

VERY
OPTIONAL

Log-likelihood function

Goal: choose coefficients w maximizing likelihood:

$$\ell(\mathbf{w}) = \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

Math simplified by using log-likelihood – taking (natural) log:

$$\ell\ell(\mathbf{w}) = \ln \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

The log trick, often used in ML...

- Products become sums:
- Doesn't change maximum!
 - If w maximizes f(w):

```
\hat{w} = \underset{w}{\operatorname{arg max}} f(w)
the w that makes f(w) largest

Then \hat{\mathbf{w}}_{ln} maximizes \ln(f(\mathbf{w})):
\hat{w}_{ln} = \underset{w}{\operatorname{arg max}} \ln(f(w))
\hat{w} = \hat{\omega}_{ln}
```


Expressing the log-likelihood

Using log to turn products into sums $\lim_{h \to \infty} \int_{\mathbb{R}^n} f_h = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f_h$

$$\ln \iint_{G} f_{i} = \sum_{i=1}^{N} \ln F_{i}$$

The log of the product of likelihoods becomes the sum of the logs:

$$\ell\ell(\mathbf{w}) = \ln \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

$$= \sum_{i=1}^{N} \ln P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

Rewriting log-likelihood

For simpler math, we'll rewrite likelihood with indicators:

$$\ell\ell(\mathbf{w}) = \sum_{i=1}^{N} \ln P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

$$= \sum_{i=1}^{N} \left[\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = -1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w}) \right]$$

$$\downarrow \mathbf{y}_{i=1}$$

$$\downarrow \mathbf{y}_{i=1}$$

Deriving probability that y=-1 given x

58

Logistic regression model: P(y=-1|x,w)

• Probability model predicts y=+1:

$$P(y=+1|x,w) = \frac{1}{1 + e^{-w^{T}h(x)}}$$

• Probability model predicts y=-1:

$$P(y=-1|X,w) = 1 - P(y=+1|X,w) = 1 - \frac{1}{1+e^{-w\tau h(x)}}$$

$$= \frac{1+e^{-w\tau h(x)}}{1+e^{-w\tau h(x)}} = \frac{e^{-\omega\tau h(x)}}{1+e^{-\omega\tau h(x)}}$$

Rewriting the log-likelihood

61

Plugging in logistic function for 1 data point

$$P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}} \qquad P(y = -1 \mid \mathbf{x}, \mathbf{w}) = \frac{e^{-\mathbf{w}^{\top} h(\mathbf{x})}}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$$

$$\ell\ell(\mathbf{w}) = \mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = -1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})$$

$$= \mathbb{1}[y_i = +1] \ln \frac{1}{1 + \ell^{-\sqrt{1}}h(x_i)} + \left(1 - \mathbb{1}[y_i = +1]\right) \ln \frac{e^{-\omega^{-1}h(x_i)}}{1 + \ell^{-\omega^{-1}h(x_i)}}$$

$$= -\mathbb{1}[y_i = +1] \ln (1 + e^{-\sqrt{1}h(x_i)}) + \left(1 - \mathbb{1}[y_i = +1]\right) \left[-\omega^{-1}h(x_i) - \ln (1 + e^{-\omega^{-1}h(x_i)})\right]$$

$$= \mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= -\mathbb{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbb{1}[y_i = +1]$$

$$= - (1 - 1)(y_i = +1)) wth(x_i) - ln(1 + e^{-wth(x_i)})$$
Simpler form

Ine = a

$$I(y_{i=-1}) = 1 - A(y_{i=+1})$$

$$In \frac{1}{1+e^{-\omega \tau h(x_{i})}} = -In(I+e^{-\omega \tau h(x_{i})})$$

$$In \frac{e^{-\omega \tau h(x_{i})}}{1+e^{-\omega \tau h(x_{i})}} = In(I+e^{-\omega \tau h(x_{i})})$$

$$In e^{-\omega \tau h(x_{i})} - In(I+e^{-\omega \tau h(x_{i})})$$

$$Log = 1 - A(y_{i})$$

$$In e^{-\omega \tau h(x_{i})}$$

$$Log = 1 - A(y_{i})$$

$$Log = 1 - A(y_{$$

Machine Learning Specialization

Deriving gradient of log-likelihood

Gradient for 1 data point

$$\ell\ell(\mathbf{w}) = -(1 - \mathbb{1}[y_i = +1])\mathbf{w}^{\top}h(\mathbf{x}_i) - \ln\left(1 + e^{-\mathbf{w}^{\top}h(\mathbf{x}_i)}\right)$$

$$\frac{\partial \ell \ell}{\partial w_{j}} = -\left(1 - 1 \left[y_{i} = +1 \right] \right) \frac{\partial}{\partial w_{j}} w^{T} h(x_{i}) - \frac{\partial}{\partial w_{j}} \ln\left(1 + \ell^{-w^{T}} h(x_{i})\right)$$

$$= -\left(1 - 1 \left[y_{i} = +1 \right] \right) h_{j}(x_{i}) + h_{j}(x_{i}) P(y = -1 \mid x_{i}, w)$$

$$=h_{j}(x_{i})\left[1|[y_{i}=+i]-P(y_{i}=+i]|x_{i},w)\right]$$

$$\frac{\partial}{\partial u_{j}} w^{T}h(x_{i}) = h_{j}(y_{i})$$

$$\frac{\partial}{\partial u_{j}} \ln \left(1 + e^{-w^{T}h(x_{i})}\right)$$

$$= -h_{j}(y_{i})$$

$$\frac{e^{-w^{T}h(x_{i})}}{1 + e^{-w^{T}h(x_{i})}}$$

$$P(y_{i} = -1|x_{i}, w_{i})$$

Finally, gradient for all data points

Gradient for one data point:

$$h_j(\mathbf{x}_i) \Big(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) \Big)$$

Adding over data points:

$$\frac{\partial \ell\ell}{\partial \omega_{j}} = \frac{N}{\sum_{i=1}^{N} h_{j}(x_{i}) \left(1 \sum_{i=1}^{N} -P(y=+1|X_{i},\omega) \right)}$$