Filière: RT2/EII2

Prof.: D. BONKOUNGOU

TD de Traitement du Signal Numérique (RT2/EII2)

Exercice N°1: Numérisation de signaux

Tableau 1 donne les valeurs typiques de fréquence d'échantillonnage et du nombre de bits par échantillon de signaux pour certaines applications.

Type de signal selon l'application	Fréquence d'échantillonnage	Nombre de bits par échantillon
Téléphonie	8 kHz	8
Radiodiffusion numérique	32 kHz	16
Musique CD (Compact Disc)	44,1 kHz	16
Studio de production Audio	48 kHz	16
Télévision numérique	13,3 MHz	8

Tableau 1 : Fréquences d'échantillonnage et nombre de bits par échantillon

- 1) Déterminer la fréquence maximale des différents types de signaux de tableau 1 en supposant que les fréquences d'échantillonnage données sont minimales pour une reconstitution des signaux analogiques correspondants.
- 2) La voix humaine contient les fréquences de 100 Hz à 10 kHz. La bande de fréquence de la voix humaine pour la téléphonie est limitée de 300 Hz à 3400 Hz.
 - a) Déterminer la fréquence d'échantillonnage minimale afin de permettre une reconstitution du signal analogique téléphonique.
 - b) Supposons qu'on transmette toute la bande de fréquence de la voix humaine. Comment doiton alors choisir la fréquence d'échantillonnage ?
- 3) La fréquence maximale transmise d'un signal de musique CD est en réalité 20 kHz. En considérant cette fréquence maximale, peut-on dire qu'il s'agit d'un sur-échantillonnage ou oversampling ? Justifier votre réponse. Quel est l'avantage du oversampling ?
- 4) Calculer le débit de transmission nécessaire en bit/s et la durée de transmission d'un bit pour chaque type de signal de tableau 1
- 5) Peut-on garantir une bonne qualité d'images de Télévision à la réception selon les valeurs de tableau 1 avec un système de transmission supportant un débit maximal de 100 Mbit/s ? Sinon que peut-on faire pour garantir la bonne qualité des images avec le même débit maximal du système ?

Filière: RT2/EII2 Prof.: D. BONKOUNGOU

Exercice N°2: Quantification et codage

On utilise un CAN (convertisseur analogique numérique) à 8 bits pour la numérisation d'un signal analogique sinusoïdal d'amplitude $10~\rm V$. Le CAN effectue une quantification linéaire et travaille entre $-10~\rm V$ et $+10~\rm V$.

- 1) Donner la valeur Full Scale et la résolution (en Volts) du CAN. Combien vaut la valeur du LSB?
- 2) Combien de valeurs numériques distinctes sont livrées par le CAN?
- 3) Donner sous la forme d'un tableau les dix plus petites valeurs du code décimal, des niveaux de quantification, du code binaire offset et du code binaire à deux compléments.
- 4) Calculer le rapport signal sur bruit SNR du CAN en dB.
- 5) Quel est le nombre de bits nécessaire pour atteindre un rapport signal sur bruit de 85 dB?

Exercice N°3: Echantillonnage d'un signal

Le spectre d'amplitude d'un signal analogique s(t) est défini par la fonction suivante :

$$|S(f)| = \begin{cases} 2 - |f| & \text{si } |f| \le 2 \text{ kHz} \\ 0 & \text{si } |f| > 2 \text{ kHz} \end{cases}$$

Avec f en kHz.

- 1) Dessiner |S(f)|.
- 2) Comment faut-il choisir la fréquence d'échantillonnage pour permettre une reconstitution du signal analogique s(t) après échantillonnage ?
- 3) Le signal analogique s(t) est échantillonné à la fréquence d'échantillonnage $f_{e1} = 5$ kHz. Dessiner $|S_{e1}(f)|$ le spectre d'amplitude du signal échantillonné et $|S_{i1}(f)|$ le spectre d'amplitude du signal analogique reconstitué après interpolation avec un filtre passe-bas idéal de fréquence de coupure f_{c1} . Déterminer f_{c1} . La restitution du signal analogique après échantillonnage a-t-elle été possible ? Pourquoi ?
- 4) Le signal analogique s(t) est maintenant échantillonné à 3000 échantillons par seconde.
 - a) Déterminer la fréquence d'échantillonnage f_{e2} en kHz.
 - b) Dessiner $|S_{e2}(f)|$ le spectre d'amplitude du signal échantillonné et $|S_{i2}(f)|$ le spectre d'amplitude du signal analogique reconstitué après interpolation avec un filtre passe-bas idéal de fréquence de coupure f_{c2} . Déterminer f_{c2} . La restitution du signal analogique après échantillonnage a-t-elle été possible ? Pourquoi ?

Filière: RT2/EII2

Prof.: D. BONKOUNGOU

Exercice N°4: Echantillonnage d'un signal à spectre discret

Un signal analogique x(t) dont le spectre est discret est défini par :

$$x(t) = 4\cos(6000\pi t) + 2\cos(10000\pi t)$$

1) Calculer et dessiner |X(f)| le spectre d'amplitude du signal analogique x(t) connaissant la relation suivante de la table de Fourier:

$$\cos(2\pi f_0 t) \stackrel{TF}{\to} \frac{1}{2} [\delta(f - f_0) + \delta(f + f_0)]$$

- 2) Comment faut-il choisir la fréquence d'échantillonnage pour permettre une reconstitution du signal analogique x(t) après échantillonnage ?
- 3) Le signal analogique x(t) est échantillonné à 8000 échantillons par seconde.
 - a) Dessiner $|X_e(f)|$ le spectre d'amplitude du signal échantillonné et $|X_i(f)|$ le spectre d'amplitude du signal analogique reconstitué après interpolation avec un filtre passe-bas idéal de fréquence de coupure f_c . Déterminer f_c .
 - b) Déterminer $x_i(t)$ l'expression temporelle du signal analogique reconstitué après interpolation. La reconstitution du signal analogique après échantillonnage a-t-elle été possible ? justifier votre réponse. Ce résultat était-il prévisible ? Pourquoi ?

Exercice N°5: Manipulation de signaux numériques

1) On donne la suite d'impulsion rectangulaire suivante

$$x(n) = \{1, 1, 1, 1, 1, 1, 1, 1\}$$
 pour $n = 0, 1, 2, 3, 4, 5, 6$

- a) Dessiner x(n).
- b) Donner l'expression de x(n) en fonction de rect(.).
- c) Dessiner la composante paire $x_p(n)$ et impaire $x_i(n)$ de x(n). Vérifier la décomposition
- d) Donner les valeurs de $x_n(n)$ et de $x_i(n)$.
- 2) Le signal y(n) est défini par la relation suivante:

$$y(n) = x(n) + \frac{1}{2}x(n-1) - x(n) \cdot x(4-n)$$
 (1)

- a) Déterminer graphiquement y(n). En déduire les valeurs de y(n).
- b) Calculer y(n) à partir de (1) et vérifier le résultat trouvé dans a).

Filière: RT2/EII2

Prof.: D. BONKOUNGOU

Exercice N°6: Analyse d'un système LTI à temps discret

Un système LTI à temps discret est décrit par la fonction de transfert suivante:

$$H(z) = \frac{1 + 3z^{-1} + \frac{11}{6}z^{-2} + \frac{1}{3}z^{-3}}{1 + \frac{5}{6}z^{-1} + \frac{1}{6}z^{-2}}$$

- 1) Déterminer l'équation aux différences du système.
- 2) Dessiner le schéma fonctionnel du système.
- 3) Déterminer la réponse impulsionnelle h(n) du système.