CSE251: Electronic Devices and Circuits

Lecture: 14 - 16 - MOSFET

Prepared By:

Shadman Shahid (SHD)

Lecturer, Department of Computer Science and Engineering, School of Data and Sciences, BRAC University

Email: ext.shadman.shahid@bracu.ac.bd

Outline

- Introduction to Electronic Switches
- Logic Functions using Switches
- Introduction to a voltage-controlled switch MOSFET
- Designing Logic gates with MOSFETs
- VTC Voltage Transfer Characteristics

Two terminal Devices

Linear Devices

IV characteristics of two terminal devices are fixed.

Non-linear Devices

IV characteristics of three terminal devices can be changed

Three terminal Devices

IV of two terminal can be controlled using a third terminal.

Example: Switch, MOSFET, BJT $C \longrightarrow Control Signal (Physical/Voltage/Current)$ Switch $T_1 \longrightarrow T_2$

IV characteristics between T_1 and T_2 can be controlled by C

Switch – Types

- Depending on the control, the switch can be
 - Analog: Controlled using physical toggle/button
 - **Digital**: Controlled using voltage or current. Example MOSFET (voltage controlled), BJT (current controlled)

Analog switches

Digital switches (Transistors)

We can use switches to build logic gates

A B	
<u>+</u> T-	

Α	В	Bulb
0	0	OFF
0	1	OFF
1	0	OFF
1	1	ON

Α	В	Bulb
0	0	OFF
0	1	ON
1	0	ON
1	1	ON

AND operation

OR operation

А	Bulb
0	ON
1	OFF

NOT operation

Α	В	Bulb
0	0	ON
0	1	ON
1	0	ON
1	1	OFF

NAND operation

Α	В	Bulb
0	0	ON
0	1	OFF
1	0	OFF
1	1	OFF

NOR operation

These circuits are "preferred" – because they can be cascaded to build combinational logic circuits -> if we remove the bulb and use the voltage across instead to cascade and drive the next gate

Alternative representations:

Alternative representations:

Α	V_{OUT}
0	5V
1	0V

A	В	V _{out}
0	0	5V
0	1	5V
1	0	5V
1	1	0V

\boldsymbol{A}	В	V_{OUT}
0	0	5V
0	1	0V
1	0	0V
1	1	0V

Examples

Example

Implement using switches: f = (A + B)C

Practice Problem 1

In digital systems, binary data may be subjected to noise that can alter a 0 to a 1 or a 1 to a 0.

A simple way to check if any error has occurred is to use an **even parity checker**. If there are two input bits x and y, the output of the even parity checker (denoted as f) will be **HIGH** if there are even number of 1s, i.e., if both x and y are 0 or if both of them are 1.

Digital Representation

- Binary → Two states (0/False, 1/True)
- Binary variables in circuit, need to use two states of device/parameters

Voltage

 $5V \rightarrow 1$

 $0V \rightarrow 1$ $3.3V \rightarrow 0$

Current

 $2mA \rightarrow 1$ $3mA \rightarrow 0$

State

Diode

 $\begin{array}{c} ON \rightarrow I \\ OFF \rightarrow 0 \end{array}$

Memristor

Low resistance High resistance

Transistors as Digital Switch

- Transistors are 3 terminal non-linear devices, can be used as switch
- 2 types –

Voltage Controlled,

Current Controlled

- Metal Oxide Semiconductor Field Effect Transistor (MOSFET) are voltage controlled
- Control, $C = V_{GS}$. The IV characteristics $(I_{DS} \text{ vs } V_{DS})$ depends on V_{GS}
- Actual dependency is complex.
- Will start with a simple (but approximate) one **S-Model** (Switch Model)

MOSFET S-Model

- The MOSFET (approximately) behaves like a switch
- C = V_{GS} . Here, $C = "0" \Rightarrow V_{GS} < V_T$, and $C = "1" \Rightarrow V_{GS} < V_T$

MOSFET S-Model

We can summarize the S model for the MOSFET in algebraic form by stating its v-i characteristics as follows:

for
$$v_{GS} < V_T$$
, $i_{DS} = 0$

and

for
$$v_{GS} \ge V_T$$
, $v_{DS} = 0$ (6.2)

Logic Gates using MOSFET

Just replace the switches with MOSFETs!

NOT Gate (Inverter)

NAND Gate (Inverter)

NOR Gate (Inverter)

MOSFET Logic Gates – More Examples

$$OUT = \overline{AB + C + D}$$

$$Out = \overline{(A+B)CD} = (A+B)CD$$

Practice Problem 2

• **Design** a circuit using ideal MOSFETs (S-model) to implement the logic function

$$f = \overline{AC} + \overline{(B+C)}$$

$$= \overline{\overline{AC} + \overline{(B+C)}}$$

$$= \overline{\overline{AC} \cdot \overline{(B+C)}}$$
 [De Morgan's Theorem]
$$= \overline{AC \cdot (B+C)}$$

Practice Problem 1

In digital systems, binary data may be subjected to noise that can alter a 0 to a 1 or a 1 to a 0.

A simple way to check if any error has occurred is to use an **even parity checker**. If there are two input bits x and y, the output of the even parity checker (denoted as f) will be **HIGH** if there are even number of 1s, i.e., if both x and y are 0 or if both of them are 1.

Voltage Transfer Characteristics (VTC)

- Reminder: VTC is a graph where x —axis = input voltage, y-axis = output voltage
- Why? Design logic gates to follow a given static discipline

When $v_{IN} < V_T$ (Logical 0) $v_{OUT} = V_S = 5 \text{ V}$ (Logical 1)

When $v_{IN} \ge V_T$ (Logical 1) $v_{OUT} = 0 \text{ V}$ (Logical 0)

Voltage Transfer Characteristics (VTC)

- Reminder: VTC is a graph where x —axis = input voltage, y-axis = output voltage
- Why? Design logic gates to follow a given static discipline

When $v_{IN} < V_T$ (Logical 0) $v_{OUT} = V_S = 5 \text{ V}$ (Logical 1)

When $v_{IN} \ge V_T$ (Logical 1) $v_{OUT} = 0 \text{ V}$ (Logical 0)

VTC of NAND gate

- We only have one x —axis, but two inputs
- Solution: Draw two VTC, one considering $V_A = 0$ one considering $V_A = 1$

VTC of NAND gate

- We only have one x —axis, but two inputs
- Solution: Draw two VTC, one considering $V_A = 0$ one considering $V_A = 1$

Digital Representation

Suppose you want to send 010110

- Single value based representaion fails in the presence of noise
- Better approach threshold-based system
- Simplest: Logical $0 = V < V_T$ Logical $1 = V > V_T$

- Specification for "all" digital devices
- Requires devices to adhere to common representation to ensure that valid input produces valid output
- This means, if
 - Sender sends "0"

Receiver interprets as "0"

Sender sends "1"

Receiver interprets as "1"

Naïve approach: Single threshold-based system

Double threshold based system

 V_H = High voltage threshold = 3V

 V_L = High voltage threshold = 2 V

sender

Logical 0: $V_o\,<\,V_L$ Logical 1: ${
m V_o}>V_H$

receiver

Logical 0: $V_i < V_L$ Logical 1: $V_i > V_H$

What if $V_o = 1.9V$ and channel noise is 0.5V?

$$V_i = 1.9V + 0.5V = 2.4V = invalid$$

→ valid output producing invalid input, i.e., no margin for noise

Four threshold-based system

Tighter restriction on sender (output)

 $NM_1 = V_{OH} - V_{IH} = 4.5 - 3 = 1.5 \text{ V (significance?)}$

 $NM_0 = V_{IL} - V_{OL} = 2 - 0.5 = 1.5 \text{ V (significance?)}$

Four threshold-based system Tighter restriction on sender (output)

 V_{OH} : The <u>lowest output voltage</u> value that a digital device can produce when it outputs a logical 1. V_{OL} : The <u>highest output voltage</u> value that a digital device can produce when it outputs a logical 0.

 V_{IH} : The lowest input voltage value that a digital device must recognize as a logical 1.

 V_{IL} : The highest input voltage value that a digital device must recognize as a logical $\bf 0$.

Static Discipline and VTC graph

Four threshold-based system

Tighter restriction on sender (output)

During high to low or low to high **transition**:

Higher Slope in VTC graph

While **not** in **transition**; at logical **HIGH** or **LOW** voltage level:

Smaller Slope in VTC graph

Static Discipline and VTC graph

Next Class

- Constructing a *real* MOSFET n/p-channel
- Operation of an Ideal FET- Cut-Off, Saturation and Triode Mode
- Output Characteristics
- PWL Model and Non-ideal Analysis: SR model
- Real MOSFET equations
- Introduction to Static analysis