Impurity entanglement entropy of 2-channel fixed point

The zero-mode Hamiltonian at the renormalisation group fixed point is a star graph with the impurity as the central node and the zeroth sites of the two conduction channels as the outer nodes: $H_0 = J^* \vec{S}_d \cdot \sum_l \vec{S}_{0,(\alpha)}$, where α (and Greek letters in genral) denote the channel index. The ground-states of this 2-channel star graph are

$$|\sigma/2\rangle = \frac{\sigma}{\sqrt{6}} \left(2 \left| \sigma \bar{\sigma} \sigma \right\rangle - \left| \bar{\sigma} \sigma \sigma \right\rangle - \left| \sigma \sigma \bar{\sigma} \right\rangle \right), \sigma = \pm 1$$
 (1)

where three confifurations inside the ket are those of the impurity spin, the $\alpha=1$ channel zeroth site and the $\alpha=2$ channel zeroth site respectively. In the full Hamiltonian, there is also the hopping term: $H_{\rm int}=-\frac{t}{N}\sum_{k,\alpha}\left(c_{0\sigma,(\alpha)}^{\dagger}c_{k\sigma,(\alpha)}+{\rm h.c.}\right)$. Introducing the $k-{\rm space}$ states into H_0 leads to the following ground-states, classified by $S_{\rm tot}^z=S_d^z+\sum_l S_{0,l}^z+\sum_k\sum_l S_{k,l}^z$ and the filling ν of $k-{\rm space}$ electrons:

$$S_{\text{tot}}^{z} = 0 : \begin{cases} \nu = 1 : |\sigma/2\rangle |h_{\sigma,(\alpha)}\rangle, \\ \nu = 3 : |\sigma/2\rangle |e_{\bar{\sigma},(\alpha)}\rangle, \end{cases} \quad \sigma = \pm 1, \alpha = 1, 2$$
 (2)

$$S_{\text{tot}}^{z} = \frac{\sigma}{2} : \nu = 2 : |\sigma/2\rangle |\phi\rangle, \sigma = \pm 1$$
(3)

$$S_{\text{tot}}^{z} = \sigma : \begin{cases} \nu = 3 : |\sigma/2\rangle |e_{\sigma,(\alpha)}\rangle, \\ \nu = 1 : |\sigma/2\rangle |h_{\bar{\sigma},(\alpha)}\rangle, \end{cases} \quad \sigma = \pm 1, \alpha = 1, 2$$

$$(4)$$

where $|\phi\rangle$ is the filled Fermi sea, and $|e_{\sigma,(\alpha)}\rangle$ and $|\sigma,(\alpha)\rangle$ are gapless particle and hole excitations: $|e_{\sigma,(\alpha)}\rangle = \sum_{k \in FS} c^{\dagger}_{k\sigma,(\alpha)} |\phi\rangle$, $|h_{\sigma,(\alpha)}\rangle = \sum_{k \in FS} c_{k\sigma,(\alpha)} |\phi\rangle$. The filling ν_1 and ν_2 in $|\phi\rangle$ were set to unity, so that the filling ν of the $|e\rangle$ and $|h\rangle$ states are 3 and 1 respectively.

In order to obtain the impurity entanglement entropy, we will use the result that the impurity reduced density matrix can be written in terms of the impurity magnetisation (m_d^z) :

$$\rho_{\rm imp} = \frac{1}{2}\mathcal{I} + m_d^z \sigma^z \tag{5}$$

where $\sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ is the Pauli matrix along z. The problem then boils down to calculating the magnetisation m_d^z . For that, we will first obtain the new ground-states in the presence of $H_{\rm int}$. After that, we will insert a global magnetic field into the new ground-state subspace, which will favour the states with the most positive $S_{\rm tot}^z$. The expectation value of S_d^z in these favoured ground-states, in the presence of a vanishing field, will be the impurity magnetisation. The fact that the subspace with highest $S_{\rm tot}^z$ will be favoured means we only need to solve $H_{\rm int}$ in the subspace of $S_{\rm tot}^z = +1$. This is because the full Hamiltonian and $H_{\rm int}$ conserve $S_{\rm tot}^z$. The pertinent ground-states are

$$S_{\text{tot}}^{z} = 1 : \begin{cases} \nu = 3 : \begin{cases} \nu_{(1)} = 2 : |1/2\rangle |e_{\uparrow,(1)}\rangle \\ \nu_{(2)} = 2 : |1/2\rangle |e_{\uparrow,(2)}\rangle \\ \nu_{(1)} = 0 : |1/2\rangle |h_{\downarrow,(1)}\rangle \\ \nu_{(2)} = 0 : |1/2\rangle |h_{\downarrow,(2)}\rangle \end{cases}$$

$$(6)$$

Since H_{int} conserves the filling $\nu_{(\alpha)}$ of each channel individually, these four states are not mixed by the perturbation H_{int} , at any order. The impurity magnetisation then reduces to

$$m_d^z = \langle 1/2|S_d^z|1/2\rangle = \frac{1}{6}\left(4 \times \frac{1}{2} - \frac{1}{2} + \frac{1}{2}\right) = \frac{1}{3}$$
 (7)

The impurity entanglement entropy can then be obtained from ρ_{imp} :

$$S_{\text{EE}}(d) = -\left(\frac{1}{2} + m_d^z\right) \ln\left(\frac{1}{2} + m_d^z\right) - \left(\frac{1}{2} - m_d^z\right) \ln\left(\frac{1}{2} - m_d^z\right) \simeq 0.65 \ln 2$$
 (8)