Model-Free Tabular Method Solutions

Alina Vereshchaka

CSE4/510 Reinforcement Learning Fall 2019

avereshc@buffalo.edu

September 17, 2019

Overview

Recap

Table of Contents

Recap

Recap: Monte Carlo (MC) and Temporal Difference (TD) Learning

- ightarrow Goal: learn $v_{\pi}(s)$ from episodes of experience under policy π
- Incremental every-visit Monte-Carlo:
 - Update value V(S_t) toward actual return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

- Simplest Temporal-Difference learning algorithm: TD(0)
 - Update value V(S_t) toward estimated returns $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

- $ightharpoonup R_{t+1} + \gamma V(S_{t+1})$ is called the TD target
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the TD error.

Recap: DP vs. MC vs TD Learning

Remember:

MC: sample average return approximates expectation

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s\right]$$

$$= \mathbb{E}_{\pi}\left[R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t} = s\right]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s].$$

TD: combine both: Sample expected values and use a current estimate $V(S_{t+1})$ of the true $v_{\pi}(S_{t+1})$

DP: the expected values are provided by a model. But we use a current estimate $V(S_{t+1})$ of the true $v_{\pi}(S_{t+1})$

Dynamic Programming

$$V(S_t) \leftarrow E_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right] = \sum_{a} \pi(a|S_t) \sum_{s',r} p(s',r|S_t,a) [r + \gamma V(s')]$$

$$S_t$$

Monte Carlo

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

TD(0) Method

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

TD Methods Bootstrap and Sample

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstrap
 - TD bootstrap

TD Methods Bootstrap and Sample

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstrap
 - TD bootstrap
- Sampling: update does not involve an expected value
 - MC samples
 - DP does not sample
 - TD samples

TD(0) Method

- Policy Evaluation (the prediction problem):
 - for a given policy π , compute the state-value function v_{π}
- Remember: Simple every-visit Monte Carlo method:

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[G_t - V(S_t) \Big]$$

target: the actual return after time t

The simplest Temporal-Difference method TD(0):

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \Big]$$

target: an estimate of the return

Table of Contents

Recap

Learning an Action-Value Function

 \rightarrow Estimate q_{π} for the current policy π

After every transition from a nonterminal state, S_t , do this:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

If S_{t+1} is terminal, then define $Q(S_{t+1}, A_{t+1}) = 0$

SARSA

Turn this into a control method by always updating the policy to be **greedy** with respect to the current estimate

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., ε -greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., ε -greedy)

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma Q(S', A') - Q(S, A) \right]$$

$$S \leftarrow S'; A \leftarrow A';$$

until S is terminal

SARSA

Instead of the sample value-of-next-state, use the expectation!

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \mathbb{E}[Q(S_{t+1}, A_{t+1}) \mid S_{t+1}] - Q(S_{t}, A_{t}) \Big]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{t} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big]$$

Expected Sarsa performs better than Sarsa (but costs more)

- SARSA is an **on-policy** algorithm which means that while learning the optimal policy it uses the current estimate of the optimal policy to generate the behaviour
- SARSA converges to an **optimal policy** as long as all state-action pairs are visited an infinite number of times and the policy converges in the limit to the greedy policy $(\epsilon = \frac{1}{t})$.