MINISTERUL EDUCAȚIEI ȘI CERCETĂRII AL REPUBLICII MOLDOVA

AGENŢIA NAŢIONALĂ PENTRU CURRICULUM ŞI EVALUARE

Raionul
Localitatea
Instituția de învățământ
Numele, prenumele elevului

MATEMATICA

SESIUNEA SUPLIMENTARĂ CICLUL LICEAL

Profil real
20 iulie 2023
Timp alocat: 180 de minute

Rechizite și materiale permise: pix cu cerneală albastră, creion, riglă, radieră.

Instrucțiuni pentru candidat:

- Citește cu atenție fiecare item și efectuează operațiile solicitate.
- Lucrează independent.

Îţi dorim mult succes!

Punctaj acumulat

Nr.	Item		nctaj
	ALGEBRĂ		
1.	Calculați suma numerelor: $\log_5 50$ și $\log_{\frac{1}{5}} 2$. Rezolvare: Răspuns:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
2.	Fie polinomul $P(X) = X^3 - 4X^2 - aX - 4$. Determinați valorile reale ale lui a , pentru care polinomul $P(X)$ este divizibil prin $Q(X) = X - 2$. <i>Rezolvare:</i>	L 0 1 2 3 4 5	L 0 1 2 3 4 5
3.	Rěspuns: Rezolvați în $\mathbb C$ ecuația $z^2-(2-i)z+3-i=0$, unde $i^2=-1$. Rezolvare: Răspuns:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
4.	Determinați valorile lui $\beta \in \left(\frac{\pi}{2}; \pi\right)$, pentru care $\operatorname{tg}(\alpha + \beta) = 2$ și $\operatorname{tg} \alpha = -3$. Rezolvare:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8

5.	Rezolvați în \mathbb{R} inecuația $\frac{ 4-x^2 }{4^{x}-2^{x+1}-8}\geq 0$. Rezolvare:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Răspuns:		
	GEOMETRIE		
6.	Aria bazei unui cilindru circular drept este egală cu aria laterală și este egală cu 16π cm². Determinați volumul cilindrului. **Rezolvare:** **Răspuns:*	L 0 1 2 3 4 5	L 0 1 2 3 4 5
	Răspuns:		

7.	În desenul alăturat, secanta AC este perpendiculară dreptelor paralele AB și DC și intersectează secanta BD în punctul O , astfel încât $DO = 3 \cdot OB$. Determinați aria triunghiului DCO , dacă $BD = 20$ cm și $AB = 4$ cm. $Rezolvare$:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
8.	Într-un trunchi de piramidă triunghiulară regulată, laturile bazelor sunt de 6 cm și 3 cm, iar înălțimea este de 1 cm. Determinați măsura în grade a unghiului, format de muchia laterală cu planul bazei mari. Rezolvare:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8

ANALIZĂ MATEMATICĂ		
Determinați rația progresiei aritmetice $(a_n)_{n\geq 1}$, dacă $a_2=2$ și $a_5=17$. Rezolvare:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
Fie funcția $f: \left[-\frac{1}{2}; 12 \right] \to \mathbb{R}, f(x) = \sqrt{2x+1}.$		
a) Scrieți ecuația tangentei la graficul funcției f în punctul de intersecție a graficului funcției f cu axa 0y. Rezolvare:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
Răspuns:		
b) Determinați valoarea numerică a ariei subgraficului funcției f . Rezolvare:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
Răspuns:		

	c) Calculați: $\lim_{x\to 4} \frac{f(x)-3}{x-4}$. Rezolvare:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Răspuns:		
	ELEMENTE DE COMBINATORICĂ. BINOMUL LUI NEWTON. ELEMENTE DE TEORIA PROBABILITĂȚILOR ȘI STATISTICĂ MATEMATI	CĂ	
11.	Într-o clasă cu 22 de elevi sunt două fete gemene. Clasa se împarte în mod aleator în două subgrupuri cu același număr de elevi. Determinați probabilitatea că gemenele vor nimeri în aceeași subgrupă. **Rezolvare:** **Răspuns:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8

12.	În dezvoltarea la putere a binomului $\left(\sqrt{x} - \frac{1}{x^2}\right)^n$ suma coeficienților binomiali de	L 0	L 0
	rang impar este egală cu 512. Determinați termenul care nu-l conține pe x .	1 2	1 2
	Rezolvare:	2 3 4 5 6 7 8	2 3 4 5 6 7 8
	Răspuns:		

Anexă

$$\begin{split} \log_{a}b + \log_{a}c &= \log_{a}(b \cdot c), \ a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \ b, c \in \mathbb{R}^{*}_{+} \\ \log_{a}b - \log_{a}c &= \log_{a}\frac{b}{c}, \ a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \ b, c \in \mathbb{R}^{*}_{+} \\ \log_{a}b^{c} &= c\log_{a}b, \ a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \ b \in \mathbb{R}^{*}_{+}, c \in \mathbb{R} \\ \log_{a^{c}}b &= \frac{1}{c}\log_{a}b, \ a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \ b \in \mathbb{R}^{*}_{+}, c \neq 0 \\ (x^{\alpha})' &= \alpha x^{\alpha-1}, \quad \alpha \in \mathbb{R} \\ y &= f(x_{0}) + f'(x_{0})(x - x_{0}) \\ \int x^{\alpha} dx &= \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \in \mathbb{R} \setminus \{1\} \\ tg(\alpha + \beta) &= \frac{tg\alpha + tg\beta}{1 - tg\alpha \cdot tg\beta} \\ \mathcal{A}_{\Delta} &= \frac{1}{2}a \cdot h_{a} \\ \mathcal{A}_{disc} &= \pi R^{2} \\ \mathcal{A}_{lat.cil.} &= 2\pi R H \\ \mathcal{V}_{cil.} &= \pi R^{2} H \\ (a + b)^{n} &= C_{n}^{0}a^{n} + C_{n}^{1}a^{n-1}b + C_{n}^{2}a^{n-2}b^{2} + \dots + C_{n}^{k}a^{n-k}b^{k} + \dots + C_{n}^{n}b^{n} \\ T_{k+1} &= C_{n}^{k}a^{n-k}b^{k}, k \in \{0,1,2,\dots,n\} \\ C_{n}^{k} &= \frac{n!}{k! (n-k)!}, \qquad 0 \leq k \leq n \end{split}$$