G. KARCH & M. KRUPSKI & SZ. CYGAN

"Trying to solve [differential] equations is a youthful aberration that you will soon grow out of."

Stwierdzenie słynnego matematyka na wykładzie w Cambridge University.

Proste równania pierwszego rzędu

Zadanie 1. Rozwiąż równania o rozdzielonych zmiennych:

a)
$$\sqrt{y^2 + 1} = tyy'$$
,

b)
$$ty' + y = y^2$$
,

c)
$$\sqrt{2y-1} = y'$$
.

Zadanie 2. Rozwiąż równania liniowe:

a)
$$y' + y \cos t = 0$$
,

c)
$$y' + t^2y = t^2$$
,

e)
$$y' + y = te^t$$
.

b)
$$y' + t^2y = 1$$
,

d)
$$y' + \frac{2t}{1+t^2}y = \frac{1}{1+t^2}$$
,

Zadanie 3. Rozwiąż następujące zagadnienia początkowe:

$$y' + \sqrt{1 + t^2}y = 0$$
, $y(0) = \sqrt{5}$; $y' + ty = 1 + t$, $y(3/2) = 0$.

Zadanie 4. Znajdź funkcję f = f(t) w równaniu $fy' + t^2 + y = 0$, jeżeli wiadomo, że ma ono czynnik całkujący postaci u(t) = t.

Zadanie 5. Pokaż, że zagadnienie $y'=1+y^2,\ y(0)=0\,$ nie ma rozwiązania określonego na całej prostej.

Zadanie 6. Udowodnij, że równanie $y' = f(y), y \in \mathbb{R}$, $f \in C^1$, nie może mieć rozwiązań okresowych różnych od stałych.

Zadanie 7. Pokaż, że równanie ty' + ay = f(t), gdzie a > 0, $\lim_{t \to 0} f(t) = b$, ma jedyne rozwiązanie ograniczone dla $t \to 0$. Zbadaj przypadek a < 0.

Zadanie 8. Zakładamy, że f jest funkcją ciągłą i ograniczoną na \mathbb{R} . Pokaż, że równanie y'+y=f(t) ma dokładnie jedno rozwiązanie y(t) ograniczone. Pokaż, że jeżeli założymy, że f jest funkcją okresową, to y też jest funkcją okresową.

Zadanie 9. Pokaż, że każda krzywa całkowa równania $x' = \sqrt[3]{\frac{x^2+1}{t^4+1}}$ ma poziome asymptoty.

Zadanie 10. Równanie postaci $\frac{\mathrm{d}y}{\mathrm{d}t}=f(\frac{y}{t})$, gdzie f jest daną funkcją, nazywamy *równaniem jednorodnym*. Pokaż, że równanie tego typu sprowadza się przez zamianę zmiennych $v(t)=\frac{y(t)}{t}$ do równania $t(\frac{\mathrm{d}v}{\mathrm{d}t})+v=f(v)$. Znajdź rozwiązanie ogólne. Rozwiąż równania:

a)
$$2y + t - ty' = 0$$
,

b)
$$ty' = y - te^{y/t}$$
,

c)
$$ty' = y \cos(\log \frac{y}{t})$$
.

Zadanie 11. Równanie postaci $y' + a(t)y = b(t)x^m$, gdzie $m \in \mathbb{R}$, nazywamy *równaniem Bernoulliego*. Pokaż, że równanie tego typu sprowadza się przez zamianę zmiennych $z(t) = y(t)^{1-m}$ do równania liniowego. Znajdź rozwiązanie ogólne. Rozwiąż równania:

a)
$$ty' + y = y^2 \log t$$
,

b)
$$y' = ty + t^3y^2$$
.

Zadanie 12. Spadek kamienia pod wpływem siły grawitacji, z uwzględnieniem oporu powietrza, jest opisany równaniem

$$x''(t) = -g + k(x'(t))^2, \ k > 0.$$

Pokaż, że po długim czasie porusza się on z prędkością graniczną, tzn. $\lim_{t\to\infty}x'(t)=-(g/k)^{1/2}$.

Zadanie 13. Rozwój populacji liczącej M(t) osobników w chwili t można opisać równaniem Verhulsta

$$M'(t) = aM(t) - bM^2(t)$$

(dla populacji ludzkiej z dobrym przybliżeniem $a=0,029,\,b=2,941\cdot 10^{-12}$). Udowodnij, że $\lim_{t\to\infty}M(t)=a/b$. Określ, dla jakiego t funkcja M'(t) osiąga maksimum.