Таблица оригиналов и изображений (преобразование Лапласа)

Данный справочный материал несколько отличается от стандартной таблицы преобразования Лапласа, которую можно найти в различных источниках. По содержанию и обозначениям таблица оптимизирована под решение конкретных практических задач — нахождение частного решения дифференциального уравнения второго порядка с постоянными коэффициентами методом операционного исчисления, а также решения аналогичной задачи для системы ДУ.

Используемые обозначения:

x(t), x'(t), x''(t) — функция, первая производная и вторая производная;

x(0), x'(0) — начальные условия дифференциального уравнения;

a, b – константы;

n — целая неотрицательная степень.

Для удобства таблица содержит как преобразование Лапласа, так и обратное преобразование Лапласа:

№	Переход от оригиналов к изображениям (прямое преобразование Лапласа L)	Переход от изображений к оригиналам (обратное преобразование Лапласа L^{-1})
1.	$x(t) \xrightarrow{L} X(p)$	$X(p) \xrightarrow{L^{-1}} x(t)$
2.	$x'(t) \stackrel{L}{\rightarrow} pX(p) - x(0)$	На практике вряд ли потребуется
3.	$x''(t) \xrightarrow{L} p^2 X(p) - p \cdot x(0) - x'(0)$	На практике вряд ли потребуется
4.	$t^n \xrightarrow{L} \frac{n!}{p^{n+1}}$	$\frac{1}{p^n} \xrightarrow{L^{-1}} \frac{1}{(n-1)!} t^{n-1}$
	В частности:	В частности:
	$1 \xrightarrow{L} \frac{1}{p}$	$\frac{1}{p} \xrightarrow{L^{-1}} 1$
	$t \xrightarrow{L} \frac{1}{p^2}$	$\frac{1}{p^2} \xrightarrow{L^{-1}} t$
	$t \xrightarrow{L} \frac{1}{p^2}$ $t^2 \xrightarrow{L} \frac{2}{p^3}$ $t^3 \xrightarrow{L} \frac{6}{p^4}$	$\frac{1}{p^3} \xrightarrow{L^{-1}} \frac{1}{2}t^2$
	$t^3 \xrightarrow{L} \frac{6}{p^4}$	$\frac{1}{p^4} \xrightarrow{L^{-1}} \frac{1}{6} t^3$

Памятка по факториалам:

0! = 1

1! = 1

 $2! = 1 \cdot 2 = 2$

 $3! = 1 \cdot 2 \cdot 3 = 6$

 $4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$

. . .

№	Переход от оригиналов к изображениям (прямое преобразование Лапласа L)	Переход от изображений к оригиналам (обратное преобразование Лапласа L^{-1})
5.	$t^n e^{at} \xrightarrow{L} \frac{n!}{(p-a)^{n+1}}$	$\frac{1}{(p-a)^n} \xrightarrow{L^{-1}} \frac{1}{(n-1)!} t^{n-1} e^{at}$
	В частности:	В частности:
	$e^{at} \xrightarrow{L} \frac{1}{p-a}$	$\frac{1}{p-a} \xrightarrow{L^{-1}} e^{at}$
	$te^{at} \xrightarrow{L} \frac{1}{(p-a)^2}$	$\frac{1}{(p-a)^2} \xrightarrow{L^{-1}} te^{at}$
	$t^2 e^{at} \xrightarrow{L} \frac{2}{(p-a)^3}$	$\frac{1}{(p-a)^3} \xrightarrow{L^{-1}} \frac{1}{2} t^2 e^{at}$
	$t^3 e^{at} \xrightarrow{L} \frac{6}{(p-a)^4}$	$\frac{1}{(p-a)^4} \xrightarrow{L^{-1}} \frac{1}{6} t^3 e^{at}$
6.	$\sin bt \xrightarrow{L} \frac{b}{p^2 + b^2}$	$\frac{1}{p^2 + b^2} \xrightarrow{L^{-1}} \frac{1}{b} \sin bt$
7.	$\cos bt \xrightarrow{L} \frac{p}{p^2 + b^2}$	$\frac{p}{p^2 + b^2} \xrightarrow{L^{-1}} \cos bt$
8.	$t\sin bt \xrightarrow{L} \frac{2pb}{(p^2 + b^2)^2}$	$\frac{p}{(p^2+b^2)^2} \xrightarrow{L^{-1}} \frac{1}{2b} t \sin bt$
9.	$t\cos bt \xrightarrow{L} \frac{p^2 - b^2}{(p^2 + b^2)^2}$	$\frac{p^2 - b^2}{(p^2 + b^2)^2} \xrightarrow{L^{-1}} t \cos bt$
10.	$e^{at}\sin bt \xrightarrow{L} \frac{b}{(p-a)^2 + b^2}$	$\frac{1}{(p-a)^2 + b^2} \xrightarrow{L^{-1}} \frac{1}{b} e^{at} \sin bt$
11.	$e^{at}\cos bt \xrightarrow{L} \frac{p-a}{(p-a)^2 + b^2}$	$\frac{p-a}{(p-a)^2+b^2} \xrightarrow{L^{-1}} e^{at} \cos bt$