255

Sean $\mathbf{u} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k} \mathbf{y} \mathbf{v} = \mathbf{i} + 2\mathbf{j} - 6\mathbf{k}$. Encuentre proy_v \mathbf{u} .

SOLUCIÓN En este caso, $\frac{(\mathbf{u} \cdot \mathbf{v})}{|\mathbf{v}|^2} = \frac{2}{41} \mathbf{y} \operatorname{proy}_{\mathbf{v}} \mathbf{u} = \frac{2}{41} \mathbf{i} + \frac{4}{41} \mathbf{j} - \frac{12}{41} \mathbf{k}$. La componente de \mathbf{u} en la dirección \mathbf{v} es $\frac{(\mathbf{u} \cdot \mathbf{v})}{|\mathbf{v}|} = \frac{2}{\sqrt{41}}$.

Observe que, igual que en el plano, $\text{proy}_v \mathbf{u}$ es un vector que tiene la misma dirección que \mathbf{v} si $\mathbf{u} \cdot \mathbf{v} > 0$ y la dirección opuesta a la de \mathbf{v} si $\mathbf{u} \cdot \mathbf{v} < 0$.

RESUMEN 4.3

- El segmento de recta dirigido que se extiende de P a Q en \mathbb{R}^3 denotado por \overrightarrow{PQ} es el segmento de recta que va de P a Q.
- Dos segmentos de recta dirigidos en R³ son equivalentes si tienen la misma magnitud (longitud) y dirección.
- Definición geométrica de un vector

Un vector en \mathbb{R}^3 es el conjunto de todos los segmentos de recta dirigidos en \mathbb{R}^3 equivalentes a un segmento de recta dirigido dado. Una representación de un vector tiene su punto inicial en el origen y se denota por $\overrightarrow{0R}$.

• Definición algebraica de un vector

El **vector cero** es el vector (0, 0). En \mathbb{R}^3 , un vector \mathbf{v} es una **terna ordenada** de números reales (a, b, c); los números a, b y c son las componentes del vector \mathbf{v} . El **vector cero** en \mathbb{R}^3 es el vector (0, 0, 0).

- Las definiciones geométrica y algebraica de un vector en \mathbb{R}^3 se relacionan de la siguiente manera: si $\mathbf{v} = (a, b, c)$, entonces una representación de \mathbf{v} es 0R, donde R = (a, b, c).
- Si $\mathbf{v} = (a, b, c)$, entonces la magnitud de \mathbf{v} está dada por $\sqrt{a^2 + b^2 + c^2}$.
- Desigualdad del triángulo

En \mathbb{R}^3

$$|\mathbf{u} + \mathbf{v}| \le |\mathbf{u}| + |\mathbf{v}|$$

• En \mathbb{R}^3 , sean $\mathbf{i} = (1, 0, 0)$, $\mathbf{j} = (0, 1, 0)$ y $\mathbf{k} = (0, 0, 1)$; entonces $\mathbf{v} = (a, b, c)$ se puede escribir como

$$\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

• Un vector unitario u en \mathbb{R}^3 es un vector que satisface $|\mathbf{u}| = 1$.

Si $\mathbf{u} = (a_1, b_1, c_1)$ y $\mathbf{v} = (a_2, b_2, c_2)$, entonces

$$\mathbf{u} \cdot \mathbf{v} = a_1 a_2 + b_1 b_2 + c_1 c_2$$

• El ángulo φ entre dos vectores \mathbf{u} y \mathbf{v} en \mathbb{R}^3 es el único número en $[0, \pi]$ que satisface

$$\cos \varphi = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}$$