Feuille 2, Courbes algébriques Ensembles Algébriques Affines

Exercice 1 Pour $f \in k[X_1, \dots, X_n]$ on note $D(f) := \mathbb{A}^n \setminus V(f)$.

- 1. Montrer que $D(f) \cap D(g) = D(fg)$.
- 2. Montrer que les ensembles D(f) (pour tout $f \in \mathsf{k}[X_1, \dots, X_n]$) forment une base pour la topologie de Zariski sur \mathbb{A}^n .

On suppose que le corps k est infini.

- 3. Montrer que $D(f) = \emptyset$ si et seulement si f = 0.
- 4. Montrer que si $U, V \neq \emptyset$ sont des ensembles ouverts dans \mathbb{A}^n , on a $U \cap V \neq \emptyset$.

Exercice 2 Soient $P_1, \dots, P_r \in \mathsf{k}[X_1, \dots, X_n]$ tels que

$$P_1 + \cdots + P_r = 1.$$

Montrer que $(D(P_i))_{i \in [1,r]}$ est un recouvrement ouvert de \mathbb{A}^n .

Exercice 3 Soit $V \subseteq \mathbb{A}^n$ un ensemble algébrique et soit $x \in \mathbb{A}^n \setminus V$. Montrer qu'il existe un polynôme $P \in \mathsf{k}[X_1, \cdots, X_n]$ tel que P(x) = 1 et P(y) = 0 pour tout $y \in V$.

Exercice 4 Soit X un espace topologique. On suppose qu'il existe des ouverts U_1 et U_2 non vide et irréductibles de X tels que $X = U_1 \cup U_2$ und $U_1 \cap U_2 \neq \emptyset$. Montrer que X est irréductible.

Exercice 5 Soit k un corps algebriquement clos.

- 1. Soient I et J des idéaux $\mathsf{k}[X_1,\cdots,X_n]$. Montrer que $\sqrt{I}=\sqrt{J}$ si et seulement si V(I)=V(J).
 - 2. Soient V_1 et V_2 des sous-ensembles algébriques de \mathbb{A}^n . Montrer que

$$I(V_1 \cap V_2) = \sqrt{I(V_1) + I(V_2)}.$$

Exercice 6 Soit $V = V(Y^2 - X^2(X+1))$. Soit $f: \mathbb{A}^1 \to V$,

$$f(t) = (t^2 - 1, t(t^2 - 1)).$$

Montrer que:

- 1. L'application f est régulière, mais n'est pas bijective.
- 2. L'application $f^*: \mathsf{k}[V] \to \mathsf{k}[\mathbb{A}^1]$ n'est pas un isomorphisme de k-algèbres.
- 3. Il n'y a pas d'isomorphisme de k-algèbres entre k[V] et $k[\mathbb{A}^1]$.
- 4. Les ensembles algébriques V et \mathbb{A}^1 ne sont pas isomorphes.

On pose $k[V] := k[X_1, \cdots, X_n]/I(V)$.

Exercice 7 Soit V l'image de l'application $f: \mathbb{A}^1 \to \mathbb{A}^3$ donné par f(t) = (t, t^2, t^3) . Montrer que k[V] est isomorphe à k[T] de deux façons différentes.

Exercice 8 Dans les cas suivants, construire un isomorphisme $f: V \to W$ des ensembles algébriques affines. Calculer sa réciproque et le morphisme f^* .

- 1. $V = V(X Y) \subseteq \mathbb{A}^2$, $W = V(X + Y) \subseteq \mathbb{A}^2$. 2. $V = V(X Y^2) \subseteq \mathbb{A}^2$, $W = V(Y X^2) \subseteq \mathbb{A}^2$. 3. $V = V(Z X, Y X^2) \subseteq \mathbb{A}^3$, $W = \mathbb{A}^1$.

- 4. $V = V(Z XY) \subset \mathbb{A}^3$, $W = \mathbb{A}^2$.

Exercice 9 Soit $f: X \to Y$ une application continue entre espaces topologiques. On suppose que X est irréductible. Montrer que l'adhérence f(X) de f(X) dans Y est irréductible.

Exercice 10 Soit k un corps algébriquement clos, de caractéristique 0. Soit $C = V(f) \subseteq \mathbb{A}^2$ donné par

$$f = Y^2 - X(X - 1)(X - a), \quad a \in k.$$

- 1. Quelle est la dimension de C? Explicitez k[C] et k(C).
- 2. Quelles sont les points singuliers de C?
- 3. Montrer que si $a \neq 0,1$, il n'y a pas d'application régulière $\mathbb{A}^1 \to C$ non-constante.
- 4. Montrer que si $a \neq 0, 1$, il n'y a pas d'application rationnelle $\mathbb{A}^1 \longrightarrow C$ non-constante.
- 5. Pour a = 0 et 1, expliciter une application régulière et birationnelle f: $\mathbb{A}^1 \to C$. Pour a=0, montrer que l'application rationnelle inverse $f^{-1}: C \dashrightarrow \mathbb{A}^1$ n'est pas régulière.