

Claims

What is claimed is:

1 1. An optical send-receive module comprising:
2 a frame having a front, a back side, and a top section;
3 a lens carrier attached to the front of the frame, the lens carrier including a lens
4 which faces forward;
5 an integrated circuit carrier placed within the top section of the frame;
6 first metal leads which electrically connect components within the lens carrier to
7 an integrated circuit within the integrated circuit carrier; and,
8 second metal leads which extend from the integrated circuit carrier, along the top
9 section of the frame, down the back side of the frame and extend under the frame.

1 2. An optical send-receive module as in claim 1, wherein the frame additionally
2 includes:
3 first slots along the back side of the frame, the second metal leads being placed in
4 *first*
the slots.

1 3. An optical send-receive module as in claim 2, wherein the frame includes
2 *first*
3 second slots along the top section, the *second* metal leads being placed in the second slots.

1 4. An optical send-receive module as in claim 1, wherein the lens carrier is
2 attached to the front of the frame so that a bottom of the lens carrier extends down below
3 a bottom of the top section of the frame.

1 5. An optical send-receive module as in claim 1, wherein the lens carrier includes
2 a first lens which houses a light emitting diode and a second lens which houses a photo
3 diode.

1 6. A method for manufacturing an optical send-receive module comprising the
2 following steps:

3 (a) forming a frame, the frame having a front section, a back side, and a top
4 section;

5 (b) molding a lens carrier and a universal chip carrier, the lens carrier and
6 universal chip carrier being co-planar and being connected by a first set of metal leads, a
7 second set of metal leads extending out from the universal chip carrier; and,

8 (c) placing the lens carrier and the universal chip carrier within the frame, wherein
9 the lens carrier is attached to the front section of the frame, and the first set
10 of metal leads are bent so that a lens included within the lens carrier faces forward, and
11 the second metal leads are bent so that they extend from the integrated
12 Universal Chip
~~circuit~~ carrier, along the top section of the frame, down the back side of the frame and
13 extend under the frame.

1 7. A method as in claim 6 wherein:

2 step (a) includes forming first slots along the back side of the frame; and,
3 step (b) includes placing the second metal leads in the ^{first} slots.

1 8. A method as in claim 7 wherein:

2 step (a) includes forming second slots along the top section of the frame; and,

2 3 step (b) includes placing the first metal leads in the slots.

second

1 9. A method as in claim 6 wherein step (c) includes attaching the lens carrier to
2 the front section of the frame so that a bottom of the lens carrier extends down below a
3 bottom of the top section of the frame.

1 10. A method as in claim 9 additionally comprising the following step:
2 (d) attaching the frame to a printed circuit board, the bottom of the top section
3 resting on the printed circuit board, the front section extending over a side of the printed
4 circuit board so that the bottom of the lens carrier extends down below a top of the printed
5 circuit board.

1 11. A method as in claim 9 additionally comprising the following step:
2 (d) attaching the frame to a printed circuit board, the bottom of the top section
3 resting on the printed circuit board, the front section extending down inside a cut out
4 portion of the printed circuit board so that the bottom of the lens carrier extends down
5 below a top of the printed circuit board.

1 12. A method as in claim 6 additionally comprising the following step:
2 (d) attaching the frame to a printed circuit board, the frame being flipped over so
3 that a top of the top section rests on the printed circuit board.

1 13. A module used for wireless communication, the module comprising:
2 a frame having a front, a back side, and a top section;

3 a lens carrier attached to the front of the frame, the lens carrier including a lens
4 which faces forward;

5 an integrated circuit carrier placed within the top section of the frame;
6 first metal leads which connect the lens carrier to an integrated circuit within the
7 integrated circuit carrier; and,

8 second metal leads which extend from the integrated circuit carrier, along the top
9 section of the frame, down the back side of the frame and are bent under the frame.

1 14. A module as in claim 13 wherein the frame additionally includes:

2 first slots along the back side of the frame, the second metal leads being placed in
3 the ^{first}
 ^{first}
 ¹ slots.

1 15. A module as in claim 14 wherein the frame includes second slots along the
2 ^{first}
 ¹ top section, the ~~second~~₁ metal leads being placed in the second slots.

1 16. A module as in claim 13 wherein the lens carrier is attached to the front of the
2 frame so that a bottom of the lens carrier extends down below a bottom of the top section
3 of the frame.