Lab7

N K Sathvik

Submission deadline:September 13,2023

Exact value of I
$$I = \int_0^1 e^{\sqrt{x}} dx$$
 (substituting $\sqrt{x} = t$)

$$= 2 \textstyle \int_0^1 e^t t dt$$

=2

M	confidence intervals(lab 6)	confidence intervals(lab 7)	ratio	Mean(lab 6)	Mean(lab7)
10^{2}	[1.885,2.084]	[1.994,2.014]	9.732	1.985	2.004
10^{3}	[1.953,2.008]	[1.996,2.002]	9.246	1.980	1.999
10^{4}	[1.997,2.014]	[1.998,2.000]	9.219	2.006	1.999
10^{5}	[1.995,2.000]	[1.999,2.000]	9.493	1.998	1.9999

It is better to use anti-thetic approach as the confidence interval is much smaller

Formulas used to code:

$$\delta_i = y_i - \widehat{\mu}_{i-1}$$

$$\widehat{\mu}_i = \widehat{\mu}_{i-1} + \frac{\delta_i}{i}$$

$$S_i = S_{i-1} + \frac{i-1}{i} \delta_i^2$$

familiar 95% confidence interval $(\widehat{\mu}_n - 1.96 \frac{s_n}{\sqrt{n}}, \, \widehat{\mu}_n + 1.96 \frac{s_n}{\sqrt{n}}).$

$$\widehat{\mu}_{\mathrm{anti}} = \frac{1}{m} \sum_{i=1}^m Y_i, \qquad \qquad s_{\mathrm{anti}}^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \widehat{\mu}_{\mathrm{anti}})^2.$$

Here
$$Y_i = (exp(\sqrt{U_i}) + exp(\sqrt{1-U_i}))/2$$