Appendix C

Zorn's Lemma; Some Applications

C.1 Statement of Zorn's Lemma

Zorn's lemma is a particularly useful form of the axiom of choice, especially for algebraic applications. Readers who want to learn more about Zorn's lemma and its applications to algebra should consult either Lang [109], Appendix 2, §2 (pp. 878-884) and Chapter III, §5 (pp. 139-140), or Artin [7], Appendix §1 (pp. 588-589). For the logical ramifications of Zorn's lemma and its equivalence with the axiom of choice, one should consult Schwartz [150], (Vol. 1), Chapter I, §6, or a text on set theory such as Enderton [56], Suppes [173], or Kuratowski and Mostowski [108].

Given a set, S, a partial order, \leq , on S is a binary relation on S (i.e., $\leq \subseteq S \times S$) which is

- (1) reflexive, i.e., $x \leq x$, for all $x \in S$,
- (2) transitive, i.e, if $x \leq y$ and $y \leq z$, then $x \leq z$, for all $x, y, z \in S$, and
- (3) antisymmetric, i.e, if $x \leq y$ and $y \leq x$, then x = y, for all $x, y \in S$.

A pair (S, \leq) , where \leq is a partial order on S, is called a partially ordered set or poset. Given a poset, (S, \leq) , a subset, C, of S is totally ordered or a chain if for every pair of elements $x, y \in C$, either $x \leq y$ or $y \leq x$. The empty set is trivially a chain. A subset, P, (empty or not) of S is bounded if there is some $b \in S$ so that $x \leq b$ for all $x \in P$. Observe that the empty subset of S is bounded if and only if S is nonempty. A maximal element of P is an element, $m \in P$, so that $m \leq x$ implies that m = x, for all $x \in P$. Zorn's lemma can be stated as follows:

Lemma C.1. Given a partially ordered set, (S, \leq) , if every chain is bounded, then S has a maximal element.

Proof. See any of Schwartz [150], Enderton [56], Suppes [173], or Kuratowski and Mostowski [108]. \Box