

ADA 034975

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) **READ INSTRUCTIONS** REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER HDL-TM-76-28 TYPE OF REPORT & PERIOD COVERED TITLE (and Subtitle) SEMCON: A Semiconductor Damage Data Technical Memorandum Reduction Computer Code PERFORMING ONG. HEPORT NUMBER 7. AUTHOR(4) B. CONTRACT OR GRANT NUMBER(*) J. Michael Clodfelter 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK Harry Diamond Laboratories DA: 1W162118AH75 2800 Powder Mill Road Prog. Ele.: 62118A Adelphi, MD 20783
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE December 1976 US Army Materiel Development & Readiness Command 1exandria, VA 22333

MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES HDL Project: X755E3 JAN 31 DRCMS Code: 61211811H7500 This work was sponsored by the U. S. Army Multiple Systems Evaluation Program. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Least squares method Gauss criterion of goodness of fit 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) SEMCON is a semiconductor damage-data-reduction computer code that analyzes various semiconductor devices. The code evaluates semiconductor devices by giving the following information: (1) determination of damage -- the failure or nonfailure of a device; (2) calculation of power, energy, and impedance; (3) least-squares fits of specific damage curves to chosen data; (4) selection of the best least-squares fit; and (5) log-log

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entere

3 050

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

plots of least-squares fits. This report details the development and capabilities of SEMCON, as well as the procedures for using the code.

FOREWORD

The Army Multiple Systems Evaluation Program (MSEP) is a comprehensive program developing general analytic techniques for the prediction of high electromagnetic-pulse vulnerability and hardening technology and for the application of these techniques to a list of critical systems. The analytic techniques have been verified for a large class of tactical systems. The hardening techniques have been applied to specific systems and are now resulting in product improvement programs leading to hardened equipment in the field.

CONTENTS

		Page
	FOREWORD	. 3
1.	INTRODUCTION	. 7
2.	FAILURE DETERMINATION AND POWER, ENERGY, AND IMPEDANCE	
	CALCULATIONS	. 8
3.	DERIVATION OF FITTING PARAMETERS	. 9
4.	GAUSS CRITERION OF GOODNESS OF FIT	. 17
5.	PLOTTING INFORMATION	. 18
6.	OPTIONS OF SEMCON	. 18
7.	DESCRIPTION OF SEMCON AND ITS SUBROUTINES	. 20
8.	DATA INPUT PREPARATION	. 21
9.	CONTROL CARDS FOR RUNNING SEMCON	. 25
10.	CONCLUSIONS	. 27
	ABBREVIATIONS	
	DISTRIBUTION	
	APPENDICES	
A	-SAMPLE PRODUCTION RUN OF SEMCON	. 29
В	-SAMPLE PRODUCTION RUN OF SEMCON	. 37
C	-LISTING OF SEMCON	43
D	-SAMPLE INPUT WHEN ISEM = 0	. 87
E	-SAMPLE INPUT WHEN ISEM = 1	. 91
	FIGURE	
1	Flow Chart for Minimizing S(a,b)	15

1. INTRODUCTION

This effort was written under the sponsorship of the Multiple Systems Evaluation Program (MSEP), which has as its main objective to harden Army tactical systems to the electromagnetic pulse (EMP) associated with the exoatmospheric detonation of a nuclear weapon. Along with this major objective, MSEP is tasked also with the aim to develop experimental and analytical evaluation techniques that are applicable to all systems' problems. These objectives are satisfied, since SEMCON provides an analytic method to examine various semiconductor devices used in Army systems and assists in making recommendations for hardening modifications.

When making EMP vulnerability assessments, it is often necessary to perform a circuit analysis on specific circuits driven by a voltage induced by EMP. This analysis often points out a large power value produced on various semiconductor devices that could cause the devices to fail if sufficient power were present. However, to know if a particular device fails and at what power level, a semiconductor device must be analyzed and a damage curve fitted to certain data. This curve gives a good indication as to the vulnerability of the device to particular thresholds of power. Therefore, the main purpose of computer code SEMCON is to provide the necessary information about semiconductor devices so that it is possible to make various EMP vulnerability assessments.

The semiconductor damage-data-reduction computer code, SEMCON, analyzes various semiconductor devices. The code was written for a Control Data Corporation (CDC) 6600 series computer system located at the Mobility Equipment Research and Development Center (MERDC), Fort Belvoir, VA. Written to run employing the FTN compiler, SEMCON is operational using the SCOPE 3.4.3 control language. To evaluate a semiconductor device, SEMCON is capable of giving the following information:

- a. Determination of damage--the failure or nonfailure of a device
- b. Calculations of power, energy, and impedance
- c. Least-squares fits of

$$p = at^{-1},$$

 $p = bt^{-\frac{1}{2}},$
 $p = at^{-1} + bt^{-\frac{1}{2}}$

to either power versus failure time or power versus pulse width

- d. Selection of the best least-squares fit to specified data
- Log-log plots of least-squares fits in either the forward or reverse direction
- f. Log-log plots of

TD versus Z--failure time versus impedance '

TD versus VOC--failure time versus open-circuit voltage

TDOC versus VOC--pulse duration versus open-circuit voltage

TD versus IP--failure time versus peak current

in either the forward or reverse direction

g. Tabular listing of input data and all calculations

The subsequent sections detail the development and capabilities of SEMCON, along with the necessary information to utilize the code.

2. FAILURE DETERMINATION AND POWER, ENERGY, AND IMPEDANCE CALCULATIONS

To determine the damage on a particular pulse number, the specific values used in the calculations are (1) VZBP and VZAP, (2) VZBN and VZAN, and (3) GAINB and GAINA. The criteria used to determine failure are any one of the following three conditions:

If any one of these conditions is satisfied, then for that pulse number the device is said to fail.

Another of the features of SEMCON is the calculations of the power (P), energy (E), and impedance (Z). These computations are very straightforward and are found by

$$P = VP*TD,$$

$$E = P*TD$$

$$Z = \frac{VP - VZBP}{IP}$$

3. DERIVATION OF FITTING PARAMETERS

The main purpose of SEMCON is to fit various curves to specified data. They are fit by using the method of least squares to calculate the various fitting parameters. The plots of these curves, as well as the data, are scaled logarithmically, since there can be a wide range in the values of the data. Thus, it is necessary to calculate the least-squares fits in terms of logarithms, which introduces a nonlinear problem. Two methods are used to calculate the least-squares fits in SEMCON. One uses the minimizing conditions known as the normal equations, and the other uses a minimization technique to find the minimum of a function of two variables. In the following paragraphs, the two methods are explained fully along with a detailed derivation of the least-squares fitting parameters.

The first method used to find the least-squares fits involves the solution of the normal equations. This technique involves substituting the n data pairs into the fitting equation.

$$f(x) = a_1\phi_1(x) + a_2\phi_2(x) + ... + a_k\phi_k(x)$$

where $\phi_i(x)$ are known functions of x, and a are the k linear fitting parameters, thus obtaining n linear equations with k unknowns. The next step is to multiply each equation by its corresponding coefficient of the first unknown, which results in n new equations. Adding these equations gives the first normal equation. This process is repeated k times with respect to each of the unknown parameters, so that we end up with k equations in k unknowns (the fitting parameters). The resulting system of simultaneous linear equations, known as the normal equations, is then solved for the k fitting parameters.

In our particular case, we wish to use this method to fit

$$p = at^{-1},$$

$$p = bt^{-\frac{1}{2}}$$

to experimental data, where p is the power, t is the failure time, and a and b are the fitting parameters. Since plots are desired that are scaled logarithmically, we must find the parameters a and b by applying the least-squares technique to

$$\log p = \log at^{-1}, \tag{1}$$

$$\log p = \log bt^{-\frac{1}{2}}.$$
 (2)

All logarithms are assumed to be to the base 10. By the elementary properties of logarithms, we clearly have a linear problem, since

log p = log a - log t,

log p = log b - 1 log t.

First, we consider log $p = \log at^{-1}$ and suppose we have n data pairs (t_i, p_i) for $1 \le i \le n$. Substituting into equation (1), we get

 $\log p_1 = \log at_1^{-1},$

 $\log p_2 = \log at_2^{-1},$

:

 $\log p_n = \log at_n^{-1}$,

and simplifying gives

 $\log p_1 = \log a - \log t_1,$

 $\log p_2 = \log a - \log t_2$

. . .

 $log p_n = log a - log t_n$.

Since this system is linear in terms of logarithms, multiplying by the coefficient of log a in each equation and adding gives

$$\sum_{i=1}^{n} \log p_{i} = \sum_{i=1}^{n} \log a - \sum_{i=1}^{n} \log t_{i}.$$

This is the only normal equation, since there is only one fitting parameter. Solving for log a, we obtain

$$\log a = \frac{\sum_{i=1}^{n} \log p_i + \sum_{i=1}^{n} \log t_i}{n},$$

which gives the solution for a as

$$a = 10^{X},$$

where

$$x = \frac{1}{n} \left(\sum_{i=1}^{n} \log p_i + \sum_{i=1}^{n} \log t_i \right).$$

Now, considering log $p = \log bt^{-\frac{1}{2}}$ and proceeding as above, we get

 $log p_1 = log b - \frac{1}{2} log t_1$,

 $\log p_2 = \log b - \frac{1}{2} \log t_2,$

.

 $\log p_n = \log b - \frac{1}{2} \log t_n$.

This system also is linear in terms of logarithms, so multiplying by the coefficient of log b in each equation and adding gives

$$\sum_{i=1}^{n} \log p_{i} = \sum_{i=1}^{n} \log b - \frac{1}{2} \sum_{i=1}^{n} \log t_{i}.$$

Again, this is the only normal equation, since there is only one fitting parameter. Solving for log b, we obtain

$$\log b = \frac{\sum_{i=1}^{n} \log p_i + \frac{1}{2} \sum_{i=1}^{n} \log t_i}{n}$$
,

which gives the solution for b as

$$b = 10^{y}$$

where

$$y = \frac{1}{n} \left(\sum_{i=1}^{n} \log p_i + \sum_{i=1}^{n} \log t_i \right).$$

The second method employed to calculate the least-squares fits involves finding a minimum of a function. Suppose we want to fit

$$f(x) = a_1\phi_1(x) + a_2\phi_2(x)$$

to n data points, where $\phi_1(\mathbf{x})$, $\phi_2(\mathbf{x})$ are known functions of \mathbf{x} , and \mathbf{a}_1 , \mathbf{a}_2 are the fitting parameters. Let $\overline{\mathbf{f}_1} = \overline{\mathbf{f}}(\mathbf{x}_1)$ for $1 \le i \le n$ be the experimental data that we wish to fit. Then by the principle of least squares, we want to minimize

$$F(a_1, a_2) = \sum_{i=1}^{n} w(x_i) \left[\overline{f}_i - f(x_i) \right]^2$$

where $w(x_i)$ is the weight function for each x_i . For our case, we choose

$$w(x_i) = 1 \text{ for } 1 \le i \le n.$$

Thus, we must find the minimum of

$$F(a_1, a_2) = \sum_{i=1}^{n} \left\{ \overline{f}_i - \left[a_1 \phi_1(x_i) + a_2 \phi_2(x_i) \right] \right\}^2.$$

To find the minimum, we proceed in the following manner:

- a. Start with initial values $a_1^{(0)}$, $a_2^{(0)}$.
- b. At the ith step, halve a (i), and try to step first in the positive and then in the negative x-direction, to see if either resulting value gives a minimum, i.e.,

$$F\left[a_1^{(i)} \pm \frac{a_1^{(i)}}{2^{j}}, a_2^{(i)}\right] \le F\left[a_1^{(i)}, a_2^{(i)}\right].$$

c. Halve a₂⁽ⁱ⁾, and try to step first in the positive and then in the negative y-direction, to see if either resulting value gives a minimum, i.e.,

$$F\left[a_1^{(i)}, a_2^{(i)} \pm \frac{a_2^{(i)}}{2^{j}}\right] < F\left[a_1^{(i)}, a_2^{(i)}\right].$$

- d. If neither (b) nor (c) gives a minimum halve $a_1^{(i)}$ and $a_2^{(i)}$ again, and repeat (b) and (c), i.e., j = 2.
- e. If a minimum results from either (b) or (c), then let

$$a_1^{(i+1)} = a_1^{(i)} \pm \frac{a_1^{(i)}}{2^j}$$
, $a_2^{(i+1)} = a_2^{(i)}$, if only (b) holds,

$$a_2^{(i+1)} = a_2^{(i)} \pm \frac{a_2^{(i)}}{2^j}$$
, $a_1^{(i+1)} = a_1^{(i)}$, if only (c) holds,

$$a_1^{(i+1)} = a_1^{(i)} \pm \frac{a_1^{(i)}}{2^j}, a_2^{(i+1)} = a_2^{(i)} \pm \frac{a_2^{(i)}}{2^j}, \text{ if (b) and (c) hold,}$$

and check

$$\left| F\left[a_1^{(i+1)}, a_2^{(i+1)} \right] - F\left[a_1^{(i)}, a_2^{(i)} \right] \right| < \varepsilon, \tag{3}$$

where ε is a chosen convergence tolerance. If equation (3) holds, then

$$a_1 + a_1^{(i+1)}$$
 , $a_2 = a_2^{(i+1)}$

are the fitting parameters. If equation (3) does not hold, the process is repeated.

This technique is very simple and always leads to a minimum although it may be only a local minimum. If a local minimum is reached which is not close to the true minimum, then it seems reasonable to assume that the least-squares fit will be poor. Thus, when the fit is bad, it could probably be attributed to this distant local minimum, although there are other occurrences that could cause a bad fit. The

only solution to this problem is to try the minimization technique again with different initial values. A repetition of this process leads to the true minimum of the function $F(a_1, a_2)$. The above technique was limited to two fitting parameters, but it is an easy matter to extend this method to k parameters.

For our purpose, we wish to use this method to fit

$$p = at^{-1} + bt^{-\frac{1}{2}}$$
 (4)

to experimental data (t_1, p_1) for $1 \le i \le n$, where p is the power, t is the failure time, n is the number of data points, and a and b are the fitting parameters. This poses a nonlinear problem, since log $(at^{-1} + bt^{-2})$ cannot be linearized as was log (at^{-1}) and log (bt^{-2}) . This problem is easily overcome by using the minimization technique described above. Let

$$P(t; a,b) = \log (at^{-1} + bt^{-\frac{1}{2}}),$$

and we want to minimize

$$S(a,b) = \sum_{i=1}^{n} w(t_i) \left[log \frac{1}{p_i} - P(t_i; a,b) \right]^2$$
,

where $w(t_i)$ is the weight function for each t_i . Since we choose

$$w(t_i) = 1$$
 for $i = 1, 2, ..., n$

we must minimize

$$S(a,b) = \sum_{i=1}^{n} \left[\log \overline{p}_{i} - \log \left(at_{i}^{-1} + bt_{i}^{-\frac{1}{2}} \right) \right]^{2}$$
.

The minimization for S(a,b) is identical to the minimization technique given above. A flow chart for finding the minimum of S(a,b) and thus the fitting parameters a and b is given in figure 1.

Although the techniques outlined above are simple and straightforward, caution should be taken when interpreting the least-squares fits. First, the fits are only as good as the data. Poorly taken and recorded data result in meaningless fits. Probably the major fault with least squares is that a single very wrong measurement greatly distorts the results, because in the squaring process, large

Figure 1. Flow chart for minimizing S(a,b).

residuals are dominant—one gross error 10 times larger than most of the others has the same effect in the sum of the squares as have 100 of the others. Second, a considerable amount of mathematical and statistical sophistication can be employed to give the fits much more reliability when the proper data are involved. Several statistical techniques can be applied to these least-squares fits that would enhance their assurance. One is a statistical test of hypothesis concerning the confidence in the fitting parameters a, b in equations (1), (2), and (4). The other would be to test the goodness of fit by using the χ^2 statistical test. These two techniques can be utilized to make SEMCON's least-squares fits more reliable.

4. GAUSS CRITERION OF GOODNESS OF FIT

One of the main questions pertaining to least-squares fits concerns the goodness of fit of the curve to the data. This problem can be dealt with when using the least-squares technique, and probably the most widely used method is the χ^2 goodness of fit statistical test. Although the χ^2 test has not been utilized in SEMCON, a test to determine which of the curves

$$p = at^{-1}$$

$$p = bt^{-\frac{1}{2}}$$

 $p = at^{-1} + bt^{-\frac{1}{2}}$

best fits the data is applied. This test, known as the Gauss criterion of goodness of fit, is now explained. Let $\overline{p_i}$ be an experimental value, p_i a value computed from a least-squares fit, n the number of data points, and m the number of fitting parameters in the relation. Then we define

$$\Omega = \frac{\sum_{i=1}^{n} \left(\overline{p}_{i} - p_{i}\right)^{2}}{n - m},$$

and the Gauss criterion of goodness of fit states that the best fit is the one that minimizes Ω . Since the plots of these fits are scaled logarithmically, we calculate

¹R. W. Hamming, Numerical Methods for Scientists and Engineers, 2nd edition, McGraw-Hill Book Co., Inc., New York (1973).

$$\Omega = \frac{\sum_{i=1}^{n} \left(\log \overline{p}_{i} - \log p_{i}\right)^{2}}{n - m}$$

and find the curve that minimizes Ω . Values of Ω are printed in the output of SEMCON, as well as the curve that best fits the data. This can be seen in appendices A and B.

5. PLOTTING INFORMATION

There are several ways to obtain the plots generated by SEMCON. Through MERDC, SEMCON has the capability to use a Cal Comp model 835 cathode ray tube (CRT) plotting system. This system takes plotting information from a magnetic tape and converts the data to be plotted to incremental plotter commands, which produce discrete, electron-beam deflections (relative to the x and y axes) and intensity variations on the face of a CRT. The CRT display is transmitted through a camera lens system and recorded on 35-mm microfilm. The exposed film is then processed, and the plots are recorded on a magnetic tape at the MERDC computer center. A call to the MERDC computer center is necessary to initiate the hard-copy processing of the plots from the magnetic tape.

In addition to the CRT plotting system, SEMCON has the ability to use a Mohawk Data Sciences (MDS) model 2400 remote batch terminal accompanied with a Houston Instruments COMPLOT plotting system. This system, located at the Harry Diamond Laboratories (HDL) Woodbridge Research Facility (WRF), enables all plots and output information to be received on site.

Each of the methods to obtain plots from SEMCON has different plotting software. Examples of this software are contained in appendices A and B.

6. OPTIONS OF SEMCON

The output of SEMCON can be varied substantially, so an analysis of the possible options for outputing various information is essential: The following is a description of the options available.

a. Tabular data options

- (1) Listing of tabular data only--no plots are given.
- (2) Listings of tabular data and plots are given.
- (3) Plots are given, but the tabular listing is suppressed.

Plotting selections

- (1) Available items versus item plots are
 - (a) TD versus Z--failure time versus impedance
 - (b) TD versus VOC--failure time versus open-circuit voltage
 - (c) TDOC versus VOC--pulse duration versus open-circuit voltage
 - (d) TD versus IP--failure time versus peak current.
- (2) Plots in the reverse direction only
- (3) Plots in the forward direction only
- (4) Plots in both forward and reverse directions
- (5) No item versus item plots
- (6) Reverse direction item versus item plots only
- (7) Forward direction item versus item plots only
- (8) Forward and reverse direction item versus item plots only
- (9) Forward and reverse direction item versus item plots and least-squares fits
- (10) Plots may be received on the MDS remote batch terminal or at MERDC.
- (11) Plotting software may be either the regular Cal Comp plotting software or the software available through the MDS remote batch terminal.
- c. <u>Input data</u>—The regular input data may be entered or a simpler form of input data that requires only pulse width versus power entires.
- d. <u>Least-squares fits--Three</u> curves may be fitted to either failure time (TD) versus power (P) or pulse width versus power.
 - (1) Fit to $p = at^{-1}$ and $p = bt^{-\frac{1}{2}}$ only.

- (2) Fit to $p = at^{-1} + bt^{-\frac{1}{2}}$ only.
- (3) Fit to all three equations.

7. DESCRIPTION OF SEMCON AND ITS SUBROUTINES

The SEMCON code consists of a main program and 19 subroutines. The documentation of SEMCON is detailed by the following analysis of the main program and its subroutines. A listing of SEMCON can be found in appendix ${\tt C}$.

SEMCON reads in the data and writes the tabular output seen in appendix A. It also makes the power, energy, and impedance calculations.

FAILUR calculates the failure or nonfailure of each pulse number.

FRFAIL separates the data with respect to failure in the reverse or forward directions.

DIRECT sets up the variables T and PP, which are used in the calculations of the three least-squares fits, with respect to either the forward or reverse direction. Also, DIRECT chooses which least-squares fit will be calculated.

WRITE outputs the various fitting parameters for the chosen least-squares fit. Also, some other useful information is written, such as the curve that best fits the data and the minimum of the function S(a,b) (sect. 4).

PLOTT contains all the plot titles and axes information and labels. This subroutine initiates the plotting of all curves by calling PWRITE.

ALSQAR calculates the fitting parameter for $p = at^{-1}$.

BISQAR calculates the fitting parameter for $p = bt^{-\frac{1}{2}}$.

ABLSQAR calculates the fitting parameters for $p = at^{-1} + bt^{-\frac{1}{2}}$.

PWRITE performs the plotting using the Cal Comp model 835 CRT plotting system by calling the WRF library routines in TALPLOT. The subroutines SELPLOT, TALGRAF, and TALDATA of TALPLOT are referenced in PWRITE only.

SELPLOT selects the beam intensity of the Cal Comp model 835 microfilm plotter and also enables the user to choose if he wants the plots sent to the MDS system at WRF.

TALGRAF sets up the plot axes and labels and specifies the number of sets of data to be plotted on one graph.

TALDATA plots a set of (x,y) data pairs.

SORT sorts the data in array T of subroutine DIRECT in increasing order so that the plotting is done correctly.

GOODFIT calculates the sum of the squares of the difference between the experimental value and the corresponding value computed from a least-squares fit for each least-squares fit. This sum is used in the Gauss criterion of goodness of fit.

GAUSS Determines the best fit for the data by the Gauss criterion and outputs the correct fit.

SAB calculates the functional values of S(a,b) (sect. 4).

OWNDAT enables the user to enter only data for pulse width versus power input. It outputs these data by calling COLMNS and makes the appropriate calls to the other routines to calculate the least-squares fits and make the desired plots.

COLMNS outputs the data for pulse width versus power in increasing columns.

CHANGE changes the abscissa and ordinate titles to correspond with the use of data for pulse width versus power. It also enters those data into the plotting software.

8. DATA INPUT PREPARATION

Input cards are prepared for SEMCON in the following manner.

Card	Columns	Variable name	Format	Comment
Card set 1	: Plot	and parameter ca	rd	
1	10	IND	11	<pre>IND = 1, plot in reverse direction only IND = 2, plot in forward direction only IND = 3, plot in both directions</pre>

Card	Columns	Variable name	Format	Comment								
1	20	FLAG	11	<pre>FLAG = 1, least-squares fit to p = at⁻¹ and p = bt⁻¹ FLAG = 2, least-squares fit to p = at⁻¹ + bt⁻¹ FLAG = 3, least-squares fit to all three equations</pre>								
	30	IPRAM	11	<pre>IPRAM = 0, no item versus item plots IPRAM = 1, reverse direction item versus item plots only IPRAM = 2, forward direction item versus item plots only IPRAM = 3, forward and reverse direction item versus item plots only IPRAM = 4, forward and reverse direction item versus item plots and all curves as specified by IND and FLAG</pre>								
	40	ISTOP	11	<pre>ISTOP = 1, tabular output only ISTOP = 2, tabular output and all output designated by IND, FLAG, and IPRAM ISTOP = 3, no tabular output, but all plots as indicated</pre>								
	49-50	O IPLOT	12	<pre>IPLOT = 0, plots come out on MDS system IPLOT = K, where 1 < K < 36 indicates beam intensity of Cal Comp plotter; a good value is IPLOT = 18; plots come out at MERDC NOTE: ITYPE must be equal to 0.</pre>								
	60	ISEM	II	<pre>ISEM = 0, enter all input data in card sets 3 and 4 ISEM = 1, enter only pulse width versus power data on card set 5</pre>								

Card C	olumns	Variable name	Format	Comment
1	70	ITYPE	11	ITYPE = 0, regular Cal Comp plotting software is used ITYPE = 1, plotting software available on MDS remote batch terminal is used
Card set 2:	Title	card		
2	1-3	NUMB	13	<pre>If ISEM = 0 on card 1, NUMB is total number of devices If ISEM = 1 on card 1, NUMB is number of pulse width versus power points</pre>
	4-11	DEV	8A	Device name
	12-31	DEVTYP1, DEVTYP2	2 A 10	Device type
	32-40	JUNC	A9	Junction of device
	41-60	MAN1, MAN2	2A10	Manufacturer of device
	61-70	TECH	A1 0	Technician
	71-80	DATEE	A10	Date
				NOTE: If ISEM = 1 on card 1, skip to card set 5.
Card set 3:	Pulse	card		
3	1-2	NPULS	12	Total number of pulses for particular device number
	3-80	-	-	Any comments or notations may be placed in these columns NOTE: Card set 3 is repeated
				as many times as indicated on card set 2 for variable NUMB, and thus card set 4 is repeated this same number of times.

C	ard	Columns	Variable name	Format	Comment
Card	set	4: Parame	eter value cards		
	4	1~3	NDEV	13	Device number; total number of repetitions of this card must not exceed 600
		4-5	PULSE	12	Pulse number; not to exceed 99
		6-15	TDOC	E10.3	Pulse duration
		16-25	voc	F10.3	Open-circuit voltage
		26-35	VP	F10.3	Peak voltage
		36-45	IP	F10.3	Peak current
		46-55	TD	E10.3	Failure time (TD ≠ 0)
		56- 65	VZBP	F10.3	Voltage before forward breakdown voltage
	5	1-10	VZAP	F10.3	Voltage after forward breakdown voltage
		11-20	VZBN	F10.3	Zener voltage before reverse breakdown voltage
		21-30	VZAN	F10.3	Zener voltage after reverse breakdown voltage
		31-40	GAINB	E10.3	Current gain before device was pulsed
		41-50	GAINA	E10.3	Current gain after device was pulsed
		→ 51-52	PIN	A2	Polarity of applied pulse: A+ = forward direction C+ = reverse direction
		53-71	REMAR1, REMAR2	A10,A9	Remarks
					NOTE: Card set 4 represents data for one pulse and is repeated as many times as indicated on card set 3 for variable NPULS.
					If ISEM = 0 on Card 1, data

9	card	Co	lumns	Variable	name	Format	Comment	
Card	set	5:	Pulse	width and	power	cards		
	6		1-20	IDENT1, IDE	ENT 2	2A10	Identification of	data
			21-30	-		-	Blank	
			31-40	XLAB		A10	Abscissa label	
			41-50	2		-	Blank	
			51-60	YLAB		AlO	Ordinate label	
	7		1-10	Т		E10.3	Pulse width	
			11-20	PP		E10.3	Power	

NOTE: Data for pulse width versus power must be arranged in increasing order with respect to pulse width.

Card 7 is repeated according to value NUMB appearing on Card 2

A sample listing of the input cards when ISEM = 0 on card set 1 is given in appendix D. Also, a sample listing of the input cards when ISEM = 1 on card set 1 is contained in appendix E.

9. CONTROL CARDS FOR RUNNING SEMCON

The SEMCON code is operational using the SCOPE 3.4.3 control language on the CDC 6600 computer at MERDC. Since several different plotting packages can be used, three distinct control card sets are required for the various options available. The following details the operation of the code.

If IPLOT = K where $1 \le K \le 36$ on card set 1 (plots come out at MERDC using the Cal Comp plotting software), then the control cards for running SEMCON are as follows:

EM___(MT1, T300)

TASK(TNEM___,PW___,TRTS) [user's name]

REQUEST, TAPE50, HI, VSN=__,RING.

NOTE: VSN=___is the number of the blank tape at MERDC.

ATTACH, AGO, BINSEMCON, ID=EM71606.

ATTACH, F1, TALWYATT, ID=EM71602, MR=1.

LIBRARY (F1)

MAP (PART)

LDSET (PRESET=NGINF)

AGO.

TALPLOT (, TAPE1)

EXIT.

7/8/9

[Data]

0/6/7/8/9

If IPLOT = 0 and ITYPE = 0 on card set 1 (plots come out on the MDS system using the Cal Comp plotting software), then the control cards for running SEMCON are as follows:

EM___(T300)

TASK (TNEM___,PW___,TRTS) [user's name]

ATTACH, AGO, BINSEMCON, ID=EM71606.

ATTACH, F1, TALWYATT, ID=EM71602, MR=1.

ATTACH, LIBA, ANAPAC, ID=EM71605, MR=1.

LIBRARY (F1, LIBA)

MAP (PART)

LDSET (PRESET=NGINF)

AGO.

TALPLOT (, TAPE1)

EXIT.

7/8/9

[Data]

0/6/7/8/9

If IPLOT = 0 and ITYPE = 1 on card set 1 (plots come out on the MDS system using the ANAPAC plotting software), then the control cards for running SEMCON are as follows:

EM___(T300)

TASK(TNEM___,PW___,TRTS) [user's name]

ATTACH, AGO, BINSEMCON, ID=EM71606.

ATTACH, LIBA, ANAPAC, ID=EM71605, MR=1.

LIBRARY (LIBA)

MAP (PART)

LDSET (PRESET=NGINF)

AGO.

EXIT.

7/8/9

[Data]

0/6/7/8/9

10. CONCLUSIONS

The SEMCON code has provided the means to analyze various semiconductor devices and, hence, assist in making EMP vulnerability assessments. The code has accomplished this objective by utilizing very straightforward techniques to calculate the least-squares fits for damage curves of semiconductor devices. For EMP efforts, the fits generated by SEMCON are considered to be reliable when good, accurate data are used. Also, the code has proven to be quite effective in tabulating and reducing numerous amounts of data. Thus, SEMCON is considered to be a useful code in semiconductor damage analysis and is written in such a way as to make it readily adaptable to numerous computer systems.

ABBREVIATIONS

E Energy

FAIL Failure

GAINA Current gain after device was pulsed

GAINB Current gain before device was pulsed

IP Peak current

NDEV Device number

P Power

PIN Polarity of applied pulse (i.e., reverse or forward

direction)

PULSE Pulse number

TD Failure time

TDOC Pulse duration

VOC Open-circuit voltage

VP Peak voltage

VZAN Zener voltage after reverse breakdown voltage

VZAP Voltage after forward breakdown voltage

VZBN Zener voltage before reverse breakdown voltage

VZBP Voltage before forward breakdown voltage

Z Impedance

APPENDIX A. -- SAMPLE PRODUCTION RUN OF SEMCON

This appendix contains examples of plots available through SEMCON and the computer center at the Mobility Equipment Research and Development Center, Fort Belvoir, VA.

110N: C-A	ARSONS DATE: 7-23-73
LONOF	TECHNICIAN: R.PARSONS
1001	TECHNICIAN
DEVICE TYPE: DIDDE	
DEVICE	FAIRCHILD
DEVICE: 1N3603	MANUFACTURER: FAIRCHILE

REMARKS								ZA ON										VICE NO																					
REM								BRKDUN NO V2										KDWN DEVICE							,														
AIL	-	0	s	0	0	0	0	0	2	2	0	s	3	٥	٥	s	0	8	s	0	0	S	٥	د	0	s	0	<u>_</u>	0	٥	s	٥	0		s	٥	٥	0	s
×			+ YE		z				+ YE			+ YE		· NO		+ YE			+ YE			+ YE			0N +	+ YE				z	+ YE				+ YE				+ 4
CAINA P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CAINB	0.00	00.0	0.00	00.0	00.0	00.0	00.0	00.0	0.00	00.0	0.00	0.00	00.0	00.0	0.00	00.0	00.0	00.0	0.00	0.00	00.0	00.0	00.0	0.00	0.00	0.00	0.00	00.0	0.00	00.0	0.00	00.0	0.0	0.00	00.0	0.00	0.00	0.00	0.00
V2A-	160.0	160.0	0.0	95.0	95.0	95.0	95.0	92.0	0.4	0.06	90.0	0.0	0.86	98.0	98.0	0.0	86.0	83.0	12.0	86.0	86.0	0.0	86.0	86.0	86.0	17.0	88.0	88.0	88.0	88.0	10.0	93.0	93.0	93.0	0.0	93.0	93.0	93.0	.0
V28-	160.0	160.0	160.0	95.0	95.0	95.0	95.0	95.0	95.0	0.06	90.0	0.06	98.0	98.0	98.0	98.0	86.0	86.0	96.0	86.0	86.0	86.0	86.0	86.0	86.0	86.0	88.0	88.0	88.0	88.0	88.0	93.0	93.0	93.0	93.0	93.0	93.0	93.0	93.0
V 2 A +	1.0	1.0	0.0	.3	.3	.3	.3	.3	.3	.3	.3	0.0	.3	.3		0.0	•3	.3	.3	.3		0.0	.3	.3	.3	.3	e.	٠.		٠.	.3		.3		.2	.3	•3	.3	.3
V 28+	1.0	1.0	1.0	.3	.3	.3	.3	.3	.3	.3	٠.	.3	.3	.3	.3		٠.	.3	.3		.3	.3		.3	.3	.3		.3	.3	.3	.3			٠.	.3	.3	.3	.3	.3
ENERGY IMPEDANCE	0.	.691+03	.19F+03	•	•	•	.0	.61E+02	.41E+02	.0	••	.14E+03	.0	.0	•	.10E+03	0	.146+03	.50E+02	•	•	.90E+02	.0	.0	.24E+03	.75E+02		•	•	•	.8 7E+02	•		.16E+03	.116+03	••	•	.486+03	.11E+03
ENERGY	0.	.161-03	.15E-03	٠.	0.		0.	.21E-03	.16F-03	.0		.20E-03	.0	.0		.20E-03	_	.61E-04	.196-03			.116-03	.0	٥.	.10E-03	.86F-04		•		•	.136-03	.0		.166-03	. e 1 E - 04	.0	٥.	.21E-04	.17E-03
POWER	0.	.166+02	.69E+02			•	.0	.10E+03	.20E +03	.0	.0	.67E+02	.0	.0		.116+03		.516+32	.16E+03	.0		-90E +02	.0		.38E +02	.116 +03		•	.0		.136+03			.576+32	.90E +02	.0		.19E+02	.93E+02
0	.10E-04	.10E-04	.22E-05 .6	.10E-04	.10E-04	.10E-04	.10E-04	.20E-05	.80E-06	.10E-04	.10E-04	.30F-05	.10f-04	.10E-04	.10E-04	.19E-05	.10t-04	.12E-C5	.126-05 .1	106-04	.10E-04	.12E-05	. 10E-04	. 10E - 04	-27E-05	.80E-06	.10F-04	*10E-04	.10E-04	. 10E-04	106-05	. 50E-05	. 50E-05	.28E-05	-90E-06	.50E-05	.50E-05	.11E-05	.18E-05
4	0.0	~	•	0.0	0.0	0.0	0.0	1.3	7.5	0.0	0.0		0.0	0.0	0.0	1.0	0.0	9.	1.6	0.0	0.0	0.	0.0	0.0	4.	1.2	0.0	0.0	0.0	0.0	1.2	0.0	0.0	9.	6.	0.0	0.0	?	6.
4	100.0	105.0	115.0	0.09	10.0	80.0	0.06	80.0	0.06	80.0	0.06	0.56	0.08	0.06	100.0	105.0	80.0	85.0	0.06	80.0	0.06	0.06	80.0	0.06	0.56	0.06	80.0	0.06	100.0	110.0	105.0	80.0	0.06	0.56	100.0	80.0	0.06	97.0	103.0
VOC	100.0	110.0	150.0	0.09	70.0	80.0	0.05	100.0	110.0	80.0	0.06	100.0	60.0	0.06	0.001	110.0	0.08	0.06	100.0	80.0	0.06	0.001	80.0	0.06	100.0	100.0	80.0	0.06	100.0	110.0	118.0	80.0	0.06	100.0	112.0	80.0	0.06	100.0	110.0
7 000																																					.50E-05		
NO. PT	1-1	1- 2	1- 3	2-1	2 - 2	2-3	5 - 2	5 - 2	9 -2	3- 1	3- 5	.3- 3	4- 1	4- 2	4- 3	4 - 4	5- 1	2 - 5	5-3	6- 1	2 -9	6 - 3	7-1	7- 2	7- 3	7- 4	8- 1	8- 2	8-3	4 - 8	8 - 5	9- 1	8- 2	9- 3	4 -6	10-1	10- 2	10- 3	10- 4

0
0
1 N3600
~
-
_
-
•
u
DEVICE
>
-
0
_
~
=
FOR
-
-
DATA
-
•
0
0
Z
AND
-
=
JRVES
•
_,
·
•
œ
-
FA ILURE
-
-
-
_
-
2
•
EVERS
>
-

OMEGA: 2.14182431E-02	OMEGA= 1.19645338E-02	DMEGA= 1.40030432E-02	45E-01
OMEGA	ONEGA*	DME GA=	MINIMUM OF S(A,B)= 1.12024345E-01
*0-	1-01	3.35628819E-05 9.28177482E-02	MINIMUM OF S
FITTING PARAMETER FOR P=A+T++(-1) 15: A= 1.40305738E-04	FITTING PARAMETER FOR P-80-T00(5) IS: B= 1.21187459E-01	FITTING PARAMETERS FOR P=A=Teo(-1)+BeTee(5) ARE: A= 3.35628819E-05 B= 9.28171482E-02	A AND B FOUND IN 24 ITERATIONS
ING PARAMETER FOR P=A+T++	ING PARAMETER FOR P=Betoo	ING PARAMETERS FOR P=A+T+	A AND 8 F
F111	F111 4	F.11.1	

GAUSS CRITERION OF GOODNESS OF FIT THE EQUATION WHICH BEST FITS THIS DATA IS:

P=B=T**(-.5)

DEVICE: IN3600 REVERSE FAILURE FIT TO P=A*T**(-1)

DEVICE: IN3600 REVERSE FAILURE

FIT TO P=B*T**(-.5)

DEVICE: IN3600 REVERSE FAILURE FIT TO P=A*T**(-1)+B*T**(-.5)

APPENDIX B.--SAMPLE PRODUCTION RUN OF SEMCON

This appendix contains examples of plots available through SEMCON and the Mohawk Data Sciences computing system.

	0
	1
	1/01/9
	7
	8
	_
	_
1	•
•	•
1	=
	5
	7
	-
	-
3	2
:	
:	2
•	ū
•	•
	•
•	5
-	5
5	2
۵	
1	2
2	5
-	
-	,
F	
H	
9	
2	

11.58.41.

DEVICE: IN3600 DEVICE TYPE: DIODE Manufacturer: Fairchild Technician: R.Parsons Date: 7-23-73

IDENTIFICATION: REVERSE FAILURE

POWER	1.900E-06 1.100E+02 2.200E-06 6.900E+01 3.000E-06 6.700E+01
PULSE NOTH	1.900E-06 2.200E-06 3.000E-06
DTH POWER	9.000E+01 1.600E+02 9.300E+01
PULSE WOTH	1.200E-06 1.200E-06 1.800E-06
POWER	1.100E+02 2.000E+02 9.000E+01 1.300E+02
	8.000E-07 9.000E-07 1.000E-06

REVERSE FAILURE CURVES AND DATA FOR DEVICE IN3600

OMEGA= 2.16628588E-02	ONEGA= 1.21928344E-02	ONECA= 1.42629648E-02	1037105-01
11.10 PAKANETEK FUK P=AeTee(-1) 15: A= 1.41779212E-04	FITTING PARAMETER FOR P=80700151 ISE 8" 1.22460156E-01	FITTING PARAMETERS FOR P=A+T++(-1)+8+T++(5) ARE: A* 3.39153554E-05 B* 9.37925093E-02	A AND B FOUND IN 24 ITERATIONS MINIMUM OF SEA.B) = 1.141037198.03

GAUSS CRITERION OF GOODNESS OF FIT THE EQUATION WHICH BEST FITS THIS DATA IS:

P=B+T++(-,5)

APPENDIX C.--LISTING OF SEMCON

This appendix contains a complete listing of SEMCON.

PROCRAM SENCONLINPUT, OUTPUT, TAPES=IMPUT, TAPES=OUTPUT, TAPE1, TAPE7) SEMI-CONDUCTOR DATA REDUCTION PROCRAM INTEGER ELAG.FAIL, PULSE REAL IPPER, IPPE INTEGOD, PRICADO, TOTOCICGOO, 216600), VOCETCOO, PAILCOO, PAILCOO
35 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10

PAGE										
14.04.49	6001	25233	35222	2222	78 80 81 82 82 83	2 4 5 9 4	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	99 100 101 103	106 106 107 108 110 111 111 111 115
06/01/76	SENCON	SENCON SENCON SENCON SENCON	SENCON SENCON SENCON SENCON SENCON	SENCON SENCON SENCON SENCON SENCON					SENCON SENCON SENCON SENCON	SERCON SERCON SERCON SERCON SERCON SERCON SERCON SERCON SERCON SERCON
PROGRAM SEMCON 74/74 OPT=1	2 (K)=0, IF(IP(K)-LE.0) GO TO 80 IF(VP(K)-LE.0) GO TO 80 P(K)=VP(K)=PP(K)	2 (17) (17) (17) (17) (17) (17) (17) (17)	IF (FAIL (K), EC, 3HTES) GO TO 90 CALL FAILUR (GAINB(K), GAINA(K), FAIL (K)) 90 CONTINUE 17 (ISTOP-EQ, 3) CC TO 145 PRINT 100, DE V. TREE PRINT 100, DE V.	100 FDRMATISX,8HDEVICE: 188,3X,13HDEVICE TYPE: 2A10,3X, 110H-UNCTION: 489,7,5X,14HMANUFACTURER: 2A10,3X,12HTECHNICIAN: 2A10,3X,12HTECHNICIAN: 110 FRINT 110	12H D.6X.5HPDWER.3X.6HENRGY.1X.9HIMPEDANCE.2X.4HVZ84.ZHIP.5X. 2ZX.4HVZB2X.4HVZA2X.5HGAINB.1X.5HGAINA.1X.3HPIN.1X.4HFIL.5X. 37HFENARKS. PRINT 120 120 FORMTILX.3H1X.2H3X.4H6X.3H4X.2H5X.	22x 44	NPULSNPULSI) DC 140 J=1,NPUL L=141 PRINT 130,NDEV(L1,PULSE(L),TDCC(L),VDC(L),VP(L),1P(L),TD(L),P(L), DE(L),Z(L),VZBP(L),VZAP(L),VZBN(L),VZAN(L),CAINR(L),CAINR(L)	130 FORMATION 13.1H-,12.1M, FB.4.2.1, Xx, Fb.1.1X, Fb.1.1X, Fb.1.1X, Fb.2.1, IX, Fb.2.1, Fb.2.1, IX, Fb.2.1, Fb.2.1, IX, Fb.2.1, Fb.2.1, IX, Fb.2.1, I	145 CENTINUE PRINT 150 150 FERMITIHI) CALL FREALLINUM, KNUM, JNUM) IFIIPRAM, F0,4) G0 T0 160	
	9	3	70	25	09	S	06	56	00	100

CALL PLOTT(KNUM.JNUM.2) 190 CONTINUE 191 CALL PLOTT(KNUM.JNUM.3) 200 CALL PLOTT(KNUM.JNUM.3)
DIAGNOSIS OF PROBLEM
AN IF STATEMENT MAY BE MORE EFFICIENT THAN A 2 OR 3 BRANCH COMPUTED GO TO STATEMENT.
RELOCATION
REFS
REFS
R F S
REFS
25.55
REFS
REFS
REFS
REFS 91
REFS
DEFINED
REFS
DEFINED
E FS

AP	P	F	N	D	Т	Y	0
	L	Ľ	TΑ	u	1	Λ	

•	3.62																												3						
PAGE	3.61	20091					19																					1.5	63				100		
06/01/76 14.04.49	9 9	911	33		7	33	96			1.5						1.1								16		20	2 2	DEFINED	58				16		
06/01/76	3967	115	DEFINED	1.5	DEFINED	DEFINED	DEFINED	90		DEFINED			20	20		DEFINED	;	;		33	66	4.7		63		DEFINED	DEFINED		DEFINED				18	90	
+434	8.9	109	822	DEFINED	88	87	16	DEFINED		91			DEF INED	DEF INED		91	0 341 330	0 1 1 1 1 0		056 1850	חבר ואנים	DEFINED		97	:	16	1 5	65	91				92	1.5	
FTN 4.5+414	3.65	106	\$ 2 5	168	3 3	7.7	79	91		21			6	91		62	6			13	28	91		09		29	6 2	63	99				12	45	
	56 2.64	102) e e	23	7 7 7	38	12	01	13	1	13	13	21	21	17	07	15	15	13	13	22	01	15	:≂:	•	77	7.7	21	10	13			87	33	
	RE FS	DEFINED REFS REFS	REFS	REFS	RE FS	RE FS	REFS	REFS	RE FS	REFS	REFS	REFS	REFS	ME FS	REFS	REFS	REFS	RE FS	REFS	2 2 2	REFS	REFS	RE FS	REFS	DEFINED	200	SE FS	REFS	REFS	RE FS			\$2	31	35
74/74 OPT=1	RELOCATION		د د					11	a 6		• •	9 60			. 0	11			•	ی ه	,	11	.						11	U 80			WRITES	READS	WRITES
14/74	~			ARRAY	ARRAY	****	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	AKKAT	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	MARK		ARRAY	ARRAY	ARRAY	2	ABBAY	ARRAY	ARRAY	ARRAY	ARRAY					
PROGRAM SEMCON	SN TYPE INTEGER	INTEGER	REAL	INTEGER	INTEGER	INTEGER	REAL	REAL	REAL	INTEGER	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL		PEAL	REAL	REAL	REAL	REAL	MODE		F#	FMT	
PROG		K NUM	H AN 1	NDEV	V PULS	8 C	PFF	NI d	. W.	P UL SE	- 2	3.6	REMARI	KEMAKZ		10	1001	TOOCFF	TOOCRE	TECH	=	N DC	V OC F F	4		474	V 28 N	V 28 P	7	2 F F	AMES	INPUT	TAPE1	TAPES	TAPET
	VARIABLE S 11150 K	11151	m 4	25414	12310	11142	0	0	0 0	11160	10150	12430	20654	50077	0	5560	1130	3410	3410	2	11141	7020	5670	12764	17637	15264	16374	14114	2670	4540	FILE NAMES	0	2041	0	6143

	•				
946.6					
67.4					(1009)
14.0					FAIL IPRAM ERF VOCRF P2
06/01/76 14:04.49					1200 4800 4800 1200 4800 4800 1200 1200 3000
14					
FTN 4.5+414				A R R	(6000) (6000) (6000) (6000)
1.1				NOT INNER	1000 1000 1000 1000 1000 2000
	9 118		1	22222	2400 4200 4200 4200 4200 5400 5400 5400

	112 67 114 115 113	. F. S.	89 111 86	LENGTH PROPERTIES 558 438 408 538 538 468 81AS MAME(LENGTH)	555 555555
	REFERENCES 26 106 106 108 109 27 27	REF RENCES 24 28 31 31 33 34 47 47 47 50 50 70 70 70 70 70 70 70 70 70 70 70 70 70	76 81 81 71 71 100 103 105 110 39	AME (L.)	(11)
0PT=1	REFER I		76 81 91 87 71 100 103 20105 1105 1106 1106 1106 1106 1106 1106	LENGTH 558 438 408 538 468 81AS W	E VOC IND DE V PR F T T D OC R F P 3 P 5 T D OC F F I P F F
74/74	ARCS 11 20 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40	DEF LINE 25 29 32 34 34 43 443 45 55 53 53 73 73 73 73	77 82 94 97 97 101 106 111 111	42 53 42 53 45 53 55 70 87 97 89 97 MEMBERS - 6	3600 F 3600 VUC 0 IND 3 DEV 1800 TDII 3600 IPRI 5400 O PF 0 PF 0 PF 3600 IPRI 1800 TDII
PREGRAM SENCEN	14 P.			INDEX I I I I I I I S400	4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DGRAM	- 4	PATT THE THE THE THE THE THE THE THE THE T		* * * * * *	• 4
	NALS DATE DATE TALUR FREALU GAUSS DWNDAT PLOTT TIME	Ŧ	110 120 140 145 160 160 170 190 200	LABEL 70 70 90 140 140 8 LOCK S	∢ æ ∪
	EXTERNALS OBLS OBLS OBLS OBLS OBLS OBLS OBLS OB	57ATE 10650 10650 10655 10704 10704 10715 10733 10733 10736 10736	11040 11040 110452 11131 10461 10502 10512 10513	10244 10254 10254 10324 10326 10400 CCMMON	

PAGE		
06/01/76 14.04.49	2 JTVPE (1) 2 JUNC (1) 5 TECH (1)	
FTN 4.5+414	600 PP (600) 3 3 (1) 1 1SEN (1) 1 DEVTYP2(1) 4 MAN2 7 1STGP (1)	
74/74 OPT=1	MEMBERS - BIAS NAME(LENGTH) 0 T (600) 0 GAUS (3) 0 IPLOT (1) 0 DEVTYP1(1) 3 MAN1 (1) 6 DATEE (1)	163378 7391 102058 4229 26238 11419 124308 5400
PROGRAM SEMCON 74	DMMON BLOCKS LENGTH MEMB 1200 E F 7 6 8	PROGRAM LENGTH PROGRAM LENGTH DAFFEL LENGTH CM LABELED COMMON LENGTH CM BLANK CEMMON LENGTH

•					
PAGE					
14.04.49	NW4N4L@			•	
06/01/76 14.04.49	FAILUR FAILUR FAILUR FAILUR FAILUR FAILUR FAILUR				
1				DEFINED	
FTN 4.5+614				DEFINED S DEFINED	
				~**	
				REFS REFS REFS	
74/74 OPT=1	SUBBOUTINE FAILUR (R.S.N.) REAL N N=3H NO 1F(R.LE.O.) RETURN 1F(SOR-S.GT.C.) N=3HVES RETURN		REFERENCES 6	RELOCATION F.P. F.P. F.P.	208 16
74/76	ROUTINE H ND R.LE.O.)	HAP CR.			
FAILUR	SCO REAL PF. 3	REFERENCE	DEF LINE	SN TYPE REAL REAL REAL	
SUBROUTINE FAILUR	- ·	SYMBOLIC REFERENCE MAP (R=3)	ENTRY POINTS 3 FAILUR	VARIABLES SN 0 N 0 R 0 S	STATISTICS PREGRAM LENGTH

SUBROUT	SUBROUTINE FRFAIL	74/74 3PT=1			FTN 4.5-414	*	06/01/76	14.04.49	PAGE	-
-	N & 6	SUBROUTINE FRFAIL (NUM, KNUM, JNUM) REAL IPRE, IPFE	KNUM.JNUM?				FRFAIL	~ ~		
•	د ت <u>.</u>	COMMON PIN(600), P[600], TD (600), E(600), TDUC(600), 2(600), VOC (600),	,TD(600),E(600)	, TDBC	(600),2(600),	VOC (600) ,		a w		
	. ⁵ .	OMMON/B/PRF (600), TOR	(600), ERF (600)	, 150CR	. (600) , ZRF (60	.101	FRFAIL	9.		
	. 5	COMMON/C/PFF(600), TDFF(600), FF(600), P2(600), P3(600)	(600), FF (600), (600),	100CFF	16001.755			· • •		
10	- *	VGCFF(600), IPFF(600)	FF (600)				FRFAIL	10		
	. "	J=1					FRFAIL	11		
	Id	DD 30 I=1,NUM					FRFAIL	21.		
		-	GB TB 30				FRFAIL	15		
15		IF (PIN(I) - EQ. 2HA+) CO	01 01 00				FRFAIL	12:		
							FRFAIL	16		
	10 10	TORF(K)=TC(I)					FRFAIL	<u> </u>		
	2 4	PRF(K)=P(1)					FRFAIL	18		
90	7.8	ZRF (K) = 2(1)					FRFAIL	50		
	٥٨.	VOCRF (K) = VOC (I)					FRFAIL	22		
		TOCCOLL STOCK					FRFAIL	23		
	- ¥	K=K+1					FRFAIL	52		
52		Gu Tu 30					FRFAIL	52		
	20 10	TOFF(J)=TD(1)					FREALL	92		
	1 3	FFF (1) = P(1)					FRFAIL	28		
	37	756 (3)=7(1)					FRFAIL	56		
30	OA	VOCFF(J)=VOC(I)					FRFAIL	30		
	4	IPFF(J)=IP(I)					FRFAIL	31		
	10	TDBCFF (J) = TBBC (I)					FREAT	35		
	100	1+0=0 10 10 30					FRFAIL	36		
3.5	30 CD	CONTINUE					FRFAIL	35		
		X NUM = X - I					FRFAIL	36		
	NO	JNUM = J-1					FRFAIL	37		
	ar i	RETURN					FREALL	38		
	2 2						FRFAIL	60,		
S YMBOLIC	SYMBOLIC REFERENCE MAP (R=3)	MAP (R=3)								
ENIRY POINTS	DEF LINE	REFERENCES								
TIME OF	•	38								
VARIABLES S	SN TYPE	RELECATION								
	REAL	ARRAY	RE FS	•	19	82				
11300 FAT	REAL	ARRAY B	REFS	• •	DEFINED	2 6				
	INTEGER	AKKAT / /	ME FS	• :	2 :					
			21	22	73	15	7	18	19	02
			31	35	DEFINED	8 2	17	82	62	30

~	8	
PAGE	31	22222 22
65.40	30	
14.		1200 TD 3300 Z 4800 PZ 4800 PZ 4800 PZ 1200 EFF 3000 VGCFF 3000 VGCFF
67.70.71 91/10/90	33 22 23	48 000 48 000 48 000 48 000 48 000 48 000 49 000 49 000
	22 DEFINED DEFINED 28 11	3, 23,22,21 10,23,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,27,21 10,25,25,25,25,25,25,25,25,25,25,25,25,25,
5+414	90	
FTN 4.5+414	6 27 0EFINED	DEFINED TOTO TOTO TOTO TOTO TOTO TOTO TOTO TO
		\$17,78,79,39,78,48,48,48,48,48,48,48,48,48,48,48,48,48
	2	24 ARRAY (
0PT=1	RELOCATION (C B	F.P. 1. F.P
	RELOC	RRAY F.P. RRAY C RRAY C RRAY C RRAY B RRAY C C C C C C C C C
14/14	ARRA ARRA AYY	
SUBROUTINE FRFAIL	SN TYPE REAL REAL REAL INTEGER	INTEGER REAL REAL REAL REAL REAL REAL REAL RE
SUBROUT		0 KNUM 1130 PF 0 PRF 0 PRF 11300 P2 12430 P3 12430 P3 12430 P3 12430 P7 11300 P2 11300 P2 12430 P8 11300 P2 12430 P8 11300 P2 12430 P8 12500 VGCF 1340 VGCF 1350 VGCF
	VARIABLES 10150 1P 7020 1PF 7020 1PR	1130 P F F O NUM

PAGE									
14.04.49	MW 41	~ ~ ~ ~ <u>~</u>	2222	91818	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 3 3 3 4 6 4 9 9 8 7 6	12233
06/01/76 14.04.49	DIRECT	01RECT 01RECT 01RECT 01RECT	DIRECT	DIRECT	DIRECT	DIRECT DIRECT DIRECT DIRECT DIRECT	DIRECT DIRECT DIRECT DIRECT	0 0 0 1 RECT 0 0 1 RECT 0 0 1 RECT 0 1	DIRECT DIRECT DIRECT DIRECT DIRECT
74/74 GPT=1 FTN 4.5+414	SUBROUTINE DIRECT (N.M.A.B.AE, BE, 1T) INTEGER FLAG	CUMMUN AA IND.FLAG. IFRAM, DEV COMMON B/PRF (600), TDRF (600), ERF (600), TDDC RF (600), 2RF (600), VOCRF (600), 1PRF (600), PI (600), PI (600), PI (600), PI (600), CPF (600), PI (600), PI (600), CPF (600), PI (600), PI (600), CPF	1=1 66 TG (10,30,55),W 10 D 0 1=1,0 11 D 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1	D.PRF	Maj-1 60 TO 50 60 TO 50 10 For [1], EQ.0.) GO TO 35	PP(K)=PFF(I) K-K+1 IFfI:EG.N.ANO.PFF(I).EG.O.) K-K+1 CONTINUE N-K-1	CALL SORT(N) GO TO (60,70,60),FLAG CALL ALSGAR(N,A) CALL GOOFIT(PP,P2,N,1,1)	CALL GOODFIT(PP.P3.N.1,2) IF(FLAG.EQ.1) GO TO 80 CALL ALSOAR(N.A) CALL BLSGAR(N.A)	ABL SGAR(N,A,B,AE,BE,IT) GGCFIT(PP,PI,N,2,3) NUE
	SUBROUTINE DIR	COMMON/	J=1 K=1 GC TG (10,30 10 DG 20 I=1,N	1(J)=TDRF(I) PP(J)=PRF(I) J=J+1 15 IF(I.EQ.N.AN		PP(K)=PFF(I) K=K+1 35 IF(I.EG.N.AN 40 CGNTINUE N=K-1	50 CALL SORT(N) 55 GD TO (60,70 60 CALL ALSQAR(CALL GOODFIT	CALL GUUDFITTP IF (FLAG.EQ.1) 70 IF (FLAG.EQ.3) CALL ALSQAR(N.)	
SUBROUTINE DIRECT									
	-	•	10	15	50	52	30	35	64

AN IF STATEMENT MAY BE MORE EFFICIENT THAN A 2 OR 3 BRANCH COMPUTED GO TO STATEMENT. AN IF STATEMENT MAY BE MORE EFFICIENT THAN A 2 OR 3 BRANCH COMPUTED GO TO STATEMENT. DIAGNOSIS OF PROBLEM CARD NR. SEVERITY DETAILS 31

~													52											33	;			25	1																						
PAGE												:	*,											32				16																							
06/01/76 14.04.49				•			•					37	G						00	:	59			30	1,			DEFINED																							
06/01/76				DEFINED		0.56 : 0.50					;	36.00	91.7						18		12			1.2	0,		12	7	18				**																		
9 1				04	-	9	! -					7 4	2	:				1	17	18	97	27	-	22	39	62	52	35	16			3.	-																		
FTN 4.5+414				38	DEFINED	33	DEFINED				•	15.	13		1		2	DEFINED	91	17	52	92	DEFINED	18	38	50	23	33	• ;	7 5	35	DEFINED	26			15															
				32		3,		3	1		•	14	DEFINED	•	3	•	•	0,	15	0.	54	=	12	13	35	-,	- 0					•	,	1		2	7	5	1	\$					13	;					
				REFS	REFS	KEFS	REFS	REPS	REFS	RFFS	FFS	REFS	1202	REFS	REFS	REFS	RE FS	REFS	REFS	DE FINED	REFS	DEFINED	REFS	KEPS	36	DEFINED	200	200	2 2 3 4 6 5 5	RFFS	RFFS	REFS	REFS	REFS	REFS	REFS	REFS	REFS	REFS	REFS			3.8	30	35	6	ES				
0PT=1		ENCES	RELECATION	F.P.	٠.		F.P.	4	J	•	4			•	U	4	•	F.P.								,	, -			8	8	٥	ں	J	•	80	U	8	، ن	00	BEFFERENCES	ALTERENCES 40	? ?	36	33	30	E REFERENCES			2:	
14/14	MAP (R=3)	REFERENCES	RE						ARRAY	ARRAY					ARRAY		ARRAY									ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	AKKAY	ARRAY	ARRAY	ARRAY	AKKAY	ARGS	6	۰ ۸	. ~		-	DEF LIN	13	e 0	23	
SUBROUTINE DIRECT	SYMPOLIC REFERENCE MAP (R=3)	DEF LINE		REAL	KEAL	TEA.	KEAL	REAL	REAL	REAL	INTEGER	INTEGER		INTEGER	KEAL	INTEGER	KEAL	INTEGER	INTEGER	417.	N . L CER	INTEGED	INTEGER			REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	KEAL	REAL	KEAL	TYPE										
SUBROUT	S YMBOL IC	ENTRY POINTS 3 DIRECT	NE S SN	4 •				DEV	1	ERF	FLAG	_		200	1	T T T T			,							PFF	4	PRF	P.1	P 2	P3	_	TOFF	TOOCFF	TODORF	TORF	1100	V LICKE	100	, w.	11.5	ABLSOAR	ALSOAR	BLSGAR	G 000 F 1 T	SORT	STATEMENT LABELS	10	20	30	
		ENTRY 3	VARIABLES	9 0		,	9		25.60	7560	-	514	•	0000	1050	2000	000	3 6	717	213		0	0			0	1130	0	10150	11300	15430	0	1130	3410	3410	1130	2010	0100	4560	22.5	EXTERNAL S						STATEME		20	41	

06/01/76 14.04.49 PAGE			2 IPRAM (1)	1200 ERF (600) 3000 VOCRF (600) 4800 P2 (600)	1200 EFF (301) 3000 VOCFF (6C	
FTN 4.5+414 06			1 FLAG (1)	600 TDRF (600) 2400 ZRF (600) 4200 Pl (600)	600 TDFF (600) 2400 ZFF (600)	
74/74 GPT=1	DEF LINE REFERENCES 27 23 28 22 30 21 31 12 32 2031 37 31 40 37	FROM-TU LENGTH PROPERTIES 13-19 118 0PT 22-28 118 0PT	MEMBERS - BIAS NAME (LENGTH) 0 IND (1) 3 DEV (1)	RF DDCRF PRF	3600 IPFF (600)	2158 141 262148 11404
SUBROUTINE DIRECT	STATEMENT LABELS 52 35 0 40 63 50 66 55 76 60 116 70 145 80		COMMON BLOCKS LENGTH	0009	4200	STATISTICS PROGRAM LENGTH CM LABELED COMMON LENGTH

_								
PAGE								
14.04.49	~ m 4 v	6 7 8 8 7 8 1 1 0 9 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 3 5 3 5 5 5 5 5 5 5 5 5 5 5	2222	S & Z & &	GO TO STATEMENT.		
06/01/76	RAN				E E E E E E E E E E E E E E E E E E E	COMPUTED 60		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
+414		R DEVICE .	S: A= .	BeTee(5)		3 BRANCH COMPUTED		111100111
FTN 4.5+414		AND DATA FO	AND DATA FD A.T.O.(-1) I BOT.O.(5)	=AeTee(-1)+ /,62X,3HB=	TERAT IONS.	THAN A 2 OR		DEFINED DEFINED DEFINED 3 14
		RE CURVES !	RE CURVES I	TERS FOR P.	, 13, 11H II	MORE EFFICIENT THAN More efficient than		31712 x x x x x x x x x x x x x x x x x x x
	E.BE.M.11)	ERSE FAILUI	WARD FAILUING PARAME	J.BE ING PARAME X, THOME GA=	8 F COUND IN			######################################
. 0PT=1	SUBROUTINE WRITE(A,B,AE,BE,M,1T) INTEGER FLAG CCHMON/A/IND,FLAG,IPRAM,DEV CCHMON/F/GADS/3),S	GO TO (10,30), M MRITE(6,20) DEV FORMAT(/,/,/,1X,43HREVERSE FAILURE CURVES AND DATA FOR DEVICE A81 OT D SO WRITE(6,40) DEV	FURNATI/,,/,1X,43HFDRWARD FAILURE CURVES AND DATA FOR DEVICE BASS GD 10 (60,90,60),FLAG WRITE(6,70) A,GAUS(1) FORMAT(/,/,10X,42HFJTING PARAMETER FOR P=A+T++(-1) 1S: A= , 11PE1S.a,25x,7HGMEGa=,1PE1S.8) WRITE(6,80) B,GAUS(2) FORMAT(/,/,10X,43HFJTING PARAMETER FOR P=B+T++(-,5) 1S: B=	11FFLACEGI) RETURN 90 WRITE(6.EG.1) RETURN 90 WRITE(6.EG.1) RETURN 90 WRITE(6.100) AE, CAUS(3), BE 100 FGRMAT(/,/,10X,46HFITTING PARAMETERS FOR P=A@10@(-1)+B@10@(5) 19HREE A = .1PEIS.8, 17HOMEGA = .1PEIS.8, 1,662X,3MB = .1PEIS.8)	110 FURNATION 11.5 110 FURNATION 11.5 110X_19HKINIMUN UF S(A.R)= .1PE15.8) RETURN END	DIAGNOSIS OF PROBLEM IF STATEMENT MAY BE IF STATEMENT MAY BE	(R=3) REFERENCES 20 27	A ELUCATION A F. P. A F. P. A F. P.
14/14	SUBROUTINE WRITE(A. INTEGER FLAG. CCMMON/A/IND.FLAG.	GD TG (10,30),M WRITE(6,20) DEV FDRMAT(/,/,/,1X A88 GG TG 50	URHAT(/,/, 3) 0 TG (60,9 0 TG (60,9 0 RNAT(/,/, PEIS.8,25X RITE(6,80)	IIPEIS.8,24x,7HURE IFFFLAG.EG.1) REI WRITE(6,100) AE.C. FGRMAT(/,/,10X,4ck 1944RE: A = ,10E.5	FURNT (1,3) FUX. 19HRINI RETURN END	S DIAGN	MAP (R=	ARRAY
SUBROUTINE WRITE	я= 0 0	-	40 FUR 1A81 50 GU 63 HR1 70 FUR 11PE 80 FUR	9001	110	Y DETAILS	REFERENCE DEF LINE	SN TYPE REAL REAL REAL REAL INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER
SUBROUTI		٠ و	5	50	52	CARD NR. SEVERITY 5 1 13 1	SYMBOLICENTRY POINTS 3 WRITE	AA S S S S S S S S S S S S S S S S S S
			7	~	7	CARO NR	ENTRY 3	VARIABLE SAME OF SAME

111111111111111111111111111111111111111	74/74 9PT=1		FIN 4.5+414	06/01/76	67.70 14.04.49	PAGE
SN TYPE INTEGER REAL	RELUCATION REFS F.P. REFS	w 4	DEFINED 1			
TAPES MODE	WRITES 6	10	14 17	12	*2	
STATEMENT LABELS	DEF LINE REFERENCES					
FMT						
E	13 10					
II	14 2013 15 14 18 17					
T E	21 13 22 21 25 24 24					
COMMON BLOCKS LENGTH NEW	MEMBERS - BIAS NAME (LENGTH) 0 IND (1) 0 EV (1) 0 CALLO		ی	~	2 1PRAM (1)	
ATISTICS PROGRAM LENGTH CM LABELED COMMON LENGTH	5 8					

PASE											
14.04.49	~~*×	******	15 16 18 19	2222	55 57 8 57 8 57	3 8 8 3 3 3	3 6 7 6 6	33333	. 3 7 8 5 5	2222	222
91/10/90	PL01			101 101 101 101 101 101 101 101 101 101	PL01 PL01 PL01	PL01			7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7		
SUBROUTINE PLOTT 74/74 OFT=1 FTM 4.5+414	SUBROUTINE PLOTT(KNUM,JNUM,J) INTEGER FLAG. REAL IP. PRF. 1PF. COMMUN/A/IND.FLAG.1PRAM,DEV COMMUN/A/PRFEEGOD,TDRFEEGOD,TDRFEEGOD,ZRFEEGOD),	1 VUCKF(600), TPFK(600), FF(600), FZ(600), FZ(600), COMMON/C/PFF(600), PFF(600), COMMON/C/FF(600), PFF(600), COMMON/D/T(600), PFF(600), PFF(600), COMMON/D/T(600), PF(600), PF(600), COMMON/D/T(600), PF(600), PF(600), COMMON/C/TPFC(60), PF(600), COMMON/C/TPFC(60), COMMON/C/TPFC(600), COMMON/C/TPFC(6000), COMMON/C/TPFC(600), COMMON/C/TPFC(6000), COMMON/C/TPFC(6000	JOHN JOHN MILE (19), LEGEN (3), ANILLE (19), FILLE (19	4	3 2	ETITLER(3)=10H REVERSE ETITLER(4)=10H FALLURE XTITLEP(1)=10HPULS = 10HRA XTITLEP(2)=10HTIDM(TDDC) ETITLEP(1)=10HTDM(TDC)	E IIILE (2) = 10H FORWARD E IIILE (4) = 10H FALLURE YIILE 2(1) = 5H YIILE 2(2) = 10HIMPEDANCE(YIIVO(1)=10HOFM (IRCU YIIVO(1)=10HIT VOLIAGE YIIVO(3)=10H(VOC) YIIIFE(II)=10H(VOC)	TITLE 13) = 10H		30 RTITLEA(1)=10H DEVICE: RTITLEA(2)=10H REVERSE
Su	- v	2	15	50	\$	30	35	9	\$	20	2

25 26 27 27 4111LE, 7111LE, 70RF, PRF, 4111LE, 7111LE, 8LANK, LEGEN, KNUM, TORF, PRF, 4711LE, 7111LE, 8LANK, BLANK, KNUM, TORF, PRF, 6111LE, 7111LE, 8LANK, BLANK, KNUM, TORF, ERF, 7111LE, 7111LE, 8LANK, BLANK, KNUM, TORF, ERF, 60 61 61 61 61 61 61 61 61 61 61	SUBROUTINE PLUTT	077 74/74 GPT=1 FTN 4.5+414 RTITLEA(4)=10H FAILURE		06/01/76	14.04.49	PAGE	~
######################################		RITILEA(S)=10H FIT TO RTITLEA(6)=10HP=A0T00(-1		P. 01	2		
######################################		RITICER(1)=10H DEVICE: RITICER(3)=10H REVERSE RITICER(4)=10H REVERSE RITICER(5)=10H FAILURE RITICER(5)=10HP=8=10+6-1		PL01 PL01 PL01	# 4 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		
The control of the	m	-	. PRF.	P. COT P.	50121		
		(ALL PMRITE(2.RTITLEB.XTITLE, VTITLE, BLANK, LEGEN, KNUM, TDR 11.p3) Iffisem.eq.1) GD 7D 35 CAL PMRITE(1.ETITLER, XTITLE, VTITLEE, BLANK, BLANK, KNUM, TD 100.) PMRITE(1.ETITLER, XTITLE, VTITLEE, BLANK, BLANK, KNUM, TD	.PRF.	PL01 PL01	2222		
RITILAB(6)=10HP=A=T=0-(-1) RITILAB(6)=10HP=A=T=0-(-1) RITILAB(6)=10HP; RITILAB(6)=10HP; RITILAB(1)=10HP; RITILAB(1)=10HP; RITILAB(1)=10HP; RITILAB(1)=10HP; RITILEA(1)=10HP; RIT	4			PL01 PL01 PL01	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
CALL PWRITE(2,RTITLAB,XTITLE, TITLE, BLANK, LEGEN, KMUH, TORF, PRF, PLOT 11(5) 15 0 10 50 15 (126M.EQ.1) C3 10 50 16 (126M.EQ.1) C3 10 50 17 (126M.EQ.1) C3 10 50 18 (1210.0.) 18 (1210.0.) 18 (1210.0.) 18 (1210.0.) 18 (1210.0.) 18 (1210.0.) 18 (1210.0.) 18 (1210.0.) 18 (1210.0.) 18 (1210.0.) 18 (1210.0.) 18 (1210.0.) 19 (1210.0.) 19 (1210.0.) 19 (1210.0.) 19 (1210.0.) 19 (1210.0.) 19 (1210.0.) 19 (1210.0.) 19 (1210.0.) 19 (1210.0.) 19 (1210.0.) 19 (1210.0.) 19 (1210.0.) 19 (1210.0.) 19 (1210.0.) 19 (1210.0.) 19 (1210.0.) 19 (1210.0.) 10 (P 101	* \$ \$ \$ \$ \$ \$ \$ \$		
CCN NETURN PLOT F(JJ, GQ, 1) RETURN F(JJ, GQ, 1) RET	4		PRF.	PL01 PL01 PL01	20228		
FITTLE A 23 = 20 H CORNARD FITTLE A 23 = 20 H CORNARD FITTLE A 24 = 20 H FORMARD FITTLE A 25 = 20 H FORMARD FITTLE A 25 = 20 H FORMARD FITTLE A 25 = 20 H FORMARD FITTLE B 25 = 20 H FO	v •	-		PL01 PL01 PL01			
7111 E, 10 FF, 9 FF)				PL07 PL07 PL07	100 102 103 103		
PL01 PL07 PL07 PL07 PL07 PL07		FILLEACO = 10HP=A = 0 = 0 = 0 = 1 FILLE B(1) = 10H DEVICE = FILLEB(2) = DEV FILLEB(2) = DEV FILLEB(2) = 10H FORWARD		PLOT PLOT PLOT PLOT	105 106 108 109		
		FITTE E 65 = 10H FIT TO FIT TO FITTE E 10H FITTE E 60 = 10H FITTE E 60 10H F B F F F F F F F F F F F F F F F F F		PL01 PL01 PL01	252525		

SUBRQUTINE PLOTT	T4/74 OPT=1 FTN 4.51414 U6/U1/16			
73 67	CALL PURITE(2,FTITLEA,XTITLE,YTITLE,BLANK,LEGEN,JNUM,TDFF,PFF,	PL01	1116	
35	-	P.101	119	
- 0 9	TECLISEM. ELL. 1 CO TO TO CALL PWRITE(1, ELANK, BLANK, JNUM, TDFF, EFF,	PL01	121	
75 1		PL07	123	
	FIIILAB(2)=OEV FIIILAB(3)=IOH FURWARD	P. 01	126	
	FTITLAB(4)=10H FAILURE FTITLAB(5)=10H FIT TO	PLOT	128	
		PL01	129	
	F111LAB(8)=10H5)	PLOT	131	
	IF(ISEM.EGO) GO TO 83 CALL CHANGE(JNUM.XIILE, YIIILE, YIIILE, BANK.IEGEM.JMUM.TOFF.PFF.	PL01	133	
1.	11,911	PLOT	135	
	IF (ISEM.EQ.1) 63 TO 90	PL01	137	
	WRITE (1,E	PLOT	138	
90	100.) CONTINUE	PLOT	140	
	1F(JNUM.EQ.0) GD 10 130	PLOT	141	
100	GC TU (116,120,110), IPRAM	PLOT	143	
110	CALL PWRITE(1,ETITLER,XTITLE, TTITLEZ, BLANK, BLANK, KNUM, IUNT, LKT,	PL01	145	
-	CALL PWRITE(1, ETITLER, XTITLE, YTITVOC, BLANK, BLANK, KNUM, TORF, VOCRF,	PL07	146	
7	100.)	PL07	148	
- 2	1VC(RF.00.)	PLOT	149	
	CALL PURITEEL, ETITLER, XTITLE, VIITLEI, BLANK, BLANK, KNUM, TORF, IPRF,	PLOT	151	
=	IF(IPRAM.EQ.1) RETURN	PL01	152	
120	CALL PWRITE(1, ETITLEF, XTITLE, YTITLEZ, BLANK, BLANK, JNUM, IUFF, LTF,	P.101	154	
	CALL PURITE(1, ETITLEF, XTITLE, YTIT VOC, BLANK, BLANK, JNUM, TDFF, VOCFF,	PL01	155	
_	0.,0.) CALL PHRITE(1.ETITLEF,XTITLEP,YTITVOC,BLANK,BLANK,JNUM,TDOCFF,	PLOT	157	
-	1VGCFF.00.)	PLOT	158	
	CALL PHRITE(1, ETITLEF, XTITLE, YTITLEI, BLANK, BLANK, JNUM, TDFF, 1PFF,	PL01	160	
-	100.01	PLOT	161	
130		PLOT	162	
	END	PLOT	163	
DETAILS	DIAGNOSIS OF PROBLEM			,
	AN IF STATEMENT MAY BE MORE EFFICIENT THAN A 2 OR 3 BRANCH CO	MPUTED	3 BRANCH COMPUTED GO TO STATEMENT	
	BE MURE EFFICIENT THAN A CUR			

61

APPENDIX C

	SUBROUT	SUBROUTINE PLOTT	71/71	0PT=1			FTN 4.5+414	+414	06/01/76	06/01/76 14.04.49	PAGE	•
	S YMBOL 10	SYNBOLIC REFERENCE MAP (R=3)	HAP (R=3)									
ENTRY 3	PUINTS	DEF LINE	REFEE	REFERENCES 96 141	151	160						
VARIABLES 1036 BL/	×	SN TYPE REAL	ARRAY	RELOCATION ARRAY	REFS 117 2*152	13 2•120 2•154	71 133 2•156	73 20137 20158	2.76 2.143 0FF IMED	20145	20147	20169
	DEV	REAL		•	S1 REFS	3	28	36	\$	3 3	•	2 5
2260	F.F.	REAL	ARRAY	U	107	124	120	137		3	3	2
766		REAL	ARRAY	6 0	REFS	s 11	120	93	35	751	3	:
726	ETITLER	REAL	ARRAY		DEFINED	51:	8	*	32	3.	136	13
•					DEFINED	12	2 %	88	143	30	147	149
•	1	INTEGER		4	RE FS	~	•	*	7.8	35	86	122
176	FTITLAB	REAL	ARRAY		REFS	= :	133	DEF INED	15	123	124	125
746	FTITLEA	REAL	ARRAY		REFS	21	128	129 DEFINED	130	*	031	3
756	FTITLEB	REAL	ARRAY		102 RF FS	103	104	105	:			
•					109	110	Ξ	112	12	106	101	108
705	2 4	* REAL	SUNDE		REFS	• "						
7020		REAL	ARRAY	U,	REFS	'n	1	158				
~	IPRAM	INTEGER		u. «	REFS	01						
7020	I PR F	REAL	ARRAY	6 60	REFS	. M	7,5	151				
-	1 SE H	INTEGER			REFS	0	69	75	87	16	113	• 11
~ 0	1 TYPE	INTEGER			REFS	135						
0 0	, INIM	INTEGER		F.P.	REFS	25	53	96	141	DEFINED		
•		THIS COLUMN			137	160	¥ 3	115	111	120	132	133
c	*****	147.52.54			DEFINED	-	761	•	136	158		
•		INICOER			REFS	2	7	73	76		•	6.6
1033	L EGEN	INTEGER	ARRAY		REFS	13	=======================================	149	DEFINED	- 5	:	:
0	9 6 6	DEAL			DEFINED	15	9,	5	;	1		133
1130	4	REAL	ARRAY	ه د	2 2 2	۰ ۰	114	115	117	132	133	
0	P.RF	REAL	ARRAY	•	REFS		2	12	73	•	9	
11300	10	REAL	ARRAY	8	REFS	2	68	133		8	•	
12430	3.6	REAL	ARRAY		REFS	. ·	۲ £	113 113				
136	RTITLAB	REAL	ARRAY		REFS	`=:	66	DEFINED	15	62	00	
106	RTITLEA	PEAL	ARRAY		29	83	* :	58	9			
31.6					2 8	59	. 9	DEFINED 61	15	22	20	5.7
97	4.1.1.68	KEAL	ARRAY		REFS 65	= 3	23	DEF INED	15	?9	63	*
1130	1055	REAL	ARRAY	٥٠	REFS	3 0	: =	2 8	6	115	117	
:		7575	AKKAT		REFS	1	114	115	111	120	132	133

	•			68			68	137		32	114	5,2		7,7		38							133	158																							
	PAGE			88			8.9	133		31	69	23		43		36							120	967																							
27 70 71	65.60.61			92			92	132	961	15	80 -	13.5		15	41	:	156					•	111	*																				Z IPRAM (1)		JCRF (600)	
04.01/74 14.04.00				73			73	150	22	DEFINED	73	120		DEFINED	DEFINED		154	75				11.6	153	•																				7	1200 E	3000 VOCRF	4 0094
41		158	1	170	156	147	7:	152	7	156	133	93	92	158	152	:	141	;				03	149																								
FTN 4.5+414		154	151	145	154	145	911	149	20	147	132	92	\$2	149	143	17.6	641	152	143		132	68	147															136					46 (11)			(009)	
		152	5 2	143		٠:	114	145	15	13	111	13	15	2	13	13	15	1	2		114	16	145								9.5						136	133					I FLAG		600 TDRF	4200 P1	
		137 REFS	REFS	93	REFS	B F F S	93	143	DEFINED	REFS	115	REFS	REFE	45	REFS	REFS	DEFINED	REFS	REFS		88	73	143	,							16						122	:			140	METER					
UPT=1	RELECATION	U a	5 00		م س	,													•	REFERENCES	70	נג	137	REFERENCE		2954	69	75	54	67	78	25	8662	100	86	131	53		3+145	145	44	- BIAS NAME (LENGTE)	O IND CIT	3 DEV (1)	4	IPRF (600)	
74/74	RELI	ARRAY	ARKAY		ARRA	ARRAY			ARRAY	ARRAY	2 4 0 0 4		ARRAY		***	PRRAY		AKKAK		5	5:			DEF LINE	54	55	71	7.8	19	68	56	16	66.	122	123	133	139	142	143	152	191	MEMBERS - B	0		1600 1	3600	2400
NE PLOTT	SN TYPE	REAL	PEAL	PEA.	REAL	REAL			REAL	REAL	PFAL		REAL	DEAL	1	REAL		REAL	-	TYPE A					INACTIVE													INACTIVE				LENGTH M	,	0009			
SUBROUTINE PLOTI		TOOCFF				XTITLE			XTITLEP	YTITLE	YTITLEE		YTITLEI	Y1111.62		VIIIVEC	3 6 6	ZRF		AL S	PERMITE			STATEMENT LABELS	90	30	33	35			000	20	7.3	15	0.8	63	06.	001	120	30	2						
	VARIABLES	3410	1130	5670	2670	1006			1017	1011	1014		1030	1022		1025	987	4540		EXTERNALS				STATENE			=	124	971	163				530				0				COMMON BLOCKS		a			

SUBROUTI	SUBROUTINE PLOTT	74/74 OPT=1	I = 1		214	FTN 4.5+614	06/01/16 14:04:49	14.04.		4
COMMON BLOCKS LENGTH		1800 1800 3600	PFF TOOCFF	MEMBERS - BIAS NAME (LENGTH) 0 PFF (600) 1800 TDCFF (600) 3600 1PFF (600)	600 TOFF 2400 ZFF	(009)	1200	1200 EFF 3000 VOCFF	1009)	
a L	1200	00	IPLOT	(1)	600 PP 1 15EM	(1)	~	2 11YPE (11)	3	
STATISTICS PROGRAM LENGTH CM LABELED COMMON LENGTH	TH LENGTH	10418	545							

	SUBROUTIVE ALSOAR	E ALSOAR	74/74	DPT=1		Ē	FTN 4.5+414	,	06/01/76	14.04.49	PAGE	-
-		S S S	SUBROUTINE ALSGAR(N,A) REAL IPRF COMMON/B/PRF(600),TDRF VGCRF(600),IP	SGAR (N.A.) 600), TDRF (60	SUBROUTINE ALSGAR(N,A) REAL IPRE COMMON/B/PRF(600), TDRF(600), ERF(600), TDCRF(600), 2RF(600), VGCRF(600), IPRF(600), PI(600), P2(600), P3(600)	00CRF(600)	ZRF(600)	:	ALSOAR ALSOAR ALSOAR	~ ~ ~ ~ ~		
•			CCMMON/D/T(600),PP(600) SUMTC=0. SUMCP=0. DO 10 1=1,N	1009344					ALSOAR ALSOAR ALSOAR ALSOAR	• ~ • • 0		
10		10 S E E	SUMCP=SUMCP+ALDGIOC CONTINUE ARG=(SUMTC+SUMCP)/N A=10.00ARG	SUMCP = SUMCP + A L DG 10 (PP (I)) CONTINUE A L Da + O A R G A L Da + O A R G DG 20 1 = 1.N					ALSOAR ALSOAR ALSOAR ALSOAR ALSOAR	13221		
21		20 P2C	P2(1 71 407(1):00(-1) RETURN END	•(-1)					ALSGAR ALSGAR ALSGAR	17 8		
	S WARDL IC	REFERENCE	SYMBOLIC REFERENCE MAP (R=3)									
ENTRY POINTS	DINTS	DEF LINE	A I	NCES								
VARIABLES 0 A 53 AR	ES SN A ARG		REL	RELOCATION F.P.	REFS REFS		DEFINED	72	13			
2260	#	REAL	ARRAY	a (REFS	m & n	2.	2015	DEFINED	•	*1	
1130		INTEGER	ARRAY	· · · · · · · · · · · · · · · · · · ·	REFS		10	2	DEFINED	-		
11300	¥ 1 ~ 2	REAL REAL	ARRA		2	333	DEFINED	15				
	S UNCP S UNTC	REAL REAL	ARRAY		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.0.0.	226	DEFINED DEFINED 15	-0	2.		
3410 1130 5670 4540	T DOCR F T DR F V DCR F 2 R F	REAL REAL REAL REAL	ARRAY ARRAY ARRAY	න න න ය	2							
EXTERNAL S	ALD610	TYPE	ARGS I LIBRARY	REFERENCES Y 9	01							
STATENE	STATEMENT LABELS 0 10 0 20		DEF LINE 11 15	E REFERENCES B 14	£							
100Ps 20 40	LABEL . 20	I MDE X	FROM-TO 8 11 14 15	LENGTH 118 68	PROPERTIES EXT EXT	EXT REFS						

SUBROUTIN	UBROUTINE ALSOAR	74/74 OPT=1	PT-1	FTN 4.5+414	67.70 14.04.49	PAGE	
COMMON BLOCKS LENGTH B 6000		NEMBERS - 8 0 1800 3600	MENBERS - BIAS NAME(LENGTH) 0 PRF (600) 1800 TDDCRF (600) 3600 IPRF (600)	600 TORF (600) 2400 ZRF (600) 4200 P1 (600)	1200 ERF (600) 3000 VOCRF (600) 4800 P2 (600)	566	
٥	1200	2400	P3 (600) T (600)	(009) 4d 009			
STATISTICS PROGRAM LENGTH CM LABELED COMMON LENGTH	INDN LENGTH	160408	72.00				

	SUBROUTI	SUBROUTINE BLSGAR	11/11	1-140		FTN 4.5+414	414	06/01/76	14.04.49	PACE	-
_ •		3 2 5 5 5 5	SUBROUTINE BLSGAR(N.B) REAL IPRF COMMON/B/PRF(600),TDRF VOCRF(600),IP COMMON/D/T(600),PP(600),UPDF	.SQAR(N.B) (600),TDRF(600) (1,PP(600)	SUBROUTINE BLSGAR(N.B) COMMON/S/PRF(600), TDRF(600), ERF(600), TDDCRF(600), ZRF(600), VOCRF(600), IPRF(600), PI(600), P2(600), P3(600) SUMIN/D/T(600), PP(600) SUNTD-Q.	CRF(600), ZRF(6 (600), P3(600)	• (00	BLSGAR BLSGAR BLSGAR BLSGAR BLSGAR	~~4~4~		
01		10 20 20 20 20 20 20 20 20 20 20 20 20 20	SUMTOP=0. 10 10 1=1.0 SUNTOP=SUNTOPALGGIO(T() SUNTOP=SUNTOPALGGIO(PP() CONTINUE ARG=(SUNTOP+.5*SUNTO)/N	SUMDP-0. 50. 10 1=1.N 50. 10 2=1.N 50. 10 5=5.N 50. 10 5=5.N 50. 10 5=5.N 60. 10 10 5=5.N 80. 10 5=5.N 80. 10 5=8.N 80.				BLSGAR BLSGAR BLSGAR BLSGAR BLSGAR BLSGAR	• • • • • • • • • • • • • • • • • • • •		
21		20 P3(DD 20 1=1,N P3(1)=8°T(1)°°(-,S) RETURN END	(5,-)*				BLSGAR BLSGAR BLSGAR BLSGAR	11 12 12 12 12 12 12 12 12 12 12 12 12 1		
	SYMBOLIC	REFERENCE	SYMBOLIC REFERENCE MAP (R=3)								
ENTRY POINTS 3 BLSOA	BLSGAR	DEF LINE	REFERENCES 16	ENCES							
VARIABLE S		SN TYPE	RE	RELOCATION	REFS		12				
0		REAL		F.P.		15 DEFINED	1	13			
2560	- F	REAL	ARRAY	10		-	2015	DEFINED	•	*	
7020	I PRF	REAL	ARRAY	8	REFS		14	DEFINED	-		
1130	4	REAL	ARRAY	0.00		101					
10150	210	REAL	ARRAY	0 eo e		1 m m					
12430	63	REAL	ARRAY			DEFI	15				
23	SUMDP	REAL				0 12	DEFINED	~ 4	o •		
0	-	REAL	ARRAY	٥	REFS		15				
3410	TORF	REAL	ARRAY	.	REFS	7 (1					
5670	VOCRE	REAL	ARRAY		REFS	e e					
EXTERNAL S	AL0610	TYPE	ARGS 1 LIBRARY	REFERENCES	0						
STATEM	STATEMENT LABELS	S	DEF LINE	REF	S						
00	0.0		12	• ±							
20 20	10	INDEX • I	FROM-TO 8 11 14 15	LENGTH PA 118 68	PROPERTIES EXT REFS EXT REFS	22					

SUBROUTIE	NE BLSGAR	SUBROUTINE BLSGAR 74/74 OPT=1	OPT = 1	FTN 4.5-414		64.70.11 14.04.49	64.	PAGE	~
COMMON BLOCKS LENGTH		HEMBERS -	MEMBERS - BIAS NAME (LENGTH)						
		1800	TDDCRF (600)	2400 ZRF (6		3000 VOCRF	0009)		
		360	1 PRF (600)		10091	4800 P2			
0	1200	0	(009)	9) 44 009	(009)				
STATISTICS PROGRAM LENGTH 638	-	638	ß						

PAGE																																										
14.04.49	•	ım.	• •	91		. 6	10	=:	13	: 21	15	91	18	19	20	17	25	26	52	97	2.7	28	30	31	32	33	34	34	37	38	39	2.5	13	43	**	45	94	4.1	8.5	65	200	25
06/01/76 14.04.49	ABLSOAR	ABLSGAR	ABLSOAR	ABL SOAR	ABL SOAR	ABLSOAR	ABL SOAR	ABL SOAR	ABLSOAR	ABLSGAR	ABLSOAR	ABL SOAR	ABLSOAR	ABL SGAR	ABL SOAR	ABLSOAR	ABL SOAR	ABLSOAR	ABL SOAR	ABL SOAR	ABL SOAR	ABL SGAR	ABL SOAR	ABLSGAR	ABLSOAR	ABLSOAR	ABL SOAR	ABLSDAR	ABLSGAR	ABL SOAR	ABL SOAR	ARI SOAR	ABL SCAR	ABL SOAR	ABL SOAR	ABL SOAR	ABL SOAR	ABL SOAR	ABLSOAR	ABLSOAR	ABL SOAR	ABL SGAR
SUBROUTINE ABLSGAR 74/74 GPT=1 FTM 4.5+414	SURROUTINE ABLSDAR(N.AI, BE, AE, BE, 1T) REAL IPRE	COMMON/A/IND, FLAG, IPRAM, DEV	-	COMMON/0/1(600), PP(600)	OIMENSION ALSOOL RESOON			F 75.1.6		10		A.T.A.T.Y.C	1.8(11) 1.1 cm	A(1+1)=A(1)+A1	IF(SAB(N,A(I+1),B(I)),LT.51) GD 70 20	=	20 1 30	30 B1=8(1)/(2, ap.1)	B(1+1)=B(1)-B1	1F(SAB(N,A(1+11,B(1+1)),LT,S[1] GO TO 40		R(1+1)=R(1)(R(1+1))(R(1+1))(LT.S1) GG TO 40		40 L=1			1=1+) C 1	0 1 1 10	60 S=SAB(N+A(I+1),8(I+1))	ERR=ABS(S-SI)	IFFERELT-EPS) GO TG 70	01 11 10	70 AE=A(1+1)	BE=B(1+1)	11=1		80 P1(1)=AEoT(1)00(-1)+BEoT(1)00(5)	66 110		TOU CHEMINALITY. AND AND THE AND THE MATIONS FOR 2003 EXCEED 3=20)		
			2				10				2			9	20				52				30				35				05					•				00		

PAGE 2			19 20					13 25										2018 2019	2.28 2.29						36		37 45																	
06/01/76 14.04.49			81	DEFINED			*	DEFINED										71.5	12.2	*					DECTMEN	31	2	:							38									
06/01/76			11	?	4.2		9 0	* 3		43		*,						*	5.56	43	4.5				36		56							37	87									
+14			2	37	-	-	DEP INED	37		-	1	DEP INED	:	:	38	1		2015	2025	45	0,				34	1 2	202	:			46			DEFINED	97									
FTN 4.5+414			2	88	DEFINED	DEFINED		62		DEFINED	DEFINED	,,	DESTREAM	OF THE	DEFINED			13	5,5	04	33		•	* **	* *	DEFINED	18				DEFINED		;	38	9		94.7							
			•	5 T	9,	77	•	58°	53	94	13	c ·	200	,	36		1	12	. 2.21	2037	•	e .	7			32	15	-	•	•	•	•	5 1	- :	2:	57	۰ ،	•	•					
			REFS	2 61	REFS	REFS	200	27	12	REFS	REFS	2 2 2 2	8673	PFFS	REFS	REFS	REFS	REFS	2 • 2 0	33	DEFINED	REFS	2 2 3 4	DE ET MEN	DEEK	BF FS	REFS	DEFINED	REFS	REFS	REFS	REFS	REFS	REFS	2000	DEFINED	2 2 2 2	RE PS	200	200	KELS		84	
0PT=1		NCES	OCATION		f.P.	f.P.				F.P.	F.P.			•			L.					٠.	< 0				F.P.		٥	•		•	•				، د				•		WRITES	REFERENCES
74/74	MAP (R=3)	REFERENCES 50	RELOCATION ARRAY				*****							ARRAY			ARRAY						2000	LANGE					ARRAY	ARRAY	ARRAY	ARRAY	ARRAY				ARRA	AKKA	*****	× 4 4 4 4	-			ARGS
SUBROUTINE ABLSQAR	SYMBOLIC REFERENCE MAP (R=3)	DEF LINE	SN TYPE REAL		REAL	REAL	REAL	-		REAL	REAL	REAL	PEAL	REAL	REAL	REAL	REAL	INTESER				INTEGER	BEAL	INTEGEO	INTEGER	INTEGER	INTEGER		REAL	REAL	REAL	REAL	REAL	KEAL	KEAL		KEAL	KEAL	NCAL.	PEAL	MENE	MODE	FMT	ITPE
SUBROUTIN	S YMBOL 1C	ENTRY POINTS 3 ABLSGAR			A.F.			,		8 E		100	200			FLAG	SAUS	-				ONI	1005						44	PRF	P.1	P 2	. 3	,:			1000	THE	2000	7.06		AMES	TAPF6	 ALS
		ENTRY 3	VARIABLES 213 A		0	0 :	1177			0		117	205	2260	212	-	0	503				0 '	2020		204	206	0		1130	0	10150	11300	12430		103	•	34.10	3410	2470	4560	2000	FILEN		EXIEKNALS

Sos	SUBROUTINE ABLSGAR	~	74/74 OPT=1	0PT=1				TR .	FTN 4.5+414	06/01/76 14.04.49	14.04.	67	PAGE	-
INLINE FUN	INLINE FUNCTIONS TYPE	ARG	INTRIN	DEF 1.1	DEF LINE REFERENCES	NCES								•
STATEMENT LABELS 23 10 60 20 60 20 110 40 1117 60 133 70 134 90 154 90 176 100 FP	LABELS		DEF LINE 23 24 33 37 42 46 46 46 46 46 46		REFERENCES 41 36 22 22 28 26 28 30 30 30 30 30 30 30 30 45 45 45 47									
141 80	EL INDEX	FROM-10		LENGTH 138	PROPERTIES	IES EXT REFS	S							
COMMON BLOCKS	=		BERS - B	BIAS NAM O IND 3 DEV	MEMBERS - BIAS NAME (LENGTH) 0 IND (1) 3 DEV (1)		1 FLAG		8	~	2 IPRAN	3		
	0009		0 PRF 1800 TDDCR 3600 IPRF 5400 P3	0 PRF 1800 TDDCRF 3600 IPRF 5400 P3	(0099)		600 TDRF 2400 ZRF 4200 P1		(000)	3000	1200 ERF 3000 VOCRF 4800 P2	60093		
.	1200		00	CAUS	(600)		600 PP		(600)					
STATISTICS PROGRAM LENGTH CM LABELED COMP	ATISTICS PROGRAM LENGTH CM LABELED COMMON LENGTH		21778	1151										

APPENDIX	C

SUBROUTINE PURITE	E PARITE	74/74	0PT=1		Ē	FTN 4.5+414		06/01/76	06/01/76 14.04.49	PAGE	-
-	3222	DAMON/F/IPL	SUBROUTINE PURITE (K.) XT. VT. GLD. GLL. N. X. V. XX. VY) COMMON F/IPLDT. ISEN. ITYPE DIRENSION X (GOD) YX (GOD) XX (GOD) YY (GOD) DIRENSION Y (GOD) YY (GOD) YY (GOD)	T, GLD, GLL, N,	X.Y.XX.YY1			PURITE	~~*		
w ·	=555	ITTYPE.EG.		.007.XT.	£ £			PPPE	~ ~ ~ ~		
10	10 00	CALL TALDATA CALL TALDATA RETURN CONTINUE	IFFK.EQ.1) RETURN CALL TALDATA(N.XX.YY.1,1,1,5LL) RETURN COMINUE	,611)				PPER	9125:		
15	20 CA RE ENE	CALL DRAWGE,7,2,N,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0	CALL DRAWGEZ-72-N,-2-10.X,Y,0.0.0.) IF(K-EQ.1) GU TO 20 CALL DRAWGEZ-7.2-N,0,10,XX,YY,0.0.0.) CALL DRAWGEZ-7.2-N,0,10,XX,YY,2.,0.) RETURN	YY, 2 0 . 1					50 11 12 12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15		
SYMBOLIC	EFERENCE	SYMBOLIC REFERENCE MAP (R=3)									
ENTRY POINTS 3 PWRITE	DEF LINE		REFERENCES 9 11	18							
VARIABLES SN 0 GLD	TYPE	ARRAY	RELOCATION F.P.	REFS	•		DEFINED	-			
1 1 SEN	INTEGER		: : :	REFS SETS	•~~	2.	2	OEF INEO	-		
× × ×	INTEGER		 	REFS	~~ •	~ * 0	22	DEFINED 16	- 11		
	REAL	ARRAY		REFS REFS		~ 0	13	DEFINED			
- × ;	REAL	ARRAY	4. 4.	RE FS RE FS	3 E	10	£ 9	DEFINED 17	DEFINED	-	
	KEAL REAL	ARRAY	 	REFS REFS	m - m	8 r 0	1 22	DEFINED DEFINED 17	1 1 DEFINED	-	
EXTERNALS DRAW4 SELPLOT TALDATA TALGATA	1496	ARGS 10 10	REFERENCES 13 6	71 01	91	-					
STATEMENT LABELS 41 10 67 20		DEF LINE 12 17	NE REFERENCES 5 15	S							

	SUBROUT	SUBROUTINE PWRITE 74/74 OPT=1	14/14	0PT=1	FTN 4.5+414	06/01/76 14.04.49	PAGE	
COMMON	BLOCKS	LENGTH 3	MEMBERS	COMMON BLOCKS LENGTH HEMBERS - BIAS NAME(LENGTH) 3 0 IPLOT (1)	1 1SEM (1)	2 1TYPE (1)		
PROC	STICS SRAM LENG	STATISTICS PROGRAM LENGTH		2208 144				

-		a •
PAGE		* ~ 0.0
06/01/76 14.04.49	22222222222222222222222222222222222222	DEFINED DEFINED
06/01/76	SORT SORT SORT SORT SORT SORT SORT SORT	12 13 13 2 6 20 2 6 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+414		DEFINE DEFINE 2°19 2°19 06FINE DEFINE 9
FTN 4.5+414		9 8 8 1 2 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
		8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	600) ((1) (1) (0) (0)	REFS REFS REFS REFS REFS REFS REFS REFS
007=1		ENCES LUCATION F.P. D D TI 11 18 LENGTH 4.8
74/74	SUBRDUTINE SDRT(N) COMMON/D/T(600),PP(60 D) NENSION E(600),H(60 1=1 J=0 J=0 DD 20 L=1,N TOWIN-EQ-T(L) J=L TOWIN-AMINITOMIN,T(L TOWIN-AMINITOMIN,T(L TOWIN-EQ-T(L)) J=L T(TOWIN-EQ-T(L)) J=L T(TOWIN-EQ-T(L)) J=L T(TOWIN-EQ-T(L)) J=L T(TOWIN-EQ-T(L)) J=L T(TOWIN-EQ-T(L)) J=L T(TOWIN-EQ-T(L)) D T(T(L)=H(L) T(T)=H(L)	E HAP (R= 2 ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY 1 1 1 1 1 1 1 1 1 1 1 1 1
SUBROUTINE SORT	0 % 6 8 0 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	C REFERENCE DEF LINE DEF LINE TYPE TREAL THTEGER THTEG
SUBROU	1	SYMBOLIC 3 SORT 3 SORT 46 J 50 L 60 J 60 J 60 J 1130 PP 7 T DMIN 1NLINE FUNCTIONS 7 10 20 20 2
		w > - v -

00.490.5	SUBMIDITIES SUKI	14/74 OPT=1	= 140	_	NT 4	FTN 4.5+414	06/01/76 14.04.4	14.04.4
CONYON BLOCKS LENGTH	1200	HENBERS	- BIAS	MEMBERS - BIAS NAME (LENGTH) 0 T (600)	44 009	(009) 44 009		
STATISTICS PROGRAM LENGTH CM LABELED COMMON LENGTH	TH DAMON LENGT	23318		1241				

PAGE															
14.04.49	~ :	n	n •	~ 0	•	21	12	13	15	16	17	18	19	02	17
06/01/76 14.04.49	C000F11	6000F11	C0000 11	COUDS 11	C000F11	COCDF 11	CODDE IT	6000F11	C000F17	G000F17	C000F11	C000F1T	11 40005	COCOPIT	COUDE II
FTN 4.5+414															
0F1T 74/74 0PT=1	SUBROUTINE GOODFIT(Y, YI, N, N, J) INTEGER FLAG	COMMON/A/IND, FLAG, I PRAM, DEV COMMON/E/GAUS(3), S	DIMENSION Y(600), YI(600) IF(FLAG_EG_Z) RETURN	SUM=0.	YL=AL0610(Y(1))	VIL = ALOGIO (VI(I))	CONTINUE	GD TO (20,30,40), J	SECOLO SON (N-F)	GAUS(2)=SUM/(N-M)	RETURN	GAUS(3)=SUM/(N-M)	RETURN	END	
SUBROUTINE GOODFIT							10		2	30		0,			
SUBROUT	•		•		;	07			15					50	

AN IF STATEMENT MAY BE MORE EFFICIENT THAN A 2 OR 3 BRANCH COMPUTED GO TO STATEMENT. CARD NR. SEVERITY DETAILS DIAGNOSIS OF PROBLEM 13

					-		
			18		DEFINED	DEFINED	
			9 8		DEFINED 18	2	
			14 DEFINED	•	-83	16 DEFINED DEFINED 10	
			DEFINED 10		16	14 9 10 DEFINED DEFINED	
	19	m	N 4 0 1		7	. = 2 2 2 2	
	11	REFS	25.5	2 2 2 2	# # # # # # # # # # # # # # # # # # #	RE 75 RE 75 RE 75 RE 75 RE 75 RE 75 RE 75	01
	REFERENCES 6 15	RELOCATION A	t w -	. 4 .	 	 	REFERENCES RY 9
MBDLIC REFERENCE MAP (R=3)			ARRAY			ARRAY	ARGS 1 LIBRARY
REFERENCE	DEF LINE	REAL INTEGED	REAL INTEGER	INTEGER	INTEGER INTEGER REAL	REAL REAL REAL REAL	TYPE
SYMBOLIC	ENTRY POINTS 3 GOODFIT	VARIABLES SP 3 DEV 1 FLAG		I PRAM	= 2 9	57 5 UN 0 7 0 7 62 7 IL 61 7 L	EXTERNAL S ALDG10
	ENTRY	VARIA	000	~0	000	5.0023	EXTER

=

f 2				
PAGE				
67.4			8	
14.0			2 IPRAH (1)	
06/01/76 14.04.49				
FTN 4.5-414			8 8	
FTR			1 FLAG 3 S	
		S EXT REFS	, ,,	
	ENCES	FRUM-TO LENGTH PROPERTIES 8 12 128 EXT	ECLENGTH) (1) (1) (2)	
0PT=1	DEF LINE REFERENCES 12 13 16 13 18 13	LENGTH 128	BIAS NAM 0 IND 3 DEV 0 GAUS	19
SUBROUTINE COODFIT 74/74 OPT=1	0ff LIN 12 14 16 18	FR0M-TD 8 12	MEMBERS - BIAS NAME(LENGTH) 0 IND (1) 3 DEV (1) 0 GAUS (3)	758
C300F11		INDEX	ENGTH 4	IGN LENGTH
SUBROUTINE	STATEMENT LABELS 0 10 42 20 46 30 52 40	LABEL 1	COMMON BLOCKS LENGTH	ATISTICS PROGRAM LENGTH CM LABELED COMMON LENGTH
•	STATEMENT 0 10 42 20 46 30 52 40	LOOPS LABEL	CONTON	STATISTICS PROGRAM LE CM LABELED

9 PAGE						
14.04.4	~ =	***	**9=2	24222	86878	282828
06/01/76 14.04.49	GAUSS	CAUSS CAUSS CAUSS	CAUSS CAUSS CAUSS CAUSS CAUSS	CAUSS CAUSS CAUSS CAUSS CAUSS	CAUSS CAUSS CAUSS CAUSS CAUSS	CAUSS CAUSS CAUSS CAUSS CAUSS CAUSS CAUSS
74/74 OPT=1 FTN 4.5+414	SUBRDUTINE GAUSS Integer flag Common/a/ind.flag.ipram.dev	COMMON/E/GAUS(3), S J=3 [F(FLG.EQ.2) RETURN F(FLG.EQ.1) J=2	GRIN=1.E300 DD 10 1=1.J GRIN=ANINICAUS(1)) DD 15 1=1.J	IF(GMIN.EG.GAUS(I)) L=I CONTINUE WRITE(6,20) FDRAT(/,/,5x,34HGAUSS CRITERION OF GOODNESS OF FIT,/,10x, 43HTHE EQUATION HITCH REST FITS THIS DATA :2.	GG TG (30,50,70),L WRITE(6,40) FORMAT (',30x,11HP-A=10+(-1))	FORMAT(/,30X,12HP=BeTee(-,5)) MRIF(G,80) FORMAT(/,30X,22HP=AeTee(-1)+BeTee(-,5)) RETURN
SUBROUTINE GAUSS			2	20 14 02	000	
SUBROUT	-	•	10	51	50	52

AN IF STATEMENT MAY BE MORE EFFICIENT THAN A 2 OR 3 BRANCH COMPUTED GO TO STATEMENT. CARD NR. SEVERITY DETAILS DIACNOSIS OF PROBLEM

SYMBO	LICR	SYMBOLIC REFERENCE MAP (R=3)	HAP	(R=3)						
INTRY POINTS 1 GAUSS		DEF LINE		REFERENCES 6 21	*	22				
ARIABLES		TYPE		RELOCATION						
1 FLAG		INTEGER		•	REFS	m 1				
O GAUS		REAL	•	RRAY E	RE FS	• •	۳ و	• 5	-	
120 1		INTEGER			REFS	2:	12	DEF INED	•	10
C IND		INTEGER		۷.	REFS	3 "	2•13	DEFINED	•	2
116)		INTEGER		•	REFS	e .				
151		INTEGER			25.5	• :	15	DEF INED	5	1
3 5		REAL			REFS		DEFINED	13		

PAGE										
14.04.49									2 IPRAH (1)	
06/01/76 14.04.49									~	
	\$2									
FTN 4.5+614	2								3 3	
FTN									1 FLAG	
	13									
	2	REFERENCES 10	ICES					PROPERTIES INSTACK INSTACK	LENGTH)	
0PT = 1	WRITES	DEF LINE	REFERENCES 9	12.5	61	2 2 2	: 2	LENGTH 48	- BIAS NAME(L) 0 IND (1) 3 DEV (1) 0 GAUS (3)	88
14/14		ARGS 0 INTRIN	DEF LINE	: 2 2	22	:2:	92	FROM-TO 9 11 12 14	MEMBERS - BIAS NAME(LENGTH) 0 IND (1) 3 DEV (1) 0 GAUS (3)	1228
SUBROUTINE GAUSS	MODE	NS TYPE REAL	2	FRI	FNT	FRT	FILE	INDEX I	LENGTH 4	ATISTICS PROGRAM LENGTH CM LABELED COMMON LENGTH
SUBROUT	TAPES	INLINE FUNCTIONS AMINI	STATEMENT LABELS 0 10 0 15	30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	80	LOOPS LABEL 13 10 22 15	COMMON BLOCKS A	TICS RAM LENGI 18 ELED CO
	FILE NAMES TAPE	INLINE	STATEM	52	53	101	110	L00PS 13 22	COMMON	PROGRAM CM LABEL

ADD	TINE	TV	-
APP:	END	TX	C

FUNCTION SAB 74/74 OPT-1 COMMON VERTICAL SABLEMA-B) COMMON VERTICAL S	9 PAGE										
FUNCTION SAB(M.A.B) FIN 4.55414 FIN 4.55414 FIN 4.55414 FIN 6.55414 FIN 6.5414 FIN 6.	14.04.4	7 m 4 4 9 4 9 6 9 4 9 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						22			
FIN 5AB	06/01/76					9	•	6			
FUNCTION SAB (N.A.B) CONTION SAB (N.A.B) SURMOD. SURMOD. NA.B ARCAAGTIINOGOI,PP160001 FARCACTIINOGOI,PP160001 FARCACTIINOGOI,PP160001 FARCACTIINOGOI,PP100001 FARCACTIINOGOI,PP1100001 FARCACTIONOGOI,PP100001 SAB-SUN RETAL RETAL REAL REFERENCES	5+414						DEFINED 1	DEF INED		(009)	
FUNCTION SAB (N.A.B) COMMONO/T(6001,PP(600) SURNO. NN.N. ARGAROT(110.0(-11))+BB+(T(1))+0(51) I ARGAROT(110.0(51)) I A	FTN 4.				DEFINED		DEFINED DEFINED DEFINED DEFINED	2.8			
IC REFERENCE DEF LIDOR SAB TYPE REAL REAL REAL REAL REAL REAL REAL REA		=			w &	2.12 2.10 6.00	\$ 4 ~ Z ~ Z	27		EXT REF	
IC REFERENCE DEF LIDOR SAB TYPE REAL REAL REAL REAL REAL REAL REAL REA		1) (*(T(1)**(; 1)*(ARG)			REFS	R R R R S S S S S S S S S S S S S S S S				PROPERTIES E(LENGTH) (600)	
IC REFERENCE DEF LIDOR SAB TYPE REAL REAL REAL REAL REAL REAL REAL REA	0PT=1	(N, A, B) 00), PP(600 00), PP(600 (1)) AL)**********************************		ENCES	LOCATION F.P.	:		REFERENCE		LENGTH 258 - BIAS NAM 0 T	
IC REFERENCE DEF LIDOR SAB TYPE REAL REAL REAL REAL REAL REAL REAL REA	14/14	NACTION SAB NACO 100	NAP (R=3)		2		ARRAY	ARRAY ARGS	0EF LI	LA.	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	10N SAB		C REFERENCE	DEF LINE	a a .	REAL REAL REAL	INTEGER INTEGER INTEGER REAL REAL	REAL REAL TYPE		INDEX I I I I I I I I I I I I I I I I I I I	TH DHMOM LENGT
	FUNCT	- • • <u>•</u>	1 TOBMAS	TRY POINTS				SI SUM O T TERNALS	ATEMENT LABE		ATISTICS PROGRAM LENG CM LABELED CI

SUBROU	SUBROUTIVE DWNDAT	AT 74/74	GPT=1		FTN 4.5+414	+414	06/01/76	14.04.49	PAGE	
		SUBROUTINE DUNDAT (NUMB) REAL JUNC, MANI, MANZ COMMON/A/ IND, FLAG, IPRA	SUBROUTINE DUNDAT(NUMB) REAL JUNC,MANI,MAN? COMMON/A/ IND,FLAG,IPRAM,DEV				GWNDAT OWNDAT	~~*		
•		COMMON/D/ 16 COMMON/F/1PLC COMMON/G/DEVI	COMMON/D/ T16001, PP1600) COMMON/F/IPLOT, ISEM, ITPPE COMMON/C/DEVIYPI, DEVIYP2, JUNC, MANI, MAN2, TECH, DATEE, ISTOP	IC , MAN I , MANZ ,	TECH, DATEE, 15	100	DWNDAT DWNDAT DWNDAT	~ • ~		
10	0 00	FORMATICATO, 10X A10, 10X FORMATICATO, 10X A10, 100 30 1=1,NUMB READ(5,20) T(1),PP(1) FORMATICETO,3)	KEAU(). 101 105 115 125 125 126 127 128	B,YLAB			DANNO DANNO	* • • • • • • • • • • • • • • • • • • •		
15	\$ 9	IF(1510P.EQ.3) GO TO 85 WRITE(6.40) DEV, DEVTYP), FORMAT(5X, 8HDEVICE: A88, 110HJUNCTION: A89,/,5X,14,	IF(1STOP.EQ.3) GO TO 85 MRITELG.40) DEV.DEVTVP1, DEVTVP2, JUNC, MAN1, MAN2, TECH, DATEE FORMAT(SX.8HDEVICE: A8, 3X, 13HDEVICE TYPE: ,2A10, 3X, 11DHJUNCTION: A99, 7, 8X, 14HMANUFACTURER: ,2A10, 3X, 12HTECHNICIAN: A10.3X, 6HDATE: A10, 7, 7, 1	YPZ, JUNC, MAN 3HDEVICE TYP UFACTURER:	1,MAN2,TECH,D E: ,2A10,3X, 2A10,3X,12HTE	ATEE CHNICIAN: .	OWNOAT OWNOAT OWNOAT	24597		
50	09	WRITE(6,50) FORMAT(5X,16) WRITE(6,60) X FORMAT(3(1)X, WRITE(6,70)	WRITE(6,50) IDENT, IDENT2 FORMAT(5X,16HIDENTIFICATION: ,2A10,/,/) WRITE(6,60) XLAB,YLAB,XLAB,YLAB,YLAB FORMAT(3411X,A10,5X,A10))	,2A10,/,/)	80		D O O O O O O O O O O O O O O O O O O O	5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
\$2	70 80 85	FGRMAT(3(11X,25(1H-1)) CALL CGLMNS(NUMB,T,PP) MRITE(6,80) FGRMAT(1H1) CONTINUE	,25(1H-1)) NUMB, T, PP)				DWNDAT DWNDAT DWNDAT	2 2 2 2 2 2		
30		IF(IND.EU.2) GD TD 90 CALL DIRECT(NUMB.3,4.8,4 CALL GAUSS IF(ISTOP.EQ.1) GD TD 88	IFING.EG.27 GO TO 90 CALL DIRECT(NUMB,3.4.8.AE,8E,1T) CALL WRITE(A.8.AE,8E,1,1T) CALL GAUSS IF(ISTOP.EG.1) GO TO 88	Ę			OWNDAT OWNDAT OWNDAT OWNDAT	20 33 23 30 33 24 30 30 30 30 30 30 30 30 30 30 30 30 30		
35	88	CALL PLOTTENUMB, NUMB, 1) IF(INO.EG.1) GO TG 100 CONTINUE CALL DIRECTINUMB, 3, 4, 8, 1	CALL PLOTTENUMB,NUMB,1) [F(IND.EG.1) GO TG 100 CONTINUE CALL DIRECTENUMB,3,A,B,AE,BE,1T)	Ε.			DWNDAT DWNDAT GWNDAT GWNDAT	34 36 37 38		
ç,	100		TETERONS TETERONS TETERONS CONTINUE RETURN				OUNDATION OUNDAT	£ 7 7 7 7 8 3		
S YMBOL I PO INTS DANDA T	C REFERENCE DEF LINE	SYMBOLIC REFERENCE MAP (R=3) OINTS DEF LINE REFERENCES DAWDAT 1 42	INCES							
267 A 271 AE 270 B	SN TYPE REAL REAL REAL		RELUCATION R	REFS 29 REFS 29 REFS 29	3000	* * *	37 7.E			

•	•																																																
2040																				9750	04.7																												
06/01/76 14.04.49																				. 12	8																												
06/01/76			37												39	37				2011		10	10						52	1																			
**16		;	30					•	1	7	34			;	35	96	**		: :	562		DEF INED	DEFINED		-1				22																				
FTN 4.5+414			2 2	: :	14	*		DEFINED	DEFINED	DEFINED	82				2 2	2	•	•		*		%	2	*	DEFINED	DELTMEN			50																				
		30	. •		•	•	6	2.10	81	91	7 4	•	n u		, 00			. ~	~	•	-	•	•	9	30.20	2		10	18																				EXT REFS
		RFF	REFS	REFS	REFS	REFS	REFS	REFS	25.55	200	2 30	REFE	RFF	REFS	REFS	REFS	REFS	REFS	REFS	REFS	DEFINED	REFS	25.5	223	E FS			1	14			;	9 8	3	37		2										39	9911830000	FULLET
0.11	RELUCATION		ی	•	و	٠	•							ی		_	9	9	ی	۴.٩.		.		,				READS	MRITES	DEEED ENCE	NET ENEMIES	2 2	316	33	30		T REFERENCES	10	•	16	18	02	22	\$	13	× *	*		118
14/14	RE																				2 4004	ABBA								ARGS	3		0	3	•	DEF I THE) :	12	15	19	77	23	92	2 %	35	7		9 12
SUBROUTINE DUNDAT	SN TYPE	REAL	REAL				INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	REAL	REAL	REAL	IN FORK	BEAL	RFAL	REAL	REAL	REAL		MODE			TYPE						•	FMT	FMT		FHT	FMT	FHT						INDEX	
SUBROU	VARIABLES	38 2	O DATE		I DEVIABLE	FIAC			3 IDENT2		O IPLOT	2 I PRAM	1 SEN	I STOP	7	LIVE	JANG 7	HANI	ZNAN C		44 0				YLAB		TABLE	TAPES		EXTERNAL S	COLMNS	DIRECT	GAUSS	PLOTT	RITE	STATEMENT LABELS	10	5.0	30	0	20	00			•	06	100	LABEL	
	VARI	-					36	26	563						613		• '				1130	3	2	564	592	2113	175			EXTER						STATE	154	165	0	202	427	757	265	17	3	3	101	L 00P S	50

SUBROUT	SUBROUTINE DANDAT	14/74 OPT=1	0.07=1	FTN 4.5+414	06/01/76	06/01/76 14.04.49	PAGE	•
COMMON BLOCKS LENGTH	LENGTH	MEMBERS	- BIAS NAME (LENGTH) O IND (1)	1 FLAG (11)	•	2 IPRAM (1)		
. 643	1200 3		3 DEV (1) 0 O IPLOT (1) 0 DEVIVEI(1) 3 MANI (1) 6 DATEE (1)	600 PP (600) 1 1SEH (1) 1 DEVTYP2(1) 4 MAN2 (1) 7 1STOP (1)	N 10 SF	2 JUNC (1) 5 JUNC (1) 5 TECH (1)		
STATISTICS PROGRAM LENGTH	TH.	2768	18 190 18 1215					

APPENDIX C

ADDITINE COLHMSTRPTS, X, Y) REPSTON X(1), Y(1) REPSTON X(1), Y(1) RECEASION X(1), Y(1) RECEASION X(1), Y(1) RECEASION (X(1), Y(1), X(1+1) RECEASION (2	SUBROUTINE COLMNS	4L/4L 51	0PT=1			FTN 4.5+414	*1*	06/01/76	06/01/76 14.04.49	PAGE	-
COLUMNS 0 COLUMNS	9	SE CHILL	ENSION XCI ENSION XCI EMPTS/3 IQD CMPTS,3 ETINC+1	DLNNSCKPTS.	K. Y.				COLMNS COLMNS COLMNS COLMNS COLMNS COLMNS			
MAITES M	50 11 10 10 10 10 10 10 10 10 10 10 10 10		IK.EG.2) IK.EG.2) TE(6.60) (.INC) MAT(3(11X,	60 10 70 60 10 80 X(1),Y(1),	X(1+1NC),Y()	+1NC),X(1+	2.INC),Y	(1+2+1NC).	COLANS			
### FOR THE REFERENCES 10	-	3 - 2 0	GD TD 90 WRITE(6,60) (Y(1+2*1CDL-1) WRITE(6,60) X GD TD 90	X(1),Y(1),	X(1+1CBL),Y(11•1CDL),XC	1•2•1CDL-	÷	COLANS			
FOCATION REFS REFR REFS RE	BO LERI BY(I) BY(I) BY(I) BY(I) BY(I) BY(I)	K-KOWZ	WRITE(6,60) (Y(1+2°1CDL),1 WRITE(6,6D) X CONTINUE RETURN END	X(I),Y(I), =1,INC) (ICDL),Y(I	KC1+1COL), YC	1-1COL),XC	1.2.1601		S COLLARS COLL			
REFS 609 6013 6017 DEFINED 9 13 REFS 4013 2015 617 DEFINED 5 REFS 6 13 4017 DEFINED 5 REFS 5 9 13 17 DEFINED 3 ARRAY F.P. REFS 2 309 3013 15 3017 2019 RES 5 509 13 15 17 19 RES 6 13 15 17 19 RES 7 10 DEFINED 1 1 10 110 RES 7 10 DEFINED 1 1 10 110 RES 8 10 DEFINED 1 1 10 110 RES 8 10 DEFINED 1 1 10 110 RES 8 10 DEFINE REFERENCES 1 10 110 RES 9 13 15 17 19 RES 9 13 15 17 19	DEF LINE TYPE		E REFERE 21 REL	NCES DCATION								
ARRAY F.P. REFS 5 5-9 13 17 DEFINED ARRAY F.P. DEFINED 1 3-9 3-13 15 3-17 ARRAY F.P. DEFINED 1 3-9 3-13 15 3-17 ARRAY F.P. DEFINED 1 3-9 3-13 15 3-17 WRITES 9 13 15 17 19 DEF LINE REFERENCES 2 INTRIN REFERENCES 9 6 6 13 15 17 19 13 7 8	INTEGER INTEGER INTEGER				RE FS RE FS RE FS	609 4013	6•13 2•15 7	4017	GEFINED 4.19	DEFINED	13	-
ARRAY F.P. DEFINED I 3.99 30.13 15 30.17 WRITES 9 13 15 17 19 RGS DEF LINE REFERENCES 4 17 19 DEF LINE REFERENCES 5 17 19 11 9 13 15 17 19 11 9 13 15 17 19	INTEGER INTEGER REAL				REFS REFS	5 F F	ž 4 š	13 DEFINED	5-5	DEFINED		
MRITES 9 13 15 17 2 INTRIN DEF LINE REFERENCES 3 6 6 13 15 17 19 11 9 13 15 17 19	REAL		ARRAY	 	DEFINED REFS DEFINED	-~-	349	3•13	: 2	3•17	5-19	
PGS DEF LINE REFERENCES 2 INTRIN DEF LINE REFERENCES 3 6 6 13 15 17 13 15 17 15 17 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18	MODE			WRITES	•	. 81	15	11	19			
DEF LINE REFERENCES 3 6 6 13 15 17 13 15 17 17 13 15 17 19 19 19 19 19 19 19 19 19 19 19 19 19	TYPE		ARGS INTRIM		REFERENCES							
9 13 15 17	INACTIVE	-			CES							
•	F# -		*121	90-0;	s :	51	11	2				

	SUBROU	UBROUTINE COLMNS	74/74	CPT=1		FTN 4.5+414	06/01/76	06/01/76 14.04.49	PAGE	
LOOPS	LABEL	ODPS LABEL INDEX	FROM-TC		PROPERTIES					
31		-	6 6	178	EXT REFS					
55			13 13		EXT REFS					
110			17 17		EXT REFS					
STATISTICS	1103									

APPENDIX C

5	UBROUT	SUBRDUTINE CHANGE	14/14	1-140			FTN 4.5+414	914-16	06/01/76	65.50.11 92/10/90	PAGE	-
-		NÜBE	UBROUTINE OMMON/D/ T IMENSION X	HANGE (NUNB.	SUBROUTINE CHANGE (NUMB, KLAB, VLAB, X,Y) COMMON/D/ T(&OO), PP (&OO) O)MENSION XITLE(1), YITTE(1), X(&OO), O)MENSION XITLE(1), YITTE(1)				CHANGE CHANGE CHANGE	~ m •		
•			MATTLE (2) - 5H	MATTICE (2) - 10MPULSE MIOT	DATA KTTLE/301H /, VTITLE/301H / MTITLE(21:10HPULSE MIOT MTITLE(21:10HH				CHANGE CHANGE CHANGE CHANGE	~ ~ ~ ~		
9			TITLE (2) - 10H DUER 50 5 1-1,3 XLAB(1) - XTITLE (1)	HPOWER LECTI					CHANGE CHANGE CHANGE CHANGE CHANGE	2222		
51		•	CONTINUE X(1)=1(1) Y(1)=PP(1) CONTINUE						CHANGE CHANGE CHANGE CHANGE CHANGE	22122		
20 28	MBOLIC	REFERENCE EI	END END SYMBOLIC REFERENCE NAP (R=3)						CHANGE	82		
ENTRY POINTS 3 CHANG	CHANGE	DEF LINE		REFERENCES 19								
=	NS .	TYPE		RELOCATION	REFS	2015		****		0	:	:
	8 a . ,	INTEGER REAL REAL			REFS REFS REFS	57 7	DEFINED 17 16	-			:	2
2 2 2	KUA6 XTITLE	REAL REAL REAL	ARRAY	 	2	m 	DEFINED		927			
	Y	REAL REAL REAL	ARRAY	::	### #### #############################	~ ~ ~ ~	DEFINED DEFINED DEFINED	DEFINED 1 1 0EFINED	~ # E &	• •	٠ :	•
STATEMENT LABELS 0 5 0 10	LABELS		DEF LINE	NE REFERENCES 11 15	ices				•		:	
100PS LA	3	INDEX	FRON-TO 11 14 15 16	LENGTH 38 38	PROPERTIES INSTACK INSTACK							
COMMON BLOCKS		LENGTH 1200	MEMBERS	- BIAS NAME (LENGTH) 0 T (600)	(600)	44 009		(009)				

APPENDIX D.--SAMPLE INPUT WHEN ISEM = 0

Sample input data are listed when all of the data in card sets 3 and 4 are used.

1		è		3		4	5		6	7	*****
1		3				2			1	1	
101N36U0	DIGOF			(- A	FAIRE	HILD			SONS 7-	23-73
031N3600											
00101 10.00	10F-6	160.		100.		0.	10.000E	-6	1.0		
	160.		160.		0.001		OUF C+				
00102 10.00		110.		105.		.15		-6	1.0		
1.6	160.		160.	116	0.00		UUE C+				
00103 10.00	160.	150.	0.	115.	6.001	.60	5.5 F	-6	1.0		
061N36CC	100.		0.		0.001		.00F C+				
00201 10.00	05-6	60.0	000	60.		0.000	10.0006	-6	.300		
.300	92.		92.		U.0L		DUE C+		• 500		
00202 10.00		70.	-	70.	3.00	0.		-6	. 3		
.3	92.		92.		. 1		E C+				
00203 10.	F-6	30.		80.		C .		-6	0.3		
.3	92.		92.		•		. E C+				
00204 10.	5-6	90.		90.		· 0.		-6	0.3		
0.3	92.	100.	92.	80.	•		E C+	,			
.3	E-6 92.	100.	92.			1.3	2.0 E	-6	.3	VZ CHG	
00206 10.	5-6	11).	72.	90.	•	2.2		-6	. 3	VZ CHG	
.3	92.		4.				E (+		• •		
031N3600											
00301 10.	1-6	30 .		50.		0.0	10 . E	-6	.3		
.3	90.		90.		. 1		£ (+				
00302 10.	r-6	90.		90.		U.		-6	. 3		
0030 - 13	90.		93.	25	•		E C+				
00303 10.	F-6	100.	0.	95.		0.7		-6	.3		
04143500	,,,.		٠.		•						
00401 10.	r-6	80.		20.		0.0	10.0 t	-6	.3		
•3	98.		98 .		. 1	Ε .	E C+				
00402 10.	F-6	90.		90.		0.0	10. F	-6	. 3		
.3	98.		98.		. 1		E (+				
00403 10.	E-6	100.		100.		0.0		-6	.3		
.3	98.		98.				E C+				
00404 10.	F-6	110.		105.		1.6	-	-6	. 3		
0. 031N360	98.		U.		•		E (+				
00571 10.	F-6	86.		80.		0.0	10.0 E	-4	.3		
.3	96.		1.6.		. 1		É (+		• •		
00502 10.	F-6	90.		85.		.6		-6	.3		
.3	86.		83.		. 1		E C+8	RKDWN	DEVICE	NU CG	
00503 10.	F-6	100.		90.		1.8	1.2 E	-6	.3		
. 3	26.		12.		. 1		E C+				
031N360L											
00601 10.	F-6	50.		80.		0.0		-6	• 3		
00602 10.	96. F-6	90.	86.	90.	•	0.0	. F C+	-6	2		
.3	86.	70.	66.	,		0.0	10. E	-6	• 3		
00603 10.	F-6	100.		90.		1.0	1.2 E	-6	. 3		
.0	86.		0.0		. 1		E (+		• •		

APPENDIX D

1		2	3		4	5	6	7
******	*****	*****	*******	***	****	*********	*******	*******
041 N36CU								
00701 10.	F-6	80.	30.		U.C	10. E-6	.3	
.3	16.		86.		E	. E (+	• •	
00702 10.	F-6	90.	90.		6.0		.3	
.3	16.		86.		E	. E (+	••	
00703 10.	1-6	100.	95.		.4		.3	
. 3	86.		66.		E	. E C+	•	
00704 10.	F-6	160.	90.		1.2		.3	
.3	86.		17.		t	. E (+	-	
051N3600								
00801 10.	F-6	10.	80.		0.0	10. F-6	.3	
.3	88.		88.		t	. E C+		
00802 10.	F-6	90.	90.		0.0		3	
.3	88.		88.		E	. E C+		
00803 10.	f-6	100.	100.		6.0		.3	
. 3	88.		88.		E	. E C+		
. 31 40800	F-6	110.	110.		0.0		.3	
.3	88.		88.		E	. E		
00805 10.	F-6	118.	105.		1.2	1.0 F-6	.3	
د.	88.		10.		E	. E (+		
041N3600								
00901 5.0	1-6	.03	80.		0.0	5.0 E-6	.3	
.3	93.		93.		E	. E C+		
00902 5.5	E-6	90.	90.		0.0	5.0 t-6	.3	
.3	93.		93.		£	. t C+		
00903 5.3	r-6	100.	95.		.6		.3	
.3	93.		93.		E	. E C+		
00904 5.0	F-6	112.	100.		. 9		.3	
.2	93.		0.0		E	. F C+		
041N36CU								
01001 5.0	F-6	80.	86.		0.0	5.0 E-6	. 3	
.3	93.		93.		E	. E (+		
01002 5.0		90.	90.		6.0		.3	
.3	93.		93.		t	. E C+		
01003 5.	6-6	160.	97.		.2	1.1 F-6	3	
.3	93.		93.		E	. E C+		
01004 5.0			163.		. 9	1.8 E-6	.3	
.3	93.		8.0					

APPENDIX E.--SAMPLE INPUT WHEN ISEM = 1

Sample input data are listed when only pulse width versus power data on card set 5 are used.

1 2 3 4 5 6 7 6

1 1 2 3 4 5 6 7 6

1 1 1 1

10 IN 3600 DIDDE C-A FAIRCHILD R.PARSONS 7-23-73

REVERSE FAILURE PULSE WOTH POWER

.800E-06 .110E+03
.800E-06 .200E+04
.900E-06 .900E+02
.120E-05 .160E+03
.120E-05 .160E+03
.120E-05 .160E+03
.120E-05 .160E+03
.120E-05 .600E+02
.120E-05 .600E+02
.300E-05 .600E+02
.300E-05 .600E+02
.300E-05 .600E+02

DISTRIBUTION

DEFENSE DOCUMENTATION CENTER CAMERON STATION, BUILDING 5 ALEXANDRIA, VA 22314 ATTN DDC-TCA (12 COPIES)

COMMANDER

USA RSCH & STD GP (EUR)
BOX 65
FPO NEW YORK 09510
ATTN LTC JAMES M. KENNEDY, JR.
CHIEF, PHYSICS & MATH BRANCH

COMMANDER
US ARMY MATERIEL DEVELOPMENT
& READINESS COMMAND
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
ATTN DRXAM-TL, HQ TECH LIBRARY

COMMANDER
USA ARMAMENT COMMAND
ROCK ISLAND, IL 61201
ATTN DRSAR-ASF, FUZE DIV
ATTN DRSAR-RDF, SYS DEV DIV - FUZES

COMMANDER
USA MISSILE & MUNITIONS CENTER & SCHOOL
REDSTONE ARSENAL, AL 35809
ATTN ATSK-CTD-F

HARRY DIAMOND LABORATORIES ATTN MCGREGOR, THOMAS, COL, COMMANDING OFFICER/FLYER, I.N./LANDIS, P.E./ SOMMER, H./OSWALD, R. B. ATTN CARTER, W.W., DR., ACTING TECHNICAL DIRECTOR/MARCUS, S.M. ATTN KIMMEL, S., IO ATTN CHIEF, 0021 ATTN CHIEF, 0022 ATTN CHIEF, LAB 100 ATTN CHIEF, LAB 200 ATTN CHIEF, LAB 300 ATTN CHIEF, LAB 400 ATTN CHIEF, LAB 500 ATTN CHIEF, LAB 600 ATTN CHIEF, DIV 700 ATTN CHIEF, DIV 800 ATTN CHIEF, LAB 900 ATTN CHIEF, LAB 1000 ATTN RECORD COPY, BR 041 ATTN HDL LIBRARY (3 COPIES) ATTN CHAIRMAN, EDITORIAL COMMITTEE ATTN CHIEF, 047 ATTN TECH REPORTS, 013 ATTN PATENT LAW BRANCH, 071 ATTN MCLAUGHLIN, P.W., 741 ATTN LANHAM, C., PROGRAM & PLANS OFFICE ATTN MILETTA, J., 200 ATTN ROSE, T., 200 ATTN CLODFELTER, J. M. (10 COPIES)