Investigación Operativa – Doble Grado (12/11/2020)

1. (0.35 puntos)

Una compañía de petróleos produce en sus refinerías gasóleo (G), gasolina sin plomo (P) y gasolina súper (S) a partir de dos tipos de crudos, C_1 y C_2 . Las refinerías están dotadas de dos tipos de tecnologías. La tecnología nueva T_n utiliza en cada sesión de destilación 7 unidades de C_1 y 12 unidades de C_2 , para producir 8 unidades de G, 6 unidades de G y unidades de G y 12 unidades de G y 13 unidades de G y 14 unidades de G y 15 unidades de G y 16 unidades de G y 17 unidades de G y 18 unidades de G y 24 unidades de G y 25 unidades de G y 26 unidades de G y 27 unidades de G y 28 unidades de G y 29 unidades de G y 29 unidades de G y 20 unid

Para el próximo mes se deben producir al menos 900 unidades de G, al menos 300 unidades de P y, respecto de S, al menos 800 unidades y a lo sumo 1700 unidades. La disponibilidad, para el próximo mes, de crudo C_1 es de 1400 unidades y de crudo C_2 es de 2000 unidades. Los beneficios por unidad producida son:

Gasolina	G	P	S
Beneficio	4	6	7

La compañía desea conocer cómo utilizar ambos procesos de destilación, que se pueden realizar total o parcialmente, para que el beneficio sea máximo.

2. (0.30 puntos)

En la resolución del siguiente problema, mediante el algoritmo del Simplex, se llega a la tabla que se presenta.

$$min \quad z = x_1 + 6x_2 + x_3 + x_4$$
s.a.:
$$3x_1 + 3x_2 + 2x_4 + x_5 = 6$$

$$x_1 + 2x_2 + x_3 + x_4 = 7$$

$$x_1 + x_2 + x_3 = 5$$

$$x_1 \ge 0, \quad x_2 \ge 0, \quad x_3 \ge 0, \quad x_4 \ge 0, \quad x_5 \ge 0.$$

	\mathcal{X}_1	x_2	\mathcal{X}_3	\mathcal{X}_4	χ_5	
χ_2	0	1	0	1	0	2
χ_3	0	0	1	-2/3	-1/3	3
x_1	1	0	0	-1/3	1/3	0
	0	0	0	-4	0	Z – 15

Obtener el conjunto de soluciones óptimas del problema.

3. (0.35 puntos)

En la resolución del siguiente problema, mediante el algoritmo del Simplex, se llega a la tabla que se presenta.

$$\begin{aligned} \min & z = 2x_1 + 12x_2 - 14x_3 + 7x_4 - 10x_5 \\ s. \, a. : & 5x_1 - 4x_2 + 10x_3 - 2x_4 + x_5 = 20 \\ & x_1 - x_2 + 5x_3 - x_4 + x_5 = 6 \\ & x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, \ x_4 \ge 0, \ x_5 \ge 0. \end{aligned}$$

	x_1	χ_2	<i>X</i> ₃	<i>X</i> ₄	χ_5	
x_1	1	$-\frac{2}{3}$	0	0	-1/3	8/3
<i>X</i> ₃	0	- ¹ / ₁₅	1	-1/5	⁴ / ₁₅	2/3
	0	62/5	0	²¹ / ₅	- ²⁸ / ₅	z-(- 4)

Obtener el conjunto de soluciones óptimas del problema.