Esercizi PDA

Corso di Fondamenti di Informatica - 1 modulo Corso di Laurea in Informatica Università di Roma "Tor Vergata"

Prof. Giorgio Gambosi

Definire un automa a pila che accetti il seguente linguaggio

$$L = \{a^p b^{p+2q} a^q; p, q > 0\}$$

- Nello stato q₀ vengono posti nella pila tanti simboli A quanti simboli a sono letti. Lo stato diventa q₁ al primo simbolo b letto
- Nello stato q_1 , un simbolo A viene tolto dalla pila per ogni b letto, fino a giungere al fondo della pila e passare in q_2 .
- In q_2 , per ogni simbolo b letto viene posto sulla pila un simbolo B. L'automa passa in q_3 quando legge un nuovo simbolo a
- In q_3 , per ogni simbolo a letto l'automa dovrà togliere due simboli B: per far ciò, passerà ciclicamente in q_3 , in cui toglierà la prima B dalla pila avendo letto a, e in q_4 , in cui toglierà la seconda B con una ε -transizione.
- Infine, se l'automa si trova in q_4 , ed ha quindi tolto BB dalla pila avendo letto a, può eliminare Z_0 dalla pila con una ε . La stringa è accettata per pila vuota.

	(q_0, Z_0)	(q_0, A)	(q_1, Z_0)	(q_1,A)	(q_2, B)	(q_3, B)	(q_4, Z_0)	(q_4, B)
а	(q_0, AZ_0)	(q_0, AA)	-	-	(q_3, ε)	-	-	(q_3, ε)
b	-	(q_1, ε)	(q_2, BZ_0)	(q_1, ε)	(q_2, BB)	-	-	-
ε	-	-	-	-	-	(q_4, ε)	(q_4, ε)	-

Un approccio alternativo è basato sulla definizione di una CFG per il linguaggio e sulla derivazione da essa di un NPDA. Grammatica:

$$\begin{array}{ccc} S & \longrightarrow & XY \\ X & \longrightarrow & aXb|ab \\ Y & \longrightarrow & bbYa|bba \end{array}$$

La grammatica non ha ε -produzioni, produzioni unitarie o simboli inutili, per cui è già in forma ridotta.

In CNF:

In GNF:

$$S \rightarrow aZY|aBY$$

$$X \rightarrow aZ|aB$$

$$Y \rightarrow bBW|bBA$$

$$Z \rightarrow aZB|aBB$$

$$V \rightarrow bB$$

$$W \rightarrow bBWA|bBAA$$

$$A \rightarrow a$$

$$B \rightarrow b$$

NPDA: L'automa ha un solo stato, che per brevità non viene riportato.

	S	X	Υ	Z	V	W	A	В
а	ZY,BY	Z,B	-	ZB,BB	-	-	ε	-
b	-	-	BW, BA	-	В	BWA, BAA	-	ε

Si definisca un automa a pila (eventualmente non deterministico) che accetti il linguaggio $L=\{a^rb^sc^ta^nc^n|s=r+t,r,t,n\geq o\}.$

Si consideri il linguaggio $L \subset \{0,1\}^*$ tale che $\sigma \in L$ se e solo se $\#_0(\sigma) = \#_1(\sigma)$, dove $\#_a(s)$ indica il numero di occorrenze del carattere a nella stringa s. Si definisca una grammatica CF in GNF che generi L.

Una possibile grammatica è la seguente:

$$S \rightarrow oS1S|1SoS|\varepsilon$$

L'eliminazione della ε -produzione porta alla grammatica equivalente

$$S \rightarrow oS1S|1SoS|oS1|o1S|1So|1oS|o1|1o$$

che non presenta produzioni unitarie o simboli inutili.

La grammatica in CNF che ne deriva è

$$S \ \rightarrow \ XY|YX|XU|ZY|YZ|UX|ZU|UZ$$

$$X \rightarrow ZS$$

$$Y \rightarrow US$$

$$Z \rightarrow 0$$

$$U \rightarrow 1$$

da cui deriva immediatamente la grammatica in GNF

$$S \quad \to \quad oSY|1SX|oSU|oY|1SZ|1X|oU|1Z$$

$$X \rightarrow oS$$

$$Y \rightarrow 1S$$

$$Z \rightarrow 0$$

$$U \rightarrow 1$$

Si consideri il linguaggio

$$L = \{ o^i \mathbf{1}^j | i \ge j \}$$

Il linguaggio è regolare o context free? Dimostrare quale delle due affermazioni è vera. Si definisca inoltre un automa (a statsi finiti o a pila, rispettivamente) che accetti tutte e sole le stringhe del linguaggio.

Il linguaggio non è regolare, ma è context free. Per verificare che non è regolare si può utilizzare il pumping lemma applicato (fissato n) alla stringa $o^n 1^n \in L$. Dato che per ogni $uvx = o^n 1^n$ con $|uv| \le n$ e $|v| \ge 1$ si deve avere necessariamente che $v = o^k$ per un qualche k > 0, si che $uv^0 w = uv = o^{n-k} 1^k \notin L$, per cui L non è regolare.

L'automa a pila richiesto può essere derivato a partire da una grammatica CF che genera *L*, come la seguente

$$S \rightarrow oS_1|oT_1|\varepsilon$$
$$T \rightarrow oT|o$$

Definire un automa a pila che accetta per stato finale il linguaggio composto dalle stringhe $w \in \{0,1\}^+$ contenenti uno stesso numero di o e di 1.

Un possibile automa ha 2 soli stati q_0 , q_F e un alfabeto di pila Z_0 , Z, U. Ad ogni istante la pila contiene, al di sopra di Z_0 , una sequenza di Z di dimensione pari a #(0) - #(1) se #(0) - #(1) > 0 o una sequenza di U di dimensione pari a #(1) - #(0) se #(0) - #(1) < 0.

	(q _o , o)	$(q_0, 1)$	(q_0,ε)
$Z_{\rm o}$	(q_o, ZZ_o)	(q_o,UZ_o)	(q_F, ε)
Z	(q_0,ZZ)	(q_0,ε)	-
U	(q_0,ε)	(q_o,UU)	-

Si consideri il linguaggio

$$L = \{w \# x | w, x \in \{0, 1\}^+, w^R \text{ è suffisso di } x\}$$

Si verifichi che L è context free definendo un automa a pila che lo accetta.

L'automa dapprima (nello stato q_0) legge w e la trascrive sulla pila in ordine inverso. Alla lettura del carattere # l'automa passa nello stato q_1 di lettura di x: in qualunque passo in cui il carattere letto corrisponde a quello in cima alla pila l'automa effettua una scelta non deterministica tra due opzioni:

- 1. assumere che w^R compaia in x a partire da questo carattere, in tal caso passa nello stato q_2 ed elimina il primo carattere dalla pila
- 2. assumere che w^R non compaia in x a partire da questo carattere, e continuare a leggere caratteri, nello stato q_1

Nello stato q_2 , l'automa procede nella computazione fin tanto che i caratteri letti corrispondono a quelli via via estratti dalla pila. Nel caso positivo, la stringa termina con Z_0 sulla pila: questo carattere viene quindi estratto con una ε -transizione.

	(q_{0}, Z_{0})	(q_0, Z)	(q_0, U)	(q_1, Z)	(q_1, U)	(q_2, Z)	(q2, U)	(q_2, Z_0)
0	(q_0, ZZ_0)	(q_0, ZZ)	(q_0, UZ)	$\{(q_1, Z), (q_2, \varepsilon)\}$	(q_1, U)	(q_2, ε)	-	-
1	(q_0, UZ_0)	(q_0, UZ)	(q ₀ , UU)	(q_1, Z)	$\{(q_1, U), (q_2, \varepsilon)\}$	-	(q_2, ε)	-
#	-	(q_1, Z)	(q1, U)	-	-	-	-	-
ε	-	-	-	-	-	-	-	(q_2, ε)

Sia dato il linguaggio

$$L = \{a^n b^m c^k | k = |n - m|\}$$

Definire un PDA che accetti il linguaggio.

Possiamo derivare il PDA da una grammatica che generi il linguaggio:

$$\begin{array}{cccc} S & \rightarrow & S_1|S_3 \\ S_1 & \rightarrow & aS_1b|S_2 \\ S_2 & \rightarrow & aS_2c|\varepsilon \\ S_3 & \rightarrow & S_4S_5 \\ S_4 & \rightarrow & aS_4b|\varepsilon \\ S_5 & \rightarrow & bS_5c|\varepsilon \end{array}$$

 S_1 corrisponde al caso $n \ge m$, mentre S_3 al caso $m \ge n$.

La grammatica in questo caso risulta ambigua, in quanto ad esempio la stringa aabb può essere generata sia come $S \Rightarrow S_1 \Rightarrow aS_1b \Rightarrow aaS_1bb \Rightarrow aabb$ che come $S \Rightarrow S_3 \Rightarrow S_4S_5 \Rightarrow aS_4bS_5 \Rightarrow aaS_4bbS_5 \Rightarrow aabbS_5 \Rightarrow aabb$

Come eliminare l'ambiguità?

Dimostrare che il seguente linguaggio.

$$L = \{w \in \{a, b\}^+ : \#_w(a) = 2 \#_w(b)\}\$$

è context free, dove $\#_w(x)$ indica il numero di occorrenze del carattere x nella stringa w

Una possibile soluzione è quella di definire un PDA che accetta il linguaggio.

	(q_0, Z_0)	(q_0, X)	(q_0, Y)	(q_1, Z_0)	(q_1, Y)
а	(q_o, XXZ_o)	(q_0, XXX)	(q_1, ε)	-	-
b	(q_o, YZ_o)	(q_0, ε)	(q_0, YY)	-	-
ε	(q_0, ε)	-	-	(q_0, X)	(q_0, ε)

Si definisca un automa a pila (eventualmente non deterministico) che accetti il linguaggio $L=\{a^rb^sc^t|t=r-s\}.$