

On Making Projector both a Display Device and a 3D Sensor

Jingwen Dai Ronald Chung

Computer Vision Laboratory

Dept. of Mech. and Automation Engineering

The Chinese University of Hong Kong

ISVC2012, Crete, Greece, 17 July 2012

Introduction & Motivation

17/07/2012

2

Previews Works

- Non-Visible Spectrum (Infrared)
 - □ *IR Projector + IR Camera (Kinect)*
 - Normal Projector and Camera + IR Filters
- Imperceptible Structured Light (ISL)
 - □ [Raskar1998] -- fist proof of ISL
 - □ [Cotting2004] -- micro-mirror states in DLP
 - □ [Park2007] intensity adaption in YIQ color space
 - □ [Grundhofer2007] -- human contrast sensitivity function
 - [Park2010] -- subjective evaluation for ISL

To the best of our knowledge, few works focus on the decoding method in imperceptible code embedding configuration.

Main Contributions

- Using only off-the-shelf devices
- Robust codes design in coding stage
- Noise-tolerant geometrical primitives detection and classification in decoding stage

Principle of Embedding Imperceptible

Codes

Design of Embedded Pattern

- Primitive Shapes
 - Cross
 - Sandglass
 - Rhombus

Design of Embedded Pattern

Pattern Image

 \Box Size: 27 * 29 = 783

Code = 100022212

- $\overline{H} = 6.0084$
- □ 95.97% $(H \ge 3)$

Primitive Shape Identification and Decoding

Adaboost Training

- Harr-Like Features
- Positive Sample Size20 * 20
- Pos./ Neg. Sample Num.7000 / 3000

□ **16-stage** cascade classifier

Experiments – Imperceptibility Evaluation

Experiments -- Accuracy Evaluation

Experiments – Accuracy Evaluation

	Hits(%)	Missed(%)	False(%)	$[\epsilon_X, \epsilon_Y]$ (pixel)	Corr. Acc.(%)
Cross	86.21	11.63	2.16	[1.931, 1.927]	 C
Rhombus	85.83	12.57	1.60	[2.056, 2.051]	-
Sandglass	87.49	11.64	0.87	[1.816, 1.821]	
Whole Pattern	86.33	11.06	2.61	[2.013, 2.043]	91.23

Table 1. The quantitative experiment results on (embedded) code detection accuracy.

Experiments – 3D Reconstruction Accuracy Evaluation

Experiments – 3D Reconstruction Accuracy Evaluation

Object	General	SL [10]	Our Method	
	$E_{\mu}(mm)$	$E_{\sigma}(mm)$	$E_{\mu}(mm)$	$E_{\sigma}(mm)$
Sphere	1.502	0.576	1.410	0.587
Cylinder	2.054	0.824	1.939	0.762
Cone	1.383	0.557	1.391	0.564

Table 2. 3D reconstruction accuracies on a variety of shapes.

Conclusion and Future Works

A novel system of embedding imperceptible structured codes into normal projection.

- Coding: noise-tolerant schemes (specifically designed shapes and large hamming distance)
- Decoding: pre-trained primitive shape detectors are used to detect and identify the weakly embedded codes

Future Works

- Denser Coding
- Motion Compensation