

Math

Math Foundations Team

BITS Pilani

Pilani | Dubai | Goa | Hyderabad

Introduction

Many algorithms in machine learning optimize an objective function with respect to a set of desired model parameters that control how well a model explains the data: Finding good parameters can be phrased as an optimization problem.

Examples include: linear regression, where we look at curve-fitting problems and optimize linear weight parameters to maximize the likelihood; neural-network auto-encoders for dimensionality reduction and data compression.

Power Method

Power method is an iterative method to compute dominant eigenvalue of a square matrix $\bf A$ where dominant eigenvalue λ is the eigenvalue such that $|\lambda|$ is greater than the absolute values of other eigenvalues.

- 1. Select an initial vector $\mathbf{x_0}$ whose largest entry is 1.
- 2. For $k = 0, 1, \cdots$
 - a. Compute Ax_k .
 - b. Let μ_k be an entry in $\mathbf{A}\mathbf{x}_k$ whose absolute value is as large as possible.
 - c. Compute $x_{k+1} = (1/\mu_k) A x_k$.

For almost all choices of x_0 , the sequence μ_k approaches the dominant eigenvalue and the sequence x_k approaches a corresponding eigenvector. (Refer Excel sheet for an example)

- exists an orthonormal basis consisting of eigenvectors $v_1, v_2, \dots v_n$ of \mathbb{R}^n corresponding to real eigenvalues $\lambda_1, \lambda_2, \dots \lambda_n$ (Spectral theorem).
- Suppose there exists a dominant eigenvalue and WLOG we can assume

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots |\lambda_n|$$

Let $\mathbf{y} \in \mathbb{R}^n$, then $\mathbf{y} = \sum_{i=1}^n c_i v_i$. This implies

$$\mathbf{A}^{k}\mathbf{y} = \sum_{i=1}^{n} c_{i}\mathbf{A}^{k}v_{i} = \sum_{i=1}^{n} c_{i}\lambda_{i}^{k}v_{i} = \lambda_{1}^{k}\{c_{1}v_{1} + \sum_{i=2}^{n} c_{i}\{\frac{\lambda_{i}}{\lambda_{1}}\}^{k}v_{i}\}$$

▶ Clearly $\{\frac{\lambda_i}{\lambda_1}\}^k \to 0$ as $k \to \infty$. But the convergence depend on the rate of convergence of $\{\frac{\lambda_2}{\lambda_1}\}^k$

Continuous Function

- ▶ A function $f: A \to \mathbb{R}$ is said to be continuous at $a \in A$ if for any $\epsilon > 0$, there exist a $\delta > 0$ such that $|x \in A|$ and $|x a| < \delta$ implies $|f(x) f(a)| < \epsilon$
- ► $f(x) = x^2 + 4$ is a continuous function whereas $h(x) = \begin{cases} 1, & \forall x > 0 \\ 2, & \forall x \le 0 \end{cases}$ is not continuous at x = 0.
- A continuous function f on a closed and bounded interval [a, b] is bounded and attains its bounds.
- ▶ A continuous function $f: A \to \mathbb{R}$ is increasing or decreasing at a point $a \in A$ implies that there exists an $\epsilon > 0$ such that f is increasing or decreasing in $N_{\epsilon} = \{x: |x-a| < \epsilon\} \cup A$

Differentiation of Univariate Functions

For h > 0, the derivative of f at x is defined as the limit

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{1}$$

The derivative of f points in the direction of steepest ascent of f.

Slope of the tangent at P.

Slope of the line PQ.

Taylor polynomial

The Taylor polynomial is a representation of a function f as an finite sum of terms. These terms are determined using derivatives of f evaluated at x_0 .

Definition: The Taylor polynomial of degree n of $f: \mathbb{R} \to \mathbb{R}$ at x_0 is defined as

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 (2)

where $f^{(k)}(x_0)$ is the *kth* derivative of f at x_0 which we assume exists.

Taylor series

Definition: The Taylor series of smooth (continuously differentiable infinite many times) function $f: \mathbb{R} \to \mathbb{R}$ at x_0 is defined as

$$T_{\infty}(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 (3)

For $x_0 = 0$, we obtain the Maclaurin series as a special instance of the Taylor series.

Remark: In general, a Taylor polynomial of degree n is an approximation of a function, which does not need to be a polynomial. The Taylor polynomial is similar to f in a neighborhood around x_0 . However, a Taylor polynomial of degree n is an exact representation of a polynomial f of degree n since all derivatives $f^{(i)} = 0$, for n is n to n in n to n since all derivatives n in n to n in n to n in n to n in n to n in n i

Taylor Polynomial example

Consider the polynomial $f(x) = x^4$. Find the Taylor polynomial T_6 evaluated at $x_0 = 1$.

We compute $f^{(k)}(1)$ for k = 0, 1, 2..., 6f(1) = 1, f'(1) = 4, f''(1) = 12, $f^{(3)}(1) = 24$, $f^{(4)}(1) = 24$, $f^{(5)}(1) = 0$, $f^{(6)}(1) = 0$. The desired Taylor polynomial is

$$T_{6}(x) = \sum_{k=0}^{6} \frac{f^{(k)}(x_{0})}{k!} (x - x_{0})^{k}$$

$$= 1 + 4(x - 1) + 12(x - 1)^{2} + 24(x - 1)^{3} + 24(x - 1)^{4}$$

$$= x^{4} = f(x)$$
(4)

we obtain an exact representation of the original function.

Taylor Series example

Consider the smooth function f(x) = sin(x) + cos(x). We compute Taylor series expansion of f at $x_0 = 0$, which is the Maclaurin series expansion of f. We obtain the following derivatives:

$$f(0) = \sin(0) + \cos(0) = 1$$

$$f'(0) = \cos(0) - \sin(0) = 1$$

$$f''(0) = -\sin(0) - \cos(0) = -1$$

$$f^{(3)}(0) = -\cos(0) + \sin(0) = -1$$

$$f^{(4)}(0) = \sin(0) + \cos(0) = f(0) = 1$$

The coefficients in our Taylor series are only ± 1 (since sin(0) = 0), each of which occurs twice before switching to the other one.

Furthermore,
$$f^{(k+4)}(0) = f^k(0)$$

Taylor Series example

Therefore, the full Taylor series expansion of f at $x_0 = 0$ is given by

$$T_{\infty}(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

$$= 1 + x - \frac{1}{2!} x^2 - \frac{1}{3!} x^3 + \frac{1}{4!} x^4 + \frac{1}{5!} x^5 - \dots$$

$$= 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 \mp \dots x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 \mp \dots$$

$$= \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k)!} x^{2k} + \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)!} x^{2k+1}$$

$$= \cos(x) + \sin(x)$$
(5)

Differentiation Rules

We denote the derivative of f by f'

- ▶ Product Rule: (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)
- ► Sum Rule: (f(x) + g(x))' = f'(x) + g'(x)
- ▶ Quotient Rule: $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) f(x)g'(x)}{(g(x))^2}$
- ► Chain Rule: $(g(f(x))' = (g \circ f)'(x) = g'(f(x))f'(x)$

Example: Chain Rule

Compute the derivative of function $h(x) = (2x + 1)^4$

$$h(x) = (2x+1)^4 = g(f(x))$$

$$f(x)=2x+1,$$

$$g(f) = f^4$$

Derivatives of f and g are

$$f'(x) = 2$$

$$g'(f)=4f^3$$

$$h'(x) = g'(f)f'(x) = (4f^3).2 = 8(2x+1)^3$$

Maxima and Minima

- Let f be a real valued function which is differentiable in an open interval (a, b). Then at a point of local maxima and local minima, f'(x) = 0.
- Now the error between the function and the Taylor's n degree polynomial is equal to $R_n(x) = \frac{f^{(k+1)}(c)}{(k+1)!}(x-x_0)^{k+1}$ where c lies between x_0 and x. This implies $f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x+\theta h)$, for some $\theta \in (0,1)$.
- Then at a point of local maxima and local minima, $f(x+h) = f(x) + \frac{h^2}{2!}f''(x+\theta h)$. If $f''(x+\theta h) > 0$, x is a point of minima and if $f''(x+\theta h) < 0$, x is a point of maxima. If the second derivative is equal to zero, x is a point of inflection.

An Example

Let

$$f(x) = \cos(x)$$

Then $f'(x) = 0 \Rightarrow -\sin(x) = 0 \Rightarrow x = 0, \pm n\pi$
 $f''(x) = -\cos(x)$

Then
$$f''(x) = \begin{cases} 1, \ \forall x = \pm (2n+1)\pi \\ -1, \ \forall x = \pm (2n)\pi \end{cases} \quad \forall n = 0, 1, \cdots$$

Therefore , $x=\pm(2n+1)\pi$ are points of minima and $x=\pm(2n)\pi$ are points of maxima.

Partial Differentiation and Gradients

Differentiation applies to functions f of a scalar variable $x \in R$. In the following, we consider the general case where the function f depends on one or more variables $x \in R^n$, e.g., $f(x) = f(x_1, x_2)$. The generalization of the derivative to functions of several variables is the gradient. We find the gradient of the function f with respect to x by varying one variable at a time and keeping the others constant. The gradient is then the collection of these partial derivatives.

Partial derivatives and Gradients

Definition: For a function $f : \mathbb{R}^n \to \mathbb{R}$, $x \to f(x)$, $x \in \mathbb{R}^n$ of n variables x_1, \ldots, x_n we define the *partial derivatives* as

$$\frac{\partial f}{\partial x_1} = \lim_{h \to 0} \frac{f(x_1 + h, x_2, \dots, x_n) - f(x_1, x_2, \dots, x_n)}{h}$$

$$\frac{\partial f}{\partial x_2} = \lim_{h \to 0} \frac{f(x_1, x_2 + h, \dots, x_n) - f(x_1, x_2, \dots, x_n)}{h}$$

$$\vdots$$

$$\frac{\partial f}{\partial x_n} = \lim_{h \to 0} \frac{f(x_1, x_2, \dots, x_n + h) - f(x_1, x_2, \dots, x_n)}{h}$$

We collect them in the row vector called the gradient of f or Jacobian

$$\Delta_{x}f = gradf = \frac{df}{dx} = \left[\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \dots, \frac{\partial f(x)}{\partial x_{n}}\right]$$
(6)

Example 1: Find the partial derivatives of $f(x,y) = (x + 2y^3)^2$

$$\frac{\partial f(x,y)}{\partial x} = 2(x+2y^3) \frac{\partial (x+2y^3)}{\partial x} = 2(x+2y^3) \tag{7}$$

$$\frac{\partial f(x,y)}{\partial y} = 2(x+2y^3)\frac{\partial (x+2y^3)}{\partial y} = 12y^2(x+2y^3) \tag{8}$$

here we used the chain rule to compute the partial derivatives.

Example 2

Find the partial derivatives of $f(x_1, x_2) = x_1^2 x_2 + x_1 x_2^3$

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = 2x_1 x_2 + x_2^3 \tag{9}$$

$$\frac{\partial f(x_1, x_2)}{\partial x_2} = x_1^2 + 3x_1 x_2^2 \tag{10}$$

So the gradient is then

$$\frac{df}{dx} = \left[\frac{\partial f(x_1, x_2)}{\partial x_1}, \frac{\partial f(x_1, x_2)}{\partial x_2}\right] = \left[2x_1x_2 + x_2^3, x_1^2 + 3x_1x_2^2\right] \in \mathbb{R}^{1 \times 2}$$
(11)

Basic rules of partial differentiation

When we compute derivatives with respect to vectors $x \in \mathbb{R}^n$ we need to pay attention: Our gradients now involve vectors and matrices, and matrix multiplication is not commutative i.e., the order matters.

Product rule:
$$\frac{\partial}{\partial x}(f(x)g(x)) = \frac{\partial f}{\partial x}g(x) + f(x)\frac{\partial g}{\partial x}$$
 (12)

Sum rule:
$$\frac{\partial}{\partial x}(f(x) + g(x)) = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial x}$$
 (13)

chain rule:
$$\frac{\partial}{\partial x}(g \circ f)(x) = \frac{\partial}{\partial x}(g(f(x))) = \frac{\partial g}{\partial f}\frac{\partial f}{\partial x}$$
 (14)

Chain Rule

Consider a function $f : \mathbb{R} \to \mathbb{R}$ of two variables x_1, x_2 . Furthermore, $x_1(t)$ and $x_2(t)$ are themselves functions of t.

To compute the gradient of f with respect to t, we need to apply the chain rule for multivariate functions as

$$\frac{df}{dt} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix} \begin{bmatrix} \frac{\partial x_1(t)}{\partial t} \\ \frac{\partial x_2(t)}{\partial t} \end{bmatrix} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t}$$
(15)

where d denotes the gradient and ∂ partial derivatives.

Example

Consider $f(x_1, x_2) = x_1^2 + 2x_2$, where $x_1 = \sin t$ and $x_2 = \cos t$ then

$$\begin{aligned} \frac{df}{dt} &= \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t} \\ &= 2\sin t \frac{\partial \sin t}{\partial t} + 2\frac{\partial \cos t}{\partial t} \\ &= 2\sin t \cos t - 2\sin t = 2\sin t(\cos t - 1) \end{aligned}$$

is the corresponding derivative of f with respect to t.

If $f(x_1, x_2)$ is a function of x_1 and x_2 , where $x_1(s, t)$ and $x_2(s, t)$ are themselves functions of two variables s and t, the chain rule yields the partial derivatives:

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial s} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial s}$$
 (16)

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t}$$
 (17)

and the gradient is obtained by the matrix multiplication

$$\frac{df}{d(s,t)} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial (s,t)}$$
$$= \left[\frac{\partial f}{\partial \mathbf{x}_1} \frac{\partial f}{\partial \mathbf{x}_2} \right] \begin{bmatrix} \frac{\partial \mathbf{x}_1}{\partial s} \frac{\partial \mathbf{x}_1}{\partial t} \\ \frac{\partial \mathbf{x}_2}{\partial s} \frac{\partial \mathbf{x}_2}{\partial s} \end{bmatrix}$$

Gradients of Vector-Valued Functions

We have discussed partial derivatives and gradients of functions $f:\mathbb{R}^n\to\mathbb{R}$ mapping to the real numbers. Now we will generalize the concept of the gradient to vector-valued functions $f:\mathbb{R}^n\to\mathbb{R}^m$, where $n\geq 1$ and m>1. For a function $f:\mathbb{R}^n\to\mathbb{R}^m$ and a vector $x=[x_1,\ldots,x_n]^T$ corresponding vector of function values is given as

$$f(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{bmatrix} \in \mathbb{R}^m$$
 (18)

where each $f_i : \mathbb{R}^n \to \mathbb{R}$

Gradients of Vector-Valued Functions

Therefore, the partial derivative of a vector-valued function $f: \mathbb{R}^n \to \mathbb{R}^m$ w.r.t. $x_i \in R$, i = 1, ..., n is given as the vector

$$\frac{\partial f}{\partial x_{i}} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{i}} \\ \vdots \\ \frac{\partial f_{m}}{\partial x_{i}} \end{bmatrix} \\
= \begin{bmatrix} \lim_{h \to 0} \frac{f_{1}(x_{1}, \dots, x_{i-1}, x_{i} + h, x_{i+1}, \dots, x_{n}) - f_{1}(x)}{h} \\ \vdots \\ \lim_{h \to 0} \frac{f_{m}(x_{1}, \dots, x_{i-1}, x_{i} + h, x_{i+1}, \dots, x_{n}) - f_{m}(x)}{h} \end{bmatrix} \in \mathbb{R}^{m}$$

Gradients of Vector-Valued Functions

We know that the gradient of f with respect to a vector is the row vector of the partial derivatives. Every partial derivative $\frac{\partial f}{\partial x_i}$ is itself a column vector. Therefore, we obtain the gradient of $f: \mathbb{R}^n \to \mathbb{R}^m$ with respect to $x \in \mathbb{R}^n$ by collecting these partial derivatives:

$$\frac{df(x)}{dx} = \left[\frac{\partial f(x)}{\partial x_1} \dots \frac{\partial f(x)}{\partial x_n}\right] \\
= \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} \dots \frac{\partial f_1(x)}{\partial x_n} \\ \vdots \\ \frac{\partial f_m(x)}{\partial x_1} \dots \frac{\partial f_m(x)}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

Example 1: Gradients of Vector-Valued Functions

Given f(x) = Ax, $f(x) \in \mathbb{R}^M$, $A \in \mathbb{R}^{M \times N}$, $x \in \mathbb{R}^N$ Since $f : \mathbb{R}^N \to \mathbb{R}^M$, it follows that $df/dx \in \mathbb{R}^{M \times N}$. To compute the gradient we determine the partial derivatives of f w.r.t x_i :

$$f_i(x) = \sum_{i=1}^{N} A_{ij} x_j \implies \frac{\partial f_i}{\partial x_j} = A_{ij}$$
 (19)

We obtain the gradient using Jacobian

$$\frac{df}{dx} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} \cdots \frac{\partial f_1}{\partial x_N} \\ \vdots \\ \frac{\partial f_M}{\partial x_1} \cdots \frac{\partial f_M}{\partial x_N} \end{bmatrix} = \begin{bmatrix} A_{11} \dots A_{1N} \\ \vdots \\ A_{M1} \dots A_{MN} \end{bmatrix} = A \in \mathbb{R}^{M \times N}$$
(20)

Example 2: Gradients of Vector-Valued Functions

Consider the function $h: \mathbb{R} \to \mathbb{R}$, $h(t) = (f \circ g)(t)$ with $f(x) = exp(x_1x_2^2)$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = g(t) = \begin{bmatrix} t \cos t \\ t \sin t \end{bmatrix}$$
 (21)

and compute the gradient of h w.r.t. t. Since $f: \mathbb{R}^2 \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}^2$ we note that

$$\frac{\partial f}{\partial x} \in \mathbb{R}^{1 \times 2} \text{ and } \frac{\partial g}{\partial t} \in \mathbb{R}^{2 \times 1}$$
 (22)

The desired gradient is computed by applying the chain rule:

$$\frac{dh}{dt} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix} \begin{bmatrix} \frac{\partial x_1}{\partial t} \\ \frac{\partial x_2}{\partial t} \end{bmatrix}
= \begin{bmatrix} exp(x_1x_2^2)x_2^2 & 2exp(x_1x_2^2)x_1x_2 \end{bmatrix} \begin{bmatrix} \cos t - t \sin t \\ \sin t + t \cos t \end{bmatrix}
= exp(x_1x_2^2)(x_2^2(\cos t - t \sin t) + 2x_1x_2(\sin t + t \cos t))$$

where $x_1 = t \cos t$ and $x_2 = t \sin t$;