Intro: Control and Planning for a Mobile Inverted Pendulum (MIP)

MIP track, week I

Mobile Inverted Pendulum (MIP)

Progression of Applications

https://cdn0.vox-cdn.com/thumbor/qcvXZkt3qnbzwLX65CZyX9lyRqs=/0x0:1023x682/1280x854/cdn0.vox-cdn.com/uploads/chorus_image/image/48583433/CY98UCXUQAE_hmA.jpg-large.0.0.jpeg

http://www.segway.com/media/1671/segway i2xe lrg.png

http://www.frontiersin.org/files/Articles/I 53280/frobt-02-0002I-HTML/image m/frobt-02-0002I-g001.jpg

Progression of Learning

Inverted pendulum

Double pendulum

Legged locomotion

Modeling and Control

- Aerial Robotics
- Mobility

Example: Pendulum

State: $(\theta, \dot{\theta})$

Kinetic energy: $T = \frac{ml^2}{2}\dot{\theta}^2$

Potential energy: $V = -mgl\cos(\theta)$

Lagrangian: $L = \frac{ml^2}{2}\dot{\theta}^2 + mgl\cos(\theta)$

Euler-Lagrange operator: $\Lambda(L)=rac{d}{dt}rac{\partial L}{\partial \dot{ heta}}-rac{\partial L}{\partial heta}=0$

High K_p

Feedback Motion Planning

Aerial Robotics

Sensory Processing and State

Estimation

Estimation

What to Expect & Deliverables

- · Review specialization lectures
- One new application-focused lecture per week
- 1-2 programming assignments per week
 - Week I: Integrating an ODE with MATLAB
 - Week 2: PD tracking
 - Week 3: EKF for scalar attitude estimation
 - Week 4: Dynamical simulation of a MIP
 - Week 5: Balancing control
 - · Week 6: Noise-robust control and planning
- MATLAB simulation environment.

