

WHAT IS MPC?

An advanced feedback control technique

... But let's start from the beginning

WHAT IS CONTROL?

To act on a system to make it behave in a desired manner

If we have no uncertainty all we need is this

In reality, there is almost always uncertainty

WHAT IS FEEDBACK CONTROL?

The only way to deal with uncertainty

In feedback control we **measure**, calculate, act

The Controller is where we excecute our control algorithm

WHAT IS FEEDBACK CONTROL?

The simplest control algorithm is a **Proportion** of an error between where we want the system to be and where it is

WHAT IS FEEDBACK CONTROL?

The control algrithm that computes the sum of the Proportion, the Integral and the Derivative of the error is the **PID controller**

WHAT IF WE HAVE MULTIPLE INPUTS/OUTPUTS?

WHAT IF WE WANT TO CONTROL OPTIMALLY?

E.g. to find the best trade-off between the effort/energy required to actuate and the ability to reject disturbances

WHAT IS OPTIMAL CONTROL?

A control technique that achieves the best possible result

WHAT IS THE BEST POSSIBLE RESULT?

The minimum of a mathematical function often called the **objective function**. For instance, this:

WHAT IS LQR?

A control technique that achieves the best possible result for a **quadratic objective** function and for a system with **linear** dynamics (Linear Quadratic Regulator)

WHAT IS LQG?

An LQR controller where some the system behavior (the states of the controlled system) are estimated via a Kalman Filter

WHAT ABOUT CONTRAINTS?

Often, we need to make sure the system behavior and/or the control action stay within certain limits

E.g. there is a maximum force an actuator can deliver or a maximum overshoot that can be tolerated

Such limits are called constraints

WHAT IS MPC?

An implementation of LQR (or LQG) that is also able to satisfy constraints (in its simplest form)

LINEAR MPC

Constrained LQR looks like this

minimize
$$x_N^{\top}Px_N + \sum_{i=0}^{N-1} x_i^{\top}Qx_i + u_i^{\top}Ru_i$$
 Objective function subject to $x_0 = x$ Measurement or estimate of the system states $x_{i+1} = Ax_i + Bu_i$ Equality constraints (system dynamics) $\underline{x} \leq x_i \leq \bar{x}$ Inequality constraints on the system's states $\underline{u} \leq u_i \leq \bar{u}$ Inequality constraints on the control actions

LINEAR MPC

- A and B are the system state-space model matrices, which we have
- Q, R and P are "weights" that can be chosen (Q and R are normally diagonal and there are methods to choose P wisely)
- N is a trade off. Larger N can lead to better closed-loop results but slower computation

HOW DO WE IMPLEMENT MPC?

- We measure or estimate the system states
- We solve an optimization problem
- · We take from the solution only the result of the first control action
- We apply the control action

This is also called Receding Horizon Control

WHEN SHOULD WE USE MPC?

For feedback control problems where we have constraints and more than one input/output

CAN MPC RUN IN REAL-TIME?

Very often these days, thanks to progress in algorithms development and hardware optimization. MHz rates are not unusual

MPC VS DYNAMIC PROGRAMMING

- They are both methods to compute optimal feedback control laws
- MPC uses online optimization to solve an open-loop optimal control problem. A feedback control law is defined implicitly by repeating the optimization calculation after a feedback update of the state at each sample time
- DP derives an explicit feedback law offline by deriving and solving so-called Bellman's optimality equation

MPC VS REINFORCMENT LEARNING?

- RL is model-free and adaptive (the system model is learnt online)
- RL has lower online complexity than MPC
- RL is not as mature as MPC in terms of stability, constraint handling and robustness
- RL not suitable for safety critical applications

TAKE AWAY POINTS

- Use MPC when you have constraints and multiple inputs/outputs
- MPC particularly useful for trajectory generation
- Use readily available interfaces and solvers, some are free and powerful

embotech.com