Types de contraintes pouvant être utilisés pour plusieurs CSPs

<u>Note</u> : Il peut y avoir plusieurs manières de modéliser un CSP, et selon ces différentes modélisations possibles, les solutions données ne sont pas toujours les mêmes

Coloration de graphe

1ère manière possible de modéliser un problème de coloration de graphe

Soient $S = \{1, ..., n\}$ un ensemble d'entiers naturels représentant des sommets.

Soient $X = \{X_i : i \text{ dans } S\}$ un ensemble d'entiers naturels entre 1 et n représentant des couleurs de sommets.

Soient $Y = \{Y_{ij} : (i,j) \text{ dans } S^2\}$ un ensemble d'entiers binaires (0 ou 1). Pour tout i,j dans S, si les sommets i et j sont égaux ou s'il y a a une arête entre les sommets i et j, alors $Y_{ij} = 1$.

Contraintes d'égalité

Pour tout i dans S, $Y_{ii} = 1$. $\forall i \in S \ Y_{ii} = 1$ Pour tout (i,j) dans S^2 , $Y_{ij} = 1 <=> Y_{ji} = 1$. $\forall (i,j) \in S^2 \ Y_{ij} = Y_{ji}$

Contrainte alldiff

Pour tout (i,j) dans S^2 , (i \neq j et $Y_{ij} = 1$) $<=> X_i \neq X_j$ $\forall i \in S \ \forall j \in S \setminus \{i\} \ Y_{ij} = 1 <=> Alldiff(X_i, X_j)$

n-reines

Note: Il y a forcément une reine par ligne, donc on va se concentrer sur les colonnes.

1ère manière possible de modéliser un problème de n-reines

Soient $R = \{1, ..., n\}$ un ensemble d'entiers naturels représentant le nombre de reines (et aussi le nombre de lignes et de colonnes).

Soient $X = \{X_{ij} : (i,j) \text{ dans } R^2\}$ un ensemble d'entiers binaires (0 ou 1) représentant la présence de la reine $n^\circ i$ dans la colonne $n^\circ j$ (et la ligne $n^\circ i$)

Contrainte diff

Pour tout (i,j,k) dans R^3 , (j \neq k et $X_{ij} = 1$) $\langle = \rangle X_{ik} \neq 1$

<u>2ème manière possible de modéliser un problème n-reines</u>

Soient $R = \{1, ..., n\}$ un ensemble d'entiers naturels représentant le nombre de reines (et aussi le nombre de lignes et de colonnes).

Soient $X = \{X_i : i \text{ dans } R\}$ un ensemble d'entiers naturels représentant le numéro de colonnes de la reine i (qui se trouve à la ligne i)

Contrainte alldiff

Pour tout (i,j) dans R^2 , $i \neq j \leq X_i \neq X_j$

```
\forall i \in S \ \forall j \in S \setminus \{i\} \ Alldiff(X_i, X_i)
```

Sudoku

1ère manière possible de modéliser un sudoku

```
Soient S = \{1, ..., 9\} un ensemble d'entiers.
```

Soient $X = \{X_{ij} : (i,j) \text{ dans } S^2\}$ un ensemble d'entiers naturels entre 1 et 9 représentant le numéro de la case à la ligne i et la colonne j.

Contraintes alldiff

```
\begin{split} &\text{Pour tout } (i,j,k) \text{ dans } S^3: \\ &1) \text{ } j \neq k <=> X_{ij} \neq X_{ik} \\ &=> \forall i \in S, \text{ } \text{Alldiff}(\text{Xi1}, \text{Xi2}, \text{Xi3}, \text{Xi4}, \text{Xi5}, \text{Xi6}, \text{Xi7}, \text{Xi8}, \text{Xi9}) \\ &2) \text{ } i \neq j <=> X_{ik} \neq X_{jk} \\ &=> \forall i \in S, \text{ } \text{Alldiff}(\text{X1i}, \text{X2i}, \text{X3i}, \text{X4i}, \text{X5i}, \text{X6i}, \text{X7i}, \text{X8i}, \text{X9i}) \\ &\text{Pour tout } (i,j,k) \text{ dans } S^3 \text{ et tout } (p,q) \text{ dans } \{0,1,2\}^2: \\ &1) \text{ } ((3p \leq i < 3(p+1)) \text{ et } (3q \leq j,k < (3(q+1)) \text{ et } (j \neq k)) <=> X_{ij} \neq X_{ik} \\ &=> \forall i \in \{1,2,3\}, \text{ } \text{Alldiff}(\text{Xi1}, \text{Xi2}, \text{Xi3}, \text{X(i+1)1}, \text{X(i+1)2}, \text{X(i+2)1}, \text{X(i+2)2}, \text{X(i+3)3}) \end{split}
```

$=> \forall i \in \{1,2,3\}, Alldiff(X1i, X2i, X3i, X1(i+1), X2(i+1), X3(i+1), X1(i+2), X2(i+2), X3(i+2))$

Problème du zèbre

Rappel de la version de ce problème vue en cours :

2) $((3p \le i, j < 3(p + 1)) \text{ et } (3q \le k < (3(q + 1)) \text{ et } (i \ne j)) <=> X_{ik} \ne X_{jk}$

- 5 personnes
- 5 nationalités différentes
- 5 métiers différents
- 5 couleur de maisons différentes
- 5 animaux différentes
- 5 boissons distinctes
- 1. L'anglais habite dans la maison rouge.
- 2. L'espagnol a un chien.
- 3. Le japonais est peintre.
- 4. L'italien boit du thé.
- 5. Le norvégien habite la première maison.
- 6. L'habitant de la maison verte boit du café.
- 7. La maison blanche est juste après la verte.
- 8. Le sculpteur élève des escargots.
- 9. Le diplomate habite la maison jaune.
- 10. On boit du lait dans la 3e maison.
- 11. La maison du norvégien est à côté de la bleue.
- 12. Le violoniste boit du jus de fruit.
- 13. Le renard est dans la maison voisine du docteur.
- 14. Le cheval est dans la maison voisine de celle du diplomate.
- 15. (indice) Le zèbre est dans la maison verte.
- 16. Une des personnes boit de l'eau.
- => Qui habite où ?

<u>Le cours en question : https://moodle.univ-tlse3.fr/pluginfile.php/518559/mod_resource/content/6/algo-avancee23_4-CSPs_diapos.pdf</u>

1ère manière possible de modéliser le problème du zèbre

```
Soit I = \{1, ..., 5\} un ensemble d'entiers naturels représentant les positions des maisons. Soit C = \{C_i : i \text{ dans } I\} un ensemble d'entiers naturels dans I représentant les couleurs. (C_1 : rouge \; ; C_2 : verte \; ; C_3 : blanche \; ; C_4 : jaune \; ; C_5 : bleue) Soit A = \{A_i : i \text{ dans } I\} un ensemble d'entiers naturels représentant les animaux. (A_1 : chien \; ; A2 : escargot \; ; A3 : renard \; ; A4 : cheval \; ; A5 : zèbre) Soit N = \{Ni : i \text{ dans } I\} un ensemble d'entiers naturels dans I représentant les nationalités. (N_1 : anglais \; ; N_2 : espagnol \; ; N_3 : japonais \; ; N_4 : italien \; ; N_5 : norvégien) Soit M = \{Mi : i \text{ dans } I\} un ensemble d'entiers naturels dans I représentant les métiers. (M1 : peintre \; ; M2 : sculpteur \; ; M3 : diplomate \; ; M4 : violoniste \; ; M5 : docteur) Soit M = \{Bi : i \text{ dans } I\} un ensemble d'entiers naturels dans I représentant les boissons. (B1 : thé \; ; B2 : café \; ; B3 : lait \; ; B4 : jus de fruit \; ; B5 : eau)
```

Contraintes alldiff

Pour tout (i,j) dans
$$I^2$$
, $i \neq j \leq Ai \neq Aj$
Alldiff(A_1 , A_2 , A_3 , A_4 , A_5)

Pour tout (i,j) dans
$$I^2$$
, $i \neq j \leq Bi \neq Bj$
Alldiff(B_1 , B_2 , B_3 , B_4 , B_5)

Pour tout (i,j) dans
$$I^2$$
, $i \neq j \le Ci \neq Cj$
Alldiff(C_1 , C_2 , C_3 , C_4 , C_5)

Pour tout (i,j) dans
$$I^2$$
, $i \neq j \ll Mi \neq Mj$
Alldiff(M_1 , M_2 , M_3 , M_4 , M_5)

Pour tout (i,j) dans
$$I^2$$
, $i \neq j \le Ni \neq Nj$
Alldiff(N_1 , N_2 , N_3 , N_4 , N_5)

Contraintes d'égalité

N1 = C1 N2 = A1 N3 = M1 N4 = B1 N5 = 1 C2 = B2 M2 = A2

M3 = C4B3 = 3

B3 = 3

M4 = B4

A5 = C2

Contraintes d'écart

$$|C2 - C3| = 1$$

```
|N5 - C5| = 1

|A3 - M5| = 1

|A4 - M3| = 1
```

SEND + MORE = MONEY

Modélisation du problème

(note: R4 = M)

Contraintes d'égalité

$$\begin{split} Y &= (D+E)\%10 \\ E &= ((D+E)/10+N+R)\%10 \\ N &= (((D+E)/10+N+R)/10+E+O)\%10 \\ O &= ((((D+E)/10+N+R)/10+E+O)/10+S+M)\%10 \\ M &= (((((D+E)/10+N+R)/10+E+O)/10+S+M)/10)\%10 \end{split}$$

Contrainte Alldiff

Alldiff(S,M,E,N,D,R,O,Y)

Ordonnancement des tâches

exemple (dans TD):

On considère le problème d'ordonnancement suivant :

- on a 4 tâches à réaliser de durées 5, 1, 3, 4
- les tâches 2 et 3 ne peuvent être faites en parallèle (mêmes ressources nécessaires), et la 3 doit être faite avant la 4.

On veut savoir si toutes les tâches peuvent être commencées avant le temps t=7.

Modélisation du problème

d1 = 5

d2 = 1

d3 = 3

d4 = 4

But : essayer de trouver l'ensemble d'entiers naturels {T1, T2, T3, T4} représentant des débuts de tâches, tels que :

$$\forall i \in \{1,2,3,4\}, Ti + di \le 7$$

Contrainte de précédence

$$T3 + d3 \le T4$$

Contrainte de disjonction