

Who am I?

Licență Inginer Calculatoare

Master științific Sisteme de Calcul Paralel și Distribuit - cum laude

Doctorat
Crowd Data Analytics As Seen From WiFi
A Critical Review

Who am I?

Student Assistant

Concurrency & Multithreading

Asistent Universitar

- Algoritmi Paraleli şi Distribuiţi
- Arhitecturi Paralele
- Programare Web
- Protocoale de Comunicație
- Programarea Calculatoarelor

Who am I?

Lector

- Structuri de Date şi Algoritmi
- Sisteme Tolerante la Defecte
- Arhitecturi Paralele

Senior Technical Program Manager

Azure Core

Așteptări?

Ce vă așteptați să facem la Sisteme Tolerante la Defecte?

Cu ce tehnologii vă așteptați să lucrăm?

Ce vă așteptați să învățați?

Ce sistem/mecanism de toleranță la defecte cunoașteți?

Regulament

Rezolvarea laboratoarelor este obligatorie

- Se rezolvă exclusiv pe platformă.
- Se pot prezenta cu o mică întârziere.

Laboratoarele se rezolvă individual și vor fi verificate anti-plagiat Temele se rezolvă individual și vor fi verificate anti-plagiat

Orice plagiat detectat va duce la cerere exmatriculare

Indicații prevenire plagiat

Este încurajată folosirea Internetului. Orice preluare trebuie corect citată.

Laborator

- NU este permis mutat cod de la un student la altul.
- Este permis uitat scurt unul peste codul celuilalt, arătat un detaliu mic.
- Este încurajată discutarea problemelor.

Teme

- NU este permis copiat de cod (de pe net, de la coleg, de la terţ).
- NU este permis văzut codul unui coleg.
- Se pot discuta probleme punctuale, dar NU spus explicit soluția.

Examen

NU este permisă nici o interacțiune cu alte persoane.

Notare

- 6 puncte Teme
 - •Minim 50% punctaj pe fiecare temă pentru promovare
- 2 puncte Examen parțial
 - •Minim 50% pentru promovare
- 2 puncte Examen final
 - •Minim 50% pentru promovare

Obiective

Dezvoltarea abilităților pentru:

- Proiectarea și implementarea aplicațiilor distribuite
- Depanarea unor aplicații distribuite
- Demonstrarea corectitudinii și scalabilității unui program distribuit
- Proiectarea și implementarea sistemelor de servicii bazate pe containere și orchestrare
- Proiectarea și implementarea aplicațiilor Cloud
- Dezvoltarea, implementarea și utilizarea tehnicilor pentru obținerea consistenței și rezilienței unui sistem

Cauze Defecte în calculatoare:

Probleme software

- Presupuneri greșite
- Erori de design, de logică sau de programare (ex: Bug-uri)
- Folosire neașteptată sau necorespunzătoare

Depășirea resurselor disponibile

Hardware

- Rezistență limitată în timp
- Supraîncălzire
- Supratensiune

Multe, multe, multe.... Multe altele.

```
7 6 8 0 6 4 4 6 4 0 4 0 2 3 1 !
8 9 0 6 2 7 9 7 5 2 7 2 0 4 4 0
1 3 4 2 3 1 4 4 4 7 7 5 3 2 1 :
1 9 0 4 0 3 3 9 0 5 9 7 8 3 9 :
2 5 8 0 SYSTEM FAILURE 4 1 0 :
7 9 8 3 2 3 9 8 0 3 6 0 5 2 8 :
1 7 2 5 1 9 8 7 8 2 4 4 3 4 0 4
3 1 6 8 7 0 0 5 2 4 7 9 4 2 7 :
3 1 6 8 7 0 0 5 2 4 7 9 4 2 7 :
3 1 6 8 7 0 0 5 2 4 7 9 4 2 7 :
```


Trebuie să:

Acceptăm defectele

Așteptăm defectele

Fim îngrijorați când nu identificăm defecte

Fim îngrijorați dacă nu am avut un defecte de prea mult timp

"A pessimist is never disappointed"

"Everything fails, All the time"

Werner Vogels –Amazon CTO

"Wear your failure as a badge of honour"

Sundar Pichai – Alphabet CEO

"Microsoft is always two years away from failure"

Bill Gates – Founder of Microsoft

Soluția?

Soluţia?
2 sisteme

Soluţia?

2 sisteme

Dar dacă unul se defectează? (am reveni la cazul precedent)

Soluţia?

2 sisteme

Dar dacă unul se defectează? (am reveni la cazul

precedent)

3 sisteme

Soluţia?

2 sisteme

Dar dacă unul se defectează? (am reveni la cazul

precedent)

3 sisteme

Deci 5 sisteme, să fim siguri.

Deci...

Deci... Programare Distribuită

Programare distribuită

"Studierea unui neuron se numește neuroștiință. Studierea a doi neuroni se numește psihologie."

În cazul nostru, programarea distribuită reprezintă programarea a cel puțin două sisteme de calcul pentru rezolvarea unei probleme.

Calcul Paralel vs Distribuit vs Secvențial

Calcul Secvențial

Sistem calcul secvențial

Calcul Paralel

Calcul Distribuit

Instrucțiunea 1a Instrucțiunea 1b Instrucțiunea 2b Instrucțiunea 3a Instrucțiunea 3b Instrucțiunea 4b

Sistem calcul distribuit

Resurse fizice

• Procesor – multi-core – 48 core-uri (64 la AMD)

Cluster

• Grid/Cloud

Supercomputers (top500.org)

	-	•	_		
Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,730,112	1,102.00	1,685.65	21,100
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,463,616	174.70	255.75	5,610
5	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096

Frontier

Fugaku

Lumi

Leonardo

Summit

BOINC computing power

Totals

24-hour average: 13.790 PetaFLOPS.

Active: 43,637 volunteers, 159,606 computers.

Daily change: +28 volunteers, +1001 computers.

Tehnologiile pe care le vom folosi

Open MPI: Open Source High Performance Computing

MPI

Framework care facilitează

- Pornirea programelor distribuite (procese pe același sistem sau pe sisteme diferite, dar strâns conectate – ideal aceeași rețea)
- Conectarea proceselor unui program distribuit (accept, bind, connect)
- Simplificarea identificării (identificatori în loc de IP, port)
- Simplificarea comunicării (oferă funcții gen Send/Recv, Broadcast)
- Asigură comunicarea corectă pe sisteme cu arhitecturi de calcul diferite (little/big endian problems)