

DATA SCIENCE PROJECT(MIDTERM)

NAME: RABBI HASAN HIMEL

ID: 20-422404-1

SECTION: D

FACULTY: TOHEDUL ISLAM

Importing Dataset (Dataset midturm.csv)

myproject<-read.csv("D:/Study/Aiub/9th Semester/Data Science/Project/Mid/Dataset midterm.csv",header=TRUE, sep=",")

Output of the dataset:

myproject

Structure of the DATASET

str(myproject)

```
> str(myproject)
'data.frame': 80 obs. of 8 variables:
$ id
               : int 12345678910 ...
$ Age
               : int 22 26 26 28 22 26 27 32 28 27 ...
$ weight.kg.
            : num 57.7 63 62 65 58 63 64 70 63.5 64.5 ...
$ Delivery_number: int 1 2 2 1 2 1 2 3 2 1 ...
$ Delivery_time : int 0010010001 ...
$ Blood
               : chr "high" "normal" "normal" "high" ...
               : int 0000000000 ...
$ Heart
               : int 0100100101 ...
$ Caesarian
```

Summary of Dataset

summary(myproject)

```
Age
Min. :18.00
1st Qu.:25.00
                                                                                                     Delivery_number Delivery_time
                                                                                                                                                                                                                          Heart
                                                                                                                                                                                                                                                       Caesarian
                                                                                                    Delivery_numbe
Min. :1.000
1st Qu.:1.000
Median :1.500
Mean :1.679
3rd Qu.:2.000
Max. :4.000
NA's :2
                                                                 Min. : 49.00
1st Qu.: 61.00
                                                                                                                                      Min. :0.0000
1st Qu.:0.0000
                                                                                                                                                                                                                 Min. :0.000
1st Qu.:0.000
                                                                                                                                                                                                                                                   Min. :0.0000
1st Qu.:0.0000
1st Qu.:20.75
Median :40.50
Mean :40.50
                                                                                                                                                                          Class : character
                                Median :28.00
Mean :29.68
                                                                 Median : 63.50
Mean : 65.13
                                                                                                                                     Median :0.0000
Mean :0.6234
3rd Qu::1.0000
Max. :2.0000
                                                                                                                                                                                                                 Median :0.000
Mean :0.375
                                                                                                                                                                                                                                                  Median :1.0000
Mean :0.5641
                                3rd Qu.:32.00
Max. :95.00
NA's :3
                                                                 3rd Qu.: 68.00
Max. :110.00
NA's :3
3rd Qu.:60.25
Max. :80.00
                                                                                                                                                                                                                 3rd Qu.:1.000
Max. :1.000
                                                                                                                                                                                                                                                                  :1.0000
                                                                                 :110.00
                                                                                                                                      Max.
NA's
```

Attributes name of this dataset

Datatypes of this dataset of all attributes

```
> typeof(myproject$id)
[1] "integer"
> typeof(myproject$Age)
[1] "integer"
> typeof(myproject$weight.kg.)
[1] "double"
> typeof(myproject$Delivery_number)
[1] "integer"
> typeof(myproject$Delivery_time)
[1] "integer"
> typeof(myproject$Blood)
[1] "character"
> typeof(myproject$Heart)
[1] "integer"
> typeof(myproject$Caesarian)
[1] "integer"
```

Removing Missing values

remove_missing_value <- na.omit(myproject)
myproject<-remove_missing_value</pre>

Before removing:

	id	Age	weight.kg.	Delivery_number	Delivery_time	Blood	Heart	Caesarian
1	1	22	57.7	1	0	2	0	0
2	2	26	63.0	2	Θ	1	0	1
3	3	26	62.0	2	1	1	0	0
4	4	28	65.0	1	0	2	0	0
5	5	22	58.0	2	0	1	0	1
6	6	26	63.0	1	1	0	0	0
7	7	27	64.0	2	0	1	0	0
8	8	32	70.0	3	0	1	0	1
9	9	28	63.5	2	0	<na></na>	0	0
10	10	27	64.5	1	1	1	0	1
11		36	75.0	1	Θ	1	0	0
12	12	33	70.0	1	1	0	0	1
	13	23	58.0	1	1	1	0	0
14	14	20	55.0	1	0	1	1	0
15	15	29	65.0	1	NA	<na></na>	1	1
16	16	25	61.5	1	2	0	0	0
17	17	25	61.5	1	0	1	0	0
18	18	20	55.5	1	2	2	0	1
19	19	37	76.0	3	0	1	1	1
20	20	24	56.6	1	2	0	1	1
21	21	26	62.0	1	1	1	0	0
22		33	75.0	2	0	0	1	1
23		25	62.0	1	1	2	0	0
24	24	27	65.0	NA	NA	0	1	1
25	25	20	55.0	1	0	2	1	1
26		18	49.0	NA	0	1	0	0
27	27	18	50.0	1	NA	2	1	1

After Removing:

Measure of center (MEAN, MEDIAN and MODE) for Weight.kg.

```
mean(myproject$weight.kg.,na.rm = TRUE) #Mean
median(myproject$weight.kg.,na.rm = TRUE) #median
# For modeValue installing packages("DescTools")
library(DescTools)
modeValue <- Mode(myproject$weight.kg.)#mode
modeValue
```

```
> mean(myproject$weight.kg.,na.rm = TRUE) #Mean
[1] 65.6
> median(myproject$weight.kg.,na.rm = TRUE) #median
[1] 63
> library(DescTools)
> modeValue 		 Mode(myproject$weight.kg.)#mode
> modeValue
[1] 62.5 63.0
attr(,"freq")
[1] 5
```

Sorting and Max value

```
> sort(myproject$weight.kg.)
   51.0 53.0 55.0 55.0 55.5 56.6 57.0 57.0 57.7 58.0 58.0 58.0
[15] 59.0 59.0
              59.0 61.0 61.5 61.5 61.5 62.0
                                              62.0 62.0
                                                        62.0
                                                              62.5 62.5
                                                   64.0 64.5
[29] 62.5 62.5 63.0 63.0 63.0 63.0 63.0 63.5
                                              64.0
                                                              64.5 65.0
[43] 66.0 67.0 67.0 67.5 67.5 68.0 68.0 68.0
                                             68.5
                                                   69.0 69.0 70.0
                                                                   70.0
[57] 72.5 73.0 73.0 74.0 75.0 75.0 75.0 75.0 76.0 82.0 105.0 110.0
> max(myproject$weight.kg.)
[1] 110
```

Measure of center (MEAN, MEDIAN and MODE) for Blood

```
library(dplyr)
myproject$weight.kg.= as.numeric(myproject$weight.kg.)
mean(myproject$weight.kg.,na.rm = TRUE) #Mean
median(myproject$weight.kg.,na.rm = TRUE) #median
# For modeValue installing packages("DescTools")
library(DescTools)
```

modeValue <- Mode(myproject\$weight.kg.)#mode

modeValue

Sort and maximum:

Measure of center (MEAN, MEDIAN and MODE) for AGE

library(dplyr)

#Because Blood value was characteristic, have to convert into Numeric

```
myproject$Blood= as.numeric(myproject$Age)
mean(myproject$Age,na.rm = TRUE) #Mean
median(myproject$Age,na.rm = TRUE) #median
#install.packages("DescTools")
library(DescTools)
modeValue <- Mode(myproject$Age)#mode
modeValue
```

```
> mean(myproject$Age,na.rm = TRUE) #Mean
[1] 30.10294
> median(myproject$Age,na.rm = TRUE) #median
[1] 27.5
```

Sort and maximum:

```
sort(myproject$Age)
```

max(myproject\$Age)

```
> modeValue
[1] 26
attr(,"freq")
[1] 9
> 
> sort(myproject$Age)
[1] 19 20 20 20 21 22 22 22 22 23 24 24 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 [29] 27 27 27 27 27 28 28 28 28 28 29 29 30 30 31 31 31 32 32 32 32 32 32 32 33 33 33 33 35 36 36 36 37 38 40 90 95
> max(myproject$Age)
[1] 95
```

Finding MEAN of Column (AGE & BLOOD PRESSURE)

install.packages("matrixStats")

library(matrixStats)

myproject\$age_bloodmean = rowMeans(as.matrix(myproject[,c(2,6)]))

myproject\$age bloodmean

```
> myproject$age_bloodmean
[1] 12.0 14.5 14.5 15.0 12.5 13.5 15.0 17.5 15.0 19.5 17.0 13.0 11.5 13.0 14.0 11.0
[17] 20.0 12.5 14.5 17.0 13.5 11.0 16.5 17.0 14.5 13.0 21.5 17.0 15.0 14.5 15.0 18.0
[33] 17.0 17.0 13.5 14.5 11.0 19.0 12.5 19.0 15.5 17.0 14.5 18.0 11.0 16.0 18.0 16.0
[49] 14.0 16.5 48.0 14.0 12.0 16.5 17.5 16.5 19.0 15.5 16.0 13.0 14.0 45.5 15.5 17.5
[65] 20.0 15.0 13.0 13.5
```

Row wise standard deviation (AGE & Blood-Numeric) Creating New Column(AGE BLOOD)

```
myproject$Blood <- factor(myproject$Blood, levels = c("low","high","normal"), labels = c(0,2,1))
myproject$Blood= as.numeric(myproject$Blood)
myproject$age_blood = rowSds(as.matrix(myproject[,c(2,6)]))
myproject$age_blood</pre>
```

```
> myproject$age_blood

[1] 14.14214 16.26346 16.26346 18.38478 13.43503 17.67767 16.97056 20.50610 16.97056

[10] 23.33452 22.62742 14.14214 12.02082 16.97056 15.55635 12.72792 24.04163 16.26346

[19] 16.26346 22.62742 16.26346 12.72792 19.09188 21.21320 16.26346 16.97056 26.16295

[28] 21.21320 16.97056 16.26346 18.38478 21.21320 19.79899 19.79899 17.67767 17.67767

[37] 11.31371 24.04163 13.43503 24.04163 17.67767 21.21320 16.26346 21.21320 14.14214

[46] 19.79899 24.04163 18.38478 15.55635 21.92031 66.46804 16.97056 14.14214 21.92031

[55] 20.50610 20.50610 22.62742 17.67767 18.38478 16.97056 18.38478 62.93250 17.67767

[64] 20.50610 25.45584 16.97056 16.97056 14.84924
```

myproject %>% summarise if(is.numeric, sd)

MEASURE OF SPREAD (RANGE) for AGE

#(na.rm) will avoid the null values(if have)

range(myproject\$Age, na.rm = TRUE)

```
> range(myproject$Age, na.rm = TRUE) #(na.rm) will avoid the null values(if have)
[1] 19 95
```

range AGE <- max(myproject\$Age)-min(myproject\$Age)</pre>

range_AGE

```
> range_AGE ← max(myproject$Age)-min(myproject$Age)
> range_AGE
[1] 76
> |
```

MEASURE OF SPREAD (RANGE) for Weight.KG.

range(myproject\$weight.kg., na.rm = TRUE) #(na.rm) will avoid the null values(if have)
range_Weight.KG. <- max(myproject\$weight.kg.)-min(myproject\$weight.kg.)
range_Weight.KG.</pre>

```
> range(myproject$weight.kg., na.rm = TRUE) #(na.rm) will avoid the null values(if have)
[1] 51 110
> range_Weight.KG. ← max(myproject$weight.kg.)-min(myproject$weight.kg.)
> range_Weight.KG.
[1] 59
```

MEASURE OF SPREAD (Standard Deviation) for AGE & Blood

```
s1 <- (myproject$weight.kg.)
sd(s1)</pre>
```

```
> sd(s1)
[1] 9.651865
sdblood <- (myproject$Blood)
```

sd(sdblood)

```
> sdblood ← (myproject$Blood)
> sd(sdblood)
[1] 0.8258074
```

##MATRIX

Select RANDOM Row from Data Set

sample n(myproject,6)

```
sample_n(myproject,6)
  id Age weight.kg. Delivery_number Delivery_time Blood Heart Caesarian
1 25
     20
                55.0
                                     1
                                                          20
                                                                  1
                                                    0
                                                                             1
                                     2
                                                          26
2 49
     26
                62.5
                                                     2
                                                                  Θ
                                                                             Θ
3 79
      25
                58.0
                                     1
                                                    2
                                                          25
                                                                  0
                                                                             1
4 40
      26
                59.0
                                     1
                                                    2
                                                          26
                                                                  1
                                                                             1
5 69
      25
                62.0
                                     1
                                                    0
                                                          25
                                                                  0
                                                                             1
6 74
                                     3
      32
                69.0
                                                          32
                                                                  1
                                                                             0
```

##OUTLIERS & RECOVERING THE DELETED DATA

This time replacing by NA for every missing value &

```
> myproject2←read.csv("D:/Study/Aiub/9th Semester/Data Science/Project/Mid/Dat
aset_midterm_Outlier.csv",header=TRUE, sep=",")
     nyproject2
id Age weight.kg. Delivery_number Delivery_time Blood Heart Caesarian
1 22 57.7 1 0 high 0 0
2 26 63.0 2 0 normal 0 1
2 26 63.0 2 1 normal 0 0
       1
2
3
4
5
6
7
8
9
2
3
4
5
6
7
8
9
10
11
12
            28
22
                             65.0
                                                                                       Θ
                                                                                              high
                                                              2
1
                            58.0
                                                                                       0 normal
                                                                                                              Θ
                                                                                                                                1
0
            26
27
32
                            63.0
                                                                                                Low
                                                                                                              0
                                                                                       0 normal
                                                                                                              0
                                                              2
3
                             70.0
                                                                                       0 normal
            28
                                                                                                               Θ
     10
11
12
                            64.5
75.0
70.0
            27
36
                                                                                                               Θ
                                                                                                                                1
0
                                                                                       0 normal
                                                                                                               Θ
             33
                                                                                                low
                                                                                                              Θ
                                                                                                                                Θ
                            58.0
                                                                                          normal
14
     14
             20
                             55.0
                                                                                                                                 Θ
            29
25
15
                             65.0
                                                                                     NA
                                                                                                                                 10
                                                                                                               Θ
                                                                                                low
```

Count of NA values of each columns

colSums(is.na(myproject2))

```
> colSums(is.na(myproject2))
      id          Age          weight.kg. Delivery_number
      0          3          3         2
Delivery_time          Blood          Heart          Caesarian
      3          0          0         2
```

Finding which are the NA values of each attributes

```
which(is.na(myproject2$Age))
which(is.na(myproject2$weight.kg.))
which(is.na(myproject2$Delivery_number))
which(is.na(myproject2$Delivery_time))
which(is.na(myproject2$Blood))
which(is.na(myproject2$Caesarian))
which(is.na(myproject2$Heart))
```

```
> which(is.na(myproject2$Age))
[1] 50 62 78
> which(is.na(myproject2$Age))
[1] 50 62 78
> which(is.na(myproject2$weight.kg.))
[1] 47 50 62
> which(is.na(myproject2$Delivery_number))
[1] 24 26
> which(is.na(myproject2$Delivery_time))
[1] 15 24 27
> which(is.na(myproject2$Blood))
integer(0)
> which(is.na(myproject2$Caesarian))
[1] 60 77
> which(is.na(myproject2$Heart))
integer(0)
```

TOTAL NUMBER OF NA value Individual Column or Attributes

sum(is.na(myproject2\$weight.kg.))

```
3 0
> sum(is.na(myproject2$weight.kg.))
[1] 3
> View(myproject2)
```

FINDING THE OUTLIER OF WEIGHT.KG.

```
index_vec = c(1:80)
plot(index_vec,myproject2$weight.kg.)
myproject2$weight.kg.[myproject2$weight.kg.<=999] <- NA</pre>
```


FINDING THE OUTLIER OF AGE

index_vec = c(1:80)
plot(index_vec,myproject2\$Age)
myproject2\$Age[myproject2\$Age<=999] <- NA</pre>

Detecting the outlier as a missing value:

myproject2\$Age[myproject2\$Age==""] <- NA
myproject2\$weight.kg.[myproject2\$weight.kg.==""] <- NA
myproject2\$Delivery_number[myproject2\$Delivery_number==""] <- NA
myproject2\$Delivery_time[myproject2\$Delivery_time==""] <- NA
myproject2\$Blood[myproject2\$Blood==""] <- NA</pre>

myproject2\$Heart[myproject2\$Heart==""] <- NA myproject2\$Caesarian[myproject2\$Caesarian==""] <- NA</pre>

*	id ‡	Age ‡	weight.kg. ‡	Delivery_number ‡	Delivery_time [‡]	Blood [‡]	Heart ‡	Caesarian [‡]
1	1	22	57.7	1	0	high	0	0
2	2	26	63.0	2	0	normal	0	1
3	3	26	62.0	2	1	normal	0	0
4	4	28	65.0	1	0	high	0	0
5	5	22	58.0	2	0	normal	0	1
6	6	26	63.0	1	1	low	0	0
7	7	27	64.0	2	0	normal	0	0
8	8	32	70.0	3	0	normal	0	1
9	9	28	63.5	2	0	NA •	0	0
10	10	27	64.5	1	1	normal	0	1
11	11	36	75.0	1	0	normal	0	0
12	12	33	70.0	1	1	low	0	1
13	13	23	58.0	1	1	normal	0	0
14	14	20	55.0	1	0	normal	1	0
15	15	29	65.0	1	NA	NA •	1	1
16	16	25	61.5	1	2	low	0	0
17	17	25	61.5	1	0	normal	0	0
18	18	20	55.5	1	2	high	0	1
19	19	37	76.0	3	0	normal	1	1

Annotating Low as 1, Normal as 2, and High as 3 from "Type" attribute:

```
myproject2\$BP\_RATE = factor(myproject2\$Blood, levels = c("low","normal","high"), labels = c(1,2,3))
```


RECOVERING MISSING THE DATA BY FOLLOWING STRATEGIES

1. Removing the rows which has the values

myproject2.1<- na.omit(myproject2.1)

myproject2.1

2. Recovering the MISSING VALUEs with the help of mean values

myproject2.1 <- myproject2

mean5 <- mean(myproject2.1\$Age, na.rm = TRUE)

mean5

```
mean6 <- mean(myproject2.1$weight.kg., na.rm = TRUE)
mean6
mean7 <- mean(myproject2.1$Blood, na.rm = TRUE)</pre>
mean7
mean8 <- mean(myproject2.1$Caesarian, na.rm = TRUE)</pre>
mean8
mean9 <- mean(myproject2.1$Delivery_number, na.rm = TRUE)</pre>
mean9
mean10 <- mean(myproject2.1$Delivery time, na.rm = TRUE)
mean10
myproject2.1$Age[is.na(myproject2.1$Age)] <- mean5
myproject2.1$weight.kg.[is.na(myproject2.1$weight.kg.)] <- mean6
myproject2.1$Blood[is.na(myproject2.1$Blood)] <- mean7
myproject2.1$Caesarian[is.na(myproject2.1$Caesarian)] <- mean8
myproject2.1$Delivery_number[is.na(myproject2.1$Delivery_number)] <- mean9
myproject2.1$Delivery_time[is.na(myproject2.1$Delivery_time)] <- mean10</pre>
myproject2.1
```

```
Age weight.kg. Delivery_number Delivery_time
                                                                    Blood Heart Caesarian
   id

      1 22.00000
      57.70000
      1.000000
      0.0000000
      3.000000
      0 0.0000000

      2 26.00000
      63.00000
      2.000000
      0.0000000
      2.000000
      0 1.0000000

                                                   1.0000000 2.000000 0 0.0000000
3
    3 26.00000 62.00000
                                    2.000000
                                                   0.0000000 3.000000
                                                                             0 0.0000000
    4 28.00000 65.00000
                                    1.000000
5
    5 22.00000
                   58.00000
                                     2.000000
                                                    0.0000000 2.000000
                                                                             0 1.0000
0 0.0000000
                                                                               0 1.0000000
    6 26.00000 63.00000
                                     1.000000
                                                     1.0000000 1.000000
6
                                    2.000000
                                                    0.0000000 2.000000
                                                                             0 0.0000000
    7 27.00000 64.00000
8
    8 32.00000 70.00000
                                    3.000000
                                                    0.0000000 2.000000
                                                                              0 1.0000000
                                    2.000000
    9 28.00000 63.50000
                                                    0.0000000 2.025974 0 0.0000000
10 10 27.00000 64.50000
                                                   1.0000000 2.000000
                                    1.000000
                                                                              0 1.0000000
11 11 36.00000 75.00000
                                    1.000000
                                                    0.0000000 2.000000 0 0.0000000
                                 1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

      1.0000000
      1.0000000
      0 1.0000000

      1.0000000
      2.000000
      0 0.0000000

      0.0000000
      2.000000
      1 0.0000000

      0.6233766
      2.025974
      1 1.0000000

12 12 33.00000 70.00000
13 13 23.00000 58.00000
14 14 20.00000 55.00000
15 15 29.00000 65.00000
                                                    2.0000000 1.000000 0 0.0000000
16 16 25.00000 61.50000
                                                   0.0000000 2.000000 0 0.0000000
17 17 25.00000 61.50000
18 18 20.00000 55.50000
                                                   2.0000000 3.000000 0 1.0000000
19 19 37.00000 76.00000
                                    3.000000
                                                   0.0000000 2.000000
                                                                              1 1.0000000
20 20 24.00000 56.60000
                                    1.000000
                                                   2.0000000 1.000000
                                                                              1 1.0000000
21 21 26.00000 62.00000
                                                   1.0000000 2.000000
                                                                              0 0.0000000
                                    1.000000
                                                                               1 1.0000000
                                                    0.0000000 1.000000
22 22 33.00000 75.00000
                                    2.000000
   23 25.00000
                   62.00000
                                      1.000000
                                                     1.0000000 3.000000
                                                                               0 0.0000000
24 24 27.00000
                   65.00000
                                      1.679487
                                                     0.6233766 1.000000
                                                                                1 1.0000000
25 25 20.00000 55.00000
                                      1.000000
                                                    0.0000000 3.000000
                                                                                1 1.0000000
```

3. Recovering the MISSING VALUEs with the help of mode values

```
myproject2.1 <- myproject2
mode5 <- Mode(myproject2.1$Age, na.rm = TRUE)
mode5
mode6 <- Mode(myproject2.1$weight.kg., na.rm = TRUE)
mode6
mode7 <- Mode(myproject2.1$Blood, na.rm = TRUE)
mode7
mode8 <- Mode(myproject2.1$Caesarian, na.rm = TRUE)
mode8
mode9 <- Mode(myproject2.1$Delivery_number, na.rm = TRUE)
mode9
mode10 <- Mode(myproject2.1$Delivery_time, na.rm = TRUE)
mode10
```

myproject2.1\$Age[is.na(myproject2.1\$Age)] <- mode5
myproject2.1\$weight.kg.[is.na(myproject2.1\$weight.kg.)] <- mode6
myproject2.1\$Blood[is.na(myproject2.1\$Blood)] <- mode7
myproject2.1\$Caesarian[is.na(myproject2.1\$Caesarian)] <- mode8
myproject2.1\$Delivery_number[is.na(myproject2.1\$Delivery_number)] <- mode9
myproject2.1\$Delivery_time[is.na(myproject2.1\$Delivery_time)] <- mode10
myproject2.1</pre>

			t2.1					
	10	Age	weight.kg.	Delivery_number	Delivery_time	Blood	Heart	Caesarian
1	1	22	57.7	1	0	3	0	0
2	2	26	63.0	2	0	2	0	1
3	3	26	62.0	2	1	2	0	0
4	4	28	65.0	1	0	3	0	0
5	5	22	58.0	2	0	2	0	1
6	6	26	63.0	1	1	1	0	0
7	7	27	64.0	2	Θ	2	0	0
8	8	32	70.0	3	Θ	2	0	1
9	9	28	63.5	2	0	2	0	0
10	10	27	64.5	1	1	2	0	1
11	11	36	75.0	1	Θ	2	0	Θ
12	12	33	70.0	1	1	1	0	1
13		23	58.0	1	1	2	0	0
14		20	55.0	1	Θ	2	1	0
15		29	65.0	1	0	2	1	1
16		25	61.5	1	2	1	0	0
17		25	61.5	1	Θ	2	0	0
18	18	20	55.5	1	2	3	0	1
	19	37	76.0	3	0	2	1	1
	20	24	56.6	1	2	1	1	1
	21	26	62.0	1	1	2	0	0
22		33	75.0	2	0	1	1	1
	23	25	62.0	1	1	3	0	0
	24	27	65.0	1	Θ	1	1	1
25	25	20	55.0	1	0	3	1	1
26	26	18	49.0	1	0	2	0	0

4. Recovering the MISSING VALUEs with the help of median values

myproject2.1 <- myproject2

Median5 <- Median(myproject2.1\$Age, na.rm = TRUE)

Median5

Median6 <- Median(myproject2.1\$weight.kg., na.rm = TRUE)

Median6

Median7 <- Median(myproject2.1\$Blood, na.rm = TRUE)

```
Median7
```

Median8 <- Median(myproject2.1\$Caesarian, na.rm = TRUE)</pre>

Median8

Median9 <- Median(myproject2.1\$Delivery_number, na.rm = TRUE)</pre>

Median9

Median10 <- Median(myproject2.1\$Delivery time, na.rm = TRUE)

Median10

myproject2.1\$Age[is.na(myproject2.1\$Age)] <- Median5

myproject2.1\$weight.kg.[is.na(myproject2.1\$weight.kg.)] <- Median6

myproject2.1\$Blood[is.na(myproject2.1\$Blood)] <- Median7

myproject2.1\$Caesarian[is.na(myproject2.1\$Caesarian)] <- Median8

myproject2.1\$Delivery_number[is.na(myproject2.1\$Delivery_number)] <- Median9

myproject2.1\$Delivery_time[is.na(myproject2.1\$Delivery_time)] <- Median10</pre>

myproject2.1

>	myp	rojeo	ct2.1					
				Delivery_number	Delivery_time	Blood	Heart	Caesarian
1	1	22	57.7	1	· 0	3	0	0
2	2	26	63.0	2	0	2	0	1
3	3	26	62.0	2	1	2	0	Θ
4	4	28	65.0	1	0	3	0	Θ
5	5	22	58.0	2	0	2	0	1
6	6	26	63.0	1	1	1	0	Θ
7	7	27	64.0	2	0	2	0	Θ
8	8	32	70.0	3	0	2	0	1
9	9	28	63.5	2	0	2	0	Θ
16	10	27	64.5	1	1	2	0	1
1.1	11	36	75.0	1	0	2	0	0
12	12	33	70.0	1	1	1	0	1
	13	23	58.0	1	1	2	0	0
14	14	20	55.0	1	0	2	1	0
	15	29	65.0	1	0	2	1	1
	16	25	61.5	1	2	1	0	0
	7 17	25	61.5	1	0	2	0	0
	18	20	55.5	1	2	3	0	1
	19	37	76.0	3	0	2	1	1
26		24	56.6	1	2	1	1	1
	21	26	62.0	1	1	2	0	Θ
22		33	75.0	2	0	1	1	1
23		25	62.0	1	1	3	0	Θ
21		27	65.0	1	Θ	1	1	1
25		20	55.0	1	Θ	3	1	1
	26	18	49.0	1	Θ	2	0	0
2		18	50.0	1	Θ	3	1	1
28		30	68.0	1	0	2	0	0
29		32	73.0	1	0	3	1	1
36		26	62.5	2	1	2	1	0
31		25	58.0	1	0	1	0	0
	32	40	82.0	1	0	2	1	1
33	33	32	68.0	2	0	3	1	1

