Gørtanke til handling

VIA University College

Lecture 2

Boolean Arithmetic and ALU

Today u will learn

- Convert truth-table to function and visa versa
- Reducing boolean functions
- Half adder
- Full adder
- Multibit adder
- Multiplexer and demultiplexer
- The Arithmetic Logic Unit (ALU)
- Exercise

VIA University College

Boolean algebra / truth tables

Sum of products

Truth Table	Product Terms	Sum-of-Products Expression	Digital Logic Circuit
A B C X 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1	ABC ABC ABC ABC ABC	ABC+ABC +ABC+ABC	

KarnaughMaps

Truth table to Function

- Describe the 1's

- $\overline{ABC} + \overline{ABC} + AB\overline{C}$ $\overline{AC} + \overline{AC} + AB\overline{C}$
- Simplify the expression

10		4 D C
AC	+	ABC

Α	В	С	Out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

 A half-adder takes two bits and generates sum and carry

http://tinyurl.com/ybkt6ffj

 A full-adder takes two bits and the carry from the previous (lower-order) bit and generates sum and carry:

Input bit for number A	Input bit for number B	Carry bit input C _{IN}	Sum bit output S	Carry bit output C _{OUT}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	O
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	Ō	0	1
1	1	1	1	1

- A full-adder can be built using two half adders

For more info look at link:

http://en.wikibooks.org/wiki/Practical_Elec
tronics/Adders

Multibit adder

- A 4bit adder consist of 4 "Full adder"
- The AVR has an 8 bit adder. The carry from the MSB goes in the status register

Multiplexer

- Used for selecting 1 of multiple inputs
- Has Multiple inputs
- And some select bits

http://tinyurl.com/yyc4dz36

VIA University College

7. september 2020

Demultiplexer

- Use to send 1 input to a specific output
- 1 input
- Some select bit

http://tinyurl.com/y6cx4qx9

Computer Architecture Types

-Harvard

- -One program bus
- -One data bus
- -Can work with instructions and data simultaneously
- -Von Neumann
 - -One bus
 - -Bus holds either instruction or data

Computer organisation

A bus is multiple wires. Could be a 8 wire bus, if the the PC is an 8bit processor

Microprocessor vs. Microcontroller

General purpose computer

- ·Highly configurable hw
- ·Many applications
- Different purposes
- ·Advanced user interface
- ·Human to human communication

Embedded computer

- -Fixed hw configuration
- -Single application
- -One purpose
- -Simple user interface
- -Machine to machine communication

(b) Microcontroller

The Central Processing Unit

The CPU typically consists of

- –ALU
- Program counter
- Instruction register
- Instruction decoder
- Input/Output devices

CPU – Animation

The heart of a computer is the central processing unit or CPU. This device contains all the circuitry that the computer needs to manipulate data and execute instructions.

Some of the circuits of a computer are made of gates

http://courses.cs.vt.edu/~csonline/MachineArchitecture/Lessons/CPU/Lesson.html

Can do very simple math

VIA University College 7. september 2020 19

The Hack ALU

- Operates on two 16-bit, two's complement values
- Outputs a 16-bit, two's complement value
- Which function to compute is set by six 1-bit inputs
- Computes one out of a family of 18 functions
- Also outputs two 1-bit values (to be discussed later).

out	
0 1 -1	
1	1
-1	
x y !x !y -x	
У	
!x	
! y	
-x	
-у	
x+1	
y+1	
x-1	
-y x+1 y+1 x-1 y-1 x+y x-y y-x x&y x y	
x+y	
x-y	
y-x	
x&y	
x y	l

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

The Hack ALU

To cause the ALU to compute a function, set the control bits to one of the binary combinations listed in the table.

control bits

zx	nx	zy	ny	f	no	out
1	0	1	0	1	0	0
1	1	1	1	1	1	1
1	1	1	0	1	0	-1
0	0	1	1	0	0	×
1	1	0	0	0	0	У
0	0	1	1	0	1	!x
1	1	0	0	0	1	! y
0	0	1	1	1	1	-x
1	1	0	0	1	1	-y
0	1	1	1	1	1	x+1
1	1	0	1	1	1	y+1
0	0	1	1	1	0	x-1
1	1	0	0	1	0	y-1
0	0	0	0	1	0	x+y
0	1	0	0	1	1	х-у
0	0	0	1	1	1	y-x
0	0	0	0	0	0	x&y
0	1	0	1	0	1	x y

Exercise

 We know how to make OR and XOR from NAND gates. So no reason to do that again.

VIA University College