DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Autumn Semester 2009 (30 minutes)

EEE 101 CIRCUITS AND SIGNALS MID TERM TEST

Answer ALL questions. The numbers given after each question indicate the relative weighting of that question. A total of 26 marks can be obtained from the seven questions.

REGISTRATION NUMBER:

WRITE YOUR ANSWERS ON THIS QUESTION PAPER

- 1 Figure 1 shows three resistors labelled with voltages and currents in specified directions. *R*, *V* and *I* are positive. Indicate by ticking the appropriate box which of the three resistors is marked with the correct convention. {1 mark}
- 2 Figure 2 shows two sources, (a) and (b). By circling either (a) or (b) on the diagram, identify the current source. Label figure 2 with voltage differences and currents that have directions appropriate for the voltage source delivering energy to a load and the current source absorbing energy from a load. (*Note*, the loads are not shown on the diagram.) {5 marks}
- 3 Figure 3 shows four resistive circuits. If each circuit is attached to a 10V source, work out the magnitude of the current through R_2 in each case and put your answer in the box provided. $\{4 \text{ marks}\}$

figure 1

figure

4 Figure 4 contains a voltage source and a current source, both of which are ideal, and two resistors. Work out the power dissipation in R_2 . {4 marks}

Q4 work space			

Figure 5 shows a Thevenin equivalent circuit and a Norton equivalent circuit. Find values of I and R_N that will make the two circuits indistinguishable from the load's point of view. Label the current source to show the direction in which its current I will flow. $\{3 \text{ marks}\}$

Figure 5

Q5 work space			

	minus one mark per	error}
	circuit of figure 6.	{6 marks for correct answer
6	Write down the loop	equation for the I_2 loop in the

Figure 6

Q6 work space			

7 Calculate the current I_S in the circuit of figure 7. $\{3 \text{ marks}\}$

Figure 7

Q7 work space

EEE101 Test 3 END OF TEST