Amendments to the Specification

Please amend the paragraph starting on page 19, line 21, as follows:

The phosphine groups preferably contain two identical or different, preferably identical unsubstituted or substituted hydrocarbon radicals with 1 to 20, preferably 1 to 12 carbon atoms. Of the ditertiary diphosphines the ones that are especially preferred are those in which the two phosphine groups are two identical or different radicals selected from the group comprising linear or branched C₁-C₁₂ alkyl; C₅-C₁₂ cycloalkyl, C₅-C₁₂ cycloalkyl-CH₂-, phenyl or benzyl, unsubstituted or substituted with C₁-C₆ alkyl or C₁-C₆ alkoxy; or contain phenyl or benzyl substituted with halogen (for example F, Cl and Br), C₁-C₆ alkyl, C₁-C₆ haloalkyl (for example trifluoromethyl), C₁-C₆ alkoxy, C₁-C₆ haloalkoxy (for example trifluoromethoxy), (C₆H₅)₃Si, (C₁-C₁₂ alkyl)₃Si, -NH₂, -NH(C₁-C₁₂ alkyl), -NH(phenyl), -NH(benzyl), -N(C₁-C₁₂ alkyl)₂, -N (phenyl)₂, -N(benzyl)₂, morpholinyl, piperidinyl, pyrrolidinyl, piperazinyl, -ammonium-X₃-, SO₃M₁, -CO₂M₁, <u>-PO₃(M₁)</u>₂ -PO₄M₁, or -CO₂-C₁-C₆ alkyl (for example -CO₂CH₃), where M₁ represents an alkali metal or hydrogen, and X₃⁻ is the anion of a monobasic acid. M₁ preferably stands for H, Li, Na and K. X₃⁻ represents the anion of a monobasic acid, preferably Cl⁻, Br⁻, or the anion of a monocarboxylic acid, for example formiate, acetate, trichloroacetate or trifluoroacetate.

Please amend the paragraph starting on page 21, line 10, as follows:

The diphosphines preferably satisfy formula IV,

 $R_4R_5P-R_6-PR_7R_8$

(IV),

in which

R₄, R₅, R₇ and R₈ independently of one another represent a hydrocarbon radical with 1 to 20 carbon atoms which are unsubstituted or substituted with halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C_1-C_6 -alkoxy, C_1-C_6 -haloalkoxy, $(C_6H_5)_3Si$, $(C_1-C_{12}$ -alkyl) $_3Si$, $-NH_2$, $-NH(C_1-C_{12}$ -alkyl), -NH(phenyl), -NH(benzyl), -N(C₁-C₁₂-alkyl)₂, -N (phenyl)₂, -N(benzyl)₂, morpholinyl, piperidinyl, pyrrolidinyl, piperazinyl, -ammonium- X_3 -, -SO₃M₁, -CO₂M₁, -PO₃(M₁)₂ -PO₃M₄, or -CO₂-C₁-C₆-alkyl, where M₁ represents an alkali metal or hydrogen, and X₃ is the anion of a monobasic acid; or R₄ and R₅ and R₇ and R₈ respectively together denote tetramethylene, pentamethylene or 3-oxa-pentane-1,5-diyl, unsubstituted or substituted with halogen, C₁-C₆-alkyl or C₁-C₆-alkoxy, and R₆ is C₂-C₄-alkylene, unsubstituted or substituted with C₁-C₆-alkyl, C₁-C₆-alkoxy, C₅-cycloalkyl or C₆-cycloalkyl, phenyl, naphthyl or benzyl; 1,2- or 1,3-cycloalkylene, 1,2- or 1,3cycloalkenylene, 1,2- or 1,3-bicycloalkylene or 1,2- or 1,3-bicycloalkenylene with 4 to 10 carbon atoms, unsubstituted or substituted with C_1 - C_6 -alkyl, phenyl or benzyl; 1,2- or 1,3-cycloalkylene, 1,2- or 1,3-cycloalkenylene, 1,2- or 1,3-bicycloalkylene or 1,2- or 1,3-bicycloalkenylene with 4 to 10 carbon atoms, unsubstituted or substituted with C_1 - C_6 -alkyl, phenyl or benzyl, and attached at whose 1- and/or 2-position(s) or at whose 3-position is methylene or C₂-C₄-alkylidene; 1,4butylene, substituted in the 2,3-positions with R₉R₁₀C(O-)₂, and in the 1- and/or 4-positions unsubstituted or substituted with C1-C6-alkyl, phenyl or benzyl, and where R9 and R10 independently of one another represent hydrogen, C₁-C₆-alkyl, phenyl or benzyl; 3,4- or 2,4pyrrolidinylene or methylene-4-pyrrolidine-4-yl, the N-Atom of which is substituted with hydrogen, C₁-C₁₂-alkyl, phenyl, benzyl, C₁-C₁₂-alkoxycarbonyl, C₁-C₈-acyl, C₁-C₁₂-alkylamino

carbonyl; or 1,2-phenylene, 2-benzylene, 1,2-xylylene, 1,8-naphthylene, 2,2'-dinaphthylene or 2,2'-diphenylene, unsubstituted or substituted with halogen,

-OH, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, phenyl, benzyl, phenyloxy or benzyloxy; or R_6 stands for a radical of the formulas

in which R_9 denotes hydrogen, C_1 - C_8 -alkyl, C_1 - C_4 -fluoroalkyl, unsubstituted phenyl or phenyl substituted with 1 to 3 F, Cl, Br, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or fluoromethyl.

Please amend the paragraph starting on page 23, line 25, as follows:

A preferred group of achiral and chiral diphosphines are those of formulas V to (XVII) and (XIX) to XXIII,

$$\begin{array}{c} R_{14} \\ R_{15} \\ R_{4}R_{5}P - CHR_{10} \end{array} \\ \begin{array}{c} CHR_{11} \\ PR_{7}R_{8} \end{array} \\ \begin{array}{c} (XIV) \\ (IVX), \end{array} \\ \end{array}$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c$$

$$PR_4R_5-CHR_{10} CHR_{11} PR_7R_6$$
 (XIX)

in which R_4 , R_5 R_7 and R_8 have the meanings stated earlier, including the preferences, R_{10} and R_{11} independently of one another denote hydrogen, C_1 - C_4 alkyl or benzyl or phenyl, unsubstituted or substituted with one to three C_1 - C_4 alkyl or C_1 - C_4 alkoxy, R_{12} and R_{13} independently of one another represent hydrogen, C_1 - C_4 alkyl, phenyl or benzyl, R_{14} and R_{15} independently of one another denote hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, or benzyl or phenyl, unsubstituted or substituted with one to three C_1 - C_4 alkyl or C_1 - C_4 alkoxy, R_{16} represents hydrogen, C_1 - C_{12} alkyl, unsubstituted benzyl or phenyl, or benzyl or phenyl substituted with one to three C_1 - C_4 alkoxy, C_1 - C_{12} alkoxy- C_1 - C_2 alkyl or C_1 - C_3 alkoxy- C_1 - C_4 alkoxy, or benzyl- C_1 - C_4 alkyl or C_1 - C_4 alkoxy, C_1 - C_1 2 alkyl- C_1 0, or phenyl- C_1 1, or benzyl- C_1 2, or phenyl- C_1 3, or phenyl- C_1 4, alkoxy, C_1 4, alkoxy, C_1 5, or phenyl- C_1 6, or benzyl- C_1 7, or benzyl- C_1 8, alkyl or C_1 1, alkoxy, C_1 2, alkyl- C_1 3, or phenyl- C_1 4, alkoxy,

R₁₇ and R₁₈ are C₁-C₄ alkyl or C₁-C₄ alkoxy, or R₁₇ and R₁₈ together denote oxadimethylene, R₁₉, R₂₀, R₂₁ R₂4, R₂₂, R₂₃ and R₂₄ are independently of one another H, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₅- or C₆ cycloalkyl or C₅- or C₆ cycloalkoxy, phenyl, benzyl, phenoxy, benzyloxy, halogen, OH, -(CH₂)₃-C(O)-O-C₁-C₄-alkyl, -(CH₂)₃-C(O)-N(C₁-C₄-alkyl)₂ or -N(C₁-C₄-alkyl)₂, or R₁₉ and R₂₁, and/or R₁₇ and R₂₁, and/or R₂₀ and R₂₂, and/or R₁₈ and R₂₂, or R₂₁ and R₂₃ and/or R₂₂ and R₂₄ respectively together represent a fused-on 5 or 6-membered, monocyclic or bicyclic hydrocarbon ring, and

 R_{25} is C_1 - C_4 alkyl.

n stands for 0, 1 or 2,

Please amend the paragraph starting on page 26, line 9, as follows:

Some preferred examples of chiral ditertiary diphosphines are those of the following formulas V to XL:

8

$$\begin{array}{c} R_{29} \\ R_{30} \\ R_{30$$

$$R_{32}$$

$$R_{31}$$

$$R_{31}$$

$$R_{32}$$

$$R_{33}$$

$$R_{33}$$

$$R_{34}$$

$$R_{34}$$

$$R_{35}$$

$$R_{35}$$

$$R_{36}$$

$$R_{36}$$

$$R_{37}$$

$$R_{38}$$

$$R_{38}$$

$$R_{39}$$

$$R_{31}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{35}$$

$$R_{36}$$

$$R_{36}$$

$$R_{36}$$

$$R_{37}$$

$$R_{38}$$

$$R_{38}$$

$$R_{39}$$

$$R_{31}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{34}$$

$$R_{35}$$

$$R_{36}$$

$$R_{31}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{34}$$

$$R_{35}$$

$$R_{36}$$

$$R_{36}$$

$$R_{37}$$

$$R_{38}$$

$$R_{38}$$

$$R_{39}$$

$$R_{31}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{34}$$

$$R_{35}$$

$$R_{35}$$

$$R_{35}$$

$$R_{36}$$

$$R_{36}$$

$$R_{36}$$

$$R_{37}$$

$$R_{38}$$

$$R_{38}$$

$$R_{39}$$

$$R_{39}$$

$$R_{31}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{34}$$

$$R_{35}$$

$$R_{35}$$

$$R_{36}$$

$$R_{36}$$

$$R_{36}$$

$$R_{36}$$

$$R_{36}$$

$$R_{37}$$

$$R_{38}$$

$$R_{39}$$

$$R_{39}$$

$$R_{31}$$

$$R_{31}$$

$$R_{32}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{34}$$

$$R_{35}$$

$$R_{35}$$

$$R_{35}$$

$$R_{36}$$

$$R_{35}$$

$$R_{36}$$

$$R_{36}$$

$$R_{36}$$

$$R_{36}$$

$$R_{37}$$

$$R_{38}$$

$$R_{39}$$

$$R_{39}$$

$$R_{39}$$

$$R_{39}$$

$$R_{31}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{34}$$

$$R_{35}$$

$$R_{35}$$

$$R_{35}$$

$$R_{35}$$

$$R_{35}$$

$$R_{36}$$

$$R_{36}$$

$$R_{36}$$

$$R_{37}$$

$$R_{38}$$

$$R_{39}$$

$$R$$

in which

R stands for cyclohexyl or unsubstituted phenyl or phenyl substituted with one to three C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, trifluoromethyl, or an -NH₂ (C_1 - C_4 -alkyl)NH-, (C_1 - C_4 -alkyl)₂N-,

 R_{26} and R_{27} independently of one another denote C_1 - C_4 -alkyl, phenyl or benzyl and most preferably methyl,

 R_{28} represents C_1 - C_8 -alkyl, C_1 - C_8 -acyl or C_1 - C_8 -alkoxycarbonyl,

 R_{29} stands for hydrogen or independently has the meaning of R_{30} , and R_{30} represents C_1 - C_4 -alkyl, phenyl or benzyl,

R₃₁ denotes methyl, methoxy, or both R₃₁ together denote oxadimethylene,

 R_{32} and R_{33} independently of one another represent H, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or $(C_1$ - C_4 -alkyl)₂N-,

R₃₄ and R₃₅ independently of one another represent H, C₁-C₄-alkyl, C₁-C₄-alkoxy,

-(CH₂)₃-C(O)-O-C₁-C₄-alkyl, -(CH₂)₃-C(O)-N(C₁-C₄-alkyl)₂ or one pair R_{34} and R_{35} together represents a radical of formula XLI and the other pair R_{34} and R_{35} together represents a radical of formula XLII

and

R₃₆ stands for C₁-C₄-alkyl and most preferably methyl.