Homework 6: Encoder-Decoder Model and Machine Translation Evaluation

INFO 159 / 259, Spring 2023

Due: April 12, 2023 (11:59 PM)

This homework is designed to help you:

- 1. understand the concept of cross-attention and implement an encoder-decoder model [deliverable 1]
- 2. understand the evaluation method for machine translation system and implement BLEU [deliverable 2]

This document contains the instructions for this homework, and the accompanying notebook can be found here:

https://github.com/dbamman/nlp23/blob/main/HW6/HW6.ipynb

To use it, hit the "Open in Colab" button open in Colab at the top, and be sure to save a copy in your Google Drive or Github *before* you start to work on the file.

Submit your work on Gradescope. Replace # TO-DO and variable = None with your solutions, and as in HW1, keep your code between the # BEGIN SOLUTION and # END SOLUTION flags. IMPORTANT: For grading purposes, DO NOT change the variable names in the return statement!

1 Deliverable 1: Encoder-decoder model with cross-attention

The first deliverable can be seen as a tutorial on the encoder-decoder model, which is one of the core ideas for transformer-based language models. For your reference:

Link to SLP 3 Chapter 10 ("Machine Transsation") and Figure 10.6: https://web.stanford.edu/jurafsky/slp3/13.pdf

Figure 10.6 The transformer block for the encoder and the decoder. The final output of the encoder $\mathbf{H}^{enc} = \mathbf{h}_1, ..., \mathbf{h}_r$ is the context used in the decoder. The decoder is a standard transformer except with one extra layer, the **cross-attention** layer, which takes that decoder output \mathbf{H}^{enc} and uses it to form its \mathbf{K} and \mathbf{V} inputs.

QUESTION 1

[10 pts]

Cross-Attention Block

Implement the CrossAttentionBlock, which allows tokens on the decoding side (e.g., a French translation you are generating) to attend to information on the encoding side (e.g., an original English sentence you're translating).

QUESTION 2

[10 pts]

Encoder-Decoder Model

Implement the forward function within an Encoder-Decoder model.

2 Deliverable 2: Implement BLEU

BLEU is a common method method for evaluation the performance of MT systems. For this deliverable, you will implement BLEU and evaluate a sample translation with respect to several reference translations. Refer to lecture, but here is the equation for BLEU:

$$BLEU = BP \times \exp \frac{1}{N} \sum_{n=1}^{N} \log p_n$$

Where:

$$p_n = \frac{\text{Number of ngram tokens in system and reference translations}}{\text{Number of ngram tokens in system translation}}$$

And the brevity penalty = $\exp(1 - r/c)$, where c is the length of the hypothesis translation (in tokens), and r is the length of the *closest* reference translation.

Calculate BLEU for N=4. Your code should return six values, in order: bleu, p_1 , p_2 , p_3 , p_4 , the brevity penalty.

QUESTION 3

[10 pts]

ngrams

Implement a function get_ngrams (text, order) that takes in a text string and an integer order, and returns a Counter object that contains the frequency counts of all ngrams of size order in the input text.

QUESTION 4

[10 pts]

BLEU

Implement a function calculate_bleu (hypothesis, references) that takes in a hypothesis and a list of references, and assesses the quality of the machine translation.

3 How to submit

Submit your work to Gradescope.

- Submit to: "Gradescope HW6 code (ipynb)"
 - Make sure you have replaced all # TO-DO with your solutions, and that they are placed, as in HW1, between the # BEGIN SOLUTION and # END SOLUTION flags.
 - Download your Colab notebook as an .ipynb file (File \rightarrow Download .ipynb). DO NOT submit a pdf file!
 - Submit HW6.ipynb. The file must be named in this way for the Gradescope autograder.