Белорусский государственный университет информатики и радиоэлектроники

Кафедра физики

ОТЧЕТ

Лабораторной работе №2.8 «Изучение воздействия постоянных электрического и магнитного полей на заряженные частицы»

Выполнил ст.гр 980161: Алейчик И.Д.

Принял: Тараканов А.Н.

Лабораторная работа №2.8

Цель: Экспериментально изучить движение электронов в поперечных электрическом и магнитном полях определить уделный заряд, скорость электронов, а так же зависимость скорости электронов от велечины электрического поля.

Краткие теоретические сведения

Согласно современным представлениям, взаимодействие между частицами осуществляется посредством особой формы материи – физических полей. Примеры физических полей: гравитационное, электромагнитное, поле ядерных сил. Каждый вид взаимодействия связывается с определенной характеристикой частицы. Форма материи, посредством которой осуществляется взаимодействие между электрически заряженными полем. Частными формами электромагнитным частицами, называется проявления электромагнитного поля являются электрическое и магнитное поля. Представление об электрическом поле было введено Фарадеем. Согласно Фарадею, каждый заряд q изменяет определенным образом свойства окружающегоего пространства: создает в окружающем пространстве электрическое поле.

Расчетные формулы

$$B_{\mathrm{kp}} = \frac{I_{c(\mathrm{kp})} N}{2 l} \mu \mu_0 (\cos \beta_1 - \cos \beta_2),$$

$$\mathbf{v} = \frac{4U}{r_{\rm A} B_{\rm KD}}.$$

$$\frac{e}{m} = \frac{8U}{r_{\rm A}^2 B_{\rm kp}^2}$$

Практическое задание

1. Получить зависимость анодного тока от тока соленоида для трех значений напряжения на аноде.

Таблица 1

		I			1
10B			15B		
I(C)	I(A)	d7a/d7c * 10 ⁻⁵	I(C)	I(A)	d7a/d7c * 10 ⁻⁵
100	0.700	1	100	1.138	3
200	0.699	20	200	1.135	6
300	0.679	39	300	1.129	29
400	0.640	95	400	1.1	99
500	0.545	45	500	1.001	29
510	0.500	33	510	0.972	38
520	0.467	12	520	0.934	39
530	0.455	27	530	0.895	48
540	0.428	31	540	0.847	34
550	0.397	24	550	0.813	55
560	0.373	22	560	0.758	25
570	0.351	21	570	0.733	91
580	0.330	18	580	0.642	7
590	0.312	18	590	0.635	35
600	0.294	111	600	0.6	220
700	0.183	48	700	0.38	80
800	0.135	35	800	0.3	91
900	0.100	100	900	0.209	209

Таблица 2

20B		
I(C)	I(A)	d7a/d7c * 10 ⁻⁵
100	1.735	15
200	1.72	5
300	1.715	32
400	1.683	83
500	1.6	10
510	1.59	41
520	1.549	19
530	1.53	47
540	1.483	53
550	1.43	49
560	1.381	72
570	1.309	66
580	1.243	62
590	1.181	78
600	1.103	419
700	0.684	230
800	0.454	202
900	0.252	252

2. Постоить зависимости для каждого значения U.

3. Из графиков dIa=f(Ic) определить значения Ic(кр)

	10B	15B	20B
Ікр	600	700	800

4. Расчитать Вкр для каждого из трех случаев.

	10B	15B	20B
Вкр	1.42*10	1.66*10	1.90*10

5. Расчитать наиболее вероятную скорость электронов v для каждого значения U.

	10B	15B	20B
Vвер	1.41*10 ⁻³	1.82*10 ⁻³	2.12*10 ⁻³

6. Построить кривую зависимости скорости электронов от анодного напряжения v=f(U).

7. Расчитать удельный заряд электрона е/m.

	10B	15B	20B
e/m	9.97*10 ⁵	1.10*10 ⁵	1.12*10 ⁵

Вывод: изучил движение электронов в поперечных электрическом и магнитном полях определил уделный заряд, скорость электронов, а так же зависимость скорости электронов от велечины электрического поля.