

INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Mid-Spring Semester Examination, 2018 - 2019

Subject: Mass Transfer II Subject No.: CH 31010

No. of Students: 93 Time: 2 Hrs Full Marks: 30

Department: Chemical Engineering Closed Book and Notes

Instructions:

1. All Questions are compulsory.

- 2. Answer all questions of each part together.
- 3. Feel free to assume any missing data with proper justifications.
- 4. For Question Number 2 (Part A) please ask for graph paper (if required).
- **5.** For Part B, please detach the Triangular Graph paper attached with question paper and attach it with the answer sheet.
- **6.** Without the graph paper, no marks will be given in the corresponding questions in both parts.

PART A

Special requirement for Part A: Graph sheets need to be provided.

- 1. Explain illustratively and mathematically the contrasting differences between the film theory and the penetration theory of mass transfer. [5]
- 2. In a counter-current packed column, n-butanol flows down at a rate of 0.25 kg/m 2 .s and is cooled from 330 to 295 K. Air at 290 K, initially free of n-butanol vapour is passed up the column at the rate of 0.7 m 3 /m 2 .s.
 - (a) Draw the temperature-enthalpy curve;

[6]

(b) Calculate the exit condition of air: enthalpy, dry bulb and the adiabatic saturation temperature. [4]

Data:

Mass transfer coefficient per unit volume, 0.1 s⁻¹

Lewis Number, 2.34

Heat transfer coefficients, $h_1 = 3 h_G$

Latent heat of vapourization of n-butanol, 252 kJ/kg

Specific heat of liquid n-butanon, 2.5 kJ/kg.K

Humid heat of gas, 1.05 kJ/kg.K

Temperature	Vap. Pressure of n-butanol (kPa)		
95	0.59		
300	0.86		
305	1.27		
310	1.75		
315	2.48		
320	3.32		
325	4.49		
330	5.99		
335	7.89		
340	10.36		
345	14.97		
350	17.50		

PART B

3. The following equilibrium data is available for a ternary system. y and x are Wt fractions of C (solute) in the two equilibrium phases 1 and 2. A and B has their usual meaning.

Sl. No.	Liquid Phase 1		Liquid Phase 2	
	у	Wt. Fraction of A	X	Wt. fraction of A
1	0.0	0.12	0.0	0.86
2	0.07	0.10	0.04	0.84
3	0.13	0.11	0.10	0.80
4	0.24	0.14	0.18	0.73
5.	0.35	0.22	0.24	0.67
6.	0.38	0.30	0.32	0.57
7.	0.40	0.35	0.37	0.48

(a)	Plot the ternary phase diagram in the form of a TRIANGULA	R plot. (1))

- (b) Identify the plate point. What is its composition? (1)
- (c) For the above system you would like to run a 2 stage cross flow extractor, using a fresh solvent. The solvent flow rate for each stage is 30 Kg/ hr. The feed contains 40% solute and the feed flow rate is 50 Kg/hr. Draw the process on the graph paper, and identify the composition of each stream (including intermediate streams). (4)
- (d) What is the final composition and quantity of the extract? (1)
- (e) What is the limiting composition of C that can be extracted in this system using the same solvent as used above? Can you somehow extract a feed that has $x_F = 0.7$? (1+1)

Total Number in Question 1: 9

- 4. Graphically find out (use the same ternary graph) the amount S1 of a liquid Phase P1 having composition (x_A =0.13, x_B =0.04, x_C =0.83) which is mixed with 5 Kg of a second liquid phase P_2 having composition (x_A =0.06, x_B =0.22, x_C =0.72) to produce a mixture P_M with composition (x_A =0.10, x_C =0.80). What is the total mass of the mixture? (3)
- 5. (a) For a particular ternary system, the spread of the two phase zone increases with increase in temperature. What can you conclude? Justify (1)
 - (b) Is dew point and bubble point same for a two component system? Answer with justification. Are they same for a single component system? (1.5+0.5)

Please detach the graph paper attached in the next page, and attach it with your answer script

End of Question Paper.

Best of Luck ©

