Sean $z_1 = r_1(\cos(\theta_1) + i\sin(\theta_1))$ y $z_2 = r_2(\cos(\theta_2) + i\sin(\theta_2))$, con $\theta_1, \theta_2 \in (-\pi, \pi]$. Tomando arg $z_1 + \arg z_2 = \{\theta_1 + \theta_2 + 2k\pi \mid k \in \mathbb{Z}\}$, se quiere ver que $\arg(z_1 z_2) = \arg z_1 + \arg z_2$.

Sean $\phi_1 \in \arg z_1$ y $\phi_2 \in \arg z_2$.

$$z_1 z_2$$

=

$$r_1(\cos(\theta_1) + i\sin(\theta_1))r_2(\cos(\theta_2) + i\sin(\theta_2))$$

=

$$r_1 r_2 [\cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2) + i(\cos(\theta_1)\sin(\theta_2) + \sin(\theta_1)\cos(\theta_2))]$$

=

$$r_1r_2(\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2))$$

Con esto,
$$arg(z_1) + arg(z_2) \subseteq arg(z_1z_2)$$

Sean (x_1, y_1) las coordenadas cartesianas de z_1 , (x_2, y_2) las coordenadas cartesianas de z_2 , $\phi \in \arg(z_1 z_2)$ y $\phi_2 \in \arg z_1$. Con esto,

$$z_1 z_2 = (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1)$$

Por la relación entre coordenadas cartesianas y polares, se sabe que

$$\tan(\phi) = \frac{x_1 y_2 + x_2 y_1}{x_1 x_2 - y_1 y_2}$$

Para ver si $\phi \in \arg(z_1) + \arg(z_2)$, se considerará la siguiente ecuación:

$$\tan(\phi_{1} + \alpha) = \frac{x_{1}y_{2} + x_{2}y_{1}}{x_{1}x_{2} - y_{1}y_{2}}$$

$$\equiv \frac{\tan(\phi_{1}) + \tan(\alpha)}{1 + \tan(\phi_{1})\tan(\alpha)} = \frac{x_{1}y_{2} + x_{2}y_{1}}{x_{1}x_{2} - y_{1}y_{2}}$$

$$\equiv \frac{x_{1} + \tan(\alpha)}{x_{1} + y_{1}\tan(\alpha)} = \frac{x_{1}y_{2} + x_{2}y_{1}}{x_{1}x_{2} - y_{1}y_{2}}$$

$$\equiv x_{1}x_{2}y_{1} + x_{1}^{2}x_{2}\tan(\alpha) - y_{1}^{2}y_{2} - x_{1}y_{1}y_{2}\tan(\alpha)$$

$$= x_{1}^{2}y_{2} + x_{1}x_{2}y_{1} - x_{1}y_{1}y_{2}\tan(\alpha) - x_{2}y_{1}^{2}\tan(\alpha)$$

$$\equiv \tan(\alpha)(x_{1}^{2}x_{2} + x_{2}y_{1}^{2}) = x_{1}^{2}y_{2} + y_{1}^{2}y_{2}$$

$$\equiv \tan(\alpha) = \frac{y_{2}}{x_{2}}$$

$$\equiv \alpha \in \arg z_{2}$$

Con este argumento, se tiene entonces que

$$\arg(z_1 z_2) \subseteq \arg z_2 + \arg z_2$$