Raw-data and distance based methods

in practice

Stéphane Dray

2024-01-08

Raw data

Distances

• Distances can be directly measured or inherited from raw-data

• Raw-data methods produce information on both individuals and variables when distance-based methods focus only on individuals

```
library(ade4)
library(adegraphics)
data(doubs)
pca <- dudi.pca(doubs$env, scannf = FALSE)
pco <- dudi.pco(dist(scale(doubs$env)), scannf = FALSE)</pre>
```

```
scatter(pca, main = "PCA")
```

scatter(pco, main = "PCO")

• Distance-based methods allow for more flexibility and can be more suitable in some contexts

```
Χ
         species 1 species 2 species 3 species 4
## site 1
## site 2
## site 3
## site 4
## Euclidean
                                   ## Jaccard
round(dist(x), 2)
                                   round(dist.binary(x, method = 1)
  site 1 site 2 site 3
                                  ## site 1 site 2 site 3
##
## site 2 1.41
                                  ## site 2 0.82
## site 3 1.00 1.73
                                  ## site 3 0.50 0.87
## site 4 1.73 1.00 1.41
                                  ## site 4 0.87 0.71 0.71
```

Sites 3-4 are closer than sites 1-2 when considering only presences as a measure of similarity

• In some cases, both approaches can be equivalent (Euclidean distances)

For the univariate case, Euclidean distance is $d_{ij} = \sqrt{(x_i - x_j)^2}$ and we have:

$$var(\mathbf{x}) = rac{1}{n} \sum_{i=1}^n (x_i - ar{x})^2 = rac{1}{2n^2} \sum_{i=1}^n \sum_{j=1}^n d_{ij}^2.$$

```
x <- rnorm(10)
var(x) * 9/10
```

[1] 0.8787088

```
sum(as.matrix(dist(x))^2)/(2 * 10^2)
```

[1] 0.8787088

When using Euclidean distance, several raw- and distance-based analysis would produce the same results.

Your turn

- 1. Create an Rmd file
- 2. Load the meaudret data set from ade4
- 3. Perform the principal component analysis (dudi.pca) and principal coordinates analysis (dudi.pco) using Euclidean distances (dist) on faunistic data. Compare the outputs and conclude.
- 4. Transform the data into presence-absence (ifelse(meaudret\$spe>0, 1, 0)). Peform principal coordinates analysis (dudi.pco) using Euclidean (dist) and Jaccard distances (dist.binary). Compare the results.
- 5. Perform the between-class analysis (bca) and distance-based RDA (vegan::dbrda) using Euclidean distances using the factor meaudret\$design\$season as an exploratory variable. Compare the results (be aware that vegan use $\frac{1}{n-1}$ to compute variances while ade4 uses $\frac{1}{n}$).
- 6. Look at the percentage of variation explained by the between-class analysis (stored in the object). Perform permutational multivariate analysis of variance with the function vegan::adon's using the Euclidean distances. Compare

Summary

When using Euclidean distances, we have:

- Permutational Distance-based Multivariate Analysis of Variance
 ⇔ Permutation test of Between-Class Analysis