Probabilità e Statistica (Informatica) 2021/22, Foglio IV

21 dicembre 2021

Esercizio 1. Sia X una variabile aleatoria reale su $(\Omega, \mathcal{F}, \mathbf{P})$. Nei seguenti tre casi si determinino media e varianza di X (se esistono in \mathbb{R}):

- Qua si tratta di calcolare in tutti i casi; immediato nel caso 1, nel secondo si considerano tutti i casi in cui le due funzioni indicatrici valgono 1 e 0. Nel terzo pure è immediato, vale 1/lambda (parametro, quindi 1)
- (ii) X ha funzione di ripartizione F_X data da $F_X(x) \doteq x^3 \cdot \mathbf{1}_{[0,1)}(x) + \mathbf{1}_{[1,\infty)}(x)$, $x \in \mathbb{R}$;
- (iii) $X = \exp(Z)$ per una variabile aleatoria Z esponenziale di parametro uno.

Si trova la funz. di ripartizione facendone l'integrale, poi andando a porlo uguale ad 1 (condizione di normalizzazione), così capendo se è ass. continua o meno.

Esercizio 2. Sia X una variabile aleatoria reale su $(\Omega, \mathcal{F}, \mathbf{P})$ con distribuzione esponenziale di parametro $\lambda > 0$. Poniamo

$$Y(\omega) \doteq \sqrt{X(\omega)}, \quad \omega \in \Omega.$$

Si calcoli la funzione di ripartizione di Y e si decida se Y è assolutamente continua o meno.

Prima deve valere l'integrale tra -pi/2 e pi/2 su Y e poi deve valere l'integrale tra -inf e t per la seconda

Esercizio 3 (Esercizio 6.7 in CD). Sia X una variabile aleatoria con distribuzione uniforme su $(-\pi/2,\pi/2)$. Poniamo $Y \doteq \cos(X)$. Si mostri che Y è assolutamente continua e se ne determini la densità.

Si fa l'integrale ma si nota che Y=1 (non può essere (0, -1) e facendo l'integrale risulta t -inf e si vede che non è né discreta né continua.

Esercizio 4 (Esercizio 6.11 in CD). Sia X una variabile aleatoria reale con distribuzione uniforme su (-1,1). Poniamo $Y \doteq X^+ = \max\{0,X\}$. Si determini la funzione di ripartizione di Y e si deduca che Y non è né discreta né assolutamente continua.

Soluzione: https://ibb.co/sHyjDbs

Esercizio 5 (Esercizio 7.8 in CD). "Un congegno è costituito da una componente elettrica che viene rimpiazzata non appena smette di funzionare. Dunque, se T_1, T_2, \ldots, T_n sono i tempi di vita di n componenti che si hanno a disposizione, il tempo di vita totale del congegno è $T = T_1 + T_2 + \ldots + T_n$. Si supponga che $T_i \sim \text{Exp}(1)$, e che le T_i siano indipendenti. Utilizzando l'approssimazione normale, si calcolino:

- (i) se n = 100 la probabilità $\mathbf{P}(T < 90)$;
- (ii) il valore minimo di n per cui $\mathbf{P}(T < 90) \le 0.05$."

Considerando le ripetizioni e la p tra 0 e 1 si usa la distr. geometrica con Bernoulli (quindi p*(1-p)). Il val. massimo potrà essere solo 1/2.

Esercizio 6. Lanciamo una moneta non necessariamente equilibrata n volte. Sia $k \in \{0, ..., n\}$. Se $p \in [0, 1]$ denota la probabilità di ottenere testa in un singolo lancio, per quale valore di p diventa massima la probabilità di ottenere k volte testa in n lanci?

Esercizio 7. Sia $(X_n)_{n\in\mathbb{N}}$ una successione di variabili aleatorie indipendenti ed identicamente distribuite su $(\Omega, \mathcal{F}, \mathbf{P})$ con comune distribuzione uniforme Unif(0, a) per un a > 0. Poniamo

$$Y_n \doteq \max\{X_1, \dots, X_n\}, \quad n \in \mathbb{N}.$$

- Qui, sapendo che nella unif. il val. atteso è b+a/2, sarà quello; (i) Si calcoli $\mathbf{E}\left[Y_n\right]$ per ogni $n\in\mathbb{N}$. altrimenti si dimostra facendo l'integrale di x*max(X1...Xn)
- (ii) Come si comporta $\mathbf{E}[Y_n]$ per $n \to \infty$? Per n->inf, per la convergenza, tende ad Yn

Contatto: Markus Fischer (fischer@math.unipd.it)