3-20 40049 N92-100476

Appendix F

LLNL - Contributions to MPD Thrusters for SEI

LH075075

MPD Thruster Technology Workshop NASA, Washington, D.C.

E. Bickford Hooper

May 16, 1991

LLNL CAN CONTRIBUTE TO MPD THRUSTER DEVELOPMENT FOR SEI

Near term:

- Modeling of MHD characteristics using the TRAC code, which has been benchmarked against the RACE experiment at LLNL
- Application of tokamak "divertor" physics
 - Modeling of atomic plasma interactions (gas penetration, ionization, excitation, radiation) using the Brahms and Degas codes
 - o Measurements of MHD and atomic effects
 - o Modeling of erosion/sputtering and redeposition of refractory materials
- Remote measurements of density, temperature, magnetic field using fusion diagnostics

These contributions can best be made in collaboration with ongoing experiments

Long term:

· High power tests for lifetime validation using the MFTF-B facility

COMPARISON OF TANGENTIAL H_{α} DATA WITH DEGAS

The MFE community has developed considerable expertise in plasma-induced erosion/redeposition

- Computer codes such as REDEP are used to predict net erosion including redeposition effects
- These calculations are benchmarked against measurements in tokamaks and off-line simulation facilities

KLW051391A

PROPOSED THRUSTER LIFETIME TEST FACILITY

MFTF-B: Size 35' diameter by 200' long
 1000 m3 of cryopanels
 11 kW of LHe cooling available for pumping

500 kW closed loop LN2 system

250 MVA power line

• Example test conditions: mass flow = 0.4 g/s (thruster power = 1 MW at $v = 7x10^4$ m/s)

Pumping speed

67x106 liters/s, D2

67x106 (4/A)1/2 liters/s,

Mass A

Equilibrium pressure

Hydrogen

5.2x10-5 torr

Argon

1.6x10-4 torr

The RACE experiment test the basic concepts of ring acceleration

RACE program summary

Goals	Predictions		Results to Date
Demonstrate ring formation	Magnetic energy	2–40 kJ	2–10 kJ
	Mass	5–500 microgram	5–500 microgram
	Length	70 cm	50–100 cm
Demonstrate acceleration in linear coaxial system	Velocity	1-2 x 10 ⁸ cm/sec	1–3 x 10 ⁸ cm/sec
	Energy	Up to 100 kJ	50 20 kJ*
	Efficiency	0.4	0.3–0.4
	U _{kinetic} /U _{magnetic}	5	10
Demonstrate ring focusing	R _{focus} /R ₀ ~	1/5	-1/3

ORIGINAL PAGE IS OF POOR QUALITY

For these calculations HAM:

- 1. Calculates the initial poloidal field allowing for diffusion through conducting electrodes
- 2. Calculates the time-dependent gas density distribution from an injected puff of gas
- 3. Calculates gas breakdown and plasma ring formation using the gun capacitor bank parameters

Flux contours for HAM simulation

MG-L-U 6164 13

2D MHD simulations agree with the experimentally observed current

PT-1005-U 4946

20-A-1090-0340C

TRAC (Two-dimentional Ring Acceleration Code) has been used to model the RACE pre-compressor

0.5 Z (m) 2.05 2.97

ស្រាមការប្រទេ

20-A-0490-0124

Comparison with shot 5554 cont'd B_Z vs. t at different locations in straight section

20-A-0490-01248

(Vertical offsets of Bp probe signals proportional to axial location)

2G-A-1090-0340B

CT in quasi-static pressure balance during compression in conical electrodes

(Accelerator field proportional to poloidal field at 0.43 m for three gun conditions, consistent with line predicted by TRAC code.)

20-A-1090-0340A

An Alternate Application of MPD Arc Sources: Plasma "Tethers" for Tapping the Solar Wind EMF for Power > 10 MW

Plasma plumes generated by MPD arc sources can extend of order 1000 km across the solar wind magnetic field. The electric field, $\mathbf{E} = \mathbf{u_{wind}} \times \mathbf{B}$, gives a voltage drop along the plume, and currents are induced as in the AMPTE artificial comet experiments.

The available power is:

$$P = 2 M_p v_p v_A$$
 $M_p = mass ejection rate $v_p = plume velocity.$ $v_A = Alfven velocity$$

An example:

$$M_D = 10 \text{ g/sec}$$
, $v_D = 60 \text{ km/sec}$, $v_A = 80 \text{ km/sec}$, $P = 100 \text{ MW}$

The power could drive thrusters with a specific impulse of about 3000 sec.

A lunar power station could extract large amounts of power since there is unlimited available mass. The energy extracted is about 10^{10} Joules/kG

Plasma "Tethers" generate a bow shock in the supersonic solar wind Plasma Bow shock Plasma plume

Fragre 1

The plane in cross-section

60-2-0491-0021-1

A conceptual solution for self-sustaining, Plasma guns / Harusters

Figure 3

3-0491-0001-3

The Plume Power Extraction is a function of the dimensionless ratio k_p/k_z^2

Figure 5

60-X-0491-0021-4

The load impedance is a function of R_p^2/R_z^2 and is of order $Z \approx Z_0 = p_0 V_A$ $V_A = Solar wind$ $Z \approx Z_0 = p_0 V_A$ Effect of plume spreading

Effect of power convective loss

Choosing $Z = Sots = \frac{1.4}{k_T^2} \cdot \frac{1.5}{k_T^2} \cdot \frac{1.8}{g} \cdot \frac{1.5}{k_T^2} \cdot \frac{1.5}{g}$ Choosing $Z = Sots = \frac{1.5}{k_T^2} \cdot \frac{1.5}{k_T^2} \cdot \frac{1.5}{g}$

Figure 6

80-Y-0491-0021-5

Conclusion: LLNL has extensive expertise in physics and technology relevant to MPD thruster development

Areas in which we could contribute include:

Modeling of atomic physics, plasma surface interactions and 2D MHD flows

Results from ongoing high-power plasma accelerator experiments (RACE)

Plasma diagnostics

High pumping speed test stand for lifetime validation studies (MFTF-B)