

Plano de Ensino para o Ano Letivo de 2020

	IDE	ENTIFICAÇÃO				
Disciplina:				Cód	Código da Disciplina:	
Laboratório de Engenharia de Alimentos II				EAL403		
Course:						
Laboratory of Food Engineerin	g II					
Materia:						
Periodicidade: Anual	Carga horária total:	160	Carga horária sema	nal: 00	- 00 - 04	
Curso/Habilitação/Ênfase:		,	Série:	Período		
Engenharia de Alimentos			4	Diurno		
Professor Responsável:		Titulação - Graduação			Pós-Graduação	
Luciane Franquelin Gomes de Souza		Engenheiro de Alimentos			Doutor	
Professores:		Titulação - Gradua	ção		Pós-Graduação	
Luciane Franquelin Gomes de Souza		Engenheiro de Alimentos		Doutor		
Tatiana Guinoza Matuda Masaoka		Engenheiro de Alimentos		Doutor		
OR IE	TIVOS - Conhec	imentos Habili	dadas a Atituda	\c		

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

O objetivo dessa disciplina é possibilitar que o aluno de engenharia de alimentos analise na prática os conceitos teóricos de algumas operações unitárias da indústria de alimentos, fundamentos de fenômenos de transporte e termodinâmica.

Os conhecimentos, as habilidades e as atitudes adquiridas nessa disciplinas são:

Conhecimentos:

- C1 Fundamentos de fenômenos de transporte, secagem, evaporação, trocadores de calor, processamento térmico de alimentos, refrigeração e congelamento.
- C2 Formulação de equações de conservação de massa e energia (balanços de massa e de energia) em unidades operadas em regime permanente e transiente.

Habilidades:

- H1 Aplicar os conceitos de fenômenos de transporte, secagem, evaporação, trocadores de calor, processamento térmico de alimentos, refrigeração e congelamento.
- H2 Compreender a síntese das equações de conservação de massa e de energia, reconhecendo cada termo que as compõe e aplicá-las nos processos.

Atitudes:

- Al Planejar, executar e analisar experimentos relacionados às etapas de processos da indústria e alimentos.
- A2 Interpretar os aspectos fenomenológicos que originam o equacionamento matemático de equipamentos e sua posterior resolução numérica, relacionando a causa e efeito entre o dimensionamento do equipamento e as variáveis de processo.

2020-EAL403 página 1 de 10

EMENTA

Programação, execução e análise de experimentos relacionados aos temas Fenômenos de Transporte, Operações Unitárias da Indústria de Alimentos, Modelagem e Controle de Processos.

SYLLABUS

Programming, implementation and analysis of experiments related to the themes Transport Phenomena, Unit Operations of Food Industry, Modeling and Process Control.

TEMARIO

Programación, ejecución y análisis de experimentos relacionados con los fenómenos de transporte temas, Operaciones Básicas de la Industria Alimentaria, Modelado y Control de Procesos.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Ensino Híbrido
- Sala de aula invertida
- Problem Based Learning
- Gamificação

METODOLOGIA DIDÁTICA

- A disciplina Laboratório de Engenharia de Alimentos II será composta por quatro módulos bimestrais. Cada módulo contemplará as seguintes atividades:
- (a) Definição da "operação unitária" a ser objeto de estudo e do grupo de alunos responsável pela execução da atividade;
- (b) Discussão dos fundamentos teóricos e tecnológicos relacionados à "operação unitária" ou ao "fenômeno de transporte" abordado, sua aplicação e definição dos objetivos do estudo;
- (c) Realização de ensaios "preliminares" para a conhecimento dos equipamentos e das técnicas envolvidas;
- (d) Realização de ensaios e discussão dos resultados;
- (e) Apresentação oral e/ou escrita do estudo realizado com o detalhamento das etapas executadas;
- (f) Avaliação individual.
- Uso de ferramentas de aprendizagem ativa determinadas pelo professor responsável por cada módulo.

2020-EAL403 página 2 de 10

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

- (1) Matemática e física: conceitos de cálculo diferencial e integral de funções, de algarismos significativos e de medidas físicas experimentais;
- (2) Estatística: conceitos de erros, de ajuste de equações (regressões), de sensibilidade de variáveis de processo e de critérios estatísticos de validação de modelos matemáticos;
- (3) Computação: utilização de planilhas para resolução de equações algébricas e diferenciais, com a posterior síntese de gráficos, tabelas e análise estatística;
- (4) Fundamentos de engenharia de processos: fluxogramas e instrumentação industrial, balanço material e de energia, conceitos de transferência de quantidade de movimento, calor e massa.
- (5) Português: leitura e interpretação de textos (livros, listas de exercícios e provas), além da escrita de relatórios resultantes das atividades de laboratório e de projeto;
- (6) Inglês: leitura básica e vocabulário técnico.

CONTRIBUIÇÃO DA DISCIPLINA

- (a) Possibilitar o desenvolvimento de conhecimento em aspectos experimentais sobre "operações unitárias" e "fenômenos de transporte" relacionados à indústria alimentícia, colaborando com o aprimoramento prático da formação dos alunos;
- (b) Suscitar habilidades e atitudes referentes ao desenvolvimento de atividades em equipamentos em escala de laboratório e de planta piloto de engenharia de alimentos por meio do planejamento, fundamentação teórica e tecnológica, execução e análise de projetos, procurando "simular" situações comuns ao engenheiro de processos alimentícios.

BIBLIOGRAFIA

Bibliografia Básica:

HELDMAN, Dennis R., Ed; LUND, Daryl B., Ed. Handbook of food engineering. 2 ed. Boca Raton: CRC, 2007. 1023 p. (Food Science and Technology, 161). ISBN 0824753313.

MEIRELLES, Antônio José de Almeida (Org.) et al. Operações unitárias na indústria de alimentos. Rio de Janeiro: GEN/LTC, c2016. v. 1. 562 p.

MEIRELLES, Antônio José de Almeida (Org.) et al. Operações unitárias na indústria de alimentos. Rio de Janeiro: GEN/LTC, c2016. v.2

TADINI, C. C., TELIS, V. R. N., MEIRELLES, A. J. A., FILHO, P. A. P. Operações unitárias na indústria de alimentos. Rio de Janeiro: LTC, 2016. v. 1. 562 p.

TADINI, C. C., TELIS, V. R. N., MEIRELLES, A. J. A., FILHO, P. A. P. Operações unitárias na indústria de alimentos. Rio de Janeiro: LTC, 2016. v. 2. 484 p.

2020-EAL403 página 3 de 10

Bibliografia Complementar:

FELDER, Richard M; ROUSSEAU, Ronald W. Princípios elementares dos processos químicos. Trad. de Martín Aznar. 3. ed. Rio de Janeiro, RJ: LTC, 2005. 579 p. ISBN 8521614292.

FELLOWS, P. J. Tecnologia do processamento de alimentos: princípios e prática. Trad. de Florencia Cladera Oliveira. 2. ed. Porto Alegre, RS: Artmed, 2006. 602 p. ISBN 8536306521.

INCROPERA, Frank P; DEWITT, David P. Fundamentos de transferência de calor e de massa. Trad. de Carlos Alberto Biolchini da Silva. 5. ed. Rio de Janeiro, RJ: LTC, 2002. 698 p. ISBN 85-216-1378-4.

STRUMILLO, Czeslaw; KUDRA, Tadeusz. Drying: principles, applications and design. New York: Gordon and Breach Science, 1986. 448 p. (Topics in Chemical Engineering). ISBN 0-677-21630-0.

TOLEDO, Romeo T. Fundamentals of food process engineering. 3. ed. New York: Springer, c2007. 579 p. (Food Science Text Series). ISBN 0387290192.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos.

Pesos dos trabalhos:

 k_1 : 2,5 k_2 : 2,5 k_3 : 2,5 k_4 : 2,5

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

A programação da disciplina inclui a realização de 4 (quatro) trabalhos: T1, T2, T3 e T4 - Tratam-se de trabalhos referentes à execução de 4 módulos de atividades experimentais, a saber:

- T1 Cinética de secagem e modelagem;
- T2 Evaporação e Trocador de calor;
- T3 Refrigeração e Congelamento.
- T4 Processamento térmico de alimentos;

A ordem dos módulos poderá sofrer modificações sem comprometer o aprendizado dos alunos.

O(s) relatório(s) de cada módulo será(ão) feito(s) em grupos designados pelos professores e entregues na página da disciplina no ambiente virtual de aprendizagem, Moodlerooms.

2020-EAL403 página 4 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

Estima-se 20 horas de dedicação extra-classe por aluno para o cumprimento de cada módulo.

A nota trabalho (T1, T2, T3 e T4) de cada módulo será composta por:

- 50% nota(s) do(s) relatório(s) do módulo;
- 50% nota da avaliação individual.

A avaliação individual tem duração de uma hora e é sem consulta.

As notas trabalho (T1, T2, T3 e T4) serão divulgadas antes do início do próximo módulo.

É importante que todos os componentes se envolvam na realização dos experimentos e preparação dos relatórios, adquirindo conhecimentos que serão cobrados na avaliação individual.

Não será permitido aproveitamento de notas de trabalhos do ano anterior de alunos reprovados.

Não haverá trabalho substitutivo.

2020-EAL403 página 5 de 10

OUTRAS INFORMAÇÕES

A ordem de oferta dos módulos será informada aos alunos no início do ano letivo.

Necessidades de recursos materiais e humanos:

- (a) Parte teórica: lousa e computador/projetor;
- (b) Parte prática: reagentes e vidrarias, equipamentos de laboratório de engenharia de alimentos ("operações unitárias") e laboratório de informática (microcomputadores).

As aulas de laboratório necessitarão do técnico de laboratório, para a preparação e acompanhamento de experimentos, e auxiliar de laboratório, para lavagem do material utilizado.

O uso de EPI é obrigatório (avental, sapatos fechados).

2020-EAL403 página 6 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

		SOFTWARES NECESSÁRIOS PARA A DISCIPLINA
Microsoft	Office	

2020-EAL403 página 7 de 10

2020-EAL403 página 8 de 10

	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
1 L	Aula introdutória.	0
2 L	Início do Módulo 1: Introdução - Secagem -	1% a 10%
	PsicrometriaGamificação (Kahoot - individual - prêmio será um	
	brinde)Tarefa: Desafio no Collaborate - encontro virtual para	
	discussão com duração de 1h.	
3 L	Cinética de Secagem - Isoterma de sorção - ModelagemSala de aula	61% a 90%
	invertida com discussão de artigo disponibilizado no final da	
	aula 1.Gamificação (Kahoot - individual - prêmio será um brinde)	
4 L	Prática Secador de bandejas.Gamificação (Jogo de tabuleiro	61% a 90%
	abordando conceitos de psicrometria e secagem - prêmio será 1,0	
	ponto na média T2 para a equipe vencedora).	
5 L	Discussão Resultados - Secador de bandejas.Balanço de Massa e	11% a 40%
	EnergiaEnsino Híbrido - Questionário - Teste seus conhecimentos.	
6 L	Prática Spray - Dryer / Discussão de resultados. Problem Based	41% a 60%
	Learning.	
7 L	Apresentação Oral. Avaliação individual.	0
8 L	Semana de provas P1.	0
9 L	Semana de provas P1.	0
10 L	Início do Módulo 2: Evaporação e Trocador de calor - Introdução	0
11 L	Apresentação do evaporador a vácuo - Operação e descrição do	41% a 60%
	equipamento - planejamento do experimento. Problem Based	
	Learning.	
12 L	Apresentação do evaporador a vácuo - Operação e descrição do	41% a 60%
	equipamento - planejamento do experimento. Problem Based	
	Learning.	
13 L	Prática: Evaporador à vácuo. Problem Based Learning.	91% a
		100%
14 L	Discussão dos resultados.Ensino Híbrido - Questionário - Teste	1% a 10%
	seus conhecimentos.	
15 L	Semana Smile.	0
16 L	Apresentação do trocador de calor - Operação e descrição do	41% a 60%
	equipamento - planejamento do experimento. Problem Based	
	Learning.	
16 L	Apresentação do trocador de calor - Operação e descrição do	61% a 90%
	equipamento - planejamento do experimento e prática. Problem	
	Based Learning.	
17 L	Discussão dos resultados.	0
18 L	Apresentação oral. Avaliação individual.	0
19 L	Semana de Provas P2.	0
20 L	Semana de Provas P2.	0
21 L	Exercícios Extras.	0
22 L	Exercícios Extras.	0
		0
23 L	Semana de Provas PS1.	U

2020-EAL403 página 9 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

24 L	Início do Módulo 3: Refrigeração e Congelamento.Prática: Curvas	61%	a	90%
	de congelamento - Elaboração roteiro do experimento e fluxograma			
	de processo. Problem Based Learning.			
25 L	Prática: Curvas de congelamento. Problem Based Learning.Discussão	61%	a	90%
	dos resultados.			
26 L	Determinação da temperatura inicial e do tempo de congelamento.	61%	а	90%
	Problem Based Learning.			
27 L	Discussão dos resultados.	0		
28 L	Exercícios.	0		
29 L	Avaliação individual.	0		
30 L	Semana de provas P3.	0		
31 L	Início do Módulo 4: Processamento térmico de	0		
	alimentos.Introdução. Conservação de Alimentos pelo uso do Calor.			
32 L	Tratamento térmico por esterilização.Cinética de inativação	61%	a	90%
	térmica. Letalidade térmica. Método Convencional - (laboratório			
	de informática). Peer Instruction.			
33 L	Exercício Método Convencional (laboratório de informática). Método	0		
	de Ball - Exercício.			
34 L	Exercício Método Convencional (laboratório de informática). Método	91%	a	
	de Ball - Exercício. Peer Instruction.	100%		
35 L	Prática: Processamento na planta piloto - Autoclave. Problem	61%	а	90%
	Based Learning.			
36 L	Discussão dos resultados - (laboratório de informática).	0		
37 L	Discussão dos resultados - (laboratório de informática).Problem	91%	а	
	Based Learning.	100%		
38 L	Avaliação individual.	0		
39 L	Semana de provas P4.	0		
40 L	Semana de provas PS2.	0		
41 L	Semana de provas PS2.	0		
Legenda	: T = Teoria, E = Exercício, L = Laboratório			

2020-EAL403 página 10 de 10