Algorithmic Operation Research

Homework 1

Instructor: Anna Karasoulou Fall 2019

- **1.** Let $C \subseteq \mathbb{R}^n$ be a convex set with $x_1, \ldots x_k \in C$ and let $\theta_1, \ldots, \theta_k \in \mathbb{R}$ satisfy $\theta_i \geq 0$ and $\theta_1 + \cdots + \theta_k = 1$. Show that $\theta_1 x_1 + \cdots + \theta_k x_k \in C$.
 - 2. Show that a set is convex if and only if its intersection with any line is convex.
 - **3.** Show that a set is affine if and only if its intersection with any line is affine.
- **4.** A set C is midpoint convex, if whenever two points $a, b \in C$, the average or midpoint (a + b)/2 is in C. Obviously, a convex set is midpoint convex. Prove that if C is closed and midpoint convex, then C is convex.
- 5. Show that the convex hull of a set S is the intersection of all convex sets that contain S. (The same method can be used to show that the conic, or affine, or linear hull of a set S is the intersection of all conic sets, or affine sets, or subspaces that contain S.
- **6.** What is the distance between two parallel hyperplanes $\{x \in \mathbb{R}^n : a^T x = b_1\}$ and $\{x \in \mathbb{R}^n : a^T x = b_2\}$?
- 7. Let a and b be distinct points in \mathbb{R}^n . Show that the set of all points that are closer (in Euclidean norm) to a than b is a halfspace.