Concevoir une application au service de la santé publique

Agence 'Santé publique France' – Appel à projets

Introduction

Base de données : OpenFoodFacts

Problématiques:

- Quelle application allons nous concevoir?
- Quelles sont les variables pertinentes ? Comment synthétiser leurs comportements ?
- Quelles analyses multivariées pourront confirmer ou infirmer nos hypothèses ?
- Comment visualiser les analyses ?

La base de données - OpenFoodFacts

- Contient 186 informations pour chaque produit. Dont :
 - Sa composition nutritionnelle
 - Son nutri-score, son éco-score
 - Sa catégorie
- Contient ~2 millions de produits

Tout pays confondu

L'application

- Etant donné un aliment, l'application doit pouvoir proposer des alternatives à celui-ci :
 - Meilleurs d'un point de vue nutritif, mais proche
 - D'une même catégorie

I- Le nettoyage des données

- 1- Préliminaires (doublons, colonnes...)
- 2- Sélection des colonnes
- 3- Suppression des valeurs aberrantes
- 4- Imputation des valeurs manquantes

I- 1- Nettoyage préliminaire

- Suppression des doublons (270)
- Correction des erreurs de casse
- Correction des noms des colonnes
- Sélection des produits qui ont :
 - → Un code barre
 - → Une catégorie principale en anglais

1908859 → **812217** produits

SNacks → Snacks

> -sugars_100g → sugars_100g

I- 2- Sélection des colonnes

- On demande au minimum 30 % de remplissage au départ 186 → 131 colonnes

- Parmis ces colonnes on garde celles-ci :
- **→ Quantités**

energy-kcal, fat, saturated-fat, carbohydrates, sugars, fiber, proteins, salt, sodium, nutrition-score-fr, additives_n, ingredients_from_palm_oil_n, ecoscore_score_fr, serving_quantity, nova_group

→ Qualités

main_category_en, pnns_groups_2, pnns_groups_1, additives_en

I- 3-Suppression des valeurs aberrantes

- Strings contenant des caractères non-latins
- Valeurs nutritionnelles entre 0 et 100g
- Cohérence entre énergie et composants
- Limite de poids
- Appartenance à aucune catégorie
- Bornes: Nutri-score, Eco-score, Groupe Nova

I- 4- Imputation des valeurs manquantes

I- 4- Imputation : Méthodes

- Régression avec arbre de décision
- Régression linéaire bayésienne
- Régression/classification k-nn
- Moyennes par catégorie

I- 4- Imputation: additives_n

Taille de l'échantillon : 411997

Erreur par méthode:

- BayesianRidge : **0.19** <

- DecisionTreeRegressor : **0.28**

- Means : **0.61**

I- 4- Imputation: ingredients_from_palm_oil

Taille de l'échantillon : 411997

Erreur par méthode:

- BayesianRidge : **0.005** <

- DecisionTreeClassifier: **0.13**

- Means : **1.0**

I- 4- Imputation: ecoscore

Taille de l'échantillon : 293540

Erreur par méthode :

- BayesianRidge : **0.02**

- DecisionTreeRegressor : 0.04

- Means : **0.12**

- k-nn : **0.03** <──

I- 4- Imputation: fiber

Taille de l'échantillon : 338798

Erreur par méthode :

- BayesianRidge : **0.7**

- DecisionTreeRegressor : **0.41**

- Means : **0.58**

I- 4- Imputation : serving_quantity

Taille de l'échantillon : 311328

Erreur par méthode :

- BayesianRidge : **0.72**

- DecisionTreeRegressor : **0.77**

- Means : **0.47**

I- 4- Imputation: nova_group

Taille de l'échantillon : 388670

Erreur par méthode:

- BayesianRidge : **0.72**

- DecisionTreeClassifier: **0.22**

- Means : **0.6**

I- Nettoyage - Conclusion

Sans imputation: 70299 individus

Avec imputation: 590357 individus

II- Exploration

- 1 Analyses uni-variées
- 2 Analyses des corrélations 2 à 2
- 3 Analyses des Composantes Principales
- 4 Corrélations avec les variables qualitatives

II- 1- Analyses uni-variées

- Diagrammes en boîtes
- Modélisation de la distribution

H0 : Le modèle et l'observation suivent la même distribution

H1: Le modèle et l'observation suivent des distribution différentes

On accepte un risque maximal de 10 %

- Concentration

I- 1- Étude univariée : Le nutriscore

R2 = 0.88

ks_2samp : p=0.99

I- 1- Étude univariée : Écoscore

I- 1- Étude univariée : Valeurs nutritionnelles

I- 1- Étude univariée - le sel

Modèle : Fonction inverse R2 = 0.91 P = [3.79e-66, 9.02e-53]

$$Gini = 0.67$$

I- 1- Étude univariée - les protéïnes

Modèle : Loi géométrique R2 = 0.9 P = [6.08e-77, 1.67e-51]

$$Gini = 0.53$$

I- 1- Étude univariée - les fibres alimentaires

Modèle : Fonction inverse R2 = 0.93 P = [1.5e-67 2.25e-58]

$$Gini = 0.67$$

I- 1- Étude univariée - les sucres

Modèle : Fonction inverse R2 = 0.8 P = [3.54e-66 1.58e-35]

$$Gini = 0.67$$

I- 1- Étude univariée - Matières grasses

Modèle : Loi géométrique R2 = 0.79 P =[5.78e-76 3.58e-35]

$$Gini = 0.61$$

I- 1- Étude univariée - Carbohydrates

Modèle : Loi inverse R2 = 0.9 P = [7.28e-45 5.97e-21] Modèle : Loi normale

P = 0.42

$$Gini = 0.53$$

I- 1- Étude univariée - Ingrédients de l'huile de palme

I- 1- Étude univariée - Groupe Nova

I- 1- Étude univariée - Catégorie principale

Modèle : Fonction inverse R2 = 0.93 P= [0.0, 0.0]

I- 1- Étude univariée - Catégorie 2

Modèle: Fonction inverse Modèle: Droite R2 = 0.94

P = [2.75e-21, 3.01e-09] P = [2.09e-25, 2.2e-22]

R2 = 0.98

Gini=0.56

I- 1- Étude univariée - Catégorie 1

Modèle: Droite

R2 = 0.95

P= [2.44e-09, 3.40e-07]

Gini=0.31

I- 1- Étude univariée - Nutriscore par catégorie

I - 2- Analyses des corrélations 2 à 2

- Sel - Sodium

Pearson = 0.999995

- (gras, sucre, protéïne, fibre, carbohydrates) - Énergie

Pearson = 0.93

I- 3- Analyse des composantes principales

Pourcentage de l'inertie totale

56.81704 68.053607 75.597792 81.564692 86.418153 90.531764 93.730955 96.637903 98.331556 99.783819 99.999961 100.0

I- 3- ACP - Cercles des corrélations

I- 3- ACP - Cercles des corrélations

I- 3- ACP - Projection des individus

I- 3- ACP - Projection des individus

I- 3- ACP - Score avec F1

I- 4- Variables qualititatives

Groupe Nova - Catégorie

- 0.4

- 0.3

0.2

- 0.1

I- 4- Variables qualititatives

Nutri-score - Catégorie

- 0.20

- 0.15

0.10

- 0.05

I- 4- Variables qualititatives

Sucres - Catégorie

Les faits marquants

- Les variables sont globalement concentrées : Trouver des alternatives en dehors des valeurs centrales est difficile
- L'axe d'inertie principal des données permet de comparer les produits selon plusieurs facteurs à la fois.
- Il peut être difficile de trouver des alternatives selon la catégorie.
 - Car il existe des corrélations entre les indicateurs et la catégorie
 - Car plus la catégorie est précise, moins il est probable que les effectifs soient grands

Limites de l'étude

- Ne prend pas en compte le pourcentage de fruits / légumes.
- Ne prend pas en compte la liste des ingrédients
- Ne s'appuie sur aucune étude médicale