Discrete Mathematics Exercise 12

Qiu Yihang, 2020/11/04

1. a) Solution: Yes.

- b) Solution: No. f is not even a function from S into $\bigcup S$. (The domain of f is not S.)
- c) Solution: Yes.
- d) Solution: No. f is not even a function from $\mathcal{P}(\mathbb{N})$ into \mathbb{N} . (The domain of f is not $\mathcal{P}(\mathbb{N})$.)

2. Proof:

```
First, we prove that \bigcup \{ [a]_{\mathcal{R}} \mid a \in A \} = A.
```

For any
$$y \in \bigcup \{ [a]_{\mathcal{R}} \mid a \in A \} = A$$
, exists $x \in \{ [a]_{\mathcal{R}} \mid a \in A \}$ s.t. $y \in x$.

Exists
$$a \in A$$
 s.t. $x = [a]_{\mathcal{R}}$. Since $y \in x$, $a\mathcal{R}y$.

Thus,
$$y \in A$$
. (since \mathcal{R} is a relation on A)

Thus,
$$\bigcup \{ [a]_{\mathcal{R}} \mid a \in A \} \subseteq A$$
.

For any
$$y \in A$$
, $y \in [y]_{\mathcal{R}}$.

It's plain to see that
$$[y]_{\mathcal{R}} \in \{ [a]_{\mathcal{R}} \mid a \in A \}$$
. Thus, $y \in \bigcup \{ [a]_{\mathcal{R}} \mid a \in A \} = A$.

Thus,
$$A \subseteq \bigcup \{ [a]_{\mathcal{R}} \mid a \in A \}.$$

Therefore,
$$\bigcup \{ [a]_{\mathcal{R}} \mid a \in A \} = A$$
.

Let
$$S = \{ [a]_{\mathcal{R}} \mid a \in A \}.$$

By Axiom of Choices, we know there exists $f: S \to \bigcup S$ s.t. $f(X) \in X$ for any $X \in S$.

Now we prove f is an injection.

For any
$$X_1, X_2 \in S$$
, if $f(X_1) = f(X_2) = a$, then $a \in X_1$ and $a \in X_2$.

Thus,
$$X_1 = [a]_{\mathcal{R}}$$
 and $X_2 = [a]_{\mathcal{R}}$. Therefore, $X_1 = X_2$.

Thus, there exists an injection f from $\{[a]_{\mathcal{R}} \mid a \in A\}$ into A.

QED