# On Two-Pass Streaming Algorithms for Maximum Bipartite Matching

Kheeran K. Naidu

University of Bristol kn16063@bristol.ac.uk

Joint work with Dr Christian Konrad

## Overview

- Background
- Our Work
  - Lower Bound
  - Algorithmic
- 3 Discussion

#### Definition

#### Definition



#### Definition



#### Definition





maximal matching

#### Definition



matching



maximal matching



maximum matching

#### **Definition**

A **(bipartite)** matching is a subset of edges of a graph where every vertex has degree at most 1.

Finding a maximum matching:

- exact algorithms exists, i.e. Hopcroft-Karp [SWAT71];
- require random access to the graph's edges (infeasible requirement for massive graphs).



## Semi-Streaming Model

## Feigenbaum et al. [ICALP04]

A graph with n vertices is presented to an algorithm as a stream of edges where the storage space of the algorithm is bounded by O(n polylog n).

- Only allows sequential access to the graph.
- Algorithms with space  $O(n \text{ polylog } n) = O(n (\log n)^{O(1)})$ .
- Ideally with few passes of the stream.



# Maximum Bipartite Matching Literature I

|          | Algorithmic                              | Lower Bound                    |
|----------|------------------------------------------|--------------------------------|
| one-pass |                                          | $\frac{1}{2} + 0.167$ [SODA12] |
|          | $\frac{1}{2}$ [folklore]                 | $\frac{1}{2} + 0.132$ [SODA13] |
|          |                                          | $\frac{1}{2} + 0.091$ [SODA21] |
|          | $\frac{1}{2} + 0.019 \text{ [APPROX12]}$ |                                |
|          | $\frac{1}{2} + 0.083$ [ICDMW16]          |                                |
| two-pass | $\frac{1}{2} + 0.063$ [APPROX17]         |                                |
|          | $\frac{1}{2} + 0.085$ [MFCS18]           |                                |
|          |                                          |                                |

Two-Pass MBM Background Kheeran K. Naidu (UoB) 5 / 25

## Main Results

#### Two-Pass Maximum Bipartite Matching

Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

## Main Results

## Two-Pass Maximum Bipartite Matching

Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

Note: Only strategy proven to work.

## Main Results

## Two-Pass Maximum Bipartite Matching

Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

Note: Only strategy proven to work.

Lower Bound:

Algorithmic:

#### Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

Note: Only strategy proven to work.

#### Lower Bound:

• If the first pass finds only a maximal matching, no better than a  $\frac{2}{3} \approx \frac{1}{2} + 0.167$ -approximation is possible in two passes.

#### Algorithmic:

#### Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

Note: Only strategy proven to work.

#### Lower Bound:

• If the first pass finds only a maximal matching, no better than a  $\frac{2}{3} \approx \frac{1}{2} + 0.167$ -approximation is possible in two passes.

#### Algorithmic:

• Even a combination of the two dominant techniques in the area cannot beat the current state-of-the-art  $2-\sqrt{2}\approx\frac{1}{2}+0.085$ -approximation.

#### Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

Note: Only strategy proven to work.

#### Lower Bound:

• If the first pass finds only a maximal matching, no better than a  $\frac{2}{3} \approx \frac{1}{2} + 0.167$ -approximation is possible in two passes.

#### Algorithmic:

• Even a combination of the two dominant techniques in the area cannot beat the current state-of-the-art  $2-\sqrt{2}\approx \frac{1}{2}+0.085$ -approximation.

Other strategies and techniques are required!

## Maximum Bipartite Matching Literature II

|          | Algorithmic                                                                                                                                                                                         | Lower Bound                                                                                                                |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| one-pass | $\frac{1}{2}$ [folklore]                                                                                                                                                                            | $\frac{1}{2} + 0.167 \text{ [SODA12]}$<br>$\frac{1}{2} + 0.132 \text{ [SODA13]}$<br>$\frac{1}{2} + 0.091 \text{ [SODA21]}$ |
| two-pass | $\begin{array}{c} \frac{1}{2} + 0.019 \; [APPROX12] \\ \frac{1}{2} + 0.083 \; [ICDMW16] \\ \frac{1}{2} + 0.063 \; [APPROX17] \\ \frac{1}{2} + 0.085 \; [MFCS18] \\ \frac{1}{2} + 0.085 \end{array}$ | $\frac{1}{2} + 0.167^{1}$                                                                                                  |

Two-Pass MBM Background Kheeran K. Naidu (UoB)

 $<sup>^{1}</sup>$ where the first pass finds a maximal matching, i.e., at least a  $\frac{1}{2}$ -approximation.

## Overview

- Background
- Our Work
  - Lower Bound
  - Algorithmic

3 Discussion

## Overview

- Background
- Our Work
  - Lower Bound
  - Algorithmic

3 Discussion

#### Lower Bound Result

#### Two-Pass Maximum Bipartite Matching

#### Lower Bound:

• If the first pass finds only a maximal matching, no better than a  $\frac{2}{3} \approx \frac{1}{2} + 0.167$ -approximation is possible in two passes.

#### Lower Bound:

- If the first pass finds only a maximal matching, no better than a  $\frac{2}{3} \approx \frac{1}{2} + 0.167$ -approximation is possible in two passes.
- Extends Goel, Kapralov and Khanna's one-pass  $\frac{2}{3}$ -approximation lower bound [SODA12].

#### Lower Bound:

- If the first pass finds only a maximal matching, no better than a  $\frac{2}{3} \approx \frac{1}{2} + 0.167$ -approximation is possible in two passes.
- Extends Goel, Kapralov and Khanna's one-pass  $\frac{2}{3}$ -approximation lower bound [SODA12].
- Uses a dense family of Rusza Szemeredi (RS) graphs which contains (many) near-perfect matchings.

#### Lower Bound:

- If the first pass finds only a maximal matching, no better than a  $\frac{2}{3} \approx \frac{1}{2} + 0.167$ -approximation is possible in two passes.
- Extends Goel, Kapralov and Khanna's one-pass  $\frac{2}{3}$ -approximation lower bound [SODA12].
- Uses a dense family of Rusza Szemeredi (RS) graphs which contains (many) near-perfect matchings. This result may be of independent interest.

#### Definition

#### Definition



#### Definition



#### Definition



#### Definition



#### Definition



#### Definition

Rusza Szemeredi (RS) graphs are a family of bipartite graphs whose edge set is made up of a union of induced matchings of the same size.

## Proposition ([SODA12])

There exists a bipartite RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} - \epsilon N$  where N = |A| = |B| and  $\epsilon > 0$ .

#### Definition

Rusza Szemeredi (RS) graphs are a family of bipartite graphs whose edge set is made up of a union of induced matchings of the same size.

## Proposition ([SODA12])

There exists a bipartite RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} - \epsilon N$  where N = |A| = |B| and  $\epsilon > 0$ .

**Note:** This is a dense RS graph with  $N^{1+\Omega(\frac{1}{\log\log N})} \supset O(N \text{ polylog } N)$  edges.

#### **Two-Party Communication Setup**

① Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} - \epsilon N$ .



- ① Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- **②** Randomly remove  $\epsilon N$  edges from each induced matching.



- ① Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- **2** Randomly remove  $\epsilon N$  edges from each induced matching.



- Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- ② Randomly remove  $\epsilon N$  edges from each induced matching.



- ① Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- **2** Randomly remove  $\epsilon N$  edges from each induced matching.



- ① Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- **2** Randomly remove  $\epsilon N$  edges from each induced matching.



- ① Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- **2** Randomly remove  $\epsilon N$  edges from each induced matching.
- **3** Select a single special matching  $M_j$  at random.



#### **Two-Party Communication Setup**

- Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- **②** Randomly remove  $\epsilon N$  edges from each induced matching.
- **3** Select a single special matching  $M_j$  at random.
- Introduce two new sets of outer vertices each of size  $\frac{N}{2} + \epsilon N$  and connect to them to the non- $M_j$  inner vertices by a perfect matching.



A<sub>out</sub>

- ① Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- **2** Randomly remove  $\epsilon N$  edges from each induced matching.
- **3** Select a single special matching  $M_j$  at random.
- Introduce two new sets of outer vertices each of size  $\frac{N}{2} + \epsilon N$  and connect to them to the non- $M_j$  inner vertices by a perfect matching.



- Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- ② Randomly remove  $\epsilon N$  edges from each induced matching.
- **3** Select a single special matching  $M_j$  at random.
- Introduce two new sets of outer vertices each of size  $\frac{N}{2} + \epsilon N$  and connect to them to the non- $M_j$  inner vertices by a perfect matching.



- ① Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- ② Randomly remove  $\epsilon N$  edges from each induced matching.
- **3** Select a single special matching  $M_j$  at random.
- Introduce two new sets of outer vertices each of size  $\frac{N}{2} + \epsilon N$  and connect to them to the non- $M_j$  inner vertices by a perfect matching.





- Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- **2** Randomly remove  $\epsilon N$  edges from each induced matching.
- **3** Select a single special matching  $M_j$  at random.
- Introduce two new sets of outer vertices each of size  $\frac{N}{2} + \epsilon N$  and connect to them to the non- $M_j$  inner vertices by a perfect matching.





- ① Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- ② Randomly remove  $\epsilon N$  edges from each induced matching.
- **3** Select a single special matching  $M_j$  at random.
- Introduce two new sets of outer vertices each of size  $\frac{N}{2} + \epsilon N$  and connect to them to the non- $M_j$  inner vertices by a perfect matching.





- ① Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- ② Randomly remove  $\epsilon N$  edges from each induced matching.
- **3** Select a single special matching  $M_j$  at random.
- **③** Introduce two new sets of outer vertices each of size  $\frac{N}{2} + \epsilon N$  and connect to them to the non- $M_j$  inner vertices by a perfect matching.





- ① Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- ② Randomly remove  $\epsilon N$  edges from each induced matching.
- **3** Select a single special matching  $M_j$  at random.
- Introduce two new sets of outer vertices each of size  $\frac{N}{2} + \epsilon N$  and connect to them to the non- $M_j$  inner vertices by a perfect matching.





- Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- ② Randomly remove  $\epsilon N$  edges from each induced matching.
- **3** Select a single special matching  $M_j$  at random.
- **1** Introduce two new sets of outer vertices each of size  $\frac{N}{2} + \epsilon N$  and connect to them to the non- $M_j$  inner vertices by a perfect matching.





- Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- ② Randomly remove  $\epsilon N$  edges from each induced matching.
- **3** Select a single special matching  $M_j$  at random.
- **1** Introduce two new sets of outer vertices each of size  $\frac{N}{2} + \epsilon N$  and connect to them to the non- $M_j$  inner vertices by a perfect matching.





- ① Start with the dense RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} \epsilon N$ .
- ② Randomly remove  $\epsilon N$  edges from each induced matching.
- **3** Select a single special matching  $M_j$  at random.
- Introduce two new sets of outer vertices each of size  $\frac{N}{2} + \epsilon N$  and connect to them to the non- $M_j$  inner vertices by a perfect matching.
- $(\frac{2}{3} + \epsilon)$ -approx requires space  $N^{1+\Omega(\frac{1}{\log \log N})} \supset O(N \text{ polylog } N)$ .





**Goal:** Give both players knowledge of a maximal matching without affecting the difficulty of the problem.



**Goal:** Give both players knowledge of a maximal matching without affecting the difficulty of the problem.

#### **Outline:**

 Do dense RS graphs contain perfect matchings?



**Goal:** Give both players knowledge of a maximal matching without affecting the  $B_{out}$  $A_{in}$  $B_{in}$ dif **Proposition** There exists a bipartite RS graph with  $N^{\Omega(\frac{1}{\log\log N})}$  induced matchings of size  $\frac{N}{2} - \epsilon N$  where N = |A| = |B| and  $\epsilon > 0$  such that there are  $N^{\Omega(\frac{1}{\log \log N})}$  disjoint near-perfect matchings, each of size  $N-2\epsilon N$ .

13 / 25

**Goal:** Give both players knowledge of a maximal matching without affecting the difficulty of the problem.

#### **Outline:**

 Do dense RS graphs contain perfect matchings?



**Goal:** Give both players knowledge of a maximal matching without affecting the difficulty of the problem.

#### **Outline:**

- Do dense RS graphs contain perfect matchings?
- We use this RS graphs which has a near-perfect matching of size  $N \epsilon' N$  in the construction.



13 / 25

**Goal:** Give both players knowledge of a maximal matching without affecting the difficulty of the problem.

#### **Outline:**

- Do dense RS graphs contain perfect matchings?
- We use this RS graphs which has a near-perfect matching of size  $N \epsilon' N$  in the construction.



**Goal:** Give both players knowledge of a maximal matching without affecting the difficulty of the problem.

#### **Outline:**

- Do dense RS graphs contain perfect matchings?
- We use this RS graphs which has a near-perfect matching of size  $N \epsilon' N$  in the construction.



**Goal:** Give both players knowledge of a maximal matching without affecting the difficulty of the problem.

#### **Outline:**

- Do dense RS graphs contain perfect matchings?
- We use this RS graphs which has a near-perfect matching of size  $N \epsilon' N$  in the construction.
- $(\frac{2}{3} + \epsilon)$ -approx requires space  $N^{1+\Omega(\frac{1}{\log \log N})} \supset O(N \text{ polylog } N)$ .



### Overview

- Background
- Our Work
  - Lower Bound
  - Algorithmic

3 Discussion

### Algorithmic Result

### Two-Pass Maximum Bipartite Matching

### Algorithmic:

• Even a combination of the two dominant techniques in the area cannot beat the current state-of-the-art  $2-\sqrt{2}\approx \frac{1}{2}+0.085$ -approximation.

### Algorithmic Result

### Two-Pass Maximum Bipartite Matching

### Algorithmic:

- Even a combination of the two dominant techniques in the area cannot beat the current state-of-the-art  $2-\sqrt{2}\approx \tfrac{1}{2}+0.085\text{-approximation}.$
- A novel meta algorithm that exactly achieves the current state-of-the-art.

### Two-Pass Maximum Bipartite Matching

### Algorithmic:

- Even a combination of the two dominant techniques in the area cannot beat the current state-of-the-art  $2-\sqrt{2}\approx\frac{1}{2}+0.085$ -approximation.
- A novel meta algorithm that exactly achieves the current state-of-the-art.
- A family of hard-instance graphs shows the analysis is tight.

### Class of algorithms:

- finds a maximal matching M (first-pass);

#### Class of algorithms:

- finds a maximal matching M (first-pass);

#### Definition

#### Class of algorithms:

- finds a maximal matching M (first-pass);

#### Definition



### Class of algorithms:

- finds a maximal matching M (first-pass);
- increases the size of the matching M (second-pass).

#### Definition



### Class of algorithms:

- finds a maximal matching M (first-pass);
- increases the size of the matching M (second-pass).

#### Definition



### Class of algorithms:

- finds a maximal matching M (first-pass);
- ② increases the size of the matching M (second-pass).

#### Definition



### Class of algorithms:

- finds a maximal matching M (first-pass);

#### Definition



### Class of algorithms:

- finds a maximal matching M (first-pass);

#### Definition



#### Class of algorithms:

- finds a maximal matching M (first-pass);
- increases the size of the matching M (second-pass).

#### Definition



## Two-Pass Algorithm Summary

Using the two dominant techniques, parameterised by *p* and *d*:

- subsampling with probabilityp [APPROX12] [MFCS18]
- e run GREEDY<sub>d</sub> [ICDMW16] [APPROX17]



semi-incomplete matching

### Two-Pass Algorithm Summary

Using the two dominant techniques, parameterised by *p* and *d*:

- subsampling with probabilityp [APPROX12] [MFCS18]
- vun Greedy<sub>d</sub> [ICDMW16] [APPROX17]



semi-incomplete matching

Let G = (A, B, E) be any bipartite graph.

Let  $\pi = e_1, e_2, ...$  be any stream of its edges.

#### First pass:

•  $M \leftarrow \text{Greedy}(\pi)$ 

#### Second pass:

- subsample  $M' \subseteq M$  with prob. p
- $H_L \leftarrow E \cap A_{out} \times B(M')$
- $H_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_I \leftarrow \text{GREEDY}_d(\pi_{H_I})$
- $M'_R \leftarrow \text{GREEDY}_d(\pi_{H_R})$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

The goal of the algorithm is to find the maximum matching  $M^*$ .



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:

| A <sub>out</sub><br>● | B <sub>in</sub> | $A_{in}$             | B <sub>out</sub> |
|-----------------------|-----------------|----------------------|------------------|
| •                     | •               | •                    | •                |
| •                     | •               | •                    | •                |
| •                     | •               | •                    | •                |
| •                     | •               | •                    | •                |
| •                     | •               | •                    | •                |
| •                     | •               | •                    | •                |
| •                     | •               | •                    | •                |
|                       |                 | $e_1, e_2, \epsilon$ | $e_3, e_4,$      |

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:

| $A_{out}$      | $B_{in}$ | $A_{in}$             | $B_{out}$   |
|----------------|----------|----------------------|-------------|
| •              | •        | —•                   | •           |
| •              | •        | —•                   | •           |
| •              | •        | —●                   | •           |
| •              | •        | •                    | •           |
| •              | •        | •                    | •           |
| •              | •        | •                    | •           |
| •              | •        | •                    | •           |
| •              | •        | •                    | •           |
| e <sub>3</sub> |          | $e_4, e_5, \epsilon$ | $e_6, e_7,$ |

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:



$$e_{11}$$
  $e_{12}, e_{13}, e_{14}, e_{15}, ...$ 

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:

•  $M \leftarrow \text{Greedy}(\pi)$ 



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:

•  $M \leftarrow \text{Greedy}(\pi)$ 



Kheeran K. Naidu (UoB)

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:

•  $M \leftarrow \text{Greedy}(\pi)$ 



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2,...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:

•  $M \leftarrow \text{Greedy}(\pi)$ 



Let G = (A, B, E) be a hard-instance R  $B_{out}$  $A_{out}$  L  $B_{in}$  $A_{in}$ (worst-case) graph. Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order. First pass: How can we find •  $M \leftarrow \text{Greedy}(\pi)$ these?

Two-Pass MBM

Μ

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2,...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:

•  $M \leftarrow \text{Greedy}(\pi)$ 



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:

•  $M \leftarrow \text{Greedy}(\pi)$ 



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its

edge orde

Using the two dominant techniques:

First

• subsample the inner vertices [APPROX12] [MFCS18]

 $A_{out}$  L

 $B_{in}$ 

② run Greedy<sub>d</sub> [ICDMW16] [APPROX17]



Μ

R  $B_{out}$ 

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:

•  $M \leftarrow \text{Greedy}(\pi)$ 



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:

•  $M \leftarrow \text{Greedy}(\pi)$ 

### Second pass:



Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:

•  $M \leftarrow \text{Greedy}(\pi)$ 

#### Second pass:

• subsample  $M' \subseteq M$  with prob. p



$$d = 3, p = 0.67$$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi=e_1,e_2,...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:

•  $M \leftarrow \text{Greedy}(\pi)$ 

#### Second pass:

- subsample  $M' \subseteq M$  with prob. p
- $H_L \leftarrow E \cap A_{out} \times B(M')$
- $H_R \leftarrow E \cap A(M') \times B_{out}$



$$d = 3, p = 0.67$$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2, ...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:

•  $M \leftarrow \text{Greedy}(\pi)$ 

### Second pass:

- subsample  $M' \subseteq M$  with prob. p
- $H_I \leftarrow E \cap A_{out} \times B(M')$
- $H_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_{l} \leftarrow \text{GREEDY}_{d}(\pi_{H_{l}})$
- $M_R' \leftarrow \text{GREEDY}_d(\pi_{H_R})$



$$d = 3, p = 0.67$$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi = e_1, e_2,...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:

•  $M \leftarrow \text{Greedy}(\pi)$ 

### Second pass:

- subsample  $M' \subseteq M$  with prob. p
- $H_L \leftarrow E \cap A_{out} \times B(M')$
- $H_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_I \leftarrow \text{GREEDY}_d(\pi_{H_L})$
- $M'_{R} \leftarrow \text{GREEDY}_{d}(\pi_{H_{R}})$



$$\mathbb{E}_{M'}[|M'_L|] = \frac{dp}{d+p} \cdot |M_L^*|$$

Let G = (A, B, E) be a hard-instance (worst-case) graph.

Let  $\pi=e_1,e_2,...$  be a stream of its edges in adversarial (worst-case) order.

#### First pass:

•  $M \leftarrow \text{Greedy}(\pi)$ 

### Second pass:

- subsample  $M' \subseteq M$  with prob. p
- $H_L \leftarrow E \cap A_{out} \times B(M')$
- $H_R \leftarrow E \cap A(M') \times B_{out}$
- $M'_L \leftarrow \text{Greedy}_d(\pi_{H_L})$
- $M'_R \leftarrow \text{GREEDY}_d(\pi_{H_R})$



$$d = 3, p = 0.67$$

$$\mathbb{E}_{M'}[|M'_L|] = \frac{dp}{d+p} \cdot |M^*_L|$$

$$\mathbb{E}_{M'}[|M'_R|] = \frac{dp}{d+p} \cdot |M^*_R|$$

### **Analysis**



### **Analysis**

$$|\mathcal{Q}| = \left(\frac{p}{d+p} - \frac{p}{2d}\right) \cdot |M^*|.$$



### **Analysis**

$$|\mathcal{Q}| = \left(\frac{p}{d+p} - \frac{p}{2d}\right) \cdot |M^*|.$$

Therefore, the final matching is of size

$$(\frac{1}{2} + \frac{p}{d+p} - \frac{p}{2d}) \cdot |M^*|.$$



$$\mathbb{E}_{M'}[|M'_R|] = \frac{dp}{d+p} \cdot |M^*_R|$$

### **Analysis**

$$|\mathcal{Q}| \ge \left(\frac{p}{d+p} - \frac{p}{2d}\right) \cdot |M^*|.$$

Therefore, the final matching is of size at least

$$(\frac{1}{2}+\frac{p}{d+p}-\frac{p}{2d})\cdot |M^*|.$$



$$d = 3, p = 0.67$$

$$\mathbb{E}_{M'}[|M'_L|] \ge \frac{dp}{d+p} \cdot |M_L^*|$$

$$\mathbb{E}_{M'}[|M'_R|] \ge \frac{dp}{d+p} \cdot |M_R^*|$$

### Main Proof Outline

| $A_{out}$ | $B_i$ |
|-----------|-------|
| •         | •     |
| •         | •     |
| •         | •     |
| •         | •     |
| •         | •     |
| •         | •     |
| •         | •     |

## Setup:

• any bipartite graph G = (A, B, E) with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;



### Setup:

- any bipartite graph G = (A, B, E) with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;



## Setup:

- any bipartite graph G = (A, B, E) with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{GREEDY}_d(\pi_H)$ .



## Setup:

- any bipartite graph G = (A, B, E) with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .



## Setup:

- any bipartite graph G = (A, B, E) with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .

#### **Proof:**

•  $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$ 



## Setup:

- any bipartite graph G = (A, B, E) with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY<sub>d</sub>, how many edges in M<sup>\*</sup><sub>B'</sub> are blocked?



## Setup:

- any bipartite graph G = (A, B, E) with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY<sub>d</sub>, how many edges in M<sup>\*</sup><sub>B'</sub> are blocked?



## Setup:

- any bipartite graph G = (A, B, E)with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY<sub>d</sub>, how many edges in  $M_{R'}^*$ are blocked?



$$d = 3$$
,  $p = 0.67$ 

## Setup:

- any bipartite graph G = (A, B, E)with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY<sub>d</sub>, how many edges in  $M_{R'}^*$ are blocked?



$$d = 3$$
,  $p = 0.67$ 

## Setup:

- any bipartite graph G = (A, B, E)with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY<sub>d</sub>, how many edges in  $M_{R'}^*$ are blocked?



$$d = 3$$
,  $p = 0.67$ 

## Setup:

- any bipartite graph G = (A, B, E) with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .

#### **Proof:**

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY<sub>d</sub>, how many edges in M<sup>\*</sup><sub>B'</sub> are blocked?



19 / 25

## Setup:

- any bipartite graph G = (A, B, E) with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY<sub>d</sub>, how many edges in M<sup>\*</sup><sub>B'</sub> are blocked?



## Setup:

- any bipartite graph G = (A, B, E) with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY<sub>d</sub>, how many edges in M<sup>\*</sup><sub>B'</sub> are blocked?



## Setup:

- any bipartite graph G = (A, B, E) with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .

#### **Proof:**

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY<sub>d</sub>, how many edges in M<sup>\*</sup><sub>B'</sub> are blocked?



19 / 25

## Setup:

- any bipartite graph G = (A, B, E) with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY<sub>d</sub>, how many edges in M<sup>\*</sup><sub>B'</sub> are blocked?



## Setup:

- any bipartite graph G = (A, B, E) with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY<sub>d</sub>, how many edges in M<sup>\*</sup><sub>B'</sub> are blocked?



$$\mathbb{E}[|M_{B'}^*|] \le (1 + \frac{p}{d})\mathbb{E}[|M|]$$

## Setup:

- any bipartite graph G = (A, B, E)with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY<sub>d</sub>, how many edges in  $M_{R'}^*$ are blocked?



$$d = 3$$
,  $p = 0.67$ 

$$p \cdot |M^*| \le (1 + \frac{p}{d})\mathbb{E}[|M|]$$

## Setup:

- any bipartite graph G = (A, B, E)with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY<sub>d</sub>, how many edges in  $M_{R'}^*$ are blocked?



$$\mathbb{E}[|M|] \geq \frac{dp}{d+p} \cdot |M^*|$$

## Setup:

- any bipartite graph G = (A, B, E)with a maximum matching  $M^*$  and any stream of edges  $\pi$ ;
- subsample  $B' \subseteq B$  with prob. p to get  $H = G[A \cup B']$ ;
- $M \leftarrow \text{Greedy}_d(\pi_H)$ .

- $M_{B'}^* \leftarrow \{ab \in M^* : b \in B'\};$
- For every edge that is added by GREEDY<sub>d</sub>, how many edges in  $M_{R'}^*$ are blocked?
- Formalised using Wald's Equation.



$$\mathbb{E}[|M|] \geq \frac{dp}{d+p} \cdot |M^*|$$

The final matching returned is always at least of size

$$(\frac{1}{2}+\frac{p}{d+p}-\frac{p}{2d})\cdot |M^*|.$$

The final matching returned is always at least of size

$$\left(\frac{1}{2}+\frac{p}{d+p}-\frac{p}{2d}\right)\cdot |M^*|.$$



The final matching returned is always at least of size

$$\left(\frac{1}{2}+\frac{p}{d+p}-\frac{p}{2d}\right)\cdot |M^*|.$$



The final matching returned is always at least of size

$$\left(\frac{1}{2}+\frac{p}{d+p}-\frac{p}{2d}\right)\cdot |M^*|.$$



The final matching returned is always at least of size

$$\left(\frac{1}{2}+\frac{p}{d+p}-\frac{p}{2d}\right)\cdot |M^*|.$$



The final matching returned is always at least of size

$$\left(\frac{1}{2}+\frac{p}{d+p}-\frac{p}{2d}\right)\cdot |M^*|.$$



The final matching returned is always at least of size

$$\left(\frac{1}{2}+\frac{p}{d+p}-\frac{p}{2d}\right)\cdot |M^*|.$$



## Overview

- Background
- Our Work
  - Lower Bound
  - Algorithmic
- 3 Discussion

• Our two-pass algorithm unifies the dominant techniques used, achiving the current state-of-the-art.



- Our two-pass algorithm unifies the dominant techniques used, achiving the current state-of-the-art.
- For appropriate settings of *d* and *p*, we can find Konrad's [MFCS18] and Esfandiari et al.'s [ICDMW16] algorithms.



- Our two-pass algorithm unifies the dominant techniques used, achiving the current state-of-the-art.
- For appropriate settings of *d* and *p*, we can find Konrad's [MFCS18] and Esfandiari et al.'s [ICDMW16] algorithms.



- Our two-pass algorithm unifies the dominant techniques used, achiving the current state-of-the-art.
- For appropriate settings of *d* and *p*, we can find Konrad's [MFCS18] and Esfandiari et al.'s [ICDMW16] algorithms.



- Our two-pass algorithm unifies the dominant techniques used, achiving the current state-of-the-art.
- For appropriate settings of *d* and *p*, we can find Konrad's [MFCS18] and Esfandiari et al.'s [ICDMW16] algorithms.
- Our hard-instance family of graphs proves that the analysis is tight.



- Our two-pass algorithm unifies the dominant techniques used, achiving the current state-of-the-art.
- For appropriate settings of *d* and *p*, we can find Konrad's [MFCS18] and Esfandiari et al.'s [ICDMW16] algorithms.
- Our hard-instance family of graphs proves that the analysis is tight.
- We reduced the gap of possibility with this class of algorithms to [0.585, 0.667].



23 / 25

## **Open Questions**

- Can we extend other one-pass lower bounds to improve the two-pass result? I.e. Kapralov's [SODA21].
- Is there a way to do better by finding more than just a maximal matching in the first-pass?
- Can we beat a  $\frac{1}{2}$ -approximation in just one-pass?

# Thank You