Assignment #3 STA410H1F/2102H1F

due Wednesday November 15, 2017

Instructions: Solutions to problems 1 and 2 are to be submitted on Blackboard (PDF files strongly preferred). You are strongly encouraged to do problems 3–6 but these are not to be submitted for grading.

- 1. Suppose that S is an $n \times n$ matrix where n may be very large and the elements of S may not be explicitly defined. We are interested in approximating the trace of S, that is, the sum of its diagonal elements. For example, if S is a smoothing matrix in regression ($\hat{y} = Sy$) then the trace of S gives a measure of the effective number of parameters using in the smoothing method. (In multiple regression models, the smoothing matrix is the projection matrix $X(X^TX)^{-1}X^T$ whose trace is the number of columns of X.)
- (a) Show that if A and B are $m \times n$ and $n \times m$ matrices, respectively, then tr(AB) = tr(BA). (This is a well-known fact but humour me with a proof!)
- (b) Suppose that V is a random vector of length n such that $E[VV^T] = I$. If S is an $n \times n$ non-random matrix, show that

$$E\left[\mathbf{V}^{T}S\mathbf{V}\right] = E\left[\operatorname{tr}\left(S\mathbf{V}\mathbf{V}^{T}\right)\right] = \operatorname{tr}\left[SE\left(\mathbf{V}\mathbf{V}^{T}\right)\right] = \operatorname{tr}(S)$$

and so tr(S) can be estimated by

$$\widehat{\operatorname{tr}(S)} = \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{V}_{i}^{T} S \boldsymbol{V}_{i}$$

where V_1, \dots, V_m are independent random vectors with $E[V_i V_i^T] = I$.

(c) Suppose that the elements of each V_i are independent, identically distribution random variables with mean 0 and variance 1. Show that $Var(\widehat{tr(S)})$ is minimized by taking the elements of V_i to be ± 1 each with probability 1/2.

Hint: This is easier than it looks – $Var(\mathbf{V}^T S \mathbf{V}) = E[(\mathbf{V}^T S \mathbf{V})^2] - tr(S)^2$ so it suffices to minimize

$$E[(\mathbf{V}^T S \mathbf{V})^2] = \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{\ell=1}^n s_{ij} s_{k\ell} E(V_i V_j V_k V_\ell).$$

Given our conditions on the elements of V_i , V_1 , \cdots , V_n , most of $E(V_iV_jV_kV_\ell)$ are either 0 or 1. You should be able to show that

$$E[(\mathbf{V}^T S \mathbf{V})^2] = \sum_{i=1}^n s_{ii}^2 E(V_i^4) + \text{constant}$$

and find V_i to minimize $E(V_i^4)$ subject to $E(V_i^2) = 1$.

(d) Suppose we estimate the function g in the non-parametric regression model

$$y_i = g(x_i) + \varepsilon_i$$
 for $i = 1, \dots, n$

using loess (i.e. the R function loess) where the smoothness is determined by the parameter span lying between 0 and 1. Given a set of predictors $\{x_i\}$ and a value of span, write an R function to approximate the effective number of parameters.

2. Suppose that X_1, \dots, X_n are independent Gamma random variables with common density

$$f(x; \alpha, \lambda) = \frac{\lambda^{\alpha} x^{\alpha - 1} \exp(-\lambda x)}{\Gamma(\alpha)}$$
 for $x > 0$

where $\alpha > 0$ and $\lambda > 0$ are unknown parameters.

- (a) The mean and variance of the Gamma distribution are α/λ and α/λ^2 , respectively. Use these to define method of moments estimates of α and λ based on the sample mean and variance of the data x_1, \dots, x_n
- (b) Derive the likelihood equations for the MLEs of α and λ and derive a Newton-Raphson algorithm for computing the MLEs based on x_1, \dots, x_n . Implement this algorithm in R and test on data generated from a Gamma distribution (using the R function rgamma). Your function should also output an estimate of the variance-covariance matrix of the MLEs this can be obtained from the Hessian of the log-likelihood function.

Important note: To implement the Newton-Raphson algorithm, you will need to compute the first and second derivatives of $\ln \Gamma(\alpha)$. These two derivatives are called (respectively) the digamma and trigamma functions, and these functions are available in R as digamma and trigamma; for example,

```
> gamma(2) # gamma function evaluated at 2
```

[1] 1

> digamma(2) # digamma function evaluated at 2

[1] 0.4227843

> trigamma(2) # trigamma function evaluated at 2

[1] 0.6449341

Supplemental problems:

3. Consider LASSO estimation in linear regression where we define $\hat{\beta}_{\lambda}$ to minimize

$$\sum_{i=1}^{n} (y_i - \bar{y} - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

for some $\lambda > 0$. (We assume that the predictors are centred and scaled to have mean 0 and variance 1, in which case \bar{y} is the estimate of the intercept.) Suppose that the least squares estimate (i.e. for $\lambda = 0$) is non-unique — this may occur, for example, if there is some exact linear dependence in the predictors or if p > n. Define

$$au = \min_{eta} \sum_{i=1}^n (y_i - ar{y} - oldsymbol{x}_i^T oldsymbol{eta})^2$$

and the set

$$C = \left\{ \boldsymbol{\beta} : \sum_{i=1}^{n} (y_i - \bar{y} - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 = \tau \right\}.$$

We want to look at what happens to the LASSO estimate $\hat{\beta}_{\lambda}$ as $\lambda \downarrow 0$.

(a) Show that $\hat{\boldsymbol{\beta}}_{\lambda}$ minimizes

$$\frac{1}{\lambda} \left\{ \sum_{i=1}^{n} (y_i - \bar{y} - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 - \tau \right\} + \sum_{j=1}^{p} |\beta_j|.$$

(b) Find the limit of

$$\frac{1}{\lambda} \left\{ \sum_{i=1}^{n} (y_i - \bar{y} - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 - \tau \right\}$$

as $\lambda \downarrow 0$ as a function of $\boldsymbol{\beta}$. (What happens when $\boldsymbol{\beta} \notin \mathcal{C}$?) Use this to deduce that as $\lambda \downarrow 0$, $\widehat{\boldsymbol{\beta}}_{\lambda} \to \widehat{\boldsymbol{\beta}}_{0}$ where $\widehat{\boldsymbol{\beta}}_{0}$ minimizes $\sum_{j=1}^{p} |\beta_{j}|$ on the set \mathcal{C} .

- (c) Show that $\hat{\boldsymbol{\beta}}_0$ is the solution of a linear programming problem. (Hint: Note that \mathcal{C} can be expressed in terms of $\boldsymbol{\beta}$ satisfying p linear equations.)
- 4. Consider minimizing the function

$$g(x) = x^2 - 2\alpha x + \lambda |x|^{\gamma}$$

where $\lambda > 0$ and $0 < \gamma < 1$. (This problem arises, in a somewhat more complicated form, in shrinkage estimation in regression.) The function $|x|^{\gamma}$ has a "cusp" at 0, which mean that if λ is sufficient large then g is minimized at x = 0.

(a) g is minimized at x = 0 if, and only if,

$$\lambda \ge \frac{2}{2-\gamma} \left[\frac{2-2\gamma}{2-\gamma} \right]^{1-\gamma} |\alpha|^{2-\gamma}. \tag{1}$$

Otherwise, g is minimized at x^* satisfying $g'(x^*) = 0$. Using R, compare the following two iterative algorithms for computing x^* (when condition (1) does not hold):

(i) Set $x_0 = \alpha$ and define

$$x_k = \alpha - \frac{\lambda \gamma}{2} \frac{|x_{k-1}|^{\gamma}}{x_{k-1}}$$
 $k = 1, 2, 3, \dots$

(ii) The Newton-Raphson algorithm with $x_0 = \alpha$.

Use different values of α , γ , and λ to test these algorithms. Which algorithm is faster?

(b) Functions like g arise in so-called bridge estimation in linear regression (which are generalizations of the LASSO) – such estimation combines the features of ridge regression (which shrinks least squares estimates towards 0) and model selection methods (which produce exact 0 estimates for some or all parameters). Bridge estimates $\hat{\beta}$ minimize (for some $\gamma > 0$ and $\lambda > 0$),

$$\sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^{p} |\beta_j|^{\gamma}.$$
 (2)

See the paper by Huang, Horowitz and Ma (2008) ("Asymptotic properties of bridge estimators in sparse high-dimensional regression models" *Annals of Statistics.* **36**, 587–613) for details. Describe how the algorithms in part (a) could be used to define a coordinate descent algorithm to find $\hat{\beta}$ minimizing (2) iteratively one parameter at a time.

- (c) Prove that g is minimized at 0 if, and only if, condition (1) in part (a) holds.
- 5. Suppose that A is a symmetric non-negative definite matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$. Consider the following algorithm for computing the maximum eigenvalue λ_1 :

Given
$$x_0$$
, define for $k = 0, 1, 2, \dots, x_{k+1} = \frac{Ax_k}{\|Ax_k\|_2}$ and $\mu_{k+1} = \frac{x_{k+1}^T A x_{k+1}}{x_{k+1}^T x_{k+1}}$.

Under certain conditions, $\mu_k \to \lambda_1$, the maximum eigenvalue of A; this algorithm is known as the **power method** and is particularly useful when A is sparse.

- (a) Suppose that $\mathbf{v}_1, \dots, \mathbf{v}_n$ are the eigenvectors of A corresponding to the eigenvalues $\lambda_1, \dots, \lambda_n$. Show that $\mu_k \to \lambda_1$ if $\mathbf{x}_0^T \mathbf{v}_1 \neq 0$ and $\lambda_1 > \lambda_2$.
- (b) What happens to the algorithm if if the maximum eigenvalue is not unique, that is, $\lambda_1 = \lambda_2 = \cdots = \lambda_k$?

6. Consider the estimation procedure in problem 2 of Assignment #2 (where we used the Gauss-Seidel algorithm to estimate $\{\theta_i\}$). Use both gradient descent and accelerated gradient descent to estimate $\{\theta_i\}$. To find an appropriate value of ϵ , it is useful to approximate the maximum eigenvalue of the Hessian matrix of the objective function – the algorithm in problem 5 is useful in this regard.