

Appunti di Basi Dati Modulo I

Colacel Alexandru Andrei

Disclaimer

INDICE

Indice

	Lemma della Chiusura1.1 Dimostrazione \Rightarrow	
2	$\mathbf{F}\mathbf{A} = \mathbf{F}^+$	3
3	Chiusura di X	4
4	Lemma Chiusura Inclusione	5
5	Chiusura di X in G	6
6	Join senza perdita	7

1 Lemma della Chiusura

Sia R uno schema e sia F un insieme di dipendenze funzionali definite su R. Si ha che:

$$X \to Y \in F^A \Longleftrightarrow Y \subseteq X^+ \tag{1}$$

1.1 Dimostrazione \Rightarrow

Dato $X \to Y \in F^A$, per la regola della decomposizione, otteniamo:

$$X \to A \in F^A, \quad \forall A \in Y$$
 (2)

e quindi, per definizione di X^+ , otteniamo che:

$$A \in X^+, \quad \forall A \in Y$$
 (3)

che significa:

$$Y \subseteq X^+ \tag{4}$$

1.2 Dimostrazione \Leftarrow

Dato:

$$Y \subseteq X^+ \tag{5}$$

si ottiene che:

$$X \to A \in F^A \quad \forall A \in Y \tag{6}$$

che implica, per la regola dell'unione, che:

$$X \to Y \in F^A \tag{7}$$

$\mathbf{2} \quad \mathbf{F} \mathbf{A} = \mathbf{F}^+$

3 Chiusura di X

4 Lemma Chiusura Inclusione

5 Chiusura di X in G

6 Join senza perdita