Cómputo científico para probabilidad y estadística. Tarea 3. Estabilidad.

Juan Esaul González Rangel

Septiembre 2023

1. Sea Q una matriz unitaria aleatoria de 20×20 (eg. con A una matriz de tamaño 20×20 aleatoria calculen su descomposición QR). Sean $\lambda_1 > \lambda_2 > ... \ge \lambda_{20} = 1 > 0$ y

$$B = Q^* diag(\lambda_1, \lambda_2, ..., \lambda_{20})Q$$
, y $B_{\varepsilon} = Q^* diag(\lambda_1 + \varepsilon_1, \lambda_2 + \varepsilon_2, ..., \lambda_{20} + \varepsilon_{20})Q$,

con $\varepsilon_i \sim N(0, \sigma)$, con $\sigma = 0.02\lambda_{20} = 0.01$.

- a) Comparar la descomposición de Cholesky de B y de B_{ε} usando el algoritmo de la tarea 1. Considerar los casos cuando B tiene un buen número de condición y un mal número de condición.
- b) Con el caso mal condicionado, comparar el resultado de su algoritmo con el del algoritmo de Cholesky de scipy.
- c) Medir el tiempo de ejecución de su algoritmo de Cholesky con el de scipy.
- 2. Resolver el problema de mínimos cuadrados,

$$y = X\beta + \varepsilon, \quad \varepsilon_i \sim N(0, \sigma)$$

usando su implementación de la descomposición QR; β es de tamaño $n \times 1$ y X de tamaño $n \times d$. Sean $d=5, n=20, \beta=(5,4,3,2,1)'y\sigma=0.13$

- a) Hacer X con entradas aleatorias U (0, 1) y simular y. Encontrar $\hat{\beta}$ y compararlo con el obtenido $\hat{\beta}_p$ haciendo $X + \Delta X$, donde las entradas de ΔX son $N(0, \sigma = 0.01)$. Comparar a su vez con $\hat{\beta}_c = ((X + \Delta X)'(X + \Delta X))^{-1}(X + \Delta X)'y$ usando el algoritmo genérico para invertir matrices scipy.linalg.inv.
- b) Lo mismo que el anterior pero con X mal condicionada (ie. con casi colinealidad).