Analysis 1 – Tutorium 9 robin.mader@campus.lmu.de 15.1.2021

Aufgabe 1 (Rechentraining zum Finden von Stammfunktionen). Bestimme Funktionen f, definiert auf geeigneten nichtleeren offenen Teilmengen von \mathbb{R} , die die folgenden Ableitungen f' besitzen:

- (a) $f'(x) = \frac{1}{1-2x}$
- (b) $f'(x) = \frac{e^x}{1+e^x}$
- (c) $f'(x) = \tan(x)$
- (d) $f'(x) = xe^{\alpha x^2}$, wobei $\alpha \in \mathbb{C} \setminus \{0\}$ eine gegebene Zahl sei.

Aufgabe 2. Es seien a > 0 und $g: \mathbb{R} \to \mathbb{R}, x \mapsto a^x$.

- (a) Zeige: g ist überall differenzierbar und berechne g'.
- (b) Folgere: $\lim_{n\to\infty} n\left(\sqrt[n]{a}-1\right) = \log a$. Tipp: Verwende $g'(0) = \lim_{n\to\infty} \frac{g(1/n)-g(0)}{1/n}$.

Aufgabe 3 (Zusammenhang). Ein topologischer Raum (X, \mathcal{T}) heißt zusammenhängend, falls gilt:

$$\forall A, B \in \mathcal{T} : [(X = A \cup B) \land (A \cap B = \emptyset) \implies (A = \emptyset) \lor (B = \emptyset)].$$

Beweise:

- (a) X ist zusammenhängend genau dann, wenn die einzigen "abgeschloffenen" Mengen in X der ganze Raum X und die leere Menge \emptyset sind.
- (b) Sind $f: X \to Y$ eine stetige Abbildung zwischen topologischen Räumen (X, \mathcal{T}) und (Y, \mathcal{S}) , und X zusammenhängend, so ist auch f(X), versehen mit der Unterraumtopologie, zusammenhängend.
- (c) [0,1] ist zusammenhängend.

Folgere den Zwischenwertsatz: Angenommen, $f: [0,1] \to \mathbb{R}$ ist stetig. Dann gilt $f([0,1]) \supseteq [f(0), f(1)]$.

Aufgabe 4. Es sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar in $a \in \mathbb{R}$. Berechne

$$\lim_{n \to \infty} \frac{a^n f(x) - x^n f(a)}{x - a}.$$

Aufgabe 5. Es seien $U \subseteq \mathbb{R}$ offen und $f: U \to \mathbb{R}$ gleichmäßig differenzierbar* auf U, d.h. f ist differenzierbar auf ganz U und es gilt

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x, y \in U : |x - y| < \delta \implies \left| \frac{f(x) - f(y)}{x - y} - f'(x) \right| < \varepsilon.$$

Zeige: f' ist stetig.

^{*}Abseits dieser Aufgabe unübliche Sprechweise.