Overview

- An introduction to the parsing problem
- Context free grammars
- A brief(!) sketch of the syntax of English
- Examples of ambiguous structures
- PCFGs, their formal properties, and useful algorithms
- Weaknesses of PCFGs

Parsing (Syntactic Structure)

INPUT:

Boeing is located in Seattle.

OUTPUT:

Data for Parsing Experiments

- Penn WSJ Treebank = 50,000 sentences with associated trees
- Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Canadian Utilities had 1988 revenue of C\$ 1.16 billion, mainly from its natural gas and electric utility businesses in Alberta, where the company serves about 800,000 customers.

The Information Conveyed by Parse Trees

1) Part of speech for each word

$$(N = noun, V = verb, D = determiner)$$

2) Phrases

Noun Phrases (NP): "the burglar", "the apartment"

Verb Phrases (VP): "robbed the apartment"

Sentences (S): "the burglar robbed the apartment"

3) Useful Relationships

⇒ "the burglar" is the subject of "robbed"

An Example Application: Machine Translation

• English word order is subject - verb - object

• Japanese word order is subject – object – verb

English: IBM bought Lotus

Japanese: IBM Lotus bought

English: Sources said that IBM bought Lotus yesterday

Japanese: Sources yesterday IBM Lotus bought that said

Syntax and Compositional Semantics

- Each syntactic non-terminal now has an associated semantic expression
- (We'll see more of this later in the course)

Context-Free Grammars

[Hopcroft and Ullman 1979]

A context free grammar $G = (N, \Sigma, R, S)$ where:

- \bullet N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules of the form $X \to Y_1 Y_2 \dots Y_n$ for $n \ge 0, X \in N, Y_i \in (N \cup \Sigma)$
- $S \in N$ is a distinguished start symbol

A Context-Free Grammar for English

$$N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}$$

 $S = S$
 $\Sigma = \{\text{sleeps, saw, man, woman, telescope, the, with, in}\}$

S	\Rightarrow	NP	VP
VP	\Rightarrow	Vi	
VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
PP	\Rightarrow	IN	NP
	VP VP VP NP NP	$\begin{array}{ccc} VP & \Rightarrow \\ VP & \Rightarrow \\ VP & \Rightarrow \\ VP & \Rightarrow \\ NP & \Rightarrow \\ NP & \Rightarrow \\ \end{array}$	$\begin{array}{ccc} VP & \Rightarrow & Vi \\ VP & \Rightarrow & Vt \\ VP & \Rightarrow & VP \\ \hline NP & \Rightarrow & DT \\ NP & \Rightarrow & NP \\ \hline \end{array}$

-		,
Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

Left-Most Derivations

A left-most derivation is a sequence of strings $s_1 \dots s_n$, where

- $s_1 = S$, the start symbol
- $s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only
- Each s_i for $i=2\dots n$ is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \to \beta$ is a rule in R

For example: [S], [NP VP], [D N VP], [the N VP], [the man VP], [the man Vi], [the man sleeps]

Representation of a derivation as a tree:

RULES USED

S

RULES USED

S

 $S \to NP \; VP$

NP VP

S NP VP DT N VP **RULES USED**

 $S \to NP \; VP$

 $NP \rightarrow DT N$

S

NP VP

DT N VP

the N VP

RULES USED

 $S \to NP \; VP$

 $NP \to DT \; N$

 $DT \rightarrow the$

S

NP VP

DT N VP

the N VP

the dog VP

RULES USED

 $S \to NP \; VP$

 $NP \to DT \; N$

 $DT \rightarrow the$

 $N \rightarrow dog$

S

NP VP

DT N VP

the N VP

the dog VP

the dog VB

RULES USED

 $S \to NP \; VP$

 $NP \to DT \; N$

 $DT \rightarrow the$

 $N \rightarrow dog$

 $VP \to VB$

S
NP VP
DT N VP
the N VP
the dog VP
the dog VB
the dog laughs

RULES USED

 $S \to NP \; VP$

 $NP \to DT \; N$

 $DT \rightarrow the$

 $N \rightarrow dog$

 $VP \rightarrow VB$

 $VB \rightarrow laughs$

Properties of CFGs

- A CFG defines a set of possible derivations
- A string $s \in \Sigma^*$ is in the *language* defined by the CFG if there is at least one derivation which yields s
- Each string in the language generated by the CFG may have more than one derivation ("ambiguity")

S NP VP

RULES USED

 $S \to NP \; VP$

S NP VP he VP

RULES USED

$$S \rightarrow NP \ VP$$

$$NP \rightarrow he$$

S NP VP he VP he VP PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VP \; PP$

S

NP VP

he VP

he VP PP

he VB PP PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VP \; PP$

 $VP \to VB\ PP$

S

NP VP

he VP

he VP PP

he VB PP PP

he drove PP PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VP \; PP$

 $VP \to VB\ PP$

 $VB \rightarrow drove$

S

NP VP

he VP

he VP PP

he VB PP PP

he drove PP PP

he drove down the street PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VP \; PP$

 $VP \to VB \; PP$

 $VB \rightarrow drove$

PP→ down the street

S

NP VP

he VP

he VP PP

he VB PP PP

he drove PP PP

he drove down the street PP

he drove down the street in the car

RULES USED

 $S \rightarrow NP VP$

 $NP \rightarrow he$

 $VP \to VP \; PP$

 $VP \to VB \; PP$

 $VB \rightarrow drove$

PP→ down the street

PP→ in the car

S

NP VP

RULES USED

 $S \to NP \; VP$

S NP VP he VP

RULES USED

$$S \rightarrow NP \ VP$$

$$NP \rightarrow he$$

S NP VP he VP he VB PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VB\ PP$

S NP VP he VP he VB PP he drove PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VB\ PP$

 $VB \to drove \\$

S

NP VP

he VP

he VB PP

he drove PP

he drove down NP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VB\ PP$

 $VB \rightarrow drove$

 $PP \rightarrow down \ NP$

S

NP VP

he VP

he VB PP

he drove PP

he drove down NP

he drove down NP PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VB\ PP$

 $VB \rightarrow drove$

 $PP \rightarrow down \ NP$

 $NP \to NP \; PP$

S

NP VP

he VP

he VB PP

he drove PP

he drove down NP

he drove down NP PP

he drove down the street PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \rightarrow VB PP$

 $VB \rightarrow drove$

 $PP \rightarrow down NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow the street$

S

NP VP

he VP

he VB PP

he drove PP

he drove down NP

he drove down NP PP

he drove down the street PP

he drove down the street in the car

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VB \; PP$

 $VB \rightarrow drove$

PP → down NP

 $NP \rightarrow NP \ PP$

 $NP \rightarrow the street$

 $PP \rightarrow in the car$

The Problem with Parsing: Ambiguity

INPUT:

She announced a program to promote safety in trucks and vans

POSSIBLE OUTPUTS:

And there are more...

A Brief Overview of English Syntax

Parts of Speech:

Nouns

```
(Tags from the Brown corpus)

NN = singular noun e.g., man, dog, park

NNS = plural noun e.g., telescopes, houses, buildings

NNP = proper noun e.g., Smith, Gates, IBM
```

- Determiners
 DT = determiner e.g., the, a, some, every
- Adjectives

 JJ = adjective e.g., red, green, large, idealistic

A Fragment of a Noun Phrase Grammar

```
NN
              box
NN \Rightarrow
              car
NN \Rightarrow mechanic
       \Rightarrow pigeon
NN
DT
              the
DT
       \Rightarrow
             a
JJ
              fast
JJ
       \Rightarrow metal
       \Rightarrow idealistic
JJ
JJ
       \Rightarrow clay
```

Generates:

a box, the box, the metal box, the fast car mechanic, ...

Prepositions, and Prepositional Phrases

• Prepositions

```
IN = preposition e.g., of, in, out, beside, as
```

An Extended Grammar

Generates:

in a box, under the box, the fast car mechanic under the pigeon in the box, ...

Verbs, Verb Phrases, and Sentences

Basic Verb Types
 Vi = Intransitive verb
 Vt = Transitive verb
 Vd = Ditransitive verb
 e.g., sleeps, walks, laughs
 e.g., sees, saw, likes
 vd = Ditransitive verb
 e.g., gave

• Basic VP Rules $VP \rightarrow Vi$ $VP \rightarrow Vt NP$ $VP \rightarrow Vd NP NP$

• Basic S Rule $S \rightarrow NP VP$

Examples of VP:

sleeps, walks, likes the mechanic, gave the mechanic the fast car, gave the fast car mechanic the pigeon in the box,...

Examples of S:

the man sleeps, the dog walks, the dog likes the mechanic, the dog in the box gave the mechanic the fast car,...

PPs Modifying Verb Phrases

A new rule:

 $VP \rightarrow VP PP$

New examples of VP:

sleeps in the car, walks like the mechanic, gave the mechanic the fast car on Tuesday, . . .

Complementizers, and SBARs

- Complementizers

 COMP = complementizer e.g., that
- SBAR \rightarrow COMP S

Examples:

that the man sleeps, that the mechanic saw the dog ...

More Verbs

• New Verb Types

```
V[5] e.g., said, reported
V[6] e.g., told, informed
V[7] e.g., bet
```

• New VP Rules

```
VP \rightarrow V[5] SBAR VP \rightarrow V[6] NP SBAR VP \rightarrow V[7] NP NP SBAR
```

Examples of New VPs:

said that the man sleeps told the dog that the mechanic likes the pigeon bet the pigeon \$50 that the mechanic owns a fast car

Coordination

A New Part-of-Speech:
 CC = Coordinator e.g., and, or, but

• New Rules

Sources of Ambiguity

• Part-of-Speech ambiguity

NNS \rightarrow walks

 $Vi \longrightarrow walks$

• Prepositional Phrase Attachment the fast car mechanic under the pigeon in the box

street

PΡ

the

car

in

Two analyses for: John was believed to have been shot by Bill

Sources of Ambiguity: Noun Premodifiers

• Noun premodifiers:

A Funny Thing about the Penn Treebank

Leaves NP premodifier structure flat, or underspecified:

A Probabilistic Context-Free Grammar

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

• Probability of a tree with rules $\alpha_i \to \beta_i$ is $\prod_i P(\alpha_i \to \beta_i | \alpha_i)$

DERIVATION RULES USED

PROBABILITY

S

DERIVATION

RULES USED

PROBABILITY

S

NP VP

 $S \to NP \; VP$

1.0

DERIVATION

RULES USED

PROBABILITY

S

 $S \rightarrow NP VP$

1.0

NP VP DT N VP $NP \to DT \; N$

0.3

DERIVATION RULES USED

S

 $S \rightarrow NP VP$ 1.0

PROBABILITY

 $NP VP NP \rightarrow DT N 0.3$

DT N VP $DT \rightarrow the$ 1.0

the N VP

DERIVATIONRULES USEDPROBABILITYS $S \rightarrow NP VP$ 1.0

S	$\mathbf{S} \to \mathbf{N} \mathbf{I} \mathbf{V} \mathbf{I}$	1.0
NP VP	$NP \to DT \; N$	0.3

DT N VP
$$DT \rightarrow the$$
 1.0

the N VP $N \rightarrow dog$ 0.1 the dog VP

DERIVATION	RULES USED	PROBABILITY
S	$S \to NP \; VP$	1.0
NP VP	$NP \to DT \; N$	0.3
DT N VP	$DT \rightarrow the$	1.0
the N VP	$N \rightarrow dog$	0.1
the dog VP	$VP \rightarrow VB$	0.4
the dog VB		

DERIVATION	RULES USED	PROBABILITY
S	$S \to NP \; VP$	1.0
NP VP	$NP \to DT \; N$	0.3
DT N VP	$DT \rightarrow the$	1.0
the N VP	$N \rightarrow dog$	0.1
the dog VP	$VP \to VB$	0.4
the dog VB	$VB \rightarrow laughs$	0.5
the dog laughs		

TOTAL PROBABILITY = $1.0 \times 0.3 \times 1.0 \times 0.1 \times 0.4 \times 0.5$