Problem Set 3 Solutions

Due: Monday, September 27 at 7:00 PM

Problem 1. [16 points] Warmup Exercises

For the following parts, a correct numerical answer will only earn credit if accompanied by it's derivation. Show your work.

(a) [4 pts] Use the Pulverizer to find integers s and t such that $135s + 59t = \gcd(135, 59)$.

Solution.

x	y	$\operatorname{rem}\left(x,y\right)$	=	$x - q \cdot y$
135	59	17	=	$135 - 2 \cdot 59$
59	17	8	=	$59 - 3 \cdot 17$
			=	$59 - 3 \cdot (135 - 2 \cdot 59)$
			=	$-3 \cdot 135 + 7 \cdot 59$
17	8	1	=	$17 - 2 \cdot 18$
			=	$(135 - 2 \cdot 59) - 2 \cdot (-3 \cdot 135 + 7 \cdot 59)$
			=	$\boxed{7 \cdot 135 - 16 \cdot 59}$
2	1	0		

Exam tip: Each time rem(x, y) is calculated, substitutions are immediately made to then express it as a linear combination of 135 and 59 (using the remainders calculated on previous lines). Simplifying at each step leads to a much faster computation of s and t.

(b) [4 pts] Use the previous part to find the inverse of 59 modulo 135 in the range $\{1, \dots, 134\}$.

Solution. 119

From part (a), $1 = 7 \cdot 135 - 16 \cdot 59$ and so $1 \equiv -16 \cdot 59$ (mod 135). Therefore -16 is an inverse of 59. However, it is not the *unique* inverse of 59 in the range $\{1, \ldots, 134\}$, which is given by rem (-16, 135) = 119. One can easily check this by multiplication.

(c) [4 pts] Use Euler's theorem to find the inverse of 17 modulo 31 in the range $\{1, \ldots, 30\}$.

Problem Set 3

Solution. 16

Since 31 is prime, Euler's theorem implies $17^{31-2} \cdot 17 \equiv 1 \pmod{31}$ and so rem $(17^{31-2}, 31)$ is the inverse of 17 in the range $\{1, \ldots, 30\}$. Using the method of repeated squaring,

$$\begin{array}{rcl}
 &=& 289 \\
 &=& 9 \cdot 31 + 10 \\
 &\equiv& 10
 \end{array}$$

$$\begin{array}{rcl}
 &=& 10^2 \\
 &=& 100 \\
 &=& 3 \cdot 31 + 7 \\
 &\equiv& 7
 \end{array}$$

$$\begin{array}{rcl}
 &=& 17^8 & =& 7^2 \\
 &=& 49 \\
 &=& 31 + 18 \\
 &\equiv& 18
 \end{array}$$

$$\begin{array}{rcl}
 &=& 18^2 \\
 &=& 324 \\
 &\equiv& 14
 \end{array}$$

$$\begin{array}{rcl}
 &=& 17^{16} \cdot 17^8 \cdot 17^4 \cdot 17^1 \\
 &=& 14 \cdot 18 \cdot 7 \cdot 17 \\
 &=& (2 \cdot 7) \cdot (3 \cdot 6) \cdot 7 \cdot 17 \\
 &=& (2 \cdot 17) \cdot (7 \cdot 6) \cdot (3 \cdot 7) \\
 &\equiv& 3 \cdot 11 \cdot 21 \\
 &\equiv& 2 \cdot 21 \\
 &=& 42 \\
 &\equiv& 11
 \end{array}$$

where the modulus for each of the congruences is 31.

(d) [4 pts] Find the remainder of 34^{82248} divided by 83. (*Hint: Euler's theorem.*)

Solution. 77

Since $34=2\cdot 17$ and 83 are relatively prime, Euler's theorem implies that $34^{\phi(83)}\equiv 1\pmod{83}$ where

$$\phi(83) = 82$$

Problem Set 3

Now, notice that $82248 = 82 \cdot 1003 + 2$. But then, this implies that

$$34^{82248} = 34^2 \cdot 34^{1003 \cdot 82}$$

 $\equiv 34^2 \cdot 1^{1003} \pmod{83}$ (by Euler's Theorem)
 $= 1156$
 $\equiv 77 \pmod{83}$

Problem 2. [16 points]

Prove the following statements, assuming all numbers are positive integers.

(a) [4 pts] If $a \mid b$, then $\forall c, a \mid bc$

Solution. If $a \mid b$, then there is some positive integer k such that b = ak. But then, bc = akc = a(kc), which is a multiple of a.

(b) [4 pts] If $a \mid b$ and $a \mid c$, then $a \mid sb + tc$.

Solution. If $a \mid b$, then there is some positive integer j such that b = aj. Similarly, there is some positive integer k such that c = ak. But then, we can rewrite the right side as s(aj) + t(ak). But we can rewrite this as a(js) + a(kt) = a(js + kt), which is a multiple of a.

(c) $[4 \text{ pts}] \forall c, a \mid b \Leftrightarrow ca \mid cb$

Solution. If $a \mid b$, then there is some positive integer k such that b = ak. But then, we can rewrite cb = c(ak) = ca(k), which is a multiple of ca. So the implication is true.

(d) [4 pts] gcd(ka, kb) = k gcd(a, b)

Solution. Let s,t be coefficients so that $s(ka) + t(kb) = \gcd(ka,kb)$. We can factor out the k so that $\gcd(ka,kb) = k(sa+tb)$. We now argue that $sa+tb = \gcd(a,b)$. Suppose it were not. Then, there is some smaller positive linear combination of a,b with coefficients s' and t' so that $s'a+t'b=\gcd(a,b)$. But then, if we multiply this by k, we find that $0 < ks'a + kt'b = s'(ka) + t'(kb) < s(ka) + t(kb) = \gcd(ka,kb)$. This is a contradiction with the definition of the \gcd , so $sa+tb=\gcd(a,b)$, and we can conclude that $\gcd(ka,kb)=k\gcd(a,b)$.

Problem 3. [20 points] In this problem, we will investigate numbers which are squares modulo a prime number p.

(a) [5 pts] An integer n is a square modulo p if there exists another integer x such that $n \equiv x^2 \pmod{p}$. Prove that $x^2 \equiv y^2 \pmod{p}$ if and only if $x \equiv y \pmod{p}$ or $x \equiv -y \pmod{p}$. (Hint: $x^2 - y^2 = (x + y)(x - y)$)

Solution. $x^2 \equiv y^2 \pmod{p}$ iff $p \mid x^2 - y^2$. But $x^2 - y^2 = (x - y)(x + y)$, and since p is a prime, this happens iff either $p \mid x - y$ or $p \mid x + y$, which is iff $x \equiv y \pmod{p}$ or $x \equiv -y \pmod{p}$.

(b) [5 pts] There is a simple test we can perform to see if a number n is a square modulo p. It states that

Theorem 1 (Euler's Criterion). :

- 1. If n is a square modulo p then $n^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.
- 2. If n is not a square modulo p then $n^{\frac{p-1}{2}} \equiv -1 \pmod{p}$.

Prove the first part of Euler's Criterion. (Hint: Use Fermat's theorem.)

Solution. If n is a square modulo p, then there exists an x such that $x^2 \equiv n(modp)$. Consequently,

$$a^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \pmod{p}$$

by Fermat's theorem.

(c) [10 pts] Assume that $p \equiv 3 \pmod{4}$ and $n \equiv x^2 \pmod{p}$. Given n and p, find one possible value of x. (Hint: Write p as p = 4k + 3 and use Euler's Criterion. You might have to multiply two sides of an equation by n at one point.)

Solution. From Euler's Criterion:

$$n^{\frac{p-1}{2}} \equiv 1 \pmod{p}.$$

We can write p=4k+3, so $\frac{p-1}{2}=\frac{4k+3-1}{2}=k+1$. As a result, $n^{2k+1}\equiv 1\pmod p$, so $n^{2k+2}\equiv n\pmod p$. This can be rewritten as $\left(n^{k+1}\right)^2\equiv n\pmod p$, so

$$n^{k+1} = n^{\frac{p-3}{4}+1}$$

is one possible value of x.

Problem 4. [10 points] Prove that for any prime, p, and integer, $k \ge 1$,

$$\phi(p^k) = p^k - p^{k-1},$$

where ϕ is Euler's function. (Hint: Which numbers between 0 and p^k-1 are divisible by p? How many are there?)

Solution. The numbers in the interval from 0 to p^k-1 that are divisible by p are all those of the form mp. For mp to be in the interval, m can take any value from 0 to $p^{k-1}-1$ and no others, so there are exactly p^{k-1} numbers in the interval that are divisible by p. Now $\phi(p^k)$ equals the number of remaining elements in the interval, namely, p^k-p^{k-1} .

Problem Set 3 5

Problem 5. [18 points] Here is a very, very fun game. We start with two distinct, positive integers written on a blackboard. Call them x and y. You and I now take turns. (I'll let you decide who goes first.) On each player's turn, he or she must write a new positive integer on the board that is a common divisor of two numbers that are already there. If a player can not play, then he or she loses.

For example, suppose that 12 and 15 are on the board initially. Your first play can be 3 or 1. Then I play 3 or 1, whichever one you did not play. Then you can not play, so you lose.

(a) [6 pts] Show that every number on the board at the end of the game is either x, y, or a positive divisor of gcd(x, y).

Solution. We use induction. Let $g = \gcd(x, y)$. Let our inductive hypothesis be P(n) = "After n moves, every number on the board is either x, y, or a positive divisor of g." For n = 0, only x and y are on the board, so P(0) holds. For the inductive case, after n + 1 moves the numbers on the board are the same as the numbers after n moves plus an additional positive integer m which is a divisor of two numbers a and b which were already on the board. We must show that m is either x, y, or a positive divisor of g. We know m cannot be equal x or y because it must be a new number, and we know m is positive, so we have to show that m|g. We will consider two cases:

1. a = x and b = y

In this case, m|a and m|b, so a = km and b = lm for some integers k and l. We know we can write g as a linear combination of a and b:

$$sa + tb = g$$
.

Substituting the expressions for for a and b, we obtain

$$skm + tlm = g,$$

which means m(sk + tl) = g, so m|g and P(n + 1) holds.

2. $a \neq x$ or $b \neq y$

In this case, by inductive assumption a|g or b|g. Assume that a|g. Then m|a and a|g, so m|g. If on the other hand $a \not |g$ then b|g and m|b, so m|g. Again, P(n+1) holds.

By induction, every number on the board at the end of the game is either x, y, or a positive divisor of gcd(x, y).

(b) [6 pts] Show that every positive divisor of gcd(x, y) is on the board at the end of the game.

Solution. Proof by contradiction. Assume there is a number d such that d|gcd(x,y) and d is not on the board at the end of the game. Since d|gcd(x,y) and gcd(x,y)|x and gcd(x,y)|y, therefore d|x and d|y. But x and y are on the board, so it is possible to add d to the board. This means the game is not over yet! We have reached a contradiction, so d must be on the board. This is true for all positive divisors of gcd(x,y), so all of them must be on the board.

(c) [6 pts] Describe a strategy that lets you win this game every time.

Solution. We showed that x, y, and all positive divisors of gcd(x, y) and only those numbers will be on the board at the end of the game. Let D be the number of positive divisors of gcd(x,y). If x = gcd(x,y) or y = gcd(x,y), then D-1 values will be added to the board before the game ends. Otherwise, D values will be added. You can calculate the number of values to be placed and if this number is odd, decide to go first. Otherwise, decide to go second.

Problem 6. [20 points] In one of the previous problems, you calculated square roots of numbers modulo primes equivalent to 3 modulo 4. In this problem you will prove that there are an infinite number of such primes!

(a) [6 pts] As a warm-up, prove that there are an infinite number of prime numbers. (Hint: Suppose that the set F of all prime numbers is finite, that is $F = \{p_1, p_2, \ldots, p_k\}$ and define $n = p_1 p_2 \ldots p_k + 1$.)

Solution. By contradiction. Suppose that F is finite. Let it be $F = \{p_1, p_2, \dots, p_k\}$ and define $n = p_1 p_2 \dots p_k + 1$. For every $p \in F$,

$$n \equiv 1 \pmod{p}$$
.

Consequently, $\forall p \in F, p \not | n$. But the numbers in F are all the prime numbers, so it must be that for all primes $p, p \not | n$. As a result, n does not have a prime factor smaller than itself, so n is a prime number! But n is definitely larger than any number in F, so $n \notin F$. This is a contradiction. The initial assumption that F is finite is false.

(b) [2 pts] Prove that if p is an odd prime, then $p \equiv 1 \pmod{4}$ or $p \equiv 3 \pmod{4}$.

Solution. By the division theorem, there exist integers x and r with $0 \le r \le 3$ such that p = 4x + r. If 2|r, then 2|p. Since p is odd, $2 \nmid r$. So, r = 1 or r = 3.

(c) [6 pts] Prove that if $n \equiv 3 \pmod{4}$, then n has a prime factor $p \equiv 3 \pmod{4}$.

Solution. By contradiction. Suppose the contrary that $n \equiv 3 \pmod{4}$ and that, for all primes $p|n, p \not\equiv 3 \pmod{4}$. By part b, if prime $p \not\equiv 3 \pmod{4}$, then p = 2 or $p \equiv 1 \pmod{4}$. Since $n \equiv 3 \pmod{4}$, $n \equiv 0 \pmod{4}$ is odd and $n \equiv 0 \pmod{4}$. This means that $n \equiv 1 \pmod{4}$. This contradicts the original assumption that $n \equiv 3 \pmod{4}$.

(d) [6 pts] Let F be the set of all primes p such that $p \equiv 3 \pmod{4}$. Prove by contradiction that F has an infinite number of primes.

(Hint: Suppose that F is finite, that is $F = \{p_1, p_2, \dots, p_k\}$ and define $n = 4p_1p_2 \dots p_k - 1$. Prove that there exists a prime $p_i \in F$ such that $p_i|n$.) Problem Set 3

Solution. By contradiction. Suppose that F is finite. Let it be $F = \{p_1, p_2, \ldots, p_k\}$ and define $n = 4p_1p_2 \ldots p_k - 1$. Notice that F is not empty since $3 \in F$. This shows that n is at least 0. By part c, n = 4x - 1 has a prime factor $p_i \in F$ such that $p_i|n$. So, $n \equiv 0 \pmod{p_i}$. Also, $n = 4p_1p_2 \ldots p_k - 1 = yp_i - 1$. This means $n \equiv -1 \pmod{p_i}$. This is a contradiction. The initial assumption that F is finite is false.