

Chapter 7 – Celestial navigation

H. Lichtenegger

7 Celestial navigation / Initial remarks

- Definition
- Motivation
- Presentation
- Contents
 - 7.1 Introduction
 - 7.2 Astronomical fundamentals
 - Coordinate systems
 - -Definitions
 - Transformations
 - Time systems
 - Definitions
 - -Conversions
 - 7.3 Astrofix by measured altitudes
 - 7.4 Star tracker

7 Celestial navigation (1)

7.1 Introduction

- Historical review
 - Antique times
 - Medieval times
 - -Latitude
 - Longitude
- Present time
 - Marine navigation
 - Space navigation
- Future

"From Argonauts to Astronauts"

7 Celestial navigation (2)

Quotations

"Marine navigators should still keep a **sextant** in good working order and know how to use it."

Langley R, GPS World 11(10)

"Every textbook on navigation should include a chapter on astronavigation."

Hofmann-Wellenhof et al. (2004), Navigation – principles of positioning and guidance

7 Celestial navigation (3)

7.2 Astronomical fundamentals

- Coordinate systems (1)
 - General remarks
 - Mathematical fundamentals
 - Direction vectors (→ unit vectors)
 - Celestial sphere
 - Mathematical calculus
 - Definitions
 - Origin
 - Orientation
 - Equatorial systems
 - -Local-level system

7 Celestial navigation (4)

- Coordinate systems (2)
 - Defining axes and parameters
 - Celestial (equatorial) system
 - Earth rotation axis, intersection of ecliptical and equatorial plane (direction to vernal equinox)
 - -Right ascension (α), declination (δ)
 - Terrestrial (equatorial) system
 - Earth rotation axis, intersection of Greenwich meridian and equatorial plane
 - -Hour angle (t_0) , declination (δ)
 - Local-level system
 - Direction of the zenith, north direction
 - Azimuth (a), zenith distance (z) or elevation Note that latitude Φ and longitude Λ are the equatorial parameters of the zenith direction (i.e. local plumb line).

7 Celestial navigation (5)

- Coordinate systems (3)
 - Graphical representation

7 Celestial navigation (6)

- Coordinate systems (4)
 - Transformations (1)
 - Celestial and terrestrial (equatorial) system
 - -Greenwich meridian

$$\mathbf{r}^e = \mathbf{R}_3(\Theta_0)\mathbf{r}^i$$
 or $\Theta_0 = \alpha + t_0$

-Local meridian

$$\Theta = \Theta_0 + \Lambda$$
 and $t = t_0 + \Lambda$

7 Celestial navigation (7)

- Coordinate systems (5)
 - Transformations (2)
 - Terrestrial (equatorial) and local-level system
 - -Vector calculus

$$\mathbf{r}^{l} = \mathbf{R}_{e}^{l} \mathbf{r}^{e}$$
 , $\mathbf{R}_{e}^{l} = \mathbf{R}_{e}^{l} (\Phi, \Lambda) = \begin{bmatrix} \mathbf{n}^{T} \\ \mathbf{e}^{T} \end{bmatrix}$

$$\sin z \cos a = \mathbf{n} \cdot \mathbf{r}^e = -\sin \Phi \cos \delta \cos t + \cos \Phi \sin \delta$$

$$\sin z \sin a = \mathbf{e} \cdot \mathbf{r}^e = -\cos \delta \sin t$$

$$\cos z = \mathbf{u} \cdot \mathbf{r}^e = -\cos \Phi \cos \delta \cos t + \sin \Phi \sin \delta$$

Spherical trigonometry(nautical or navigational triangle *PZS*)

7 Celestial navigation (8)

- Coordinate systems (6)
 - Main tasks of celestial navigation

$$\mathbf{r}^{l} = \mathbf{R}_{e}^{l}(\Phi, \Lambda)\mathbf{r}^{e}$$

Rotation matrix

- (→ position)
- Local-level direction vector (→ constellation)
- Equatorial direction vector (→ identification)
- Differential relations
 - Application
 - -Linearization
 - Graphical interpretation ("line of position")
 - Examples

```
dz = -\cos a \, d\Phi - \sin a \cos \Phi \, dt
da = \sin a \cot z \, d\Phi + (\sin \Phi - \cos a \cot z \cos \Phi) \, dt
```

7 Celestial navigation (9)

- Time systems
 - General remarks
 - Definitions
 - Solar times
 - Sidereal times
 - Transformations
 - Local and Greenwich times
 - Universal Time (UT) und Greenwich Sidereal Time (GST)

$$\Theta_{\rm o} = 1.0027379093 \text{ UT} + \vartheta_{\rm o}$$

$$\vartheta_{o} = 24110.54841^{s} + 8640184.812866^{s} T + 0.093104^{s} T^{2} + \dots$$

The parameter T is the time interval (expressed in Julian centuries) between the standard epoch J2000.0 and the day of observation at 0^h UT.

- Calendar computations
 - Civil date versus Julian date
 - Auxiliary dates

7 Celestial navigation (10)

7.3 Astrofix by measured altitudes

- General remarks
- Measurement of altitudes
 - Sextant
 - Basic principle
 - -http://www.mat.uc.pt/~helios/Mestre/Novemb00/H61iflan.htm
 - Systematic errors
 - Practical hints
 - Observation period
 - Optimal configuration
 - -Identification
 - –Accuracy
 - Observations
 - Results

7 Celestial navigation (11)

Mathematical model

Definition

$$\mathbf{r}_1 \cdot \mathbf{u} = \cos z_1$$
$$\mathbf{r}_2 \cdot \mathbf{u} = \cos z_2$$
$$\mathbf{u} \cdot \mathbf{u} = 1$$

- Solution
 - -Rigorous solution

$$\mathbf{u} = \frac{1}{\mathbf{g} \cdot \mathbf{g}} \left[\mathbf{g} \times \mathbf{h} \pm \sqrt{\mathbf{g} \cdot \mathbf{g} - \mathbf{h} \cdot \mathbf{h}} \mathbf{g} \right]; \ \mathbf{g} = \mathbf{r}_1 \times \mathbf{r}_2; \ \mathbf{h} = \cos z_2 \mathbf{r}_1 - \cos z_1 \mathbf{r}_2$$

- Linearization by redundant observations
- Solution using LOPs
 - Analytical solution
 - Graphical solution
- Numerical example

7 Celestial navigation (12)

7.4 Star tracker

- General remarks
- Star sensorwww.ball.com/aerospacewww.llnl.gov/sensor_technology
- Mathematical model
 - Position $\mathbf{r}^b = \mathbf{r}^l = \mathbf{R}_e^l(\Phi, \Lambda) \mathbf{r}^e$
 - Attitude $\mathbf{R}_{e}^{l}(\Phi,\Lambda) \mathbf{r}^{e} = \mathbf{r}^{l} = \mathbf{R}_{b}^{l}(\alpha_{1},\alpha_{2},\alpha_{3}) \mathbf{r}^{b}$
- Reduction of star coordinates
 - Apparent positions
 - Mean positions

7 Celestial navigation (13)

References

- Astronomical Applications Department of the U.S. Naval Observatory (2001): Multiyear Interactive Computer Almanac (MICA)), http://aa.usno.navy.mil.
- Eisenbart M (2003): Nautic Tools, www.nautictools.de.
- Lichtenegger H (2003): Celestial navigation. In: B. Hofmann-Wellenhof, K. Legat, M. Wieser: Navigation principles of positioning and guidance, Springer Wien, 121-137.
- Lichtenegger H (2003): Astrogeodätische Grundlagen. Lecture notes (PowerPoint presentation in German), <u>www.posnav.tugraz.at</u>.
- National Imagery and Mapping Agency (1995): The American practical navigator. Publication no. 9, Bethesda, Maryland ("The Bowditch", http://pollux.nss.nima.mil/pubs).
- Stein W, Kumm W (1997): Astronomische Navigation, 10. Auflage, Klasing, Bielefeld.