Theoretical computer science

Ttutorial - week 8

March 11, 2021

nvoboriz

Agenda

Operations on DPDA

▶ Union

- Union
- ► Intersection

- ► Union
- Intersection
- Difference

- ► Union
- ► Intersection
- Difference
- ► Complement

Suppose L_1 and L_2 are both languages over the alphabet A. If $x \in A^*$, then knowing whether $x \in L_1$ and whether $x \in L_2$ is enough to determine whether $x \in L_1 \cup L_2$.

Suppose L_1 and L_2 are both languages over the alphabet A. If $x \in A^*$, then knowing whether $x \in L_1$ and whether $x \in L_2$ is enough to determine whether $x \in L_1 \cup L_2$. If we have one algorithm to accept L_1 and another to accept L_2 , how can we formulate an algorithm to accept

▶ $L_1 \cup L_2$?

Suppose L_1 and L_2 are both languages over the alphabet A. If $x \in A^*$, then knowing whether $x \in L_1$ and whether $x \in L_2$ is enough to determine whether $x \in L_1 \cup L_2$. If we have one algorithm to accept L_1 and another to accept L_2 , how can we formulate an algorithm to accept

- $ightharpoonup L_1 \cup L_2$?
- $ightharpoonup L_1 \cap L_2$?

Suppose L_1 and L_2 are both languages over the alphabet A. If $x \in A^*$, then knowing whether $x \in L_1$ and whether $x \in L_2$ is enough to determine whether $x \in L_1 \cup L_2$. If we have one algorithm to accept L_1 and another to accept L_2 , how can we formulate an algorithm to accept

- $ightharpoonup L_1 \cup L_2$?
- $ightharpoonup L_1 \cap L_2$?
- $ightharpoonup L_1 \backslash L_2$?

Suppose A and B are both languages over the alphabet $\Sigma = \{a, b, c\}$:

$$AnBn = \{a^n b^n | n \ge 1\}$$

$$AnB2n = \{a^n b^{2n} | n \ge 1\}$$

What is the language recognized by $AnBn \cup AnB2n$?

Suppose A and B are both languages over the alphabet $\Sigma = \{a, b, c\}$:

$$AnBn = \{a^nb^n|n \ge 1\}$$

$$AnB2n = \{a^nb^{2n}|n \ge 1\}$$

What is the language recognized by $AnBn \cup AnB2n$?

$$AnBn \cup AnB2n = \{a^n b^n | n \ge 1\} \cup \{a^n b^{2n} | n \ge 1\}$$

This language cannot be recognized by DPDA, thus the class of languages recognized by PDA is not closed under intersection

AnBn

AnB2n

AnBn ∪ AnB2n (non-deterministic)

Suppose A and B are both languages over the alphabet

$$\Sigma = \{a, b, c\}$$
:

$$A = \{a^n b^n c^m | n, m \ge 0\}$$

$$B = \{a^m b^n c^n | n, m \ge 0\}$$

What is the language recognized by $A \cap B$?

Suppose A and B are both languages over the alphabet $\Sigma = \{a, b, c\}$:

$$A = \{a^n b^n c^m | n, m \ge 0\}$$

$$B = \{a^m b^n c^n | n, m \ge 0\}$$

What is the language recognized by $A \cap B$?

$$A \cap B = \{a^n b^n c^n | n \ge 0\}$$

This language cannot be recognized by DPDA, thus the class of languages recognized by PDA is not closed under intersection

Suppose A and B are both languages over the alphabet $\Sigma = \{a, b, c\}$:

$$A = \{a^n b^n c^m | n, m \ge 0\}$$
$$B = \{a^m b^n c^n | n, m > 0\}$$

For complement, note that $A \cap B = \overline{\overline{A} \cup \overline{B}}$

- ► If context-free languages were closed under complement, they would also be closed under intersection
- Therefore context-free languages are not closed under complementation because they are not closed under intersection

Languages accepted by Deterministic PDA have closure under ...?

► Union -

- Union not closed
- Intersection -

- Union not closed
- Intersection not closed
- Difference -

- Union not closed
- Intersection not closed
- Difference not closed
- Complement -

- Union not closed
- Intersection not closed
- Difference not closed
- Complement closed

Wrap up

▶ What have you learnt today?

Wrap up

- ► What have you learnt today?
- ▶ What for this could be useful?