20201210-p8133_probset13_jsg2145

Jared Garfinkel

12/10/2020

Problem 13

Part a

$$X_1 \sim N(\mu t_1, \ 1) \perp X_2 \sim N(\mu t_2, \ 1)$$

$$Z = \omega_1 X_1 + \omega_2 X_2$$

$$\omega_1^2 + \omega_2^2 = 1$$
 w, t > 0
$$Pr(|Z| > z_{0.025}) \ N(\mu(\omega_1 t_1 + \omega_2 t_2), \ 2) > z_{0.025}$$
 errI = 1 - pnorm(0.9875, sd = sqrt(2))

The type I error rate is 0.2425.

Part b

The power is the probability that the null will be rejected given that the null is false.

$$Z \sim N(\mu(\omega_1 t_1 + \omega_2 t_2, 2))$$

$$\frac{Z - \mu(\omega_1 t_1 + \omega_2 t_2)}{\sqrt{2}} \sim N(0, 1)$$

$$errI2 = (1 - pnorm(0.9875))*sqrt(2)$$

The power is $0.2287 + \mu(\omega_1 t_1 + \omega_2 t_2)$.

Part c

By intuition, $\omega_1 = \omega_2 = \sqrt{0.5}$

Part d

Given:
$$\mu = 0$$

 $Z \sim N(0, 2)$

 $X_1 \sim N(0, 1)$

$$Pr(X_1 > z_{0.005} \text{ or } Z > z_{0.02}) \le 0.025$$

 $Pr(X_1 > z_{0.005})$

$$Pr(Z > z_{0.025})$$

The left-hand equation will be smaller because the alpha value is smaller. Therefore, fewer observations will satisfy the inequality in the left-hand equation compared to the right hand equation.

Part e

```
errI3 = (1-pnorm(0.99))*sqrt(2)
```

The value of the power will be $0.2278 + \mu(\omega_1 t_1 + \omega_2 t_2)$.

A smaller value of alpha may affect the power of the test. However, power and type I error measure different things.

One tests a null when the null is true and the power tests the null when the alternative is true.

The test still depends on μ , ω , and t.