Curs VII ELEMENTE DE TEORIA GRUPURILOR

§ 5. SUBGRUPURI NORMALE

Definiția 5.1. Un subgrup N al unui grup G se spune că este subgrup *normal* dacă oricare ar fi $x \in G$ și $h \in N$, avem $xhx^{-1} \in N$.

Notație. N ⊲ G

Observație. Pentru un grup G și $x \in G$ am definit automorfismul interior $\phi_x : G \to G$, $\phi_x(g) = xgx^{-1}$. Din definiție rezultă că un subgrup N al lui G este subgrup normal dacă și numai dacă $\phi_x(N) \subseteq N$, oricare ar fi $x \in G$.

Propoziția 5.2. Dacă N este un subgrup al grupului G, afirmațiile următoare sunt echivalente:

- 1) N este subgrup normal;
- 2) Relațiile de congruență modulo N, adică R_N^s și R_N^d coincid;
- 3) xN = Nx, oricare ar fi $x \in G$;
- 4) $G/R_N^s = G/R_N^d$.

Demonstrație. 1) ⇒ 2) Dacă x R_N^s y, atunci x $^{-1}$ y ∈ N. Fie h = x $^{-1}$ y ∈ N. Atunci xh = y. Dar cum N este subgrup normal, avem xhx $^{-1}$ ∈ N, adică yx $^{-1}$ ∈ N, deci şi (yx $^{-1}$) $^{-1}$ = xy $^{-1}$ ∈ N, adică x R_N^d y.

Analog se demonstrează că dacă x R_N^d y, atunci x R_N^s y, deci relațiile R_N^s și R_N^d coincid.

- 2) \Rightarrow 3) Dacă $y \in xN$, atunci y = xh cu $h \in N$, deci $x^{-1}y = h \in N$, adică $x R_N^s y$. Deci $x R_N^d y$, adică $yx^{-1} \in N$ sau $yx^{-1} = h' \in N$, de unde $y = h'x \in Nx$; deci $xN \subseteq Nx$. Analog se demonstrează că $Nx \subseteq xN$.
 - $3) \Rightarrow 4)$ Evident.
- $4) \Rightarrow 3$) Fie $x \in G$. Avem $xN \in G/R_N^s$ şi cum $G/R_N^s = G/R_N^d$ rezultă că există y $\in G$ cu proprietatea că xN = Ny. Dar $x \in xN$, deci $x \in Ny \Rightarrow x R_N^d$ y $\Rightarrow Ny = Nx$, deci xN = Nx.
- 3) \Rightarrow 2) Fie x, y \in G cu x R_N^s y. Atunci xN = yN şi cum xN = Nx şi yN = Ny rezultă că Nx = Ny, de unde x R_N^d y. Reciproc se arată la fel.
- 3) \Rightarrow 1) Dacă $x \in G$ și $h \in N$, atunci $xh \in xN = Nx$ și deci xh = h'x cu $h' \in N$, de unde $xhx^{-1} = h' \in N$, adică N este subgrup normal.

Exemple.

- 1) G și {e} sunt subgrupuri normale ale grupului G.
- 2) Dacă G este un grup abelian, este clar că orice subgrup al său este normal.

3) Orice subgrup de indice 2 al unui grup oarecare G este normal. Într-adevăr, dacă H este subgrup al lui G astfel încât [G: H] = 2, atunci

$$G/R_H^s = \{H, G \setminus H\}$$
 şi $G/R_H^d = \{H, G \setminus H\}$.

Deci $G/R_H^s = G/R_H^d$.

$$G/R_H^s = G/R_H^d$$
.
4) Fie grupul \mathbf{S}_3 al permutărilor de 3 elemente și permutarea $\tau = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}$.

Submulțimea $H = \{e, \tau\}$ este un subgrup al lui S_3 care nu este normal. Într-adevăr, dacă

$$\sigma = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}, \text{ atunci } \sigma \tau \sigma^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \notin H.$$

(Această afirmatie rezultă și din paragraful precedent, unde am arătat că multimile factor la stânga și la dreapta ale lui S₃ în raport cu H sunt diferite.)

Propoziția 5.3. Fie $f: G \rightarrow G'$ un morfism de grupuri. Avem:

- 1) Dacă N este subgrup normal al lui G, iar f este surjectiv, atunci f(N) este subgrup normal al lui G'.
- 2) Dacă N' este subgrup normal al lui G', atunci f⁻¹(N') este subgrup normal al lui G. În particular, Ker f este subgrup normal al lui G.

Demonstrație. 1) Fie $g' \in G'$ și $h \in N$. Vrem să arătăm că $g'f(h)(g')^{-1} \in f(N)$. Deoarece f este surjectivă există $g \in G$ astfel încât f(g) = g'. Atunci $g'f(h)(g')^{-1} = f(g)f(h)$ $f(g)^{-1} = f(ghg^{-1}) \in f(N)$, deoarece N este subgrup normal.

2) Fie $g \in G$ si $h \in f^{-1}(N')$. Vrem să arătăm că $ghg^{-1} \in f^{-1}(N')$, adică $f(ghg^{-1}) \in G$ N'. Dar $f(h) \in N'$ si cum N' este normal în G' rezultă că $f(g)f(h)f(g)^{-1} \in N'$, adică $f(ghg^{-1})$ \in N'.

Exercitiu. Dați un exemplu de subgrup normal a cărui imagine printr-un morfism de grupuri să nu fie subgrup normal.

Teorema 5.4. (Teorema de corespondență pentru subgrupuri normale) Fie $f: G \rightarrow$ G' un morfism surjectiv de grupuri. Există o corespondentă bijectivă între multimea subgrupurilor normale ale lui G care contin Ker f si multimea tuturor subgrupurilor normale ale lui G', dată prin $N \to f(N)$.

Demonstrație. Corespondenta $N \rightarrow f(N)$ este corect definită după cum rezultă din propoziția 5.3. Restul este la fel ca în demonstrația teoremei 2.6 din cursul 5.

§ 6. GRUP FACTOR

Fie G un grup și N un subgrup normal al său. După cum rezultă din cele de mai înainte, relațiile de congruență R_N^s și R_N^d (la stânga și la dreapta modulo N) coincid. În acest caz vom spune, pe scurt, congruența modulo N, iar dacă x, y ∈ G, faptul că x este

congruent cu y modulo N îl vom scrie $x \equiv y \pmod{N}$. Cele două mulțimi factor G / R_N^s și G / R_N^d coincid, mulțimea factor fiind notată cu G/N.

Propoziția 6.1. Dacă G este un grup și N un subgrup normal al său, atunci pe mulțimea factor G/N se poate defini o operație algebrică împreună cu care G/N devine grup, iar funcția surjectivă $p: G \to G/N$, p(x) = [x] este morfism de grupuri cu Ker p = N.

Demonstrație. Dacă $x, y \in G$, definim

$$[x][y] = [xy].$$

Să arătăm că în acest mod se definește o operație algebrică pe G/N, împreună cu care G/N devine grup.

Să demonstrăm mai întâi că operația este bine definită, adică nu depinde de alegerea reprezentanților. Într-adevăr, dacă [x] = [x'] și [y] = [y'], atunci avem $x^{-1}x' \in N$ și $y^{-1}y' \in N$, adică există $h_1, h_2 \in N$ astfel încât $x^{-1}x' = h_1$ și $y^{-1}y' = h_2$, adică $x' = xh_1$ și $y' = yh_2$. Deci $x'y' = (xh_1)(yh_2) = x(h_1y)h_2$. Dar cum N este subgrup normal, există $h_3 \in N$ astfel încât $h_1y = yh_3$ (deoarece Ny = yN), de unde se obține $x'y' = x(yh_3)h_2 = (xy)(h_3h_2)$, iar $h_3h_2 \in N$. Deci $(xy)^{-1}(x'y') = h_3h_2 \in N$, adică xy este congruent modulo x'y', de unde x'y' = x'y'. Deci operația algebrică este bine definită.

Operația este asociativă, deoarece dacă [x], [y], [z] ∈ G/N, atunci

$$[x]([y][z]) = [x][yz] = [x(yz)] = [(xy)z] = [xy][z] = ([x][y])[z].$$

Operația admite ca element neutru $[e] \in G/N$ (unde e este elementul neutru din G), deoarece oricare ar fi $[x] \in G/N$ avem, în mod evident,

$$[x][e] = [e][x] = [x].$$

Orice element $[x] \in G/N$ are un invers care este $[x^{-1}] \in G/N$, deoarece $[x][x^{-1}] = [xx^{-1}] = [e]$ şi $[x^{-1}][x] = [x^{-1}x] = [e]$.

Astfel am demonstrat că G/N este un grup.

Funcția surjectivă p: $G \rightarrow G/N$, unde p(x) = [x], este un morfism de grupuri. Întradevăr,

$$p(xy) = [xy] = [x][y] = p(x)p(y).$$

Arătăm acum că Ker p = N. Dacă $x \in \text{Ker } p$, atunci p(x) = [e], deci [x] = [e], de unde $x \equiv e \pmod{N}$ sau $xe^{-1} \in N$, adică $x \in N$. Reciproc, dacă $x \in N$, atunci $x \equiv e \pmod{N}$, adică [x] = [e], de unde p(x) = [x] = [e] și deci $x \in \text{Ker } p$.

Definiția 6.2. Grupul G/N construit în propoziția precedentă se numește *grupul factor* (*cât*) al lui G în raport cu subgrupul normal N. Morfismul p: $G \rightarrow G/N$, p(x) = [x] se numește *proiecția* (*surjecția*) *canonică* a lui G pe grupul factor G/N.

Observații.

1) Dacă G este un grup comutativ, atunci orice subgrup al său este normal și deci putem vorbi de grupul factor al lui G în raport cu orice subgrup al său. Mai mult, dacă G este comutativ, orice grup factor al său este comutativ.

2) Proiecția canonică p: $G \rightarrow G/\{e\}$ este izomorfism de grupuri.

Exemplu. Să determinăm grupurile factor ale grupului aditiv (**Z**, +).

Fie $H \subseteq \mathbb{Z}$ un subgrup al lui \mathbb{Z} . Atunci $H = n\mathbb{Z}$, unde $n \ge 0$.

Dacă n = 0, adică $H = \{0\}$, avem $\mathbb{Z}/\{0\} \cong \mathbb{Z}$.

Dacă $n \ge 1$, atunci pentru $x, y \in \mathbb{Z}$, avem $x \equiv y \pmod{n\mathbb{Z}}$ dacă și numai dacă $x - y \in n\mathbb{Z}$, dacă și numai dacă $n \mid x - y$, dacă și numai dacă $x \equiv y \pmod{n}$. Așadar, relația de echivalență pe \mathbb{Z} modulo subgrupul $n\mathbb{Z}$ coincide cu relația de congruență modulo n. Mai mult, operația algebrică pe grupul factor $\mathbb{Z}/n\mathbb{Z}$ coincide cu adunarea claselor de resturi modulo n. Deci grupul factor $(\mathbb{Z}/n\mathbb{Z}, +)$ al lui \mathbb{Z} în raport cu subgrupul $n\mathbb{Z}$ este izomorf cu grupul aditiv al claselor de resturi modulo n, adică $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$.

Din teorema de corespondență pentru subgrupuri (normale) obținem:

Propoziția 6.3. Fie G un grup și N un subgrup normal al lui G. Există o corespondență bijectivă între <u>mulțimea subgrupurilor (normale) ale lui G care conțin pe N și mulțimea tuturor subgrupurilor (normale) ale lui G/N, dată prin $H \to H/N$.</u>

Exemplu. Să determinăm subgrupurile grupului factor ($\mathbb{Z}/n\mathbb{Z}$, +), unde $n \ge 2$.

Fie $K \subseteq \mathbf{Z}/n\mathbf{Z}$ un subgrup al lui $\mathbf{Z}/n\mathbf{Z}$. Atunci $K = H/n\mathbf{Z}$, unde H este un subgrup al lui \mathbf{Z} care-l conține pe $n\mathbf{Z}$. Ținând seama de forma subgrupurilor lui \mathbf{Z} deducem că există un $d \in \mathbf{N}$ astfel ca $H = d\mathbf{Z}$. Dar $n\mathbf{Z} \subseteq H$ dacă și numai dacă $n\mathbf{Z} \subseteq d\mathbf{Z}$ dacă și numai dacă $d \mid n$. În concluzie, $K = d\mathbf{Z}/n\mathbf{Z}$ cu $d \mid n$. (Dacă ținem cont de izomorfismul dintre $\mathbf{Z}/n\mathbf{Z}$ și \mathbf{Z}_n putem scrie $K = [d]\mathbf{Z}_n$ cu $d \mid n$.)

În particular, grupul (\mathbb{Z}_6 , +) are 4 subgrupuri și anume: $\langle [0] \rangle = \{[0]\}; \langle [1] \rangle = \mathbb{Z}_6; \langle [2] \rangle = \{[0], [2], [4]\}; \langle [3] \rangle = \{[0], [3]\}.$

Teorema 6.4. (Proprietatea de universalitate a grupurilor factor) Fie $f: G \to G'$ un morfism de grupuri \underline{si} N un subgrup normal al lui G. Dacă $N \subseteq Ker$ f, atunci există un morfism de grupuri $\underline{f}: G/N \to G'$ unic cu proprietatea că \underline{f} o p = f, unde $p: G \to G/N$ este proiecția canonică. Mai mult:

- 1) \overline{f} este injectiv \Leftrightarrow N = Ker f;
- 2) \overline{f} este surjectiv \Leftrightarrow f este surjectiv.

Am observat mai înainte că dacă $f: G \to G'$ este un morfism de grupuri, atunci nucleul său, Ker f, este subgrup normal al lui G și deci putem vorbi de grupul factor G/Ker f. De asemenea, am arătat că Im f este un subgrup al lui G'.

Teorema 6.5. (<u>Teorema fundamentală de izomorfism pentru grupuri</u>) Fie $f: G \rightarrow G'$ un morfism de grupuri. Atunci există un izomorfism de grupuri

$$\overline{f}: G/Ker f \rightarrow Im f.$$

Demonstrație. Definim \overline{f} : G/Ker $f \rightarrow \text{Im } f$, prin $\overline{f}([x]) = f(x)$.

Funcția \overline{f} este bine definită, adică nu depinde de alegerea reprezentanților. Întradevăr, dacă [x] = [y], rezultă $x^{-1}y \in Ker f$, adică $f(x^{-1}y) = e'$. Dar $f(x^{-1}y) = f(x^{-1})f(y) = (f(x))^{-1}f(y)$, de unde $(f(x))^{-1}f(y) = e'$, adică f(x) = f(y) și deci $\overline{f}([x]) = \overline{f}([y])$.

Faptul că \overline{f} este surjectivă este clar, deoarece orice element din Im f se scrie sub forma f(x), cu $x \in G$, iar $\overline{f}([x]) = f(x)$.

Să demonstrăm injectivitatea funcției \overline{f} . Într-adevăr, dacă $\overline{f}([x]) = \overline{f}([y])$, atunci f(x) = f(y) și deci $(f(x))^{-1}f(y) = e'$, adică $f(x^{-1}y) = e'$, de unde $x^{-1}y \in Ker f$, ceea ce înseamnă că [x] = [y].

Ținând seama că f este morfism de grupuri, rezultă

$$\overline{f}([x][y]) = \overline{f}([xy]) = f(xy) = f(x)f(y) = \overline{f}([x]) \overline{f}([y]),$$

adică \overline{f} este morfism de grupuri.

Deci \overline{f} este un izomorfism de grupuri.

Observație. Existența unui (izo)morfism de grupuri $\overline{f}: G/Ker\ f \to Im\ f$ se poate arăta folosind proprietatea de universalitate a grupurilor factor astfel: fie $f': G \to Im\ f$ corestricția lui f la Im f. Deoarece Ker $f'=Ker\ f$, din proprietatea de universalitate a grupurilor factor există un morfism de grupuri $\overline{f}: G/Ker\ f \to Im\ f$ unic cu proprietatea că \overline{f} o p=f', unde $p:G \to G/Ker\ f$ este proiecția canonică. Cum f' este surjectiv, rezultă că \overline{f} este izomorfism.

Exemple.

Fie \mathbf{R}^*_+ grupul multiplicativ al numerelor reale strict pozitive, \mathbf{C}^* grupul multiplicativ al numerelor complexe nenule, iar S subgrupul numerelor complexe de modul 1. Atunci:

1) Grupul factor C*/S este izomorf cu R*+.

Într-adevăr, fie $\phi: \mathbb{C}^* \to \mathbb{R}^{*_+}$ definită prin $\phi(z) = |z|$. Avem că ϕ este morfism surjectiv de grupuri, adică Im $\phi = \mathbb{R}^{*_+}$ și Ker $\phi = S$. Din teorema fundamentală de izomorfism pentru grupuri rezultă că $\mathbb{C}^*/S \cong \mathbb{R}^{*_+}$.

2) Grupul factor $\mathbb{C}^*/\mathbb{R}^*_+$ este izomorf cu S.

Fie $\psi: \mathbb{C}^* \to \mathbb{C}^*$ definită prin $\psi(z) = z/|z|$. Avem că ψ este morfism de grupuri, Ker $\psi = \mathbb{R}^*_+$ și Im $\psi = S$. Din teorema precedentă rezultă că $\mathbb{C}^*/\mathbb{R}^*_+ \cong S$.

3) Grupurile factor ale lui **Z**/n**Z**.

Fie $K=d\mathbf{Z}/n\mathbf{Z}, d\mid n$, un subgrup al lui $\mathbf{Z}/n\mathbf{Z}$. Din proprietatea de universalitate a grupurilor factor deducem că există un morfism surjectiv de grupuri $f:\mathbf{Z}/n\mathbf{Z}\to\mathbf{Z}/d\mathbf{Z}$. Ținând seama de modul în care se definește f rezultă că K er $f=d\mathbf{Z}/n\mathbf{Z}$. Atunci, din teorema fundamentală de izomorfism pentru grupuri, obținem că grupul factor $(\mathbf{Z}/n\mathbf{Z})/K$ este izomorf cu $\mathbf{Z}/d\mathbf{Z}$. (Dacă ținem cont de izomorfismul dintre $\mathbf{Z}/n\mathbf{Z}$ și \mathbf{Z}_n putem scrie astfel: $\mathbf{Z}_n/[d]\mathbf{Z}_n\cong\mathbf{Z}_d$.)

Mai rezultă că $|d\mathbf{Z}/n\mathbf{Z}| = n/d$.

Exercițiu. Fie G_1 , G_2 două grupuri și H_1 , respectiv H_2 subgrupuri normale. Arătați că H_1 x H_2 este subgrup normal al lui G_1 x G_2 . Mai mult, avem că

$$(G_1 \times G_2)/(H_1 \times H_2) \cong G_1/H_1 \times G_2/H_2.$$

(Generalizați la un produs arbitrar de grupuri.)

Din teorema fundamentală de izomorfism pentru grupuri se obțin încă două teoreme de izomorfism foarte utile.

Teorema 6.6. (A doua teoremă de izomorfism pentru grupuri) Fie G un grup și H, K subgrupuri ale lui G. Dacă K este subgrup normal, atunci HK este un subgrup al lui G, H \cap K este subgrup normal al lui H și HK/K \cong H/H \cap K.

Demonstrație. Se consideră morfismul $f: H \to HK/K$ definit prin f(h) = hK, se observă că f este surjectiv și Ker $f = H \cap K$ iar apoi se aplică teorema fundamentală de izomorfism pentru grupuri.

Teorema 6.7. (A treia teoremă de izomorfism pentru grupuri) Fie G un grup şi H, K subgrupuri normale ale lui G cu $H \le K$. Atunci K/H este subgrup normal al lui G/H şi $(G/H)/(K/H) \cong G/K$.

Demonstrație. Se consideră morfismul $f: G/H \to G/K$ definit prin f(xH) = xK, se observă că f este surjectiv și Ker f = K/H iar apoi se aplică teorema fundamentală de izomorfism pentru grupuri.

§ 7. GRUPURI CICLICE

Am observat anterior că grupurile aditive \mathbf{Z} și \mathbf{Z}_n , $n \ge 1$, sunt ciclice. Următoarea teoremă arată că acestea sunt singurele tipuri de grupuri ciclice.

Teorema 7.1. (Teorema de structură a grupurilor ciclice) Orice grup ciclic G este izomorf fie cu grupul \mathbf{Z} al numerelor întregi, fie cu un anumit grup \mathbf{Z}_n , $n \ge 1$, de clase de resturi modulo n.

Demonstrație. Dacă G= <a>>, considerăm funcția $\phi\colon \mathbf{Z}\to G,\, \phi(n)=a^n,$ definită mai înainte. Avem

$$\phi(m+n) = a^{m+n} = a^m a^n = \phi(m)\phi(n)$$

și deci φ este morfism de grupuri. Mai mult, φ este evident morfism surjectiv, deci Im φ = G. Considerând nucleul lui φ , Ker φ , distingem două cazuri:

- 1) Ker $\varphi = \{0\}$;
- 2) Ker $\varphi \neq \{0\}$.

În primul caz, conform teoremei fundamentale de izomorfism, avem

$$\mathbb{Z}/\{0\} \cong \operatorname{Im} \varphi$$
, adică $\mathbb{Z} \cong \mathbb{G}$;

În cazul al doilea, Ker φ este de forma n**Z** cu n \geq 1 un număr întreg și deci

$$\mathbf{Z}/n\mathbf{Z} \cong \text{Im } \phi$$
, adică $\mathbf{Z}_n \cong G$.

Observație. Din teorema de mai sus rezultă că dacă G este un grup ciclic și $a \in G$ un generator al său, atunci:

- 1) Dacă a este de ordin infinit, atunci G este izomorf cu grupul aditiv Z al numerelor întregi.
- 2) Dacă a este de ordin n (finit), atunci G este izomorf cu grupul aditiv \mathbf{Z}_n al claselor de resturi modulo n.

Propoziția 7.2. Orice subgrup și orice grup factor al unui grup ciclic este ciclic.

Demonstrație. Dacă $G = \langle a \rangle$ este un grup ciclic, iar H un subgrup al său, atunci grupul factor G/H este ciclic generat de [a], clasa lui a modulo H, adică G/H = $\langle a \rangle$.

Să arătăm acum că orice subgrup al unui grup ciclic este ciclic. Într-adevăr, dacă G este izomorf cu \mathbf{Z} , am arătat că subgrupurile lui \mathbf{Z} sunt de forma n \mathbf{Z} , adică sunt ciclice; deci și subgrupurile lui G sunt ciclice. Dacă G este izomorf cu \mathbf{Z}_n , am arătat că subgrupurile lui \mathbf{Z}_n sunt de forma $[d]\mathbf{Z}_n$, cu $d \mid n$, adică sunt ciclice; deci și subgrupurile lui G sunt ciclice.

Observație. Dacă $G = \langle a \rangle$ este un grup ciclic de ordin n, izomorfismul dintre G și grupul aditiv \mathbf{Z}_n este dat de funcția $\varphi : \mathbf{Z}_n \to G$, definită prin $\varphi([k]) = a^k$. Așadar, având în vedere caracterizarea generatorilor grupului aditiv \mathbf{Z}_n dată în secțiunea 2, avem că elementul a^k este generator al lui G dacă și numai dacă k este prim cu k.

Fie acum $n \ge 1$ un număr natural și U_n grupul multiplicativ al rădăcinilor de ordinul n ale unității, adică

$$U_n = \{z \in \mathbb{C} \mid z^n = 1\}.$$

Avem că $U_n = \{\varepsilon_0, \varepsilon_1, ..., \varepsilon_{n-1}\}$, unde

$$\varepsilon_k = \cos(2k\pi/n) + i\sin(2k\pi/n), \ 0 \le k \le n-1.$$

Din formula lui Moivre avem că $\epsilon_k = \epsilon_1^k$ și deci U_n este grup ciclic de ordinul n, un generator al său fiind ϵ_1 .

Definiția 7.3. <u>Un generator al grupului U_n se numește rădăcină primitivă</u> de ordinul n a unității.

Conform celor de mai înainte rezultă că ϵ_k este rădăcină primitivă de ordinul n a unității dacă și numai dacă k este relativ prim cu n.

Exercițiu. Arătați că grupurile $(\mathbf{Q}, +)$, $(\mathbf{R}, +)$ și $(\mathbf{C}, +)$ nu sunt ciclice.