Principle Ideal Domain

Definition: PID

Let R be an integral domain. To say that R is a *principal ideal domain* means that every $I \subseteq R$ is ideal - there exists $a \in R$ such that:

$$I = (a) = aR$$

Example

The following are PIDs:

- 1). \mathbb{Z}
- 2). $\mathbb{Z}[i]$
- 3). $\mathbb{Z}[\omega]$
- 4). F[x] for a field F

The following are not PIDs:

- 1). $\mathbb{Z}[x]$ because (2, x) is not principal
- 2). F[x, y] because (x, y) is not principal
- 3). $\mathbb{Z}[\sqrt{-5}]$ because it contains irreducibles that are not prime

Lemma

Let R be a PID and $a,b \in R$. $(a,b) \in R$ and $\exists \, x,y \in R$ such that:

$$(a,b) = xa + yb$$

In other words, the GCD can be represented as a linear combination of a and b in R.

Proof

Since R is a PID, (a,b)=(a)+(b) should still be principal

So $\exists d \in R$ such that (a,b) = (d)

 $(d) = (a) + (b) \supseteq (a)$, and so $d \mid a$ (to contain is to divide)

Likewise, $d \mid b$

Thus, d is a common divisor of a and b

Assume c is some other common divisor of a and b

$$(c)\supseteq(a) \text{ and } (c)\supseteq(b)$$

But (\boldsymbol{d}) is the smallest ideal containing $(\boldsymbol{a},\boldsymbol{b})$

So
$$(c) \supseteq (a,b) = (d)$$
 and therefore $c \mid d$.

Moreover, since (d) = (a) + (b), there exists $x, y \in R$ such that d = xa + yb.

Theorem

```
Let R be a PID and p \in R:
```

```
p irreducible \implies p prime
```

Proof

Assume p is irreducible

Assume $p \mid ab$ for some $a, b \in R$

AWLOG: $p \nmid a$

Since p is irreducible, the only divisors of p are associates of p and 1, and hence the only common divisors of p and a are units, which are associates of 1

In particular, (p, a) = 1

So, by the previous lemma, $\exists x, y \in R$ such that 1 = ax + py

b = bax + bpy = abx + pby

But $p \mid ab$ and $p \mid pby$, so $p \mid b$

Therefore, p is prime.

Thus, is a PID, prime and irreducible are the same thing.