Claims

1. Process for the preparation of enantiomerically pure (S)- or (R)-4-halo-3-hydroxybutyrates of formula

$$R^1$$
 OH O OR^2 (S)-I or R^1 OR OR^2 (R)-I,

wherein R^1 is CH_2X , CHX_2 or CX_3 and X independently represents Cl and/or Br and wherein R^2 is C_{1-6} -alkyl, C_{3-6} -cycloalkyl, aryl or aralkyl, each aryl or aralkyl being optionally further substituted with one or more C_{1-4} -alkyl groups and/or halogen atoms,

which process comprises the asymmetric hydrogenation of 4-halo-3-oxobutyates of formula

$$\mathbb{R}^1$$
 \mathbb{O} \mathbb{O} \mathbb{I} ,

wherein R¹, R² and X are as defined above

in the presence of a catalyst of a ruthenium complex comprising a chiral ligand of formula

- The process of claim 1, wherein the ruthenium complex comprising a ligand of formula III comprises at least one diene, alkene or arene or polar solvent molecule as stabilizing ligand.
- The process of claim 1 or 2, wherein the ruthenium complex comprising a ligand of formula III comprises at least one molecule of 1,5-cyclooctadiene or p-cymene as stabilizing ligand.

- 4. The process of one of claims 1 to 3, wherein the hydrogenation is carried out in a solution comprising a polar solvent selected from the group consisting of C₁₋₄-alcohols, dimethylsulfoxide, dimethylformamide, acetonitrile and mixtures thereof, wherein the solvent optionally contains further solvent additives.
- 5. The process of any one of claims 1 to 4, wherein the counterion of the ruthenium complex is selected from the group consisting of Cl⁻, Br⁻, I⁻, BF₄⁻, AsF₆⁻, SbF₆⁻, PF₆⁻, ClO₄⁻ and OTf⁻.
- 6. The process of any one of claims 1 to 5, wherein the ruthenium complex is prepared by mixing the complex of formula [Ru₂Cl₄(cym)₂] with the Fluoxphos ligand in a polar solvent.
- 7. The process of any of claims 1 to 6, wherein the hydrogen pressure during the reaction is in the range of 1 to 60 bar and preferably in the range of 2 to 35 bar.

