

FACULTAD DE INGENIERÍA

MARZO 2024-AGOSTO 2024

NOMBRE DE LA ASIGNATURA	CÓDIGO: 19092			
PROGRAMACION CON VHDL - GRUPO: 1				
CARRERA	TELECOMUNICACIONES			
CICLO O SEMESTRE	SEXTO NIVEL EJE DE FORMACIÓN PROFESIONALES, PRAXIS PROFESIONAL			
CRÉDITOS DE LA ASIGNATURA	2	MODALIDAD:	PRESENCIAL	

CARGA HORARIA

COMPONENTES DEL APRENDIZAJE	Horas / Semana	Horas / Periodo Académico
APRENDIZAJE EN CONTACTO CON EL DOCENTE (ACD)	2.0	32.0
APRENDIZAJE PRÁCTICO EXPERIMENTAL - ASIGNATURA (APE/A)	2.0	32.0
APRENDIZAJE AUTÓNOMO (AA)	2.0	32.0
Total Horas:	6.0	96.0

PROFESOR(ES) RESPONSABLE(S):

ANDRADE RODAS JUAN MANUEL - (J.A.)	(juan.andrade@ucuenca.edu.ec)	PRINCIPAL
------------------------------------	---------------------------------	-----------

DESCRIPCIÓN DE LA ASIGNATURA:

Resumen descriptivo en torno al propósito, la estrategia metodológica y el contenido fundamental de la asignatura.

El objetivo principal del curso es proporcionar al estudiante los conocimientos y herramientas para describir hardware digital mediante el uso de un lenguaje HDL (Hardware Description Language).

El curso hará énfasis en las estrategias y buenas prácticas de descripción de hardware mediante VHDL (Very High Speed Integrated Circuit Hardware Description Language).

Con el objetivo de darle al curso un componente más práctico se hará uso de las tarjetas educativas DE2 de Altera (hoy Intel) o una de las tarjetas de Xilinx (Basys 3, Arty A7-100T o Nexys A7).

La evaluación del curso tendrá un alto contenido práctico, como se describe más adelante en este documento.

REQUISITOS DE LA ASIGNATURA

Esta asignatura no tiene co-requisitos

PRE-REQUISITOS		
Asignatura	Código	
ELECTRÓNICA ANALÓGICA	19302	
ELECTRÓNICA DIGITAL	19321	

OBJETIVO(S) DE LA ASIGNATURA:

Objetivos general y específicos de la asignatura en relación al Perfil de salida de la carrera.

Objetivo general: Proporcionar a los estudiantes las herramientas teórico/prácticas relacionadas con la lógica programable, tecnología que en la actualidad abarca aplicaciones en las áreas de control, electrónica y telecomunicaciones

Objetivos específicos:

- 1. Comprender la descripción de circuitos digitales mediante VHDL.
- 2. Elaborar señales de pruebas (testbench) para la simulación de circuitos digitales.
- 3. Conocer el proceso de síntesis de electrónica digital en un FPGA comercial mediante el uso de una herramienta software comercial (Quartus II o Vivado)

LOGRO DE LOS RESULTADOS DE APRENDIZAJE, INDICADOR(ES) Y ESTRATEGIA(S) DE EVALUACIÓN

Resultados o Logros de Aprendizaje (RdA's) de la Unidad de Organización Curricular (UOC) correspondiente, Indicadores y Estrategias de Evaluación de la Asignatura, tomando como referencia el Perfil de salida (PdS) y la Organización Curricular (OC) del Proyecto de Carrera (PdC).

RESULTADOS O LOGROS DE APRENDIZAJE	INDICADORES	ESTRATEGIAS DE EVALUACIÓN
RdA1. El estudiante es capaz de describir el funcionamiento de la lógica programable	Describe la estructura de CPLDs y FPGAs	Trabajos de laboratorio
iuncionamiento de la logica programable	Conoce las limitaciones de la lógica programable	• prueba 1
	programable	• Prueba 2
		Examen interciclo
		• Examen final
RdA2. El estudiante es capaz de describir lógica digital mediante el uso de VHDL	Describe hardware digital mediante el uso de VHDL	Trabajos de laboratorio
digital mediante el uso de VTIDE	Conoce las diferencias entre un lenguaje de	• Prueba 1
	programación estándar y VHDL	• Prueba 2
		Examen interciclo
		Examen final
RdA3. El estudiante es capaz de crear ambientes de pruebas para la prueba de	Elabora testbenches para la prueba de diseños digitales	Trabajos de laboratorio
sistemas digitales	diserios digitales	• Prueba 1
		• Prueba 2
		Examen interciclo
		• Examen final
RdA4. El estudiante es capaz de sintetizar lógica digital en un FPGA real, para lo cual se utilizará	Usa una herramienta comercial para configurar un diseño digital descrito en VHDL	Trabajos de laboratorio
la tarjeta educativa DE2		• Prueba 1
		• Prueba 2
		Examen interciclo
		• Examen final

CONTENIDOS, SESIONES Y ACTIVIDADES DE APRENDIZAJE

Título de la Unidad, sub -unidades, nro. de sesión y actividades para los componentes de aprendizaje.

SUB-UNIDADES	Nro. SESIÓN	COMPONENTE DE APRENDIZAJE	ACTIVIDADES DE APRENDIZAJE	
1. INTRODUCCION				

SUB-UNIDADES	Nro. SESIÓN	COMPONENTE DE APRENDIZAJE	ACTIVIDADES DE APREND	IZAJE
1. Sistemas de numeración	2	APRENDIZAJE EN CONTACTO CON EL	CLASES MAGISTRALES, PRESENTACION DE EJEMPLOS	4 horas
2. Códigos binarios		DOCENTE (ACD)		
3. Aritmética digital		APRENDIZAJE PRÁCTICO	PRESENTACION DE LAS HERRAMIENTAS DE HARDWARE Y	4 horas
4. Compuertas lógicas		EXPERIMENTAL - ASIGNATURA	SOFTWARE QUE SE USARAN EN EL CURSO	
5. Familias lógicas		(APE/A) APRENDIZAJE	INSTALACION DE HERRAMIENTA	4 horas
6. Circuitos frecuentes		AUTÓNOMO (AA)	SOFTWARE	4 110100
7. Elementos de lógica programable				
8. La tarjeta DE2 y Quartus II / la tarjeta Basys 3 y Vivado				
	2. INTRO	DUCCION A VHDL		
Introducción Unidades de diseño	6	APRENDIZAJE EN CONTACTO CON EL DOCENTE (ACD)	CLASES MAGISTRALES, PRESENTACION DE EJEMPLOS	12 horas
Paradigma de programación VHDL		APRENDIZAJE PRÁCTICO	PROGRAMACION, SIMULACION Y EN ALGUNOS CASOS SINTESIS DE	12 horas
Modelos estándares en arquitecturas VHDL		EXPERIMENTAL - ASIGNATURA (APE/A)	EJEMPLOS	
5. Operadores VHDL		APRENDIZAJE	DISEÑOS, TRABAJOS, SIMULACION,	12 horas
6. VHDL en circuitos secuenciales		AUTÓNOMO (AA)	SINTESIS	
3. MAQUI	NAS DE EST	ADO Y OTRAS ESTRI	JCTURAS	
Diseño de máquinas de estado finito con VHDL	4	APRENDIZAJE EN CONTACTO CON EL DOCENTE (ACD)	CLASES MAGISTRALES, PRESENTACION DE EJEMPLOS	8 horas
2. Register transfer level (RTL)		APRENDIZAJE PRÁCTICO	PROGRAMACION, SIMULACION Y EN ALGUNOS CASOS SINTESIS DE	8 horas
3. Objeto de datos		EXPERIMENTAL - ASIGNATURA	EJEMPLOS	
4. Lasos en VHDL		(APE/A)		
5. Circuitos digitales estándares en VHDL		APRENDIZAJE AUTÓNOMO (AA)	DISEÑOS, TRABAJOS, SIMULACION, SINTESIS	8 horas
	4. REUSO	DE ESTRUCTURAS		
Subprogramas Paquetes	4	APRENDIZAJE EN CONTACTO CON EL DOCENTE (ACD)	CLASES MAGISTRALES, PRESENTACION DE EJEMPLOS	8 horas
3. Constantes genéricas		APRENDIZAJE PRÁCTICO	PROGRAMACION, SIMULACION Y EN ALGUNOS CASOS SINTESIS DE	8 horas
4. Diseños varios		EXPERIMENTAL - ASIGNATURA (APE/A)	EJEMPLOS	
		APRENDIZAJE AUTÓNOMO (AA)	DISEÑOS, TRABAJOS, SIMULACION, SINTESIS	8 horas
<u>'</u>		APRENDIZAJE EN CONTACTO CON EL DOCENTE (ACD)	CONTACTO CON EL 32 horas	
		APRENDIZAJE PRÁCTICO EXPERIMENTAL - ASIGNATURA (APE/A)	32 horas	
		APRENDIZAJE AUTÓNOMO (AA)	32 horas	
		Total Planificación:	96 horas	

RECURSOS O MEDIOS PARA EL APRENDIZAJE

Equipos, materiales, instrumentos tecnológicos, reactivos, entre otros, que serán utilizados durante el desarrollo de la asignatura.

- Bibliografía
- Computador
- Plataforma de videoconferencia
- Presentaciones preparadas por el docente
- Videos preparados por el docente
- tarjetas educativas DE2 y Basys 3
- Software Quartus II (Altera DE2) y Vivado (Xilinx Basys 3)

CRITERIOS PARA LA ACREDITACIÓN DE LA ASIGNATURA

Parámetros de acreditación, tomando como referencia los Resultados de Aprendizaje (RdA's), indicadores y criterios de evaluación planteados y en base a la normativa de evaluación y calificaciones vigente en la Universidad de Cuenca y Consejo de Educación Superior (CES).

CRITERIO GENERAL DE ACREDITACIÓN	PUNTAJE
EXAMENES	50
TRABAJOS	30
PRUEBAS	20
TOTAL:	100

	DETALLE DE CRITERIOS DE ACREDITACIÓN	PUNTAJE / CRITERIO GENERAL			
	APROVECHAMIENTO I				
C94	Promedio de trabajos primera parte	15	TRABAJOS		
	Prueba 1	10	PRUEBAS		
00-	INTERCICLO				
C95	Interciclo	20	EXAMENES		
	APROVECHAMIENTO II				
C96	Prueba 2	10	PRUEBAS		
	Promedio de trabajos segunda parte	15	TRABAJOS		
007	FINAL				
C97	Examen final	30	EXAMENES		
C09	SUSPENSIÓN				
C98					
	Total:	100			

TEXTOS U OTRAS REFERENCIAS REQUERIDAS PARA EL APRENDIZAJE DE LA ASIGNATURA

Libros, revistas, bases digitales, periódicos, direcciones de Internet y demás fuentes de información, pertinentes y actuales.

BÁSICA

- 1. Bryan Mealy, Fabrizio Tappero, Free Range VHDL, http://www.freerangefactory.org
- 2. James O. Hamblen , Michael D. Furman , Rapid Prototyping of digital systems, Kluwer Academic Publishers
- 3. M. Rafiquzzaman, Fundamentals of Digital Logic and Microcomputer Design, Wiley-interscience

COMPLEMENTARIA

- 1. Stephen Brown and Zvonko Vranesic, Fundamentals of Digital Logic with VHDL Design, McGraw Hill
- 2. Charles H. Roth Jr, Lizy Kurian John, Digital Systems Design Using VHDL, Thomson
- 3. William Kleitz, Digital Electronics A Practical Approach with VHDL, Pearson
- 4. David G. Maxinez, Jessica Alcalá Jara, VHDL El arte de programar sistemas digitales, Compañía editorial continental

Docente: ANDRADE RODAS JUAN MANUEL Director: ARAUJO PACHECO ALCIDES FABIAN

Finalizado: 11/3/2024 Publicado: 12/3/2024