Lecture 0 – Course Overview COSE215: Theory of Computation

Jihyeok Park

2025 Spring

Course Information

- Instructor: Jihyeok Park (박지혁)
 - Position: Assistant Professor in CS, Korea University
 - Expertise: Programming Languages, Software Analysis
 - Office hours: 14:00–16:00, Tuesdays (appointment by e-mail)
 - Office: 609A, Science Library Bldg
 - Email: jihyeok_park@korea.ac.kr
- Class: COSE215 02 (English)
- Lectures: 13:30-14:45, Mondays and Wednesdays @ 301, Aegineung (애기능생활관 301호)
- Homepage: https://plrg.korea.ac.kr/courses/cose215/
- Teaching Assistant:
 - Jungyeom Kim (김준겸) kimjg1119@korea.ac.kr
 - Seongmin Ko (고성민) 2018320221@korea.ac.kr
 - Hyunjoon Kim (김현준) rickykhj@korea.ac.kr

Grading

- 6 Homework Assignments: 30%
 - Programming assignments in Scala (submission in <u>LMS</u>)
 - You can utilize or refer to any other materials (e.g., ChatGPT), but you MUST write your OWN solution.
 - Cheating is strictly prohibited. Cheating will get you an F.
- Midterm exam: 30%
 - April 23 (Wed.) 13:30 14:45 (in class, 75 min.)
- Final exam: 30%
 - June 18 (Wed.) 13:30 14:45 (in class, 75 min.)
- Attendance: 10%
 - Please use LMS to attend the class with the code provided.
 - Today's attendance check is a test run.

Schedule

Weak	Contents	Weak	Contents	
1	Basic Concepts	9	Pushdown Automata	
2	Deterministic Finite Automata (DFA)	10	Deterministic Pushdown Automata	
3	Nondeterministic Finite Automata (NFA)	11	Properties of Context-Free Languages	
4	Regular Expressions and Languages	12	Turing Machines (TMs)	
5	Properties of Regular Languages	13	Extensions of Turing Machines	
6	Context-Free Grammars and Languages	14	Undecidability	
7	Parse Trees and Ambiguity	15	P, NP, and NP-Completeness	
8	Midterm Exam (Apr. 23 - Wed.)	16	Final Exam (Jun. 18 - Wed.)	

- There will be no offline lectures on May 5 (Children's Day).
- Instead, a recorded lecture video will be uploaded to <u>LMS</u>.
- You don't need to check the attendance on May 5.

Course Materials

Self-contained lecture notes.

https://plrg.korea.ac.kr/courses/cose215/

Reference:

John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Introduction to automata theory, languages, and computation. Third edition.

Goal of This Course

• What is the mathematical model of computers?

Turing Machine!

Let's learn Turing Machine

• Is it possible to solve every problem using computers?

No!

Let's learn **Undecidability** and **Intractability**

Roadmap: Towards Turing Machine

A Turing machine is a specific kind of **automaton**.

- Part 1: Finite Automata (FA)
 - Regular Expressions (REs)
 - Regular Languages (RLs)
 - Applications: text search, etc.
- Part 2: Pushdown Automata (PDA)
 - Context-Free Grammars (CFGs)
 - Context-Free Languages (CFLs)
 - Applications: programming languages, natural language processing, etc.
- Part 3: Turing Machines (TMs)
 - Lambda Calculus (LC)
 - Recursively Enumerable Languages (RELs)
 - Undecidability and Intractability

Roadmap: Towards Turing Machine

	Automata	Grammars	Languages
(Part 3) Turing Machines	(Lecture 23) (Lecture 21/22) TM	(Lecture 24)	(Lecture 21)
(Part 2) Pushdown Automata	(Lecture 14/15) (Lecture 16) $PDA_{FS} \rightleftharpoons PDA_{ES}$ \cup $DPDA_{FS} \supset DPDA_{ES}$ \cup (Lecture 17) \bowtie	(Lecture 11/12) CFG Chomsky Normal Form (Lecture 18)	(Lecture 11) (Lecture 13) CFL Parse Trees & Ambiguity Closure Properties (Lecture 19) (Lecture 20)
(Part 1) Finite Automata	(Lecture 4) (Lecture 3) (Lecture 5) (Lecture 7) NFA \longrightarrow DFA \longleftrightarrow ϵ -NFA \longleftrightarrow Minimization (Lecture 10)	(Lecture 6)	(Lecture 3) RL Closure Pumping Properties Lemma (Lecture 8) (Lecture 9)
(Part 0) Basic Concepts	(Lecture 1) Mathematical Preliminaries	(Lecture	,

Introduction of Automata

A Turing machine is a specific kind of **automaton**.

Then, what is an **automaton**? A **state transition system** that takes an **input** and changes its **state** based on the input.

For example,

Introduction of Automata

Theorem

The current state is OFF if and only if the button is pushed even times.

• Is it possible to prove it?

Let's learn mathematical background and notation.

• Is it possible to implement the automaton?

Let's learn Scala as an implementation language.

Next Lecture

Mathematical Preliminaries

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr