Notes sur la collision

Référence:

Taylor: Mécanique Classique Chapitre 14 p623

Introduction

- Collision élastique = Diffusion : Le nombre de particules et leur nature est inchangée
- **Principe** : Envoyer des particules sur une cible. Observer la distribution des particules diffusée pour en déduire des propriétés sur la nature de l'interaction entre projectiles et cible
- Expérience de Diffusion de Rutherford (1871-1937): Envoyer faisceau de particules alpha sur des atomes d'une feuille mince d'or. Conclusion: la majeur partie de la masse d'un atome était concentrée dans un très petit « noyau » chargé positivement au centre de l'atome.
- Taille noyau : 10^{-15} mètre est environ 100 000 fois plus petite que celle de l'atome (10^{-10} mètre)

I- Angle de diffusion et paramètre d'impact

- Angle de diffusion : θ et paramètre d'impact b
- **But :** Trouver la fonction $\theta = \theta(b)$. Le paramètre d'impact a une taille beaucoup trop petite pour être mesuré expérimentalement. Cela nous mène à définir la notion de section efficace de collision.

II- Section efficace de collision

- Dans la vision boule de billard : le projectile n'est diffusé que s'il touche une cible. Donc la probabilité que le projectile soit diffusé est $P = \frac{surface\ occupée\ par\ les\ cibles}{surface\ totale} = \frac{n_{cib}A\sigma}{A} = n_{cib}\sigma$ où σ est l'aire de la cible vue par le projectile et n_{cib} est le nombre de projectile par unité de surface. On suppose que la cible macroscopique est constituée d'une couche si fine d'atome que le projectile a très peu de chance de toucher 2 atomes. $N_{dif} = N_i\ n_{cib}\sigma$
- L'idée essentielle : On connait N_i et n_{cib} on mesure N_dif pour remonter à σ .

III- Généralisation de la notion de section efficace

- Exemple de 2 sphères dures (p581 de la version anglaise) :

Figure 14.5 A hard-sphere projectile of radius R_1 approaches a hard-sphere target of radius R_2 , with impact parameter b. A collision occurs only if $b \le R_1 + R_2$.

La section efficace de collision n'est pas $\sigma=2\pi R_2$ mais $\sigma=2\pi(R_1+R_2)$. Cela montre que la section efficace n'est pas définie uniquement à partir de la cible mais aussi à partir du projectile. On peut la voir comme *La section efficace pour que la cible diffuse le projectile.*

Expérience de rutherford (voir le pdf et la figure ci-dessous)

Figure 14.13 Semilog plot of the Rutherford differential cross section as a function of angle θ . The dots are the measurements of Geiger and Marsden.