Statistica - 8ª lezione

30 marzo 2021

Programma

- Statistica descrittiva (riassumere molti dati attraverso poche caratteristiche essenziali)
- Probabilità
 (costruire un modello che preveda il risultato di un esperimento)
- Inferenza statistica
 (tarare i parametri del modello in base ai risultati dell'esperimento)
- Regressione lineare (riconoscere relazioni tra dati di tipo diverso)

Statistica e Probabilità

STATISTICA analisi dei risultati del passato

INFERENZA taratura del modello

PROBABILITÀ previsione dei risultati del futuro

PRIMA dell'esperimento

DOPO l'esperimento

	PRIMA	DOPO
	dell'esperimento	l'esperimento
variabili aleatorie {	$X_1 = \left(\begin{array}{c} 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \end{array} \right)^2$ $X_2 = \left(\begin{array}{c} 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \end{array} \right)^2$ \dots	

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili	$X_1 = \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \right)$	\rightarrow	$x_1 = 1.2$	
aleatorie {	$X_2 = \sum_{i=1}^{n} \sum_{i=1}^{n} i^{n}$	\rightarrow	$x_2 = 0.6$	realizzazioni
i.i.d.		\rightarrow		(dati)
densità {	$X_i \sim f_{ heta}$	\rightarrow	*	
parametri {	$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$	\rightarrow	$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$	} parametri

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili	$X_1 = \begin{pmatrix} 0.6 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$	\rightarrow	$x_1 = 1.2$	
aleatorie {	$X_2 = (0.6 ? 20)$	\rightarrow	$x_2 = 0.6$	realizzazioni
i.i.d.	• • •	\rightarrow	• • •	(dati)
densità {	$X_i \sim f_{ heta}$	\rightarrow	*	
parametri {	$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$	\rightarrow	$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$	} parametri

Vogliamo approssimare θ in base ai dati!

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili	$X_1 = \begin{pmatrix} 0.6 & 0.0 \\ 0.6 & 0.0 \\ 0.0 & 0.0 \end{pmatrix}$	\rightarrow	$x_1 = 1.2$	
aleatorie 4	$X_2 = \begin{pmatrix} 0.6 & 7^2 \\ 7^2 & 7^2 \end{pmatrix}$	\rightarrow	$x_2 = 0.6$	realizzazioni
1.1.0.		\rightarrow	•••	(dati)
densità <	$\left\{ -X_{i}\sim N(\mu,\sigma^{2}) ight.$	\rightarrow	*	
parametri «	$ \mu = 1.5 $ $ \sigma = 0.8 $	\rightarrow	$\mu =$ 1.5 $\sigma =$ 0.8	} parametri

Vogliamo approssimare μ e σ in base ai dati!

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \ldots, X_n

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(x_1, ..., x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

Una statistica è una variabile aleatoria!

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

 $\frac{\text{STIMATORE}}{\text{statistica usata per approssimare}} = \frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

 $\frac{\text{STIMATORE}}{\text{statistica usata per approssimare}} = \frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$

ESEMPIO: \overline{X} si usa spesso come stimatore di $\mu = \mathbb{E}[X_i]$

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

STIMATORE = $\frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$

ESEMPIO: \overline{X} si usa spesso come stimatore di $\mu = \mathbb{E}[X_i]$

Uno stimatore è una variabile aleatoria!

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

STIMATORE = $\frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$

ESEMPIO: \overline{X} si usa spesso come stimatore di $\mu = \mathbb{E}[X_i]$

STIMA = realizzazione di uno stimatore dopo l'esperimento aleatorio

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

STIMATORE = $\frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$

ESEMPIO: \overline{X} si usa spesso come stimatore di $\mu = \mathbb{E}[X_i]$

STIMA = realizzazione di uno stimatore dopo l'esperimento aleatorio

ESEMPIO: dopo n = 3 misure trovo $x_1 = 1.2$, $x_2 = 0.6$, $x_3 = 2.9$

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

STIMATORE = $\frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$

ESEMPIO: \overline{X} si usa spesso come stimatore di $\mu = \mathbb{E}\left[X_i\right]$

STIMA = realizzazione di uno stimatore dopo l'esperimento aleatorio

ESEMPIO: dopo
$$n = 3$$
 misure trovo $x_1 = 1.2$, $x_2 = 0.6$, $x_3 = 2.9$

$$\Rightarrow \quad \overline{x} = \frac{1.2 + 0.6 + 2.9}{3} = 1.567 \;\;$$
è una stima di μ

STATISTICA = qualsiasi funzione del campione aleatorio X_1, \dots, X_n

ESEMPIO: la media campionaria

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv h(X_1, ..., X_n)$$
 dove $h(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$

STIMATORE = $\frac{\text{statistica usata per approssimare}}{\text{un parametro della densità delle } X_i}$

ESEMPIO: \overline{X} si usa spesso come stimatore di $\mu = \mathbb{E}[X_i]$

STIMA = realizzazione di uno stimatore dopo l'esperimento aleatorio

ESEMPIO: dopo
$$n = 3$$
 misure trovo $x_1 = 1.2, x_2 = 0.6, x_3 = 2.9$

$$\Rightarrow$$
 $\overline{x} = \frac{1.2 + 0.6 + 2.9}{3} = 1.567$ è una stima di μ

Una stima è un numero!

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili	$X_1 = \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \right)$	\rightarrow	$x_1 = 1.2$	
aleatorie {	$X_2 = \sum_{i=1}^{n} \sum_{i=1}^{n} i^{n}$	\rightarrow	$x_2 = 0.6$	realizzazioni
i.i.d.		\rightarrow		(dati)
densità {	$X_i \sim f_{ heta}$	\rightarrow	*	
parametri {	$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$	\rightarrow	$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$	} parametri

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili	$X_1 = \left(\begin{array}{c} 0.6 7.2 \\ \begin{array}{c} 0.6 7.2 \\ \end{array} \right)$	\rightarrow	$x_1 = 1.2$	
aleatorie {	$X_2 = \left(\begin{array}{c} 0.6 7^2 \\ \frac{1}{2} 10^3 \end{array} \right)$	\rightarrow	$x_2 = 0.6$	realizzazioni (dati)
		\rightarrow	•••	
densità {	$X_i \sim f_{ heta}$	\rightarrow	*	
	$ heta \in \mathbb{R}$ oppure $ heta \in \mathbb{R}^k$		• •	
stimatore {	$\hat{\Theta}=h(X_1,X_2,\ldots)$	\rightarrow	$\hat{\theta} = h(1.2, 0.6, \ldots)$	} stima

 θ non si può misurare, ma $\hat{\Theta}$ sì!

	PRIMA dell'esperimento		DOPO l'esperimento	
variabili aleatorie i.i.d.	$X_1 = \left(\frac{1}{\sqrt{2}} \right)^{\frac{1}{2}}$	\rightarrow	$x_1 = 1.2$	
	$X_2 = \left(\begin{array}{c} 0.6 \\ \begin{array}{c} 0.6 \\ \begin{array}{c} 0.6 \end{array} \right)^2 \end{array}$	\rightarrow	$x_2 = 0.6$	realizzazioni
	$X_3 = \left(\begin{array}{c} 0.6 \\ 0.6 \\ 0.6 \end{array} \right)^2 $	\rightarrow	$x_3 = 2.9$	(dati)
densità {	$X_i \sim N(\mu, \sigma^2)$	\rightarrow	*	
parametri {	$\mu=$ 1.5 $\sigma=$ 0.8	\rightarrow	$\mu=$ 1.5 $\sigma=$ 0.8	} parametri
stimatore {	$\overline{X} = \frac{X_1 + X_2 + X_3}{3}$	\rightarrow	$\overline{X} = \frac{1.2 + 0.6 + 2.9}{3}$	} stima

Se $\hat{\Theta}$ è un buono stimatore del parametro incognito θ :

ullet $\hat{\Theta}$ non deve dipendere da heta

- ullet $\hat{\Theta}$ non deve dipendere da θ
 - ⇒ si vede a occhio

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- la densità di $\hat{\Theta}$ deve essere centrata in θ

- ullet $\hat{\Theta}$ non deve dipendere da θ
 - ⇒ si vede a occhio
- la densità di $\hat{\Theta}$ deve essere centrata in θ

$$\Rightarrow$$
 $\mathbb{E}[\hat{\Theta}] \simeq \theta$

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- la densità di $\hat{\Theta}$ deve essere centrata in θ

$$\Rightarrow$$
 $\mathbb{E}[\hat{\Theta}] \simeq \theta \Rightarrow \mathbf{0} \simeq \mathbb{E}[\hat{\Theta}] - \theta$

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- la densità di $\hat{\Theta}$ deve essere centrata in θ

$$\Rightarrow \quad \mathbb{E}[\hat{\Theta}] \simeq \theta \quad \Rightarrow \quad 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: \underbrace{\text{bias}(\hat{\Theta}; \theta)}_{\text{distorsione}}$$

Se $\hat{\Theta}$ è un buono stimatore del parametro incognito θ :

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- la densità di $\hat{\Theta}$ deve essere centrata in θ

$$\Rightarrow$$
 $\mathbb{E}[\hat{\Theta}] \simeq \theta \Rightarrow 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: bias(\hat{\Theta}; \theta)$

 $bias(\hat{\Theta}; \theta) = 0 \Leftrightarrow \hat{\Theta} \Leftrightarrow non-distorto (o corretto)$

Se $\hat{\Theta}$ è un buono stimatore del parametro incognito θ :

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- la densità di $\hat{\Theta}$ deve essere centrata in θ

$$\Rightarrow \quad \mathbb{E}[\hat{\Theta}] \simeq \theta \quad \Rightarrow \quad 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: bias(\hat{\Theta}; \theta)$$
$$bias(\hat{\Theta}; \theta) = 0 \quad \Leftrightarrow \quad \hat{\Theta} \quad \text{è non-distorto (o corretto)}$$

ullet la densità di $\hat{\Theta}$ deve essere dispersa il meno possibile

Se $\hat{\Theta}$ è un buono stimatore del parametro incognito θ :

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- ullet la densità di $\hat{\Theta}$ deve essere centrata in heta

$$\Rightarrow \quad \mathbb{E}[\hat{\Theta}] \simeq \theta \quad \Rightarrow \quad 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: bias(\hat{\Theta}; \theta)$$
$$bias(\hat{\Theta}; \theta) = 0 \quad \Leftrightarrow \quad \hat{\Theta} \quad \text{è non-distorto (o corretto)}$$

ullet la densità di $\hat{\Theta}$ deve essere dispersa il meno possibile

$$\Rightarrow \underbrace{\operatorname{mse}(\hat{\Theta}; \theta)}_{\substack{\text{errore} \\ \text{quadratico} \\ \text{medio}}} := \mathbb{E}[(\hat{\Theta} - \theta)^2] \qquad \text{deve esser piccolo}$$

Se $\hat{\Theta}$ è un buono stimatore del parametro incognito θ :

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- la densità di $\hat{\Theta}$ deve essere centrata in θ

$$\Rightarrow \quad \mathbb{E}[\hat{\Theta}] \simeq \theta \quad \Rightarrow \quad 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: \text{bias}(\hat{\Theta}; \theta)$$
$$\text{bias}(\hat{\Theta}; \theta) = 0 \quad \Leftrightarrow \quad \hat{\Theta} \quad \hat{\Theta} \quad \text{enon-distorto (o corretto)}$$

ullet la densità di $\hat{\Theta}$ deve essere dispersa il meno possibile

$$\Rightarrow \underbrace{ \underbrace{\mathsf{mse}(\hat{\Theta}; \theta)}_{\substack{\mathsf{mean} \\ \mathsf{square} \\ \mathsf{error}}} := \mathbb{E}[(\hat{\Theta} - \theta)^2] \qquad \mathsf{deve} \; \mathsf{esser} \; \mathsf{piccolo}$$

Se $\hat{\Theta}$ è un buono stimatore del parametro incognito θ :

- ullet $\hat{\Theta}$ non deve dipendere da heta
 - ⇒ si vede a occhio
- la densità di $\hat{\Theta}$ deve essere centrata in θ

$$\Rightarrow \quad \mathbb{E}[\hat{\Theta}] \simeq \theta \quad \Rightarrow \quad 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: bias(\hat{\Theta}; \theta)$$
$$bias(\hat{\Theta}; \theta) = 0 \quad \Leftrightarrow \quad \hat{\Theta} \quad \text{è non-distorto (o corretto)}$$

 \bullet la densità di $\hat{\Theta}$ deve essere dispersa il meno possibile

$$\Rightarrow \operatorname{mse}(\hat{\Theta}; \theta) := \mathbb{E}[(\hat{\Theta} - \theta)^2]$$
 deve esser piccolo Se $\hat{\Theta}_n = h_n(X_1, \dots, X_n)$, allora

$$\operatorname{mse}(\hat{\Theta}_n; \theta) \underset{n \to \infty}{\longrightarrow} 0 \iff \hat{\Theta}_n \text{ è consistente in media quadratica}$$

Se $\hat{\Theta}_n$ è un buono stimatore del parametro incognito θ :

- \bullet $\hat{\Theta}_n$ non deve dipendere da θ
 - ⇒ si vede a occhio
- ullet la densità di \hat{eta} deve essere centrata in heta

$$\Rightarrow$$
 $\mathbb{E}[\hat{\Theta}] \simeq \theta \Rightarrow 0 \simeq \mathbb{E}[\hat{\Theta}] - \theta =: bias(\hat{\Theta}; \theta)$

 $bias(\hat{\Theta}; \theta) = 0 \Leftrightarrow \hat{\Theta}_n \text{ è non-distorto (o corretto)}$

ullet la densità di \hat{eta} deve essere dispersa il meno possibile

$$\Rightarrow$$
 mse($\hat{\Theta}$; θ) := $\mathbb{E}[(\hat{\Theta} - \theta)^2]$ deve esser piccolo

Se
$$\hat{\Theta}_n = h_n(X_1, \dots, X_n)$$
, allora

$$\operatorname{mse}(\hat{\Theta}_n;\theta) \underset{n \to \infty}{\longrightarrow} 0 \iff \hat{\Theta}_n \text{ è consistente in media quadratica}$$

bias(
$$\hat{\Theta}$$
; θ) = $\mathbb{E}[\hat{\Theta}] - \theta$
mse($\hat{\Theta}$; θ) = $\mathbb{E}[(\hat{\Theta} - \theta)^2]$

bias(
$$\hat{\Theta}$$
; θ) = $\mathbb{E}[\hat{\Theta}] - \theta$
mse($\hat{\Theta}$; θ) = $\mathbb{E}[(\hat{\Theta} - \theta)^2]$

- \bullet bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

bias(
$$\hat{\Theta}$$
; θ) = $\mathbb{E}[\hat{\Theta}] - \theta$
mse($\hat{\Theta}$; θ) = $\mathbb{E}[(\hat{\Theta} - \theta)^2]$

- **1** bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

bias(
$$\hat{\Theta}$$
; θ) = $\mathbb{E}[\hat{\Theta}] - \theta$
mse($\hat{\Theta}$; θ) = $\mathbb{E}[(\hat{\Theta} - \theta)^2]$

DISTORSIONE
ERRORE QUADRATICO MEDIO

- **1** bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

perché mse ≥ 0

bias
$$(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta$$
 DISTOR
mse $(\hat{\Theta}; \theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2]$ ERRORI

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

$$\mathrm{mse}(\hat{\Theta};\theta) \,=\, \mathbb{E}\left[\hat{\Theta}^2 - 2\,\theta\,\hat{\Theta} + \theta^2\right]$$

$$\begin{split} & \text{bias}(\hat{\Theta};\theta) = \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ & \text{mse}(\hat{\Theta};\theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{split}$$

- **1** bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

$$\begin{split} & \text{bias}(\hat{\Theta};\theta) = \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ & \text{mse}(\hat{\Theta};\theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{split}$$

- **1** bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] \end{aligned} \quad \text{ERRORE QUADRATICO MEDIO}$$

- **1** bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{aligned}$$

- **1** bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

bias
$$(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta$$
 DIS
mse $(\hat{\Theta}; \theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2]$ ER

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

bias(
$$\hat{\Theta}$$
; θ) = $\mathbb{E}[\hat{\Theta}] - \theta$
mse($\hat{\Theta}$; θ) = $\mathbb{E}[(\hat{\Theta} - \theta)^2]$

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \underset{\mathbb{P}(E) \leq 1}{\geq} \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right)$$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{aligned}$$

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \geq \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) \underset{\mathbb{E}[\hat{\Theta}_{n}] = \theta}{=} \mathbb{P}\left(\left|\hat{\Theta}_{n} - \mathbb{E}[\hat{\Theta}_{n}]\right| < \varepsilon\right)$$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] \end{aligned} \quad \text{ERRORE QUADRATICO MEDIO}$$

- **1** bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$\begin{array}{ccc} \mathbf{1} & \geq & \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) & = & \mathbb{P}\left(\left|\hat{\Theta}_{n} - \mathbb{E}[\hat{\Theta}_{n}]\right| < \varepsilon\right) \\ \\ & \geq & 1 - \frac{\mathrm{var}[\hat{\Theta}_{n}]}{\varepsilon^{2}} \end{array}$$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] \end{aligned} \quad \text{ERRORE QUADRATICO MEDIO}$$

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \geq \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) = \mathbb{P}\left(\left|\hat{\Theta}_{n} - \mathbb{E}[\hat{\Theta}_{n}]\right| < \varepsilon\right)$$
$$\geq 1 - \frac{\operatorname{var}[\hat{\Theta}_{n}]}{\varepsilon^{2}} = 1 - \frac{\operatorname{mse}(\hat{\Theta}_{n}; \theta)}{\varepsilon^{2}}$$

$$\begin{split} & \text{bias}(\hat{\Theta};\theta) = \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ & \text{mse}(\hat{\Theta};\theta) = \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{split}$$

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \geq \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) = \mathbb{P}\left(\left|\hat{\Theta}_{n} - \mathbb{E}[\hat{\Theta}_{n}]\right| < \varepsilon\right)$$
$$\geq 1 - \frac{\operatorname{var}[\hat{\Theta}_{n}]}{\varepsilon^{2}} = 1 - \frac{\operatorname{mse}(\hat{\Theta}_{n}; \theta)}{\varepsilon^{2}}$$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{aligned}$$

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \ge \mathbb{P}\left(\left|\hat{\Theta}_n - \theta\right| < \varepsilon\right) \ge 1 - \frac{\operatorname{mse}(\hat{\Theta}_n; \theta)}{\varepsilon^2}$$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta & \text{DISTORSIONE} \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] & \text{ERRORE QUADRATICO MEDIO} \end{aligned}$$

- **1** bias($\hat{\Theta}$; θ) \in ($-\infty$, $+\infty$)

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \geq \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) \geq 1 - \frac{\operatorname{mse}(\hat{\Theta}_{n}; \theta)}{\varepsilon^{2}} \xrightarrow[n \to \infty]{} 1$$

perché $\operatorname{mse}(\hat{\Theta}_n; \theta) \xrightarrow[n \to \infty]{} 0$

$$\begin{aligned} \text{bias}(\hat{\Theta};\theta) &= \mathbb{E}[\hat{\Theta}] - \theta \\ \text{mse}(\hat{\Theta};\theta) &= \mathbb{E}[(\hat{\Theta} - \theta)^2] \end{aligned} \end{aligned} \quad \text{ERRORE QUADRATICO MEDIO}$$

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

- $\left\{ \begin{array}{c} \hat{\Theta}_n \text{ non-distorto per ogni } n \\ \hat{\Theta}_n \text{ consistente in media quadratica} \end{array} \right\} \quad \Rightarrow \quad \hat{\Theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta :$

$$1 \geq \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) \geq 1 - \frac{\operatorname{mse}(\hat{\Theta}_{n}; \theta)}{\varepsilon^{2}} \xrightarrow[n \to \infty]{} 1$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{P}\left(\left|\hat{\Theta}_{n} - \theta\right| < \varepsilon\right) = 1$$

bias(
$$\hat{\Theta}$$
; θ) = $\mathbb{E}[\hat{\Theta}] - \theta$
mse($\hat{\Theta}$; θ) = $\mathbb{E}[(\hat{\Theta} - \theta)^2]$

- **1** bias($\hat{\Theta}$; θ) $\in (-\infty, +\infty)$

Vogliamo stimare il parametro $\mu := \mathbb{E}\left[X_i\right]$ usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_n = \mu$$
 $\hat{M}'_n = X_3$ $\hat{M}''_n = \overline{X}_n$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_n = \mu$$
 $\hat{M}'_n = X_3$ $\hat{M}''_n = \overline{X}_n$

$$\hat{M}_n$$
 NO

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_n = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_n = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Vogliamo stimare il parametro $\mu := \mathbb{E}\left[X_i\right]$ usando gli stimatori

$$\hat{M}_{n} \leq \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n^{\prime\prime} = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Vogliamo stimare il parametro $\mu := \mathbb{E}\left[X_i\right]$ usando gli stimatori

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

$$\hat{M}_n''$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} \leq \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n^{\prime\prime} = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu \quad \mathsf{S}$$

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n=X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 Sì

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n=X_3$$

$$\hat{M}_n^{\prime\prime}=\overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_n = X_3$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n^{\prime\prime} = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

$$\hat{M}_n''$$
 SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì $\mathbb{E}[\hat{M}'_n] = \mu$ Sì

$$\mathbb{E}[\hat{M}'_n] = \mu \quad \mathsf{S}\hat{\mathsf{I}}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

Lo stimatore è consistente in media quadratica?

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} \leq \mu$$

$$\hat{M}_n = X_3$$

$$\hat{M}_n^{\prime\prime}=\overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu \quad \mathsf{S}\hat{\mathsf{I}}$$

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \underset{n \to \infty}{\longrightarrow} 0$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \underset{n \to \infty}{\longrightarrow} 0$$
 Sì

$$\operatorname{mse}(\hat{M}'_n; \mu) = \mathbb{E}\left[(X_3 - \mu)^2 \right] = \operatorname{var}\left[X_3 \right]$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

$$\hat{M}_n''$$
 SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu \quad \mathsf{S}\hat{\mathsf{I}}$$

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu \quad \mathsf{S}\hat{\mathsf{I}}$$

Lo stimatore è consistente in media quadratica?

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \xrightarrow[n \to \infty]{} 0$$
 Sì

$$\operatorname{mse}(\hat{M}'_n; \mu) = \mathbb{E}\left[(X_3 - \mu)^2 \right] = \operatorname{var}\left[X_3 \right] \xrightarrow[n \to \infty]{} \operatorname{var}\left[X_3 \right]$$

NO

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n} = \mu$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

$$\hat{M}_n''$$
 Sì

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

NO

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \underset{n \to \infty}{\longrightarrow} 0 \qquad \text{Si}$$

$$\operatorname{mse}(\hat{M}'_{n}; \mu) = \mathbb{E}\left[(X_{3} - \mu)^{2}\right] = \operatorname{var}\left[X_{3}\right] \xrightarrow[n \to \infty]{} \operatorname{var}\left[X_{3}\right]$$

$$\operatorname{mse}(\hat{M}_{n}^{"}; \mu) = \operatorname{var}[\overline{X}_{n}] + \operatorname{bias}(\overline{X}_{n}; \mu)^{2}$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n}$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 SÌ

$$\hat{M}_n''$$
 SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu \quad \text{Si} \qquad \qquad \mathbb{E}[\hat{M}'_n] = \mu \quad \text{Si}$$

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 Sì

NO

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \underset{n \to \infty}{\longrightarrow} 0 \qquad \text{Si}$$

$$\operatorname{mse}(\hat{M}'_{n}; \mu) = \mathbb{E}\left[(X_{3} - \mu)^{2}\right] = \operatorname{var}\left[X_{3}\right] \xrightarrow[n \to \infty]{} \operatorname{var}\left[X_{3}\right]$$

$$\operatorname{mse}(\hat{M}_{n}'';\mu) = \operatorname{var}\left[\overline{X}_{n}\right] + \operatorname{bias}(\overline{X}_{n};\mu)^{2} = \frac{\operatorname{var}\left[X_{i}\right]}{n}$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_{n}$$

$$\hat{M}'_n = X_3$$

$$\hat{M}_n'' = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO

$$\hat{M}'_n$$
 Sì

$$\hat{M}_n''$$
 SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 SÌ

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì $\mathbb{E}[\hat{M}'_n] = \mu$ Sì

$$\mathbb{E}[\hat{M}_n''] = \mu$$
 SÌ

NO

SÌ

$$\operatorname{mse}(\hat{M}_n; \mu) = \mathbb{E}\left[(\mu - \mu)^2\right] = 0 \underset{n \to \infty}{\longrightarrow} 0$$

$$\operatorname{mse}(\hat{M}'_{n}; \mu) = \mathbb{E}\left[(X_{3} - \mu)^{2}\right] = \operatorname{var}\left[X_{3}\right] \xrightarrow[n \to \infty]{} \operatorname{var}\left[X_{3}\right]$$

$$\operatorname{mse}(\hat{M}_n'';\mu) = \operatorname{var}\left[\overline{X}_n\right] + \operatorname{bias}(\overline{X}_n;\mu)^2 = \frac{\operatorname{var}\left[X_i\right]}{n} \underset{n \to \infty}{\longrightarrow} 0$$

Vogliamo stimare il parametro $\mu := \mathbb{E}[X_i]$ usando gli stimatori

$$\hat{M}_n = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO \hat{M}'_n SÌ \hat{M}''_n SÌ

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì $\mathbb{E}[\hat{M}'_n] = \mu$ Sì $\mathbb{E}[\hat{M}''_n] = \mu$ Sì

$$\operatorname{mse}(\hat{M}_{n}; \mu) = \mathbb{E}\left[(\mu - \mu)^{2}\right] = 0 \underset{n \to \infty}{\longrightarrow} 0 \qquad \text{Si}$$

$$\operatorname{mse}(\hat{M}'_{n}; \mu) = \mathbb{E}\left[(X_{3} - \mu)^{2}\right] = \operatorname{var}\left[X_{3}\right] \underset{n \to \infty}{\longrightarrow} \operatorname{var}\left[X_{3}\right] \qquad \text{NO}$$

$$\operatorname{mse}(\hat{M}''_{n}; \mu) = \operatorname{var}\left[\overline{X}_{n}\right] + \operatorname{bias}(\overline{X}_{n}; \mu)^{2} = \frac{\operatorname{var}\left[X_{i}\right]}{n} \underset{n \to \infty}{\longrightarrow} 0 \qquad \text{Si}$$

Vogliamo stimare il parametro $\; \mu := \mathbb{E}\left[X_i
ight]\;$ usando gli stimator

$$\hat{M}_n = \overline{X}_n$$

• Lo stimatore è indipendente da μ ?

$$\hat{M}_n$$
 NO \overline{X}_n è lo stimatore migliore di $\mu = \mathbb{E}[X_i]$

Lo stimatore è non-distorto?

$$\mathbb{E}[\hat{M}_n] = \mu$$
 Sì $\mathbb{E}[\hat{M}_n'] = \mu$ Sì $\mathbb{E}[\hat{M}_n''] = \mu$ Sì

$$\operatorname{mse}(\hat{M}_{n}; \mu) = \mathbb{E}\left[(\mu - \mu)^{2}\right] = 0 \xrightarrow[n \to \infty]{} 0 \qquad \text{Sì}$$

$$\operatorname{mse}(\hat{M}_{n}'; \mu) = \mathbb{E}\left[(X_{3} - \mu)^{2}\right] = \operatorname{var}\left[X_{3}\right] \xrightarrow[n \to \infty]{} \operatorname{var}\left[X_{3}\right] \qquad \operatorname{NC}$$

$$\operatorname{mse}(\hat{M}_{n}''; \mu) = \operatorname{var}\left[\overline{X}_{n}\right] + \operatorname{bias}(\overline{X}_{n}; \mu)^{2} = \frac{\operatorname{var}\left[X_{i}\right]}{n} \xrightarrow[n \to \infty]{} 0 \qquad \text{Si}$$

Altre quantità

• ERRORE STANDARD =
$$\underbrace{\operatorname{se}(\hat{\Theta}; \theta)}_{\substack{\text{standard} \\ \text{error}}} := \sqrt{\operatorname{mse}(\hat{\Theta}; \theta)}$$

Altre quantità

- ERRORE STANDARD = $se(\hat{\Theta}; \theta) := \sqrt{mse(\hat{\Theta}; \theta)}$
- EFFICIENZA RELATIVA di $\hat{\Theta}$ contro $\hat{\Theta}' := \frac{\operatorname{mse}(\hat{\Theta}'; \theta)}{\operatorname{mse}(\hat{\Theta}; \theta)}$

Altre quantità

- ERRORE STANDARD = $se(\hat{\Theta}; \theta) := \sqrt{mse(\hat{\Theta}; \theta)}$
- EFFICIENZA RELATIVA di $\hat{\Theta}$ contro $\hat{\Theta}' := \frac{\operatorname{mse}(\hat{\Theta}'; \theta)}{\operatorname{mse}(\hat{\Theta}; \theta)}$

Se supera 1, lo stimatore $\hat{\Theta}$ è meglio di $\hat{\Theta}'$ in termini di mse

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \left(\sum_{i=1}^n X_i^2 \right) - n \cdot \overline{X}_n^2 \right\}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_n \right)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

Vogliamo stimare $\sigma^2 := var[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_n \right)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

• Lo stimatore è indipendente da σ^2 ?

Vogliamo stimare $\sigma^2 := var[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

• Lo stimatore è indipendente da σ^2 ?

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = ???$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ? Sì
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n \mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ? Sì
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$\operatorname{var}\left[Z\right] = \mathbb{E}\left[Z^2\right] - \mathbb{E}\left[Z\right]^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$\operatorname{var}\left[Z\right] = \mathbb{E}\left[Z^2\right] - \mathbb{E}\left[Z\right]^2 \quad \Rightarrow \quad \mathbb{E}\left[Z^2\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$\operatorname{var}[Z] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[X_{i}^{2}\right] = \operatorname{var}\left[X_{i}\right] + \mathbb{E}\left[X_{i}\right]^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$\operatorname{var}[Z] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[X_{i}^{2}\right] = \operatorname{var}\left[X_{i}\right] + \mathbb{E}\left[X_{i}\right]^{2} = \sigma^{2} + \mu^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$
$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) \right\}$$

$$\operatorname{var}[Z] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[X_{i}^{2}\right] = \operatorname{var}\left[X_{i}\right] + \mathbb{E}\left[X_{i}\right]^{2} = \sigma^{2} + \mu^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$
$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) \right\}$$

$$\operatorname{var}\left[Z\right] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[\overline{X}_{n}^{2}\right] = \operatorname{var}\left[\overline{X}_{n}\right] + \mathbb{E}\left[\overline{X}_{n}\right]^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_n \right)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$
$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) \right\}$$

$$\operatorname{var}[Z] = \mathbb{E}\left[Z^{2}\right] - \mathbb{E}\left[Z\right]^{2} \quad \Rightarrow \quad \mathbb{E}\left[Z^{2}\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^{2}$$

$$\Rightarrow \quad \mathbb{E}\left[\overline{X}_{n}^{2}\right] = \operatorname{var}\left[\overline{X}_{n}\right] + \mathbb{E}\left[\overline{X}_{n}\right]^{2} = \frac{\sigma^{2}}{n} + \mu^{2}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n \mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n \left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$

$$\operatorname{var}\left[Z\right] = \mathbb{E}\left[Z^2\right] - \mathbb{E}\left[Z\right]^2 \quad \Rightarrow \quad \mathbb{E}\left[Z^2\right] = \operatorname{var}\left[Z\right] + \mathbb{E}\left[Z\right]^2$$

$$\Rightarrow \quad \mathbb{E}\left[\overline{X}_n^2\right] = \operatorname{var}\left[\overline{X}_n\right] + \mathbb{E}\left[\overline{X}_n\right]^2 = \frac{\sigma^2}{n} + \mu^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ? Sì
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$
$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$
$$= \frac{1}{n-1} \left\{ n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + n\mu^2\right) \right\}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ? Sì
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$
$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$
$$= \frac{1}{n-1} \left\{ n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + p\mu^2\right) \right\}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n \mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$

$$= \frac{1}{n-1} \left\{ n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + p\mu^2\right) \right\}$$

$$= \frac{1}{n-1} (n-1) \sigma^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_n \right)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n\mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$

$$= \frac{1}{n-1} \left\{ n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + n\mu^2\right) \right\}$$

$$= \frac{1}{n-1} \left(n-1\right) \sigma^2 = \sigma^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_n \right)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?

$$\mathbb{E}\left[S_n^2\right] = \frac{1}{n-1} \left\{ \sum \mathbb{E}\left[X_i^2\right] - n \mathbb{E}\left[\overline{X}_n^2\right] \right\}$$

$$= \frac{1}{n-1} \left\{ \sum \left(\sigma^2 + \mu^2\right) - n\left(\frac{\sigma^2}{n} + \mu^2\right) \right\}$$

$$= \frac{1}{n-1} \left\{ n\left(\sigma^2 + \mu^2\right) - \left(\sigma^2 + n\mu^2\right) \right\}$$

$$= \frac{1}{n-1} \left(n-1\right) \sigma^2 = \frac{\sigma^2}{n}$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ? Sì
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$\mathsf{mse}\big(S_n^2\,;\,\sigma^2\big) = \mathsf{var}\left[S_n^2\right] + \mathsf{bias}\big(S_n^2\,;\,\sigma^2\big)^2$$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$\operatorname{mse}(S_n^2; \sigma^2) = \operatorname{var}\left[S_n^2\right] + \operatorname{bias}(S_n^2; \sigma^2)^2$$

Vogliamo stimare $\sigma^2 := var[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ? SÌ
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$\operatorname{mse}(S_n^2; \sigma^2) = \operatorname{var}\left[S_n^2\right] + \underbrace{\operatorname{bias}(S_n^2; \sigma^2)^2}$$

$$= \frac{1}{n} \mathbb{E}\left[(X_i - \mu)^4\right] - \frac{\sigma^4(n-3)}{n(n-1)} \qquad \text{(più complicato)}$$

Vogliamo stimare $\sigma^2 := \text{var}[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ? SÌ
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$\operatorname{mse}(S_n^2; \sigma^2) = \operatorname{var}\left[S_n^2\right] + \operatorname{bias}(S_n^2; \sigma^2)^2$$
$$= \frac{1}{n} \mathbb{E}\left[(X_i - \mu)^4\right] - \frac{\sigma^4(n-3)}{n(n-1)} \xrightarrow[n \to \infty]{} 0$$

Vogliamo stimare $\sigma^2 := var[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ? SÌ
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica?

$$\operatorname{mse}(S_n^2; \sigma^2) = \operatorname{var}\left[S_n^2\right] + \operatorname{bias}(S_n^2; \sigma^2)^2$$
$$= \frac{1}{n} \mathbb{E}\left[(X_i - \mu)^4\right] - \frac{\sigma^4(n-3)}{n(n-1)} \xrightarrow[n \to \infty]{0}$$

Vogliamo stimare $\sigma^2 := \text{var}[X_i]$ con la *varianza campionaria*

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \left\{ \sum X_i^2 - n \cdot \overline{X}_n^2 \right\}$$

- Lo stimatore è indipendente da σ^2 ?
- Lo stimatore è non-distorto?
- Lo stimatore è consistente in media quadratica? Sì

 S_n^2 è un buono stimatore di σ^2

```
IPOTESI: \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \;\; {\sf parametri}\; {\sf con}\;\; \theta = {\it g}(\alpha,\beta) \\ \end{array} \right.
```

IPOTESI: $\begin{cases} -& \alpha,\,\beta,\,\theta \text{ parametri con } \theta = g(\alpha,\beta) \\ -& \hat{A} \text{ stimatore non-distorto di } \alpha \\ -& \hat{B} \text{ stimatore non-distorto di } \beta \end{cases}$

 $\mbox{IPOTESI:} \quad \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \ \ \mbox{parametri con} \ \ \theta = g(\alpha,\beta) \\ - & \hat{A} \ \mbox{stimatore non-distorto di} \ \ \alpha \\ - & \hat{B} \ \mbox{stimatore non-distorto di} \ \ \beta \end{array} \right.$

Qual è uno stimatore non distorto di θ ?

```
 \begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll} -\alpha,\beta,\theta & parametric con $\theta=g(\alpha,\beta)$\\ -\hat{A} & stimatore non-distorto di $\alpha$\\ -\hat{B} & stimatore non-distorto di $\beta$\\ \end{tabular}
```

 $\hat{\Theta} := g(\hat{A},\hat{B})$ è uno stimatore approssimativamente non-distorto di heta

 $\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})]$

```
IPOTESI: \begin{cases} -&\alpha,\beta,\,\theta \text{ parametri con }\theta=g(\alpha,\beta)\\ -&\hat{A} \text{ stimatore non-distorto di }\alpha\\ -&\hat{B} \text{ stimatore non-distorto di }\beta \end{cases} \hat{\Theta}:=g(\hat{A},\hat{B}) \text{ è uno stimatore approssimativamente non-distorto di }\theta:
```

IPOTESI:
$$\begin{cases} -& \alpha, \, \beta, \, \theta \text{ parametri con } \theta = g(\alpha, \beta) \\ -& \hat{A} \text{ stimatore non-distorto di } \alpha \\ -& \hat{B} \text{ stimatore non-distorto di } \beta \end{cases}$$

 $\hat{\Theta}:=g(\hat{A},\hat{B})$ è uno stimatore approssimativamente non-distorto di $\, heta$:

$$\mathbb{E}[\hat{\Theta}] \ = \ \mathbb{E}[g(\hat{A}, \hat{B})] \underset{\text{metodo} \\ \text{delta}}{\simeq} \ g\big(\mathbb{E}[\hat{A}], \ \mathbb{E}[\hat{B}]\big)$$

```
 \mbox{IPOTESI:} \quad \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \ \ \mbox{parametri con} \ \ \theta = g(\alpha,\beta) \\ - & \hat{A} \ \mbox{stimatore non-distorto di} \ \ \alpha \\ - & \hat{B} \ \mbox{stimatore non-distorto di} \ \ \beta \end{array} \right.
```

 $\hat{\Theta} := g(\hat{A},\hat{B})$ è uno stimatore approssimativamente non-distorto di heta :

$$\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})] \simeq g(\mathbb{E}[\hat{A}], \mathbb{E}[\hat{B}]) = g(\alpha, \beta)$$

IPOTESI:
$$\begin{cases} -\alpha, \beta, \theta \text{ parametri con } \theta = g(\alpha, \beta) \\ -\hat{A} \text{ stimatore non-distorto di } \alpha \\ -\hat{B} \text{ stimatore non-distorto di } \beta \end{cases}$$

$$\hat{\Theta} := g(\hat{A}, \hat{B}) \text{ è uno stimatore approssimativamente non-distorto di } \theta :$$

$$\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})] \simeq g(\mathbb{E}[\hat{A}], \mathbb{E}[\hat{B}]) = g(\alpha, \beta) = \theta$$

IPOTESI:
$$\begin{cases} -& \alpha,\,\beta,\,\theta \text{ parametri con } \theta = g(\alpha,\beta) \\ -& \hat{A} \text{ stimatore non-distorto di } \alpha \\ -& \hat{B} \text{ stimatore non-distorto di } \beta \end{cases}$$

 $\hat{\Theta}:=g(\hat{A},\hat{B})$ è uno stimatore approssimativamente non-distorto di θ :

$$\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})] \simeq g(\mathbb{E}[\hat{A}], \mathbb{E}[\hat{B}]) = g(\alpha, \beta) = \theta$$

$$\Rightarrow \operatorname{bias}(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta \simeq 0$$

IPOTESI:
$$\begin{cases} -& \alpha,\,\beta,\,\theta \text{ parametri con } \theta = g(\alpha,\beta) \\ -& \hat{A} \text{ stimatore non-distorto di } \alpha \\ -& \hat{B} \text{ stimatore non-distorto di } \beta \end{cases}$$

 $\hat{\Theta}:=g(\hat{A},\hat{B})$ è uno stimatore approssimativamente non-distorto di $\, heta$:

$$\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})] \simeq g(\mathbb{E}[\hat{A}], \mathbb{E}[\hat{B}]) = g(\alpha, \beta) = \theta$$

$$\Rightarrow \operatorname{bias}(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta \simeq 0$$

OSSERVAZIONE:

$$\theta = a\alpha + b\beta$$
 \Rightarrow $\hat{\Theta} = a\hat{A} + b\hat{B}$ è esattamente non-distorto

IPOTESI:
$$\begin{cases} -& \alpha,\,\beta,\,\theta \text{ parametri con } \theta = g(\alpha,\beta) \\ -& \hat{A} \text{ stimatore non-distorto di } \alpha \\ -& \hat{B} \text{ stimatore non-distorto di } \beta \end{cases}$$

 $\hat{\Theta}:=g(\hat{A},\hat{B})$ è uno stimatore approssimativamente non-distorto di $\, heta$:

$$\mathbb{E}[\hat{\Theta}] = \mathbb{E}[g(\hat{A}, \hat{B})] \simeq g(\mathbb{E}[\hat{A}], \mathbb{E}[\hat{B}]) = g(\alpha, \beta) = \theta$$

$$\Rightarrow \operatorname{bias}(\hat{\Theta}; \theta) = \mathbb{E}[\hat{\Theta}] - \theta \simeq 0$$

OSSERVAZIONE:

$$\theta = a\alpha + b\beta \quad \Rightarrow \quad \hat{\Theta} = a\hat{A} + b\hat{B}$$
 è esattamente non-distorto

E per stimare l'errore $mse(\hat{\Theta}; \theta)$?

```
IPOTESI: \begin{cases} -&\alpha,\beta,\,\theta \text{ parametri con }\theta=g(\alpha,\beta)\\ -&\hat{A} \text{ stimatore non-distorto di }\alpha\\ -&\hat{B} \text{ stimatore non-distorto di }\beta \end{cases} \hat{\Theta}:=g(\hat{A},\hat{B}) \text{ è uno stimatore approssimativamente non-distorto di }\theta
```

 $\operatorname{mse}(\hat{\Theta}; \theta) = e(\alpha, \beta, \operatorname{var}[\hat{A}], \operatorname{var}[\hat{B}])$ con e funzione opportuna

$$\mbox{IPOTESI:} \quad \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \ \ \mbox{parametri con} \ \ \theta = g(\alpha,\beta) \\ - & \hat{A} \ \mbox{stimatore non-distorto di} \ \ \alpha \\ - & \hat{B} \ \mbox{stimatore non-distorto di} \ \ \beta \end{array} \right.$$

$$\hat{\Theta} := g(\hat{A}, \hat{B})$$
 è uno stimatore approssimativamente non-distorto di θ
$$\mathrm{mse}(\hat{\Theta}; \theta) = e(\alpha, \beta, \mathrm{var}[\hat{A}], \mathrm{var}[\hat{B}]) \quad \mathrm{con} \ \ e \ \ \mathrm{funzione} \ \mathrm{opportuna}$$

IPOTESI ULTERIORI:
$$\begin{cases} - & S_A^2 \text{ stimatore non-distorto di } \text{var}[\hat{A}] \\ - & S_B^2 \text{ stimatore non-distorto di } \text{var}[\hat{B}] \end{cases}$$

$$\mbox{IPOTESI:} \quad \left\{ \begin{array}{ll} - & \alpha,\,\beta,\,\theta \ \ \mbox{parametri con} \ \ \theta = g(\alpha,\beta) \\ - & \hat{A} \ \mbox{stimatore non-distorto di} \ \ \alpha \\ - & \hat{B} \ \mbox{stimatore non-distorto di} \ \ \beta \end{array} \right.$$

 $\hat{\Theta} := g(\hat{A}, \hat{B})$ è uno stimatore approssimativamente non-distorto di θ $mse(\hat{\Theta}; \theta) = e(\alpha, \beta, var[\hat{A}], var[\hat{B}])$ con e funzione opportuna

IPOTESI ULTERIORI: $\begin{cases} - & S_A^2 \text{ stimatore non-distorto di } \text{var}[\hat{A}] \\ - & S_B^2 \text{ stimatore non-distorto di } \text{var}[\hat{B}] \end{cases}$

$$\widehat{\mathrm{MSE}} := e(\hat{A}, \hat{B}, S_A^2, S_B^2)$$

 $\widehat{\text{MSE}} := e\left(\hat{A}, \hat{B}, S_A^2, S_B^2\right) \quad \text{stimatore approssimativamente} \\ \quad \text{non-distorto di } \mathsf{mse}(\hat{\Theta}; \theta)$

m=5 misure di tensione V_1,\ldots,V_5 i.i.d. no errore sistematico \Rightarrow $\mathbb{E}\left[V_i\right]=v$

m=5 misure di tensione V_1,\ldots,V_5 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[V_i\right]=v$ n=3 misure di corrente I_1,I_2,I_3 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[I_i\right]=i$

m=5 misure di tensione V_1,\ldots,V_5 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[V_i\right]=v$ n=3 misure di corrente I_1,I_2,I_3 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[I_i\right]=i$

• $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$ è uno stimatore non-distorto di V

m=5 misure di tensione V_1,\ldots,V_5 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[V_i\right]=v$ n=3 misure di corrente I_1,I_2,I_3 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[I_i\right]=i$

• $\overline{V} = \frac{1}{5}(V_1 + \ldots + V_5)$ è uno stimatore non-distorto di v, perché $\mathbb{E}[\overline{V}] = \mathbb{E}[V_i]$

m=5 misure di tensione V_1,\ldots,V_5 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[V_i\right]=v$ n=3 misure di corrente I_1,I_2,I_3 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[I_i\right]=i$

• $\overline{V} = \frac{1}{5}(V_1 + \ldots + V_5)$ è uno stimatore non-distorto di v, perché $\mathbb{E}[\overline{V}] = \mathbb{E}[V_i] = v$

m=5 misure di tensione V_1,\ldots,V_5 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[V_i\right]=v$ n=3 misure di corrente I_1,I_2,I_3 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[I_i\right]=i$

• $\overline{V} = \frac{1}{5}(V_1 + \ldots + V_5)$ è uno stimatore non-distorto di v, perché $\mathbb{E}[\overline{V}] = \mathbb{E}[V_i] = v \quad \Rightarrow \quad \text{bias}(\overline{V}; v) = 0$

m=5 misure di tensione V_1,\ldots,V_5 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[V_i\right]=v$ n=3 misure di corrente I_1,I_2,I_3 i.i.d. no errore sistematico $\Rightarrow \mathbb{E}\left[I_i\right]=i$

- $\overline{V} = \frac{1}{5}(V_1 + \ldots + V_5)$ è uno stimatore non-distorto di v, perché $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = v \quad \Rightarrow \quad \mathrm{bias}(\overline{V}; v) = 0$
- $\bar{I} = \frac{1}{3}(I_1 + I_2 + I_3)$ è uno stimatore non-distorto di i (idem)

m = 5 misure di tensione V_1, \ldots, V_5 i.i.d. $r = \frac{v}{i}$ no errore sistematico $\Rightarrow \mathbb{E}[V_i] = v$ n = 3 misure di corrente I_1, I_2, I_3 i.i.d. no errore sistematico \Rightarrow $\mathbb{E}[I_i] = i$

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$ è uno stimatore non-distorto di V, perché $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = V \quad \Rightarrow \quad \operatorname{bias}(\overline{V}; V) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$ è uno stimatore non-distorto di *i* (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$ è uno stimatore approx. non-distorto di r

m = 5 misure di tensione V_1, \ldots, V_5 i.i.d. $r = \frac{v}{i}$ no errore sistematico $\Rightarrow \mathbb{E}[V_i] = v$ n = 3 misure di corrente I_1, I_2, I_3 i.i.d. no errore sistematico \Rightarrow $\mathbb{E}[I_i] = i$

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$ è uno stimatore non-distorto di V, perché $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = V \quad \Rightarrow \quad \text{bias}(\overline{V}; V) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$ è uno stimatore non-distorto di i (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$ è uno stimatore approx. non-distorto di r, perché

$$\mathbb{E}[\hat{R}] = \mathbb{E}\left[\frac{\overline{V}}{\overline{I}}\right]$$

m = 5 misure di tensione V_1, \ldots, V_5 i.i.d. $r = \frac{v}{i}$ $no errore sistematico <math>\Rightarrow \mathbb{E}[V_i] = v$ $n = 3 \text{ misure di corrente } I_1, I_2, I_3 \text{ i.i.d.}$ no errore sistematico \Rightarrow $\mathbb{E}[I_i] = i$

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$ è uno stimatore non-distorto di V, perché $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = V \quad \Rightarrow \quad \text{bias}(\overline{V}; V) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$ è uno stimatore non-distorto di i (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$ è uno stimatore approx. non-distorto di r, perché

$$\mathbb{E}[\hat{R}] = \mathbb{E}\left[\frac{\overline{V}}{\overline{I}}\right] \underset{\text{metodo} \\ \text{delta}}{\simeq} \frac{\mathbb{E}[\overline{V}]}{\mathbb{E}[\overline{I}]}$$

m = 5 misure di tensione V_1, \ldots, V_5 i.i.d. $r = \frac{v}{i}$ $no errore sistematico <math>\Rightarrow \mathbb{E}[V_i] = v$ $n = 3 \text{ misure di corrente } I_1, I_2, I_3 \text{ i.i.d.}$ no errore sistematico \Rightarrow $\mathbb{E}[I_i] = i$

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$ è uno stimatore non-distorto di V, perché $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = v \quad \Rightarrow \quad \text{bias}(\overline{V}; v) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$ è uno stimatore non-distorto di *i* (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$ è uno stimatore approx. non-distorto di r, perché

$$\mathbb{E}[\hat{R}] = \mathbb{E}\left[\frac{\overline{V}}{\overline{I}}\right] \underset{\text{delta}}{\sim} \frac{\mathbb{E}[\overline{V}]}{\mathbb{E}[\overline{I}]} = \frac{v}{i}$$

m = 5 misure di tensione V_1, \ldots, V_5 i.i.d. $r = \frac{v}{i}$ no errore sistematico $\Rightarrow \mathbb{E}[V_i] = v$ n = 3 misure di corrente I_1, I_2, I_3 i.i.d. no errore sistematico \Rightarrow $\mathbb{E}[I_i] = i$

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$ è uno stimatore non-distorto di V, perché $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = V \quad \Rightarrow \quad \text{bias}(\overline{V}; V) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$ è uno stimatore non-distorto di i (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$ è uno stimatore approx. non-distorto di r, perché

$$\mathbb{E}[\hat{R}] = \mathbb{E}\left|\frac{\overline{V}}{\overline{I}}\right| \underset{\text{metodo} \text{ obta}}{\sim} \frac{\mathbb{E}[\overline{V}]}{\mathbb{E}[\overline{I}]} = \frac{v}{i} = r$$

m = 5 misure di tensione V_1, \ldots, V_5 i.i.d. $r = \frac{v}{i}$ $no errore sistematico <math>\Rightarrow \mathbb{E}[V_i] = v$ $n = 3 \text{ misure di corrente } I_1, I_2, I_3 \text{ i.i.d.}$ no errore sistematico \Rightarrow $\mathbb{E}[I_i] = i$

- $\overline{V} = \frac{1}{5}(V_1 + ... + V_5)$ è uno stimatore non-distorto di V, perché $\mathbb{E}\left[\overline{V}\right] = \mathbb{E}\left[V_i\right] = V \quad \Rightarrow \quad \text{bias}(\overline{V}; V) = 0$
- $\bar{l} = \frac{1}{3}(l_1 + l_2 + l_3)$ è uno stimatore non-distorto di i (idem)
- $\hat{R} = \frac{\overline{V}}{\overline{I}}$ è uno stimatore approx. non-distorto di r, perché

$$\mathbb{E}[\hat{R}] = \mathbb{E}\left|\frac{\overline{V}}{\overline{I}}\right| \underset{\text{metodo}}{\overset{\sim}{\sim}} \frac{\mathbb{E}[\overline{V}]}{\mathbb{E}[\overline{I}]} = \frac{V}{I} = r$$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\operatorname{mse}(\overline{V}; v) = \operatorname{var}[\overline{V}] + \operatorname{bias}(\overline{V}; v)^2$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\operatorname{mse}(\overline{V}; v) = \operatorname{var}[\overline{V}] + \operatorname{bias}(\overline{V}; v)^2 = \operatorname{var}[\overline{V}]$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\operatorname{mse}(\overline{V}; V) = \operatorname{var}[\overline{V}] + \operatorname{bias}(\overline{V}; V)^2 = \operatorname{var}[\overline{V}] = \frac{\sigma_V^2}{m}$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \mathrm{var}\left[I_j\right]$

•
$$\operatorname{mse}(\overline{V}; v) = \operatorname{var}[\overline{V}] + \operatorname{bias}(\overline{V}, \overline{V})^2 = \operatorname{var}[\overline{V}] = \frac{\sigma_V^2}{m}$$

 $\Rightarrow \widehat{MSE}_V := \frac{S_V^2}{m}$ è uno stimatore non-distorto di $\operatorname{mse}(\overline{V}; v)$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \mathrm{var}\left[I_j\right]$
- $\operatorname{mse}(\overline{V}; v) = \operatorname{var}[\overline{V}] + \underline{\operatorname{bias}}(\overline{V}; v)^2 = \operatorname{var}[\overline{V}] = \frac{\sigma_V^2}{m}$ $\Rightarrow \widehat{\mathrm{MSE}}_V := \frac{S_V^2}{m}$ è uno stimatore non-distorto di $\operatorname{mse}(\overline{V}; v)$
- $\operatorname{mse}(\bar{l}; i) = \ldots = \frac{\sigma_l^2}{n}$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \text{var} \left[I_j \right]$
- $\operatorname{mse}(\overline{V}; v) = \operatorname{var}[\overline{V}] + \underline{\operatorname{bias}}(\overline{V}; v)^2 = \operatorname{var}[\overline{V}] = \frac{\sigma_V^2}{m}$ $\Rightarrow \widehat{\mathrm{MSE}}_V := \frac{S_V^2}{m}$ è uno stimatore non-distorto di $\operatorname{mse}(\overline{V}; v)$
- $\operatorname{mse}(\bar{I}; i) = \ldots = \frac{\sigma_{\bar{I}}^2}{n}$ $\Rightarrow \widehat{\mathrm{MSE}}_I := \frac{S_I^2}{n}$ è uno stimatore non-distorto di $\operatorname{mse}(\bar{I}; i)$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}}$$
 approx. non-distorto di $r = \frac{v}{\overline{I}}$

Per stimare gli mse, ricordiamo gli stimatori

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}}$$
 approx. non-distorto di $r = \frac{v}{\overline{I}}$

• $\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^2$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \mathrm{var}\left[I_j\right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}}$$
 approx. non-distorto di $r = \frac{v}{\overline{I}}$

•
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \underbrace{\operatorname{bias}(\hat{R}; r)^2}_{\simeq 0}$$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \mathrm{var}\left[I_j\right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}}$$
 approx. non-distorto di $r = \frac{v}{\overline{I}}$

•
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \underbrace{\operatorname{bias}(\hat{R}; r)^2}_{\approx 0} \simeq \operatorname{var}[\hat{R}]$$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \text{var} \left[I_j \right]$
- $\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$ approx. non-distorto di $r = \frac{V}{\overline{I}} = g(V, I)$
- $\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^2 \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\hat{R}=rac{\overline{V}}{\overline{I}}=g\left(\overline{V},\overline{I}
 ight)$ approx. non-distorto di $r=rac{V}{\overline{I}}=g\left(V,I
 ight)$
- $\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^2 \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$

$$\underset{\text{delta}}{\simeq} \left[\partial_{1} g \left(\mathbb{E} \left[\overline{V} \right], \mathbb{E} \left[\overline{I} \right] \right) \right]^{2} \text{var} \left[\overline{V} \right] + \left[\partial_{2} g \left(\mathbb{E} \left[\overline{V} \right], \mathbb{E} \left[\overline{I} \right] \right) \right]^{2} \text{var} \left[\overline{I} \right]$$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \mathrm{var} \left[V_i \right]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \mathrm{var}\left[I_j\right]$
- $\hat{R} = \frac{\overline{V}}{\overline{I}} = g\left(\overline{V},\overline{I}\right)$ approx. non-distorto di $r = \frac{v}{\overline{I}} = g\left(v,\overline{I}\right)$
- $\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^{2} \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$ $\simeq [\partial_{1}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{V}] + [\partial_{2}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{I}]$

$$\partial_1 g(x,y) = \frac{\partial}{\partial x} \left(\frac{x}{y} \right) = \frac{1}{y} \qquad \partial_2 g(x,y) = \frac{\partial}{\partial y} \left(\frac{x}{y} \right) = -\frac{x}{y^2}$$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var} \left[I_j \right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di $r = \frac{V}{\overline{I}} = g(V, \overline{I})$

•
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^{2} \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$$

$$\simeq [\partial_{1}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{V}] + [\partial_{2}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^{2} \operatorname{var}[\overline{I}]$$

$$\partial_{1}g(x,y) = \frac{\partial}{\partial x}\left(\frac{x}{y}\right) = \frac{1}{y} \qquad \partial_{2}g(x,y) = \frac{\partial}{\partial y}\left(\frac{x}{y}\right) = -\frac{x}{y^{2}}$$

$$\mathbb{E}\left[\overline{V}\right] = v \qquad \mathbb{E}\left[\overline{I}\right] = i$$

-
$$S_V^2 = rac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = ext{var} \left[V_i
ight]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di $r = \frac{v}{\overline{I}} = g(v, \overline{I})$

•
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^2 \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$$

$$\simeq [\partial_1 g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^2 \operatorname{var}[\overline{V}] + [\partial_2 g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])]^2 \operatorname{var}[\overline{I}]$$

$$\partial_{1}g(x,y) = \frac{\partial}{\partial x}\left(\frac{x}{y}\right) = \frac{1}{y} \qquad \partial_{2}g(x,y) = \frac{\partial}{\partial y}\left(\frac{x}{y}\right) = -\frac{x}{y^{2}}$$
$$\mathbb{E}\left[\overline{V}\right] = v \qquad \mathbb{E}\left[\overline{I}\right] = i \qquad \operatorname{var}\left[\overline{V}\right] = \frac{\sigma_{V}^{2}}{m} \qquad \operatorname{var}\left[\overline{I}\right] = \frac{\sigma_{I}^{2}}{n}$$

Per stimare gli mse, ricordiamo gli stimatori

-
$$S_V^2 = rac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = ext{var} \left[V_i
ight]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var} \left[I_j\right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di $r = \frac{v}{\overline{I}} = g(v, i)$

•
$$\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^{2} \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$$

$$\simeq \left[\partial_{1}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])\right]^{2} \operatorname{var}[\overline{V}] + \left[\partial_{2}g(\mathbb{E}[\overline{V}], \mathbb{E}[\overline{I}])\right]^{2} \operatorname{var}[\overline{I}]$$

$$- \left[\frac{1}{I}\right]^{2} \cdot \frac{\sigma_{V}^{2}}{I} + \left[-\frac{V}{I}\right]^{2} \cdot \frac{\sigma_{I}^{2}}{I}$$

$$= \left[\frac{1}{i}\right]^{2} \cdot \frac{\sigma_{V}^{2}}{m} + \left[-\frac{v}{i^{2}}\right]^{2} \cdot \frac{\sigma_{I}^{2}}{n}$$

$$\partial_{1}g(x, y) = \frac{\partial}{\partial x}\left(\frac{x}{v}\right) = \frac{1}{v} \quad \partial_{2}g(x, y) = \frac{$$

$$\partial_{1}g(x,y) = \frac{\partial}{\partial x}\left(\frac{x}{y}\right) = \frac{1}{y} \qquad \partial_{2}g(x,y) = \frac{\partial}{\partial y}\left(\frac{x}{y}\right) = -\frac{x}{y^{2}}$$

$$\mathbb{E}\left[\overline{V}\right] = v \qquad \mathbb{E}\left[\overline{I}\right] = i \qquad \operatorname{var}\left[\overline{V}\right] = \frac{\sigma_{V}^{2}}{m} \qquad \operatorname{var}\left[\overline{I}\right] = \frac{\sigma_{I}^{2}}{n}$$

14/15

Per stimare gli mse, ricordiamo gli stimatori

-
$$S_V^2 = rac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = ext{var} \left[V_i
ight]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

• $\operatorname{mse}(\hat{R}; r) = \operatorname{var}[\hat{R}] + \operatorname{bias}(\hat{R}; r)^2 \simeq \operatorname{var}[\hat{R}] = \operatorname{var}[g(\overline{V}, \overline{I})]$

-
$$\hat{R} = rac{\overline{V}}{\overline{I}} = g\left(\overline{V},\overline{I}
ight)$$
 approx. non-distorto di $r = rac{\overline{V}}{\overline{I}} = g\left(\overline{V},\overline{I}
ight)$

$$\simeq \left[\partial_{1} g \left(\mathbb{E} \left[\overline{V} \right], \mathbb{E} \left[\overline{I} \right] \right) \right]^{2} \operatorname{var} \left[\overline{V} \right] + \left[\partial_{2} g \left(\mathbb{E} \left[\overline{V} \right], \mathbb{E} \left[\overline{I} \right] \right) \right]^{2} \operatorname{var} \left[\overline{I} \right]$$

$$= \left[\frac{1}{i} \right]^{2} \cdot \frac{\sigma_{V}^{2}}{m} + \left[-\frac{V}{i^{2}} \right]^{2} \cdot \frac{\sigma_{I}^{2}}{n}$$

$$\partial_{1}g(x,y) = \frac{\partial}{\partial x}\left(\frac{x}{y}\right) = \frac{1}{y} \qquad \partial_{2}g(x,y) = \frac{\partial}{\partial y}\left(\frac{x}{y}\right) = -\frac{x}{y^{2}}$$

$$\mathbb{E}\left[\overline{V}\right] = v \qquad \mathbb{E}\left[\overline{I}\right] = i \qquad \operatorname{var}\left[\overline{V}\right] = \frac{\sigma_{V}^{2}}{m} \qquad \operatorname{var}\left[\overline{I}\right] = \frac{\sigma_{I}^{2}}{n}$$

14/15

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var} \left[I_j \right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di $r = \frac{v}{\overline{I}} = g(v, I)$

- \overline{V} non-distorto di v
- \bar{I} non-distorto di i

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di $r = \frac{v}{\overline{I}} = g(v, I)$

- \overline{V} non-distorto di v
- \bar{I} non-distorto di i

•
$$\operatorname{mse}(\hat{R}; r) \simeq \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{v}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n}$$

- $S_V^2 = \frac{1}{m-1} \sum_i (V_i \overline{V})^2$ non-distorto di $\sigma_V^2 = \text{var}[V_i]$
- $S_I^2 = \frac{1}{n-1} \sum_j (I_j \bar{I})^2$ non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$
- $\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$ approx. non-distorto di $r = \frac{V}{\overline{I}} = g(V, I)$
- \overline{V} non-distorto di v
- \bar{I} non-distorto di i
- $\operatorname{mse}(\hat{R}; r) \simeq \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{v}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n} = e(v, i, \sigma_V^2, \sigma_I^2)$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var} \left[I_j\right]$

- $\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$ approx. non-distorto di $r = \frac{V}{\overline{I}} = g(V, I)$
- \overline{V} non-distorto di v
- \bar{I} non-distorto di i

•
$$\operatorname{mse}(\hat{R}; r) \simeq \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{v}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n} = e(v, i, \sigma_V^2, \sigma_I^2)$$

$$\Rightarrow$$
 $\widehat{\mathrm{MSE}}_R := e(\overline{V}, \overline{I}, S_V^2, S_I^2)$ è uno stimatore approx. non-distorto di $\mathrm{mse}(\widehat{R}; r)$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var}\left[I_j\right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di $r = \frac{v}{\overline{I}} = g(v, I)$

- \overline{V} non-distorto di v
- \bar{I} non-distorto di i

•
$$\operatorname{mse}(\hat{R}; r) \simeq \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{v}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n} = e\left(v, i, \sigma_V^2, \sigma_I^2\right)$$

$$\Rightarrow \widehat{MSE}_R := e\left(\overline{V}, \overline{I}, S_V^2, S_I^2\right)$$

$$= \left[\frac{1}{\overline{I}}\right]^2 \cdot \frac{S_V^2}{m} + \left[-\frac{\overline{V}}{\overline{I}^2}\right]^2 \cdot \frac{S_I^2}{n}$$

-
$$S_V^2 = \frac{1}{m-1} \sum_i (V_i - \overline{V})^2$$
 non-distorto di $\sigma_V^2 = \text{var}[V_i]$

-
$$S_I^2 = \frac{1}{n-1} \sum_j (I_j - \bar{I})^2$$
 non-distorto di $\sigma_I^2 = \text{var} \left[I_j \right]$

-
$$\hat{R} = \frac{\overline{V}}{\overline{I}} = g(\overline{V}, \overline{I})$$
 approx. non-distorto di $r = \frac{V}{\overline{I}} = g(V, I)$

- \overline{V} non-distorto di v
- \bar{I} non-distorto di i

•
$$\operatorname{mse}(\hat{R}; r) \simeq \left[\frac{1}{i}\right]^2 \cdot \frac{\sigma_V^2}{m} + \left[-\frac{v}{i^2}\right]^2 \cdot \frac{\sigma_I^2}{n} = e\left(v, i, \sigma_V^2, \sigma_I^2\right)$$

$$\Rightarrow \widehat{MSE}_R := e\left(\overline{V}, \overline{I}, S_V^2, S_I^2\right)$$

$$= \frac{1}{\overline{I}^2} \cdot \frac{S_V^2}{m} + \frac{\overline{V}^2}{\overline{I}^4} \cdot \frac{S_I^2}{n}$$

$$v_1 = 3.4$$
 $v_2 = 3.3$ $v_3 = 2.7$ $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$

$$v_1 = 3.4$$
 $v_2 = 3.3$ $v_3 = 2.7$ $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$

Dopo le misure:

$$v_1 = 3.4$$
 $v_2 = 3.3$ $v_3 = 2.7$ $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$ $i_1 = 1.8$ $i_2 = 1.5$ $i_3 = 2.2$ $\Rightarrow \begin{cases} \bar{i} = 1.83 \\ s_I^2 = 0.123 \end{cases}$

Dopo le misure:
$$v_1 = 3.4$$
 $v_2 = 3.3$ $v_3 = 2.7$ $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$ $i_1 = 1.8$ $i_2 = 1.5$ $i_3 = 2.2$ $\Rightarrow \begin{cases} \bar{i} = 1.83 \\ s_I^2 = 0.123 \end{cases}$

parametro	stimatore	
V	\overline{V}	
i	Ī	
r	$\frac{\overline{V}}{\overline{I}}$	
$\operatorname{mse}(\overline{V}; v)$	$\frac{S_V^2}{m}$	
$\operatorname{mse}(\overline{I}; i)$	$\frac{S_l^2}{n}$	
$\operatorname{mse}(\hat{R}; r)$	$\frac{1}{\overline{l}^2} \cdot \frac{S_V^2}{\overline{m}} + \frac{\overline{V}^2}{\overline{l}^4} \cdot \frac{S_I^2}{\overline{n}}$	
	$\overline{}$	

Dopo le misure:
$$v_1 = 3.4$$
 $v_2 = 3.3$ $v_3 = 2.7$ $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$ $i_1 = 1.8$ $i_2 = 1.5$ $i_3 = 2.2$ $\Rightarrow \begin{cases} \bar{i} = 1.83 \\ s_I^2 = 0.123 \end{cases}$

parametro	stimatore	stima
V	\overline{V}	3.12
i	Ī	1.83
r	$\frac{\overline{V}}{\overline{I}}$	
$\operatorname{mse}(\overline{V}; v)$	$\frac{S_V^2}{m}$	
$mse(\overline{I}; i)$	$\frac{S_l^2}{n}$	
$mse(\hat{R}; r)$	$\frac{1}{\overline{l}^2} \cdot \frac{S_V^2}{m} + \frac{\overline{V}^2}{\overline{l}^4} \cdot \frac{S_I^2}{n}$	
$mse(\bar{l}; i)$	$\frac{S_I^2}{n}$	

prima dell'esperimento

15/15

dopo l'esperimento

Dopo le misure:
$$v_1 = 3.4$$
 $v_2 = 3.3$ $v_3 = 2.7$ $\Rightarrow \begin{cases} \overline{v} = 3.12 \\ s_V^2 = 0.092 \end{cases}$ $i_1 = 1.8$ $i_2 = 1.5$ $i_3 = 2.2$ $\Rightarrow \begin{cases} \overline{i} = 1.83 \\ s_I^2 = 0.123 \end{cases}$

parametro	stimatore	stima
V	\overline{V}	3.12
i	7	1.83
r	$\frac{\overline{V}}{\overline{I}}$	$\frac{3.12}{1.83} = 1.70$
$\operatorname{mse}(\overline{V}; v)$	$\frac{S_V^2}{m}$	
$mse(\bar{I}; i)$	$\frac{S_l^2}{n}$	
$mse(\hat{R}; r)$	$\frac{1}{\overline{l}^2} \cdot \frac{S_V^2}{\overline{m}} + \frac{\overline{V}^2}{\overline{l}^4} \cdot \frac{S_I^2}{\overline{n}}$	
	$\overline{}$	

dopo l'esperimento

15/15

prima dell'esperimento

•		
V	\overline{V}	3.12
i	Ī	1.83
r	$\frac{\overline{V}}{\overline{I}}$	$\frac{3.12}{1.83} = 1.70$
$\operatorname{mse}(\overline{V}; v)$	$\frac{S_V^2}{m}$	$\frac{0.092}{5} = 0.018$
$mse(\overline{I}; i)$	$\frac{S_l^2}{n}$	$\frac{0.123}{3} = 0.041$
$mse(\hat{R}; r)$	$\frac{1}{\overline{l}^2} \cdot \frac{S_V^2}{m} + \frac{\overline{V}^2}{\overline{l}^4} \cdot \frac{S_I^2}{n}$	
	$\overline{}$	

prima dell'esperimento

dopo l'esperimento

V	\overline{V}	3.12
i	7	1.83
r	$\frac{\overline{V}}{\overline{I}}$	$\frac{3.12}{1.83} = 1.70$
$\operatorname{mse}(\overline{V}; v)$	$\frac{S_V^2}{m}$	$\frac{0.092}{5} = 0.018$
$mse(\bar{I}; i)$	$\frac{S_l^2}{n}$	$\frac{0.123}{3} = 0.041$
$mse(\hat{R}; r)$	$\frac{1}{\overline{l}^2} \cdot \frac{S_V^2}{\overline{m}} + \frac{\overline{V}^2}{\overline{l}^4} \cdot \frac{S_I^2}{\overline{n}}$	$\frac{1}{1.83^2} \cdot \frac{0.092}{5} + \frac{3.12^2}{1.83^4} \cdot \frac{0.123}{3} = 0.041$

prima dell'esperimento

dopo l'esperimento