Модель принятия решений о техническом обслуживании ВС в условиях пиковой нагрузки на аэропорт

Бабальянц Карина

ПМ4

Введение

В данной работе рассмотрена модель объекта управления, имеющего особым образом организованный комплекс работ, направленный на решение определенной задачи или достижение определенной цели, выполнение которого ограничено во времени, а также связано с потреблением конкретных финансовых, материальных и трудовых ресурсов.

Актуальность задачи

В современной деловой среде актуальность организации и управления производством с помощью моделирования значительно возросла. Это обусловлено тем, что производственная деятельность всё больше превращается в комплекс работ со сложной структурой используемых ресурсов, сложной организационной топологией, сильной функциональной зависимостью от времени и огромной стоимостью. Техническое обслуживание ВС так же имеет сложную структуру, моделирование которой поможет решить как правильно распределить ресурсы и от каких заказов на обслуживание стоит отказаться.

Постановка задачи

Несколько авиакомпаний в разные моменты времени au_i заказали комплекс работ W_i по техническом обслуживании ВС. За период Т поступает N заказов. Каждую работу следует выполнить к моменту времени au_i . Реальное время окончания работы T_i . Интервал выполнения работы $\Delta \tau_i = T_i - \tau_i$. Стоимость заказанных услуг S_i. Мощность работ, то есть количество работ, выполняемых за единицу времени обозначим $\alpha(W_i)$. К выполнению работ следует приступить в момент времени au_i и в единицу времени выполнить не менее, чем $Q_i > Q_{i \ min}$ работ. При условии задержки выполнения работ к моменту времени τ_i взимаются штрафные функции $\Gamma_i = \Gamma_i(\Delta \tau_i)$.

Система гипотез модели

- 1. Время перемещения техники с одного объекта на другой значительно меньше времени выполнения работ. И может рассматриваться как мгновенное события;
- 2. Все рабочие одной квалификации;
- 3. Поток W_i детерминированный;
- 4. Запасные части поставляются строго по графику;
- 5. Цены на ресурсы не меняются с момента заключения договора;
- 6. Вся техника работает исправно;
- 7. В каждый момент времени суммарное количество эксплуатируемых ресурсов (рабочих, техники и д.р.) $\sum_i Q_i \leq Q$;
- 8. Варьируемые параметры $Q_i = Q_i(t)$, $i = \overline{1,N}$
- 9. Мощность работ, то есть количество работ, выполняемых за единицу времени обозначим α зависит от количества затрачиваемых ресурсов Q в единицу времени. $\alpha = \frac{Q}{t}$;
- 10. Мощность обслуживания каждого ВС одинакова.

В задаче следует определить:

- 1. Как распределить ресурсы, чтобы штрафы за не вовремя выполненные заказы были минимальными $\Gamma = \sum_i \Gamma_i \ (\Delta \tau_i) \to min.$
- 2. Определить, от каких заказов W_i стоит отказаться.
- 3. Разработать структурную модель на основе сетевого графика зависимости работ при техническом обслуживании ВС.