Evaluación 1 Sección 1 Complemento de Cálculo (521234)

- 1. Para $f(t) = sen(t), \quad 0 < t < \frac{\pi}{2}$.
 - a) Obtenga la serie de Fourier de senos (SFS) y la de cosenos (SFC), analizando la convergencia en cada caso.
 - b) De la SFC pruebe que

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2} \qquad \text{y} \qquad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{4n^2 - 1} = \frac{\pi - 2}{4}$$

(20 pts.)

Pauta Problema 1

- 1º Realizamos el estudio de convergencia:
 - a) SFS: Sea $f_1(t)$ la extensión impar, π -periódica de f, esto es

$$f_1(t) = \begin{cases} f(t) & \text{si } 0 \le t \le \pi/2 \\ -f(-t) & \text{si } -\pi/2 < t < 0 \end{cases}$$
 $f_1(t + m\pi) = f_1(t), \quad m \in \mathbb{Z}.$

Luego la sucesión de sumas parciales $S_N(t) = \sum_{n=1}^{\infty} b_n \operatorname{sen}(2nt)$ converge uniformemente a f en el intervalo abierto $]0, \pi/2[$ y a la media aritmética $\frac{f(\pi/2)+f(-\pi/2)}{2}=0$ en t=0 y $t=\pi/2$. Pues f es continua por tramos sobre $[0,\pi/2]$ al igual que su derivada, siendo ambas continuas en el intervalo abierto $]0,\pi/2[$. Además, $]b_n|=O(1/n)$.

b) SFC: Sea f_2 la extensión par, π -periódica de f, esto es

$$f_2(t) = \begin{cases} f(t) & \text{si } 0 \le t \le \pi/2 \\ f(-t) & \text{si } -\pi/2 < t < 0 \end{cases}$$

$$f_2(t + m\pi) = f_2(t), \quad m \in \mathbb{Z}.$$

Luego la sucesión de sumas parciales $S_N(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(2nt)$ converge uniformemente a f en el intervalo cerrado $[0, \pi/2]$. Pues f es continua $[0, \pi/2]$ al igual que su derivada y $f(0) = f(\pi/2)$. Además, $|a_n| = O(1/n^2)$.

- $2^{\rm o}$ Procedemos al cálculo de coeficientes:
 - a) SFS: Los coeficientes b_n son definidos por: $b_n = \frac{4}{\pi} \int_0^{\pi/2} f(x) \sin(2nx) dx$, luego

$$b_n = \frac{2}{\pi} \left[\frac{\sin(1-2n)t}{1-2n} - \frac{\sin(1+2n)t}{1+2n} \right]_0^{\pi/2} = \frac{4(-1)^n n}{\pi(1-4n^2)} = O(1/n)$$

y por tanto

$$\operatorname{sen}(t) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n n}{1 - 4n2} \operatorname{sen}(2nt), \qquad 0 < t < \pi/2$$

(la convergencia es uniforme en el intervalo abierto $[0, \pi/2]$)

b) SFC: Los coeficientes a_n son definidos por: $a_n = \frac{4}{\pi} \int_0^{\pi/2} f(x) \cos(2nx) dx$, luego

$$a_n = \frac{-2}{\pi} \left[\frac{\cos(1-2n)t}{1+2n} + \frac{\cos(1-2n)t}{1+2n} \right]_0^{\pi/2} = \frac{4}{\pi(1-4n^2)} = O(1/n^2)$$

y por tanto

$$sen(t) = \frac{2}{\pi} + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2nt)}{1 - 4n^2}, \qquad 0 \le t \le \pi/2$$

(la convergencia es uniforme en el cerrado $[0, \pi/2]$.)

2º Evaluando la última identidad en t=0 y en $t=\pi/2$ se obtienen las identidades requeridas.

2. a) Verifique que $\lambda = -1$ es valor propio, con función propia asociada $y(x) = e^x$ del problema de Sturm-Liouville.

$$y'' + \lambda y = 0, \quad y(0) = y'(0), \quad y(\pi) = y'(\pi)$$
 (1)

(4 pts.)

b) Demuestre que $\lambda=0$ no es valor propio del problema de Sturm-Liouville (1).

(6 pts.)

c) Determine los valores propios positivos y las auto-funciones asociadas al problema de Sturm-Liouville (1).

(10 pts.)

(20 pts.)

Pauta Problema 2

- 2.a) Si $y(u) = e^x$ y $\lambda = -1$ entonces $y''(x) = e^x = y(x)$, es decir, y'' y = y" + $\lambda y = 0$. Por otra parte, y(0) = 1 = y'(0), $y(\pi) = e^{\pi} = y'(\pi)$.
- 2.b) Si $\lambda = 0$, entonces y'' = 0 si y solamente si y(x) = Ax + B. Aplicando las condiciones de contorno, se tiene que B = A pues y(0) = y'(0), mientras que $y(\pi) = y'(\pi)$ equivalentemente $A\pi + B = A$, por tanto A = B = 0 y en consecuencia $\lambda = 0$ no es valor propio.
- 2.c) Sea $\lambda = \omega^2$, $\omega > 0$. Luego la solución general de $y'' + \omega^2 y = 0$ es:

$$y(x) = A\cos(\omega x) + B\sin(\omega x).$$

Aplicando las condiciones de contorno, se tiene

$$y(0) = y'(0) \iff A = \omega B$$

$$y(\pi) = y'(\pi) \iff Acos(\omega \pi) + Bsen(\omega \pi) = \omega[-Asen(\omega \pi) + Bcos(\omega \pi)]$$

es decir

$$\left[\begin{array}{cc} 1 & -\omega \\ \cos(\omega\pi) + \omega sen(\omega\pi) & sen(\omega\pi) - \omega cos(\omega\pi) \end{array}\right] \left[\begin{array}{c} A \\ B \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

Como $(A, B) \neq (0, 0)$, si y solamente si, el determinante de la matriz de coeficientes del sistema anterior es nulo, esto es, si:

$$(1 - \omega^2)sen(\omega \pi) = 0 \iff \omega \pi = n\pi, \quad n = 1, 2, 3, \cdots$$

por tanto los valores propios son $\lambda_n = (n)^2$, $n = 1, 2, 3, \cdots$. Como $A = \omega B \neq 0$, las funciones propias asociadas son

$$y_n(x) = n\cos(nx) + \sin(nx), \quad n = 1, 2, 3, \cdots$$

3. Encuentre los desplazamientos u(x,t) de una cuerda vibrante de longitud π bajo las siguientes condiciones:

$$u_{tt} - u_{xx} = xt;$$
 $0 < x < \pi, t > 0$
 $u_x(0,t) = u_x(\pi,t) = 0$ $t \ge 0$
 $u(x,0) = 0, u_t(x,0) = \cos(x)$ $0 \le x \le \pi$

(20 pts.)

(20 pts.)

Pauta Problema 3

 1° Sea u=u(x,t) la solución del Problema de valores de contorno e iniciales propuesto. Descomponemos $u=u_1+u_2$ donde:

$$(u_1)_{tt} - (u_1)_{xx} = 0$$

$$(u_2)_{tt} - (u_2)_{xx} = xt$$

$$(u_1)_x(0,t) = (u_1)_x(\pi,t) = 0$$

$$(u_2)_x(0,t) = (u_2)_x(\pi,t) = 0$$

2º La familia de valores y funciones propias asociadas al problema es:

$$\lambda_n = (n)^2$$
, $X_n(x) = \cos(nx)$, $n = 0, 1, 2, 3 \cdots$

 3° Aplicando el Método de Separación de Variables, se tiene: $u_1(x,t) = sen(t)cos(x)$

 4° Para determinar $u_2 = u_2(x,t)$, aplicamos el Método de Variación de Parámetros: $u_2(x,t) = \sum_{n=0}^{\infty} C_n(t) cos(nx)$ y reemplazamos esta expresión en la ecuación de ondas no homogéneas que debe satisfacer u_2 , esto es:

$$\sum_{n=0}^{\infty} \left[C_n''(t) + n^2 C_n(t) \right] \cos(nx) = xt$$

ecuación que resolvemos por cuadratura: $C_n''(t) + n^2 C_n(t) = \frac{t\langle x_1 cos(nx)\rangle}{||cos(nx)||^2}$, $n = 0, 1, 2, 3, \cdots$ Como $u_2(x,0) = (u_2)_t(x,0) = 0$, se tiene: $C_n(0) = C_n'(0) = 0$, $n = 0, 1, 2, \cdots$ Por tanto, las funciones $C_n(t)$ son completamente determinadas por:

$$C_n''(t) + n^2 C_n(t) = \frac{2t}{\pi} \frac{[(-1)^n - 1]}{n^2}$$

 $C_n(0) = C_n'(0) = 0, \quad n = 0, 1, 2, 3, \dots$

pues estos problemas de valores iniciales tiene única solución y estas son:

$$C_{2n}(t) = 0$$
, $C_{2n+1}(t) = \frac{-4t}{\pi(2n+1)^4} + \frac{4sen(2n+1)t}{\pi(2n+1)^5}$, $n = 0, 1, 2, \dots$

luego

$$u_2(x,t) = -\frac{4}{\pi} \sum_{n=0}^{\infty} \left[\frac{t(2n+1) - sen(2n+1)t}{2n+1)^5} \right] cos(2n+1)x$$

 $5^{\rm o}$ La solución u=u(x,t) del problema propuesto es definida por:

$$u(x,t) = sen(t)cos(x) - \frac{4}{\pi} \sum_{n=0}^{\infty} \left[\frac{t(2n+1) - sen(2n+1)t}{(2n+1)^5} \right] cos(2n+1)x$$

Concepción, 26 de Septiembre de 2005. ${\rm HMM/FPV/cln.}$