Exercise 4. Show that if \mathscr{A} is an algebra of sets, and if $\cup_n A_n$ belongs to \mathscr{A} whenever $\{A_n\}$ is a sequence of disjoint sets in \mathscr{A} , then \mathscr{A} is a σ -algebra.

Proof. Since \mathscr{A} is an algebra, it contains \mathscr{A} and is stable by complementation. To show that \mathscr{A} is a σ -algebra, it is enough to show that it is stable by countable unions. Let $\{A_n\}_{n\in\mathbb{N}}$ be a family of sets of \mathscr{A} . Define a family $\{B_n\}_{n\in\mathbb{N}}$ of sets of \mathscr{A} by

$$B_0 = A_0$$

$$B_{n+1} = A_{n+1} - \bigcup_{k=0}^n A_k$$

Then $\{B_n\}_{n\in\mathbb{N}}$ is a family of disjoint sets of \mathscr{A} , so $\cup_{n\in\mathbb{N}} B_n \in \mathscr{A}$. However, $\cup_{n\in\mathbb{N}} B_n = \cup_{n\in\mathbb{N}} A_n$, so \mathscr{A} is stable by countable unions, and is therefore a σ -algebra.