

UNIVERSIDADE FEDERAL DE SÃO PAULO CAMPUS SÃO JOSÉ DOS CAMPOS

DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA (DCT)

Exercício de Teoria dos Grafos

UC: Teoria dos Grafos

Aluno: Thauany Moedano

RA: **92486**

Professor: Dr. Reginaldo Massanobu Kuroshu.

Entrega: 16/08/2016

Resumo

Resolução do exercício da aula 1 de Teoria dos Grafos

Exercício 1. Faça uma figura do grafo de arestas de um K_3 e de um K_4 . Quantos vértices e quantas arestas têm o grafo de K_n ?

As figuras representando o grafo de arestas de K_3 e de K_4 podem ser vistas a seguir:

(a) Grafo de Arestas K_3

(b) Grafo de Arestas K_4

Figura 1

Como visto em aula, um grafo K_n possui o seu número de arestas igual a $\frac{n(n-1)}{2}$. Em um dado grafo G(n), temos o grafo de arestas G'(n). Como V(G') = E(G'), o número de vértices de G' é equivalente ao número de arestas de G. Portanto, o número de vértices de G' é igual a $\frac{n(n-1)}{2}$.

Também foi visto em aula que o somatório do grau dos vértices de um grafo qualquer sempre é 2m em que m é o número de arestas. Observa-se que em um grafo de arestas de K_n , os vértices sempre possuem o mesmo grau. Portanto podemos dizer que em um grafo de aresta K_n , a soma do grau dos vértices é $|V(G')|.k_a$ em que k_a é o grau dos vértices do grafo de arestas. Logo podemos dizer que o número de arestas do grafo de arestas de K_n é $\frac{V(G').k_a}{2}$.

É possível observar que o crescimento do grau do grafo de arestas sempre é de 2 em 2. O grau dos vértices do grafo de arestas de K_3 é 2 e o grau dos vértices do grafo de arestas de K_4 é 6. Os grafos K_2 e K_1 são casos triviais e não foram levados em consideração.

Se o grau dos vértices do grafo de arestas de K_n é uma PA de razão 2, basta reescrevermos o k_a como o enésimo termo da sequência. Lembrando que $a_n = a_1 + (n_t - 1).r$, devemos substituir o r por 2 e reescrever n_t para que a fórmula fique independente do termo. Considerando a_1 como 2 (grau do K_3 , desconsiderando K_2 e K_1 que são casos base), podemos interpretar n_t como o |V(G)| - 2. Desta maneira a PA fica 2V(G) - 4.

Assim reescrevemos a fórmula das arestas como $m = \frac{|V(G')| \cdot [2|V(G)-4}{2}$

Em suma: **número de vértices**: $\frac{|V(G)|(|V(G)|-1)}{2}$

número de arestas: $\frac{|V(G')|.[2|V(G)|-4}{2}$