Importing libraries

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import seaborn as sns
from utils import clean_data, find_optimal_clusters, plot_cluster_metr
```

Data transformation and descriptive analysis

```
In [67]: # Load the dataset
df = pd.read_csv('../data/profiles_dataset.csv')
df.head()
```

Out[67]:		timestamp	account_id	nickname	biography	awg_engagement_rate
	0	2023-08- 01	a.r.m.y664	•••	nazywam się Basia ➡ + ➡ moja mama jest z USA ❤	0.049630
	1	2023-08- 01	a2_9r	ايمن أ الفستقي ال إ	حسابي الاصلي _ytp_تيكتككك(_8	0.059322
	2	2023-07- 30	ti.po.check	All	Активный пользователь тикТока	0.001399
	3	2023-08- 06	nutrifersanort	L.N Fernanda Sánchez	Nutrióloga, educadora en diabetes.	0.469767
	4	2023-07- 25	bhgdee	D \$	lg-bhg.dee ∖nSc- dannieo2099 (\nFb- frank matth	0.122283

```
In [68]: df.info()
df.shape
```

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1000 entries, 0 to 999
        Data columns (total 18 columns):
         #
             Column
                                      Non-Null Count Dtype
         0
                                      1000 non-null
             timestamp
                                                      object
                                      1000 non-null
         1
             account_id
                                                      object
         2
             nickname
                                      1000 non-null
                                                      object
                                      997 non-null
         3
             biography
                                                      object
         4
             awg_engagement_rate
                                      1000 non-null
                                                      float64
                                                      float64
         5
             comment engagement rate 1000 non-null
             like_engagement_rate
                                      1000 non-null
                                                      float64
             bio link
         7
                                      191 non-null
                                                      object
             is_verified
                                      1000 non-null
                                                      bool
         9
             followers
                                      1000 non-null
                                                      int64
         10 following
                                      1000 non-null
                                                      int64
                                      1000 non-null
         11 likes
                                                      int64
         12 videos_count
                                      1000 non-null
                                                      int64
         13 create time
                                      0 non-null
                                                      float64
         14 id
                                      1000 non-null
                                                      int64
         15 top_videos
                                      1000 non-null
                                                      object
         16 url
                                      1000 non-null
                                                      object
         17
             profile pic url
                                      1000 non-null
                                                      object
        dtypes: bool(1), float64(4), int64(5), object(8)
        memory usage: 133.9+ KB
Out[68]: (1000, 18)
         numeric cols = df.select dtypes(include='number').columns
In [69]:
         n cols = 3
         n_rows = (len(numeric_cols) + n_cols - 1) // n_cols # Ceiling divisio
In [70]: ### Histograms
         plt.figure(figsize=(15, 5 * n_rows))
         for idx, col in enumerate(numeric_cols):
             plt.subplot(n_rows, n_cols, idx + 1)
             df[col].hist(bins=10)
             plt.title(col)
         plt.tight_layout()
```

plt.show()


```
In [71]: ### Box Plots
plt.figure(figsize=(15, 5 * n_rows))
for idx, col in enumerate(numeric_cols):
    plt.subplot(n_rows, n_cols, idx + 1)
    df[col].plot(kind='box', vert=False)
    plt.title(f"Boxplot of {col}")
plt.tight_layout()
plt.show()
```



```
plt.figure(figsize=(12, 5 * n_rows))
for idx, col in enumerate(numeric_cols):
    plt.subplot(n_rows, n_cols, idx + 1)
        sns.kdeplot(df[col], fill=True)
        sns.rugplot(df[col], color='red')
        plt.title(f"Density Plot of {col}")
plt.tight_layout()
plt.show()
```

/var/folders/1x/jp3vqcs53vv9kxc9f40hgztc0000gn/T/ipykernel_64852/406032 6769.py:5: UserWarning: Dataset has 0 variance; skipping density estima te. Pass `warn_singular=False` to disable this warning. sns.kdeplot(df[col], fill=True)

Data Cleaning

Duplicates found: 0

Preprocessing the Data

Select relevant features for the analysis, and encode categorical variables if necessary, and getting the data ready for clustering.

```
In [75]: # Encode the 'is_verified' boolean column as an integer
         df_clean['is_verified'] = df_clean['is_verified'].astype(int)
In [78]: # Create a subset with selected features
         df_features = df_clean[feature_cols].copy()
 In [ ]: # Handle outliers in engagement metrics
         engagement_cols = ['awg_engagement_rate', 'comment_engagement_rate', '
         for col in engagement cols:
             df_features[col] = np.log1p(df_features[col])
        Dataset shape after removing outliers: (1000, 8)
In [81]: numeric_cols = df_features.select_dtypes(include='number').columns
         n_{cols} = 3
         n_rows = (len(numeric_cols) + n_cols - 1) // n_cols # Ceiling divisio
In [82]: ### Density Plots
         plt.figure(figsize=(12, 5 * n_rows))
         for idx, col in enumerate(numeric_cols):
             plt.subplot(n_rows, n_cols, idx + 1)
             sns.kdeplot(df_features[col], fill=True)
             sns.rugplot(df_features[col], color='red')
             plt.title(f"Density Plot of {col}")
         plt.tight layout()
         plt.show()
```


In the context of social media influencer data, what we're seeing is actually a natural phenomenon rather than problematic outliers.

The distribution typically follows a power law, where:

There are many small accounts (micro-influencers) A moderate number of medium-sized accounts A few very large accounts (mega-influencers/celebrities) In this case, removing outliers might actually eliminate important segments of our

analysis, particularly the valuable mega-influencers.

Feature Scaling

K-means clustering is sensitive to the scale of the data, in this case we apply Standard Scaler because the data is spread out and there are many outliers

```
In [83]: # Scale the features
    scaler = StandardScaler()
    scaled_features = scaler.fit_transform(df_features)
```

Optimal Number of Clusters

Use the Elbow Method to determine the most appropriate number of clusters for k-means clustering. Generally the range of cluster values oftenly chosen are from 1 to 7.

```
In [90]: # Find optimal number of clusters
wcss = find_optimal_clusters(scaled_features)
plot_cluster_metrics(wcss)
```


K-Means Clustering

Perform k-means clustering using the optimal number of clusters determined in the previous step.

```
In [108... # Choose optimal k and perform clustering
    optimal_k = 4 # Based on plots
    kmeans = KMeans(n_clusters=optimal_k, init='k-means++', random_state=4
    df_features['cluster'] = kmeans.fit_predict(scaled_features)
```

Visualizing Clusters

Plot the clusters to visually assess how distinct they are from each other.

```
In [110... # Visualize the clusters
         plt.figure(figsize=(10, 6))
         plt.scatter(
             np.exp(df_features['followers']) - 1, # Reverse log1p transformat
             df_features['awg_engagement_rate'],
             c=df_features['cluster'],
             cmap='viridis',
             alpha=0.6,
             s=50 # Slightly larger point size for better visibility
         plt.xscale('log')
         plt.xlabel('Followers (log scale)')
         plt.ylabel('Engagement Rate (%)')
         plt.title('Influencer Clusters')
         plt.colorbar(label='Cluster')
         plt.grid(True, alpha=0.3)
         plt.tight_layout()
         plt.show()
```


- 1. Purple Cluster (0): Mega-influencers/Celebrities
- Followers: 10⁴ to 10⁷ (10,000 to 10M+)
- Very low engagement rates (<0.5%)
- This is typical for very large accounts where the sheer size of the audience leads to lower engagement percentages
- 2. Blue Cluster (1): Mid-tier Influencers
- Followers: 10² to 10⁴ (100 to 10,000)
- Moderate engagement rates (0.5-1.5%)
- Represents the "sweet spot" of influencer marketing with decent reach and engagement
- 3. Yellow Cluster (2): Micro-influencers
- Followers: 10° to 10² (1 to 1,000)
- High engagement rates (2-4%)
- These are niche accounts with highly engaged communities

Analyzing Cluster Centroids

Examine the centroids of the clusters to understand the defining characteristics of each cluster. This helps in interpreting the types of influencers within each

cluster.

```
In [111... # Create segment labels
         segment_names = {
              0: "Mega-Influencers",
             1: "Mid-Tier Creators",
             2: "Engaged Micro-Influencers"
         }
         # Map cluster numbers to segment names
         df_features['segment'] = df_features['cluster'].map(segment_names)
         # Calculate key metrics per segment
          segment_analysis = df_features.groupby('segment').agg({
              'followers': ['median', 'count'],
              'awg_engagement_rate': 'mean',
              'videos_count': 'mean',
              'is_verified': 'mean'
         }).round(3)
         print("\nSegment Analysis:")
         print(segment_analysis)
         # Visualize engagement distribution by segment
         plt.figure(figsize=(10, 6))
          sns.boxplot(x='segment', y='awg_engagement_rate', data=df_features)
         plt.xticks(rotation=45)
         plt.title('Engagement Rate Distribution by Segment')
         plt.tight_layout()
         plt.show()
        Segment Analysis:
                                   followers
                                                   awg_engagement_rate videos_co
        unt \
                                      median count
                                                                   mean
                                                                                m
        ean
        segment
        Engaged Micro-Influencers
                                       8.622
                                                81
                                                                  0.035
                                                                               5.
        223
                                                                               5.
        Mega-Influencers
                                      10.339
                                               493
                                                                  0.075
        511
        Mid-Tier Creators
                                       6.117
                                               394
                                                                  0.274
                                                                               2.
        899
                                   is verified
                                          mean
        segment
        Engaged Micro-Influencers
                                         0.000
        Mega-Influencers
                                         0.039
        Mid-Tier Creators
                                         0.000
```

