

Atmospheric Attenuation and Particulates Study

Bryce Pappas, Rhett Herman

Department of Physics, Radford University Contact: bpappas@radford.edu

NS13B-1240

Department of Physics

Figure 4

Introduction

The purpose of this work was to investigate ways to study air quality in the arctic circle. To do this, 2 methods were used - atmospheric extinction of sunlight, and particulate measurements.

Equipment & Methods

A system was designed and built that housed 2 sensors. The detector is based on a 3D printed box housing 2 Arduinos. These Arduinos run the AS-7265 spectral sensor and SPS-30 particulates sensor. The AS-7265 detects 18 different wavelengths of light and reads out their respective intensities in nW/cm^2 . The SPS-30 measures the concentration of particulates that are 1, 2.5, 4, and 10 micron, and the mass density of such particles ($\mu g/m^3$) that it captured.

Arctic Solar Ray Attenuation

This sensor was placed outside in Utqiagvik, Alaska (Fig. 1) where winds bring particulates from other parts of the globe, but esp. eastern Asia. This sensor was set out multiple times including before sunrise in the morning, and through local noon. The light intensity data yields the extinction coefficient of the atmosphere through the slope of the graph (Figs. 4,5) of $\ln(I_f/I_0)$:

$$I_f = I_0 e^{-kd} \to \ln\left(\frac{I_f}{I_0}\right) = -kd$$

We note the change in the slopes of the longer wavelengths of the spectral lines (>750nm) during one of the observation periods that started before sunrise and continued into the early afternoon.

SPS Sensor

Results

avelength	Extinction Coefficient	Extinction - Coefficient	$ln(I_{measured})$ vs. d(km) for various λ note that $t_1 = 2700$ s and $t_2 = 21180.0$ s
	100-200 km	200-275 km	8.5
580 nm	0.000594	0.000832	8.0
705 nm	0.000976	0.00162	7.5
730nm	0.000766	0.000937	(parins 7.0
760nm	0.001469	0.000885	7.0 To the same of
810nm	0.000781	0.000833	6.5
860nm	0.00117	0.000312	slope change
900nm	0.000421	0.000989	Figu
960nm	0.00057	0.000753	5.0 100 150 200 2 d(km)

Results/Conclusions

We noted from Figs. 2 & 3 the particulates counts increased at the same time at the changes in the slopes in Fig. 4 & 5 occurred. Since the slopes changed only for the longer wavelengths, which are of the approx. same size as the smaller particulates detected, we posit that both of these detected what might be a cloud with particulates blowing in from perhaps eastern Asia. The skies were clear and unchanging to our eyes, but these data suggest the utility of these sensors for detecting particulates that we can't see.

Acknowledgments

Support for this research provided by the Radford University Physics department, RU physics alumni, the Office of Undergraduate Research and Scholarship (OURS), and the Mcglothlin Center for Global Education and Engagement.

Printing Supported by the RU Office of Undergraduate Research & Scholarship