

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Parcial 25 de noviembre de 2019

Nombre y apellido:		
Padrón:	Turno:	$ ule{N^{\circ}}$ de examen: $_$

- Es condición necesaria para aprobar el parcial que al menos un ítem de cada ejercicio esté correctamente planteado.
- Si no se contestan o se contestan mal 5 ítems de parcial, se calificará como insuficiente.
- Se considerará: La claridad y síntesis conceptual de las respuestas y justificaciones, los detalles de los gráficos/circuitos, la exactitud de los resultados numéricos.
- Cada uno de los cuatro ejercicios debe estar resuelto en hojas independientes.

C 110 11	
Calificación:	
Camillacion.	

Constantes: $m_0 = 9.1 \times 10^{-31} \text{ kg}$; $k = 1.38 \times 10^{-23} \text{ J/K}$; $h = 6.62 \times 10^{-34} \text{ Js}$; $q = 1.6 \times 10^{-19} \text{ C}$; $\epsilon_{r,SiO_2} = 3.9$; $\epsilon_{r,Si} = 11.7$; $\epsilon_0 = 88.5 \text{ fF/cm}$.

- 1) Sobre Física de Semiconductores:
 - a) Determinar la conductividad de un bloque de semiconductor puro de GaAs en equilibrio térmico a 45°C sabiendo que la movilidad de los portadores varía con la tempetura a través de la siguiente expresión: $\mu_{n,p} = \mu_{0n,p} (T/300 \text{K})^{-3/2}$. Datos del material: $E_g = 1,43 \text{eV}$; $m_n^*/m_0 = 0,068$; $m_p^*/m_0 = 0,5$; $\mu_{0n} = 8800 \text{ cm}^2/\text{Vs}$; $\mu_{0p} = 400 \text{ cm}^2/\text{Vs}$.
 - b) Se tiene una juntura abrupta en equilibrio térmico ($T=300\mathrm{K}$) formada por dos semiconductores de Silicio tipo N con las siguientes concentraciones de impurezas $N_1=10^{13}\,\mathrm{cm}^{-3}$ y $N_1=10^{15}\,\mathrm{cm}^{-3}$. Calcular la diferencia de energía entre los niveles de conducción e indicar qué lado se encuentra a mayor energía.
- 2) Sobre junturas PN de silicio a temperatura ambiente (considerar: $n_i = 10^{10} \,\mathrm{cm}^{-3} \,\mathrm{y} \,V_{th} = 25.9 \,\mathrm{mV}$):
 - a) Calcular las concentraciones de portadores minoritarios en x_n y $-x_p$ de un diodo PN ($N_A = 10^{16}$ cm⁻³ y $N_D = 10^{15}$ cm⁻³) que se encuentra polarizado en directa con una tensón $V_D = 0.5$ V. Indicar todas las hipótesis tenidas en cuenta.
 - b) Determinar las concentraciones de dopantes de un diodo PN⁺ en equilibrio térmico y del cual se conocen los siguientes datos: $A=0.1\,\mathrm{mm^2}$; $I_0=100\,\mathrm{pA}$; $\tau_T=10\,\mathrm{ns}$; $C_{j0}=1\,\mathrm{pF}$; movilidades lado N: $\mu_n=900\,\mathrm{cm^2/Vs}$; $\mu_p=300\,\mathrm{cm^2/Vs}$ y movilidades lado P: $\mu_n=1400\,\mathrm{cm^2/Vs}$; $\mu_p=500\,\mathrm{cm^2/Vs}$.
- 3) Sobre transistores MOSFET con $V_{BS} = 0 \,\text{V}$.
 - a) Se tiene un transistor MOSFET de **canal P** sobre el cual se realizaron mediciones de la curva de transferencia y mediante un ajuste de $\sqrt{|I_D|}$ se obtiene la recta $y = (0.6 \ x + 0.72) \sqrt{mA}$. Obtener a partir del ajuste los parámetros k y V_T . Explicar cómo el parámetro λ afecta los parámetros determinados.
 - b) Se tiene **otro** transistor MOSFET ahora de **canal N** con $\mu C'_{ox} = 12 \,\mu\text{A}/\text{V}^2$, $V_T = 1 \,\text{V}$, $W = 740 \,\mu\text{m}$, $L = 10 \,\mu\text{m}$ y $\lambda = 0.05 \,\text{V}^{-1}$. Dibujar el circuito de polarización del mismo y obtenga los valores de los resistores de manera que el transistor se encuentre en el régimen de saturación con una $I_D = 1 \,\text{mA}$ y $V_{DS} = V_{DD}/2$. La tensión de alimentación del circuito es única, $V_{DD} = 3.3 \,\text{V}$.
 - c) Para el transistor y las condiciones del punto b), calcular los parámetros del modelo de pequeña señal del transistor para bajas frecuencias y dibuje **el circuito** de pequeña señal correspondiente.
- 4) Dado un transistor TBJ NPN, cuyos parámetros son $\beta=200, V_A=25\,\mathrm{V}, V_{BE(ON)}=0.7\,\mathrm{V}; V_{CE(sat)}=0.2\,\mathrm{V}$ a temperatura ambiente por lo que se puede considerar $V_{th}=25.9\,\mathrm{mV}$:
 - a) Explicar el efecto transistor en MAD, es decir cómo la tensión V_{BE} controla la corriente I_C .
 - b) En forma similar al TP#3, se desea medir la curva de salida del transistor y se monta un banco de medición alimentado con una fuente de tensión de 3 V, una resistencia de base $R_B=46\,\mathrm{k}\Omega$ y una resistencia de colector $R_C=2.5\,\mathrm{k}\Omega$. La tensión que varía en la medición no debe superar 1 V. Dibujar el circuito esquemático del banco de medición, indicando dónde se conectan los instrumentos, y cuál de las dos resistencias es variable y entre qué valores varía.
 - c) ¿Qué paramétros del transistor se puede obtener de la curva medida en b)? Explicar detalladamente el procedimiento para la obtención de este parámetro a paritr de las mediciones.