Fyzikální praktikum II

2. Meranie hysteréznej slučky balistickým galvanometrom

Jméno: Michal Červeňák Kolega: Ondřej Glac

Kruh: **Útorok** Číslo skup.: 1

Měřeno: 7.3.2017 Zpracování: 4 h Klasifikace:

1 Pracovní úkol

1. DU: Zjistěte, jak určíte koercitivní sílu, remanenci a magnetizační ztráty. (např. [3] str. 53 - 57)

2. Změřte hysterezní smyčku toroidu z dané feromagnetické látky a graficky ji znázorněte.

3. Určete koercitivní sílu HK, remanenci BR a magnetizační ztráty.

4. Diskutujte, jak magnetické pole země ovlivňuje měření a zda-li je možné jej s danou aparaturou měřit.

2 Teória

Cievkou s n_1 závitami navinutej na toroide o polomere r, prechádza prúd I_M Potom pre túto cievku môžeme intenzitu magnetického poľa H vyjadriť ako

$$H = \frac{n_1 I_M}{2\pi r} \,. \tag{1}$$

FJFI ČVUT v Praze

Pre zmenu magnetickej indukcie Bv závislosti na výchylke balistického galvanometru splatí vzťah

$$\Delta B = \frac{BK_b \lambda s_1^{\cdot}}{n_2 S} \,, \tag{2}$$

pričom K_b je balistická konštanta, R je odpor na odporovej dekáde, s_1 je výchylka galvanometra a n_2 počet meracích závitov. pre balistickú konštantu platí

$$RK_b\lambda = \frac{2L_{12}I_i}{s_1}\,,$$

kde L_{12} je normálová cievka so známou indukčnosťou, a s_1 je výchylka pri zmene prúdu o ${\cal I}_i$

2.0.1 Spracovanie chýb merania

Označme $\langle t \rangle$ aritmetický priemer nameraných hodnôt $t_i,$ a Δt hodnotu $\langle t \rangle - t,$ pričom

$$\langle t \rangle = \frac{1}{n} \sum_{i=1}^{n} t_i \,, \tag{3}$$

a chybu aritmetického priemeru

$$\sigma_0 = \sqrt{\frac{\sum_{i=1}^n (t_i - \langle t \rangle)^2}{n(n-1)}},$$
(4)

pričom n je počet meraní.

3 Pomôcky

Balistický galvanometr, 2 odporové dekády, odporový normál (10Ω), toroidální cívka, vypínač, rezistor, 2 přepínače, 1 komutátor, digitální multimeter, stabilizovaný zdroj, normál vzájemné indukčnosti.

4 Postup merania

4.1 Stojaté vlněnie na strune

- 1. Podľa Obr. 3 z [[1]] bol zostavený elektricky obvod.
- 2. Príd bol nastavený na $I=2\,\mathrm{A}$
- 3. pre tento prúd bola cievka komutovaná a pozorovala sa výchylka galvanometru v závislosti na odpore R_2 , a našiel sa taký najmenší odpor, pre ktorý ostala výchylka ešte na stupnic.
- 4. Cievka bola prekomutovaná rýchlo 5krát, vypnutím prepínača V1, bola zapojená do obvodu dekáda R2 a na nej navolený odpor, ktorý v obvode spôsobil pokles prúdu, následne bol vypínač zapnutý cievka opäť prekomutovaná, následne sa pripojil do obvodu pomocou prepínaču P galvanometer a vypínač V2 bol vypnutý. Výchylka galvanometru bol zaznamenaná.
- 5. Do obvodu bol pripojený namiesto toroidu indukčný normál a bola nameraná výchylka galvanometru pri komutovaní v závislosti na prúde.

5 Výsledky merania

Pre výpočty boli použité nasledujúce konštanty

$$\begin{split} r &= 17.1 \cdot 10^3 \, \mathrm{m} \,, \\ n_1 &= 62 \,, \\ n_2 &= 400 \,, \\ S &= 24.3 \cdot 10^{-6} \, \mathrm{m} \,, \\ L_{12} &= 7.27 \, \mathrm{mH} \,, \end{split}$$

K výpočtu balistickej konštanty sme použili namerané dáta $R=20\,\mathrm{k}\Omega,\,s=10{,}35\,\mathrm{cm}$ a $I=0{,}206\,\mathrm{A}.$

V tabuľke 1 sú namerané hodnoty, pre oba smery slučky.

Hodnoty sú vynesené do grafu Obr. 1

$\frac{I}{[\mathrm{mA}]}$	$\frac{s}{[\mathrm{cm}]}$	$\frac{I'}{[mA]}$	$\frac{s'}{[\mathrm{cm}]}$	$\frac{H}{[A/m]}$	$\frac{\Delta B}{[\mathrm{T}]}$	$\frac{H'}{[\mathrm{A/m}]}$	$\frac{\Delta B'}{[\mathrm{T}]}$
0.08	2.70	0.08	14.4	43.2	0.081	46.2	0.43
0.09	2.00	0.09	14.5	50.7	0.060	51.9	0.43
0.11	1.20	0.01	4.5	60.5	0.036	5.8	0.13
0.12	1.00	_	_	69.8	0.030	_	-
0.131	0.9	0.141	15.5	75.5	0.027	81.4	0.46
0.156	0.6	-	_	90.0	0.018	-	-
0.174	0.8	0.172	17	100.4	0.024	99.3	0.51
0.195	0.2	0.065	13.5	112.5	0.006	37.5	0.40
0.051	3	0.051	14.5	29.4	0.090	29.4	0.43
0.031	4.4	0.031	13.3	17.9	0.13	17.9	0.40
0.025	4.6	0.025	6.6	14.4	0.14	14.4	0.20
0.015	4.6	_	_	8.7	0.14	-	-
0	4.6	0	3.6	0	0.14	0	0.10
-0.031	8.4	_	_	-17.9	0.25	-	-
-0.038	8.5	-0.038	2	-21.9	0.25	-21.9	0.06
-0.051	13.6	-0.051	2	-29.4	0.41	-29.4	0.06
-0.06	14.1	-0.06	1.1	-34.6	0.42	-34.6	0.03
-0.075	14.7	-0.074	1.5	-43.3	0.44	-42.7	0.04
-0.098	14.8	-0.098	1.3	-56.6	0.44	-56.6	0.04
-0.121	15.6	-	-	-69.8	0.47	-	-
-0.143	15.5	-	_	-82.5	0.46	-	-
-0.173	15.9	-	_	-99.8	0.48	-	-
-0.198	16.5	-0.197	0.9	-114.3	0.49	-113.7	0.03

Tab. 1: Namerané dáta prúdu I a amplitúdy kyvadla s a z nich vypočítané pomocou 1 a 2 hodnoty intenzity magnetického poľa H a magnetická indukcie B, pre kladné a záporné prúdy kde opačný sme je označený pomocou $^{\prime}$.

Obr. 1: Hysterzná slučka z nameraných dát, preložená erf(x), kde H je intenzita magnetického poľa a B je magnetická indukcia.

Z nameraných dát dostávame $B_r = 0.9 \pm 0.1 \, \mathrm{H}$ a z preloženia grafu funkciami

$$g(x) = (0.22 \pm 0.01) \cdot \operatorname{erf} ((0.023 \pm 0.002) \cdot (x + (10.8 \pm 2.0))),$$

$$f(x) = (0.22 \pm 0.01) \cdot \operatorname{erf} ((0.023 \pm 0.002) \cdot (x + (13.2 \pm 2.1))),$$

odkiaľ dostávame $H_k = 12.05 \pm 1.2 \text{A/m}.$

Magnetické straty boli pomocou určené z grafu ako $x = 70.9 \,\mathrm{A\cdot m^{-1}\cdot T}.$

6 Diskusia

Jedným zo zdrojov chýb merania je nepresnosť určovania polohy na balistickom galvanometri, ten sa pri zapojení do obvodu často vychýlil, a nezaujal nulovú polohu. Táto počiatočná výchylka je v ráde 1 cm. Hodnota remanencie bola určená z tabuľky teda je pomerne presná. Však hodnotu koercitívnej sily sme určili z fitu dát. Tu bola použitá erf (x), ktorá nejak nezapadá do modelu, ale tvarom krivky najlepšie popisovala dáta v nultom priblížení, polynómy vyšších rádov neboli moc dobre použiteľné keďže krivku neopisovali dobre v krajných bodoch.

Magnetické pole zeme podľa mňa nemohlo tento experiment ovplyvniť, pretože na podmienkach experimentu ho môžeme považovať za homogénne.

7 Záver

Hodnota remanencie bola určená ako $B_r=0.9\pm0.1\,\mathrm{H}.$ Koercitívna sila bola určená na $B_r=0.9\pm0.1\,\mathrm{H}.$

 ${\bf A}$ hystérzna krivka bola vykreslená do grafu Obr. 1

Reference

[1] Měření hysterezní smyčky balistickým galvanometrem [cit. 13.03.2017]Dostupné po prihlásení z Kurz: Fyzikální praktikum II:https://praktikum.fjfi.cvut.cz/pluginfile.php/415/mod_resource/content/8/Hystereze_170220.pdf