

Lecture Notes: Building a Neural Network From Scratch

	Introduction:					
	. I'll assume on understanding of fundamental math concept					
	like multiveriable calculus of linear algebra, as well as					
	a general understanding of the structure of neural					
	networks, and programming.					
	· What I want to focus on is the precise mathematica					
	Formulation of a simple feedforward neural network,					
	and then translate that into an actual model					
	10 Python.					
	. It you're shaky on some of the fundamental concepts,					
_						
(en						
	Implementation Architecture: Before souling					
	Steps in Machine Learning: anything, look at data					
	O Data - Model					
	(2) Compute the distance between desired and actual output					
	3 Adjust parameters of model					
	- Repeat					
	· Goal is modular code => implement every layer separately					
	*					
	-> Layer -					
	2X 2X 2Y					
	OX OY					
	· With this design, we can think of each layer					
	as an individual object					

	ntial Model: Output of one leyer is input of
2X,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	describes our Forward propagation and backward gation algorithms Implement Base Layer
Dense Each	Layer: aka "Fully Connected" input node is connected to each output node Propagation:
×100	$0 \ y_1 = W_{11} X_1 + W_{12} X_2 + \dots + W_{1i} X_i + b_1$ $0 \ y_2 = W_{21} X_1 + W_{22} X_2 + \dots + W_{2i} X_i + b_2$ $0 \ y_3 = W_{31} X_1 + W_{32} X_2 + \dots + W_{3i} X_i + b_3$
	w_j : $w_j = w_{j_1} x_1 + w_{j_2} x_2 + \dots + w_{j_1} x_2 + \dots + w$

Х,

X.

X.

1×1

W12 . . Wi

Wy

6

P

نط المر

_	-
	-76
	2.0

31

		parameters +			
Co	oradient	Descent Y, we went	2m, 3	$\frac{1}{6}$, and $\frac{3}{3}$	
2/	= 35/2	We want:	DW Z	36 96 900 500 50 500 50 500 50 500 500 500 50	
		1016: 2M =		+ dy dw.	
e.g	3W12 =	= 121			
-	2m/ =	=X1	these.	= 0!	

囮

36 Thus, of to pass back to previous input Finally, we need ex) $\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial \mathcal{L}}{\partial y_1} \frac{\partial y_2}{\partial x} + \frac{\partial \mathcal{L}}{\partial y_2} \frac{\partial y_2}{\partial x} + \cdots + \frac{\partial \mathcal{L}}{\partial y_3} \frac{\partial y_3}{\partial x}$ = 30, W11 + 342 W21 + ... + 29, W31 50, 0X = WT 0Y

Activation Layer. Computing our activation function element wise x, -1 0 -1 8,= F(1 -> y2- F() -> 0 -> 3. - F() => Y - F(X) -> 0 --> y, - F() 3x, = 3y, F'(x,); 50, 5x = 34 0 F'(x) Hadamard Product, i.e., element-wise multiplication * Note: We need a nonlinear activation Function, streiwise our network just computes a linear combination of the input.

ReLU: g(x)- max(0,x) g'(x)= (0, x=0 Softmax: y:= gers 3C 34, 3xx + 34 3xx + Quotient If k#j: Dy: = - excex: = - Ju J: $\frac{\partial X}{\partial C} = \begin{bmatrix} \frac{\partial Z}{\partial C} & \frac{\partial X}{\partial X} & + & + & \frac{\partial Z}{\partial C} & \frac{\partial X}{\partial X} \\ \frac{\partial Z}{\partial C} & \frac{\partial Z}{\partial Z} & + & + & \frac{\partial Z}{\partial C} & \frac{\partial X}{\partial Z} \end{bmatrix}$ 35 B

= 3(0-9.) - 9.92 9.32	
- 724, 72(1-72)	
- 200 - 200 · · · 200-20 50 - · · · 200-20	
= / [-5	· 34
35 25 25	
3, 3, 3, -3,3,	
1 1 2 7 1 3. 72 70 1	24
= 3, 5, 5, 5, 5, 7, 7, 7,	. 54
32 32 0 I	
3, 3,	
L A	
$= \left(A \odot \left(I - A - I \right) \odot A \right) =$	
152	75

Cost Function: Meen-Squeed Error Coiven desired output Y", actual output Y,

ex) &= + 33, [(y, - y,) = (y = - y 2) + ... + (y = - y 1)]

= 12 (y, -y*)

=> 2x = = (1-x")