

Video – 3

Equation Bash with Pythagoras

GEO

I

Q1. Finding the Altitude

Triangle ABC is an acute triangle with AB = 5, BC = 6 and AC = 7. Find the lengths of the altitudes from A to BC, and from B to AC.

Q1. Finding the Altitude

Solution

Let BD = x. Then, CD = 6 - x.

Then,

$$AD^2 = AB^2 - BD^2 = 25 - x^2$$
,

$$AD^2 = AC^2 - CD^2 = 49 - (6 - x)^2$$
.

Therefore,

$$25 - x^2 = 49 - (6 - x)^2$$

$$25 - x^2 = 49 - 36 + 12x - x^2$$

$$x = (25 + 36 - 49)/12 = 1.$$

Hence,
$$AD^2 = 25 - 1 = 24$$
.

Therefore, AD = sqrt(24) = 2sqrt(6).

Q1. Finding the Altitude

Solution (continued)

Note: We can use the same method to find BE.

That is, let AE = y, find equation in y, find y, then find BE.

But, here is a faster trick:

Area of ABC = AD \times BC / 2.

Also, Area of ABC = BE \times AC / 2.

Therefore, $AD \times BC = BE \times AC$.

2sqrt(6) \times 6 = BE \times 7.

Hence, $BE = 12 \operatorname{sqrt}(6)/7$.

Q2. Finding the Median

Triangle ABC is an acute triangle with AB = 5, BC = 6 and AC = 7. Find the length of the median AM.

Q2. Finding the Median

Solution

Let AD be an altitude.

Strategy: Using the idea from previous problem, we can find

BD and AD. From this, we can get AM.

Let
$$BD = x$$
.

Then,
$$AD^2 = 25 - x^2 = 49 - (6 - x)^2$$
.

Solving for x gives x = 1.

Thus,
$$MD = 3 - 1 = 2$$
.

And,
$$AD^2 = 25 - 1 = 24$$
.

Therefore, $AM^2 = 24 + 4 = 28$.

Hence, AM = 2sqrt(7).

Finding Cevians

Suppose that we know the lengths of the sides of triangle ABC. Let K be a special point on BC, and suppose we know BK and KC. For example, we can do this if K is midpoint of BC.

Recipe to find AK

- 1. Let AD be the altitude.
- 2. Let BD = x. Use $AD^2 = AB^2 BD^2 = AC^2 CD^2$ to get (linear) equation in x.
- 3. Solve for x to get BD and AD.
- 4. So, we can find KD.
- 5. Use Pythagoras to get AK.

Heron's Formula

We can "skip" having to solve for x every time by knowing the area formula. Because then, we can find the altitude by

altitude =
$$2 \times \text{area} / \text{base}$$
.

Heron's Formula

In triangle ABC, let BC = a, CA = b and AB = c. Then, area of triangle ABC is equal to

$$\sqrt{s(s-a)(s-b)(s-c)}$$

where s = (a + b + c)/2 is the semiperimeter.

Q1*. Finding the Altitude (redo)

Triangle ABC is an acute triangle with AB = 5, BC = 6 and AC = 7. Find the lengths of the altitudes from A to BC, and from B to AC.

Solution

Let
$$s = (5 + 6 + 7)/2 = 9$$
.

So,
$$s(s-a)(s-b)(s-c) = 9 \times 4 \times 3 \times 2$$
.

Hence, area of ABC = $sqrt(9 \times 4 \times 3 \times 2) = 6sqrt(6)$.

So,

$$AD = 2 \times 6 \operatorname{sqrt}(6) / 6 = 2 \operatorname{sqrt}(6).$$

$$BE = 2 \times 6 \text{sqrt}(6) / 7 = 12 \text{sqrt}(6) / 7.$$

Heron's Formula Proof

The idea is very simple. It is exactly the same with Q1, but we use a, b, c instead of 5, 6, 7.

Let
$$BD = x$$
. Then, $BC = a - x$.

Then,

$$AD^2 = AB^2 - BD^2 = c^2 - x^2$$
.

$$AD^2 = AC^2 - CD^2 = b^2 - (a - x)^2$$
.

Thus,
$$c^2 - x^2 = b^2 - (a - x)^2$$

$$c^2 - x^2 = b^2 - a^2 + 2ax - x^2$$
.

Thus,
$$x = (a^2 + c^2 - b^2)/2a$$
.

So,
$$a^2x^2 = (a^2 + c^2 - b^2)^2/4$$

(Area of ABC)²

$$= a^{2} \times AD^{2}/4$$

$$= a^{2}(c^{2} - x^{2})/4$$

$$= (a^{2}c^{2} - (a^{2} + c^{2} - b^{2})^{2}/4)/4$$

$$= (4a^{2}c^{2} - (a^{2} + c^{2} - b^{2})^{2})/16$$

$$= (2ac + a^{2} + c^{2} - b^{2})(2ac - a^{2} - c^{2} + b^{2})/16$$

$$= ((a + c)^{2} - b^{2})(b^{2} - (a - c)^{2})/16$$

$$= (a + c + b)(a + c - b)(b + a - c)(b - a + c)/16$$

$$= s(s - a)(s - b)(s - c).$$
Therefore, Area of ABC = sqrt(s(s - a)(s - b)(s - c)).

Q3. Four Right Triangles in Square

In the figure, ABCD and PQRS are squares. Suppose that AB = 10 and PS = 2. Find the length of AQ.

Q3. Four Right Triangles in Square

Solution

Triangles AQB, BRC, CSD and DPA are congruent (by AAS).

Let
$$AQ = x$$
. Then, $BR = x$.

In right triangle AQB,

$$AB^2 = AQ^2 + QB^2$$

$$100 = x^2 + (x + 2)^2.$$

Solving for x gives x = 6.

Q4. Circle and Square

In the figure ABCD is a square and M is midpoint of CD. A circle centred at O passes through A, B and tangent to CD at M. If AB = 2, find the radius of the circle.

Q4. Circle and Square

Solution

Since $\mathsf{OM} \perp \mathsf{CD}$ and M is midpoint, the line OM is the line of symmetry of ABCD.

Let OM cut AB at N. Then, NA = NB and \angle ANO = 90° by symmetry.

Let R be the radius.

$$OA = R, ON = 2 - R, AN = 1.$$

Therefore,

$$R^2 = 1^2 + (2 - R)^2$$
.

Solving for R gives R = 5/4.

Q5. Cutting a Metal Sheet

Two unit squares are cut from a rectangualar metal sheet at the corners as shown in the figure. Suppose that AB = 8 and CD = 4sqrt(2). What is the area of the original metal sheet?

Q5. Cutting a Metal Sheet

Solution

Let width = x and height = y.

From $AB^2 = 64$ and $CD^2 = 32$, we get:

$$x^2 + y^2 = 64$$
 and $(x - 2)^2 + (y - 2)^2 = 32$.

Simplifying the second equality:

$$x^2 - 4x + y^2 - 4y + 8 = 32$$

$$64 - 4x - 4y + 8 = 32$$
 (because $x^2 + y^2 = 64$)

$$x + y = 10.$$

Here, we can solve for x and y if we want. But, here is a faster way:

$$(x + y)^2 = 100$$
 and thus $x^2 + y^2 + 2xy = 100$.

From
$$x^2 + y^2 = 64$$
, we get $xy = 18$.

Special Right Triangles

In right triangles with angles 45-45-90, ratio of side lengths is 1:1: sqrt(2).

In right triangles with angles 30-60-90, ratio of side lengths is 1: sqrt(3): 2.

Note: So, in a 45-45-90 or 30-60-90 triangle, we can find all the side-lengths just by knowing one.

Q6. 45-60-75 Triangle

In the figure, ABC is a triangle with $\angle A = 75^{\circ}$ and $\angle B = 60^{\circ}$. Find AB : BC : CA.

Q6. 45-60-75 Triangle

Solution

Draw the altitude AD.

Then, ABD is 30-60-90 triangle and ACD is 45-45-90.

Let BD = k.

Then, AB = 2k and AD = sqrt(3)k.

So, CD = sqrt(3)k and AC = $sqrt(2) \times sqrt(3)k = sqrt(6)k$.

Hence,

AB: BC: CA

= 2k : (k + sqrt(3)k) : sqrt(6)k

= 2 : (1 + sqrt(3)) : sqrt(6).

Q7. Square in 60° Sector

In the figure, OAB is a sector with \angle AOB = 60° and WXYZ is a square. Suppose that the area of WXYZ is 9. Find the area of the sector.

Q7. Square in 60° Sector

Solution

$$WZ = ZY = 3$$
.

Since XYO is 30-60-90 triangle and XY = 3,

we get
$$OY = 3/sqrt(3) = sqrt(3)$$
.

Thus,

$$OW^2 = 3^2 + (3 + sqrt(3))^2 = 21 + 6sqrt(3).$$

So, area of the sector is

$$\pi \times OW^2 / 6 = (3.5 + sqrt(3))\pi$$

That's it for this video.

GEU

We both earned our rest.

I