SQA BOUNDARY VALUE ANALYSIS

গতক্লাস পর্যন্ত আমরা শিখে এসেছি Equivalence class সম্পর্কে। এবার আমরা জানবো Boundary Value Analysis সম্পর্কে।

Boundary Value Analysis

Boundary Value Analysis হলো একধরনের সফটওয়্যার টেস্টিং টেকনিক যেটা ডিজাইন করা হয়ে থাকে একটি রেঞ্জের বাউন্ডারি মান নিয়ে। একটি প্রোগ্রাম সেই মানের বাউন্ডারির মধ্যে কেমন কাজ করছে সেটিই মুলত এখানে পরীক্ষা করে দেখা হয়ে থাকে।

চলুন এ সম্পর্কে আরেকটু বিস্তারিত জানা যাক।

Boundary Value Analysis/1

Equivalence class partitioning এর রিপ্রেজেনটেটিভ কোনটা হবে তা নির্বাচনের জন্য একটা নিয়ম ঠিক করে দেয় Boundary Value Analysis I Equivalence class এর প্রান্তের মান বা বাউন্ডারির মান গুলোকে আরো নিবিড়ভাবে যাচাই করা হয়।

প্রান্তীয় মান গুলোর উপর কেন জোর দেয়া হয়?

- কারন প্রান্তীয় মানগুলো ভালোভাবে সংজ্ঞায়িত হয়ে থাকে না এবং এদের বুঝতে ভুল হতে পারে।
- বাউন্ডারি গুলো ঠিকভাবে প্রোগ্রাম করা হয়েছে কীনা তা পরীক্ষা করে দেখা
 লাগে।

বি.দ্রঃ অভিজ্ঞতার আলোকে বলা যায় যে বাউন্ডারি মানের রেঞ্জে বেশিরভাগ সময় ভুলগুলো হয়ে থাকে।

Boundary Value Analysis/ 2

Defining Boundary Values

যদি EC কে একটি একক সংখ্যাসূচক মান ধরা হয়। যেমনঃ x= 5, তাহলে এর দুপাশের প্রতিবেশী মানগুলোও রিপ্রেজেনটেটিভ ক্লাস হিসেবে ব্যবহৃত হতে পারে। তাই ওগুলোকেও পরীক্ষা করে দেখতে হবে। যেমনঃ 4,5 এবং 6

Boundary Value Analysis/3

Boundary Analysis Example:

Value range for a discount in % = 0 ≤ x ≤ 100

Definition of EC

EC1:x<0 (invalid)

EC2: $0 \le x \le 100$ (valid)

EC3:x>100 (invalid)

Boundary Analysis

Extends the representatives with neighboring values:

EC2: -1; 0; 1; 99; 100; 101

নোটঃ ভ্যালিড EC একটি রিপ্রেজেনটেটিভ হওয়ার স্থলে সেখানে এখন ছয়টা রিপ্রেজেনটেটিভ (চারটা ভ্যালিড দুইটা ইনভ্যালিড)

Values of goods	EC11: x >= 0	Valid	1000	*	*	*			*	*	*	*	*
	EC ₁₂ : x < 0	invalid	-1000				*						
	EC ₁₃ : x non-numerical value	Invalid	Rashed					*					
Discount	EC ₂₁ : 0% ≤ x ≤ 100%	valid	10%	*	*	*	*	*				*	*
	EC ₂₂ : x < 0%	Invalid	-10%						*				
	EC ₂₅ : > 100	Invalid	200%							*			
	EC24: x non numeric value	Invalid	Karim								*		
Shipping costs	EC ₃₁ : x = 19	valid	19	*			*	*	*	*	*		
	EC ₃₂ : x = 29	valid	29		*								
	EC ₃₅ : x = 49	valid	49			*		1					
	EC ₃₄ : x ≠ {19, 29, 49}	Invalid	30									*	
	EC ₃₅ : x non numeric value	invalid	Student										*

Boundary Values Optimization

সাধারন পদ্ধতিঃ বাউন্ডারি মান ও তার দুপাশের (EC এর অন্তর্ভুক্ত বা বহির্ভূত) দুইটি প্রতিবেশি মান, মোট তিনটি মান নির্বাচন করে পরীক্ষা করা।

বিকল্প পদ্ধতিঃ যেহেতু বাউন্ডারি মানটি EC এর অন্তর্ভুক্ত তাই আর যে দুটি মান পরীক্ষার জন্য প্রয়োজন তার একটি হবে EC এর অন্তর্ভুক্ত এবং আরেকটি হবে বহির্ভূত।

Example:

Value range for a discount in % : 0 ≤ x ≤ 100

Valid EC: 0 ≤ x ≤ 100

Boundary Analysis

Additional representatives are: -1; 0; 100; 101

1 - same behavior as 0

99 - same behavior as 100

ভুল তুলনা অপারেটরের কারনে হওয়া একটা প্রোগ্রামিং এরোর ওই দুইটা বাউন্ডারি মানের সাথে পাওয়া যাবে।