

大规模语言模型

陆俞因

2023. 05. 30

Language Model (LM)

语言模型

▶标准定义:

给定词典V,语言模型能够计算出任意单词序列 $\{w_1, w_2, ..., w_n\}$ 是一句话 的概率 $p(w_1, w_2, ..., w_n)$, 其中, $p \ge 0$ 。

$$p = 0.98$$

✓今天上课的内容是大规模语言模型

$$p = 0.08$$

X 猫机器天气

▶目标: 计算概率 *p*(*w*₁, *w*₂,..., *w*_n)

N-gram Language Model

N-gram语言模型

▶根据概率论中的链式法则(chain rule)将 p 展开

$$p(w_1, w_2, \dots, w_n) = p(w_1) \prod_{i=2}^n p(w_i | w_1, \dots, w_{i-1})$$

▶文本生成角度,定义语言模型:

给定一个短语(或句子),语言模型能够生成/预测接下来的一个词

N-gram Language Model

N-gram语言模型

▶为简化 $p(w_i|w_2,...,w_{i-1})$ 的计算,引入一阶马尔可夫假设(first-order Markov assumption)

每个词只依赖前一个词,即 $p(w_i|w_2,...,w_{i-1}) \approx p(w_i|w_{i-1})$

$$egin{aligned} p(w_1, w_2, \dots, w_n) \ &= p(w_1) \prod_{i=2}^n p(w_i | w_1, \dots, w_{i-1}) \ &pprox p(w_1) \prod_{i=2}^n p(w_i | w_{i-1}) \end{aligned}$$

N-gram Language Model

N-gram语言模型

➤也可以引入二阶马尔可夫假设(second-order Markov assumption)

每个词只依赖前两个词,即 $p(w_i|w_2,...,w_{i-1}) \approx p(w_i|w_{i-2},w_{i-1})$

$$egin{aligned} p(w_1,w_2,\ldots,w_n) \ &= p(w_1)\prod_{i=2}^n p(w_i|w_1,\ldots,w_{i-1}) \ &pprox p(w_1)p(w_2|w_1)\prod_{i=3}^n p(w_i|w_{i-2},w_{i-1}) \end{aligned}$$

统计方法:
$$p(w_i|w_{i-2},w_{i-1}) = \frac{count(w_{i-2},w_{i-1},w_i)}{count(w_{i-2},w_{i-1})}$$

Neural Network Language Model

神经网络语言模型

▶通过神经网络预测下一个单词

代表模型:

GPT-3

BERT, ERNIE

Large Language Model (LLM) 大规模语言模型

▶通常采用Transformer作为网络架构

Pretrain 预训练

▶ 在**无标记语料**上通过**自监督任务**进行预训练

Fine-tune

微调

▶在有标记语料上进行微调

以文本分类为例:

通常采用 $\nu_{[CLS]}$ 作为文档嵌入

positive

I love this movie.

Prompt Learning

提示学习

▶预训练-微调范式的存在问题:

预训练阶段的自监督任务与微调阶段的有监督任务存在较大的差距

Prompt Learning

提示学习

▶目标: 拉近预训练与目标任务的距离

对应标签:

positive

完型填空:

good / fantastic / interesting

Prompt Learning

提示学习

▶形式化:

[CLS] I love this movie	. Overall , it was	s a [MASK] movie
输入语料(Input)	模板(Template)	答案(Answer)
[X]		[Z]

提示(Prompt): [X] [Template] [Z]

Prompt Learning 提示学习

SUN CHARLES WITH

▶形式化:

Name	Notation	Example	Description
Input	\boldsymbol{x}	I love this movie.	One or multiple texts
Output	$oldsymbol{y}$	++ (very positive)	Output label or text
Prompting Function	$f_{ ext{prompt}}(oldsymbol{x})$	[X] Overall, it was a [Z] movie.	A function that converts the input into a specific form by inserting the input x and adding a slot $[Z]$ where answer z may be filled later.
Prompt	$oldsymbol{x}'$	I love this movie. Overall, it was a [Z] movie.	A text where $[X]$ is instantiated by input x but answer slot $[Z]$ is not.
Filled Prompt	$f_{ m fill}(m{x'},m{z})$	I love this movie. Overall, it was a bad movie.	A prompt where slot [Z] is filled with any answer.
Answered Prompt	$f_{\mathrm{fill}}(oldsymbol{x'},oldsymbol{z}^*)$	I love this movie. Overall, it was a good movie.	A prompt where slot [Z] is filled with a true answer.
Answer	z	"good", "fantastic", "boring"	A token, phrase, or sentence that fills [Z]

GPT Assistant training pipeline **Pretraining Supervised Finetuning Reward Modeling** Reinforcement Learning Stage Comparisons Raw internet **Demonstrations Prompts** text trillions of words Ideal Assistant responses, 100K –1M comparisons ~10K-100K prompts low-quality, large quantity Dataset ~10-100K (prompt, response) written by contractors written by contractors written by contractors low quantity, high quality low quantity, high quality low quantity, high quality Language modeling **Binary classification** Language modeling Reinforcement Learning predict the next token predict the next token predict rewards consistent w generate tokens that maximize Algorithm preferences the reward init init from SFT 7 V from Model Base model SFT model RM model **RL** model 1000s of GPUs 1-100 GPUs 1-100 GPUs 1-100 GPUs days of training days of training months of training days of training Notes ex: GPT, LLaMA, PaLM ex: Vicuna-13B ex: ChatGPT, Claude can deploy this model can deploy this model can deploy this model

Reinforcement Learning from Human Feedback (RLHF)

根据人类反馈进行强化学习

▶奖励建模 (Reward Modeling)

Reinforcement Learning from Human Feedback (RLHF) 根据人类反馈进行强化学习

▶奖励建模 (Reward Modeling)

Reinforcement Learning from Human Feedback (RLHF) 根据人类反馈进行强化学习

➤强化学习(Reinforcement Learning)

