### Homework - 1

# **SSI PATTERN RECOGNITION**

March 31, 2019

Submitted to

**Desire SIDIBE** 

## **ASRAF ALI Abdul Salam Rasmi**

Masters in Computer Vision Centre Universitaire Condorcet Universite de Bourgogne

## 1 MATRIX ALGEBRA

In this section, we need to prove some of the essential results of Matrix Algebra that can be used in Machine Learning technique.

$$1. \qquad \frac{\partial (b^T a)}{\partial a} = b^T$$

#### **Solution:**

Let a and b be the column vectors of size  $(n \times 1)$ , then

$$a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_n \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}$$

$$b^T a = [b_1 a_1 + b_2 a_2 + b_3 a_3 + \dots + b_n a_n]$$

$$\therefore \frac{\partial (b^T a)}{\partial a_i} = b^T \qquad \forall i = 1 \cdots n$$

To demonstrate this lets consider  $(2 \times 1)$  column vectors,

$$\therefore \quad a = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \qquad \qquad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$b^T a = [b_1 a_1 + b_2 a_2]$$

and

$$\frac{\partial (b^T a)}{\partial a_i} = \begin{bmatrix} \frac{\partial (b^T a)}{\partial a_1} & \frac{\partial (b^T a)}{\partial a_2} \end{bmatrix} = \begin{bmatrix} b_1 & b_2 \end{bmatrix} = b^T$$

Hence Proved.

$$2. \qquad \frac{\partial (Aa)}{\partial a} = A$$

#### **Solution:**

Let A be a matrix of size  $(m \times n)$  and b be the column vector of size  $(n \times 1)$ , then

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1n} \\ A_{21} & A_{22} & A_{23} & \cdots & A_{2n} \\ A_{31} & A_{32} & A_{33} & \cdots & A_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & A_{m3} & \cdots & A_{mn} \end{bmatrix} \qquad a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_n \end{bmatrix}$$

$$Aa = \begin{bmatrix} A_{11}a_1 + A_{12}a_2 + A_{13}a_3 + \dots + A_{1n}a_n \\ A_{21}a_1 + A_{22}a_2 + A_{23}a_3 + \dots + A_{2n}a_n \\ A_{31}a_1 + A_{32}a_2 + A_{33}a_3 + \dots + A_{3n}a_n \\ \vdots \\ A_{m1}a_1 + A_{m2}a_2 + A_{m3}a_3 + \dots + A_{mn}a_n \end{bmatrix}$$

$$\frac{\partial (Aa)}{\partial a_i} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1n} \\ A_{21} & A_{22} & A_{23} & \cdots & A_{2n} \\ A_{31} & A_{32} & A_{33} & \cdots & A_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & A_{m3} & \cdots & A_{mn} \end{bmatrix} = A \qquad \forall i = 1 \cdots n$$

#### Hence Proved.

**Note:** This can be demonstrated in the same way as the previous example.

3. 
$$\frac{\partial (a^T A a)}{\partial a} = a^T (A + A^T)$$

#### **Solution:**

Let *A* be a matrix of size  $(n \times n)$  and *b* be the column vector of size  $(n \times 1)$ . We know that by **Product rule of Derivatives**,

$$\frac{d}{dx}(f(x).g(x)) = f(x).\frac{d}{dx}g(x) + g(x).\frac{d}{dx}f(x)$$

Here we can consider  $f(a) = a^T$  and g(a) = a

$$\frac{\partial (a^T A a)}{\partial a} = a^T A \frac{\partial}{\partial a} (a) + \frac{\partial}{\partial a} (a^T) A a$$

Now from the first question we can say that,

$$\frac{\partial (b^T a)}{\partial a} = \frac{\partial (a^T b)}{\partial a} = b^T$$

From this we can conclude that,

$$a^T A \frac{\partial}{\partial a}(a) = a^T A$$

and

$$\frac{\partial}{\partial a}(a^T)Aa = (Aa)^T = a^T A^T$$

$$\therefore \frac{\partial (a^T A a)}{\partial a} = a^T A + a^T A^T = a^T (A + A^T)$$

To demonstrate this lets consider a  $(2 \times 1)$  column vector and  $(2 \times 2)$  matrix, therefore,

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad a = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$a^{T}Aa = [a_{1}^{2}A_{11} + a_{1}a_{2}A_{12} + a_{1}a_{2}A_{21} + a_{2}^{2}A_{22}]$$

$$\frac{\partial (a^T A a)}{\partial a_i} = \begin{bmatrix} \frac{\partial (a^T A a)}{\partial a_1} & \frac{\partial (a^T A a)}{\partial a_2} \end{bmatrix}$$

$$\frac{\partial (a^T A a)}{\partial a_i} = \begin{bmatrix} 2a_1 A_{11} + a_2 A_{12} + a_2 A_{21} & a_1 A_{21} + a_1 A_{12} + 2a_2 A_{22} \end{bmatrix}$$
(1)

$$A + A^{T} = \begin{bmatrix} 2A_{11} & A_{12} + A_{21} \\ A_{21} + A_{12} & 2A_{22} \end{bmatrix}$$

$$a^{T}(A+A^{T}) = \begin{bmatrix} 2a_{1}A_{11} + a_{2}A_{12} + a_{2}A_{21} & a_{1}A_{21} + a_{1}A_{12} + 2a_{2}A_{22} \end{bmatrix}$$
 (2)

The R.H.S. of (1) and (2) are same, hence L.H.S. are equal. Hence Proved.

4. 
$$\frac{\partial}{\partial A}(trace(BA)) = B$$

#### **Solution:**

Let  $A_{ij}$  and  $B_{ij}$  be two matrices of size  $(n \times n)$ 

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ B_{n1} & B_{n2} & \cdots & B_{nn} \end{bmatrix}$$

By the property of **Trace of a product**,

$$trace(BA) = \sum_{i=1}^{n} \sum_{j=1}^{n} B_{ij} A_{ji}$$

We can simplify the above equation as,

$$trace(BA) = \sum_{j=1}^{n} B_{1j} A_{j1} + \sum_{j=1}^{n} B_{2j} A_{j2} + \dots + \sum_{j=1}^{n} B_{nj} A_{jn}$$

$$\therefore \frac{\partial}{\partial A_{ji}}(trace(BA)) = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ B_{n1} & B_{n2} & \cdots & B_{nn} \end{bmatrix} = B$$

To demonstrate this lets consider two  $(2 \times 2)$  matrices, therefore,

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$BA = \begin{bmatrix} B_{11}A_{11} + B_{12}A_{21} & B_{11}A_{12} + B_{12}A_{22} \\ B_{21}A_{11} + B_{22}A_{21} & B_{21}A_{12} + B_{22}A_{22} \end{bmatrix}$$

$$trace(BA) = B_{11}A_{11} + B_{12}A_{21} + B_{21}A_{12} + B_{22}A_{22}$$

$$\therefore \frac{\partial}{\partial A_{ji}}(trace(BA)) = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = B$$

#### Hence Proved.

**Note:** For  $\frac{\partial}{\partial A_{ij}}(trace(AB))$  we will get  $B^T$  since the index changes.

5. 
$$trace(ABC) = trace(BCA) = trace(CAB)$$

#### **Solution:**

By the property of **Trace of a product**,

$$trace(ABC) = \sum_{i} \sum_{j} \sum_{k} A_{ij} B_{jk} C_{ki}$$

We know that sum of product is commutative, therefore we can also write the above equation as,

$$\sum_{i} \sum_{j} \sum_{k} A_{ij} B_{jk} C_{ki} = \sum_{j} \sum_{k} \sum_{i} B_{jk} C_{ki} A_{ij} = trace(BCA)$$

$$\sum_{i} \sum_{j} \sum_{k} A_{ij} B_{jk} C_{ki} = \sum_{k} \sum_{i} \sum_{j} C_{ki} A_{ij} B_{jk} = trace(CAB)$$

$$\therefore trace(ABC) = trace(BCA) = trace(CAB)$$

Hence Trace is invariant under **Cyclic Permutation**. This is called the **Cyclic Property of Trace**.

# 2 MAXIMUM LIKELIHOOD (ML) ESTIMATE

Suppose we are given a set of N observations of a scalar variable x,  $\mathbf{x} = (x_1, x_2, \dots, x_N)^T$ . We assume that the observations are drawn independently from a Gaussian distribution whose mean  $\mu$  and variance  $\sigma^2$  are unknown. We would like to determine these parameters from the data set. The likelihood of the data given the parameters is given by

$$p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu,\sigma^2)$$

1. Explain why the likelihood function can be written as a product of Gaussian?

#### **Solution:**

It is said that the observations are drawn independently from the same Gaussian distribution, which means all those observations are independent and identically distributed (i.i.d.;  $\mu$  and  $\sigma^2$  are same for all the observations).

Since the given data is i.i.d. we can write  $p(\mathbf{x}|\mu,\sigma^2)$  as,

$$p(\mathbf{x}|\mu,\sigma^2) = p(x_1|\mu,\sigma^2) \cdot p(x_2|\mu,\sigma^2) \cdot p(x_3|\mu,\sigma^2) \cdots p(x_N|\mu,\sigma^2)$$

$$\therefore p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu,\sigma^2)$$

Hence Likelihood Estimate can be written as **Product of Gaussian** if the observations are **i.i.d.** 

- 2. ML aims to find the values of the parameters that maximize the likelihood function. Since ln(x) is a monotonically increasing function of x, we can instead maximize the log of the likelihood.
  - (a) Compute the log likelihood function:  $lnp(\mathbf{x}|\mu,\sigma^2)$ .
- (b) By taking the partial derivatives of the log likelihood with respect to  $\mu$  and to  $\sigma^2$ , find the ML solutions  $\mu_{ML}$  and  $\sigma^2_{ML}$ .

#### **Solution:**

(a) The likelihood of the data given the parameters is given by,

$$p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu,\sigma^2)$$

$$\therefore p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{x_i - \mu}{\sigma}\right)^2}$$

Then the log-likelihood of the data is,

$$\ln p(\mathbf{x}|\mu,\sigma^2) = \sum_{n=1}^{N} \ln \left[ \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{x_{n-\mu}}{\sigma}\right)^2} \right]$$

$$= \sum_{n=1}^{N} \left[ \ln \left( \frac{1}{\sqrt{2\pi\sigma^2}} \right) + \ln \left( e^{-\frac{1}{2} \left(\frac{x_{n-\mu}}{\sigma}\right)^2} \right) \right]$$

$$= \sum_{n=1}^{N} \ln \left( \frac{1}{\sqrt{2\pi\sigma^2}} \right) - \frac{1}{2} \sum_{n=1}^{N} \left( \frac{x_n - \mu}{\sigma} \right)^2$$

$$\therefore \ln p(\mathbf{x}|\mu,\sigma^2) = -\frac{N}{2} \ln(2\pi) - \frac{N}{2} \ln(\sigma^2) - \frac{\sum_{n=1}^{N} (x_n - \mu)^2}{2\sigma^2}$$

(b) By computing derivative of the log likelihood w.r.t.  $\mu$ ,

$$\frac{\partial}{\partial \mu} \ln p(\mathbf{x}|\mu, \sigma^2) = 0$$

$$0 - \frac{1}{2\sigma^2} \left( -2 \sum_{n=1}^{N} (x_n - \mu) \right) = 0$$

$$\sum_{n=1}^{N} (x_n - \mu) = 0$$

$$\sum_{n=1}^{N} x_n = \sum_{n=1}^{N} \mu = N\mu$$

$$\therefore \mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

By computing derivative of the log likelihood w.r.t.  $\sigma^2$ ,

$$\frac{\partial}{\partial \sigma^2} \ln p(\mathbf{x}|\mu, \sigma^2) = 0$$

$$0 - \frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \left( \sum_{n=1}^N (x_n - \mu)^2 \right) = 0$$

$$\frac{1}{2\sigma^2} \left( -N + \frac{1}{\sigma^2} \sum_{n=1}^N (x_n - \mu)^2 \right) = 0$$

$$N = \frac{1}{\sigma^2} \sum_{n=1}^N (x_n - \mu)^2$$

$$\therefore \sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^N (x_n - \mu)^2$$

## 3 LINEAR REGRESSION WITH REGULARIZATION

# 3.1 Linear Regression for a Polynomial Function

The Regression parameters for different degree of polynomial order of it has been computed using MATLAB and the results are shown below.



**Figure 1:** Output for M=0



**Figure 2:** Output for M=2



**Figure 3:** Output for M=3



**Figure 4:** Output for M=5



**Figure 5:** Output for M=8



**Figure 6:** Output for M=10

# 3.2 Select a "good" Model

In order to select good model we tried to compute Regression parameter for another set of data and the RMS error for both data-set is shown below.



Figure 7: RMS Error for different M value

From the above figure we can say that both the data has less error for the value M = 12. Hence the model that best fit both test and train data is M = 12.

## 3.3 Linear Regression with Regularization

We want fit the data for the model M=10. We can perform this by adding a term  $\lambda$  to penalize model's complexity [1]. This concept is called Regularization and the Regression with a regularization term  $\lambda$  is also called **Ridge Regression**. The regularization term is often known as **weight decay**[1]. We need to find  $\lambda$  such that the RMS Error and the Norm of the Regression Parameter should minimize. The output is shown below for different  $\lambda$  values.



Figure 8: RMS Error for different Lambda value



Figure 9: Norm for different Lambda value

We found that the best value for  $\lambda$  is 0.001 and for M=10 the best fit for Training and test data is given below.



Figure 10: Result for Train data with M = 10 and lambda = 0.001



**Figure 11:** Result for Test data with M = 10 and lambda = 0.001

#### 4 MLE & MAP

We consider a regression problem given a training data set  $\mathbf{x} = (x_1, x_2, \dots, x_N)^T$  with corresponding target values  $\mathbf{t} = (t_1, t_2, \dots, t_N)^T$ . Let assume that given the value of x, the corresponding target value of t has a Gaussian distribution with mean equal to y(x, w). Thus,

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}(t|y(x, \mathbf{w}), \beta^{-1})$$

where  $\beta^{-1}$  is the precision parameter equal to the inverse variance of the distribution. As in the case above, we want to use the training data  $\{x, t\}$  to determine the values of the unknown parameters **w** and  $\beta$ . If the data is i.i.d., then the likelihood function is given by,

$$p(t|x, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t|y(x, \mathbf{w}), \beta^{-1})$$

1. Show that maximizing the likelihood function, to find  $\mathbf{w}$ , is equivalent to minimizing the sum of squares error function.

#### **Solution:**

From section 2, we can compute  $ln\ p(t|x,\mathbf{w},\beta)$  as,

$$ln p(t|x, \mathbf{w}, \beta) = -\frac{N}{2}ln(2\pi) + \frac{N}{2}ln(\beta) - \frac{\sum_{n=1}^{N}(t_n - y(x, \mathbf{w}))^2}{2\beta^{-1}}$$

**Note:** Here, I considered  $\beta^{-1}$  as **Variance** (not as Inverse Variance) of the distribution. Hence,

$$ln \ p(t|x,\mathbf{w},\beta) = -\frac{N}{2}ln(2\pi) + \frac{N}{2}ln(\beta) - \frac{\beta \sum_{n=1}^{N}(t_n - y(x,\mathbf{w}))^2}{2}$$

To find the maxima of the likelihood function, we need to compute derivative w.r.t.  $\mathbf{w}$ , therefore,

$$\frac{\partial}{\partial \mathbf{w}} \ln p(t|x,\mathbf{w},\beta) = -\frac{\partial}{\partial \mathbf{w}} \left( \frac{\beta \sum_{n=1}^{N} (t_n - y(x,\mathbf{w}))^2}{2} \right)$$

The negative sign clearly justifies that maximizing the L.H.S. is equivalent to minimizing the R.H.S.

$$\therefore \underset{w}{\operatorname{argmax}} \ ln \ p(t|x, \mathbf{w}, \beta) = \beta \ \underset{w}{\operatorname{argmin}} \ E_D(\mathbf{w})$$

where,  $E_D(\mathbf{w})$  is the sum-of-square errors[1].

Hence from this expression we can conclude that **maximizing likelihood** is equivalent to **minimizing sum-of-squares** error function. In a linear model, if the errors belong to a normal distribution the least squares estimators are also the maximum likelihood estimators.

2. We can also introduce a prior information over the polynomial coefficients  $\mathbf{w}$  as follows.

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|0, \alpha^{-1}\mathbf{I})$$

where  $\alpha^{-1}$  is the precision of the distribution. Using Bayes theorem, the posterior distribution for w is proportional to the product of the prior distribution and the likelihood function:

$$p(\mathbf{w}|\mathbf{x},t,\alpha,\beta) \propto p(t|\mathbf{x},\mathbf{w},\beta)p(\mathbf{w}|\alpha)$$

(a) Show that maximizing this posterior distribution, to find  $\mathbf{w}$ , is equivalent to minimizing the regularized sum-of-squares error function.

#### **Solution:**

The above expression can be expressed in log,

$$ln p(\mathbf{w}|\mathbf{x}, t, \alpha, \beta) = ln p(t|\mathbf{x}, \mathbf{w}, \beta) + ln p(\mathbf{w}|\alpha)$$

And the log-likelihood of the prior function can be expressed as,

$$ln p(\mathbf{w}|\alpha) = -\frac{N}{2}ln(2\pi) + \frac{N}{2}ln(\alpha) - \frac{\alpha \sum_{n=1}^{N} \mathbf{w}^{2}}{2}$$

To compute the maxima,

$$\frac{\partial}{\partial \mathbf{w}} \ln p(t|\mathbf{x}, \mathbf{w}, \beta) + \frac{\partial}{\partial \mathbf{w}} \ln p(\mathbf{w}|\alpha) = -\frac{\partial}{\partial \mathbf{w}} \left( \frac{\beta \sum_{n=1}^{N} (t_n - y(x, \mathbf{w}))^2}{2} \right) - \frac{\partial}{\partial \mathbf{w}} \left( \frac{\alpha \sum_{n=1}^{N} \mathbf{w}^2}{2} \right)$$

$$= -\frac{1}{2} \left( \beta \frac{\partial}{\partial \mathbf{w}} \sum_{n=1}^{N} (t_n - y(x, \mathbf{w}))^2 + \alpha \frac{\partial}{\partial \mathbf{w}} \sum_{n=1}^{N} \mathbf{w}^2 \right)$$
(3)

From the above expression we can conclude that **maximizing posterior distribution**, to find **w**, is equivalent to **minimizing regularized sum-of-squares error** function (The negative sign clearly justifies that maximizing the L.H.S. is equivalent to minimizing the R.H.S.).

(b) Give the value of the regularized parameter  $\lambda$  in this case.

#### **Solution:**

From the technique of Maximum A Posteriori (MAP),

$$\mathbf{w}_{MAP} = \underset{w}{\operatorname{argmax}} \ p(\mathbf{w}|\mathbf{x}, t, \alpha, \beta) = \underset{w}{\operatorname{argmax}} \ p(t|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\alpha)$$

Dividing (3) by  $\beta$ , we get,

$$\frac{\partial}{\partial \mathbf{w}} \ln p(t|\mathbf{x}, \mathbf{w}, \beta) + \frac{\partial}{\partial \mathbf{w}} \ln p(\mathbf{w}|\alpha) = -\frac{1}{2} \left( \frac{\partial}{\partial \mathbf{w}} \sum_{n=1}^{N} (t_n - y(x, \mathbf{w}))^2 + \frac{\alpha}{\beta} \frac{\partial}{\partial \mathbf{w}} \sum_{n=1}^{N} \mathbf{w}^2 \right)$$

$$= -\frac{1}{2} \left( \frac{\partial}{\partial \mathbf{w}} \sum_{n=1}^{N} (t_n - y(x, \mathbf{w}))^2 + \lambda \frac{\partial}{\partial \mathbf{w}} \sum_{n=1}^{N} \mathbf{w}^2 \right)$$

where  $\lambda = \frac{\alpha}{\beta}$  is the regularization parameter.

**Note:** If  $\beta^{-1}$  is considered as **Inverse Variance** of the distribution, then  $\lambda = \alpha \beta$ .

# **Bibliography**

 $[1] \;\; D. \; Sidibe, "Pattern \, recognition - lecture \, notes," \, 2019.$