

Session 18. Kubernetes Cluster on Oracle Infrastructure

Ram N Sangwan

Objectives

- Containers and Container Orchestration
- Orchestration systems and Kubernetes
- Oracle Container Engine for Kubernetes
- Setting up the Kubernetes Cluster in OCI
- Installing Kubernetes Dashboard
- Exploring your Cluster

Key Containers / Orchestration Use Cases

	Container Use Cases	Orchestration Use Cases
Development	Developer productivity; Consistent appstacks in Dev, Test & Production	Auto deploys to accelerate application release cadence
CI/CD/DevOps (Cont. Integ)	Containerized dependencies; Container registries;	Rolling updates and reversals
Operations	Standardized environments for dev, testing and operations	Resilient, self-healing systems; High Availability; Elastic Scalability
Refactor Legacy Apps	Refactor from N-tier to portable containerized applications	Run distributed, stateful apps on scale-out infrastructure
Migrate to Cloud	Move entire appstacks and see them run identically in the cloud	Cloud bursting; Reduce infrastructure costs by avoiding over-provisioning

Docker and Kubernetes

Docker Containers

- Popular, easy to use tooling targeting developer productivity
- De-facto standard container runtime and image format
- Used for developer on-boarding and 1st generation application management

Kubernetes Orchestration

- Production grade container management targeting DevOps and operations, with widespread adoption
- Complex but powerful toolset supporting cloud scale applications
- Rich operations feature set, autoscaling, rolling upgrades, stateful apps and more.

Docker & Kubernetes Lead the Market

Containers (Docker)

- 60% of enterprise companies (500+ hosts) use Docker
- 40% of all the hosts at these companies run Docker

Orchestration (Kubernetes)

- 50% of Docker users also use orchestrators
- 80% of these orchestration users prefer Kubernetes

Container Orchestration & Containers as a Service (CaaS)

- Multi-container apps
- Scheduling
- Service Discovery
- Maintaining Desired State

- Orchestration as a service
- Hosted Container Runtime
- Minimize operational overhead

Kubernetes Cluster

What is It?

- Managed Kubernetes container service to deploy and run your own container based apps
- Tooling to create, scale, manage & control your own standard Kubernetes clusters instantly

What Problems Does it Solve?

- Complex, costly and time consuming build & maintain environments
- Hard to integrate Kubernetes with a registry and build process for container lifecycle management
- Difficult to manage and control team access to production clusters

Key Benefits

- Enables developers to get started and deploy containers quickly.
 Gives visibility and control for Kubernetes management.
- Combines production grade container orchestration of open Kubernetes, with control, security, IAM, and high predictable performance of Oracle's next generation cloud infrastructure

Kubernetes Challenges

Managing Kubernetes Infrastructure, upgrading, security

 Container networking persistent storage &

Managing Teams & Access

CI/CD Integration, automated testing, conditional release

Working with Kubernetes Clusters on OCI

Working with Kubernetes Clusters

Customer's OCI Account/Tenancy

Pay only for the OCI
Resources used to run your
K8 Clusters
(VMs, Storage, LBs, etc.

Oracle Cloud Infrastructure

Oracle Managed

Customer Managed

OCI Kubernetes Clusters

- Container Native
- Developer Friendly
- Enterprise Ready

Container Native

Standard Docker & Kubernetes

 Deploy standard & open upstream Docker and Kubernetes versions for compatibility across environments

Registry Integration

Full Docker v2 compatible private registry to store and manage images

Container Engine

Deploy and operate containers and clusters

Full integration to cloud networking and storage

 Leverage the enterprise class networking, load balancing and persistent storage of Oracle Cloud Infrastructure

Developer Friendly

- Streamlined Workflow
 - Use your favorite CI to push containers to the registry, then Kubernetes to deploy to clusters and manage operations
- Full REST API
 - Automate the workflow, create and scale clusters through full REST API
- Open Standards
 - Docker Based Runtime
 - Worker Node SSH Access
 - Standard Kubernetes

Enterprise Ready

Simplified Cluster Operations

- Fully managed, highly available registry, master nodes and control plane
- One-click Quick Create for secure Private Worker Nodes/Subnets

Full Bare Metal Performance and Highly Available laaS

- Combine Kubernetes with bare metal shapes for raw performance
- Deploy Kubernetes clusters across multiple Availability Domains for resilient applications

Team Based Access Controls

Control team access and permissions to clusters

Containers Use Case: Lift & Shift WebLogic Application

Containers Use Case: Refactor an Existing Application

Creating Kubernetes Cluster in OCI

Pre-requisites for creating a K8s Cluster via Quickstart

- Monthly Credits have limit of 3 clusters per OCI region with 1000 nodes in a cluster and Payas-you-go or Promo accounts have a limit for One Cluster.
- Must also have compute Instance Quota (Required) to launch k8s worker nodes in an AD or across ADs for HA
- Required Policy in the root compartment of your tenancy
 allow service OKE to manage all-resources in tenancy
- User must be either part of the Admin group or a group to which a policy grants the appropriate Container Engine for Kubernetes permissions.
- Policies can be created for users which are not part of the admin group. Eg.
 allow group dev-team to manage cluster-family in tenancy

OKE Quickstart - 1/3

- Navigate to Menu -> Developer Services -> Kubernetes Clusters
- -> Create Cluster

OKE Quickstart – 2/3

The version of Kubernetes to run on the master nodes and worker nodes of the cluster. Either accept the default version or select a version of your choice. Amongst other things, the Kubernetes version you select determines the default set of admission controllers that are turned on in the created cluster

OKE Quickstart - 3/3

Thank You