Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales Departamento de Matemática

Licenciatura en Ciencias de la Computación

Álgebra y Geometría Analítica II (2016)

Divisibilidad

- 1. Sean $a, b, c \in \mathbb{Z}$. Probar las siguientes afirmaciones.
 - a) Para todo $a, a \mid 0$. En particular, $0 \mid 0$.
 - b) Para todo $a \neq 0, 0 \nmid a$.
 - c) Si ab = 1, entonces a = b = 1 o a = b = -1.
 - d) Si $a \neq 0$, $b \neq 0$, $a \mid b \mid a$, entonces $a = \pm b$.
 - e) Si $a \neq 0$, $a \mid b \neq a \mid c$, entonces $a \mid (b+c) \neq a \mid (b-c)$.
 - f) Si $a \neq 0$, $a \mid b \neq a \mid (b+c)$, entonces $a \mid c$.
 - g) Si $a \neq 0$ y $a \mid b$, entonces $a \mid bc$.
- 2. Probar las siguientes propiedades.
 - a) 0 es par.
 - b) 1 es impar.
 - c) Si a es par y $a \mid b$, entonces b es par. Por tanto, si a es par, entonces -a también lo es.
 - d) La suma de dos números pares es par. Por lo tanto, la suma de una cantidad cualquiera de números pares es un número par.
 - e) La suma de dos números impares es impar.
 - f) La suma de un número par y un número impar es impar.
- 3. Sea $n \in \mathbb{Z}$.
 - a) Probar que n es par si y sólo si n^2 es par.
 - b) Probar que n(n+1) es par.
- 4. —Pensá un número de dos cifras, que no sean iguales.
 - —Ya está (57).
 - —Invertí el orden de las cifras.
 - —Ya está (75).
 - —El nuevo número, ¿es mayor o menor que el primero?
 - —Mayor.
 - -Entonces restá al nuevo número el que pensaste primero.
 - —Ya está (75 57 = 18).
 - —Ahora sumá las cifras del número que obtuviste al principio.

- —Ya está (5+7=12).
- —Decime los dos números que obtuviste.
- —18 el primero y 12 el segundo.
- —(Calcula: 18/9 = 2, (12-2)/2 = 5, (12+2)/2 = 7.) Pensaste en el 57.

Explicar cómo es el truco y por qué siempre funciona.

- 5. Probar que para todo $n \in \mathbb{N}$,
 - a) $2^{2n-1} \cdot 3^{n+2} + 1$ es divisible por 11;
 - b) $3^{4n+2} + 2 \cdot 4^{3n+1}$ es múltiplo de 17;
 - c) $3^{2n+2} 8n 9$ es divisible por 64.
- 6. Hallar el cociente y el resto de la división de:
 - i) 135 por 23,
- ii) -135 por 23,
- iii) 135 por -23,
- iv) -135 por -23, v) -98 por 73,
- vi) -98 por -73.
- a) Si $a = b \cdot q + r$ con $b \le r < 2b$, ¿cuáles son el cociente y el resto de la división de a por b?
 - b) Repetir el ítem anterior suponiendo que $-b \le r < 0$.
- 8. Expresar 1810, 1816 y 1972 en bases b = 3, 5, 7, 11.
- 9. Expresar en base 10 los siguientes enteros.
 - i) $(1503)_6$,
- ii) $(11111)_2$,
- iii) $(1111)_{12}$,
- iv) $(123)_4$,

- v) $(12121)_3$, vi) $(1111)_5$,
- vii) $(A13F)_{16}$,
- viii) $(A2DFE)_{16}$.
- 10. Dar todos los números primos positivos menores que 100.
- 11. Encontrar mcd(a, b), expresarlo como combinación lineal de a y b y encontrar mcm(a, b) para
 - i) a = 14, b = 35, ii) a = 11, b = 15, iii) a = 12, b = 52

- iv) a = 12, b = -52, v) a = 12, b = 532, vi) a = 606, b = 108.
- 12. Encontrar mcd(7469, 2464), mcd(2689, 4001), mcd(2447, -3997).
- 13. Encontrar mcd(0, a) para un entero $a \neq 0$.
- 14. Probar que 3 es primo.
- 15. Probar que no existen enteros a y b tales que a + b = 100 y mcd(a, b) = 3.
- 16. Probar que si mcd(a, b) = 1 y n + 2 es un número primo, entonces $mcd(a + b, a^2 + b^2 nab)$ es 1 o n+2.
- 17. Probar que mcd(a+b, mcm(a,b)) = mcd(a,b). En particular, si dos números son coprimos, también lo son su suma y su producto.
- a) Probar que el producto de tres enteros consecutivos es divisible por 6. 18.
 - b) Probar que el producto de cuatro enteros consecutivos es divisible por 24.

- 19. Demostrar que para todo n > 2 existe un primo p tal que n . Ayuda: pensar qué primos dividen a <math>n! 1.
- 20. Existen enteros m y n tales que:

i)
$$m^4 = 27$$
, ii) $m^2 = 12n^2$, iii) $m^3 = 47n^3$?

- 21. Mostrar que 725 y 441 son coprimos y encontrar enteros m, n tales que $1 = m \cdot 725 + n \cdot 441$.
- 22. Probar que $\sqrt{6}$ es irracional.
- 23. Probar que $2^{3n+4} + 7^{3n+1}$ es divisible por 9 para todo $n \in \mathbb{N}$, n impar.
- 24. Probar que para todo $n \in \mathbb{Z}$, $n^2 + 2$ no es múltiplo de 4.