CSE 4108: Structured Programming I Lab Mid Test

Duration: 1 Hour

Naming Convention: The file naming format is ID_Mid.c, eg. 230041101_Mid.c. Ensure that your file is properly named, otherwise it will not be evaluated.

Task — Ten Percentiles

Problem Statement

Given an array of n integers between 1 to 100, you must divide the values into ten-percentiles defined as:

- P₁ (First Ten-Percentile): Contains values in the range [1, 10]
- P₂ (Second Ten-Percentile): Contains values in the range [11, 20]
- P₁₀ (Tenth Ten-Percentile): Contains values in the range [91, 100]

For each ten-percentile, report the range of values it contains along with the frequency of numbers within that range.

Once the ten-percentile frequencies are determined, compute an *approximate average* for the values using the midpoints of each ten-percentile range and the frequency of numbers in each range. The *approximate average* can be calculated by iterating over the ten-percentiles as follows:

Approximate Average =
$$\frac{1}{n} \sum_{i=1}^{10} (m_i \times f_i)$$

Where:

• m_i is the midpoint of the i^{th} ten-percentile range, i.e.,

$$m_i = \frac{(\text{range_start}_i + \text{range_end}_i)}{2}$$

- f_i is the frequency of numbers in the i^{th} ten-percentile.
- n is the total number of elements in the array.

Input

The first line contains a single integer n ($1 \le n \le 10^5$), denoting the number of values in the array. The second line contains n space-separated integers a_i ($1 \le a_i \le 100$), each representing an array value.

Output

Print ten lines, each representing a ten-percentile in order from P_1 to P_{10} . For each ten-percentile, display the percentile range and the frequency of numbers in that range.

In the last line, output the approximate average of the dataset. See the sample output for more clarity.

Sample Test Case(s)

Sample Case 1

Input	Output
5	P1 [1,10]: 2
99 99 1 2 50	P2 [11,20]: 0
	P3 [21,30]: 0
	P4 [31,40]: 0
	P5 [41,50]: 1
	P6 [51,60]: 0
	P7 [61,70]: 0
	P8 [71,80]: 0
	P9 [81,90]: 0
	P10 [91,100]: 2
	Approximate Average: 49.50

Explanation:

In this sample, the input contains 5 values: 99, 99, 1, 2, and 50. These values are distributed across the ten-percentile ranges as follows:

- 1 and 2 fall into P_1 [1, 10], giving P_1 a frequency of 2.
- 50 falls into P_5 [41, 50], giving P_5 a frequency of 1.
- 99 appears twice and falls into P_{10} [91, 100], giving P_{10} a frequency of 2.

The other ten-percentiles are empty, and have a frequency of 0.

The approximate average is calculated using the midpoint of each occupied percentile and its frequency:

Approximate Average =
$$\frac{1}{5}$$
 ((5.5 × 2) + (45.5 × 1) + (95.5 × 2)) = 49.5

where 5.5, 45.5, and 95.5 are the midpoints of percentiles P_1 , P_5 , and P_{10} , respectively

Sample Case 2

Input	Output
10	P1 [1,10]: 0
15 72 82 63 51 92 23 36 90 100	P2 [11,20]: 1
	P3 [21,30]: 1
	P4 [31,40]: 1
	P5 [41,50]: 0
	P6 [51,60]: 1
	P7 [61,70]: 1
	P8 [71,80]: 1
	P9 [81,90]: 2
	P10 [91,100]: 2
	Approximate Average: 63.50