Exercise 14.1

Question 1:

Copy the figures with punched holes and find the axes of symmetry for the following:

(Chapter - 14) (Symmetry)(Class - VII)

(Chapter - 14) (Symmetry) (Class - VII)

Question 2:

Express the following in exponential form:

Answer 2:

S.No.	Line(s) of symmetry	Other holes on figures
(a)		
(b)		•
(c)		
(d)		

Question 3:

In the following figures, the mirror line (i.e., the line of symmetry) is given as a dotted line. Complete each figure performing reflection in the dotted (mirror) line. (You might perhaps place a mirror along the dotted line and look into the mirror for the image). Are you able to recall the name of the figure you complete?

Answer 3:

S.No.	Question figures	Complete figures	Names of the figure
(a)			Square
(b)			Triangle
(c)			Rhombus
(d)			Circle

(Chapter – 14) (Symmetry) (Class – VII)

Question 4:

The following figures have more than one line of symmetry. Such figures are said to have multiple lines of symmetry:

Identify multiple lines of symmetry, if any, in each of the following figures:

(Chapter – 14) (Symmetry) (Class – VII)

Answer 4:

Answ		
S.No.	Problem Figures	Lines of symmetry
(a)		
(b)		
(c)		
(d)		
(e)		
(f)		
(g)		

(Chapter - 14) (Symmetry)(Class - VII)

Question 5:

Copy the figure given here:

Take any one diagonal as a line of symmetry and shade a few more squares to make the figure symmetric about a diagonal. Is there more than one way to do that? Will the figure be symmetric about both the diagonals?

Answer 5:

Answer figures are:

Yes, there is more than one way.

Yes, this figure will be symmetric about both the diagonals.

(Chapter – 14) (Symmetry) (Class - VII)

Question 6:

Copy the diagram and complete each shape to be symmetric about the mirror line(s):

(Chapter - 14) (Symmetry)(Class - VII)

Question 7:

State the number of lines of symmetry for the following figures:

- (a) An equilateral triangle
- (b) An isosceles triangle
- (c) A scalene triangle

(d) A square

(e) A rectangle

(f) A rhombus

- (g) A parallelogram
- (h) A quadrilateral
- (i) A regular hexagon

(j) A circle

Answ	er 7:		
S.No.	Figure's name	Diagram with symmetry	Number of lines
(a)	Equilateral triangle		3
(b)	Isosceles triangle		1
(c)	Scalene triangle		0
(d)	Square		4
(e)	Rectangle		2
(f)	Rhombus		2
(g)	Parallelogram		0

(Chapter – 14) (Symmetry) (Class – VII)

Question 8:

What letters of the English alphabet have reflectional symmetry (i.e., symmetry related to mirror reflection) about.

- (a) a vertical mirror
- (b) a horizontal mirror
- (c) both horizontal and vertical mirrors

Answer 8:

(a) Vertical mirror – A, H, I, M, O, T, U, V, W, X and Y

mirror			mirror	
A	A		U	U
H	H	v	\mathbf{v}	V
Ι	I		W	W
M	M		X	X
O	0		Y	Y
T	Т			

(b) Horizontal mirror - B, C, D, E, H, I, O and X

mirror	\mathbf{B}	\mathbf{C}	\mathbf{D}	${f E}$	\mathbf{H}	Ι	О	X
	mmm	mmmm	aanaaaa	mannan.	mmuna	annanna.	annananan da	mmmm
	В	\mathbf{C}	D	\mathbf{E}	H	Ι	O	\mathbf{X}

(c) Both horizontal and vertical mirror - H, I, O and X

Question 9:

Give three examples of shapes with no line of symmetry.

Answer 9:

The three examples are:

- Quadrilateral
- > Scalene triangle
- Parallelogram

Question 10:

What other name can you give to the line of symmetry of:

- (a) an isosceles triangle?
- (b) a circle?

Answer 10:

- (a) The line of symmetry of an isosceles triangle is median or altitude.
- (b) The line of symmetry of a circle is diameter.