KD EDUCATION ACADEMY [9582701166] STREET NO. 21 A-1 BLOCK BENGALI COLONY SANT NAGAR BURARI DELHI -110084

Time: 3 Hour

STD 11 Science class 11 physics

Total Marks: 120

kd 90+ questions ch-1 units and measurement

*	Change The Dight American Frame The Circum C	Ontions [4 Moules Folk]	[45]
^	Choose The Right Answer From The Given C	options.[1 Marks Each]	[45]
1.	Find the value of 12.9g - 7.05g.	(8)	
	(A) 5.84g	(B) 5.8g	
	(C) 5.86g	(D) 5.9g	
2.	Which of the following are not a unit of tim		
	(A) Second.	(B) Parsec.	
	(C) Year.	(D) Light year.	
3.	A device which is used for measurement or	f length to an accuracy of about $10^{ extstyle -}$	
	⁴ m, is:		
	(A) Screw gauge.		
	(B) Spherometer.(C) Vernier callipers.		
	(D) Either (a) or (b).	/	
1	Pascal is the unit of:		
4.	(A) Force.	(B) Stress.	
	(C) Work.	(D) Energy.	
5.	Which of the following is not a physical qua		
٥.	(A) Time.	(B) Impulse.	
	(C) Mass.	(D) Kilogram.	
6.	If R and L represent resistance and self-ind		
0.	following combinations has the dimension		
	(A) $\frac{R}{L}$	(B) $\frac{L}{R}$	
	(C) $\sqrt{\frac{R}{R}}$	(D) $\sqrt{\frac{L}{R}}$	
	(C) V L	V R	
7.	The dimensional formula for latent heat is:	(T) 2 1	
	(A) $M^0L^2T^{-1}$	(B) ML^2T^{-1}	
	(C) MLT ⁻²	(D) ML^2T^{-2}	
8.	If P, Q, R are physical quantities, having dif		
	following combinations can never be a me	70	
	(A) $\frac{(P-Q)}{R}$	(B) $\frac{PQ}{R}$	

	(C) $\frac{(PR-Q^2)}{R}$	(D) $\frac{(R+C)}{P}$	<u>2)</u>
9.	When 1m, 1kg and 1 min are to of the force is 36 units. What (A) 10 ⁵ dyne (C) 10 ⁸ dyne		nis force in CGS system? Hyne
10.	Which of the following time not (A) A wall clock. (B) A stop watch. (C) A digital watch. (D) An atomic clock. Give reason	-	nost precise?
11.	Which of the following is a dir (A) Refractive index. (B) Dielectric constant (C) Relative density. (D) Gravitational constant.	mensional constant?	
12.	The pair(s) of physical quantities (A) Volumetric strain and coefficients (B) Disintegration constant of a ratio (C) Heat capacity and gravitation (D) Planck's constant and torque.	ent of friction. adioactive substance and al potential.	
13.	Percentage errors in the measurespectively. The error in the measuring mass and speed w (A) 8% (C) 12%	estimation of kinetic	-
14.	The length and breadth of a respectively. The area of this (A) 9.37m ² (B) 9.378m ² (C) 9.3782m ² (D) 9.378248m ²		
15.	The dimensions of entropy and (A) $[M^0L^{-1}T^0K]$ (B) $[M^0L^{-2}T^0k^2]$ (C) $[MLT^{-2}K]$ (D) $[ML^2T^{-2}k^{-1}]$	re:	

16. Which of the following has neither units nor dimensions?

(A) Angle.

	(B) Energy.	
	(C) Relative density.(D) Relative velocity.	
17.	The quantity having the same unit in all states (A) Mass. (B) Time. (C) Length. (D) Temperature.	ystem of unit is:
18.	Obtain the dimensional equation for universal (A) $[\mathrm{ML^2T^{-2}}]$ mol $^{-1}\mathrm{K^{-1}}$ (B) $[\mathrm{M^2LT^{-1}mol}$ $^{-2}\mathrm{K^{-2}}]$ (C) $[\mathrm{ML^2LT^{-1}}$ mol $^{-1}\mathrm{K^{-1}}]$ (D) $[\mathrm{ML^3LT^{-1}}$ mol $^{-1}\mathrm{K^{-2}}]$	ersal gas constant.
19.	In the formula x = 3 yz², x and z have din magnetic induction, respectively. The dim (A) $[M^{-2}L^{-2}T^4A^4]$ (B) $[M^{-3}L^{-3}T^4A^5]$ (C) $[M^{-3}L^{-2}T^8A^4]$ (D) $[M^{-1}L^{-4}T^2A^4]$	
20.	If the length of a rectangle $I = 10.5$ cm, by possible measurement by scale = 0.1cm, (A) 22.0 cm ²	
	(C) 22.05cm ²	(D) 22cm ²
21.	The number of particles crossing per unit time is: $N=-D\frac{n_2-n_1}{x_2-x_1}$ Where n_1 and n_2 are the value of x_1 and x_2 respectively. The dimension (A) M^0LT^2 (C) M^0LT^{-3}	number of particles per unit volume for
22.	Which of the following statement is incorr(A) It is a basic property of matter.(B) The SI unit of mass is candela.(C) The mass of an atom is expressed in u.(D) None of the above.	rect regarding mass?
23.	The mass and volume of a body are 4.23 density of the material of the body in corr (A) 1.6048gcm ⁻³ . (B) 1.69gcm ⁻³ . (C) 1.7gcm ⁻³ .	

	(D) 1.695gcm ⁻³ .	
24.	The number of significant figures in 3400	is:
	(A) 3	(B) 4
	(C) 2	(D) 1
25.	If the value of force is 100N and value of the value of mass in this system of units?	
	(A) 10 ³ kg	(B) 10 ⁴ kg
	(C) 10 ⁵ kg	(D) 10 ⁶ kg
26.	Which of the following has same dimension (A) Work.	on as that of Planck constant?
	(B) Linear momentum.	
	(C) Angular momentum.	
	(D) Impulse.	
27.	In 4700m, significant digits are:	(B) 2 5
	(A) 2	(B) 3 (D) 5
	(C) 4	
28.	If momentum (P), area (A) and time (T) a	
	quantities, then energy has the dimension (A) $(P^1A^{-1}T^1)$.	(B) $(P^2A^1T^1)$.
		(D) $(P^1A^{\frac{1}{2}}T^{-1})$.
29.	In the standard equation $\mathrm{Snth}\!\!=\mathrm{u}+rac{\mathrm{a}}{2}[2\mathrm{n}-1]$	[], what dimensions do you view for
	S _{nth} ?	(=) ° 1 1
	(A) $M^{\circ}L^{1}T^{\circ}$	(B) $M^{\circ}L^{-1}T^{1}$
	(C) $M^{\circ}L^{1}T^{-1}$	(D) M°L°T ¹
30.	In the gas equation $\left(p + \frac{a}{V^2}\right)(V - b) = RT$	the dimensions of a are:
	(A) $[\mathrm{ML^3T^{-2}}]$	
	(B) $[M^{-1}L^3T^{-1}]$	
	(C) $[\mathrm{ML^5T^{-2}}]$	
	(D) $[M^{-1}L^{-5}T^2]$	
31.	Give force $=rac{lpha}{ ext{Density}+eta}$ What are the dimension	ons of $lpha,eta$
	12	, , , , , , , , , , , , , , , , , , ,
	(A) $[ML^2T^{-2}][ML^{\frac{-1}{3}}]$	
	(B) $[\mathrm{M}^2\mathrm{L}^4\mathrm{T}^{-2}], [\mathrm{M}^{rac{1}{3}}\mathrm{L}^{-1}]$	
	(C) $[\mathrm{M}^2\mathrm{L}^{-2}\mathrm{T}^{-2}][\mathrm{M}^{rac{1}{3}}\mathrm{L}^{-1}]$	
	(D) $[\mathrm{M^2L^{-2}T^{-2}}][\mathrm{ML^{-2}}]$	
32.	A dimensionless quantity:	
	(A) May have a unit.	

	(B) Never has a unit.(C) Always has a unit.(D) Doesn't exist.	
33.	Which physical quantities have same dime (A) Force and power. (B) Torque and energy. (C) Torque and power. (D) Force and torque.	ension?
34.	Number of degrees present in one radian (A) 58° (C) 56.3°	is: (B) 57.3° (D) 56°
35.	'Parsec' is the unit of: (A) Time. (B) Distance. (C) Frequency. (D) Angular acceleration.	
36.	The surface area of a solid cylinder of racto $1.5 \times 10^4 (\text{mm})^2$. Here, A refers to: (A) 0.9cm (C) 30cm	lius 2.0cm and height A cm is equal (B) 10cm (D) 15cm
37.	The numbers 2.745 and 2.735 on roundingive: (A) 2.75 and 2.74. (B) 2.74 and 2.73. (C) 2.75 and 2.73. (D) 2.74 and 2.74.	g off to 3 significant figures will
38.	SI unit of capacitance is: (A) ohm-second. (B) Wb. (C) coulomb (volt)-1 (D) A-m ²	
39.	Dimensions of gravitational constant are: (A) $M^{-1}L^3T^{-2}$	(B) ${ m M}^{-2}{ m L}^{3}{ m T}^{-1}$
	(C) $ m M^3L^{-1}T^{-2}$	(D) $M^{-1}L^2T^{-3}$
40.	The number of significant figures in 0.069	
	(A) 5. (C) 2	(B) 4. (D) 3.
41.	On the basis of dimensions, decide which displacement of a particle undergoing sim	of the following relations for the

	a.	$\mathbf{v} = \frac{\mathrm{a} \sin 2\pi t}{2\pi}$.	
	b.	$egin{aligned} \mathbf{y} & \mathbf{x} & \mathbf{y} \ \mathbf{y} & \mathbf{a} \sin \mathbf{v} \mathbf{t}. \end{aligned}$	
	c.	$egin{aligned} & \mathbf{y} = rac{\mathrm{a}\sin2\pi\mathrm{t}}{\mathrm{T}}.\ & \mathbf{y} = \mathrm{a}\sin\mathrm{vt}.\ & \mathbf{y} = rac{\mathrm{a}}{\mathrm{T}}\sin\left(rac{\mathrm{t}}{\mathrm{a}} ight). \end{aligned}$	
	d.	$\mathrm{y} = \mathrm{a}\sqrt{2}\Big(\sinrac{2\pi\mathrm{t}}{\mathrm{T}} - \cosrac{2\pi\mathrm{t}}{\mathrm{T}}\Big).$	
42.	The n	umber of significant figures in 0.06900 is:	
	a.	5.	
	b.	4.	
	c. d.	2 3.	
43.		less quantity:	
- -3.	a.	Never has a non-zero dimension.	
	b.	Always has a non-zero dimension.	
	c.	May have a non-zero dimension.	
	d.	Does not exist.	
44.	The d	imensions ${ m ML}^{-1}\!{ m T}^{-2}$ may correspond to:	
	a.	Work done by a force.	
	b.	Linear momentum.	
	C.	Pressure.	
	d. 	Energy per unit volume.	
45.		adius of a circle is stated as 2.12cm. Its area should be written as:	
	a. b.	14cm ² . 14.1cm ² .	
	D. С.	14.11cm ² .	
	d.	14.1124cm ² .	
*		r The Following Questions In One Sentence.[1 Marks Each]	[2]
1.0			L-J
46.		ormal duration of I.Sc. Physics practical period in Indian colleges is 100	
		es. Express this period in microcenturies. 1 microcentury = $10^{-6} \times 100$ How many microcenturies did you sleep yesterday?	
47	_		
47.			
*	Given	Section consists of questions of 2 marks each.	[6]
48.	Name	the device used for measuring the mass of atoms and molecules.	
49.	The distance of a galaxy is of the order of 10^{25} m. Calculate the order of magnitude of time taken by light to reach us from the galaxy.		
50.	Find the dimensions of Planck's constant h from the equation $E = hv$ where E is the energy and v is the frequency.		
*	Given	Section consists of guestions of 3 marks each.	[42]

A famous relation in physics relates 'moving mass' m to the 'rest mass' mo of a particle in terms of its speed v and the speed of light, c. (This relation

first arose as a consequence of special relativity due to Albert Einstein). A boy

51.

recalls the relation almost correctly but forgets where to put the constant c. He writes: $m=\frac{m_0}{(1-v^2)^{1/2}}.$ Guess where to put the missing c.

- 52. The frequency 'f' of vibration of a stretched string depends upon:
 - i. Its length
 - ii. The mass per unit length 'm'
 - iii. The Tension 'T' in the string.
 - iv. Obtain dimensionally an expression for frequency 'f'.
- 53. If $x = at^2 + bt + c$, where x is displacement as a function of time. Write the dimensions of a b and c.
- 54. Write the dimensional formula for the following:
 - i. Wein's constant.
 - ii. Planck's constant.
 - iii. Specific heat.
 - iv. Latent heat.
 - v. Rydberg's constant.
- 55. Compute the following with regards to significant figures.
 - i. 4.6×0.128
 - ii. $\frac{0.9995 \times 1.53}{1.592}$
 - iii. 876 + 0.4382
- 56. The volume of a liquid flowing out per second of a pipe of length I and radius r is written by a student as, $v=\frac{\pi}{8}\frac{Pr^4}{\eta l}$ where P is the pressure difference between the two ends of the pipe and η is coefficent of viscosity of the liquid having dimensional formula ML^{-1} T^{-1} . Check whether the equation is dimensionally correct.
- 57. A planet moves around the sun in a circular orbit. The time period of revolution T of the planet depends on
 - i. Radius of the orbit (R).
 - ii. Mass of the sun M.
 - iii. Gravitational constant G.

Show dimensionally that $T^2 \propto R^3\,$

- 58. Check by the method of dimensional analysis whether the following relations are correct. $v=\sqrt{\frac{P}{D}}$ where v = velocity of sound and P = pressure, D = density of medium $n=\frac{1}{21}\sqrt{\frac{F}{m}}$, where n = frequency of vibration I = legnth of the string F = Stretching force m = mass per unit length of the string.
- 59. By using the method of dimension, check the accuracy of the following formula $: T = \frac{rh\rho g}{2\cos\theta} \text{ where T is the surface tension, h is the height of the liquid,} \rho \text{ is the density of the liquid, g acceleration due to gravity } \theta \text{ angle of contact, and r is the radius of the tube.}$
- 60. E, m, I and G denote energy, mass, angular momentum and gravitational constant respectively. Determine the dimensions of $\frac{E^2}{m^2G^2}$

- 61. A physical quantity Q is given by $Q=\frac{A^2B^{\frac{3}{2}}}{C^{+4}D^{\frac{1}{2}}}$ The percentage error in A, B, C, D are 1%, 2%, 4%, 2% respectively. Find the percentage error in Q.
- 62. If the unit of force is 100N, unit of length is 10m and unit of time is 100s, what is the unit of mass in this system of units?
- 63. What are the dimensions of:
 - a. Volume of a cube of edge a.
 - b. Volume of a sphere of radius a.
 - c. The ratio of the volume of a cube of edge a to the volume of a sphere of radius
- 64. Let x and a stand for distance. Is $\int \frac{dx}{\sqrt{a^2-x^2}} = \frac{1}{a} \sin^{-1} \frac{a}{x}$ dimensionally correct?
- * Given Section consists of questions of 5 marks each.

[25]

- 65. Name the physical quantity of the dimension given below:
 - i. ML^0T^{-3}
 - ii. ML⁻¹T⁻¹
 - iii. $M^{-1}L^3T^{-2}$
 - iv. ML^2T^{-3}
 - v. ML⁰T⁻²
 - vi. T⁻¹
- 66. An artificial satellite is revolving around a planet of mass M and radius R, in a circular orbit of radius r. From Kepler's Third law about the period of a satellite around a common central body, square of the period of revolution T is proportional to the cube of the radius of the orbit r. Show using dimensional analysis, that $T = \frac{k}{R} \sqrt{\frac{r^3}{g}}$, where k is a dimensionless constant and g is acceleration due to gravity.
- 67. A physical quantity X is related to four measurable quantities a, b, c and d as follows: $X=a^2b^3c^{\frac{5}{2}}d^{-2}$. The percentage error in the measurement of a, b, c and d are 1%, 2%, 3% and 4%, respectively. What is the percentage error in quantity X? If the value of X calculated on the basis of the above relation is 2.763, to what value should you round off the result.
- 68. Test if the following equations are dimensionally correct:
 - a. $h = \frac{2S\cos\theta}{\cos\theta}$
 - b. $u = \sqrt{\frac{P}{\rho}}$
 - c. $V = \frac{\pi Pr^4 t}{8nl}$
 - d. $\mathrm{v}=rac{1}{2\pi}\sqrt{rac{\mathrm{mg}l}{\mathrm{I}}}$

where h = height, S = surface tension, ρ = density, P = pressure, V = volume, η = coefficient of viscosity, v = frequency and I = moment of inertia.

69. 1	The frequency of vibration of a string depends on the length L between the nodes, the tension F in the string and its mass per unit length m. Guess the expression for its frequency from dimensional analysis. मंज़िल उन्हीं को मिलती है, जिनके सपनों में जान होती है!!पंख से कुछ नहीं होता, हौसलों से उड़ान होती है!