Fitting & Evaluating Likelihood Models

We Have the Maximum Likelihood Estimate of Lambda

MLE of Lambda = 17

$$p(a \text{ and } b) = p(a)p(b)$$

$$p(D|\theta) = \prod_{i=1}^{n} p(d_i|\theta)$$

lambda

What is the Variation Around our Estimate

What is the Variation Around our Estimate

- 1. Log-Likelihood appxomiately χ^2 distirbuted
- 2. 95% CI holds all values within half of the .05 tail of $\chi^2_{df=1}$
- 3. (≈ 1.92)

Profile Likelihood Cls

- $\begin{array}{ccc} {\rm 1.} & {\rm Log-Likelihood~appxomiately} \\ {\rm } & \chi^2 {\rm ~distirbuted} \end{array}$
- 2. 95% CI holds all values within half of the .05 tail of $\chi^2_{df=1}$
- 3. (≈ 1.92)

Profile Likelihood Cls


```
1Conf <- max(11) - 1.92
1Conf
# [1] -26.96

#Get which values of lambda that have
confVals <- lambdaVals[which(11 >= 1Con
confVals[c(1, length(confVals))]
# [1] 15 19
```

How do we Compare Alternate Hypotheses?

$$G = 2ln(\frac{L_A}{L_0})$$

where L0 is from the more constrained hypothesis. G is χ^2 distributed with DF = Difference in Parameters

How do we Compare Alternate Hypotheses?

$$G = 2ln(\frac{L_A}{L_0})$$

where L0 is from the more constrained hypothesis. G is χ^2 distributed with DF = Difference in Parameters

$$G = 2(LogL_A - LogL_0)$$

How do we Compare Alternate Hypotheses?

```
#compare our estimated fit to the hypothesis that lambda = 12
G12 \leftarrow 2*(11[17] - 11[12])
pchisq(G12, 1, lower.tail=F)
# [1] 1.768e-05
#compare our estimated fit to the hypothesis that lambda = 15
G15 <- 2*(11[17] - 11[15])
pchisq(G15, 1, lower.tail=F)
# [1] 0.1099
```

- Load the Bee Lifespan Data
- ▶ Model Bee Lifespans as a Gamma Distribution with shape = 1 (1 bee per death)
- ▶ What is the ML estimate of a Bee's Lifespan?
- ▶ What is the 95% CI?
- Is the scale different from 10?

abline(h=x) for horizontal lines, use v for vertical lines

```
#a function to get a CI given values and their log-likelihood
mllCI <- function(values, logl) {
   ci <- values[which(logl > max(logl) - 1.92)]
   ci[c(1, length(ci))]
}
mllCI(scaleVals, mll)
# [1] 20.2 39.8
```

```
G <- 2 * max(mll - beeD(10))
pchisq(G, df=1, lower.tail=F)
# [1] 1.386e-12</pre>
```

What if you have multiple parmeters?

What if we Estimated Shape and Scale?

Log Likelihood

New Issues with Multiple Parameters

- 1. What Log-Likelihood Values Are Used for 95% CI?
- 2. Brute-Force Becomes Slow
- 3. Algorithmic Solutions Necessary
- 4. Specification Unwieldy

We Get the Likelihood Profile of One Coefficient by Iterating Over the Other

We Get the Likelihood Profile of One Coefficient by Iterating Over the Other

We Get the Likelihood Profile of One Coefficient by Iterating Over the Other

plot(profile(beeLL_Fit))

Likelihood profile: scale

How do we Search Likelihood Space?

Optimizing to find a Minimum Value

- optim
- ► nlm
- nlminb
- mle2 (wrapper for all of the above)

How do we Search Likelihood Space?

Optimizing to find a Minimum Value

- optim
- ► nlm
- nlminb
- ► mle2 (wrapper for all of the above)

YES!

YES!

We optimize using -sum(LL Function)

YES!

We optimize using -sum(LL Function)

Deviance = -2 * LL

How do we Search Likelihood Space?

There are many Algorithms

- ► Newtown-Raphson (algorithmicly implemented in nlm and BFGS method) uses derivatives
 - good for smooth surfaces & good start values
- ▶ Brent's Method for single parameter fits
- Nelder-Mead Simplex (optim's default)
 - good for rougher surfaces, but slower
- ► Simulated Annealing (SANN) uses Metropolis Algorithm search
 - global solution, but slow

How do we Search Likelihood Space?

There are many Algorithms

- Newtown-Raphson (algorithmicly implemented in nlm and BFGS method) uses derivatives
 - good for smooth surfaces & good start values
- Brent's Method for single parameter fits
- Nelder-Mead Simplex (optim's default)
 - good for rougher surfaces, but slower
- ► Simulated Annealing (SANN) uses Metropolis Algorithm search
 - global solution, but slow

Warning: If your algorithm fails to converge, you cannot evaluate your model or coefficients

Fitting Multiple Parameters with MLE2 from bbmle

```
#first write a function that you want to minimize
beeLL <- function(shape, scale) -sum(dgamma(hours,
shape=shape, scale=scale,
log=TRUE))

#now feed the function to an optimizer
beeLL_Fit <- mle2(beeLL, data=bees, start=list(shape=1, scale=4))</pre>
```

Fitting Multiple Parameters with MLE2 from bbmle

```
summary(beeLL Fit)
# Maximum likelihood estimation
# Call:
# mle2(minuslog1 = beeLL, start = list(shape = 1, scale = 4), data = be
# Coefficients:
      Estimate Std. Error z value Pr(z)
# shape 1.645 0.371 4.43 9.3e-06
# scale 16.931 4.458 3.80 0.00015
#
# -2 log L: 281.3
```

Coefficient tests based on Wald Confidence Intervals

Easy Profiling

plot(profile(beeLL_Fit))

Confidence Intervals

```
confint(beeLL_Fit)
  2.5 % 97.5 %
# shape 1.027 2.492
# scale 10.569 30.020
# Wald CIs assume quadratic relationship at peak
confint(beeLL_Fit, method="quad")
     2.5 % 97.5 %
# shape 0.9175 2.372
# scale 8.1935 25.668
```

Or...MLE2 has Many Probability Functions Builtin

Or...MLE2 has Many Probability Functions Builtin

Or...MLE2 has Many Probability Functions Builtin

We Can Flexibly Compare Models using LRT

To fit Ho for a linear model fit, just drop the predictor variable alltogether.

Exercise: Wolf Inbreeding and Litter Size

- ► Load the wolf pup data
- Write a MLE regression for pups N(inbreeding)
- This model will have three parameters
- ► Evluate it's Cls and Wald Tests
- Compare it to your Ho
- Compare it to 1m results

Regression as Function

Regression with Distribution

Confidence Intervals

Null Hypothesis Test

Comparison to LM

```
wolf_lm <- lm(pups ~ inbreeding.coefficient, data=wolves)</pre>
summary(wolf_lm)
# Call:
# lm(formula = pups ~ inbreeding.coefficient, data = wolves)
# Residuals:
    Min 1Q Median 3Q Max
# -2.133 -0.820 -0.434 0.668 3.608
#
# Coefficients:
#
                     Estimate Std. Error t value Pr(>|t|)
# (Intercept)
                       6.567 0.791 8.31 3.1e-08
# inbreeding.coefficient -11.447 3.189 -3.59 0.0016
# Residual standard error: 1.52 on 22 degrees of freedom
```

Comparison to LM

```
summary(wolf mle2)
# Maximum likelihood estimation
# Call:
# mle2(minuslog1 = pups ~ dnorm(mean = intercept + inbreeding *
     inbreeding.coefficient, sd = wolves_sd), start = list(intercept =
     inbreeding = 0, wolves_sd = 3), data = wolves)
# Coefficients:
           Estimate Std. Error z value Pr(z)
# intercept 6.567 0.757 8.68 < 2e-16
# inbreeding -11.447 3.053 -3.75 0.00018
# wolves sd 1.459 0.211 6.93 4.3e-12
# -2 log L: 86.23
```