DML Unit-2

>> Linies Regardion -> supervised Learning base on

· Simple linteus Regaution:Multiple Lineus Regaution

- amulysis.
- The makes Predictions for continuous (read or numeric variables such as sales, salary, age, product, present.

(3)

→ L-R Algo show a linear relationship between a dependent Variable and one or more independen variable its called L.R.

y = 00+4,x+E

J=mx+c

A types of L.R

- simple: - If a single independent variable is used to predict the value of numerical restrict dependent the character (arrable, then such a L.R is called simple

xi = Reg. Coefficient Xi = Independent * walti ('6

Predict the value of numerical dependent variable

* L.R line y= x0+ x,x,+ x2x2+ --- + xmxm

A linear line showing the relationship between the dependent and independent variable is called reline.

two tyre relutionship:

- Positive L. Rline
- Negativelik line

Positive=) y 1

- dependent variable
- independent on XX

y -ve

- derendent de creaves on y
- independen moneysey onx

0

$$\alpha = \frac{1}{\nu(\xi x_3) - (\xi x)(\xi x)}$$

$$b = \frac{(\Sigma y)(\Sigma x^2) - (\Sigma x)(\Sigma xy)}{n(\Sigma x^2) - (\Sigma x)^2} = \frac{1}{n} \left[\Sigma(y) - \Sigma x \cdot \alpha \right]$$

* WAE (mean of propriée (2002)

* MSE (menn 22 nagg 62202)

$$=\frac{1}{N}\sum_{i=1}^{N}\left(y_{i}-\hat{y}_{i}\right)^{2}$$

* RMSE (Root Meun squard Power)

coefficient determinent of
$$g$$

$$R^2 = \frac{\sum (y-y)^2}{\sum (y-y)^2} = R^2$$

ie x	71	x.y)	×2/	2.8	5.2 h	= 4	0.4
2	4	8	4	5.4	0.1	1= 0~	+ 6
3	5	28	16	6.7	0.3		- 0
Tx= 10 8	19'	54	30		1		

(3)

$$\alpha = \frac{1}{2} \left(\frac{1}{2} \right)$$
 $\alpha = \frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{1}{2}$

$$= \frac{4(54) - (10)(19)}{4(30) - (10)^2} = \frac{216 - 190}{120 - 100}$$

$$= \frac{26}{20} = \frac{13}{70} \sqrt{13}$$

$$b = \frac{1}{m} \left[\Sigma(y) - \Sigma(x), 4 \right]$$

$$= \frac{1}{4} \left[(y) - (10)(1.3) \right]$$

* bregution x 00 7

80

* Stander coros of estimet $= \sqrt{\frac{\Sigma(\hat{y}-y)^2}{\Sigma(n_2)}}$

(y-g) 0.04 0.01 0.16

2 Voil

* MAT (meun Absult Am)

	,	× ,									
	Roll. no	Maths	ML	2.4	x2 \	9 1	(7-9)	(ゼーケ)	(4-4)2		
	2	95	85	8075	9025	859	2.1	8	64		
, = ,	3	85	20	8072	7225	79.46	15.54	18	324		
104		80	70	5600	6400	77.77	-7.7	-7	49		
= 385	4 5	70	65	4550	4900	44.17	-4.17	-12	144		
-77		60	70	4200	4200	70.64	-0.64	1-7	49		
x=390 5	- James	390	385	30,500	31,150	10.04	5.13	0	630		
78							1000	1	1,		
$ \frac{q=5(30500)-(390)(385)}{5(31750)-(390)^2} b=\frac{1}{5} \left[385-(390)(0.353)\right] $											
$= \frac{152500 - 150150}{158750 - 152100} = \frac{1}{5} \left[385 - 137.67 \right]$											
	= 235\$			=	247,	33					
	6650				5						
0					= 49.4	66					
1	66 <i>5</i> 0-3 <i>5</i> 3				(4	- 427 -427	(Y	-3,2			
	0 00 0					5.9 34.	81/ 4.1	4)			
J= 9x+6 2.46 6.05 241.49									•		
• R	2 = 30-	Ê-it)]	to	1:1	4096 4) ² =3	22.9796					

•
$$R^2 = \frac{1}{1-\frac{\Sigma(y_1-\hat{y})^2}{\Sigma(y_1-\hat{y})^2}}$$

$$= \frac{1}{1 - \frac{(322.97)}{630}}$$