Lecture 5

微分与积分

Y. Ruan
Department of Mathematics

Real Analysis

5.1 单调函数的性质

前面已经证明单调函数的间断点是可数的, 反过来有

定理 5.1.1 设 A 是开区间 (a,b) 内的可数集,那么存在 (a,b) 上的单调增函数仅在 $(a,b) \cap A^c$ 上连续.

■ 记 $A = \{a_k\}_{k=1}^{\infty}$,考察函数

$$f(x) = \sum_{a_k \le x} \frac{1}{2^k}, \ \forall x \in (a, b).$$

显然 f 点点存在, 且 $\forall a < x < y < b$,

$$f(y) - f(x) = \sum_{x < a_k \le y} \frac{1}{2^k}.$$

因此 f 单调增加. 同时上式表明 $\forall x_0 = a_k$,

$$f(x_0) - f(x) \geqslant \frac{1}{2^k}, \, \forall x < x_0.$$

因此 f 在 A 上不连续. 任取 $x_1 \in (a,b) \cap A^c$, $\forall j$, 总存在 $\delta > 0$ 使得 $(x_1 - \delta, x_1 + \delta)$ 与 $a_1, ..., a_j$ 不相交, 从而 $\forall x \in (x_1 - \delta, x_1 + \delta)$,

$$|f(x) - f(x_1)| \le \sum_{k \ge j+1} \frac{1}{2^k} = \frac{1}{2^j},$$

即在 $(a,b) \cap A^c$ 上连续.

h

5.2 单调函数的可微性

定义 5.2.1 有界非退化闭区间族 \mathcal{F} 称为集合 \mathcal{E} 的 Vitali 覆盖, 如果 $\forall x \in \mathcal{E}$, $\varepsilon > 0$, 存在 $I \in \mathcal{F}$ 使得 $x \in I$ 且 $|I| < \varepsilon$.

引理 5.2.1 (Vitali 覆盖引理) 设 $m^*(E) < \infty$, \mathcal{F} 为 E 的 Vitali 覆盖. 那么 $\forall \varepsilon > 0$, 存在有限个互不相交的闭区间 $I_1, I_2, ..., I_N \in \mathcal{F}$ 使得

$$m^*\left(E\setminus\left(\bigcup_{k=1}^NI_k\right)\right)<\varepsilon.$$

■ 1. 由于 $m^*(E) < \infty$, 存在开集 $G \supset E$ 满足 $m(G) < \infty$. 又 因 F 为 E 的 Vitali 覆盖, 故可假设 F 中的所有闭区间都包含于 G.

任取 $I_1 \in \mathcal{F}$, 若 $E \setminus I_1$ 为空, 则证毕. 否则令

$$\mathcal{F}_1 = \{I \in \mathcal{F} : I \cap I_1 = \varnothing\}$$
.

由于 I_1 闭, \mathcal{F} 为 E 的 Vitali 覆盖, 故 \mathcal{F}_1 非空. 于是存在非退化 闭区间 $I_2 \in \mathcal{F}_1$ 使得 $I_1 \cap I_2 = \emptyset$, 且

$$m\left(I_{2}\right)>\frac{1}{2}\sup_{I\in\mathcal{F}_{1}}m\left(I\right)>0.$$

若 $E\setminus \left(\bigcup_{k=1}^2 I_k\right)$ 为空,则证毕. 否则令

$$\mathcal{F}_2 = \left\{ I \in \mathcal{F} : I \cap \left(\bigcup_{k=1}^2 I_k \right) = \varnothing \right\}.$$

由于 $\bigcup_{k=1}^{2} I_k$ 闭, \mathcal{F} 为 E 的 Vitali 覆盖, 故 \mathcal{F}_2 非空. 于是存在 $I_3 \in \mathcal{F}_2$ 使得 $I_3 \cap \left(\bigcup_{k=1}^{2} I_k\right) = \emptyset$, 且

$$m\left(I_{3}\right)>\frac{1}{2}\sup_{I\in\mathcal{F}_{2}}m\left(I\right)>0.$$

…… 依此继续得到一列互不相交的非退化闭区间 $I_1, I_2, ..., I_k, ...$ \mathcal{F} 满足: $\forall N$,

$$E\setminus\left(\bigcup_{k=1}^NI_k\right)\subset\bigcup_{I\in\mathcal{F}_N}I,$$

其中

$$\mathcal{F}_N = \left\{ I \in \mathcal{F} : I \cap \left(\bigcup_{k=1}^N I_k \right) = \varnothing \right\},$$

7

此外还有

$$m\left(I_{N+1}\right) > \frac{1}{2} \sup_{I \in \mathcal{F}_N} m\left(I\right) > 0.$$

因 $\{I_k: k \ge 1\}$ 互不相交且

$$\bigcup_{k=1}^{\infty}I_{k}\subset G,\ m\left(G\right) <\infty,$$

可知

$$\lim_{k \to \infty} m\left(I_k\right) = 0. \tag{5.1}$$

2. 下证 $\forall N \geqslant 1$,

$$E\setminus\left(\bigcup_{k=1}^{N}I_{k}\right)\subset\bigcup_{k=N+1}^{\infty}\left(5I_{k}\right).$$

8

事实上, $\forall x \in E \setminus \left(\bigcup_{k=1}^{N} I_{k}\right)$, 存在 $I \in \mathcal{F}_{N}$ 使得 $x \in I$. 那么 I 必定与 $\{I_{N+1}, I_{N+2}, ...\}$ 中的某一个相交, 否则

$$m\left(I_{k+1}\right) > \frac{1}{2}m\left(I\right), \ \forall k > N.$$

这与 (\underline{Eq} , 5.1) 矛盾, 因为 $I \in \mathcal{F}$ 为非退化的. 将 { I_{N+1} , I_{N+2} , ...} 中与 I 相交且指标最小者记为 I_s , ($s \ge N+1$), 即 I 与 I_1 , I_2 , ... I_{s-1} 不相交, $I \in \mathcal{F}_{s-1}$. 根据构造

$$m\left(I_{s}\right)>\frac{1}{2}m\left(I\right).$$

因此

$$x \in (5I_s) \subset \bigcup_{k=N+1}^{\infty} (5I_k)$$
.

从而当 N 充分大时,

$$m\left(E\setminus\left(\bigcup_{k=1}^{N}I_{k}\right)\right)\leqslant5\sum_{k=N+1}^{\infty}m\left(I_{k}
ight)<\varepsilon.$$

li

设 x 是实数值函数 f(x) 定义域的内点, f 在 x 处的上导数和下导数定义为

$$\overline{D}f(x) = \lim_{h \to 0} \left[\sup_{0 < |t| \leqslant h} \frac{f(x+t) - f(x)}{t} \right],$$

$$\underline{D}f(x) = \lim_{h \to 0} \left[\inf_{0 < |t| \leqslant h} \frac{f(x+t) - f(x)}{t} \right].$$

显然 $\underline{D}f(x) \leqslant \overline{D}f(x)$, 若 $\underline{D}f(x)$, $\overline{D}f(x)$ 存在且相等, 那么 f 在 x 处可导, 且 $f'(x) = \underline{D}f(x) = \overline{D}f(x)$.

在证明 Lebesgue 定理之前, 先引入类似于 Chebychev 不等式的结果.

引理 5.2.2 设 f(x) 是有界闭区间 [a,b] 上的单调增函数. 那么 $\forall \alpha > 0$,

$$m^*\left(\left\{x\in(a,b):\overline{D}f(x)\geqslant\alpha\right\}\right)\leqslant\frac{1}{\alpha}\left(f(b)-f(a)\right),$$

且

$$m^*\left(\left\{x\in(a,b):\overline{D}f(x)=\infty\right\}\right)=0.$$

■ 令

$$E_{\alpha} = \{x \in (a,b) : \overline{D}f(x) \geqslant \alpha\}.$$

任取 $0 < \alpha' < \alpha$, 记 \mathcal{F} 为满足下述条件的闭区间 [c,d] 全体,

$$[c,d] \subset (a,b), f(d)-f(c) \geqslant \alpha'(d-c).$$

由中值定理可知, \mathcal{F} 是 E_{α} 的 Vitali 覆盖. 根据 Vitali 引理, $\forall \varepsilon > 0$, 存在有限个互不相交的闭区间 $\{[c_k, d_k]\}_{k=1}^N \subset \mathcal{F}$ 使得

$$m^*\left(E_{\alpha}\setminus\left(\bigcup_{k=1}^N\left[c_k,d_k\right]\right)\right)<\varepsilon.$$

因此

$$m^*\left(E_{lpha}
ight)\leqslant m^*\left(igcup_{k=1}^N\left[c_k,d_k
ight]
ight)+m^*\left(E_{lpha}igces\left(igcup_{k=1}^N\left[c_k,d_k
ight]
ight)
ight) \ \leqslant \sum_{k=1}^N\left(d_k-c_k
ight)+arepsilon$$

$$\leqslant \frac{1}{lpha'} \sum_{k=1}^{N} \left(f(d_k) - f(c_k) \right) + \varepsilon.$$

由此得

$$m^*(E_\alpha) \leqslant \frac{1}{\alpha} (f(d) - f(c)).$$

另外 $\forall \alpha > 0$,

$$\{x \in (a,b) : \overline{D}f(x) = \infty\} \subset E_{\alpha}.$$

从而 $\forall \alpha > 0$,

$$m^* \left(\left\{ x \in (a, b) : \overline{D}f(x) = \infty \right\} \right)$$

 $\leq \frac{1}{\alpha} \left(f(d) - f(c) \right) \to 0, \ (\alpha \to \infty).$