Time Pressure Exp4 Findings

Load data and initial setup

```
setwd("~/Documents/Projects/harming_esn/Data/exp4/")
load("exp4_mdata3.Rdata")
library(tidyverse)
library(lme4)
library(simr)
library(kableExtra)
mean1 = function(x) {mean(x,na.rm=TRUE)}
median1 = function(x) {median(x, na.rm = TRUE)}
sd1 = function(x) {sd(x, na.rm = TRUE)}
se_mean = function(x) sd1(x)/sqrt(sum(is.na(x) == 0))
harmdata = mdata3 %>% as_tibble() %>%
  mutate(behavior = case_when(behavior_coop == 1 ~ "C",
                              behavior_defect == 1 ~ "D",
                              behavior_punish == 1 ~ "P"),
         time_pressure = ifelse(str_detect(gameID, "TP") == T, "Plus", "Minus"))
harmdata$timeUp = unlist(harmdata$timeUp.x)
```

Question 1: Is harming slower in the TP- condition?

```
harmdata %>%
  filter(time_pressure == "Minus", round > 0, is.na(behavior) == FALSE) %>%
  group_by(behavior) %>%
  summarize(mean_dt = mean1(behaviorTime/1000),
```

behavior	mean_dt	se_mean_dt	median_dt
С	3.249304	0.0889681	2.5015
D	2.957714	0.0641134	2.2905
P	3.957338	0.3743462	2.4630

Just looking at means, the decision time for harming is definitely slower (3.96s average vs 3.25 for C for 2.96 for D). We can do a quick t-test to verify:

```
times_coop = harmdata %>% filter(time_pressure == "Minus", round > 0, is.na(behavior) == F
times_defect = harmdata %>% filter(time_pressure == "Minus", round > 0, is.na(behavior) ==
times_harm = harmdata %>% filter(time_pressure == "Minus", round > 0, is.na(behavior) == F
t.test(times_coop, times_harm)$p.val
```

[1] 0.0677618

```
t.test(times_defect, times_harm)$p.val
```

[1] 0.009441941

So the difference between cooperation times and punish times is marginally significant (not adjusting for game structure).

Question 2: How many people decide within 3 seconds in the TP- condition? in 4 seconds?

```
harmdata %>%
  filter(time_pressure == "Minus", round > 0, is.na(behavior) == FALSE) %>%
  mutate(time_within_3 = ifelse(behaviorTime/1000 <= 3, "Yes", "No")) %>%
  group_by(time_within_3) %>%
  count() %>%
```

time_within_3	n	perc
No	625	0.2977608
Yes	1474	0.7022392

timeUp	n	perc
FALSE	1561	0.7380615
TRUE	554	0.2619385

```
ungroup() %>%
mutate(perc = n/sum(n)) %>%
kbl() %>%
kable_styling()

harmdata %>%
  filter(time_pressure == "Plus", round > 0, is.na(behavior) == FALSE) %>%
  group_by(timeUp) %>%
  count() %>%
  ungroup() %>%
  mutate(perc = n/sum(n)) %>%
  kbl() %>%
  kable_styling()
```

The rate of decisions being made in 3s or less is a bit higher in the TP+ condition (70.2% in TP- vs 73.8% in TP+). Does this suggest that only 3.6% of timeouts are avoided under TP (where the TP is making people speed up their decisions?)

```
harmdata %>%
  filter(time_pressure == "Minus", round > 0, is.na(behavior) == FALSE) %>%
  mutate(time_within_4 = ifelse(behaviorTime/1000 <= 4, "Yes", "No")) %>%
  group_by(time_within_4) %>%
  count() %>%
  ungroup() %>%
  mutate(perc = n/sum(n)) %>%
  kbl() %>%
  kable_styling()
```

$time_within_4$	n	perc
No	347	0.1653168
Yes	1752	0.8346832

timeUp	behavior_lag	n	perc
FALSE	С	574	0.4177584
FALSE	D	736	0.5356623
FALSE	P	64	0.0465793
TRUE	С	180	0.3964758
TRUE	D	228	0.5022026
TRUE	P	46	0.1013216

Extending the time limit to 4 seconds adds 8% of decisions to be included.

Question 3: Distribution of timeout vs. previous behavior

```
data_lag = harmdata %>%
    select(superid, round, behavior, degree, behaviorTime) %>%
    mutate(round = round + 1)

names(data_lag)[-c(1,2)] = pasteO(names(data_lag)[-c(1,2)],"_lag")
data_lag$round = data_lag$round + 1

harmdata2 = merge(x=harmdata,y=data_lag,all.x=T,all.y=F,by=c("superid","round"))

harmdata2 %>%
    filter(time_pressure == "Plus", round > 0, is.na(behavior_lag) == F) %>%
    group_by(timeUp, behavior_lag) %>%
    count() %>%
    ungroup() %>%
    group_by(timeUp) %>%
    mutate(perc = n/sum(n)) %>%
    kbl() %>%
    kable_styling()
```

10% of timeouts were last-round harmers, compared to only 4.6% in non-timeouts.

round	coop_rate
1	0.365
2	0.366
3	0.406
4	0.387
5	0.345
6	0.429
7	0.379
8	0.386
9	0.386
10	0.357
11	0.321
12	0.328
13	0.321
14	0.292
15	0.348

Question 4: Does cooperation decay over time or does it start low? What about harming?

```
harmdata %>%
  filter(round > 0, time_pressure == "Minus") %>%
  group_by(round) %>%
  summarize(coop_rate = mean1(behavior_coop)) %>%
  round(3) %>%
  kbl() %>%
  kable_styling()
```

In the TP- condition, cooperation starts lower and has a slight decrease after round 10:

```
harmdata %>%
  filter(round > 0, time_pressure == "Minus") %>%
  group_by(round) %>%
  summarize(coop_rate = mean1(behavior_coop)) %>%
  ungroup() %>%
  mutate(first_10_rds = ifelse(round <= 10, "Yes", "No")) %>%
  group_by(first_10_rds) %>%
  summarize(mean_coop_rate = round(mean(coop_rate),3)) %>%
  kbl() %>%
  kable_styling()
```

first_10_rds	mean_coop_rate
No	0.322
Yes	0.380

round	coop_rate
1	0.451
2	0.410
3	0.444
4	0.420
5	0.441
6	0.441
7	0.413
8	0.413
9	0.427
10	0.380
11	0.362
12	0.370
13	0.372
14	0.350
15	0.412

The mean rate of cooperation in rounds 1-10 is 38%, dropping to 32.2% in rounds 11-15.

```
harmdata %>%
 filter(round > 0, time_pressure == "Plus") %>%
 group_by(round) %>%
  summarize(coop_rate = mean1(behavior_coop)) %>%
 round(3) %>%
 kbl() %>%
 kable_styling()
harmdata %>%
  filter(round > 0, time_pressure == "Plus") %>%
 group_by(round) %>%
  summarize(coop_rate = mean1(behavior_coop)) %>%
 ungroup() %>%
 mutate(first_10_rds = ifelse(round <= 10, "Yes", "No")) %>%
  group_by(first_10_rds) %>%
  summarize(mean_coop_rate = round(mean(coop_rate), 3)) %>%
 kbl() %>%
```

first_10_rds	mean_coop_rate
No	0.373
Yes	0.424

```
kable_styling()
```

We see the same decay in the TP+ games, however both rounds 1-10 and 11-15 have higher rates.

Question 5: What sample size would we need to see a 6% reduction in harming rate?

(work in progress)

To answer this, we can use the simr package (Green and MacLeod 2015, https://besjournals.onlinelibrary.wiley.cc 210X.12504).

```
m1 = glmer(behavior_punish ~ time_pressure + factor(round) + (1|superid), data = harmdata,
fixef(m1)["time_pressurePlus"] = -0.
powerSim(m1, nsim = 10)
```