

SISTEMAS LINEARES III

Sistemas Equivalentes Sistema Escalonado Teorema de Rouché-Capelli

Sistema Equivalentes

Dois sistemas S_1 e S_2 são equivalentes se, e somente se, possuem o mesmo conjunto solução. Exemplos:

$$\begin{cases} x + 3y - 2z = -1 \\ 3x - 2y - z = 1 \\ 5x + y + 3z = 20 \end{cases} \sim \begin{cases} x + y + z = 6 \\ y + z = 4 \\ z = 3 \end{cases} \sim \begin{cases} x = 2 \\ y = 1 \\ z = 3 \end{cases}$$

$$\begin{cases} 2x + y - 2z = 3 \\ x - y - z = 2 \\ x + 2y - z = 1 \end{cases} \sim \begin{cases} x = \frac{5}{3} + z \\ y = -\frac{1}{3} \end{cases}, z \in \mathbb{R}$$

Matriz associada a um Sistema Linear

Seja S um sistema linear de m equações e n incógnitas

Podemos associá-lo a uma Matriz com m linhas e (n + 1) colunas, denominada de Matriz aumentada ou Matriz Ampliada.

Matriz associada a um Sistema Linear

Proposição 1: Toda matriz pode ser transformada em uma matriz escalonada reduzida.

Proposição 2: As operações elementares utilizadas no escalonamento de uma matriz <u>não alteram</u> o conjunto solução do sistema associado a ela.

Pelas proposições 1 e 2 podemos concluir que todo sistema possui um sistema equivalente escalonado e reduzido onde a verificação da solução, caso exista, é fácil de ser realizada.

Problema 1

Sabe-se que uma alimentação diária equilibrada em vitaminas deve constar de 170 unidades de vitamina A, 180 unidades de vitamina B, 140 unidades de vitamina C, 180 unidades de vitamina D e 350 unidades de vitamina E.

Com o objetivo de descobrir como deverá ser uma refeição equilibrada, foram estudados cinco alimentos. Fixada a mesma quantidade (1g) de cada alimento determinou-se:

- 1. O alimento I tem 1 unidade de vitamina A, 10 unidades de vitamina B, 1 unidade de vitamina C, 2 unidades de vitamina D e 2 unidades de vitamina E.
- 2. O alimento II tem 9 unidades de vitamina A, 1 unidade de vitamina B, 0 unidades de vitamina C, 1 unidade de vitamina D e 1 unidades de vitamina E.
- 3. O alimento III tem 2 unidades de vitamina A, 2 unidades de vitamina B, 5 unidades de vitamina C, 1 unidade de vitamina D e 2 unidades de vitamina E.
- 4. O alimento IV tem 1 unidade de vitamina A, 1 unidade de vitamina B, 1 unidade de vitamina C, 2 unidades de vitamina D e 13 unidades de vitamina E.
- 5. O alimento V tem 1 unidade de vitamina A, 1 unidade de vitamina B, 1 unidade de vitamina C, 9 unidades de vitamina D e 2 unidades de vitamina E.

Quantas gramas de cada um dos alimentos I, II, III, IV e V devemos ingerir diariamente para que nossa alimentação seja equilibrada?

Vitamina \ Alimento	I	II	III	IV	V	Total
А	1	9	2	1	1	170
В	10	1	2	1	1	180
С	1	0	5	1	1	140
D	2	1	1	2	9	180
E	2	1	2	13	2	350

Sejam: x, y, z, t e w as quantidades (em grama) a serem ingeridas diariamente dos alimentos I, II, III, IV e V respectivamente. O sistema referente ao problema é:

$$\begin{cases} x+9y+2z+&t+w=170\\ 10x+&y+2z+&t+w=180\\ x+0y+5z+&t+w=140\\ 2x+&y+&z+2t+9w=180\\ 2x+&y+2z+13t+2w=350 \end{cases}$$

Temos então a seguinte matriz associada ao sistema referente ao problema:

$$\begin{cases} x + 9y + 2z + t + w = 170 \\ 10x + y + 2z + t + w = 180 \\ x + 0y + 5z + t + w = 140 \\ 2x + y + z + 2t + 9w = 180 \\ 2x + y + 2z + 13t + 2w = 350 \end{cases} \qquad \begin{bmatrix} 1 & 9 & 2 & 1 & 1 & 170 \\ 10 & 1 & 2 & 1 & 1 & 180 \\ 1 & 0 & 5 & 1 & 1 & 140 \\ 2 & 1 & 1 & 2 & 9 & 180 \\ 2 & 1 & 2 & 13 & 2 & 350 \end{bmatrix}$$

Que escalonada na forma reduzida fornecerá um sistema equivalente ao determinado pelo problema:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & | & 10 \\ 0 & 1 & 0 & 0 & 0 & | & 10 \\ 0 & 0 & 1 & 0 & 0 & | & 20 \\ 0 & 0 & 0 & 1 & 0 & | & 20 \\ 0 & 0 & 0 & 0 & 1 & | & 10 \end{bmatrix} \iff \begin{cases} x = 10 \\ y = 10 \\ z = 20 \\ w = 20 \\ t = 10 \end{cases}$$

Problema 2

Uma editora publica um best-seller em potencial com três encadernações diferentes: capa mole, capa dura e encadernação de luxo. Cada exemplar de capa mole necessita de 1 minuto para costura e de 2 minutos para cola. Cada exemplar de capa dura necessita de 2 minutos para costura e 4 minutos para a cola. Cada exemplar com encadernação de luxo necessita de 3 minutos para a costura e de 5 minutos para a cola. Se o local onde são feitas as costuras fica disponível 6 horas por dia e o local onde se cola fica disponível 11 horas por dia, quantos livros de cada tipo devem ser feitos por dia de modo que os locais de trabalho sejam plenamente utilizados?

Sejam:

- x: o número de livros de capa mole a serem fabricados.
- y : o número de livros de capa dura a serem fabricados.
- z : o número de livros de capa de luxo a serem fabricados.

Organizou-se a tabela abaixo para relacionar o tempo de encadernação com o tipo de cada capa:

Tempo

Tipo	Costura	Cola
Capa mole	1	2
Capa dura	2	4
Capa de luxo	3	5

Como os livros devem ser fabricados por dia de forma que os locais de trabalho sejam plenamente utilizados, pode-se montar o seguinte sistema, levando-se em consideração que 6 horas = 360 minutos e 11 horas = 660 minutos.

$$\begin{cases} x + 2y + 3z = 360 \\ 2x + 4y + 5z = 660 \end{cases}$$

Cuja a matriz associada é:

$$\begin{cases} x + 2y + 3z = 360 \\ 2x + 4y + 5z = 660 \end{cases} \Leftrightarrow \begin{bmatrix} 1 & 2 & 3 & 360 \\ 2 & 4 & 5 & 660 \end{bmatrix}$$

Escalonando a matriz associada obtemos:

$$\begin{bmatrix} 1 & 2 & 0 & | & 180 \\ 0 & 0 & 1 & | & 60 \end{bmatrix} \iff \begin{cases} y = \frac{180 - x}{2} \\ z = 60 \end{cases}$$

Obtemos então a seguinte solução $\left(x, \frac{180-x}{2}, 60\right)$.

Pela estrutura do problema x e y devem ser inteiros positivos.

Da análise do gráfico tem-se que: -

•
$$y = \frac{180 - x}{2}$$

• 0 < x < 180, x : par

Por exemplo:

Se x = 20, temos y = 80, ou seja, se forem encadernados 20 livros com capa mole, devem ser encadernados 80 com capa dura e 60 com capa de luxo;

Se x = 100, temos y = 40, ou seja, se forem encadernados 100 livros com capa mole, devem ser encadernados 40 com capa dura e 60 com capa de luxo;

E assim por diante.

Posto ou Característica de uma Matriz

Seja A uma matriz tipo m x n e B a matriz escalonada de A. Chamamos de Posto ou Característica da matriz A, e indicaremos por p) ao número de linhas não nulas de B.

Obs.: Ao número n-p, onde n é o número de incógnitas do sistema associado à matriz A e p é o posto desta matriz, chamaremos de **nulidade** da matriz associada e indicaremos por N, assim N = n - p.

Teorema de Rouché - Capelli

Considere um sistema S com m equações e n incógnitas. Seja p o posto da matriz dos coeficientes e q o posto da matriz associada ao sistema S. O *Teorema de Rouché* – *Capelli* afirma as seguintes equivalências:

 $\checkmark p \neq q \Leftrightarrow S \text{ \'e impossível.}$

 $\checkmark p = q < n \Leftrightarrow S$ é possível e indeterminado.

O número de incógnitas livres no sistema é chamado de $Grau\ de\ Indeterminação\ e$ é dado pela nulidade do sistema (N=n-p).

 $\checkmark p = q = n \Leftrightarrow S$ é possível e determinado.

EXERCÍCIOS