

SHADOW4: the popular ray tracing revived for evolving synchrotron sources in 4th-generation storage rings

Manuel Sánchez del Río*1, Juan Reyes-Herrera¹, Xianbo Shi² and Luca Rebuffi²

*srio@esrf.eu

¹Advanced Analysis & Precision Unit, MEG/ISDD, ESRF ²APS-Argonne National Lab

Mikrosymposium MS 1/1: Beamline Optics and Diagnostics: 13:00 Tuesday 27 August, 2024

40 YEARS OF SHADOW

SHADOW

- Generic ray tracing package for optics
- Specialized in SR (storage ring sources, grazing optics, crystals...)
- Helped to most 2-4th generations of SR facilities
- Used/cited in a huge number of papers

SHADOW 1 & 2

Franco Cerrina (†2010)

SHADOW1 1984-1990 VAX-VMS mainframes SHADOW2 1990-2010 Unix workstations+Windows

SHADOW3 M. Sanchez del Rio, et al.J. Synchr. Rad.18, (2011) http://dx.doi.org/10.1107/S0909049511026306

Kernel (Fortran9x)

Python API

XOP/ShadowVUI

2014: ShadowOUI¹= SHADOW3 + ORANGE²

- [1] L Rebuffi and M Sanchez del Rio J Synchr. Rad. 23 1357-1367 (2016) https://doi.org/10.1107/S1600577516013837
- [2] https://orangedatamining.com/

ShadowOUI: not only SHADOW3

Corrections for coherent optics (HYBRID¹)

Hybrid Screen

Surface error databases DABAM, DABAM2D (see poster R. Celestre 1.181)

DABAM Prepare Profile DABAM Height Profile

Preprocessors (surfaces, reflectivity, VLS, diaboloids²)

VLS PGM Coefficients Height Profile Calculator

Diaboloid

Elements: CRL, TF, Benders, etc.

Loops & Heat load loops³

Compound Refractive Lens

Transfocator

Power Density Loop Point

Power Plot XY -

New crystal structures (high d-spacing⁴)

- [1] Shi et al. 2014 https://doi.org/10.1107/S160057751400650X
- [2] Sanchez del Rio et al. 2021 https://doi.org/10.1107/S160057752100401X
- [3] Rebuffi et al. 2020 https://doi.org/10.1107/S160057752000778X
- [4] Yu et al. 2022 https://doi.org/10.1107/S160057752200707X

OASYS add-ons

INTEROPERABILITY

OASYS Main

SYNED

XOPPY

XRayServer, ...

Tools

SHADOWOUI

SHADOW4

Ray tracing

SRW

WOFRY

WISER

Wave optics

Facility Add-Ons, e.g. ESRF

Extensions

https://oasys-kit.github.io

SHADOW4

SHADOW3 problems:

- Fortran: compilation: obsolete technology, poorly structured code
- Python API maintenance and extension
- Python packaging (wheels)

SHADOW4 is a new Kernel,

- Fully developed in Python
- OO programming
- OASYS experience and ad-hoc developments
- Fast enough

and a new interface,

- SHADOW is an interactive tool adapted for common laptops
- Just called SHADOW4
- Simplified interface (less widgets, generic mirrors, crystals, etc.)
- Optimized (better communication)
- Automatic scripting

for new generations of sources

Preparing 5th generation

- Facilitate interoperability with other tools (e.g. for partial coherence)
- Adapted for AI integration and Digital Twins (see L Rebuffi's talk 3/3 Fri 14:00)
- Easy transition from laptop prototyping to High-Performance Computing (HPC) and Cloud Computing
- Open Source and Collaborative Development
- Educational material for interactive leaning

Shadow4 Kernel: Application User Interface

S4Beam: traditional beam data (nrays, 18)

Automated scripts with OASYS

Documentation: https://shadow4.readthedocs.io

Shadow4 Kernel: beamline components

- Sources/Magnetic structures
 - SourceGeometrical, SourceGridCartesian, SourceGridPolar
 - S4BendingMagnet (upgraded methods¹)
 - S4Wiggler (included short IDs)
 - S4GaussianUndulator, S4Undulator (upgraded: see talk 1/2 of Juan Reyes-Herrera Today 18:15)
- Optical elements
 - S4Screen (screens, slits, stops, absorbers)
 - S4IdealLens, S4Empty,... (ideal elements)
 - S4PlaneMirror, S4SphereMirror, S4EllipsoidalMirror, ..., S4AdditionalNumericalMeshMirror
 - S4PlaneGrating, ... (including VLS)
 - S4PlaneCrystal, ... (undistorted perfect crystals in reflection)
 - **S4PlaneMultilayer**, ... (also graded, in depth or laterally)
 - S4Interface, S4Lens, S4CRL, S4Transfocator (refractors)

Shadow4 Kernel: models and algorithms

Geometrical model

- S4OpticalSurface (S4Conic¹, S4Toroid, S4Mesh)
- Include methods for reflection, refraction, grating scattering

Physical model (reflectivities)

Optical constants (scattering factors, refraction indices, crystal structures)

- preprocesor data file
- direct link
 - xraylib³
 - DABAX⁴

PreRefi | Figure | F

code

- PreRefl:
 Absorption/refraction for attenuators, mirrors, lenses
- crystalpy²: external library for Crystals
- MLayer

^[1] https://arxiv.org/abs/2406.04079

^[2] https://arxiv.org/abs/2406.16960 https://github.com/oasys-kit/crystalpy

^[3] https://github.com/tschoonj/xraylib

^[4] https://github.com/oasys-kit/dabax

Shadow4: advanced tools – Hybrid¹ method

- Corrects ray tracing considering scattering and diffraction when the beam has a high coherence
- Includes scattering by o.e.'s boundaries (slits, mirrors, gratings, lenses)
- Manages the surface error (delegated from o.e.)
- Fully rewritten code²

- [1] Shi et al. 2014 https://doi.org/10.1107/S160057751400650X
- [2] https://github.com/oasys-kit/shadow4-advanced

Shadow4: beta testers are welcomed!

Send issues in https://github.com/oasys-kit/shadow4/issues

Shadow4: summary

- SHADOW4 is announced
 - New Kernel fully in python, modern OO programming
 - New interface in OASYS, including Hybrid
 - Preparing the future SR generations
- Already available in OASYS [beta]
- Didactical material^{1,2} available.
- Future OASYS schools (done at ESRF^{3,4}, APS³, ALS⁵)

- [1] https://github.com/oasys-esrf-kit/oasys_hercules_2024
- [2] https://github.com/oasys-kit/shadow4workspaces
- [3] https://github.com/oasys-kit/oasys_school
- [4] https://doi.org/10.1080/08940886.2019.1654832
- [5] https://doi.org/10.1080/08940886.2023.2274746

Thank you

Download slides:

HIERARCHICAL¹ BEAMLINE SIMULATIONS WITH OASYS

Analytical model (by hand)

Ray tracing (Shadow4)

Hybrid model (Shadow4)

wave optics & partial coherence 1D (WOFRY (see poster 1.141)

wave optics partial coherence 2D:

Monte Carlo (multi e⁻) (SRW)

Coherent Mode Decomposition (COMSYL)

[1] M. Sanchez del Rio et al. 2019 https://doi.org/10.1107/S160057751901213X

SRI2024-08-27 M. Sanchez del Rio