Security Notions

Sushmita Ruj

Recap

- OTP and perfect secrecy of OTP
- Construction of Stream ciphers using PRG
- Statistical Tests
- Block Ciphers, DES, AES
- Modes of Operation
- This class: Security definitions and notions

Security So Far

- Perfect security: OTP
- Stream ciphers are not perfectly secure
- Computational security
- Attack models, Ciphertext only, plaintext-only, chosen plaintext attack (CPA), chosen cipher text attack (CCA)
- Adaptive vs non-adaptive attack
- Indistinguishability

Revisiting SKE

- $\mathscr{E} = (\mathscr{M}, \mathscr{C}, \mathscr{K})$
- $KeyGen(1^k) \rightarrow k \in \mathcal{K}$
- For $m \in \mathcal{M}, k \in \mathcal{K}, E(m,k) \to c$
- $D(c,k) \rightarrow m'$
- Correctness: $\forall k \in \mathcal{K}$ and messages $m \in \mathcal{M}$, if we execute $c \stackrel{R}{\leftarrow} E(m,k), m' \leftarrow D(c,k)$, then m=m' with probability 1

Semantic Security

- $\mathscr{E} = (E, D)$, defined over $(\mathscr{M}, \mathscr{C}, \mathscr{K})$
- For all predicates ϕ and all messages $m_0, m_1 \in \mathcal{M}$, k chosen uniformly at random from \mathcal{K}
- $Pr[\phi(E(m_0, k))] = Pr[\phi(E(m_1, k))]$
- Instead we also say $|Pr[\phi(E(m_0,k))] Pr[\phi(E(m_1,k))]| < \epsilon, \epsilon \text{ is neg}$

Semantic Security

- Attack game between challenger C and adversary A
- We calculate the Adversary's advantage of winning the game
- Length of messages

Semantic Security (one-time key)

For b=0,1 define experiments EXP(0) and EXP(1) as:

The cipher is Semantically secure if for all efficient adversaries, A, Adv_{ss}[A,E] is neg

Knowing LSB of PT

Suppose efficient A can always deduce LSB of PT from CT.

 \Rightarrow E = (E,D) is not semantically secure.

Then $Adv_{SS}[B, E] = | Pr[EXP(0)=1] - Pr[EXP(1)=1] | = |0-1|=1$

Message Recovery Attacks

- $\varepsilon = (E, D)$, defined over $(\mathcal{M}, \mathcal{C}, \mathcal{K})$
- Intuitively, in a message recovery attack, an adversary is given an encryption of a random message, and is able to recover the message from the ciphertext with probability significantly better than random guessing, that is, probability $1/|\mathcal{M}|$
- Attack game:
- Challenger computes $m \stackrel{R}{\leftarrow} \mathcal{M}, k \stackrel{R}{\leftarrow} \mathcal{K}, c \stackrel{R}{\leftarrow} E(m, k)$ & sends c to Adv A
- Adv A outputs $\hat{m} \in \mathcal{M}$
- Let W be the event, $\hat{m} = m$
- A wins the game with a message recovery advantage
- $Adv_{MR}[A, \mathcal{E}] = |Pr[W] 1/|\mathcal{M}||$
- · To show secure against message recovery we show that the above adv is neg
- Proof sketch: Any efficient adversary A that can efficiently mount a message recovery attack on \mathscr{E} can be used to build an efficient adversary B that breaks the semantic security of \mathscr{E} ;
- Since semantic security implies that no such B exists, we may conclude that no such A exists.

Security Reductions

Construct B, such that $Adv_{MR}[A,\mathscr{E}] \leq Adv_{SS}[B,\mathscr{E}]$

c is an encryption of m_1 , the probability p_1 is precisely equal to A's probability of winning the message recovery game, so $p_1 = p$.

c is an encryption of m_0 , the adversary A's output is independent of m_1 , and so $p_0 = 1/IMI$.

$$Adv_{SS}[B,\mathcal{E}] = |p_1 - p_0| = |p - 1/|M|| = Adv_{MR}[A,\mathcal{E}]$$

 $\implies Adv_{MR}[A, \mathcal{E}] = |p - 1/|M|$

OTP is Semantically Secure

Indistinguishability

Practical OTP

No Size of K is smaller than message

Q1: Does this have prefect secrecy?

Size of message is L

Q1: What is G? What properties does it have? |s| < |M|. K should look like a random string r of length L.

How to do this?
We use Statistical Tests

Q3: What can we say about the security of this cipher?

This does not have prefect secrecy, so we defines a new type of security called "semantic Security"

These are called stream ciphers

 $C = M \oplus G(K)$

 $M = C \oplus G(K)$

Turing Tests [1950]

Distinguisher

If robot is intelligent, Bob can't distinguish between Alice and Robot

PRG Indistinguishability test

Properties of a distinguisher?

Efficient: Probabilistic polynomial time (PPT) algo. (Poly in length of input) Should be able to distinguish with non-neg probability

Given n bit input (s.t. |x| = n) is there an efficient algorithm that:

Finds x²?

Finds the factors of x?

Find y, such that x = f(y)?

PRG Indistinguishability test

A PRG is secure if no efficient adversary can effectively tell the difference between G(s) and r: the two are computationally indistinguishable.

Semantic Security of PRG

Thm: G:K \longrightarrow {0,1}ⁿ is a secure PRG \Rightarrow

stream cipher E derived from G is semantically secure.

We prove that:

∀ SS adversary A , ∃a PRG adversary B s.t.

 $Adv_{SS}[A,E] \leq 2 \cdot Adv_{PRG}[B,G]$

Proof: Intuition

Proof: Let A be a SS adversary.

Original semantic security game For b=0,1: $W_b := [$ event that b'=1, when receiving enc of $m_b]$.

$$Adv_{SS}[A,E] = | Pr[W_0] - Pr[W_1] |$$

Proof: Let A be a SS adversary.

Original semantic security game

For b=0,1: $W_b := [$ event that b'=1, when receiving enc of $m_b]$.

$$Adv_{SS}[A,E] = | Pr[W_0] - Pr[W_1] |$$

Security game from random key in OTP

For b=0,1: $R_b := [$ event that b'=1, when receiving OTP enc of $m_b]$

Proof: Let A be a SS adversary.

Claim 1:
$$|\Pr[R_0] - \Pr[R_1]| = Adv_{SS}[A, OTP] = 0$$

Claim 2:
$$\exists B: |Pr[W_b] - Pr[R_b]| = Adv_{PRG}[B, G]$$

$$Pr[W_0] Pr[R_b] Pr[W_1]$$

$$\Rightarrow$$
 Adv_{SS}[A,E] = $|Pr[W_0] - Pr[W_1]| \le 2 \cdot Adv_{PRG}[B,G]$

Proof of claim 2: $\exists B: |Pr[W_0] - Pr[R_0]| = Adv_{PRG}[B,G]$

Algorithm B:

$$\mathsf{Adv}_{\mathsf{PRG}}[\mathsf{B,G}] = |Pr_{r \leftarrow \{0,1\}^n}[B(r) = 1] - Pr_{k \leftarrow \mathcal{K}}[B(G(k)) = 1]| = |Pr[R_0] - Pr[W_0]|$$

Thank you