Predicting 2018 Housing Prices on Kaggle

Carol Chiu

March 6, 2020

General Assembly

Data Science Immersive

Summer 2019

What is the problem?

-Company Real Estate X wants to predict housing prices for next year 2019 from 2018 housing data obtained from Kaggle.com.

-My task is to build a model that predicts housing prices accurately.

Import Housing Dataset from Kaggle.com

	ld	PID	MS SubClass	MS Zoning	Lot Frontage	Lot Area	Street	Alley	Lot Shape	Land Contour	 Screen Porch		Pool QC	Fence	Misc Feature	Misc Val	Mo Sold	Yr Sold	Sale Type	8
C	109	533352170	60	RL	NaN	13517	Pave	NaN	IR1	Lvl	 0	0	NaN	NaN	NaN	0	3	2010	WD	
1	544	531379050	60	RL	43.0	11492	Pave	NaN	IR1	Lvl	 0	0	NaN	NaN	NaN	0	4	2009	WD	;
2	153	535304180	20	RL	68.0	7922	Pave	NaN	Reg	Lvl	 0	0	NaN	NaN	NaN	0	1	2010	WD	
3	318	916386060	60	RL	73.0	9802	Pave	NaN	Reg	Lvl	 0	0	NaN	NaN	NaN	0	4	2010	WD	
4	255	906425045	50	RL	82.0	14235	Pave	NaN	IR1	Lvl	 0	0	NaN	NaN	NaN	0	3	2010	WD	

Average Sales Price for Houses

```
import statistics
statistics.mean(train["SalePrice"])
```

181469.70160897123

Visualize relationship between features

Relationship between Type of House and Sales price

Cheapest Homes ~ 110,000 Dollars

Lower Midpoint Prices ~ 125,000 Dollars

Midpoint Prices ~ 150,000 Dollars

Upper Midpoint Prices ~ 160,000 Dollars

Most Expensive Prices ~ 225,000 Dollars

Mean ~ \$180K

Run Linear Model

R-squared value on train set: 0.246

R-squared value on test set: 0.231

-Data exhibits non-linear behavior, bad r-squared score on test set

Run LassoCV Regression

```
# Instantiate linear regression model without regularization.
lr_model = LassoCV(alphas=np.logspace(0,10,100))

# Fit linear regression model.
lr_model.fit(X_train, y_train)

# Score
lr_model.score(X_train, y_train), lr_model.score(X_test, y_test)
```

R-squared on train: 0.244

R-squared on test: 0.233

Run Ridge Model

```
# Instantiate.
ridge model = Ridge(alpha=100)
# Fit.
ridge model.fit(X train, y train)
# Generate predictions.
ridge preds = ridge model.predict(X test)
ridge preds train = ridge model.predict(X train)
# Evaluate model using R2.
print(r2 score(y train, ridge preds train))
print(r2 score(y test, ridge preds))
```

R-squared on train set: 0.244

R-squared on test set: 0.233

Run model Using Logistic Regression

```
# Step 1: Instantiate our model.
logreg = LogisticRegression()

# Step 2: Fit our model.
logreg.fit(X_train, y_train)
```

R-squared on train set: 0.520

R-squared on test set: 0.215

Results/Summary

- -The models have low predictive accuracy.
- -I need to try to find a pattern in the features so that I can put the right features into the train-test split.

References

- 1) "Project 2 Predicting Housing Prices Using Logistic Regression", General Assembly Data Science Intensive, Atlanta, Georgia, March 6, 2020
- 2) Gupta, Prashant, "Regularization in Machine Learning, "towards Data Science, Nov. 15, 2017, https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a, accessed March 6, 2020