Code.Hub

The first Hub for Developers

Large Language Models

Thanos Tagaris

NLP timeline up till today...

- The first direction the research community took was to scale their Transformers as much as they could.
- These large-scale models became really proficient in all sorts of NLP tasks out of the box.
- These extremely large scale Transformers are referred to these days as Large Language Models (LLMs)

Transformers

- Previously we discussed the transformer architecture.
- Now, we'll see how this transformer can be trained to produce the LLMs we are familiar with.

Figure 1: The Transformer - model architecture.

Model type

Encoder-only

- good for generating a representation of a document
- o e.g. BERT, RoBERTa, Albert

Encoder-decoder

- good for usages where output heavily relies on input (machine translation, text summarization, etc.)
- e.g. Flan-T5, BART

Decoder-only

- good for text generation
- e.g. LLaMA series, Falcon, GPT series, LaMDA

Model type

Encoder-only

- good for generating a representation of a document
- o e.g. BERT, RoBERTa, Albert

Encoder-decoder

good for usages where output heavily relies on input (machine)

Since text generation applications are the most widely developed the past years, we'll focus on decoder-only architectures from now on

Decoder-only

- good for text generation
- e.g. LLaMA series, Falcon, GPT series, LaMDA

Contents

- 1. Training Language Models
 - I. Unsupervised pre-training
 - II. From LMs to assistants
 - A. Prompt Engineering
 - B. Supervised Fine-Tuning (SFT)
 - C. Reinforcement Learning from Human Feedback (RLHF)
- 2. Generating text
 - I. Decoding strategies

Part 1. Training

Unsupervised Pretraining

Pre-training

- To pre-train a LLM a self-supervised learning technique is employed called Language Modelling
- The task is to simply predict the next word in a sequence

■ Code.Hub

Pre-training

- Note that training is inherently unsupervised, so we can use any data we can find!
- LMs are trained on lots of GB of data scraped from the web
 - e.g. wikipedia, quora, books.
- After training LMs can generate texts autoregressively
 - Start with an input prompt and ask the LM to predict the next token
 - Then append this predicted token to the end of the prompt and ask it to predict the next token
 - Repeat this process until an [EOS] token is generated

The Parthenon is a former temple located in _____, Greece.

Trivia

He sat in the front seat of ___ car.

Syntax

The man grabbed ____ arm in pain.

Corefernce

The shelter was full of stray ____ and dogs.

Lexical semantics

I'm never going to watch another Tarantino movie again, the last movie I watched was _____.

Sentiment

... several key aspects of a language

That's why we call it **Language Modelling!**

Part 1. Training

From LM to assistant

Is pretraining enough?

- After pretraining our transformer is a proper Language Model, capable of understanding several key aspects of a language.
- What if we wanted our model to follow our instructions.

Prompt Explain the moon landing to a 6 year old in a few sentences.

Is pretraining useful?

- In reality this is an illformed question from the beginning.
- Pretraining is extremely useful for producing a very good base model, which we can adapt to perform other tasks (one of which was the previous example)
- What we have after this intensive pretraining is a foundational model
 - GPT-3 is such a foundational model
 - It was adapted to follow user instructions to produce ChatGPT

How to repurpose a LM as an assistant

- LMs are good at producing coherent output, but are not inherently aligned with user intent
- What we are more interested in is a multitask assistant!

How to repurpose a LM as an assistant

- We know that LMs have learned the necessary information to be useful
- The only question is ...

How to repurpose a LM as an assistant

Three options:

A. Prompting

construct a prompt to extract relevant information from the LM

B. Supervised fine-tuning

 continue the model's training in a supervised manner on pairs of (prompt, desired_output)

C. Human feedback

 use human feedback to evaluate the prompt's outputs and teach it to produce more desirable outputs

Part 1. Training

From LM to assistant

A. Prompt Engineering

Zero/Few shot capabilities of LLMs

- It has been shown that Large LMs exhibit latent zero and few-shot capabilities
- The latter is also referred to as in-context learning
- e.g. imagine writing the following prompt to a LLM

```
thanks -> merci
hello -> bonjour
goodbye ->
```

 The LLM would try to predict the most probable next tokens which in this case might be "au revoir"

Chain-of-Thought

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Part 1. Training

From LM to assistant

B. Supervised Fine-Tuning (SFT)

Supervised Fine-Tuning

- We have a very good model that doesn't do exactly what we want?
- What if we go to our bread and butter in Deep Learning: fine-tuning!
- Process:
 - 1. Collect examples of (prompt, desired output) over multiple tasks
 - can either pay people to write these
 - or look for such datasets in the web (e.g. questions/answers)
 - 2. Fine-tune the LM on these examples in a supervised manner
 - 3. Profit

Issues with SFT

- Very promising approach on paper, simple and straightforward
- But...
 - o no right answer on creative tasks (e.g. "write me a story about ...") \rightarrow hard to train for such tasks
 - not all mistakes are equally bad!

Let's say our (x, y) pair is:

("Where is the parthenon located?", "The parthenon is located in Athens.")

Model output 1: "The parthenon is located in Greece".

Model output 2: "The parthenon is located in Thessaloniki".

Both outputs would be penalized equally

Mismatch between training objective and human preferences

Part 1. Training

From LM to assistant

C. Reinforcement Learning from Human Feedback (RLHF)

Human Feedback

- Let's say we have some way of obtaining qualitative human feedback for a LM's outputs
- We could then optimize the LM on this feedback signal
- How do we get an reliable human feedback signal though?

Reward Model

- Now that we have some (output, reward) pairs, we want to scale things up
- Train another LM (we'll call this the Reward Model) to predict the reward from a given output

Code.Hub

Reinforcement Learning

- The previously trained Reward Model (RM) is capable of predicting how a human would rate the output of a LM
- The only thing that remains is to fine-tune the LM on the human feedback
- We'll use an RL algorithm to train do this (usually PPO)

RLHF recap

RLHF Process:

- Collect RM training data
 - get some input prompts that interest us and ask our LM to produce several outputs for each
 - ask humans to rank these outputs in order of preference
 - obtain a quantitative reward from this ranking

2. Train the RM

- RM is another LM that accepts a text input and outputs a scalar value
- train this in a supervised manner on the (output, reward) pairs of step 1

3. Fine-tune the LM

- generate outputs from input prompts
- o ask the RM to produce a reward from these outptus
- use RL to train the LM to maximize reward

Part 1. Training

From LM to assistant

Conclusion

Which method to choose?

- We saw 3 possible ways of going from LM to assistant; each has their pros and cons
- Which one should we choose?
- These methods are **not** mutually exclusive!
- In fact modern chatbots (e.g. ChatGPT) were trained with all of these
 - 1. **SSL** for pretraining (i.e. language modelling)
 - 2. **SFT** afterwards to condition LM more towards instructions
 - 3. **RLHF** to make its outputs closer to human preferences
- Additionally, during inference we can use advanced prompt engineering techniques (e.g. chain of thought) to get even better results

Foundational models

- We saw 3 possible ways of going from LM to assistant; each has their pros and cons
- Which one should we choose?
- These methods are **not** mutually exclusive!
- In fact modern chatbots (e.g. ChatGPT) were trained with all of these
 - 1. **SSL** for pretraining (i.e. language modelling)
 - 2. **SFT** afterwards to condition LM more towards instructions
 - 3. **RLHF** to make its outputs closer to human preferences
- Additionally, during inference we can use advanced prompt engineering techniques (e.g. chain of thought) to get even better results

Part 1. Training

Generating text

How do LMs generate text?

- We've talked a lot about how LMs are trained but never actually discussed how they can generate text
- The figure to the right is a bit of an oversimplification
- In fact no LM outputs tokens; instead they output a probability distribution over all tokens in the vocabulary
- So how was the token "the" selected out of the mix?

Decoding

The process of selecting the output tokens

- Does not change trainable parameters
- Can have noticeable effect in quality of outputs
- How the tokens will be selected based on their probabilities is referred to as the decoding strategy

Decoding strategies

- Greedy search: select the token with the highest probability
- Beam search: keep the most likely N hypotheses; choose the one with the highest overall probability
- Sampling: randomly pick a word according to its probability
- Top-k sampling: similar to above, but only consider top-k tokens
- Top-p (nucleus) sampling: sample from the smallest set of words whose cumulative probability exceeds p
- Contrastive search
- ... and more