	USN										
--	-----	--	--	--	--	--	--	--	--	--	--

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU) V Semester B. E. Examinations April/May -2024 Information Science and Engineering

CRYPTOGRAPHY AND NETWORK SECURITY

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.

PART-A M BT CO

1	1.1	Use Caesar cipher with each letter replaced by 4 places down in			
_	1.1	the alphabetical order, for the following :		ļ	
		ATTACKATONCEINASIGHT	02	3	2
	1.2	Vigenere cipher is also referred as	01	1	1
	1.3	Name any two techniques which conceal the existence of		-	_
		messages in communication.	02	2	1
	1.4	Show examples to illustrate nonsingular and singular		·	
		transformation for $n = 2$ in a block cipher.	02	2	2
	1.5	A change in one bit of the plaintext or one bit of the key should		ļ	
		produce a change in many bits of the ciphertext which is		<u> </u>	
		referred to as	01	1	2
	1.6	List any two techniques used for providing authentication in		<u> </u>	
		block cipher modes of operation.	02	2	3
	1.7	Fill in the blanks for the below values <i>X</i> and <i>Y</i> shown in fig 1.7.		ļ	
				<u> </u>	
		Cryptanalyst PRa		<u> </u>	
				ļ	
		Source A Destination B		<u> </u>	
				ļ	
		Message X Engraphion		ļ	
		Message Source Decryption algorithm Y m Destination		ļ	
		Y		<u> </u>	
				<u> </u>	
		PR_a PU_a		ļ	
				ļ	
		Key pair source		<u> </u>	
		Fig 1.7	02	3	3
	1.8	Key exchange is based on the use of the prime number $q =$			
		353 and a primitive root of 353, in this case $a = 3.A$ and B		ļ	
		select private keys $XA = 97$ and $XB = 233$, respectively. Compute		<u> </u>	
		public keys of A and B using Diffie-Hellman algorithm.	02	3	3
	1.9	Mention any two usages of hash functions in cryptography.	02	1	3
	1.10	Show the TCP segment used in error control code.	02	2	4
	1.11	mode is designed to be parallelizable to provide high			
		throughput with low cost and low latency and the message is			
		encrypted in variant of mode.	02	1	4

PART-B

2	a b	 i) Apply the playfair algorithm to encrypt the plaintext: INSPIRATION using the key: <i>JEOPARDITE</i>. Show all the steps to generate cipher text. ii) Using the railfence technique encipher the message "meet me after the toga party "of depth 2 and the following message using the row technique of same algorithm: "attack postponed until two am" of order 2 with Key:4312567. Write short notes on Rotor machines. 	10 06	3 2	1 1
3	a b	Design <i>DES</i> algorithm and explain the steps. Differentiate between the following: Electronic code Book(<i>ECB</i>), Output Feedback(<i>OFB</i>) and Counter(<i>CTR</i>)	10 6	2	2 2
		OR			
4	a b	Differentiate double and triple DES algorithms Explain <i>XTS – AES</i> mode for block oriented storage device.	08 08	2 2	3
5	a b	 i) Using 'RSA' algorithm, if p = 13, q = 5 and e = 7 and cipher value of '6' with(e, n). Find the value of d? ii) Use RSA algorithm with p = 3 and q = 11 and d = 3, find the values of public key e, plaintext and cipher text? List and explain the variety of ways in which a hash code can be 	08	3	3
		used to provide message authentication with a neat diagram. OR	08	2	4
6	a b	Describe the Deffie-Hellman key exchange algorithm in detail. Illustrate with a neat figure <i>SHA</i> – 512 algorithm for general structure, message digest generation and round function.	06 10	1 2	3
7	a b	Mention the purpose and functioning of Hash-Based message authentication code (<i>HMAC</i>) algorithm in detail with a neat figure. State the essence of the use of key hierarchy with a neat figure. OR	10 06	1 2	3 1
8	a b	List and explain the <i>MACs</i> based on clock ciphers. Explain briefly <i>X</i> . 509 certificates and <i>PKIX</i> .	08 08	1 1	1 4
9	a b	Illustrate SSL protocol in detail. Explain encapsulation security payload in brief.	10 06	2	4 4
		OR			
10	a	Write Short notes on the following: i) Kerberos ii) Web Security iii) PGP iv) Tunnel modes in ESP for transfer of segment	16	2	1