EXPECTATION MAXIMIZATION POUR LES CHAÎNES DE MARKOV CACHÉES DISCRÈTES

Soit $(X_k)_{0 \le k \le n}$ une chaîne de Markov discrète à valeurs dans $\{1,\ldots,r\}$, de matrice de transition Q et de loi initiale ν . On considère que cette chaîne est uniquement observée au travers des variables $(Y_k)_{0 \le k \le n}$, indépendantes conditionnellement à $(X_k)_{0 \le k \le n}$ et telles que pour tout $0 \le \ell \le n$, la loi de Y_ℓ sachant $(X_k)_{0 \le k \le n}$ est une gaussienne de moyenne μ_{X_ℓ} et de variance v_{X_ℓ} . Le paramètre inconnu est ici $\theta = \{\mu_1, \ldots, \mu_r, v_1, \ldots, v_r\}$.

- 1. Écrire la logyraisemblance jointe de $(X_{0:n}, Y_{0:n})$: $\theta \mapsto \log p_{\theta}(X_{0:n}, Y_{0:n})$.
- 2. Écrire la quantité intermédiaire de l'EM $Q(\theta, \theta')$ pour tout θ, θ' :

$$Q(\theta, \theta') = \mathbb{E}_{\theta'} \left[\log p_{\theta}(X_{0:n}, Y_{0:n}) | Y_{0:n} \right].$$

3. Écrire cette quantité en faisant apparaître les probabilités

$$\omega_{k-1,k}^{\theta}(i,j) = \mathbb{P}_{\theta}\left(X_{k-1} = i, X_k = j | Y_{0:n}\right),$$

pour $0 \le k \le n$.

- 4. À l'itération $p \geq 0$, on dispose de l'estimation $\hat{\theta}^{(p)}$. Écrire l'estimateur $\hat{\theta}^{(p+1)}$ en maximisant $\theta \mapsto Q(\theta, \hat{\theta}^p)$, donner la valeur de $\theta^{(p+1)}$ en fonction des $\omega_{k-1,k}^{\theta^{(p)}}(i,j)$, $1 \leq k \leq n$, $1 \leq i,j \leq r$.
- 5. Dans le cas où on souhaite également apprendre la loi initiale de la chaîne de Markov, i.e. si l'on note $\nu_i = \mathbb{P}(X_0 = i), \ 1 \le i \le r$ et que $\theta = \{\mu_1, \dots, \mu_r, \nu_1, \dots, \nu_r, \nu_1, \dots, \nu_r\}$, donner les équations de mise à jour de ν .
- 6. En admettant que l'on peut intervetir les calculs de gradients et les espérances, calculer le gradient de la logvraisemblance des observations : $\theta \mapsto \nabla_{\theta} \log p_{\theta}(Y_{0:n})$.
- 7. En déduire un algorithme de mise à jour des paramètres de type "descente de gradient".
- 8. Bonus: Calcul des $\omega_{k-1,k}^{\theta}(i,j)$, $1 \leq k \leq n$, $1 \leq i,j \leq r$.
 - (a) Montrer que l'on peut calculer récursivement $\mathbb{P}_{\theta}(X_k = i | Y_{0:k}), 0 \le k \le n, 1 \le i, j \le r.$
 - (b) Montrer que l'on peut calculer récursivement, de k=n à k=0, $\mathbb{P}_{\theta}(X_k=i|Y_{0:n})$, $0 \le k \le n$, $1 \le i \le r$.
 - (c) Conclure.