Aufgabe 1

a) Geben Sie ein Beispiel für eine nicht stetige Funktion f über cpo's an.

Idee von Tobi:

Definition der Stetigkeit aus VL: Seinen A und B cpo's

Eine Funktion $f: A \to B$ heißt **stetig**, wenn f(K) eine Kette in B ist und $f(\bigcup K) = \bigcup f(K)$ für alle $K \subseteq A$ mit K ist Kette in A.

Noch ein Blick auf die Kette:

K ist Kette, wenn zu je zwei $k_1, k_2 \in K$ gilt: $k_1 \sqsubseteq_A k_2$ oder $k_2 \sqsubseteq_A k_1$.

Also der Vorgänger steht mit dem Nachfolger oder der Nachfolger steht mit dem Vorgänger irgendwie in Relation.

Also sowas wie $f(x) = x \mod 2$ mit $x \in \mathbb{N}$ sollte dem Widersprechen, oder?

Hinnerk: Was ist mit sowas:

cpo:
$$(\mathbb{N}, \leq)$$

 $f(x) = \begin{cases} 1, & \text{wenn } x = 42 \\ x, & \text{sonst} \end{cases}$

b) Beweisen Sie, dass die Komposition stetiger Funktionen wieder eine stetige Funktion ergibt.

Idee von Tobi: na dit is relativ simple im Kopf, aber unklar wie ich es aufschreibe..

Skizze: Seien f und g stetige Funktionen und A, B und C cpo's und der \circ -Operator steht - wie üblich - für die Komposition:

$$f:A\rightarrow B$$

$$g:B\rightarrow C$$
 also ist
$$f\circ g:(A\rightarrow B)\rightarrow C=A\rightarrow C$$
 ebenfalls stetiq!

Aufgabe 2

a) Zeigen Sie, wie Sie zu gegebenen cpos $D_1,...,D_n$ mit $n \ge 2$ den Bereich der disjunkten Vereinigung $(D_1 + ... + D_n)$ erklären können, ohne die minimalen Elemente zu verschmelzen.

Idee: Bei der Vereinigung disjunkter cpos wird der entstehende Wertebereich so groß, wie der gemeinsame Wertebereich aller cpos mit zusätzlich einem weiteren Element: ein gemeinsames \bot (es kann ja kein Element \bot sein, dass vorher schon in der Menge enthalten war, da die cpos disjunkt waren).

b) Definieren Sie folgende Injektions-, Projektions- und Testfunktionen in kanonischer Weise:

$$in_i: D_i \to (D_1 + ... + D_n)$$
 für alle $1 \le i \le n$
 $out_i: (D_1 + ... + D_n) \to D_i$ für alle $1 \le i \le n$
 $is_i: (D_1 + ... + D_n) \to BOOL_{\perp}$ für alle $1 \le i \le n$

Aufgabe 3

Definieren Sie stetige Erweiterungen der Addition und des Tests auf Gleichheit, so dass diese Operationen total werden auf den cpo's \mathbb{N}_{\perp} und $BOOL_{\perp}$. Diskutieren Sie, ob es mehrere solche Erweiterungen gibt. **Idee von Tobi:** Irgendwie macht das nicht viel Sinn mit dem Bool und der Addition

Es sollen +, = erweitert werden, sodass $(\mathbb{N}_{\perp}, +)$, $(BOOL_{\perp}, +)$ und $(\mathbb{N}_{\perp}, =)$, $(BOOL_{\perp}, =)$ neben relexiv, transitiv und antisymetrisch auch noch total sind.

Soweit ich heraus bekommen habe ist "total werdenëine Umschreibung von Kette bilden.

Aufgabe 4

Seien D_1 und D_2 cpo's und auf $f:D_1\to D_2$ und $d:D_2\to D_1$ stetige Funktionen. Beweisen Sie:

$$fix_{f \circ g} = f(fix_{g \circ f})$$
 und
 $fix_{g \circ f} = g(fix_{f \circ g})$