

IN THE CLAIMS

Please amend claims 20 and 30, as follows:

20. (AS ONCE AMENDED) The data scrambling method of claim 17, wherein the generating of the random data comprises shift-storing, n bits in registers and then, generating random data, wherein a total of n values are used as initial values, including a first initial value, first register values, which are obtained by shifting the first initial value 7 times, a second initial value immediately after a capacity required for return of the first initial value and the first register values, and second register values, which are obtained by shifting the second initial value 7 times,

wherein the data scrambling method further comprises exclusive-ORing outputs of a predetermined number of least significant ones of the registers and input data in units of byte[].

30. (AS ONCE AMENDED) The data scrambler of claim 1, wherein the random data generator comprises:

a decoder to selectively output n bits as valid and invalid bits in response to input m bits;

n registers arranged in serial, which shift and store the n bits, to generate shifted n bits as the random data;

a selection circuit which selects a predetermined value or the shifted n bits for ones of the shifted n bits, to generate a selection signal; and

logic gates arranged in serial, which perform XOR operations on the ones of the shifted n bits, the ones of the shifted n bits, and an output of an adjacent more significant one of the logic circuits, wherein the output of the logic gate associated with a least significant of the ones of the shifted n bits is fed back to a least significant one of the registers.