12032924 李熹成

```
1 #1. Plotting with ggplot2
2
   library(ggplot2)
3 library(dplyr)
   library(tidyr)
5
   library(forecast)
    hydro<-read.csv(file = 'hydrodata.csv',header = T)
    hydro_tbl<-as_tibble(hydro) %>%
9
     mutate(id = factor(id, ordered = TRUE),t=as.Date(t))
10
   glimpse(hydro_tbl)
11
12
    ggplot(hydro_tbl, aes(x = id, y = q, fill = id)) +
13
      geom_boxplot() +
14
15
      theme_classic()+
16
      theme_bw() +
17
      theme(plot.title=element_text(size=15, face="bold"),
18
            axis.text.x=element_text(size=10),
19
            axis.text.y=element_text(size=10),
20
            axis.title.x=element_text(size=10),
21
            axis.title.y=element_text(size=10)) +
22
      scale_color_discrete(name="Station") +
      labs(title="Daily flux of Yellow River in 2017-2020",
23
           x="Station", y="Quantity(m^3 s)",fill='Station name')
24
29 ggplot(hydro_tbl,aes(x=t,y=q,color=id))+
30
      geom_line()+
      theme_bw() -
31
      theme(plot.title=element_text(size=15, face="bold"),
32
33
            axis.text.x=element_text(size=10),
34
            axis.text.y=element_text(size=10),
35
            axis.title.x=element_text(size=10);
            axis.title.y=element_text(size=10)) +
36
37
      scale_color_discrete(name="Station") +
38
      labs(title="Monthly sum flux of Yellow River in 2019-2020 in Tongguan",
           x="Year", y="Quantity(m^3 s)")+
39
      facet_wrap( ~ id)
40
41
    hydro_tbl %>%
42
43
      mutate(year=substr(t,1,4)) %>%
      filter(id=='tongguan'&year=='2019') %>%
44
45
      ggplot(aes(q)) +
46
      geom_histogram(bins = 50) +
47
      theme_bw()
48
      theme(plot.title=element_text(size=15, face="bold"),
49
            axis.text.x=element_text(size=10),
50
            axis.text.y=element_text(size=10),
51
            axis.title.x=element_text(size=10),
52
            axis.title.y=element_text(size=10)) +
      labs(title="Histogram of flux of Yellow River in 2019 in Tongguan",
53
           x="Quantity(m^3 s)",y='Number of days')
54
57
    hydro_tbl %>%
58
      mutate(year=substr(t,1,4)) %>%
59
      filter(year=='2019') %>%
      ggplot(aes(x=t,y=q,color=id)) +
60
61
      geom_point(size=0.5) +
62
      theme_bw() -
      theme(plot.title=element_text(size=15, face="bold"),
63
64
            axis.text.x=element_text(size=10),
65
            axis.text.y=element_text(size=10),
66
            axis.title.x=element_text(size=10),
67
            axis.title.y=element_text(size=10)) +
      scale_color_discrete(name="Station")+
68
      labs(title="Scatter plot of flux of Yellow River in 2019",
69
70
           x="time",y='Quantity(m^3 s)')
```

```
72 library(fields)
73 library(maps)
74 library(RNetCDF)
75 ex.nc
              <- open.nc("IUPB_s5p_201806_global_totalBrovc.NC")</pre>
76 print.nc(ex.nc)
              <- var.get.nc(ex.nc, "latitude")
<- var.get.nc(ex.nc, "longitude")</pre>
77
78 Lon
79 total_BrO_VC
                     <- var.get.nc(ex.nc, "total_Br0_VC")
80 close.nc(ex.nc)
81
82 par(mar=c(4.5,3,2,1))
83
    image.plot(Lon, Lat, total_BrO_VC,
                horizontal=T, useRaster=T,
84
85
                legend.shrink=0.75, axis.args=list(cex.axis = 1.25),
                legend.width=1, legend.mar=2,
86
                legend.args=list(\underline{text}="Toal BrO Vertical Column [molec cm^{-2}]",\\
87
88
                                 cex=1.25),
                xlab='',ylab='',midpoint=T, axes=F, ann=F
89
90 )
91 title(xlab="",cex.lab=1.25,font.lab=2)
   axis(1,at=pretty(Lon),tck=-0.015,lwd=1,cex.axis=1.25,font=1)
93 title(ylab="",cex.lab=1.25,font.lab=2)
94 axis(2,at=pretty(Lat),tck=-0.015,lwd=1,cex.axis=1.25,font=1,las=1)
95 title(main=paste("Toal BrO Vertical Column in Jun. 2018"),
96
           cex.main=1,font.main=2)
97 # Add map
98 map('world',add=T,lwd=0.75,col="black")
99
100
     # Add a box
101 box(lwd=2)
104 #2. Analysis of the time series of monthly temperature
105 Baoan<-read.csv(file='2281305.csv',header = T)
107
    Baoan_tbl<-as_tibble(Baoan)
108
109 Baoan_temp<-Baoan_tbl %>%
       select(DATE,TMP) %>%
110
111
       mutate(ym=substr(DATE,1,7),temp=as.numeric(substr(TMP,1,5)),
       | quality=substr(TMP,7,7)) %>% | filter(ym>='2010-01'&ym<='2020-06'&quality=='1') %>% |
112
113
       mutate(temp=ifelse(temp=="-9999",NA,temp)) %>%
114
       group_by(ym) %>%
115
       summarise(monthly_mean=mean(temp)/10) %>%
116
117
       mutate(month=as.Date(paste(ym,'01',sep='-')))
118
119
120 monthly_temp<- ts(Baoan_temp$monthly_mean, start=2010, frequency=12)
121 plot(monthly_temp,
          type='l',
xlab='year',
122
123
124
          ylab='temperature(degrees Celsius)',
          main="Monthly average temperature of Bao'an in 2010.1-2020.6 in time series ",
125
          col = "darkgrey")
126
```

127 box(lwd=2,col="darkgrey")

```
129 ##2.2 Decomposition
130 monthly_temp_components <- decompose(monthly_temp)</pre>
131 plot(monthly_temp_components)
132
133
134 ###Do Box-Ljung test to the result
135 random<-as.numeric(monthly_temp_components$random)</pre>
136 Box.test(random, type='Ljung',
137
              lag=log(length(random)))
138 ###Do acf to the result
139 omit_na_random<-na.omit(random)
140 rand_acf <- acf(omit_na_random, lag=40,main="white noise")</pre>
141 rand_acf
142
143 ### Plot hist
144 hist(monthly_temp_components$random, prob=TRUE,
145
          main = "Histogram of monthly temperature")
146 ### Add pdf
147 curve(dnorm(x, mean=mean(monthly_temp_components$random,na.rm=T),
148
                 sd=sd(monthly_temp_components$random,na.rm=T)),
149
           add=TRUE, col="red")
152 ##2.3 Fit an ARIMA(p,d,q) model
    # hist(monthly_temp,
# main = "Histogram of monthly mean temperature",
153
154
            xlab = "Temperature(Degrees Celsius)")
155
156
157
     monthly_temp_log<-log(monthly_temp)</pre>
158
159 # hist(monthly_temp_log,
160 #
            main = "Histogram of log monthly mean temperature",
            xlab = "Temperature(Degrees Celsius)")
161
     #
162
     monthly_temp_log_d1 <- diff(monthly_temp_log)</pre>
163
164
     # hist(monthly_temp_log_d1,
            main = "Histogram of difference of log monthly mean temperature",
165 #
            xlab = "Temperature(Degrees Celsius)")
166 #
167
168
169 # Automated forecasting using an ARIMA model
170 model1 <- auto.arima(monthly_temp,trace=T)</pre>
171
     model2 <- auto.arima(monthly_temp_log,trace=T)</pre>
172 model3 <- auto.arima(monthly_temp_log_d1,trace=T)</pre>
173
174
    # Check acf and pacf
175 acf(monthly_temp_log)
176 pacf(monthly_temp_log)
179 ##source: https://blog.csdn.net/mr_muli/article/details/82779250
180 ggnorm(model2$residuals)
181 qqline(model2$residuals)
182 Box.test(model2$residuals.type="Ljung-Box")
183
184 ## 2.5 Make predictions
185 month_forecast <- 5
186 month_in_plot <- 10
187 forecast <- forecast(model2, month_forecast)</pre>
188
189 # Plot predictions along with real values
190 plot(forecast, include = month_in_plot, xlab="Time",
          ylab="log(Monthly mean)",type="o",lwd=2)
```

```
194 # Get predicted values
195
196 # 2020-07
197 exp(forecast$mean[1])
198 exp(forecast$lower[1,1])
199 exp(forecast$upper[1,1])
200
201 # 2020-08
202 exp(forecast$mean[2])
203 exp(forecast$lower[2,1])
204 exp(forecast$upper[2,1])
205
206 # Verify the predictions
207 Baoan_temp2<-Baoan_tb1 %>%
       select(DATE,TMP) %>%
208
209
       \verb|mutate(ym=substr(DATE,1,7),temp=as.numeric(substr(TMP,1,5))|,\\
       210
211
212
213
       group_by(ym) %>%
       summarise(monthly_mean=mean(temp)/10) %>%
mutate(month=as.Date(paste(ym,'01',sep='-')))
214
215
216
217 tail(Baoan_temp2)
```

Problem#1

Boxplot

tongguan Station wubao

longmen

Time series

Histogram

Scatter plot

Image plot:

Problem#2

There will be a need of prediction for Sept. 2020 and Nov. 2020 but the dataset has only data till 2020-09-11. Thus, I choose July. 2020 and Aug. 2020 as the test month.

2.1 Construct a time series of monthly-averaged temperature from 2010 Jan. to 2020 Jun.

2.2 The decomposition are as below and

Decomposition of additive time series

From the graph above the plot of random term seems random. But it reject the Box-Ljung test with the p-value = 1.587e-05:

Box-Ljung test

data: random X-squared = 29.463, df = 4.8363, p-value = 1.587e-05 And the acf shows a little autocorrelation within each other:

white noise

The random obey the normal distribution:

Histogram of monthly temperature

Thus, it can be concluded that the error part follows a white noise distribution.

2.3

The ARIMA model for monthly temperature is as below:

The sigma^2 is 1.279

```
Series: monthly_temp
ARIMA(1,0,0)(1,1,1)[12] with drift
Coefficients:
      ar1
                         drift
             sar1
                   sma1
                        0.0087
    0.2066
          -0.1072
                 -0.8159
    0.0935
           0.1554
                  0.1969
                        0.0035
```

The ARIMA model for log monthly temperature is as below:

The sigma^2 is 0.003773

The ARIMA model for difference of log monthly temperature is as below:

The sigma^2 is 0.005097

So, we choose model 2 which is log monthly mean temperature.

The acf and pacf is as below:

The model residual test is as below:

Normal Q-Q Plot

Box-Ljung test

data: model2\$residuals
X-squared = 0.00056829, df = 1, p-value = 0.981

The model passes the test.

Forecasts from ARIMA(0,0,2)(0,1,1)[12] with drift

Forecast for 2020.07:

```
> exp(forecast$mean[1])
[1] 30.34925
> exp(forecast$lower[1,1])
     80%
28.04663
> exp(forecast$upper[1,1])
     80%
32.84092
```

Forecast for 2020.08

```
> exp(forecast$mean[2])
[1] 30.03242
> exp(forecast$lower[2,1])
        80%
27.68724
> exp(forecast$upper[2,1])
        80%
32.57625
```

Verify with the real value:

	ym	monthly_mean	month
	<chr></chr>	<db 7=""></db>	<date></date>
1	2020-03	21.6	2020-03-01
2	2020-04	21.8	2020-04-01
3	2020-05	27.8	2020-05-01
4	2020-06	29.3	2020-06-01
5	2020-07	30.3	2020-07-01
6	2020-08	29.3	2020-08-01

The Relative bias for July is: $\frac{30.34925-30.3}{30.34925} = 0.0016 = 0.16\%$

The Relative bias for August is: $\frac{30.03242-29.3}{30.03242} = 0.0244 = 2.44\%$