PHYS M20C: Modern Physics-31376 Quiz #2 – Thursday, January 24th, 2019 Name: Joved Fauler
Academic Integrity: I certify that this is my own work. Signature:
1) The wave function for a traveling wave on a taut string is (in SI units)
$y(x,t) = 0.35 \text{m sin} \left[-(10\pi \text{ s}^{-1})t - (3\pi \text{ m}^{-1})x + \frac{\pi}{4} \right]$
a) What is the direction of travel of the wave? Explain. [4 points]
This come is traveling in the -x direction.
consider: [-(10175')) + (371 m') x + 17] = CONSTANT SAT!
As time increases, the value of Exiternut increase to
compensate, thus, x must be a regasive value, hence,
(Alternate solution is take denuative)
b) What is the wave propagation speed of the wave? [4 points]
V= W Note: y(x, t) = ymms sin(wt-lex+q)
10 T 3 T
$V = \frac{10\pi(s)}{3\pi(n)} 3.33 \text{ m/s} $ $ 3.33 \text{ m/s} $
V= γf \rightarrow V= ω c) What is the wavelength? [4 points]
c) What is the wavelength? [4 points]
$\lambda = ?$
$K = \frac{2\pi}{\lambda} \rightarrow \lambda = \frac{2\pi}{K} = \frac{2\pi}{3\pi (m')} = \left[0.667m\right]$

$$y(x,t) = y_{max} \sin(kx - \omega t + \phi)$$
 $k = \frac{2\pi}{\lambda}$ $\omega = 2\pi f = \frac{2\pi}{T}$ $v = \lambda f$ $v = \sqrt{\frac{T}{\mu}}$

Reproduced for convenience: $y(x,t) = 0.35 \text{m} \sin \left[-(10\pi \text{ s}^{-1})t - (3\pi \text{ m}^{-1})x + \frac{\pi}{4} \right]$

d) What is the maximum transverse acceleration of an element of the string? [4 points]

e) What is the vertical position of an element of the string at t = 0, x = 0.2m? [4 points]

$$y(x,t) = y_{max} \sin(kx - \omega t + \phi)$$
 $k = \frac{2\pi}{\lambda}$ $\omega = 2\pi f = \frac{2\pi}{T}$ $v = \lambda f$ $v = \sqrt{\frac{T}{\mu}}$