Do you want to know about Laptops

Q Let's google it

0

Start!

Laptop Price Prediction by Regression Models

Presented by:

Annal Ali Albeeshi

0

Aesha Bakheet Aljohani

Supervisor the project:

- Mohamed Eldeebkinza waqar

Q The Search Results Are:

- >
- Ī

- 1. Introduction.
- 2. Methodology.
- 3. Conclusions and further work.
- 4. Power Bi.

Q Introduction

- 1. Datasets
 Our Two Dataset we get it from Kaggle.
- 2. Datasets
 Contains of 1853 Rows & 20 Columns.
- 3. Data Cleaning
 Dropping columns, Check for Duplicates or unnecessary data,
 Missing values, Outliers.

kaggle

Q Methodology

Pre Processing.

0

0

0

- Data Collation.
- Data Target.

Data Description.

- Data cleaning

EDA Analysis.

- Exploring the Data.

4- Algorithms

Q Methodology ... 1- Pre-processing data <>

1. Pre-processing data

Data collation

2 datasets have been selected from kaggle 1, The first dataset is and it consists of 1303 rows and 13

columns.

Unnamed: 0	Name	Processor	RAM	Operating System	Storage	Display	Warranty	Price	rating	
0 0	Lenovo Ideapad S145 Core i5 10th Gen - (8 GB/1	Intel Core i5 Processor (10th Gen)	8 GB DDR4 RAM	64 bit Windows 10 Operating System	1 TB HDD	39.62 cm (15.6 inch) Display	1 Year Onsite Warranty	â□¹43,990	3.9	

The second dataset 2 consists of **550 rows** and **10 columns**.

- Data cleaning
- Data target

By creating a new data frame called **final_laptop.csv**, It consists of **1853 rows** and **20 columns**.

• Data cleaning Droping colunams

Methodology ... 2- Data Description

Data Description

It consists of 1853 rows and 11 columns.

- 1- Company- String -Laptop Manufacturer
- 2- Product -String -Brand and Model
- 3- TypeName -String -Type (Notebook, Ultrabook, Gaming, etc.)
- 4- Display Numeric- Screen Size
- 5- CPU- String -Central Processing Unit (CPU)
- 6- RAM Numeric Laptop RAM
- 7- Memory -String- Hard Disk / SSD Memory
- 8- Operating System -String- Operating System
- 9- Weight -String- Laptop Weight
- 10- Price-USD -Numeric- Price
- 11- Warranty String

Q Methodology ...

Check for missing data (NAN Value)

Warranty 1303 missing data, TypeName 550 missing data, Weight 550 missing data, RAM 1 missing data.

Check for Duplicates or unnecessary data

Our dataset contains 36 duplicate rows, and by removing these rows we have 1817 rows, where they were previously 1853 rows.

Check for Outliers

Our datasets do not contain Outliers.

Fig 1: Check for Outliers

Q 3- EDA Analysis

0

0

Fig 2: Analysis for price

Fig 3: Analysis for price vs screen size

Q Methodology ... Algorithms

• Regression models

- 1- Random Forest Regression model.
- 2- Linear Regression model.

Models building steps :

- 1. Label Encoder
- 2. Train model
- 3. Model evalulation
- 4. Experiments
- 5. Comparison of the performance of the models

Linear Regression model

Linear regression is one of models machine learning-supervised learning.

What is meant by linear regression? Linear regression aims at finding a linear relationship between two continuous variables. By searching for an statistical relationship but not a deterministic relationship. Regression: Predict the real-valued output for each individual, based on input data.

Model building steps:

- Label Encoder
- 2. Train model
- 3. Model evalulation
- 4. Experiments
- Comparison of the performance of the models

Fig 4: Features Correlating

Q Linear Regression model ... Cont

Model building steps:

- Label Encoder
- Train model

The model is trained by dividing the dataset into two sets: training set 80% and testing set 20% Through the training set, the model is trained, and through the test set, the prediction is calculated by *score*.

SCORE	Training set 80%	Testing set 20%		
SCORE	0.54	0.50		

- 3. Model evalulation on testing data
- Mean Squared Error (MSE) = 283926
- Mean Absolute Error (MAE) = 361
- Root Mean Square Error (RMSE) = 532
- R^2 Score = 0.50

Fig 5: Predicted Values for LR

Model building steps:

Experiments

1: select some of the columns

2: Polynomial Feature

3: adding interaction terms

score	select some of the columns	Polynomial Feature	adding interaction terms
Train R ²	0.44	0.56	0.57
Validation R ²	0.38	0.53	0.53

Algorithms ... Random Forest Regression model 🔇 🕽

Fig 6: Predicted Values for RFR

	Feature Importance
RAM	0.459986
Weight	0.118541
Product	0.112920
CPU	0.088912
Operating System	0.058137

Model building steps:

- Label Encoder
- Train model

Similar to the previous model LR.

SCORE	Training set 80%	Testing set 20%		
SCORE	0.97	0.96		

Model evalulation on testing data

- Mean Squared Error (MSE) = 83
- Mean Absolute Error (MAE) = 19389
- Root Mean Square Error (RMSE) = 139
- R^2 Score = 0.96

0

Comparison of the performance of the models <>

Fig 7: Model Performance

Q Conclusion and Future work

Conclusion:

We note that the prediction results for the Linear Regression model are low even after conducting experiments, as there is a slight increase in the results, but in general the results are not satisfactory or high, like the Random Forest Regression model where the prediction results were in training = 97 and testing = 96.

Future work

Scrap data form website. Explore different models.

let's see Analysis in Power Bi

 \overline{C}

Do you have any questions?

