Pamart Arthur Note: 14/20 (score total : 14/20)

Nom et prénom, lisibles :

+126/1/24+

Identifiant (de haut en bas) :

QCM THLR 4

	PANGET 00 1 1 2 3 4 5 6 7 8 9
	Acthor
2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « 🗶 » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. J'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +126/1/xx+···+126/2/xx+.
	Q.2 Le langage $\{0^n 1^n \mid n < 42^{51} - 1\}$ est
2/2	☐ non reconnaissable par automate fini rationnel ☐ vide ☐ infini
	Q.3 Le langage $\{ \stackrel{\bullet}{=}^n \stackrel{\bullet}{\cong}^n \mid \forall n \in \mathbb{N} \}$ est
2/2	☐ vide ☐ rationnel ☐ fini non reconnaissable par automate
1/2	 Q.4 Un langage quelconque □ peut avoir une intersection non vide avec son complémentaire □ n'est pas nécessairement dénombrable ☑ peut n'être inclus dans aucun langage dénoté par une expression rationnelle ☑ est toujours inclus (⊆) dans un langage rationnel Q.5 Un automate fini qui a des transitions spontanées
-1/2	\square n'accepte pas $arepsilon$ accepte $arepsilon$ est déterministe \boxtimes n'est pas déterministe
	Q.6 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:
2/2	\square L_1 est rationnel \square L_1, L_2 sont rationnels \square L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ \square \square L_2 est rationnel
	Q.7 Si un automate de n états accepte a^n , alors il accepte
2/2	$a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p+q \le n$ \square $a^n a^m$ avec $m \in \mathbb{N}^*$ \square a^{n+1} \square $(a^n)^m$ avec $m \in \mathbb{N}^*$
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
2/2	$\square 4^n \qquad \square \frac{n(n+1)(n+2)(n+3)}{4} \qquad \square \qquad 2^n \qquad \square \text{Il n'existe pas.}$
	Q.9 Déterminiser cet automate. a, b a b a a a b a a a a b a

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

Fin de l'épreuve.

2/2