Resumen que puede usarse en el examen

Tema 1. Optimización Irrestringida.

Condiciones necesarias y suficientes de optimalidad.

Proposición (C. Necesarias)

Sea x^* un mínimo local irrestringido de $f: \mathbb{R}^n \to \mathbb{R}$ y supongamos que f es continuamente diferenciable sobre un abierto S que contiene a x^* , entonces $\nabla f(x^*) = 0_n$. Si, además f es dos veces continuamente diferenciable en S, entonces $\nabla^2 f(x^*)$ es semidefinida positiva.

Proposición (Caracterización de las funciones convexas diferenciables)

Sea $C \subseteq \mathbb{R}^n$ un convexo y $f: C \to \mathbb{R}$ una función diferenciable sobre C.

- (a) La función f es convexa sii $f(z) \ge f(x) + (z x)^T \nabla f(x) \quad \forall x, z \in C$
- (b) Si la designaldad anterior es estricta cuando $x \neq z$, entonces f es estrictamente convexa.

Proposición (función objetivo convexa)

Sea $f: C \to \mathbb{R}$ una función convexa sobre el convexo C,

- (a) Cualquier mínimo local de f sobre C es también mínimo global sobre C. Si además f es estrictamente convexa, entonces como mucho existe un mínimo global de f.
- (b) Si f es convexa y C abierto, entonces $\nabla f(x^*) = 0_n$ es una condición necesaria y suficiente para que $x^* \in C$ sea mínimo global de f sobre C.

Proposición (C. Suficiente)

Sea $f: \mathbb{R}^n \to \mathbb{R}$ dos veces continuamente diferenciable en un abierto C.

Supongamos que $x^* \in C$ satisface que $\nabla f(x^*) = 0_n$ y $\nabla^2 f(x^*)$ es una matriz definida positiva. Entonces x^* es un mínimo local irrestringido de f. En particular se tiene que:

$$\exists \gamma > 0, \varepsilon > 0 \text{ tales que } f(x) \ge f(x^*) + \frac{\gamma}{2} ||x - x^*||^2 \forall x : ||x - x^*|| < \varepsilon$$

Proposición

Sea $C \subseteq \mathbb{R}^n$ un convexo y $f : \mathbb{R}^n \to \mathbb{R}$ dos veces continuamente diferenciable en C. Sea Q una matriz real $n \times n$ simétrica,

- (a) Si $\nabla^2 f(x)$ es semidefinida (definida) positiva $\forall x \in C$, entonces f es convexa (estrictamente convexa).
- (b) Si $C = \mathbb{R}^n$ y f es convexa, entonces $\nabla^2 f(x)$ es semidefinida positiva $\forall x$
- (c) La función $f(x) = \frac{1}{2}x^TQx$ es convexa sii Q es semidefinida positiva.

Métodos de descenso basados en el gradiente

Dado x^k , iterado k-ésimo, si $\nabla f(x^k) \neq 0_n$, definimos $x^{k+1} = x^k + \alpha^k d^k$ siendo d^k una dirección tal que $\nabla f(x^k)^T$. $d^k < 0$ y α^k la longitud de salto adecuada.

Las direcciones de descenso

En muchos casos $d^k = -D^k \nabla f(x^k)$, siendo D^k una matriz simétrica definida positiva:

Descenso más rápido: $D^k = I_{n \times n} \ \forall k$

Newton:
$$D^k = (\nabla^2 f(x^k))^{-1} \quad \forall k \ge 0$$

Newton modificado: En lugar de calcular cada vez la inversa del hessiano, sólo se hace cada cierto número de iteraciones.

Esquema algorítmico

Inicialización: Elegir ε >0 y $x^1 \in R^n$. Hacer k=1 e ir al paso 1.

Paso 1. Evaluar $\nabla f(x^k)$. Si $||\nabla f(x^k)|| < \varepsilon \rightarrow STOP$ (nos quedamos con x^k). En otro caso, hacer $d^k = -D^k \nabla f(x^k)$ e ir a 2.

Paso 2. Evaluar la longitud del desplazamiento $\alpha_k > 0$ e ir a 3.

Paso 3. Hacer $x^{k+1} = x^k + \alpha_k d^k$. Hacer k=k+1 y volver a 1.

Selección de la amplitud de salto

Regla de minimización (búsqueda lineal exacta)

Elegimos $\alpha^k \in \overline{Arg \min_{\alpha \ge 0} f(x^k + \alpha d^k)}$

Regla de minimización limitada

Elegimos $\alpha^k \in Arg \min_{\alpha \in [0,s]} f(x^k + \alpha d^k)$ para un escalar fijo s>0

Estas reglas se implementan con ayuda de algoritmos de búsqueda lineal unidimensional (ver apéndices A1 y A2)

Reducción sucesiva

Búsqueda lineal mediante la **Regla de Armijo**

Inicialización: Elegir s, $\beta \in (0.1, 0.5)$, $\sigma \in [10^{-5}, 10^{-1}]$. Sea $x \in R^n$ arbitrario y d una dirección de descenso en x. Sea m=0, ir a 1.

Paso 1. Evaluar $G(m) = f(x) - f(x + \beta^m s d)$ y $g(m) = -\sigma \beta^m s \nabla f(x)^T d$. Si $G(m) \ge g(m)$ \rightarrow STOP y $\alpha = \beta^m$ s. En otro caso, hacer m = m + 1 y repetir el paso 1.

2 Regla de Goldstein

Se fija un escalar $\sigma \in \left(0, \frac{1}{2}\right)$ y se elige α^k de modo que se satisfaga la relación:

$$\sigma < \frac{f(x^k + \alpha^k d^k) - f(x^k)}{\alpha^k \nabla f(x^k)^T d^k} \le 1 - \sigma$$

3 Reglas de Wolfe

Se elige α^k de modo que se satisfagan las relaciones:

$$f(x^{k} + \alpha^{k} d^{k}) \le f(x^{k}) + c_{1} \alpha^{k} \nabla f(x^{k})^{T} d^{k}$$

$$\nabla f(x^{k} + \alpha^{k} d^{k})^{T} d^{k} \ge c_{2} \nabla f(x^{k})^{T} d^{k}$$
siendo $0 < c_{1} < c_{2} < 1$

Resultados de convergencia

"Los métodos de descenso nos conducen hacia los puntos estacionarios más cercanos"

Si $\left\{x^k\right\}_{k\geq 0}$ es la sucesión de iterados obtenida al aplicar uno de estos métodos, la existencia de límite de ésta sucesión está asegurada si el conjunto de nivel inferior $\left\{x:f(x)\leq f(x^0)\right\}$ está acotado, siendo x^0 la solución inicial.

Para asegurar que el límite es un punto estacionario hay que añadir otras condiciones técnicas, por ejemplo:

<u>C1</u>. Sea $d^k = -D^k \nabla f(x^k)$, supongamos que los valores propios de la matriz simétrica definida positiva D^k están acotados superior e inferiormente por el cero. Es decir, existen dos escalares positivos c_1 y c_2 tales que: $c_1 ||z||^2 \le z^T D^k z \le c_2 ||z||^2 \quad \forall z \in \mathbb{R}^n, \ \forall k \ge 0$

 $\underline{\mathbf{C2}}$. La sucesión de direcciones de descenso $\left\{d^k\right\}_{k\geq 0}$ es gradiente afín para $\left\{x^k\right\}_{k\geq 0}$ si se satisface la condición siguiente: "Para cualquier subsucesión $\left\{x^k\right\}_{k\in K}$ que converge a un punto no estacionario, la correspondiente subsucesión $\left\{d^k\right\}_{k\in K}$ está acotada y cumple que $\lim_{k\to\infty}\sup_{k\in K}\nabla f\left(x^k\right)^Td^k<0$.

Proposición

Sea $\left\{x^k\right\}_{k\geq 0}$ la sucesión generada por un método basado en el gradiente. Supongamos que $\left\{d^k\right\}_{k\geq 0}$ es gradiente afín y que α^k se ha determinado mediante la regla de Armijo o una búsqueda lineal exacta. Entonces cada punto límite de $\left\{x^k\right\}_{k\geq 0}$ es estacionario.

Tasa de convergencia

Análisis local

La tasa se evalúa en términos de una función de error $e: \mathbb{R}^n \to \mathbb{R}$, $e(x) \ge 0$. Habitualmente $e_1(x) = \|x - x^*\|$ o $e_2(x) = |f(x) - f(x^*)|$.

Se dice que $\{e(x^k)\}_{k>0}$ converge <u>linealmente</u> o geométricamente si

 $\exists q>0 \ \ \text{y} \ \ \exists \beta\in(0,1): \ e(x^k)\leq q\beta^k \ \ \forall k \ . \ \text{Lo que se obtiene si para algún} \ \ \beta\in(0,1) \text{ se cumple}$ $\lim_{k\to\infty}\sup\frac{e(x^{k+1})}{e(x^k)}\leq\beta \ .$

Si para cada $\beta \in (0,1)$, $\exists q > 0$: $e(x^k) \le q\beta^k \ \forall k$, diremos que $\left\{ e(x^k) \right\}_{k \ge 0}$ converge superlinealmente. Lo que se obtiene, en particular, si $\lim_{k \to \infty} \sup \frac{e(x^{k+1})}{e(x^k)} = 0$

Proposición.

Sea $f(x) = \frac{1}{2}x^TQx$ donde Q es simétrica definida positiva. Consideremos el método de descenso más rápido, eligiendo α^k mediante la regla de minimización, entonces $\forall k$: $f(x^{k+1}) \le \left(\frac{M-m}{M+m}\right)^2 f(x^k) \text{ (es decir la convergencia de la sucesión de errores es lineal),}$ siendo m y M los valores propios de Q menor y mayor respectivamente.

Métodos de direcciones conjugadas.

Dada una matriz Q n x n definida positiva, diremos que los vectores no nulos $d^1,...,d^k$ son Q-conjugados si $(d^i)^T Q d^j = 0 \ \forall i,j \ i \neq j$.

Dado un conjunto de vectores Q-conjugados $\left\{d^0,d^1,...,d^{n-1}\right\}$, el método de direcciones conjugadas para minimizar una función cuadrática $f(x) = \frac{1}{2}x^TQx - b^Tx$, genera una sucesión de iterados $x^{k+1} = x^k + \alpha^k d^k$ k = 0,1,...,n-1, siendo x^0 una solución inicial arbitraria y $\alpha^k = Arg \min_{\alpha} f(x^k + \alpha d^k)$.

Propiedad fundamental. Los sucesivos iterados minimizan f sobre la variedad lineal generada por las direcciones conjugadas. En particular, para cada k, x^{k+1} minimiza f sobre $M^k = L + x^0$, siendo L el subespacio vectorial generado por $\{d^0, d^1, ..., d^k\}$, es decir

$$x^{k+1} = Arg \min_{x \in M^k} f(x)$$
, siendo $M^k = \left\{ x : x = x^0 + v \text{ donde } v = \sum_{j=0}^k \mu_j d^j \ \mu_j \in \mathbb{R} \ 1 \le j \le k \right\}$

Método del gradiente conjugado de Fletcher y Reeves.

Se obtiene aplicando el procedimiento de Gram-Schmidt a los vectores gradiente cambiados de signo. El método genera el iterado k+1 como: $x^{k+1} = x^k + \alpha^k d^k$, $\alpha^k = \arg\min f(x^k + \alpha d^k)$, si denotamos por $g_k = \nabla f(x^k)$, las direcciones vienen dadas por $d^0 = -g^0$, $d^k = -g_k + \beta_k d^{k-1}$ k=1,...,n con $\beta_k = \frac{g_k^T g_k}{g_k^T + g_k}$.

Fórmula de Polak-Ribiere

$$\beta_k = \frac{g_k^T (g_k - g_{k-1})}{g_{k-1}^T g_{k-1}}$$

Métodos casi-Newton

 $x^{k+1} = x^k + \alpha^k d^k$ y $d^k = -D^k \nabla f(x^k)$, D^k definida positiva se va ajustando iteración tras iteración intentando que d^k se parezca a la dirección de Newton.

Fórmula de actualización

Llamamos $p_k = x^{k+1} - x^k$ y $q_k = \nabla f(x^{k+1}) - \nabla f(x^k)$

 D^0 una matriz definida positiva

$$D^{k+1} = D^{k} + \frac{p_{k} p_{k}^{T}}{p_{k}^{T} q_{k}} - \frac{D^{k} q_{k} q_{k}^{T} D^{k}}{q_{k}^{T} D^{k} q_{k}} + \xi^{k} \tau_{k} \nu_{k} \nu_{k}^{T}$$

donde
$$V_k = \frac{p_k}{p_k^T q_k} - \frac{D^k q^k}{\tau_k}$$
 y $\tau_k = q_k^T D^k q_k$ y $0 \le \xi^k \le 1 \ \forall k$

Si $\xi^k = 0 \ \forall k$, tenemos el método de Davidon-Fletcher-Powell

Si $\xi^k = 1 \ \, \forall k$, tenemos el método de Broyden-Fletcher- Goldfarb- Shanno

Proposición

Si D^k es una matriz definida positiva y elegimos la amplitud de salto α^k de manera que x^{k+1} satisface que $\nabla f(x^k)^T d^k < \nabla f(x^{k+1})^T d^k$, entonces D^{k+1} es definida positiva.

Proposición

Sean $\{x_k\}, \{d_k\}$ y $\{D_k\}$ las sucesiones generadas por un algoritmo cuasi-Newton aplicado a la minimización de la función $f(x) = \frac{1}{2}x^TQx - b^Tx$ donde Q es simétrica definida positiva, en el que $\alpha_k = \arg\min_{\alpha} f(x^k + \alpha d^k)$.

Supongamos que ninguno de los vectores $x^0, x^1, ..., x^{n-1}$ es solución óptima, entonces:

- a) Los vectores $\{d^0, d^1, ..., d^{n-1}\}$ son Q-conjugados.
- b) $D^n = Q^{-1}$

APÉNDICE A1:

Método de Newton para encontrar los ceros de una función unidimensional $(g(\lambda)=0)$

Inicialización: Elegir ε >0 y $\lambda_1 \in R$. Hacer k=1 e ir al paso 1.

Paso 1. Evaluar
$$g(\lambda_k)$$
 y $g'(\lambda_k) \neq 0$. Hacer $\lambda_{k+1} = \lambda_k - \frac{g(\lambda_k)}{g'(\lambda_k)}$ ir a 2.

Paso 2. Si $|\lambda_{k+1} - \lambda_k| < \varepsilon \rightarrow STOP$ (nos quedamos con λ_{k+1}). En otro caso, hacer k=k+1 y volver a 1.

APÉNDICE A2:

Método de bisección para encontrar los ceros de una función unidimensional $(g(\lambda)=0)$

Inicialización: Elegir $\varepsilon > 0$, $a_1, b_1 \in R$ $a_1 < b_1$ tales que $g(a_1)$. $g(b_1) < 0$. Hacer k=1 e ir a 1.

Paso 1. Evaluar $\lambda_k = \frac{a_k + b_k}{2}$. Si $|b_k - a_k| < \epsilon$. STOP (nos quedamos con λ_k) En otro caso

evaluar $g(\lambda_k) \neq 0$, si $g(a_k)$. $g(\lambda_k) > 0$ ir a 2, si no ir a 3.

Paso 2. Hacer $a_{k+1} = \lambda_k y b_{k+1} = b_k Hacer k = k+1 y volver a 1.$

Paso 3. Hacer $a_{k+1} = a_k y b_{k+1} = \lambda_k Hacer k = k+1 y volver a 1.$