Alberi rosso-neri

Algoritmi e strutture dati

Ugo de'Liguoro, Andras Horvath

Vecchio

Alberi di ricerca

In un albero binario di ricerca con n nodi il costo delle operazione dipende dall'altezza dell'albero h, cioè dal numero di archi che compongono il ramo più lungo. Conviene avere rami che non hanno lunghezze troppo diverse.

Alberi di ricerca

In un albero binario di ricerca con n nodi il costo delle operazione dipende dall'altezza dell'albero h, cioè dal numero di archi che compongono il ramo più lungo. Conviene avere rami che non hanno lunghezze troppo diverse.

3

Alberi rosso-neri

Def. Un *albero rosso-nero (R-N)* è un albero binario di ricerca aumentato, i cui vertici sono colorati di rosso o nero in modo che:

- (regola del *nero*) la radice e tutte le foglie (i Nil) sono nere
- (regola del *rosso*) se un nodo è rosso tutti i suoi figli sono neri
- (regola del *cammino*) per ogni nodo *x* tutti i cammini da *x* ad una foglia hanno lo stesso numero di nodi neri

bh(x) = altezza nera di x

= il numero di nodi neri su un ramo da x ad una foglia (x escluso)

Alberi rosso-neri (R-N)

5

Proprietà degli alberi R-N

Prop. L'altezza massima di un albero R-N con n nodi è $-2 \log_2(n+1)$.

Dim. Consideriamo un albero R-N con *n* nodi interni.

- dimostriamo che per ogni nodo x il sottoalbero con radice in x ha almeno $2^{bh(x)} 1$ nodi, procediamo con induzione sull'altezza di x:
 - caso base: se bh(x) = 0 (x è una foglia) allora è vero perché $2^0 1 = 0$
 - se x non è foglia allora i figli hanno altezza nera bh(x) oppure bh(x) 1 secondo il colore che hanno
 - *passo induttivo:* secondo l'ipotesi induttiva ogni figlio ha almeno $2^{(bh(x)-1)} 1$ nodi interni nel proprio sottoalbero
 - quindi almeno $2(2^{(bh(x)-1)}-1)+1=2^{bh(x)}-1$ nodi interni nel sottoalbero con radice in x

Proprietà degli alberi R-N

Prop. L'altezza massima di un albero R-N con n nodi è $2 \log_2(n+1)$.

• in un albero con altezza h, l'altezza nera della radice r soddisfa per via della regola del rosso

$$bh(r) \ge \frac{h}{2}$$

(perché lungo un cammino al massimo metà dei nodi può essere rosso)

• quindi:

$$\begin{array}{rcl} n & \geq & 2^{h/2}-1 \\ n+1 & \geq & 2^{h/2} \\ \log_2(n+1) & \geq & \log_2(2^{h/2}) = h/2 \\ 2\log_2(n+1) & \geq & h \end{array}$$

7

Proprietà degli alberi R-N

Prop. L'altezza massima di un albero R-N con n nodi è $2 \log_2(n+1)$.

Quindi la ricerca in un albero R-N è $O(h) = O(\log n)$

Anche inserimento e cancellazione sono O(h): è possibile senza violare le regole R-N?

Right-Rotate (T, y)

Right-Rotate (T, y)

Dopo una rotazione l'albero rimane di ricerca.

Rotazioni

```
LEFT-ROTATE(T,x) y \leftarrow x.right x.right \leftarrow y.left if y.left \neq nil then y.left.parent \leftarrow x end if y.parent \leftarrow x.parent if x.parent = nil then T \leftarrow y else if x = x.parent.left then x.parent.left \leftarrow y else x.parent.right \leftarrow y end if y.left \leftarrow x x.parent \leftarrow y
```

11

Inserimento

L' inserimento di *x* in *T* avviene in due fasi:

1. Inserimento di x rosso come per gli alberi di ricerca

2. Ripristino delle proprietà R-N con rotazioni e ricolorazioni

- x: il nuovo nodo
- p = x.parent (padre)
- g = p.parent (nonno)
- u = il fratello di p (zio)

13

Inserimento

Se l'inserimento è in radice basta cambiare il colore in nero.

- i lucidi successivi elencano i vari casi
- per i casi 1, 2 e 3 assumiamo che *p* sia figlio sinistro
- per i casi 0 e 1 assumiamo che *x* sia figlio sinistro
- se non è così bisogna agire in modo «speculare»

15

Inserimento

• Caso 0: il padre p è nero

- altezza nera di p non cambia
- nessun regola viene violata, non bisogna fare niente

• Caso 1 a livello foglia prima dell'inserimento: lo zio u è rosso (e p è rosso, altrimenti sarebbe il caso 0)

19

Inserimento

• Caso 1: lo zio *u* è rosso (e *p* è rosso, altrimenti sarebbe il caso 0)

- Caso 1:
- dopo le modifiche
 - le regole localmente (da g in giù) sono rispettate
 - l'altezza nera del padre di g non cambia
- se il padre di g è nero allora le regole sono rispettate
- se il padre di g è rosso allora la regola del rosso è violata
- se *g* è la radice allora bisogna colorarlo di nero e l'albero è ok

21

Inserimento

• Caso 2 a livello foglia prima dell'inserimento: lo zio *u* è nero (ed è nil) e *x* sarà figlio sinistro

• Caso 2 a livello foglia: lo zio *u* è nero (ed è nil) e *x* è figlio sinistro

25

Inserimento

• Caso 2 a livello foglia: lo zio *u* è nero (ed è nil) e *x* è figlio sinistro

- Caso 2:
- dopo le modifiche
 - le regole localmente (da p in giù) sono rispettate
 - -l'altezza nera del padre di p non cambia
 - visto che p diventa nero anche la regola di rosso viene rispettata
- l'albero è ok

27

Inserimento

• Caso 3 a livello foglia prima dell'inserimento: lo zio *u* è nero (ed è nil) e *x* è figlio destro

• Caso 3 a livello foglia: lo zio u è nero (ed è nil) e x è figlio destro

31

Inserimento

• Caso 3 a livello foglia: lo zio u è nero (ed è nil) e x è figlio destro

- Caso 3:
- dopo le modifiche
 - le regole localmente (da x in giù) sono rispettate
 - l'altezza nera del padre di x non cambia
 - visto che x diventa nero anche la regola di rosso viene rispettata
- l'albero è ok

33

- nel caso 1 può capitare che la regola del rosso è violata se il padre di g è rosso
- se è così abbiamo i stessi tre casi da risolvere con la differenza che i nil sono sottoalberi non vuoti
- appena incontriamo il caso 2 o il caso 3 le modifiche mettono a posto l'albero

• Caso 1 a qualsiasi livello: lo zio u è rosso

37

Inserimento

• Caso 2 a qualsiasi livello: lo zio u è nero e x è figlio sinistro

• Caso 3 a qualsiasi livello: lo zio u è nero e x è figlio destro

39

RB-INSERT-FIXUP (T, x)	⊳ x è il nodo che può creare problemi	т
while $x.p.color = red$ do	•	Inserimento in
if $x.p = x.p.p.left$ then	⊳ padre di <i>x</i> è figlio sinistro?	pseudo codice
$u \leftarrow x.p.p.right$	⊳ <i>u</i> è lo zio di <i>x</i>	1
if $u.color = red$ then	⊳ caso 1?	
$x.p.color \leftarrow black$	⊳ caso 1	
u.color ← black	⊳ caso 1	
$x.p.p.color \leftarrow red$	⊳ caso 1	
$x \leftarrow x.p.p$	⊳ caso 1	
else		
if $x = x.p.right$ the	n ⊳ caso 3?	
$x \leftarrow x.p$	⊳ caso 3	
Left-Rotate(7	「, <i>x</i>) ⊳ caso 3	
$x.p.color \leftarrow black$	⊳ caso 2 e 3	
$x.p.p.color \leftarrow red$	⊳ caso 2 e 3	
RIGHT-ROTATE(T ,	x.p.p)	
else		
{tutto il corpo del if est	terno con	
left e right scambiati}	⊳ padre di <i>x</i> è figlio destro	
T.root.color ← black		

Alberi rosso-neri

Def. Un *albero rosso-nero (R-N*) è un albero binario di ricerca aumentato, i cui vertici sono colorati di rosso o nero in modo che:

- (regola del nero) la radice e tutte le foglie (i Nil) sono nere
- (regola del *rosso*) se un nodo è rosso tutti i suoi figli sono neri
- (regola del *cammino*) per ogni nodo *x* tutti i cammini da *x* ad una foglia hanno lo stesso numero di nodi neri

Inserimento e cancellazione sono accompagnati da meccanismi tali da rendere l'albero un albero rosso-nero corretto.

43

Cancellazione

Come l'inserimento, anche la cancellazione avviene in due fasi:

- 1. Cancellazione come in un albero di ricerca ordinario
- 2. Ripristino delle regole per ricolorazioni/rotazioni

45

Cancellazione «normale»

• Caso A: nodo da cancellare non ha figlio sinistro ma ha figlio destro

Cancellazione «normale»

• Caso B: nodo da cancellare non ha figlio destro ma ha figlio sinistro

47

Cancellazione «normale»

• Caso C: nodo da cancellare ha due figli e il suo successore non è suo figlio

Cancellazione «normale»

• Caso D: nodo da cancellare ha due figli e il suo successore è suo figlio

49

Cancellazione, fix-up

- caso A e B: z ha un figlio, x, che prende il suo posto
- caso C e D: z ha due figli; il suo successore, y, prende il suo posto e il figlio di y, x, prende il posto di y
- durante la cancellazione «normale»:
 - -x mantiene il suo colore
 - -y prende il colore di z
 - una variabile *lost-color* per memorizzare il colore del nodo effettivamente perso: nel caso A e B è il colore di z, nel caso C e D è il colore di y

Cancellazione, violazioni delle regole

- la radice diventa rosso se cancelliamo il nodo 15
- la radice può diventare rosso

51

Cancellazione, violazioni delle regole

- se cancello il nodo 5, il nodo 10 prende il suo posto e il suo colore
- il nodo 15 rimane rosso e questo viola la regola del rosso
- -x può essere rosso e può diventare figlio di un nodo rosso

Cancellazione, violazioni delle regole

- se cancello il nodo 12, il nodo 15 viene tolto, regola del cammino si viola
- se il nodo tolto era nero allora i cammini che lo contenevano hanno altezza nera diminuita che può violare la regola del cammino

53

Cancellazione, fix-up, caso -1

- canc. il nodo 50: sua etichetta diventa 75, nodo 75 sostituito da Nil
- Caso -1: il colore memorizzato in *lost-color* è rosso
- bisogna agire?
- no, l'albero è ok

- canc. il nodo 5 (z): la sua etichetta diventa 10 (y), 15 sale al suo posto (x)
- Caso 0: *lost-color* è nero e il nodo x è rosso
- bisogna agire?

55

Cancellazione, fix-up, caso 0

- la regola del cammino violata perché lost-color è nero
- può essere che x è la radice ed è rosso (regola del nero violata)
- può essere che x è rosso e suo padre anche (la regola del rosso violata)
- colora il 15 di nero
- basta colorare x di nero

- canc. il nodo 5 (z): la sua etichetta diventa 10 (y), 15 sale al suo posto (x)
- basta colorare il nodo 15 (x) di nero

57

Cancellazione, fix-up

- analizziamo i casi che si possono capitare se *lost-color* è nero e il nodo *x* è nero
- come nel caso dell'inserimento i casi possono capitare da x in su
- c'è un caso solo che può provocare violazione ai livello più alti
- i lucidi fanno vedere i casi ad un livello qualsiasi
- w denota il fratello di x assumiamo che x è figlio sinistro (se è destro bisogna il caso analogo speculare)
- il colore di certi nodi non sarà definito: quelli verdi
- le variabili accanto i nodi verdi rappresentano il colore del nodo

• caso 1: w è nero e il figlio destro di w è rosso

59

Cancellazione, fix-up, caso 1

- la regola dei cammini è violata perché dal x in giù manca un nero
- con le modifiche viene aggiunto un nodo nero (B) sui rami che attraversano x
- colorando il nodo E di nero, sulla destra di D manteniamo lo stesso numero di neri sui rami
- regola dei cammini non è più violata
- se D è la radice ed è rosso allora bisogna colorarlo di nero
- l'albero è ok
- nuovo x: *T.root* (perché solo al livello della radice può esserci ancora un problema se la radice è diventata rossa)

• caso 2: w è nero e il figlio sinistro di w è rosso e il figlio destro di w è nero

63

Cancellazione, fix-up, caso 2

- la regola dei cammini è violata perché dal *x* in giù manca un nero
- con le modifiche ci troviamo nella situazione del caso 1
- il nuovo w è il nodo C
- dopo le modifiche del caso 1, l'albero è ok

• caso 3: w è nero e i figli di w sono neri

67

Cancellazione, fix-up, caso 3

- la regola dei cammini è violata perché dal *x* in giù manca un nero
- l'unica modifica è che il nodo D viene colorato di rosso
- di conseguenza il nodo B non viola più la regola dei cammini e il nero manca dal livello di B in su
- se B è rosso allora basta colorarlo di nero e l'albero è a posto
- se B è nero allora si ricomincia dal livello di B
- il nuovo nodo *x* è B

• caso 4: w è rosso (e quindi i figli di w sono neri)

71

Cancellazione, fix-up, caso 4

- la regola dei cammini è violata perché dal *x* in giù manca un nero
- le modifiche portano ad uno dei 3 casi precedenti perché il fratello di *x* ora è nero
- il nuovo nodo w è C


```
RB-DELETE-FIXUP(T, x)

⊳ x è il nodo che può creare problemi

                                                                                          Cancellazione
  while x \neq T.root \land x.color = black do
                                                                                          in pseudo
      if x = x.p.left then
                                                                  codice
                                                                  ⊳ w è il fratello di x
          W \leftarrow x.p.right
          if w.color = red then
                                                                            ⊳ caso 4?
              w.color \leftarrow black; x.p.color \leftarrow red
                                                                              ⊳ caso 4
              LEFT-ROTATE(T, x.p); w \leftarrow x.p.right
                                                                              ⊳ caso 4
          if w.left.color = black \land w.right.color = black then

    caso 3?

              w.color \leftarrow red; x \leftarrow x.p
                                                                              ⊳ caso 3
          else
              if w.right.color = black then
                                                                            ⊳ caso 2?
                  w.left.color \leftarrow black; w.color \leftarrow red
                                                                              ⊳ caso 2
                 RIGHT-ROTATE(T, w); w \leftarrow x.p.right
                                                                              ⊳ caso 2
              w.color \leftarrow x.p.color; x.p.color \leftarrow black
                                                                              ⊳ caso 1
              w.right.color \leftarrow black; Left-Rotate(T, x.p)
                                                                              ⊳ caso 1
              x \leftarrow T.root
                                                                              ⊳ caso 1
      else
          {tutto il corpo del if esterno con left e right scambiati}
  x.color ← black
```

Complessità

- altezza di un albero rosso-nero con n nodi è $O(\log n)$
- l'algoritmo di ricerca scende lungo un ramo e quindi è $O(\log n)$
- gli algoritmi di inserimento è cancellazione
 - scendono lungo un ramo e
 - risalgono al massimo fino la radice effettuando rotazioni e/o ricolorazioni (operazioni O(1))
 - quindi sono operazioni $O(2\log n) = O(\log n)$