Outline

Lectures 1-3: Rules of type theory $W/\Pi, \Sigma, \emptyset, 11, 1N, +, =$ (§1-5 of Rijke)

Today: Universes U (§6)

· Propositions as types, aka the Curry-Howard interpretation (87) Why do we need universus?

- 1) To prove $0 \neq 1$ in \mathbb{N} , i.e., $(0 = 1) \rightarrow \emptyset$
- more generally, define type families by industrian.
- 2) To write polymorphie terms, e.g., instead of def.
 id_A: A > A, for each type A, with a universe U
 - we have id": $\pi_{X:\mathcal{U}}(x) \to \tau(x)$
- 3) To do category theory in a streamlined way, or otherdiscle universes.

What is auniverse? $\{\pi, \Sigma, \emptyset, 1, N, +, = \}$ Slogen: Whatever we can do with types, we can do with a universe. (Just as = is an internalitation of =, a universe U is an internalization of (A type)

Det (at meta level) A universe (U,T) is a type family U type, X:U + T(X) type with:

· _+_; U → U > U st. T(x + y)=T(x)+T(y)

 $\& \quad \angle \stackrel{\times}{=} : \quad \prod_{\chi : \mathcal{U}} \left(\mathcal{T}(\chi) \rightarrow \mathcal{T}(\chi) \rightarrow \mathcal{U} \right)$ S.t. $T(x \neq y) = (x \neq y)$ for very $X:\mathcal{U}, xy:T(x)$

Assume enough universes

Postulate: Whenever we have finitely many type families:

M, HA, tope, , The HAn type

there is a universe (U,T) in the empty context contains these; W terms $T_i \vdash A_i : U$ s.t. $T_i \vdash T(A_i) = A_i$ type for all i.

Examples

- · n=0 (no type families): we get a base universe (No, To)
- · If (U,T) is a universe, then there is a successor universe (ut, Tt): I ut type ~ + ŭ: ut & +t(ŭ)=u

X: ULT(X) type ~>> X: ULT(X): Ut &

 $X: \mathcal{U} \vdash \mathcal{T}^{+}(\mathring{\mathcal{T}}(X)) \stackrel{!}{=} \mathcal{T}(X)$

· H (U,Tu), (V,Tv) are

U tope

X: U + Tulx) tupe V type

X:UFT Ty(X) type

universes, then we have a universe (UUV, Tuuv)

W: WUV

X:UF Tu(X): NUV

V: UUV

X:V + ~(X): UUV

Turk ü) = U

st. etc.

Discussion

- h protice, we leave out the T(-)s, because this can be inforred from context (no pun intended).
- · Universes are open-ended: no requirement that U, U, ULUV are minimal! + If Juhan we add new type formers, we'll want the universes to be closed under these.
- · No, Not, Not, ... is a universe hierarchy (W-types, HITS, ...)
 but there's no requirement that all types lie in this.

 OTOH, the reflection principle doesn't give more universes than
 these.
- We might expect, for a U, Ut, where Lift: U > Ut, Lift (N) = INT: Ut. This is not assumed, here and in Agda. It's called: cumulativity

Type in type?!
Could re have a universe \mathcal{U} , \mathcal{U} , \mathcal{U} : \mathcal{U} , $\mathcal{T}(\mathcal{X}) = \mathcal{U}$?
No! Girard showed in his '72 thesis this is inconsistent.
If we further assume a gon ind type in U, then ?
Simpler version due Hurkins 195 vos see githulo. If we further assume a gourind type in U, then a version of Russell's paradox approxis. - arger universes? V: sup:T((x > V) > V
_arger universes?

Reflection on the universe postulate, we can propose larger universes, e.g., Palmonen's super-universe. No ch large cardinals in softheory.

Universe polymorphism

For every universe U, we now have $id^{U}: \Pi(X \to X)$ $id^{U} = \chi \chi \lambda_{X} \cdot \chi$.

this applies to types in N, vol to all types, prost assistants (Asda, Coq, Lean, ...) have universe polymorphism.

mechanisms of different sorts.

In Agda, Type = No Type = Not My Level judgments My Level type.

Examples of universes in use

is-true: bood > M

is-true false = A

is-true false = A

is-true true = A

by transport; 1 = A

· Need a universe to do this,

otherwise we a model, "types as propositions" model

where X is a type is interpreted

as a subset of I.

Observational equality on IN

We wont Eg-IN: N-N > V that vepr. = N. Eg-N 0 0 = 1 E9-N O (snem) = 0 Eq-N (sucn) $\partial \neq \emptyset$ Eg-W (sucn) (sucm) = Eg-N n m

or, w/ N-elim:

Eq-IN n m; = ind-N $(\chi y' \text{ and-N} (\chi, \chi, \chi, \chi, \chi),$

← n =0

E na sne x

 $\times f \cdot \lambda y \cdot ind \cdot N \left(\mathcal{D}, \mathcal{Z} \times f_{\mathcal{Z}}, \mathcal{Y} \right)$

(f:N > V)

repr- Eq-N(x,-)

n) m

1 m=0 1 m= suc 7

Eg-N 0 0 = 1 We prove this is reflexive, i.e., Eq-N 0 (sucm) = 0 Eq-N (such) $0 \neq 0$ MEg-Wnn by ind on n Eg-N (sucn) (sucn) = Eg-N nm Then by puth ind. ve get $\prod_{N,m:N} \left(N = M \rightarrow E_{\widehat{q}} - N N \right).$ By double ind. We fet g: Thim: M (Eg-N nm -) n=m) g ∂ c = refle g ∂ (sne m) c = 0-ind c : n=m g (sne n) (sne m) c = ap suc (g n m c) ; suc <math>n=s n=m

Curry-Howard (Propositions as types) prop's P (mash! statements proof A P eq. of proofs of P P => Q JP PVQ $A^{\times \cdot \vee} \mathcal{A}(\times)$ J x: APG)

Xãy

Brief history (PUZZ) types A 1908: Bronner, rejets LEM terms of A judgmental eg. of terns 1934 = curry (1936: Turing machine) 1958: Curry-Feys realizability case of arithmetic A - B $A \rightarrow p$ Per Martin Lot David Scott AtB T(x) A B(x)Zx: ABW etc. X = V

Example: Divisibility on M Det If k,n: N, k/n type "there exist dilN sd, k.d=n" $(k|n) := \sum_{d \in N} k \cdot d = n$ frof For all n, 1/n and n/n. encoded os: Thin (IIn) x (nIn) w/ prod: \(\lambda.((n,pn),(1,qn))\) Pn:1.n=n) An: n.1= n Those For all n, nlo, ~ nlo, ~ nlo w/ prot/term $\lambda_{n} (0, r_{n}), r_{n}; n \cdot 0 = 0$ 0 10 = Zd:N0-d=0 we have terms (d, sd):010, sd:0.d=0.

=xample Type theoretic axion of	Moice:
Suppose A, B types, x: A, y: B h	_
Corre	espondence/hotergeneous rel.
Then (T) Z R(x,y)) & (C-H int. of AC, 7)	$\Rightarrow \left(\sum_{f:A>B} \prod_{X:A} R(x,f_X) \right)$
(C-H'int of AC, >)	
$((xH), \gamma q \cdot \chi \zeta))$	
$(f,h) \mapsto \lambda_{X} \cdot (f_{X}, h_{X})$ $(f,h) \mapsto \lambda_{X} \cdot (f_{X}, h_{X})$	Well return later to
(z-md)	the Ireal Ach