MMD Problem Set 9 Exercise 1 Taha Erlioc, Ruben Hortenstein 9) $= \begin{pmatrix} 1/3 + 1/6 + 0 \\ 1/3 + 0 + 1/6 \\ 1/3 + 1/6 + 1/6 \end{pmatrix} = \begin{pmatrix} 5/18 \\ 5/18 \\ 4/3 \end{pmatrix}$ = (; M = \(\frac{1}{2} \) = \(\frac{1}{2} \) 13= 12. M = (197/648) 233/648) b) We want to find Elgenector V, such that M.U = U (M-I) . v = 0 with I being the identity natrix M-I = [-2/3 1/2 0 1/2 -1/3 1/2 -1/2] Solve the resulting theor equation The eigenector corresponding to ogenualine 1 and this our stationery distribution is $V = \begin{pmatrix} 31,13 \\ 4113 \\ 6113 \end{pmatrix}$ C) A=B.M+[1-B) [1/N] B=0.8 $A = 0.8 \cdot \begin{pmatrix} 1/3 & 1/2 & 0 \\ 1/3 & 0 & 1/2 \\ 1/3 & 1/2 & 1/2 \end{pmatrix} + 0.2 \cdot \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix} = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$ $C = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$ $C = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$ $C = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$ $C = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$ $C = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$ = (113 7145 1145 113 1115 7115 113 71 15 7115 d) same process as in b), = (7127) 25181

Exercise 2	
C) We utilize the properties of the citque.	
Each node has a total of 1111 outgoing links	
The pagerank x of a mode in the chique is given by:	
$\times = \beta \cdot \left(\frac{\times}{N+1} \cdot (N-1) + \frac{3}{N+1}\right) + \frac{1-\beta}{N}$	
B. x·(n-1) + B. x 1 + 1-B	
n+1 n+1 1	
Now, pagaranh y for node outside the chique is given by	
$\lambda = \beta \cdot \frac{1}{\nu} + \frac{1}{\nu}$	
Now substituting y in equation for x, we got: Strplify 12-1	ρ-1
	y= Bn-n-1
$\times = \beta \cdot \frac{\times \cdot (n-4)}{n+1} + \beta \cdot \left[\beta \cdot \frac{n+x}{n+1} + \frac{1-\beta}{N}\right] + \frac{1-\beta}{N}$	
	same value!!
Exercise 5 a) After deleting all dead-end nodes, the resulting graph has to look the this:	
a) 7 [©]	
After deleting all dead-end nodes, the resulting graph has to look the this:	
1 could graph has to look the ons.	
>	
Thus the matrix is not really a natoly	
Thus the matrix is not really a natrix	of A is there fore as 1
but more a number, M={1] the pagetank	also 1
b) The Dane - rank of a dead-rand node of the land is amountained	to comment out
b) The page-rank of a dead-end node ri at level i is proportional	to partie of 15 or 112 for 1 1 me
If a parent node has he children, the pageranh assigned to each child is	At it level, there are 2' nodes
ri= P in our case h=2.	in the tree, the total page and for all nodes at this level is
So at level i, the pagetant is derived from parent node i-1: [:= 1-1]	Sun of pagerants at level (:
by recursion back until root node rest: 1 leads to: r;= 1;	$2^{l} \cdot \frac{1}{2}i = 1$ (constant at each level i)
	Sunning over all levels of the tree
] <u>21 - 0</u>

Tia	_	٠.,	ا م	٠ ,	~~~	~~\r	0 es	rood	s /	l to	H.K	.	اماء	That	د اه		, la	a- 014	ام.				
1.	ve 1.	SU	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	J	men	,			0	2000	710	ue.		. vw	Mr.	,	2200					
the	our.	фЬ,	مو ۲	rebboo	d we	usc	. ok	segv.	t e	whor	æ	wrm	all 80	Mon	at.	the <	∽Ø.	In th	15				
rea	wstu	ુ વ	Hy.coo	idh	the	ossie (ned	P	عوود	i unc	grous	o.s	. we	Hou	e de	go	1,vf0	the	٠				
610	ory	trec	j,																				
-In	real	l-wo	-ld	sceno	n4e?	, the	ء ۾ د	عووه	M	nodo	(//ص	mar(1,f	res	the 1	2000	who	acs	~%	оЩ				
000	des (e.g.	by	tax	atta	√ or	telege	er to	tton)						v								
			,																				