affine function f(x) = a/x+b, > convex proof: $f(\alpha x + (\mu x)y)$ $= a'(\alpha x + (-\alpha)y) + b$ $= \alpha(\alpha x + b) + (+ \alpha)(\alpha y + b)$ = Af(x) + (Hd)f(y) i convex2 norm ||·|| is convex 3. f convex =) its level set convex. Prof: $A = \{x \mid f(x) \leq \gamma\}$, $x, y \in A$. $\begin{array}{l} (1) \quad (2) \quad (1-\alpha) \quad (1$ i' $AXX+(HA)Y\in A$. I' A convex 4. $f(x) = \sqrt{|x|}$ isn't convex proof: If f convex, => f(0xx) < df(xx) + (1-0df(v)) 1'- MAX < AM) '- TAM < AM) let 20+0, 0x+0, 0x+1, 1, 0x>1, error. it isn't onvex. 5 f(x)= 1001, -> level set _= [x < R] fw < r} onlex $prof: x, y \in A, i : f(\omega x + (1-d)y) = f(\omega x + (1-d)y)$ S/AXXIH(HA)/y/ SY, A convex.