Data Science First Steps

Business problem understanding

- State clearly the problem to be solved and why.
- Define the potential value of the project.
- Identify the project risks including ethical considerations.
- Develop and communicate a high-level, flexible project plan.

First Inspection

- Check the dataset dimensions.
- Look at the columns and their values.
- Check column types (int, float, etc.).
- Convert some columns to a specific type (e.g., int, datetime ,etc.).

First Inspection

- Check the dataset dimensions. → Pandas: .shape
- Look at the columns and their values. → Pandas: head, tail, describe, info
- Check column types (int, float, etc.). → Pandas: .dtypes, info
- Convert some columns to a specific type (e.g., int, datetime ,etc.). \rightarrow **Pandas: astype, to_datetime**

Remove unnecessary features.

- Remove unnecessary features.
- Deal with null values:
 - Remove the whole row.
 - o Remove whole column.
 - Value imputation: mean, median, mode, apply ML.

- Remove unnecessary features.
- Deal with null values:
 - Remove the whole row.
 - o Remove whole column.
 - Value imputation: mean, median, mode, apply ML.
- Remove duplicates if errors.

- Remove unnecessary features.
- Deal with null values:
 - Remove the whole row.
 - Remove whole column.
 - Value imputation: mean, median, mode, apply ML.
- Remove duplicates if errors.
- Outliers:
 - Remove or impute them if errors.
 - o Decide what to do if they are not errors.

- Remove unnecessary features. → Pandas: drop
- Deal with null values: → Pandas: isnull, isna
 - Remove whole row. → Pandas: dropna
 - Remove whole column. → Pandas: dropna
 - Value imputation: mean, median, mode, apply ML. → Pandas: fillna, mean, median, KNNImputer
- Remove duplicates if errors. → Pandas: duplicated, drop_duplicates
- Outliers:
 - Remove or impute them if errors.
 - Decide what to do if they are not errors.

Summarize main characteristics with visualizations. Some common ideas:

Distributions of all features: histogram, boxplot, bar plot.

- Distributions of all features: histogram, boxplot, bar plot.
- Correlation matrix between all pairs of features.

- Distributions of all features: histogram, boxplot, bar plot.
- Correlation matrix between all pairs of features.
- Pair plot.

- Distributions of all features: histogram, boxplot, bar plot.
- Correlation matrix between all pairs of features.
- Pair plot.
- Correlations of features with target.

- Distributions of all features: histogram, boxplot, bar plot. \rightarrow Matplotlib: hist, boxplot, barplot
- Correlation matrix between all pairs of features. → Pandas: corr; Seaborn: heatmap
- Pair plot. → **Seaborn: pairplot**
- Correlations of features with target. \rightarrow Pandas: corr

- Preprocessing data:
 - Encode categorical features: one-hot encoding, label encoding.
 - o Binning.
 - Drop highly correlated features.

One-Hot Encoding

id	color
1	red
2	blue
3	green
4	blue

id	color_red	color_blue	color_green
1	1	0	0
2	0	1	0
3	0	0	1
4	0	1	0

Ordinal Encoding

SAFETY-LEVEL	SAFETY-LEVEL
(TEXT)	(NUMERICAL)
None	0
Low	1
Medium	2
High	3
Very-High	4

- Preprocessing data:
 - Encode categorical features: one-hot encoding, ordinal encoding.
 - o Binning.
 - o Drop highly correlated features.

- Preprocessing data:
 - Encode categorical features:
 - One-hot encoding.
 - Ordinal encoding.
 - Binning.
 - Drop highly correlated features.
- Feature selection: RFE, statistical tests, ML models.

- Preprocessing data:
 - Encode categorical features:
 - One-hot encoding.
 - Ordinal encoding.
 - Binning.
 - Drop highly correlated features.
- Feature selection: RFE, statistical tests, ML models.
- Add new features: from external datasets or derived from existing features.

- Preprocessing data:
 - Encode categorical features:
 - One-hot encoding. → Pandas: get_dummies
 - Ordinal encoding. → Sklearn: OrdinalEncoder
 - Binning. → Pandas: cut
 - Drop highly correlated features. → Pandas: corr
- Feature selection: RFE, statistical tests, ML models. → Sklearn: RFE
- Add new features: from external datasets or derived from existing features.

