Line Simplification Algorithms for Trajectory Compression: A Comprehensive Evaluation

ANONIMOUS

Nowadays, various sensors are collecting, storing and transmitting tremendous trajectory data, and it is known that raw trajectory data seriously wastes the storage, network bandwidth and computing resources. Line simplification algorithms are effective approaches to attacking this issue by compressing data points in a trajectory to a set of continuous line segments, and are commonly used in practice. This paper presents experiments and analyses of representative error bounded line simplification algorithms, including both optimal and sub-optimal methods, in terms of commonly adopted perpendicular Euclidean, synchronous Euclidean and direction-aware distances. Using real-life trajectory datasets, we systematically evaluate and analyze the performance (compression ratio, average error, running time, aging friendliness and query friendliness) of error bounded line simplification algorithms with respect to distance metrics, trajectory sizes and error bounds. Our study reveals the characteristics of error bounded line simplification algorithms, which lead to guidelines for practitioners to choose algorithms and distance metrics for specific applications.

ACM Reference Format:

1 INTRODUCTION

With the increasing popularity of GPS sensors on various mobile devices, such as smart-phones, on-board diagnostics, personal navigation devices and wearable smart devices, trajectory data is increasing rapidly. Sampling rates are also improved for acquiring more accurate position information, which leads to longer trajectories than before. Thus, transmitting and storing raw trajectory data consume a large amount of network, storage and computing resources [2, 5, 6, 12, 16, 17, 21, 24, 25, 27, 30, 31], and trajectory compression techniques [2, 5–7, 9, 12, 16, 17, 21, 24, 25, 30, 32, 34] have been developed to alleviate this situation.

Due to the limitations (poor compression ratio and data reconstruction overhead) of lossless compression, lossy compression techniques have become the mainstream of trajectory compression [15, 40]. Quite a few lossy trajectory compression techniques, most notably the piece-wise line simplification [2, 5–7, 9, 12, 16, 24, 32] solving the *min-#* problem [4, 10, 26], have been developed. The idea of piece-wise line simplification (LS) comes from computational geometry, whose target is to approximate a fine piece-wise linear curve with a coarse one (whose corresponding data points are a subset of the former), such that the maximum distance of the former to the latter is bounded by a user specified threshold. Its wide usage is due to its distinct advantages: (a) simple and easy to implement, (b) no need of extra knowledge and suitable for freely moving objects [27], and (c) bounded errors with good compression ratios.

Author's address: anonimous.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

XXXX-XXXX/2020/1-ART \$15.00

https://doi.org/10.1145/nnnnnnnnnnnnn

Algorithm taxonomy. LS algorithms fall into two categories: *compression optimal* and *compression sub-optimal* algorithms. *Compression optimal* methods [4, 10] are to find the minimum number of points or segments to represent the original polygonal lines w.r.t. an error bound ϵ , by transforming the problem to search for the shortest path of a graph built from the original trajectory. The optimal LS algorithms have relative high time/space complexities which make them impractical for large trajectory data. Hence, *compression sub-optimal* LS algorithms have been developed and/or introduced for trajectory compression, and they achieve better efficiency at an expense of outputting a little more data points. By the applied distance checking policies, sub-optimal algorithms can further be classified into batch, online and one-pass algorithms.

- (1) *Batch algorithms* such as top-down method Douglas-Peucker (DP) [7, 21] and bottom-up method Theo-Pavlidis (TP) [26] apply global distance checking policies such that all trajectory points need to be loaded before starting compression, and a point may be checked multiple times to compute its distance to the corresponding line segments.
- (2) Online algorithms such as OPW [21], SQUISH-E [23] and BQS [16] apply local distance checking policies, and need not to have the entire trajectory ready before compressing. They restrict the checking within a window/buffer, but may still check a point multiple times during the process.
- (3) *One-pass algorithms* such as OPERB [15], SIPED [8, 33, 38, 41], CISED [14], Intersect [17] and Interval [11] apply better local distance checking policies, which even do not need a window or buffer the previous read points, and process each point in a trajectory once and only once.

Distance metrics. Trajectory simplification algorithms are closely coupled with distance metrics, and different techniques are typically needed for different distance metrics. We consider three widely adopted metrics: *perpendicular Euclidean distances* (PED), *synchronous Euclidean distances* (SED) and *direction-aware distances* (DAD).

Originally, LS algorithms adopt PED, the shortest distance from a point to a line segment, as the distance metric. It brings good compression ratios [2, 6, 7, 9, 16, 24, 32] at a cost of losing temporal information of trajectories. (1) SED was then introduced to preserve the temporal information. The SED of a point to a line segment is the Euclidean distance between the point and its *synchronized point w.r.t.* the line segment, the expected position of the moving object on the line segment at the same time *with an assumption that the object moves along a straight line on the line segment at a uniform speed* [2]. It kindly supports applications such as spatio-temporal queries[14, 21], or in other words, it is *query friendly*, *i.e.*, a spatio-temporal query like *where_at* [2] on a simplified trajectory will return an expected point that has a distance less than the error bound used in the simplification. (2) DAD [17, 40] was introduced to preserve the direction information of moving objects, and was initially called the *direction-based measurement* in [17]. It is important for applications such as trajectory clustering and direction-based query processing [17, 18]. Note that LS algorithms using SED or DAD may produce more line segments than using PED. However, the use of SED and DAD further preserves temporal and direction information, respectively.

Motivations. Empirical studies on trajectory compression algorithms have been conducted [22, 24, 37]. However, they only discuss a small number of algorithms. The very recent study [40] does evaluate a wide range of trajectory simplification algorithms, and it provides an experimental study on compression errors and spatio-temporal query analyses. However, two important aspects for trajectory simplification (*i.e.*, compression ratios and running time) are not systematically studied. As a consequence, it remains difficult for practitioners to decide which algorithms and distance metrics should be adopted for a specific application.

Besides, the simplified trajectories are stored in data stores. As time goes by, the less precision of them may be necessary [2]. Thus, they need to be simplified again to get more coarse trajectories

Ca	tegory	Algorithms	PED	SED	DAD	Time	Space	Rep	Key Ideas
optimal		Optimal [10]	✓	✓	✓	$O(n^3)$	$O(n^2)$	✓	reachability graph
		OptPED [4]	√	×	×	$O(n^2)$	$O(n^2)$		reachability graph and sector intersection
		SP [17]	×	×	✓	$O(n^2)$	$O(n^2)$		reachability graph and range intersection
न		Ramer [28]	✓	✓	✓	$O(n^2)$	O(n)		top-down
	batch	DP [7, 21]	✓	✓	✓	$O(n^2)$	O(n)	✓	top-down
	-	TP [26]	✓	✓	✓	$O(n^2/K)$	O(n)	✓	bottom-up
		OPW [21]	✓	✓	✓	$O(n^2)$	O(n)	✓	top-down in openning window
_	online	BQS [16]	✓	×	×	$O(n^2)$	O(n)	✓	top-down, window and convex hull
sub-optimal	l o	SWAB [12]	✓	✓	✓	O(n * Q)	O(Q)		bottom-up in sliding window
pti.		SQUISH-E [24]	×	✓	×	$O(n \log Q)$	O(Q)	✓	bottom-up and priority queue
0-6		RW [29]	✓	×	×	O(n)	O(1)		strip
lns	one-pass	LDR [13, 36]	×	✓	×	O(n)	O(1)		linear dead reckoning
	Fe-1	OPERB [15]	✓	×	×	O(n)	O(1)	✓	fitting function
	5	SIPED [8, 41] ✓		×	×	O(n)	O(1)	✓	sector intersection
		CISED [14]	×	✓	×	O(n)	O(1)	✓	spatio-temporal cone intersection
		Intersect [17]	×	×	✓	O(n)	O(1)	✓	range intersection with $\frac{\epsilon}{2}$ -range
		Interval [11]	×	×	✓	O(n)	O(1)	✓	range intersection with ϵ -range

Table 1. Error bounded trajectory simplification algorithms

Here, (1) 'Rep" means "Representative", K is the number of the final segments of a trajectory and |Q| is the size of a buffer/window, and (2) batch and top-down algorithms DP [7, 21] and Ramer [28] are aging friendly, other algorithms are not.

as time progresses. Yet, can these simplified trajectories be further compressed by a certain LS algorithm to get coarse trajectories having bounded error *w.r.t.* the original trajectories? This is the *data aging* problem, initially introduced, and partially answered, in [2]. However, it remains an open question for LS algorithms other than Optimal and DP.

Contributions. In this paper, we conduct a thorough and systematic evaluation and analyses of the mainstream trajectory compression techniques (*i.e.*, error bounded trajectory simplification) for large-scale trajectory data, reveal the intrinsic characteristics of algorithms, and provide guidelines and suggestions on the choices of algorithms and distance metrics for different scenarios.

- (1) We classify error bounded LS algorithms into different categories, review each category of algorithms, and systematically evaluate the representative algorithms of each category. Table 1 summarizes the algorithms, which consist of optimal and sub-optimal algorithms, and the latter are further classified into batch, online and one-pass algorithms. Note that online and one-pass algorithms are typically designed for a specific distance metric of PED, SED and DAD.
- (2) We comprehensively evaluate the data aging problem of LS algorithms and distance metrics from the views of aging friendliness and aging error. We proved that only algorithms running in both batch and top-down manners and using PED and/or SED are aging friendly, others are not; and for aging error, all algorithms have bounded errors in data aging, and the batch and top-down algorithms also have unique performance compared with other algorithms.
- (3) Using three real-life trajectory datasets, we systematically evaluate and analyze the performance (compression ratio, average error and efficiency) of error bounded LS algorithms in terms of trajectory sizes and error bounds. (i) For a fair running time analysis, all algorithms are (re)-implemented in Java, unlike [40] that reports running time of algorithms with different programming languages. (ii) Compression ratio analyses are not considered in [40]. (iii) Variations of distance metrics are not studied in [40]. (iv) Data agings of LS algorithms are not studied in [40]. (v) Optimal algorithms using PED and SED and one-pass algorithms SIPED and CISED are not investigated in [40]. Indeed, algorithm SIPED is *completely overlooked* by existing trajectory compression studies as it is

Notations	Semantics
P	a data point
Ϋ́	a trajectory $\ddot{\mathcal{T}}$ is a sequence of data points
$\overline{\mathcal{T}}$	a piece-wise line representation of a trajectory $\ddot{\mathcal{T}}$
L	a directed line segment
$ped(P, \mathcal{L})$	the perpendicular Euclidean distance of point P to line segment $\mathcal L$
$sed(P, \mathcal{L})$	the synchronous Euclidean distance of point P to line segment $\mathcal L$
$dad(\mathcal{L}_1,\mathcal{L}_2)$	the direction-aware distance of line segment \mathcal{L}_1 to line segment \mathcal{L}_2
ϵ	the error bound

Table 2. Summary of notations

originally developed in fields of computational geometry and pattern recognition [8, 33, 38, 41], and we find that it can be easily adopted for trajectory compression with good performance.

Organization. Section 2 introduces basic concepts of trajectory simplification, Section 3 and Section 4 systematically review optimal and sub-optimal LS methods, respectively, Section 5 analyzes the data aging of LS algorithms and Section 6 reports and analyzes the experimental results, followed by conclusions in Section 7. Additional line simplification algorithms are summarized in appendix.

2 PRELIMINARY

In this section, we introduce some basic concepts for trajectory simplification. Notations used are summarized in Table Table 2.

Trajectory. A *trajectory* $\mathcal{T}[P_0, \ldots, P_n]$ is a sequence of points in a monotonically increasing order of their associated time values (*i.e.*, $P_i.t < P_j.t$ for any $0 \le i < j \le n$), where a data *point* is defined as a triple P(x, y, t), which represents that a moving object is located at *longitude x* and *latitude y* at *time t*. Note that data points can be viewed as points in a three-dimension Euclidean space.

Piece-wise line representation. A piece-wise line representation $\overline{\mathcal{T}}[\mathcal{L}_0,\ldots,\mathcal{L}_m]$ ($0 < m \le n$) of a trajectory $\ddot{\mathcal{T}}[P_0,\ldots,P_n]$ is a sequence of continuous directed line segments (or line segment for simplicity) $\mathcal{L}_i = \overline{P_{s_i}P_{e_i}}$ ($i \in [0,m]$) of $\ddot{\mathcal{T}}$ such that $\mathcal{L}_0.P_{s_0} = P_0$, $\mathcal{L}_m.P_{e_m} = P_n$ and $\mathcal{L}_i.P_{e_i} = \mathcal{L}_{i+1}.P_{s_{i+1}}$ for all $i \in [0,m-1]$. Note that (1) each directed line segment in $\overline{\mathcal{T}}$ essentially represents a continuous sequence of data points in trajectory $\ddot{\mathcal{T}}$, and (2) a point (x,y) on a spherical surface is projected on a flat plane in the piece-wise line representation.

For trajectory simplification, three distance metrics are commonly used, namely, the *perpendicular Euclidean distance* (PED), the *synchronous Euclidean distance* [21] (SED) and the *direction-aware distance* [17, 40] (DAD). Consider a data point P and a directed line segment $\mathcal{L} = \overrightarrow{P_sP_e}$.

Perpendicular Euclidean distance. The perpendicular Euclidean distance $ped(P, \mathcal{L})$ of point P to line segment \mathcal{L} is $min\{|PQ|\}$ for any point Q on $\overrightarrow{P_sP_e}$.

Synchronous Euclidean distance. The synchronous Euclidean distance $sed(P, \mathcal{L})$ of point P to line segment \mathcal{L} is $|\overrightarrow{PP'}|$ that is the Euclidean distance from P to its *synchronized data point* P' w.r.t. \mathcal{L} , where the synchronized data point P' w.r.t. \mathcal{L} is defined as follows: (a) $P'.x = P_s.x + c \cdot (P_e.x - P_s.x)$, (b) $P'.y = P_s.y + c \cdot (P_e.y - P_s.y)$ and (c) P'.t = P.t, where $c = \frac{P.t - P_s.t}{P_e.t - P_s.t}$.

Synchronized points are essentially virtual points with the assumption that an object moved along

Synchronized points are essentially virtual points with the assumption that an object moved along a straight line segment from P_s to P_e with a uniform speed, *i.e.*, the average speed $\frac{|P_sP_e^*|}{P_e.t-P_s.t}$ between points P_s and P_e [2, 14]. Then the *synchronized point* P' of a point P w.r.t. the line segment $\overrightarrow{P_sP_e}$ is the expected position of the moving object on $\overrightarrow{P_sP_e}$ at time P.t, obtained by a linear interpolation

Fig. 1. A trajectory $\ddot{T}[P_0, \ldots, P_{10}]$ with 11 points is compressed by the Douglas-Peucker algorithm [7] using distance metrics PED, SED and DAD, respectively.

[2]. More specifically, a synchronized point P_i' of P_i ($s \le i < e$) w.r.t. the line segment $\overrightarrow{P_sP_e}$ is a point on $\overrightarrow{P_sP_e}$ satisfying $|\overrightarrow{P_sP_e'}| = \frac{P_i.t-P_s.t}{P_e.t-P_s.t} \cdot |\overrightarrow{P_sP_e}|$, which means that the object moves from P_s to P_e at an average speed $\frac{|\overrightarrow{P_sP_e}|}{P_e.t-P_s.t}$, and its position at time $P_i.t$ is the point P_i' on $\overrightarrow{P_sP_e}$ having a distance of $\frac{P_i.t-P_s.t}{P_e.t-P_s.t} \cdot |\overrightarrow{P_sP_e'}|$ to P_s [2, 5, 14, 21, 40].

Direction-aware distance distance. The direction-aware distance $dad(\mathcal{L}_1, \mathcal{L}_2)$ is the direction deviation from \mathcal{L}_1 to \mathcal{L}_2 , *i.e.*, $\Delta(\mathcal{L}_1.\theta, \mathcal{L}_2.\theta) = \min\{|\mathcal{L}_1.\theta - \mathcal{L}_2.\theta|, 2\pi - |\mathcal{L}_1.\theta - \mathcal{L}_2.\theta|\}$, where $\theta \in [0, 2\pi)$ is the angular of \mathcal{L} . Note DAD differs from PED and SED in that it is a measure of angle, rather than Euclidean distances, and the temporal information is also lost when using DAD.

Now we define the Min-# problem of trajectory simplification.

Min-# problem. Given a trajectory $\ddot{\mathcal{T}}[P_0,\ldots,P_n]$ and a pre-specified constant ϵ , the *min-#* problem of trajectory simplification is to approximate the trajectory $\ddot{\mathcal{T}}$ with $\overline{\mathcal{T}}[\mathcal{L}_0,\ldots,\mathcal{L}_m]$ ($0 < m \le n$), such that (1) on each of them the points $[P_{s_i},\ldots,P_{e_i}]$ are approximated by a line segment $\mathcal{L}_i = \overrightarrow{P_{s_i}P_{e_i}}$ with the maximum PED or SED *error* of point P_j (or DAD *error* of line segment $|\overrightarrow{P_jP_{j+1}}|$) to line segment \mathcal{L}_i , $s_i \le j < e_i$, less than ϵ , and (2) P_{s_i} and $P_{e_i} \in \ddot{\mathcal{T}}$.

We illustrate these notations with examples.

Example 1: Consider Figure 1, in which (1) $\ddot{T}[P_0, \dots, P_{10}]$ is a trajectory having 11 data points, (2) the set of two continuous line segments $\{\overrightarrow{P_0P_4}, \overrightarrow{P_4P_{10}}\}$, the set of four continuous line segments $\{\overrightarrow{P_0P_4}, \overrightarrow{P_4P_7}, \overrightarrow{P_2P_4}, \overrightarrow{P_4P_7}, \overrightarrow{P_7P_{10}}\}$ and the set of three continuous line segments $\{\overrightarrow{P_0P_4}, \overrightarrow{P_4P_7}, \overrightarrow{P_4P_7}, \overrightarrow{P_7P_{10}}\}$ are three piece-wise line representations of trajectory \ddot{T} , (3) $ped\left(P_4, \overrightarrow{P_0P_{10}}\right) = |\overrightarrow{P_4P_4^*}|$, where P_4^* is the perpendicular point of P_4 w.r.t. line segment $\overrightarrow{P_0P_{10}}$, (4) For P_4 , its synchronized point P_4' w.r.t. $\overrightarrow{P_0P_{10}}$ satisfies $\frac{|\overrightarrow{P_0P_4}|}{|\overrightarrow{P_0P_{10}}|} = \frac{P_4.t-P_0.t}{P_{10}.t-P_0.t} = \frac{4-0}{10-0} = \frac{2}{5}$, (5) $sed\left(P_4, \overrightarrow{P_0P_{10}}\right) = |\overrightarrow{P_4P_4'}|$, $sed\left(P_2, \overrightarrow{P_0P_4}\right) = |\overrightarrow{P_2P_2'}|$ and $sed\left(P_7, \overrightarrow{P_4P_{10}}\right) = |\overrightarrow{P_7P_7'}|$, where points P_4' , P_2' and P_7' are the synchronized points of P_4 , P_2 and P_7 w.r.t. line segments $\overrightarrow{P_0P_{10}}$, $\overrightarrow{P_0P_{10}}$, $\overrightarrow{P_0P_4}$ and $\overrightarrow{P_4P_{10}}$, respectively. and (6) $dad\left(\overrightarrow{P_5P_6}, \overrightarrow{P_0P_{10}}\right) = \theta_{56}$ is the DAD of line segment $\overrightarrow{P_5P_6}$ to $\overrightarrow{P_0P_{10}}$.

3 COMPRESSION OPTIMAL ALGORITHMS

This section reviews the compression optimal LS algorithms that find the minimum number of points or segments to represent the original trajectory w.r.t. an error bound ϵ .

The naive optimal algorithm (Optimal) [10] first formulates it as a graph reachability problem, and solves the problem in $O(n^3)$ time, where n is the number of the original points of a trajectory. It is initially designed to support PED, but can easily be modified to support SED and DAD. By using *convex hull* [35] and *sector intersection* [20], faster optimal algorithms are proposed with an improved time complexity to $O(n^2 \log n)$. Further, [4] presents an optimal algorithm using PED (OptPED) achieves $O(n^2)$ time by using the *sector intersection* mechanism, and algorithm SP [17] is

Fig. 2. Example of reachability graph of trajectory $\ddot{\mathcal{T}}[P_0,\ldots,P_n]$ whose shortest path is (P_0,P_4,P_{10}) .

essential an optimization of the original optimal algorithm using DAD that achieves $O(n^2)$ time. However, all the above optimization mechanisms do not support SED, and Optimal remains the best optimal solution for SED. As all the optimized algorithms have the same effectiveness using the same distance metric, and essentially work for small size trajectories only, we choose algorithm Optimal as the representative of optimal LS algorithms.

Given a trajectory $\ddot{\mathcal{T}}[P_0,\ldots,P_n]$ and an error bound ϵ , algorithm Optimal [10] solves the optimal trajectory simplification problem in two steps: (1) it first constructs a reachability graph G of $\ddot{\mathcal{T}}$, and then (2) searches a shortest path from point P_0 to point P_n in graph G. The reachability graph of a trajectory $\ddot{\mathcal{T}}[P_0,\ldots,P_n]$ w.r.t. an error bound ϵ is G=(V,E), where (1) $V=\{P_0,\ldots,P_n\}$, and (2) for any nodes P_s and $P_{s+k}\in V$ ($s\geq 0, k>0, s+k\leq n$), edge $(P_s,P_{s+k})\in E$ if and only if the distance of each point $P_{s+i}(0< i< k)$ to line segment P_sP_{s+k} is not greater than ϵ . Observe that in the graph G, (1) a path from nodes P_0 to P_n is a representation of trajectory $\ddot{\mathcal{T}}$. The path also reveals the subset of points of $\ddot{\mathcal{T}}$ used in the approximate trajectory, (2) the path length corresponds to the number of line segments in the approximation trajectory, and (3) a shortest path is an optimal representation of trajectory $\ddot{\mathcal{T}}$.

A straightforward way of constructing the reachability graph G needs to check for all pair of points P_s and P_{s+k} whether the distances of all points $(P_{s+i}, 0 < i < k)$ to the line segment $P_s P_{s+k}$ are less than ϵ . There are $O(n^2)$ pairs of points in the trajectory and checking the errors of all points P_{s+i} to a line segment $P_s P_{s+k}$ takes O(n) time. Thus, the construction step takes $O(n^3)$ time. Finding a shortest path takes no more than $O(n^2)$ time. Hence, the straightforward algorithm, *i.e.*, Optimal, takes $O(n^3)$ time in total. For space complexity, it needs $O(n^2)$ space. Though the algorithm is initially developed using PED, it is easy to see that it also supports SED and DAD.

Example 2: Figure 2 is an example of the Optimal algorithm using PED taking as input the trajectory $\ddot{\mathcal{T}}$ shown in Figure 1. The reachability graph of $\ddot{\mathcal{T}}$ is constructed and a shortest path with 2 edges is founded. At last, the algorithm outputs two line segments $\overrightarrow{P_0P_4}$ and $\overrightarrow{P_4P_{10}}$.

4 COMPRESSON SUB-OPTIMAL ALGORITHMS

This section elaborates the-state-of-the-art compression sub-optimal algorithms solving the *min-#* problem of trajectory simplification according to the taxonomy in Section 1.

4.1 Batch Algorithms

Batch algorithms essentially apply global distance checking policies for trajectory simplification, and can be either top-down or bottom-up. Global checking policies enforce batch algorithms to have an entire trajectory first [21].

(1) Top-down algorithms recursively divide a trajectory into sub-trajectories until the stopping condition is met. Algorithms Ramer [28] and Douglas-Peucker (DP) [7] are similar, and support all the three distances PED, SED and DAD. An improved method of DP with a time complexity of $O(n \log n)$, based on *convex hulls*, is proposed in [9], which is the best DP based algorithm in terms of time complexities, and is designed for PED only, not for SED and DAD.

(2) Bottom-up algorithms are the natural complement of top-down ones, and they recursively merge adjacent sub-trajectories with the smallest distance, initially n/2 sub-trajectories for a trajectory with n points, until the stopping condition is met. Note that the distances of newly generated line segments are recalculated in each iteration. To our knowledge, Theo-Pavlidis (TP) [26] is the only bottom-up batch LS algorithm for trajectory simplification.

Note that, compared with top-down algorithms, bottom-up algorithms fit better for trajectories with lower sampling rates, as they typically need more rounds to merge smaller line segments into larger line segments. Batch algorithms basically work for small and medium size trajectories, and we choose DP and TP that all support PED, SED and DAD as the representatives of batch LS algorithms.

4.1.1 Algorithm Douglas-Peucker (DP) [7]. It is invented for reducing the number of points required to represent a digitized line or its caricature in the context of computer graphics and image processing. Originally, it uses PED, however, it is easy to be extended to support SED and DAD.

Given a trajectory $\ddot{\mathcal{T}}[P_0,\ldots,P_n]$ and an error bound ϵ , algorithm DP uses the first point P_0 and the last point P_n of $\ddot{\mathcal{T}}$ as the start point P_s and the end point P_e of the first line segment $\mathcal{L}(P_0,P_n)$, then it calculates the distance $ped(P_i,\mathcal{L})$ for each point P_i ($i\in[0,n]$). If $ped(P_k,\mathcal{L})=\max\{ped(P_0,\mathcal{L}),\ldots,ped(P_n,\mathcal{L})\}\leq\epsilon$, then it returns $\{\mathcal{L}(P_0,P_n)\}$. Otherwise, it divides $\ddot{\mathcal{T}}$ into two sub-trajectories $\ddot{\mathcal{T}}[P_0,\ldots,P_k]$ and $\ddot{\mathcal{T}}[P_k,\ldots,P_n]$, and recursively compresses these sub-trajectories until the entire trajectory has been considered. The time complexity of DP is $\Omega(n)$ in the best case, but is $O(n^2)$ in the worst case.

Example 3: Consider the trajectory $\ddot{\mathcal{T}}[P_0,\ldots,P_{10}]$ shown in Figure 1. The DP Algorithm firstly creates $\overrightarrow{P_0P_{10}}$, then it calculates the distance of each point in $\{P_0,\ldots,P_{10}\}$ to $\overrightarrow{P_0P_{10}}$. It finds that P_4 has the maximum distance to $\overrightarrow{P_0P_{10}}$, which is greater than ϵ . Then it goes to compress sub-trajectories $[P_0,\ldots,P_4]$ and $[P_4,\ldots,P_{10}]$, separately. When using SED (right), the sub-trajectory $[P_4,\ldots,P_{10}]$ is further split to $[P_4,\ldots,P_7]$ and $[P_7,P_{10}]$. Finally, the algorithm outputs two continuous directed line segments $\overrightarrow{P_0P_4}$ and $\overrightarrow{P_4P_{10}}$ when using PED, and three continuous directed line segments $\overrightarrow{P_0P_4}$, and $\overrightarrow{P_7P_{10}}$ when using SED.

4.1.2 Algorithm Theo-Pavlidis (TP) [26]. It initially employs the global checking policy to output disjoint line segments, and we slightly modify it to have continuous line segments.

Given a trajectory $\mathcal{T}[P_0,\ldots,P_n]$ and an error bound ϵ , algorithm TP begins by creating the finest possible trajectory approximation: $[P_0,P_1]$, $[P_1,P_2],\ldots,[P_{n-1},P_n]$, so that n segments are used to approximate the original trajectory. Next, for each pair of adjacent segments $[P_s,P_{s+j}]$ and $[P_{s+j},P_{s+k}]$ ($0 \le s < s+j < s+k \le n$), the distance $ped(P_{s+i},\overline{P_sP_{s+k}})$ of each point P_{s+i} (0 < i < k) to the line segment $\overline{P_sP_{s+k}}$, is calculated, and the max distance is saved and denoted as the cost of merging them. Then TP begins to iteratively merge the adjacent segment pair with the lowest cost until no cost is below ϵ . After the pair of adjacent segments $[P_s,P_{s+j}]$ and $[P_{s+j},P_{s+k}]$ are merged to a new segment $[P_s,P_{s+k}]$, TP needs to recalculate the costs of the new segment with its preceding and successive segments, respectively. Algorithm TP runs in $O(n^2/K)$ time, where K is the number of the final segments. The TP algorithm like DP algorithm originally supports PED, and it is also easy to be extended to support SED and DAD.

Example 4: Figure 3 is an example of the TP algorithm.

(1) Initially, 10 line segments are created, and for each pair of adjacent segments, the costs of merging them are calculated and saved. For example, the cost of merging $\overline{P_0P_1}$ and $\overline{P_1P_2}$ is $ped(P_1, \overline{P_0P_2}) = 0.32\epsilon$. (2) The cost of merging $\overline{P_6P_7}$ and $\overline{P_7P_8}$ is 0.02ϵ , which is the minimal value among all costs. Hence, $\overline{P_6P_7}$ and $\overline{P_7P_8}$ are merged to $\overline{P_6P_8}$. The cost of merging $\overline{P_5P_6}$ and $\overline{P_6P_8}$, and the cost of

Fig. 3. The trajectory $\ddot{\mathcal{T}}[P_0, \dots, P_{10}]$ is compressed by the Theo-Pavlidis algorithm using PED to two line segments. The triple (i, j, cost) is the cost of merging the line segments $\overline{P_i P_t}$ and $\overline{P_t P_j}$.

merging $\overline{P_6P_8}$ and $\overline{P_8P_9}$ are further updated to 0.37ϵ and 0.11ϵ , respectively. (3) $\overline{P_2P_3}$ and $\overline{P_3P_4}$ are merged to $\overline{P_2P_4}$. The cost merging $\overline{P_2P_4}$ and $\overline{P_4P_5}$, and the cost of merging $\overline{P_1P_2}$ and $\overline{P_2P_4}$ are also updated. (4) At last, the algorithm outputs two line segments $\overline{P_0P_4}$ and $\overline{P_4P_{10}}$.

4.2 Online Algorithms

Online LS algorithms adopt local checking policies by restricting the distance checking within a sliding or opening window such that there is no need to have the entire trajectory ready before compressing. That is, online algorithms essentially combine *batch algorithms* with *sliding or opening windows*, *e.g.*, OPW [21] is a combination of top-down algorithm DP and opening windows while SWAB [12] is a combination of bottom-up algorithm TP and *sliding windows*. Though these algorithms support the three distance metrics PED, SED and DAD, they still have high time and/or space complexities [16]. To design more efficient online algorithms, techniques typically need to be designed closely coupled with distance metrics. Indeed, BQS [16] and SQUISH-E [24] propose to utilize convex hulls and priority queues, respectively, and they speed up trajectory simplification using PED and SED, respectively. To our knowledge, no specific techniques have been developed for DAD. Hence, *we choose algorithms* BQS, SQUISH-E *and* OPW *as the representatives of online algorithms using* PED, SED *and* DAD, *respectively*.

4.2.1 Algorithm OPW [21]. It combines the Top-down and opening window strategies, and enforces the constrained global checking in the window. Like DP, it supports PED, SED and DAD.

Given a trajectory $\mathcal{T}[P_0,\ldots,P_n]$ and an error bound ϵ , algorithm OPW [21] maintains a window $W[P_s,\ldots,P_k]$, where P_s and P_k are the start and end points, respectively. Initially, $P_s=P_0$ and $P_k=P_1$, and the window W is gradually expanded by adding new points one by one. OPW tries to compress all points in $W[P_s,\ldots,P_k]$ to a single line segment $\mathcal{L}(P_s,P_k)$. If the distances $ped(P_i,\mathcal{L}) \leq \epsilon$ for all points P_i ($i \in [s,k]$), it simply expands W to $[P_s,\ldots,P_k,P_{k+1}]$ ($k+1 \leq n$) by adding a new point P_{k+1} . Otherwise, it produces a new line segment $\mathcal{L}(P_s,P_{k-1})$, and replaces W with a new window $[P_{k-1},\ldots,P_{k+1}]$. The above process repeats until all points in \mathcal{T} have been considered. The time complexity of algorithm OPW remains in $O(n^2)$, the same as the DP algorithm.

4.2.2 Algorithm BQS Using PED [16]. It is essentially an efficiency optimized OPW algorithm [21], and reduces the running time by introducing convex hulls to pick out a certain number of points, which makes it specific for PED.

For a buffer W with sub-trajectory $[P_s, \ldots, P_k]$, it splits the space into four quadrants. A buffer here is similar to a window in OPW [21]. For each quadrant, a rectangular bounding box is firstly created using the least and highest x and y values among points $\{P_s, \ldots, P_k\}$, respectively. Then another two bounding lines connecting points P_s and P_h and points P_s and P_l are created such that lines $\overrightarrow{P_sP_h}$ and $\overrightarrow{P_sP_l}$ have the largest and smallest angles with the x-axis, respectively. Here $P_h, P_l \in \{P_s, \ldots, P_k\}$. The bounding box and the two lines together form a convex hull. Each time a new point P_k is added to buffer W, BQS first picks out at most eight significant points from the convex hull in a quadrant. It calculates the distances of the significant points to line $\overrightarrow{P_sP_k}$,

Fig. 4. Examples for algorithm BQS.

among which the largest distance d_u and the smallest distance d_l are an upper bound and a lower bound of the distances of all points in $[P_s, \ldots, P_k]$ to line $\overrightarrow{P_sP_k}$. (1) If $d_l \geq \epsilon$, it produces a new line segment $\mathcal{L}(P_s, P_{k-1})$, and produces a new window $[P_{k-1}, \ldots, P_k]$ to replace W. (2) If $d_u < \epsilon$, it simply expands buffer W to $[P_s, \ldots, P_k, P_{k+1}]$ ($k+1 \leq n$) by adding a new point P_{k+1} . (3) Otherwise, it computes all distances $d(P_i, \mathcal{L}(P_s, P_k))$ ($i \in [s, k]$) as algorithm DP does. The time complexity of BQS remains $O(n^2)$. However, its simplified version FBQS has a linear time complexity by essentially avoiding case (3) to speed up the process.

Example 5: Figure 4 is an example of BQS. The bounding box $c_1c_2c_3c_4$ and the two lines $\overline{P_sP_h} = \overline{P_0P_1}$ and $\overline{P_sP_l} = \overline{P_0P_2}$ form a convex hull $u_1u_2c_2l_2l_1c_4$. BQS computes the distances of u_1, u_2, c_2, l_2, l_1 and c_4 to line $\overline{P_0P_6}$ when k = 6 or to line $\overline{P_0P_7}$ when k = 7. When k = 6, all these distances to $\overline{P_0P_6}$ are less than ϵ , hence BQS goes on to the next point (case 2); When k = 7, the max and min distances to $\overline{P_0P_7}$ are larger and less than ϵ , respectively, and BQS needs to compress sub-trajectory $[P_0, \ldots, P_7]$ along the same line as DP (case 3).

4.2.3 Algorithm SQUISH-E Using SED [24]. It is an online bottom-up algorithm specific for SED, and has two forms: SQUISH-E (λ) ensuring the compression ratio λ , and SQUISH-E (ϵ) ensuring the SED error bound ϵ . We use SQUISH-E (ϵ), as we focus on error bounded trajectory simplification. Algorithm SQUISH-E optimizes algorithm TP with a doubly linked list Q. Each node in the list is a tuple P(pre, suc, prio, mnprio), where P is a trajectory data point, pre and suc are the predecessive and successive points of P, respectively, prio is the priority of P defined as an upper bound of the SED error that the removal of P introduces, and mnprio is the max priority of its predecessive and successive points removed from the list. Initially, trajectory points are loaded to Q one by one. At the same time, mnprio of each point is set to zero as no node has been removed from the list. Moreover, the priorities of points P_0 and $P_{|Q|-1}$ are set to ∞ , and the priority of point P_i (0 < i < |Q| - 1) is set to $sed(P_i, pre(P_i)suc(P_i))$. Then, SQUISH-E finds and removes a point P_i from Q that has the lowest priority $prio(P_i) < \epsilon$, and the properties *mnprio* of predecessor $pre(P_i)$ and successor $suc(P_i)$ are updated to $max(mnprio(pre(P_i)), prio(P_i))$ and $\max(mnprio(suc(P_i)), prio(P_i))$, respectively. Next, the properties prio of $pre(P_i)$ and $suc(P_i)$ are further updated to $mnprio(pre(P_i)) + sed(pre(P_i), \overline{pre(pre(P_i))suc(P_i)})$ and $mnprio(suc(P_i)) + sed(pre(P_i), \overline{pre(pre(P_i))suc(P_i)})$ $sed(suc(P_i), \overline{pre(P_i)suc(suc(P_i))})$, respectively. After that, a new point is read to the list and the information of its predecessor in the list is updated. The above process repeated until that no points have a priority smaller than ϵ . SQUISH-E finds and removes a point from Q that has the lowest priority in $O(\log |Q|)$ time, where |Q| denotes the number of points stored in Q. Thus, SQUISH-E runs in $O(n \log |Q|)$ time and O(|Q|) space.

Example 6: Figure 5 is an example of SQUISH-E. (1) Initially, |Q| = 6 points are read to the list. The tuple (pre, suc, mmprio, prio) for each point is initialized. For example, the tuple of P_1 is set to $(0, 2, 0, 0.42\epsilon)$, where 0.42ϵ is the SED from P_1 to P_0P_2 . (2) The priority of P_3 has the

Fig. 5. The trajectory $\ddot{\mathcal{T}}[P_0, \dots, P_{10}]$ is compressed by the SQUISH-E algorithm using SED to five line segments. The size of Q is 6, and the data structure after point P is a tuple (pre, suc, mmprio, prio).

minimal value, thus, it is removed from the list. The *mnprio* properties of P_2 and P_4 are updated to $max\{mnprio(pre(P_3)), prio(P_3)\} = max\{mnprio(P_2), prio(P_3)\} = max\{0, 0.39\epsilon\} = 0.39\epsilon$, and $max\{mnprio(P_4), prio(P_3)\} = 0.39\epsilon$, respectively. Furthermore, the *prio* property of P_4 is updated to $mnprio(suc(P_j)) + sed(suc(P_j), pre(P_j)suc(suc(P_j))) = mnprio(P_4) + sed(P_4, P_2P_5) = 0.39\epsilon + 2.50\epsilon = 2.89\epsilon$, and the *prio* property of P_2 is updated to $mnprio(P_2) + sed(P_2, P_1P_4) = 0.39\epsilon + 2.12\epsilon = 2.51\epsilon$. Then, P_6 is read, and the information of P_5 is updated. (3) P_5 is removed and P_7 is read to the list. (4) Finally, the algorithm outputs 5 line segments P_0P_2 , P_2P_4 , P_4P_7 , P_7P_9 and P_9P_{10} .

4.3 One-pass Algorithms

One-pass algorithms adopt local checking policies, and run in O(n) time with an O(1) space complexity. They are typically designed for specific distance metrics.

Reumann-Witkam (RW) [29] is a straightforward one-pass algorithm that builds a strip paralleling to the line connecting the first two points, then the points within this strip compose a section of the line. RW is fast, but has a poor compression ratio. Algorithm OPERB [15] recently improves RW by allowing dynamically adjustable strips, together with several detailed optimization techniques. There is also algorithm SIPED (sector intersection) that converts distance tolerances into angle tolerances to speed up the process, which is completely overlooked by existing trajectory compression studies, but can be easily adopted for trajectory compression, as it is originally developed in fields of computational geometry and pattern recognition [8, 33, 38, 41]. These algorithms are designed for PED. Algorithms OPERB and SIPED have good compression ratios, and, hence, we choose them as the representatives of one-pass algorithms using PED.

Algorithm Linear Dead Reckoning (LDR) for position tracking [13, 36] follows the similar routine as RW except that it uses SED and assumes a velocity \vec{v} for each section. It has poor compression ratios because both the value and the direction of velocity \vec{v} are pre-defined and fixed between two updates. Recently algorithm CISED [14] extends the sector intersection method SIPED from a 2D space to a Spatio-Temporal 3D space. These one-pass algorithms are designed for SED. As algorithm CISED has a compression ratio close to algorithm DP using SED, we choose it as the representative of one-pass algorithms using SED.

Direction range intersection approaches are similar to *sector intersection* methods except that they are designed for DAD, we choose Intersect [17] and Interval [11] as the representatives of one-pass algorithms using DAD.

4.3.1 Algorithm OPERB Using PED [15]. It designs a direction-dynamically-adjusting line segment to achieve an effective one-pass process.

Consider an error bound ϵ and a sub-trajectory $\mathcal{T}_s[P_s, \ldots, P_{s+k}]$. OPERB dynamically maintains a directed line segment \mathcal{L}_i ($i \in [1, k]$), whose start point is fixed with P_s and its end point is identified (may not in $\{P_s, \ldots, P_{s+i}\}$) to fit all the previously processed points $\{P_s, \ldots, P_{s+i}\}$. The directed line segment \mathcal{L}_i is built by a function named fitting function \mathbb{F} , such that when a new point P_{s+i+1} is considered, only its distance to the directed line segment \mathcal{L}_i is checked, instead of checking the

Fig. 6. The trajectory $\ddot{\mathcal{T}}[P_0,\ldots,P_{10}]$ is compressed by the OPERB algorithm using PED to two line segments.

distances of all or a subset of data points of $\{P_s, \ldots, P_{s+i}\}$ to $\mathcal{R}_{i+1} = \overrightarrow{P_s P_{s+i+1}}$ as the global distance checking does. During processing, if the distance of point P_{s+i} to the directed line segment \mathcal{L}_{i-1} is larger than the threshold, then a directed line segment, start from P_s , is generated and output; otherwise, the directed line segment \mathcal{L}_i is updated by the fitting function \mathbb{F} , as follows.

$$\begin{bmatrix} \left[\mathcal{L}_{i} = \mathcal{L}_{i-1} \right] & when \left(|\mathcal{R}_{i}| - |\mathcal{L}_{i-1}| \right) \leq \frac{\epsilon}{4} \\ \left[|\mathcal{L}_{i}| = j * \epsilon / 2 \right] \\ \mathcal{L}_{i}.\theta = \mathcal{R}_{i}.\theta \end{bmatrix} & when \left| |\mathcal{R}_{i}| > \frac{\epsilon}{4} \text{ and } |\mathcal{L}_{i-1}| = 0 \\ \left| |\mathcal{L}_{i}| = j * \epsilon / 2 \right| \\ \mathcal{L}_{i}.\theta = \mathcal{L}_{i-1}.\theta + f(\mathcal{R}_{i}, \mathcal{L}_{i-1}) * \arcsin\left(\frac{ped(P_{s+i}, \mathcal{L}_{i-1})}{j * \epsilon / 2}\right) / j \end{bmatrix} else$$

where (a) $1 \leq i \leq k+1$; (b) $\mathcal{R}_{i-1} = \overrightarrow{P_s P_{s+i-1}}$, is the directed line segment whose end point P_{s+i-1} is in $\ddot{\mathcal{T}}_s[P_s,\ldots,P_{s+k}]$; (c) \mathcal{L}_i is the directed line segment built by fitting function \mathbb{F} to fit sub-trajectory $\ddot{\mathcal{T}}_s[P_s,\ldots,P_{s+i}]$ and $\mathcal{L}_0 = \mathcal{R}_0$; (d) $j = \lceil (|\mathcal{R}_i| * 2/\epsilon - 0.5) \rceil$; (e) f() is a sign function such that $f(\mathcal{R}_i,\mathcal{L}_{i-1}) = 1$ if the included angle $\angle(\mathcal{R}_{i-1},\mathcal{R}_i) = (\mathcal{R}_i.\theta - \mathcal{L}_{i-1}.\theta)$ falls in the range of $(-2\pi,-\frac{3\pi}{2}]$, $[-\pi,-\frac{\pi}{2}]$, $[0,\frac{\pi}{2}]$ and $[\pi,\frac{3\pi}{2})$, and $f(\mathcal{R}_i,\mathcal{L}_{i-1}) = -1$, otherwise; (f) $\epsilon/2$ is a step length to control the increment of $|\mathcal{L}|$. Optimizations are developed to achieve better compression ratios.

Example 7: Figure 6 is a running example of the OPERB algorithm compressing the same trajectory $\ddot{\mathcal{T}}[P_0,\ldots,P_{10}]$. (1) It takes P_0 as the start point, reads P_1 and sets $\mathcal{L}_1 = \overrightarrow{P_0P_1}$. (2) It reads P_2 . The distance from P_2 to \mathcal{L}_1 is less than the threshold, thus, it updates \mathcal{L}_1 to \mathcal{L}_2 by the fitting function \mathbb{F} . (3) It reads P_3 and P_4 , and updates \mathcal{L}_2 to \mathcal{L}_3 and \mathcal{L}_3 to \mathcal{L}_4 , respectively. (4) It reads P_5 . The distance from P_5 to \mathcal{L}_4 is larger than the threshold, thus, it outputs $\overrightarrow{P_0P_4}$ and start the next section taking P_4 as the new start point. (5) The process continues until all points have been processed. At last, the algorithm outputs two continuous line segments $\overrightarrow{P_0P_4}$ and $\overrightarrow{P_4P_{10}}$.

4.3.2 Algorithm SIPED Using PED [8, 33, 38, 41]. It defines an idea of "Sector" [8, 33, 38, 41] and uses it to convert the distance tolerance into a variable angle tolerance for testing the points.

Given a sequence of points $[P_s, P_{s+1}, \dots, P_{s+k}]$ and an error bound ϵ , for the start data point P_s , any point P_{s+i} and $|\overrightarrow{P_sP_{s+i}}| > \epsilon$ ($i \in [1, k]$), there are two directed lines $\overrightarrow{P_sP_{s+i}}$ and $|\overrightarrow{P_sP_{s+i}}|$ such that $ped(P_{s+i}, \overrightarrow{P_sP_{s+i}}) = ped(P_{s+i}, \overrightarrow{P_sP_{s+i}}) = \epsilon$ and either $(\overrightarrow{P_sP_{s+i}}, \theta < \overrightarrow{P_sP_{s+i}}, \theta)$ and $|\overrightarrow{P_sP_{s+i}}, \theta| = e$ and either $(\overrightarrow{P_sP_{s+i}}, \theta < \overrightarrow{P_sP_{s+i}}, \theta)$ and $|\overrightarrow{P_sP_{s+i}}, \theta| = e$ and either $(\overrightarrow{P_sP_{s+i}}, \theta < \overrightarrow{P_sP_{s+i}}, \theta)$ and $|\overrightarrow{P_sP_{s+i}}, \theta| = e$ and either $|\overrightarrow$

Fig. 7. The trajectory \ddot{T} is compressed by the sector intersection algorithm using PED to two line segments.

points, in other words, point P_{s+i} $(1 \le i \le k)$ is chosen as Q, then for any point P_{s+j} $(j \in [1, ...i])$, its PED to line segment $\overline{P_s P_{s+i}}$ is not greater than the error bound ϵ if $\bigcap_{j=1}^{i} S(P_s, P_{s+j}, \epsilon/2) \ne \{P_s\}$, as pointed out in [41]. That is, these sector intersection based algorithms can be easily adopted for trajectory compression. In practice, it is better to set the point among all points in $[P_s, P_{s+1}, \ldots, P_{s+k}]$ that has the longest distance to P_s as the point Q.

The original SIPED uses a half sector, $\frac{\epsilon}{2}$ -S, which may limit its compression performance. However, it can further be extended to a full ϵ -S by adding a constraint. That is, for any point P_{s+j} ($j \in [1,...i]$), its PED to line segment $\overline{P_sP_{s+i}}$ is not greater than the error bound ϵ if $P_{s+i} \neq P_s$ and $P_{s+i} \in \bigcap_{j=1}^{i-1} S(P_s, P_{s+j}, \epsilon)$, i.e., P_{s+i} lives in the common intersection of preview full sectors.

Example 8: Figure 7 is a running example of algorithm SIPED $(\frac{\epsilon}{2})$ taking as input the same trajectory $\mathcal{T}[P_0,\ldots,P_{10}]$. At the beginning, P_0 is the first start point, and points P_1 , P_2 , P_3 , etc., each has a narrow *sector*. For example, the narrow *sector* $S(P_0,P_3,\epsilon/2)$ takes P_0 as the center point and $P_0P_3^{ij}$ and $P_0P_3^{ij}$ as the border lines. Because $\prod_{i=1}^4 S(P_0,P_{0+i},\epsilon/2) \neq \{P_0\}$ and $\prod_{i=1}^5 S(P_0,P_{0+i},\epsilon/2) = \{P_0\}$, P_0P_4 is output and P_4 becomes the start point of the next section. At last, the algorithm outputs two continuous line segments P_0P_4 and P_4P_{10} .

4.3.3 Algorithm CISED Using SED [14]. It defines an idea of spatio-temporal cone that extends the sector intersection method from a 2D space to a Spatio-Temporal 3D space.

Given a sub-trajectory $[P_s,...,P_{s+k}]$ and an error bound ϵ , any point P'_{s+i} ($0 < i \le k$) on the plane $P.t - P_{s+i}.t = 0$ is a synchronized data point of P_{s+i} . For all P'_{s+i} in the plane satisfying $|P_{s+i}P'_{s+i}| \le \epsilon$, they form a *synchronous circle O(P_{s+i}, \epsilon)* of P_{s+i} with P_{s+i} as its center and ϵ as its radius. A spatio-temporal cone (or simply *cone*) of a data point P_{s+i} ($1 \le i \le k$) in \overline{T}_s w.r.t. a point P_s and an error bound ϵ , denoted as $C(P_s, O(P_{s+i}, \epsilon))$, or C_{s+i} in short, is an oblique circular cone such that point P_s is its apex and the synchronous circle $O(P_{s+i}, \epsilon)$ is its base. Then, there exists a point Q such that $Q.t = P_{s+k}.t$ and $sed(P_{s+i}, \overline{P_sQ}) \le \epsilon$ for each $i \in [1, k]$ if and only if $\bigcap_{i=1}^k C(P_s, O(P_{s+i}, \epsilon)) \ne \{P_s\}$. Like sector intersection methods, point Q may also not belong to $\{P_s, P_{s+1}, \ldots, P_{s+k}\}$. If P_{s+i} ($1 \le i \le k$) is chosen as Q, then for any point P_{s+j} ($j \in [1, ...i]$), its SED to line segment $\overline{P_sP_{s+i}}$ is not greater than the error bound ϵ if $\bigcap_{i=1}^i C(P_s, P_{s+j}, \epsilon/2) \ne \{P_s\}$ as pointed out in [14].

In addition, because these spatio-temporal cones have the same apex P_s , the checking of their intersection can be computed by a much simpler way, *i.e.*, the checking of intersection of cone projection circles on a plane, and a circle is further approximated with its m-edge inscribed regular polygon, whose intersection can be computed more efficiently.

The original CISED also uses a half cone, $\frac{\epsilon}{2}$ -C. It can be extended to ϵ -C by adding such a constraint, *i.e.*, P_{s+i} lives in the common intersection of preview full *cones*.

Example 9: Figure 8 shows a running example of algorithm CISED $(\frac{\epsilon}{2})$ for compressing the trajectory $\ddot{\mathcal{T}}$ in Figure 1. For convenience, we project the points and the oblique circular cones on a

Fig. 8. A running example of the CISED algorithm. The points and the oblique circular cones are projected on an x-y space.

Fig. 9. The trajectory $\ddot{\mathcal{T}}$ is compressed by the interval algorithm using DAD to two line segments.

x-y space. (1) After initialization, the CISED algorithm reads point P_1 and builds a narrow *oblique* circular cone $C(P_0, O(P_1, \epsilon/2))$, taking P_0 as its apex and $O(P_1, \epsilon/2)$ as its base (green dash). The circular cone is projected on the plane $P.t - P_1.t = 0$, and the inscribe regular polygon \mathcal{R}_1 of the projection circle is returned. As \mathcal{R}^* is empty, \mathcal{R}^* is set to \mathcal{R}_1 . (2) The algorithm reads P_2 and builds $C(P_0, O(P_2, \epsilon/2))$ (red dash). The circular cone is also projected on the plane $P.t - P_1.t = 0$ and the inscribe regular polygon \mathcal{R}_2 of the projection circle is returned. As $\mathcal{R}^* = \mathcal{R}_1$ is not empty, \mathcal{R}^* is set to the intersection of \mathcal{R}_2 and \mathcal{R}^* , which is $\mathcal{R}_1 \prod \mathcal{R}_2 \neq \emptyset$. (3) For point P_3 , the algorithm runs the same routine as P_2 until the intersection of \mathcal{R}_3 and \mathcal{R}^* is \emptyset . Thus, a line segment $\overrightarrow{P_0P_2}$ is generated, and the process of a new line segment is started, taking P_2 as the new start point and $P.t - P_3.t = 0$ as the new projection plane. (4) At last, the algorithm outputs four continuous line segments, *i.e.*, $\{\overrightarrow{P_0P_2}, \overrightarrow{P_2P_4}, \overrightarrow{P_4P_7}, \overrightarrow{P_7P_{10}}\}$.

4.3.4 Algorithms Intersect [17] and Interval [11] Using DAD. They define a direction range for each line segment connecting two neighboring points, then check the common intersection of those direction ranges as a way similar with the sector intersection approach.

Given a direction line segment \mathcal{L} and an angle ϵ , the *direction range* denoted by $range(\mathcal{L}.\theta, \epsilon)$ is $[\mathcal{L}.\theta - \epsilon, \mathcal{L}.\theta + \epsilon]$, where $[\theta_1, \theta_2]$ denotes the varying range of a directed line segment originated from the origin when it is rotated anti-clockwise from θ_1 to θ_2 [17]. The common intersection of *direction ranges* of directed line segments $\{\overrightarrow{P_sP_{s+1}}, \overrightarrow{P_{s+1}P_{s+2}}, ..., \overrightarrow{P_{s+k-1}P_{s+k}}\}$ w.r.t. ϵ is $\bigcap_{i=1}^k Range(\overrightarrow{P_{s+i-1}P_{s+i}}.\theta, \epsilon)$.

Algorithm Intersect [17] uses a half range, and shows that if the common intersection $\bigcap_{i=1}^k range(\overline{P_{s+i-1}P_{s+i}},\theta,\epsilon/2)$ is not empty, then the angular between $\overline{P_{s+i-1}P_{s+i}}$ and $\overline{P_sP_{s+k}}$ for all $i \in [1,k]$ is not larger than ϵ . Recently, algorithm Interval [11] extends Intersect from half to full ranges, by showing that if the common intersection $\bigcap_{i=1}^k range(\overline{P_{s+i-1}P_{s+i}},\theta,\epsilon)$ is not empty and $\overline{P_sP_{s+k}}$. θ falls in the common intersection, then the angular between $\overline{P_{s+i-1}P_{s+i}}$ and $\overline{P_sP_{s+k}}$ for all $i \in [1,k]$ is not larger than ϵ .

Example 10: Figure 9 is a running example of the *interval* method taking as input the same trajectory $\ddot{T}[P_0, \dots, P_{10}]$. At the beginning, P_0 is the first start point, and points P_1 , P_2 ,

 P_3 , etc., each has a direction range $Range(\overrightarrow{P_0P_1},\epsilon)$, $Range(\overrightarrow{P_1P_2},\epsilon)$, $Range(\overrightarrow{P_2P_3},\epsilon)$, etc., respectively. Because $\overrightarrow{\prod_{i=1}^4}Range(\overrightarrow{P_{0+i-1}P_{0+i}},\epsilon) \neq \phi$ and $\overrightarrow{P_0P_4}$. θ falls in the common subinterval, and $\overrightarrow{\prod_{i=1}^5}Range(\overrightarrow{P_{0+i-1}P_{0+i}},\epsilon) = \phi$, $\overrightarrow{P_0P_4}$ is output and P_4 becomes the start point of the next section. At last, the algorithm outputs two continuous line segments $\overrightarrow{P_0P_4}$ and $\overrightarrow{P_4P_{10}}$.

5 AGING OF TRAJECTORIES

Suppose we first compressed a trajectory $\overline{\mathcal{T}}_0$ using an LS algorithm \mathcal{A} with error bound ϵ_1 to $\overline{\mathcal{T}}_1$, then as time progresses, we need a coarser trajectory $\overline{\mathcal{T}}_2$ derived from $\overline{\mathcal{T}}_1$. What is the relationship among $\overline{\mathcal{T}}_2$, $\overline{\mathcal{T}}_1$ and $\overline{\mathcal{T}}_0$? And what is the right way to get the coarser trajectory $\overline{\mathcal{T}}_2$? This section is to answer these questions from the views of friendliness [2] and error. Note that if we get $\overline{\mathcal{T}}_1$ and $\overline{\mathcal{T}}_2$ by optimal algorithms w.r.t. error bounds ϵ_1 and ϵ_2 in turn, then $\overline{\mathcal{T}}_2$ may not be optimal of $\overline{\mathcal{T}}_0$ w.r.t. any error bound [2]. Thus, in this section, we let alone the optimal algorithms.

5.1 Friendliness of Data Aging

We first discuss the relationship between $\overline{\mathcal{T}}_1$ and $\overline{\mathcal{T}}_2$ from a view of friendliness which was defined in [2] but seldom discussed in other works.

Aging friendly [2]. A LS algorithm \mathcal{H} is aging friendly with respect to a distance metric \mathcal{D} if for every ϵ_1 and every ϵ_2 such that $\epsilon_1 < \epsilon_2$, and for every trajectory $\ddot{\mathcal{T}}$, $\mathcal{H}(\ddot{\mathcal{T}}, \epsilon_2, \mathcal{D}) = \mathcal{H}(\mathcal{H}(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D}), \epsilon_2, \mathcal{D})$.

Cao et al. proved in [2] that "the top-down algorithm DP is aging friendly w.r.t. PED and SED" on the premise that the second run of DP takes as input the whole simplified trajectory produced by the first run. In spite of that, algorithms other than DP and distance metrics other than PED and SED are not discussed in [2], thus, their effectiveness in data aging remains an open problem. In the rest of the section, we will fully discuss this problem, start from DP coupling with DAD.

Proposition 5.1. The top-down algorithm DP is not aging friendly w.r.t. DAD.

Proof: We will prove the proposition by construction. As shown in Figure 10, we let error bounds $\epsilon_1 = 30^o$ and $\epsilon_2 = 45^o$.

- (1) $DP(\ddot{T}, 45^o, DAD)$. It finds that line segment $\overline{P_1P_2}$ has the largest angular deviation to line segment $\overline{P_0P_4}$ which is also larger than the error bound 45^o , hence it uses point P_2 as the splitting point and splits the original trajectory to $\{P_0, P_1, P_2\}$ and $\{P_2, P_3, P_4\}$. At last, it outputs three points $\{P_0, P_2, P_4\}$.
- (2) DP(DP(\overline{T} , 30°, DAD), 45°, DAD). In the first round ($\epsilon_1 = 30^\circ$), the original trajectory is compressed to three points { P_0 , P_2 , P_4 }, and in the second round ($\epsilon_2 = 45^\circ$), because line segments $\overline{P_0P_2}$ and $\overline{P_2P_4}$ both have angular deviations to line segment $\overline{P_0P_4}$ less than 45°, it is finally compressed to two points { P_0 , P_4 }.

In this case, $DP(\ddot{\mathcal{T}}, 45^o, DAD) \neq DP(DP(\ddot{\mathcal{T}}, 30^o, DAD), 45^o, DAD)$. Thus, the DP algorithm is not aging friendly *w.r.t.* DAD.

The DP using DAD is different with PED and SED in that DAD is the deviation between two line segments rather than the deviation between a point and a line segment. For example, in Figure 10-(2), the angular deviations of line segments $\overline{P_1P_2}$ and $\overline{P_0P_2}$ to line segment $\overline{P_0P_4}$ are certainly different though they pass through the same point P_2 , thus, in the first round of run ($\epsilon_1 = 30^\circ$), the point P_2 serves as a splitting point while in the second round of run ($\epsilon_2 = 45^\circ$), it is no more a splitting point. This difference is the key that lets DP using DAD not aging friendly. We next discuss the aging friendliness of other algorithms.

Fig. 10. A counter example of the aging friendliness of DP using DAD, where (1) the original trajectory is compressed using $\epsilon_2 = 45^o$ to three points $\{P_0, P_2, P_4\}$, and (2) the original trajectory is first compressed using $\epsilon_1 = 30^o$ to three points $\{P_0, P_2, P_4\}$, then compressed using $\epsilon_2 = 45^o$ to two points $\{P_0, P_2, P_4\}$.

Fig. 11. A counter example of the aging friendliness of algorithm TP, where (1) the original trajectory is compressed using $\epsilon_2 = 6$ to three points $\{P_0, P_3, P_4\}$, and (2) the original trajectory is first compressed using $\epsilon_1 = 3$ to four points $\{P_0, P_1, P_3, P_4\}$, then compressed using $\epsilon_2 = 6$ to two points $\{P_0, P_1, P_3, P_4\}$.

Proposition 5.2. The bottom-up algorithm TP is not aging friendly w.r.t. PED, SED or DAD.

Proof: We will prove the proposition by construction. As shown in Figure 11, we let error bounds $\epsilon_1 = 3$ and $\epsilon_2 = 6$, and without losing generality, we use PED as the distance metric.

- (1) TP(\ddot{T} , 6, PED). It first merges $\overline{P_1P_2}$ and $\overline{P_2P_3}$ to $\overline{P_1P_3}$ as the merging of them has the lowest cost of 2, the distance from point P_2 to line segment $\overline{P_1P_3}$; then it merges $\overline{P_0P_1}$ and $\overline{P_1P_3}$ to $\overline{P_0P_3}$ with the lowest cost of 4.5, the distance from point P_1 to line segment $\overline{P_0P_3}$; at last, because the merging of $\overline{P_0P_3}$ and $\overline{P_3P_4}$ has a cost of 7, the distance from point P_2 to line segment $\overline{P_0P_4}$, which is larger than the error bound of 6, it outputs three points $\{P_0, P_3, P_4\}$.
- (2) TP(TP(\ddot{T} , 3, PED), 6, PED). In the first round (ϵ_1 = 3), the original trajectory is compressed to four points { P_0 , P_1 , P_3 , P_4 }, and in the second round (ϵ_2 = 6), because all points in the result trajectory { P_0 , P_1 , P_3 , P_4 } have distances to line segment P_0P_4 less than 6, it is finally compressed to two points { P_0 , P_4 }.

In this case, $TP(\ddot{\mathcal{T}}, 6, PED) \neq TP(TP(\ddot{\mathcal{T}}, 3, PED), 6, PED)$. Thus, TP is not aging friendly *w.r.t.* PED. Similarly, TP is not aging friendly *w.r.t.* SED or DAD. Hence, we have the conclusion.

Proposition 5.3. The online and one-pass algorithms are not aging friendly w.r.t. PED, SED or DAD.

Proof: For online algorithm SQUISH-E, it supports SED only and runs in a bottom-up manner that is a slight variation of algorithm TP. As TP, it is not aging friendly w.r.t. SED. For other online and one-pass algorithms, though they apply different distance checking approaches, they run in a common incremental manner, i.e., they incrementally read data points until they can not represent those read points by one line segment, then they output the simplified sub-trajectory and continue to process the rest data points. We next construct counter examples to show that an incremental algorithm \mathcal{A} is not aging friendly.

(1) $\mathcal{A}(\ddot{\mathcal{T}}, \epsilon_2, \mathcal{D})$. As shown in Figure 12-(1)(3)(5), the algorithm \mathcal{A} incrementally reads $\{P_0, P_1, \ddot{\mathcal{T}}P_5\}$ and finds they can be represented by line segment $\overline{P_0P_4}$, thus the process progresses. Then, after point P_6 is read, it finds that these points can not be represented by any line segment, hence $\overline{P_0P_5}$ is output. Finally, the algorithm outputs $\{P_0, P_5, P_6\}$.

Fig. 12. Counter examples of the aging friendliness of incremental algorithms (either online or one-pass).

(2) $\mathcal{A}(\mathcal{A}(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D}), \epsilon_2, \mathcal{D})$. When using $\epsilon_1 = 4$ or $\epsilon_1 = 30^o$, the algorithm also outputs $\{P_0, P_5, P_6\}$. Then $\{P_0, P_5, P_6\}$ is compressed using $\epsilon_2 = 6$ or $\epsilon_2 = 45^o$ to $\{P_0, P_6\}$, as shown in Figure 12-(2)(4)(6). Combining (1) and (2), it is clear that the incremental algorithms are not aging friendly *w.r.t.* distance metric PED, SED or DAD.

5.2 Error of Data Aging

As the most algorithms are not aging friendly, are they error bounded in data aging? if so, what are the bounds? This section focuses on these problems and discusses the error between the simplified trajectory $\overline{\mathcal{T}}_2$ and the original trajectory $\overline{\mathcal{T}}_0$.

PROPOSITION 5.4. Given error bounds $\epsilon_1 > 0$ and $\epsilon_2 > 0$, for every distance metric $\underline{\mathcal{D}}$ of PED and SED, the error bound between original trajectory $\ddot{\mathcal{T}}$ and simplified trajectory $\overline{\mathcal{T}} = DP(DP(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D}), \epsilon_2, \mathcal{D})$ is $max\{\epsilon_1, \epsilon_2\}$.

Proof: For $\epsilon_2 \geq \epsilon_1$, as proved in [2], $DP(DP(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D}), \epsilon_2, \mathcal{D}) = DP(\ddot{\mathcal{T}}, \epsilon_2, \mathcal{D})$, which has the max error of ϵ_2 to the original trajectory $\ddot{\mathcal{T}}$.

For $\epsilon_1 > \epsilon_2$, we will first prove $DP(DP(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D}), \epsilon_2, \mathcal{D}) = DP(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D})$ by total induction on the number of points of $\ddot{\mathcal{T}}$.

- (1) For a trajectory $\ddot{\mathcal{T}}$ with one or two points (n=1 or n=2), the simplified trajectories with any ϵ are sure identical to the original trajectory. Consider a trajectory $\ddot{\mathcal{T}}=[P_0,P_1,P_2]$ (n=3), if the distance from P_1 to $\overline{P_0P_2}$ is less than ϵ_1 , then $DP(\ddot{\mathcal{T}},\epsilon_1,\mathcal{D})=[P_0,P_2]$. Obviously $DP(DP(\ddot{\mathcal{T}},\epsilon_1,\mathcal{D}),\epsilon_2,\mathcal{D}))$ is $[P_0,P_2]$ too; if the distance from P_1 to $\overline{P_0P_2}$ is larger than ϵ_1 , then $DP(\ddot{\mathcal{T}},\epsilon_1,\mathcal{D})=\ddot{\mathcal{T}}$, and $DP(DP(\ddot{\mathcal{T}},\epsilon_1,\mathcal{D}),\epsilon_2,\mathcal{D})=DP(\ddot{\mathcal{T}},\epsilon_2,\mathcal{D})=\ddot{\mathcal{T}}$.
- (2) Assume it is true for every trajectory $\ddot{\mathcal{T}}$ having n, $(n \geq 3)$, points. Consider a trajectory with n+1 points. Let $\underline{d_{max}}$ denote the maximum distance between point P_i , $i \in [0,n]$, and the line segment $\overline{P_0P_n}$. If $d_{max} < \epsilon_1$, then $DP(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D}) = [P_0, P_n]$, and $DP(DP(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D}), \epsilon_2, \mathcal{D}) = DP([P_0, P_n], \epsilon_2, \mathcal{D}) = [P_0, P_n]$. If $d_{max} > \epsilon_1$, then in $DP(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D})$, point P_i will split the trajectory $\ddot{\mathcal{T}}$ into two sub-trajectories, i.e., $[P_0, ..., P_i]$ and $[P_i, ..., P_n]$, and continue to simplify each sub-trajectories. Hence, the result of $DP(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D})$ is the union of $DP([P_0, ..., P_i], \epsilon_1, \mathcal{D})$ and $DP([P_i, ..., P_n], \epsilon_1, \mathcal{D})$. Obviously, the points P_0 , P_i and P_n are in the

Fig. 13. Examples of aging error.

simplified trajectory of $DP(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D})$, and P_i is still the first spiting point of the DP algorithm taking the simplified trajectory and ϵ_2 as input. Hence, $DP(DP(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D}), \epsilon_2, \mathcal{D})$ is the union of $DP(DP([P_0, ..., P_i], \epsilon_1, \mathcal{D}), \epsilon_2, \mathcal{D})$ and $DP(DP([P_i, ..., P_n], \epsilon_1, \mathcal{D}), \epsilon_2, \mathcal{D})$. By the assumption, we have $DP(DP([P_0, ..., P_i], \epsilon_1, \mathcal{D}), \epsilon_2, \mathcal{D}) = DP([P_0, ..., P_i], \epsilon_1, \mathcal{D})$ and $DP(DP([P_i, ..., P_n], \epsilon_1, \mathcal{D}), \epsilon_2, \mathcal{D}) = DP([P_i, ..., P_n], \epsilon_1, \mathcal{D})$. Thus, $DP(DP(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D}), \epsilon_2, \mathcal{D}) = DP(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D})$.

Combining (1) and (2), we have $DP(DP(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D}), \epsilon_2, \mathcal{D}) = DP(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D})$, whose max error to the original trajectory $\ddot{\mathcal{T}}$ is ϵ_1 .

PROPOSITION 5.5. Given error bounds $\epsilon_1 > 0$ and $\epsilon_2 > 0$, for any non-optimal LS algorithm \mathcal{A} and distance metric \mathcal{D} of PED, SED and DAD other than DP using PED and SED, the error bound between original trajectory $\ddot{\mathcal{T}}$ and simplified trajectory $\ddot{\mathcal{T}} = \mathcal{A}(\mathcal{A}(\ddot{\mathcal{T}}, \epsilon_1, \mathcal{D}), \epsilon_2, \mathcal{D})$ is $\epsilon_1 + \epsilon_2$.

Proof: (1) We first prove that the error bound between them is not more than $\epsilon_1 + \epsilon_2$. Suppose a point P_k is represented by line segment $\overline{P_iP_j}$ with error bound ϵ_1 , and points P_i and P_j are further represented by line segment $\overline{P_sP_t}$ with error bound ϵ_2 (Figure 13). If the distance metric is PED, then the distance from P_k' to $\overline{P_sP_t}$ is less than ϵ_2 , hence, the distance from P_k to $\overline{P_sP_t}$ is less than $\epsilon_1 + \epsilon_2$. If it is SED, then $|P_iP_i''| < \epsilon_2$, $|P_jP_j''| < \epsilon_2$, and $\frac{|P_iP_k'|}{|P_k'P_j|} = \frac{|P_i''P_k''|}{|P_k''P_j''|}$, hence, $|P_k'P_k'''| < \epsilon_2$, and the distance from P_k to $\overline{P_sP_t}$, i.e., $|P_kP_k'''|$, is less than $\epsilon_1 + \epsilon_2$. If it is DAD, then obviously the error between $\overline{P_kP_{k+1}}$ and $\overline{P_sP_t}$ is not more than $\epsilon_1 + \epsilon_2$.

(2) We then prove that the error bound between them is not less than $\epsilon_1 + \epsilon_2$. If \mathcal{A} is a top-down algorithm using DAD, then from Figures 10-(2) we can find that the error from $\overline{P_3P_4}$ to $\overline{P_0P_4}$ is $\angle P_3P_4P_0 = \angle P_3P_4P_2 + \angle P_2P_4P_0$, whose bound is not less than $\epsilon_1 + \epsilon_2$, thus the error bound between original trajectory $\ddot{\mathcal{T}}$ and simplified trajectory $\ddot{\mathcal{T}} = \mathcal{A}(\mathcal{A}(\ddot{\mathcal{T}},\epsilon_1,\mathcal{D}),\epsilon_2,\mathcal{D})$ is not less than $\epsilon_1 + \epsilon_2$. If \mathcal{A} is a bottom-up algorithm or an incremental algorithm, either online or one-pass, then from Figure 11-(2) or Figure 12 we also have the conclusion.

Combining (1) and (2), we have the conclusion.

6 EVALUATION

In this section, we present extensive and systematic experimental studies and analyses of eleven representative LS algorithms. Using four real-life datasets, we conduct three sets of tests to evaluate the effectiveness (compression ratios and errors), efficiency (running time), aging friendliness and query friendliness of these representative algorithms using distance metrics PED, SED and DAD, and the impacts of error bounds ϵ and trajectory sizes.

6.1 Experimental Setting

Real-life Trajectory Datasets. We use three real-life datasets shown in Table 3, namely, Service car trajectory data (UCar), Geolife trajectory data (Geolife) [42] and Mopsi trajectory data (Mopsi) [19], to evaluate those LS algorithms. These data sets come from different sources, where UCar are collected by cars in urban, and Geolife and Mopsi are a mixing of cars and individuals. They also

Data sets	Number of Trajectories	Sampling Rates (s)	Points Per Trajectory	Total Points
UCar	200	3-5	~ 114.0K	22.8M
Geolife [42]	182	1-5	~ 131.4K	24.2M
Mopsi [19]	51	2	~ 153.9K	7.9M

Table 3. Real-life trajectory datasets

have typical sampling rates often used in practice, ranging from one point per second to one point every five seconds. The data source and sampling rate also affect the performance of LS algorithms using certain distance metrics.

- (1) UCar is the GPS trajectories collected by a Chinese car rental company during Apr. 2015 to Nov. 2015. Most routes are in big cities. The sampling rate was one point per 3–5 seconds, and each trajectory has around 114.1*K* points.
- (2) Geolife is the GPS trajectories collected in GeoLife project [42] by 182 users in a period from Apr. 2007 to Oct. 2011. These trajectories have a variety of sampling rates, among which 91% are logged in each 1-5 seconds per point. The longest trajectory has 2,156,994 points.
- (3) Mopsi is the GPS trajectories collected in Mopsi project [19] by 51 users in a period from 2008 to 2014. Most routes are in Joensuu region, Finland. The sampling rate was one point per 2 seconds, and each trajectory has around 153.9*K* points.

Algorithms and implementation. We implement the representative algorithms of Table 1. They are optimal algorithm Optimal, batch algorithms DP and TP, online algorithms OPW, BQS and SQUISH-E, and one-pass algorithms OPERB, SIPED, CISED, Intersect and Interval. For one-pass algorithms SIPED and CISED, we implement two versions of them (half and full ϵ), denoted as SIPED (ϵ), SIPED (ϵ), CISED (ϵ) and CISED (ϵ). For algorithm CISED (ϵ) and CISED (ϵ), we fixed parameter m=16 as evaluated in [14], i.e., 16-edges inscribe regular polygon. For algorithm OPERB, the fifth optimization technique "absorbing data points after P_{s+k} " is removed. All algorithms are implemented with Java. All tests are run on an x64-based PC with 4 Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz and 8GB of memory, and the max heap size of Java VM is 4GB.

We test these algorithms under varied error bounds ϵ and trajectory sizes, respectively. We first vary ϵ from 10m to 100m in PED and SED (or from 15^o to 90^o in DAD) on the entire four datasets, respectively. We then choose 10 trajectories from each dataset, and vary the size $|\ddot{\mathcal{T}}|$ of a trajectory from 1,000 points to 10,000 points while fixing the error bound $\epsilon = 40$ metres or $\epsilon = 45$ degrees.

6.2 Evaluation Metrics

Compression ratios and errors are the most popular metrics to evaluate the effectiveness of LS algorithms, and they are also metrics to evaluate the aging friendliness and query friendliness of LS algorithms. Besides, running time reflects the efficiency of LS algorithms.

Compression ratios. For trajectories $\{\ddot{\mathcal{T}}_1,\ldots,\ddot{\mathcal{T}}_M\}$ and their piece-wise line representations $\{\overline{\mathcal{T}}_1,\ldots,\overline{\mathcal{T}}_M\}$, the compression ratio is $(\sum_{j=1}^M|\overline{\mathcal{T}}_j|)/(\sum_{j=1}^M|\ddot{\mathcal{T}}_j|)$. By this definition, algorithms with lower compression ratios are better.

Average Errors. All these algorithms in Table 1 are error bounded, *i.e.*, the max errors are bounded. Hence, we only evaluate the average errors here. Given a set of trajectories $\{\vec{\mathcal{T}}_1,\ldots,\vec{\mathcal{T}}_M^{m}\}$ and their piece-wise line representations $\{\overline{\mathcal{T}}_1,\ldots,\overline{\mathcal{T}}_M^{m}\}$, and $P_{j,i}$ denoting a point in trajectory $\vec{\mathcal{T}}_j$ contained in a line segment $\mathcal{L}_{l,i} \in \overline{\mathcal{T}}_l$ ($l \in [1,M]$), then the average error is $\sum_{i=1}^M \sum_{i=0}^M d(P_{j,i},\mathcal{L}_{l,i})/\sum_{j=1}^M |\vec{\mathcal{T}}_j|$.

Running time. It is the efficiency of algorithms.

6.3 Experimental Results and Analyses

We next present our findings.

- 6.3.1 Evaluation and Analyses of Compression Ratio. The compression ratios of these algorithms under varied error bounds ϵ and trajectory sizes are reported in Figures 14, 15, 16, 17, 18 and 19. Note that the optimal algorithm using SED and DAD is not reported in Figures 14, 15 and 16 as it runs out of memory when compressing the full dataset. We first report our findings.
- (1) Datasets have some impacts on the compression ratios of LS algorithms. Datasets having higher sampling rates have better compression ratios when use PED and SED, while it is on the contrary when use DAD. Datasets collected by cars (*e.g.*, UCar) also have better compression ratios than datasets partially collected by individuals (*e.g.*, Geolife and Mopsi).
- (2) The compression ratios of algorithms using PED from the best to the worst are the optimal algorithm Optimal, online algorithm BQS, one-pass algorithm SIPED (ϵ) , batch algorithms TP and DP, and one-pass algorithms SIPED $(\frac{\epsilon}{2})$ and OPERB. The output sizes of algorithms BQS and SIPED (ϵ) are on average (113.32%, 120.22%, 120.83%) and (116.04%, 124.46%, 124.24%) of algorithm Optimal on datasets (UCar, Geolife, Mopsi), respectively. Algorithms TP and DP are comparable, and their output sizes are on average (125.05%, 131.01%, 138.01%) and (130.03%, 140.56%, 139.00%) of Optimal on datasets (UCar, Geolife, Mopsi), respectively. Algorithms SIPED $(\frac{\epsilon}{2})$ and OPERB are comparable, and they are on average (136.73%, 150.23%, 152.29%) and (143.14%, 147.80%, 152.37%) of Optimal on datasets (UCar, Geolife, Mopsi), respectively. For example, in Mopsi, the compression ratios of algorithms (Optimal, TP, DP, BQS, SIPED (ϵ) , SIPED (ϵ) , OPERB) are (1.6%, 2.2%, 2.2%, 1.9%, 2.0%, 2.4%, 2.4%) when $\epsilon = 40m$.
- (3) The compression ratios of algorithms using SED from the best to the worst are the Optimal algorithm, one-pass algorithm CISED (ϵ) , batch algorithms TP and DP, one-pass algorithm CISED $(\frac{\epsilon}{2})$, and online algorithm SQUISH-E. Algorithms TP and DP are comparable, and they are on average (125.23%, 143.92%, 128.63%) and (123.93%, 141.46%, 121.14%) of algorithm Optimal on datasets (UCar, Geolife, Mopsi), respectively. Algorithms CISED (ϵ) , CISED $(\frac{\epsilon}{2})$ and SQUISH-E are on average (109.27%, 110.13%, 115.90%,), (108.00%, 134.35%, 159.30%, 136.06%) and (165.94%, 225.68%, 206.90%) of Optimal on (UCar, Geolife, Mopsi), respectively. For example, in Mopsi, the compression ratios of algorithms (TP, DP, SQUISH-E, CISED (ϵ) , CISED $(\frac{\epsilon}{2})$) are (3.45%, 3.41%, 5.75%, 3.02%, 3.86%), respectively, when $\epsilon = 40m$.
- (4) The compression ratios of algorithms using DAD from the best to the worst are the Optimal algorithm, batch algorithm TP and one-pass algorithm Interval, online algorithm OPW, one-pass algorithm Intersect and batch algorithm DP. Algorithms TP, OPW and Interval are comparable, and are on average (102.91%, 102.27%, 106.88%), (116.09%, 107.11%, 115.42%) and (101.98%, 103.52%, 103.43%) of algorithm Optimal on datasets (UCar, Geolife, Mopsi), respectively. Algorithms Intersect and DP are on average (156.00%, 121.20%, 230.52%) and (283.93%, 143.79%, 278.89%) of algorithm Optimal on datasets (UCar, Geolife, Mopsi), respectively. For example, in Mopsi, the compression ratios of algorithms (TP, DP, OPW, Interval, Intersect) are (13.3%, 23.1%, 14.12%, 13.7%, 18.96%), respectively, when ϵ = 45 degrees.

We then present analyses from the views of LS algorithms and distance metrics.

Analyses of LS algorithms. The Optimal algorithm is the best in term of compression ratios, followed by online algorithms OPW and BQS and one-pass algorithms using the full ϵ sector/cone/range. One-pass algorithms using a half ϵ sector/cone/range and batch algorithms except DP using DAD also have good compression ratios.

For batch algorithms, bottom-up algorithm (TP) and top-down algorithm (DP) have the similar compression ratios when using PED and SED. However, when using DAD, bottom-up methods

Fig. 17. Evaluation of compression ratios (PED) on small datasets: varying the size of trajectories.

Points of a trajectory (x1000)

have obviously better compression ratios than top-down methods. As we know that top-down algorithms split a long trajectory $[P_s, ..., P_e]$ into two sub trajectories by finding out a splitting point $P_i(s < i < e)$ that has the max position deviation (or whose line segment $P_{i-1}P_i$ has the max direction deviation) to line segment P_sP_e . Though this strategy works well with PED and SED, a point with the max direction deviation may not be a reasonable splitting point in the direction-aware scenario. Thus it leads to a poorer compression ratio. However, bottom-up methods do not have this weakness as they always merge neighbouring points.

For online algorithms, BQS and OPW are comparable with the best sub-optimal algorithms. This is because OPW is indeed a combination of DP and opening window, and BQS is mainly an

Points of a trajectory (x1000)

Fig. 18. Evaluation of compression ratios (SED) on small datasets: varying the size of trajectories.

Fig. 19. Evaluation of compression ratios (DAD) on small datasets: varying the size of trajectories.

efficiency optimized OPW. SQUISH-E has the poorest compression ratio among all algorithms using SED. This is the result of its mechanism: SQUISH-E estimates the lowest SED error and removes the point with "predicted to introduce the lowest amount of error into the compression"[23]. Its "prediction" method is not accurate enough, thus, in order to ensure the error bound, it may ignore too many potential points that could be represented by a line segment.

For one-pass algorithms, the full ϵ sector/cone/range combining with a position/direction constraint always have better compression ratios than the half ϵ sector/cone/range versions in all datasets, and they are comparable with the best sub-optimal algorithms. This may be related to the moving habits or patterns of moving objects that implied in trajectories. That is, a moving object, like an individual or a car, usually keeps moving forward for quite a long time, engendering a sequence of data points distributing in a narrow strip. Under such circumstance, a new data point is quite possible living in the common intersection of larger sectors/cones/ranges, which further leads to a better compression ratio.

Analyses of distance metrics. Though PED, SED and DAD are different distances, the comparison of their compression ratios is helpful to choose an effective distance metric. First, given the same error bound ϵ , the compression ratios of algorithms using PED are obviously better than using SED. More specifically, the output sizes of using SED are approximately twice of PED. As shown in Figures 14 and 15, the output sizes of algorithms TP and DP using PED are on average (43.55%, 47.49%, 63.15%) and (45.79%, 50.88%, 64.50%) of algorithms TP and DP using SED on datasets (UCar, Geolife, Mopsi), respectively. This result shows SED saves temporal information at a price of twice more data points.

Secondly, in practice (e.g., ϵ < 100 meters and ϵ < 60 degrees), SED have obviously better compression ratios than DAD in datasets Geolife and Mopsi and a bit poorer than DAD in UCar. This is because some Geolife and Mopsi trajectories are collected by individuals that are in transportation modes of walking, running and riding, and moving objects in those modes may change their directions with a considerable range (e.g., large than 60 degrees) more frequently than cars in urban. Moreover, Geolife and Mopsi have higher sampling rates than UCar, which capture more direction changes, i.e., direction changes in a small time interval.

Fig. 22. Evaluation of average errors (DAD) on full datasets: varying the error bound ϵ .

- *6.3.2 Evaluation and Analyses of Average Error.* The average errors of these algorithms, under varied error bounds ϵ and trajectory sizes, are reported in Figures 20, 21, 22, 23, 24 and 25. We first report our findings.
- (1) Datasets have few impacts on the errors of LS algorithms.
- (2) When using PED, the average errors from the smallest to the largest are batch algorithms TP and DP, one-pass algorithms SIPED ($\frac{\epsilon}{2}$) and OPERB, the optimal algorithm Optimal and one-pass algorithm SIPED (ϵ), and online algorithm BQS. For full datasets, algorithms TP and DP are comparable, and they are on average (58.69%, 61.34%, 57.57%) and (57.61%, 62.66%, 60.23%) of Optimal on datasets (UCar, Geolife, Mopsi), respectively. Algorithms SIPED ($\frac{\epsilon}{2}$) and OPERB are comparable, and they are on average (80.96%, 79.12%, 79.33%) and (70.60%, 76.64%, 78.71%) of Optimal on datasets (UCar, Geolife, Mopsi), respectively. Algorithms SIPED (ϵ) and BQS are on average (100.05%, 101.01%, 102.69%) and (104.67%, 108.91%, 106.92%) of Optimal on datasets (UCar, Geolife, Mopsi), respectively. For example, the average errors of algorithms (Optimal, TP, DP, BQS, SIPED (ϵ), SIPED ($\frac{\epsilon}{2}$), OPERB) in the full Mopsi are (16.08, 9.19, 9.68, 17.4, 12.96, 16.83, 12.77) metres when $\epsilon = 40m$.
- (3) When using SED, the average errors from the smallest to the largest are online algorithm SQUISH-E, batch algorithms TP and DP, one-pass algorithm CISED ($\frac{\epsilon}{2}$), and one-pass algorithms CISED (ϵ) and the Optimal algorithm. Algorithms TP and DP are comparable, and they are on

Fig. 23. Evaluation of average errors (PED) on small datasets: varying the size of trajectories.

Fig. 24. Evaluation of average errors (SED) on small datasets: varying the size of trajectories.

Fig. 25. Evaluation of average errors (DAD) on small datasets: varying the size of trajectories.

average (60.36%, 66.11%, 62.43%) and (62.54%, 67.04%, 68.64%) of Optimal on datasets (UCar, Geolife, Mopsi), respectively. Algorithms CISED (ϵ), CISED (ϵ) and SQUISH-E are on average (97.32%, 106.74%, 108.16%), (75.29%, 76.03%, 81.44%) and (40.61%, 38.15%, 34.22%) of Optimal on datasets (UCar, Geolife, Mopsi), respectively. For example, the average errors of algorithms (Optimal, TP, DP, SQUISH-E, CISED (ϵ), CISED (ϵ)) in full Mopsi are (19.39, 12.17, 12.20, 6.76, 20.68, 14.71) metres, respectively, when ϵ = 40m.

(4) When using DAD, the average errors from the smallest to the largest are one-pass algorithm Intersect, batch algorithms DP and TP, one-pass algorithm Interval and online algorithm OPW, and the optimal algorithm Optimal. Algorithms TP, OPW and Interval are comparable, and they are on average (91.35%, 61.45%, 73.71%), (91.95%, 61.37%, 76.17%) and (90.36%, 68.23%, 163.47%) of Optimal on datasets (UCar, Geolife, Mopsi), respectively. Algorithms Intersect and DP are on average (62.03%, 76.54%, 110.69%) and (82.45%, 96.52%, 137.95%) of Optimal on datasets (UCar, Geolife, Mopsi), respectively.

We then present analyses from the views of LS algorithms and distance metrics.

Analyses of LS algorithms. The average errors of these algorithms are generally on the contrary of compression ratios. The optimal algorithm is usually the worst algorithm in term of average errors, followed by one-pass algorithms and then batch algorithms. Online algorithms have varied average errors, ranging from the best to the worst. (1) For batch algorithms, both bottom-up

algorithm (TP) and top-down algorithm (DP) have similar average errors, and they are pretty good compared with other algorithms. (2) Online algorithms BQS and OPW often have the largest average errors in all sub-optimal algorithms, while SQUISH-E has the smallest. This is also on the contrary of their compression ratios. (3) For one-pass algorithms, the full ϵ sector/cone/range combining with a position/direction constraint always have larger average errors than the half ϵ sector/cone/range. Local distance checking approaches try to include more points into a line segment, this greedy strategy is likely leading to larger average errors, considerable larger than batch algorithms that have the similar compression ratios as one-pass and online algorithms.

Analyses of distance metrics. For the same error bound ϵ , the average errors of algorithms using SED are a bit larger than using PED. As we know that PED error is originally caused by the direction changes of a moving object while SED error is caused by the changes of both the direction and the speed of a moving object, the above phenomenon probably reveals that the changes of speeds are more frequent than the changes of directions for moving objects. And in practice (e.g., $\epsilon = 60$ meters and $\epsilon = 45$ degrees), the average errors of algorithms using DAD, when translated to position errors like PED, are likely 10 times larger than algorithms directly using PED and SED. This is obvious as a small direction deviation with a long trip may lead to a large position error.

- 6.3.3 Evaluation and Analyses of Efficiency. In this set of tests, we compare the efficiency of these algorithms. The results are reported in Figures 26, 27, 28, 29, 30 and 31. Note that even on the small datasets, the running time of algorithm Optimal is thousands of times slower than one-pass algorithms. As it is not clear to show all these algorithms in a single figure, only the results of sub-optimal algorithms are shown in these figures. We first report our findings.
- (1) Datasets do not have obviously impacts on the running time of LS algorithms.
- (2) When using PED, in most cases, the running time from the smallest to the largest is one-pass algorithms SIPED and OPERB, batch algorithms TP and DP, and online algorithm BQS. Algorithms SIPED ($\frac{\epsilon}{2}$) and OPERB are comparable, algorithm SIPED (ϵ) is (0.92, 0.92, 0.91) times of SIPED ($\frac{\epsilon}{2}$), and algorithms TP, DP and BQS are on average (26.79, 28.25, 29.87), (16.32, 15.40, 11.02) and (37.73, 62.23, 61.29) times slower than one-pass algorithm SIPED ($\frac{\epsilon}{2}$) on datasets (UCar, Geolife, Mopsi), respectively. For example, in Mopsi, the running time of algorithms (TP, DP, BQS, SIPED (ϵ), SIPED ($\frac{\epsilon}{2}$), OPERB) is (232.9, 124.2, 469.4, 6.89, 7.6, 8.6) seconds when ϵ = 40m.
- (3) When using SED, the running time from the smallest to the largest is one-pass algorithm CISED, online algorithm SQUISH-E, and batch algorithms TP and DP. Algorithm CISED (ϵ) is (1.17, 1.17, 0.91) times of CISED $(\frac{\epsilon}{2})$, and algorithms TP, DP and SQUISH-E are on average (13.33, 15.81, 13.09), (12.93, 10.64, 8.79) and (2.75, 2.78, 2.57) times slower than CISED $(\frac{\epsilon}{2})$ on datasets (UCar, Geolife, Mopsi), respectively. For example, in Mopsi, the running time of algorithms (TP, DP, SQUISH-E, CISED (ϵ) , CISED $(\frac{\epsilon}{2})$) is (156.6, 104.8, 27.2, 11.6, 9.7) seconds when $\epsilon = 40m$.
- (4) When using DAD, the running time from the smallest to the largest is one-pass algorithms Intersect and Interval, batch algorithms TP and DP, and online algorithm OPW. Algorithm Interval is (1.80, 1.84, 1.81) times slower than Intersect, and algorithms TP, DP and OPW are on average (24.63, 23.53, 23.23), (25.49, 30.11, 31.72) and (39.29, 147.85, 80.09) times slower than Intersect on datasets (UCar, Geolife, Mopsi), respectively. For example, the running time of algorithms (TP, DP, OPW, Interval, Intersect) is (105.57, 152.53, 240.40, 8.57, 4.69) seconds in Mopsi when $\epsilon = 45$ degrees, respectively.

We then present analyses from the views of LS algorithms and distance metrics.

Analyses of LS algorithms. The running time from the fastest to the slowest is one-pass algorithms, online and batch algorithms, and optimal algorithms.

Fig. 28. Evaluation of running time (DAD) on full datasets: varying the error bound ϵ .

For batch algorithms, the running time of DP and TP decreases or increases with the increase of error bound ϵ , respectively, due to the top-down and bottom-up approaches that they apply. When using PED or SED, top-down algorithm usually runs faster than bottom-up algorithm when the error bound ϵ is large (ϵ . ϵ .) In Geolife, ϵ . 10 metres when using PED and ϵ . 30 metres when using SED), which means that top-down (bottom-up) algorithm needs to split (merge) the original trajectory fewer (more) times in these cases, vice versa. When using DAD, top-down algorithms are normally a bit slower than bottom-up algorithms (recall that top-down algorithms have poorer compression ratios compared with bottom-up algorithms, which means that it needs more time to split the raw trajectory into more sub trajectories). In addition to error bounds, sampling rates also have impacts on the efficiency of batch algorithms. A dataset with high sampling rate likely needs more merging processes than splitting processes, thus, top-down algorithms run faster than bottom-up algorithms in high sampling datasets when using PED or SED.

For online algorithms, SQUISH-E is faster than BQS and OPW at a cost of poorer compression ratios, and it is still a few times slower than one-pass algorithms. BQS and OPW both have poor efficiency as they finally need batch approaches to simplify buffered data, and batch approaches running in a buffer are still time consuming.

For one-pass algorithms, OPERB, SIPED, CISED and Interval show a linear running time that is consistent with their time complexity analyses. They are not very sensitive to error bound ϵ , and

Fig. 29. Evaluation of running time (PED) on small datasets: varying the size of trajectories.

Fig. 30. Evaluation of running time (SED) on small datasets: varying the size of trajectories.

Fig. 31. Evaluation of running time (DAD) on small datasets: varying the size of trajectories.

also scale well with the increase of trajectory size on all datasets as a data point is processed only one time during the whole process. Algorithms SIPED, OPERB and Interval have similar running time, and algorithm CISED runs a bit slower than them, partially because finding the common intersection of spatial-temporal cones is a heavier work than sectors or ranges.

Analyses of distance metrics. The computation time of DAD is faster than PED and SED, and the computation time of PED and SED are 2.3 and 1.7 times of DAD, respectively. It is also worth pointing out that algorithms DP using PED, SED and DAD have similar running time in all datasets, though the computation of PED is much heavier than SED and DAD. The reason is that DP using PED has the best compression ratios which instead leads to the least splitting processes in the top-down manner. Combining these two factors, *i.e.*, the computing of distance/direction deviation and the processing of trajectory splitting, finally, algorithm DP using PED has similar running time as DP using DAD or SED.

6.3.4 Evaluation and Analyses of Aging Friendliness. In this set of tests, we compare the error and compression ratios of algorithms in data aging. We set $\epsilon_1 = 40m$ (or $\epsilon_1 = 30^o$) in the first run and $\epsilon_2 = 60m$ (or $\epsilon_2 = 50^o$) in the second run. Besides, we also run these algorithms on the raw trajectories, setting $\epsilon_3 = \epsilon_1 + \epsilon_2 = 100m$ (or $\epsilon_3 = 80^o$). The max errors are reported in Table 4, and the compression ratios are reported in Table 5 and Table 6, respectively.

Table 4. The max errors of algorithms in data aging that set $\epsilon_1 = 40m$ (or $\epsilon_1 = 30^o$ when using DAD) in the first run and $\epsilon_2 = 60m$ (or $\epsilon_2 = 50^o$ when using DAD) in the second run.

Alg. (PED)	UCar	Geolife	Mopsi	Alg. (SED)	UCar	Geolife	Mopsi	Alg. (DAD)	UCar	Geolife	Mopsi
DP	59.99	59.99	59.99	DP	59.99	59.99	59.99	DP	79.90	79.93	78.96
TP	99.56	96.95	93.00	TP	97.55	96.70	90.53	TP	79.94	79.93	79.64
BQS	96.20	93.58	96.79	SQUISH-E	92.60	90.89	84.38	OPW	79.96	79.96	79.74
SIPED (ϵ)	97.34	95.21	98.86	CISED (ϵ)	97.75	97.51	96.65	Interval	79.96	79.93	79.74
SIPED $(\frac{\epsilon}{2})$	99.18	94.57	97.91	CISED $(\frac{\epsilon}{2})$	97.40	97.51	98.83	Intersect	70.26	77.78	72.87
OPERB	98.26	96.53	98.08	/	-	-	-	/	-	-	-

Table 5. The final compression ratios of algorithms in data aging that set $\epsilon_1 = 40m$ (or $\epsilon_1 = 30^o$ when using DAD) in the first run and $\epsilon_2 = 60m$ (or $\epsilon_2 = 50^o$ when using DAD) in the second run.

Alg. (PED)	UCar	Geolife	Mopsi	Alg. (SED)	UCar	Geolife	Mopsi	Alg. (DAD)	UCar	Geolife	Mopsi
DP	4.67	1.94	1.68	DP	10.03	3.83	2.78	DP	12.75	22.20	20.34
TP	4.66	2.07	1.74	TP	10.09	3.78	2.76	TP	3.80	13.28	11.30
BQS	4.13	1.67	1.43	SQUISH-E	11.38	4.55	3.47	OPW	4.09	13.88	11.92
SIPED (ϵ)	4.15	1.69	1.42	CISED (ϵ)	9.12	3.28	2.45	Interval	3.81	13.37	11.47
SIPED $(\frac{\epsilon}{2})$	4.65	1.94	1.68	CISED $(\frac{\epsilon}{2})$	10.66	3.94	2.99	Intersect	5.37	17.11	15.05
OPERB	5.03	2.03	1.97	/	-	-	-	/	-	-	-

Table 6. The compression ratios of algorithms running on the raw trajectories that set $\epsilon_3 = \epsilon_1 + \epsilon_2 = 100m$ (or $\epsilon_3 = 80^o$ when using DAD).

Alg. (PED)	UCar	Geolife	Mopsi	Alg. (SED)	UCar	Geolife	Mopsi	Alg. (DAD)	UCar	Geolife	Mopsi
DP	3.64	1.17	1.39	DP	7.44	1.91	2.69	DP	8.25	15.17	17.04
TP	3.70	1.22	1.50	TP	7.56	1.73	2.70	TP	2.47	7.51	9.42
BQS	3.23	1.71	1.39	SQUISH-E	10.36	2.82	4.10	OPW	3.23	8.66	10.75
SIPED (ϵ)	3.25	1.04	1.28	CISED (ϵ)	6.68	1.49	2.35	Interval	2.79	8.01	9.95
SIPED $(\frac{\epsilon}{2})$	3.81	1.29	1.55	CISED $(\frac{\epsilon}{2})$	8.02	1.87	2.90	Intersect	4.32	11.75	13.61
OPERB	4.08	1.43	1.56	/	-	-	-	/	-	-	-

- (1) Algorithms DP using PED and SED both have max errors less than $\epsilon_2 = 60m$, confirming that they are aging friendly and their max errors are consistent with Theorem 5.4, while algorithm DP using DAD and other algorithms have max error larger than $\epsilon_2 = 60m$ or $\epsilon_2 = 50^o$, confirming that they are not aging friendly and their max errors are consistent with Theorems 5.1, 5.2, ?? and 5.3. (2) Algorithm DP using DAD and other algorithms have max error less than $\epsilon_1 + \epsilon_2 = 100m$ or $\epsilon_1 + \epsilon_2 = 80^o$, which is consistent with Theorem 5.5.
- (3) Table 5 and Table 6 tell that, if algorithms compress data using ϵ_1 and ϵ_2 in turn, then they have a bit poorer compression ratios than simplification directly using $\epsilon_3 = \epsilon_1 + \epsilon_2$. Note that the causes of this phenomenon are varied. For algorithm DP using PED or SED, it is caused by the shorten of the final error bound, which is $max\{\epsilon_1, \epsilon_2\}$, less than $\epsilon_3 = \epsilon_1 + \epsilon_2$; while for the other algorithms, they loss some compression ratios because of data aging.

Analyses of LS **algorithms.** DP is the only algorithm that is aging friendly *w.r.t.* PED and SED. Indeed, aging friendly is a result of the specific nature of algorithm DP, *i.e.*, batch and top-down, that always splits a trajectory into two sub trajectories by the same splitting point when it uses any PED or SED lager than the error bound.

Analyses of LS distance metrics. DAD is not aging friendly *w.r.t.* to any algorithm. It is different with PED and SED in that, the DAD of a point is closely related to its neighbor point while PED and SED are not, thus, once its neighbor point is removed, its DAD is also changed. This character makes it not aging friendly *w.r.t.* the DP algorithm.

6.3.5 Evaluation and Analyses of Queries Friendliness. We finally evaluate compressed trajectories from the viewpoint of trajectory application, i.e., spatio-temporal query. The well-known spatio-temporal queries are where_at, when_at, range, nearest_neighbor and spatial_join [2]. Among them,

Alg. (PED)	UCar	Geolife	Mopsi	Alg. (DAD)	UCar	Geolife	Mopsi
DP	3.48×10^{6}	1.83×10^{6}	5.03×10^{6}	DP	2.76×10^{6}	7.91×10^{5}	4.87×10^{5}
TP	3.51×10^{6}	1.91×10^{6}	5.03×10^{6}	TP	2.76×10^{6}	7.91×10^{5}	5.01×10^{5}
BQS	3.51×10^{6}	1.94×10^{6}	1.40×10^{6}	OPW	2.76×10^{6}	7.91×10^{5}	5.01×10^{5}
$SIPED(\epsilon)$	3.51×10^{6}	1.02×10^{6}	1.39×10^{6}	Interval	2.76×10^{6}	7.91×10^{5}	5.01×10^{5}
SIPED $(\epsilon/2)$	3.50×10^{6}	1.02×10^{6}	1.39×10^{6}	Intersect	2.76×10^{6}	7.91×10^{5}	4.18×10^{5}
OPERB	3.50×10^{6}	1.56×10^{6}	1.39×10^{6}	/	-	-	-

Table 7. The max errors of spatio-temporal queries on compressed trajectories: fixed $\epsilon = 40m$.

Note that all algorithms using SED have the max query errors not more than the error bound, i.e., $\epsilon=40m$ here.

Fig. 32. Evaluation of spatio-temporal queries (PED) on full datasets: varying error bound ϵ .

where_at query, i.e., "the position P of a moving object at time t", is the foundation of range and nearest_neighbor queries. Hence, we choose it to evaluate compressed trajectories simplified by LS algorithms using PED, SED and DAD. As mentioned in [2], the answer to where_at query is the expected position P' of the moving object at time t. Indeed, it is the synchronized point of P when the query is performed on simplified trajectories.

We first compress these trajectories using PED, SED and DAD, respectively. Then, for each point P in an original trajectory \ddot{T} , we perform a query on each of its compressed trajectories taking time P.t as input, and calculate the distance between the actual position P and the expected position P' to denote the error of queries. The max and average errors of the queries are reported in Table 7 and Figures 32, 33, 34, 35,36 and 37, respectively.

- (1) When using PED, the max query errors of all algorithms are more than 10^6 meters in all datasets, significantly larger than the error bound (40 meters in Table 7). The large max errors also lead to larger average query errors, *i.e.*, they are greater than error bounds in all datasets.
- (2) When using SED, the max query errors of all algorithms are clear not more than the error bounds, and the average query errors are consistent with those compression errors shown in Section 6.3.2. (3) When using DAD, the max query errors of all algorithms are more than 10⁶ meters in dataset UCar, and more than 10⁵ meters in datasets Geolife and Mopsi, respectively, also significantly larger than the error bound (40 meters in Table 7). Moreover, compared with using PED, it has more points having query errors larger than error bounds, thus, it has the largest average query errors in all algorithms and all datasets.

Analyses of LS algorithms. It is hard to tell regular conclusions of query errors of LS algorithms. Roughly speaking, algorithms Intersect using DAD and SQUISH-E using SED have obviously smaller query errors than other algorithms using the same distance metrics, partially because they have poorer compression ratios; and the average query errors of algorithms OPERB and SIPED (ϵ) using PED will remarkablely increase when the error bounds are larger then certain value, e.g., 40 meters, in dataset Mopsi, because they may include points that lead to very large query errors.

Fig. 33. Evaluation of spatio-temporal queries (SED) on full datasets: varying error bound ϵ .

Fig. 34. Evaluation of spatio-temporal queries (DAD) on full datasets: varying error bound ϵ .

Fig. 35. Evaluation of spatio-temporal queries (PED) on small datasets: varying the size of trajectories.

Fig. 36. Evaluation of spatio-temporal queries (SED) on small datasets: varying the size of trajectories.

Analyses of distance metrics. SED is spatio-temporal query friendly while the others are not. Given the same error bound, the average query errors of algorithms using PED are enormously larger than those using SED, brought by some points having extremely large query errors, and they are typically larger than error bounds. Similar as PED, algorithms using DAD also lead to enormously large query errors. Indeed, the temporal information is lost when using PED and DAD,

Fig. 37. Evaluation of spatio-temporal queries (DAD) on small datasets: varying the size of trajectories.

thus, they are not suitable for compressing trajectories in the context that spatio-temporal queries will run on the simplified trajectories.

6.3.6 Summary. From these tests we find the followings.

LS Algorithms. (1) The optimal algorithm has the best compression ratios, large average errors and the worst efficiencies. (2) Batch algorithms, except DP using DAD, have good compression ratios, normal average errors and poor efficiency. The bottom-up (TP) and top-down (DP) algorithms have the similar compression ratios and average errors when using either PED or SED. The bottom-up method has obviously better compression ratios than the top-down method when using DAD. The running time of batch algorithms DP and TP decreases and increases with the increase of error bound ϵ , respectively. When using PED or SED, top-down algorithm DP usually runs faster than bottom-up algorithm TP when the error bound ϵ is large (e.g., in Geolife, $\epsilon > 10$ metres when using PED and $\epsilon > 30$ metres when using SED). When using DAD, the top-down algorithm is normally a bit slower than the bottom-up algorithm. Top-down algorithms also run faster than bottom-up algorithms in high sampling datasets when using PED or SED. (3) Online algorithms OPW and BQS usually have better compression ratios than batch algorithms, the worst average errors, and poorer efficiency than batch algorithms. Algorithm SQUISH-E is on the other side of OPW and BQS. (4) One-pass algorithms OPERB, SIPED, CISED, Intersect and Interval have good compression ratios (comparable with the best sub-optimal algorithms), poor average errors and the best efficiency. The full ϵ sector/cone/range combining with a position/direction constraint always have better compression ratios and also larger average errors than the half ϵ sector/cone/range. One-pass algorithms show a linear running time and they are not very sensitive to error bound ϵ , and also scale well with the increase of trajectory sizes. (5) Algorithms DP using PED and SED are aging friendly, while others are not. All the algorithms have bounded errors in data aging, where the error bounds of DP using PED and SED are $max\{\epsilon_1, \epsilon_2\}$ and others are $\epsilon_1 + \epsilon_2$.

Distance Metrics. (1) The output sizes of algorithms using SED are approximately twice of PED, and in practice (*e.g.*, ϵ < 100 meters and ϵ < 60 degrees), PED and SED usually bring obvious better compression ratios than DAD, especially in high sampling data sets. (2) The average errors of algorithms using SED are a bit larger than using PED. (3) Simplification using DAD is in general faster than PED and SED, and, indeed, the computation time of PED and SED is 2.3 and 1.7 times of DAD, respectively. (4) DAD is not aging friendly *w.r.t.* any algorithm. (5) SED is spatio-temporal queries friendly while the others are not. Note that algorithms using PED and/or DAD may lead to enormously large query errors.

7 CONCLUSIONS

Using four real-life trajectory datasets, we have systematically evaluated and analyzed error bounded LS algorithms for trajectory compression, including both optimal and sub-optimal methods

that use PED, SED *and/or* DAD, in terms of compression ratios, average errors, efficiency, aging friendliness and query friendliness. Our experimental studies and analyses show that:

(1) Choice of LS algorithms. Optimal algorithms bring the best compression ratios, however, their efficiency is obvious poorer than sub-optimal algorithms. The optimal simplified trajectory algorithms are essentially impractical from the perspective of applications, especially in cases when the input data set is large or computing resources are limited.

For sub-optimal algorithms, the output sizes of algorithms BQS and SIPED (ϵ) using PED, CISED (ϵ) using SED, and TP and Interval using DAD are approximately 103%–124%, 102%–115% and 102%–107% of the optimal algorithms, respectively. Batch algorithms using PED and SED also have good compression ratios. Thus, they are the alternates of the optimal algorithms. More specifically, in case compression ratios are the first consideration, then algorithms BQS and SIPED (ϵ) using PED, CISED (ϵ) using SED, and TP and Interval using DAD are good candidates. In case average errors are concerned, then batch algorithms are good candidates as one-pass algorithms and online algorithms OPW and BQS all have relatively large average errors. In case running time is the most important factor or computing resources are limited, then one-pass algorithms are the best candidates. Indeed, one-pass algorithms run fast and require less resources, and have comparable compression ratios compared with batch and online algorithms. Hence, they are prominent trajectory compression algorithms when average errors are not the main concern.

Algorithms DP using PED and SED are aging friendly, which makes them having a bit better compression ratios in data aging given the same final error bound. Hence, DP is a good choice in scenario of data aging when compression ratios is the first consideration. Also remember that in data aging, each run of algorithm DP should take as input the whole raw/simplified trajectory and these trajectories must have the same start and end data points, otherwise, the *aging friendliness* of them would not be guaranteed.

(2) Choice of distance metrics. Users essentially choose a distance metric of PED, SED and DAD based on the needs of applications, *e.g.*, SED is the only distance metric that is query friendly, hence, it is the certain choice for applications like spatio-temporal queries. Further, the choice of a distance metric has impacts on the performance. For compression ratios, the using of synchronized distance SED saves temporal information of trajectories with a cost of approximately double-sized outputs compared with using PED in all datasets; PED has obvious better compression ratios than DAD in all datasets, and SED is also better than DAD in high sampling datasets. For efficiency, the computation time of PED and SED is 2.3 and 1.7 times of DAD, respectively.

REFERENCES

- [1] AGARWAL, P. K., AND VARADARAJAN, K. R. Efficient algorithms for approximating polygonal chains. *Discrete and Computational Geometry* 23 (2000), 273–291.
- [2] CAO, H., WOLFSON, O., AND TRAJCEVSKI, G. Spatio-temporal data reduction with deterministic error bounds. *VLDBJ* 15, 3 (2006), 211–228.
- [3] CAO, W., AND LI, Y. Dots: An online and near-optimal trajectory simplification algorithm. *Journal of Systems and Software 126(Supplement C)* (2017), 34–44.
- [4] Chan, W., and Chin, F. Approximation of polygonal curves with minimum number of line segments or minimal error. *IJCGA* 6, 1 (1996), 378–387.
- [5] CHEN, M., XU, M., AND FRÄNTI, P. A fast multiresolution polygonal approximation algorithm for GPS trajectory simplification. TIP 21, 5 (2012), 2770–2785.
- [6] Chen, Y., Jiang, K., Zheng, Y., Li, C., and Yu, N. Trajectory simplification method for location-based social networking services. In LBSN (2009).
- [7] DOUGLAS, D. H., AND PEUCKER, T. K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. *The Canadian Cartographer 10*, 2 (1973), 112–122.
- [8] DUNHAM, J. G. Piecewise linear approximation of planar curves. PAMI 8 (1986).
- [9] HERSHBERGER, J., AND SNOEYINK, J. Speeding up the douglas-peucker line-simplification algorithm. Technical Report,

- University of British Columbia (1992).
- [10] IMAI, H., AND IRI, M. Computational-geometric methods for polygonal approximations of a curve. *Computer Vision, Graphics, and Image Processing 36* (1986), 31–41.
- [11] KE, B., SHAO, J., AND ZHANG, D. An efficient online approach for direction-preserving trajectory simplification with interval bounds. In MDM (2017).
- [12] KEOGH, E. J., CHU, S., HART, D. M., AND PAZZANI, M. J. An online algorithm for segmenting time series. In ICDM (2001).
- [13] LANGE, R., DÜRR, F., AND ROTHERMEL, K. Efficient real-time trajectory tracking. VLDBJ 20, 5 (2011), 671-694.
- [14] Lin, X., Jiang, J., Ma, S., Zuo, Y., and Hu, C. One-pass trajectory simplification using the synchronous euclidean distance. *VLDBJ* 28, 6 (2019), 897—921.
- [15] LIN, X., MA, S., ZHANG, H., Wo, T., AND HUAI, J. One-pass error bounded trajectory simplification. PVLDB 10, 7 (2017), 841–852
- [16] LIU, J., ZHAO, K., SOMMER, P., SHANG, S., KUSY, B., AND JURDAK, R. Bounded quadrant system: Error-bounded trajectory compression on the go. In *ICDE* (2015).
- [17] Long, C., Wong, R. C.-W., and Jagadish, H. Direction-preserving trajectory simplification. PVLDB 6, 10 (2013), 949–960
- [18] Long, C., Wong, R. C.-W., and Jagadish, H. Trajectory simplification: On minimizing the direction-based error. *PVLDB* 8, 1 (2014), 49–60.
- [19] MARIESCU-ISTODOR, R., AND FRÄNTI, P. Grid-based method for gps route analysis for retrieval. ACM Transactions on Spatial Algorithms and Systems 3, 3 (2017).
- [20] MELKMAN, A., AND O'ROURKE, J. On polygonal chain approximation. *Machine Intelligence and Pattern Recognition 6* (1988), 87–95.
- [21] Meratnia, N., and de By, R. A. Spatiotemporal compression techniques for moving point objects. In EDBT (2004).
- [22] MUCKELL, J., HWANG, J., LAWSON, C. T., AND RAVI, S. S. Algorithms for compressing GPS trajectory data: an empirical evaluation. In *ACM-GIS* (2010).
- [23] MUCKELL, J., HWANG, J., PATIL, V., LAWSON, C. T., PING, F., AND RAVI, S. S. SQUISH: an online approach for GPS trajectory compression. In COM.Geo (2011).
- [24] MUCKELL, J., OLSEN, P. W., HWANG, J.-H., LAWSON, C. T., AND RAVI, S. S. Compression of trajectory data: a comprehensive evaluation and new approach. *GeoInformatica* 18, 3 (2014), 435–460.
- [25] Nibali, A., and He, Z. Trajic: An effective compression system for trajectory data. TKDE 27, 11 (2015), 3138-3151.
- [26] PAVLIDIS, T., AND HOROWITZ, S. L. Segmentation of plane curves. TOC 23, 8 (1974), 860-870.
- [27] Popa, I. S., Zeitouni, K., Vincentoria, and Kharrat, A. Spatio-temporal compression of trajectories in road networks. *GeoInformatica 19*, 1 (2014), 117–145.
- [28] RAMER, U. An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing 1 (1972), 244–256.
- [29] REUMANN, K., AND WITKAM, A. Optimizing curve segmentation in computer graphics. In *International Computing Symposium* (1974).
- [30] RICHTER, K.-F., SCHMID, F., AND LAUBE, P. Semantic trajectory compression: Representing urban movement in a nutshell. JOSIS 4, 1 (2012), 3–30.
- [31] SCHMID, F., RICHTER, K., AND LAUBE, P. Semantic trajectory compression. In SSTD (2009).
- [32] Shi, W., and Cheung, C. Performance evaluation of line simplification algorithms for vector generalization. *Cartographic Journal* 43, 1 (2006), 27–44.
- [33] SKLANSKY, J., AND GONZALEZ, V. Fast polygonal approximation of digitized curves. *Pattern Recognition 12* (1980), 327–331.
- [34] Song, R., Sun, W., Zheng, B., and Zheng, Y. Press: A novel framework of trajectory compression in road networks. *PVLDB* 7, 9 (2014), 661–672.
- [35] Toussaint, G. T. On the complexity of approximating polygonal curves in the plane. In *International Symposium on Robotics and Automation* (1985).
- [36] TRAJCEVSKI, G., CAO, H., SCHEUERMANNY, P., WOLFSONZ, O., AND VACCARO, D. On-line data reduction and the quality of history in moving objects databases. In *MobiDE* (2006).
- [37] VAN HUNNIK, R. Extensive comparison of trajectory simplification algorithms. master thesis, 2017.
- [38] WILLIAMS, C. M. An efficient algorithm for the piecewise linear approximation of planar curves. *Computer Graphics and Image Processing 8* (1978), 286–293.
- [39] Wu, F., Fu, K., Wang, Y., and Xiao, Z. A graph-based minimal number and error-optimal trajectory simplification algorithm and its extension towards online services. *ISPRS International Journal of Geo-Information* 6, 19 (2017).
- [40] ZHANG, D., DING, M., YANG, D., LIU, Y., FAN, J., AND SHEN, H. T. Trajectory simplification: An experimental study and quality analysis. *PVLDB* 9, 11 (2018), 934–946.
- [41] ZHAO, Z., AND SAALFELD, A. Linear-time sleeve-fitting polyline simplification algorithms. In AutoCarto (1997).

[42] ZHENG, Y., XIE, X., AND MA, W. GeoLife: A collaborative social networking service among user, location and trajectory. *IEEE Data Eng. Bull.* 33, 2 (2010), 32–39.

APPENDIX A: ADDITIONAL LINE SIMPLIFICATION ALGORITHMS

Apart from the techniques evaluated in this paper, other approaches that satisfy different requirements, have been proposed or could be applied for trajectory compression. We next summarized other representative LS algorithms. Interested readers refer to [14, 24, 32, 40] for more information.

Weak simplification algorithms. Weak simplification allows that the output data points may not belong to the original data sets [36] (otherwise, the strong simplification). That is, weak simplification allows data interpolation. Algorithms Sleeve [41], OPERB [15] and CISED [14] are both strong and weak LS algorithms whose weak versions have better compression ratios than their strong versions, and even comparable with the optimal algorithms [14].

Algorithms using other error metrics. A number of algorithms [1, 3, 5, 39] have been developed to solve the "min-#" problem under alternative error metrics. [1] studied the problem under the L_1 and uniform (also known as Chebyshev) metric. [5] defined the integral square synchronous Euclidean distance (ISSED), an accumulation of square SED, and used it to speed up the construction of reachability graphs, [39] followed the ideas of [5] and Dots[3] is an online trajectory simplification algorithm that uses ISSED. Note these error metrics are not as popular as PED and SED.

Algorithms on the min- ϵ **problem.** Some work focuses on the minimal ϵ problem [4] that, given m, constructs an approximate curve consisting of at most m line segments with minimum error. SQUISH(λ) [23] and SQUISH-E(λ) [24] are such algorithms that compress a trajectory of length n into a trajectory of length at most n/λ . These methods lack the capability of compressing trajectories while ensuring that SED errors are within a user-specified bound[24].