Trabajo práctico n° 2 Parte B

Universidad Tecnológica Nacional. Facultad Regional Mendoza. Teoría de los Circuitos 1

1 Parte B: Resonancia y lugares geométricos

Ejercicio 1: Dado el siguiente circuito calcular:

- a) La frecuencia de resonancia.
- b) El factor de mértito Q.
- c) El ancho de banda.
- d) Las frecuencias cuadrantales.
- e) La tensión en cada elemento cuando el circuito se encuentra en resonancia.

a)
$$\omega_0 = 4000 \frac{rad}{seg}$$
; b) $Q = 2$; c) $BW = 2000 \frac{rad}{seg}$; d) $f_1 = 497Hz$; $f_2 = 815, 36$; e) $\bar{V}_R = 100 \angle 0^{\circ}[V]$; $\bar{V}_L = 200 \angle 90^{\circ}[V]$; $\bar{V}_C = 200 \angle -90^{\circ}[V]$

Ejercicio 2: En el circuito del ejercicio 1, qué elemento habrá que modificar para aumentar el ancho de banda a $3000 \frac{rad}{seq}$, sin alterar ω_0 . Justifique. ¿Cuál sería su nuevo valor?

Rta:
$$R = 15\Omega$$

Ejercicio 3: Se desea disminuir en un 50% el ancho de banda del siguiente circuito manteniendo constante ω_0 e \bar{I} . ¿Qué elementos se deberán modificar y cuáles son sus valores?

Rta: L = 20mHy; $C = 12,5\mu F$

Ejercicio 4: calcular el valor de R_L para que el circuito de la figura entre en resonancia.

Ejercicio 5 La tensión aplicada a un circuito serie formado por una reactancia inductiva fija $X_L = 5\Omega$ y una resistencia varible R, es $\bar{V} = 50 \angle 0^{\circ}[V]$. Trazar los lugares geométricos de la admitancia y de la intensidad de corriente.

Ejercicio 6: En el circuito paralelo de la figura, la autoinducción de la bobina puede variar sin límites. Trazar el lugar geométrico de la admitancia y demostrar que no es posible la resonancia.

Ejercicio 7: Hallar el valor de R para que el siguiente circuito entre en resonancia y trazar el lugar geométrico de la admitancia equivalente del circuito.

