

Active Learning for Level Set Estimation

Alkis Gotovos, Nathalie Casati, Gregory Hitz and Andreas Krause ETH Zurich

Problem

We would like to determine the regions where the value of some unknown function lies above or below a given threshold level.

The above can be posed as a classification problem (into super- and sublevel sets) with *sequential* measurements, which are assumed to be *expensive* and *noisy*.

Example applications

Environmental monitoring

Estimate regions of (a vertical transect of) Lake Zurich where chlorophyll/algal concentration is "abnormally high".

Geolocating internet latency

Estimate regions of the world with "acceptable" latency to our PC, e.g. for trouble-free online gaming.

Gaussian processes

Estimation

Given some measurements, GPs provide *mean and variance* estimates of the unknown function, allowing us to construct *confidence intervals* at each point.

Posterior

Classification

For each point, we use the GP-derived confidence intervals to either classify it into the super- or sublevel sets, or leave it unclassified.

Measurement selection

To obtain informative measurements w.r.t. the problem at hand, at each iteration we select the most *ambiguous* point among the yet unclassified to be measured.

Intuitively, ambiguity quantifies our difficulty in classifying a point w.r.t. the given threshold level.

The LSE algorithm

Given a set of points (e.g. fine grid of the unknown function's domain) and a threshold level h, our proposed Level Set Estimation (LSE) algorithm iteratively *samples* and *classifies* based on GP-derived confidence intervals.

Fine print

- We enforce monotonically shrinking confidence intervals
- We relax classification by an accuracy parameter ϵ

Sample complexity bound

Theorem

For any $h \in \mathbb{R}$, $\delta \in (0,1)$, and $\epsilon > 0$, if $\beta_t = 2\log(|D|\pi^2t^2/(6\delta))$, LSE terminates after at most T iterations, where T is the smallest positive integer satisfying

$$\frac{T}{\beta_T \gamma_T} \ge \frac{C_1}{4\epsilon^2}$$

where $C_1 = 8/\log(1 + \sigma^{-2})$. Furthermore, with probability at least $1 - \delta$, the algorithm returns an ϵ -accurate solution, that is

$$\Pr\left\{\max_{\boldsymbol{x}\in D}\ell_h(\boldsymbol{x})\leq\epsilon\right\}\geq 1-\delta.$$

Experimental results

Chlorophyll dataset

Extension 1: Implicit threshold level

What if we do not have a predefined threshold level h? For example, we want to determine relative "hotspots" of algal concentration.

Implicitly defined thr. level: $h = \omega \max f(\boldsymbol{x}), \ 0 < \omega < 1$

For this setting, we propose the LSE_{imp} algorithm with similar theoretical guarantees to LSE.

Main novelties of LSE_{imp}:

• h is now an estimated quantity with associated uncertainty, which leads to slower classification.

• For the uncertainty about h to decrease we need to accurately estimate the function maximum, therefore we need to keep sampling at regions where the maximum may lie.

Comparison to LSE and to a naive extension of "straddle" for implicit threshold levels.

Extension 2: Batch sampling

We propose the LSE_{batch} extension of LSE, which, instead of selecting a single measurement at each iteration, selects a *batch* of B of them at a time. Why?

Latency geolocation Send multiple ping requests in parallel at essentially the same cost as a single request, thus increasing

sampling throughput.

Environmental monitoringReduce the total traveling dis-

tance by planning ahead:Select a batch of sampling

- locations.
- Connect them using a Euclidean TSP path.
- Traverse path and collect measurements.

Extra: Proof outline of LSE bound

