Modeling Conventionalization and Predictability in Multiword Expressions at

the Brain Level

Shohini Bhattasali ¹ Murielle Popa-Fabre ² John Hale ³ Christophe Pallier ⁴

PARIS EDIDEROT

²INRIA – University of Paris ³University of Georgia ⁴CEA Inserm Cognitive Neuroimaging Unit ¹University of Maryland

SCiL 2020

Question

Which gradient metric is psychologically plausible for processing these noncompositional expressions during language comprehension?

MWE Examples: break the ice, boa constrictor, safe and sound, see to it, in spite of

Key Ideas

- Apply computational linguistics metrics in a naturalistic listening fMRI study
- r² Model Comparison, instead of GLM localization
- Dice's Coefficient is a better predictor of neural activation for processing MWEs

Data Collection

51 native English speakers listened to *The Little* Prince for 1 hr & 38 mins across nine separate sections; 15,388 words in total.

Comprehension confirmed through multiple-choice questions (90% accuracy, SD = 3.7%).

Multiword Expressions

742 MWEs were identified in the dataset through a transition-based MWE analyzer (Al Saied et al., 2017) trained on Children's Book Test dataset (Hill et al., 2015).

Association Measures calculated using corpus frequency counts from COCA:

• Pointwise Mutual Information (PMI):

$$PMI = log_2 \frac{c(w_n^1)}{E(w_n^1)} \tag{1}$$

2 Dice's Coefficient:

Dice =
$$\frac{n \times c(w_n^1)}{\sum_{i=1}^n c(w_i)}$$
 (2)

Dice's Coefficient vs. Pointwise Mutual Information

Figure 1:Z-map showing regions having a significant effect for Dice's coefficient versus Pointwise Mutual Information after Bonferroni correction with p < 0.05

Figure 2: Graph comparing Pointwise Mutual Information (in blue) with Dice's Coefficient (in green).

fMRI Analysis

Preprocessing was carried out with AFNI version 16 and ME-ICA v3.2 (Kundu et al., 2011).

GLM Analysis:

- MWE predictors convolved with SPM12's canonical HRF, regressed against observed BOLD signal.
- Includes four regressors of non-interest: word offset, frequency, pitch, intensity

r² Model Comparison: For every subject, we compute how much the inclusion of each variable of interest (i.e. Dice and PMI) increases the cross-validated

Conclusion

- Dice's Coefficient, formalizing the degree of predictability, is a better predictor of cerebral activation for processing MWEs.
- Indicates that Dice is a more cognitively plausible computational metric.
- Previous work has shown gradient nature of MWEs (Bhattasali et al., 2018); results here illustrate how gradient they are.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 1607441. We thank Philip Resnik for valuable feedback.