

Bases de la plongée technique

Physique et Lois des gas

Physiologie Formula

Equipement

Chris Braissant

Nitrox Avancé

Ban's Diving Resort

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Formula

Equipement

Introduction

Administration

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Formula

- Liability Release / Décharge de responsabilité
- Medical Statement / Questionnaire médical

Description du cours

Introductio

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Formula

- · Première étape de la formation technique
- Apprendre à utiliser des mélanges d'air enrichi contenant entre 21% et 100% d'oxygène
- Possiblité de continuer la formation avec les cours TDI Procédures de décompression ou TDI Plongée étendue

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Formula

Equipement

Bases de la plongée technique

Changement de mentalité

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Formula

- Réelle planification des plongées... et plongées suivant le plan!
 Plan you dive, and dive you plan!
- Limites de la plongée:
 - · Air, temps, profondeur
 - Equipement
 - Experience
 - Objectifs (mission)

L'approche

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Formula

- Plongées plus sûres, et plongeurs plus qualifiés
- Plonger devient automatique
- Augmente l'attention des plongeurs
- Compétences de base améliorées

Compétences de base

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Formula

- Respiration (Impact sur la flottabilté)
- Flottabilité (buoyancy)
- Palmage (frog kick, back kick, helicopter turn, ...)
- Position (trim)
 A plat afin de réduire les efforts de mouvement

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Formula

Equipement

Physique et Lois des gas

TD Oxygène (O_2)

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Formula

- Diatomique (O₂)
- Supporte la combustion
 - Violemment à haute pression
- Essentiel pour la vie
 - Pas assez = hypoxie
 - Trop = hyperoxie
- · Inodore, incolore
- Ininflammable (ne brûle pas)

TD Azote (N_2)

Introduction

Bases de la plongée technique

Physique et Lo des gas

Physiologie

Formula

- Diatomique (N₂)
- · Physiologiquement inerte
- Densité élevée
 - Augmente l'effort réspiratoire en profondeur
- Effet narcotique
 - À pression partielle élevée (ppN₂ > 3.2)
- Maladie de décompression
 - · Non métabolisé formation de bulles
- · Ne se dissout pas dans l'eau
 - Mais facilement dans l'huile et la graisse

Boyle-Mariotte

Introduction

Bases de la plongée technique

Physiologie

Formula

$$P \propto \frac{1}{V}$$
 ($T = constant$)

- Pression est inversement proportionnelle au volume
- Permet de déterminer le volume utilisé pendant une plongée

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Formula

$$P = PP1 + PP2 + PP3 + ... + P$$

- La pression d'un gaz est égal à la somme des pressions partielles
- Permet de déterminer les caractéristiques d'un mélange gazeux, notamment la profondeur maximum d'utilisation (MOD)

Bases de la plongée technique

Physique et Lois des gas

TTIYSIOIO

Formula

Equipement

Physiologie

Exposition à l'oxygène

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologic Formula

Equipement

Hypoxie:

- Pression tissulaire d'oxygène trop faible
- Pression minimale de .16 ATA nécessaire (.18 ATA recommandée)
- Trimix ou recycleur uniquement
- · Perte de connaissance, arrêt cardiaque

Exposition à l'oxygène

Introduction

Bases de la plongée technique

Physique et Lois des gas

Formula

Equipement

Hyperoxie

- Pression tissulaire d'oxygène trop élevée
- · Toxicité neurologique ou pulmonaire
- Rapport entre pression et temps d'exposition
- · Nécessité de surveiller son exposition

Système nerveux central (CNS)

Introduction

Bases de la plongée technique

Physique et Lois des gas

i ilysiolog

Formula

Equipement

Pression partielle maximum admise de 1.6 bar

- Diminuer cette limite dans des conditions particulières (froid, stress, travail,...)
- Exposition contrôlée à l'aide de "l'horloge CNS" (CNS Clock)

Signes et symptômes

Introduction

Bases de la plongée technique

Physique et Lois des gas

Formula

Equipement

Con Convulsion

V Vision

E Ecoute

N Nausée

T Tremblement

I Irritation

V Vertiges

Toxicité pulmonaire

Introduction

Bases de la plongée technique

Physique et Lois des gas

Formula

- · Exposition prolongée
- Effet cummulé sur plusieurs jours
- Exposition contrôlée à l'aide des "Unités de tolérance" (OTU: Oxygen Tolerance Units)

$$\textit{OTUs/min} = \left(\frac{\textit{PO}_2 - 0.5}{0.5}\right)^{0.833}$$

TD Nitrox

Introduction

Bases de la plongée technique

Physique et Lois des gas

Formula

- Diminue le niveau d'azote dans le mélange
- Eviter le profils en dents de scie
- Risque d'accident de décompression toujours présent
- Narcose identique

Toxicité au dioxide de carbone (Hypercapnia)

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Formula

- · Contrôle le rythme respiratoire
- Déchet produit par le métabolisme
- · Niveau trop élevé: Hypercapnia
- Mauvaise respiration et effort prononcé
- Principalment lié aux recycleurs

Monoxide de Carbone (CO)

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Formula

- Extrêmement toxique
- Inodore, incolore
- Produit par combustion
 - · Lubrification du compresseur
 - Mauvais placement du compresseur
- Hemoglobine a 300x plus d'affinité avec le CO que le O2

Bases de la plongée technique

Physique et Lois des gas

Physiologie

-ormula

Equipement

Formula

Loi de Boyle-Mariotte

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Equipement

Relation entre Pression et Volume

$$P \propto \frac{1}{V}$$
 ($T = constant$)

D'ou:

$$P_1 \times V_1 = P_2 \times V_2$$

Loi de Boyle-Mariotte

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Equipement

Exemple: Compression d'un ballon à 30m

Pression à la surface: $P_1 = 1bar$

Volume à la surface: $V_1 = 8I$

Pression à 30m: $P_2 = (30/10) + 1 = 4bar$

Volume à 30m: $V_2 = (P_1 \times V_1)/P_2 = (1 \times 8)/4 = 2I$

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Official

Equipement

Relation entre pression partielle, pression ambiante et fraction gazeuse.

PP = Pression Partielle [bar]

Pa = Pression Ambiant [bar]

Fg = Fraction gazeuse [-]

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

o....a.c

Equipement

Pression partielle:

- Permet de déterminer la pression partielle d'un gaz en profondeur
- Exposition à l'oxygène (toxicité)
- Exposition à l'azote (décompression)

$$PP = Pa \times Fg$$

Exemple: Pression partielle d'oxygène pour de l'air à 40m

$$PO_2 = 5 \times 0.21 = 1.05 bar$$

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

-ormui

Equipement

Profondeur maximum d'utilisation (MOD):

 Permet de déterminer la profondeur maximale à laquelle un mélange gazeux peut être utilisé

Exemple: Profondeur maximale d'utilisation d'un Nitrox 36

$$Pa = 1.6/0.36 = 4.4bar$$

$$P = (4.4 - 1) \times 10 = 34m$$

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Official

Equipement

Mélange idéal:

 Permet de déterminer le mélange idéal pour une profondeur donnée

$$Fg = PP/Pa$$

Exemple: Mélange idéal pour une plongée à 28m

$$Pa = (28/10) + 1 = 3.8bar$$

$$FO_2 = 1.4/3.8 = 0.36 = EAN36$$

Profondeur équivalente à l'air (EAD)

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

-ormula

Equipement

La pression partielle d'azote détermine la limite de non-décompression

Converti la profondeur actuelle au nitrox en une profondeur équivalente à l'air

Permet d'utiliser une table de plongée à l'air, peu importe le mélange de nitrox utilisé

$$EAD = \left(\frac{FN_{2mix}}{FN_{2air}} \times (Profondeur + 10)\right) - 1$$

Exemple: Profondeur équivalente pour un Nitrox 32 à 30m

$$EAD = \left(\frac{1 - 0.32}{0.79} \times (30 + 10)\right) - 10 = \frac{0.68}{0.79} \times 40 - 10 = 24.4m$$

Bases de la plongée technique

Physique et Lois des gas

Formula

Equipement Physiologie

Compatibilité à l'oxygène

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Formula

Equipemen

Régle des 40%:

- Au dessous: considéré comme de l'air
- Au dessus: considéré comme de l'oxygène pur

Compatibilité à l'oxygène

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie

Formula

Equipemen

Compatible?

- Spécifications du fabricants
- Matériaux compatibles (o-ring, lubrifiants, métaux, ...)
- Nettoyé? (absence de particules, hydrocarbone, ...)
 Re-nettoyer si utilisé avec du matériel contaminé (bouteille d'air)

Compatibilité à l'oxygène

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie Formula

Equipeme

Nettoyage

- Démonter complétement le détendeur
- Nettoyer toutes les pièces à l'aide d'un produit adapté (cf: manuel du fabricant)
- Contrôler l'absence de contaminent (huile, graisse, lubrifiant, ...)
- Lubrifié à l'aide de produit adapté (cf: manuel du fabricant)
- Remonter le détendeur avec des outils propres!
- Tester

Compressor

Introduction

Bases de la plongée technique

Physique et Lois des gas

Physiologie Formula

ATTENTION

NE JAMAIS METTRE DE L'OXYGÈNE PUR À L'ENTRÉE D'UN COMPRESSEUR!