

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/019749

International filing date: 24 December 2004 (24.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP
Number: 2003-435089
Filing date: 26 December 2003 (26.12.2003)

Date of receipt at the International Bureau: 17 February 2005 (17.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

24.12.2004

日本特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 2003年12月26日
Date of Application:

出願番号 特願2003-435089
Application Number:
[ST. 10/C]: [JP2003-435089]

出願人 武田薬品工業株式会社
Applicant(s):

2005年 2月 4日

特許庁長官
Commissioner,
Japan Patent Office

小川

【書類名】 特許願
【整理番号】 A6182
【提出日】 平成15年12月26日
【あて先】 特許庁長官殿
【国際特許分類】 C07D277/00
C07D263/00

【発明者】
【住所又は居所】 大阪府茨木市高田町 20-5
【氏名】 安間 常雄

【発明者】
【住所又は居所】 兵庫県西宮市田代町 8-7-306
【氏名】 佐々木 忍

【発明者】
【住所又は居所】 兵庫県神戸市兵庫区松本通5丁目 3-12
【氏名】 坂井 望

【特許出願人】
【識別番号】 000002934
【氏名又は名称】 武田薬品工業株式会社

【代理人】
【識別番号】 100080791
【弁理士】
【氏名又は名称】 高島 一
【電話番号】 06-6227-1156

【手数料の表示】
【予納台帳番号】 006965
【納付金額】 21,000円

【提出物件の目録】
【物件名】 特許請求の範囲 1
【物件名】 明細書 1
【物件名】 要約書 1
【包括委任状番号】 0109317

【書類名】特許請求の範囲

【請求項 1】

式 (I)

【化1】

[式中、XはSまたはOを、

R¹およびR²は同一または異なって、それぞれ水素原子、置換されていてもよいC₆-₁₋₄アリール基、置換されていてもよい複素環基または置換されていてもよいC₁₋₆アルキル基を示すか、R¹およびR²は互いに結合して、それらが結合する炭素原子と共に環を形成し、

Eは-W¹-N(R⁵)-W²-、-W¹-CH(R⁶)-O-W²-、-W¹-O-CH(R⁶)-W²-または-W¹-CH(R⁶)-W²- (W¹及びW²は同一または異なる、結合手または置換されていてもよいC₁₋₃アルキレン基を、R⁵およびR⁶は置換されていてもよい複素環基または置換されていてもよい炭化水素基を示す。但し、XがSである場合、R⁵およびR⁶はC₁₋₆アルキル基でない。)を、

環S¹は置換されていてもよいC₁₋₆アルキル基、置換されていてもよいC₁₋₆アルコキシ基およびハロゲン原子から選ばれる置換基をさらに有していてもよいベンゼン環を

、R³およびR⁴は同一または異なる、それぞれ水素原子、ハロゲン原子、置換されていてもよいC₁₋₆アルキル基または置換されていてもよいC₁₋₆アルコキシ基を、Rは置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基を示す。]で表わされる化合物またはその塩。

【請求項 2】

請求項1記載の化合物またはその塩のプロドラッグ。

【請求項 3】

R³およびR⁴が同一または異なる、それぞれ水素原子またはハロゲン原子である請求項1記載の化合物またはその塩。

【請求項 4】

Eが-W¹-N(R⁵)-W²- (W¹及びW²は同一または異なる、結合手または置換されていてもよいC₁₋₃アルキレン基を、R⁵は置換されていてもよい複素環基または置換されていてもよい炭化水素基を示す。但し、XがSである場合、R⁵はC₁₋₆アルキル基でない。)である請求項1記載の化合物またはその塩。

【請求項 5】

Rがヒドロキシ基である請求項1記載の化合物またはその塩。

【請求項 6】

請求項1記載の化合物もしくはその塩またはそのプロドラッグを含有してなるGPR40受容体機能調節剤。

【請求項 7】

請求項1記載の化合物もしくはその塩またはそのプロドラッグを含有してなる医薬。

【請求項 8】

糖尿病治療剤である請求項7記載の医薬。

【書類名】明細書

【発明の名称】チアゾリルまたはオキサゾリル置換-3-(4-ベンジルオキシフェニル)プロパン酸誘導体

【技術分野】

【0001】

本発明は、GPR40受容体機能調節作用を有する、糖尿病治療剤として有用な新規化合物に関する。

【背景技術】

【0002】

近年、G蛋白質共役型受容体(G Protein-coupled Receptor; GPCR)の1つであるGPR40のリガンドが脂肪酸であり、臍臓のβ細胞にあるGPR40がインスリン分泌作用と深く関わっていることが報告されており(非特許文献1)、GPR40アゴニストはインスリン分泌を促進し、GPR40アンタゴニストはインスリン分泌を阻害し、これらのアゴニストおよびアンタゴニストは2型糖尿病、肥満症、耐糖能異常、インスリン抵抗性、神経退縮症(アルツハイマー病)などの治療薬として有用である(特許文献1および2参照)。

一方、糖尿病の治療薬として有用な化合物が多数報告されている。

例えば、特許文献3には、式：

【0003】

【化1】

【0004】

[X^1 : C_{1-3} アルキル等; R^1 、 R^2 : H等; R^3 、 R^4 、 R^5 : H、 CH_3 等; R^{26} 、 R^{27} : H等; m : 0-3; X^2 : O等; R^6 、 R^7 : H等; Y 、 Z : 一方がCH、他方がSまたはO; R^8 : フェニル等; R^9 : C_{1-6} アルキル等]

で表わされるペルオキシソーム増殖因子活性化受容体(PPAR)調節剤がPPAR媒介疾患(例えば、糖尿病)の予防・治療剤として有用であることが開示されている。

特許文献4には、式：

【0005】

【化2】

【0006】

[R^1 : 置換されていてもよい5員芳香族複素環基; X : 結合手、O、S、 $-NR^6-$ (R^6 : H、置換されていてもよい炭化水素基等)等; Q : C_{1-20} の2価の炭化水素基; Y : 結合手、O、S、 $-NR^7-$ (R^7 : H、置換されていてもよい炭化水素基等)等; 環A: 1ないし3個の置換基をさらに有していてもよい芳香環; Z : $-(CH_2)_n-Z^1-$ (n : 1~8、 Z^1 : O等)等; 環B: 1ないし3個の置換基をさらに有していてもよいベンゼン環等; U : 結合手等; W : C_{1-20} の2価の炭化水素

基； R^3 ： $-OR^8$ （ R^8 ：H、置換されていてもよい炭化水素基）または $-NR^9R^{10}$ （ R^9 、 R^{10} ：H、置換されていてもよい炭化水素基等）等；ただし、環Bが1ないし3個の置換基をさらに有していてもよいベンゼン環の時、Uは結合手を示す】

で表わされるアルカン酸誘導体が、糖尿病、高脂血症、耐糖能異常などの予防・治療剤として有用であることが開示されている。

特許文献5には、式：

【0007】

【化3】

【0008】

[R^1 ：C₁₋₈アルキル、C₁₋₈アルコキシ、ハロゲン原子、トリフルオロメチル等； R^2 ： $-COOR^3$ （ R^3 ：H、C₁₋₄アルキル）等；A：C₁₋₈アルキレン等；G：C₁₋₈アルキル、C₁₋₈アルコキシ、ハロゲン原子、トリフルオロメチルまたはニトロで置換されてよい炭素環等；E¹：C₁₋₈アルキレン等；E²：-O-等；E³：単結合等；n：0、1；Cycl環：存在しない等] で表わされる化合物がPPAR受容体の制御作用を有し、糖尿病、肥満、シンドロームX、高コレステロール血症、高リポ蛋白血症などの代謝異常疾患などの予防・治療剤として有用であることが開示されている。

特許文献6には、式：

【0009】

【化4】

【0010】

[環ArI、環ArII、環ArIII：置換していてもよい縮合環等；A：-O-、-S-、結合、-NR₁₃-（R₁₃：H、アルキル等）等；B：-O-等；D：結合、エチレン；E：結合、エチレン；X：H等；Z：R₂₁O₂C-、(R₂₁)₂NCO-（R₂₁：H、アルキル等）等；a、b、c、e：0-4；d：0-5；f：0-6；R₁～R₁₂：H等] で表わされる化合物がPPARリガンド受容体結合剤、PPAR受容体アゴニスト、PPAR受容体アンタゴニストとして有用であることが開示されており、糖尿病治療剤として用いることができる。

特許文献7には、式：

【0011】

【化5】

【0012】

[X: COOH(エステル含む)等; X¹: CH₂等; 点線はX¹がCHの時のみ、描かれた結合が二重結合であることを示す; X²: O等; R¹、R²: H、Me等; n: 1、2; Y、Z: 一方がN、他方がSまたはO; y: 0-5の整数; R³: CF₃等] で表わされる化合物がPPARδアゴニストとして用いられ、PPARδ媒介疾患（例えば高脂血症、動脈硬化症、1または2型糖尿病など）の予防・治療剤として有用であることが開示されている。

特許文献8には、式：

【0013】

【化6】

【0014】

[A: 少なくともO、N、Sから選ばれるヘテロ原子を1つ含む5-6員ヘテロ環等; B: C₁₋₆アルキレン等; ALK: C₁₋₃アルキレン; R¹: H、C₁₋₃アルキル; Z: ハロゲンで置換されていない-(C₁₋₃アルキレン)フェニル等] で表わされる化合物がPPARγアゴニストとして有用であり、高血糖、1または2型糖尿病、高脂血症等の予防・治療剤として用いることができる事が開示されている。

特許文献9には、式：

【0015】

【化7】

【0016】

[Ar: 1-5個の同一又は異なったハロゲン原子等で置換されたフェニル等; R¹: ハロゲン原子等; R²: H等; R³、R⁴: H、ハロゲン原子; m: 1、2; n: 2-7] で表わされる化合物が優れたインスリン抵抗性改善作用、血糖低下作用、脂質低下作用、抗炎症作用、免疫調節作用、過酸化脂質生成抑制作用、PPAR活性化作用を有し、糖尿病治療薬として有用であることが開示されている。

特許文献10には、式：

【0017】

【化8】

【0018】

[A: OH等で置換されていてもよいアリール; X¹、X²: H等; Y、Z: H等; n: 0-3; m: 0、1; Q: O等; Ar: アリーレン等; R¹-R⁴: H等]

で表わされる化合物がP P A R関連疾患の治療薬として有用であり、例えば2型糖尿病、耐糖能異常、インスリン抵抗性、高トリグリセリド血症等の治療薬として有用であることが開示されている。

しかしながら、これら公知の糖尿病治療薬がG P R 4 0受容体機能調節作用を有することは全く開示がなく、これまでG P R 4 0受容体機能調節作用を有する化合物（G P R 4 0アゴニストおよびG P R 4 0アンタゴニストとして有用な化合物）について報告されておらず、G P R 4 0受容体機能調節作用を有する化合物の開発が望まれている。

【非特許文献1】ネイチャー (Nature)、2003年、422巻、173-176頁

【特許文献1】国際公開第03/068959号パンフレット

【特許文献2】国際公開第02/057783号パンフレット

【特許文献3】国際公開第02/092590号パンフレット

【特許文献4】国際公開第02/053547号パンフレット

【特許文献5】国際公開第99/11255号パンフレット

【特許文献6】国際公開第00/64876号パンフレット

【特許文献7】国際公開第01/00603号パンフレット

【特許文献8】国際公開第97/31907号パンフレット

【特許文献9】国際公開第02/083616号パンフレット

【特許文献10】国際公開第01/55085号パンフレット

【発明の開示】

【発明が解決しようとする課題】

【0019】

本発明は、インスリン分泌促進薬や糖尿病などの予防・治療薬として有用なG P R 4 0受容体機能調節作用を有する新規化合物を提供することを目的とする。

【課題を解決するための手段】

【0020】

本発明者らは、種々鋭意研究を重ねた結果、後記式(I)で表わされる化合物が予想外にも優れたG P R 4 0受容体アゴニスト活性を有し、更に安定性等の医薬品としての物性においても優れた性質を有しており、哺乳動物のG P R 4 0受容体関連病態または疾患の予防・治療薬として安全でかつ有用な医薬となることを見出し、これらの知見に基づいて本発明を完成した。

【0021】

すなわち、本発明は、

(1) 式(I)

【0022】

【化9】

【0023】

[式中、XはSまたはOを、

R¹およびR²は同一または異なって、それぞれ水素原子、置換されていてもよいC₆-C₁₄アリール基、置換されていてもよい複素環基または置換されていてもよいC₁-C₆アルキル基を示すか、R¹およびR²は互いに結合して、それらが結合する炭素原子と共に環を形成し、

Eは-W¹-N(R⁵)-W²-、-W¹-CH(R⁶)-O-W²-、-W¹-O-C(H(R⁶))-W²-または-W¹-CH(R⁶)-W²- (W¹及びW²は同一または異なるて、結合手または置換されていてもよいC₁-C₃アルキレン基を、R⁵およびR⁶は置換されていてもよい複素環基または置換されていてもよい炭化水素基を示す。但し、XがSである場合、R⁵およびR⁶はC₁-C₆アルキル基でない。)を、

環S¹は置換されていてもよいC₁-C₆アルキル基、置換されていてもよいC₁-C₆アルコキシ基およびハロゲン原子から選ばれる置換基をさらに有していてもよいベンゼン環を、

R³およびR⁴は同一または異なるて、それぞれ水素原子、ハロゲン原子、置換されていてもよいC₁-C₆アルキル基または置換されていてもよいC₁-C₆アルコキシ基を、Rは置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基を示す。]で表わされる化合物またはその塩。

(2) 上記(1)の化合物またはその塩のプロドラッグ。

(3) R³およびR⁴が同一または異なるて、それぞれ水素原子またはハロゲン原子である上記(1)の化合物またはその塩。

(4) Eが-W¹-N(R⁵)-W²- (W¹及びW²は同一または異なるて、結合手または置換されていてもよいC₁-C₃アルキレン基を、R⁵は置換されていてもよい複素環基または置換されていてもよい炭化水素基を示す。但し、XがSである場合、R⁵はC₁-C₆アルキル基でない。)である上記(1)の化合物またはその塩。

(5) Rがヒドロキシ基である上記(1)の化合物またはその塩。

(6) 上記(1)の化合物もしくはその塩またはそのプロドラッグを含有してなるGPR40受容体機能調節剤。

(7) 上記(1)の化合物もしくはその塩またはそのプロドラッグを含有してなる医薬。

(8) 糖尿病治療剤である上記(7)の医薬。

【発明の効果】

【0024】

本発明の化合物またはそのプロドラッグは、優れたGPR40受容体機能調節作用を有しており、糖尿病などの予防・治療剤として用いることができる。

【発明を実施するための最良の形態】

【0025】

本明細書中の「ハロゲン原子」としては、特に断りのない限り、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。

本明細書中の「置換されていてもよい炭化水素基」としては、特に断りのない限り、例えば、「置換されていてもよいC₁-C₆アルキル基」、「置換されていてもよいC₂-C₆

アルケニル基」、「置換されていてもよいC₂-6アルキニル基」、「置換されていてもよいC₃-8シクロアルキル基」、「置換されていてもよいC₆-14アリール基」、「置換されていてもよいC₇-16アラルキル基」などが挙げられる。

本明細書中の「C₁-6アルキル基」としては、特に断りのない限り、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシルなどが挙げられる。

本明細書中の「C₂-6アルケニル基」としては、特に断りのない限り、例えばビニル、プロペニル、イソプロペニル、2-ブテン-1-イル、4-ペントエン-1-イル、5-ヘキセン-1-イルなどが挙げられる。

【0026】

本明細書中の「C₂-6アルキニル基」としては、特に断りのない限り、例えば2-ブチン-1-イル、4-ペントエン-1-イル、5-ヘキシン-1-イルなどが挙げられる。

本明細書中の「C₃-8シクロアルキル基」としては、特に断りのない限り、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどが挙げられる。

本明細書中の「C₆-14アリール基」としては、特に断りのない限り、例えばフェニル、1-ナフチル、2-ナフチル、2-ビフェニリル、3-ビフェニリル、4-ビフェニリル、2-アンスリルなどが挙げられる。該C₆-14アリールは、部分的に飽和されてもよく、部分的に飽和されたC₆-14アリールとしては、例えばテトラヒドロナフチルなどが挙げられる。

本明細書中の「C₇-16アラルキル基」としては、特に断りのない限り、例えばベンジル、フェネチル、ジフェニルメチル、1-ナフチルメチル、2-ナフチルメチル、2,2-ジフェニルエチル、3-フェニルプロピル、4-フェニルブチル、5-フェニルペンチル、2-ビフェニリルメチル、3-ビフェニリルメチル、4-ビフェニリルメチルなどが挙げられる。

【0027】

本明細書中の「置換されていてもよいヒドロキシ基」としては、特に断りのない限り、例えば、「ヒドロキシ基」、「置換されていてもよいC₁-10アルコキシ基」、「置換されていてもよい複素環オキシ基」、「置換されていてもよいC₆-14アリールオキシ基」、「置換されていてもよいC₇-16アラルキルオキシ基」などが挙げられる。

本明細書中の「C₁-6アルコキシ基」としては、特に断りのない限り、例えばメトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、tert-ブトキシ、ペンチルオキシ、ヘキシルオキシなどが挙げられる。また、本明細書中の「C₁-10アルコキシ基」としては、上記C₁-6アルコキシ基に加えて、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシなどが挙げられる。

本明細書中の「複素環オキシ基」としては、後述の「複素環基」で置換されたヒドロキシ基が挙げられる。該複素環オキシ基の好適な例としては、テトラヒドロピラニルオキシ、チアゾリルオキシ、ピリジルオキシ、ピラゾリルオキシ、オキサゾリルオキシ、チエニルオキシ、フリルオキシなどが挙げられる。

本明細書中の「C₆-14アリールオキシ基」としては、特に断りのない限り、例えば、フェノキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。

本明細書中の「C₇-16アラルキルオキシ基」としては、特に断りのない限り、例えばベンジルオキシ、フェネチルオキシなどが挙げられる。

本明細書中の「C₁-6アルキルチオ基」としては、特に断りのない限り、例えばメチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、sec-ブチルチオ、tert-ブチルチオ、ヘキシルチオなどが挙げられる。

【0028】

本明細書中の「複素環基」としては、特に断りのない限り、例えば、環構成原子として、炭素原子以外に窒素原子、硫黄原子及び酸素原子から選ばれる1又は2種、1ないし4個のヘテロ原子を含む5ないし14員（単環、2環又は3環式）複素環基、好ましくは（i）5ないし14員（好ましくは5ないし10員）芳香族複素環基、（ii）5ないし10

員非芳香族複素環基などが挙げられる。なかでも5または6員芳香族複素環基が好ましい。具体的には、例えばチエニル（例：2-チエニル、3-チエニル）、フリル（例：2-フリル、3-フリル）、ピリジル（例：2-ピリジル、3-ピリジル、4-ピリジル）、チアゾリル（例：2-チアゾリル、4-チアゾリル、5-チアゾリル）、オキサゾリル（例：2-オキサゾリル、4-オキサゾリル、5-オキサゾリル）、キノリル（例：2-キノリル、3-キノリル、4-キノリル、5-キノリル、8-キノリル）、イソキノリル（例：1-イソキノリル、3-イソキノリル、4-イソキノリル、5-イソキノリル）、ピラジニル、ピリミジニル（例：2-ピリミジニル、4-ピリミジニル）、ピロリル（例：1-ピロリル、2-ピロリル、3-ピロリル）、イミダゾリル（例：1-イミダゾリル、2-イミダゾリル、4-イミダゾリル）、ピラゾリル（例：1-ピラゾリル、3-ピラゾリル、4-ピラゾリル）、ピリダジニル（例：3-ピリダジニル、4-ピリダジニル）、イソチアゾリル（例：3-イソチアゾリル、4-イソチアゾリル、5-イソチアゾリル）、イソキサゾリル（例：3-イソキサゾリル、4-イソキサゾリル、5-イソキサゾリル）、ベンゾ[*b*]チエニル（例：2-ベンゾ[*b*]チエニル、2-ベンゾイミダゾリル、3-ベンゾ[*b*]チエニル）、ベンゾ[*b*]フラニル（例：2-ベンゾ[*b*]フラニル、3-ベンゾ[*b*]フラニル）などの芳香族複素環基；例えばピロリジニル（例：1-ピロリジニル、2-ピロリジニル、3-ピロリジニル）、オキサゾリジニル（例：2-オキサゾリジニル）、イミダゾリニル（例：1-イミダゾリニル、2-イミダゾリニル、4-イミダゾリニル）、ピペリジニル（例：1-ピペリジニル、2-ピペリジニル、3-ピペリジニル、4-ピペリジニル）、ピペラジニル（例：1-ピペラジニル、2-ピペラジニル）、モリホリニル（例：2-モルホリニル、3-モルホリニル、4-モルホリニル）、チオモルホリニル（例：2-チオモルホリニル、3-チオモルホリニル、4-チオモルホリニル）、テトラヒドロピラニルなどの非芳香族複素環基などが挙げられる。

【0029】

本明細書中の「C₁-₆アルキルスルホニル基」としては、特に断りのない限り、例えばメチルスルホニル、エチルスルホニル、プロピルスルホニル、イソプロピルスルホニル、ヘキシルスルホニル等が挙げられる。

本明細書中の「C₁-₆アルキルスルフィニル基」としては、特に断りのない限り、例えばメチルスルフィニル、エチルスルフィニル、プロピルスルホニル、イソプロピルスルホニル、ヘキシルスルフィニル等が挙げられる。

本明細書中の「C₆-₁₄アリールスルホニル基」としては、特に断りのない限り、例えば、フェニルスルホニル、1-ナフチルスルホニル、2-ナフチルスルホニルなどが挙げられる。

本明細書中の「C₆-₁₄アリールスルフィニル基」としては、特に断りのない限り、例えば、フェニルスルフィニル、1-ナフチルスルフィニル、2-ナフチルスルフィニルなどが挙げられる。

【0030】

本明細書中の「エステル化されていてもよいカルボキシル基」としては、特に断りのない限り、例えばカルボキシル、C₁-₆アルコキシカルボニル基（例：メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、tert-ブトキシカルボニル等）、C₆-₁₄アリールオキシカルボニル基（例：フェノキシカルボニル等）、C₇-₁₆アラルキルオキシカルボニル基（例：ベンジルオキシカルボニル、フェネチルオキシカルボニル等）などが挙げられる。

【0031】

本明細書中の「ハロゲン化されていてもよいC₁-₆アルキル基」としては、特に断りのない限り、1ないし5個の上記「ハロゲン原子」で置換されていてもよい上記「C₁-₆アルキル基」が挙げられる。例えば、メチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチル、イソブチル、トリフルオロメチルなどが挙げられる。

本明細書中の「ハロゲン化されていてもよいC₁-6アルコキシ基」としては、特に断りのない限り、1ないし5個の上記「ハロゲン原子」で置換されていてもよい上記「C₁-6アルコキシ基」が挙げられる。例えば、メトキシ、エトキシ、イソプロポキシ、tert-ブトキシ、トリフルオロメトキシなどが挙げられる。

【0032】

本明細書中の「モノー又はジーC₁-6アルキルーアミノ基」としては、特に断りのない限り、上記「C₁-6アルキル基」でモノー又はジー置換されたアミノ基が挙げられる。例えば、メチルアミノ、エチルアミノ、プロピルアミノ、ジメチルアミノ、エチルメチルアミノ、ジエチルアミノなどが挙げられる。

本明細書中の「モノー又はジーC₆-1₄アリールーアミノ基」としては、特に断りのない限り、上記「C₆-1₄アリール基」でモノー又はジー置換されたアミノ基が挙げられる。例えば、フェニルアミノ、ジフェニルアミノ、1-ナフチルアミノ、2-ナフチルアミノ、ナフチルフェニルアミノなどが挙げられる。

【0033】

本明細書中の「モノー又はジーC₇-1₆アラルキルーアミノ基」としては、特に断りのない限り、上記「C₇-1₆アラルキル基」でモノー又はジー置換されたアミノ基が挙げられる。例えば、ベンジルアミノ、フェネチルアミノなどが挙げられる。

本明細書中の「N-C₁-6アルキル-N-C₆-1₄アリールーアミノ基」としては、特に断りのない限り、上記「C₁-6アルキル基」及び上記「C₆-1₄アリール基」で置換されたアミノ基が挙げられる。例えば、N-メチル-N-フェニルアミノ、N-エチル-N-フェニルアミノなどが挙げられる。

【0034】

本明細書中の「N-C₁-6アルキル-N-C₇-1₆アラルキルーアミノ基」としては、特に断りのない限り、上記「C₁-6アルキル基」及び上記「C₇-1₆アラルキル基」で置換されたアミノ基が挙げられる。例えば、N-メチル-N-ベンジルアミノ、N-エチル-N-ベンジルアミノなどが挙げられる。

本明細書中の「モノー又はジーC₁-6アルキルーカルバモイル基」としては、特に断りのない限り、上記「C₁-6アルキル基」でモノー又はジー置換されたカルバモイル基が挙げられる。例えば、メチルカルバモイル、エチルカルバモイル、インプロピルカルバモイル、ヘキシリカルバモイル、ジメチルカルバモイル、ジエチルカルバモイル、エチルメチルカルバモイル等が挙げられる。

【0035】

本明細書中の「モノー又はジーC₆-1₄アリールーカルバモイル基」としては、特に断りのない限り、上記「C₆-1₄アリール基」でモノー又はジー置換されたカルバモイル基が挙げられる。例えば、フェニルカルバモイル、1-ナフチルカルバモイル、2-ナフチルカルバモイル、ジフェニルカルバモイル等が挙げられる。

本明細書中の「モノー又はジー5ないし7員複素環ーカルバモイル基」としては、特に断りのない限り、5ないし7員複素環基でモノー又はジー置換されたカルバモイル基が挙げられる。ここで、5ないし7員複素環基としては、環構成原子として、炭素原子以外に窒素原子、硫黄原子及び酸素原子から選ばれる1又は2種、1ないし4個のヘテロ原子を含む複素環基が挙げられる。「モノー又はジー5ないし7員複素環ーカルバモイル基」の好適な例としては、2-ピリジルカルバモイル、3-ピリジルカルバモイル、4-ピリジルカルバモイル、2-チエニルカルバモイル、3-チエニルカルバモイル等が挙げられる。

【0036】

本明細書中の「モノー又はジーC₁-6アルキルースルファモイル基」としては、特に断りのない限り、上記「C₁-6アルキル基」でモノー又はジー置換されたスルファモイル基が用いられ、例えば、メチルスルファモイル、エチルスルファモイル、プロピルスルファモイル、インプロピルスルファモイル、ヘキシリスルファモイル、ジメチルスルファモイル、ジエチルスルファモイル、エチルメチルスルファモイルなどが挙げられる。

本明細書中の「モノー又はジーC₆-1₄アリールースルファモイル基」としては、特に断りのない限り、上記「C₆-1₄アリール基」でモノー又はジー置換されたスルファモイル基が用いられ、例えば、フェニルスルファモイル、ジフェニルスルファモイル、1-ナフチルスルファモイル、2-ナフチルスルファモイルなどが挙げられる。

【0037】

本明細書中の「置換されていてもよいC₁-6アルキル基」、「置換されていてもよいC₂-6アルケニル基」、「置換されていてもよいC₂-6アルキニル基」および「置換されていてもよいC₁-1₀アルコキシ基（置換されていてもよいC₁-6アルコキシ基を含む）」としては、例えば（1）ハロゲン原子；（2）ヒドロキシ基；（3）アミノ基；（4）ニトロ基；（5）シアノ基；（6）ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン化されていてもよいC₁-6アルキル基、モノー又はジーC₁-6アルキルーアミノ基、C₆-1₄アリール基、モノー又はジーC₆-1₄アリールーアミノ基、C₃-8シクロアルキル基、C₁-6アルコキシ基、C₁-6アルキルチオ基、C₁-6アルキルスルフィニル基、C₁-6アルキルスルホニル基、エステル化されていてもよいカルボキシル基、カルバモイル基、チオカルバモイル基、モノー又はジーC₁-6アルキルーカルバモイル基、モノー又はジーC₆-1₄アリールーカルバモイル基、スルファモイル基、モノー又はジーC₁-6アルキルースルファモイル基およびモノー又はジーC₆-1₄アリールースルファモイル基から選ばれる1ないし3個の置換基で置換されていてもよい複素環基（好ましくはフリル、ピリジル、チエニル、ピラゾリル、チアゾリル、オキサゾリル）；（7）モノー又はジーC₁-6アルキルーアミノ基；（8）モノー又はジーC₆-1₄アリールーアミノ基；（9）モノー又はジーC₇-1₆アラルキルーアミノ基；（10）N-C₁-6アルキル-N-C₆-1₄アリールーアミノ基；（11）N-C₁-6アルキル-N-C₇-1₆アラルキルーアミノ基；（12）C₃-8シクロアルキル基；（13）ハロゲン化されていてもよいC₁-6アルコキシ基；（14）C₁-6アルキルチオ基；（15）C₁-6アルキルスルフィニル基；（16）C₁-6アルキルスルホニル基；（17）エステル化されていてもよいカルボキシル基；（18）カルバモイル基；（19）チオカルバモイル基；（20）モノー又はジーC₁-6アルキルーカルバモイル基；（21）モノー又はジーC₆-1₄アリールーカルバモイル基；（22）モノー又はジー5ないし7員複素環ーカルバモイル基；（23）カルボキシル基で置換されていてもよいC₁-6アラルキルーカルボニルアミノ基（例：アセチルアミノ、プロピオニルアミノ）；（24）ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン化されていてもよいC₁-6アルキル基、モノー又はジーC₁-6アルキルーアミノ基、C₆-1₄アリール基、モノー又はジーC₆-1₄アリールーアミノ基、C₃-8シクロアルキル基、C₁-6アルコキシ基、C₁-6アルキルチオ基、C₁-6アルキルスルフィニル基、C₁-6アルキルスルホニル基、エステル化されていてもよいカルボキシル基、カルバモイル基、チオカルバモイル基、モノー又はジーC₁-6アルキルーカルバモイル基、モノー又はジーC₁-6アルキルースルファモイル基およびモノー又はジーC₆-1₄アリールースルファモイル基から選ばれる1ないし3個の置換基で置換されていてもよいC₆-1₄アリールオキシ基；（25）ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン化されていてもよいC₁-6アルキル基、モノー又はジーC₁-6アルキルーアミノ基、C₆-1₄アリール基、モノー又はジーC₆-1₄アリールーアミノ基、C₃-8シクロアルキル基、C₁-6アルコキシ基、C₁-6アルキルチオ基、C₁-6アルキルスルフィニル基、C₁-6アルキルスルホニル基、エステル化されていてもよいカルボキシル基、カルバモイル基、チオカルバモイル基、モノー又はジーC₁-6アルキルーカルバモイル基、モノー又はジーC₆-1₄アリールーカルバモイル基、スルファモイル基、モノー又はジーC₁-6アルキルースルファモイル基およびモノー又はジーC₆-1₄アリールースルファモイル基から選ばれる1ないし3個の置換基で置換されていてもよいC₆-1₄アリール基；（26）複素環オキシ基；（27）スルファモイル基；（28）モノー又はジーC₁-6アルキルースルファモイル基；（29）モノー又はジーC₆-1₄アリールースルファモ

イル基；(30) ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン化されていてもよいC₁-6アルキル基、モノー又はジーC₁-6アルキルーアミノ基、C₆-1₄アリール基、モノー又はジーC₆-1₄アリールーアミノ基、C₃-8シクロアルキル基、C₁-6アルコキシ基、C₁-6アルキルチオ基、C₁-6アルキルスルフィニル基、C₁-6アルキルスルホニル基、エステル化されていてもよいカルボキシル基、カルバモイル基、チオカルバモイル基、モノー又はジーC₁-6アルキルーカルバモイル基、モノー又はジーC₆-1₄アリールーカルバモイル基、スルファモイル基、モノー又はジーC₁-6アルキルースルファモイル基およびモノー又はジーC₆-1₄アリールースルファモイル基から選ばれる1ないし3個の置換基で置換されていてもよいC₇-1₆アラルキルオキシ基などから選ばれる1ないし5個の置換基をそれぞれ置換可能な位置に有していてもよい、「C₁-6アルキル基」、「C₂-6アルケニル基」、「C₂-6アルキニル基」および「C₁-1₀アルコキシ基(C₁-6アルコキシ基を含む)」が挙げられる。

【0038】

本明細書中の「置換されていてもよいC₃-8シクロアルキル基」、「置換されていてもよいC₆-1₄アリール基」、「置換されていてもよいC₇-1₆アラルキル基」、「置換されていてもよい複素環基」、「置換されていてもよい複素環オキシ基」、「置換されていてもよいC₆-1₄アリールオキシ基」および「置換されていてもよいC₇-1₆アラルキルオキシ基」としては、例えば(1)ハロゲン原子；(2)ヒドロキシ基；(3)アミノ基；(4)ニトロ基；(5)シアノ基；(6)置換されていてもよいC₁-6アルキル基；(7)置換されていてもよいC₂-6アルケニル基；(8)置換されていてもよいC₂-6アルキニル基；(9)ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン化されていてもよいC₁-6アルキル基、モノー又はジーC₁-6アルキルーアミノ基、C₆-1₄アリール基、モノー又はジーC₆-1₄アリールーアミノ基、C₃-8シクロアルキル基、C₁-6アルコキシ基、C₁-6アルキルチオ基、C₁-6アルキルスルフィニル基、C₁-6アルキルスルホニル基、エステル化されていてもよいカルボキシル基、カルバモイル基、チオカルバモイル基、モノー又はジーC₁-6アルキルーカルバモイル基、スルファモイル基、モノー又はジーC₁-6アルキルースルファモイル基およびモノー又はジーC₆-1₄アリールースルファモイル基から選ばれる1ないし3個の置換基で置換されていてもよいC₆-1₄アリール基；(10)ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン化されていてもよいC₁-6アルキル基、モノー又はジーC₁-6アルキルーアミノ基、C₆-1₄アリール基、モノー又はジーC₆-1₄アリールーアミノ基、C₃-8シクロアルキル基、C₁-6アルコキシ基、C₁-6アルキルチオ基、C₁-6アルキルスルフィニル基、C₁-6アルキルスルホニル基、エステル化されていてもよいカルボキシル基、カルバモイル基、チオカルバモイル基、モノー又はジーC₁-6アルキルーカルバモイル基、モノー又はジーC₆-1₄アリールースルファモイル基およびモノー又はジーC₆-1₄アリールオキシ基；(11)ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン化されていてもよいC₁-6アルキル基、モノー又はジーC₁-6アルキルーアミノ基、C₆-1₄アリール基、モノー又はジーC₆-1₄アリールーアミノ基、C₃-8シクロアルキル基、C₁-6アルコキシ基、C₁-6アルキルチオ基、C₁-6アルキルスルフィニル基、C₁-6アルキルスルホニル基、エステル化されていてもよいカルボキシル基、カルバモイル基、チオカルバモイル基、モノー又はジーC₁-6アルキルーカルバモイル基、モノー又はジーC₆-1₄アリールーカルバモイル基、スルファモイル基、モノー又はジーC₁-6アルキルースルファモイル基およびモノー又はジーC₆-1₄アリールースルファモイル基から選ばれる1ないし3個の置換基で置換されていてもよいC₇-1₆アラルキルオキシ基；(12)ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン化されていてもよいC₁-6アルキル基

、モノー又はジーC₁-C₆アルキルーアミノ基、C₆-C₁アリール基、モノー又はジーC₆-C₁アリールーアミノ基、C₃-C₈シクロアルキル基、C₁-C₆アルコキシ基、C₁-C₆アルキルチオ基、C₁-C₆アルキルスルフィニル基、C₁-C₆アルキルスルホニル基、エステル化されていてもよいカルボキシル基、カルバモイル基、チオカルバモイル基、モノー又はジーC₁-C₆アルキルーカルバモイル基、モノー又はジーC₆-C₁アリールーカルバモイル基、スルファモイル基、モノー又はジーC₁-C₆アルキルースルファモイル基およびモノー又はジーC₆-C₁アリールースルファモイル基から選ばれる1ないし3個の置換基で置換されていてもよい複素環基（好ましくはフリル、ピリジル、チエニル、ピラゾリル、チアゾリル、オキサゾリル）；(13)モノー又はジーC₁-C₆アルキルーアミノ基；(14)モノー又はジーC₆-C₁アリールーアミノ基；(15)モノー又はジーC₇-C₁アラルキルーアミノ基；(16)N-C₁-C₆アルキル-N-C₆-C₁アリールーアミノ基；(17)N-C₁-C₆アルキル-N-C₇-C₁アラルキルーアミノ基；(18)C₃-C₈シクロアルキル基；(19)置換されていてもよいC₁-C₆アルコキシ基；(20)C₁-C₆アルキルチオ基；(21)C₁-C₆アルキルスルフィニル基；(22)C₁-C₆アルキルスルホニル基；(23)エステル化されていてもよいカルボキシル基；(24)カルバモイル基；(25)チオカルバモイル基；(26)モノー又はジーC₁-C₆アルキルーカルバモイル基；(27)モノー又はジーC₆-C₁アリールーカルバモイル基；(28)モノー又はジー5ないし7員複素環ーカルバモイル基；(29)スルファモイル基；(30)モノー又はジーC₁-C₆アルキルースルファモイル基；(31)モノー又はジーC₆-C₁アリールースルファモイル基などから選ばれる1ないし5個の置換基をそれぞれ置換可能な位置に有していてもよい、「C₃-C₈シクロアルキル基」、「C₆-C₁アリール基」、「C₇-C₁アラルキル基」、「複素環基」、「複素環オキシ基」、「C₆-C₁アリールオキシ基」および「C₇-C₁アラルキルオキシ基」が挙げられる。

【0039】

本明細書中の「置換されていてもよいアミノ基」としては、特に断りのない限り、(1)置換されていてもよいC₁-C₆アルキル基；(2)置換されていてもよいC₂-C₆アルケニル基；(3)置換されていてもよいC₂-C₆アルキニル基；(4)置換されていてもよいC₃-C₈シクロアルキル基；(5)置換されていてもよいC₆-C₁アリール基；(6)置換されていてもよいC₁-C₆アルコキシ基；(7)置換されていてもよいアシル基；(8)置換されていてもよい複素環基（好ましくはフリル、ピリジル、チエニル、ピラゾリル、チアゾリル、オキサゾリル）；(9)スルファモイル基；(10)モノー又はジーC₁-C₆アルキルースルファモイル基；(11)モノー又はジーC₆-C₁アリールースルファモイル基などから選ばれる1または2個の置換基で置換されていてもよいアミノ基が挙げられる。また、「置換されていてもよいアミノ基」が2個の置換基で置換されたアミノ基である場合、これらの置換基は、隣接する窒素原子とともに、含窒素複素環を形成していてもよい。該「含窒素複素環」としては、例えば、環構成原子として炭素原子以外に少なくとも1個の窒素原子を含み、さらに酸素原子、硫黄原子及び窒素原子から選ばれる1ないし2個のヘテロ原子を含有していてもよい5ないし7員の含窒素複素環が挙げられる。該含窒素複素環の好適な例としては、ピロリジン、イミダゾリジン、ピラゾリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリン、チアゾリジン、オキサゾリジンなどが挙げられる。

【0040】

本明細書中の「置換されていてもよいアシル基」としては、特に断りのない限り、式：-COR⁷、-CO-OR⁷、-SO₂R⁷、-SOR⁷、-PO(O R⁷) (O R⁸)、-CO-NR^{7a}R^{8a}、-CS-NR^{7a}R^{8a} [式中、R⁷およびR⁸は、同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す。R^{7a}およびR^{8a}は、同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示すか、R^{7a}およびR^{8a}は、隣接する窒素原子とともに、置換されていてもよい含窒素複素環を形成してもよい]で表される基などが挙げられる。

【0041】

R^7 ^a および R^8 ^a が隣接する窒素原子とともに形成する「置換されていてもよい含窒素複素環」における「含窒素複素環」としては、例えば、環構成原子として炭素原子以外に少なくとも 1 個の窒素原子を含み、さらに酸素原子、硫黄原子及び窒素原子から選ばれる 1 ないし 2 個のヘテロ原子を含有していてもよい 5 ないし 7 員の含窒素複素環が挙げられる。該含窒素複素環の好適な例としては、ピロリジン、イミダゾリジン、ピラゾリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリン、チアゾリジン、オキサゾリジンなどが挙げられる。

該含窒素複素環は、置換可能な位置に 1 ないし 2 個の置換基を有していてもよい。このような置換基としては、ヒドロキシ基、ハロゲン化されていてもよい C₁-6 アルキル基、C₆-1₄ アリール基、C₇-1₆ アラルキル基などが挙げられる。

【0042】

「置換されていてもよいアシル基」の好適な例としては、ホルミル基、カルボキシル基、カルバモイル基、C₁-6 アルキルカルボニル基（例：アセチル、イソブタノイル、イソペントノイル）、C₁-6 アルコキシカルボニル基（例：メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、tert-ブートキシカルボニル）、C₃-8 シクロアルキルカルボニル基（例：シクロペンチルカルボニル、シクロヘキシカルボニル）、C₆-1₄ アリールカルボニル基（例：ベンゾイル、1-ナフトイル、2-ナフトイル）、C₇-1₆ アラルキルカルボニル基（例：フェニルアセチル、2-フェニルプロパノイル）、C₆-1₄ アリールオキシカルボニル基（例：フェニルオキシカルボニル、ナフチルオキシカルボニル）、C₇-1₆ アラルキルオキシカルボニル基（例：ベンジルオキシカルボニル、フェネチルオキシカルボニル）、モノー又はジ-C₁-6 アルキルカルバモイル基、モノー又はジ-C₆-1₄ アリールカルバモイル基、C₃-8 シクロアルキルカルバモイル基（例：シクロプロピルカルバモイル）、C₇-1₆ アラルキルカルバモイル基（例：ベンジルカルバモイル）、C₁-6 アルキルスルホニル基、C₆-1₄ アリールスルホニル基、含窒素複素環-カルボニル基（例：ピロリジニルカルボニル、ピペリジノカルボニル）、C₁-6 アルキルスルフィニル基、C₆-1₄ アリールスルフィニル基、チオカルバモイル基、スルファモイル基、モノー又はジ-C₁-6 アルキルスルファモイル基、モノー又はジ-C₆-1₄ アリールスルファモイル基、モノー又はジ-C₇-1₆ アラルキルスルファモイル基（例：ベンジルスルファモイル）などが挙げられる。

【0043】

本明細書中の「置換されていてもよい C₁-3 アルキレン基」における「C₁-3 アルキレン基」は、直鎖状または分岐鎖状であり、例えばメチレン、エチレン、1-メチルエチレン、プロピレンなどが挙げられる。該 C₁-3 アルキレン基は、置換可能な位置に、1 ないし 3 個の置換基を有していてもよい。このような置換基としては、例えばハロゲン原子、ヒドロキシ基、アミノ基、モノー又はジ-C₁-6 アルキルアミノ基、モノー又はジ-C₆-1₄ アリールアミノ基、モノー又はジ-C₇-1₆ アラルキルアミノ基、ニトロ基、シアノ基、C₁-6 アルコキシ基、C₁-6 アルキルチオ基などが挙げられる。

【0044】

R^1 および R^2 が互いに結合してそれらが結合する炭素原子と共に形成する「環」としては、例えば環構成原子として炭素原子以外に窒素原子、硫黄原子及び酸素原子から選ばれる 1 ないし 2 個のヘテロ原子を含んでいてもよい 5 ないし 8 員環が挙げられる。このような環の好適な例としては、ベンゼン、ジヒドロベンゼン、テトラヒドロベンゼンなどの 5 ないし 8 員炭化水素環；ピロリン、ピラゾリン、ピリジン、ジヒドロピリジン、テトラヒドロピリジン、ピリミジン、ジヒドロピリミジン、テトラヒドロピリミジン、チオフェン、ジヒドロチオフェン、フラン、ジヒドロフラン、ピラン、ジヒドロピラン、アゼピン、オキサゼピンなどの 5 ないし 8 員複素環などが挙げられる。

【0045】

本発明の式(I)で表わされる化合物(以下、化合物(I)と略する場合がある)およびその塩について説明する。

式(I)中のXはSまたはOを示す。

式(I)中のR¹およびR²は同一または異なって、それぞれ水素原子、置換されていてもよいC₆-C₄アリール基、置換されていてもよい複素環基または置換されていてもよいC₁-C₆アルキル基を示すか、R¹およびR²は互いに結合して、それらが結合する炭素原子と共に環を形成し、好ましくは水素原子、置換されていてもよいC₆-C₄アリール基、複素環基またはC₁-C₆アルキル基を示す。

【0046】

式(I)中のEは-W¹-N(R⁵)-W²-、-W¹-CH(R⁶)-O-W²-、-W¹-O-CH(R⁶)-W²-または-W¹-CH(R⁶)-W²-(W¹およびW²は、同一または異なって、結合手または置換されていてもよいC₁-C₃アルキレン基を、R⁵およびR⁶は置換されていてもよい複素環基または置換されていてもよい炭化水素基を示す。但し、XがSである場合、R⁵およびR⁶はC₁-C₆アルキル基でない。)を示し、好ましくは-W¹-N(R⁵)-W²-(W¹、W²およびR⁵は前記と同意義を示す。R⁵は好ましくは置換されていてもよい炭化水素基を示す。但し、XがSである場合、R⁵はC₁-C₆アルキル基でない。)を示す。

式(I)中の環S¹は置換されていてもよいC₁-C₆アルキル基、置換されていてもよいC₁-C₆アルコキシ基およびハロゲン原子から選ばれる置換基をさらに有していてもよいベンゼン環を示す。これら置換基の数は、例えば1または2個である。環S¹は好ましくはベンゼン環を示す。

式(I)中のR³およびR⁴は同一または異なって、それぞれ水素原子、ハロゲン原子、置換されていてもよいC₁-C₆アルキル基または置換されていてもよいC₁-C₆アルコキシ基を示し、好ましくは水素原子またはハロゲン原子を示す。

式(I)中のRは置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基を示し、好ましくは置換されていてもよいヒドロキシ基を示し、さらに好ましくはヒドロキシ基またはC₁-C₆アルコキシ基を示す。なかでも、ヒドロキシ基が好ましい。

【0047】

「化合物(I)の好適な例」としては、以下の化合物が挙げられる。

R¹およびR²が同一または異なって、それぞれ(1)水素原子、

(2)ハロゲン原子で置換されていてもよいC₆-C₁アリール基(好ましくはフェニル)、

(3)複素環基(好ましくはピリジル)、または

(4)C₁-C₆アルキル基；

Eが-W¹-N(R⁵)-W²-、

かつW¹およびW²が、同一または異なって、結合手またはC₁-C₃アルキレン基(好ましくは、W¹が結合手、かつW²がC₁-C₃アルキレン基(好ましくはメチレン))、R⁵が(1)ハロゲン原子およびC₁-C₆アルキル基から選ばれる1ないし3個の置換基で置換されていてもよいC₇-C₁アラルキル基(好ましくはベンジル、フェネチル、3-フェニルプロピル)、または

(2)C₁-C₆アルコキシ基、C₁-C₆アルキルチオ基、モノ-又はジ-C₁-C₆アルキル-アミノ基、複素環基(好ましくはピリジル)、C₁-C₆アルキルスルフィニル基およびC₁-C₆アルキルスルホニル基から選ばれる1ないし3個の置換基で置換されていてもよいC₁-C₆アルキル基(但し、XがSである場合、R⁵はC₁-C₆アルキル基でない)

；

R³およびR⁴が同一または異なって、水素原子またはハロゲン原子；

環S¹がベンゼン環；かつ

Rがヒドロキシ基またはC₁-C₆アルコキシ基(好ましくはヒドロキシ基)である化合物

。

【0048】

化合物（I）の塩としては、例えば金属塩、アンモニウム塩、有機塩基との塩、無機酸との塩、有機酸との塩、塩基性又は酸性アミノ酸との塩等が挙げられる。金属塩の好適な例としては、例えばナトリウム塩、カリウム塩等のアルカリ金属塩；カルシウム塩、マグネシウム塩、バリウム塩等のアルカリ土類金属塩；アルミニウム塩等が挙げられる。有機塩基との塩の好適な例としては、例えばトリメチルアミン、トリエチルアミン、ピリジン、ピコリン、2,6-二エチルアミン、ジエタノールアミン、トリエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、N,N'-ジベンジルエチレンジアミン等との塩が挙げられる。無機酸との塩の好適な例としては、例えば塩酸、臭化水素酸、硝酸、硫酸、リン酸等との塩が挙げられる。有機酸との塩の好適な例としては、例えばギ酸、酢酸、トリフルオロ酢酸、フタル酸、フマル酸、シュウ酸、酒石酸、マレイイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等との塩が挙げられる。塩基性アミノ酸との塩の好適な例としては、例えばアルギニン、リジン、オルニチン等との塩が挙げられ、酸性アミノ酸との塩の好適な例としては、例えばアスパラギン酸、グルタミン酸等との塩が挙げられる。

このうち、薬学的に許容し得る塩が好ましい。例えば、化合物内に酸性官能基を有する場合にはアルカリ金属塩（例：ナトリウム塩、カリウム塩等）、アルカリ土類金属塩（例：カルシウム塩、マグネシウム塩、バリウム塩等）等の金属塩；、アンモニウム塩等が、また、化合物内に塩基性官能基を有する場合には、例えば塩酸、臭化水素酸、硝酸、硫酸、リン酸等の無機酸との塩；又は酢酸、フタル酸、フマル酸、シュウ酸、酒石酸、マレイイン酸、クエン酸、コハク酸、メタンスルホン酸、p-トルエンスルホン酸等の有機酸との塩が好ましい。

【0049】

化合物（I）およびその塩のプロドラッグは、生体内における生理条件下で酵素や胃酸等による反応により化合物（I）に変換する化合物、すなわち酵素的に酸化、還元、加水分解等を起こして化合物（I）に変化する化合物、胃酸等により加水分解等を起こして化合物（I）に変化する化合物をいう。

化合物（I）のプロドラッグとしては、化合物（I）のアミノ基がアシル化、アルキル化またはリン酸化された化合物（例えは、化合物（I）のアミノ基がエイコサノイル化、アラニル化、ペンチルアミノカルボニル化、（5-メチル-2-オキソ-1,3-ジオキソレン-4-イル）メトキシカルボニル化、テトラヒドロフラニル化、ピロリジルメチル化、ピバロイルオキシメチル化、tert-ブチル化された化合物等）；化合物（I）の水酸基がアシル化、アルキル化、リン酸化またはホウ酸化された化合物（例えは、化合物（I）の水酸基がアセチル化、パルミトイル化、プロパノイル化、ピバロイル化、スクシニル化、スマリル化、アラニル化、ジメチルアミノメチルカルボニル化された化合物等）；化合物（I）のカルボキシ基がエステル化またはアミド化された化合物（例えは、化合物（I）のカルボキシ基がC₁-6アルキルエステル化、フェニルエステル化、カルボキシメチルエステル化、ジメチルアミノメチルエステル化、ピバロイルオキシメチルエステル化、エトキシカルボニルオキシエチルエステル化、フタリジルエステル化、（5-メチル-2-オキソ-1,3-ジオキソレン-4-イル）メチルエステル化、シクロヘキシルオキシカルボニルエチルエステル化、メチルアミド化された化合物等）等が挙げられ、なかでも化合物（I）のカルボキシ基がメチル、エチル、tert-ブチルなどのC₁-6アルキル基でエステル化された化合物が好ましく用いられる。これらの化合物は自体公知の方法によつて化合物（I）から製造することができる。

また、化合物（I）のプロドラッグは、広川書店1990年刊「医薬品の開発」第7巻分子設計163頁から198頁に記載されているような生理的条件で化合物（I）に変化するものであつてもよい。

以下に、化合物（I）またはその塩の製造法を説明する。

以下の反応式における各記号は、特記しないかぎり前記と同意義を示す。また、反応式中の各化合物は、塩を形成していてもよく、該塩としては、例えば化合物（I）の塩と同様のものが挙げられる。

反応式中の各工程において、生成物は反応混合物のまま、あるいは粗製物として次反応に用いることもできるが、常法に従って反応混合物から単離することもでき、通常の分離手段（例：再結晶、蒸留、クロマトグラフィーなど）により容易に精製することもできる。

化合物（I）は、例えば以下の反応式1で示される方法またはこれに準じた方法に従つて製造することができる。

【0050】

【化10】

反応式1

【0051】

上記反応式中、式(I)、(II)、(III)、(I-1)で表わされる化合物は、以下、それぞれ化合物(I)、化合物(II)、化合物(III)、化合物(I-1)と略す。

化合物(I)および化合物(I-1)は、化合物(II)と化合物(III)とを反応させて得られる化合物を所望により加水分解反応に付すことによって製造することができる。

化合物(II)と化合物(III)との反応は、例えば光延反応（シンセシス（Synthesis）、1981年、1-27頁）を利用して行われる（工程A）。工程Aで用いられる化合物(II)のRは、置換されたヒドロキシ基または置換されていてもよいアミノ基であることが望ましい。

【0052】

工程Aでは、化合物(II)と化合物(III)とを、アゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル、1,1'-(アゾジカルボニル)ジピペリジンなどのアゾジカルボキシラート類およびトリフェニルホスфин、トリブチルホスфинなどのホスфин類の存在下で反応させる。

化合物(III)の使用量は、化合物(II)1モルに対し、約1ないし約5モル、好ましくは約1ないし約2モルである。

該「アゾジカルボキシラート類」および「ホスфин類」の使用量は、それぞれ化合物(II)1モルに対し、約0.5ないし約5モル、好ましくは約1ないし約2モルである。

【0053】

工程Aの反応は該反応に不活性な溶媒を用いて行うのが有利である。このような溶媒としては、反応が進行する限り特に限定されないが、例えばジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類；ベンゼン、トルエンなどの芳香族炭化水素類；シクロヘキサン、ヘキサンなどの飽和炭化水素類；N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルホスホリックトリアミドなどのアミド類；1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどの環状尿素及びアミド類；ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類；アセトニトリル、プロピオニトリルなどのニトリル類；アセトン、エチルメチルケトンなどのケトン類；ジメチルスルホキシドなどのスルホキシド類などの溶媒またはそれらの混合溶媒などが好ましい。

工程Aの反応時間は通常約5分ないし約48時間、好ましくは約10分ないし約24時間である。工程Aの反応温度は通常約-20ないし約200℃、好ましくは約0ないし約100℃である。

【0054】

工程Aにより得られた化合物(I)において、Rが置換されたヒドロキシ基または置換されていてもよいアミノ基(好ましくはメトキシ基、エトキシ基、tert-ブトキシ基、イソプロポキシ基などのC₁-₆アルコキシ基)である場合には、化合物(I)を加水分解反応に付すことにより、化合物(I)のうちRがヒドロキシ基である化合物、すなわち、化合物(I-1)を製造することができる(工程B)。

該加水分解反応は、酸あるいは塩基を用い、常法にしたがって行われる。酸としては、例えは塩酸、硫酸などの鉱酸類；三塩化ホウ素、三臭化ホウ素などのルイス酸類；トリフルオロ酢酸、p-トルエンスルホン酸などの有機酸類などが用いられる。ここで、ルイス酸は、チオールまたはスルフィドと併用することもできる。

塩基としては、例えは水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの水酸化アルカリ金属；水酸化バリウムなどの水酸化アルカリ土類金属；炭酸ナトリウム、炭酸カリウムなどの炭酸アルカリ金属；ナトリウムメトキシド、ナトリウムエトキシド、カリウム第三ブトキシドなどのアルカリ金属アルコキシド；トリエチルアミン、イミダゾール、ホルムアミジンなどの有機塩基類などが用いられる。これら酸および塩基の使用量は、化合物(I)1モルに対して約0.5~10モル、好ましくは約0.5~6モルである。

【0055】

加水分解反応は、無溶媒で行うか、該反応に不活性な溶媒を用いて行われる。このような溶媒としては、反応が進行する限り特に限定されないが、例えはメタノール、エタノール、プロパノールなどのアルコール類；ベンゼン、トルエンなどの芳香族炭化水素類；シクロヘキサン、ヘキサンなどの飽和炭化水素類；ギ酸、酢酸などの有機酸類；テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタンなどのエーテル類；N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類；1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどの環状尿素及びアミド類；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタンなどのハロゲン化炭化水素類；アセトン、メチルエチルケトンなどのケトン類；ジメチルスルホキシドなどのスルホキシド類；水などの溶媒、またはそれらの混合溶媒などが好ましい。

工程Bの反応時間は通常10分~60時間、好ましくは10分~12時間である。工程Bの反応温度は通常-10~200℃、好ましくは0~120℃である。

反応式1で用いられる化合物(II)及び(III)は、市販品として容易に入手でき、また、自体公知の方法またはこれらに準じた方法に従って製造することもできる。例えは、化合物(III)のうち、E=-W¹-N(R⁵)-W²-であり、かつW¹が結合手である式(III-1)の化合物(化合物(III-1))は以下の反応式2で示される方法によって製造することができる。

【0056】

【化11】

反応式2

【0057】

[式中、Lは脱離基を、R^xは置換されていてもよい炭化水素基を示す]

上記反応式中、式(IV)、(V)、(VI-1)で表わされる化合物は、以下、それぞれ化合物(IV)、化合物(V)、化合物(VI-1)と略す。

Lで示される「脱離基」としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子のハロゲン原子；例えばメタンスルホニルオキシ、エタンスルホニルオキシ、トリクロロメタンスルホニルオキシなどのハロゲン化されていてもよいC₁-6アルキルスルホニルオキシ基；置換基を有していてもよいC₆-10アリールスルホニルオキシ基などが挙げられる。該「置換基を有していてもよいC₆-10アリールスルホニルオキシ基」としては、例えばメチル、エチルなどのC₁-6アルキル基；例えばメトキシ、エトキシなどのC₁-6アルコキシ基；およびニトロ基から選ばれる置換基を1ないし3個有していてもよいC₆-10アリールスルホニルオキシ基（例：フェニルスルホニルオキシ、ナフチルスルホニルオキシ）などが挙げられ、具体例としては、フェニルスルホニルオキシ、m-ニトロフェニルスルホニルオキシ、p-トルエンスルホニルオキシなどが挙げられる。

R^xで示される「置換されていてもよい炭化水素基」は、前記「置換されていてもよい炭化水素基」と同義であり、なかでも、例えばメチル、エチル、tert-ブチル、イソプロピルなどのC₁-6アルキル基が好ましい。

【0058】

反応式2において、化合物(V)と化合物(IV)とを反応させることによって化合物(VI-1)を製造する（工程C）。

工程Cの反応は、無溶媒で行うか、該反応に不活性な溶媒を用いて行われる。このようない溶媒としては、反応が進行する限り特に限定されないが、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類；1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどの環状尿素及びアミド類；ジメチルスルホキシドなどのスルホキシド類；ベンゼン、トルエンなどの芳香族炭化水素類；シクロヘキサン、ヘキサンなどの飽和炭化水素類；ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類；ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類；酢酸メチル、酢酸エチル、酢酸ブチルなどのエステル類などの溶媒またはそれらの混合溶媒などが好ましい。

【0059】

工程Cの反応は、所望により塩基の存在下で行われる。該「塩基」としては、金属ナトリウム、金属カリウムなどのアルカリ金属；水素化ナトリウムなどの金属水素化物；ブチルリチウムなどの有機リチウム試薬；トリエチルアミン、トリプロピルアミン、トリブチルアミン、N-エチルジイソプロピルアミン、シクロヘキシリジメチルアミン、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、N-メチルピペリジン、N-メチルピロリジン、N-メチルモルホリンなどの第3級アミン類；水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどの水酸化アルカリ金属；水酸化バリウムなどの水酸化アルカリ土類金属；炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどの炭酸アルカリ金属；炭酸水素ナトリウムなどの炭酸水素アルカリ金属；酢酸ナトリウム、酢酸アンモニウムなどの酢酸塩などが挙げられる。これら塩基の使用量は、化合物(IV)1モルに対して約1ないし約20モル、好ましくは約1ないし約10モルである。

【0060】

化合物(IV)のW²が結合手である場合は、一般に金属触媒を用いて反応を促進させることができる。該金属触媒としては、さまざまな配位子を有する金属複合体が用いられ、例えばパラジウム化合物〔例：パラジウム(II)アセテート、テトラキス(トリフェニルホスフィン)パラジウム(0)、塩化ビス(トリフェニルホスフィン)パラジウム(II)、ジクロロビス(トリエチルホスフィン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム-2,2'-ビス(ジフェニルホスフィノ)-1,1'-ビナフチル、酢酸パラジウム(II)と1,1'-ビス(ジフェニルホスフィノ)フェロセンの複合体など〕、ニッケル化合物〔例：テトラキス(トリフェニルホスフィン)ニッケル(0)、塩化ビス(トリエチルホスフィン)ニッケル(II)、塩化ビス(トリフェニルホスフィン)ニッケル(II)など〕、ロジウム化合物〔例：塩化トリス(トリフェニルホスフィン)ロジウム(III)など〕、コバルト化合物、銅化合物〔例：酸化銅、塩化銅(II)など〕、白金化合物などが用いられる。なかでも、パラジウム化合物、ニッケル化合物および銅化合物が好ましい。これらの金属触媒の使用量は、化合物(IV)1モルに対し、約0.000001~5モル、好ましくは約0.0001~1モルである。本反応で酸素に不安定な金属触媒を用いる場合には、不活性なガス(例えばアルゴンガスもしくは窒素ガス)気流中で反応を行うことが好ましい。

【0061】

化合物(V)の使用量は、化合物(IV)1モルに対し、約1ないし約5モル、好ましくは約1ないし約2モルである。

工程Cの反応時間は、通常約10分ないし約12時間、好ましくは約10分ないし約5時間である。工程Cの反応温度は、通常約-30ないし約150℃、好ましくは約-20ないし約100℃である。

【0062】

ついで、化合物(VI-1)を還元反応に付すことにより化合物(III-1)を製造する(工程D)。還元反応は、還元剤を用い、常法にしたがって行われる。該還元剤としては、例えば水素化アルミニウム、水素化ジイソブチルアルミニウム、水素化トリブチルすずなどの金属水素化物；水素化リチウムアルミニウム、水素化ホウ素ナトリウムなどの金属水素錯化合物；ボランテトラヒドロフラン錯体、ボランジメチルスルフィド錯体などのボラン錯体；テキシリボラン、ジシアミルボランなどのアルキルボラン類；ジボラン；亜鉛、アルミニウム、すず、鉄などの金属類；ナトリウム、リチウムなどのアルカリ金属／液体アンモニア(バーチ還元)などが挙げられる。還元剤の使用量は、還元剤の種類によって適宜決定される。例えば金属水素化物、金属水素錯化合物、ボラン錯体、アルキルボラン類またはジボランの使用量は、化合物(VI-1)1モルに対して、それぞれ約1ないし約10モル、好ましくは約1ないし約5モルであり、金属類(バーチ還元で使用するアルカリ金属を含む)の使用量は、化合物(VI-1)に対して約1ないし約20当量、好ましくは約1ないし約5当量である。

【0063】

工程Dの反応では所望によりルイス酸類を用いてよい。該「ルイス酸類」としては、例えば塩化アルミニウム、臭化アルミニウム、四塩化チタン、二塩化すず、塩化亜鉛、三

塩化ホウ素、三臭化ホウ素、三フッ化ホウ素などが用いられる。ルイス酸の使用量は、化合物(VI-1) 1モルに対して約1ないし約10モル、好ましくは約1ないし約5モルである。

工程Dの反応は、該反応に不活性な溶媒を用いて行うのが有利である。このような溶媒としては、反応が進行する限り特に限定されないが、例えばメタノール、エタノール、1-プロパノール、2-プロパノール、tert-ブチルアルコールなどのアルコール類；ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類；ベンゼン、トルエンなどの芳香族炭化水素類；シクロヘキサン、ヘキサンなどの飽和炭化水素類；N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルホスホリックトリアミドなどのアミド類；ギ酸、酢酸、プロパン酸、トリフルオロ酢酸、メタンスルホン酸などの有機酸類などの溶媒またはそれらの混合溶媒などが好ましい。

【0064】

工程Dの反応時間は、用いる還元剤の種類や量によって異なるが、通常約1時間ないし約100時間、好ましくは約1時間ないし約50時間である。工程Dの反応温度は、通常約-20ないし約120°C、好ましくは約0ないし約80°Cである。

なお、反応式2で用いられる化合物(IV)及び(V)は、市販品として容易に入手でき、また、自体公知の方法またはこれらに準じた方法に従って製造することもできる。

例えば、化合物(V)は以下の反応式3で示される方法によって製造することができる。

【0065】

【化12】

反応式3

【0066】

[式中、L¹は脱離基を示す。]

上記反応式中、式(VII)、(VIII)で表わされる化合物は、以下、それぞれ化合物(VII)、化合物(VIII)と略す。

L¹で示される脱離基としては、前述のLとして例示したものが挙げられ、中でも塩素原子、臭素原子などのハロゲン原子が好ましい。

反応式3においては、化合物(VII)と化合物(VIII)とを反応させることにより、化合物(V)を製造する（工程E）。

【0067】

工程Eの反応は、無溶媒で行うか、該反応に不活性な溶媒を用いて行われる。このような溶媒としては、反応が進行する限り特に限定されないが、例えばメタノール、エタノール、1-プロパノール、2-プロパノール、tert-ブチルアルコールなどのアルコール類；N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類；1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどの環状尿素及びアミド類；ベンゼン、トルエンなどの芳香族炭化水素類；シクロヘキサン、ヘキサンなどの飽和炭化水素類；ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類；ジクロロメタン、クロロホルム、1,2-ジクロロエタンなどのハロゲン化炭化水素類；酢酸メチル、酢酸エチル、酢酸ブチルなどのエステル類などの溶媒またはそれらの混合溶媒などが好ましい。

【0068】

工程Eの反応は、所望により塩基の存在下で行われる。該「塩基」としては、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N-エチルジイソプロピルアミン、シクロヘキシリジメチルアミン、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、N-メチルピペリジン、N-メチルピロリジン、N-メチルモルホリンなどの第3級アミン類；水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどの水酸化アルカリ金属；水酸化バリウムなどの水酸化アルカリ土類金属；炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどの炭酸アルカリ金属；炭酸水素ナトリウムなどの炭酸水素アルカリ金属；酢酸ナトリウム、酢酸アンモニウムなどの酢酸塩などが挙げられる。これら塩基は、化合物(VII)1モルに対して約1ないし約20モル、好ましくは約1ないし約10モル用いられる。

化合物(VIII)の使用量は、化合物(VII)1モルに対し、約0.3ないし約10モル、好ましくは約0.5ないし約2モルである。

工程Eの反応時間は、通常約10分ないし約12時間、好ましくは約10分ないし約5時間である。工程Eの反応温度は、通常約-30ないし約200℃、好ましくは約-20ないし約150℃である。

【0069】

工程Eの反応により得られた化合物(V)は、通常適当な分離手段（例：再結晶、蒸留、クロマトグラフィーなど）により単離精製した後、次の反応（前述の工程C）に用いられるが、場合によってはこの単離精製工程を省略し、本工程Eにより得られた化合物(V)を含む反応混合物を、そのまま次の工程Cに用いることもできる。この場合の工程Eは無溶媒で行うか、工程Cに不活性な溶媒を用いて行われる。このような溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類；1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどの環状尿素及びアミド類；ベンゼン、トルエンなどの芳香族炭化水素類；シクロヘキサン、ヘキサンなどの飽和炭化水素類；ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類；ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類；酢酸メチル、酢酸エチル、酢酸ブチルなどのエステル類などの溶媒またはそれらの混合溶媒などが好ましい。

【0070】

反応式3で用いられる化合物(VII)及び(VIII)は、市販品として容易に入手でき、また、自体公知の方法またはこれらに準じた方法に従って製造することもできる。

また、化合物(I)のうち、 $E = -W^1 - N(R^5) - W^2$ であり、かつ W^1 が結合手である、式(I-2)及び(I-3)の化合物（化合物(I-2)及び化合物(I-3)）は、以下の反応式4で示される方法によっても製造することができる。

【0071】

【化13】

反応式4

【0072】

[式中、 L^2 は脱離基を示す]

上記反応式中、式(IX)で表わされる化合物は、以下、化合物(IX)と略す。

L^2 で示される「脱離基」としては、前述の L として例示したものが挙げられる。

反応式4において、化合物(I-2)は、化合物(V)と化合物(IX)とを反応させることによって製造される（工程F）。

工程Fの反応は、無溶媒で行うか、該反応に不活性な溶媒を用いて行われる。このようない溶媒としては、反応が進行する限り特に限定されないが、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類；1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどの環状尿素及びアミド類；ジメチルスルホキシドなどのスルホキシド類；ベンゼン、トルエンなどの芳香族炭化水素類；シクロヘキサン、ヘキサンなどの飽和炭化水素類；ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類；ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類；酢酸メチル、酢酸エチル、酢酸ブチルなどのエステル類などの溶媒またはそれらの混合溶媒などが好ましい。

【0073】

工程Fの反応は、所望により塩基の存在下で行われる。該「塩基」としては、前記工程Cにおいて例示したものが用いられる。これら塩基の使用量は、化合物(IX)1モルに対して約1ないし約20モル、好ましくは約1ないし約10モルである。

化合物(IX)のW²が結合手である場合は、工程Cと同様に金属触媒を用いて反応を促進させることができる。金属触媒の使用量は、化合物(IX)1モルに対し、約0.000001～5モル、好ましくは約0.0001～1モルである。

化合物(V)の使用量は、化合物(IX)1モルに対し、約1ないし約5モル、好ましくは約1ないし約2モルである。また、工程Fにおける化合物(V)としては、例えば前述の工程Eの反応により得られた化合物(V)を含む反応混合物をそのまま用いることができる。この場合の工程Eは、工程Fに不活性な溶媒を用いて行われる。

工程Fの反応時間は、通常約10分ないし約12時間、好ましくは約10分ないし約5時間である。工程Fの反応温度は、通常約-30ないし約150℃、好ましくは約-20ないし約100℃である。

【0074】

工程Fにより得られた化合物(I-2)において、Rが置換されたヒドロキシ基または置換

されていてもよいアミノ基（好ましくはメトキシ基、エトキシ基、tert-ブトキシ基、イソプロポキシ基などのC₁～6アルコキシ基）である場合には、化合物(I-2)を加水分解反応に付すことにより、化合物(I-2)のうちRがヒドロキシ基である化合物、すなわち、化合物(I-3)を製造することができる（工程G）。

該加水分解反応は、前述の反応式1における工程Bと同様にして行われる。

該加水分解反応は、前述の反応式1における工程Dと同様にして行なわれる。
 また、反応式4の工程Gに用いられる化合物(I-2)は、通常工程Fによって製造した後、適当な分離手段(例：再結晶、蒸留、クロマトグラフィーなど)により単離精製した後に用いられるが、場合によってはこの単離精製工程を省略し、工程Fにより得られた化合物(I-2)を含む反応混合物を、そのまま次の工程Gに用いることもできる。この場合、工程Gの加水分解反応は、好ましくは塩基を用いて行われる。また、塩基を用いる加水分解反応は、工程Fが終了した後、得られた化合物(I-2)を含む反応混合物に必要に応じて適当な塩基及び溶媒を追加して行なうことができるが、工程Fにおいて過剰の塩基を用いた場合には、この塩基によって工程Gの加水分解反応が進行し、格別の追加操作を行わなくても化合物(I-3)が得られる場合もある。

【0075】

本反応式4で用いられる化合物(IX)は、自体公知の方法またはこれらに準じた方法によって製造することができる。例えば化合物(IX)は、以下の反応式5で示される方法によって製造することができる。

[0076]

【化 1 4】

反应式 5

[0 0 7 7]

上記反応式中、式(X)で表わされる化合物は、以下、化合物(X)と略す。

反応式5では、化合物(II)と化合物(X)とを反応させることにより、化合物(IX)を製造する(工程H)。本反応は、前記反応式1における工程Aと同様にして行われる。

工程Hで用いられる化合物(II)のRは、置換されたヒドロキシ基または置換されていてもよいアミノ基であることが望ましい。反応式5で用いられる化合物(X)は、市販品として容易に入手でき、また、自体公知の方法またはこれらに準じた方法に従って製造することもできる。

【0078】

前述の化合物 (III) のうち、 $E = -W^1 - N(R^5) - W^2$ 一であり、かつ W^1 が $-W^3 - C H(R^y)$ 一 (W^3 は結合手または置換されていてもよい $C_1 - 2$ アルキレン基を示し、 R^y は水素原子または置換されていてもよい $C_1 - 2$ アルキル基を示す) である式 (III-2) の化合物 (化合物 (III-2)) は、例えば以下の反応式 6 で示される方法によって製造される。

【0079】

【化15】

反応式6

【0080】

上記反応式中、式(XI)、(XII)、(VI-2)で表わされる化合物は、以下、それぞれ化合物(XI)、化合物(XII)、化合物(VI-2)と略す。

R^y で示される「置換されていてもよいC₁ - 2 アルキル基」における置換基としては、前記「置換されていてもよいC₁ - 3 アルキレン基」で例示した置換基が挙げられる。

W³ で示される「置換されていてもよいC₁ - 2 アルキレン基」としては、前記W¹として例示した「置換されていてもよいC₁ - 3 アルキレン基」のうち、「C₁ - 3 アルキレン基」が「C₁ - 2 アルキレン基」のものが挙げられる。

但し、W³ が結合手である場合、R^y は置換されていてもよいC₁ - 2 アルキル基であり、W³ が「置換されていてもよいメチレン基」である場合、R^y は置換されていてもよいメチル基であり、W³ が「置換されていてもよいエチレン基」である場合、R^y は水素原子である。

反応式6では、まず化合物(XI)と化合物(XII)とを還元アミノ化反応（例えば、ジヤーナル オブ ジ アメリカン ケミカル ソサイエティー（J. Am. Chem. Soc.）1971年、2897-2904頁に記載）に付すことにより、化合物(VI-2)を製造する（工程I）。該還元アミノ化反応では、化合物(XI)と化合物(XII)との反応によって生成したイミン体を、還元反応に付すことにより化合物(VI-2)を得る。

【0081】

該還元反応は、通常還元剤を用いて、常法にしたがって行われる。このような還元剤としては、例えば水素化アルミニウム、水素化ジイソブチルアルミニウム、水素化トリブチルスズなどの金属水素化物；水素化シアノホウ素ナトリウム、水素化トリアセトキシホウ素ナトリウム、水素化ホウ素ナトリウムなどの金属水素錯化合物；ボランテトラヒドロフラン錯体、ボランジメチルスルフィド錯体などのボラン錯体；テキシリボラン、ジシアミルボランなどのアルキルボラン類；ジボラン；亜鉛、アルミニウム、すず、鉄などの金属類；ナトリウム、リチウムなどのアルカリ金属／液体アンモニア（バーチ還元）などが挙げられる。還元剤の使用量は、還元剤の種類によって適宜決定される。例えば金属水素化物または金属水素錯化合物の使用量は、化合物(XI) 1モルに対してそれぞれ約1ないし

約10モル、好ましくは約1ないし約5モルであり、ボラン錯体、アルキルボラン類またはジボランの使用量は、化合物(XI)1モルに対して約1ないし約10モル、好ましくは約1ないし約5モルであり、金属類(バーチ還元で使用するアルカリ金属を含む)の使用量は、化合物(XI)1モルに対して約1ないし約20当量、好ましくは約1ないし約5当量である。

【0082】

また、還元反応は、水素添加反応により行うこともできる。この場合、例えばパラジウム炭素、二酸化白金、ラネーニッケル、ラネーコバルトなどの触媒が用いられる。該触媒の使用量は、化合物(XI)1モルに対して約5ないし約1000重量%、好ましくは約1ないし約300重量%である。水素添加反応は、ガス状水素の代わりに種々の水素源を用いることによっても行われる。このような水素源としては、例えばギ酸、ギ酸アンモニウム、ギ酸トリエチルアンモニウム、ホスフィン酸ナトリウム、ヒドラジンなどが用いられる。水素源の使用量は、化合物(XI)1モルに対して約1ないし約10モル、好ましくは約1ないし約5モルである。

【0083】

工程Iの反応は、該反応に不活性な溶媒を用いて行うのが有利である。このような溶媒としては、該反応が進行する限り特に限定されないが、例えばメタノール、エタノール、1-プロパノール、2-プロパノール、tert-ブチルアルコールなどのアルコール類；ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類；ベンゼン、トルエンなどの芳香族炭化水素類；シクロヘキサン、ヘキサンなどの飽和炭化水素類；N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルホスホリックトリアミドなどのアミド類；ギ酸、酢酸、プロパン酸、トリフルオロ酢酸、メタンスルホン酸などの有機酸類などの溶媒、またはそれらの混合溶媒などが好ましい。

【0084】

ついで、化合物(VI-2)を還元反応に付すことにより化合物(III-2)を製造する(工程J)。該還元反応は、前述の反応式2における工程Dと同様に行われる。

反応式6で用いられる化合物(XI)及び(XII)は、市販品として容易に入手でき、また、自体公知の方法またはこれらに準じた方法に従って製造することもできる。

前述の化合物(III)のうち、E=-W¹-C₆H(R⁶)-O-W²-である式(III-3)の化合物(化合物(III-3))は、例えば以下の反応式7で示される方法によって製造される。

【0085】

【化16】

反応式7

【0086】

[式中、L³ は水酸基または脱離基を示す]

上記反応式中、式(XIII)、(XIV)、(XV)、(VI-3)で表わされる化合物は、以下、それぞれ化合物(XIII)、化合物(XIV)、化合物(XV)、化合物(VI-3)と略す。

L³ で示される脱離基としては、前述のLとして例示したものが挙げられる。

反応式7では、まず化合物(XIII)を還元反応に付すことにより化合物(XIV)を製造する(工程K)。該還元反応は、反応式2における工程Dと同様にして行われる。

【0087】

次いで、得られた化合物(XIV)と化合物(XV)とを反応させることにより化合物(VI-3)を製造する(工程L)。本反応は、化合物(XV)中のW²の種類によって、適宜選択される。例えば、W²が結合手である化合物(VI-3)は、L³が水酸基である化合物(XV)を用いて、反応式1における工程Aと同様にして製造できる。また、W²が置換されてもよいC₁-₃アルキレン基である化合物(VI-3)は、例えば、L³が前述のLとして例示した脱離基である化合物(XV)と化合物(XIV)とを所望により塩基の存在下で反応させることにより製造することができる。該反応は、例えば、反応式2における工程Cと同様に行われる。

【0088】

さらに、反応式7では、(VI-3)を還元反応に付すことにより、化合物(III-3)を製造する(工程M)。該還元反応は、前述の反応式2における工程Dと同様にして行われる。

反応式7で用いられる化合物(XIII)及び(XV)は、市販品として容易に入手でき、また、自体公知の方法またはこれらに準じた方法に従って製造することもできる。

前述の化合物(III)のうち、E=-W¹-CH(R⁶)-W²-であり、かつW²が-C_nH_{2n+1}-W⁴-（W⁴は結合手または置換されていてもよいC₁-₂アルキレン基を示す）である式(III-4)の化合物(化合物(III-4))は、例えば以下の反応式8で示される方法によって製造される。

【0089】

【化17】

反応式8

【0090】

[式中、 Ar は置換されていてもよいフェニル基を、 L^4 は脱離基を示す]

上記反応式中、式(XVI)、(XVII)、(VI-4)で表わされる化合物は、以下、それぞれ化合物(XVI)、化合物(XVII)、化合物(VI-4)と略す。

W^4 で示される「置換されていてもよい C_{1-2} アルキレン基」としては、前記 W^3 として例示したものが挙げられる。 L^4 で示される脱離基としては、前述のLとして例示したものが挙げられる。なかでも、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子が好ましい。 Ar で示される「置換されていてもよいフェニル基」としては、「置換されていてもよい C_{6-14} アリール基」のうち C_{6-14} アリール基がフェニル基であるものが挙げられる。

式： PAr_3 で表わされるトリアリールホスフィン類としては、例えばトリフェニルホスフィン等が用いられる。

【0091】

反応式8では、まず化合物(XVI)とトリアリールホスフィン類との反応により化合物(XVI)のホスホニウム塩を生成させ、該ホスホニウム塩を化合物(XIII)と反応させることにより、化合物(XVII)を製造する(工程N)。

化合物(XVI)とトリアリールホスフィン類との反応は、該反応に不活性な溶媒を用いて行うのが有利である。このような溶媒としては、該反応が進行する限り特に限定されないが、例えばジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類；ベンゼン、トルエンなどの芳香族炭化水素類；シクロヘキサン、ヘキサンなどの飽和炭化水素類；N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルホスホリックトリアミドなどのアミド類；1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどの環状尿素及びアミド類、またはそれらの混合溶媒などが好ましい。トリアリールホスフィン類の使用量は、化合物(XVI)1モルに対し、約1ないし約5モル、好ましくは約1ないし約2モルである。

【0092】

工程Nにおいて、化合物(XVI)のホスホニウム塩を単離することも可能であり、また単離操作を行わず、化合物(XVI)のホスホニウム塩を含む反応液に化合物(XIII)を加えることにより、連続して反応を行うこともできる。

化合物(XVI)のホスホニウム塩と化合物(XIII)との反応は、例えばウイティッヒ(Wittig)反応を用いて行われる。該反応は、通常塩基の存在下行われる。該塩基としては、水素化ナトリウムなどの金属水素化物；トリエチルアミン、トリプロピルアミン、トリブチルアミン、N-エチルジイソプロピルアミン、シクロヘキシリジメチルアミン、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、N-メチルピペリジン、N-メチルピロリジン、N-メチルモルホリンなどの第3級アミン類；水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどの水酸化アルカリ金属；水酸化バリウムなどの水酸化アルカリ土類金属；炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどの炭酸アルカリ金属；炭酸水素ナトリウムなどの炭酸水素アルカリ金属；酢酸ナトリウム、酢酸アンモニウムなどの酢酸塩などが挙げられる。これらの塩基は、化合物(XVI)またはそのホスホニウム塩1モルに対して、約1ないし約20モル、好ましくは約1ないし約10モル用いる。

【0093】

化合物(XIII)の使用量は、化合物(XVI)またはそのホスホニウム塩1モルに対し、約1ないし約5モル、好ましくは約1ないし約2モルである。

化合物(XVI)のホスホニウム塩と化合物(XIII)との反応は、該反応に不活性な溶媒を用いて行うのが有利である。このような溶媒としては、反応が進行する限り特に限定されないが、例えばジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタンなどのエーテル類；ベンゼン、トルエンなどの芳香族炭化水素類；シクロヘキサン、ヘキサンなどの飽和炭化水素類；N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルホスホリックトリアミドなどのアミド類；1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどの環状尿素及びアミド類、またはそれらの混合溶媒などが好ましい。

【0094】

次いで化合物(XVII)を水素添加反応に付すことにより、化合物(VI-4)を製造する(工程0)。該水素添加反応は、前記反応式6の工程Iにおいて例示した水素添加反応と同様にして行われる。

次いで化合物(VI-4)を還元反応に付すことにより、化合物(III-4)を製造する(工程P)。該還元反応は、前述の反応式2における工程Dと同様にして行われる。

上記反応式1～8に従って製造された各化合物は、通常の分離手段(例：再結晶、蒸留、クロマトグラフィーなど)により容易に精製することができ、また化合物によっては、自体公知の方法によりそれらの塩あるいはプロドラッグ等に変換することができる。

また、前記した各反応において、原料化合物が置換基としてアミノ基、カルボキシル基、ヒドロキシ基、メルカプト基を有する場合、これらの基にペプチド化学などで一般的に用いられるような保護基が導入されたものであってもよく、反応後に必要に応じて保護基を除去することにより目的化合物を得ることができる。

【0095】

アミノ基の保護基としては、例えば、ホルミル、置換基を有していてもよい、C₁～6アルキルカルボニル(例えば、アセチル、エチルカルボニルなど)、フェニルカルボニル、C₁～6アルキルオキシカルボニル(例えば、メトキシカルボニル、エトキシカルボニル、tert-ブトキシカルボニル(Boc)など)、アリルオキシカルボニル(Aloc)、フェニルオキシカルボニル、フルオレニルメチルオキシカルボニル(Fmoc)、C₇～10アラルキルカルボニル(例えば、ベンジルカルボニルなど)、C₇～10アラルキルオキシカルボニル(例えば、ベンジルオキシカルボニル(Z)など)、C₇～10アラルキル(例えば、ベンジルなど)、トリチル、タロイル、ジチアスクシノイルまたはN,N-ジメチルアミノメチレンなどが挙げられる。これらの置換基としては、フェニル基、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、C₁～6アルキルカルボニル(例えば、メチルカルボニル、エチルカルボニル、ブチルカルボニルなど)、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよいC₁～6アルコキシ基(例えば、メトキシ、エトキシ、トリフルオロメトキシなど)、ニトロ基などが用いられ、置換基の数は1ないし3個程度である。

【0096】

カルボキシル基の保護基としては、例えば、置換基を有していてもよい、C₁-6アルキル（例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、tert-ブチルなど）、アリル、ベンジル、フェニル、トリチルまたはトリアルキルシリルなどが挙げられる。これらの置換基としては、ハロゲン原子（例えば、フッ素、塩素、臭素、ヨウ素など）、ホルミル、C₁-6アルキルカルボニル（例えば、アセチル、エチルカルボニル、ブチルカルボニルなど）、ハロゲン原子（例えば、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよいC₁-6アルコキシ基（例えば、メトキシ、エトキシ、トリフルオロメトキシなど）、ニトロ基などが用いられ、置換基の数は1ないし3個程度である。

【0097】

ヒドロキシ基の保護基としては、例えば、置換基を有していてもよい、C₁-6アルキル（例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、tert-ブチルなど）、C₇-10アラルキル（例えば、ベンジルなど）、ホルミル、C₁-6アルキル-1カルボニル（例えば、アセチル、エチルカルボニルなど）、ベンゾイル、C₇-10アラルキルカルボニル（例えば、ベンジルカルボニルなど）、テトラヒドロピラニル、フランキルカルボニル（例えば、ベンジルカルボニルなど）、ジイソラニルまたはシリル（例えば、トリメチルシリル、tert-ブチルジメチルシリル、ジイソプロピルエチルシリルなど）などが挙げられる。これらの置換基としては、ハロゲン原子（例えば、フッ素、塩素、臭素、ヨウ素など）、C₁-6アルキル（例えば、メチル、エチル、n-プロピルなど）、フェニル、C₇-10アラルキル（例えば、ベンジルなど）、C₁-6アルコキシ（例えば、メトキシ、エトキシ、n-プロポキシなど）、ニトロ基などが用いられ、置換基の数は1ないし4個程度である。

【0098】

メルカプト基の保護基としては、例えば、置換基を有していてもよい、C₁-6アルキル（例えば、tert-ブチルなど）、C₇-20アラルキル（例えば、ベンジル、トリチルなど）などが挙げられる。これらの置換基としては、ハロゲン原子（例えば、フッ素、塩素、臭素、ヨウ素など）、C₁-6アルキル（例えば、メチル、エチル、n-プロピルなど）、フェニル、C₇-10アラルキル（例えば、ベンジルなど）、C₁-6アルコキシ（例えば、メトキシ、エトキシ、n-プロポキシなど）、ニトロ基などが用いられ、置換基の数は1ないし4個程度である。

また、保護基の除去方法としては、それ自体公知またはそれに準じた方法が用いられるが、例えば酸、塩基、還元、紫外光、ヒドラジン、フェニルヒドラジン、N-メチルジチオカルバミン酸ナトリウム、テトラブチルアンモニウムフルオリド、酢酸パラジウムなどで処理する方法が用いられる。

【0099】

このようにして得られる化合物(I)、その他の反応中間体及びその原料化合物は、反応混合物から自体公知の方法、例えば抽出、濃縮、中和、濾過、蒸留、再結晶、カラムクロマトグラフィー、薄層クロマトグラフィー、分取用高速液体クロマトグラフィー（分取用HPLC）、中圧分取液体クロマトグラフィー（中圧分取LC）等の手段を用いることによって、単離、精製することができる。

化合物(I)の塩は、それ自体公知の手段に従い、例えば化合物(I)が塩基性化合物である場合には無機酸又は有機酸を加えることによって、あるいは化合物(I)が酸性化合物である場合には有機塩基または無機塩基を加えることによって製造することができる。

化合物(I)に光学異性体が存在し得る場合、これら個々の光学異性体及びそれら混合物のいずれも当然本発明の範囲に包含されるものであり、所望によりこれらの異性体をそれ自体公知の手段に従い光学分割したり、個別に製造することもできる。

【0100】

化合物(I)が、コンフィギュレーションアル アイソマー（配置異性体）、ジアステロマー、コンフォーマー等として存在する場合には、所望により、前記の分離、精製手段

によりそれを単離することができる。また、化合物(I)がラセミ体である場合には、通常の光学分割手段によりS体及びR体に分離することができる。

化合物(I)に立体異性体が存在する場合には、この異性体が単独の場合及びそれらの混合物の場合も本発明に含まれる。

また、化合物(I)は、水和物又は非水和物であってもよい。

化合物(I)は同位元素(例： ^3H 、 ^{14}C 、 ^{35}S)等で標識されていてもよい。

【0101】

化合物(I)、その塩、およびそのプロドラッグ(以下、本発明の化合物と略記する場合がある)は、GPR40受容体機能調節作用(GPR40受容体アゴニスト活性およびGPR40受容体アンタゴニスト活性)、特にGPR40受容体アゴニスト活性を有しており、また毒性が低く、かつ副作用(例：急性毒性、慢性毒性、遺伝毒性、生殖毒性、心毒性、薬物相互作用、癌原性)も少ないため、安全なGPR40受容体機能調節剤、好ましくはGPR40作動剤として有用である。

本発明の化合物を含有してなる医薬は、哺乳動物(例えば、マウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ウシ、ヒツジ、サル、ヒト等)に対して、優れたGPR40受容体機能調節作用を有しているので、GPR40受容体が関与する生理機能の調節剤またはGPR40受容体が関与する病態または疾患の予防・治療剤として有用である。

具体的には、本発明の化合物を含有してなる医薬は、インスリン分泌調節剤(好ましくはインスリン分泌促進剤)、血糖低下剤、臍β細胞保護剤として有用である。

【0102】

さらに、本発明の化合物を含有してなる医薬は、例えば、糖尿病、耐糖能異常、ケトーシス、アシドーシス、糖尿病性神経障害、糖尿病性腎症、糖尿病性網膜症、黄斑浮腫、高脂血症、性機能障害、皮膚疾患、関節症、骨減少症、動脈硬化、血栓性疾患、消化不良、記憶学習障害、肥満、低血糖症、高血圧、浮腫、インスリン抵抗性、不安定糖尿病、脂肪萎縮、インスリンアレルギー、インスリノーマ、脂肪毒性、高インスリン血症、癌などの疾患；特に、糖尿病、耐糖能異常、ケトーシス、アシドーシス、糖尿病性神経障害、糖尿病性腎症、糖尿病性網膜症、黄斑浮腫、高脂血症、性機能障害、皮膚疾患、関節症、骨減少症、動脈硬化、血栓性疾患、消化不良、記憶学習障害などの疾患に対する予防・治療剤として有用である。ここで、糖尿病には、1型糖尿病、2型糖尿病および妊娠糖尿病が含まれる。また、高脂血症には、高トリグリセリド血症、高コレステロール血症、低HDL血症、食後高脂血症などが含まれる。

【0103】

糖尿病の判定基準については、1999年に日本糖尿病学会から新たな判定基準が報告されている。

この報告によれば、糖尿病とは、空腹時血糖値(静脈血漿におけるグルコース濃度)が 126mg/dl 以上、 75g 経口ブドウ糖負荷試験(75gOGTT)2時間値(静脈血漿におけるグルコース濃度)が 200mg/dl 以上、随時血糖値(静脈血漿におけるグルコース濃度)が 200mg/dl 以上のいずれかを示す状態である。また、上記糖尿病に該当せず、かつ、「空腹時血糖値(静脈血漿におけるグルコース濃度)が 110mg/dl 未満または 75g 経口ブドウ糖負荷試験(75gOGTT)2時間値(静脈血漿におけるグルコース濃度)が 140mg/dl 未満を示す状態」(正常型)でない状態を、「境界型」と呼ぶ。

【0104】

また、糖尿病の判定基準については、1997年にADA(米国糖尿病学会)から、1998年にWHOから、新たな判定基準が報告されている。

これらの報告によれば、糖尿病とは、空腹時血糖値(静脈血漿におけるグルコース濃度)が 126mg/dl 以上であり、かつ、 75g 経口ブドウ糖負荷試験2時間値(静脈血漿におけるグルコース濃度)が 200mg/dl 以上を示す状態である。

また、上記報告によれば、耐糖能異常とは、空腹時血糖値(静脈血漿におけるグルコース濃度)が 126mg/dl 未満であり、かつ、 75g 経口ブドウ糖負荷試験2時間値(

静脈血漿におけるグルコース濃度) が 140 mg/dl 以上 200 mg/dl 未満を示す状態である。さらに、ADA の報告によれば、空腹時血糖値(静脈血漿におけるグルコース濃度) が 110 mg/dl 以上 126 mg/dl 未満の状態を I F G (Impaired Fasting Glucose) と呼ぶ。一方、WHO の報告によれば、該 I F G (Impaired Fasting Glycose) のうち、75 g 経口ブドウ糖負荷試験 2 時間値(静脈血漿におけるグルコース濃度) が 140 mg/dl 未満である状態を I F G (Impaired Fasting Glycemia) と呼ぶ。

本発明の化合物は、上記した新たな判定基準により決定される糖尿病、境界型、耐糖能異常)、I F G (Impaired Fasting Glucose) および I F G (Impaired Fasting Glycemia) の予防・治療剤としても用いられる。さらに、本発明の化合物は、境界型、耐糖能異常)、I F G (Impaired Fasting Glucose) または I F G (Impaired Fasting Glycemia) から糖尿病への進展を防止することもできる。

【0105】

本発明の化合物を含有してなる医薬は、毒性が低く、医薬製剤の製造法として一般的に用いられている自体公知の手段に従って、本発明の化合物をそのままあるいは薬理学的に許容される担体と混合して医薬製剤とした後に、経口的又は非経口的(例：局所、直腸、静脈投与等)に安全に投与することができる。

前記医薬製剤の剤形としては、例えば、錠剤(舌下錠、口腔内崩壊錠を含む)、カプセル剤(ソフトカプセル、マイクロカプセルを含む)、顆粒剤、散剤、トローチ剤、シロップ剤、乳剤、懸濁剤などの経口剤；および注射剤(例：皮下注射剤、静脈内注射剤、筋肉内注射剤、腹腔内注射剤、点滴剤)、外用剤(例：経皮製剤、軟膏剤)、坐剤(例：直腸坐剤、膣坐剤)、ペレット、経鼻剤、経肺剤(吸入剤)、点眼剤等の非経口剤が挙げられる。

これらの製剤は、速放性製剤または徐放性製剤などの放出制御製剤(例：徐放性マイクロカプセル)であってもよい。

【0106】

本発明の化合物の医薬製剤中の含有量は、製剤全体の約 0.01ないし約 100重量%である。本発明の化合物の投与量は、投与対象、投与ルート、疾患、症状等により異なるが、例えば成人の糖尿病患者(体重約 60 kg)に経口投与する場合、1 日当たり、約 0.01ないし約 30 mg/kg 体重、好ましくは約 0.1ないし約 20 mg/kg 体重を、更に好ましくは約 1ないし約 20 mg/kg 体重である。この量を 1 日 1ないし数回に分けて投与すればよい。

【0107】

前記した薬理学的に許容される担体としては、製剤素材として慣用の各種有機あるいは無機担体物質が挙げられ、例えば固形製剤における賦形剤、滑沢剤、結合剤及び崩壊剤、あるいは液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤及び無痛化剤等が挙げられる。更に必要に応じ、防腐剤、抗酸化剤、着色剤、甘味剤、吸着剤、湿潤剤等の添加物を用いることができる。

賦形剤としては、例えば乳糖、白糖、D-マンニトール、デンプン、コーンスター、結晶セルロース、軽質無水ケイ酸等が挙げられる。

滑沢剤としては、例えばステアリン酸マグネシウム、ステアリン酸カルシウム、タルク、コロイドシリカ等が挙げられる。

結合剤としては、例えば結晶セルロース、白糖、D-マンニトール、デキストリン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、デンプン、ショ糖、ゼラチン、メチルセルロース、カルボキシメチルセルロースナトリウム等が挙げられる。

【0108】

崩壊剤としては、例えばデンプン、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、カルボキシメチルスターチナトリウム、L-ヒドロキシプロピルセルロース等が挙げられる。

溶剤としては、例えば注射用水、アルコール、プロピレン glycol、マクロゴール、ゴマ油、トウモロコシ油、オリーブ油等が挙げられる。

溶解補助剤としては、例えばポリエチレングリコール、プロピレン glycol、D-マニトール、安息香酸ベンジル、エタノール、トリスアミノメタン、コレステロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム等が挙げられる。

懸濁化剤としては、例えばステアリルトリエタノールアミン、ラウリル硫酸ナトリウム、ラウリルアミノプロピオニ酸、レシチン、塩化ベンザルコニウム、塩化ベンゼトニウム、モノステアリン酸グリセリン等の界面活性剤；例えばポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の親水性高分子等が挙げられる。

【0109】

等張化剤としては、例えばブドウ糖、D-ソルビトール、塩化ナトリウム、グリセリン、D-マンニトール等が挙げられる。

緩衝剤としては、例えばリン酸塩、酢酸塩、炭酸塩、クエン酸塩等の緩衝液等が挙げられる。

無痛化剤としては、例えばベンジルアルコール等が挙げられる。

防腐剤としては、例えばパラヒドロキシ安息香酸エステル類、クロロブタノール、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸等が挙げられる。

抗酸化剤としては、例えば亜硫酸塩、アスコルビン酸、 α -トコフェロール等が挙げられる。

【0110】

着色剤としては、例えば水溶性食用タル色素（例：食用赤色2号および3号、食用黄色4号および5号、食用青色1号および2号などの食用色素）、水不溶性レーキ色素（例：前記水溶性食用タル色素のアルミニウム塩）、天然色素（例： β -カロチン、クロロフィル、ベンガラ）等が挙げられる。

甘味剤としては、例えばサッカリンナトリウム、グリチルリチン酸二カリウム、アスパルテーム、ステビア等が挙げられる。

【0111】

本発明の化合物は、糖尿病治療剤、糖尿病性合併症治療剤、高脂血症治療剤、降圧剤、抗肥満剤、利尿剤、化学療法剤、免疫療法剤、抗炎症薬、抗血栓剤、骨粗鬆症治療剤、ビタミン薬、抗痴呆薬、頻尿・尿失禁治療薬、排尿困難治療剤などの薬剤（以下、薬物Xと略記する場合がある）と組み合わせて用いることができる。

上記糖尿病治療剤としては、インスリン製剤（例：ウシ、ブタの臍臓から抽出された動物インスリン製剤；大腸菌、イーストを用い、遺伝子工学的に合成したヒトインスリン製剤；インスリン亜鉛；プロタミンインスリン亜鉛；インスリンのフラグメントまたは誘導体（例：INS-1等）、経口インスリン製剤など）、インスリン感受性増強剤（例：ピオグリタゾンまたはその塩（好ましくは塩酸塩）、ロシグリタゾンまたはその塩（好ましくはマレイン酸塩）、レグリキサン（Reglipan）（JTT-501）、ネットグリタゾン（Netoglitazone）（MCC-555）、GI-262570、FK-614、CS-011、W099/58510に記載の化合物（例え(E)-4-[4-(5-メチル-2-フェニル-4-オキサゾリルメトキシ)ベンジルオキシイミノ]-4-フェニル酪酸）、W001/38325に記載の化合物、テサグリタザール（Tesaglitazar）（AZ-242）、BM-13-1258、LM-4156、MBX-102、LY-519818、MX-054、LY-510929、バラグリタゾン（Balaglitazone）（NN-2344）、T-131またはその塩、THR-0921）、 α -グルコシダーゼ阻害剤（例：ボグリボース、アカルボース、ミグリトール、エミグリテート等）、ビグアナイド剤（例：フェンホルミン、メトホルミン、ブホルミンまたはそれらの塩（例：塩酸塩、フマール酸塩、コハク酸塩）等）、インスリン分泌促進剤〔スルホニルウレア剤（例：トルブタミド、グリベンクラミド、グリクラジド、クロルプロパミド、トラザミド、アセトヘキサミド、グリクロピラミド、グリメピリド等）、レバグリニド、セナグリニド、ミチグリニドまたはそのカルシウム塩水和物、ナテグリニド

等]、GLP-1受容体アゴニスト[例：GLP-1、GLP-1MR剤、NN-2211、AC-2993(exendin-4)、BIM-51077、Aib(8,35)hGLP-1(7,37)NH₂、CJC-1131等]、ジペプチジルペプチダーゼIV阻害剤(例：NVP-DPP-278、PT-100、P32/98、P93/01、NVP-DPP-728、LAF237、TS-021等)、β3アゴニスト(例：CL-316243、SR-58611-A、UL-TG-307、AJ-9677、AZ40140等)、アミリンアゴニスト(例：プラムリンチド等)、ホスホチロシンホスファターゼ阻害剤(例：バナジン酸ナトリウム等)、糖新生阻害剤(例：グリコーゲンホスホリラーゼ阻害剤、グルコース-6-ホスファターゼ阻害剤、グルカゴン拮抗剤等)、SGLT(sodium-glucose cotransporter)阻害剤(例：T-1095等)、11β-ヒドロキシステロイドデヒドロゲナーゼ阻害薬(例：BVT-3498等)、アジポネクチンまたはその作動薬、IKK阻害薬(例：AS-2868等)、レプチン抵抗性改善薬、ソマトスタチン受容体作動薬(W001/25228、W003/42204、W098/44921、W098/45285、W099/22735に記載の化合物等)、グルコキナーゼ活性化薬(例：Ro-28-1675)等が挙げられる。

【0112】

糖尿病性合併症治療剤としては、アルドース還元酵素阻害剤(例：トルレストット、エバルレストット、ゼナレストット、ゾポルレストット、フィダレストット(SNK-860)、AS-3201、ミナルレストット(ARI-509)、CT-112等)、神経栄養因子およびその増加薬(例：NGF、NT-3、BDNF、W001/14372に記載のニューロトロフィン産生・分泌促進剤(例えば4-(4-クロロフェニル)-2-(2-メチル-1-イミダゾリル)-5-[3-(2-メチルフェノキシ)プロピル]オキサゾールなど)等)、プロテインキナーゼC(PKC)阻害薬(例：LY-333531等)、AGE阻害剤(例：ALT-945、ピマゲジン、ピラトキサチン、N-フェナシルチアゾリウムプロミド(ALT-766)、EXO-226、ALT-711、ピリドリン(Pyridorin)、ピリドキサミン等)、活性酸素消去薬(例：チオクト酸等)、脳血管拡張剤(例：チオブリド等)、ソマトスタチン受容体作動薬(BIM23190)、アポトーシスシグナルレギュレーティングキナーゼ-1(ASK-1)阻害薬等が挙げられる。

【0113】

高脂血症治療剤としては、HMG-CoA還元酵素阻害剤(例：プラバスタチン、シンバスタチン、ロバスタチン、アトルバスタチン、フルバスタチン、ビタバスタチン、ロスバスタチンまたはそれらの塩(例：ナトリウム塩等)等)、スクアレン合成酵素阻害剤(例：W097/10224に記載の化合物、例えばN-[(3R,5S)-1-(3-アセトキシ-2,2-ジメチルプロピル)-7-クロロ-5-(2,3-ジメトキシフェニル)-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル]アセチル]ピペリジン-4-酢酸など)、フィブロート系化合物(例：ベザフィブロート、クロフィブロート、シムフィブロート、クリノフィブロート等)、抗酸化剤(例：リポ酸、プロブコール)等が挙げられる。

【0114】

降圧剤としては、アンジオテンシン変換酵素阻害剤(例：カプトプリル、エナラプリル、デラプリル等)、アンジオテンシンII拮抗剤(例：ロサルタン、カンデサルタンシレキセチル、エプロサルタン、バルサルタン、テルミサルタン、イルベサルタン、オルメサルタンメドキソミル、タソサルタン、1-[[2'-(2,5-ジヒドロ-5-オキソ-4H-1,2,4-オキサジアゾール-3-イル)ビフェニル-4-イル]メチル]-2-エトキシ-1H-ベンズイミダゾール-7-カルボン酸等)、カルシウム拮抗剤(例：マニジピン、ニフェジピン、アムロジピン、エホニジピン、ニカルジピン等)、クロニジン等が挙げられる。

【0115】

抗肥満剤としては、例えば中枢性抗肥満薬(例：デキスフェンフルアミン、フェンフルラミン、フェンテルミン、シブトラミン、アンフェプラモン、デキサンフェタミン、マジンドール、フェニルプロパノールアミン、クロベンゾレックス；MCH受容体拮抗薬(例：SB-568849；SNAP-7941；W001/82925およびW001/87834に記載の化合物等)；ニューロペプチドY拮抗薬(例：CP-422935等)；カンナビノイド受容体拮抗薬(例：SR-141716、SR-14778等)；グレリン拮抗薬；11β-ヒドロキシステロイドデヒドロゲナーゼ阻害薬(例：

BVT-3498等) 等) 、臍リバーゼ阻害薬(例:オルリストット、ATL-962等)、 β 3アゴニスト(例:CL-316243、SR-58611-A、UL-TG-307、AJ-9677、AZ40140等)、ペプチド性食欲抑制薬(例:レプチン、CNTF(毛様体神経栄養因子)等)、コレシストキニンアゴニスト(例:リンチトリプト、FPL-15849等)、摂食抑制薬(例:P-57等)等が挙げられる。

【0116】

利尿剤としては、例えばキサンチン誘導体(例:サリチル酸ナトリウムテオプロミン、サリチル酸カルシウムテオプロミン等)、チアジド系製剤(例:エチアジド、シクロベンチアジド、トリクロルメチアジド、ヒドロクロロチアジド、ヒドロフルメチアジド、ベンジルヒドロクロロチアジド、ペンフルチジド、ポリチアジド、メチクロチアジド等)、抗アルドステロン製剤(例:スピロノラクトン、トリアムテレン等)、炭酸脱水酵素阻害剤(例:アセタゾラミド等)、クロルベンゼンスルホンアミド系製剤(例:クロルタリドン、メフルシド、インダパミド等)、アゾセミド、イソソルビド、エタクリン酸、ピレタニド、ブメタニド、フロセミド等が挙げられる。

【0117】

化学療法剤としては、例えばアルキル化剤(例:サイクロフォスファミド、イフオスファミド等)、代謝拮抗剤(例:メソトレキセート、5-フルオロウラシルおよびその誘導体等)、抗癌性抗生物質(例:マイトイシン、アドリアマイシン等)、植物由来抗癌剤(例:ビンクリスチン、ビンデシン、タキソール等)、シスプラチン、カルボプラチン、エトポキシドなどが挙げられる。なかでも5-フルオロウラシル誘導体であるフルツロンあるいはネオフルツロンなどが好ましい。

免疫療法剤としては、例えば微生物または細菌成分(例:ムラミルジペプチド誘導体、ピシバニール等)、免疫増強活性のある多糖類(例:レンチナン、シゾフィラン、クレスチン等)、遺伝子工学的手法で得られるサイトカイン(例:インターフェロン、インターロイキン(IL)等)、コロニー刺激因子(例:顆粒球コロニー刺激因子、エリスロポエチン等)などが挙げられ、なかでもIL-1、IL-2、IL-12などのインターロイキンが好ましい。

【0118】

抗炎症薬としては、例えばアスピリン、アセトアミノフェン、インドメタシンなどの非ステロイド抗炎症薬等が挙げられる。

抗血栓剤としては、例えばヘパリン(例:ヘパリンナトリウム、ヘパリンカルシウム、ダルテパリンナトリウム(dalteparin sodium)など)、ワルファリン(例:ワルファリンカリウムなど)、抗トロンビン薬(例:アルガトロバン(aragatrobam)など)、血栓溶解薬(例:ウロキナーゼ(urokinase)、チソキナーゼ(tisokinase)、アルテプラーゼ(alteplase)、ナテプラーゼ(nateplase)、モンテプラーゼ(monteplase)、パミテプラーゼ(pamiteplase)など)、血小板凝集抑制薬(例:塩酸チクロピジン(ticlopidine hydrochloride)、シロスタゾール(cilostazol)、イコサペント酸エチル、ベラプロストナトリウム(beraprost sodium)、塩酸サルポグレラート(sarpogrelate hydrochloride)など)などが挙げられる。

【0119】

骨粗鬆症治療剤としては、例えばアルファカルシドール(alfacalcidol)、カルシトリール(calcitriol)、エルカトニン(elcatonin)、サケカルシトニン(calcitonin salmon)、エストリオール(estriol)、イプリフラボン(ipriflavone)、パミドロン酸二ナトリウム(pamidronate disodium)、アレンドロン酸ナトリウム水和物(alendronate sodium hydrate)、インカドロン酸二ナトリウム(incadronate disodium)等が挙げられる。

ビタミン薬としては、例えばビタミンB1、ビタミンB12等が挙げられる。

抗痴呆剤としては、例えばタクリン(tacrine)、ドネペジル(donepezil)、リバスチグミン(rivastigmine)、ガラントミン(galantamine)等が挙げられる。

頻尿・尿失禁治療薬としては、例えば塩酸フラボキサート(flavoxate hydrochloride

)、塩酸オキシブチニン (oxybutynin hydrochloride) 、塩酸プロピベリン (propiverine hydrochloride) 等が挙げられる。

排尿困難治療剤としては、アセチルコリンエステラーゼ阻害薬（例：ジスチグミン）等が挙げられる。

【0120】

さらに、動物モデルや臨床で悪液質改善作用が認められている薬剤、すなわち、シクロオキシゲナーゼ阻害剤（例：インドメタシン等）、プロゲステロン誘導体（例：メガステロールアセテート）、糖質ステロイド（例：デキサメサン等）、メトクロプラミド系薬剤、テトラヒドロカンナビノール系薬剤、脂肪代謝改善剤（例：エイコサペンタエン酸等）、成長ホルモン、IGF-1、あるいは悪液質を誘導する因子であるTNF- α 、IL-6、IL-1、オンコスタチンMに対する抗体なども本発明の化合物と併用することができる。

さらに、糖化阻害剤（例：ALT-711等）、神経再生促進薬（例：Y-128、VX853、prosaptide等）、抗うつ薬（例：デシプラミン、アミトリプチリン、イミプラミン）、抗てんかん薬（例：ラモトリジン、トリレプタル（Trileptal）、ケプラ（Keppra）、ゾネグラン（Zonegran）、プレギャバリン（Pregabalin）、ハーコセライド（Harkoserdide）、カルバマゼピン）、抗不整脈薬（例：メキシレチン）、アセチルコリン受容体リガンド（例：ABT-594）、エンドセリン受容体拮抗薬（例：ABT-627）、モノアミン取り込み阻害薬（例：トラマドール）、麻痺性鎮痛薬（例：モルヒネ）、GABA受容体作動薬（例：ギャバペンチン、ギャバペルンチンMR剤）、 α 2受容体作動薬（例：クロニジン）、局所鎮痛薬（例：カプサイシン）、抗不安薬（例：ベンゾチアゼピン）、ホスホジエステラーゼ阻害薬（例：シルデナフィル）、ドーパミン受容体作動薬（例：アポモルフィン）なども本発明の化合物と併用することができる。

上記薬物Xは、2種以上を適宜の割合で組み合せて用いてよい。

【0121】

本発明の化合物と薬物Xとを組み合わせることにより、

(1) 本発明の化合物または薬物Xを単独で投与する場合に比べて、本発明の化合物および/または薬物Xの投与量を低減することができる、

(2) 本発明の化合物と作用機序が異なる薬物Xを選択することにより、治療期間を長く設定することができる、

(3) 本発明の化合物と作用機序が異なる薬物Xを選択することにより、治療効果の持続を図ることができる、

(4) 本発明の化合物と薬物Xとを併用することにより、相乗効果が得られる、などの優れた効果を得ることができる。

本発明の化合物と薬物Xを組み合わせて使用する際、本発明の化合物と薬物Xの投与時期は限定されず、本発明の化合物と薬物Xとを、投与対象に対し、同時に投与してもよいし、時間差をおいて投与してもよい。薬物Xの投与量は、臨床上用いられている投与量に準すればよく、投与対象、投与ルート、疾患、組み合わせ等により適宜選択することができる。

【0122】

また、本発明の化合物と薬物Xの投与形態は、特に限定されず、投与時に、本発明の化合物と薬物Xとが組み合わされていればよい。このような投与形態としては、例えば、(1) 本発明の化合物と薬物Xとを同時に製剤化して得られる単一の製剤の投与、(2) 本発明の化合物と薬物Xとを別々に製剤化して得られる2種の製剤の同一投与経路での同時投与、(3) 本発明の化合物と薬物Xとを別々に製剤化して得られる2種の製剤の同一投与経路での時間差をおいての投与、(4) 本発明の化合物と薬物Xとを別々に製剤化して得られる2種の製剤の異なる投与経路での同時投与、(5) 本発明の化合物と薬物Xとを別々に製剤化して得られる2種の製剤の異なる投与経路での時間差をおいての投与（例えば、本発明の化合物；薬物Xの順序での投与、あるいは逆の順序での投与）などが挙げられる。

【実施例】

【0123】

本発明は、更に以下の参考例、実施例、製剤例及び実験例によって詳しく説明されるが、これらの例は単なる実施であって、本発明を限定するものではなく、また本発明の範囲を逸脱しない範囲で変化させてもよい。

以下の参考例、実施例中の「室温」は通常約10℃ないし約35℃を示す。%は、収率はmol/mol%を、クロマトグラフィーで用いられる溶媒は体積%を、その他は重量%を示す。プロトンNMRスペクトルで、OHやNHプロトン等プロードで確認できないものについてはデータに記載していない。

その他の本文中で用いられている略号は下記の意味を示す。

s : シングレット (singlet)

d : ダブルエット (doublet)

t : トリプレット (triplet)

q : クアルテット (quartet)

m : マルチプレット (multiplet)

br : ブロード (broad)

J : カップリング定数 (coupling constant)

Hz : ヘルツ (Hertz)

CDCl₃ : 重クロロホルム

¹H NMR : プロトン核磁気共鳴

【0124】

以下の参考例、実施例において、マススペクトル (MS) は以下の条件により測定した。

測定機器：ウォーターズ社 ZMD、ウォーターズ社 ZQ2000またはマイクロマス社 プラットフォームII

イオン化法：電子衝撃イオン化法 (Electron Spray Ionization : ESI)、または大気圧化学イオン化法 (Atmospheric Pressure Chemical Ionization : APCI)。特記なき場合、ESIを用いた。

また、実施例における分取HPLCによる精製は以下の条件により行った。

分取HPLC機器：ギルソン社ハイスクループレット精製システム

カラム：YMC Combiprep ODS-A S-5 μm, 20 X 50 mm

溶媒：A液； 0.1% トリフルオロ酢酸 含有水、

B液； 0.1% トリフルオロ酢酸 含有アセトニトリル

グラジエントサイクルA: 0.00分 (A液/B液=90/10), 1.20分 (A液/B液=90/10), 4.75分 (A液/B液=0/100), 7.30分 (A液/B液=0/100), 7.40分 (A液/B液=90/10), 7.50分 (A液/B液=90/10).

グラジエントサイクルB: 0.00分 (A液/B液=95/5), 1.00分 (A液/B液=95/5), 5.20分 (A液/B液=5/95), 6.40分 (A液/B液=5/95), 6.50分 (A液/B液=95/5), 6.60分 (A液/B液=95/5).

流速：25 mL/min、検出法：UV 220 nm

【0125】

参考例1 4-イソプロピル-N-(2-フェニルエチル)-1,3-チアゾール-2-アミン

【0126】

【化18】

【0127】

3-メチル-2-ブタノン (0.86 g) のメタノール (10 mL) 溶液に-30°Cで臭素 (1.60 g) を加え、室温に戻して、臭素の赤色が消失するまでかき混ぜた。得られた無色溶液に、酢酸ナトリウム (1.60 g)、N-(2-フェニルエチル)チオ尿素 (1.80 g) を加え、加熱還流しながら4時間かき混ぜた。反応混合物に飽和炭酸水素ナトリウム水溶液 (10 mL) を加え、濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルへキサン (容積比で1:9から2:1までグラジエント) で展開することにより、表題化合物 (1.26 g、収率51%) を無色結晶として得た。

MS: m/z 247 (M+H).

【0128】

参考例2 N-[2-(4-フルオロフェニル)エチル]-4-イソプロピル-1,3-チアゾール-2-アミン

【0129】

【化19】

【0130】

参考例1と同様にして、N-[2-(4-フルオロフェニル)エチル]チオ尿素から収率52%で表題化合物を合成した。無色結晶。

MS: m/z 265 (M+H).

【0131】

参考例3 4-イソプロピル-N-(2-ピリジン-2-イルエチル)-1,3-チアゾール-2-アミン

【0132】

【化20】

【0133】

参考例1と同様にして、N-(2-ピリジン-2-イルエチル)チオ尿素から収率51%で表題化合物を合成した。黄色油状物。

¹H NMR (300 MHz, CDCl₃) δ ppm 1.22 (6H, d, J=6.8Hz), 2.76-2.89 (1H, m), 3.12 (2H, t, J=6.4Hz), 3.65 (2H, q, J=6.1Hz), 5.71 (1H, s), 5.99-6.09 (1H, m), 7.11-7.20 (2H, m), 7.57-7.65 (1H, m), 8.52-8.57 (1H, m).

【0134】

参考例4 N-[2-(2-フルオロフェニル)エチル]-4-イソプロピル-1,3-チアゾール-2-アミン

【0135】

【化21】

【0136】

参考例1と同様にして、N-[2-(2-フルオロフェニル)エチル]チオ尿素から収率4%で表題化合物を合成した。黄色固体。

¹H NMR (300 MHz, CDCl₃) δ ppm 1.23 (6H, d, J=7.0Hz), 2.75–2.90 (1H, m), 3.00 (2H, t, J=7.0Hz), 3.50 (2H, q, J=6.8Hz), 5.11 (1H, s), 6.07 (1H, d, J=0.8Hz), 6.96–7.13 (2H, m), 7.17–7.25 (2H, m).

【0137】

参考例5 4-イソブチル-N-(2-フェニルエチル)-1,3-チアゾール-2-アミン

【0138】

【化22】

【0139】

4-メチル-2-ペントノン (2.00 g) のメタノール (10 mL) 溶液に-30°Cで臭素 (3.20 g) を加え、室温に戻して、臭素の赤色が消失するまでかき混ぜた。得られた無色溶液に、酢酸ナトリウム (3.20 g)、N-(2-フェニルエチル)チオ尿素 (1.80 g) を加え、加熱還流しながら4時間かき混ぜた。反応混合物に飽和炭酸水素ナトリウム水溶液 (10 mL) を加え、濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチル-ヘキサン (容積比で1:9から2:1までグラジエント) で展開することにより、表題化合物 (1.15 g、収率41%) を淡黄色結晶として得た。

MS: m/z 261 (M+H).

【0140】

参考例6 N-[2-(4-フルオロフェニル)エチル]-4-イソブチル-1,3-チアゾール-2-アミン

【0141】

【化23】

【0142】

参考例5と同様にして、N-[2-(4-フルオロフェニル)エチル]チオ尿素から収率42%で表出証特2005-3006800

題化合物を合成した。無色結晶。

MS: m/z 279 (M+H).

【0143】

参考例7 N-(2-フェニルエチル)-4-プロピル-1,3-チアゾール-2-アミン

【0144】

【化24】

【0145】

2-ペンタノン (1.72 g) のメタノール (10 mL) 溶液に-30°Cで臭素 (3.20 g) を加え、室温に戻して、臭素の赤色が消失するまでかき混ぜた。得られた無色溶液に、酢酸ナトリウム (3.20 g)、N-(2-フェニルエチル)チオ尿素 (2.70 g) を加え、加熱還流しながら4時間かき混ぜた。反応混合物に飽和炭酸水素ナトリウム水溶液 (10 mL) を加え、濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチル-ヘキサン (容積比で1:9から2:1までグラジェント) で展開することにより、表題化合物 (850 mg、収率23%) を淡黄色結晶として得た。

MS: m/z 247 (M+H).

【0146】

参考例8 N-(2-フェニルエチル)-4-[4-(トリフルオロメチル)フェニル]-1,3-チアゾール-2-アミン

【0147】

【化25】

【0148】

2-ブロモ-1-[4-(トリフルオロメチル)フェニル]エタノン (5.34 g)、N-(2-フェニルエチル)チオ尿素 (3.60 g) およびN,N-ジメチルホルムアミド (20 mL) の混合物を室温で1時間かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層を無水硫酸マグネシウムで乾燥後、濃縮して表題化合物 (5.20 g、収率74%) を無色結晶として得た。

MS: m/z 349 (M+H).

【0149】

参考例9 3-(4-{(4-(クロロメチル)ベンジル)オキシ}フェニル)プロパン酸メチル

【0150】

【化26】

【0151】

4-(クロロメチル)ベンジルアルコール(4.68 g)、3-(4-ヒドロキシフェニル)プロパン酸メチル(5.40 g)およびトリフェニルホスフィン(9.20 g)をトルエン(60 mL)-テトラヒドロフラン(30 mL)の混合溶媒に溶解し、0℃に冷却してアゾジカルボン酸ジエチル(40% トルエン溶液、15.2 g)をかき混ぜながら滴下した。滴下終了後、反応混合物を室温に戻してさらに1時間かき混ぜた。反応混合物を濃縮し、残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチル-ヘキサン(容積比で1:19から1:1までグラジエント)で展開することにより、表題化合物(5.19 g、収率54%)を無色結晶として得た。

¹H NMR (300 MHz, CDCl₃) δ: 2.59(2H, t, J=7.7Hz), 2.89(2H, t, J=7.7Hz), 3.66(3H, s), 4.59(2H, s), 5.04(2H, s), 6.89(2H, d, J=8.7Hz), 7.11(2H, d, J=8.7Hz), 7.35-7.45(4H, m).

【0152】

参考例 10 3-{(4-(クロロメチル)ベンジル]オキシ}-2-フルオロフェニル)プロパン酸エチル

【0153】

【化27】

【0154】

参考例 9 と同様にして、3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エチルから収率73%で表題化合物を合成した。無色結晶。

¹H NMR (300 MHz, CDCl₃) δ ppm 1.23(3H, t, J=7.1Hz), 2.58(2H, t, J=7.6Hz), 2.90(2H, t, J=7.6Hz), 4.12(2H, q, J=7.1Hz), 4.60(2H, s), 5.02(2H, s), 6.62-6.70(2H, m), 7.10(1H, t, J=8.8Hz), 7.41(4H, s).

【0155】

参考例 11 N-[3-(メチルチオ)プロピル]-4-フェニル-1,3-チアゾール-2-アミン

【0156】

【化28】

【0157】

2-ブロモ-1-フェニルエタノン(1.99 g)、N-[3-(メチルチオ)プロピル]チオ尿素(1.64

出証特2005-3006800

g) およびN,N-ジメチルホルムアミド(5 mL)の混合物を室温で1時間かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層を無水硫酸マグネシウムで乾燥後、濃縮して表題化合物(1.85 g、70%)を黄色油状物として得た。

¹H NMR (300 MHz, CDCl₃) δ ppm 1.95-2.06(2H, m), 2.13(3H, s), 2.63(2H, t, J=7.1Hz), 3.4-3.5(2H, m), 5.78(1H, s), 6.69(1H, s), 7.29-7.49(3H, m), 7.69-7.86(2H, m).

【0158】

参考例12 N-(2-フェニルエチル)-4-ピリジン-2-イル-1,3-チアゾール-2-アミン

【0159】

【化29】

【0160】

2-ブロモ-1-ピリジン-2-イルエタノン 臭化水素酸塩(4.00 g)、N-(2-フェニルエチル)チオ尿素(3.60 g)、酢酸ナトリウム(1.60 g)およびエタノール(30 mL)の混合物を加熱還流しながら1時間かき混ぜた。反応混合物を冷却後水に注ぎ、酢酸エチルで抽出した。酢酸エチル層を無水硫酸マグネシウムで乾燥後、濃縮して残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチル-ヘキサン(容積比で1:9から2:1までグラジエント)で展開することにより、表題化合物(2.71 g、収率48%)を黄色油状物として得た。

MS: m/z 282 (M+H).

【0161】

参考例13 (4-[(4-フェニル-1,3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル)フェニルメタノール

【0162】

【化30】

【0163】

2-ブロモ-1-フェニルエタノン(1.0 g)、N-(2-ピリジン-2-イルエチル)チオ尿素(0.90 g)およびN,N-ジメチルホルムアミド(5 mL)の混合物を室温で1時間かき混ぜた。反応混合物に水素化ナトリウム(60%、油性、400 mg)を加え、室温でさらに1時間かき混ぜた。反応混合物に氷冷下、4-(ブロモメチル)安息香酸メチル(1.15 g)を加え、室温に戻してさらに1時間かき混ぜた。反応混合物をリン酸2水素1ナトリウム水溶液に注ぎ、酢酸エチルで抽出した。酢酸エチル層を無水硫酸マグネシウムで乾燥後、濃縮して残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチル-ヘキサン(容積比で1:9から2:1までグラジエント)で展開することにより、黄色油状物を得た。この黄色油状物をテトラヒドロフラン(30 mL)に溶解し、水素化リチウムアルミニウム(120 mg)を氷冷下少量ずつ加えた。反応混合物を氷冷下30分間かき混ぜた後、硫酸ナトリウム10水和物(1.0 g)を加え、室温に戻して30分間かき混ぜた。析出物をろ過により除き、ろ液を濃縮して表題化合物(890 mg、44%)を黄色油状物として得た。

¹H NMR (300 MHz, CDCl₃) δ ppm 1.66(1H, t, J=5.9Hz), 3.20(2H, t, J=7.5Hz), 3.90(2H, t,

$J=7.5\text{Hz}$), 4.59–4.75(4H, m), 6.72(1H, s), 7.03–7.23(2H, m), 7.22–7.33(5H, m), 7.33–7.42(2H, m), 7.53–7.68(1H, m), 7.79–7.94(2H, m), 8.54(1H, dd, $J=4.1, 0.8\text{Hz}$).

【0164】

参考例14 (4-{[(2-(4-フルオロフェニル)エチル](4-イソプロピル-1,3-チアゾール-2-イル)アミノ]メチル}フェニル)メタノール

【0165】

【化31】

【0166】

N-[2-(4-フルオロフェニル)エチル]-4-イソプロピル-1,3-チアゾール-2-アミン (550 mg)、水素化ナトリウム (80 mg) およびN,N-ジメチルホルムアミド (5 mL) の混合物を室温で1時間かき混ぜた。反応混合物に氷冷下、4-(ブロモメチル)安息香酸メチル (500 mg) を加え、室温に戻してさらに1時間かき混ぜた。反応混合物を1規定塩酸水溶液に注ぎ、酢酸エチルで抽出した。酢酸エチル層を無水硫酸マグネシウムで乾燥後、濃縮して残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルーへキサン (容積比で1:9から1:1までグラジエント) で展開することにより、黄色油状物を得た。この黄色油状物をテトラヒドロフラン (30 mL) に溶解し、水素化リチウムアルミニウム (80 mg) を氷冷下少量ずつ加えた。反応混合物を氷冷下30分間かき混ぜた後、硫酸ナトリウム 1.0水和物 (1.0 g) を加え、室温に戻して30分間かき混ぜた。析出物をろ過により除き、ろ液を濃縮して表題化合物 (720 mg, 90%) を黄色油状物として得た。

$^1\text{H NMR}$ (300 MHz , CDCl_3) δ ppm 1.26(6H, d, $J=6.8\text{Hz}$), 1.61(1H, t, $J=5.8\text{Hz}$), 2.83–2.94(3H, m), 3.53–3.60(2H, m), 4.56(2H, s), 4.68(2H, d, $J=5.8\text{Hz}$), 6.06(1H, d, $J=0.9\text{Hz}$), 6.92–6.99(2H, m), 7.08–7.15(2H, m), 7.23–7.34(4H, m).

【0167】

参考例15 4-[[2-(フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]安息香酸メチル

【0168】

【化32】

【0169】

4-フェニル-N-(2-フェニルエチル)-1,3-チアゾール-2-アミン (4.63 g, 16.5 mmol) のN,N-ジメチルホルムアミド (50 mL) 溶液に60% 水素化ナトリウム (990 mg, 24.8 mmol) を加えて30分間攪拌した後、4-(ブロモメチル)安息香酸メチル (4.54 g, 19.8 mmol) を加えた。混合物を室温で2時間攪拌した後、反応液に水を加え、酢酸エチルで抽出した。抽出液を水洗した後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し、表題化合物 (3.39 g、収率48%) を黄色油状物として得た。

$^1\text{H NMR}$ (CDCl_3) δ 3.00(t, $J=7.8\text{Hz}$, 2H), 3.69(t, $J=7.8\text{Hz}$, 2H), 3.90(s, 3H), 4.71(s,

2H), 6.76(s, 1H), 7.18-7.41(m, 10H), 7.86-7.88(m, 2H), 7.98-8.00(m, 2H).

【0170】

参考例16 [4-[[[2-(フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]フェニル]メタノール

【0171】

【化33】

【0172】

氷冷下、4-[[[2-(フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]安息香酸メチル(535 mg、1.25 mmol)のテトラヒドロフラン(20 mL)溶液に1.5M水素化ジイソブチルアルミニウムトルエン溶液(2.4 mL、3.64 mmol)を加えた。反応液を室温で2時間攪拌した後、硫酸ナトリウム10水和物(1.29 g、4 mmol)を加えて室温で1時間攪拌した。不溶物をろ去後、ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン／酢酸エチル=2:3)で精製し、表題化合物(409 mg、収率81%)を無色油状物として得た。

¹H NMR (CDCl₃) δ 2.99(t, J=8.1Hz, 2H), 3.68(t, J=8.1Hz, 2H), 4.65-4.69(m, 4H), 6.74(s, 1H), 7.19-7.41(m, 12H), 7.87-7.90(m, 2H).

【0173】

参考例17 3-[[[2-(フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]安息香酸メチル

【0174】

【化34】

【0175】

参考例15と同様の方法を用いて、4-フェニル-N-(2-フェニルエチル)-1,3-チアゾール-2-アミンと3-(ブロモメチル)安息香酸メチルから表題化合物(収率14%)を黄色油状物として得た。

¹H NMR (CDCl₃) δ 2.96-3.05(2H, m), 3.65-3.73(2H, m), 3.91(3H, s), 4.70(2H, s), 6.75(1H, s), 7.19-7.33(6H, m), 7.35-7.43(3H, m), 7.52(1H, d, J=7.7Hz), 7.86-7.91(2H, m), 7.92-8.00(2H, m).

【0176】

参考例18 [3-[[[2-(フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]フェニル]メタノール

【0177】

【化35】

【0178】

参考例16と同様の方法を用いて、3-[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]安息香酸メチルから表題化合物（収率85%）を黄色油状物として得た。

¹H NMR (CDCl₃) δ 3.00(2H, t, J=8.1Hz), 3.70(2H, t, J=8.1Hz), 4.61-4.72(4H, m), 6.74(1H, s), 7.15-7.34(10H, m), 7.39(2H, t, J=7.4Hz), 7.82-7.94(2H, m).

【0179】

参考例19 2-ヒドロキシ-1-フェニルプロパン-1-オン

【0180】

【化36】

【0181】

2-ブロモ-1-フェニルプロパン-1-オン (6.0 g, 28.2 mmol) のメタノール (50 mL) 溶液にギ酸ナトリウム (7.66 g, 113 mmol) を加えて8時間加熱還流した。反応液に水を加え、酢酸エチルで抽出した。抽出液を水洗した後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン／酢酸エチル=4:1) で精製し、表題化合物 (2.66 g、収率63%) を無色油状物として得た。

¹H NMR (CDCl₃) δ 7.96-7.92(m, 2H), 7.66-7.60(m, 1H), 7.54-7.49(m, 2H), 5.21-5.12(m, 1H), 3.78(d, 1H, J=6.2Hz), 1.45(d, 3H, J=7.0Hz).

【0182】

参考例20 5-メチル-4-フェニル-1,3-オキサゾール-2(3H)-オン

【0183】

【化37】

【0184】

2-ヒドロキシ-1-フェニルプロパン-1-オン (1.00 g, 6.66 mmol) およびシアノ酸カリウム (1.08 g, 13.3 mmol) の2-プロパノール (15 mL) 溶液に、酢酸 (960 mg, 16.0 mmol) を50°Cで1時間かけて滴下した。混合物を50°Cで5時間攪拌した後、反応液を水に注いだ。晶出物をろ取し、イソプロピルエーテル-ヘキサンから再結晶化し、表題化合物 (430 mg、3

7%)を白色結晶として得た。

MS:m/z 176 (M+H).

【0185】

参考例 21 2-クロロ-5-メチル-4-フェニル-1,3-オキサゾール

【0186】

【化38】

【0187】

5-メチル-4-フェニル-1,3-オキサゾール-2(3H)-オン (430 mg、2.45 mmol) のオキシ塩化リソ (2.36 g、14.7 mmol) 懸濁液にピリジン (194 mg、2.45 mmol) を添加し、120°Cで2時間攪拌した。反応液をアセトニトリルで希釈した後、水(約30°C)に滴下した。有機物を酢酸エチルで抽出した後、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=7:3)で精製し、表題化合物 (233 mg、収率49%) を黄色油状物として得た。

MS : m/z 194 (M+H).

【0188】

参考例 22 5-メチル-4-フェニル-N-プロピル-1,3-オキサゾール-2-アミン

【0189】

【化39】

【0190】

2-クロロ-5-メチル-4-フェニル-1,3-オキサゾール (1.46 g、7.56 mmol) のエタノール (15 mL) 溶液にプロピルアミン (5 mL) を加えた後、封管中、110°Cで8時間攪拌した。反応液を濃縮した後、水を加え、酢酸エチルで抽出した。飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=2:1)で精製し、表題化合物 (850 mg、収率52%) を黄色粉末として得た。

◦

MS:m/z 217 (M+H).

【0191】

参考例 23 (2E)-3-(2-フルオロ-4-メトキシフェニル)アクリル酸エチル

【0192】

【化40】

【0193】

氷冷したジエチルホスホノ酢酸エチル (9.45 g, 42.1 mmol) のテトラヒドロフラン (50 mL) 溶液に 60% 水素化ナトリウム (1.54 g, 38.5 mmol) を加えて15分間攪拌した後、2-フルオロ-4-メトキシベンズアルデヒド (5.00 g, 32.4 mmol) のテトラヒドロフラン (30 mL) 溶液を滴下した。混合物を室温で2時間攪拌した後、水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン／酢酸エチル=4:1) で精製し、表題化合物 (7.07 g、収率97%) を無色油状物として得た。

¹H NMR (CDCl₃) δ 1.33(3H, t, J=7.1Hz), 3.83(3H, s), 4.26(2H, q, J=7.1Hz), 6.41(1H, d, J=16.2Hz), 6.61-6.73(2H, m), 7.45(1H, t, J=8.6Hz), 7.75(1H, d, J=16.2Hz).

【0194】

参考例 24 3-(2-フルオロ-4-メトキシフェニル)プロパン酸エチル

【0195】

【化41】

【0196】

(2E)-3-(2-フルオロ-4-メトキシフェニル)アクリル酸エチル (7.07 g, 31.5 mmol)、テトラヒドロフラン (50 mL)、エタノール (5 mL) および酸化白金 (300 mg) の混合物を水素雰囲気下、室温で終夜攪拌した。触媒を濾別した後、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン／酢酸エチル=4:1) で精製し、表題化合物 (5.97 g、収率84%) を無色油状物として得た。

¹H NMR (CDCl₃) δ 1.23(3H, t, J=7.2Hz), 2.58(2H, t, J=7.6Hz), 2.90(2H, t, J=7.6Hz), 3.77(3H, s), 4.12(2H, q, J=7.2Hz), 6.57-6.63(2H, m), 7.07-7.13(1H, m).

【0197】

参考例 25 3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エチル

【0198】

【化42】

【0199】

3-(2-フルオロ-4-メトキシフェニル)プロパン酸エチル (57.4 g, 254 mmol) および塩化アルミニウム (101 g, 761 mmol) のジクロロメタン (250 mL) 溶液に、1-オクタンチオール (74.3 g, 508 mmol) を滴下した後、室温下で2時間攪拌した。反応液を氷水に注ぎ、30分間攪拌した。有機層を分離した後、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン／酢酸エチル=4:1) で精製し、表題化合物 (44.6 g、収率83%) を無色油状物として得た。

¹H NMR (CDCl₃) δ 1.23(3H, t, J=7.2Hz), 2.58(2H, t, J=8.1Hz), 2.89(2H, t, J=8.1Hz), 4.12(2H, q, J=7.2Hz), 6.51-6.56(2H, m), 7.01-7.06(1H, m).

【0200】

参考例 26 (2E)-3-(2,6-ジフルオロ-4-メトキシフェニル)アクリル酸エチル

【0201】

【化43】

【0202】

ジエチルホスホノ酢酸エチル (2.34 g, 10.4 mmol) および60%水素化ナトリウム (0.38 g, 9.50 mmol) のテトラヒドロフラン (40 mL) 溶液を氷冷下10分間攪拌した。この溶液に 2,6-ジフルオロ-4-メトキシベンズアルデヒド (1.5 g, 8.71 mmol) を加え、室温にまで昇温しながら4時間攪拌した。反応溶液を酢酸エチルで希釈し、クエン酸水溶液、水、塩化ナトリウム水溶液で順次洗浄後、硫酸マグネシウムで乾燥、減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー (酢酸エチル：ヘキサン=1:10~1:5) に付し、表題化合物 (1.1g、収率52%) を無色針状晶として得た。

MS: m/z 243 (M+H).

【0203】

参考例 27 3-(2,6-ジフルオロ-4-メトキシフェニル)プロパン酸エチル

【0204】

【化44】

【0205】

(2E)-3-(2,6-ジフルオロ-4-メトキシフェニル)アクリル酸エチル (1.1 g, 4.54 mmol) をテトラヒドロフラン (30 mL) とエタノール (30 mL) の混合溶媒に溶解し、10%パラジウム-炭素 (0.30 g) を加え、水素雰囲気下、室温で5時間攪拌した。触媒を濾別し、得られた濾液を濃縮し、表題化合物 (1.17 g、収率100%) を無色油状物として得た。

MS: m/z 245 (M+H).

【0206】

参考例 28 3-(2,6-ジフルオロ-4-ヒドロキシフェニル)プロパン酸エチル

【0207】

【化45】

【0208】

3-(2,6-ジフルオロ-4-メトキシフェニル)プロパン酸エチル (1.17 g, 4.79 mmol)、塩化アルミニウム (1.9 g, 14.2 mmol) および1-オクタンチオール (1.7 mL, 9.80 mmol) のジクロロメタン溶液 (20 mL) を氷冷下から室温で4時間攪拌した。反応溶液を氷水に注ぎ、1時間攪拌した。その混合溶液をジクロロメタンで抽出し、塩化ナトリウム水溶液で洗浄後、硫酸マグネシウムで乾燥、減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー (酢酸エチル：ヘキサン=1:10~1:5) に付し、表題化合物 (1.0 g、収率91%) を無色

油状物として得た。

MS: m/z 231 (M+H).

【0209】

実施例1 3-[4-[(4-{[ベンジル(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル]プロパン酸

【0210】

【化46】

【0211】

2-ブロモ-1-フェニルエタノン (100 mg)、N-ベンジルチオ尿素 (83 mg) および N,N-ジメチルホルムアミド (2 mL) の混合物を 80°C で 1 時間かき混ぜた。反応混合物を 0°C に冷却し、水素化ナトリウム (60%、油性、80 mg) を加え、室温で 30 分かき混ぜた。反応混合物に室温で 3-(4-{[4-(クロロメチル)ベンジル]オキシ}フェニル)プロパン酸メチル (300 mg) を加え、室温で 1 時間かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層を Presep Dehydration tube (和光純薬 (株) 製) を用いて乾燥後、濃縮して残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチル-ヘキサン (容積比で 1:19 から 1:0 までグラジェント) で展開することにより、表題化合物 (110 mg、収率 41%) を無色結晶として得た。

MS: m/z 535 (M+H).

【0212】

実施例2 3-[4-[(4-{[(4-イソプロピル-1,3-チアゾール-2-イル)(2-フェニルエチル)アミノ]メチル}ベンジル)オキシ]フェニル]プロパン酸

【0213】

【化47】

【0214】

3-[4-{[(4-イソプロピル-1,3-チアゾール-2-イル)(2-フェニルエチル)アミノ]メチル}ベンジル)オキシ]フェニル]プロパン酸メチル (350 mg)、2 規定水酸化ナトリウム水溶液 (2 mL) およびエタノール (5 mL) の混合物を室温で 1 時間かき混ぜた。反応混合物を

水で希釈し、1規定塩酸水溶液で中和し、酢酸エチルで抽出した。酢酸エチル層を無水硫酸マグネシウムで乾燥後、濃縮して表題化合物（210 mg、収率62%）を無色結晶として得た。

MS: m/z 515 (M+H).

【0215】

実施例3 3-[4-[(4-[(2-フェニルエチル)(4-ピリジン-2-イル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

【0216】

【化48】

【0217】

実施例2と同様にして、3-[4-[(4-[(2-フェニルエチル)(4-ピリジン-2-イル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸メチルから表題化合物（収率72%）を淡黄色結晶として得た。

MS: m/z 550 (M+H).

【0218】

実施例4 3-[4-[(4-[[[2-(4-クロロフェニル)エチル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

【0219】

【化49】

【0220】

N-[2-(4-クロロフェニル)エチル]チオ尿素（108 mg）、2-ブロモ-1-フェニルエタノン（100 mg）およびN,N-ジメチルホルムアミド（3 mL）の混合物を室温で1時間かき混ぜた。この混合物に水素化ナトリウム（60%、油性、40 mg）を氷冷下加え、室温に戻して1時間かき混ぜた。反応混合物に3-[4-[(4-(クロロメチル)ベンジル]オキシ]フェニル]プロパン

酸メチル (159 mg) を氷冷下加え、室温に戻してさらに1時間かき混ぜた。反応混合物をリン酸2水素1カリウム水溶液に注ぎ、酢酸エチルで抽出した。酢酸エチル層を濃縮し、残留物を分取HPLC(グラジエントサイクルA)で精製して、表題化合物(113 mg、収率39%)を黄色油状物として得た。

MS: m/z 583 (M+H).

【0221】

実施例5 3-[4-[(4-{[3-(ジエチルアミノ)プロピル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル]オキシ]フェニルプロパン酸

【0222】

【化50】

【0223】

N-[3-(ジエチルアミノ)プロピル]チオ尿素 (90 mg)、2-ブロモ-1-フェニルエタノン (100 mg) およびN,N-ジメチルホルムアミド (3 mL) の混合物を室温で1時間かき混ぜた。この混合物に水素化ナトリウム(60%、油性、40 mg)を氷冷下加え、室温に戻して1時間かき混ぜた。反応混合物に3-(4-[(クロロメチル)ベンジル]オキシ)フェニルプロパン酸メチル (159 mg) を氷冷下加え、室温に戻してさらに1時間かき混ぜた。反応混合物をリン酸2水素1カリウム水溶液に注ぎ、酢酸エチルで抽出した。酢酸エチル層を濃縮し、残留物を塩基性シリカゲルカラムクロマトグラフィーで精製して、黄色油状物を得た。この黄色油状物、2規定水酸化ナトリウム水溶液 (2 mL) およびエタノール (5 mL) の混合物を室温で1時間かき混ぜた。反応混合物をリン酸2水素1カリウム水溶液に注ぎ、酢酸エチルで抽出した。酢酸エチル層をPresep Dehydration tube (和光純薬(株) 製) を用いて乾燥後、濃縮して表題化合物 (142 mg、収率51%) を黄色油状物として得た。

MS: m/z 558 (M+H).

【0224】

実施例6 3-[4-[(4-[(3-メトキシプロピル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル]オキシ]フェニルプロパン酸

【0225】

【化51】

【0226】

実施例4と同様にしてN-(3-メトキシプロピル)チオ尿素から収率49%で表題化合物を合成した。黄色油状物。

MS: m/z 517 (M+H).

【0227】

実施例7 3-{4-[{4-[[2-(4-メチルフェニル)エチル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル]オキシ}フェニル}プロパン酸

【0228】

【化52】

【0229】

実施例4と同様にしてN-[2-(4-メチルフェニル)エチル]チオ尿素から収率44%で表題化合物を合成した。黄色油状物。

MS: m/z 563 (M+H).

【0230】

実施例8 3-{2-フルオロ-4-[{4-[[2-(4-フルオロフェニル)エチル](4-イソプロピル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル]オキシ}フェニル}プロパン酸エチル

【0231】

【化53】

【0232】

(4-{[2-(4-フルオロフェニル)エチル](4-イソプロピル-1,3-チアゾール-2-イル)アミノ]メチル}フェニル)メタノール (510 mg)、3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エチル (280 mg)、トリフェニルホスフィン (420 mg) およびアゾジカルボン酸ジエチル (40%トルエン溶液、750 mg) のトルエン(3 mL)溶液を室温で1時間かき混ぜた。反応混合物を濃縮し、残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチル-ヘキサン(容積比で1:19から1:1までグラジエント)で展開することにより、表題化合物 (490 mg、収率64%) を黄色油状物として得た。

MS: m/z 579 (M+H).

【0233】

実施例9 3-{2-フルオロ-4-[(4-{[2-(4-フルオロフェニル)エチル](4-イソプロピル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

【0234】

【化54】

【0235】

3-{2-フルオロ-4-[(4-{[2-(4-フルオロフェニル)エチル](4-イソプロピル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸エチル(485 mg)をエ

タノール（5 mL）に溶解し、2規定水酸化ナトリウム水溶液（2 mL）を加え、室温で1時間かき混ぜた。反応混合物を水で希釈し、1規定塩酸水溶液で中和し、酢酸エチルで抽出した。Presep Dehydration tube（和光純薬（株）製）を用いて乾燥後、濃縮して表題化合物（354 mg、収率75%）を無色結晶として得た。

MS: m/z 551 (M+H).

【0236】

実施例 10 3-[4-[(4-[(4-フェニル-1,3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸メチル

【0237】

【化55】

【0238】

実施例 8 と同様にして、(4-[(4-フェニル-1,3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル)フェニル)メタノールと3-(4-ヒドロキシフェニル)プロパン酸メチルの光延反応により収率57%で表題化合物を合成した。黄色油状物。

MS: m/z 564 (M+H).

【0239】

実施例 11 3-[2-フルオロ-4-[(4-[(4-フェニル-1,3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸エチル

【0240】

【化56】

【0241】

実施例 8 と同様にして、(4-[(4-フェニル-1,3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル)フェニル)メタノールと3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エチルの光延反応により収率41%で表題化合物を合成した。黄色油状物。

MS: m/z 596 (M+H).

【0242】

実施例 12 3-[4-[(4-[(4-フェニル-1,3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

【0243】
【化57】

【0244】

実施例9と同様にして、3-{4-[(4-フェニル-1,3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル}ベンジルオキシ]フェニルプロパン酸メチルの塩基性加水分解により表題化合物を収率82%で合成した。淡黄色結晶。

MS: m/z 550 (M+H).

【0245】

実施例13 3-{2-フルオロ-4-[(4-[(4-フェニル-1,3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

【0246】

【化58】

【0247】

実施例9と同様にして、3-{2-フルオロ-4-[(4-[(4-フェニル-1,3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸エチルの塩基性加水分解により表題化合物を収率70%で合成した。淡黄色結晶。

MS: m/z 568 (M+H).

【0248】

実施例14 3-{4-[(4-[(3-フェニルプロピル)(4-ピリジン-2-イル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

【0249】

【化59】

【0250】

実施例4と同様にして、N-(3-フェニルプロピル)チオ尿素および2-ブロモ-1-ピリジン-2-イルエタノンから収率27%で表題化合物を合成した。茶色固体。

MS: m/z 564 (M+H).

【0251】

実施例15 3-[4-[(4-イソプロピル-1,3-チアゾール-2-イル)(2-ピリジン-2-イルエチル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

【0252】

【化60】

【0253】

4-イソプロピル-N-(2-ピリジン-2-イルエチル)-1,3-チアゾール-2-アミン (127 mg) の N,N-ジメチルホルムアミド (2 mL) 溶液に水素化ナトリウム (20 mg) を加え、室温で1時間かき混ぜた。反応混合物に室温で3-[4-[(4-(クロロメチル)ベンジル]オキシ]フェニル]プロパン酸メチル (159 mg) を加え、室温で1時間かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層をPresep Dehydration tube (和光純薬(株)製) を用いて乾燥後、濃縮して残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチル-ヘキサン (容積比で1:19から1:1までグラジェント) で展開することにより、黄色油状物を得た。この油状物をメタノール (5 mL) に溶解し、2規定水酸化ナトリウム水溶液 (2 mL) を加え、室温で1時間かき混ぜた。反応混合物を水で希釈し、1規定塩酸水溶液で中和し、酢酸エチルで抽出した。Presep Dehydration tube (和光純薬(株)製) を用いて乾燥後、濃縮して表題化合物 (105 mg、収率41%) を無色結晶として得た。

MS: m/z 516 (M+H).

【0254】

実施例16 3-[4-[(4-イソブチル-1,3-チアゾール-2-イル)(2-フェニルエチル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

【0255】
【化61】

【0256】

実施例15と同様にして、4-イソブチル-N-(2-フェニルエチル)-1,3-チアゾール-2-アミンから収率45%で表題化合物を合成した。無色結晶。

MS: m/z 529 (M+H).

【0257】

実施例17 3-[4-[(4-[(3-フェニルプロピル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

【0258】

【化62】

【0259】

実施例15と同様にして、4-フェニル-N-(3-フェニルプロピル)-1,3-チアゾール-2-アミンから収率41%で表題化合物を合成した。淡黄色結晶。

MS: m/z 563 (M+H).

【0260】

実施例18 3-[4-[(4-[(2-フェニルエチル)(4-プロピル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸メチル

【0261】

【化63】

【0262】

N-(2-フェニルエチル)-4-プロピル-1,3-チアゾール-2-アミン (246 mg) のN,N-ジメチルホルムアミド (2 mL) 溶液に水素化ナトリウム (40 mg) を加え、室温で1時間かき混ぜた。反応混合物に室温で3-(4-{[4-(クロロメチル)ベンジル]オキシ}フェニル)プロパン酸メチル (318 mg) を加え、室温で1時間かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層をPresep Dehydration tube (和光純薬(株)製) を用いて乾燥後、濃縮して残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチルヘキサン (容積比で1:19から1:1までグラジエント) で展開することにより、表題化合物 (380 mg) を黄色油状物として得た。

MS: m/z 529 (M+H).

【0263】

実施例 19 3-{4-[{(2-フェニルエチル)(4-プロピル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル]オキシ}フェニルプロパン酸

【0264】

【化64】

【0265】

実施例 9 と同様にして、3-{4-[{(2-フェニルエチル)(4-プロピル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル]オキシ}フェニルプロパン酸メチルの塩基性加水分解により表題化合物を収率84%で合成した。黄色油状物。

MS: m/z 515 (M+H).

【0266】

実施例 20 3-{4-[{(4-[[3-(メチルチオ)プロピル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル]オキシ}フェニルプロパン酸メチル

【0267】

【化 6 5】

[0268]

実施例18と同様にして、N-[3-(メチルチオ)プロピル]-4-フェニル-1,3-チアゾール-2-アミンから収率56%で表題化合物を合成した。黄色油状物。

¹H NMR (300 MHz, CDCl₃) δ ppm 1.90–2.02(2H, m), 2.08(3H, s), 2.42–2.72(4H, m), 2.89(2H, t, J=7.8Hz), 3.54–3.64(2H, m), 3.66(3H, s), 4.78(2H, s), 5.02(2H, s), 6.71(1H, s), 6.82–6.94(2H, m), 7.11(2H, d, J=8.7Hz), 7.18–7.55(7H, m), 7.74–7.97(2H, m).

【0269】

実施例 2-1 3-[4-[(4-[[3-(メチルチオ)プロピル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

[0 2 7 0]

【化 6 6】

[0 2 7 1]

実施例9と同様にして、3-{4-[(4-{[[3-(メチルチオ)プロピル](4-フェニル-1,3-アゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸メチルの塩基性加水分解により表題化合物を收率89%で合成した。黄色油状物。

MS: m/z 533 (M+H).

[0272]

実施例22 3-[4-[(4-{[[3-(メチルスルフィニル)プロピル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル]プロパン酸メチル

[0273]

【化67】

【0274】

3-[4-[(4-{[(3-(methylthio)propyl}(4-phenyl-1,3-thiazol-2-yl)amino]methyl}benzyl)oxy]phenyl]propanoic acid methyl (280 mg), m-クロロ過安息香酸(122 mg)およびテトラヒドロフラン(10 mL)の混合物を室温で3時間かき混ぜた。反応混合物を濃縮し、残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチル-ヘキサン(容積比で1:19から1:0までグラジエント)で展開することにより、表題化合物(180 mg、62%)を黄色油状物として得た。

MS: m/z 563 (M+H).

【0275】

実施例23 3-[4-[(4-{[(3-(methylsulfonyl)propyl}(4-phenyl-1,3-thiazol-2-yl)amino]methyl}benzyl)oxy]phenyl]propanoic acid methyl

【0276】

【化68】

【0277】

3-[4-[(4-{[(3-(methylthio)propyl}(4-phenyl-1,3-thiazol-2-yl)amino]methyl}benzyl)oxy]phenyl]propanoic acid methyl (200 mg), m-クロロ過安息香酸(263 mg)およびテトラヒドロフラン(10 mL)の混合物を室温で3時間かき混ぜた。反応混合物を濃縮し、残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチル-ヘキサン(容積比で1:19から1:0までグラジエント)で展開することにより、表題化合物(141 mg、67%)を黄色油状物として得た。

MS: m/z 579 (M+H).

【0278】

実施例24 3-[4-[(4-{[(3-(methylsulfonyl)propyl}(4-phenyl-1,3-thiazol-2-yl)amino]methyl}benzyl)oxy]phenyl]propanoic acid

【0279】

【化69】

【0280】

実施例9と同様にして、3-{4-[(4-{[[3-(メチルスルフィニル)プロピル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸メチルの塩基性加水分解により表題化合物を収率75%で合成した。無色結晶。

MS: m/z 549 (M+H).

【0281】

実施例25 3-{4-[(4-{[[3-(メチルスルホニル)プロピル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

【0282】

【化70】

【0283】

実施例9と同様にして、3-{4-[(4-{[[3-(メチルスルホニル)プロピル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸メチルの塩基性加水分解により表題化合物を収率77%で合成した。無色結晶。

MS: m/z 565 (M+H).

【0284】

実施例26 3-{2-フルオロ-4-[(4-{[[2-(2-フルオロフェニル)エチル](4-イソプロピル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル}プロパン酸

【0285】

【化71】

【0286】

N -[2-(2-フルオロフェニル)エチル]-4-イソプロピル-1,3-チアゾール-2-アミン (139 mg) の N,N -ジメチルホルムアミド (2 mL) 溶液に水素化ナトリウム (20 mg) を加え、室温で1時間かき混ぜた。反応混合物に室温で3-{(4-{[4-(クロロメチル)ベンジル]オキシ}-2-フルオロフェニル)プロパン酸エチル (175 mg) を加え、室温で1時間かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層をPresep Dehydration tube (和光純薬(株)製) を用いて乾燥後、濃縮して残留物をシリカゲルカラムクロマトグラフィーで精製した。酢酸エチル-ヘキサン (容積比で1:19から1:1までグラジエント) で展開することにより、黄色油状物を得た。この油状物をエタノール (5 mL) に溶解し、2規定水酸化ナトリウム水溶液 (2 mL) を加え、室温で1時間かき混ぜた。反応混合物を水で希釈し、1規定塩酸水溶液で中和し、酢酸エチルで抽出した。Presep Dehydration tube (和光純薬(株)製) を用いて乾燥後、濃縮して表題化合物 (206 mg、収率71%) を黄色油状物として得た。

MS: m/z 551 (M+H).

【0287】

実施例 27 3-[(2-フルオロ-4-[(4-{[2-(4-フルオロフェニル)エチル](4-イソブチル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル)オキシ]フェニル]プロパン酸

【0288】

【化72】

【0289】

実施例 26 と同様にして、 N -[2-(4-フルオロフェニル)エチル]-4-イソブチル-1,3-チアゾール-2-アミンから収率33%で表題化合物を合成した。黄色油状物。

MS:m/z 565 (M+H).

【0290】

実施例 28 3-[(4-[(4-イソプロピル-1,3-チアゾール-2-イル)(2-フェニルエチル)アミノ]メチル}ベンジル)オキシ]フェニル]プロパン酸メチル

【0291】

【化73】

【0292】

実施例18と同様にして、4-イソプロピル-N-(2-フェニルエチル)-1,3-チアゾール-2-アミンから収率68%で表題化合物を合成した。黄色油状物。

MS: m/z 529 (M+H).

【0293】

実施例29 3-{4-[{(2-フェニルエチル)(4-ピリジン-2-イル-1,3-チアゾール-2-イル)アミノ]メチル}ベンジル}オキシ]フェニル}プロパン酸メチル

【0294】

【化74】

【0295】

実施例18と同様にして、N-(2-フェニルエチル)-4-ピリジン-2-イル-1,3-チアゾール-2-アミンから収率92%で表題化合物を合成した。黄色油状物。

MS: m/z 564 (M+H).

【0296】

実施例30 3-{4-[{(4-[(4-クロロフェニル)-5-メチル-1,3-オキサゾール-2-イル]エチル)アミノ]メチル}ベンジル}オキシ]フェニル}プロパン酸

【0297】

【化75】

【0298】

3-(4-{[4-(クロロメチル)ベンジル]オキシ}フェニル)プロパン酸メチル (50 mg, 0.16 mmol) の N,N-ジメチルホルムアミド (1 mL) 溶液に 4-(4-クロロフェニル)-N-エチル-5-メチル-1,3-オキサゾール-2-アミン (45 mg, 0.19 mmol) の N,N-ジメチルホルムアミド (0.5 mL) 溶液および炭酸カリウム (33 mg, 0.24 mmol) を加えて 70°C で 66 時間攪拌した。反応液に水 (2 mL) を加え、ジクロロメタン (2 mL) で抽出した。有機層を GeneVac 遠心濃縮装置で減圧濃縮した。得られた生成物をメタノール (2 mL) に溶解し、1 規定水酸化ナトリウム水溶液 (0.32 mL, 0.32 mmol) を加え、室温で 18 時間攪拌した。反応液に 1 規定塩酸を加えて酸性とした後、ジクロロメタン (2 mL) で抽出した。有機層を GeneVac 遠心濃縮装置で減圧濃縮した。残留物を分取 HPLC (グラジエントサイクル B) で精製することにより表題化合物 (4.6 mg, 収率 5%)を得た。

MS: m/z 505 (M+H).

【0299】

実施例 3-1 3-[4-[[4-[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸メチル

【0300】

【化76】

【0301】

[4-[[[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]フェニル]メタノール (409 mg, 0.98 mmol)、3-(4-ヒドロキシフェニル)プロパン酸メチル (195 mg, 1.18 mmol) およびトリブチルホスフィン (297 mg, 1.47 mmol) のテトラヒドロフラン (20 mL) 溶液に 1,1'-(アゾジカルボニル)ジピペリジン (371 mg, 1.47 mmol) を加え、混合物を室温で 16 時間攪拌した。不溶物をろ去後、ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製し、表題化合物 (273 mg, 収率 50%) を無色油状物として得た。

¹H NMR (CDCl₃) δ ppm 2.59 (t, J=7.7 Hz, 2H), 2.88 (t, J=7.7 Hz, 2H), 2.99 (t, J=7.5 Hz, 2H), 3.66-3.71 (m, 5H), 4.66 (s, 2H), 5.01 (s, 2H), 6.74 (s, 1H), 6.88-6.91 (m, 2H), 7.10 (d, J=8.5 Hz, 2H), 7.19-7.41 (m, 12H), 7.87-7.90 (m, 2H).

【0302】

実施例32 3-[4-[[4-[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

【0303】

【化77】

【0304】

3-[4-[[4-[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸メチル (270 mg、0.480 mmol)、テトラヒドロフラン (15 mL)、メタノール (10 mL)、水 (10 mL) および水酸化リチウム 1 水和物 (60.4 mg、1.44 mmol) の混合物を室温で3時間攪拌した。反応混合物を1規定塩酸で中和し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去した。残渣を酢酸エチル-ヘキサンから再結晶化し、表題化合物 (162 mg、収率62%) を無色結晶として得た。

MS:m/z 549 (M+H).

【0305】

実施例33 3-[4-[[4-[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸 0.5カルシウム塩

【0306】

【化78】

0.5Ca塩

【0307】

3-[4-[[4-[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸 (150 mg、0.274 mmol) のメタノール (10 mL) 溶液に2規定水酸化ナトリウム (0.27 mL、0.54 mmol) を加えてかき混ぜたのち、減圧濃縮した。残渣を水 (15 mL) に溶解した後、塩化カルシウム水溶液 (0.137 M、2 mL、0.274 mmol) を滴下し、かき混ぜた。晶出物をろ取し、得られた粗結晶を水およびヘキサンで洗浄した。結晶をジイソプロピルエーテル-ヘキサンから再結晶し、表題化合物 (128 mg、収率78%) を白色粉末として得た。

元素分析値 C₆H₆N₄S₂Ca · 3.OH₂Oとして
計算値 : C, 68.66; H, 5.76; N, 4.71

実験値：C, 68.86; H, 5.85; N, 4.60

【0308】

実施例34 3-[4-[[4-[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸 [(5-メチル-2-オキソ-1,3-ジオキソール-4-イル)メチル]

【0309】

【化79】

【0310】

3-[4-[[4-[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸 (450 mg、0.82 mmol)、4-(クロロメチル)-5-メチル-1,3-ジオキソール-2-オン (146 mg、0.99 mmol) および炭酸カリウム (170 mg、1.23 mmol) のN,N-ジメチルホルムアミド (10 mL) 溶液を室温で5時間攪拌した。反応混合物を水に注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去した。残渣をシリカゲルカラムクロマトグラフィーで精製し、表題化合物 (175 mg、収率32%) を無色油状物として得た。

¹H NMR (CDCl₃) δ 2.12(3H, s), 2.63(2H, t, J=7.5Hz), 2.89(2H, t, J=7.5Hz), 2.94-3.03(2H, m), 3.62-3.72(2H, m), 4.66(2H, s), 4.80(2H, s), 5.01(2H, s), 6.74(1H, s), 6.84-6.91(2H, m), 7.08(2H, d, J=8.7Hz), 7.19-7.41(12H, m), 7.84-7.91(2H, m).

【0311】

実施例35 3-[2-フルオロ-4-[[4-[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸エチル

【0312】

【化80】

【0313】

実施例31と同様の方法を用いて、3-(2-フルオロ-4-ヒドロキシフェニル)プロパン酸エチルと[4-[[2-フェニルエチル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]フェニル]メタノールから表題化合物を無色油状物 (収率51%) として得た。

¹H NMR (CDCl₃) δ 1.20-1.28(3H, m), 2.57(2H, t, J=7.6Hz), 2.89(2H, t, J=7.5Hz), 3.00(2H, t, J=7.7Hz), 3.63-3.73(2H, m), 4.08-4.16(2H, m), 4.66(2H, s), 4.99(2H, s), 6.61-6.70(2H, m), 6.74(1H, s), 7.08(1H, t, J=8.8Hz), 7.19-7.41(12H, m), 7.88(2H, d, J=7.4Hz).

【0314】

実施例 36 3-[2-フルオロ-4-[[4-[[[2-フェニルエチル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

【0315】

【化81】

【0316】

実施例 32 と同様の方法を用いて、3-[2-フルオロ-4-[[4-[[[2-フェニルエチル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸エチルから表題化合物（収率39%）を無色結晶として得た。

¹H NMR (CDCl₃) δ 2.63(t, J=7.5Hz, 2H), 2.90(t, J=7.5Hz, 2H), 2.99(t, J=8.1Hz, 2H), 3.68(t, J=8.1Hz, 2H), 4.66(s, 2H), 4.99(s, 2H), 6.63-6.99(m, 2H), 6.74(s, 1H), 7.09(t, J=8.8Hz, 1H), 7.19-7.41(m, 12H), 7.87-7.90(m, 2H).

【0317】

実施例 37 3-[4-[[3-[[2-フェニルエチル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸メチル

【0318】

【化82】

【0319】

実施例 31 と同様の方法を用いて、3-(4-ヒドロキシフェニル)プロパン酸メチルと[3-[[2-フェニルエチル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]フェニル]メタノールから表題化合物（収率87%）を無色油状物として得た。

¹H NMR (CDCl₃) δ 2.58(2H, t, J=7.8Hz), 2.87(2H, t, J=7.8Hz), 2.98(2H, t, J=7.2Hz), 3.60-3.73(5H, m), 4.66(2H, s), 5.01(2H, s), 6.74(1H, s), 6.87(2H, d, J=8.7Hz), 7.08(2H, d, J=8.5Hz), 7.15-7.43(12H, m), 7.89(2H, d, J=7.4Hz).

【0320】

実施例 38 3-[4-[[3-[[2-フェニルエチル](4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

【0321】

【化83】

【0322】

実施例32と同様の方法を用いて、3-[4-[[3-[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸メチルから表題化合物（収率39%）を無色結晶として得た。

¹H NMR (CDCl₃) δ 2.62(2H, t, J=7.7Hz), 2.87(2H, t, J=7.7Hz), 2.97(2H, t, J=7.5Hz), 3.67(2H, t, J=7.5Hz), 4.66(2H, s), 5.01(2H, s), 6.74(1H, s), 6.87(2H, d, J=8.5Hz), 7.08(2H, d, J=8.5Hz), 7.16-7.44(12H, m), 7.88(2H, d, J=7.4Hz).

【0323】

実施例39 3-[4-[[4-[[5-メチル-4-フェニル-1,3-オキサゾール-2-イル](プロピル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸メチル

【0324】

【化84】

【0325】

5-メチル-4-フェニル-N-プロピル-1,3-オキサゾール-2-アミン (407 mg, 1.88 mmol) のN,N-ジメチルホルムアミド (10 mL) 溶液に水素化ナトリウム (60%、油性、82 mg, 2.04 mmol) を室温で加えたのち、30分間攪拌した。反応混合物に3-[4-[[4-(クロロメチル)ベンジル]オキシ]フェニル]プロパン酸メチル (500 mg, 1.57 mmol) を加え、室温で4時間攪拌した。反応混合物を水に注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去した。残渣をシリカゲルカラムクロマトグラフィーで精製し、表題化合物 (251 mg、収率32%) を淡黄色油状物として得た。

¹H NMR (CDCl₃) δ 0.90(t, J=7.2Hz, 3H), 1.58-1.75(m, 2H), 2.43(s, 3H), 2.59(t, J=7.7Hz, 2H), 2.89(t, J=7.7Hz, 2H), 3.31-3.35(m, 2H), 3.66(s, 3H), 4.67(2H, s), 5.02(s, 2H), 6.89(d, J=8.4Hz, 2H), 7.11(d, J=8.4Hz, 2H), 7.22-7.43(m, 7H), 7.58-7.65(m, 2H).

【0326】

実施例40 3-[4-[[4-[[5-メチル-4-フェニル-1,3-オキサゾール-2-イル](プロピル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

【0327】
【化85】

【0328】

実施例32と同様の方法を用いて、3-[4-[[4-[(5-メチル-4-フェニル-1,3-オキサゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸メチルから表題化合物（収率17%）を淡黄色油状物として得た。

¹H NMR (CDCl₃) δ 0.89(t, J=7.5Hz, 3H), 1.57-1.70(m, 2H), 2.42(s, 3H), 2.62(t, J=7.6Hz, 2H), 2.88(t, J=7.6Hz, 2H), 3.30-3.35(m, 2H), 4.67(s, 2H), 5.02(s, 2H), 6.87-6.90(m, 2H), 7.10-7.13(m, 2H), 7.22-7.41(m, 7H), 7.61-7.64(m, 2H).

【0329】

実施例41 3-[2,6-ジフルオロ-4-[[4-[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸エチル

【0330】

【化86】

【0331】

実施例31と同様にして、3-(2,6-ジフルオロ-4-ヒドロキシフェニル)プロパン酸エチル(200 mg, 0.87 mmol)より表題化合物(300 mg、収率56%)を無色油状物として得た。

MS: m/z 613 (M+H).

【0332】

実施例42 3-[2,6-ジフルオロ-4-[[4-[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

【0333】

【化87】

【0334】

実施例2と同様にして、3-[2,6-ジフルオロ-4-[[4-[(2-フェニルエチル)(4-フェニル-1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸

出証特2005-3006800

1,3-チアゾール-2-イル)アミノ]メチル]ベンジル]オキシ]フェニル]プロパン酸エチル(300 mg, 0.49 mmol)より表題化合物(271 mg、収率94%)を無色プリズム晶として得た。

MS: m/z 585 (M+H).

【0335】

製剤例1 (カプセルの製造)

1) 実施例1の化合物	30 mg
2) 微粉末セルロース	10 mg
3) 乳糖	19 mg
4) ステアリン酸マグネシウム	1 mg
	計 60 mg

上記1)、2)、3) および4) を混合して、ゼラチンカプセルに充填する。

【0336】

製剤例2 (錠剤の製造)

1) 実施例1の化合物	30 g
2) 乳糖	50 g
3) トウモロコシデンプン	15 g
4) カルボキシメチルセルロースカルシウム	44 g
5) ステアリン酸マグネシウム	1 g
	1000錠 計 140 g

上記1)、2) および3) の全量と30 gの4) とを水で練合し、真空乾燥後、整粒を行ふ。この整粒末に14 gの4) および1 gの5) を混合し、打錠機により打錠する。このようにして、1錠あたり実施例1の化合物30 mgを含有する錠剤1000錠を得る。

【0337】

実験例1 ヒト由来GPR40に対する脂肪酸のEC₅₀値の決定

EC₅₀ 値の決定にはヒト由来GPR40を安定発現したCHO細胞株を用いた。特に記載が無い限りこのCHO細胞株は10%牛胎児血清 (Invitrogen) を含むα-MEM培地 (Invitrogen) を用いて培養した。

アッセイ前日に、ほぼコンフルエントになるまで培養した細胞を、PBS (Invitrogen) を用いてリーンした後、0.05% Trypsin·EDTA溶液 (Invitrogen) を用いて剥がし、遠心操作にて回収した。得られた細胞の数を測定し、培地1mLあたり3×10⁵ 個の細胞が含まれるように希釈し、Black well plate (coaster) に1穴あたり100 μLずつ分注後、CO₂ 培養器にて一晩培養した。このように調製したCHO細胞に各種試験サンプルを添加し、この際の細胞内カルシウム濃度の変動をFLIPR (Molecular Device) を用いて測定した。FLIPRにて細胞内カルシウム濃度の変動を測定するため、以下の前処置を施した。

【0338】

まず、細胞に蛍光色素Fluor3-AM (DOJIN) を添加するため、あるいはFLIPRアッセイを行う直前に細胞を洗浄するためのアッセイバッファーを作成した。HBSS (Invitrogen, 1000mL) に1M HEPES (pH 7.4、DOJIN, 20mL) を加えた溶液(以下、HBSS/HEPES溶液)に、プロベネシド (Sigma, 710mg) を1N NaOH (5mL) に溶解後、さらにHBSS/HEPES溶液 (5mL) を加えて混合した溶液 (10mL) を添加し、この溶液をアッセイバッファーとした。次にFluor3-AM (50 μg) をDMSO (Wako, 21 μL) に溶解し、さらに等量の20%ブロコン酸 (Molecular Probes) を加え混合後、牛胎児血清 (105 μL) を添加したアッセイバッファー (10.6mL) に加え、蛍光色素溶液を調製した。アッセイ前日にBlack well 96-well plate にまきなおしたCHO細胞の培地を除き、直ちに蛍光色素溶液を1穴あたり100 μLずつ分注後、CO₂ 培養器にて1時間培養し、細胞に蛍光色素を取り込ませた。培養後の細胞は上記のアッセイバッファーを用いて洗浄した後、FLIPRにせ

ットした。試験サンプルは、事前にDMSOを用いて希釈し、ポリプロピレン製96-well plate（サンプルプレート）に2μlずつ分注、-20℃で凍結保存した。解凍したサンプルプレートに0.015%CHAPS（DOJIN）入りアッセイバッファーを198μlずつ添加し、細胞プレートと同時にFLIPRにセットした。以上の前処置を施した後、FLIPRにて各種試験サンプル添加後の細胞内カルシウム濃度の変動を測定した。そしてそれらの結果より、各脂肪酸での容量反応曲線を作成し、EC₅₀値を算出した。その結果を表1に示した。

【0339】

【表1】

化合物番号	EC ₅₀ (nM)
実施例2	48
実施例9	38
実施例12	19
実施例40	55
実施例42	65

【産業上の利用可能性】

【0340】

本発明の化合物(I)およびその塩並びにそのプロドラッグは、優れたGPR40受容体機能調節作用を有しており、糖尿病などの予防・治療剤として用いることができる。

【書類名】要約書

【要約】

【課題】インスリン分泌促進薬や糖尿病などの予防・治療薬として有用なGPR40受容体機能調節作用を有する新規化合物の提供。

【解決手段】式(I)

【化1】

(式中、各記号は明細書と同義である)で表わされる化合物およびその塩並びにそのプロドラッグは、予想外にも優れたGPR40受容体アゴニスト活性を有し、更に安定性等の医薬品としての物性においても優れた性質を有しており、哺乳動物のGPR40受容体関連病態または疾患の予防・治療薬として安全でかつ有用な医薬となる。

【選択図】なし

特願 2003-435089

出願人履歴情報

識別番号

[000002934]

1. 変更年月日

[変更理由]

住所

氏名

1992年 1月22日

住所変更

大阪府大阪市中央区道修町四丁目1番1号

武田薬品工業株式会社