

Department of Electrical and Computer Engineering Utah State University

ECE 5930/6930: VLSI Testing and Verification Created By: Shayan (Sean) Taheri

Homework 03

Assigned Date: Month/Day/Year Due Date: Month/Day/Year

1. <u>D-Algorithm</u>. Use Roth's D-Algorithm to perform ATPG for the stuck-at-1 fault on the fan-out branch **h** on the circuit shown in Figure 1.

Note: For more information about this circuit, refer to the following paper:

P.R. Schneider, "On the Necessity to Examine D-Chains in Diagnostic Test Generation".

Figure 1

2. <u>PODEM</u>. Perform ATPG for the fault line **h** (stuck-at-1) on the circuit shown in Figure 1 using PODEM and SCOAP measures.

3. <u>D-Algorithm</u>. Perform ATPG on the circuit shown in Figure 2, using D-Algorithm to test the fault **h1** (stuck-at-1).

Figure 2

You can prepare a table like the one below while preparing your answer to this problem.

Step	Action	Impl. stack	Forward implications	D-frontier
			27	
Test j	found: (a	(b, c, d, h, k) =	=(,,,,); i1=	

Table 1

4. <u>PODEM</u>. Generate a test with the PODEM ATPG algorithm for the fault **g** (stuck-at-1) on the circuit shown in Figure 3. While you are performing the PODEM algorithm, follow the rules given below.

Figure 3

- 1) Order: First, try to excite the fault and then propagate.
- 2) **Back-trace**: Follow a path from the objective to a primary input while always following the alphabetical order (e.g. if a gate has input A and B, back-trace on that gate goes to line A first).
- 3) PI assignment: Always assign 0 first, then assign 1 in case of backtrack.
- 4) Choice of D or \overline{D} : Always try to propagate a D or \overline{D} from the D-frontier that has the shortest path to the primary output. In the case of tie, follow the alphabetical order.

You can prepare a table like the one below while preparing your answer to this problem.

Z front.	path
-01	

Table 2