2019 Spring – SPC&O HW#7

- 1. Using the body temperature data you collected and the idea of "rational subgrouping", propose and construct \overline{X} -R control chart(s) to monitor your body health status. State clearly the "rationale" behind the constructed control charts.
- 2. Use the CD data provided in 19Spring-HW4.xls to:
 - (i) Construct the \overline{X} -R Shewhart control chart for monitoring special causes that may result in the CD excursion of the wafer's peripheral sites, i.e., sites 1, 2, 4, and 5.
 - (ii) Apply the runs rules to the control charts constructed in (i).
 - (iii) Estimate σ_x by S_x and construct an individual X chart based on S_x for the center site, i.e., site 3.
 - (iv) Estimate σ_x by S_p (the pooled moving sample variance with moving sample size=2 and 5). Construct individual X control charts based on S_p for site 3 with moving sample size=2 and 5, respectively, and compare them to the control chart in (iii).
 - (v) Construct *MR* charts with the moving sample size set to 2 and 5, respectively, for site 3.
 - (vi) Assuming that μ_0 =60 and μ_1 =59, use the sequential likelihood ratio test to test each wafer's site 3 with α =0.003 and β =0.3.
 - (vii)Let μ_0 =59.5. Construct a "graphical" Tabular CUSUM charts (like slide 38 of SPCO3.pdf) for site 3 with the (K, H)=(0.5 σ , 5 σ) and (0.25 σ , 8 σ), where σ is the estimated CD standard deviation of site 3. Estimate the new CD mean when the process is signaled out-of-control by the control chart.