

CIRCUITOS DIGITAIS MAIS CIRCUITOS COMBINACIONAIS

Marco A. Zanata Alves

COMPARADOR BINÁRIO

EXERCÍCIO COMPARADOR

Faça um comparador binário com 3 saídas, maior, menor e igual.

- 1 bit de entrada s/ sinal
- 2 bits de entrada s/ sinal
- 8 bits de entrada s/ sinal

EXERCÍCIO COMPARADOR 1-BIT

Faça um comparador binário com 3 saídas:

X: a < b

Y: a = b

Z: a > b

Entrada: 1 bit de entrada

 $a \in b$ sem sinal

EXERCÍCIO COMPARADOR 1-BIT

Faça um comparador binário com 3 saídas:

X: a < b

Y: a = b

Z: a > b

Entrada: 1 bit de entrada

 $a \in b$ sem sinal

EXERCÍCIO COMPARADOR 1-BIT

Faça um comparador binário com 3 saídas:

X: a < b

Y: a = b

Z: a > b

Entrada: 1 bit de entrada

 $a \in b$ sem sinal

EXERCÍCIO COMPARADOR 2-BITS

Faça um comparador binário com 3 saídas, maior, menor e igual.

EXERCÍCIO COMPARADOR 2-BITS

Faça um comparador binário com 3 saídas, maior, menor e igual.

2 bits de entrada s/ sinal X_{i-1} : a < b $\Rightarrow a < b$ Y_{i-1} : a = b $\Rightarrow a < b$ $Z_{i-1}: a > b \quad \Rightarrow a < b$ X_i : a < b X_{i-1} : a < b $\Rightarrow a < b$ Y_{i-1} : a = b $\Rightarrow a = b$ Y_i : a = b $\overline{Z_{i-1}}: a > b$ $\Rightarrow a > b$ X_{i-1} : a < b $\Rightarrow a > b$ Z_i : a > b $Y_{i-1}: a = b$ $\Rightarrow a > b$ $Z_{i-1}: a > b$ $\Rightarrow a > b$

EXERCÍCIO COMPARADOR 2-BITS

Faça um comparador binário com 3 saídas, maior, menor e igual.

EXERCÍCIO COMPARADOR N-BITS

Faça um comparador binário com 3 saídas, maior, menor e igual.

8 bits de entrada s/ sinal

EXERCÍCIO COMPARADOR DO SINAL MAGNITUDE

Faça um comparador binário com 3 saídas:

$$Y: a = b$$

Entrada: 1 bit de entrada a e b representando o sinal magnitute

IMPLEMENTANDO FUNÇÕES COM MULTIPLEXADORES

Implemente uma porta lógica AND de duas entradas com um MUX.

Implemente uma porta lógica AND de duas entradas com um MUX.

A	В	С	Saída
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

A	В	С	Saída
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

A	В	С	Saída
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Implemente a porta lógica XOR de três entradas com um MUX 4:1.

Faça em função de C!

A	В	С	Saída
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Implemente a porta lógica XOR de três entradas com um MUX 4:1.

Faça em função de C!

Implemente a seguinte função:

$$F = A'B'C'D' + A'B'CD +$$

$$A'BC'D + A'BC'D' + AB'C'D +$$

$$AB'CD' + ABC'D + ABC'D'$$

- Utilizando portas lógicas
- Utilizando um MUX 8:1

Implemente a seguinte função:

$$F = A'B'C'D' + A'B'CD +$$

$$A'BC'D + A'BC'D' + AB'C'D +$$

$$AB'CD' + ABC'D + ABC'D'$$

- Utilizando portas lógicas
- Utilizando um MUX 8:1

UTILIZANDO DON'T CARE

A codificação binária decimal, também conhecida como BCD (Binary-coded decimal), é um sistema de numeração muito utilizado na Informática e em sistemas digitais eletrônicos.

Estamos falando de um sistema de base dois e posicional.

O BCD codifica o sistema decimal em binário, do números (decimais) O a 9, onde cada número é representado pelo seu equivalente binário.

Assim 4 bits são utilizados separadamente para representar cada digito decimal.

Simplifique com mapas de Karnaugh e implemente a lógica para acender o **led a** utilizando a codificação BCD (binário – decimal):

Simplifique com mapas de Karnaugh e implemente a lógica para acender o **led a** utilizando a codificação BCD (binário – decimal):

D	b_3	b_2	b_1	b_0	Led A
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
-	1	0	1	0	
-	1	0	1	1	
-	1	1	0	0	
-	1	1	0	1	
-	1	1	1	0	
-	1	1	1	1	

Simplifique com mapas de Karnaugh e implemente a lógica para acender o **led a** utilizando a codificação BCD (binário – decimal):

D	b_3	b_2	b_1	b_0	Led A
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
-	1	0	1	0	X
-	1	0	1	1	Χ
-	1	1	0	0	X
-	1	1	0	1	X
-	1	1	1	0	X
-	1	1	1	1	Χ

	$b_1 b_0$	$b_1 \overline{b_0}$	$\overline{b_1}\overline{b_0}$	$\overline{b_1}b_0$
$b_3 b_2$				
$b_3 \overline{b_2}$				
$\overline{b_3} \overline{b_2}$				
$\overline{b_3}b_2$				

D	b_3	b_2	b_1	b_0	Led A
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	ī
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
-	1	0	1	0	X
-	1	0	1	1	X
-	1	1	0	0	X
-	1	1	0	1	X
-	1	1	1	0	X
-	1	1	1	1	X

	$b_1 b_0$	$b_1 \overline{b_0}$	$\overline{b_1}\overline{b_0}$	$\overline{b_1}b_0$
$b_3 b_2$	x	x	x	x
$b_3 \overline{b_2}$	x	x	1	1
$\overline{b_3} \overline{b_2}$	1	1	1	
$\overline{b_3}b_2$	1			1

D	b_3	b_2	b_1	b_0	Led A
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
-	1	0	1	0	Χ
-	1	0	1	1	Χ
-	1	1	0	0	X
-	1	1	0	1	Χ
-	1	1	1	0	Χ
-	1	1	1	1	Χ

D	b_3	b_2	b_1	b_0	Led A
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
-	1	0	1	0	Χ
-	1	0	1	1	Χ
-	1	1	0	0	X
-	1	1	0	1	Χ
-	1	1	1	0	Χ
-	1	1	1	1	Χ