# Anomaly Detection in Temperature Data Using Logistic Regression

AMAN SHARMA

#### Problem Statement

- Anomalies in temperature data can indicate faults or critical events.
- Objective: Build a model to detect anomalies in the data using machine learning.





#### Dataset Overview

- ► Total entries: 10,000
- Features: Timestamp ,Temperature, Anomaly, Location.

|   |   | Timestamp           | Temperature | Anomaly | Location |
|---|---|---------------------|-------------|---------|----------|
| , | 0 | 2024-06-01 19:50:28 | 24.476332   | 0       | SensorB  |
|   | 1 | 2024-06-01 19:50:28 | 18.253966   | 0       | SensorA  |
|   | 2 | 2024-06-01 19:50:28 | 14.953520   | 0       | SensorB  |
|   | 3 | 2024-06-01 19:50:28 | 17.667181   | 0       | SensorA  |
|   | 4 | 2024-06-01 19:50:28 | 17.079826   | 0       | SensorA  |

## **Exploratory Data Analysis**



 These extreme values of temperature is anomalies, we can't remove it.



The dataset is heavily imbalanced, with significantly more normal readings than anomalies.

#### Methodology

- •Step 1: Data Preprocessing Focused on "Temperature" feature only.
- •Step 2: Data Splitting 80% for training, 20% for testing.
- •Step 3: Handling Imbalance Use Hybrid sampling.
- •Step 4: Model Training Built a Logistic Regression model.
- •Step 5: Model Evaluation Evaluated performance with metrics like Accuracy, F1-Score, and ROC-AUC.



### Model Performance

#### Metrics:

- Accuracy: 1.00.
- Precision: 0.98.
- Recall: 1.00.
- F1-Score: 0.99.
- ROC-AUC: 1.00.



# Key Findings

- Logistic regression was highly effective for this dataset.
- Handling imbalance with hybrid sampling (oversampling and under sampling) improved results.
- Simple "Temperature" feature was sufficient for anomaly detection.

#### Limitations

- Results depend heavily on the "Temperature" feature.
- Possible overfitting due to high accuracy across all metrics.
- May not generalize well to other datasets or real-world scenarios.