Colles de mathématiques en PCSI 5

10 avril 2012

Programme

Dénombrement, polynômes.

Exercice nº 1

Questions rapides:

- Vérifier que pour tout $P \in \mathbb{K}[X]$, $P\mathbb{K}[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$. En donner un supplémentaire.
- $\mathbb{K}[X]$ est-il de dimension finie?

Exercice nº 2

Factoriser sur $\mathbb{R}[X]$

$$P(X) = 1 + X + \frac{X(X+1)}{2} + \dots + \frac{X(X+1)\dots(X+n-1)}{n!}.$$

Exercice nº 3

Soient $n \in \mathbb{N}^*$ et $a \neq b \in \mathbb{R}$. On note, pour $0 \leq k \leq n$, $P_k(X) = (X - a)^k (X - b)^{n-k}$. Prouver que la famille (P_0, \ldots, P_n) est libre dans $\mathbb{R}[X]$.

Exercice nº 4

On introduit l'opérateur linéaire $\Delta : \mathbb{R}[X] \to \mathbb{R}[X]$ défini par $\Delta(P) = P(X+1) - P(X)$.

- 1. Prouver que $deg(\Delta(P)) = deg(P) 1$ si P n'est pas constant.
- **2.** Prouver que pour $n \ge 1$,

$$\Delta^{n}(P) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} P(X+k).$$

- **3.** Calculer $\Delta^n(X^n)$
- 4. Déterminer pour $0 \le p \le n$,

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k k^p.$$

- **5.** Si deg P = n, prouver que (P(X), P(X+1), ..., P(X+n)) est une base de $\mathbb{R}_n[X]$.
- 6. On introduit les polynômes de Hilbert :

$$H_0 = 1 \text{ et } \forall p \in \mathbb{N}^*, \ H_p(X) = \frac{X(X-1)...(X-p+1)}{p!}.$$

a. Justifier que $(H_p)_{p\in\mathbb{N}}$ est une base de $\mathbb{R}[X]$.

b. Calculer $\Delta^n(H_p)$.

 \mathbf{c} . Si P est un polynôme, montrer que

$$P = \sum_{k \in \mathbb{N}} \Delta^k P(0) H_k.$$

d. Si $P \in \mathbb{R}[X]$, prouver que

 $P(\mathbb{Z}) \subset \mathbb{Z} \iff$ les coordonnées de P dans la base (H_p) sont entières.

Exercice nº 5

Déterminer le reste de la division euclidienne de $(\cos \varphi + X \sin \varphi)^n$ par $X^2 + 1$.

Exercice nº 6

Soient $n \geqslant 2$, $a, b \in \mathbb{C}$ et $\omega_k = e^{\frac{2ik\pi}{n}}$, $k \in \{0, ..., n-1\}$. Calculer

$$\prod_{k=0}^{n-1} (a + b\omega_k).$$

Exercice nº 7

On note x_1 , x_2 , x_3 les racines complexes de $X^3 + X - 1$. Calculer $x_1^4 + x_2^4 + x_3^4$.

Exercice nº 8

Soit $P \in \mathbb{C}[X]$. Montrer que P(X) - X divise P(P(X)) - X.

Exercice nº 9

Soit $P \in \mathbb{R}[X]$ tel que $\forall x \in \mathbb{R}, P(x) \geqslant 0$. Montrer qu'il existe $A, B \in \mathbb{R}[X]$ tels que $P = A^2 + B^2$.