MEMORIA PRÁCTICA 2

Reconocimiento de dígitos manuscritos MNIST

Ejercicio opcional: clasificador de Bernoulli

1. GRÁFICA EPSILON-ERROR PARA CADA VALOR UMBRAL

Eps/ Thresh	5e-1	4e-1	3e-1	2e-1	1e-1	1e-2	1e-3	1e-4	1e-5	1e-6	1e-7	1e-8	1e-9	0
0.1	90.883	24.383	22.833	21.15	19.5	17.9	17.416	17.316	17.266	17.25	17.216	17.216	17.183	90.25
0.2	90.883	24.783	23.333	21.233	19.633	17.533	17.2	17.15	17.083	17.083	17.05	16.983	16.983	90.25
0.3	90.883	25.65	23.583	21.433	19.366	17.55	17.05	16.966	16.916	16.883	16.833	16.816	16.8	90.25
0.4	90.883	26.433	24.666	22.133	19.766	17.45	17.066	16.95	16.8	16.766	16.75	16.683	16.683	90.25
0.5	90.883	28.216	25.7	22.833	20.316	17.633	16.95	16.883	16.75	16.716	16.65	16.616	16.6	90.25
0.6	90.883	29.883	26.933	23.833	20.7	17.55	16.95	16.933	16.816	16.8	16.716	16.633	16.616	90.25
0.7	90.883	32.866	28.683	25.216	21.583	18.183	17.483	17.416	17.316	17.3	17.216	17.2	17.183	90.25
0.8	90.883	37.066	31.216	26.433	22.233	18.633	18.083	17.85	17.783	17.766	17.683	17.666	17.666	90.25
0.9	90.883	44.133	35.683	29.4	24.816	19.65	19.066	18.9	18.85	18.783	18.7	18.666	18.666	90.25

En esta parte de la práctica primero obtuvimos el error del clasificador sin aplicar la técnica de suavizado por truncamiento simple (90.25) utilizando como conjunto de entrenamiento, el 90% del set de entrenamiento de MNIST y como conjunto de test, el otro 10% restante. Después de esto procedimos a probar diferentes valores de Epsilon y umbral (threshold), valores que se pueden ver tanto en la tabla como la gráfica. El valor umbral sirve par binarizar los datos.

Los mejores resultados se obtienen con Epsilon=1e-9, y umbral=0.5, que es justo cuando por encima de la mitad los valores toman el valor 1, y por debajo, el valor 0.

2. RESULTADOS DEL CLASIFICADOR GAUSSIANO+PCA

En la segunda parte de esta práctica, lo que se nos requería era comprobar el error del clasificador utilizando la técnica de suavizado por truncamiento simple con los valores de Epsilon y umbral que mejores resultados ofrecían, utilizando al completo los sets de entrenamiento y test de MNIST.

Los resultados obtenidos con y sin la técnica de suavizado (epsilon=0) son los siguientes:

Epsilon (threshold=0.5)	Error				
0	15.62				
1e-9	90.2				

Al aplicar la técnica de suavizado y la binarización con Epsilon=1e-9 y umbral=0.5, obtenemos una tasa de error de 15.62%, es decir, hemos reducido el error en un 74.58% respecto del 90.2% que proporciona sin ninguna de éstas.

Finalmente, comentar que el clasificador de Bernoulli sin la técnica de suavizado es incapaz de clasificar correctamente las clases, ya que elige de forma aleatoria, como podemos observar en el porcentaje de error, 9/10 o 90%. También podemos observar que ocurre lo mismo con el valor de epsilon=0.5, esto se debe, a que todas las probabilidades toman ese valor, por lo que no hay forma de discriminar las clases.