Q1

Given in Lecture Note 10.

$\mathbf{Q}\mathbf{2}$

We have two linear classifiers c_1 and c_2 positioned as following,

	(0, 0)	(0, 1)	(1, 0)	(1, 1)
c_1	+	+	+	-
c_2	-	+	+	+

We can instantiate classifiers c_1 and c_2 as following, $c_1=\sigma(-x_1-x_2+1.5)$, $c_2=\sigma(x1+x2-0.5)$.

Project them onto the space of c_1 and c_2 ,

	(0, 0)	(0, 1)	(1, 0)	(1, 1)
c_1	0.8176	0.6225	0.6225	0.3778
c_2	0.3778	0.6225	0.6225	0.8176

We can have the third classifier as $y = \sigma(c_1 + c_2 - 1.22)$.

	(0, 0)	(0, 1)	(1, 0)	(1, 1)
y	0.4938	0.5062	5062	4938

Q3

In Q2, we have the following weights:

$$c_1: \mathbf{w}_1 = (-1, -1, 1.5)$$

$$c_2: \mathbf{w}_2 = (1, 1, -0.5)$$

$$y: \mathbf{w}_3 = (1, 1, -1.22)$$

Now let us swap the parameters of c_1 and c_2 , and we have a new model as the following,

$$c'_1 : \mathbf{w}'_1 = (1, 1, -0.5)$$

$$c'_2 : \mathbf{w}'_2 = (-1, -1, 1.5)$$

$$y' : \mathbf{w}'_3 = (1, 1, -1.22)$$

It is easy to verify that y'=y, which means y' is also a valid solution. Average the weights $\tilde{w}_1=\frac{\pmb{w}_1+\pmb{w}_1'}{2}$, $\tilde{w}_2=\frac{\pmb{w}_2+\pmb{w}_2'}{2}$, and $\tilde{w}_3=\frac{\pmb{w}_3+\pmb{w}_3'}{2}$ and obtain another model

$$\tilde{c_1} : \tilde{w}_1 = (0, 0, 0.5)$$

 $\tilde{c_2} : \tilde{w}_2 = (0, 0, 0.5)$
 $\tilde{y} : \tilde{w}_3 = (1, 1, -1.22)$

	(0, 0)	(0, 1)	(1, 0)	(1, 1)
\tilde{y}	0.5062	0.5062	5062	5062

Suppose the positive data points (0,1), (1,0) are labeled and 1, and the negative data points (0,0) and (1,1) are labeled as 0.

The loss for the y and y' model is $\mathcal{L} = -\log(0.4938) - \log(0.4938) - \log(1 - \log(0.4938))$ $0.5062) - \log(0.5062) \approx 2.723$. However, the loss for \tilde{y} is $\tilde{\mathcal{L}} = -\log(0.5062)$ $\log(0.5062) - \log(1 - 0.5062) - \log(0.5062) \approx 2.773 > \mathcal{L}.$

If the optimization of the XOR model is convex, we should have the loss on the averaged weight smaller, i.e., $\mathcal{L} > \tilde{\mathcal{L}}$. This contradiction shows that the optimization is non-convex.