UNIVERSIDAD DE GRANADA DEPARTAMENTO DE MATEMÁTICA APLICADA ECUACIONES DIFERENCIALES I - GRADO EN INGENIERÍA INFORMÁTICA Y MATEMÁTICAS CONVOCATORIA DE FEBRERO. 1 de febrero de 2016

El número entre corchetes es la puntuación máxima de cada ejercicio.

[2] Ejercicio 1.- Sabiendo que la ecuación de Ricatti $x' = -4/t^2 - x/t + x^2$ admite una solución de la forma $x(t) = at^b$, para determinados $a, b \in \mathbb{R}$, encuentra la solución que cumple x(1) = 0.

[2] Ejercicio 2.- El Teorema de Caley-Hamilton afirma que toda matriz $A \in M_N(\mathbb{R})$ satisface su ecuación característica, es decir, si $p(\lambda) = \det |A - \lambda I_N|$ es su polinomio característico, se cumple que $p(A) = 0_N$. Por tanto, si $p(\lambda) = (\lambda - \lambda_1)^N$, entonces $(A - \lambda_1 I_N)^N = 0_N$. Justifica que en este caso

$$e^{tA} = e^{\lambda_1 t} \left\{ I_N + (A - \lambda_1 I_N)t + \dots + (A - \lambda_1 I_N)^{N-1} \frac{t^{N-1}}{(N-1)!} \right\},$$

y usa esta fórmula para hallar la matriz fundamental principal en $t_0 = 0$ del sistema

$$x' = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ -2 & -2 & -1 \end{pmatrix} x.$$

[3] Ejercicio 3.- Resuelve las siguientes cuestiones:

- a) Sean $\varphi_1(t)$ y $\varphi_2(t)$ dos soluciones de la ecuación $x'' + a_1(t)x' + a_2(t)x = 0$, con $a_1, a_2 \in C(I)$ siendo I un intervalo abierto de \mathbb{R} . Definimos $W(t) := W(\varphi_1, \varphi_2)(t)$ su determinante Wronskiano. Demuestra que W(t) es una solución de la ecuación $w' + a_1(t)w = 0$ y, como consecuencia, o bien $W(t) \equiv 0$ ó $W(t) \neq 0$, para todo $t \in I$.
- b) Estudia la existencia y el número de soluciones 2π -periódicas de la ecuación $x'' + x = \cos kt$, con $k \in \mathbb{Z}$.
- c) Estudia la existencia y el número de soluciones π -periódicas de la ecuación $x'' + x = \cos kt$, con $k \in \mathbb{Z}$.

[3] Ejercicio 4.-

- a) Sean $p \in C^1[a, b]$, p(t) > 0, $t \in [a, b]$ y $q_i \in C[a, b]$, i = 1, 2, con $q_1(t) < q_2(t)$, $t \in [a, b]$. Para i = 1, 2 denotamos por φ_i una solución de la ecuación $(p(t)x')' + q_i(t)x = 0$. Demuestra que si $a \le t_1 < t_2 \le b$ son tales que $\varphi_1(t_1) = \varphi_1(t_2) = 0$, entonces existe $t_3 \in (t_1, t_2)$ con $\varphi_2(t_3) = 0$.
- b) Demuestra que toda solución de la ecuación x'' + x' + tx = 0 se anula infinitas veces en $(1, +\infty)$.
- c) ¿Qué se puede afirmar sobre el número de ceros de las soluciones de la ecuación x'' + x' tx = 0 en $(1, +\infty)$?