보이스피싱 탐지 및 일고리즘

시켜줘, 보아즈 명예 경찰관

18기 분석 김다혜

한국외국어대학교 통계학과

18기 분석 김성우

명지대학교 산업경영공학과

18기 엔지니어링 김재민

국민대학교 AI빅데이터융합경영학과

18기 분석 반소희

이화여자대학교 휴먼기계바이오공학부

18기 시각화 홍주리

숙명여자대학교 통계학과

목차

 Intro

 D1

 데이터 소싱

 D2

 모델 1 설계

 D3

 모델 2 설계

 D4

 WEB 배포

 D5

BOAZ 17th Conference 보이스피싱 탐지 알고리즘

보이스피싱을 당했거나, 위협에 노출되어본 경험이 있으신가요?

최근 5년간 보이스피싱 발생현황

최근 5년간 보이스피싱 발생현황

최근 3년 간,

보이스피싱 발생건수

보이스피싱의 피해 횟수는 점차 줄어들고 있음

··· 하지만 근 5년 간의 피해 금액은 꾸준히 늘고 있음

···이는 <mark>한 건당 피해 금액이 커져가고 있음</mark>을 의미하며,

<mark>한 두 건이라도 예방하는 것</mark>이 중요해지고 있는 실정임을 시사

2017 2018 2019 2020 2021 2017 2018 2019 2020 2021

그래서 우리는,

그래서 우리는,

Real-Time 보이스피싱 탐지 모델

STT (Speech To Text) 텍스트 데이터

통화 종료 후, 보이스피싱 탐지 모델

데이터 소심

DATA

보이스피싱 (lable = 0)

- 그놈 목소리 (출처 : 금융감독원)
- 유튜브 보이스피싱 영상

일반 통화 (lable = 1)

• AiHub 통화 데이터셋

보이스피싱: 일반 통화 = 564건: 55310건 = 1:100

"클래스 불균형"

- 1. Sampling
- 2. SMOTE
- 3. Text Augmentation

1. Sampling

Sampling에는 Undersampling과 Oversampling이 존재

- Undersampling은 학습 데이터 셋이 크게 감소
- Oversampling은 과적합의 우려가 있음

해당 프로젝트에서 적절하지 않은 해결방법

2. SMOTE

- 오버샘플링의 일종이지만, 과적합 문제를 해결하기 위해 만들어진 알고리즘
- 소수 클래스의 subset을 뽑아내어 새로운 데이터 생성
- 하지만, 벡터화가 되기 전인 text 데이터에선 활용이 불가한 기법

해당 프로젝트에서 적절하지 않은 해결방법

3.TEXT Augmentation

소수 클래스의 Data를 증강시키는 기법으로, Back Translation과 Easy Data Augmentation이 있음

A sad, superior human comedy played out on the back roads of life.

[Easy Data Augmentation]

- 2019년 EMLP에서 발표된 Text Data Augmentation 기법
- 평균 3%의 성능 향상을 기대할 수 있음

[Back Translation]

- 기존 Text를 다른 언어로 번역한 후, 다시 기존 언어로 번역
- NLP 분야에서 자주 활용되는 Augmentation 기법

해당 프로젝트에서 적절한 해결방법

활용한 Augmentation 기법

기법	내용		
SR(Synonym Replacement)	특정 단어를 유의어로 교체		
RI(Random Insertion)	임의의 단어를 삽입		
RS(Random Swap)	문장 내 임의의 두 단어의 위치를 바꿈		
RD(Random Deletion)	임의의 단어를 삭제		
BT_JP(Back translation Japan)	한국어 → 일본어 → 한국어		
BT_EN(Back translation English)	한국어 → 영어 → 한국어		

모델에 따라 알맞은 Augmentation 기법이 존재하지 않을까?

Text Augmentation과 모델 Select을 동시에 진행 BOAZ 17th Conference 보이스피싱 탐지 알고리즘

[Model 1] Real-Time 보이스 피싱 탐지 모델

전반적인 모델 설계 과정

STT(Speech To Text)

- 앞서 수집한 음성 데이터를 VITO STT를 활용하여 text 파일로 변환
- VITD는 STT 기술 기반의 '소머즈(Sommers)' 엔진 적용
 - 한국어 구어체, 자유 발화, 소음 등의 환경에 노출된 통화 <mark>음성인식에 특화된 엔진</mark>
 - 욕설, 간투어 필터링 기능 등을 제공
 - ■하지만 보이스피싱 특성 상, <mark>욕설 및 간투어가 분류에 영향을 끼칠 수 있으므로</mark> 제거하지 않음

Text Augmentation

기법	내용		
SR(Synonym Replacement)	특정 단어를 유의어로 교체		
RI(Random Insertion)	임의의 단어를 삽입		
RS(Random Swap)	문장 내 임의의 두 단어의 위치를 바꿈		
RD(Random Deletion)	임의의 단어를 삭제		
BT_JP(Back translation Japan)	한국어 → 일본어 → 한국어		
BT_EN(Back translation English)	한국어 → 영어 → 한국어		

RS는 활용하지 않음

- ML모델은 단어의 순서를 고려하지 않음
- 즉, 순서를 바꾸는 RS의 경우 Augmentation이 무효할 것이라 판단하여 제거

Text Augmentation

□개 선택

1개의 데이터셋 생성

None

1개씩 선택

5C1 = 5이므로, 5개의 데이터셋 생성

SR

R

2개씩 선택

5C2 = 10이므로, 10개의 데이터셋 생성

SR + RI

SR + RD

3개씩 선택

5C3 = 10이므로, 10개의 데이터셋 생성

SR + RI + RD

SR + RI + BT_EN

:

4개씩 선택

5C4 = 5이므로, 5개의 데이터셋 생성

SR + RI + RD + BT_JP

SR + RI + BT_EN + BT_JP

:

5개 모두 선택

1개의 데이터셋 생성

SR + RI + RD+ BT_JP + BT_EN

각 모델별로 최적의 데이터셋을 탐색하기 위해 1+5+10+10+5+1=32 총 32개의 데이터셋 생성

데이터 전처리

텍스트 cleansing

- 한글이 아닌 문자 제거
- 불용어 제거

벡터화

은행, 계좌 등 보이스피싱과 관련된 단어에 더 큰 가중치가 반영됨

Countvectorizer

안녕, 아니 등 일반적인 단어에 더 큰 가중치가 반영됨

모델 학습

- 앞서 선정한 32개의 데이터셋에 4개의 모델을 학습
- 즉, 32 x 4 = 12B번의 실험을 통해 각 모델별 최적의 증강 데이터셋을 탐색
 - 5-fold validation의 평균 F1 score 비교

BOAZ 17th Conference 보이스피싱 탐지 알고리즘

모델 학습

F1-score	None	RD	SR_RI	SR_RD	•••	ALL
RF	0.863	0.888	0.886	0.894	***	0.898
Adaboost	0.966	0.970	0.974	0.966		0.954
XGB	0.966	0.972	0.965	0.966	•••	0.966
LGBM	0.958	0.972	0.971	0.973	•••	0.969

HyperParameter 튜닝

AdaBoost with SR&RI F1 score: 0.97408

XGB with RD F1 score: 0.9723

LGBM with SR_RD F1 score: 0.97345

Tuned AdaBoost with SR&RI F1 score:0.97488(0.001 ↑)

Tuned XGB with RD F1 score: 0.982(0.01 ↑)

Tuned LGBM with SR_RD F1 score: 0.98352(0.01 ↑)

최종 선정한 모델

BOAZ 17th Conference 보이스피싱 탐지 알고리즘

[Model 2] 통화 종료 후, 보이스피싱 최종 탐지 모델

전반적인 모델 설계 과정

STT (Speech To Text)

텍스트 데이터셋

Data Augmentation

- Easy Data Augmentation
 모델1에서 빠졌던 RS 추가
- Back Translation

데이터 전처리

word embedding

모델 학습 • LSTM

Text Augmentation

기법	내용		
SR(Synonym Replacement)	특정 단어를 유의어로 교체		
RI(Random Insertion)	임의의 단어를 삽입		
RS(Random Swap)	문장 내 임의의 두 단어의 위치를 바꿈		
RD(Random Deletion)	임의의 단어를 삭제		
BT_JP(Back translation Japan)	한국어 → 일본어 → 한국어		
BT_EN(Back translation English)	한국어 → 영어 → 한국어		

- RS도 포함하여 모든 Augmentation 기법을 활용하여 학습
- LSTM은 sequential 모델이기 때문에 순서를 바꾸는 기법도 유효
- 또한 신경망 모델이므로, 최대한 많은 데이터를
 확보

BOAZ 17th Conference 보이스피싱 탐지 알고리즘

LSTM 모델 설계

LSTM

- weight balancing
- binary cross entropy
- adam optimizer

LSTM 모델 설계

X

LSTM

- weight balancing
- binary cross entropy
- adam optimizer

SR+RI+RD+RS+

BT_JP+BT_EN

F1 score: 0.9639

LSTM 모델 설계

SR+RI+RD+RS+

BT_JP+BT_EN

- weight balancing
- binary cross entropy
- adam optimizer

F1 score: 0.9639

웹 배포 👚

- 파이썬 기반의 웹프레임워크
- 머신러닝, 딥러닝 모델이나 데이터 시각화를 웹서비스로 쉽게 배포 가능

BOAZ 17th Conference 보이스피싱 탐지 알고리즘

웹 배포 🌐

히 주시면 되겠습니다 그램 지금 죄송하지만 지금 전화 거신 본 어디시라고요 예 저는 서울중앙지검 지역 국립 전당

진 7074입니다 김용재 수사관님요 예 수리는 어떻게 감당하기 더 빌리시면 됩니다 예

한계점

- 다양한 기법을 적용했음에도 존재하는 class imbalance 문제
- 리소스 부족으로 더 많은 신경망 모델을 실험하지 못한 점
- 실제 제품에 실시간 처리 파이프라인을 적용시키지 못한 점

