Apellido y Nombres:		,,,,,,
DNI:	Padrón:	Código Asignatura:
		Profesor:
Correo electrónico:		

Análisis Matemático III. Examen Integrador. Segunda fecha. 18 de septiembre de 2020.

Justificar claramente todas las respuestas. La aprobación del examen requiere la correcta resolución de 3 (tres) ejercicios

Ejercicio 1. Sabiendo que R_a es el radio de convergencia de $\sum_{n=0}^{\infty} a_n z^n$ y que R_b es el

radio de convergencia de $\sum_{n=0}^{\infty}b_nz^n.$ ¿Qué se puede decir sobre el dominio de holomorfía de

$$\sum_{n=0}^{\infty} a_n (z - z_0)^{2n} + \sum_{n=0}^{\infty} 3^n n \, b_n (z - z_0)^n?$$

Ejercicio 2. Decir si es verdad o no que $u(x,y) = \frac{2}{\pi} \operatorname{arctg}\left(\frac{y}{x}\right)$ es la única función armónica del primer cuadrante que satisface $\lim_{x\to 0^+} u(x,y) = 1$ y $\lim_{y\to 0^+} u(x,y) = 0$.

Ejercicio 3. Considerar el siguiente problema de ecuaciones diferenciales en derivadas parciales:

$$\begin{cases} u_{xx}(x,t) - u_t(x,t) = \lambda u(x,t) & -\pi < x < \pi, \ t > 0 \\ u(-\pi,t) = u(\pi,t) = 0 & t \geqslant 0 \\ u(x,0) = f(x) & -\pi \leqslant x \leqslant \pi \end{cases}$$

con $\lambda \in \mathbb{R}$ y f una función impar en $[-\pi, \pi]$. Obtener su solución u(x, y) en términos de los coeficientes del desarrollo trigonométrico de Fourier de f en $[-\pi, \pi]$.

Ejercicio 4. Deducir que el problema de la conducción del calor en una varilla infinita dado por:

$$\begin{cases} u_{xx} = u_t & -\infty < x < +\infty, \quad t > 0 \\ u(x,0) = (E * g)(x) & -\infty < x < +\infty \end{cases}$$

donde $E(x) = e^{-x^2}$ y g es absolutamente integrable en $(-\infty, \infty)$, tiene solución de la forma $u(x,y) = (\varphi_t * g)(x)$; especificar la función $\varphi_t(x)$ (para cada t > 0).

Ejercicio 5. Hallar ϕ definida en $(0,\infty)$ tal que $\int\limits_0^t \frac{\phi(x)}{\sqrt{t-x}} \, dx = 1$ para todo t>0 estableciendo las condiciones necesarias sobre ϕ . ¿Cumple la función obtenida tales condiciones?