En förstärkare

I figur 1 har en transistorswitch utökats med en kondensator på ingången och en på utgången. När matningsspänningen V_{CC} slås på laddas de upp, men när det är gjort är strömmen genom dem noll. Det gör att basströmmen, kollektorströmmen och kollektor-emitterspänningen, beräknade med (2.2)-(2.4) på sidorna 78-80, inte påverkas. För att undvika förväxlingar betecknar vi dem nu I_{BQ}, I_{CQ} och U_{CEQ} (Q för "Quiscent") Värdena kallas *vilovärden* och utgör transistorns *arbetspunkt* Q.

En liten växelspäning $u_{in}(t)$ med amplituden (toppvärdet) \hat{u}_{in} läggs på ingången. Om C_1 är tillräckligt stor hinner den inte laddas mycket av växelspänningen under en halvperiod och den lilla extraladdning den får försvinner under nästa halvperiod vid motsatt polaritet hos spänningen. Resultatet är att laddning pendlar till och från kondensatorn, en växelström. Sammantaget sägs kondensatorn släppa genom växelström, men stoppa likström.

Figur 1 Transistorförstärkare. Växelspänningskällan kan vara en mikrofon och motståndet till höger en belastning, till exempel nästa steg eller en hörtelefon. Bas- och kollektorströmmen är likströmmar, I_{BQ} och I_{CQ} , med överlagrade växelströmmar $i_B(t)$ och h_{fe} $i_B(t)$. (I förstärkarsammanhang brukar strömförstärkningsfaktorn skrivas med litet index.)

Denna växelström kan både gå upp genom basmotståndet R_B och in i transistorns bas, men eftersom R_B brukar vara mycket stor räknar vi bara med strömmen till basen, $i_B(t)$. Den är $i_B(t) = u_{in}(t) / h_{ie}$, där transistorparametern h_{ie} är dess ingångsresistans. Den totala basströmmen I_B är därför summan av denna och vilo(lik)strömmen I_{BQ} , $I_B = I_{BQ} + i_B(t)$. Figuren visar I_B :s variation upp och ned kring I_{BQ} med beloppet $\hat{\imath}_B$.

Figur 2 (se också figur 2.10) visar $I_C(I_B)$ -karakteritiskan och arbetslinjen med riktningskoefficienterna h_{fe} respektive – $1/R_C$ samt vilovärdena. Nere till vänster tillkommer de sinusformade variationerna $i_B(t)$ i basströmmen I_B . Enligt (2.2) är $I_C = h_{fe}I_B$, vilket gör att inte bara I_{BQ} , utan också $i_B(t)$ för-

stärks med strömförstärkningsfaktorn h_{fe} . Det framgår att I_C :s maximala avvikelse kring I_{CQ} är $h_{\text{fe}}\hat{i}_B$.

Figur 2 Arbetsdiagram. Eftersom arbetslinjen har negativ riktningskoefficient medför en ökning av I_C en minskning av U_{CE} . Det gör att u_{ut} och u_{in} är 180° fasförskjutna. \hat{u}_{ut} tas fram med $h_{fe}\,\hat{\imath}_B/\,\hat{u}_{ut}=1/R_C$.

För att få U_{CE} dras linjer horisontellt till arbetslinjen, vars riktningskoefficient gör att amplituden hos U_{CE} :s variationer kring U_{CEQ} är $\hat{u}_{CE} = R_C h_{fe} \hat{i}_B$. U_{CE} är därför en likspänning U_{CEQ} plus en växelspänning med amplituden $R_C h_{fe} \hat{u}_{in} / h_{ie}$. Men kondensatorn C_2 släpper inte ut någon likström, vilket gör att utspänningen u_{ut} bara innehåller växelspänningsdelen av U_{CE} . Man ser att den är $R_C h_{fe} / h_{ie}$ gånger större än \hat{u}_{in} , varför detta är kopplingens spänningsförstärkning. Den är allmänt

$$A_{V} = \frac{u_{ut}}{u_{in}} \tag{1a}$$

och i detta fall därför

$$A_V = -\frac{R_C h_{fe}}{h_{ia}} \tag{2}$$

Minustecknet motiveras av att u_{ut} minskar när u_{in} ökar och tvärt om (man säger att de är 180° fasförskjutna) så att positiv inspänning ger negativ utspänning. Förhållandet mellan de positiva amplituderna är absolutbeloppet av A_V

$$|A_V| = \frac{\hat{u}_{ut}}{\hat{u}_{in}} = \frac{R_C h_{fe}}{h_{ie}}$$
 (1b)

Med $h_{fe}=200$, $R_C=1~k\Omega$ och den typiska ingångsresistansen $h_{ie}=4~k\Omega$ blir $|A_V|=1\times200/4=50$ ("50 gånger"). Stor förstärkning kan orsaka *överstyrning* som figur 3 visar.

Figur 3 Överstyrning.

Man vill att utspänningen skall vara en förstärkt kopia av inspänningen. Men här har utspänningen blivit så stor att transistorn bottnas eller stryps innan den når sina toppvärden. Den klipps därför i topparna, något som ger distorsion och ett rått ljud. Fenomenet kallas överstyrning.

Arbetspunkten Q har lagts mitt på arbetslinjen, vilket uppenbarligen ger största marginal mot överstyrning på båda håll.

I praktiken får man räkna med begynnande deformering av kurvan redan innan den klipps. Förstärkare förses ibland med mätinstrument som indikerar rött vid överstyrning.

Den beskrivna förstärkaren kallas *motståndskopplad*. Den fungerar bra som småsignalförstärkare, men ökad utstyrning medför allt större distorsion.

Exempel

Beräkna resistorvärden för förstärkaren i bild 1 så att spänningsförstärkningen blir –100 med största möjliga marginal mot överstyrning. $h_{\rm fe}$ = 200 och $h_{\rm ie}$ = 4 k Ω . Matningsspänningen $\,V_{CC}$ = 12 V .

(2) ger $R_C = 100 \times (4 \text{ k}\Omega)/200 = 2 \text{ k}\Omega$. Med arbetspunkten mitt på arbetslinjen för att undvika överstyrning skall vi välja $U_{CEO} = V_{CC} / 2 = 6 \text{ V}$.

Insatt i (2.4) är
$$I_{CQ} = \frac{V_{CC} - U_{CEQ}}{R_C} = \frac{12 - 6}{2000} \text{ A} = 3 \text{ mA}$$

varav
$$I_{BQ} = I_{CQ} / h_{fe} = 3 \text{ mA} / 200 = 15 \mu\text{A}$$

För baskretsen ger (2.3)
$$R_B = \frac{V_{CC} - U_{BE}}{I_{BQ}} = \frac{12 - 0.7}{15 \times 10^{-6}} \Omega \approx \frac{750 \text{ k}\Omega}{15 \times 10^{-6}}$$

De beräknade värdena finns inte i E12-serien. De närmaste för R_C är 1,8 och 2,2 k Ω , av vilka vi kanske väljer det största för att inte få för liten förstärkning. För R_B finns 680 och 820 k Ω att välja på. Räkningarna ovan visar – vilket annars inte är självklart! – att det största av de båda värdena skall väljas.

Inte bara h_{fe} utan också h_{ie} kan variera mellan olika transistorexemplar. Genom att utöka kretsen med ett par ytterligare komponenter kan inverkan av detta i stor utsträckning elimineras.

Övningsuppgifter

Ö1) I en förstärkare enligt figur 1 är $\,V_{CC} = 10\,V\,$ och $\,R_C = 0,56\,k\Omega$. Transistorn är BC107A med typvärden $\,h_{fe} = 190\,$ och $\,h_{ie} = 3\,k\Omega$. Ofta finner man att enskilda exemplars parametrar hamnar rätt nära typvärdena, men större avvikelser förekommer också. Det är rimligt att anta att h_{fe} kan ligga mellan 150 och 250 och h_{ie} mellan 2,5 och 3,5 k Ω .

- a) Beräkna, utgående från typvärden, spänningsförstärkningen A_V och basresistorn R_B . Arbetspunkten skall ligga mitt på arbetslinjen.
- b) Beräkna det största möjliga värdet på | A_V |. Samma R_B och R_C som i a.
- c) Rita en arbetslinje för det h_{fe} -värde som använts i b och markera arbetspunkten. Beräkna också den största amplitud som inspänningen kan ha utan att utsignalen blir klippt. Samma R_B och R_C som i a.
- Ö2) Figur 4 visar en standardkoppling som gör att arbetspunkten påverkas mindre av parametervariationer. Förstärkningen beräknas på samma sätt som tidigare. Emittermotståndet R_E får inte påverka växelströmmen i kretsen, men genom att koppla över den med en kondensator som släpper genom växelströmmen ordnas detta. C_E kan ha en kapacitans på några tiotal μF och de övriga, C_1 och C_2 , på någon μF .

Figur 4 Transistorförstärkare för stabilisering av arbetspunkten vid parametervariationer.

Emitterkondensatorn är av elektrolyttyp och skall anslutas med den polaritet som visas.

$$\begin{split} E &= 12 \ V & U_{CEQ} = E/2 & U_1 = 0,1E \\ I_1 &= 10 I_{BQ} & \\ R_C &= 3,9 \ k\Omega & \\ h_{fe} &= 200 & h_{ie} = 4 \ k\Omega & \end{split}$$

Valet av spänningen U_1 över R_1 och strömmen I_1 genom R_1 är tumregler för hyfsad stabilisering.

Beräkna A_V, R_E, R₁ och R₂. Välj närmaste värden ur E12-serien.

Ö3) Här har emitterkondensatorn utelämnats. Det ger samma stabilisering av arbetspunkten som ovan, men de signalmässiga egenskaperna ändras. Förstärkningen beräknas som $A_V = -R_C/R_E$, vilket betyder mindre förstärkning än med emitterkondensator. I gengäld får vi en betydligt trognare återgivning, alltså mindre distorderad utspänning; man säger att förstärkaren är mer linjär. (Tekniken bygger i grunden på så kallad motkoppling, negativ återkoppling.)

Figur 5 Motkopplad förstärkare.

Genom att även emitterväxelströmmen tvingas gå genom R_E visar det sig att en del av utspänningen matas tillbaka till ingången på sådant sätt att den vill motverka insignalen. Detta gör att linjäriteten ökar, men förstärkningen minskar.

$$\begin{split} E &= 12 \; V \qquad I_{CQ} = 1 \; mA \qquad \quad I_1 = 10 \; I_{BQ} \\ R_C &= 8.2 \; k\Omega \; \; R_E = 0.47 \; k\Omega \qquad \quad h_{fe} = 200 \end{split}$$

Beräkna A_V, U_{CEQ}, R₁ och R₂. Välj närmaste värden ur E12-serien.

Svar och anvisningar

- Ö1) a) $|A_V| = 35$, $R_B = 200 \text{ k}\Omega$ ($I_C = 8.9 \text{ mA}$, $I_B = 47 \text{ μA}$)
 - b) $|A_V|_{\text{max}} = 56 \ (0.56 \times 250/2.5)$
 - c) I arbetspunkten är $I_C = 12$ mA (11,6) och $U_{CE} = 3,5$ V . $\hat{u}_{in,max} = 62$ mV. (\hat{u}_{ut} får högst vara 3,5 V, varför det största $\hat{u}_{in} = 3,5$ V / 56 = 0,062 V . Större \hat{u}_{in} gör att transistorn först bottnar och, vid ännu större \hat{u}_{in} , stryps.)
- Ö2) A_V = -195; R_E = 1 kΩ (0,98); R_I = 150 kΩ (164); R_2 = 33 kΩ (34) (I_{CQ} = 1,23 mA; I_{BQ} = 6,15 μA; I_I = 61,5 μA; I_Z = 55,4 μA)
- Ö3) $A_V = -17 (-17.4)$; $U_{CEQ} = 3.3 \text{ V } (3.33)$; $R_1 = 220 \text{ k}\Omega (217)$; $R_2 = 27 \text{ k}\Omega (26)$; $(U_1 = 0.47 \text{ V})$; $I_{BQ} = 5 \text{ \mu A}$; $I_1 = 50 \text{ \mu A}$; $I_2 = 45 \text{ \mu A}$)