

63-02-00  
JC525 U.S. PTO  
09/516753



U.S. DEPARTMENT OF COMMERCE  
PATENT AND TRADEMARK OFFICE

00/T0/€0  
JCT11  
PTO

**UTILITY PATENT APPLICATION  
TRANSMITTAL LETTER  
UNDER 37 C.F.R. 1.53(b)**

ATTORNEY DOCKET NO.:

2390/49701

Address to:

Assistant Commissioner for Patents  
Washington D.C. 20231  
Box Patent Application

Transmitted herewith for filing is a patent application.

Inventor(s): Gregory PINCHASIK and Jacob RICHTER

For: LONGITUDINALLY FLEXIBLE STENT

1. Enclosed are:

- 24 sheets of specification, 21 sheets of claims, 1 sheet of abstract and  
10 sheets of drawings

2. The filing fee has been calculated as shown below:

|                                                                                                                        | NUMBER FILED | NUMBER EXTRA* | RATE (\$)          | FEE (\$) |
|------------------------------------------------------------------------------------------------------------------------|--------------|---------------|--------------------|----------|
| BASIC FEE                                                                                                              |              |               |                    | 690.00   |
| TOTAL CLAIMS                                                                                                           | 117 -20 =    | 97            | x18.00             | 1,746.00 |
| INDEPENDENT CLAIMS                                                                                                     | 8 -3=        | 5             | x78.00             | 390.00   |
| MULTIPLE DEPENDENT CLAIM PRESENT                                                                                       |              |               | +260.00            | 260.00   |
| *Number extra must be zero or larger                                                                                   |              |               | TOTAL              | 3,086.00 |
| If the applicant is a small entity under 37 C.F.R. §§ 1.9 and 1.27, then divide total fee by 2, and enter amount here. |              |               | SMALL ENTITY TOTAL |          |

3. Please charge the required application filing fee of **\$3,086.00** to the deposit account of **Kenyon & Kenyon**, deposit account number 11-0600.
4. The Commissioner is hereby authorized to charge payment of any fees associated with this communication or arising during the pendency of this application, with the exception of the Issue Fee, or to credit any overpayment, to the deposit account of **Kenyon & Kenyon**, deposit account number 11-0600.
5. When payment of any Issue Fee under 37 C.F.R. § 1.18 and/or Post Issuance Fee under 37 C.F.R. § 1.20 has previously been expressly authorized, the Commissioner is hereby authorized to charge payment of any deficiency in these fees to the deposit account of **Kenyon & Kenyon**, deposit account number 11-0600.
6. A duplicate copy of this letter is enclosed for that purpose.

Respectfully submitted,

Dated: 3/1/00

By:   
Charles R. Brainard  
Reg. No.21,069

KENYON & KENYON  
One Broadway  
New York, New York 10004  
(212) 425-7200 (telephone)  
(212) 425-5288 (facsimile)

© Kenyon & Kenyon 2000

EXPRESS MAIL CERTIFICATE

JCS25 U.S. PRO  
09/516753



"EXPRESS MAIL" MAILING LABEL NUMBER EL179951073

DATE OF DEPOSIT 3/1/00

TYPE OF DOCUMENT Patent appl. of Prakash et al

SERIAL NO. \_\_\_\_\_ FILING DATE Herewith

I HEREBY CERTIFY THAT THIS PAPER OR FEE IS BEING DEPOSITED WITH THE UNITED STATES POSTAL SERVICE "EXPRESS MAIL POST OFFICE TO ADDRESSEE" SERVICE UNDER 37 CFR 1.10 ON THE DATE INDICATED ABOVE, BY BEING HANDED TO A POSTAL CLERK OR BY BEING PLACED IN THE EXPRESS MAIL BOX BEFORE THE POSTED DATE OF THE LAST PICK UP, AND IS ADDRESSED TO THE ASSISTANT COMMISSIONER FOR PATENTS, WASHINGTON, D.C. 20231.

BORIS POLANCO

(TYPED OR PRINTED NAME OF PERSON MAILING PAPER OR FEE)

(SIGNATURE OF PERSON MAILING PAPER OR FEE)

Title: Longitudinally Flexible Stent

Application for  
United States Patent

**LONGITUDINALLY FLEXIBLE STENT**

Inventors:                   Gregory Pinchasik  
                                 Jacob Richter

Attorneys for Applicant:

Kenyon & Kenyon  
One Broadway  
New York, New York 10004  
(212) 425-7200

258648v2

EL179951073US

FIELD OF THE INVENTION

The present invention relates generally to stents, which are endoprostheses implanted into vessels within the body, such as blood vessels, to support and hold open the vessels, or to secure and support other endoprostheses in the vessels. In particular, the present invention relates to a stent which is longitudinally flexible before after expansion.

BACKGROUND OF THE INVENTION

Various stents are known in the art. Typically stents

are generally tubular in shape, and are expandable from a relatively small, unexpanded diameter to a larger, expanded diameter. For implantation, the stent is typically mounted on the end of a catheter, with the stent being held on the catheter at its relatively small, unexpanded diameter. By the catheter, the unexpanded stent is directed through the lumen to the intended implantation site. Once the stent is at the intended implantation site, it is expanded, typically either by an internal force, for example by inflating a balloon on the inside of the stent, or by allowing the stent to self-expand, for example by removing a sleeve from around a self-expanding stent, allowing the stent to expand outwardly. In either case, the expanded stent resists the tendency of the vessel to narrow, thereby maintaining the vessel's patency.

1

U.S. Patent No. 5,733,303 to Israel et al. ("`303"),  
which is expressly incorporated by reference, shows a unique  
stent formed of a tube having a patterned shape which has first  
and second meander patterns having axes extending in first and  
5 second directions. The second meander patterns are intertwined  
with the first meander patterns to form flexible cells. Stents  
such as this one are very flexible in their unexpanded state such  
that they can be tracked easily down tortuous lumens. Upon  
expansion, these stents provide excellent radial support,  
10 stability, and coverage of the vessel wall. These stents are  
also conformable, in that they adapt to the shape of the vessel  
wall during implantation.

One feature of stents with a cellular mesh design such  
as this one, however, is that they have limited longitudinal  
flexibility after expansion, which may be a disadvantage in  
15 particular applications. This limited longitudinal flexibility  
may cause stress points at the end of the stent and along the  
length of the stent. Conventional mesh stents like that shown in  
U.S. Patent 4,733,665 may simply lack longitudinal flexibility,  
20 which is illustrated by Figure 1, a schematic diagram of a  
conventional stent 202 in a curved vessel 204.

To implant a stent, it maybe delivered to a desired  
site by a balloon catheter when the stent is in an unexpanded  
state. The balloon catheter is then inflated to expand the

stent, affixing the stent into place. Due to the high inflation pressures of the balloon -- up to 20 atm -- the balloon causes the curved vessel 204 and even a longitudinally flexible stent to straighten when it is inflated. If the stent, because of the configuration of its mesh is or becomes relatively rigid after expansion, then the stent remains or tends to remain in the same or substantially the same shape after deflation of the balloon.

5 However, the artery attempts to return to its natural curve (indicated by dashed lines) in Figure 1 with reference to a conventional mesh stent. The mismatch between the natural curve of the artery and the straightened section of the artery with a stent may cause points of stress concentration 206 at the ends of the stent and stress along the entire stent length. The coronary vasculature can impose additional stress on stents because the coronary vasculature moves relatively significant amounts with each heartbeat. For illustration purposes, the difference between the curve of the vessel and the straightened stent has been exaggerated in Figure 1.

10

15

20

U.S. Patent No. 5,807,404 to Richter, which is expressly incorporated by reference, shows another stent which is especially suited for implantation into curved arterial portions or ostial regions. This stent can include sections adjacent the end of the stent with greater bending flexibility than the remaining axial length of the stent. While this modification at

the end of the stent alleviates the stress at the end points, it does not eliminate the stress along the entire length of the stent.

Various stents are known that retain longitudinal flexibility after expansion. For example, U.S. Patent Nos. 5 4,886,062 and 5,133,732 to Wiktor ("the Wiktor '062 and '732 patents") show various stents formed of wire wherein the wire is initially formed into a band of zig-zags forming a serpentine pattern, and then the zig-zag band is coiled into a helical stent. The stents are expanded by an internal force, for example 10 by inflating a balloon.

The coiled zig-zag stents that are illustrated in Figures 1 through 6 of the Wiktor '062 and '732 patents are longitudinally flexible both in the expanded and unexpanded condition such that they can be tracked easily down tortuous lumens and such that they conform relatively closely to the compliance of the vessel after deployment. While these stents are flexible, they also have relatively unstable support after expansion. Furthermore, these stents leave large portions of the 15 vessel wall uncovered, allowing tissue and plaque prolapse into the lumen of the vessel.

Thus, it is desired to have a stent which exhibits longitudinal flexibility before expansion such that it can easily be tracked down tortuous lumens and longitudinal flexibility

after expansion such that it can comply with the vessel's natural flexibility and curvature while still providing continuous, stable coverage of a vessel wall that will minimize tissue sag into the lumen.

5

OBJECTS AND SUMMARY OF THE INVENTION

Accordingly, an object of the invention is to provide a stent that is longitudinally flexible before expansion so that it can easily be tracked down tortuous vessels and remains longitudinally flexible after expansion such that it will substantially eliminate any stress points by complying with the vessel's flexibility and assuming the natural curve of the vessel.

Another object of the present invention is to provide a stent that is longitudinally flexible after delivery such that it flexes during the cycles of the heartbeat to reduce cyclic stress at the ends of the stent and along the stent.

Another object of the present invention is to provide a stent with a closed cell pattern such that it provides good coverage and support to a vessel wall after expansion.

Other advantages of the present invention will be apparent to those skilled in the art.

In accordance with these objects, the stent of the

present invention is formed to be a tube having a patterned shape which has first and second meander patterns having axes extending in first and second direction wherein the second meander patterns are intertwined with the first meander patterns.

5           In accordance with one embodiment of the invention, the intertwined meander patterns form cells which have three points at which the first and second meander patterns meet each other, and which in this sense could be called triangular cells. These three cornered or triangular cells are flexible about the

10          longitudinal axis of the stent after expansion. These triangular cells provide comparable scaffolding and radial strength to that of cells formed by intertwined meander patterns which have four points at which the first and second patterns meet each other, and which in this sense could be called square cells.

15          In another embodiment of the invention, bands of cells are provided along the length of a stent. The bands of cells alternate between cells adapted predominantly to enhance radial support with cells that are adapted predominantly to enhance longitudinal flexibility after expansion.

20          In another embodiment of the invention, the first meander patterns are adapted to prevent any "flaring out" of loops of the first meander patterns during delivery of the stent.

             A stent according to the invention retains the longitudinal flexibility associated with the '303 cellular stent

in its unexpanded state, and has increased longitudinal flexibility in the expanded state. The stent does so without sacrificing scaffolding -- i.e. coverage of the vessel wall -- or radial support.

5

A copy of this document contains neither recommendations nor conclusions of the Food and Drug Administration. It is the property of the FDA, is being made available for informational purposes only, and its contents are not copyrighted by the FDA.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a schematic diagram of a conventional rigid stent  
deployed in a curved lumen;

5 Figure 2 shows a schematic diagram of a stent of the present  
invention deployed in a curved lumen;

Figure 3 shows a pattern for a stent made in accordance with the  
present invention;

Figure 4 shows an enlarged view of one cell of the pattern of  
Figure 3;

10 Figure 5 shows a pattern for a stent made in accordance with the  
present invention;

Figure 6 shows an enlarged view of one cell of the pattern of  
Figure 5;

15 Figure 7 shows a pattern for a stent made in accordance with the  
present invention;

Figure 8 shows an enlarged view of one cell used in the pattern  
of Figure 7;

Figure 9 shows an enlarged view of another cell used in Figure  
7;

20 Figure 10 shows a schematic comparison of a four cornered or  
"square cell" and a three cornered or "triangular" cell  
of the present invention.

Figure 11 shows a pattern for a stent constructed according to  
the principles of the invention which has variable

geometry along its length.

DETAILED DESCRIPTION OF THE INVENTION

5       Figure 2 shows a schematic diagram of a longitudinally

flexible stent 208 of the present invention. The stent 208 may

be delivered to a curved vessel 210 by a balloon catheter, and

implanted in the artery by inflating the balloon. As described

before, the balloon causes the artery to straighten upon

10      inflation of the balloon. However, upon deflation of the

balloon, the stent 208 assumes the natural curve of the vessel

210 because it is and remains longitudinally flexible after

expansion. This reduces any potential stress points at the ends

of the stent and along the length of the stent. Furthermore,

15      because the stent is longitudinally flexible after expansion, the

stent will flex longitudinally with the vessel during the cycles

caused by a heartbeat. This also reduces any cyclic stress at

the ends of the stent and along the length of the stent.

Figure 3 shows a pattern of a stent according to the

20      present invention. This pattern may be constructed of known

materials, and for example stainless steel, but it is

particularly suitable to be constructed from NiTi. The pattern

can be formed by etching a flat sheet of NiTi into the pattern

shown. The flat sheet is formed into a stent by rolling the

etched sheet into a tubular shape, and welding the edges of the sheet together to form a tubular stent. The details of this method of forming the stent, which has certain advantages, are disclosed in U.S. Patent Nos. 5,836,964 and 5,997,973, which are 5 hereby expressly incorporated by reference. Other methods known to those of skill in the art such as laser cutting a tube or etching a tube may also be used to construct a stent which uses the present invention. After formation into a tubular shape, an NiTi stent is heat treated, as known by those skilled in the art, 10 to take advantage of the shape memory characteristics of NiTi and its superelasticity.

The pattern 300 is formed from a plurality of each of two orthogonal meander patterns which patterns are intertwined with each other. The term "meander pattern" is taken herein to describe a periodic pattern about a center line and "orthogonal meander patterns" are patterns whose center lines are orthogonal 15 to each other.

A meander pattern 301 is a vertical sinusoid having a vertical center line 302. A meander pattern 301 has two loops 304 and 306 per period wherein loops 304 open to the right while loops 306 open to the left. Loops 304 and 306 share common 20 members 308 and 310, where member 308 joins one loop 304 to its following loop 306 and member 308 joins one loop 306 to its following loop 304.

A meander pattern 312 (two of which have been shaded for reference) is a horizontal pattern having a horizontal center line 314. A horizontal meander pattern 312 also has loops labeled 316, 318, 320, 322, and between the loops of a period is 5 a section labeled 324.

Vertical meander pattern 301 is provided in odd and even (o and e) versions which are 180° out of phase with each other. Thus, each left opening loop 306 of meander pattern 301o faces a right opening loop 304 of meander pattern 301e and a 10 right opening loop 304 of meander pattern 301o faces a left opening loop 306 of meander pattern 301e.

The horizontal meander pattern 312 is also provided in odd and even forms. The straight sections 324 of the horizontal meander pattern 312e intersect with every third common member 310 of the even vertical meander pattern 301e. The straight sections 324 of the horizontal meander pattern 312o also intersect with 15 every third common member 310 of the odd vertical meander pattern 301. 20

Upon expansion of the stent, the loops of the vertical meander patterns 301 open up in the vertical direction. This causes them to shorten in the horizontal direction. The loops in the horizontal meander pattern 312 open up both in the vertical direction and the horizontal direction, compensating for the shortening of the loops of the vertical meander patterns.

A stent formed from the pattern of Figure 3 and made of NiTi is particularly well suited for use in the carotid artery or other lumens subject to an outside pressure. One reason is that because the stent is formed of NiTi, it is reboundable, which is

5

a desirable property for stents placed in the carotid artery.

The other reason is that the stent of Figure 3 offers excellent scaffolding, which is particularly important in the carotid artery. Scaffolding is especially important in the carotid artery because dislodged particles in the artery may embolize and cause a stroke.

10

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 289 290 291 292 293 294 295 296 297 298 299 299 300 301 302 303 304 305 306 307 308 309 309 310 311 312 313 314 315 316 317 318 319 319 320 321 322 323 324 325 326 327 328 329 329 330 331 332 333 334 335 336 337 338 339 339 340 341 342 343 344 345 346 347 348 349 349 350 351 352 353 354 355 356 357 358 359 359 360 361 362 363 364 365 366 367 368 369 369 370 371 372 373 374 375 376 377 378 379 379 380 381 382 383 384 385 386 387 388 389 389 390 391 392 393 394 395 396 397 398 398 399 399 400 401 402 403 404 405 406 407 408 409 409 410 411 412 413 414 415 416 417 418 419 419 420 421 422 423 424 425 426 427 428 429 429 430 431 432 433 434 435 436 437 438 439 439 440 441 442 443 444 445 446 447 448 449 449 450 451 452 453 454 455 456 457 458 459 459 460 461 462 463 464 465 466 467 468 469 469 470 471 472 473 474 475 476 477 478 479 479 480 481 482 483 484 485 486 487 488 489 489 490 491 492 493 494 495 496 497 497 498 499 499 500 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 519 520 521 522 523 524 525 526 527 528 529 529 530 531 532 533 534 535 536 537 538 539 539 540 541 542 543 544 545 546 547 548 549 549 550 551 552 553 554 555 556 557 558 559 559 560 561 562 563 564 565 566 567 568 569 569 570 571 572 573 574 575 576 577 578 579 579 580 581 582 583 584 585 586 587 588 589 589 590 591 592 593 594 595 596 597 597 598 599 599 600 600 601 602 603 604 605 606 607 608 609 609 610 611 612 613 614 615 616 617 618 619 619 620 621 622 623 624 625 626 627 628 629 629 630 631 632 633 634 635 636 637 638 639 639 640 641 642 643 644 645 646 647 648 649 649 650 651 652 653 654 655 656 657 658 659 659 660 661 662 663 664 665 666 667 668 669 669 670 671 672 673 674 675 676 677 678 679 679 680 681 682 683 684 685 686 687 688 689 689 690 691 692 693 694 695 696 697 697 698 699 699 700 700 701 702 703 704 705 706 707 708 709 709 710 711 712 713 714 715 716 717 718 719 719 720 721 722 723 724 725 726 727 728 729 729 730 731 732 733 734 735 736 737 738 739 739 740 741 742 743 744 745 746 747 748 749 749 750 751 752 753 754 755 756 757 758 759 759 760 761 762 763 764 765 766 767 768 769 769 770 771 772 773 774 775 776 777 778 779 779 780 781 782 783 784 785 786 787 788 789 789 790 791 792 793 794 795 796 797 797 798 799 799 800 800 801 802 803 804 805 806 807 808 809 809 810 811 812 813 814 815 816 817 818 819 819 820 821 822 823 824 825 826 827 828 829 829 830 831 832 833 834 835 836 837 838 839 839 840 841 842 843 844 845 846 847 848 849 849 850 851 852 853 854 855 856 857 858 859 859 860 861 862 863 864 865 866 867 868 869 869 870 871 872 873 874 875 876 877 878 879 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 897 898 899 899 900 900 901 902 903 904 905 906 907 908 909 909 910 911 912 913 914 915 916 917 918 919 919 920 921 922 923 924 925 926 927 928 929 929 930 931 932 933 934 935 936 937 938 939 939 940 941 942 943 944 945 946 947 948 949 949 950 951 952 953 954 955 956 957 958 959 959 960 961 962 963 964 965 966 967 968 969 969 970 971 972 973 974 975 976 977 978 979 979 980 981 982 983 984 985 986 987 988 989 989 990 991 992 993 994 995 996 997 997 998 999 999 1000

Figure 4 is an expanded view of one flexible cell 500 of the pattern of Figure 3. Each flexible cell 500 includes: a first member 501 having a first end 502 and a second end 503; a second member 504 having a first end 505 and a second end 506; a third member 507 having a first end 508 and a second end 509; and a fourth member 510 having a first end 511 and a second end 512. The first end 502 of the first member 501 is joined to the first end 505 of the second member 504 by a first curved member 535 to form a first loop 550, the second end 506 of the second member 504 is joined to the second end 509 of the third member 508 by a second curved member 536, and the first end 508 of the third member 507 is joined to the first end 511 of the fourth member 510 by a third curved member 537 to form a second loop 531. The first loop 530 defines a first angle 543. The second loop 531

defines a second angle 544. Each cell 500 also includes a fifth member 513 having a first end 514 and a second end 515; a sixth member 516 having a first end 517 and a second end 518; a seventh member 519 having a first end 520 and a second end 521; an eighth member 522 having a first end 523 and a second end 524; a ninth member 525 having a first end 526 and a second end 527; and a tenth member having a first end 529 and a second end 530. The first end 514 of the fifth member 513 is joined to the second end 503 of the first member 501 at second junction point 542, the second end 515 of the fifth member 513 is joined to the second end 518 of the sixth member by a curved member 539 to form a third loop 532, the first end 517 of the sixth member 516 is joined to the first end 520 of the seventh member 519 by a fifth curved member 548, the second end 521 of the seventh member 519 is joined to the second end 524 of the eighth member 522 at third junction point 540 to form a fourth loop 533, the first end 523 of the eighth member 522 is joined to the first end 526 of the ninth member 525 by a sixth curved member 549, the second end 526 of the ninth member 525 is joined to the second end 530 of the tenth member 528 by a seventh curved member 541 to form a fifth loop 534, and the first end 529 of the tenth member 528 is joined to the second end 512 of the fourth member 510. The third loop 532 defines a third angle 545. The fourth loop 533 defines a fourth angle 546. The fifth loop 534 defines a fifth angle 547.

In the embodiment shown in Fig. 4, the first member 501, the third member 507, the sixth member 516, the eighth member 522, and the tenth member 528 have substantially the same angular orientation to the longitudinal axis of the stent and the second member 504, the fourth member 510, the fifth member 513, the seventh member 519, and the ninth member 512 have substantially the same angular orientation to the longitudinal axis of the stent. In the embodiment shown in Figure 4, the lengths of the first, second, third and fourth members 501, 504, 507, 510 are substantially equal. The lengths of the fifth, sixth, seventh, eighth, ninth and tenth members 513, 516, 519, 522, 525, 528 are also substantially equal. Other embodiments where lengths of individual members are tailored for specific applications, materials of construction or methods of delivery are also possible, and may be preferable for them.

Preferably, the first, second, third, and fourth members 501, 504, 507, 510 have a width that is greater than the width of the fifth, sixth, seventh, eighth, ninth, and tenth members 513, 516, 519, 522, 525, 528 in that cell. The differing widths of the first, second, third, and fourth members and the fifth, sixth, seventh, eighth, ninth, and tenth members with respect to each other contribute to the overall flexibility and resistance to radial compression of the cell. The widths of the various members can be tailored for specific applications.

Preferably, the fifth, sixth, seventh, eighth, ninth, and tenth members are optimized predominantly to enable longitudinal flexibility, both before and after expansion, while the first, second, third, and fourth members are optimized predominantly to enable sufficient resistance to radial compression to hold a vessel open. Although specific members are optimized to predominantly enable a desired characteristic, all the portions of the cell interactively cooperate and contribute to the characteristics of the stent.

Figures 5 and 6 show a pattern and an expanded view of one cell of an embodiment of the present invention which is specially adapted for a stent made of stainless steel. The pattern is similar to the pattern of Figures 3 and 4, and the same reference numerals are used to indicate the generally corresponding parts.

In this embodiment of the invention, for example, the second loops 531 are made stronger by shortening the third and fourth members 507, 510. This helps assure that the second loops do not "flare out" during delivery of the stent through tortuous anatomy. This "flaring out" is not a concern with NiTi stents which are covered by a sheath during delivery.

Furthermore, the length of the members in this embodiment may be shorter than the length of the corresponding members in the embodiment illustrated in Figures 3 and 4.

Typically, the amount of strain allowed in a self-expanding NiTi stent may be around 10%. In a stainless steel stent, the amount of strain allowed typically may be 20% or greater. Therefore, to facilitate stents made of NiTi and stents made of stainless steel expanding to comparable diameters, the members of the NiTi stent may be longer than the members of a stainless steel stent.

Figure 7 illustrates another aspect of the present invention. The stent of Figure 7 is also constructed from orthogonal meander patterns 301, 302. The meander patterns form a series of interlocking cells 50, 700 of two types. The first type of cell 50 is taught by U.S. Patent No. 5,733,303. These cells are arranged so that they form alternating bands 704 of first type of cells 50 and bands 706 of the second type of cells 700.

As seen in Figure 8 and particularly with respect to the cell labeled for ease of description, each of the '303 cells 50 has a first longitudinal apex 100 and a second longitudinal end 78. Each cell 50 also is provided with a first longitudinal end 77 and a second longitudinal apex 104 disposed at the second longitudinal end 78. Each cell 50 also includes a first member 51 having a longitudinal component having a first end 52 and a second end 53; a second member 54 having a longitudinal component having a first end 55 and a second end 56; a third member 57 having a longitudinal component having a first end 58 and a

second end 59; and a fourth member 60 having a longitudinal component having a first end 61 and a second end 62. The stent also includes a first loop or curved member 63 defining a first angle 64 disposed between the first end 52 of the first member 51 and the first end 55 of the second member 54. A second loop or curved member 65 defining a second angle 66 is disposed between the second end 59 of the third member 57 and the second end 62 of the fourth member 60 and is disposed generally opposite to the first loop 63. A first flexible compensating member (or a section of a longitudinal meander pattern) 67 having curved portion and two legs with a first end 68 and a second end 69 is disposed between the first member 51 and the third member 57 with the first end 68 of the first flexible compensating member 67 joined to and communicating with the second end 53 of the first member 51 and the second end 69 of the first flexible compensating member 67 joined to and communicating with the first end 58 of the third member 57. The first end 68 and the second end 69 are disposed a variable longitudinal distance 70 from each other. A second flexible compensating member (or, a section of a longitudinal meander pattern) 71 having a first end 72 and a second end 73 is disposed between the second member 54 and the fourth member 60. The first end 72 of the second flexible compensating member 71 is joined to and communicates with the second end 56 of the second member 54 and the second end 73 of

the second flexible compensating member 71 is joined to and  
communicates with the first end 61 of the fourth member 60. The  
first end 72 and the second end 73 are disposed a variable  
longitudinal distance 74 from each other. In this embodiment,  
5 the first and second flexible compensating members, and  
particularly the curved portion thereof, 67 and 71 are arcuate.

The second type of cell 700 is illustrated in Figure 9  
and the same reference numerals are used to indicate generally  
corresponding areas of the cell. The apices 100, 104 of the  
10 second type of cell 700 are offset circumferentially. Also, each  
flexible compensating member 67, 71 includes: a first portion or  
leg 79 with a first end 80 and a second end 81; a second portion  
or leg 82 with a first end 83 and a second end 84; and a third  
portion or leg 85 with the first end 86 and a second end 87, with  
15 the second end 81 and the second end 84 being joined by a curved  
member and the first end 83 and the first end 86 being joined by  
a curved member. The first end of a flexible compensating member  
67, 71 is the same as the first end 80 of the first portion 79,  
and the second end of a flexible compensating member 67, 71 is  
20 the same as the second end 87 of the third portion 85. A first  
area of inflection 88 is disposed between the second end 81 of  
the first portion 79 and the second end 84 of the second portion  
82 where the curved portion joining them lies. A second area of  
inflection 89 is disposed between the first end 83 of the second

portion 82 and the first end 86 of the third portion 85 where the curved portion joining them lies.

While Figure 7 illustrates a pattern of alternating bands of cells, the stent may be optimized for a particular usage by tailoring the configuration of the bands. For example, the middle band of the second type of cells 700 may instead be formed of cells 50, or vice versa. The second type of cells in Figure 7 may also utilize the cell configurations described with respect to Figures 4 and 6. The cell configurations of Figures 4 and 6 provide the advantage that they will not cause any torque of one portion of the cell relative to another portion of the cell about the longitudinal axis of the stent upon expansion, which may happen when the second type of cells 700 expand, a torque which could cause a stent to deform, and stick out.

As illustrated in Figure 7, all of the flexible compensating members are arranged so that the path of the flexible compensating members, from left to right, travels in a generally downward direction. The cells 700 can also be arranged so that the flexible compensating members in one band are arranged in a generally upward direction, and the flexible compensating members in an adjacent band are arranged in a generally downward direction. One skilled in the art can easily make these modifications.

Figure 10 is a schematic representation comparing the

cells 804 of the present invention, which have three points where the intertwined first and second meander patterns meet and are in that sense three cornered or triangular cells, with cells 802 of the '303 stent which have four points where the intertwined first and second meander patterns meet and are in that sense four cornered or square cells. More particularly, on the left side of Figure 10, a pair of vertical meander patterns 806, 826 are joined by members 808, 810, 812 (which are sections of longitudinal meander patterns) to form a plurality of three cornered or triangular cells 804. By triangular cell, it is meant that there are three sections 810, 812, 814, each having loop portions and three associated points 816, 818, 820 of their joining, forming each cell.

On the right side of Figure 10, a pair of vertical meander patterns 822, 824 are joined together compensating members 828, 830, 832, 834 (which are sections of a longitudinal meander) to form a plurality of square cells 804. By square cell, it is meant that there are four sections, each having loop portions, and four associated points of their joining, forming each cell. For example, the shaded cell 802 is formed from four sections 832, 836, 830, 838, with four associated points of their joining 840, 842, 844, 846.

Both the square cell and the triangular cell have two kinds of sections with loops. The first kind of loop containing

section is formed from a vertical meander pattern and is optimized predominantly to enable radial support. The second kind of loop containing section is optimized predominantly to enable flexibility along the longitudinal axis of the stent.

5        Although each loop containing section is optimized predominantly to enable a desired characteristic of the stent, the sections are interconnected and cooperate to define the characteristics of the stent. Therefore, the first kind of loop containing section contributes to the longitudinal flexibility of the stent, and the  
10      second kind of loop containing section contributes to the radial support of the stent.

In the square cell 802, it can be seen that the second kind of loop containing sections 830, 832 each have one inflection point 848, 850. In the triangular cell, the loop containing sections 810, 812 each have two inflection point areas 852, 854, 856, 858. The higher number of inflection points allows more freedom to deform after expansion of the stent and distributes the deformation over a longer section, thus, reducing the maximal strain along these loop containing sections.  
15

20        Furthermore, it can be seen that a square cell 802 is generally more elongated along the longitudinal axis of the stent than a triangular cell 804, which is generally more elongated along the circumference of the stent. This also contributes to higher flexibility after expansion.

If the first meander patterns 806, 822, 824, 826 of both types of cells are constructed identically and spaced apart by the same amount, the area of a triangular cell 804 is the same as a square cell 802. This can be more readily understood with reference to a band of cells around the circumference of a stent.  
5 Each band will encompass the same area, and each band will have the same number of cells. Accordingly, the area of each cell in one band formed of square cells will be the same as the area of each cell in another band formed of triangular cells.

10 Although the areas of the cells are equal, the perimeter of the triangular cell is larger than the perimeter of the square cell. Therefore, in comparison to a square cell, a triangular cell offers increased coverage of a vessel wall.

15 In the particular embodiments described above, the stent is substantially uniform over its entire length. However, other applications where portions of the stent are adapted to provide different characteristics are also possible. For example, as shown in Figure 11, a band of cells 850 may be designed to provide different flexibility characteristics or 20 different radial compression characteristics than the remaining bands of cells by altering the widths and lengths of the members making up that band. Or, the stent may be adapted to provide increased access to a side branch lumen by providing at least one cell 852 which is larger in size than the remaining cells, or by

providing an entire band of cells 854 which are larger in size than the other bands of cells. Or, the stent may be designed to expand to different diameters along the length of the stent. The stent may also be treated after formation of the stent by coating  
5 the stent with a medicine, plating the stent with a protective material, plating the stent with a radiopaque material, or covering the stent with a material.

Thus, what is described is a longitudinally flexible stent that utilizes a closed cell structure to provide excellent coverage of the vessel wall. The general concepts described  
10 herein can be utilized to form stents with different configurations than the particular embodiments described herein. For example, the general concepts can be used to form bifurcated stents. It will be appreciated by persons skilled in the art  
15 that the present invention is not limited to what has been particularly shown and described above. Rather, the scope of the present invention is defined by the claims which follow.

WHAT IS CLAIMED IS:

1. A stent for holding open a blood vessel formed of a plurality of triangular cells, each triangular cell comprising:

    a first loop containing section, the first loop containing section arranged generally in the circumferential direction;

    a second loop containing section joined to the first loop containing section at a first junction point; and

    a third loop containing section joined to the first loop containing section at a second junction point and joined to the second loop containing section at a third junction point.

2. A stent according to claim 1, wherein the first loop containing section is relatively adapted to enable radial support, and the second and third loop containing sections are relatively adapted to enable longitudinal flexibility.

3. A stent according to claims 1 or 2, wherein the first loop containing section has wider struts than the second and third loop containing sections.

4. A stent according to claim 3, wherein the first loop containing section has two loops.

5. A stent according to claim 4, wherein the second loop

containing section has two loops.

6. A stent according to claim 5, wherein the third loop containing section has two loops.

7. A stent according to claim 6, wherein the stent is made of stainless steel.

8. A stent according to claim 7, wherein at least one of the legs for a loop of the first loop containing section is shorter than other legs for a loop of the first loop containing section.

9. A stent according to claims 1 or 5, wherein the second and third junction point are circumferentially aligned.

10. A stent according to claims 1 or 2, wherein each cell in the stent encompasses the same area.

11. A stent according to claims 1 or 2, wherein the cell is arranged so that when expanded a length of the cell along a circumference of the stent is longer than a length of a cell along the longitudinal axis of the stent.

12. A stent according to claims 1 or 2, wherein the stent is

made from NiTi.

13. A stent according to claim 12, wherein a cell of the stent is symmetrical about a line parallel to a longitudinal axis of the stent.

14. A stent according to claims 1 or 2, wherein at least one cell with a larger size is provided to allow access to a side branch lumen.

15. A stent according to claims 1 or 2, wherein the cells are arranged into a plurality of bands, and the cells in one band are larger than the cells in the remaining band so as to provide access to a side branch in a vessel.

16. A stent according to claims 1 or 2, wherein the cells are arranged into a plurality of bands and the cells in at least one band are adapted to have a different radial force than the cells in the remaining bands.

17. A stent according to claims 1 or 2, wherein the cells are arranged into a plurality of bands and the cells in at least one band are adapted to have a different longitudinal flexibility than the cells in the remaining bands.

18. A stent according to claims 1 or 2, wherein the cells are arranged into a plurality of bands and the cells in at least one band are adapted so that upon expansion of the stent the band expands to a diameter which is different than the diameter of the remaining portions of the stent.

19. A stent according to claims 1 or 2, wherein the cells are arranged into a plurality of bands, and the number of cells in at least one band is different than the number of cells in another band.

20. A stent according to claims 1 or 2, wherein the stent is finished in one of the following ways: plating with a radiopaque material, plating with a protective material, embedding with medicine, or covering with a material.

21. A stent for widening a vessel in the human body comprising:  
a plurality of first meander patterns;  
a plurality of second meander patterns intertwined with the  
first meander patterns to form triangular cells.
22. A stent according to claim 21 wherein the first meander  
patterns are comprised of:  
even first meander patterns; and  
odd first meander patterns which are 180° out of phase with  
the even first meander patterns, the odd first meander patterns  
occurring between every two even first meander patterns.
23. A stent according to claims 21 or 22 wherein the second  
meander patterns are comprised of:  
even second meander patterns; and  
odd second meander pattern occurring between every two even  
second meander patterns.
24. A stent according to claim 21, wherein each of the  
triangular cells is comprised of a first loop containing section,  
a second loop containing section, and a third loop containing  
section.
25. A stent according to claim 24, wherein the first loop

containing section is formed by a portion of a first meander pattern and the second and third loop containing sections are formed by portions of one or more second meander patterns.

26. A stent according to claim 24, wherein the first loop containing section includes at least one leg of a free loop which is shorter than other legs of loops in the loop containing section.

27. A stent according to claim 24, wherein the first loop containing section is wider than the second and third loop containing sections.

28. A stent according to claim 24, wherein the first meander pattern has two loops per period.

29. A stent according to claim 24, wherein the second meander pattern has four loops per period.

30. A stent according to claim 24 wherein the first and second meander patterns are substantially orthogonal.

31. A stent according to claim 24, wherein the first loop containing section has two loops facing toward the interior of

the cell.

32. A stent according to claims 24 or 28, wherein the second and third loop containing sections each have two loops.

33. A stent according to claims 24, 28 or 32, wherein the loops of the second and third loop containing sections are adapted to compensate for the tendency of the loops of the first loop containing section to foreshorten when the stent is expanded.

34. A stent according to claim 24, 28 or 32, wherein one of the loops of the first loop section is a free loop which is shorter than the other loop of the first loop section.

35. A stent according to claims 24, 28 or 32, wherein the odd and even second meander portions have portions in common wherein said meanders run in the same direction.

36. A stent according to claims 24, 28 or 32, wherein the first and second meander patterns have portions in common wherein said meander patterns run in the same direction.

37. A multicellular stent for holding open a lumen, comprising:

a plurality of even and odd vertical meander patterns, the odd vertical meander patterns being located between every two even vertical meander patterns and being out of phase with the even vertical meander patterns,

a plurality of even and odd horizontal meander patterns, the odd horizontal meander patterns being located between every two even horizontal meander patterns,

wherein the vertical meander patterns are intertwined with the horizontal meander patterns to form a plurality of triangular cells.

38. A multicellular stent according to claim 37, wherein the triangular cells are formed by a first loop containing section, a second loop containing section connected to the first loop containing section, and a third loop containing section connected to the first and second loop containing section.

39. A multicellular stent according to claim 38, wherein the first loop containing section is formed from a portion of a vertical meander pattern.

40. A multicellular stent according to claim 39, wherein the

second and third loop containing sections are formed from portions of one or more horizontal meander patterns.

41. A multicellular stent according to claim 40, wherein members forming the first loop containing section are wider than members forming the second and third loop containing sections.

42. A multicellular stent according to claim 41, wherein the first loop containing section forms two loops facing toward the interior of the cell.

43. A multicellular stent according to claim 42, wherein the second loop containing section forms one loop facing toward the interior of the cell.

44. A multicellular stent according to claim 43, wherein the third loop containing section forms one loop facing toward the interior of the cell.

45. A multicellular stent according to claims 37, 38 or 44, wherein the stent is made of stainless steel.

46. A multicellular stent according to claim 45, wherein the first loop containing section includes one free loop.

47. A multicellular stent according to claim 46, wherein one leg of the free loop is shorter than the other leg of the loop.

48. A multicellular stent according to claim 47, wherein the length of the second loop containing section is equal to the length of the third loop containing section.

49. A multicellular stent according to claim 48, wherein each triangular cell of the stent encompasses the same area.

50. A multicellular stent according to claim 49, wherein the width of members forming the second loop containing section and the width of members forming the third loop containing section are the same.

51. A multicellular stent comprising;  
a plurality of bands of first cells, each first cell including a first loop disposed generally longitudinally opposite a second loop and a first pair of flexible compensating members joined to the cell sections containing the first and second loop;  
a plurality of bands of second cells, each second cell including a third loop disposed generally longitudinally opposite a fourth loop and a second pair of flexible members joined to the cell sections containing the third and fourth loops to form a

cell, the bands of second cells interspersed with the bands of first cells,

wherein the first loop and the second loop are substantially aligned along a longitudinal axis of the stent, and wherein the third loop and the fourth loop are offset along the longitudinal axis.

52. A multicellular stent according to claim 51 wherein the loops of the cell are wider than the flexible members of the cell so that the loops provide more radial support.

53. A multicellular stent according to claim 51 wherein each flexible member of the second pair of flexible members includes:

- a first portion with a first end and a second end;
- a second portion with a first end and a second end;
- a third portion with a first end and a second end;
- a curved portion with a first area of inflection disposed between the second end of the first portion and the second end of the second portion; and

- a curved portion with a second area of inflection disposed between the first end of the second portion and the first end of the third portion.

54. A multicellular stent according to claim 53 wherein each

flexible member of the first pair of flexible members includes a flexible arcuate compensating member.

55. A multicellular stent according to claim 51, wherein the bands of the first cells alternate with the bands of the second cells.

56. A multicellular stent according to claim 51, wherein the bands of the cells are chosen so as to produce sections of the stent with increased radial rigidity.

57. A multicellular stent according to claim 51, wherein the bands of cells at the ends of the stents are adapted to be more longitudinally flexible than the bands of cells in the remainder of the stent.

58. A multicellular stent according to claim 51, wherein the stent is made from either stainless steel or NiTi.

59. A multicellular stent comprising:

a plurality of bands of square cells, each square cell including a first loop disposed generally longitudinally opposite a second loop, and a first pair of flexible compensating members joined to the legs of the first and second loop;

a plurality of bands of triangular cells, each triangular cell comprising a first loop containing section arranged generally in the circumferential direction, a second loop containing section connected to the first loop containing section, and a third loop containing section connected to the first loop containing section and the second loop containing section,

wherein the bands of triangular cells are interspersed with the bands of square cells to form the stent.

60. A multicellular stent according to claim 59, wherein the bands of the square cells alternate with the bands of the triangular cells.

61. A multicellular stent according to claim 59, wherein the bands of cells at the ends of the stents are adapted to be more longitudinally flexible than the bands of cells in the remainder of the stent.

62. A multicellular stent according to claim 59, wherein the first loop containing section has two loops facing the interior of the cell.

63. A multicellular stent according to claim 59, wherein the

second and third loop containing sections each have at least one loop facing the interior of the cell.

64. A multicellular stent according to claim 59, wherein first and second loop are formed of members which are wider than the pair of flexible compensating members.

65. A multicellular stent according to claim 59, wherein the first loop is formed of members which are wider than members forming the second and third loop.

66. A multicellular stent according to claim 59, wherein the first loop containing section has some legs of loops which are shorter than other legs of loops.

67. An expandable stent comprising a plurality of enclosed flexible spaces, each of the plurality of enclosed flexible spaces including:

- a) a first member having a first end and a second end;
- b) a second member having a first end and a second end;
- c) a third member having a first end and a second end;
- d) a fourth member having a first end and a second end;

the first end of the first member communicating with the first end of the second member, the second end of the second member

communicating with the second end of the third member, and the first end of the third member communicating with the first end of the fourth member;

e) the first member and the second member with the curved portion at their ends forming a first loop;

f) the third member and the fourth member with the curved portion at their ends forming a second loop;

g) a fifth member having a first end and a second end;

h) a sixth member having a first end and a second end;

i) a seventh member having a first end and a second end;

j) an eighth member having a first end and a second end;

k) a ninth member having a first end and a second end; and

l) a tenth member having a first end and a second end, the first end of the fifth member communicating with the second end of the first member, the second end of the fifth member communicating with the second end of the sixth member, the first end of the sixth member communicating with the first end of the seventh member, the second end of the seventh member communicating with the second end of the eighth member, the first end of the eighth member communicating with the first end of the ninth member, the second end of the ninth member communicating

with the second end of the tenth member, and the first end of the of the tenth member communicating with the second end of the fourth member;

m) the fifth member and the sixth member with the curved portion at their ends forming a third loop;

n) the seventh member and the eighth member with the curved portion at their ends forming a fourth loop; and

o) the ninth member and the tenth member with the curved portion at their ends forming a fifth loop.

68. The stent of claim 67, wherein the first member, the third member, the sixth member, the eighth member, and the tenth member have substantially the same angular orientation to the longitudinal axis of the stent and the second member, the fourth member, the fifth member, the seventh member, and the ninth member have substantially the same angular orientation to the longitudinal axis of the stent.

69. The stent of claim 67, wherein at least one of the members in at least one of the plurality of spaces has a length that is greater than the length of the other members in that space.

70. The stent of claim 67, wherein at least one of the first, second, third, and fourth members in at least one of the

plurality of spaces has a length that is longer than the length of at least one of the fifth, sixth, seventh, eighth, ninth, and tenth members in that space.

71. The stent of claim 70, wherein at least one of the first, second, third, and fourth members in at least one of the plurality of spaces has a length that is about twice the length of at least one of the fifth, sixth, seventh, eighth, ninth, and tenth members in that space.

72. The stent of claim 67, wherein at least one of the first, second, third and fourth members in at least one of the plurality of spaces has a length that is substantially equal to the length of at least one of the fifth, sixth, seventh, eighth, ninth, and tenth members in that space.

73. The stent of claim 67, wherein the first, second, third, and fourth members in at least one of the plurality of spaces have a width that is different than the width of the fifth, sixth, seventh, eighth, ninth, and tenth members in that space.

74. The stent of claim 73, wherein the first, second, third, and fourth members in at least one of the plurality of spaces have a width that is greater than the width of the fifth, sixth,

seventh, eighth, ninth, and tenth members in that space.

75. The stent of claim 67, wherein at least one member in at least one of the plurality of spaces has a width that is greater than the other members in that space.

76. The stent of claim 67, wherein at least one member in at least one of the plurality of spaces has a width that is greater than the other members in that space.

77. The stent of claim 69, wherein at least that member having the greatest length in that space is joined to an adjacent member which extends in an adjacent space.

78. The stent of claim 67, wherein a substantial portion of each of the members is substantially straight.

79. The stent of claim 67, wherein the members are comprised of metal.

80. The stent of claim 79, wherein the metal is selected from the group consisting of stainless steel and nitinol.

81. The stent of claim 67, wherein the first, second, third, and

fourth members and the fifth, sixth, seventh, eighth, ninth, and tenth members are provided with different flexibilities with respect to each other.

82. The stent of claim 81, wherein the first, second, third, and fourth members are more flexible than the fifth, sixth, seventh, eighth, ninth, and tenth members.

83. The stent of claims 81, wherein the fifth, sixth, seventh, eight, ninth, and tenth member patterns are more flexible than the first, second, third, and fourth members.

84. The stent of claim 67, wherein at least one portion of at least one of the first, second, third, and fourth members and at least one portion of at least one of the fifth, sixth, seventh, eighth, ninth, and tenth members are provided with different flexibilities with respect to each other.

85. The stent of claim 84, wherein at least one portion of at least one of the first, second, third, and fourth members is provided with at least one portion that is more flexible than at least one portion of at least one of the fifth, sixth, seventh, eighth, ninth, and tenth members.

86. The stent of claim 84, wherein at least one portion of at least one of the fifth, sixth, seventh, eighth, ninth, and tenth members is provided with at least one portion that is more flexible than at least one portion of at least one of the first, second, third, and fourth members.

87. The stent of claim 67, wherein the first, second, third, and fourth members and the fifth, sixth, seventh, eighth, ninth, and tenth members are provided with different resistances to radial compression with respect to each other.

88. The stent of claim 87, wherein the first, second, third, and fourth members have a greater resistance to radial compression than the fifth, sixth, seventh, eighth, ninth, and tenth members.

89. The stent of claims 87, wherein the fifth, sixth, seventh, eighth, ninth, and tenth members have a greater resistance to radial compression than the first, second, third, and fourth members.

90. The stent of claim 67, wherein at least one portion of at least one of the first, second, third, and fourth members and at least one portion of at least one of the fifth, sixth, seventh, eighth, ninth, and tenth members are provided with different

resistances to radial compression with respect to each other.

91. The stent of claim 90, wherein at least one portion of at least one of the plurality of the first, second, third, and fourth members is provided with at least one portion that has a greater resistance to radial compression than at least one portion of at least one of the fifth, sixth, seventh, eighth, ninth, and tenth members.

92. The stent of claim 90, wherein at least one portion of at least one of the fifth, sixth, seventh, eighth, ninth, and tenth members is provided with at least one portion that has a greater resistance to radial compression than at least one portion of at least one of the first, second, third, and fourth members.

93. A stent comprising a matrix of cells, substantially as depicted in any of Figures 3, 4, 5, 6, 7, 9 or 11.

94. A stent comprising a matrix of cells, wherein the cells are selected from one or more of the cells substantially as depicted in Figures 3, 4, 5, 6, 7, 9 or 11.

ABSTRACT

An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. The stent can be adapted to prevent flaring of portions of the stent during insertion.

2025 RELEASE UNDER E.O. 14176



FIG. 1



FIG. 2



3  
FIG.



FIG. 4

FIG. 5





FIG. 6

FIG. 7



50 50 50 50 50 50 50 50 50 50 50 50



**FIG. 8**



Fig. 9



FIG. 10



Fig. 11