

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 11-098412
(43)Date of publication of application : 09.04.1999

(51)Int.Cl. H04N 5/262
G11B 27/031
H04N 5/222
H04N 5/765
H04N 5/781
H04N 5/91

(21)Application number : 09-275088 (71)Applicant : SONY CORP
(22)Date of filing : 22.09.1997 (72)Inventor : MORIWAKE KATSUAKI
HIRASE HIDEHIRO
HAMAHATA NARIYASU

(54) EDIT SYSTEM, DISPLAY DEVICE AND COMPUTER

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain an excellent operation even in the case of conducting edit processing of different kinds by providing an edit means consisting of an edit module, a composite module and a special effect module and displaying a menu according to the graphical user interface for the edit, a composite or special effect processing in the case of editing, compositing or special effect processing.

SOLUTION: A work station 2 is started as an edit computer by starting an application software for edit installed in advance on a hard disk drive based on an operating system. In the case of operating the application software, a graphic menu according to the graphical user interface is displayed on a display device 2B. Thus, the number of operations required for the edit is reduced and the operating convenience is enhanced.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-98412

(43)公開日 平成11年(1999)4月9日

(51)Int.Cl.⁶
H 04 N 5/262
G 11 B 27/031
H 04 N 5/222
5/765
5/781

識別記号

F I
H 04 N 5/262
5/222
5/781
5/91
G 11 B 27/02

Z
510 F
N
B

審査請求 未請求 請求項の数 9 FD (全 48 頁) 最終頁に続く

(21)出願番号

特願平9-275088

(22)出願日

平成9年(1997)9月22日

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72)発明者 守分 且明

東京都品川区北品川6丁目7番35号ソニー
株式会社内

(72)発明者 平瀬 英弘

東京都品川区北品川6丁目7番35号ソニー
株式会社内

(72)発明者 浜畠 成靖

東京都品川区北品川6丁目7番35号ソニー
株式会社内

(74)代理人 弁理士 田辺 恵基

(54)【発明の名称】 編集システム及び表示装置並びにコンピュータ装置

(57)【要約】

【課題】本発明は編集システムに関し、異なる種類の編集処理を行えるようにした場合でも、優れた操作性を実現し得るようにする。

【解決手段】編集対象クリップに対して施す編集内容に応じて処理モジュールを分け、それぞれの処理モジュールを使用して編集作業を行うときには、対応する処理モジュールのグラフィカルユーザインターフェースをディスプレイに表示するようにしたことにより、編集オペレータにとって分かりやすいユーザインターフェイスを提供し得、優れた操作性を実現し得る。

【特許請求の範囲】

【請求項1】複数の編集対象クリップを編集するための編集システムにおいて、

上記編集対象クリップに対して編集処理を施すことによつて編集結果クリップを生成する編集モジュールと、上記編集対象クリップに対して合成処理を施すことによつて編集結果クリップを生成する合成モジュールと、上記編集対象クリップに対して特殊効果処理を施すことによつて編集結果クリップを生成する特殊効果モジュールとから構成される編集手段と、

上記編集モジュールに対応した編集処理用グラフィカルユーザインターフェースと、上記合成モジュールに対応した合成処理用グラフィカルユーザインターフェースと、上記特殊効果モジュールに対応した特殊効果処理用グラフィカルユーザインターフェースとから構成されるユーザインターフェース手段と、

上記編集モジュールによつて編集処理を行う場合には、上記編集処理用グラフィカルユーザインターフェースをディスプレイに表示し、上記合成モジュールによつて編集処理を行う場合には、上記編集処理用グラフィカルユーザインターフェースをディスプレイに表示し、上記編集モジュールによつて編集処理を行う場合には、上記編集処理用グラフィカルユーザインターフェースをディスプレイに表示する表示制御手段とを具えることを特徴とする編集システム。

【請求項2】上記編集処理用グラフィカルユーザインターフェース、上記合成処理用グラフィカルユーザインターフェース及び上記特殊効果処理用グラフィカルユーザインターフェースは、

上記編集対象クリップと上記編集結果クリップのリンク状態を示すクリップツリーを表示するツリーウィンドウと、

上記編集対象クリップに対して施す編集内容を指定するためのタイムラインウィンドウと、

上記編集対象クリップに対して施す画像処理内容を示す画像処理データを設定するためのパラメータ設定ウィンドウとを有することを特徴とする請求項1に記載の編集システム。

【請求項3】上記編集処理用グラフィカルユーザインターフェース、上記合成処理用グラフィカルユーザインターフェース及び上記特殊効果処理用グラフィカルユーザインターフェースは、

上記タイムラインウィンドウにおいて指定した編集内容を縮小してグラフィックイメージで表示する編集内容表示ウィンドウをさらに有することを特徴とする請求項2に記載の編集システム。

【請求項4】複数の編集対象クリップを編集するための表示装置において、

上記編集対象クリップに対して編集処理を施すことによつて編集結果クリップを生成する編集モジュールと、上

記編集対象クリップに対して合成処理を施すことによつて編集結果クリップを生成する合成モジュールと、上記編集対象クリップに対して特殊効果処理を施すことによつて編集結果クリップを生成する特殊効果モジュールとから構成される編集手段と、

上記編集モジュールに対応した編集処理用グラフィカルユーザインターフェースと、上記合成モジュールに対応した合成処理用グラフィカルユーザインターフェースと、上記特殊効果モジュールに対応した特殊効果処理用グラフィカルユーザインターフェースとから構成されるユーザインターフェース手段と、

上記編集モジュールによつて編集処理を行う場合には、上記編集処理用グラフィカルユーザインターフェースをディスプレイに表示し、上記合成モジュールによつて編集処理を行う場合には、上記編集処理用グラフィカルユーザインターフェースをディスプレイに表示し、上記編集モジュールによつて編集処理を行う場合には、上記編集処理用グラフィカルユーザインターフェースをディスプレイに表示する表示制御手段とを具えることを特徴とする表示装置。

【請求項5】上記編集処理用グラフィカルユーザインターフェース、上記合成処理用グラフィカルユーザインターフェース及び上記特殊効果処理用グラフィカルユーザインターフェースは、

上記編集対象クリップと上記編集結果クリップのリンク状態を示すクリップツリーを表示するツリーウィンドウと、

上記編集対象クリップに対して施す編集内容を指定するためのタイムラインウィンドウと、

上記編集対象クリップに対して施す画像処理内容を示す画像処理データを設定するためのパラメータ設定ウィンドウとを有することを特徴とする請求項4に記載の表示装置。

【請求項6】上記編集処理用グラフィカルユーザインターフェース、上記合成処理用グラフィカルユーザインターフェース及び上記特殊効果処理用グラフィカルユーザインターフェースは、

上記タイムラインウィンドウにおいて指定した編集内容を縮小してグラフィックイメージで表示する編集内容表示ウィンドウをさらに有することを特徴とする請求項5に記載の表示装置。

【請求項7】複数の編集対象クリップを編集するためのコンピュータ装置において、

上記編集対象クリップに対して編集処理を施すことによつて編集結果クリップを生成する編集モジュールと、上記編集対象クリップに対して合成処理を施すことによつて編集結果クリップを生成する合成モジュールと、上記編集対象クリップに対して特殊効果処理を施すことによつて編集結果クリップを生成する特殊効果モジュールとから構成される編集手段と、

上記編集モジュールに対応した編集処理用グラフィカルユーザインターフェースと、上記合成モジュールに対応した合成処理用グラフィカルユーザインターフェースと、上記特殊効果モジュールに対応した特殊効果処理用グラフィカルユーザインターフェースとから構成されるユーザインターフェース手段と、
上記編集モジュールによつて編集処理を行う場合には、上記編集処理用グラフィカルユーザインターフェースをディスプレイに表示し、上記合成モジュールによつて編集処理を行う場合には、上記編集処理用グラフィカルユーザインターフェースをディスプレイに表示し、上記編集モジュールによつて編集処理を行う場合には、上記編集処理用グラフィカルユーザインターフェースをディスプレイに表示する表示制御手段とを具えることを特徴とするコンピュータ装置。

【請求項8】上記編集処理用グラフィカルユーザインターフェース、上記合成処理用グラフィカルユーザインターフェース及び上記特殊効果処理用グラフィカルユーザインターフェースは、

上記編集対象クリップと上記編集結果クリップのリンク状態を示すクリップツリーを表示するツリーウィンドウと、

上記編集対象クリップに対して施す編集内容を指定するためのタイムラインウィンドウと、

上記編集対象クリップに対して施す画像処理内容を示す画像処理データを設定するためのパラメータ設定ウィンドウとを有することを特徴とする請求項7に記載のコンピュータ装置。

【請求項9】上記編集処理用グラフィカルユーザインターフェース、上記合成処理用グラフィカルユーザインターフェース及び上記特殊効果処理用グラフィカルユーザインターフェースは、

上記タイムラインウィンドウにおいて指定した編集内容を縮小してグラフィックイメージで表示する編集内容表示ウインドウをさらに有することを特徴とする請求項8に記載のコンピュータ装置。

【発明の詳細な説明】

【0001】

【目次】以下の順序で本発明を説明する。

【0002】発明の属する技術分野

従来の技術

発明が解決しようとする課題

課題を解決するための手段

発明の実施の形態

(1) 編集システムの全体構成(図1)

(2) ワークステーションの構成(図2)

(3) 編集システムにおける編集の原理

(3-1) 編集用のアプリケーション・ソフトウェアの
基本構成(図3)

(3-2) クリップの定義(図4)

(3-3) 合成処理の原理(図5～図7)

(3-4) 特殊効果処理の原理(図8)

(3-5) 編集処理の原理(図9)

(4) GUIとして表示されるグラフィック表示

(4-1) 合成モジュールを起動したときのGUI(図10)

(4-2) 特殊効果モジュールを起動したときのGUI(図11)

(4-3) 編集モジュールを起動したときのGUI(図12)

(5) クリップデータベースにおけるクリップ管理データの管理方法(図13～図20)

(6) 編集システムにおける各種処理手順(図21～図29)

(7) 編集システムの動作及び効果

発明の効果

【0003】

【発明の属する技術分野】本発明は編集システム及び表示装置並びにコンピュータ装置に関し、特に複数の素材を使用して編集処理を行う編集システムに適用して好適なものである。

【0004】

【従来の技術】近年、ビデオカメラから得られたビデオデータを編集するポストプロダクションの分野においては、素材のデータを記録する記録媒体としてディスクを使用したノンリニア編集システムが提案されている。このノンリニア編集システムにおいて行われる編集処理としては、さまざまな種類の編集処理が存在している。例えば、複数の素材をつなぎ合わせて所望のビデオプログラムを作成するためのビデオ編集処理や、キー信号によつて複数の素材を合成するための合成処理や、素材に対して特殊効果処理を施す特殊効果処理等が存在する。一般的に、このビデオ編集処理は編集装置で行われ、合成処理はビデオスイッチヤで行われ、特殊効果処理は特殊効果装置において行われている。

【0005】近年のディスク状記録媒体のランダムアクセス性の向上によつて、複数チャンネルに対して同時にアクセスが可能になり、その結果、複数チャンネルのビデオデータをリアルタイムで処理する編集処理が要望されるようになつてきた。例えば、テレビコマーシャル作成用の編集業界や映画プログラム作成用の編集業界等では、数十から数百の素材を使用して編集処理を行うと共に、異なる種類の編集処理を組合せて使用することが要望されている。さらに、これらの複数種類の編集処理を何度も繰り返し行うことによつて高度で且つ複雑な編集結果データを生成することが要求されるようになつてきた。

【0006】

【発明が解決しようとする課題】ところでこのように複数の素材を編集処理すると共に、異なる種類の編集処理

を組み合わせて使用するような場合には、オペレータに対して提供されるユーザインターフェイスとしては、操作性上、使いやすいものが望まれる。

【0007】本発明は以上の点を考慮してなされたもので、異なる種類の編集処理を行えるようにした場合でも、優れた操作性を提供し得る編集システム及び表示装置並びにコンピュータ装置を提案しようとするものである。

[0 0 0 8]

【課題を解決するための手段】かかる課題を解決するため本発明においては、複数の編集対象クリップを編集するための編集システムにおいて、編集対象クリップに対して編集処理を施すことによつて編集結果クリップを生成する編集モジュールと、編集対象クリップに対して合成処理を施すことによつて編集結果クリップを生成する合成モジュールと、編集対象クリップに対して特殊効果処理を施すことによつて編集結果クリップを生成する特殊効果モジュールとから構成される編集手段と、編集モジュールに対応した編集処理用グラフィカルユーザインターフェースと、合成モジュールに対応した合成処理用グラフィカルユーザインターフェースと、特殊効果モジュールに対応した特殊効果処理用グラフィカルユーザインターフェースとから構成されるユーザインターフェース手段と、編集モジュールによつて編集処理を行う場合には、編集処理用グラフィカルユーザインターフェースをディスプレイに表示し、合成モジュールによつて編集処理を行う場合には、編集処理用グラフィカルユーザインターフェースをディスプレイに表示し、編集モジュールによつて編集処理を行う場合には、編集処理用グラフィカルユーザインターフェースをディスプレイに表示する表示制御手段とを設けるようとする。

理用グラフィカルユーザインターフェースをディスプレイに表示する表示制御手段とを設けるようとする。

【0010】また本発明においては、複数の編集対象クリップを編集するためのコンピュータ装置において、編集対象クリップに対して編集処理を施すことによつて編集結果クリップを生成する編集モジュールと、編集対象クリップに対して合成処理を施すことによつて編集結果クリップを生成する合成モジュールと、編集対象クリップに対して特殊効果処理を施すことによつて編集結果クリップを生成する特殊効果モジュールとから構成される編集手段と、編集モジュールに対応した編集処理用グラフィカルユーザインターフェースと、合成モジュールに対応した合成処理用グラフィカルユーザインターフェースと、特殊効果モジュールに対応した特殊効果処理用グラフィカルユーザインターフェースとから構成されるユーザインターフェース手段と、編集モジュールによつて編集処理を行う場合には、編集処理用グラフィカルユーザインターフェースをディスプレイに表示し、合成モジュールによつて編集処理を行う場合には、編集処理用グラフィカルユーザインターフェースをディスプレイに表示し、編集モジュールによつて編集処理を行う場合には、編集処理用グラフィカルユーザインターフェースをディスプレイに表示する表示制御手段とを設けるようにする。

【0011】このようにして編集対象クリップに対して施す編集内容に応じて処理モジュールを分け、それぞれの処理モジュールを使用して編集作業を行うときには、対応する処理モジュールのグラフィカルユーザインターフェースをディスプレイに表示するようにしたことにより、編集オペレータにとって分かりやすいユーザインターフェイスを提供し得、優れた操作性を実現し得る。因みに、異なる編集処理を行えるようにした場合、それらを1つのユーザインターフェイスで兼用して操作するようになると、操作が複雑になるおそれがあるが、本発明のように物理的には1つのユーザインターフェースであつても、その表示内容をモジュール毎に分ければ、優れた操作性を実現することができる。

[0 0 1 2]

【発明の実施の形態】以下図面について、本発明の一実施の形態を詳述する。

【0013】(1) 編集システムの全体構成

まず始めに図1を用いて、本発明による編集システムの全体構成を説明する。図1において、1は全体として本発明による編集システムを示し、当該システム全体をコントロールするワークステーション2を備えている。このワークステーション2はCPU(中央処理ユニット)や各種処理回路、或いはフロッピーディスクドライブやハードディスクドライブ等を備える本体2Aと、当該本体2Aに接続されるディスプレイ2B、キーボード2C、マウス2D及びペン・タブレット2Eとを有している。

る。このようなワークステーション2は、編集のためのアプリケーション・ソフトウェアがハードディスクドライブに予めインストールされており、オペレーティングシステムの基で当該アプリケーション・ソフトウェアを動作させることにより編集用のコンピュータとして起動するようになされている。

【0014】因みに、このアプリケーション・ソフトウェアを動作させたときには、ディスプレイ2B上にGUI（グラフィカル・ユーザ・インターフェイス）のためのグラフィック表示が表示されるようになされており、上述したペン・タブレット2Eやマウス2Dを使用して、当該ディスプレイ2Bに表示される所望のグラフィック表示を選択すれば、所望の編集コマンドをこのワークステーション2に対して入力し得るようになされている。また編集に係わる各種数値データ等も、キーボード2Cを介してこのワークステーション2に対して入力し得るようになされている。

【0015】なお、このワークステーション2は、編集コマンドや各種数値データがオペレータの操作により入力されると、その編集コマンドや各種数値データに応じた制御データを後述するデバイスコントローラ3に出力するようになされており、これによりデバイスコントローラ3を介してこの編集システム1を構成する各機器を制御し得るようになされている。但し、ビデオディスクレコーダ5に関しては、デバイスコントローラ3を介さずとも、一部の機能を直接制御することができるようになされている。

【0016】またこのワークステーション2には、そのデバイスコントローラ3を介してビデオデータが入力されるようになされており、編集素材の画像や編集後の画像等をディスプレイ2Bに表示し得るようになされている。

【0017】デバイスコントローラ3は、ワークステーション2からの制御データを受けて、実際に各機器を制御する制御装置である。このデバイスコントローラ3に対しては、ダイアル操作子やスライド操作子等を有した専用コントローラ4が接続されており、これによりこの編集システム1ではワークステーション2のキーボード2Cやマウス2D或いはペン・タブレット2Eでは入力し得ないような漸次変化する制御データも入力し得るようになされている。

【0018】このデバイスコントローラ3は、ワークステーション2や専用コントローラ4からの制御データを受け、その制御データに対応する機器を制御する。例えばビデオディスクレコーダ5に対しては、デバイスコントローラ3は、素材の再生や編集後の素材の記録を指示する。この指示を受けたビデオディスクレコーダ5は、その指示に応じて、内部のディスク状記録媒体に記録されている所望素材のビデオデータやオーディオデータを再生して出力したり、或いは編集されたビデオデータや

オーディオデータを当該ディスク状記録媒体に記録する。

【0019】同様に、ビデオテープレコーダ(VTR)6に対しても、デバイスコントローラ3は、素材の再生を指示する。この指示を受けたビデオテープレコーダ6は、その指示に応じて、内部のビデオテープに記録されている所望素材のビデオデータやオーディオデータを再生して出力する。なお、この編集システム1の場合には、ビデオテープレコーダ6に記録されているビデオデータは一旦ビデオディスクレコーダ5にダウンロードされてから素材のビデオデータとして扱われる。

【0020】またスイッチヤ7に対しては、デバイスコントローラ3は、ビデオディスクレコーダ5、ビデオテープレコーダ6又はビデオカメラ8から出力されるビデオデータの選択を指示する。この指示を受けたスイッチヤ7は、その指示に応じて、入力される所望素材のビデオデータを選択してデジタルマルチエフェクタ9に出力したり、デバイスコントローラ3を介してワークステーション2に出力したり、或いは入力される所望素材のビデオデータを順次選択してつなぎ合わせたり、編集したビデオデータをモニタ10に出力して表示させたり、その編集したビデオデータをビデオディスクレコーダ5に戻して記録させたりする。

【0021】またデジタルマルチエフェクタ9に対しては、デバイスコントローラ3は、各種エフェクト処理を指示する。この指示を受けたデジタルマルチエフェクタ9は、その指示に応じて、入力される所望素材のビデオデータに対して、モザイク処理や3次元的な画像変換処理等の特殊効果処理やトランジションエフェクト等のエフェクト処理、或いは画像合成処理等を施し、その結果得られるビデオデータを再びスイッチヤ7に戻してワークステーション2やモニタ10或いはビデオディスクレコーダ5等に出力するようになされている。

【0022】またオーディオミキサ11に対しては、デバイスコントローラ3は、ビデオディスクレコーダ5やビデオテープレコーダ6から出力されるオーディオデータの編集を指示する。この指示を受けたオーディオミキサ11は、その指示に応じて、所望のオーディオ素材を合成処理(ミキシング)し、その合成処理されたオーディオデータを再びビデオディスクレコーダ5に戻して記録させる。

【0023】かくしてこのような構成を有する編集システム1では、ワークステーション2を介して所望の編集コマンドを入力することにより、ビデオディスクレコーダ5やビデオテープレコーダ6に記録されている多種多様な複数の素材のビデオデータを使用して、高度かつ複雑な所望のビデオデータを容易に作成することができるようになされている。これにより従来のようにオペレータが編集システムを構成する各機器を直接操作しなくても、ワークステーション2を操作するだけで各種編集

を行うことができ、従来に比して編集に係わる操作を低減し得ると共に、編集システムの使い勝手を向上することができる。

【0024】(2) ワークステーションの構成

この項では、編集システム1の中心的存在であるワークステーション2の構成について説明する。図2に示すように、ワークステーション2は、コマンドデータやビデオデータを伝送するためのシステムバス20、ワークステーション2の全体を制御するCPU21、デバイスコントローラ3より供給されるビデオデータS1に対して画像処理等を行うビデオプロセッサ22、ディスプレイ2Bに表示されるビデオデータやGUIのためのグラフィック表示を管理する表示コントローラ23、ローカルハードディスクドライブ(ローカルHDD)24Aを制御するためのHDDインターフェイス24、フロッピーディスクドライブ(FDD)25Aを制御するためのFDDインターフェイス25、キーボード2C、マウス2D及びペン・タブレット2E等のポインティングデバイスからのコマンドに基づいて制御コマンドを生成するポインティングデバイスインターフェイス26、デバイスコントローラ3に対して制御データS2を送出するためのソフトウェアドライバを備えた外部インターフェイス27を有している。

【0025】システムバス20は、ワークステーション2内部でビデオデータやコマンドデータ、或いはアドレスデータ等の伝送を行うためのバスであり、ビデオデータを伝送するための画像データバス20Aと、コマンドデータやアドレスデータを伝送するためのコマンドデータバス20Bとからなる。

【0026】画像データバス20AにはCPU21、ビデオプロセッサ22、表示コントローラ23、HDDインターフェイス24及びFDDインターフェイス25がそれぞれ接続されており、当該CPU21、ビデオプロセッサ22、表示コントローラ23、HDDインターフェイス24及びFDDインターフェイス25はこの画像データバス20Aを介してビデオデータの伝送を行うようになされている。

【0027】一方、コマンドデータバス20Bには、CPU21、ビデオプロセッサ22、表示コントローラ23、HDDインターフェイス24、FDDインターフェイス25、ポインティングデバイスインターフェイス26及び外部インターフェイス27がそれぞれ接続されており(すなわちワークステーション2内部の全てのプロックが接続されている)、当該コマンドデータバス20Bを介してコマンドデータやアドレスデータの伝送を行うようになされている。

【0028】CPU21は、ワークステーション2全体の制御を行うプロックであり、ワークステーション2のオペレーティングシステムが格納されているROM21Aと、アップロードされたアプリケーション・ソフトウ

エアやデータベース等が格納されるRAM21Bとを有している。ワークステーション2を起動する場合には、CPU21はROM21Aに記憶されているオペレーティングシステムに基づいて動作することにより起動するようになされている。またアプリケーション・ソフトウェアをこの起動中のオペレーティングシステムの下で起動する場合には、CPU21はまずハードディスクドライブ24Aのハードディスクに記録されているアプリケーション・ソフトウェアを読み出してRAM21Bにアップロードし、その後、当該アプリケーション・ソフトウェアを実行して起動するようになされている。

【0029】なお、アプリケーション・ソフトウェアは機能毎に分割されてモジュール化されており、後述するように大きく分けて、素材のつなぎ合わせ等を行うための編集モジュールと、素材の重ね合わせ等といった合成処理を行うための合成モジュールと、素材の3次元的な画像変換等といった特殊効果処理を行うための特殊効果モジュールと、これらモジュールの起動やモジュール間のデータの受渡し等を管理する制御モジュールとによって構成されている。すなわちこのシステムの場合には、アプリケーション・ソフトウェアを起動したときには、まず制御モジュールが起動し、オペレータより編集指示が入力されると、その制御モジュールの管理の下で対応するモジュール(編集モジュール、合成モジュール又は特殊効果モジュール)を適宜起動して、オペレータより指示された編集を行うようになされている。

【0030】ビデオプロセッサ22は、ワークステーション2に入力されるSDI(Serial Digital Interface)規格のビデオデータS1を受け取り、当該ビデオデータS1に対してデータ変換を施すと共に、その変換されたビデオデータを一時的にバッファリングするためのプロックである。具体的には、ビデオプロセッサ22は、当該ビデオプロセッサ22の全体を制御するプロセッサコントローラ22Aと、受け取つたビデオデータS1のペイロード部からコンポジットビデオ信号を抽出し、かつ当該コンポジットビデオ信号をデジタルのコンポーネントビデオデータに変換するデータ変換部22Bと、データ変換部22Bから送出される数フレーム分のビデオデータを一時的に記憶するフレームメモリ22Cとによつて構成さる。

【0031】プロセッサコントローラ22Aは、データ変換部22Bに対して制御信号を送出することにより当該データ変換部22Bのデータ変換動作を制御すると共に、当該データ変換部22BにビデオデータS1からタイムコードを抽出させる。またプロセッサコントローラ22Aは、フレームメモリ22Cに対して制御信号を送出することにより当該フレームメモリ22Cのリード/ライトタイミング及びリード/ライトアドレスを制御する。因みに、リードタイミングに関しては、プロセッサコントローラ22Aは、表示コントローラ23に送出す

るタイムコードとビデオデータ（フレームデータ）とが対応するようにフレームメモリ22Cのリードタイミングを制御する。

【0032】データ変換部22Bは、プロセツサコントローラ22Aからの制御信号に基づいてコンポジットビデオ信号をデジタルのコンポーネントビデオデータに変換する。因みに、タイムコードはこの変換過程において抽出される。この変換により得られたビデオデータは上述したようにフレームメモリ22Cに送出され、また抽出されたタイムコードはプロセツサコントローラ22Aに送出される。

【0033】フレームメモリ22Cは、データ変換部22Bから供給されるビデオデータを一時的に記憶する。このフレームメモリ22Cのリード／ライトタイミングは、上述したようにプロセツサコントローラ22Aによつて制御される。このフレームメモリ22Cは少なくとも2個のフレームメモリから構成され、少なくとも2フレーム分のビデオデータを記憶し得るようになされている。

【0034】このフレームメモリ22Cに記憶されたビデオデータは、プロセツサコントローラ22Aの読み出し制御に基づいて読み出される。その際、フレームメモリ22Cに記憶されたビデオデータを全画素読み出すのではなく、所定の間隔で間引いて読み出すことにより画像サイズを原画像よりも小さくする。このようにして画像サイズが小さく変換されたビデオデータは、素材又は編集結果の確認用としてディスプレイ2Bの所定表示エリアに表示されるため、画像データバス20Aを介して表示コントローラ23に送出される。

【0035】表示コントローラ23は、ディスプレイ2Bに表示されるデータを制御するための制御プロツクである。表示コントローラ23はメモリコントローラ23AとVRAM（ビデオ・ランダム・アクセス・メモリ）23Bとを有している。メモリコントローラ23Aはワークステーション2の内部同期に従つてVRAM23Bのリード／ライトタイミングを制御する。このVRAM23Bには、ビデオプロセツサ22のフレームメモリ22Cから送出されたビデオデータ及びCPU21によって生成されるイメージデータが、メモリコントローラ23Aからのタイミング制御信号に基づいて記憶される。このVRAM23Bに記憶されたビデオデータやイメージデータは、ワークステーション2の内部同期に基づいたメモリコントローラ23Aからのタイミング制御信号に基づいて読み出され、ディスプレイ2Bに表示される。

【0036】この場合、イメージデータによるグラフィック表示がGUIのためのグラフィック表示となる。因みに、CPU21からVRAM23Bに送出されるイメージデータは、例えばウインドウやカーソル、或いはスクロールバーやデバイスを示すアイコン等のイメージデータである。

タである。

【0037】かくしてこのワークステーション2においては、これらのイメージデータやビデオデータをディスプレイ2Bに表示することにより、当該ディスプレイ2Bにオペレータ操作のためのGUIや素材又は編集結果の画像を表示するようになされている。

【0038】HDDインターフェイス24は、ワークステーション2内部に設けられたローカルハードディスクドライブ24Aと通信するためのインターフェイスプロツクである。このHDDインターフェイス24とハードディスクドライブ24AとはSCSI（Small Computer System Interface）の伝送フォーマットに基づいて通信が行われるようになされている。

【0039】ハードディスクドライブ24Aには、このワークステーション2で起動するアプリケーション・ソフトウェアがインストールされており、当該アプリケーション・ソフトウェアを実行する場合には、このハードディスクドライブ24Aから読み出されてCPU21のRAM21Bにアップロードされる。またこのアプリケーション・ソフトウェアを終了する際には、RAM21Bに記憶されている編集オペレーションによって生成された各種情報（例えば編集素材に関するデータベースの情報等）は、このハードディスクドライブ24Aを介してハードディスクにダウンロードされる。

【0040】FDDインターフェイス25は、ワークステーション2内部に設けられたフロッピーディスクドライブ25Aと通信するためのインターフェイスプロツクである。このFDDインターフェイス25とフロッピーディスクドライブ25AとはSCSIの伝送フォーマットに基づいて通信が行われるようになされている。

【0041】ポインティングデバイスインターフェイス26は、ワークステーション2に接続されたキーボード2C、マウス2D及びペン・タブレット2Eからの情報を受信するインターフェイスプロツクである。ポインティングデバイスインターフェイス26はキーボード2Cに設けられたボタンからの入力情報を受け取り、受け取つた入力情報をデコードしてCPU21に送出する。同様に、ポインティングデバイスインターフェイス26は、マウス2Dに設けられた2次元ロータリーエンコーダの検出情報と、マウス2Dに設けられた左右のボタンのクリック情報（すなわちボタン押下による選択指定情報）とを当該マウス2Dから受け取り、受け取つたそれらの情報をデコードしてCPU21に送出する。同様に、ポインティングデバイスインターフェイス26は、ペン・タブレット2Eからの2次元の位置データを受け取り、受け取つたその位置データをデコードしてCPU21に送出する。このようなポインティングデバイスインターフェイス26からの情報に基づいて、CPU21は、ディスプレイ2Bに表示されるGUIのうちいずれのコマンドボタンが指示されたか認識し得ると共に、キ

一ボード2Cより入力された各種データを認識し得、それらに対応する制御を行うことができる。

【0042】外部インターフェイス27は、ワークステーション2の外部に接続されたデバイスコントローラ3と通信するためのプロトクルである。外部インターフェイス27はCPU21で生成された再生コマンドや記録コマンド等の各種制御コマンドを所定の通信プロトコルのデータに変換するドライバを有しており、当該ドライバを介して制御コマンドデータS2をデバイスコントローラ3に送出する。

【0043】(3)編集システムにおける編集の原理
この項では、編集システム1における編集の原理について以下に順を追つて説明する。

【0044】(3-1)編集用のアプリケーション・ソフトウェアの基本構成

まず始めにこの項では、ワークステーション2において用意されている編集用のアプリケーション・ソフトウェアの基本構成について説明する。図3に示すように、この編集システム1においては、機能毎にモジュール化された編集用のアプリケーション・ソフトウェアがワークステーション2に用意されている。このモジュール化されたアプリケーション・ソフトウェアは、大きく分けて、素材のつなぎ合わせ処理等の編集処理を行う編集モジュールEMと、素材の重ね合わせ処理等の合成処理を行う合成モジュールCMと、素材に対する特殊効果処理を行う特殊効果モジュールSMと、これら機能毎にモジュール化された編集モジュールEM、合成モジュールCM及び特殊効果モジュールSMの起動等を管理する制御モジュールCNTMとによって構成される。このような構成を有するアプリケーション・ソフトウェアは、ハードディスクドライブ24AからRAM21Bにアップロードされると、まず制御モジュールCNTMが起動し、その制御モジュールCNTMの管理の下で、各モジュールEM、CM及びSMがそれぞれオペレータからの指示に応じて適宜起動するようになされている。

【0045】クリップデータベースCDBは、ビデオディスクレコーダ5及びRAM21Bによって構成され、素材のビデオデータや編集に関する各種データを記憶している。各モジュールEM、CM及びSMは、オペレータより指定された素材をクリップデータベースCDBから読み出し、上述したスイッチヤ7やデジタルマルチエフェクタ9等のハードウェアを使用しながら、その素材に対してオペレータの指示に応じた編集を行い、その結果得られる編集された後の素材をクリップデータベースCDBに登録する。また各モジュールEM、CM及びSMは、編集に使用した各種パラメータ等、編集に関するデータもクリップデータベースCDBに登録する。なお、クリップデータベースCDBとしては、主に素材のビデオデータをビデオディスクレコーダ5に記憶し、編集に関する各種データをRAM21Bに記憶するように

なされている。

【0046】(3-2)クリップの定義

本発明による編集システム1では、各素材はクリップと呼ばれる単位で扱われる。この項では、このクリップについて定義する。本発明による編集システム1では、ビデオ動画データの1シーケンスをクリップビデオデータと定義し、そのクリップビデオデータがどのようにして生成されたものであるか管理するデータをクリップ管理データと定義し、さらにこれらのクリップビデオデータとクリップ管理データからなるデータをクリップと定義する。また本発明による編集システム1では、ソースビデオデータから単に切り出すことにより生成された素材を素材クリップ(MC)と呼び、その素材クリップを編集することにより生成された素材を結果クリップ(FC)と呼ぶ。

【0047】本発明による編集システム1では、素材クリップや結果クリップからなる複数のクリップを、クリップ間の関係に基づいた階層構造によつて管理するようになされている。この様子を図4に示す例を参照しながら、以下に説明する。

【0048】図4に示す例では、結果クリップFC-008は、素材クリップMC-001、素材クリップMC-002及び素材クリップMC-003の3つの素材クリップを合成することによつて生成されたクリップである。すなわち結果クリップFC-008と、素材クリップMC-001、素材クリップMC-002及び素材クリップMC-003との関係は、上下関係になっている。このような上下関係にある場合、素材クリップMC-001、素材クリップMC-002及び素材クリップMC-003は結果クリップFC-008の配下にあることからそれぞれ下位クリップと呼ばれ、逆に結果クリップFC-008はこれら下位クリップを統括して生成されたものであることから上位クリップと呼ばれる。

【0049】同様に、結果クリップFC-009は、素材クリップMC-004に対して特殊効果を施すことによつて生成されたクリップである。このため素材クリップMC-004は結果クリップFC-009の下位クリップとなり、逆に結果クリップFC-009は素材クリップMC-004の上位クリップとなる。

【0050】また結果クリップFC-010は、結果クリップFC-008と結果クリップFC-009とを編集する(この場合、例えばワイプ等によつてつなぎ合わせる)ことによつて生成された結果クリップである。このため結果クリップFC-008及び結果クリップFC-009はそれぞれ結果クリップFC-010の下位クリップとなり、結果クリップFC-010は結果クリップFC-008及び結果クリップFC-009の上位クリップとなる。

【0051】このように各クリップ間には上下関係があり、この編集システム1では、クリップデータベースC

DBにおいてこのクリップ間の上下関係を基に当該クリップを階層構造で管理するようになされている。なお、何ら編集処理に使用されない素材クリップは他のクリップと関係し合っていないが、そのような素材クリップはリンク先がないものとして管理される。またここで示した例は、あくまで一例であつてクリップ間の上下関係としてはその他の組合せも当然存在する。

【0052】(3-3) 合成処理の原理

続いてこの項では、合成モジュールCMで行う合成処理の原理について説明する。図4に示した結果クリップFC-008のビデオイメージは、素材クリップMC-001、素材クリップMC-002及び素材クリップMC-003のビデオイメージを合成処理（すなわちコンポジット処理）することによって生成される。この合成処理の原理を図5及び図6に示す。図5は、3つの素材クリップMC-001、MC-002及びMC-003のビデオイメージを合成する様子を示しており、図6は、合成処理によって生成される結果クリップFC-008のビデオイメージを表している。

【0053】本発明による編集システム1においては、複数のクリップの合成を行う場合、各クリップを1つのレイヤ（すなわち層）とみなし、そのレイヤを重ねることにより合成処理を行うようになされている。図5に示す例では、第1のレイヤL1として素材クリップMC-003を指定し、第2のレイヤL2として素材クリップMC-002を指定し、第3のレイヤL3として素材クリップMC-001を指定している。各レイヤL1、L2及びL3に割り当てられた素材クリップを合成する場合には、レイヤL1を最下層としてその上に順次各レイヤL2、L3を重ねて行くことにより行われる。すなわち第1のレイヤL1として指定された素材クリップMC-003のビデオイメージ（例えば背景を表すイメージ）の上に、第2のレイヤL2として指定された素材クリップMC-002のビデオイメージ（例えば人物を表すイメージ）を重ね合わせて合成し、さらにその合成したビデオイメージの上に第3のレイヤL3として指定された素材クリップMC-001のビデオイメージ（例えばキャラクタを表すイメージ）を重ね合わせて合成する。このような合成処理により、図6に示すような3つの素材が重なり合つたようなビデオイメージの結果クリップFC-008を生成することができる。

【0054】なお、この図5に示す例では、3つのレイヤL1～L3にそれぞれ割り当てられた素材クリップMC-003、MC-002及びMC-001を合成する例を示したが、本発明による編集システム1では、最大で10個のレイヤを確保することができるようになつており、第1のレイヤL1から第10のレイヤL10にそれぞれ割り当てられた10個の素材クリップを合成することができるようになされている。因みに、この場合には、第1のレイヤL1が最下層のレイヤとなり、最もレ

イヤ番号が大きい第10のレイヤL10が最上層のレイヤとなる。

【0055】次に図7を参照して、この合成処理についてさらに詳しく説明する。図7は、横軸方向を時間として、第1のレイヤL1として指定された素材クリップMC-003と、第2のレイヤL2として指定された素材クリップMC-002と、第3のレイヤL3として指定された素材クリップMC-001との合成処理により結果クリップFC-008が生成される様子を示している。この図7に示すように、結果クリップFC-008においては、各素材クリップの編集開始点（以下、これをイン点と呼ぶ）及び編集終了点（以下、これをアウト点と呼ぶ）や合成又は画像変換等の各パラメータの変更ポイントとして、第1の編集点EP1から第8の編集点EP8が設定されている。

【0056】第1の編集点EP1は素材クリップMC-003のイン点IN3を示し、第2の編集点EP2は素材クリップMC-002のイン点IN2を示し、第4の編集点EP4は素材クリップMC-001のイン点IN1を示している。また第6の編集点EP6は素材クリップMC-002のアウト点OUT2を示し、第7の編集点EP7は素材クリップMC-001のアウト点OUT1を示し、第8の編集点EP8は素材クリップMC-003のアウト点OUT3を示している。なお、第3の編集点EP3及び第5の編集点EP5は、各レイヤの合成パラメータを変更するために設定された編集点である。これらの編集点EP3及びEP5については、詳細は後述する。

【0057】各クリップは、図7に示すように、各クリップのビデオデータの先頭位置から始まる独自の内部タイムコードを有している。例えば第1のレイヤL1として指定された素材クリップMC-003はそのビデオデータの先頭位置S3からスタートする内部タイムラインt3を有し、第2のレイヤL2として指定された素材クリップMC-002はそのビデオデータの先頭位置S2からスタートする内部タイムラインt2を有し、第3のレイヤL3として指定された素材クリップMC-001はそのビデオデータの先頭位置S1からスタートする内部タイムラインt1を有している。

【0058】同じように、結果クリップFC-008は、そのビデオデータの先頭位置S8からスタートする内部タイムラインt8を有しており、上述した第1の編集点EP1から第8の編集点EP8のタイムコードはそれぞれ結果クリップFC-008のタイムラインt8上のタイムコードによつて定義付けられている。

【0059】素材クリップMC-003のイン点IN3及びアウト点OUT3は、それぞれ素材クリップMC-003のタイムラインt3によつて定義され、これらのタイムコードはそれぞれ「00:00:31:02」及び「00:05:18:02」となつている。従つてこのイン点IN3の

タイムコードが結果クリップFC-008における第1の編集点EP1のタイムコード「00:00:00:00」に対応し、アウト点OUT3のタイムコードが結果クリップFC-008における第8の編集点EP8のタイムコード「00:04:47:00」に対応している。

【0060】同じように、素材クリップMC-002のイン点IN2及びアウト点OUT2は、それぞれ素材クリップMC-002のタイムラインt2によって定義され、これらのタイムコードはそれぞれ「00:00:51:00」及び「00:03:04:20」となっている。従つてこのイン点IN2のタイムコードが結果クリップFC-008における第2の編集点EP2のタイムコード「00:00:42:20」に対応し、アウト点OUT2のタイムコードが結果クリップFC-008における第6の編集点EP6のタイムコード「00:02:59:20」に対応している。

【0061】同じように、素材クリップMC-001のイン点IN1及びアウト点OUT1は、それぞれ素材クリップMC-001のタイムラインt1によって定義され、これらのタイムコードはそれぞれ「00:01:40:03」及び「00:02:45:48」となっている。従つてこのイン点IN1のタイムコードが結果クリップFC-008における第4の編集点EP4のタイムコード「00:01:56:00」に対応し、アウト点OUT1のタイムコードが結果クリップFC-008における第7の編集点EP7のタイムコード「00:03:19:45」に対応している。

【0062】依つて結果クリップFC-008を再生すると、第1の編集点EP1から第2の編集点EP2までの期間では、素材クリップMC-003のビデオイメージが出力され、第2の編集点EP2から第4の編集点EP4までの期間では、素材クリップMC-003の上に素材クリップMC-002が合成されたビデオイメージが出力され、第4の編集点EP4から第6の編集点EP6までの期間では、素材クリップMC-003の上に素材クリップMC-002及び素材クリップMC-001が合成されたビデオイメージが出力され、第6の編集点EP6から第7の編集点EP7までの期間では、素材クリップMC-003の上に素材クリップMC-001が合成されたビデオイメージが出力され、第7の編集点EP7から第8の編集点EP8までの期間では、素材クリップMC-003のビデオイメージが出力されることになる。

【0063】なお、ここで説明した合成処理はあくまで一例であり、合成処理されるクリップの組合せとしては当然その他の組合せも存在する。

【0064】(3-4) 特殊効果処理の原理

続いてこの項では、特殊効果モジュールSMで行う特殊効果処理の原理について説明する。図4に示した結果クリップFC-009は素材クリップMC-004に特殊

効果処理を施すことにより生成されたクリップである。ここでは説明を分かりやすくするために、素材クリップMC-004に対して、モザイク効果、クロップ効果、3次元画像変換及びトレイル効果の4つの特殊効果処理を施すものとして、特殊効果処理の原理を図8を用いて説明する。

【0065】図8に示すように、この例では、素材クリップMC-004に対しては、第1の特殊効果E1としてモザイク効果が指定され、第2の特殊効果E2としてクロップ効果が指定され、第3の特殊効果E3として3次元画像変換が指定され、第4の特殊効果E4としてトレイル効果が指定されている。

【0066】この場合、モザイク効果とは、ビデオイメージをタイル状の小片に分けてモザイク画のように見える効果のことである。本発明による編集システム1では、このモザイク効果に関するパラメータを任意の値に設定できるようになされており、これによりこのタイル状の小片の大きさ及びアスペクト比を任意の値に設定することができるようになっている。

【0067】クロップ効果とは、画枠を小さくすることによってビデオイメージの一部を切り出す効果のことであり、ビデオイメージの一部を切り出すことから切り出し効果とも呼ばれている。本発明による編集システム1では、このクロップ効果に関するパラメータを任意の値に設定できるようになつておらず、これにより画枠の右辺及び左辺位置、並びに上辺及び下辺位置、さらにはエッジのぼかし具合を任意に設定することができるようになつておらず。

【0068】3次元画像変換(3-Dimensional Transform)とは、3次元空間上で画像を仮想的に変換する効果のことである。例えば画像の水平方向をX軸、垂直方向をY軸、奥行き方向をZ軸として定義したとすれば、当該X軸、Y軸又はZ軸を回転軸として画像を回転させたり、或いはX軸、Y軸又はZ軸方向に画像を移動させたりする画像変換のことである。本発明による編集システム1では、この3次元画像変換に関するパラメータを任意の値に設定できるようになつておらず、これにより任意の画像変換を行うことができるようになつておらず。

【0069】トレイル効果とは、画像を空間的に移動させる際に、所定間隔で画像を静止画としてフリーズし、そのフリーズした画像を残像イメージとして残す効果のことであり、一般にはリカーシブ効果とも呼ばれている。本発明による編集システム1では、このトレイル効果に関するパラメータを任意の値に設定することができるようになつておらず、これにより画像をフリーズする間隔及び残像として残す期間を任意に設定することができるようになつておらず。

【0070】またこの特殊効果処理の場合にも、この図8に示すように、結果クリップFC-009においては、素材クリップの編集開始点(イン点)及び編集終了

点（アウト点）や、画像変換のパラメータ変更ポイントとして、第1の編集点E P 1から第7の編集点E P 7が設定されている。

【0071】第1の編集点E P 1は素材クリップMC-004のイン点IN 4、モザイク効果の開始点及びクロップ効果の開始点を示し、第2の編集点E P 2は3次元画像変換の開始点を示し、第4の編集点E P 4はトレイル効果の開始点を示し、第7の編集点E P 7は素材クリップMC-004のアウト点OUT 4、モザイク効果の終了点、クロップ効果の終了点、3次元画像変換の終了点及びトレイル効果の終了点を示している。なお、第3の編集点E P 3、第5の編集点E P 5及び第6の編集点E P 6は、3次元画像変換の変換パラメータを変更するために設定された編集点である。これらの編集点E P 3、E P 5及びE P 6については、詳細は後述する。

【0072】特殊効果の場合も合成処理の場合と同様に、素材クリップMC-004及び結果クリップFC-009は、それぞれ各クリップのビデオデータの先頭位置からスタートする独自の内部タイムコードによって表現される内部タイムラインt 4、t 9を有しており、上述した第1の編集点E P 1から第7の編集点E P 7のタイムコードは、結果クリップFC-009のタイムラインt 9上のタイムコードによって定義付けされている。

【0073】素材クリップMC-004のイン点IN 4及びアウト点OUT 4は、それぞれ素材クリップMC-004のタイムラインt 4によって定義され、これらのタイムコードはそれぞれ「00:10:12:00」及び「00:12:18:00」となっている。従つてこのイン点IN 4のタイムコードが結果クリップFC-009における第1の編集点E P 1のタイムコード「00:00:00:00」に対応し、アウト点OUT 4のタイムコードが結果クリップFC-009における第7の編集点E P 7のタイムコード「00:02:06:00」に対応している。

【0074】また第1の特殊効果E 1として指定されたモザイク効果の開始ポイントは、図8に示すように、結果クリップFC-009におけるタイムコードが「00:00:00:00」となる第1の編集点E P 1になつておらず、モザイク効果の終了ポイントは、結果クリップFC-009におけるタイムコードが「00:02:06:00」となる第7の編集点E P 7になつてている。

【0075】同じように、第2の特殊効果E 2として指定されたクロップ効果の開始ポイントは、図8に示すように、結果クリップFC-009におけるタイムコードが「00:00:00:00」となる第1の編集点E P 1になつておらず、クロップ効果の終了ポイントは、結果クリップFC-009におけるタイムコードが「00:02:06:00」となる第7の編集点E P 7になつてている。

【0076】また第3の特殊効果E 3として指定された3次元画像変換の開始ポイントは、結果クリップFC-009におけるタイムコードが「00:00:12:03」とな

る第2の編集点E P 2になつており、3次元画像変換の終了ポイントは、結果クリップFC-009におけるタイムコードが「00:02:06:00」となる第7の編集点E P 7になつてている。

【0077】また第4の特殊効果E 4として指定されたトレイル効果の開始ポイントは、結果クリップFC-009におけるタイムコードが「00:01:02:50」となる第4の編集点E P 4になつておらず、トレイル効果の終了ポイントは、結果クリップFC-009におけるタイムコードが「00:02:06:00」となる第7の編集点E P 7になつてている。

【0078】依つて結果クリップFC-009を再生すると、第1の編集点E P 1から第2の編集点E P 2までの期間では、素材クリップMC-004のビデオイメージにモザイク効果とクロップ効果が施されたビデオイメージが出力され、第2の編集点E P 2から第4の編集点E P 4までの期間では、素材クリップMC-004のビデオイメージにモザイク効果、クロップ効果及び3次元画像変換が施されたビデオイメージが出力され、第4の編集点E P 4から第7の編集点E P 7までの期間では、素材クリップMC-004のビデオイメージにモザイク効果、クロップ効果、3次元画像変換及びトレイル効果が施されたビデオイメージが出力されることになる。

【0079】(3-5) 編集処理の原理

統いてこの項では、編集モジュールEMで行う編集処理の原理について説明する。図4に示した結果クリップFC-010は、結果クリップFC-008及び結果クリップFC-009を編集処理することによって生成されたクリップである。ここでは説明を分かりやすくするため、ワイプ効果によつて編集処理を行うものとして、編集処理の原理を図9を用いて説明する。

【0080】図9に示すように、この例では、第1のレイヤL 1として結果クリップFC-008が指定されていると共に、第2のレイヤL 2として結果クリップFC-009が指定されている。また第1のレイヤL 1として指定された結果クリップFC-008から、第2のレイヤL 2として指定された結果クリップFC-009に切り換える際の切換処理としてワイプ効果が指定されている。なお、この編集処理においては、合成処理のようにビデオデータを重ね合わせるのではなく、ビデオデータをつなぎ合わせるので、時間的に先になる方が第1のレイヤL 1として指定され、時間的に後になる方が第2のレイヤとして指定される。

【0081】また切換処理として指定されているワイプ効果とは、現在表示されている古い画像を新しい画像でぬぐい消すようにして、画面に表示される画像を切り換えるトランジションエフェクトのことである。因みに、この図9に示す例で指定されているワイプ効果は、結果クリップFC-008のイメージから結果クリップFC-009のイメージに切り換わる際、画面の左側から右

側に向かつて切り換わる種類のワイプ効果である。

【0082】またこの編集処理の場合にも、この図9に示すように、結果クリップFC-010においては、各クリップの編集開始点（イン点）及び編集終了点（アウト点）や、編集処理のパラメータ変更ポイントとして、第1の編集点EP1から第5の編集点EP5が設定されている。

【0083】第1の編集点EP1は結果クリップFC-008のイン点IN8を示し、第2の編集点EP2はワイプ効果の開始点及び結果クリップFC-009のイン点IN9を示し、第4の編集点EP4はワイプ効果の終了点及び結果クリップFC-008のアウト点OUT8を示し、第5の編集点EP5は結果クリップFC-009のアウト点OUT9を示している。なお、第3の編集点EP3は、ワイプ効果のエフェクトパラメータを変更するために設定された編集点である。この編集点EP3については、詳細は後述する。

【0084】先に説明した合成処理や特殊効果処理と同様に、これらの結果クリップFC-008、FC-009及びFC-010は、各クリップのビデオデータの先頭位置からスタートする独自の内部タイムコードによって表現される内部タイムラインt8、t9及びt10を有しており、上述した第1の編集点EP1から第5の編集点EP5は、結果クリップFC-010のタイムラインt10上のタイムコードによつて定義付けされている。

【0085】結果クリップFC-008のイン点IN8及びアウト点OUT8は、それぞれ結果クリップFC-008のタイムラインt8によつて定義され、これらのタイムコードはそれぞれ「00:01:01:20」及び「00:04:43:00」となつてゐる。従つてこのイン点IN8のタイムコードが結果クリップFC-010における第1の編集点EP1のタイムコード「00:00:00:00」に対応し、アウト点OUT8のタイムコードが結果クリップFC-010における第4の編集点EP4のタイムコード「00:03:42:00」に対応している。

【0086】同じように、結果クリップFC-009のイン点IN9及びアウト点OUT9は、それぞれ結果クリップFC-009のタイムラインt9によつて定義され、これらのタイムコードはそれぞれ「00:00:00:50」及び「00:02:06:00」となつてゐる。従つてこのイン点IN9のタイムコードが結果クリップFC-010における第2の編集点EP2のタイムコード「00:03:39:00」に対応し、アウト点OUT9のタイムコードが結果クリップFC-010における第5の編集点EP5のタイムコード「00:05:44:10」に対応している。

【0087】また結果クリップFC-008と結果クリップFC-009の画像を切り換えるために設定されたワイプ効果の開始点は、結果クリップFC-010にお

ける第2の編集点EP2に設定され、タイムコードとして「00:03:39:00」に設定されている。またワイプ効果の終了点は、結果クリップFC-010における第4の編集点EP4に設定され、タイムコードとしては「00:03:42:00」に設定されている。

【0088】依つて結果クリップFC-010を再生すると、第1の編集点EP1から第2の編集点EP2までの期間では、結果クリップFC-008のビデオイメージが出力され、第2の編集点EP2から第4の編集点EP4までの期間では、ワイプ効果によつて結果クリップFC-008のビデオイメージから結果クリップFC-009のビデオイメージに画面の左側から右側に向かつて順に切り換わるようなイメージが出力され、第4の編集点EP4から第5の編集点EP5までの期間では、結果クリップFC-009のイメージが出力されることになる。

【0089】(4) GUIとして表示されるグラフィック表示

統いてこの項では、各モジュールを起動したときにワークステーション2のディスプレイ2Bに表示されるGUIの画面について説明する。

【0090】(4-1) 合成モジュールを起動したときのGUI

まず始めにこの項では、合成モジュールCMを起動したときのGUIについて説明する。この編集システム1では、合成モジュールCMが起動されると、ワークステーション2のディスプレイ2Bには、合成モジュールCMのGUIとして図10に示すようなグラフィック表示が表示される。

【0091】この図10に示すように、合成モジュールCMのGUIとしては、大きく分けてメニューインドウ30と、クリップツリーウィンドウ31と、キーウィンドウ32と、ライブラリーウィンドウ33と、タイムラインウィンドウ34と、パラメータ設定ウィンドウ35と、プレビュウ画面表示ウィンドウ36と、デバイスコントールウィンドウ37と、編集内容表示ウィンドウ38と、制御コマンドウィンドウ39とによつて構成されている。

【0092】メニューインドウ30は、この編集システム1において用意されているトップメニューを表示するためのエリアである。なお、このメニューインドウ30は、制御モジュールCNTMが立ち上がつた時点から表示されるものである。

【0093】本発明による編集システム1においては、トップメニュー項目として、例えばファイル読出メニューや初期設定メニュー、或いはモジュール起動メニュー等が用意されている。ファイル読出メニューをマウス2Dのボタンを押して指定すると（以下、このマウス2Dを使用した指定動作をクリスクと呼ぶ）、既に登録されている結果クリップのリストが表示され、その中から所

望の結果クリップをクリック操作によつて選択すると、その選択された結果クリップの編集内容が後述するタイムラインウインドウに表示されると共に、その結果クリップに対して設定されているパラメータの内容が後述するパラメータ設定ウインドウに表示される。従つて既に登録されている結果クリップを修正する場合には、このファイル読み出メニューユーを使用してその結果クリップを読み出せば、その結果クリップを修正することができる。

【0094】また初期設定メニューをクリック操作によつて選択すると、各種設定項目が読み出され、その中から所望の項目を選択すると、その選択された項目に対する設定画面が表示される。従つて所望の項目に対して初期設定する場合には、初期設定メニューによつてその項目の設定画面を読み出せば、その項目について所望の値を設定することができる。

【0095】またモジュール起動メニューをクリック操作によつて選択すると、合成モジュールCM、特殊効果モジュールSM又は編集モジュールEMを起動するためのコマンドが表示され、その中から所望のコマンドを選択すると、選択されたモジュールが起動され、そのモジュールに対応するGUIが画面上に表示される。実際上、この図10に示す合成モジュールCMのGUIも、このモジュール起動メニューによつて合成モジュールCMを起動することにより得られた画面である。

【0096】クリップツリーウインドウ31には、クリップデータベースに登録されている各クリップの上下関係が視覚的に分かるようなグラフィック表示が表示されるエリアである。各クリップの上下関係が図4に示したような関係にある場合には、その上下関係に応じて、図10に示すようなクリップツリーが表示される。すなわちこの場合には、最上位のクリップは結果クリップFC-010であるので、結果クリップFC-010のクリップ名「FC-010」がクリップツリーウインドウ31の一番上に表示される。この結果クリップFC-010の下位にリンクする下位クリップとしては、結果クリップFC-008と結果クリップFC-009がある。これら下位クリップのクリップ名「FC-008」と「FC-009」はそれぞれ上位クリップである結果クリップFC-010よりも下方であつてかつ一段右側にシフトした位置に並列的に表示される。このとき結果クリップFC-010と結果クリップFC-008及びFC-009を結ぶ線が表示され、これによつてこれらの結果クリップFC-010、FC-008及びFC-009が上下関係にあることが示される。

【0097】また結果クリップFC-008の下位にリンクする下位クリップとしては、素材クリップMC-001と素材クリップMC-002と素材クリップMC-003がある。これら下位クリップのクリップ名「MC-001」、「MC-002」及び「MC-003」はそれぞれ上位クリップである結果クリップFC-008

8の下方であつて一段右側にシフトした位置に並列的に表示される。このときも結果クリップFC-008と素材クリップMC-001、MC-002及びMC-003とを結ぶ線が表示され、これによつてこれらのクリップFC-008、MC-001、MC-002及びMC-003が上下関係にあることが示される。

【0098】同様に、結果クリップFC-009の下位にリンクする下位クリップとしては素材クリップMC-004がある。この下位クリップのクリップ名「MC-004」は上位クリップである結果クリップFC-009の下方であつてかつ一段右側にシフトした位置に表示される。このときも結果クリップFC-009と素材クリップMC-004を結ぶ線が表示され、これによつてこれらのクリップFC-009及びMC-004が上下関係にあることが示される。

【0099】このようにしてクリップツリーウインドウ31においては、各クリップのクリップ名をツリー状に表示するようにしたことにより、クリップデータベースに登録されているクリップ間の関係が視覚的に一目で分かることになされている。

【0100】なお、クリップ名を囲む枠が太線で表示されているクリップは、現在、タイムラインウインドウ34において表示され、編集対象となつているクリップである。またこのクリップツリーウインドウ31の下辺位置には左右方向のスクロールボタン31Aが表示されており、このスクロールボタン31Aをマウス2Dを使用して操作することにより、表示されるクリップツリーを左右方向にスクロールし得るようになされている。

【0101】同様に、クリップツリーウインドウ31の右辺位置には上下方向のスクロールボタン31Bが表示されており、このスクロールボタン31Bを操作することにより、表示されるクリップツリーを上下方向にスクロールし得るようになされている。

【0102】キーウインドウ32は、編集対象のクリップに対してキー処理を指定するためのキー選択ボタンが表示されるエリアであり、このキー選択ボタンの中の所望ボタンをクリックすることにより編集対象のクリップに対して所望のキー処理を指定することができる。この場合、キー選択ボタンとしては、図10に示すように、ルミナンスキーボタン、リニアキーボタン、クリーンキーボタン、パターンキーボタン、エクスターナルキーボタン等が用意されている。

【0103】因みに、キー処理とは、ビデオイメージからキー信号に基づくエリアをくり抜き、そこに別の画像をはめ込む処理のことである。またルミナンスキーボタンとは、キー信号に含まれる輝度信号に基づいてくり抜き処理を行うキー処理であり、リニアキーとは、ルミナンスキーボタンの一種で、ルミナンスキーボタンに比してゲインの可変幅が狭くなつたキー処理であり、クリーンキーとは、キー処理においてはめ込む画像をキー信号でくり抜かずには

め込む処理である。またパターンキーとは、ワイプパターンに基づいて切り抜き処理を行うキー処理であり、エクスターナルキーとは、外部より供給されるキー信号に基づいてキー処理を行うことである。

【0104】このキーウィンドウ32においても、当該キーウィンドウ32の下辺位置には左右方向のスクロールボタン32Aが表示されており、このスクロールボタン32Aを操作することにより、表示されるキー選択ボタンを左右方向にスクロールし得るようになされている。同様に、キーウィンドウ32の右辺位置には上下方向のスクロールボタン32Bが表示されており、このスクロールボタン32Bを操作することにより、表示されるキー選択ボタンを上下方向にスクロールし得るようになされている。

【0105】ライブラリーウィンドウ33は、クリップデータベースに登録されている素材クリップ又は結果クリップをリスト表示するためのエリアである。このライブラリーウィンドウ33に表示されるクリップの中から所望のクリップを選択すれば、その選択されたクリップを編集対象として指定することができる。なお、このライブラリーウィンドウ33の詳細については、後述する。

【0106】タイムラインウィンドウ34は編集対象のクリップを時間軸上に並べて編集内容を指定するためのエリアである。合成モジュールCMで表示されるタイムラインウィンドウ34としては、当然合成処理に関するものが表示される。このタイムラインウィンドウ34は、大きく分けて上から順にタイムコード表示エリア（Time Code）と、編集点表示エリア（Edit Point）と、プレビュウ範囲表示エリア（Preview）と、クリップ指定エリア（L1～L10）とに分かれている。

【0107】タイムコード表示エリアは、編集点におけるタイムコードが表示されるエリアである。なお、このタイムコードは、このタイムラインウィンドウ34において指定された編集内容に基づいて生成される結果クリップのタイムライン上におけるタイムコードである。

【0108】編集点表示エリアは、編集点として設定されているポイントを三角マークによって指示するエリアである。例えば図4及び図7に示したような合成処理が指定されている場合には、その編集点EP1～EP8が三角マークを使用して指示される。

【0109】プレビュウ範囲表示エリアには、後述するプレビュウボタンやピュウボタンを操作したときにプレビュウ画面表示ウィンドウ36に表示されるビデオデータの範囲を示すエリアである。この例の場合、編集点EP1から編集点EP8まで（すなわち結果クリップFC-008全体）が表示範囲として設定されているので、その区間を示すバーが表示される。

【0110】クリップ指定エリアは、合成処理を行う編集対象のクリップを各レイヤに対して指定するためのエ

リアである。この編集システム1においては、レイヤL1からレイヤL10までの10個のレイヤが用意されており、その1つ1つに合成処理の素材となるクリップを指定することができる。なお、このクリップ指定エリアとしては表示範囲が限られており（図に示すようにレイヤ5つ程度）、一度に全てのレイヤL1～L10を表示することができない。しかしながらこのクリップ指定エリアの右辺に表示されているスクロールボタン34Aを操作することにより、クリップ指定エリアを上下方向にスクロールさせることができるので、これによつて所望のレイヤを表示させることができるようになつてい

る。

【0111】10個あるレイヤL1～L10のうちレイヤL1は合成処理時にベース（最下層）画像となるクリップを指定するためのレイヤであり、レイヤL2からレイヤL10まではそのベース画像に対して重ねて行くクリップを指定するためのレイヤである。なお、レイヤ番号が大きいものほど上層のレイヤとなり、ここではレイヤL10が最上層のレイヤとなる。

【0112】各レイヤL1～L10はそれぞれ合成処理対象のクリップを指定するためのビデオエリア（Video）と、その指定されたクリップに対して施すキー処理を指定するためのキーエリア（Key）に分かれている。この場合、ビデオエリアにおいてクリップを示す長方形状のグラフィックイメージ（以下、これをセルと呼ぶ）を置くことにより、そのレイヤに対してそのクリップが設定される。同様に、キーエリアにキー処理を示すセルを置くことにより、そのレイヤに指定されたクリップに対するキー処理が設定される。

【0113】ここでこの図10に示すように、レイヤL1に対して素材クリップMC-003を設定する場合には、まずクリップツリーウィンドウ31において素材クリップMC-003をクリップツリーウィンドウ33において素材クリップMC-0003をクリップツクすることにより、素材クリップMC-0003を選択する。このような処理を行うと、素材クリップMC-0003のセルが表示されるので、これをレイヤL1のビデオエリアに移動して所望位置に置けば、レイヤL1に対して素材クリップMC-003が設定される。

【0114】同様に、レイヤL1に対してエクスターナルキーを設定する場合には、まずキーウィンドウ32においてエクスターナルキーボタンをクリップツクすることにより、エクスターナルキーを選択する。このような処理を行うと、エクスターナルキーを示すセルが表示されるので、これをレイヤL1のキーエリアにければ、レイヤL1に対してエクスターナルキーが設定される。因みに、レイヤL2～L10に対してクリップやキー処理を設定するときの操作も上述したレイヤL1のときの操作と同じである。

【0115】なお、クリップを示すセルの長さは、その

クリップのデュレーション（クリップの始まりから終わりまでの時間）に対応した長さになつていて。またキー処理を示すセルは、ビデオエリアに置かれたクリップと対になるものなので、ビデオエリアに置かれたクリップと同じ長さになる。また各セルの中には、クリップ名又はキー処理名を示す文字が表示されるようになされており、これによりどのクリップ又はキー処理が設定された一目で分かるようになつていて。

【0116】また既にクリップ指定エリアに置かれて表示されている結果クリップをダブルクリックして選択すると、その結果クリップを作成したモジュール（すなわち合成モジュールCM、特殊効果モジュールSM又は編集モジュールEM）が起動され、その結果クリップに対して施されている編集内容が対応するモジュールのGUI上のタイムラインウインドウに表示されると共に、その結果クリップに対して設定されているパラメータがパラメータ設定ウインドウに表示される。

【0117】パラメータ設定ウインドウ35は、編集に係る各種パラメータを設定するエリアである。合成モジュールCMを起動したときに表示されるパラメータ設定ウインドウ35としては、当然合成処理に関するものが表示され、図10に示すように、合成処理時のゲインを設定するためのグラフィック表示が表示される。

【0118】この場合、合成処理時のゲインとは、ビデオデータを重ね合わせるときの合成比率である。すなわちゲインが100パーセントであれば下層のビデオデータが完全に見えないように上層のビデオデータを重ね、例えばゲインが50パーセントであれば下層のビデオデータがほぼ半分位の割合で透けて見えるように上層のビデオデータを重ね、ゲインが0パーセントであれば下層のビデオデータが完全に透けて見え、上層のビデオデータが見えないように重ね合わせることである。

【0119】なお、このパラメータ設定ウインドウ35と上述したタイムラインウインドウ34とは、横軸（すなわち時間軸）が一致しており、タイムラインウインドウ34で指定した合成処理内容を見ながらパラメータの変更ポイントを決めることができるようになされている。因みに、この横軸方向、すなわち左右方向に関しては、パラメータ設定ウインドウ35の下辺位置にあるスクロールボタン35Aを操作することにより、このパラメータ設定ウインドウ35内のグラフィックイメージを左右方向にスクロールさせることができる。このときタイムラインウインドウ34とパラメータ設定ウインドウ35は横軸が対応していることから、当該タイムラインウインドウ34内のグラフィックイメージとパラメータ設定ウインドウ35内のグラフィックイメージは連動して同時に左右方向にスクロールされる。なお、上下方向に関しては、パラメータ設定ウインドウ35の右辺位置にあるスクロールボタン35Bを操作することにより、当該パラメータ設定ウインドウ35内のグラフィックイ

メージを上下方向にスクロールさせることができる。

【0120】ここで各レイヤに指定されたクリップのゲインを設定する場合には、まずパラメータ設定ウインドウ35の左隅に表示されるレイヤ番号の中から所望のレイヤ番号をクリックしてこれからパラメータ設定するレイヤを指定する。続いてタイムラインウインドウ34で指定した合成処理内容を見ながらパラメータを変更するポイントを決めると共に、設定するゲイン値を決め、縦軸がゲイン値で横軸が時間軸からなるパラメータ設定ウインドウ35においてその決めたポイント及び値に対応する位置をクリックする。これによりそのクリップした位置に対応するゲイン値及びゲイン変更ポイントがクリップデータベースに自動的に登録される。

【0121】例えばこの図10に示すように、レイヤL1に指定された素材クリップMC-003のゲインを100パーセントに設定する場合には、素材クリップMC-003のイン点及びアウト点の位置でゲインが100パーセントの位置をクリックすれば、素材クリップMC-003のイン点からアウト点までが全てゲインが100パーセントに設定される。なお、この編集システム1においては、パラメータ設定ポイント間は、設定値が連続的になるように補間処理され、その補間された値が自動的に設定されるので、このように2つのパラメータ設定ポイントにおいて同じ値を設定すれば、その間が全てその値に設定される。

【0122】またレイヤL2に設定された素材クリップMC-002に対して、イン点（編集点EP2）のところでゲインを59パーセントに設定し、レイヤL3の素材クリップMC-003が重ねられるポイントのすこし前の位置（編集点EP3）でゲインを100パーセントに設定し、アウト点（編集点EP6）のところでゲインを0パーセントに設定する場合には、パラメータ設定ウインドウ35において対応するポイントをそれぞれクリックすれば良い。このようにすれば、設定されたゲイン値がそれぞれ自動的にクリップデータベースに登録される。なお、編集点EP2から編集点EP3までの間、及び編集点EP3から編集点EP6までの間は、各編集点で設定された値に基づいてゲイン値が直線的に連続するよう補間処理され、その補間された値が自動的に設定される。

【0123】同様に、レイヤL3に設定された素材クリップMC-003に対して、イン点（編集点EP4）のところでゲインを100パーセントに設定し、素材のほぼ中心位置（編集点EP5）でゲインを67パーセントに設定し、アウト点（編集点EP7）のところでゲインを51パーセントに設定する場合には、パラメータ設定ウインドウ35において対応するポイントをそれぞれクリックすれば良い。このようにすれば、設定されたゲイン値がそれぞれ自動的にクリップデータベースに登録される。なお、この場合も、編集点EP4から編集点EP5まで

の間、及び編集点E P 5から編集点E P 7までの間は、各編集点で設定された値に基づいてゲイン値が直線的に連続するように補間処理され、その値が自動的に設定される。

【0124】かくしてこのようにゲイン値を設定すると、各タイミングで該当ゲイン値が順次変化していくことにより、ベースとなる素材クリップMC-003のビデオデータの上に素材クリップMC-002のビデオデータが徐々に見えはじめた後、さらにそれらのビデオデータの上に素材クリップMC-001のビデオデータが見え、その後、素材クリップMC-002及びMC-001のビデオデータが徐々に薄らいで行くようなイメージの画像が得られる。

【0125】なお、パラメータ設定ウインドウ35においては、図10に示すように、設定したパラメータの値を編集点と対応させて、横軸を時間、縦軸をゲイン値としたグラフ状に表示するようになされており、これによりオペレータはその表示を見て、どのレイヤに対してどのようなパラメータをどのタイミングで設定したかを視覚的に一目で把握することができる。

【0126】プレビュウ画面表示ウインドウ36は、後述するプレビュウボタン、ビュウボタン、オールプレビュウボタン又はオールビュウボタンを操作したときに、素材クリップ又は結果クリップのビデオデータが表示されるエリアである。このような表示エリアを設けたことにより、編集作業をしながら素材クリップ又は編集の結果生成された結果クリップのビデオイメージを確認することができる。

【0127】デバイスコントールウインドウ37は、クリップのビデオデータが保存されているビデオディスクレコーダ5の動作を制御するためのコマンドボタンが表示されるエリアである。この図10に示すように、コマンドボタンとしては、再生ボタン37Aとストップボタン37B及び6つのスキップボタン37C～37Hが設けられている。この場合、再生ボタン37Aは、ビデオディスクレコーダ5に対して再生コマンドを送出するためのコマンドボタンである。またストップボタン37Bはビデオディスクレコーダ5に対して再生停止コマンドを送出するためのコマンドボタンである。またスキップボタン37C、37Dはそれぞれ再生位置を1フレーム前又は1フレーム後ろにスキップさせるスキップコマンドをビデオディスクレコーダ5に送出するためのコマンドボタンである。またスキップボタン37E、37Fはそれぞれ1つ前の編集点又は1つ後の編集点に再生位置をスキップさせるスキップコマンドをビデオディスクレコーダ5に送出するためのコマンドボタンである。またスキップボタン37G、37Hはそれぞれビデオデータの先頭又は最後に再生位置をスキップさせるスキップコマンドをビデオディスクレコーダ5に送出するためのコマンドボタンである。このようなコマンドボタンを設け

ることにより、編集作業をしながら容易にビデオディスクレコーダ5の動作をコントロールすることができる。

【0128】編集内容表示ウインドウ38はコ・タイムラインとも呼ばれ、タイムラインウインドウ34によつて指定した編集内容を表示するためのエリアである。この場合、タイムラインウインドウ34においては、画面の制約上、全ての編集内容を一度に全部表示することができないので、この編集内容表示ウインドウにおいてその編集内容を縮小したグラフィックイメージを表示することにより、全体としてどのような編集内容を指定しているのかを容易に把握し得るようになされている。例えばタイムラインウインドウ34において上述したような3つの素材クリップMC-003、MC-002及びMC-001を合成するような編集内容を指定した場合には、その編集内容に合わせて、各レイヤに指定されたクリップを示す棒状グラフィックイメージが3段重なつたようなグラフィックイメージが編集内容表示ウインドウ38に表示される。これによりオペレータはこの表示を見て、指定されている編集内容の全貌を把握し得ると共に、その内容が3つのクリップの合成処理であることを容易に把握し得る。

【0129】なお、この編集内容表示ウインドウ38においては、ライブラリーウインドウ33やクリップツリーウインドウ31に表示されている既にクリップデータベースに登録されている結果クリップを選択した場合にも、その結果クリップの編集内容を示すグラフィックイメージが表示される。これによりタイムラインウインドウ34において編集作業中にライブラリーウインドウ33やクリップツリーウインドウ31に表示されている結果クリップを選択した場合にも、その選択した結果クリップに対して指定されている編集内容を容易に把握することができる。

【0130】最後に制御コマンドウインドウ39は、この編集システム1において使用される制御コマンドの一覧が表示されるエリアである。この図10に示すように、表示される制御コマンドボタンとしては、例えばエディタボタン(Editor)、コンポジットボタン(Composite)、特殊効果ボタン(S-Effect)、プレビュウボタン(Preview)、ビュウボタン(View)、オールプレビュウボタン(All Preview)及びオールビュウボタン(All View)等がある。

【0131】エディタボタン、コンポジットボタン及び特殊効果ボタンはそれぞれ編集のためのモジュールを起動するためのボタンである。すなわちエディタボタンは編集モジュールEMを起動するためのボタンであり、このエディタボタンをクリックすると、例えば合成モジュールCMを起動中であつても編集モジュールEMを起動することができる。またコンポジットボタンは合成モジュールCMを起動するためのボタンであり、このコンポジットボタンをクリックすると、例えば特殊効果モジュ

ールSMを起動中であつても合成モジュールCMを起動することができる。また特殊効果ボタンは特殊効果モジュールSMを起動するためのボタンであり、この特殊効果ボタンをクリックすると、例えば編集モジュールEMを起動中であつても特殊効果モジュールSMを起動することができる。

【0132】一方、プレビュウボタン、ビュウボタン、オールプレビュウボタン及びオールビュウボタンは、素材クリップ又は結果クリップの内容確認用のボタンである。すなわちプレビュウボタンは、選択したクリップのビデオデータをプレビュウ画面表示ウインドウ36に表示させるときに使用するボタンである。なお、このプレビュウボタンを操作したときには、指定された編集内容が実行されないため、表示されるビデオデータは最終結果と異なることがある（編集内容が既に実行されてその編集内容に合つたビデオデータが生成されている場合には、最終結果のビデオデータが表示される）。しかしながらこのプレビュウボタンを操作すると、すぐに表示が開始されるため、編集過程においてクリップの長さをチェックしたいとき等に使用される。

【0133】ビュウボタンは、選択したクリップのビデオデータをプレビュウ画面表示ウインドウ36に表示させるときに使用するボタンである。このビュウボタンは、プレビュウボタンと異なり、指定された編集内容が実行されるので、このビュウボタンを操作したときは、表示されるまでに時間がかかるが、編集後のビデオデータを確認することができる。

【0134】オールプレビュウボタンはクリップを選択せずとも、編集対象の最初のクリップから編集対象の最後のクリップまでのビデオデータをプレビュウ画面表示ウインドウ36に表示させるときに使用するボタンである。なお、このオールプレビュウボタンもプレビュウボタンと同様に指定されている編集内容が実行されない。

【0135】オールビュウボタンは編集対象の全てのクリップに対して指定されている編集内容を実行して、そのビデオデータをプレビュウ画面表示ウインドウ36に表示させるときに使用するボタンである。このオールビュウボタンを操作することにより、指定した編集内容が実行され、最終結果のビデオデータを確認することができる。なお、編集内容が実行されたときには、生成されたクリップビデオデータは自動的にビデオディスクレコーダ5に記憶され、クリップデータベースCDBに登録される。

【0136】（4-2）特殊効果モジュールを起動したときのGUI

続いてこの項では、特殊効果モジュールSMを起動したときのGUIについて説明する。この編集システム1では、特殊効果モジュールSMが起動されると、ワープステーション2のディスプレイ2Bには、特殊効果モジュールSMのGUIとして図11に示すようなグラフィツ

ク表示が表示される。

【0137】この図11に示すように、特殊効果モジュールSMのGUIとしては、大き分けてメニューインドウ30と、クリップツリーウインドウ31と、エフェクト選択ウインドウ40と、ライブラリーウインドウ33と、タイムラインウインドウ41と、パラメータ設定ウインドウ42と、プレビュウ画面表示ウインドウ36と、デバイスコントールウインドウ37と、編集内容表示ウインドウ38と、制御コマンドウインドウ39とによつて構成されている。

【0138】なお、この特殊効果モジュールSMのGU1において表示されるウインドウのうち、メニューインドウ30、クリップツリーウインドウ31、ライブラリーウインドウ33、プレビュウ画面表示ウインドウ36、デバイスコントールウインドウ37、編集内容表示ウインドウ38及び制御コマンドウインドウ39は、上述した合成モジュールCMの場合と同じであるので、ここでは説明を省略する。

【0139】まずエフェクト選択ウインドウ40は、クリップのビデオデータに対して施す特殊効果を選択するためのエリアであり、各種特殊効果のコマンドボタンが表示される。この場合、表示されるコマンドボタンとしては、3次元画像変換を指定するための3Dボタン、残像を付加するトレイル処理を指定するためのトレイルボタン、立方体の面にビデオイメージを張り付けてそれを回転させて行くようなブリック処理を指定するためのブリックボタン、ビデオデータに影を付加するシャドウ処理を指定するためのシャドウボタン、ビデオデータを混合するミックス処理を指定するためのミックスボタン、一方向からライトを浴びせて物体に影を付加するライト処理を指定するためのライトボタン、ビデオデータの所定範囲を切り出すクロップ処理を指定するためのクロップボタン等が用意されている。

【0140】このエフェクト選択ウインドウ40においては、エリアの下辺位置に左右方向のスクロールボタン40Aが表示されており、このスクロールボタン40Aを操作することにより、表示されるコマンドボタンを左右方向にスクロールし得るようになされている。同様に、エフェクト選択ウインドウ40の右辺位置には上下方向のスクロールボタン40Bが表示されており、このスクロールボタン40Bを操作することにより、表示されるコマンドボタンを上下方向にスクロールし得るようになされている。

【0141】このようなエフェクト選択ウインドウ40において、所望の特殊効果を選択する場合には、タイムラインウインドウ41において特殊効果を施す編集点を指定した上で、所望する特殊効果に対応したコマンドボタンをクリックすれば、その特殊効果が自動的に指定されるようになつている。

【0142】タイムラインウインドウ41は、編集対象

のクリップを時間軸上に並べて編集内容を指定するためのエリアである。特殊効果モジュールSMで表示されるタイムラインウインドウ41としては、当然特殊効果処理に関するものが表示される。このタイムラインウインドウ41は、大きく分けて上から順にタイムコード表示エリア (Time Code) と、編集点表示エリア (Edit Point) と、プレビュウ範囲表示エリア (Preview) と、クリップ及び特殊効果指定エリア (L1～L10) とに分かれている。

【0143】タイムコード表示エリアは、編集点におけるタイムコードが表示されるエリアである。なお、このタイムコードは、このタイムラインウインドウ41において指定された編集内容に基づいて生成される結果クリップのタイムライン上におけるタイムコードである。

【0144】編集点表示エリアは、編集点として設定されているポイントを三角マークによって指し示すエリアである。例えば図4及び図8に示したような特殊効果処理が指定されている場合には、その編集点EP1～EP7が三角マークを使用して指し示される。

【0145】プレビュウ範囲表示エリアには、上述したプレビュウボタンやビュウボタンを操作したときにプレビュウ画面表示ウインドウ36に表示されるビデオデータの範囲を示すエリアである。この例の場合、編集点EP1から編集点EP7まで（すなわち結果クリップFC-009全体）が表示範囲として設定されているので、その区間を示すバーが表示される。

【0146】クリップ及び特殊効果指定エリアは、レイヤ毎にクリップに対して施す特殊効果を指定するためのエリアである。この編集システム1においては、レイヤL1からレイヤL10までの10個のレイヤが用意されており、その1つ1つに特殊効果処理の対象となるクリップを指定することができると共に、そのクリップに対してそれぞれ特殊効果処理を指定することができるようになっている。なお、このクリップ及び特殊効果指定エリアとしては表示範囲が限られており（図に示すようにレイヤほぼ2つ分程度）、一度に全てのレイヤL1～L10を表示することができない。しかしながらこのクリップ及び特殊効果指定エリアの右辺に表示されているスクロールボタン41Aを操作することにより、クリップ及び特殊効果指定エリアを上下方向にスクロールさせることができるので、これによつて所望のレイヤを表示させることができるようになっている。

【0147】各レイヤL1～L10は、それぞれ4つの特殊効果指定エリア (E1～E4) と、特殊効果を施すクリップを指定するためのビデオエリア (Video) と、そのクリップに対するキー処理を指定するためのキーエリア (Key) とに分かれている。特殊効果指定エリアは、ビデオエリアに登録されたクリップに対して施す特殊効果を指定するためのエリアであり、これが1つのレイヤにおいて4つ設けられていることから、1つのクリ

ップに対して4つの特殊効果を同時に指定し得るようになされている。例えばこの図11に示すように、特殊効果E1としてモザイク処理を指定し、特殊効果E2としてクロップ処理を指定し、特殊効果E3として3次元画像変換を指定し、特殊効果E4としてトレイル処理を指定すると、ビデオエリアで指定されたクリップMC-004に対してその4つの特殊効果処理を施すことができる。

【0148】特殊効果指定エリアにおいて、特殊効果を設定する場合には、予め編集点を指定することによって特殊効果を施す範囲を指定した上で、エフェクト選択ウインドウ40内の所望のコマンドボタンをクリックすれば、その選択された特殊効果を示すセルが表示されるので、そのセルを特殊効果指定エリアにおいてその特殊効果が自動的に設定される。

【0149】ビデオエリアにおいてクリップを設定する場合には、まずライブラリーウインドウ33に表示されるクリップをクリックするか、もしくはクリップツリーウインドウ31に表示されるクリップをクリックすることにより、編集対象のクリップを選択する。このような処理を行うと、その選択したクリップを示すセルが表示されるので、これをビデオエリアの所望位置に置けば、ビデオエリアに対してクリップを設定することができる。

【0150】またキーエリアにおいてキー処理を設定する場合には、まずキーエリアの「Key」の部分をクリックすると、エフェクト選択ウインドウ40が先に説明したキーウインドウ32に切り換わるので、その中から所望のキーボタンをクリックしてキー処理を選択する。このような処理を行うと、その選択したキー処理を示すセルが表示されるので、そのセルをキーエリアに置けば、そのキー処理が自動的に設定される。

【0151】なお、既にビデオエリアに置かれて表示されている結果クリップをダブルクリックして選択すると、その結果クリップを作成したモジュール（すなわち合成モジュールCM、特殊効果モジュールSM又は編集モジュールEM）が起動され、その結果クリップに対して施されている編集内容が対応するモジュールのGUI上のタイムラインウインドウに表示されると共に、その結果クリップに対して設定されているパラメータがパラメータ設定ウインドウに表示される。

【0152】パラメータ設定ウインドウ42は、オペレータが指定した特殊効果処理におけるパラメータを設定するエリアである。このパラメータ設定ウインドウ42においては、エフェクト選択ウインドウ40のコマンドボタンをクリックすると、そのクリックされた特殊効果に関するパラメータ設定画面が表示される。例えばエフェクト選択ウインドウ40において3Dボタンをクリックして、3次元画像変換を指定すると、このパラメータ設定ウインドウ42には図11に示すような3次元画像

変換に関するパラメータ設定画面が表示される。

【0153】3次元画像変換におけるパラメータとしては、図11に示すように、3次元空間上における位置(X, Y, Z)と、3次元空間上における回転方向(X, Y, Z)と、画像の縦横比を示すアスペクト比(A s p)と、歪みのパラメータであるスキュー(S k e w)と、遠近値を表すパースペクティブ値(P e r s)とがある。これらのパラメータの値はデフォルト値(=「0」)を基準にした最大設定範囲MAXから最小設定範囲MINの間で任意の値に設定し得るようになされている。

【0154】パラメータ設定ウインドウ42と上述したタイムラインウインドウ41とは、横軸(すなわち時間軸)が一致しており、タイムラインウインドウ41で指定した特殊効果処理の内容を見ながらパラメータの変更ポイントを決めることができるようになっている。因みに、この横軸方向、すなわち左右方向に関しては、パラメータ設定ウインドウ42の下辺位置にあるスクロールボタン42Aを操作することにより、このパラメータ設定ウインドウ42内のグラフィックイメージを左右方向にスクロールさせることができる。このときタイムラインウインドウ41とパラメータ設定ウインドウ42は横軸が対応していることから、当該タイムラインウインドウ41内のグラフィックイメージとパラメータ設定ウインドウ42内のグラフィックイメージは連動して同時に左右方向にスクロールされる。なお、上下方向に関しては、パラメータ設定ウインドウ42の右辺位置にあるスクロールボタン42Bを操作することにより、当該パラメータ設定ウインドウ42内のグラフィックイメージを上下方向にスクロールさせることができる。

【0155】ここで実際に3次元画像変換のパラメータを設定する場合には、まずパラメータ設定ウインドウ42の左隅に表示されるパラメータ項目の中から所望の項目をクリックしてこれからパラメータ設定する項目を指定する。続いてタイムラインウインドウ41で指定した内容を見ながらパラメータを変更するポイントを決めると共に、設定値を決め、縦軸がパラメータ値で横軸が時間軸からなるパラメータ設定ウインドウ42においてその決めたポイント及び設定値に対応する位置をクリックする。これによりそのクリックした位置に対応するパラメータ値及びパラメータ変更ポイントがクリップデータベースCDBに自動的に登録される。

【0156】例えば図11に示すように、X軸方向の位置を編集点EP4から徐々にマイナス方向に移動するのであれば、希望する値のところを順にクリックして行けば、その値が自動的に登録される。同様にY軸方向の位置を編集点EP6から徐々にプラス方向に移動するのであれば、希望する値のところを順にクリックして行けば、その値が自動的に登録される。同様にZ軸方向の位置を編集点EP2から徐々にプラス方向に移動するので

あれば、希望する値のところを順にクリックして行けば、その値が自動的に登録される。なお、オペレーターが指定したポイントとポイントとの間は、補間処理により、ビデオイメージが連続的に移動するような値が自動的に設定される。

【0157】また編集点EP2から編集点EP5までの範囲においてX軸を中心としてマイナス方向にビデオイメージを徐々に回転させ、編集点EP5以後に再び逆方向に徐々に回転させるような回転処理を行うのであれば、編集点EP5及びEP7において所望の値のところをクリックすれば、その値が自動的に登録される。なお、この場合にも、オペレーターが指定したポイントとポイントとの間は、補間処理により、ビデオイメージが連続的に回転するような値が自動的に設定される。因みに、直線的に補間するか、スプラインカーブで補間するかは、設定により任意に決めることができる。この例では、回転処理についてはスプラインカーブで補間するよう設定されているので、オペレーターが指定したポイント間はスプラインカーブに沿った値に設定される。

【0158】かくしてこのパラメータ設定ウインドウ42において、特殊効果のパラメータに対して所望の値を設定すると、そのパラメータの値がクリップデータベースCDBに登録され、その登録されたパラメータの値に基づいて編集対象のクリップのビデオデータに対して特殊効果が施される。なお、このパラメータ設定ウインドウ42においては、図11に示すように、設定したパラメータの値を編集点と対応させて、横軸を時間、縦軸をパラメータ値としたグラフ状に表示するようになされており、これによりオペレーターはその表示を見て、どのパラメータに対してどのような値をどのタイミングで設定したかを視覚的に一目で把握することができる。

【0159】(4-3) 編集モジュールを起動したときのGUI

統いてこの項では、編集モジュールEMを起動したときのGUIについて説明する。この編集システム1では、編集モジュールEMが起動されると、ワークステーション2のディスプレイ2Bには、編集モジュールEMのGUIとして図12に示すようなグラフィック表示が表示される。

【0160】この図12に示すように、編集モジュールEMのGUIとしては、大きく分けてメニューウインドウ30と、クリップツリーウインドウ31と、エフェクト選択ウインドウ50と、ライブラリーウインドウ33と、タイムラインウインドウ51と、パラメータ設定ウインドウ52と、プレビュウ画面表示ウインドウ36と、デバイスコントールウインドウ37と、編集内容表示ウインドウ38と、制御コマンドウインドウ39とによつて構成されている。

【0161】なお、この編集モジュールEMのGUIにおいて表示されるエリアのうち、メニューウインドウ3

0、クリップツリーウィンドウ31、プレビュウ画面表示ウインドウ36、デバイスコントールウインドウ37及び制御コマンドウインドウ39は、上述した合成モジュールCMの場合と同じであるので、ここでは説明を省略する。

【0162】まずエフェクト選択ウインドウ50は、編集対象として指定されたクリップのビデオデータを切り換えるときに使用するトランジションエフェクトを選択するためのエリアであり、各種トランジションエフェクトのコマンドボタンが表示される。この場合、表示されるコマンドボタンとしては、現在表示されている画像を新しい画像でぬぐい消すようにして画像を切り換えるワイプ効果を指定するワイプボタン、紙芝居のように古い画像をスライドさせることによって新しい画像を切り換えるスライド効果を指定するスライドボタン、古い画像を分割してその分割された画像をスライドさせることによって新しい画像に切り換えるスプリット効果を指定するためのスプリットボタン、古い画像の上に新しい画像を広げるようにして画像を切り換えるスクイズ処理を指定するためのスクイズボタン、古い画像をページをめくるようにして画像を切り換えるページターン処理を指定するためのページターンボタン等が用意されている。

【0163】このエフェクト選択ウインドウ50においては、エリアの下辺位置に左右方向のスクロールボタン50Aが表示されており、このスクロールボタン50Aを操作することにより、表示されるコマンドボタンを左右方向にスクロールし得るようになされている。同様に、エフェクト選択ウインドウ50の右辺位置には上下方向のスクロールボタン50Bが表示されており、このスクロールボタン50Bを操作することにより、表示されるコマンドボタンを上下方向にスクロールし得るようになされている。

【0164】このようなエフェクト選択ウインドウ50において、所望のトランジションエフェクトを選択する場合には、タイムラインウインドウ51においてトランジションエフェクトを施す編集点を指定した上で、所望するトランジションエフェクトに対応したコマンドボタンをクリックすれば、そのトランジションエフェクトが自動的に指定されるようになつていている。

【0165】ライブラリーウィンドウ33は、クリップデータベースCDBに登録されている素材クリップ又は結果クリップをリスト表示するためのエリアである。このライブラリーウィンドウ33は、図10や図11に示すように、通常はタイトルバーのみが表示されているが、そのタイトルバーのところをクリックしてウインドウエリアを広げることにより、この図12に示すようにライブラリーウィンドウ33の全体が表示されるようになされている。

【0166】ライブラリーウィンドウ33においては、この図12に示すように、各クリップがカード状グラフ

イック表示33Aによつて表示される。この場合、カード状グラフィック表示33Aは静止画表示部33Bと属性表示部33Cとクリップ名表示部33Dとによつて構成される。静止画表示部33Bには、そのクリップのイン点又はアウト点の静止画が表示されるようになされており、これによりオペレータはその静止画表示部33Bに表示される画面を見てクリップがどのようなビデオデータで形成されているものか容易に把握することができる。

【0167】属性表示部33Cには、そのクリップの属性を示す「FC」又は「MC」なる文字が表示される。この場合、「FC」はそのクリップが編集処理の結果生成された結果クリップであることを示し、「MC」はそのクリップが単にソースビデオデータから取り出した素材クリップであることを示している。このようにして属性を示す情報を表示することにより、オペレータはその表示を見てそのクリップが結果クリップであるか素材クリップであるかを容易に把握することができる。クリップ名表示部33Dには、そのクリップを生成したときにオペレータが付加したクリップ名称が表示される。なお、このクリップ名称は、後述するようにクリップ管理データとしてクリップデータベースCDBに登録されているものである。

【0168】かくしてこのようにライブラリーウィンドウ33において、既にクリップデータベースCDBに登録されているクリップをリスト表示するようにしたことにより、既に登録されているクリップの中から編集対象のクリップを容易に選択することができる。

【0169】なお、このライブラリーウィンドウ33の右辺位置にはスクロールボタン33Eが表示されており、このスクロールボタン33Eを操作すれば、このライブラリーウィンドウ33を上下方向にスクロールさせることができ、当該ライブラリーウィンドウ33に登録されている全てのクリップを表示させることができる。これにより現状見えていないクリップであつても、そのクリップを選択することができる。

【0170】タイムラインウインドウ51は、編集対象のクリップを時間軸上に並べて編集内容を指定するためのエリアである。編集モジュールEMで表示されるタイムラインウインドウ51としては、当然編集処理に関するものが表示される。このタイムラインウインドウ51は、大きく分けて上から順にタイムコード表示エリア（Time Code）と、編集点表示エリア（Edit Point）と、プレビュウ範囲表示エリア（Preview）と、ビデオ及びエフェクト指定エリア（V）と、オーディオ指定エリア（A）とに分かれている。

【0171】タイムコード表示エリアは、編集点におけるタイムコードが表示されるエリアである。なお、このタイムコードは、このタイムラインウインドウ51において指定された編集内容に基づいて生成される結果クリ

ツのタイムライン上におけるタイムコードである。

【0172】編集点表示エリアは、編集点として設定されているポイントを三角マークによって指し示すエリアである。例えば図4及び図9に示すような編集処理が指定されている場合には、その編集点EP1～EP5が三角マークを使用して指し示される。但し、図12においては、タイムラインウインドウ51においてトランジションエフェクトを施す付近のみを表示している関係上、編集点EP2～EP4のみが表示されている。なお、編集点EP1や編集点EP5を表示させる場合には、後述するように、パラメータ設定ウインドウ52において左右方向のスクロールボタンを操作すれば、タイムラインウインドウ51内のグラフィツクイメージを左右方向にスクロールして、編集点EP1や編集点EP5を表示させることができる。

【0173】プレビュウ範囲表示エリアには、上述したプレビュウボタンやピュウボタンを操作したときにプレビュウ画面表示ウインドウ36に表示されるビデオデータの範囲を示すエリアである。この例の場合、編集点EP1と編集点EP2の間から編集点EP4と編集点EP5の間までが表示範囲として設定されているので、その区間を示すバーが表示される。

【0174】ビデオ及びエフェクト指定エリアは、編集対象のクリップを指定するための第1及び第2のビデオエリア(Video-L1, Video-L2)と、その編集対象のクリップに対して施すトランジションエフェクトを指定するためのエフェクトエリア(Effect)とに分かれている。

【0175】第1又は第2のビデオエリアにおいて編集対象のクリップを指定する場合には、ライブラリーウィンドウ33又はクリップツリーウィンドウ31において所望のクリップをクリックすると、そのクリップを示すセルが表示されるので、そのセルを第1又は第2のビデオエリアに置けば、そのクリップが第1又は第2のビデオエリアに設定され、編集対象のクリップとして登録される。例えば結果クリップFC-008をクリックしてそのセルを第1のビデオエリアに置き、結果クリップFC-009をクリックしてそのセルを第2のビデオエリアに置けば、この図12に示すように、第1及び第2のビデオエリアにそれぞれ結果クリップFC-008, FC-009が設定される。なお、第1のビデオエリアに設定されたクリップのビデオデータが古いビデオデータとなり、第2のビデオエリアに設定されたクリップのビデオデータが新しく切り換わるビデオデータになる。

【0176】同様に、エフェクトエリアにおいてトランジションエフェクトを指定する場合には、エフェクト選択ウインドウ50において所望のエフェクトボタンをクリックすると、そのエフェクトを示すセルが表示されるので、そのセルをエフェクトエリアに置けば、そのエフェクトが編集対象のクリップに対して施すエフェクトとして設定される。例えばエフェクト選択ウインドウ50

においてワイプボタンをクリックすると、ワイプを示すセルが表示されるので、そのセルをエフェクトエリアに置けば、この図12に示すように結果クリップFC-008と結果クリップFC-009の切り換え処理としてワイプ処理が設定される。

【0177】オーディオ指定エリアは、ビデオデータと共に送出するオーディオデータを指定するためのエリアであり、この場合には、第1及び第2のオーディオエリア(Audio-1ch, Audio-2ch)に分かれている。なお、第1及び第2のオーディオエリアにおいて、オーディオデータを設定する場合には、ビデオエリアにおける設定方法と同じで、所望のクリップをクリックしてそのセルを第1又は第2のオーディオエリアに置けば、そのクリップのオーディオデータが送出するオーディオデータとして設定される。因みに、第1のオーディオエリアに設定されたオーディオデータがステレオ放送の第1チャネルに送出され、第2のオーディオエリアに設定されたオーディオデータがステレオ放送の第2チャネルに送出される。

【0178】なお、第1又は第2のビデオエリアに既に置かれて表示されている結果クリップをダブルクリックして選択すると、その結果クリップを作成したモジュール(すなわち合成モジュールCM、特殊効果モジュールSM又は編集モジュールEM)が起動され、その結果クリップに対して施されている編集内容が対応するモジュールのGUI上のタイムラインウインドウに表示されると共に、その結果クリップに対して設定されているパラメータがパラメータ設定ウインドウに表示される。

【0179】パラメータ設定ウインドウ52は、オペレーターが指定したトランジションエフェクトのパラメータを設定するエリアである。このパラメータ設定ウインドウ52においては、エフェクト選択ウインドウ50のエフェクトボタンをクリックすると、そのクリックされたエフェクトに関するパラメータ設定画面が表示される。例えばエフェクト選択ウインドウ50においてワイプボタンをクリックして、ワイプ処理を指定すると、このパラメータ設定ウインドウ52には図12に示すようなワイプ処理に関するパラメータ設定画面が表示される。

【0180】ワイプ処理におけるパラメータとしては、この図12に示すように、ワイプパターンの縦横比を示すアスペクト比(Aspect)と、ワイプパターンの角度を規定するアングル(Angle)と、画面切換時のワイプパターンの速度を規定するスピード(Speed)と、ワイプパターンエッジの水平方向に与えるゆらぎを規定する水平モジュレーション(HMod)と、ワイプパターンエッジの垂直方向に与えるゆらぎを規定する垂直モジュレーション(VMod)とがある。これらのパラメータの値はデフォルト値(=「0」)を基準にした最大設定範囲MAXから最小設定範囲MINの間で任意の値に設定し得るようになされている。但し、

スピードのパラメータに関しては、デフォルト値が最小設定範囲MINに設定されており、可変範囲としてはデフォルト値から最大設定値MAXまでとなつている。

【0181】パラメータ設定ウインドウ52と上述したタイムラインウインドウ51とは、横軸（すなわち時間軸）が一致しており、タイムラインウインドウ51で指定した編集処理内容を見ながらパラメータの変更ポイントを決めることができるようになつてある。因みに、この横軸方向、すなわち左右方向に関しては、パラメータ設定ウインドウ52の下辺位置にあるスクロールボタン52Aを操作することにより、このパラメータ設定ウインドウ52内のグラフィツクイメージを左右方向にスクロールさせることができる。このときタイムラインウインドウ51とパラメータ設定ウインドウ52は横軸が対応していることから、当該タイムラインウインドウ51内のグラフィツクイメージとパラメータ設定ウインドウ52内のグラフィツクイメージは連動して同時に左右方向にスクロールされる。なお、上下方向に関しては、パラメータ設定ウインドウ52の右辺位置にあるスクロールボタン52Bを操作することにより、当該パラメータ設定ウインドウ52内のグラフィツクイメージを上下方向にスクロールさせることができる。

【0182】ここで実際にワイプ処理のパラメータを設定する場合には、まずパラメータ設定ウインドウ52の左隅に表示されるパラメータ項目の中から所望の項目をクリックしてこれからパラメータ設定する項目を指定する。続いてタイムラインウインドウ51で指定した内容を見ながらパラメータを変更するポイントを決めると共に、設定値を決め、縦軸がパラメータ値で横軸が時間軸からなるパラメータ設定ウインドウ52においてその決めたポイント及び設定値に対応する位置をクリックする。これによりそのクリックした位置に対応するパラメータ値及びパラメータ変更ポイントがクリップデータベースCDBに自動的に登録される。

【0183】例えば図12に示すように、ワイプパターンのアスペクト比を編集点EP2から編集点EP4にかけて徐々に大きくしたいのであれば、希望する値のところを順にクリックして行けば、その値が自動的に登録される。なお、オペレータが指定したポイントとポイントとの間は、補間処理により、ワイプパターンのアスペクト比が連続的に変化するような値が自動的に登録される。

【0184】同様に、ワイプパターンのアングルを編集点EP2から編集点EP3にかけて徐々に大きくし、また編集点EP3から編集点EP4にかけてはワイプパターンを逆方向に徐々に傾けて行くようにしたいのであれば、希望する値のところを順にクリックして行けば、その値が自動的に登録される。なお、この場合にも、オペレータが指定したポイントとポイントとの間は、補間処理により、ワイプパターンが連続的に変化するような値

が自動的に登録される。因みに、直線的に補間するか、スプラインカーブで補間するかは、設定により任意に決めることができる。この例では、アングルに関してはスプラインカーブで補間するように設定されているので、オペレータが指定したポイント間はスプラインカーブに沿つた値に設定される。

【0185】またワイプパターンのスピードを編集点EP2から編集点EP3までは一定にし、編集点EP3から編集点EP4にかけては徐々にスピードを上げていきたいのであれば、希望する値のところを順にクリックして行ければ、その値が自動的に登録される。なお、この場合にも、オペレータが指定したポイントとポイントとの間は、補間処理により、ワイプパターンのスピードが連続的に変化するような値が自動的に登録される。

【0186】かくしてこのパラメータ設定ウインドウ52において、トランジションエフェクトのパラメータに対して所望の値を設定すると、そのパラメータの値がクリップデータベースCDBに登録され、その登録されたパラメータの値に基づいて編集対象のクリップのビデオデータに対してトランジションエフェクトが施される。なお、このパラメータ設定ウインドウ52においては、図12に示すように、設定したパラメータの値を編集点と対応させて、横軸を時間、縦軸をパラメータ値としたグラフ状に表示するようになされており、これによりオペレータはその表示を見て、どのパラメータに対してどのような値をどのタイミングで設定したかを視覚的に一目で把握することができる。

【0187】編集内容表示ウインドウ38は、上述のようにタイムラインウインドウ51によって指定した編集内容を、グラフィツクイメージによつて表示するためのエリアである。タイムラインウインドウ51において上述したように2つのクリップFC-008、FC-009をワイプ処理によつて切り換えるような編集処理を指定した場合には、ワイプ処理を示すグラフィツクイメージをそれぞれのクリップを示す棒状グラフィツクイメージで段違いに挟んだようなグラフィツクイメージが表示される。これによりオペレータは、この表示を見て、全体としてどの様な編集内容を指示したかを容易に把握することができる。特にこの図12に示すように、タイムラインウインドウ51において一部の範囲のみ表示したときには、全体の処理内容が分かりづらいが、この編集内容表示ウインドウ38を見れば全体の処理内容を容易に把握することができる。

【0188】(5) クリップデータベースにおけるクリップ管理データの管理方法
本発明による編集システム1においては、素材クリップやその素材クリップに編集を行うことによつて生成された結果クリップを全てクリップデータベースCDBに登録するようになされている。クリップデータベースCDBに登録されるデータとしては、大きく分けて素材クリップ

又は結果クリップのクリップビデオデータと、そのクリップビデオデータを管理するためのクリップ管理データがある。この項では、このクリップ管理データの管理办法について説明する。

【0189】図13は、例えば図7、図8及び図9に示した編集処理が指示されたとき、クリップデータベースCDB（主にRAM21B）において形成されたクリップ管理データ用のデータベースである。このクリップ管理データを管理するためのデータベースは、この図13に示すように、大きく分けてクリップIDコード、クリップ名称、属性、画像データへのポインタ、デュレーション、上位リンク先IDコード、下位リンク先IDコード、有効／無効フラグ及び作業データによつて構成される。

【0190】クリップIDコードは、クリップとして登録された順に当該クリップに対して自動的に付与されたシリアルナンバーの識別番号である。従つてこのクリップIDコードを基に、登録されているクリップを識別することができる。

【0191】クリップの属性は、そのクリップが単なる素材クリップであるのか、或いは素材クリップを編集することにより生成された結果クリップであるのかを識別するためのデータである。素材クリップの場合には、このクリップの属性のところに「M」というコードが登録され、結果クリップの場合には、「F」というコードが登録される。

【0192】クリップ名称は、そのクリップに対して付与されたクリップ識別用の名称である。この例では、クリップIDコードが「001」であつて、クリップの属性が「M」である場合には、そのクリップ名称として「MC-001」という名前を自動的に付与した例を示している。なお、このクリップ名称は、ユーザの趣向に合わせて任意の名前を付与することもできる。因みに、ライブラリーウィンドウ33のクリップ名表示部33Dに表示されるクリップ名は、このクリップ名称である。

【0193】画像データへのポインタは8バイトのデータからなり、ビデオディスクレコーダ5に記録されたクリップビデオデータの先頭アドレスを示すポインタである。この編集システム1においては、クリップビデオデータは複数のハードディスクを有するビデオディスクレコーダ5に記憶されているので、この画像データへのポインタは、そのハードディスクアレイの論理アドレスを指している。

【0194】デュレーションは、そのクリップのクリップビデオデータの再生期間を表すタイムコードである。すなわちそのクリップビデオデータの始まりから終わりまでの時間を表すタイムコードである。

【0195】上位リンク先IDコードは、そのクリップに対して上位クリップとしてリンクしているクリップのクリップIDコードである。例えばクリップIDコード

が「001」である素材クリップMC-001は、クリップIDコードが「008」の結果クリップFC-008にリンクしているので、この結果クリップFC-008のクリップIDコード「008」が上位リンク先IDコードとして登録されている。

【0196】なお、最上位のクリップになつているため上位クリップを持たないクリップの場合には、上位リンク先IDコードとして「000」が登録される。例えば結果クリップFC-010は上位クリップを持つておらず、このため上位リンク先IDコードとして「000」が登録されている。これにより上位リンク先IDコードが「000」であれば、最上位のクリップであることを容易に把握することができる。

【0197】下位リンク先IDコードは、そのクリップに対して下位クリップとしてリンクしているクリップのクリップIDコードである。例えばクリップIDコードが「008」である結果クリップFC-008には、下位クリップとして、それぞれ素材クリップMC-001、MC-002及びMC-003がリンクしている。その際、素材クリップMC-001は第3のレイヤL3として指定され、素材クリップMC-002は第2のレイヤL2として指定され、素材クリップMC-003は第1のレイヤL1として指定されている。従つて結果クリップFC-008の下位クリップであつて、かつ第1のレイヤL1に指定されているクリップのクリップIDコードとして「003」が登録され、結果クリップFC-008の下位クリップであつて、かつ第2のレイヤL2に指定されているクリップのクリップIDコードとして「002」が登録され、結果クリップFC-008の下位クリップであつて、かつ第3のレイヤL3に指定されているクリップのクリップIDコードとして「001」が登録されている。なお、このように下位にリンクしている下位クリップをレイヤに対応付けて管理したことにより、どの下位クリップがどのレイヤに指定されているかを容易に把握することができる。

【0198】なお、下位クリップを持たないクリップの場合には、下位リンク先IDコードとして何のデータも登録されない。例えば素材クリップMC-001は単なる素材クリップであるので下位クリップを持つておらず、このため下位リンク先IDコードとしては空欄になつている。

【0199】有効／無効フラグは、そのクリップが有効(Enable)なクリップであるか、無効(Disable)なクリップであるかを表すフラグである。この場合、クリップが有効であれば「E」のコードが登録され、クリップが無効であれば「D」のコードが登録される。因みに、指定されている編集内容が実行され、編集結果としてのクリップビデオデータが生成されている場合に、有効のフラグが登録され、編集内容が実行されていないためクリップビデオデータが生成されていないときや、一旦編

集内容を実行してクリップビデオデータを生成したが、その後に編集内容や素材とするクリップを変更したために実際の編集内容とクリップビデオデータが一致していないときに、無効のフラグが登録される。なお、このような有効／無効フラグをクリップ管理データとして持つことにより、このクリップ管理データ用のデータベースを参照すれば、クリップが有効であるか無効であるかを容易に把握することができる。

【0200】作業データは、そのクリップに対して指定されている編集内容を示すデータである。従つて編集によつて生成された結果クリップFC-008、FC-009及びFC-010に対しては何らかの作業データが登録されているが、編集によつて生成されていない素材クリップMC-001から素材クリップMC-007に対しては作業データとしては何も登録されていない。

【0201】作業データは、この図13に示すように、大きく分けてモジュールIDコードと、編集点データと、画像処理データとに分けられる。このうちモジュールIDコードは、その結果クリップを作成する編集作業において使用したモジュールを示す識別番号である。この場合、合成モジュールCMが使用されたのであれば「C」のコードが登録され、特殊効果モジュールSMが使用されたのであれば「S」のコードが登録され、編集モジュールEMが使用されたのであれば「E」のコードが登録される。

【0202】また編集点データは、その結果クリップに対して指定された全ての編集点と、その編集点に対応するタイムコードからなるデータである。また画像処理データは、合成（コンポジット）データと、特殊効果（スペシャルエフェクト）データと、編集（エディット）データとから構成される。このうち合成データは合成処理において指定されたパラメータ値からなるデータであり、特殊効果データは特殊効果処理において指定されたパラメータ値からなるデータであり、編集データは編集処理において指定されたパラメータ値からなるデータである。

【0203】なお、編集処理内容が修正された場合には、これらのクリップ管理データの内容は、その新たな編集内容に基づいて隨時書き換えられる。但し、過去のクリップ管理データは消去されず、別のクリップIDコード及びクリップ名称が付加されてバツクアップ用として保持される。例えば結果クリップFC-009に対する特殊効果処理の内容が修正された場合には、図14に示すように、修正前のクリップ管理データがバツクアップとして保持される。

【0204】すなわち結果クリップFC-009に対して新たな特殊効果処理が指示された場合には、その新たな特殊効果処理の内容に基づいて、修正後の編集点データ及び修正後の特殊効果データが生成され、これがそれぞれ修正前のクリップのところ（すなわちクリップID

データが「009」のところ）に作業データとして登録される。一方、新たな特殊効果処理が指示される前に作業データとして登録されていた修正前の編集点データ及び修正前の特殊効果データは、新たにクリップIDコード「009BK1」及びクリップ名称「FC-009BK1」が割り当てられた上で、それらの識別情報を基に、バツクアップ用のクリップ管理データとしてデータベース内の別の領域に登録される。但し、バツクアップとして登録されたクリップ管理データにおいては、有効／無効フラグが無効を示す「D」のコードに修正される。

【0205】このようにして修正前のクリップ管理データをバツクアップとして残しておくことにより、修正後の結果クリップFC-009が気に入らない場合でも、バツクアップとして残してある修正前のクリップ管理データに基づいて修正前の結果クリップFC-009BK1に容易に戻ることができる。

【0206】ここで上述した作業データとして登録される編集点データ、合成データ、特殊効果データ及び編集データについて以下に具体例を上げて説明する。まず図15～図17を用いて編集点データについて説明する。

【0207】結果クリップFC-008に対して、図7に示すような合成処理が指示された場合には、図15に示すような編集点データが登録される。この図15に示すように、編集点データは、下位クリップのクリップデータのうちどの部分を上位クリップのクリップビデオデータに使用するかを指定するためのデータであつて、その下位クリップのスタート位置を示すイン点のタイムコードと、そのエンド位置を示すアウト点のタイムコードとからなつている。

【0208】図7に示したように、第1のレイヤL1として指定された素材クリップMC-003のイン点のタイムコードは、タイムラインt3上において「00:00:31:02」になつておらず、そのイン点の位置は結果クリップFC-008のタイムラインt8上においてタイムコード「00:00:00:00」に対応している。従つて編集点データにおいては、図15に示すように、結果クリップFC-008のタイムコード「00:00:00:00」と、素材クリップMC-003のイン点のタイムコード「00:00:31:02」とが編集点EP1のところに対応付けて登録される。また図7に示したように、第1のレイヤL1として指定された素材クリップMC-003のアウト点のタイムコードは、タイムラインt3上において「00:05:18:02」になつておらず、そのアウト点の位置は結果クリップFC-008のタイムラインt8上においてタイムコード「00:04:47:00」に対応している。従つて編集点データにおいては、図15に示すように、結果クリップFC-008のタイムコード「00:04:47:00」と、素材クリップMC-003のアウト点のタイムコード「00:05:18:02」とが編集点EP8のところに対応

付けて登録される。このイン点とアウト点のタイムコードによって、第1のレイヤL1として指定された素材クリップMC-003の編集点が決まることになる。

【0209】同じように、第2のレイヤL2として指定された素材クリップMC-002のイン点及びアウト点のタイムコード「00:00:51:00」及び「00:03:04:20」も、図15に示すように、それぞれ結果クリップFC-008のタイムコードと対応付けて登録される。同様に、第3のレイヤL3として指定された素材クリップMC-001のイン点及びアウト点のタイムコード「00:01:40:03」及び「00:02:45:48」も、図15に示すように、それぞれ結果クリップFC-008のタイムコードと対応付けて登録される。

【0210】また結果クリップFC-009に対して、図8に示すような特殊効果処理が指示された場合には、図16に示すような編集点データが登録される。この図16に示すように、特殊効果処理の場合であつても、編集点データにおいては、下位クリップのタイムコードと上位クリップのタイムコードとが対応付けて登録される。すなわち第1のレイヤL1として指定されている素材クリップMC-004のイン点及びアウト点のタイムコード「00:10:12:00」及び「00:12:18:00」が、図16に示すように、結果クリップFC-009のタイムコードと対応付けて登録される。

【0211】また結果クリップFC-010に対して、図9に示すような編集処理が指示された場合には、図17に示すような編集点データが登録される。この図17に示すように、編集処理の場合であつても、編集点データにおいては、下位クリップのタイムコードと上位クリップのタイムコードとが対応付けて登録される。すなわち第1のレイヤL1として指定されている結果クリップFC-008のイン点及びアウト点のタイムコード「00:01:01:20」及び「00:04:43:00」が、図17に示すように結果クリップFC-010のタイムコードと対応付けて登録されると共に、第2のレイヤL2として指定されている結果クリップFC-009のイン点及びアウト点のタイムコード「00:00:00:50」及び「00:02:06:00」が、同じく図17に示すように結果クリップFC-010のタイムコードと対応付けて登録される。

【0212】統いて図18を用いて、合成データについて説明する。合成データは、各レイヤに指定されたクリップのビデオデータを合成するときの合成比率（ゲイン）を表すデータであり、値としては「0」～「100」までの値を取り得るようになされている。なお、合成データの値が「0」であれば、合成するビデオデータを0パーセントの割合で合成することを意味しており、この場合には、下層のビデオデータが完全に透けて見えることを意味している。また合成データの値が「50」であれば、合成するビデオデータを50パーセントの割合で合

成することを意味しており、この場合には、半分位の割合で下層のビデオデータが透けて見えることを意味している。さらに合成データの値が「100」であれば、合成するビデオデータを100パーセントの割合で合成することを意味しており、この場合には、下層のビデオデータが完全に隠れて見えないことを意味している。

【0213】ここで合成データの具体例を図18に示す。この図18は、図7に示したような合成処理を指定した上で、図10に示したパラメータ設定ウインドウ35を使用して合成データ（ゲイン）を指定したときに生成された合成データのデータベースである。

【0214】第1のレイヤL1に対して指定された素材クリップMC-003に対して、編集点EP1の位置及び編集点EP8の位置でゲイン「100」を指定すると、この図18に示すように、編集点EP1及び編集点EP8に対応する欄にゲイン「100」が登録される。また編集点EP1から編集点EP8の間は、当該編集点EP1及びEP8をキーポイントとしてその値に基づいた直線補間がなされるので、自動的にゲイン「100」が登録される（図中、「—」は補間値が登録されていることを示す）。

【0215】また第2のレイヤL2に対して指定された素材クリップMC-002に対して、編集点EP2の位置でゲイン「59」を指定し、編集点EP3の位置でゲイン「100」を指定し、編集点EP6の位置でゲイン「0」を指定すると、この図18に示すように、編集点EP2、EP3及びEP6に対応する欄にそれぞれ順にゲイン「59」、「100」及び「0」が登録される。この場合も、編集点EP2から編集点EP3の間、及び編集点EP3から編集点EP6の間は、当該編集点EP2、EP3及びEP6をキーポイントとしてその値に基づいた直線補間がなされ、直線的に連続するようなゲイン値が自動的に登録される。また第3のレイヤL3に対して指定された素材クリップMC-001に対して、編集点EP4の位置でゲイン「100」を指定し、編集点EP5の位置でゲイン「67」を指定し、編集点EP7の位置でゲイン「51」を指定すると、この図18に示すように、編集点EP4、EP5及びEP7に対応する欄にそれぞれ順にゲイン「100」、「67」及び「51」が登録される。この場合も、同様に、編集点EP4から編集点EP5、及び編集点EP5から編集点EP7の間は、当該編集点EP4、EP5及びEP7をキーポイントとしてその値に基づいた直線補間がなされ、直線的に連続するようなゲイン値が自動的に登録される。

【0216】かくしてこのような合成データを登録して編集作業を実行すると、各編集点のタイミングで合成データの値が順次切り換えられると共に、各編集点間においては補間された値に順次切り換えられ、その結果、レイヤL1に指定された素材クリップMC-003のビデオイメージ上に編集点EP2の時点からレイヤL2に指

定された素材クリップMC-002のビデオイメージが徐々に現れ、編集点EP3以降にその素材クリップMC-002のビデオイメージが徐々に薄らいで行くようなビデオイメージであつて、かつ編集点EP4の時点でレイヤL3に指定された素材クリップMC-001のビデオイメージが現れ、その後その素材クリップMC-001のビデオイメージが徐々に薄らいで行くようなビデオイメージを得ることができる。

【0217】続いて図19を用いて、特殊効果データについて説明する。特殊効果データは、基本的に編集対象のクリップに対して施す特殊効果処理の種類を表すエフェクトIDデータと、その指定した特殊効果処理の各パラメータ値と、その特殊効果処理を施す期間とによって構成される。

【0218】ここで特殊効果データの具体例を図19に示す。この図19は、図8に示した3次元画像変換に関するものであつて、かつ図11に示したパラメータ設定ウインドウ42を使用してパラメータ設定されたときに生成された特殊効果データのデータベースである。

【0219】この図19において、エフェクトIDデータとして登録されている「1025」は、3次元画像変換に割り当てられたエフェクト識別番号であり、このエフェクト識別番号「1025」によって特殊効果処理として3次元画像変換が指定されていることが分かる。また「Loc_X」、「Loc_Y」及び「Loc_Z」は3次元画像変換のパラメータである位置(X, Y, Z)を示しており、「Rot_X」、「Rot_Y」及び「Rot_Z」は3次元画像変換のパラメータである回転方向(X, Y, Z)を示しており、「Aspect」は3次元画像変換のパラメータであるアスペクト比を示しており、「Skew」は3次元画像変換のパラメータであるスキーを示しており、「Pers」は3次元画像変換のパラメータであるパースペクティブ値を示している。これらのパラメータは、図19に示すように、編集点EP2から編集点EP7にかけて指定されており、これにより3次元画像変換が指定されている期間としては、編集点EP2が開始点となつておらず、編集点EP7が終了点になつていることが容易に分かる。なお、3次元画像変換の開始点及び終了点の具体的な値、すなわちタイムコードは、先に説明した図16の編集点データを参照すれば容易に把握できる。

【0220】ここで図11に示したパラメータ設定ウインドウ42において、パラメータ「Loc_X」に対して編集点EP2、EP4、EP6及びEP7のところでそれぞれ座標値「0」、「0」、「-1.6」及び「-1.6」を指定すると、この図19に示すように、編集点EP2、EP4、EP6及びEP7に対応する欄にそれぞれ座標値「0」、「0」、「-1.6」及び「-1.6」が登録される。この場合、編集点EP2から編集点EP4、編集点EP4から編集点EP6、編集点EP6から

編集点EP7の間は、当該編集点EP2、EP4、EP6及びEP7をキーポイントとしてその値に基づいた直線補間がなされ、直線的に連続するような座標値が自動的に登録される。

【0221】同様に、パラメータ「Loc_Y」に対して編集点EP2、EP6及びEP7のところでそれぞれ座標値「0」、「0」及び「+2」を指定すると、編集点EP2、EP6及びEP7に対応する欄に対応する座標値が登録され、パラメータ「Loc_Z」に対して編集点EP2、EP6及びEP7のところでそれぞれ座標値「0」、「+2.2」及び「+2.2」を指定すると、編集点EP2、EP6及びEP7の欄に対応する座標値が登録される。

【0222】またパラメータ「Rot_X」に対して編集点EP2、EP5及びEP7のところでそれぞれ回転角「0」、「-180」及び「-102」を指定すると、編集点EP2、EP5及びEP7に対応する欄に対応する回転角が登録される。なお、この場合には、スプラインカーブによる補間が設定されているので、編集点EP2から編集点EP5、及び編集点EP5から編集点EP7の間は、それぞれスプラインカーブに沿つて連続する値が自動的に登録される。なお、特に指定のなかつたパラメータ「Rot_Y」、「Rot_Z」、「Aspect」、「Skew」及び「Pers」については、デフォルト値として「0」が自動的に登録される。

【0223】かくしてこのような3次元画像変換に関するパラメータを登録して編集作業を実行すると、各編集点のタイミングでパラメータの値が順次切り換えられると共に、各編集点間においては補間された値に順次切り換えられ、その結果、X軸を中心にして回転しながら3次元空間上を移動して行くようなビデオイメージを得ることができる。

【0224】続いて図20を用いて、編集データについて説明する。編集データは、基本的に編集対象のクリップに対して施すトランジションエフェクトの種類を表すエフェクトIDデータと、その指定したトランジションエフェクトに関するパラメータ値と、そのトランジションエフェクトを施す期間とによって構成される。

【0225】ここで編集データの具体例を図20に示す。この図20は、トランジションエフェクトとして図9に示したようなワイプ処理を指定し、かつ図12に示したパラメータ設定ウインドウ52を使用してパラメータ設定されたときに生成された編集データのデータベースである。

【0226】この図20において、エフェクトIDデータとして登録されている「0001」は、第1のビデオデータのイメージから第2のビデオデータのイメージに切り換わるときに画面の左側から右側に向かつて切り換わるようなワイプ処理に対して割り当てられたエフェクト識別番号であり、このエフェクト識別番号「0001」によつ

てトランジションエフェクトとしてこの種のワイプ処理が指定されていることを意味している。

【0227】なお、エフェクトIDデータとしてエフェクト識別番号「1300」が登録されている場合には、第1のビデオデータのイメージから第2のビデオデータのイメージに切り換わるときに画面の両端から中央に向かつて切り換わるような種類のワイプ処理が指定されていることを意味し、エフェクトIDデータとしてエフェクト識別番号「2123」が登録されている場合には、第1のビデオデータのイメージが丁度ページをめくるような感じで切り換わるページターン処理が指定されていることを意味している。

【0228】また「Aspect」はトランジションエフェクトのワイプパターンの縦横比を示すパラメータであり、「Angle」はワイプパターンの角度を示すパラメータであり、「Speed」は切換速度を示すパラメータであり、「H-Mod」及び「V-Mod」はそれぞれワイプパターンのゆらぎを示すパラメータである。これらのパラメータは、図20に示すように、編集点EP2から編集点EP4にかけて指定されており、これによりワイプ処理が指定されている期間としては、編集点EP2が開始点となつており、編集点EP4が終了点になつていることが容易に分かる。なお、ワイプ処理の開始点及び終了点の具体的な値、すなわちタイムコードは、先に説明した図17の編集点データを参照すれば容易に把握できる。

【0229】ここで図12に示したパラメータ設定ウインドウ52において、パラメータ「Aspect」に対して編集点EP2及びEP4のところでそれぞれ値「0」及び「+25」を指定すると、この図20に示すように、編集点EP2及びEP4に対応する欄にそれぞれ対応する値が登録される。この場合、編集点EP2から編集点EP4の間は、当該編集点EP2及びEP4をキーポイントとしてその値に基づいた直線補間がなされ、直線的に連続するような値が自動的に登録される。

【0230】またパラメータ「Speed」に対して編集点EP2、EP3及びEP4のところでそれぞれ値「20」、「20」及び「100」を指定すると、この図20に示すように、編集点EP2、EP3及びEP4に対応する欄にそれぞれ対応する値が登録される。この場合も、同様に、編集点EP2から編集点EP3、及び編集点EP3から編集点EP4の間は、当該編集点EP2、EP3及びEP4をキーポイントとしてその値に基づいた直線補間がなされ、直線的に連続するような値が自動的に登録される。

【0231】一方、パラメータ「Angle」に対して編集点EP2、EP3及びEP4のところでそれぞれ値「0」、「+180」及び「-180」を指定すると、この図20に示すように、編集点EP2、EP3及びEP4に対応する欄にそれぞれ対応する値が登録される。この

場合には、スプラインカーブによる補間が設定されているので、編集点EP2から編集点EP3、及び編集点EP3から編集点EP4の間は、それぞれスプラインカーブに沿つて連続する値が自動的に登録される。なお、特に指定のなかつたパラメータ「H Mod」及び「V Mod」については、デフォルト値として「0」が自動的に登録される。

【0232】かくしてこのようなワイプ処理に関するパラメータを登録して編集作業を実行すると、各編集点のタイミングでパラメータの値が順次切り換えられると共に、各編集点間においては補間された値に順次切り換えられ、その結果、ワイプパターンの形状及び角度並びに切換速度が順次変化して行くようなトランジションエフェクトのビデオイメージを得ることができる。

【0233】(6) 編集システムにおける各種処理手順についてこの項では、この編集システム1における各処理の動作手順について、フローチャートを用いて説明する。なお、以降説明する動作手順の内容は、全てアプリケーションプログラムに基づいたCPU21の動作によつて行われる。

【0234】まずこの編集システム1において所定の立ち上げ処理を行うと、CPU21は、図21に示すステップSP1において制御モジュールCNTMを起動し、続くステップSP2においてワークステーション2のディスプレイ2B上にトップメニューを表示する。

【0235】次のステップSP3においては、CPU21は、トップメニューにおいて何らかのメニュー項目が選択されたか否か判断し、その結果、何らかのメニュー項目が選択された場合には、続くステップSP4からステップSP7においてその選択されたメニュー項目を判断する。

【0236】ステップSP4における判断の結果、編集モジュールEMの起動コマンドが選択された場合には、CPU21は、ステップSP8に進んで編集モジュールEMの起動処理を行い、ステップSP5における判断の結果、合成モジュールCMの起動コマンドが選択された場合には、ステップSP9に進んで合成モジュールCMの起動処理を行い、ステップSP6における判断の結果、特殊効果モジュールSMの起動コマンドが選択された場合には、ステップSP10に進んで特殊効果モジュールSMの起動処理を行う。

【0237】一方、ステップSP7の判断の結果、既に登録されている結果クリップのファイルをオープンするコマンドが選択された場合には、CPU21は、次のステップSP11において選択された結果クリップで使用されているモジュールを認識し、次のステップSP12において認識したモジュール（すなわち編集モジュールEM、合成モジュールCM又は特殊効果モジュールSM）を起動する。なお、ステップSP11においては、CPU21は、クリップデータベースCDBに登録され

ている作業データを参照することにより、その選択された結果クリップのモジュール認識を行う。

【0238】ここでステップSP8における編集モジュールEMの起動処理を、図22に具体的に示す。編集モジュールEMの起動が指示されると、CPU21は、ステップSP20から入つたステップSP21において、ワークステーション2のディスプレイ2Bにまず編集モジュールEMのGUIを表示する。次のステップSP22においては、CPU21は、先のステップSP12を介して編集モジュールEMの起動が指示されたか否か判断し、ステップSP12を介して編集モジュールEMの起動が指示された場合には、ステップSP23に進み、指定された結果クリップの編集処理内容をクリップデータベースCDBに登録されているクリップ管理データを基に読み出し、上述した編集モジュール用のGUIのタイムライ unwindウ51にその編集処理内容を表示する。

【0239】一方、ステップSP22における判断の結果、ステップSP12を介した起動ではなく、新規の起動であれば、CPU21は、ステップSP24に進み、これから新たに行われる編集処理に備えてクリップ管理データの登録準備を行う。具体的には、これから新たに指示される編集処理内容に備えて、クリップ管理データを登録するエリアをクリップデータベースCDB上に確保する。これらのステップSP23又はステップSP24の処理が行われると、CPU21は、次のステップSP25に進み、実際の編集処理に移行する。

【0240】またステップSP9における合成モジュールCMの起動処理を、図23に具体的に示す。合成モジュールCMの起動が指示されると、CPU21は、ステップSP30から入つたステップSP31において、ワークステーション2のディスプレイ2Bにまず合成モジュールCMのGUIを表示する。次のステップSP32においては、CPU21は、先のステップSP12を介して合成モジュールCMの起動が指示されたか否か判断し、ステップSP12を介して合成モジュールCMの起動が指示された場合には、ステップSP33に進み、指定された結果クリップの合成処理内容をクリップデータベースCDBに登録されているクリップ管理データを基に読み出し、上述した合成モジュール用のGUIのタイムライ unwindウ34にその合成処理内容を表示する。

【0241】一方、ステップSP32における判断の結果、ステップSP12を介した起動ではなく、新規の起動であれば、CPU21は、ステップSP34に進み、これから新たに行われる合成処理に備えてクリップ管理データの登録準備を行う。具体的には、これから新たに指示される合成処理内容に備えて、クリップ管理データを登録するエリアをクリップデータベースCDB上に確保する。これらのステップSP33又はステップSP34の処理が行われると、CPU21は、次のステップSP

P35に進み、実際の合成処理に移行する。

【0242】またステップSP10における特殊効果モジュールSMの起動処理を、図24に具体的に示す。特殊効果モジュールSMの起動が指示されると、CPU21は、ステップSP40から入つたステップSP41において、ワークステーション2のディスプレイ2Bにまず特殊効果モジュールSMのGUIを表示する。次のステップSP42においては、CPU21は、先のステップSP12を介して特殊効果モジュールSMの起動が指示されたか否か判断し、ステップSP12を介して特殊効果モジュールSMの起動が指示された場合には、ステップSP43に進み、指定された結果クリップの特殊効果内容をクリップデータベースCDBに登録されているクリップ管理データを基に読み出し、上述した特殊効果モジュール用のGUIのタイムライ unwindウ41にその特殊効果内容を表示する。

【0243】一方、ステップSP42における判断の結果、ステップSP12を介した起動ではなく、新規の起動であれば、CPU21は、ステップSP44に進み、これから新たに行われる特殊効果処理に備えてクリップ管理データの登録準備を行う。具体的には、これから新たに指示される特殊効果処理に備えて、クリップ管理データを登録するエリアをクリップデータベースCDB上に確保する。これらのステップSP43又はステップSP44の処理が行われると、CPU21は、次のステップSP45に進み、実際の特殊効果処理に移行する。

【0244】ここで図22のステップSP25に示した編集処理の詳細を、図25に示す。なお、ここでは図示は省略するが、図23のステップSP35に示した合成処理、及び図24のステップSP45に示した特殊効果処理も、この図25に示す編集処理とはほぼ同じであり、その違いはその処理内容が合成処理又は特殊効果処理に代わるだけである。

【0245】図25に示すように、CPU21は、まずステップSP50から入つたステップSP51において編集処理を指示する入力があつたか否か判断し（例えばタイムライ unwindウ51を使用した操作或いはパラメータ設定ウンドウ52を使用した操作等があつたか否か判断する）、その結果、そのような入力があつた場合には、ステップSP52に進み、入力に対応する編集データを作成し、それをクリップ管理データとしてクリップデータベースCDBに適宜書き込み、その結果クリップの有効／無効フラグを無効に設定する。なお、既に登録されている結果クリップを読み出してその内容を修正するための入力があつた場合には、CPU21は単に上書きするのではなく、修正前のクリップ管理データに対して別のクリップIDコードを割り当て、別の領域に保持するようになつている。これにより修正前のクリップ管理データを後で読み出すこともできる。

【0246】このステップSP52の処理が終わると、

CPU21は、次のステップSP53に進む。ステップSP53においては、CPU21は、クリップ管理データの上位リンク先IDコードを参照することにより、ステップSP52で作成した結果クリップに対する上位のクリップが存在するか否か判断する。その結果、上位のクリップが無い場合にはステップSP51に戻り、上位のクリップが存在する場合には、ステップSP54に進み、その上位のクリップを管理するクリップ管理データの有効／無効フラグを全て無効に設定し、その後、ステップSP51に戻る。なお、ステップSP54に進む場合は、殆どの場合、既に登録されている結果クリップを修正した場合である。また上位のクリップというのは、ステップSP52で作成した結果クリップを下位クリップとする上位クリップのみならず、その上位クリップをさらに下位クリップとする結果クリップも含み、少なくともその結果クリップを素材として使用している結果クリップ全てである（以降、これを関連するクリップとも呼ぶ）。

【0247】例えば既に登録されている各素材クリップ及び結果クリップの関係が図26に示すような関係にあつたとする。すなわち素材クリップMC-G1及びMC-G2によって結果クリップFC-Gが生成されており、結果クリップFC-Eは、その結果クリップFC-Gと素材クリップMC-E1及びMC-E2とを素材として生成されている。また結果クリップFC-Cは、その結果クリップFC-Eと素材クリップMC-C1とを素材として生成されている。

【0248】また結果クリップFC-Fは素材クリップMC-F1、MC-F2及びMC-F3を素材として生成されており、結果クリップFC-Dはその結果クリップFC-Fと素材クリップMC-D1及びMC-D2と結果クリップFC-Eとを素材として生成されている。また結果クリップFC-Bは結果クリップFC-D及びFC-Cと素材クリップMC-B1とを素材として生成されており、結果クリップFC-Aは結果クリップFC-Bを素材として生成されている。

【0249】このようなクリップ間の関係があるとき、一旦、それぞれ結果クリップのクリップビデオデータを生成した後に特に修正を加えない限りにおいては、通常、これらのクリップを管理するクリップ管理データの有効／無効フラグは有効に設定されている。しかしながら例えば結果クリップFC-Eの編集処理内容に修正を加えた場合には、結果クリップFC-Eの有効／無効フラグは当然無効に変更されるが、結果クリップFC-Eのみならず、当該結果クリップFC-Eを下位クリップとする結果クリップFC-C及びFC-D、さらに当該結果クリップFC-C及びFC-Dを下位クリップとする結果クリップFC-B、さらに当該結果クリップFC-Bを下位クリップとする結果クリップFC-Aも全て有効／無効フラグが無効に変更される。

【0250】再び図25に示したフローチャートの説明に戻る。ステップSP51における判断の結果、特に編集処理の入力がなされなかつた場合には、続くステップSP55に進む。ステップSP55においては、CPU21は、タイムラインウインドウ51のビデオエリアに表示されている結果クリップが選択されたか否か判断し、表示されている結果クリップが選択された場合には、ステップSP56においてその結果クリップを作成したモジュール（すなわち合成モジュールCM又は特殊効果モジュールSM）を起動し、表示されている結果クリップが選択されなかつた場合には、ステップSP58に進む。なお、ステップSP56の詳細は、後述する。

【0251】ステップSP58においては、CPU21は、再実行指令が入力されたか否か判断し、再実行指令が入力された場合には、ステップSP59に進んで再実行処理を行い、再実行指令が入力されなかつた場合には、ステップSP26を介して元のフローチャートに戻る。なお、ここで言う再実行指令とは、GUI画面に表示されているビュウボタン又はオールビュウボタンがマウス2Dによつてクリックされ、ビュウ又はオールビュウの指示が入力されたことを意味している。ビュウ又はオールビュウのときには、指定されている編集処理内容が実際に実行され、その結果クリップのビデオクリップデータが生成されるのでこのような名前が付けられている。

【0252】ここで先に説明したステップSP56の具体的な処理（すなわちモジュールの起動処理）を、図27に示す。この図27に示すように、表示されている結果クリップが選択された場合には、CPU21は、ステップSP60から入つたステップSP61において、その選択された結果クリップのクリップ管理データを読み出す。次にステップSP62において、CPU21は、そのクリップ管理データ内に登録されているモジュールIDコードを参照し、次のステップSP63において、そのモジュールIDコードに対応するモジュール（すなわち合成モジュールCM又は特殊効果モジュールSM）を起動して、GUI上のタイムラインウインドウにその結果クリップの編集処理内容を表示する。

【0253】続いて先に説明したステップSP59の具体的な処理（すなわち再実行処理）を、図28に示す。但し、この図28においては、図26に示すようなクリップ間の関係があるものとし、かつ先に説明したステップSP54の処理によつて結果クリップFC-E、FC-D、FC-C、FC-B及びFC-Aが全て無効とされているものとする。

【0254】この図28に示すように、再実行指令が指示された場合には、CPU21は、ステップSP70から入つたステップSP71において、まずRAM21B上にスタックメモリを形成し、そのスタックメモリにクリップツリー上において最上位にある結果クリップのク

リツプ管理データをプツシユする。例えば図26に示す例では、結果クリツプFC-Aが最上位になつているので、この結果クリツプFC-Aのクリツプ管理データをスタックメモリにプツシユする。なお、ここで言うプツシユとは、スタックメモリ空間においてデータを上積みすることを言う。

【0255】次のステップSP72においては、CPU21は、そのスタックメモリの中身が空であるか否か判断する。いまの場合、ステップSP71において、スタックメモリにクリツプ管理データをプツシユしたのでデータが存在しており、否定結果が得られる。このためCPU21は次のステップSP74に進む。

【0256】ステップSP74においては、CPU21は、スタックメモリからクリツプ管理データを1クリツプ分ポツヅし、そのクリツプ管理データの有効／無効フラグを基にそのクリツプが有効であるか否か判断する。図26に示した例では、結果クリツプFC-Aは無効とされているので、否定結果が得られ、ステップSP75に進む。なお、ここで言うポツヅとは、スタックメモリ空間において上積みされているデータを一番上のものから読み出すことを言う。

【0257】ステップSP75においては、CPU21は、先のステップSP74で読出したクリツプ管理データに基づいて、その結果クリツプの下位クリツプが全て有効であるか否か判断する。この場合、CPU21は、その結果クリツプのクリツプ管理データに登録されている下位リンク先IDコードを参照し、そこに登録されているクリツプIDコードを基に下位クリツプを判断し、その下位クリツプの有効／無効フラグをクリツプデータベースから参照することにより、下位クリツプが全て有効であるか否かを判断する。図26に示した例では、結果クリツプFC-Aの下位クリツプである結果クリツプFC-Bは無効となつているので、否定結果が得られ、次のステップSP77に進む。

【0258】ステップSP77においては、CPU21は、先程ポツヅした結果クリツプのクリツプ管理データを再びスタックメモリにプツシユし、次のステップSP78に進む。図26に示した例では、結果クリツプFC-Aのクリツプ管理データを再びスタックメモリにプツシユすることになる。ステップSP78においては、CPU21は、ステップSP77で再びプツシユした結果クリツプの下位クリツプのうち、無効とされているクリツプのクリツプ管理データを1つスタックメモリにプツシユする。図26に示した例では、結果クリツプFC-Aの下位クリツプFC-Bは無効とされているので、この結果クリツプFC-Bのクリツプ管理データがスタックメモリにプツシユされる。

【0259】次にCPU21は、再びステップSP72に戻り、ここでスタックメモリ内が空であるか否か判断する。いまの場合、スタックメモリ内にはクリツプ管理

データが存在するので、否定結果が得られ、次のステップSP74に進む。ステップSP74では、CPU21は、スタックメモリからクリツプ管理データを1クリツプ分ポツヅし、そのクリツプ管理データ内の有効／無効フラグを基にその結果クリツプが有効であるか否かを判断する。図26に示した例では、結果クリツプFC-Bのクリツプ管理データが読み出されるが、その結果クリツプFC-Bは無効とされているので、否定結果が得られ、次のステップSP75に進む。

【0260】ステップSP75においては、CPU21は、先のステップSP74で読出したクリツプ管理データに基づいて、その結果クリツプの下位クリツプが全て有効であるか否か判断する。図26の例では、結果クリツプFC-Bの下位クリツプである結果クリツプFC-C及びFC-Dは無効とされているので、否定結果が得られ、次のステップSP77に進む。

【0261】ステップSP77においては、CPU21は、先程ポツヅした結果クリツプのクリツプ管理データを再びスタックメモリにプツシユし、次のステップSP78に進む。図26の例では、結果クリツプFC-Bのクリツプ管理データが再びプツシユされる。次のステップSP78においては、CPU21は、ステップSP77で再びプツシユした結果クリツプの下位クリツプのうち、無効とされているクリツプのクリツプ管理データを1つスタッ�メモリにプツシユする。図26の例では、結果クリツプFC-Cのクリツプ管理データがプツシユされる。

【0262】次にCPU21は、再びステップSP72に戻り、ここでスタッ�メモリ内が空であるか否か判断する。いまの場合、空でないので否定結果が得られ、次のステップSP74に進む。ステップSP74においては、CPU21はスタッ�メモリからクリツプ管理データを1クリツプ分ポツヅし、そのクリツプ管理データを基にその結果クリツプが有効であるか否か判断する。図26の例では、結果クリツプFC-Cのクリツプ管理データが読み出されるが、その結果クリツプFC-Cは無効であるので、否定結果が得られ、次のステップSP75に進む。

【0263】ステップSP75においては、CPU21は、先のステップSP74で読出したクリツプ管理データに基づいて、その結果クリツプの下位クリツプが全て有効であるか否か判断する。図26の例では、結果クリツプFC-Cの下位クリツプである結果クリツプFC-Eが無効とされているので、否定結果が得られ、次のステップSP77に進む。

【0264】ステップSP77においては、CPU21は、先程ポツヅした結果クリツプのクリツプ管理データを再びスタッ�メモリにプツシユし、次のステップSP78に進む。図26の例では、結果クリツプFC-Cのクリツプ管理データが再びプツシユされる。次のステップ

S P 7 8においては、C P U 2 1は、ステップS P 7 7で再ertzushuした結果クリツプの下位クリツプのうち、無効とされているクリツプのクリツプ管理データを1つスタックメモリにertzushuする。図2 6の例では、結果クリツプF C - Eのクリツプ管理データがertzushuされる。

【0 2 6 5】次にC P U 2 1は、再びステップS P 7 2に戻り、ここでスタックメモリ内が空であるか否か判断する。いまの場合、空でないので否定結果が得られ、次のステップS P 7 4に進む。ステップS P 7 4においては、C P U 2 1はスタックメモリからクリツプ管理データを1クリツプ分ポツヅし、そのクリツプ管理データを基にその結果クリツプが有効であるか否か判断する。図2 6の例では、結果クリツプF C - Eが読み出されるが、その結果クリツプF C - Eは無効であるので、否定結果が得られ、次のステップS P 7 5に進む。

【0 2 6 6】ステップS P 7 5においては、C P U 2 1は、先のステップS P 7 4で読出したクリツプ管理データに基づいて、その結果クリツプの下位クリツプが全て有効であるか否か判断する。図2 6の例では、結果クリツプF C - Eの下位クリツプであるクリツプMC - E 1、MC - E 2及びF C - Gは全て有効であるので、肯定結果が得られ、ステップS P 7 6に進む。

【0 2 6 7】ステップS P 7 6においては、C P U 2 1は、クリツプ管理データに登録されている作業データを基に、素材として指定されているクリツプのクリツプビデオデータを用いて編集処理を行うことにより、その結果クリツプのクリツプビデオデータを作成すると共に、その結果クリツプに対するクリツプ管理データの有効／無効フラグを有効に変更する。図2 6の例では、素材として指定されているクリツプF C - G、MC - E 1及びMC - E 2を用いて編集処理を行うことにより結果クリツプF C - Eのクリツプビデオデータを作成すると共に、結果クリツプF C - Eの有効／無効フラグを有効に変更する。

【0 2 6 8】次にC P U 2 1は、再びステップS P 7 2に戻り、ここでスタックメモリ内が空であるか否か判断する。いまの場合、空でないので否定結果が得られ、次のステップS P 7 4に進む。ステップS P 7 4においては、C P U 2 1はスタックメモリからクリツプ管理データを1クリツプ分ポツヅし、そのクリツプ管理データを基にその結果クリツプが有効であるか否か判断する。図2 6の例では、結果クリツプF C - Cのクリツプ管理データが読み出されるが、その結果クリツプF C - Cは無効であるので、否定結果が得られ、次のステップS P 7 5に進む。

【0 2 6 9】ステップS P 7 5においては、C P U 2 1は、先のステップS P 7 4で読出したクリツプ管理データに基づいて、その結果クリツプの下位クリツプが全て有効であるか否か判断する。図2 6の例では、結果クリ

ツプF C - Cの下位クリツプであるクリツプF C - E及びMC - C 1はそれぞれ有効とされているので、肯定結果が得られ、ステップS P 7 6に進む。

【0 2 7 0】ステップS P 7 6においては、C P U 2 1は、クリツプ管理データに登録されている作業データを基に、素材として指定されているクリツプのクリツプビデオデータを用いて編集処理を行うことにより、その結果クリツプのクリツプビデオデータを作成すると共に、その結果クリツプに対するクリツプ管理データの有効／無効フラグを有効に変更する。図2 6の例では、クリツプF C - E及びMC - C 1を用いた編集処理が行われ、結果クリツプF C - Cのクリツプビデオデータが作成されると共に、その結果クリツプF C - Cの有効／無効フラグが有効に変更される。

【0 2 7 1】次にC P U 2 1は、再びステップS P 7 2に戻り、ここでスタックメモリ内が空であるか否か判断する。いまの場合、空でないので否定結果得られ、次のステップS P 7 4に進む。ステップS P 7 4においては、C P U 2 1はスタックメモリからクリツプ管理データを1クリツプ分ポツヅし、そのクリツプ管理データを基にその結果クリツプが有効であるか否か判断する。図2 6の例では、結果クリツプF C - Bのクリツプ管理データが読み出されるが、その結果クリツプF C - Bは無効であるので、否定結果が得られ、次のステップS P 7 5に進む。

【0 2 7 2】ステップS P 7 5においては、C P U 2 1は、先のステップS P 7 4で読出したクリツプ管理データに基づいて、その結果クリツプの下位クリツプが全て有効であるか否か判断する。図2 6の例では、下位クリツプである結果クリツプF C - Dが無効とされているので、否定結果が得られ、ステップS P 7 7に進む。

【0 2 7 3】ステップS P 7 7においては、同様に、C P U 2 1は、その結果クリツプのクリツプ管理データを再びスタックメモリにertzushuし、次のステップS P 7 8において無効であつた下位クリツプのクリツプ管理データをスタックメモリにertzushuする。

【0 2 7 4】次にC P U 2 1は、再びステップS P 7 2に戻り、ここでスタックメモリ内が空であるか否か判断する。いまの場合、空でないので否定結果が得られ、次のステップS P 7 4に進む。ステップS P 7 4においては、C P U 2 1はスタッ�メモリからクリツプ管理データを1クリツプ分ポツヅし、そのクリツプ管理データを基にその結果クリツプが有効であるか否か判断する。図2 6の例では、結果クリツプF C - Dが読み出されるが、その結果クリツプF C - Dは無効であるので、否定結果が得られ、次のステップS P 7 5に進む。

【0 2 7 5】ステップS P 7 5においては、C P U 2 1は、先のステップS P 7 4で読出したクリツプ管理データに基づいて、その結果クリツプの下位クリツプが全て有効であるか否か判断する。図2 6の例では、結果クリ

ツップFC-Dの下位クリップであるクリップFC-E、FC-F、MC-D1及びMC-D2は全て有効であるので、肯定結果が得られ、ステップSP76に進む。

【0276】ステップSP76においては、CPU21は、クリップ管理データに登録されている作業データを基に、素材として指定されているクリップのクリップビデオデータを用いて編集処理を行うことにより、その結果クリップのクリップビデオデータを作成すると共に、その結果クリップに対するクリップ管理データの有効／無効フラグを有効に変更する。図26の例では、クリップFC-E、FC-F、MC-D1及びMC-D2を用いた編集処理が行われ、結果クリップFC-Dのクリップビデオデータが作成されると共に、その結果クリップFC-Dの有効／無効フラグが有効に変更される。

【0277】次にCPU21は、再びステップSP72に戻り、ここでスタックメモリ内が空であるか否か判断する。いまの場合、空でないので否定結果得られ、次のステップSP74に進む。ステップSP74においては、CPU21はスタックメモリからクリップ管理データを1クリップ分ポップし、そのクリップ管理データを基にその結果クリップが有効であるか否か判断する。図26の例では、結果クリップFC-Bのクリップ管理データが読み出されるが、その結果クリップFC-Bは無効であるので、否定結果が得られ、次のステップSP75に進む。

【0278】ステップSP75においては、CPU21は、先のステップSP74で読み出したクリップ管理データに基づいて、その結果クリップの下位クリップが全て有効であるか否か判断する。図26の例では、下位クリップである結果クリップFC-C及びFC-Dは有効であるので、肯定結果が得られ、次のステップSP76に進む。

【0279】ステップSP76においては、CPU21は、クリップ管理データに登録されている作業データを基に、素材として指定されているクリップのクリップビデオデータを用いて編集処理を行うことにより、その結果クリップのクリップビデオデータを作成すると共に、その結果クリップに対するクリップ管理データの有効／無効フラグを有効に変更する。図26の例では、クリップFC-C及びFC-Dを用いた編集処理が行われ、結果クリップFC-Bのクリップビデオデータが作成されると共に、その結果クリップFC-Bの有効／無効フラグが有効に変更される。

【0280】次にCPU21は、再びステップSP72に戻り、ここでスタックメモリ内が空であるか否か判断する。いまの場合、空でないので否定結果得られ、次のステップSP74に進む。ステップSP74においては、CPU21はスタックメモリからクリップ管理データを1クリップ分ポップし、そのクリップ管理データを基にその結果クリップが有効であるか否か判断する。図

26の例では、結果クリップFC-Aのクリップ管理データが読み出されるが、その結果クリップFC-Aは無効であるので、否定結果が得られ、次のステップSP75に進む。

【0281】ステップSP75においては、CPU21は、先のステップSP74で読み出したクリップ管理データに基づいて、その結果クリップの下位クリップが全て有効であるか否か判断する。図26の例では、下位クリップである結果クリップFC-Bは有効であるので、肯定結果が得られ、次のステップSP76に進む。

【0282】ステップSP76においては、CPU21は、クリップ管理データに登録されている作業データを基に、素材として指定されているクリップのクリップビデオデータを用いて編集処理を行うことにより、その結果クリップのクリップビデオデータを作成すると共に、その結果クリップに対するクリップ管理データの有効／無効フラグを有効に変更する。図26の例では、結果クリップFC-Bを用いた編集処理が行われ、結果クリップFC-Aのクリップビデオデータが作成されると共に、その結果クリップFC-Aの有効／無効フラグが有効に変更される。

【0283】次にCPU21は、再びステップSP72に戻り、ここでスタックメモリ内が空であるか否か判断する。いまの場合、先程のポップ処理により最上位の結果クリップまで全て読み出されているので、スタックメモリ内は空になつておらず、肯定結果が得られる。従つてCPU21はステップSP73に進んで、再実行処理を終える。

【0284】なお、ステップSP74において、スタックメモリから読み出されたクリップ管理データのクリップが有効であると判断された場合には、ステップSP72に戻る。例えばクリップツリーにおいて最上位の結果クリップが有効であつた場合には、ステップSP71の処理によりスタックメモリにクリップ管理データがプッシュされるが、その後のステップSP74の判断により肯定結果が得られるので、ステップSP72に戻り、ここで肯定結果が得られることから直ぐさま再実行処理が終了する。このように、最上位の結果クリップが有効である場合には、再実行処理は実質的に実行されないことになる。

【0285】ここで以上説明した再実行処理のフローチャートの内容を、模式的に示したもの図29に示す。本発明による編集システム1においては、最上位の結果クリップFC-Aが無効であつたとき、その下位クリップである結果クリップFC-Bが有効であるか否か調べ、無効であつた場合には、さらにその結果クリップFC-Bの下位クリップFC-Cが有効であるか否か調べる。その結果、結果クリップFC-Cが無効であつた場合には、さらにその結果クリップFC-Cの下位クリップFC-Eが有効であるか否か調べ、その結果クリップ

FC-Eが無効であつた場合には、さらにその結果クリップFC-Eの下位クリップFC-Gが有効であるか否か調べる。

【0286】その結果、結果クリップFC-Gが有効であれば、その結果クリップのクリップビデオデータを転送し、そのクリップビデオデータを基にした編集処理を再実行することにより上位クリップに相当する結果クリップFC-Eのクリップビデオデータを作成する。結果クリップFC-Eのクリップビデオデータが作成されると、次にそのクリップビデオデータを基にした編集処理を再実行することにより上位クリップに相当する結果クリップFC-Cのクリップビデオデータを作成する。結果クリップFC-Cのクリップビデオデータが作成されると、次にそのクリップビデオデータを基にした編集処理を再実行しようとするが、下位クリップである他方の結果クリップFC-Dが未だ無効であるため、その結果クリップFC-Dの下位クリップである結果クリップFC-Eが有効であるか否か調べる。

【0287】結果クリップFC-Eが有効である場合には、その結果クリップFC-Eのクリップビデオデータを転送する。また結果クリップFC-Dの下位クリップである他方の結果クリップFC-Fが有効であるか否か調べ、有効であれば、その結果クリップFC-Fのクリップビデオデータも転送する。下位クリップFC-E及びFC-Fからのクリップビデオデータが転送されると、それらのクリップビデオデータを基にした編集処理を再実行することにより上位クリップに相当する結果クリップFC-Dのクリップビデオデータを作成する。次に結果クリップFC-Dのクリップビデオデータが作成されると、そのクリップビデオデータを基にした編集処理を再実行することにより上位クリップに相当する結果クリップFC-Bのクリップビデオデータを作成する。次に結果クリップFC-Bのクリップビデオデータが作成されると、そのクリップビデオデータを基にした編集処理を再実行することにより上位クリップに相当する結果クリップFC-Aのクリップビデオデータを作成する。

【0288】このようにして本発明による編集システム1においては、例えば結果クリップFC-Eの編集処理内容が修正された場合、その結果クリップFC-Eの識別用フラグを無効に変更すると共に、その結果クリップFC-Eよりも上位にリンクしている結果クリップFC-C、FC-D、FC-B及びFC-Aの識別用フラグも全て無効に変更して行く。そしてピュウ又はオールピュウのコマンド選択によって再実行処理が指定された場合には、最上位の結果クリップFC-Aから下位のクリップに向かつてクリップが有効であるか否か調べて行き、下位にリンクしているクリップが全て有効であるクリップに達したら、そのクリップの編集処理を再実行してそのクリップを有効なクリップに変更すると共に、そ

のクリップよりも上位にリンクしているクリップの編集処理を順に再実行して行くことにより上位にリンクしている全てのクリップを有効なクリップに変更する。かくして本発明による編集システム1においては、このような処理を行うことにより、従来のようにオペレータがクリップ間の関係を覚えていなくとも、一旦作成した編集結果を容易に修正することができる。

【0289】(7) 編集システムの動作及び効果

以上の構成において、この編集システム1を立ち上げると、ワークステーション2のディスプレイ2B上にはトップメニューが表示される。オペレータは、このトップメニュー内の所望のモジュール起動のコマンドを選択し、これから行う編集作業に合つたモジュールを起動する。モジュールが起動すると、ワークステーション2のディスプレイ2B上には、編集のためのGUIが表示される。

【0290】例えば合成モジュールCMを起動したときには、図10に示すようなGUIがディスプレイ2Bに表示される。この合成処理用のGUIにおいては、合成処理専用のタイムラインウインドウ34が表示され、このタイムラインウインドウ34の画面に応じた操作をして行けば、容易に素材となるクリップを指定したり、所望の合成処理を指定したりすることができる。その際、このGUIにおいては、クリップデータベースCDBとして登録されているクリップがクリップツリーウィンドウ31やライブラリーウィンドウ33に表示されるので、登録されているクリップの中から編集に使用する素材を容易に選び出すことができる。またクリップツリーウィンドウ31やライブラリーウィンドウ33から選択した所望のクリップをタイムラインウインドウ34内のビデオエリアに置けば、合成処理に使用する素材を容易に指定することができる。

【0291】またタイムラインウインドウ34で指定した合成処理のパラメータを設定する場合には、同じGUI上に表示されるパラメータ設定ウインドウ35を使用して画面を見ながらパラメータを設定して行けば、所望の合成パラメータを設定することができる。またパラメータ設定ウインドウ35においては、設定したパラメータの値がグラフ状のグラフィック表示で表示されるので、このグラフィック表示を見れば、オペレータはどのようなタイミングでどのような値を設定したかを容易に把握することができる。なお、既に登録されている結果クリップを読み出したとき、このパラメータ設定ウインドウ35には、その結果クリップに対して設定されていたパラメータの値が表示されるので、過去に設定したパラメータであつても容易に把握することができる。

【0292】またクリップツリーウィンドウ31においては、クリップデータベースCDBに登録されている各クリップの関係が分かるようなクリップツリーが表示されるので、このクリップツリーを見れば、各クリップが

どのようなクリップを素材として生成されているのかを容易に把握することができる。

【0293】またタイムラインウインドウ34内のビデオエリアに置かれている結果クリップをダブルクリックすると、その結果クリップの編集内容に合つたモジュール（すなわち合成モジュールCM、特殊効果モジュールSM又は編集モジュールEM）が自動的に起動し、そのモジュールに合つたGUIが画面上に表示される。そしてその選択された結果クリップの編集内容がそのGUI上のタイムラインウインドウ34上に表示される。このようにしてタイムラインウインドウ34において結果クリップを選択すると、その結果クリップにあつたモジュールが自動的に起動するので、オペレータがわざわざその結果クリップの編集内容を調べて対応するモジュールを起動しなくても良くなり、オペレータにかかる作業負担を軽減することができると共に、迅速に対応するモジュールを起動することができる。

【0294】同様に、特殊効果モジュールSMを起動したときには、図11に示すようなGUIがディスプレイ2Bに表示される。この特殊効果処理のGUIにおいても、特殊効果専用のタイムラインウインドウ41が表示され、このタイムラインウインドウ41の画面に応じた操作をして行けば、容易に素材となるクリップを指定したり、所望の特殊効果処理を指定したりすることができる。またこの特殊効果処理のGUIにおいても、クリップツリーウインドウ31やライブラリーウインドウ33が設けられており、これによりクリップデータベースCDBに登録されている所望のクリップを容易に素材として選択することができる。

【0295】同様に、編集モジュールEMを起動したときには、図12に示すようなGUIがディスプレイ2Bに表示される。この編集処理のGUIにおいても、編集専用のタイムラインウインドウ51が表示され、このタイムラインウインドウ51の画面に応じた操作をして行けば、容易に素材となるクリップを指定したり、所望の編集処理を指定したりすることができる。

【0296】このようにしてこの編集システム1では、ワークステーション2のディスプレイ2Bに表示される各機能毎のGUIを見ながら所望の素材や編集内容を指定して行けば、所望の編集作業を容易に行うことができる。またこの編集システム1では、ワークステーション2を介して編集作業に係わる一切の指示を入力することができ、従来のように各機器をオペレータがわざわざ操作しなくとも容易に編集作業を行うことができる。

【0297】かくしてこの編集システム1では、従来に比して簡易にかつ高速に編集作業を行うことができると共に、クリップデータベースCDBに登録されている多種多様な素材を編集して複雑かつ高度なビデオデータを容易に得ることができる。

【0298】一方、この編集システム1では、素材とし

ての各クリップをクリップ間の関係を基に階層構造で管理している。すなわちどのクリップがどのクリップにリンクしているのかを把握している。また一旦、編集作業を行つた後に、その編集内容を変更した場合には、そのクリップを無効にすると共に、そのクリップ間の関係を基にそのクリップの上位にリンクしているクリップも無効にする。従来のようにオペレータが各クリップ間の関係を記憶して管理している場合には、下位のクリップを無効にしたとき、その下位クリップの上位にリンクしているクリップをオペレータが探してそれらを無効とななければならなかつたが、本発明の編集システム1では、上位にリンクしているクリップをも自動的に無効にするので、このような煩雑な作業をオペレータがする必要がなくなり、編集時の作業負担を軽減することができる。また下位クリップを修正したにも係わらず、上位クリップが修正前のまま使用されることを未然に防止できる。

【0299】またこの編集システム1においては、そのように下位のクリップに対する編集内容を修正し、それを実行したとき、クリップ間の関係を基にそのクリップの上位にリンクしているクリップ（すなわち修正のあつたクリップを素材として用いたクリップ）についても同様に編集内容を再実行して、自動的に変更するようになされている。このため従来のように修正のあつたクリップに対して上位にリンクしているクリップをオペレータが探し、その上位クリップに対する編集作業をオペレータがわざわざやり直さなくても、容易に上位にリンクするクリップを変更し得、オペレータにかかる作業負担を低減することができる。

【0300】このようにして本発明の編集システム1においては、クリップ間の上下関係を基に各クリップを階層構造で管理するようにしたことにより、従来のようにオペレータがわざわざそのクリップ間の関係を記憶しておかなくても、容易に編集作業の変更を行うことができると共に、効率的に編集作業を行うことができる。また編集内容を変更した場合でも、編集に係わる元の作業データを残しているので、編集内容変更後にも、元の状態に容易に戻すことができる。さらに各クリップ間の関係を階層構造で管理していることから、その階層構造で管理されるクリップ間の関係に基づいて順次編集作業を行えば、複雑な編集作業も容易に行うことができる。

【0301】以上の構成によれば、処理モジュールを機能毎に合成モジュールCM、特殊効果モジュールSM及び編集モジュールEMに分け、それぞれの処理モジュールを使用して編集作業を行うときには、対応する処理モジュールのGUIをディスプレイ2Bに表示するようにしたことにより、編集オペレータにとって分かりやすいユーザインターフェイスを提供し得、優れた操作性を実現し得る。因みに、異なる編集処理を行えるようにした場合、それらを1つのユーザインターフェイスで兼用して操作するようにすると、操作が複雑になるおそれがあ

るが、編集システム1のように物理的には1つのユーザインターフェースであつても、その表示内容をモジュール毎に分ければ、優れた操作性を実現することができる。

【0302】なお上述の実施の形態においては、図13に示すようなフォーマットで下位クリップと上位クリップの関係を管理した場合について述べたが、本発明はこれに限らず、少なくとも各クリップのリンク先が分かるよう階層構造で管理するようにすれば、上述の場合と同様の効果を得ることができる。

【0303】また上述の実施の形態においては、本発明を編集システム1に適用した場合について述べたが、本発明はこれに限らず、表示装置やコンピュータ装置に広く適用するようにしても上述の場合と同様の効果を得ることができる。

【0304】

【発明の効果】上述のように本発明によれば、編集対象クリップに対して施す編集内容に応じて処理モジュールを分け、それぞれの処理モジュールを使用して編集作業を行うときには、対応する処理モジュールのグラフィカルユーザインターフェースをディスプレイに表示するようにしたことにより、編集オペレータにとつて分かりやすいユーザインターフェイスを提供し得、優れた操作性を実現し得る。

【図面の簡単な説明】

【図1】本発明による編集システムの構成を示すプロツク図である。

【図2】編集システムの主要構成であるワークステーションの内部構成を示すプロツク図である。

【図3】本発明による編集システムにおいて備えている各モジュール及びクリップデータベースを示す略線図である。

【図4】クリップの階層的管理の説明に供する略線図である。

【図5】合成処理のイメージ説明に供する略線図である。

【図6】合成処理によつて生成されるビデオイメージの説明に供する画面イメージ図である。

【図7】合成処理の原理説明に供する略線図である。

【図8】特殊効果処理の原理説明に供する略線図である。

【図9】編集処理の原理説明に供する略線図である。

【図10】合成モジュールを起動したときに表示されるGUI画面を示す画面イメージ図である。

【図11】特殊効果モジュールを起動したときに表示されるGUI画面を示す画面イメージ図である。

【図12】編集モジュールを起動したときに表示されるGUI画面を示す画面イメージ図である。

【図13】クリップデータベースに登録されるクリップ管理データ用のデータベースを示す図表である。

【図14】既に登録されているクリップ管理データを修正したときの説明に供する図表である。

【図15】合成処理時の編集点データを示す図表である。

【図16】特殊効果処理時の編集点データを示す図表である。

【図17】編集処理時の編集点データを示す図表である。

【図18】合成処理時の合成データを示す図表である。

【図19】特殊効果処理時の特殊効果データを示す図表である。

【図20】編集処理時の編集データを示す図表である。

【図21】制御モジュールを起動したときの動作説明に供するフローチャートである。

【図22】編集モジュールを起動したときの動作説明に供するフローチャートである。

【図23】合成モジュールを起動したときの動作説明に供するフローチャートである。

【図24】特殊効果モジュールを起動したときの動作説明に供するフローチャートである。

【図25】編集処理時の動作説明に供するフローチャートである。

【図26】任意の結果クリップに対する編集内容を修正したときの説明に供する略線図である。

【図27】所定のモジュールを起動中に他のモジュールを起動するときの動作説明に供するフローチャートである。

【図28】再実行処理時の動作説明に供するフローチャートである。

【図29】再実行処理を模式的に示した略線図である。

【符号の説明】

1 ……編集システム、 2 ……ワークステーション、 2 A ……本体、 2 B ……ディスプレイ、 2 C ……キーボード、 2 D ……マウス、 2 E ……ペン・タブレット、 3 ……デバイスコントローラ、 4 ……専用コントローラ、 5 ……ビデオデイスクリーダ、 6 ……ビデオテープレコーダ、 7 ……スイッチヤ、 8 ……ビデオカメラ、 9 ……デジタルマルチエフェクタ、 10 ……モニタ、 11 ……オーディオミキサ、 20 ……システムバス、 21 ……CPU、 21A ……ROM、 21A ……RAM、 22 ……ビデオプロセッサ、 23 ……表示コントローラ、 24 ……HDDインターフェイス、 25 ……FDDインターフェイス、 26 ……ポインティングデバイスインターフェイス、 27 ……外部インターフェイス、 30 ……メニュー ウィンドウ、 31 ……クリップツリーウィンドウ、 32 ……キー ウィンドウ、 33 ……ライブラリーウィンドウ、 34、 41、 51 ……タイムライン ウィンドウ、 35 ……パラメータ設定 ウィンドウ、 36 ……プレビュウ画面表示 ウィンドウ、 37 ……デバイスコントール ウィンドウ、 38 ……編集内容表示 ウィンドウ、 39 ……

制御コマンドウインドウ、40、50……エフェクト選択ウインドウ、42、52……パラメータ設定ウインドウ。

【図5】

図5 各レイヤに割当てられたビデオイメージ

【図7】

図7 合成処理の原理

【図16】

編集点データ									
009	ID	EP1	EP2	EP3	EP4	EP5	EP6	EP7	
	MC-001	00:00:00:00	00:00:12:00	00:00:31:20	00:01:02:50	00:01:13:41	00:01:40:00	00:02:06:00	
	IN	00:10:12:00							
	OUT							00:12:18:00	

図16 特殊効果処理の編集点データ

【図8】

図8 特殊効果処理の原理

【図9】

図9 編集処理の原理

【図20】

編集データ	
エフェクトID	0001
編集点ID	EP1 EP2 EP3 EP4 EP5
Aspect	0 -- +25
Angle	0 +180 -180
Speed	20 20 100
H-Mod	0 -- 0
V-Mod	0 -- 0

図20 編集データ

【図10】

図10 合成処理に対応したGUI

【図11】

図11 特殊効果処理に対応したGUI

【図12】

図12 編集処理に対応したGUI

【四】

図13 クリップ管理データ用のデータベース構造

【図14】

タグア IDコード	タグア 名称		上位 リンク先 IDコード	下位リンク先IDコード			有効/ 無効 フラグ	作業データ		
				L1	L2	L3		モジュール IDコード	編集点データ	画像処理データ
001	MC-001		008				E			
002	MC-002		008				E			
003	MC-003		008				E			
004	MC-004		009				E			
005	MC-005						D			
006	MC-006						D			
007	MC-007						D			
008	FC-008		010	003	002	001	E	C	編集点データ	合成データ
009	FC-009		010	004			E	S	修正後の編集点データ	修正後の特殊効果データ
010	FC-010		000	008	009		E	E	編集点データ	編集データ
009BK1	FC-009BK1		010	004			D	S	修正前の編集点データ	修正前の特殊効果データ

図14 内容変更が生じたときのデータベース

【図15】

編集点データ									
編集点	ID	EP1	EP2	EP3	EP4	EP5	EP6	EP7	EP8
	タグコード	00:00:00:00	00:30:49:20	00:01:45:15	00:01:58:00	00:02:32:27	00:02:59:20	00:03:19:45	00:04:47:00
008	L1	IN	00:00:31:02						
	OUT								00:05:18:02
	L2	IN		00:00:51:00					
	OUT					00:03:04:20			
	L3	IN			00:01:40:03				
	OUT						00:02:45:48		

図16 合成処理の編集点データ

【図17】

編集点データ									
編集点	ID	EP1	EP2	EP3	EP4	EP5			
	タグコード	00:00:00:00	00:03:39:00	00:03:40:20	00:03:42:00	00:05:44:10			
010	L1	IN	00:01:01:20						
	OUT				00:04:43:00				
	L2	IN	00:00:00:60				00:02:08:00		
	OUT								

図17 編集処理の編集点データ

【図18】

		合成データ								
		編集点 ID	EP1	EP2	EP3	EP4	EP5	EP6	EP7	EP8
008	L1合成ゲイン	100	--	--	--	--	--	--	--	100
	L2合成ゲイン		59	100	--	--	0			
	L3合成ゲイン				100	67	--	51		

図18 合成データ

【図19】

		特殊効果データ									
		B1	B2								
009	L1	E3	1025	EP1	EP2	EP3	EP4	EP5	EP6	EP7	
				0	--	0	--	-1.6	-1.6		
				0	--	--	--	0	+2.0		
				0	--	--	--	+2.2	+2.2		
				0	--	--	-180	--	-102		
				0	--	--	--	--	0		
				0	--	--	--	--	0		
				0	--	--	--	--	0		
				0	--	--	--	--	0		
				E4							

図19 特殊効果データ

【図22】

図22 編集モジュール起動

【図21】

図21 初期動作

【図23】

図23 合成モジュール起動

【図26】

図26 クリップの階層構造

【図29】

図29 再実行時の動作例

【図24】

図24 特殊効果モジュール起動

【図25】

図25 編集処理時の動作

【図27】

図27 対応するモジュールの起動

【図28】

図28 再実行処理

フロントページの続き