$12a_{0970} (K12a_{0970})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 3.53471 \times 10^{56} u^{58} + 1.42360 \times 10^{57} u^{57} + \dots + 3.93692 \times 10^{56} b - 1.65023 \times 10^{57}, \\ &\quad 2.21537 \times 10^{57} u^{58} + 1.28547 \times 10^{58} u^{57} + \dots + 1.77161 \times 10^{57} a - 5.99824 \times 10^{58}, \ u^{59} + 6 u^{58} + \dots - 41 u - I_2^u &= \langle b + 3a + 1, \ 3a^2 + 3a + 1, \ u^2 - u - 1 \rangle \\ I_3^u &= \langle b + 1, \ a^2 - 4a + 6, \ u + 1 \rangle \\ I_4^u &= \langle b - 1, \ a + 2, \ u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 66 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I. } I_1^u = \\ \langle 3.53 \times 10^{56} u^{58} + 1.42 \times 10^{57} u^{57} + \dots + 3.94 \times 10^{56} b - 1.65 \times 10^{57}, \ 2.22 \times 10^{57} u^{58} + \\ 1.29 \times 10^{58} u^{57} + \dots + 1.77 \times 10^{57} a - 6.00 \times 10^{58}, \ u^{59} + 6u^{58} + \dots - 41u - 9 \rangle \end{matrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1.25048u^{58} - 7.25590u^{57} + \dots + 63.0832u + 33.8575 \\ -0.897836u^{58} - 3.61603u^{57} + \dots + 16.4208u + 4.19168 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 4.46863u^{58} + 17.9681u^{57} + \dots + 67.6860u + 1.25189 \\ -5.38311u^{58} - 23.1424u^{57} + \dots + 108.980u + 28.8269 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2.90235u^{58} + 13.2229u^{57} + \dots + 72.6610u - 21.8095 \\ -2.15803u^{58} - 9.57659u^{57} + \dots + 48.5315u + 11.5997 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1.96408u^{58} - 9.62149u^{57} + \dots + 68.3445u + 30.6108 \\ 3.54462u^{58} + 15.7106u^{57} + \dots - 88.3461u - 20.9626 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.66279u^{58} + 5.41036u^{57} + \dots - 0.319179u + 15.6956 \\ -3.81111u^{58} - 16.2823u^{57} + \dots + 79.8231u + 22.3535 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -3.00291u^{58} - 15.3623u^{57} + \dots + 118.037u + 39.4455 \\ 1.06867u^{58} + 3.16422u^{57} + \dots + 9.35768u + 12.0523 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.777443u^{58} + 1.97110u^{57} + \cdots 73.4254u 32.6128$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_{12}	$u^{59} - 3u^{58} + \dots + 8u^2 + 2$
c_2, c_6	$u^{59} - 4u^{58} + \dots - 19u + 3$
<i>c</i> ₃	$9(9u^{59} + 48u^{58} + \dots - 422003u + 85781)$
<i>C</i> ₅	$9(9u^{59} - 75u^{58} + \dots - 1270890u - 386003)$
c_7, c_8, c_{10} c_{11}	$u^{59} - 6u^{58} + \dots - 41u + 9$
<i>C</i> 9	$u^{59} - 2u^{58} + \dots - 1152u + 432$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_{12}	$y^{59} + 63y^{58} + \dots - 32y - 4$
c_2, c_6	$y^{59} - 44y^{58} + \dots + 355y - 9$
c_3	$81(81y^{59} + 1944y^{58} + \dots + 1.62773 \times 10^{10}y - 7.35838 \times 10^{9})$
<i>C</i> 5	$81(81y^{59} - 5643y^{58} + \dots + 5.63820 \times 10^{12}y - 1.48998 \times 10^{11})$
c_7, c_8, c_{10} c_{11}	$y^{59} - 76y^{58} + \dots + 1483y - 81$
<i>c</i> 9	$y^{59} + 22y^{58} + \dots - 1627776y - 186624$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.857889 + 0.543473I		
a = -0.935537 - 1.008220I	4.74114 - 0.35952I	0
b = 1.210920 + 0.035673I		
u = -0.857889 - 0.543473I		
a = -0.935537 + 1.008220I	4.74114 + 0.35952I	0
b = 1.210920 - 0.035673I		
u = -0.130615 + 0.967990I		
a = 0.190514 + 0.374185I	9.56415 - 6.01109I	0
b = -1.318690 + 0.257478I		
u = -0.130615 - 0.967990I		
a = 0.190514 - 0.374185I	9.56415 + 6.01109I	0
b = -1.318690 - 0.257478I		
u = 0.948364 + 0.213838I		
a = 1.51212 - 0.71166I	5.43776 + 2.93026I	0
b = -1.37230 - 0.44609I		
u = 0.948364 - 0.213838I		
a = 1.51212 + 0.71166I	5.43776 - 2.93026I	0
b = -1.37230 + 0.44609I		
u = 0.960664 + 0.374018I		
a = -0.305542 + 0.131521I	8.38003 + 6.19609I	0
b = 0.126556 + 0.984052I		
u = 0.960664 - 0.374018I		
a = -0.305542 - 0.131521I	8.38003 - 6.19609I	0
b = 0.126556 - 0.984052I		
u = 0.969759 + 0.438458I		
a = -1.42805 + 0.92716I	5.94572 + 7.83644I	0
b = 1.37512 + 0.41779I		
u = 0.969759 - 0.438458I		
a = -1.42805 - 0.92716I	5.94572 - 7.83644I	0
b = 1.37512 - 0.41779I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.066870 + 0.057775I		
a = -1.208650 - 0.520306I	11.99040 + 0.77771I	0
b = 1.291030 - 0.498774I		
u = 1.066870 - 0.057775I		
a = -1.208650 + 0.520306I	11.99040 - 0.77771I	0
b = 1.291030 + 0.498774I		
u = -0.764641 + 0.343047I		
a = 1.330310 - 0.471171I	6.96622 - 0.49717I	6.23462 + 1.41414I
b = 0.362348 + 0.017749I		
u = -0.764641 - 0.343047I		
a = 1.330310 + 0.471171I	6.96622 + 0.49717I	6.23462 - 1.41414I
b = 0.362348 - 0.017749I		
u = 0.799754 + 0.143772I		
a = 0.272317 + 0.190800I	1.12793 + 2.71854I	10.64746 - 8.72932I
b = -0.120952 - 1.081830I		
u = 0.799754 - 0.143772I		
a = 0.272317 - 0.190800I	1.12793 - 2.71854I	10.64746 + 8.72932I
b = -0.120952 + 1.081830I		
u = 1.046220 + 0.597660I		
a = 1.28813 - 0.95719I	13.1773 + 11.1774I	0
b = -1.38493 - 0.42023I		
u = 1.046220 - 0.597660I		
a = 1.28813 + 0.95719I	13.1773 - 11.1774I	0
b = -1.38493 + 0.42023I		
u = -1.21103		
a = -1.33100	2.64173	0
b = 0.716569		
u = -0.732538		
a = 4.79896	2.92652	-31.4710
b = -1.05042		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.118101 + 0.722024I		
a = 0.086917 - 0.358660I	2.59101 - 3.95881I	6.03862 + 7.13057I
b = 1.229760 - 0.250070I		
u = -0.118101 - 0.722024I		
a = 0.086917 + 0.358660I	2.59101 + 3.95881I	6.03862 - 7.13057I
b = 1.229760 + 0.250070I		
u = -0.986283 + 0.810419I		
a = 0.787138 + 0.653314I	11.99500 + 0.09773I	0
b = -1.331550 - 0.064088I		
u = -0.986283 - 0.810419I		
a = 0.787138 - 0.653314I	11.99500 - 0.09773I	0
b = -1.331550 + 0.064088I		
u = -0.622166 + 0.142096I		
a = -0.610096 + 0.520870I	1.150150 - 0.364893I	8.81978 + 0.27517I
b = -0.136025 + 0.091898I		
u = -0.622166 - 0.142096I		
a = -0.610096 - 0.520870I	1.150150 + 0.364893I	8.81978 - 0.27517I
b = -0.136025 - 0.091898I		
u = -0.117244 + 0.612352I		
a = 0.812578 - 0.945370I	5.05432 - 2.85507I	3.39383 + 3.61710I
b = 0.134811 - 0.595483I		
u = -0.117244 - 0.612352I		
a = 0.812578 + 0.945370I	5.05432 + 2.85507I	3.39383 - 3.61710I
b = 0.134811 + 0.595483I		
u = -1.400890 + 0.081228I		
a = 1.207210 + 0.357135I	6.44938 + 2.04861I	0
b = -0.851572 - 0.540881I		
u = -1.400890 - 0.081228I		
a = 1.207210 - 0.357135I	6.44938 - 2.04861I	0
b = -0.851572 + 0.540881I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.420938 + 0.095647I		
a = 3.99493 + 4.99920I	7.27721 - 0.14920I	10.48371 - 3.97631I
b = 0.990001 + 0.115515I		
u = -0.420938 - 0.095647I		
a = 3.99493 - 4.99920I	7.27721 + 0.14920I	10.48371 + 3.97631I
b = 0.990001 - 0.115515I		
u = 0.392846 + 0.073015I		
a = 1.305270 + 0.430518I	0.63593 + 2.21296I	-5.75964 - 6.65166I
b = -0.582701 - 0.749020I		
u = 0.392846 - 0.073015I		
a = 1.305270 - 0.430518I	0.63593 - 2.21296I	-5.75964 + 6.65166I
b = -0.582701 + 0.749020I		
u = -0.195055 + 0.340133I		
a = -1.55948 + 0.68613I	1.98756 - 0.99917I	2.40222 - 1.62487I
b = -1.091800 + 0.185883I		
u = -0.195055 - 0.340133I		
a = -1.55948 - 0.68613I	1.98756 + 0.99917I	2.40222 + 1.62487I
b = -1.091800 - 0.185883I		
u = 1.61129 + 0.03030I		
a = -0.088005 - 0.279498I	8.95456 + 0.95974I	0
b = -0.217256 - 0.380886I		
u = 1.61129 - 0.03030I		
a = -0.088005 + 0.279498I	8.95456 - 0.95974I	0
b = -0.217256 + 0.380886I		
u = 0.068702 + 0.357326I		
a = -1.24232 + 0.82388I	-0.908481 - 0.907750I	-3.97873 + 3.36038I
b = 0.092635 + 0.542344I		
u = 0.068702 - 0.357326I		
a = -1.24232 - 0.82388I	-0.908481 + 0.907750I	-3.97873 - 3.36038I
b = 0.092635 - 0.542344I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.66142		
a = 2.81188	11.4761	0
b = -1.21634		
u = 1.67528 + 0.06502I		
a = 0.057515 + 0.457143I	15.6369 + 1.8583I	0
b = 0.454603 + 0.532651I		
u = 1.67528 - 0.06502I		
a = 0.057515 - 0.457143I	15.6369 - 1.8583I	0
b = 0.454603 - 0.532651I		
u = -1.67823 + 0.03059I		
a = 0.178129 - 0.749329I	9.97496 - 3.33073I	0
b = -0.101652 + 1.402470I		
u = -1.67823 - 0.03059I		
a = 0.178129 + 0.749329I	9.97496 + 3.33073I	0
b = -0.101652 - 1.402470I		
u = 1.69183 + 0.11419I		
a = -1.87237 + 0.56142I	13.68640 + 2.79097I	0
b = 1.315370 + 0.125779I		
u = 1.69183 - 0.11419I		
a = -1.87237 - 0.56142I	13.68640 - 2.79097I	0
b = 1.315370 - 0.125779I		
u = -1.70433 + 0.05549I		
a = 1.94975 + 0.14139I	14.8568 - 3.9980I	0
b = -1.56251 + 0.59298I		
u = -1.70433 - 0.05549I		
a = 1.94975 - 0.14139I	14.8568 + 3.9980I	0
b = -1.56251 - 0.59298I		
u = -1.70709 + 0.09794I		
a = -0.304137 + 0.494271I	17.7739 - 8.0669I	0
b = 0.119151 - 1.247520I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.70709 - 0.09794I		
a = -0.304137 - 0.494271I	17.7739 + 8.0669I	0
b = 0.119151 + 1.247520I		
u = -1.70726 + 0.11689I		
a = -1.95829 - 0.38629I	15.3175 - 10.0440I	0
b = 1.51361 - 0.53501I		
u = -1.70726 - 0.11689I		
a = -1.95829 + 0.38629I	15.3175 + 10.0440I	0
b = 1.51361 + 0.53501I		
u = -1.73066 + 0.01255I		
a = -1.72454 - 0.03435I	-17.4675 - 1.0530I	0
b = 1.50767 + 0.66940I		
u = -1.73066 - 0.01255I		
a = -1.72454 + 0.03435I	-17.4675 + 1.0530I	0
b = 1.50767 - 0.66940I		
u = -1.73213 + 0.16868I		
a = 1.84723 + 0.54357I	-16.6726 - 14.3095I	0
b = -1.46340 + 0.53545I		
u = -1.73213 - 0.16868I		
a = 1.84723 - 0.54357I	-16.6726 + 14.3095I	0
b = -1.46340 - 0.53545I		
u = 1.78302 + 0.21856I		
a = 1.55482 - 0.43122I	-17.8772 + 4.1906I	0
b = -1.41314 - 0.15182I		
u = 1.78302 - 0.21856I		
a = 1.55482 + 0.43122I	-17.8772 - 4.1906I	0
b = -1.41314 + 0.15182I		

II.
$$I_2^u = \langle b + 3a + 1, 3a^2 + 3a + 1, u^2 - u - 1 \rangle$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ -3a - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2a + 2 \\ -3a - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 3a \\ -3a \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} au + 3a + 2 \\ -au - 4a - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2au + 3a + u + 1 \\ -2au - 5a - u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -au + 3a + 1 \\ au - 2a - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $10au 5a + \frac{11}{3}u + \frac{26}{3}$

Crossings	u-Polynomials at each crossing
c_1, c_6, c_{12}	$(u^2 - u + 1)^2$
c_2, c_4	$(u^2+u+1)^2$
<i>c</i> ₃	$9(9u^4 + 9u^2 + 1)$
<i>C</i> ₅	$9(9u^4 - 9u^3 + 3u + 1)$
c_{7}, c_{8}	$(u^2 - u - 1)^2$
<i>c</i> ₉	u^4
c_{10}, c_{11}	$(u^2+u-1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_6, c_{12}	$(y^2+y+1)^2$
c_3	$81(9y^2 + 9y + 1)^2$
<i>C</i> ₅	$81(81y^4 - 81y^3 + 72y^2 - 9y + 1)$
c_7, c_8, c_{10} c_{11}	$(y^2 - 3y + 1)^2$
<i>c</i> ₉	y^4

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = -0.500000 + 0.288675I	0.98696 - 2.02988I	11.99071 - 3.22749I
b = 0.500000 - 0.866025I		
u = -0.618034		
a = -0.500000 - 0.288675I	0.98696 + 2.02988I	11.99071 + 3.22749I
b = 0.500000 + 0.866025I		
u = 1.61803		
a = -0.500000 + 0.288675I	8.88264 - 2.02988I	9.00929 + 3.22749I
b = 0.500000 - 0.866025I		
u = 1.61803		
a = -0.500000 - 0.288675I	8.88264 + 2.02988I	9.00929 - 3.22749I
b = 0.500000 + 0.866025I		

III.
$$I_3^u = \langle b+1, \ a^2-4a+6, \ u+1 \rangle$$

a) Arc colorings
$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -a+1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -a+1 \\ -a+2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ a-2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -a+3 \\ 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing
c_1, c_4, c_{12}	$u^2 + 2$
$c_2, c_9, c_{10} \\ c_{11}$	$(u-1)^2$
c_3	$u^2 + 2u + 3$
c_5	$u^2 - 2u + 3$
c_6, c_7, c_8	$(u+1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_{12}	$(y+2)^2$
c_2, c_6, c_7 c_8, c_9, c_{10} c_{11}	$(y-1)^2$
c_3,c_5	$y^2 + 2y + 9$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 2.00000 + 1.41421I	8.22467	12.0000
b = -1.00000		
u = -1.00000	0.00467	19 0000
a = 2.00000 - 1.41421I b = -1.00000	8.22467	12.0000
v = -1.00000		

IV.
$$I_4^u = \langle b-1, \ a+2, \ u+1 \rangle$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -2\\1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing
c_1, c_4, c_{12}	u
c_2, c_7, c_8 c_9	u+1
c_3, c_5, c_6 c_{10}, c_{11}	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_{12}	y
c_2, c_3, c_5 c_6, c_7, c_8 c_9, c_{10}, c_{11}	y-1

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -2.00000	3.28987	12.0000
b = 1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_{12}	$u(u^{2}+2)(u^{2}-u+1)^{2}(u^{59}-3u^{58}+\cdots+8u^{2}+2)$
c_2	$((u-1)^2)(u+1)(u^2+u+1)^2(u^{59}-4u^{58}+\cdots-19u+3)$
c_3	$81(u-1)(u^{2} + 2u + 3)(9u^{4} + 9u^{2} + 1)$ $\cdot (9u^{59} + 48u^{58} + \dots - 422003u + 85781)$
c_4	$u(u^{2}+2)(u^{2}+u+1)^{2}(u^{59}-3u^{58}+\cdots+8u^{2}+2)$
c_5	$81(u-1)(u^{2}-2u+3)(9u^{4}-9u^{3}+3u+1)$ $\cdot (9u^{59}-75u^{58}+\cdots-1270890u-386003)$
c_6	$(u-1)(u+1)^{2}(u^{2}-u+1)^{2}(u^{59}-4u^{58}+\cdots-19u+3)$
c_7, c_8	$((u+1)^3)(u^2-u-1)^2(u^{59}-6u^{58}+\cdots-41u+9)$
<i>c</i> ₉	$u^{4}(u-1)^{2}(u+1)(u^{59}-2u^{58}+\cdots-1152u+432)$
c_{10}, c_{11}	$((u-1)^3)(u^2+u-1)^2(u^{59}-6u^{58}+\cdots-41u+9)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_{12}	$y(y+2)^{2}(y^{2}+y+1)^{2}(y^{59}+63y^{58}+\cdots-32y-4)$
c_2, c_6	$((y-1)^3)(y^2+y+1)^2(y^{59}-44y^{58}+\cdots+355y-9)$
c_3	$6561(y-1)(y^2+2y+9)(9y^2+9y+1)^2$ $\cdot (81y^{59}+1944y^{58}+\cdots+16277317023y-7358379961)$
c_5	$6561(y-1)(y^2 + 2y + 9)(81y^4 - 81y^3 + 72y^2 - 9y + 1)$ $\cdot (81y^{59} - 5643y^{58} + \dots + 5638201231006y - 148998316009)$
c_7, c_8, c_{10} c_{11}	$((y-1)^3)(y^2-3y+1)^2(y^{59}-76y^{58}+\cdots+1483y-81)$
<i>C</i> 9	$y^4(y-1)^3(y^{59}+22y^{58}+\cdots-1627776y-186624)$