⑩日本国特許庁(JP)

@実用新案出願公告

@実用新案公報(Y2)

平5-28190

Solnt. Cl. 5					
_	65	_	5/56		
_	32	_	27/10		
В	65	U	81/34		

庁内整理番号 識別配号 7445-3E Α 7258-4F 7191-3E

v

2000公告 平成5年(1993)7月20日

(全3頁)

液体紙容器 ❷考案の名称

頭 昭61-183487 到実 多出 顧 昭61(1986)11月28日

潢

❸公 開 昭63-88938

@昭63(1988)6月9日

本 @考案 者 山 70考案者 加

東京都台東区台東1丁目5番1号 凸版印刷株式会社内 東京都台東区台東1丁目5番1号 凸版印刷株式会社内

@考案 者 武 昭 東京都台東区台東1丁目5番1号 凸版印刷株式会社内 東京都台東区台東1丁目5番1号

凸版印刷株式会社 勿出 願 人

隆 夫 伏 見

実開 昭59-193127 (JP, U) 69多考文献

実開 昭60-19428(JP,U)

特公 昭35-16645 (JP, B1)

特公 昭34-1395 (JP, B1)

1

匈実用新案登録請求の範囲

審査官

プラスチックフィルム層/少なくとも片面に珪 素酸化物の薄膜層を有するプラスチツクフイルム 層/紙層/プラスチツクフイルム層の積層体を主 体とする積層構成のマイクロ波を透過するプラン 5 クシートより製函してなることを特徴とする液体 纸容器。

考案の詳細な説明

(産業上の利用分野)

本考案は電子レンジでお酒等の液体を容器のま 10 ま加熱(お燗)できる液体紙容器に関する。

(従来技術)

近年、食生活の簡便化、個食化が進み、電子レ ンジの需要が急速に増加し、それに対応する食品 のように液体の加温を要する紙パツクの場合、内 部にアルミ箔を使用しているのでお酒をお燗する する際、一度他の容器に移し替える必要がある。

このように内部にアルミ箔のある液体容器では 口波は遮蔽され内容物をパツクのまま加熱するこ とは出来ない。即ちその材質構成は第2図の如き もので、容器の内側より外側に向かつてポリエチ レン層C、ポリエチレンテレフタレート(以下 PETという。) 層B、アルミ箔層A、紙層D、ポ 25 (実施例) 2

リエチレン層Cの順に積層した構成であり、アル ミ箔層Aを容器のプランクシート中に積層するの はパリヤー性を要するからである。

(解決しようとする問題点)

本考案は上記の問題点を解決しようとするもの であり、高度のパリヤー性を有し、内容物を保護 できるとともに、電子レンジでそのまま加熱(加 温) できる液体紙容器を提供するものである。

(問題点を解決するための手段)

加熱を要するお酒等の液体紙容器の材質を改善 することにより目的を達成することができた。

即ち、本考案にれば、プラスチックフイルム 層/少なくとも片面に珪素酸化物の薄膜層を有す るプラスチツクフイルム層/紙層/プラスチツク の数も急増している。しかしながらお酒等のお燗 15 フイルム層の積層体を主体とする積層構成のマイ クロ波を透過するプランクシートより製函して液 体紙容器を形成することにより解決した。

(作用)

本考案においては、ブランクシート中にアルミ 通常7μ以上のアルミ箔を用いているのでマイク 20 箔等のマイクロ波を遮蔽する物質を用いていない ので、マイクロ波は容器を透過して内容物に達す る。またプランクシート中に珪素酸化物の薄膜層 設けているのでアルミ箔を用いた従来の液体紙容 器と同等のパリヤー性を有する。

3

図面を用いて本考案を詳細に説明する。

第1図は本考案の一実施例の一部を切り欠いた 説明斜視図であり、ゲーベルトップ型の液体紙容 であり、容器の内側より外側に向かつて、ポリエ チレン暦 1、珪素酸化物の薄膜暦 2 a を外側に設 5 条件;容器、I) 本考案の容器 けたPET層 2、ポリエチレン(接着)層3、紙 層4、ポリエチレン層5の積層体よりなるプラン クシートより、ポリエチレン層 1 を内側として製 函してなる電子レンジ用液体紙容器である。

次に、この容器を構成する積層体の調整手段に 10 ついて説明する。

先ず、PETフイルムの片面に、珪素酸化物を 真空蒸着して珪素酸化物の薄膜層 2 a を形成す

次に、このシートの珪素酸化物の薄膜層2 a面 15 と紙とをポリエチレンを溶融押し出しにより貼り 合わせることによりポリエチレン(接着)層3、 及び紙層4を形成する。

そして、このシートの両面に、ポリエチレンの 溶融押し出しによりコートすることにより、ポリ 20 図面の簡単な説明 エチレン暦 1、及びポリエチレン暦 5を形成す

ここで特に紫外線で変質する内容物を入れる場 合は、ブランクシート中に紫外線カツトフイルム ばよい。

また容器に注出口を設ける場合、その穴開き部 に珪素酸化物の薄膜層を設けたプラスチックフィ ルムを主体とした積層体を用いれば(図示せず)、 内容物保設性をより向上させることが可能であ 30

次に500W、2450MHzの電子レンジを用いて加 熱テストを実施したのでその結果を下記表に示

Ⅱ) 従来の容器

内容物、水

マイクロ波照射時間、1分間

容器のタイプ		1分後の水温
I)	本考案の容器	約100°Cとなった
II)	従来の容器	殆ど上昇せず

(効果)

本考案は以上のような構成からなるので、パツ クのまま電子レンジ加熱がてき、アルミ箔を用い た従来の液体紙容器と同等のパリヤー性を有する のでお酒、スープ等の食品のパツケージとしてそ の適用箆囲は極めて広い。

第1図は本考案の一実施例の一部を切り欠いた 説明斜視図であり、第2図は従来の液体紙容器の 一部を切り欠いた説明斜視図である。

1……ポリエチレン層、2……ポリエチレンテ 層を設けるか紫外線カツトインキ層を適宜設けれ 25 レフタレート (PET) 層、2 a ……珪素酸化物 の薄膜層、3……ポリエチレン(接着)層、4… …紙層、5……ポリエチレン層、A……アルミ箱 層、B……ポリエチレンテレフタレート (PET) 層、C·····・ボリエチレン層、D·····・紙層。

第1図

第2図

