Measuring Physical Activity, Sedentary Behaviour, and Sleep Using Wrist-Worn Actigraphy

Practical Solutions for Imperfect Technologies

Older Adult Cognitive Health: A growing public health challenge

Understanding Physical Activity, Sedentary Behaviour, and Sleep

@UBC_CogMobLab

What is Physical Activity?

Physical Activity Measurement

What is Sedentary Behaviour

Sedentary Behaviour Measurement

Sleep Classification and Measurement

Wrist-Worn Actigraphy: A Practical Technology

^{*}Can also estimate sedentary behaviour

What are the benefits?

What are the drawbacks?

Measuring Time-Use Activity Behaviour Using Actigrpahy

- Actigraphy estimates energy expenditure using Newton's second law (F= ma)
 - Uniaxial or triaxial
 - Actigraphs can detect acceleration of 0.01 to > 10 g (depends on manufacturer)
 - Sampling frequency (Hz) depends on manufacturer (3 100 Hz)

- Each behaviour must first be derived from:
 - **Counts** = arbitrary unit of actigraph
 - **Epochs** = rate at which data is collected

Measuring Physical Activity/Sedentary Behaviour Using Actigrpahy

Counts/Epoch (usually counts/minute [cpm]) can then be classified as different intensities of physical activity based on an actigraph's corresponding cut-points

Measuring Physical Activity/Sedentary Behaviour Using Actigrpahy

Cut-points are *population specific*, and may also depend on which side of the body the device is placed (e.g., people with stroke)

Measuring Physical Activity/Sedentary Behaviour Using Actigrpahy

	Interclass Reliability Coefficients (95% CI)							Days of Monitoring Required to Achieve Reliabilities of		
	1 Day	4 Days	7 Days	10 Days	14 Days	0.80	0.90	0.95		
Sedentary Activity	0.76 (0.66, 0.84)	0.91 (0.87, 0.94)	0.95 (0.93, 0.96)	0.96 (0.94, 0.97)	0.98 (0.96, 0.99)	1.32	2.97	6.26		
Light Activity	0.69 (0.57, 0.78)	0.89 (0.84, 0.92)	0.93 (0.91, 0.95)	0.95 (0.93, 0.96)	0.97 (0.95, 0.98)	1.91	4.30	9.08		
MVPA	0.69 (0.56, 0.78)	0.90 (0.86, 0.93)	0.95 (0.93,0.96)	0.96 (0.95, 0.97)	0.97 (0.96, 0.99)	1.49	3.36	7.10		

Determining Wake Time and Sleep Time

Determining Wake Time and Sleep Time

What time did you get into bed?

What time did you try to go to sleep?

How long did it take you to fall asleep? (minutes)

How many times did you wake up, not counting the final time?

In total, how long did these awakenings last? (minutes)

What time was your final awakening?

What time did you get out of bed for the day?

How would you rate the quality of your sleep? (1=very poor, 2=poor, 3=fair, 4=good, 5=very good)

Mean, SD and p-value for each sleep metric between methods.

Sleep Metric	Method	Mean	SD	p-value
Fragmentation index	LM	31.0	10.4	p>0.05 (F = 0.40)
	CSD	30.1	10.7	
	Protocol	30.6	10.7	
	BM	31.7	10.3	
	BL	31.1	10.4	
Sleep efficiency	LM	82.6	6.1	p>0.05 (F = 1.16)
	CSD	83.4	6.2	
	Protocol	82.7	6.0	
	BM	82.6	5.7	
	BL	81.8	6.4	
Sleep duration	LM	392	48	p>0.05 (F = 1.88)
	CSD	388	57	
	Protocol	404	47	
	BM	395	48	
	BL	394	48	
Sleep latency	LM	6.6	8.7	p<0.05 (F = 14.83)
	CSD	5.9	8.0	
	Protocol	6.7	8.0	
	BM	3.7	4.3	
	BL	12.2	14.6	

LM, light-motion algorithm; CSD, consensus sleep diary; Protocol, standard protocol set by trained user; BM, biased-motion algorithm; BL, biased-light algorithm.

Summary

 There is no one best way to measure physical activity, sedentary behaviour, and sleep concurrently

Wrist-worn actigraphy is one practical way for measuring all 3 behaviours

 We have recent developed an algorithm for determining the restinterval from the MotionWatch8© using illuminance and motion data.

Acknowledgements

Supervisors

Teresa Liu-Ambrose, PhD Karim Khan, MD PhD

Collaborators

Postdocs

Jennifer C. Davis, PhD John R. Best, PhD Chung Liang Hsu, PhD

Cindy Barha, PhD

Lab Staff

Stephanie Doherty, BSc **Daniel Backhouse** Albert Ho Nancy Rutherford, BSc Alexis Bullock, MSc Daria Tai, BSc Connor Sullivan, BSc

Rachel Crockett, MSc Kimberly Bennet, BSc Deborah Jehu, PhD Madison Welch, BSc Elizabeth Dao, PhD Lisanne Ten Brinke, PhD

Lab Students

Matthew Noseworthy, BSc

Narlon Cassio Boa Silva, PhD

