Экзамен «Множества»

Летняя многопрофильная школа при МЦНМО, кафедра математики, 2011

К экзамену допускаются люди, сдавшие «Множества. Основные понятия». Необходимо уметь решать такие задачи:

- 1. Докажите счетность следующих множеств:
 - 1) множество \mathbb{Z} целых чисел;
 - 2) множество Q рациональных чисел;
 - 3) множество текстов конечной длины в русском алфавите.
- 2. Докажите, что прямое произведение счетных множеств счетно.
- 3. Счетны ли следующие множества:
 - 1) множество всех бесконечных последовательностей из нулей и единиц;
 - 2) множество всех подмножеств множества №;
 - 3) множество всех конечных подмножеств множества №;
 - 4) множество всех отображений $\mathbb{N} \to \mathbb{N}$.
- **4.** Докажите теорему Кантора. Никакое множество не равномощно множеству всех своих подмножеств.
- **5.** Докажите теорему Кантора-Бернштейна. Если для множеств A и B существуют инъективные отображения $f: A \to B$ и $q: B \to A$, то эти множества равномощны.
- **6.** Постройте взаимнооднозначное соответствие между множествами $[0,1],\ [0,1)$ и (0,1).
- 7. Опишите парадокс Рассела и парадокс Кантора наивной теории множеств.
- 8. Докажите, что отображение $f: A \to B$ является инъекцией тогда и только тогда, когда для любого множества C и любых отображений $g_1, g_2: C \to A$ из $f \circ g_1 = f \circ g_2$ следует $g_1 = g_2$. Другими словами, f инъективно тогда и только тогда, когда его можно сокращать слева. Докажите, что f сюръективно тогда и только тогда, когда его можно сокращать справа.