Métodos Iterativos para Sistemas de Ecuaciones MA-1006

UCR

Temas de sección

- a) Normas, condición y estabilidad.
- b) Método de Jacobi, método de Gauss-Seidel, métodos SOR.
- c) Métodos para sistema de ecuaciones no lineales.

¿Cuál es la idea?

¿Cuál es la idea de esta sección?

Definición

Una norma en \mathbb{R}^n es una función $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ que satisface las siguientes propiedades

- a) $\|\mathbf{x}\| \geq 0$, para todo $\mathbf{x} \in \mathbb{R}^n$.
- b) $\|\mathbf{x}\| = 0$ si y solo si $\mathbf{x} = 0$.
- c) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$, para todo $\alpha \in \mathbb{R}$, $\mathbf{x} \in \mathbb{R}^n$.
- d) $\|\mathbf{x} + \mathbf{y}\| \leq \|\mathbf{x}\| + \|\mathbf{y}\|$, para todo $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

Definición (Normas de vectores)

Considere el espacio vectorial \mathbb{R}^n (el espacio de vectores columna). Sea \mathbf{x} un vector $\mathbf{x} \in \mathbb{R}$. Se definen las siguientes normas:

$$\bullet \|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$$

•
$$\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$$

$$\bullet \|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$$

Ejercicio (Normas)

Sea
$$\mathbf{x} = (-1, 1, -2)^t$$
. Determine $\|\mathbf{x}\|_1$, $\|\mathbf{x}\|_2$ y $\|\mathbf{x}\|_{\infty}$.

Solución:

$$\begin{aligned} \|\mathbf{x}\|_1 &= |-1| + |1| + |-2| = 4 \\ \|\mathbf{x}\|_2 &= (|-1|^2 + |1|^2 + |-2|^2)^{1/2} = \sqrt{6} \\ \|\mathbf{x}\|_{\infty} &= |-2| = 2 \end{aligned}$$

Definición (Normas de matrices)

Una norma (matricial) es una función $\|\cdot\|: \mathbb{R}^{m \times n} \to \mathbb{R}$ que satisface las siguientes propiedades para $A, B \in \mathbb{R}^{m \times n}$:

- a) $||A|| \ge 0$.
- b) ||A|| = 0 si y solo si A = 0.
- c) $\|\alpha A\| = |\alpha| \|A\|$, para todo $\alpha \in \mathbb{R}$.
- d) $||A + B|| \le ||A|| + ||B||$.
- e) $||AB|| \le ||A|| \, ||B||$ (consistente).

Teorema

 $Si \|\cdot\|$ es una norma en \mathbb{R}^n , entonces

$$||A|| = \max_{\|\mathbf{x}\|=1} ||A\mathbf{x}||$$

es una norma matricial.

Comentario: a una norma matricial definida a partir de una norma de vectores se le denomina norma *inducida* o norma *natural*.

Normas de matrices

Sea $A \in \mathbb{R}^{n \times n}$. Tenemos los siguientes resultados:

a) Sean $\{a_j\}_{j=1}^n \in \mathbb{R}^n$ los vectores **columna** de A.

$$||A||_1 = \max_{1 \le j \le n} ||a_j||_1.$$

Esto es, la 1-norma de una matriz corresponde a la máxima suma de los valores absolutos de las entradas de cada columna.

b) Si denotamos a_i^* a las n filas de A, entonces:

$$||A||_{\infty} = \max_{1 \le i \le n} ||a_i^*||_1.$$

Esto es, la ∞ -norma de una matriz corresponde al máximo de la suma de los valores absolutos de cada fila.

Ejercicio (Normas de matrices)

Determine $||A||_1$ y $||A||_{\infty}$ donde

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & -1 \\ 5 & -1 & 1 \end{pmatrix}$$

Solución:

$$\|A\|_1=6$$

$$||A||_{\infty} = 7$$

Ejercicio (Normas de matrices en Matlab)

El comando norm de Matlab calcula la 2-norma de un vector (o matriz). Además,

- a) norm(v,p) devuelve la p-norma del vector (o matriz).
- b) Note que si p = 2, entonces norm(v) = norm(v, p).
- c) En el comando norm(v,p), p también puede tomar el valor Inf (norma infinito).

Verifique que para

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & -1 \\ 5 & -1 & 1 \end{pmatrix}$$

Se tiene que $||A||_1 = 6$ y $||A||_{\infty} = 7$.

Definición (Radio espectral)

Sean $\lambda_1, \dots, \lambda_n$ valores propios de una matriz A. Entonces su radio espectral $\rho(A)$ se define como

$$\rho(A) = \max_{i=1,\dots,n} \{|\lambda_i|\}$$

Teorema

Sea $\|\cdot\|$ una norma matricial en $\mathbb{R}^{n\times n}$. Entonces para todo $A\in\mathbb{R}^{n\times n}$ se tiene

- $\bullet \|A^k\| \le \|A\|^k$
 - $\rho(A) \le ||A||$

Número de condición

Definición

El número de condición de una matriz A está está dado por

$$\kappa(A) = \|A\| \|A^{-1}\|$$

Se dice que la matriz A es mal condicionada si $\kappa(A)\gg 1$. Es caso contrario se dice que es bien condicionada. Además, el sistema $A\mathbf{x}=\mathbf{b}$ es mal condicionado si la matriz A es mal condicionada.

Métodos: Jacobi y Gauss

Dado un sistema lineal de tamaño $n \times n$ dado por $A\mathbf{x} = \mathbf{b}$, esto es,

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + \cdots + a_{3n}x_n = b_3 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \end{cases}$$

Queremos generar un método iterativo para aproximar la solución ${\bf x}$ a dicho sistema.

El método debe iniciar con una aproximación inicial $\mathbf{x}^{(0)}$ para la solución \mathbf{x} y debe generar una sucesión $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ que sea convergente a \mathbf{x} .

Método de Jacobi

El método de Jacobi se obtiene primeramente despejando cada variable x_i de la ecuación i de la forma

$$x_i = \sum_{\substack{j=1 \ j \neq i}}^n \left(-\frac{a_{ij}x_j}{a_{ii}} \right) + \frac{b_i}{a_{ii}}, \quad \text{para} \quad i = 1, 2, \cdots, n.$$

Note que aquí se requiere imponer la restricción $a_{ii} \neq 0$. Luego, para cada $k \geq 1$, se obtienen las componentes $x_i^{(k)}$ de $\mathbf{x}^{(k)}$ a partir de $\mathbf{x}^{(k-1)}$

$$x_i^{(k)} = rac{1}{a_{ii}} \left[\sum_{\substack{j=1 \ i
eq i}}^n -a_{ij} x_j^{(k-1)} + b_i
ight], \quad ext{ para} \quad i = 1, 2, \cdots, n.$$

Veamos esto con un ejemplo.

Método de Jacobi

Ejemplo

Considere el sistema

$$\begin{cases}
5x - 2y = -2 \\
2x - 8y = 0
\end{cases}$$
(1)

La solución exacta a este sistema está dada por

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -4/9 \\ -1/9 \end{pmatrix} = \begin{pmatrix} -0.\overline{4} \\ -0.\overline{1} \end{pmatrix}.$$

Aplique el método de Jacobi para aproximar la solución utilizando como vector inicial $\mathbf{x}^{(0)} = (0,0)^t$.

Solución:

Solución:

A partir del sistema, se depeja la primera variable de la primera ecuación y la segunda variable de la segunda ecuación:

$$x = \frac{-2}{5} + \frac{2y}{5} = 0x + \frac{2y}{5} - \frac{2}{5}$$
$$y = \frac{0}{(-8)} - \frac{2x}{(-8)} = \frac{x}{4} + 0y + 0,$$

este sistema se puede escribir como sigue:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 2/5 \\ 1/4 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -2/5 \\ 0 \end{pmatrix}. \tag{2}$$

Defina $T=\begin{pmatrix}0&2/5\\1/4&0\end{pmatrix}$ y ${\bf c}=(-2/5,0)^t$. La ecuación (2) sugiere que podemos utilizar la iteración

$$\mathbf{x}^{(k+1)} = T\mathbf{x}^{(k)} + \mathbf{c} \tag{3}$$

para aproximar la solución al sistema (4).

• En la primera iteración, utilizamos $\mathbf{x}^{(0)} = (0,0)^t$ en la ecuación (3) y obtenemos

$$\mathbf{x}^{(1)} = \begin{pmatrix} 0 & 2/5 \\ 1/4 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -2/5 \\ 0 \end{pmatrix} = \begin{pmatrix} -2/5 \\ 0 \end{pmatrix}.$$

• En la segunda iteración, utilizamos $\mathbf{x}^{(1)}=(-2/5,0)^t$ en la ecuación (3) y obtenemos

$$\mathbf{x}^{(2)} = \begin{pmatrix} 0 & 2/5 \\ 1/4 & 0 \end{pmatrix} \begin{pmatrix} -2/5 \\ 0 \end{pmatrix} + \begin{pmatrix} -2/5 \\ 0 \end{pmatrix} = \begin{pmatrix} -2/5 \\ -1/10 \end{pmatrix} = \begin{pmatrix} -0.4 \\ -0.1 \end{pmatrix}.$$

• En la tercera iteración:

$$\mathbf{x}^{(3)} = \begin{pmatrix} 0 & 2/5 \\ 1/4 & 0 \end{pmatrix} \begin{pmatrix} -2/5 \\ -1/10 \end{pmatrix} + \begin{pmatrix} -2/5 \\ 0 \end{pmatrix} = \begin{pmatrix} -11/25 \\ -1/10 \end{pmatrix} = \begin{pmatrix} -0.44 \\ -0.1 \end{pmatrix}$$

De esta forma se puede continuar el procedimiento hasta que la aproximación sea lo suficientemente buena. Se puede utilizar como condición de parada utilizando una tolerancia ε de la siguiente forma

$$\frac{\left\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\right\|_{\infty}}{\left\|\mathbf{x}^{(k)}\right\|_{\infty}} < \varepsilon.$$

Método de Jacobi

El método anterior también se puede escribir como sigue: podemos la matriz A en tres matrices D, L, U, donde la matriz D tiene las entradas diagonales de A, la matriz L es la parte (estrictamente) triangular inferior de A y la matriz U contiene la parte estrictamente triangular superior de A, esto es, A = (D - L - U). Entonces, el procedimiento del ejemplo (4) es equivalente a

$$A\mathbf{x} = \mathbf{b}$$

$$(D - L - U)\mathbf{x} = \mathbf{b}$$

$$D\mathbf{x} = (L + U)\mathbf{x} + \mathbf{b}$$

$$\mathbf{x} = D^{-1}((L + U)\mathbf{x} + \mathbf{b})$$

$$= D^{-1}(L + U)\mathbf{x} + D^{-1}\mathbf{b},$$

entonces, la iteración de Jacobi puede ser escrita de la forma

$$\mathbf{x}^{(k+1)} = D^{-1}(L+U)\mathbf{x}^{(k)} + D^{-1}\mathbf{b}$$
$$= T_J\mathbf{x}^{(k)} + \mathbf{c_J}$$

Ejercicio

Para el sistema

$$\begin{cases}
5x - 2y = -2 \\
2x - 8y = 0
\end{cases}$$
(4)

Dtermine T_J y c_J .

Ejercicio

Encuentre las primeras dos iteraciones del método de Jacobi para el sistema

$$\begin{cases} 3x - y + z = 1 \\ 3x + 6y + 2z = 0 \\ 3x + 3y + 7z = 4 \end{cases}$$
 (5)

utilizando el vector inicial $\mathbf{x}^{(0)} = (0,0,0)^t$.

Método de Gauss-Seidel

El método se basa en la igualdad

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij} x_j^{(k)}) - \sum_{j=i+1}^{n} (a_{ij} x_j^{(k-1)}) + b_i \right], \quad i = 1, 2, \dots, n.$$

En forma matricial, podemos descomponer A=D-L-U y realizar un despeje

$$(D-L)\mathbf{x} = U\mathbf{x} + \mathbf{b}$$
, 'hacia adelante'
 $\mathbf{x} = (D-L)^{-1}U\mathbf{x} + (D-L)^{-1}\mathbf{b}$.

La ecuación anterior sugiere plantear la iteración

$$\mathbf{x}^{(k)} = (D - L)^{-1}U\mathbf{x}^{(k-1)} + (D - L)^{-1}\mathbf{b}.$$
 (6)

Si definimos $T_g=(D-L)^{-1}U$ y $\mathbf{c}_g=(D-L)^{-1}\mathbf{b}$, la ecuación (6) también se puede escribir de la forma $\mathbf{x}^{(k)}=T_g\mathbf{x}^{(k-1)}+\mathbf{c}_g$.

Ejemplo

Aproximar la solución al sistema

$$\begin{cases} 5x - 2y = -2\\ 2x - 8y = 0 \end{cases} \tag{7}$$

utilizando el vector inicial $\mathbf{x}^{(0)} = (0,0)^t$.

Solución:

Ahora vamos a utilizar el método de Gauss-Seidel. Separamos la matriz ${\cal A}$ de la siguiente manera

$$A = \begin{pmatrix} 5 & -2 \\ 2 & -8 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & -8 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ -2 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = D - L - U,$$

luego debemos encontrar explicitamente la matriz D-L y $(D-L)^{-1}$

$$(D-L) = \begin{pmatrix} 5 & 0 \\ 2 & -8 \end{pmatrix} \quad \text{y} \quad (D-L)^{-1} = \frac{1}{40} \begin{pmatrix} 8 & 0 \\ 2 & -5 \end{pmatrix}.$$

De lo anterior tenemos que

$$T_g = (D - L)^{-1}U = \frac{1}{40} \begin{pmatrix} 8 & 0 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2/5 \\ 0 & 1/10 \end{pmatrix}$$
$$\mathbf{c} = (D - L)^{-1}\mathbf{b} = \frac{1}{40} \begin{pmatrix} 8 & 0 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} -2 \\ 0 \end{pmatrix} = \begin{pmatrix} -2/5 \\ -1/10 \end{pmatrix}$$

ullet En la primera iteración, utilizamos $\mathbf{x}^{(0)} = (0,0)^t$ y obtenemos

$$\mathbf{x}^{(1)} = \begin{pmatrix} 0 & 2/5 \\ 0 & 1/10 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -2/5 \\ -1/10 \end{pmatrix} = \begin{pmatrix} -2/5 \\ -1/10 \end{pmatrix}.$$

• En la segunda iteración, utilizamos $\mathbf{x}^{(1)} = (-2/5, -1/10)^t$ en la ecuación (3) y obtenemos

$$\mathbf{x}^{(2)} = \begin{pmatrix} 0 & 2/5 \\ 0 & 1/10 \end{pmatrix} \begin{pmatrix} -2/5 \\ -1/10 \end{pmatrix} + \begin{pmatrix} -2/5 \\ -1/10 \end{pmatrix}$$
$$= \begin{pmatrix} -11/25 \\ -11/100 \end{pmatrix} = \begin{pmatrix} -0.44 \\ -0.11 \end{pmatrix}$$

Ejercicio

Determine las matrices T_g y \mathbf{c}_g del método de Gauss-Seidel para el sistema

$$\begin{cases} 3x - y + z = 1\\ 3x + 6y + 2z = 0\\ 3x + 3y + 7z = 4 \end{cases}$$
 (8)

Convergencia

Teorema

Para cualquier $\mathbf{x}^{(0)} \in \mathbb{R}^n$, la sucesión $\{\mathbf{x}^{(k)}\}_{k=0}^\infty$ definida por

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$$
, para $k \ge 1$

converge a la solución única de $\mathbf{x} = T\mathbf{x} + \mathbf{c}$ si y solo si $\rho(T) < 1$.

Convergencia

Definición

Una matriz $A \in \mathbb{R}^{n \times n}$ se llama estrictamente diagonal dominante por filas si

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|$$

Otros resultados de convergencia son los siguientes:

- Si A es estrictamente diagonal dominante, entonces, las sucesiones obtenidas con el método de Jacobi y Gauss-Seidel convergen.
- ${f 2}$ Si A es simétrica y definida positiva, entonces el método de Gauss-Seidel converge.
- $oldsymbol{3}$ Si tanto A como 2D-A son simétricas y definidas positivas, entonces el método de Jacobi converge.

Método de Sobrerelajación (SOR)

Los métodos de sobrerelajación (de Gauss-Seidel) son utilizados para acelerar convergencia. En resumen, los métodos utilizan un peso $0<\omega<1$ para promediar el valor de $x_i^{(k+1)}$ en cada iteración.

La iteración

$$\begin{cases} \mathbf{x}^{(0)}, \ \omega \in \mathbb{R} - \{0\} \ \text{dados}, \\ \text{para } k = 0, 1, 2, ..., \text{ hacer:} \\ \hat{x}_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right) \\ x_i^{(k+1)} = (1 - \omega) x_i^{(k)} + \omega \hat{x}_i^{(k+1)}, \quad \forall i = 1, 2, ..., n \end{cases}$$

se conoce como iteración de sobrerrelajación hacia adelante.

La iteración

$$\begin{cases} \mathbf{x}^{(0)}, \ \omega \in \mathbb{R} - \{0\} \ \text{dados}, \\ \text{para } k = 0, 1, 2, ..., \ \text{hacer:} \\ \hat{x}_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k+1)} \right) \\ x_i^{(k+1)} = (1 - \omega) x_i^{(k)} + \omega \hat{x}_i^{(k+1)}, \quad \forall i = n, n-1, ..., 1 \end{cases}$$

se conoce como iteración de sobrerrelajación hacia atrás.

Teorema

Si $A \in \mathbb{R}^{n \times n}$ es simétrica y definida positiva y $\omega \in]0,2[$, entonces la iteración SOR converge hacia la solución de $A\mathbf{x} = \mathbf{b}$, para todo $\mathbf{x}^{(0)}, \mathbf{b} \in \mathbb{R}^n$.

Sistemas no lineales: Método de Newton

Considere el sistema de ecuaciones (no lineales)

$$x_1^2 - x_2^2 = -2x_2$$
$$2x_1 + x_2^2 = 6$$

Dos soluciones (aproximadas) a este sistema son (0.625204094,2.179355825) y (2.109511920,-1.334532188). Este sistema se puede expresar también de la forma

$$F(\mathbf{x}) = \begin{cases} f_1(x_1, x_2) &= x_1^2 - x_2^2 + 2x_2 = 0\\ f_2(x_1, x_2) &= 2x_1 + x_2^2 - 6 = 0 \end{cases}$$

Nos referimos el sistema de ecuaciones como $F(\mathbf{x}) = \mathbf{0}$, donde $F: \mathbb{R}^2 \to \mathbb{R}^2$. Podemos aproximar la solución de este sistema con el método de Newton multivariable.

Definición

Sea $F: \mathbb{R}^n \to \mathbb{R}^n$. La recursión definida por

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - [J_f(\mathbf{x}^{(k)})]^{-1} F(\mathbf{x}^{(k)}), \quad k = 0, 1, 2, \dots$$

donde $\mathbf{x}^{(0)} \in \mathbb{R}^n$ es el método de Newton para el sistema $F(\mathbf{x}) = 0$.

Note que se asume que $J_f(\mathbf{x}^{(k)})$ existe y es no singular para cada $k=0,1,2,\ldots$ La matriz jacobiana en el punto \mathbf{x} está dada por

$$J_f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_n(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

Teorema

Sea $F: \mathbb{R}^n \to \mathbb{R}^n$ y suponga que

- $\mathbf{0}$ $F(\mathbf{c}) = 0$, F está definida y es continua en un vecindario de \mathbf{c} ,
- 2 las derivadas parciales de F están definidas y son continuas,
- $oldsymbol{\circ}$ la matriz jacobiana $J_f(\mathbf{c})$ es no singular, entonces la sucesión $\mathbf{x}^{(k)}$ definida por el método de Newton converge a la solución \mathbf{c} para $\mathbf{x}^{(0)}$ sufientemente cerca de \mathbf{c} y la convergencia es cuadrática.

Ejercicio

Considere el sistema

$$x_1^2 - x_2^2 = -2x_2$$
$$2x_1 + x_2^2 = 6$$

Utilice el método de Newton con $\mathbf{x}^{(0)} = (0,0)^t$ para calcular $\mathbf{x}^{(1)}$ y $\mathbf{x}^{(2)}$.

```
% Ejemplo: Newton en dos variables: se necesita F, JF, v (aprox. i
clearvars
F = \hat{a}(x_1,x_2) [x_1^2 - x_2^2 + 2^*x_2; 2^*x_1 + x_2^2 - 6];
J = \Omega(x1,x2) [2*x1 - 2*x2 + 2; 2 2*x2]; % Jacobiano
V = [1; 1]; % [-4; -5]; % Condicion Inicial
tol = 10^{-6};
iterMax = 10;
error = 1; % error en la aprox.
k = 1; % contador
while (error > tol) && (k <= iterMax)
      vaux = v - J(v(1), v(2)) \setminus F(v(1), v(2));
      error = norm(vaux-v, Inf); % norma infinito
      v = vaux;
      if (k==iterMax)
           fprintf("Máximo de iteraciones excesido %3d \n", k)
      end
      k= k+1;
end
disp(v)
disp(k)
```