ARITHMETIC

Chapter 20 Sesión 1

RADICACIÓN

MOTIVATING STRATEGY

La radicación se expresa con el símbolo √ , que es una variante de la letra latina "r"; siendo esta la primera letra de la palabra latina "radix" que significa raíz. En el siglo XVI el símbolo de la raíz no era "r", sino la letra mayúscula "R" y junto a ella se escribía la primera letra de las palabras latinas *quadrus* (q) o la de *cubus* (c) señalando con ellos que la raíz a extraer es cuadrada o cúbica respectivamente. Por ejemplo, Rq 5329 significaba √5329 y Rc 1278 significaba $\sqrt[3]{1278}$.

HELICO THEORY

RADICACIÓN

La radicación es una de las operaciones inversas de la potenciación que consiste en que teniendo dos números llamados índice y radicando, se calcula un tercer número llamado raíz, donde este último elevado al índice reproduzca el radicando.

Es decir:

$$\sqrt[n]{N} = k \leftrightarrow k^n = N$$

 $\forall N, n \in \mathbb{Z}^+$

Donde:

n: indice.

N: radicando

k: raiz

HELICO THEORY

RAÍZ CUADRADA

Por descomposición canónica

Solo funciona para números cuadrados perfectos.

Ejm Cald

Calcule $\sqrt{400}$

1. Descomponemos

2. Simplificamos los exponentes

$$\sqrt{2^4 \times 5^2} = 2^2 \times 5^1 = 20$$

$$\Rightarrow \sqrt{400} = \mathbf{20}$$

HELICO THEORY

Método general

Este método es para números que sean o no cuadrados perfectos.

Ejm Calcule
$$\sqrt{51982}$$

$$Radicando = 51982$$

$$Raíz = 227$$

Residuo
$$= 453$$

তিয়

HELICO THEORY RAÍZ CÚBICA

Por descomposición canónica

 $1728 = 2^6 \times 3^3$

Calcule $\sqrt[3]{1728}$

1. Descomponemos

2. Simplificamos los exponentes

$$\sqrt[3]{2^6 \times 3^3} = 2^2 \times 3^1 = 12$$

$$\sqrt[3]{1728} = 12$$

Calcule A + B usando la descomposición canónica $A = \sqrt{324}$ $B = \sqrt[3]{9261}$

Resolución:

324 | 2 | 162 | 2 | 81 | 3 | 324 =
$$2^2 \times 3^4$$
 | 27 | 3 | A = $\sqrt{2^2 \times 3^4}$ | 3 | 3 | A = $2^1 \times 3^2$ | A = 18

9261 3
3087 3
1029 3
343 7
49 7
7 7 8 =
$$3\sqrt{3^3 \times 7^3}$$

B = $3\sqrt{3^3 \times 7^3}$
B = $3\sqrt{3^3 \times 7^3}$
B = $3\sqrt{3^3 \times 7^3}$
B = $3\sqrt{3^3 \times 7^3}$

Rpta:

39

Al calcular √5184 por el método de descomposición canónica se obtuvo 2^a×3^b. Calcule a+b.

Resolución:

Raíz cuadrada

$$\sqrt{5184} = \sqrt{2^6 \times 3^4}$$

$$\sqrt{5184} = 23 \times 32 = 2^{a} \times 3^{b}$$

$$a + b = 3 + 2 =$$

Rpta:

5

La raíz cuadrada de 2025 es $3^a \times 5^b$. Calcule (a+b)a.

Resolución:

Raíz cuadrada

$$\sqrt{2025} = \sqrt{3^4 \times 5^2}$$

$$\sqrt{2025} = 32 \times 51 = 3a \times 5b$$

$$(a+b)a = (2+1)\times 2 =$$

Rpta: 6

4.

Calcule la raíz de 51 873 por el método general e indique la suma de cifras del residuo.

Resolución:

$$N = k^2 + r$$

$$51873 = 227^2 + 344$$

$$r = 344$$

Rpta:

11

Resolución:

$$N = k^2 + r$$

$$150 = k^2 + r$$

$$k = 12$$

$$r = 6$$

Reemplazando

$$150 = 12^2 + 6$$

$$150 = 144 + 6$$

Rpta:

$$k-r=6$$

6.

Jugando a las adivinanzas matemáticas, Adrián le pregunta a su primo, cual es la raíz cuadrada de 103 si su residuo es menor que 4, a lo que su primo le dice: que fácil, te diré cuál es esa raíz y la suma con su residuo. Ayuda al primo de Adrián a dar esa respuesta.

Resolución:

$$N = k^2 + r$$

$$103 = k^2 + r$$

$$k = 10$$

$$r = 3$$

Reemplazando

$$103 = 10^2 + 3$$

$$103 = 100 + 3$$

Rpta:

$$k + r = 13$$

En una reunión de ex licenciados del ejercito han asistido N personas; en un momento determinado todos los asistentes se ordenan formando un batallón de forma cuadrada con 17 personas por lado y sobrando 8 personas. Halle el valor de N e indique la suma de sus cifras.

Resolución:

$$N = k^2 + r$$

r = 8

Reemplazando

$$N = 17^2 + 8$$

$$N = 289 + 8$$

$$N = 297$$

$$\therefore$$
 2 + 9 + 7 =

Rpta:

297 y 18