Introduction to VXLAN

The future path of your datacenter

Rahul Parameswaran – Technical Marketing Engineer @rahulsp299

DGTL-BRKDCN-1645

cisco life!

cisco

#CiscoLive

Agenda

- A short overview on Data Center Evolution
- Introduction to Overlays and VXLAN
- Understanding how MP-BGP is used as a control plane
- Packet Walk with VXLAN
- Design options and additional use cases

Data Center "Fabric" Journey

#CiscoLive

DGTL-BRKDCN-1645

 $\hbox{@ 2020 Cisco}$ and/or its affiliates. All rights reserved. Cisco Public

Why VXLAN Overlay

Customer Needs	VXLAN Delivered
Any workload anywhere – VLANs limited by L3 boundaries	Any Workload anywhere- across Layer 3 boundaries
VM Mobility	Seamless VM Mobility
Scale above 4k Segments (VLAN limitation)	Scale up to 16M segments
Efficient use of bandwidth	Leverages ECMP for optimal path usage over the transport network
Secure Multi-tenancy	Traffic & Address Isolation

Overlay Taxonomy

Identifier = VN Identifier (VNID)

NVE = Network Virtualisation Edge

VTEP = VXLAN Tunnel End-Point

VXLAN Packet

VXLAN is point to multi-point tunneling mechanism to extend Layer 2 networks over an IP network

VXLAN uses MAC in UDP encapsulation (UDP destination port 4789)

VXLAN Fabric – Creating the underlay network

IP routed Network

- Flexible topologies
- Recommend a network with redundant paths using ECMP for load sharing
- Support any routing protocols --- OSFP, IS-IS, BGP, etc.
- All proven best practices for IP routing network apply

Two Modes of VXLAN

Flood-and-Learn VXLAN:

- No control plane
- Data driven flood and learning
 - → Ethernet in the overlay network

- Limited scale
- Limited workload mobility
- Centralized Gateway
- Security Risk

VXLAN EVPN:

- EVPN as control plane
- VTEPs exchange L2/L3 host and subnet reachability through EVPN control plane
 - → Routing protocol for both L2 and L3 forwarding

- Increased scale and stability
- Optimized workload mobility
- Distributed Anycast Gateway
- Increased Security

VXLAN BUM Traffic Handling

- BUM Traffic --- Multi-destination traffic
 - Broadcast
 - Unknown Layer-2 Unicast
 - Multicast

BUM Traffic transport mechanisms

Multicast replication

Requests the underlay network to run IP multicast

Ingress unicast replication

One unicast replica per remote VTEP

Increase traffic load throughout the network

EVPN Primer --- MP-BGP Review

Virtual Routing and Forwarding (VRF)

Layer-3 segmentation for tenants' routing space

Route Distinguisher (RD):

8-byte field, VRF parameters; unique value to make VPN IP routes unique: RD + VPN IP prefix

Selective distribute VPN routes:

Route Target (RT): 8-byte field, VRF parameter, unique value to define the import/export rules for VPNv4 routes

VPN Address-Family:

Distribute the MP-BGP VPN routes

What is VXLAN/EVPN?

- Standards based Overlay (VXLAN) with Standards based Control-Plane (BGP)
- Layer-2 MAC and Layer-3 IP information distribution by Control-Plane (BGP)
- Forwarding decision based on Control-Plane (minimizes flooding)
- Integrated Routing/Bridging (IRB) for Optimized Forwarding in the Overlay

EVPN based VXLAN Fabric

Rendezvous Point (Underlay)

! leaf bgp config router bgp 65001 router-id 10.1.0.4 neighbor 10.1.0.5 remote-as 65001 update-source loopback0 address-family 12vpn evpn send-community send-community extended vrf VRF-RED address-family ipv4 unicast advertise 12vpn evpn address-family ipv6 unicast advertise 12vpn evpn vrf VRF-BLUE address-family ipv4 unicast advertise 12vpn evpn address-family ipv6 unicast advertise 12vpn evpn

Configuration Snippet

Distributed Anycast Gateway in MP-BGP EVPN

EVPN Peer and Endpoint(Host) Discovery

Triggered by Host Communication across the same VLAN/VNI (L2)

EVPN Peer and Endpoint(Host) Discovery

Triggered by Host Communication between VLAN/VNI (L3)

Packet Walk

Communication between hosts in same VLAN/VNI

Packet Walk

Communication between hosts in different VLAN/VNI

EVPN Control Plane --- VM Mobility

- 2. VTEP-1 detects Host1 and advertises H1 with seq #0
- 3. Other VTEPs learn about the host route of Host 1

EVPN Control Plane --- VM Mobility

- 1. Host 1 moves to VTEP-3 from VTEP-1
- 2. VTEP-3 detects Host 1, sends MP-BGP update for Host 1 with its own VTEP address and a new seq #1
- 3. Other VTEPs learn about the new route of Host 1 from VTEP 3 with a higher sequence number and prefer that update

EVPN Control Plane --- ARP Suppression

Minimize flood-&-learn behavior for host learning

Functions of VXLAN/EVPN

Host/Network Reachability Advertisement

Advertise host/network reachability information through control protocol (MP-BGP)

VTEP Security & Authentication

Authenticate VTEPs through BGP peer authentication

Distributed
Anycast Gateway

Seamless and Optimal vm-mobility

ARP Suppression

Early ARP termination Localize ARP learning process Minimize network flooding

VXLAN Fabric Design with MP-iBGP EVPN

- VTEP Functions are on leaf layer
- Spine nodes are iBGP route reflector
- Spine nodes don't need to be VTEP

VXLAN Fabric Design with MP-eBGP EVPN

- VTEP Functions are on leaf layer
- Spine nodes are MP-eBGP Peers to VTEP leafs
- Spine nodes don't need to be VTEP
- VTEP leafs can be in the same or different BGP AS's

VXLAN Fabric - External Routing

VXLAN Fabric – Service Insertion

Firewall as a default gateway: Centralized Gateway-Firewall bottleneck

Transparent Firewall: Inspect and then bridge Traffic between "dirty" VLAN and "clean" VLAN

Tenant Edge Firewall: Traffic between Tenants/VRFs routed via the firewall

VXLAN Fabric – Service Insertion

VXLAN Fabric – Selective Traffic Redirection

- Leverages Policy Based Redirect
- Inter VLAN traffic bypass default routing lookup and redirected
 - Service Redirection to Load Balancers, Firewalls etc.

VXLAN Fabric – Centralized Route Leaking

Peerlink-Less VPC

Enhanced dual-homing solution without wasting physical ports

Preserve traditional vPC characteristics

VXLAN Fabric – Tenant Routed Multicast

VXLAN EVPN Multi-Site

Network Size

Summary

- VXLAN enables scalable Data Center fabrics
- BGP EVPN with VXLAN provides a robust control plane enabling multitenancy, VM mobility, optimizing traffic forwarding
- Seamless integration with service nodes such as Firewalls and Load balancers and ability to provide shared services
- Fabric can cater to multicast traffic in the overlay
- VXLAN as a DCI with Multi-Site

#CiscoLive