Algebra a jej vety II.

Prírodovedecká fakulta UPJŠ Košice

Predmety: KGA/ALG1b, KGA/ALG1c Prednáša: doc. RNDr. Judita Lihová, CSc.

Obsah: Definície, vety, lemy a poznámky k predmetom

ZT_EXovali: Róbert Novotný & Petra Murtinová. Vydané: 24.1.2002.

1 Vektorové priestory

1.1 Vektorové priestory nad poľom

Definícia 1.1.1

 $Vektorový \ priestor$ nad poľom \mathbb{F} je množina V, na ktorej je definované sčitovanie prvkov z množiny V a násobenie prvkov z množiny V prvkami z poľa \mathbb{F} tak, že platia nasledovné zákony:

- 1. $\forall a, b \in \mathbf{V} : a + b \in \mathbf{V}$
- 2. $\forall \alpha \in \mathbb{F}, a \in \mathbf{V} : \alpha . a \in \mathbf{V}$
- 3. $\forall a, b \in \mathbf{V} : a + b = b + a$
- 4. $\forall a, b, c \in \mathbf{V} : a + (b + c) = (a + b) + c$
- 5. $\exists \mathbf{o} \in \mathbf{V} : \forall a \in \mathbf{V} : a + \mathbf{o} = a$
- 6. $\forall a \in \mathbf{V} \exists b \in \mathbf{V} : a + b = \mathbf{o}$
- 7. $\forall \alpha \in \mathbb{F} : a, b \in \mathbf{V} : \alpha \cdot (a+b) = \alpha \cdot a + \alpha \cdot b$
- 8. $\forall \alpha, \beta \in \mathbb{F}, a \in \mathbf{V} : (\alpha + \beta) \cdot a = \alpha \cdot a + \beta \cdot a$
- 9. $\forall \alpha, \beta \in \mathbb{F}, a \in \mathbf{V} : (\alpha . \beta) . a = \alpha . (\beta . a)$
- 10. $\forall a \in \mathbf{V} : 1 . a = a$

Poznámka 1.1.2

Prvky z $\boldsymbol{\mathsf{V}}$ nazývame vektory, prvky z \mathbb{F} skaláre.

Dôsledok 1.1.3

- 1. vo vektorovom priestore možno sčitovať ľubovoľný konečný počet vektorov, pričom nezáleží na uzátvorkovaní a poradí
- 2. jednoznačnosť nulového vektora o
- 3. zákon krátenia pre sčitovanie
- 4. jednoznačnosť opačného vektora -a
- 5. $\forall \alpha \in \mathbb{F}, a \in \mathbf{V} : \alpha \cdot a = 0 \Leftrightarrow \alpha = 0 \lor a = \mathbf{o}$
- 6. $\forall a \in \mathbf{V} : (-1) \cdot a = -a$
- 7. $\forall \alpha \in \mathbb{F}, a \in \mathbf{V} : -(\alpha \cdot a) = (-\alpha) \cdot a = \alpha \cdot (-a)$

1.2 Podpriestory

Definícia 1.2.1

Nech V je vektorový priestor nad poľom \mathbb{F} . Pod *podpriestorom* tohto vektorového priestoru rozumieme takú neprázdnu podmnožinu S množiny V, ktorá spĺňa nasledovné podmienky:

1.
$$a, b \in \mathbf{S} \Rightarrow a + b \in \mathbf{S}$$

(**S** je uzavretá vzhľadom na sčítanie)

2.
$$\alpha \in F, a \in \mathbf{S} \Rightarrow \alpha . a \in \mathbf{S}$$

(S je uzavretá vzhľadom na násobenie skalármi)

Príklad 1.2.2

- 1. Ak V je ľubovoľný vektorový priestor nad poľom \mathbb{F} , tak $\{o\}$ a samotný V je podpriestorom vektorového priestoru V.
- 2. $\mathbf{V}_2(\mathbb{F}), \mathbf{S} = \{(\alpha, 0) : \alpha \in \mathbb{F}\}. \mathbf{V}_1(\mathbb{F}) \text{ nie je podpriestorom } \mathbf{V}_2(\mathbb{F})$

Veta 1.2.3

Nech \mathbf{W} je podpriestor vektorového priestoru $\mathbf{V}(\mathbb{F})$. Potom \mathbf{W} je vektorový priestor nad \mathbb{F} (vzhľadom na operácie +, s prvkami \mathbb{F} vo \mathbf{V}).

Veta 1.2.4

Prienik ľubovoľného neprázdneho systému podpriestorov vektorového priestoru V nad \mathbb{F} je podpriestorom vektorového priestoru V.

Dôsledok 1.2.5

Nech V je ľubovoľný vektorový priestor nad $\mathbb F$ a nech M je ľubovoľná podmnožina V. Potom v systéme podpriestorov vektorového priestoru V obsahujúcich množinu M existuje najmenší (je podmnožinou každého podpriestoru).

 $[\mathbf{M}]$ je najmenší podpriestor vektorového priestoru \mathbf{V} obsahujúci množinu \mathbf{M} , resp. podpriestor generovaný množinou \mathbf{M} .

Definícia 1.2.6

Nech **V** je vektorový priestor nad \mathbb{F} . Nech $a_1, \ldots, a_n \in \mathbf{V}$ je konečný počet vektorov. **Lineárna kombinácia** týchto vektorov je každý vektor tvaru

$$\alpha_1 a_1 + \alpha_2 a_2 + \ldots + \alpha_n a_n, \quad \alpha_1, \ldots, \alpha_n \in \mathbb{F}$$

Veta 1.2.7

Nech V je vektorový priestor nad \mathbb{F} a nech $M \subseteq V$.

- 1. $ak \mathbf{M} = \emptyset$, $tak [\mathbf{M}] = \{o\}$
- 2. ak $\mathbf{M} = \{a_1, \dots, a_n\}$ je konečná množina, tak $[\mathbf{M}] = \{\alpha_1 a_1 + \dots + \alpha_n a_n : \alpha_1, \dots, \alpha_n \in \mathbb{F}\}$
- 3. ak M je nekonečná, tak [M] = $\bigcup_{\mathbf{K} \ cez \ \forall \ konečn\'e \ podmnožiny \ \mathbf{M}} [\mathbf{K}]$

Poznámka 1.2.8

[M] sa nazýva *lineárny obal* množiny M, resp. *obálka* množiny M.

Veta 1.2.9

Nech $\mathbf{W}_1, \mathbf{W}_2$ sú podpriestory \mathbf{V} nad \mathbb{F} . Potom najmenší podpriestor \mathbf{W} obsahujúci podpriestory $\mathbf{W}_1, \mathbf{W}_2$ pozostáva zo súčtov $a+b, a \in \mathbf{W}_2, b \in \mathbf{W}_2$

$$[\mathbf{W}_1 \cup \mathbf{W}_2] = \{a + b : a \in \mathbf{W}_1, b \in \mathbf{W}_2\}$$

Definícia 1.2.10

 $Line\acute{a}rnym\ s\acute{u}\check{c}tom\ podpriestorov\ {\sf W}_1,{\sf W}_2\ vektorov\'eho\ priestoru\ {\sf V}\ naz\acute{y}vame\ [{\sf W}_1\cup{\sf W}_2]$

Značenie:
$$\mathbf{W}_1 + \mathbf{W}_2$$

1.3 Lineárna nezávislosť

Definícia 1.3.1

Lineárnu kombináciu $0a_1 + \ldots + 0a_n$ nazývame **triviálnou** lineárnou kombináciou. **Netriviálna** lineárna kombinácia je každá lineárna kombinácia vektorov a_1, \ldots, a_n , ktorá nie je triviálna. T.j. $\alpha_1 a_1 + \ldots + \alpha_n a_n$ taká, že aspoň jeden z koeficientov $\alpha_1, \ldots, \alpha_n$ je rôzny od 0.

Definícia 1.3.2

Vektory a_1, \ldots, a_n tvoria *lineárne nezávislý systém*, ak existuje taká netriviálna lineárna kombinácia týchto vektorov, ktorá sa rovná o.

Dôsledok 1.3.3

- 1.) Systém pozostávajúci z jedného vektora a je lineárne závislý práve vtedy, ak $a = \mathbf{o}$.
- 2.) Ak n > 1, tak systém pozostávajúci z n vektorov a_1, \ldots, a_n je lineárne závislý práve vtedy, ak niektorý z týchto vektorov je lineárnou kombináciou ostatných.

Definícia 1.3.4

Nekonečný systém \mathbf{S} vektorov vo vektorovom priestore \mathbf{V} nazývame lineárne závislý, ak obsahuje konečný lineárne závislý podsystém.

Veta 1.3.5

Nadsystém lineárne závislého systému je lineárne závislý.

Veta 1.3.6

Vo vektorovom priestore $\mathbf{V}_n(\mathbb{F})$ je každý systém pozostávajúci z viac ako n vektorov lineárne závislý.

Definícia 1.3.7

Systém $\emptyset \neq S \subseteq V$ nazývame *lineárne nezávislým*, ak nie je lineárne závislý.

Poznámka 1.3.8

Podsystém ľubovoľného nezávislého systému je nezávislý.

Veta 1.3.9

Nech a_1, \ldots, a_r tvoria lineárne nezávislý systém vo vektorovom priestore V a nech

$$\{a_1, \ldots a_r\} \subseteq [\{b_1, \ldots, b_s\}].$$

Potom $r \leq s$.

1.4 Báza vektorového priestoru

Definícia 1.4.1

Bázou vektorového priestoru ${\sf V}$ nazývame taký systém ${\sf S}$ vektorov vo ${\sf V}$, pre ktoré sú splnené nasledovné podmienky:

- 1. S je lineárne nezávislý
- 2. **S** generuje celý priestor **V** (t.j. $\mathbf{V} = [\mathbf{S}]$)

Veta 1.4.2

Nech $a_1, \ldots, a_n \in \mathbf{V}$. Potom a_1, \ldots, a_n tvoria bázu \mathbf{V} práve vtedy, keď každý vektor z \mathbf{V} možno vyjadriť ako lineárnu kombináciu vektorov a_1, \ldots, a_n a to jednoznačne.

Definícia 1.4.3

Ak vektory v_1, \ldots, v_n tvoria bázu **V** a pre $a \in \mathbf{V} : a = \alpha_1 v_1 + \ldots + \alpha_n v_n$. Koeficienty $\alpha_1, \ldots, \alpha_n$ sa nazývajú **súradnice vektora** v vzhľadom k danej báze.

Definicia 1.4.4

Vektorový priestor V nad \mathbb{F} nazývame konečnorozmerný, ak existuje taká konečná množina vektorov vo V, ktorá generuje V. Inak V nazývame nekonečnorozmerný.

Lemma 1.4.5

Nech $a_1, \ldots, a_n \in \mathbf{V}$. Ak k nim pridáme vektor, ktorý je ich lineárnou kombináciou, potom platí:

$$[\{a_1,\ldots,a_n,\alpha_1a_1+\ldots+\alpha_na_n\}]=[\{a_1,\ldots,a_n\}]$$

Veta 1.4.6

Každý nenulový konečnorozmerný vektorový priestor má konečnú bázu.

Veta 1.4.7

Ak vo vektorovom priestore V nad \mathbb{F} existuje n-prvková báza $(n \in \mathbb{N})$, tak každá báza tohto priestoru obsahuje n prvkov.

Definícia 1.4.8

Nech V je konečnorozmerný vektorový priestor. Ak $V = \{o\}$, tak V má dimenziu 0. Ak $V \neq \{o\}$, tak jeho dimenzia je definovaná ako počet vektorov ľubovoľnej bázy.

Označenie: $\dim V$

Poznámka 1.4.9

Ak dim $\mathbf{V} = n \in \mathbb{N}_0$), tak každý systém vo \mathbf{V} obsahujúci viac ako n vektorov je lineárne závislý.

Dôsledok 1.4.10

Vektorový priestor $\mathbf{V}_{\infty}(\mathbb{F})$ obsahujúci všetky skoro nulové postupnosti je nekonečnorozmerný.

Veta 1.4.11

V konečnorozmernom vektorovom priestore možno každý lineárne nezávislý systém rozšíriť na bázu.

Veta 1.4.12

Nech **V** je konečnorozmerný vektorový priestor dimenzie n > 0 a nech $a_1, \ldots, a_n \in \mathbf{V}$. Potom sú ekvivalentné nasledovné podmienky:

- 1. a_1, \ldots, a_n tvoria bázu
- 2. a_1, \ldots, a_n tvoria lineárne nezávislý systém
- 3. $[\{a_1,\ldots,a_n\}] = \mathbf{V}$ (vektory a_1,\ldots,a_n generujú celý \mathbf{V})

1.5 Dimenzia lineárneho súčtu podpriestorov

Veta 1.5.1

Nech V je konečnorozmerný vektorový priestor nad \mathbb{F} , a nech W_1 , W_2 sú jeho podpriestory. Potom

$$\dim(\mathbf{W}_1 + \mathbf{W}_2) = \dim \mathbf{W}_1 + \dim \mathbf{W}_2 - \dim(\mathbf{W}_1 \cap \mathbf{W}_2)$$

1.6 Izomorfizmus

Definícia 1.6.1

Nech V_1, V_2 sú vektorové priestory nad \mathbb{F} . Zobrazenie

$$\varphi: \mathbf{V}_1 \to \mathbf{V}_2$$

nazývame homomorfizmom (lineárnym zobrazením), ak spĺňa nasledovné podmienky:

- 1. $\forall a_1, a_2 \in \mathbf{V}_1 : \varphi(a_1 + a_2) = \varphi(a_1) + \varphi(a_2)$
- 2. $\forall a \in \mathbf{V}_1, \lambda \in \mathbb{F} : \varphi(\lambda a) = \lambda \varphi(a)$

Dôsledok 1.6.2

Majme vektorové priestory V_1, V_2 nad \mathbb{F} a majme $\varphi : V_1 \to V_2$. Potom φ je homomorfizmus práve vtedy, keď:

$$\forall n \in \mathbb{N}, \forall a_1, \dots, a_n \in \mathbb{F} : \varphi(\alpha_1 a_1 + \dots + \alpha_n a_n) = \alpha_1 \varphi(a_1) + \dots + \alpha_n \varphi(a_n)$$

 $(t.j. \text{ keď } \varphi \text{ zachováva lineárne kombinácie})$

Lemma 1.6.3

Nech φ je homomorfizmus $\mathbf{V}_1 \to \mathbf{V}_2$. Potom:

- 1. $\varphi(\mathbf{o}) = \mathbf{o}$
- 2. $\varphi(-a) = -\varphi(a) \quad \forall a \in \mathbf{V}_1$

Veta 1.6.4

Nech V je vektorový priestor nad \mathbb{F} , nech dim $V = n \geq 1$. Nech b_1, \ldots, b_n je ľubovoľná báza vektorového priestoru V. Zobrazenie $\varphi : V \to V_n(\mathbb{F})$, ktoré každému vektoru $\alpha \in V$ priradí n-ticu jeho súradníc vzhľadom k báze b_1, \ldots, b_n , je izomorfizmus.

Poznámka 1.6.5

Ak existuje izomorfizmus $V_1 \rightarrow V_2$, tak V_1 je izomorfný s vektorovým priestorom V_2 .

Veta 1.6.6

Relácia "byť izomorfný s" je reflexívna, symetrická a tranzitívna, t.j. je reláciou ekvivalencie.

Dôsledok 1.6.7 (1)

 $Ak \ \mathbf{V}$ je vektorový priestor nad \mathbb{F} , dim $\mathbf{V} = n \geq 1$, tak \mathbf{V} je izomorfný s vektorovým priestorom $\mathbf{V}_n(\mathbb{F})$.

Dôsledok 1.6.8 (2)

 $Ak \mathbf{V}_1, \mathbf{V}_2$ sú vektorové priestory nad \mathbb{F} , pričom dim $\mathbf{V}_1 = \dim \mathbf{V}_2 = n$, tak $\mathbf{V}_1, \mathbf{V}_2$ sú izomorfné.

Veta 1.6.9

Nech φ je izomorfizmus V_1 na V_2 a nech b_1, \ldots, b_n tvoria bázu V_1 . Potom $\varphi(b_1), \ldots, \varphi(b_n)$ tvoria bázu V_2 .

Dôsledok 1.6.10

 $Ak \mathbf{V}_1, \mathbf{V}_2$ sú izomorfné vektorové priestory a nech niektorý z nich je konečnorozmerný. Potom aj druhý je konečnorozmerný a má rovnakú dimenziu.

1.7 Hodnosť systému vektorov

Definícia 1.7.1

Systémy vektorov S, T vo vektorovom priestore V nazývame ekvivalentnými, ak generujú ten istý podpriestor.

$$[S] = [T]$$

Lemma 1.7.2

Nech $\mathbf{S} = a_1, \dots, a_i, a_j, \dots, a_n$ je systém vektorov vektorového priestoru \mathbf{V} . Každý z nasledovných systémov je ekvivalentný so systémom \mathbf{S} :

•
$$a_1,\ldots,a_j,a_i,\ldots,a_n$$

- $a_1, \ldots, a_i, a_j + \lambda a_i, \ldots, a_n$, pričom λ je ľubovoľný skalár
- $a_1, \ldots, \kappa a_i, \ldots, a_n$, pričom κ je nenulový skalár
- $a_1, \ldots, a_n, \alpha_1 a_1 + \ldots + \alpha_n a_n$, kde $\alpha_1, \ldots, \alpha_n$ sú ľubovoľné skaláre

Definícia 1.7.3

Pod **hodnosťou** (konečného) systému vektorov $\mathbf{S} = a_1, \dots, a_n$ rozumieme dimenziu lineárneho obalu tohto systému vektorov.

$$\mathrm{hod}\,\mathbf{S}=\mathrm{dim}[\{a_1,\ldots,a_n\}]$$

Poznámka 1.7.4

Ak S,T sú ekvivalentné systémy vektorov a jeden z týchto systémov je konečný, potom

$$hod S = hod T$$

Lemma 1.7.5

Nech $a_1, \ldots, a_n \in \mathbf{V}_n(\mathbb{F})$ a nech b_1, \ldots, b_n vzniknú z a_1, \ldots, a_n vzájomnou výmenou niektorých dvoch zložiek. Potom

- 1. a_n je lineárnou kombináciou a_1, \ldots, a_{n-1} práve vtedy, keď b_n je lineárnou kombináciou b_1, \ldots, b_{n-1}
- 2. $hod\{a_1,\ldots,a_n\} = hod\{b_1,\ldots,b_n\}$

Poznámka 1.7.6

Systémy $a_1, \ldots, a_n; b_1, \ldots, b_n$ z predchádzajúcej lemmy vo všeobecnosti nemusia byť ekvivalentné.

1.8 Hodnosť matice

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \in \mathbb{F}_{m \times n}$$

Označme:

riadok matice $a_i = (a_{i1}, a_{i2}, \dots, a_{in}),$ stĺpec matice $\overline{a_i} = (a_{1i}, a_{2i}, \dots, a_{mi}),$

Definícia 1.8.1

Riadkovou (stĺpcovou) hodnosťou matice A rozumieme

$$\operatorname{hod}\{a_1, a_2, \dots, a_m\} \quad \operatorname{hod}\{\overline{a_1}, \overline{a_2}, \dots, \overline{a_n}\}\$$

Definícia 1.8.2

Podmaticou matice A rozumieme maticu, ktorú získame vynechaním niektorých riadkov a stĺpcov matice A (nemusíme vynechať nič, nemožno však vynechať všetko).

Definícia 1.8.3

Subdeterminantom matice A rozumieme determinant l'ubovolnej štvorcovej podmatice matice A.

Definícia 1.8.4

Označme:

Priestor riadkov matice: $h_r(\mathbf{A}) = \text{hod}\{a_1, \dots, a_n\} = \text{dim}[\{a_1, \dots, a_n\}]$ Priestor stĺpcov matice: $h_s(\mathbf{A}) = \text{hod}\{\overline{a_1}, \dots, \overline{a_n}\} = \text{dim}[\{\overline{a_1}, \dots, \overline{a_n}\}]$ Maximum zo stupňov nenulových subdeterminantov matice \mathbf{A} : $t(\mathbf{A})$

Lemma 1.8.5

Nech **B** vznikne z **A** tak, že vymeníme v **A** navzájom niektoré riadky alebo stĺpce. Potom

$$h_r(\mathbf{A}) = h_r(\mathbf{B}), \qquad h_s(\mathbf{A}) = h_s(\mathbf{B}), \qquad t(\mathbf{A}) = t(\mathbf{B})$$

Lemma 1.8.6

Pre ľubovoľnú maticu ${\bf A}$ platí, že $h_r({\bf A})=t({\bf A}).$

Poznámka 1.8.7

Analogicky možno dokázať:

Pre ľubovoľnú maticu \boldsymbol{A} platí, že $h_s(\boldsymbol{A}) = t(\boldsymbol{A}).$

Dôsledok 1.8.8

Pre ľubovoľnú maticu **A** platí:

$$h_s(\mathbf{A}) = h_r(\mathbf{A}) = t(\mathbf{A}).$$

Definícia 1.8.9

Hodnosťou matice A rozumieme spoločnú hodnotu riadkovej a stĺpcovej hodnosti tejto matice.

Veta 1.8.10 (Frobeniova)

Majme danú sústavu rovníc:

$$(L) = \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n &= b_1 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n &= b_n \end{cases}$$

Táto sústava má riešenie \Leftrightarrow keď hodnosť matice tejto sústavy je rovná hodnosti rozšírenej matice tejto sústavy.

1.9 Homogénne matice – fundamentálny systém riešení

Majme homogénnu sústavu rovníc:

$$(H) = \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n &= 0 \\ \vdots & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n &= 0 \end{cases}$$

Lemma 1.9.1

Množina všetkých riešení sústavy (H) $\Omega(H)$ je podpriestorom vektorového priestoru $\mathbf{V}_n(\mathbb{F})$.

Veta 1.9.2

Nech hodnosť matice sústavy (H) je k. Potom dimenzia priestoru riešení sústavy (H) je (n-k).

Definícia 1.9.3

 ${\it Fundament\'alnym syst\'emom rie\'sen\'i s\'ustavy}~(H)$ rozumieme ľubovoľnú bázu riešení tejto sústavy.

2 Okruh, obor integrity

2.1 Definícia a dôsledky

Definícia 2.1.1

Okruhom nazývame usporiadanú trojicu $(\mathbf{0},+,.)$, kde $\mathbf{0}$ je ľubovoľná množina, a +, sú binárne operácie spĺňajúce podmienky:

- 1. $\forall a, b \in \mathbf{0} : a + b = b + a$
- 2. $\forall a, b, c \in \mathbf{0} : a + (b + c) = (a + b) + c$
- 3. $\exists 0 \in \mathbf{0} : \forall a \in \mathbf{0} : a + 0 = a$ (zákon nulového prvku)
- 4. $\forall a \in \mathbf{O} \ \exists b \in \mathbf{O} : a+b=0$ (zákon opačného prvku)
- 5. $\forall a, b, c \in \mathbf{O} : a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (asociatívnosť.)
- 6. $\forall a, b, c \in \mathbf{O} : a \cdot (b+c) = a \cdot b + a \cdot c$ (ľavý distributívny zákon)
- 7. $\forall a, b, c \in \mathbf{0} : (a+b) \cdot c = a \cdot c + b \cdot c$ (pravý distributívny zákon)

Príklad 2.1.2 (príklady okruhov)

- každé pole
- \mathbb{Z} (celé čísla), \mathbb{Z}_n pre každé $n \in \mathbb{N}$

Definícia 2.1.3

Komutatívnym okruhom nazývame taký okruh, v ktorom navyše platí:

8.
$$\forall a, b \in \mathbf{0} : a \cdot b = b \cdot c$$
 (komutatívny zákon pre .)

Definícia 2.1.4

Okruh s jednotkovým prvkom je okruh, v ktorom navyše platí:

9.
$$\exists 1 \neq 0 : \forall a \in \mathbf{0} : a : 1 = 1 : a = a$$
 (zákon jednotkového prvku)

Definícia 2.1.5

Komutatívny okruh s jednotkovým prvkom je okruh v ktorom platia vlastnosti komutatívneho okruhu a zároveň vlastnosti okruhu s jednotkovým prvkom.

Definícia 2.1.6

Oborom integrity nazývame taký komutatívny okruh s jednotkovým prvkov v ktorom navyše platí:

10.
$$a \cdot b = 0 \Rightarrow a = 0 \lor b = 0$$
 (zákon nulového súčinu)

Dôsledok 2.1.7

- 1. jednoznačnosť nulového prvku
- 2. jednoznačnosť opačného prvku (-a je opačný prvok k a)
- 3. zákon krátenia pre +: $a + u = b + u \Rightarrow a = b$
- 4. $\forall a: a.0 = 0.a = 0$
- 5. $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$
- 6. $(-a) \cdot (-b) = a \cdot b$
- 7. $\forall a : -(-a) = a$

- 8. v okruhu s jednotkovým prvkov: jednoznačnosť jednotkového prvku
- 9. v okruhu s jednotkovým prvkom: (-1) . a = -a

Veta 2.1.8

Nech **O** je ľubovoľný okruh. Nasledovné zákony sú ekvivalentné:

- 1. zákon nulového súčinu
- 2. zákon nenulového súčinu $(a \neq 0 \land b \neq 0 \Rightarrow a \cdot b \neq 0)$
- 3. ľavý zákon krátenia $(u \cdot a = u \cdot b \land u \neq 0 \Rightarrow a = b)$
- 4. pravý zákon krátenia $(a \cdot u = b \cdot u \land u \neq 0 \Rightarrow a = b)$

Príklad 2.1.9

Okruhy:

- $\mathbb{C}, \mathbb{R}, \mathbb{Q}$ so štandardným sčitovaním
- Z je okruhom aj oborom integrity
- $\bullet \ \mathbb{Z}_m \ (m \ \text{je} \ \text{zložené} \ \text{číslo}) komutatívny okruh s jednotkovým prvkom$
- \bullet 2Z (párne celé čísla so štandardnými operáciami) komutatívny okruh (bez jednotkového prvku)

Obor integrity vo všeobecnosti nie je pole (je to slabšia podmienka), ale každé pole je oborom integrity (napr. \mathbb{Z}).

Veta 2.1.10

Každý konečný obor integrity je pole.

2.2 Homomorfizmus, izomorfizmus

Definícia 2.2.1

Nech $(\mathbf{0}_1,+,.)$ a $(\mathbf{0}_2,\oplus,\odot)$ sú okruhy. Zobrazenie $\varphi:\mathbf{0}_1\to\mathbf{0}_2$ nazývame **homomorfizmom**, ak:

- 1. $\forall a, b \in \mathbf{O}_1 : \varphi(a+b) = \varphi(a) \oplus \varphi(b)$
- 2. $\forall a, b \in \mathbf{O}_1 : \varphi(a \cdot b) = \varphi(a) \odot \varphi(b)$

Definícia 2.2.2

Vnorenie je prostý homomorfizmus.

Definícia 2.2.3

Izomorfizmus je bijektívny homomorfizmus.

Lemma 2.2.4

Nech $\varphi: \mathbf{O}_1 \to \mathbf{O}_2$ je homomorfizmus. Potom:

- 1. $\varphi(0) = 0$
- 2. $\varphi(-a) = -\varphi(a), \forall a \in \mathbf{O}_1$

Lemma 2.2.5

Nech $\mathbf{O}_1, \mathbf{O}_2$ sú okruhy s jednotkovým prvkom. Nech φ je nenulový homomorfizmus $\mathbf{O}_1 \to \mathbf{O}_2$ a nech v \mathbf{O}_2 platí zákon nulového súčinu. Potom $\varphi(1) = 1$

Lemma 2.2.6

Nech φ je nenulový homomorfizmus $\mathbb{F}_1 \to \mathbb{F}_2$, kde $\mathbb{F}_1, \mathbb{F}_2$ sú polia. Potom:

- 1. $\varphi(1) = 1$
- 2. $\forall a \in \mathbb{F}_1 \{0\} : \varphi(a) \neq 0 \land \varphi(a^{-1}) = (\varphi(a))^{-1}$
- 3. φ je vnorenie

2.3 Podokruh, podobor integrity, podpole

Definícia 2.3.1

Nech $(\mathbf{0}, +, .)$ je ľubovoľný okruh. *Podokruhom* tohto okruhu nazývame neprázdnu podmnožinu $\mathbf{0}_1$ množiny $\mathbf{0}$ spĺňajúcu nasledovné podmienky:

- 1. $a, b \in \mathbf{O}_1 \Rightarrow a + b \in \mathbf{O}_1$ (uzavretosť pre +)
- 2. $a, b \in \mathbf{O}_1 \Rightarrow a \cdot b \in \mathbf{O}_1$ (uzavretosť pre .)
- 3. $a \in \mathbf{O}_1 \Rightarrow -a \in \mathbf{O}_1$

Veta 2.3.2

 $Ak \mathbf{O}_1$ je podokruhom okruhu \mathbf{O} , tak \mathbf{O}_1 je okruhom vzhľadom na +, definované na \mathbf{O} .

Definícia 2.3.3

Nech $(\mathbf{0}, +, .)$ je obor integrity. Pod **podoborom integrity** tohto oboru integrity rozumieme takú podmnožinu $\mathbf{0}_1 \subseteq \mathbf{0}$, ktorá je podokruhom pričom jednotkový prvok okruhu $\mathbf{0}$ patrí do $\mathbf{0}_1$.

Veta 2.3.4

Ak \mathbf{O}_1 je podoborom integrity oboru integrity $(\mathbf{O},+,.)$, tak $(\mathbf{O},+,.)$ je tiež oborom integrity.

Definícia 2.3.5

Nech $(\mathbb{F}, +, .)$ je pole. Pod **podpoľom** tohto poľa rozumieme takú podmnožinu $\mathbb{F}_1 \subseteq \mathbb{F}$, ktorá je podoborom integrity a navyše spĺňa podmienku:

$$a \in \mathbb{F}_1 - \{0\} \Rightarrow a^{-1} \in \mathbb{F}_1$$

Veta 2.3.6

 $Ak \mathbb{F}_1$ je podpoľom poľa $(\mathbb{F}, +, .)$, tak $(\mathbb{F}, +, .)$ je tiež poľom.

Veta 2.3.7

Prienik ľubovoľného neprázdneho systému podokruhov $\mathbf{0}$ [podoborov integrity $\mathbf{0}$, podpolí poľa \mathbb{F}] je podokruhom [podoborom integrity, podpoľom].

Dôsledok 2.3.8

V každom obore integrity [poli] existuje najmenší podobor integrity [najmenšie podpole].

2.4 Rád, charakteristika oboru integrity

Definícia 2.4.1 ("krížikové" násobenie)

Nech $(\mathbf{0}, +, .)$ je ľubovoľný okruh. Nech $a \in \mathbf{0}$. Definujme

$$m \times a = \begin{cases} \underbrace{a + a + \ldots + a}_{(m)\text{-krát}} & m \in \mathbb{N} \\ \text{nulový prvok okruhu } \mathbf{0} & m = 0 \\ \underbrace{(-a) + (-a) + \ldots + (-a)}_{(-m)\text{-krát}} & -m \in \mathbb{N} \end{cases}$$

Veta 2.4.2

Nech $(\mathbf{0}, +, .)$ je ľubovoľný okruh. Potom $\forall a, b \in \mathbf{0}, \forall m, n \in \mathbb{Z}$ platí:

1.
$$m \times (-a) = (-m) \times a = -(m \times a)$$

$$2. (m \times a) + (n \times a) = (m+n) \times a$$

3.
$$m \times (a+b) = (m \times a) + (m \times b)$$

4.
$$m \times (n \times a) = mn \times a$$

5.
$$(m \times a) \cdot b = m \times a \cdot b = a \cdot (m \times b)$$

6.
$$(m \times a) \cdot (m \times b) = mn \times a \cdot b$$

Definícia 2.4.3

Nech $(\mathbf{0},+,.)$ je ľubovoľný okruh a nech $a \in \mathbf{0}$. Ak neexistuje $n \in \mathbb{N}$ také, že $n \times a = 0$, hovoríme, že $\mathbf{r\acute{a}d}$ \mathbf{prvku} a \mathbf{je} ∞ . V opačnom prípade (ak existuje $n \in \mathbb{N}$), najmenšie číslo $n \in \mathbb{N}$ také, že $n \times a = 0$ nazývame $\mathbf{r\acute{a}dom}$ \mathbf{prvku} a.

Veta 2.4.4

Všetky nenulové prvky oboru integrity **O** majú rovnaký rád.

Definícia 2.4.5

Nech $(\mathbf{0}, +, .)$ je ľubovoľný obor integrity. Ak nenulové prvky majú rád ∞ , hovoríme, že charakteristika $\mathbf{0}$ je 0. Ak nenulové prvky majú rád $n \in \mathbb{N}$, tak charakteristika $\mathbf{0}$ je n.

Príklad 2.4.6

$$\operatorname{char} \mathbb{C} = \operatorname{char} \mathbb{R} = \operatorname{char} \mathbb{Q} = \operatorname{char} \mathbb{Z} = 0$$

$$\operatorname{char} \mathbb{Z}_p = p \ (p \text{ je prvočíslo})$$

Veta 2.4.7

Charakteristika ľubovoľného oboru integrity je 0 alebo prvočíslo.

Veta 2.4.8

Nech charakteristika oboru integrity $\mathbf{0}$ je 0 resp. p (p je prvočíslo). Potom najmenší podobor tohto oboru integrity je izomorfný so \mathbb{Z} , resp. so \mathbb{Z}_p .

Veta 2.4.9

Nech charakteristika poľa $\mathbb F$ je 0 resp. p. Potom najmenšie podpole tohto poľa je izomorfné s $\mathbb Q$ resp. s $\mathbb Z_p$.

3 Polynómy

3.1 Obor integrity polynómov

Definícia 3.1.1

Polynómom neurčitej x nad okruhom O nazývame výraz

$$\sum_{i=0}^{\infty} a_i x^i$$

pričom $\forall i \in \mathbb{N}_0 : a_i \in \mathbf{O}$ a množina tých i, pre ktoré $i \neq 0$ je konečná.

Polynóm, v ktorom $\forall i \in \mathbb{N}_0 : a_i = 0$ sa nazýva **nulový polynóm**. Iný zápis polynómu:

$$a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

Ak $a_n \neq 0$, potom n je **stupeň polynómu**.

Stupeň nulového polynómu nie je definovaný.

Definícia 3.1.2

Polynómy $f(x) = \sum_{i=0}^{\infty} a_i x^i$ a $g(x) = \sum_{i=0}^{\infty} b_i y^i$ považujeme za **rovné**, ak

$$\forall i \in \mathbb{N}_0 : a_i = b_i.$$

Definícia 3.1.3

Súčtom polynómov f(x), g(x) rozumieme polynóm

$$\sum_{i=0}^{\infty} (a_i + b_i) x^i$$

Definícia 3.1.4

Súčinom polynómov f(x), g(x) rozumieme polynóm

$$\sum_{i=0}^{\infty} c_i x^i,$$

kde

$$c_i = a_0 b_i + a_1 b_{i-1} + a_2 b_{i-2} + \ldots + a_i b_0 = \sum_{\substack{k,l \in \mathbb{N} \\ k+l = i}} a_i x^i$$

Súčin polynómov je tiež polynóm; ak st f(x) = n, st g(x) = m, potom $c_{n+m} = a_n b_m$.

Lemma 3.1.5

Súčin 2 nenulových polynómov nad oborom integrity je nenulový polynóm a jeho stupeň sa rovná súčtu stupňov týchto polynómov.

Poznámka 3.1.6

Označenie: $\mathbf{0} \dots$ okruh $\mathbf{0}[x] \dots$ množina všetkých polynómov neurčitej x nad okruhom $\mathbf{0}$.

Veta 3.1.7

Nech $\mathbf{0}$ je oborom integrity. Potom $\mathbf{0}[x]$ je vzhľadom na vyššie definované sčitovania a násobenie oborom integrity.

Definícia 3.1.8

Nech $f(x) = a_0 + a_1 x + \ldots + a_n x^n \in \mathbf{O}[x], u \in \mathbf{O}, n \in \mathbb{N}$. **Hodnotou** polynómu f(x) v bode u nazývame prvok z \mathbf{O}

$$a_0 + a_1 u + a_2 u^2 + \ldots + a_n u^n = f(u)$$

Definícia 3.1.9

Polynomickou funkciou prislúchajúcou polynómu f(x) rozumieme zobrazenie

$$\mathbf{O} \to \mathbf{O} : \forall u \in \mathbf{O} : u \mapsto f(u)$$

3.2 Deliteľnosť v množine polynómov

Poznámka 3.2.1

Označme: $\mathbb{F} \dots$ pole $\mathbb{F}[\mathbf{x}] \dots$ množina všetkých polynómov neurčitej x nad poľom \mathbb{F}

Definícia 3.2.2

Nech $f(x), g(x) \in \mathbb{F}[x]$. Hovoríme, že f(x) **delí** g, ak

$$\exists h(x) \in \mathbb{F}[x] : g(x) = f(x) \cdot h(x).$$

Označenie: $f(x) \mid g(x)$

Veta 3.2.3 (vlastnosti relácie deliteľnosti)

- 1. $f(x) \mid f(x) \quad \forall f(x) \in \mathbb{F}[x] \text{ (reflexívnosť)}$
- 2. $f(x) \mid g(x) \land g(x) \mid h(x) \Rightarrow f(x) \mid h(x) \text{ (tranzitívnosť)}$
- 3. $f(x) \mid g(x) \land f(x) \mid h(x) \Rightarrow f(x) \mid g(x) \pm h(x)$
- 4. $f(x) \mid g(x) \Rightarrow f(x) \mid g(x) \cdot h(x) \quad \forall h(x)$
- 5. $f(x) \mid g(x) \land g(x) \neq 0 \Rightarrow f(x) \neq 0, \text{st } f(x) \leq \text{st } g(x)$

Definícia 3.2.4

Polynómy f(x), g(x) nazývame **asociovanými**, ak

$$f(x) \mid g(x) \land g(x) \mid f(x).$$

Označenie: $f(x) \sim g(x)$

Lemma 3.2.5

Relácia asociovanosti je ekvivalencia.

Lemma 3.2.6

Pre $f(x), g(x) \in \mathbb{F}[x]$ platí: $f(x) \sim g(x) \Leftrightarrow \text{ak ľubovoľný } z \text{ nich je } c\text{-násobkom druhého pre } c \neq 0.$

Veta 3.2.7 (o delení so zvyškom)

Nech $f(x), g(x) \in \mathbb{F}[x], g(x) \neq 0$. Potom existuje jediná dvojica polynómov $q(x), r(x) \in \mathbb{F}[x]$, že

$$f(x) = g(x) \cdot q(x) + r(x),$$

pričom

$$r(x) = 0$$
 \forall $\operatorname{st} r(x) < \operatorname{st} g(x)$

3.3 Najväčší spoločný deliteľ, najmenší spoločný násobok polynómov

Definícia 3.3.1

Nech $f(x), g(x) \in \mathbb{F}[x]$. Najväčším spoločným deliteľom polynómov f(x),g(x) nazývame taký polynóm d(x), ktorý spĺňa podmienky:

- 1. $d(x) \mid f(x) \wedge d(x) \mid g(x)$
- 2. $d'(x) \mid f(x) \land d'(x) \mid g(x) \Rightarrow d'(x) \mid d(x)$

Veta 3.3.2

- 1. Nech d(x) je NSD polynómov f(x), g(x) a nech $d_1(x) \sim d(x)$. Potom aj $d_1(x)$ je NSD polynómov f(x), g(x).
- 2. Nech $d_1(x), d_2(x)$ sú ľubovoľné NSD polynómov f(x), g(x). Potom $d_1(x) \sim d_2(x)$.

Poznámka 3.3.3 (Euklidov algoritmus)

Nech $f(x), g(x) \in \mathbb{F}[x], g(x) \neq 0$.

$$f(x) = g(x) \cdot q_1(x) + r_2(x) \qquad r_2(x) = 0 \ \lor \ \operatorname{st} r_2(x) < \operatorname{st} g(x)$$
 ak $r_2(x) \neq 0$: $g(x) = r_2(x) \cdot q_2(x) + r_3(x) \qquad r_3(x) = 0 \ \lor \ \operatorname{st} r_3(x) < \operatorname{st} r_2(x)$ ak $r_3(x) \neq 0$: $r_2(x) = r_3(x) \cdot q_3(x) + r_4(x) \qquad r_4(x) = 0 \ \lor \ \operatorname{st} r_3(x) < \operatorname{st} r_3(x)$
$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$r_{n-2}(x) = r_{n-1}(x) \cdot q_{n-1}(x) + r_n(x) \qquad r_n(x) = 0 \ \lor \ \operatorname{st} r_n(x) < \operatorname{st} r_{n-1}(x)$$
 ak $r_n(x) \neq 0$: $r_{n-1}(x) = r_n(x) \cdot q_n(x) + 0$

Poznámka 3.3.4

Nech $f(x), g(x) \in \mathbb{F}[x]$. Označme množinu spoločných deliteľov polynómov f(x), g(x) ako:

$$\mathbb{D}(f(x), g(x))$$

Lemma 3.3.5

Nech $f(x) = g(x) \cdot h(x) + t(x)$. Potom:

$$\mathbb{D}(f(x), g(x)) = \mathbb{D}(g(x), t(x)).$$

Veta 3.3.6

- 1. Pre každú dvojicu polynómov $f(x), g(x) \in \mathbb{F}[x]$ existuje ich NSD.
- 2. Ak d(x) je ľubovoľný NSD polynómov f(x), g(x), tak existujú polynómy $u(x), v(x) \in \mathbb{F}[x]$ také, že

$$d(x) = f(x) \cdot u(x) + g(x) \cdot v(x)$$
.

3.4 Nesúdeliteľnosť polynómov

Definícia 3.4.1

Polynómy f(x), g(x) nazývame **nesúdeliteľnými**, ak polynóm z(x) = 1 je ich najväčším spoločným deliteľom.

Poznámka 3.4.2

Polynómy f(x), g(x) sú nesúdeliteľné, ak (f(x), g(x)) = 1, pričom (f(x), g(x)) je ich normovaný spoločný deliteľ.

Veta 3.4.3

Polynómy $f(x), g(x) \in \mathbb{F}[x]$ sú nesúdeliteľné \Leftrightarrow keď

$$\exists u(x), v(x) \in \mathbb{F}[x] : 1 = f(x) \cdot u(x) + g(x) \cdot v(x)$$

Veta 3.4.4

Ak d(x) je NSD f(x), g(x), pričom $d(x) \neq 0$, tak polynómy $\frac{f(x)}{d(x)}$ a $\frac{g(x)}{d(x)}$ sú nesúdeliteľné.

Veta 3.4.5

Ak f(x) je nesúdeliteľný s g(x), h(x), tak f(x) je nesúdeliteľný s g(x). h(x).

Veta 3.4.6

Ak $f(x) \mid g(x) \cdot h(x)$ a f(x) je nesúdeliteľný s g(x), tak $f(x) \mid h(x)$.

Veta 3.4.7

Ak $f(x) \mid h(x)$ a $g(x) \mid h(x)$ a f(x), g(x) sú nesúdeliteľné, tak f(x). $g(x) \mid h(x)$.

Definícia 3.4.8

Polynóm h(x) nazývamé **najmenším spoločným násobkom** polynómov f(x), g(x), ak

- 1. $f(x) \mid h(x) \wedge g(x) \mid h(x)$
- 2. h(x) delí všetky ostatné spoločné násobky, t.j. ak t(x) je spoločným násobkom $\Rightarrow h(x) \mid t(x)$

Veta 3.4.9

 $Ak\ h(x)$ je najmenším spoločným násobkom, tak všetky s ním asociované polynómy sú spoločnými násobkami.

Veta 3.4.10

Nech d(x) je najväčším spoločným deliteľom polynómov f(x), g(x) a nech $d(x) \neq 0$. Potom

$$\frac{f(x) \cdot g(x)}{d(x)}$$

je najmenším spoločným násobkom f(x), g(x).

3.5 Rozklad polynómov na ireducibilné činitele

Definícia 3.5.1

Nech f(x) je ľubovoľný polynóm nad \mathbb{F} .

Triviálnymi deliteľmi polynómu f(x) nazývame polynómy asociované s f(x) a polynómy asociované s h(x) = 1 (polynóm nultého stupňa).

Netriviálnymi deliteľmi nazývame také delitele, ktoré nie sú triviálne.

Definícia 3.5.2

Polynóm stupňa väčšieho ako 1 nazývame:

- a) $ireducibiln\acute{y}m$, ak má iba triviálne delitele
- b) reducibilným, ak má aj netriviálne delitele

Veta 3.5.3

Nech f(x) je polynóm nad \mathbb{F} , st $f(x) \geq 1$. Potom

$$f(x)$$
 je reducibilný $\Leftrightarrow \exists g(x), h(x) \in \mathbb{F}[x] : f(x) = g(x) \cdot h(x),$

pričom

$$\operatorname{st} g(x) < \operatorname{st} f(x) \wedge \operatorname{st} h(x) < \operatorname{st} f(x).$$

Lemma 3.5.4

Nech p(x) je ireducibilný polynóm z $\mathbb{F}[x]$ a nech $p(x) \mid f(x) \cdot g(x)$. Potom $p(x) \mid f(x) \vee p(x) \mid g(x)$.

Veta 3.5.5

Nech f(x) je ľubovoľný polynóm z $\mathbb{F}[x]$. Potom:

- 1. f(x) sa dá rozložiť na súčin konečného počtu ireducibilných polynómov
- 2. ak $f(x) = p_1(x) \dots p_n(x) = q_1(x) \dots q_m(x)$, pričom $p_1(x), \dots, p_n(x), q_1(x), \dots, q_m(x)$ sú ireducibilné.

tak m=n a existuje taká permutácia φ množiny $\overline{n}=\{1,2,\ldots,n\}$, že $p_1(x)\sim q_{\varphi_1}(x),\ldots,p_n(x)\sim q_{\varphi_n}(x)$

3.6 Korene polynómu

Definícia 3.6.1

Hodnotou polynómu f(x) v $u \in \mathbb{F}$ rozumieme

$$f(u) = a_0 + a_1 u + \ldots + a_n u^n$$
.

Lemma 3.6.2

Nech $f(x) \in \mathbb{F}[x], u \in \mathbb{F}$. Potom zvyšok po delení polynómu f(x) polynómom (x-u) bude f(u).

Definícia 3.6.3

Nech $f(x) \in \mathbb{F}[x], u \in \mathbb{F}$. Potom u nazývame **koreňom** polynómu f(x), ak f(u) = 0.

Dôsledok 3.6.4

u je koreňom $f(x) \Leftrightarrow (x-u) \mid f(x)$.

Lemma 3.6.5

- 1. Ak $f(x) \in \mathbb{F}[x]$, st f(x) > 1 a f(x) má koreň, tak je reducibilný.
- 2. $Ak \operatorname{st} f(x) = 2 \vee \operatorname{st} f(x) = 3$ a f(x) je reducibilný, tak má koreň.

Veta 3.6.6

Polynóm stupňa $n, n \geq 0$ nad poľom \mathbb{F} má najviac n koreňov.

Dôsledok 3.6.7

Ak dva polynómy stupňa nanajvýš n majú rovnaké hodnoty vo viac ako n prvkoch z \mathbb{F} , tak sa rovnajú.

Dôsledok 3.6.8

Rôznym polynómom nad nekonečným poľom F prislúchajú rôzne polynomické funkcie.

Veta 3.6.9

Nech sú dané dvojice $(u_0, v_0), (u_1, v_1), \ldots, (u_n, v_n) \in \mathbb{F} \times \mathbb{F}$, pričom $u_0 \neq u_1 \neq \ldots \neq u_n$. Potom existuje práve jeden polynóm f(x) nad \mathbb{F} stupňa nanajvýš n taký, že $f(u_0) = v_0, \ldots, f(u_n) = v_n$.

Definícia 3.6.10

Nech $u \in \mathbb{F}$ je koreňom polynómu f(x) nad \mathbb{F} . **Násobnosťou** tohto koreňa nazývame $k \in \mathbb{N}$ také, že

$$(x-u)^k \mid f(x) \wedge (x-u)^{(k+1)} \nmid f(x).$$

Ak koreň u má násobnosť k, tak hovoríme, že u je k-násobný koreň. 1-násobnému koreňu hovoríme jednoduchý.

Definícia 3.6.11

Nech f(x) je polynóm z $\mathbb{F}[x]$.

Ak
$$f(x) = c, c \in \mathbb{F}$$
, tak $f'(x) = 0$.

Ak $f(x) = a_0 + a_1 x + ... + a_n x^n, a_n \neq 0; n \in \mathbb{N}$, tak

- $f'(x) = a_1 + 2a_2x + \ldots + na_nx^{(n-1)}$
- $f^{(k)}(x) = [f^{(k-1)}(x)]'$.

Veta 3.6.12

Dané sú polynómy $f(x), g(x) \in \mathbb{F}[x]$.

1.
$$(f(x) + g(x))' = f'(x) + g'(x)$$

2.
$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

3.
$$n \in \mathbb{N} : [f^{(n)}(x)]' = n \cdot f^{(n-1)}(x) \cdot f'(x)$$

Veta 3.6.13

Nech \mathbb{F} je pole charakteristiky 0. Nech $f(x) \in \mathbb{F}[x]$ a nech u je k-násobný koreň polynómu f(x). Ak k = 1, tak u nie je koreňom f'(x). Ak k > 1, tak u je (k - 1)-násobný koreň f'(x).

Veta 3.6.14

Nech \mathbb{F} je pole charakteristiky 0. Nech $f(x) \in \mathbb{F}[x]$, a nech u je koreň f(x). Potom u je k-násobný koreň $\Leftrightarrow f(u) = 0 \land f'(u) = 0 \land \dots \land f^{(k-1)}(u) = 0 \land f^{(k)}(u) \neq 0$.

3.7 Ireducibilné polynómy nad \mathbb{Q} , \mathbb{R} , \mathbb{C}

3.7.1 Ireducibilné polynómy nad $\mathbb C$

Veta 3.7.1 (Fundamentálna veta algebry)

Každý polynóm nad $\mathbb C$ stupňa aspoň 1 má v $\mathbb C$ koreň.

Dôsledok 3.7.2 (1)

Nad \mathbb{C} sú ireducibilné práve polynómy 1. stupňa.

Dôsledok 3.7.3 (2)

Každý polynóm nad $\mathbb C$ stupňa aspo
ň1sa dá rozložiť na súčin konečného počtu polynómov stupňa
 1

Dôsledok 3.7.4 (3)

Polynóm stupňa $n \in \mathbb{N}$ nad $\mathbb{C}[x]$ má v \mathbb{C} práve n koreňov, ak každý započítavame toľkokrát, koľkonásobný je.

3.7.2 Ireducibilné polynómy nad \mathbb{R}

Veta 3.7.5

Nech $u \in \mathbb{C}$ je koreňom polynómu $f(x) \in \mathbb{R}[x]$. Potom \overline{u} je tiež koreň f(x), pričom u, \overline{u} majú rovnakú násobnosť.

Veta 3.7.6

Každý polynóm f(x) nad \mathbb{R} , kde st $f(x) \geq 3$, je nad \mathbb{R} reducibiný.

Dôsledok 3.7.7 (1)

Nad $\mathbb R$ sú ireducibilné práve polynómy 1. stupňa a tie polynómy 2. stupňa, ktoré nemajú v $\mathbb R$ koreň.

Dôsledok 3.7.8 (2)

Každý polynóm nad $\mathbb R$ stupňa aspoň 1 sa dá rozložiť na súčin konečného počtu polynómov 1. a 2. stupňa, ktoré nemajú v $\mathbb R$ koreň.

3.7.3 Ireducibilné polynómy nad Q

Veta 3.7.9 (užitočná)

Nech $f(x) = a_0 + a_1 x + \ldots + a_n x^n$ je polynóm s celočíselnými koeficientmi a nech $\frac{p}{q}$; $p, q \in \mathbb{Z}$; (p, q) = 1 je koreňom polynómu f(x). Potom $p \mid a_0, q \mid a_n$.

Dôsledok 3.7.10

Ak polynóm $f(x) \in \mathbb{Z}[x]$ je normovaný a má racionálny koreň, tak ním musí byť celé číslo, ktoré delí hodnotu polynómu v bode 0 (absolútny člen).

Veta 3.7.11

Nech f(x) je polynóm s celočíselnými koeficientmi stupňa $n, n \geq 1$, a nech existujú polynómy $g(x), h(x) \in \mathbb{Q}[x]$ také, že $f(x) = g(x) \cdot h(x)$, pričom sth(x) < n. Potom existujú aj polynómy $g^*(x), h^*(x) \in \mathbb{Z}[x]$ také, že $f(x) = g^*(x) \cdot h^*(x)$, pričom st $g^*(x) = \operatorname{st} g(x), \operatorname{st} h^*(x) = \operatorname{st} h(x)$.

Veta 3.7.12 (Eisensteinovo kritérium)

Nech $f(x) = a_0 + a_1 x + \ldots + a_n x^n$ je polynóm s celočíselnými koeficientmi a nech existuje také prvočíslo p, že

$$p \mid a_0, p \mid a_1, \dots p \mid a_{n-1}, p \nmid a_n, p^2 \nmid a_0.$$

Potom f(x) je ireducibilný nad \mathbb{Q} .

Dôsledok 3.7.13

Nad $\mathbb Q$ existujú ireducibilné polynómy ľubovoľných stupňov. Obrátená veta k Eisensteinovmu kritériu neplatí.

3.8 Binomické rovnice nad $\mathbb C$

Definícia 3.8.1

Binomickým polynómom nad \mathbb{C} stupňa $n, n \geq 1$ budeme nazývať polynóm $x^n + a, a \in \mathbb{C} - \{0\}$. Binomickou rovnicou budeme nazývať výraz $x^n + a = 0$. Riešenia rovnice $x^n = a$ budeme nazývať n-tými odmocninami z a ($\sqrt[n]{a}$).

Veta 3.8.2

Nech $a \in \mathbb{C} - \{0\}$ má goniometrický tvar

$$a = r(\cos \varphi + i \sin \varphi).$$

Potom rovnici $x^n = a$ vyhovujú práve čísla

$$h_k = u_k(n) = \sqrt[n]{r} \left(\cos \frac{\varphi + 2k\pi}{n} + i \sin \frac{\varphi + 2k\pi}{n} \right)$$

pre všetky možné hodnoty $k \in \mathbb{Z}$. Spomedzi týchto čísel je práve n navzájom rôznych, ktoré môžeme dostať dosadením napr. $0, \ldots (n-1)$ za k.

Dôsledok 3.8.3

Rovnici $x^n = 1$ vyhovujú práve čísla

$$\varepsilon_k(n) = \varepsilon_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, k \in \mathbb{Z}.$$

Veta 3.8.4

Nech $u \in \mathbb{C}$ je riešením rovnice $x^n = a, a \neq 0$. Potom $\varepsilon_0(n) \cdot u, \varepsilon_1(n) \cdot u \cdot \ldots \cdot \varepsilon_n(n) \cdot u$ sú všetky riešenia rovnice $x^n = a$.

Lemma 3.8.5

Pre ľubovoľné $l \in \mathbb{Z}$ je $\varepsilon_k^l(n)$ tiež n-tá odmocnina z 1.

Definícia 3.8.6

Primitívnou n-tou odmocninou z 1 rozumieme každú takú n-tú odmocninu z 1, ktorej umocňovaním na celé čísla dostaneme všetky n-té odmocniny z 1.

Lemma 3.8.7

$$\varepsilon_k(n) = 1 \Leftrightarrow n \mid k.$$

Veta 3.8.8

 $\varepsilon_k(n)$ je primitívnou $\sqrt[n]{1} \Leftrightarrow (n,k) = 1$ (t.j. n, k sú nesúdeliteľné).

3.9 Kubické rovnice

Poznámka 3.9.1

Kubickou rovnicou nazývame rovnicu tvaru

$$ax^3 + bx^2 + cx + d = 0$$

Úpravou na normovaný tvar a zavedením substitúcie $x=(y-\frac{b}{3})$ dostávame rovnicu

$$y^3 + py + q$$
, $p, q \in \mathbb{C}$, $(p \neq 0 \ \lor \ q \neq 0)$,

z ktorej formálnym preznačením dostaneme

$$x^3 + px + q = 0$$

Poznámka 3.9.2 (Cardanove vzorce)

Pre korene kubických rovníc platia nasledovné vzťahy:

diskriminant
$$D=-27q^2-4p^3$$

$$\alpha^3=-\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}=-\frac{q}{2}+\sqrt{\frac{-D}{108}}$$

$$\beta=-\frac{p}{3\alpha}$$

$$x_1=\alpha+\beta$$

$$x_2=\alpha\varepsilon+\beta\varepsilon^2=\alpha(-\frac{1}{2}+i\frac{\sqrt{3}}{2})+\beta(-\frac{1}{2}-i\frac{\sqrt{3}}{2})$$

$$x_3=\alpha\varepsilon^2+\beta\varepsilon=\alpha(-\frac{1}{2}-i\frac{\sqrt{3}}{2})+\beta(-\frac{1}{2}+i\frac{\sqrt{3}}{2})$$

3.10 Polynómy viacerých neurčitých

Definícia 3.10.1

Polynómom viacerých neurčitých x_1, \ldots, x_n ; $n \in \mathbb{N}$ nad poľom \mathbb{F} rozumieme súčet

$$\sum_{i \in \mathbf{I}} c_i x_1^{\alpha_{1_i}} \dots x_n^{\alpha_{n_i}}$$

kde $\mathbf{I} \neq \emptyset$; $c_i \in \mathbb{F}$; $\alpha_{1_i} \dots \alpha_{n_i} \in \mathbb{N}_0$, pričom $c_i \neq 0$ iba pre konečný počet indexov a $\forall i, j \in \mathbf{I}$; $i \neq j, c_i \neq 0, c_j \neq 0 : (\alpha_{1_i} \dots \alpha_{n_i}) \neq (\alpha_{1_i} \dots \alpha_{n_i})$.

Poznámka 3.10.2

Nenulový sčítanec nazývame členom.

Definícia 3.10.3

Ak $cx_1^{\alpha_1} \dots x_n^{\alpha_n}$ je členom polynómu $f(x_1, \dots, x_n)$, tak usporiadanú n-ticu $(\alpha_1, \dots, \alpha_n)$ budeme nazývať výškou tohto člena.

Definícia 3.10.4

Polynómy $f(x_1, ..., x_n)$ a $g(x_1, ..., x_n)$ budeme považovať za **rovné**, ak sú oba nulové, alebo sú oba nenulové a existuje taká vzájomne jednoznačná príbuznosť medzi ich členmi, že odpovedajúce si členy majú rovnaké koeficienty a rovnaké výšky.

Definícia 3.10.5

 $S\acute{u}\check{c}et$ nenulových polynómov dostaneme sčítaním koeficientov pri členoch rovnakej výšky, ostatné opíšeme.

Definícia 3.10.6

Ak je aspoň jeden z polynómov nulový, tak súčin týchto polynómov je nulový. Súčin nenulových polynómov je rovný súčtu súčinov ich členov (každý s každým).

Definícia 3.10.7

Na množine n-tíc nezáporných celých čísel $(\mathbb{N}_0^n) = \{(\alpha_1, \dots, \alpha_n : \alpha_i \in \mathbb{N}_0 \forall i\}$ definujeme reláciu "<" takto:

ak $(\alpha_1, \ldots, \alpha_n) \neq (\beta_1, \ldots, \beta_n)$, tak $(\alpha_1, \ldots, \alpha_n) < (\beta_1, \ldots, \beta_n) \Leftrightarrow \alpha_i < \beta_i$ pre najmenšie i také, že $\alpha_i \neq \beta_i$.

Lemma 3.10.8

Pre vyššie definovanú reláciu "<" na množine \mathbb{N}_0^n platí:

1.
$$\forall \alpha, \beta \in \mathbb{N}_0^n, \alpha \neq \beta : \alpha < \beta \vee \alpha > \beta$$

2.
$$\alpha < \beta \Rightarrow \beta \not< \alpha$$

3.
$$\alpha < \beta \land \beta < \gamma \Rightarrow \alpha < \gamma$$

4.
$$\alpha < \beta \Rightarrow \alpha + \gamma < \beta + \gamma$$

Definícia 3.10.9

Lexikografickým usporiadaním členov polynómu n neurčitých nazývame také usporiadanie, že výšky rastú alebo klesajú.

Najvyšším členom nenulového polynómu rozumieme člen s najvyššou výškou.

Lemma 3.10.10

Nech $f(x_1, ..., x_n)$, $g(x_1, ..., x_n)$ sú nenulové polynómy nad poľom \mathbb{F} . Potom súčin najvyšsích členov polynómov $f(x_1, ..., x_n)$ a $g(x_1, ..., x_n)$ je najvyšsím členom ich súčinu (a teda súčin je nenulový).

Veta 3.10.11

 $\mathbb{F}[x_1,\ldots,x_n]$ vzhľadom na vyššie definované sčitovanie a násobenie je oborom integrity.

3.11 Symetrické polynómy

Definícia 3.11.1

Polynóm $f(x_1, ..., x_n)$ nad poľom \mathbb{F} nazývame **symetrickým**, ak sa nemení pri žiadnej permutácii neurčitých.

Poznámka 3.11.2

Označme množinu všetkých symetrických polynómov nad poľom \mathbb{F} neurčitých x_1,\ldots,x_n ako \mathbb{F}° .

Veta 3.11.3

 $\mathbb{F}^{\circ}[x_1,\ldots,x_n]$ je podoborom integrity oboru integrity $\mathbb{F}[x_1,\ldots,x_n]$.

Poznámka 3.11.4 (Základné symetrické polynómy)

$$\sigma_1(x_1, \dots, x_n) = \sum_{i=1}^n$$

$$\sigma_2(x_1, \dots, x_n) = \sum_{\substack{i,j=1\\i < j}}^n x_i x_j$$

$$\sigma_3(x_1, \dots, x_n) = \sum_{\substack{i, j, k = 1 \\ i < j < k}}^n x_i x_j x_k$$

$$\vdots$$

$$\sigma_{n-1}(x_1, \dots, x_n) = \sum_{\substack{i_1, \dots, i_n = 1 \\ i_1 < \dots < i_n}}^n x_{i_1} \dots x_{i_{n-1}}$$

$$\sigma_n(x_1, \dots, x_n) = \prod_{i=1}^n x_i$$

Veta 3.11.5

Nech
$$f(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$$
.
Potom $f(\sigma_1(x_1, \ldots, x_n), \sigma_2(x_1, \ldots, x_n), \ldots, \sigma_n(x_1, \ldots, x_n)) \in \mathbb{F}^{\circ}[x_1, \ldots, x_n]$.

Veta 3.11.6 (základná o symetrických polynómoch)

Ku každému polynómu $g(x_1,\ldots,x_n)\in\mathbb{F}^\circ[x_1,\ldots,x_n]$ existuje jediný taký symetrický polynóm $f(x_1,\ldots,x_n)\in\mathbb{F}^\circ[x_1,\ldots,x_n]$, že

$$f(\sigma_1(x_1,\ldots,x_n),\sigma_2(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n))=g(x_1,\ldots,x_n).$$

Definícia 3.11.7

Nech $f(x_1,...,x_n) \in \mathbb{F}[x_1,...,x_n] - \{0\}.$

Ak $cx_1^{\alpha_1} \dots x_n^{\alpha_n}$ členom tohto polynómu, tak jeho **stupeň** je $\alpha_1 + \dots + \alpha_n$. **Stupeň polynómu** f je maximum zo stupňov jeho členov. Nenulový polynóm budeme nazývať **homogénnym**, ak všetky jeho členy majú rovnaký stupeň.

3.12 Metóda neurčitých koeficientov

Lemma 3.12.1

Nech f(x) je homogénny polynóm stupňa k a g(x) homogénny polynóm stupňa l. Potom (f,g)(x) je homogénny polynóm stupňa k+l.

Poznámka 3.12.2 (Vietove vzťahy)

Nech u_1, \ldots, u_n sú korene polynómu $f(x) = a_0 + a_1 x + \ldots + a_n x^n$; $a_n \neq 0$, teda

$$f(x) = a_n(x - u_1)(x - u_2) \dots (x - u_n).$$

Potom

$$\sigma_i(u_1, \dots, u_n) = (-1)^i \cdot \frac{a_{n-i}}{a_n}, \quad i \in \{1, 2, \dots, n\}$$

4 Lineárne zobrazenia

4.1 Jadro a obor hodnôt

Definícia 4.1.1

Nech V_1, V_2 sú vektorové priestory nad \mathbb{F} .

Zobrazenie $\varphi: \mathbf{V}_1 \to \mathbf{V}_2$ nazývame *lineárnym zobrazením (homomorfizmom)*, ak spĺňa:

- 1. $\forall a, b \in \mathbf{V}_1 : \varphi(a+b) = \varphi(a) + \varphi(b)$
- 2. $\forall a \in \mathbf{V}_1, \alpha \in \mathbb{F} : \varphi(\alpha \cdot a) = \alpha \cdot \varphi(a)$

Lemma 4.1.2

 $\varphi: \mathbf{V}_1 \to \mathbf{V}_2$ je lineárne \Leftrightarrow ak spĺňa podmienku:

$$\forall a, b \in \mathbf{V}_1, \ \alpha, \beta \in \mathbb{F} : \varphi(\alpha a + \beta b) = \alpha \varphi(a) + \beta \varphi(b)$$

Veta 4.1.3

Nech φ je lineárne zobrazenie $\mathbf{V}_1 \to \mathbf{V}_2$. Potom

- 1. $\varphi(\mathbf{o}) = \mathbf{o}$
- $2. \ \varphi(-a) = -\varphi(a)$

Definícia 4.1.4

Nech φ je lineárne zobrazenie $\mathsf{V}_1 \to \mathsf{V}_2$. Jadrom tohto lineárneho zobrazenia nazývame množinu

$$\operatorname{Ker} \varphi = \{ a \in \mathbf{V}_1 : \ \varphi(a) = \mathbf{o} \}.$$

 ${\it Oborom\ hodn\^ot\ }arphi$ nazývame množinu

$$\operatorname{Im}\varphi = \{\varphi(a) : a \in \mathbf{V}_1\}$$

Lemma 4.1.5

Nech φ je lineárne zobrazenie $V_1 \to V_2$. Potom

- (a) φ je prosté $\Leftrightarrow \operatorname{Ker} \varphi = \{o\}$
- (b) φ je na \Leftrightarrow Im $\varphi = \mathbf{V}_2$

Veta 4.1.6

Nech φ je lineárne zobrazenie $\mathbf{V}_1 \to \mathbf{V}_2$. Potom

- 1. Ker φ je podpriestor \mathbf{V}_1
- 2. Im φ je podpriestor \mathbf{V}_2
- 3. Ak navyše \mathbf{V}_1 je konečnorozmerný, tak dim Ker φ + dim Im φ = dim \mathbf{V}_1 .

Definícia 4.1.7

Nech φ je lineárne zobrazenie $\mathbf{V}_1 \to \mathbf{V}_2$, pričom \mathbf{V}_1 konečnorozmerný.

 $Defekt \varphi$ definujeme ako

 $\operatorname{def} \varphi := \dim \operatorname{Ker} \varphi.$

 $\pmb{Hodnost}$ φ definujeme ako

 $\operatorname{hod}\varphi:=\dim\operatorname{Im}\varphi.$

Veta 4.1.8

Nech V_1, V_2 sú vektorové priestory nad \mathbb{F} , pričom V_1 konečnorozmerný.

Nech $\{a_1, \ldots, a_n\} \in \mathbf{V}_1, \{b_1, \ldots, b_n\} \in \mathbf{V}_2.$

- 1. Ak $a_1 \ldots, a_n$ generuje \mathbf{V}_1 , tak existuje najviac jedno lineárne zobrazenie $\varphi : \mathbf{V}_1 \to \mathbf{V}_2$ také, že $\varphi(a_1) = b_1, \ldots, \varphi(a_n) = b_n$.
- 2. Ak $a_1 \ldots, a_n$ tvoria bázu \mathbf{V}_1 , tak existuje práve jedno lineárne zobrazenie $\varphi : \mathbf{V}_1 \to \mathbf{V}_2$, že $\varphi(a_1) = b_1, \ldots, \varphi(a_n) = b_n$.
- 3. Ak $a_1 \ldots, a_n$ tvoria lineárne nezávislý systém, tak existuje aspoň jedno lineárne zobrazenie $\varphi : \mathbf{V}_1 \to \mathbf{V}_2$, že $\varphi(a_1) = b_1, \ldots, \varphi(a_n) = b_n$.

4.2 Vektorový priestor matíc, lineárnych zobrazení

Poznámka 4.2.1

Označme si vektorový priestor matíc $\mathbb{F}_{m\times n}$. Označme si $\mathcal{L}(\mathbf{V}_1,\mathbf{V}_2)$ množinu všetkých lineárnych zobrazení $\mathbf{V}_1\to\mathbf{V}_2$.

Veta 4.2.2

Množina $\mathbb{F}_{m \times n}$ je vzhľadom na vyššie definované sčitovanie a násobenie prvkami z \mathbb{F} vektorovým priestorom dimenzie $m \times n$.

Definícia 4.2.3

Nech φ, ψ sú lineárne zobrazenia $V_1 \to V_2, \alpha \in \mathbb{F}$.

- 1. $\forall a \in \mathbf{V}_1 : (\varphi + \psi)(a) = \varphi(a) + \psi(a)$
- 2. $\forall a \in \mathbf{V}_1 : (\alpha \varphi)(a) = \alpha \varphi(a)$

Lemma 4.2.4

 $Ak \ \varphi, \psi \in \mathcal{L}(\mathbf{V}_1, \mathbf{V}_2), \ \alpha \in \mathbb{F}, \ tak \ \varphi + \psi, \ \alpha \varphi \ sú \ tiež lineárne zobrazenia.$

Veta 4.2.5

 $\mathcal{L}(\mathbf{V}_1,\mathbf{V}_2)$ je vzhľadom na vyššie definované sčitovanie a násobenie skalármi vektorovým priestorom

Definícia 4.2.6

Nech $B = \{b_1, \ldots, b_n\}$ je báza \mathbf{V}_1 a $C = \{c_1, \ldots, c_m\}$ je báza \mathbf{V}_2 . Nech $\varphi \in \mathcal{L}(\mathbf{V}_1, \mathbf{V}_2)$. $\mathbf{Maticou}$ $\mathbf{line\acute{a}rneho}$ $\mathbf{zobrazenia}$ φ vzhľadom k bázam B, C nazývame maticu, ktorej j-tý stĺpec pozostáva zo súradníc vektora $\varphi(b_j)$ vzhľadom k báze C.

Označenie:
$$(\varphi)_{BC}$$

Veta 4.2.7

Nech $\mathbf{V}_1, \mathbf{V}_2$ sú nenulové konečnorozmerné vektorové priestory na \mathbb{F} . Nech B je ľubovoľná báza \mathbf{V}_1 , C ľubovoľná báza \mathbf{V}_2 . Potom $\mathcal{L}(\mathbf{V}_1, \mathbf{V}_2) \to \mathbb{F}_{m \times n}$ také, že

$$\varphi (\in \mathcal{L}(\mathbf{V}_1, \mathbf{V}_2) \mapsto (\varphi)_{BC}$$

je izomorfizmus.

Dôsledok 4.2.8

Nech V_1, V_2 sú konečnorozmerné vektorové priestory nad \mathbb{F} . Potom $\mathcal{L}(V_1, \mathbb{V}_2)$ je tiež konečnorozmerný a platí:

$$\dim \mathcal{L}(\mathbf{V}_1, \mathbf{V}_2) = \dim \mathbf{V}_1 + \dim \mathbf{V}_2$$

4.3 Násobenie matíc, skladanie lineárnych zobrazení

Definícia 4.3.1

Nech $\mathbf{A} \in \mathbb{F}_{m \times n}, \mathbf{B} \in \mathbb{F}_{n \times p}$.

$$\mathbf{A} = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{m1} & \dots & \alpha_{mn} \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} \beta_{11} & \dots & \beta_{1p} \\ \vdots & \ddots & \vdots \\ \beta_{n1} & \dots & \beta_{np} \end{pmatrix}$$

 $\pmb{Súčinom}$ matíc \pmb{A} . \pmb{B} nazývame maticu typu $m\times p,$ ktorá má na priesečníku i-téhoriadku a j-téhostĺpca prvok

$$\sum_{k=1}^{n} \alpha_{ik} \beta_{jk} = \alpha_{i1} \beta_{1j} + \alpha_{i2} \beta_{2j} + \ldots + \alpha_{in} \beta_{nj}$$

Veta 4.3.2

Nech $n \in \mathbb{N}$. Potom $(\mathbb{F}_{m \times n}, +, .)$ je okruh s jednotkovým prvkom.

Definícia 4.3.3

Nech $\varphi \in \mathcal{L}(\mathbf{V}_1, \mathbf{V}_2), \psi \in \mathcal{L}(\mathbf{V}_2, \mathbf{V}_3)$. Potom súčinom (kompozíciou) zobrazení φ, ψ rozumieme

$$\varphi \circ \psi : \mathbf{V}_1 \to \mathbf{V}_2 : (\varphi \circ \psi)(u) = \psi(\varphi(u))$$

Lemma 4.3.4

 $Ak \varphi \in \mathcal{L}(\mathbf{V}_1, \mathbf{V}_2), \psi \in \mathcal{L}(\mathbf{V}_2, \mathbf{V}_3), tak (\varphi \circ \psi) \in \mathcal{L}(\mathbf{V}_2, \mathbf{V}_3).$

Lemma 4.3.5

$$\varphi \circ (\psi + \chi) = \varphi \circ \psi + \varphi \circ \chi$$

Lemma 4.3.6

$$\lambda(\varphi \circ \psi) = (\lambda \varphi) \circ \psi = \varphi \circ (\lambda \psi)$$

Definícia 4.3.7

Lineárnou transformáciou vektorového priestoru rozumieme lineárne zobrazenie $V \to V$. V ďalšom budeme označovať

$$\mathcal{L}(\mathbf{V}) := \mathcal{L}(\mathbf{V}, \mathbf{V})$$

Veta 4.3.8

Množina $\mathcal{L}(\mathbf{V})$ je vzhľadom na sčitovanie a kompozíciu okruhom. Ak \mathbf{V} je nenulový, tak $\mathcal{L}(\mathbf{V})$ je okruhom s jednotkovým prvkom.

Veta 4.3.9

Nech φ je lineárne zobrazenie z $\mathcal{L}(\mathbf{V}_1, \mathbf{V}_2)$. Nech $B = \{b_1, \dots, b_n\}$ je báza $\mathbf{V}_1, C = \{c_1, \dots, c_m\}$ je báza \mathbf{V}_2 . Potom

$$(\varphi \circ \psi)_{CD} = (\psi)_{CD} \cdot (\varphi)_{BC}$$

Veta 4.3.10

Nech $\varphi \in \mathcal{L}(\mathbf{V}_1, \mathbf{V}_2)$. Nech $B = \{b_1, \dots, b_n\}$ je báza $\mathbf{V}_1, C = \{c_1, \dots, c_m\}$ je báza \mathbf{V}_2 Potom pre ľubovoľný vektor $u \in \mathbf{V}_1$ platí:

$$(\varphi(u))_C = (\varphi)_{BC} \cdot (u)_B$$

4.4 Regulárne matice a regulárne transformácie

Definícia 4.4.1

Nech $\mathbf{A} \in \mathbb{F}_{m \times n}$. Inverznou maticou k matici \mathbf{A} rozumieme takú maticu $\mathbf{B} \in \mathbb{F}_{n \times m}$, že

$$oldsymbol{B} \cdot oldsymbol{A} = oldsymbol{I}_n \qquad [oldsymbol{A} \cdot oldsymbol{B} = oldsymbol{I}_m]$$

Ak matica \boldsymbol{B} spĺňa len prvú [druhú] rovnosť, nazývame ju ľavou [pravou] inverznou maticou k matici \boldsymbol{A} .

Veta 4.4.2

Nech $A \in \mathbb{F}_{m \times n}$, B_1 je ľavá inverzná matica k A, B_2 je pravá inverzná matica k A. Potom

$$\mathbf{B}_1 = \mathbf{B}_2$$

Dôsledok 4.4.3

 $Ak\ k\ matici\ A\ existuje\ viac\ l'avých\ inverzných\ matíc,\ tak\ neexistuje\ žiadna\ l'avá\ inverzná\ matica.$ $Ak\ k\ A\ existuje\ inverzná\ matica,\ tak\ je\ len\ jediná\ (je\ určená\ jednoznačne).$

Definícia 4.4.4

Štvorcovú maticu A nazývame regulárnou, ak k nej existuje inverzná matica.

Veta 4.4.5

Nech $\mathbf{A}, \mathbf{B} \in \mathbb{F}_{n \times n}$ (štvorcové). Potom

$$\det \mathbf{A} \cdot \mathbf{B} = \det \mathbf{A} \cdot \det \mathbf{B}$$

Veta 4.4.6

Nech $\mathbf{A} \in \mathbb{F}_{n \times n}$. Potom sú nasledovné podmienky ekvivalentné:

- 1. A je regulárna
- 2. $\det \mathbf{A} \neq 0$
- 3. hod $\mathbf{A} = n$
- 4. k A existuje ľavá inverzná matica
- 5. k A existuje pravá inverzná matica
- 6. A možno previesť na jednotkovú pomocou konečného počtu riadkových elementárnych úprav
- 7. A možno previesť na jednotkovú pomocou konečného počtu stĺpcových elementárnych úprav

Veta 4.4.7

Postupnosť elementárnych riadkových [stĺpcových] úprav, ktorá prevedie štvorcovú regulárnu maticu \mathbf{A} na jednotkovú prevedie jednotkovú maticu na inverznú k \mathbf{A} .

Definícia 4.4.8

Lineárnu transformáciu φ vektorového priestoru \mathbf{V} nazývame regulárnou, ak existuje $\psi \in \mathcal{L}(\mathbf{V})$, že:

$$\varphi \circ \psi = \iota_{\mathbf{v}} \qquad \psi \circ \varphi = \iota_{\mathbf{v}}$$

Veta 4.4.9

Nech $\varphi \in \mathbf{V}$, dim $\mathbf{V} = n \ge 1$. Potom sú nasledovné podmienky ekvivalentné:

- 1. φ je regulárna transformácia
- 2. φ je prosté

3. Ker
$$\varphi = \{ \boldsymbol{o} \}$$

4.
$$\varphi$$
 je na

5. Im
$$\varphi = \mathbf{V}$$

6.
$$\varphi$$
 je permutácia množiny ${f V}$

7.
$$\varphi$$
 je automorfizmus (izomorfizmus $\mathbf{V} \to \mathbf{V}$)

8. ak
$$b_1,\dots,b_n$$
tvoria bázu $\mathbf{V},$ tak $\varphi(b_1),\dots,\varphi(b_n)$ tvoria bázu

Veta 4.4.10

Nech
$$\varphi \in \mathbf{V}_1, \mathbf{V}_2, B = \{b_1, \dots, b_n\}$$
 je báza $\mathbf{V}_1, C = \{c_1, \dots, c_n\}$ báza \mathbf{V}_2 . Potom
$$\operatorname{hod} \varphi = \operatorname{hod} (\varphi)_{BC}$$

$D\hat{o}sledok 4.4.11$

Nech
$$\varphi \in \mathbf{V}$$
, $B = \{b_1, \dots, b_n\}$, $C = \{c_1, \dots, c_n\}$ sú ľubovoľné bázy \mathbf{V} . Potom φ je regulárna transformácia $\Leftrightarrow (\varphi)_{BC}$ je regulárna matica

5 Grupy

5.1 Definície a dôsledky

Definícia 5.1.1

Grupou nazývame dvojicu (G, •), kde G je množina a • je binárna operácia na G spĺňajúca:

- 1. $\forall a, b, c \in \mathbf{G} : a \bullet (b \bullet c) = (a \bullet b) \bullet c$
- 2. $\exists e \in \mathbf{G} \ \forall a \in \mathbf{G} : \ a \bullet e = e \bullet a = a$
- 3. $\forall a \in \mathbf{G} \ \exists b \in \mathbf{G} : \ a \bullet b = b \bullet a = e$

Ak navyše platí:

4. $\forall a, b \in \mathbf{G} : a \bullet b = b \bullet a$,

tak grupu nazvame komutatívnou alebo Abelovskou.

Dôsledok 5.1.2

- 1. jednoznačnosť neutrálneho prvku
- 2. zákony krátenia (ľavý a pravý)
- 3. jednoznačnosť inverzného prvku
- 4. každá z rovníc ax = b, xa = b, $a, b \in \mathbf{G}$, má práve jedno riešenie

5.2 Homomorfizmus

Definícia 5.2.1

Nech $(\mathbf{G}_1, \bullet), (\mathbf{G}_2, \circ)$ sú grupy. Zobrazenie $\varphi : \mathbf{G}_1 \to \mathbf{G}_2$ nazývame **homomorfizmom**, ak

$$\forall a, b \in \mathbf{G}_1 : \varphi(a \bullet b) = \varphi(a) \circ \varphi(b)$$

Definícia 5.2.2

Zobrazenie $\varphi: \mathbf{G}_1 \to \mathbf{G}_2$ nazývame izomorfizmom, ak φ je bijektívny homomorfizmus.

Lemma 5.2.3

Nech φ je homomorfizmus $(\mathbf{G}_1, \bullet) \to (\mathbf{G}_2, \circ)$. Potom

- 1. obraz neutrálneho prvku je neutrálny prvok
- 2. obraz inverzného prvku k prvku $a \in \mathbf{G}_1$ je inverzný k $\varphi(a)$.

Definícia 5.2.4

Symetriou geometrického útvaru (v \mathbb{E}_3) rozumieme bijektívne zobrazenie množiny bodov tohto útvaru na seba také, že zachováva vzdialenosti.

Veta 5.2.5

Existujú práve dve neizomorfné 4-prvkové grupy. (Grupa (\mathbb{Z}_4 ,+); grupa symetrií obdĺžnika vzhľadom na skladanie.)

5.3 Podgrupa

Definícia 5.3.1

Nech (\mathbf{G}, \bullet) je grupa. Podgrupou tejto grupy nazývame takú podmnožinu \mathbf{H} množiny \mathbf{G} , že:

- 1. H je uzavretá vzhľadom na operáciu definovanú na **G**
- 2. **H** je grupa.

Veta 5.3.2

Nech (G, \bullet) je ľubovoľná grupa, $H \subseteq G$. Potom H je podgrupa práve vtedy, keď:

- 1. $a, b \in \mathbf{H} \Rightarrow a \bullet b \in \mathbf{H}$
- $2. \ a \in \mathbf{H} \Rightarrow a^{-1} \in \mathbf{H}$
- 3. $e \in \mathbf{H}$, pričom e je neutrálny prvok **G**

Definícia 5.3.3

Grupou transformácií rozumieme každú podgrupu grupy všetkých permutácií nejakej neprázdnej množiny.

Veta 5.3.4 (Cayleyho o reprezentácii grúp)

Každá grupa je izomorfná s nejakou grupou transformácií.

5.4 Cyklické grupy

Veta 5.4.1

Prienik ľubovoľného neprázdneho systému podgrúp grupy (\mathbf{G}, \bullet) je podgrupou grupy (\mathbf{G}, \bullet) .

Dôsledok 5.4.2

Ak (\mathbf{G}, \bullet) je ľubovoľná grupa a $\mathbf{M} \subseteq \mathbf{G}$, tak existuje najmenšia podgrupa grupy (\mathbf{G}, \bullet) obsahujúca množinu \mathbf{M} .

Poznámka 5.4.3

Takúto podgrupu nazývame "podgrupou generovanou množinou \mathbf{M} " a označujeme $[\mathbf{M}]$. Zrejme platí:

$$[\emptyset] = \{e\}$$
 $[\{a\}] = \{a\}$

Definícia 5.4.4

Cyklickou grupou nazývame každú grupu (G, •) takú, že

$$G = [a], \text{pre } a \in G$$

Definícia 5.4.5

Nech (\mathbf{G}, \bullet) je grupa, nech $a \in \mathbf{G}$ a nech $n \in \mathbb{Z}$.

Definujeme:

$$a^{n} = \begin{cases} a \bullet \dots \bullet a & \text{ak } n > 0 \\ e & \text{ak } n = 0 \\ a^{-1} \bullet \dots \bullet a^{-1} & \text{ak } n < 0 \end{cases}$$

Lemma 5.4.6

 $\forall a, b \in \mathbf{G}, \forall m, n \in \mathbb{Z} \text{ plati:}$

- 1. $a^{m+n} = a^m \bullet a^n$
- $2. (a^n)^m = a^{m.n}$

Veta 5.4.7

Nech (\mathbf{G}, \bullet) je ľubovoľná grupa, $a \in \mathbf{G}$. Potom

$$[a] = \{a^n : n \in \mathbb{Z}\}$$

Definícia 5.4.8

Nech (\mathbf{G}, \bullet) je grupa, $a \in \mathbf{G}$.

Ak $a^n \neq e$ pre žiadne $n \in \mathbb{N}$, hovoríme, že rád a je ∞ .

V opačnom prípade rádom prvku a nazývame najmenšie prirodzené číslo n také, že $a^n=e$.

Veta 5.4.9

Nech (\mathbf{G}, \bullet) je ľubovoľná grupa, $a \in \mathbf{G}$.

Ak rád $a=\infty$, tak všetky celočíselné mocniny prvku a sú navzájom rôzne. Ak rád a=n, tak $a^0, a^1, \ldots, a^{n-1}$ sú navzájom rôzne a $\forall m \in \mathbb{Z} \ \exists n \in \{0, \ldots, n-1\} : a^m=a^n$.

Dôsledok 5.4.10

Ak rád
$$a = \infty$$
, tak $[a] \cong (\mathbb{Z}, +)$.
Ak rád $a = n$, tak $[a] \cong (\mathbb{Z}_n, +)$.

Veta 5.4.11

Každá podgrupa cyklickej grupy je cyklická.