Appl. No. 10/085,809 Atty. Docket No.: 1998B014E

Prelim. Amdt. dated July 14, 2006

Reply to Final Office Action of June 22, 2006

Amendments to the Claims:

This listing of claims will replace all prior versions and listing of claims in this application.

Listing of Claims:

- 1-6. (Cancelled)
- 7. (Previously Presented): A process of converting a loop reactor into multiple loop reactors comprising:

starting with a loop reactor comprising at least eight vertical legs; at least two non-vertical conversion runs, each non-vertical run connected in fluid flow communication with two vertical legs; at least two feed inlets; and at least two continuous discharge conduits;

disconnecting at least one connection of each conversion run; and

reconnecting each conversion run in fluid flow communication with a different vertical leg in such a manner to form multiple loop reactors each having at least one feed inlet and at least one continuous discharge conduit.

- 8. (Original): The process of claim 7, wherein the multiple loop reactors comprise two loop reactors in series formed by connecting at least one discharge conduit of a first of the multiple reactors in fluid flow communication with a feed inlet of a second of the multiple reactors.
- 9. (Original): The process of claim 7, wherein at least one of the conversion runs is a bottom run.
- 10. (Original): The process of claim 9, wherein the conversion runs are both bottom runs.
- 11. (Original): The process of claim 10, wherein at least two of the conversion runs are located parallel and adjacent to each other on the loop reactor before being disconnected.
- 12. (Original): The process of claim 7, wherein at least one of the conversion runs is a top run.
- 13. (Original): The process of claim 12, wherein the conversion runs are both top runs.
- 14. (Original): The process of claim 7, wherein at least one of the at least two continuous discharge conduits is located in a bottom run other than a conversion run.

Appl. No. 10/085,809

Atty. Docket No.: 1998B014E Prelim. Amdt. dated July 14, 2006

Reply to Final Office Action of June 22, 2006

15. (Original): The process of claim 14, wherein at least two of the at least two continuous

discharge conduits are located at bottom runs other than conversion runs.

16. (Original): The process of claim 7, wherein at least one of the at least two feed inlets is

located at a bottom run other than the conversion runs.

17. (Original): The process of claim 16, wherein at least two of the at least two feed inlets are

located at bottom runs other than the conversion runs.

18. (Original): The process of claim 7, wherein the multiple loop reactors comprise first and

second reactors each having at least one feed inlet and at least one continuous discharge conduit.

19. (Original): The process of claim 18, wherein at least one discharge conduit of one of the

reactors is in fluid flow communication with at least one feed inlet of the other reactor.

20. (Original): The process of claim 18, wherein the first and the second reactor each has at least

one catalyst inlet and at least one circulator.

21. (Original): The process of claim 7, wherein at least one multiple loop reactor has at least one

feed inlet for feeding at least one of monomer, co-monomer, co-catalyst, diluent, polymer

modifier, or mixtures thereof.

22. (Original): The process of claim 7, wherein the at least two conversion runs have

substantially equal length.

23. (Previously Presented): The process of claim 19, wherein at least one of the reactors has at

least one feed inlet for feeding at least one of monomer, co-monomer, co-catalyst, diluent,

polymer modifier, or mixtures thereof.

24. (Previously Presented): The process of claim 8, wherein the two loop reactors have

substantially the same volume.

25. (Previously Presented): The process of claim 8, wherein the two loop reactors have unequal

volumes.

Appl. No. 10/085,809 Atty. Docket No.: 1998B014E Prelim. Amdt. dated July 14, 2006 Reply to Final Office Action of June 22, 2006

26-28. (Cancelled)

29. (New) A process of converting a loop reactor into multiple loop reactors consisting essentially of:

starting with a loop reactor comprising at least eight vertical legs; at least two non-vertical conversion runs, each non-vertical run connected in fluid flow communication with two vertical legs; at least two feed inlets; and at least two continuous discharge conduits;

disconnecting at least one connection of each conversion run; and

reconnecting each conversion run in fluid flow communication with a different vertical leg in such a manner to form multiple loop reactors each having at least one feed inlet and at least one continuous discharge conduit.