Weak acids: Donate a proton

Weak acid

Weak conjugate base

Proton

When a weak acid is titrated with a strong base:

Weak conjugate base Weak acid

Weak acid-Strong base:

Part 1: When there are more moles of acid than base...

Is the resulting solution acidic or basic?

Weak acid-Strong base:

Part 1: When there are more moles of acid than base...

Is the resulting solution acidic or basic?

Weak acid

$$K_a = 1.8 \times 10^{-5}$$

The weak acid dissociates <u>much more</u> than the weak base

Weak conjugate base

$$K_b = \underline{K}_{\underline{w}} \\ K_a$$

$$K_b = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}$$

$$K_b = 5.\overline{5} \times 10^{-10}$$

.: the solution is acidic

Weak acid-Strong base:

Part 1: When there are <u>more</u> moles of acid than base...

The solution is NOT always acidic

Eventually, VERY few moles of acid remain, and <u>a lot</u> of its conjugate base will be produced.

In this case, the solution will be neutral or slightly basic

Weak acid-Strong base:

Part 1: When there are <u>more</u> moles of acid than base...

Concentration of strong base

Weak acid-Strong base:

Part 2: When there are equal moles of acid and base...

Is the resulting solution acidic, basic, or neutral?

Weak acid-Strong base:

Part 2: When there are equal moles of acid and base...

Is the resulting solution acidic, basic, or neutral?

The conjugate base will accept protons from water, producing OH⁻ ions.

.: the solution is basic

Weak acid-Strong base:

Part 2: When there are <u>equal</u> moles of acid and base...

Concentration of strong base

Weak acid-Strong base:

Part 3: When there less moles of acid than base

Is the resulting solution acidic or basic?

Since both are basic, then the solution is basic

$$K_b = 5.\overline{5} \times 10^{-10}$$

$$K_b = very high$$

The strong base will ionize MUCH more than the weak conjugate base.

→ the pH will be solely determined by the amount of strong base that remains

Weak acid-Strong base:

Part 3: When there <u>less</u> moles of acid than base

Concentration of strong base

Weak bases: Accept a proton

Weak base

Weak conjugate acid

When a weak base is titrated with a strong acid:

HCI

Weak base
Weak conjugate acid

Strong acid Neutral anion

Weak base-Strong acid

Part 1: When there are more moles of weak base than strong acid...

HCI⁻

Weak base and weak conjugate acid remain

Is the resulting solution acidic or basic?

Weak base-Strong acid

Part 1: When there are more moles of weak base than strong acid...

Is the resulting solution acidic or basic?

Weak base

$$K_b = 1.8 \times 10^{-5}$$

The weak base dissociates <u>much more</u> than the weak acid

.: the solution is basic

Weak conjugate acid

$$K_a = \underline{K}_{\underline{W}} \\ K_b$$

$$K_a = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}$$

$$K_a = 5.\overline{5} \times 10^{-10}$$

Weak base-Strong acid

Part 1: When there are more moles of weak base than strong acid...

The solution is NOT always basic

Weak base

Weak conjugate acid

Eventually, VERY few moles of base remain, and <u>a</u> <u>lot</u> of its conjugate acid will be produced.

In this case, the solution will be neutral or slightly acidic

Weak base-Strong acid

Part 1: When there are more moles of weak base than strong acid...

Concentration of strong acid

Weak base-Strong acid

Part 2: When there are equal moles of weak base and strong acid...

HCI

HCI

Only the weak conjugate acid remains

HCI

Is the resulting solution acidic, basic, or neutral?

Weak base-Strong acid

Part 2: When there are equal moles of weak base and strong acid...

Is the resulting solution acidic, basic, or neutral?

The conjugate acid will donate protons from water, producing H⁺ ions.

.: the solution is acidic

Weak base-Strong acid

Part 2: When there are equal moles of weak base and strong acid...

Concentration of strong acid

Weak base-Strong acid

Part 3: When there are <u>fewer</u> moles of weak base than strong acid...

HCI HCI HCI HCI HCI HCI

The weak conjugate acid AND strong acid remain

Is the resulting solution acidic or basic?

Weak base-Strong acid

Part 3: When there are fewer moles of weak base than strong acid...

Since both are acidic, then the solution is acidic

$$K_a = 5.\overline{5} \times 10^{-10}$$

 $K_a = very high$

The strong acid will ionize MUCH more than the weak conjugate acid.

→ the pH will be solely determined by the amount of strong acid that remains

Weak base-Strong acid

Part 3: When there are fewer moles of weak base than strong acid...

Concentration of strong acid