Network Intrusion Detection

Intrusion Detection Systems

Intrusion

 Actions aimed at compromising the security of the target (confidentiality, integrity, availability of computing/networking resources)

Intrusion detection

 The identification through intrusion signatures and report of intrusion activities

Intrusion prevention

 The process of both detecting intrusion activities and managing automatic responsive actions throughout the network

IDS Components

• The **IDS manager** compiles data from the IDS sensors to determine if an intrusion has occurred.

 This determination is based on a set of site policies, which are rules and conditions that define probable intrusions.

• If an IDS manager detects an intrusion, then it sounds an

alarm.

Intrusions

- An IDS is designed to detect a number of threats, including the following:
 - masquerader: an attacker who is falsely using the identity and/or credentials
 of a legitimate user to gain access to a computer system or network
 - Misfeasor: a legitimate user who performs actions he is not authorized to do
 - Clandestine user: a user who tries to block or cover up his actions by deleting audit files and/or system logs
- In addition, an IDS is designed to detect automated attacks and threats, including the following:
 - port scans: information gathering intended to determine which ports on a host are open for TCP connections
 - Denial-of-service attacks: network attacks meant to overwhelm a host and shut out legitimate accesses
 - Malware attacks: replicating malicious software attacks, such as Trojan horses, computer worms, viruses, etc.
 - ARP spoofing: an attempt to redirect IP traffic in a local-area network
 - DNS cache poisoning: a pharming attack directed at changing a host's DNS cache to create a falsified domain-name/IP-address association

Possible Alarm Outcomes

Alarms can be sounded (positive) or not (negative)

IDS Data

- In an influential 1987 paper, Dorothy Denning identified several fields that should be included in IDS event records:
 - Subject: the initiator of an action on the target
 - Object: the resource being targeted, such as a file, command, device, or network protocol
 - Action: the operation being performed by the subject towards the object
 - Exception-condition: any error message or exception condition that was raised by this action
 - Resource-usage: quantitative items that were expended by the system performing or responding to this action
 - Time-stamp: a unique identifier for the moment in time when this action was initiated

Types of Intrusion Detection Systems

Rule-Based Intrusion Detection

Rules identify the types of actions that match certain known profiles
for an intrusion attack, in which case the rule would encode a
signature for such an attack. Thus, if the IDS manager sees an event
that matches the signature for such a rule, it would immediately sound
an alarm, possibly even indicating the particular type of attack that is
suspected.

Statistical Intrusion Detection

- A profile is built, which is a statistical representation of the typical ways that a user acts or a host is used; hence, it can be used to determine when a user or host is acting in highly unusual, anomalous ways.
- Once a user profile is in place, the IDS manager can determine thresholds for anomalous behaviors and then sound an alarm any time a user or host deviates significantly from the stored profile for that person or machine.

The Base-Rate Fallacy

- It is difficult to create an intrusion detection system with the desirable properties of having both a high true-positive rate and a low false-negative rate.
- If the number of actual intrusions is relatively small compared to the amount of data being analyzed, then the effectiveness of an intrusion detection system can be reduced.
- In particular, the effectiveness of some IDSs can be misinterpreted due to a statistical error known as the baserate fallacy.
- This type of error occurs when the probability of some conditional event is assessed without considering the "base rate" of that event.

Base-Rate Fallacy Example

- Suppose an IDS is 99% accurate, having a 1% chance of false positives or false negatives. Suppose further...
- An intrusion detection system generates 1,000,100 log entries.
- Only 100 of the 1,000,100 entries correspond to actual malicious events.
- Because of the success rate of the IDS, of the 100 malicious events, 99 will be detected as malicious, which means we have 1 false negative.
- Nevertheless, of the 1,000,000 benign events, 10,000 will be mistakenly identified as malicious. That is, we have 10,000 false positives!
- Thus, there will be 10,099 alarms sounded, 10,000 of which are false alarms. That is, roughly 99% of our alarms are false alarms.