MIE-ARI (Computer Arithmetic – Homework 5) Floating point

Pavel Kubalík
Department of Digital Design
Faculty of Information Technology
Czech Technical University in Prague

https://courses.fit.cvut.cz/MIE-ARI/

Task 1 – IEEE Std 754-2008 - Example

Calculate image of 32-bits number represented in IEEE Std 754 format.

	$oxedsymbol{A}$
$G = 00_2$ $G = 11_2$ a $T = 0$	$(-1)^S \cdot T \cdot 2 \stackrel{-K+1}{=}$
$G = 11^{2}$ a $T = 0$	$(-1)^S \cdot \infty$
$G = 112 a T \neq 0$	NaN
else (viz FP – 14)	$\left \hspace{1mm} (-1)^S\cdot (1+T)\cdot 2\hspace{1mm} G\!-\!K \hspace{1mm} ight $

- a) 0000 0000 0100 0..0
- b) 0000 0000 1100 0..0
- c) 1100 1000 0100 0..0

Advice: Use the information in lecture 6 (Floating point), in slides 14-16.

Task 2 –IEEE Std 754-2008

Calculate image of 32-bits number represented in IEEE Std 754 format.

	<i>A</i>
	A
$G = 00_2$ $G = 11_2$ a $T = 0$	$\mid (-1)^S \cdot T \cdot 2 \mid -K+1 \mid$
$ \mathbf{G} = 1 \dots 1_2 \mathbf{a} T = 0$	$(-1)^S \cdot \infty$
$\mid \mathbf{G} = 1 \dots 1_2 \mathbf{a} T \neq 0$	NaN
else (viz FP – 14)	$\left \; (-1)^S \cdot (1+T) \cdot 2 \; G - K \right $

- a) 0000 0000 0110 0..0
- b) 0100 0000 1100 0..0
- c) 1100 0001 0101 0..0

Advice: Use the information in lecture 6 (Floating point), in slides 14-16.

Task 2 – Addition - Example

- a) Convert two decimal numbers to binnary system.
- b) Add them using GRS bits.
- c) Round the result to prefer greater value.
- d) Round the result to prefer even value.

	ABS(M)										G	R	S	Е			T
1	,	0	1	1	0	1	1	1	0		0	0	0	6			
1	,	1	1	0	0	1	0	0	1		0	0	0	6			
																	L
																	L
																	L
_																	L
_																	L
_																	L
_																	L
_																	L
_																	L
																	L
-																	H
-																	H
																	H
_																	H
-																	H

Advice: Use the information in lecture 6 - Floating point.

Task 3 – Addition

- a) Convert two decimal numbers to binnary system.
- b) Add them using GRS bits.
- c) Round the result to prefer greater value.
- d) Round the result to prefer even value.

Advice: Use the information in lecture 6 - Floating point.

Task 4 – Addition

- a) Convert two decimal numbers to binnary system.
- b) Add them using GRS bits.
- c) Round the result to prefer greater value.
- d) Round the result to prefer even value.

	ABS(M)											R	S	E			
1	,	0	1	1	0	1	1	1	0		0	0	0	5			
1	,	1	1	0	0	1	0	0	0		0	0	0	1			
																	П
																	П

Advice: Use the information in lecture 6 - Floating point.

Notes

Notes