Report No: CCISE160203604

FCC REPORT

Applicant: Shenzhen TongFang Information Technologies CO.,LTD.

Floor3, Building D, TongFang Information Harbour, LangShan

Address of Applicant: Road, High-tech Industrial Park North, NanShan District,

ShenZhen, P.R.China 51805

Equipment Under Test (EUT)

Product Name: MID

Model No.: B9SS3, B9S3

FCC ID: 2ABKZ-UC197908

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 26 Feb., 2016

Date of Test: 26 Feb., to 17 Mar., 2016

Date of report issued: 18 Mar., 2016

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	18 Mar., 2016	Original

Prepared by: 18 Mar., 2016

Report Clerk

Reviewed by: 18 Mar., 2016

Project Engineer

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3		TENTS	
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	DESCRIPTION OF SUPPORT UNITS	8
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.7	SPURIOUS EMISSION	32
	6.7.1	r tooti otoa Barra	
	6.7.2		
	6.8	FREQUENCY STABILITY	42
7	TES	T SETUP PHOTO	45
8	FUT	CONSTRUCTIONAL DETAILS	46

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a)	Pass
26dB Occupied Bandwidth	15.407 (a)	Pass
6dB Emission Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407 (a)	Pass
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen TongFang Information Technologies CO.,LTD.
Address of Applicant:	Floor3, Building D, TongFang Information Harbour, LangShan Road, High-tech Industrial Park North, NanShan District, ShenZhen, P.R.China 51805
Manufacturer:	Shenzhen TongFang Information Technologies CO.,LTD.
Address of Manufacturer:	Floor3, Building D, TongFang Information Harbour, LangShan Road, High-tech Industrial Park North, NanShan District, ShenZhen, P.R.China 51805

5.2 General Description of E.U.T.

Product Name:	MID
Model No.:	B9SS3, B9S3
Operation Frequency:	Band 1: 5180MHz-5240MHz
Operation mode:	Portable Used
Channel numbers:	802.11a/802.11n20: 4, 802.11n40: 2, 802.11ac:1
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz, 802.11ac : 80MHz
Modulation technology: (IEEE 802.11a)	BPSK, QPSK,16-QAM, 64-QAM
Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps,36Mbps,48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps, MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Modulation technology: (IEEE 802.11ac)	BPSK,QPSK,16-QAM, 64-QAM, 256-QAM
Antenna Type:	Internal Antenna
Antenna gain:	2 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-2300mAh
AC adapter:	Model: FEF0500200A1BU Input: AC100-240V 50/60Hz 0.3A Output: DC 5.0V, 2.0A

Operation Frequency each of channel

Band 1							
802.11a/8	02.11n20	802.11	n40	802.1	1ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	38	5190MHz	42	5210MHz		
40	5200MHz	46	5230MHz				
44	5220MHz						
48	5240MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1							
802.11a/8	802.11a/802.11n20		802.11n40		1ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency		
The lowest channel	5180MHz	The lowest channel	5190MHz	The lowest channel	5210MHz		
The middle channel	5200MHz	The highest channel	5230MHz				
The highest channel	5240MHz						

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.

Report No: CCISE160203604

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.				
Mode	Data rate			
802.11a	6 Mbps			
802.11n20	6.5 Mbps			
802.11n40	13 Mbps			
802.11ac 23.9 Mbps				

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6 Mbps for 802.11a, 6.5 Mbps for 802.11n20, 13 Mbps for 802.11n40 and 29.3 Mbps for 802.11ac. All test items for 802.11a, 802.11ac and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE160203604

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

5.7 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi - Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016	
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10:2009	ANSI C63.10:2009						
Test Frequency Range:	150 kHz to 30 MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9 kHz, VBW=30 kHz							
Limit:	F	Limit (d	lBuV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarithm							
Test procedure	 The E.U.T and simulators a line impedance stabili 50ohm/50uH coupling imp The peripheral devices through a LISN that provided with 50ohm termination. It test setup and photograph Both sides of A.C. line are interference. In order to fin positions of equipment and changed according to ANS measurement. 	zation network (L.I.S edance for the measuriare also connected trides a 500hm/50uH of (Please refer to the bls). checked for maximum ed the maximum emissid all of the interface cate	.N.). It provides a ing equipment. o the main power coupling impedance lock diagram of the conducted on, the relative ples must be					
Test setup:	Reference LISN 40cm AUX Equipment E.U Test table/Insulation plant Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	EMI Receiver	r — AC power					
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details.							
Test results:	Passed							

Measurement Data

Trace: 13

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site

Condition EUT MID

Model : B9SS3 Test Mode : 5G-WIFI mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki

Remark

nomarn	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
	MHz	dBu∀	₫B	₫B	dBu∀	dBu∜	₫B		
1	0.160	39.02	0.26	10.78	50.06	65.47	-15.41	QP	
2	0.226	39.44	0.26	10.75	50.45	62.61	-12.16	QP	
3	0.235	32.17	0.26	10.75	43.18	52.26	-9.08	Average	
1 2 3 4 5 6 7 8 9	0.296	34.24	0.26	10.74	45.24	50.37	-5.13	Average	
5	0.396	41.42	0.26	10.72	52.40	57.95	-5.55	QP	
6	0.396	34.58	0.26	10.72	45.56	47.95	-2.39	Average	
7	0.449	42.96	0.27	10.74	53.97	56.89	-2.92	QP	
8	0.454	32.80	0.27	10.74	43.81	46.80	-2.99	Average	
9	0.813	39.72	0.28	10.81	50.81	56.00	-5.19	QP	
10	0.880	31.39	0.28	10.83	42.50	46.00	-3.50	Average	
11	1.433	32.04	0.30	10.92	43.26	46.00	-2.74	Average	
12	1.511	40.23	0.30	10.92	51.45	56.00	-4.55	QP	

Neutral:

Trace: 15

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: MID EUT : B9SS3 Model Test Mode : 5G-WIFI mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki Remark :

.emark								
		Read		Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	₫₿uѶ	₫B	dB	dBu₹	dBu∜	dB	
1	0.158	38.14	0.17	10.78	49.09	65.56	-16.47	QP
2	0.289	31.70	0.16	10.74	42.60	50.54	-7.94	Average
3	0.389	32.07	0.16	10.72	42.95	48.08	-5.13	Average
4	0.396	39.10	0.16	10.72	49.98	57.95	-7.97	QP
4 5 6 7	0.444	40.65	0.16	10.74	51.55	56.98	-5.43	QP
6	0.449	34.37	0.16	10.74	45.27	46.89	-1.62	Average
7	0.779	32.37	0.18	10.80	43.35	46.00	-2.65	Average
8 9	0.839	39.07	0.18	10.82	50.07	56.00	-5.93	QP
9	1.418	38.54	0.19	10.92	49.65	56.00	-6.35	QP
10	1.527	31.02	0.19	10.93	42.14	46.00	-3.86	Average
11	2.371	29.62	0.20	10.94	40.76	46.00	-5.24	Average
12	2.500	39.64	0.21	10.94	50.79	56.00	-5.21	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Measurement Data

Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result
	Lowest	7.86	24.00	Pass
802.11a	Middle	7.51	24.00	Pass
	Highest	7.37	24.00	Pass
	Lowest	6.23	24.00	Pass
802.11n20	Middle	6.17	24.00	Pass
	Highest	5.94	24.00	Pass
900 11540	Lowest	6.43	24.00	Pass
802.11n40	Highest	6.43	24.00	Pass
802.11ac	Lowest	6.55	24.00	Pass

Test plot as follows:

802.11a

Lowest channel

Middle channel

802.11n20

Lowest channel

Middle channel

Highest channel

802.11n40

Lowest channel

Highest channel

802.11ac

Lowest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (5)				
Test Method:	ANSI C63.10:2013 and KDB 789033				
Limit:	N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test Channel		26dB Emission Bar		Limit	Result	
rest Channel	802.11a 802.11n20 802.11n40 802.11ac		LIIIIL	Result		
Lowest	21.92	22.32	42.08	82.88		
Middle	21.92	22.32			N/A	N/A
Highest	21.92	22.32	42.08			

Test Channel		99% Occupy Band		Limit	Result	
Test Channel	802.11a 802.11n20 802.11n40 802.11ac		LITTIIL	Result		
Lowest	17.36	18.64	37.44	76.16		
Middle	17.36	18.56			N/A	N/A
Highest	17.44	18.64	37.44			

Test plot as follows:

26 dB EBW - 802.11a

Date: 12.MAR.2016 08:31:52 Lowest channel

Date: 12.MAR.2016 08:29:22 Middle channel

Date: 12.MAR.2016 08:28:51

Highest channel

802.11n20

Date: 12.MAR.2016 08:33:06 Lowest channel

Date: 12.MAR.2016 08:34:06 Middle channel

Date: 12.MAR.2016 08:37:25 Highest channel

802.11n40

Date: 12.MAR.2016 08:40:42 Lowest channel

Date: 12.MAR.2016 08:43:35 Highest channel

802.11ac

Date: 12.MAR.2016 08:46:30

Lowest channel

99% OBW - 802.11a

Lowest channel

Date: 12.MAR.2016 08:25:01 Middle channel

Date: 12.MAR.2016 08:26:18 Highest channel

802.11n20

Date: 12.MAR.2016 08:18:43 Lowest channel

Date: 12.MAR.2016 08:19:26 Middle channel

Date: 12.MAR.2016 08:22:04 Highest channel

802.11n40

Date: 12.MAR.2016 08:16:06 Lowest channel

Date: 12.MAR.2016 08:17:31 Highest channel

802.11ac

Date: 12.MAR.2016 08:13:43 Lowest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv)
Test Method:	ANSI C63.10:2009, KDB 789033
Limit:	11 dBm/MHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Mode	Test CH	PSD (dBm)	Limit (dBm)	Result
	Lowest	-3.12	11.00	Pass
802.11a	Middle	-3.35	11.00	Pass
	Highest	-3.63	11.00	Pass
	Lowest	-4.52	11.00	Pass
802.11n20	Middle	-4.77	11.00	Pass
	Highest	-5.14	11.00	Pass
902 11 - 10	Lowest	-7.51	11.00	Pass
802.11n40	Highest	-7.82	11.00	Pass
802.11ac	Lowest	-10.06	11.00	Pass

Test plot as follows:

Test mode: 802.11a

Date: 12.MAR.2016 08:56:35 Lowest channel

Middle channel

Date: 12.MAR.2016 08:58:39

Highest channel

Test mode: 802.11n20

Date: 12.MAR.2016 08:49:06 Lowest channel

Date: 12.MAR.2016 08:50:59 Middle channel

Date: 12.MAR.2016 08:53:59
Highest channel

Test mode: 802.11n40

Date: 12.MAR.2016 08:47:39 Lowest channel

Date: 12.MAR.2016 08:48:02 Highest channel

Test mode: 802.11ac

Date: 12.MAR.2016 08:47:10 Lowest channel

6.6 Band Edge

olo Balla Lago							
Test Requirement:	FCC Part15 E Section	n 15.407 (b)					
Test Method:	ANSI C63.10:2009, K	DB 789033					
Receiver setup:	Detector	RBW	VBW	Remark			
·	Peak	1MHz	3MHz	Peak Value			
	RMS	1MHz	3MHz	Average Value			
Limit:	Frequency	Limit (dBuV/n	n @3m)	Remark			
		68.20		Peak Value			
	Band 1 54.00 Average Value						
Test Procedure:	The EUT was pl the ground at a	aced on the top of the same of	of a rotating The table v	r EIPR[dBm]= -27dBm. g table 0.8 meters above was rotated 360 degrees			
	 The EUT was seantenna, which tower. The antenna he the ground to de Both horizontal make the measures and then the to find the maximum to find the maximum the total maximum to find the find the	was mounted on ight is varied from termine the maxed and vertical polar urement. The entermine the mission, the entermine was turn table was turn table was turn table was sevidth with Maxim evel of the EUT ind, then testing cold be reported. On in would be re-termine to the entermine the entermi	r from the in the top of a m one mete kimum value rizations of e EUT was tuned to hei rned from 0 to Peak Doum Hold Mon peak mooduld be stop ould be stop ould be stop one bested on the bested one be	terference-receiving a variable-height antenna r to four meters above of the field strength. The antenna are set to arranged to its worst ghts from 1 meter to 4 degrees to 360 degrees etect Function and			
Test setup:	EUT 4m Turn Table A A A		Antenna Tower Horn Antenna Spectrum Analyzer Amplifier				
Test Instruments:	Refer to section 5.6 f	or details					
Test mode:	Refer to section 5.3 f	or details					
Test results:	Passed						

802.11a									
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	49.15	36.23	10.96	40.06	56.28	74.00	-17.72	Horizontal	
5150.00	52.87	36.23	10.96	40.06	60.00	74.00	-14.00	Vertical	
				802.11a					
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	33.46	36.23	10.96	40.06	40.59	54.00	-13.41	Horizontal	
5150.00	33.48	36.23	10.96	40.06	40.61	54.00	-13.39	Vertical	
				802.11a					
Test c	hannel	Highest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	49.21	34.90	11.32	40.23	55.20	74.00	-18.80	Horizontal	
5350.00	51.77	34.90	11.32	40.23	57.76	74.00	-16.24	Vertical	
				802.11a					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	33.44	34.90	11.32	40.23	39.43	54.00	-14.57	Horizontal	
5350.00	33.52	34.90	11.32	40.23	39.51	54.00	-14.49	Vertical	

802.11n-HT20										
Test c	hannel		Lowest		Level		F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	52.99	36.23	10.96	40.06	60.12	74.00	-13.88	Horizontal		
5150.00	51.27	36.23	10.96	40.06	58.40	74.00	-15.60	Vertical		
			8	02.11n-HT20						
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	34.84	36.23	10.96	40.06	41.97	54.00	-12.03	Horizontal		
5150.00	34.77	36.23	10.96	40.06	41.90	54.00	-12.10	Vertical		
			8	02.11n-HT20						
Test c	hannel	Highest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	52.51	34.90	11.32	40.23	58.50	74.00	-15.50	Horizontal		
5350.00	51.62	34.90	11.32	40.23	57.61	74.00	-16.39	Vertical		
			8	02.11n-HT20						
Test c	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	35.78	34.90	11.32	40.23	41.77	54.00	-12.23	Horizontal		
5350.00	36.67	34.90	11.32	40.23	42.66	54.00	-11.34	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n-HT40										
Test c	hannel		Lowest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	59.89	36.23	10.96	40.06	67.02	74.00	-6.98	Horizontal			
5150.00	60.02	36.23	10.96	40.06	67.15	74.00	-6.85	Vertical			
			8	02.11n-HT40							
Test c	hannel		Lowest		Le	vel	Av	erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	36.76	36.23	10.96	40.06	43.89	54.00	-10.11	Horizontal			
5150.00	36.60	36.23	10.96	40.06	43.73	54.00	-10.27	Vertical			
			8	02.11n-HT40							
Test c	hannel		Highest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	59.36	34.90	11.32	40.23	65.35	74.00	-8.65	Horizontal			
5350.00	60.42	34.90	11.32	40.23	66.41	74.00	-7.59	Vertical			
			8	02.11n-HT40							
Test c	hannel		Highest		Le	vel	Av	erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	35.24	34.90	11.32	40.23	41.23	54.00	-12.77	Horizontal			
5350.00	35.68	34.90	11.32	40.23	41.67	54.00	-12.33	Vertical			

802.11ac										
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	44.83	36.23	10.96	40.06	51.96	74.00	-22.04	Horizontal		
5150.00	44.62	36.23	10.96	40.06	51.75	74.00	-22.25	Vertical		
				802.11ac						
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	34.53	36.23	10.96	40.06	41.66	54.00	-12.34	Horizontal		
5150.00	34.47	36.23	10.96	40.06	41.60	54.00	-12.40	Vertical		
				802.11ac						
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	44.33	34.90	11.32	40.23	50.32	74.00	-23.68	Horizontal		
5350.00	44.47	34.90	11.32	40.23	50.46	74.00	-23.54	Vertical		
				802.11ac						
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	35.62	34.90	11.32	40.23	41.61	54.00	-12.39	Horizontal		
5350.00	35.77	34.90	11.32	40.23	41.76	54.00	-12.24	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>	Restricted Band										
	Test Requirement:	FCC Part15 E Section 15.407(b)									
	Test Method:	ANSI C63.10: 2	009								
	Test Frequency Range:	4.5 GHz to 5.15	GHz and	d 5.3	5GHz to 5.46	GHz					
	Test site:	Measurement D	istance:	3m							
	Receiver setup:	Frequency	Detect		RBW	VBW		Remark			
		Above 1GHz									
	Limit:		RMS		1MHz	JIVII	ĦΖ	Average Value			
		Frequenc	y	Limit (dBuV/m @3m)				Remark			
		Above 1GH	lz -		74.00			Peak Value			
	Test Procedure:	7. The EUT w	as nlace	d on	54.00	otating		Average Value 0.8 meters above			
	Tast sature	to determin 8. The EUT w antenna, w tower. 9. The antenn the ground Both horize make the m 10. For each si case and th meters and to find the r 11. The test-re Specified B 12. If the emiss the limit spe of the EUT have 10dB	e the post as set 3 hich was hich was a height to deterrental and neasurent uspected nen the a the rota maximum ceiver system did be ceified, the would be margin v	is vanine verti is vanine verti inent. emi: nten table i rea stem i with of then terror vould	of the highers away from unted on the taried from one the maximun cal polarizations of the was turned was turned ding. I was set to Pan Maximum Hare EUT in peasesting could be orted. Otherwill be re-tested.	st radia: the intop of a meter value ons of the T was a to height one lold Modak mode one stopp vise the one by	tion. erferer variab to four of the ne ante arrange this fro degree tect Fu de. e was ped an emiss one u	r meters above field strength. enna are set to ed to its worst om 1 meter to 4 es to 360 degrees			
	Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table A A A A A A A A A A A A A A A A A A									
	Test Instruments:	Refer to section	5.6 for d	etail	S						
	Test mode:	Refer to section									
	Test results:	Passed									
-		-									

802.11a

Test c	hannel		Lowest		Le	vel	F	eak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	45.62	34.50	10.22	40.67	49.67	74.00	-24.33	Horizontal
4500.00	45.45	34.50	10.22	40.67	49.50	74.00	-24.50	Vertical
Test c	Test channel Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	34.26	34.50	10.22	40.67	38.31	54.00	-15.69	Horizontal
4500.00	34.25	34.50	10.22	40.67	38.30	54.00	-15.70	Vertical
Test c	hannel	Highest			Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	45.51	35.37	11.19	40.18	51.89	74.00	-22.11	Horizontal
5460.00	45.38	35.37	11.19	40.18	51.76	74.00	-22.24	Vertical
Test c	hannel		Highest		Le	vel	Average	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	35.62	35.37	11.19	40.18	42.00	54.00	-12.00	Horizontal
5460.00	35.26	35.37	11.19	40.18	41.64	54.00	-12.36	Vertical

802.11n-HT20

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	45.72	34.50	10.22	40.67	49.77	74.00	-24.23	Horizontal
4500.00	45.15	34.50	10.22	40.67	49.20	74.00	-24.80	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	34.25	34.50	10.22	40.67	38.30	54.00	-15.70	Horizontal
4500.00	34.52	34.50	10.22	40.67	38.57	54.00	-15.43	Vertical
Test c	hannel	Highest			Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	45.68	35.37	11.19	40.18	52.06	74.00	-21.94	Horizontal
5460.00	45.21	35.37	11.19	40.18	51.59	74.00	-22.41	Vertical
Test c	hannel		Highest		Le	vel	Average	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	35.62	35.37	11.19	40.18	42.00	54.00	-12.00	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	eak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	45.23	34.50	10.22	40.67	49.28	74.00	-24.72	Horizontal
4500.00	45.59	34.50	10.22	40.67	49.64	74.00	-24.36	Vertical
Test c	Test channel Lowest			Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	34.95	34.50	10.22	40.67	39.00	54.00	-15.00	Horizontal
4500.00	34.74	34.50	10.22	40.67	38.79	54.00	-15.21	Vertical
Test c	hannel	Highest			Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	45.19	35.37	11.19	40.18	51.57	74.00	-22.43	Horizontal
5460.00	45.47	35.37	11.19	40.18	51.85	74.00	-22.15	Vertical
Test c	hannel		Highest		Le	vel	Average	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	35.65	35.37	11.19	40.18	42.03	54.00	-11.97	Horizontal
5460.00	35.74	35.37	11.19	40.18	42.12	54.00	-11.88	Vertical

802.11ac

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	43.90	34.50	10.22	40.67	47.95	74.00	-26.05	Horizontal
4500.00	44.61	34.50	10.22	40.67	48.66	74.00	-25.34	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	34.25	34.50	10.22	40.67	38.30	54.00	-15.70	Horizontal
4500.00	34.52	34.50	10.22	40.67	38.57	54.00	-15.43	Vertical
Test c	hannel		Lowest			vel	F	Peak
		Antenna Cable Preamp Factor (dB) Loss (dB) Factor (dB)						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
								Polarization Horizontal
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	
(MHz) 5460.00 5460.00	(dBuV/m) 44.40	Factor (dB) 35.37	Loss (dB)	Factor (dB) 40.18	(dBuV/m) 50.78	(dBuV/m) 74.00 74.00	Limit (dB) -23.22 -23.53	Horizontal
(MHz) 5460.00 5460.00	(dBuV/m) 44.40 44.09	Factor (dB) 35.37	Loss (dB) 11.19 11.19	Factor (dB) 40.18	(dBuV/m) 50.78 50.47	(dBuV/m) 74.00 74.00	Limit (dB) -23.22 -23.53	Horizontal Vertical
(MHz) 5460.00 5460.00 Test cl	(dBuV/m) 44.40 44.09 hannel Read Level	35.37 35.37 Antenna	Loss (dB) 11.19 11.19 Lowest Cable	Factor (dB) 40.18 40.18 Preamp	(dBuV/m) 50.78 50.47 Le	(dBuV/m) 74.00 74.00 vel Limit Line	Limit (dB) -23.22 -23.53 Av Over	Horizontal Vertical erage

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions in the Restricted Bands

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:20	009							
Test Frequency Range:	30MHz to 40GH	Ηz							
Test site:	Measurement [Distance: 3	3m						
Receiver setup:	Frequency	Detecto	or	RBW VE		BW	Remark		
·	30MHz-1GHz	Quasi-pe	eak	100kHz		OkHz	Quasi-peak Value		
	Above 1GHz	Peak		1MHz	31	ИHz	Peak Value		
Limit:	Frequenc	c.V	Li	mit (dBuV/m @3	m)		Remark		
	30MHz-88N			40.0	,	Qı	uasi-peak Value		
	88MHz-216			43.5			uasi-peak Value		
	216MHz-960)MHz		46.0		Qι	uasi-peak Value		
	960MHz-10	GHz		54.0		Qι	uasi-peak Value		
	Frequenc	СУ		Limit (dBm/MHz))		Remark		
	Above 1G	Hz	68.20				Peak Value		
				54.00		A	verage Value		
Test Procedure:	the ground determine 2. The EUT vantenna, was tower. 3. The antening ground to contribute the formula of the property of the EUT was the first specified the EUT was tower to the first specified the first spec	I at a 3 me the position was set 3 revirch was na height if determine and vertical tent. Suspected the antennal ta table was reading. Receiver system Bandwidth sion level fied, then to ould be re-	eter cannot be not of the mour street was as turn with of the esting porte oe re-	the highest radices away from the steed on the top lied from one meaximum value arizations of the stone to heigh ned from 0 deg was set to Peak Maximum Hold to EUT in peak region could be stop d. Otherwise the	le was attion. e inter to of a va eter to of the e ante was artits from rees to Mode was attended to be emiliare emiliare emiliare emiliare us	ference ariable- o four m e field st anna are ranged m 1 me o 360 d ect Func e. was 100 nd the p issions to	e-receiving height antenna leters above the crength. Both e set to make the to its worst case ter to 4 meters legrees to find the ction and dB lower than the beak values of that did not have ak, quasi-peak or		

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : MID Condition

EUT : D9SS3

rest mode : 5G-WIFI Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

REMARK :

CHULLAN	2015	D 1		011	n		T	^		
			Antenna				Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
_	MHz	dBu∇	— <u>dB</u> /m	dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>		
1	312.179	52.87	13.08	2.98	28.48	40.45	46.00	-5.55	QP	
2	360.448	49.17	14.53	3.10	28.61	38.19	46.00	-7.81	QP	
3	480.528	48.48	16.57	3.46	28.92	39.59	46.00	-6.41	QP	
2 3 4 5 6	504.706	47.18	16.92	3.65	28.97	38.78	46.00	-7.22	QP	
5	601.427	49.80	18.50	3.94	28.93	43.31	46.00	-2.69	QP	
6	696.857	47.37	19.18	4.16	28.68	42.03	46.00	-3.97	QP	

Vertical:

Site

Condition

: MID

Model : B9SS3
Test mode : 5G-WIFI Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK :

Freq								Remark
MHz	dBu∜	— <u>d</u> B/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
455.906	40.19	16.28	3.25	28.88	30.84	46.00	-15.16	QP
480.528	41.37	16.57	3.46	28.92	32.48	46.00	-13.52	QP
504.706	41.14	16.92	3.65	28.97	32.74	46.00	-13.26	QP
601.427	47.22	18.50	3.94	28.93	40.73	46.00	-5.27	QP
696.857	39.90	19.18	4.16	28.68	34.56	46.00	-11.44	QP
744.866	39.59	20.24	4.34	28.50	35.67	46.00	-10.33	QP
	MHz 455.906 480.528 504.706 601.427 696.857	MHz dBuV 455.906 40.19 480.528 41.37 504.706 41.14 601.427 47.22 696.857 39.90	MHz dBuV dB/m 455.906 40.19 16.28 480.528 41.37 16.57 504.706 41.14 16.92 601.427 47.22 18.50 696.857 39.90 19.18	MHz dBuV dB/m dB 455.906 40.19 16.28 3.25 480.528 41.37 16.57 3.46 504.706 41.14 16.92 3.65 601.427 47.22 18.50 3.94 696.857 39.90 19.18 4.16	MHz dBuV dB/m dB dB 455.906 40.19 16.28 3.25 28.88 480.528 41.37 16.57 3.46 28.92 504.706 41.14 16.92 3.65 28.97 601.427 47.22 18.50 3.94 28.93 696.857 39.90 19.18 4.16 28.68	MHz dBuV dB/m dB dB dB dBuV/m 455.906 40.19 16.28 3.25 28.88 30.84 480.528 41.37 16.57 3.46 28.92 32.48 504.706 41.14 16.92 3.65 28.97 32.74 601.427 47.22 18.50 3.94 28.93 40.73 696.857 39.90 19.18 4.16 28.68 34.56	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 455.906 40.19 16.28 3.25 28.88 30.84 46.00 480.528 41.37 16.57 3.46 28.92 32.48 46.00 504.706 41.14 16.92 3.65 28.97 32.74 46.00 601.427 47.22 18.50 3.94 28.93 40.73 46.00 696.857 39.90 19.18 4.16 28.68 34.56 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 455.906 40.19 16.28 3.25 28.88 30.84 46.00 -15.16 480.528 41.37 16.57 3.46 28.92 32.48 46.00 -13.52 504.706 41.14 16.92 3.65 28.97 32.74 46.00 -13.26 601.427 47.22 18.50 3.94 28.93 40.73 46.00 -5.27 696.857 39.90 19.18 4.16 28.68 34.56 46.00 -11.44 601.427 47.22

Above 1GHz:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	43.60	40.10	15.37	41.34	57.73	74.00	-16.27	Vertical			
10360.00	42.55	40.10	15.37	41.34	56.68	74.00	-17.32	Horizontal			
		802.11	a mode Lowe	est channe	l (Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	28.83	40.10	15.37	41.34	42.96	54.00	-11.04	Vertical			
10360.00	28.41	40.10	15.37	41.34	42.54	54.00	-11.46	Horizontal			

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	42.95	40.00	15.42	41.27	57.10	74.00	-16.90	Vertical			
10400.00	42.69	40.00	15.42	41.27	56.84	74.00	-17.16	Horizontal			
		802.11	a mode Mido	lle channe	l (Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	29.10	40.00	15.42	41.27	43.25	54.00	-10.75	Vertical			
10400.00	29.14	40.00	15.42	41.27	43.29	54.00	-10.71	Horizontal			

	802.11a mode Highest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	42.15	39.70	15.55	41.10	56.30	74.00	-17.70	Vertical
10480.00	42.61	39.70	15.55	41.10	56.76	74.00	-17.24	Horizontal
		802.11a	mode High	est channe	l (Average \	/alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	29.32	39.70	15.55	41.10	43.47	54.00	-10.53	Vertical
10480.00	28.50	39.70	15.55	41.10	42.65	54.00	-11.35	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	43.54	40.10	15.37	41.34	57.67	74.00	-16.33	Vertical
10360.00	42.74	40.10	15.37	41.34	56.87	74.00	-17.13	Horizontal
		802.11n2	20 mode Lov	vest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	29.03	40.10	15.37	41.34	43.16	54.00	-10.84	Vertical
10360.00	28.81	40.10	15.37	41.34	42.94	54.00	-11.06	Horizontal

	802.11n20 mode Middle channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	42.71	40.00	15.42	41.27	56.86	74.00	-17.14	Vertical
10400.00	42.63	40.00	15.42	41.27	56.78	74.00	-17.22	Horizontal
		802.11n	20 mode Mic	ldle channe	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	28.36	40.00	15.42	41.27	42.51	54.00	-11.49	Vertical
10400.00	28.72	40.00	15.42	41.27	42.87	54.00	-11.13	Horizontal

	802.11n20 mode Highest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	42.66	39.70	15.55	41.10	56.81	74.00	-17.19	Vertical
10480.00	43.17	39.70	15.55	41.10	57.32	74.00	-16.68	Horizontal
		802.11n2	20 mode Higl	hest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	28.96	39.70	15.55	41.10	43.11	54.00	-10.89	Vertical
10480.00	29.11	39.70	15.55	41.10	43.26	54.00	-10.74	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n40 mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	41.59	40.00	15.42	41.31	55.70	74.00	-18.30	Vertical
10380.00	43.43	40.00	15.42	41.31	57.54	74.00	-16.46	Horizontal
		802.11n	40 mode Lov	vest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	26.67	40.00	15.42	41.31	40.78	54.00	-13.22	Vertical
10380.00	29.21	40.00	15.42	41.31	43.32	54.00	-10.68	Horizontal

	802.11n40 mode Highest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	42.65	39.80	15.51	41.13	56.83	74.00	-17.17	Vertical
10460.00	43.40	39.80	15.51	41.13	57.58	74.00	-16.42	Horizontal
		802.11n4	10 mode Hig	hest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	27.48	39.80	15.51	41.13	41.66	54.00	-12.34	Vertical
10460.00	29.74	39.80	15.51	41.13	43.92	54.00	-10.08	Horizontal

	802.11ac mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.00	41.11	39.90	15.46	41.24	55.23	74.00	-18.77	Vertical
10420.00	42.13	39.90	15.46	41.24	56.25	74.00	-17.75	Horizontal
		802.11a	c mode Low	est channe	el (Average \	/alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.00	29.22	39.90	15.46	41.24	43.34	54.00	-10.66	Vertical
10420.00	28.85	39.90	15.46	41.24	42.97	54.00	-11.03	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)			
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.			
Test setup:	Temperature Chamber			
	Spectrum analyzer EUT Att. Variable Power Supply			
	Note: Measurement setup for testing on Antenna connector			
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -20 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.			
Test results:	Passed			

Measurement Data (the worst channel):

Voltage vs. Frequency Stability (802.11a Lowest channel=5180MHz)

Test c	onditions	F(MII-)	Mary Designation (common)
Temp(℃)	Voltage(DC)	Frequency(MHz)	Max. Deviation (ppm)
	4.26V	5179.983963	3.10
20	3.7V	5179.986485	2.61
	3.15V	5179.986024	2.70

Temperature vs. Frequency Stability (802.11a Lowest channel=5180MHz)

Test co	nditions	Francisco (MILIT)	May Deviation (nom)
Voltage(DC)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
	-20	5179.987495	2.41
	-10	5179.989632	2.00
	0	5179.985287	2.84
2.7\/	10	5179.986639	2.58
3.7V	20	5179.985784	2.74
	30	5179.984963	2.90
	40	5179.983748	3.14
	50	5179.984669	2.96

Voltage vs. Frequency Stability (802.11n20 Lowest channel=5180MHz)

Test co	onditions	Francisco (MIII-)	Max Daviation (nnm)		
Temp(℃)	Voltage(DC)	Frequency(MHz)	Max. Deviation (ppm)		
	4.26V	5179.9881	2.30		
20	3.7V	5179.9864	2.63		
	3.15V	5179.9877	2.37		

Temperature vs. Frequency Stability (802.11n20 Lowest channel=5180MHz)

Test co	nditions	Francisco (MHT)	May Deviation (npm)
Voltage(DC)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
	-20	5179.9874	2.43
	-10	5179.9862	2.66
	0	5179.9853	2.84
3.7V	10	5179.9884	2.24
3.7 V	20	5179.9887	2.18
	30	5179.9891	2.10
	40	5179.9867	2.57
	50	5179.9925	1.45

Voltage vs. Frequency Stability (802.11n40 Lowest channel=5190MHz)

Test conditions		F(MILE)	Mara Davidian (num)
Temp(°C)	Voltage(DC)	Frequency(MHz)	Max. Deviation (ppm)
20	4.26V	5189.9867	2.56
	3.7V	5189.9864	2.62
	3.15V	5189.9875	2.41

Temperature vs. Frequency Stability (802.11n40 Lowest channel=5190MHz)

Test conditions		Fue access on (BALL)	Mary Deviation (name)
Voltage(DC)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
3.7V	-20	5189.9851	2.87
	-10	5189.9873	2.45
	0	5189.9861	2.68
	10	5189.9847	2.95
	20	5189.9855	2.79
	30	5189.9876	2.39
	40	5189.9871	2.49
	50	5189.9874	2.43

Voltage vs. Frequency Stability (802.11ac Lowest channel=5210MHz)

Test conditions		F (NALL-)	Mara Daviation (numb
Temp(°C)	Voltage(DC)	Frequency(MHz)	Max. Deviation (ppm)
20	4.26V	5209.9884	2.23
	3.7V	5209.9887	2.17
	3.15V	5209.9886	2.19

Temperature vs. Frequency Stability (802.11ac Lowest channel=5210MHz)

Test conditions		Function of (MILE)	Mary Davistian (nam)
Voltage(DC)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
3.7V	-20	5209.9870	2.50
	-10	5209.9884	2.23
	0	5209.9876	2.38
	10	5209.9882	2.26
	20	5209.9887	2.17
	30	5209.9869	2.51
	40	5209.9889	2.13
	50	5209.9873	2.44