Graz air pollution

Methods

- 1. Base additive
- 2. Base multiplicative
- 3. Base multicative cutoffs
- 4. Features (f3)
- 5. f3 cutoffs
- 6. Features2 (f4)
- 7. f4 cutoffs
- 7.14_Cuton.
- 8. features3
- 9. crossed_feaures

```
features=['Temp', 'RH', 'Pressure',
            'Winddirection', 'Windspeed', 'Precip'l
features2=['weekday Friday', 'weekday Monday',
        'weekday Saturday', 'weekday Sunday', 'weekday Thursday',
        'weekday Tuesday', 'weekday Wednesday']
features3 = ['season fall', 'season spring',
                'season summer', 'season winter'
                7. feature cross
                weekday convert = {
                    'weekday Sunday': 0,
                    'weekday Monday': 1,
                    'weekday Tuesday': 2,
                    'weekday Wednesday': 3,
                    'weekday Thursday': 4,
                    'weekday Friday': 5,
                    'weekday Saturday': 6
                for c in features2:
                    df org[c] = [weekday convert[c] if i else i for i in df org[c]]
                df org['dayoftheweek'] = df org[features2].sum(axis=1)
                df org[['dayoftheweek']]
                season convert = {
                     'season spring': 1,
                    'season summer': 2,
                    'season fall': 3,
                     'season winter': 4
                for c in season convert.keys():
                    df org[c] = [season convert[c] if i else i for i in df org[c]]
                df org['season'] = df org[season convert.keys()].sum(axis=1)
                df org[['season']]
                df org['cross1'] = df org['season']*df org['dayoftheweek']
                df org['cross2'] = df org['season']**2 + df org['dayoftheweek']**2
                df org['cross3'] = df org['season']**2
                df org['cross4'] = df org['dayoftheweek']**2
                crosses = ['cross1', 'cross2', 'cross3', 'cross4']
```

Lockdown1 vs. train

Lockdown1 vs. train

- Test data for NO2 is more simple than PM10
 - max_test ~ max_train

	RMSE	MAE	RMSE_val	MAE_val
D_NO2	RMSE_f4	MAE_f4	8.368847	6.407923
N_NO2	RMSE_new_base_add	MAE_base_add	5.973273	4.297227
O_NO2	RMSE_new_base_add	MAE_new_base_add	7.337199	5.575182
S_NO2	RMSE_f4	MAE_f4	5.633155	4.246237
W_NO2	RMSE_f4	MAE_f4	6.536686	4.982993
D_PM10K	RMSE_new_base_multi	MAE_new_base_multi	7.329732	6.039981
N_PM10K	RMSE_crossed_f5	MAE_crossed_f5	5.742252	4.869489
O_PM10K	RMSE_new_crossed_f	MAE_new_crossed_f	5.758059	4.593578
S_PM10K	RMSE_new_crossed_f	MAE_new_crossed_f	5.549522	4.242137
W_PM10K	RMSE_new_crossed_f	MAE_new_crossed_f	6.108925	4.909600
N_O3	RMSE_crossed_f5	MAE_features2_multi	9.016616	7.106509
S_O3	RMSE_crossed_f5	MAE_crossed_f5	8.710238	7.068301
N_Ox	RMSE_f3_cutoffs	MAE_f3_cutoffs	7.817738	6.428780
S_Ox	RMSE_tunning_params	MAE_new_crossed_f	7.425076	5.755069

Methods

- 50%:50 for new and old data
- crossed_features dominate
 - S_PM10
 - N PM10
 - O PM10
 - W PM10
- base_add fits well for N_NO2, O_NO2 and base_mul for D_PM10K

Min

- Values
 - S_PM10K

	0	1
D_NO2	8.369	f3
N_NO2	5.973	new_base_add
O_NO2	7.337	new_base_add
S_NO2	5.633	f3
W_NO2	6.537	f3

- N NO2
 - is already low error compared to other NO2
- N_NO2 and O_NO2: more features do not help
 - Best at new base additive
 - → tune the parameters of the algorithm/preprocess more data to get better results
- D_, S_, W_: best at f3 (=f4) from old data

Explanation

- N_NO2 and S_NO2 with lower error:
- D_NO2 bigger error

•

D_NO2

Explanation

	0	1
N_O3	9.017	crossed_f5
S_03	8.710	crossed_f5

D NO2 crossed_f5 f4_cutoffs features_multi base_add base_multi base_multi_cutoffs new_base_multi new_f4 features2_mult features2_multi_cutoffs tunning_params base_add_cutoffs new_base_add features_multi_cutoffs new_tunning_param new_features_multi new_features2_mult W_f3 features2_multi S_NO2 f3_cutoffs f4_cutoffs new_f4 base_multi new_f3 features_multi_cutoffs new_features_multi new_tunning_params new_features2_multi tunning_pa base_add_cutoffs features_multi new_base_multi crossed_f5 features2_multi_cutoff

Next Steps

- 1. Cutoffs
- 2. Optimization for each area
- 3. Lockdown 2, 3?

Thank you!