MTH 101-Calculus 2021-2022

Quiz -1: Solutions

Q1. Let $x_1 = 4$ and $x_{n+1} = 8 + \sqrt{x_n}$ for all n. Show that the sequence (x_n) is convergent and find $\lim_{n \to \infty} x_n$. (7 marks)

Solution.

Method 1:

Step 1. To prove that the sequence (x_n) is increasing, i.e, $x_{n+1} - x_n \ge 0$ for all n.

Proof by induction: For n = 1 we have $(x_2 - x_1) = 10 - 4 > 0$.

Note that
$$x_{n+2} - x_{n+1} = \sqrt{x_{n+1}} - \sqrt{x_n} = \frac{1}{\sqrt{x_{n+1}} + \sqrt{x_n}} (x_{n+1} - x_n)$$

By induction hypothesis, $x_{n+1} - x_n \ge 0$. Hence, $x_{n+2} - x_{n+1} \ge 0$ as $x_n > 0$ for all n.

The sequence (x_n) is increasing.

Step 2. The sequence (x_n) is bounded above.

Proof by induction: $x_n \leq 12$ for all n.

As the sequence (x_n) is increasing and bounded above, (x_n) is convergent.

Step 2. If
$$\lim_{n\to\infty} x_n = l$$
 then $l^2 - 17l + 64 = 0$.

$$\implies l = \frac{17 + \sqrt{33}}{2} \text{ or } \frac{17 - \sqrt{33}}{2}.$$

As $\frac{17-\sqrt{33}}{2} < 6$ and $x_n \ge 8$ for $n \ge 2$, we have $\lim_{n \to \infty} x_n = \frac{17+\sqrt{33}}{2}$.

Method 2:

Step 1. To show (x_n) is Cauchy sequence.

$$x_{n+2} - x_{n+1} = \sqrt{x_{n+1}} - \sqrt{x_n} = \frac{1}{\sqrt{x_{n+1}} + \sqrt{x_n}} (x_{n+1} - x_n)$$

As
$$x_n \ge 4$$
 for all n, $(x_{n+2} - x_{n+1}) \le \frac{1}{4}(x_{n+1} - x_n)$

- \implies (x_n) satisfy the contractive condition.
- \implies (x_n) is Cauchy sequence.
- \implies (x_n) is convergent.

Step 2. If
$$\lim_{n\to\infty} x_n = l$$
 then $l^2 - 17l + 64 = 0$.

$$\implies l = \frac{17 + \sqrt{33}}{2} \text{ or } \frac{17 - \sqrt{33}}{2}.$$

As
$$\frac{17-\sqrt{33}}{2} < 6$$
 and $x_n \ge 8$ for $n \ge 2$, we have $\lim_{n \to \infty} x_n = \frac{17+\sqrt{33}}{2}$.

Q2. Let p > 1 be a real number. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(x) = -f(px) for all $x \in \mathbb{R}$. Show that f(x) = 0 for all $x \in \mathbb{R}$. (7 marks)

Solution.

Given that f is continuous and f(x) = -f(px) for all $x \in \mathbb{R}$.

So,
$$f(0) = 0$$
.

Using induction it is easy to show that $f(x) = (-1)^n f(\frac{x}{p^n})$ for any positive integer n.

Since the sequence $\frac{x}{p^n}$ converges to 0, by continuity of f, we have : $f(\frac{x}{p^n}) \to f(0) = 0$ when $n \to \infty$ and for any real number x.

Hence for every real number x, we have : $|f(x)| = \lim_{n \to \infty} |f(x)| = \lim_{n \to \infty} |(-1)^n f(\frac{x}{p^n})| = |f(0)| = 0$. So f is the zero function.

Q3. Let $f: \mathbb{R} \to \mathbb{R}$ be a twice differentiable function such that f''(x) < 0 for all $x \in \mathbb{R}$ and f(2) = 3 and f(3) = 1. Then prove that f'(2) > -2. (6 marks)

Solution.

Method 1:

Given that f(2) = 3, f(3) = 1.

So by mean value theorem there exists a $c \in (2,3)$ such that f'(c) = (f(3) - f(2))/(3-2) = -2.

Now since f''(x) < 0, f'(x) is strictly decreasing.

(One mark to be deducted if "strictly decreasing" is not realised.)

As f'(c) = -2 for some $c \in (2,3)$, we have f'(2) > -2.

Method 2:

Given that f(2) = 3, f(3) = 1.

So by mean value theorem there exists a $c \in (2,3)$ such that f'(c) = (f(3) - f(2))/(3-2) = -2.

By Mean Value Thm, there exists $c_1 \in (2,c)$ such that $f''(c_1) = (f'(c) - f'(2))/(c-2)$

Since $f''(c_1) < 0$ we have f'(2) > f'(c) = -2.

Method 3:

By Taylor's Theorem, $f(3) = f(2) + f'(2) + \frac{1}{2}f''(c)$ for some $c \in (2,3)$. So $1 < 3 + f'(2) \Rightarrow f'(2) > -2$.