Hybrid-FLBCC: Virtual Machine Consolidation in Cloud Infrastructures Exploring Flexible Computing

Rafael Bastos, Bruno Moura, Giancarlo Lucca, Helida Santos Adenauer Yamin and Renata Reiser

Federal University of Pelotas (UFPel) / Laboratory of Ubiquitous and Parallel Systems (LUPS)
Federal Institute of Education, Science and Technology Sul-Rio-Grandense (IFSul)
Catholic University of Pelotas (UCPel), Federal University of Rio Grande (FURG), Federal University of Pampa (Unipampa)
RRAZII

Outline

- Introduction
- 2 Background
- Methodology
- Experimental Results
- Conclusion

Outline

- Introduction
- 2 Background
- Methodology
- Experimental Results
- Conclusion

Cloud Computing Sustainability Challenges

- Cloud Computing is undergoing rapid expansion and transformation.
- In 2022, data centers consumed approximately 460 TWh; the IEA projects this will exceed 1,000 TWh by 2026, driven by AI and cryptocurrency demands.
- This energy demand challenges key UN Sustainable Development Goals: affordable and clean energy, responsible consumption, and climate action.
- Major cloud providers are investing in renewable energy and green technologies.
- This scenario highlights the urgency of energy-aware strategies such as server consolidation in resource management.
- Server consolidation involves identifying overloaded and underutilized hosts, selecting VM migration strategies, and reallocating resources to alternative hosts.

Objective

- Propose Hybrid-FLBCC as an evolution of Int-FLBCC
- Combine IvFL with AI techniques to improve VM consolidation
- Apply FRBCS and feature selection to support resource-aware decisions
- Improve energy efficiency and classification performance
- Promote interpretable and cost-effective fuzzy systems

Outline

- Introduction
- 2 Background
- Methodology
- Experimental Results
- Conclusion

Why to use Fuzzy Logic in VM Consolidation?

Fuzzy Logic in VM Consolidation

- FL supports decision-making in uncertain and dynamic VM consolidation scenarios.
- Interval-valued Fuzzy Set (IvFS), proposed by Sambuc in 1975, introduces interval-valued membership functions.
- It enables reasoning under uncertainties and tolerate imprecision.
- FL is the basis of Fuzzy Rule-Based Classification Systems (FRBCS).

What is a Fuzzy Rule-Based Classification System?

Fuzzy Rule-Based Classification Systems

Figure: Fuzzy Rule-Based Classification process from training to testing

FRBCS considered in this study:

- FARC-HD: Efficient for high-dimensional data; uses genetic tuning and rule selection.
- Chi Algorithm: Generates one fuzzy rule per instance using fuzzy partitions.
- FURIA: Produces unordered fuzzy rules for flexible classification boundaries.
- IVTURS: Enhances FARC-HD with interval-valued fuzzy reasoning and evolutionary optimization.

Int-FLBCC - Interval Fuzzy Load Balancing for Cloud Computing

Figure: Overview of Int-FLBCC Approach.

Int-FLBCC - Interval Fuzzy Load Balancing for Cloud Computing

Figure: Overview of Int-FLBCC Approach.

Outline

- Introduction
- 2 Background
- Methodology
- Experimental Results
- Conclusion

From Int-FLBCC to Hybrid-FLBCC

- Integrates ML for feature selection and adaptive rule generation
- Adjusts allocation policies to current workloads
- Refines decision-making with updated fuzzy models

Feature Selection Strategy

- Feature selection via Sequential Forward Selection (SFS)
- Goal: eliminate correlated variables, improve accuracy
- Classification models: FARC-HD, Chi, FURIA, IVTURS
- Evaluation: AUC metric with 10-fold cross-validation
- We use the KEEL software tool

Dataset details

Dataset

- Based on CloudSim simulations with PlanetLab traces
- ullet 24h simulation, data every 300s (\sim 320,000 instances)
- CPU, memory, bandwidth, storage, energy, MIPS
- Labels: underutilized, regular, overutilized
- 16 scenarios (AP×SP combinations)

VM Allocation Policies

- Interquartile Range (IQR)
- Local Regression (LR)
- Local Regression Robust (LRR)
- Median Absolute Deviation (MAD)

VM Selection Policies

- Maximum Correlation (MC)
- Minimum Migration Time (MMT)
- Minimum Utilization (MU)
- Random Selection (RS)

Feature Selection's Process

Outline

- Introduction
- 2 Background
- Methodology
- Experimental Results
- Conclusion

What results did we get?

Evaluation Results of Variable Selection for IQR

SP	FRBCS	Variables									
	FURIA	сри	energy	mips	-	-	-	0.9851			
140	IVTURS	cpu	bw	mips	-	-	-	0.8812			
MC	FURIA*	cpu	mem	bw	-	-	-	0.9209			
	IVTURS*	cpu	mem	bw	-	-	-	0.8419			
	FURIA	сри	energy	mem	storage	-	-	0.9954			
NANAT	IVTURS	cpu	bw	mips	mem	-	-	0.9301			
MMT	FURIA*	cpu	mem	bw	-	-	-	0.9292			
	IVTURS*	сри	mem	bw	-	-	-	0.8039			
MII	FURIA	mips	energy	сри	-	-	-	0.9885			
MU	FURIA*	cpu	mem	bw	-	-	-	0.8464			
	FURIA	сри	energy	mips	bw	mem	-	0.9880			
RS	IVTURS	cpu	storage	bw	energy	-	-	0.8648			
K5	FURIA*	cpu	mem	bw	-	-	-	0.9252			
	IVTURS*	cpu	mem	bw	-	-	-	0.7799			

^{*}Considering the configuration defined in Int-FLBCC.

Evaluation Results of Variable Selection for LR

SP	FRBCS		Variables									
	FURIA	сри	energy	storage	mips	-	-	0.9916				
МС	IVTURS	cpu	bw mem	mips	mem	-	-	0.9644				
	FURIA*	cpu		bw	-	-	-	0.9771				
	IVTURS*	cpu	mem	bw	-	-	-	0.9227				
	FURIA	сри	energy	storage	mem	-	-	0.9958				
ММТ	IVTURS	cpu	bw	mips	mem	-	-	0.9644				
IVIIVI I	FURIA*	cpu	mem	bw	-	-	-	0.9662				
	IVTURS*	cpu	mem	bw	-	-	-	0.9015				
	FURIA	mips	energy	сри	mem	bw	-	0.9945				
MU	IVTURS	cpu	mem	bw	storage	energy	mips	0.8349				
IVIU	FURIA*	cpu	mem	bw	-	-	-	0.9484				
	IVTURS*	cpu	mem	bw	-	-	-	0.7621				
	FURIA	mem	energy	сри	mips	-	-	0.9894				
RS	IVTURS	cpu	mem	bw	storage	energy	mips	0.8349				
KO	FURIA*	cpu	mem	bw	-	-	-	0.9778				
	IVTURS*	cpu	mem	bw	-	-	-	0.9135				

^{*}Considering the configuration defined in Int-FLBCC.

Bastos, Rafael UFPel - CDTec - PPGC - LUPS FUZZ-IEEE 2025

Evaluation Results of Variable Selection for LRR

SP	FRBCS		Variables									
	FURIA	cpu	energy	storage	mips	-	-	0.9916				
140	IVTURS	cpu	bw	mips	mem	-	-	0.9644				
MC	FURIA*	cpu	mem	bw	-	-	-	0.9771				
	IVTURS*	cpu	mem	bw	-	-	-	0.9227				
	FURIA	сри	energy	storage	mem	-	-	0.9958				
MMT	IVTURS	cpu	bw	mips	mem	storage	-	0.9492				
IVIIVI I	FURIA*	cpu	mem	bw	-	-	-	0.9662				
	IVTURS*	cpu	mem	bw	-	-	-	0.9015				
	FURIA	mips	energy	сри	mem	bw	-	0.9945				
MILL	IVTURS	cpu	bw	mips	mem	storage	-	0.9492				
MU	FURIA*	cpu	mem	bw	-	-	-	0.9484				
	IVTURS*	cpu	mem	bw	-	-	-	0.7621				
	FURIA	cpu	energy	storage	-	-	_	0.9920				
DO.	IVTURS	cpu	bw	mips	mem	storage	-	0.9595				
RS	FURIA*	cpu	mem	bw	-	-	-	0.9744				
	IVTURS*	cpu	mem	bw	-	-	-	0.9054				

^{*}Considering the configuration defined in Int-FLBCC.

Bastos, Rafael UFPel - CDTec - PPGC - LUPS FUZZ-IEEE 2025

Evaluation Results of Variable Selection for MAD

SP	FRBCS	Variables								
MC	FURIA	cpu	energy	mips	-	-	-	0.9870		
MC	FURIA*	cpu	mem	bw	-	-	-	0.8648		
	FURIA	cpu	energy	mem	storage	-	-	0.9952		
MMT	FURIA*	cpu	mem	bw	-	-	-	0.8735		
	IVTURS*	cpu	mem	bw	-	-	-	0.5649		
	FURIA	cpu	energy	mem	bw	-		0.9906		
MU	FURIA*	cpu	mem	bw	-	-	-	0.7362		
DC	FURIA	mips	energy	сри	mem	storage	-	0.9873		
RS	FURIA*	cpu	mem	bw	-	-	-	0.8339		

^{*}Considering the configuration defined in Int-FLBCC.

Experimental Results Overview

- Hybrid-FLBCC features consistently outperformed Int-FLBCC in all scenarios.
- FURIA showed the best classification performance across combinations.
- CPU is the most recurrent variable but not always the most important.
- SFS selected different subsets, optimizing performance per scenario.
- Results highlight input sensitivity and improved adaptability in Hybrid-FLBCC.

What are the improvements for the fuzzy system?

Membership Functions Samples

Variable	Linguistic Term	Tr	Chi iangular N	ИF	Tr	FARC-HD iangular M	F		FURIA Trapezoidal MF		IVTURS Triangular MF			
Bandwidth	Low Medium High	-0.0500 0.0000 0.0500	0.0000 0.0500 0.1000	0.0500 0.1000 0.1500	-0.0725, -0.0139, 0.0723,	-0.0225, 0.0312, 0.1217,	0.0275 0.0812 0.1717	-	- - -	-	-	[-0.05, 0.05] [0.0, 0.1] [0.05, 0.15]	[-0.075, 0.075] [-0.025, 0.125] [0.025, 0.175]	[-0.075, 0.075] [-0.025, 0.125] [0.025, 0.175]
CPU	Low Medium High	-0.4994 0.0000 0.4994	0.0000 0.4994 0.9989	0.4994 0.9989 1.4983	-0.4616, 0.0303, 0.6425,	0.0704, 0.494, 1.1419,	0.5698 0.9934 1.6414	-∞ 0.1637 0.5659	0 0.3480 0.8705	0.1250 0.6432 1	0.2987 0.8540 ∞	[-0.4994, 0.4994] [0.0, 0.9989] [0.4994, 1.4983]	[-0.7492, 0.7492] [-0.2497, 1.2486] [0.2497, 1.7481]	[-0.7492, 0.7492] [-0.2497, 1.2486] [0.2497, 1.7481]
Energy	Low Medium High	-	:	•	-	-	•	-∞ 0 697.0520	-∞ 253.7326 1	0 697.0520 ∞	253.7326 1 ∞	[-23999.55, 23999.55] [0.0, 47999.10] [23999.55, 71998.66]	[-35999.33, 35999.33] [-11999.78, 59998.88] [11999.78, 83998.43]	[-35999.33, 35999.33] [-11999.78, 59998.88] [11999.78, 83998.43]
Memory	Low Medium High	-0.2026 0.0000 0.2026	0.0000 0.2026 0.4052	0.2026 0.4052 0.6078	-0.2850, -0.0237, 0.1966,	-0.0067, 0.1789, 0.3992,	0.1959 0.3815 0.6018	-	-	-	-	-	- - -	- - -
Storage	Low Medium High	-0.0571 0.0000 0.0571	0.0000 0.0571 0.1142	0.0571 0.1142 0.1713	-0.0736, -0.0046, 0.0750,	-0.0165, 0.0501, 0.1321,	0.1892 0.1072 0.1892	-∞ 0.2506 0.0554	0 0.5025 0.0582	0.2506 0.5541 1	0.5025 0.5820 ∞	[-0.0571, 0.0571] [0.0, 0.1142] [0.0571, 0.1713]	[-0.0857, 0.0857] [-0.0286, 0.1428] [0.0286, 0.1999]	[-0.0857, 0.0857] [-0.0286, 0.1428] [0.0286, 0.1999]

FARC-HD Sample Rules

```
bw IS L_0(3): normal CF: 1.0 cpu IS L_1(3) AND mem IS L_1(3) AND storage IS L_1(3): under CF: 0.5347
```

Chi Sample Rules

```
cpu IS L_0 AND mem IS L_0 AND bw IS L_0 AND storage IS L_0: normal with Rule Weight: 1.0 cpu IS L_1 AND mem IS L_2 AND bw IS L_2 AND storage IS L_0: normal with Rule Weight: 0.5910
```

FURIA Sample Rules

```
(cpu >= 0.1637(-> 0.1599)) and (cpu <= 0.1637(-> 0.1637)) => class=normal (CF = 1.0) (cpu >= 0.0021(-> 0)) and (storage <= 0.0025(-> 0.0050)) and (energy <= 0(->253.7326)) and (cpu <= 0.0077(-> 0.0083))=>class=under (CF = 0.99)
```

IVTURS Sample Rules

```
bw IS L_0(3): normal CF: [1.0, 1.0] energy IS L_0(3) AND storage IS L_0(3) AND bw IS L_2(3): under CF: [0.4182, 0.4238]
```

Hybrid-FLBCC Improvements

- Hybrid-FLBCC adapts fuzzy configurations to each policy scenario.
- Uses data-driven rule bases instead of fixed expert-defined rules.
- Integrates FRBCS performance to refine decision-making.
- Combines FURIA's precision with IVTURS's uncertainty handling.
- New rule bases simplify fuzzy implementation and may reduce computational cost.

Hybrid-FLBCC

Figure: Overview of the Hybrid-FLBCC Extending the Int-FLBCC Approach.

Hybrid-FLBCC

Figure: Overview of the Hybrid-FLBCC Extending the Int-FLBCC Approach.

Hybrid-FLBCC

Figure: Overview of the Hybrid-FLBCC Extending the Int-FLBCC Approach.

Outline

- Introduction
- 2 Background
- Methodology
- Experimental Results
- Conclusion

Conclusions

- Initial results: Hybrid-FLBCC improves VM consolidation with data-driven fuzzy rules.
- Feature selection enhanced performance and interpretability.
- FURIA provided the most accurate results, with IVTURS as a viable alternative.
- IVTURS extends multi-valued fuzzy approach by incorporating IvFS, enhancing capability to deal with complex uncertainties
- The proposal simplifies system design while reducing computational cost.

Future Research Directions

- Apply Hybrid-FLBCC to real cloud environments and larger datasets.
- Explore hybrid reasoning models combining fuzzy logic and probabilistic methods.
- Investigate auto-tuning mechanisms for adaptive rule generation.

Acknowledgements

We thank the Brazilian funding agencies CAPES, CNPq (309160/2019-7; 311429/2020-3; 150160/2023-2), FAPERGS/ARD-ARC (24/2551-0000631-1), FAPERGS (24/2551-0001396-2; 21/2551-0002057-1) and FAPERGS/CNPq (23/2551-0000126-8).

Hybrid-FLBCC: Virtual Machine Consolidation in Cloud Infrastructures Exploring Flexible Computing

Rafael Bastos, Bruno Moura, Giancarlo Lucca, Helida Santos Adenauer Yamin and Renata Reiser

Federal University of Pelotas (UFPel) / Laboratory of Ubiquitous and Parallel Systems (LUPS)
Federal Institute of Education, Science and Technology Sul-Rio-Grandense (IFSul)
Catholic University of Pelotas (UCPel), Federal University of Rio Grande (FURG), Federal University of Pampa (Unipampa)
BRAZIL

rrbastos@inf.ufpel.edu.br