Calcul Quantique Adiabatique

Côme Périn - Sam Gubernator

ENSEIRB-MATMECA

Décembre 2023

Sommaire

1 Outils de compréhension

2 Fonctionnement

3 Utilisation de la méthode

On considère un problème.

On construit un circuit quantique pour y répondre.

Le système dans un état initial $|\Psi_0\rangle$ est modifié par des portes quantiques. Il finit dans l'état $|\Psi_f\rangle$.

Le système est modifié par des portes quantiques.

Une mesure finale répond au problème.

Calcul quantique

Équation de Schrödinger :

$$i\hbar \frac{d|\Psi(t)\rangle}{dt} = \hat{H}|\Psi(t)\rangle$$

- La configuration du système (Énergie) est donnée par \hat{H} .
- ullet Le calcul revient à faire évoluer H pendant un temps au.
- \bullet au est le temps de calcul.

Niveaux d'Énergie

Figure – Évolution des niveaux d'énergie en fonction du temps

État propre

1 niveau d'énergie, \Leftrightarrow 1 état propre.

$$\forall t \in [t_0, t_f], H(t)\Psi_i(t) = E_i(t)\Psi_i(t)$$

Processus adiabatique

- Différent de l'adiabaticité thermodynamique
- Plutôt analogue à une transformation statique en thermodynamique.
- Système soumis à une évolution lente de l'environnement $(au o \infty)$

Théorème adiabatique

- Processus adiabatique
- Niveau d'énergie initial suffisamment isolé

Dans ce cas, la fonction d'onde finale Ψ_f partage la même forme fonctionnelle que la fonction d'onde initiale Ψ_0 .

Autrement dit : on reste sur le même état propre/niveau d'énergie.

Calcul quantique adiabatique

Objectif: résoudre un problème complexe.

On détermine H_f un hamiltonien complexe de sorte que son état fondamental décrive une solution du problème.

Conditions initiales: L'hamiltonien initial du système H_0 est simple. On place le système dans son état fondamental.

Calcul: On fait évoluer adiabatiquement H_0 vers H_f , la mesure finale de Ψ_f donne la solution optimale au problème complexe.

Exemple de résolution

Des problèmes tels que celui du voyageur peuvent être transposé dans le monde physique et ainsi résolus par la méthode du calcul quantique adiabatique.

Avantages et inconvénients

- + Résolutions de problème complexes sans mesures intermédiaires
- + Assurance de trouver une solution optimale si adiabaticité conservée
- - Mise en pratique compliquée (bascule)
- Vitesse d'exécution

Merci pour votre attention Des questions?