Data Visualization

Getting Fancy: Working with Models

Ciara Zogheib

Today, we will...

- Work through practice code from Chapter 6 (Working with Models) of Healy, K. (2018). Data Visualization: A Practical Introduction.
 - Princeton University Press. This code will let us
 - Show several fitted models on the same plot
 - Understand the structure of model objects
 - Generate predictions as a data visualization
 - Tidy model objects with Broom
 - Perform grouped analysis using list columns

Models?????

- This class works with statistical models from a data visualization and ggplot standpoint
- If you need a refresher on fitting statistical models in R, try exploring: James, Witten, Hastie, Tibshirani. (2021). An Introduction to Statistical Learning: With Applications in R, 2nd Edition, Springer

Recall stat_functions

- We learned that ggplot does not only plot raw data it uses stat_ functions within geoms to summarize or transform parts of the data and then plot the results
- For example, the <code>geom_smooth()</code> function can fit LOESS, OLS, and robust regression lines using the <code>method</code> argument

Show several fits at once, with a legend

Layering geoms

- If we want to view several *different* fits on the same plot, we can layer new smoothers using geom smooth()
- We can set the color and fill aesthetics for each fit, so that we can tell apart the different lines
- BUT ggplot will not know that the different fits (each its own layer)
 are connected to each other, and will not automatically draw a
 legend telling us which is which

- We get around this limitation by mapping color and fill to a string describing each model we fit, and using scale_color_manual() and scale_color_fill() to create a legend
- The first step to doing this is to use brewer.pal() from RColorBrewer to create our colour palette

```
model_colors <- RColorBrewer::brewer.pal(3, "Set1")
model_colors</pre>
```

Next, we make a ggplot of the three geom_smooth() options we
want to view, mapping the colour and fill within the aes() function
as the name of the smoother

```
p0 <- ggplot(data = gapminder, mapping = aes(x = log(gdpPercap), y =
lifeExp))

p1 <- p0 + geom_point(alpha = 0.2) +

    geom_smooth(method = "lm", aes(color = "OLS", fill = "OLS")) +

    geom_smooth(method = "lm", formula = y ~ splines::bs(x, df = 3),
aes(color = "Cubic Spline", fill = "Cubic Spline")) +

    geom_smooth(method = "loess", aes(color = "LOESS", fill =
"LOESS"))</pre>
```

Finally, we call scale_color_manual() and scale_fill_manual()
 to assign a colour from our model_colors palette to each of our model variables

```
p1 + scale_color_manual(name = "Models", values =
model_colors) + scale_fill_manual(name = "Models",
values = model_colors) + theme(legend.position = "top")
```



```
p1 + scale_color_manual(name = "Models", values = model_colors) +
scale_fill_manual(name = "Models", values = model_colors) +
theme(legend.position = "top")
```

 We can see that ggplot is useful for exploratory data analysis and comparing model-based trends

 How can we look deeper and get the most out of ggplot as a tool to understand our modeling work in R?

Look inside model objects

Models as objects

- Objects in R range from numbers to vectors to formulas and more
- Until now, we have been working with tibbles and data frame objects that store data in table format, with named columns and different classes of variable (eg. integers, characters, dates)
- Models in R are also objects, but with a different structure
- If we know the structure of our model objects, we can extract information and visualize it using ggplot, just like how we have been visualizing data from data frame objects

Example - gapminder dataframe object

- The gapminder sample dataset we have been using is a dataframe if we enter gapminder, our output is a table with named columns
- We can use str() to generate information about the internal structure of any object
- If we run str (gapminder), our output gives us information on:
 - The class(es) of the gapminder object
 - The size of the gapminder object
 - Components of the gapminder object (eg. our variables)

Example - gapminder model object

- Models have a more complex internal structure than dataframes, so the output of our str() function will give us more pieces of information if we run it on a model
- For example, we create a linear model using our gapminder data and store it in an object called out, with life expectancy as our dependent variable:

```
out <- lm(formula = lifeExp ~ gdpPercap + pop +
continent, data = gapminder)</pre>
```

Example - gapminder model object

If we run:

str(out)

our output is a complex set of information

```
$ coefficients : Named num [1:7] 4.78e+01 4.50e-04 6.57e-09 1.35e+01 8.19 ...
... attr(", "names")= chr [1:7] "(Intercept)" "gdpPercap" "pop" "continentAmericas" ...
$ residuals : Named num [1:1704] -27.6 -26.1 -24.5 -22.4 -20.3 ...
..- attr(*. "names")= chr [1:1704] "1" "2" "3" "4" ...
            : Named num [1:1704] -2455.1 311.1 42.6 101.1 -17.2 ...
... attr(*, "names")= chr [1:1704] "(Intercept)" "gdpPercap" "pop" "continentAmericas" ...
             : int 7
$ fitted.values: Named num [1:1704] 56.4 56.4 56.5 56.5 56.4 ...
..- attr(*, "names")= chr [1:1704] "1" "2" "3" "4" ...
              : int [1:7] 0 1 2 3 3 3 3
              :List of 5
 ..$ ar : num [1:1704, 1:7] -41,2795 0.0242 0.0242 0.0242 0.0242 ...
 ....- attr(*, "dimnames")=List of 2
 ....$: chr [1:1704] "1" "2" "3" "4" ...
 .....$ : chr [1:7] "(Intercept)" "gdpPercap" "pop" "continentAmericas" ...
 ....- attr(*, "assign")= int [1:7] 0 1 2 3 3 3 3
 .. ..- attr(*, "contrasts")=List of 1
 .. .. .. $ continent: chr "contr.treatment"
 ..$ graux: num [1:7] 1.02 1.02 1 1.01 1.04 ...
 ..$ pivot: int [1:7] 1 2 3 4 5 6 7
 ..$ tol : num le-07
 ..- attr(*, "class")= chr "qr'
$ df.residual : int 1697
$ contrasts :List of 1
 ..$ continent: chr "contr.treatment"
$ xlevels
..$ continent: chr [1:5] "Africa" "Americas" "Asia" "Europe" ...
              : language lm(formula = lifeExp ~ gdpPercap + pop + continent, data = gapminder)
               :Classes 'terms', 'formula' language lifeExp ~ gdpPercap + pop + continent
 ....- attr(", "variables")= language list(lifeExp, gdpPercap, pop, continent)
 ....- attr(", "factors")= int [1:4, 1:3] 0 1 0 0 0 0 1 0 0 0 ...
       .- attr(*, "dimnames")=List of 2
       .. ..$ : chr [1:4] "lifeExp" "gdpPercap" "pop" "continent"
 ..... s : chr [1:3] "gdpPercap" "pop" "continent"
 .. ..- attr(*, "term.labels")= chr [1:3] "gdpPercap" "pop" "continent"
 .. ..- attr(*, "order")= int [1:3] 1 1 1
 .. .. - attr(", "intercept")= int 1
 .. .. - attr(", "response")= int 1
 ....- attr(*, ".Environment")=<environment: R_GlobalEnv>
 ....- attr(", "predvars")= language list(lifeExp, gdpPercap, pop, continent)
 ....- attr(". "dataClasses")= Named chr [1:4] "numeric" "numeric" "factor'
 .... attr(", "names")= chr [1:4] "lifeExp" "gdpPercap" "pop" "continent"
              :'data.frame': 1704 obs. of 4 variables:
 ..$ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
 ..$ qdpPercap: num [1:1704] 779 821 853 836 740 ...
 ..$ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 ...
 ..$ continent: Factor w/ 5 levels "Africa", "Americas", ...: 3 3 3 3 3 3 3 3 3 3 ...
 ..- attr(*, "terms")=Classes 'terms', 'formula' language lifeExp ~ gdpPercap + pop + continent
 .... - attr(*, "variables")= language list(lifeExp, gdpPercap, pop, continent)
 .. .. - attr(", "factors")= int [1:4, 1:3] 0 1 0 0 0 0 1 0 0 0 ...
 ..... attr(*, "dimnames")=List of 2
 ..... s: chr [1:4] "lifeExp" "adpPercap" "pop" "continent"
 ..... s : chr [1:3] "gdpPercap" "pop" "continent"
 ..... attr(*, "term.labels")= chr [1:3] "gdpPercap" "pop" "continent"
 .. .. ..- attr(*, "order")= int [1:3] 1 1 1
```

Example - gapminder model object

To view the results of our linear model, we run:

summary(out)


```
## Call:
## lm(formula = lifeExp ~ gdpPercap + pop + continent, data = gapminder)
##
## Residuals:
             10 Median
  -49.16 -4.49 0.30 5.11 25.17
##
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   4.78e+01
                              3.40e-01 140.82
                                                <2e-16 ***
## gdpPercap
                    4.50e-04
                              2.35e-05 19.16
                                                <2e-16 ***
                                                  9e-04 ***
## pop
                    6.57e-09
                              1.98e-09
                                          3.33
                                                 <2e-16 ***
## continentAmericas 1.35e+01
                              6.00e-01
                                         22.46
## continentAsia
                   8.19e+00
                              5.71e-01
                                         14.34
                                                 <2e-16 ***
## continentEurope 1.75e+01
                              6.25e-01
                                                 <2e-16 ***
## continentOceania 1.81e+01
                              1.78e+00
                                         10.15
                                                <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.37 on 1697 degrees of freedom
## Multiple R-squared: 0.582, Adjusted R-squared: 0.581
## F-statistic: 394 on 6 and 1697 DF, p-value: <2e-16
```

```
## Residuals:
                 Estimate Std. Error t value Pr(>|t|)
  ## Coefficients:
   ## (Intercept)
   ## gdpPercap
    ## continentAmericas 1.35e+01
    ## continentOceania 1.81e+01
     ## Signif. codes: 0 .*** 0.001 .** 0.01 .* 0.05
     ## Residual standard error: 8.37 on 1697 degrees of
```

There is clearly a **lot** of information in our out model object, but how do we use it? How can we access specific pieces of information from the model and plot them with ggplot?

Model elements

- Our model object contains several different named elements
- We can access specific information by name. For example, out\$coefficients, out\$residuals,and out\$fitted.values
- Our summary() function selects from these elements and, per Healy (2018), shows them in a way that is "efficient" for sharing information but "untidy" for letting us manipulate that information
- So: we need to do some work with our model data before we can visualize it with ggplot

Generate predictions to graph

predict()

- We will work through an example case where our objective is to visualize the estimates our model produces over some range for a given variable of interest
- We do this by using the predict () function
- **But** for predict() to calculate our estimates, it needs new data to which it can fit our model, so we generate a new dataframe with the same columns as the model's original data, but new values for the rows

Making our new dataframe - expand.grid()

- Still working with our gapminder dataset, we will aim to create a dataframe containing the input variables for our linear model:
 - 'Per capita GDP' is the hundred evenly spaced elements between the minimum and maximum value from our existing dataset
 - 'Population' is held constant at its median value from our existing dataset
 - 'Continent' can be all of its five available values
- We use the expand.grid() function to generate a new dataframe populated by all combinations of values we give it

Making our new dataframe - expand.grid()

```
min gdp <- min(gapminder$gdpPercap)</pre>
max gdp <- max(gapminder$gdpPercap)</pre>
med pop <- median(gapminder$pop)</pre>
pred df <- expand.grid(gdpPercap = (seq(from = min gdp,</pre>
to = \max gdp, length.out = 100)), pop = med pop,
continent = c("Africa", "Americas", "Asia", "Europe",
"Oceania"))
```

Making our new dataframe - expand.grid()

We can view the dimensions of our new dataframe with

```
dim(pred_df)
```

- Our output shows us that our dataframe has 3 columns and 500 rows
 - 3 columns from our three chosen variables
 - 500 rows for our 100 per capita GDP values x 5 possible continents

Predicting values

- Now we can use predict() to input our new variables into our out
 model and calculate the fitted life expectancy value
- By setting interval = "predict" as an argument, our output will calculate 95% prediction intervals, as well as the prediction for each data point

```
pred_out <- predict(object = out, newdata = pred_df,
interval = "predict")
head(pred_out)</pre>
```

Binding our data frames

 Only because we just designed our two dataframes to correspond row by row, we can bind them together by column into one single dataframe

```
pred_df <- cbind(pred_df, pred_out)
head(pred_df)</pre>
```

 Now that our predicted values are in a neat dataframe, we can use our existing ggplot knowledge to plot all or a subset of these values

Example

 As an example, we can create a visualization to explore our question "How does per capita GDP affect life expectancy in Europe and Africa?"

```
p <- ggplot(data = subset(pred_df, continent %in% c("Europe",
"Africa")), aes(x = gdpPercap, y = fit, ymin = lwr, ymax = upr, color
= continent, fill = continent, group = continent))

p + geom_point(data = subset(gapminder, continent %in% c("Europe",
"Africa")), aes(x = gdpPercap, y = lifeExp, color = continent), alpha
= 0.5, inherit.aes = FALSE) +

geom_line() +

geom_ribbon(alpha = 0.2, color = FALSE) +

scale_x_log10(labels = scales::dollar)</pre>
```

Example - geom_ribbon()

• We use the new function <code>geom_ribbon()</code>, which takes the <code>ymin</code> and <code>ymax</code> arguments defined in our ggplot mapping to define the upper and lower limits of the prediction interval

```
p <- ggplot(data = subset(pred_df, continent %in% c("Europe",
"Africa")), aes(x = gdpPercap, y = fit, ymin = lwr, ymax = upr, color
= continent, fill = continent, group = continent))

p + geom_point(data = subset(gapminder, continent %in% c("Europe",
"Africa")), aes(x = gdpPercap, y = lifeExp, color = continent), alpha
= 0.5, inherit.aes = FALSE) +

geom_line() +

geom_ribbon(alpha = 0.2, color = FALSE) +

scale_x_log10(labels = scales::dollar)</pre>
```

Example - geom_ribbon()


```
p <- ggplot(data = subset(pred_df, continent %in% c("Europe", "Africa")), aes(x = gdpPercap, y
= fit, ymin = lwr, ymax = upr, color = continent, fill = continent, group = continent))

p + geom_point(data = subset(gapminder, continent %in% c("Europe", "Africa")), aes(x =
gdpPercap, y = lifeExp, color = continent), alpha = 0.5, inherit.aes = FALSE) + geom_line() +
geom_ribbon(alpha = 0.2, color = FALSE) + scale_x_log10(labels = scales::dollar)</pre>
```

Activity

- Decide a research question to explore visually using our pred_df data (for example, "How does per capita GDP affect life expectancy in Europe and Africa?")
- Use ggplot to generate a visualization from pred_df that can help you answer your question
- Rejoin the class and discuss your data visualization and answer to your research question
 - Did you all produce similar graphs? If not, why did you choose one type of graph over another?

Tidy model objects with Broom

Broom

 We can use the broom package to go from model outputs to numbers in dataframes that we can easily plot

```
install.packages("broom")
library(broom)
```

- Broom extracts three kinds of information from our models:
 - Component level (coefficients, t-statistics)
 - Observation level (fitted values and residuals)
 - Model level (F statistic, r-squared)

- The tidy() function takes a model object and returns a dataframe of component-level information
- For example, with an added step to round numeric columns to two decimal places:

```
out_conf <- tidy(out)
out_conf |> round_df()
```

```
# A tibble: 7 x 5
  term
                    estimate std.error statistic p.value
  <chr>>
1 (Intercept)
                        47.8
                                   0.34
                                           141.
2 gdpPercap
                                             3.33
 continentAmericas
                       8.19
                                   0.57
                                            14.3
                       17.5
                                   0.62
6 continentEurope
                                            28.0
7 continentOceania
                       18.1
                                   1.78
                                            10.2
```

 Now we can create a data visualization from this dataframe, the way that we have been doing all along

```
p <- ggplot(out_conf, mapping = aes(x = term, y = estimate))
p + geom_point() + coord_flip()</pre>
```

 We can use the confint() function to calculate confidence intervals for our estimates

```
out_conf <- tidy(out, conf.int = TRUE)
out_conf %>% round_df()
```

- We can clean up our visualization by
 - Removing the '(Intercept)' term
 - Removing the word 'continent' from our variables (so we will see 'Americas' instead of 'continentAmericas')

```
out_conf <- subset(out_conf, term %nin% "(Intercept)")
out_conf$nicelabs <- prefix_strip(out_conf$term, "continent")</pre>
```

 Finally, we use geom_pointrange() to to make a figure that includes our confidence intervals and is ordered from largest to smallest in magnitude

```
p <- ggplot(out_conf, mapping = aes(x = reorder(nicelabs,
estimate), y = estimate, ymin = conf.low, ymax = conf.high))

p + geom_pointrange() + coord_flip() + labs(x = "", y = "OLS
Estimate")</pre>
```

Component level statistics with tidy() - Result


```
p <- ggplot(out_conf, mapping = aes(x = reorder(nicelabs, estimate), y =
estimate, ymin = conf.low, ymax = conf.high))

p + geom_pointrange() + coord_flip() + labs(x = "", y = "OLS Estimate")</pre>
```

Observation level statistics with augment()

- The augment () function returns statistics calculated for each individual observation, so they can be added to the dataframe that our model is based on. These statistics include:
 - o .fitted → fitted values of the model
 - se.fit → standard errors of the fitted values
 - o .resid → residuals
 - cooksd → Cook's distance
 - o .std.resid → standardized residuals

```
out_aug <- augment(out)
head(out_aug) |> round_df()
```

Observation level statistics with augment()

We can use augment() to plot, for example, residuals vs fitted values


```
p <- ggplot(data = out_aug, mapping = aes(x = .fitted, y = .resid))
p + geom_point()</pre>
```

Model level statistics with glance()

• The glance() function returns a table of the statistics generated by our summary() output - r squared, p value, etc

```
glance(out) |> round_df()
```

Grouped analysis and list columns

Using Broom for grouped analysis

- Part of the benefit of Broom is that it lets us quickly fit models to different subsets of our data
- For example, if we want to use our original gapminder dataset to explore the relationship between life expectancy and GDP in Europe, in the year 1977, we could do:

```
eu77 <- gapminder |> filter(continent == "Europe", year
== 1977)
fit <- lm(lifeExp ~ log(gdpPercap), data = eu77)
summary(fit)</pre>
```

Nesting data

- We can use dplyr and Broom to sort the data into groups of continent-year slices, then use the nest() function to nest the data contained in each group
- nest() lets us create a list column (essentially a table within a table)

```
out_le <- gapminder |>
    group_by(continent, year) |>
    nest()
out_le
```

Nesting data

• We can view specific information (such as our Europe, 1977 data) by filtering and then unnesting our list column, like so:

```
out_le |> filter(continent == "Europe" & year == 1977) |> unnest()
```

 Now we can easily and compactly apply our regression analyses to every continent-year combination in our dataset

Nesting data

 We do this by creating a function that fits our model to a dataframe, then mapping that function to each of our list column's rows, one at a time:

```
fit_ols <- function(df) {lm(lifeExp ~ log(gdpPercap), data = df)}
out_le <- gapminder |>
  group_by(continent, year) |>
  nest() |>
  mutate(model = map(data, fit_ols))
out_le
```

Nested and tidied data

- Now we have two list columns: 'data' and 'model'; inside each 'model' element is a linear model for that continent-year pairing
- We can run our code again, this time cleaning up our data by removing Intercept terms and the outlier observations from Oceania and extracting summary statistics from each model with tidy()

```
fit_ols <- function(df) { lm(lifeExp ~ log(gdpPercap), data = df) }
out_tidy <- gapminder |> group_by(continent, year) |> nest() |>
mutate(model = map(data, fit_ols), tidied = map(model, tidy)) |>
unnest(tidied) |> filter(term %nin% "(Intercept)" & continent %nin%
"Oceania")
```

Plotting nested and tidied data

 Now we can use ggplot to plot our regression outputs, with error bars, for each continent-year pairing

```
p \leftarrow qqplot(data = out tidy, mapping = aes(x = year, y = estimate,
ymin = estimate - 2*std.error, ymax = estimate + 2*std.error, group
= continent, color = continent))
p + geom pointrange(position = position dodge(width = 1)) +
  scale x continuous(breaks = unique(gapminder$year)) +
  theme(legend.position = "top") +
  labs(x = "Year", y = "Estimate", color = "Continent")
```

Plotting nested and tidied data


```
p <- ggplot(data = out_tidy, mapping = aes(x = year, y = estimate, ymin = estimate - 2*std.error, ymax = estimate + 2*std.error, group = continent, color = continent))

p + geom_pointrange(position = position_dodge(width = 1)) +
    scale_x_continuous(breaks = unique(gapminder$year)) +
    theme(legend.position = "top") +
    labs(x = "Year", y = "Estimate", color = "Continent")</pre>
```

Get model-based graphics right

Data visualization from models

- Data visualization from statistical models has an extra burden of interpretation - which means, if we are not careful, an extra opportunity to confuse ourselves and our audience
- When creating visualizations from statistical models, we need to remember the tips and best practices from previous lessons in the course, but model-based graphics come with their own guidelines

Data visualization from models

- Data visualization from statistical models has an extra burden of interpretation - which means, if we are not careful, an extra opportunity to confuse ourselves and our audience
- When creating visualizations from statistical models, we need to remember the tips and best practices from previous lessons in the course, but model-based graphics come with their own guidelines
- As with data visualization in general, these are general rules, not hard-and-fast absolutes - remember: visualizing data means making situational decisions

Data visualization from models - Guidelines

- **1. Present your findings in substantive terms** → Show your results in a way that is directly meaningful to the questions your analysis is trying to answer. Think: is there a certain percentile range that matters? What scale should I use?
- 2. Show your degree of confidence → Models come with an estimate of precision, confidence, or significance communicate this clearly!
- 3. Show your data when you can → Recall our examples showing both the model estimate (eg. a regression line) and the underlying data points (eg. a scatterplot)

Next...

• Data viz for/as advocacy!