Санкт-Петербургский государственный университет

St Petersburg University Математико-Механический факультет

Отчет по лабораторной работе №1 «Колебания массы при кинематическом возбуждении»

> Выполнили студенты 351 гр.: Бобу Юлия,

> > Соболев Леонид,

Теплова Татьяна,

Курбанов Нурлан,

Егоров Павел,

Пчельников Павел.

Результаты эксперимента

Таблица 1: Результаты измерений свободных колебаний

Первая серия колебаний					
Номер колебания	1	2	3	4	
Верхняя отметка, м	0.46	0.505	0.55	0.595	
Время верхней отметки, с	8.23	9	9.71	10.43	
Нижняя отметка, м	0.81	0.765	0.725	0.675	
Время нижней отметки, с	7.85	8.63	9.36	10.07	
Вторая серия колебаний					
Номер колебания	1	2	3	4	
Верхняя отметка, м	0.46	0.505	0.55	0.595	
Время верхней отметки, с	28.59	29.32	30.07	30.83	
Нижняя отметка, м	0.81	0.77	0.725	0.675	
Время нижней отметки, с	28.22	28.95	29.68	30.4	
Третья серия колебаний					
Номер колебания	1	2	3	4	
Верхняя отметка, м	0.50	0.545	0.59	0.62	
Время верхней отметки, с	13.87	14.63	15.37	16.03	
Нижняя отметка, м	0.775	0.73	0.685	0.645	
Время нижней отметки, с	13.51	14.23	14.98	15.75	

Таблица 2: Результаты измерений вынужденных колебаний

Напряжение, В	Частота колебаний толкателя, Гц	Амплитуда, м	Период, с	Частота вынужденных колебаний, Гц
75	0.97	0.08	1.034	0.964
80	1.312	0.25	0.77	1.298
85	1.712	0.07	0.586	1.707
90	1.953	0.05	0.512	1.953
100	2.37	0.025	0.42	2.38

Обработка результатов

Вычислена длина удлинения пружины:

$$\delta l = 0.58 - 0.43 = 0.15 \,\mathrm{m}$$

Вычислена теоретическая циклическая частота собственных колебаний:

$$\omega_0 = \sqrt{\frac{g}{\delta l}} = 8.087 \frac{\text{рад}}{\text{с}}$$

Исходя из измерений вычислены декременты и периоды колебаний и записаны в таблицу 3. Подсчитан средний практический декремент затуханий, он составил:

$$\beta_a = 0.863$$

Исходя из него подсчитана циклическая частота затухающих колебаний:

$$\omega = \sqrt{\omega_0^2 - \beta_a^2} = 8.04 \frac{\mathrm{pag}}{\mathrm{c}}$$

Посчитана частота, при которой достигается максимальная амплитуда колебаний:

$$Ω_p = \frac{\sqrt{\omega_0^2 - 2\beta_a^2}}{2\pi} = 1.272 \, \Gamma \text{U}$$

$$\Omega = 2\pi\Omega_p = 7.992 \, rac{\mathrm{pag}}{\mathrm{c}}$$

Для вынужденных колебаний подсчитана максимальная теоретическая амплитуда, она составила:

$$A_{max} = \frac{R\omega_0^2}{\sqrt{4\Omega^2\beta^2 + (\Omega^2 - \omega_0^2)^2}} = 0.165 \text{ m}$$

На графика 2 построена амплитудно-частотная характеристика вынужденных колебаний, зеленым отмечена теоретическая зависимость.

Таблица 3: Декременты и периоды затуханий

Логарифмический декремент затуханий (λ)	Период (Т), с	Декремент затуханий (eta)
Первая серия опытов		
0.318	0.77	0.413
0.279	0.78	0.358

0.470	0.71	0.662		
0.336	0.73	0.460		
0.916	0.72	1.272		
0.693	0.71	0.976		
Вторая серия опытов				
0.318	0.73	0.436		
0.244	0.73	0.334		
0.470	0.75	0.627		
0.372	0.73	0.510		
0.916	0.76	1.205		
0.693	0.72	0.963		
Третья серия опытов				
0.446	0.76	0.587		
0.357	0.72	0.496		
0.827	0.74	1.118		
0.560	0.75	0.747		
1.946	0.66	2.948		
1.099	0.77	1.427		
Средний декремент (eta_a) по	0.863			
-				

Рис. 2: АЧХ вынужденных колебаний

