Foglio di esercizi 9

16 maggio 2022

Esercizio 1 Sia V uno spazio vettoriale con base $\{v_1, v_2, v_3\}$, e sia g la forma bilineare simmetrica di matrice, rispetto alla base data,

$$G = \begin{pmatrix} -3 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & -1 \end{pmatrix}$$

- \bullet verificare che g è non degenere
- \bullet determinare una base ortogonale di V relativamente a g

Esercizio 2 E' data la matrice A:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

- dimostrare che A è diagonalizzabile, e trovare la matrice diagonale D e la matrice diagonalizzante S tali che $A=SDS^{-1}$
- \bullet determinare una matrice ortogonale H che diagonalizzi la matrice A

Esercizio 3 E' data la matrice A:

$$A = \begin{pmatrix} 1 & 0 & t^2 \\ 0 & t & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

- ullet studiare la diagonalizzabilità di A al variare di t
- dire per quali valori di t è possibile determinare una matrice ortogonale H che diagonalizzi la matrice A (per questi casi trovare H)

- per il maggiore dei valori di t appena trovati, considerare la base di autovettori appena trovata e usarla per scomporre R^3 in 2 sottospazi arbitrari tali che $U \oplus U \bot = R^3$. Valutare le proiezioni di v = (1,4,5) su $U \bot$ e su U
- $\bullet\,$ determinare tutti i vettori la cui proiezione su U è pari alla proiezione di v su U