Øvingsoppgaver TEK5020/9020 – Mønstergjenkjenning Del 2 – Parametriske metoder

Høsten 2023

Oppgave 1

La egenskapen x være eksponentialfordelt slik at

$$p(x|\theta) = \begin{cases} \theta e^{-\theta x} & x \ge 0\\ 0 & \text{ellers.} \end{cases}$$

- a) Skisser $p(x|\theta)$ som funksjon av x for en fast verdi av parameteren θ , der $\theta > 0$.
- b) Skisser $p(x|\theta)$ som funksjon av θ for en fast verdi av egenskapen x.
- c) Vis at maksimum likelihood estimatet for θ er gitt ved

$$\hat{\theta} = \frac{1}{\frac{1}{n} \sum_{k=1}^{n} x_k},$$

der x_1, x_2, \dots, x_n er innbyrdes uavhengige sampler trukket fra fordelingen $p(x|\theta)$.

Oppgave 2

La \boldsymbol{x} være en binær (0,1) egenskapsvektor med en multivariat Bernoullifordeling gitt ved

$$P(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{d} \theta_i^{x_i} (1 - \theta_i)^{1 - x_i},$$

der $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d)^t$ er en parametervektor der θ_i er sannsynligheten for at $x_i = 1$. Vis at maksimum likelihood estimatet for $\boldsymbol{\theta}$ er

$$\hat{\boldsymbol{\theta}} = \frac{1}{n} \sum_{k=1}^{n} \boldsymbol{x}_k,$$

der x_1, x_2, \dots, x_n er treningssamplene.

Oppgave 3

La $p(\mathbf{x}|\Sigma) \sim N(\boldsymbol{\mu}, \Sigma)$ der $\boldsymbol{\mu}$ er kjent og Σ er ukjent. Vist at maksimum likelihood estimatet for Σ er gitt ved

$$\hat{\Sigma} = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_k - \boldsymbol{\mu}) (\mathbf{x}_k - \boldsymbol{\mu})^t,$$

ved å gjennomføre følgende trinn:

- a) Vis at $\mathbf{a}^t A \mathbf{a} = \text{Tr}\{A \mathbf{a} \mathbf{a}^t\}$, der tracen Tr til en matrise er summen av diagonalelementene.
- b) Vis at likelihoodfunksjonen kan skrives på formen

$$p(\mathbf{x}_1, \dots, \mathbf{x}_n | \Sigma) = \frac{1}{(2\pi)^{nd/2}} |\Sigma^{-1}|^{n/2} \exp \left[-\frac{1}{2} \operatorname{Tr} \{ \Sigma^{-1} \sum_{k=1}^n (\mathbf{x}_k - \boldsymbol{\mu}) (\mathbf{x}_k - \boldsymbol{\mu})^t \} \right].$$

c) La $A = \Sigma^{-1} \hat{\Sigma}$ og $\lambda_1, \dots, \lambda_d$ være egenverdiene til A, og vis at dette leder til

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_d|\Sigma) = \frac{1}{(2\pi)^{nd/2}|\hat{\Sigma}|^{n/2}}(\lambda_1\ldots\lambda_d)^{n/2}\exp\left[-\frac{n}{2}(\lambda_1+\cdots+\lambda_d)\right].$$

d) Gjennomfør beviset ved å vise at maksimum likelihood oppnås ved å velge $\lambda_1 = \lambda_2 = \cdots = \lambda_d = 1$.

Oppgave 4

Maksimum-likelihood (ML) estimatet av parametervektoren $\boldsymbol{\theta}$ i en gitt tetthetsfunksjon $p(\boldsymbol{x}|\boldsymbol{\theta})$ kan finnes ved å løse likningssystemet

$$\sum_{k=1}^{n} \nabla_{\boldsymbol{\theta}} \ln p(\boldsymbol{x}_{k} \mid \boldsymbol{\theta}) = \mathbf{0}$$

med hensyn på $\boldsymbol{\theta}$, der \boldsymbol{x}_k , $k=1,\ldots,n$ er et sett av treningssampler.

Bruk likningssystemet til å vise at ML-estimatet av parameteren μ i log-normalfordelingen

$$p(x|\mu) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}, \quad x > 0,$$

der parameteren σ er kjent, er gitt ved

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} \ln x_k,$$

 $der x_1, \dots, x_n$ er et sett av univariate (endimensjonale) treningssampler.