Assignment#3 Report Team name: Yunfan Li, Haichao Zhang, Jingyuan Xu Course: CS325-001

```
Pseudocode for TASK 1:
Method #1:
res <- INF
between(suml[n], tl, sumr[n], tr)
       for i \leftarrow (tl-1) down to 0
               for i < 0 to (tr-1)
                      if abs(suml[i] + sumr[j]) < res</pre>
                             res <- abs(suml[i] + sumr[j])
                              start <- i
                              end <- i
Method #2:
res <- INF
between(suml[n], tl, sumr[n], tr)
       sort(suml[n])
       sort(sumr[n])
       for i \leftarrow 0 to (tl-1)
               min <- INF
               for j < 0 to (tr-1)
                      if min > abs(suml[i] + sumr[j])
                              min <- abs(suml[i] + sumr[j])
                              if res > min
                                     res <- min
                                     start <- suml[i]'s original position
                                     end <- sumr[j]'s original position
Method #3:
res <- INF
between(suml[n], tl, sumr[n], tr)
       sort(suml[n])
       sort(sumr[n])
       combine suml[n] with sumr[n] to a new array A[2n]
       for i < -1 to (2n-1)
               if A[i] and A[i-1] are not in the same original array
                      if res > abs(abs(A[i]) - abs(A[i-1]))
                              res <- abs(abs(A[i]) - absA[i-1])
                              start <- A[i]'s original position
                              end <- A[i-1]'s original position
Pseudocode for TASK 2:
res <- INF
```

suml[10000] <- {0} sumr[10000] <- {0}

```
conquer(a[n], s, e)
if s = e
       if res > abs(a[s])
               start <- s
               end <- e
               res \leftarrow abs(a[s])
       return
else
       m < -(e-s+1)/2
       mod <- (e-s+1) \% 2
       kl <- 0
       kr <- m - 1
       inl <- 0
       inr <- 0
       init sumr[n] and suml[n] to 0
       conquer(a[n], s, s+m-1)
       if mod = 1
              conquer(a[n], e-m, e)
               for i <- e-m to e
                      sumr[kr].pos <- i
                      sumr[kr].val <- sumr[[kr-1].val + a[i]</pre>
                      inr <- inr + 1
       else
               conquer(a[n], e-m+1, e)
               for i <- e-m+1 to e
                      sumr[kr].pos <- i
                      sumr[kr].val <- sumr[kr-1].val + a[i]</pre>
                      inr <- inr +1
                      kr < -kr + 1
       for i <- s+m-1 down to s
               suml[kl].pos <- i
              suml[kl].val <- suml[kl+1].val + a[i]
               inl <- inl + 1
               kl \leftarrow kl - 1
       between(suml, inl, sumr, inr)
Recurrence Relation & Solve:
Method #1:
T(n) = 2T(n/2) + n^2
Method #2:
T(n) = 2T(n/2) + n^2
Method #3:
T(n) = 2T(n/2) + n
```


Plot:

ize	time	
	100	0.0056
	200	0.00865
	300	0.01125
	400	0.01445
	500	0.0172
	600	0.0201
	700	0.0236
	800	0.0266
	900	0.0284
	1000	0.03265
	1100	0.0395
	1200	0.04165
	1300	0.0429
	1400	0.04785
	1500	0.05375
	1600	0.05795

1700	0.0606	
1800	0.06055	
1900	0.0709	
2000	0.0714	