

School of Geosciences

Models integration to solve complex systems

ESM

Models WMT

Supercomputing _

Education _

Data

Contents [hide]

- 1 Coastal models (62)
- 2 Coastal tools (4)

Coastal models (62)

Program \$			
1DBreachingTurbidityCurrent	1D Breaching Turbidity current model for generat		
2DFLOWVEL	Tidal & wind-driven coastal circulation routine		
ADCIRC	Coastal Circulation and Storm Surge Model		
AlluvStrat	Rules-based model to generate a 2-dimensional o		
AquaTellUs	Fluvial-dominated delta sedimentation model		
Auto marsh			
A.k.a. auto_marsh	Cellula automata model for salt marsh evolution		
Avulsion			
A.k.a. Debouche	Stream avulsion model		
СЕМ	Coastline evolution model		
CMFT	Coupled salt Marsh - tidal Flat Transect model		
Cliffs	Numerical model to compute tsunami propagatio		
Coastal Dune Model	Evolution of Coastal Foredunes		
Cross Shore Sediment Flux	Cross-Shore Sediment Flux Equations		
DELTA	Simulates circulation and sedimentation in a 2D t		
DROG3D	3-DIMENSIONAL DROGUE TRACKING ALGORITH		
Delft3D	3D hydrodynamic and sediment transport model		

Significant wave heights (m) during Katrina (2005) in the Gulf of Mexico.

Models integration to solve complex systems

Significant wave heights (m) during Katrina (2005) in the Gulf of Mexico.

Beach erosion

Shoreward transport

A tall breaker: High wave in It breaks downwards proportion to length with great force Weak swash Strong backwash

u_b the maximum nearbed orbital velocity,

n the unit vector parallelto the incoming wavedirection

к₀ a correction factor

$$\vec{v_u} = -\kappa_u \frac{\sqrt{gh}}{8} \left(\frac{H}{h}\right)^2 \vec{n}$$

ки an empirical

g the gravitational

h the water depth

coefficient

acceleration,

undertow velocity vu:

derived from the mass flux due to the wave motion & surface roller

onshore current \vec{v}_0 :

linear dependency to near-bed orbital velocity

$$\vec{v_o} = \kappa_o u_b \vec{n}$$

School of Geosciences