

SECOND SEMESTER 2023-2024

Course Handout Part II

Date: 09-01-2024

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : AN F315 (L-P-T-U:3-0-0-3)

Course Title : Aircraft Structures

Instructor-in-Charge : Prof. Srinivasa Prakash Regalla

Scope and Objective of the Course: Basic elasticity and 2D problems, Virtual work and energy method, Bending of thin plates, Structural components of aircraft, Airworthiness and airframe loads, Bending, Shear and Torsion of Thin-Walled Beams, Stress analysis of aircraft components including Wing spars and box beams, Fuselage, Wings, Fuselage frame and wing ribs, Laminated composite structures, Aeroelasticity, Computational Modelling of various Aircraft Components under Service Loads.

Textbooks:

1. Megson T.H.G., "Aircraft Structures for Engineering Students" Butterworth-Heinemann (Elsevier), 7th Edition, UK, 2022.

Reference books

1. Sun C. T., Adnan A., "Mechanics of Aircraft Structures", 3rd Edition, Wiley, NJ, USA, 2021.

Course Plan:

Lecture	Learning objectives	Topics to be covered	Chapter in the Text Book
No.		Electricity of metaviolectures study valetions study	
1-2	Basic elasticity and 2D problems	Elasticity of materialsstress-strain relations, stress function, membrane's analogy	CH1 to CH3 (TB)
3-6	Virtual work and energy method	Principle of virtual work, strain energy and complementary energy methods	CH4 &5 (TB)
7-10	Bending of thin plates	Pure bending and combined loading of thin plates, application of strain energy method	CH7 (TB)
11 -13	Structural components of aircraft	Loads on aircraft structural components, functions of structural components, fabrication of structural components, riveted joints and their design	CH12 (TB)
14 -17	Airworthiness and airframe loads	Factors of safety, load factor determination, airframe loads, symmetric maneuver loads, gust loads, design against fatigue	CH13 (TB)
18 - 21	Bending, Shear and Torsion of Thin-Walled Beams	Symmetric and unsymmetric bending, deflection	CH16 (TB)

22 - 27	Stress analysis of aircraft components: Wing spars and box beams	Open and closed section beams in aircraft, beams with variable stringer areas	CH10 (TB)
28 - 31	Stress analysis of aircraft components: Fuselage, Wings, Fuselage frame and wing ribs	Fuselage bending, shear and torsion, pressurized fuselages	CH17 (TB)
32 - 35	Laminated composite structures	Laminated composites and thin-walled composite beams	CH16 (TB)
36-39	Aeroelasticity	Wing flutter, control effectiveness, aileron effectiveness	CH29 (TB)
40-43	Computational Modelling of various Aircraft Components under Service Loads	\mathcal{F}	СН6 (ТВ)

Evaluation Scheme:

Component	Duration (min)	Weightag e(%)	Date & Time	Nature of Component
Mid-semester Examination	90	25%=50M	15/03 - 4.00 - 5.30PM	Closed Book
Design Project + Seminar	-	20%=40M		Open Book
Classroom Interaction Tests (Quizzes)	10-30 min each	15%=30M	In the lecture class	Closed Book
Comprehensive Examination	180	40%=80M	17/05 AN	Closed Book

Chamber Consultation Hour: To be announced in the first lecture class.

Notices: CMS

Make-up Policy: Only for Mid-semester and Comprehensive examinations and only in genuine cases of illness with prior intimation with medical documents enclosed.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE

