Program efficiency

IC152 Feb 2021

- During design, need to choose data structures and algorithms
- Implement in various languages
 - Python, C, Perl, ...
- Run on variety of hardware+OS
 - 1 GHz, 2 GHz, 2.8 GHz, ...
 - Linux, Windows, MacOS X, Raspberry Pi, ...
- Range of data sizes
 - Students = 10, 100, 1,300, 10,000, 1,00,000, 2,00,000, ...

How to decide which is "best"?

- Decide on "basic" operations
 - comparison, arithmetic, copy, etc of scalar variables
 - count each as 1 unit
- Eg 1: Find average of N numbers Work

Simplify problem = Abstraction

- Eg 2: Find average of numbers read so far

Total Work = 2+3K

Total Work =
$$(4+3)+(4+3*2)+(4+3*3)+...+(4+3*N)$$

= $5.5N + 1.5N^2$

- T1(N) = 3 + 4N
- T2(N) = 10 + 4N
- Small N, T2 > T1, but for large N, both ~ same
- $T3(N) = 1 + N + 2N^2$
- $T4(N) = 10 + 20N + 2N^2$
- Small N: T4 > R3, large N: both ~ same
- T2(N) = 10 + 4N
- T3(N) = 1 + N + 2N²
 Small N: T2 > T3, but for large N, T3 > T2
 - If T2a(N) = 200 + 400N
 - Very large N, T3 >T2a

- In general, if Tx = a + bN
 Ty = c + dN + eN²
 a, b, c, d, e independent of N
 - Some N0 such that Ty > tx for $N \ge N0$
- Complexity of performance:
 - Order the terms in the expression by power of N
 - Set all constants to 1
 - Consider only the highest power
 - This is the asymptotic complexity = O() "Big-O"
 - If Tx is O(N) and Ty is O(N²)
 Tx is faster than Ty

 Comparing designs is very difficult because of differences in implementation, execution platform, input data

==> Asymptotic complexity O()

- $O(N) < O(N^2) < O(N^3) < O(2^N)$
 - Applied to execution time & memory space
- Useful for initial design
- During implementation, testing and production use
 - measurement of actual execution time, memory usage, etc.
 - tuning to improve performance

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

From Klienberg, Algorithm Analysis, 2nd ed.

Linear Time: O(n)

Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers $a_1, ..., a_n$.

```
max ← a<sub>1</sub>
for i = 2 to n {
   if (a<sub>i</sub> > max)
       max ← a<sub>i</sub>
}
```

Closest pair of points. Given a list of n points in the plane (x_1, y_1) , ..., (x_n, y_n) , find the pair that is closest.

 $O(n^2)$ solution. Try all pairs of points.

```
\min \leftarrow (\mathbf{x}_1 - \mathbf{x}_2)^2 + (\mathbf{y}_1 - \mathbf{y}_2)^2
\mathbf{for} \ i = 1 \ \text{to} \ n \ \{
\mathbf{d} \leftarrow (\mathbf{x}_i - \mathbf{x}_j)^2 + (\mathbf{y}_i - \mathbf{y}_j)^2
\mathbf{if} \ (\mathbf{d} < \mathbf{min})
\mathbf{min} \leftarrow \mathbf{d}
\}
```

Set disjointness. Given n sets S_1 , ..., S_n each of which is a subset of 1, 2, ..., n, is there some pair of these which are disjoint?

 $O(n^3)$ solution. For each pairs of sets, determine if they are disjoint.

```
foreach set S<sub>i</sub> {
   foreach other set S<sub>j</sub> {
     foreach element p of S<sub>i</sub> {
        determine whether p also belongs to S<sub>j</sub>
     }
     if (no element of S<sub>i</sub> belongs to S<sub>j</sub>)
        report that S<sub>i</sub> and S<sub>j</sub> are disjoint
   }
}
```