# Lab 3

## Author Klas Mannberg, klaman-8@student.ltu.se



29 May 2020

## 1 Exercises

#### 1.1 Exercise 1

Solved with the following two code blocks:

```
x(t):
```

```
function x = x(t)

x = (3/2+3/10*\sin(2*pi*t)+\sin((2*pi)/3*t)-\sin((2*pi)/10*t)).*\sin((t);
```

#### And for the plot:

```
\begin{array}{ll} {\rm function} & {\rm Ex1} = {\rm Ex1}\,() \\ & {\rm t} = -5\!:\!0.1\!:\!5; \\ & {\rm plot}\,({\rm t}\,,{\rm x}\,({\rm t}\,))\,; \\ & {\rm xlabel}\,(\,'{\rm t}\,')\,; \\ & {\rm ylabel}\,(\,'{\rm x}\,({\rm t}\,)\,')\,; \end{array}
```

See figure 1 for the result.

## 1.2 Exercise 2

From the given expression of x(t) we see that the upper angular frequency is  $f_{max} = 2 * pi$  and the lower frequency is  $f_{min} = 2 * pi/10$ , the bandwidth of x(t) is then  $f_1 = f_{max} - f_{min} = 2 * pi - 2 * pi/10 = \frac{\pi 9}{5} = 1.8\pi$  which gives us a bandwidth of  $1.8\pi$ .

The sampling theorem states that the sample rate must be at least two times larger then our max frequency  $2\pi$ , hence sampling rate must be at least  $4\pi$ . And since  $T_s = \frac{1}{f_s}$  means  $T_s <= \frac{1}{4}$ . Summary: The frequency of sampling must be  $T_s = \frac{1}{4}$ . And the bandwidth  $1.8\pi$ .

### 1.3 Exercise 3

With the interval  $T_s = \frac{1}{4}$  an almost identical graphical representation of the original signal is shown, see figure 2.

#### 1.4 Exercise 4

The sampling theorem specifies a minimum-sampling rate where a properly sampled signal can be reconstructed from the samples. The rate  $T_s = \frac{1}{4}$  that we solved in Exercise 2 will then be enough to reconstruct the signal.

#### 1.5 Exercise 5

The command *hold* in Matlab helps with drawing these figures you are about to see. By allowing us to draw over a already present plot helps us showcase continuous-time signals by using two instances to plot multiple functions. We plot equation a, b, c, d in figure 3,4,5,6, respectively. We progressively see a closer representation of x(t) (Orange in figures 3 - 6) from exercise 1. For equation d in figure 6 we use the value r = 1000 which gives an almost exact representation of x(t).



Figure 1: Exercise 1



Figure 2: Exercise 3



Figure 3: Exercise 5: a



Figure 4: Exercise 5: b



Figure 5: Exercise 5: c



Figure 6: Exercise 5: d