

1993010418

N 9 3 - 1 9 6 0 7

Session VI. Airborne Doppler Radar / NASA

NASA Experimental Airborne Doppler Radar and Real Time Processor for Wind Shear Detection

P. Schaffner, NASA Langley Research Center

Dr. M. Richards, Georgia Institute of Technology

W. Jones, NASA Langley Research Center

L. Crittenden, Research Triangle Institute

PRECEDING PAGE IS DATA FROM FILMED

NASA Experimental Airborne Doppler Radar and Real-Time Processor for Windshear Detection

**P. Schaffner, NASA LaRC
Dr. M. Richards, GTRI
W. Jones, NASA LaRC
L. Crittenden, RTI**

Experimental Radar System Capabilities

- o Independent Data Frames 128 Pulse Repetition Periods per Frame
- o Selectable Transmitter Parameters
 - o PRF (9581, 4791, 3755, 2395, 1198 Hz)
 - o Pulse Width (1, 2, 4, or 8 μ s)
 - o Dual X-Band Transmit Frequencies
- o Selectable Antenna Parameters
 - o Scan Pattern (az, el, az/el)
 - o Scan Rate (3 Frames/1.5°)

Experimental Radar System

Capabilities

Continued

- o Independent AGC for each Range Bin (>60 dB)
- o Fast I.F. Gain Control (<0.5 μ s)
- o Selectable Range Bin Sampling of up to 124 bins to be recorded and processed out of 81 to 843 (depending on PRF & pulse width available from R/T unit)

Experimental Radar System

Capabilities

Continued

- o Capability of skipping 0, 1, 2, or 3 Range Bins for each one selected
- o "Second Range Mode" in which every other transmit pulse is inhibited in order to study effects of range aliasing

Experimental Radar System Block Diagram

Wind shear Radar Signal and Data Processor (WRSSDP)

- o Developed under contract to NASA Langley Antenna and Microwave Research Branch (AMRRB) by Research Triangle Institute (RTI) with subcontractor Georgia Tech Research Institute (GTRI)
- o VME-bus based computer, Motorola 68030 host running the OS-9 real time operating system
- o Three Pacific Cyber/Metrix DSP-3 boards each containing 3 TI TMS320C30 processors running at 33 MHz (Total mfg. rating 300 MFLOPS)

Wind shear Radar Signal and Data Processor (WRSDP) continued

- o Two high resolution graphics boards and monitors, hard and floppy disk drives, 64 MByte VME/VSB bus memory board
- o Custom data selector board designed by RTI to allow use of data from radar, tape, or on-board simulation
- o GRiD 386 laptop computer, with separate keypad, for system console

WRSDP HARDWARE ARCHITECTURE

- 80386SX
- 2 MB RAM
- 640x480 LCD
- 60 MB hard drive

WRSDP System Design Goals

- o Flexible research tool for in-flight display and post-flight data analysis
- o Implement signal processing algorithms for real-time Doppler mean and variance estimation
- o Provide additional algorithms to calculate received power and signal spectra
- o Implement hazard detection, tracking, and alert algorithms
- o Support up to 6 simultaneous displays on 2 monitors

WRSDP System Design Goals

continued

- o Provide a convenient, configurable, menu driven user interface
- o Use flexible, modular software design to support development of new algorithms and displays
- o Second radar/DSP system based in mobile van
 - o Quick look post-flight analysis of recorded flight data
 - o Investigation of interference problems between the two radars
 - o Collection of weather data for comparison with aircraft data
 - o Development platform to implement and test hardware and software modifications
 - o "Live" spares for the airborne radar

USER INTERFACE

488

- Based on hierarchical menus
- Pop-up window on primary display
- Menu structure configurable via simple editable text files

DSP Software Development Tools

- o On Sun Workstation
 - o TMS320C30 C Compiler
 - o SPOX DSP Library
 - o TMS320C30 Simulator
 - o EMACS and vi editors
 - o Revision Control System (RCS)
 - o TCP/IP, NFS, Terminal Emulation, printing services
- o On Heurikon 68030 Host
 - o PC/M DSPdebug utility

OS-9 Software Development Tools

- o On Heurikon 68030 Host
 - o Microware OS-9 Operating System and Utilities
 - o uMACS editor
 - o C and gcc
 - o Make utility
 - o Source and system debuggers
 - o TCP/IP and NFS
 - o Abssoft FORTRAN

WRSDP Digital Signal Processing

- o Basic purpose of DSP suites is the estimation of Doppler velocity mean and variance in each range-azimuth resolution cell
- o Choice of 4 different sets of DSP algorithms ("suites") currently provided for real-time use in performing these estimates
- o Other algorithms will be developed for post-flight analysis of data

WRSSDP Digital Signal Processing

Continued

- o The DSP suites are formed from various combinations of:
 - o Clutter filters
 - Time Domain - FIR or IIR
 - Frequency Domain - Line Editing
 - o Spectrum Estimators
 - Fourier Transform, Autoregressive model, or none
 - o Frequency Estimators
 - Time-domain pulse pair, frequency domain pulse pair, first moment

DSP SUITES

SUITE	FILTER			SPECTRUM ESTIMATOR			FREQUENCY ESTIMATOR		
	FIR	IIR	LINE EDIT	NONE	FOURIER	AR	Time domain pulse pair	Freq. domain pulse pair	First moment
A	X			X			X		
B	X	X			X				X
C	X			X			X		
D	X	X			X			X	
E	X	X	X				X		X

WRSDP Display Operational Modes

- o Derived Velocity *versus* Range along range line
- o Received Power *versus* Range along range line, in dBm or dBz
- o FFT of selected Range Bins across 1 frame of 128 pulses
- o Color map of velocity/range over full azimuth scan
- o Color maps of power/range over full azimuth scan
- o Color map of hazard/range over full azimuth scan with wind shear tracking and alarm algorithms

WRSDP Division of Functions

- o **Signal Processing - on DSP boards**
 - o Test signal injection
 - o Data flow and process control
 - o DSP algorithm suites
- o **Data Processing - 68030 host**
 - o User interface menu system
 - o Hazard detection and tracking
 - o Graphics calculations
 - o Diagnostics, start-up, load DSP images, tape control, etc.

STRUCTURE OF WRSDP SIGNAL & DATA PROCESSING ALGORITHMS

WINDSHEAR RADAR FLIGHT EXPERIMENT

Aircraft Console Equipment Arrangement

Summary

- Airborne Wind Shear Radar System was flown in 1991 and successfully collected clutter, microburst and gust front data
- WRSDDP system has been tested and confirmed to be operational in laboratory with 4 algorithm suites implemented
- Airborne Wind Shear Radar/WRSDDP system currently being installed on NASA 737 for 1992 flight tests
- Second system for Van/Playback/Quick-look being assembled and tested in laboratory