A few important PDEs

 $constant \ coefficients = 1$

variable coefficients = $c(\mathbf{x})$

Poisson's equation:

$$\nabla^2 u = f$$

$$\nabla \cdot (c\nabla u) = f$$

example: f = charge density,

u = -electric potential

example: f = heat source/sink rate

u =steady-state temperature

example: f = solute source/sink rate,

u = steady-state concentration

example: $f \sim$ force on stretched string/drum

u = steady-state displacement

$$\nabla \cdot (c\nabla u) = f$$

 $c = \text{permittivity } \epsilon$

c =thermal conductivity

c = diffusion coefficient

 $c \sim$ "springy-ness"

Laplace's equation:

$$\nabla^2 u = 0$$

$$\nabla \cdot (c\nabla u) = 0$$

examples: as for Poisson, but no sources

Heat/diffusion equation:

$$\frac{\partial u}{\partial t} = \nabla^2 u$$

examples: u = temperature

u = solute concentration

$$\frac{\partial u}{\partial t} = \nabla \cdot (c \nabla u)$$

c =thermal conductivity c = diffusion coefficient

Scalar wave equation:

$$\frac{\partial^2 u}{\partial t^2} = \nabla^2 u$$

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (c \nabla u)$$

examples: u = displacement of stretched string/drumu = density of gas/fluid

 $c^2 = 1$ / wave speed

+ many, many others...

Maxwell (electromagnetism)

Schrödinger (quantum mechanics)

Navier-Stokes / Stokes / Euler (fluids)

Black-Scholes (options pricing)

Lamé-Navier (linear elastic solids)

beam equation (bending thin solid strips)

advection-diffusion (diffusion in flows)

reaction-diffusion (diffusion+chemistry)

minimal-surface equation (soap films)

nonlinear wave equation (e.g. solitary ocean waves)

finite-dimensional linear algebra

linear algebra w/ functions & derivatives

unknowns:	vector space of column vectors \mathbf{x} (or $\overline{\mathbf{x}}$) in \mathbb{R}^n (or \mathbb{C}^n), or possibly \mathbf{x} (t) [time-dependent] vector space: we can add, subtract, & multiply by constants without leaving the space	vector space of real-valued (or complex) functions $u(\mathbf{x})$ [for \mathbf{x} in some domain Ω], or possibly $u(\mathbf{x},t)$ [time-dependent], possibly restricted by some boundary conditions at the boundary $d\Omega$ [e.g. $u(\mathbf{x}) = 0$ on $d\Omega$] possibly with vector-valued $\mathbf{u}(\mathbf{x})$ [vector fields]
linear operators:	matrices A $\begin{array}{c} \textbf{linearity:} \\ A(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha A \mathbf{x} + \beta A \mathbf{y} \\ \hat{A}(\alpha u + \beta v) = \alpha \hat{A}u + \beta \hat{A}v \end{array}$	linear operators on functions \hat{A} , [$\hat{A}u = function$] using partial derivatives. examples : $\hat{A}_1 u = \nabla^2 u$ [Laplacian operator] $\hat{A}_2 u = 3u$ [mult. by constant] $\hat{A}_3 u \mid_{\mathbf{x}} = a(\mathbf{x}) u(\mathbf{x})$ [mult. by function] $\hat{A} = 4\hat{A}_1 + \hat{A}_2 + 7\hat{A}_3$ [linear comb. of ops.]
dot product and transpose:	$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^{\mathrm{T}} \mathbf{y} = \sum_{i} x_{i} y_{i}$ $\mathbf{x} \cdot A \mathbf{y} = \mathbf{x}^{\mathrm{T}} A \mathbf{y} = (A \mathbf{x})^{\mathrm{T}} \mathbf{y}$ $\Rightarrow (A)^{\mathrm{T}}_{ij} = A_{ji} [\text{swap rows/cols}]$ $\left(\frac{\partial}{\partial x}\right)^{\mathrm{T}} = ???$	$u(\mathbf{x}) \cdot v(\mathbf{x}) = \langle u, v \rangle = ???????? [inner \ product] $ $\langle u, \hat{A}v \rangle = \langle \hat{A}^{\mathrm{T}}u, v \rangle $ $\Rightarrow \hat{A}^{\mathrm{T}} = \hat{A}^* = \hat{A}^{\dagger} = ???????? [adjoint]$
basis:	set of vectors \mathbf{b}_i with span = whole space \Leftrightarrow any $\mathbf{x} = \sum_i c_i \mathbf{b}_i$ for some coefficients c_i if orthonormal basis, then $c_i = \mathbf{b}_i^T \mathbf{x}$	∞ set of functions $b_i(\mathbf{x})$ with span = whole space s! \Rightarrow any $u(\mathbf{x}) = \sum_i c_i b_i(\mathbf{x})$ for some coefficients c_i if orthonormal basis, then $c_i = \langle b_i, u \rangle$
linear equations:	solve $A\mathbf{x} = \mathbf{b}$ for \mathbf{x}	solve $\hat{A}u = f$ for $u(\mathbf{x})$
existence & uniqueness:	A x = b solvable if b in column space of A . Solution unique if null space of $A = \{0\}$, or equivalently if eigenvalues of A are $\neq 0$.	$\hat{A}u = f$ solvable if $f(\mathbf{x})$ in col. space (<i>image</i>) of \hat{A} . Solution unique if null space of $\hat{A} = \{0\}$, or equivalently if eigenvalues of \hat{A} are $\neq 0$.
eigenvalues/vectors:	solve $A\mathbf{x} = \lambda \mathbf{x}$ for \mathbf{x} and λ . For this \mathbf{x} , A acts just like a number (λ) . [e.g. $A^n\mathbf{x} = \lambda^n\mathbf{x}$, $e^A\mathbf{x} = e^{\lambda}\mathbf{x}$.]	solve $\hat{A}u = \lambda u$ for $u(\mathbf{x})$ [eigenfunction] and λ . For this u , \hat{A} acts just like a number (λ) . [e.g. $\hat{A}^n u = \lambda^n u$, $e^{\hat{A}}u = e^{\lambda}u$.] $\frac{\partial^2}{\partial x^2} \sin(kx) = (-k^2)\sin(kx)$
time-evolution initial-value problem:	solve $d\mathbf{x}/dt = A\mathbf{x}$ for $\mathbf{x}(0) = \mathbf{b}$ [system of ODE s] $\Rightarrow \mathbf{x} = e^{At} \mathbf{b}$ [if A constant] expand \mathbf{b} in eigenvectors, mult. each by $e^{\lambda t}$	solve $\partial u/\partial t = \hat{A}u$ for $u(\mathbf{x},0)=f(\mathbf{x})$ $\Rightarrow u(\mathbf{x},t) = e^{\hat{A}t} f(\mathbf{x})$ [if \hat{A} constant] expand f in eigenfunctions, mult. each by $e^{\lambda t}$
symmetric:	$A = A^{T}$ \Rightarrow real λ , orthogonal eigenvectors, diagonalizable	$\hat{A} = \hat{A}^{T}$ [??????] \Rightarrow real λ , orthogonal eigenvectors (???) diagonalizable (???)
positive definite / semi-definite:	$A = A^{T}, \mathbf{x}^{T}A\mathbf{x} > 0$ for any $\mathbf{x} \neq 0$ / $\mathbf{x}^{T}A\mathbf{x} \geq 0$ $\Leftrightarrow \text{real } \lambda > 0 / \geq 0, A = B^{T}B$ for some B important fact: $-\nabla^{2}$ is symmetric positive definition.	$\hat{A} = \hat{A}^{T}, \langle u, \hat{A}u \rangle > 0 / \geq 0 \text{ for } u \neq 0 (????)$ $\Leftrightarrow \text{real } \lambda > 0 / \geq 0, \hat{A} = \hat{B}^{T} \hat{B} \text{ for some } \hat{B} (???)$ finite or semi-definite!
inverses:	$A^{-1} A = A A^{-1} = 1$ [if it exists] $\left(\frac{\partial}{\partial x}\right)^{-1} = ???$ $\Rightarrow A\mathbf{x} = \mathbf{b}$ solved by $\mathbf{x} = A^{-1}\mathbf{b}$ some kind of integral?	$\hat{A}^{-1} = ???????$ $\Rightarrow \hat{A}u = f \text{ solved by } f = \hat{A}^{-1}u ????$ [delta functions & Green's functions]
orthogonal / unitary:	$A^{-1} = A^{T} \Leftrightarrow (A\mathbf{x}) \cdot (A\mathbf{x}) = \mathbf{x} \cdot \mathbf{x}$ for any \mathbf{x} $\Rightarrow \lambda = 1$, orthogonal eigenvectors, diagonalizable	$\hat{A}^{-1} = \hat{A}^{T} \Leftrightarrow \langle \hat{A}u, \hat{A}u \rangle = \langle u, u \rangle$ for any u $\Rightarrow \lambda = 1$, orthogonal eigenvectors (???) diagonalizable (???)