LC 4: OSMOSE

EI : Dessalement de l'eau de mer

Timothée Audinet, Gabriel Balavoine

Introduction pédagogique

- Bibliographie :
 - 1. Dunod, PC-PC*, Fosset
 - 2. Brénon-Audat, Thermodynamique chimique
 - 3. TI W5700, Dessalement de l'eau de mer
- Niveau: L2
- Pré-requis :
 - 1. Potentiel chimique (définitions, expressions, équilibres...) [L2]
 - 2. Identité d'Euler, Grandeur molaire partielle [L2]
 - 3. Lois de l'hydrostatique [L1]
- Objectifs:
 - 1. Faire comprendre aux élèves comment a lieu le déplacement de matière durant un phénomène d'osmose
 - 2. Qu'ils soient capable de prédire et mesurer une pression osmotique
 - 3. Qu'ils comprennent bien les différentes applications
- Difficultés :
 - 1. Lors du calcul prendre en compte tous les constituants
 - 2. Comprendre le sens de déplacement du solvant
 - 3. Bien penser à mettre toutes les unités en SI

Mise en évidence du phénomène

https://www.youtube.com/watch?v=IsBaWQjF2TY

Principe

Figure 1: Visualisation de la pression osmotique (Atkins)

Dessalement de l'eau de mer

https://www.youtube.com/watch?v=IsBaWQjF2TY

Composition de l'eau de mer :

Soluté			$MgSO_4$		
Concentration (g/L)	27,2	3,8	1,7	1,3	0,9

Simplification : Solution de chlorure de sodium (NaCI) à 35 g/L

Osmose dans le milieu médical

Figure 2: L'osmose et les cellules vivantes

 $https://www.google.fr/books/edition/Chimie_des_solutions/z HMxdFZPm3MC?hl=fr\&gbpv=1\&printsec=frontcover, page 36$