Curso Técnico em Informá

· INTRODUÇÃO.

O ÁBACO

- A História está ai para nos mostrar que não foi tão simples a caminhada do ser humano até desenvolver o primeiro computador eletroeletrônico.
- Várias teorias matemáticas foram desenvolvidas, ferramentas idealizadas e criadas, personagens importantes contribuíram direta e indiretamente para o desenvolvimento dos computadores.

O ÁBACO

• Podemos começar nossa jornada com o desenvolvimento dos ábacos. Instrumento criado em 3000 a.C. pelos chineses e, com ele, era possível realizar cálculos matemáticos simples. Vários foram os povos que utilizaram o ábaco, os babilônios, os romanos, os gregos, indianos, japoneses, russo e ainda hoje em dia o Ábaco é utilizado para o desenvolvimento do raciocínio matemático em vários cantos do mundo.

O ÁBACO

Ábaco Romano

Ábaco Chinês

Ábaco Japonês

Ábaco Russo

- O ÁBACO
- Certo e o que isso tem a haver com o computador???
- Números...
- Agilidade nos processos de contar e calcular.
- O computador nada mais é que uma super maquina de calcular(calculadora).

Sistema numéricos.

- Sistemas de numeração utilizados na Informática.
- Sistema binário.
- Sistema octal.
- Sistema Hexadecimal.

Sistema Decimal (contagem).

Sistema numéricos.

- Sistemas de numeração utilizados na Informática.
- Sistema binário base 2 (0,1).
- Sistema octal 8 (1,2,3,4,5,6,7,0).
- Sistema Hexadecimal 16 (1,2,3,4,5,6,7,8,9,0,A,B,C,D,E,F).

• Sistema Decimal 10 (1,2,3,4,5,6,7,8,9,0).

Sistema Binário

- Base 2: Sistema Binário:
- É um sistema posicional composto pelos numerais **O** e **1**.
 - o É utilizado em Informática, na Eletrônica Digital (circuitos de portas lógicas).

Exemplos: 101; 10101

Sistema octal

- Base 8: Sistema Octal:
- Também é um sistema posicional e foi utilizado na Informática como alternativa ao sistema binário. É composto pelos numerais
 0, 1, 2, 3, 4, 5, 6 e 7.

• Exemplos: 127, 3576.

Sistema Hexadecimal

- Sistema Hexadecimal: é, talvez, um dos mais conhecidos da atualidade.
- Representados por O, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
 C, D, E e F.
- Trabalha-se com ele como qualquer outro sistema, mas deve-se prestar atenção ao valor dos caracteres alfabético na hora de fazer operações e conversões.
- É compacto e é utilizado para representar portas, interrupções e endereços de memória, além de cores no desenvolvimento web.
- Exemplos: 12A, FF.

COMPARAÇÃO DOS SISTEMAS

Tabela de Valores			
Decimal	Binário	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Ε
15	1111	17	F

SISTEMA BINÁRIO

Conversão Decimal para Binário.

Divisão por 2,
A resposta
será os restos
da divisão no
sentido
inverso.

Exemplo, converter 53₁₀ para binário:

SISTEMA BINÁRIO

Conversão Binário para Decimal.

Multiplica-se o valores por potências de base 2.

$$110101_2 = 53_{10}$$

SISTEMA OCTAL

Conversão Decimal para Octal.

Divisão por 8, a resposta será os restos da divisão no sentido inverso.

$$\begin{array}{c|c}
 & 92 \underline{8} \\
1^{\circ} \text{ resto } \underline{-4} & 11 \underline{8} \\
2^{\circ} \text{ resto } \underline{-3} & \underline{1} - \text{Último quociente}
\end{array}$$

Assim, seguindo a mesma regra de formação, 92₁₀ = 134₈.

SISTEMA OCTAL

Conversão Octal para Decimal.

Multiplica-se o valores por potências de base 8.

Exemplo: Converter 345₈ em decimal.

$$345_8 = 3x8^2 + 4x8^1 + 5x8^0$$

$$345_8 = 192 + 32 + 5 = 229_{10}$$

SISTEMA HEXADECIMAL

Conversão Decimal para Hexadecimal.

Divisão por 16, A resposta será os restos

da divisão no sentido inverso.

Exemplo: Converter **1000**₁₀ em hexadecimal.

1000|<u>16</u> 8 62|<u>16</u> 14 3|<u>16</u> 3 0

 $1000_{10} = 3E8_{16}$

Obs. Após concluir as divisão, substituir os valores acima de 9 pelos seus respectivos representante. Ex. 10=A 11=B,... 15=F.

SISTEMA HEXADECIMAL

Conversão Hexadecimal para Decimal.

Multiplica-se o valores por potências de base 16.

Exemplo: Converter **2D**₁₆ em decimal.

$$2D_{16} = 2x16^{1} + 13x16^{0} = 32 + 13 = 45.$$

Obs. Deve-se substituir as Letras (A,B,...,F) pelo seu devido valor para efetuar a multiplicação, como no exemplo acima. D=13.

SISTEMA OCTAL-BINÁRIO

Conversão Binário para Octal.

Base binária para base octal

- Grupos de três bits à partir da dir
- Converter cada grupo de bits par

Exemplo: **1110010**₂ em octal:

 $1110010_2 = 1 110 010 = 162_8$

Obs. Aqui será necessário utilizar a tabela, para verificar cada valor e seu representante. Também deverá ser considerado sempre 3 algarismos, assim complete com zero(o) onde não tiver.

Tabela de Valores			
Decimal	Binário	Octal	Hexadecima
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	oQ_1	5	5
6	Ω_0	6	6
7	Q_{11}	7	7
8	₽000	10	8
9	Q ₀₀₁	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

SISTEMA OCTAL-BINÁRIO

Conversão Binário para octal.

Base octal para base binária

Converter cada dígito octal no seu correspondente binário

Exemplo: **77**₈ em binário:

Obs. Aqui também será necessário utilizar a tabela, para verificar cada valor e seu representante.

Tabela de Valores			
Decimal	Binário	Octal	Hexadecima
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Ε
15	1111	17	F

SISTEMA HEXADECIMAL-BINÁRIO

Conversão Hexadecimal para Binário.

Quatro bits para representam cada dígito hexadecimal

Exemplo: Converter AB3₁₆ em binário.

$$AB3_{16} = \underbrace{1010}_{A}\underbrace{1011}_{B}\underbrace{0011}_{3} = 101010110011_{2}$$

Obs. Aqui será necessário utilizar a tabela, para verificar cada valor e seu representante. Também deverá ser considerado sempre 4 algarismos, assim complete com zero(o) onde não tiver.

No caso do ultimo numero da esquerda seja um zero o mesmo não necessita ser considerado, ou seja, deixe o 1 mesmo.

Comece sempre da direita para a esquerda a contagem do binário de 4 em 4.

Tabela de Valores			
Decimal	Binário	Octal	Hexadecima
0	0	0	0
1	1	1	1
2	10	2	2
3	0011	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

SISTEMA HEXADECIMAL-BINÁRIO

Conversão Binário para Hexadecimal.

Agrupar os bits de 4 em 4 à partir da direita.

Exemplo: Converter **1001110**₂ em hexadecimal.

$$1001110_2 = 100 1110 = 4E_{16}$$

Obs. Aqui será necessário utilizar a tabela, para verificar cada valor e seu representante. Também deverá ser considerado sempre 4 algarismos, assim complete com zero(o) onde não tiver.

Lembrando o primeiro zero(o) a esquerda devera ser desconsiderado.

Comece sempre da direita para a esquerda a contagem do binário de 4 em 4.

Tabela de Valores			
Decimal	Binário	Octal	Hexadecima
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	O 100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

UM POUCO MAIS DE HISTÓRIA ÁLGEBRA BOOLEANA

- "O motivo do presente tratado é investigar as leis fundamentais do funcionamento do cérebro através das quais o raciocínio se realiza; expressá-las através da linguagem do Cálculo e, sobre este fundamento, estruturar a ciência da Lógica e construir o seu método; fazer deste método a base de todos os métodos para aplicação da doutrina matemática de probabilidades; e, finalmente, recolher dos vários elementos verdadeiros trazidos para serem examinados no curso destas investigações alguma provável sugestão a respeito da natureza e constituição da mente humana."
- O texto acima se refere ao parágrafo inicial do matemático e filósofo britânico George Boole (1815 a 1864) que foi o criador da *Álgebra Booleana*.

UM POUCO MAIS DE HISTÓRIA ÁLGEBRA BOOLEANA

- As relações algébricas eram vista como algo linear, algo belo, enquanto Boole passou a ver Álgebra como algo abstrato. Como ele escreveu na citação acima, a matemática de probabilidades, a ciência da lógica, a linguagem do Cálculo iria investigar o funcionamento do cérebro, a natureza e a constituição da mente humana.
- A álgebra booleana teve uma forte contribuição para a idealização dos circuitos digitais por meio das operações lógicas utilizando as portas lógicas (E, OU e NÃO) e foi aplicada por Shannon no século XX.

ÁLGEBRA BOOLEANA

- E o que a Álgebra Booleana tem a haver com o computador?
- Simples assim: atualmente todos os computadores usam a Álgebra de Boole materializada em microchips que contêm milhares de interruptores miniaturizados combinados em portas lógicos que produzem os resultados das operações utilizando uma linguagem binária.
- Mas vamos com calma isso será visto mais adiante no decorrer da disciplina.

Sistemas numéricos

Sistemas numéricos

• Fim, até a próxima aula.