Invariant subspaces & complete reducibility

George McNinch

2024-01-22

Invariant subspaces

Let (ρ, V) be a *representation* of the group G on the F-vector space V.

If W is a subspace of F^{-1} , one says that W is a sub-representation, or that W is an invariant subspace, provided that

$$\rho(g)W \subseteq W \quad \forall g \in G.$$

If W is a sub-representation, then W "is" itself a representation of G in a natural way, since ρ determines a group homomorphism

$$g \mapsto \rho(g)_{|W} : G \to \mathrm{GL}(W).$$

Proposition: If (ρ, V) and (ψ, W) are G-representations and if $\Phi: V \to W$ is a homomorphism of G-representations then $\ker \Phi$ is a subrepresentation of V and $\Phi(V)$ is a subrepresentation of W.

Recollections on vector subspaces and direct sums

Let W_1 and W_2 be F-vector subspaces of the vector space V. We can form the direct sum $W_1 \oplus W_2$.

And the defining property of the direct sum tells us that we get a linear mapping

$$\phi: W_1 \oplus W_2 \to V$$

by the rule $\phi(w_1, w_2) = w_1 + w_2$.

Suppose the following hold:

- $W_1+W_2=V$ i.e. ϕ is surjective, and $\ker\phi=0$ i.e. $W_1\cap W_2=\{0\}.$

Under these conditions, ϕ determines an isomorphism $W_1 \oplus W_2 \simeq V$, and one says that V is the internal direct sum of the subspaces W_1 and W_2 .

Remark: More generally, if W_1, W_2, \cdots, W_n are subspaces of V, suppose that

- $V = \sum_{i=1}^{n} W_i$, and
- for each i we have $W_i\cap\left(\sum_{i\neq i}W_j\right)=0.$

Then V is the internal direct sum $V = W_1 \oplus W_2 \oplus \cdots \oplus W_n$.

Example: Let $\phi:V\to V$ be a linear mapping with dim $V<\infty$, and suppose that ϕ is diagonalizable i.e. that V has a basis consisting of eigenvectors for ϕ .

Let $\lambda_1, \dots, \lambda_k \in F$ be the distinct eigenvalues of ϕ , and let

$$V_i = \{x \in V \mid \phi(x) = \lambda_i x\}$$

be the λ_i -eigenspace.

 $^{^{1}}$ The term "subspace" means "vector subspace". One might also say "F-subspace" to emphasize the scalars.

Then

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_n$$

i.e. V is the internal direct sum of the eigenspaces for ϕ .

Proposition: Let W be a subspace of V where $\dim V < \infty$. Then there is a subspace W' of V for which V is the internal direct sum of W and W'.

Remark The analogue of the property described by the Proposition fails for abelian groups in general. Consider $A = \mathbb{Z}/4\mathbb{Z}$. For the subgroup $B = 2\mathbb{Z}/4\mathbb{Z}$ (of order 2), there is no subgroup B' for which $A = B \oplus B'$.

Sketch of proof of Proposition: Choose a basis $\beta_1, \dots, \beta_\ell$ for the F-vector space V/W. Now *choose* vectors $b_1, \dots, b_\ell \in V$ so that

$$\beta_i = b_i + W \in V/W$$
.

Let W' be the *span* of b_1, \dots, b_ℓ ; i.e

$$W' = \sum_{i=1}^{\ell} Fb_i.$$

We are going to show that V is the internal direct sum of W and W'.

For $v \in V$, viewing v + W as an element of V/W we may write

$$v + W = a_1 \beta_1 + \dots + a_\ell \beta_\ell$$

for scalars $a_i \in F$.

Let $w' = \sum_{i=1}^{\ell} a_i b_i \in W'$. It is clear that $w = v - w' \in W$. Since v = w + w' we have showed that W + W' = V.

Finally the linear independence of the β_i shows the only element of W' contained in W is 0; thus $W \cap W' = \{0\}$ so that $V = W \oplus W'$.

With notation as in the statement of the Proposition, one says that the subspace W' is a *complement* to the subspace W.

Complements and projections

Given a subspace $W \subset V$ and a complement W', so that $V = W \oplus W'$, we get a projection operator

$$\pi: V = W \oplus W' \to V = W \oplus W'$$
 via $\pi(x,y) = (x,0)$

The mapping π satisfies the following properties:

P1. $\pi^2 = \pi$, and

P2.
$$\pi(V) = W$$
.

We say that a linear mapping $\pi:V\to V$ is a projection onto W provided that conditions P1 and P2 hold.

Lemma: Suppose that $\pi:V\to V$ is a linear mapping. Then π is projection onto W if and only if $\pi(W)=W$ and the restriction of π to W is the identity mapping id_W .

Proof of Lemma: For a linear map $\pi:V\to V$ for which $\pi(V)=W$, we must show that $\pi^2=\pi$ if and only if $\pi_{|W}=\mathrm{id}_W$.

 (\Rightarrow) : Suppose that $w \in W$. Since $\pi(V) = W$, we may write $w = \pi(v)$ for some $v \in V$. Then $\pi^2 = \pi$ shows that $\pi^2(v) = \pi(v) \implies \pi(\pi(v)) = \pi(v)$ so that $\pi(w) = w$.

(\Leftarrow): Suppose that $v \in V$. We have $\pi(v) \in W$, and since $\pi_{|W}$ is the identity, we find $\pi^2(\pi(v)) = \pi(v)$. Since this holds for every v, we have $\pi^2 = \pi$ as required.

Proposition: There is a bijection between the following:

- complements W' to W
- projections π onto W

Proof: We've already described how to build a projection π from a complement W'.

Given a projection π , take $W' = \ker \pi$. We must argue that W' is a complement to W in V.

Suppose $x \in W \cap W'$. Since $x \in W$, the Lemma shows that $x = \pi(x)$. But on the other hand since $x \in W' = \ker \pi$ we find that $x = \pi(x) = 0$. This proves that $W \cap W' = \{0\}$.

Finally we must show that V=W+W'. Let $v\in V$. Then $w=\pi(v)\in W$ by P2. Now,

$$v = \pi(v) + (v - \pi(v)) = w + (v - \pi(v))$$

and it just remains to see that $v - \pi(v) \in W'$. But by P1,

$$\pi(v - \pi(v)) = \pi(v) - \pi^2(v) = \pi(v) - \pi(v) = 0.$$

Complete reducibility of G representations.

Let G be a finite group and (ρ, V) a representation of G.

Definition: We say that (ρ, V) is *completely reducible* if for every subrepresentation $W \subseteq V$, there is a subrepresentation $W' \subset V$ such that V is the internal direct sum of W and W' as vector spaces.

Theorem: Let F be a field of char. 0 and let G be a finite group. Then every representation of G on a finite dimensional F-vector space is completely reducible.

Proof: Let (ρ, V) be a (finite dimensional) representation of G and let $W \subset V$ be a *subrepresentation*.

We *choose* a vector space complement, which by the Proposition above amounts to the choice of a projection operator $\pi:V\to V$ onto the subspace W.

We form a new linear mapping

$$\tilde{\pi}:V\to V$$

by the rule

$$\tilde{\pi} = \frac{1}{|G|} \sum_{g \in G} \rho(g) \circ \pi \circ \rho(g)^{-1}.$$

We are going to prove:

- (i) $\tilde{\pi}$ is a homomorphism of G-representations, and
- (ii) $\tilde{\pi}$ is a projection.

Together (i) and (ii) imply the Theorem. Indeed, if (ii) holds, one knows that $W' = \ker \tilde{\pi}$ is a *complement to* W. Since $\tilde{\pi}$ is a homomorphism of G-representations, one knows that its kernel W' is a subrepresentation.

To prove (i), let $h \in G$ and $v \in V$ and observe

$$\begin{split} \tilde{\pi}(\rho(h)v) &= \frac{1}{|G|} \sum_{g \in G} \rho(g) \circ \pi \circ \rho(g)^{-1}(\rho(h)v) \\ &= \frac{1}{|G|} \sum_{g \in G} \rho(g) \circ \pi \circ \rho(g^{-1}h)(v) \\ &= \frac{1}{|G|} \sum_{x \in G} \rho(hx) \circ \pi \circ \pi(x^{-1})(v) \\ &= \frac{1}{|G|} \rho(h) \sum_{x \in G} \rho(x) \circ \pi \circ \rho(x)^{-1}(v) \\ &= \rho(h) \tilde{\pi}(v) \end{split}$$

Thus $\tilde{\pi}$ is indeed a homomorphism of G-representations.

To prove (ii), we observe that for each $g \in G$, the mapping $\rho(g) \circ \pi \circ \rho(g)^{-1}$ is also a projection onto W. Indeed, since W is a subrepresentation, $\rho(g)W = W$, so that $\rho(g) \circ \pi \circ \rho(g)^{-1}(V) \subseteq W$. On the other hand, since $\pi_{|W}$ is the identity mapping, $\rho(g) \circ \pi \circ \rho(g)^{-1}(w) = w$ for any $w \in W$ so the Lemma above shows that $\rho(g) \circ \pi \circ \rho(g) - 1$ is a projection onto W.

Now it is clear that $\sum_{g \in G} \rho(g) \circ \pi \circ \rho(g^{-1})$ maps V to W. Since each mapping $\rho(g) \circ \pi \circ \rho(g^{-1})$ is the identity on W, it follows that

$$\tilde{\pi} = \frac{1}{|G|} \sum_{g \in G} \rho(g) \circ \pi \circ \rho(g^{-1})$$

is the identity mapping on W, so $\tilde{\pi}$ is a projection by the Lemma above.

This completes the proof of the Theorem.

Bibliography