Año de acreditación: 2021-2022 y 2023

MENSAJE PARA LAS FAMILIAS Y ESTUDIANTES:

Estimadas familias y estudiantes:

Este Trabajo tiene el objetivo de ser una guía de ejercicio para repasar los temas vistos, NO es la instancia final de acreditación y no se pedirá para rendir. Se debe evaluar si efectivamente el estudiante comprendió los saberes a acreditar.

Por lo tanto, el día de la acreditación final se evaluará con ejercicios similares a los dados en el trabajo. Esta instancia tiene una duración de 80 minutos aproximadamente.

Saludamos atentamente.

Guía de ejercicios para preparar Matemática Aplicada 4°CS (6° año)

Guía para estudiantes que egresaron el año 2021

Unidad 1: Derivadas:

Derivar aplicando reglas de derivación y tablas de derivadas.

a)
$$f(x) = -\frac{1}{2}x^{-4} + \frac{3}{2}\cos(x) + 16$$

$$b) m(x) = (3^x + 2x).\sqrt{x}$$

$$c) f(x) = \frac{\ln x}{x^3}$$

d)
$$h(x) = \frac{senx}{cosx}$$

c)
$$f(x) = \frac{\ln x}{x^3}$$
 d) $h(x) = \frac{senx}{cosx}$ e) $f(x) = (-2x - 2)^2 + 2\ln(3x)$

$$f) g(x) = 3xe^{x^2}$$

$$g) m(x) = \frac{2x^3 - x}{3x^2}$$

$$f) g(x) = 3xe^{x^2}$$
 $g) m(x) = \frac{2x^3 - x}{3x^2}$ $h) r(x) = sen(3x^4 + 6x).cos(x)$

Unidad 2: Análisis combinatorio.

Analizar los siguientes problemas y resolverlos:

- 1) ¿De cuántas maneras se pueden formar 5 personas en una fila?
- 2) ¿Cuántos números distintos de 3 cifras distintas se pueden formar con los números 1; 4; 6; 8 y 9?
- 3) De un grupo de 9 personas, ¿cuántos equipos distintos de básquet se pueden armar?
- 4) Diez corredores participan en una competencia de atletismo. Si se dan premios para los tres primeros puestos, ¿de cuántas maneras distintas puede ocuparse el podio?
- 5) Con los dígitos 1, 4, 6 y 8 se ha creado una clave de seguridad de 4 cifras.
- a. ¿Cuántas claves de números distintos pueden formarse?
- b. ¿Cuántas con números repetidos?
- 6) Se consideran 7 puntos de un plano, no alineados de a 3.
- a. ¿Cuántos triángulos determinan?
- b. ¿Cuántos cuadriláteros?

c. ¿Cuántas rectas?

Unidad 3: Sistemas de ecuaciones de primer y segundo grado.

Resolver los siguientes sistemas de manera gráfica y analítica.

$$a) \begin{cases} y = -x^2 - 6x + 3 \\ 3y = -3x + 21 \end{cases}$$

a)
$$\begin{cases} y = -x^2 - 6x + 3 \\ 3y = -3x + 21 \end{cases}$$
 b) $\begin{cases} y = -3x^2 + 12x - 5 \\ y = 4x^2 - 16x + 16 \end{cases}$ c) $\begin{cases} y = x^2 - 2x + 1 \\ y = -x^2 + 5 \end{cases}$

c)
$$\begin{cases} y = x^2 - 2x + 1 \\ y = -x^2 + 5 \end{cases}$$

d)
$$\begin{cases} y = -3x^2 - 12x - 9 \\ y = -\frac{1}{2}x + 3 \end{cases}$$
 e) $\begin{cases} y = x + 6 \\ y = x^2 + 2x \end{cases}$

$$e) \begin{cases} y = x + 6 \\ y = x^2 + 2x \end{cases}$$

Por dudas acercarse al colegio a consultar

Previa y terminal año 2022-2023

Guía de ejercicios para preparar el examen:

1) Calcular los siguientes límites:

a)
$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 + 2x - 3} = b$$
) $\lim_{x \to -\infty} \frac{1 - 2x^2 - x^4}{5 + x - 3x^4} = c$) $\lim_{x \to 1} \frac{x + 3}{x^2 + 2x - 4} =$

b)
$$\lim_{x \to -\infty} \frac{1-2x^2-x^4}{5+x-3x^4}$$

c)
$$\lim_{x \to 1} \frac{x+3}{x^2+2x-4} =$$

2) Graficar y analizar la existencia del límite pedido en cada caso.

a)
$$\lim_{x \to 3} (4 - x) =$$

a)
$$\lim_{x \to 3} (4 - x) =$$
 b) $\lim_{x \to 1} (\frac{7}{2}x + 2) =$

c)
$$\lim_{x \to 2} f(x)$$
 para $f(x) = \begin{cases} 4 & \text{Si } x < 0 \\ -\frac{1}{2}x + 4 & \text{Si } x \ge 0 \end{cases}$

d)
$$\lim_{x\to 2} f(x)$$
 para $f(x) = \begin{cases} -x+3 & \text{si } x < 0 \\ 5 & \text{si } x \ge 0 \end{cases}$

3) Graficar las siguientes funciones, analizarlas y determinar el límite pedido en cada caso.

a)
$$f(x) =\begin{cases} -x^2 + 9 & Si \ x \le -2 \\ 5 & Si - 2 < x < 2 \\ -x^2 + 9 & Si \ x \ge 2 \end{cases}$$
, El límite cuando: $x \to -2$; $x \to -3$; $x \to 0$; $x \to 2$; $x \to +\infty$
b) $g(x) =\begin{cases} -x - 11 & Si \ x \le -3 \\ -x^2 + 9 & Si - 3 < x < 3 \\ x - 11 & Si \ x \ge 3 \end{cases}$, El límite cuando: $x \to -3$; $x \to 0$; $x \to \frac{3}{2}$; $x \to 0$

b)
$$g(x) = \begin{cases} -x - 11 & \text{si } x \le -3 \\ -x^2 + 9 & \text{si } -3 < x < 3 \end{cases}$$
, El límite cuando: $x \to -3$; $x \to 0$; $x \to \frac{3}{2}$; $x \to x \to 1$

$$-\infty; x \to +\infty$$

$$c) f(x): \begin{cases} \log(x+3) + 4 & \text{Si } x < -2 \\ 4 & \text{Si } x \ge -2 \end{cases} \quad \text{Calcular si existe: } \lim_{x \to -3} f(x); \lim_{x \to 0} f(x); \lim_{x \to 5} f(x) f(-1);$$

$$f(3); f(-5);$$

$$\frac{1}{d} f(x) = -\frac{1}{x+4} + 3 \qquad \text{Calcular si existe: } \lim_{x \to -4} f(x); \lim_{x \to 5} f(x); \lim_{x \to 0} f(x); f(-4); f(0); f(-6)$$

- e) $h(x) = 2^x + 4$ El límite cuando: $x \to -3$; $x \to 0$; $x \to \frac{3}{2}$; $x \to -\infty$; $x \to +\infty$
- $f) j(x) = \frac{1}{x+2} + 6$ El límite cuando: $x \to -2$; $x \to 0$; $x \to -\infty$; $x \to +\infty$
- g) k(x) = log(x+2) El límite cuando: $x \to -2$; $x \to 0$; $x \to +\infty$
 - 4) Salvar las indeterminaciones en los siguientes límites y calcularlos.

a) $\lim_{x \to 1} \frac{x^2 - 49}{x - 7}$	b) $\lim_{x \to +\infty} \frac{5x^3 - 2x}{3x^3 - x^2}$	c) $\lim_{x \to -3} \frac{x^2 - 9}{x + 3}$
$d) \lim_{x\to 0} \frac{x^2+x}{x}$	$e) \lim_{x \to +\infty} \frac{x^2 + x - 2}{x^3}$	$f) \lim_{x \to +\infty} \frac{3x^5 + 4x^3 - x + 1}{x^4 - 4x^2 + x}$

5) Resolver los siguientes límites. En caso de indeterminación, resolver utilizando métodos algebraicos.

$a) \lim_{x \to \frac{1}{2}} \frac{3}{1 - 2x}$	$b)\lim_{x\to-\infty}\frac{3x^5+5x}{2x^2-x}$	$c)\lim_{x\to 1}\frac{x^3-1}{x-1}$
$d)\lim_{x\to 1}\frac{x^3}{x^2-x}$	$e) \lim_{x \to 1} \frac{2x - 2}{\sqrt{x} - 1}$	$f) \lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3}$
g) $\lim_{x \to \frac{1}{2}} \frac{2x^2 - 7x + 3}{2x^2 - 5x + 2}$	h) $\lim_{x \to -2} \frac{x^5 - 32}{x^2 - 4x - 12}$	$i) \lim_{x \to -1} \frac{3x+3}{x^2+2x+1}$
$j) \lim_{x \to -1} \frac{x^4 - 1}{x^5 + 1}$	$k) \lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 9}$	$l) \lim_{x \to -2} \frac{x^2 - 4}{x + 2}$
$m) \lim_{x \to 7} \frac{x^2 - 49}{x + 7}$	$n) \lim_{x \to -7} \frac{x^2 - 49}{x + 7}$	$o)\lim_{x\to 3}\frac{x-3}{x^2-9}$

6) Analizar la continuidad en las siguientes funciones. En caso de ser discontinuas clasificarlas

5	En x=-2
4	En x=-1
•	En x=0
2	En x=2
1	
4 -3 -2 -1 0 1 2 3	
3	En x= -1
2	$\operatorname{En} x = 0$
	En x=1
-1 0 1	
-1	
-2	
_3	
$f(x) = \begin{cases} \frac{1}{x+2} + 2 & \text{Si } x < -2\\ \log(x-2) & \text{Si } x > -2 \end{cases}$	En x=-4
$\log(x-2) \text{Si } x > -2$	En x=-2
	En x=0
$f(x) = \begin{cases} \frac{1}{x^2} - 4 & \text{si } x < 0 \\ -x^2 + 1 & \text{si } x > 0 \end{cases}$	En x=-2
$\int_{-x^2}^{x} (-x^2 + 1) \sin x > 0$	En x=0
	En x=3