Instructions

Ensure that	uou aet a	Bubble S	Sheet	which	has =	<i>#</i> 151	nrinted a	s nour	Exam	Conu	#
Dusaic mai	you yet u	$Duvvic \iota$	nicci	wille	nus 7	/ 101	prinieu u	s your	Liumi	Oopg	# .

• Check your name: E1		• Check your roll #: 151	
	SECT	ON T	
TQ 1 For any two events A and B ,		A + P(B) then A and B are mutually exclusive	e.
	A TRUE	B FALSE	
TQ 2 For any random variable X , V	$Var(X) \le E(X).$		
	A TRUE	B False	
TQ 3 Let S be a sample space on outcome $s \in S$ such that $P(s) \neq 0$.	which a probabilit	y function P is defined. Then, there exists at	least one
	A TRUE	B FALSE	
TQ 4 Let E and F be any two inde	pendent events suc	th that $P(F) \neq 0, 1$. Then, $P(E F) = P(E F^{c})$	١.
	A TRUE	B FALSE	
TQ 5 If f and g are probability density function.	sity functions of tw	o (continuous) random variables, then their pro	oduct fg
	A TRUE	B FALSE	
TQ 6 If two events are both independ of occurrence.	lent and mutually o	exclusive, then at least one of them has a zero pro	obability
	A TRUE	B False	
TQ 7 Let E and F be any two inde	pendent events suc	th that $P(F) \neq 0$. Then, $P(E F) = P(E^{c} F)$.	
	A TRUE	B FALSE	
TQ 8 On any sample space with at	least two outcome	s, there are infinitely many probability function	ns.
	A TRUE	B FALSE	
	Cnom	COV. C	
SQ 9 Let X be a random variable.	For any two real n	umbers α and β , $Var(\alpha X + \beta)$ equals	
$\begin{array}{c} \boxed{\mathbf{A}} \ \alpha^2 \mathrm{Var}(X) \\ \boxed{\mathbf{B}} \ \alpha^2 \mathrm{Var}(X) + \beta^2 \\ \boxed{\mathbf{C}} \ \alpha (\mathrm{Var}(X))^2 + \beta^2 \\ \end{array}$ SQ 10 The random variable X has		$ \begin{array}{ccc} & & & & & & & \\ & & & & & \\ & & & & \\ & & & & $	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$f(x) = \begin{cases} ax + bx \\ 0 \end{cases}$		

F .66

G 6.6

E .36

for some real numbers a and b. If E(X)=0.6, what is $\mathrm{Var}(X)$? $\boxed{\mathbb{A}}$.0066 $\boxed{\mathbb{D}}$.0216 $\boxed{\mathbb{C}}$.066 $\boxed{\mathbb{D}}$.06

F If $P(A \cup B \cup C) = P(A) + P(B) + P(C)$, then

A, B and C are mutually exclusive

$SQ\ 11\ A\ geometric\ random\ variable\ X\ satisfies\ 3125\cdot P$	$P(X = 14) = 243 \cdot P(X = 9)$. Then, $E(X)$ is				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E $1\frac{1}{3}$ F 1.5 G 2.5 H $\frac{3125}{243}$				
$SQ\ 12\ A\ binomial\ random\ variable\ X$ with parameters n is	and p satisfies $E(X)=3$ and $\mathrm{Var}(X){=}2$. Then (n,p)				
	$\boxed{\mathbb{D}} (9,\frac{2}{3}) \qquad \boxed{\mathbb{E}} (6,\frac{1}{2}) \qquad \boxed{\mathbb{F}} (2,\frac{1}{3})$				
SQ~13~A cancer diagnosis test is 95% accurate both on $0.4%$ of the population has cancer. Suppose the test result that Ram has cancer?					
\boxed{A} $\frac{19}{2843}$ \boxed{B} $\frac{19}{1472}$ \boxed{C} $\frac{19}{681}$ \boxed{D}	$\frac{19}{268}$ \boxed{E} $\frac{19}{129}$ \boxed{F} $\frac{19}{43}$ \boxed{G} $\frac{19}{20}$				
SQ 14 Let X be a Poisson random variable with parameters	eter λ . Then, $E(X^3)$ equals				
$ \begin{array}{cccc} $	$ \begin{array}{c} \boxed{\mathbb{G}} \lambda^{3} \\ \boxed{\mathbb{H}} \lambda^{3} + 2\lambda^{2} + \lambda \\ \boxed{\mathbb{I}} e^{-\lambda} \left(\lambda^{3} + 3\lambda^{2} + \lambda\right) \end{array} $				
SQ 15 Let X be a continuous random variable such that bijective. Then, the expected value of $F(X)$ is	its cumulative distribution function $F: \mathbb{R} \to (0,1)$ is				
$\boxed{\mathbf{A}} 0 \qquad \boxed{\mathbf{B}} \frac{1}{e} \qquad \boxed{\mathbf{C}} \frac{1}{\sqrt{2}} \qquad \boxed{\mathbf{D}} 0.5$	$ ext{E} \hspace{0.1cm} 1 \hspace{0.1cm} ext{F} \hspace{0.1cm} \sqrt{2} \hspace{0.1cm} ext{G} \hspace{0.1cm} 2 \hspace{0.1cm} ext{H} \hspace{0.1cm} e$				
SQ 16 Two symmetric dice have both had two of their of the remaining sides painted yellow and the last side pathe probability that they both land on the same color?	ainted white. When this pair of dice is rolled, what is				
$ \begin{array}{c cccccccccccccccccccccccccccccccc$					
SECTION	N. M				
JECTIO!	V IVI				
MQ 17 Let X be a normal random variable with mean necessarily TRUE?	μ and variance σ^2 . Then, which of the following are				
$\boxed{\mathbb{A}}$ $X - \mu$ has mean 0 and variance σ^2 $\boxed{\mathbb{B}}$ $X - \mu^2$ has mean 0 and variance σ^2 $\boxed{\mathbb{C}}$ $\frac{X - \mu}{\sigma}$ is a uniform random variable over $[-1, 1]$					
MQ 18 Let A, B and C be any three events in a sample s	space S . Which of the following are necessarily TRUE?				
\triangle If $P(A \cap B \cap C) = P(A)P(B)P(C)$, then A, B and C are independent	\square If $P(A \cap B) = P(A)P(B)$, then A and B are independent				
\square If A, B and C are independent, then $P(A \cap B) = P(A)P(B)$	\blacksquare If A, B and C are independent, then $P(A \cap B \cap C) = P(A)P(B)P(C)$				

 $\ \ \, \ \ \,$ $\ \ \, \ \ \,$ If A and B are independent, then $P(A\cap B)=$

P(A)P(B)

- ▶►MQ 19 Which of the following are necessarily TRUE?
 - A If X is an exponential random variable, then for any real numbers s and t, P(X > s+t|X > t) = P(X > s)
 - \Box If X is a geometric random variable, then for any two real numbers $a \leq b$, $P(a \leq X \leq b) = P(-b \leq X \leq -a)$
- \square If X is a normal random variable, then for any two real numbers $a \leq b$, $P(a \leq X \leq b) = P(-b \leq X \leq -a)$
- \square If X is a geometric random variable, then for any natural numbers n and k, P(X = n + k | X > n) = P(X = k)
- ▶▶MQ 20 Let A and B be two sets randomly picked (with replacement) from the collection of all subsets of $T = \{1, 2, 3, 4, 5\}$. Which of the following are TRUE?
 - \bigcirc P(A^c ⊂ B) = $\frac{343}{3125}$
 - \square $P(A \subset B^c) = \frac{1}{32}$
 - $\square P(A^{c} \subset B) = \frac{343}{1024}$
 - \square $P(A \cup B = T) = \frac{343}{1024}$

- $\boxed{\mathbb{F}} \ P(A \cap B = \emptyset) = \frac{343}{1024}$
- \square $P(A \subset B^c) = \frac{343}{1024}$
- \blacksquare $P(A \cup B = T) = \frac{343}{3125}$

SECTION J

JQ 21 (Jackpot: 10 marks for full solution, NO partial credit.) Prove Waring's Theorem: Let A_1, A_2, \ldots, A_n be a collection of $n \in \mathbb{N}$ events. For a $k \in \{1, 2, \ldots, n\}$, let Θ_k be the event that exactly k of the given n events occur. Prove

$$P(\Theta_k) = \sum_{i=0}^{n-k} (-1)^i \binom{k+i}{k} S_{k+i}, \quad \text{where} \quad S_j = \sum_{i_1 < i_2 < \dots < i_j} P(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_j})$$