

Part 6: Complementary, Independent and Mutually Exclusive Events

There are three other pieces of terminology that we need to know that relate to types of events in probability. These are **complementary**, **independent** and **mutually exclusive** events

Complementary events are events that are the opposite to each other. For example heads and tails on a coin, or A and A'.

Independent events are events where the outcome of one does do not affect the probability of the other. There is a statistical formula to check if two events are independent, this is $P(A) \times P(B) = P(A \cap B)$

Example 1: are a "day being sunny" and a "day being a weekday" **independent**?

To check if these events are **independent** or not we can check if the formula $P(A) \times P(B) = P(A \cap B)$ holds true.

P(A) = P(Day is a Weekday) = 5/7

P(B) = P(Day is Sunny) = 1/5

 $P(A \cap B) = P(Weekday \cap Sunny) = 1/7$

 $P(A) \times P(B) = 5/7 \times 1/5 = 1/7$

Therefore they are **independent**.

	Day is Sunny		
Day is a Weekday	Yes	No	Total
Yes	1/7	4/7	5/7
No	2/35	8/35	2/7
Total	1/5	4/5	1

Example 2: are a "student having brown eyes" and a "student being female" **independent**?

We check if $P(A) \times P(B) = P(A \cap B)$ is true.

P(A) = P(Has Brown Eyes) = 13/20

P(B) = P(Is Female) = 10/20

 $P(A \cap B) = P(Brown Eyes \cap Female) = 7/20$

 $P(A) \times P(B) = 13/20 \times 10/20 = 13/40$

 $7/20 \neq 13/40$

Therefore they are **not independent**.

	Number of Students			
Eye Colour	Male	Female	Total	
Brown	6	7	13	
Blue	4	3	7	
Total	10	10	20	

Mutually Exclusive events are events that cannot both happen. **Complementary** events must be mutually exclusive. For **mutually** exclusive events $P(A \cap B) = 0$

This means if you were to draw a Venn diagram for it the circles would not overlap:

Example 3:

A student could be in a Maths class at the moment or an English class, but couldn't be both in an English and a Maths class at the same time (but could be in another class like Science) If we were to look at this table:

	Currently in English		
Currently In Maths	Yes	No	Total
Yes	0	25	25
No	27	23	50
Total	27	48	75

We can see these events are **mutually exclusive** as P(English and Maths) = 0