5.308 ordered_atmost_nvector

DESCRIPTION	LINKS	GRAPH
-------------	-------	-------

Origin

Conjoin atmost_nvector and lex_chain_lesseq.

Constraint

ordered_atmost_nvector(NVEC, VECTORS)

Synonyms

ordered_atmost_nvectors, ordered_atmost_npoint, ordered_atmost_npoints.

Type

VECTOR : collection(var-dvar)

Arguments

NVEC : dvar
VECTORS : collection(vec - VECTOR)

Restrictions

```
\begin{split} |\texttt{VECTOR}| &\geq 1 \\ \texttt{NVEC} &\geq \texttt{min}(1, |\texttt{VECTORS}|) \\ \texttt{required}(\texttt{VECTORS}, \texttt{vec}) \\ \texttt{same\_size}(\texttt{VECTORS}, \texttt{vec}) \end{split}
```

Enforces the following two conditions:

- 1. The number of distinct tuples of values taken by the vectors of the collection VECTORS is less than or equal to NVEC. Two tuples of values $\langle A_1, A_2, \dots, A_m \rangle$ and $\langle B_1, B_2, \dots, B_m \rangle$ are *distinct* if and only if there exist an integer $i \in [1, m]$ such that $A_i \neq B_i$.
- 2. For each pair of consecutive vectors VECTOR_i and $\operatorname{VECTOR}_{i+1}$ of the $\operatorname{VECTORS}$ collection we have that VECTOR_i is lexicographically less than or equal to $\operatorname{VECTOR}_{i+1}$. Given two vectors, \vec{X} and \vec{Y} of n components, $\langle X_0, \ldots, X_{n-1} \rangle$ and $\langle Y_0, \ldots, Y_{n-1} \rangle$, \vec{X} is lexicographically less than or equal to \vec{Y} if and only if n=0 or $X_0 < Y_0$ or $X_0 = Y_0$ and $\langle X_1, \ldots, X_{n-1} \rangle$ is lexicographically less than or equal to $\langle Y_1, \ldots, Y_{n-1} \rangle$.

Purpose

 $\left(\begin{array}{c} \mathtt{vec} - \langle 5, 6 \rangle \,, \\ \mathtt{vec} - \langle 9, 3 \rangle \,, \end{array}\right)$

 $vec - \langle 9, 3 \rangle$

Example

The ordered_atmost_nvector constraint holds since:

- 1. The collection VECTORS involves at most 3 distinct tuples of values (i.e., in fact the 2 distinct tuples (5,6) and (9,3)).
- $2. \ \ The \ vectors \ of \ the \ collection \ \ VECTORS \ are \ sorted \ in \ increasing \ lexicographical \ order.$

Typical

```
\begin{split} |\text{VECTOR}| &> 1 \\ \text{NVEC} &> 1 \\ \text{NVEC} &< |\text{VECTORS}| \\ |\text{VECTORS}| &> 1 \end{split}
```

20080921 1927

Symmetry NVEC can be increased.

Arg. properties

Contractible wrt. VECTORS.

Reformulation The ordered_atmost_nvector constraint can be reformulated as a conjunction of a

atmost_nvector and a lex_chain_lesseq constraints.

See also common keyword: nvector (vector).

comparison swapped: ordered_atleast_nvector.

implied by: ordered_nvector (\leq NVEC replaced by = NVEC).

implies: atmost_nvector, lex_chain_lesseq(NVEC of constraint

ordered_atmost_nvector removed).

used in graph description: lex_less, lex_lesseq.

Keywords characteristic of a constraint: vector.

constraint type: counting constraint, order constraint.

symmetry: symmetry.

Arc input(s)	VECTORS
Arc generator	$PATH \mapsto collection(vectors1, vectors2)$
Arc arity	2
Arc constraint(s)	${\tt lex_lesseq}({\tt vectors1.vec}, {\tt vectors2.vec})$
Graph property(ies)	NARC = VECTORS - 1
Arc input(s)	VECTORS
Arc input(s) Arc generator	VECTORS PATH → collection(vectors1, vectors2)
•	
Arc generator	$PATH \mapsto collection(vectors1, vectors2)$

Graph model

Parts (A) and (B) of Figure 5.646 respectively show the initial and final graph of the second graph constraint associated with the **Example** slot. Since we use the **NCC** graph property in this second graph constraint, we show the different connected components of the final graph. Each strongly connected component corresponds to a tuple of values that is assigned to some vectors of the VECTORS collection. The 2 following tuple of values $\langle 5,6 \rangle$ and $\langle 9,3 \rangle$ are used by the vectors of the VECTORS collection.

Figure 5.646: Initial and final graph of the ordered_atmost_nvector constraint

20080921 1929