# **HANDLING CATEGORICAL VARIABLES**

As machine learning model understanding numbering so it is necessary to change to numeric ones

| town            | area | price  | town | area | price  |
|-----------------|------|--------|------|------|--------|
| monroe township | 2600 | 550000 | 1    | 2600 | 550000 |
| monroe township | 3000 | 565000 | 1    | 3000 | 565000 |
| monroe township | 3200 | 610000 | 1    | 3200 | 610000 |
| monroe township | 3600 | 680000 | 1    | 3600 | 680000 |
| monroe township | 4000 | 725000 | 1    | 4000 | 725000 |
| west windsor    | 2600 | 585000 | 2    | 2600 | 585000 |
| west windsor    | 2800 | 615000 | 2    | 2800 | 615000 |
| west windsor    | 3300 | 650000 | 2    | 3300 | 650000 |
| west windsor    | 3600 | 710000 | 2    | 3600 | 710000 |
| robbinsville    | 2600 | 575000 | 3    | 2600 | 575000 |
| robbinsville    | 2900 | 600000 | 3    | 2900 | 600000 |
| robbinsville    | 3100 | 620000 | 3    | 3100 | 6      |

### onroe township = 1, West Windsor = 2, Robbinsville =

As given towns are nominal. So, when we assign like 1, 2, 3. It assume in order like below which might make no

Monroe township < West Windsor < Robbinsville ?

0r

Monroe township + West Windsor = Robbinsville ?

## **TYPES OF CATEGORICAL VARIABLES**



Have no relationship with each other

Have some sort of numerical ordering/relation between them. For example we can say that high have low value than other .....

#### NOMINAL VARIABLES

Integer based encoding do not work for nomnal variables. So, we use one hot encoding (get\_dummies)

|                 | <b>GIVES RESULT LIKE THIS</b> |        |                 |              |              |  |  |  |
|-----------------|-------------------------------|--------|-----------------|--------------|--------------|--|--|--|
| town            | area                          | price  | monroe township | west windsor | robbinsville |  |  |  |
| monroe township | 2600                          | 550000 | 1               | 0            | 0            |  |  |  |
| monroe township | 3000                          | 565000 | 1               | 0            | 0            |  |  |  |
| monroe township | 3200                          | 610000 | 1               | 0            | 0            |  |  |  |
| monroe township | 3600                          | 680000 | 1               | 0            | 0            |  |  |  |
| monroe township | 4000                          | 725000 | 1               | 0            | 0            |  |  |  |
| west windsor    | 2600                          | 585000 | 0               | 1            | 0            |  |  |  |
| west windsor    | 2800                          | 615000 | 0               | 1            | 0            |  |  |  |
| west windsor    | 3300                          | 650000 | 0               | P 1          | 0            |  |  |  |
| west windsor    | 3600                          | 710000 | 0               | 1            | 0            |  |  |  |
| robbinsville    | 2600                          | 575000 | 0               | 0            | 1            |  |  |  |
| robbinsville    | 2900                          | 600000 | 0               | 0            | 1            |  |  |  |
| robbinsville    | 3100                          | 620000 | 0               | 0            |              |  |  |  |
| robbinsville    | 3600                          | 695000 | 0               | 0            |              |  |  |  |

#### When to Use `LabelEncoder`:

Ordinal Data: When there is a meaningful order to the categories. Examples include ratings (e.g., 'low', 'medium', 'high') or levels (e.g., 'beginner', 'intermediate', 'advanced').

#### When Not to Use `LabelEncoder`:

- Nominal Data: When there is no inherent order among the categories. Examples include types
  of fruit (e.g., 'apple', 'orange', 'banana') or city names.
- In label encoding, each data value is assigned a **distinct number** instead of a **qualitative value**.
- In one-hot encoding, each unique value is transformed into a new binary (0/1) feature column.