

4.8 Vermischte Übungen - Lösungen

Aufgabe 9: Variablen

- a) Nenne Vorteile, die für die Verwendung von Variablen sprechen.
- b) Nenne drei Datentypen, die in Variablen abgespeichert werden können.

Lösung:

Vorteile:

- Das Programm wird lesbarer und besser verständlich.
- Wenn der Wert einer Variablen geändert werden muss, kann dies an einer zentralen Stelle geschehen statt an vielen Stellen.
- Mit Variablen lässt sich rechnen dadurch lassen sich effiziente Programmierstrukturen wie Schleifen nutzen.

Wir unterscheiden die Datentypen Zahl, Zeichen und Wahrheitswert.

Aufgabe 10: Schleifen

An allen Digitalpins des Arduino werden LEDs mit geeigneten Vorwiderständen angeschlossen. Dann wird das rechts abgebildete Programm ausgeführt.

- a) Erstelle eine Trace-Tabelle für einen Durchlauf der Wiederhole fortlaufend Schleife.
- b) Nenne die Pin-Nummern der LEDs, die nach Durchlaufen dieses Programms einmal geleuchtet haben.
- c) Stelle das Programm als Struktogramm dar.

```
Arduino Programm

wiederhole fortlaufend

setze pin v auf 2

wiederhole bis pin > 10

setze digitalen Pin pin Ausgang auf HIGHV

warte 1 Sek.

setze digitalen Pin pin Ausgang auf LOWV

ändere pin v um 2
```

Lösung:

Die Zeilenzählung soll bei "wiederhole fortlaufend" mit 1 beginnen.

Zeile	pin
2	2
3	2
4	2
5	2
6	2
7	4

Zeile	pin
3	4
4	4
5	4
6	4
7	6
3	6

Zeile	pin
4	6
5	6
6	6
7	8
3	8
4	8

Zeile	pin
5	8
6	8
7	10
3	10
4	10
5	10

Zeile	pin
6	10
7	12
3	12
2	2

Aus der Trace-Tabelle geht hervor, dass die Pins mit den Nummern 2, 4, 6, 8 und 10 nach einem Durchlauf der wiederhole fortlaufend-Schleife einmal geleuchtet haben.

Das Struktogramm sieht im wesentlichen genauso aus wie in der Block-Darstellung von mBlock.

Aufgabe 11: Bitübertragung

Ein Programm ist 30 kB groß. Berechne, wie lange es bei einer Bitrate von 115200 Bit pro Sekunde dauert, das Programm auf den Arduino zu übertragen.

Lösung:

$$30\,\mathrm{kB} = 30000\,\mathrm{B} = 240000\,\mathrm{bit}$$

$$240000\,\mathrm{bit}/115200\,\frac{\mathrm{bit}}{\mathrm{s}} \approx 2\,\mathrm{s}$$

Die Übertragung dauert ca. 2 Sekunden.

Aufgabe 12: Das Binärsystem und das Dezimalsystem

- a) Übersetze vom Binär- ins Dezimalsystem.
 - **(1)** 1001₂

(2) 1010₂

(3) 1111₂

- b) Übersetze vom Dezimal- ins Binärsystem.
 - (1) 11

(2) 7

(3) 14

Lösung:

a) (1)
$$1 \cdot 8 + 0 \cdot 4 + 0 \cdot 2 + 1 \cdot 1 = 9$$
 (2) $1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 0 \cdot 1 = 10$ (3) $1 \cdot 8 + 1 \cdot 4 + 1 \cdot 2 + 1 \cdot 1 = 15$

(2)
$$1.8+0.4+1.2+0.1=10$$

(3)
$$1.8+1.4+1.2+1.1=15$$

b) (1)
$$11 = 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1 = 1011_2$$

(2)
$$7 = 1 \cdot 4 + 1 \cdot 2 + 1 \cdot 1 = 111_2$$

(3)
$$14 = 1 \cdot 8 + 1 \cdot 4 + 1 \cdot 2 + 0 \cdot 1 = 1110_2$$

Aufgabe 13: Programme verstehen

Am Arduino wird an Pin 9 eine LED mit Vorwiderstand und an Pin 10 ein Piezo-Summer angebracht.

- a) Stelle das Programm als Struktogramm dar.
- b) Beschreibe die Wirkung des rechts abgebildeten Programms.
- c) Erkläre, wie man das Programm ändern müsste, damit die LED zwei Mal blinkt, bevor wieder der Piezo-Summer piept.

```
Arduino Programm

wiederhole fortlaufend

setze x auf 0

setze y auf 1

wiederhole 4 mal

falls x < y dann

setze digitalen Pin 9 Ausgang auf HIGH

warte 1 Sek.

setze digitalen Pin 9 Ausgang auf LOW

ändere x um 2

sonst

spiele an Pin 10 den Ton C4 für halbe Note Schläge

ändere y um 2
```

Lösung:

Das Struktogramm kann selbst erstellt werden.

Das Programm bewirkt, dass abwechselnd die LED blinkt und der Piezo-Summer piept.

Man kann auf mehrere Arten erreichen, dass die LED zwei Mal blinkt, bevor der Piezo-Summer wieder piept:

- Das Blinken der LED wird in eine wiederhole 2 mal-Schleife gepackt.
- x wird immer um 1 geändert statt um 2. Dafür muss die Bedingung $x \le y$ heißen (im Programm geht das über $x \le y$ oder x = y). Die Anzahl der Wiederholungen sollte dann nicht 4, sondern 3 oder 6 oder ein anderes Vielfaches von 3 sein.
- ...

Aufgabe 14: Programm entwickeln

An allen Digitalpins des Arduino sind LEDs mit Vorwiderstand angeschlossen. Für das folgende Programm ist bereits eine Variable namens p angelegt.

Entwickle ein Programm, das die LEDs an Pin 1 bis 5 [2,4,6,8] nacheinander zum Leuchten bringt und nach einer Sekunde wieder ausschaltet. Es leuchtet also immer nur eine LED zur selben Zeit.

Anforderungen:

- Das Programm soll als Struktogramm dargestellt werden.
- Es sollen so wenig Code-Wiederholungen wie möglich vorkommen (*effizientes Programmie-ren*).

Befehle:

Lösung:

Für die LEDs an Pin 1 bis 5:

wiederhole fortlaufend	
setze p auf 1	
wiederhole 5 mal	
setze Pin p auf HIGH	
warte 1 Sekunde	
setze Pin p auf LOW	
ändere p um 1	

Alternativ:

wiederhole fortlaufend
setze p auf 1
wiederhole bis $p = 6$
setze Pin p auf HIGH
warte 1 Sekunde
setze Pin p auf LOW
ändere p um 1

Für die LEDs 2, 4, 6, 8:

wiederhole fortlaufend
setze p auf 2
wiederhole 4 mal
setze Pin p auf HIGH
warte 1 Sekunde
setze Pin p auf LOW
ändere p um 2