Reinforcement Learning

Introduction to Reinforcement Learning

λG

Super Mano

Actions in M

Who was delay.

Go

Stor craft

Supervised

Intro to RL Page 2

Situations - Actions Stato - Achour [fal of lares learning from interaction. (i) Tabular _____ DRZ ->MOP -General dis cursion oner (3) Appron

- duzzes -s Coding.

- M - Statel prob - Defen

u Reinfrorcemel Learning i An instruduction?

- Sutton & Barto.

Reinforcement Learning Building blocks Reinforcement Learning

-> Agort - " ghe model"

-> Environment & States -> Snepstot of env.

\[
\text{\text{\text{Proposed from of the problem.}}}\]

-> Actions -> "moves"

Reinforcement Learning Building blocks Reinforcement Learning - Examples

Eum., agal, stele, action, voluer, polities.

-> Soft driving cor in a simulation

Robert Della Germanal

Env: Simulator State: Front, rear, side speed, acel, road, angle.

Reward i -1 cach parsing
timestep
-5 go off the lone
-10 jump of the
signd
-1000 bit someone

-> Tic-Jac-be

n - Game board day

-> Tic-Jac-be

opposed born.

En: - Game board day

State 1- X's on D's on board.

Pour plaine D.

Pour standon.

-s Mobile rep billing robot.

Constant Con

Em !- The complete floor.

State Front, side rear battery to, space in rog bag.

leword? for rog colleulad. _100; shek.

- lobot lear to walk

Simulator.

State 2 Pos. of joint, and porting of joints, joint porting and the porting of joints.

New and the forest joints.

Authors to optimal.

Reinforcement Learning Introduction to the K-Armed Bandit Problem

Reinforcement Learning Solving K-armed bandit - Greedy method

K actions

Calculating action value estimates

				1		2	1	K=3 Randonly. A, B, C
	t	$Q_t(A)$	$Q_t(B)$	$Q_t(C)$	A	B	С	·
ſ	1	0	0	O	2			
	2	2	0	0		()		0 +1
	3	2	1	Ō				
	4	(1-5)	\perp (1)	O			(3)	2
	5	15		3			(-1)	
	6	1.5	1	4)				
		0.0	2 5	Leward	, du 87	و ق	41	~ ~1.7
				no	of hi	nes a	osen k	efret

	t	$Q_t(A)$	$Q_t(B)$	$Q_t(C)$	Α	В	С
→	1	0	0	0	-1		
->	2	~\	0	D		2	
~	3	1	2	0		-5	
->	4	1	-115	0			\
_>>	5	-1	-1.5	1			1
_ //	6	-1	4.5	1			

A, B, C Greedin, 2+(-5) 245

Calculating action value estimates incrementally

(n+1) -> R, kr, ks, kn -- kn action a $Q_{n+1} = \frac{R_1 + R_2 + \dots + R_n}{r}$ $= \frac{1}{r} \sum_{i \in I} R_i$ $= \frac{1}{r} \sum_{i \in I} R_i$

Greedy Algorithm for K-Armed bandit

Initialize, for
$$a = 1$$
 to k :

$$Q(a) \leftarrow 0$$

$$N(a) \leftarrow 0$$

$$Repeat forever:$$

$$A \leftarrow argmax_aQ(a)$$

$$R \leftarrow bandit(A)$$

$$N(A) \leftarrow N(A) + 1$$

$$Q(A) \leftarrow Q(A) + \frac{1}{N(A)}[R - Q(A)]$$

Reinforcement Learning Solving K-armed bandit - Epsilon Greedy method

Exploration and exploitation

Emploiting -> Best use of annual knowledge

Suplane -> Non ophmal move

Emploit 2 -> Euplone (E) = 5%

(1-E) = 95%

Epsilon Greedy Algorithm

```
Initialize, for a = 1 to k:
Q(a) \leftarrow 0
N(a) \leftarrow 0
Initialize \epsilon
Repeat forever:
A \leftarrow \begin{cases} argmax_aQ(\overline{a}) & \text{with probability } (1 - \epsilon) \\ a random \ action & \text{with probability } \epsilon \end{cases}
R \leftarrow bandit(A)
N(A) \leftarrow N(A) + 1
Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)]
```

Decaying - Epsilon Greedy Algorithm

```
Initialize, for a=1 to k:
Q(a) \leftarrow 0
N(a) \leftarrow 0
Initialize \epsilon
Repeat forever:
A \leftarrow \begin{cases} argmax_aQ(a) & \text{with probability } (1-\epsilon) \\ a random \ action & \text{with probability } \epsilon \end{cases}
R \leftarrow bandit(A)
N(A) \leftarrow N(A) + 1
Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)]
Decrease value of \epsilon
```

Reinforcement Learning Solving K-armed bandit - Upper Confidence Bounds

UCB1 Algorithm:

Initialize, for
$$a = 1$$
 to k :
$$Q(a) \leftarrow 0$$

$$N(a) \leftarrow 0$$
Repeat forever:
$$A \leftarrow argmax_a[Q(a) + \frac{2 \ln t}{N(a)}]$$

$$R \leftarrow bandit(A)$$

$$N(A) \leftarrow N(A) + 1$$

$$Q(A) \leftarrow Q(A) + \frac{1}{N(A)}[R - Q(A)]$$

Performance comparison:

2000 - 1 K 210