IMPLEMENTASI LOWPASS FILTERING DAN HIGHPASS FILTERING UNTUK PERBAIKAN KUALITAS CITRA DIGITAL

SKRIPSI

EFRIENNI TAMPUBOLON 091401026

PROGRAM STUDI S1 ILMU KOMPUTER FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS SUMATERA UTARA MEDAN 2013

IMPLEMENTASI LOWPASS FILTERING DAN HIGHPASS FILTERING UNTUK PERBAIKAN KUALITAS CITRA DIGITAL

SKRIPSI

DiajukanuntukmelengkapitugasakhirdanmemenuhisyaratmencapaigelarSarjanaKompu ter

EFRIENNI TAMPUBOLON 091401026

PROGRAM STUDI S1 ILMU KOMPUTER
FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI
UNIVERSITAS SUMATERA UTARA
MEDAN
2013

PERSETUJUAN

Judul : IMPLEMENTASI LOWPASS FILTERING DAN

HIGHPASS FILTERING UNTUK PERBAIKAN

KUALITAS CITRA DIGITAL

Kategori : SKRIPSI

Nama : EFRIENNI TAMPUBOLON

Nomor Induk Mahasiswa : 091401026

Program Studi : SARJANA (S1) ILMU KOMPUTER Fakultas : ILMU KOMPUTER DAN TEKNOLOGI

INFORMASI

Diluluskan di

Medan, 22 Agustus 2013

Komisi Pembimbing :

Pembimbing 2 Pembimbing 1

Dian Wirdasari, S.Si, M.Kom Maya Silvi Lydia, B.Sc.,M.Sc NIP 1982 0923 2010 1220 02 NIP1974 0127 2002 1220 01

Diketahui/Disetujui oleh Program Studi S1 Ilmu Komputer Ketua,

Dr. Poltak Sihombing, M.Kom NIP.196203171991031001

PERNYATAAN

IMPLEMENTASI LOWPASS FILTERING DAN HIGHPASS FILTERING UNTUK PERBAIKAN KUALITAS CITRA DIGITAL

SKRIPSI

Saya menyatakan bahwa skripsi ini adalah hasil karya saya sendiri, kecuali beberapa kutipan dan ringkasan yang masing-masing disebutkan sumbernya.

Medan, 22 Agustus 2013

Efrienni Tampubolon 091401026

PENGHARGAAN

Puji dan syukur penulispanjatkankehadirat Tuhan Yang Maha Kuasa atas segala berkat dan kasih karunia-Nya sehingga penulis dapat menyelesaikan penyusunan skripsi ini, sebagai syarat untuk memperoleh gelar Sarjana Komputer, pada Program Studi S1 Ilmu Komputer Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera Utara.

Ucapan terima kasih penulis sampaikan kepada:

- 1. Bapak Prof. Dr. dr. Syahril Pasaribu, DTM&H, MSc(CTM). Sp.A(K) selaku Rektor Universitas Sumatera Utara.
- 2. Bapak Prof. Dr. Muhammad Zarlis selaku Dekan Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Sumatera Utara.
- 3. Bapak Dr. Poltak Sihombing, M.Kom, selaku Ketua Program Studi S1 Ilmu Komputer Universitas Sumatera Utara dan Dosen Penguji I yang telah memberikan kritik dan saran dalam penyempurnaan skripsi ini.
- 4. Ibu Maya Silvi Lydia, B.Sc, M.Sc, selaku Sekretaris Program Studi S1 Ilmu Komputer dan Dosen Pembimbing I yang telah memberikan masukan dalam penyempurnaan skripsi ini.
- 5. Ibu Dian Wirdasari, S.Si, M.Kom, selaku Dosen Pembimbing II yang telah memberikan masukan kepada penulis dalam penyempurnaan skripsi ini.
- 6. Bapak Herriyance, ST, M. Kom, selaku Dosen Penguji II yang telah memberikan kritik dan saran dalam penyempurnaan skripsi ini.
- 7. Semua dosen Program Studi S1 Ilmu Komputer Fasilkom-TIUSU, dan pegawai di Ilmu Komputer Fasilkom-TI USU.
- 8. Bapak saya Selamat Tampubolon, ibu saya Rita Metiana Manalu,Spd, kakak saya Friska Tampubolon,Amk, adik saya John Lindon Tampubolon, dan Yessi Sinaga yang telah memberikan dukungan kepada penulis selama menyelesaikan skripsi ini.
- 9. Teman-teman kuliah saya khususnya Isman Santoso,S.Kom, Ales Sanro Sotardodo,S.Kom, Martinelly,S.Kom, Tika, Tian, Fransiska, Ardi, Nurul dan teman-teman di kost, Zetty, Kak Rida, Kak Corry, Melda, Putri, Kak Uli yang telah memberikan semangat untuk penulisan skripsi ini.

Penulis menyadari bahwa skripsi ini masih jauh dari sempurna. Untuk itu penulis akan lebih banyak belajar untuk kedepannya lagi. Kiranya Semoga Tuhan Yang Maha Kuasa memberikan berkat dan karunia kepada semua pihak yang telah banyak membantu, memberi perhatian dan dukungan kepada penulis dalam menyelesaikan skripsi ini.

Medan, 22 Agustus 2013

Penulis

ABSTRAK

Pada skripsi ini masalah yang diangkat adalah perbaikan kualitas citra dengan tingkat kecerahan yang tinggi dan perbaikan tepian objek citra. Untuk mendapatkan citra dengan kualitas yang lebih baik digunakan proses filtering. Citra awal yang akan diproses adalah citra grayscale. Adapun metode yang akan digunakan penulis untuk proses perbaikan citra digital ini adalah metode Lowpass Filter dan Highpass Filter yang bekerja dalam domain frekuensi. Metode Lowpass Filter akan digunakan untuk pelembutan citra (image smoothing) dimana cara kerja metode ini menekan frekuensi tinggi dan melewatkan frekuensi rendah dalam citra. Sedangkan metode Highpass Filter akan digunakan untuk perbaikan tepian objek/memperjelas tepian objek (edge sharpening) dimana cara keria metode ini menekan frekuensi rendah dan melewatkan frekuensi tinggi pada citra. Format citra yang akan digunakan dalam proses filtering yakni *.JPG, *.PNG, *.BMP. Sebelum citra mengalami proses filteringterlebih dahulu ditransformasi fourier untuk mendapatkan nilai intensitas piksel yang akan digunakan dalam proses perhitungan konvolusi. Selanjutnya untuk kedua sistem terlebih dahulu diinputkan nilai D₀yang merupakan *cutoff frekuensi* dari hasil transformasi fouriernya. Implementasi sistem menggunakan perangkat lunak Matlab R2012a. Citra hasil filtering ditampilkan berdasarkan tingkat ketajaman ideal, butterworth, dan gaussian. Berdasarkan pengujian yang dilakukan, tingkat ketajaman Gaussian lebih baik dalam metode Lowpass Filtering dan tingkat ketajaman Butterworth lebih baik untuk metode Highpass Filtering. Aplikasi menggunakan parameter pembanding kualitas yakni MSE (Mean Squared Eror) dan PSNR (Peak Signal to Noise Ratio).

Katakunci: Filtering, Citra, Lowpass Filter, Highpass Filter, Pelembutan citra, Penajaman Tepi.

IMPLEMENTATION LOWPASS FILTERING AND HIGHPASS FILTERING FOR IMAGE ENHANCEMENT

ABSTRACT

In this paper, the issues raised are improved image quality with a high brightness level and theobjectedgeimage. Toobtainimageswithbetter improvement qualityusedfilteringprocess. Initial imageto be processedis agrayscaleimage. The methodthat will beused by the authortoprocessdigitalimage enhancementare LowpassFilter's methodandHighpassfilter' methodthat worksin the frequency domain. Lowpassfiltermethodwillbe usedforsofteningthe image (imagesmoothing) whichthismethod worksuppresshighfrequencyandpass low frequencyin theimage. usedtorepairthe WhileHighpassFiltermethodwillbe banks ofobjects/clarify theobjectedges(edge sharpening)wherethismethod worksuppresslow frequencyandmissedhighfrequencyin the image. For image's format will use in filtering process such as *.JPG, *.PNG, *.BMP. Beforeundergoing a process offilteringthe imagewill firstFouriertransformedtoobtainpixelintensity valuesto be inthecalculation ofconvolution. Next used up forbothsystemsfirstingutvaluecutofffrequencyD0isatransformationfourier results. implementationusingMatlabR2012a. Imagefilteringresultscan be seenbythe sharpnessideal, butterworth, andgaussian. Gaussian's sharpness give the best result for filtering process who used in Lowpass Filtering and Butterworth's sharpness give the best result for **Highpass** Filtering. Applicationsusing comparative quality parameters such as MSE (Mean Squared Error) andPSNR(Peak Signalto NoiseRatio).

Keywords: Filtering, Image, Lowpass Filter, Highpass Filter, Image smoothing, Edge Sharpening

DAFTAR ISI

llaman
ii iii iv vi vii viii x
1 2 3 3 3 4 5
6 6 7 8 12 12 14 15 15 16 16 17 19 21 21 22 22 22

2.4.2 Filter Penajaman Domain Frekuensi	26
2.4.2.1 Ideal Highpass Filter	27
2.4.2.2 Butterworth Highpass Filter	27
2.4.2.3 Gaussian Highpass Filter	27
2.11.210 Outstan 11.81.p. 11.11.1	_,
2.5 MSE dan PSNR	28
2.5.1 MSE	28
2.5.2 PSNR	28
Bab III Analisis dan Perancangan Sistem	
3.1 AnalisisMasalah	29
3.2 Analisis Kebutuhan Sistem	30
3.2.1 Kebutuhan Fungsional Sistem	30
3.2.2 Kebutuhan Non-Fungsional Sistem	31
3.3 Perancangan Sistem	31
3.3.1 Perancangan Sistem dengan <i>Use Case</i> Diagram	31
3.3.2 Analisis Proses Sistem	38
3.3.3 Perancangan <i>Interface</i>	48
3.3.3.1 Rancangan <i>interface form</i> utama	48
3.3.3.2 Rancangan <i>interface formLowpass Filter</i>	49
3.3.3.3 Rancangan interface formHighpass Filter	
3.3.3.4 Rancangan <i>interface form</i> Penuntun Aplil	
3.3.3.5 Rancangan <i>interface form</i> Tentang	54 Sasi
3.3.3.3 Kancangan merjace jorm Tentang	J 4
Bab IV Implementasi dan Pengujian	
4.1 Implementasi	55
4.1.1 Form Menu Utama	55
4.1.2 Form Pengujian Lowpass Filter	56
4.1.3 Form Pengujian Highpass Filter	57
4.2 Pengujian	57
4.2.1 Proses Pemfilteran <i>Lowpass Filtering</i>	57
4.2.2 Proses Pemfilteran <i>Highpass Filtering</i>	59
4.2.3 Proses Pengujian LPF untuk <i>Image Smoothing</i>	59
4.2.4 Proses Pengujian HPF untuk Edge Sharpening	66
4.2.4 1 loses I engujian III I untuk Luge sharpening	00
Bab V Kesimpulan dan Saran	
5.1 Kesimpulan	77
5.2 Saran	78
5.2 Sarah	70
Daftar Pustaka	79
Lampiran Listing Program	
Lampiran Curriculum Vitae	B-1

DAFTAR TABEL

Nomor Tabel	Nama Tabel	Halaman
2.1	Penyimpanan citra warna di dalam memori	11
3.1	Dokumentasi Naratif <i>Use Case</i> Pilih Jenis <i>Filter</i>	33
3.2	Dokumentasi Naratif Use Case Lowpass Filter	34
3.3	Dokumentasi Naratif Use Case Highpass Filter	35
3.4	Perubahan intensitas piksel dalam proses <i>filter</i>	47
4.1	Perbandingan nilai MSE, PSNR hasil <i>filter</i> ILPF 1	60
4.2	Lanjutan Perbandingan nilai MSE, PSNR hasil <i>filter</i> BLPF 1	61
4.3	Lanjutan Perbandingan nilai MSE,PSNR hasil <i>filter</i> GLPF 1	62
4.4	Perbandingan nilai MSE, PSNR hasil <i>filter</i> ILPF 2	63
4.5	Lanjutan Perbandingan nilai MSE, PSNR hasil <i>filter</i> BLPF 2	64
4.6	Lanjutan Perbandingan nilai MSE, PSNR hasil <i>filter</i> GLPF 2	65
4.7	Perbandingan nilai MSE, PSNR hasil <i>filter</i> IHPF 1	67
4.8	Lanjutan Perbandingan nilai MSE, PSNR hasil <i>filter</i> BHPF 1	68
4.9	Lanjutan Perbandingan nilai MSE, PSNR hasil <i>filter</i> GHPF 1	69
4.10	Perbandingan nilai MSE, PSNR hasil <i>filter</i> IHPF 2	70
4.11	Lanjutan Perbandingan nilai MSE, PSNR hasil <i>filter</i> BHPF 2	71
4.12	Lanjutan Perbandingan nilai MSE, PSNR hasil <i>filter</i> GHPF 2	72
4.13	Nilai MSE,PSNR, dan Rata-rata metode LPF 1	73
4.14	Nilai MSE,PSNR, dan Rata-rata metode LPF 2	74
4.15	Niai MSE,PSNR, dan Rata-rata metode HPF 1	75
4.16	Niai MSE,PSNR, dan Rata-rata metode HPF 2	76

DAFTAR GAMBAR

Nomor Gambar	Nama Gambar	Halaman
2.1	Kolom dan baris data raster	7
2.2	Koordinat Citra 2D Citra	7
2.3	Penggambaran Kuantisasi	8
2.4	Contoh citra biner	10
2.5	Contoh citra grayscale	10
2.6	Contoh citra warna	11
2.7	Contoh Image Smoothing	15
2.8	Contoh Edge Sharpening	16
2.9	Citra Transformasi Fourier	17
2.10	Spektrum Fourier 2D	18
2.11	Proses pemusatan DFT	19
2.12	Filter Transfer Function	20
2.13	Langkah Dasar Pemfilteran Domain Frekuensi	20
3.1	Diagram Ishikawa Analisis Permasalahan	29
3.2	Use Case Diagram Sistem yang akan dibangun	32
3.3	Activity Diagram Pilih Jenis Filter	33
3.4	Activity Diagram Lowpass Filter	35
3.5	Activity Diagram Highpass Filter	37
3.6	Sequence Diagram tahap awal Lowpass Filter	38
3.7	Sequence Diagram tahap awal Highpass Filter	39
3.8	Sequence Diagram proses Filter	40
3.9	Rancangan interface form utama	48
3.10	Rancangan interface form pengujian LPF	49
3.11	Rancangan interface form pengujian HPF	51
3.12	Rancangan <i>interface form</i> penuntun aplikasi	53
3.13	Rancangan <i>interface form</i> tentang penulis	54
4.1	Form Menu Utama	55
4.2	Form Pengujian Lowpass Filter	56
4.3	Form Pengujian Highpass Filter	57
4.4	Message Box proses filter	58
4.5	Proses Filter metode Lowpass Filter	58
4.6	Proses Filter metode <i>Highpass Filter</i>	59