

Affiliated to ANNA UNIVERSITY, Chennai REC-OCATS-1

CS23336-Introduction to Python Programming

Started on Monday, 21 October 2024, 7:44 PM

An AUTONOMOUS Institution

State Finished

Completed on Monday, 21 October 2024, 9:10 PM

Time taken 1 hour 26 mins 10.00/10.00 **Marks**

100.00 out of 100.00 **Grade**

Question 1

Correct Mark 1.00 out of 1.00 \square Flag question

Question text

Given two arrays of positive integers, for each element in the second array, find the total number of elements in the first array which are *less than or equal to* that element. Store the values determined in an array.

For example, if the first array is [1, 2, 3] and the second array is [2, 4], then there are 2 elements in the first array less than or equal to 2. There are 3 elements in the first array which are less than or equal to 4. We can store these answers in an array, answer = [2, 3].

Program Description

The program must return an array of m positive integers, one for each maxes[i] representing the total number of elements nums[i] satisfying $nums[i] \le maxes[i]$ where $0 \le i < n$ and $0 \le i < m$, in the given order.

The program has the following:

nums[nums[0],...nums[n-1]]: first array of positive integers maxes[maxes[0],...maxes[n-1]]: second array of positive integers

Constraints

- · $2 \le n, m \le 10^5$
- $1 \le nums[j] \le 10^9$, where $0 \le j < n$.
- $1 \le maxes[i] \le 10^9$, where $0 \le i < m$.

Input Format For Custom Testing

Input from stdin will be processed as follows and passed to the program.

The first line contains an integer *n*, the number of elements in *nums*. The next n lines each contain an integer describing nums[j] where $0 \le j < n$. The next line contains an integer *m*, the number of elements in *maxes*.

The next m lines each contain an integer describing maxes[i] where $0 \le i < m$.

Sample Case 0

Sample Input 0

Sample Output 0

2

Explanation 0

We are given n = 4, nums = [1, 4, 2, 4], m = 2, and maxes = [3, 5].

- 1. For maxes[0] = 3, we have 2 elements in nums(nums[0] = 1 and nums[2] = 2) that are $\leq maxes[0]$.
- 2. For maxes[1] = 5, we have 4 elements in nums(nums[0] = 1, nums[1] = 4, nums[2] = 2, and <math>nums[3] = 4) that are $\leq maxes[1]$.

Thus, the program returns the array [2, 4] as the answer.

Sample Case 1

Sample Input 1

7 8

Sample Output 1

0

Explanation 1

We are given, n = 5, nums = [2, 10, 5, 4, 8], m = 4, and maxes = [3, 1, 7, 8].

- 1. For maxes[0] = 3, we have 1 element in nums(nums[0] = 2) that is $\leq maxes[0]$.
- 2. For maxes[1] = 1, there are 0 elements in nums that are $\leq maxes[1]$.
- 3. For maxes[2] = 7, we have 3 elements in nums(nums[0] = 2, nums[2] = 5, and <math>nums[3] = 4) that are $\leq maxes[2]$.
- 4. For maxes[3] = 8, we have 4 elements in nums(nums[0] = 2, nums[2] = 5, nums[3] = 4, and nums[4] = 8) that are $\leq maxes[3]$.

Thus, the program returns the array [1, 0, 3, 4] as the answer.

```
num=[]
maxe=[]
res=[]
a=int(input())
for i in range(a):
  x=int(input())
  num.append(x)
b=int(input())
for i in range(b):
  x=int(input())
  maxe.append(x)
for i in maxe:
  s=0
  for j in num:
     if i > = j:
       s+=1
  res.append(s)
print(*res,sep="\n")
```

Input Expected Got

```
4
1
4
2
2
2
4
4
2
3
5
5
5
5
5
2
10
5
4
4
0
8
3
4
4
1
7
8
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 2

Correct
Mark 1.00 out of 1.00

□ Flag question

Question text

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number) and then return the p^{th} element of the list, sorted ascending. If there is no p^{th} element, return 0.

Example

```
n = 20p = 3
```

The factors of 20 in ascending order are $\{1, 2, 4, 5, 10, 20\}$. Using 1-based indexing, if p = 3, then 4 is returned. If p > 6, 0 would be returned.

Constraints

```
1 \le n \le 10^{15}
```

```
1 \le p \le 10^9
The first line contains an integer n, the number to factor.
The second line contains an integer p, the 1-based index of the factor to return.
Sample Case 0
Sample Input 0
10
3
Sample Output 0
Explanation 0
Factoring n = 10 results in \{1, 2, 5, 10\}. Return the p = 3^{rd} factor, 5, as the answer.
Sample Case 1
Sample Input 1
10
5
Sample Output 1
Explanation 1
Factoring n = 10 results in \{1, 2, 5, 10\}. There are only 4 factors and p = 5, therefore 0 is returned as the answer.
Sample Case 2
Sample Input 2
Sample Output 2
Explanation 2
Factoring n = 1 results in \{1\}. The p = 1st factor of 1 is returned as the answer.
For example:
Input Result
10
3
       5
10
```

```
n=int(input())
p=int(input())
lis=[]
for i in range(1,n+1):
    if(n%i==0):
        lis.append(i)
if p<=len(lis):
    print(lis[p-1])
else:
    print(0)</pre>
```

Input Expected Got

10 3	5	5
10 5	Θ	Θ
1 1	1	1

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 3

Correct Mark 1.00 out of 1.00 $\square^{\mathbb{F}}$ Flag question

Question text

Given a matrix mat where every row is sorted in **strictly increasing** order, return the **smallest common element** in all rows.

If there is no common element, return -1.

Example 1:

Input:

357911

1 3 5 7 9

Output:

5

Constraints:

- 1 <= mat.length, mat[i].length <= 500
- $1 \le mat[i][j] \le 10^4$
- mat[i] is sorted in strictly increasing order.

Answer:(penalty regime: 0 %)

```
rows,col=map(int,in
put().split())
matrix=
[list(map(int,input().
split())) for _ in
range(rows)]
count={}
for elem in
matrix[0]:
  count[elem]=1
for i in
range(1,rows):
  for elem in
matrix[i]:
     if elem in count
and count[elem]==i
+ 1 - 1:
```

Feedback

Input Expected Got

```
4 5
1 2 3 4 5
2 4 5 8 10 5 5
3 5 7 9 11
1 3 5 7 9
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 4

```
Correct Mark 1.00 out of 1.00 \square Flag question
```

Question text

Given an integer n, return an list of length n + 1 such that for each i (0 <= i <= n), ans[i] is the number of 1's in the binary representation of i.

Example:

```
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10
```

```
Example2:
```

```
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
```

Test

Note: Complete the given function alone

For example:

```
print(CountingBits(5)) [0, 1, 1, 2, 1, 2]
```

Answer:(penalty regime: 0 %)

```
def CountingBits(n):
lis=[]
for i in range(n+1):
    s=0
    while(i>0):
    x=i%2
    s+=x
    i//=2
    lis.append(s)
    return lis
```

Result

Reset answer

Feedback

```
Test Expected Got

print(CountingBits(2)) [0, 1, 1] [0, 1, 1]

print(CountingBits(5)) [0, 1, 1, 2, 1, 2] [0, 1, 1, 2, 1, 2]
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 5

```
Correct Mark 1.00 out of 1.00 \square^{\nabla} Flag question
```

Question text

An array is monotonic if it is either monotone increasing or monotone decreasing.

An array A is monotone increasing if for all $i \le j$, $A[i] \le A[j]$. An array A is monotone decreasing if for all $i \le j$, $A[i] \ge A[j]$.

Write a program if n array is monotonic or not. Print "True" if is monotonic or "False" if it is not. Array can be monotone increasing or decreasing.

Input Format:

First line n-get number of elements

Next n Lines is the a	rray of elements
Output Format:	
True ,if array is mono	tone increasing or decreasing.
otherwise False is pri	nted
Sample Input1	
4	
5	
6	
7	
8	
Sample Output1	
True	
Sample Input2	
4	
6	
5	
4	
3	
Sample Output2	
True	
Sample Input 3	
4	
6	
7	
8	
7	
Sample Output3	
False	
For example:	
Input Result	
4 6 5 True 4 3	

```
n=int(input())
lis=[]
flag=0
for i in range(n):
  x=int(input())
  lis.append(x)
diff=(lis[0]-lis[1])
if diff<0:
  for i in range(n-1):
     if lis[i]<
lis[i+1]:
        flag+=1
elif diff>0:
  for i in range(n-1):
     if lis[i]>lis[i+1]:
        flag+=1
if flag==n-1:
  print("True")
```

Input Expected Got

5 True True 3 False False False False 2 6 True True 3 2 False False 1

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 6

Correct Mark 1.00 out of 1.00 \square Flag question

Question text

The program must accept N integers and an integer K as the input. The program must print every K integers in descending order as the output.

Note: If **N** % **K** != **0**, then sort the final N%K integers in descending order.

Boundary Condition(s):

```
1 \le N \le 10^4
-99999 \in Array Element Value \in 99999
```

Input Format:

The first line contains the values of N and K separated by a space. The second line contains N integers separated by space(s).

Output Format:

The first line contains N integers.

Example Input/Output 1:

Input:

7 3 48 541 23 68 13 41 6

Output:

541 48 23 68 41 13 6

Explanation:

The first three integers are $48\ 541\ 23$, after sorting in descending order the integers are $541\ 48\ 23$. The second three integers are $68\ 13\ 41$, after sorting in descending order the integers are $68\ 41\ 13$. The last integer is 6.

The integers are **541 48 23 68 41 13 6** Hence the output is **541 48 23 68 41 13 6**.

```
import re
res=[]
a=input()
lis=re.findall(r'[0-
9]+',a)
a=input()
integers=re.findall(r'
[0-9]+',a)
split=len(integers)//i
nt(lis[1])
x=0
for i in range(split):
temp=integers[x:x+i
nt(lis[1])]
temp.sort(reverse=T
rue)
```

Input Expected Got

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 7

Correct

Mark 1.00 out of 1.00

 \square Flag question

Question text

Program to print all the distinct elements in an array. Distinct elements are nothing but the unique (non-duplicate) elements present in the given array.

Input Format:

First line take an Integer input from stdin which is array length n.

Second line take n Integers which is inputs of array.

Output Format:

Print the Distinct Elements in Array in single line which is space Separated

Example Input:

5

1

2

2

3

-

Output:

1234

Example Input:

U

1

2

2

3

3

Output:

1 2 3

For example:

Input Result

```
2
      1 2 3 4
3
1
      1 2 3
3
Answer:(penalty regime: 0 %)
a=int(input())
p=[]
for i in range(a):
  x=int(input())
  p.append(x)
res=sorted(set(p))
print(*res)
```

Input Expected Got

```
2
     1 2 3 4 1 2 3 4
     1 2 3
             1 2 3
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 8

Correct Mark 1.00 out of 1.00 \square Flag question

Question text

Complete the program to count frequency of each element of an array. Frequency of a particular element will be printed once.

```
Test Case 1
```

```
7
23
45
```

23

56

45

23

40

Output

```
23 occurs 3 times
45 occurs 2 times
56 occurs 1 times
40 occurs 1 times
Answer:(penalty regime: 0 %)
n=int(input())
lis=[]
set1={}
for i in range(n):
   a=int(input())
   lis.append(a)
for i in lis:
   if i in set1:
     set1[i]+=1
   else:
      set1[i]=1
for i in set1:
print(i,"occurs",set1[i],
"times")
```

Feedback

input		Expected			Got		
7							
23			_			_	
45			_	times 23		_	
23			_	times 45		_	
56	56	occurs	1	times 56	occurs	1	times
45	40	occurs	1	times 40	occurs	1	times
23							
40							

Passed all tests!

Correct

Question 9
Correct Mark 1.00 out of 1.00 $\square^{\mathbb{V}}$ Flag question
Question text
Assume you have an array of length $m{n}$ initialized with all $m{0}$'s and are given $m{k}$ update operations.
Each operation is represented as a triplet: [startIndex, endIndex, inc] which increments each element of subarray A[startIndex endIndex] (startIndex and endIndex inclusive) with inc .
Return the modified array after all ${\it k}$ operations were executed.
Example:
Input:
5
3
1 3 2
2 4 3
0 2 -2
Output:
-2 0 3 5 3
Explanation:
Initial state:
length = 5 , updates = [[1,3,2],[2,4,3],[0,2,-2]]
[0,0,0,0,0]
After applying operation [1,3,2]:
[0,2,2,2,0]
After applying operation [2,4,3]:
[0,2,5,5,3]
After applying operation [0,2,-2]:
[-2,0,3,5,3]
Answer:(penalty regime: 0 %)

Marks for this submission: 1.00/1.00.

```
n=int(input())
k=int(input())
arr=[0]*(n+1)
for _ in range(k):
s,e,inc=map(int,input(
).split())
    arr[s]+=inc
    if e+1<n:
        arr[e+1]-=inc
for i in range(1,n):
    arr[i]+=arr[i-1]
print('
'.join(map(str,arr[:n])))</pre>
```

Input Expected Got

```
5 3 1 3 2 -2 0 3 5 3 -2 0 3 5 3 2 4 3 0 2 -2
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 10

Correct
Mark 1.00 out of 1.00

□ Flag question

Question text

Given an array A of sorted integers and another non negative integer k, find if there exists 2 indices i and j such that A[i] - A[j] = k, i! = j.

Input Format

- 1. First line is number of test cases T. Following T lines contain:
- 2. N, followed by N integers of the array
- 3. The non-negative integer k

Output format

Print 1 if such a pair exists and 0 if it doesn't.

Example

Input

1

3

5

```
1
Input
1
3
1
3
5
99
Output
0
For example:
Input Result
1
3
      1
3
5
4
1
3
1
3
5
      0
Answer:(penalty regime: 0 %)
T=int(input())
for t in range(T):
   n=int(input())
   lis=[]
   f=0
   for i in range(n):
     x=int(input())
     lis.append(x)
   k=int(input())
   for i in range(n):
      for j in range(n):
        if lis[i]-
lis[j]==k:
           print(1)
           f=1
           break
   if f==0:
     print(0)
Feedback
```

Output:

Input Expected Got

```
1 3 1 1 5 4 1 3 3
```

1 0 0 3 5 99

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Save the state of the flags

Finish review Skip Quiz navigation

Quiz navigation

Question 1 This page Question 2 This page Question 3 This page Question 4 This page Question 5 This page Question 6 This page Question 7 This page Question 8 This page Question 9 This page Question 10 This page Show one page at a timeFinish review