

Sequence to sequence models

Error analysis on beam search

Example

-> RNN -> Room Sent

BT

Jane visite l'Afrique en septembre.

Human: Jane visits Africa in September.

Algorithm: Jane visited Africa last September. $(\hat{y}) \leftarrow RNN$ comprles $P(\hat{y}|x) \geq P(\hat{y}|x)$

Error analysis on beam search

p(y* (x) P(9 (x)

Human: Jane visits Africa in September. (y^*)

Algorithm: Jane visited Africa last September. (\hat{y}) ag max P(y 1x) Case 1: $P(y^*|x) > P(\hat{y}|x) \leftarrow$

Beam search chose \hat{y} . But y^* attains higher P(y|x). Conclusion: Beam search is at fault.

Case 2:
$$P(y^*|x) \leq P(\hat{y}|x) = y^*$$
 is a better translation than \hat{y} . But RNN predicted $P(y^*|x) < P(\hat{y}|x)$.

Conclusion: RNN model is at fault.

Error analysis process

-	Human	Algorithm	$P(y^* x)$	$P(\hat{y} x)$	At fault?
-	Jane visits Africa in September.	Jane visited Africa last September.	2 × 10 -10	1 × 10 -10	BROKK.
					R

Figures out what faction of errors are "due to" beam search vs. RNN model