An introduction to the structured variational autoencoders (SVAE)

Sharad Vikram July 31, 2017

Variational inference

Variational inference
Variational message passing
Gradient-based variational inference
Structured variational autoencoder
Conclusion
Applications
Current work

In Bayesian inference, we compute the posterior distribution of observations given data.

In Bayesian inference, we compute the posterior distribution of observations given data.

In Bayesian inference, we compute the posterior distribution of observations given data.

We are interested in the posterior distribution p(x, y|z)

In Bayesian inference, we compute the posterior distribution of observations given data.

We are interested in the posterior distribution p(x, y|z)

This can be computed via Bayes rule:

$$p(x, y|z) = \frac{p(x, y, z)}{p(z)} = \frac{p(x)p(y|x)p(z|x, y)}{\int p(x)p(y|x)p(z|x, y) dxdy}$$

Example PGM

Latent variable model: Gaussian mixture model

$$\pi \sim \text{Dir}(\alpha)$$

$$\mu_k, \Sigma_k \sim \mathcal{N}\mathcal{T}\mathcal{W}(\psi, \mu_0, \kappa, \nu)$$

$$z_i | \pi \sim \text{Cat}(\pi)$$

$$x_i | z_i, \boldsymbol{\mu}, \boldsymbol{\Sigma} \sim \mathcal{N}(\mu_{z_i}, \Sigma_{z_i})$$

Example PGM

Latent variable model: Gaussian mixture model

$$\pi \sim \text{Dir}(\alpha)$$

$$\mu_k, \Sigma_k \sim \mathcal{N} \mathcal{I} \mathcal{W}(\psi, \mu_0, \kappa, \nu)$$

$$z_i | \pi \sim \text{Cat}(\pi)$$

$$x_i | z_i, \boldsymbol{\mu}, \boldsymbol{\Sigma} \sim \mathcal{N}(\mu_{z_i}, \Sigma_{z_i})$$

Local variables: $\{z_i\}_{i=1}^N$

Example PGM

Latent variable model: Gaussian mixture model

$$\pi \sim \text{Dir}(\alpha)$$

$$\mu_k, \Sigma_k \sim \mathcal{N}\mathcal{I}\mathcal{W}(\psi, \mu_0, \kappa, \nu)$$

$$z_i | \pi \sim \text{Cat}(\pi)$$

$$x_i | z_i, \boldsymbol{\mu}, \boldsymbol{\Sigma} \sim \mathcal{N}(\mu_{z_i}, \Sigma_{z_i})$$

Local variables: $\{z_i\}_{i=1}^N$

Global variables: π, μ, Σ

Conjugate

Two random variables x and y whose distribution is

$$p(x, y) = p(x)p(y|x)$$

are said to be *conjugate* if the posterior p(x|y) is in the same family of distributions as p(x).

Conjugate

Two random variables x and y whose distribution is

$$p(x, y) = p(x)p(y|x)$$

are said to be *conjugate* if the posterior p(x|y) is in the same family of distributions as p(x).

Examples of conjugate distributions:

· Normal/normal

Conjugate

Two random variables x and y whose distribution is

$$p(x, y) = p(x)p(y|x)$$

are said to be *conjugate* if the posterior p(x|y) is in the same family of distributions as p(x).

Examples of conjugate distributions:

- · Normal/normal
- Normal-inverse-wishart(NIW)/normal

Conjugate

Two random variables x and y whose distribution is

$$p(x, y) = p(x)p(y|x)$$

are said to be *conjugate* if the posterior p(x|y) is in the same family of distributions as p(x).

Examples of conjugate distributions:

- · Normal/normal
- Normal-inverse-wishart(NIW)/normal
- · Dirichlet/multinomial

A probability distribution is in the *exponential family* if it can be parametrized in the following way.

A probability distribution is in the *exponential family* if it can be parametrized in the following way.

$$p(x|\theta) = h(x) \exp \{ \langle \eta(\theta), t_x(x) \rangle - \log Z(\eta(\theta)) \}$$

A probability distribution is in the *exponential family* if it can be parametrized in the following way.

$$p(x|\theta) = h(x) \exp \{ \langle \eta(\theta), t_x(x) \rangle - \log Z(\eta(\theta)) \}$$

where

• h(x) - base measure

A probability distribution is in the *exponential family* if it can be parametrized in the following way.

$$p(x|\theta) = h(x) \exp \{ \langle \eta(\theta), t_x(x) \rangle - \log Z(\eta(\theta)) \}$$

- h(x) base measure
- $\eta(\theta)$ natural parameter function

A probability distribution is in the *exponential family* if it can be parametrized in the following way.

$$p(x|\theta) = h(x) \exp \{ \langle \eta(\theta), t_x(x) \rangle - \log Z(\eta(\theta)) \}$$

- h(x) base measure
- · $\eta(\theta)$ natural parameter function
- $t_x(x)$ sufficient statistic function

A probability distribution is in the *exponential family* if it can be parametrized in the following way.

$$p(x|\theta) = h(x) \exp \{ \langle \eta(\theta), t_x(x) \rangle - \log Z(\eta(\theta)) \}$$

- h(x) base measure
- · $\eta(\theta)$ natural parameter function
- $t_x(x)$ sufficient statistic function
- $\log Z(\eta(\theta))$ log-partition function

A probability distribution is in the *exponential family* if it can be parametrized in the following way.

$$p(x|\theta) = h(x) \exp \{ \langle \eta(\theta), t_x(x) \rangle - \log Z(\eta(\theta)) \}$$

where

- h(x) base measure
- · $\eta(\theta)$ natural parameter function
- $t_x(x)$ sufficient statistic function
- $\log Z(\eta(\theta))$ log-partition function

Examples: Gaussian, Categorical, Dirichlet, inverse-Wishart

Depending on the structure of the graphical model and conjugacy of the variables, computing the posterior distribution can be easy, or very hard!

Depending on the structure of the graphical model and conjugacy of the variables, computing the posterior distribution can be easy, or very hard!

Possible ways:

Compute posterior analytically

Depending on the structure of the graphical model and conjugacy of the variables, computing the posterior distribution can be easy, or very hard!

- · Compute posterior analytically
- Sampling (MCMC, Gibbs sampling)

Depending on the structure of the graphical model and conjugacy of the variables, computing the posterior distribution can be easy, or very hard!

- · Compute posterior analytically
- · Sampling (MCMC, Gibbs sampling)
- · Expectation-maximization

Depending on the structure of the graphical model and conjugacy of the variables, computing the posterior distribution can be easy, or very hard!

- · Compute posterior analytically
- Sampling (MCMC, Gibbs sampling)
- · Expectation-maximization
- Variational inference

Depending on the structure of the graphical model and conjugacy of the variables, computing the posterior distribution can be easy, or very hard!

- · Compute posterior analytically
- Sampling (MCMC, Gibbs sampling)
- · Expectation-maximization
- Variational inference

For graphical models where we can't compute the posterior analytically, **variational inference** is a viable approach.

For graphical models where we can't compute the posterior analytically, **variational inference** is a viable approach.

Consider a latent variable model with global variables θ , local variables z and observations x. Our desired posterior is $p(\theta, z|x)$

For graphical models where we can't compute the posterior analytically, **variational inference** is a viable approach.

Consider a latent variable model with global variables θ , local variables z and observations x. Our desired posterior is $p(\theta, z|x)$

Strategy: convert inference into optimization

For graphical models where we can't compute the posterior analytically, **variational inference** is a viable approach.

Consider a latent variable model with global variables θ , local variables z and observations x. Our desired posterior is $p(\theta, z|x)$

Strategy: convert inference into optimization

- Instantiate $\textit{variational distribution } q_{\phi}(\theta, z)$ where ϕ are free parameters

For graphical models where we can't compute the posterior analytically, **variational inference** is a viable approach.

Consider a latent variable model with global variables θ , local variables z and observations x. Our desired posterior is $p(\theta, z|x)$

Strategy: convert inference into optimization

- · Instantiate variational distribution $q_{\phi}(\theta,z)$ where ϕ are free parameters
- Define loss $\mathrm{KL}(q_{\phi}(\theta,z) \| p(\theta,z|x))$

For graphical models where we can't compute the posterior analytically, variational inference is a viable approach.

Consider a latent variable model with global variables θ , local variables z and observations x. Our desired posterior is $p(\theta, z|x)$

Strategy: convert inference into optimization

- · Instantiate variational distribution $q_{\phi}(\theta,z)$ where ϕ are free parameters
- · Define loss $\mathrm{KL}(q_{\phi}(\theta,z) \| p(\theta,z|x))$
- · Minimize loss $\phi^* = \operatorname{argmin}_{\phi} \operatorname{KL}(q_{\phi}(\theta, z) \| p(\theta, z | x))$

For graphical models where we can't compute the posterior analytically, **variational inference** is a viable approach.

Consider a latent variable model with global variables θ , local variables z and observations x. Our desired posterior is $p(\theta, z|x)$

Strategy: convert inference into optimization

- · Instantiate variational distribution $q_{\phi}(\theta,z)$ where ϕ are free parameters
- · Define loss $\mathrm{KL}(q_{\phi}(\theta,z) \| p(\theta,z|x))$
- · Minimize loss $\phi^* = \operatorname{argmin}_{\phi} \operatorname{KL}(q_{\phi}(\theta, z) \| p(\theta, z | x))$

If $q(\theta,z)$ is sufficiently expressive, it can approximate $p(\theta,z|x)$ quite well.

KL-divergence

Kullback-Leibler (KL) divergence is a measure of how far one probability distribution is from another.

KL-divergence

Kullback-Leibler (KL) divergence is a measure of how far one probability distribution is from another.

For distributions q(x) and p(x),

$$\mathrm{KL}(q(x)||p(x)) = \int q(x) \log \frac{q(x)}{p(x)} dx = \mathbb{E}_{q(x)} \left[\log \frac{q(x)}{p(x)} \right]$$

KL-divergence

Kullback-Leibler (KL) divergence is a measure of how far one probability distribution is from another.

For distributions q(x) and p(x),

$$\mathrm{KL}(q(x)||p(x)) = \int q(x) \log \frac{q(x)}{p(x)} dx = \mathbb{E}_{q(x)} \left[\log \frac{q(x)}{p(x)} \right]$$

Properties:

- $\mathrm{KL}(q(x)||p(x)) = 0$ if q(x) = p(x).
- Asymmetric

Evidence lower bound

In general, we cannot even compute $KL(q(\theta,z)||p(\theta,z|x))$ because we don't know the posterior $p(\theta,z|x)$.

Evidence lower bound

In general, we cannot even compute $KL(q(\theta, z)||p(\theta, z|x))$ because we don't know the posterior $p(\theta, z|x)$.

We can rewrite the KL divergence as

$$KL(q(\theta, z) || p(\theta, z | x)) = \int q(\theta, z) \log \frac{q(\theta, z)}{p(\theta, z | x)} d\theta, z$$
$$= \log p(x) - \mathbb{E}_{q(\theta, z)} \left[\log \frac{p(x, \theta, z)}{q(\theta, z)} \right]$$

Evidence lower bound

In general, we cannot even compute $KL(q(\theta, z)||p(\theta, z|x))$ because we don't know the posterior $p(\theta, z|x)$.

We can rewrite the KL divergence as

$$KL(q(\theta, z) || p(\theta, z | x)) = \int q(\theta, z) \log \frac{q(\theta, z)}{p(\theta, z | x)} d\theta, z$$
$$= \log p(x) - \mathbb{E}_{q(\theta, z)} \left[\log \frac{p(x, \theta, z)}{q(\theta, z)} \right]$$

and maximize the evidence lower bound (ELBO)

$$\mathcal{L}[q(\theta, z)] = \mathbb{E}_{q(\theta, z)} \left[\log \frac{p(x, \theta, z)}{q(\theta, z)} \right]$$

How do we pick a $q(\theta, x)$?

How do we pick a $q(\theta, x)$?

In general, a broader $q(\theta,x)$ is harder to optimize.

Options:

How do we pick a $q(\theta, x)$?

In general, a broader $q(\theta, x)$ is harder to optimize.

Options:

• Mean-field $(q(\theta, x) = q(\theta)q(x))$

How do we pick a $q(\theta, x)$?

In general, a broader $q(\theta, x)$ is harder to optimize.

Options:

- Mean-field $(q(\theta, x) = q(\theta)q(x))$
- · Conjugate-exponential

How do we pick a $q(\theta, x)$?

In general, a broader $q(\theta, x)$ is harder to optimize.

Options:

- Mean-field $(q(\theta, x) = q(\theta)q(x))$
- · Conjugate-exponential
- \cdot Differentiable q

Mean-field variational inference

For a general graphical model with variables $\mathbf{X} = \{x_1, x_2, \ldots\}$ we have joint distribution

$$p(\mathbf{X}) = \prod_{i} p(x_i | \mathrm{pa}_i)$$

where pa_i are the parents of node x_i in the graph.

Mean-field variational inference

For a general graphical model with variables $\mathbf{X} = \{x_1, x_2, \ldots\}$ we have joint distribution

$$p(\mathbf{X}) = \prod_{i} p(x_i | \mathrm{pa}_i)$$

where pa_i are the parents of node x_i in the graph.

Let the set \mathbf{H} be all unobserved variables and \mathbf{V} be the observed.

Mean-field variational inference

For a general graphical model with variables $\mathbf{X} = \{x_1, x_2, \ldots\}$ we have joint distribution

$$p(\mathbf{X}) = \prod_{i} p(x_i | \mathrm{pa}_i)$$

where pa_i are the parents of node x_i in the graph.

Let the set \mathbf{H} be all unobserved variables and \mathbf{V} be the observed.

We are interested in the posterior $p(\mathbf{H}|\mathbf{V})$ and use variational distribution

$$q(\mathbf{H}) = \prod_{i} q(\mathbf{H}_i)$$

Mean-field variational inference (cont.)

The ELBO is now

$$\begin{split} \mathcal{L}[q(\mathbf{H})] &= \mathbb{E}_{q(\mathbf{H})} \left[\log \frac{p(\mathbf{H}, \mathbf{V})}{q(\mathbf{H})} \right] \\ &= \int \prod_i q(\mathbf{H}_i) \left(\log p(\mathbf{H}, \mathbf{V}) - \log \prod_i q(\mathbf{H}_i) \right) d\mathbf{H} \\ &= \int q(\mathbf{H}_j) \left(\int \log p(\mathbf{H}, \mathbf{V}) \prod_{i \neq j} q(\mathbf{H}_i) d\mathbf{H}_i \right) d\mathbf{H}_j \\ &- \int q(\mathbf{H}_j) \log q(\mathbf{H}_j) d\mathbf{H}_j + \text{const.} \\ &= \int q(\mathbf{H}_j) \log \tilde{q}(\mathbf{H}_j, \mathbf{V}) d\mathbf{H}_j - \int q(\mathbf{H}_j) \log q(\mathbf{H}_j) d\mathbf{H}_j + \text{const.} \\ &= -\text{KL}(q(\mathbf{H}_j) || \tilde{q}(\mathbf{H}_j, \mathbf{V})) + \text{const.} \end{split}$$

where

$$\log \tilde{q}(\mathbf{H}_j, \mathbf{V}) = \mathbb{E}_{i \neq j} [\log p(\mathbf{H}, \mathbf{V})] + \text{const.}$$

We can isolate a single factor for each hidden node in the graph \mathbf{H}_{j} . This makes optimizing a single variational factor easy!

We can isolate a single factor for each hidden node in the graph \mathbf{H}_{j} . This makes optimizing a single variational factor easy!

$$\mathcal{L}[q(\mathbf{H})] = -\mathrm{KL}(q(\mathbf{H}_j) || \tilde{q}(\mathbf{H}_j, \mathbf{V})) + \mathrm{const.}$$

We can isolate a single factor for each hidden node in the graph \mathbf{H}_{j} . This makes optimizing a single variational factor easy!

$$\mathcal{L}[q(\mathbf{H})] = -\mathrm{KL}(q(\mathbf{H}_j) || \tilde{q}(\mathbf{H}_j, \mathbf{V})) + \mathrm{const.}$$

For a single factor $q(\mathbf{H}_j)$, this equation is minimized when $q(\mathbf{H}_j) = \tilde{q}(\mathbf{H}_j, \mathbf{V})$.

We can isolate a single factor for each hidden node in the graph \mathbf{H}_{j} . This makes optimizing a single variational factor easy!

$$\mathcal{L}[q(\mathbf{H})] = -KL(q(\mathbf{H}_j)||\tilde{q}(\mathbf{H}_j, \mathbf{V})) + const.$$

For a single factor $q(\mathbf{H}_j)$, this equation is minimized when $q(\mathbf{H}_j) = \tilde{q}(\mathbf{H}_j, \mathbf{V})$.

Furthermore,

$$\log \tilde{q}(\mathbf{H}_j, \mathbf{V}) = \mathbb{E}_{i \neq j} [\log p(\mathbf{H}, \mathbf{V})] + \text{const.}$$

is a function of only factors other than $q(\mathbf{H}_j)$ and observed data.

We can isolate a single factor for each hidden node in the graph \mathbf{H}_{j} . This makes optimizing a single variational factor easy!

$$\mathcal{L}[q(\mathbf{H})] = -KL(q(\mathbf{H}_j)||\tilde{q}(\mathbf{H}_j, \mathbf{V})) + const.$$

For a single factor $q(\mathbf{H}_j)$, this equation is minimized when $q(\mathbf{H}_j) = \tilde{q}(\mathbf{H}_j, \mathbf{V})$.

Furthermore,

$$\log \tilde{q}(\mathbf{H}_j, \mathbf{V}) = \mathbb{E}_{i \neq j} [\log p(\mathbf{H}, \mathbf{V})] + \text{const.}$$

is a function of only factors other than $q(\mathbf{H}_i)$ and observed data.

Mean-field variational inference

Until converged, for each factor $q(\mathbf{H}_j)$, hold factors $q(\mathbf{H}_{i\neq j})$ constant and set $q(\mathbf{H}_j) = \tilde{q}(\mathbf{H}_j, \mathbf{V})$.

Conjugate-exponential graphical models

If our model is *conjugate-exponential*, where every node belongs in the exponential family of distributions, and is conjugate w.r.t. its parents,

$$\log \tilde{q}(\mathbf{H}_j, \mathbf{V}) = \mathbb{E}_{i \neq j} [\log p(\mathbf{H}, \mathbf{V})] + \text{const.}$$

can be calculated in closed form!

Conjugate-exponential graphical models

If our model is *conjugate-exponential*, where every node belongs in the exponential family of distributions, and is conjugate w.r.t. its parents,

$$\log \tilde{q}(\mathbf{H}_j, \mathbf{V}) = \mathbb{E}_{i \neq j} [\log p(\mathbf{H}, \mathbf{V})] + \text{const.}$$

can be calculated in closed form!

This gives rise to an efficient coordinate-ascent algorithm that can be extended with natural gradients (stochastic variational inference).

Remember that η_j is the natural parameter of the distribution $q(\mathbf{H}_j)$.

Remember that η_j is the natural parameter of the distribution $q(\mathbf{H}_j)$. The message from a parent Y to a child X is

$$m_{Y \to X} = f(\eta_Y)$$

Remember that η_j is the natural parameter of the distribution $q(\mathbf{H}_j)$. The message from a parent Y to a child X is

$$m_{Y \to X} = f(\eta_Y)$$

The message from a child X to a parent Y is

$$m_{X \to Y} = g(\eta_X, \{m_{i \to X}\}_{i \in \operatorname{cp}_Y})$$

Remember that η_j is the natural parameter of the distribution $q(\mathbf{H}_j)$. The message from a parent Y to a child X is

$$m_{Y \to X} = f(\eta_Y)$$

The message from a child X to a parent Y is

$$m_{X \to Y} = g(\eta_X, \{m_{i \to X}\}_{i \in \operatorname{cp}_Y})$$

In conjugate-exponential PGMs, messages can be computed in closed-form.

Setup: Conjugate-exponential graphical model

Setup: Conjugate-exponential graphical model

Problem: Compute posterior $p(\mathbf{H}|\mathbf{V})$, approximated with

$$q(\mathbf{H}) = \prod_j q(\mathbf{H}_j)$$

Setup: Conjugate-exponential graphical model

Problem: Compute posterior $p(\mathbf{H}|\mathbf{V})$, approximated with

 $q(\mathbf{H}) = \prod_j q(\mathbf{H}_j)$

Solution: Until converged, for each hidden node $\mathbf{H}_{j:}$

Setup: Conjugate-exponential graphical model

Problem: Compute posterior $p(\mathbf{H}|\mathbf{V})$, approximated with

$$q(\mathbf{H}) = \prod_j q(\mathbf{H}_j)$$

Solution: Until converged, for each hidden node \mathbf{H}_{j} :

1. Collect messages from children and parents

Setup: Conjugate-exponential graphical model

Problem: Compute posterior $p(\mathbf{H}|\mathbf{V})$, approximated with

$$q(\mathbf{H}) = \prod_j q(\mathbf{H}_j)$$

Solution: Until converged, for each hidden node \mathbf{H}_{j} :

- 1. Collect messages from children and parents
- 2. Compute updated distribution parameters from messages

Setup: Conjugate-exponential graphical model

Problem: Compute posterior $p(\mathbf{H}|\mathbf{V})$, approximated with

$$q(\mathbf{H}) = \prod_j q(\mathbf{H}_j)$$

Solution: Until converged, for each hidden node \mathbf{H}_{j} :

- 1. Collect messages from children and parents
- 2. Compute updated distribution parameters from messages

Benefits: efficient, simple, can incorporate mini-batches (stochastic variational inference)

Setup: Conjugate-exponential graphical model

Problem: Compute posterior $p(\mathbf{H}|\mathbf{V})$, approximated with

$$q(\mathbf{H}) = \prod_j q(\mathbf{H}_j)$$

Solution: Until converged, for each hidden node \mathbf{H}_{j} :

- 1. Collect messages from children and parents
- 2. Compute updated distribution parameters from messages

Benefits: efficient, simple, can incorporate mini-batches (stochastic variational inference)

Drawbacks: can be underexpressive (conjugate-exponential requirement)

Monte-Carlo approach

The previous approach was *restrictive*! Coordinate ascent only works on conjugate-exponential models with the mean-field assumption.

Monte-Carlo approach

The previous approach was *restrictive*! Coordinate ascent only works on conjugate-exponential models with the mean-field assumption.

Assume a non-conjugate, non-exponential model and a differentiable, sampleable $q(\theta,z)$.

Monte-Carlo approach

The previous approach was *restrictive*! Coordinate ascent only works on conjugate-exponential models with the mean-field assumption.

Assume a non-conjugate, non-exponential model and a differentiable, sampleable $q(\theta,z)$.

$$\mathcal{L}[q(\theta, z)] = \mathbb{E}_{q(\theta, z)} \left[\log \frac{p(x, \theta, z)}{q(\theta, z)} \right]$$

Monte-Carlo approach

The previous approach was *restrictive*! Coordinate ascent only works on conjugate-exponential models with the mean-field assumption.

Assume a non-conjugate, non-exponential model and a differentiable, sampleable $q(\theta, z)$.

$$\mathcal{L}[q(\theta, z)] = \mathbb{E}_{q(\theta, z)} \left[\log \frac{p(x, \theta, z)}{q(\theta, z)} \right]$$

Perform Monte-Carlo estimate:

$$\hat{\mathcal{L}}[q(\theta, z)] = \sum_{l=1}^{L} q(\theta^{(l)}, z^{(l)}) \left[\log \frac{p(x, \theta^{(l)}, z^{(l)})}{q(\theta^{(l)}, z^{(l)})} \right]$$

Gradient-based approaches

1. Start with Monte-Carlo loss

$$\hat{\mathcal{L}}[q(\theta, z)] = \frac{1}{S} \sum_{s=1}^{S} q(\theta^{(s)}, z^{(s)}) \left[\log \frac{p(x, \theta^{(s)}, z^{(s)})}{q(\theta^{(s)}, z^{(s)})} \right]$$

2. Compute gradient

$$\nabla_{\phi} \hat{\mathcal{L}}[q_{\phi}(\theta, z)] = \frac{1}{S} \sum_{s=1}^{S} \nabla_{\phi} q(\theta^{(s)}, z^{(s)}) \left[\log \frac{p(x, \theta^{(s)}, z^{(s)})}{q(\theta^{(s)}, z^{(s)})} \right]$$

3. Perform gradient ascent

Issues with gradient-based approaches

Core problem: high-variance gradients

Issues with gradient-based approaches

Core problem: high-variance gradients

How do we address this?

- Rao-Blackwellization (replace $\mathbb{E}[f(X, Y)]$ with $\mathbb{E}[f(X, Y)|X]$)[1]
- · Reparametrization trick [2]

The VAE is a generative model for data [2].

$$z_i \sim \mathcal{N}(0, I)$$

 $x_i \sim \mathcal{N}(\mu_{\gamma}(z_i), \Sigma_{\gamma}(z_i))$

where μ_{γ} and Σ_{γ} are neural networks parameterized by $\gamma.$

The VAE is a generative model for data [2].

$$z_i \sim \mathcal{N}(0, I)$$

 $x_i \sim \mathcal{N}(\mu_{\gamma}(z_i), \Sigma_{\gamma}(z_i))$

where μ_{γ} and Σ_{γ} are neural networks parameterized by γ .

The VAE is a generative model for data [2].

$$z_i \sim \mathcal{N}(0, I)$$

 $x_i \sim \mathcal{N}(\mu_{\gamma}(z_i), \Sigma_{\gamma}(z_i))$

where μ_{γ} and Σ_{γ} are neural networks parameterized by γ .

How do we do inference?

Basic strategy: gradient-based variational inference

Basic strategy: gradient-based variational inference

• Pick $q_{\phi}(z|x)$ to be a *neural network* parameterized by ϕ (both differentiable and sampleable)

Basic strategy: gradient-based variational inference

• Pick $q_{\phi}(z|x)$ to be a *neural network* parameterized by ϕ (both differentiable and sampleable)

Let $r_{\phi}(x)$ be a neural network (with weights ϕ)that outputs the parameters to a distribution, for example Gaussian.

$$q_{\phi}(z|x) = \mathcal{N}(r_{\phi}(x))$$

Basic strategy: gradient-based variational inference

• Pick $q_{\phi}(z|x)$ to be a *neural network* parameterized by ϕ (both differentiable and sampleable)

Let $r_{\phi}(x)$ be a neural network (with weights ϕ)that outputs the parameters to a distribution, for example Gaussian.

$$q_{\phi}(z|x) = \mathcal{N}(r_{\phi}(x))$$

Use the reparametrization trick to lower variance of gradients

Basic strategy: gradient-based variational inference

• Pick $q_{\phi}(z|x)$ to be a *neural network* parameterized by ϕ (both differentiable and sampleable)

Let $r_{\phi}(x)$ be a neural network (with weights ϕ)that outputs the parameters to a distribution, for example Gaussian.

$$q_{\phi}(z|x) = \mathcal{N}(r_{\phi}(x))$$

Use the reparametrization trick to lower variance of gradients

We learn the weights for the two neural networks $(\mu_{\gamma}(z), \Sigma_{\gamma}(z))$ and $r_{\phi}(x)$.

Basic strategy: gradient-based variational inference

• Pick $q_{\phi}(z|x)$ to be a *neural network* parameterized by ϕ (both differentiable and sampleable)

Let $r_{\phi}(x)$ be a neural network (with weights ϕ)that outputs the parameters to a distribution, for example Gaussian.

$$q_{\phi}(z|x) = \mathcal{N}(r_{\phi}(x))$$

• Use the reparametrization trick to lower variance of gradients

We learn the weights for the two neural networks $(\mu_{\gamma}(z), \Sigma_{\gamma}(z))$ and $r_{\phi}(x)$.

$$\mathcal{L}[q(z|x)] = \mathbb{E}_{q(z|x)} \left[\log p(x, z) - \log q(z|x) \right]$$

What is the reparametrization trick?

What is the reparametrization trick? We want to sample $z \sim q(z|x)$ and do so it in a roundabout way.

$$\epsilon \sim p(\epsilon)$$

$$z = f(r_{\phi}(x), \epsilon)$$

where ϵ is noise sampled from a simple distribution (e.g. Gaussian) and f is a function that depends on the type of distribution.

What is the reparametrization trick? We want to sample $z \sim q(z|x)$ and do so it in a roundabout way.

$$\epsilon \sim p(\epsilon)$$

$$z = f(r_{\phi}(x), \epsilon)$$

where ϵ is noise sampled from a simple distribution (e.g. Gaussian) and f is a function that depends on the type of distribution.

Example: sampling from a univariate Gaussian $q_{\phi}(z|x)$

What is the reparametrization trick? We want to sample $z \sim q(z|x)$ and do so it in a roundabout way.

$$\epsilon \sim p(\epsilon)$$

$$z = f(r_{\phi}(x), \epsilon)$$

where ϵ is noise sampled from a simple distribution (e.g. Gaussian) and f is a function that depends on the type of distribution.

Example: sampling from a univariate Gaussian $q_{\phi}(z|x)$

• Compute $(\mu, \sigma^2) = r(x)$

What is the reparametrization trick? We want to sample $z \sim q(z|x)$ and do so it in a roundabout way.

$$\epsilon \sim p(\epsilon)$$

$$z = f(r_{\phi}(x), \epsilon)$$

where ϵ is noise sampled from a simple distribution (e.g. Gaussian) and f is a function that depends on the type of distribution.

Example: sampling from a univariate Gaussian $q_{\phi}(z|x)$

- Compute $(\mu, \sigma^2) = r(x)$
- Sample $\epsilon \sim \mathit{N}(0,1))$

What is the reparametrization trick? We want to sample $z \sim q(z|x)$ and do so it in a roundabout way.

$$\epsilon \sim p(\epsilon)$$

$$z = f(r_{\phi}(x), \epsilon)$$

where ϵ is noise sampled from a simple distribution (e.g. Gaussian) and f is a function that depends on the type of distribution.

Example: sampling from a univariate Gaussian $q_{\phi}(z|x)$

- Compute $(\mu, \sigma^2) = r(x)$
- Sample $\epsilon \sim N(0,1)$)
- Return $z = \mu + \epsilon \sigma$

What is the reparametrization trick? We want to sample $z \sim q(z|x)$ and do so it in a roundabout way.

$$\epsilon \sim p(\epsilon)$$

$$z = f(r_{\phi}(x), \epsilon)$$

where ϵ is noise sampled from a simple distribution (e.g. Gaussian) and f is a function that depends on the type of distribution.

Example: sampling from a univariate Gaussian $q_{\phi}(z|x)$

- Compute $(\mu, \sigma^2) = r(x)$
- Sample $\epsilon \sim N(0,1)$)
- Return $z = \mu + \epsilon \sigma$

This is very effective at decreasing the variance of the gradient.

Structured variational autoencoder

Variational inference
Variational message passing
Gradient-based variational inference
Structured variational autoencoder
Conclusion
Applications
Current work

What is an SVAE?

There are two ways of thinking about it

- A conjugate-exponential graphical model augmented with a neural network observation model
- A VAE augmented with also a graphical because of a neural-network observation model

What is an SVAE?

There are two ways of thinking about it

- A conjugate-exponential graphical model augmented with a neural network observation model
- A VAE augmented with also a graphical because of a neural-network observation model

SVAE GMM

$$\pi \sim \text{Dir}(\alpha)$$

$$\mu_k, \Sigma_k \sim \mathcal{N}\mathcal{IW}(\psi, \mu_0, \kappa, \nu)$$

$$z_i | \pi \sim \text{Cat}(\pi)$$

$$x_i | z_i, \boldsymbol{\mu}, \boldsymbol{\Sigma} \sim \mathcal{N}(\mu_{z_i}, \Sigma_{z_i})$$

$$y_i | x_i \sim \mathcal{N}(\mu_{\gamma}(x_i), \Sigma(x_i))$$

SVAE GMM

$$\pi \sim \text{Dir}(\alpha)$$

$$\mu_k, \Sigma_k \sim \mathcal{N}\mathcal{IW}(\psi, \mu_0, \kappa, \nu)$$

$$z_i | \pi \sim \text{Cat}(\pi)$$

$$x_i | z_i, \boldsymbol{\mu}, \boldsymbol{\Sigma} \sim \mathcal{N}(\mu_{z_i}, \Sigma_{z_i})$$

$$y_i | x_i \sim \mathcal{N}(\mu_{\gamma}(x_i), \Sigma(x_i))$$

How do we do inference?

Inference in SVAE is a hybrid of gradient-based methods and coordinate-ascent.

Inference in SVAE is a hybrid of gradient-based methods and coordinate-ascent.

How do we merge these two different approaches?

Inference in SVAE is a hybrid of gradient-based methods and coordinate-ascent.

How do we merge these two different approaches?

Inference in SVAE is a hybrid of gradient-based methods and coordinate-ascent.

How do we merge these two different approaches?

• Learn $q(z_i), q(x_i), q(\pi), q(\mu, \Sigma)$ with stochastic VMP using a neural network $r_\phi(y) = m_{y_i \to x_i}$

Inference in SVAE is a hybrid of gradient-based methods and coordinate-ascent.

How do we merge these two different approaches?

- · Learn $q(z_i), q(x_i), q(\pi), q(\mu, \Sigma)$ with stochastic VMP using a neural network $r_\phi(y) = m_{y_i \to x_i}$
- Learn weights of neural networks $(\mu_{\gamma}, \Sigma_{\gamma}), r_{\phi}$ using the gradient of the ELBO

Conclusion

Variational inference
Variational message passing
Gradient-based variational inference
Structured variational autoencoder
Conclusion
Applications
Current work

Why SVAE?

The SVAE naturally applies to scenarios where there is already a tractable model.

Why SVAE?

The SVAE naturally applies to scenarios where there is already a tractable model.

Why SVAE?

The SVAE naturally applies to scenarios where there is already a tractable model.

In this scenario, the SVAE enables modeling non-Gaussian cluster shapes [3].

One idea I am currently working on is using the SVAE to learn latent models to be used in reinforcement learning¹.

¹Joint work with Marvin Zhang from UC Berkeley

One idea I am currently working on is using the SVAE to learn latent models to be used in reinforcement learning¹.

General approach:

- · Learn a latent LDS
- Use MPC to control an agent in the latent space

¹Joint work with Marvin Zhang from UC Berkeley

One idea I am currently working on is using the SVAE to learn latent models to be used in reinforcement learning¹.

General approach:

- · Learn a latent LDS
- Use MPC to control an agent in the latent space

Benefits of this approach:

¹Joint work with Marvin Zhang from UC Berkeley

One idea I am currently working on is using the SVAE to learn latent models to be used in reinforcement learning¹.

General approach:

- · Learn a latent LDS
- Use MPC to control an agent in the latent space

Benefits of this approach:

· We can learn simple dynamics even with camera data

¹Joint work with Marvin Zhang from UC Berkeley

One idea I am currently working on is using the SVAE to learn latent models to be used in reinforcement learning¹.

General approach:

- · Learn a latent LDS
- Use MPC to control an agent in the latent space

Benefits of this approach:

- · We can learn simple dynamics even with camera data
- Model-based RL tends to be more sample efficient

¹Joint work with Marvin Zhang from UC Berkeley

One idea I am currently working on is using the SVAE to learn latent models to be used in reinforcement learning¹.

General approach:

- · Learn a latent LDS
- Use MPC to control an agent in the latent space

Benefits of this approach:

- · We can learn simple dynamics even with camera data
- Model-based RL tends to be more sample efficient

¹Joint work with Marvin Zhang from UC Berkeley

One idea I am currently working on is using the SVAE to learn latent models to be used in reinforcement learning¹.

General approach:

- · Learn a latent LDS
- Use MPC to control an agent in the latent space

Benefits of this approach:

- · We can learn simple dynamics even with camera data
- · Model-based RL tends to be more sample efficient

Demo

¹Joint work with Marvin Zhang from UC Berkeley

References

- [1] Rajesh Ranganath, Sean Gerrish, and David M. Blei. Black Box Variational Inference. dec 2013.
- [2] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. dec 2013.
- [3] M. Johnson, D. Duvenaud, A. Wiltschko, S. Datta, and R. Adams. Composing graphical models with neural networks for structured representations and fast inference. In *NIPS*, 2016.