

MFIO The precise symmetry tactors will depend on the Note that we're treated each end of the or's equivalently, because the is in stail are the same. But this is not by case in most of our examples to follow => fermions, for example Suppose our model partition function is generalized so that & is complex. Designate I to complex conjugate (transpase even though only one variable is still of all generalizes!).

We think of the integration over real and imaginary parts as bury Satt di How hadd we do the perturbative expansion now. -Introduce July! > ZIJ;+J= (N/81 E Par - 4/2+)2+j+1+5+1 So & -> > ~ 1 => Extint3 = E #83/ (1/1) = East tit+5) = ~ (8th) = (5+1/a") = (54/39+1 6/2)/ (849) = 2,08, Now the two ends of o' are different > " > 1

(* 2)	
·	What Kind of portion summations" can be Think of?
	Examples:
	1 For ln \$720, sum 00+ 1 + 2 + 2 +
	DFOR < 5°), consider + Q + Q Q +. How can he sum these? If he designate the sum with a double line:, then
	This is recovered by steating the equation:
	200 = = -+ Q 200 = = -+ Q + QQ sum 8 all "tadples
for ,	More ogneral: = = + 0 + 00+ 0 + 00+ 0 + 000 + 8 + 80 +.
	(191) peres: does to diagram fall apart when you cut a line? Or 201: does the diagram fall apart when you cut a line? Two lines? Later we'll see schemes to sum there.
* * * * * * * * * * * * * * * * * * * *	- Lower well see schemes to sum lase.

.	1017/09
	Before moving on to quantum mechanics, let's put a comple of other things on the table for future reference. First suld spoint expensions labor known as "steepest descent" or stationary phose when considered generally - see any advanced nathematical physics books.
	of other things on the table for hutur reference. First suld spoint
	expensions take known as "steepest descent or stationary phose when considered
	Consider a somewhat generic integral with parameter of
	$I(g) = \int_{-\infty}^{\infty} \frac{dx}{\sqrt{2\pi}g} e^{S(x)/g}$
	ad imagne opending for g > 0. What do ne expect?
	THE S(X) has a minimum at Xo and if the following conditions hold:
	[additional condition] (i) $dS = 0$ d^2S to be discussed (ii) $dS = 0$ $dx^2 _{X=Y_0} > 0$
	then the dominant contribution comes from the region near Xo as g >0, > expand SXI don't to (with 50/(x)=0 from ii)):
One minimum	≥ expand SXI about to (with 5 (x)=0 from ii)):
Str. Party La	$S(x) = S(x_0) + \frac{1}{2}(S^{(2)}(x_0)(x_0)(x_0)^2 + \frac{1}{3}(S^{(2)}(x_0)(x_0)^3 + \frac{1}{3}(S^{(2$
foo doe	and insert into $T(q)$. We switch variables to $y=(x+a)/5q$ to remove the q dependence of the quadratic $(x-x)^2$ term. That $S^{(2)}(x_0) \equiv S^{(2)}(x_0)^2$
	to remove the of dependence of the graduatic K-xot term
	[Lot 5 (X ₀) = 50] (\(\frac{1}{2} \) (\(\frac{1}{2} \) (\frac{1}{2} \) (\(\f
•	$T(g) = \frac{S_0}{Q} \int_{Q}^{Q} \frac{1}{Q} \int_{Q}^{Q} \frac$
	-Sola (00 do -Sol) 2/2 5 0 0 du 4 0 (50) 19 6 (012)
·	$= e^{S_0/9} \int_{0}^{\infty} \frac{dy}{dy} e^{-S_0^2 y^2/9} \left\{ 1 - \frac{9}{4} \cdot \frac{50}{9} \cdot y + \frac{9}{9} \cdot \left(\frac{50}{3} \cdot \right)^9 \cdot y + O(g^2) \right\}$
	when the old powers of y which when integrated.
* .	· So we have a term out from that has an essential singularity in a and then
	· So we have a term out from that has an essential singularity in g and then a perturbative expansion that we can integrate term by term (just gaussians).

POJF 101 $T(S) = e^{-S_0/9} \frac{1}{\sqrt{S^2}} \left[1 - \frac{9}{8} \frac{S_0^{(1)}}{\sqrt{S^2}} + \frac{54}{24} \frac{(S_0^{(2)})^2}{\sqrt{S^2}} + O(9^2) \right]$ Can he use this expansion? · Return to Z, and assilve to 0 for he was when no 0, 100. $Z_{\lambda} = \int_{\infty}^{\infty} \frac{ds}{ds} = \frac{1}{2} \frac{1}{2$ so with this scaling of ? > \$, we get an arrall to out Front. WAS 070, X70, Xx=0 at SX)= 0x2+4X4 so we have $S_0 = 0$, $S_0^{(1)} = S_0^{(3)} = 0$, $S_0^{(2)} = a$, $S_0^{(4)} = 6$ Which yelds \(\frac{1}{2} = \frac{0}{8} \frac{1}{6^2} + 0(\frac{2}{3}) = \frac{1}{46^2} + 0(\frac{2}{3}) So we just get back the perturbative expansion we had before. (Can we apply this of a < 0, 270, expanding around the two minima?) That wasn't very illuminenting so where sping to change to integral in Zy by introducting on auxiliary integration variable Z to eliminate the st term.

The basic idea, used frequently, is to insert I in a useful form.

Consider the normalized Gaussian integral

1= \int \frac{1}{3} \text{2} \frac{1}{3}

We need the i so that we get $e^{\pm 745^2}$ (instead of $e^{\pm 5^2}$) but the integral is well defined (just shift to $z'=z+i\sqrt{\pm}i^2 \rightarrow \text{Here one no singularities in the complex } z'$ plane so the integral can be mixed to $\int_{-\infty}^{\infty} dz' = 1$).

[Warning: Some of the operations on the next this pages]

1017/09

Now we stick this "t" inside the Zx integral:

Z = \integral = 0\frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1

We will use analogous versions of this "trick" to replace the interaction" (reming non-quadratic) terms in our integrals. "We introduced the la in "experentiating" the result of the Governian integral over 8. More generally when the is the Governon integral of a matrix we will get a determinent, which we exprentiate using the identity but A = Etrent. [Note: No 1/2 out front now.]

To now we've got a run integral to try expanding,

We get but the sum old perturbation expansion if he just expand the la

In pours of λ : $\left[-\frac{1}{2}\ln(2+\sqrt{3}\pi^2)\right] = 1 - \frac{1}{2}i\sqrt{\frac{3}{\alpha}} \cdot \frac{3}{8} \cdot \frac{2}{6^2}i \cdot \frac{3}{16}i\sqrt{\frac{3}{6^2}}i \cdot \frac{3}{16}i\sqrt{\frac{3}{6^2}}i \cdot \frac{3}{16}i\sqrt{\frac{3}{6^2}}i$

and don't contribute.

Instead, lets to the suddlepoint exponsion.

We will not identify on overall factor analogous to t/g in the exponent, but just apply the saddle point to

$$S(z) = \frac{2^3}{5} + \frac{1}{5} \ln(1 + i \sqrt{3}z)$$
 with $g=1$

(3)POTFLOI Calculate S/20 = 0 to find the zeros (which are potential minima) ⇒ S'(20) = 20+ (10)(2) =0 ⇒ 7000: 2(4) $\frac{1}{2} = \left(-\frac{1}{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right) \left[\frac{1}{2} \frac{1}{\sqrt{2}}\right]$ as 100, lese behave like (Z(±) >>0) 1202 1-0/BI We'll expand about the 26th root since the 26' root makes (25') 300 [Is this correct to do?] · So with Sm (200) = Stor, we get the results: So= - 02 (1+47/02 -1) + 3 ln (3+ V1+47/02) $S_{0}^{(2)} = 1 + \frac{4 \times 10^{2}}{(1 + \sqrt{14 \times 10^{2}})^{2}} O \left(\frac{1}{3} \right) = \frac{8i(\sqrt{14 \times 10^{2}})^{3}}{(1 + \sqrt{14 \times 10^{2}})^{3}}$ $S_0^{(4)} = -\frac{48(\sqrt{3}\lambda_0)^4}{(1+\sqrt{3}44\sqrt{3})^4} / S_0^{(n)} = O(\lambda_0^{(n)}) = S_0 + \frac{1}{\sqrt{3}8} \frac{1}{9^{1/2}} \frac{1}{\sqrt{4}}$ Plugging back into Zx, taking or 1 for convenience), when he dust settles. = (1) (1+4) 14 (1+ (1) + (1)) This works bother than porturbation than and over a year large range!
Even for large 1, where we would not expect great results, the
error is any 10% asymptotically. (Carlot this be chance?)