Introduction to Fixed-wing Aerospace Vehicles

Oliver Turnbull

Oliver.Turnbull@bristol.ac.uk

QB 2.9

Learning Objectives

- Ensure a common understanding of the fundamental parts of an aircraft
 - Sub-assemblies: fuselage, undercarriage, tailplane, engines, wing
 - Form and function

Many Different Forms.....

Form dictated by mission requirements

- Range
- Speed
- Payload (Type and weight)
- Take-Off & Landing Requirements

Many Different Forms...

Twin Fuselage

Spanloader

Joined Wing

Biplane (an un-joined wing)

Oblique Wing

Asymmetric everything but the wing!

Canard

3-Surface

Twin Boom

Flying Wing

Lifting Body

Single fuselage

Low, aft-swept wing Underwing engines

Mid Wing

Variable Sweep

High Wing

Delta Wing

Inverse **Delta Wing**

Rear Paired Engines (Side & High)

Rear Centreline Engines (Buried in fuselage & fin-mounted)

Wing-mounted engines (Over-wing, Mid-wing, Root-mounted & Tip-mounted)

Common Features / Functions

Undercarriage / Landing Gear

- Functions
 - Ground support and control / Facilitate take-off and landing
 - Absorb kinetic energy
 - Braking
- Options
 - Fixed/retractable/float/ski
 - Configuration

Undercarriage / Landing Gear

Taildragger

Tricycle

Undercarriage / Landing Gear

Common Features / Functions

- Functions
 - Provide thrust
 - Generate electrical/hydraulic power
- Options
 - Number
 - Type: human, electric, turboprob, turbofan, turbojet, rocket
 - Pusher/Tractor
 - Location

- Aerovelo
- <u>LC130</u>

Common Features / Functions

Fuselage

- Functions
 - Accommodate payload
 - Contributes to longitudinal and directional stability
- Options
 - Size
 - Cross-section
 - Pressurized/unpressurized/ pressurized hose

Fuselage

Fuselage

Fuselage, exceptions

Common Features / Functions

- Functions
 - Provide aerodynamic forces to longitudinally control the aircraft (pitch)
 - Provide aerodynamic forces to directionally control the aircraft (yaw)
- Options
 - Aft or forward
 - Configuration
 - Size

Empennage / Horizontal and Vertical Tail

Empennage: conventional

Empennage: T-Tail

AVDASI 1 AENG 10001

Empennage

Common Features / Functions

Wing

- Functions
 - Provide lift!
 - Provide aerodynamic forces to laterally control the aircraft (roll)
 - Store fuel
- Options
 - Number
 - Size
 - Location
 - Shape
 - Structural configuration

AVDASI 1 AENG 10001

Wing

Wing Structure

Design Integration is Vital...

EMPENNAGE GROUP

FUSELAGE GROUP

CONTROLS GROUP

AERODYNAMICS GROUP

STRESS GROUP

PRODUCTION ENGINEERING GROUP

HYDRAULICS GROUP

Flight Control System

A Flight Control System (FCS) consists of the flight control surfaces, the respective cockpit controls, connecting linkages, and necessary operating mechanisms to control aircraft in flight.

Elevator

Control Surfaces

Primary control surfaces

- Elevator
- Aileron
- •Rudder

Secondary control surfaces

- Flaps
- Slats
- Spoilers

•Ruddervator, Elevon, Flaperon, Taileron, Canard

Slats

PAileron

Flaps

spoilers

Primary Control Surfaces

■ **Elevators** are used to control the aircraft in **pitch**.

Primary Control Surfaces

- Elevators are used to control the aircraft in pitch.
- Ailerons are used to control the aircraft in roll.
 - The two ailerons are typically interconnected so that one goes down when the other goes up

Primary Control Surfaces

- Elevators are used to control the aircraft in pitch.
- Ailerons are used to control the aircraft in roll.
 - The two ailerons are typically interconnected so that one goes down when the other goes up
- Rudder is used to control the aircraft in yaw.

Secondary Control Surfaces - Flaps

- Flaps are high-lift devices hinged on the *trailing edge* of the wings.
- Flaps occupy 25-30% of the wing trailing edge inboard of the ailerons
- As flaps are extended, the stalling speed of the aircraft is reduced.
 - Flaps reduce the stalling speed by increasing the camber of the wing and thereby increasing the maximum lift coefficient.
 - Some flaps also increase the area of the wing.
- A supplementary function is to increase drag during landing

Secondary Control Surfaces - Slats

- Slats are aerodynamic surfaces on the *leading edge* of the wings of which, when deployed, *allow the wing to operate* at a higher angle of attack.
- Slats are very powerful devices to increase the maximum lift.
- By deploying slats an aircraft can fly slower or take off and land in a shorter distance.
- They are used while landing or performing manoeuvres which take the aircraft close to the stall, but are retracted in normal flight to minimise drag.

Secondary Control Surfaces - Spoilers

- Spoilers are used to disrupt airflow over the wing and greatly reduce the amount of lift. This allows:
 - Loss of altitude without gaining excessive airspeed
 - Wing load alleviation
- Some spoilers, termed *spoilerons*, may be used to *roll an aircraft* by reducing the lift of one wing but unlike ailerons not increasing the lift of the other wing.
 - A raised spoileron also increases the drag on one wing which causes the aircraft to yaw. This can be compensated with the rudder.

Form is not the only factor influencing aircraft design

- Materials: Increased use of composites is key to future weight reductions but poses significant challenges:
 - Failure Analysis (very difficult to predict how composites will fail)
 - Manufacturing & Assembly
 - Quality Assurance

A340 Assembly Video

