Algorithms and their Applications CS2004 (2020-2021)

Dr Mahir Arzoky

9.1 Search Algorithms, Representation, Fitness and Fitness Landscapes

Notices

Basic Java Programming Tutorials...

CodeRunner Tests So Far...

☐ Class Test CRI Only 133 attempted the test ☐ Class Test CRII 34 students attempted the test ☐ The four class tests' marks will be averaged to give the mark for Task #1 ☐ All class tests must be passed to pass Task #1 ☐ Task #1 weighs 30% of the coursework aspect of the module ☐ If you have not passed Task #1, you can still attempt Task #2 but you will be capped at Dgrade

Previously On CS2004...

□ So far we have looked at:
 □ Concepts of Computation and Algorithms
 □ Comparing algorithms
 □ Some mathematical foundation
 □ The Big-Oh notation
 □ Computational Complexity
 □ Data structures
 □ Sorting Algorithms
 □ Various graph traversal algorithms

Search and Fitness

☐ Within this lecture we are going to look in more detail about the concepts of search and fitness ☐ This starts the "second" half of the module where we look at: ☐ Heuristics Approximation algorithms ☐ Natural (nature inspired) computation Applications

The Classes of Algorithms - Recap

NP-Hard Problems - Recap

- ☐ It is a class of problems that can not be solved in the 'traditional' way
- ☐ Typically these problems:
 - \square Have a "best known" computational complexity in exponential time, e.g. $O(n)=2^n$
 - ☐ E.g. 2¹=2, 2¹⁰=1024, 2⁹⁵= 39,614,081,257,132,168,796,771,975,168
 - ☐ They have no direct analytical solution
- ☐ Thus, we may have to approximate a solution to them

Definition of a Search Problem

☐ For some problems we need to search for a solution from a (usually) very large number of possibilities
Search problems, i.e. searching for the answer in some solution space
The solution spaces for many every day problem can be very, very large, too large to search exhaustively
☐ The search algorithm may not find the optimal solution to the problem, however, it will give a good solution in reasonable time
We often need special search algorithms known as meta-heuristics

What is a Heuristic?

A heuristic is a "rule of thumb" or some loose set
of guidelines
That may find a solution (but not guaranteed)
E.g. getting out of a maze by keeping your hand against the maze wall
☐ In Artificial Intelligence these are used to improve the performance of methods, in our case, search methods
☐ Expert knowledge
☐ Common sense
☐ We will look into specific methods later

Search Problems

■ Many problems can be thought of as searching through candidate solutions to find one that is optimal Systematically search through potential solutions without considering all of them... ■ We need some way to evaluate the fitness of the candidate solutions ☐ Optimal = the fittest = the best etc... ☐ Also some sense of the adjacency (similarity) of solutions (or neighbourhood)

Fitness

☐ In order to search for a solution we must be able to compare potential solutions \square E.g. Is solution s_1 better than solution s_2 ? ☐ Thus we have the concept of fitness ■ We must derive a function (the **fitness / objective** function) that maps a solution to a value that rates how good the solution solves the problem in hand ☐ We either try and **maximise** or **minimise** the fitness A slight change in solution quality should result in a corresponding change in the fitness \square Solution quality goes down \rightarrow Fitness goes down (decreases) \square Solution quality goes up \rightarrow Fitness goes up (increases)

- ☐ It can be **helpful** to think of searching a landscape of solutions where:
 - \Box The x and y co-ordinates represent a particular solution
 - \Box Altitude (z axis) represents the fitness of that solution
- ☐ This leads to the analogy that we wish to search for or climb peaks (or descend...)
- ☐ Describing the nature of a landscape characterises (in an abstract way) classes of problems

- ☐ The collection of all possible solutions can be considered as a high dimensional space, called the search space or fitness landscape
 - ☐ Each point in the search space represents one possible solution
- ☐ Often some concept of distance between solutions exists and some concept of how "good" each point in the search space is (fitness/objective function)
- ☐ Techniques exist to map a high dimensional space to a two dimensional space so we can plot the space/landscape (we will not be covering these!)

☐ Smooth and regular spaces are easy to search

The *x* and *y* coordinates represent a particular solution

Altitude (z axis) represents the fitness of that solution

☐ Irregular spaces are difficult to search

Global and Local Optima – Part 1

☐ The **global optimum** is the point or points in the search space with the best objective function evaluation A local optimum is the point or points in a subset or section of the search space with the best objective function evaluation ☐ Note that the subset or section of the search space in question may contain the global optima ☐ Many search techniques can find local optima, but get "stuck" at them and cannot move on to find the global optima ☐ E.g. Random Mutation Hill Climbing [we will cover next week...]

Global and Local Optima – Part 2

Representation

When we are trying to solve a search based problem we need a way to represent a potential solution
☐ This is usually a mathematical and/or data structure based way of describing the solution to a problem
☐ A good representation:
Should be a one to one mapping
■ No redundancy
No ambiguities
All potential solutions should be represented

The Scales Problem

- ☐ We are going to spend some time looking at a particular problem in detail
- ☐ We are going to design the fitness function for this problem and use it in a number of worksheet exercises
- ☐ The aim is to see how a number of different heuristic search methods perform against this problem

The Scales Problem

Given n objects of various weights,

split them into two equally heavy piles

(or as equal as possible)

Scales – Part 1

- \square We have n weights that are $W = [w_1, w_2, ..., w_n]$ in weight, $w_i > 0$
- ☐ We want to divide them into two equal in weight, or as equal as possible piles
- \Box We are going to work with the general case, not a specific set of given weights, we want to solve the problem for any W

Scales – Part 2

■ We first look to see if there is a simple or standard method to solve the problem ■ Do not reinvent the wheel! ☐ For this example problem, there is not! ■ We then need to: Design a representation Construct a fitness function Apply a heuristic search method

Scales – Representation – Part 1

$lue{}$ Each weight (w_i) is either on the left hand side or the right hand side
\Box Given that we have n items into two piles/sets we could use a binary representation
\square We represent a solution as an n length binary string (or array/vector/list) where:
\square A zero (0) in position i means that weight i is on the left side of the scales
\square A one (1) in position i means that weight i is on the right side of the scales
This can represent all possible allocations
$lacktriangle$ We will refer to this string as S and each bit as s_i
\Box If s_i = 0 then weight i is on the left hand side pan/scale
\Box If $s_i = 1$ then weight i is on the right hand side pan/scale

Scales – Representation – Part 2

Scales – Fitness – Part 1

- We now need to design an appropriate fitness function
- ☐ This function should score how good a solution (a binary string) is at solving our problem
- ☐ What's the aim of the problem?
 - ☐ Equal balancing (or as near as possible)
- ☐ Balanced would be when the sum of the weights on the left hand side (LHS) of the scales equals the sum of the right hand side (RHS)

Scales – Fitness – Part 2

- ☐ The worse this difference is the worse our solution is at solving the problem
- ☐ What is the best fitness?
 - ☐ Zero (balanced)
- ☐ How about the worst fitness?
 - ☐ When all the weights are on either the left hand side or right hand side
- ☐ Thus, this is a **minimisation** problem
- \Box Let L = Sum of LHS weights
- \Box Let R = Sum of RHS weights
- \Box Fitness = |L-R|
 - Why take the absolute value?

Scales – Fitness – Part 3

So our fitness function will take two parameters
 □ A potential solution – binary string of length n
 □ A set of weights – a real vector/array of length n
 □ It will then return a real number
 □ Each weight w_i will either be added onto the left hand side L or the right hand side R
 □ So we can iterate through each weight adding it to L or R depending on what side of the scales the representation specifies the weight is on

The Fitness Function for Scales

```
Algorithm 1. ScalesFitness(S,W)
Input: S - a binary string of length n
        W - a real vector/array of weights of length n
1) Let L = 0 +
                                      <del>---</del> Initialise L and R
2) Let R = 0
3) For i = 1 to n
                                     — Iterate through all weights
      If s_i = 0 then
4)

    Check which side

          Let L = L + w_i
5)
6)
      Else
                                           Add to left side
          Let R = R + w_i
7)
8)
                                              Add to right side
      End If
9) End For
Output: |L-R| - the difference in weight between sides
                                      Return difference
```

Scales Fitness – Example – Part 1

- ☐ So imagine we have five weights
- \square W={1,2,3,4,10}
- $\square w_1=1, w_2=2, w_3=3, w_4=4, w_5=10$
- \square Some example fitness (F):
 - \Box S=11111
 - \Box L=0, R=1+2+3+4+10=20, F=|0-20|=20
 - \Box S=10101
 - \Box L=2+4, R=1+3+10, F=|6-14|=8

Scales Fitness – Example – Part 2

$$\square$$
 W={1,2,3,4,10}

$$\square w_1=1, w_2=2, w_3=3, w_4=4, w_5=10$$

 \Box S=01010

$$\Box$$
 L=1+3+10=14, R=2+4=6, F=|14-6|=8

- \Box S=11110
 - \Box L=10, R= 1+2+3+4=10, F=|10-10|=0

Scales – What Next?

■ We have a representation We have a fitness function ☐ We now want to search through a number of possible S until we find the best one \square I.e. When F(S,W)=0(or as close to zero as possible) ☐ We therefore need to apply an appropriate heuristic search method ☐ Random Mutation Hill Climbing, Stochastic Hill Climbing, Random Restart Hill Climbing, Simulated Annealing, Genetic Algorithms, Particle Swarm Optimisation, Tabu-Search, Iterated Local Search, Evolutionary Programming, etc... ☐ We will cover all of these (and more)!!!

This Week's Laboratory

- ☐ You will be implementing the Scales Fitness Function
- ☐ This laboratory is **VERY** important, it is needed for several of future worksheets
- ☐ It is important to get this right!

Next Lecture

- ☐ We will be looking at some Heuristic search algorithms
- ☐ We will apply them to the **Scales** problem...