ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

WINTER SEMESTER, 2018-2019

DURATION: 1 Hour 30 Minutes

FULL MARKS: 75

CSE 4309: Theory of Computing

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 4 (four) questions. Answer any 3 (three) of them.

Figures in the right margin indicate marks.

- 1. a) Explain the terms in one sentence:
 - i. Decidability
 - ii. Intractability
 - b) Give the formal description of the finite automata pictured in Figure 1. What is the language 6+2 of the automata?

Figure 1: State diagram of a finite automaton for question 1.b

- c) A vending machine is an automated machine that provides items such as snacks, beverages, lottery tickets to consumers after money, a credit card or specially designed card is inserted into the machine. Consider a very simple vending machine which provides pen at a cost of 10tk each. The machine takes 2tk, 5tk and 10tk only, and does not return changes even if you pay more than the price of a pen. It accepts payment only if you pay at least the rate for a pen otherwise rejects. There is a reset button in the machine which someone can press anytime to start a new purchase. Now design a DFA (state diagram) for the vending machine.
- 2. a) What are the differences between a DFA and an NFA?

4

15

2

- b) Design an NFA to accept the set of strings over alphabet {0, 1} such that there are two 0's separated by a number of positions that is a multiple of 4. Note that 0 is a multiple of 4.
- c) Convert the NFA represented by Table 1 to its equivalent DFA.

12

Table 1: Transition table of a DFA for question 2.c.

	0	1	
\rightarrow p	{p, q}	{p}	
q	{r, s}	{t}	
r	{p, r}	{t}	
* s	Ø	Ø	
* t	Ø	Ø	

 a) Figure 2 is the state diagram of an ε-NFA. Describe the language it accepts. Also describe 2-(with diagram) the states the automata will transit through during the processing of input string 0010.

Figure 2: State diagram of an ε-NFA for question 3.a

c) Compute the ε-closure of each state and convert the ε-NFA of Table 2 to its equivalent DFA.

Table 2: Transition table of an ε-NFA for question 3.c

	€	a	b	C
\rightarrow p	Ø	{p}	{q}	{r}
q	{p}	{q}	{r}	Ø
* r	{q}	{r}	Ø	{p}

- a) What are the operators of regular expression? Mention the order of precedence followed by 2+ the operators.
 - b) Let A and B are two regular languages and their alphabet is the standard 26 letters $\{a,b,..,z\}$. $A = \{good,bad\}$ and $B = \{boy,girl\}$. Now what will be the sets of $B \cup A$ and $B \circ A$?
 - c) Describe the languages of the following regular expressions:

2x3

- i. $\Sigma^*011\Sigma^*$
- ii. (1*01*0)*1*
- d) Write regular expressions for the following languages:

- 2x6
- iii. The set of all strings over alphabet {0, 1} whose tenth symbol from the right end is 1. iv. The set of strings over alphabet {a, b} consisting of even number of a's followed by odd number of b's.