a FSJEGJ S	Module :	Systèmes logiques		
	Filière :	1 ^{ère} année LFIAG : 01, 02, 04 et 06		
	Enseignant :	Akrem Sellami		
	Année universitaire :	2016-2017		

Correction de test d'évaluation

1 Solution de l'exercice 1

- 1. Transcoder les nombres suivants (donner la démarche du calcul) :
- a) Par conversion rapide : $B16 \Rightarrow B2 \Rightarrow B4$ ou de $B2 \Rightarrow B4$

 $16 = 2^4 \Rightarrow$ chaque chiffre de la base (16) est représenté par quatre bits dans la base (2).

 $4=2^2\Rightarrow$ chaque 2 bits de la base (2) sont représentés par un chiffre de B4

$$(57A)_{16} = (0101 \ 0111 \ 1010)_2 = (111322)_4 = (0101 \ 0111 \ 1010)_2 = (2572)_8$$

$$\Rightarrow$$
 (57A)₁₆ = (010101111010)₂ = (111322)₄ = (2572)₈

b) $B6 \Rightarrow B10$ (par développement polynomial)

$$(125)_6 = 5 \times 6^0 + 2 \times 6^1 + 1 \times 6^2 = 5 + 12 + 36 = (53)_{10}$$

 $B6 \Rightarrow B9$ (par divisions successives) : $(125)_6 = (53)_{10} = (58)_9$

- 2. Effectuer les opérations arithmétiques suivantes :
- a) $(331)_4 + (123)_4 = (1120)_4$

c)
$$(AF5)_{16} \div (10C)_{16} = (A,7D)_{16}$$

b) $(AF5)_{16} - (FFC)_{16} = (-507)_{16}$

d)
$$(1011)_2 - (101011)_2 = (-100000)_2 = (1100000)_2$$

2 Solution de l'exercice 2

1. Simplification à l'aide de tableau de karnaugh

AB				
CD \	00	01	11	10
00	0	\1	1/	0
01	0	0	۴	0
11	0	0	9	0
10	0	/1	ı)	0

- Equation logique simplifiée : $L = B.\overline{D}$
- a) Logigramme à l'aide de portes logique NAND à deux entrées

Rappelons que la fonction NAND est de la forme $\overline{\mathbf{A} \cdot \mathbf{B}}$ alors :

$$L = \overline{\overline{L}} = \overline{\overline{B}.\overline{\overline{D}}}$$

b) Logigramme à l'aide de portes logique NOR à deux entrées

Rappelons que la fonction NOR est de la forme $\overline{A + B}$ alors :

$$L = \overline{\overline{L}} = \overline{B.\overline{D}} = \overline{\overline{B} + D}$$

3 Solution de l'exercice 3

1. Simplifier les fonctions suivantes avec l'algèbre de Boole

a)
$$F_1 = A + B + \overline{B}.\overline{A}.C = (A + B) + \overline{(A + B)}.C$$
 sachant que $X + \overline{X}.C = X + C \Rightarrow \mathbf{F1} = \mathbf{A} + \mathbf{B} + \mathbf{C}$

b)
$$F_2 = \overline{A} + A.B.C + B.\overline{C} = \overline{A} + B.C + B.\overline{C} = \overline{A} + B.(C + \overline{C}) \Rightarrow \mathbf{F2} = \overline{\mathbf{A}} + \mathbf{B}$$

c)
$$F_3 = A.B.C + B.C + B.\overline{B}$$
, puisque $B.\overline{B} = 0 \Rightarrow F3 = B.C$

2. Simplifier les mêmes fonctions avec le tableau de karnaugh

AB				
C \	00	01	_11_	10
0	0	/1	Λ	1
1	\bigcirc 1	(1	(1)	1

$$F1 = A + B + C$$

$$F2 = \overline{A} + B$$

$$F3 = B.C$$

4 Solution de l'exercice 4

1. Etablir la table de vérité

Nous avons 4 entrées : t, c, s (boutons de distributeur), p (pour paiement) et 4 sorties : T, C, S (Thé, Café, Scure) et P (Pièce rendue en cas de fausse manoeuvre).

- Pour demander un Café (C) :

- Café sans sucre : C=1 si c=1 et p=1.
- Café avec sucre : C=1 si c=1, s=1 et p=1.

- Pour demander un Thé (T):

- Thé sans sucre : T=1 si t=1 et p=1.
- Thé avec sucre : T=1 si t=1, s=1 et p=1.

- Pour demander le Sucre (S) :

- Sucre seul : S=1 si s=1 (gratuit).
- S=1, Si on demande un café avec sucre : c=1, s=1 et p=1.
- S=1, Si on demande un thé avec sucre : t=1, s=1 et p=1.

Table de vérité

t	С	S	р	Т	С	S	Р
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	0	1
0	1	0	0	0	0	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	0	0	0
0	1	1	1	0	1	1	0
1	0	0	0	0	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	0	0	0	0
1	0	1	1	1	0	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	0	1
1	1	1	0	0	0	0	0
1	1	1	1	0	0	0	1

2. Trouver les équations T, C, S et P

- Thé (T) : $T = t.\overline{c}.\overline{s}.p + t.\overline{c}.s.p$
- Café (C) : $C = \overline{t}.c.\overline{s}.p + \overline{t}.c.s.p$
- Sucre (S): $S = \overline{t}.\overline{c}.s.\overline{p} + \overline{t}.c.s.p + t.\overline{c}.s.p$
- Fonction de restitution (P) : $P = \overline{t}.\overline{c}.\overline{s}.p + \overline{t}.\overline{c}.s.p + t.c.\overline{s}.p + t.c.\overline{s}.p$

3. Simplification de l'équation P

a) Avec méthode algébrique :

$$P = \overline{t}.\overline{c}.\overline{s}.p + \overline{t}.\overline{c}.s.p + t.c.\overline{s}.p + t.c.s.p$$

$$P = \overline{t}.\overline{c}.p.(\overline{s} + s) + t.c.p.(\overline{s} + s)$$

$$P = \overline{t}.\overline{c}.p + t.c.p$$

b) Avec tableau de karnaugh:

	tc				
sp `		00	01	11	10
	00	0	0	0	0
	01	(1)	0	(1)	0
	11	(1)	0	$\langle 1 \rangle$	0
	10	0	0	0	0

$$P = \overline{t}.\overline{c}.p + t.c.p$$

4. Logigramme de l'équation P

Bon courage