

Industrielle Kommunikation

Allgemeines

Wandlung: ± 1 Gewichtete NF Impulse $\pm g_{\mathsf{S}}(t) o \mathsf{Modulation}$: Verschiebung ins Trägerband \rightarrow AWGN Kanal \rightarrow Detektor \rightarrow Bitstrom

1. Signale

1.1. Arten von Signalen

deterministisch: durch Funktionen beschreibbar, enthalten kein Nach-

stochastisch: zufälliger Verlauf, überträgt Information

Vorteile digitales Signal: Kompression, Verschlüsselung, Fehlerkorrektur

1.2. Sonstiges

Autokorrelation
$$r_{\mathsf{V}}(\tau) \overset{\mathcal{F} \bullet}{\underset{-\infty}{\bullet}} S_{\mathsf{V}}(f) \qquad \text{Leistungsdichtespektrum}$$
 $x(t),y(t)$ sind orthogonal, falls
$$\int\limits_{-\infty}^{\infty} x(t)y(t) = 0$$

Kompl. Fehlerfunktion
$$\mathrm{erfc}(x)=1-\mathrm{erf}(x)=\frac{2}{\sqrt{\pi}}\int\limits_{x}^{\infty}e^{- au^2}\,\mathrm{d} au$$

2. Abtastung von Signalen

Abtasttheorem

Signal x(t), Abtastfunktion $s(t) = T_A \sum \delta(t - nT_s)$, Tiefpassfilter $h_r(t)$

Vorgang Zeitbereich Frequenzbereich Abtasten: $x_s(t) = s(t) \cdot x(t)$ $X_s(\omega) = S(\omega) * X(\omega)$ Rekonstr. $x_r(t) = h_r(t) * x_s(t)$ $X_r(\omega) = H_r(\omega) \cdot X_s(\omega)$

Bandbreite ω_q , Abtastfrequenz ω_s

$$\omega_s = \frac{2\pi}{T_s} \ge 2\omega_g$$

$$\omega_g \le \omega_r \le \omega_s - \omega_g$$

Abtastoperator:
$$\mathbb{A}\{x(t)\} = x(t) \cdot T_A \sum_{n=-\infty}^{\infty} \delta(t-nT_A)$$

Rekonstruktion:
$$x_r(t) = T_{\rm A} \sum_{n=-\infty}^{\infty} x(nT_{\rm A}) \cdot h_r(t-nT_{\rm A})$$

Abbruchfehler:
$$|\Delta| = \left| \frac{x_T(t) - x(t)}{x(t)} \right|$$

Periodisierungsoperator:
$$\mathbb{P}\{X(f)\} = X(f) * \sum_{n=-\infty}^{\infty} \delta(f - \frac{n}{T_A})$$

Ideale Abtastung:
$$\mathbb{A}\{x(t)\}^{f_A=1/T_A}\mathbb{P}\{X(f)\}$$

3. Quantisierung und Digitalisierung

wertkontinuierliche Sequenz von (zeitdiskreten) Abtastwerten wird abgebildet auf wertdiskrete Sequenz.

$$x(nT_A)$$
 mit $n \in \mathbf{Z} \xrightarrow{x_Q} x_Q(nT_A)$

3.1. Allgemeines

Quantisierungsfunktion $\underline{\boldsymbol{x}}_Q = \mathcal{Q}(\underline{\boldsymbol{x}})$

Bildet Vektoren ${\boldsymbol x} \in \mathbb{R}^N$ auf eine Menge S ab mit |S| = MMan benötigt $m = \lceil \log_2 M \rceil$ bits um \underline{x}_O zu repräsentieren. Intervall $I_i = [g_i, g_{i+1}]$ enthält Reproduert s_i

Skalare Quantisierer: N = 1 Vektor Quantisierer: N > 1

Quantisierungsfehler: $q(\underline{x}) = \underline{x}_O - \underline{x} = s_i - x$

(besteht aus granularem Rauschen und Überlastungsrauschen)

3.2. Skalare Quantisierung N=1

m Bits für einen (N=1) Abtastwert

Quantisierungsfehler $q(x) = x_Q - x = x_Q(nT_A) - x(nT_A)$

Quantisierungsfehlerleistung: $P_{\mathsf{Q}} = \int q(x)^2 f_{\mathsf{X}}(x) \ \mathrm{d}x = \sum_{s_i} \int_{g_i}^{g_i+1} (s_i - x)^2 f_{\mathsf{X}}(x) \ \mathrm{d}x$

Optimales
$$s_i$$
 (setze $\frac{\partial P_Q}{\partial s_i}\stackrel{!}{=} 0$):

$$s_i = \frac{\int\limits_{g_i}^{g_{i+1}} sf_x(x) \, \mathrm{d}x}{\int\limits_{g_i}^{g_{i+1}} f_x(x) \, \mathrm{d}x} = \mathsf{E}\left[\mathsf{X} \left| x \in I_i \right.\right]$$

3.3. Lineare Quantisierung

Spezialfall der skalaren Quantisierung mit gleich großen Quantisierungsin-

Es gilt für PDF:
$$\int_{-\infty}^{\infty} f_X(x) dx \stackrel{!}{=} 1$$

Gleich große Quantisierungsintervalle
$$\mathcal{I}_i = [g_i, g_{i+1}]$$
 mit Breite Δ $\Delta = \frac{x \max - x \min}{2^m} = g_{i+1} - g_i$

Reproduktionswerte
$$s_i$$
 in der Mitte der Intervalle (midriser) $s_i = \frac{2i - M + 1}{\Delta} \Delta$

Auftrittswahrscheinlichkeit p_i der Quantisierungsstufe s_i $p_i = \int_{g_i}^{g_i+1} f_{\mathsf{X}}(x) \, \mathrm{d}x$

Signalleistung
$$P_{\mathsf{X}} = \mathsf{E}[\mathsf{X}^2] = \int\limits_{x_{\min}}^{x_{\max}} x^2 f_{\mathsf{X}}(x) \, \mathrm{d}x$$

leichverteilung:
$$P_{\mathsf{X}} = rac{x_{\max}^2}{3}$$
 Sinusförmig: P_{S}

Fehlerleistung
$$P_{\mathrm{Q}} = \mathrm{E}[\mathrm{Q}^2] = \int\limits_{-\infty}^{\infty} q(x)^2 f_{\mathrm{Q}}(q) \,\mathrm{d}q$$

Bei gleichverteiltem Quantisierungsfehler: $P_Q = \frac{\Delta^2}{12}$

Signal-Noise-Ratio:
$$\mathrm{SNR}_Q = \frac{P_\mathrm{X}}{P_\mathrm{Q}}$$

$$\mathrm{SNR}_Q = rac{P_\mathrm{X}}{P_\mathrm{Q}} = egin{cases} rac{x^2_\mathrm{max}/3}{\Delta^2/12} = 2^{2m} & ext{bei gleichverteiltem Signal} \\ rac{x^2_\mathrm{max}/2}{\Delta^2/12} = rac{3}{2}2^{2m} & ext{bei sinusförmigem Signal} \end{cases}$$

Signal zu Quantisierungsrauschabstand ${
m SNR}_{Q{
m dB}}$ $SNR_{OdB} = 10 \log_{10}(SNR_O)dB = m \cdot 6 dB$ (CD. 16 bit : 96 dB)

3.4. Nichtlineare Quantisierung

A-law-Kennlinie (Europa) und μ -law-Kennlinie (USA)

$$C(x) = \begin{cases} \frac{A}{1+\ln(A)} \cdot |x| \cdot \operatorname{sgn}(x) & 0 \le |x| \le \frac{x_{\max}}{A} \\ \frac{1+\ln\left(\frac{A \cdot |x|}{x_{\max}}\right)}{1+\ln(A)} \cdot |x| \cdot \operatorname{sgn}(x) & \text{sonst} \\ A = 87.5 = 24 \, \mathrm{dB} \end{cases}$$

3.4.1. Pulse Coded Modulation PCM

Abtastung + skalare Quantisierung: $SNR_Q = \frac{P_X}{P_Q} = 2^{2m}$

3.4.2. Differentielle PCM (DPCM)

Differenz zu vorhergesagtem Wert wird quantisiert.

Prädiktion O.ter Ordnung: Kann bei schnellen, großen Änderungen nicht mehr folgen. Gut geeignet für Signale mit hoher zeitlicher Konzentration → schmales Snektrum

3.4.3. Delta-Modulation (Hohe Überabtastung)

1-Bit-Quantisierung: $e_O(nT_S) = \pm \Delta$

Kann den Wert nicht Konstant halten, Tiefpass am Empfänger nötig

3.4.4. Sigma-Delta-Modulator

 Σ : Summe/Integral Δ : 1-bit-Quantisierer

3.5. Optimale skalare Quantisierung

Lloyd-Max-Algorithmus

- ullet Wähle Startwerte für alle $s_i^{(0)}$
- $\begin{array}{ll} \bullet & \text{Intervallgrenzen: } g_i^{(t+1)} = \frac{s_i^{(t)} + s_{i-1}^{(t)}}{2} & i = 1, \ldots, M-1 \\ \bullet & \text{Reprod. Werte: } s_i^{(t+1)} = \mathrm{E}[X \mid X \in I_i] & i = 0, \ldots, M-1 \\ \bullet & \text{Fehlerleistung } P_Q^{(t+1)} = \mathrm{E}[Q^2] \text{ mit } s_i^{(t+1)} \text{ und } g_i^{(t+1)} \end{array}$
- Berechne relative Änderung $\delta^{(t)} = \frac{P_Q^{(t+1)} P_Q^{(t)}}{P_Q^{(t)}}$

3.6. Informationsgehalt und Entropie

Info vom Symbol
$$s_i \colon I_i = -\log_2 \mathsf{P}(X_Q = s_i) = -\log_2 p_i$$
 Entropie von $X_Q \colon H(X_Q) = \mathsf{E}[I] = -\sum\limits_{i=0}^{M-1} p_i \log_2 p_i \left[\frac{\mathsf{bit}}{\mathsf{Symbol}} \right]$

Mittlere Codewortlänge
$$\overline{l} = \mathrm{E}[l] = \sum\limits_{i=0}^{n-1} p_i l_i$$

Die minimale mittlere Codewortlänge $\bar{l} \geq H(x_O)$

4. Dämpfung/Verstärkung, dB-Rechnung

4.1. Leistungspegel

Leistung: $P = \frac{U^2}{R} = I^2 R$ Leistungspegel:

$$L_{P,dB} = 10log \frac{P_2}{P_1} dB = 20log \frac{U_2}{U_1} dB = 20log \frac{I_2}{I_1} dB$$

$$L_{P,dBm} = 10log \frac{P}{1mW} dBm$$

 $L_{P,dBm} = 10log \frac{P}{1mW} dBm$ $1dBm = 1dBmW = 30dB\mu W = 60dBnW$ Verstärkung[dB] = $L_{P,dB}$; Dämpfung[dB] = $-L_{P,dB}$

Logarithmische Rechenregeln:

$$x = a \cdot \log_b(c \cdot d)$$

$$x = \log_b c \cdot d^a = \log_b c^a + \log_b d^a$$

$$b^x = (c \cdot d)^a = c^a \cdot d^a$$

$$\sqrt[a]{(b^x)} = c \cdot d$$

Durch $x=(\frac{1}{2})^{-1}$ ergeben sich die Rechenregeln für Subtraktion und

4.2. Umrechnung dB

o o g							
Verhältnis $\frac{P_2}{P_1}$	Verstärkung[dB]	Dämpfung[dB]					
$\frac{\frac{1}{10000}}{\frac{1}{1000}} = 10^{-3}$ $\frac{\frac{1}{20}}{\frac{1}{10}} = 10^{-1}$ $\frac{\frac{1}{4}}{\frac{1}{2}}$ 1	-30	+30					
$\frac{1}{20}$	-13	+13					
$\frac{1}{10} = 10^{-1}$	-10	+10					
$\frac{1}{4}$	-6	+6					
$\frac{1}{2}$	-3	+3					
1	0	0					
2	+3	-3					
4	+6	-6					
8	+9	-9					
10	+10	-10					
$1000 = 10^3$	+30	-30					

4.3. Rechenregeln dB und dBm

$a_{\rm R}\pm a_{\rm R}$	=	aB
$dBm \mp dB$	=	dBm
dBm - dBm	=	dB
dBm + dBm	=	undefiniert

5. Baud-, Bit- und Übertragungsraten

5.1. Definitionen

Signalstufen = Anzahl der möglichen annehmbaren Werte eines diskreten Signals pro Schritt

binäre Datenmenge in bit (binary digit) mit bit-Anzahl $\in \mathbb{N}$

1 Byte [1B] = 8 bit $[8b] = 2^8$

Baudrate[Hz] = Schrittgeschwindigkeit

 $Bitrate[bps] = \frac{Bps}{Q} = V \cdot Baudrate$

6. Leitungstheorie

Leitungstheorie relevant für $l>=0,1\lambda$

6.1. Definitionen

Leitungslänge l mit [l]= m Belagsgrößen: R', L', G', C' als Widerstands-, Induktivitäts-Ableitungs-, Kapazitätsbelag Bsp: $R = R' \cdot l \text{ mit } [R'] = \frac{\Omega}{l}$

Wellenimpedanz $\underline{Z}_L = \sqrt{\frac{(R' \cdot j\omega L')}{(G' \cdot j\omega C')}}$

Wellenlänge λ mit $[\lambda] = m$

Ausbreitungsgeschwindigkeit $v = \lambda \cdot f$ mit [v] = m/s

Ausbreitungskonstante $\gamma = \alpha + j\beta = \sqrt{(R' \cdot j\omega L')(G' \cdot j\omega C')}$ $mit [\gamma] = \frac{1}{m}$

6.2. Leitungsmodell

7. Codierung

Komprimierung: Falls Bitstrom nicht gleichverteilt und mit Gedächtnis Maximale Kompression: Bits gleichverteilt, ohne Gedächtnis Entropie: kein Code kann für Z eine geringere mittlere Codewortlänge finden als $H(z) = \sum P(z) \operatorname{ld} \left(\frac{1}{P(z)} \right)$

7.1. Kompression

Kleiner Verlust bei unkodierten Bitstrom. Großer Gewinn bei Kodierung. Bsp: Feste Blocklänge mit Statusbit am Anfang: Kodiert/Unkodiert

7.2. Digitale Quellencodierung (Kompression)

Arten von Kodierern:

Verteilung Bekannt: Huffman Code, Morse, Arithmetic Universal: Lempel-Ziv (ZIP), PPM, BWT(bZip) Transform: Fouriertransformation (JPG.GIF.PNG.MP3)

7.3. Kanalcodierung

Single-Parity-Check: 1 Bit pro 2 bit zusätzlich: $XOR(x_1, x_2)$ Daraus ergibt sich eine Effizienz von $\frac{2}{3}$

FEC: Forward Error Correction liefert Fehlererkennung und Korrek-

Beispiele: Paritätsbit, CRC, Reed-Solomon-Codes, LDPC, Polar Codes

8. Basisbandübertragung

8.1. Impulsformen

8.1.1. Rechteckimpuls rect $\left(\frac{t}{m}\right)$:

$$g_{\mathsf{NRZ}}(t) = \begin{cases} 1, & \mathsf{für} \ |t| < \frac{T}{2} \\ \frac{1}{2}, & \mathsf{für} \ |t| = \frac{T}{2} \\ 0, & \mathsf{sonst} \end{cases}$$

$$G_{\mathsf{NRZ}}(f) = T\operatorname{sinc}(fT)$$

8.1.2. Manchester Impuls:

$$g(t) = -g_{\mathsf{NRZ}}(t) + 2g_{\mathsf{NRZ}}(2t) = \begin{cases} 1, & \text{für } |t| < \frac{T}{4} \\ 0, & \text{für } |t| = \frac{T}{4} \\ -1, & \text{für } \frac{T}{4} < |t| < \frac{T}{2} \\ -\frac{1}{2}, & \text{für } |t| = \frac{T}{2} \\ 0, & \text{sonst} \end{cases}$$

Mittelwert Null, kein Gleichanteil

8.1.3. cos²-Impuls:

$$g(t) = \begin{cases} \cos^2\left(\frac{\pi t}{T}\right), & \text{für } |t| < \frac{7}{2} \\ 0, & \text{sonst} \end{cases}$$

$$G(t) = \frac{T}{2} \frac{\cos(\pi t \frac{T}{2})}{\sin(\pi t \frac{T}{2})}$$

8.1.4. $\operatorname{sinc-Impuls:} \operatorname{sinc}(x) = \operatorname{si}(\pi x)$

$$g(t) = \frac{\sin(\pi \frac{t}{T})}{\pi \frac{t}{T}} = \operatorname{sinc}\left(\frac{t}{T}\right) \qquad G(f) = \begin{cases} T, & \text{für } |f| < \frac{1}{2T} \\ \frac{T}{2}, & \text{für } |f| = \frac{1}{2T} \\ 0, & \text{sonst} \end{cases}$$

8.1.5. "Nyquist roll-off"-Impuls:

$$\begin{array}{c} t) = \frac{\sin(\pi\frac{t}{T})}{\pi\frac{t}{T}} \cdot \frac{\cos(\alpha\pi\frac{t}{T})}{1 - 4\alpha^2(\frac{t}{T})^2} \\ & \qquad \qquad \qquad T \end{array}$$
 für

$$G(f) = \begin{cases} T & \text{für } |f| \leq \frac{1-\alpha}{2T} \\ \frac{T}{2} [1 + \cos(\frac{\pi T}{\alpha}(|f| - \frac{1-\alpha}{2T}))] & \text{für } \frac{1-\alpha}{2T} < |f| \leq \frac{1+\alpha}{2T} \\ 0 & \text{sonst} \end{cases}$$

8.1.6. Root-Raised-Cosine:

Meist genutzer Filter (Wurzel-Nyquist)

8.1.7. Gauß-Impuls:

$$g(t) = \exp\left[-\pi \left(\frac{t}{\Delta t}\right)^{2}\right]$$

$$G(f) = \Delta t \cdot \exp\left(-\pi (\Delta t f)^{2}\right) = \frac{1}{\Delta f} \exp\left(-\pi \left(\frac{f}{\Delta f}\right)^{2}\right)$$

8.2. Energie wichtiger Impulse mit Amplitude A

$$\begin{array}{ll} E_S\{\mathrm{rect}(\frac{1}{\alpha T})\} = A^2\alpha\,|T| & E_S\{\mathrm{tri}(\frac{1}{\alpha T})\} = \frac{2}{3}\alpha\,|T|\,A^2 \\ E_S\{\mathrm{sinc}(\frac{1}{\alpha T})\} = A^2\,|\alpha|\,|T| & \mathrm{Rampe~0~bis~}\alpha T\colon \frac{\alpha}{3}\,|T|\,A^2 \end{array}$$

8.3. Bandbreite

Absolut: Alle positiven Frequenzen

B₉₉ Bandbreite: 99% der Signalenergie bzw. -leistung liegen in diesem Bandbreitenbereich (geht auch mit 90%)

 B_{6dB} Bandbreite: Bis Hälfte des Spektrums G(f)

B_{3dB} Bandbreite: Bis Hälfte der Leistung

B_N Äquivalente Rauschbandbreite

Bandbreiteneffizienz (Effizienz des Modulationsverfahrens):

$$\eta = rac{\ddot{ ext{Ubertragungsrate}}}{ ext{NF Bandbreite}} \qquad [\eta] = rac{ ext{bit/s}}{ ext{Hz}}$$

Beispiel GSM:
$$\eta=0.88\frac{\mathrm{bit/s}}{\mathrm{Hz}}$$
, LTE: $\eta=\frac{3\mathrm{Gbit/s}}{100\mathrm{MHz}}=30\frac{\mathrm{bit/s}}{\mathrm{Hz}}$

8.4. Frequenz-Zeit-Unschärfe

Ein Signal kann nicht gleichzeitig hart Band- und Zeitbegrenzt sein! Unschärfe: $T_D \cdot B_0 \geq \frac{1}{4\pi}$

Nach Trägheitsradius definiert. (Integral $\int\limits_{0}^{\infty}t^{2}g_{\mathrm{s}}^{2}\mathrm{d}t$ konvergiert)

Schrankenfunktion für Spektrum:

Falls das Zeitsignal in der n-ten Ableitung das erste mal einen Sprung aufweist, gilt für das Betragsspektrum:

$$|X(f)| \propto rac{1}{|f|^{n+1}} \qquad ext{für große } |f|$$

Anmerkung: n kann auch negativ sein! Bsp: $\delta(t) \Rightarrow n = -1$

8.5. Nyquist Bedingungen

8.5.1. 1. Bedingung: Kein Symbolübersprechen

Impulsantwort
$$g[nT] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

Fordert maximale vertikale Öffnung des Auges Impuls Nullstellen: $\pm 1T$, $\pm 2T$, $\pm 3T$, . . .

Zeitbereich:
$$A\{g(t)\}=T\sum_{n=-\infty}^{\infty}g(nT)\cdot\delta(t-nT)=T\cdot\delta(t)$$
 Frequenzbereich: $P\{G(f)\}=\sum_{k=-\infty}^{\infty}G(f-\frac{k}{T})=T$

8.5.2. 2. Bedingung: Verschärfung 1. Bedingung

Impulsantwort
$$g\left[k\frac{T}{2}\right] = \begin{cases} 1 & k = 0\\ g\left[\frac{T}{2}\right] & k = \pm 1\\ 0 & \text{sonst} \end{cases}$$

Fordert maximale horizontale Öffnung des Auges Zusätzliche Impuls Nullstellen: $\pm 1.5T$, $\pm 2.5T$, $\pm 3.5T$, . . .

8.6. Augendiagramm

Bestimmung des Augendiagramm (4 Durchläufe): Für die Bereiche $[-T_A, 0]$ und $[0,T_{\rm A}]$ werden die relevanten Pulse so überlagert(positiv oder negativ), dass das Auge minimal wird. Daraus ergibt sich die Überlagerungstabelle.

Beispiel mit 1 Vor- und 2 Nachläufern:

Vertikale Öffnung A_v : Maß für Empfindlichkeit gegenüber Rauschen Horizontale Öffnung A_h : Maß für Empfindlichkeit gegenüber Schwankungen des Abtastzeitpunkts

8.7. Korrelation

Ein Maß für die Ähnlichkeit zweier Signale x(t), y(t) bei Verschiebung. Korrelationskoeffizient $\rho_{xy} = \frac{E_{xy}}{\sqrt{E_x \cdot E_y}} = \frac{\varphi_{xy}(0)}{\sqrt{\varphi_x(0) \cdot \varphi_y(0)}}$

Es gilt: Korreliert $\rho = 1$, Orthogonal $\rho = 0$, Antipodisch $\rho = -1$

Kreuzkorrelationsfkt, zwischen zueinander verschobenen Signalen:

$$\varphi_{xy}(\tau) = \varphi_{yx}(-\tau) = \int_{-\infty}^{\infty} x(t) \cdot y(t+\tau) dt$$

Zusammenhang mit Faltung: $\varphi_{xy}(\tau) = x(-t) * y(t)|_{t=\tau}$

Autokorrelationsfkt. AKF ist Kreuzkorrelation mit sich selbst (y = x): $\varphi_x(\tau) = \varphi_{xx}(\tau)$ Anwendung: Erkennen von Perioden

Energiebeziehung: $E_{x,y} = \rho_{x,y} \sqrt{E_x E_y}$ mit

Energie
$$E_x=\int\limits_{-\infty}^{\infty}x(t)^2\,\mathrm{d}t=\int\limits_{-\infty}^{\infty}\Phi_x\,\mathrm{d}f=\varphi_{xx}(0)$$
 (endl. Sig.)

Leistung
$$P_x = \mathrm{E}[\mathrm{X}^2] = \frac{1}{2T}\int\limits_{-T}^T x(t)^2\,\mathrm{d}t$$
 (period. Sig.)

Leistungsdichtespektrum $\Phi_x(f)$ ist definiert als $\varphi_x \circ \Phi(f)$

Periodische Signale: $\overline{\varphi}_{xy}(\tau)=\frac{1}{2T}\int_{-T}^{T}x(t)y(t+\tau)\,\mathrm{d}t$ Stochastische Signale: $\varphi_{XY}(\tau) = \mathbb{E}[X(t) \cdot Y(t+\tau)]$ $\int\limits_{-\infty}^{\infty}\Phi_X(f)\,\mathrm{d}f=\varphi_X(0)=\mathrm{Var}[X]+\mathrm{E}[X]^2=\sigma_X^2+\mu_X^2$

9. Analoger Übertragungskanal

r(t) = h(t) * s(t) $R(f) = H(f) \cdot S(f)$ $\mbox{Verzerrungsfrei:} \ h(t) = h_0 \ \delta(t-t_0) \qquad H(f) = h_0 e^{-\mathrm{i} 2\pi f t_0}$

9.1. AWGN - Additive White Gaussian Noise

Weißes Rauschen \emph{N} enthält alle Frequenzen. Thermisch: $N_0=k_{\mathrm{B}}T$

PDF
$$f_N(n) = \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{-\frac{n^2}{2\sigma^2}}$$
 LDS:
$$\Phi_N(f) := \frac{N_0}{2}$$
 für $f < 10 \, \mathrm{GHz}$
$$\mathrm{AKF}: \qquad \varphi_n(\tau) = \frac{N_0}{2} \delta(\tau) \qquad \Rightarrow 0 \, \mathrm{für} \, \tau \neq 0$$

Leistung $P_N = \int \Phi_N df = \sigma^2 = B \cdot N_0$

Äquivalente Rauschbandbreite B_N : Bandbreite eines idealen Tiefpasses. der die selbe Rauschleistung P_N erzeugt, wie das reale Tiefpassfiltersy-

10. Detektion im Rauschen

gewähltes Bit \hat{D}_n eines tatsächlichen Bits $D_n = \left\{1,0\right\}$

Ziel: $P(\hat{D}_n \neq D_n)$ soll minimal sein.

Lösung: maximiere SNR zum Abtastzeitpunkt nT

Rauschleistung nach Filterung mit h(t):

$$P_{N} = \int_{-\infty}^{\infty} \Phi_{N} |H(f)|^{2} df = \frac{N_{0}}{2} \int_{-\infty}^{\infty} |H(f)|^{2} df$$

ightarrow mit Satz von Parseval gilt : $P_{\mathsf{N}} = rac{N_0}{2} \int\limits_{-\infty}^{\infty} |h(t)|^2 \, \mathrm{d}t$

momentane Signalleistung: $P_s(t) = \left| y_s(t) \right|^2$

mittlere Signalleistung: $P_s = \lim_{T \to \infty} \frac{1}{2T} \int\limits_{-T}^{T} \left| y_s(t) \right|^2 \mathrm{d}t$

10.1. Matched Filter

Signalangepasster Filter damit Signal im AWGN Kanal zum Abtastzeitpunkt die maximale SNR hat. Impulsantwort des Matched Filters: $h_{\rm MF}(t)=K\cdot g_s^*(T-t) \qquad ({\rm entspricht\ gewendetem\ Sendeimpuls})$ $H_{\rm MF}(f)=K\cdot G_s^*(f)\cdot {\rm e}^{-{\rm j}\,2\pi fT}$ Maximum SNR: $\frac{P_S}{P_N}=\frac{2E_S}{N_0}$

10.2. Fehlerwahrscheinlichkeit Pt

$Q(\sqrt{2E_s/N_0}) = Q(\sqrt{\text{SNR}})$

10.3. Zeitdiskreter AWGN-Kanal

$$\sigma^2 = \frac{\sigma_N^2}{A^2} = \frac{N_0}{2E_S} = \frac{1}{SNR}$$

10.4. Unabhängiges (unkorreliertes) Rauschen

Falls die erste Nyquistbedingung erfüllt und maximale SNR:

⇒ Die Folge abgetasteter Rauschanteile ist unabhängig!

11. Lineare, digitale Modulation

11.1. Allgemeines

Dimensionen: Phase (sin/cos), Polarisation (hori/vert) Die meisten Medien übetragen um eine Trägerfrequenz f_0 (Bandpass)

Bandpass-Sendesignal (moduliert mit S(t)):

 $\tilde{S}(t) = A(t)\sqrt{2}\cos\left(2\pi(f_0 + F(t))t + \varphi_0(t)\right)$

Inphasenanteil (Cosinusträger) $S_I(t) = A(t)\cos(\varphi'(t))$

Quadraturanteil (Sinusträger) $S_Q(t) = A(t) \sin(\varphi'(t))$

Amplitude: $|A(t)| = \sqrt{S_I^2(t) + S_O^2(t)}$

Phase: $\varphi'(t) = \arctan \frac{S_Q(t)}{S_I(t)}$

Mittl. Energie pro Symbol: $\overline{E}_S = \mathrm{E}[D_{I_n}^2 + D_{Q_n}^2] \cdot \underbrace{\int_0^T \left|g_s(t)\right|^2 \mathrm{d}t}$

Energie je Bit : $E_{\text{bit}} = \frac{\overline{E}_S}{\# \text{Bits}}$

Anfälligkeit gegenüber Rauschen: d_{min}

11.2. Modulation und Signalraumzuordnung

Moduliertes Sendesignal

$$\begin{split} \tilde{S}(t) &= S_I(t)\sqrt{2}\cos(2\pi f_0 t) - S_Q(t)\sqrt{2}\sin(2\pi f_0 t) \\ &= \left[\sum_{n=-\infty}^{\infty} D_{I_n} g_s(t-nT)\right]\sqrt{2}\cos(2\pi f_0 t) \\ &- \left[\sum_{n=-\infty}^{\infty} D_{Q_n} g_s(t-nT)\right]\sqrt{2}\sin(2\pi f_0 t) \end{split}$$

11.3. Modulationsarten linear: AM A(t), ASK, PSK nicht linear: FM F(t), PM $\varphi(t)$, FSK Probleme: Nichtlineare Verstärker verzerren $D_Q = \frac{D_Q}{1000} = \frac{M}{1000} = \frac{D_Q}{1000} = \frac{D_Q}{1000}$

11.4. On-Off Keying (OOK)

Intensitätsmodulation mit b=1 (Laser an oder aus) Mittlere Energie pro Symbol: $E_{\scriptscriptstyle S}=\frac{A_{\rm on}^2}{2}$

11.5. Amplitude Shift Keying (M-ASK)

Für M Stufen mit Abstand Δ gilt: $\mathsf{E}[D_I^2] = \frac{\Delta^2(M^2-1)}{12}$

11.6. Phase Shift Keying (PSK)

 $\begin{aligned} &d_I^2 + d_Q^2 = r^2 & \text{(meist } r = 1\text{)} \\ &E_S = \mathbb{E}[D_I^2 + D_Q^2] \int_0^T \left|g_S(t)\right|^2 \mathrm{d}t \end{aligned}$

Offset: verhindert harte Übergänge (Nicht durch Null) Gray-Codierung zwischen benachbarten Symbolen: Fehler in der Symbolerkennung hat nur geringe Bitfehler

11.6.1. DPSK

Differentielle binäre Phasenmodulation 0: Phase bleibt gleich, 1: Phase ändert sich

11.7. Quadraturamplitudenmodulation (M-QAM)

Für M Stufen und Abstand Δ : $\mathrm{E}[D_I^2+D_O^2]=rac{\Delta^2(M-1)}{6}$

Auch wichtig

Eigene Notizen:

Anhang

12. Mathematik

12.1. Polynome $P(x) \in \mathbb{R}[x]_n = \sum_{i=0}^n a_i x^i$ vom Grad nGerade durch Punkt $P(x_0, y_0)$: 3 $y = m(x - x_0) + y_0$

12.2. Exponentialfunktion und Logarithmus

$a^x = e^{x \ln a}$	$\log_a x = \frac{\ln x}{\ln a}$	$\ln x \le x - 1$
$\ln(x^a) = a \ln(x)$	$ \ln(\frac{x}{a}) = \ln x - \ln a $	$\log(1) = 0$

12.3	12.3. Sinus, Cosinus $\sin^2(x) + \cos^2(x) = 1$							
x φ	0 0°	π/6 30°	π/4 45°	π/3 60°	$\frac{1}{2}\pi$ 90°	π 180°	$1\frac{1}{2}\pi$ 270°	2π 360°
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$0 \\ -1 \\ 0$	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm\infty$	0	∓∞	0

Additionstheoreme	Stammfunktionen
$\cos(x - \frac{\pi}{2}) = \sin x$	$\int x \cos(x) \mathrm{d}x = \cos(x) + x \sin(x)$
$\sin(x + \frac{\pi}{2}) = \cos x$	$\int x \sin(x) \mathrm{d}x = \sin(x) - x \cos(x)$
$\sin 2x = 2\sin x \cos x$	$\int \sin^2(x) \mathrm{d}x = \frac{1}{2} \left(x - \sin(x) \cos(x) \right)$
$\cos 2x = 2\cos^2 x - 1$	$\int \cos^2(x) \mathrm{d}x = \frac{1}{2} \left(x + \sin(x) \cos(x) \right)$
$\sin(x) = \tan(x)\cos(x)$	$\int \cos(x)\sin(x) = -\frac{1}{2}\cos^2(x)$

 $\begin{aligned} \sin(x\pm y) &= \sin x \, \cos y \pm \sin y \, \cos x & \sin x &= \frac{1}{12}(e^{\mathrm{i}x} - e^{-\mathrm{i}x}) \\ \cos(x\pm y) &= \cos x \, \cos y \mp \sin x \, \sin y & \cos x &= \frac{1}{12}(e^{\mathrm{i}x} + e^{-\mathrm{i}x}) \end{aligned}$

12.4. Integralgarten

Partielle Integration: $\int uw' = uw - \int u'w$ Substitution: $\int f(g(x))g'(x) dx = \int f(t) dt$

Substitution: $\int \int (g(x))g'(x) dx = \int \int (t) dt$						
F(x) - C	f(x)	f'(x)				
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}				
$\frac{2\sqrt{ax^3}}{3}$	\sqrt{ax}	$\frac{a}{2\sqrt{ax}}$				
$x \ln(ax) - x$	$\ln(ax)$	$\frac{a}{x}$				
$\frac{1}{a^2}e^{ax}(ax-1)$	$x \cdot e^{ax}$	$e^{ax}(ax+1)$				
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$				
$-\cos(x)$	$\sin(x)$	$\cos(x)$				
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$				
$\mathrm{Si}(x)$	$\operatorname{sinc}(x)$	$\frac{x\cos(x)-\sin(x)}{x^2}$				
$-\ln \cos(x) $	$\tan(x)$	$\frac{1}{\cos^2(x)}$				

$$\int e^{at} \sin(bt) dt = e^{at} \frac{a \sin(bt) + b \cos(bt)}{a^2 + b^2}$$

$$\int x e^{ax^2} dx = \frac{1}{2a} e^{ax^2} \qquad \int t^2 e^{at} dt = \frac{(ax-1)^2 + 1}{a^3} e^{at}$$

2^1	2^2	2^3	2^4	2^5	2^6	2^7	2^8	2^{16}
2	4	8	16	32	64	128	256	65536

$a^2 + b^2 = c^2$ 13. Geometrie

Innenwinkelsumme im n-Eck: $(n-2) \cdot 180^{\circ}$

Allg. Dreieck $\triangle ABC$ mit Seiten a, b, c und Winkel α, β, γ :

Hohe
$$h_c=a\sin\beta=b\sin\alpha$$
 Flache $A=\frac{1}{2}h_cc=\frac{1}{2}h_aa$ Schwerpunkt: $x_S=\frac{1}{3}(x_A+x_B+x_C)$ $y_S=\frac{1}{3}(y_A+y_B+y_C)$

14. Stochastik

14.1. Der Wahrscheinlichkeitsraum (Ω, \mathbb{F}, P)

Ein Wahrscheinlichkeitsraum $(\Omega, \mathbb{F}, \mathsf{P})$ besteht aus

Ergebnismenge	$\Omega = \{\omega_1, \omega_2, \dots\}$	Ergebnis $\omega_j \in \Omega$
Ereignisalgebra	$\mathbb{F}=\left\{ A_{1},A_{2},\ldots\right\}$	$\text{Ereignis } A_i \subseteq \Omega$
Wahrscheinlichkeitsmaß	$P:\mathbb{F}\to[0,1]$	$P(A) = \frac{ A }{ \Omega }$

Es gilt: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Bedingte Wahrscheinlichkeit für A falls B bereits eingetreten ist: $P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$ Multiplikationssatz: $P(A \cap B) = P(A|B) P(B) = P(B|A) P(A)$

Erwartungswert: $\mathsf{E}[X] = \mu = \sum x_i P(x_i) = \int x \cdot f_\mathsf{X}(x) \, \mathrm{d}x$

 $\textbf{Varianz:} \ \mathsf{Var}[X] = \mathsf{E}\left[(\mathsf{X} - \mathsf{E}[\mathsf{X}])^2\right] = \mathsf{E}[\mathsf{X}^2] - \mathsf{E}[\mathsf{X}]^2$ Standard Abweichung $\sigma = \sqrt{\operatorname{Var}[X]}$

Covarianz: Cov[X, Y] = E[(X - E[X])(Y - E[Y])] = Cov[Y, X]

Binominialverteilung (diskret, n Versuche, k Treffer): $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ $\mu = np$ $\sigma^2 = np(1-p)$

Korrelation ist ein Maß für den linearen Zusammenhang von Variablen

Cov(X, Y)Kreuzkorrelation von X und Y: $r_{xy} =$

14.2. Normalverteilung

PDF:
$$f_{X}(x) = \frac{1}{\sqrt{2\pi\sigma^{2}}}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} \quad x \in \mathbb{R}$$

15. Signale

15.1. Faltung von Signalen

$$x(t)*h(t) = h(t)*x(t) = \int_{-\infty}^{\infty} x(\tau) \cdot h(t-\tau) d\tau$$

15.2. sinc-Singal

16. Fouriertransformation

16.1. Eigenschaften der Fouriertrafo

Linearität:	$\alpha x(t) + \beta g(t) \circ \xrightarrow{\mathcal{F}} \alpha X(f) + \beta G(f)$
Zeitverschiebung:	$x(t-\tau) \circ \stackrel{\mathcal{F}}{\longrightarrow} e^{-j2\pi f \tau} X(f)$
Frequenzversch.	$e^{j2\pi f_0 t} \circ \xrightarrow{\mathcal{F}} X(f - f_0)$
Vertauschung:	$U^*(t) \stackrel{\mathcal{F}}{\circ} u^*(f)$
Stauchung	$x(ct) \circ \xrightarrow{\mathcal{F}} \frac{1}{ c } X(\frac{f}{c})$
Ableitung	$x^{(n)}(t) \stackrel{\mathcal{F}}{\circ} (j2\pi f)^n X(f)$
Integral	$\int_{-\infty}^{t} x(\tau) d\tau \circ \frac{\mathcal{F}}{\bullet} \left(\frac{1}{2} \delta(f) - \frac{j}{2\pi f} \right) X(f)$
Faltung:	$(x*g)(t) \circ \stackrel{\mathcal{F}}{\longrightarrow} X(f) \cdot G(f)$

Zusammenhang zwischen geraden und ungeraden Signalanteilen:

16.2. Wichtige Fouriertransformationen

 $|T|\operatorname{sinc}(fT)$

 $T \stackrel{*}{\downarrow} |T| \operatorname{sinc}^2(fT)$

16.3. Weitere Paare

$(x * g)(\iota) \cup A(f) \cdot G(f)$				
$\int_{0}^{+\infty} u_1(t) \cdot u_2^*(t) dt = \int_{0}^{+\infty} U_1(f) \cdot U_2^*(f) df$	f(t)	$F(\omega)$	f(t)	$F(\omega)$
-∞ -∞ l ac	$ t^n $	$\frac{2n!}{(i\omega)^{n+1}}$	$\operatorname{sinc}(\frac{t}{T})$	$T \operatorname{rect}(fT$
$E = \int_{-\infty}^{+\infty} u(t) ^2 dt = \int_{-\infty}^{+\infty} U(f) ^2 df$	t^n	$2\pi i^n \delta^{(n)}(\omega)$	$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	$\frac{1}{(a+\mathrm{i}\omega)^n}$
schen geraden und ungeraden Signalanteilen: c(t) = a + y + ia + iy			$\exp(-\alpha t)$	$\tfrac{1}{\mathrm{i}2\pif + \alpha}$

Parseval