Network Routing: Distance Vector Routing

Reading KR 4.1, 4.2

Network Layer

- ☐ Transport packet from source to dest.
- ☐ Network layer in *every* host, router

Basic functions:

- Data plane: forwarding
 - Move packets from router's input port to router output port
- ☐ Control plane: path determination and call setup
 - Determine route taken by packets from source to destination

Forwarding: Illustration

Network Layer: Complexity Factors

- ☐ For users: quality of service
 - Guaranteed bandwidth?
 - Preservation of inter-packet timing (no jitter)?
 - O Loss-free delivery?
 - In-order delivery?
- ☐ For network providers
 - Efficiency
 - Policy of route control
 - Scalability
- ☐ Interaction between users and network providers
 - Signaling: congestion feedback/resource reservation

Network Layer Quality of Service

	Network	Service	Guarantees ?				Congestion
Aı	chitecture	Model	Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss/delay)
	ATM	CBR	constant rate	yes	yes	yes	congestion won't occur
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

- ☐ Internet model being extended: Intserv, Diffserv
 - Multimedia networking

Network Layer: Protocols

Network layer functions:

Outline

- Recap
- □ Network overview
- > Control plane: routing overview

Control Plane: Routing

Routing

Goal: determine "good" paths (sequences of routers) thru network from sources to dest.

Graph abstraction for the routing problem:

- Nodes are routers
- Edges are physical links
 - Links have properties: delay, capacity, \$ cost, policy

Key Desired Properties of a Routing Algorithm

□ Robustness

- Optimality
 - Find good path (for user/ provider)

□ Simplicity

Routing Design Space

- Robustness
- Optimality
- Simplicity

- □ Routing has a large design space
 - Who decides routing?
 - Source routing: end hosts make decision
 - Network routing: networks make decision
 - How many paths from source s to destination d?
 - Multi-path routing
 - Single path routing
 - Will routing adapt to network traffic demand?
 - Adaptive routing
 - Static routing
 - **O** ...

- Robustness

- Optimality
- Simplicity

Example: Latency Optimal Routing

- Assume each link has a latency function $l_e(x)$: latency of link e when x amount of traffic goes through e,
 - \odot E.g., *prop.* + $1/(\mu x)$, where prop. is link propagation delay and μ the link capacity

 \square Objective: min Σ_e $f_e \cdot l_e(f_e)$

Routing Design Space: User-based, Multipath, Adaptive

- □ Routing has a large design space
 - Who decides routing?
 - Source routing: end hosts make decision
 - Network routing: networks make decision
 - \bigcirc How many paths from sources to destination d?
 - ➤ Multi-path routing
 - Single path routing
 - Will routing adapt to network traffic demand?
 - > Adaptive routing
 - Static routing
 - **O** ...

User Optimal, Multipath, Adaptive

☐ User optimal: users pick the shortest routes (selfish routing)

Braess's paradox

Price of Anarchy

For a network with linear latency functions

 \rightarrow

total latency of user (selfish) routing for given traffic demand

$$\leq 4/3$$

total latency of network optimal routing for the traffic demand

Price of Anarchy

□ For any network with continuous, non-decreasing latency functions →

total latency of user (selfish) routing for given traffic demand

 \leq

total latency of network optimal routing for twice traffic demand

Routing Design Space: Internet

- Robustness
- Optimality
- Simplicity

- □ Routing has a large design space
 - Who decides routing?
 - Source routing: end hosts make decision
 - Network routing: networks make decision
 - Applications such as overlay and p2p are trying to bypass it
 - How many paths from source s to destination d?
 - Multi-path routing
 - Single path routing (with small amount of multipath)
 - Will routing adapt to network traffic demand?
 - Adaptive routing
 - Static routing (mostly static; adjust in larger timescale)
 - **O** ...

Routing: Single-Path, Adaptive Routing

 Assume link costs reflect current traffic

Link costs reflect current traffic intensity

Solution: Link costs are a combination of current traffic intensity (dynamic) and topology (static). To improve stability, the static topology part should be large. Thus less sensitive to traffic; thus non-adaptive.

Shortest Path Routing Protocols

■ Static (positive) costs assigned to network links, the path from a source to a destination chosen by the routing protocol is a shortest path among all possible paths

• The static link costs may be adjusted in a longer time scale: this is called traffic engineering

Outline

- □ Recap
- □ Network overview
- □ Control plane: routing overview
- > Distance vector protocols

Distance Vector Routing

- ☐ Basis of RIP, IGRP, EIGRP routing protocols
- Based on the Bellman-Ford algorithm (BFA)
- Conceptually, runs for each destination separately

Distance Vector Routing: Basic Idea

 \square At node *i*, the basic update rule

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

where

- *d_i* denotes the distance estimation from *i* to the destination,
- *N(i)* is set of neighbors of node *i*, and
- d_{ij} is the distance of the direct link from i to j; assume positive

Outline

- □ Recap
- □ Network overview
- □ Control plane: routing overview
- ➤ Distance vector protocols
 - > Synchronous Bellman-Ford (SBF)

Synchronous Bellman-Ford (SBF)

7 B 1 C 2 8 2 D

- □ Nodes update in rounds:
 - There is a global clock;
 - At the beginning of each round, each node sends its estimate to all of its neighbors;
 - At the end of the round, updates its estimation

Outline

- □ Recap
- □ Network overview
- □ Control plane: routing overview
- ➤ Distance vector protocols
 - > synchronous Bellman-Ford (SBF)
 - SBF/∞

SBF/∞

☐ Initialization (time 0):

$$d_i(0) = \begin{cases} 0 & \text{i = dest} \\ \infty & \text{otherwise} \end{cases}$$

Example

Consider D as destination; d(t) is a vector consisting of estimation of each node at round t

	Α	В	С	E	D	
d(0)	∞	∞	∞	∞	0	
d(1)	∞	∞	2	2	0	
d(2)	12	3	2	2	0	
d(3)	10	3	2	2	0	
d(4)	10	3	2	2	0	

Observation: $d(0) \ge d(1) \ge d(2) \ge d(3) \ge d(4) = d^*$

$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$$

A Nice Property of SBF: Monotonicity

- \Box Consider two configurations d(t) and d'(t)
- \square If $d(t) \ge d'(t)$
 - \bigcirc I.e., each node has a higher estimate in one scenario (d) than in another scenario (d'),
- □ Then $d(t+1) \ge d'(t+1)$
 - I.e., each node has a higher estimate in *d* than in *d* after one round of synchronous update.

$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$$

Correctness of SBF/∞

- □ Claim: $d_i(h)$ is the length $L_i(h)$ of a shortest path from i to the destination using i h hops
 - \bigcirc Base case: h = 0 is trivially true
 - O Assume true for $\leq h$, i.e., L_i (h) = d_i (h), L_i (h-1) = d_i (h-1), ...

$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$$

Correctness of SBF/ ∞

 \square consider $\leq h+1$ hops:

$$L_i(h+1) = \min(L_i(h), \min_{j \in N(i)} (d_{ij} + L_j(h)))$$

$$= \min(d_i(h), \min_{j \in N(i)} (d_{ij} + d_j(h)))$$

$$= \min(d_i(h), d_i(h+1))$$

since
$$d_i(h) \leq d_i(h-1)$$

$$d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h)) \le \min_{j \in N(i)} (d_{ij} + d_j(h-1)) = d_i(h)$$

$$L_i(h+1) = d_i(h+1)$$

Bellman Equation

■ We referred to the equations as Bellman equations (BE):

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

where $d_D = 0$.

- SBF/∞ solves the equations in a distributed way
- Does the equation have a unique solution (i.e., the shortest path one)?

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

Uniqueness of Solution to BE

□ Assume another solution d, we will show that $d = d^*$ case 1: we show $d \ge d^*$

Since d is a solution to BE, we can construct paths as follows: for each i, pick a j which satisfies the equation; since d^* is shortest, $d \ge d^*$

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

Uniqueness of Solution to BE

Case 2: we show $d \le d^*$

Assume we run SBF with two initial configurations:

- One is d
- Another is SBF/ ∞ (d $^{\infty}$),
- -> Monotonicity and convergence of SBF/∞ imply that d ≤ d*

Outline

- □ Recap
- □ Network overview
- □ Control plane: routing overview
- ➤ Distance vector protocols
 - > synchronous Bellman-Ford (SBF)
 - SBF/∞
 - SBF/-1

SBF at another Initial Configuration: SBF/-1

☐ Initialization (time 0):

$$d_i(0) = \begin{cases} 0 & \text{i = dest} \\ -1 & \text{otherwise} \end{cases}$$

Example

Consider D as destination

	Α	В	С	E	D
d(0)	-1	-1	-1	-1	0
d(1)	6	0	0	2	0
d(2)	7	1	1	2	0
d(3)	8	2	2	2	0
d(4)	9	3	2	2	0
d(5)	10	3	2	2	0
d(6)	10	3	2	2	0

Observation: $d(0) \le d(1) \le d(2) \le d(3) \le d(4) \le d(5) = d(6) = d^*$

Bellman Equation and $d_i(h+1) = \min_{j \in N(i)} (d_{ij} + d_j(h))$ Correctness of SBF/-1

- □ SBF/-1 converges due to monotonicity
- At equilibrium, SBF/-1 satisfies the set of equations called Bellman equations (BE)

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

where $d_D = 0$.

- ☐ Another solution is shortest path solution d*
- Since there is a unique solution to the BE equations; thus SBF/-1 converges to shortest path

Question: will SBF converge under other non-negative initial conditions?

Problems of running synchronous BF?

Outline

- □ Recap
- □ Network overview
- □ Control plane: routing overview
- ➤ Distance vector protocols
 - synchronous Bellman-Ford (SBF)
 - ➤ asynchronous Bellman-Ford (ABF)

Asynchronous Bellman-Ford (ABF)

- No notion of global iterations
 - Each node updates at its own pace
- □ With finite delay, each node i computes

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j^i)$$

using last received value d_j from neighbor j.

- With finite delay, node j sends its estimate to its neighbor i:
 - There is an upper bound on the delay of estimate packets

Asynchronous Bellman-Ford (ABF)

☐ In general, nodes are using different and possibly inconsistent estimates

Distance Table: Example

8 2 10 E 2

Below is just one step! The algorithm repeats forever!

distance tables from neighbors			computation	E's distance		
d	()	Α	В	D	A B D	table
destinations	Α	0	7	∞	10 15 ∞	A: 10
	В	7	0	∞	178 ∞	B: 8
	С	∞	1	2	∞ 9 4	D: 4
	D	∞	∞	0	∞ ∞ 2	D: 2

distance table E sends to its neighbors

A: 10

B: 8

C: 4

D: 2

E: 0

10 8 2

Asynchronous Bellman-Ford (ABF)

- Regardless of how asynchronous the nodes are, the algorithm will eventually converge to the shortest path
 - Links can go down and come up but if topology is stabilized after some time *t*, the algorithm will eventually converge to the shortest path!
- ☐ If the network is connected, then ABF converges in finite amount of time