3

4

5

6

7

8

9

10

11

12

1

2

3

CLAIMS

What is claimed is:

- A method for a computer-assisted prediction of near-term development of convective
 meteorological events comprising the steps:
 - (a) determining a difference image by advecting a first meteorological image and combining the advected first meteorological image and a second meteorological image, the first and second meteorological images each comprising data indicative of a first forecast parameter at a first time and a second time, respectively;
 - (b) generating an interest image comprising a region of interest by filtering a third meteorological image; and
 - (c) generating a growth image indicative of the occurrence of a convective meteorological event by combining the difference image and the interest image.
 - 2. The method of claim 1 wherein the data of the first meteorological image comprise a two-dimensional array of pixels, each of the of pixels having a value quantifying the first forecast parameter for a predetermined geographical area.
- The method of claim 1 wherein the first forecast parameter comprises at least one of
 precipitation, infrared temperature, radar reflectivity, vertically-integrated liquid
 (VIL), temperature stability, and albedo.
- The method of claim 1 wherein the step of determining the difference image
 comprises subtracting the advected first meteorological image from the second
 meteorological image.
- 5. The method of claim 4 wherein the step of determining a difference image comprises
 the steps of:

3

indicative of convective weather.

3	
4	determining a plurality of preliminary difference images; and
5 6	averaging the plurality of preliminary difference images to generate the difference image.
1 2	6. The method of claim 1 wherein the third meteorological image is the first meteorological image.
1 2	7. The method of claim 1 wherein the third meteorological image is indicative of a second forecast parameter.
1	8. The method of claim 1 wherein the step of generating the interest image comprises:
2	(a) filtering the third meteorological image to generate a large-scale-feature image; and
4 5	(b) filtering the third meteorological image to generate a small-scale-feature image.
1 2	9. The method of claim 7 wherein the step of filtering the large-scale-feature image comprises low-pass filtering the third meteorological image.
1 2	10. The method of claim 8 wherein the step of low-pass filtering comprises neighborhood-average filtering.
1 2	11. The method of claim 7 wherein the step of filtering the small-scale-feature image comprises high-pass filtering the third meteorological image.
1 2	12. The method of claim 10 wherein the step of high-pass filtering comprises neighborhood-standard-deviation filtering.
1 2	13. The method of claim 1 wherein the step of generating the interest image further comprises filtering the third meteorological image to generate a peakiness image

1	14. The method of claim 12 wherein the step of generating the peakiness image
2	comprises the steps:
3	(a) averaging the third meteorological image to generate an average meteorological image; and
5 6	(b) subtracting the average meteorological image from the third meteorological image.
1	15. The method of claim 1 further comprising the steps of:
2 3 4	(a) combining the growth image and the first meteorological image to generate a forecast image identifying the likelihood of convective meteorological events at a third time; and
5	(b) advecting the combined image to the third time.
1 2	16. The method of claim 1 further comprising the step of advecting the growth image with respect to time.
1	17. The method of claim 1 wherein the growth image comprises a decay image.
1 2	18. The method of claim 1 further comprising the step of classifying weather elements of the first meteorological image.
1 2 3	19. The method of claim 18 wherein the step of classifying weather elements comprises selecting weather classifications from at least one of line storm, stratiform, large cell and small cell.
1 2	20. A method for a computer-assisted prediction of near-term development of convective meteorological events comprising the steps:
3	(a) determining a difference image by advecting a first precipitation image, and combining the advected first precipitation image and a second precipitation

5 6		first time and a second time, respectively;
7 8	() 0	enerating an interest image comprising a region of interest by filtering the econd precipitation image; and
9 10 11	m	enerating a growth image indicative of the occurrence of a convective neteorological event by combining the difference image with the interest mage.
1	21. The method	d of claim 20 wherein step (a) comprises the steps of:
2	determi	ining a plurality of preliminary difference images; and
3	averagi image.	ng the plurality of preliminary difference images to generate the difference
1 2 3	image and	d of claim 20 wherein the step of combining the advected first precipitation the second precipitation image comprises subtracting the manipulated first on image from the second precipitation image.
1 2		d of claim 20 wherein the precipitation image comprises data ive of vertically integrated liquid water content.
1	24. The method	d of claim 20 wherein the step of generating the interest image comprises:
2	` ,	ltering the first precipitation image to generate a large-scale-feature image;
4	(b) fi	ltering the first precipitation image to generate a small-scale-feature image.
1 2		d of claim 24 wherein the step of filtering the large-scale-feature image low-pass filtering the first precipitation image.
1		d of claim 24 wherein the step of filtering the small-scale-feature image
2	comprises	high-pass filtering the first precipitation image.

1	27. The me	thod of claim 20 further comprising the steps of:
2	(a)	generating a forecast image identifying the likelihood of convective
3		meteorological events at a third time by combining the growth image and a
4		current precipitation image; and
5	(b)	advecting the combined image to the third time.
1	28. The me	thod of claim 20 further comprising the steps:
2	(a)	advecting a growth image according to a first advection field;
3	(b)	advecting a current precipitation image according to a second advection
4		field; and
5	(c)	combining the advected growth image and advected current precipitation
6		image to generate a forecast image.
1	29. The met	thod of claim 20 wherein the growth image comprises a decay image.
1	30. The met	thod of claim 20 further comprising the step of classifying weather elements
2	of the fi	rst meteorological image.
1	31. A metho	od for a computer assisted prediction of near-term development of convective
2		logical events comprising the steps:
3	(a)	determining a difference image by advecting a first infrared meteorological
4		image and combining the advected first infrared image and a second infrared
5		meteorological image, wherein the first and second infrared meteorological
6		images are indicative of cloud temperature at a first time and a second time,
7		respectively;
8	(b)	generating an interest image comprising a region of interest by filtering a
9		satellite visible meteorological image; and

10	(c) generating a growth image indicative of the occurrence of a convective
11	meteorological event by combining the difference image and the interest
12	image.
1	32. The method of claim 31 wherein step (a) further comprises the step of:
2	determining a plurality of preliminary difference images; and
3	averaging the plurality of preliminary difference images to generate the difference
4	image.
1	33. The method of claim 31 wherein the step of combining the advected first infrared
2	meteorological image and the second infrared meteorological image comprises
3	subtracting the manipulated first infrared meteorological image from the second
4	infrared meteorological image.
1	34. The method of claim 31 wherein the step of generating the interest image comprises:
2	(a) filtering the satellite visible meteorological image to generate a large-scale-
3	feature image; and
4	(b) filtering the satellite visible meteorological image to generate a small-scale-
5	feature image.
1	35. The method of claim 34 wherein the step of filtering the large-scale-feature image
2	comprises low-pass filtering the satellite visible meteorological image.
1	36. The method of claim 34 wherein the step of filtering the small-scale-feature image
2	comprises high-pass filtering the satellite visible meteorological image.
1	37. The method of claim 34 further comprising the step of filtering the satellite visible
2	meteorological image to generate a peakiness image indicative of cumulus clouds.
1	38. The method of claim 37 wherein the step of filtering the satellite visible
2	meteorological image comprises:

1

3	(a)	averaging the visible satellite image to generate an average visible satellite meteorological image; and
7		meteorological image, and
5	(b)	subtracting the average visible satellite image from the visible satellite
6		meteorological image.
1	39. The me	thod of claim 31 further comprising the steps of:
2	(a)	generating a forecast image identifying the likelihood of convective
3		meteorological events at a third time by combining the growth image and a
4		current precipitation image; and
5	(b)	advecting the combined image to the third time.
1	40. The me	thod of claim 31 wherein the growth image comprises a decay image.
1	41. The me	thod of claim 31 further comprising the step of classifying weather elements
2		rst meteorological image.
1	42. An appa	aratus for predicting near-term development of convective meteorological
2	events c	comprising:
3	(a)	means for advecting a first meteorological image and combining the
4		advected first meteorological image and a second meteorological image to
5		generate a difference image, the first and second meteorological images
6		indicative of a first forecast parameter at a first time and a second time,
7		respectively;
8	(b)	filter means for generating an interest image comprising a region of interest
9		by filtering a third meteorological image; and
10	(c)	means for combining the difference image and the interest image to generate
1		a growth image indicative of the occurrence of a convective meteorological
12		event.

2	(a) a large-scale feature detector means for filtering the third meteorological
3	image to generate a large-scale-feature image; and
4	(b) a small-scale feature detector means for filtering the third meteorological
5	image to generate a small-scale-feature image.
1	44. The apparatus of claim 43 wherein the large-scale feature detector comprises low-
2	pass filter means for generating a low-pass filtered rendition of the third
3	meteorological image.
1	45. The apparatus of claim 43 wherein the small-scale feature detector comprises high-
2	pass filter means for generating a high-pass filtered rendition of the third
3	meteorological image.
1	46. The apparatus of claim 42 wherein the filter means further comprises a peakiness
2	feature-detector means for generating a peakiness image indicative of cumuliform
3	features.
1	47. The apparatus of claim 42 wherein the growth image comprises a decay image.
1	48. The apparatus of claim 43 further comprising a means for classifying weather
2	elements of the first meteorological image.
1	49. An apparatus for predicting the near-term development of convective meteorological
2	events comprising:
3	an image receiver processor configured to receive a first and a second
4	meteorological image;
5	a difference processor in communication with the image receiver processor, the
6	difference processor determining a difference image in response to the first
7	and second meteorological images;

0	an interest image processor in communication with the image receiver processor,
9	the interest image processor determining an interest image in response to the
10	first meteorological image;
11	a growth image processor in communication with the difference processor and the
12	interest image processor, the growth image processor generating a growth
13	image in response to the difference image and the interest image; and
14	a forecast processor in communication with the growth image processor and the
15	image receiver processor, the forecast processor determining a short-term
16	forecast in response to the first meteorological image and the growth image.
1	50. The apparatus of claim 49 wherein the interest image processor comprises:
2	a large-scale spatial filter; and
3	a small-scale spatial filter.
1	51. The apparatus of claim 49 wherein the forecast processor receives weather-
2	classification information from the interest image processor and determines a short-
3	term forecast in response to the first meteorological image, the growth image, and the
4	weather-classification information.