# ESTUDIO COMPARATIVO DEL ALGORITMO K-MEANS PARA DISTINTAS DISTANCIAS EN ESPACIOS METRICOS

Trabajo Fin de Grado

#### Grado en Matemáticas

Autor: Marcos Crespo Díaz

Tutor: María Jesús Algar Díaz



Contenido

- Introducción
  - Objetivos
  - Contexto del K-Means
  - El algoritmo K-Means
- Espacios métricos y distancias
  - Espacios métricos
  - Funciones de distancia
- Estudio comparativo del K-Means
  - Aspectos generales
  - Dataset simple
  - Dataset con outliers
  - MNIST
- **Conclusiones**



Marcos Crespo Díaz 30/06/2023 2 / 22

# Objetivos del TFG

- Intuición y fundamentos matemáticos del K-Means.
- Introducción a los espacios métricos y funciones de distancia.
- Exponer el estudio comparativo en distintos espacios métricos.



Marcos Crespo Díaz TFG 30/06/2023 3 / 22

## El K-Means en el contexto de la ciencia de datos

Aprendizaje Automático 

Supervisado 

Regresión 
Clasificación

No supervisado 
Análisis clúster 
Particional 
Reducción de la dimensión



Marcos Crespo Díaz 30/06/2023 4 / 22

### K-Means

'... determinar una partición de los datos en K grupos, o clústers, tales que los datos de un clúster sean más similares entre sí que los datos de clústers diferentes".

Jain and Dubes, 'Algorithms for clustering data', 1988.



Marcos Crespo Díaz 30/06/2023 5 / 22

## **K-Means**



Figura: Diferentes formas de agrupar datos sobre el plano



Marcos Crespo Díaz TFG 30/06/2023 6 / 22

## K-Means. Centroide

## **Definition**

Dado un conjunto de datos  $\mathbf{C} \subset \mathbb{R}^n$ , se llama **centroide**  $\hat{c} \in \mathbb{R}^n$  al punto que satisface:

$$\hat{c} = \sum_{\mathbf{r} \in \mathbf{C}} \frac{\mathbf{x}}{|\mathbf{C}|} \tag{1}$$



Marcos Crespo Díaz 30/06/2023 7 / 22

## K-Means, Problema

Podemos hablar de la varianza dentro de cada clúster  $C_k$  como

Espacios métricos y distancias

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{i=1}^n (x_{ij} - x_{i'j})^2$$
 (2)

Queremos que dentro de cada clúster la varianza sea mínima. Resolver el siguiente problema de optimización:

$$\underset{C_1,\dots,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K W(C_k) \right\} \tag{3}$$



Marcos Crespo Díaz 30/06/2023

# El algoritmo de K-Means

- **1** Inicializar  $C_i$  con  $i \in \{1, ..., k\}$  conjuntos de  $\mathbb{R}^n$  vacíos, que serán nuestros clústers
- 2 Tomar k elementos de **C** aleatoriamente como centroides  $\hat{c}_i$ con  $i \in \{1, ..., k\}$
- **3** Calcular la  $d(\hat{c}_i, \mathbf{x})^1 \ \forall \mathbf{x} \in \mathbf{C}, \ i \in \{1, ..., k\}$ .

Espacios métricos y distancias

- **1** Para cada  $\mathbf{x} \in \mathbf{C}$ , asignar a  $\mathbf{x}$  al  $C_i$  cuya  $d(\hat{c}_i, \mathbf{x})$  sea menor (elemento 'más similar')
- Iterar hasta que la asignación de clúster no cambie:
  - Para cada clúster C<sub>i</sub>, recalcular su centroide.(1)
  - Asignar a cada  $\mathbf{x} \in \mathbf{C}$ , el clúster  $C_i$  cuya  $d(\hat{c}_i, \mathbf{x})$  sea menor

 $^{1}d(A,B) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$  (Distancia euclídea).



Marcos Crespo Díaz 30/06/2023

# K-Means. Convergencia

#### Lemma

Contenido

Sean  $x^1, x^2, \ldots, x^m \in \mathbb{R}^2$ , con  $m \ge 1$  puntos. Sea  $\hat{c} = \frac{1}{m} \sum_{i=1}^m x^i$ su centroide, y sea  $z \in \mathbb{R}^2$  un punto arbitrario en el espacio 2-dimensional, Entonces:

$$\sum_{i=1}^{m} ||x^{i} - z||^{2} \ge \sum_{i=1}^{m} ||x^{i} - \hat{c}||^{2}.$$



Marcos Crespo Díaz 30/06/2023 10 / 22

# Espacio Métrico

#### **Definition**

Contenido

Sea X un conjunto no vacío y d una función de valor real definida sobre  $X \times X$  tal que para  $a, b \in X$ :

**1**  $d(a,b) \ge 0$ , y d(a,b) = 0 si, y sólo si, a = b;

Espacios métricos y distancias

- **2** d(a,b) = d(b,a); y
- $d(a,c) \leq d(a,b) + d(b,c)$ , para toda a, b y c en X (desigualdad triangular).

Entonces d es llamada métrica sobre X, (X, d) es llamado **espacio métrico** y d(a, b) se conoce como la **distancia** entre a y b.



Marcos Crespo Díaz 30/06/2023 11 / 22

<sup>&</sup>lt;sup>a</sup>S. Morris, Topología sin dolor. 1989

## **Distancias**

Contenido

Sea  $A = (a_1, a_2, ..., a_n)$  y  $B = (b_1, b_2, ..., b_n)$  puntos de  $\mathbb{R}^n$ :

#### **Definition**

Se define la **distancia euclídea** como:

$$d(A,B) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$
 (4)

#### **Definition**

Se define la **distancia de Manhattan** como:

$$d(A,B) = |b_1 - a_1| + |b_2 - a_2| + \dots + |b_n - a_n|$$
 (5)



Marcos Crespo Díaz 30/06/2023 12 / 22

Sea 
$$A = (a_1, a_2, ..., a_n)$$
 y  $B = (b_1, b_2, ..., b_n)$  puntos de  $\mathbb{R}^n$ :

Espacios métricos y distancias

#### Definition

Se define la **distancia de Chebysev** como:

$$d(A,B) = \max(|b_1 - a_1|, |b_2 - a_2|, ..., |b_n - a_n|)$$
 (6)

#### **Definition**

Se define la **distancia de Minkowski** como:

$$d(A,B) = [|b_1 - a_1|^p + |b_2 - a_2|^p + \dots + |b_n - a_n|^p]^{1/p}$$
 (7)



Marcos Crespo Díaz 30/06/2023 13 / 22

#### Realizaremos diferentes pruebas:

- Base de datos simple
- ② Base de datos simple con outliers
- MNIST



Marcos Crespo Díaz 30/06/2023 14 / 22

|                  | Predicted Condition                              |                                                    |  |
|------------------|--------------------------------------------------|----------------------------------------------------|--|
|                  | Positive                                         | Negative                                           |  |
| Actual Condition | True Positive (TP)<br>hit                        | False Negative (FN) Underestimation, type II error |  |
|                  | False Positive (FP) Overestimation, type I error | True Negative (TN)<br>Correct rejection            |  |

Cuadro: Matriz de confusión

$$precision = \frac{TP}{TP + FP} \tag{8}$$



Marcos Crespo Díaz TFG 30/06/2023 15 / 22

Conclusiones

# Dataset simple. Resultados



Figura: Resultados datos simples



Marcos Crespo Díaz 30/06/2023 16 / 22

### Dataset con outliers. Resultados



Figura: Resultados datos con atípicos



Marcos Crespo Díaz TFG 30/06/2023 17 / 22

# Datasets simples. Comparación

|          | Euclídea | Manhattan | Chebysev |
|----------|----------|-----------|----------|
| Simple   | 95,4 %   | 95,6 %    | 95 %     |
| Outliers | 84,9 %   | 86,03 %   | 78,68 %  |

|          | Euclídea     | Manhattan    | Chebysev     |
|----------|--------------|--------------|--------------|
| Simple   | 10 it, 0.26s | 6 it, 0.06s  | 8 it, 0.08s  |
| Outliers | 19 it, 0.47s | 13 it, 0.17s | 14 it, 0.19s |



Marcos Crespo Díaz 30/06/2023 18 / 22

# MNIST (Modified National Institute of Standards and Technology)

label, 1x1, 1x2, 1x3, 1x4, 1x5, 1x6, 1x7, 1x8, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

(a)



Figura: Base de datos MNIST.



Marcos Crespo Díaz 30/06/2023 19 / 22

# MNIST. Resultados

|           | Euclídea   | Manhattan  | Chebysev   |
|-----------|------------|------------|------------|
| precisión | 53,24 %    | 39,115 %   | 30,88 %    |
| ejecución | 4 it, 723s | 4 it, 511s | 4 it, 564s |



20 / 22 Marcos Crespo Díaz 30/06/2023

## **Conclusiones**

Contenido

- Espacios métricos: Herramienta topológica interesante en ciencia de datos.
- Verificación de la mayoría de aspectos teóricos sobre las distancias.
- MNIST: Espacio de gran dimensionalidad. Resultados aceptables.
- Posibles mejoras y futuras líneas para mejorar resultados.



Marcos Crespo Díaz 30/06/2023 21 / 22

# ESTUDIO COMPARATIVO DEL ALGORITMO K-MEANS PARA DISTINTAS DISTANCIAS EN ESPACIOS METRICOS

Trabajo Fin de Grado

Grado en Matemáticas - Curso 2022-2023

Autor: Marcos Crespo Díaz

Tutor: María Jesús Algar Díaz

