4th order Runge-Kutta method: Example

- Given: $dy/dt = -y e^{-t}$; y(0)=1
- Find: y at t=0.2 (using h=0.2) TV = 0.654985
- \triangleright Exact Solution: $y = e^{-t} (1-t)$

4th order Runge-Kutta method: Example

Fourth-order R-K method

$$k_{1} = f(t_{n}, y_{n}); k_{2} = f\left(t_{n} + \frac{1}{2}h, y_{n} + \frac{1}{2}hk_{1}\right)$$

$$k_{3} = f\left(t_{n} + \frac{1}{2}h, y_{n} + \frac{1}{2}hk_{2}\right); k_{4} = f\left(t_{n} + h, y_{n} + hk_{3}\right)$$

$$y_{n+1} = y_{n} + \frac{h}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

- $t_0=0$, $y_0=1$, $k_1=-1-e^{-0}=-2$; $k_2=-(1+0.1x(-2))$ $-e^{-0.1}=-1.70484$; $k_3=-(1+0.1x(-1.70484))$ $-e^{-0.1}=-1.73435$; $k_4=-(1+0.2x(-1.73435))$ $-e^{-0.2}=-1.47186$
- $y_{0.2} = 1+0.2/6(-2-2x1.70484 2x1.73435 -1.47186) = 0.654992$

Error Analysis

- The "local truncation error (LTE)" is the error over one interval (t_n, t_{n+1})
- The "global truncation error (GTE)" is the error over the entire time period (t_0, t_{n+1})
- E.g., Euler Forward

$$y_{n+1} = y_n + hf(t_n, y_n)$$

Compare with Taylor's series

$$y_{n+1} = y_n + hf(t_n, y_n) + \frac{h^2}{2}f'(t_n, y_n) + \dots$$

- Local Error is O(h²)
- Global?

Global Truncation Error

- We start with t_0 , where y_0 is known exactly
- $y_1 = y_0 + f(t_0, y_0)$

• Error (LTE & GTE)
$$\frac{h^2}{2}y''(\zeta_0); \zeta_0 \in (t_0, t_1)$$

- For the next step $y_2 = y_1 + hf(t_1, y_1)$
- But, y₁ is not exact. Let ^ indicate exact values
- Error: $\hat{y}_2 - (y_1 + hf(t_1, y_1)) = \hat{y}_1 + h\hat{f}_1 + \frac{h^2}{2}y''(\zeta_1) - y_1 - hf_1$

$$= \frac{h^2}{2} y''(\zeta_0) + \frac{h^2}{2} y''(\zeta_1) + H.O.T.$$

Global Truncation Error

• LTE in the second step is $\frac{h^2}{2}y''(\zeta_1); \zeta_1 \in (t_1, t_2)$

• GTE is
$$\frac{h^2}{2}y''(\zeta_0) + \frac{h^2}{2}y''(\zeta_1)$$

• Proceeding similarly, GTE up to t_{n+1} :

$$= \frac{h^2}{2} \sum_{i=0}^{n} y''(\zeta_i); \zeta_i \in (t_i, t_{i+1})$$

Using mean value theorem, GTE is O(h):

$$GTE = \frac{(n+1)h^{2}}{2}y''(\overline{\zeta}); \overline{\zeta} \in (t_{0}, t_{n+1})$$

$$= \frac{(t_{n+1} - t_{0})h^{2}}{2h}y''(\overline{\zeta}) = \frac{(t_{n+1} - t_{0})h}{2}y''(\overline{\zeta})$$

Global Truncation Error

- A numerical scheme for solving the ODE is called a k^{th} order scheme, if the GTE is $O(h^k)$
- The LTE is $O(h^{k+1})$
- For example, 2^{nd} order R-K method have LTE $O(h^3)$ and GTE $O(h^2)$
- Let us take the same example and solve by the Mid-point method (2nd order R-K) and the 4th-order R-K method.
- $dy/dt = -y e^{-t}$; y(0)=1
- Use h=0.1, 0.2, and 0.3 and solve up to t=0.6

				RK2	
t	TV	yi	k1	k2	yi+1
0.0	1.000000	1.000000	-2.000000	-1.851229	0.814877
0.1	0.814354	0.814877	-1.719714	-1.589599	0.655917
0.2	0.654985	0.655917	-1.474648	-1.360986	0.519819
0.3	0.518573	0.519819	-1.260637	-1.161475	0.403671
0.4	0.402192	0.403671	-1.073991	-0.987600	0.304911
0.5	0.303265	0.304911	-0.911442	-0.836289	0.221282
0.6	0.219525	0.221282	-0.770094	-0.704823	0.150800

					RK4		
t	TV	yi	k1	k2	k3	k4	yi+1
0.0	1.000000	1.000000	-2.000000	-1.851229	-1.858668	-1.718971	0.814354
0.1	0.814354	0.814354	-1.719191	-1.589102	-1.595607	-1.473524	0.654985
0.2	0.654985	0.654985	-1.473716	-1.360100	-1.365781	-1.259225	0.518573
0.3	0.518573	0.518573	-1.259392	-1.160292	-1.165247	-1.072369	0.402193
0.4	0.402192	0.402193	-1.072513	-0.986195	-0.990511	-0.909672	0.303266
0.5	0.303265	0.303266	-0.909797	-0.834726	-0.838480	-0.768230	0.219525
0.6	0.219525	0.219525	-0.768337	-0.703154	-0.706413	-0.645469	0.148976

Errors in R-K methods

t	RK2	RK4	t	RK2	RK4	t	RK2	RK4
0.0	0.00000000	0.00000000000	0.0	0.00000000	0.00000000	0	0.00000000	0.00000000
0.1	-0.00052338	0.00000023413	0.2	-0.00404791	-0.00000732	0.3	-0.01321485	-0.00005439
0.2	-0.00093252	0.00000041628	0.4	-0.00642561	-0.00001157	0.6	-0.01870549	-0.00007630
		_						
0.3	-0.00124582	0.00000055494	0.6	-0.00764207	-0.00001369			
		_						
0.4	-0.00147906	0.00000065736						
		_						
0.5	-0.00164579	0.00000072977						
		_						
0.6	-0.00175758	0.00000077747						

Stability Analysis

- Stability: The numerical solution should be bounded if the exact solution is bounded
- Different from "error," a stable solution could have large errors
- A numerical scheme may be stable for all values of time-step (unconditionally stable) or only for time-step less than a threshold (conditionally stable)
- Also, a numerical sheme with the same timestep may be stable for some ODE's and unstable for some other

- We perform only a Linear Stability analysis
- Expand the function f (i.e., dy/dt) in a Taylor's series and ignore the higher order terms

$$f(t,y) = f(t_0,y_0) + (t-t_0)\frac{\partial f}{\partial t}\Big|_{(t_0,y_0)} + (y-y_0)\frac{\partial f}{\partial y}\Big|_{(t_0,y_0)} + \dots$$

which may be written as $\frac{d\hat{y}}{dt} = c_0 + c_1 t + \lambda \hat{y}$

Similarly, the approximate solution is written

$$\frac{dy}{dt} = c_0 + c_1 t + \lambda y$$

The error is then obtained from

$$\frac{d(\hat{y}-y)}{dt} = \lambda(\hat{y}-y)$$

 Which implies that the growth of error follows the first-order "model problem"

$$\frac{dy}{dt} = \lambda y$$

 Therefore, for a linear stability analysis, we follow the differential equation given above

• Mostly we deal with real values of λ , but consider here a more general case:

$$\frac{dy}{dt} = (\lambda_r + i\lambda_i)y$$

The exact solution of the problem, with the initial condition y=y₀ at t=t₀, is

$$y = y_0 e^{(\lambda_r + i\lambda_i)t} = y_0 e^{n(\lambda_r h + i\lambda_i h)}$$

 Since we want to compare the analytical and numerical solutions, we write t=nh, although the analytical solution has no relation with h

$$y = y_0 e^{n(\lambda_r h + i\lambda_i h)}$$

- Clearly, the analytical solution is bounded for all negative $\lambda_{\mbox{\tiny r}}$
- We show this through a stability region

- We now look at the stability region of various numerical methods.
- Start with the Euler Forward

$$y_{n+1} = y_n + hf(t_n, y_n) = y_n(1 + \lambda_r h + i\lambda_i h)$$

• Define an amplification factor, σ , as the ratio of y at two consecutive time steps (y_{n+1}/y_n)

$$\sigma = 1 + \lambda_r h + i \lambda_i h$$

- For solution to be bounded, $|\sigma|$ must be ≤ 1
- The stability region is, therefore, given by

$$(1 + \lambda_r h)^2 + \lambda_i^2 h^2 \le 1$$

Linear Stability Analysis: Euler Forward

- The stability region is shown below: a circle of radius 1, centered at (-1,0)
- For real negative values of λ, the condition is |λh|≤2

Linear Stability Analysis: Euler Backward

Similarly, for Euler Backward

$$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1}) \Rightarrow y_{n+1} = y_n / (1 - \lambda_r h - i\lambda_i h)$$

$$\sigma = 1/(1 - \lambda_r h - i\lambda_i h)$$

- For solution to be bounded, $|\sigma|$ must be ≤ 1
- The stability region is, therefore, given by

$$(\lambda_r h - 1)^2 + \lambda_i^2 h^2 \ge 1$$

Which is the area outside the circle of radius
 1, centered at (1,0)

Linear Stability Analysis: Euler Backward

- The stability region is shown below: outside a circle of radius 1, centered at (-1,0)
- For real negative values of λ , the method is unconditionally stable

Linear Stability Analysis: Trapezoidal method

For Trapezoidal method

$$y_{n+1} = y_n + h \frac{f(t_n, y_n) + f(t_{n+1}, y_{n+1})}{2} \Rightarrow y_{n+1} = y_n \frac{1 + \lambda_r h / 2 + i \lambda_i h / 2}{1 - \lambda_r h / 2 - i \lambda_i h / 2}$$

The stability region is, therefore, given by

$$\left| \frac{1 + \lambda_r h / 2 + i \lambda_i h / 2}{1 - \lambda_r h / 2 - i \lambda_i h / 2} \right| \le 1$$

- Which implies $\lambda_r h \leq 0$
- Same as that for the exact solution.
- Unconditionally stable, does not give bounded solution when the exact is not bounded!