

Cours d'algèbre linéaire

Chapitre 3 : Espaces vectoriels

Licence GLSI

Semestre : S1

Abdessattar LAFI

Table des matières

1	Espaces vectoriels			1
	1.1	Défini	tions	1
	1.2	.2 Sous-espace vectoriel		4
		1.2.1	Combinaisons linéaires	5
		1.2.2	Caractérisation d'un sous-espace vectoriel	6
		1.2.3	Intersection de deux sous-espaces vectoriels	6
		1.2.4	Somme de deux sous-espaces vectoriels	6
		1.2.5	Sous-espaces vectoriels supplémentaires	7
		1.2.6	Sous-espace engendré	8
	1.3	Familles libres, liées et génératrices		9
	1.4	Bases		10
	1.5	Espace vectoriel de dimension finie		
	1.6	Carac	térisation des sous-espaces vectoriels de dimension finie	12

Chapitre 1

Espaces vectoriels

Dans tout ce chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1.1 Définitions

Définition 1.1.1. Un \mathbb{K} -espace vectoriel est un ensemble non vide E muni :

ullet d'une loi de composition interne, c'est-à-dire d'une application de $E \times E$ dans E:

$$E \times E \longrightarrow E$$

$$(u,v) \longmapsto u+v$$

• d'une loi de composition externe, c'est-à-dire d'une application de $\mathbb{K} \times E$ dans E:

$$\mathbb{K} \times E \longrightarrow E$$

$$(\lambda, v) \longmapsto \lambda.u$$

qui vérifient les propriétés suivantes :

- 1) (E, +) est un groupe commutatif
 - l'addition est associative : u + (v + w) = (u + v) + w (pour tous $u, v, w \in E$).
 - Il existe un élément neutre $0_E \in E$ tel que $u + 0_E = u$ (pour tout $u \in E$).
 - Tout $u \in E$ admet un symétrique u_0 tel que $u + u_0 = 0_E$. Cet élément u_0 est noté -u.
 - l'addition est commutative : u + v = v + u (pour tous $u, v \in E$).

- 2) la loi externe doit vérifier :
 - $1.u = u \text{ (pour tout } u \in E).$
 - $\lambda.(\mu.u) = (\lambda\mu).u$ (pour tous $\lambda, \mu \in \mathbb{K}, u \in E$).
 - $\lambda.(u+v) = \lambda.u + \lambda.v$ (pour tous $\lambda \in \mathbb{K}$, $u, v \in E$).
 - $(\lambda + \mu).u = \lambda.u + \mu.u$ (pour tous $\lambda, \mu \in \mathbb{K}, u \in E$).

Exemple 1.1.1. (Le \mathbb{R} -espace vectoriel \mathbb{R}^2 .)

Posons $\mathbb{K} = \mathbb{R}$ et $E = \mathbb{R}^2$. Un élément $u \in E$ est donc un couple (x, y) avec x élément de \mathbb{R} et y élément de \mathbb{R} . Ceci s'écrit

$$\mathbb{R}^2 = \{ (x, y) \mid x \in \mathbb{R}, y \in \mathbb{R} \}.$$

• Définition de la loi interne. Si (x,y) et (x_0,y_0) sont deux éléments de \mathbb{R}^2 , alors :

$$(x,y) + (x_0, y_0) = (x + x_0, y + y_0).$$

• Définition de la loi externe. Si λ est un réel et (x,y) est un élément de \mathbb{R}^2 , alors :

$$\lambda . (x, y) = (\lambda x, \lambda y).$$

L'élément neutre de la loi interne est le vecteur nul (0,0). Le symétrique de (x,y) est (-x,-y), que l'on note aussi -(x,y).

Définition 1.1.2.

- On appelle les éléments de E des **vecteurs**. Au lieu de K-espace vectoriel, on dit aussi espace vectoriel sur K.
- Les éléments de K seront appelés des scalaires.
- L'élément neutre 0_E s'appelle aussi le vecteur nul. Il ne doit pas être confondu avec l'élément 0 de K. Lorsqu'il n'y aura pas de risque de confusion, 0_E sera aussi noté 0.
- Le symétrique -u d'un vecteur $u \in E$ s'appelle aussi l'opposé.
- La loi de composition interne sur E (notée usuellement +) est appelée couramment l'addition et u + u₀ est appelée somme des vecteurs u et u₀.

 La loi de composition externe sur E est appelée couramment multiplication par un scalaire. La multiplication du vecteur u par le scalaire λ sera souvent notée simplement λu, au lieu de λ.u.

Somme de n vecteurs. Il est possible de définir, par récurrence, l'addition de n vecteurs, $n \geq 2$. La structure d'espace vectoriel permet de définir l'addition de deux vecteurs (et initialise le processus). Si maintenant la somme de n-1 vecteurs est définie, alors la somme de n vecteurs $v_1, v_2, ..., v_n$ est définie par

$$v_1 + v_2 + \dots + v_n = (v_1 + v_2 + \dots + v_{n-1}) + v_n.$$

L'associativité de la loi + nous permet de ne pas mettre de parenthèses dans la somme $v_1 + v_2 + ... + v_n$. On notera $v_1 + v_2 + ... + v_n = \sum_{i=1}^n v_i$.

Exemple 1.1.2. (L'espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$)

L'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ est noté $\mathfrak{F}(\mathbb{R}, \mathbb{R})$. Nous le munissons d'une structure de \mathbb{R} -espace vectoriel de la manière suivante.

• Loi interne. Soient f et g deux éléments de $\mathfrak{F}(\mathbb{R},\mathbb{R})$. La fonction f+g est définie par :

$$\forall x \in \mathbb{R}, \quad (f+g)(x) = f(x) + g(x)$$

(où le signe + désigne la loi interne de $\mathfrak{F}(\mathbb{R},\mathbb{R})$ dans le membre de gauche et l'addition dans \mathbb{R} dans le membre de droite).

• Loi externe. Si λ est un nombre réel et f une fonction de $\mathfrak{F}(\mathbb{R},\mathbb{R})$, la fonction $\lambda.f$ est définie par l'image de tout réel x comme suit :

$$\forall x \in \mathbb{R}, \ (\lambda.f)(x) = \lambda.f(x).$$

(Nous désignons par . la loi externe de $\mathfrak{F}(\mathbb{R},\mathbb{R})$ et par \times la multiplication dans \mathbb{R} . Avec l'habitude on oubliera les signes de multiplication : $(\lambda f)(x) = \lambda f(x)$.)

• Élément neutre. L'élément neutre pour l'addition est la fonction nulle, définie par :

$$\forall x \in \mathbb{R}, \quad f(x) = 0.$$

On peut noter cette fonction $0_{\mathfrak{F}(\mathbb{R},\mathbb{R})}$.

• Symétrique. Le symétrique de l'élément f de $\mathfrak{F}(\mathbb{R},\mathbb{R})$ est l'application g de \mathbb{R} dans \mathbb{R} définie par :

$$\forall x \in \mathbb{R}, \ g(x) = -f(x).$$

Le symétrique de f est noté -f.

1.2 Sous-espace vectoriel

Définition 1.2.1. (Sous-espace vectoriel)

Soit E un \mathbb{K} -espace vectoriel. Une partie F de E est appelée un sous-espace vectoriel si :

- $0_E \in F$,
- $u + v \in F$ pour tous $u, v \in F$,
- $\lambda.u \in F$ pour tout $\lambda \in \mathbb{K}$ et tout $u \in F$.

Exemple 1.2.1.

L'ensemble $F = \{(x,y) \in \mathbb{R}^2 \mid x+y=0\}$ est un sous-espace vectoriel de \mathbb{R}^2 . En effet :

- $(0,0) \in F$,
- $si\ u = (x_1, y_1)\ et\ v = (x_2, y_2)\ appartiennent\ \grave{a}\ F$, $alors\ x_1 + y_1 = 0\ et\ x_2 + y_2 = 0$ $donc\ (x_1 + x_2) + (y_1 + y_2) = 0\ et\ ainsi\ u + v = (x_1 + x_2, y_1 + y_2)\ appartient\ \grave{a}\ F$,
- $si\ u = (x, y) \in F \ et\ \lambda \in \mathbb{R},\ alors\ x + y = 0\ donc\ \lambda x + \lambda y = 0,\ d'où\ \lambda u \in F.$

Exemple 1.2.2.

L'ensemble des fonctions continues sur \mathbb{R} est un sous-espace vectoriel de l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} . En effet : la fonction nulle est continue; la somme de deux fonctions continues est continue; une constante fois une fonction continue est une fonction continue.

Exemples 1.2.1.

(1) L'ensemble $F_1 = \{(x,y) \in \mathbb{R}^2 \mid x+y=2\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 . En effet le vecteur nul (0,0) n'appartient pas à F_1 .

- (2) L'ensemble $F_2 = \{(x,y) \in \mathbb{R}^2 \mid x = 0 \text{ou} y = 0\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 . En effet les vecteurs u = (1,0) et v = (0,1) appartiennent à F_2 , mais pas le vecteur u + v = (1,1).
- (3) L'ensemble $F_3 = \{(x,y) \in \mathbb{R}^2 \mid x \geq 0 \text{ et } y \geq 0\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 . En effet le vecteur u = (1,1) appartient à F_3 mais, pour $\lambda = -1$, le vecteur $\lambda u = (-1,-1)$ n'appartient pas à F_3 .

Théorème 1.2.1. (Un sous-espace vectoriel est un espace vectoriel)

Soient E un \mathbb{K} -espace vectoriel et F un sous-espace vectoriel de E. Alors F est lui-même un \mathbb{K} -espace vectoriel pour les lois induites par E.

Méthodologie.

Pour répondre à une question du type « L'ensemble F est-il un espace vectoriel? », une façon efficace de procéder est de trouver un espace vectoriel E qui contient F, puis prouver que F est un sous-espace vectoriel de E. Il y a seulement trois propriétés à vérifier au lieu de huit!

1.2.1 Combinaisons linéaires

Définition 1.2.2.

Soit $n \ge 1$ un entier, soient $v_1, v_2, ..., v_n$, n vecteurs d'un espace vectoriel E. Tout vecteur de la forme

$$u = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$$

(où $\lambda_1, \lambda_2, ..., \lambda_n$ sont des éléments de \mathbb{K}) est appelé combinaison linéaire des vecteurs v_1 , $v_2, ..., v_n$. Les scalaires $\lambda_1, \lambda_2, ..., \lambda_n$ sont appelés coefficients de la combinaison linéaire.

Remarque 1.2.1.

Si n = 1, alors $u = \lambda_1 v_1$ et on dit que u est colinéaire à v_1 .

Exemple 1.2.3.

Dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 , (3,3,1) est combinaison linéaire des vecteurs (1,1,0) et (1,1,1) car on a l'égalité

$$(3,3,1) = 2(1,1,0) + (1,1,1).$$

1.2.2 Caractérisation d'un sous-espace vectoriel

Théorème 1.2.2.

Soient E un K-espace vectoriel et F une partie non vide de E. F est un sous-espace vectoriel de E si et seulement si

$$\lambda u + \mu v \in F \text{ pour tous } u, v \in F \text{ et tous } \lambda, \mu \in \mathbb{K}.$$

Autrement dit si et seulement si toute combinaison linéaire de deux éléments de F appartient à F.

1.2.3 Intersection de deux sous-espaces vectoriels

Proposition 1.2.1.

Soient F, G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. L'intersection $F \cap G$ est un sous-espace vectoriel de E.

Preuve Soient F et G deux sous-espaces vectoriels de E.

- $0_E \in F$, $0_E \in G$ car F et G sont des sous-espaces vectoriels de E, donc $0_E \in F \cap G$.
- Soient u et v deux vecteurs de $F \cap G$. Comme F est un sous-espace vectoriel, alors $u, v \in F$ implique $u + v \in F$. De même $u, v \in G$ implique $u + v \in G$. Donc $u + v \in F \cap G$.
- Soient $u \in F \cap G$ et $\lambda \in \mathbb{K}$. Comme F est un sous-espace vectoriel, alors $u \in F$ implique $\lambda u \in F$. De même $u \in G$ implique $\lambda u \in G$. Donc $\lambda u \in F \cap G$.

Conclusion : $F \cap G$ est un sous-espace vectoriel de E.

1.2.4 Somme de deux sous-espaces vectoriels

Définition 1.2.3.

Soient F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. L'ensemble de tous les éléments u+v, où u est un élément de F et v un élément de G, est appelé somme des sous-espaces vectoriels F et G. Cette somme est notée F+G. On a donc

$$F+G=\{u+v\ |\ u\in F, v\in G\}.$$

Exemple 1.2.4.

Soient le \mathbb{R} -espace vectoriel \mathbb{R}^2 , $D_1 = \{(x,0) \mid x \in \mathbb{R}\}$ et $D_2 = \{(0,y) \mid y \in \mathbb{R}\}$. Alors,

$$D_1 + D_2 = \{(x, y) \mid x \in \mathbb{R} \ et \ y \in \mathbb{R}\} = \mathbb{R}^2.$$

Proposition 1.2.2.

Soient F et G deux sous-espaces vectoriels du \mathbb{K} -espace vectoriel E.

- (1) F + G est un sous-espace vectoriel de E.
- (2) F + G est le plus petit sous-espace vectoriel contenant à la fois F et G.

Preuve

- (1) Montrons que F + G est un sous-espace vectoriel.
 - $0_E \in F$, $0_E \in G$, donc $0_E = 0_E + 0_E \in F + G$.
 - Soient w et w' des éléments de F+G. Comme w est dans F+G, il existe u dans F et v dans G tels que w=u+v. Comme w' est dans F+G, il existe u' dans F et v' dans G tels que w'=u'+v'. Alors $w+w'=(u+v)+(u'+v')=(u+u')+(v+v')\in F+G$, car $u+u'\in F$ et $v+v'\in G$.
 - Soit w un élément de F+G et $\lambda \in \mathbb{K}$. Il existe u dans F et v dans G tels que w=u+v. Alors $\lambda w=\lambda(u+v)=(\lambda u)+(\lambda v)\in F+G$, car $\lambda u\in F$ et $\lambda v\in G$.
- (2) L'ensemble F + G contient F et contient G: en effet tout élément u de F s'écrit $u = u + 0_E$ avec u appartenant à F et 0_E appartenant à G (puisque G est un sousespace vectoriel), donc u appartient à F + G. De même pour un élément de G.
 - Si H est un sous-espace vectoriel contenant F et G, alors montrons que $F+G \subset H$. C'est clair : si $u \in F$ alors en particulier $u \in H$ (car $F \subset H$), de même si $v \in G$ alors $v \in H$. Comme H est un sous-espace vectoriel, alors $u + v \in H$.

1.2.5 Sous-espaces vectoriels supplémentaires

Définition 1.2.4. (Somme directe de deux sous-espaces)

Soient F et G deux sous-espaces vectoriels de E. F et G sont en somme directe dans E si

- $F \cap G = \{0_E\},\$
- F + G = E.

On note alors $F \oplus G = E$.

Si F et G sont en somme directe, on dit que F et G sont des sous-espaces vectoriels supplémentaires dans E.

Proposition 1.2.3.

F et G sont supplémentaires dans E si et seulement si tout élément de E s'écrit d'une manière **unique** comme la somme d'un élément de F et d'un élément de G.

Remarques 1.2.1.

- Dire qu'un élément w de E s'écrit d'une manière unique comme la somme d'un élément de F et d'un élément de G signifie que si w = u + v avec u ∈ F, v ∈ G et w = u' + v' avec u' ∈ F, v' ∈ G alors u = u' et v = v'.
- On dit aussi que F est un sous-espace supplémentaire de G (ou que G est un sousespace supplémentaire de F).

1.2.6 Sous-espace engendré

Théorème 1.2.3. (Théorème de structure de l'ensemble des combinaisons linéaires)

Soit $\{v_1,...,v_n\}$ un ensemble fini de vecteurs d'un \mathbb{K} -espace vectoriel E. Alors :

- L'ensemble des combinaisons linéaires des vecteurs $\{v_1, ..., v_n\}$ est un sous-espace vectoriel de E.
- C'est le plus petit sous-espace vectoriel de E (au sens de l'inclusion) contenant les vecteurs $v_1, ..., v_n$.

Notation. Ce sous-espace vectoriel est appelé sous-espace engendré par $v_1, ..., v_n$ et est noté $\text{Vect}(v_1, ..., v_n)$. On a donc

$$u \in \text{Vect}(v_1, ..., v_n) \iff \text{il existe } \lambda_1, ..., \lambda_n \in \mathbb{K} \text{ tels que } u = \lambda_1 v_1 + ... + \lambda_n v_n.$$

Remarques 1.2.2.

- Dire que $Vect(v_1, ..., v_n)$ est le plus petit sous-espace vectoriel de E contenant les vecteurs $v_1, ..., v_n$ signifie que si F est un sous-espace vectoriel de E contenant aussi les vecteurs $v_1, ..., v_n$ alors $Vect(v_1, ..., v_n) \subset F$.
- Plus généralement, on peut définir le sous-espace vectoriel engendré par une partie V quelconque (non nécessairement finie) d'un espace vectoriel : VectV est le plus petit sous-espace vectoriel contenant V.

Méthodologie. On peut démontrer qu'une partie F d'un espace vectoriel E est un sous-espace vectoriel de E en montrant que F est égal à l'ensemble des combinaisons linéaires d'un nombre fini de vecteurs de E.

Exemple 1.2.5.

Est-ce que $F = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 ?

Un triplet de \mathbb{R}^3 est élément de F si et seulement si x = y + z. Donc u est élément de F si et seulement s'il peut s'écrire u = (y + z, y, z). Or, on a l'égalité

$$(y+z,y,z) = y(1,1,0) + z(1,0,1).$$

Donc F est l'ensemble des combinaisons linéaires de $\{(1,1,0),(1,0,1)\}$. C'est le sousespace vectoriel engendré par $\{(1,1,0),(1,0,1)\}$: $F = Vect\{(1,1,0),(1,0,1)\}$. C'est bien un plan vectoriel (un plan passant par l'origine).

1.3 Familles libres, liées et génératrices

Définition 1.3.1. (Familles libres)

On dit que la famille $\{v_i\}_{i\in I}$ est libre si $\sum_{i\in I} \lambda_i v_i = 0_E \Rightarrow \lambda_i = 0, \ \forall i\in I.$

Définition 1.3.2. (Familles liées)

On dit que la famille $\{v_i\}_{i\in I}$ est liée si elle n'est pas libre : $\exists (\lambda_1,...,\lambda_p) \neq (0,...,0)$ tq $\sum_{i\in I} \lambda_i v_i = 0_E.$

Exemple 1.3.1.

Soit $E = \mathbb{R}^3$ et soit $A = \{(1,0,1), (-1,1,2), (-2,1,2)\}$ une famille d'éléments de E. La famille A est-elle libre ou liée ?

Définition 1.3.3. (Familles génératrices)

On appelle famille génératrice de E une famille telle que tout element de E est une combinaison lineaire de cette famille : $\forall v \in E, \ \exists \lambda_i \ tq \ v = \sum_{i \in I} \lambda_i v_i$.

Exemple 1.3.2.

$$E = \mathbb{R}^2[X]$$

Tout élément de E s'écrit sous la forme $P = a_0 +_a 1X + a_2X^2$. Donc, P est une combinaison linéaire de 1, X et X^2 . Ainsi, la famille $\{1, X, X^2\}$ est une famille génératrice de E.

1.4 Bases

Définition 1.4.1.

On dit que la famille $\{v_i\}_{i\in I}$ est une base de E si $\{v_i\}_{i\in I}$ est une famille libre et génératrice.

Proposition 1.4.1.

On dit que la famille $\{v_i\}_{i\in I}$ est une base de E si et seulement si $\forall v\in E, v$ s'écrit de maniere **unique** $v=\sum_{i\in I}\lambda_i v_i$.

Exemple 1.4.1.

Soit $E = \mathbb{R}^3$ considéré comme un \mathbb{R} -espace vectoriel. Soit G défini par x + y - 2z = 0, c'est-à-dire $G = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - 2z = 0\}$.

Montrons que G est un sous-espace vectoriel de E et déterminons une base de G. Soit u=(x,y,z) un élément de E.

$$u \in G \iff x+y-2z=0 \iff \exists \alpha \in \mathbb{R}, \ \exists \beta \in \mathbb{R} \ tels \ que \left\{ \begin{array}{l} x=2\alpha-\beta\\ y=\beta\\ z=\alpha \end{array} \right.$$

Posons $v_0 = (2,0,1)$ et $v_1 = (-1,1,0)$. Nous obtenons $u \in G \iff \exists \alpha \in \mathbb{R}, \ \exists \beta \in \mathbb{R}$ tels que $u = \alpha v_0 + \beta v_1$. Nous en déduisons que $G = Vect(v_0,v_1)$ et donc G est un sous-espace vectoriel de E. De plus, la famille $\{v_0,v_1\}$ est génératrice. Il est clair qu'elle est libre. Donc il s'agit d'une base de G.

1.5 Espace vectoriel de dimension finie

Définitions 1.5.1.

- Soit {v_i}_{i∈I} une famille S d'éléments de E. On appelle cardinal de S le nombre d'éléments de S.
- E est un espace vectoriel de dimension finie si E admet une famille génératrice de cardinal fini.

Théorème 1.5.1.

Toutes les bases d'un même espace vectoriel E ont le même cardinal. Ce nombre commun est appelé la dimension de E. On note dim E.

Définition 1.5.1. (Coordonnées d'un vecteur)

Soit E un \mathbb{K} -espace vectoriel de dimension n et $B = \{v_1, ..., v_n\}$ une base de E (c'ést-à-dire $\forall v \in E$, v s'écrit de manière unique $v = \sum_{i \in I} \lambda_i v_i$), les scalaires $\lambda_1, ..., \lambda_n$ sont appelés les coordonnées de v dans la base B.

Corollaire 1.5.1.

Dans un espace vectoriel de dimension n, on a:

- Toute famille libre a au plus n éléments.
- Toute famille génératrice a au moins n éléments.

Remarque 1.5.1.

Si $\dim E = n$, pour montrer qu'une famille de n éléments est une base de E, il suffit de montrer qu'elle est libre ou bien génératrice.

Théorème 1.5.2. (Théorème de la base incomplète)

Soit E un K-espace vectoriel de dimension finie n non nul de base $B=(e_1,...,e_n)$ et $S=\{u_1,...,u_p\}$ une famille libre de p vecteurs $(p \leq n)$. S peut être complétée par (n-p) vecteurs de la base B pour former une base de E.

Exemple 1.5.1.

1.6. CARACTÉRISATION DES SOUS-ESPACES VECTORIELS DE DIMENSION FINIE

Soit $E = \mathbb{R}^4$ muni de la base canonique (e_1, e_2, e_3, e_4) , où, $e_1 = (1, 0, 0, 0)$, $e_2 = (0, 1, 0, 0)$, $e_3 = (0, 0, 1, 0)$ et $e_4 = (0, 0, 0, 1)$. On considère les vecteurs $w_1 = (1, 2, 0, 0)$ et $w_2 = (-1, 1, 0, 0)$ est un système libre. Complétons le, en une base de \mathbb{R}^4 .

Il est clair que

 $\{w_1, w_2, e_1\}$ est lié.

 $\{w_1, w_2, e_2\}$ est lié.

 $\{w_1, w_2, e_3\}$ est libre.

 $\{w_1, w_2, e_3, e_4\}$ est libre, donc est une base de \mathbb{R}^4 .

1.6 Caractérisation des sous-espaces vectoriels de dimension finie

Proposition 1.6.1.

Soit E un \mathbb{K} -espace vectoriel de dimension n et F un sous-espace vectoriel de E:

- $\dim F \leq \dim E$.
- $\dim F = \dim E \iff F = E$.

Théorème 1.6.1.

Soit E un espace vectoriel de dimension finie et F un sous-espace vectoriel de E. Il existe un sous-espace vectoriel G tel que $F \oplus G = E$. De plus :

$$\dim E = \dim F + \dim G.$$

Théorème 1.6.2. (Formule de Grassmann)

Soit E un espace vectoriel, F et G deux sous-espaces vectoriels, de dimensions finies.

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G).$$

Exemple 1.6.1.

Soit $E = \mathbb{R}^3$ considéré comme un \mathbb{R} -espace vectoriel avec les lois usuelles. Soient P défini par son équation cartésienne 3x + 2y + z = 0, c'est-à-dire

$$P = \{(x, y, z) \in \mathbb{R}^3 \mid 3x + 2y + z = 0\},\$$

un sous-espace vectoriel de E.

Et D défini par

$$\begin{cases} x + y + 2z = 0 \\ x - y - z = 0 \end{cases},$$

c 'est-à-dire

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + 2z = 0 \cap x - y - z = 0\}.$$

Il est clair que D est un sous-espace vectoriel de E et $P \cap D = \{0_{\mathbb{R}^3}\}$. La somme est donc directe.

Montrons à l'aide de la notion de dimension que $P \oplus D = \mathbb{R}^3$.

D'après la formule de Grassmann, on a :

$$\dim(P+D) = \dim(P) + \dim(D) - \dim(P \cap D).$$

Or, $\dim(P) = 2$, $\dim(D) = 1$ et $\dim(P \cap D) = 0$. D'où, $\dim(P + D) = 3$. Or, $P + D \subset \mathbb{R}^3$ et $\dim(\mathbb{R}^3) = 3$. $Donc\ P + D = \mathbb{R}^3$. Ainsi, P et D sont supplémentaires.