

Implementierung eines neuronalen Netzwerkes zur Zeichenerkennung in SetIX

Studienarbeit

Studiengang Angewandte Informatik

Duale Hochschule Baden-Württemberg Mannheim

von
Lucas Heuser und Johannes Hill

Bearbeitungszeitraum:

Matrikelnummer, Kurs:

Ausbildungsfirma:

Abteilung:

Betreuer der DHBW-Mannheim:

D5.09.2016 - 29.05.2017

-, TINF14AI-BI

Roche Diagnostics GmbH, Mannheim

Scientific Information Services

Prof. Dr. Karl Stroetmann

Unterschrift des Betreuers

Eidesstattliche Erklärung

Hiermit erkläre ich,	dass ich die vorliege	ende Arbeit mit o	lem Thema	
Implementier	ung eines neuronalen	Netzwerkes zur	Zeichenerkennung in	SetIX

selbstständig und ohne Benutzung anderer als der angegebenen Quellen und Hilfs-mittel angefertigt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten und nicht veröffentlich-ten Schriften entnommen wurden, sind als solche kenntlich gemacht.

Die Arbeit ist in gleicher oder ähnlicher Form oder auszugsweise im Rahmen einer anderen Prüfung noch nicht vorgelegt worden.

Mannheim, den 28. November 2016	
Lucas Heuser	Johannes Hill

Inhaltsverzeichnis

1	Einle	e <mark>itung</mark>
	1.1	Überblick über die Vorlesung
		Ziel der Vorlesung
		Notation
		Eine Bitte

Abbildungsverzeichnis

Kapitel 1

Einleitung

Der vorliegende Text ist das Skript zu meiner Analysis-Vorlesung für Informatiker. Ich habe mich bei der Ausarbeitung dieser Vorlesung im wesentlichen auf die folgenden Lehrbücher gestützt:

- 1. Analysis I von Otto Forster [?].
- 2. Differential- und Integralrechnung I von Hans Grauert und Ingo Lieb [?].
- 3. Differential and Integral Calculus, Volume 1 von Richard Courant [?].
- 4. Advanced Calculus von Richard Wrede und Murray R. Spiegel [?].

Den Studenten empfehle ich das erste Buch in dieser Liste, denn dieses Buch ist auch in elektronischer Form in unserer Bibliothek vorhanden. Bei dem Buch von Richard Courant ist das Copyright mittlerweile abgelaufen, so dass Sie es im Netz unter

https://archive.org/details/DifferentialIntegralCalculusVolI

finden können. Schließlich enthält das Buch von Wrede und Spiegel eine Vielzahl gelöster Aufgaben und bietet sich daher besonders zum üben an.

1.1 Überblick über die Vorlesung

Im Rahmen der Vorlesung werden die folgenden Gebiete behandelt:

- 1. Da sich die Analysis mit den reellen Zahlen beschäftigt, beginnen wir damit, dass wir die Menge ℝ der reellen Zahlen zunächst axiomatisch als vollständig geordneten Körper charakterisieren und dann die Menge ℝ mit Hilfe von Dedekindschen-Schnitten definieren. Aus Zeitgründen werden wir die Diskussion der Dedekindschen-Schnitte allerdings nur anreißen können.
- 2. Anschließend führen wir den für den Rest der Vorlesung grundlegenden Begriff des *Grenzwerts* einer *Folge* ein. Wir werden beispielsweise sehen, dass die Folge (b_1, b_2, b_3, \cdots) , die induktiv durch

$$b_1:=1 \quad \text{ und } \quad b_{n+1}:=\frac{1}{2}\cdot \left(b_n+\frac{2}{b_n}\right) \text{ für alle } n\in \mathbb{N}$$

definiert ist, gegen die Zahl $\sqrt{2}$ konvergiert. Im Anschluss daran betrachten wir Reihen. Wir werden beispielsweise sehen, dass für reelle Zahlen q, für die |q| < 1 ist, die Gleichung

$$\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$$

gilt.

- 3. Das vierte Kapitel diskutiert die Begriffe Stetigkeit und Differenzierbarkeit.
- 4. Das fünfte Kapitel zeigt verschiedene Anwendungen der bis dahin dargestellten Theorie. Insbesondere werden *Taylor-Reihen* diskutiert. Diese können beispielsweise zur Berechnung der trigonometrischen Funktionen verwendet werden. So werden wir beispielsweise sehen, dass wir für eine reelle Zahl x den Wert $\sin(x)$ durch den Ausdruck

$$\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2 \cdot n + 1}}{(2 \cdot n + 1)!} = x - \frac{1}{3!} \cdot x^3 + \frac{1}{5!} \cdot x^5 \mp \cdots$$

berechnen können. Außerdem diskutieren wir in diesem Kapitel Verfahren zur numerischen Lösung von Gleichungen. Beispielsweise zeigen wir, wie wir die Gleichung

$$\cos(x) = x$$

numerisch mit Hilfe einer Fixpunkt-Iteration lösen können.

- 5. Das sechste Kapitel beschäftigt sich mit der Integralrechnung.
- 6. Im siebten Kapitel zeigen wir, dass die Kreiszahl π und die eulersche Zahl e keine rationalen Zahlen sind.
- 7. Im achten Kapitel diskutieren wir Fourier-Reihen. Unter anderem werden wir zeigen, dass

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

gilt. Fourierreihen sind eine der Grundlage der Theorie der digitalen Signalverarbeitung.

8. Das letzte Kapitel gibt einen kurzen Ausblick auf Rundungs-Fehler.

1.2 Ziel der Vorlesung

Es ist nicht möglich, im zeitlichen Rahmen der Vorlesung alle Aspekte der Analysis zu behandeln. Insbesondere werden wir viele interessante Anwendungen der Analysis in der Informatik nicht diskutieren können. Eine vollständige Darstellung der Analysis ist aber auch gar nicht das Ziel, das ich mir für diese Vorlesung gesetzt habe: Mir geht es vor allem darum, Ihnen die Fähigkeit zu vermitteln, sich selbstständig in mathematische Fachliteratur einarbeiten zu können. Dazu müssen Sie in der Lage sein, mathematische Beweise sowohl zu verstehen als auch selber entwickeln zu können. Dies ist ein wesentlicher Unterschied zu der Mathematik, an die sich viele von Ihnen auf der Schule gewöhnt haben: Dort werden primär Verfahren vermittelt, mit denen sich spezielle Probleme lösen lassen. Die Kenntnis solcher Verfahren ist allerdings in der Praxis nicht mehr so wichtig wie früher, denn heutzutage werden solche Verfahren als Software-Pakete implementiert und daher besteht kaum mehr Bedarf dafür, diese Verfahren von Hand anzuwenden. Statt dessen wird in dieser Vorlesung der mathematische Beweis-Begriff im Vordergrund stehen. Die Analysis dient uns daher vor allem als ein Beispiel einer mathematischen Theorie, anhand derer wir das mathematische Denken üben können.

1.3 Notation

In diesem Skript definieren wir die Menge der natürlichen Zahlen $\mathbb N$ über die Formel

$$\mathbb{N} := \{1, 2, 3, \dots \}.$$

Weiter definieren wir

$$\mathbb{N}_0 := \{0\} \cup \mathbb{N}.$$

Im übrigen schließt dieses Skript an mein Skript zur linearen Algebra an und verwendet die selben Notationen, die ich dort zur Definition von Mengen eingeführt habe.

1.4 Eine Bitte

Dieses Skript enthält sicher noch den einen oder anderen Fehler. Sollte Ihnen ein Fehler auffallen, so bitte ich um einen Hinweis unter der Adresse

karl.stroetmann@dhbw-mannheim.de.

Es bringt mir wenig, wenn Sie mich innerhalb meiner Vorlesung auf einen Tipp- oder Rechtschreibfehler hinweisen, denn bis ich dazu komme, einen solchen Fehler zu korrigieren, habe ich ihn meistens schon wieder vergessen. Daher habe ich die Bitte, dass Sie mir etwaige Fehler per Email mitteilen. Wenn Sie mit github vertraut sind, können Sie mir auch gerne einen *Pull Request* schicken.