TD 12. Dérivation.

Exercice 1. Étudier la dérivabilité de la fonction $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto \begin{cases} 1 - e^x & \text{si } x < 0 \\ \frac{e^x - 1}{e^x + 1} & \text{si } x \ge 0. \end{cases}$$

Exercice 2. Pour les fonctions f suivantes, justifier que f est de classe \mathcal{C}^{∞} sur son domaine de définition, et calculer pour tout $n \in \mathbb{N}$ la dérivée n-ième de f:

a)
$$f(x) = (3x^2 + x - 5)\sin(x)$$
 b) $f(x) = \frac{2x - 1}{x + 1}$ c) $f(x) = e^x \cos(x)$

Exercice 3. Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{x^2 + 1}$.

a) Justifier que f est de classe \mathcal{C}^{∞} sur \mathbb{R} . Justifier que pour tout $n \in \mathbb{N}$, il existe un polynôme P_n tel que

$$\forall x \in \mathbb{R}, \ f^{(n)}(x) = \frac{P_n(x)}{(1+x^2)^{n+1}}$$

- b) Vérifier que, pour tout $x \in \mathbb{R}$, $(1+x^2)f'(x) = -2xf(x)$.
- c) En déduire : $\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}$,

$$P_{n+1}(x) + (2n+2)xP_n(x) + (n^2+n)(1+x^2)P_{n-1}(x) = 0$$

Exercice 4. On pose $f(x) = \frac{\ln(1+x)}{1+x}$.

- a) Montrer que f réalise une bijection de] -1,1[sur un intervalle à déterminer, et qu'elle est de classe \mathcal{C}^{∞} sur] -1,1[.
- b) Justifier que sa réciproque f^{-1} est de classe \mathcal{C}^{∞} . Calculer la valeur de $(f^{-1})'(0)$, et déterminer $(f^{-1})''$ en fonction de f^{-1} et des dérivées de f.

Exercice 5. Soit a > 0, et $f : [0, a] \to \mathbb{R}$ continue qui vérifie : f(0) = 0, f dérivable sur [0, a] et f(a)f'(a) < 0. Montrer qu'il existe $c \in [0, a[$ tel que f'(c) = 0.

Exercice 6. 1) Soit $n \in \mathbb{N}^*$ et $f : \mathbb{R} \to \mathbb{R}$. On suppose que f est n fois dérivable et qu'elle admet n+1 valeurs d'annulation distinctes.

- a) Montrer que f' admet au moins n valeurs d'annulation distinctes.
- b) Montrer que $f^{(n)}$ admet au moins une valeur d'annulation.
- 2) Application : Soit P une fonction polynomiale de degré $k \in \mathbb{N}$. Que dire du polynôme $P^{(k+1)}$?

À l'aide 1), montrer que l'équation $P(x) = e^x$ admet au plus k+1 solutions distinctes sur \mathbb{R} .

Exercice 7. Soit $f: I \to \mathbb{R}$ avec I intervalle.

- a) On suppose f de classe C^1 sur I. Montrer que si f' ne s'annule pas sur I, alors f est strictement monotone sur I. En déduire qu'elle est injective.
- b) On suppose f dérivable sur I. Montrer que si f' ne s'annule pas sur I, alors f est injective. Indication: raisonner par contraposée.

Exercice 8. Soit a > 0 et $f: [0, a] \to \mathbb{R}$ une fonction dérivable, telle que f(0) = f(a) = f'(0) = 0.

- a) On pose, pour $x \in]0, a], g(x) = \frac{f(x)}{x}$. Montrer que g est prolongeable par continuité en 0.
 - Montrer que g est dérivable sur]0, a], et calculer g'(x) pour $x \in]0, a]$.
- b) Montrer qu'il existe $c \in]0, a[$ tel que la tangente en c à la courbe représentative de f passe par l'origine.

Exercice 9. a) Montrer que pour tout x positif, $\operatorname{Arctan} x \leq x$.

b) Montrer que pour tout $x \in]0,1[$, $Arcsin x \le \frac{x}{\sqrt{1-x^2}}$.

Exercice 10. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $\begin{cases} u_0 \geq 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n + 2}{3u_n + 5}. \end{cases}$

- a) Montrer que $(u_n)_{n\in\mathbb{N}}$ est bien définie.
- b) Si $(u_n)_{n\in\mathbb{N}}$ converge, quelle est la seule valeur possible pour sa limite? On notera φ cette valeur.
- c) Déterminer un réel $k \in]0,1[$ tel que pour tout $n \in \mathbb{N}, |u_{n+1} \varphi| \le k|u_n \varphi|.$
- d) En déduire que $(u_n)_{n\in\mathbb{N}}$ converge vers φ .

Exercice 11. 1) Soit $f: \mathbb{R}^* \to \mathbb{R}$ $x \mapsto \frac{x}{e^x - 1}.$

Montrer que f se prolonge en une fonction de classe C^1 sur \mathbb{R} .

2) Soit $f: x \to \operatorname{Arctan}\left(\sqrt{\frac{1-x}{1+x}}\right)$. Quel est le domaine de définition de f?

Montrer que f est prolongeable par continuité en un certain point, et déterminer si le prolongement est de classe \mathcal{C}^1 ou non.

Question bonus : simplifier l'expression de f(x).