CMM014

17 de Abril de 2019

	Q:	1	2	3	4	5	Total
Nome:	P:	25	25	20	20	20	100
	N:						

ATENÇÃO: Utilize 4 casas decimais onde for necessário aproximar.

Calcule uma aproximação para um zero da função $f(x) = \ln(x) - 2$, usando o método da bissecção começando do intervalo [6,8]. Faça iterações até que $|f(x)| < 10^{-2}$. Use 4 casas decimais. Use a tabela abaixo

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$
0	6.0000	8.0000				

(a) 20 Use o método de Newton para encontrar uma aproximação para o zero dessa função a partir de $x_0 = 7.38$. Calcule 3 iterações (x_3) usando 4 casas significativas (em notação científica: $a.bcd \times 10^E$). Preencha a tabela abaixo, colocando na coluna **Erro** o erro absoluto da aproximação obtida, usando como solução exata o valor $e^2 \approx 7.389$.

k	x_k	$f(x_k)$	$f'(x_k)$	Erro
0				
1				
2				
3				

(b) 5 Porque a velocidade de convergência é lenta?

Questão 3 20

Considere a seguinte série

$$S = \sum_{k=0}^{\infty} \frac{5^k (k!)^3}{(3k)!}$$

Descreva um algoritmo (faça o pseudo-código) para o cálculo dessa série de uma maneira eficiente. Seu algoritmo não deve ter nenhuma entrada (i.e., não use um número máximo de iterações).

Considere o seguinte algoritmo.

ALGORITMO

Entrada: x e b naturais, x > 0 e b > 1

- 1. Inicialize: V uma lista vazia
- 2. Enquanto x != 0
- 2.1 r = x % b # resto da divisao
- 2.2 Guarde r no comeco de V
- 2.3 x = floor(Int, x / b) # divisao inteira, ignore o resto
- 3. Fim

Saida: V

- (a) $\boxed{6}$ Rode o algoritmo acima na mão para x=7 e b=3 e também para x=293 e b=4. Evidencie os valores intermediários.
- (b) $\boxed{7}$ Se $b \ge 2$, quais as saídas dos seguintes casos: (i) $0 \le x < b$; e (ii) $x = b^k$ para algum k > 1. Justifique.
- (c) Tonsidere que o algoritmo foi rodado para um certo x e b e a saída é $V = [v_1, v_2, v_3, \dots, v_k]$. Qual será a saída do algoritmo se for rodado com bx? Justifique.

Considere a integral $\int_{1}^{2} \ln x dx$.

- (a) $\boxed{10}$ Calcule uma aproximação para essa integral usando o método do trapézio repetido com h=0.2. Calcule o erro sabendo que o valor exato dessa integral é 0.3863. Use 4 casas decimais.
- (b) $\boxed{10}$ Qual o mínimo de intervalos para se obter um erro menor que 10^{-4} ?

Dica:

$$\int_{x_0}^{x_n} f(x) dx = \frac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right] - \frac{h^2(b-a)}{12} f''(\mu).$$