

Abstract Algebra and Type Classes

Principles of Functional Programming

Doing Abstract Algebra with Type Classes

Type classes let one define concepts that are quite abstract, and that can be instantiated with many types. For instance:

```
trait SemiGroup[T]:
  extension (x: T) def combine (y: T): T
```

This models the algebraic concept of a semigroup with an associative operator combine.

Doing Abstract Algebra with Type Classes

Type classes let one define concepts that are quite abstract, and that can be instantiated with many types. For instance:

```
trait SemiGroup[T]:
  extension (x: T) def combine (y: T): T
```

This models the algebraic concept of a semigroup with an associative operator combine.

We can then define methods that work for all semigroups. For instance:

```
def reduce[T: SemiGroup](xs: List[T]): T =
    xs.reduceLeft(_.combine(_))
```

Type Class Hierarchies

Algebraic type classes often form natural hierarchies. For instance, a *monoid* is defined as a semigroup with a left and right unit element.

Here's its natural definition:

```
trait Monoid[T] extends SemiGroup[T]:
  def unit: T
```

Generalize reduce to work on lists of T where T has a Monoid instance such that it also works for empty lists.

Generalize reduce to work on lists of T where T has a Monoid instance such that it also works for empty lists.

```
def reduce[T](xs: List[T])(using m: Monoid[T]): T =
    xs.foldLeft(m.unit)(_.combine(_))
```

Using Context Bounds

In the previous example we had to pass an explicitly named type class instance m: Monoid[T] to reduce, so that we could refer to m.unit.

One could alternatively use a context bound and a summon.

```
def reduce[T: Monoid](xs: List[T]): T =
    xs.reduceLeft(summon[Monoid[T]].unit)(_.combine(_))
```

Streamlining Access

A simpler calling syntax can be obtained if we do some preparation in the Monoid trait itself.

```
trait Monoid[T] extends SemiGroup[T]:
  def unit: T
object Monoid:
  def apply[T](using m: Monoid[T]): Monoid[T] = m
```

This defines a global function Monoid.apply[T] that returns the Monoid[T] instance that is currently visible.

With this helper, reduce can be written like this:

```
def reduce[T: Monoid](xs: List[T]): T =
    xs.reduceLeft(Monoid[T].unit)(_.combine(_))
```

Multiple Typeclass Instances

It's possible to have several given instances for a typeclass/type pair. For instance, Int could be a Monoid in (at least) two ways:

```
with + as combine and 0 as unit, or
with * as combine and 1 as unit.
given sumMonoid: Monoid[Int] with
  extension (x: Int) def combine(y: Int) : Int = x + y
  def unit: Int = 0

given prodMonoid: Monoid[Int] with
  extension (x: Int) def combine(y: Int) : Int = x * y
  def unit: Int = 1
```

Define the sum and product functions on List[Int] in terms of reduce.

Define the sum and product functions on List[Int] in terms of reduce.

```
def sum(xs: List[Int]): Int = reduce(xs)(using sumMonoid)
def product(xs: List[Int]): Int = reduce(xs)(using prodMonoid)
```

What happens if you leave out the using arguments?

Define the sum and product functions on List[Int] in terms of reduce.

```
def sum(xs: List[Int]): Int = reduce(xs)(using sumMonoid)
def product(xs: List[Int]): Int = reduce(xs)(using prodMonoid)
```

What happens if you leave out the using arguments?

An ambiguity error.

Typeclass Laws

Algebraic type classes are not just defined by their type signatures but also by the laws that hold for them.

For example, any given instance of Monoid[T] should satisfy the laws:

```
x.combine(y).combine(z) == x.combine(y.combine(z))
unit.combine(x) == x
x.combine(unit) == x
```

where x, y, z are arbitrary values of type T and unit = Monoid.unit[T].

The laws can be verified either by a formal or informal proof, or by testing them.

A good way to test that an instance is *lawful* is using randomized testing with a tool like ScalaCheck.