

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11174026 A

(43) Date of publication of application: 02.07.99

(51) Int. Cl

G01N 27/60
G01N 27/00
G01R 27/26
// G01R 31/00

(21) Application number: 09338840

(22) Date of filing: 09.12.97

(71) Applicant: FUJITSU LTD

(72) Inventor: FUKURODA JIYUNJI
ESHITA TAKASHI
ARIMOTO YOSHIHIRO

(54) FERROELECTRONIC SUBSTANCE FATIGUE LIFE
TESTING METHOD AND TESTING DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To perform a fatigue life test in a short time even in a ferroelectric material with a long reversing fatigue life so as to easily predict a fatigue life of the material by regressing a function of reduction ratio of a residual polarization value of the material by a straight line as a function of a reversing frequency of polarization reversing pulse and extrapolating the straight line so as to predict a fatigue life of the material.

SOLUTION: After polarization reversing pulse voltages, which are N in number, are impressed between the electrodes of a capacitor 1 formed of ferroelectric material, a residual polarization value Q is measured, and this measurement is repeated while increasing the reversing number N gradually. These measurement results are plotted as a function of a reduction ratio of a residual polarization value Q while using a logarithm of the reversing number N and using a vertical axis for the reduction ratio of the residual polarization value Q. Using the obtained regressing line, a polarization reversing life of the ferroelectric material can be predicted. For example, a life for the residual polarization value Q with a reduction ratio of

20% can be easily predicted on the basis of the data for a far lower reduction ratio of the value Q. Therefore, a life can be predicted by means of the measurement in a short time.

COPYRIGHT: (C)1999,JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平11-174026

(43) 公開日 平成11年(1999)7月2日

(51) Int.Cl.⁶
G 0 1 N 27/60
27/00
G 0 1 R 27/26
// G 0 1 R 31/00

識別記号

F I
G 0 1 N 27/60
27/00
G 0 1 R 27/26
31/00

Z
Z
Z

審査請求 未請求 請求項の数9 O.L (全8頁)

(21) 出願番号 特願平9-338840

(22) 出願日 平成9年(1997)12月9日

(71) 出願人 000005223

富士通株式会社

神奈川県川崎市中原区上小田中4丁目1番
1号

(72) 発明者 袋田 淳史

神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内

(72) 発明者 恵下 隆

神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内

(72) 発明者 有本 由弘

神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内

(74) 代理人 弁理士 石田 敬 (外3名)

(54) 【発明の名称】 強誘電体材料の疲労寿命試験方法及び試験装置

(57) 【要約】

【課題】 反転疲労寿命が長い強誘電体材料であっても短時間での疲労寿命試験を可能にする試験方法及び装置を提供する。

【解決手段】 強誘電体材料に分極反転パルスを加えて残留分極値を測定することでその材料の分極反転に伴う疲労特性を測定するに際し、当該材料の残留分極値の減少率の関数を分極反転パルスの反転回数の関数として直線で回帰し、その直線を外挿して当該材料の疲労寿命を予測する。

【特許請求の範囲】

【請求項1】 強誘電体材料に分極反転パルスを加えて当該材料の残留分極値を測定することによりその材料の分極反転に伴う疲労特性を測定する疲労寿命試験方法であって、当該材料の残留分極値の減少率の関数を分極反転パルスの反転回数の関数として直線で回帰し、その直線を外挿して当該材料の疲労寿命を予測することを特徴とする強誘電体材料の疲労寿命試験方法。

【請求項2】 反転回数Nにおける前記残留分極値の減少率を、

【数1】

$$F(N) = (Q_{MAX} - Q(N)) / Q_{MAX}$$

(この式中、F(N)は反転回数Nにおける残留分極値の減少率、Q_{MAX}は残留分極の最大値、Q(N)は反転回数Nでの残留分極値)により求め、この残留分極値の減少率F(N)の関数を基準正規分布の累積分布関数Eの逆関数E⁻¹(F(N))として、これを反転回数Nの対数 log Nに対して

【数2】

$$K = a + b \cdot n$$

(この式中、K = E⁻¹(F(N))、n = log N、そしてa, bは定数であり、E⁻¹(F(N))は基準正規分布のF(N)に対応する確率xを与える累積分布関数

【数3】

$$E(K) = x = (2\pi)^{-1/2} \int_{-\infty}^K \exp(-t^2/2) dt$$

の逆関数である)なる直線で回帰することを特徴とする請求項1記載の方法。

【請求項3】 前記残留分極値の測定を、測定された残留分極値の変化が減少に転じたのを確認するまで行うこととする特徴とする、請求項1又は2記載の方法。

【請求項4】 前記残留分極値の測定を、連続して少なくとも3回の測定で残留分極値の減少を確認するまで行う、請求項3記載の方法。

【請求項5】 少なくとも3回の連続した測定で残留分極値が減少し続け、且つその減少量が徐々に大きくなっていることで、残留分極値の変化が減少に転じたことを確認する、請求項4記載の方法。

【請求項6】 強誘電体材料に分極反転パルスを加えて当該材料の残留分極値を測定することによりその材料の分極反転に伴う疲労特性を測定する疲労寿命試験装置であって、強誘電体材料に分極反転パルスを加えて対応する残留分極値を測定する手段と、残留分極値の減少率の関数を分極反転パルスの反転回数の関数として直線で回帰し、その直線を外挿して、残留分極値の減少率が所定の値となるときの反転パルス回数を当該材料の疲労寿命として出力する手段を備えていることを特徴とする強誘電体材料の疲労寿命測定装置。

【請求項7】 強誘電体材料に分極反転パルスを加えて当該材料の残留分極値を測定することによりその材料の分極反転に伴う疲労特性を測定する疲労寿命試験方法であって、

(1) 分極反転する所定のパルス電圧における当該材料の残留分極値の減少率の関数を分極反転パルスの反転回数の関数として直線で回帰することにより得られる第一の回帰直線を得る操作を、パルス電圧の値を変えて複数回繰り返し、それによりパルス電圧に対応した複数の第一の回帰直線を求め、

(2) これらの複数の第一の回帰直線のそれぞれから、予め決められた残留分極値の減少率になるときの各パルス電圧Vでの反転回数N Lを求める、

(3) 得られたパルス電圧Vと反転回数N Lとからなる複数のデータ対から、

【数4】

$$Y = c - d V$$

(ただし、Y = log N L, c, dは定数)

20 なる第二の回帰直線を求め、

(4) この第二の回帰直線から、当該強誘電体材料の耐圧以下で且つ通常使用時の電圧より高い電圧V tの分極反転パルスを加えたときに上記予め決められた残留分極値の減少率を与える反転回数N L tを求める、

(5) そして強誘電材料に対する以後の疲労試験を上記電圧V tの分極反転パルスを使って行って、当該材料について残留分極値の減少率の関数を分極反転パルスの反転回数の関数として直線で回帰して得られた直線を外挿して疲労寿命を予測し、この予測寿命を与える反転回数

30 N L t (s)を上記(4)で求めた反転回数N L tと比較することで、当該材料の疲労寿命試験の合否を判定することを特徴とする強誘電材料の疲労寿命試験方法。

【請求項8】 前記第一の回帰直線を求める際のパルス電圧を、強誘電体材料の通常使用時の電圧以上且つ当該材料の耐圧以下の異なる3点以上の電圧とすることを特徴とする、請求項7記載の方法。

【請求項9】 強誘電体材料に分極反転パルスを加えて当該材料の残留分極値を測定することによりその材料の分極反転に伴う疲労特性を測定する疲労寿命試験装置であって、

(a) 強誘電体材料に分極反転パルスを加えて対応する残留分極値を測定する手段、及び

(b) (1) 分極反転する所定のパルス電圧における当該材料の残留分極値の減少率の関数を分極反転パルスの反転回数の関数として直線で回帰することにより得られる第一の回帰直線を得る操作を、パルス電圧の値を変えて複数回繰り返し、それによりパルス電圧に対応した複数の第一の回帰直線を求め、次に(2)これらの複数の第一の回帰直線のそれぞれから、予め決められた残留分極値の減少率になるときの各パルス電圧Vの下での反転

50 極値の減少率によるときの各パルス電圧Vの下での反転

回数N_Lを求める、(3)得られたパルス電圧Vと反転回数N_Lとからなる複数のデータ対から、

【数5】

$$Y = c - dV$$

(ただし、Y = log N_L、c, dは定数)

なる第二の回帰直線を求め、(4)この第二の回帰直線から、当該強誘電体材料の耐圧以下で且つ通常使用時の電圧より高い電圧V_tの分極反転パルスを加えたときに上記予め決められた残留分極値の減少率を与える反転回数N_L_tを求める、そして(5)強誘電体材料に対する以後の疲労試験を上記電圧V_tの分極反転パルスを使って行って、当該材料について残留分極値の減少率の関数を分極反転パルスの反転回数の関数として直線で回帰して得られた直線を外挿して疲労寿命を予測し、この予測寿命を与える反転回数N_L_t(s)を上記(4)で求めた反転回数N_L_tと比較することで、当該材料の疲労寿命試験の合否を判定し、そしてその結果を出力する手段、を備えていることを特徴とする強誘電体材料の疲労寿命試験装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、不揮発性メモリ装置における強誘電体キャパシタ等に用いられる強誘電体材料の分極反転による疲労寿命を効率よく短時間で試験する方法、及びこの方法に基づいた試験装置に関する。

【0002】

【従来の技術】不揮発性メモリ装置の強誘電体キャパシタにおいては、強誘電体の材料組成や電極構造を最適化するために、使用する強誘電体材料の分極反転の疲労寿命を試験することが重要である。一般に、強誘電体材料の分極反転寿命の試験は、強誘電体材料をはさむ電極の間に分極反転パルスを加えて行われる。

【0003】強誘電体材料の疲労寿命試験の通常の方法を、図1と図2を参照して説明する。図1に示した試験装置において、1は試験しようとする強誘電体材料から作製された強誘電体キャパシタであり、2は電圧測定用コンデンサ、3は信号発生器、4はオッショロスコープである。試験に当たっては、信号発生器3(図1)より、図2に示したように印加電圧+V及び-VのN個の交互反転パルスを発生して強誘電体キャパシタ1(図1)の分極反転を行う。次に、+Vのパルスを2個(図2においてパルスA、B)、続いて-Vのパルスを2個(図2においてパルスC、D)、合計して4個のパルスを加える。このときに、これら4個のパルスについて電圧測定用コンデンサ2(図1)の両端の電圧(それぞれV_A、V_B、V_C、V_D)をオッショロスコープ4(図1)で測定し、下式から残留分極値Qを求める。なお、下式中のCはコンデンサ2の容量である。

【0004】

【数6】

$$Q = \frac{1}{2} [(V_A - V_B) + |V_C - V_D|] \cdot C$$

【0005】この分極反転試験を、強誘電体キャパシタに加える分極反転パルス数Nを徐々に増加させながら複数回行って残留分極値を測定し、この値が初期値(あるいは最高値)の20~50%に劣化したときの反転回数を強誘電体材料の寿命とする。

【0006】強誘電体キャパシタに用いられる強誘電体材料は、これまでPZT(Pb(Zr, Ti)O₃)などが主であり、残留分極値が初期値から20%劣化する反転疲労寿命は10⁸回程度であった。この場合、500kHzのパルスを加えてこの試験をすれば、200秒で結果が得られた。しかし、この程度の寿命ではメモリとして不十分であるため、近年、SBT(SrBi₂Ta₂O₉)などの反転疲労寿命の長い材料が開発されてきた。

【0007】このSBTの反転疲労特性は、10¹⁰回の反転パルスを加えた後でもほとんど劣化しない。これは、500kHzのパルスを加えた場合、5時間以上の試験でも結果が得られないことを意味する。強誘電体キャパシタに用いる強誘電体の材料組成や電極構造の最適化のためには、疲労試験の結果をもとに次なる組成や構造を検討しなければならないので、疲労試験に大変な時間を要することになると、結果として開発時間の大幅な遅れを生じてしまう。

【0008】

【発明が解決しようとする課題】本発明の目的は、反転疲労寿命が長い強誘電体材料であっても疲労寿命試験を短時間で行うを可能にし、そして短時間の測定から疲労寿命を簡単に予測するのを可能にする試験方法及び試験装置を提供することである。また、強誘電体材料サンプルの寿命の合否を判定する試験方法と装置を提供することも、本発明の目的である。

【0009】

【課題を解決するための手段】一つの側面において、本発明の強誘電体材料の疲労寿命試験方法は、強誘電体材料に分極反転パルスを加えて当該材料の残留分極値を測定することによりその材料の分極反転に伴う疲労特性を測定する疲労寿命試験方法であって、当該材料の残留分極値の減少率の関数を分極反転パルスの反転回数の関数として直線で回帰し、その直線を外挿して当該材料の疲労寿命を予測することを特徴とするものである。

【0010】もう一つの側面において、本発明の強誘電体材料の疲労寿命試験方法は、強誘電体材料に分極反転パルスを加えて当該材料の残留分極値を測定することによりその材料の分極反転に伴う疲労特性を測定する疲労寿命試験方法であって、(1)分極反転する所定のパルス電圧における当該材料の残留分極値の減少率の関数を分極反転パルスの反転回数の関数として直線で回帰するこ

とにより得られる第一の回帰直線を得る操作を、パルス電圧の値を変えて複数回繰り返し、それによりパルス電圧に対応した複数の第一の回帰直線を求め、(2)これらの複数の第一の回帰直線のそれぞれから、予め決められた残留分極値の減少率になるときの各パルス電圧Vでの反転回数NLを求め、(3)得られたパルス電圧Vと反転回数NLとからなる複数のデータ対から、

【0011】

【数7】

$$Y = c - d V$$

(ただし、Y = log NL、c, d は定数)

【0012】なる第二の回帰直線を求め、(4)この第二の回帰直線から、当該強誘電体材料の耐圧以下で且つ通常使用時の電圧より高い電圧Vtの分極反転パルスを加えたときに上記予め決められた残留分極値の減少率を与える反転回数NLtを求め、(5)そして強誘電材料に対する以後の疲労試験を上記電圧Vtの分極反転パルスを使って行って、当該材料について残留分極値の減少率の関数を分極反転パルスの反転回数の関数として直線で回帰して得られた直線を外挿して疲労寿命を予測し、この予測寿命を与える反転回数NLt(s)を上記

(4)で求めた反転回数NLtと比較することで、当該材料の疲労寿命試験の合否を判定することを特徴とする。

【0013】本発明の強誘電体材料の一つの疲労寿命試験装置は、強誘電体材料に分極反転パルスを加えて当該材料の残留分極値を測定することによりその材料の分極反転に伴う疲労特性を測定する疲労寿命試験装置であって、強誘電体材料に分極反転パルスを加えて対応する残留分極値を測定する手段と、残留分極値の減少率の関数を分極反転パルスの反転回数の関数として直線で回帰し、その直線を外挿して、残留分極値の減少率が所定の値となるときの反転パルス回数を当該材料の疲労寿命として出力する手段を備えていることを特徴とする。

【0014】本発明の強誘電体材料のもう一つの疲労寿命試験装置は、強誘電体材料に分極反転パルスを加えて当該材料の残留分極値を測定することによりその材料の分極反転に伴う疲労特性を測定する疲労寿命試験装置であって、(a)強誘電体材料に分極反転パルスを加えて対応する残留分極値を測定する手段、及び(b)(1)分極反転する所定のパルス電圧における当該材料の残留分極値の減少率の関数を分極反転パルスの反転回数の関数として直線で回帰することにより得られる第一の回帰直線を得る操作を、パルス電圧の値を変えて複数回繰り返し、それによりパルス電圧に対応した複数の第一の回帰直線を求め、次に(2)これらの複数の第一の回帰直線のそれぞれから、予め決められた残留分極値の減少率になるときの各パルス電圧Vの下での反転回数NLを求める、(3)得られたパルス電圧Vと反転回数NLとから

なる複数のデータ対から、

【0015】

【数8】

$$Y = c - d V$$

(ただし、Y = log NL、c, d は定数)

【0016】なる第二の回帰直線を求め、(4)この第二の回帰直線から、当該強誘電体材料の耐圧以下で且つ通常使用時の電圧より高い電圧Vtの分極反転パルスを加えたときに上記予め決められた残留分極値の減少率を与える反転回数NLtを求め、そして(5)強誘電材料に対する以後の疲労試験を上記電圧Vtの分極反転パルスを使って行って、当該材料について残留分極値の減少率の関数を分極反転パルスの反転回数の関数として直線で回帰して得られた直線を外挿して疲労寿命を予測し、この予測寿命を与える反転回数NLt(s)を上記(4)で求めた反転回数NLtと比較することで、当該材料の疲労寿命試験の合否を判定し、そしてその結果を出力する手段、を備えていることを特徴とする。

【0017】

【発明の実施の形態】本発明における強誘電体材料サンプルの疲労試験では、その一部として、先に図1と図2を参照して説明した既知の疲労試験を利用することができる。すなわち、強誘電体材料を用いて形成されたキャパシタ1の電極間にN個の分極反転パルス電圧を加えた後、残留分極値Qを測定し、そしてこの測定を分極反転パルスの反転回数Nを徐々に増やしながら繰り返し行う。

【0018】本発明では、次に、この測定結果を、横軸を反転回数Nの対数、縦軸を残留分極値Qの減少率の関数としてプロットして、図3に示すごとく直線で回帰する。一定の分極反転パルス電圧の下で、このように反転回数Nの対数と残留分極値Qの減少率の関数とが直線で回帰できることは、本発明以前には知られていなかったことである。

【0019】ここで、残留分極値Qの減少率の関数として、基準正規分布のxなる確率を与える累積分布関数の逆関数

【0020】

【数9】

$$E^{-1}(x)$$

【0021】を用いる。ただし、

【0022】

【数10】

$$E(K) = x = (2\pi)^{-1/2} \int_{-\infty}^K \exp(-t^2/2) dt$$

【0023】である。すなわち、横軸を log N、縦軸を K としてプロットすることにより、これらは直線で回帰

されることになる。

【0024】本発明では、こうして得られた回帰直線を使って、強誘電体材料の分極反転寿命を予測することができる。その原理を、図4を参照して説明する。少ない反転回数Nのときの残留分極値Qを数点測定し、回帰直線を求めて、次にこれを外挿することで、多数の反転回数NのときのQを容易に予測できる。例えば、図4に示したように、残留分極値Qの減少率20%のときの寿命を、Qの減少率がそれよりはるかに少ないときのデータをもとに容易に予測することができる。従って、短時間の測定で容易に寿命を予測できる。

【0025】図5は、従来の方法により、横軸をNの対数とし縦軸をQとしてプロットしたグラフであるが、パルス電圧Vを変えると異なる形状の曲線となるため、寿命の予測は容易でなく、正確な予測ができないことが分かる。

【0026】次に、本発明のもう一つの方法を説明する。分極反転パルス電圧を変えて疲労寿命試験を行うことにより、複数の分極反転パルスに対してそれぞれ上述の方法により回帰直線（第一の回帰直線）を求めて強誘電体材料の予測寿命を求め、図6に示すように各パルス電圧Vに対してそのときの予測寿命を与える反転回数Nの対数をプロットすると、

【0027】

【数11】

$$Y = c - d V$$

（ただし、Y = $\log N L$ 、c, d は定数）

【0028】で表される第二の直線で回帰できることを発明者らは見いだした。ここで言う「予測寿命を与える反転回数」とは、残留分極値Qが初期値（または最大値）より所定の割合（例えば20%、あるいは20～50%の間の任意の割合）だけ減少したときの反転回数Nの値である。

【0029】この第二の回帰直線から、強誘電体材料の通常使用時の電圧における寿命と、それより高い電圧での寿命とを対応させることができる。強誘電体材料の寿命は電圧が高くなるに従って短くなる。従って、第二の回帰直線を使用し、また通常使用時の電圧より高い電圧で試験をすることにより、通常使用時の電圧における寿命試験と同等な試験を短時間で行うことができる。

【0030】本発明の試験方法は、強誘電体材料に分極反転パルスを加えて対応する残留分極値を測定する手段と、上述の如く第一の回帰直線、第二の回帰直線を求めることができ、そして第一の回帰直線から予測される強誘電体材料の分極反転の予測疲労寿命、あるいは第二の回帰直線から強誘電体材料の寿命試験の合否判定結果を出力する手段を備えた試験装置で実施することが可能である。

【0031】

10

20

30

40

【実施例】次に、実施例により本発明を更に説明するが、本発明がこれらの実施例に限定されないことは言うまでもない。

【0032】【実施例1】強誘電体材料をはさむ電極の間に分極反転パルスを加えて分極反転に伴う材料の疲労特性を測定する疲労寿命試験機（図1を参照して先に説明したように、強誘電体キャパシタと電圧測定用コンデンサを含む測定部と、分極反転信号発生器と、オシロスコープなどを含む）に、図7に示した流れ図に従ってサンプル材料の予測疲労寿命を求めてそれを表示する機構を持つ手段（より具体的にはデータ処理のためのパソコン用コンピュータと表示装置）を備えつけた自動試験装置を使用する。

【0033】この試験装置の測定部に配置した1個のキャパシタに対して、パルス数を10回、20回、40回、80回、……、と徐々に増加させて加えながら、残留分極値Qを測定する。残留分極値は、図5を参照すれば明らかのように、加えられる分極反転パルスの電圧により、必ずしも試験の始めから低下するとは限らない。

そのため、本発明を実施する際には、残留分極値の変化が減少傾向に転じたことを確認するまで測定を行うことが重要である。得られた測定値が直前の測定値と比較して減少していれば、変化は減少傾向にあると考えられるが、測定誤差の可能性を排除するため、少なくとも3回の測定で連続して減少しているのを確認するのが好ましい。減少傾向の確認を更に確実にするためには、3回以上の連続した測定において残留分極値が減少し続け、且つその減少量が徐々に大きくなっていることを確認の基準とすることができる。この例では、図7の流れ図に見られるように、連続した4回の測定で残留分極値Qの減少が認められた場合に、残留分極値が減少に転じたものと見なして測定を中止し、寿命の予測を行う。

【0034】寿命予測のためには、まず、個々のキャパシタにおける残留分極値Qの最大値Q_{MAX}を基準にした減少率F(N)を下式

【0035】

【数12】

$$F(N) = (Q_{MAX} - Q(N)) / Q_{MAX}$$

により求める。ここで、Nは累積された反転回数であり、つまりパルス数を10回、20回、40回、80回としたとき、それらに対応するNは10、30、70、150となる。

【0036】次に、先に説明したようにして、累積分布関数の逆関数を用いて基準正規分布の累積確率がF(N)となるようなKを求める。すなわち、下式

【0037】

【数13】

$$F(N) = (2\pi)^{-1/2} \int_{-\infty}^K \exp(-t^2/2) dt$$

【0038】を満たすKを求める。このとき、上式を計算するのではなく、公知の正規分布表を用いてよい。そしてNとKの関係を、最小二乗法によって、

【0039】

【数14】

$$K = a + b \cdot n$$

(ただし、 $n = \log N$ 、 a, b は定数)

【0040】なる直線で回帰する。

【0041】最後に、図4に示すごとく、予め入力されたQの許容範囲に対応した減少率Fを与えるKを求め（例えば図4においてQが最大値から20%減衰したときまでを許容する場合は、 $F=0.2$ 、 $K=-0.842$ となる）、このKを与えるNを求める。このNが、本発明により予測された疲労寿命であり、この予測値が表示手段により表示される。

【0042】【実施例2】実施例1で使用した装置を、図8に示した流れ図に従ってサンプル材料の寿命試験の合否を判定するように改造したものを使用する。

【0043】異なる3種のパルス電圧V1、V2、V3に対して、実施例1のごとくに寿命を予測する。ここで測定においては、各電圧に対して同様の特性を持つと思われる別々のキャパシタを用いる。3種の電圧値は、予め入力された設定値でもよいし、例えばキャパシタを通常使用する電圧V1と、キャパシタの耐圧よりわずかに低い電圧V3と、両者の中間の電圧V2との3種の電圧を入力して再設定してもよい。（言うまでもなく、測定に使用するパルス電圧は4種以上としてもよい。）この測定により、図9に示したように、3種の電圧に対応して第一の回帰直線が三つ得られる。そしてこれらの回帰直線から、例えば残留分極値Qの減少率20%のときの、各電圧での予測寿命を与える反転回数NL1、NL2、NL3が求まる。

【0044】次に、パルス電圧Vと予測寿命を与える反転回数NLとの関係を最小二乗法によって、

【0045】

【数15】

$$Y = c - dV$$

(ただし、 $Y = \log NL$ 、 c, d は定数)

【0046】なる直線で回帰する（すなわち、図10に示した第二の回帰直線を求める）。そしてこの式を使つ

て、通常使用時の電圧V1における予測寿命を与える反転回数NL1を、通常使用電圧V1より高くキャパシタの耐圧より低い任意の試験電圧Vtでの予測寿命を与える反転回数NLtに換算する（図10参照）。

【0047】以後他のサンプルにおける寿命測定では、サンプルにこの試験電圧Vtを加えて寿命試験を行い、実施例1のごとく寿命を予測して（図7の流れ図及び図4参照）、その寿命に対応する反転回数NLt

(s)を求める。そしてこのNLt(s)を、先に前式10を用いて換算された予測寿命を与える反転回数NLtと比較し、個々のサンプルの寿命についての合否を判断し、 $NL_t(s) > NL_t$ のとき合格とし、この結果を表示する。

【0048】

【発明の効果】以上説明したように、本発明によれば、強誘電体材料の分極反転に伴う疲労寿命の試験を短時間で行え、また、短時間の測定から疲労寿命を容易に予測できる。そのため、不揮発性メモリ装置等で用いられる強誘電体材料について、材料組成や電極構造の最適化のための試験を効率よく行えることから、開発時間を大幅に短縮できる。

【図面の簡単な説明】

【図1】強誘電体材料の疲労寿命試験に用いられる装置を説明する図である。

【図2】強誘電体材料の残留分極値を求める方法を説明する図である。

【図3】本発明で得られる第一の回帰直線を説明する図である。

【図4】本発明の原理を説明する図である。

【図5】従来技術で得られる残留分極値と反転回数の対数との関係を示す曲線を示す図である。

【図6】本発明で得られる第二の回帰直線を説明する図である。

【図7】実施例1で用いた装置において使用した流れ図である。

【図8】実施例2で用いた装置において使用した流れ図である。

【図9】実施例2で得られた、3種の電圧に対して得られた第一の回帰直線を示す図である。

【図10】実施例2で得られた第二の回帰直線を示す図である。

【符号の説明】

1…強誘電体キャパシタ

2…電圧測定用コンデンサー

3…信号発生器

4…オシロスコープ

【図1】

【図2】

【図5】

【図3】

【図6】

【図4】

【図7】

【図8】

【図9】

【図10】

