

TEST REPORT No.: 2-20752095a/08

According to: FCC/IC Regulations Part 15.247 & RSS-210e

for Infineon Technologies

Adams RF Module RFT V2.0

accredited according to DIN EN 130/1EC 1

CETECOM GmbH

Laboratory Radio Communications & Electromagnetic Compatibility Im Teelbruch 116 • 45219 Essen • Germany Registered in Essen, Germany, Reg. No.: HRB Essen 8984 Tel.: + 49 (0) 20 54 / 95 19-954 • Fax: + 49 (0) 20 54 / 95 19-964 E-mail: info@cetecom.de • Internet: www.cetecom.com

Table of contents

1. SUMMARY OF TEST RESULTS	3
1.1. TESTS OVERVIEW & STANDARDS	3
2. ADMINISTRATIVE DATA	5
2.1. Identification of the testing laboratory 2.2. Test location Responsible for test report and 2.3. Applicant's details 2.4. Manufacturer's details	5 5 5 5 5
3. EQUIPMENT UNDER TEST (EUT)	6
 3.1. Additional declaration and description of main EUT 3.2. Configuration of cables used for testing 3.3. EUT: Type, S/N etc. and short descriptions used in this test report 3.4. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions 3.5. EUT set-ups 3.6. EUT operating modes 	6 6 6 7 7 8
4. DESCRIPTION OF TEST SET-UP'S	8
4.1. Test Set-up for conducted measurements4.2. Test set-up for radiated measurements	8
5. MEASUREMENTS	8
5.1. 20-dB Bandwidth, FCC 15.247 (a)(1), RSS210: A8.1(b) 5.2. Channel carrier frequency separation, FCC 15.247 (a)(1), RSS210: A8.1(b) 5.3. Requirements on channel use, average channel use, input bandwidth and synchronization between signals FCC §15.247(a)(1), RSS210: A8.1(b) 5.4. Specification for hopping channel numbers and time of occupancy, A8.1(d) FCC 15.247 (a)(1)(iii), RSS210: A8.4(2)	8 0: 8
 5.6. 20dBc Emission specification, FCC 15.247 (d), RSS210: A8.5 5.7. Power Spectral Density (PSD), FCC 15.247(e), RSS210: A8.3 5.8. Radiated emissions in restricted bands, general field strengths, §15.205, §15.209, RSS210: §2.6 	8 8 8
6. MEASUREMENT UNCERTAINTIES	8
7. INSTRUMENTS AND ANCILLARY	8
7.1. Used equipment "CTC"	8
8. MEASUREMENT DIAGRAMS	8
Table of annex Total pa	ges
Separate document B_2_20752095a_08-A1.pdf: EUT Photos	7
Separate document B_2_20752095a_08-A2.pdf : SET-UP Photos	5
Separate document B_2_20752095a_08-A3.pdf: Additional applicants declaration to requirements according chapter 5.3	3

1. Summary of test results

The test results apply exclusively to the test samples as presented in chapter 3.1. The CETECOM GmbH does not assume responsibility for any conclusions and generalizations taken in conjunction with other specimens or samples of the type of the item presented to tests.

Following tests have been performed to show compliance with applicable CFR 47, FCC Part 15 and Industry Canada RSS-210e and RSS-Gen, Issue 2 regulations.

1.1. TESTS OVERVIEW & STANDARDS

TEST CASES	PORT	REFERENCES & LIMITS			EUT set-up	EUT opera-	Result
		FCC Standard	RSS Section	TEST LIMIT	ост шр	ting mode	
			TV 16 1				
20 ID D 1 144	A4	1	TX-Mode				
20dB Bandwidth	Antenna terminal				1	1	
Channel carrier frequency separation	(conducted)	§15.247(a)(1)	RSS210, Issue 7: A8.1 (b)	At least 25kHz or 2/3 of 20dB bandwidth	5	1	Passed
99% occupied bandwidth	Antenna terminal (conducted)		RSS210, Issue 7	99% Power bandwidth	1	1	Passed
Channel use, average channel use, input bandwidth and synchronization between signals		§15.247(a)(1)	RSS210, Issue 7: A8.1	See specification			Not performed *
Channel average occupancy time	Antenna terminal (conducted)	§15.247(a)(1)(iii)	RSS210, Issue 7 A8.1(d)	0.4 seconds	5	1	Passed
Transmitter output power (conducted)	Antenna terminal (conducted)	§15.247(b)(1)	RSS210, Issue 7: A8.4 (2)	0.125 Watt Peak	1	1	Passed
Transmitter Output power radiated	Cabinet (radiated)	§15.247(b)(4)	RSS210, Issue 7: A8.4 (2)	< 4 Watt (EIRP) for antenna with directional gain less 6dBi	2	1	Passed
Out-Of-Band RF- emissions Band-Edge emissions (conducted)	Antenna terminal (conducted)	§15.247 (d)	RSS210, Issue 7: A8.5	20 dBc	1	1	Passed
Power spectral density	Antenna terminal (conducted)	§15.247(e)	RSS210, Issue 7: A8.3 (b)	8dBm in any 3kHz band	1	1	Passed
General field strength emissions + restricted bands (radiated)	Cabinet + Intercon necting cables (radiated)	§15.247 (d) §15.205 §15.209	RSS210, Issue 7 §2.6 + §2.7, Table 1,2	Emissions in restricted bands must meet the general field-strength radiated limits	2+3	1	Passed

			RX Mod	le			
RECEIVER	Cabinet +	§15.109 §15.33	RSS-132: 4.6 RSS-Gen, Issue	FCC 15.109 Limits			
Spurious emissions	Intercon necting	§15.35	2: 6(a)	IC-Limits: Table 1, Chapter 6	2+4	2	Passed
	cables (radiated)		RSS 133: 6.7(a)				

Remark: *.) Please find applicants separate declaration (B_2_20752095a_08-A3.pdf) for detailed information of the implementation of this requirement.

ATTESTATION:

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All requirements as shown in the table are met in accordance with enumerated standards.

Dipl.-Ing. W. Richter

Responsible for testing laboratory

GintH

Im Tel:baich 116 - 452 v B. Ec sen Tel: + 45 (3) 20 54 / 95 13 - 907 Fax: + 48 (6) 20 54 / 95 13 - 907

Dipl.-Ing. C. Lorenz Responsible for test report

2. Administrative Data

2.1. Identification of the testing laboratory

Company name: CETECOM GmbH Address: Im Teelbruch 116

Im Teelbruch 116 45219 Essen - Kettwig

Germany

Laboratory accreditations/Listings: DAR-Registration No. DAT-P176/94-02

FCC-Registration No. 99538, MRA US-EU 0003

IC-Registration No. 3465

VCCI Registration No. R-2665, R-2666, C-2914, T-339

Responsible for testing laboratory: Dipl.-Ing. W. Richter

Deputies: Dipl.-Ing. H. Strehlow, D. Franke

2.2. Test location

2.2.1. Test laboratory "CTC"

Company name:	see chapter 2.1. Identification of the testing laboratory
TCompany name:	see chapter Z. L. Identification of the festing laboratory

Responsible for test report and

project leader: Dipl.-Ing. C. Lorenz

Receipt of EUT: 2008-08-11

Date(s) of test: Week 32/33/43 in 2008

Date of report: 2008-10-15

Version of template: 08.08

2.3. Applicant's details

Applicant's name: Infineon Technologies

Address: Am Campeon 1-12

85579 Neubiberg

Germany

Contact person: Mr. Heiko Froitzheim

2.4. Manufacturer's details

Manufacturer's name: FLEX Computing

Address: Flextronics Zhuhai Industrial Park

Xin Qing Science&Technology Park, Building 17

Jng An, Doumen, Zhuhai, 519180

P.R. China

3. Equipment under test (EUT)

3.1. Additional declaration and description of main EUT

Main function	RF-Module for Wireless	Transmissions (Digitally Modulated System)				
Туре		RFT V2.0, Series No.X816483-004				
Frequency range	2.4 – 2.4835 GHz					
Type of modulation	2GFSK					
Number of channels	Channel no.0: 2402 MI	·lz				
	Channel no.20: 2442 MI	Нz				
	Channel no.40: 2482 MI	Нz				
EMISSION DESIGNATOR(S)	1M35F1D					
Antenna Type	☑ Integrated	Frequency range:				
	☐ External, no RF- conr	nector				
	☐ External, separate RF	-				
	connector					
Antenna Gain	☑ radiated: Max. 0,92 d					
	`	ated and conducted measurements within this				
	testreport)	testreport)				
Ouput PowerConducted	Radiated: 5.49 dBm at h					
	Conducted: 4.57 dBm at	highest channel (40)				
FCC-ID	WFO-ADAMRFM0					
FCC-Registration no.	FRN001788999					
IC ID	6850B-ADAMSRFM0	6850B-ADAMSRFM0				
Installed option						
Power Supply		l over AE1: 3Volt internal nominal voltage				
	Set-up 3,4: over external	Set-up 3,4: over external power supply: 3Volt nominal voltage				
Special EMI components						
EUT sample type	☐ Production	☐ Production ☐ Engineering				

3.2. Configuration of cables used for testing

3.3. EUT: Type, S/N etc. and short descriptions used in this test report

Short description*)	EUT	Туре	S/N serial number	HW hardware status	SW software status
EUT A	Adams RF Module	RFT V2.0	#D	FW V0.34	
EUT B	Adams RF-Module	RFT V2.0	#3	FW V.0.34	
EUT C	Adams RF-Module	RFT V2.0	#4	FW V.0.34	

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

3.4. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions

AE short description *)	Auxiliary Equipment	Туре	S/N serial number	HW hardware status	SW software status
AE 1	Mc Adams Paradise Adapter	For EUT A	#1		
AE 2	Atmel Developers Kit	AT89C51	#1		
AE 3	Notebook	DELL D610	#PC4		Windows XP + Docklight Programm + ADAMS ROM2_COM1. ptp script
AE 4	Xbox360 Wireless Receiver for Windows	1086	X809782-003	523-3506106- 00703	

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report.

3.5.EUT set-ups

EUT set-up no.*)	Combination of EUT and AE	Remarks
Set. 1	EUT A + AE 1 + AE 2 + AE 3	For conducted TX-tests, hopping off
Set. 2	EUT B + AE 1 + AE 2 + (AE 3)	For radiated TX/RX-tests, hopping off
Set. 3	EUT B + AE 1 + (AE2 + AE3)	Used for radiated TX-tests in the frequency range up to 1GHz. AE2 and AE 3 disconnected from main EUT after establishing the rf-connection. External power supply used with nominal voltage.
Set. 4	EUT C + (AE1 + AE2 + AE3)	Used for RX-tests AE1, AE2 and AE3 disconnected from main EUT after establishing the rf-connection. External power supply used with nominal voltage
Set. 5	EUT A + AE 1 + AE 2 + AE 3 + AE 4	For conducted TX-tests hopping on mode over 41 channels

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

3.6. EUT operating modes

EUT operating mode no.*)	Description of operating modes	Additional information
op. 1	Transmit Mode	The transmitter is set to certain transmission frequency within the operational range and broadcast an modulated carrier. The EUT was set to lowest (2402MHz), middle (2442 MHz) and highest (2482MHz) possible working frequency within the assigned operational band.
op. 2	Receive Mode	The transmitter is set to receive mode only ("initiate binding mode")

^{*)} EUT operating mode no. is used to simplify the test report.

4. DESCRIPTION OF TEST SET-UP's

4.1. Test Set-up for conducted measurements

EUT's RF-signal is first attenuated by 20dB before it is feed to the spectrum analyzer. Customers RF-adapters are used in case of no suitable RF-Adapters are mounted on the EUT. The specific attenuation losses for the RF-signal path is determined within a path-loss calibration and the measurement readings corrected therefore.

Schematic: Test set-up: conducted for RF-tests

4.2. Test set-up for radiated measurements

The radiated emissions from the test device are measured first as exploratory measurement in a FCC recognized semi anechoic chamber or fully anechoic chamber with the dimensions of 8.05m x 6.85m x 5.48m. Very critical frequencies within a defined range, can be re-checked on CETECOM's Open Area Test side, recognized by the FCC to be compliant with ANSI 63.4: 2001 according registration no. 99538.

The EUT and accessories are placed on a non-conducting tipping table of 0.8 meter height (semi-anechoic chamber) or 1.55m height (fully-anechoic chamber) which is situated in the middle of the turntable. The turntable can rotate the device under test 360 degree, the position manipulator can rotate the device from laid to standing position. This way the device under test can be rotated in all three orthogonal planes in order to maximize the detected emissions. The turn- and position manipulator are controlled by a controller unit. All positions manipulations are software controlled from a operator PC.

The measurements are performed for both receiving antenna polarisations: vertical and horizontal.

Up to 18GHz a measurement distance of 3 meters is used, above 18GHz the distance is 1meter. A biconical-logarithmic antenna up to 1 GHz and a horn antenna for frequencies above 1 GHz used. (see equipment list)

The EUT is powered either by a external DC-supply with nominal voltage or a AC/DC power supply as accessory.

Schematic: radiated measurements test set-up

5. Measurements

5.1. 20-dB Bandwidth, FCC 15.247 (a)(1), RSS210: A8.1(b)

TEST LOCATION AND EQUIPMENT (for reference numbers please see chapter 'List of test equipment')

equipment)						
test location	☑ CETECOM Essen (Chapter. 2.2.1)		☐ Please see Chapter. 2.2.2		☐ Please see Chapter. 2.2.3	
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□ 337 OATS	■ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	≥ 489 ESU			
otherwise	☑ 301 20dB Attenuator			■ cable K5		

REFERENCES: §15.247(a)(1), RSS210: A8.1(b)

(1) <u>Frequency hopping systems</u> shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

(2) DSSS Systems using <u>digital modulation techniques</u> may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

MEASUREMENT METHOD:

The measurement to confirm the above requirement is performed in two separate steps: first the 20-dB bandwidth is measured and recorded, in a second step the frequency carrier separation measured with hopping mode turned on. After these two steps a pass/fail verdict can be made.

STEP 1: 20-DB BANDWIDTH

The measurement was performed with the RBW set to 10kHz. The span was set to cover the complete carrier. Three carrier frequencies (low/middle/high) were used for showing the compliance with this requirement. A DELTA Marker method was set to measure the bandwidth compared to the highest In-Band power. The operating modes have been varied (e.g. data rate, modulation scheme, etc.). If applicable the hopping-mode is switched off.

Also the **99% emission bandwidth** was measured. Two markers are placed on frequency points such that left to lower f-marker and right to higher f-marker only 1% of the TX-power is contained. Between the markers, 99% of the power is laying. The RBW value is re-adjusted and the measurement repeated until the RBW/EBW ratio is around 1%.

SETTINGS ON SPECTRUM-ANALYZER:

Span	Set as to fully display the emissions and approximative 20dB below the PEAK level
Resolution Bandwidth	Set to approx 1% of the emission width
(RBW)	
Video Bandwidth (VBW)	3 times the resolution bandwidth
Sweep time	Coupled and low enough to have no gaps within power envelope
Detector	Sample (if bin width: Span/no. of frequency points SA < 0.5*RBW SA otherwise
	Peak detector)
Sweep mode	Repetitive Mode, MAX-HOLD

RESULTS TO STEP 1:

Set-Up No. 1	20 dB BANDWIDTH				
Op. Mode 1	[MHz]				
T_{NOM} =21°C, V_{NOM} = 3V	Low channel = 0	Middle channel = 20	High channel = 40		
	(2402 MHz)	(2442 MHz)	(2482 MHz)		
Results	1.3654	1.3702	1.3654		

Remark: see diagrams in chapter 8

Set-up No. 1	99% EMISSION BANDWIDTH				
Op. Mode 1	[MHz]				
T_{NOM} =21°C, V_{NOM} = 3V	Low channel = 0	Middle channel = 20	High channel = 40		
	(2402 MHz)	(2442 MHz)	(2482 MHz)		
Results	1.3509	1.3509	1.3461		

Remark: see diagrams in chapter 8

5.2. Channel carrier frequency separation, FCC 15.247 (a)(1), RSS210: A8.1(b)

TEST LOCATION AND EQUIPMENT (for reference numbers please see chapter 'List of test equipment')

test location	∠ CETECOM Essei	n (Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	☐ Please see Chapt	ter. 2.2.3
test site	☐ 441 EMI SAR	☐ 487 SAR NSA	□ 337 OATS	■ 347 Radio.lab.		
receiver	☐ 377 ESCS30	□ 001 ESS	≥ 489 ESU			
spectr. analys.	□ 381 380 FSBS	□ 120 FSEM	□ 264 FSEK			
otherwise	■ 301 20dB Attenuator			区 cable K5		

REFERENCES: §15.247(a)(1), RSS210:A8.1(b)

(1) FHHS Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

(2) DSSS Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

MEASUREMENT METHOD

The measurement to prove this requirement was performed with a low RBW of 100kHz, peak detector and trace Hold-Max function in order to resolve each frequency carrier separately.

The span of the frequency analyzer was set to cover the carrier investigated as well as its neighbour channels. A frequency DELTA Marker method was set to measure the frequency separation between the channels.

RESULTS TO STEP 2:

Set-up No. 5 Op. Mode 1	CHANNEL SEPARATION
$T_{NOM}=21$ °C, $V_{NOM}=3$ V	Measured around middle channel
	(2442 MHz)
Measured Result	2.0032 MHz
Applicants declared value	2.0 MHz

LIMIT

Either:

1. 25 kHz or 20dB BW: 1.3702MHz BW

Or

2. 25kHz and 2/3of BW if Power<125mW: 0.91346 MHz

Date: 7.AUG.2008 09:16:28

Diagram – carrier frequency separation

5.3. Requirements on channel use, average channel use, input bandwidth and synchronization between signals, FCC §15.247(a)(1), RSS210: A8.1(b)

REQUIREMENT:

The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies.

RESULT:

Tests are not performed by CETECOM. The above requirement is implemented in the firmware of the device. Please find <u>applicants separate declaration</u> for detailed information of the implementation of this requirement, named annex B 2 20752095a-A3.pdf

REQUIREMENT:

Each frequency must be used equally on the average by each transmitter.

RESULT.

Tests are not performed by CETECOM. The above requirement is implemented in the firmware of the device. Please find <u>applicants separate declaration</u> for detailed information of the implementation of this requirement named annex B <u>2</u> 20752095a-A3.pdf

REQUIREMENT:

The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and ..

RESULT:

Tests are not performed by CETECOM. Please find <u>applicants separate declaration</u> for detailed information of the implementation of this requirement, named annex B 2 20752095a-A3.pdf

REQUIREMENT:

The system receivers shall shift frequencies in synchronization with the transmitted signals.

RESULT:

Tests are not performed by CETECOM. The above requirement is implemented in the firmware of the device. Please find <u>applicants separate declaration</u> for detailed information of the implementation of this requirement, named annex B <u>2</u> 20752095a-A3.pdf

5.4. Specification for hopping channel numbers and time of occupancy, FCC 15.247 (a)(1)(iii), RSS210: A8.1(d)

5.4.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	■ CETECOM Esser	n (Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	□ Please see Chapt	er. 2.2.3
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□337 OATS	■ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	≥ 489 ESU			
spectr. analys.	□ 381 380 FSBS	☐ 120 FSEM	□ 264 FSEK			
power supply	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40
otherwise	■ 301 20dB Attenu	ator		■ cable K5		

REFERENCE: §15.247(A)(1)(III) AND RSS210, ISSUE 7 A8.1(d)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

METHOD FOR MEASUREMENT OF THE CHANNEL NUMBERS:

The measurement was performed with spectrum analyzer's RBW set to 300kHz. The device was set to work within the defined specification with frequency hopping mode set on. The spectrum-analyzer was set to MAX-Hold positive peak detector mode. After a certain time the stabilized trace is recorded and the number of channels counted.

RESULTS

SET-UP NO. 5 OP. MODE 1	NUMBER OF CHANNELS
T _{NOM} =21°C, V _{NOM} =3 V	41

Date: 22.OCT.2008 09:13:03

Diagram - number of hopping channels

METHOD FOR MEASURING THE OCCUPANCY TIME:

The measurement was performed with a spectrum analyzer set to ZERO span. The device was set to work within the defined specification with frequency hopping mode on. The spectrum-analyzer was set the MAX-Hold positive peak detector mode. The sweep time set as long as necessary to capture the full signal burst per hopping channel. The burst on-period is captured by setting appropriate markers in the rising and falling edges.

RESULTS

SET-UP NO. 5	OCCUPANCY TIME					
	Low Channel Middle Channel High Channel					
$T_{\text{NOM}} = 21^{\circ}\text{C}, V_{\text{NOM}} = 3\text{V}$	271,4743µs	271,4743 μs	271,4743μs			

Remark:--

Date: 22.OCT.2008 10:32:02

Diagram – Time Slot length (TX-on time)

Calculations

The total occupancy time of one channel per allowed time period is calculated as follows:

Time period for calculating the Dwell time: 0.4s * 41 Channels employed = 16,4 seconds as time period

Time Slot length: 271,4743µs (measured on channel 19) Hopping rate: 125 1/s (8ms) as declared by the customer

Formula for calculating the dwell time:

Therefore:

Dwell time:
$$271,4743 \,\mu s \cdot \frac{125 \frac{1}{s}}{41 \, channels} \cdot 16,4s = 0.0135737 \, s \le 0.4s$$

5.5. Power specification, FCC 15.247 (b)(1), RSS-210: A8.4(2)

TEST LOCATION AND EQUIPMENT (for reference numbers please see chapter 'List of test equipment')

	==== = = ====== = = ===== (===========					
test location	▼ CETECOM Esser	n (Chapter. 2.2.1)	¥ 443 System CTC-FA	AR-EMI-	☐ Please see Chapt	er. 2.2.3
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□337 OATS	■ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	≥ 489 ESU			
spectr. analys.	□ 381 380 FSBS	□ 120 FSEM	□ 264 FSEK			
power supply	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40
otherwise	■ 301 20dB Attenua	ator		区 cable K5		

REFERENCE: §15.247(B)(1) AND RSS-210: A8.4 (2)

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

- (1) For frequency hopping systems (FHHS) operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
- (2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.
- (3) For systems using digital modulation (DSSS) in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
- (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

ANTENNA CHARACTERISTICS:

☒ Directional	l Gain < 6 dBi	(measured:	difference	between	measured	d conducte	d and ra	adiated ein	p. power
☐ Directional	l Gain > 6 dBi	(measured /	applicant'	s declara	tion) -> c	onducted	nower r	eduction i	necessary

MEASUREMENT METHOD:

The measurement was performed in non-hopping transmission mode with the carrier set to lowest/middle and highest channel. The power was also checked for different data rates, modulation scheme or packet types if applicable.

SETTINGS ON SPECTRUM-ANALYZER:

Center Frequency	Nominal channel frequency
Span	8 MHz
Resolution Bandwidth (RBW)	3 MHz > 20dB-Bandwidth of the signal
Video Bandwidth (VBW)	3 times the resolution bandwidth = 10MHz
Sweep time	coupled
Detector	Peak, Max hold mode
Sweep Mode	Repetitive mode

5.5.1. CONDUCTED MEASUREMENT: MAX. PEAK POWER

• Maximum declared antenna gain [isotropical]: 1dBi

RESULTS

MAX PEAK POWER (conducted)							
SET-UP: 1 OP-MODE: 1	Low channel = 0 (2402 MHz)	Middle channel = 20 (2442 MHz)	High channel = 40 (2482 MHz)				
Measured Peak power [dBm]	-16.78	-16.62	-16.39				
Correction factor- Path loss: [dB]							
20dB Attenuator Cable attenuation	19.86 1.10	19.77 1.10	19.86 1.10				
Resulting Peak Power							
	4.18 dBm	4.25 dBm	4.57 dBm				
	(2.61 mW)	(2.66 mW)	(2.86 mW)				
Limit		0.125 Watt (21dBm)					

5.5.2. RADIATED MEASUREMENT: MAX. E.I.R.P POWER

Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test site	☐ 441 EMI SAR	□ 348 EMI cond.	■ 443 EMI FARr	☐ 347 Radio.lab.	□ 337 OATS	
equipment	□ 331 HC 4055					
Spectr. analys.	□ 138 139 FSBS	□ 120 FSEM	□ 264 FSEK	≥ 489 ESU		
antenna meas	□ 048 3143	□ 289 CBL 6141	□ 439 HL 562	■ 133 EMCO3115	□ 302 BBHA9170	□ 477 GPS
antenna meas	□ 123 HUF-Z2	□ 132 HUF-Z3	□ 030 HFH-Z2			
antenna subst	□ 071 HUF-Z2	□ 020 EMCO3115	□ 063 LP 3146	□ 303 BBHA9170		
power meter	□ 009 NRV	□ 010 URV5-Z2	□ 011 URV5-Z2			
Signalgener.	□ 008 SMG	□ 140 SMHU	□ 263 SMP04			
power meter	☐ 262 NRV-S	□ 266 NRV-Z31	□ 265 NRV-Z33	☐ 261 NRV-Z55	□ 356 NRV-Z1	
DCpower	□ 086 LNG50-10	□ 087 EA3013	□ 354 NGPE 40	☐ 349 car battery	☐ 350 Car battery	

MEASURING METHOD:

The method is according ANSI/TIA/EIA-603-C-2004 and consist of two steps.

First step: The maximum power was recorded by turning the EUT continuously 360 degree steps, the EUT in horizontal (laying) and vertical (standing) position. Measurements have been performed with the measurement antenna set to horizontal and vertical polarisation. The spectrum analyzer was set to MAX-PEAK Detector, MAX-Hold Mode. The RBW used was bigger than the 20-dB bandwidth of the EUT and set to 3 MHz. VBW set to 10MHz with coupled sweep time. The maximum trace peak value was recorded.

Second step: a horn antenna was set instead of the EUT and connected to the signal generator. The level was adjusted such as the same level as in step 1 could be reached. The conducted power delivered to the antenna was measured and the value corrected with the known antenna eirp-gain.

RADIATED MEASUREMENT: MAX. EIRP POWER

MAXIMUM RADIATED EIRP							
Set-up 2 Low channel = 0 Middle channel = 20 High channel = 40 Op. Mode 1 (2402 MHz) (2442 MHz) (2482 MHz)							
Determined -1.95 (V) -3.3 (V) -1.55 (V) eirp Power [dBm] 2.43 (H) 2.58 (H) 5.49 (H)							

Remark:--

VERDICT: pass, Maximum value: 5.49 dBm (antenna gain < 6 dBi)

5.6. 20dBc Emission specification,

FCC 15.247 (d), RSS210: A8.5

TEST LOCATION AND EQUIPMENT (for reference numbers please see chapter 'List of test equipment')

test location	■ CETECOM Esset	n (Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	☐ Please see Chapt	er. 2.2.3
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□337 OATS	■ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	≥ 489 ESU			
spectr. analys.	□ 381 380 FSBS	□ 120 FSEM	□ 264 FSEK			
power supply	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40
otherwise	⊠ 301 20dB Attenu	ator		■ cable K5		

REFERENCES: §15.247, §15.205, RSS-210: A8.5

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

MEASUREMENT METHOD:

The frequency spectrum was investigated for spurious emissions values lower than 20dB related to the RF-carrier power value. Three carrier frequencies (low/middle/high channel) were used for showing the compliance with this requirement. The detector were chosen according §15.209(d). The video bandwidth (VBW) was chosen 10 times the resolution bandwidth (RBW). The frequency scan was up to 10 times the highest channel frequency within the operational mode. The spectrum-analyzer was set to MAX-PEAK Detector, MAX-Hold Mode

Set-up 1 Op. Mode 1		RF-CONDUCTED TEST: 20 dBc SPURIOUS EMISSIONS								
Frequency Range	Low channel =0 (2402 MHz)		Middle cha (2442		High channel = 40 (2482 MHz)					
	Level Reference (In-Band) = 108.91 dBμV		Level Referen	` '	Level Reference (In-Band) = 109,67 dBμV					
	Frequency [MHz]	Value [dBc]	Frequency [MHz]	Value [dBc]	Frequency [MHz]	Value [dBc]				
30 1000 MHz	Peaks from set-up (AE- equipment)	> 68.13	Peaks from set-up (AE- equipment)	>66.10	Peaks from set- up (AE- equipment)	> 66.91				
1 GHz 18 GHz	2283.333 2379.8079	49.2 52.1	2323.7179	52.53	2364.10	51.72				
18GHz 25 GHz	2522.08 4795.1282 9593.78	51.99 51.90 49.68	2558.16 4867.288 9774.1858	52.84 52.01 51.28	2486.00 4939.4487 9918.50	50.45 52.06 51.06				

Remark: for results please see diagrams enclosed in chapter 8

The limit on the diagrams is 20dB under the reference level measured In-Band for each channel

5.7. Power Spectral Density (PSD),

FCC 15.247(e), RSS210: A8.3

TEST LOCATION AND EQUIPMENT (for reference numbers please see chapter 'List of test equipment')

test location	■ CETECOM Esset	n (Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	☐ Please see Chapt	er. 2.2.3
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□337 OATS	■ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	≥ 489 ESU			
spectr. analys.	□ 381 380 FSBS	□ 120 FSEM	□ 264 FSEK			
power supply	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40
otherwise	□ 301 20dB Attenu	ator		cable K5		

REFERENCES: §15.247(E), RSS-210:A8.3

(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

METHOD

A frequency sweep around nominal carrier frequency is performed over the complete power envelope of the signal with PEAK detector, MAX hold mode. The maximum peak is located and the frequency recorded. With the nominal frequency set to the determined frequency in the step before, a new frequency sweep is performed with a reduced resolution bandwidth of 3kHz. The resulting value is compared with the standard requirement.

RESULTS

Co4 1	P	OWER SPECTRAL DENSIT	Y
Set-up 1 Op. Mode 1	Low channel = 0 (2412 MHz)	Middle channel = 20 (2437 MHz)	High channel = 40 (2462 MHz)
Measured Level [dBm/3kHz]	-5.73	-5.48	-5.63
Correction factor- Path loss: [dB]			
Cable attenuation	1.10	1.10	1.10
Resulting Power spectral density [dBm/3kHz]	-4.73	-4.48	-4.63
Limit		< 8dBm/3kHz	

Remark: see diagrams enclosed in chapter 8

5.8. Radiated emissions in restricted bands, general field strengths, §15.205, §15.209, RSS210: §2.6

5.8.1. FREQUENCIES ABOVE 30 MHz AND BELOW 1 GHZ

TEST LOCATION AND EQUIPMENT (for reference numbers please see chapter 'List of test equipment')

test location	▼ CETECOM Esser	(Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	☐ Please see Chapter. 2.2.3		
test site	■ 441 EMI SAR	□ 487 SAR NSA	□337 OATS	□ 347 Radio.lab.			
receiver	■ 377 ESCS30	□ 001 ESS					
spectr. analys.	□ 381 380 FSBS	□ 120 FSEM	□ 264 FSEK				
antenna	■ 048 EMCO3143	□ 133 EMCO3115	□ 302 BBHA9170	□ 289 CBL 6141	□ 030 HFH-Z2	□ 477 GPS	
signaling	□ 298 CMU	□ 460 CMU	□ 295 RACAL	□ 392 MT8820A			
power supply	¥ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40	
otherwise	☐ 400 FTC40x15E	□ 401 FTC40x15E	□ 110 USB LWL	☐ 482 Filter Matrix			

STANDARDS AND LIMITS: CFR 47, PART 15, SUBPART B, §15.205, §15.109 (CLASS B) §15.209, ANSI C63.4, RSS-210: §2.6, ISSUE 7, 2007, TABLE 1/2/3

Frequency	Radiated emission limits	[dBµV] Class B, 3 meters	Radiated emission limits [dBµV] Class A, 10 meters			
[MHz]	QUASI-Peak	QUASI-Peak	QUASI-Peak	QUASI-Peak		
	[microvolts/meter]	$[dB\mu V/m]$	[microvolts/meter]	$[dB\mu V/m]$		
30-88	100	40	90	39,0		
88-216	150	43,5	150	43,5		
216-960	200	46,0	210	46,4		
above 960	500	54,0	300	59,5		

TEST CONDITION AND MEASUREMENT TEST SET-UP

EUT-grounding	⋈ none □	with power supply	 additional connection 	l .		
Equipment set up	■ table top 0.8m	height	☐ floor standing			
Climatic conditions	Temperature: (21.	5°C)	Rel. humidity: (65)%	Air pressure: (968)hPa		
EMI-Receiver (Analyzer) Settings	Span/Range:	n/Range: 30 MHz to 1 GHz				
	RBW/VBW:	120 kHz / (auto)				
	Detector/ Mode:	e: PEAK, TRACE max-hold mode, repetitive scan				
		Quasi-Peak, for final measurement for critical measurements				

MEASUREMENT PROCEDURES:

The measurement test set-up and test procedure are in accordance with the provisions described in ANSI 63.4: 2003

The EUT was set-up to it's defined operating modes and installed (connected) to accessory equipment according the general description of use given by the applicant.

MEASUREMENT METHOD(30 MHz<f <1 GHz):

A EMI analyzer together with a broadband antenna was used in order to identify the emissions from the EUT by positioning the antenna close to the EUT surfaces. The interconnecting cables and equipment position were varied in order to maximize the emissions. Then most critical frequencies are recorded for further investigations. Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's operating mode, cable position, etc. The EUT was placed on a non-conductive support of 0.8 m height. By rotating the turntable angle in the range 0 to 360degree, the EUT itself in 3-orthogonal axis and the measurement antenna height from 1 meter to 4 meters, the maximized emissions are recorded. The measurements are performed for both polarizations of the measuring antenna: horizontal and vertical.

MEASUREMENT RESULTS

Channel Low: 0

Set-up No.		3	3							
Operating M	/lode	1								
Diagram no.	Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidt h (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV /m) (L _T)
02.14	192.00	29.13	20	120	1.80	H/V	0360°		14.37	43.5

Channel Middle: 20

Chamier ivii	aure. 20									
Set-up No.		3								
Operating N	Iode	1								
Diagram no.	Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwid th (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV /m) (L _T)
02.17	204.01	27.8	1000.	120.000	100.0	V	184.0	11.7	15.70	43.5

Channel High: 40

Chamici III	511. 40									
Set-up No.		3								
Operating N	/lode	1								
Diagram no.	Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV /m)
								(C_F)	(M)	(L_T)
02.18	192.02	29.3	1000.	120.00	112.0	Н	155.0	11.3	14.20	43.5

General remark:

- diagrams shows PK/QP detector measurements
- see graphical plots too
- Set-up 3 used because of strong generated emissions from AE2 which is considered only accessory for test.

RX-MODE: §15.109

Set-up No.		4								
Operating N	Iode	2								
Diagram no.	Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV /m) (L _T)
	35.99	26.8	1000.0	120.00	100.0	V	160.0	12.0	13.20	40.00
	51.99	25.8	1000.0	120.00	112.0	V	327.0	7.6	14.20	40.00
2.24	132.00	31.6	1000.0	120.00	155.0	Н	250.0	9.4	11.90	43.50
	204.00	34.9	1000.0	120.00	138.0	Н	192.0	11.7	8.60	43.50
	252.01	34.7	1000.0	120.00	100.0	Н	269.0	13.9	11.30	46.00

General remarks:

- diagrams shows PK/QP detector measurements
- see graphical plots too
- Set-up 4 used because of strong generated emissions from AE1 and AE2 which are considered only accessory for tests

Margin to limit:	Abbreviations used:
$M = L_T - R_R + C_F + D_F$ $= L_T - R_R + (AF_{ANTENNA} + Cable_{OSS}) + D_F$	 R_R: Receiver readings in dBμV/m CF: Transducer in dB = AF (antenna factor) + CL (cable loss) D_F: distance correction factor (if different measurement distance used than specified in the standard L_T: Limit in dBμV/m

5.8.2. FREQUENCIES ABOVE 1GHZ

TEST LOCATION AND EQUIPMENT (for reference numbers please see chapter 'List of test equipment')

test site	☐ 441 EMI SAR	□ 348 EMI cond.	■ 443 EMI FAR	☐ 347 Radio.lab.	□ 337 OATS	
equipment	□ 331 HC 4055					
Spectr. analys.	□ 138 139 FSBS	□ 120 FSEM	□ 264 FSEK	■ 489 ESU		
antenna meas	□ 048 3143	□ 289 CBL 6141	□ 439 HL 562	■ 133 EMCO3115	■ 302 BBHA9170	□ 477 GPS
antenna meas	□ 123 HUF-Z2	□ 132 HUF-Z3	□ 030 HFH-Z2			
antenna subst	□ 071 HUF-Z2	□ 020 EMCO3115	□ 063 LP 3146	□ 303 BBHA9170		
power meter	□ 009 NRV	□ 010 URV5-Z2	□ 011 URV5-Z2			
Signalgener.	□ 008 SMG	□ 140 SMHU	□ 263 SMP04			
power meter	☐ 262 NRV-S	□ 266 NRV-Z31	□ 265 NRV-Z33	☐ 261 NRV-Z55	□ 356 NRV-Z1	
DCpower	□ 086 LNG50-10	□ 087 EA3013	□ 354 NGPE 40	☐ 349 car battery	☐ 350 Car battery	
multimeter	☐ 341 Fluke 112					
others	■ 484 Pre-Amp					

STANDARDS AND LIMITS: CFR 47, PART 15, SUBPART B, §15.205, §15.109 (CLASS B), §15.209, ANSI C63.4, RSS-210: §2.6, ISSUE 7, 2007, TABLE 1/2/3

Frequency	Radiated emission limits [dBµV] Class B, 3 meters measurement distance							
[MHz]	AV	AV	Peak	Peak				
	[microvolts/meter]	[dBµV/m]	[microvolts/meter]	[dBµV/m]				
above 1GHz	500	54,0	5000	74				

TEST CONDITION AND MEASUREMENT TEST SET-UP

EUT-grounding	≥ none □ with p	power supply additional connection
Equipment set up	■ table top 1.5m height	☐ floor standing
Climatic conditions	Temperature: (21.5°C)	Rel. humidity: (65)% Air pressure: (968)hPa
Spectrum-Analyzer settings	Span/Frequency range:	118GHz +single frequencies determined in step 1
	RBW/VBW:	1MHz / 3MHz
	Detector/ Mode:	Peak/AV, MAX-hold, repetitive scan for exploratory measurement
		PEAK/ AVERAGE, for final measurement for critical frequencies
	Antenna Polarisation	Horizontal / Vertical

GENERAL MEASUREMENT PROCEDURES:

The measurement test set-up and test procedure are in accordance with the provisions described in ANSI 63.4: 2003

The EUT was placed on a non-conductive positioning table of 0.8 or 1.5 meter height depending from the frequency range. The measuring distance was set to 3 meter for frequencies up to 18GHz and 1 meter above 18GHz.

The EUT was set-up to it's defined operating mode and installed (connected) to accessory equipment according the general description of use given by the applicant.

- 1. Step exploratory measurement: A EMI analyzer together with a broadband antenna was used in order to identify the emissions from the EUT by positioning the antenna close to the EUT surfaces. The interconnecting cables and equipment position were varied in order to maximize the emissions. Then most critical frequencies are recorded for further investigations. Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's operating mode, cable position, etc.
- 2. Step Final Measurement(1 GHz<f <25 GHz): On the Worst-Case EUT configuration, frequency components with a margin lower than 6 dB to the limits, will be re-measured by maintaining the EUT's operating mode, cable position, etc.. For find the worst-case emission, the turntable was changed in the range 0 to 360 degree and the EUT itself in 3-orthogonal axis. The measurements are performed for both polarizations of the measuring antenna: horizontal and vertical.

MEASUREMENT RESULTS:

Channel Low: 0

Channel Lo	w. u	l a								
Set-up No.	M = J =	2								
Operating M Diagram no.	Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidt h (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV /m)
								(C_F)	(M)	(L_T)
	2426.50	43.6	100.00	1000.00	155.0	V	14.0	1.5	30.4	74.0 (PK)
02.01 ^{1.)}	1032.10	30.2	100.00	1000.00	155.0	Н	-5.0	0.1	23.8	54.0 (AV)
	1055.90	25.1	100.00	1000.00	155.0	V	277.0	-0.1	28.9	54.0 (AV)
	2804.40	44.9	100.00	1000.00	155.0	V	-8.0	-5.1	29.1	74.0 (PK)
02.04	4963.90	48.5	100.00	1000.00	155.0	V	44.0	-0.4	25.5	74.0 (PK)
	4961.10	33.2	100.00	1000.00	155.0	V	44.0	-0.4	20.8	54.0 (AV)
02.21 ^{2.)}				1000.00	155.0					54 (AV)

Remark: 1.) Peak around 2402.1MHz belongs to TX-carrier
2.) measurement from 18 to 25 GHz performed as exploratory measurements only, no peaks detected

Channel Middle: 20

Set-up No.		2								
Operating N	lode	1								
Diagram no.	Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwid th (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV /m)
02.02 ^{1.)}	1059.0	32.63	20	1000.00	1.55	H/V	0360°		21.37	54 (AV)
	4884.10	47.3	100.0	1000.00	155.0	V	35.0	-0.6	26.7	74.0 (PK)
02.05	4881.30	33.9	100.0	1000.00	155.0	V	298.0	-0.6	20.1	54.0 (AV)
	9763.10	39.5	100.0	1000.00	155.0	V	-3.0	9.7	14.5	54.0 (AV)
02.22 ^{2.)}				1000.00	155.0					54 (AV)

Remark: 1.) Peak around 2442MHz belongs to TX-carrier

2.) measurement from 18 to 25 GHz performed as exploratory measurements only, no peaks detected

Channel High: 40

Channel High: 40											
Set-up No.		2									
Operating N	Iode	1	1								
Diagram no.	Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV /m) (L _T)	
2.03 ^{1.)}	1032.2	28.51	20	1000.00	1.55	H/V	0360°		25.54	54 (AV)	
	2804.40	44.9	100.0	1000.00	155.0	V	-8.0	-5.1	29.1	74.0 (PK)	
2.04	4963.90	48.5	100.0	1000.00	155.0	V	44.0	-0.4	25.5	74.0 (PK)	
	4961.10	33.2	100.0	1000.00	155.0	V	44.0	-0.4	20.8	54.0 (AV)	
02.23 ^{2.)}				1000.00	155.0					54 (AV)	

Remark: 1.) Peak around 2481.9MHz belongs to TX-carrier

2.) measurement from 18 to 25 GHz performed as exploratory measurements only, no peaks detected

RX-Mode: §15.109

Set-up No.		2										
Operating M	Iode	2										
Diagram no.	Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV /m) (L _T)		
02.10	1122.60	39.3	100.0	1000.00	155.0	V	133.0	-0.7	34.7	74.0 (PK)		
	11713.30	52.9	100.0	1000.00	155.0	V	90.0	11.9	21.1	74.0 (PK)		
02.11	4959.00	29.4	100.0	1000.00	155.0	V	315.0	-0.4	24.6	54.0 (AV)		
	9866.70	38.2	100.0	1000.00	155.0	V	102.0	9.8	15.8	54.0 (AV)		

General remarks:

- diagrams shows PK/QP detector measurements
- see graphical plots too

Margin to Limit:

$$M = L_T - R_R + C_F + D_F$$

= $L_T - R_R + (AF_{ANTENNA} + Cable_{LOSS}) + D_F$

Remark: positive margin means passed result

Abbreviations used:

• R_R : Receiver readings in $dB\mu V/m$

• CF: Transducer in dB = AF (antenna factor) + CL (cable loss)

• D_F: distance correction factor (if different measurement distance used than specified in the standard

• L_T : Limit in $dB\mu V/m$

5.8.3. BAND-EDGE COMPLIANCE MEASUREMENTS, §15.247(d), RSS210: A8.5

TEST LOCATION AND EQUIPMENT (for reference numbers please see chapter 'List of test equipment')

test location	■ CETECOM Esset	n (Chapter. 2.2.1)	¥ 443 System CTC-FA	AR-EMI-	☐ Please see Chapt	er. 2.2.3
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□337 OATS	■ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	≥ 489 ESU			
antenna meas.	□ 048 3143	□ 289 CBL 6141	□ 439 HL 562	■ 133 EMCO3115	■ 302 BBHA9170	1
power supply	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40
otherwise	■ 301 20dB Attenuator			cable K5		

MEASUREMENT METHOD:

A Delta marker method was used for showing compliance to restricted bands according §15.205. The method is according Public Notice "Marker-Delta method", Extract from DA00-705. The method consists of three independent steps:

- 1. <u>Step</u>: Prior to the measurement the fundamental radiated In-Band field strength was performed. The determined value is used as reference value.
- 2. <u>Step</u>: Second step consist of finding the relative attenuation between the fundamental emission and the maximum local out-of-band emission (within 2 MHz range around the band edge either on the band-edge directly or some modulation product if the level is greater than that on the band-edge) when measured with lower resolution bandwidth. The plots showing the diagrams are enclosed in chapter diagrams.
- 3. <u>Step</u>: The delta value recorded in step 2 will be subtracted from value recorded in step 1, thus giving the required field strength at the band-edge. This value must fulfil the requirements for radiated spurious emissions in restricted bands in §15.205 with the general limits of §15.209.

For frequency-hopping systems the measurement is done in hopping mode on and off.

RESULTS

Hopping mode off

Set-up: 1/2 Op. Mode: 1				
$T_{NOM} = 21^{\circ}C,$ $V_{NOM} = 5V$	Fundamental field strength-radiated [dBµV/m]	Delta Marker Value (remark 1) [dB]	Value at Band-Edge [dBμV/m]	Verdict
Channel 0	90.65	60.75	29.90 (Peak)	Passed
Channel 40	92.43	46.29	46.14 (Peak)	Passed

Remark 1: see chapter 8 for diagrams

Hopping mode on

Set-up: 5 Op. Mode: 1				
$T_{NOM} = 21^{\circ}C,$ $V_{NOM} = 5V$	Fundamental field strength-radiated [dBµV/m]	Delta Marker Value (remark 1) [dB]	Value at Band-Edge [dBμV/m]	Verdict
Channel 0	90.65	48.89	41.76 (Peak)	Passed
Channel 40	92.43	40.05	52.38 (Peak)	Passed

Remark 1: see chapter 8 for diagrams

6. Measurement uncertainties

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor **k**, such that a confidence level of approximately 95% is achieved.

For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it's contribution to the overall uncertainty according it's statistical distribution calculated.

Following table shows expectable uncertainties for each measurement type performed.

Measurement	Frequency range	Calculated uncertainty based on a confidence level of 95%	Remarks:
RF-Power Output conducted	9 kHz 20 GHz	1 dB	
RF-Power Output radiated	30 MHz 4 GHz	3,17 dB	Substitution method
Conducted RF-emissions on antenna ports	9 kHz 20 GHz	1 dB	
	150 kHz 30 MHz	5 dB	Magnetic field
Radiated RF-emissions	30 MHz 1 GHz	4,2 dB	E-Field
enclosure	1GHz 18 GHz	4.8 dB	E-Field
	1 GHz 20 GHz	3.17 dB	Substitution method
Occupied bandwidth	9 kHz 4 GHz	0,1272 ppm (Delta Marker method)	Frequency error
		1 dB	Power
Emission bandwidth	9 kHz 4 GHz	0,1272 ppm (Delta Marker method)	Frequency error
		1 dB	Power
Frequency stability	9 kHz 20 GHz	0,0636 ppm	
Conducted emissions	9 kHz 150 kHz	4 dB	
on AC-mains port (U _{CISPR})	150 kHz 30 MHz	3.6 dB	

Table: measurement uncertainties, valid for conducted/radiated measurements

7. Instruments and Ancillary

7.1. Used equipment "CTC"

The "Ref.-No" in the left column of the following tables allows the clear identification of the laboratory equipment.

7.1.1. Test software and firmware of equipment

RefNo.	Equipment	Туре	Serial-No.	Version of Firmware or Software during the test
001	emi test receiver	ESS	825132/017	Firm.= 1.21, OTP=2.0, GRA=2.0
012	signal generator (EMS-cond.)	SMY 01	839069/027	Firm.= V 2.02
013	power meter (EMS cond.)	NRVD	839111/003	Firm.= V 1.51
017	Communication Tester	CMD 60 M	844365/014	Firmware = V 3.52 .22.01.99, DECT Firmware D2.87
053	audio analyzer	UPA3	860612/022	Firm. V 4.3
119	RT harmonics analyser/dig. flickermeter	B10	G60547	Firm.= V 3.1DHG
120	spectrum analyzer	FSEM 30	845538/011	Bios=2.1, Analyzer-Firmware= 3.30.3
140	signal generator	SMHU	831314/006	Firm.= 3.21
261	thermal power sensor	NRV-Z55	825083/0008	EPROM-Datum 02.12.04, SE EE 1 B
262	power meter	NRV-S	825770/0010	Firm.= 2.6
263	signal generator	SMP 04	826190/0007	Firm.=3.21
264	spectrum analyzer	FSEK 30	826939/005	Bios=2.1, Analyzer= 3.20
277	Vector-Networkanalyzer	ZVC	831363/0005	Bios= 3.3, Analyzer=3.52
295	Racal Digital Radio Test Set	6103	1572	UNIT Firmware= 4.04, SW-Main=4.04, SW-BBP=1.04,
298	Radio Communication Tester	CMU 200	832221/091	R&S Test Firmware =3.53/3.54 (current Testsoftw. f.
323	Communication Tester	CMD 55	825878/034	Firm.= 3.52 .22.01.99
331	climatic test chamber -40/+80 Grad	HC 4055	43146	TSI 1.53
335	System-CTC-EMS-Conducted	System EMS Conducted	=	EMS-K1 Immunity Test-Software 1.20SR10
340	Communication Tester	CMD 55	849709/037	Firm.= 3.52 .22.01.99
355	power meter	URV 5	891310/027	Firm.= 1.31
365	10V Insertion Unit 50 Ohm	URV5-Z2	100880	Eprom Data = 31.03.08
366	Ultra Compact Simulator	UCS 500 M4	V0531100594	Firm. UCS 500=001925/3.06a02, rc=ISMIEC 4.10
377	emi test receiver	ESCS 30	100160	Firm.= 2.29, OTP= 02.01, GRA= 02.36
378	broadband RF field monitor	RadiSense III	03D00013SNO-08	Firm.= V.03D13
383	signal generator	SME 03	842 828 /034	Firm.= 4.61
389	digital multimeter	Keithley 2000	0583926	Firm. = A13 (Mainboard) A02 (Display)
392	Radio Communication Tester	MT8820A	6K00000788	Firm.= 4.50 #005, IPL=4.01#001,OS=4.02#001,
420	System CTC CTIA-OTA	System CTC CTIA-OTA	-	EMQuest EMQ-100 Ver. 1.05
436	Radio Communication Tester	CMU 200	103083	R&S Test Firmware Base=4.52/Messsoftware=4.51
441	System CTC-SAR-EMI	System EMI field (SAR)	-	EMC 32 Version 6.10. 3, ESXS-K1 Version 2.20
442	System CTC-SAR-EMS	System EMS field (SAR)	-	EMS-K1 Immunity-Software 1.20SR10
443	System CTC-FAR-EMI-Spuri	System CTC-FAR-EMI-	-	Spuri 6.4a und Spuri 7.0
444	System CTC FAR-EMS	System EMS-Field (FAR)	-	EMS-K1 Immunity-Software 1.20SR10
460	Radio Communication Tester	CMU 200	108901	R&S Test Firmware Base=4.52/Messsoftware=4.51
489	emi test receiver	ESU40	1000-30	Firmware=3.93, Bios=V5.1-16-3, Specification=01.00
491	ESD Simulator dito	ESD dito	dito307022	V 2.30
524	Voltage Drop Simulator	VDS 200	0196-16	Software Nr: 000037 Version V4.20a01
526	Burst Generator	EFT 200 A	0496-06	Software Nr. 000034 Version V2.32
527	Micro Pulse Generator	MPG 200 B	0496-05	Software-Nr. 000030 Version V2.43
528	Load Dump Simulator	LD 200B	0496-06	Software-Nr. 000031 Version V2.35a01

7.1.2. Single instruments and test systems

					on on	rk	
RefNo.	Equipment	Type	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal
Re					nter alib	Re	due
001	emi test receiver	ESS	825132/017	Rohde & Schwarz	12 M	-	31.03.2009
005	AC - LISN (50 Ohm/50μH, test site 1)	ESH2-Z5	861741/005	Rohde & Schwarz	12 M	-	31.03.2009
007	DC - LISN (50 Ohm/5μH)	ESH3-Z6	892563/002	Rohde & Schwarz	12 M	-	31.03.2009
009	power meter (EMS-radiated)	NRV	863056/017	Rohde & Schwarz	12 M	-	31.03.2009
012	signal generator (EMS-cond.) power meter (EMS cond.)	SMY 01 NRVD	839069/027 839111/003	Rohde & Schwarz Rohde & Schwarz	36/12 M 12 M	-	31.03.2011 31.03.2009
013	insertion unit (EMS cond.)	URV5-Z2	838519/029	Rohde & Schwarz	12 M	-	31.03.2009
015	insertion unit (EMS cond.)	URV5-Z4	838570/024	Rohde & Schwarz	12 M	-	31.03.2009
016	line impedance simulating network	Op. 24-D	B6366	Spitzenberger+Spies	36 M	-	31.10.2010
017	Communication Tester	CMD 60 M	844365/014	Rohde & Schwarz	12 M	-	31.03.2009
020	horn antenna 18 GHz (Subst 1)	3115	9107-3699	EMCO	36/12 M	-	31.03.2010
021	loop antenna (H-Field) audio measurement amplifier	6502 2636C	9206-2770 1537643	EMCO Brüel & Kjaer	36 M 12 M	-	31.03.2010 31.03.2009
030	loop antenna (H-field)	HFH-Z2	879604/026	Rohde & Schwarz	36 M	-	31.03.2009
031	absorbing clamp	MDS-21	863325/015	Rohde & Schwarz	24/12 M	-	31.03.2009
033	RF-current probe (100kHz-30MHz)	ESH2-Z1	879581/18	Rohde & Schwarz	12 M	-	31.03.2009
048	bicon log. antenna (SAR)	3143	1108	EMCO	36/12 M	-	30.04.2011
049	current clamp (injection)	F-120-2	48	FCC	12 M	-	31.03.2009
050 051	3-ph coupling-decoupling-netw. (Burst) VHF-current probe 20-300 MHz	CDN 300 ESV-Z1	176 872421	Schaffner Rohde & Schwarz	12 M 12 M	-	31.03.2009 31.03.2009
052	notch filter DECT	WRCB 1887.82/1889.55SS	12	Wainwright Industries	12 M	-	31.03.2009
053	audio analyzer	UPA3	860612/022	Rohde & Schwarz	36 M	-	31.03.2011
058	capacitive clamp (Burst)	IP 4	99	Hafely	-	4	
059	ferrite tube	FGZ 40 X 15 E	4225	Lüthi	36 M		31.03.2010
060	power amplifier (DC-2kHz)	PAS 5000	B6363	Spitzenberger+Spies	- 26 M	3	21.02.2010
061 063	ferrite tube logper. antenna (Subst 1)	FGZ 40 X 15 E 3146	4250 860941/007	Lüthi EMCO	36 M 36/12 M	-	31.03.2010 31.10.2010
065	attenuator, (6 dB) 50 Ohm, 250W	AT 50-6-250	521057	BNOS Electronics	12 M	1b	30.04.2009
066	notch filter (WCDMA; FDD1)	WRCT 1900/2200-5/40-	5	Wainwright GmbH	12 M	-	31.03.2009
067	coupling decoupling-network	CDN801-M2/M3	272	Lüthi	12 M	-	31.03.2009
068	coupling decoupling-network	CDN 801-M5	95226	Lüthi	12 M	-	31.03.2009
069 070	EM - clamp	EM101 FTC101	9535159 4199	Lüthi	36 M 24/12 M	-	31.03.3009
071	ferrite tube biconical antenna (Subst 1)	HUF-Z2	863.029/010	Lüthi Rohde & Schwarz	36/12 M	_	31.03.2010 31.10.2010
072	coupling decoupling-network	CDN801-M2/M3	276	Lüthi	12 M	-	31.03.2009
079	4 wire T-network	EZ-10	862 939 / 011	Rohde & Schwarz	24/12 M	-	31.03.2009
083	AC - power supply, 0-10 A	EAC/MT 27010	910502096	EURO TEST	pre-m	2	
084	AC - power supply, 0-5 A	ELABO-8-34214	-	ELABO	pre-m	2	
085	AC - power supply, 0-10 A DC - power supply, 0-10 A	R250 LNG 50-10	-	Schunterm.&Benningh. Heinzinger Electronic	pre-m	2	
087	DC - power supply, 0 - 10 A DC - power supply, 0 - 5 A	EA-3013 S	-	Elektro Automatik	pre-m pre-m	2	
090	Helmholtz coil: 2x10 coils in series	-	=	RWTÜV	pre-m	4	
091	USB-LWL-Converter	OLS-1	007/2006	Ing. Büro Scheiba	-	4	
094	artificial head (No.1)	4905	1566990	Brüel & Kjaer	pre-m	2	
099	passive voltage probe	ESH2-Z3	299.7810.52	Rohde & Schwarz	12 M	-	31.03.2009
100	passive voltage probe USB-LWL-Converter	Probe TK 9416 OLS-1	without -	Schwarzbeck Extreme USB	12 M	4	31.03.2009
119	RT harmonics analyser/dig. flickermeter	B10	G60547	BOCONSULT	36 M	-	31.03.2010
120	spectrum analyzer	FSEM 30	845538/011	Rohde & Schwarz	12 M	-	31.03.2009
121	notch filter GSM 1900	WRCB 1879,5/1880,5EE	15	Wainwright GmbH	12 M	1	31.03.2009
	notch filter GSM 1800	WRCB 1747/1748	12	Wainwright GmbH	12 M	-	31.03.2009
123	biconical antenna (Subst 2)	HUF-Z2,	860941/007	Rohde & Schwarz	36/12 M	-	31.03.2010
131 132	RF-Current Probe logper. antenna (Subst 2)	F-52 HUF-Z3	19 860862/014	FCC Rohde & Schwarz	12 M 36/12 M	-	31.03.2009 31.03.2010
133	horn antenna 18 GHz (Meas 1)	3115	9012-3629	EMCO	36/12 M	-	31.03.2010
134	horn antenna 18 GHz (Subst 2)	3115	9005-3414	EMCO	12 M	_	31.03.2009
136	adjustable dipole antenna (Dipole 1)	3121C-DB4	9105-0697	EMCO	12 M	-	31.03.2009
137	1000 Hz calibrator 94 dB SPL	4230 94 dB	1 594 698	Brüel & Kjaer	12 M	-	31.03.2009
140	signal generator	SMHU DGL N	831314/006	Rohde & Schwarz Radiall	24/12 M 12 M	- 11-	31.03.2010 30.04.2009
142 248	attenuator (6 dB) 2 W, 8 GHz	SMA 6dB 2W	-	Radiall	pre-m	1b 2	30.04.2009
249	attenuator	SMA 10dB 10W	-	Radiall	pre-m	2	
252	attenuator	N 6dB 12W	-	Radiall	pre-m	2	
254	high pass GSM1800/1900/DECT	5HC 2600/12750-1.5KK	23042	Trilithic	12 M	-	31.03.2009
256	attenuator	SMA 3dB 2W	-	Radiall	pre-m	2	
257	hybrid coupler	4031C	04491	Narda	pre-m	2	
260 261	hybrid coupler thermal power sensor	4032C NRV-Z55	11342 825083/0008	Narda Rohde & Schwarz	pre-m 24/12 M	2	31.03.2010
262	power meter	NRV-Z55 NRV-S	825770/0010	Ronde & Schwarz Rohde & Schwarz	24/12 M 24/12 M	-	31.03.2010
263	signal generator	SMP 04	826190/0007	Rohde & Schwarz	36/12 M	_	31.03.2010
264	spectrum analyzer	FSEK 30	826939/005	Rohde & Schwarz	12 M	-	31.03.2009
265	peak power sensor	NRV-Z33, Model 04	840414/009	Rohde & Schwarz	24/12 M	-	31.03.2010
266	peak power sensor	NRV-Z31, Model 04	843383/016 9	Rohde & Schwarz	24/12 M	-	31.03.2010
267 268	notch filter GSM 850 AC/DC power supply	WRCA 800/960-6EEK EA 3050-A	9823636	Wainwright GmbH	12 M pre-m	2	31.03.2009
270	termination	1418 N	BB6935	Weinschel	pre-m	2	
271	termination	1418 N	BE6384	Weinschel	pre-m	2	
272	attenuator (20 dB) 50 W	Model 47	BF6239	Weinschel	pre-m	2	
273	attenuator, (10 dB) 100 W	Model 48	BF9229	Weinschel	pre-m	2	

Š.					of	ırk	
RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal
Re					nter	R	due
274	attenuator (10 dB) 50 W	Model 47 (10 dB) 50 W	BG0321	Weinschel	pre-m	2	
275	DC-Block	Model 7003 (N)	C5129	Weinschel	pre-m	2	
276 277	DC-Block Vector-Networkanalyzer	Model 7006 (SMA) ZVC	C7061 831363/0005	Weinschel Rohde & Schwarz	pre-m 12 M	2	31.03.2009
279	power divider	1515 (SMA)	LH855	Weinschel	pre-m	2	31.03.2007
284	coupling decoupling network	CDN 801-M1	1661	Lüthi	12 M	-	31.03.2009
285 287	coupling decoupling network pre-amplifier 25MHz - 4GHz	CDN 801-S1 AMF-2D-100M4G-35-10P	1642 379418	Lüthi Miteq	12 M 12 M	-	31.03.2009 31.03.2009
289	bicon log. antenna (OATS)	CBL 6141	4107	Schaffner Chase	36/12 M	-	31.10.2010
290	notch filter GSM 900	WRCA 901,9/903,1SS	3RR	Wainwright GmbH	12 M	-	31.03.2009
291	high pass filter GSM 850/900	WHJ 2200-4EE	14	Wainwright GmbH	12 M	-	31.03.2009
295 298	Racal Digital Radio Test Set Radio Communication Tester	6103 CMU 200	1572 832221/091	Racal Rohde & Schwarz	24/12 M 12 M	3	31.03.2009 31.03.2009
299	audio microphone	134	-	Brüel & Kjaer	pre-m	2	31.03.2009
300	AC LISN (50 Ohm/50μH, 1-phase)	ESH3-Z5	892 239/020	Rohde & Schwarz	12 M	-	31.03.2009
301	horn antenna 40 GHz (Meas 1)	47-20-33 BBHA9170	AW0272 155	Lucas Weinschel Schwarzbeck	pre-m 24/12 M	2	31.03.2010
303	horn antenna 40 GHz (Subst 1)	BBHA9170	156	Schwarzbeck	24/12 M	-	31.03.2010
304	fix dipole antenna 1,6 GHz	EMCO 3125-307	9907-1001	ETS	24/12 M	-	31.03.2009
305 306	fix dipole antenna 1,8-2,0 GHz	EMCO 3125-306	9907-1001 9907-1001	ETS ETS	24/12 M	-	31.03.2009 31.03.2009
306	fix dipole antenna 2,45 GHz fix dipole antenna 3 GHz	EMCO 3125-308 EMCO 3125-309	9907-1001	ETS	24/12 M 24/12 M	-	31.03.2009
317	1000 Hz calibrator 94 dB SPL	4230 94dB	1542286	Brüel & Kjaer	12 M	-	31.03.2009
323	Communication Tester	CMD 55	825878/034	Rohde & Schwarz	12 M	-	31.03.2009
331 335	climatic test chamber -40/+80 Grad System-CTC-EMS-Conducted	HC 4055 System EMS Conducted	43146	Heraeus Vötsch Rohde & Schwarz	24 M 12 M	5	31.10.2008 30.04.2009
337	System CTC OATS	System EMI OATS		HD GmbH	12 M	5	31.10.2008
340	Communication Tester	CMD 55	849709/037	Rohde & Schwarz	12 M	-	31.03.2009
341	digital multimeter digital multimeter	Fluke 112 Voltcraft M-4660A	81650455 IB 255466	Fluke Voltcraft	24 M 12 M	-	31.03.2010 31.03.2009
344	adaptor 150/50 Ohm	150/50		Krohne	12 M	-	31.03.2009
345	adaptor 150/50 Ohm	150/50	-	Krohne	12 M	-	31.03.2009
347	laboratory site	radio lab.	=	-	-	3	
348 349	laboratory site car battery 12 V	EMI conducted car battery 12 V	without	-	-	3	
350	car battery 12 V	car battery 12 V	without	-	-	3	
354	DC - power supply 40A	NGPE 40/40	448	Rohde & Schwarz	24 M	-	31.03.2010
355 356	power meter power sensor	URV 5 NRV-Z1	891310/027 882322/014	Rohde & Schwarz Rohde & Schwarz	12 M 24/12 M	-	31.03.2009 31.03.2009
357	power sensor	NRV-Z1	861761/002	Rohde & Schwarz	24/12 M	-	31.03.2009
	Power Amplifier 10 kHz-220MHz	AR75A220M1	15860	Amplifier Research	12 M	1b	30.04.2009
362	TOSM Calibration Kit 50 Ohm 10V Insertion Unit 50 Ohm	ZV-Z21/ZV-Z11 URV5-Z2	without 100880	Rohde&Schwarz	12 M 24/12 M	-	31.03.2009 31.03.2010
365 366	Ultra Compact Simulator	UCS 500 M4	V0531100594	Rohde & Schwarz EM-Test	12 M	-	31.03.2010
367	audio measurement amplifier	2636	316832/001	Brüel & Kjaer	12 M	-	31.03.2009
369	insertion unit (SAR-EMS, Ch. A)	URV5-Z2	100301	Rohde & Schwarz	24/12 M	-	31.03.2010
370 371	insertion unit (SAR-EMS, Ch. B) Bluetooth Tester	URV5-Z2 CBT32	100302 100153	Rohde & Schwarz R&S	24/12 M 12 M	-	31.03.2009 31.03.2009
376	horn antenna 6 GHz	BBHA9120 E	BBHA 9120 E 179	Schwarzbeck	12 M	-	31.03.2009
377	emi test receiver	ESCS 30	100160	Rohde & Schwarz	12 M	-	31.03.2009
378 383	broadband RF field monitor signal generator	RadiSense III SME 03	03D00013SNO-08 842 828 /034	DARE B.V. Rohde & Schwarz	12 M 36/12 M	-	31.03.2009 31.03.2010
386	coupling decoupling network	CDN USB/p	19397	Schaffner	12 M	-	31.03.2010
387	coupling decoupling network	CDN L-801 M2	2051	Lüthi	12 M	-	31.03.2009
388	coupling decoupling network	CDN L-801 T2	1929	Lüthi	12 M	-	31.03.2009
389 392	digital multimeter Radio Communication Tester	Keithley 2000 MT8820A	0583926 6K00000788	Keithley Anritsu	24/12 M 12 M	-	31.03.2009 31.03.2009
400	ferrite tube (>15 dB, EN 55022)	FTC 40 X 15 E	5559	Lüthi	12 M	-	31.03.2009
401	ferrite tube (>15 dB, EN 55022) Test Cable Kit N 50 Ohm (male)	FTC 40 X 15 E	5560	Lüthi P&S / Posanbargar	12 M	-	31.03.2009
411	Circulary polarized com. Antenna	ZV-Z11 3102	100200 00033734	R&S / Rosenberger EMCO	pre-m	3	
415	Antenna Position Controller	2090	00035634	ETS-Lindgren	-	4	
416	MAPS Positioner	2010	-	ETS-Lindgren	-	4	
429	MAPS-Positionier Thermo-Hygrometer	2015 H270	54476	ETS-Lindgren Dostmann electronic	- 24 M	4	30.11.2008
431	Model 7405	Near-Field Probe Set	9305-2457	EMCO		4	50.11.2000
436	Radio Communication Tester	CMU 200	103083	Rohde & Schwarz	12 M	-	31.03.2009
439	UltraLog-Antenna CDN for Datacable	HL 562 CDN-UTP	100248 CDN-UTP 029	Rohde + Schwarz EMC Partner AG,	12 M 24 M	-	31.03.2009 31.03.2010
440	CDN for Datacable System CTC-SAR-EMI	System EMI field (SAR)	- CDN-U1P 029	ETS	12 M	5	30.06.2009
443	System CTC-FAR-EMI-Spuri	System CTC-FAR-EMI-	-	ETS-Lindgren/Cetecom	12 M	5	30.04.2009
448	notch filter WCDMA FDD II	WRCT 1850.0/2170.0-	5	Wainwright Instruments	12 M	1c	31.03.2009
449 454	notch filter WCDMA FDD V Oscilloscope	WRCT 824.0/894.0-5/40- HM 205-3	1 9210 P 29661	Wainwright Instruments Hameg	12 M	1c	31.03.2009
455	Oscilloscope	HP 54602B	US 350 336 45	Hawlett Packard	-	4	
456	DC-Power supply 0-5A	EA 3013 S	207810	Elektro Automatik	pre-m	2	
457 459	DC-Power supply, 0-5A DC -power supply 0-5 A, 0-32 V	EA-3013 S EA-PS 2032-50	9624680 910722	Elektro Automatik Elektro Automatik	pre-m	2	
460	Radio Communication Tester	CMU 200	108901	Rohde & Schwarz	pre-m 12 M	-	31.03.2009
462	AF-Generator	MX-2020	-	Conrad	-	4	
463	Universal source	HP3245A	2831A03472	Agilent	- 24 14	4	20.11.2000
464 465	Thermo-Hygro-Monitor Thermo-Hygro-Monitor	WS-9400 WS-9400	without without	Europe Supplies Ltd. Europe Supplies Ltd.	24 M 24 M	-	30.11.2008 30.11.2008
466	digital multimeter	Fluke 112	89210157	Fluke USA	24 M	-	31.03.2010
467	digital multimeter	Fluke 112	89680306	Fluke USA	24 M	-	31.03.2010

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
468	digital multimeter	Fluke 112	90090455	Fluke USA	24 M	-	31.03.2010
470	Thermo-Hygro-Monitor	WS-9400	-	distr. by Conrad	24 M	-	30.11.2008
476	Spectrum Analyzer	FSM	840500/004	Rohde & Schwarz	24/12 M	-	31.03.2009
477	ReRadiating GPS-System	AS-47	-	Automotive Cons. Fink	-	3	
482	filtermatrix	FilterMatrix SAR 1	-	CETECOM (Brl)	-	1d	
484	pre-amplifier 2,5 - 18 GHz	AMF-5D-02501800-25-	1244554	Miteq	12 M	ı	31.03.2009
487	NSA-Verification of CTC-SAR-EMI	System EMI field (SAR)	-	ETS	12 M	ı	31.10.2008
489	emi test receiver	ESU40	1000-30	Rohde & Schwarz	12 M	ı	31.03.2009
490	high pass 2,65 GHz>18GHz	6HC 2650/18000-3-KK	200709138	Trilithic	12 M	-	31.03.2009
491	ESD Simulator dito	ESD dito	dito307022	EM-Test	24 M	-	31.03.2009
494	power supply (GPIB)	Agilent 66332A	US 37474017	Agilent	24/12 M	-	31.03.2009
498	Power Supply	NGPE 40/40	402	Rohde & Schwarz	-	2	
500	industry Acoustic System	MO 2000 Set	100048	Sennheiser	-	4	
502	band reject filter	WRCG 1709/1786-	SN 9	Wainwright	-	ı	
503	band reject filter	WRCG 824/849-814/859-	SN 5	Wainwright	-	1	
517	relais switc matrix	HF Relais Box Keithley	SE 04	-	-		
522	electronical load	EL 9000	-	ELV	-	ı	
523	Digitalmultimeter	L4411A	MY46000154	Agilent	24 M	ı	31.03.2009
524	Voltage Drop Simulator	VDS 200	0196-16	EM Test	18 M	-	31.03.2009
525	Koppelnetzwerk	CNA 200	1196-01	EM Test	18 M	-	31.03.2009
526	Burst Generator	EFT 200 A	0496-06	EM Test	18 M		31.03.2009
527	Micro Pulse Generator	MPG 200 B	0496-05	EM Test	18 M	ı	31.03.2009
528	Load Dump Simulator	LD 200B	0496-06	EM Test	18 M	ı	31.03.2009
529	6 dB Broadband resistive power divider	Model 1515	LH 855	Weinschel	-	2	
530	10 dB Broadband resistive power divider	R 416110000	LOT 9828	-	2		
531	H-field system	Lackman System	without	Lackmann	-	2	
533	Impedance Stabilization Network	ISN T200A	25706	Teseq	12 M	1	29.04.2009
534	Impedance Stabilizatin Network	ISN T400A	24881	Teseq	12 M	,	29.04.2009
535	Impedance Stabilization Network	ISN T800	26321	Teseq	12 M	-	28.04.2009
536	Impedance Stabilization Network	ISN ST08	25867	Teseq	12 M	-	28.04.2009

7.1.3. Legend

7.1.3. Legenu		
Note / remarks		Calibrated during system calibration:
	1a	System CTC-SAR-EMS (RefNo. 442)
	1b	System-CTC-EMS-Conducted (RefNo. 335)
	1c	System CTC-FAR-EMI-spurious emission (RefNo . 443)
	1d	System CTC-SAR-EMI (RefNo . 441)
	1e	System CTC-OATS (EMI radiated) (RefNo. 337)
	1 f	System CTC-CTIA-OTA (RefNo . 420)
	1 g	System CTC-FAR-EMS (RefNo . 444)
	2	Calibration or equipment check immediately before measurement
	3	Regulatory maintained equipment for functional check or support purpose,
	4	Ancillary equipment without calibration e.g. mechanical equipment or monitoring equipment
	5	Test System

Interval of calibration	12 M	12 month
	24 M	24 month
	36 M	36 month
	24/12 M	Calibration every 24 months, between this every 12 months internal validation
	36/12 M	Calibration every 36 months, between this every 12 months internal validation
	Pre-m	Check before starting the measurement
	-	Without calibration

8. Measurement diagrams

8.0.1. Measurement diagrams - 20dB Bandwidth

Date: 7.AUG.2008 11:40:31

Channel low

Date: 7.AUG.2008 11:33:15

Channel middle

Date: 7.AUG.2008 11:26:17

Channel High

8.0.2. Measurement diagrams – 99% Emission Bandwidth

Date: 7.AUG.2008 11:05:50

Channel Low

Date: 7.AUG.2008 11:10:33

Channel Middle

Date: 7.AUG.2008 11:16:15

Channel High

8.0.3. Measurement diagrams – 20dBc requirement

Channel 0:

Diagram Carrier In-Band Power [dBm per 100kHz] – Reference In-Band value Reference

Date: 4.AUG.2008 13:15:53

Date: 4.AUG.2008 12:08:50

Out-of-Band Emission per 100kHz: Sweep 2

Date: 4.AUG.2008 13:11:20

Channel 20:

Diagram Carrier In-Band Power [dBm per 100kHz] – Reference In-Band value

Date: 4.AUG.2008 13:21:04

Date: 4.AUG.2008 11:57:51

Out-of-Band Emission per 100kHz: Sweep 2

Date: 4.AUG.2008 12:56:21

Channel 40:

Diagram Carrier In-Band Power [dBm per 100kHz] – Reference In-Band value

Date: 4.AUG.2008 13:23:26

Date: 4.AUG.2008 11:53:06

Out-of-Band Emission per 100kHz: Sweep 2

Date: 4.AUG.2008 13:01:55

8.0.4. Measurement diagram – Power density

Date: 4.AUG.2008 15:20:20

Channel 0 - Low

Date: 4.AUG.2008 15:11:43

Channel 20 - Middle

Date: 4.AUG.2008 15:02:12

Channel 40 – High

8.0.5. Measurement diagram – Band-Edge compliance

HOPPING MODE ON:

Date: 22.OCT.2008 09:59:02

Left edge: Delta Marker Method, Hopping mode on

Date: 22.OCT.2008 10:14:52

Right edge, Delta Marker Method, hopping mode on

Common Information

Test Description: FCC Part 15.247(d)/ IC-RSS210: Band-Edge compliance

Test Site: Radio LAB, CETECOM GmbH, Essen, Germany

Test Standard: FCC: §15.247 (d)

IC: RSS210, Chapter A8.5

Environment Conditions: Normal conditions (Vnominal, Tnominal)

Operator Name: Lor

Comment: Performed on Channel: 40 (Highest)

Hopping mode off

EUT Information

Description:

EUT Name: McAdams-Paradise
Applicant/ Manufacturer Infineon AG

Serial Number #D

Remarks: Test Software DOCKLIGHT V1.7; Version Adams_ROM2_COM1

FCC-ID WFO-ADAMRFM0

03_ESU_FCC15_247_SW3_right_Edge

Right edge, Delta Marker Method, hopping mode off

Common Information

Test Description: FCC Part 15.247(d)/ IC-RSS210: Band-Edge compliance

Test Site: Radio LAB, CETECOM GmbH, Essen, Germany

Test Standard: FCC: §15.247 (d)

IC: RSS210, Chapter A8.5

Environment Conditions: Normal conditions (Vnominal, Tnominal)

Operator Name: Lor

Comment: Performed on 3 channels: 0 (lowest channel)

Hopping mode off

EUT Information

Description:

EUT Name: McAdams-Paradise
Applicant/ Manufacturer Infineon AG

Serial Number #D

Remarks: Test Software DOCKLIGHT V1.7; Version Adams_ROM2_COM1

FCC-ID WFO-ADAMRFM0

02_ESU_FCC15_247_SW3_left_Edge

Left edge, Delta Marker Method, Hopping mode off

8.0.5.1. Measurement diagram – Radiated field strength in restricted bands

Diagram No.: 02.01

Common Information

Test Description: Part 15, Radiated field strength emission §15.205 & §15.209

Test Site: **CETECOM GmbH Essen** Test Standard: §15.209 Intentional Radiator

Antenna polarisation: horizontal/vertical

TX on Mode Operation mode:

Operator Name: Lor

Comment: Channel no.: low

EUT Information

Description:

EUT Name: Mc Adams-Paradise

Additional Name **XBOX Smart Transceiver Chip**

Manufacturer: Infineon Serial Number: #3

Hardware Rev: Software Rev:

Comment: radiated sample with integr. Antenna

03_1_2.7G_ohne switch H&V

Frequency (MHz)	MaxPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2426.50000	43.6	100.00	1000.000	155.0	V	14.0	1.5	30.4	74.0

(continuation of the "Final Result 1" table from column $10 \dots$)

Frequency (MHz)	Comment
2426.50000	

Final Result 2

Frequency (MHz)	Average (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1032.10000	30.2	100.00	1000.000	155.0	Н	-5.0	0.1	23.8	54.0
1055.90000	25.1	100.00	1000.000	155.0	٧	277.0	-0.1	28.9	54.0

(continuation of the "Final Result 2" table from column 10 ...)

Frequency (MHz)	Comment
1032.10000	
1055.90000	

Common Information

Test Description: Part 15, Radiated field strength emission §15.205 & §15.209

Test Site: CETECOM GmbH Essen
Test Standard: §15.209 Intentional Radiator

Antenna polarisation: horizontal/vertical

Manufacturer: Infineon
Operation mode: TX-on
Operator Name: Lor

Comment: Channel no.: middle

EUT Information Description:

EUT Name: Mc Adams-Paradise

Additional Name XBOX Smart Transceiver Chip

Manufacturer: Infineon Serial Number: #3

Hardware Rev: Software Rev:

Comment: radiated sample with integr. Antenna

Common Information

Test Description: Part 15, Radiated field strength emission §15.205 & §15.209

Test Site: CETECOM GmbH Essen
Test Standard: §15.209 Intentional Radiator

Antenna polarisation: horizontal/vertical

Manufacturer: Infineon
Operation mode: TX-on
Operator Name: Lor

Comment: Channel no. high

EUT Information Description:

EUT Name: Mc Adams-Paradise

Additional Name XBOX Smart Transceiver Chip

Manufacturer: Infineon Serial Number: #3

Hardware Rev: Software Rev:

Comment: radiated sample with integr. Antenna

18G

Diagram No.: 02.04

Common Information

Test Description: Part 15, Radiated field strength emission §15.205 & §15.209

Test Site: CETECOM GmbH Essen
Test Standard: §15.209 Intentional Radiator

Antenna polarisation: horizontal/vertical

Manufacturer: Infineon
Operation mode: TX.mode
Operator Name: Lor

Comment: Channel no. high

EUT Information Description:

EUT Name: Mc Adams-Paradise

Additional Name XBOX Smart Transceiver Chip

Manufacturer: Infineon Serial Number: #3

Hardware Rev: Software Rev:

Comment: radiated sample with integr. Antenna

Frequency in Hz

Copy 15247_of_2.7_18G_ohne switch H&V

2,8

4G

Frequency (MHz)	MaxPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2804.40000	44.9	100.00	1000.000	155.0	V	-8.0	-5.1	29.1	74.0
4963.90000	48.5	100.00	1000.000	155.0	V	44.0	-0.4	25.5	74.0

(continuation of the "Final Result 1" table from column 10 ...)

Frequency (MHz)	Comment
2804.40000	
4963.90000	

Final Result 2

Frequency (MHz)	Average (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
4961.10000	33.2	100.00	1000.000	155.0	V	44.0	-0.4	20.8	54.0

(continuation of the "Final Result 2" table from column 10 ...)

Frequency (MHz)	Comment
4961.10000	

Common Information

Test Description: Part 15, Radiated field strength emission §15.205 & §15.209

Test Site: CETECOM GmbH Essen
Test Standard: §15.209 Intentional Radiator

Antenna polarisation: horizontal/vertical

Manufacturer: Infineon
Operation mode: TX Mode
Operator Name: Lor

Comment: Channel no. middle

EUT Information Description:

EUT Name: Mc Adams-Paradise

Additional Name XBOX Smart Transceiver Chip

Manufacturer: Infineon Serial Number: #3

Hardware Rev: Software Rev:

Comment: radiated sample with integr. Antenna

Frequency (MHz)	MaxPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
4884.10000	47.3	100.00	1000.000	155.0	٧	35.0	-0.6	26.7	74.0

(continuation of the "Final Result 1" table from column $10 \dots$)

Frequency (MHz)	Comment
4884.10000	

Final Result 2

Frequency (MHz)	Average (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
4881.30000	33.9	100.00	1000.000	155.0	V	298.0	-0.6	20.1	54.0
9763.10000	39.5	100.00	1000.000	155.0	٧	-3.0	9.7	14.5	54.0

(continuation of the "Final Result 2" table from column 10 ...)

Frequency (MHz)	Comment
4881.30000	
9763.10000	

Common Information

Test Description: Part 15, Radiated field strength emission §15.205 & §15.209

Test Site: CETECOM GmbH Essen
Test Standard: §15.209 Intentional Radiator

Antenna polarisation: horizontal/vertical

Manufacturer: Infineon
Operation mode: Tx Mode
Operator Name: Lor

Comment: Channel no. low

EUT Information

Description:

EUT Name: Mc Adams-Paradise

Additional Name XBOX Smart Transceiver Chip

Manufacturer: Infineon
Serial Number: #3

Hardware Rev: Software Rev:

Comment: radiated sample with integr. Antenna

Frequency (MHz)	MaxPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
4804.30000	47.0	100.00	1000.000	155.0	٧	41.0	-0.6	27.0	74.0

(continuation of the "Final Result 1" table from column $10 \dots$)

Frequency (MHz)	Comment
4804.30000	

Final Result 2

Frequency (MHz)	Average (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
4801.50000	32.7	100.00	1000.000	155.0	٧	37.0	-0.6	21.3	54.0

(continuation of the "Final Result 2" table from column 10 ...)

Frequency	Comment
(MHz)	
4801.50000	

Diagram No.: 02.10 (RX-mode: §15.109)

Common Information

Test Description: Radiated field strength emission
Test Site: CETECOM GmbH Essen
Test Standard: FCC 15.209 Intentional Radiator

Antenna polarisation: horizontal/vertical

Manufacturer: Infineon

Operation mode: IDLE Mode (Binding-Mode)

Operator Name: Lor

Comment: Channel no. middle

EUT Information Description:

EUT Name: Mc Adams-Paradise

Additional Name XBOX Smart Transceiver Chip

Manufacturer: Infineon Serial Number: #3

Comment: radiated sample with integr. Antenna

EMI Auto Test Template: 15247_of 03_1_2.7G_ohne switch H&V

Hardware Setup: 13_ESU_Horn_18G_Preamp_ohne_SM

Measurement Type: Open-Area-Test-Site Frequency Range: 1 GHz - 2,8 GHz

Graphics Level Range: 20 dBµV/m - 100 dBµV/m

Preview Measurements:

Scan Test Template: 07_ESU_1_2.7G_pre

Data Reduction:

Limit Line #1: FCC15_109_PK Limit Line #2: FCC15_109_AV

Interactive data reduction

Peak Search: 6 dB
Maximum Results: 10
Subrange Maxima: 50
Maxima per Subrange: 1
Acceptance Offset: -20 dB
Maximum Number of Results: 30

Frequency Zoom:

Zoom Scan Template: 09_ESU_1_2.7G_zoom

Adjustment:

Template for Single Meas.: 07_ESU_1_2.7G_pre

Final Measurements:

Template for Single Meas.: 11_ESU_1_2.7G_fin

Template for Single 11_ESU_1_2.7G_fin

Meas.:(>1GHz)

Report Settings:

Report Template: Report Setup FCC 15_209

Actions:

Test start

Notify: "Matrix richtig geschaltet ?!?"

Final Result 1

Frequency (MHz)	MaxPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1122.60000	39.3	100.00	1000.000	155.0	٧	133.0	-0.7	34.7	74.0

(continuation of the "Final Result 1" table from column 10 ...)

Frequency (MHz)	Comment
1122.60000	

Diagram No.: 02.11 (RX-Mode:§15.109)

Common Information

Test Description: Part 15, Radiated field strength emission §15.205 & §15.209

Test Site: CETECOM GmbH Essen
Test Standard: §15.209 Intentional Radiator

Antenna polarisation: horizontal/vertical

Manufacturer: Infineon

Operation mode: IDLE Mode (Binding)

Operator Name: Lor

Comment: Channel no. middle

EUT Information Description:

EUT Name: Mc Adams-Paradise

Additional Name XBOX Smart Transceiver Chip

Manufacturer: Infineon Serial Number: #3

Comment: radiated sample with integr. Antenna

Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
11713.30000	52.9	100.00	1000.000	155.0	٧	90.0	11.9	21.1	74.0

(continuation of the "Final Result 1" table from column 10 ...)

Frequency (MHz)	Comment
11713.30000	

Final Result 2

Frequency (MHz)	Average (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
4959.00000	29.4	100.00	1000.000	155.0	V	315.0	-0.4	24.6	54.0
9866.70000	38.2	100.00	1000.000	155.0	٧	102.0	9.8	15.8	54.0

(continuation of the "Final Result 2" table from column 10 ...)

Frequency (MHz)	Comment
4959.00000	
9866.70000	

EMI Auto Test Template: 15247_of_2.7_18G_ohne switch H&V

Hardware Setup: 13_ESU_Horn_18G_Preamp_ohne_SM

 $\begin{array}{ll} \mbox{Measurement Type:} & \mbox{Open-Area-Test-Site} \\ \mbox{Frequency Range:} & 2.8 \mbox{ GHz} - 18 \mbox{ GHz} \\ \mbox{Graphics Level Range:} & 20 \mbox{ dB}\mu\mbox{V/m} - 80 \mbox{ dB}\mu\mbox{V/m} \end{array}$

Preview Measurements:

Scan Test Template: 08_ESU_ExtPreamp_2.7_18G_pre

Data Reduction:

Limit Line #1: FCC15_109_PK
Limit Line #2: FCC15_109_AV

Interactive data reduction

Peak Search: 6 dB
Maximum Results: 10
Subrange Maxima: 50
Maxima per Subrange: 1
Acceptance Offset: -20 dB
Maximum Number of Results: 30

Frequency Zoom:

Zoom Scan Template: 10_ESU_ExtPreamp_2.7_18G_zoom

Adjustment:

Template for Single Meas.: 08_ESU_ExtPreamp_2.7_18G_pre

Final Measurements:

Template for Single Meas.: 12_ESU_ExtPreamp_2.7_18G_fin

Template for Single 12_ESU_ExtPreamp_2.7_18G_fin Meas.:(>1GHz)

Report Settings:

Report Template: Report Setup FCC 15_247

Date: 12.AUG.2008 06:19:32

Overview Measurement from 18 to 25 GHz (close to EUT surface) - Channel low

Overview Measurement from 18 to 25 GHz (close to EUT surface) - Channel middle

Overview Measurement from 18 to 25 GHz (close to EUT surface) – Channel high

Common Information

Turntable step:

Used filter:

Test description: Electric Fieldstrength Measurement related to 3 m distance
Test site and distance: Semi Anechoic Room (SAR) with 3 m measurement distance

Measured sides of EUT: front, right, rear, left,top, under

Rec. antenna (pre-scan): height 1.00 m and 1.82 m, horizontal and vertical polarisation Rec. antenna (final): height between 1 m to 4 m, polarisation according to pre-scan

height between 1 m to 4 m, polarisation according to pre-scan results 90° during pre-scan, continuously turning during final measurement

lowpass 1200 MHz

Test specification.: FCC 15.209

Operator: Lor

Operating conditions: Tx Mode Low Channel

Comment 2: No Atmel Board and DC 3V External power supply

01_FCC15.209_hor+vert_kipp

EMI Auto Test Template: 01_FCC15.209_hor+vert_kipp

Hardware Setup: HW11_FCC_ESCS30_TP1200_EUTkipp

Measurement Type: E(I)RP

Frequency Range: 30 MHz - 1 GHz Graphics Level Range: 0 dB μ V/m - 60 dB μ V/m

Preview Measurements:

Turntable position: 0 - 270 deg , Step Size = 90 deg , Speed = 8 Elevation: 0 - 90 deg , Step Size = 90 deg , Speed = 4

Polarity: H + V

Scan Test Template: EMI Scan 01_fast_FCC_15_209 B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzMaxPeak120 kHz0,00005 sESCS 30

Data Reduction:

Limit Line #1: FCC15.209

Interactive data reduction

Peak Search: 6 dB
Maximum Results: 10
Subrange Maxima: 25
Maxima per Subrange: 1
Acceptance Offset: -6 dB
Maximum Number of Results: 20

Frequency Zoom:

Zoom Scan Template: EMI Scan 02_20ms_zoom_15_209 B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzMaxPeak120 kHz0,02 sESCS 30

Adjustment:

Turntable position:

Elevation:

Adjustment with full Range, Speed = 3

Adjustment with full Range, Speed = 5

Template for Single Meas.:

EMI Scan 02_20ms_FCC_15_209B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzMaxPeak120 kHz0,02 sESCS 30

Final Measurements:

Template for Single Meas.: EMI Scan 03_1s_FCC_15_209 B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzQuasiPeak120 kHz1 sESCS 30

Report Settings:

Report Template: FCC15_209_vert_hor

Create Electronic Report: PDF

Document Name: EMI Report

Common Information

Test description: Electric Fieldstrength Measurement related to 3 m distance
Test site and distance: Semi Anechoic Room (SAR) with 3 m measurement distance

Measured sides of EUT: front, right, rear, left,top, under

Rec. antenna (pre-scan): height 1.00 m and 1.82 m, horizontal and vertical polarisation Rec. antenna (final): height between 1 m to 4 m, polarisation according to pre-scan

height between 1 m to 4 m, polarisation according to pre-scan results 90° during pre-scan, continuously turning during final measurement

lowpass 1200 MHz

Test specification.: FCC 15.209

Operator: Lor

Operating conditions: TX-mode, Channel Middle =20
Comment 1: No Atmel Board and DC 3V ext supply

Comment 2:

Turntable step:

Used filter:

01_FCC15.209_hor+vert_kipp

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Elevation (deg)	Corr. (dB)	Margin (dB)
204.010000	27.8	1000.00	120.000	100.0	V	184.0	0.0	11.7	15.70

(continuation of the "Final Result 1" table from column 10 ...)

Frequency (MHz)	Limit (dBµV/m)	Comment
204.010000	43.50	

EMI Auto Test Template: 01_FCC15.209_hor+vert_kipp

Hardware Setup: HW11_FCC_ESCS30_TP1200_EUTkipp

Measurement Type: E(I)RP Frequency Range: 30 MHz - 1 GHz Graphics Level Range: 0 dBμV/m - 60 dBμV/m

Preview Measurements:

Turntable position: 0 - 270 deg, Step Size = 90 deg, Speed = 8 Elevation: 0 - 90 deg, Step Size = 90 deg, Speed = 4

Polarity: H + V

Scan Test Template: EMI Scan 01_fast_FCC_15_209 B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzMaxPeak120 kHz0,00005 sESCS 30

Data Reduction:

Limit Line #1: FCC15.209

Interactive data reduction

Peak Search: 6 dB
Maximum Results: 10
Subrange Maxima: 25
Maxima per Subrange: 1
Acceptance Offset: -6 dB
Maximum Number of Results: 20

Frequency Zoom:

Zoom Scan Template: EMI Scan 02_20ms_zoom_15_209 B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzMaxPeak120 kHz0,02 sESCS 30

Adjustment:

Turntable position:

Elevation:

Adjustment with full Range, Speed = 3

Adjustment with full Range, Speed = 5

Template for Single Meas.:

EMI Scan 02_20ms_FCC_15_209B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzMaxPeak120 kHz0.02 sESCS 30

Final Measurements:

Template for Single Meas.: EMI Scan 03_1s_FCC_15_209 B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzQuasiPeak120 kHz1 sESCS 30

Report Settings:

Report Template: FCC15_209_vert_hor

Create Electronic Report: PDF
Document Name: EMI Report

Common Information

Test description: Electric Fieldstrength Measurement related to 3 m distance
Test site and distance: Semi Anechoic Room (SAR) with 3 m measurement distance

Measured sides of EUT: front, right, rear, left,top, under

Rec. antenna (pre-scan): height 1.00 m and 1.82 m, horizontal and vertical polarisation Rec. antenna (final): height between 1 m to 4 m, polarisation according to pre-scan

height between 1 m to 4 m, polarisation according to pre-scan results 90° during pre-scan, continuously turning during final measurement

lowpass 1200 MHz

Test specification.: FCC 15.209

Operator: Lor

Operating conditions: Tx Mode Channel High = 40

Comment 1: No Atmel Board and DC 3V ext supply

Comment 2:

Turntable step:

Used filter:

01_FCC15.209_hor+vert_kipp

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Elevation (deg)	Corr. (dB)	Margin (dB)
192.020000	29.3	1000.00	120.000	112.0	Н	155.0	0.0	11.3	14.20
							•••		

(continuation of the "Final Result 1" table from column 10 ...)

Frequency (MHz)	Limit (dBµV/m)	Comment			
192.020000	43.50				

EMI Auto Test Template: 01_FCC15.209_hor+vert_kipp

Hardware Setup: HW11_FCC_ESCS30_TP1200_EUTkipp

Measurement Type: E(I)RP Frequency Range: 30 MHz - 1 GHz Graphics Level Range: 0 dBμV/m - 60 dBμV/m

Preview Measurements:

Turntable position: 0 - 270 deg, Step Size = 90 deg, Speed = 8 Elevation: 0 - 90 deg, Step Size = 90 deg, Speed = 4

Polarity: H + V

Scan Test Template: EMI Scan 01_fast_FCC_15_209 B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzMaxPeak120 kHz0,00005 sESCS 30

Data Reduction:

Limit Line #1: FCC15.209

Interactive data reduction

Peak Search: 6 dB
Maximum Results: 10
Subrange Maxima: 25
Maxima per Subrange: 1
Acceptance Offset: -6 dB
Maximum Number of Results: 20

Frequency Zoom:

Zoom Scan Template: EMI Scan 02_20ms_zoom_15_209 B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzMaxPeak120 kHz0,02 sESCS 30

Adjustment:

Turntable position: Adjustment with full Range, Speed = 3
Elevation: Adjustment with full Range, Speed = 5
Template for Single Meas.: EMI Scan 02_20ms_FCC_15_209B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzMaxPeak120 kHz0,02 sESCS 30

Final Measurements:

Template for Single Meas.: EMI Scan 03_1s_FCC_15_209 B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzQuasiPeak120 kHz1 sESCS 30

Report Settings:

Report Template: FCC15_209_vert_hor

Create Electronic Report: PDF
Document Name: PDF
EMI Report

Common Information

Test description: Electric Fieldstrength Measurement related to 3 m distance Test site and distance: Semi Anechoic Room (SAR) with 3 m measurement distance

Measured sides of EUT: front, right, rear, left, top, under

height 1.00 m and 1.82 m, horizontal and vertical polarisation Rec. antenna (pre-scan):

height between 1 m to 4 m, polarisation according to pre-scan results Rec. antenna (final): Turntable step: 90° during pre-scan, continuously turning during final measurement

Used filter: lowpass 1200 MHz

FCC 15.109 Test specification .:

EUT: Mc Adams RF-Module RFTV2.0

Manufacturer: Infineon Operator: Lor RX-Mode

Comment 1: powered 3.0V

Comment 2:

01_FCC15.209_hor+vert_kipp

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Elevation (deg)	Corr. (dB)	Margin (dB)
35.990000	26.8	1000.00	120.000	100.0	V	160.0	0.0	12.0	13.20
51.990000	25.8	1000.00	120.000	112.0	V	327.0	0.0	7.6	14.20
132.000000	31.6	1000.00	120.000	155.0	Н	250.0	90.0	9.4	11.90
204.000000	34.9	1000.00	120.000	138.0	Н	192.0	90.0	11.7	8.60
252.010000	34.7	1000.00	120.000	100.0	Н	269.0	0.0	13.9	11.30

(continuation of the "Final Result 1" table from column 10 ...)

Frequency	Limit	Comment
(MHz)	(dBµV/m)	
35.990000	40.00	
51.990000	40.00	
132.000000	43.50	
204.000000	43.50	
252.010000	46.00	

MI Auto Test Template: 01_FCC15.209_hor+vert_kipp

Hardware Setup: HW11_FCC_ESCS30_TP1200_EUTkipp

Measurement Type: E(I)RP

Frequency Range: 30 MHz - 1 GHz Graphics Level Range: 0 dB μ V/m - 60 dB μ V/m

Preview Measurements:

Turntable position: 0 - 270 deg , Step Size = 90 deg , Speed = 8
Elevation: 0 - 90 deg , Step Size = 90 deg , Speed = 4

Polarity: H + V

Scan Test Template: EMI Scan 01_fast_FCC_15_209 B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzMaxPeak120 kHz0,00005 sESCS 30

Data Reduction:

Limit Line #1: FCC15.209

Interactive data reduction

Peak Search:6 dBMaximum Results:10Subrange Maxima:25Maxima per Subrange:1Acceptance Offset:-6 dBMaximum Number of Results:20

Frequency Zoom:

Zoom Scan Template: EMI Scan 02_20ms_zoom_15_209 B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzMaxPeak120 kHz0,02 sESCS 30

Adjustment:

Turntable position: Adjustment with full Range , Speed = 3
Elevation: Adjustment with full Range , Speed = 5
Template for Single Meas.: EMI Scan 02_20ms_FCC_15_209B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzMaxPeak120 kHz0,02 sESCS 30

Final Measurements:

Template for Single Meas.: EMI Scan 03_1s_FCC_15_209 B

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 1 GHzQuasiPeak120 kHz1 sESCS 30

Report Settings:

Report Template: FCC15_209_vert_hor

Create Electronic Report: PDF
Document Name: EMI Report