```
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

import numpy as np
import pandas as pd

import matplotlib.pyplot as pyt

df=pd.read_csv("/content/drive/MyDrive/zoo.csv")
df.head()

₽		animal_name	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	bac
	0	aardvark	1	0	0	1	0	0	1	1	
	1	antelope	1	0	0	1	0	0	0	1	
	2	bass	0	0	1	0	0	1	1	1	
	3	bear	1	0	0	1	0	0	1	1	
	4	boar	1	0	0	1	0	0	1	1	
	4										•

class_type_output=df["class_type"]
df=df.drop("class_type", axis=1).drop("animal_name",axis=1)
df.head()

	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	breathes	venomous	fins	legs	tail	domestic
0	1	0	0	1	0	0	1	1	1	1	0	0	4	0	О
1	1	0	0	1	0	0	0	1	1	1	0	0	4	1	О
2	0	0	1	0	0	1	1	1	1	0	0	1	0	1	О
3	1	0	0	1	0	0	1	1	1	1	0	0	4	0	О
4	1	0	0	1	0	0	1	1	1	1	0	0	4	1	0

```
from sklearn.model_selection import train_test_split
x_test,x_train,y_test,y_train=train_test_split(df,class_type_output,test_size=0.2)
```

from sklearn.tree import DecisionTreeClassifier
classifier=DecisionTreeClassifier()
classifier.fit(x_train,y_train)

DecisionTreeClassifier()

$$\label{eq:continuous} \begin{split} &y_prediction=classifier.predict(x_test) \\ &y_prediction \end{split}$$

```
array([2, 7, 2, 7, 2, 1, 1, 1, 1, 1, 1, 2, 4, 7, 4, 1, 1, 4, 2, 2, 2, 2, 1, 6, 4, 1, 1, 4, 7, 6, 2, 4, 7, 6, 1, 1, 1, 1, 2, 7, 2, 1, 6, 1, 2, 2, 1, 4, 1, 7, 2, 1, 2, 7, 4, 4, 4, 1, 1, 1, 4, 4, 1, 2, 2, 1, 6, 1, 1, 4, 2, 4, 4, 4, 2, 7, 2, 4, 1, 1])
```

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score

confusion_matrix(y_test,y_prediction)
print(classification_papert(y_test_y_prediction))

print(classification_report(y_test,y_prediction))
print(accuracy come(y test y prediction))

 $\verb"print(accuracy_score(y_test,y_prediction))"$

prediction_class=list(y_prediction)
actual_class=list(y_test)

for i in range(len(prediction_class)):

 $print("pridicted \ class=",prediction_class[i]", "actual \ class=",actual_class[i]")$

	precision	recall	f1-score	support
1	0.93	0.96	0.95	28
2	0.90	1.00	0.95	18
3	0.00	0.00	0.00	5
4	0.59	1.00	0.74	10
5	0.00	0.00	0.00	4
6	1.00	0.71	0.83	7
7	0.78	0.88	0.82	8
асу			0.84	80

```
macro avg
                   0.60
                             0.65
                                       0.61
                                                   80
weighted avg
                   0.77
                             0.84
                                       0.79
                                                   80
0.8375
pridicted class= 2 actual class= 2
pridicted class= 7 actual class= 7
pridicted class= 2 actual class= 2
pridicted class= 7 actual class= 6
pridicted class= 2 actual class= 2
pridicted class= 1 actual class= 1
pridicted class= 1 actual class= 1
pridicted class= 1 actual class= 1
pridicted class= 1 actual class= 3
pridicted class= 1 actual class= 1
pridicted class= 1 actual class= 1
pridicted class= 2 actual class= 2
pridicted class= 4 actual class= 3
pridicted class= 7 actual class= 6
pridicted class= 4 actual class= 5
pridicted class= 1 actual class= 1
pridicted class= 1 actual class= 1
pridicted class= 4 actual class= 5
pridicted class= 2 actual class= 1
pridicted class= 2 actual class= 2
pridicted class= 2 actual class= 2
pridicted class= 2 actual class= 2
pridicted class= 1 actual class= 1
pridicted class= 6 actual class= 6
pridicted class= 4 actual class= 4
pridicted class= 1 actual class= 1
pridicted class= 1 actual class= 1
pridicted class= 4 actual class= 4
pridicted class= 7 actual class= 7
pridicted class= 6 actual class= 6
pridicted class= 2 actual class= 2
pridicted class= 4 actual class= 4
pridicted class= 7 actual class= 7
pridicted class= 6 actual class= 6
pridicted class= 1 actual class= 1
pridicted class= 2 actual class= 2
pridicted class= 7 actual class= 7
4
```

Colab paid products - Cancel contracts here

X