The body is subdivided into

slices. EPS = 1 is used when EPS = 0. Then a transversely linear transformation $\exp(: H_{2n}:)$ is applied in each slice with

 $n = 1 + \text{Floor} \left| \frac{10|\text{K1L}|}{\text{FPS}} \right|$

 $\Delta H = \frac{1}{n} \left(p - \sqrt{p^2 - p_x^2 - p_y^2} - \frac{p_x^2 + p_y^2}{2p} \right) L$

$$H_{2n} = \frac{1}{n} \left\{ \left(-p + \frac{p_x^2 + p_y^2}{2p} + \frac{E}{v_0} \right) \mathbf{L} + \frac{\mathbf{K1}}{2} (x^2 - y^2) \right\}.$$

Between slices the correction $\exp(:\Delta H:)$ for the kinematical term

is applied. In a solenoid, the forms of H_{2n} and ΔH are modified.