

Floating Point

These slides adapted from materials provided by the textbook

Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

What is 1011.101₂?

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k \times 2^k$

Fractional binary numbers

What is 1011.101₂?

Fractional Binary Numbers: Examples

Value

Representation

5 3/4 101.11₂
2 7/8 10.111₂
1 7/16 1.0111₂

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Representable Numbers

Limitation #1

- Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
- Value Representation
 - **■** 1/3 0.01010101[*01*]...₂
 - **1/5** 0.001100110011[*0011*]... ₂
 - **■** 1/10 0.0001100110011[*0011*]... ₂

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

IEEE Standard 754

- Established in <u>1985</u> as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Design Challenges

- Only so many bits. Need to be efficient
- Need to handle "special" numbers like Infinity
- Numbers near zero are "special" because 1/x is common
- Properly rounding numbers is important in many algorithms
- What to represent large numbers (1.23 x 10¹⁵) and small (1.23 x 10⁻¹⁵)

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

Encoding

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

s	ехр	frac
---	-----	------

Exponents, single precision float

What is the range of exp?

What is the range of E?

"Normalized" Values

$$v = (-1)^s M 2^E$$

When: exp ≠ 000...0 and exp ≠ 111...1

- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

$$V = (-1)^{s} M 2^{(Exp-Bias)}$$

"Normalized" Values

$$v = (-1)^s M 2^E$$

Significand coded with implied leading 1:

$$M = 1.xxx...x_2$$

- xxx...x: bits of frac field
- Minimum when frac=000...0 (M = 1.0)
- Maximum when frac=111...1 (M = 2.0ε)
- Get extra leading bit for "free"

$$V = (-1)^s * (1.[frac]) * 2^{(Exp-Bias)}$$

Normalized Encoding Example

Value: float F = 15213.0;
-15213₁₀ = 11101101101101₂

$$= 1.1101101101101_2 \times 2^{13}$$

Significand

```
M = 1.1101 1011 0110 1_2
frac = 1101 1011 0110 1000 0000 0000<sub>2</sub>
```

Exponent

E = 13

Bias = 127

 $Exp = 140 = 10001100_2$

Result:

0 10001100 11011011011010000000000

s exp frac

Denormalized Values

$$v = (-1)^{s} M 2^{E}$$

 $E = 1 - Bias$

- Decoded <u>differently</u> than normalized values!
- Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac

$$v = (-1)^s * (0.[frac]) * 2^{(1-Bias)}$$

Denormalized Values

$$V = (-1)^{s} M 2^{E}$$

 $E = 1 - Bias$

Cases

- \blacksquare exp = 000...0, frac = 000...0
 - Represents zero value, without denorm we are unable to represent zero
 - Note distinct values: +0 and -0 (why?)
- \blacksquare exp = 000...0, frac \neq 000...0
 - Numbers closest to 0.0
 - Equispaced

Special Values

- Condition: exp = 111...1, Exponent all ones
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only) $V = (-1)^s M 2^E$

_	s	ехр	frac	E	Value		n: E = Exp - Bias
	0	0000	000	-6	0		d: E = 1 - Bias
	0	0000	001	-6	1/8*1/64	= 1/512	closest to zero
Denormalized	0	0000	010	-6	2/8*1/64	= 2/512	Closest to Zelo
numbers							
	0	0000	110	-6	6/8*1/64	= 6/512	
	0	0000	111	-6	7/8*1/64	= 7/512	largest denorm
	0	0001	000	-6	8/8*1/64	= 8/512	smallest norm
	0	0001	001	-6	9/8*1/64	= 9/512	Smallest norm
	•••						
	0	0110	110	-1	14/8*1/2	= 14/16	
	0	0110	111	-1	15/8*1/2	= 15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1	= 1	
numbers	0	0111	001	0	9/8*1	= 9/8	closest to 1 above
	0	0111	010	0	10/8*1	= 10/8	Closest to 1 above
	0	1110	110	7	14/8*128	= 224	
	0	1110	111	7	15/8*128	= 240	largest norm
	0	1111	000	n/a	inf		

Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

$$x +_f y = Round(x + y)$$

$$\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$$

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Closer Look at Round-To-Even

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredthExpected behavior except when halfway

```
7.8949999 7.89 (Less than half way)
7.8950001 7.90 (Greater than half way)
7.8950000 7.90 (Half way - round up , even 0)
7.8850000 7.88 (Half way - round down , even 8)
```

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Rounding Binary Numbers

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded Action	Rounded
2 3/32	10.00 <u>011</u> 2	10.002	(<1/2—down)
2 3/16	10.00 <u>110</u> 2	10.012	(>1/2—up)
2 7/8	10.1 <mark>1100</mark> 2	11.00 ₂	(1/2—up)
2 5/8	10.1 <mark>0100</mark> 2	10.102	(1/2—down)

Rounding

1.BBGRXXX

Guard bit: LSB of result

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

Round up conditions

• Round = 1, Sticky = $1 \rightarrow > 0.5$

Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

FP Multiplication

- $= (-1)^{s1} M1 \ 2^{E1} \ x \ (-1)^{s2} M2 \ 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent *E*: *E*1 + *E*2

Fixing

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Floating Point Addition

- - **Assume** *E1* > *E2*
- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

Get binary points lined up

Fixing

- •If $M \ge 2$, shift M right, increment E
- •if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round *M* to fit **frac** precision

Mathematical Properties of FP Add

- Commutative? , Yes
- Associative?, No
 - Overflow and inexactness of rounding
 - (3.14+1e20)-1e20 = 0,3.14+(1e20-1e20) = 3.14
- 0 is additive identity? , Yes
- Every element has additive inverse?, Almost
 - Yes, except for infinities & NaNs
- Monotonicity
 a ≥ b ⇒ a+c ≥ b+c? , Almost
 - Except for infinities & NaNs

Mathematical Properties of FP Mult

- Multiplication Commutative?, Yes
- Multiplication is Associative?, No
 - Possibility of overflow, inexactness of rounding
 - Ex: (1e20*1e20) *1e-20= inf 1e20* (1e20*1e-20) = 1e20
- 1 is multiplicative identity? , Yes
- Multiplication distributes over addition? No
 - Possibility of overflow, inexactness of rounding
 - \blacksquare 1e20*(1e20-1e20) = 0.0,
 - 1e20*1e20 1e20*1e20 = NaN
- Monotonicity $a \ge b \ \& c \ge 0 \Rightarrow a * c \ge b * c?$, Almost
- Except for infinities & NaNs

Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - **double** double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int → float
 - Will round according to rounding mode

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Strings and Memory Representations

Reading: CS:APP Chapter 2.1

Strings and Memory Representations

- From Bytes to Words
- Byte ordering
- Pointer representation
- Character and string representation
- Summary

Byte-Oriented Memory Organization

Programs refer to data by address

- Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
- An address is like an index into that array
 - and, a pointer variable stores an address

Byte-Oriented Memory Organization

- Note: system provides private address spaces to each "process"
 - Think of a process as a program being executed
 - So, a program can clobber its own data, but not that of others

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of integer-valued data
 - and of addresses

- Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)

Machine Words

- Any given computer has a "Word Size"
 - Except for embedded systems, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 10¹⁸
 - Really, only 47 bits of the word specify addresses on x64
 14.1 X 10¹³ bytes, Still much more RAM than your machine has
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64	
char	1	1	1	
short	2	2	2	
int	4	4	4	
long	4	8	8	
float	4	4	4	
double	8	8	8	
long double	-	-	10/16	
pointer	4	8	8	

Byte Ordering

So, how are the bytes within a multi-byte word ordered in memory?

Conventions

- Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
- Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address

Byte Ordering Example

Example

- Variable Y has 4-byte value of 0x01234567
- Address given by &Y is 0x100

Big Endian			0x100	0x101	0x102	0x103	
			01	23	45	67	
Little Endian		0x100	0x101	0x102	0x103		
			67	45	23	01	

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

int B = -15213;

long int C = 15213;

Two's complement representation

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n",start+i, start[i]);
    printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
```

Representing Characters

- Representing letters and words by numbers: morse code
- Later TTY systems converted typewriter into morse / baudot other codes
- Led to ASCII (American Standard Code for Information Interchange) in ~1960
- 7 (then 8) bit code for letters, numbers, "actions"
- **Expanded to Unicode in 90's** and UTF-8 in '00's

் ஒள # w

USASCII code chart

0. —			۰۰,	۰,	٥- ٥	۰,	' ° °	٠, -	1 10	-			
	b4+	b,3	p 5	٠,	SON SON	0	_	2	3	4	5	6	7
``	0	0	0	0	0	NUL .	DLE	SP	0	0	Р	,	P
	0	0	0	1	1	SOH	DC1	!	1	Α.	0	0	q
	0	0	1	0	2	STX	DCS	•	2	8	R	. b	r
	0	0	1	1	3	ETX	DC3	#	3	C	s	c	5
	0	1	0	0	4	EOT	DC4	•	4	D	T	d	1
	0	1	0	1	5	ENQ	NAK	%	5	Æ	υ	•	U
	0	1	1	0	6	ACK	SYN	8	6	F	>	1	v
	0	1	1	1	7	BEL	ETB	,	7	G	*	g	w
	1	0	0	0	8	BS	CAN	(8	н	x	h	x
	_	0	0	1	9	нТ	EM)	9	1	Y	i	у
	_	0	1	0	10	LF	SUB	*	: .	J	Z	j	z
	1	0	1	1	11	VT	ESC	+	:	K	C	k.	-{
	1	1	0	0	12	FF	FS		<	L	`	1	1
	-	1	0	1	13	CR	GS	-	-	м)	m)
	-	.1	ı	0	14	so	RS		>	N	^	n	\sim
	1	1	1	1	15	\$1	US	/	?	0	_	0	DEL

ASCII collating order

- Sequences 0..9, a..z and A..Z are in order
- Checking if 'd' is a digit:

Checking if 'l' is a letter:

$$((I >= 'a') \&\& (I <= 'z')) || ((I >= 'A') \&\& (I <= 'Z'))$$

Change letter 'A'..'Z' to lower case:

$$(I - 'A') + 'a'$$

Representing Strings

char S[6] = "18213";

Strings in C

- Represented by array of 'char'
- Char 'x' enclosed in single quotes, string "enclosed in double"
- 'abcd' is not same as "abcd"
 - 'abcd' is a 4-byte integer, not a string
 - "abcd" is 5 byte string with null terminator
- Each character encoded in ASCII format
- String should be null-terminated
 - Final character = 0

Compatibility

Byte ordering not an issue for strings

Demo Program: 03_stringSize.c

Bonus Material: Copying Strings / Memory

String and Memory Functions in C

http://www.cplusplus.com/reference/cstring/

String

- strcpy(dst, src) copy
- strlen(str) length
- strcat(dest, src) append
- strcmp(src1, src2)-compare
- strnlen(str, max)
- strncpy(dst, src, dstsize)
- strncat(dest, src, dstsize)
- strncmp(src1, src2, max)

Memory

- memcpy(dst, src, len)
- memmove(dst, src, len)
- memset(dst, value, len)
- memcmp(dst, src, len)

C string functions – strcpy 3 ways

And all of them bad!

```
char * strcpy(char *dst, char *src) {
    int i;
    for( i = 0; src[i] != '\0'; i++) {
     dst[i] = src[i];
                                  char * strcpy(char *dst, char *src) {
                                     char *orig = dst;
   dst[i] = 0;
                                     for( ; *src ; dst++, src++ ) {
    return dst;
                                       *dst = *src;
                                     *dst = 0;
                                     return orig;
char * strcpy(char *dst, char *s:)
   char *orig = dst;
  while(*src) {
     *dst++ = *src++;
   *dst = 0;
   return orig;
```

C string functions – strncpy

Most compilers will warn about strcpy, strlen, etc

```
char * strcpy(char *dst, char *src, size_t len){
  int i;

  for( i = 0; i < len && src[i] != '\0'; i++) {
    dst[i] = src[i];
  }
  dst[i] = 0;
  return dst;
}</pre>
```

You'll be directed to the 'n' versions

C memory functions – memcpy

The mem* functions don't look for null terminator

```
void* memcpy(void *dst, void *src, size_t len){
   int i;
   char *cdst = (char *) dst;
   char *csrc = (char *) src;
   for( i = 0; i < len ; i++) {
      cdst[i] = csrc[i];
   }
   return dst;
}</pre>
```

- Use provided str* and mem* functions rather than writing your own.
 - Much, much faster code
 - They already made it correct

C strcmp and memcmp

strncmp(a,b) and memcmp(a,b,len) return -1, 0 or 1

```
    -1 a < b</li>
    0 0 == b
    1 a > b
```

Leads to weird looking programming idiom

```
if ( ! strncmp(a,b,n)) {
     /* a is equal to b */
} else {
     /* a != b */
}
```

Better to write this like..

```
if ( strncmp(a,b,n) == 0 ) {
    /* a is equal to b */
}
```