Methoden und Anwendungen der Optimierung Übung 1 $-Musterl\ddot{o}sung$ -

Aufgabe 1:

a) Formulierung als Rucksackproblem (P)

$$x_i = \begin{cases} 1, & \text{Auftrag i wird bearbeitet} \\ 0, & \text{sonst} \end{cases}$$

$$\max \ z = 6x_1 + 7x_2 + 4x_3 + 13x_4 + 2x_5 + 3x_6 + x_7$$

$$\text{s.d.} \ 2x_1 + 4x_2 + 3x_3 + 4x_4 + x_5 + x_6 + 4x_7 \le 9$$

$$x_i \in \{0, 1\} \ \forall i = 1, \dots, 7$$

b) LP-Relaxation (R)

$$\max z = 6x_1 + 7x_2 + 4x_3 + 13x_4 + 2x_5 + 3x_6 + x_7$$

s.d.
$$2x_1 + 4x_2 + 3x_3 + 4x_4 + x_5 + x_6 + 4x_7 \le 9$$

$$0 \le x_i \le 1 \ \forall i = 1, \dots, 7$$

optimale Lösung von (R):

Schritt 1 Bilde Quotienten $q_i = \frac{p_i}{w_i}$

Gegenstand	1	2	3	4	5	6	7
DB	6	7	4	13	2	3	1
Dauer	2	4	3	4	1	1	4
q_i	3	1,75	$1,\overline{3}$	$3,\!25$	2	3	$0,\!25$

Schritt 2 Sortiere nach fallendem q_i

Schritt 3 Auffüllen des Rucksacks gemäß Sortierung

$$\begin{cases} x_4 = x_1 = x_6 = x_5 = 1 \\ x_2 = \frac{1}{4} \\ x_3 = x_7 = 0 \end{cases}$$
 $z_R = 25,75$

Lösung ist nicht zulässig für (P) ⇒ UB=25 (wegen Ganzzahligkeit)

Schritt 4 Bestimme zul. Lsg. für (P)

$$\begin{cases} x_4 = x_1 = x_6 = x_5 = 1 \\ x_2 = x_3 = x_7 = 0 \end{cases}$$
 $z' = 24$

Lösung ist zulässig für (P) \Rightarrow LB₁=24

 \rightarrow Verzweige in 2 Teilprobleme nach x_2 :

$$R_1: x_2 = 1$$

 $R_2: x_2 = 0$

Löse Teilproblem R_1 :

$$\max z = 6x_1 + 7x_2 + 4x_3 + 13x_4 + 2x_5 + 3x_6 + x_7$$

s.d.
$$2x_1 + 4x_2 + 3x_3 + 4x_4 + x_5 + x_6 + 4x_7 \le 9$$

$$x_2 = 1$$

$$0 \le x_i \le 1 \ \forall i = 1, \dots, 7$$

Optimale Lösung von R_1 :

$$\begin{vmatrix} x_2 = x_4 = 1 \\ x_1 = \frac{1}{2} \\ x_6 = x_5 = x_3 = x_7 = 0 \end{vmatrix} z_{R_1} = 23 = UB_1$$

Lösung ist unzulässig für (P) und z_{R_1} <LB \Rightarrow Terminiere R_1

Löse Teilproblem R_2 : Optimale Lösung von R_2 :

$$\begin{cases} x_4 = x_1 = x_6 = x_5 = 1 \\ x_3 = \frac{1}{3} \\ x_2 = x_7 = 0 \end{cases}$$
 $z_{R_2} = 25,\overline{3}$

Lösung ist unzulässig für (P). UB₂ = 25 >LB₁ \Rightarrow Verzweige R_2 weiter nach x_3 :

$$R_3: x_2 = 0, x_3 = 1$$

 $R_4: x_2 = x_3 = 0$

Optimale Lösung von R_3 :

Lösung ist zulässig für (P) \Rightarrow Terminiere R_3

Optimale Lösung von R_4 :

$$\left. \begin{array}{l} x_4 = x_1 = x_6 = x_5 = 1 \\ x_7 = \frac{1}{4} \\ x_2 = x_3 = 0 \end{array} \right\} z_{R_4} = 24,25$$

Lösung ist nicht zulässig für $(P) \Rightarrow UB_4 = 24$. UB_4 ist nicht besser als $LB_1 \Rightarrow$ Terminiere R_4

Alle Knoten terminiert. Somit ist LB₁ optimal.

Aufgabe 2:

- a) Es handelt sich um ein Bin-Packing Problem
- b) 8 Brammen \rightsquigarrow es sind maximal 8 Waggons notwendig

Entscheidungsvariablen:

$$\begin{aligned} y_j &= \begin{cases} 1, & \text{Waggon j wird ben\"otigt} \\ 0, & \text{sonst} \end{cases} \\ x_{ij} &= \begin{cases} 1, & \text{Bramme i auf Waggon j} \\ 0, & \text{sonst} \end{cases} \\ \min &z = \sum_{j=1}^8 y_j \\ s.d. & 2x_{1j} + 6x_{2j} + 14x_{3j} + 3x_{4j} + 2x_{5j} + 16x_{6j} + 6x_{7j} + 3x_{8j} \leq 26y_j \ \forall j = 1, \dots, 8 \\ & \sum_{j=1}^8 x_{ij} = 1 \ \forall i = 1, \dots, 8 \\ & y_j \in \{0,1\} \ \forall j = 1, \dots, 8 \\ & x_{ij} \in \{0,1\} \ \forall i,j = 1, \dots, 8 \end{aligned}$$

c) Idee: Zunächst schwere Brammen verladen, leichte dann hinzufügen. Sinnvoll, die Gegenstände nach fallender Masse zu sortieren.

Iteration	Waggon 1	Waggon 2	Waggon 3
1 (6 16)	{6} (10)		
2(3 14)	$\{6\}\ (10)$	${3}$ (12)	
3(2 6)	$\{2,6\}\ (4)$	${3}\ (10)$	
4(7 6)	$\{2,6\}\ (4)$	$\{3,7\}$ (6)	
5(4 3)	$\{2,4,6\}\ (1)$	$\{3,7\}\ (6)$	
6 (8 3)	$\{2,4,6\}\ (1)$	${3,7,8} (3)$	
7(1 2)	$\{2,4,6\}\ (1)$	$\{1, 3, 7, 8\}$ (1)	
8(5 2)	$\{2,4,6\}\ (1)$	$\{1, 3, 7, 8\}$ (1)	$\{5\}\ (24)$

d) Bestimmung einer unteren Schranke für das BPP:

$$LB = \left\lceil \frac{1}{C} \cdot \sum_{i=1}^{n} w_i \right\rceil$$

Zusätzliche untere Schranke, falls bereits n(j) Waggons mit Brammen $1,\dots,j$ belegt sind.

C(j) $\hat{=}$ Summe der Restkapazitäten der bereits verwendeten Waggons

$$C(j) = n(j) \cdot C - \sum_{i=1}^{j} w_i$$

$$\Rightarrow LB(j) = n(j) + \max \left\{ 0, \left\lceil \frac{1}{C} \left(\sum_{i=j+1}^{n} w_i - C(j) \right) \right\rceil \right\}$$

Dabei ist $\sum_{i=j+1}^{n} w_i - C(j)$ die Menge, die noch auf zusätzliche Waggons verladen werden muss.

Branch and Bound: $LB = \left\lceil \frac{1}{26} \cdot (2 + 6 + 14 + 3 + \ldots) \right\rceil = 2$ \rightarrow mindestens 2 Waggons.

optimale Lösung

Waggon 1: 6,2,1,5 Waggon 2: 3,7,4,8

Aufgabe 3:

- a) Jede Parzelle muss durch mindestens eine Basisstation überdeckt werden \rightarrow Set Covering Problem
- b) EV: $x_i = \begin{cases} 1, & \text{Basisstation in Parzelle i} \\ 0, & \text{sonst} \end{cases}$

$$\min z = \sum_{i=1}^{17} x_i$$

s.d.

c) z.B.
$$x_3 = x_7 = x_{16} = 1$$

 $x_i \in \{0, 1\} \ \forall i = 1, \dots, 17$

Vollständigkeit und Richtigkeit - Alle Angaben ohne Gewähr!!!

Aufgabe 4:

	Pairing	Flüge
	1	$\{CB_1, BC\}$
	2	$\{AB, BA\}$
a)	3	$\{AB, BC, CA_2\}$
	4	$\{CA_1, AC\}$
	5	$\{BC, CB_2\}$
	6	$\{AC, CA_2\}$

- b) Jeder Flug genau $1x \rightsquigarrow Set$ Partitioning Problem
- c) EV: $x_i = \begin{cases} 1, & \text{Pairing i wird durchgef\"uhrt} \\ 0, & \text{sonst} \end{cases}$

$$\min z = \sum_{i=1}^{6} c_i x_i$$
s.d. $x_1 = 1$ (CB₁)
$$x_2 + x_3 = 1$$
 (AB)
$$x_4 = 1$$
 (CA₁)
$$x_1 + x_3 + x_5 = 1$$
 (BC)
$$x_4 + x_6 = 1$$
 (AC)
$$x_2 = 1$$
 (BA)
$$x_5 = 1$$
 (CB₂)
$$x_3 + x_6 = 1$$
 (CA₂)

d) Es existiert keine zulässige Lösung: $x_1=1$ und $x_5=1$ im Widerspruch zu $x_1+x_3+x_5$.

 $x_i \in \{0, 1\}$

e) Modellierung als Set-Covering-Problem, d.h. NB ≥ 1 . Opt. Lösung $x_1^*=1,\ x_2^*=1,\ x_3^*=0,\ x_4^*=1,\ x_5^*=1,\ x_6^*=1$. D.h. die Flüge AC und BC nehmen jeweils eine Crew als Passagiere auf.