Curso: Engenharia de Computação

Sistemas Digitais

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Ferramentas

- Logisim: <u>Logisim download | SourceForge.net</u>
- EasyEDA <u>Download Center EasyEDA</u>
- Atmel Studio 7.0 <u>Atmel Studio 7.0 Download (Free) atmelstudio.exe</u> (<u>informer.com</u>)
- Arduíno 1.8.15 Software | Arduino

Dimensão

Fenômenos físicos, químicos, sociais (e outros...) se manifestam em **quantidades** que podem ser medidas, registradas e processadas.

Variável física usada para descrever ou especificar a natureza de uma quantidade mensurável.

Contém: o valor **numérico** e a **unidade** de comparação.

Contexto

Avaliação de desempenho: o sistema estará ou está funcionando de acordo com o esperado?

Controle de processos: operações de realimentação nas quais uma medida é usada para manter o processo dentro de condições específicas

Contagem: manter um registro do uso ou fluxo de uma determinada quantidade

Pesquisa: experimentos e realizadas medições pra sustentar hipóteses teóricas.

Projeto: testar novos produtos e processos.

Grandezas e unidades de base

Grandeza de base	Símbolo	Unidade de base Símbolo	
comprimento	l, h, r, x	metro	m
massa	m	quilograma	kg
tempo, duração	t	segundo	S
corrente elétrica	I, i	ampere	Α
temperatura termodinâmica	T	kelvin	K
quantidade de substância	n	mol	mol
intensidade luminosa	$I_{ m v}$	candela	cd

Sinais analógicos, discretos e digitais

Sinais analógicos...

comportam-se com uma variação contínua de valores, além de ser definida em qualquer instante do tempo, em uma janela temporal de observação

A grandeza (x) é uma função do tempo (t), tal que

$$x = f(t)$$

Sinal em funcao do tempo

Representações digitais e analógicas

Representações digitais e analógicas

(b)

Conversão A/D (analógico-digital) e D/A (digital-analógico)

Conversão A/D (analógico-digital) e D/A (digital-analógico)

Sinais analógicos, discretos e digitais

Sinais discretos...

apresentam descontinuidade do valor da medida de grandeza ou do instante de tempo em função da qual são observados

Sinal quantizado

Sinal amostrado

Sinal digital

Conversão A/D

Por que usar representações digitais?

- O mundo real é quase totalmente analógico
 - Facilidade de projeto
 - Facilidade de armazenamento
 - > Precisão suficiente para a aplicação
 - Facilidade de processamento
 - Robustez a ruído
 - Facilidade de integração

Modelo de máquina de seis níveis

Nível 0 - nível de lógica digital. Mais elementar. portas lógicas (gates), que podem ser combinadas em série e em paralelo. Os dados são sinais elétricos, abstrações dos bits (binary digits).

Nível 1 - nível de microarquitetura. Circuitos especializados: registradores; Unidade Lógica e Aritmética; barramentos internos – caminho de dados; Unidade de Controle, constituída de microprogramas ou de circuitos eletrônicos.

Nível 2 - nível ISA (Instructions Set Architecture).

Modelo de máquina de seis níveis

Nível 3 - nível de sistema operacional.

Nível 4 - nível de linguagem de montagem (assembly).

Nível 5 - nível de aplicações.

Álgebra Booleana e portas lógicas

Proposição lógica

- Oração declarativa afirmativa ou negativa, sobre a qual se pode atribuir um e somente um valor lógico: falso ou verdadeiro. Também conhecida como sentença fechada.
- Sentenças interrogativas, exclamativas e imperativas não são proposições.

Álgebra booleana

- Os circuitos eletrônicos digitais realizam funções que podem ser definidas por expressões da álgebra ou lógica booleana.
- Expressões booleanas
 - Variáveis
 - Constantes
 - Operações e seus respectivos operadores

- Variáveis e constantes
 - ✓ variáveis representação simbólica de elementos que podem assumir somente dois valores da lógica em uma expressão booleana
 - ✓ constantes um dos dois valores do conjunto da lógica (Falso/Verdadeiro)

Nível lógico 0

Nível lógico 1

Falso Desligado Baixo Não Chave aberta Verdadeiro Ligado Alto Sim Chave fechada

Operações

✓ conjunção – and que usa um dos operadores

✓ disjunção – *or* que usa um dos operadores

√ negação – not que usa um dos operadores

Operações

✓ conjunção – and que usa um dos operadores

Α	В	$x = A \cdot B$
0	0	0
0	1	0
1	0	0
1	1	1

Operações

✓ disjunção – *or* que usa um dos operadores

Α	В	x = A + B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Operações

√ negação – not que usa um dos operadores

Α	$x = \overline{A}$
0	1
1	0

Exemplos

$$(x.y) + (x.z) + \bar{y}$$

 $[(x.y.z) + \bar{y}]. \bar{x}$
 $1 + \{x.[y + z.(y + w)]\}$

• • •

Equações

$$w = (x, y) + (x, z) + \overline{y}$$

Calculando o resultado de expressões booleanas

- 1. Substituindo em cada variável o seu valor lógico correspondente
- 2. Aplicar as operações obedecendo a precedência entre elas
- 3. Precedência: (), [], {}, ~, ., +
- 4. O resultado deverá ter valor lógico 0 ou valor lógico 1
- => Se uma expressão booleana utiliza *n* variáveis, quantas combinações possíveis podem existir para determinar o valor da expressão?

Tabelas-verdade

A	В	C	X
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Α	В	C	D	X
0	0	0	0	0
0	0 0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Às vezes pode ser conveniente usar colunas intermediárias

Portas lógicas

- São dispositivos eletrônicos com duas ou mais entradas que apresentam uma saída resultante da operação lógica das entradas.
- Portas básicas: AND, OR e inversores

Porta OR

• Implementa a operação de disjunção

Α	В	X = A + B
0	0	0
0	1	1
1	0	1
1	1	1

Porta AND

• Implementa a operação de conjunção

	A	ND	
Α	В	$x = A \cdot B$	
0	0	0	
0	1	0	A
1	0	0)—— x = AB
1	1	1	В •
	-		Porta AND

INVERSOR

• Implementa a operação de negação

NIOT

N	NOI	
Α	$x = \overline{A}$	
0	1	
1	0	

O diagrama do circuito digital

Descrevendo os circuitos lógicos algebricamente

- 1. Todo circuito lógico pode ser descrito algebricamente
- 2. Numerar todas as portas lógicas e inversores
- 3. Identificar todas as variáveis de entrada pela sua representação simbólica
- 4. Definir na saída de cada porta e inversor a sua expressão lógica em função das suas respectivas entradas não esquecer de usar (), [] ou {} se necessário
- 5. Proceder da entrada do circuito até a saída

A resposta ao longo do tempo...

A resposta ao longo do tempo...

- Circuitos combinacionais: a saída nas portas de um circuito combinacional em um instante qualquer é o resultado da combinação das suas entradas naquele instante.
- Não existe memória!

Teoremas e axiomas da álgebra booleana

Comutatividade das operações de disjunção e conjunção

- Conjunção: A.B = B.A
- Disjunção: A + B = B + A

Distributividade das operações de disjunção e conjunção

- Conjunção em relação à disjunção: A.(B + C) = A.B + B.C
- Disjunção em relação à conjunção: A + B. C = (A + B). (A + C)

Associatividade das operações de disjunção e conjunção

- Conjunção: (A.B).C = A.(B.C)
- Disjunção: (A + B) + C = A + (B + C)

Elementos nulo e neutro

Elementos nulo e neutro

Idempotência

Dupla negação

$$\bar{\bar{\chi}} = X$$

Teorema de De Morgan

 A negação da conjunção de variáveis é igual a disjunção das variáveis negadas

$$\overline{A.B...C} = \overline{A} + \overline{B} + \cdots + \overline{C}$$

 A negação da disjunção de variáveis é igual a conjunção das variáveis negadas

$$\overline{A+B+\cdots+C}=\overline{A}.\overline{B}....\overline{C}$$

Porta NOR

• Implementa a operação de negação da disjunção

Α	В	A+B	A + B
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Porta NAND

• Implementa a operação de negação da conjunção

Α	В	AB	AB
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Universalidade das portas NAND e NOR

- Qual é a equivalência das portas NAND e NOR às portas AND, OR e INVERSORES?
- Como pode-se realizar uma negação usando portas NAND e NOR?

Outros teoremas importantes

Adjacência lógica

$$\overline{A}.B + A.B = B$$

Absorção

$$A + A \cdot B = A$$

 $A + \overline{A} \cdot B = A + B$

Simplificação das expressões algébricas

- Aplicando-se sucessivamente os teoremas e axiomas da álgebra booleana é possível reduzir as expressões algébricas
- A expressão original e a expressão reduzida são logicamente equivalentes, isto é, para os mesmos valores das variáveis de entrada o resultado lógico das expressões sempre será o mesmo
- Quando uma expressão sempre resulta valor lógico 1 configura-se uma tautologia. Por outro lado, quando sempre resulta valor lógico 0 configura-se uma contradição. Quando a expressão pode assumir valor falso ou verdadeiro é chamada de contingência.

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

