Theory of concurrency

Lecture 8

Concurrency

- Let *P* and *Q* be processes intended to run concurrently, and
 - P sat S(tr) and Q sat T(tr).
- Let tr be an arbitrary trace of $(P \parallel Q)$.
 - $(tr/\alpha P)$ is a trace of P by L1
 - it satisfies $S: S(tr \land aP)$
 - $(tr \wedge aQ)$ is a trace of Q by L1
 - it satisfies $T: T(tr \land aP)$
- This argument holds for every trace of $(P \parallel Q)$, hence
 - $(P \parallel Q)$ sat $(S(tr \land aP) \land T(tr \land aQ))$
- This reasoning is summarised in the law
- **L1.** If P sat S(tr) and Q sat T(tr) then $(P \parallel Q)$ sat $(S(tr \upharpoonright aP) \land T(tr \upharpoonright aQ))$

$$VMSPEC = NOLOSS \land FAIR1 = (0 \le ((tr \downarrow coin) - (tr \downarrow choc)) \le 1)$$

$$VMS = (coin \rightarrow (choc \rightarrow VMS))$$

```
X1. Let aP = \{a, c\} and aQ = \{b, c\}
• P = (a \rightarrow c \rightarrow P) and Q = (c \rightarrow b \rightarrow Q)
```

- We wish to prove that
 - $(P \parallel Q)$ sat $0 \le tr \downarrow a tr \downarrow b \le 2$
- The proof of *VMS* sat *VMSPEC* (the next slide) can be adapted to show that
 - $P \operatorname{sat} (0 \le tr \downarrow a tr \downarrow c \le 1)$ and $Q \operatorname{sat} (0 \le tr \downarrow c tr \downarrow b \le 1)$
 - *Why?*
- By L1 it follows that

```
(P \parallel Q) sat (0 \le (tr \land \alpha P) \downarrow a - (tr \land \alpha P) \downarrow c \le 1 \land 0 \le (tr \land \alpha Q) \downarrow c - (tr \land \alpha Q) \downarrow b \le 1) \Rightarrow 0 \le tr \downarrow a - tr \downarrow b \le 2 [since (tr \land A) \downarrow a = tr \downarrow a if a \in A.]
```

$$VMSPEC = NOLOSS \land FAIR1 = (0 \le ((tr \downarrow coin) - (tr \downarrow choc)) \le 1)$$

$$VMS = (coin \rightarrow (choc \rightarrow VMS))$$

X1. Prove that VMS sat VMSPEC

- 1. $STOP \text{ sat } tr = \langle \rangle$ [L4A] $\Rightarrow 0 \le (tr \downarrow coin = tr \downarrow choc) \le 1$ [since ($\langle \rangle \downarrow coin$) = ($\langle \rangle \downarrow choc$) = 0] • The conclusion follows by an (implicit) appeal to L3.
- 2. Assume X sat $(0 \le ((tr \downarrow coin) (tr \downarrow choc)) \le 1)$, then $(coin \rightarrow choc \rightarrow X)$ sat [L4C] $(tr \le \langle coin, choc \rangle) \lor (tr \ge \langle coin, choc \rangle) \land 0 \le ((tr \downarrow coin) (tr \downarrow choc)) \le 1))$ $\Rightarrow 0 \le ((tr \downarrow coin) (tr \downarrow choc)) \le 1$ since $\langle coin = \langle coin = \langle coin \rangle \downarrow choc = 0$ and $\langle coin > \downarrow coin = (\langle coin, choc > \downarrow coin) = \langle coin, choc > \downarrow choc = 1$ and $\langle coin, choc > \Rightarrow (tr \downarrow coin = tr) \downarrow coin + 1 \land tr \downarrow choc = tr) \downarrow choc + 1)$
- The conclusion follows by appeal to L3 and L6.

To prove absence of deadlock.

- Impossible to use the laws for *sat* because they allow *STOP* to satisfy every satisfiable specification.
- Try to use careful proof, as for the Dining Philosophers (Lecture 7 page 11-12).
- Try to show that a process defined by the parallel combinator is equivalent to a non-stopping process defined without this combinator (Lecture 6 page 19).
 - Long and tedious algebraic transformations.
- Try to appeal to the general law
- **L2.** If *P* and *Q* never stop and $|aP \cap aQ| \le 1$, then $(P \parallel Q)$ never stops.
- **X2.** The process $(P \parallel Q)$ with $P = (a \rightarrow c \rightarrow P)$ and $Q = (c \rightarrow b \rightarrow Q)$ never stops, because
- $aP \cap aQ = \{c\}$

• The proof rule for change of symbol:

L3. If P sat S(tr) then f(P) sat $S(f^{-1}*(tr))$

- The use of f^{-1} in the consequent:
 - Let tr be a trace of f(P).
 - Then $f^{-1*}(tr)$ is a trace of P.
 - The antecedent of L3 states that every trace of *P* satisfies *S*.
 - Hence $f^{-1}(tr)$ satisfies S, which is stated by the consequent of L3.

Nondeterminism

Nondeterminism: Introduction

- Deterministic processes
 - if there is more than one event possible, the choice between them is determined externally by the environment of the process.
 - Described by
 - the choice operator $(x: B \to P(x))$
 - to define a process with a range of possible behaviours;
 - the concurrency operator |
 - to make a selection by an environment between the alternatives in set B.
 - The change-giving machine CH5C offers its customer the choice of taking his change as three small coins and one large, or two large coins and one small.
- Such processes are determined either
 - in the sense that the environment can actually make the choice, or
 - in the weaker sense that the environment can observe which choice has been made at the very moment of the choice.

Nondeterminism: Introduction

- Nondeterministic processes
 - has a range of possible behaviours,
 - the *environment cannot influence* the selection between the alternatives.
 - · A change-giving machine gives change in either of the combinations uncontrollably.
- The choice is made by the machine itself, in an arbitrary fashion.
- The environment *may infer* which choice was made from the subsequent process behaviour.
- This kind of nondeterminism from ignoring the factor which influence the selection.
 - The combination of change may depend on the number of large and small coins.
 - we have excluded these events (the numbers) from the alphabet.
- Nondeterminism maintains a high level of abstraction in descriptions of the behaviour of physical systems and machines.

- Nondeterministic or
 - $P \sqcap Q (P \text{ or } Q)$
 - a process which behaves either like process *P* or like process *Q*
 - the selection between them is made arbitrarily,
 - without the knowledge of control of the environment.
- The alphabets of the operands the same
 - $a(P \sqcap Q) = aP = aQ$

$$CH5A = (in5p \rightarrow out2p \rightarrow out1p \rightarrow out2p \rightarrow CH5A)$$

 $CH5B = (in5p \rightarrow out1p \rightarrow out1p \rightarrow out1p \rightarrow out2p \rightarrow CH5B)$

X1. A change-giving machine which gives the right change in one of two combinations on each occasion of use.

$$CH5D = (in5p \rightarrow ((out1p \rightarrow out1p \rightarrow out1p \rightarrow out2p \rightarrow CH5D)))$$

$$\sqcap (out2p \rightarrow out1p \rightarrow out2p \rightarrow CH5D)))$$

X2. CH5E always gives the same combination, but we do not know initially which it will be

$$CH5E = CH5A \sqcap CH5B$$

- After this machine gives its first coin in change, its subsequent behaviour is entirely predictable.
 - $CH5D \neq CH5E$

Implementation and specification.

- 77 is not a useful operator for *implementing* a process.
 - It would be very foolish to build both P and Q, put them in a black bag, make an arbitrary choice between them, and then throw the other one away!
- The main advantage of nondeterminism is in *specifying* a process.
 - To analyze and show the correctness for a range of behaviors.
 - A process specified as $(P \sqcap Q)$ can be implemented
 - either by building *P* or by building *Q*.
 - The choice can be made in advance by the implementor on grounds not relevant in the specification,
 - low cost, fast response times, early delivery, etc.

• A choice between *P* and *P* is vacuous:

L1.
$$P \sqcap P = P$$
 (idempotence)

• It does not matter in which order the choice is presented:

L2.
$$P \sqcap Q = Q \sqcap P$$
 (symmetry)

• A choice between three alternatives can be split into two successive binary choices:

L3.
$$P \sqcap (Q \sqcap R) = (P \sqcap Q) \sqcap R$$
 (associativity)

• The occasion on which a nondeterministic choice is made is not significant:

L4.
$$x \to (P \sqcap Q) = (x \to P) \sqcap (x \to Q)$$
 (distribution)

- A process which first does x and then makes a choice is indistinguishable from
 - a process which first makes the choice and then does *x*.
- This law states that the prefixing operator distributes through nondeterminism.

- A dyadic operator is said to be distributive if
 - it distributes through in both its argument positions independently.
- The following laws state distributivity of some operators defined so far:

L5.
$$(x : B \to (P(x) \sqcap Q(x))) = (x : B \to P(x)) \sqcap (x : B \to Q(x))$$

L6.
$$P \parallel (Q \sqcap R) = (P \parallel Q) \sqcap (P \parallel R)$$

L7.
$$(P \sqcap Q) \parallel R = (P \parallel R) \sqcap (Q \parallel R)$$

L8.
$$f(P \sqcap Q) = f(P) \sqcap f(Q)$$

- The recursion operator is *not* distributive.
 - Except in the trivial case where the operands of are identical.
- The counterexample:
 - The following processes are different:
 - $P = \mu X \bullet ((a \rightarrow X) \sqcap (b \rightarrow X))$
 - $Q = (\mu X \bullet (a \rightarrow X)) \sqcap (\mu X \bullet (b \rightarrow X))$
 - *P* can make an independent choice between *a* and *b* on each iteration
 - its traces include $\langle a, b, b, a, b \rangle$
 - Q must make a choice between always doing a and always doing b
 - its traces include just repetition of a or repetition of b.
 - P may choose always to do a or always to do b
 - $traces(Q) \subseteq traces(P)$

Fairness

- In some theories, nondeterminism is obliged to be fair
 - an event that infinitely often *may* happen eventually *must* happen
 - no limit to how long it may be delayed.
- In our theory, there is no such concept of fairness.
 - we observe *only finite traces* of the behaviour of a process
 - if an event can be postponed indefinitely, we can never tell whether it is going to happen or not.
 - If the event shall happen eventually
 - there should be a number *n* such that every trace longer than *n* contains the event.

- The process must be designed *explicitly* to satisfy this fairness constraint.
 - In the process P_0 , event a must always occur within n steps of its previous occurrence

•
$$P_i = (a \rightarrow P_0) \sqcap (b \rightarrow P_{i+1})$$

- $P_n = (\alpha \rightarrow P_0)$
- Both Q and P_0 are valid implementations of P.
- If fairness of nondeterminism is required
 - this should be specified and implemented at a separate stage
 - for example, by ascribing nonzero probabilities to the alternatives of a nondeterministic choice.
 - Highly desirable to separate complex probabilistic reasoning from concerns about the logical correctness of the process behaviour.

- If s is a trace of P (or Q), then
 - s is also a possible trace of $(P \sqcap Q)$ in the case that P (or Q) is selected.
- Conversely, each trace of $(P \sqcap Q)$ must be a trace of one or both alternatives.

L1.
$$traces(P \sqcap Q) = traces(P) \cup traces(Q)$$

The behaviour of (P \(\begin{aligned} P \) after s is defined by whichever of P or Q engages in s
if both could, the choice remains nondeterministic.

L2.
$$(P \sqcap Q) / s = Q / s$$
 if $s \in (traces(Q) - traces(P))$

$$= P / s$$
 if $s \in (traces(P) - traces(Q))$

$$= (P / s) \sqcap (Q / s)$$
 if $s \in (traces(P) \cap traces(Q))$

Nondeterminism: General choice

- The environment of $(P \sqcap Q)$ cannot control the choice between P and Q, and must be prepared to deal with either P or Q.
- General choice operation $(P \square Q)$
 - the environment can control which of P and Q will be selected
 - this control is exercised on the very first action.
 - If this action is *not* a possible first action of *P*, then *Q* will be selected.
 - If this action is *not* a possible first action of Q, then P will be selected.
 - If the first action is possible for both *P* and *Q*, then
 - the choice between them is nondeterministic.
 - If the event is impossible for both P and Q, then it just cannot happen.

Nondeterminism: General choice

• The alphabets of *P* and *Q* are the same:

•
$$a(P \square Q) = aP = aQ$$

- The convention:
 - \rightarrow binds more tightly than \square .

• If no initial event is possible for both processes, \square operator is the same as | operator:

•
$$(c \rightarrow P \square d \rightarrow Q) = (c \rightarrow P \mid d \rightarrow Q)$$
 if $c \neq d$.

• If the initial events are the same, $(P \square Q)$ degenerates to nondeterministic choice:

•
$$(c \rightarrow P \square c \rightarrow Q) = (c \rightarrow P \sqcap c \rightarrow Q)$$

Nondeterminism: General choice: Laws

• The algebraic laws for *□* are similar to those for *□*:

L4.
$$P \square STOP = P$$

• The formalisation of the informal definition of the operation:

L5.
$$(x:A \to P(x)) \square (y:B \to Q(y)) = (z:(A \cup B) \to (\text{if } z \in (A-B) \text{ then } P(z))$$

else if $z \in (B-A) \text{ then } Q(z)$
else if $z \in (A \cap B) \text{ then } (P(z) \sqcap Q(z))))$

• 7 distributes through □:

L6.
$$P \square (Q \sqcap R) = (P \square Q) \sqcap (P \square R)$$

• □ distributes through □:

L7.
$$P \sqcap (Q \sqcap R) = (P \sqcap Q) \sqcap (P \sqcap R)$$

· Choices made nondeterministically and choices made by the environment are independent

Nondeterminism: General choice: Laws

- John is the agent which makes nondeterministic choices
- Mary is the environment.
- On the left-hand side of the law:
 - John chooses (77) between P and letting Mary choose (\square) between Q and R.
- On the right-hand side Mary chooses either:
 - to offer John the choice between *P* and *Q* or
 - to offer John the choice between *P* and *R*.
- On both sides of the equation:
 - if John chooses *P*, then *P* will be the overall outcome,
 - if John does not select P, the choice between Q and R is made by Mary.
- Thus the results of the choice left- and right-hand strategies are always equal.
- The same reasoning is applicable to L6.

L7. $P \sqcap (Q \sqcap R) = (P \sqcap Q) \sqcap (P \sqcap R)$

Nondeterminism: General choice: Traces

• Every trace of $(P \square Q)$ must be a trace of P or a trace of Q, and conversely:

L1.
$$traces(P \square Q) = traces(P) \cup traces(Q)$$

• The next law is slightly different from the law L2 for \sqcap

L2.
$$(P \square Q) / s = P / s$$
 if $s \in traces(P) - traces(Q)$

$$= Q / s$$
 if $s \in traces(Q) - traces(P)$

$$= (P / s) \sqcap (Q / s)$$
 if $s \neq <>$ and $s \in traces(P) \cap traces(Q)$

L2.
$$(P \sqcap Q) / s = Q / s$$
 if $s \in (traces(Q) - traces(P))$
 $= P / s$ if $s \in (traces(P) - traces(Q))$
 $= (P / s) \sqcap (Q / s)$ if $s \in (traces(P) \cap traces(Q))$

Nondeterminism: Refusals

The distinction between $(P \sqcap Q)$ and $(P \sqcap Q)$

- They cannot be distinguished by their traces.
- But there is an environment in which $(P \sqcap Q)$ can deadlock at its first step, but $(P \sqcap Q)$ cannot.
 - Let $x \neq y$ and $P = (x \rightarrow y \rightarrow P)$, $Q = (y \rightarrow x \rightarrow Q)$, $aP = aQ = \{x, y\}$
 - Then $(P \square Q) \parallel P = (x \rightarrow y \rightarrow P) = P$
 - But $(P \sqcap Q) \parallel P = (P \parallel P) \sqcap (Q \parallel P) = P \sqcap STOP$
 - In environment P, process $(P \sqcap Q)$ may reach deadlock but process $(P \sqcap Q)$ cannot.

Nondeterminism: Refusals

- Let X be a set of events offered initially by the environment Q of a process P
 - aP = aQ.
- Set X is a refusal of P
 - If *P may* go to deadlock on its first step when placed in *Q*.
- The set of all such refusals of *P* is *refusals(P)*.
 - A family of sets of events.
- · Refusal sets is one of the important indirectly observable aspects of the behaviour.

Nondeterminism: Refusals

Formal distinction between deterministic and nondeterministic processes

- A process is *deterministic* if it can never refuse any event in which it can engage:
 - P is deterministic \Rightarrow $(X \in refusals(P) \equiv (X \cap P_0 = \{\}))$, where $P_0 = \{x \mid \langle x \rangle \in traces(P)\}$.
- This condition holds after any possible sequence of actions of *P*:
 - P is deterministic $\equiv \forall s : traces(P) \cdot (X \in refusals(P / s) \equiv (X \cap (P / s)^0 = \{\}))$
- For a *nondeterministic* process, there is at some time some event in which
 - it can engage and
 - it may refuse to engage in that event, even though the environment is ready for it
 - as a result of some internal nondeterministic choice.

Nondeterminism: Refusals: Laws

- The process *STOP* does nothing and refuses everything:
- **L1.** $refusals(STOP_A)$ = all subsets of A (including A itself)
- A process $c \to P$ refuses every set that does not contain the event c:
- **L2.** $refusals(c \rightarrow P) = \{X \mid X \subseteq (aP \{c\})\}$
- A generalisation:
- **L3.** $refusals(x : B \rightarrow P(x)) = \{X \mid X \subseteq (\alpha P B)\}$
- If P(Q) can refuse X, so will $P \sqcap Q$ if P(Q) is selected:
- **L4** $refusals(P \sqcap Q) = refusals(P) \cup refusals(Q)$
- If both P and Q can refuse X, so can $(P \square Q)$:
- **L5.** $refusals(P \square Q) = refusals(P) \cap refusals(Q)$
- Comparison of L5 with L4 shows the distinction between \square and \square .

Nondeterminism: Refusals: Laws

• The law for concurrency:

L6.
$$refusals(P \parallel Q) = \{X \cup Y \mid X \in refusals(P) \land Y \in refusals(Q)\}$$

• For symbol change:

L7.
$$refusals(f(P)) = \{f(X) \mid X \in refusals(P)\}$$

• A process can refuse only events in its own alphabet:

L8.
$$X \in refusals(P) \Rightarrow X \subseteq aP$$

• A process deadlocks when the environment offers no events:

L9.
$$\{\} \in refusals(P)\}$$

• If a process refuses a nonempty set, it can also refuse any subset of that set:

L10.
$$(X \cup Y) \in refusals(P) \Rightarrow X \in refusals(P)$$

• Any event *x* which cannot occur initially may be added to any set *X* already refused:

L11.
$$X \in refusals(P) \Rightarrow (X \cup \{x\}) \in refusals(P) \lor \langle x \rangle \in traces(P)$$

Nondeterminism: Specifications

- Specification of indirectly observable aspects of the behaviour.
 - describe the desired properties of process refusal sets as well as its traces.
- The variable *ref* denotes an arbitrary refusal set of a process.
- Specification of nondeterministic process *P*:
 - $P \operatorname{sat} S(tr, ref) \operatorname{iff}$
 - $\forall tr, ref \cdot tr \in traces(P) \land ref \in refusals(P / tr) \Rightarrow S(tr, ref)$

$$VMCRED = \mu X \bullet (coin \rightarrow choc \rightarrow X \mid choc \rightarrow coin \rightarrow X)$$

$$VMS2 = (coin \rightarrow VMCRED)$$

$$VMS = (coin \rightarrow (choc \rightarrow VMS))$$

Nondeterminism: Specifications

- X1. When a vending machine has ingested more coins than it has dispensed chocolates,
- it must not refuse to dispense a chocolate $FAIR = (tr \downarrow choc$
- Every trace tr and every refusal ref of the specified process at all times
 - should satisfy the specification.
- **X2.** When a vending machine has given out as many chocolates as have been paid for
- it must not refuse a further coin $PROFIT = (tr \downarrow choc = tr \downarrow coin \Rightarrow coin \notin ref)$
- **X3.** A simple vending machine should satisfy the combined specification

$$NEWVMSPEC = FAIR \land PROFIT \land (tr \downarrow choc \leq tr \downarrow coin)$$

- This specification is satisfied by
 - VMS
 - VMS2
 - may accept several coins in a row, and then give out several chocolates.

L3.
$$refusals(x: B \to P(x)) = \{X \mid X \subseteq (\alpha P - B)\}$$
 $VMCRED = \mu X \bullet (coin \to choc \to X \mid choc \to coin \to X)$ $VMS2 = (coin \to VMCRED)$

Nondeterminism: Specifications

X4. A limit on the balance of coins which may be accepted in a row

$$ATMOST2 = (tr \downarrow coin - tr \downarrow choc \leq 2)$$

X5. The machine accept at least two coins in a row:

$$ATLEAST2 = (tr \downarrow coin - tr \downarrow choc < 2 \Rightarrow coin \notin ref)$$

- X6. The process STOP refuses every event in its alphabet.
- The predicate specifies that a process with alphabet A never stops
 - $NONSTOP = (ref \neq A)$ $NEWVMSPEC \Rightarrow ref \neq \{coin, choc\}$
- If *P* sat *NONSTOP* and an environment allows all events in *A*,
 - *P* must perform one of them.
- Since any process which satisfies *NEWVMSPEC* will never stop.

 $VMS = (coin \rightarrow (choc \rightarrow VMS))$