Foundation of Cryptography

Session 15

Date: 08 March 2021

Dr. V. K. Pachghare

Number Theory

- Euler Totient Function
- Extended Euclidean Algorithm
- Chinese Remainder Theorem

Euler Totient Function: ø(n)

- In cryptography, Euler's totient function plays an important role.
- The totient of a positive integer n is the total number of the positive integer numbers which are less than n and are relatively prime to n.
- It is shown as $\mathfrak{o}(n)$, where $\mathfrak{o}(n)$ is the number of positive integers less than n and relatively prime to n.

- when doing arithmetic modulo n, complete set of residues (positive integer only) is: 1..n-1
- Reduced set of residues is those numbers (residues) which are relatively prime to n i.e. GCD is 1.

Eg. for n = 8,

Eg. for n = 8, complete set of residues is $\{0, 1, 2, 3, 4, 5, 6, 7\}$

Eg. for n = 8, complete set of residues is $\{0, 1, 2, 3, 4, 5, 6, 7\}$ reduced set of residues is $\{1, 3, 5, 7\}$

Eg. for n = 8, complete set of residues is $\{0, 1, 2, 3, 4, 5, 6, 7\}$ reduced set of residues is $\{1, 3, 5, 7\}$ Therefore $\emptyset(8) = 4$

Complete set of residues is {0, 1, 2, 3, 4, 5, 6}

Complete set of residues is {0, 1, 2, 3, 4, 5, 6}

As 7 is a prime number, all the positive integers from 1 to 6 are relatively prime to 7.

Therefore, reduced set of residues is {1, 2, 3, 4, 5, 6}

Complete set of residues is {0, 1, 2, 3, 4, 5, 6}

As 7 is a prime number, all the positive integers from 1 to 6 are relatively prime to 7.

Therefore, reduced set of residues is {1, 2, 3, 4, 5, 6}

Thus, $\phi(7) = 6$

Complete set of residues is {0, 1, 2, 3, 4, 5, 6}

As 7 is a prime number, all the positive integers from 1 to 6 are relatively prime to 7.

Therefore, reduced set of residues is {1, 2, 3, 4, 5, 6}

Thus, $\phi(7) = 6$

For any prime number n, o(n) = n - 1.

 $\emptyset(n) = \text{how many numbers there are between 1 and } n\text{-}1$ that are relatively prime to n.

 $\emptyset(4) = 2$ (1, 3 are relatively prime to 4)

 $\emptyset(5) = 4 (1, 2, 3, 4 \text{ are relatively prime to } 5)$

 $\emptyset(6) = 2$ (1, 5 are relatively prime to 6)

 $\emptyset(7) = 6 \ (1, 2, 3, 4, 5, 6 \text{ are relatively prime to } 7)$

- As you can see from the above examples that if n is a prime number o(n) = n 1.
- This helps to calculate the totient function when the factors of n are two different prime numbers.
- For example, suppose n has two factors A and B,
 where A and B are primes, then

$$\emptyset(91) = \emptyset(13 * 7)$$

$$\emptyset(91) = \emptyset(13 * 7)$$

$$= \emptyset(13) * \emptyset(7)$$

$$= (13 - 1)*(7 - 1)$$

$$\emptyset(91) = \emptyset(13 * 7)$$

$$= \emptyset(13) * \emptyset(7)$$

$$= (13 - 1)*(7 - 1)$$

$$= 12 * 6$$

$$\emptyset(91) = \emptyset(13 * 7)$$

$$= \emptyset(13) * \emptyset(7)$$

$$= (13 - 1)*(7 - 1)$$

$$= 12 * 6$$

$$\emptyset(91) = 72$$

$$\emptyset(25) = \emptyset(5 * 5)$$

$$\emptyset(25) = \emptyset(5 * 5)$$

$$= \emptyset(5) * \emptyset(5)$$

$$\emptyset(25) = \emptyset(5 * 5)$$

$$= \emptyset(5) * \emptyset(5)$$

$$= (5-1) * (5-1)$$

$$\emptyset(25) = \emptyset(5 * 5)$$

$$= \emptyset(5) * \emptyset(5)$$

$$= (5 - 1) * (5 - 1)$$

$$= 4 * 4$$

$$\emptyset(25) = \emptyset(5 * 5)$$

$$= \emptyset(5) * \emptyset(5)$$

$$= (5 - 1) * (5 - 1)$$

$$= 4 * 4$$

$$\emptyset(25) = 16$$

$$\emptyset(25) = \emptyset(5 * 5)$$

$$= \emptyset(5) * \emptyset(5)$$

$$= (5-1) * (5-1)$$

$$= 4 * 4$$

$$\emptyset(25) = 16$$
 but this is wrong

$$\varphi(n) = \varphi(A^p) = n(1 - 1/A)$$

$$n = 25$$
 and $25 = 5 * 5$

$$\emptyset(25) = \emptyset(5 * 5)$$

$$\varphi(n) = \varphi(A^p) = n(1 - 1/A)$$

$$n = 25$$
 and $25 = 5 * 5$
 $\emptyset(25) = \emptyset(5 * 5)$
 $= \emptyset(5^2)$ here $A = 5$ and $p = 2$

$$\varphi(n) = \varphi(A^p) = n(1 - 1/A)$$

n = 25 and 25 = 5 * 5

$$\emptyset(25) = \emptyset(5 * 5)$$

= $\emptyset(5^2)$ here A = 5 and p = 2
=25 $\left(1 - \frac{1}{5}\right)$

$$\varphi(n) = \varphi(A^p) = n(1 - 1/A)$$

n = 25 and 25 = 5 * 5

$$\emptyset(25) = \emptyset(5 * 5)$$

= $\emptyset(5^2)$ here A = 5 and p = 2
= $251 - \frac{1}{5}$
= $25 \frac{4}{5}$

$$\varphi(n) = \varphi(A^p) = n(1 - 1/A)$$

$$n = 25$$
 and $25 = 5 * 5$

$$\emptyset(25) = \emptyset(5 * 5)$$

$$= \emptyset(5^2)$$
 here A = 5 and p = 2

$$=251-\frac{1}{5}$$

$$=2\left(\frac{4}{5}\right)$$

Find the totient value of 100

$$\phi(100) = \phi(25^{*}4)$$

$$\phi(100) = \phi(25*4)$$

= $\phi(5^2*2^2)$

$$\phi(100) = \phi(25^{*}4)$$

$$= \phi(5^{2} * 2^{2})$$

$$= \phi(5^{2}) * \phi(2^{2})$$

$$\phi(100) = \phi(25^{*}4)$$

$$= \phi(5^{2} * 2^{2})$$

$$= \phi(5^{2}) * \phi(2^{2})$$

$$= 5^{2} \left(1 - \frac{1}{5}\right) * 2^{2} \left(1 - \frac{1}{2}\right)$$

$$\phi(100) = \phi(25*4)$$

$$= \phi(5^2*2^2)$$

$$= \phi(5^2)*\phi(2^2)$$

$$= 5^2 \left(1 - \frac{1}{5}\right) * 2^2 \left(1 - \frac{1}{2}\right)$$

$$= 5^2 * 2^2 \left(1 - \frac{1}{5}\right) * \left(1 - \frac{1}{2}\right)$$

$$\phi(100) = \phi(25^{*}4)$$

$$= \phi(5^{2})^{*}\phi(2^{2})$$

$$= 5^{2} \left(1 - \frac{1}{5}\right)^{*}2^{2} \left(1 - \frac{1}{2}\right)$$

$$= 5^{2} *2^{2} \left(1 - \frac{1}{5}\right)^{*} \left(1 - \frac{1}{2}\right)$$

$$= 25^{*}4 \left(\frac{4}{5}\right) \left(\frac{1}{2}\right)$$

$$\phi(100) = \phi(25^{*}4)$$

$$= \phi(5^{2} * 2^{2})$$

$$= \phi(5^{2}) * \phi(2^{2})$$

$$= 5^{2} \left(1 - \frac{1}{5}\right) * 2^{2} \left(1 - \frac{1}{2}\right)$$

$$= 5^{2} * 2^{2} \left(1 - \frac{1}{5}\right) * \left(1 - \frac{1}{2}\right)$$

$$= 25^{*}4 \left(\frac{4}{5}\right) \left(\frac{1}{2}\right)$$

$$= 100 \frac{4}{10}$$

$$\phi(100) = \phi(25^{*}4)$$

$$= \phi(5^{2} * 2^{2})$$

$$= \phi(5^{2}) * \phi(2^{2})$$

$$= 5^{2} \left(1 - \frac{1}{5}\right) * 2^{2} \left(1 - \frac{1}{2}\right)$$

$$= 5^{2} * 2^{2} \left(1 - \frac{1}{5}\right) * \left(1 - \frac{1}{2}\right)$$

$$= 25^{*}4 \left(\frac{4}{5}\right) \left(\frac{1}{2}\right)$$

$$= 10^{*}4$$

The generalise formula to calculate $\Phi(n)$ of a number n is:

$$\begin{split} \Phi(n) &= A_1^{m_1} * A_2^{m_2} * A_3^{m_n} * \dots * A_n^{m_n} \\ &= n * \left(1 - \frac{1}{A_1}\right) * \left(1 - \frac{1}{A_2}\right) * \left(1 - \frac{1}{A_3}\right) * \dots \left(1 - \frac{1}{A_n}\right) \\ \Phi(n^m) &= n^{m-1} \Phi(n) \text{ [identity relating to } \Phi(n^m) \text{ to } \Phi(n)] \end{split}$$

$$400 = 100 \times 4$$

$$= 10 \times 10 \times 2 \times 2$$

$$= 2 \times 5 \times 2 \times 5 \times 2 \times 2$$

$$= 2^{3} \times 5^{2}$$

$$9=3^{2}$$
 $\phi(9)=9*\left(1-\frac{1}{3}\right)$

$$9=3^{2}$$

$$\phi(9)=9*\left(1-\frac{1}{3}\right)$$

$$=9*\left(\frac{2}{3}\right)$$

$$=6$$

$$64=8^2=2^6$$

$$64=8^2=2^6$$
 $\phi(64)=\phi(2^6)$

$$64 = 8^{2} = 2^{6}$$

$$4(64) = 4(2^{6})$$

$$= 64^{4} \left(1 - \frac{1}{2}\right)$$

$$64 = 3^{2} = 2^{6}$$

$$4(64) = 4(2^{6})$$

$$= 64^{4} \left(1 - \frac{1}{2}\right)$$

$$= 32^{4}(1)$$

$$64 = 8^{2} = 2^{6}$$

$$4(64) = 4(2^{6})$$

$$= 64^{4} \left(1 - \frac{1}{2}\right)$$

$$= 32^{4}(1)$$

$$= 32$$

 $a \operatorname{bmod} p = a \operatorname{b} \operatorname{mod} \varphi(p) \operatorname{mod} p$

Find the unit place digit of 7^{2013}

 $7^{2013} \mod 10 = 7^{2013 \mod \emptyset(10)} \mod 10$

Find the unit place digit of 7²⁰¹³

$$7^{2013} \mod 10 = 7^{2013 \mod \emptyset(10)} \mod 10$$

$$\{\emptyset(10)=4\}$$

Therefore $2013 \mod 4 = 1$

Find the unit place digit of 7²⁰¹³

$$7^{2013} \mod 10 = 7^{2013 \mod \emptyset(10)} \mod 10$$

$$\{\emptyset(10)=4\}$$

Therefore $2013 \mod 4 = 1$

$$7^{2013 \mod \emptyset(10)} \mod 10 = 7^1 \mod 10 = 7$$

Ex 2:

Find the last two digits of 9^{1573} .

9¹⁵⁷³ mod 100

Apply $a \operatorname{b} \operatorname{mod} p = a \operatorname{b} \operatorname{mod} p = a \operatorname{b} \operatorname{mod} p$

9¹⁵⁷³ mod 100 Apply $a \operatorname{bmod} p = a \operatorname{bmod} o(p) \operatorname{mod} p$ 9 ¹⁵⁷³ mod 100 $= 9 \operatorname{1573 \, mod} o(100) \operatorname{mod} 100$

```
9<sup>1573</sup> mod 100

Apply a^{b} \mod p = a^{b \mod \emptyset (p)} \mod p

9 <sup>1573</sup> mod 100 = 9 <sup>1573 mod \( \Omega (100) \) mod 100

Since \( \Omega (100) = 40; \) 1573 mod \( \Omega (100) = 13 \)</sup>
```

```
9<sup>1573</sup> mod 100

Apply a^{b} \mod p = a^{b \mod \emptyset (p)} \mod p

9<sup>1573</sup> mod 100

= 9^{1573 \mod \emptyset (100)} \mod 100

Since \emptyset (100) = 40; 1573 mod \emptyset (100) = 13

= 9^{13} \mod 100 (9<sup>3</sup> mod 100 = 29)
```

```
9<sup>1573</sup> mod 100

Apply a^{b} \mod p = a^{b \mod \emptyset (p)} \mod p

9<sup>1573</sup> mod 100

= 9^{1573 \mod \emptyset (100)} \mod 100

Since \emptyset (100) = 40; 1573 mod \emptyset (100) = 13

= 9^{13} \mod 100 (9<sup>3</sup> mod 100 = 29)

= (9^{3})^{4} \times 9 \mod 100 = 29^{4} \times 9 \mod 100
```

```
9<sup>1573</sup> mod 100
Apply a \operatorname{b} \operatorname{mod} p = a \operatorname{b} \operatorname{mod} o(p) \operatorname{mod} p
9 1573 mod 100
= 9^{1573 \mod \varnothing (100)} \mod 100
  Since \emptyset (100) = 40; 1573 mod \emptyset (100) = 13
= 9^{13} \mod 100 \quad (9^3 \mod 100 = 29)
9^{13} \mod 100 = (9^3)^4 \times 9 \mod 100 = 29^4 \times 9 \mod 100
= (41)^2 \times 9 \mod 100 Since (29^2) \mod 100 = 41
= 29
```

Note that 4 and 100 do have a common factor!

Note that 4 and 100 do have a common factor!

 $4^{1023} \mod 100$

Note that 4 and 100 do have a common factor!

 $4^{1023} \mod 100$

As 4 and 100 have common factors, we will take 25 as modulus.

 $4^{1023} \mod 25$

Note that 4 and 100 do have a common factor!

 $4^{1023} \mod 100$

As 4 and 100 have common factors, we will take 25 as modulus.

 $4^{1023} \mod 25$ $4^{1023 \mod \varnothing (25)} \mod 25$ $(\varnothing (25) = 20)$

Note that 4 and 100 do have a common factor!

Solution:

```
4^{1023} \mod 100
```

As 4 and 100 have common factors, we will take any one factor of 100 such as 5, 10, 20, 25 or 50 as modulus.

Note that 4 and 100 do have a common factor!

Solution:

```
4^{1023} \mod 100
```

As 4 and 100 have common factors, we will take 25 as modulus.

Factors of 100 are 5, 10, 20, 25 and 50

4 ¹⁰²³ mod 5	4 ¹⁰²³ mod 10	4 ¹⁰²³ mod 20	4 ¹⁰²³ mod 50
4 ^{1023 mod ∅ (5)} mod 5	4 ^{1023 mod ∅ (10)} mod	4 ^{1023 mod ø (20)} mod	4 ^{1023 mod Ø (50)} mod
	10	20	50
4 ^{1023 mod 4} mod 5	4 ^{1023 mod 4} mod 10	4 ^{1023 mod 8} mod <i>20</i>	4 ^{1023 mod 20} mod <i>50</i>
4 ³ mod 5	4 ³ mod 10	4 ⁷ mod 20	4 ³ mod 50
64 mod 5 = 4 mod 5	64 mod 10 = 4 mod 10	4 ⁷ = 4 ³ *4 ³ *4 4*4*4 mod 20 = 64 mod 20 =4 mod 20	64 mod 50 = 14 mod 50
4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79, 84, 89, 94, 99	4, 14, 24, 34, 44, 54, 64, 74, 84, 94	4, 24, 44, <mark>64</mark> , 84	14, 64
The number which is power of 4 is the last two digits			

What are the last two digits of 33. 2012me

Solution:

We know that
$$\emptyset(100) = 40$$
;
So, we need to compute

and raise 3 to that power.

$$\emptyset(40) = 16$$
; $\emptyset(16) = 8$; $\emptyset(8) = 4$; $\emptyset(4) = 2$

In particular, $3^k = 3 \mod 4$ for any value of k. Working backwards

3^{mo} (10) mod 0(

$$3^{3^{3}} (3^{3} \mod (2)) \mod 3 = 3^{3} \mod \mod 2 = 1$$

$$3^{3^{3}} (3^{3} \mod (4)) \mod 3$$

$$3^{3^{3}} (3^{3} \mod (8)) \mod 3$$

$$3^{3^{3}}$$
 $(3^{3}\text{mod}(2))\text{mod} = 3^{3}\text{mod} \mod 2 = 1$
 $3^{3^{3}}$ $(3^{3}\text{mod}(4))\text{mod} = 3^{3}\text{mod} \mod 2 = 3$
 3^{3} $(3^{3}\text{mod}(4))\text{mod} = 3^{3}\text{mod} \mod 2 = 3^{3}\text{mod} \mod 2 = 3$
 3^{3} $(3^{3}\text{mod}(4))\text{mod} = 3^{3}\text{mod} \mod 2 = 3^$

$$3^{3^{3}}$$
 $(3^{3}\text{mod}(2))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(2))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(2))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(4))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(4))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(8))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(10))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(2))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(2))$ $(3^{3}$

$$3^{3^{3}} \qquad \qquad (3^{3} \mod (2)) \mod = 3^{3} \mod (3^{3} \mod (2)) \mod = 3^{3} \mod (3^{3} \mod (4)) \mod = 3^{3} \mod (3^{3} \mod (4)) \mod = 3^{3} \mod (3^{3} \mod (8)) \mod (3^{3} \mod (8)) \mod (3^{3} \mod (8)) \mod (3^{3} \mod (16)) \mod (3^{3} \mod (16))$$

$$3^{3^{3}} (3^{3} \mod (2)) \mod = 3^{3} \mod \mod 2 = 1$$

$$3^{3^{3}} (3^{3} \mod (4)) \mod = 3^{3} \mod \mod 2 = 3$$

$$3^{3^{3}} (3^{3} \mod (8)) \mod = 3^{3} \mod \mod 2 = 3$$

$$3^{3^{3}} (3^{3} \mod (8)) \mod 8 = 3^{3} \mod \mod 2 = 3$$

$$3^{3^{3}} (3^{3} \mod (16)) \mod 6 \qquad (3^{3} \mod (16)) \mod 6 = 3^{3} \mod 8 \mod 6 = 11$$

$$[3^{4} \mod 0 = 1] = > [3^{1} = (3^{4})^{2} (3^{3} \mod 0 = 1) = > [3^{3} \mod 0 = 27]$$

$$3^{3^{3} \mod (40)} (3^{3} \mod (40)) \mod 0 = 3^{3} \mod 6 \mod 0 = 3^{1} \mod 0 = 27$$

$$3^{3} \mod (10)) \mod 0$$

$$3^{3^{3}} (3^{3} \mod (16)) \mod 0$$

$$3^{3^{3}} (3^{3} \mod (2)) \mod = 3^{3} \mod \mod 2 = 1$$

$$3^{3^{3}} (3^{3} \mod (4)) \mod = 3^{3} \mod \mod 2 = 3$$

$$3^{3^{3}} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod \mod 2 = 3$$

$$3^{3^{3}} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3^{3}} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3^{3}} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3^{3}} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3^{3}} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 = 3$$

$$3^{3} (3^{3} \mod (8)) \mod 3 = 3^{3} \mod 3 = 3$$

$$3^{3}$$

```
27^{1}mod(100)
=27^{1}mod(0) as(100)=40
=3x3^{2}6mod(00)=3x(3^{3})^{2} mod(00)
=3x(3x(3)^{2})^{2}) mod(00)
=87mod(00)
```