Math 312 Worksheet for September 15

Jacob Harkins jah6863@psu.edu

May 20, 2024

Exercise 1) Let S be a nonempty subset of the real numbers that has a greatest lower bound α and a least upper bound β . Let T be the set defined as $T = -S = \{x = -s \text{ for } s \in S\}$. Make conjectures about $\delta = \inf T$ and $\gamma = \sup T$ using the information about S. Then prove that your conjectures are correct.

Conjectures:

$$\delta = -\beta$$
$$\gamma = -\alpha$$

Proof:

$$\delta = -\beta$$

Let
$$t \in T$$

 $-t \in S$
 $\implies -t < \beta$
 $\implies t > -\beta = \delta$

Therefore, δ is a lower bound of T.

Assume some bound $\delta + d$ is a lower bound of T.

$$\forall t \in T, \beta + d < t$$
$$\beta - d > -t$$

Which implies $\beta - d$ is an upper bound of S which contradicts that β is the supremum of S. Therefore, δ is the infimum of T.

$$\gamma = -\alpha$$

Let
$$t \in T$$

 $-t \in S$
 $\implies -t > \alpha$
 $\implies t < -\alpha = \gamma$

Therefore, γ is an upper bound of T.

Assume some bound $\gamma - d$ is an upper bound of T.

$$\forall t \in T, \alpha - d > t$$
$$\alpha + d < -t$$

Which implies $\alpha + d$ is a lower bound of S which contradicts that α is the infimum of S. Therefore, γ is the supremum of T.

Exercise 2) Consider the sets $S = \{x \in \mathbb{R} | x > 0 \text{ and } sin(\frac{1}{x}) = 0\}$ and $T = \{x \in \mathbb{R} | e^x = cos(x)\}$. What kind of bounds do they have?

set S:

Hypothesis: $\sup S = \frac{1}{\pi}$, $\inf S = 0$

Proof:

 $sin(\frac{1}{x}) = 0$ when $x = \frac{1}{t\pi}$ with $t > 0 \land t \in \mathbb{Z}$

Let $f(t) = \frac{1}{t\pi}$, with f(t) being a strictly decreasing for t > 0. Upper Bound:

$$f(1) = \frac{1}{\pi}$$

Since 1 is the lowest value of t, $\frac{1}{\pi}$ is the LUB.

Lower bound:

Note that 0 < f(t) for all t > 0, and hence is a lower bound.

Assume for contradiction $\epsilon > 0$ is a lower bound.

Let $a, b \in \mathbb{Z} > 0$ such that $\epsilon \geq \frac{a}{b}$.

$$\frac{a}{b} > \frac{1}{b}$$

$$\implies \frac{a}{b} > \frac{1}{b\pi} \text{ with } \frac{1}{b\pi} \in S$$

Therefore ϵ is not a lower bound.

Hence 0 is the GLB.

Set T:

Hypothesis: $\sup S = 0$, $\inf S$ DNE

Proofs

 $0 \le e^x \le 1$ and $-1 \le cos(x) \le 1$ when $x \le 0$.

Upper Bound:

Since e^x strictly increases at $x \ge 0$, and $e^0 = 1 \land cos(0) = 1$, 0 is the LUB.

Lower Bound:

Assume for contradiction x < 0 is the lower bound of T.

$$2\pi\lceil x\rceil - \frac{\pi}{2} \le 2\pi\lceil x\rceil \le x$$

Note that $cos(2\pi\lceil x\rceil - \frac{\pi}{2}) = 0$ and $cos(2\pi\lceil x\rceil) = 1$, and that $0 \le e^x \le 1$ when x < 0.

Hence, by the intermediate value theorem there is a value n with $2\pi \lceil x \rceil - \frac{\pi}{2} \le n \le 2\pi \lceil x \rceil$ such that $\cos(n) = e^n$.

Therefore, x is not a lower bound, so T is not bounded below.

Exercise 3) Consider the sequence $\{g_n\}$ defined by $g_1 = 1$ and $g_{n+1} = 1 + \frac{1}{g_n}$ for $n \ge 1$.

(b) Prove by induction that $g_n \leq 2$.

Proof by Math Induction.

Hypothesis: $1 \le g_n \le 2$ for $n \ge 1$.

Base Case: n = 1

$$g_1 = 1$$

It holds true for n = 1.

Assume it holds true for some number, $n \ge 1$, does it hold for n + 1?

$$g_{n+1} = 1 + \frac{1}{g_n}$$

First we will find the bound of $\frac{1}{q_n}$.

Consider the function $f(x) = \frac{1}{x}$.

$$f'(x) = -\frac{1}{x^2}$$

Note there are no inflection points between 1 and 2, the function is strictly decreasing in this range. Therefore,

$$f(2) \le f(g_n) \le f(1)$$

$$\implies \frac{1}{2} \le \frac{1}{g_n} \le 1$$

$$\implies 1 + \frac{1}{2} \le 1 + \frac{1}{g_n} \le 2$$

$$\implies 1 \le g_{n+1} \le 2$$

Therefore it holds for n+1, so by The Principal of Mathematical Induction it holds for all $n \geq 1$.

- (c) Observe (with technology) that this sequence appears to hop back and forth across the number $\phi = \frac{(1+\sqrt{5})}{2} \approx 1.618$, the golden ratio. Prove algebraically that:
 - (i) if $g_n > \phi$, then $g_{n+1} < \phi$.

$$g_n > \frac{1 + \sqrt{5}}{2}$$

$$\frac{2}{1 + \sqrt{5}} > \frac{1}{g_n}$$

$$\frac{1 - \sqrt{5}}{1 - \sqrt{5}} * \frac{2}{1 + \sqrt{5}} > \frac{1}{g_n}$$

$$1 + \frac{1 - \sqrt{5}}{2} > 1 + \frac{1}{g_n}$$

$$\frac{1 + \sqrt{5}}{2} > g_{n+1}$$

(ii) if $g_n < \phi$, then $g_{n+1} > \phi$.

$$g_n < \frac{1 + \sqrt{5}}{2}$$

$$\frac{2}{1 + \sqrt{5}} < \frac{1}{g_n}$$

$$\frac{1 - \sqrt{5}}{1 - \sqrt{5}} * \frac{2}{1 + \sqrt{5}} < \frac{1}{g_n}$$

$$1 + \frac{1 - \sqrt{5}}{2} < 1 + \frac{1}{g_n}$$

$$\frac{1 + \sqrt{5}}{2} < g_{n+1}$$