Intracellular Recording of Neural Acitivity

서울대학교 의과대학 생리학교실 이 석 호

Data collection

Visualizing the neuron

이온채널을 통한 전류 (I_R) 가 발생하였을 때 막전압 (V_m) 의 변화

Equivalent circuit of the cell membrane

By Kirchhoff's law, $I_C + I_R = 0$

$$C_m dV/dt = -(I_R)$$

$$\Delta V_{\rm m} = \left(-\int I_{\rm R} dt\right) / C_{\rm m} = \Delta Q / C_{\rm m}.$$

For K⁺, $I_R = G_K (V_m - E_K)$

Kirchhoff's law

At any node in electrical circuit, current in-flow = out-flow

Passive electrical properties of the cell

$$V_{m} = i_{T} \cdot R_{m} \cdot [1 - \exp(-t/\tau_{m})]$$

Membrane potential is equilibrated at the point where chemical and electrical gradients of permeant ions (K⁺ & Cl⁻) are balanced

Equilibrium potential

$$E_K = -91 \text{ mV}$$

$$E_{Na} = +66 \text{ mV}$$

$$E_{Ca} = +120 \text{ mV}$$

$$E_{CI} = -70 \text{ mV}$$

안정막전압

(resting membrane potential)

$$= \Sigma G_i E_i / \Sigma G_i$$

$$= -60 \sim -90 \text{ mV}$$

Electrotonic and Action Potential

Graded response vs All-or-none response

Exponential decay vs.
Regenerative rsp.

Linear summation of EPSPs

Action potential generation at an axon hillock

Time-dependent changes in the ionic conductance underlying AP

Summary for ionic mechanism of AP

Regenerative property of Action Potential

Synaptic transmission

Glutamate and GABA are the most common excitatory and inhibitory NTs

NT	permeant ions	reversal potential	role
Glutamate	Na+ and K+	0 mV	excitatory
GABA	CI-	-70 mV	inhibitory

Whisker deflection-induced syn. conductance changes in S1 PCs

Temporal structure of the input to an excitatory cell

Hodgkin & Huxley의 활동전압 모델

(Mathematical modeling of the channel gating kinetics)

Hodgkin, Huxley & Katz

서울대학교 의과대학 생리학교실 이석호

Macroscopic current is the sum of the unitary currents

Single Na⁺ channel openings in response to a depolarizing step to +40 mV (muscle cell).

Cell-attached patch recordings

Neher & Sakmann

Two-state model of the K^+ channel gating (when α and β are constant)

$$(1-n) \xrightarrow{\alpha \atop \beta} n$$

$$dn/dt = \alpha \cdot (1 - n) - \beta \cdot n$$

$$dn/dt = 0 \text{ when } n = n_{\infty} = \alpha / (\alpha + \beta)$$

$$dn/dt = (n_{\infty} - n) / \tau_n \text{ , where } \tau_n = 1 / (\alpha + \beta).$$

$$n(t) = n_0 + (n_\infty - n_0) \cdot [1 - \exp(-t/\tau_n)]$$

dn/dt =
$$(n_{\infty} - n) / \tau_n$$

 $n(t) = n_0 + (n_{\infty} - n_0) \cdot [1 - \exp(-t/\tau_n)]$

Modeling of the K⁺ current activation time course

$$n(t) = n_{ss} \left[1 - \exp(-t/\tau_n) \right]$$

$$I_{K} = G_{K,max} \cdot n^{4} \cdot (V_{m} - E_{K})$$

Modeling the activation time course of Nat and Kt current

$$I_{Na} = G_{Na} \cdot (V_m - E_{Na})$$
$$I_K = G_K \cdot (V_m - E_K)$$

$$G_K = G_{K,max} \cdot n^4$$

If
$$n_{ss} = 1$$
 and $n_0 = 0$
 $n(t) = 1 - e^{-t/\tau n}$

$$G_{\text{Na}} = G_{\text{Na,max}} \cdot \text{m}^3 \cdot \text{h}$$

If
$$m_{ss} = 1$$
 and $m_0 = 0$
 $m(t) = 1 - e^{-t/\tau m}$

If
$$h_{ss} = 0$$
 and $h_0 = 1$
 $h(t) = e^{-t/\tau h}$

$$m(t) = m_0 + (m_{\infty} - m_0) \cdot [1 - \exp(-t/\tau_m)]$$

$$h(t) = h_0 + (h_{\infty} - h_0) \cdot [1 - \exp(-t/\tau_h)]$$

α and β are V_m -dependent variables

$$(1-n) \xrightarrow{\alpha(v)} n$$

$$\beta(v)$$

$$I_{K} = G_{K,max} \cdot n_{v,t}^{4} \cdot (V_{m} - E_{K})$$

At a given voltage v,

$$\begin{split} dn_v/dt &= \alpha_v \cdot (1 - n_v) - \beta_v \cdot n_v = (n_{v,\infty} - n_v) \, / \, \tau_{n,v} \\ n_v(t) &= [n_{v,\infty} - n_{v,0}] \cdot [1 - exp(-t/\tau_{n,v})], \text{ where } n_{v,0} \equiv n_v(0) \\ \tau_{n,v} &= 1 \, / \, (\alpha_v + \beta_v) \\ n_{v,\infty} &= \alpha_v \, / \, (\alpha_v + \beta_v) \end{split}$$

Determining rate constants from experimental data

$$\alpha(v) = n_{\infty}(v) / \tau(v)$$

$$\beta(v) = 1/\tau(v) - \alpha(v)$$

$$\alpha_n(v) = 0.01[10-(v-v_r)]/\{\exp[10-(v-v_r)]/10\}-1$$

$$\beta_{\rm p}({\rm v}) = 0.125 \exp[-({\rm v} - {\rm v_r})/80]$$

$$V_{r} = -65 \text{ mV}$$

Numerical integration using

Euler method or Runge-Kutta method

Since
$$\Delta V_{\rm m} = -\int I_{\rm R} dt / C_{\rm m}$$

$$\Sigma I_{m} = I_{Na} + I_{K} + I_{leak}$$
$$\frac{dV}{dt} = -\Sigma I_{m} / C_{m},$$

$$V_{i+1} = V_i + \frac{dV}{dt} \cdot \Delta t$$

Membrane potential (mV)

Reconstruction of the action potential from rate constants data

Three groups of K⁺ channel principal subunits

High voltage-activated K⁺ current

Extracellular Recording of Neural Acitivity

서울대학교 의과대학 생리학교실 이 석 호

Electroencephalogram (EEG)

Macro- vs Micro-electrode

Pyramidal neuron as a current dipole

Extracellular recording of single unit action potential

*Good extracellular recording electrode

• small: unit spike activity

• low impedance: high S/N ratio

carbon filament and platinum black

Field potential

a potential difference generated by a flow of current thr. finite extracelluar (EC) medium

Direction lines of EC current flow around a stellate cell during somtic action potential

$$\varphi = \frac{1}{4\pi\sigma} \left(\frac{J^+}{r^+} - \frac{J^-}{r^-} \right)$$

When $J^+ = J^-$.

$$\varphi = \frac{J}{4\pi\sigma} \left(\frac{1}{r^+} - \frac{1}{r^-} \right)$$

 ϕ , electric potential

J, charge

r, distance

EC spikes recorded from electrodes at different depth

EC spikes at different electrode locations during an somatic APdu

Shaping of EC spikes by cell geometry (stellate cell)

Dendtric current sources (J^+) are more distributed in SC than in PC \Rightarrow Concentrated sink at the soma dominates the EC spike everywhere.

Simple spike models

- 1) LIF model
- 2) Izhikevich model

Leaky Integrate and Fire model

$$\begin{split} \Sigma \ I_m &= -G_{in}(V - E_L) + I_o. \\ dv/dt &= \Sigma \ I_m \ / \ C_m \(Eq1) \\ \\ v(i+1) &= v(i) + dt \ (\Sigma \ I_m \ / \ C_m) \\ \\ If \ (v > V_{thr}) \ \&\& \ (t_{postAP} > T_{rfr}) \\ \\ v &\leftarrow V_{peak} \\ else if \ v &== V_{peak} \\ \\ v &\leftarrow V_{reset} \end{split}$$

endif

$$G_{in}/C_{m} = 1/(R_{m} C_{m}) = 1/\tau_{m}$$

$$I_{o}/C_{m} = I_{o} R_{m} / \tau_{m}$$

$$C_{m} dv/dt = -G_{in}(V - E_{L}) + I_{o}$$
(Eq1)
 $\tau_{m} dv/dt = V - E_{L} + R_{m} I_{o}$ (Eq2)

If
$$E_L = 0$$
, $V_{inf} = R_m I_o$.
 $v(t) = v_0 + (V_{inf} - v_0)[1 - exp(-t/\tau_m)](Eq3)$

Firing freq. vs I_O

$$v(t) = v_0 + (V_{inf} - v_0)[1 - exp(-t/T_m)](Eq3)$$

$$If V_{inf} > V_{thr}, \text{ and } v_0 = V_{reset}$$

$$V_{thr} = V_{reset} + (V_{inf} - V_{reset})[1 - exp(-T_{isi}/T_m)]$$

$$T_{isi} = T_m \ln[(V_r - V_{inf}) / (V_{th} - V_{inf})](Eq4)$$

Homework

Make LIF model using given parameters:

$$\begin{split} &V_{thr} = -55 \text{ mV} \\ &V_{reset} = -70 \text{ mV} \\ &V_{peak} = 20 \text{ mV} \\ &R_m = 100 \text{ MOhm} \\ &T_m = 10 \text{ms} \end{split}$$

Verify Eq. 4 from simulated spike frequencies

Neurons display a varity of spiking patterns

Izhikevich Spike Model

 $v \leftrightarrow m$ $u \leftrightarrow n$ $c \leftrightarrow Vpeak$

$$v' = 0.04v^{2} + 5v + 140 - u + I$$

$$u' = a(bv - u)$$
(1)
(2)

$$u' = a(bv - u) (2)$$

with the auxiliary after-spike resetting

if
$$v \ge +30 \text{ mV}$$
, then $\begin{cases} v \leftarrow c \\ u \leftarrow u + d \end{cases}$ (3)

pars = [a,	b,	vret,	, d,	I].	
pars=[0.02	0.2	-65	6	14 ;	% tonic spiking
0.02	0.25	-65	6	0.5 ;	% phasic spiking
0.02	0.2	-50	2	15 ;	% tonic bursting
0.02	0.25	-55	0.05	0.6 ;	% phasic bursting
0.02	0.2	-55	4	10 ;	% mixed mode
0.01	0.2	-65	8	30 ;	% spike frequency adaptation
0.02	-0.1	-55	6	0 ;	% Class 1
0.2	0.26	-65	0	0 ;	% Class 2
0.02	0.2	-65	6	7 ;	% spike latency
0.05	0.26	-60	0	0 ;	% subthreshold oscillations
0.1	0.26	-60	-1	0 ;	% resonator
0.02	-0.1	-55	6	0 ;	% integrator

$$I_o = 0$$

$$v' = 0.04 v^2 + 5 v + 140 - u + I_o$$
 $u = 0.04 v^2 + 5 v + 140 + I_o$ $u' = a (b v - u)$ $u = b v$

$$v' = 0.04 v^2 + 5 v + 140 - u + I_o$$
 $u = 0.04 v^2 + 5 v + 140 + I_o$ $u' = a (b v - u)$ $u = b v$

The higher b, the lower I_o req'd for evoke AP

$$u = 0.04 v^2 + 5 v + 140 + I_o$$

 $u = b v$

Simulation for pattern completion from partial cue by auto-associational network

Pattern completion by auto-associative network

pattern completion

Random recurrent network
connected with Hebbian synapses
(Hopfield network)

Pattern completion: X' -> X

Training pattern (Z)

$$Z = [1,0,1,0]$$

Hebbian connectivity (J_H)

$$J_H = Z' * Z$$

Structural connectivity (c)

```
W = rand(Npc,Npc);
W = ceil(W + (c-1));
```

Syn Wt matrix (WJ)

$$WJ = w * J_H.*W$$

$$c = 0.25$$

$$w = 2.0$$

Syn Wt Matrix (WJ)

% Initial cue, X_0 = random firing 10% of trained pattern

```
X_0 = double(img(:)).*rand(Npc, 1);

X_0 = max(0,ceil(X_0-0.9));
```

Loop

% threshold

$$T(t) = g1*sum(X(:,t));$$

% net input current

$$I_{net}(:,t) = Isyn(:,t) - T(t);$$

% Izhikevich spike model

```
v = v + [0.04*v^2 + 5*v + 140 - uiz + I_{net}];

uiz=uiz+aiz.*(biz.*v-uiz);

fired=find(v>=30); v(fired)=vret; uiz(fired)=uiz(fired)+ud;

X(fired, t+1) = 1;
```

X = zeros(Npc, time)

time step

$$g1 = 0.5$$

$$vret = -58$$

$$aiz = 0.02$$

$$biz = 0.25$$

$$ud = 4$$

 N_{pc} = 60 x 60 = 3600 Each pixel represents spike activity of a neuron

Partial cue

Homework

- 1. Train the network with another pattern, and retrieve one of two patterns using a partial cue.
- 2. Discuss what mechanisms are implemented in the brain to retrieve a single pattern from a recurrent network in which multiple patterns are embedded.