

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	4IPNET, INC.
Applicant Address	3F-3, No. 369, Fusing N. Rd., Taipei 105, Taiwan, R.O.C.
FCC ID	VZ9130001
Manufacturer's company	4IPNET, INC.
Manufacturer Address	3F-3, No. 369, Fusing N. Rd., Taipei 105, Taiwan, R.O.C.

Statement

Test result included is only for the IEEE 802.11n, IEEE 802.11b/g part and IEEE 802.11a (5725 \sim 5850MHz) of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2009, 47 CFR FCC Part 15 Subpart C, KDB 558074 D01 v03 and KDB 662911 D01 v01r02.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CERT	TIFICATE OF COMPLIANCE	1
2. SUMI	MARY OF THE TEST RESULT	2
3. GENE	ERAL INFORMATION	
3.1.	Product Details	3
3.2.	Accessories	-
3.3.	Table for Filed Antenna	6
3.4.	Table for Carrier Frequencies	7
3.5.	Table for Test Modes	8
3.6.	Table for Testing Locations	10
3.7.	Table for Multiple List	10
3.8.	Table for Supporting Units	
3.9.	Table for Parameters of Test Software Setting	
3.10.	EUT Operation during Test	
3.11.	Duty Cycle	12
3.12.	Test Configurations	16
4. TEST I	RESULT	
4.1.	AC Power Line Conducted Emissions Measurement	18
4.2.	Maximum Conducted Output Power Measurement	22
4.3.	Power Spectral Density Measurement	25
4.4.	6dB Spectrum Bandwidth Measurement	33
4.5.	Radiated Emissions Measurement	40
4.6.	Emissions Measurement	66
4.7.	Antenna Requirements	90
5. LIST C	OF MEASURING EQUIPMENTS	91
6. TEST I	LOCATION	93
APPEND	DIX A. TEST PHOTOS	A1 ~ A5
APPEND	DIX B. MAXIMUM PERMISSIBLE EXPOSURE	B1 ~ B3
APPENIC	DIX C. CO-LOCATION REPORT	C1 ~ C3

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR331209AA	Rev. 01	Initial issue of report	Jun. 19, 2013

Certificate No.: CB10205312

Page No.

: 1 of 93

Issued Date : Jun. 19, 2013

1. CERTIFICATE OF COMPLIANCE

Product Name :

(1) Enterprise Access Point

(2) Managed Access Point

Brand Name :

4ipnet, Cipherium, USC

Model No. :

EAP220, A220, MAP100

Applicant:

4IPNET, INC.

Test Rule Part(s) :

47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Mar. 12, 2013 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C						
Part	Rule Section	Result Under Lir					
4.1	15.207	AC Power Line Conducted Emissions	Complies	10.07 dB			
4.2	15.247(b)(3)	Maximum Conducted Output Power	Complies	0.01 dB			
4.3	15.247(e)	Power Spectral Density	Complies	3.06 dB			
4.4	15.247(a)(2)	6dB Spectrum Bandwidth	Complies	-			
4.5	15.247(d)	Radiated Emissions	Complies	0.15 dB			
4.6	15.247(d)	Band Edge Emissions	Complies	0.12 dB			
4.7	15.203	Antenna Requirements	Complies	-			

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Maximum Conducted Output Power	±0.8dB	Confidence levels of 95%
Power Spectral Density	±0.5dB	Confidence levels of 95%
6dB Spectrum Bandwidth	±8.5×10 ⁻⁸	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.9dB	Confidence levels of 95%
Radiated / Band Edge Emissions (1GHz~18GHz)	±1.9dB	Confidence levels of 95%
Radiated Emissions (18GHz~40GHz)	±1.9dB	Confidence levels of 95%
Temperature	±0.7°C	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

Page No. : 2 of 93

Issued Date : Jun. 19, 2013

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n

Items	Description
Product Type	WLAN (2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	From Power Adaptor / POE
Modulation	see the below table for IEEE 802.11n
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	see the below table for IEEE 802.11n
Frequency Range	2400 ~ 2483.5MHz / 5725 ~ 5850MHz
Channel Number	For 2.4GHz Band:
	11 for 20MHz bandwidth ; 7 for 40MHz bandwidth
	For 5GHz Band:
	5 for 20MHz bandwidth ; 2 for 40MHz bandwidth
Channel Band Width (99%)	For 2.4GHz Band:
	MCS0 (20MHz): 16.96 MHz ; MCS0 (40MHz): 36.16 MHz
	For 5GHz Band:
	MCS0 (20MHz): 17.76 MHz ; MCS0 (40MHz): 36.32 MHz
Maximum Conducted Output	For 2.4GHz Band:
Power	MCS0 (20MHz): 29.71 dBm; MCS0 (40MHz): 21.83 dBm
	For 5GHz Band:
	MCS0 (20MHz): 29.90 dBm ; MCS0 (40MHz): 29.96dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

802.11a/b/g

Items	Description
Product Type	WLAN (2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	From Power Adaptor / POE
Modulation	DSSS for IEEE 802.11b; OFDM for IEEE 802.11a/g
Data Modulation	DSSS (BPSK / QPSK / CCK); OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	DSSS (1/ 2/ 5.5/11); OFDM (6/9/12/18/24/36/48/54)
Frequency Range	2400 ~ 2483.5MHz / 5725 ~ 5850MHz
Channel Number	11b/g: 11 ; 11a: 5
Channel Band Width (99%)	11b: 13.12 MHz ; 11g: 16.00 MHz ; 11a: 16.48 MHz
Maximum Conducted Output	11b: 29.54 dBm; 11g: 29.94 dBm; 11a: 29.99 dBm
Power	
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Antenna & Band width

Antenna	Two (TX)			
Band width Mode	20 MHz	40 MHz		
IEEE 802.11a	V	Х		
IEEE 802.11b	V	Х		
IEEE 802.11g	V	Х		
IEEE 802.11n	٧	V		

IEEE 11n Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	2	MC\$ 0-15
802.11n (HT40)	2	MC\$ 0-15

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 2: Modulation modes consist of below configuration:

HT20/HT40: IEEE 802.11n

 Report Format Version: 01
 Page No.
 : 4 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

3.2. Accessories

Power	Brand	Model	Rating			
Adaptor 1	OEM	ADS0271-W120200	Input:100-240Vac, 50-60Hz, 0.6A			
(Fixed plug)	OEIVI	AD30271-W120200	Output:12Vdc, 2.0A			
Adaptor 2	Ktec	KSAS0241200200D5	Input:100-240Vac, 50-60Hz, 0.6A			
(Removable plug)	Kiec	K3A3U2412UU2UUD3	Output:12Vdc, 2.0A			
Others						
FCC Plug*1 (Only for A	FCC Plug*1 (Only for Adapter 2 use)					
Console Cable: Non-Shielded, 0.5m						
RJ-45 Cable: Non-Shielded, 1.8m						

 Report Format Version: 01
 Page No.
 : 5 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

3.3. Table for Filed Antenna

Ant.	Brand	Model No.	Antenna Type	Connector	Gain	(dBi)	Loss of I		True Go	ıin (dBi)
			туре		2.4GHz	5GHz	2.4GHz	5GHz	2.4GHz	5GHz
1	UNI LINK	MCS-304-01	Dipole Antenna	Re-SMA(M)	2	-	0.3	-	1.7	-
2	UNI LINK	MCS-304-01	Dipole Antenna	Re-SMA(M)	2	-	0.3	-	1.7	-
3	UNI LINK	MCS-304-01	Dipole Antenna	Re-SMA(M)	ı	3	-	0.3	-	2.7
4	UNI LINK	MCS-304-01	Dipole Antenna	Re-SMA(M)	-	3	-	0.3	-	2.7

Note: The EUT has four antennas.

<For 2.4GHz Band>

Chain 1 and Chain 2 could transmit/receive simultaneously.

<For 5GHz Band>

Chain 3 and Chain 4 could transmit/receive simultaneously.

 Report Format Version: 01
 Page No.
 : 6 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

3.4. Table for Carrier Frequencies

For 2.4GHz Band:

For IEEE 802.11b/g, use Channel 1~Channel 11.

There are two bandwidth systems for IEEE 802.11n.

For both 20MHz bandwidth systems, use Channel 1~Channel 11.

For both 40MHz bandwidth systems, use Channel 3~Channel 9.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	1	2412 MHz	7	2442 MHz
	2	2417 MHz	8	2447 MHz
2400~2483.5MHz	3	2422 MHz	9	2452 MHz
2400~2463.5IVINZ	4	2427 MHz	10	2457 MHz
	5	2432 MHz	11	2462 MHz
	6	2437 MHz	-	-

For 5GHz Band:

For IEEE 802.11a, use Channel 149, 153, 157, 161, 165.

There are two bandwidth systems for IEEE 802.11n.

For 20MHz bandwidth systems, use Channel 149, 153, 157, 161, 165.

For 40MHz bandwidth systems, use Channel 151, 159.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	149	5745 MHz	159	5795 MHz
5725~5850 MHz	151	5755 MHz	161	5805 MHz
Band 4	153	5765 MHz	165	5825 MHz
	157	5785 MHz	-	-

 Report Format Version: 01
 Page No. : 7 of 93

 FCC ID: VZ9130001
 Issued Date : Jun. 19, 2013

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

For 2.4GHz Band

Test Items	Mode	Data Rate	Channel	Chain
AC Power Line Conducted Emissions	CTX	-	-	-
Maximum Conducted Output Power	11n 20MHz	MCS0	1/6/11	1+2
	11n 40MHz	MCS0	3/6/9	1+2
	11b/CCK	1 Mbps	1/6/11	1+2
	11g/BPSK	6 Mbps	1/6/11	1+2
Power Spectral Density	11n 20MHz	MCS0	1/6/11	1&2
	11n 40MHz	MCS0	3/6/9	1&2
	11b/CCK	1 Mbps	1/6/11	1&2
	11g/BPSK	6 Mbps	1/6/11	1&2
6dB Spectrum Bandwidth	11n 20MHz	MCS0	1/6/11	1+2
	11n 40MHz	MCS0	3/6/9	1+2
	11b/CCK	1 Mbps	1/6/11	1+2
	11g/BPSK	6 Mbps	1/6/11	1+2
Radiated Emissions Below 1GHz	CTX	-	-	-
Radiated Emissions Above 1GHz	11n 20MHz	MCS0	1/6/11	1+2
	11n 40MHz	MCS0	3/6/9	1+2
	11b/CCK	1 Mbps	1/6/11	1+2
	11g/BPSK	6 Mbps	1/6/11	1+2
Band Edge Emissions	11n 20MHz	MCS0	1/6/11	1+2
	11n 40MHz	MCS0	3/6/9	1+2
	11b/CCK	1 Mbps	1/6/11	1+2
	11g/BPSK	6 Mbps	1/6/11	1+2

For 5GHz Band

Test Items	Mode	Data Rate	Channel	Chain
AC Power Line Conducted Emissions	СТХ	-	-	-
Maximum Conducted Output Power	11n 20MHz	MC\$0	149/157/165	3+4
	11n 40MHz	MC\$0	151/159	3+4
	11a/BPSK	6 Mbps	149/157/165	3+4
Power Spectral Density	11n 20MHz	MC\$0	149/157/165	3&4
	11n 40MHz	MC\$0	151/159	3&4
	11a/BPSK	6 Mbps	149/157/165	3&4
6dB Spectrum Bandwidth	11n 20MHz	MCS0	149/157/165	3+4
	11n 40MHz	MC\$0	151/159	3+4
	11a/BPSK	6 Mbps	149/157/165	3+4
Radiated Emissions Below 1GHz	СТХ	-	-	-
Radiated Emissions Above 1GHz	11n 20MHz	MC\$0	149/157/165	3+4
	11n 40MHz	MC\$0	151/159	3+4
	11a/BPSK	6 Mbps	149/157/165	3+4
Band Edge Emissions	11n 20MHz	MC\$0	149/157/165	3+4
	11n 40MHz	MC\$0	151/159	3+4
	11a/BPSK	6 Mbps	149/157/165	3+4

The following test modes were performed for all tests:

For AC Power Line Conducted Emissions test:

The POE is for measurement only, would not be marketed, it's not necessary to apply to AC Power Line Conducted Emissions test.

Mode 1. CTX: EUT + Adaptor 1 Mode 2. CTX: EUT + Adaptor 2

Mode 1 is the worst case, so it was selected to record in this test report.

For Radiated Emission test(30MHz~1GHz):

Mode 1. CTX: Place EUT in X axis + Adapter 2

Mode 2. CTX: Place EUT in Y axis + Adapter 2

Mode 3. CTX: Place EUT in Z axis + Adapter 2

Mode 2 has been evaluated to be the worst case among Mode $1\sim3$, thus measurement for Mode 4 will follow this same test mode.

Mode 4. CTX: Place EUT in Y axis + Adapter 1

Mode 4 has been evaluated to be the worst case among Mode $1\sim4$, thus measurement for Mode 5 will follow this same test mode.

Mode 5. CTX: Place EUT in Y axis + POE

Mode 4 generated the worst test result, so it was recorded in this report.

 Report Format Version: 01
 Page No.
 : 9 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

For Radiated Emission test(Above 1GHz):

Mode 1. CTX: Place EUT in X axis Mode 2. CTX: Place EUT in Y axis Mode 3. CTX: Place EUT in Z axis

Mode 3 generated the worst test result, so it was recorded in this report.

<For MPE and Co-location Test>:

The EUT could be applied with 2.4GHz WLAN function and 5GHz WLAN function; therefore Maximum Permissible Exposure (Please refer to Appendix B) and Co-location (please refer to Appendix C) tests are added for simultaneously transmit between 2.4GHz WLAN function and 5GHz WLAN function.

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.
03CH01-CB	SAC	Hsin Chu	262045	IC 4086D
CO01-CB	Conduction	Hsin Chu	262045	IC 4086D
TH01-CB	OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

Please refer section 6 for Test Site Address.

3.7. Table for Multiple List

The brand/model/ product name are listed in the following table.

Brand	Model Name	Product name
4ipnet	EAP220	Enterprise Access Point
Cipherium	A220	Enterprise Access Point
USC	A220	Enterprise Access Point
4ipnet	MAP100	Managed Access Point

Note: All the models are identical, the different model names served as marketing strategy.

3.8. Table for Supporting Units

For Test Site No: CO01-CB / 03CH01-CB

Support Unit	Brand	Model	FCC ID
Notebook	IBM	T60	QDS-BRCM1020

For Test Site No: TH01-CB

Support Unit	Brand	Model	FCC ID
Notebook	IBM	T60	QDS-BRCM1020

 Report Format Version: 01
 Page No.
 : 10 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

3.9. Table for Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

For 2.4GHz Band

Power Parameters of IEEE 802.11n MCS0 20MHz

Test Software Version	ART2-GUI Version 2.3			
Frequency	2412 MHz	2437 MHz	2462 MHz	
MCS0 20MHz	16	25.5	19.5	

Power Parameters of IEEE 802.11n MCS0 40MHz

Test Software Version	ART2-GUI Version 2.3				
Frequency	2422 MHz	2437 MHz	2452 MHz		
MCS0 40MHz	11.5	16.5	16		

Power Parameters of IEEE 802.11b/g

Test Software Version	ART2-GUI Version 2.3			
Frequency	2412 MHz	2437 MHz	2462 MHz	
IEEE 802.11b	20	25	22	
IEEE 802.11g	16	25.5	20	

For 5GHz Band

Power Parameters of IEEE 802.11n MCS0 20MHz

Test Software Version	ART2-GUI Version 2.3			
Frequency	5745 MHz	5785 MHz	5825 MHz	
MCS0 20MHz	24.5	24.5	20	

Power Parameters of IEEE 802.11n MCS0 40MHz

Test Software Version	ART2-GUI Version 2.3					
Frequency	5755 MHz	5795 MHz				
MCS0 40MHz	24.5	24.5				

Power Parameters of IEEE 802.11a

Test Software Version	ART2-GUI Version 2.3						
Frequency	5745 MHz 5785 MHz 5825 MHz						
IEEE 802.11a	24.5	22.5	20				

3.10. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: 01
 Page No.
 : 11 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

3.11. Duty Cycle

IEEE 802.11n MCS0 20MHz / For 2.4GHz Band

Date: 16.APR.2013 07:48:40

IEEE 802.11n MCS0 40MHz / For 2.4GHz Band

Date: 16.APR.2013 07:49:28

 Report Format Version: 01
 Page No.
 : 12 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

IEEE 802.11n MCS0 20MHz / For 5GHz Band

Date: 16.APR.2013 09:10:38

IEEE 802.11n MCS0 40MHz / For 5GHz Band

Date: 16.APR.2013 09:11:13

 Report Format Version: 01
 Page No.
 : 13 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

IEEE 802.11b

Date: 16.APR.2013 07:46:50

IEEE 802.11g

Date: 16.APR.2013 07:47:50

 Report Format Version: 01
 Page No. : 14 of 93

 FCC ID: VZ9130001
 Issued Date : Jun. 19, 2013

IEEE 802.11a

Date: 16.APR.2013 09:10:04

3.12. Test Configurations

3.12.1. AC Power Line Conduction Emissions Configuration

Item	Connection	Shield	Length(m)
1	Power cable	No	1.5m
2	RJ-45 cable	No	10m

3.12.2. Radiation Emissions Configuration

Item	Connection	Shield	Length(m)
1	Power cable	No	1.5m
2	RJ-45 cable	No	10m

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far
 from the conducting wall of the shielding room and at least 80 centimeters from any other
 grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

Report Format Version: 01 Page No. : 18 of 93

FCC ID: VZ9130001 Issued Date : Jun. 19, 2013

4.1.4. Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

 Report Format Version: 01
 Page No.
 : 19 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	23°C	Humidity	51%
Test Engineer	Sin Cheng	Phase	Line
Configuration	Mode 1		

			Over	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dВ		
1	0.15900	35.84	-19.67	55.52	35.50	0.16	0.18	LINE	AVERAGE
2	0.15900	45.73	-19.78	65.52	45.39	0.16	0.18	LINE	QP
3	0.58540	28.35	-17.65	46.00	27.99	0.16	0.20	LINE	AVERAGE
4	0.58540	34.99	-21.01	56.00	34.63	0.16	0.20	LINE	QP
5	2.088	25.45	-30.55	56.00	25.03	0.19	0.23	LINE	QP
6	2.088	18.54	-27.46	46.00	18.12	0.19	0.23	LINE	AVERAGE
7	7.290	20.83	-29.17	50.00	20.24	0.29	0.30	LINE	AVERAGE
8	7.290	26.31	-33.69	60.00	25.72	0.29	0.30	LINE	QP
9	12.852	25.02	-24.98	50.00	24.24	0.38	0.40	LINE	AVERAGE
10	12.852	30.33	-29.67	60.00	29.55	0.38	0.40	LINE	QP
11	24.659	31.42	-28.58	60.00	30.29	0.58	0.56	LINE	QP
12	24.659	27.66	-22.34	50.00	26.53	0.58	0.56	LINE	AVERAGE

 Report Format Version: 01
 Page No.
 : 20 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Temperature	23°C	Humidity	51%
Test Engineer	Sin Cheng	Phase	Neutral
Configuration	Mode 1		

				Uver	Limit	Kead	LISN	Cable		
		Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
		MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1		0.15567	35.92	-19.77	55.69	35.66	0.08	0.18	NEUTRAL	AVERAGE
2		0.15567	48.65	-17.04	65.69	48.39	0.08	0.18	NEUTRAL	QP
3		0.26303	41.11	-20.23	61.34	40.83	0.08	0.20	NEUTRAL	QP
4		0.26303	31.77	-19.57	51.34	31.49	0.08	0.20	NEUTRAL	AVERAGE
5		0.59478	42.80	-13.20	56.00	42.52	0.08	0.20	NEUTRAL	QP
6	e	0.59478	35.93	-10.07	46.00	35.65	0.08	0.20	NEUTRAL	AVERAGE
7		1.970	20.86	-25.14	46.00	20.52	0.11	0.23	NEUTRAL	AVERAGE
8		1.970	27.88	-28.12	56.00	27.54	0.11	0.23	NEUTRAL	QP
9		12.649	24.61	-25.39	50.00	23.93	0.28	0.40	NEUTRAL	AVERAGE
10		12.649	30.19	-29.81	60.00	29.51	0.28	0.40	NEUTRAL	QP
11		24.922	32.15	-27.85	60.00	31.10	0.49	0.56	NEUTRAL	QP
12		24.922	28.46	-21.54	50.00	27.41	0.49	0.56	NEUTRAL	AVERAGE

Note:

Level = Read Level + LISN Factor + Cable Loss

4.2. Maximum Conducted Output Power Measurement

4.2.1. Limit

For systems using digital modulation in the 2400-2483.5MHz, the limit for output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the Chain exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the Chain exceeds 6dBi. Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting Chains with directional gain greater than 6 dBi without any corresponding reduction in transmitter output power.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	Average

4.2.3. Test Procedures

- 1. Test procedures refer KDB 558074 D01 v03 section 9.2.2 Measurement using a power meter (PM).
- 2. This procedure provides an alternative for determining the RMS output power using a broadband RF average power meter with a thermocouple detector.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 22 of 93
FCC ID: VZ9130001 Issued Date : Jun. 19, 2013

4.2.7. Test Result of Maximum Conducted Output Power

Temperature	25 ℃	Humidity	56%
Test Engineer	Robert Chang	Configurations	IEEE 802.11n
Test Date	May 27, 2013		

For 2.4GHz Band

Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2

Channel	Fraguanay	Conducted Power (dBm)		Total Conducted	Max. Limit	Dogult
Channel	Frequency	Chain 1	Chain 2	Power (dBm)	(dBm)	Result
1	2412 MHz	18.24	17.21	20.77	30.00	Complies
6	2437 MHz	26.73	26.66	29.71	30.00	Complies
11	2462 MHz	21.61	20.75	24.21	30.00	Complies

Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2

Channel	Fraguanay	Conducted Power (dBm)		Total Conducted	Max. Limit	Result
	Frequency	Chain 1	Chain 2	Power (dBm)	(dBm)	Resuli
3	2422 MHz	13.47	12.42	15.99	30.00	Complies
6	2437 MHz	19.11	18.27	21.72	30.00	Complies
9	2452 MHz	19.14	18.48	21.83	30.00	Complies

For 5GHz Band

Configuration IEEE 802.11n MCS0 20MHz / Chain 3 + Chain 4

Channel	Frequency	Conducted Power (dBm)		Total Conducted	Max. Limit	Dogult
		Chain 3	Chain 4	Power (dBm)	(dBm)	Result
149	5745 MHz	26.36	27.23	29.83	30.00	Complies
157	5785 MHz	26.45	27.29	29.90	30.00	Complies
165	5825 MHz	22.18	22.07	25.14	30.00	Complies

Configuration IEEE 802.11n MCS0 40MHz / Chain 3 + Chain 4

Channel	Fraguanay	Conducted Power (dBm)		Total Conducted	Max. Limit	Result
Channel	Frequency	Chain 3	Chain 4	Power (dBm)	(dBm)	Kesuli
151	5755 MHz	26.18	27.17	29.71	30.00	Complies
159	5795 MHz	26.61	27.26	29.96	30.00	Complies

 Report Format Version: 01
 Page No.
 : 23 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Temperature	25℃	Humidity	70%
Test Engineer	Robert Chang	Configurations	IEEE 802.11a/b/g
Test Date	May 27, 2013		

Configuration IEEE 802.11b / Chain 1 + Chain 2

Channel	Fraguanay	Conducted Power (dBm)		Total Conducted	Max. Limit	Dogult
Channel	Frequency	Chain 1	Chain 2	Power (dBm)	(dBm)	Result
1	2412 MHz	22.02	21.12	24.60	30.00	Complies
6	2437 MHz	26.61	26.45	29.54	30.00	Complies
11	2462 MHz	24.33	23.34	26.87	30.00	Complies

Configuration IEEE 802.11g / Chain 1 + Chain 2

Channel	Fraguanay	Conducted Power (dBm)		Total Conducted	Max. Limit	Dogult
Channel Fi	Frequency	Chain 1	Chain 2	Power (dBm)	(dBm)	Result
1	2412 MHz	18.25	17.13	20.74	30.00	Complies
6	2437 MHz	26.88	26.98	29.94	30.00	Complies
11	2462 MHz	22.12	21.55	24.85	30.00	Complies

Configuration IEEE 802.11a / Chain 3 + Chain 4

Channel	Fragueney	Conducted Power (dBm)		Total Conducted	Max. Limit	Result
Channel	Frequency	Chain 3	Chain 4	Power (dBm)	(dBm)	Resuli
149	5745 MHz	26.61	27.32	29.99	30.00	Complies
157	5785 MHz	25.02	25.72	28.39	30.00	Complies
165	5825 MHz	22.16	22.32	25.25	30.00	Complies

 Report Format Version: 01
 Page No.
 : 24 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

4.3. Power Spectral Density Measurement

4.3.1. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the Chain shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS channel bandwidth.
RBW	3 kHz ≤ RBW ≤ 100kHz
VBW	≥ 3 x RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto couple

4.3.3. Test Procedures

- Test procedures refer KDB 558074 D01 v03 section 10.2 Method PKPSD (peak PSD) & KDB 662911 D01 v01r02 section In-Band Power Spectral Density (PSD) Measurements option (2) Measure and add 10 log(NANT) dB.
- 2. Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
- 3. Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$ (use of a greater number of measurement points than this minimum requirement is recommended).
- 4. Use the peak marker function to determine the maximum level in any 3 kHz band segment within the fundamental EBW.
- 5. The resulting PSD level must be \leq 8 dBm.

4.3.4. Test Setup Layout

Report Format Version: 01 Page No. : 25 of 93
FCC ID: VZ9130001 Issued Date : Jun. 19, 2013

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: 01
 Page No.
 : 26 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

4.3.7. Test Result of Power Spectral Density

Temperature	25°C	Humidity	56%
Test Engineer	Robert Chang	Configurations	IEEE 802.11n

For 2.4GHz Band

Configuration IEEE 802.11n MCS0 20MHz / Chain 1 & Chain 2

Channel	Channel Frequency		y (dBm/3kHz)	Single Port Limit	Result
Charine	Frequency	Chain 1	Chain 2	(dBm/3kHz)	Resuli
1	2412 MHz	-8.28	-8.44	4.99	Complies
6	2437 MHz	0.90	0.56	4.99	Complies
11	2462 MHz	-3.36	-4.52	4.99	Complies

Note: PSD Limit = (8dBm/3kHz - (10log(2)) = 4.99dBm/3kHz

Configuration IEEE 802.11n MCS0 40MHz / Chain 1 & Chain 2

Channel Frequency		Power Densit	y (dBm/3kHz)	Single Port Limit	Result
Charine	Frequency	Chain 1	Chain 2	(dBm/3kHz)	Kesuii
3	2422 MHz	-15.11	-16.25	4.99	Complies
6	2437 MHz	-10.18	-10.77	4.99	Complies
9	2452 MHz	-9.32	-10.20	4.99	Complies

Note: PSD Limit = (8dBm/3kHz - (10log(2)) = 4.99dBm/3kHz

For 5GHz Band

Configuration IEEE 802.11n MCS0 20MHz / Chain 3 + Chain 4

Channol	annel Frequency	Power Density (dBm/3kHz)		Single Port Limit	Result
Charlie		Chain 3	Chain 4	(dBm/3kHz)	Result
149	5745 MHz	0.04	0.18	4.99	Complies
157	5785 MHz	-0.31	0.28	4.99	Complies
165	5825 MHz	-4.66	-4.60	4.99	Complies

Note: PSD Limit = (8dBm/3kHz - (10log(2)) = 4.99dBm/3kHz

Configuration IEEE 802.11n MCS0 40MHz / Chain 3 + Chain 4

Channel	Eroguenov	Power Densit	y (dBm/3kHz)	Single Port Limit (dBm/3kHz)	Result
	Frequency	Chain 3	Chain 4		Result
151	5755 MHz	-1.94	-1.39	4.99	Complies
159	5795 MHz	-2.20	-2.41	4.99	Complies

Note: PSD Limit = (8dBm/3kHz - (10log(2)) = 4.99dBm/3kHz

 Report Format Version: 01
 Page No.
 : 27 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Temperature	25 ℃	Humidity	56%
Test Engineer	Robert Chang	Configurations	IEEE 802.11a/b/g

Configuration IEEE 802.11b / Chain 1 & Chain 2

Channel	Eroguepov	Power Density (dBm/3kHz)		Single Port Limit	Result
Charine	Channel Frequency	Chain 1	Chain 2	(dBm/3kHz)	Result
3	2422 MHz	-2.23	-3.64	4.99	Complies
6	2437 MHz	1.93	1.80	4.99	Complies
9	2452 MHz	-0.71	-1.16	4.99	Complies

Note: PSD Limit = (8dBm/3kHz - (10log(2)) = 4.99dBm/3kHz

Configuration IEEE 802.11g / Chain 1 & Chain 2

Channel	Channel Frequency	Power Density (dBm/3kHz)		Single Port Limit	Result
Charine		Chain 1	Chain 2	(dBm/3kHz)	Result
3	2422 MHz	-8.20	-7.96	4.99	Complies
6	2437 MHz	1.14	0.91	4.99	Complies
9	2452 MHz	-4.31	-5.36	4.99	Complies

Note: PSD Limit = (8dBm/3kHz - (10log(2)) = 4.99dBm/3kHz

Configuration IEEE 802.11a / Chain 3 + Chain 4

Channel	el Frequency	Power Density (dBm/3kHz)		Single Port Limit	Result
Channel		Chain 3	Chain 4	(dBm/3kHz)	Kesuii
149	5745 MHz	0.59	1.26	4.99	Complies
157	5785 MHz	-2.78	-1.09	4.99	Complies
165	5825 MHz	-1.45	0.15	4.99	Complies

Note: PSD Limit = (8dBm/3kHz - (10log(2)) = 4.99dBm/3kHz

Note: All the test values were listed in the report.

For plots, only the channel with maximum results was shown.

 Report Format Version: 01
 Page No.
 : 28 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Power Density Plot on Configuration IEEE 802.11n MCS0 20MHz / Chain 1 / 2437 MHz

Date: 27.MAY.2013 22:27:51

Power Density Plot on Configuration IEEE 802.11n MCS0 40MHz / Chain 1 / 2452 MHz

Date: 27.MAY.2013 22:35:46

 Report Format Version: 01
 Page No.
 : 29 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Power Density Plot on Configuration IEEE 802.11n MCS0 20MHz / Chain 4 / 5785 MHz

Date: 27.MAY.2013 18:54:10

Power Density Plot on Configuration IEEE 802.11n MCS0 40MHz / Chain 4 / 5755 MHz

Date: 27.MAY.2013 18:49:49

 Report Format Version: 01
 Page No.
 : 30 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Power Density Plot on Configuration IEEE 802.11b / Chain 1 / 2437 MHz

Date: 27.MAY.2013 22:16:36

Power Density Plot on Configuration IEEE 802.11g / Chain 1 / 2437 MHz

Date: 27.MAY.2013 22:21:09

Power Density Plot on Configuration IEEE 802.11a / Chain 4 / 5745 MHz

Date: 27.MAY.2013 18:59:35

4.4. 6dB Spectrum Bandwidth Measurement

4.4.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 6dB Bandwidth
RBW	100kHz
VBW	≥ 3 x RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.4.3. Test Procedures

- 1. The transmitter output (Chain port) was connected to the spectrum analyzer in peak hold mode.
- Test was performed in accordance with KDB 558074 D01 v03 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 8.0 DTS 6-dB signal bandwidth option 1.
- 3. Multiple Chain system was performed in accordance with KDB 662911 D01 v01r02 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 33 of 93
FCC ID: VZ9130001 Issued Date : Jun. 19, 2013

4.4.7. Test Result of 6dB Spectrum Bandwidth

Temperature	25℃	Humidity	56%
Test Engineer	Robert Chang	Configurations	IEEE 802.11n

For 2.4GHz Band

Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
1	2412 MHz	11.76	16.64	500	Complies
6	2437 MHz	11.92	16.96	500	Complies
11	2462 MHz	12.88	16.72	500	Complies

Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
3	2422 MHz	36.16	36.16	500	Complies
6	2437 MHz	35.52	36.00	500	Complies
9	2452 MHz	35.52	35.68	500	Complies

For 5GHz Band

Configuration IEEE 802.11n MCS0 20MHz / Chain 3 + Chain 4

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
149	5745 MHz	15.60	17.44	500	Complies
157	5785 MHz	15.04	17.28	500	Complies
165	5825 MHz	16.08	17.76	500	Complies

Configuration IEEE 802.11n MCS0 40MHz / Chain 3 + Chain 4

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
151	5755 MHz	34.24	36.32	500	Complies
159	5795 MHz	34.56	36.16	500	Complies

 Report Format Version: 01
 Page No.
 : 34 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Temperature	25°C	Humidity	70%
Test Engineer	Robert Chang	Configurations	IEEE 802.11a/b/g

Configuration IEEE 802.11b / Chain 1 + Chain 2

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
1	2412 MHz	9.04	13.12	500	Complies
6	2437 MHz	9.04	12.64	500	Complies
11	2462 MHz	8.08	13.04	500	Complies

Configuration IEEE 802.11g / Chain 1 + Chain 2

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
1	2412 MHz	12.16	15.76	500	Complies
6	2437 MHz	12.32	16.00	500	Complies
11	2462 MHz	14.80	15.76	500	Complies

Configuration IEEE 802.11a / Chain 3 + Chain 4

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
149	5745 MHz	15.04	16.24	500	Complies
157	5785 MHz	15.04	16.16	500	Complies
165	5825 MHz	15.28	16.48	500	Complies

Note: All the test values were listed in the report.

For plots, only the channel with maximum results was shown.

 Report Format Version: 01
 Page No.
 : 35 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2 / 2412 MHz

Date: 27.MAY.2013 18:16:12

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2 / 2437~MHz

Date: 27.MAY.2013 18:20:05

 Report Format Version: 01
 Page No. : 36 of 93

 FCC ID: VZ9130001
 Issued Date : Jun. 19, 2013

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Chain 3 + Chain 4 / 5785 MHz

Date: 27.MAY.2013 18:31:34

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCSO 40MHz / Chain 3 + Chain 4 / 5755MHz

Date: 27.MAY.2013 18:35:18

 Report Format Version: 01
 Page No.
 : 37 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

6 dB Bandwidth Plot on Configuration IEEE 802.11b / Chain 1+ Chain 2 / 2462 MHz

Date: 27.MAY.2013 18:11:02

6 dB Bandwidth Plot on Configuration IEEE 802.11g / Chain 1+ Chain 2 / 2412 MHz

Date: 27.MAY.2013 18:14:13

 Report Format Version: 01
 Page No.
 : 38 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

6 dB Bandwidth Plot on Configuration IEEE 802.11a / Chain 3 + Chain 4 / 5745 MHz

Date: 27.MAY.2013 18:28:04

4.5. Radiated Emissions Measurement

4.5.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	100kHz / 300kHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

 Report Format Version: 01
 Page No.
 : 40 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

4.5.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8
meter above ground. The phase center of the receiving Chain mounted on the top of a
height-variable Chain tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving Chain was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the Chain tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop Chain has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

 Report Format Version: 01
 Page No. : 41 of 93

 FCC ID: VZ9130001
 Issued Date : Jun. 19, 2013

4.5.4. Test Setup Layout

For radiated emissions below 1GHz

For radiated emissions above 1GHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.5.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	20°C	Humidity	56%
Test Engineer	Jim Huang	Configurations	СТХ
Test Date	May 23, 2013		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{eq:limit_limit} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

 Report Format Version: 01
 Page No. : 43 of 93

 FCC ID: VZ9130001
 Issued Date : Jun. 19, 2013

4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	23°C	Humidity	55%
Test Engineer	Jim Huang	Configurations	Mode 4

Horizontal

	Freq	Level		Limit						1/Pos	Pol/Phase	Remark
	MHz	dBu\∕/m	dBu√/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	125.06	34.11	43.50	-9.39	52.62	1.33	11.73	31.57	150	271	HORIZONTAL	Peak
2	500.45	30.53	46.00	-15.47	42.20	2.82	16.92	31.41	125	213	HORIZONTAL	Peak
3 рр	624.61	42.95	46.00	-3.05	52.56	3.18	18.61	31.40	100	250	HORIZONTAL	Peak
4!	675.05	42.16	46.00	-3.84	51.41	3.33	18.78	31.36	100	262	HORIZONTAL	Peak
5	874.87	38.84	46.00	-7.16	45.86	3.89	20.24	31.15	150	276	HORIZONTAL	Peak
6	900.09	35.34	46.00	-10.66	41.94	3.97	20.64	31.21	150	276	HORIZONTAL	Peak

 Report Format Version: 01
 Page No. : 44 of 93

 FCC ID: VZ9130001
 Issued Date : Jun. 19, 2013

Vertical

	Freq	Level	Limit Line					Preamp Factor		T/Pos	Pol/Phase	Remark
-	MHz	dBu\∕/m	dBu√/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1 рр	30.00	36.71	40.00	-3.29	49.90	0.64	17.98	31.81	100	154	VERTICAL	Peak
2	69.77	33.23	40.00	-6.77	58.74	1.00	5.28	31.79	150	358	VERTICAL	Peak
3	375.32	33.43	46.00	-12.57	47.49	2.44	14.93	31.43	125	244	VERTICAL	Peak
4	624.61	34.15	46.00	-11.85	43.76	3.18	18.61	31.40	200	174	VERTICAL	Peak
5	675.05	38.19	46.00	-7.81	47.44	3.33	18.78	31.36	100	58	VERTICAL	Peak
6	874.87	34.72	46.00	-11.28	41.74	3.89	20.24	31.15	150	29	VERTICAL	Peak

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Chain Factor + Cable Loss + Read Level - Preamp Factor = Level.

 Report Format Version: 01
 Page No. : 45 of 93

 FCC ID: VZ9130001
 Issued Date : Jun. 19, 2013

4.5.9. Results for Radiated Emissions (1GHz \sim 10th Harmonic)

Temperature	25.6°C	Humidity	56%
Test Engineer	Jim Huang	Configurations	IEEE 802.11n MCS0 20MHz Ch 1 / Chain 1 + Chain 2
Test Date	May 17, 2013		

Horizontal

	Freq	Level		Over Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu√	dB	dB/m	dB			deg	
1	4815.41	42.63	74.00	-31.37	41.34	3.31	33.02	35.04	Peak	100	191	HORIZONTAL
2	4817.01	29.74	54.00	-24.26	28.45	3.31	33.02	35.04	Average	100	191	HORIZONTAL

Vertical

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg
1	4818.17									100	240 VERTICAL
2	4822.37	42.75	74.00	-31.25	41.41	3.31	33.06	35.03	Peak	100	240 VERTICAL

 Report Format Version: 01
 Page No.
 : 46 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Temperature	25.6°C	Humidity	56%
Test Engineer	lim Huana	Configurations	IEEE 802.11n MCS0 20MHz Ch 6 /
Test Engineer	Jim Huang	Configurations	Chain 1 + Chain 2
Test Date	May 17, 2013		

	Freq	Level		0∨er Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		- — cm	deg	
1	4867.24	47.96	74.00	-26.04	46.54	3.33	33.12	35.03	Peak	100	156	HORIZONTAL
2	4871.89	34.20	54.00	-19.80	32.74	3.33	33.16	35.03	Average	100	156	HORIZONTAL
3	7303.31	32.73	54.00	-21.27	28.15	4.06	35.92	35.40	Average	100	83	HORIZONTAL
4	7321.66	43.78	74.00	-30.22	39.16	4.06	35.96	35.40	Peak	100	83	HORIZONTAL

	Freq	Level		0∨er Limit						A/Pos		Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	4872.32	42.90	54.00	-11.10	41.44	3.33	33.16	35.03	Average	110	69	VERTICAL
2	4873.68	58.25	74.00	-15.75	56.79	3.33	33.16	35.03	Peak	110	69	VERTICAL
3	7304.67	54.29	74.00	-19.71	49.71	4.06	35.92	35.40	Peak	100	193	VERTICAL
4	7306.35	40.08	54.00	-13.92	35.50	4.06	35.92	35.40	Average	100	193	VERTICAL

Temperature	25.6°C	Humidity	56%
Test Engineer	lim Huana	Configurations	IEEE 802.11n MCS0 20MHz Ch11 /
Test Engineer	Jim Huang	Configurations	Chain 1 + Chain 2
Test Date	May 17, 2013		

	Freq	Level		0ver Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4915.89	42.43	74.00	-31.57	40.87	3.35	33.23	35.02	Peak	100	122	HORIZONTAL
2	4933.33	29.75	54.00	-24.25	28.15	3.35	33.26	35.01	Average	100	122	HORIZONTAL
3	7379.97	31.68	54.00	-22.32	26.93	4.06	36.09	35.40	Average	100	221	HORIZONTAL
4	7395.14	44.85	74.00	-29.15	40.06	4.06	36.13	35.40	Peak	100	221	HORIZONTAL

Vertical

	Fnon	Laural		0ver						A/Pos		
	Freq	rever	Line	Limit	rever	Loss	ractor	ractor	Remark		Pol/Phas	se
	MHz	dBu∀/m	dBu√/m	dB	dBu√	dB	dB/m	dB			deg	_
1	4920.96	42.66	74.00	-31.34	41.09	3.35	33.23	35.01	Peak	100	226 VERTICAL	L
2	4923.84	31.24	54.00	-22.76	29.64	3.35	33.26	35.01	Average	100	226 VERTICAL	L
3	7387.12	31.77	54.00	-22.23	27.02	4.06	36.09	35.40	Average	100	304 VERTICAL	L
4	7390,97	44.22	74.00	-29.78	39.47	4.06	36,09	35.40	Peak	100	304 VERTICAL	L

Page No. : 48 of 93 Issued Date : Jun. 19, 2013

Temperature	25.6℃	Humidity	56%
Toot Engineer	lim Huana	Configurations	IEEE 802.11n MCS0 40MHz Ch 3 /
Test Engineer Test Date	Jim Huang	Configurations	Chain 1 + Chain 2
Test Date	May 17, 2013		

Horizontal

			Limit	over	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4841.66	41.50	74.00	-32.50	40.12	3.32	33.09	35.03	Peak	100	265	HORIZONTAL
2	4842.08	29.43	54.00	-24.57	28.05	3.32	33.09	35.03	Average	100	265	HORIZONTAL
Vertic	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4840.31	29.27	54.00	-24.73	27.89	3.32	33.09	35.03	Average	100	178	VERTICAL
2	4853.90	41.91	74.00	-32.09	40.50	3.32	33.12	35.03	Peak	100	178	VERTICAL

Temperature	25.6°C	Humidity	56%
Test Engineer	lim Huana	Configurations	IEEE 802.11n MCS0 40MHz Ch 6 /
Test Engineer Test Date	Jim Huang	Configurations	Chain 1 + Chain 2
Test Date	May 17, 2013		

	Freq	Level		Over Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4877.72	29.52	54.00	-24.48	28.06	3.33	33.16	35.03	Average	100	218	HORIZONTAL
2	4880.54	42.69	74.00	-31.31	41.23	3.33	33.16	35.03	Peak	100	218	HORIZONTAL
3	7302.54	31.54	54.00	-22.46	26.96	4.06	35.92	35.40	Average	100	266	HORIZONTAL
4	7310.30	44.58	74.00	-29.42	39.96	4.06	35.96	35.40	Peak	100	266	HORIZONTAL

	Freq	Level	Limit Line	0ver Limit	Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB			deg	
1	4877.08	29.56	54.00	-24.44	28.10	3.33	33.16	35.03	Average	100	186	VERTICAL
2	4880.57	42.30	74.00	-31.70	40.84	3.33	33.16	35.03	Peak	100	186	VERTICAL
3	7314.11	44.21	74.00	-29.79	39.59	4.06	35.96	35.40	Peak	100	220	VERTICAL
4	7318.66	31.70	54.00	-22.30	27.08	4.06	35.96	35.40	Average	100	220	VERTICAL

Temperature	25.6°C	Humidity	56%
Test Engineer	lim Huana	Configurations	IEEE 802.11n MCS0 40MHz Ch 9 /
Test Engineer	Jim Huang	Configurations	Chain 1 + Chain 2
Test Date	May 17, 2013		

	Freq	Level		0ver Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4902.30	29.46	54.00	-24.54	27.95	3.34	33.19	35.02	Average	100	275	HORIZONTAL
2	4903.58	42.63	74.00	-31.37	41.12	3.34	33.19	35.02	Peak	100	275	HORIZONTAL
3	7348.53	31.93	54.00	-22.07	27.25	4.06	36.02	35.40	Average	100	315	HORIZONTAL
4	7362.76	45.75	74.00	-28.25	41.03	4.06	36.06	35.40	Peak	100	315	HORIZONTAL

	Freq	Level		0ver Limit					Remark	A/Pos		/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu∀	dB	dB/m	dB			deg	
1	4900.92	29.48	54.00	-24.52	27.97	3.34	33.19	35.02	Average	100	198 ∀ER	TICAL
2	4912.46	42.76	74.00	-31.24	41.21	3.34	33.23	35.02	Peak	100	198 ∀ER	TICAL
3	7351.74	31.94	54.00	-22.06	27.26	4.06	36.02	35.40	Average	100	239 VER	TICAL
4	7354.75	45.04	74.00	-28.96	40.36	4.06	36.02	35.40	Peak	100	239 VER	TTCAL

Temperature	24°C	Humidity	56%
Test Engineer	lim Huana	Configurations	IEEE 802.11n MCS0 20MHz CH 149 /
Test Engineer	Jim Huang	Configurations	Chain 3 + Chain 4
Test Date	May 17, 2013		

Horizontal

			Limit	over	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4999.96	52.45	74.00	-21.55	50.68	3.39	33.39	35.01	Peak	100	106	HORIZONTAL
2	5000.03	46.82	54.00	-7.18	45.05	3.39	33.39	35.01	Average	100	106	HORIZONTAL
3	11486.14	37.82	54.00	-16.18	29.21	5.11	38.78	35.28	Average	100	248	HORIZONTAL
4	11489.95	49.86	74.00	-24.14	41.25	5.11	38.78	35.28	Peak	100	248	HORIZONTAL
Vert	icai		Limit	0ver	Read	Cable/	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level			Level				Remark		.,	Pol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu∀	dB	dB/m	dB			deg	
1	5000.02	53.85	54.00	-0.15	52.07	3.39	33.40	35.01	Average	118	334	VERTICAL
2	5000.09	59.04	74.00	-14.96	57.26	3.39	33.40	35.01	Peak	118	334	VERTICAL
-												
3	11482.79	41.87	54.00	-12.13	33.26	5.11	38.78	35.28	Average	100	173	VERTICAL

Temperature	24°C	Humidity	56%			
Test Engineer	lim Huana	Configurations	IEEE 802.11n MCS0 20MHz CH 157 /			
Test Engineer	Jim Huang	Configurations	Chain 3 + Chain 4			
Test Date	May 17, 2013					

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	5000.03	46.74	54.00	-7.26	44.97	3.39	33.39	35.01	Average	100	105	HORIZONTAL
2	5000.18	52.31	74.00	-21.69	50.54	3.39	33.39	35.01	Peak	100	105	HORIZONTAL
3	11567.28	38.23	54.00	-15.77	29.58	5.13	38.82	35.30	Average	100	139	HORIZONTAL
4	11580.58	50.76	74.00	-23.24	42.09	5.14	38.83	35.30	Peak	100	139	HORIZONTAL
Verti	cal											

	Freq	Level	Limit Line		Read Level				Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu√	dB	dB/m	dB			deg	
1	5000.05	53.16	54.00	-0.84	51.38	3.39	33.40	35.01	Average	100	350	VERTICAL
2	5000.12	57.63	74.00	-16.37	55.85	3.39	33.40	35.01	Peak	100	350	VERTICAL
3	11563.43	40.51	54.00	-13.49	31.86	5.13	38.82	35.30	Average	100	233	VERTICAL
4	11566, 07	52.38	74.00	-21.62	43.73	5.13	38.82	35.30	Peak	100	233	VERTICAL

Page No. : 53 of 93 Issued Date : Jun. 19, 2013 May 17, 2013

Temperature	24°C	Humidity	56%
Tost Engineer	lim Huana	Configurations	IEEE 802.11n MCS0 20MHz CH 165 /
Test Engineer	Jim Huang	Configurations	Chain 3 + Chain 4

Test Date Horizontal

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∖∕	dB	dB/m	dB			deg	
1	4999.74	49.86	74.00	-24.14	48.09	3.39	33.39	35.01	Peak	100	107	HORIZONTAL
2	5000.02	42.79	54.00	-11.21	41.02	3.39	33.39	35.01	Average	100	107	HORIZONTAL
3	11659.70	50.39	74.00	-23.61	41.67	5.16	38.86	35.30	Peak	100	100	HORIZONTAL
4	11664.74	37.60	54.00	-16.40	28.88	5.16	38.86	35.30	Average	100	100	HORIZONTAL

	Freq	Level		0∨er Limit						A/Pos		Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∖∕	dB	dB/m	dB		cm	deg	
1	5000.02	50.11	54.00	-3.89	48.33	3.39	33.40	35.01	Average	117	334	VERTICAL
2	5000.07	55.97	74.00	-18.03	54.19	3.39	33.40	35.01	Peak	117	334	VERTICAL
3	11648.56	49.90	74.00	-24.10	41.18	5.16	38.86	35.30	Peak	100	158	VERTICAL
4	11649.28	37.60	54.00	-16.40	28.88	5.16	38.86	35.30	Average	100	158	VERTICAL

Temperature	24°C	Humidity	56%			
Test Engineer	Jim Huang	Configurations	IEEE 802.11n MCS0 40MHz CH 151 /			
lesi Engineei	Jilli Hudilg	Cornigulations	Chain 3 + Chain 4			
Test Date	May 17, 2013					

	Freq	Level			Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu\√/m	dB	dBu∖∕	dB	dB/m	dB		cm	deg	
1	5000.03	46.08	54.00	-7.92	44.31	3.39	33.39	35.01	Average	100	107	HORIZONTAL
2	5000.12	52.56	74.00	-21.44	50.79	3.39	33.39	35.01	Peak	100	107	HORIZONTAL
3	11510.14	49.98	74.00	-24.02	41.35	5.12	38.79	35.28	Peak	100	268	HORIZONTAL
4	11510.59	37.46	54.00	-16.54	28.83	5.12	38.79	35.28	Average	100	268	HORIZONTAL

	Freq	Level		0ver Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu\√/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	4999.79	58.87	74.00	-15.13	57.09	3.39	33.40	35.01	Peak	118	334	VERTICAL
2	5000.04	53.52	54.00	-0.48	51.74	3.39	33.40	35.01	Average	118	334	VERTICAL
3	11510.72	50.52	74.00	-23.48	41.89	5.12	38.79	35.28	Peak	100	116	VERTICAL
4	11510.85	37.45	54.00	-16.55	28.82	5.12	38.79	35.28	Average	100	116	VERTICAL

Temperature	24°C	Humidity	56%			
Test Engineer	Jim Huang	Configurations	IEEE 802.11n MCS0 40MHz CH 159 /			
lesi Engineei	Jim Hudrig	Configurations	Chain 3 + Chain 4			
Test Date	May 17, 2013					

			Limit	over	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
		dD. d.//m	dBu∀/m	dB	dBu∨	dB	dB/m					
	MHZ	abuv/m	abuv/m	ab	abuv	ав	ab/m	dB		cm	deg	
1	5000.04	45.90	54.00	-8.10	44.13	3.39	33.39	35.01	Average	100	105	HORIZONTAL
2	5000.14	52.72	74.00	-21.28	50.95	3.39	33.39	35.01	Peak	100	105	HORIZONTAL
3	11589.30	37.45	54.00	-16.55	28.78	5.14	38.83	35.30	Average	100	215	HORIZONTAL
4	11590.34	50.45	74.00	-23.55	41.78	5.14	38.83	35.30	Peak	100	215	HORIZONTAL

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4999.95	58.10	74.00	-15.90	56.32	3.39	33.40	35.01	Peak	120	334	VERTICAL
2	5000.04	53.30	54.00	-0.70	51.52	3.39	33.40	35.01	Average	120	334	VERTICAL
3	11588.19	38.44	54.00	-15.56	29.77	5.14	38.83	35.30	Average	100	143	VERTICAL
4	11590 70	50 99	74 00	-23 01	42 32	5 14	38 83	35 30	Peak	100	143	VERTICAL

Temperature	24°C	Humidity	56%		
Test Engineer	lim Huana	Configurations	IEEE 802.11b CH 1 /		
lesi Engineer	Jim Huang	Configurations	Chain 1 + Chain 2		
Test Date	May 17, 2013				

Horizontal

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		Cm	deg	
1	4823.98	30.26	54.00	-23.74	28.92	3.31	33.06	35.03	Average	100	307	HORIZONTAL
2	4826.26	42.01	74.00	-31.99	40.67	3.31	33.06	35.03	Peak	100	307	HORIZONTAL
Vertic	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4823.90	45.80	74.00	-28.20	44.46	3.31	33.06	35.03	Peak	112	219	VERTICAL
2	4823.98	40.19	54.00	-13.81	38.85	3.31	33.06	35.03	Average	112	219	VERTICAL

Temperature	24 °C	Humidity	56%		
Test Engineer	lim Huana	Configurations	IEEE 802.11b CH 6 /		
lesi Engineer	Jim Huang	Configurations	Chain 1 + Chain 2		
Test Date	May 17, 2013				

	Freq	Level		0∨er Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu\√/m	dB	dBu∨	dB	dB/m	dB		Cm	deg	
1	4874.01 4874.18								-	101 101		HORIZONTAL HORIZONTAL
3	7308.72 7308.77	45.25	74.00	-28.75	40.63	4.06	35.96	35.40	Peak	100	47	HORIZONTAL HORIZONTAL

Vertical

	Freq	Level		0ver Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu\//m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	4873.96	55.29	74.00	-18.71	53.83	3.33	33.16	35.03	Peak	122	64	VERTICAL
2	4874.00	53.23	54.00	-0.77	51.77	3.33	33.16	35.03	Average	122	64	VERTICAL
3	7309.93	48.47	74.00	-25.53	43.85	4.06	35.96	35.40	Peak	100	193	VERTICAL
4	7310.26	40.54	54.00	-13.46	35.92	4.06	35.96	35.40	Average	100	193	VERTICAL

Page No. : 58 of 93 Issued Date : Jun. 19, 2013

Temperature	24°C	Humidity	56%		
Test Engineer	lim Huana	Configurations	IEEE 802.11b CH 11 /		
lesi Engineei	neer Jim Huang Configurations		Chain 1 + Chain 2		
Test Date	May 17, 2013				

	Freq	Level			Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu\√/m	dB	dBu∖∕	dB	dB/m	dB			deg	
1	4924.03	36.66	54.00	-17.34	35.06	3.35	33.26	35.01	Average	113	163	HORIZONTAL
2	4924.22	44.86	74.00	-29.14	43.26	3.35	33.26	35.01	Peak	113	163	HORIZONTAL
3	7385.94	45.28	74.00	-28.72	40.53	4.06	36.09	35.40	Peak	100	202	HORIZONTAL
4	7388.42	31.74	54.00	-22.26	26.99	4.06	36.09	35.40	Av erage	100	202	HORIZONTAL

	Freq	Level		Over Limit					Remark	A/Pos		Pol/Phase
			dBu∀/m			dB					deg	
1	4923.96	49.40	74.00	-24.60	47.80	3.35	33.26	35.01	Peak	100	152	VERTICAL
2	4923.99	44.56	54.00	-9.44	42.96	3.35	33.26	35.01	Average	100	152	VERTICAL
3	7383.61	32.64	54.00	-21.36	27.89	4.06	36.09	35.40	Average	100	94	VERTICAL
4	7387, 91	46.06	74.00	-27.94	41.31	4.06	36.09	35.40	Peak	100	94	VERTICAL

Temperature	24°C	Humidity	56%		
Test Engineer	lim Huana	Configurations	IEEE 802.11g CH 1 /		
iesi Engineer	Jim Huang	Configurations	Chain 1 + Chain 2		
Test Date	May 17, 2013				

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4816.53	29.75	54.00	-24.25	28.46	3.31	33.02	35.04	Average	100	144	HORIZONTAL
2	4817.01	42.07	74.00	-31.93	40.78	3.31	33.02	35.04	Peak	100	144	HORIZONTAL
Vertic	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4817.91	29.83	54.00	-24.17	28.53	3.31	33.02	35.03	Average	100	236	VERTICAL
2	4819.51	43.37	74.00	-30.63	42.07	3.31	33.02	35.03	Peak	100	236	VERTICAL

Temperature	24°C	Humidity	56%
Test Engineer	lim Huana	Configurations	IEEE 802.11g CH 6 /
lesi Engineei	Jim Huang	Configurations	Chain 1 + Chain 2
Test Date	May 17, 2013		

	Freq	Level			Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	4864.22	43.20	74.00	-30.80	41.78	3.33	33.12	35.03	Peak	100	60	HORIZONTAL
2	4876.72	34.10	54.00	-19.90	32.64	3.33	33.16	35.03	Average	100	60	HORIZONTAL
3	7304.35	48.37	74.00	-25.63	43.79	4.06	35.92	35.40	Peak	100	204	HORIZONTAL
4	7310.28	35.61	54.00	-18.39	30.99	4.06	35.96	35.40	Average	100	204	HORIZONTAL

	Freq	Level			Read Level				Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu√	dB	dB/m	dB			deg	
1	4872.88	59.28	74.00	-14.72	57.82	3.33	33.16	35.03	Peak	112	66	VERTICAL
2	4873.28	43.68	54.00	-10.32	42.22	3.33	33.16	35.03	Average	112	66	VERTICAL
3	7309.64	40.24	54.00	-13.76	35.62	4.06	35.96	35.40	Average	100	193	VERTICAL
4	7309,88	55.59	74.00	-18.41	50.97	4.06	35.96	35.40	Peak	100	193	VERTICAL

Temperature	24°C	Humidity	56%
Test Engineer	lim Huana	Configurations	IEEE 802.11g CH 11 /
lesi Engineei	Jim Huang	Configurations	Chain 1 + Chain 2
Test Date	May 17, 2013		

				0∨er						A/Pos	T/Pos	0.1 (0)
	Freq	rever	Line	Limit	rever	Loss	Factor	ractor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4931.40	42.78	74.00	-31.22	41.18	3.35	33.26	35.01	Peak	100	79	HORIZONTAL
2	4932.75	29.82	54.00	-24.18	28.22	3.35	33.26	35.01	Average	100	79	HORIZONTAL
3	7379.94	31.63	54.00	-22.37	26.88	4.06	36.09	35.40	Average	100	181	HORIZONTAL
4	7391.77	44.69	74.00	-29.31	39.94	4.06	36.09	35.40	Peak	100	181	HORIZONTAL

Vertical

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos F	ol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu∀	dB	dB/m	dB			deg	
1	4914.19	43.43	74.00	-30.57	41.88	3.34	33.23	35.02	Peak	100	173 ∨	ERTICAL
2	4923.65	31.79	54.00	-22.21	30.19	3.35	33.26	35.01	Average	100	173 V	ERTICAL
3	7377.83	31.82	54.00	-22.18	27.07	4.06	36.09	35.40	Average	100	286 V	ERTICAL
4	7387.73	44.29	74.00	-29.71	39.54	4.06	36.09	35.40	Peak	100	286 \	FRITCAL

Page No.

Temperature	24°C	Humidity	56%
Test Engineer	lim Huana	Configurations	IEEE 802.11a CH 149/
Test Engineer	Jim Huang	Configurations	Chain 3 + Chain 4
Test Date	May 17, 2013		

	Freq	Level		0ver Limit					Remark	A/Pos	T/Pos	Pol/Phase
	11.54	LCVCI	cane	Cinic	2000	2033	raccor	raccor	NGIIGI K			roz/riase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	4999.98	54.02	74.00	-19.98	52.25	3.39	33.39	35.01	Peak	100	106	HORIZONTAL
2	5000.02	48.73	54.00	-5.27	46.96	3.39	33.39	35.01	Average	100	106	HORIZONTAL
3	11488.69	38.38	54.00	-15.62	29.77	5.11	38.78	35.28	Average	100	295	HORIZONTAL
4	11491.41	51.28	74.00	-22.72	42.67	5.11	38.78	35.28	Peak	100	295	HORIZONTAL

	Freq	Level		0ver Limit						A/Pos		Pol/Phase
	MHz	dBu\√/m	dBu\√/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	4999.81	58.31	74.00	-15.69	56.53	3.39	33.40	35.01	Peak	119	334	VERTICAL
2	4999.97	53.54	54.00	-0.46	51.76	3.39	33.40	35.01	Average	119	334	VERTICAL
3	11487.60	54.84	74.00	-19.16	46.23	5.11	38.78	35.28	Peak	100	170	VERTICAL
4	11493.01	42.86	54.00	-11.14	34.25	5.11	38.78	35.28	Average	100	170	VERTICAL

Temperature	24°C	Humidity	56%
Test Engineer	lim Huana	Configurations	IEEE 802.11a CH 157 /
Test Engineer	Jim Huang	Configurations	Chain 3 + Chain 4
Test Date	May 17, 2013		

				0∨er						A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∿	dB	dB/m	dB		cm	deg	
1	5000.00	47.76	54.00	-6.24	45.99	3.39	33.39	35.01	Average	100	107	HORIZONTAL
2	5000.14	53.31	74.00	-20.69	51.54	3.39	33.39	35.01	Peak	100	107	HORIZONTAL
3	11557.66	50.16	74.00	-23.84	41.51	5.13	38.82	35.30	Peak	100	216	HORIZONTAL
4	11567.28	37.90	54.00	-16.10	29.25	5.13	38.82	35.30	Average	100	216	HORIZONTAL

	Freq	Level	Limit Line	0ver Limit						A/Pos		Pol/Phase
	MHz	dBu√/m	dBu\√/m	dB	dBu√	dB	dB/m	dB			deg	
1	4999.96	53.54	54.00	-0.46	51.76	3.39	33.40	35.01	Average	100	209	VERTICAL
2	5000.15	59.05	74.00	-14.95	57.27	3.39	33.40	35.01	Peak	100	209	VERTICAL
3	11563.83	50.08	74.00	-23.92	41.43	5.13	38.82	35.30	Peak	100	109	VERTICAL
4	11568.24	39,47	54.00	-14.53	30.81	5.13	38.83	35.30	Average	100	109	VERTICAL

Temperature	24°C	Humidity	56%
Tost Engineer	lim Huana	Configurations	IEEE 802.11a CH 165/
Test Engineer	Jim Huang	Configurations	Chain 3 + Chain 4
Test Date	May 17, 2013		

Horizontal

			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	5000.00	49.90	74.00	-24.10	48.13	3.39	33.39	35.01	Peak	100	107	HORIZONTAL
2	5000.03	43.27	54.00	-10.73	41.50	3.39	33.39	35.01	Average	100	107	HORIZONTAL
3	11637.98	49.82	74.00	-24.18	41.10	5.16	38.86	35.30	Peak	100	263	HORIZONTAL
4	11653.21	37.54	54.00	-16.46	28.82	5.16	38.86	35.30	Average	100	263	HORIZONTAL

Vertical

			Limit	0∨er	Read	CableA	ntenna	Preamp		A/Pos	T/Pos
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark		Pol/Phase
	MHz	dBu√/m	dBu√/m	——dB	dBu√	dB	dB/m	dB			deg
1	5000.02	49.99	54.00	-4.01	48.21	3.39	33.40	35.01	Average	117	334 VERTICAL
2	5000.04	55.58	74.00	-18.42	53.80	3.39	33.40	35.01	Peak	117	334 VERTICAL
3	11649.28	37.77	54.00	-16.23	29.05	5.16	38.86	35.30	Average	100	177 VERTICAL
4	11659.21	49.65	74.00	-24.35	40.93	5.16	38.86	35.30	Peak	100	177 VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Chain Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6. Emissions Measurement

4.6.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	100 kHz / 300 kHz for Peak

4.6.3. Test Procedures

For Radiated band edges Measurement:

1. The test procedure is the same as section 4.5.3, only the frequency range investigated is limited to 100MHz around band edges.

For Conducted Out of Band Emission Measurement:

- Test was performed in accordance with KDB 558074 D01 v03 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 10.1 Unwanted Emissions into Non-Restricted Frequency Bands Measurement Procedure
- The conducted emission test is performed on each TX port of operating mode without summing or adding 10log (N) since the limit is relative emission limit.
 Only worst data of each operating mode is presented.

 Report Format Version: 01
 Page No.
 : 66 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

4.6.4. Test Setup Layout

For Radiated band edges Measurement:

This test setup layout is the same as that shown in section 4.5.4.

For Conducted Out of Band Emission Measurement:

This test setup layout is the same as that shown in section 4.4.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.6.7. Test Result of Band Edge and Fundamental Emissions

Temperature	25.6°C	Humidity	56%		
Tost Engineer	lim Huana	Configurations	IEEE 802.11n MCS0 20MHz Ch 1, 6, 11 /		
Test Engineer	Jim Huang	Configurations	Chain 1 + Chain 2		
Test date	May 17, 2013				

Channel 1

			Limit	over	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	2390.00	53.55	54.00	-0.45	23.16	2.22	28.17	0.00	Average	100	220	VERTICAL
2	2390.00	65.18	74.00	-8.82	34.79	2.22	28.17	0.00	Peak	100	220	VERTICAL
3	2406.87	102.78			72.35	2.22	28.21	0.00	Average	100	220	VERTICAL
4	2407.67	114.90			84.47	2.22	28.21	0.00	Peak	100	220	VERTICAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line	0ver Limit	Read Level		Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu\√/m	dB	dBu√	dB	dB/m	dB		Cm	deg	
1	2386.80	65.78	74.00	-8.22	35.40	2.21	28.17	0.00	Peak	101	189	VERTICAL
2	2390.00	51.47	54.00	-2.53	21.08	2.22	28.17	0.00	Average	101	189	VERTICAL
3	2442.77	111.11			80.58	2.24	28.29	0.00	Average	101	189	VERTICAL
4	2443.41	122.97			92.44	2.24	28.29	0.00	Peak	101	189	VERTICAL
5	2483.50	48.93	54.00	-5.07	18.30	2.26	28.37	0.00	Average	101	189	VERTICAL
6	2484.46	61.47	74.00	-12.53	30.84	2.26	28.37	0.00	Peak	101	189	VERTICAL

Item 3, 4 are the fundamental frequency at 2437MHz.

Channel 11

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1 2 3 4	2457.51 2461.04 2483.50 2484.78	104.49 53.50	54.00		86.90 73.92 22.87 37.80	2.24		0.00 0.00	Peak Average Average Peak	100 100 100 100	166 166	VERTICAL VERTICAL VERTICAL VERTICAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

Temperature	25.6℃	Humidity	56%		
Tost Engineer	lim Huana	Configurations	IEEE 802.11n MCS0 40MHz Ch 3, 6, 9 /		
Test Engineer	Jim Huang	Configurations	Chain 1 + Chain 2		
Test date	May 17, 2013				

Channel 3

			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	2389.36	69.39	74.00	-4.61	39.01	2.21	28.17	0.00	Peak	118	212	VERTICAL
2	2390.00	53.61	54.00	-0.39	23.22	2.22	28.17	0.00	Average	118	212	VERTICAL
3	2428.09	95.08			64.60	2.23	28.25	0.00	Average	118	212	VERTICAL
4	2438.03	107.77			77.25	2.23	28.29	0.00	Peak	118	212	VERTICAL

Item 3, 4 are the fundamental frequency at 2422 MHz.

Channel 6

	Freq	Level	Limit Line	Over Limit				Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∖∕	dB	dB/m	dB			deg	
1	2390.00	53.88	54.00	-0.12	23.49	2.22	28.17	0.00	Average	100	165	VERTICAL
2	2390.00	67.27	74.00	-6.73	36.88	2.22	28.17	0.00	Peak	100	165	VERTICAL
3	2448.22	113.51			82.98	2.24	28.29	0.00	Peak	100	165	VERTICAL
4	2449.50	100.70			70.17	2.24	28.29	0.00	Average	100	165	VERTICAL
5	2490.23	48.84	54.00	-5.16	18.17	2.26	28.41	0.00	Average	100	165	VERTICAL
6	2490.23	61.79	74.00	-12.21	31.12	2.26	28.41	0.00	Peak	100	165	VERTICAL

Item 3, 4 are the fundamental frequency at 2437MHz.

Channel 9

			Limit	0∨er	Read	CableA	Antenna	Preamp		A/Pos	T/Pos
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark		Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg
1	2445.27	98.37			67.84	2.24	28.29	0.00	Average	102	166 ∀ERTICAL
2	2445.27	110.93			80.40	2.24	28.29	0.00	Peak	102	166 VERTICAL
3	2485.74	53.77	54.00	-0.23	23.10	2.26	28.41	0.00	Average	102	166 VERTICAL
4	2486.39	72.60	74.00	-1.40	41.93	2.26	28.41	0.00	Peak	102	166 ∨ERTICAL

Item 1, 2 are the fundamental frequency at 2452 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Chain Factor + Cable Loss + Read Level - Preamp Factor = Level.

 Report Format Version: 01
 Page No.
 : 69 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Temperature	25 ℃	Humidity	70%				
Tost Engineer	lim Huana	ang Configurations IEEE 802.11b CH 1, 6,					
Test Engineer	Jim Huang	Comigurations	Chain 1				
Test Date	May 17, 2013						

Channel 1

	_				Read					A/Pos		
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu∨	dB	dB/m	dB			deg	
1	2385.99	53.68	54.00	-0.32	23.30	2.21	28.17	0.00	Average	100	167	VERTICAL
2	2387.60	73.01	74.00	-0.99	42.63	2.21	28.17	0.00	Peak	100	167	VERTICAL
3	2409.12	111.94			81.51	2.22	28.21	0.00	Average	100	167	VERTICAL
4	2409.44	115.86			85.43	2.22	28.21	0.00	Peak	100	167	VERTICAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu\//m	dBu\√/m	dB	dBu∖∕	dB	dB/m	dB		cm	deg	
1	2387.76	68.83	74.00	-5.17	38.45	2.21	28.17	0.00	Peak	146	210	VERTICAL
2	2390.00	50.74	54.00	-3.26	20.35	2.22	28.17	0.00	Average	146	210	VERTICAL
3	2438.92	118.29			87.77	2.23	28.29	0.00	Average	146	210	VERTICAL
4	2439.56	121.92			91.40	2.23	28.29	0.00	Peak	146	210	VERTICAL
5	2483.50	49.42	54.00	-4.58	18.79	2.26	28.37	0.00	Average	146	210	VERTICAL
6	2484.46	71.73	74.00	-2.27	41.10	2.26	28.37	0.00	Peak	146	210	VERTICAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

			Limit	0∨er	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∨/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	2460.08	118.31			87.74	2.24	28.33	0.00	Peak	100	168	VERTICAL
2	2460.24	114.76			84.19	2.24	28.33	0.00	Average	100	168	VERTICAL
3	2487.83	53.75	54.00	-0.25	23.08	2.26	28.41	0.00	Average	100	168	VERTICAL
4	2488.79	68.05	74.00	-5.95	37.38	2.26	28.41	0.00	Peak	100	168	VERTICAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

Temperature	25 ℃	Humidity	70%
Test Engineer	Jim Huang	Configurations	IEEE 802.11g CH 1, 6, 11 /
lesi Engineei	Jiii naarig	Cornigulations	Chain 1 + Chain 2
Test Date	May 17, 2013		

Channel 1

	Freq	Level	Limit Line		Read Level					A/Pos		Pol/Phase
	MHz	dBu\//m	dBu\√/m	dB	dBu∖∕	dB	dB/m	dB		cm	deg	
1	2390.00	53.86	54.00	-0.14	23.47	2.22	28.17	0.00	Average	100	163	VERTICAL
2	2390.00	66.82	74.00	-7.18	36.43	2.22	28.17	0.00	Peak	100	163	VERTICAL
3	2405.59	115.65			85.22	2.22	28.21	0.00	Peak	100	163	VERTICAL
4	2405.75	103.89			73.46	2.22	28.21	0.00	Average	100	163	VERTICAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

			Limit	0ver	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu\√/m	dB	dBu∨	dB	dB/m	dB			deg	
1	2389.68	52.41	54.00	-1.59	22.03	2.21	28.17	0.00	Average	100	189	VERTICAL
2	2389.68	64.49	74.00	-9.51	34.11	2.21	28.17	0.00	Peak	100	189	VERTICAL
3	2443.41	111.93			81.40	2.24	28.29	0.00	Average	100	189	VERTICAL
4	2443.41	123.28			92.75	2.24	28.29	0.00	Peak	100	189	VERTICAL
5	2483.50	49.67	54.00	-4.33	19.04	2.26	28.37	0.00	Average	100	189	VERTICAL
6	2485.10	61.70	74.00	-12.30	31.03	2.26	28.41	0.00	Peak	100	189	VERTICAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

			Limit	over	Read	CableA	ntenna	Preamp		A/Pos	T/Pos
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark		Pol/Phase
		10.000			45						
	MHZ	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg
	2457.54	107.15			76.50	2 24	20.22			100	1.CC VERTICAL
1	2457.51	107.15			/6.58	2.24	28.33	0.00	Average	100	166 VERTICAL
2	2457.67	118.82			88.25	2.24	28.33	0.00	Peak	100	166 ∀ERTICAL
3	2483.50	53.63	54.00	-0.37	23.00	2.26	28.37	0.00	Average	100	166 VERTICAL
4	2483.50	69.54	74.00	-4.46	38.91	2.26	28.37	0.00	Peak	100	166 VERTICAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

For Emission not in Restricted Band

Plot on Configuration IEEE 802.11n MCS0 20MHz / Reference Level

Date: 17.MAY.2013 14:42:29

Plot on Configuration IEEE 802.11n MCS0 20MHz / CH 1 / 30MHz~2400MHz (down 30dBc)

Date: 17.MAY.2013 14:43:10

 Report Format Version: 01
 Page No.
 : 72 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Plot on Configuration IEEE 802.11n MCS0 20MHz / CH 1 / 2500MHz~26500MHz (down 30dBc)

Date: 17.MAY.2013 14:43:34

Plot on Configuration IEEE 802.11n MCS0 20MHz / CH 11 / 30MHz~2400MHz (down 30dBc)

Date: 17.MAY.2013 14:44:32

 Report Format Version: 01
 Page No.
 : 73 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Plot on Configuration IEEE 802.11n MCS0 20MHz / CH 11 / 2500MHz~26500MHz (down 30dBc)

Date: 17.MAY.2013 14:44:09

Plot on Configuration IEEE 802.11n MCS0 40MHz / Reference Level

Date: 17.MAY.2013 14:47:35

 Report Format Version: 01
 Page No.
 : 74 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Plot on Configuration IEEE 802.11n MCS0 40MHz / CH 3 / 30MHz~2400MHz (down 30dBc)

Date: 17.MAY.2013 14:48:15

Plot on Configuration IEEE 802.11n MCS0 40MHz / CH 3 / 2500MHz~26500MHz (down 30dBc)

Date: 17.MAY.2013 14:48:51

 Report Format Version: 01
 Page No.
 : 75 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Plot on Configuration IEEE 802.11n MCS0 40MHz / CH 9 / 30MHz~2400MHz (down 30dBc)

Date: 17.MAY.2013 14:49:53

Plot on Configuration IEEE 802.11n MCS0 40MHz / CH 9 / 2500MHz~26500MHz (down 30dBc)

Date: 17.MAY.2013 14:49:28

 Report Format Version: 01
 Page No.
 : 76 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Plot on Configuration IEEE 802.11n MCS0 20MHz / Reference Level

Date: 17.MAY.2013 15:01:11

Plot on Configuration IEEE 802.11n MCS0 20MHz / CH 149 / 30MHz~5725MHz (down 30dBc)

Date: 17.MAY.2013 15:01:37

 Report Format Version: 01
 Page No.
 : 77 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Plot on Configuration IEEE 802.11n MCS0 20MHz / CH 149 / 5850MHz~40000MHz (down 30dBc)

Date: 17.MAY.2013 15:02:13

Plot on Configuration IEEE 802.11n MCS0 20MHz / CH 165 / 30MHz~5725MHz (down 30dBc)

Date: 17.MAY.2013 15:03:07

 Report Format Version: 01
 Page No.
 : 78 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Plot on Configuration IEEE 802.11n MCS0 20MHz / CH 165 / 5850MHz~40000MHz (down 30dBc)

Date: 17.MAY.2013 15:02:46

Plot on Configuration IEEE 802.11n MCS0 40MHz / Reference Level

Date: 17.MAY.2013 15:04:45

 Report Format Version: 01
 Page No.
 : 79 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Plot on Configuration IEEE 802.11n MCS0 40MHz / CH 151 / 30MHz~5725MHz (down 30dBc)

Date: 17.MAY.2013 15:05:22

Plot on Configuration IEEE 802.11n MCS0 40MHz / CH 151 / 5850MHz~40000MHz (down 30dBc)

Date: 17.MAY.2013 15:05:47

 Report Format Version: 01
 Page No.
 : 80 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Plot on Configuration IEEE 802.11n MCS0 40MHz / CH 159 / 30MHz~5725MHz (down 30dBc)

Date: 17.MAY.2013 15:06:50

Plot on Configuration IEEE 802.11n MCS0 40MHz / CH 159 / 5850MHz~40000MHz (down 30dBc)

Date: 17.MAY.2013 15:06:17

 Report Format Version: 01
 Page No.
 : 81 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Plot on Configuration IEEE 802.11b / Reference Level

Date: 17.MAY.2013 14:31:56

Plot on Configuration IEEE 802.11b / CH 1 / 30MHz~2400MHz (down 30dBc)

Date: 17.MAY.2013 14:32:48

 Report Format Version: 01
 Page No. : 82 of 93

 FCC ID: VZ9130001
 Issued Date : Jun. 19, 2013

Plot on Configuration IEEE 802.11b / CH 1 / 2500MHz~26500MHz (down 30dBc)

Date: 17.MAY.2013 14:33:28

Plot on Configuration IEEE 802.11b / CH 11 / 30MHz~2400MHz (down 30dBc)

Date: 17.MAY.2013 14:34:35

 Report Format Version: 01
 Page No.
 : 83 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Plot on Configuration IEEE 802.11b / CH 11 / 2500MHz~26500MHz (down 30dBc)

Date: 17.MAY.2013 14:34:09

Plot on Configuration IEEE 802.11g / Reference Level

Date: 17.MAY.2013 14:47:35

 Report Format Version: 01
 Page No.
 : 84 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Plot on Configuration IEEE 802.11g / CH 1 / 30MHz~2400MHz (down 30dBc)

Date: 17.MAY.2013 14:37:54

Plot on Configuration IEEE 802.11g / CH 1 / 2500MHz~26500MHz (down 30dBc)

Date: 17.MAY.2013 14:38:19

 Report Format Version: 01
 Page No.
 : 85 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Plot on Configuration IEEE 802.11g / CH 11 / 30MHz~2400MHz (down 30dBc)

Date: 17.MAY.2013 14:39:27

Plot on Configuration IEEE 802.11g / CH 11 / 2500MHz~26500MHz (down 30dBc)

Date: 17.MAY.2013 14:39:00

 Report Format Version: 01
 Page No. : 86 of 93

 FCC ID: VZ9130001
 Issued Date : Jun. 19, 2013

Plot on Configuration IEEE 802.11a / Reference Level

Date: 17.MAY.2013 14:55:12

Plot on Configuration IEEE 802.11a / CH 149 / 30MHz~5725MHz (down 30dBc)

Date: 17.MAY.2013 14:55:54

 Report Format Version: 01
 Page No.
 : 87 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Plot on Configuration IEEE 802.11a / CH 149 / 5850MHz~40000MHz (down 30dBc)

Date: 17.MAY.2013 14:56:48

Plot on Configuration IEEE 802.11a / CH 165 / 30MHz~5725MHz (down 30dBc)

Date: 17.MAY.2013 14:57:50

 Report Format Version: 01
 Page No.
 : 88 of 93

 FCC ID: VZ9130001
 Issued Date
 : Jun. 19, 2013

Plot on Configuration IEEE 802.11a / CH 165 / $5850 MHz \sim 40000 MHz$ (down 30dBc)

Date: 17.MAY.2013 14:57:29

4.7. Antenna Requirements

4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an Chain with extension cable. An intentional radiator shall be designed to ensure that no Chain other than that furnished by the responsible party shall be used with the device. The use of a permanently attached Chain or of an Chain that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken Chain, but the use of a standard Chain jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.7.2. Chain Connector Construction

Please refer to section 3.3 in this test report; Chain connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100377	9kHz ~ 2.75GHz	Oct. 23, 2012	Conduction
					,	(CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	$150 \text{kHz} \sim 100 \text{MHz}$	Nov. 26, 2012	Conduction (CO01-CB)
						Conduction
V- LISN	Schwarzbeck	NSLK 8127	8127-478	9kHz ∼ 30MHz	Jun. 22, 2012	(CO01-CB)
Impulsbegrenzer	Rohde&Schwarz	ESH3-Z2	100430	9kHz~30MHz	Feb. 21, 2013	Conduction
Pulse Limiter	Kondedochwaiz	20110-22	100400	7KHZ GOWINZ	165. 21, 2010	(CO01-CB)
COND Cable	Woken	Cable	01	0.15MHz~30MHz	Dec. 04, 2012	Conduction
						(CO01-CB) Conduction
Software	Audix	E3	5.410e	-	-	(CO01-CB)
DII OO Aasta aa aa	Cala setta a s	ON (110D	00001	001411- 0011-	A 1 (0010	Radiation
BILOG Antenna	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Apr. 16, 2013	(03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation
200p / tillotilla	10004	115(0120	24100	7 KHZ 00 WHZ	1101. 00, 2012	(03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 27, 2012	Radiation
					,	(03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	$15\text{GHz} \sim 40\text{GHz}$	Nov. 23, 2012	Radiation (03CH01-CB)
						Radiation
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 27, 2012	(03CH01-CB)
Pro Amplifior	Agilopt	8449B	3008A02310	1GHz ~ 26.5GHz	Nov. 23, 2012	Radiation
Pre-Amplifier	Agilent	0449B	3000A02310	1GHZ ~ 20.5GHZ	NOV. 23, 2012	(03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26.5GHz ~ 40GHz	Jul. 31, 2012	Radiation
						(03CH01-CB) Radiation
Spectrum analyzer	R&S	FSP40	100056	9KHz~40GHz	Nov. 16, 2012	(03CH01-CB)
						Radiation
EMI Test Receiver	R&S	ESCS 30	100355	9KHz ∼ 2.75GHz	Apr. 15, 2013	(03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R	Radiation
14		00 2000	. 47.			(03CH01-CB)
Chain Mast	INN CO	CO2000	N/A	1 m - 4 m	N.C.R	Radiation (03CH01-CB)
						Radiation
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 18, 2012	(03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz – 26.5 GHz	Nov. 18, 2012	Radiation
Ki Cable-High	WOREIT	Tilgit Cable-1	IN/A	1 9112 - 20.5 9112	1404. 10, 2012	(03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 18, 2012	Radiation
						(03CH01-CB) Radiation
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 18, 2012	(03CH01-CB)
DE Cadala biata	\\/_\	Illiada Cadada 4	N/A	1.01- 40.01-	Nov. 10, 0010	Radiation
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 18, 2012	(03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9KHz~40GHz	Oct. 08, 2012	Conducted
					.,	(TH01-CB)
RF Power Divider	Woken	2 Way	0120A02056002D	$2\text{GHz} \sim 18\text{GHz}$	Nov. 18, 2012	Conducted (TH01-CB)
						Conducted
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 19, 2012	(THO1-CB)
RF Cable-high	Woken	High Cable-8		1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted
Ki Cable-High	WOKEII	riigii Cable-0	_	1 G112 - 20.3 GHZ	140v. 17, 2012	(TH01-CB)

Page No.

: 91 of 93

Issued Date : Jun. 19, 2013

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Cable-high	Woken	High Cable-9		1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted
RF Cable-nigh	Woken	nigii Cable-9	-	1 GHZ - 20.5 GHZ	NOV. 19, 2012	(TH01-CB)
DE Calala hiala	Makes	High Calala 10		1 CU- 04 5 CU-	Nov. 10, 0010	Conducted
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 19, 2012	(TH01-CB)
DE Carle la latata	VM = 1	History Control 11		1.01- 0/ 5.01-	Nov. 10, 0010	Conducted
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 19, 2012	(TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Nov. 08, 0010	Conducted
rower sensor	Ariilisu	IVIAZ411D	0917223	300IVIH2~40GH2	Nov. 28, 2012	(TH01-CB)
Power Meter	A mrita	ML2495A	1035008	300MHz~40GHz	N 07 0010	Conducted
rower Meter	Anritsu	IVILZ495A	1033006	SUUIVINZ~4UGHZ	Nov. 27, 2012	(TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

[&]quot;*" Calibration Interval of instruments listed above is two years.

6. TEST LOCATION

SHIJR	ADD	•	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
or note		•	
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085