实验十八 弗兰克-赫兹实验

实验人: 钟易轩 (2000012706)

组号: 九组七号 指导教师: 陈志忠

实验时间: 2021 年 11 月 5 日 星期五 下午 实验地点: 物理楼南楼 225

【实验目的】

(1) 了解弗兰克-赫兹用伏安法证明原子存在能级的原理和方法

(2) 学习用伏安法测量非线性器件

(3) 学习微电流的测量

【仪器用具】

弗兰克-赫兹管(充汞和充氩两种), F-H 管电源, 扫描电源和微电流放大器.

【实验数据及处理】

1. 汞管实验注意事项及数据

(1) 待管温稳定之后,调节 $U_F \setminus U_{q_2p}$ 时,每次调节 0.1V,至少等 3 到 5 分钟.

(2) 细测时, U_{kg_2} 取点间隔在峰值附近 0.1V 左右, 在其他位置 0.3V 左右.

实验条件: $U_F = 2.1V$ $U_{g_2p} = 2.0V$ $\theta = 177^{\circ}C$ 粗测数据如下:

U_{kg_2}/V	4.6	9.1	13.9	18.8	23.9	28.8
U_{out}/V	0.043	0.084	0.123	0.169	0.184	0.222

细测数据如下:

U_{kg_2}/V	U_{out}/V	U_{kg_2}/V	U_{out}/V	U_{kg_2}/V	U_{out}/V	U_{kg_2}/V	U_{out}/V
0.4	0.025	9.0	0.089	15.6	0.042	23.2	0.182
0.7	0.026	9.1	0.088	15.9	0.041	23.4	0.201
1.2	0.026	9.2	0.084	16.3	0.046	23.5	0.202
1.7	0.027	9.4	0.067	16.6	0.050	23.7	0.204
2.3	0.028	9.7	0.052	17.0	0.062	23.8	0.210
2.8	0.030	10.0	0.046	17.3	0.077	24.0	0.205
3.3	0.034	10.3	0.041	17.6	0.092	24.3	0.178
3.8	0.034	10.6	0.038	17.9	0.105	24.5	0.167
4.2	0.038	10.9	0.037	18.2	0.125	24.9	0.122
4.4	0.038	11.2	0.038	18.4	0.142	25.2	0.095
4.5	0.039	11.5	0.041	18.6	0.156	25.4	0.079
4.6	0.039	11.9	0.047	18.8	0.155	25.9	0.069
4.7	0.037	12.3	0.058	18.9	0.152	26.2	0.070
4.8	0.037	12.6	0.070	19.0	0.148	26.5	0.076
4.9	0.036	12.9	0.082	19.4	0.110	26.8	0.091
5.0	0.035	13.3	0.100	19.8	0.083	27.1	0.104
5.6	0.033	13.5	0.115	20.1	0.068	27.4	0.127
6.0	0.032	13.7	0.122	20.4	0.054	27.7	0.160
6.4	0.031	13.8	0.125	20.7	0.051	28.1	0.203
6.8	0.036	13.9	0.118	21.1	0.052	28.5	0.237
7.2	0.040	14.0	0.116	21.4	0.057	28.6	0.238
7.7	0.049	14.2	0.102	21.9	0.076	28.9	0.242
8.1	0.060	14.5	0.077	22.2	0.092	29.1	0.240
8.6	0.076	14.8	0.060	22.5	0.112	29.3	0.222
8.9	0.087	15.1	0.050	22.8	0.143		

2.Ar 管实验注意事项及数据

- (1) 待管温稳定之后,调节 U_F $U_{g_{2p}}$ 时,每次调节 0.1V,至少等 3 到 5 分钟.
- (2) 细测时, U_{kg_2} 取点间隔在峰值附近 0.2V 左右,在其他位置 0.5V 左右.

实验条件: $U_F = 2.2V$ $U_{g_1g_2} = 6.1V$ $U_{g_2p} = 2.0V$ 粗测数据如下:

U_{kg_2}/V	16.4	27.7	40.3	52.6	65.5	79.0
I/nA	22.1	39.1	50.5	61.3	74.6	94.5

细测数据如下:

U_{kg_2}/V	I/nA	U_{kg_2}/V	I/nA	U_{kg_2}/V	I/nA	U_{kg_2}/V	I/nA
7.9	0.1	27.5	36.3	$\frac{3 kg_2}{47.0}$	24.3	65.0	77.7
8.5	1.5	27.9	36.2	47.7	33.9	65.2	77.5
9.0	3.1	28.5	35.1	48.1	38.2	65.3	77.3
9.5	6.4	29.2	32.6	48.7	44.8	65.5	77.0
10.0	11.0	29.8	29.3	49.0	47.8	66.0	75.8
10.7	15.5	30.5	23.3	49.3	51.0	66.6	72.8
11.1	18.0	31.0	17.9	49.7	53.8	67.2	69.8
11.6	19.7	31.5	12.9	50.0	55.7	67.7	64.6
12.1	20.7	32.0	9.1	50.5	58.1	68.3	58.5
12.7	22.2	32.6	5.6	50.8	59.5	68.8	54.2
13.3	23.1	33.1	4.0	51.1	60.7	69.3	50.8
13.8	23.3	33.5	3.7	51.5	61.8	69.8	48.0
14.0	23.3	34.2	6.6	51.7	62.2	70.6	47.4
14.1	22.6	34.7	12.7	51.9	62.7	71.0	48.9
14.2	22.3	35.3	20.2	52.1	62.7	71.5	51.4
14.8	22.1	35.8	27.6	52.3	62.6	72.0	54.4
15.2	22.0	36.3	33.4	52.5	62.3	72.6	59.0
15.8	22.0	36.8	37.7	53.0	61.1	73.2	63.9
16.3	22.1	37.3	41.6	53.5	58.3	73.8	69.2
16.8	21.7	37.8	45.0	54.0	55.0	74.4	75.3
17.3	20.9	38.3	47.0	54.7	49.0	75.1	81.1
17.8	19.7	38.8	48.2	55.1	44.6	75.4	83.3
18.4	17.5	39.3	49.0	55.8	36.4	75.9	86.8
19.0	15.4	39.5	48.8	56.3	31.0	76.5	90.3
19.5	12.8	39.6	48.8	56.8	25.8	77.0	93.3
20.0	10.1	39.8	48.8	57.3	23.2	77.3	94.3
20.6	7.7	40.0	48.6	57.9	24.5	77.5	94.9
21.2	6.0	40.3	48.4	58.4	27.6	77.6	95.3
21.8	4.7	40.5	47.8	58.9	31.7	77.8	95.9
22.4	5.6	41.0	45.7	59.4	37.1	77.9	96.3
23.0	9.2	41.5	42.4	60.1	44.7	78.2	96.7
23.6	15.2	42.0	38.7	60.6	50.4	78.5	97.3
24.2	21.0	42.5	33.9	61.2	56.2	78.7	97.3
24.8	26.8	43.0	28.2	61.8	61.5	78.8	97.3
25.5	31.9	43.5	21.4	62.3	66.5	79.0	97.0
26.0	34.1	44.0	15.6	62.9	70.6	79.3	96.7
26.5	35.5	44.6	10.9	63.4	72.7	79.5	96.0
27.0	36.4	45.0	8.5	63.7	74.2	80.1	93.3
27.1	36.5	45.5	8.6	63.9	75.0		
27.2	36.4	46.0	12.2	64.3	75.9		
27.4	36.4	46.5	18.3	64.7	76.9		

${f 3. Hg}$ 管改变 U_{g_2p} 之后的数据

①当 $U_{g_2p} = 0.89V$ 且其余数据未变情况下,数据表如下:

U_{kg_2}/V	U_{out}/V	U_{kg_2}/V	U_{out}/V	U_{kg_2}/V	U_{out}/V	U_{kg_2}/V	U_{out}/V
22.4	0.204	23.7	0.301	25.6	0.111	28.1	0.339
22.6	0.211	23.8	0.298	26	0.118	28.3	0.359
22.9	0.245	23.9	0.285	26.4	0.142	28.4	0.374
23.2	0.267	24.3	0.216	26.8	0.172	28.6	0.378
23.3	0.281	24.5	0.191	27.1	0.208	28.7	0.364
23.4	0.291	24.7	0.161	27.3	0.232	28.9	0.362
23.5	0.299	25	0.129	27.7	0.282		
23.6	0.299	25.3	0.116	27.9	0.309		

②当 $U_{g_2p}=2.92V$ 且其余条件未变情况下,数据表如下:

U_{kg_2}/V	U_{out}/V	U_{kg_2}/V	U_{out}/V	U_{kg_2}/V	U_{out}/V	U_{kg_2}/V	U_{out}/V
22	0.047	24	0.124	26.5	0.052	28.7	0.127
22.4	0.055	24.1	0.124	26.8	0.051	28.8	0.128
22.8	0.072	24.5	0.109	27.1	0.058	28.9	0.128
23.2	0.096	24.9	0.086	27.4	0.064	29.1	0.122
23.4	0.107	25.2	0.076	27.7	0.076	29.2	0.119
23.7	0.122	25.5	0.067	27.9	0.09	29.3	0.116
23.8	0.125	25.8	0.057	28.3	0.111		
23.9	0.126	26.1	0.053	28.6	0.123		

4. 各峰值扫描电压

①Hg 管数据如下:

\overline{n}	1	2	3	4	5	6
$\overline{U_{kq_2}/V}$	4.6	9.0	13.8	18.6	23.8	28.9

设 $U_{kg_2} = U_1 * n + b$, 其中的 U_1 即是 Hg 的第一激发电位. 现在利用 matlab 使用最小二乘法进行运算,得出图 (a).

并且计算出 $U_1=4.8771(V)$,且由 $\frac{\sigma_{U_1}}{U_1}=\sqrt{\frac{1/r^2-1}{n-2}}$ 的公式得 $\sigma_{U_1}=U_1\times\sqrt{\frac{1/r^2-1}{n-2}}$. 则 $\sigma_{U_1}=4.8771\times\frac{1}{2}\times\sqrt{1/(0.9996)^2-1}=0.06899\approx0.07(V)$,最后得出 $U_1=(4.88\pm0.07)V$,或者表述为 $U_1=(4.9\pm0.1)V$.

②Ar 管数据如下:

	_	_	3	_	•	•
$\overline{U_{kg_2}/V}$	13.8	27.1	39.3	51.9	65.0	78.8

设 $U_{kg_2} = U_1 * n + b$, 其中的 U_1 即是 Ar 的第一激发电位. 现在利用 matlab 使用最小二乘法进行运算,得出图 (b).

并且计算出 $U_1=12.8943(V)$,且由 $\frac{\sigma_{U_1}}{U_1}=\sqrt{\frac{1/r^2-1}{n-2}}$ 的公式得 $\sigma_{U_1}=U_1\times\sqrt{\frac{1/r^2-1}{n-2}}$. 则 $\sigma_{U_1}=12.8943\times\frac{1}{2}\times\sqrt{1/(0.9998)^2-1}=0.12896\approx0.13(V)$,最后得出 $U_1=(12.89\pm0.13)V$. 图 (a) 为:

图 (b) 为:

【思考题】

①改变减速电压 U_{qop} 对曲线有何影响?

答:根据实验数据,当 $U_{g_2p}=0.89V$ 时,峰高增加,峰位朝左方偏移,这是因为减速电压小了之后,电子达到极板时所需要的加速电压相对应地也变小了也有更多的电子能达到极板;当 $U_{g_2p}=2.92V$ 时,峰高降低,峰位朝右方偏移,这是因为减速电压加大之后,电子达到极板变得困难,因此需要更大的加速电压,同时达到极板的电子也减少了. 因此可推测出,当减速电压增加,峰高降低,峰位右移,当减速电压减小,峰高增加,峰位左移.

②改变炉温对曲线有何影响?

答:由于未做实验,故用理论分析回答.当炉温升高,Hg 蒸汽中原子数目增加,平均自由程减小,电子与之碰撞的概率增加,损失能量也就更多,到达极板的电子就越少,导致曲线峰高降低,且由于电子碰撞概率增加,将 Hg 激发的概率减小,因此需要更大的加速电压,峰位右移.当炉温降低,依照前面的分析,曲线的峰高增加,峰位左移.

【分析与讨论】

1. 实验中测得的各种曲线有什么主要特征? 如何理解?

答:各种曲线都具有峰值点(谷值点)的周期性,这主要是印证了原子能级的量子化.只有当电子能量满足能级差的整数倍时,电子才会将能量给被轰击原子,导致电流下降,而峰值点就是电子携带能量为能极差整数倍的状态,则根据峰值点之间的关联就可以知道能级差的关系.

2. 分析测量第一激发电位时误差的主要来源.

答:①由于电子仪器在测量时对周围环境的敏感性导致读数时产生了误差.②仪器自身的误差,比如在测量 Ar 管时,在低电压情况下,电流很小.③测量时, U_{kg_2} 的取值不稳定可能导致误差,未等系统稳定就测量也可能导致误差.