

2009-2010 学年第 2 学期

考试统一用答题册(A卷)

题号	 <u></u>	三(1)	三(2)	三(3)	三(4)	总分
成绩						
阅卷人签字						
校对人签字						

考试	课程	基础物理学 (1)	
班	级	学号	
姓	名	成 绩	

2010年7月2日

注: 试题共6页,满分100分

一、 选择题(将正确答案的字母填在空格内,每小题 3 分,共 30 分)

- 1、对于沿曲线运动的物体,以下几种说法中哪一种是正确的:
- (A) 切向加速度必不为零.
- (B) 法向加速度必不为零 (拐点处除外).
- (C) 由于速度沿切线方向, 法向分速度必为零, 因此法向加速度必为零.
- (D) 若物体作匀速率运动, 其总加速度必为零.
- (E) 若物体的加速度 \bar{a} 为恒矢量,它一定作匀变速率运动.

Γ 1

- 2、体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是
- (A)甲先到达.
- (B)乙先到达.
- (C)同时到达.
- (D)谁先到达不能确定.

- 3、质量为 10 kg 的质点,在外力作用下,做曲线运动,该质点的速度为 $\bar{\upsilon} = 4t^2\bar{i} + 16\bar{k}$ (SI),则在 t=1 s 到 t=2 s 时间内,合外力对质点所做的功为
- (A) 40 J.
- (B) 80 J.
- (C) 960 J.
- (D) 1200 J.

[]

- 4、一刚体以每分钟 60 转绕 z 轴做匀速转动($\bar{\omega}$ 沿 z 轴正方向). 设某时刻刚体上一点 P 的位置矢量为 $\bar{r}=3\bar{i}+4\bar{j}+5\bar{k}$,其单位为" 10^{-2} m",若以" 10^{-2} m s^{-1} "为速度单位,则该时刻 P 点的速度为:
- (A) $\vec{v} = 94.2 \,\vec{i} + 125.6 \,\vec{j} + 157.0 \,\vec{k}$
- (B) $\vec{v} = -25.1\vec{i} + 18.8\vec{j}$
- (C) $\vec{v} = -25.1\vec{i} 18.8\vec{j}$
- (D) $\vec{v} = 31.4 \, \vec{k}$.

- 5、设声波在媒质中的传播速度为u,声源的频率为 v_s . 若接收器R不动,而声源S相对于媒质以速度 v_s 沿着S、R连线向着接收器R运动,则接收器收到的频率为:
- (A) v_{s} .

- (B) $\frac{u+v_s}{u}v_s$.
- (C) $\frac{u}{u+v_s}v_s$.
- (D) $\frac{u}{u-v_s}v_s$.

Γ 1

6、半径为R的金属球与地连接. 在与球心O相距d=2R处有一电 荷为 q 的点电荷. 如图所示,设地的电势为零,则球上的感生电荷

- (A) 0.
- (C) $-\frac{q}{2}$.

7、一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介 质,则电场强度的大小 E、电容 C、电压 U、电场能量 W 四个量各自与充入介质前相比较, 增大(↑)或减小(↓)的情形为

- (A) $E \uparrow$, $C \uparrow$, $U \uparrow$, $W \uparrow$.
- (B) $E \downarrow$, $C \uparrow$, $U \downarrow$, $W \downarrow$.
- (C) $E \downarrow$, $C \uparrow$, $U \uparrow$, $W \downarrow$.
- (D) $E \uparrow$, $C \downarrow$, $U \downarrow$, $W \uparrow$.

8、边长为l的正方形线圈,分别用图示两种方式通以电流I(其中ab、cd与正方形共面), 在这两种情况下,线圈在其中心产生的磁感强度的大小分别为

(A)
$$B_1 = 0$$
, $B_2 = 0$.

(B)
$$B_1 = 0$$
, $B_2 = \frac{2\sqrt{2}\mu_0 I}{\pi l}$.

$$({\rm C}) \quad B_1 = \frac{2\sqrt{2}\mu_0 I}{\pi l} \,, \ \ B_2 = 0 \,. \label{eq:B1}$$

$$({\rm D}) \quad B_1 = \frac{2\sqrt{2}\mu_0 I}{\pi l} \,, B_2 = \frac{2\sqrt{2}\mu_0 I}{\pi l} \,.$$

9、如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线 固定不动,则载流三角形线圈将

(B) 离开长直导线平移.

(D) 不动.

10、如图,平板电容器(忽略边缘效应)充电时,沿环路 L_1 的磁场强度 \overline{H} 的环流与沿环路 L_2 的磁场强度 \bar{H} 的环流两者,必有:

(B)
$$\oint_{L_1} \vec{H} \cdot d\vec{l}' = \oint_{L_2} \vec{H} \cdot d\vec{l}'.$$

(C)
$$\oint_{L_1} \vec{H} \cdot d\vec{l}' < \oint_{L_2} \vec{H} \cdot d\vec{l}'.$$

(D)
$$\oint_{L_1} \vec{H} \cdot d\vec{l}' = 0$$

Γ

_	植穴蛎	(每小题3分,	# 20 4
— `	快工咫	(苺小皮3カケ	77 30 71 7

1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为:

$$=2+6x^2$$
 (S

如果质点在原点处的速度为零,其在任意位置处的速度为v(x)=

- 2、一质量为m的物体,原来以速率v向北运动,它突然受到外力打击,变为向西运动,速 率仍为 v,则外力的冲量大小为______,方向为_____,方向为_____
- 3、若作用于一力学系统上外力的合力为零,则外力的合力矩 (填一定或不一 定) 为零: 这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是
- 4、在一般情况下,对于由n个质量分别为 m_i (i=1,2,...n)的质点组成的质点系,若每个质点 的位置矢量分别为 \vec{r}_i ,则它的质心的位置矢量为 \vec{r}_c =_____;而对于一质量 连续分布的物体,若位置矢量为 \bar{r} 处的密度为 ρ ,物体所占的空间体积用 V 表示,则其质
- 5、(1)一列波长为 λ 的平面简谐波沿 x 轴正方向传播,已知在 $x = \frac{1}{2}\lambda$ 处振动的方程为 $y = A\cos\omega t$,则该平面简谐波的表达式

(2) 如果在上述波的波线上 $x = L(L > \frac{1}{2}\lambda)$ 处放一如图所示的反

射面,且假设反射波的振幅为A',则反射波的表达式为

6、A、B 为真空中两个平行的"无限大"均匀带电平面,已知两平面间的电 场强度大小为 E_0 ,两平面外侧电场强度大小都为 $E_0/3$,方向如图.则 $A \times B$ 两平面上的电荷面密度分别为:

- $\sigma_A =$ _______, $\sigma_B =$ _______.
- 7、点电荷 q_1 、 q_2 、 q_3 和 q_4 在真空中的分布如图所示. 图中 S 为闭 合曲面,则通过该闭合曲面的电场强度通量

$$\oint_{S} \vec{E} \cdot d\vec{S} = \underline{\hspace{1cm}},$$

式中的 \vec{E} 是点电荷 在闭合曲面上任一点产生的场强的矢量和.

8、一平行板电容器充电后	,将其中一半空间充以各向同性、均匀电介	
质,如图所示.则图中 I、	II 两部份的电场强度;	II & I
两部份的电位移矢量	;两部份所对应的极板上的自由	
电荷面密度	(填相等、不相等).	

9、如图所示的空间区域内,分布着方向垂直于纸面的匀强磁场,在纸面 内有一正方形边框 abcd(磁场以边框为界). 而 $a \times b \times c$ 三个角顶处开有很 小的缺口. 今有一束具有不同速度的电子由 a 缺口沿 ad 方向射入磁场区 域,若b、c 两缺口处分别有电子射出,则此两处出射电子的

俯视图

速率之比 $v_b/v_c=$.

10、一个磁导率为 μ 1的无限长均匀磁介质圆柱体,半径为 R_1 .其 中均匀地通过电流 I. 在它外面还有一半径为 R_2 的无限长同轴 圆柱面,其上通有与前者方向相反的电流 I,两者之间充满磁 导率为 μ_2 的均匀磁介质. 在 $0 < r < R_1$ 的空间磁场强度的大小

H=_____.

三、 计算题 (每小题 10 分, 共 40 分)

1、有一半径为R的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为 μ ,若平板 绕通过其中心且垂直板面的固定轴以角速度 ω_0 开始旋转,它将在旋转几圈后停止?(已知 圆形平板的转动惯量 $J = \frac{1}{2} mR^2$,其中 m 为圆形平板的质量)

2、由质量为M的木块和劲度系数为k的轻质弹簧组成在光滑水平台上运动的谐振子,如图所示. 开始时木块静止在O点. 一质量为m的子弹以速率 v_0 沿水平方向射入木块并嵌在其中,然后木块(内有子弹)作简谐振动. 若以子弹射入木块并嵌在木块中时开始计时,试写出系统的振动方程. 取x 轴如图.

、有一电荷面密度为 σ 的"无限大"均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.

4、如图,均匀磁场 \bar{B} 被限制在半径为R的无限长圆柱空间内,方向垂直纸面向里,圆柱体之外无磁场.设磁感强度 \bar{B} 随时间作均匀变化,变化率为常数k>0.有一长为2R的细棒放在图示位置,其一半位于磁场内部,另一半在磁场外部,求棒两端的感应电动势的大小和方向.

