PROTOCOL

- 1. At the end of an ITC experiment the user will initially integrate the heat released or absorbed in each injection.
- 2. Following integration, a text file should be saved in ASCII format containing data series for the injection volume (V_i), macromolecule concentration (M_T), molar ratio (X_T/M_T), and heat of injection (ndh). E.g., xyz.DAT
- 3. The file generated in step 2, along with the active cell volume (V_0) and syringe concentration of ligand (X_0) , are used as inputs into the Matlab fitting macro (ITCFit.m), which fits the data to a modified single class of sites binding model as discussed above. Initial estimates of the apparent binding association equilibrium constant (K_A) and number of binding sites (N) must be provided.

1. One set of binding sites model with offset

Syntax for LM based: ITCFit(fname, V0, SyC, T, npd, startka, startn, corrected, ptype)

Syntax for nlin based: ITCFitnlin(fname, V0, SyC, T, npd, startka, startn, corrected, ptype)

Example MATLAB command:

ITCFit('xyz.DAT',1.42747,0.3,15,2,8e5,1,'y','ko')

INPUTS:

fname: filename obtained from ITC instrument in ASCII text format ['xyz.DAT']

V0 (V₀): Volume of Cell in ml [1.42747] Syc (X₀): Syringe concentration in mM [0.3] T: Temperature of the ITC experiment in C [15]

npd: Number of initial points to discard [2]

startka: initial estimate of K_A [8e5] startn: initial estimate of n [1]

corrected: flag for correcting the isotherm using last 4 injection points ['y']

ptype: plot type in figure for the data points ['ko']

OUTPUTS:

Kd: fitted Dissociation constant

err_Kd: error in the Kd

Ka: fitted Association constant (=1/K_d)

err Ka: error in the KA

n: fitted stoichiometry of ligand binding to macromolecule

err_n: error in the n

dH: fitted enthalpic heat of interation

err dH: error in the ΔH

c: fitted offset

2. One set of binding sites model (Origin based)

Syntax for LM based: ITCFit2(fname, V0, SyC, T, npd, startka, startn, corrected, ptype)

Syntax for nlin based: ITCFitnlin2(fname, V0, SyC, T, npd, startka, startn, corrected, ptype)

Example MATLAB command:

ITCFit2('xyz.DAT',1.42747,0.3,15,2,8e5,1,'y','ko')

INPUTS:

fname: filename obtained from ITC instrument in ASCII text format ['xyz.DAT']

V0 (V₀): Volume of Cell in ml [1.42747] SyC (X₀): Syringe concentration in mM [0.3] T: Temperature of the ITC experiment in C [15] npd: Number of initial points to discard [2]

startka: initial estimate of Ka [8e5] startn: initial estimate of n [1]

corrected: flag for correcting the isotherm using last 4 injection points ['y']

ptype: plot type in figure for the data points ['ko']

OUTPUTS:

Kd: fitted Dissociation constant

err Kd: error in the Kd

Ka: fitted Association constant (=1/K_d)

err_Ka: error in the KA

n: fitted stoichiometry of ligand binding to macromolecule

err_n: error in the n

dH: fitted enthalpic heat of interation

err_dH: error in the ΔH