Visualizing and Predicting Trends in Clinical Trials: A Deployed Dashboard Using Clinical Trial Data

Team: Mission Possible Can Wang, Xiao Wu, Xindi Shan

Background

Exploring and predicting clinical trial trend - why it matters?

- Identifying patterns aids in **policy-making** and **research prioritization**
- Provide **foresight** for researchers, drug developers and healthcare providers
- Support stakeholders in regulatory decisions and funding allocations.

ClinicalTrial.gov

- An online database of clinical research studies
- Over 500,000 registered clinical trials across
 200+ countries starting from 1982

Related Work in Clinical Trial Dashboards

Geographic distribution of EEG-related clinical trials (1)

Trends of Interventional Trials 2008-2017 (2)

Summary statistics provided by ClinicalTrial.gov (3)

^{1.} Tibbs, Sheri . 2017. "Where are EEG-related Clinical Trials Being Conducted?." Ctti-Clinicaltrials.org. 2017. https://aact.ctti-clinicaltrials.org/use_cases/3.

^{2.} Karen Chiswell. 2022. "GitHub - Ctti-Clinicaltrials/Aact: Improving Public Access to Aggregate Content of ClinicalTrials.gov." GitHub. June 10, 2022. https://github.com/ctti-clinicaltrials/aact. "ClinicalTrials.gov." 2024. Clinicaltrials.gov. https://clinicaltrials.gov/about-site/trends-charts.

Limitations of Existing Tools and Our Approach

Limitations of Current Tools

- Lack of **comprehensive**, **and user-friendly** tools for dynamic trend exploration.
- Relying on **outdated** data

Our Approach

- Using **up-to-date** data from ClinicalTrials.gov
- Developing an interactive and intuitive dashboard
- Providing **dynamic visualizations** based on:
 - Disease type, trial phase and trial location
- Making **prediction** based machine learning algorithm

Research Goal

What are the trends in the number clinical trials conducted across different countries, disease types and phases, and how do they change over time?

Data Source and Preprocessing

PostgreSQL AACT Database (1)

- Contains all information about every study registered in ClinicalTrials.gov
- Processed and queried using R

Data overview

- 51 tables in total
 Shown on the right is a part of the "Study" table (2)
- Missing values

Study	
nct_id	string
nlm_download_date_description	string
study_first_submitted_date	date
results_first_submitted_date	date
disposition_first_submitted_date	date
last_update_submitted_date	date
study_first_submitted_qc_date	date
study_first_posted_date	date
study_first_posted_date_type	string
results_first_submitted_qc_date	date

Key variables include

Trial ID, Start Date, Phase,
 Disease, Countries

Filtering for trials

- Conducted in the past 10 years
- Top 10 most popular diseases
- Top 10 most popular countries
- Trials with **no missing value** in selected variables

^{1.} AACT Database | Clinical Trials Transformation Initiative." n.d. Aact.ctti-Clinicaltrials.org. https://aact.ctti-clinicaltrials.org/

^{2.} Adopted from https://aact.ctti-clinicaltrials.org/schema

Paradigm Integration

- Parallel computing
- Machine learning

Machine Learning Paradigm

Data Structure

- 1. Initial Wide Format
- 2. Transformation to Long Format
- 3. Model Matrix Creation

- Time series structure (year)
- Simple numeric target (trial_count)
- Single category predictor (country/disease/phase)

Machine Learning Paradigm

Model: LASSO

WHY LASSO?

- Good for numeric predictions (trial_count)
- Handles time patterns well (trends over years)
- Prevents overfitting through regularization (future predictions)
- Simple to interpret results (stakeholders can understand output)

EFFECTIVITY?

Results Show Success:

• Country model:

 $R^2 = 0.978$; MAE: 22.85 trials

• Disease model:

 $R^2 = 0.752$; MAE: 16.33 trials

• Phase model:

 $R^2 = 0.986$; MAE: 24.50 trials

Parallel Computing Paradigm

Code Implementation: doParallel

- Ease of use
- Direct compatibility with *glmnet*
- Works better with **foreach** loops (1)

```
```{r}
Setup parallel processing
n_cores <- detectCores() - 1
 # Using all cores except one
cl <- makeCluster(n_cores)</pre>
registerDoParallel(cl)
Used in cross-validation
cv_fit <- cv.glmnet(</pre>
 x = X_{train}
 y = y_{train}
 alpha = 1,
 nfolds = 5,
 parallel = TRUE
 # Key parameter for parallel processing
Clean up after use
stopCluster(cl)
```

### Parallel Computing Paradigm

## Parallel Computing

### **EFFECTIVITY**



- Reduced **computation time** by distributing work across cores
- Handled **multiple cross-validation** folds simultaneously
- Enabled efficient **lambda** parameter search
- Made training of **three separate models** more efficient





## DASHBOARD

- Panel 1: Interactively display trial counts trends in line graph by disease, country and phase.
- Panel 2: Interactively predict trial counts in the future by disease/country/phase.
- Panel 3: Interactively display filtered trial records.

#### Clinical Trials Dashboard



Overview of the dashboard

#### Clinical Trials Dashboard



Overview of the dashboard

## Summary of the dashboard



## Functionality

Display **descriptive trends** of clinic trials, **predict** future trends and provide **search function** by different conditions.

### Usability

The functions are **interactive** and **easy to use**. Figures are clear with titles and legends. Information of predicting models are displayed.

## Summary of the dashboard



## Originality and complexity

Use up-to-date data, combine the descriptive data and predicting model results, and provide an overview of trends in clinical trials.

## Consistency with original goal

We constructed the clinical trial dashboard as planned. However,

- Fewer vairables were used for better visualization and ML model building.
- LASSO model was chosen as the final model.

# THANK YOU FOR WATCHIG



Q & A?

