Consequently we find that

$$x^{k+3} = z^{k+2} + \frac{1}{\rho}\lambda^{k+2} - \frac{1}{\rho} = x^{k+2} - \frac{1}{\rho}.$$

By induction, we obtain

$$x^{k+3} = x^2 - \frac{k+1}{\rho}$$
, for all $k \ge 0$,

which shows that x^{k+3} goes to $-\infty$ when k goes to infinity, and since $x^{k+2} = z^{k+2}$, similarly z^{k+3} goes to $-\infty$ when k goes to infinity.

52.5 Stopping Criteria

Going back to Inequality (A2),

$$p^{k+1} - p^* \le -(\lambda^{k+1})^{\top} r^{k+1} - \rho (B(z^{k+1} - z^k))^{\top} (-r^{k+1} + B(z^{k+1} - z^*)), \tag{A2}$$

using the fact that $Ax^* + Bz^* - c = 0$ and $r^{k+1} = Ax^{k+1} + Bz^{k+1} - c$, we have

$$-r^{k+1} + B(z^{k+1} - z^*) = -Ax^{k+1} - Bz^{k+1} + c + B(z^{k+1} - z^*)$$

$$= -Ax^{k+1} + c - Bz^*$$

$$= -Ax^{k+1} + Ax^* = -A(x^{k+1} - x^*),$$

so (A2) can be rewritten as

$$p^{k+1} - p^* \leq -(\lambda^{k+1})^\top r^{k+1} + \rho (B(z^{k+1} - z^k))^\top A(x^{k+1} - x^*),$$

or equivalently as

$$p^{k+1} - p^* \le -(\lambda^{k+1})^\top r^{k+1} + (x^{k+1} - x^*)^\top \rho A^\top B(z^{k+1} - z^k). \tag{s_1}$$

We define the $dual \ residual$ as

$$s^{k+1} = \rho A^{\top} B(z^{k+1} - z^k),$$

the quantity $r^{k+1} = Ax^{k+1} + Bz^{k+1} - c$ being the *primal residual*. Then (s_1) can be written as

$$p^{k+1} - p^* \le -(\lambda^{k+1})^{\top} r^{k+1} + (x^{k+1} - x^*)^{\top} s^{k+1}. \tag{s}$$

Inequality (s) shows that when the residuals r^k and s^k are small, then p^k is close to p^* from below. Since x^* is unknown, we can't use this inequality, but if we have a guess that $||x^k - x^*|| \le d$, then using Cauchy–Schwarz we obtain

$$p^{k+1} - p^* \le \|\lambda^{k+1}\| \|r^{k+1}\| + d \|s^{k+1}\|.$$