|                              | DSC 275/475: Time Series Analysis and Forecasting (Fall 2022)  Project-1  (Total points: 60 for undergraduate students; 70 for Graduate students and including extra credit for undergraduate students)  Aradhya Mathur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In [12]:                     | Overview This project is designed to provide you hands-on experience working on an end-to-end time series analysis and forecasting solution using AR/ARMA/ARIMA/SARIMA modeling. You are welcome to use any external libraries/packages for this project. A few recommendations are provided for each problem below. This is a guided exercise in that you are expected to answer each of the questions below. For some of the questions, you will appreciate there is no single correct answer. In such cases, you have flexibility to decide the approach. Any conclusions you make or decisions you take must be stated and accompanied by a reasonable justification. Your submission should be a PDF document with responses (including figures/plots) to each question along with the code either included inline [e.g. Notebook] or as a separate file.  import numpy as np import pandas as pd import matplotlib.pyplot as plt form attacked to answer each of the questions and provided in the property of the prope |
|                              | from statsmodels.tsa.statespace.tools import diff from statsmodels.tsa.arima_model import ARIMA import statsmodels.graphics.tsaplots as tsa import warnings warnings.filterwarnings("ignore") from statsmodels.tsa.stattools import acf, pacf from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error  Question 1  Problem:1 (60 pts; Required for all students) The data for this project (Problem1_DataSet.csv) represents 7 years of monthly data on airline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <pre>In [31]: Out[31]:</pre> | miles flown in the United Kingdom. You are tasked with the goal of developing a forecasting model that can accurately predict the trend for future years. To achieve the final goal, answer each of the questions below  1. Create a time series of the plot of the data provided. (5 pts)  # Reading dataset dfp1 = pd.read_csv('Problem1_DataSet.csv', header = 0) dfp1.head()  Month Miles, in Millions  0 Jan-1964  7.269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| In [32]:                     | <pre>1 Feb-1964 6.775 2 Mar-1964 7.819 3 Apr-1964 8.371 4 May-1964 9.069  #Changing Month format dfp1['Month'] = pd.to_datetime(dfp1['Month']) dfp1.head()</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Out[32]:                     | Month Miles, in Millions       0 1964-01-01     7.269       1 1964-02-01     6.775       2 1964-03-01     7.819       3 1964-04-01     8.371       4 1964-05-01     9.069   #Renaming Column dfp1.columns = ['Month', 'Miles']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Out[33]:                     | Month Miles  0 1964-01-01 7.269  1 1964-02-01 6.775  2 1964-03-01 7.819  3 1964-04-01 8.371  4 1964-05-01 9.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| In [34]:                     | <pre>#Time Series Plot plt.figure(figsize=(16, 3)) plt.plot(dfp1['Month'],dfp1['Miles'] , label = 'Time Series Plot' , color = 'maroon') plt.xlabel ('Month') plt.grid() plt.ylabel ('Miles, in Millions') plt.legend() plt.title('Time Series Plot - Miles vs Miles') plt.show()</pre> Time Series Plot - Miles vs Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| In [35]:                     | 2.Plot the autocorrelation function (ACF). From the ACF, what is the seasonal period? (5 pts)  # ACF Plot plt.figure (figsize=(16, 3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | <pre>tsa.plot_acf(dfp1['Miles'], lags = 50, color = 'maroon') plt.xlabel('Lag')  plt.ylabel('Autocorrelation') plt.title('ACF Plot') plt.show()  </pre> <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | Seasonal Period is 12 lags (0-11 first period)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| In [36]:<br>Out[36]:         | 1. Compute a moving average for the data to determine the trend in the data and overlay on the original time-series plot. What is a suitable choice for the moving average window length? (5 pts)  #Simple Moving Average dfp1['Sma_p1'] = dfp1['Miles'].rolling(12, min_periods=12).mean() dfp1.head()  Month Miles Sma_p1  0 1964-01-01 7.269 NaN  1 1964-02-01 6.775 NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| In [37]:                     | <pre>2 1964-03-01 7.819 NaN 3 1964-04-01 8.371 NaN 4 1964-05-01 9.069 NaN  #Overlaying Time Series Plot plt.figure(figsize=(16, 3)) monthp1 = dfp1['Month'] plt.grid() milesp1 = dfp1['Miles'] smap1 = dfp1['Sma_p1'] plt.plot(monthp1, milesp1 , label = 'Time', color = 'maroon') plt.plot(monthp1, smap1 , label = 'SMA', color = 'gold')</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | plt.title('Simple Moving Average Plot for P1') plt.xlabel('Month') plt.legend() plt.ylabel('Miles, in Millions') plt.show()  Simple Moving Average Plot for P1  Simple Moving Average Plot for P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | Window length should be 12 (as seasonal period is 12)  1. Observing the moving average plot in Q3, is the trend line increasing or decreasing? (5 pts)  Answer) It is quite evident from the above plot that trend line is increasing.  1. Compute the first difference of the data and plot the ACF and PACF for the differenced data. What are the significant lags based on the ACF and PACF? (5 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| In [38]:                     | <pre>#Finding first difference firstdif_p1 = diff(milesp1) print(firstdif_p1)  1     -0.494 2     1.044 3     0.552 4     0.698 5     1.179 79     -0.090 80     2.177 81     -3.845</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| In [39]:                     | 82 -0.795 83 1.178 Name: Miles, Length: 83, dtype: float64  ##Ploting first difference plt.figure(figsize=(16, 3)) firstdif_pl.plot(label = 'First Difference', color = 'maroon') plt.grid() plt.xlabel('Month') plt.ylabel('First Difference ') plt.legend() plt.title('Plot - First Difference') plt.show()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                              | Plot - First Difference  First Difference  Output  Description  First Difference  First Difference  First Difference  Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| In [40]:                     | <pre>#ACF of first difference tsa.plot_acf(firstdif_p1, lags = 50, color = 'maroon') plt.xlabel('Lag') plt.ylabel('Autocorrelation') plt.title('ACF Plot- First Difference') plt.show()  #PACF of first difference tsa.plot_pacf(firstdif_p1, lags=40, method = 'ywmle', color = 'maroon') # Not possible for lag = 50 plt.xlabel('Lag') plt.ylabel('Partial Autocorrelation') plt.title('PACF Plot- First Difference') plt.show()</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                              | ACF Plot- First Difference  1.0  0.8  0.6  0.0  -0.2  -0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              | PACF Plot- First Difference  1.0 0.8 0.4 0.4 0.2 0.0 0.4 0.2 0.0 0.5 0.6 0.7 0.7 0.7 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              | Significant lags based based on ACF and PACF are: ACF: 2, 3, 4, 5, 7, 9 and 12 (24 is just on line) PACF: 2, 3, 4, 5, 7, 8, 11, 20, and 22 (26 is just on line)  1. Using the output from Q5 above, perform a first seasonal difference with the seasonal period you identified in Q2, and plot the ACF and PACF again. What are the significant lags based on the ACF and PACF? (5 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| In [41]:<br>Out[41]:         | #First Seasonal Difference #Seasonal Period = 12 as identified in Q2 seasonaldif_p1 = diff(firstdif_p1, k_diff=0, k_seasonal_diff=1, seasonal_periods=12) seasonaldif_p1  13    -0.027 14    -0.044 15    0.567 16    -0.008 17    -0.564 79    -0.154 80    0.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <pre>In [42]: Out[42]:</pre> | 81 -0.920 82 0.745 83 -0.338 Name: Miles, Length: 71, dtype: float64  #Checking if on original data, we apply k_diff = 1 which is what we did in question 5 seasonaldif_p2 = diff(milesp1, k_diff=1, k_seasonal_diff=1, seasonal_periods=12) seasonaldif_p2 #Output is same  13 -0.027 14 -0.044 15 0.567 16 -0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| In [43]:                     | 10 -0.008 17 -0.564 79 -0.154 80 0.798 81 -0.920 82 0.745 83 -0.338 Name: Miles, Length: 71, dtype: float64  #Ploting first difference plt.figure(figsize=(16,3)) seasonaldif_pl.plot(label = 'First Seasonal Difference', color = 'maroon') plt.grid() plt.xlabel('Month')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | plt.ylabel('First Seasonal Difference ') plt.legend() plt.title('Plot - First Seasonal Difference') plt.show()  Plot - First Seasonal Difference  Plot - First Seasonal Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| In [44]:                     | #ACF Plot tsa.plot_acf(seasonaldif_p1, lags = 50, color = 'maroon') plt.xlabel('Lag') plt.ylabel('Autocorrelation') plt.title('ACF Plot - Seasonal Difference') plt.show()  #PACF Plot tsa.plot_pacf(seasonaldif_p1, lags=30, method = 'ywmle', color = 'maroon') plt.xlabel('Lag')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | plt.ylabel('Partial Autocorrelation') plt.title('PACF Plot - Seasonal Difference') plt.show()  ACF Plot - Seasonal Difference  10 0.8 0.6 0.6 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | 0.0<br>-0.2<br>-0.4<br>0 10 20 30 40 50<br>PACF Plot - Seasonal Difference<br>1.0<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                              | Significant lags based based on ACF and PACF are: ACF: 1, 2, 10, and 12 PACF: 1, 2, 4, 8, 10, and 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              | <ol> <li>Develop a suitable SARIMA model that can be applied on the time series. Use the first 6 years of data only to develop the model. (20 pts)</li> <li>Suggestions for Problem 1, Q7: • For Q7, in Python, we suggest using the package/function SARIMAX in the "statsmodels.tsa.statespace" library</li> <li>You can choose the range of values to search for the model parameters. We suggest varying p, q and P, Q each over the range 0 to 3 to constrain the search range.</li> <li>The SARIMA estimation procedure internally uses numerical optimization procedures to find a set of coefficients for the model. These procedures can fail for some combination of model parameter values which in turn can throw Python errors. We must catch these exceptions and skip those configurations that cause a problem. To solve this problem, include "try/except" blocks in your code when</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| In [45]:                     | iterating through the parameter values (pseudocode below): try:  Your code here with the SARIMAX function  except: continue  a. To develop the model, vary the model parameters for the non-seasonal (p,d,q) and seasonal components (P,D,Q) and calculate the output for each combination of parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <pre>In [46]: Out[46]:</pre> | #Using first 6 years of data df_6year = dfp1['Miles'].iloc[0:72] # 6 years = 72 Months df_6year  0 7.269 1 6.775 2 7.819 3 8.371 4 9.069 67 13.731 68 15.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| In [47]:<br>In [97]:         | <pre>69     12.185 70     10.645 71     12.161 Name: Miles, Length: 72, dtype: float64  from itertools import product  #Building Model and Datafram      df_sarima_model = pd.DataFrame()      min_aic = []      for [p,d,q,P,D,Q] in product([0,1,2,3],[0,1],[0,1,2,3],[0,1],[0,1,2,3]):           try:           m = SARIMAX(df 6year, trend='c', order = (p,d,q), seasonal order = (P,D,Q,12)) # Sarima Model</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| In [103                      | <pre>model= m.fit() # Fitting     AIC = model.aic # AIC calculation     if AIC is not None: #Finding minimum AIC         min_aic.append(AIC)         min_aic.sort()         df_sarima_model = df_sarima_model.append({'p': p , 'd': d , 'q': q , 'P': P , 'D': D , 'Q': Q , 'AI     except:         continue #Finding Minimum AIC print("Minimum AIC is =", min_aic[0])  Minimum AIC is = 22.0  df sarima model.head()</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Out[103                      | <pre>p d q P D Q AIC  0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.658861  1 0.0 0.0 0.0 0.0 0.0 0.0 1.0 272.463181  2 0.0 0.0 0.0 0.0 0.0 0.0 2.0 256.994615  3 0.0 0.0 0.0 0.0 0.0 3.0 248.434514  4 0.0 0.0 0.0 0.0 0.0 1.0 0.0 164.079606  df_sarima_model.sort_values(by=['AIC']).head()</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Out[104                      | p         d         q         P         D         Q         AIC           847         3.0         0.0         2.0         1.0         1.0         3.0         22.000000           613         2.0         0.0         3.0         1.0         1.0         146.075045           44         0.0         0.0         1.0         1.0         0.0         146.584422           620         2.0         0.0         3.0         1.0         0.0         146.823471           37         0.0         0.0         1.0         1.0         146.837023   Non Seasonal: p = 3, d = 0, q = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| In [102<br>Out[102           | Seasonal: P= 1, D= 1, Q= 3  AIC for the above parameter is = 22.0  This is very odd, so taking the next best AIC  #Finding the next best AIC  min_aic[1]  146.07504549157454  Non Seasonal: P= 2, d= 0, q= 3  Seasonal: P= 0, D= 1, Q= 1  AIC for the above parameter is = 146.07505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| In [105                      | <ul> <li>b. Use an evaluation criteria such as AIC, BIC or sum squared error or mean squared error to determine the best choice of parameters (p,d,q,P,D,Q). Note: AIC and BIC are metrics that is readily output by the ARIMA model.</li> <li>Using AIC Criteria, best choice of parameters are:</li> <li>AIC of that parameter is</li> <li>This AIC is the lowest among all parameters (Lower the better).</li> <li>1. Use the model parameters determined in Q7 above to forecast for the 7th year. Compare the forecast with actual values. Comment on your observations. (10 pts)</li> <li>#Forecasting for 7 = SARIMAX (df 6year, order = (2,0,3), seasonal order = (0,1,1,12))</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Out[105                      | SARIMAX Results   SARIMAX Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | Covariance Type:         opg           coef         std err         z         P> z          [0.025]         0.975]           ar.L1         0.7191         1.592         0.452         0.651         -2.400         3.838           ar.L2         0.2724         1.589         0.171         0.864         -2.842         3.387           ma.L1         -0.2107         1.621         -0.130         0.897         -3.389         2.967           ma.L2         -0.5824         0.700         -0.832         0.405         -1.954         0.790           ma.S.L12         -0.3607         0.168         -2.150         0.032         -0.690         -0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              | sigma2       0.5947       0.091       6.509       0.000       0.416       0.774         Ljung-Box (L1) (Q): 0.01 Jarque-Bera (JB): 41.44         Prob(Q): 0.93 Prob(JB): 0.00         Heteroskedasticity (H): 5.32 Skew: -0.86         Prob(H) (two-sided): 0.00 Kurtosis: 6.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| In [106 Out[106 In [107      | [1] Covariance matrix calculated using the outer product of gradients (complex-step).  # Forecast for the 7th year using the best model we got from Q7. for_7_predict = for_7_fit.get_forecast(12) for_7_predict <statsmodels.tsa.statespace.mlemodel.predictionresultswrapper 0x19557676820="" at="">  #Actual values for 7th year actual7 = dfpl.iloc[72:84].drop(columns='Sma_pl') actual7</statsmodels.tsa.statespace.mlemodel.predictionresultswrapper>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 107                          | 72       1970-01-01       10.840         73       1970-02-01       10.436         74       1970-03-01       13.589         75       1970-04-01       13.402         76       1970-05-01       13.103         77       1970-06-01       14.933         78       1970-08-01       14.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| In [108<br>Out[108           | 80 1970-09-01 16.234 81 1970-10-01 12.389 82 1970-11-01 11.594 83 1970-12-01 12.772  #Finding MAE between actual and predicted value mae = mean_absolute_error(actual7.Miles, for_7_predict.predicted_mean) mae  0.5427992132747512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| In [109 Out[109 In [110      | <pre>mse = mean_squared_error(actual7.Miles, for_7_predict.predicted_mean) mse  0.791953685081479  sse = np.sum((for_7_predict.predicted_mean - actual7.Miles)**2) print(sse)  9.503444220977748  #Plot between actual and predicted value</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Out[111                      | plt.figure(figsize=(16, 3)) plt.grid() plt.plot(actual7.Month,actual7.Miles, label='Actual 7th year data', color = 'maroon') plt.plot(actual7.Month,for_7_predict.predicted_mean, label='Forecasted 7th year data', color = 'gold') plt.legend() <matplotlib.legend.legend 0x19556554ca0="" at="">  Actual 7th year data Forecasted 7th year data Forecasted 7th year data</matplotlib.legend.legend>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | Mean Absolute Error is 0.5427992132747512, Mean Squared Error is 0.791953685081479 and Sum Squared Error is 9.503444220977748  Lower the error better and more accurate is the forecast. MAE and MSE values are very low so the forecasting model is highly accurate.  Also from the graph it is evident that Actual and forecasted data are quite close and follow same trend except for the region (1970-03 to 1970-05)  Question 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| In [112<br>Out[112           | <pre>winedf = pd.read_csv('TotalWine.csv') winedf.head()  Time (Quarter) TotalWine  0     1     1.486</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| In [113<br>In [114           | <pre>winedf.columns = ['Time','Wine']</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | <pre>plt.plot (winedf['Time'], winedf['Wine'], label = 'Time Series Plot', color = 'maroon') plt.xlabel ('Time (Quarter)') plt.legend() plt.ylabel ('Total Wine') plt.title('Time Series Plot for Wine') plt.grid() plt.xticks(np.arange(1, 60, 4)) # X axis interval of 4 plt.show()</pre> Time Series Plot for Wine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| In [115                      | Seasonal period is, 4 which is a year. (5-1 = 4) b) Apply seasonal differencing to the original time-series. Vary the difference lag from 1, 2, 4, 6. Plot the result for each of these lags. Which of these differences is most suitable to remove the seasonality? (2 pts)  #Seasonal Differencing for lag =1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| کیم                          | <pre>plt.figure(figsize=(16, 3)) sea_diff_wine1= diff(winedf['Wine'], k_diff=0, k_seasonal_diff=1, seasonal_periods=1) plt.plot(sea_diff_wine1, label = 'Seasonal Diff for Lag =1', color = 'maroon') plt.xlabel('Time (Quarter)') plt.grid() plt.legend() plt.ylabel('Seasonal Difference') plt.title('Seasonal Differencing for Lag = 1') plt.show()</pre> Seasonal Differencing for Lag = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| In [116                      | #Seasonal Differencing for lag =2 plt.figure(figsize=(16, 3)) sea_diff_wine2 = diff(winedf['Wine'], k_diff=0, k_seasonal_diff=1, seasonal_periods=2) plt.plot(sea_diff_wine2, label = 'Seasonal Diff for Lag =2', color = 'maroon')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | <pre>plt.plot(sea_diff_wine2, label = 'Seasonal Diff for Lag =2', color = 'maroon') plt.grid() plt.xlabel('Time (Quarter)') plt.legend() plt.ylabel('Seasonal Difference') plt.title('Seasonal Differencing for lag = 2') plt.show()</pre> Seasonal Differencing for lag = 2  Seasonal Differencing for lag = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| In [117                      | #Seasonal Differencing for lag = 4 plt.figure(figsize=(16, 3)) sea_diff_wine4= diff(winedf['Wine'], k_diff=0, k_seasonal_diff=1, seasonal_periods=4) plt.plot(sea_diff_wine4, label = 'Seasonal Diff for Lag =4', color = 'maroon') plt.xlabel('Time (Quarter)') plt.grid() plt.legend()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                              | plt.ylabel('Seasonal Difference') plt.title('Seasonal Differencing for lag =4') plt.show()  Seasonal Differencing for lag =4  Oseasonal Differencing for lag =4  Seasonal Differencing for lag =4  Oseasonal Differencing for lag =4  Oseasonal Differencing for lag =4  Oseasonal Differencing for lag =4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| In [118                      | 10 20 30 40 50<br>Time (Quarter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                              | Seasonal Differencing for lag = 6  1.0  0.5  -1.0  10  10  10  10  10  10  10  10  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| In [119<br>Out[119           | -0.01459707, 0.03758512, -0.06608181, 0.68555932, -0.05158531,<br>-0.0205 , -0.13186071, 0.55301224, -0.05533192, -0.05098654,<br>-0.16658851, 0.43247383, -0.08668489, -0.09922711, -0.18956349,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| In [120                      | 0.36057707, -0.12115055, -0.1329952 , -0.23540279, 0.27197506, -0.14075334, -0.1481723 , -0.25076684, 0.20724364, -0.14985131, -0.14016206, -0.25396157, 0.17482009, -0.1590046 , -0.15594347, -0.27055794, 0.08512343, -0.14183386, -0.140666 , -0.21838452, 0.03854688])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

