

# Dual and Quad 12MHz, 400V/µs Op Amps

## **FEATURES**

- 12MHz Gain Bandwidth
- 400V/µs Slew Rate
- 1.25mA Maximum Supply Current per Amplifier
- Unity-Gain Stable
- C-Load<sup>™</sup> Op Amp Drives All Capacitive Loads
- 10nV/√Hz Input Noise Voltage
- 800µV Maximum Input Offset Voltage
- 300nA Maximum Input Bias Current
- 70nA Maximum Input Offset Current
- 12V/mV Minimum DC Gain, R<sub>1</sub> = 1k
- 230ns Settling Time to 0.1%, 10V Step
- 280ns Settling Time to 0.01%, 10V Step
- ±12V Minimum Output Swing into 500Ω
- ±2.75V Minimum Output Swing into 150Ω
- Specified at ±2.5V, ±5V, and ±15V

## **APPLICATIONS**

- Wideband Amplifiers
- Buffers
- Active Filters
- Data Acquisition Systems
- Photodiode Amplifiers

### DESCRIPTION

The LT®1355/LT1356 are dual and quad low power high speed operational amplifiers with outstanding AC and DC performance. The amplifiers feature much lower supply current and higher slew rate than devices with comparable bandwidth. The circuit topology is a voltage feedback amplifier with matched high impedance inputs and the slewing performance of a current feedback amplifier. The high slew rate and single stage design provide excellent settling characteristics which make the circuit an ideal choice for data acquisition systems. Each output drives a  $500\Omega$  load to  $\pm 12$ V with  $\pm 15$ V supplies and a  $150\Omega$  load to  $\pm 2.75$ V on  $\pm 5$ V supplies. The amplifiers are stable with any capacitive load making them useful in buffer applications.

The LT1355/LT1356 are members of a family of fast, high performance amplifiers using this unique topology and employing Linear Technology Corporation's advanced bipolar complementary processing. For a single amplifier version of the LT1355/LT1356 see the LT1354 data sheet. For higher bandwidth devices with higher supply currents see the LT1357 through LT1365 data sheets. Bandwidths of 25MHz, 50MHz, and 70MHz are available with 2mA, 4mA, and 6mA of supply current per amplifier. Singles, duals, and quads of each amplifier are available.

LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. C-Load is a trademark of Linear Technology Corporation.
All other trademarks are the property of their respective owners.

# TYPICAL APPLICATION

#### 100kHz, 4th Order Butterworth Filter



#### $A_V = -1$ Large-Signal Response



13556fc



# **ABSOLUTE MAXIMUM RATINGS** (Note 1)

| Total Supply Voltage (V <sup>+</sup> to V <sup>-</sup> )36V |
|-------------------------------------------------------------|
| Differential Input Voltage (Transient Only)                 |
| (Note 2)±10V                                                |
| Input Voltage±V <sub>S</sub>                                |
| Output Short-Circuit Duration (Note 3) Indefinite           |
| Operating Temperature Range (Note 7)                        |
| LT1355C/LT1356C/LT1356I40°C to 85°C                         |
| LT1356H (T <sub>C</sub> )40°C to 125°C                      |

| Specified Temperature Range (Note 8) | )             |
|--------------------------------------|---------------|
| LT1355C/LT1356C                      | 0°C to 70°C   |
| LT1356I                              | 40°C to 85°C  |
| LT1356H (T <sub>C</sub> )            | 40°C to 125°C |
| Maximum Junction Temperature         | 150°C         |
| Storage Temperature Range            | 65°C to 150°C |
| Lead Temperature (Soldering, 10 sec) | 300°C         |
|                                      |               |

# PIN CONFIGURATION



# ORDER INFORMATION

| LEAD FREE FINISH | TAPE AND REEL   | PART MARKING | PACKAGE DESCRIPTION | SPECIFIED TEMPERATURE RANGE    |
|------------------|-----------------|--------------|---------------------|--------------------------------|
| LT1355CN8#PBF    | LT1355CN8#TRPBF | LT1355CN8    | 8-Lead PDIP         | 0°C to 70°C                    |
| LT1355CS8#PBF    | LT1355CS8#TRPBF | 1355         | 8-Lead Plastic SO   | 0°C to 70°C                    |
| LT1356CN#PBF     | LT1356CN#TRPBF  | LT1356CN     | 14-Lead PDIP        | 0°C to 70°C                    |
| LT1356CS#PBF     | LT1356CS#TRPBF  | LT1356CS     | 16-Lead Plastic SO  | 0°C to 70°C                    |
| LT1356IS#PBF     | LT1356IS#TRPBF  | LT1356S      | 16-Lead Plastic SO  | -40°C to 85°C                  |
| LT1356HS#PBF     | LT1356HS#TRPBF  | LT1356S      | 16-Lead Plastic SO  | -40°C < T <sub>C</sub> < 125°C |

Consult LTC Marketing for parts specified with wider operating temperature ranges.

Consult LTC Marketing for information on non-standard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

TECHNOLOGY TECHNOLOGY

# **ELECTRICAL CHARACTERISTICS** $T_A = 25^{\circ}C$ , $V_{CM} = 0V$ unless otherwise noted.

| SYMBOL           | PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CONDITIONS                                                                                     | V <sub>SUPPLY</sub> | MIN         | TYP           | MAX           | UNITS        |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------|-------------|---------------|---------------|--------------|
| $V_{0S}$         | Input Offset Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                | ±15V                |             | 0.3           | 0.8           | mV           |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                | ±5V<br>±2.5V        |             | 0.3<br>0.4    | 0.8<br>1.0    | mV<br>mV     |
| I <sub>OS</sub>  | Input Offset Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                | ±2.5V to ±15V       |             | 20            | 70            | nA           |
| I <sub>B</sub>   | Input Bias Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | ±2.5V to ±15V       |             | 80            | 300           | nA           |
| e <sub>n</sub>   | Input Noise Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f = 10kHz                                                                                      | ±2.5V to ±15V       |             | 10            |               | nV/√Hz       |
| i <sub>n</sub>   | Input Noise Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f = 10kHz                                                                                      | ±2.5V to ±15V       |             | 0.6           |               | pA/√Hz       |
| R <sub>IN</sub>  | Input Resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $V_{CM} = \pm 12V$                                                                             | ±15V                | 70          | 160           |               | MΩ           |
| - 114            | Input Resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Differential                                                                                   | ±15V                |             | 11            |               | MΩ           |
| C <sub>IN</sub>  | Input Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                | ±15V                |             | 3             |               | pF           |
| - 114            | Input Voltage Range+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                | ±15V                | 12.0        | 13.4          |               | V            |
|                  | in part of the grant gra |                                                                                                | ±5V                 | 2.5         | 3.5           |               | V            |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                | ±2.5V               | 0.5         | 1.1           |               | V            |
|                  | Input Voltage Range <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                | ±15V<br>±5V         |             | −13.2<br>−3.4 | −12.0<br>−2.5 | V            |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                | ±2.5V               |             | -3.4<br>-0.9  | -2.5<br>-0.5  | V            |
| CMRR             | Common Mode Rejection Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V <sub>CM</sub> = ±12V                                                                         | ±15V                | 83          | 97            |               | dB           |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{CM} = \pm 2.5 V$                                                                           | ±5V                 | 78          | 84            |               | dB           |
| DCDD             | Dawer Comply Delegation Datie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{CM} = \pm 0.5V$                                                                            | ±2.5V               | 68          | 75            |               | dB           |
| PSRR             | Power Supply Rejection Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $V_S = \pm 2.5 \text{V to } \pm 15 \text{V}$                                                   | .457                | 92          | 106           |               | dB           |
| $A_{VOL}$        | Large-Signal Voltage Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $V_{OUT} = \pm 12V, R_L = 1k$<br>$V_{OUT} = \pm 10V, R_L = 500\Omega$                          | ±15V<br>±15V        | 12<br>5     | 36<br>15      |               | V/mV<br>V/mV |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{OUT} = \pm 2.5 \text{V}, R_L = 1 \text{k}$                                                 | ±5V                 | 12          | 36            |               | V/mV         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{OUT} = \pm 2.5 \text{V}, R_L = 500 \Omega$                                                 | ±5V                 | 5           | 15            |               | V/mV         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{OUT} = \pm 2.5 \text{V}, R_L = 150 \Omega$<br>$V_{OUT} = \pm 1 \text{V}, R_L = 500 \Omega$ | ±5V<br>±2.5V        | 1 5         | 4<br>20       |               | V/mV<br>V/mV |
| V <sub>OUT</sub> | Output Swing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $R_L = 1k$ , $V_{IN} = \pm 40mV$                                                               | ±15V                | 13.3        | 13.8          |               | ±V           |
| 001              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $R_L = 500\Omega$ , $V_{IN} = \pm 40$ mV                                                       | ±15V                | 12.0        | 13.0          |               | ±V           |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $R_L = 500\Omega$ , $V_{IN} = \pm 40$ mV<br>$R_L = 150\Omega$ , $V_{IN} = \pm 40$ mV           | ±5V<br>±5V          | 3.5<br>2.75 | 4.0<br>3.3    |               | ±V<br>±V     |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $R_L = 500\Omega$ , $V_{IN} = \pm 40$ mV                                                       | ±2.5V               | 1.3         | 1.7           |               | ±V           |
| I <sub>OUT</sub> | Output Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>OUT</sub> = ±12.0V                                                                      | ±15V                | 24.0        | 30            |               | mA           |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{OUT} = \pm 2.75V$                                                                          | ±5V                 | 18.3        | 25            |               | mA           |
| I <sub>SC</sub>  | Short-Circuit Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_{OUT} = 0V$ , $V_{IN} = \pm 3V$                                                             | ±15V                | 30          | 42            |               | mA           |
| SR               | Slew Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $A_V = -2$ (Note 4)                                                                            | ±15V<br>±5V         | 200<br>70   | 400<br>120    |               | V/µs<br>V/µs |
|                  | Full-Power Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10V Peak (Note 5)                                                                              | ±15V                | 10          | 6.4           |               | V/μs<br>MHz  |
|                  | run-rower banuwium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3V Peak (Note 5)                                                                               | ±15V<br> ±5V        |             | 6.4           |               | MHz          |
| GBW              | Gain Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f = 200kHz, R <sub>I</sub> = 2k                                                                | ±15V                | 9.0         | 12.0          |               | MHz          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                | ±5V                 | 7.5         | 10.5          |               | MHz          |
|                  | Di Ti FUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 100/ 1 000/ 0 11/                                                                            | ±2.5V               |             | 9.0           |               | MHz          |
| $t_r$ , $t_f$    | Rise Time, Fall Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $A_V = 1$ , 10% to 90%, 0.1V                                                                   | ±15V<br>±5V         |             | 14<br>17      |               | ns<br>ns     |
|                  | Overshoot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A <sub>V</sub> = 1, 0.1V                                                                       | ±15V                |             | 20            |               | %            |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>,</b> , -                                                                                   | ±5V                 |             | 18            |               | %            |
|                  | Propagation Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50% V <sub>IN</sub> to 50% V <sub>OUT</sub> , 0.1V                                             | ±15V                |             | 16            |               | ns           |
|                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1010                                                                                           | ±5V                 |             | 19            |               | ns           |
| $t_s$            | Settling Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10V Step, 0.1%, $A_V = -1$<br>10V Step, 0.01%, $A_V = -1$                                      | ±15V<br>±15V        |             | 230<br>280    |               | ns<br>ns     |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5V Step, 0.1%, $A_V = -1$                                                                      | ±5V                 |             | 240           |               | ns           |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5V Step, 0.01%, A <sub>V</sub> = -1                                                            | ±5V                 |             | 380           |               | ns           |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                     |             |               |               | 13556fc      |



# **ELECTRICAL CHARACTERISTICS** $T_A = 25^{\circ}C$ , $V_{CM} = 0V$ unless otherwise noted.

| SYMBOL | PARAMETER          | CONDITIONS                              | V <sub>SUPPLY</sub> | MIN | TYP        | MAX          | UNITS      |
|--------|--------------------|-----------------------------------------|---------------------|-----|------------|--------------|------------|
|        | Differential Gain  | $f = 3.58MHz, A_V = 2, R_L = 1k$        | ±15V<br>±5V         |     | 2.2<br>2.1 |              | %<br>%     |
|        | Differential Phase | $f = 3.58MHz, A_V = 2, R_L = 1k$        | ±15V<br>±5V         |     | 3.1<br>3.1 |              | Deg<br>Deg |
| $R_0$  | Output Resistance  | A <sub>V</sub> = 1, f = 100kHz          | ±15V                |     | 0.7        |              | Ω          |
|        | Channel Separation | $V_{OUT} = \pm 10V$ , $R_L = 500\Omega$ | ±15V                | 100 | 113        |              | dB         |
| Is     | Supply Current     | Each Amplifier<br>Each Amplifier        | ±15V<br>±5V         |     | 1.0<br>0.9 | 1.25<br>1.20 | mA<br>mA   |

# The ullet denotes the specifications which apply over the temperature range 0°C $\leq$ T<sub>A</sub> $\leq$ 70°C, V<sub>CM</sub> = 0V, unless otherwise noted.

| SYMBOL           | PARAMETER                    | CONDITIONS                                                                                                                                                                                                                                                                                                                    | V <sub>SUPPLY</sub>                        |         | MIN                                      | TYP | MAX               | UNITS                                |
|------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------|------------------------------------------|-----|-------------------|--------------------------------------|
| V <sub>OS</sub>  | Input Offset Voltage         |                                                                                                                                                                                                                                                                                                                               | ±15V<br>±5V<br>±2.5V                       | •       |                                          |     | 1.0<br>1.0<br>1.2 | mV<br>mV<br>mV                       |
|                  | Input V <sub>OS</sub> Drift  | (Note 6)                                                                                                                                                                                                                                                                                                                      | ±2.5V to ±15V                              | •       |                                          | 5   | 8                 | μV/°C                                |
| I <sub>OS</sub>  | Input Offset Current         |                                                                                                                                                                                                                                                                                                                               | ±2.5V to ±15V                              | •       |                                          |     | 100               | nA                                   |
| I <sub>B</sub>   | Input Bias Current           |                                                                                                                                                                                                                                                                                                                               | ±2.5V to ±15V                              | •       |                                          |     | 450               | nA                                   |
| CMRR             | Common Mode Rejection Ratio  | $V_{CM} = \pm 12V$ $V_{CM} = \pm 2.5V$ $V_{CM} = \pm 0.5V$                                                                                                                                                                                                                                                                    | ±15V<br>±5V<br>±2.5V                       | •       | 81<br>77<br>67                           |     |                   | dB<br>dB<br>dB                       |
| PSRR             | Power Supply Rejection Ratio | $V_S = \pm 2.5 \text{V to } \pm 15 \text{V}$                                                                                                                                                                                                                                                                                  |                                            | •       | 90                                       |     |                   | dB                                   |
| A <sub>VOL</sub> | Large-Signal Voltage Gain    | $\begin{array}{c} V_{OUT} = \pm 12 \text{V},  R_L = 1 \text{k} \\ V_{OUT} = \pm 10 \text{V},  R_L = 500 \Omega \\ V_{OUT} = \pm 2.5 \text{V},  R_L = 1 \text{k} \\ V_{OUT} = \pm 2.5 \text{V},  R_L = 500 \Omega \\ V_{OUT} = \pm 2.5 \text{V},  R_L = 150 \Omega \\ V_{OUT} = \pm 1 \text{V},  R_L = 500 \Omega \end{array}$ | ±15V<br>±15V<br>±5V<br>±5V<br>±5V<br>±2.5V | •       | 10.0<br>3.3<br>10.0<br>3.3<br>0.6<br>3.3 |     |                   | V/mV<br>V/mV<br>V/mV<br>V/mV<br>V/mV |
| V <sub>OUT</sub> | Output Swing                 | $\begin{array}{l} R_L = 1 k,  V_{IN} = \pm 40 mV \\ R_L = 500 \Omega,  V_{IN} = \pm 40 mV \\ R_L = 500 \Omega,  V_{IN} = \pm 40 mV \\ R_L = 150 \Omega,  V_{IN} = \pm 40 mV \\ R_L = 500 \Omega,  V_{IN} = \pm 40 mV \end{array}$                                                                                             | ±15V<br>±15V<br>±5V<br>±5V<br>±2.5V        | • • • • | 13.2<br>11.5<br>3.4<br>2.5<br>1.2        |     |                   | ±V<br>±V<br>±V<br>±V                 |
| I <sub>OUT</sub> | Output Current               | $V_{OUT} = \pm 11.5V$<br>$V_{OUT} = \pm 2.5V$                                                                                                                                                                                                                                                                                 | ±15V<br>±5V                                | •       | 23.0<br>16.7                             |     |                   | mA<br>mA                             |
| I <sub>SC</sub>  | Short-Circuit Current        | $V_{OUT} = 0V$ , $V_{IN} = \pm 3V$                                                                                                                                                                                                                                                                                            | ±15V                                       | •       | 24                                       |     |                   | mA                                   |
| SR               | Slew Rate                    | $A_V = -2$ , (Note 4)                                                                                                                                                                                                                                                                                                         | ±15V<br>±5V                                | •       | 150<br>60                                |     |                   | V/µs<br>V/µs                         |
| GBW              | Gain Bandwidth               | f = 200kHz, R <sub>L</sub> = 2k                                                                                                                                                                                                                                                                                               | ±15V<br>±5V                                | •       | 7.5<br>6.0                               |     |                   | MHz<br>MHz                           |
|                  | Channel Separation           | $V_{OUT} = \pm 10V$ , $R_L = 500\Omega$                                                                                                                                                                                                                                                                                       | ±15V                                       | •       | 98                                       |     |                   | dB                                   |
| Is               | Supply Current               | Each Amplifier<br>Each Amplifier                                                                                                                                                                                                                                                                                              | ±15V<br>±5V                                | •       |                                          |     | 1.45<br>1.40      | mA<br>mA                             |

# **ELECTRICAL CHARACTERISTICS** The $\bullet$ denotes the specifications which apply over the $-40^{\circ}C \leq T_A \leq 85^{\circ}C$ and $-40^{\circ}C \leq T_C \leq 125^{\circ}C$ temperature ranges, $V_{CM} = 0V$ unless otherwise noted. (Note 8)

| SYMBOL           | PARAMETER                    | CONDITIONS                                                                                                                                                                                                    | V <sub>SUPPLY</sub>         | MIN                      | ТҮР | MAX               | UNITS                        |
|------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|-----|-------------------|------------------------------|
| V <sub>OS</sub>  | Input Offset Voltage         |                                                                                                                                                                                                               | 1-11                        |                          |     | 1.8<br>1.8<br>2.0 | mV<br>mV<br>mV               |
| I <sub>OS</sub>  | Input Offset Current         |                                                                                                                                                                                                               | ±2.5V to ±15V               | •                        |     | 250               | nA                           |
| I <sub>B</sub>   | Input Bias Current           |                                                                                                                                                                                                               | ±2.5V to ±15V               | •                        |     | 600               | nA                           |
| CMRR             | Common Mode Rejection Ratio  | $V_{CM} = \pm 12V$ $V_{CM} = \pm 2.5V$ $V_{CM} = \pm 0.5V$                                                                                                                                                    | ±15V<br>±5V<br>±2.5V        | 80<br>76<br>66           |     |                   | dB<br>dB<br>dB               |
| PSRR             | Power Supply Rejection Ratio | $V_S = \pm 2.5 V \text{ to } \pm 15 V$                                                                                                                                                                        |                             | 90                       |     |                   | dB                           |
| A <sub>VOL</sub> | Large-Signal Voltage Gain    | $\begin{array}{l} V_{OUT} = \pm 12 V,  R_L = 1 k \\ V_{OUT} = \pm 2.5 V,  R_L = 1 k \\ V_{OUT} = \pm 2.5 V,  R_L = 500 \Omega \\ V_{OUT} = \pm 1 V,  R_L = 500 \Omega \end{array}$                            | ±15V<br>±5V<br>±5V<br>±2.5V | 6.0<br>4.0<br>1.7<br>1.7 |     |                   | V/mV<br>V/mV<br>V/mV<br>V/mV |
| V <sub>OUT</sub> | Output Swing                 | $\begin{array}{l} R_L = 1 \text{k, V}_{\text{IN}} = \pm 40 \text{mV} \\ R_L = 500 \Omega,  V_{\text{IN}} = \pm 40 \text{mV} \\ R_L = 500 \Omega,  V_{\text{IN}} = \pm 40 \text{mV} \end{array} \label{eq:RL}$ | ±15V<br>±5V<br>±2.5V        | 12.7<br>3.3<br>1.2       |     |                   | ±V<br>±V<br>±V               |
| I <sub>OUT</sub> | Output Current               | $V_{OUT} = \pm 12.7V$<br>$V_{OUT} = \pm 3.3V$                                                                                                                                                                 | ±15V<br>±5V                 | 12.7<br>6.6              |     |                   | mA<br>mA                     |
| I <sub>SC</sub>  | Short-Circuit Current        | $V_{OUT} = 0V$ , $V_{IN} = \pm 3V$                                                                                                                                                                            | ±15V                        | 16                       |     |                   | mA                           |
| SR               | Slew Rate                    | $A_V = -2$ , (Note 4)                                                                                                                                                                                         | ±15V<br>±5V                 | 110<br>43                |     |                   | V/µs<br>V/µs                 |
| GBW              | Gain Bandwidth               | f = 200kHz, R <sub>L</sub> = 2k                                                                                                                                                                               | ±15V<br>±5V                 | 6.0<br>4.6               |     |                   | MHz<br>MHz                   |
|                  | Channel Separation           | $V_{OUT} = \pm 10 \text{V}, R_L = 500 \Omega$                                                                                                                                                                 | ±15V                        | 96                       |     |                   | dB                           |
| Is               | Supply Current               | Each Amplifier<br>Each Amplifier                                                                                                                                                                              | ±15V<br>±5V                 |                          |     | 1.55<br>1.50      | mA<br>mA                     |

**Note 1:** Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

**Note 2:** Differential inputs of  $\pm 10V$  are appropriate for transient operation only, such as during slewing. Large, sustained differential inputs will cause excessive power dissipation and may damage the part. See Input Considerations in the Applications Information section of this data sheet for more details.

**Note 3:** A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.

**Note 4:** Slew rate is measured between  $\pm 10V$  on the output with  $\pm 6V$  input for  $\pm 15V$  supplies and  $\pm 1V$  on the output with  $\pm 1.75V$  input for  $\pm 5V$  supplies.

**Note 5:** Full power bandwidth is calculated from the slew rate measurement: FPBW =  $(SR)/2\pi V_P$ .

**Note 6:** This parameter is not 100% tested.

**Note 7:** The LT1355C/LT1356C/LT1356I are guaranteed functional over the operating temperature range of  $-40^{\circ}$ C to 85°C. The LT1356H is guaranteed functional over the operating temperature range of  $-40^{\circ}$ C to 125°C case temperature (T<sub>C</sub>).

**Note 8:** The LT1355C/LT1356C are guaranteed to meet specified performance from 0°C to 70°C. The LT1355C/LT1356C are designed, characterized and expected to meet specified performance from -40°C to 85°C, but are not tested or QA sampled at these temperatures. The LT1356I is guaranteed to meet specified performance from -40°C to 85°C. The LT1356H is guaranteed to meet specified performance from -40°C to 125°C case temperature ( $T_{\rm C}$ ). The parts are pulse tested at these temperatures. Internal warm-up drift must be taken into account separately. Care must be taken not to exceed the maximum junction temperature.



















13556fc







#### **Settling Time vs Output Step** (Noninverting)



#### **Settling Time vs Output Step** (Inverting)



1355/1356 G12

#### **Output Impedance vs Frequency**



Frequency Response vs Capacitive Load



**Gain Bandwidth and Phase** Margin vs Supply Voltage



**Gain Bandwidth and Phase** Margin vs Temperature



PHASE MARGIN (DEG

Frequency Response vs Supply Voltage  $(A_V = 1)$ 



Frequency Response vs Supply Voltage  $(A_V = -1)$ 



13556fc

1355/1356 G25



1355/1356 G26

13556fc

1355/1356 G27



#### 2nd and 3rd Harmonic Distortion vs Frequency



#### **Crosstalk vs Frequency**



**Capacitive Load Handling** 



1355/1356 G30

**Small-Signal Transient**  $(A_{V} = 1)$ 



**Small-Signal Transient**  $(A_V = -1)$ 



**Small-Signal Transient**  $(A_V = -1, C_L = 1000pF)$ 



**Large-Signal Transient**  $(A_V = 1)$ 



**Large-Signal Transient**  $(A_V = -1)$ 



**Large-Signal Transient**  $(A_V = 1, C_L = 10,000pF)$ 



# APPLICATIONS INFORMATION

#### **Layout and Passive Components**

The LT1355/LT1356 amplifiers are easy to use and tolerant of less than ideal layouts. For maximum performance (for example, fast 0.01% settling) use a ground plane, short lead lengths, and RF-quality bypass capacitors (0.01 $\mu$ F to 0.1 $\mu$ F). For high drive current applications use low ESR bypass capacitors (1 $\mu$ F to 10 $\mu$ F tantalum).

The parallel combination of the feedback resistor and gain setting resistor on the inverting input combine with the input capacitance to form a pole which can cause peaking or oscillations. If feedback resistors greater than 5k are used, a parallel capacitor of value:

$$C_F > R_G \times C_{IN}/R_F$$

should be used to cancel the input pole and optimize dynamic performance. For unity-gain applications where a large feedback resistor is used,  $C_F$  should be greater than or equal to  $C_{\mathsf{IN}}$ .

#### **Capacitive Loading**

The LT1355/LT1356 are stable with any capacitive load. As the capacitive load increases, both the bandwidth and phase margin decrease so there will be peaking in the frequency domain and in the transient response. Coaxial cable can be driven directly, but for best pulse fidelity a resistor of value equal to the characteristic impedance of the cable (i.e.,  $75\Omega$ ) should be placed in series with the output. The other end of the cable should be terminated with the same value resistor to ground.

#### **Input Considerations**

Each of the LT1355/LT1356 inputs is the base of an NPN and a PNP transistor whose base currents are of opposite polarity and provide first-order bias current cancellation. Because of variation in the matching of NPN and PNP beta, the polarity of the input bias current can be positive or negative. The offset current does not depend on NPN/PNP beta matching and is well controlled. The use of balanced source resistance at each input is recommended for applications where DC accuracy must be maximized.

The inputs can withstand transient differential input voltages up to 10V without damage and need no clamping or source resistance for protection. Differential inputs, however, generate large supply currents (tens of mA) as required for high slew rates. If the device is used with sustained differential inputs, the average supply current will increase, excessive power dissipation will result and the part may be damaged. The part should not be used as a comparator, peak detector or other open-loop application with large, sustained differential inputs. Under normal, closed-loop operation, an increase of power dissipation is only noticeable in applications with large slewing outputs and is proportional to the magnitude of the differential input voltage and the percent of the time that the inputs are apart. Measure the average supply current for the application in order to calculate the power dissipation.

### **Circuit Operation**

The LT1355/LT1356 circuit topology is a true voltage feedback amplifier that has the slewing behavior of a current feedback amplifier. The operation of the circuit can be understood by referring to the simplified schematic. The inputs are buffered by complementary NPN and PNP emitter followers which drive an  $800\Omega$  resistor. The input voltage appears across the resistor generating currents which are mirrored into the high impedance node. Complementary followers form an output stage which buffers the gain node from the load. The bandwidth is set by the input resistor and the capacitance on the high impedance node. The slew rate is determined by the current available to charge the gain node capacitance. This current is the differential input voltage divided by R1, so the slew rate is proportional to the input. Highest slew rates are therefore seen in the lowest gain configurations. For example, a 10V output step in a gain of 10 has only a 1V input step, whereas the same output step in unity gain has a 10 times greater input step. The curve of Slew Rate vs Input Level illustrates this relationship. The LT1355/LT1356 are tested for slew rate in a gain of -2 so higher slew rates can be expected in gains of 1 and -1, and lower slew rates in higher gain configurations.



## APPLICATIONS INFORMATION

The RC network across the output stage is bootstrapped when the amplifier is driving a light or moderate load and has no effect under normal operation. When driving a capacitive load (or a low value resistive load) the network is incompletely bootstrapped and adds to the compensation at the high impedance node. The added capacitance slows down the amplifier which improves the phase margin by moving the unity-gain frequency away from the pole formed by the output impedance and the capacitive load. The zero created by the RC combination adds phase to ensure that even for very large load capacitances, the total phase lag can never exceed 180 degrees (zero phase margin) and the amplifier remains stable.

#### **Power Dissipation**

The LT1355/LT1356 combine high speed and large output drive in small packages. Because of the wide supply voltage range, it is possible to exceed the maximum junction temperature under certain conditions. Maximum junction

temperature  $(T_J)$  is calculated from the ambient or case temperature  $(T_A \text{ or } T_C)$  and power dissipation  $(P_D)$  as follows:

 $\begin{array}{lll} LT1355CN8: & T_J = T_A + (P_D \bullet 130 °C/W) \\ LT1355CS8: & T_J = T_A + (P_D \bullet 190 °C/W) \\ LT1356CN: & T_J = T_A + (P_D \bullet 110 °C/W) \\ LT1356CS: & T_J = T_A + (P_D \bullet 150 °C/W) \\ LT1356HS: & T_J = T_C + (P_D \bullet 30 °C/W) \end{array}$ 

Worst-case power dissipation occurs at the maximum supply current and when the output voltage is at 1/2 of either supply voltage (or the maximum swing if less than 1/2 supply voltage). For each amplifier  $P_{DMAX}$  is:

$$\begin{split} &P_{DMAX} = (V^+ - V^-)(I_{SMAX}) + (V^+/2)^2/R_L \\ &Example: LT1356 \text{ in S16 at } T_A = 70^{\circ}\text{C}, \ V_S = \pm 15\text{V}, \ R_L = 1\text{k} \\ &P_{DMAX} = (30\text{V})(1.45\text{mA}) + (7.5\text{V})^2/1\text{k}\Omega = 99.8\text{mW} \\ &T_{JMAX} = 70^{\circ}\text{C} + (4 \bullet 99.8\text{mW})(150^{\circ}\text{C/W}) = 130^{\circ}\text{C} \end{split}$$

# SIMPLIFIED SCHEMATIC





# PACKAGE DESCRIPTION

#### N Package 8-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510 Rev I)



NOTE:
1. DIMENSIONS ARE MILLIMETERS
MILLIMETERS

#### N Package 14-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510 Rev I)



1. DIMENSIONS ARE MILLIMETERS

LINEAR

<sup>\*</sup>THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

<sup>\*</sup>THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

# PACKAGE DESCRIPTION

#### **S8 Package** 8-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)



DRAWING NOT TO SCALE
 THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
 MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

S08 0303



# PACKAGE DESCRIPTION

#### S Package 16-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)



2. DRAWING NOT TO SCALE

3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

# **REVISION HISTORY** (Revision history begins at Rev C)

| REV | DATE  | DESCRIPTION           | PAGE NUMBER |
|-----|-------|-----------------------|-------------|
| С   | 05/12 | Added H- and I-grades | 2, 5, 11    |



# TYPICAL APPLICATIONS

#### **Instrumentation Amplifier**



#### 100kHz, 4th Order Butterworth Filter (Sallen-Key)



# **RELATED PARTS**

| PART NUMBER   | DESCRIPTION                                | COMMENTS                                                                                 |
|---------------|--------------------------------------------|------------------------------------------------------------------------------------------|
| LT1354        | 12MHz, 400V/µs Op Amp                      | Single Version of LT1355/LT1356                                                          |
| LT1352/LT1353 | Dual and Quad 250µA, 3MHz, 200V/µs Op Amps | Lower Power Version of LT1355/LT1356, $V_{OS} = 0.6$ mV, $I_{S} = 250 \mu$ A/Amplifier   |
| LT1358/LT1359 | Dual and Quad 25MHz, 600Vµs Op Amps        | Faster Version of LT1355/LT1356, V <sub>OS</sub> = 0.6mV, I <sub>S</sub> = 2mA/Amplifier |