

Колокольчиков Сергей Дмитриевич

Исследование динамики поляризованного пучка в ускорительном комплексе NICA-Nuclotron в приложении к изучению электрического дипольного момента легких ядер

Специальность 1.3.15 — «Физика атомных ядер и элементарных частиц, физика высоких энергий»

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте ядерных исследований Российской академии наук.

Научный руководитель: профессор, доктор физико-математических

наук

Сеничев Юрий Валерьевич

Официальные оппоненты: Фамилия Имя Отчество,

доктор физико-математических наук, профес-

cop,

Не очень длинное название для места работы,

старший научный сотрудник

Фамилия Имя Отчество,

кандидат физико-математических наук,

Основное место работы с длинным длинным

длинным длинным названием, старший научный сотрудник

Ведущая организация: Федеральное государственное бюджетное об-

разовательное учреждение высшего профессионального образования с длинным длинным

длинным длинным названием

Защита состоится DD mmmmmmmm YYYY г. в XX часов на заседании диссертационного совета Д123.456.78 при Название учреждения по адресу: Адрес.

С диссертацией можно ознакомиться в библиотеке Название библиотеки.

Отзывы на автореферат в двух экземплярах, заверенные печатью учреждения, просьба направлять по адресу: Адрес, ученому секретарю диссертационного совета $\frac{123.456.78}{123.456.78}$.

Автореферат разослан DD mmmmmmmm2024 года. Телефон для справок: +7 (0000) 00-00-00.

Ученый секретарь диссертационного совета Д 123.456.78, д-р физ.-мат. наук

Общая характеристика работы

Данная работа посвящена исследованию динамики поляризованных пучков в ускорителях и накопителях. Также будут разобраны вопросы проектирования современных ускорительных установок.

Возможность использования ускорительный установки для различных экспериментов является большим преимуществом. Такая практика применяется в крупных ядерных центра CERN, RHIC. Последовательные программы экспериментов расписаны на годы вперед. Такие установки отвечают в первую очередь фундаментальным исследованиям, но и привносят за собой необходимые технологии для полноценного развития научно-технической базы.

NICA является передовым центром, расположенным в России, город Дубна. Коллайдер NICA, имеет 2 места встречи, в которых расположены детектора: MPD(Multi-Purpose Detector) и SPD(Spin Polarized Detector). Каждый из них предназначен для разных экспериментов. MPD-детектор – будет использован для исследования кварк-гюонной плазмы, возникающей в результате столкновений тяжелых ионов золота. SPD-детектор направлен на изучение поведения сталкивающихся поляризованных пучков протонов и дейтронов. Таким образом, структура коллайдера должна быть использована как для ускорения пучков тяжелых ионов, так и легких. При этом требования, предъявляемые для удержания пучка для разного сорта частиц, отличаются.

Основным требованием коллайдерных экспериментов, является достижение большого количества соударений, то есть высокого уровня светимости. Для исследования кварк-глюонной плазмы это требование должно быть на уровне 10^{29} . Такие светимости являются рекордными и для их достижения может потребоваться существенной настройки всех система ускорителя и может занять достаточно большого времени. При ускорение тяжелых ионов высокая зарядность и интенсивность пучка вызывает серьезные ограничения на параметры пучка из-за внутрипучкового рассеяния. Для преодоления этих проблем, спроектированная структура должна высоким временем внутрипучкого рассеяния, а также содержать специальные установки стохастического и электронного охлаждения. Стохастическое охлаждение также в существенной степени зависит от конкретной оптики установки и может быть оптимизировано для компенсации эффектов ВПР. Электронное охлаждение применяется на небольших энергиях сгутска и способно охладить пучок на начальных этапах ускорения.

В том же кольце могут быть ускорены и другие частицы. Подготовка и ускорение поляризованных пучков для экспериментов на детекторе SPD представляет особый интерес, поскольку поляризация является дополнительной степенью свободы и может привнести дополнительную информацию, в том числе в коллайдерные эксперименты. В этом случае

определенные сечения рассеяния приобретают зависимость от поляризации сталкивающихся сгустков.

Соотношение заряда к массе для протона отличается сравнению с тяжелыми ионами почти в два раза. Таким образом, максимальная энергия эксперимента кратно увеличивается. Но для существующей магнитооптике, оптимальной для тяжелоионного эксперимента подобрано значение критическое энергии таким образом, что столкновение происходит до критического значения и никаких проблем по её преодолению не возникает. Стоит отметить, что критическая энергия является важным параметром ускорительный установки и при проектировании установки этому вопросу уделяется особое внимание. Долгое нахождение вблизи критической энергии или её пересечение существенно влияет на динамику пучка и его стабильность. Таким образом, для протонов прохождение критической энергии становится важным параметром, ограничивающем параметры сгустка и требующем принятия дополнительных мер по её преодалению.

Классическим методом преодоления является процедура скачка критической энергии. При этом изменяются параметры ускорителя для внесения соответствующего возмущения и резкого кратковременного скачка критической энергии в момент близости энергии сгустка к критическому значению. После скачка, значения установки возвращаются к исходному значению до скачка с поправкой на увеличившуюся энергию пучка.

Альтернативным способом, который применяется для того чтобы избегать потери стабильности, является создание или модификация структуры с заведомо большим значение критической энергии. Такая структура носит название 'резонансной' и уже применялась на установках мирового уровня CERN, J-PARC. Принципиальным отличием от регулярной структуры является обеспечение резонансного условия для количества суперпериодов и частоты бетатроных колебаний в горизонтальной плоскости. Однако, это справедливо только для не полностью регулярных структур, а содержащих регулярную модуляцию градиента квадруполей или кривизны орбиты. В таком случае, происходит изменение оптических функций ускорителя и варьирование критической энергии выше энергии эксперимента, в том числе до комплексных значений, полностью убирая зависимость установки от дополнительных процедур преодоления.

Отдельным большим направлением, помимо коллайдерных экспериментов, является управление поляризацией. Спин является квантовой величиной, но в силу теоремы Эренфеста для любой квантовой величины может быть записано уравнение в квази-классическом приближении для ансамбля частиц. Поведение спина частицы в ансамбле описывается уравнением Т-БМТ. Проекция спинов частиц на заданную ось и определяет поляризацию пучка. Для таких экспериментов интерес представляет долгое сохранение поляризации пучка, что может быть использовано и реализовано в накопительных установках

Более тонким направлением исследований, являются не просто поляризованные пучки, а также когерентные. В этом случае, пучок становится не просто поляризованным вдоль конкретной оси, но и спины частиц прецессируют с одинаковой частотой. В таком случае появляется возможность исследовать также ЭДМ элементарных частиц. Данная величина характеризует асимметрию распределения заряда частицы. Наличие ЭДМ объясняется тем, что он нарушает СР-симметрию, последнее было предсказано Сахаровым как одно из условий бариогинеза на ранних этапах вселенной. Для накопления малой величины ЭДМ необходимо долгое удержание пучка с последующим анализом на поляриметре рассеяния. При этом влияние МДМ должно быть подавлено. Такая техника впервые была предложена в ВNL и имеет название "замороженный"спин. Позднее, была предложена концепция 'квази-замороженного' спина, в которой происходит пространственное разделение полей и интегральное подавление МДМ-компоненты за полный оборот по кольцу.

Представленные исследования исходят из возможности изучения в комплексе NICA-Nuclotron. Построенный ускорительный комплекс является проектом мегасайнс и оборудован передовой материально-технической базой, отвечающей мировым тенденциях в ускорительной технике. Основными функционирующими установками помимо уже упомянутого коллайдера NICA являются бустер тяжелых ионов Booster, а также синхротон Nuclotron.

В коллайдере NICA для реализации концепции "квази-замороженного" спина необходима установка соответствующего оборудования. Для реализации накопительного кольца из структуры коллайдера, необходима модернизация с созданием обходных каналов bypass. Таким образом, на полученных прямолинейных участках могут быть расположены прямые фильтры Вина, выполняющий функцию компенсации МДМ-компоненты в скрещенных магнитных и электрических полях, не возмущающие орбиту в силу равенства нулю силы Лоренца.

Nuclotron является бустером поляризованных частиц в коллайдер, однако, требующем модернизации. Соответствующей концепт модернизации рассмотрен с точки зрения использования Nuclotron в тесной связке с коллайдером NICA. Использвание Nuclotron для полноценных спиновых экспериментов делает эту машину столь же интересной, сколько и отдельные программы на коллайдере. Кроме того, особенности магнитооптики Nuclotron открывают возможность измерение ЭДМ не только дейтрона, но и протона, однако, при несколько меньшей энергии. На текущий день измерений ЭДМ как дейтрона, так и протона не было осуществлено и представляется передним краем физического эксперимента.

Актуальность темы. Исследования направлены на формирование полноценной физической программы по исследованию спиновой динамике в комплексе NICA-Nuclotron.

Целью данной диссертации является изучение особенностей динамики поляризованного пучка в ускорительном комплексе NICA-Nuclotron с учетом возможной модернизации магнитооптической структуры комплекса для проведения коллайдерных экспериментов, а также исследования электрического дипольного момента и поиска аксиона. Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Моделирование магнитооптики с модулированной дисперсионной функцией;
- 2. Расчёт времени внутрипучкового рассеяния для тяжелых ионов;
- 3. Оценка влияния методов охлаждения пучка на время жизни;
- 4. Проведение численного моделирования продольной динамики частиц с учетом высших порядков коэффициента уплотнения орбиты в высокочастотых резонаторах гармонического и барьерного типа;
- 5. Обеспечение стабильности пучка с точки зрения динамической апертуры при процедуре скачка критической энергии, подавление хроматичности, компенсация нелинейных эффектов;
- 6. Сохранение поляризации пучка при совершении процедуры скачка критической энергии;
- 7. Проектирование кольцевого ускорителя с возможностью применения метода «квази-замороженного спина»;
- 8. Спин-орбитальное моделирование в магнитном кольце с дополнительными элементами со скрещенными магнитными и электрическими полями;

Научная новизна:

- 1. Применен метод проектирования "резонансной" магнитооптической структуры с варьированной критической энергией для обеспечения стабильности пучка;
- 2. Исследована возможность проектирования дуальной магнитооптической структуры. Оптимизированой с точки зрения времени жизни пучка для тяжелых ионов и возможностью вариации критической энергии для легких частиц;
- 3. Исследована продольная динамика поляризованного пучка при нахождении вблизи и прохождении критической энергии скачком в ВЧ;

- 4. Исследована процедура скачка критической энергии экспериментально на сеансе синхротрона У-70, а также при помощи численного моделирования для различных импедансов и интенсивностей пучка;
- 5. Разработка альтернативных прямых секций, путем создания обходных каналов bypass для реализации метода «квази-замороженного» спина с установленными прямыми фильтрами Вина для возможности изучения ЭДМ дейтронов в накопительном кольце NICA:
- 6. Модернизация кольца канала Nuclotron с укорочением поворотными магнитными арками для возможности создания режима «квази-замороженного» спина и изучения ЭДМ дейтрона и протона;
- 7. Изучение спин-орбитальной динамики в предложенных структурах. Исследование природы спиновой декогеренции в структуре коллайдера NICA.

Практическая значимость:

Разработка дуальной магнитооптической структуры может позволит использовать кольцо коллайдера как для коллайдерных экспериментов с тяжелыми ионами на MPD детекторе с целью исследования кварк-глюонной плазмы, так и для проведения коллайдерных экспериментов по столкновению легких ядер для ???.

Наличие ЭДМ заряженных частиц может быть установлено с использованием ускорительных установок в качестве накопительного кольца. Такие исследования является отдельной частью программы спиновой физики, которая формируется на установке NICA-Nuclotron.

Создание обводных каналов bypass позволит избежать точек встречи, также расположить прямые фильтры Вина независимо от оборудования, используемого для тяжело-ионного эксперимента. В конечном счёте, это позволит использовать NICA в режиме накопительного кольца.

Модернизация кольца Nuclotron рассматривается в двух аспектах. Во-первых, использование в качестве бустера для поляризованного пучка в коллайдер. Во-вторых, для независимого эксперимента по исследованию ЭДМ.

Методология и методы исследования. Основными методами исследования являются математическое и компьютерное моделирование, численный эксперимент. Для исследования поперечной динамики:

MAD-X, OPTIM, продольной динамики: BLonD; спин-орбитальной динамики: COSY Infinity.

Основные положения, выносимые на защиту:

- 1. Принципы построения дуальной магнитооптической структуры для тяжелых ионов и легких ядер;
- 2. Методы позволяющие минимизировать влияние внутрипучкового рассеяния (IBS) для обеспечения достаточного времени жизни пучка;
- 3. Влияние магнитооптической структуры на охлаждение пучка;
- 4. Методы вариации критической энергии в резонансных магнитооптических структурах путем суперпериодической модуляции дисперсионной функции;
- 5. Принципы построения регулярной и "резонансной" структур с различными методами подавления дисперсии;
- 6. Результаты исследования продольной динамики поляризованного пучка для процедуры скачка критической энергии;
- 7. Методы подавления натуральной хроматичности и компенсации нелинейных эффектов секступолями;
- 8. Принципы проектирования оптимальных магнитооптических структур для изучения электрического дипольного момента легких ядер в режиме «квази-замороженного» спина;
- 9. Реализована адаптация существующей структуры методом создания альтернативных обходных прямых секций ByPass;
- 10. Результаты спин-орбитального моделирования динамики поляризованного пучка в спроектированных структурах.

<u>Достоверность</u> полученных результатов подтверждается согласованием аналитических вычислений с результатами численных экспериментов. Результаты находятся в соответствии с результатами, полученными другими авторами.

Апробация работы. Основные результаты работы докладывались на российских и международных конференциях:

- Молодежная конференция по теоретической и экспериментальной физике МКТЭФ-2020. Москва, Россия;
- 63, 65, 66-ая Всероссийская научная конференция МФТИ в 2020, 2023, 2024 гг. г. Долгопрудный, Россия;
- XXVII и XXVIII Всероссийская конференции по ускорителям заряженных частиц RuPAC'21, RuPAC'23. Алушта; Новосибирск, Россия.

- VII, VIII, IX и X Международная конференция Лазерные и Плазменные технологии ЛаПлаз'21, ЛаПлаз'22, ЛаПлаз'23, ЛаПлаз'24.
 Москва, Россия;
- XIII и XIV международная конференция по ускорителям заряженных частиц IPAC'22 IPAC'23. Бангкок, Тайланд; Венеция, Италия;
- XIX Международная конференции по спиновой физике высоких энергий DSPIN'23. Дубна, Россия;
- XI-я Международная конференция по ядерной физике в накопительных кольцах STORI'24. Хуэйчжоу, провинция Гуандун, Китай.

<u>Личный вклад.</u> Все результаты, выносимые на защиту, получены автором лично, либо при его непосредственном участии. Содержание диссертации и выносимые на защиту основные положения отражают личный вклад автора в опубликованные работы. Результаты по подготовке и проведению эксперимента на ускорителе У-70 получены в соавторстве с сотрудниками ИЯИ РАН и ИФВЭ. Подготовка к публикации полученных результатов проводилась совместно с соавторами.

Содержание работы

Во введении обосновывается актуальность исследований, проводимых в рамках данной диссертационной работы, приводится обзор научной литературы по изучаемой проблеме, формулируется цель, ставятся задачи работы, излагается научная новизна и практическая значимость представляемой работы. В последующих главах сначала описывается общий принцип создание дуальной магнитооптической структуры, а потом идёт более детальное рассмотрение проектирования 'резонансных' структур, методов преодоления критической энергии и в конце возможность использования ускорительных установок для прецезионных экспериментов по исследованию ЭДМ.

В первой главе: рассматриваются общие принципы проектирования дуальной магнитооптической структуры как для тяжелых, так и легких ядер. Различные соотношения заряда и массы оказывается ключевым при проектировании структуры.

В случае тяжелых ионов зарядность выделяет проблему внутрипучкового рассеяния пучка на первый план. Разогрев пучка приводит к росту поперечного эмиттанса и продольного разброса по импульсам. Для предотвращения неконтролируемого роста фазового объёма применяются техники по охлаждению пучка. Рассматривается стабильность пучка с точки зрения времени жизни пучка, в стационарном, независимом, от времени случае параметры пучка при наличии внутрипучкого рассеяния и охлаждления определяются как

$$\varepsilon_{st} = \tau_{tr} \cdot \left(\frac{d\varepsilon}{dt}\right)_{IBS} \Big|_{\varepsilon = \varepsilon_{st}}$$
$$\delta_{st}^2 = \tau_{\text{long}} \cdot \left(\frac{d\delta^2}{dt}\right)_{IBS} \Big|_{\delta^2 = \delta_{st}^2}$$

В современных установках используется как стохастическое, так и электронное охлаждение. Использование стохастического охлаждения оказывается зависимо от продольного смещения частиц относительно референсной и такого параметра как коэффициента скольжения η . Использование 'резонансных' структур с варьируемым значением коэффициента уплотнения орбиты способно уменьшить время охлаждения до оптимального значения в случае 'комбинированной' структуры, где одна поворотная арка с комплексным значением критической энергии, а другая с действительными.

а) Зависимость времени стохастического охлаждения от энергии.

 б) Зависимость постоянной времени разогрева пучка из-за внутрипучкового рассеяния.

Рис. 1 — Сравнение времени разогрева пучка и охлаждения. Черная линия – 'регулярная', синяя – 'резонансная', красная – 'комбинированная' структура, прерывистая – идеальный случай.

Для легких частиц, таких как протоны, соотношение заряда к массе отличается почти в 2 раза по сравнению с тяжелыми ионами, таким образом пропорционально увеличивается и энергия эксперимента. При этом критическая энергия остается неизменной, поскольку является характеристикой конкретной установки и определяется магнитооптикой. Преодоление критической энергии является необходимым для обеспечения стабильности, в первую очередь, продольного движения. Таким образом,

для тяжелых ионов такой проблемы не возникает, а в случае легких частиц, требуется принимать меры по преодолению критической энергии. Одним из таких методов может является создание 'резонансной' структуры.

Вторая глава посвящена исследованию возможности прохождения критической энергии, характерной для регулярных структур, методом скачка критической энергии. Для этого необходимо исследовать уравнение продольного движения:

$$\frac{d\tau}{dt} = \eta(\delta) \cdot \frac{h \cdot \Delta E}{\beta^2 \cdot E_0}
\frac{d(\Delta E)}{dt} = \frac{V(\tau)}{T_0}$$
(1)

Как видно, уравнение зависит от параметров магнитооптической структуры, ускоряющей станции, энергии пучка, а также разброса по импульсам внутри сгустка.

Влияние различных типов ВЧ оказывает существенное влияние на динамику пучка. В зависимости от используемого типа изменяется темп ускорения, а также вид удерживающей сепаратрисы. В случае гармонического ВЧ, ускорения происходит смещением фазы равновесной частицы и в разы больше, чем в случае индукционного ускорения при использовании барьерной станции.

Для преодоления критической энергии классически используется процедура скачка критической энергии. Это достигается путем модулирования дисперсионной функции при приближении энергии пучка к значению критической энергии. Данные численного моделирования, также апробированы на экспериментальной установке У-70 в Протвино.

Также рассмотрены эффекты влияния высших порядков коэффициента расширения орбиты, а также простейших моделей импедансов на динамику пучка.

Существенное ограничение на параметры сгустка возникают из-за продольной микроволновой неустойчивости.

Было показано, что для процедуры скачка критической энергии ключевыми являются темп изменения критической энергии по отношению к темпу ускорения от ВЧ станции, а также максимально возможная величина изменения критический энергии во время процедуры.

В **третьей главе** рассматривается метод вариации критической энергии в «резонансных» магнитооптиках. Для этого вводится суперпериодическая модуляция градиентов квадрупольных линз, тем самым варьируя дисперсионную функцию.

$$\alpha = \frac{1}{\gamma_{tr}^2} = \frac{1}{C} \int_0^C \frac{D(s)}{\rho(s)} ds, \tag{2}$$

а) Скачкообразное изменение критической энергии.

б) Скачкообразное измерение первого порядка коэффициента проскальзывания.

Рис. 2 — Процедура скачка критической энергии для барьерного ВЧ.

Рис. 3 — Твисс-параметры для различных суперпериодов.

Для магнитооптической структуры коллайдера NICA рассмотрены варианты модернизации для создания 'резонансной' структуры с поднятой критической энергией из регулярной.

Приведены схемы подавления дисперсии в оптимизированной структуре. Подавление может быть осуществлено как квадруполями в двух крайних ФОДО ячейками, так и при использовании только двух семейств квадполей.

Рассмотрен вопрос подавления натуральной хроматичности, а также нелинейных эффектов в таких структурах.

В **четвертой главе** рассматривается возможность исследования в комплексе Nuclotron-NICA электрического дипольного момента легких

ядер. Для коллайдера NICA приведена возможность введения альтернативных каналов bypass. А также рассматривается возможность модернизации Nuclotron. Рассмотрена спиновая динамика в кольце с использованием электростатических, а также элементов с совмещенной функцией, что показано на рис. 4.

- а) C использованием электростатических дефлекторов.
- б) C использованием фильтров Вина.

Рис. 4 — Принципиальная схема "квази-замороженной" структуры.

Для проведения эксперимента по поиску ЭДМ становится необходимым использовать альтернативный метод управления спином, концепция «квази-замороженного» спина. В отличие от метода «замороженного» спина, спин больше не сохраняет ориентацию в течение всего периода обращения, а восстанавливает ориентацию на прямолинейном участке. Это возможно благодаря использованию элементов как с электрическим, так и с магнитным полями, которые называются фильтрами Вина, на прямом участке. Поворот спина в арке на определенный угол компенсируется соответствующим поворотом в фильтре Вина. Поля подбираются таким образом, чтобы создать нулевую силу Лоренца и не нарушить прямолинейность орбиты. Поляриметры, расположенные после фильтров Вина, будут обнаруживать ту же ориентацию спин-вектора, и для них она будет 'заморожена'.

Приведена структура NICA с обводными каналами bypass для реализации накопительного кольца с фильтрами Вина на прямых участках, без вмешательства в текущую оптику коллайдера. Для обеспечение высокого показателя время когерентности SCT (Spin Coherence Time), порядка 1000 секунд возможно использовать главное кольцо NICA в качестве накопителя, а не в режиме коллайдера. По этой причине, предлагается установить дополнительные обводные каналы bypass. Таким образом, можно создать совершенно новую регулярную структуру, что является большим преимуществом, не требующей значительной перестройки комплекса и затрат, при всём при этом, позволит задействовать NICA в различных экспериментах.

Текущая структура синхротрона Nuclotron не предполагает программу исследований ЭДМ. Для расширения возможностей Nuclotron в качестве самостоятельной машины рассматривается возможность модернизации. Наибольший интерес может представлять структура, способная одновременно быть использована для изучения ЭДМ как дейтронов, так и протонов. С точки зрения орбитальной динамики протон и дейтрон практически идентичны, масса дейтрона, вдвое больше, чем у протона. Спиновая же динамика отличается достаточно существенно для разного сорта частиц.

Рассмотрена «квази-замороженная» структура с электростатическими дефлекторами и фильтрами Вина. Показано, что для компенсации отклонения спина в магнитной арке, должны быть использованы элементы, отклоняющие на одинаковый угол, то есть с одинаковой кривизной как электрического, так и магнитного полей. При этом тип отклоняющего элемента не имеет значения, это может быть как фильтр Вина, так и электростатический дефлектор. Таким образом, при неизменной магнитной арке, длина фильтра Вина окажется меньше на суммарную длину киккеров, так как в нём совмещены функции электростатического дефлектора и киккера в один элемент. Отдельно для протонов показано, длина компенсирующих элементов больше длины магнитной арки. И для исследования протонов может быть использована та же структура, но с повёрнутыми на 180 градусов фильтрами Вина при меньшей энергии. [1]

В заключении приведены основные результаты работы, которые заключаются в следующем:

- 1. На основе анализа внутрипучкового рассеяния, а также стохастического охлаждения показано, что использование метода 'резонансной' структуры способно увеличить эффективность стохастического охлаждения. Особенно эффективным может быть использование 'комбинированной' структуры. Однако, эффекты ВПР для приведенных структуры оказались в несколько раз большими и в конечном счёте недостаточными, делая предпочтительной 'регулярную' структуры.
- 2. Для 'резонансной' структуры может быть варьирована критическая энергия, что использовано для коллайдерных экспериментов с протонами.
- 3. Численные исследования показали, что прохождение критической энергии может вызывать нестабильность продольного фазового движения. Использование процедуры скачка способно.
- 4. Экспериментальные данные процедуры скачка критической с синхротрона У-70.
- 5. Использование процедуры скачка для коллайдера NICA ограничено величиной скачка критической энергии, а также для гармонического ВЧ темпом изменения критической энергии по

- сравнению с темпом ускорения пучка. Что делает невозможным использование процедуры для этого типа ВЧ. Для барьерного ВЧ приведены оценки продольной микроволновой неустойчивости, по-казывающие существенное ограничение на параметры конечного сгустка.
- 6. Для исследования спиновой динамики и реализации "квази-замороженного" спина в коллайдере NICA рассмотрено введение обводных каналов bypass.
- 7. Модернизированная структура синхротрона Nuclotron

Публикации автора по теме диссертации

- 1. Kolokolchikov S. D., Senichev Y. V. Magneto-Optical Structure of the NICA Collider with High Transition Energy // Physics of Atomic Nuclei. 2021. Vol. 84, no. 10. Pp. 1734—1742. URL: https://doi.org/10.1134/S1063778821100185.
- Acceleration and crossing of transition energy investigation using an RF structure of the barrier bucket type in the NICA accelerator complex / S Kolokolchikov, Y Senichev, A Melnikov, E Syresin // Journal of Physics: Conference Series. 2023. Vol. 2420, no. 1. P. 012001. URL: https://dx.doi.org/10.1088/1742-6596/2420/1/012001.
- 3. Quasi-frozen spin concept of magneto-optical structure of NICA adapted to study the electric dipole moment of the deuteron and to search for the axion / Y Senichev, A Aksentyev, S Kolokolchikov et al. // Journal of Physics: Conference Series. 2023. Vol. 2420, no. 1. P. 012052. URL: https://dx.doi.org/10.1088/1742-6596/2420/1/012052.
- 4. ByPass optics design in NICA storage ring for experiment with polarized beams for EDM search / S Kolokolchikov, A Aksentyev, A Melnikov et al. // Journal of Physics: Conference Series. 2024. Vol. 2687, no. 2. P. 022026. URL: https://dx.doi.org/10.1088/1742-6596/2687/2/022026.
- Spin coherence and betatron chromaticity of deuteron beam in NICA storage ring / S Kolokolchikov, A Aksentyev, A Melnikov, Y Senichev // Journal of Physics: Conference Series. 2024. Vol. 2687, no. 2. P. 022027. URL: https://dx.doi.org/10.1088/1742-6596/2687/2/022027.
- NICA Facilities for the Search for EDM Light Nuclei / Yu. Senichev, A. Aksentyev, S. Kolokolchikov et al. // Physics of Atomic Nuclei. 2024.
 Vol. 87, no. 4. Pp. 436–441. URL: https://doi.org/10.1134/S1063778824700534.

- 7. Formation of Polarized Proton Beams in the NICA Collider-Accelerator Complex / E. M. Syresin, A. V. Butenko, P. R. Zenkevich et al. // Physics of Particles and Nuclei. 2021. Vol. 52, no. 5. Pp. 997–1017. URL: https://doi.org/10.1134/S1063779621050051.
- 8. Consideration of an Adapted Nuclotron Structure for Searching for the Electric Dipole Moment of Light Nuclei / Yu. V. Senichev, A. E. Aksentyev, S. D. Kolokolchikov et al. // *Physics of Atomic Nuclei*. 2023. Vol. 86, no. 11. Pp. 2434–2438. URL: https://doi.org/10.1134/S1063778823110418.
- 9. (to be written) Dual-structure features for heavy ion and light particles at NICA collider / S.D. Kolokolchikov, A.E. Aksentyev, A.A. Melnikov, Yu.V. Senichev // Chinese Physics C.-2025.
- 10. (to be written) Modernization of Nuclotron as booster for NICA and EDM experiment / S.D. Kolokolchikov, A.E. Aksentyev, A.A. Melnikov, Yu.V. Senichev // $JETP\ Letters.$ 2025.
- 11. (to be published) Transition energy crossing in NICA collider of polarized proton beam in harmonic and barrier RF / S.D. Kolokolchikov, Yu.V. Senichev, A.E. Aksentyev, A.A. Melnikov // Physics of Atomic Nuclei. 2025.
- 12. Kolokolchikov S.D., Senichev Yu.V., Kalinin V.A. (to be published) Transition energy crossing in harmonic RF at U-70 proton synchrotron // Physics of Atomic Nuclei. 2025.
- 13. Longitudinal Dynamic in NICA Barrier Bucket RF System at Transition Energy Including Impedances in BLonD / S. Kolokolchikov, Yu. Senichev, A. Aksentev et al. // Physics of Particles and Nuclei Letters. 2024. Vol. 21, no. 3. Pp. 419–424. URL: https://doi.org/10.1134/S1547477124700389.
- 14. Spin Coherence and Betatron Chromaticity of Deuteron Beam in "Quasi-Frozen"Spin Regime / S. Kolokolchikov, A. Aksentiev, A. Melnikov, Yu. Senichev // *Physics of Atomic Nuclei.* 2023. Vol. 86, no. 12. Pp. 2684–2688. URL: https://doi.org/10.1134/S106377882311025X.
- 15. Designing Bypass Channels in NICA Accelerator Complex for Polarized Beam Experiments for EDM Search / S. Kolokolchikov, A. Aksentyev, A. Melnikov et al. // *Physics of Atomic Nuclei*. 2023. Vol. 86, no. 11. Pp. 2423–2428. URL: https://doi.org/10.1134/S1063778823110248.
- 16. Transition Energy Crossing of Polarized Proton Beam at NICA / S. Kolokolchikov, Yu. Senichev, A. Aksentiev et al. // Physics of Atomic Nuclei. 2024. Vol. 87, no. 3. Pp. 212–215. URL: https://doi.org/10.1134/S1063778824700054.

17. Kolokolchikov S., Senichev Yu. Peculiarities of Crossing and Raising the Synchrotron Transition Energy // Physics of Atomic Nuclei. — 2023. — Vol. 86, no. 10. — Pp. 2260–2264. — URL: https://doi.org/10.1134/S1063778823110236.

Колокольчиков Сергей Дмитриевич
Исследование динамики поляризованного пучка в ускорительном комплексе NICA-Nuclotron в приложении к изучению электрического дипольного момента легких ядер
Автореф. дис. на соискание ученой степени канд. физмат. наук
Подписано в печать Заказ № Формат 60×90/16. Усл. печ. л. 1. Тираж 100 экз. Типография