Chap. 3

Arithmetic for Computers

- 3.1 Introduction 1783.2 Addition and Subtraction 178
- 3.3 Multiplication 183
- **3.4 Division** 189
- 3.5 Floating Point 196
- 3.6 Parallelism and Computer Arithmetic:
 - **Subword Parallelism** 222
- 3.7 Real Stuff: Streaming SIMD Extensions and
 - Advanced Vector Extensions in x86 224

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow

- Floating-point (浮動小數點) real numbers
 - Representation and operations

Integer Addition

Example : 7 + 6

- Half Adder
- Full Adder
- Parallel Adder
- Carry Lookahead Adder

Integer Addition

Example : 7 + 6

carry lookahead adder(CLA)

Integer Subtraction

- Add negation of second operand
- Example : 7 6 = 7 + (-6)

+7: 0000 0000 ... 0000 0111

<u>-6: 1111 1111 ... 1111 1010</u>

+1: 0000 0000 ... 0000 0001

Binary Adder/Subtractor

Optimized Multiplier (Fig.3.5)

Perform steps in parallel: add/shift

Optimized Divider (Fig. 3.11)

- Looks a lot like a multiplier!
 - Same hardware can be used for both

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)
 - Precision vs. range

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Subword Parallellism

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - Sixteen 8-bit adds
 - Eight 16-bit adds
 - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or
- Single Instruction, Multiple Data (SIMD)

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...
- Very difficult to generate and optimize code
 - Result : poor FP performance

Streaming SIMD Extension 2 (SSE2)

- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Single-Instruction Multiple-Data

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow

MIPS ISA

- Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
- Other instructions: less frequent