29/11/14 Regula (t) Comp

COMP 5 - 2 (RC)

T.E. (Computer) (Semester - V) Examination, Nov./Dec. 2014 (Revised Syllabus in 2007-08) AUTOMATA LANGUAGES AND COMPUTATION

Duration: 3 Hours Total Marks: 100

Instructions: 1) Answer any five full questions, at least one from each Module.

2) Make suitable assumptions wherever necessary.

MODULE-1

- 1. a) Construct a DFA to recognize the set of strings over {a, b}* that contain the same number of occurrences of the substring ab as of the substring ba. 6 b) Minimize the following DFA using table filling method. $M = (\{1, 2, 3, 4, 5, 6\}, \{a, b, c\}, \delta, 1, \{2, 4, 5, 6\})$ where δ is $\delta = \{\delta(1, a) = 5, \delta(1, a) = 5, \delta(1,$ $\delta(1,b) = 2$, $\delta(1,c) = 2$, $\delta(2,a) = 1$, $\delta(2,b) = 6$, $\delta(2,c) = 2$, $\delta(3,a) = 2$, $\delta(3,b) = 4$, $\delta(3,c) = 5, \delta(4,a) = 3, \ \delta(4,b) = 6 \ \delta(4,c) = 2, \delta(5,a) = 3, \delta(5,b) = 6,$ $\delta(5,c) = 5, \delta(6,a) = 1, \delta(6,b) = 3, \delta(6,c) = 4$. c) Construct a Mealy Machine to add two binary numbers. Convert the Mealy Machine to equivalent Moore Machine. 2. a) Prove the following languages (all with input alphabet {0, 1}) are regular or
 - not.
 - a) Non-empty strings with the last symbol equal the first symbol.
 - b) Odd-length strings with the first symbol equal the middle symbol.
 - b) Construct a regular expression to represent the following DFA $M = (\{A, B, C, D\}, \{0, 1\}, \delta, A, \{B, D\})$ where δ is defined as

State	Inp	ut	
State	0	1	
Α	С	В	
В	D	Α	
С	В	С	
D	Α	С	

8

c) Construct a NFA that accepts the language L = {a ϵ {0,1} * || a | is a multiple of 2 or 3).

MODULE - II

3.	a)	Let $\Sigma = \{0,1\}$. Consider the language NEP defined as follows :	
		NEP = $\{w \in \Sigma^* \mid w \text{ is not an even-length palindrome} \}$ Construct the CFG. Convert the CFG to PDA.	8
	b)	Prove the given language is not CFL.	
		$L = \{ww \mid w \in \{a, b\}^*\}$	4
	c)	Construct NPDA for the following language over alphabet Σ .	
		$L = \{w_1 c w_2 \mid w_1, w_2 \in \{a, b\}^* \text{ and } w_1 \neq w_2^{ R }\}, \ \Sigma = \{a, b, c\}.$	8
4.	a)	Construct Top-down PDA for given CFG	
		$G=(\{S\},\{a,b\},\{S\to a\mid aS\mid bSS\mid SSb\mid SbS\},S)$. Show the sequence of moves for input string : abbaaa.	8
	b)	Construct the grammar in GNF for the given language	
		$L = \{a^k b^m c^n \mid k, m, n, 2k \ge n\}$	8
	c)	Show that context free languages are closed under	
		i) Union	
		ii) Kleene closure.	4
25		MODULE – III	-
5.	a)	Given an input #w#, where w is a string of a's and b's construct a Turing machine makes a copy of w and halts with #w#w# as the output.	6
	b)	Explain the following:	
		i) Church-Turing Thesis	
		ii) Non-deterministic Turing Machine.	4
	c)	Discuss the power of Turing machine. Construct a TM to divide two positive integers. Assume that the numbers are represented as a unary string of 1's.	
			10