CE 3372 Water Systems Design Fall 2016 ¹

1. (1 pts.) The	hvdraulic	radius i	n a	conduit	containing	a f	dowing	liquid	lis
(- P 00.	,	II) all a all co	I COCITOR I		COLLGICIE	00111001111110	-			~

- (A) the ratio of the cross-sectional area of flow and the wetted perimeter
- (B) the mean radius from the center of flow to the wetted side of the conduit
- (C) the ratio of the cross-sectional area of the conduit and the wetted perimeter
- (D) the ratio of the wetted perimeter and the cross-sectional area of the conduit
- 2. (5 pts.) The rational runoff coefficient for a 14.81 acre parcel property is 0.35. The rainfall intensity is 4.56 inches per hour. The peak discharge from this property is anticipated to be about
 - (A) 23.82 cfs
 - (B) 33.01 cfs
 - (C) 48.18 cfs
 - (D) 57.86 cfs
 - (E) 65.90 cfs
 - (F) 80.18 cfs
 - (G) 97.81 cfs
- 3. (8 pts.) A storm sewer (reinforced concrete pipe) is 400-feet long and 36-inches in diameter. The sewer flows from a junction box (invert elevation 101.00 feet) to a lift station sump (invert elevation 100.00 feet). Assuming Manning's roughness coefficient is 0.013 for all flow depths, the sewer maximum flow capacity without surcharge is about
 - (A) 17.8 cfs
 - (B) 19.2 cfs
 - (C) 22.1 cfs
 - (D) 28.9 cfs
 - (E) 31.2 cfs
 - (F) 33.4 cfs
 - (G) 35.9 cfs
 - (H) 36.4 cfs

REVISION A . Page 1 of 17

¹For partial credit show work

- 4. (8 pts.) The storm sewer in the question above is flowing at $\frac{3}{4}$ full. What is the discharge in the sewer?
 - (A) $Q_{75\%} = 17.8 \text{ cfs}$
 - (B) $Q_{75\%} = 19.2 \text{ cfs}$
 - (C) $Q_{75\%} = 22.1 \text{ cfs}$
 - (D) $Q_{75\%} = 28.9 \text{ cfs}$
 - (E) $Q_{75\%} = 30.8 \text{ cfs}$
 - (F) $Q_{75\%} = 33.4 \text{ cfs}$
 - (G) $Q_{75\%} = 35.9 \text{ cfs}$
 - (H) $Q_{75\%} = 36.4 \text{ cfs}$
- 5. (11 pts.) A pipe with a diameter of 2.4 meters is depicted in Figure 1. The pipe is flowing partially full.

Figure 1: Circular channel flowing partially full.

What is the hydraulic radius of flow in the circular section?

- (A) 0.44 m
- (B) 0.88 m
- (C) 1.30 m
- (D) 1.80 m
- (E) 0.44 m
- (F) 0.88 m
- (G) 1.30 m
- (H) 1.80 m

6. (12 pts.) A smooth concrete channel (n=0.012) is depicted in Figure 2. The channel's dimensionless slope in the direction of flow is 0.008. If the flow width at the surface is 2-meter, what is the flow rate in the channel using Manning's equation?

Figure 2: Triangular channel.

- (A) 0.24 cms (cubic meters per second)
- (B) 0.31 cms
- (C) 3.52 cms
- (D) 3.91 cms
- (E) 4.41 cms
- (F) 4.45 cms
- (G) 5.57 cms
- (H) 6.66 cms
- (I) 7.38 cms
- (J) 9.31 cms

REVISION A . Page 3 of 17

7. (19 pts.) A 24-inch diameter sewer pipe, with Manning's n of 0.015 is laid on slope $S_0 = 0.02$ as shown in Figure 3.

Figure 3: Sewer pipe sketch

Use Manning's equation and the depth-area, and the depth-perimeter equations on the equation sheet to complete Table 1.

Table 1: Depth-Area, Depth-Perimeter, Depth-Hyd. Radius, and Discharge for Circular Sewer

y(ft)	$A(ft^2)$	$P_w(ft)$	R_h (ft)	$Q(ft^3/sec)$
1.00				
2.00				

REVISION A . Page 4 of 17

8. (8 pts.) Figure 4 is a sketch of a 24 inch line with Manning's n of 0.015, laid on a slope of 0.02, connecting to a 48 inch line (also at 0.02) at a junction box. The flowlines (invert elevations) match at the junction box. The downstream boundary conditions cause the flow depth in the 48 line to be 12 inches deep.

Figure 4: Sewer pipes connected at a junction box. Matching flow line elevations.

- (A) The likely flow depth in the 24 inch line is
 - i) 12.0-inches
 - ii) 18.0-inches
 - iii) 24.0-inches
 - iv) 36.0-inches
 - v) 48.0-inches
- (B) The discharge in the 24 inch line, assuming normal flow at the flow depth in the junction box is
 - i) 0.00 cfs
 - ii) 4.92 cfs
 - iii) 9.83 cfs
 - iv) 13.86 cfs
 - v) 19.66 cfs
 - vi) 27.72 cfs
 - vii) 39.32 cfs

- (C) The full-pipe discharge in the 24 inch line, assuming normal flow, is
 - i) 0.00 cfs
 - ii) 4.92 cfs
 - iii) 9.83 cfs
 - iv) 13.86 cfs
 - v) 19.66 cfs
 - vi) 27.72 cfs
 - vii) 39.32 cfs
- (D) What is the unused flow capacity in the 24 inch line?

REVISION A . Page 6 of 17

9. (8 pts.) Figure 5 is a sketch of a 24 inch line with Manning's n of 0.015, laid on a slope of 0.02, connecting to a 48 inch line (also at 0.02) at a junction box. The soffit(crown) elevations match at the junction box. The downstream boundary conditions cause the flow depth in the 48 line to be 36 inches deep.

Figure 5: Sewer pipes connected at a junction box. Matching soffit elevations.

- (A) The likely flow depth in the 24 inch line is
 - i) 12.0-inches
 - ii) 18.0-inches
 - iii) 24.0-inches
 - iv) 36.0-inches
 - v) 48.0-inches
- (B) The discharge in the 24 inch line, assuming normal flow at the flow depth in the pipe is
 - i) 0.00 cfs
 - ii) 4.92 cfs
 - iii) 9.83 cfs
 - iv) 13.86 cfs
 - v) 19.66 cfs
 - vi) 27.72 cfs
 - vii) 39.32 cfs

- (C) The full-pipe discharge in the 24 inch line, assuming normal flow, is
 - i) 0.00 cfs
 - ii) 4.92 cfs
 - iii) 9.83 cfs
 - iv) 13.86 cfs
 - v) 19.66 cfs
 - vi) 27.72 cfs
 - vii) 39.32 cfs
- (D) What is the unused flow capacity in the 24 inch line?

REVISION A . Page 8 of 17

10. (8 pts.) Figure 6 is a sketch of a 24 inch line with Manning's n of 0.015, laid on a slope of 0.02, connecting to a 48 inch line (also at 0.02) at a junction box. The soffit(crown) elevations match at the junction box. The downstream boundary conditions cause the flow depth in the 48 line to be 36 inches deep.

Figure 6: Sewer pipes connected at a junction box. Matching flow line elevations.

- (A) The likely flow depth in the 24 inch line is
 - i) 12.0-inches
 - ii) 18.0-inches
 - iii) 24.0-inches
 - iv) 36.0-inches
 - v) 48.0-inches
- (B) The discharge in the 24 inch line, assuming normal flow at the flow depth in the pipe is
 - i) 0.00 cfs
 - ii) 4.92 cfs
 - iii) 9.83 cfs
 - iv) 13.86 cfs
 - v) 19.66 cfs
 - vi) 27.72 cfs
 - vii) 39.32 cfs

- (C) The full-pipe discharge in the 24 inch line, assuming normal flow, is
 - i) 0.00 cfs
 - ii) 4.92 cfs
 - iii) 9.83 cfs
 - iv) 13.86 cfs
 - v) 19.66 cfs
 - vi) 27.72 cfs
 - vii) 39.32 cfs
- (D) What is the unused flow capacity in the 24 inch line?

REVISION A . Page 10 of 17

11. (46 pts.) An EPA-NET simulation model for a reservoir-pump-network was constructed and operated for four (4) different operational scenarios. Figure 7 is a depiction of the network. The numbers next to the nodes are Node_ID values in the reports that follow, and the numbers next to the pipes are the Link_ID values. The network is supplied from a reservoir through a booster pump, both are depicted on Figure 7.

Figure 7: EPA-NET system topology.

Figure 8 is the a portion of the summary report for simulation 1. Figure 9 is the a portion of the summary report for simulation 2. Figure 10 is the a portion of the summary report for simulation 3. Figure 11 is the a portion of the summary report for simulation 4.

These four simulation represent different demand scenarios for the same system.

Interpret these reports, to answer the following questions:

(a) Complete the table below. Q_{pump} is the discharge in gallons-per-minute through the pump station, H_{Supply} is the head at the supply reservoir, H_{Node2} is the head at Node 2, and ΔH_{pump} is the added head supplied by the pump.

Table 2: Pump Discharge and Supplied Head Simulation # Q_{pump} H_{Supply} H_{Node2} ΔH_{pump} 1

2

3

REVISION A . Page 11 of 17

(b) Complete the table below. Q_{pump} is the discharge in gallons-per-minute through the pump station, $\Delta H_{Node2-to-5}$ is head loss in the system from Node 2 to Node 5.

Table 3: System Discharge and Head Loss

Simulation #	Q_{pump}	H_{Node2}	H_{Node5}	$\Delta H_{Node2-to-5}$
1				
2				
3				
4				

(c) If the pump performance curve has the mathematical structure: $H_{pump} = H_{shutoff} - K_{system} \times Q_{pump}^2$, estimate the value of K_{pipe} .

(d) If the system frictional loss curve has the mathematical structure: $\Delta H_{Node~2-to-5} = K_{loss} \times Q_{pump}^2$, estimate the value of K_{loss}

(e) What effect would removing the pipe joining nodes 3 and 4 have on the system performance? Explain your reasoning.

(f) Estimate the flow distribution and head losses the the system if the the pipe joining nodes 3 and 4 are removed, and the pipe joining node 4 and 5 is removed if the nodal demands are the same as SIMULATION 2.

REVISION A . Page 13 of 17

Page 1					016 5:35:54 PM
	******			******	
* EPANET					*
* Hydraulic and Water Quality * Analysis for Pipe Networks					
*	Analy	Version 2	_	5	*
*	******				本。
	exam1-gpm.net		*****	~~~~~	• • • • • • • • • • • • • • • • • • •
Link	Start	End		Length	Diameter
ID	Node	Node		ft	in
1	2	3		3280	5
2	3	5		3280	5
3	2	4		3280	5
4	4	5		3280	5
5	3	4		1000	5
6	1	2		#N/A	#N/A Pump
ode Results:					_
Node	Demand	Head	Pressure	Quality	
ID	GPM	ft	psi		
2	0.00	65.60	28.42	0.00	
3	0.00	65.60	28.42	0.00	
4	0.00	65.60	28.42	0.00	
5	0.00	65.60	28.42	0.00	
1	0.00	0.00	0.00	0.00	Reservoir
Link Results	:				
Link	Flow	VelocityU	nit Headlos	ss Stat	tus
ID	GPM	fps	ft/Kft		
1	0.06	0.00	0.00	Open	
2	-0.06	0.00	0.00	Open	
		0.00	0.00	Open	
3	-0.06	0.00	0.00	1	
3 4	-0.06 0.06	0.00	0.00	Open	
				_	

Figure 8: EPA-NET Summary Report, Simulation #1

REVISION A . Page 14 of 17

Page 1	******	***	****		016 5:34:44 PM
*	• * * * * * * * * * * * * * * * * * * *	E P A N		· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,
*	Hvdra		ater Quality	V	,
*	•		pe Networks	,	;
*	J	Version 2	-		:
**************************************		******	******	******	******
Link	Start	End		Length	Diameter
ID	Node	Node		ft	in
1	2	3		3280	5
2	3	5		3280	5
3	2	4		3280	5
4	4	5		3280	5
5	3	4		1000	5
6	1	2		#N/A	#N/A Pum
Node Results:					
Node	Demand	Head	Pressure	Quality	
ID	GPM	ft	psi		
2	0.00	61.46	26.63	0.00	
3	15.78	60.87	26.37	0.00	
4	15.78	60.87	26.37	0.00	
5	15.78	60.78	26.34	0.00	
1	-47.34	0.00	0.00	0.00	Reservoir
ink Results:					
Link	Flow	VelocityU	nit Headloss	s Sta	tus
ID	GPM	fps	ft/Kft 		
1	23.67	0.39	0.18	Open	
2	7.89	0.13	0.03	Open	
3	23.67	0.39	0.18	Open	
4	7.89	0.13	0.03	Open	
5	0.00	0.00	0.00	Open	
6	47.34	0.00	-61.46	Open	_

Figure 9: EPA-NET Summary Report, Simulation #2

REVISION A . Page 15 of 17

Page 1	******	******	*****		016 5:35:15 PM
*		EPAN			*
*	Hvdra		ater Qualit	.v	*
*			pe Networks	-	*
*	mary	Version 2	-	,	*
*********	*******			******	******
Input File: ex	am1-gpm.net				
Link - Node Ta					
Link	Start	End		_	Diameter
ID	Node	Node		ft	in
1	2	3		3280	5
2	3	5		3280	5
3	2	4		3280	5
4	4	5		3280	5
5	3	4		1000	5
6	1	2		#N/A	#N/A Pump
Node Results:					. 1
Node	Demand	Head	Pressure	Quality	
ID	GPM	ft	psi		
2	0.00	56.15	24.33	0.00	
3	31.56	54.01	23.40	0.00	
4	31.56	54.01	23.40	0.00	
5 1	31.56 -94.68	53.72	23.28	0.00	Dogominim
Link Results:	-94.00	0.00	0.00	0.00	Reservoir
LINK RESULTS.					
Link	Flow	VelocitvU	nit Headlos	ss Sta	tus
ID	GPM	•	ft/Kft		
1	47.34	0.77	0.65	Open	
2	15.78	0.26	0.09	Open	
3	47.34	0.77	0.65	Open	
4	15.78	0.26	0.09	Open	
5	0.00	0.00	0.00	Open	
6	94.68	0.00	-56.15	Open	Pump

Figure 10: EPA-NET Summary Report, Simulation #3

REVISION A . Page 16 of 17

Page 1	******	******	******		016 5:33:57 PM	
*		EPAN			*	
*	Hydraulic and Water Quality					
*	-		pe Networks	-	*	
*	J	Version 2	-		*	
******	******	******	******	******	*****	
Input File: exa	m1-gpm.net					
Link - Node Tab						
Link	Start	End		Length	Diameter	
ID	Node	Node		ft	in	
1	2	3		3280	5	
2	3	5		3280	5	
3	2	4		3280	5	
4	4	5		3280	5	
5	3	4		1000	5	
6	1	2		#N/A	#N/A Pump	
Node Results:						
Node	Demand	Head	Pressure	Quality		
ID	GPM	ft	psi			
2	0.00	44.34	19.21	0.00		
3	47.34	39.73	17.22	0.00		
4	47.34	39.73	17.22	0.00		
5	47.34	39.14	16.96	0.00		
1	-142.02	0.00	0.00	0.00	Reservoir	
Link Results:						
Link	Flow	VelocityU	nit Headlos	ss Stat	tus	
ID	GPM	fps	ft/Kft			
1	71.01	1.16	1.41	Open	 _	
2	23.67	0.39	0.18	Open		
3	71.01	1.16	1.41	Open		
4	23.67	0.39	0.18	Open		
5	0.01	0.00	0.00	Open		
6	142.02	0.00	-44.34	Open	Pump	

Figure 11: EPA-NET Summary Report, Simulation #4

REVISION A . Page 17 of 17