# Semiparametric robust mean estimations based on the orderliness of quantile averages

Tuban Lee $^{\mathrm{a},1}$ 

10

11

12

11

13

21

22

23

24

25

<sup>a</sup>Institute of Biomathematics, Macau SAR 999078, China

This manuscript was compiled on March 14, 2023

As arguably the most fundamental problem in statistics, nonparametric robust location estimation has many prominent solutions, such as the trimmed mean, Winsorized mean, Hodges–Lehmann estimator, and median of means. Recent research findings suggest that their biases with respect to mean can be quite different in asymmetric distributions, but the underlying mechanisms remain largely unclear. Here, similar to the mean-median-mode inequality, it is proven that in the context of nearly all common unimodal distributions, there exists an orderliness of symmetric quantile averages with different breakdown points. Further deductions explain why the Winsorized mean and median of means generally have smaller biases compared to the trimmed mean. Building on the U-orderliness, the supremacy of weighted Hodges–Lehmann mean is discussed.

semiparametric | mean-median-mode inequality | asymptotic | unimodal | Hodges—Lehmann estimator

n 1823, Gauss (1) proved that for any unimodal distribution with a finite care. with a finite second moment,  $|m-\mu| \leq \sqrt{\frac{3}{4}}\omega$ , where  $\mu$  is the population mean, m is the population median, and  $\omega$  is the root mean square deviation from the mode, M. Bernard, Kazzi, and Vanduffel (2020) (2) derived bias bounds for the  $\epsilon$ -symmetric quantile average (SQA<sub> $\epsilon$ </sub>) for unimodal distributions, building on the works of Karlin and Novikoff (1963) and Li, Shao, Wang, and Yang (2018) (3, 4). They showed that the population median, m, has the smallest maximum distance to the population mean,  $\mu$ , among all symmetric quantile averages. Daniell, in 1920, (5) analyzed a class of estimators, linear combinations of order statistics, and identified that  $\epsilon$ -symmetric trimmed mean  $(TM_{\epsilon})$  belongs to this class. Another popular choice, the  $\epsilon$ -symmetric Winsorized mean  $(WM_{\epsilon})$ , which was named after Winsor and introduced by Tukey (6) and Dixon (7) in 1960, is also an L-statistic. Without assuming unimodality, Bieniek (2016) derived exact bias upper bounds of the Winsorized mean based on Danielak and Rychlik's work (2003) on the trimmed mean and confirmed that the former is smaller than the latter (8, 9). In 1963, Hodges and Lehmann (10) proposed a class of nonparametric location estimators based on rank tests and, from the Wilcoxon signed-rank statistic (11), deduced the median of pairwise means as a robust location estimator for a symmetric population. The concept of median of means (MoM<sub>k,b</sub>, k is the number of size in each block, b is the number of blocks) was implicit several times in Nemirovsky and Yudin (1983) (12), Jerrum, Valiant, and Vazirani (1986), (13) and Alon, Matias and Szegedy (1996) (14)'s works. Having good performance even for distributions with infinite second moments, the advantages of MoM have received increasing attention over the past decade (15–22). Devroye, Lerasle, Lugosi, and Oliveira (2016) showed that MoM nears the optimum of nonparametric mean estimation with regards to concentration bounds when the distribution has a heavy tail (20). Asymptotically, the HodgesLehmann (H-L) estimator is equivalent to  $\operatorname{MoM}_{k=2,b=\frac{n}{k}}$ , and it can be seen as the pairwise mean distribution is approximated by the bootstrap and sampling without replacement, respectively (for the asymptotic validity, the reader is referred to the foundational works of Efron (1979) (23), Bickel and Freedman (1981, 1984) (24, 25), and Helmers, Janssen, and Veraverbeke (1990) (26)).

37

39

40

41

45

46

47

48

49

50

51

52

53

54

55

56

57

60

61

Here, the  $\epsilon,b$ -stratified mean is defined as

$$SM_{\epsilon,b,n} := \frac{b}{n} \left( \sum_{j=1}^{\frac{b-1}{2b\epsilon}} \sum_{i_j=\frac{(2bj-b+1)n\epsilon}{b-1}}^{\frac{(2bj-b+1)n\epsilon}{b-1}} X_{i_j} \right),$$

where  $X_1 \leq ... \leq X_n$  denote the order statistics of a sample of n independent and identically distributed random variables  $X_1, \ldots, X_n, \epsilon \mod \frac{2}{b-1} = 0, \frac{1}{\epsilon} \geq 9.$   $n \geq \frac{b-1}{2\epsilon}$ . If the subscript n is omitted, only the asymptotic behavior is considered. If bis omitted, b=3 is assumed. The solution for  $n \mod \frac{b-1}{2\epsilon} \neq 0$ is to sample without replacement to create several smaller samples that satisfy the equality and then computing the mean of all estimations. This can be seen as sampling smaller samples from the population several times, which preserves the original distribution. The basic idea of the stratified mean is to distribute the random variables into  $\frac{b-1}{2\epsilon}$  blocks according to their order, then further sequentially group these blocks into b strata and compute the mean of the middle stratum, which is the median of means of each stratum. Therefore, the stratified mean is a type of stratum mean in stratified sampling introduced by Neyman in 1934 (27). Although the principle is similar to that of the median of means, without the random shift, the result is different from  $MoM_{k=\frac{n}{h},b}$ . The median of means and stratified mean are consistent mean estimators if their asymptotic breakdown points are zero. However, if

#### **Significance Statement**

In 1964, van Zwet introduced the convex transformation order for comparing the skewness of two distributions. This paradigm shift played a fundamental role in defining robust measures of distributions, from spread to kurtosis. Here, rather than the stochastic ordering between two distributions, the orderliness of quantile averages within a distribution is investigated. By classifying distributions through inequalities, a series of sophisticated robust mean estimators are deduced. Nearly all common nonparametric robust location estimators are found to be special cases thereof.

T.L. designed research, performed research, analyzed data, and wrote the paper. The author declares no competing interest.

<sup>&</sup>lt;sup>1</sup>To whom correspondence should be addressed. E-mail: tl@biomathematics.org

 $\epsilon = \frac{1}{9}$ , the biases of the  $\mathrm{SM}_{\frac{1}{9}}$  are nearly identical to those of the  $\mathrm{WM}_{\frac{1}{9}}$  in asymmetric distributions (Figure 1, if no other subscripts,  $\epsilon$  is omitted for simplicity), meaning that their robustness to departures from the symmetry assumption is similar in practice. More importantly, the bounds confirm that the worst-case performances of  $\mathrm{WM}_{\epsilon}$  are better than those of  $\mathrm{TM}_{\epsilon}$  in terms of bias, due to the complexity, any extensions are difficult. The aim of this paper is to define a series of semiparametric models using inequalities, demonstrate their elegant interrelations and connections to parametric models, and deduce a set of sophisticated robust mean estimators.

## Quantile average and weighted average

64

66

67

68

69

70

71

 $\epsilon$ -symmetric trimmed mean,  $\epsilon$ -symmetric Winsorized mean, and  $\epsilon$ -stratified mean are all L-statistics. More specifically, they are symmetric weighted averages, which is defined as

$$SWA_{\epsilon,n} := \frac{\sum_{i=1}^{\frac{n}{2}} \frac{X_i + X_{n-i+1}}{2} w_i}{\sum_{i=1}^{\frac{n}{2}} w_i},$$

where  $w_i$ s are the weights applied to the symmetric quantile averages according to the definition of the corresponding L-statistic. For example, for the  $\epsilon$ -symmetric trimmed mean,

$$w_i = \begin{cases} 0, & i < n\epsilon \\ 1, & i \ge n\epsilon \end{cases}$$
 Mean  $(\lim_{\epsilon \to 0} TM_{\epsilon})$  and median  $(TM_{\frac{1}{2}})$ 

are two special cases of symmetric trimmed mean. In 1974, Hogg investigated the asymmetric trimmed mean and found its advantages for some special applications (28). To extend to the asymmetric case, the quantile average can be defined as

$$QA(\epsilon, \gamma, n) := \frac{1}{2}(\hat{Q}_n(\epsilon) + \hat{Q}_n(1 - \gamma \epsilon)),$$

where  $\gamma>0$  and  $0\leq\epsilon\leq\frac{1}{1+\gamma},\,\hat{Q}_n(p)$  is the empirical quantile function. For example,  $\mathrm{QA}(\epsilon=0.2,\gamma=2,n)=\frac{1}{2}(\hat{Q}_n(0.2)+\hat{Q}_n(0.6))$ . The symmetric quantile average is a special case of the quantile average when  $\gamma=1$ .

Analogously, the weighted average can be defined as

$$WA_{\epsilon,\gamma} := \frac{\int_{\epsilon_0=0}^{\frac{1}{1+\gamma}} QA(\epsilon_0, \gamma) w_{\epsilon_0}}{\int_{\epsilon_0=0}^{\frac{1}{1+\gamma}} w_{\epsilon_0}}.$$

Converting this asymptotic definition to finite sample definition requires rounding the  $n\epsilon_0$ . For simplicity, only the asymptotic definition is considered here. For example, the  $\epsilon, \gamma$ -asymmetric trimmed mean  $(\mathrm{TM}_{\epsilon,\gamma})$  is a weighted average that trims the left side  $\epsilon$  and trims the right side  $\gamma\epsilon$ , where  $w_{\epsilon_0} = \begin{cases} 0, & \epsilon_0 < \epsilon \\ 1, & \epsilon_0 \geq \epsilon \end{cases}$ . Noted that a weighted average is an L-statistic, but an L-statistic might not be a weighted average, because in a weighted average, all quantiles are paired with the same  $\gamma$ . For the sake of brevity, in the following text, if  $\gamma$  is not indicated, symmetry will be assumed.

#### Classifying distributions through inequalities

Let  $\mathcal{P}_k$  denote the set of all distributions over  $\mathbb{R}$  whose moments, from the first to the kth, are all finite. Without loss of generality, all classes discussed in the following are subclasses of the nonparametric class of distributions  $\mathcal{P}_{\Upsilon}^k := \{\text{All continuous distribution } P \in \mathcal{P}_k\}$ . Besides fully

and smoothly parameterizing by a Euclidean parameter or just assuming regularity conditions, there are many ways to classify distributions. In 1956, Stein initiated the problem of estimating parameters in the presence of an infinite dimensional nuisance shape parameter (29). A notable example discussed in his groundbreaking work was the estimation of the center of symmetry for an unknown symmetric distribution. In 1993, Bickel, Klaassen, Ritov, and Wellner published an influential semiparametrics textbook (30) and systematically classified nearly all common models into three classes: parametric, nonparametric, and semiparametric. However, there is another old and commonly encountered class of distributions that receives little attention in semiparametric literature: the unimodal distribution. It is a very unique semiparametric model because its definition is based on inequalities, i.e., assuming P is continuous,  $(f'(x) > 0 \text{ for } x \leq M) \land (f'(x) < 0 \text{ for } x \geq M).$ Let  $\mathcal{P}_U$  denote the set of all unimodal distributions. Five parametric distributions in  $\mathcal{P}_U$  are detailed as examples here: Weibull, gamma, Pareto, lognormal and generalized Gaussian.

96

97

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116

117

118

121

122

123

124

125

127

128

129

130

131

132

133

134

135

136

137

138

There was a widespread misbelief that the median of an arbitrary unimodal distribution always lies between its mean and mode until Runnenburg (1978) and van Zwet (1979) (31, 32) endeavored to determine sufficient conditions for the inequality to hold, thereby implying the possibility of its violation (counterexamples can be found in the papers by Dharmadhikari and Joag-Dev (1988), Basu and DasGupta (1997), and Abadir (2005)) (33–35). The class of distributions that satisfy the mean-median-mode inequality constitutes a subclass of  $\mathcal{P}_U$ . Analogously, a right-skewed distribution is called  $\gamma$ -ordered, if and only if

$$\forall \epsilon_1 \le \epsilon_2 \le \frac{1}{1+\gamma}, QA_{\epsilon_1,\gamma} \ge QA_{\epsilon_2,\gamma}.$$

It is reasonable, though not necessary, to further assume  $\gamma \geq 1$ since the gross errors of a right-skewed distribution often come from the right side. The left-skewed case is obtained by reversing the inequality and, if needed, assuming  $\gamma < 1$ ; for simplicity, it will be omitted in the following discussion. If  $\gamma = 1$ , the distribution is referred to as ordered. This nomenclature is used throughout the text. Let  $\mathcal{P}_O$  denote the set of all ordered distributions. Nearly all common unimodal distributions, including Pareto, lognormal, generalized Gaussian, and most cases of Weibull and gamma, are in  $\mathcal{P}_U \cap \mathcal{P}_O$ , as proven in the following discussion and SI Text. The only minor exceptions occur when the Weibull and gamma distribution are near-symmetric, as shown in the SI Text. In contrast to the mean-median-mode inequality, whose sufficient conditions are cumbersome, a necessary and sufficient condition of the  $\gamma$ -orderliness is the monotonic property of the bias function of  $QA_{\epsilon,\gamma}$  with respect to  $\epsilon$ , as proven in the SI Text. The following necessary and sufficient condition hints at the relation between the mean-median-mode inequality and the orderliness.

**Theorem .1.** Let  $P_{\Upsilon}^k$  denote an arbitrary distribution in the set  $\mathcal{P}_{\Upsilon}^k$ .  $P_{\Upsilon}^k \in \mathcal{P}_O$  if and only if the pdf satisfies the inequality  $f(Q(\epsilon)) \geq f(Q(1-\epsilon))$ , where  $0 \leq \epsilon \leq \frac{1}{2}$  (also assumed in the following discussions for ordered distributions),  $Q(\epsilon)$  is the quantile function.

*Proof.* From the definition of ordered distribution, deducing  $\frac{Q(\epsilon-\delta)+Q(1-\epsilon+\delta)}{2} \geq \frac{Q(\epsilon)+Q(1-\epsilon)}{2} \Leftrightarrow Q(\epsilon-\delta)-Q(\epsilon) \geq Q(1-\epsilon)-Q(1-\epsilon+\delta) \Leftrightarrow Q'(1-\epsilon) \geq Q'(\epsilon)$ , where  $\delta$  is an infinitesimal

81

82

83

85

86

87

quantity. Since the quantile function is the inverse function of the cumulative distribution function (cdf),  $Q'(1-\epsilon) \ge Q'(\epsilon) \Leftrightarrow F'(Q(\epsilon)) \ge F'(Q(1-\epsilon))$ , the proof is complete by noticing that the derivative of cdf is the probability density function (pdf).

In 1895, Pearson proposed using the mean-median difference  $|\mu - m|$  as a measure of skewness after standardization (36). Bowley (1926) proposed a measure of skewness based on the SQA-median difference  $|SQA_{\epsilon} - m|$  (37). Groeneveld and Meeden (1984) (38) generalized these measures of skewness based on van Zwet's convex transformation (39) and investigated their properties. Suppose  $P_{\Upsilon}^{k}$  follows the meanmedian-mode inequality and the above measures of skewness is valid for it, i.e., the order induced by these measures is consistent with the convex transformation order. Then, the probability density  $f(Q(\epsilon))$  on the left side of the median, on average, is greater than the corresponding  $f(Q(1-\epsilon))$ , since  $m < \frac{Q(0) + Q(1)}{2} \Leftrightarrow m - Q(0) < Q(1) - m$ . If  $Q(\epsilon) > M$ , the inequality  $f(Q(\epsilon)) \geq f(Q(1-\epsilon))$  holds. The principle can be extended to unimodal-like distributions. Suppose there is a right-skewed continuous multimodal distribution following the mean-median-first mode inequality with many small modes on the right side, the first mode, M, has the greatest probability density and the median is within the first dominant mode, i.e., if x > m,  $f(m) \ge f(x)$ , then, if  $Q(\epsilon) > M$ , the inequality  $f(Q(\epsilon)) \ge f(Q(1-\epsilon))$  also holds.

Furthermore, most common right-skewed distributions are partial bounded, indicating a convex decreasing behavior of the QA function when  $\epsilon \to 0$ . If assuming convexity further, the second  $\gamma$ -orderliness can be defined as the following for a right-skewed distribution plus the  $\gamma$ -orderliness,

$$\forall \epsilon_1 \leq \epsilon_2 \leq \epsilon_3 \leq \frac{1}{1+\gamma}, \frac{\mathrm{QA}_{\epsilon_1,\gamma} - \mathrm{QA}_{\epsilon_2,\gamma}}{\epsilon_2 - \epsilon_1} \geq \frac{\mathrm{QA}_{\epsilon_2,\gamma} - \mathrm{QA}_{\epsilon_3,\gamma}}{\epsilon_3 - \epsilon_2}.$$

An equivalent expression is  $\frac{d^2 Q \Lambda}{d\epsilon^2} \geq 0 \wedge \frac{dQ \Lambda}{d\epsilon} \leq 0$ . Analogously, the  $\nu$ th  $\gamma$ -orderliness can be defined as  $(-1)^{\nu} \frac{d^{\nu} Q \Lambda}{d\epsilon^{\nu}} \geq 0 \wedge \ldots \wedge -\frac{dQ \Lambda}{d\epsilon} \geq 0$ . The definition of  $\nu$ th orderliness is the same, just setting  $\gamma = 1$ . Common unimodal distributions are also second and third ordered, as shown in the SI Text. Let  $\mathcal{P}_{O_{\nu}}$  and  $\mathcal{P}_{\gamma O_{\nu}}$  denote the sets of all distributions that are  $\nu$ th ordered and  $\nu$ th  $\gamma$ -ordered. The following theorems can be used to quickly identify parametric distributions in  $\mathcal{P}_{O_{\nu}}$  and  $\mathcal{P}_{\gamma O_{\nu}}$ .

**Theorem .2.** Any symmetric distribution with a finite second moment is  $\nu$ th ordered.

*Proof.* The assertion follows from the fact that for any symmetric distribution with a finite second moment, all symmetric quantile averages coincide. Therefore, the SQA function is always a horizontal line; the  $\nu$ th order derivative is zero.  $\square$ 

As a consequence of Theorem .2 and the fact that generalized Gaussian distribution is symmetric around the median, it is  $\nu$ th ordered.

Theorem .3. Any continuous right skewed distribution whose Q satisfies  $Q^{(\nu)}(p) \geq 0 \wedge \dots Q^{(i)}(p) \geq 0 \dots \wedge Q^{(2)}(p) \geq 0$ ,  $i \mod 2 = 0$ , is  $\nu$ th  $\gamma$ -ordered, provided that  $\gamma \geq 1$ .

*Proof.* Let  $QA(\epsilon) = \frac{1}{2}(Q(\epsilon) + Q(1 - \gamma \epsilon))$ , where  $0 \le \epsilon \le \frac{1}{1+\gamma}$  (also assumed in the following discussions for  $\gamma$ -ordered

distributions), then  $(-1)^j \frac{d^j Q A}{d \epsilon^j} = \frac{1}{2} ((-1)^j Q^j (\epsilon) + \gamma^j Q^j (1 - \gamma \epsilon)), \ \nu \geq j \geq 1$ , when  $j \mod 2 = 0$ ,  $(-1)^j \frac{d^j Q A}{d \epsilon^j} \geq 0$ , when  $j \mod 2 = 1$ , the strict positivity is uncertain. If assuming  $\gamma \geq 1$ ,  $(-1)^j \frac{d^j Q A}{d \epsilon^j} \geq 0$ , since  $Q^{(j+1)}(\epsilon) \geq 0$ .

It is now trivial to prove that the Pareto distribution follows the  $\nu$ th  $\gamma$ -orderliness, provided that  $\gamma \geq 1$ , since the quantile function of the Pareto distribution is  $Q\left(p\right) = x_m(1-p)^{-\frac{1}{\alpha}}$ ,  $x_m > 0$ ,  $\alpha > 0$ ,  $Q^{(\nu)}\left(p\right) \geq 0$  according to the chain rule.

**Theorem .4.** A right-skewed continuous distribution with a monotonic decreasing pdf is  $\gamma$ -ordered, if  $\gamma \geq 1$ .

*Proof.* A monotonic decreasing pdf means  $f'(x) = F^{(2)}(x) \le 0$ . Since  $Q'(p) \ge 0$ , let x = Q(F(x)), then by differentiating both sides of the equation twice, one can obtain  $0 = Q^{(2)}(F(x))(F'(x))^2 + Q'(F(x))F^{(2)}(x) \Leftrightarrow Q^{(2)}(F(x)) = -\frac{Q'(F(x))F^{(2)}(x)}{(F'(x))^2} \ge 0$ . The desired result is derived from Theorem .3.

Theorem .4 gives an valuable insight into the relation between modality and  $\gamma$ -orderliness. The conventional definition states that a distribution with a monotonic pdf is still considered unimodal. However, within its supported interval, its mode number is zero. The number of modes and their magnitudes are closely related to the possibility of orderliness being valid, although counterexamples can always be constructed. A proof of  $\gamma$ -orderliness, if  $\gamma \geq 1$ , can be easily established for the gamma distributions when  $\alpha \leq 1$  as the pdf of the gamma distribution is  $f(x) = \frac{\lambda^{-\alpha} x^{\alpha-1} e^{-\frac{x}{\lambda}}}{\Gamma(\alpha)}, \ x \geq 0, \ \lambda > 0, \ \alpha > 0,$  which is a product of two monotonic decreasing functions under constraints. For  $\alpha > 1$ , the proof is challenging, numerical results show that the orderliness is valid until  $\alpha > 140$  (SI Text), but it is instructive to consider that when  $\alpha \to \infty$  the gamma distribution converges to a Gaussian distribution with mean  $\mu = \alpha \lambda$  and variance  $\sigma = \alpha \lambda^2$ .

**Theorem .5.** If transforming a symmetric unimodal random variable X with a function  $\phi(x)$  such that  $\frac{d^2\phi}{dx^2} \geq 0 \wedge \frac{d\phi}{dx} \geq 0$  over the interval supported, then the convex transformed distribution is ordered. If the quantile function of X satisfies  $Q^{(2)}(\epsilon) \leq 0$ , the convex transformed distribution is second ordered.

 $\begin{array}{ll} Proof. \text{ Let } \phi \mathrm{SQA}(\epsilon) &=& \frac{1}{2}(\phi(Q(\epsilon)) + \phi(Q(1-\epsilon))), \text{ then,} \\ \frac{d\phi \mathrm{SQA}}{d\epsilon} &=& \frac{1}{2}\left(\phi'\left(Q\left(\epsilon\right)\right)Q'\left(\epsilon\right) - \phi'\left(Q\left(1-\epsilon\right)\right)Q'\left(1-\epsilon\right)\right) \\ &=& \frac{1}{2}Q'\left(\epsilon\right)\left(\phi'\left(Q\left(\epsilon\right)\right) - \phi'\left(Q\left(1-\epsilon\right)\right)\right) \leq 0, \text{ since for a symmetric distribution, } \\ m - Q\left(\epsilon\right) &=& Q\left(1-\epsilon\right) - m, \text{ differentiating both sides, } -Q'\left(\epsilon\right) \\ &=& -Q'\left(1-\epsilon\right), \quad Q'\left(\epsilon\right) \geq 0, \\ \phi^{(2)} \geq 0. \quad \text{Notably, differentiating twice, } Q^{(2)}\left(\epsilon\right) \\ &=& -Q^{(2)}(1-\epsilon), \\ \frac{d^{(2)}\phi \mathrm{SQA}}{d\epsilon^{(2)}} &=& \frac{1}{2}\left(\left(\phi^{(2)}\left(Q\left(\epsilon\right)\right) + \phi^{(2)}\left(Q\left(1-\epsilon\right)\right)\right)\left(Q'\left(\epsilon\right)\right)^2\right) + \\ \frac{1}{2}\left(\left(\phi'\left(Q\left(\epsilon\right)\right) - \phi'\left(Q\left(1-\epsilon\right)\right)\right)Q^{(2)}\left(\epsilon\right)\right). \quad \text{The sign of } \\ \frac{d^{(2)}\phi \mathrm{SQA}}{d\epsilon^{(2)}} \\ \text{depends on } Q^{(2)}\left(\epsilon\right). & \square \end{array}$ 

The mean-median-mode inequality for distributions of the powers and roots of the variates of a given distribution was investigated by Henry Rietz in 1927 (40), but the most trivial solution is the exponential transformation since the derivatives are always positive. An application of Theorem .5 is that the lognormal distribution is ordered as it is exponentially transformed from the Gaussian distribution whose

 $Q^{(2)}\left(\epsilon\right)=-2\sqrt{2}\pi\sigma e^{2\mathrm{erfc}^{-1}\left(2\epsilon\right)^{2}}\mathrm{erfc}^{-1}(2\epsilon)\leq0$  (so, it is also second ordered).

243

244

247

248

249

250

251

253

254

255

256

257

258

259

Theorem .5 also reveals a relation between convex transformation and orderliness, since  $\phi$  is the non-decreasing convex function in van Zwet's trailblazing work Convex transformations of random variables (39). Consider a near-symmetric distribution S, such that  $SQA_{\epsilon}$  as a function of  $\epsilon$  fluctuates from 0 to  $\frac{1}{2}$ , with  $\mu = m$ . By definition, S is not ordered. Let s be the pdf of S. Applying the transformation  $\phi(x)$  to S decreases  $s(Q_S(\epsilon))$ , and the decrease rate, due to the order, is much smaller for  $s(Q_S(1-\epsilon))$ . As a consequence, as the second derivative of  $\phi(x)$  increases, eventually, after a point,  $s(Q_S(\epsilon))$  becomes greater than  $s(Q_S(1-\epsilon))$  even if it was not previously. Thus, the SQA function becomes monotonically decreasing, and S becomes ordered. Accordingly, in a family of distributions that differ by a skewness-increasing transformation in van Zwet's sense, violations of orderliness typically occur only when the distribution is near-symmetric.

Remarkably, Bernard et al. (2020) (2) derived the bias bound of the symmetric quantile average for  $\mathcal{P}_U$ ,

$$B_{\text{SQAB}}(\epsilon) = \begin{cases} \frac{1}{2} \left( \sqrt{\frac{4}{9\epsilon} - 1} + \sqrt{\frac{3\epsilon}{4 - 3\epsilon}} \right) & \frac{1}{6} \ge \epsilon \ge 0\\ \frac{1}{2} \left( \sqrt{\frac{1 - \epsilon}{\epsilon + \frac{1}{3}}} + \sqrt{\frac{3\epsilon}{4 - 3\epsilon}} \right) & \frac{1}{2} \ge \epsilon > \frac{1}{6}. \end{cases}$$

**Theorem .6.** The above bias bound function,  $B_{SQAB}(\epsilon)$ , is monotonic decreasing over the interval  $(0, \frac{1}{2})$ .

*Proof.* When  $\frac{1}{6} \geq \epsilon \geq 0$ ,  $B'_{SQAB}(\epsilon) = \frac{1}{(4-3\epsilon)^2 \sqrt{\frac{\epsilon}{12-9\epsilon}}}$ 263  $\frac{1}{3\sqrt{\frac{4}{3}-9\epsilon^2}}$ . To prove  $B'_{\text{SQAB}} < 0$ , it is equivalent to proving  $(4-3\epsilon)^2 \sqrt{\frac{\epsilon}{12-9\epsilon}} > 3\sqrt{\frac{4}{\epsilon}-9}\epsilon^2$ . 265  $L(\epsilon) = (4-3\epsilon)^2 \sqrt{\frac{\epsilon}{12-9\epsilon}}, R(\epsilon) = 3\sqrt{\frac{4}{\epsilon}-9\epsilon^2}, \text{ then}$  $\frac{L(\epsilon)}{\epsilon^2} = \frac{(4-3\epsilon)^2}{\epsilon^2} \sqrt{\frac{\epsilon}{12-9\epsilon}} = \left(\frac{4}{\epsilon} - 3\right)^2 \sqrt{\frac{1}{\frac{12}{\epsilon} - 9}}, \, \frac{R(\epsilon)}{\epsilon^2} = 3\sqrt{\frac{4}{\epsilon} - 9}$ Assuming,  $\frac{1}{\epsilon} \in \left(\frac{9}{4}, \infty\right), \frac{L(\epsilon)}{\epsilon^2} > \frac{R(\epsilon)}{\epsilon^2} \iff \left(\frac{4}{\epsilon} - 3\right)^2 \sqrt{\frac{1}{\frac{12}{\epsilon} - 9}} >$  $3\sqrt{\frac{4}{\epsilon}-9} \iff \left(\frac{4}{\epsilon}-3\right)^2 > 3\sqrt{\frac{4}{\epsilon}-9}\sqrt{\frac{12}{\epsilon}-9}$ 269 Let  $LmR\left(\frac{1}{\epsilon}\right) = \left(\frac{4}{\epsilon} - 3\right)^4 - 9\left(\frac{4}{\epsilon} - 9\right)\left(\frac{12}{\epsilon} - 9\right),$   $\frac{dLmR(1/\epsilon)}{d(1/\epsilon)} = 32\left(32\left(\frac{1}{\epsilon}\right)^3 - 72\left(\frac{1}{\epsilon}\right)^2 + 27\frac{1}{\epsilon} + 27\right),$ 270 271  $\frac{d^2 LmR(1/\epsilon)}{d^2(1/\epsilon)} = 32\left(96\left(\frac{1}{\epsilon}\right)^2 - 144\left(\frac{1}{\epsilon}\right) + 27\right) > 0, \text{ let }$   $\frac{1}{\epsilon} = \frac{9}{4}, \frac{dLmR(1/\epsilon)}{d(1/\epsilon)} > 0, \text{ therefore, } \frac{dLmR(1/\epsilon)}{d(1/\epsilon)} > 0, \text{ for }$ 273  $\frac{1}{\epsilon} \in \left(\frac{9}{4}, \infty\right)$ . Also,  $LmR\left(\frac{9}{4}\right) > 0$ , so,  $LmR\left(\frac{1}{\epsilon}\right) > 0$  for 274  $\epsilon \in (0, \frac{4}{9})$ . The first part is finished. 275 When  $\frac{1}{2} \geq \epsilon > \frac{1}{6}$ ,  $B'_{\text{SQAB}}(\epsilon) = \frac{1}{(4-3\epsilon)^2 \sqrt{\frac{\epsilon}{12-9\epsilon}}} - \frac{1}{(3\epsilon+1)^2 \sqrt{\frac{1-\epsilon}{9\epsilon+3}}}$ . To check whether  $B'_{\text{SQAB}}(\epsilon) < 0$ , first using the two identities  $\sqrt{\frac{1}{12-9\epsilon}}=\sqrt{\frac{1}{3(4-3\epsilon)}}$  and  $\sqrt{\frac{1}{3+9\epsilon}}=$  $\sqrt{\frac{1}{3(1+3\epsilon)}}$  to simplify the expression, and then the in-279 equality becomes,  $(4-3\epsilon)^{\frac{3}{2}}\sqrt{\epsilon} > (3\epsilon+1)^{\frac{3}{2}}\sqrt{1-\epsilon}\sqrt{\frac{1}{3}} \iff$  $(4-3\epsilon)^{\frac{3}{2}}\sqrt{\epsilon} > (3\epsilon+1)^{\frac{3}{2}}\sqrt{1-\epsilon}\sqrt{\frac{1}{3}} \iff 3(4-3\epsilon)^{3}\epsilon > (3\epsilon+1)^{3}(1-\epsilon) \iff -54\epsilon^{4}+324\epsilon^{3}-450\epsilon^{2}+184\epsilon-1>0.$  Since when  $\epsilon<1,-54\epsilon^{4}+54\epsilon^{3}>0$ , just consider the condition 281 that  $270\epsilon^{3} - 450\epsilon^{2} + 184\epsilon - 1 > 0 \iff \epsilon (270\epsilon^{2} - 450\epsilon + 174) +$ 284  $10\epsilon - 1 > 0$ . Since  $270\epsilon^2 - 450\epsilon + 174 > 0$  is valid for  $\epsilon < \frac{1}{30} \left(25 - 3\sqrt{5}\right)$ , so just need  $10\epsilon - 1 > 0$ ,  $10\epsilon > 1$ ,  $\epsilon > \frac{1}{10}$ .

So, the inequality is valid for  $\frac{1}{30}\left(25-3\sqrt{5}\right)\approx 0.610 > \epsilon > \frac{1}{10}$ , within the range of  $\frac{1}{2} \geq \epsilon > \frac{1}{6}$ , therefore,  $B'_{\rm SQAB} < 0$  for  $\frac{1}{2} \geq \epsilon > \frac{1}{6}$ . The first and second formula, when  $\epsilon = \frac{1}{6}$ , are all equal to  $\frac{1}{2}\left(\sqrt{\frac{5}{3}} + \frac{1}{\sqrt{7}}\right)$ . It follows that  $B_{\rm SQAB}(\epsilon)$  is continuous over  $\left(0,\frac{1}{2}\right)$ . Hence,  $B'_{\rm SQAB}(\epsilon) < 0$  is valid for  $0 < \epsilon < \frac{1}{2}$ , which leads to the assertion of this theorem.

292

293

294

295

296

297

298

300

301

302

303

304

305

306

307

308

309

311

312

313

314

315

317

318

319

328

329

330

331

332

333

334

335

336

The proof is given in the SI Text. This monotonicity indicates that the extent of any violations of the orderliness is bounded for a unimodal distribution, e.g., for a right-skewed unimodal distribution, if  $\exists \epsilon_1 \leq \epsilon_2 \leq \epsilon_3 \leq \frac{1}{2}$ ,  $\mathrm{SQA}_{\epsilon_2} \geq \mathrm{SQA}_{\epsilon_3} \geq \mathrm{SQA}_{\epsilon_1}$ ,  $\mathrm{SQA}_{\epsilon_2}$  will not be too far away from  $\mathrm{SQA}_{\epsilon_1}$ , since  $\sup_{P \in \mathcal{P}_U \cap \mathcal{P}_\Upsilon^2} (\mathrm{SQA}_{\epsilon_1}) > \sup_{P \in \mathcal{P}_U \cap \mathcal{P}_\Upsilon^2} (\mathrm{SQA}_{\epsilon_2}) > \sup_{P \in \mathcal{P}_U \cap \mathcal{P}_\Upsilon^2} (\mathrm{SQA}_{\epsilon_3})$ .

# Inequalities related to weighted averages

The bias bound of the  $\epsilon$ -symmetric trimmed mean is also monotonic for  $\mathcal{P}_U \cap \mathcal{P}_2$ , as proven in the SI Text using the formula provided in Bernard et al.'s paper (2). So far, it appears clear that the average bias of an estimator is closely related to its degree of robustness. For a right-skewed unimodal distribution, often, the mean,  $\epsilon$ -symmetric trimmed mean, and median occur in reverse alphabetical order, then analogous to the orderliness, the trimming inequality is defined as  $\forall \epsilon_1 \leq \epsilon_2 \leq \frac{1}{2}$ ,  $TM_{\epsilon_1} \geq TM_{\epsilon_2}$ . The  $\gamma$ -trimming inequality is similar, but with the term  $\gamma$  added and replacing  $\frac{1}{2}$  with  $\frac{1}{1+\gamma}$ . A necessary and sufficient condition for the  $\gamma$ -trimming inequality is the monotonic behavior of the bias of the  $\epsilon, \gamma$ -trimmed mean as a function of the breakdown point  $\epsilon$ , proven in the SI Text. Orderliness is a sufficient condition for the trimming inequality, as proven in the SI Text, but it is not necessary.

**Theorem .7.** For a right-skewed continuous distribution following the  $\gamma$ -trimming inequality, the quantile average is always greater or equal to the corresponding trimmed mean with the same  $\epsilon$  and  $\gamma$ .

$$\begin{array}{llll} \textit{Proof.} \;\; \text{By} & \text{deducing} & \frac{1}{1-\epsilon-\gamma\epsilon+2\delta} \int_{\epsilon-\delta}^{1-\gamma\epsilon+\delta} Q\left(u\right) du & \geq & \text{320} \\ \frac{1}{1-\epsilon-\gamma\epsilon} \int_{\epsilon}^{1-\gamma\epsilon} Q\left(u\right) du & \Leftrightarrow & \int_{\epsilon-\delta}^{1-\gamma\epsilon+\delta} Q\left(u\right) du & - & \text{321} \\ \frac{1-\epsilon-\gamma\epsilon+2\delta}{1-\epsilon-\gamma\epsilon} \int_{\epsilon}^{1-\gamma\epsilon} Q\left(u\right) du & \geq & 0 \;\; \Leftrightarrow \;\; \int_{1-\gamma\epsilon}^{1-\gamma\epsilon+\delta} Q\left(u\right) du & + & \text{322} \\ \int_{\epsilon-\delta}^{\epsilon} Q\left(u\right) du & - & \frac{2\delta}{1-\epsilon-\gamma\epsilon} \int_{\epsilon}^{1-\gamma\epsilon} Q\left(u\right) du & \geq & \text{323} \\ 0 & \Leftrightarrow & \frac{1}{2\delta} \left( \int_{1-\gamma\epsilon+\delta}^{1-\gamma\epsilon+\delta} Q\left(u\right) du + \int_{\epsilon-\delta}^{\epsilon} Q\left(u\right) du \right) & \geq & \text{324} \\ \frac{1}{1-\epsilon-\gamma\epsilon} \int_{\epsilon}^{1-\gamma\epsilon} Q\left(u\right) du & \text{and} & \text{noting} & \text{that} & \text{325} \\ \lim_{\delta\to 0} \frac{1}{2\delta} \left( \int_{1-\gamma\epsilon+\delta}^{1-\gamma\epsilon+\delta} Q\left(u\right) du + \int_{\epsilon-\delta}^{\epsilon} Q\left(u\right) du \right) & = & \text{326} \\ \frac{Q(\epsilon)+Q(1-\gamma\epsilon)}{2}, \; \text{the proof is complete.} & \square & \text{327} \end{array}$$

Additionally, the orderliness is a sufficient condition of the Winsorization inequality, as proven in the SI Text. A similar result can be obtained in the following theorem.

**Theorem .8.** For a right-skewed continuous distribution following the  $\gamma$ -trimming inequality, the Winsorized mean is always greater or equal to the corresponding trimmed mean with the same  $\epsilon$  and  $\gamma$ , provided that  $\gamma \geq 1$ .

*Proof.* Continue the above deduction,  $\frac{Q(\epsilon)+Q(1-\gamma\epsilon)}{2} \ge \frac{1}{1-\epsilon-\gamma\epsilon} \int_{\epsilon}^{1-\gamma\epsilon} Q(u) du \iff \epsilon \left(Q(\epsilon)+Q(1-\gamma\epsilon)\right) \ge \left(\frac{2\epsilon}{1-\epsilon-\gamma\epsilon}\right) \int_{\epsilon}^{1-\gamma\epsilon} Q(u) du \iff \left(1-\frac{1}{1-\epsilon-\gamma\epsilon}\right) \int_{\epsilon}^{1-\gamma\epsilon} Q(u) du + \frac{1}{1-\epsilon-\gamma\epsilon} Q(u) du$ 

338 
$$\epsilon \left(Q\left(\epsilon\right) + Q\left(1 - \gamma\epsilon\right)\right) \geq 0 \Leftrightarrow \int_{\epsilon}^{1 - \gamma\epsilon} Q\left(u\right) du + G_{\epsilon}^{339}$$

$$\epsilon \left(Q\left(\epsilon\right) + Q\left(1 - \gamma\epsilon\right)\right) \geq \frac{1}{1 - \epsilon - \gamma\epsilon} \int_{\epsilon}^{1 - \gamma\epsilon} Q\left(u\right) du. \quad \text{Then,}$$
340 if  $\gamma \geq 1$ ,  $\int_{\epsilon}^{1 - \gamma\epsilon} Q\left(u\right) du + \epsilon Q\left(\epsilon\right) + \gamma\epsilon Q\left(1 - \gamma\epsilon\right) \geq G_{\epsilon}^{341}$ 

$$\frac{1}{1 - \epsilon - \gamma\epsilon} \int_{\epsilon}^{1 - \gamma\epsilon} Q\left(u\right) du, \text{ the proof is complete.}$$

343

344

345

346

347

351

352

Theorem .8 unequivocally establishes that, for a distribution that follows the  $\gamma$ -trimming inequality, the Winsorized mean is always less biased than the trimmed mean, as long as  $\gamma \geq 1$ . For simplicity, just consider the symmetric case, if one wants to construct a robust SWA following the mean-symmetric weighted average-median inequality, according to the definition of the orderliness, for a right-skewed or symmetric ordered distribution, SWA  $\geq m$ . So, the condition that SWA is between m and  $\mu$  is  $\mu \geq$  SWA. Let  $\mathcal{B}_i = \int_{i\epsilon}^{(i+1)\epsilon} \mathrm{SQA}\,(u)\,du,$   $ka = k\epsilon + b$ , from the orderliness,  $-\frac{d\mathrm{SQA}}{d\epsilon} \geq 0 \Rightarrow \forall a \leq 2a \leq \frac{1}{2}, -\frac{(\mathrm{SQA}(2a)-\mathrm{SQA}(a))}{a} \geq 0 \Rightarrow \mathcal{B}_i - \mathcal{B}_{i+1} \geq 0$ . Let  $\mathcal{B}_i = \mathcal{B}_0$ , then, based on the orderliness, another version of  $\epsilon$ -symmetric Winsorized mean, block Winsorized mean, is defined here for comparison in the SI Dataset S1 as

$$BWM_{\epsilon,n} := \frac{1}{n} \left( \sum_{i=n\epsilon+1}^{(1-\epsilon)n} X_i + \sum_{i=n\epsilon+1}^{2n\epsilon} X_i + \sum_{i=(1-2\epsilon)n+1}^{(1-\epsilon)n} X_i \right),$$

which is double weighting the leftest and rightest blocks having the size  $\epsilon n$ . From the second orderliness  $\frac{d^2 \operatorname{SQA}}{d^2 \epsilon} \geq 0 \Rightarrow \forall a \leq 2a \leq 3a \leq \frac{1}{2}, \frac{1}{a} \left( \frac{(\operatorname{SQA}(3a) - \operatorname{SQA}(2a))}{a} - \frac{(\operatorname{SQA}(2a) - \operatorname{SQA}(a))}{a} \right) \geq 0 \Rightarrow \mathcal{B}_i - 2\mathcal{B}_{i+1} + \mathcal{B}_{i+2} \geq 0$ . So, based on the second orderliness,  $\operatorname{SM}_{\epsilon}$  can be seen as replacing the two blocks,  $\mathcal{B}_i + \mathcal{B}_{i+2}$  with one block  $2\mathcal{B}_{i+1}$ . From the  $\nu$ th orderliness, the recurrence relation of the derivatives naturally produces the alternating binomial coefficients,

$$(-1)^{\nu} \frac{d^{\nu} \operatorname{SQA}}{d\epsilon^{\nu}} \geq 0 \Rightarrow \forall a \leq \dots \leq (\nu+1)a \leq \frac{1}{2},$$

$$\frac{(-1)^{\nu}}{a} \left( \frac{\operatorname{SQA}(\nu a + a)^{\frac{1}{2}} - \frac{\operatorname{SQA}(2a)}{a}}{a} - \frac{\operatorname{SQA}(\nu a)^{\frac{1}{2}} - \frac{\operatorname{SQA}(a)}{a}}{a} \right)$$

$$\geq 0 \Leftrightarrow \frac{(-1)^{\nu}}{a^{\nu}} \left( \sum_{j=0}^{\nu} (-1)^{j} {\nu \choose j} \operatorname{SQA}((\nu - j + 1) a) \right) \geq 0$$

$$\Rightarrow \sum_{j=0}^{\nu} (-1)^{j} {\nu \choose j} \mathcal{B}_{i+j} \geq 0.$$

Based on the  $\nu {\rm th}$  orderliness, the  $\epsilon {\rm \textsc{-}binomial}$  mean is introduced as

$$\mathrm{BM}_{\nu,\epsilon,n} \coloneqq \frac{1}{n} \left( \sum_{i=1}^{\frac{1}{2}\epsilon^{-1}(\nu+1)^{-1}} \sum_{j=0}^{\nu} \left( 1 - \left(-1\right)^{j} \binom{\nu}{j} \right) \mathfrak{B}_{i_{j}} \right),$$

where  $\mathfrak{B}_{i_j} = \sum_{l=n\epsilon(j+(i-1)(\nu+1)+1)}^{n\epsilon(j+(i-1)(\nu+1)+1)} (X_l + X_{n-l+1}), \frac{1}{2}\epsilon^{-1}(\nu+1)^{-1} \in \mathbb{N}$ . If  $\nu$  is not indicated, it is default as  $\frac{1}{2}\epsilon^{-1} - 1$ . The solution for  $n \mod \epsilon^{-1} \neq 0$  is the same as that in the stratified mean.  $\mathrm{BM}_{\nu=2,\epsilon}$  is identical to  $\mathrm{SM}_{\epsilon,b=3}$ , if the two  $\epsilon$ s are the same. The reason that  $\mathrm{SM}_{\frac{1}{9}}$  has similar biases as the corresponding  $\mathrm{WM}_{\frac{1}{9}}$  is the Winsorized mean is using two single quantiles to replace the trimmed parts, not two blocks.

If using single quantiles, based on the second orderliness, the stratified quantile mean can be defined as

$$SQM_{\epsilon,n} := 4\epsilon \sum_{i=1}^{\frac{1}{4\epsilon}} \frac{1}{2} (\hat{Q}_n ((2i-1)\epsilon) + \hat{Q}_n (1-(2i-1)\epsilon)),$$

where  $\frac{1}{\epsilon} \mod 4 = 0$ . SQM<sub> $\frac{1}{4}$ </sub> is the Tukey's midhinge (41). The biases of SQM<sub> $\frac{1}{8}$ </sub> are also very close to those of BM<sub> $\frac{1}{8}$ </sub> (Figure 1), which is based on the third orderliness.

357

362

363

364

365

367

370

371

372

### Hodges-Lehmann inequality and U-orderliness

The Hodges-Lehmann estimator is a very unique robust location estimator due to its definition being substantially dissimilar from conventional symmetric weighted averages. Hodges and Lehmann (10) in the landmark paper Estimates of location based on rank tests proposed two methods to compute the H-L estimator, Wilcoxon score and median of pairwise means, whose time complexities are  $O(n\log(n))$  and  $O(n^2)$ , respectively. The Wilcoxon score is an estimator based on signed-rank test, or R-statistic (10). However, the median of pairwise means is a generalized L-statistic (classified by Serfling in 1984) (42) and a trimmed U-statistic (classified by Janssen, Serfling, and Veraverbeke in 1987) (43). By using the  $hl_k$  kernel pointed by Janssen, Serfling and Veraverbeke in 1987 (43) and weighted average generalized here, it is clear now that the H-L estimator is a weighted H-L mean, the definition of which is provided as follows,

$$WHLM_{k,\epsilon,\gamma,n} := WA_{\epsilon,\gamma,n} \left( \left( hl_k \left( X_{N_1}, \cdots, X_{N_k} \right) \right)_{N=1}^{\binom{n}{k}} \right),$$

where  $hl_k = \frac{1}{k} \sum_{i=1}^k x_i$ ,  $\text{WA}_{\epsilon,\gamma,n}(Y)$  denotes the  $\epsilon,\gamma$ -weighted average with the sequence  $\left(hl_k\left(X_{N_1},\cdots,X_{N_k}\right)\right)_{N=1}^{\binom{n}{k}}$  as an input. Set the WA as  $\text{TM}_{\epsilon}$ , the k=2 case is the Wilcoxon's one-sample statistic investigated by Saleh in 1976 (44), which is named as trimmed H-L mean here (Figure 1). The  $hl_2$  kernel distribution has a probability density function  $f_{hl_2}(x) = \int_0^{2x} 2f\left(t\right) f\left(2x-t\right) dt$  (a result after the transformation of variables), the support of the original distribution is assumed to be  $[0,\infty)$  for simplicity. The expected value is the solution of  $\int_0^{\text{H-L}} \left(f_{hl_2}(s)\right) ds = \frac{1}{2}$ . Due to the complexity of the equation, analytically proving the validity of the mean-H-L-median inequality for a distribution is hard. As an example, for the exponential distribution,  $f_{hl_2}(x) = 4\lambda^{-2}xe^{-2\lambda^{-1}x}$ ,  $E[\text{H-L}] = \frac{-W-1\left(-\frac{1}{2e}\right)-1}{2}\lambda \approx 0.839\lambda$ , where W is the Lambert W function.

Analogous to the trimming inequality, the Hodges-Lehmann inequality can be defined as  $\forall n \geq k_2 \geq k_1 \geq 1, m \text{HLM}_{k_2} \geq m \text{HLM}_{k_1}$ , where  $m \text{HLM}_k$  is setting the WA as median. Since  $m \text{HLM}_{k=1} = m, \ m \text{HLM}_{k=2} = \text{H-L}, \ m \text{HLM}_{k=\infty} = \mu, \ \text{if a distribution follows the H-L inequality, it also follows the mean-H-L-median inequality. Furthermore, the Hodges-Lehmann inequality is a special case of the <math>U$ -orderliness, i.e.,

$$\begin{split} &(\forall n \geq k_2 \geq k_1 \geq 1, \mathrm{SQHLM}_{k_2,\epsilon} \geq \mathrm{SQHLM}_{k_1,\epsilon}) \wedge \\ &(\forall n \geq k_2 \geq k_1 \geq 1, \mathrm{SQHLM}_{k_2,\epsilon} \leq \mathrm{SQHLM}_{k_1,\epsilon}), \end{split}$$

where SQHLM<sub>k</sub> is setting the WA as SQA. The direction of the inequality depends on SQA<sub>\epsilon</sub> and \(\mu\), since SQHLM<sub>k=1,\epsilon</sub> = SQA<sub>\epsilon</sub>. \(\gamma\text{-}U\)-orderliness is just replacing SQA with QA.



Fig. 1. Standardized asymptotic biases (with respect to  $\mu$ ) of fifteen robust location estimators (including three that detailed in another relevant paper for better comparison) in four two-parameter skewed unimodal distributions as a function of the kurtosis. The methods were described in the SI Text.

**Theorem .9.** *U-orderliness implies orderliness.* 

380

381

382

383

384

386

387

388

389

390

391

393

396

397

398

400

402

403

404

405

406

407

408

409

410

411

413

Proof. Suppose  $n \bmod 2 = 0, \ n \to \infty, \ \frac{1}{2} \left( X_1 + X_n \right) \ge \ldots \ge \frac{1}{2} \left( X_i + X_{n-i+1} \right) \ge \ldots \ge \frac{1}{2} \left( X_{\frac{n}{2}} + X_{\frac{n}{2}+1} \right)$  is valid for a sample from an ordered distribution. Let  $\tilde{\epsilon} = \frac{i}{n}$ , when  $\tilde{\epsilon} \to 0$ ,  $\mathrm{SQHLM}_{k_2,\tilde{\epsilon}} \le \mathrm{SQHLM}_{k_1,\tilde{\epsilon}}$  is equivalent to the orderliness, since  $\mathrm{SQHLM}_{k=j,\tilde{\epsilon}\to 0,n} = \frac{1}{2j} \left( \sum_{i=1}^{j} (X_i + X_{n-i+1}) \right)$  and Theorem .7 implies that  $\mu \le \mathrm{SQA}_{\epsilon}$ .

Be aware that the U-orderliness itself does not assume any orderliness within the  $hl_k$  kernel distribution. The  $hl_{k=n-1}$ kernel distribution has n elements, and their order is the same as the original distribution, so it is ordered if and only if the original distribution is ordered. If assuming symmetry, the result is trivial since the k-fold convolutions of a symmetric distribution is also symmetric (proved by Laha in 1961)(45). However, proving other cases is challenging. For example,  $f'_{hl_2}(x) = 4f(2x) f(0) + \int_0^{2x} 4f(t) f'(2x-t) dt$ , the strict negative of  $f'_{hl_2}(x)$  is not guaranteed if just assuming f'(x) < 0, so, even if the original distribution is monotonic, the  $hl_2$ kernel distribution might be non-monotonic. Also, unlike the pairwise difference distribution, if the original distribution is unimodal, the pairwise mean distribution might be nonunimodal, as demonstrated by a counterexample was given by Chung in 1953 and mentioned by Hodges and Lehmann in 1954 (46, 47). If all  $hl_k$  kernel distributions,  $n \geq k \geq 1$ , are  $\nu$ th ordered, then the distribution is  $\nu$ th U-ordered. From that, the binomial H-L mean (set the WA as BM) is the bias-optimum choice in the semiparametric framework (Figure 1), although its maximum breakdown point is  $\approx 0.065$  if  $\nu = 3$ . A comparison of the biases of  $m{\rm HLM}_{k=5}$  and  ${\rm BM}_{\frac{1}{2}}$ is appropriate (Figure 1), given their comparable breakdown points, with  $m{\rm HLM}_{k=5}$  exhibiting smaller biases. This result, combined with Theorem .9, aligns with Devroye et al. (2016)'s seminal work that MoM is nearly optimal with regards to concentration bounds (20), since when k is much smaller than n, the difference between sampling with replacement and without replacement is negligible,  $mHLM_{k,n}$  is asymptotically

equivalent to  $\mathrm{MoM}_{k,b=\frac{n}{k}}$  if assuming  $k \ll n$ . Hence, it is also based on U-orderliness.

415

416

417

418

419

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

445

447

449

450

451

452

453

454

455

In 1958, Richtmyer introduced the concept of quasi-Monte Carlo simulation that utilizes low-discrepancy sequences, resulting in a significant reduction in computational expenses for large sample simulation (48). Among various numerical sets, Sobol sequences are often favored in quasi-Monte Carlo methods (49). Building upon this principle, in 1991, Do and Hall extended it to bootstrap and found that the quasi-random approach resulted in lower variance compared to other bootstrap Monte Carlo procedures, indicating its superiority (50). If with a deterministic approach, the variance of  $mHLM_{k,n}$ is much lower than that of  $MoM_{k,b=\frac{n}{k}}$  (SI Dataset S1). The median Hodges-Lehmann mean is better than the median of means, not only because it can provide an exact estimate when the sample size is moderate, but also because it allows the use of quasi-bootstrap and the bootstrap size can be set to an arbitrary value during usage.

Data Availability. Data for Figure 1 are given in SI Dataset S1. All codes have been deposited in GitHub.

**ACKNOWLEDGMENTS.** I gratefully acknowledge the valuable comments by the editor which substantially improved the clarity and quality of this paper.

- CF Gauss, Theoria combinationis observationum erroribus minimis obnoxiae. (Henricus Dieterich), (1823).
- C Bernard, R Kazzi, S Vanduffel, Range value-at-risk bounds for unimodal distributions under partial information. *Insur. Math. Econ.* 94, 9–24 (2020).
- S Karlin, A Novikoff, Generalized convex inequalities. Pac. J. Math. 13, 1251–1279 (1963).
- L Li, H Shao, R Wang, J Yang, Worst-case range value-at-risk with partial information. SIAM J. on Financial Math. 9, 190–218 (2018).
- 5. P Daniell, Observations weighted according to order. Am. J. Math. 42, 222-236 (1920).
- JW Tukey, A survey of sampling from contaminated distributions in Contributions to probability and statistics. (Stanford University Press), pp. 448–485 (1960).
- WJ Dixon, Simplified Estimation from Censored Normal Samples. The Annals Math. Stat. 31 385 – 391 (1960).
- M Bieniek, Comparison of the bias of trimmed and winsorized means. Commun. Stat. Methods 45, 6641–6650 (2016).
- K Danielak, T Rychlik, Theory & methods: Exact bounds for the bias of trimmed means. Aus. & New Zealand J. Stat. 45, 83–96 (2003).
- J Hodges Jr, E Lehmann, Estimates of location based on rank tests. The Annals Math. Stat. 34, 598–611 (1963).
- 11. F Wilcoxon, Individual comparisons by ranking methods. *Biom. Bull.* **1**, 80–83 (1945).

6 | Lee

- 12. AS Nemirovskij, DB Yudin, Problem complexity and method efficiency in optimization. (Wiley-456 457 Interscience), (1983),
- 13. MR Jerrum, LG Valiant, VV Vazirani, Random generation of combinatorial structures from a 458 459 uniform distribution. Theor. computer science 43, 169-188 (1986).
- 460 14. N Alon, Y Matias, M Szegedy, The space complexity of approximating the frequency moments 461 in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. pp. 462 20-29 (1996).
- 15. PL Bühlmann, Bagging, subagging and bragging for improving some prediction algorithms 463 464 in Research report/Seminar für Statistik, Eidgenössische Technische Hochschule (ETH). 465 (Seminar für Statistik, Eidgenössische Technische Hochschule (ETH), Zürich), Vol. 113, 466 (2003)
- 467 16. JY Audibert, O Catoni, Robust linear least squares regression. The Annals Stat. 39, 2766–2794 468 (2011).
- 469 17. D Hsu, S Sabato, Heavy-tailed regression with a generalized median-of-means in International 470 Conference on Machine Learning. (PMLR), pp. 37-45 (2014).
- 471 18. S Minsker, Geometric median and robust estimation in banach spaces. Bernoulli 21, 2308-2335 (2015). 472
- 473 19. C Brownlees, E Joly, G Lugosi, Empirical risk minimization for heavy-tailed losses. The Annals 474 Stat. 43, 2507-2536 (2015).
- 475 20. L Devroye, M Lerasle, G Lugosi, RI Oliveira, Sub-gaussian mean estimators. The Annals Stat. 476 44, 2695-2725 (2016).
- 477 21. E Joly, G Lugosi, Robust estimation of u-statistics. Stoch. Process. their Appl. 126, 3760-3773
- 478 (2016)479 22. P Laforgue, S Clémençon, P Bertail, On medians of (randomized) pairwise means in Interna-
- tional Conference on Machine Learning. (PMLR), pp. 1272-1281 (2019). 480 23. B Efron, Bootstrap methods: Another look at the jackknife. The Annals Stat. 7, 1-26 (1979).
- 481 24. PJ Bickel, DA Freedman, Some asymptotic theory for the bootstrap. The annals statistics 9, 482 483 1196-1217 (1981).
- 484 25. PJ Bickel, DA Freedman, Asymptotic normality and the bootstrap in stratified sampling. The 485 annals statistics 12, 470-482 (1984).
- 26. R Helmers, P Janssen, N Veraverbeke, Bootstrapping U-quantiles. (CWI. Department of 486 487 Operations Research, Statistics, and System Theory [BS]), (1990).
- 27. J Neyman, On the two different aspects of the representative method: The method of stratified 488 489 sampling and the method of purposive selection. J. Royal Stat. Soc. 97, 558-606 (1934).
- 490 28. RV Hogg, Adaptive robust procedures: A partial review and some suggestions for future 491 applications and theory. J. Am. Stat. Assoc. 69, 909-923 (1974).
- 492 29. C Stein, , et al., Efficient nonparametric testing and estimation in Proceedings of the third Berkeley symposium on mathematical statistics and probability. Vol. 1, pp. 187–195 (1956). 493
- 30. P Bickel, CA Klaassen, Y Ritov, JA Wellner, Efficient and adaptive estimation for semiparamet-494 495 ric models. (Springer) Vol. 4, (1993).
  - 31. JT Runnenburg, Mean, median, mode. Stat. Neerlandica 32, 73-79 (1978).
  - Wv Zwet, Mean, median, mode ii. Stat. Neerlandica 33, 1-5 (1979).
- 33. S Basu, A DasGupta, The mean, median, and mode of unimodal distributions: a characteriza-498 tion. Theory Probab. & Its Appl. 41, 210-223 (1997). 499
- 34. S Dharmadhikari, K Joag-Dev, Unimodality, convexity, and applications. (Elsevier), (1988). 500
  - 35. KM Abadir, The mean-median-mode inequality: Counterexamples. Econom. Theory 21, 477-482 (2005).
- 36. K Pearson, X, contributions to the mathematical theory of evolution,—ii, skew variation in 503 homogeneous material. Philos. Transactions Royal Soc. London.(A.) 186, 343-414 (1895). 504
- 37. AL Bowley, Elements of statistics, (King) No. 8, (1926). 505
- 38. RA Groeneveld, G Meeden, Measuring skewness and kurtosis. J. Royal Stat. Soc. Ser. D 506 507 (The Stat. 33, 391-399 (1984).
- 39. WR van Zwet, Convex Transformations of Random Variables; Nebst Stellingen, (1964). 508 509
  - 40. H Rietz, On certain properties of frequency distributions of the powers and roots of the variates of a given distribution, Proc. Natl. Acad. Sci. 13, 817-820 (1927).
- 41. JW Tukey, , et al., Exploratory data analysis. (Reading, MA) Vol. 2, (1977). 511 512
  - 42. RJ Serfling, Generalized I-, m-, and r-statistics. The Annals Stat. 12, 76-86 (1984).
- 513 43. P Janssen, R Serfling, N Veraverbeke, Asymptotic normality of u-statistics based on trimmed 514 samples. J. statistical planning inference 16, 63-74 (1987).
- 515 44. A Ehsanes Saleh, Hodges-lehmann estimate of the location parameter in censored samples. 516 Annals Inst. Stat. Math. 28, 235-247 (1976).
- 45. RG Laha, On a class of unimodal distributions. Proc. Am. Math. Soc. 12, 181-184 (1961). 517 518
  - 46. J Hodges, E Lehmann, Matching in paired comparisons. The Annals Math. Stat. 25, 787-791 (1954)
- 520 K Chung, Sur les lois de probabilité unimodales. COMPTES RENDUS HEBDOMADAIRES 521 DES SEANCES DE L'ACADEMIE DES SCIENCES 236, 583-584 (1953).
- 522 48. RD Richtmyer, A non-random sampling method, based on congruences, for" monte carlo" 523 problems, (New York Univ., New York. Atomic Energy Commission Computing and Applied ...), 524 Technical report (1958).
- IM Sobol', On the distribution of points in a cube and the approximate evaluation of integrals. 525 526 Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki 7, 784-802 (1967).
- 527 50. KA Do, P Hall, Quasi-random resampling for the bootstrap. Stat. Comput. 1, 13-22 (1991).

496

497

501

502

510

519