduction negative, yellow and red pigment producing and bioluminescent. This latter trait is otherwise unknown within the

- 20 Enterobacteriaceae. Photorhabdus has only recently been described as a genus separate from the Xenorhabdus (Boemare et al., 1993 Int. J. Syst. Bacteriol. 43, 249-255). This differentiation is based on DNA-DNA hybridization studies, phenotypic differences (e.g.,
- presence (Photorhabdus) or absence (Xenorhabdus) of catalase and bioluminescence) and the Family of the nematode host (Xenorhabdus; Steinernematidae, Photorhabdus; Heterorhabditidae). Comparative, cellular fatty-acid analyses (Janse et al. 1990, Lett. Appl.
- Microbiol 10, 131-135; Suzuki et al. 1990, J. Gen. Appl. Microbiol., 36, 393-401) support the separation of Photorhabdus from Xenorhabdus.

Currently, the bacterial genus *Photorhabdus* is comprised of a single defined species, *Photorhabdus* luminescens (ATCC Type strain #29999, Poinar et al., 1977, Nematologica 23, 97-102). A variety of related

strains have been described in the literature (e.g., Akhurst et al. 1988 J. Gen. Microbiol., 134, 1835-1845; Boemare et al. 1993 Int. J. Syst. Bacteriol. 43 pp. 249-255; Putz et al. 1990, Appl. Environ. Microbiol., 56, 181-186).

The following toxin producing *Photorhabdus* strains have been deposited:

W-14 ATCC 55397 March 5, 1993 WX1 NRRL B-21711 April 29, 1997 WX2 NRRL B-21712 April 29, 1997 WX3 NRRL B-21712 April 29, 1997 WX3 NRRL B-21713 April 29, 1997 WX4 NRRL B-21714 April 29, 1997 WX5 NRRL B-21716 April 29, 1997 WX6 NRRL B-21716 April 29, 1997 WX7 NRRL B-21717 April 29, 1997 WX8 NRRL B-21717 April 29, 1997 WX8 NRRL B-21717 April 29, 1997 WX10 NRRL B-21720 April 29, 1997 WX11 NRRL B-21721 April 29, 1997 WX12 NRRL B-21722 April 29, 1997 WX14 NRRL B-21722 April 29, 1997 WX15 NRRL B-21722 April 29, 1997 Hb NRRL B-21721 April 29, 1997 Hb NRRL B-21722 April 29, 1997 Hm NRRL B-21726 April 29, 1997 Hb NRRL B-21726 April 29, 1997 <	strain	accession number	date of deposit
WX1			
WX2			
WX3			April 29, 1997
WX4			
WX5			
WX6			
WX8			April 29, 1997
WX8			April 29, 1997
WX9			
WX10			
WX11			
WX12			April 29, 1997
WX14		<u></u>	April 29, 1997
WX15 NRRL B-21723 April 29, 1997 H9 NRRL B-21727 April 29, 1997 Hb NRRL B-21725 April 29, 1997 Hm NRRL B-21725 April 29, 1997 Hm NRRL B-21724 April 29, 1997 NC-1 NRRL B-21728 April 29, 1997 W30 NRRL B-21729 April 29, 1997 WIR NRRL B-21730 April 29, 1997 WIR NRRL B-21731 April 29, 1997 ATCC 43948 ATCC 55878 November 5, 1996 ATCC 43949 ATCC 55878 November 5, 1996 ATCC 43950 ATCC 55881 November 5, 1996 ATCC 43951 ATCC 55881 November 5, 1996 ATCC 53951 ATCC 55881 November 5, 1996 ATCC 43952 ATCC 55881 November 5, 1996 DEP1 NRRL B-21707 April 29, 1997 DEP2 NRRL B-21684 April 29, 1997 P. bepialus NRRL B-21683 April 29, 1997 HB Oswego NRRL B-21686 April 29, 1997 HB Oswego NR			
H9		the contract of the contract o	
Hb			April 29, 1997
Hm			
HP88 NRRL B-21724 April 29, 1997 NC-1 NRRL B-21728 April 29, 1997 W30 NRRL B-21729 April 29, 1997 WIR NRRL B-21730 April 29, 1997 WIR NRRL B-21731 April 29, 1997 ATCC 43948 ATCC 55878 November 5, 1996 ATCC 43949 ATCC 55879 November 5, 1996 ATCC 43950 ATCC 55880 November 5, 1996 ATCC 53951 ATCC 55881 November 5, 1996 ATCC 43952 ATCC 55882 November 5, 1996 ATCC 43952 ATCC 43952 APTI1 29, 1997 DEP1 NRRL B-21709 April 29, 1997			
NC-1			
W30 NRRL B-21729 April 29, 1997 WIR NRRL B-21731 April 29, 1997 B2 NRRL B-21731 April 29, 1997 ATCC 43948 ATCC 55878 November 5, 1996 ATCC 43950 ATCC 55880 November 5, 1996 ATCC 53951 ATCC 55881 November 5, 1996 ATCC 43952 ATCC 55882 November 5, 1996 ATCC 43952 ATCC 55882 November 5, 1996 DEPI NRRL B-21707 April 29, 1997 DEP2 NRRL B-21708 April 29, 1997 DEP3 NRRL B-21683 April 29, 1997 P. zealandrica NRRL B-21683 April 29, 1997 P. hepialus NRRL B-21684 April 29, 1997 HB Oswego NRRL B-21685 April 29, 1997 HB Oswego NRRL B-21686 April 29, 1997 K-122 NRRL B-21687 April 29, 1997 HMGD NRRL B-21689 April 29, 1997 Indicus NRRL B-21690 April 29, 1997 Megidis NRRL B-21691 April 29, 1997 MF1 <td></td> <td></td> <td>April 29, 1997</td>			April 29, 1997
WIR NRRL B-21730 April 29, 1997 B2 NRRL B-21731 April 29, 1997 ATCC 43948 ATCC 55878 November 5, 1996 ATCC 43949 ATCC 55879 November 5, 1996 ATCC 43950 ATCC 55880 November 5, 1996 ATCC 53851 ATCC 55882 November 5, 1996 ATCC 43952 ATCC 55882 November 5, 1996 DEPI NRRL B-21708 April 29, 1997 DEP2 NRRL B-21709 April 29, 1997 P. zealandrica NRRL B-21683 April 29, 1997 P. zealandrica NRRL B-21684 April 29, 1997 P. zealandrica NRRL B-21684 April 29, 1997 P. zealandrica NRRL B-21684 April 29, 1997 HB-Barg <			April 29, 1997
B2 NRRL B-21731 April 29, 1997 ATCC 43948 ATCC 55878 November 5, 1996 ATCC 43949 ATCC 55879 November 5, 1996 ATCC 43950 ATCC 55880 November 5, 1996 ATCC 53951 ATCC 55882 November 5, 1996 ATCC 43952 ATCC 55882 November 5, 1996 DEPI NRRL B-21707 April 29, 1997 DEP3 NRRL B-21709 April 29, 1997 P. zealandrica NRRL B-21683 April 29, 1997 P. pepialus NRRL B-21684 April 29, 1997 P. pepialus NRRL B-21685 April 29, 1997 HB Oswego NRRL B-21686 April 29, 1997 HB Coswego NRRL B-21687 April 29, 1997 HMGD NRRL <td< td=""><td></td><td></td><td></td></td<>			
ATCC 43948 ATCC 55878 November 5, 1996 ATCC 43949 ATCC 55879 November 5, 1996 ATCC 43950 ATCC 55880 November 5, 1996 ATCC 53951 ATCC 55881 November 5, 1996 ATCC 43952 ATCC 55882 November 5, 1996 DEPI NRRL B-21707 April 29, 1997 DEP2 NRRL B-21708 April 29, 1997 DEP3 NRRL B-21683 April 29, 1997 P. zealandrica NRRL B-21684 April 29, 1997 P. hepialus NRRL B-21684 April 29, 1997 HB-Arg NRRL B-21685 April 29, 1997 HB Oswego NRRL B-21686 April 29, 1997 K-122 NRRL B-21687 April 29, 1997 K-122 NRRL B-21688 April 29, 1997 Indicus NRRL B-21688 April 29, 1997 Indicus NRRL B-21689 April 29, 1997 ADP NRRL B-21690 April 29, 1997 MBGD NRRL B-21691 April 29, 1997 Megidis NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 A. Cows NRRL B-21694 April 29, 1997 A. Cows NRRL B-21694 April 29, 1997 MP1 NRRL B-21696 April 29, 1997 MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21698 April 29, 1997 MP5 NRRL B-21694 April 29, 1997 MP1 NRRL B-21696 April 29, 1997 MP2 NRRL B-21698 April 29, 1997 MP3 NRRL B-21699 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21699 April 29, 1997 MP6 NRRL B-21699 April 29, 1997 MP7 NRRL B-21699 April 29, 1997 MP8 NRRL B-21699 April 29, 1997 MP9 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 MF5 NRRL B-21700 April 29, 1997 MF5 NRRL B-21704 April 29, 1997 MF1 NRRL B-21704 April 29, 1997			
ATCC 43949 ATCC 55879 November 5, 1996 ATCC 43950 ATCC 55880 November 5, 1996 ATCC 53951 ATCC 55881 November 5, 1996 ATCC 43952 ATCC 55882 November 5, 1996 ATCC 43952 ATCC 55882 November 5, 1996 DEPI NRRL B-21707 April 29, 1997 DEP2 NRRL B-21708 April 29, 1997 DEP3 NRRL B-21709 April 29, 1997 P. zealandrica NRRL B-21683 April 29, 1997 P. hepialus NRRL B-21684 April 29, 1997 HB-Arg NRRL B-21685 April 29, 1997 HB-Oswego NRRL B-21685 April 29, 1997 HB Oswego NRRL B-21686 April 29, 1997 K-122 NRRL B-21686 April 29, 1997 K-122 NRRL B-21688 April 29, 1997 Indicus NRRL B-21689 April 29, 1997 Indicus NRRL B-21690 April 29, 1997 GD NRRL B-21691 April 29, 1997 Megidis NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 A. Cows NRRL B-21694 April 29, 1997 MP1 NRRL B-21696 April 29, 1997 MP2 NRRL B-21696 April 29, 1997 MP3 NRRL B-21696 April 29, 1997 MP4 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21699 April 29, 1997 MP6 NRRL B-21699 April 29, 1997 MP7 NRRL B-21699 April 29, 1997 MP8 NRRL B-21699 April 29, 1997 MP9 NRRL B-21699 April 29, 1997 MP9 NRRL B-21699 April 29, 1997 MP1 NRRL B-21699 April 29, 1997 MP5 NRRL B-21699 April 29, 1997 MP6 NRRL B-21699 April 29, 1997 MP7 NRRL B-21699 April 29, 1997 MP8 NRRL B-21699 April 29, 1997 MP9 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997			
ATCC 43950 ATCC 55880 November 5, 1996 ATCC 53951 ATCC 55881 November 5, 1996 ATCC 43952 ATCC 55882 November 5, 1996 DEPI NRRL B-21707 April 29, 1997 DEP2 NRRL B-21708 April 29, 1997 DEP3 NRRL B-21709 April 29, 1997 P. zealandrica NRRL B-21683 April 29, 1997 P. hepialus NRRL B-21684 April 29, 1997 HB-Arg NRRL B-21685 April 29, 1997 HB Oswego NRRL B-21686 April 29, 1997 HB Oswego NRRL B-21686 April 29, 1997 K-122 NRRL B-21687 April 29, 1997 HMGD NRRL B-21688 April 29, 1997 Indicus NRRL B-21689 April 29, 1997 GD NRRL B-21690 April 29, 1997 Megidis NRRL B-21691 April 29, 1997 Megidis NRRL B-21692 April 29, 1997 A. Cows NRRL B-21694 April 29, 1997 MP1 NRRL B-21695 April 29, 1997 MP2 NRRL B-21696 April 29, 1997 MP3 NRRL B-21697 April 29, 1997 MP4 NRRL B-21698 April 29, 1997 MP5 NRRL B-21699 April 29, 1997 MP6 NRRL B-21699 April 29, 1997 MP7 NRRL B-21699 April 29, 1997 MP8 NRRL B-21699 April 29, 1997 MP9 NRRL B-21699 April 29, 1997 MP1 NRRL B-21699 April 29, 1997 MP2 NRRL B-21699 April 29, 1997 MP3 NRRL B-21699 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21699 April 29, 1997 MP6 NRRL B-21699 April 29, 1997 MP7 NRRL B-21699 April 29, 1997 MP8 NRRL B-21699 April 29, 1997 MP9 NRRL B-21699 April 29, 1997 MP5 NRRL B-21699 April 29, 1997 MP5 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997			November 5, 1996
ATCC 53951 ATCC 55881 November 5, 1996 ATCC 43952 ATCC 55882 November 5, 1996 DEPI NRRL B-21707 April 29, 1997 DEP2 NRRL B-21708 April 29, 1997 P. zealandrica NRRL B-21683 April 29, 1997 P. tepialus NRRL B-21684 April 29, 1997 HB-Arg NRRL B-21685 April 29, 1997 HB Oswego NRRL B-21685 April 29, 1997 HB Lewiston NRRL B-21686 April 29, 1997 K-122 NRRL B-21688 April 29, 1997 Indicus NRRL B-21688 April 29, 1997 Indicus NRRL B-21689 April 29, 1997 GD NRRL B-21690 April 29, 1997 GD NRRL B-21691 April 29, 1997 Megidis NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 A. Cows NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP2 NRRL B-21696 April 29, 1997 MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP3 NRRL B-21699 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21699 April 29, 1997 MP6 NRRL B-21699 April 29, 1997 MP7 NRRL B-21699 April 29, 1997 MP8 NRRL B-21699 April 29, 1997 MP9 NRRL B-21699 April 29, 1997 MP1 NRRL B-21699 April 29, 1997 MP3 NRRL B-21699 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 MP6 NRRL B-21700 April 29, 1997 MP6 NRRL B-21700 April 29, 1997 MP7 NRRL B-21700 April 29, 1997 MP8 NRRL B-21700 April 29, 1997 MP9 NRRL B-21700 April 29, 1997 MP1 NRRL B-21700 April 29, 1997		ATCC 55880	November 5, 1996
ATCC 43952 ATCC 55882 November 5, 1996 DEPI NRRL B-21707 April 29, 1997 DEP2 NRRL B-21708 April 29, 1997 DEP3 NRRL B-21709 April 29, 1997 P. zealandrica NRRL B-21683 April 29, 1997 P. hepialus NRRL B-21684 April 29, 1997 HB-Arg NRRL B-21685 April 29, 1997 HB Oswego NRRL B-21686 April 29, 1997 HB Lewiston NRRL B-21687 April 29, 1997 K-122 NRRL B-21688 April 29, 1997 HMGD NRRL B-21689 April 29, 1997 Indicus NRRL B-21689 April 29, 1997 GD NRRL B-21690 April 29, 1997 PWH-5 NRRL B-21691 April 29, 1997 Megidis NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 A. Cows NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21696 April 29, 1997 MP2 NRRL B-21696 April 29, 1997 MP3 NRRL B-21696 April 29, 1997 MP4 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21699 April 29, 1997 MP6 NRRL B-21698 April 29, 1997 MP7 NRRL B-21699 April 29, 1997 MP8 NRRL B-21699 April 29, 1997 MP9 NRRL B-21699 April 29, 1997 MP5 NRRL B-21699 April 29, 1997 MP6 NRRL B-21700 April 29, 1997 GL138 NRRL B-21701 April 29, 1997 GL138 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997			November 5, 1996
DEPI NRRL B-21707 April 29, 1997 DEP2 NRRL B-21708 April 29, 1997 DEP3 NRRL B-21709 April 29, 1997 P. zealandrica NRRL B-21683 April 29, 1997 P. hepialus NRRL B-21684 April 29, 1997 P. hepialus NRRL B-21684 April 29, 1997 HB-Arg NRRL B-21685 April 29, 1997 HB Oswego NRRL B-21686 April 29, 1997 HB Coswego NRRL B-21687 April 29, 1997 Hb Lewiston NRRL B-21688 April 29, 1997 K-122 NRRL B-21689 April 29, 1997 Indicus NRRL B-21690 April 29, 1997 GD NRRL B-21691 April 29, 1997 Megidis NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 A. Cows NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21696 April 29, 1997 MP2 NRRL B-21698 April 29, 1997 MP3		ATCC 55882	
DEP2 NRRL B-21708 April 29, 1997 DEP3 NRRL B-21709 April 29, 1997 P. zealandrica NRRL B-21683 April 29, 1997 P. hepialus NRRL B-21684 April 29, 1997 HB-Arg NRRL B-21685 April 29, 1997 HB Oswego NRRL B-21686 April 29, 1997 Hb Lewiston NRRL B-21687 April 29, 1997 K-122 NRRL B-21688 April 29, 1997 HMGD NRRL B-21689 April 29, 1997 Indicus NRRL B-21690 April 29, 1997 GD NRRL B-21691 April 29, 1997 Megidis NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 MF-85 NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21696 April 29, 1997 MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B			April 29, 1997
P. zealandrica NRRL B-21683 April 29, 1997 P. hepialus NRRL B-21684 April 29, 1997 HB-Arg NRRL B-21685 April 29, 1997 HB Oswego NRRL B-21686 April 29, 1997 Hb Lewiston NRRL B-21687 April 29, 1997 K-122 NRRL B-21688 April 29, 1997 HMGD NRRL B-21689 April 29, 1997 Indicus NRRL B-21690 April 29, 1997 GD NRRL B-21691 April 29, 1997 PWH-5 NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 HF-85 NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21695 April 29, 1997 MP2 NRRL B-21696 April 29, 1997 MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21698 April 29, 1997 MP5 NRRL B-21699 April 29, 1997 MP6 NRRL B-21699 April 29, 1997 MP7 NRRL B-21699 April 29, 1997 MP8 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 GL138 NRRL B-21702 April 29, 1997 GL138 NRRL B-21704 April 29, 1997 GL138 NRRL B-21704 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL155 NRRL B-21704 April 29, 1997		NRRL B-21708	April 29, 1997
P. hepialus NRRL B-21684 April 29, 1997 HB-Arg NRRL B-21685 April 29, 1997 HB Oswego NRRL B-21686 April 29, 1997 Hb Lewiston NRRL B-21687 April 29, 1997 K-122 NRRL B-21688 April 29, 1997 HMGD NRRL B-21689 April 29, 1997 Indicus NRRL B-21690 April 29, 1997 GD NRRL B-21691 April 29, 1997 PWH-5 NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 HF-85 NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21695 April 29, 1997 MP2 NRRL B-21696 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL138 NRRL B-21704 April 29, 1997 GL155 NRRL B-21705 <t< td=""><td>DEP3</td><td>NRRL B-21709</td><td></td></t<>	DEP3	NRRL B-21709	
HB-Arg NRRL B-21685 April 29, 1997 HB Oswego NRRL B-21686 April 29, 1997 Hb Lewiston NRRL B-21687 April 29, 1997 K-122 NRRL B-21688 April 29, 1997 HMGD NRRL B-21689 April 29, 1997 Indicus NRRL B-21690 April 29, 1997 Indicus NRRL B-21691 April 29, 1997 GD NRRL B-21691 April 29, 1997 PWH-5 NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 MF-85 NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21695 April 29, 1997 MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April	P. zealandrica	NRRL B-21683 ·	April 29, 1997
HB Oswego NRRL B-21686 April 29, 1997 Hb Lewiston NRRL B-21687 April 29, 1997 K-122 NRRL B-21688 April 29, 1997 HMGD NRRL B-21689 April 29, 1997 Indicus NRRL B-21690 April 29, 1997 GD NRRL B-21691 April 29, 1997 PWH-5 NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 HF-85 NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21696 April 29, 1997 MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 G1101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21705 April 29, 1997 GL217 NRRL B-21705	P. hepialus	NRRL B-21684	
Hb Lewiston NRRL B-21687 April 29, 1997 K-122 NRRL B-21688 April 29, 1997 HMGD NRRL B-21689 April 29, 1997 Indicus NRRL B-21690 April 29, 1997 GD NRRL B-21691 April 29, 1997 PWH-5 NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 HF-85 NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21696 April 29, 1997 MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 G101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21705 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	HB-Arg		
K-122 NRRL B-21688 April 29, 1997 HMGD NRRL B-21689 April 29, 1997 Indicus NRRL B-21690 April 29, 1997 GD NRRL B-21691 April 29, 1997 PWH-5 NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 HF-85 NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21695 April 29, 1997 MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 G1101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	HB Oswego		
HMGD NRRL B-21689 April 29, 1997 Indicus NRRL B-21690 April 29, 1997 GD NRRL B-21691 April 29, 1997 PWH-5 NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 HF-85 NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21695 April 29, 1997 MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 G101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	Hb Lewiston	NRRL B-21687	April 29, 1997
Indicus NRRL B-21690 April 29, 1997 GD NRRL B-21691 April 29, 1997 PWH-5 NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 HF-85 NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21695 April 29, 1997 MP2 NRRL B-21696 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 G1101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	K-122		April 29, 1997
GD NRRL B-21691 April 29, 1997 PWH-5 NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 HF-85 NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21696 April 29, 1997 MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 G1101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	HMGD		April 29, 1997
PWH-5 NRRL B-21692 April 29, 1997 Megidis NRRL B-21693 April 29, 1997 HF-85 NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21696 April 29, 1997 MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 G1101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	Indicus		
Megidis NRRL B-21693 April 29, 1997 HF-85 NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21696 April 29, 1997 MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 G1101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	GD		
HF-85 NRRL B-21694 April 29, 1997 A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21696 April 29, 1997 MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 G1101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	PWH-5	NRRL B-21692	
A. Cows NRRL B-21695 April 29, 1997 MP1 NRRL B-21696 April 29, 1997 MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 G1101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	Megidis		
MP1 NRRL B-21696 April 29, 1997 MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 G1101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	HF-85		
MP2 NRRL B-21697 April 29, 1997 MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 G1101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	A. Cows	NRRL B-21695	
MP3 NRRL B-21698 April 29, 1997 MP4 NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 G1101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	MP1		April 29, 1997
MP4. NRRL B-21699 April 29, 1997 MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 Gl101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	MP2	NRRL B-21697	
MP5 NRRL B-21700 April 29, 1997 GL98 NRRL B-21701 April 29, 1997 G1101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	MP3		
GL98 NRRL B-21701 April 29, 1997 G1101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	MP4		
G1101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	MP5		April 29, 1997
G1101 NRRL B-21702 April 29, 1997 GL138 NRRL B-21703 April 29, 1997 GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	GL98		April 29, 1997
GL155 NRRL B-21704 April 29, 1997 GL217 NRRL B-21705 April 29, 1997	G1101		April 29, 1997
GL217 NRRL B-21705 April 29, 1997	GL138		
	GL155		
	GL217	NRRL B-21705	April 29, 1997
GL25/ NKKL B-21/06 ADTIL 29, 1997	GL257	NRRL B-21706	April 29, 1997

All strains were deposited in accordance with the terms of the Budapest Treaty. Strains having

accession numbers prefaced by "ATTC" were deposited on the indicated date in the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852 USA. Strains prefaced by "NRRL" were deposited on the indicated date in the Agricultural Research Service Patent Culture Collection (NRRL), National Center for Agricultural Utilization Research, ARS-USDA, 1815 North University St., Peoria IL 61604 USA.

The present invention provides hemicot nucleic acid sequences encoding toxins from any *Photorhabdus* species or strain that produces a toxin having functional activity. Hemicot nucleic acid sequences encoding proteins homologous to such toxins are also encompassed by the invention.

Several terms that are used herein have a particular meaning and are defined as follows:

By "functional activity" it is meant herein that the protein toxins) function as insect control agents in that the proteins are orally active, or have a toxic effect, or are able to disrupt or deter feeding, which may or may not cause death of the insect. When an insect comes into contact with an effective amount of toxin delivered via transgenic plant expression, formulated protein compositions), sprayable protein compositions), a bait matrix or other delivery system, the results are typically death of the insect, or the insects do not feed upon the source which makes the toxins available to the insects.

By "homolog" it is meant an amino acid sequence that is identified as possessing homology to a reference Photorhabdus toxin polypeptide amino acid sequence.

By "homology" it is meant an amino acid sequence that has a similarity index of at least 33% and/or an identity index of at least 26% to a reference Photorhabdus toxin polypeptide amino acid sequence, as

scored by the GAP algorithm using the B10sum 62 protein scoring matrix Wisconsin Package Version 9.0, Genetics Computer Group GCG), Madison, WI).

By "identity" is meant an amino acid sequence that contains an identical residue at a given position, following alignment with a reference *Photrhabdus* toxin polypeptide amino acid sequence by the GAP algorithm.

By the use of the term "Photorhabdus toxin" it is meant any protein produced by a Photorhabdus microorganism strain which has functional activity against insects, where the Photorhabdus toxin could be formulated as a sprayable composition, expressed by a transgenic plant, formulated as a bait matrix, delivered via baculovirus, or delivered by any other applicable host or delivery system.

By the use of the term "toxic" or "toxicity" as used herein it is meant that the toxins produced by *Photorhabdus* have "functional activity" as defined herein.

By "substantial sequence homology" is meant either:
a DNA fragment having a nucleotide sequence sufficiently
similar to another DNA fragment to produce a protein
having similar biochemical properties; or a polypeptide
having an amino acid sequence sufficiently similar to
another polypeptide to exhibit similar biochemical
properties.

As with other bacterial toxins, the rate of mutation of the bacteria in a population causes many related toxins slightly different in sequence to exist. Toxins of interest here are those which produce protein complexes toxic to a variety of insects upon exposure, as described herein. Preferably, the toxins are active against Lepidoptera, Coleoptera, Homopotera, Diptera, Hymenoptera, Dictyoptera and Acarina. The inventions herein are intended to capture the protein toxins homologous to protein toxins produced by the strains

30

35

5

10

herein and any derivative strains thereof, as well as any protein toxins produced by *Photorhabdus*. These homologous proteins may differ in sequence, but do not differ in function from those toxins described herein. Homologous toxins are meant to include protein complexes of between 300 kDa to 2,000 kDa and are comprised of at least two 2) subunits, where a subunit is a peptide which may or may not be the same as the other subunit. Various protein subunits have been identified and are taught in the Examples herein. Typically, the protein subunits are between about 18 kDa to about 230 kDa; between about 160 kDa to about 230 kDa; and about 50 kDa to about 80 kDa.

As discussed above, some *Photorhabdus* strains can be isolated from nematodes. Some nematodes, elongated cylindrical parasitic worms of the phylum *Nematoda*, have evolved an ability to exploit insect larvae as a favored growth environment. The insect larvae provide a source of food for growing nematodes and an environment in which to reproduce. One dramatic effect that follows invasion of larvae by certain nematodes is larval death. Larval death results from the presence of, in certain nematodes, bacteria that produce an insecticidal toxin which arrests larval growth and inhibits feeding activity.

Interestingly, it appears that each genus of insect parasitic nematode hosts a particular species of bacterium, uniquely adapted for symbiotic growth with that nematode. In the interim since this research was initiated, the name of the bacterial genus Xenorhabdus was reclassified into the Xenorhabdus and the Photorhabdus. Bacteria of the genus Photorhabdus are characterized as being symbionts of Heterorhabditus nematodes while Xenorhabdus species are symbionts of the Steinernema species. This change in nomenclature is reflected in this specification, but in no way should a

10

15

20

25

30

change in nomenclature alter the scope of the inventions described herein.

The peptides and genes that are disclosed herein are named according to the guidelines recently published in the Journal of Bacteriology "Instructions to Authors" p. i-xii Jan. 1996), which is incorporated herein by reference.

Transformation methods useful in carrying out the invention are well known, and are described, for example, in WO98/08932.

Hemicot tcdA and tcbA

SEQ ID NO: 3 is the nucleotide sequence for an engineered tcdA gene in accordance with the invention.

SEQ ID NO: 4 is the nucleotide sequence for an engineered tcbA gene in accordance with the invention.

The following Tables 1 and 2 identify significant features of the engineered tcdA and tcbA genes.

Table 1 tcdA

Ε.Ο.	caA
Feature	nucleotides of SEQ ID NO:3
NcoI	1-6
HindIII	48-53
KpnI	246-254
sequence encoding TcbAii	267-5798
NheI	333-338
BglII	1215-1220
ClaI	2604-2609
PstI	4015-4020
AgeI	5088-5093
MunI	5598-5603
XbaI	5778-5783
sequence encoding TcbAiii	5799-7517
AflII	5853-5858
SphI	6439-6444
SfuI	7392-7397
SacI	7519-7524
XhoI	7522-7527
StuI	7528-7533
NotI	7533-7538

20

Table 2

Feature	nucleotides of SEQ ID NO:5
Ncol	1-6
HindIII	48-53

5

Provide the second seco	
KpnI	246-251
sequence encoding	267-5798
TcbAii	
NheI	333-338
BglII	1215-1220
ClaI	2604-2609
PstI	4015-4020
AgeI	5088-5093
MunI	5598-5603
XbaI	5778-5783
sequence	5799-7517
encodingTcbAiii	
AflII	5853-5858
SphI	6439-6444
SfuI	7392-7397
SacI	7519-7524
SfuI	7392-7397
SacI .	7519-7524
XhoI	7522-7527
StuI	7528-7533
NotI	7535-7540

It should be noted that the proteins encoded by the plant-optimized tcdA (SEQ ID NO:3) and tcbA (SEQ ID NO:5) differ from the native proteins by the addition of an Ala residue at position #2. This modification was made to accommodate the NcoI site which spans the ATG start codon.

The following Table 3 compares the codon composition of the engineered tcdA gene of SEQ ID NO:3 and engineered tcbA gene of SEQ ID NO:5 with the codon compositions of the native genes, the typical dicot genes, and maize genes.

Table 3

amino acid	codon	% in SEQ ID NO:3	% in tcdA	% in SEQ ID NO:5	% in tcbA	% in dicot	% in maize
Ala	GCT GCC GCA GCG	62 26 11 0	21 32 25 21	69 27 4 0	41 17 22 21	42 27 25 6	24 34 18 24
Arg	AGG CGC AGA CGT CGG CGA	48 22 20 11 0	0 36 11 39 7 8	60 18 15 7 0	2 16 6 57 13	25 11 30 21 4 8	26 24 15 11 15
Asn	AAC AAT	100	32 68	100	33 67	55 45	68 32
Asp	GAC	67	22	70	25	42	63

	aadaa	% in	% in	% in	% in	% in	% in
amino	codon	SEQ	tcdA	SEQ	tcbA	dicot	maize
acid		ID	LCUA	ID	ECDA	arcoc	marze
1		NO:3		NO:5			
1	GAT	33	78	30	75	58	37
-		100	30	100	19	56	68
Cys	TGC	0	70	0	81	44	32
<u> </u>	TGT		<u> </u>	100	0	33	59
End	TGA	100	0	0	Ö	19	21
1	TAG	0	100	0	100	48	20
	TAA	1		74	53	59	38
Gln	CAA	65 35	61 39	26	47	41	62
1 63	CAG	100		98	36	51	71
Glu	GAG	0	24 76	2	64	49	29
63	GAA	67	37	64	44	33	20
Gly	GGT GGC	32	36	36	22	16	42
	GGC	1	20	0	19	38	19
	GGG	ō	8	Ö	16	12	20
His	CAC	62	40	72	31	46	62
l uis	CAT	38	60	28	69	54	38
Ile	ATC	73	34	65	24	37	58
116	ATT	27	51	35	59	45	28
	ATA	0	15	0	17	18	14
Leu	CTC	54	11	59	7	28	26
Deu	TTG	29	17	25	32	26	15
1	CTT	16	9	15	7	19	17
1	TTA	lō	18	ō	19	10	5
1	CTG	ō	32	lo	29	9	29
1	CTA	0	13	l o	7	8	8
Lys	AAG	99	79	99	75	61	78
1 -1	AAA	1	21	1	25	39	22
Met	ATG	100	100	100	100	100	100
Phe	TTC	100	42	100	41	55	71
	TTT	0	58	0	59	45	29
Pro	CCA	74	30	91	26	42	26
	CCT	22	28	7	20	32	22
	ccc	4	14	3	7	17	24
	CCG	0	27	0	47	9	28
Ser	TCC	47	19	55	11	18	23
	TCT	35	15	30	15	25	15
	AGC	18	22	15	18	18	23
1	AGT	0	20	0	31	14	9
	TCG	0	7	0	8	6	14
	TCA	0	17	0	17	19	16
Thr	ACC	60	41	64	31	30	37
	ACT	28	25	32	34	35	20
	ACA	12	21	4	18	27 8	21 22
	ACG	0	13	0	18	100	100
Trp	TGG	100	100	100	100	57	73
Tyr	TAC	100	24	100	19	43	27
 	TAT	0	76	0 73	81	20	31
Val	GTC	69	27 17	73	11 27	29	39
1	GTG	21	34	3	48	39	21
	GTT	0	22	2	14	12	8
L	GIA		1 44	1-	1 * 3		

EXAMPLE 1
Design Of Plant Codon-Biased Genes Encoding W-14 Peptides
TcbA and TcdA

A. Gene Design

The coding strands of the native DNA sequences of the *Photorhabdus* W-14 genes encoding peptides TcbA and TcdA were scanned for the presence of deleterious sequences such as the Shaw/Kamen RNA destabilizing motif ATTTA, intron splice recognition sites, and poly A addition motifs. This was done using the MacVector Sequence Analysis Software (Oxford Molecular Biology Group, Symantec Corp.), using a custom Nucleic Acid Subsequence File. The native sequence was also searched for runs of 4 or more of the same base.

Motif searching of the native W-14 tcbA and tcdA genes revealed the presence of many potentially deleterious sequences in the protein coding strands, as summarized in Table 4. Not shown, but also present, were many runs of four or more single residues (<u>e.g.</u> the native tcbA gene has 81 runs of four A's).

Table 4

Native Gene	ATTTA	5' Splice	3' Splice	Poly A Addition*	RNAP II term.
tcbA	18	7	17	46	0
tcdA	18	7	13	77	1

* Totals of 16 different motifs.

Analyses of eukaryotic genes and plant genes in particular have shown that CG & TA doublets are underrepresented, while the genes are enriched in CT & TG doublets. The sequences of the hemicot biased genes have accordingly been adjusted to encompass these base compositions and to have G+C compositions of about 53%, similar to many plant genes. When compared to the native W-14 tcbA and tcdA genes, the plant-biased genes have a much more uniform G+C distribution.

Nucleotide changes to remove potentially deleterious sequences were chosen to simultaneously adjust the codon composition of the coding region to more closely reflect that of plant genes. A framework for these changes was provided by the codon bias tables prepared for maize and dicot genes shown in Table 3.

10

15

20

25

Comparison of codon compositions of the native W-14genes to maize and dicot genes revealed that the W-14 genes contain a very different preference set of the degenerate codons for the 18 amino acids for which there is a choice (Table 3). For each of 8 amino acids (Phe, Tyr, Cys, Arg, Asn, Lys, Glu, and Gly) in both W-14 genes, the most abundant codon is different from the preferred codons found in either maize or dicot genes. One might expect that translational difficulties would be encountered in efforts to produce in plants proteins 10 (such as TcbA and TcdA) having high relative amounts of these amino acids from mRNAs having large numbers of nonpreferred codons. There is a marked difference in distribution of the codon compositions specifying the other 10 amino acids. For His, Gln, Ile, Val, and Asp, 15 the dicot-preferred codons are found as the most abundant ones in both W-14 genes. For Leu, Thr, Ser, and Ala, the maize preferred codons are the most abundant codon choices found in the tcdA gene. In contrast, the tcbA gene contains only the CCG (Pro) maize-preferred codon as 20 the highest abundance choice.

In making the codon choices, doublet contents were considered, so that adjacent codons preferably did not form CG or TA doublets (which are underrepresented in eukaryotic genes; 1, 4), while CT or TG doublets (which are enriched in eukaryotic genes <u>ibid</u>.) were created when possible.

Choices were also made to utilize a diversity of codons for Met, Trp, Asn, Asp, Cys, Glu, His, Ile, Lys, Phe, Thr, and Tyr.

The sequences were also designed to encode unique 6-bp recognition sites for restriction enzymes, spaced about every 1200 bp. Finally, an additional codon (GCT; Ala) was inserted at the second position to encode an Nco I recognition site encompassing the ATG (Met) start codon. Additional recognition sites were included after

25

30

the stop codon to facilitate subsequent cloning steps into expression vectors. These features are set forth above in Tables 1 and 2.

The new tcdA and tcbA genes of SEQ ID NO:3 and SEQ ID NO:4 share 73.5%, and 72.6%% identity, respectively, to their native W-14 counterparts (Wisconsin Genetics Computer Group, GAP algorithm).

B. Gene Synthesis

The complete synthesis of the plant codon-biased tcbA and tcdA genes was performed under contract by 10 Operon Technologies, Inc. (OPTI, Alameda, CA). Basically, chemically synthesized oligonucleotides of appropriate sequence were assembled into DNA pieces about 500 bases long. These were joined together end-to-end (presumably by means of appropriately placed restriction 15 enzyme sites) into four larger pieces of roughly 2 kilobase pairs (kbp) each; therefore each comprised about 1/4 of the entire coding region of the particular gene. DNA sequence of the pieces was confirmed at this step. If mistakes in sequence were present, the appropriate 20 oligonucleotides were re-synthesized, and the assembly process was repeated. Once gene fractional parts were sequence verified, they were assembled in pairs to make the gene halves, and again sequence verified. Finally, the two halves were joined, and the sequences of the 25 junctions between the halves was verified. Therefore, each part of the new gene was sequence verified at least twice.

It should be noted that attempts to express the

native tcbA or tcdA genes in standard Escherichia coli
cloning strains suggests that production of these
proteins is lethal. Lethality problems may be
encountered if standard cloning vectors having leaky
expression from inherent lacZ promoters are used to
assemble these genes.

C. Addition Of Endoplasmic Reticulum Targeting Peptide To Tcda Coding Region It is known to those in the field of plant gene expression that proteins are specifically directed into the endoplasmic reticulum (ER) by means of a short signal peptide which is removed during or after the transport process through the ER membrane. The mature (processed) protein is incorporated into the ER endomembrane or is released into the ER lumen where the transported protein may be uniquely folded (aided by chaperonins), modified 10 by glycosylation, accumulated in the vacuole, or additionally translocated (by secretion). These processes are reviewed by Gomord and Faye [V. Gomord and L. Faye, (1996) Signals and mechanisms involved in intracellular transport of secreted proteins in plants. 15 Plant Physiol. Biochem. 34:165-181] and by Bar-Peled et al. [M. Bar-Peled, D. C. Bassham, and N. V. Raikhel, (1996) Transport of proteins in eukaryotic cells: more questions ahead. Plant Molec. Biology 32:223-249]. also known that the subcellular recognition mechanisms 20 for an ER signal peptide are evolutionarily somewhat conserved, since the ER signal for a protein normally produced in monocot (maize) cells is recognized and processed normally by dicot (tobacco) cells. This is exemplified by the maize 15 kDa zein ER signal peptide 25 [L. M. Hoffman, D. D. Donaldson, R. Bookland, K. Rashka, and E. M. Herman, (1987) Synthesis and protein body deposition of maize 15-kd zein in transgenic tobacco seeds. EMBO J. 6:3213-3221, and U.S. Patent 5589616]. Further, it is known that the ER signal peptide derived 30 from one protein can direct the translocation of a different protein if it is appropriately attached to the second protein by genetic engineering methods [D. C. Hunt and M. J. Chrispeels, (1991) The signal peptide of a vacuolar protein is necessary and sufficient for the 35 efficient secretion of a cytosolic protein. Plant

Physiol. 96:18-25, and Denecke, J., J. Botterman, and R. Deblaere (1990) Protein secretion in plants can occur via a default pathway. Plant Cell 2:51-59]. Therefore, one may expose a protein in vivo to different biochemical environments by directing its accumulation in the cytosol (by not providing a signal peptide sequence), or in the ER/vacuole (by provision of an appropriate signal peptide.)

The ER signal peptide of maize 15 kDa zein proteins
is known to comprise the first 20 amino acids encoded by
the zein coding region. Two examples of such signal
peptides the ER signal peptide of 15 kDa zein from A5707
maize, NCBI Accession # M72708, and the ER signal peptide
of 15 kDa zein from Black Mexican Sweet maize, NCBI
Accession # M13507. There is only a single amino acid
difference (Ser vs Cys at residue 17) between these
signal peptides.

SEQ ID NO:5 is a modified sequence coding the ER signal peptide of 15 kDa zein from Black Mexican Sweet maize. The modifications embodied in this sequence were made to accommodate the different monocot/dicot codon usages and other sequence motif considerations discussed above in the design of the plant-optimized tcdA coding region. The sequence includes an additional Ala residue at position #2 to accommodate the NcoI site which spans the ATG start codon.

SEQ ID NO:6 gives a sequence coding for the full-length native TcdA protein (amino acids 22-2537) fused to the modified 15 kDa zein endoplasmic reticulum signal peptide (amino acids 1-21).

Example 2

Transformation Of Tobacco With Agrobacterium Carrying
Plasmid pDAB2041 Encoding Photorhabdus Toxins
Plasmid pDAB2041

35 Preparation of tobacco transformation vectors was accomplished in three steps. First, a modified plant-optimized tcdA coding region was ligated into a tobacco

20

25

plant expression cassette plasmid. In this step, the coding region was placed under the transcriptional control of a promoter functional in tobacco plant cells. RNA transcription termination and polyadenylation were mediated by a downstream copy of the terminator region from the Agrobacterium nopaline synthase gene. plasmids designed to function in this role are pDAB1507 In the second step, the complete gene and pDAB2006. comprised of the promoter, coding region, and terminator region was ligated between the T-DNA borders of Agrobacterium binary vector, pDAB1542. Also positioned between the T-DNA borders was a plant selectable marker gene to allow selection of transformed tobacco plant cells. In the third step, the engineered binary vector plasmid was conjugated from its E. coli host strain into a disabled Agrobacterium tumefaciens strain capable of transforming tobacco plant cells that regenerate into fertile transgenic plants.

It is a feature of plasmid pDAB1507 that any coding region having an NcoI site at its 5' end and a SacI site 3' to the coding region, when cloned into the unique NcoIand SacI sites of pDAB1507, is placed under the transcriptional control of an enhanced version of the CaMV 35S promoter. It is also a feature of pDAB1507 that the 5' untranslated leader (UTR) sequence preceding the NcoI site comprises a modified version of the 5' UTR of the MSV coat protein gene, into which has been cloned an internally deleted version of the maize Adh1S intron 1. feature pDAB1507 that is of Additionally it a transcription termination and polyadenylation of the mRNA containing the introduced coding region are mediated by termination/Poly A addition sequences derived from the nopaline synthase (Nos) gene. Finally, it is a feature of pDAB1507 that the entire assembly of promoter/coding region/3'UTR can be obtained as a single DNA fragment by cleavage at the flanking NotI sites.

10

15

20

25

30

PCT/US00/22237 WO 01/11029

It is a feature of plasmid pDAB2006 that any coding region having an NcoI site at its 5' end and a SacI site 3' to the coding region, when cloned into the unique NcoI and SacI sites of pDAB2006, is placed under the 5 transcriptional control of the CaMV 35S promoter. It is also a feature of pDAB2006 that the 5' untranslated leader (UTR) sequence preceding the NcoI site comprises a polylinker. Additionally it is a feature of pDAB2006 that transcription termination and polyadenylation of the mRNA containing the introduced coding region are mediated by termination/Poly A addition sequences derived from the nopaline synthase (Nos) gene. Finally, it is a feature of pDAB2006 that the entire assembly of promoter/coding region/3'UTR can be obtained as a single DNA fragment by cleavage at the flanking NotI sites.

It is a feature of pDAB1542 that any DNA fragment flanked by NotI sites can be cloned into the unique NotI site of pDAB1542, thus placing the introduced fragment between the T-DNA borders, and adjacent to the neomycin phosphotransferase II (kanamycin resistance) gene.

To prepare a plant-expressible gene to produce the non-targeted TcdA protein in tobacco plant cells, DNA of a plasmid (pA0H_4-OPTI) containing the plant-optimized tcdA coding region, (SEQ ID No:3) was cleaved with restriction enzymes NcoI and SacI, and the large 7550 bp fragment was ligated to similarly-cut DNA of plasmid pDAB1507 to produce plasmid pDAB2040. DNA of pDAB2040 was then digested with NotI, and the 8884 bp fragment was ligated to NotI digested DNA of pDAB1542 to produce plasmid pDAB2041. This plasmid was then conjugated by triparental mating [Firoozabady, E., D. L. DeBoer, D. J. Merlo, E. L. Halk, L. N. Amerson, K. E. Rashka, and E. E. Murray (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and

regeneration of transgenic plants. Plant Molec. Biol.

10

15

20

25

30

10:105-116] from the host Escherichia coli strain (XL1-Blue, Stratagene, La Jolla, CA), into the nontumorigenic Agrobacterium tumefaciens strain EHA101S, which is a spontaneous streptomycin-resistant mutant of strain EHA101 (Hood, E. E., G. L. Helmer, R. T. Fraley, and M.-D. Chilton (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168:1291-1301). Strain EHA101S(pDAB2041) was then used to produce transgenic tobacco plants that expressed the TcdA protein.

B. Plasmid pRK2013

10

To prepare a plant-expressible gene to produce the endoplasmic reticulum-targeted TcdA protein in tobacco plant cells, DNA of a plasmid (pAOH 4-ER) containing the plant-optimized, ER-targeted tcdA coding region, (SEQ ID 15 No:6) was cleaved with restriction enzymes NcoI and SacI, and the large 7610 bp fragment was ligated to similarlycut DNA of plasmid pDAB2006 to produce plasmid pDAB1833. DNA of pDAB1833 was then digested with NotI, and the 8822 bp fragment was ligated to NotI digested DNA of pDAB1542 20 to produce plasmid pDAB2052. This plasmid was then conjugated by triparental mating from the host Escherichia coli strain (XL1-Blue), into the nontumorigenic Agrobacterium tumefaciens strain EHA101S. Strain EHA101S(pDAB2052) was then used to produce 25 transgenic tobacco plants that expressed the TcdA protein containing an amino terminus endoplasmic reticulum targeting peptide.

30 C. Transfer of Plasmid pDAB2041 Into Agrobacterium Strain EHA101S

Cultures of *E. coli* carrying the engineered Ti plasmid pDAB2041 (plasmid containing the rebuilt Toxin A gene, tcdA), *E. coli* carrying the plasmid pRK2013, and Agrobacterium strain EHA101S were grown overnight, then mixed 1:1:1 on plain LB medium solidified with agar and -20-

cultured in the dark at 28°C. Two days later, the lawn of bacteria was scraped up with a loop, suspended in plain LB medium, vortexed, and then diluted $1:10^4$, $1:10^5$, and $1:10^6$ fold in plain LB liquid medium. Aliquots of these dilutions were spread on selective plates containing medium YEP plus erythromycin (100 mg/L) and streptomycin (250 mg/L) and grown at 28°C. Two days later, single colonies were picked and streaked onto the same medium, then spread to give single colonies. Single colonies were picked again and streaked, then spread for single colonies. Single colonies were picked a third time, grown as streaks, then subjected to a quality analysis involving growth on lactose medium and chromogenic assay with Benedict's reagent. Of ten strains developed in this way, the fastest coloring colony was chosen for further work.

D. Transformation Of Tobacco With Agrobacterium Carrying Plasmid pDAB2041

Tobacco transformation with Agrobacterium 20 tumefaciens was carried out by a method similar, but not identical, to published methods (R Horsch et al, 1988. Plant Molecular Biology Manual, S. Gelvin et al, eds., Kluwer Academic Publishers, Boston). To provide source tissue for the transformation, tobacco seed (Nicotiana 25 tabacum cv. Kentucky 160) were surface sterilized and planted on the surface of TOB- , which is a hormone-free Murashige and Skoog medium (T. Murashige and F. Skoog, 1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol. 75: 473-497) 30 solidified with agar. Plants were grown for 6-8 weeks in a lighted incubator room at 28-30°C and leaves were collected sterilely for use in the transformation protocol. Approximately one cm2 pieces were sterilely cut from these leaves, excluding the midrib. Cultures of the 35

10

Agrobacterium strains (EHA101S containing pDAB2041), which had been grown overnight on a rotor at 28°C, were pelleted in a centrifuge and resuspended in sterile Murashige & Skoog salts, adjusted to a final optical density of 0.7 at 600 nm. Leaf pieces were dipped in this bacterial suspension for approximately 30 seconds, then blotted dry on sterile paper towels and placed right side up on medium TOB+ (Murashige and Skoog medium containing 1 mg/L indole acetic acid and 2.5 mg/L benzyladenine) and incubated in the dark at 28°C. Two 10 days later the leaf pieces were moved to medium TOB+ containing 250 mg/L cefotaxime (Agri-Bio, North Miami, Florida) and 100 mg/L kanamycin sulfate (AgriBio) and incubated at 28-30°C in the light. Leaf pieces were moved to fresh TOB+ with cefotaxime and kanamycin twice per 15 week for the first two weeks and once per week thereafter. Leaf pieces which showed regrowth of the Agrobacterium strain were moved to medium TOB+ with cefotaxime and kanamycin, plus 100 mg/l carbenicillin (Sigma). Four to six weeks after the leaf pieces were 20 treated with the bacteria, small plants arising from transformed foci were removed from this tissue preparation and planted into medium TOB- containing 250 mg/L cefotaxime and 100 mg/L kanamycin in Magenta GA7 boxes (Magenta Corp., Chicago). These plantlets were 25 grown in a lighted incubator room. After 3-4 weeks the primary transgenic plants had rooted and grown to a size sufficient that leaf samples could be analyzed for expression of protein from the transgene. Twenty-five independent transgenic events were recovered as single 30 plants from the pDAB2041 transformation.

Eight independent lines expressing various levels of transgenic protein from the T-DNA of pDAB2041 were propagated in vitro from leaf pieces as follows. Twelve to sixteen approximately one cm² pieces were sterilely cut from leaves of each primary transgenic plant, excluding -22-

the midrib and all naturally occurring edges. These leaf pieces were placed on medium TOB+ containing 250 mg/L cefotaxime and 100 mg/L kanamycin, and cultured in the lighted incubator at 28-30°C for 3-4 weeks, at which time small plants could be cut from the proliferating tissue mass. Several small plantlets from each transgenic line were moved into Magenta boxes containing medium TOB- plus cefotaxime and kanamycin and allowed to root and grow. The proliferating tissue mass was further cultured on medium TOB+ with cefotaxime and kanamycin, and additional plants could be cut out and grown up as needed.

Plants were moved into the greenhouse by washing the agar from the roots, transplanting into soil in 5 ½" square pots, placing the pot into a Ziploc bag

(DowBrands), placing plain water into the bottom of the bag, and placing in indirect light in a 30°C greenhouse for one week. After one week the bag could be opened; the plants were fertilized and allowed to grow further, until the plants were acclimated and the bag was removed.

Plants were grown under ordinary warm greenhouse conditions (30°C, 16 H light). Plants were suitable for sampling four weeks post transplant.

Example 3

Chacterization Of Transgenic Tobacco Plants Expressing
Photorhabdus Toxin That Confer Insect Control.

A. Polyclonal Antibody Production

The *E. coli* produced recombinant TcdA protein was purified by a series of column purification. The protein was sent to Berkley Antibody Company (Richmond, CA) for the production of antiserum in a rabbit. Inoculations with the antigen were initiated with 0.5 mg of protein followed by four boosting injections of 0.25 mg each at about three week intervals. The rabbit serum was tested by the standard Western analysis using the recombinant TcdA protein as the antigen and enhanced chemi-

30

35

luminescens, ECL method (Amersham, Arlington Heights, IL). The antibodies (PAb-EA $_0$) were purified using a PURE I antibody purification kit (Sigma, St. Luis, MO). PAb-EA $_0$ antibodies recognize the full-length TcdA and its processed components.

B. Expression Of TcdA Protein In Tobacco
Protein was extracted from the leaf tissue of
transformed and non-transformed tobacco plants following

the procedure described immediately below.

Two leaf disks of 1.4 cm in diameter were harvested 10 from the middle portion of a fully expanded leaf. disks were placed on a 1.6 x 4 cm piece of 3M Whatman paper. The paper was folded lengthwise and inserted in a flexible straw. Four hundred micro liters of the extraction buffer (9.5 ml of 0.2 M NaH_2PO_4 , 15.5 ml of 0.2 15 M Na_2HPO_4 , 2 ml of 0.5 M Na_2EDTA , 100 ml of Triton X100, 1 ml of 10% Sarkosyl, 78 ml of beta-mercaptoethanol, H₂O to bring total volume to 100 ml) was pipetted on to the paper. The straw containing the sample was then passed through a rolling device used for squeezing out the 20 extract 1.5 mL micro centrifuge tube was placed at the other end of the straw to collect the extract. extract was centrifuged for 10 minutes at 14,000 rpm in an Eppendorf regrigerated microcentrifuge. The 25_ supernatant was transferred into a new tube. Protein quantitation analysis was performed using the standard Bio-Rad Protein Analysis protocol (Bio-Rad Laboratories, Hercules, CA). The extract was diluted to 2 mg/ml of

For the detection of transgenic protein, Western blot analysis was performed. Following a standard procedure for protein separation (Laemmli, 1970), 40 μg of protein was loaded in each well of 4-20% gradient polyacrylamide gel (Owl Scientific Co., MA) for electrophoresis. Subsequently, the protein was

total protein using the extraction buffer.

transferred onto a nitrocellulose membrane using a semidry electroblotter (Pharmacia LKB Biotechnology, Piscataway, NJ). The membrane was incubated for one hour in Blotto (5% milk in TBST solution; 25 mM Tris HCL pH 7.4, 136 mM NaCl, 2.7 mM KCl, 0.1% Tween 20). Thereafter 5 , Blotto was replaced by the primary antibody solution (in Blotto). After one hour in the primary antibody, the membrane was washed with TBST for five minutes three times. Then the secondary antibody in Blotto (1:2000 dilution of goat anti-rabbit IgG conjugated to 10 horseradish peroxidase; Bio-Rad Laboratories). was added to the membrane. After one hour of incubation, the membrane was washed with an excess amount of TBST for 10 minutes four times. The protein was visualized by using the enhanced chemi-luminescens, ECL method (Amersham, 15 Arlington Heights, IL). The differential intensity of the protein bands were measured using densitometer (Molecular Dynamics Inc., Sunnyvale, CA).

To determine the expression of TcdA protein in tobacco transformed with pDAB2041, PAb-EA₀ antibodies were 20 used as the primary antibodies. The expression levels of TcdA protein varied among independent transformation events. The primary plant generated from the event #2041-13 showed the highest level of pre-pro TcdA expression of extractable protein. When the leaf pieces 25 from this plant (#2041-13) were used in in vitro propagation, several plants were obtained. Seven of these plants were analyzed for the expression of the TcdA protein. All but one plant produced the full-length TcdA protein as well as some processed peptide components. 30 Using the antibodies specific to Neomycin phosphotransferase, NPT (5 prime-3 prime, Boulder, Co), the expression the selectable marker gene (npt II) was Similar results were obtained for #2041-29. detected.

35

Table 5

Western analysis of plants derived from event #2041-13.

		NPT (selectable marker)
Plant #	TcdA	
2041-13A	+	not done
2041-13B	+	not done
2041-13-1	-	+
2041-13-2	+	+
2041-13-3	+	+
2041-13-4	+	+
2041-13-5	+	+

Nucleic Acid Analysis of Transgenic Tobacco Lines Genomic DNA was prepared from a group of 2041 transgenic events. The lines included Magenta box stage 5 2041-13, and greenhouse stage plants 2041-13-1, 2041-13-2, 2041-13-5, 2041-9, 2041-20A and 2041-20B. A transgenic GUS line (2023) was included as a negative control. Southern analysis of these lines was performed. The genomic tobacco DNA was restricted with the enzyme 10 SstI which should result in a 8.9 kb hybridization product when hybridized to a tcdA gene specific probe. The 8.9 kb hybridization product should consist of the 35T promoter and the tcdA coding region. All 2041 plants contained a band of the expected size. Events 2041-9 and 15 -20 appear to be the same line with 5 identical hybridizing bands. Event 2041-13 produced 6 hybridization fragments with the tcdA coding region probe. Magenta box and various greenhouse plants of 2041-13 all produced the same hybridization profile. 20 This hybridization pattern was different from that of events 2041-9 and -20.

RNA analysis, using the *tcdA* coding region probe, was performed on the same group of greenhouse 2041 plants. Immunoblot analysis had revealed that plants 2041-9, 2041-20A, 2041-20B, and 2041-13-1 produced no detectable TcdA protein; while 2041-13-2 and 2041-13-5 produced substantial amounts of full-length TcdA. Northern analysis was in agreement with the immunoblot

result. A faint RNA signal was detected for plants 2041-9, 2041-20A, 2041-20B, and 2041-13-1. Only faintly visible was a band corresponding to full-length tcdA transcript in plant 2041-13.1. In contrast, for plants 2041-13-2 and 2041-13-5 a strong RNA signal was detected, with a substantial amount of full-length size (~8.0 kb) tcdA transcript. These data support the observed bioassay activity for this group of plants.

Genomic DNA was prepared from a second functionally active 2041 transgenic event, 2041-29. Southern analysis of this line was performed. A transgenic GUS line (2023) was included as a negative control, DNA of line 2041-9 was included as a positive control.

The genomic tobacco DNAs were restricted with the

enzyme SstI which should result in a 8.9 kb hybridization
product when hybridized to a tcdA gene specific probe.

The 8.9 kb hybridization product should consist of the
35T promoter and the tcdA coding region. For plant 204129-5, three hybridization products larger than 8.9 kb the

were detected with the tcdA gene specific probe.

Immunoblot analysis has demonstrated pre-pro TcdA protein
is made by this plant, it is therefore likely that a
restriction site was lost during transformation or
regeneration, or the 2041-29 genomic DNA was not

thoroughly digested.

D. Tobacco Leaf-Disk Tests With Tobacco Hornworm Exhibiting Insect Control

Leaves were sampled from tobacco plants, Nicotiana tabaco, previously transplanted into the greenhouse. A single leaf was sampled from each plant on each test date. Leaves were selected from the zone where younger elongate leaves transition into older ovate leaves. Excised leaves were placed into 12 oz. cups with the petiole submerged in water to maintain turgor, and transported to the laboratory.

Eight, 1.4 cm disks were cut from the center portion of one side of each leaf (right adaxial side up, with distal portion facing away from the observer). Each disk was placed individually into a well of a C-D

International 128 well tray (Pitman, NJ.) into which 0.5 ml of a 1.6% aqueous agar solution had been previously pipetted. The solidified agar prevented the leaf disks from drying out. The adaxial surface of the disk was always oriented up.

10 A single neonate tobacco hornworm, Manduca sexta, was placed on each disk and the wells were sealed with vented plastic lids. The assay was held at 27°C and 40% RH. Larval mortality and live-weight data were collected after 3 days. Data were subjected to analysis of variance and Duncan's multiple range test (α = 0.05) (Proc GLM, SAS Institute Inc., Cary, NC.). Data were transformed using a logarithmic function to correct a correlation between the magnitude of the mean and variance.

Table 6
Results of leaf-disk assays from greenhouse grown tobacco plants with event 2041-13.

	•	Weight of Surviving Larvae (mg) & Duncan's Group 1					Group l
TRT	Plant	Plant	Pretes	Test 1	Test 2	Test 3	3 Test
1		Age	t				Sum.
13	non-transformed - 2	young				18.8 a*	
14	non-transformed - 3	young				17.0 ab	
16	non-transformed - 5	young				16.4 ab	
3	2041-13-1 (western -)	young		17.6 a	18.2 a	16.1 ab	17.3 a
9	Gus Control	old	19.3 a	14.6 a	16.3 a	14.5 ab	15.1 a
10	non-transformed - 1	young		8.3 b	16.8 a	13.9 b	13.0 b
11	2041-20B (western -)	old		10.0 b*	13.7 ab	14.6 ab	12.9 b
15	non-transformed - 4	young				13.0 bc	
8	2041-20A (western -)	old	15.7 a	8.3 Ъ	11.3 bc	9.2 cd	9.6 c
12	2041-9 (western -)	old	19.5 a			7.9 d	
7	2041-13-5 (western +)	young		6.3 bc	9.6 cd	7.2 de	7.7 d
5	2041-13-3 (western +)	young		6.4	6.2 e	6.8 de**	6.4 de
	•			bc****			
1	2041-13A (western +)	old	7.2 b	6.8 bc*	7.0 de*	5.4 e	6.4 de
6	2041-13-4 (western +)	young		4.9 c****	5.8 e	7.6 d	6.4 de
4	2041-13-2 (western +)	young		5.7 bc	5.7 e**	7.5 d	6.3 de
2	2041-13B (western +)	old		4.7 c**	5.6 e	7.2 de	5.9 e

^{*} Number of stars corresponds to the number of dead larvae per 8 tested.

1. Data transformed (logarithm) for analysis. Means followed by the same letter are not significantly different (alpha = 0.05).

TABLE 7
Results Of Leaf-Disk Assays From Greenhouse Grown Tobacco
Plants

With Event 2041-29.

			MEAN WG	Γ (MG) / Dunca	an's Group	
Pla	nt	Test 1	Test 2	Test 3	Test 4	Four Test Summary
2014-6 G	US I	15.8 a	16.6a	**5.5bc	*12.9ab	13.2 a
2014-6 G	US 2	14.4 a	*6.6 bc	*13.4a	15.2a	12.6 a
KY-160 1	NTC	13.4 a	6.7 bc	7.9b	8.5bc	9.1 b
2041-29	P	*4.9 b	*7.3b	****6.9b	******	6.3 c
2041-29	7	*5.9 b	5.1bc	***6.7b	***7.2c	6.1 c
2041-29	3P	*5.6 b	**7.9b	*****6.5b	***3.6d	5.9 c
2041-29	P	6.3 b	****4.7c	******4.1c	******4.6d	5.4 c

* Number of stars corresponds to the number of dead larvae per 8 tested.

1. Data transformed (logarithm) for analysis.

Means followed by the same letter are not significantly different (alpha = 0.05).

All event 2041-29 plants significantly depressed THW

larval weight gain compared to control plants. Average
weight depression was 49%. Statistically significant
mortality occurred in THW larvae exposed to foliage from
2041-29 plants. Mortality averaged 37.5% compared to
5.2% in controls.

20

25

30

10

5

E. Isolation and Characterization of Functional Photorhabdus Toxin Protein From Transgenic Plants

Seven grams of transgenic tobacco plants (2041-13) expressing TcdA (Toxin A) gene were homogenized with 10 ml 50 mM Potassium Phosphate buffer, pH 7.0 using a bead beater (Biospec Products, Bartlesville, OK) according to manufacturer's instructions. The homogenate was filtered through four layers of cheese cloth and then centrifuged at 35,000 g for 15 min. The supernant was collected and filtered through 0.22 μ m Millipore ExpressTM membrane. It was then applied to a Superdex 200 cloumn (2.6 × 40 cm)

which had been equilibrated with 20 mM Tris buffer, pH 8.0 (Buffer A). The protein was eluted in Buffer A at a flow rate of 3 ml/min. Fractions with 3 ml each were collected and subjected to southern corn rootworm (SCR) bioassay. It was found that fractions corresponding to a native molecular weight around 860 kDa had the highest insecticidal activity. Western analysis of the active fraction using a polyclonal antibody specific to Toxin A indicated the presence of full-length TcdA peptide. active fractions were further combined and applied to a 10 Mono Q 10/10 column which had been equilibrated with Buffer A. Proteins bound to the column were then eluted by a linear gradient of 0 to 1 M NaCl in Buffer A. Fractions with 2 ml each were collected and analyzed by both SCR bioassay and Western using antibody specific to 15 Toxin A. The results again demonstrated the correlation between insecticidal activity and presence of full-length TcdA peptide.

F. Characterization of Progeny Transgenic Plants 20 The inheritability of the genetically engineering plants containing the Photorhabdus toxin gene was evaluated by generating F1 progeny. Progeny was generated from 2041-13 event by selfing expression positive plants. The 2041-13 plants in the greenhouse 25 were allowed to self-pollinate. Seed capsules were collected when mature and were allowed to dry and afterripen on the laboratory bench for two weeks. Seed from plant designated 2041-13A was surface-sterilized and distributed on the surface of medium TOB- without 30 selection, to allow recovery of nonexpressing or nontransgenic progeny as well as expressing and segregating transgenic siblings. Seed was germinated in a C lighted incubator room (16 H light, 28 C). After 1 month, fifty-one seedlings, designated 2041-13A-S1 35 through S51, were distributed into Magenta boxes

self-fertilized 2041-13 plants genetically engineered to produce the "204" A toxin. The tests included 6 non-expressing progeny (protein-negative controls), 45 toxin A expressors, and 4 non-transformed controls (KY-160).

Results are from three leaf-disk assays (method previously outlined) where eight disks were used per test. The data were analyzed using analysis of variance and were blocked by test.

The treatment effect for each of these analyses indicated the Pr > F was less than 0.0001. The Toxin A 10 expressors produced significant control of tobacco hornworm compared to each of the control groups based on each of the three measures of efficacy. The two control groups behaved similarly. Statistical analysis using ANOVA and an LSD test with alpha equal to 0.01 (or 1%) 15 showed differences between the 3 groups. The LSD test indicated that the non-expressors and the non-transformed plants were similar in larvae weights but the expressors gave weights significantly lower than either of the other two groups of plants. These data demonstrated that the 20 genetic basis for insect control was inheritable and corresponded to the presence of expressed toxin gene.

Table 8
Tobacco hornworm results from F1 progeny of selffertilized

25 fertilized 2041-13 tobacco plants.

[Mean Value and Duncan's Grouping ^d					
Treatment Group	Total Weight (mg) ^a	Survivor Weight (mg)b	Leaf Area (cm²) ^c			
Non-transformed Control	15.8 a	15.8 a	1.2 a			
Protein-negative Control	16.4 a	16.5 a	1.2 a			
Toxin A Expressor	8.1 b	9.2 b	4.9 b			

^a Average insect weight with dead insects considered to weigh nothing.

b Average insect weight with dead insects excluded from 30 analysis.

^c Total leaf area remaining per eight leaf disks. Initial area was approximately 12 cm².

different (alpha = 0.05).

Example 4

Transformation Of Maize With a Vector Carrying Plasmid pDAB1834 Encoding Photorhabdus Toxins

A. Preparation Of Maize Transformation Vectors

Containing Modified Plant-Optimized *Tcda* Coding Regions:

Plasmid Pdab1834

10

15

20

25

30

35

Preparation of maize transformation vectors was accomplished in two steps. First, a modified plantoptimized tcdA coding region was ligated into a plant expression cassette plasmid. In this step, the coding region was placed under the transcriptional control of a promoter functional in maize plant cells. RNA transcription termination and polyadenylation were mediated by a downstream copy of the terminator region from the Agrobacterium nopaline synthase gene. One plasmid designed to function in this role is pDAB1538. In the second step, the complete gene comprised of the promoter, coding region, and 3' UTR terminator region was ligated to a plant transformation vector that contained a plant expressible selectable marker gene which allowed the selection of transformed maize plant cells amongst a background of nontransformed cells. An example of such a vector is pDAB367.

It is a feature of plasmid pDAB1538 that any coding region having an NcoI site at its 5' end and a SacI site 3' to the coding region, when cloned into the unique NcoI and SacI sites of pDAB1538, is placed under the transcriptional control of the maize ubiquitin1 (ubil) promoter. It is also a feature of pDAB1538 that the 5' untranslated leader (UTR) sequence preceding the NcoI site comprises a polylinker. Additionally it is a feature of pDAB1538 that transcription termination and polyadenylation of the mRNA containing the introduced coding region are mediated by termination/Poly A addition

sequences derived from the nopaline synthase (Nos) gene. Finally; it is a feature of pDAB1538 that the entire assembly of promoter/coding region/3'UTR can be obtained as a single DNA fragment by cleavage at the flanking NotI sites.

It is a feature of pDAB367 that the phosphinothricin acetyl transferase protein, which has as its substrate phosphinothricin and related compounds, is produced in plant cells through transcription of its coding region mediated by the Cauliflower Mosaic Virus 35S promoter and that termination of transcription plus polyadenylation are mediated by the nopaline synthase terminator region. It is further a feature of pDAB367 that any DNA fragment containing flanking NotI sites can be cloned into the unique NotI site of pDAB367, thus physically linking the introduced DNA fragment to the aforementioned selectable marker gene.

To prepare a maize plant-expressible gene to produce the endoplasmic reticulum-targeted TcdA protein in plant cells, DNA of a plasmid (pAOH_4-ER) containing the plant-optimized, ER-targeted tcdA coding region, (SEQ ID No:6) was cleaved with restriction enzymes NcoI and SacI, and the large 7610 bp fragment was ligated to similarly-cut DNA of plasmid pDAB1538 to produce plasmid pDAB1832. DNA of pDAB1832 was then digested with NotI, and the 9984 bp NotI fragment was ligated into the unique NotI site of pDAB367 to produce plasmid pDAB1834.

It is a feature of plasmids pDAB1834 that the ubil and 35S promoters are encoded on the same DNA strand.

B. Transformation and Regeneration of Transgenic Maize Isolates

Type II callus cultures were initiated from immature zygotic embryos of the genotype "Hi-II." (Armstrong et al, (1991) Maize Genet. Coop. Newslett., 65: 92-93). Embryos were isolated from greenhouse-grown ears from

5

10

15

20

25

30

crosses between Hi-II parent A and Hi-II parent B or F2 embryos derived from a self- or sib-pollination of a Hi-II plant. Immature embryos (1.5 to 3.5 mm) were cultured on initiation medium consisting of N6 salts and vitamins (Chu et al, (1978) The N6 medium and its application to anther culture of cereal crops. Proc. Symp. Plant Tissue Culture, Peking Press, 43-56), 1.0 mg/L 2,4-D, 25mM L-proline, 100 mg/L casein hydrolysate, 10 mg/L AgNO₃, 2.5 g/L GELRITE (Schweizerhall, South Plainfield, NJ), and 20 g/L sucrose, with a pH of 5.8. After four to six weeks callus was subcultured onto maintenance medium (initiation medium in which AgNO₃ was omitted and L-proline was reduced to 6 mM). Selection for Type II callus took place for ca. 12-16 weeks.

Plasmid pDAB1834 was transformed into embryogenic callus. For blasting, 140 µg of plasmid DNA was precipitated onto 60 mg of alcohol-rinsed, spherical gold particles (1.5 - 3.0 µm diameter, Aldrich Chemical Co., Inc., Milwaukee, WI) by adding 74 µL of 2.5M CaCl₂ H₂O and 30 µL of 0.1M spermidine (free base) to 300 µL of plasmid DNA and H₂O. The solution was immediately vortexed and the DNA-coated gold particles were allowed to settle. The resulting clear supernatant was removed and the gold particles were resuspended in 1 ml of absolute ethanol.

This suspension was diluted with absolute ethanol to obtain 15 mg DNA-coated gold/mL.

Approximately 600 mg of embryogenic callus tissue was spread over the surface of Type II callus maintenance medium as described herein lacking casein hydrolysate and L-proline, but supplemented with 0.2 M sorbitol and 0.2 M mannitol as an osmoticum. Following a 4 h pre-treatment, tissue was transferred to culture dishes containing blasting medium (osmotic media solidified with 20 g/L TC agar (*Phyto*Technology Laboratories, LLC, Shawnee Mission, KS) instead of 7 g/L GELRITE. Helium blasting accelerated suspended DNA-coated gold particles towards

30

35

and into the prepared tissue targets. The device used was an earlier prototype of that described in US Patent 5,141,131 which is incorporated herein by reference. Tissues were covered with a stainless steel screen (104 µm openings) and placed under a partial vacuum of 25 inches of Hg in the device chamber. The DNA-coated gold particles were further diluted 1:1 with absolute ethanol prior to blasting and were accelerated at the callus targets four times using a helium pressure of 1500 psi, with each blast delivering 20 μL of the DNA/gold suspension. Immediately post-blasting, the tissue was transferred to osmotic media for a 16-24 h recovery period. Afterwards, the tissue was divided into small pieces and transferred to selection medium (maintenance medium lacking casein hydrolysate and L-proline but containing 30 mg/L BASTA® (AgrEvo, Berlin, Germany)). Every four weeks for 3 months, tissue pieces were nonselectively transferred to fresh selection medium. 7 weeks and up to 22 weeks, callus sectors found proliferating against a background of growth-inhibited tissue were removed and isolated. The resulting BASTA®resistant tissue was subcultured biweekly onto fresh selection medium. Following western analysis, positive transgenic lines were identified and transferred to regeneration media. Western-negative lines underwent subsequent RNA spot blot analysis to identify negative controls for regeneration.

Regeneration was initiated by transferring callus tissue to cytokinin-based induction medium, which consisted of Murashige and Skoog salts, hereinafter MS salts, and vitamins (Murashige and Skoog, (1962) Physiol. Plant. 15: 473-497) 30 g/L sucrose, 100 mg/L myo-inositol, 30 g/L mannitol, 5 mg/L 6-benzylaminopurine, hereinafter BAP, 0.025 mg/L 2,4-D, 30 mg/L BASTA®, and 2.5 g/L GELRITE at pH 5.7. The cultures were placed in low light (125 ft-candles) for one week followed by one

10

15

20

25

30

week in high light (325 ft-candles). Following a two week induction period, tissue was non-selectively transferred to hormone-free regeneration medium, which was identical to the induction medium except that it lacked 2,4-D and BAP, and was kept in high light. Small 5 (1.5-3 cm) plantlets were removed and placed in 150x25 mm culture tubes containing SH medium (SH salts and vitamins (Schenk and Hildebrandt, (1972) Can. J. Bot. 50:199-204), 10 g/L sucrose, 100 mg/L myo-inositol, 5 mL/L FeEDTA, and 2.5 g/L GELRITE, pH 5.8). Plantlets were transferred to 10 12 cm pots containing approximately 0.25 kg of METRO-MIX 360 (The Scotts Co. Marysville, OH) in the greenhouse as soon as they exhibited growth and developed a sufficient root system. They were grown with a 16 h photoperiod supplemented by a combination of high pressure sodium and 15 metal halide lamps, and were watered as needed with a combination of three independent Peters Excel fertilizer formulations (Grace-Sierra Horticultural Products Company, Milpitas, CA). At the 6-8 leaf stage, plants were transplanted to five gallon pots containing 20 approximately 4 kg METRO-MIX 360, and grown to maturity.

EXAMPLE 5

Characterization Of Transgenic Maize Plants

Expressing Photorhabdus Toxin That Confer Insect Control.

A. Insect Bioassays

A single leaf was sampled from each plant in each test. Eight, 1.4 cm disks were cut from the outer portion of each leaf (approximately 30cm long) avoiding the center vein. Each disk was placed individually into a well of a C-D International 128 well tray (Pitman, NJ.) into which 0.5 ml of a 1.6% aqueous agar solution had been previously pipetted. The solidified agar prevented the leaf disks from drying out. The adaxial surface of the disk was always oriented up.

30

35

Five neonate southern corn rootworms, Diabrotica undecimpunctata howardi, were placed on each disk and the wells were sealed with vented plastic lids. The assay was held at 27°C and 40% RH. Larval mortality and liveweight data were collected after 3 days. Data were subjected to analysis of variance and Duncan's multiple range test ($\alpha = 0.05$) (Proc GLM, SAS Institute Inc., Cary, NC.). Weight data were transformed using a logarithmic function to correct a correlation between the magnitude of the mean and variance.

TABLE 9
Results of Maize Leaf-disk Test vs SCR

Treatment	Mean % Kill (Duncan's)	Mean Survival Weight (mg) (Duncan's)
1834 - 11	68 A****	0.064 A
1834 - 17	44 B	0.098 B
1834 - 15	26 BC	0.127 C
HiII control	13 C	0.161 C

Note: Means followed by the same letter are not

significantly different based on Duncan's multiple range test (alpha=0.05). Insect groups weighing less than 0.1 mg were set to 0.03 mg instead of zero to conduct a more conservative analysis. Mortality (arcsin(sqrt)) and weight(log10) data were transformed for analyses.

20

25

15

10

The results shown in Table 9 demonstrated that two events expressing TcdA protein were statistically distinct from control lines bioassayed using SCR neonates by mortality and survival weight criteria. These results demonstrated that southern corn rootworm were functionally effected by feeding on maize plants containing and expressing the *tcdA* gene. Those plants from 1834-11 were used to generate progeny for testing of inheritability of transgene.

B. PRODUCTION AND PROGENY TEST OF tcdA TRANSGENIC MAIZE

Origin and growth of progeny plants: Sibling plants 1834-11-07 and 1834-11-08, clonally derived by regeneration from the callus of transgenic maize event 1834-11, were transplanted to the greenhouse and pollinated with inbred 00414. Seeds obtained from these crosses, comprising seed lots 1834-11-07A and 1834-11-08A, were planted in Rootrainers (1 % inch x 2 inch x 8 inch deep, product #647, C. Hummert Intl., Earth City, Mo.) filled with Metro-Mix 360 soilless mix (Scotts Terra-Lite, available from Hummert Intl.) and top irrigated with Hoagland's nutrient solution. (Hoagland's solution contains 229 ppm nitrogen as nitrate, 24.6 ppm nitrogen as ammonium, 26 ppm P, 157 ppm K, 187 ppm Ca, 49 ppm Mg. and 30 ppm Na.) Greenhouse conditions for this trial were: 16 hour days, daylight supplemented by metal halide lamps as needed to achieve a minimum of 600 ?Einsteins/cm² PAR, and ambient temperature 30 C days, 22 C nights.

20

10

15

Leaves were sampled for protein determination approximately one week after planting. Leaf bioassays were conducted 2-3 weeks after planting; root bioassays were initiated approximately 3 weeks post planting.

25

30

35

Protein analysis of progeny plants: Protein was extracted from leaf and root samples harvested from transgenic plants, line 1834-11 progenies, and non-transformed plants. Each sample was placed on a 1.6 x 4 cm piece of 3M Whatman paper. The paper was folded lengthwise and inserted in a flexible straw. A volume of 350 μ l of an extraction buffer (9.5 ml of 0.2 M NaH₂PO₄, 15.5 ml of 0.2 M Na₂HPO₄, 2 ml of 0.5 M Na₂EDTA, 100 ml of Triton X-100, 1 ml of 10% Sarkosyl, 78 ml of beta-mercaptoethanol, H₂O to bring total volume to 100 ml, 50 μ g/ml Antipain, 50 μ g/ml Leupeptin, 0.1 mM Chymostatin, 5 μ g/ml Pepstatin) was pipetted on to the paper. The straw containing the

sample was then passed through a rolling device used for squeezing the extract into a 1.5 ml microcentrifuge tube. The extract was centrifuged for 10 minutes at 14,000 rpm in an Eppendorf refrigerated micro-centrifuge. The supernatant was transferred into a new tube. The amount of the total extractable protein was determined using a standard BioRad Protein Analysis protocol (BioRad Laboratories, Hercules, CA).

The presence of the TcdA protein was visualized by Western blot analysis following a standard procedure for 10 protein separation (Laemmli, 1970). A volume of twenty ul of extract was loaded in each well of 4-20% gradient polyacrylamide gel (Owl Scientific Co., MA) for electrophoresis. Subsequently, the protein was transferred onto a nitrocellulose membrane using a semi-15 dry electroblotter (Pharmacia LKB Biotechnology, Piscataway, NJ). The membrane was incubated for one hour in TBST-M solution (10% milk in TBST solution; 25 mM Tris HCL pH 7.4, 136 mM NaCl, 2.7 mM KCl, 0.1% Tween 20). Thereafter, the primary antibody (Anti-TcdA in TBST-M) 20 was added. After one hour, the membrane was washed with TBST for five minutes, three times. Then the secondary antibody solution (goat anti-rabbit IgG conjugated to horseradish peroxidase; Bio-Rad Laboratories, in TBST-M) was added to the membrane. After one hour of incubation, 25 the membrane was washed with an excess amount of TBST for 10 minutes, four times. The protein was visualized using the Super Signal® West Pico chemiluminescence method (Pierce Chemical Co., Rockford, IL). The protein blot was exposed on a Hyper-film (Amersham, Arlington Heights, 30 IL) and was developed within 3 minutes. The intensity of the protein band was measured using a densitometer (Molecular Dynamics Inc., Sunnyvale, CA) and compared to standards.

Three of six plants from seed lot 1834-11-07A and three of six plants from seed lot 1834-11-08A produced

detectable levels of TcdA protein (Table 1).

Approximately 3.8 to 13.3 ppm of TcdA were detected in the leaf blades and 4.1 to 8.4 ppm were detected in the leaf tips of the protein-positive plants. The amounts of TcdA protein detected in the roots were slightly lower than those found in the leaves.

Insect bioassays with progeny plants: Plants were selected for bioassay based on results from Western blot 10 analysis. Twelve (12), 6.4 mm diameter leaf discs were cut from the youngest leaf of each 2 week old seedling. Each disc was placed in a well of a 128-well tray (CD International) containing approximately 0.5mL of a solidified 2% agar in water solution. Two neonate southern corn rootworm, Diabrotica undecimpunctata 15 howardi (Barber) (SCR), were placed in each well with a leaf disc. Trays were covered with perforated lids and maintained under a controlled environment for 3 days (28 C; 16 hours light: 8 hours dark; approx. 60% relative humidity). Living larvae from 4 leaf discs were pooled 20 and weighed producing 3 weight determinations per plant. Average weights were calculated by dividing the pooled weight by the number of survivors. Differences in average weights of SCR fed leaf discs from protein positive and protein negative plants were assessed using 25 analysis of variance on the natural log-transformed average weights (Minitab, v. 12.2, Minitab Inc., State College, PA).

Root bioassays were initiated approximately 1 week after the initiation of the leaf disc bioassays. Approximately 24h prior to eclosion, SCR eggs were suspended in a 0.15% solution of agar in water to a concentration of 100 eggs/ml. Plants were inoculated with SCR eggs by pipetting 2.0 ml of the egg suspension (ie., approximately 200 eggs) just below the soil surface at the base of each plant. Two weeks after inoculation, plants were removed from their Rootrainer pots, their

30

35

roots washed free of potting mix, and scored for rootworm damage based on a 1 (resistant) to 9 (susceptible) rating system (Welch, 1977). The results of the root ratings were examined using non-parametric tests to determine if the distribution of root ratings from the protein positive plants was the same as the distribution of the ratings from the protein negative plants. Testing was done at the 5% significance level. (StatXact v.3, CYTEL Software Corporation, Cambridge MA)

10

15

Results from leaf and root bioassays of tcdA protein positive and protein negative progeny plants are summarized in Table 10. The average weights of SCR larvae fed leaf discs from protein positive plants were significantly lower than those of larvae fed leaf discs from protein negative plants (F = 4.6; d.f. = 1, 34; $P \le 0.001$. The Kolmogorov-Smirnov 2 sample test (p=0.04) and the Wald Wolfowitz runs test (p=0.001) indicated that the protein positive and protein negative root rating distributions were not similar. The Wilcoxon- Mann-Whitney test (p=0.0206) and the Normal Scores test (p=0.206) indicated that the average score for the protein positive plants was lower than the average root rating from the protein negative plants.

25

20

Table 10. Protein analysis and insect bioassay results with progeny of TcdA transgenic maize.

Plant	TcdA	Leaf Disc	Root Bioassay
		Bioassay	
Number	Protein	Avg. Wt. (mg)	Root Rating
			(1-9)
1834-11-07A-30	PRO-	0.190	8
1834-11-08A-21	PRO-	0.196	9 .
1834-11-08A-16	PRO-	0.195	9
1834-11-08A-14	PRO-	0.137	9
1834-11-07A-22	PRO-	0.208	9
1834-11-07A-20	PRO-	0.175	9

PRO+	0.118	9
PRO+	0.132	8
PRO+	0.110	2
PRO+	0.106	4
PRO+	0.129	8
PRO+	0.108	4
	PRO+ PRO+ PRO+	PRO+ 0.132 PRO+ 0.110 PRO+ 0.106 PRO+ 0.129

DNA analysis of progeny plants: Leaf samples from 1834-11.7A and 1834-11.8A progeny plants were in conical 50 ml polypropylene tubes and dried in a Labconco Freeze Dry Lyophilizer (Kansas City, MO) for 1-2 days. Lyophilized 5 leaves were then ground in a Tecator Cyclotec 1093 Sample mill grinder (Hoganas, Sweden) and stored at -20C. Genomic DNA was extracted by the following procedure: (1) to a 25 ml Conical tube containing 300-500 mg of ground tissue, 9 ml of CTAB (cetyl trimethylammonium bromide 10 solution) was added, and incubated at 65°C for 1 hour; (2) 4.5 ml of chloroform: octanol (24:1) was added and mixed gently for 5 minutes; (3) samples were centrifuged at 2000 rpm and DNA was precipitated from the supernatant with an equal volume of isopropanol; (4) DNA was 15 collected on a glass hook, washed in ethanol, and dissolved in TE (10 mM Tris.HCl, 0.5 mM EDTA, pH8.0).

Genomic DNA was digested at 37 °C. for 2 hours in an Eppendorf tube containing the following mixture: 20 8 μl of 800ug/ml DNA, 2 μl 1 mg/ml BSA (Bovine serum albumin),2 μl 10x buffer, 1 μl SacI, 1 μl EcoRI, and 6 μl H2O. Digested DNA samples were electrophoresed overnight at 40 mA in a 0.85% SeaKem LE agarose gel (FMC, Rockland, Maine). The gel was blotted onto Millipore Immobilon-Ny+ 25 (Bedford, MA) membrane overnight in 20X SSC (NaCl 175.2 q/l, Na citrate 88 g/l). The probe DNA was cut with BamHI/SacI (NEB, Beverly, MA) from pDAB1551 plasmid, which released a 7356 bp fragment containing the open reading frame of the rebuilt tcdA gene. This 7356 bp 30 fragment was labeled with P32 using a Stratagene Prime-it

RmT dCTP-Labeling Reactions kit (La Jolla, CA) and used for Southern hybridization. Hybridization was conducted in hybridization buffer (10% polyethylene glycol, 7% SDS [Sodium dodecyl sulfate], 0.6X SSC, 10 mM NaPO₄, 5 mM EDTA, 10 µg/ml denatured salmon sperm) at 60 °C overnight. After hybridization, the membrane was washed with 10X SSC plus 0.1% SDS at 60 °C for 30 min and exposed to X ray film (Hyperfilm® MP, Amershan Life Sciences, Piscataway, NJ) for 1-2 days.

10

15

20

30

35

5

Results summarized indicate that a pattern of 8 hybridizing bands (the size of the expected fragment and larger) cosegregated with protein expression in 50% of all progeny assayed. These results are characteristic of a complex insertion at a single site. All seedlings containing the insert also expressed toxin protein.

Example 6
Transformation Of Rice With a Vector Carrying Plasmid
pDAB1553 Encoding *Photorhabdus* Toxins

A. Plasmid pDAB1553

Plasmid pDAB1553 containing tcdA driven by the maize ubiquitinl promoter and hpt (hygromycin

phosphotransferase providing resistance to the antibiotic hygromycin) under the control of 35T (a modified 35S promoter), was used for transformation.

vectors rice transformation was Preparation of accomplished in two steps. First, a modified plantoptimized tcdA coding region was ligated into a rice plant expression cassette plasmid. In this step, transcriptional placed under the coding region was control of a promoter functional in plant cells. RNA polyadenylation transcription termination and were mediated by a downstream copy of the terminator region from the Agrobacterium nopaline synthase gene. One

plasmid designed to function in this role is plasmid in the section on pDAB1538 (described transformation vectors). In the second step, complete gene comprised of the promoter, coding region, and terminator region was ligated to a rice plant transformation vector that contained a plant expressible selectable marker gene which allowed the selection of transformed rice plant cells amongst a background of nontransformed cells. An example of such a vector is pDAB354-Not1.

It is a feature of pDAB354-Not1 that the hygromycin phosphotransferase protein, which has as its substrate hygromycin B and related compounds, is produced in plant cells through transcription of its coding region mediated by the Cauliflower Mosaic Virus 35S promoter and that termination of transcription plus polyadenylation are mediated by the nopaline synthase terminator region. It is further a feature of pDAB354-Not1 that any DNA fragment containing flanking NotI sites can be cloned into the unique NotI site of pDAB354-Not1, thus physically linking the introduced DNA fragment to the aforementioned selectable marker gene.

To prepare a plant-expressible gene to produce the non-targeted TcdA protein in rice plant cells, DNA of a plasmid (pAOH_4-OPTI) containing the plant-optimized tcdA coding region, (SEQ ID No:3) was cleaved with restriction enzymes NcoI and SacI, and the large 7550 bp fragment was ligated to similarly-cut DNA of plasmid pDAB1538 to produce plasmid pDAB1551. DNA of pDAB1551 was then digested with NotI, and the large 9933 bp fragment was ligated to NotI digested DNA of pDAB354-Not1 to produce plasmid pDAB1553.

It is a feature of plasmid pDAB1553 that the ubil and 35S promoters are encoded on the same DNA strand.

35 B. Production of Rice transgenics

5

10

15

20

25

30

For initiation of embryogenic callus, mature seeds of a Japonica cultivar, Taipei 309 were dehusked and surface-sterilized in 70% ethanol for 2-5 min. followed by a 30-45 min soak in 50% commercial bleach (2.6% sodium hypochlorite) with a few drops of 'Liquinox' soap. 5 seeds were then rinsed 3 times in sterile distilled water and placed on filter paper before transferring to 'callus induction' medium (i.e., NB). The NB medium consisted of N6 macro elements (Chu, 1978, The N6 medium and its application to anther culture of cereal crops. Proc. 10 Symp. Plant Tissue Culture, Peking Press, p43-56), B5 micro elements and vitamins (Gamborg et al., 1968, Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151-158), 300 mg/L casein hydrolysate, 500 mg/L L-proline, 500 mg/L L-glutamine, 30 15 g/L sucrose, 2 mg/L 2,4-dichloro-phenoxyacetic acid (2,4-D), and 2.5 g/L gelrite (Schweizerhall, NJ) with the pH adjusted to 5.8. The mature seed cultured on 'induction' media were incubated in the dark at 28°C. After 3 weeks of culture, the emerging primary callus induced from the 20 scutellar region of mature embryo was transferred to fresh NB medium for further maintenance.

About 140 µg of plasmid pDAB1553 DNA was precipitated onto 60 mg of 1.0 micron (Bio-Rad) gold particles as described herein.

For helium blasting, actively growing embryogenic callus cultures, 2-4 mm in size, were subjected to a high osmoticum treatment. This treatment included placing of callus on NB medium with 0.2 M mannitol and 0.2 M sorbitol (Vain et al., 1993, Osmoticum treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12: 84-88) for 4 h before helium blasting. Following osmoticum treatment, callus cultures were transferred to 'blasting' medium (NB+2% agar) and covered with a stainless steel screen (230 micron). The callus cultures were blasted at

25

30

35

2,000 psi helium pressures twice per target. After blasting, callus was transferred back to the media with high osmoticum overnight before placing on selection medium, which consisted NB medium with 30 mg/L $^{\circ}$

- 5 hygromycin. After 2 weeks, the cultures were transferred to fresh selection medium with a higher concentration of selection agent, i.e., NB+50mg/L hygromycin (Li et al., 1993, An improved rice transformation system using the biolistic method. Plant Cell Rep. 12: 250-255).
- Compact, white-yellow, embryogenic callus cultures, 10 recovered on NB+50 mg/L hygromycin, were regenerated by transferring to 'pre-regeneration' (PR) medium + 50 mg/L hygromycin. The PR medium consisted of NB medium with 2 mg/L benzyl aminopurine (BAP), 1 mg/L naphthalene acetic acid (NAA), and 5 mg/L abscisic acid (ABA). After 2 15 weeks of culture in the dark, they were transferred to 'regeneration' (RN) medium . The composition of RN medium is NB medium with 3 mg/L BAP, and 0.5 mg/L NAA. The cultures on RN medium were incubated for 2 weeks at 28° C under high fluorescent light (325-ft-candles). 20 plantlets with 2 cm shoot were transferred to 1/2 MS medium (Murashige and Skoog, 1962, A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant.15:473-497) with 1/2 B5 vitamins, 10 g/L sucrose, 0.05 mg/L NAA, 50 mg/L hygromycin and 2.5 g/L 25 gelrite adjusted to pH 5.8 in magenta boxes. When plantlets were established with well-developed root systems, they were transferred to soil (1 metromix: 1 top soil) and raised in the greenhouse (29/24°C day/night cycle, 50-60% humidity, 12 h photoperiod) until maturity. 30

EXAMPLE 7

Chacterization Of Transgenic Rice Plants Expressing
35 Photorhabdus Toxin That Confer Insect Control.

A. Insect bioassays

5

10

15

Insect bioassays were performed using leaf discs and shown to be highly effective in controlling Southern corn rootworm. Diabrotica undecimpunctata howardi eggs are obtained from French Ag Research and hatched in petri dishes held at 28.5°C and 40% RH. The aerial parts are sampled from the transgenic plants and placed, singly into inverted petri dishes (100x15mm) containing 15ml of 1.6% aqueous agar in the bottom to provide humidity and filter paper in the top to absorb condensation. These preparations are infested with five neonate larvae per dish and held at 28.5°C and 40% RH for 3 days. Mortality and larval weights are recorded. Weight data were transformed using a logarithmic function to correct a correlation between the magnitude of the mean and variance.

Table 11

Treatment	Average Survivor Weight in mg¹ (Duncan's Grouping)	Presence TcdA greenhouse-grown plants (number of +/number of plants tested)
GUS Control	0.390 A	-
1553-33	0.170 BCD	++
1553-44	0.167 BCD	+++
1553-62	0.125 CD	+++
1553-41	0.100 D	+++

Note: Means followed by the same letter are not significantly different based on Duncan's multiple range test (alpha=0.05).

Insect groups weighing less than 0.1 mg were set to 0.03 mg instead of zero to conduct a more conservative analysis.

Weight data were transformed (Log10) for analyses. A single replicate was used on each of three test dates. Plants were sampled from magenta boxes.

The results demonstrate that in leaf disc bioassays, several rice events derived by transformation with *tcdA* gene were demonstrated to statistically have a functional affect on corn rootworm neonate.

30

20

Claims

- 1. An isolated nucleic acid of SEQ ID NO: 3 or SEQ ID NO:4.
- 2. A transgenic monocot cell having a genome comprising SEQ ID NO:3 or SEQ ID NO:4.
 - 3. A transgenic dicot cell having a genome comprising SEQ ID NO:3 or SEQ ID NO:4.
 - 4. A transgenic plant with a genome comprising a nucleic acid of SEQ ID NO: 3 or SEQ ID NO:4 that imparts insect resistance.
 - 5. A transgenic plant of claim 4 wherein the plant is rice.
 - 6. A transgenic plant of claim 4 wherein the plant is maize.
- 15 7. A transgenic plant of claim 4 wherein the plant is tobacco.

10

SEQUENCE LISTING

<110	Me He Ro Gu Sc	rlo, rman bert o, L hafe khap	Don, Ros, Jining, Binda	ald d ean g arry , Ki	tisr	i										
<120	> Tr	ansg	enic	Pla	nts	Expr	essi	ng P	hoto	rhab	dus	Toxi	n			
<130	> 50	698														
<140 <141																
<150 <151													•			
<160	> 8															
<170	> Pa	tent	In V	er.	2.0											
<210 <211 <212 <213	> 75 > DN	IA	habd	lus 1	.umir	nesce	ens									
<220 <221 <222	> CE		7548	;)												
<400										a+ 5	++-	222	300	Cag	tat	48
atg Met 1	aac Asn	gag Glu	Ser	Val 5	Lys	Glu	Ile	Pro	Asp 10	Val	Leu	Lys	Ser	Gln 15	Cys	40
ggt Gly	ttt Phe	aat Asn	tgt Cys 20	ctg Leu	aca Thr	gat Asp	att Ile	agc Ser 25	cac His	agc Ser	tct Ser	ttt Phe	aat Asn 30	gaa Glu	ttt Phe	96
cgc Arg	cag Gln	caa Gln 35	gta Val	tct Ser	gag Glu	cac His	ctc Leu 40	tcc Ser	tgg Trp	tcc Ser	gaa Glu	aca Thr 45	cac His	gac Asp	tta Leu	144
tat Tyr	cat His 50	gat Asp	gca Ala	caa Gln	cag Gln	gca Ala 55	caa Gln	aag Lys	gat Asp	aat Asn	cgc Arg 60	ctg Leu	tat Tyr	gaa Glu	gcg Ala	192
cgt Arg 65	att Ile	ctc Leu	aaa Lys	cgc Arg	gcc Ala 70	aat Asn	ccc Pro	caa Gln	tta Leu	caa Gln 75	aat Asn	gcg Ala	gtg Val	cat His	ctt Leu 80	240
gcc Ala	att Ile	ctc Leu	gct Ala	ccc Pro .85	aat Asn	gct Ala	gaa Glu	ctg Leu	ata Ile 90	ggc Gly	tat Tyr	aac Asn	aat Asn	caa Gln 95	ttt Phe	288
agc Ser	ggt Gly	aga Arg	gcc	agt Ser	caa Gln	tat Tvr	gtt Val	gcg Ala	ccg	ggt Glv	acc Thr	gtt Val	tct Ser	tcc Ser	atg Met	336

100		105	110
		gaa ctt tat cgt ga Glu Leu Tyr Arg Gl 12	u Ala Arg Asn
		tat ctg gat acc cg Tyr Leu Asp Thr Ar 140	
		caa aat atg gat at Gln Asn Met Asp II 155	
		tta ttg gaa agc at Leu Leu Glu Ser Il 170	
		gtg atg gaa atg ct Val Met Glu Met Le 185	
		cat gat gct tat ga His Asp Ala Tyr Gl 20	u Asn Val Arg
		gga ctt gag caa ct Gly Leu Glu Gln Le 220	
		caa gcc tcc cta tt Gln Ala Ser Leu Le 235	
		aat att ctg acg ga Asn Ile Leu Thr Gl 250	
		aag aaa aat ttt gg Lys Lys Asn Phe G 265	
		tac ctt aaa cgt ta Tyr Leu Lys Arg Ty 28	yr Tyr Asn Leu
		att ggt aaa gcc ag Ile Gly Lys Ala Se 300	
	-	ctt att act ccg gt Leu Ile Thr Pro Va 315	
		cgg atc acc cgc gg Arg Ile Thr Arg G 330	
	Met Asp Val Glu	cta ttt ccc ttc go Leu Phe Pro Phe G 345	

tat Tyr	cgg Arg	tta Leu 355	gat Asp	tat Tyr	aaa Lys	ttc Phe	aaa Lys 360	aat Asn	ttt Phe	tat Tyr	aat Asn	gcc Ala 365	tct Ser	tat Tyr	tta Leu	1104
tcc Ser	atc Ile 370	aag Lys	tta Leu	aat Asn	gat Asp	aaa Lys 375	aga Arg	gaa Glu	ctt Leu	gtt Val	cga Arg 380	act Thr	gaa Glu	ggc Gly	gct Ala	1152
cct Pro 385	caa Gln	gtc Val	aat Asn	ata Ile	gaa Glu 390	tac Tyr	tcc Ser	gca Ala	aat Asn	atc Ile 395	aca Thr	tta Leu	aat Asn	acc Thr	gct Ala 400	1200
gat Asp	atc Ile	agt Ser	caa Gln	cct Pro 405	ttt Phe	gaa Glu	att Ile	ggc Gly	ctg Leu 410	aca Thr	cga Arg	gta Val	ctt Leu	cct Pro 415	tcc Ser	1248
ggt Gly	tct Ser	tgg Trp	gca Ala` 420	tat Tyr	gcc Ala	gcc Ala	gca Ala	aaa Lys 425	ttt Phe	acc Thr	gtt Val	gaa Glu	gag Glu 430	tat Tyr	aac Asn	1296
caa Gln	tac Tyr	tct Ser 435	ttt Phe	ctg Leu	cta Leu	aaa Lys	ctt Leu 440	aac Asn	aag Lys	gct Ala	att Ile	cgt Arg 445	cta Leu	tca Ser	cgt Arg	1344
												gtg Val				1392
aat Asn 465	cta Leu	caa Gln	ctg Leu	gat Asp	atc Ile 470	aac Asn	aca Thr	gac Asp	gta Val	tta Leu 475	ggt Gly	aaa Lys	gtt Val	ttt Phe	ctg Leu 480	1440
act Thr	aaa Lys	tat Tyr	tat Tyr	atg Met 485	cag Gln	cgt Arg	tat Tyr	gct Ala	att Ile 490	cat	gct Ala	gaa Glu	act Thr	gcc Ala 495	ctg Leu	1488
ata Ile	cta Leu	tgc Cys	aac Asn 500	gcg Ala	cct Pro	att Ile	tca Ser	caa Gln 505	cgt Arg	tca Ser	tat Tyr	gat Asp	aat Asn 510	caa Gln	cct Pro	1536
agc Ser	caa Gln	ttt Phe 515	gat Asp	cgc Arg	ctg Leu	ttt Phe	aat Asn 520	acg Thr	cca Pro	tta Leu	ctg Leu	aac Asn 525	gga Gly	caa Gln	tat Tyr	1584
ttt Phe	tct Ser 530	acc Thr	ggc Gly	gat Asp	gag Glu	gag Glu 535	att Ile	gat Asp	tta Leu	aat Asn	tca Ser 540	ggt Gly	agc Ser	acc Thr	Gly ggc	1632
gat Asp 545	tgg Trp	cga Arg	aaa Lys	acc Thr	ata Ile 550	ctt Leu	aag Lys	cgt Arg	gca Ala	ttt Phe 555	Asn	att Ile	gat Asp	gat Asp	gtc Val 560	1680
tcg Ser	ctc Leu	ttc Phe	cgc Arg	ctg Leu 565	ctt Leu	aaa Lys	att Ile	acc	gac Asp 570	His	gat Asp	aat Asn	aaa Lys	gat Asp 575	Gly	1728
aaa Lys	att Ile	aaa Lys	aat Asn 580	Asn	cta Leu	aag Lys	aat Asn	ctt Leu 585	Ser	aat Asn	tta Leu	tat Tyr	att Ile 590	Gly	aaa Lys	1776

tta Leu	ctg Leu	gca Ala 595	gat Asp	att Ile	cat His	caa Gln	tta Leu 600	acc Thr	att Ile	gat Asp	gaa Glu	ctg Leu 605	gat Asp	tta Leu	tta Leu	1824
ctg Leu	att Ile 610	gcc Ala	gta Val	ggt Gly	gaa Glu	gga Gly 615	aaa Lys	act Thr	aat Asn	tta Leu	tcc Ser 620	gct Ala	atc Ile	agt Ser	gat Asp	1872
aag Lys 625	caa Gln	ttg Leu	gct Ala	acc Thr	ctg Leu 630	atc Ile	aga Arg	aaa Lys	ctc Leu	aat Asn 635	act Thr	att Ile	acc Thr	agc Ser	tgg Trp 640	1920
cta Leu	cat His	aca Thr	cag Gln	aag Lys 645	tgg Trp	agt Ser	gta Val	ttc Phe	cag Gln 650	cta Leu	ttt Phe	atc Ile	atg Met	acc Thr 655	tcc Ser	1968
acc Thr	agc Ser	tat Tyr	aac Asn 660	aaa Lys	acg Thr	cta Leu	acg Thr	cct Pro 665	gaa Glu	att Ile	aag Lys	aat Asn	ttg Leu 670	ctg Leu	gat Asp	2016
acc Thr	gtc Val	tac Tyr 675	cac His	ggt Gly	tta Leu	caa Gln	ggt Gly 680	ttt Phe	gat Asp	aaa Lys	gac Asp	aaa Lys 685	gca Ala	gat Asp	ttg Leu	2064
cta Leu	cat His 690	gtc Val	atg Met	gcg Ala	ccc Pro	tat Tyr 695	att Ile	gcg Ala	gcc Ala	acc Thr	ttg Leu 700	caa Gln	tta Leu	tca Ser	tcg Ser	21.12
gaa Glu 705	aat Asn	gtc Val	gcc Ala	cac His	tcg Ser 710	gta Val	ctc Leu	ctt Leu	tgg Trp	gca Ala 715	gat Asp	aag Lys	tta Leu	cag Gln	ccc Pro 720	2160
ggc Gly	gac Asp	ggc Gly	gca Ala	atg Met 725	aca Thr	gca Ala	gaa Glu	aaa Lys	ttc Phe 730	tgg Trp	gac Asp	tgg Trp	ttg Leu	aat Asn 735	act Thr	2208
aag Lys	tat Tyr	acg Thr	ccg Pro 740	Gly	tca Ser	tcg Ser	gaa Glu	gcc Ala 745	gta Val	gaa Glu	acg Thr	cag Gln	gaa Glu 750	cat His	atc Ile	2256
gtt Val	cag Gln	tat Tyr 755	tgt Cys	cag Gln	gct Ala	ctg Leu	gca Ala 760	caa Gln	ttg Leu	gaa Glu	atg Met	gtt Val 765	tac Tyr	cat His	tcc Ser	2304
acc Thr	ggc Gly 770	Ile	aac Asn	gaa Glu	aac Asn	gcc Ala 775	ttc Phe	cgt Arg	cta Leu	ttt Phe	gtg Val 780	Thr	aaa Lys	cca Pro	gag Glu	2352
atg Met 785	Phe	ggc Gly	gct Ala	gca Ala	act Thr 790	Gly	gca Ala	gcg Ala	Pro	gcg Ala 795	His	gat Asp	gcc Ala	ctt Leu	tca Ser 800	2400
ctg Leu	att Ile	atg Met	ctg Leu	aca Thr 805	Arg	ttt Phe	gcg Ala	gat Asp	tgg Trp 810	Val	aac Asn	gca Ala	cta Leu	ggc Gly 815	Glu	2448
aaa Lys	gcg Ala	tcc Ser	Ser 820	Val	cta Leu	gcg Ala	gca Ala	ttt Phe 825	Glu	gct Ala	aac Asr	tcg Ser	tta Leu 830	Thr	gca	2496
gaa	caa	ctg	gct	gat	gcc	atç	aat	ctt	gat	gct	: aat	: ttg	ctg	ttg	caa	2544

Glu	Gln	Leu 835	Ala	Asp	Ala	Met	Asn 840	Leu	Asp	Ala	Asn	Leu 845	Leu	Leu	Gln	
gcc Ala	agt Ser 850	att Ile	caa Gln	gca Ala	caa Gln	aat Asn 855	cat His	caa Gln	cat His	ctt Leu	ccc Pro 860	cca Pro	gta Val	act Thr	cca Pro	2592
gaa Glu 865	aat Asn	gcg Ala	ttc Phe	tcc Ser	tgt Cys 870	tgg Trp	aca Thr	tct Ser	atc Ile	aat Asn 875	act Thr	atc Ile	ctg Leu	caa Gln	tgg Trp 880	2640
gtt Val	aat Asn	gtc Val	gca Ala	caa Gln 885	caa Gln	ttg Leu	aat Asn	gtc Val	gcc Ala 890	cca Pro	cag Gln	ggc Gly	gtt Val	tcc Ser 895	gct Ala	2688
ttg Leu	gtc Val	GJ À āāā	ctg Leu 900	gat Asp	tat Tyr	att Ile	caa Gln	tca Ser 905	atg Met	aaa Lys	gãg Glu	aca Thr	ccg Pro 910	acc Thr	tat Tyr	2736
gcc Ala	cag Gln	tgg Trp 915	gaa Glu	aac Asn	gcg Ala	gca Ala	ggc Gly 920	gta Val	tta Leu	acc Thr	gcc Ala	ggg Gly 925	ttg Leu	aat Asn	tca Ser	2784
caa Gln	cag Gln 930	gct Ala	aat Asn	aca Thr	tta Leu	cac His 935	gct Ala	ttt Phe	ctg Leu	gat Asp	gaa Glu 940	tct Ser	cgc Arg	agt Ser	gcc Ala	2832
gca Ala 945	tta Leu	agc Ser	acc Thr	tac Tyr	tat Tyr 950	atc Ile	cgt Arg	caa Gln	gtc Val	gcc Ala 955	aag Lys	gca Ala	gcg Ala	gcg Ala	gct Ala 960	2880
att Ile	aaa Lys	agc Ser	cgt Arg	gat Asp 965	gac Asp	ttg Leu	tat Tyr	caa Gln	tac Tyr 970	tta Leu	ctg Leu	att Ile	gat Asp	aat Asn 975	cag Gln	2928
gtt Val	tct Ser	gcg Ala	gca Ala 980	ata Ile	aaa Lys	acc Thr	acc Thr	cgg Arg 985	atc Ile	gcc Ala	gaa Glu	gcc Ala	att Ile 990	gcc Ala	agt Ser	2976
att Ile	caa Gln	ctg Leu 995	tac Tyr	gtc Val	aac Asn	Arg	gca Ala 1000	Leu	Glu	Asn	gtg Val	Glu	Glu	aat Asn	gcc Ala	3024
aat Asn	tcg Ser 1010	ggg Gly	gtt Val	atc Ile	Ser	cgc Arg 1015	caa Gln	ttc Phe	ttt Phe	Ile	gac Asp 1020	tgg Trp	gac Asp	aaa Lys	tac Tyr	3072
aat Asn 102	aaa Lys 5	cgc Arg	tac Tyr	agc Ser	act Thr 1030	tgg Trp	gcg Ala	ggt Gly	Val	tct Ser 1035	Gln	tta Leu	gtt Val	Tyr	tac Tyr 1040	3120
ccg Pro	gaa Glu	aac Asn	tat Tyr	att Ile 1045	Asp	ccg Pro	acc Thr	atg Met	cgt Arg 1050	Ile	gga Gly	caa Gln	Thr	aaa Lys 1055	Met	3168
atg Met	gac Asp	Ala	tta Leu 1060	Leu	caa Gln	tcc Ser	gtc Val	agc Ser 1065	Gln	agc Ser	caa Gln	tta Leu	aac Asn 1070	Ala	gat Asp	3216
acc Thr	gtc Val	gaa Glu	gat Asp	gcc Ala	ttt Phe	atg Met	tct Ser	tat Tyr	ctg Leu	aca Thr	tcg Ser	ttt Phe	gaa Glu	caa Glm	gtg Val	3264

1075 1080 1085

				t aat att aa p Asn Ile As: 1100		3312
	eu Thr Tyr I			a act gat gc u Thr Asp Al 5		3360
				c aac gac gg e Asn Asp Gl		3408
gcg gct aa Ala Ala As	at gcc tgg a sn Ala Trp S 1140	Ser Glu Trp	cat aaa at His Lys Il 1145	t gat tgt cc e Asp Cys Pr 115	o Ile Asn	3456
	s Ser Thr			t aaa tcc cg r Lys Ser Ar 1165		3504
				a cag aca gg s Gln Thr Gl 1180		3552
aaa gat go Lys Asp Gl 1185	ly Tyr Gln '	act gaa acg Thr Glu Thr 190	gat tat cg Asp Tyr Ar 119	t tat gaa ct g Tyr Glu Le 5	a aaa ttg u Lys Leu 1200	3600
				g cca atc ac r Pro Ile Th		3648
gtc aat aa Val Asn Ly	aa aaa ata ys Lys Ile 1220	tcc gag cta Ser Glu Leu	aaa ctg ga Lys Leu Gl 1225	a aaa aat ag u Lys Asn Ar 123	g Ala Pro	3696
gga ctc ta Gly Leu Ty 123	yr Cys Ala	ggt tat caa Gly Tyr Gln . 1240	Gly Glu As	t acg ttg ct p Thr Leu Le 1245	g gtg atg u Val Met	3744
ttt tat aa Phe Tyr As 1250	ac caa caa sn Gln Gln	gac aca cta Asp Thr Leu 1255	gat agt ta Asp Ser Ty	it aaa aac go yr Lys Asn Al 1260	t tca atg a Ser Met	3792
caa gga c Gln Gly Lo 1265	eu Tyr Ile	ttt gct gat Phe Ala Asp 270	atg gca to Met Ala Se 127	cc aaa gat at er Lys Asp Me 75	g acc cca t Thr Pro 1280	3840
gaa cag a Glu Gln S	gc aat gtt er Asn Val 1285	tat cgg gat Tyr Arg Asp	aat agc ta Asn Ser Ty 1290	at caa caa tt yr Gln Gln Ph	t gat acc le Asp Thr 1295	3888
aat aat g Asn Asn V	tc aga aga al Arg Arg 1300	gtg aat aad Val Asn Asr	c cgc tat go n Arg Tyr Al 1305	ca gag gat ta la Glu Asp Ty 131	r Glu Ile	3936
	er Val Ser		Asp Tyr G	gt tgg gga ga ly Trp Gly As 1325		3984

ctc agc atg g Leu Ser Met V 1330	ta tat aac gga al Tyr Asn Gly 133	Asp Ile P	ca act atc aat ro Thr Ile Asn 1340	tac aaa gcc Tyr Lys Ala	4032
gca tca agt g Ala Ser Ser A 1345	at tta aaa ato sp Leu Lys Ilo 1350	tat atc t Tyr Ile S	ca cca aaa tta er Pro Lys Leu 1355	aga att att Arg Ile Ile 1360	4080
cat aat gga t His Asn Gly T	at gaa gga cad yr Glu Gly Gli 1365	n Lys Arg A	at caa tgc aat sn Gln Cys Asn 70	ctg atg aat Leu Met Asn 1375	4128
Lys Tyr Gly L	aa cta ggt ga ys Leu Gly As 80	aaa ttt a Lys Phe I 1385	tt gtt tat act le Val Tyr Thr l	agc ttg ggg Ser Leu Gly .390	4176
gtc aat cca a Val Asn Pro A 1395	at aac tcg tc sn Asn Ser Se	a aat aag c r Asn Lys L 1400	tc atg ttt tac eu Met Phe Tyr 1405	ccc gtc tat Pro Val Tyr	4224
caa tat agc g Gln Tyr Ser G 1410	ga aac acc ag Sly Asn Thr Se 141	r Gly Leu A	at caa ggg aga sn Gln Gly Arg 1420	cta cta ttc Leu Leu Phe	4272
cac cgt gac a His Arg Asp T 1425	acc act tat cc Thr Thr Tyr Pr 1430	a tct aaa g o Ser Lys V	ta gaa gct tgg 'al Glu Ala Trp 1435	att cct gga Ile Pro Gly 1440	4320
gca aaa cgt t Ala Lys Arg S	cct cta acc aa Ser Leu Thr As 1445	n Gln Asn A	cc gcc att ggt la Ala Ile Gly 50	gat gat tat Asp Asp Tyr 1455	4368
Ala Thr Asp S	cct ctg aat aa Ser Leu Asn Ly 160	a ccg gat g s Pro Asp A 1465	gat ctt aag caa Asp Leu Lys Gln	tat atc ttt Tyr Ile Phe 1470	4416
atg act gac a Met Thr Asp S 1475	agt aaa ggg ac Ser Lys Gly Th	t gct act o r Ala Thr A 1480	gat gtc tca ggc Asp Val Ser Gly , 1485	cca gta gag Pro Val Glu	4464
att aat act o Ile Asn Thr A 1490	gca att tct co Ala Ile Ser Pr 149	o Ala Lys \	gtt cag ata ata /al Gln Ile Ile 1500	gtc aaa gcg Val Lys Ala	4512
ggt ggc aag g Gly Gly Lys G 1505	gag caa act tt Glu Gln Thr Ph 1510	t acc gca q e Thr Ala <i>P</i>	gat aaa gat gtc Asp Lys Asp Val 1515	tcc att cag Ser Ile Gln 1520	4560
cca tca cct a Pro Ser Pro S	agc ttt gat ga Ser Phe Asp Gl 1525	u Met Asn (tat caa ttt aat Tyr Gln Phe Asn 530	gcc ctt gaa Ala Leu Glu 1535	4608
Ile Asp Gly S	tct ggt ctg aa Ser Gly Leu As 540	t ttt att a n Phe Ile i 1545	aac aac tca gcc Asn Asn Ser Ala	agt att gat Ser Ile Asp 1550	4656
gtt act ttt a Val Thr Phe 1 1555	acc gca ttt go Thr Ala Phe Al	g gag gat a Glu Asp 1560	ggc cgc aaa ctg Gly Arg Lys Leu 1565	Gly Tyr Glu	4704

agt ttc agt att cct g Ser Phe Ser Ile Pro V 1570	tt acc ctc aag al Thr Leu Lys 1575	gta agt acc gat Val Ser Thr Asp 1580	aat gcc ctg 4752 Asn Ala Leu
acc ctg cac cat aat g Thr Leu His His Asn G 1585	aa aat ggt gcg lu Asn Gly Ala 90	caa tat atg caa Gln Tyr Met Gln 1595	tgg caa tcc 4800 Trp Gln Ser 1600
tat cgt acc cgc ctg a Tyr Arg Thr Arg Leu A 1605	sn Thr Leu Phe		
gcc acc acc gga atc g Ala Thr Thr Gly Ile A 1620	gat aca att ctg Asp Thr Ile Leu 1625	Ser Met Glu Thr	cag aat att 4896 Gln Asn Ile 630
cag gaa ccg cag tta g Gln Glu Pro Gln Leu C 1635	ggc aaa ggt ttc Sly Lys Gly Phe 1640	tat gct acg ttc Tyr Ala Thr Phe 1645	gtg ata cct 4944 Val Ile Pro
ccc tat aac cta tca a Pro Tyr Asn Leu Ser 1 1650	act cat ggt gat Thr His Gly Asp 1655	gaa cgt tgg ttt Glu Arg Trp Phe 1660	aag ctt tat 4992 Lys Leu Tyr
atc aaa cat gtt gtt g Ile Lys His Val Val F 1665	gat aat aat tca Asp Asn Asn Ser 570	cat att atc tat His Ile Ile Tyr 1675	tca ggc cag 5040 Ser Gly Gln 1680
cta aca gat aca aat a Leu Thr Asp Thr Asn 1 1685	(le Asn Ile Thr	tta ttt att cct Leu Phe Ile Pro 1690	ctt gat gat 5088 Leu Asp Asp 1695
gtc cca ttg aat caa c Val Pro Leu Asn Gln A 1700		Lys Val Tyr Met	
aaa tca cca tca gat o Lys Ser Pro Ser Asp (1715	ggt acc tgg tgg Gly Thr Trp Trp 1720	ggc cct cac ttt Gly Pro His Phe 1725	gtt aga gat 5184 Val Arg Asp
gat aaa gga ata gta a Asp Lys Gly Ile Val 1 1730	aca ata aac cct Thr Ile Asn Pro 1735	aaa tcc att ttg Lys Ser Ile Leu 1740	acc cat ttt 5232 Thr His Phe
gag agc gtc aat gtc of Glu Ser Val Asn Val 1745			
agc ggc gct aac agc (Ser Gly Ala Asn Ser 1 1765	Leu Tyr Phe Trp		
atg ctg gtt gct caa 6 Met Leu Val Ala Gln 7 1780		Glu Gln Asn Phe	
aac cgt tgg ctg aaa Asn Arg Trp Leu Lys 1795			
ggc cag att cag aac	tac cag tgg aac	gtc cgc ccg tta	ctg gaa gac 5472

G	-	Gln 810	Ile	Gln	Asn		Gln 815	Trp	Asn	Val		Pro .820	Leu	Leu	Glu	Asp	
T	acc Thr 1825	Ser	tgg Trp	aac Asn	Ser	gat Asp .830	cct Pro	ttg Leu	gat Asp	Ser	gtc Val 1835	gat Asp	cct Pro	gac Asp	Ala	gta Val 1840	5520
Q A	gca Ala	cag Gln	cac His	Asp	cca Pro 845	atg Met	cac His	tac Tyr	Lys	gtt Val 850	tca Ser	act Thr	ttt Phe	Met	cgt Arg 1855	acc Thr	5568
t	tg Leu	gat Asp	cta Leu	ttg Leu 1860	ata Ile	gca Ala	cgc Arg	Gly	gac Asp 1865	cat His	gct Ala	tat Tyr	Arg	caa Gln L870	ctg Leu	gaa Glu	5616
F	cga Arg	Asp	aca Thr 1875	ctc Leu	aac Asn	gaa Glu	Ala	aag Lys 1880	atg Met	tgg Trp	tat Tyr	Met	caa Gln 1885	gcg Ala	ctg Leu	cat His	5664
I	Leu	tta Leu .890	ggt Gly	gac Asp	aaa Lys	Pro	tat Tyr 1895	cta Leu	ccg Pro	ctg Leu	Ser	acg Thr 1900	aca Thr	tgg Trp	agt Ser	gat Asp	5712
I	cca Pro 1905	Arg	cta Leu	gac Asp	Arg	gcc Ala 1910	gcg Ala	gat Asp	atc Ile	Thr	acc Thr 1915	caa Gln	aat Asn	gct Ala	His	gac Asp 1920	5760
č	agc Ser	gca Ala	ata Ile	Val	gct Ala 1925	ctg Leu	cgg Arg	cag Gln	Asn	ata Ile 1930	cct Pro	aca Thr	ccg Pro	Ala	cct Pro 1935	tta Leu	5808
1	tca Ser	ttg Leu	cgc Arg	agc Ser 1940	gct Ala	aat Asn	acc Thr	Leu	act Thr 1945	gat Asp	ctc Leu	ttc Phe	Leu	ccg Pro 1950	caa Gln	atc Ile	5856
i	aat Asn	Glu	gtg Val 1955	atg Met	atg Met	aat Asn	Tyr	tgg Trp 1960	cag Gln	aca Thr	tta Leu	Ala	cag Gln 1965	aga Arg	gta Val	tac Tyr	5904
i	Asn	ctg Leu L970	cgt Arg	cat His	aac Asn	Leu	tct Ser 1975	atc Ile	gac Asp	ggc Gly	Gln	ccg Pro 1980	Leu	tat Tyr	ctg Leu	cca Pro	5952
	atc Ile 198	Tyr	gcc Ala	aca Thr	Pro	gcc Ala 1990	gat Asp	ccg Pro	aaa Lys	Ala	tta Leu 1995	ctc Leu	agc Ser	gcc Ala	gcc Ala	gtt Val 2000	6000
	gcc Ala	act Thr	tct Ser	Gln	ggt Gly 2005	Gly	Gly	aag Lys	cta Leu	ccg Pro 2010	Glu	tca Ser	ttt Phe	Met	tcc Ser 2015	ctg Leu	6048
	tgg Trp	cgt Arg	Phe	ccg Pro 2020	His	atg Met	ctg Leu	Glu	aat Asn 2025	Ala	rcgc Arg	ggc	atg Met	gtt Val 2030	Ser	cag Gln	6096
	ctc Leu	Thr	cag Gln 2035	ttc Phe	ggc	tcc Ser	Thr	tta Leu 2040	Gln	aat Asn	att Ile	atc	gaa Glu 2045	Arg	cag Gln	gac Asp	6144
	gcg Ala	gaa Glu	gcg	ctc Leu	aat Asn	gcg Ala	tta Leu	tta Leu	caa Gln	aat Asn	cag Gln	gcc Ala	gcc Ala	gag Glu	cto Lev	ata Ile	6192

2050 2055 2060

ttg act aac ctg agc Leu Thr Asn Leu Ser 2065	att cag gac aaa Ile Gln Asp Lys 2070	acc att gaa gaa Thr Ile Glu Glu 2075	ttg gat gcc 6240 Leu Asp Ala 2080
gag aaa acg gtg ttg Glu Lys Thr Val Leu 2085	Glu Lys Ser Lys		
gat agc tac ggc aaa Asp Ser Tyr Gly Lys 2100		Asn Ile Asn Ala	
caa gcc atg acg cta Gln Ala Met Thr Leu 2115			
cag gca tcc cgt ctg Gln Ala Ser Arg Leu 2130	gcc ggt gcg gcg Ala Gly Ala Ala 2135	gct gat ctg gtg Ala Asp Leu Val 2140	cct aac atc 6432 Pro Asn Ile
ttc ggc ttt gcc ggt Phe Gly Phe Ala Gly 2145			
aca ggt tat gtg atg Thr Gly Tyr Val Met 2165	Glu Phe Ser Ala	aat gtt atg aac Asn Val Met Asn 2170	acc gaa gcg 6528 Thr Glu Ala 2175
gat aaa att agc caa Asp Lys Ile Ser Gln 2180		Arg Arg Arg Arg	
gag atc cag cgg aat Glu Ile Gln Arg Asn 2195			
cag ctc aaa tca ctc Gln Leu Lys Ser Leu 2210			
acc agt ctg aaa acc Thr Ser Leu Lys Thr 2225			
ctg caa cgt aag ttc Leu Gln Arg Lys Phe 2245	Ser Asn Gln Ala		
cga ctg gcg gcg att Arg Leu Ala Ala Ile 2260		Tyr Asp Leu Ala	
tgc ctg atg gca gaa Cys Leu Met Ala Glu 2275			
gcc cgc ttc att aaa Ala Arg Phe Ile Lys 2290			

ctt gca ggt gaa Leu Ala Gly Glu 2305	acc ttg atg Thr Leu Met 2310	Leu Ser Leu A	gca caa atg gaa gad Ala Gln Met Glu Asg B15	gct 6960 Ala 2320
His Leu Lys Arg	gat aaa cgc Asp Lys Arg 2325	gca tta gag g Ala Leu Glu V 2330	gtt gaa cgc aca gta Val Glu Arg Thr Val 2339	. Ser
ctg gcc gaa gtt Leu Ala Glu Val 2340	tat gca gga Tyr Ala Gly	tta cca aaa q Leu Pro Lys F 2345	gat aac ggt cca tt: Asp Asn Gly Pro Phe 2350	tcc 7056 Ser
ctg gct cag gaa Leu Ala Gln Glu 2355	Ile Asp Lys	ctg gtg agt o Leu Val Ser 0 360	caa ggt tca ggc ag Gln Gly Ser Gly Se: 2365	gcc 7104 Ala
ggc agt ggt aat Gly Ser Gly Asn 2370	aat aat ttg Asn Asn Leu 2375	gcg ttc ggc G Ala Phe Gly A	gcc ggc acg gac ac Ala Gly Thr Asp Th 2380	t aaa 7152 c Lys
acc tct ttg cag Thr Ser Leu Gln 2385	gca tca gtt Ala Ser Val 2390	Ser Phe Ala A	gat ttg aaa att cg Asp Leu Lys Ile Ard 395	t gaa 7200 g Glu 2400
Asp Tyr Pro Ala	tcg ctt ggc Ser Leu Gly 2405	aaa att cga c Lys Ile Arg A 2410	cgt atc aaa cag atc Arg Ile Lys Gln Ilc 241	e Ser
gtc act ttg ccc Val Thr Leu Pro 2420	gcg cta ctg Ala Leu Leu	gga ccg tat o Gly Pro Tyr 0 2425	cag gat gta cag gc Gln Asp Val Gln Al 2430	a ata 7296 a Ile
ttg tct tac ggc Leu Ser Tyr Gly 2435	Asp Lys Ala	gga tta gct a Gly Leu Ala i 2440	aac ggc tgt gaa gc Asn Gly Cys Glu Al 2445	g ctg 7344 a Leu
gca gtt tct cac Ala Val Ser His 2450	ggt atg aat Gly Met Asn 2455	gac agc ggc (Asp Ser Gly (caa ttc cag ctc ga Gln Phe Gln Leu As 2460	t ttc 7392 p Phe
aac gat ggc aaa Asn Asp Gly Lys 2465	ttc ctg cca Phe Leu Pro 2470	Phe Glu Gly	atc gcc att gat ca Ile Ala Ile Asp Gl 475	a ggc 7440 n Gly 2480
Thr Leu Thr Leu	agc ttc cca Ser Phe Pro 2485	aat gca tct Asn Ala Ser 2490	atg ccg gag aaa gg Met Pro Glu Lys Gl 249	y Lys
caa gcc act atg Gln Ala Thr Met 2500	Leu Lys Thr	ctg aac gat Leu Asn Asp 2505	atc att ttg cat at Ile Ile Leu His Il 2510	t cgc 7536 e Arg
tac acc att aaa Tyr Thr Ile Lys 2515				7551

<210> 2

<211> 7515 <212> DNA <213> Photorhabdus luminescens <220> <221> CDS <222> (1)..(7512) <400> 2 48 atg caa aac tca tta tca agc act atc gat act att tgt cag aaa ctg Met Gln Asn Ser Leu Ser Ser Thr Ile Asp Thr Ile Cys Gln Lys Leu caa tta act tgt ccg gcg gaa att gct ttg tat ccc ttt gat act ttc 96 Gln Leu Thr Cys Pro Ala Glu Ile Ala Leu Tyr Pro Phe Asp Thr Phe 144 cgg gaa aaa act cgg gga atg gtt aat tgg ggg gaa gca aaa cgg att Arg Glu Lys Thr Arg Gly Met Val Asn Trp Gly Glu Ala Lys Arg Ile 40 tat gaa att gca caa gcg gaa cag gat aga aac cta ctt cat gaa aaa 192 Tyr Glu Ile Ala Gln Ala Glu Gln Asp Arg Asn Leu Leu His Glu Lys 240 cqt att ttt gcc tat gct aat ccg ctg ctg aaa aac gct gtt cgg ttg Arg Ile Phe Ala Tyr Ala Asn Pro Leu Leu Lys Asn Ala Val Arg Leu 75 ggt acc cgg caa atg ttg ggt ttt ata caa ggt tat agt gat ctg ttt 288 Gly Thr Arg Gln Met Leu Gly Phe Ile Gln Gly Tyr Ser Asp Leu Phe 336 ggt aat cgt gct gat aac tat gcc gcg ccg ggc tcg gtt gca tcg atg Gly Asn Arg Ala Asp Asn Tyr Ala Ala Pro Gly Ser Val Ala Ser Met 384 ttc tca ccg gcg gct tat ttg acg gaa ttg tac cgt gaa gcc aaa aac Phe Ser Pro Ala Ala Tyr Leu Thr Glu Leu Tyr Arg Glu Ala Lys Asn 120 ttg cat gac agc agc tca att tat tac cta gat aaa cgt cgc ccg gat 432 Leu His Asp Ser Ser Ser Ile Tyr Tyr Leu Asp Lys Arg Arg Pro Asp 140 130 135 tta gca agc tta atg ctc agc cag aaa aat atg gat gag gaa att tca 480 Leu Ala Ser Leu Met Leu Ser Gln Lys Asn Met Asp Glu Glu Ile Ser 155 150 145 acg ctg gct ctc tct aat gaa ttg tgc ctt gcc ggg atc gaa aca aaa 528 Thr Leu Ala Leu Ser Asn Glu Leu Cys Leu Ala Gly Ile Glu Thr Lys 170 165 576 aca gga aaa tca caa gat gaa gtg atg gat atg ttg tca act tat cgt Thr Gly Lys Ser Gln Asp Glu Val Met Asp Met Leu Ser Thr Tyr Arg 180 185 190 624 tta agt gga gag aca cct tat cat cac gct tat gaa act gtt cgt gaa Leu Ser Gly Glu Thr Pro Tyr His His Ala Tyr Glu Thr Val Arg Glu 205 195 200

atc Ile	gtt Val 210	cat His	gaa Glu	cgt Arg	gat Asp	cca Pro 215	gga Gly	ttt Phe	cgt Arg	cat His	ttg Leu 220	tca Ser	cag Gln	gca Ala	ccc Pro	672
att Ile 225	gtt Val	gct Ala	gct Ala	aag Lys	ctc Leu 230	gat Asp	cct Pro _:	gtg Val	act Thr	ttg Leu 235	ttg Leu	ggt Gly	att Ile	agc Ser	tcc Ser 240	720
				gaa Glu 245												768
aaa Lys	gat Asp	gaa Glu	gcc Ala 260	gcg Ala	ctt Leu	gat Asp	acg Thr	ctt Leu 265	tat Tyr	aaa Lys	aca Thr	aac Asn	ttt Phe 270	ggc Gly	gat Asp	816
				cag Gln												864
				gaa Glu												912
				agt Ser												960
ggt Gly	aag Lys	atg Met	gaa Glu	gta Val 325	gtt Val	cgt Arg	gtt Val	acc Thr	cga Arg 330	aca Thr	cca Pro	tcg Ser	gat Asp	aat Asn 335	tat Tyr	1008
				aat Asn												1056
	_			tac Tyr			_		-			_	-	-		1104
				aaa Lys												1152
				gat Asp												1200
			-	agt Ser 405	_		_				-					1248
				ggt Gly												1296
_				ccg Pro		_		_			-					1344
cgg	ttg	ctc	aaa	gct	acc	ggc	ctc	tct	ttt	gct	acg	ttg	gag	cgt	att	1392

Arg	Leu 450	Leu	Lys	Ala	Thr	Gly 455	Leu	Ser	Phe	Ala	Thr 460	Leu	Glu	Arg	Ile	
							aaa Lys									1440
							tat Tyr									1488
							aat Asn									1536
		_		_	_		gag Glu 520									1584
							agt Ser									1632
							cca Pro									1680
							ttt Phe									1728
							cgt Arg									1776
							ctg Leu 600									1824
Ile		Asn	Leu	Thr	Ile	Ala	gaa Glu	Leu	Asn	Ile	Leu	Leu				1872
							tat Tyr									1920
							tgg Trp									1968
							ttt Phe									2016
							agc Ser 680									2064
							ctg Leu									2112

	690					695					700					
atg Met 705	gcg Ala	cct Pro	tgc Cys	ttc Phe	act Thr 710	tcg Ser	gct Ala	ttg Leu	cat His	ttg Leu 715	act Thr	tct Ser	caa Gln	gaa Glu	gtt Val 720	2160
gcg Ala	tat Tyr	gac Asp	ctg Leu	ctg Leu 725	ttg Leu	tgg Trp	ata Ile	gac Asp	cag Gln 730	att Ile	caa Gln	ccg Pro	gca Ala	caa Gln 735	ata Ile	2208
act Thr	gtt Val	gat Asp	ggg Gly 740	ttt Phe	tgg Trp	gaa Glu	gaa Glu	gtg Val 745	caa Gln	aca Thr	aca Thr	cca Pro	acc Thr 750	agc Ser	ttg Leu	2256
aag Lys	gtg Val	att Ile 755	acc Thr	ttt Phe	gct Ala	cag Gln	gtg Val 760	ctg Leu	gca Ala	caa Gln	ttg Leu	agc Ser 765	ctg Leu	atc Ile	tat Tyr	2304
cgt Arg	cgt Arg 770	att Ile	ggg Gly	tta Leu	agt Ser	gaa Glu 775	acg Thr	gaa Glu	ctg Leu	tca Ser	ctg Leu 780	atc Ile	gtg Val	act Thr	caa Gln	2352
tct Ser 785	tct Ser	ctg Leu	cta Leu	gtg Val	gca Ala 790	ggc Gly	aaa Lys	agc Ser	ata Ile	ctg Leu 795	gat Asp	cac His	ggt Gly	ctg Leu	tta Leu 800	2400
acc Thr	ctg Leu	atg Met	gcc Ala	ttg Leu 805	gaa Glu	ggt Gly	ttt Phe	cat His	acc Thr 810	tgg Trp	gtt Val	aat Asn	ggc Gly	ttg Leu 815	ggg Gly	2448
caa Gln	cat His	gcc Ala	tcc Ser 820	ttg Leu	ata Ile	ttg Leu	gcg Ala	gcg Ala 825	ttg Leu	aaa Lys	gac Asp	ggä Gly	gcc Ala 830	ttg Leu	aca Thr	2496
gtt Val	acc Thr	gat Asp 835	gta Val	gca Ala	caa Gln	gct Ala	atg Met 840	aat Asn	aag Lys	gag Glu	gaa Glu	tct Ser 845	ctc Leu	cta Leu	caa Gln	2544
atg Met	gca Ala 850	gct Ala	aat Asn	cag Gln	gtg Val	gag Glu 855	aag Lys	gat Asp	cta Leu	aca Thr	aaa Lys 860	ctg Leu	acc Thr	agt Ser	tgg Trp	2592
aca Thr 865	cag Gln	att Ile	gac Asp	gct Ala	att Ile 870	ctg Leu	caa Gln	tgg Trp	tta Leu	cag Gln 875	Met	tct Ser	tcg Ser	gcc Ala	ttg Leu 880	2640
gcg Ala	gtt Val	tct Ser	cca Pro	ctg Leu 885	gat Asp	ctg Leu	gca Ala	ggg Gly	atg Met 890	Met	-gcc Ala	ctg Leu	aaa Lys	tat Tyr 895	ggg Gly	2688
ata Ile	gat Asp	cat His	aac Asn 900	Tyr	gct Ala	gcc Ala	tgg Trp	caa Gln 905	Ala	gcg Ala	gcg Ala	gct Ala	gcg Ala 910	Leu	atg Met	2736
gct Ala	gat Asp	cat His 915	Ala	aat Asn	cag Gln	gca Ala	Gln 920	Lys	aaa Lys	ctg Leu	gat Asp	gag Glu 925	Thr	ttc Phe	agt Ser	2784
aag Lys	gca Ala 930	Leu	tgt Cys	aac Asn	tat Tyr	tat Tyr 935	Ile	aat Asn	gct Ala	gtt Val	gtc Val 940	. Asp	agt Ser	gct Ala	gct Ala	2832

gga gta cgt gat cgt Gly Val Arg Asp Arg 945	aac ggt tta tat Asn Gly Leu Tyr 950	acc tat ttg ctg Thr Tyr Leu Leu 955	att gat aat 288 Ile Asp Asn 960	0
cag gtt tct gcc gat Gln Val Ser Ala Asp 965	Val Ile Thr Ser			8:
ggt att caa ctg tac Gly Ile Gln Leu Tyr 980				6
ctt gca tcg gac gtt Leu Ala Ser Asp Val 995				:4
tac aat aaa cgt tac Tyr Asn Lys Arg Tyr 1010				'2
tat cca gaa aac tat Tyr Pro Glu Asn Tyr 1025				20
atg atg gat gcg ctg Met Met Asp Ala Leu 1045	Leu Gln Ser Ile			38
gat acg gtg gaa gat Asp Thr Val Glu Asp 1060		Tyr Leu Thr Ser		. 6
gta gca aat ctg aaa Val Ala Asn Leu Lys 1075				54
gat caa gga tta act Asp Gln Gly Leu Thr 1090				12
acg tat tac tgg cgt Thr Tyr Tyr Trp Arc 1105				50
ttt gcc gct aat gct Phe Ala Ala Asn Ala 1125	Trp Gly Glu Trp			98
aat cct tgg aaa aat Asn Pro Trp Lys Asn 1140		Val Val Tyr Met		56
tat ctg cta tgg cto Tyr Leu Leu Trp Leu 1155)4
acc acg att tat cas Thr Thr Ile Tyr Glr 1170				52

ggt agt tgg aat aca	cca ttt act ttt	gat gtg aca gaa	aag gta aaa 3600
Gly Ser Trp Asn Thr	Pro Phe Thr Phe	Asp Val Thr Glu	Lys Val Lys
1185	1190	1195	1200
aat tac acg tcg agt	Thr Asp Ala Ala	gaa tct tta ggg	ttg tat tgt 3648
Asn Tyr Thr Ser Ser		Glu Ser Leu Gly	Leu Tyr Cys
1205		1210	1215
act ggt tat caa ggg	gaa gac act cta	Leu Val Met Phe	tat tcg atg 3696
Thr Gly Tyr Gln Gly	Glu Asp Thr Leu		Tyr Ser Met
1220	1225		230
cag agt agt tat ago Gln Ser Ser Tyr Ser 1235	tcc tat acc gat Ser Tyr Thr Asp 1240	aat aat gcg ccg Asn Asn Ala Pro 1245	gtc act ggg 3744 Val Thr Gly
cta tat att ttc gct Leu Tyr Ile Phe Ala 1250	gat atg tca tca Asp Met Ser Ser 1255	gac aat atg acg Asp Asn Met Thr 1260	aat gca caa 3792 Asn Ala Gln
gca act aac tat tgg	aat aac agt tat	ccg caa ttt gat	act gtg atg 3840
Ala Thr Asn Tyr Trp	Asn Asn Ser Tyr	Pro Gln Phe Asp	Thr Val Met
1265	1270	1275	1280
gca gat ccg gat ago	Asp Asn Lys Lys	gtc ata acc aga	aga gtt aat 3888
Ala Asp Pro Asp Sei		Val Ile Thr Arg	Arg Val Asn
1285		1290	1295
aac cgt tat gcg gag	g gat tat gaa att	Pro Ser Ser Val	aca agt aac 3936
Asn Arg Tyr Ala Glu	n Asp Tyr Glu Ile		Thr Ser Asn
1300	1305		310
agt aat tat tot tgg Ser Asn Tyr Ser Trp 1315	g ggt gat cac agt o Gly Asp His Ser 1320	tta acc atg ctt Leu Thr Met Leu 1325	tat ggt ggt 3984 Tyr Gly Gly
agt gtt cct aat att Ser Val Pro Asn Ile 1330	act ttt gaa tog Thr Phe Glu Ser 1335	gcg gca gaa gat Ala Ala Glu Asp 1340	tta agg cta 4032 Leu Arg Leu
tct acc aat atg gco	a ttg agt att att	cat aat gga tat	gcg gga acc 4080
Ser Thr Asn Met Ala	a Leu Ser Ile Ile	His Asn Gly Tyr	Ala Gly Thr
1345	1350	1355	1360
cgc cgt ata caa tg	s Asn Leu Met Lys	caa tac gct tca	tta ggt gat 4128
Arg Arg Ile Gln Cy		Gln Tyr Ala Ser	Leu Gly Asp
136		1370	1375
aaa ttt ata att ta	t gat toa toa ttt	Asp Asp Ala Asn	cgt ttt aat 4176
Lys Phe Ile Ile Ty	r Asp Ser Ser Phe		Arg Phe Asn
1380	1385		1390
ctg gtg cca ttg tt Leu Val Pro Leu Ph . 1395	t aaa ttc gga aaa e Lys Phe Gly Lys 1400	a gac gag aac tca 3 Asp Glu Asn Ser 1405	gat gat agt 4224 Asp Asp Ser
att tgt ata tat aa Ile Cys Ile Tyr As 1410	t gaa aac cct tc	tct gaa gat aag Ser Glu Asp Lys	aag tgg tat 4272 Lys Trp Tyr
1410	1415	1420	

Phe Ser Ser Lys 1	Asp Asp Asn Lys 1430	Thr Ala Asp T 1435		Thr .440
caa tgt ata gat o Gln Cys Ile Asp i	gct gga acc agt Ala Gly Thr Ser 445	aac aaa gat t Asn Lys Asp P 1450	tt tat tat aat The Tyr Tyr Asn 1455	ctc 4368 Leu
cag gag att gaa o Gln Glu Ile Glu v 1460	Val Ile Ser Val			
aaa ata tcc aac o Lys Ile Ser Asn 1 1475		Asn Thr Gly I		
gta aaa gtc acc o Val Lys Val Thr ' 1490	gta aaa gcg ggt Val Lys Ala Gly 1495	Gly Asp Asp G	eaa atc ttt act Sin Ile Phe Thr	gct 4512 Ala
gat aat agt acc Asp Asn Ser Thr ' 1505	tat gtt cct cag Tyr Val Pro Gln 1510	caa ccg gca c Gln Pro Ala P 1515	ro Ser Phe Glu	gag 4560 Glu 1520
atg att tat cag Met Ile Tyr Gln 1	ttc aat aac ctg Phe Asn Asn Leu 525	aca ata gat t Thr Ile Asp C 1530	gt aag aat tta Cys Lys Asn Leu 1535	aat 4608 Asn
ttc atc gac aat Phe Ile Asp Asn 1540				
caa gat ggc cga Gln Asp Gly Arg 1555		Glu Thr Phe I		
aaa aaa gtt ctc Lys Lys Val Leu 1570		Val Ile Ala I		
aac ggt gtt caa Asn Gly Val Gln 1585			Arg Thr Arg Leu	
acg tta ttc gct Thr Leu Phe Ala 1				
gca gtg ctc agt Ala Val Leu Ser 1620	atg gaa act cag Met Glu Thr Gln	y aat att cag o n Asn Ile Gln 0 1625	gaa ccg caa tta Slu Pro Gln Leu 1630	gga 4896 Gly
gcg ggc áca tat Ala Gly Thr Tyr 1635		. Leu Asp Lys T		
cat ggc act aat His Gly Thr Asn 1650		a Ile Glu Tyr V		
gag aac gat agt Glu Asn Asp Ser				

caa act gtt gtg aaa gtt ttc tta tcc tat ttt ata gag gcg act gga Gln Thr Val Val Lys Val Phe Leu Ser Tyr Phe Ile Glu Ala Thr Gly aat aag aac cac tta tgg gta cgt gct aaa tac caa aag gaa acg act Asn Lys Asn His Leu Trp Val Arg Ala Lys Tyr Gln Lys Glu Thr Thr gat aag atc ttg ttc gac cgt act gat gag aaa gat ccg cac ggt tgg Asp Lys Ile Leu Phe Asp Arg Thr Asp Glu Lys Asp Pro His Gly Trp ttt ctc agc gac gat cac aag acc ttt agt ggt ctc tct tcc gca cag Phe Leu Ser Asp Asp His Lys Thr Phe Ser Gly Leu Ser Ser Ala Gln gca tta aag aac gac agt gaa ccg atg gat ttc tct ggc gcc aat gct Ala Leu Lys Asn Asp Ser Glu Pro Met Asp Phe Ser Gly Ala Asn Ala ctc tat ttc tgg gaa ctg ttc tat tac acg ccg atg atg gct cat Leu Tyr Phe Trp Glu Leu Phe Tyr Tyr Thr Pro Met Met Ala His cgt ttg ttg cag gaa cag aat ttt gat gcg gcg aac cat tgg ttc cgt Arg Leu Leu Gln Glu Gln Asn Phe Asp Ala Ala Asn His Trp Phe Arg tat gtc tgg agt cca tcc ggt tat atc gtt gat ggt aaa att gct atc Tyr Val Trp Ser Pro Ser Gly Tyr Ile Val Asp Gly Lys Ile Ala Ile tac cac tgg aac gtg cga ccg ctg gaa gaa gac acc agt tgg aat gca Tyr His Trp Asn Val Arg Pro Leu Glu Glu Asp Thr Ser Trp Asn Ala caa caa ctg gac tcc acc gat cca gat gct gta gcc caa gat gat ccg Gln Gln Leu Asp Ser Thr Asp Pro Asp Ala Val Ala Gln Asp Asp Pro atg cac tac aag gtg gct acc ttt atg gcg acg ttg gat ctg cta atg _ 5568 Met His Tyr Lys Val Ala Thr Phe Met Ala Thr Leu Asp Leu Leu Met gcc cgt ggt gat gct gct tac cgc cag tta gag cgt gat acg ttg gct Ala Arg Gly Asp Ala Ala Tyr Arg Gln Leu Glu Arg Asp Thr Leu Ala gaa gct aaa atg tgg tat aca cag gcg ctt aat ctg ttg ggt gat gag Glu Ala Lys Met Trp Tyr Thr Gln Ala Leu Asn Leu Leu Gly Asp Glu cca caa gtg atg ctg agt acg act tgg gct aat cca aca ttg ggt aat Pro Gln Val Met Leu Ser Thr Thr Trp Ala Asn Pro Thr Leu Gly Asn gct gct tca aaa acc aca cag cag gtt cgt cag caa gtg ctt acc cag Ala Ala Ser Lys Thr Thr Gln Gln Val Arg Gln Gln Val Leu Thr Gln

ttg cgt ctc aat Leu Arg Leu Asn	agc agg gta Ser Arg Val 1925	aaa acc ccg Lys Thr Pro 1930	Leu Leu Gly	aca gcc aat Thr Ala Asn 1935	5808
tcc ctg acc gct Ser Leu Thr Ala 1940	tta ttc ctg Leu Phe Leu	ccg cag gaa Pro Gln Glu 1945	Asn Ser Lys	ctc aaa ggc Leu Lys Gly 950	5856
tac tgg cgg aca Tyr Trp Arg Thr 1955	Leu Ala Gln	cgt atg ttt Arg Met Phe 960	aat tta cgt Asn Leu Arg 1965	cat aat ctg His Asn Leu	5904
tcg att gac ggc Ser Ile Asp Gly 1970	cag ccg ctc Gln Pro Leu 1975	tcc ttg ccg Ser Leu Pro	ctg tat gct Leu Tyr Ala 1980	aaa ccg gct Lys Pro Ala	5952
gat cca aaa gct Asp Pro Lys Ala 1985	tta ctg agt Leu Leu Ser 1990	gcg gcg gtt Ala Ala Val	tca gct tct Ser Ala Ser 1995	caa ggg gga Gln Gly Gly 2000	6000
gcc gac ttg ccg Ala Asp Leu Pro	aag gcg ccg Lys Ala Pro 2005	ctg act att Leu Thr Ile 2010	His Arg Phe	cct caa atg Pro Gln Met 2015	6048
cta gaa ggg gca Leu Glu Gly Ala 2020	cgg ggc ttg Arg Gly Leu	gtt aac cag Val Asn Gln 2025	Leu Ile Gln	ttc ggt agt Phe Gly Ser 2030	6096
tca cta ttg ggg Ser Leu Leu Gly 2035	Tyr Ser Glu	cgt cag gat Arg Gln Asp 2040	gcg gaa gct Ala Glu Ala 2045	atg agt caa Met Ser Gln	6144
cta ctg caa acc Leu Leu Gln Thr 2050	caa gcc agc Gln Ala Ser 2055	gag tta ata Glu Leu Ile	ctg acc agt Leu Thr Ser 2060	att cgt atg Ile Arg Met	6192
cag gat aac caa Gln Asp Asn Gln 2065	ttg gca gag Leu Ala Glu 2070	ctg gat tcg Leu Asp Ser	gaa aaa acc Glu Lys Thr 2075	gcc ttg caa Ala Leu Gln 2080	6240
gtc tct tta gct Val Ser Leu Ala	gga gtg caa Gly Val Gln 2085	caa cgg ttt Gln Arg Phe 2090	Asp Ser Tyr	agc caa ctg Ser Gln Leu 2095	6288
tat gag gag aac Tyr Glu Glu Asn 2100	Ile Asn Ala	ggt gag cag Gly Glu Glr 2105	n Arg Ala Leu	gcg tta cgc Ala Leu Arg 2110	6336
tca gaa tct gct Ser Glu Ser Ala 2115	Ile Glu Ser	cag gga gco Gln Gly Ala 2120	g cag att tcc a Gln Ile Ser 2125	cgt atg gca Arg Met Ala	6384
ggc gcg ggt gtt Gly Äla Gly Val 2130	gat atg gca Asp Met Ala 2135	cca aat ato Pro Asn Ilo	c ttc ggc ctg e Phe Gly Leu 2140	gct gat ggc Ala Asp Gly	6432
ggc atg cat tat Gly Met His Tyr 2145	ggt gct att Gly Ala Ile 2150	gcc tat gcc Ala Tyr Ala	c atc gct gac a Ile Ala Asp 2155	ggt att gag Gly Ile Glu 2160	6480

ttg agt gct tct gcc aag atg gtt gat gcg gag aaa gtt gct cag tcg Leu Ser Ala Ser Ala Lys Met Val Asp Ala Glu Lys Val Ala Gln Ser gaa ata tat cgc cgt cgc cgt caa gaa tgg aaa att cag cgt gac aac Glu Ile Tyr Arg Arg Arg Gln Glu Trp Lys Ile Gln Arg Asp Asn gca caa gcg gag att aac cag tta aac gcg caa ctg gaa tca ctg tct Ala Gln Ala Glu Ile Asn Gln Leu Asn Ala Gln Leu Glu Ser Leu Ser att cgc cgt gaa gcc gct gaa atg caa aaa gag tac ctg aaa acc cag Ile Arg Arg Glu Ala Ala Glu Met Gln Lys Glu Tyr Leu Lys Thr Gln caa gct cag gcg cag gca caa ctt act ttc tta aga agc aaa ttc agt Gln Ala Gln Ala Gln Leu Thr Phe Leu Arg Ser Lys Phe Ser aat caa gcg tta tat agt tgg tta cga ggg cgt ttg tca ggt att tat Asn Gln Ala Leu Tyr Ser Trp Leu Arg Gly Arg Leu Ser Gly Ile Tyr ttc cag ttc tat gac ttg gcc gta tca cgt tgc ctg atg gca gag caa Phe Gln Phe Tyr Asp Leu Ala Val Ser Arg Cys Leu Met Ala Glu Gln tcc tat caa tgg gaa gct aat gat aat tcc att agc ttt gtc aaa ccg Ser Tyr Gln Trp Glu Ala Asn Asp Asn Ser Ile Ser Phe Val Lys Pro ggt gca tgg caa gga act tac gcc ggc tta ttg tgt gga gaa gct ttg Gly Ala Trp Gln Gly Thr Tyr Ala Gly Leu Leu Cys Gly Glu Ala Leu ata caa aat ctg gca caa atg gaa gag gca tat ctg aaa tgg gaa tct Ile Gln Asn Leu Ala Gln Met Glu Glu Ala Tyr Leu Lys Trp Glu Ser cgc gct ttg gaa gta gaa cgc acg gtt tca ttg gca gtg gtt tat gat Arg Ala Leu Glu Val Glu Arg Thr Val Ser Leu Ala Val Val Tyr Asp tca ctg gaa ggt aat gat cgt ttt aat tta gcg gaa caa ata cct gca Ser Leu Glu Gly Asn Asp Arg Phe Asn Leu Ala Glu Gln Ile Pro Ala tta ttg gat aag ggg gag gga aca gca gga act aaa gaa aat ggg tta Leu Leu Asp Lys Gly Glu Gly Thr Ala Gly Thr Lys Glu Asn Gly Leu tca ttg gct aat gct atc ctg tca gct tcg gtc aaa ttg tcc gac ttg Ser Leu Ala Asn Ala Ile Leu Ser Ala Ser Val Lys Leu Ser Asp Leu aaa ctg gga acg gat tat cca gac agt atc gtt ggt agc aac aag gtt Lys Leu Gly Thr Asp Tyr Pro Asp Ser Ile Val Gly Ser Asn Lys Val cgt cgt att aag caa atc agt gtt tcg cta cct gca ttg gtt ggg cct

FA Line

Arg Arg Ile Lys Gln Ile Ser Val Ser Leu Pro Ala Leu Val Gly Pro 2405 2410 2415	
tat cag gat gtt cag gct atg ctc agc tat ggt ggc agt act caa ttg Tyr Gln Asp Val Gln Ala Met Leu Ser Tyr Gly Gly Ser Thr Gln Leu 2420 2425 2430	7296
ccg aaa ggt tgt tca gcg ttg gct gtg tct cat ggt acc aat gat agt Pro Lys Gly Cys Ser Ala Leu Ala Val Ser His Gly Thr Asn Asp Ser 2435 2440 2445	7344
ggt cag ttc cag ttg gat ttc aat gac ggc aaa tac ctg cca ttt gaa Gly Gln Phe Gln Leu Asp Phe Asn Asp Gly Lys Tyr Leu Pro Phe Glu 2450 2455 2460	7392
ggt att gct ctt gat gat cag ggt aca ctg aat ctt caa ttt ccg aat Gly Ile Ala Leu Asp Asp Gln Gly Thr Leu Asn Leu Gln Phe Pro Asn 2465 2470 2475 2480	7440
gct acc gac aag cag aaa gca ata ttg caa act atg agc gat att att Ala Thr Asp Lys Gln Lys Ala Ile Leu Gln Thr Met Ser Asp Ile Ile 2485 2490 2495	7488
ttg cat att cgt tat acc atc cgt taa Leu His Ile Arg Tyr Thr Ile Arg 2500	7515
<pre><210> 3 <211> 7577 <212> DNA <213> Artificial Sequence <220> <221> CDS <222> (3)(7553)</pre> <pre><220></pre>	
<223> Description of Artificial Sequence: hemicot tcdA <400> 3 cc atg gct aac gag tcc gtc aag gag atc cca gac gtc ctc aag tcc Met Ala Asn Glu Ser Val Lys Glu Ile Pro Asp Val Leu Lys Ser	47
1 5 10 15	
caa tgc ggt ttc aac tgc ctc act gac atc tcc cac agc tcc ttc aac Gln Cys Gly Phe Asn Cys Leu Thr Asp Ile Ser His Ser Ser Phe Asn 20 25 30	95
gag ttc aga caa caa gtc tct gag cac ctc tcc tgg tcc gag acc cat Glu Phe Arg Gln Gln Val Ser Glu His Leu Ser Trp Ser Glu Thr His 35 40 45	143
gac ctc tac cat gac gct cag caa gct cag aag gac aac agg ctc tac Asp Leu Tyr His Asp Ala Gln Gln Ala Gln Lys Asp Asn Arg Leu Tyr 50 55 60	191
gag gct agg atc ctc aag agg gct aac cca caa ctc cag aac gct gtc Glu Ala Arg Ile Leu Lys Arg Ala Asn Pro Gln Leu Gln Asn Ala Val 65 70 75	239

cac His 80	ctc Leu	gcc Ala	atc Ile	ttg Leu	gct Ala 85	cca Pro	aac Asn	gct Ala	gag Glu	ttg Leu 90	att Ile	ggt Gly	tac Tyr	aac Asn	aac Asn 95	287
cag Gln	ttc Phe	tct Ser	ggc Gly	aga Arg 100	gct Ala	agc Ser	cag Gln	tac Tyr	gtg Val 105	gct Ala	cct Pro	ggt Gly	aca Thr	gtc Val 110	tcc Ser	335
tcc Ser	atg Met	ttc Phe	agc Ser 115	cca Pro	gcc Ala	gct Ala	tac Tyr	ctc Leu 120	act Thr	gag Glu	ttg Leu	tac Tyr	cgc Arg 125	gag Glu	gct Ala	383
agg Arg	aac Asn	ctt Leu 130	cat His	gct Ala	tct Ser	gac Asp	tcc Ser 135	gtc Val	tac Tyr	tac Tyr	ttg Leu	gac Asp 140	aca Thr	cgc Arg	aga Arg	431
cca Pro	gac Asp 145	ctc Leu	aag Lys	agc Ser	atg Met	gcc Ala 150	ctc Leu	agc Ser	caa Gln	cag Gln	aac Asn 155	atg Met	gac Asp	att ·Ile	gag Glu	479
ttg Leu 160	tcc Ser	acc Thr	ctc Leu	tcc Ser	ttg Leu 165	agc Ser	aac Asn	gag Glu	ctt Leu	ctc Leu 170	ttg Leu	gag Glu	tcc Ser	atc Ile	aag Lys 175	527
act Thr	gag Glu	agc Ser	aag Lys	ttg Leu 180	gag Glu	aac Asn	tac Tyr	acc Thr	aag Lys 185	gtc Val	atg Met	gag Glu	atg Met	ctc Leu 190	tcc Ser	575
acc Thr	ttc Phe	aga Arg	cca Pro 195	agc Ser	ggt Gly	gca Ala	act Thr	cca Pro 200	tac Tyr	cat His	gat Asp	gcc Ala	tac Tyr 205	gag Glu	aac Asn	623
gtc Val	agg Arg	gag Glu 210	gtc Val	atc Ile	caa Gln	ctt Leu	caa Gln 215	gac Asp	cct Pro	ggt Gly	ctt Leu	gag Glu 220	caa Gln	ctc Leu	aac Asn	671
gct Ala	tct Ser 225	cca Pro	gcc Ala	att Ile	gct Ala	ggt Gly 230	ttg Leu	atg Met	cac His	cag Gln	gca Ala 235	tcc Ser	ttg Leu	ctc Leu	ggt Gly	719
atc Ile 240	Asn	gcc Ala	tcc Ser	atc Ile	tct Ser 245	cct Pro	gag Glu	ttg Leu	ttc Phe	aac Asn 250	atc Ile	ttg Leu	act Thr	gag Glu	gag Glu 255	767
atc Ile	act Thr	gag Glu	ggc Gly	aac Asn 260	gct Ala	gag Glu	gag Glu	ttg Leu	tac Tyr 265	Lys	aag Lys	aac Asn	ttc Phe	ggc Gly 270	aac Asn	815
att Ile	gag Glu	cca Pro	gcc Ala 275	Ser	ctt Leu	gca Ala	atg Met	cct Pro 280	Glu	tac Tyr	ctc Leu	aag Lys	agg Arg 285	Tyr	tac Tyr	863
aac Asn	ttg Leu	tct Ser 290	Asp	gag Glu	gag Glu	ctt Leu	tct Ser 295	Gln	ttc Phe	att Ile	ggc Gly	aag Lys 300	Ala	tcc Ser	aac Asn	911
tto Phe	ggt Gly 305	Glr	caç Glr	gag Glu	tac Tyr	ago Ser 310	Asr	aac Asn	caç Glr	cto Lev	atc 111e 315	: Thr	cca Pro	gtt Val	gtg Val	959

aac Asn 320	tcc Ser	tct Ser	gat Asp	ggc Gly	act Thr 325	gtg Val	aag Lys	gtc Val	tac Tyr	cgc Arg 330	atc Ile	aca Thr	cgt Arg	gag Glu	tac Tyr 335	1007
acc Thr	aca Thr	aac Asn	gcc Ala	tac Tyr 340	caa Gln	atg Met	gat Asp	gtt Val	gag Glu 345	ttg Leu	ttc Phe	cca Pro	ttc Phe	ggt Gly 350	ggt Gly	1055
gag Glu	aac Asn	tac Tyr	aga Arg 355	ctt Leu	gac Asp	tac Tyr	aag Lys	ttc Phe 360	aag Lys	aac Asn	ttc Phe	tac Tyr	aac Asn 365	gcc Ala	tcc Ser	1103
tac Tyr	ctc Leu	tcc Ser 370	atc Ile	aag Lys	ttg Leu	aac Asn	gac Asp 375	aag Lys	agg Arg	gag Glu	ctt Leu	gtc Val 380	agg Arg	act Thr	gag Glu	1151
ggt Gly	gct Ala 385	cct Pro	caa Gln	gtg Val	aac Asn	att Ile 390	gag Glu	tac Tyr	tct Ser	gcc Ala	aac Asn 395	atc Ile	acc Thr	ctc Leu	aac Asn	1199
aca Thr 400	gct Ala	gac Asp	atc Ile	tct Ser	caa Gln 405	cca Pro	ttc Phe	gag Glu	att Ile	ggt Gly 410	ttg Leu	acc Thr	aga Arg	gtc Val	ctt Leu 415	1247
ccc Pro	tct Ser	ggc Gly	tcc Ser	tgg Trp 420	gcc Ala	tac Tyr	gct Ala	gca Ala	gcc Ala 425	aag Lys	ttc Phe	act Thr	gtt Val	gag Glu 430	gag Glu	1295
tac Tyr	aac Asn	cag Gln	tac Tyr 435	tct Ser	ttc Phe	ctc Leu	ttg Leu	aag Lys 440	ctc Leu	aac Asn	aag Lys	gca Ala	att Ile 445	cgt Arg	ctc Leu	1343
agc Ser	aga Arg	gcc Ala 450	act Thr	gag Glu	ttg Leu	tct Ser	ccc Pro 455	acc Thr	atc Ile	ttg Leu	gag Glu	ggc Gly 460	att Ile	gtg Val	agg Arg	1391
										gat Asp						1439
ttc Phe 480	ctc Leu	acc Thr	aag Lys	tac Tyr	tac Tyr 485	atg Met	caa Gln	cgc Arg	tac Tyr	gcc Ala 490	atc Ile	cat His	gct Ala	gag Glu	act Thr 495	1487
gca Ala	ctc Leu	atc Ile	ctc Leu	tgc Cys 500	aac Asn	gca Ala	ccc Pro	atc Ile	tct Ser 505	caa Gln	cgc Arg	tcc Ser	tac Tyr	gac Asp 510	aac Asn	1535
cag Gln	cct Pro	tcc Ser	cag Gln 515	ttc Phe	gac Asp	agg Arg	ctc Leu	ttc Phe 520	aac Asn	act Thr	cct Pro	ctc Leu	ttg Leu 525	Asn	ggc Gly	1583
cag Gln	tac Tyr	ttc Phe 530	tcc Ser	act Thr	ggt Gly	gat Asp	gag Glu 535	gag Glu	att Ile	gac Asp	ctc Leu	aac Asn 540	tct Ser	ggc Gly	tcc Ser	1631
aca Thr	ggt Gly 545	gac Asp	tgg Trp	aga Arg	aag Lys	acc Thr 550	Ile	ttg Leu	aag Lys	agg Arg	gcc Ala 555	Phe	aac Asn	att Ile	gat Asp	1679
gat	gtc	tct	ctc	ttc	cgt	ctc	ttg	aag	ato	aca	gat	cac	gac	aac	aag	1727

Asp 560	Val	Ser	Leu	Phe	Arg 565	Leu	Leu	Lys	Ile	Thr 570	Asp	His	Asp	Asn	Lys 575	
gat	ggc Gly	aag Lys	atc Ile	aag Lys 580	aac	aac Asn	ttg Leu	aag Lys	aac Asn 585	ctt	tcc Ser	aac Asn	ctc Leu	tac Tyr 590	att	1775
ggc Gly	aag Lys	ttg Leu	ctt Leu 595	gca Ala	gac Asp	atc Ile	cac His	caa Gln 600	ctc Leu	acc Thr	att Ile	gat Asp	gag Glu 605	ttg Leu	gac Asp	1823
ctc Leu	ttg Leu	ctc Leu 610	att Ile	gca Ala	gtc Val	ggt Gly	gag Glu 615	ggc Gly	aag Lys	acc Thr	aac Asn	ctc Leu 620	tct Ser	gca Ala	atc Ile	1871
tct Ser	gac Asp 625	aag Lys	cag Gln	ttg Leu	gca Ala	acc Thr 630	ctc Leu	atc Ile	agg Arg	aag Lys	ttg Leu 635	aac Asn	acc Thr	atc Ile	acc Thr	1919
tcc Ser 640	tgg Trp	ctt Leu	cac His	acc Thr	cag Gln 645	aag Lys	tgg Trp	tct Ser	gtc Val	ttc Phe 650	caa Gln	ctc Leu	ttc Phe	atc Ile	atg Met 655	1967
acc Thr	agc Ser	acc Thr	tcc Ser	tac Tyr 660	aac Asn	aag Lys	acc Thr	ctc Leu	act Thr 665	cct Pro	gag Glu	atc Ile	aag Lys	aac Asn 670	ctc Leu	2015
							ctc Leu									2063
							ccc Pro 695									2111
							tct Ser									2159
caa Gln 720	cct Pro	ggt Gly	gat Asp	ggt Gly	gcc Ala 725	Met	act Thr	Ala	gag Glu	Lys	Phe	tgg Trp	gac Asp	tgg Trp	ctc Leu 735	2207
aac Asn	acc Thr	aag Lys	tac Tyr	aca Thr 740	cca Pro	ggc Gly	tcc Ser	tct Ser	gag Glu 745	gct Ala	gtt Val	gag Glu	act Thr	caa Gln 750	gag Glu	2255
							gct Ala		Ala							2303
							aac Asn 775						Val			2351
cct Pro	gag Glu 785	Met	ttc Phe	ggt Gly	gct Ala	gcc Ala 790	aca Thr	ggt Gly	gct Ala	gca Ala	cct Pro 795	Ala	cat His	gat Asp	gct Ala	2399
															ctt Leu	2447

800					805					810					815	
	gag Glu															2495
	gct Ala															2543
	caa Gln															2591
	cca Pro 865															2639
	tgg Trp															2687
tct Ser	gct Ala	ttg Leu	gtc Val	ggt Gly 900	ctt Leu	gac Asp	tac Tyr	atc Ile	cag Gln 905	tcc Ser	atg Met	aag Lys	gag Glu	aca Thr 910	cca Pro	2735
	tac Tyr															2783
	tcc Ser															2831
tct Ser	gct Ala 945	gcc Ala	ctc Leu	tcc Ser	acc Thr	tac Tyr 950	tac Tyr	atc Ile	agg Arg	caa Gln	gtc Val 955	gcc Ala	aag Lys	gca Ala	gct Ala	2879
	gcc Ala															2927
aac Asn	cag Gln	gtc Val	tct Ser	gct Ala 980	gcc Ala	atc Ile	aag Lys	acc Thr	acc Thr 985	agg Arg	atc Ile	gct Ala	gag Glu	gcc Ala 990	atc Ile	2975
gct Ala	tcc Ser	atc Ile	caa Gln 995	ctc Leu	tac Tyr	gtc Val	Asn	cgc Arg 1000	gct Ala	ctt Leu	gag Glu	Asn	gtt Val 1005	gag Glu	gag Glu	3023
	gcc Ala					Ile					Phe					3071
Lys	tac Tyr 1025				Tyr					Gly						3119
	tac Tyr O			Asn		Ile			Thr		Arg			Gln		3167

aag atg atg gat Lys Met Met Asp 1	gct ctc ttg ca Ala Leu Leu Gl 060	a tct gtc t n Ser Val S 1065	er Gln Ser Gln	ctc aac 3215 Leu Asn .070
gct gac act gtg Ala Asp Thr Val 1075	gag gat gcc tt Glu Asp Ala Ph	c atg agc t e Met Ser T 1080	ac ctc acc tcc yr Leu Thr Ser 1085	ttc gag 3263 Phe Glu
caa gtt gcc aac Gln Val Ala Asn 1090	ctc aag gtc at Leu Lys Val II 109	e Ser Ala T.	ac cat gac aac yr His Asp Asn 1100	atc aac 3311 Ile Asn
aac gac caa ggt Asn Asp Gln Gly 1105	ctc acc tac tt Leu Thr Tyr Ph 1110	c att ggt c ne Ile Gly L	tc tct gag act eu Ser Glu Thr 1115	gat gct 3359 Asp Ala
ggt gag tac tac Gly Glu Tyr Tyr 1120	tgg aga tcc gt Trp Arg Ser Va 1125	al Asp His S	gc aag ttc aac er Lys Phe Asn 30	gat ggc 3407 Asp Gly 1135
aag ttc gct gca Lys Phe Ala Ala	aac gct tgg to Asn Ala Trp Se 1140	ct gag tgg c er Glu Trp H 1145	is Lys Ile Asp	tgc cct 3455 Cys Pro 1150
atc aac cca tac Ile Asn Pro Tyr 1155	aag too acc at Lys Ser Thr Il	cc aga cct g Le Arg Pro V 1160	tc atc tac aag al Ile Tyr Lys 1165	agc cgc 3503 Ser Arg
ctc tac ttg ctc Leu Tyr Leu Leu 1170	tgg ctt gag ca Trp Leu Glu Gl 117	ln Lys Glu I	tc acc aag caa le Thr Lys Gln 1180	act ggc 3551 Thr Gly
aac tcc aag gat Asn Ser Lys Asp 1185	ggt tac caa ac Gly Tyr Gln Th 1190	ct gag act g nr Glu Thr A	ac tac cgc tac sp Tyr Arg Tyr 1195	gag ttg 3599 Glu Leu
aag ttg gct cac Lys Leu Ala His 1200		sp Gly Thr I		
. ttc gat gtc aac Phe Asp Val Asn	aag aag atc ac Lys Lys Ile Sc 1220	gc gag ttg a er Glu Leu I 1225	.ys Leu Glu Lys	aac cgt 3695 Asn Arg 1230
gct cct ggt ctc Ala Pro Gly Leu 1235	tac tgc gct gc Tyr Cys Ala G	gt tac caa q ly Tyr Gln 0 1240	ggt gag gac acc Sly Glu Asp Thr 1245	ctc ttg 3743 Leu Leu
gtc atg ttc tac Val Met Phe Tyr 1250		sp Thr Leu A		
tcc atg caa ggt Ser Met Gln Gly 1265	ctc tac atc to Leu Tyr Ile P 1270	tc gct gac a he Ala Asp N	atg gct tcc aag Met Ala Ser Lys 1275	gac atg 3839 Asp Met
act cca gag caa Thr Pro Glu Gln 1280	agc aac gtc t Ser Asn Val T 1285	yr Arg Asp A	aac tcc tac caa Asn Ser Tyr Gln 290	cag ttc 3887 Gln Phe 1295

gac acc aac acc gtc agg cgt gtc aac aac aga tac gct gag gac Asp Thr Asn Asn Val Arg Arg Val Asn Asn Arg Tyr Ala Glu Asp 1300 1305 1310	tac 3935 Tyr
gag atc cca agc tct gtc agc tct cgc aag gac tac ggc tgg ggt Glu Ile Pro Ser Ser Val Ser Ser Arg Lys Asp Tyr Gly Trp Gly 1315 1320 1325	gac 3983 Asp
tac tac ctc agc atg gtg tac aac ggt gac atc cca acc atc aac Tyr Tyr Leu Ser Met Val Tyr Asn Gly Asp Ile Pro Thr Ile Asn 1330 1335 1340	tac 4031 Tyr
aag get gee tet tee gae ete aaa ate tae ate age eea aag ete Lys Ala Ala Ser Ser Asp Leu Lys Ile Tyr Ile Ser Pro Lys Leu 1345 1350 1355	agg 4079 Arg
atc atc cac aac ggc tac gag ggt cag aag agg aac cag tgc aac Ile Ile His Asn Gly Tyr Glu Gly Gln Lys Arg Asn Gln Cys Asn 1360 1365 1370	ttg 4127 Leu 1375
atg aac aag tac ggc aag ttg ggt gac aag ttc att gtc tac acc Met Asn Lys Tyr Gly Lys Leu Gly Asp Lys Phe Ile Val Tyr Thr 1380 1385 1390	Ser
ctt ggt gtc aac cca aac aac agc tcc aac aag ctc atg ttc tac Leu Gly Val Asn Pro Asn Asn Ser Ser Asn Lys Leu Met Phe Tyr 1395 1400 1405	cca 4223
gtc tac caa tac tct ggc aac acc tct ggt ctc aac cag ggt aga Val Tyr Gln Tyr Ser Gly Asn Thr Ser Gly Leu Asn Gln Gly Arg 1410 1415 1420	ctc 4271 J Leu
ttg ttc cac agg gac acc acc tac cca agc aag gtg gag gct tgg Leu Phe His Arg Asp Thr Thr Tyr Pro Ser Lys Val Glu Ala Trp 1425 1430 1435	gatt 4319 File
cct ggt gcc aag agg tcc ctc acc aac cag aac gct gcc att ggt Pro Gly Ala Lys Arg Ser Leu Thr Asn Gln Asn Ala Ala Ile Gly 1440 1445 1450	gat 4367 Asp 1455
gac tac gcc aca gac tcc ctc aac aag cct gat gac ctc aag cac Asp Tyr Ala Thr Asp Ser Leu Asn Lys Pro Asp Asp Leu Lys Glr 1460 1465 1470	Tyr
atc ttc atg act gac tcc aag ggc aca gcc act gat gtc tct ggt Ile Phe Met Thr Asp Ser Lys Gly Thr Ala Thr Asp Val Ser Gly 1475 1480 1485	cca 4463 Pro
gtg gag atc aac act gca atc agc cca gcc aag gtc caa atc att Val Glu Ile Asn Thr Ala Ile Ser Pro Ala Lys Val Gln Ile Ile 1490 1495 1500	t gtc 4511 e Val
aag gct ggt ggc aag gag caa acc ttc aca gct gac aag gat gtc Lys Ala Gly Gly Lys Glu Gln Thr Phe Thr Ala Asp Lys Asp Va. 1505 1510 1515	c tcc 4559 l Ser
atc cag cca agc cca tcc ttc gat gag atg aac tac caa ttc aac	gct 4607
Ile Gln Pro Ser Pro Ser Phe Asp Glu Met Asn Tyr Gln Phe Asi 1520 1525 1530	n Ala 1535

Leu Glu Ile Asp Gly Ser Gly Leu Asn Phe Ile Asn Asn Ser Ala Ser 1540 1545 1550	.
att gat gtc acc ttc act gcc ttc gct gag gat ggc cgc aag ttg ggt Ile Asp Val Thr Phe Thr Ala Phe Ala Glu Asp Gly Arg Lys Leu Gly 1555 1560 1565	4703
tac gag age tte tee ate cea gte ace ett aag gtt tee act gae aac Tyr Glu Ser Phe Ser Ile Pro Val Thr Leu Lys Val Ser Thr Asp Ass 1570 1575 1580	4751
gca ctc acc ctt cat cac aac gag aac ggt gct cag tac atg caa tgg Ala Leu Thr Leu His His Asn Glu Asn Gly Ala Gln Tyr Met Gln Try 1585 1590 1595	g 4799 _.
caa agc tac cgc acc agg ttg aac acc ctc ttc gca agg caa ctt gtc Gln Ser Tyr Arg Thr Arg Leu Asn Thr Leu Phe Ala Arg Gln Leu Va 1600 1605 1610	Ĺ
gcc cgt gcc acc aca ggc att gac acc atc ctc agc atg gag acc cac Ala Arg Ala Thr Thr Gly Ile Asp Thr Ile Leu Ser Met Glu Thr Gli 1620 1625 1630	g 4895 n
aac atc caa gag cca cag ttg ggc aag ggt ttc tac gcc acc ttc gtc Asn Ile Gln Glu Pro Gln Leu Gly Lys Gly Phe Tyr Ala Thr Phe Va 1635 1640 1645	2 4943 1
atc cca cct tac aac ctc agc act cat ggt gat gag agg tgg ttc aa Ile Pro Pro Tyr Asn Leu Ser Thr His Gly Asp Glu Arg Trp Phe Ly 1650 1655 1660	g 4991 s
ctc tac atc aag cac gtg gtt gac aac aac tcc cac atc atc tac tc Leu Tyr Ile Lys His Val Val Asp Asn Asn Ser His Ile Ile Tyr Se 1665 1670 1675	t 5039
ggt caa ctc act gac acc aac atc aac atc acc ctc ttc atc cca ct Gly Gln Leu Thr Asp Thr Asn Ile Asn Ile Thr Leu Phe Ile Pro Le 1680 1685 1690 169	u
gac gat gtc cca ctc aac cag gac tac cat gcc aag gtc tac atg ac Asp Asp Val Pro Leu Asn Gln Asp Tyr His Ala Lys Val Tyr Met Th 1700 1705 1710	c 5135
ttc aag aag tct cca tct gat ggc acc tgg tgg ggt cca cac ttc gt Phe Lys Lys Ser Pro Ser Asp Gly Thr Trp Trp Gly Pro His Phe Va 1715 1720 1725	c 5183
cgt gat gac aag ggc atc gtc acc atc aac cca aag tcc atc ctc ac Arg Asp Asp Lys Gly Ile Val Thr Ile Asn Pro Lys Ser Ile Leu Th 1730 1735 1740	c 5231 r
cac ttc gag tct gtc aac gtt ctc aac aac atc tcc tct gag cca at His Phe Glu Ser Val Asn Val Leu Asn Asn Ile Ser Ser Glu Pro Me 1745 1750 1755	
gac ttc tct ggt gcc aac tcc ctc tac ttc tgg gag ttg ttc tac ta Asp Phe Ser Gly Ala Asn Ser Leu Tyr Phe Trp Glu Leu Phe Tyr Ty 1760 1765 1770	r
aca cca atg ctt gtg gct caa agg ttg ctc cat gag cag aac ttc ga Thr Pro Met Leu Val Ala Gln Arg Leu Leu His Glu Gln Asn Phe As	t 5375 p

1780 1785 1790 gag gcc aac agg tgg ctc aag tac gtc tgg agc cca tct ggt tac att Glu Ala Asn Arg Trp Leu Lys Tyr Val Trp Ser Pro Ser Gly Tyr Ile 1795 1800 gtg cat ggt caa atc cag aac tac caa tgg aac gtc agg cca ttg ctt 5471 Val His Gly Gln Ile Gln Asn Tyr Gln Trp Asn Val Arg Pro Leu Leu 1810 1815 5519 gag gac acc tcc tgg aac tct gac cca ctt gac tct gtg gac cct gat Glu Asp Thr Ser Trp Asn Ser Asp Pro Leu Asp Ser Val Asp Pro Asp 1825 1830 5567 gct gtg gct caa cat gac cca atg cac tac aag gtc tcc acc ttc atg Ala Val Ala Gln His Asp Pro Met His Tyr Lys Val Ser Thr Phe Met 1840 1845 1850 agg acc ttg gac ctc ttg att gcc aga ggt gac cat gct tac cgc caa 5615 Arg Thr Leu Asp Leu Leu Ile Ala Arg Gly Asp His Ala Tyr Arg Gln 1860 1865 ttg gag agg gac acc ctc aac gag gca aag atg tgg tac atg caa gct 5663 Leu Glu Arg Asp Thr Leu Asn Glu Ala Lys Met Trp Tyr Met Gln Ala 1875 5711 ctc cac ctc ttg ggt gac aag cca tac ctc cca ctc agc acc act tgg Leu His Leu Leu Gly Asp Lys Pro Tyr Leu Pro Leu Ser Thr Thr Trp 1890 tcc gac cca agg ttg gac cgt gct gct gac atc acc act cag aac gct Ser Asp Pro Arg Leu Asp Arg Ala Ala Asp Ile Thr Thr Gln Asn Ala 1905 1910 5807 cat gac tot goo att gtt got ote agg cag aac atc coa act cot got His Asp Ser Ala Ile Val Ala Leu Arg Gln Asn Ile Pro Thr Pro Ala 1920 1925 5855 cca ctc tcc ctc aga tct gct aac acc ctc act gac ttg ttc ctc cca Pro Leu Ser Leu Arg Ser Ala Asn Thr Leu Thr Asp Leu Phe Leu Pro 1940 cag atc aac gag gtc atg atg aac tac tgg caa acc ttg gct caa agg 5903 Gln Ile Asn Glu Val Met Met Asn Tyr Trp Gln Thr Leu Ala Gln Arg 1955 1960 5951 gto tac aac ctc aga cac aac ctc tcc att gat ggt caa cca ctc tac Val Tyr Asn Leu Arg His Asn Leu Ser Ile Asp Gly Gln Pro Leu Tyr 1975 1970 ctc cca atc tac gcc aca cca gct gac cca aag gct ctt ctc tct gct 5999 Leu Pro Ile Tyr Ala Thr Pro Ala Asp Pro Lys Ala Leu Leu Ser Ala 1990 6047 get gtg get acc age caa ggt ggt gge aag ete eea gag tee tte atg Ala Val Ala Thr Ser Gln Gly Gly Lys Leu Pro Glu Ser Phe Met 2010 6095 tee etc tgg agg tte cea cac atg ttg gag aac gee egt gge atg gte Ser Leu Trp Arg Phe Pro His Met Leu Glu Asn Ala Arg Gly Met Val

2025

2020

tcc Ser	caa Gln	Leu	acc Thr 2035	cag Gln	ttc Phe	ggt Gly	Ser	acc Thr 040	ctc Leu	cag Gln	aac Asn	Ile	att Ile 045	gag Glu	agg Arg	6143
caa Gln	Asp	gct Ala 2050	gag Glu	gct Ala	ctc Leu	Asn	gct Ala 2055	ttg Leu	ctc Leu	cag Gln	Asn	cag Gln :060	gca Ala	gct Ala	gag Glu	6191
Leu	atc Ile 2065	ctc Leu	acc Thr	aac Asn	Leu	tcc Ser	atc Ile	caa Gln	gac Asp	aag Lys 2	acc Thr 2075	att Ile	gag Glu	gag Glu	ctt Leu	6239
gat Asp 2080	Ala	gag Glu	aag Lys	Thr	gtc Val 2085	ctt Leu	gag Glu	aag Lys	Ser	aag Lys 2090	gct Ala	ggt Gly	gcc Ala	Gln	tct Ser 2095	6287
cgc Arg	ttc Phe	gac Asp	Ser	tac Tyr 2100	ggc Gly	aag Lys	ctc ·Leu	Tyr	gat Asp 2105	gag Glu	aac Asn	atc Ile	Asn	gct Ala 2110	ggt Gly	6335
gag Glu	aac Asn	Gln	gcc Ala 2115	atg Met	acc Thr	ctc Leu	Arg	gct Ala 2120	tcc Ser	gca Ala	gct Ala	Gly	ctc Leu 2125	acc Thr	act Thr	6383
gct Ala	Val	caa Gln 2130	gcc Ala	tct Ser	cgc Arg	Leu	gct Ala 2135	ggt Gly	gca Ala	ġct Ala	Ala	gac Asp 2140	ctc Leu	gtt Val	cca Pro	6431
Asn	atc Ile 2145	ttc Phe	ggt Gly	ttc Phe	Ala	ggt Gly 2150	ggt Gly	Gly	tcc Ser	aga Arg	tgg Trp 2155	ggt Gly	gcc Ala	att Ile	gct Ala	6479
gag Glu 216	Ala	acc Thr	ggt Gly	Tyr	gtc Val 2165	atg Met	gag Glu	ttc Phe	Ser	gcc Ala 2170	aac Asn	gtc Val	atg Met	Asn	act Thr 2175	6527
gag Glu	gct Ala	gac Asp	Lys	atc Ile 2180	agc Ser	caa Gln	tct Ser	Glu	acc Thr 2185	tac Tyr	aga Arg	agg Arg	Arg	cgt Arg 2190	caa Gln	6575
gag Glu	tgg Trp	Glu	atc Ile 2195	Gln	agg Arg	aac Asn	Asn	gct Ala 2200	Glu	gca Ala	gag Glu	Leu	aag Lys 2205	caa Gln	atc Ile	6623
gat Asp	Ala	caa Gln 2210	Leu	aag Lys	tcc Ser	Leu	gct Ala 2215	Val	aga Arg	agg Arg	Glu	gct Ala 2220	Ala	gtc Val	ctc Leu	6671
Gln	aag Lys 2225	Thr	tcc Ser	ctc Leu	Lys	acc Thr 2230	Gln	cag Gln	gag Glu	caa Gln	acc Thr 2235	cag Gln	tcc Ser	cag Gln	ttg Leu	6719
gct Ala 224	Phe	Leu	caa Gln	Arg	aag Lys 2245	Phe	tcc Ser	aac Asn	Gln	gct Ala 2250	Leu	tac	aac Asn	tgg Trp	ctc Leu 2255	67 67
aga Arg	ggc	cgc Arg	ttg Leu	gct Ala 2260	Ala	atc Ile	tac Tyr	ttc Phe	caa Gln 2265	Phe	tac Tyr	gac	ctt Leu	gct Ala 2270	gtg Val	6815

gcc agg tgc ctc atg gct gag caa gcc tac cgc tgg gag ttg aac gat Ala Arg Cys Leu Met Ala Glu Gln Ala Tyr Arg Trp Glu Leu Asn Asp 2275 2280 2285	6863
gac tcc gcc agg ttc atc aag cca ggt gct tgg caa ggc acc tac gct Asp Ser Ala Arg Phe Ile Lys Pro Gly Ala Trp Gln Gly Thr Tyr Ala 2290 2295 2300	6911
ggt ctc ctt gct ggt gag acc ctc atg ctc tcc ttg gct caa atg gag Gly Leu Leu Ala Gly Glu Thr Leu Met Leu Ser Leu Ala Gln Met Glu 2305 2310 2315	6959 1
gat gct cac ctc aag agg gac aag agg gct ttg gag gtg gag agg aca Asp Ala His Leu Lys Arg Asp Lys Arg Ala Leu Glu Val Glu Arg Thr 2320 2325 2330 2335	
gtc tcc ctt gct gag gtc tac gct ggt ctc cca aag gac aac ggt cca Val Ser Leu Ala Glu Val Tyr Ala Gly Leu Pro Lys Asp Asn Gly Pro 2340 2345 2350	7055
ttc tcc ctt gct caa gag att gac aag ttg gtc agc caa ggt tct ggt Phe Ser Leu Ala Gln Glu Ile Asp Lys Leu Val Ser Gln Gly Ser Gly 2355 2360 2365	7103
tct gct ggt tct ggt aac aac aac ttg gct ttc ggc gct ggt act gad Ser Ala Gly Ser Gly Asn Asn Asn Leu Ala Phe Gly Ala Gly Thr Asp 2370 2375 2380	7151
acc aag acc tcc ctc caa gcc tct gtc tcc ttc gct gac ctc aag atc Thr Lys Thr Ser Leu Gln Ala Ser Val Ser Phe Ala Asp Leu Lys Ile 2385 2390 2395	7199
agg gag gac tac cca gct tcc ctt ggc aag atc agg cgc atc aag caa Arg Glu Asp Tyr Pro Ala Ser Leu Gly Lys Ile Arg Arg Ile Lys Gli 2400 2405 2410 2419	า
atc tct gtc acc ctc cca gct ctc ttg ggt cca tac caa gat gtc caa Ile Ser Val Thr Leu Pro Ala Leu Leu Gly Pro Tyr Gln Asp Val Gla 2420 2425 2430	a 7295 n
gca atc ctc tcc tac ggt gac aag gct ggt ttg gcg aac ggt tgc gac Ala Ile Leu Ser Tyr Gly Asp Lys Ala Gly Leu Ala Asn Gly Cys Glo 2435 2440 2445	g 7343 a
gct ctt gct gtc tct cat ggc atg aac gac tct ggt caa ttc caa ct Ala Leu Ala Val Ser His Gly Met Asn Asp Ser Gly Gln Phe Gln Le 2450 2455 2460	t 7391 u
gac ttc aac gat ggc aag ttc ctc cca ttc gag ggc att gcc att ga Asp Phe Asn Asp Gly Lys Phe Leu Pro Phe Glu Gly Ile Ala Ile As 2465 2470 2475	c 7439
caa ggc acc ctc acc ctc tcc ttc cca aac gct tcc atg cca gag aa Gln Gly Thr Leu Thr Leu Ser Phe Pro Asn Ala Ser Met Pro Glu Ly 2480 2485 2490 249	s
gga aag caa gcc acc atg ctc aag acc ctc aac gat atc atc ctc ca Gly Lys Gln Ala Thr Met Leu Lys Thr Leu Asn Asp Ile Ile Leu Hi 2500 2505 2510	
atc agg tac acc atc aag tgagctcgag aggcctgcgg ccgc	7577

Ile Arg Tyr Thr Ile Lys 2515

<210> 4 <211> 7541 <212> DNA <213> Artificial Sequence <220> <221> CDS <222> (3)..(7517) <220> <223> Description of Artificial Sequence: hemicot tcbA <400> 4 cc atg gct cag aac tcc ctc agc tcc acc att gac acc atc tgc cag 47 Met Ala Gln Asn Ser Leu Ser Ser Thr Ile Asp Thr Ile Cys Gln 95 aag ctt caa ctc acc tgc cca gct gag atc gcc ctc tac cca ttc gac Lys Leu Gln Leu Thr Cys Pro Ala Glu Ile Ala Leu Tyr Pro Phe Asp acc ttc cgt gag aag acc aga ggc atg gtc aac tgg ggt gag gcc aag 143 Thr Phe Arg Glu Lys Thr Arg Gly Met Val Asn Trp Gly Glu Ala Lys agg atc tac gag att gct caa gct gag caa gac agg aac ctc ctt cat 191 Arg Ile Tyr Glu Ile Ala Gln Ala Glu Gln Asp Arg Asn Leu Leu His 239 gag aag agg atc ttc gcc tac gct aac cca ttg ctc aag aac gct gtc Glu Lys Arg Ile Phe Ala Tyr Ala Asn Pro Leu Leu Lys Asn Ala Val agg ctt ggt acc agg caa atg ttg ggt ttc atc caa ggt tac tct gac 287 Arg Leu Gly Thr Arg Gln Met Leu Gly Phe Ile Gln Gly Tyr Ser Asp 335 ttg ttc ggc aac agg gct gac aac tac gca gct cct ggt tct gtt gct Leu Phe Gly Asn Arg Ala Asp Asn Tyr Ala Ala Pro Gly Ser Val Ala 100 105 age atg tte age cea get gee tae etc act gag ttg tae egt gag gee 383 Ser Met Phe Ser Pro Ala Ala Tyr Leu Thr Glu Leu Tyr Arg Glu Ala 120 431 aaq aac ctc cat gac agc tcc agc atc tac tac ctt gac aag agg cgc Lys Asn Leu His Asp Ser Ser Ser Ile Tyr Tyr Leu Asp Lys Arg Arg 135 479 cca gac ctt gct tcc ttg atg ctc tcc cag aag aac atg gat gag gag Pro Asp Leu Ala Ser Leu Met Leu Ser Gln Lys Asn Met Asp Glu Glu 527 ate age ace ttg get etc tee aac gag ett tge ttg get gge att gag Ile Ser Thr Leu Ala Leu Ser Asn Glu Leu Cys Leu Ala Gly Ile Glu 175

170

165

160

ŕ	acc Thr	aag Lys	act Thr	ggc Gly	aag Lys 180	tcc Ser	caa Gln	gat Asp	gag Glu	gtc Val 185	atg Met	gac Asp	atg Met	ctc Leu	tcc Ser 190	acc Thr	575
•	tac Tyr	cgc Arg	ctc Leu	tct Ser 195	ggt Gly	gag Glu	act Thr	cca Pro	tac Tyr 200	cac His	cat His	gct Ala	tac Tyr	gag Glu 205	act Thr	gtc Val	623
	agg Arg	gag Glu	att Ile 210	gtc Val	cat His	gag Glu	agg Arg	gac Asp 215	cca Pro	ggt Gly	ttc Phe	cgc Arg	cac His 220	ctc Leu	tcc Ser	caa Gln	671
	gct Ala	ccc Pro 225	att Ile	gtg Val	gct Ala	gcc Ala	aag Lys 230	ttg Leu	gac Asp	cca Pro	gtc Val	acc Thr 235	ctc Leu	ttg Leu	ggc Gly	atc Ile	719
	tcc Ser 240	agc Ser	cac His	atc Ile	agc Ser	cca Pro 245	gag Glu	ttg Leu	tac Tyr	aac Asn	ctt Leu 250	ctc Leu	att Ile	gag Glu	gag Glu	atc Ile 255	767
	cca Pro	gag Glu	aag Lys	gat Asp	gag Glu 260	gca Ala	gct Ala	ttg Leu	gac Asp	acc Thr 265	ctc Leu	tac Tyr	aag Lys	acc Thr	aac Asn 270	ttc Phe	815
	ggt Gly	gac Asp	atc Ile	acc Thr 275	act Thr	gct Ala	caa Gln	ctc Leu	atg Met 280	agc Ser	cca Pro	tcc Ser	tac Tyr	ttg Leu 285	gcc Ala	agg Arg	863
	tac Tyr	tac Tyr	ggt Gly 290	gtc Val	tct Ser	cca Pro	gag Glu	gac Asp 295	att Ile	gct Ala	tac Tyr	gtc Val	acc Thr 300	aca Thr	agc Ser	ctc Leu	911
	tcc Ser	cat His 305	gtg Val	ggt Gly	tac Tyr	tcc Ser	tct Ser 310	gac Asp	atc Ile	ctt Leu	gtc Val	atc Ile 315	cca Pro	ctc Leu	gtg Val	gat Asp	959
	ggt Gly 320	gtg Val	ggc Gly	aag Ľys	atg Met	gag Glu 325	gtt Val	gtc Val	agg Arg	gtc Val	acc Thr 330	agg Arg	act Thr	cca Pro	tct Ser	gac Asp 335	1007
	aac Asn	tac Tyr	acc Thr	tcc Ser	cag Gln 340	acc Thr	aac Asn	tac Tyr	att Ile	gag Glu 345	ttg Leu	tac Tyr	cca Pro	caa Gln	ggt Gly 350	Gly	1055
	gac Asp	aac Asn	tac Tyr	ctc Leu 355	atc Ile	aag Lys	tac Tyr	aac Asn	ctc Leu 360	tcc Ser	aac Asn	tct Ser	ttc Phe	ggt Gly 365	ttg Leu	gat Asp	1103
	gac Asp	ttc Phe	tac Tyr 370	Leu	cag Gln	tac Tyr	aag Lys	gat Asp 375	Gly	tct Ser	gct Ala	gac Asp	tgg Trp 380	act Thr	gag Glu	att Ile	1151
	gct Ala	cac His 385	aac Asn	cca Pro	tac Tyr	cca Pro	gac Asp 390	Met	gtc Val	atc Ile	aac Asn	cag Gln 395	Lys	tac Tyr	gag Glu	tcc Ser	1199
	caa Gln 400	Ala	acc Thr	atc Ile	aag Lys	aga Arg 405	Ser	gac Asp	tct Ser	gac Asp	aac Asn 410	Ile	ctc Leu	tcc Ser	att	ggt Gly 415	1247
	ctc	caa	agg	tgg	cac	tct	ggt	tcc	tac	aac	ttc	gct	gct	gco	aac	ttc	1295

Leu	Gln	Arg	Trp	His 420	Ser	Gly	Ser	Tyr	Asn 425	Phe	Ala	Ala	Ala	Asn 430	Phe	
aag Lys	att Ile	gac Asp	caa Gln 435	tac Tyr	tct Ser	cca Pro	aag Lys	gct Ala 440	ttc Phe	ctc Leu	ttg Leu	aag Lys	atg Met 445	aac Asn	aag Lys	1343
gcc Ala	atc Ile	agg Arg 450	ctc Leu	ttg Leu	aag Lys	gcc Ala	act Thr 455	ggt Gly	ctc Leu	tcc Ser	ttc Phe	gcc Ala 460	acc Thr	ctt Leu	gag Glu	1391
agg Arg	att Ile 465	gtg Val	gac Asp	tct Ser	gtc Val	aac Asn 470	tcc Ser	acc Thr	aag Lys	tcc Ser	atc Ile 475	act Thr	gtg Val	gag Glu	gtc Val	1439
ctc Leu 480	aac Asn	aag Lys	gtc Val	tac Tyr	aga Arg 485	gtc Val	aag Lys	ttc Phe	tac Tyr	att Ile 490	gac Asp	cgc Arg	tac Tyr	ggc Gly	atc Ile 495	1487
tct Ser	gag Glu	gag Glu	act Thr	gct Ala 500	gcc Ala	atc Ile	ctt Leu	gcc Ala	aac Asn 505	atc Ile	aac Asn	atc Ile	tcc Ser	cag Gln 510	caa Gln	1535
gct Ala	gtc Val	ggc Gly	aac Asn 515	cag Gln	ctc Leu	tcc Ser	caa Gln	ttc Phe 520	gag Glu	caa Gln	ctc Leu	ttc Phe	aac Asn 525	cac His	cct Pro	1583
cca Pro	ctc Leu	aac Asn 530	ggc Gly	atc Ile	cgc Arg	tac Tyr	gag Glu 535	atc Ile	agc Ser	gag Glu	gac Asp	aac Asn 540	tcc Ser	aag Lys	cac His	1631
ctc Leu	cca Pro 545	aac Asn	cca Pro	gac Asp	ctc Leu	aac Asn 550	ctc Leu	aag Lys	cca Pro	gac Asp	tcc Ser 555	act Thr	ggt Gly	gat Asp	gac Asp	1679
caa Gln 560	agg Arg	aag Lys	gct Ala	gtc Val	ctc Leu 565	aag Lys	agg Arg	gct Ala	ttc Phe	caa Gln 570	Val	aac Asn	gct Ala	tct Ser	gag Glu 575	1727
ctt Leu	tac Tyr	caa Gln	Met	ctc Leu 580	Leu	Ile	Thr	Asp	Arg	Lys	gag Glu	Asp	Gly	gtc Val 590	Ile.	1775
aag Lys	aac Asn	aac Asn	ttg Leu 595	gag Glu	aac Asn	ctc Leu	tct Ser	gac Asp 600	ctc Leu	tac Tyr	ctt Leu	gtc Val	tcc Ser 605	ctc Leu	ttg Leu	1823
gcc Ala	caa Gln	atc Ile 610	His	aac Asn	ttg Leu	acc Thr	att Ile 615	Ala	gag Glu	ttg Leu	aac Asn	Ile 620	Leu	ttg Leu	gtc Val	1871
ato Ile	tgc Cys 625	Gly	tac Tyr	ggt Gly	gac Asp	acc Thr 630	Asn	atc	tac Tyr	caa Gln	atc Ile 635	Thr	gac Asp	gac Asp	aac Asn	1919
ctt Leu 640	Ala	aag Lys	att Ile	gtg Val	gag Glu 645	Thr	ctc Leu	ttg Leu	tgg Trp	ato Ile 650	: Thr	caa Glr	tgg Trp	cto Lev	aag Lys 655	1967
acc Thr	cag	aag Lys	tgg Trp	act Thr	gto Val	aca Thr	gac Asp	cto Leu	tto Phe	cto Leu	atg 1 Met	acc Thr	act Thr	gco Ala	acc Thr	2015

	660		665	670	
Tyr Ser Thr T			tcc aac ctc act Ser Asn Leu Thr		063
			ctc att ggt gag Leu Ile Gly Glu 700		111
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		gct ctc cac ctc Ala Leu His Leu 715		:159
	•		att gac caa atc Ile Asp Gln Ile 730	-	207
			gag gtc caa acc Glu Val Gln Thr 745		255
Ser Leu Lys V	-	_	gtc ttg gct caa Val Leu Ala Gln		303
			act gag ttg tcc Thr Glu Leu Ser 780	-	2351
			aag tcc atc ctt Lys Ser Ile Leu 795		399
			ttc cac acc tgg Phe His Thr Trp 810		2447
			gct gca ctc aag Ala Ala Leu Lys 825		495
Leu Thr Val 7			atg aac aag gag Met Asn Lys Glu		2543
			aag gac ctc acc Lys Asp Leu Thr 860		2591
			caa tgg ctc caa Gln Trp Leu Gln 875		2639
			gct ggc atg atg Ala Gly Met Met 890		2687
	-		tgg caa gca gct Trp Gln Ala Ala 905	J J J	2735

ctc atg gct Leu Met Ala	gac cat gcc Asp His Ala 915	aac cag gct Asn Gln Ala 920	cag aag aag Gln Lys Lys	ttg gat gag Leu Asp Glu 925	acc 2783 Thr
ttc tcc aag Phe Ser Lys 930	gct ctc tgc Ala Leu Cys	aac tac tac Asn Tyr Tyr 935	atc aac gcc Ile Asn Ala	gtg gtt gac Val Val Asp 940	tct 2831 Ser
gct gcc ggt Ala Ala Gly 945	gtc agg gac Val Arg Asp	agg aac ggt Arg Asn Gly 950	ctc tac acc Leu Tyr Thr 955	tac ctc ttg Tyr Leu Leu	att 2879 Ile
gac aac cag Asp Asn Gln 960	gtc tct gct Val Ser Ala 965	gat gtc atc Asp Val Ile	acc tcc aga Thr Ser Arg 970	att gct gag Ile Ala Glu	gcc 2927 Ala 975
att gct ggc Ile Ala Gly	atc caa ctc Ile Gln Leu 980	tac gtc aac Tyr Val Asn	agg gct ctc Arg Ala Leu 985	aac agg gat Asn Arg Asp 990	gag 2975 Glu
	gct tct gat Ala Ser Asp 995				
gag agg tac Glu Arg Tyr 1010	aac aag agg Asn Lys Arg	tac tcc acc Tyr Ser Thr 1015	Trp Ala Gly	gtc tct gag Val Ser Glu 1020	ttg 3071 Leu
gtc tac tac Val Tyr Tyr 1025	cca gag aac Pro Glu Asn	tac gtg gac Tyr Val Asp .030	cca acc caa Pro Thr Gln 1035	agg att ggt Arg Ile Gly	cag 3119 Gln
	atg gat gct Met Asp Ala 1045			Gln Ser Gln	
aac gct gac Asn Ala Asp	act gtg gag Thr Val Glu 1060	Asp Ala Phe	aag acc tac Lys Thr Tyr 1065	ctc acc tcc Leu Thr Ser 1070	Phe
Glu Gln Val	gcc aac ctc Ala Asn Leu 1075	aag gtc atc Lys Val Ile 1080	tct gct tac Ser Ala Tyr	cat gac aac His Asp Asn 1085	gtc 3263 Val
aac gtg gac Asn Val Asp 1090	caa ggt ctc Gln Gly Leu	acc tac ttc Thr Tyr Phe 1095	Ile Gly Ile	gac caa gcc Asp Gln Ala 1100	gct 3311 Ala
cct ggc acc Pro Gly Thr 1105	tac tac tgg Tyr Tyr Trp	agg tct gtg Arg Ser Val 1110	gac cac tcc Asp His Ser 1115	Lys Cys Glu	aac 3359 Asn
ggc aag ttc Gly Lys Phe 1120	gct gcc aac Ala Ala Asn 1125	gct tgg ggt Ala Trp Gly	gag tgg aac Glu Trp Asn 1130	aag atc acc Lys Ile Thr	tgc 3407 Cys 1135
gct gtc aac Ala Val Asn	cct tgg aag Pro Trp Lys 1140	aac atc atc Asn Ile Ile	agg cca gtg Arg Pro Val 1145	gtc tac atg Val Tyr Met 1150	: Ser

aga ctc tac ttg ctc tgg ctt gag caa cag tcc aag aag tct gat gac Arg Leu Tyr Leu Leu Trp Leu Glu Gln Gln Ser Lys Lys Ser Asp Asp 1155 1160 1165	3503
ggc aag aca act atc tac cag tac aac ctc aag ttg gct cac atc cgc Gly Lys Thr Thr Ile Tyr Gln Tyr Asn Leu Lys Leu Ala His Ile Arg 1170 1175 1180	3551
tac gat ggt tcc tgg aac act cca ttc acc ttc gat gtc act gag aag Tyr Asp Gly Ser Trp Asn Thr Pro Phe Thr Phe Asp Val Thr Glu Lys 1185 1190 1195	3599
gtc aag aac tac acc tcc agc act gat gca gct gag tcc ctt ggt ctc Val Lys Asn Tyr Thr Ser Ser Thr Asp Ala Ala Glu Ser Leu Gly Leu 1200 1205 1210 1215	3647
tac tgc act ggt tac caa ggt gag gac acc ctc ttg gtc atg ttc tac Tyr Cys Thr Gly Tyr Gln Gly Glu Asp Thr Leu Leu Val Met Phe Tyr 1220 1225 1230	3695
tcc atg caa tcc agc tac tcc agc tac act gac aac aac gct cca gtc Ser Met Gln Ser Ser Tyr Ser Ser Tyr Thr Asp Asn Asn Ala Pro Val 1235 1240 1245	3743
act ggt ctc tac atc ttc gct gac atg tcc tct gac aac atg acc aac Thr Gly Leu Tyr Ile Phe Ala Asp Met Ser Ser Asp Asn Met Thr Asn 1250 1255 1260	3791
gct caa gcc acc aac tac tgg aac aac tcc tac cca caa ttc gac act Ala Gln Ala Thr Asn Tyr Trp Asn Asn Ser Tyr Pro Gln Phe Asp Thr 1265 1270 1275	3839
gtc atg gct gac cca gac tct gac aac aag aag gtc atc acc agg cgt Val Met Ala Asp Pro Asp Ser Asp Asn Lys Lys Val Ile Thr Arg Arg 1280 1285 1290 1295	3887
gtc aac aac cgc tac gct gag gac tac gag atc cca agc tct gtc acc Val Asn Asn Arg Tyr Ala Glu Asp Tyr Glu Ile Pro Ser Ser Val Thr 1300 1305 1310	3935
tcc aac agc aac tac tcc tgg ggt gac cac tcc ctc acc atg ctc tac Ser Asn Ser Asn Tyr Ser Trp Gly Asp His Ser Leu Thr Met Leu Tyr 1315 1320 1325	3983
ggt ggc tct gtc cca aac atc acc ttc gag tct gca gct gag gac ctc Gly Gly Ser Val Pro Asn Ile Thr Phe Glu Ser Ala Ala Glu Asp Leu 1330 1335 1340	4031
agg ctc tcc acc aac atg gct ctc tcc atc att cac aac ggt tac gct Arg Leu Ser Thr Asn Met Ala Leu Ser Ile Ile His Asn Gly Tyr Ala 1345 1350 1355	4079
ggc acc agg cgc atc caa tgc aac ctc atg aag caa tac gct tcc ctt Gly Thr Arg Arg Ile Gln Cys Asn Leu Met Lys Gln Tyr Ala Ser Leu 1360 1365 1370 1375	4127
ggt gac aag ttc att atc tac gac tcc agc ttc gat gac gcc aac agg Gly Asp Lys Phe Ile Ile Tyr Asp Ser Ser Phe Asp Asp Ala Asn Arg 1380 1385 1390	4175
ttc aac ttg gtc cca ctc ttc aag ttc ggc aag gat gag aac tct gat	4223

Phe Asn Leu Val 1395	Pro Leu Phe	Lys Phe Gly 1400	Lys Asp Glu Asi 1409	
gac tcc atc tgc Asp Ser Ile Cys 1410	Ile Tyr Asn			
tgg tac ttc agc Trp Tyr Phe Ser 1425	tcc aag gac Ser Lys Asp 1430	gac aac aag Asp Asn Lys	act gct gac tag Thr Ala Asp Ty: 1435	e aac ggt 4319 c Asn Gly
ggc acc caa tgc Gly Thr Gln Cys 1440	att gat gct Ile Asp Ala 1445	Gly Thr Ser	aac aag gac tto Asn Lys Asp Pho .450	c tac tac 4367 E Tyr Tyr 1455
aac ctc caa gag Asn Leu Gln Glu	att gag gtc Ile Glu Val 1460	atc tct gtc Ile Ser Val 1465	act ggt ggc tag Thr Gly Gly Ty	c tgg tcc 4415 r Trp Ser 1470
agc tac aag atc Ser Tyr Lys Ile 1475	agc aac ccc Ser Asn Pro	atc aac atc Ile Asn Ile 1480	aac act ggc at Asn Thr Gly Il 148	e Asp Ser
gcc aag gtc aag Ala Lys Val Lys 1490	Val Thr Val	aag gct ggt Lys Ala Gly 1495	ggc gat gac ca Gly Asp Asp Gl 1500	a atc ttc 4511 n Ile Phe
act gct gac aac Thr Ala Asp Asn 1505	tcc acc tac Ser Thr Tyr 1510	gtc cca cag Val Pro Gln	caa cct gct cc Gln Pro Ala Pr 1515	a tcc ttc 4559 o Ser Phe
gag gag atg atc Glu Glu Met Ile 1520	tac caa ttc Tyr Gln Phe 1525	Asn Asn Leu	acc att gac tg Thr Ile Asp Cy 1530	c aag aac 4607 s Lys Asn 1535
Glu Glu Met Ile 1520 ctc aac ttc att Leu Asn Phe Ile	Tyr Gln Phe 1525 gac aac cag	Asn Asn Leu gct cac att	Thr Ile Asp Cy 1530 gag att gac tt	s Lys Asn 1535 c act gcc 4655
Glu Glu Met Ile 1520 ctc aac ttc att Leu Asn Phe Ile aca gct caa gat Thr Ala Gln Asp	Tyr Gln Phe 1525 gac aac cag Asp Asn Gln 1540 ggc cgc ttc Gly Arg Phe	gct cac att Ala His Ile 1545 ttg ggt gct Leu Gly Ala	Thr Ile Asp Cy 1530 gag att gac tt Glu Ile Asp Ph gag acc ttc at	s Lys Asn 1535 c act gcc 4655 e Thr Ala 1550 c att cca 4703 e Ile Pro
Glu Glu Met Ile 1520 ctc aac ttc att Leu Asn Phe Ile aca gct caa gat Thr Ala Gln Asp	Tyr Gln Phe 1525 gac aac cag Asp Asn Gln 1540 ggc cgc ttc Gly Arg Phe gtc ctt ggc Val Leu Gly	gct cac att Ala His Ile 1545 ttg ggt gct Leu Gly Ala 1560 act gag aac	Thr Ile Asp Cy 1530 gag att gac tt Glu Ile Asp Ph gag acc ttc at Glu Thr Phe Il 156 gtc att gct ct	s Lys Asn 1535 c act gcc 4655 e Thr Ala 1550 c att cca 4703 e Ile Pro 5 c tac tct 4751
Glu Glu Met Ile 1520 ctc aac ttc att Leu Asn Phe Ile aca gct caa gat Thr Ala Gln Asp 1555 gtc acc aag aag Val Thr Lys Lys	Tyr Gln Phe 1525 gac aac cag Asp Asn Gln 1540 ggc cgc ttc Gly Arg Phe gtc ctt ggc Val Leu Gly gtc cag tac	gct cac att Ala His Ile 1545 ttg ggt gct Leu Gly Ala 1560 act gag aac Thr Glu Asn 1575 atg caa att Met Gln Ile	Thr Ile Asp Cy 1530 gag att gac tt Glu Ile Asp Ph gag acc ttc at Glu Thr Phe Il 156 gtc att gct ct Val Ile Ala Le 1580 ggt gct tac ag	s Lys Asn 1535 c act gcc 4655 e Thr Ala 1550 c att cca 4703 e Ile Pro 5 c tac tct 4751 u Tyr Ser a acc agg 4799
Glu Glu Met Ile 1520 ctc aac ttc att Leu Asn Phe Ile aca gct caa gat Thr Ala Gln Asp 1555 gtc acc aag aag Val Thr Lys Lys 1570 gag aac aac ggt Glu Asn Asn Gly	Tyr Gln Phe 1525 gac aac cag Asp Asn Gln 1540 ggc cgc ttc Gly Arg Phe gtc ctt ggc Val Leu Gly gtc cag tac Val Gln Tyr 1590 ttc gct caa	gct cac att Ala His Ile 1545 ttg ggt gct Leu Gly Ala 1560 act gag aac Thr Glu Asn 1575 atg caa att Met Gln Ile cag ttg gtc Gln Leu Val	Thr Ile Asp Cy 1530 gag att gac tt Glu Ile Asp Ph gag acc ttc at Glu Thr Phe Il 156 gtc att gct ct Val Ile Ala Le 1580 ggt gct tac ag Gly Ala Tyr Ar 1595 tcc cgt gcc aa	s Lys Asn 1535 c act gcc 4655 e Thr Ala 1550 c att cca 4703 e Ile Pro 5 c tac tct 4751 u Tyr Ser a acc agg 4799 g Thr Arg c aga ggc 4847
Glu Glu Met Ile 1520 ctc aac ttc att Leu Asn Phe Ile aca gct caa gat Thr Ala Gln Asp 1555 gtc acc aag aag Val Thr Lys Lys 1570 gag aac aac ggt Glu Asn Asn Gly 1585 ctc aac acc ctc Leu Asn Thr Leu	Tyr Gln Phe 1525 gac aac cag Asp Asn Gln 1540 ggc cgc ttc Gly Arg Phe gtc ctt ggc Val Leu Gly gtc cag tac Val Gln Tyr 1590 ttc gct caa Phe Ala Gln 1605 ctc agc atg	gct cac att Ala His Ile 1545 ttg ggt gct Leu Gly Ala 1560 act gag aac Thr Glu Asn 1575 atg caa att Met Gln Ile cag ttg gtc Gln Leu Val	Thr Ile Asp Cy 1530 gag att gac tt Glu Ile Asp Ph gag acc ttc at Glu Thr Phe Il 156 gtc att gct ct Val Ile Ala Le 1580 ggt gct tac ag Gly Ala Tyr Ar 1595 tcc cgt gcc aa Ser Arg Ala As 1610 aac atc caa ga	s Lys Asn 1535 c act gcc 4655 e Thr Ala 1550 c att cca 4703 e Ile Pro 5 c tac tct 4751 u Tyr Ser a acc agg 4799 g Thr Arg c aga ggc 4847 n Arg Gly 1615 g cca caa 4895

tcc att cat ggc acc aac aag tcc ttc gcc att gag tac gtg gac atc Ser Ile His Gly Thr Asn Lys Ser Phe Ala Ile Glu Tyr Val Asp Ile ttc aag gag aac gac tcc ttc gtc atc tac caa ggt gag ttg tct gag Phe Lys Glu Asn Asp Ser Phe Val Ile Tyr Gln Gly Glu Leu Ser Glu ace tee caa act gtg gte aag gte tte etc tee tae tte att gag gee Thr Ser Gln Thr Val Val Lys Val Phe Leu Ser Tyr Phe Ile Glu Ala acc ggt aac aag aac cac ctc tgg gtc agg gcc aag tac cag aag gag Thr Gly Asn Lys Asn His Leu Trp Val Arg Ala Lys Tyr Gln Lys Glu acc act gac aag atc ctc ttc gac agg act gat gag aag gac cca cat Thr Thr Asp Lys Ile Leu Phe Asp Arg Thr Asp Glu Lys Asp Pro His ggt tgg ttc ctc tct gat gac cac aag acc ttc tct ggt ctc agc tct Gly Trp Phe Leu Ser Asp Asp His Lys Thr Phe Ser Gly Leu Ser Ser gct caa gct ctc aag aac gac tct gag cca atg gac ttc tct ggt gcc Ala Gln Ala Leu Lys Asn Asp Ser Glu Pro Met Asp Phe Ser Gly Ala aac gct ctc tac ttc tgg gag ttg ttc tac tac act cca atg atg Asn Ala Leu Tyr Phe Trp Glu Leu Phe Tyr Tyr Thr Pro Met Met Met gct cac agg ctc ctt caa gag cag aac ttc gat gct gcc aac cac tgg Ala His Arg Leu Leu Gln Glu Gln Asn Phe Asp Ala Ala Asn His Trp ttc cgc tac gtc tgg agc cca tct ggt tac att gtg gat ggc aag att Phe Arg Tyr Val Trp Ser Pro Ser Gly Tyr Ile Val Asp Gly Lys Ile gcc atc tac cac tgg aac gtc agg cca ttg gag gag gac acc tcc tgg

Leu Met Ala Arg Gly Asp Ala Ala Tyr Arg Gln Leu Glu Arg Asp Thr
1860 1865 1870

ttg gct gag gcc aag atg tgg tac acc caa gct ctc aac ttg ctg ggt 5663

Leu Ala Glu Ala Lys Met Trp Tyr Thr Gln Ala Leu Asn Leu Leu Gly
1875 1880 1885

Ala Ile Tyr His Trp Asn Val Arg Pro Leu Glu Glu Asp Thr Ser Trp

aac gct cag caa ctt gac tcc act gac cca gat gct gtg gct caa gat

Asn Ala Gln Gln Leu Asp Ser Thr Asp Pro Asp Ala Val Ala Gln Asp

gac cca atg cac tac aag gtg gcc acc ttc atg gcc acc ttg gac ctt Asp Pro Met His Tyr Lys Val Ala Thr Phe Met Ala Thr Leu Asp Leu

ctc atg gcc aga ggt gat gct gcc tac cgc caa ttg gag agg gac acc

gat gag cca caa Asp Glu Pro Gln 1890	Val Met Leu	tcc aca ac Ser Thr Th 895	c tgg gcc aac r Trp Ala Asn 1900	cca acc ttg Pro Thr Leu	5711
ggc aac gct gcc Gly Asn Ala Ala 1905	tcc aag acc Ser Lys Thr 1910	aca caa ca Thr Gln Gl	g gtc agg caa n Val Arg Gln 1915	cag gtc ctc Gln Val Leu	5759
acc caa ctc agg Thr Gln Leu Arg 1920	ctc aac tct Leu Asn Ser 1925	aga gtc aa Arg Val Ly	g act cca ctc s Thr Pro Leu 1930	ttg ggc act Leu Gly Thr 1935	5807
gcc aac tcc ctc Ala Asn Ser Leu	act gct ctc Thr Ala Leu 1940	ttc ctc cc Phe Leu Pr 194	o Gln Glu Asn	tcc aaa ctt Ser Lys Leu 1950	5855
aag ggt tac tgg Lys Gly Tyr Trp 1955	agg acc ctt Arg Thr Leu	gct caa cg Ala Gln Ar 1960	g Met Phe Asn	ctc agg cac Leu Arg His 965	5903
aac ctc tcc att Asn Leu Ser Ile 1970	Asp Gly Gln	cca ctc to Pro Leu Se 1975	er Leu Pro Leu 1980	tac gct aag Tyr Ala Lys	5951
cca gct gac cca Pro Ala Asp Pro 1985	aag gct ctc Lys Ala Leu 1990	ctt tcc go Leu Ser Al	et gct gtc tcc La Ala Val Ser 1995	gca tcc caa Ala Ser Gln	5999
ggt ggt gct gac Gly Gly Ala Asp 2000	ctc cca aag Leu Pro Lys 2005	gct cca ct Ala Pro Le	cc acc atc cac eu Thr Ile His 2010	agg ttc cca Arg Phe Pro 2015	6047
caa atg ttg gag Gln Met Leu Glu	ggt gcc cgt Gly Ala Arg 2020	ggt ctt gt Gly Leu Va 202	al Asn Gln Leu	atc caa ttc Ile Gln Phe 2030	6095
ggt tcc tct ctc Gly Ser Ser Leu 2035	Leu Gly Tyr	tct gag aq Ser Glu Ai 2040	rg Gln Asp Ala	gag gcc atg Glu Ala Met 2045	6143
tcc caa ctc ttg Ser Gln Leu Leu 2050	Gln Thr Gln	gct tct ga Ala Ser G 2055	ag ttg atc ctc lu Leu Ile Leu 2060	acc tcc atc Thr Ser Ile	6191
agg atg caa gac Arg Met Gln Asp 2065	aac cag ctt Asn Gln Leu 2070	Ala Glu L	tg gac tct gag eu Asp Ser Glu 2075	aag act gct Lys Thr Ala	6239
ctc caa gtc tcc Leu Gln Val Ser 2080	ctt gct ggt Leu Ala Gly 2085	gtc caa c Val Gln G	ag agg ttc gac ln Arg Phe Asp 2090	agc tac tcc Ser Tyr Ser 2095	6287
caa ctc tac gag Gln Leu Tyr Glu	g gag aac ato 1 Glu Asn Ile 2100	aac gct g Asn Ala G 21	ly Glu Gln Arg	gct ttg gct Ala Leu Ala 2110	6335
ctc agg tct gag Leu Arg Ser Glu 2115	ı Ser Ala Ile	gag tcc c Glu Ser G 2120	ln Gly Ala Gln	atc tcc cgc Ile Ser Arg 2125	6383

atg gct ggt gct Met Ala Gly Ala 2130	Gly Val Asp	atg gct cca aa Met Ala Pro As 2135	c atc ttc ggt ctt n Ile Phe Gly Leu 2140	gct 6431 Ala
gat ggt ggc atg Asp Gly Gly Met 2145	cac tac ggt His Tyr Gly 2150	gcc att gct ta Ala Ile Ala Ty	c gcc att gct gat r Ala Ile Ala Asp 2155	ggc 6479 Gly
att gag ctt tct Ile Glu Leu Ser 2160	gct tct gcc Ala Ser Ala 2165	aag atg gtt ga Lys Met Val As 217	t gct gag aag gtg p Ala Glu Lys Val	gct 6527 Ala 2175
Gln Ser Glu Ile	tac cgt cgc Tyr Arg Arg 2180	aga cgc caa ga Arg Arg Gln Gl 2185	a tgg aag atc caa u Trp Lys Ile Gln 2190	agg 6575 Arg
gac aac gct caa Asp Asn Ala Gln 2195	Ala Glu Ile	aac cag ctc aa Asn Gln Leu As 2200	ac gct caa ctt gag sn Ala Gln Leu Glu 2205	tcc 6623 Ser
ctc agc atc agg Leu Ser Ile Arg 2210	Arg Glu Ala	gct gag atg ca Ala Glu Met Gl 2215	ag aag gag tac ctc In Lys Glu Tyr Leu 2220	aag 6671 Lys
acc caa cag gct Thr Gln Gln Ala 2225	caa gct cag Gln Ala Gln 2230	gct caa ctc ac Ala Gln Leu Th	cc ttc ctc agg tcc or Phe Leu Arg Ser 2235	aag 6719 Lys
ttc tcc aac cag Phe Ser Asn Gln 2240	gct ctc tac Ala Leu Tyr 2245	tcc tgg ctc ac Ser Trp Leu Ar 225	ga ggc cgc ctc tct cg Gly Arg Leu Ser 50	ggc 6767 Gly 2255
Ile Tyr Phe Gln	ttc tac gac Phe Tyr Asp 2260	ttg gct gtc to Leu Ala Val Se 2265	ec ege tge ete atg er Arg Cys Leu Met 2270	Ala
gag caa tcc tac Glu Gln Ser Tyr 2275	Gln Trp Glu	gcc aac gac aa Ala Asn Asp As 2280	ac agc atc tcc ttc sn Ser Ile Ser Phe 2285	gtc 6863 Val
aag cca ggt gct Lys Pro Gly Ala 2290	Trp Gln Gly	acc tac gct gc Thr Tvr Ala G	gt ctc ctt tgc ggt	gag 6911
		2295	ly Leu Leu Cys Gly 2300	Glu
gct ctc atc cag Ala Leu Ile Gln 2305	aac ttg gct	2295 caa atg gag ga Gln Met Glu G		tgg 6959
Ala Leu Ile Gln 2305 gag tcc aga gct	aac ttg gct Asn Leu Ala 2310 ttg gag gta	2295 caa atg gag gag Gln Met Glu G	2300 ag gct tac ctc aag lu Ala Tyr Leu Lys 2315 tc tcc ctt gct gta al Ser Leu Ala Val	tgg 6959 Trp
Ala Leu Ile Gln 2305 gag tcc aga gct Glu Ser Arg Ala 2320 tac gac tcc ttg	aac ttg gct Asn Leu Ala 2310 ttg gag gta Leu Glu Val 2325	caa atg gag ga Gln Met Glu G gag agg act ga Glu Arg Thr Va 23:	2300 ag gct tac ctc aag lu Ala Tyr Leu Lys 2315 tc tcc ctt gct gta al Ser Leu Ala Val	tgg 6959 Trp gtc 7007 Val 2335 atc 7055
Ala Leu Ile Gln 2305 gag tcc aga gct Glu Ser Arg Ala 2320 tac gac tcc ttg Tyr Asp Ser Leu cca gct ctc ttg	aac ttg gct Asn Leu Ala 2310 ttg gag gta Leu Glu Val 2325 g gag ggc aac Glu Gly Asn 2340 g gac aag ggt	caa atg gag ga Gln Met Glu G gag agg act ga Glu Arg Thr Va 233 gac agg ttc aa Asp Arg Phe As 2345	2300 ag gct tac ctc aag lu Ala Tyr Leu Lys 2315 tc tcc ctt gct gta al Ser Leu Ala Val 30 ac ctt gct gag caa sn Leu Ala Glu Gln	tgg 6959 Trp gtc 7007 Val 2335 atc 7055 Ile

Gly Leu Ser Leu Ala Asn Ala Ile Leu Ser Ala Ser Val Lys Leu Ser 2370 2375 2380	
gac ctc aag ttg ggt act gac tac cca gac tcc att gtg ggt tcc aac Asp Leu Lys Leu Gly Thr Asp Tyr Pro Asp Ser Ile Val Gly Ser Asn 2385 2390 2395	7199
aag gtc aga agg atc aag caa atc tct gtc tcc ctc cca gct ttg gtg Lys Val Arg Arg Ile Lys Gln Ile Ser Val Ser Leu Pro Ala Leu Val 2400 2405 2410 2415	7247
ggt cca tac caa gat gtc caa gcc atg ctc tcc tac ggt ggc tcc acc Gly Pro Tyr Gln Asp Val Gln Ala Met Leu Ser Tyr Gly Gly Ser Thr 2420 2425 2430	7295
caa ctc cca aag ggt tgc tct gct ttg gct gtc tcc cac ggc acc aac Gln Leu Pro Lys Gly Cys Ser Ala Leu Ala Val Ser His Gly Thr Asn 2435 2440 2445	7343
gac tot ggt caa tto caa ott gac tto aac gat ggc aag tac oto oca Asp Ser Gly Gln Phe Gln Leu Asp Phe Asn Asp Gly Lys Tyr Leu Pro 2450 2455 2460	· 7391
ttc gaa ggc att gct ttg gat gac caa ggc acc ctc aac ctc caa ttc Phe Glu Gly Ile Ala Leu Asp Asp Gln Gly Thr Leu Asn Leu Gln Phe 2465 2470 2475	7439
cca aac gcc act gac aag cag aag gcc atc ctc caa acc atg tct gac Pro Asn Ala Thr Asp Lys Gln Lys Ala Ile Leu Gln Thr Met Ser Asp 2480 2485 2490 2495	7487
atc atc ctc cac atc agg tac acc atc agg tgagetegag aggeetgegg Ile Ile Leu His Ile Arg Tyr Thr Ile Arg 2500 2505	7537
ccgc	7541
<210> 5 <211> 63 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:hemicot sequence encoding ER signal from 15 kDa zein from Black Mexican Sweet maize	
<220> <221> CDS <222> (1)(63)	
<pre><400> 5 atg gct aag atg gtc att gtg ctt gtg gtc tgc ttg gct ctc tct gct Met Ala Lys Met Val Ile Val Leu Val Val Cys Leu Ala Leu Ser Ala</pre>	48
gcc tgt gct tca gcc Ala Cys Ala Ser Ala 20	63

```
<210> 6
<211> 7621
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:hemicot tcdA
      fused to the modified 15 kDa zein endoplasmic
      reticulum signal peptide
<220>
<221> CDS
<222> (4)..(7614)
<400> 6
nce atg get aag atg gte att gtg ett gtg gte tge ttg get ete tet
    Met Ala Lys Met Val Ile Val Leu Val Val Cys Leu Ala Leu Ser
                                         10
gct gcc tgt gct tca gcc atg aac gag tcc gtc aag gag atc cca gac
Ala Ala Cys Ala Ser Ala Met Asn Glu Ser Val Lys Glu Ile Pro Asp
                 20
qtc ctc aaq tcc caa tqc qqt ttc aac tqc ctc act gac atc tcc cac
                                                                   1.44
Val Leu Lys Ser Gln Cys Gly Phe Asn Cys Leu Thr Asp Ile Ser His
             35
age tee tte aac gag tte aga caa caa gte tet gag cae ete tee tgg
                                                                   192
Ser Ser Phe Asn Glu Phe Arg Gln Gln Val Ser Glu His Leu Ser Trp
         50
too gag acc cat gac ctc tac cat gac gct cag caa gct cag aag gac
                                                                   240
Ser Glu Thr His Asp Leu Tyr His Asp Ala Gln Gln Ala Gln Lys Asp
aac agg ctc tac gag gct agg atc ctc aag agg gct aac cca caa ctc
                                                                   288
Asn Arg Leu Tyr Glu Ala Arg Ile Leu Lys Arg Ala Asn Pro Gln Leu
                  . 85
                                                                   336
cag aac gct gtc cac ctc gcc atc ttg gct cca aac gct gag ttg att
Gln Asn Ala Val His Leu Ala Ile Leu Ala Pro Asn Ala Glu Leu Ile
                100
ggt tac aac aac cag ttc tct ggc aga gct agc cag tac gtg gct cct
                                                                   384
Gly Tyr Asn Asn Gln Phe Ser Gly Arg Ala Ser Gln Tyr Val Ala Pro
            115
ggt aca gtc tcc tcc atg ttc agc cca gcc gct tac ctc act gag ttg
                                                                   432
Gly Thr Val Ser Ser Met Phe Ser Pro Ala Ala Tyr Leu Thr Glu Leu
        130
                             135
                                                                   480
tac ege gag get agg aac ett eat get tet gae tee gte tac tac ttg
Tyr Arg Glu Ala Arg Asn Leu His Ala Ser Asp Ser Val Tyr Tyr Leu
                        150
                                                                   528
qac aca cqc aqa cca qac ctc aaq agc atq qcc ctc agc caa cag aac
Asp Thr Arg Arg Pro Asp Leu Lys Ser Met Ala Leu Ser Gln Gln Asn
                    165
                                        170
                                                                   576
atg gac att gag ttg tcc acc ctc tcc ttg agc aac gag ctt ctc ttg
```

Met	Asp	Ile	Glu	Leu 180	Ser	Thr	Leu	Ser	Leu 185	Ser	Asn	Glu	Leu	Leu 190	Leu	
gag Glu	tcc Ser	atc Ile	aag Lys 195	act Thr	gag Glu	agc Ser	aag Lys	ttg Leu 200	gag Glu	aac Asn	tac Tyr	acc Thr	aag Lys 205	gtc Val	atg Met	624
gag Glu	atg Met	ctc Leu 210	tcc Ser	acc Thr	ttc Phe	aga Arg	cca Pro 215	agc Ser	ggt Gly	gca Ala	act Thr	cca Pro 220	tac Tyr	cat His	gat Asp	672
gcc Ala	tac Tyr 225	gag Glu	aac Asn	gtc Val	agg Arg	gag Glu 230	gtc Val	atc Ile	caa Gln	ctt Leu	caa Gln 235	gac Asp	cct Pro	ggt Gly	ctt Leu	720 .
gag Glu 240	caa Gln	ctc Leu	aac Asn	gct Ala	tct Ser 245	cca Pro	gcc Ala	att Ile	gct Ala	ggt Gly 250	ttg Leu	atg Met	cac His	cag Gln	gca Ala 255	768
tcc Ser	ttg Leu	ctc Leu	ggt Gly	atc Ile 260	aác Asn	gcc Ala	tcc Ser	atc Ile	tct Ser 265	cct Pro	gag Glu	ttg Leu	ttc Phe	aac Asn 270	atc Ile	816
ttg Leu	act Thr	gag Glu	gag Glu 275	atc Ile	act Thr	gag Glu	Gly	aac Asn 280	gct Ala	gag Glu	gag Glu	ttg Leu	tac Tyr 285	aag Lys	aag Lys	864
aac Asn	ttc Phe	ggc Gly 290	aac Asn	att Ile	gag Glu	cca Pro	gcc Ala 295	tct Ser	ctt Leu	gca Ala	atg Met	cct Pro 300	gag Glu	tac Tyr	ctc Leu	912
aag Lys	agg Arg 305	tac Tyr	tac Tyr	aac Asn	ttg Leu	tct Ser 310	gat Asp	gag Glu	gag Glu	ctt Leu	tct Ser 315	caa Gln	ttc Phe	att Ile	ggc Gly	960
aag Lys 320	gct Ala	tcc Ser	aac Asn	ttc Phe	ggt Gly 325	caa Gln	cag Gln	gag Glu	tac Tyr	agc Ser 330	Asn	aac Asn	cag Gln	ctc Leu	atc Ile 335	1008
act Thr	cca Pro	gtt Val	Val	Asn	tcc Ser	Ser	Asp	Gly	Thr	Val	Lys	Val	Tyr	Arg	Ile	1056
aca Thr	cgt Arg	gag Glu	tac Tyr 355	acc Thr	aca Thr	aac Asn	gcc Ala	tac Tyr 360	caa Gln	atg Met	gat Asp	gtt Val	gag Glu 365	ttg Leu	ttc Phe	1104
cca Pro	ttc Phe	ggt Gly 370	Gly	gag Glu	aac Asn	tac Tyr	aga Arg 375	ctt Leu	gac Asp	tac Tyr	aag Lys	ttc Phe 380	aag Lys	aac Asn	ttc Phe	1152
tac Tyr	aac Asn 385	Ala	tcc Ser	tac Tyr	ctc Leu	tcc Ser 390	Ile	aag Lys	ttg Leu	aac Asn	gac Asp 395	Lys	agg Arg	gag Glu	ctt Leu	1200
gtc Val 400	Arg	act Thr	gag Glu	ggt Gly	gct Ala 405	Pro	caa Gln	gtg Val	aac Asn	att Ile 410	Glu	tac Tyr	tct Ser	gcc Ala	aac Asn 415	1248
															ttg Leu	1296

			420				425				430	
				ggc Gly								1344
				cag Gln								1392
				gcc Ala 470								1440
				aac Asn								1488
	_	-		acc Thr	-			-	-		-	1536
-			-	atc Ile	Leu	-		-				1584
				tcc Ser								1632
				ttc Phe 550								1680
				gac Asp								1728
				tct Ser								1776
				aag Lys								1824
				ttg Leu								1872
				ctc Leu 630								1920
				aag Lys								1968
				 ctt Leu			-	_		-		2016

ctc Leu	ttc Phe	atc Ile	atg Met 675	acc Thr	agc Ser	acc Thr	tcc Ser	tac Tyr 680	aac Asn	aag Lys	acc Thr	ctc Leu	act Thr 685	cct Pro	gag Glu	2064
atc Ile	aag Lys	aac Asn 690	ctc Leu	ttg Leu	gac Asp	aca Thr	gtc Val 695	tac Tyr	cac His	ggt Gly	ctc Leu	caa Gln 700	ggc Gly	ttc Phe	gac Asp	2112
aag Lys	gac Asp 705	aag Lys	gct Ala	gac Asp	ttg Leu	ctt Leu 710	cat His	gtc Val	atg Met	gct Ala	ccc Pro 715	tac Tyr	att Ile	gca Ala	gcc Ala	2160
acc Thr 720	ctc Leu	caa Gln	ctc Leu	tcc Ser	tct Ser 725	gag Glu	aac Asn	gtg Val	gct Ala	cac His 730	tct Ser	gtc Val	ttg Leu	ctc Leu	tgg Trp 735	2208
gct Ala	gac Asp	aag Lys	ctc Leu	caa Gln 740	cct Pro	ggt Gly	gat Asp	ggt Gly	gcc Ala 745	atg Met	act Thr	gct Ala	gag Glu	aag Lys 750	ttc Phe	2256
tgg Trp	gac Asp	tgg Trp	ctc Leu 755	aac Asn	acc Thr	aag Lys	tac Tyr	aca Thr 760	cca Pro	ggc Gly	tcc Ser	tct Ser	gag Glu 765	gct Ala	gtt Val	2304
gag Glu	act Thr	caa Gln 770	gag Glu	cac His	att Ile	gtg Val	caa Gln 775	tac Tyr	tgc Cys	cag Gln	gct Ala	ctt Leu 780	gca Ala	cag Gln	ttg Leu	2352
gag Glu	atg Met 785	gtc Val	tac Tyr	cac His	tcc Ser	act Thr 790	ggc Gly	atc Ile	aac Asn	gag Glu	aac Asn 795	gct Ala	ttc Phe	aga Arg	ctc Leu	2400
ttc Phe 800	gtc Val	acc Thr	aag Lys	cct Pro	gag Glu 805	atg Met	ttc Phe	ggt Gly	gct Ala	gcc Ala 810	aca Thr	ggt Gly	gct Ala	gca Ala	cct Pro 815	2448
gct Ala	cat His	gat Asp	gct Ala	ctc Leu 820	tcc Ser	ctc Leu	atc Ile	atg Met	ttg Leu 825	acc Thr	agg Arg	ttc Phe	gct Ala	gac Asp 830	tgg Trp	2496
gtc Val	aac Asn	gct Ala	ctt Leu 835	ggt Gly	gag Glu	aag Lys	gct Ala	tcc Ser 840	tct Ser	gtc Val	ttg Leu	gct Ala	gcc Ala 845	ttc Phe	gag Glu	2544
gcc Ala	aac Asn	tcc Ser 850	ctc Leu	act Thr	gct Ala	gag Glu	caa Gln 855	ctt Leu	gct Ala	gat Asp	gcc Ala	atg Met 860	aac Asn	ctt Leu	gat Asp	2592
	aac Asn 865															2640
	cca Pro										Cys					2688
	acc Thr				Trp					Gln					Ala	2736

cca Pro	caa Gln	ggt Gly	gtc Val 915	tct Ser	gct Ala	ttg Leu	gtc Val	ggt Gly 920	ctt Leu	gac Asp	tac Tyr	atc Ile	cag Gln 925	tcc Ser	atg Met	2784
aag Lys	gag Glu	aca Thr 930	cca Pro	acc Thr	tac Tyr	gct Ala	caa Gln 935	tgg Trp	gag Glu	aac Asn	gca Ala	gct Ala 940	ggt Gly	gtc Val	ttg Leu	2832
act Thr	gct Ala 945	ggt Gly	ctc Leu	aac Asn	tcc Ser	caa Gln 950	cag Gln	gcc Ala	aac Asn	acc Thr	ctc Leu 955	cat His	gct Ala	ttc Phe	ttg Leu	2880
gat Asp 960	gag Glu	tct Ser	cgc Arg	tct Ser	gct Ala 965	gcc Ala	ctc Leu	tcc Ser	acc Thr	tac Tyr 970	tac Tyr	atc Ile	agg Arg	caa Gln	gtc Val 975	2928
gcc Ala	aag Lys	gca Ala	gct Ala	gct Ala 980	gcc Ala	atc Ile	aag Lys	tct Ser	cgc Arg 985	Asp	gac Asp	ctc Leu	tac Tyr	caa Gln 990	tac Tyr	2976
ctc Leu	ctc Leu	att Ile	gac Asp 995	aac Asn	cag Gln	gtc Val	Ser	gct Ala 1000	gcc Ala	atc Ile	aag Lys	Thr	acc Thr 1005	agg Arg	atc Ile	3024
gct	gag Glu	gcc Ala 1010	atc Ile	gct Ala	tcc Ser	Ile	caa Gln 1015	ctc Leu	tac Tyr	gtc Val	Asn	cgc Arg 1020	gct Ala	ctt Leu	gag Glu	3072
aac Asn	gtt Val 1025	gag Glu	gag Glu	aac Asn	Ala	aac Asn 1030	tct Ser	ggt Gly	gtc Val	Ile	tct Ser 1035	cgc Arg	caa Gln	ttc Phe	ttc Phe	3120
ato Ile 104	gac Asp 0	tgg Trp	gac Asp	Lys	tac Tyr 1045	aac Asn	aag Lys	agg Arg	Tyr	tcc Ser 1050	acc Thr	tgg Trp	gct Ala	Gly	gtc Val 1055	3168
tct Ser	caa Gln	ctt Leu	Val	tac Tyr 1060	tac Tyr	cca Pro	gag Glu	Asn	tac Tyr 1065	att Ile	gac Asp	cca Pro	acc Thr	atg Met 1070		3216
att Ile	ggt Gly	Gln	acc Thr 1075	Lys	atg Met	atg Met	Asp	gct Ala 1080	ctc Leu	ttg Leu	caa Gln	tct Ser	gtc Val 1085	Ser	caa Gln	3264
ago Ser	Gln	ctc Leu 1090	aac Asn	gct Ala	gac Asp	Thr	gtg Val 1095	Glu	gat Asp	gcc Ala	Phe	atg Met 1100	Ser	tac Tyr	ctc Leu	3312
acc Thi	tcc Ser 1105	Phe	gag Glu	caa Gln	gtt Val	gcc Ala 1110	Asn	ctc Leu	aag Lys	gtc Val	atc Ile 1115	Ser	gct Ala	tac Tyr	cat His	3360
gad Asr 112	Asn	atc	aac Asn	aac Asn	gac Asp 1125	Gln	ggt Gly	ctc Leu	acc	tac Tyr 1130	Phe	att Ile	ggt Gly	cto Lev	tct Ser 1135	3408
gaq Gl:	g act ı Thr	gat Asp	gct Ala	ggt Gly 1140	Glu	tac Tyr	tac Tyr	Trp	aga Arg 1145	Ser	gtg Val	gac Asp	cac His	ago Sei 1150	aag Lys	3456
tt	c aac	gat	ggo	aag	ttc	gct	gca	aac	gct	tgg	tct	gaç	g tg	g cad	c aag	3504

P	he i	Asn		Gly 155	Lys	Phe	Ala	Ala 1	Asn 160	Ala	Trp	Ser	Glu 1	rrp 165	His	Lys	
a I	lle .	Asp	tgc Cys 170	cct Pro	atc Ile	aac Asn	Pro	tac Tyr 175	aag Lys	tcc Ser	acc Thr	TTE	aga Arg 180	cct Pro	gtc Val	atc Ile	3552
t	ſyr	aag Lys 185	agc Ser	cgc Arg	ctc Leu	Tyr	ttg Leu 1190	ctc Leu	tgg Trp	ctt Leu	Glu	cag Gln 195	aag Lys	gag Glu	atc Ile	acc Thr	3600
1	aag Lys 1200	Gln	act Thr	ggc Gly	Asn	tcc Ser 1205	aag Lys	gat Asp	ggt Gly	Tyr	caa Gln 210	act Thr	gag Glu	act Thr	ASP	tac Tyr 1215	3648
i	cgc Arg	tac Tyr	gag Glu	Leu	aag Lys 1220	ttg Leu	gct Ala	cac	Ile	cgc Arg 1225	tac Tyr	gat Asp	ggt Gly	TIII	tgg Trp 1230	aac Asn	3696
į	act Thr	cca Pro	Ile	acc Thr 1235	ttc Phe	gat Asp	gtc Val	Asn	aag Lys 1240	aag Lys	atc Ile	agc Ser	gag Glu 1	ttg Leu 1245	aag Lys	ttg Leu	3744
	gag Glu	Lys	aac Asn 1250	cgt Arg	gct Ala	cct Pro	Gly	ctc Leu 1255	tac Tyr	tgc C <u>y</u> s	gct Ala	GTA	tac Tyr 1260	caa Gln	ggt Gly	gag Glu	3792
	Asp	acc Thr 1265	ctc Leu	ttg Leu	gtc Val	atg Met	ttc Phe 1270	Tyr	aac Asn	cag Gln	GIn	gac Asp 1275	acc	ctt Leu	gac Asp	tcc Ser	3840
	tac Tyr 128	Lys	aac Asn	gct Ala	tcc Ser	atç Met	: Gln	ggt Gly	ctc Leu	Tyr	atc Ile 1290	Pne	gct Ala	gac Asp	atg Met	gct Ala 1295	3888
	tcc Ser	aag Lys	gac Asp	ato Met	act Thi	r Pro	a gaç o Glu	g caa i Gln	ago Ser	aac Asn 1305	vaı	tac Tyr	cgt Arg	gac Asp	: aac Asr 1310	tcc Ser	3936
•	tac Tyr	caa Gln	cag Glr	tto Phe	Asp	c aco	c aad r Ası	aac n Asr	gtc n Val 1320	LArg	r cgt r Arg	g Val	aac L Asn	aac Asr 1325	, wr	tac Tyr	3984
	gct Ala	gaç Glu	gaq Asp 1330	туз	c gad	g ato u Ilo	c cca e Pro	a ago o Sei 1335	c Sei	gto Val	ago L Sei	c tot	c cgc c Arg 1340	r. A:	g gad s Asj	c tac p Tyr	4032
	ggc	tgg Trp	Gly	gao As	c ta p Ty	c ta r Ty	c cter r Le	u Se:	c ato	g gto t Val	g tac L Ty:	c aac r Ası 135	u GTŽ	gao As	c at	c cca e Pro	4080
	acc Thi	: Ile	e Ası	c ta	c aa r Ly	g gc s Al 136	a Al	c tc a Se	t tc r Se	c gad r As	c cto p Le	u Ly	a ato s Ile	ta Ty	c at r Il	c agc e Ser 1375	4128
•	Pro	a aa o Ly	g ct s Le	c ag u Ar	g at g Il 138	e Il	c ca e Hi	c aa s As	c gg n Gl	c ta y Ty 138	r GI	g gg u Gl	t cad y Gli	g aa n Ly	g ag s Ar 139	g aac g Asn 0	4176
	ca Gl:	g tg n Cy	c aa s As	c tt n Le	gat u Me	g aa et As	ic aa sn Ly	ıg ta /s Ty	c gg r Gl	c aa y Ly	g tt s Le	g gg u Gl	t ga y As	c aa p Ly	g tt s Ph	c att e Ile	4224

1395 1400 1405

1330				
gtc tac acc tct Val Tyr Thr Ser 1410	ctt ggt gtc aa Leu Gly Val As 141	n Pro Asn Asn	agc tcc aac aag Ser Ser Asn Lys · 1420	ctc 4272 Leu
atg ttc tac cca Met Phe Tyr Pro 1425	gtc tac caa ta Val Tyr Gln Ty 1430	r Ser Gly Asn	acc tct ggt ctc Thr Ser Gly Leu .435	aac 4320 Asn
			tac cca agc aag Tyr Pro Ser Lys 1	
Glu Ala Trp Ile			acc aac cag aac Thr Asn Gln Asn 1470	
			aac aag cct gat Asn Lys Pro Asp 1485	
ctc aag cag tac Leu Lys Gln Tyr 1490	atc ttc atg ac Ile Phe Met Th	nr Asp Ser Lys	ggc aca gcc act Gly Thr Ala Thr 1500	gat 4512 Asp
gtc tct ggt cca Val Ser Gly Pro 1505	gtg gag atc as Val Glu Ile As 1510	on Thr Ala Ile	age cca gcc aag Ser Pro Ala Lys 1515	gtc 4560 Val
caa atc att gtc Gln Ile Ile Val 1520	aag gct ggt gg Lys Ala Gly G 1525	gc aag gag caa ly Lys Glu Gln 1530	acc ttc aca gct Thr Phe Thr Ala 1	gac 4608 Asp .535
Lys Asp Val Ser			gat gag atg aac Asp Glu Met Asn 1550	
caa ttc aac gct Gln Phe Asn Ala 1555	ctt gag att ga Leu Glu Ile A	at ggt tct ggc sp Gly Ser Gly 1560	ctc aac ttc atc Leu Asn Phe Ile 1565	aac 4704 Asn
		hr Phe Thr Ala	ttc gct gag gat Phe Ala Glu Asp 1580	
cgc aag ttg ggt Arg Lys Leu Gly 1585	tac gag agc to Tyr Glu Ser Pl 1590	he Ser Ile Pro	gtc acc ctt aag Val Thr Leu Lys 1595	gtt 4800 Val
tcc act gac aac Ser Thr Asp Asn 1600	gca ctc acc c Ala Leu Thr L 1605	tt cat cac aac eu His His Asn 1610	gag aac ggt gct Glu Asn Gly Ala 1	cag 4848 Gln 1615
Tyr Met Gln Trp			aac acc ctc ttc Asn Thr Leu Phe 1630	
agg caa ctt gtg Arg Gln Leu Val 1635	Ala Arg Ala T	cc aca ggc att hr Thr Gly Ile 1640	gac acc atc ctc Asp Thr Ile Leu 1645	agc 4944 Ser

atg gag acc cag aac at	c caa gag cca cag	ttg ggc aag ggt ttc tac	4992
Met Glu Thr Gln Asn Il	e Gln Glu Pro Gln	Leu Gly Lys Gly Phe Tyr	
1650	1655	1660	
gcc acc ttc gtc atc cc	e cct tac aac ctc	agc act cat ggt gat gag	5040
Ala Thr Phe Val Ile Pr	o Pro Tyr Asn Leu	Ser Thr His Gly Asp Glu	
1665	1670	1675	
	r Ile Lys His Val	gtt gac aac aac tcc cac Val Asp Asn Asn Ser His .690 1695	5088
atc atc tac tct ggt ca	a ctc act gac acc	aac atc aac atc acc ctc	5136
Ile Ile Tyr Ser Gly Gl	n Leu Thr Asp Thr	Asn Ile Asn Ile Thr Leu	
1700	1705	1710	
ttc atc cca ctt gac ga	t gtc cca ctc aac	cag gac tac cat gcc aag	5184
Phe Ile Pro Leu Asp As	p Val Pro Leu Asn	Gln Asp Tyr His Ala Lys	
1715	1720	1725	
gtc tac atg acc ttc aa	g aag tot cca tot	gat ggc acc tgg tgg ggt	5232
Val Tyr Met Thr Phe Ly	s Lys Ser Pro Ser	Asp Gly Thr Trp Trp Gly	
1730	1735	1740	
cca cac ttc gtc cgt ga	t gac aag ggc atc	gtc acc atc aac cca aag	5280
Pro His Phe Val Arg As	p Asp Lys Gly Ile	Val Thr Ile Asn Pro Lys	
1745	1750	1755	
tcc atc ctc acc cac tt Ser Ile Leu Thr His Ph 1760 176	e Glu Ser Val Asn	gtt ctc aac aac atc tcc Val Leu Asn Asn Ile Ser 1770 1775	5328
tct gag cca atg gac tt	c tct ggt gcc aac	tcc ctc tac ttc tgg gag	5376
Ser Glu Pro Met Asp Ph	e Ser Gly Ala Asn	Ser Leu Tyr Phe Trp Glu	
1780	1785	1790	
ttg ttc tac tac aca co	a atg ctt gtg gct	caa agg ttg ctc cat gag	5424
Leu Phe Tyr Tyr Thr Pr	o Met Leu Val Ala	Gln Arg Leu Leu His Glu	
1795	1800	1805	
cag aac ttc gat gag go	c aac agg tgg ctc	aag tac gtc tgg agc cca	5472
Gln Asn Phe Asp Glu Al	a Asn Arg Trp Leu	Lys Tyr Val Trp Ser Pro	
1810	1815	1820	
tct ggt tac att gtg ca	t ggt caa atc cag	aac tac caa tgg aac gtc	5520
Ser Gly Tyr Ile Val Hi	s Gly Gln Ile Gln	Asn Tyr Gln Trp Asn Val	
1825	1830	1835	
agg cca ttg ctt gag ga Arg Pro Leu Leu Glu As 1840 184	p Thr Ser Trp Asn	tct gac cca ctt gac tct Ser Asp Pro Leu Asp Ser 1850 1855	5568 -
gtg gac cct gat gct gt	g gct caa cat gac	cca atg cac tac aag gtc	5616
Val Asp Pro Asp Ala Va	l Ala Gln His Asp	Pro Met His Tyr Lys Val	
1860	1865	1870	
		att gcc aga ggt gac cat Ile Ala Arg Gly Asp His 1885	5664

gct tac cgc caa ttg gag agg gac acc ctc aac gag gca aag at Ala Tyr Arg Gln Leu Glu Arg Asp Thr Leu Asn Glu Ala Lys Me 1890 1895 1900	
tac atg caa gct ctc cac ctc ttg ggt gac aag cca tac ctc cc Tyr Met Gln Ala Leu His Leu Leu Gly Asp Lys Pro Tyr Leu Pr 1905 1910 1915	
agc acc act tgg tcc gac cca agg ttg gac cgt gct gct gac at Ser Thr Thr Trp Ser Asp Pro Arg Leu Asp Arg Ala Ala Asp Il 1920 1925 1930	
act cag aac gct cat gac tct gcc att gtt gct ctc agg cag aa Thr Gln Asn Ala His Asp Ser Ala Ile Val Ala Leu Arg Gln As 1940 1945 195	n Ile
cca act cct gct cca ctc tcc ctc aga tct gct aac acc ctc ac Pro Thr Pro Ala Pro Leu Ser Leu Arg Ser Ala Asn Thr Leu Th 1955 1960 1965	t gac 5904 ir Asp
ttg ttc ctc cca cag atc aac gag gtc atg atg aac tac tgg ca Leu Phe Leu Pro Gln Ile Asn Glu Val Met Met Asn Tyr Trp Gl 1970 1975 1980	
ttg gct caa agg gtc tac aac ctc aga cac aac ctc tcc att ga Leu Ala Gln Arg Val Tyr Asn Leu Arg His Asn Leu Ser Ile As 1985 1990 1995	
caa cca ctc tac ctc cca atc tac gcc aca cca gct gac cca aa Gln Pro Leu Tyr Leu Pro Ile Tyr Ala Thr Pro Ala Asp Pro Ly 2000 2005 2010	
ctt ctc tct gct gct gtg gct acc agc caa ggt ggt ggc aag ct Leu Leu Ser Ala Ala Val Ala Thr Ser Gln Gly Gly Gly Lys Le 2020 2025 203	eu Pro
gag tcc ttc atg tcc ctc tgg agg ttc cca cac atg ttg gag aa Glu Ser Phe Met Ser Leu Trp Arg Phe Pro His Met Leu Glu As 2035 2040 2045	
cgt ggc atg gtc tcc caa ctc acc cag ttc ggt tcc acc ctc ca Arg Gly Met Val Ser Gln Leu Thr Gln Phe Gly Ser Thr Leu Gl 2050 2055 2060	-
atc att gag agg caa gat gct gag gct ctc aac gct ttg ctc ca Ile Ile Glu Arg Gln Asp Ala Glu Ala Leu Asn Ala Leu Leu Gl 2065 2070 2075	ng aac 6240 In Asn
cag gca gct gag ttg atc ctc acc aac ttg tcc atc caa gac aa Gln Ala Ala Glu Leu Ile Leu Thr Asn Leu Ser Ile Gln Asp Ly 2080 2085 2090	ag acc 6288 /s Thr -2095
att gag gag ctt gat gct gag aag aca gtc ctt gag aag agc aa Ile Glu Glu Leu Asp Ala Glu Lys Thr Val Leu Glu Lys Ser Ly 2100 2105 211	ys Ala
ggt gcc caa tct cgc ttc gac tcc tac ggc aag ctc tac gat ga Gly Ala Gln Ser Arg Phe Asp Ser Tyr Gly Lys Leu Tyr Asp Gl 2115 2120 2125	
atc aac gct ggt gag aac cag gcc atg acc ctc agg gct tcc go	ca qct 6432

Ile Asn Ala Gly Glu Asn Gln Ala Met Thr Leu Arg Ala Ser Ala Ala 2135 6480 ggt ctc acc act gct gtc caa gcc tct cgc ttg gct ggt gca gct gct Gly Leu Thr Thr Ala Val Gln Ala Ser Arg Leu Ala Gly Ala Ala Ala 2150 gac ctc gtt cca aac atc ttc ggt ttc gct ggt ggc tcc aga tgg 6528 Asp Leu Val Pro Asn Ile Phe Gly Phe Ala Gly Gly Ser Arg Trp 2170 2160 ggt gcc att gct gag gct acc ggt tac gtc atg gag ttc tct gcc aac 6576 Gly Ala Ile Ala Glu Ala Thr Gly Tyr Val Met Glu Phe Ser Ala Asn 2185 2180 gtc atg aac act gag gct gac aag atc agc caa tct gag acc tac aga 6624 Val Met Asn Thr Glu Ala Asp Lys Ile Ser Gln Ser Glu Thr Tyr Arg 2200 2195 agg cgc cgt caa gag tgg gag atc caa agg aac aac gct gag gca gag 6672 Arg Arg Arg Gln Glu Trp Glu Ile Gln Arg Asn Asn Ala Glu Ala Glu 2215 2210 ttg aag caa atc gat gct caa ctc aag tcc ttg gct gtc aga agg gag 6720 Leu Lys Gln Ile Asp Ala Gln Leu Lys Ser Leu Ala Val Arg Arg Glu 2230 2225 get get gtc etc cag aag ace tec etc aag ace caa cag gag caa ace 6768 Ala Ala Val Leu Gln Lys Thr Ser Leu Lys Thr Gln Gln Glu Gln Thr 2250 2245 2240 cag tcc cag ttg gct ttc ctc caa agg aag ttc tcc aac cag gct ctc 6816 Gln Ser Gln Leu Ala Phe Leu Gln Arg Lys Phe Ser Asn Gln Ala Leu 2265 2260 tac aac tgg ctc aga ggc cgc ttg gct gcc atc tac ttc caa ttc tac 6864 Tyr Asn Trp Leu Arg Gly Arg Leu Ala Ala Ile Tyr Phe Gln Phe Tyr 2280 gac ctt gct gtg gcc agg tgc ctc atg gct gag caa gcc tac cgc tgg 6912 Asp Leu Ala Val Ala Arg Cys Leu Met Ala Glu Gln Ala Tyr Arg Trp 2300 2290 2295 6960 gag ttg aac gat gac tcc gcc agg ttc atc aag cca ggt gct tgg caa Glu Leu Asn Asp Asp Ser Ala Arg Phe Ile Lys Pro Gly Ala Trp Gln 2305 2310 ggc acc tac gct ggt ctc ctt gct ggt gag acc ctc atg ctc tcc ttg 7008 Gly Thr Tyr Ala Gly Leu Leu Ala Gly Glu Thr Leu Met Leu Ser Leu 2335 2325 2330 2320 gct caa atg gag gat gct cac ctc aag agg gac aag agg gct ttg gag 7056 Ala Gln Met Glu Asp Ala His Leu Lys Arg Asp Lys Arg Ala Leu Glu 2350 2340 7104 gtg gag agg aca gtc tcc ctt gct gag gtc tac gct ggt ctc cca aag Val Glu Arg Thr Val Ser Leu Ala Glu Val Tyr Ala Gly Leu Pro Lys 2355 2360 gac aac ggt cca ttc tcc ctt gct caa gag att gac aag ttg gtc agc 7152 Asp Asn Gly Pro Phe Ser Leu Ala Gln Glu Ile Asp Lys Leu Val Ser

2370	2375	2380	
caa ggt tct ggt tct Gln Gly Ser Gly Ser 2385	gct ggt tct ggt Ala Gly Ser Gly 2390	aac aac aac ttg gct ttc gc Asn Asn Asn Leu Ala Phe G 2395	gc 7200 ly
Ala Gly Thr Asp Thr	aag acc tcc ctc Lys Thr Ser Leu 2405	caa gcc tct gtc tcc ttc gc Gln Ala Ser Val Ser Phe A 2410	la
		gct tcc ctt ggc aag atc ad Ala Ser Leu Gly Lys Ile Ad 2425 2430	
		cca gct ctc ttg ggt cca to Pro Ala Leu Leu Gly Pro T 2445	
		ggt gac aag gct ggt ttg g Gly Asp Lys Ala Gly Leu A 2460	
		cat ggc atg aac gac tct g His Gly Met Asn Asp Ser G 2475	
Gln Phe Gln Leu Asp		aag ttc ctc cca ttc gag g Lys Phe Leu Pro Phe Glu G 2490 24	ly
	Gly Thr Leu Thr	ctc tcc ttc cca aac gct t Leu Ser Phe Pro Asn Ala S 2505 2510	
atg cca gag aag gga Met Pro Glu Lys Gly 2515	aag caa gcc acc Lys Gln Ala Thr 2520	atg ctc aag acc ctc aac g Met Leu Lys Thr Leu Asn A 2525	at 7584 sp
atc atc ctc cac atc Ile Ile Leu His Ile 2530			7621

INTERNATIONAL SEARCH REPORT

Interna pplication No PCT/US 00/22237

A. CLASSIF	FICATION OF SUBJECT MATTER C12N15/82 C07K14/24 C12N15/11	
	International Patent Classification (IPC) or to both national classification and IPC	
B. FIELDS	SEARCHED cumentation searched (classification system followed by classification symbols)	
IPC 7	C12N C07K	
	ion searched other than minimum documentation to the extent that such documents are included	
Electronic da	ata base consulted during the international search (name of data base and, where practical, sear	ch terms used)
STRAND	, EPO-Internal, WPI Data, PAJ	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	WO 98 08932 A (DOW AGROSCIENCES LLC ;WISCONSIN ALUMNI RES FOUND (US))	1-7
	5 March 1998 (1998-03-05) cited in the application SEQ ID NO:11 in this document is the	*
	unmodified version of SEQ ID NO:3 of the	
	present application.	
	SEQ ID NO:46 corresponds to SEQ ID NO:5. page 16, line 31 -page 19, line 35	
А	WO 97 13402 A (DOWELANCO) 17 April 1997 (1997-04-17)	1-7
	the whole document	
Fur	ther documents are listed in the continuation of box C. X Patent family men	nbers are listed in annex.
° Special c	or priority date and no	ed after the international filing date to conflict with the application but
	nent defining the general state of the art which is not cited to understand the idered to be of particular relevance invention	e principle or theory underlying the
	document but published on or after the international *X* document of particular cannot be considered	relevance; the claimed invention novel or cannot be considered to
'L' docum	nent which may throw doubts on priority claim(s) or involve an inventive s	tep when the document is taken alone relevance: the claimed invention
O. docnu	on or other special reason (as specified) cannot be considered document is combine ment referring to an oral disclosure, use, exhibition or document is combine ments, such combina	to involve an inventive step when the d with one or more other such docu- tion being obvious to a person skilled
	nent published prior to the international filing date but in the art. than the priority date claimed "&" document member of t	he same patent family
		international search report
	1 December 2000 08/12/200	00
Name and	mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo nl. Fax: (+31-70) 340-3016 Sprinks,	M `

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

information on patent ramily members

Interna pplication No
PCT/US 00/22237

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
WO 9808932	A	05-03-1998	AU 1050997 A AU 2829997 A BR 9606889 A BR 9711441 A CA 2209659 A EP 0797659 A EP 0970185 A HU 9900768 A PL 321212 A PL 332033 A SK 93197 A WO 9717432 A	29-05-1997 19-03-1998 28-10-1997 24-10-2000 15-05-1997 01-10-1997 12-01-2000 28-06-1999 24-11-1997 16-08-1999 06-05-1998 15-05-1997
WO 9713402	Α	17-04-1997	AU 708256 B AU 7446796 A BR 9611000 A CN 1199321 A EP 0861021 A JP 2000507808 T	29-07-1999 30-04-1997 28-12-1999 18-11-1998 02-09-1998 27-06-2000

Form PCT/ISA/210 (patent family annex) (July 1992)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.