Tribhuvan University Institute of Science and Technology 2069

✡

Bachelor Level/ Second Year/ Third Semester/Science Full Marks: 60

Computer Science and Information Technology (CSc 204) Pass Marks: 24

(Numerical Method) Time: 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all questions:

1. Derive a formula to solve nonlinear equation using secant method. Using your formula estimate a real root of following nonlinear equation using secant method correct up to decimal places $x^2 + \ln x = 3$.

(3+5)

2. Estimate f(3) from the following data using Cubic Spline Interpolation.

X	1	2.5	4	5.7	
f(x)	-2.0	4.2	14.4	31.2	

(8)

OR

Find the best fitting quadratic polynomial from following data using least square approximation.

X	-2	-1.2	0	1	1.2	2.5	3	4.5	6.3
f(x)	10.39	2.96	-2.0	-2.63	-2.46	0.83	3.1	12.8	30.4

- 3. (a) For the function $f(x) = e^x \sqrt{\sin x + \ln x}$ estimate f'(6.3) and f''(6.3) [take h = 0.01]
 - (b) Evaluate $\int_{1}^{2} (\ln x + x^{2} \sin x) dx$ using Gauss integration 3 point formula. (4)
- 4. Solve the following system of linear equations using Gauss-elimination or Gauss Jordan method.

$$3x_1 + 5x_2 - 3x_3 + x_4 = 16$$

$$2x_1 + x_2 + x_3 + 4x_4 = 9$$

$$43 - 4x_2 - x_4 = 1$$

$$2x_1 + x_2 - 3x_3 + 9x_4 = 5$$

(8)

5. How can you solve higher order differential equation? Explain. Solve the following differential within $0 \le x \le 1$ using Heun's method. (3+5)

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2xy = 1 \text{ with } y(0) = 1 \text{ and } y'(0) = 1 \text{ [take } h = 0.5]$$

- 6. (a) How can you obtain numerical solution of a partial differential equation? Explain. (3)
 - (b) The steady state two dimensional heat-flow in a metal plate is defined by $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$. Given the boundary conditions as sown in figure below, find the temperatures at interior points T_1 , T_2 , T_3 and T_4 . (5)

	100	100	100	_
100		T_1	T_2	300
100		T ₃	T_4	300
100				300
	300	300	300	J

- 7. Write an algorithm and C-program code to solve non-linear equation using Newton's method. Your program should read an initial guess from keyboard and display the following if the solution is obtained. (5+7)
 - Estimated root of the equation
 - Functional value at calculated root
 - Required number of iterations