積體電路設計 Homework #4 Report

B06602035 生工三 李晴妍

一、Simulation

Minimum half-cycle time:3.59

二、Discussion

- 1. Introduce your design
 - I. Multiplier
 - module square(a,result,number); // calculate x*x
 - module boothencoder(a,b,c,single,double,neg,number);
 - module boothselector(y,single,double,neg,p,number);
 - module add10(sum, a, b, number); // 10 bits ripple carry adder

乘法器用的是 Booth Encoding。Input 是 5 bits,multiplier 做三次後會產生三個 10 bits 的 partial product P0,P1,P2。

{x1,x0,1'b0}和{1'b0,x4,x3}因為有位是 0 bit,在 booth encoder 時可以簡化。 再用 Wallace tree 把 partial product 加起來。

一開始是用 carry safe adder 相加得平方結果,但發現這樣 area 比起 ripple carry adder 要大,但時間跟 cycle 並不會減少很多,所以最後改用 ripple carry adder。而為了避免 overflow,所以 partial product 選用 10 bits。

II. Adder

$$D = BC\cos \angle A = \frac{B^2 + C^2 - A^2}{2}$$

- module hadd10(a, b, c, sum, number); // 10 bits half adder
- module add11(sum, a, b, number); // 11 bits ripple carry adder

這裡用的是 2's complement。得到 $A^2 \times B^2 \times C^2$ 後,要先 invert A^2 的每個 bits,再用 half adder 加上 1'b1,就會得到 - A^2 。

因為相加過後有些值會超過 10 bits 2's complement 的範圍(-512 \sim 511),ex:30²+30²=900,所以在這邊先轉成 11 bits 再用 ripple carry adder 將 - A²、B²、C² 相加得到結果 final[10:0]。

III. Shift

取 final[10:1],無條件捨棄。

- IV. Register
 - module reg10(Q,DD,clk,reset,reg3_num);

用 FD2 做一個 10 bits register,為了控制讀取的時間有讓 valid_out 與其中一個 multiplier 的結果作 or。

2. How do you cut your pipeline?

我把 pipeline 放在做完 multiplier 之後。也有試著多增加一個 pipeline 在做平方相加的地方,但 area 增加很多 cycle 卻沒辦法降多少,所以捨棄。 Pipeline 加上後會讓 D 讀取的 clk 改變,那時候找了很久以為是後面加法器的問題。最後有讓 valid_out 跟乘法器的 output 做 or 去拉回 clk。

3. How do you improve your critical path and the number of transistors?

像是做 adder 的時候,一開始用的其實是 CSA,但後來去算裡面實際 FA 的 area,再去跟 ripple carry adder 的 area 比較其實差蠻多的,因為多增加一個 FA 就要多 26 個面積,而 adder 又會用在很多地方就會不斷增加,所以最後採用的是後者。

除此之外因為已經考慮過 overflow 的問題,最後的進位其實都可以捨去,這樣就不用用 FA 可以改用 XOR 去計算,雖然這樣 cycle 會降不太下來但 area 可以少很多。

而為了減少 critical path,在做完乘法後有加入 pipeline,其他地方有試過再加但沒有甚麼好處。

4. How do you trade off between area and speed?

我會先大概算 area 會增加多少,主要是考慮 FA 的 area 就好。然後看增加的比例去估 half cycle 降到多少比例以下才有利。如果跑 testbench 失敗的話就不會改算法。

5. Compare with other architectures you have designed(if any)

基本上沒太大改變,就是用 Booth algorithm + Wallace tree 做的乘法器。加 法器從 CSA 換成 ripple carry adder。後來有在乘法器做完後加上 pipeline, 最後用 flip-flop 跟 valid_out 去算 D 讀取的時間。

三、Circuit diagram

■ Booth Encoder

Booth Selector

■ Ripple Carry Adder(11 bits)

Critical path

