

Lenet-5 DETAILS

C1: first convolutional layer

pixel in the resultant ZB+ZB i mage

C3: 3rd Convolutional layer

	US :	5~2	C6\\\	7 0 W	4 		, t a	70				
		% 6-	11	h	u?		2	-16 -		44		m#h 51
		4 1A		H			j	1	4	יע		- 5
	HH	LA	}			\	$\cdot \mid$	10%	10		4)
	Mi	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1		n	- 1	1			1	9
	Put						35 5 vol4	16 ,wis)		16	
525		7	16→ 24×	<u>ی</u>				ure				
6 feat	\. 100							ps "			14 -2	-
Jean	aps	7.6	filter					•				1-5+1
	•		6 -	00			. 4	a de la companya de l	4 A.		=	10
	Cto	rs do	Dan	rage	3	چىي	ا ع	44	45		104	1.D
			y or	~~	100 4		1)	38	10%	
	0 1	23	45	6 7	· 8	9 :	02	11/	12	13	14	15
0	X		XX	<u>k</u>		ኤ	ナ	X	×		X	×
4	XX		*	x x)		*).	K	*		X
2	ХХ	y.			k K		-	Y.		×	メ	×
ጛ		Χх		* ;	××	X		•	×	V	X	x
4		% 4 .	X	\ :	لايا	٧.	አ		X	y.		X
5		X	_ X)	2	X	X	×	×		*	L	×
		time	11	44	ata?	time	L 1				>	· all 6"
Ea	ch col	mh	indi	cake	es A	نىكى	ch.	fea	ture	m	aps.	in SZ
are	Com	bined	l by.	the	uni	:45	û	a	Pa	whic	ula	~
fend	we.	map	ဘ္ င	3								
\rightarrow	To b	reak	the s	4.~~	met	B	<u>ا</u> ا	الم	ne	g-w	nk.	0 •
→	tok	eep t	he m	u-le	ere	子。	<i>~</i>	سو د	Ho	~	F~	Ki
	rea	sonal	ole b	ow	ds.	•						

number of connections: The above structure repeats for each pixel in the 5x5 output image: 16 of them: \$\(\(5\x\)\x\ 16\x\(\dagger^4\1\) = 5\x5\x\ 80 size | Equare: bias = 2000 16 images ZKZ "C5" 5th layer, C => convolution "Flattening" 16 of these each of these in bias 545x 16=400 connected to all layers pixels m 54. (54) A fully connected layer has no local receptive fields panameters: For each of these 120 neurous e.g., the Johne: there are 400 weights + 1 bias term \$ 120 × (400+1) = 120 × 401 = 48,120 Connection: The number of connections is the same as the number zparameters. His is

a fully connected layer.

Thy is this called a Convolutional layer

results in a

5x5 with a 5x5 D Ix1 image.

there are
120 of these. Why 120 8 not any other number? Carbitrary!) 6) "F6" Fully come ched layer comections: (same) 4) Output layer The activation of s Of at all other layers O 10 merethe tanh(.) of the function (smooth version of the signum function of the Perception) For this output layer, it is the SOFTMAX

I sherage Pooling The entire frame into one Z=80,80/4x4=5 [5] (16 pixels."

4x4

grid) why Pooling? _ contraction - Invariance. Invariance to small transformations, distortions, translation. A shall distortion in the input will not change the outcome of pooling drastically suice ne takethe max/ merage value in a localmeighbourhood LOCAL RESPONSE NORMALISATION (LRN) from rema-biology (AlexNet) -> 'lateral inhibition' > an excited its neighbours -> creates contrast in the area and moreoses sensory perception No solid mathematical background snotivated by biology (evolution),

	Batch Normalisation (2015) ["BN"]
	[90 ste & Szegedy, 2015]
—	Addresses the problem of Internal Covariate Shift
	(initially believed) coverent opinion: works because
út.	de de dischie Colin
At.	initialisation: actually makes severe gradient desion, which is only allowated by skip convedions residual networks
En	dosion, which is only allowated by skip connections
n	residual networks
2h	e basic issue (historically) Fach layer of a neural
net	worke has inputs with a corresponding distribution. safected during the training process by the
This i	a greated during the training process by the
na	ndomisation
	T - the parameter initialisation
	L-theinput
_	During training as parameters of the preceding
	layers change, the distribution of inputs to the current layer changes accordingly she currentlayer needs to constantly adjust to new distributions. small changes in the initial layers amplify, and result in a significant shift in deeper hidden layers.
	current la er changes accordingly
_	she currentlayer needs to constantly adjust
	to new distributions.
	- small changes withe initial layers amplify,
	and result in a significant shift in deeper
	hiddenlayers
E	ENEFITS:
	Reduce unvanted shifts to speed up training
_	Reduce immanded shifts to speed up training permits a higher learning rate without
	vanishing /exploding gradients
_	ranishing exploding gradients Regularisation effect: unneces any to use
	· dropout à to mitigale overfitting Robustness to différent initialisation schemes
~	Robinstness to different imbialisation schemes
	and learning mates

9ssuec:
 Difficult to learn an identity mapping across layers
Training a deep network is difficult because z enploding and rainshing gradients Observation: convolutional layers are often
emplading and vanishing wadvents
Observation convolutional layers are often
better at leaving the residual rather than
belter at learning the residual rather than learning the feature map directly.

Residual connections/skip corrections/ highway comections (contd.) (x) The magnitude of the problem: >

- AlexNet (2012) had 5 convolutional layers 2614: YGG, GoogleNet 19 layers

Res Net (34 -> 50 layers deep architectures)

deeper but had overall lower complexity. (*) DROPOUT (AlexNet 2012) Henristic: applied at the training phase (FC layers)

To reduce overfitting. Scenario with dropout Usual FC Scenario AlexNet: \$=0.5 at the first two fully come ded Neuron: has a probability not to contribute to the feelforward phase & participate in the backpropagation: => Each neuron can have a larger chance to be trained, and not depend on some 'strong' neuron. No dropout at the test line

(x) Residual connections/skip corrections/ highway connections (contd.) (x) The magnitude of the problem: ->

- AlexNet (2018) had 5 convolutional layers 2614: YGG, Google Net 19 layers 22 layers

ResNet (34 -> 50 layers deep architectures)

deeper but had overall lower complexity. (*) DROPOUT (AlexNet 2012) Henristic: applied at the toning phase (FC leyers)

Dropout is a kind of regularisation technique

to reduce overfitting. **8 8 8** 8 8 8 Usual FC Scenario Scenario with dropout AlexNet: \$=0.5 at the first two fully come del Dayers Neuron: has a probability not to contribute to the feelforward phase & participate infle backpropagation: => Each neuron can have a larger chance to be trained, and not depend on Some 'strong' neuron. No dropout at the test fine

second class of Successful deep Architectures: AlexNet (2012) and Cafferet wised 1 GPU used 2 GPUs (two panallel paths) what & why? smageret: 15 million labelled high-resolution images, with 22% categories (22,000) 2012: ImageNet Large-Scale Visual Recognition Competition dataset: subset & ImageNet * It images in each of the 1k categories ! 1.2 million traininginages 50K validation images 1.5 L testing images sternet: 8 layers (5 com layers) 1st Comolutional layer RGB (colour) made HXM X3, G, B planes BZTX ZZTXY filters/ Kernels 227×227~ 51.5% fixe's How do we get 55?

X lex Net (contd.) Second layer: 3x804 (#2k+2) ··· (#52 to#54) (# 0 to # 3) 2k=52 - k= 26 P There are 27x27 outputs 48 of these, 2 groups 3-d layer: Local Response to only the values change, the size does not change.

Hant image eize remains 27X27 128 filters/kernels in 2 groups next layer: 3 x 3 overlapping Max Pool 128 there one 13×13×128 outputs in 2 groups. (This does not hange the output size: size preserving, but changes the values)

(¥) +	AlaxNet (contd). Third Convolutional layer:
_	
2	groups of 192 kernels of size 3×3×256 stride = 1, pad = 1
	stride = 1, pad = 1
	Input! 13x13 rimages x 128 in 2 groups!
	zirst, let us consider
	the size
-	13 141 3×3 NIH
<u></u>	
4	256 og tlem
4	28
	(; not fit, → 15×12
	9 mor tre
	pad = 1 > output
vol	, how do we account for the number?
J 0 90	128/2 $128/2$ $128/2$ $128/2$ $128/2$ $128/2$ $128/2$ $128/2$ $128/2$
	128
-woth	ing mentioned about pooling, so possibly
2 200	ing mentioned about pooling, so fossibly wels each for the 128 to give 256 and than
	7

some selection and fooling to give 192'
now that we have an understanding of faddings comoledous, stride & pooling, we will recognise that there are many heuristic s to get actual mumbers. To Tryto bok for conceptual ideas from different families of successful VGG - 16/-19 " Visual geometry group" at the Oriversity of Oxford Haren Simonyan, Andrew Zirserman (2014) Basic Concept: The use of 3×3 filters/herrels in flace of larger 11711 or 7X7 filters.

Result: Simpler architecture with a smallerno. of parameters, but an increased depth: (16-19 layers) 5x5filer 2 layers of 3x3 filters: cover the same effective pixel positions as one larger 5×5 mark large 5×5 filter Superimposed on an image, creating an first stribe 1

