Honors Physics 1.4 - Math Tools for Physics

I. Measurement and Uncertainty

Scientific Notation	
 A method for writing very large or very small numbers co 	mpactly.
 Format: A coefficient (between 1 and 10) × 10 raised to a 	a
 Moving the decimal to the LEFT results in a 	exponent
(e.g., 5,800 becomes 5.8 x 10 ³).	
 Moving the decimal to the RIGHT results in a 	exponent
(e.g., 0.045 becomes 4.5 x 10 ⁻²).	
Significant Figures	
Communicates the of a measurer	ment.
Includes all certain digits plus one	
	-
II. Physics Equations as Tools	
Equations are tools for and describing the	e natural world.
They show the relationships between different physical	
(variables).	
• Example: Speed =//	(v = d/t).
III. Graphing Data	
Graphs visualize the relationship between two	
The independent variable (what you control) is plotted on the	
The dependent variable (what responds) is plotted on the	
Interpreting Slope	
 The slope of a line graph represents the 	between the
variables.	
Slope is calculated as "rise over run" (/ /)
 For a distance vs. time graph, the slope represents the	-
	·
IV. Dimensional Analysis (Unit Conversion)	
A technique for converting a measurement from one	to another.
It involves multiplying by one or more	
which are fractions equal to 1.	,
The key is to set up the factor so that the unwanted units	out.

Name		

Worked Examples (Fill-in)

Ex 1 — Convert	: 365 day	ys into	seconds.
----------------	-----------	---------	----------

4. Final Answer: ______ s

- Starting Value: 365 days
 Conversion Factors:

 ______ hours / 1 day
 ______ minutes / 1 hour
 _____ seconds / 1 minute

 Dimensional Analysis Setup:

 (365 days) × (______ / 1 day) × (______ / 1 hr) × (______ / 1 min)
- Ex 2 A car travels 150 km in 2 hours. Find the slope of its distance-time graph.
 - 1. Identify Variables:

 o Independent (x-axis):

 Dependent (y-axis):

 2. Identify Points:
 - Starting point: (0 hr, _____ km)
 Ending point: (2 hr, ____ km)
 - 3. Calculate Slope:

 Slope = Rise / Run = (_____ km ____ km) / (_____ hr -
 - 4. Final Answer & Meaning:
 - Slope = _____ km/hr. This represents the car's average