Отборочная олимпиада. Решения

1. Найдите наименьшее натуральное N, для которого верно следующее утверждение:

«Для каждого конечного набора точек на плоскости, из того, что любые N точек этого набора лежат не более чем на двух прямых, следует, что и все точки этого набора лежат не более чем на двух прямых.»

Omeem. N=6.

Решение. Пример, в котором все точки нельзя накрыть двумя прямыми, но, при этом, любые не более, чем 5 точек можно накрыть двумя прямыми (проверяется непосредственно).

Пусть $N \geq 6$. Тогда накроем какие-то N точек набора двумя прямыми*. На одной из прямых окажется, по крайней мере, три точки, назовём их A,B,C. Если во всём наборе не более одной точки лежит не на прямой ABC, утверждение очевидно. Если же в наборе нашлись хотя бы две точки X,Y, не лежащие на прямой ABC, то для любой оставшейся точки Z набор из точек A,B,C,X,Y,Z должно быть можно накрыть двумя прямыми. Одна из прямых должна быть ABC (иначе, чтобы накрыть точки A,B,C, потребуется хотя бы три прямые), а другая XY (иначе, чтобы накрыть X,Y, потребуется хотя бы две прямые, кроме ABC). Следовательно, Z лежит или на ABC, или на XY, а, значит, все точки набора лежат или на ABC, или на XY.

2. Натуральные числа x и y при делении на натуральное число n дают один и тот же остаток r. При этом, их произведение xy делится на n!. Докажите, что r=0.

Решение. Если n=1, утверждение очевидно. Иначе, пусть некоторое простое число p входит в разложение числа n на простые множители в степени k. Заметим, что в n! есть множители p,p^2,\ldots,p^k , т.е. p входит в разложение n!, по крайней мере, в степени $\frac{k(k+1)}{2}$, что не меньше, чем 2k-1 при натуральных k. Так как xy делится на n!, то xy делится на p^{2k-1} , откуда следует, что, по крайней мере, одно из чисел x и y делится на p^k . Но тогда и r делится на p^k . Если повторить рассуждение для всех простых делителей n, получим, что r делится на все простые делители n в тех же степенях, что и n. Но тогда либо $r \geq n$, что невозможно, либо r = 0.

3. Вневписанные окружности треугольника ABC касаются его сторон BC, CA

и AB в точках A_1, B_1 и C_1 соответственно. Точка A лежит на окружности, описанной около треугольника $A_1B_1C_1$. Докажите, что вторая точка пересечения этой окружности со стороной BC – основание высоты треугольника ABC, опущенной из вершины A.

Решение 1. Счетное. Обозначим вторую точку пересечения окружности со стороной BC за X, и назовём буквами равные отрезки: $BC_1=CB_1=a, AC_1=CA_1=b, AB_1=BA_1=c$ (каждый из отрезков равен разности полупериметра треугольника и прилежащей стороны). Также обозначим BX=x.

Запишем равенства степеней точек B и C относительно окружности:

$$B: cx = a(a+b), C: b(b+c-x) = a(a+c).$$

Заметим, что $AX \perp BC \Leftrightarrow (a+b)^2 - x^2 = (a+c)^2 - (b+c-x)^2$. После раскрытия скобок в этом равенстве и сокращения квадратов получим $2ab+b^2=2ac-b^2-2bc+2bx+2cx$, что преобразуется в b(b+c-x)-cx=ac-ab. Осталось подставить полученные выше выражения и убедиться в том, что равенство верное.

Решение 2. Геометрическое.

Лемма. Перпендикуляры к сторонам BC, CA, AB, восстановленные в точках A_1 , B_1 , C_1 соответственно, пересекаются в одной точке.

Одно из возможных доказательств: отметим точки O, I – центры описанной и вписанной окружностей треугольника ABC, а также M_A и A_2 – середину BC и точку касания вписанной окружности со стороной BC, всё соответственно (см. рисунок).

Как известно, $BA_2=A_1C=p-AC$, где p – полупериметр треугольника ABC. Тогда и $A_2M_A=M_AA_1$. По теореме Фалеса, прямые A_2I,M_AO и перпендикуляр к BC в точке A_1 высекут на прямой OI равные отрезки, т.е. этот перпендикуляр пройдет через точку I', симметричную I относительно O. Повторив это рассуждение для остальных двух сторон, докажем, что все три перпендикуляра пройдут через I'.

Перейдём к решению задачи. Из леммы следует, что $\angle I'B_1A = \angle I'C_1A = 90^\circ$, следовательно, AI' — диаметр окружности из условия. Если I' не совпадает с A_1 , то $\angle I'A_1A = 90^\circ$, как угол, опирающийся на диаметр. Но $I'A_1$ также перпендикулярна BC, следовательно, точка A должна лежать на прямой BC — противоречие. Получается, что точка I' совпадает с A_1 , т.е. AA_1 — диаметр окружности из условия, а тогда на ней лежит и основание высоты из точки A на BC.

4. Рассмотрим граф, в котором 256 вершин — это всевозможные строки из нулей и единиц длины 8, а ребро проводится между двумя строками, если они отличаются ровно в одной позиции. В этом графе выбрали 128 ребер, не имеющих общих концов, и покрасили в красный. Остальные ребра покрасили в синий. Докажите, что в графе найдется цикл длины не более, чем 14, в котором красные и синие рёбра чередуются.

Решение. Выберем какую-нибудь вершину A в нашем графе, а остальные вершины будем называть A_{i_1,i_2,\dots,i_k} , если соответствующая ей последовательность отличается от A в позициях i_1,i_2,\dots,i_k , а в остальных совпадает. Если пройти из вершины A по красному ребру, мы попадём в вершину, которая отличается от A ровно в одной позиции, без ограничения общности, в A_1 . Из A_1 есть синее ребро в $A_{1,2}$. Из вершины $A_{1,2}$ красное ребро ведет или в вершину, отличающуюся от A ровно в одной позиции (A_2) , или в вершину, отличающуюся от A ровно в трёх позициях. В первом случае мы сразу можем вернуться в A и замкнуть цикл, а во втором, без ограничения общности, мы попадем в $A_{1,2,3}$. Перейдём по синему ребру в $A_{1,3}$. По красному ребру мы попадем или в A_3 , откуда можем вернуться в A, или, без ограничения общности, в $A_{1,3,4}$. Далее

действуем аналогично, переходя по синему ребру в вершину $A_{1,i}$, а из неё по красному ребру либо в вершину A_i , либо в $A_{1,i,j}$, при этом, если j > i, то, без ограничения общности, считаем, что j = i + 1 (см. рисунок).

Заметим, что, по крайней мере, после вершины $A_{1,8}$ (а, возможно, и раньше) при переходе по красному ребру, случится одно из двух событий:

- Мы придем в вершину, которая отличается от A ровно в одной позиции, тогда сразу замкнём цикл;
- Мы придем в вершину, которая не добавит новой позиции (т.е. в вершину $A_{1,k,l}$, где l < k). Но тогда мы из этой вершины можем пойти по синему ребру в вершину $A_{1,l}$, в которой уже были, и также получить цикл.

Если случилось второе событие, то длина цикла уже не более 14 (поскольку A и A_1 в нём не участвуют). А если случилось первое событие, и длина цикла оказалась больше 14, то она равна 16, и это означает, что последнее красное ребро привело нас из вершины $A_{1,8}$ в вершину A_8 . Но тогда есть цикл короче: $A-A_1-A_{1,8}-A_8$.

5. Дано натуральное число n. Оказалось, что множество таких натуральных a, что 1 < a < n и $a^{a-1} - 1$ делится на n, равно $\{n-1\}$. Докажите, что n удвоенное простое число.

Решение. Чтобы множество было не пустым, n должно быть больше 2. Раз n-1 есть в этом множестве, то $(n-1)^{n-2}\equiv (-1)^{n-2}\equiv 1\pmod n$, следовательно, n должно быть четным. При этом, n не делится на 4 (если не равно 4), ведь если n=4k, то $(2k+1)^{2k}=(4k^2+4k+1)^k\equiv 1\pmod {4k}$, и 2k+1<4k-1 при k>1. Само число 4 подходит, но оно и является удвоенным простым.

Тогда n=2x, где x>1 нечетно. Если в разложение x на множители все простые входят хотя бы во второй степени, $\varphi(n)$ делится на все простые, на которые делится n, и в качестве a подойдет число $\varphi(n)+1$: действительно, тогда $(\varphi(n)+1)^{\varphi(n)}\equiv 1\pmod n$, поскольку $\varphi(n)+1$ взаимно просто с n. При этом, $\varphi(n)+1=\varphi(x)+1\leqslant x<2x-1=n-1$. Иначе, можно представить

x = pk, где p – нечетное простое и (p, k) = 1. Рассмотрим числа

1,
$$2k+1$$
, $4k+1$, ..., $2(p-1)k+1$.

Их ровно p, они отличаются на 2k, причем из того, что (2k,p)=1, следует, что они все дают различные остатки при делении на p. Тогда найдется такое $1\leqslant l\leqslant p-1$, что $2kl+1\equiv -1\pmod p$. Тогда можно взять в качестве a число 2kl+1:

$$(2kl+1)^{2kl} \equiv 1 \pmod{2k},$$

 $(2kl+1)^{2kl} \equiv (-1)^{2kl} \equiv 1 \pmod{p},$

следовательно, $(2kl+1)^{2kl} \equiv 1 \pmod{2kp=n}$. При этом, если k>1, то число $2kl+1 \leqslant 2k(p-1)+1 < 2pk-1=n-1$. А если k=1, то n=2p, что и требовалось доказать.