PMLAssignment.R

Gautham 2020-07-06

```
library(caret)
ibrary(ggplot2)
library(randomForest)
library(gbm)
library(doParallel)
library(survival)
library(splines)
library(plyr)
pml.training <- read.csv("C:/Users/91996/Downloads/pml-training.csv")
View(pml.training)
pml.testing <- read.csv("C:/Users/91996/Downloads/pml-testing.csv")
View(pml.testing)
training <- pml.training[, 6:dim(pml.training)[2]]</pre>
treshold <- dim(training)[1] * 0.95
goodColumns <- !apply(training, 2, function(x) sum(is.na(x)) > treshold || sum(x=="") > treshold)
training <- training[, goodColumns]</pre>
library(caret)
badColumns <- nearZeroVar(training, saveMetrics = TRUE)</pre>
training <- training[, badColumns$nzv==FALSE]</pre>
training$classe = factor(training$classe)
inTrain <- createDataPartition(training$classe, p = 0.6)[[1]]
crossv <- training[-inTrain,]</pre>
training <- training[ inTrain,]</pre>
inTrain <- createDataPartition(crossv$classe, p = 0.75)[[1]]
crossv_test <- crossv[ -inTrain,]</pre>
```

crossv <- crossv[inTrain,]</pre>

testing <- pml.testing[, 6:dim(pml.testing)[2]]

testing <- testing[, goodColumns]</pre>

testing\$classe <- NA

testing <- testing[, badColumns\$nzv==FALSE]</pre>

mod1 <- train(classe ~ ., data=training, method="rf")

pred1 <- predict(mod1, crossv)</pre>

confusionMatrix(pred1, crossv\$classe)

Confusion Matrix and Statistics

Reference

Prediction	А	В	С	D	E
А	1672	3	0	0	0
В	1	1135	6	0	0
С	0	1	1020	4	0
D	0	0	0	960	1
E	1	0	0	1	1081

Overall Statistics

Accuracy: 0.997

95% CI : (0.995, 0.998)

No Information Rate : 0.284

P-Value [Acc > NIR] : <2e-16

Kappa : 0.996

Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: A	Class: B	Class: C	Class: D	Class: E
Sensitivity	0.999	0.996	0.994	0.995	0.999
Specificity	0.999	0.999	0.999	1.000	1.000
Pos Pred Value	0.998	0.994	0.995	0.999	0.998
Neg Pred Value	1.000	0.999	0.999	0.999	1.000
Prevalence	0.284	0.194	0.174	0.164	0.184
Detection Rate	0.284	0.193	0.173	0.163	0.184
Detection Prevalence	0.285	0.194	0.174	0.163	0.184
Balanced Accuracy	0.999	0.998	0.997	0.997	0.999

```
pred1 <- predict(mod1, crossv_test)
accuracy <- sum(pred1 == crossv_test$classe) / length(pred1)
varImpRF <- train(classe ~ ., data = training, method = "rf")
varImpObj <- varImp(varImpRF)
plot(varImpObj, main = "Importance of Top 40 Variables", top = 40)</pre>
```

Importance of Top 40 Variables

plot(varImpObj, main = "Importance of Top 25 Variable s", top = 25)

Importance of Top 25 Variables

