PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-021968

(43)Date of publication of application: 24.01.1995

(51)Int.CI.

H01T 37/28 G01B 21/30 G11B 9/00

(21)Application number: 05-191631

(71)Applicant: CANON INC

(22)Date of filing:

06.07.1993

(72)Inventor: WATANABE NOBUO

TAKAMATSU OSAMU

SUZUKI YOSHIO

SHIMADA YASUHIRO NAKAYAMA MASARU

(54) CANTILEVER TYPE DISPLACEMENT ELEMENT, CANTILEVER TYPE PROBE USING THE DISPLACEMENT ELEMENT, AND SCANNING TYPE PROBE MICROSCOPE AND DATA PROCESSER USING THE PROBE

(57) Abstract:

PURPOSE: To suppress short-circuiting so as to improve the durability, as well as to prevent a sticking phenomenon so as to simplify the manufacturing process and to improve the yield, by providing a projecting position of an insulating material to the surface of a substrate or the surface of a cantilever side, to a cantilever type dispalcement element.

CONSTITUTION: On the surface of a silicon substrate 101, a silicon nitride membrane 102 is laminated, and after a tungsten membrane is laminated thereover, a fixed electrode 103 is formed by a patterning. Furthermore, a silicone nitride to be an insulator is laminated, and by forming a projecting position 104 by a patterning, short-circuiting between the fixed electrode

and an opposite electrode is prevented, as well as a sticking when the cantilever is released is prevented, in the manufacturing process thereafter. After that, a sacrificing layer 109, a multi-crystal silicon membrane 106, and a silicon nitride membrane 107 are laminated in

order, and after a heat treatment is applied, the membranes 106 and 107 are made into a cantilever form by a patterning, and then, the sacrificing layer 109 is removed by an etching, and a clearance 105 is formed between the cantilever 106 and the fixed electrode 103.

LEGAL STATUS

[Date of request for examination]
[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(citation 7)

Japanese Patent Laid-Open Publication No. H7-21,968

Publication Date: January 24, 1995

Application No. H5-191,631 filed July 6, 1993

Inventor: Nobuo WATANABE et al.

Applicant: Canon K.K.

Title of the invention: Cantilevered displacement element, cantilever probe utilizing same and scanning probe microscope and information processor utilizing same

(Claim 1)

A cantilevered displacement element comprising a fixed electrode (103) formed on a substrate (101) and a cantilever (106) having an electrode to oppose said fixed electrode and formed on said substrate, characterized in that a projected portion (104) is provided between said substrate and said cantilever, and on a surface of said substrate or a surface of said cantilever on the side of said substrate.

(Abridgment of the description)

Fig. 9 schematically shows an embodiment of the claimed cantilever probe. An aluminum layer is sputtered at a thickness of 100 nm onto a silicon substrate 201 having a 500 nm thick thermal oxidation layer 202. The aluminum layer is patterned and etched for form a fixed electrode 203. Next, a zinc oxide layer is formed as a sacrificial layer 209 and patterned by etching (Fig. 8). A photoresist pattern is then formed and an aluminum layer is sputtered at a thickness of 300 nm, lifted off to form an opposing electrode 206. The opposing electrode 206 is formed to bridge over the thermal oxidation layer 202 and the sacrificial layer 209. After the opposing electrode 206 is formed, the oppositing electrode 206 is used as a mask to etch away the sacrificial layer 209 by 200 nm. A step is thereby formed in the sacrificial layer 209. An insulating layer 207 is then deposited and patterned to give a cantilever probe as shown in Fig. 9. An electrode 213 is then formed over the insulating layer 207 by vapor depositing gold at 3000 nm. A probe 208 is formed on the electrode 213 and the sacrificial layer 209 is removed.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-21968

(43)公開日 平成7年(1995)1月24日

(51)Int.Cl.* H 0 1 J	37/28	識別記号	庁内整理番号	F I	技術表示箇所
G01B G11B	21/30	2 2	9106-2F 9075-5D	•	

審査請求 未請求 請求項の数14 FD (全 15 頁)

000001007
キヤノン株式会社
東京都大田区下丸子3丁目30番2号
波邊 信男
東京都大田区下丸子3丁目30番2号 キヤ
ノン株式会社内
高松 修
東京都大田区下丸子3丁目30番2号 キヤ
ノン株式会社内
鈴木 義勇
東京都大田区下丸子3丁目30番2号 キヤ
ノン株式会社内
弁理士 豊田 善雄 (外1名)
最終頁に続く

(54) 【発明の名称】 カンチレバー型変位素子、及びこれを用いたカンチレバー型プローブ、及びこれを用いた走査型 探針顕微鏡並びに情報処理装置

(57)【要約】

【目的】 走査型探針顕微鏡等に用いられ、大きな変位 によっても電気的なショートを回避し得るカンチレバー 型プローブを提供する。

【構成】 基板101上の固定電極103には絶縁体からなる凸状部位104が設けられており、基板101に支持され固定電極103に対向する対向電極を兼ねる導電性のカンチレバー106の自由端部には、絶縁層107を介して探針108が設けられているカンチレバー型プローブ。

【特許請求の範囲】

【請求項1】 基板上に形成された固定電極と、該固定 電極に対向する対向電極を有し前記基板上に設けられた カンチレバーとを備えたカンチレバー型変位素子におい て、前記基板と前記カンチレバーとの間で且つ該基板表 面あるいは該カンチレバーの基板側の面に凸状部位を有 することを特徴とするカンチレバー型変位素子。

【請求項2】 前記凸状部位が、複数であることを特徴 とする請求項1に記載のカンチレバー型変位案子。

【請求項3】 前記凸状部位が、絶縁体であることを特 10 徴とする請求項1又は2に記載のカンチレバー型変位素 子。

【請求項4】 基板上に形成された固定電極と、該固定 電極に対向する対向電極を有し前記基板上に設けられた カンチレバーとを備えたカンチレバー型変位案子におい て、前記カンチレバーには前記対向電極より自由端側に 突出した絶縁層が形成されていることを特徴とするカン チレバー型変位素子。

【請求項5】 前記固定電極が、前記対向電極よりも前 記カンチレバーの自由端方向に長く形成されていること 20 を特徴とする請求項4に記載のカンチレバー型変位素 子。

【請求項6】 前記カンチレバーの自由端部の絶縁層と 前記固定電極との距離が、前記対向電極と前記固定電極 との距離よりも短いことを特徴とする請求項4又は5に 記載のカンチレバー型変位素子。

【請求項7】 基板の隆起部分に形成された固定電極 と、該固定電極に対向する対向電極を有し前記隆起部分 に沿うようにして前記基板上に設けられたカンチレバー とを備えたカンチレバー型変位素子。

【請求項8】 請求項1~7いずれかに記載のカンチレ バー型変位素子が同一基板上に複数形成されていること を特徴とするカンチレバー型変位素子。

【請求項9】 請求項1~8いずれかに記載のカンチレ バー型変位素子において、前記カンチレバーの自由端部 に尖鋭な探針を設けたことを特徴とするカンチレバー型 プローブ。

【請求項10】 請求項9に記載のカンチレバー型プロ ープを備え、前記探針を試料表面に接近させて走査し、 且つ、前記固定電極と前記対向電極間の静電力により、 前記カンチレバーを走査面に垂直な方向に変位させる走 查型探針顯微鏡。

【請求項11】 請求項9に記載のカンチレバー型プロ ーブを備え、前記探針を試料表面に接触させて走査し、 且つ、前記固定電極と前記対向電極間の静電容量を検出 することで、前記カンチレバーの走査面に垂直な方向の 変位を検出する走査型探針顕微鏡。

【請求項12】 請求項10又は11に記載の顕微鏡構 成を、試料表面の特性を変化させることに用いる加工装 置。

【請求項13】 請求項1G~12いずれかに記載の顕 微鏡あるいは加工装置の複数を一つの装置とした複合装

【請求項14】 請求項9に記載のカンチレバー型プロ ープを備え、前記探針を記録媒体に近接させ、該探針と 記録媒体との間に電圧を印加して情報の記録及び/又は 再生を行う情報処理装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、走査型トンネル顕微鏡 (以下、「STM」と称す) や原子間力顕微鏡 (以下、 「AFM」と称す)等の走査型探針顕微鏡(以下、「S PM」と称す) 等に用いられる片持ち梁 (カンチレバ 一) 構造の変位素子 (アクチュエータ) 、及びこれを用 いたSPM並びに情報処理装置等に関する。

[0002]

【従来の技術】近年、導体の表面原子の電子構造を直接 観測できるSTMがジー・ピーニッヒらにより開発 (フ エルベティカ フィジィカ アクタ, 55, 726 (1 982).) されて以来、先端の尖った探針を走査する 事により様々な情報を得るSPM装置や、基板に電気 的、化学的あるいは物理的作用を及ぼす事を目的とした SPMを応用した微細加工技術の研究開発が行われてい る。また、半導体微細加工技術やマイクロメカニクス技 術により、例えば、基板としてシリコンウエハを用い、 薄膜からなるカンチレバー上に探針を作製したコンパク トなSPM装置などが開発されている。

【0003】一方では、記録再生装置、なかでも、コン ピューターの計算情報等では大容量を有する記録装置に 対する要求がますます高まっており、半導体プロセス技 30 術の進展によりマイクロプロセッサーが小型化し、計算 能力が向上したために記録装置の小型化が望まれてい る。これらの要求を満たす目的で、記録媒体との間隔が 微調整可能な駆動手段上に存在するトンネル電流発生用 マイクロプローブからなる変換器から電圧印加すること によって、記録媒体表面の形状を変化させることにより 記録書き込みし、形状の変化によるトンネル電流の変化 を検知することにより情報の読み出しを行い最小記録面 積が10mm平方となる記録再生装置が提案されてい 40 る。

【0004】上述したSPM及びそれを応用した記録再 生装置に搭載されるカンチレパー型変位素子の駆動方法 としては、例えば、カンチレバーを圧電バイモルフ構造 とした圧電型や、カンチレバーに形成された対向電極と 基板上に形成された固定電極とに電圧を印加する事によ り静電力を働かせて梁を変位させる静電型とがあり、静 電型は構成が簡単で材料の自由度が高い特徴を有する。

【0005】上記静電型の例としては、特開昭61-2 0 6 1 4 8 号で提案されているカンチレバー状素子があ 50 る。これは図18に示すように、Siウェハー401上

に不純物ドーブにより固定電極402を設けた後、Siのエピタキシャル成長403を行い、これに再度不純物ドーブにより対向電極404を設けた後、その中間のノンドープSi層を除去してカンチレバー405を形成したものである。なお、カンチレバーの電極上には絶縁層406が形成されその上にトンネル電流を検知するを探針407と引き出し電極408が設けられている。また、上記と同様な構成で作成されたAFMが特開昭63-309802号に提案されている。これは微小力によるカンチレバーのたわみを静電容量の変化で検出するものであり、静電駆動カンチレバーと同じ素子構成を用いることができる。

[0006]

【発明が解決しようとする課題】しかしながら、前述した静電型のカンチレバー型変位素子において、比較的大きな電圧印加によりカンチレバーを大きく変位させた時や、試料表面の大きな凹凸やごみ等によりカンチレバーが大きく変位した時に、狭くなった固定電極と対向電極との間で電気的なショートを起こす事があり、素子あるいは電気制御系に大きな損傷を与えていた。

【〇〇〇7】また従来技術においては、製造方法に関し ても以下の様な課題があった。基板表面にカンチレバー を作製する方法としては、通常、フォトリソ・エッチン グ等の半導体微細加工技術を応用している。これによ り、シリコン基板表面に任意の形状の導電膜や絶縁膜の 積層構造を形成する事が可能であり、それらの組み合わ せにより梁状構造体や電極を自由に作製していた。一般 に、基板表面から10μm程度以下の狭い空間を隔てた 位置にカンチレバーなどの構造体を作製するために、犠 **牲層を用いていた。この犠牲層とは、後に除去される事** により空間を形成するための薄膜層であり、犠牲層表面 に梁や電極や探針を作製し、最後にその犠牲層を除去す る。ここで、梁や電極や探針等の重要な部位にダメージ を与える事なく犠牲層を完全に除去するために、酸ある いはアルカリ等の液体を用いて犠牲層を溶解除去する。 従って、犠牲層除去後に基板を乾燥させる必要があり、 この時に梁と基板表面との隙間に入り込んだ液体が蒸発 するに伴い、梁は液体の表面張力によって基板表面側へ 曲げられ、最終的には梁が基板表面に貼り付いて取れな くなる現象が起こる。この貼り付き現象を回避するた め、犠牲層除去後で且つ乾燥前に梁と基板との隙間に昇 華性材料を浸透させて固化させた後、真空中で昇華させ る方法が取られている。具体的には、例えば、犠牲層除 去のウエット状態を保ちながらアルコールへ置換後、更 に昇華性材料であるパラジクロルベンゼンの加熱液体へ の置換を行い、大気中へ取りだして室温で固化させた後 に、真空容器内に設置してパラジクロルベンゼンを昇華 させていた。カンチレバー等の作製においては、この様 な昇華性材料を用いた貼り付き回避に関する工程が必要 不可欠であり、この方法も未だ完全ではないので歩留ま 50 りを低下させる原因のひとつとなっていた。

【0008】また、従来の素子では図18に示したようにカンチレバー面が基板表面と同一平面内に形成されているため、探針を試料表面に近接して走査する際に、基板表面と試料表面を極めて接近させた状態で使用する必要があった。

【0009】このため基板上や基板周辺に形成される素子やワイヤーボンディング等の突起物が試料表面と接触し易くなるため、基板表面上の素子や配線の高さを極力小さく設計しなければならず、また基板を3軸方向へ駆動させる場合にも接触を避けるため細心の注意が必要であった。この問題は同一基板上へ複数のカンチレバーを配置し、マルチプローブとする場合より顕著となり、素子の設計及び駆動に多大な困難を要した。

【0010】従って本発明の目的は、上述したような従来技術が有する問題点に鑑み、簡易な構成で歩留まりの低下を防止し、また、カンチレバーの大きな変位による電気的なショートを回避し得るカンチレバー型変位素子や、試料表面を走査する際に試料表面と素子配線等との接触を防止し、より素子設計の自由度を増すことができるカンチレバー型変位素子を提供することにある。

【0011】更に本発明の他の目的は、上記カンチレバー型変位素子を用いたカンチレバー型プローブや走査型探針顕微鏡並びに情報処理装置等を提供することにある。

[0012]

20

【課題を解決するための手段及び作用】上記目的を達成 すべく成された本発明は、第1に、基板上に形成された 固定電極と、該固定電極に対向する対向電極を有し前記 基板上に設けられたカンチレバーとを備えたカンチレバ 一型変位素子において、前記基板と前記カンチレバーと の間で且つ該基板表面あるいは該カンチレバーの基板側 の面に凸状部位を有することを特徴とするカンチレバー 型変位素子であり、第2に、基板上に形成された固定電 極と、該固定電極に対向する対向電極を有し前記基板上 に設けられたカンチレバーとを備えたカンチレバー型変 位素子において、前記カンチレバーには前記対向電極よ り自由端側に突出した絶縁層が形成されていることを特 徴とするカンチレバー型変位素子であり、第3に、基板 40 の隆起部分に形成された固定電極と、該固定電極に対向 する対向電極を有し前記隆起部分に沿うようにして前記 基板上に設けられたカンチレバーとを備えたカンチレバ 一型変位素子である。

【0013】以下、図面を用いて本発明を詳細に説明する。

【0014】図1は本発明第1のカンチレバー型変位素子のカンチレバー自由端部に尖鋭な探針を設けて構成されるカンチレバー型プローブの一例を示しており、図1(a)は縦断面図、図1(b)は図1(a)のA-A'面での断面図である。同図において101は基板、10

2は絶縁膜、103は固定電極、104は固定電極10 3上に形成された凸状部位、106は基板上に支持され た導電性のカンチレバー、107は絶縁膜、108は探 針である。本構成では、導電性のカンチレバー106の うち固定電極103に対向する部分が対向電極を兼ねて おり、これらの間に電圧を印加することで静電力により 図1 (b) の矢印の方向にカンチレバー106を変位さ せることができる。

【0015】本発明第1のカンチレバー型変位素子では 凸状部位104を設けた事により、カンチレバー106 と基板101間に空隙105を形成するための犠牲層除 去工程の後に基板を乾燥させる際に、昇華性の材料に置 換する必要が無い。即ち、カンチレバーと基板表面との 間の液体が蒸発により減少する際にカンチレバーを基板 側へ撓ませ、カンチレバーと基板とは接触するが、この 時、カンチレバーと基板表面との接触面は前記凸状部位 のみであり、この接触面積を小さくすることにより、カ ンチレバーが本来の形状に戻ろうとする力 (パネ定数と 変位量の積)が貼り付き力に打ち勝てば貼り付き現象は 起こらない。

【〇〇16】また前記凸状部位を絶縁性材料で形成した 場合には、前記貼り付き防止効果を得られる事はもとよ り、固定電極と対向電極とが接近あるいは接触した際に も電気的なショートを防止する事が可能となり、素子及 びその電気制御系の耐久性が向上する。

【0017】図1に示した例では凸状部位を固定電極表 面に形成しているが、これはカンチレバー側の対向電極 表面であっても、また、これらの電極上でなくとも基板 とカンチレバー間で且つ基板表面あるいはカンチレバー の基板面側に形成しても良い。また前記凸状部位の形状 30 や個数も特に限定されるものではなく、前述した貼り付 き現象を防止できるように適宜設計することができる。

【0018】次に、本発明第2のカンチレバ―型変位素 子について説明する。

【〇〇19】図7は本発明第2のカンチレバー型変位素 子のカンチレバー自由端部に尖鋭な探針を設けて構成さ れるカンチレバー型プローブの一例を示す概略図であ り、201は基板、202は絶縁膜、203は固定電極 である。カンチレバー部は対向電極206と絶縁層20 7 で構成されており、カンチレバー上には引き出し電極 40 213が形成され、更に引き出し電極213上には情報 の入出力のための探針208が形成されている。

【0020】カンチレバーを構成している絶縁層207. は、カンチレバーの自由端側に対向電極206よりも突 出して形成されている。

【0021】本構成では、固定電極203と対向電極2 0 6 との間に電圧を印加する事により、静電力でカンチ レパーを基板面に垂直な方向に撓ませて変位させること ができる。このときカンチレバーの自由端部が一番大き

電極203は絶縁層207と接触し、対向電極とは接触 しないため電極間の電気的なショートを回避できる。

【0022】本発明第2のカンチレバー型変位素子にお いて、上記電極間の電気的なショートの回避をより確実 にするためには、図7に示したように固定電極203を カンチレパーの自由端方向に対向電極206よりも長く 形成するのが好ましく、更には、図9に示されるように カンチレバー自由端部の絶縁層207を基板面側に突出 させ、カンチレバー自由端部の絶縁層と固定電極203 との距離が、対向電極206と固定電極203との距離 よりも短くするのが好ましい。

【0023】次に、本発明第3のカンチレバー型変位素 子について説明する。

【0024】図11は本発明第3のカンチレバー型変位 素子の特徴を最もよく表す構成図であり、図11 (a) は基板上面より見た平面図、図11 (b) は図11。

(a) 中の破線A-A' における断面図である。

【0025】図11において301は基板であり、30 2は固定部であり、303はカンチレバーである。 基板 20 上のカンチレバーの下となる部分には隆起部304が設 けられており、カンチレバー303はこの隆起部304 に沿うように上方へ傾斜している。隆起部304の上面 には固定電極305が設けられており、またカンチレバ 一下面には対向電極306が形成されている。固定電極 305及び対向電極306は基板上へ個別に引き出され ており、それぞれ電圧印加する事が出来るようになって いる。

【0026】本構成では、固定電極305と対向電極3 06との間に電圧を印加することにより、静電力でカン チレバー303の先端部を基板面に垂直な方向に微少に 変位させることができる。

【0027】本発明第3のカンチレバー型変位素子は、 隆起部304上に固定電極305を設け、固定電極30 5と対向電極306との間隔が大きくならないようにし ているため、カンチレバー先端の駆動電圧当たりの変位 量を減少させることなく、変位部分を基板面より遠ざけ ることができる。このため基板上に配置する他の案子や 配線の基板表面からの高さ方向の余裕を大きくすること ができ、設計の自由度を増すことができる。

【0028】またカンチレバー自由端部に探針を設け、 走査型探針顕微鏡に用いた場合においても、試料表面と 基板面との間隔が大きくとれるため、試料への接近や走 査を行うときに試料と基板、その他周辺装置との接触を 回避することが容易となる。

【0029】更に同一基板上へ本発明第3の複数のカン チレパー型変位素子を配し、半導体素子とともに集積化 したデバイスや、それを用いた情報処理装置等において は、必然的に一緒に搭載される素子や配線、駆動機構等 が多くなるため、試料表面と基板面との間隔が大きくと く変位するが、基板側への変位量が大きい場合にも固定 50 れることは設計、及び駆動時に有利となる。

【0030】以上説明した本発明第1~第3のカンチレ バー型変位素子において、基板材料としては、半導体、 金属、ガラス、セラミックス等を用いることができる が、同一基板上に複数の素子を形成する場合には、表面 凹凸の小さい材料が好ましく、例えばコーニング#70 5 9 フュージョン、溶融石英、更には表面を研磨した# 7059、石英、シリコンウェハー等を用いることがで きる。また、基板上にトンネル電流を増幅処理するアン ブ、素子駆動とトンネル電流の選択のためのマルチプレ クサ、シフトレジスタ等を積載する場合には単結晶シリ コンウェハーを用いる。

【0031】また、素子の形成方法としては、従来公知 の技術、例えば半導体産業で一般に用いられている真空 蒸着法やスパッタ法、化学的気相成長法等の薄膜作製技 術やフォトリソグラフ技術及びエッチング技術を適用す ることができ、その作製方法は本発明を制限するもので はない。また、上記説明では静電力で駆動変位する素子 について述べたが、秦子構成を変更することなく、静電 容量検出型の素子として使用できることは明らかであ る。

【0032】また、本発明のカンチレバー型変位素子の カンチレバー自由端部に尖鋭な探針を設けて構成される カンチレバー型プローブは、探針を試料表面に接近させ て走査する静電駆動型の走査型探針顕微鏡や、探針を試 料表面に接触させて走査する静電容量型の走査型探針顕 微鏡や、探針を記録媒体に近接させ、探針と記録媒体と の間に電圧を印加して情報の記録及び/又は再生を行う 情報処理装置、更には試料表面近傍へ電気的、化学的あ るいは物理的作用等を及ぼす事で試料表面の特性を変化 させる加工装置等に適用される。

[0033]

【実施例】以下、本発明の実施例を説明する。

【0034】実施例1

図 1 に示したような本発明第 1 のカンチレバー型変位素 子を用いたカンチレバー型プローブを診電容量型AFM に適用した例を説明する。

【0035】先ず、本実施例のカンチレバー型プローブ の作製方法を図2を用いて説明する。

- (a) 結晶面が(100)であるシリコン基板101表 面に、窒化シリコン膜102を化学的気相成長(CV D) 法により厚さ約0.5μm堆積した。次に、タング ステン膜を通常のスパッタ成膜法により厚さ約 0. 5 μ m堆積後、通常のフォトリソエッチング法によりパター ニングして固定電極103とした。
- (b)窒化シリコン膜102を成膜したのと同様に、C VD法により窒化シリコンを厚さ約0.5μm堆積後、 通常のフォトリソエッチング法によりパターニングして 凸状部位104とした。ここで、凸状部位となる材料を 本実施例の様に絶縁体で作製すれば、作製プロセスにお

と、固定電極・対向電極間のショート防止効果との両方 の効果が得られる。また、凸状部位を金属等の導電性材 料で作製した場合は、貼り付き防止効果が得られる。

(c) 犠牲屬109として、酸化シリコンをパイアスス パッタ法により厚さ約2μm堆積した。ここで、パイア ススパッタ法を用いたのは犠牲層109の表面を図の様 に平滑にするためであり、犠牲層表面を平滑にできる方 法であればバイアススパッタ法に限らない。犠牲層10 9の表面が凸状部位104の形状を反映した凸形状とな ると、犠牲層の上層に形成するカンチレバーの基板側の 面がその反転形状(凹形状)となり、犠牲層除去時に基 板面とカンチレバー面との接触面積が大きくなるので貼 り付き易くなる。また、ショートする可能性も有り、本 発明の効果が低下する。

【0036】更に、化学的気相成長法により多結晶シリ コン膜106を厚さ約1. 2μm堆積し、リンイオンを 約1×10¹⁶ c m⁻²注入した後に、化学的気相成長法に より厚さ約0. 3μmの窒化シリコン膜107を形成し た。窒素雰囲気で1100℃、60分の活性化熱処理を 20 行った後に、多結晶シリコン膜106と窒化シリコン膜 107とを、通常のフォトリソエッチング法でパターニ ングしてカンチレバー状にした。

- (d)カンチレバーの先端付近に、Spindt法によ るタングステンの探針108を形成した。この探針の形 成に関しては、斜方蒸着を用いたSpindt法の他 に、電解研磨法によるタングステンワイヤ探針を接着す る方法など、作製方法は問わない。
- (e) 酸化シリコン犠牲層109をバッファードフッ酸 液でエッチング除去した後、アルコールに置換してから 基板を乾燥した。カンチレバー106と固定電極104 30 との間に空隙105が得られ、カンチレバー型プローブ の作製工程が終了した。

【0037】本実施例では、上記の基板乾燥時におい て、カンチレバーが基板表面側へ撓み、基板表面に貼り 付きそうになるが、これらの接触面積が十分小さい凸状 部位だけであるため、乾燥時にカンチレバーのバネ性に よりリリースされ、貼り付きは発生しなかった。これに より、従来法の様な昇華性材料を用いた工程を簡略化で きるとともに、歩留まりが向上した。

【0038】以上のようにして作製したカンチレバー型 プローブを用いて図6に示す装置を構成した。図6は静 電容量型AFM、更には静電駆動型STMとしても用い る事ができる構成としているため、カンチレバー型プロ ーブの探針108はカンチレバー上に形成される引き出 し電極(AFMでは不要)上に形成されているように示 してある。

【0039】120は試料、121は固定電極配線、1 22は対向電極を兼ねるカンチレバーへの配線、123 は静電容量検出ユニット(STMでは静電駆動ユニッ いてカンチレバーをリリースする際の貼り付き防止効果 50 ト)である。また、124はトンネル電流検出ユニッ

ト、125は引き出し電極用配線、126は試料配線で あり、これらはAFMでは不要である。 尚、カンチレバ 一型プローブを試料表面に沿って2次元移動させるため の素子及び電気制御系は省略してある。

【0040】図6に示した装置を用いて試料表面のAF M像を観察したところ、凸状部位を有しない従来のカン チレパー型プローブと同様のAFM像が得られ、この 時、表面に空隙105程度の凹凸のある試料であって も、対向電極と固定電極との間で電気的なショートは起 こらず、従来のカンチレバー型プローブを用いた時の様 10 に損傷する事がなく、装置の耐久性が向上した。

【0041】実施例2

本発明第1のカンチレバー型変位素子を用いたカンチレ パー型プローブを静電容量型AFMに適用した別の例を 説明する。

【0042】図3に本実施例のカンチレバー型プローブ を示す。図3(a)はカンチレバー型プローブの主要部 分について、分かり易くする為にカンチレバーを点線で 示した模式的平面図であり、図3(b)は図3(a)の 面を、それぞれ模式的に示したものである。

【0043】図3において図1中の符号と同一符号で示 したものは同等部材を示しており、110は絶縁膜 (窒 化シリコン) 102と一体の窒化シリコンの突起、11 1は突起110の形状を反映した固定電極(タングステ ン) 103表面の凸状部位、112は固定電極103の 配線である。

【0044】本実施例においては、凸状部位111のも ととなる薄膜による突起を窒化シリコン膜102の一部 で形成した。即ち、シリコン基板101表面に窒化シリ コンを厚く堆積したのち、通常のフォトリソエッチング 法により、突起110が点状に残るようにパターニング した。その後に、固定電極103として全面にタングス テンを堆積した。従って、カンチレバーを固定電極側へ 大きく変位させるとショートする可能性がある。本実施 例において、その他の製造方法については、基本的には 実施例1と同様なので省略する。

【0045】本実施例は、凸状部位を複数の点状として 凸状部位の面積を更に減らした事が特徴であり、貼り付 きやすい柔らかな(バネ定数が小さい)カンチレバーで 40 も、前述した基板乾燥時に基板表面に貼り付かない特徴 がある。このため、実施例1と同様に製造工程が簡略化 されるとともに歩留まりが向上し、更にはカンチレバー の設計の自由度が増す。また、本実施例のカンチレバー 型プロープを実施例1と同様に図6に示したAFM装置 に組み込み試料表面のAFM像を観察したところ、凸状 部位を有しない従来のカンチレバー型プローブと同様の A FM像が得られた。

【0046】実施例3

バー型プローブを静電駆動型STMに適用した例を説明 する。

10

【0047】図4に本実施例のカンチレバー型プローブ を示す。図4 (a) はカンチレバー型プローブの主要部 分について、分かり易くする為にカンチレバーを点線で 示した模式的平面図であり、図4 (b) は図4 (a) の A-A' 断面を、図4 (c) は図4 (a) のB-B' 断 面を、それぞれ模式的に示したものである。

【0048】図4において図1中の符号と同一符号で示 したものは同等部材を示しており、103a, 103b は固定電極、112a, 112bは固定電極103a, 103bの配線、113は絶縁膜107上に形成した引 き出し電極である。

【〇〇49】固定電極を2つの電極に分割したのは、電 圧印加により固定電極・対向電極間に形成される電界を 不均一とし、カンチレバーを捻る事により探針108の 先端を2軸変位させるためである。絶縁性の凸状部位1 04としては、窒化シリコン膜をパターニングして用い た。 それ以外の部位の材料や基本的な製造方法について A-A' 断面を、図3(c)は図3(a)のB-B' 断 20 は、実施例1あるいは実施例2と同様なので省略する。 【0050】本実施例の構成においても、実施例1と同 様に製造時の貼り付き現象の防止、及び駆動時の電気的 なショートの防止効果がある。本実施例のカンチレバー 型プローブを用いて図6に示したようなSTM装置を構 成し試料表面の観察を行ったところ、基本的には凸状部 位を有しない従来型のものとほぼ同様の特性を示した。

久性が向上した。 【0051】実施例4

本発明第1のカンチレバー型変位素子を用いたカンチレ パー型プローブを静電駆動型STMに適用した別の例を 説明する。

但し、表面の凹凸が大きい試料においても、対向電極と

固定電極とが電気的にショートする事がなく、装置の耐

【0052】図5に本実施例のカンチレバー型プローブ を示す。図5(a)はカンチレバー型プローブの主要部 分について、分かり易くする為にカンチレバーを点線で 示した模式的平面図であり、図5 (b) は図5 (a) の AーA' 断面を、図5 (c) は図5 (a) のBーB' 断 面を、それぞれ模式的に示したものである。

【0053】図5において図4中の符号と同一符号で示 したものは同等部材を示している。基本的な製造方法に ついては、実施例1と同様なので省略する。ただし実施 例1から実施例3では、凸状部位104を固定電極側に 形成したが、本実施例では対向電極を兼ねるカンチレバ 一の裏側(基板側の面)に形成した。この凸状部位によ る、対向電極・固定電極間のショート防止及び貼り付き 現象を回避する効果については、固定電極側へ作製した 実施例1から3と大きな差異はない。但し、凸状部位が 付加された事により、カンチレバーの共振周波数及びバ 本発明第1のカンチレバー型変位素子を用いたカンチレ 50 ネ定数は若干高くなるので考慮が必要であり、必要以上

10

に大きな凸状部位を設ける事は望ましくない。

【0054】同様の構成でありながら、凸状部位を設けない従来のカンチレバー型プローブを図6に示したようなSTM装置に組み込んで使用した場合では、カンチレバーを大きく撓ませた時に、対向電極と固定電極との間で電気的にショートする場合があったが、本構成とする事により改善された。また、製造プロセスにおいても、本実施例の凸状部位を有するカンチレバーは、犠牲層除去後にも基板へ貼り付くことなく容易にリリースする事が可能であった。

【0055】 実施例5

図5に示した実施例4におけるカンチレバー型プローブを組み込んだ図6に示したようなSTM装置を、加工装置として使用した例について説明する。

【0056】凸状部位を有するカンチレバー型プロープ及び試料としてのGaAsウエハとを真空容器内に設置して、反応性ガスとして塩素を導入した状態でSTM観察する事により、GaAs試料表面を局所的にエッチング可能であった。また、反応性ガスとしてWF6を導入する事により、試料表面のSTM観察した部分にのみW 20を堆積する事が可能であった。この様に、本発明第1による凸状部位を有するカンチレバー型プローブを加工装置に組み込んで使用する事も可能であった。

【0057】実施例1~5で説明したように、本発明第1による凸状部位を有するカンチレバー型プローブをAFM、STM、加工装置として用いる事が可能であり、それらの複合装置として用いることが可能であった。

【0058】実施例6

図7に示したような本発明第2のカンチレバー型変位素 子を用いたカンチレバー型プローブをSTM装置に適用 30 した例を説明する。

【0059】先ず、本実施例におけるカンチレバー型プロープの作製方法を、図8の製造工程を示す断面図を用いて説明する。

【0060】熱酸化膜202が5000A形成されたSi基板201の表面に、スパッタ法によりアルミニウム膜を1000A成膜し、フォトエッチング法によりパターン形成を行い固定電極203を形成した。続いて、後性層209として酸化亜鉛をスパッタ法により成膜しては、レジストパターン形成後、スパッタ法によりアパターン形成を行った。更に、レジストパターン形成後、スパッタ法によりアパターン形成を行い対向電極206を形成した。このときに対向電極206は熱酸化膜202と犠牲層209上の端部20位置は固定電極203の端部222より5μm短く形成した(図8(a)参照)。

【0061】次に、スパッタ法により酸化シリコン膜を 1μm成膜し、フォトエッチング法により対向電極20 6を覆うようにパターン形成を行い絶縁層207を形成 50 した。この時、固定電極203の端部222上に絶縁層207の端部223が合うように形成した(図8(b)

参照)。

【0062】次に、真空蒸着法により金を3000A成膜し、フォトエッチング法により絶縁層207上に引き出し電極213を形成した(図8(c)参照)。

12

【0063】次に、引き出し電極213上に探針208を形成した後、犠牲層209の酸化亜鉛を酢酸水溶液で除去することにより、カンチレバー型プローブを得た(図8(d)参照)。

【0064】以上のようにして作製した長さ 400μ m、幅 100μ mのカンチレバー型変位素子の対向電極と固定電極に電圧を印加しカンチレバーを変位させたところ、基板面に垂直な方向(Z 方向)に 0.2μ m/Vで変位することがわかった。さらに該カンチレバー型プローブをS T M 装置に組み込み評価を行った。

【0065】図10はSTM装置のプロック図であり、図中231はバイアス印加用電源、232はトンネル電流増幅回路、233はカンチレバー駆動用ドライバ、234はカンチレバー型変位素子、235はサンブル、236はXY方向微動機構である。ここで探針208とサンブル235との間を流れるトンネル電流1tを検知し、Itが一定となるようにフィードバックをかけ、カンチレバーを駆動し、探針208とサンブル235にはフィードバックをかけ、カンチレバーを駆動し、探針208とサンブル235にはシリコン上に金を500A蒸着したものを用い、バイアス電流1nA、スキャンエリア1μm×1μmで観察したといる。更に、連続してSTM動作を行ったとい対向電極と固定電極とが電気的にショートする事がなく、装置の耐入性が向上した。

【0066】尚、カンチレバー型変位素子の所望の応答性ならびに剛性を必要とする場合は、カンチレバーの長さ、厚さを変える等の設計を行えば良い。

【0067】実施例7

本発明第2のカンチレバー型変位素子を用いたカンチレバー型プローブの別の例を説明する。

【0068】図9は本実施例のカンチレバー型プローブの概略図であり、カンチレバーの絶縁層207の形状を変更した以外は実施例6と同様にカンチレバー型プローブを作製した。具体的には図8(a)の工程で、対向電極206の形成後、対向電極206をマスクとして犠牲層209を2000Aエッチングし、犠牲層209に設定を設けた後、絶縁層207を成膜しパターン形成を行うことにより、図9に示すような形状を持つカンチレバー型プローブを作製した。このカンチレバー型プローブを作製した。このカンチレバー型プローブを用いて図10に示したようなSTM装置を構成し、実施例6と同様に評価したところ、実施例6と同様の結果を得た。

【0069】更に、本発明第2によるカンチレバー型ブ

ローブは、先に説明した本発明第1によるカンチレバー 型プローブと同様に、AFM、STM、加工装置、及び それらの複合装置に適用することができる。

【0070】実施例8

本実施例は図11に示したような本発明第3のカンチレ バー型変位素子を作製したものであり、図12を用いて その製造方法を説明する。

【0071】先ず面方位(100)の単結晶シリコン基 板301の表面へ、減圧CVD法によりSi₃ Nィ を3 0 0 n m成膜し保護膜とする。その後フォトリソグラフ 10 本実施例のカンチレバー型変位素子は、カンチレバーの を行いレジストパターン311を形成した(図12 (a) 参照)。

【0072】次に面方位によりエッチング速度が大きく 異なることを利用した、シリコン異方性エッチングを行 い(111)面が露出した隆起部304を形成した(図 12 (b) 参照)。

【0073】次にスパッタ蒸着により密着性確保のため Crを1nm程度蒸着した後、Auを100nm蒸着し 電極膜312を形成した(図12(c)参照)。

の不要部分をエッチング除去し、固定電極305を形成 した (図12 (d) 参照)。

【O 0 7 5】次にスパッタ蒸着により2n Oを 2 μ m成 膜し、犠牲層膜313を形成した(図12(e)参 服)。

【0076】次にフォトリングラフにより犠牲層膜31 3の不要部分をエッチング除去し犠牲層314を残した (図12 (f) 参照)。

【0077】更にこの上にスパッタ蒸着によりCェを1 Onm成膜し、Auを200nm形成したのち、再びC 30 rを10nm蒸着した。こうして形成された電極膜の不 要部分をエッチング除去し、対向電極306を形成した (図12 (g)参照)。

【0078】次にスパッタ蒸着によりSiO2 を1 μm 成膜し、弾性層315を形成した(図12(h)参 照)。

【0079】再びフォトリソグラフを行い、弾性層31 5 の不要部分をエッチング除去し、カンチレバー 3 0 3 となる部分を残した(図12(i)参照)。

【0080】最後に犠牲層314をドライエッチングに 40 より除去することにより、基板上にカンチレバー303 が形成され、カンチレバー型変位素子を得た(図12 (j) 参照)。

【0081】ここで、エッチングに用いた溶液やガス は、Auに対してはKI:I1 水溶液、Crに対しては (NH4) 2 Ce (NO3) 6 : HC | O4 水溶液、Z n Oに対しては酢酸水溶液を用いた。またSiの異方性 エッチングにはKOH水溶液を用い、ドライエッチング にはCF(ガスを用いた。

14

物質は上記に限定されるものではなく他の物質を用いる ことも可能である。

【0083】以下に、本実施例で作製したカンチレバー 型変位素子の主要部の寸法の一例を示す。

[0084]

隆起部304の高さ : 280 µ m

隆起部304の傾斜部の長さ : 350μm

カンチレバー303の長さ : 360 µ m カンチレバー303の幅 50 µ m

変位部先端を基板面から遠ざけることができたにもかか わらず、カンチレバーの寸法が等しい従来の素子と同程 度の駆動電圧当たりの変位量が得られた。

【0085】実施例9

図13に本実施例のカンチレバー型プローブを示す。図 13 (a) は上面図であり、図13 (b) は図13

(a) 中の破線A-A' における断面図である。

【0086】本実施例のカンチレバー型プローブは、実 施例8の構成に加えて、カンチレバー先端位置に導電性 【OO74】次にフォトリソグラフにより電極膜312 20 の探針321とこれに接続された引き出し電極322を 新たに設けたものである。

> - 【0087】上記の探針321は、引き出し電極322 を蒸着とフォトリソグラフにより形成したのち、フォト レジストを5μm塗布し、探針321を形成する位置の みレジストを除去し開口部を形成し、斜め方向からの真 空蒸着と基板回転を組み合わせることにより形成した。 この方法はアスペクト比の高い微小構造物を形成する方 法として知られている。

> 【0088】本実施例のカンチレバー型プローブは走査 型探針顕微鏡のプローブとして用いることができる。例 えば、探針321の先端を導電性の試料表面に数nm程 度まで接近させた時に流れるトンネル電流を検出し、カ ンチレバーの駆動電圧にフィードバックをかけ探針32 1と試料表面との距離を一定に保つことができる。この ような状態でカンチレパーを外部の走査手段により試料 面内方向に走査させることにより、フィードバック電圧 の変化より試料表面の微小な凹凸や導電率の分布を観察 することが可能となる。

【0089】本実施例のカンチレバー型プローブでは、 探針を試料表面に接近させる場合の基板面の突起物の制 限が緩和され、探針をより確実に試料表面へ接近させる ことができるようになった。

【0090】実施例10

本実施例は、実施例9において説明したカンチレバー型 プローブを、同一のシリコン基板上に複数個作製し、半 導体素子と共に集積化して図14に示すような集積化プ ローブ330を作製したものである。

【0091】図14において、同一シリコン基板301 上に形成された各カンチレバー型プローブは半導体素子 【0082】なお、電極、犠牲層、弾性層として用いた 50 331に接続されている。半導体素子331には内部配 線332が接続され、外部端子333を通して外部と入出力できるようになっている。

【0092】かかる集積化プローブは、前述実施例8、9で説明した作製方法において、フォトリソグラフのパターンを拡張するだけで作製することができる。このように、同一の基板上へ複数のカンチレバーを同時に形成できるため、寸法精度が非常に高く、各カンチレバー間の特性のばらつきも非常に小さく抑えることができる。【0093】また、基板としてSi単結晶を用いることにより、トランジスタやダイオード等の半導体素子も同一基板上へ集積化することが可能となり、トンネル電流増幅やカンチレバー駆動用のアンプを一体化することができる。

【0094】図15は本実施例の集積化プローブを用いたSTM装置を模式的に示した図である。これにより、集積化プローブ330を用い、観察対象353の表面上の複数の微小領域のSTM像を同時に観察することができる。同図において351及び352はX,Y,2方向に粗動機構を有する可動ステージであり、可動ステージ351には集積化プローブ330が固定され、可動ステージージ352には観察対象353が固定されている。

【0095】354は2方向の粗動機構であり、355,356はXY方向の微粗動機構である。357は観察対象353と集積化プローブ330の平行出しの為の調節機構である。358,359はそれぞれの微粗動機構をコントロールするためのコンピュータシステムである。360は各探針からのトンネル電流を検出しカンチレバーの変位量にフィードバックをかけるための制御装置である。

【0096】図16は図15における集積化プローブ3 30と観察対象353の一部分を拡大した断面図である。

【0097】このようなSTMシステムに本発明によるところのカンチレバー型プローブを用いることにより、搭載する素子選択の自由度が大きく向上し、外部との接続や、駆動に際しての困難が軽減された。

【0098】以下に本実施例で作製した集積化プロープの寸法の一例を示す。

【0099】集積化プローブ330の外径…40mm× 40mm×1mm

カンチレバーの本数

…90本

各カンチレバーの長さ

... 5 0 0 μ m

各カンチレバーの幅

··· 5 0 μ m

探針321の高さ

... 3 μ m

<u>実施例11</u>

図17に実施例10で説明した集積化プローブを用いた、情報の記録・再生等を行える情報処理装置の模式図を示す。

【0100】同図において、373は電圧印加により抵抗値が変化する記録層、372は金属電極層、371は 50

16

記録媒体基板である。374はXYステージ、375は本発明による集積化プローブ、376は集積化プローブ。376は集積化プローブを2方向へ粗動するためのリニアアクチュエータ、378、379はXYステージをそれぞれX、Y方向へ駆動するリニアアクチュエータ、380は記録再生用のバイアス回路である。381はトンネル電流検出器、382は集積化プロープを2軸方向に移動させるためのサーボ回路であり、383はアクチュエータ377を駆動するためのサーボ回路である。384は個々のカンチレバーを微小変位さるための駆動回路であり、385はアクチュエータ377の駆動回路であり、385はアクチュエータ377の駆動回路であり、386はXYステージの位置制御を行う駆動回路である。387はこれらの操作を制御するコンピュータである。

【0101】このようなシステムを用いることにより、 大容量の情報を高密度に記録することが可能となり、ま たプローブを多数集積化し、それらを同時に走査するた め、高速度の記録再生を行うことができる。

【0102】このようなシステムに本発明第3のカンチ り レバー型変位素子を用いることにより、基板上に配置する素子の制限が緩和され、記録再生時のトラッキング性 能が向上し、書込み、読取り時のエラー発生率を小さく することができる。

【0103】更に、本発明第3によるカンチレバー型プロープは、先に説明した本発明第1,第2によるカンチレバー型プローブと同様に、AFM,STM,加工装置、及びそれらの複合装置に適用することができる。一方、本発明第1,第2によるカンチレバー型プローブと同様に、上述したような情報処理装置に適用することができる。

[0104]

【発明の効果】以上説明した様に、本発明によれば以下 の効果を奏する。

- (1) 本発明第1のカンチレバー型変位素子は、基板表面あるいはカンチレバーの基板側の面へ凸状部位を設けた事により、昇華性材料を用いた製造工程を行うことなく貼り付き現象を防止でき、製造工程の簡略化、さらには歩留まりが向上された。また、凸状部位を絶縁性材料で形成したものは、カンチレバーを大きく変位させても固定電極と対向電極との電気的なショートを回避する事が可能となり、素子及びその電気制御系の耐久性が向上し、ひいては本素子を搭載した各種装置の耐久性が向上する。
 - (2) 本発明第2のカンチレバー型変位素子は、カンチレバーを構成する絶縁層の形状による簡易な手段で、固定電極と対向電極との電気的なショートを回避でき、本発明第1のカンチレバー型変位素子と同様に素子及び本素子を搭載した各種装置の耐久性が向上する。
 - (3) 本発明第3のカンチレバー型変位素子は、カンチ

レパー下部の基板面を隆起させると共に、隆起部上に固 定電極を設けているため、変位量の低下を招くことなく カンチレバー先端部を基板面から遠ざけることができ、 素子の配置や、外部との配線の自由度が増す。

【0105】更に、本素子を用いて構成される走査型ト ンネル顕微鏡や情報処理装置では、試料や記録媒体と素 子基板との接触を回避でき、より信頼性の高い装置を実 現できる。

【図面の簡単な説明】

【図1】本発明第1によるカンチレバー型プローブのー 10 例を示す概略構成図である。

【図2】図1のカンチレバー型プローブの作製工程を説 明するための図である。

【図 3】実施例2にて示す本発明第1によるカンチレバ 一型プローブの概略構成図である。

【図4】実施例3にて示す本発明第1によるカンチレバ 一型プローブの概略構成図である。

【図 5】実施例4にて示す本発明第1によるカンチレバ 一型プローブの概略構成図である。

【図 6】 本発明第 1 によるカンチレバー型プローブを組 20 2 0 9 **犠牲層** み込んだ走査型探針顕微鏡の模式図である。

【図 7】本発明第2によるカンチレバー型プローブのー 例を示す概略構成図である。

【図8】図7のカンチレバー型プローブの作製工程を説 明するための図である。

【図 9】実施例7にて示す本発明第2によるカンチレバ 一型プローブの概略構成図である。

【図10】本発明第2によるカンチレバー型プローブを 組み込んだSTM装置の模式図である。

【図11】本発明第3のカンチレバー型変位素子の概略 30 236 XY方向微動機構 構成図である。

【図12】図11のカンチレバー型変位素子の作製工程 を説明するための図である。

【図13】実施例9にて示す本発明第3によるカンチレ バー型プローブの概略構成図である。

【図14】実施例10にて示す本発明第3による集積化 プローブの概略構成図である。

【図15】図14の集積化ブローブを組み込んだSTM 装置の模式図である。

【図16】図15のSTM装置の部分拡大図である。

【図17】図14の集積化プローブを組み込んだ情報処 理装置の模式図である。

【図18】従来例のカンチレバー型プローブの概略構成 図である。

【符号の説明】

- 101 基板
- 102 絶縁膜
- 103 固定電極
- 104 凸状部位

105 空隙

106 対向電極を兼ねるカンチレバー

18

- 107 絶縁膜
- 108 探針
- 109 犠牲層
- 110 突起
- 111 凸状部位
- 112 固定電極の配線
- 113 引き出し電極
- 120 試料
- 121, 122 配線
 - 123 静電容量検出ユニット (静電駆動ユニット)
 - 124 トンネル電流検出ユニット
 - 125, 126 配線
 - 201 基板
 - 202 絶縁層
 - 203 固定電極
 - 206 対向電極
 - 207 絶縁層
- 208 探針
- - 213 引き出し電極
 - 221 対向電極の端部
 - 222 固定電極の端部
 - 223 絶縁層の端部
 - 231 バイアス印加用電源
 - 232 トンネル電流増幅回路
 - 233 カンチレバー駆動用ドライバ 234 カンチレバー型変位素子
 - 235 サンプル
- - 301 基板
 - 302 固定部
 - 303 カンチレバー
 - 304 隆起部
 - 305 固定電極
 - 306 対向電極
 - 311 レジストパターン
 - 3 1 2 電極膜
 - 313 犠牲層膜
- 314 犠牲層

40

- 315 弾性層
- 321 探針
- 322 引き出し電極
- 330 集積化プローブ
- 331 半導体素子
- 332 内部配線
- 333 外部端子
- 351, 352 可動ステージ
- 353 観察対象
- 50 354 乙方向粗動機構

9

355, 356 X, Y方向微粗動機構

357 調節機構

358, 359 コンピュータシステム

3 6 0 制御装置

371 記録媒体基板

3 7 2 金属電極層

373 記録層

374 XYステージ

375 集積化プローブ

3 7 6 支持体

3 7 7 乙方向リニアアクチュエーター

378 X方向リニアアクチュエーター

379 Y方向リニアアクチュエーター

[図1]

[図9]

20

380 記録再生用バイアス回路

381 トンネル電流検出器

382, 383 サーボ回路

384, 385, 386 駆動回路

387 コンピューター

401 Siウェハー

402 固定電極

403 Si

404 対向電極

10 405 カンチレバー

406 絶縁層

407 探針

408 引き出し電極

[図2]

[図16]

【図17】

[図18]

フロントページの続き

(72)発明者 島田 康弘

東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内

(72) 発明者 中山 倭

東京都大田区下丸子3丁目30番2号 キャ ノン株式会社内