Package 'GroupBN'

October 12, 2022

October 12, 2022			
Type Package			
Date 2021-03-07			
Title Inferring Group Bayesian Networks using Hierarchical Feature Clustering			
Version 1.2.0			
Maintainer Ann-Kristin Becker <annkristinbecker@web.de></annkristinbecker@web.de>			
Description Group Bayesian Networks: This package implements the inference of group Bayesian networks based on hierarchical feature clustering, and the adaptive refinement of the grouping regarding an outcome of interest, as described in Becker et. al (2021) <doi:10.1371 journal.pcbi.1008735="">.</doi:10.1371>			
Depends R (>= 3.5.0), bnlearn, ClustOfVar, PCAmixdata, arules, zoo			
Imports PRROC, MLmetrics, rlist, stats, magrittr, visNetwork, plyr, stringr			
Suggests			
License GPL (>= 2)			
<pre>URL https://www.r-project.org</pre>			
Encoding UTF-8			
LazyData true			
NeedsCompilation no			
Author Ann-Kristin Becker [aut, cre], Lars Kaderali [aut, ths]			
Repository CRAN			
Date/Publication 2021-03-07 14:40:02 UTC			
R topics documented:			
cross.en			

2 cross.en

	groupbn.vis.html.plot
	groupbn_refinement
	groupbn_refine_manually
	s.groupbn
	plot.groupbn
	predict.groupbn
	print.groupbn
	wine.groupbn.refined
Index	15

cross.en cross.en

Description

Calculates the weighted cross entropy / log-loss for a vector of observations and predicted probabilities (weighted by class proportions)

Usage

```
cross.en(pred, obs, sdpred=NULL, weighted=T)
```

Arguments

pred	a numeric vector, the predicted probabilities of the reference class
obs	the vector of observations, a categorical variable with 2-4 levels
sdpred	either NULL or a vector containing the standard deviations of every estimate
weighted	a boolean, if FALSE, the unweighted logloss is calculated. By default, the weighted cross entropy is calculated.

Details

if sdpred contains the standard deviations for each estimated probability, then a lower bound of the log loss is returned.

Value

a numeric value: cross entropy / log loss for comparison of classifiers. The smaller, the better.

Author(s)

Ann-Kristin Becker

discretize.dens 3

Examples

```
#observations
obs<-as.factor(c("A","A","B"))
#correct prediction
pred1 < -c(1,1,0)
#wrong prediction
pred2 < -c(0,0,1)
cross.en(pred=pred1, obs=obs) #small
cross.en(pred=pred2, obs=obs) #large
#prediction of only majority class
pred3 < -c(1,1,1)
#prediction of only minority class
pred4 < -c(0,0,0)
cross.en(pred=pred3, obs=obs, weighted=TRUE)
cross.en(pred=pred4, obs=obs, weighted=TRUE)
#both equal (as weighted)
cross.en(pred=pred3, obs=obs, weighted=FALSE)
cross.en(pred=pred4, obs=obs, weighted=FALSE)
#unweighted, majority class is favored
```

discretize.dens

discretize.dens

Description

density approximative discretization. Significant peaks in the density are determined and used as starting points for k-means based discretization. If only one peak is present, distribution quartiles are used for binning.

Usage

```
discretize.dens(data, graph=F, title="Density-approxmative Discretization",
rename.level=F, return.all=T, cluster=F, seed=NULL)
```

Arguments

data a vector containing the data that may be discretized

graph a boolean value, if TRUE, the density and the determined binning are plotted

title a title for the plot

rename.level a boolean value, if TRUE, factor levels are replaced by integers 1:n return.all a boolean value, if FALSE, only the discretized data are returned.

cluster a boolean value, if data is a cluster variable and may already be discrete or not

seed a random seed number

4 groupbn

Value

discretized the discretized data levels the factor levels

optima the x and y coordinates of the determined peaks

Author(s)

Ann-Kristin Becker

Examples

```
testdata = c(rnorm(100,-3,1), rnorm(100,3,1))
d<-discretize.dens(testdata, graph=TRUE)
summary(d$discretized)</pre>
```

groupbn

groupbn

Description

creates groupbn object (determines an initial clustering based on a hierarchy with target variable and 'separated' variables separated, learns a Bayesian network from grouped data and saves discretization and pca parameters)

Usage

```
groupbn(hierarchy, k, target, separate=NULL, separate.as.roots=FALSE,
X.quanti=NULL, X.quali=NULL, struct.alg="hc", boot=TRUE,
discretize=TRUE, arc.thresh=NULL,
debug=FALSE, R=100, seed=NULL)
```

Arguments

hierarchy a cluster object from ClustOfVar.

k a positive integer number, the number of initial clusters.

target a string, the name of the target variable.

separate a vector of strings, names of variables that should be separated from the groups,

such as age, sex,...

separate.as.roots

a boolean; if TRUE separated variables are used as roots in the network. Can be

ignored if separate is empty.

X. quanti a numeric matrix of data, or an object that can be coerced to such a matrix (such

as a numeric vector or a data frame with all numeric columns).

X.quali a categorical matrix of data, or an object that can be coerced to such a matrix

(such as a character vector, a factor or a data frame with all factor columns).

groupbn 5

struct.alg structure learning algorithm according to bnlearn

arc.thresh threshold for bootstrap arcs

discretize a boolean, if a network variables should be discretized before network learning

boot boolean, if TRUE, a bootstrap based network averaging approach is used

debug a boolean, if TRUE, debugging messages are printed

R number of bootstrap replicates for model averaging, default is 100

seed a random seed number

Value

an object of class groupbn

bn a Bayesian Network structure of bn class from bnlearn.

fit a Bayesian Network with fitted parameters of bn.fit class from bnlearn.

X. quanti a data.frame containing only the quantitative variables.X. quali a data.frame containing only the qualitative variables.

grouping a vector of positive integers, giving the cluster assignment.

k the number of clusters.

group.data a data.frame containing the cluster representants.

target a string, the name of the target variable.

separate a vector of strings, names of variables that should be separated from the groups.

pca.param the PCAmix used to determine the cluster representants.

disc.param the cutpoints used to discretize the cluster representants.

score Different prediction scores for the target variable using the fitted network.

Author(s)

Ann-Kristin Becker

References

Becker A-K, Dörr M, Felix SB, Frost F, Grabe HJ, Lerch MM, et al. (2021) From heterogeneous healthcare data to disease-specific biomarker networks: A hierarchical Bayesian network approach. PLoS Comput Biol 17(2): e1008735. https://doi.org/10.1371/journal.pcbi.1008735

See Also

groupbn_refinement

6 groupbn.output.table

Examples

```
#load example data
data(wine)
wine.test<-wine[wine$Soil%in%c("Reference", "Env1"),1:29]
wine.test$Soil<-factor(wine.test$Soil)
levels(wine.test$Soil)<-c("0", "1")

#cluster data
hierarchy<-hclustvar(X.quanti=wine.test[,3:29], X.quali=wine.test[,1:2])
#Learn group network among 5 clusters with "Soil" as target variable wine.groupbn<-groupbn(hierarchy, k=5, target="Soil", separate=NULL, X.quanti=wine.test[,3:29], X.quali=wine.test[,1:2], seed=321)

#Plot network
plot(wine.groupbn)</pre>
```

groupbn.output.table groupbn.output.table

Description

Create an output table with clusters and included variables with similarity scores

Usage

```
groupbn.output.table(res, with.scores=TRUE)
```

Arguments

res gn object

with.scores if TRUE, similarity scores of every cluster member to the cluster center are

added to the table

Value

a table with one column per group, similarity scores to cluster centers are calculated for each variable

Author(s)

Ann-Kristin Becker

See Also

groupbn groupbn_refinement

groupbn.vis.html.plot 7

Examples

```
data("wine.groupbn.refined")
df<-groupbn.output.table(wine.groupbn.refined)</pre>
```

groupbn.vis.html.plot groupbn.vis.html.plot

Description

Create an interactive html network object with visNet (displaying similarity scores and number of variables in a score)

Usage

```
groupbn.vis.html.plot(res, df=NULL, save.file=TRUE, save.name=NULL,
hierarchical=FALSE, nodecolor.all="#E0F3F8",
nodecolor.special="cornflowerblue", main=NULL)
```

Arguments

res a groupbn object

df output from output.table if already calculated, otherwise the same table is cal-

culated internally

save.file boolean; if TRUE a html file is produced

save.name name for saving html object, date is additionally used

hierarchical boolean; if TRUE the network is plotted with a hierarchical layout

nodecolor.all a color for "normal" nodes

nodecolor.special

a color for the target variable and all separated nodes, if any.

main optionally a title for the plot

Details

Plots an interactive network plot using visNetwork package

Value

an html widget of class visNetwork

Author(s)

Ann-Kristin Becker

See Also

```
groupbn groupbn_refinement
```

8 groupbn_refinement

Examples

```
data("wine.groupbn.refined")
groupbn.vis.html.plot(wine.groupbn.refined, hierarchical=TRUE, save.file=FALSE)
```

groupbn_refinement groupbn_refinement

Description

Adaptive Refinement of a group Bayesian Network using hierarchical Clustering

Usage

```
groupbn_refinement(res, hierarchy, refinement.part="mb", restart=0, perturb=1,
max.step=10, max.min=Inf, R=100,
return.all=FALSE, arc.thresh=NULL, debug=FALSE, seed=NULL)
```

Arguments

res an object of class groupbn
hierarchy a cluster object from ClustOfVar

refinement.part

"mb", "mb2", "arc.confid" or "all", selects if the refinement steps should be done only within the markov blanket of the target variable (mb), within the second-order markov blanket (mb2), in all clusters with an arcconfidence to target >0

(arc.confid) or within all clusters (all). Default: "mb"

restart a positive integer number, the number of restarts

perturb a positive integer number, the number of perturbations (splits) in each restart
max.step a positive integer number, the maximal number of refinement steps, default is 10
max.min a positive integer number, the maximal run time in minutes, default is unlimited

R number of bootstrap replicates for model averaging, default is 100

return.all a boolean, if TRUE, the output is a whole list of group models, if FALSE, the

output is only the best-scoring model.

arc. thresh threshold for bootstrap arcs

debug a boolean, if TRUE, debugging messages are printed

seed a random seed number

Details

Based on a variable grouping, data are aggregated and a Bayesian network is learned. The target variable is kept separated during this procedure, so that the resulting network model can be used for risk prediction and classification. Starting from a coarse group network, groups are iteratively refined to smaller groups. The heuristic refinement happens downwards along the dendrogram, and stops, if it no longer improves the predictive performance of the model. The refinement part is implemented using a hill-climbing procedure.

Value

returns an object of class groupbn

Author(s)

Ann-Kristin Becker

References

Becker A-K, Dörr M, Felix SB, Frost F, Grabe HJ, Lerch MM, et al. (2021) From heterogeneous healthcare data to disease-specific biomarker networks: A hierarchical Bayesian network approach. PLoS Comput Biol 17(2): e1008735. https://doi.org/10.1371/journal.pcbi.1008735

See Also

```
groupbn groupbn.output.table
```

Examples

```
#load example data
data(wine)
wine.test<-wine[wine$Soil%in%c("Reference", "Env1"),1:29]</pre>
wine.test$Soil<-factor(wine.test$Soil)
levels(wine.test$Soil)<-c("0", "1")</pre>
#cluster data
hierarchy<-hclustvar(X.quanti=wine.test[,3:29], X.quali=wine.test[,1:2])
#Learn group network among 5 clusters with "Soil" as target variable
wine.groupbn<-groupbn(hierarchy, k=5, target="Soil", separate=NULL,
X.quanti=wine.test[,3:29], X.quali=wine.test[,1:2], seed=321)
#Do one refinement step
#Set max.step higher to optimize completely
wine.groupbn.refined<-groupbn_refinement(wine.groupbn, hierarchy,</pre>
refinement.part="mb", max.step = 1, seed=321)
#Plot refined network
plot(wine.groupbn.refined)
```

Description

Based on a GroupBN, a cluster can be selected manually, that is split and the refined model is learned.

Usage

```
groupbn_refine_manually(res, hierarchy, refine, arc.thresh=NULL,
R=100, debug=FALSE, seed=NULL)
```

Arguments

res an object of class groupbn

hierarchy a cluster object from ClustOfVar

refine name of group to be refined arc.thresh threshold for bootstrap arcs

R number of bootstrap replicates for model averaging, default is 100

debug a boolean, if TRUE, debugging messages are printed

seed a random seed number

Value

returns an object of class groupbn

Author(s)

Ann-Kristin Becker

Examples

```
#load example data
data(wine)
wine.test<-wine[wine$Soil%in%c("Reference", "Env1"),1:29]
wine.test$Soil<-factor(wine.test$Soil)
levels(wine.test$Soil)<-c("0", "1")

#cluster data
hierarchy<-hclustvar(X.quanti=wine.test[,3:29], X.quali=wine.test[,1:2])

#Learn group network among 5 clusters with "Soil" as target variable wine.groupbn<-groupbn(hierarchy, k=5, target="Soil", separate=NULL, X.quanti=wine.test[,3:29], X.quali=wine.test[,1:2], seed=321)

#Refine cluster 2
wine.groupbn.refined<-groupbn_refine_manually(wine.groupbn, hierarchy, refine = "cl2", seed=321)

#Plot refined network
plot(wine.groupbn.refined)</pre>
```

is.groupbn 11

is.groupbn

is.groupbn

Description

Generic function for groupbn objects

Usage

```
is.groupbn(x)
```

Arguments

Χ

an object of class groupbn

Value

A boolean; TRUE if x is of class groupbn, FALSE otherwise.

Author(s)

Ann-Kristin Becker

See Also

groupbn

Examples

```
data("wine.groupbn.refined")
is.groupbn(wine.groupbn.refined)
```

plot.groupbn

plot.groupbn

Description

generic plot function for class groupbn

Usage

```
## S3 method for class 'groupbn' plot(x, ...)
```

12 predict.groupbn

Arguments

x an object of class groupbn

... further arguments

Details

Plot the group bayesian network structure

Value

No return value, called for plotting

Author(s)

Ann-Kristin Becker

See Also

```
groupbn
```

Examples

```
data("wine.groupbn.refined")
plot(wine.groupbn.refined)
```

predict.groupbn

predict.groupbn

Description

Predict the target variable from a group Bayesian network

Usage

```
## S3 method for class 'groupbn'
predict(object, X.quanti, X.quali, rename.level=FALSE, return.data=FALSE,
new.fit=FALSE, debug=FALSE, ...)
```

Arguments

object An object of class groupbn generated by the functions groupbn or groupbn_refinement

X. quantiQuantitative variablesX. qualiqualitative variables

rename.level a boolean; if TRUE, all levels of categorical variables are renamed by integers.

Default is FALSE.

return.data a boolean; if TRUE, a list with predictions and group.data is returned instead of

only predicitions. Default is FALSE.

print.groupbn 13

```
new.fit a boolean; if TRUE, the parameters are newly fit using the test data.
debug a boolean, if TRUE, debugging messages are printed
further arguments
```

Value

Returns a dataframe with a column of predictions and a column of the target data. If the target is discrete, class probabilities are returned. Otherwise continuous scores are returned. If return.data is TRUE, additionally the transformed group data are returned.

Author(s)

Ann-Kristin Becker

Examples

```
#load example data
data(wine)
wine.test<-wine[wine$Soil%in%c("Reference", "Env1"),1:29]
wine.test$Soil<-factor(wine.test$Soil)
levels(wine.test$Soil)<-c("0", "1")
data(wine.groupbn.refined)
predict(wine.groupbn.refined, X.quanti=wine.test[,3:29], X.quali=wine.test[,1:2])</pre>
```

print.groupbn

print.groupbn

Description

This is a method for the function print for objects of the class groupbn.

Usage

```
## S3 method for class 'groupbn'
print(x, ...)
```

Arguments

x An object of class groupbn generated by the functions groupbn or groupbn_refinement further arguments

Value

No return value, prints a description of the object

Author(s)

Ann-Kristin Becker

14 wine.groupbn.refined

See Also

groupbn

Examples

```
data("wine.groupbn.refined")
print(wine.groupbn.refined)
```

wine.groupbn.refined wine.groupbn.refined

Description

A refined group Bayesian network with 8 groups learned from dataset 'wine'.

Usage

```
data("wine.groupbn.refined")
```

Format

```
group Bayesian network (class 'groupbn')
```

```
name of target variable: Soil number of groups: 8 achieved scoring: F1: 0.92; Precision: 1; Recall: 0.86; AUC-PR: 1; AUC-ROC: 1; cross-entr.: 1.43; BIC (netw.): -77.21
```

name description "\$bn" "Bayesian network structure" "\$fit" "fitted Bayesian network (multinomial)" "\$arc.confid" "arc confidence" "\$X.quali" "qualitative variables in a data.frame" "\$X.quanti" "quantitative variables in a data.frame" "\$grouping" "group memberships" "\$k" "number of groups of initial grouping" "\$group.data" "group representatives used for network inference" "\$target" "name of target variable" "\$separate" "name of any other separated variables" "\$pca.param" "pca parameters of each group" "\$disc.param" "discretization intervals of each group" "\$score" "cross entropy and additional scoring information"

Examples

```
data(wine.groupbn.refined)
```

Index

```
* datasets
wine.groupbn.refined, 14

cross.en, 2

discretize.dens, 3

groupbn, 4, 6, 7, 9, 11, 12, 14
groupbn.output.table, 6, 9
groupbn.vis.html.plot, 7
groupbn_refine_manually, 9
groupbn_refinement, 5-7, 8

is.groupbn, 11
plot.groupbn, 11
predict.groupbn, 12
print.groupbn, 13
wine.groupbn.refined, 14
```