Algorithmic Game Theory Homework 5 - Cooperative Games

Juan Pablo Royo Sales Universitat Politècnica de Catalunya

November 24, 2020

1 Problem 11

1.1 Simple Game Analysis

Lets analyze case by case to see if some of the option (a), (b) or (c) is a Γ_s Simple Game.

(a) **1.** A Coalition X is winning in $\Gamma_s \iff X$ wins in Γ and H[X] has not isolated vertices.

Proof.

Part 1. \Longrightarrow

This part is trivial by **monotonicity** of Simple Games since if it is wining on Γ_s is winning on Γ and there should be not isolated vertices since all the players should communicate.

Part 2. \Leftarrow

Lets assume there is no isolated vertices. But if that occurs it doesn't mean that H[X] is a connected graph, because for example if $(u, v) \in E$ and $(v, z) \in E$ but $(u, z) \notin E$, the graph has not isolated vertices but it is not connected.

Therefore, (a) is not a simple game on Γ_s .

(b) 1. A Coalition X is winning in $\Gamma_s \iff X$ wins in Γ and H[X] is connected.

Proof.

Part 3. \Longrightarrow

This part is trivial by the same reason of previous analysis.

Part 4. ⇐=

If H[X] is connected means that $\forall \{u, v\} \in N, (u, v) \in E$. So every member communicate each other. At the same time X is winning in Γ , therefore X is also winning in Γ s because both condition holds.

Therefore, (b) is a simple game on Γ_s .

(c) 1. A Coalition X is winning in $\Gamma_s \iff$ there is an $Y \subseteq X$, so that Y wins in Γ and H[Y] is connected.

Proof.

Part 5. \Longrightarrow

Suppose that X belongs to a minimal wining coalition W^m . If that happens there cannot be any other winning coalition that is included in X, because $\forall Y \in W, Y \subseteq X$ according to the definition of minimal winning coalition.

Therefore, (c) is a not simple game on Γ_s .

1.2 Complexity Analysis

For the complexity analysis and taking into consideration that $X \in W$ can be decide in Poly-time, i could provide the following Polynomial time algorithm for deciding empty-core in Γ_s . In this case for (b), based on the Theorem in which we know that A Simple Game has a non-empty core if it has a veto player. The idea of the algorithm is trying to find that **veto**

player

```
Algorithm 1: Decide \Gamma_s has an empty core

Input : Given H = (N, E)

Output: If \Gamma_s has an empty core

SCC \leftarrow C alculate SCC of H

n times for each \ X \in SCC do

k times for each \ p \in X do

X \leftarrow X \setminus \{p\};

Poly-time if X \notin W then return NON \ EMPTY \ CORE;;

return EMPTY \ CORE;
```