Recall:

## 1 Example for Attractor ≠ diapunor stable

$$\hat{y} = y(1-y)$$

$$\hat{\phi} = y(1-(9x)\phi)$$

We can convert this to Cartesian co-ordinates

Verify this] i = (g(os p)) = gi(os p) -g(sinp) p = gi(1-gi) (os p) -g(1-gi) (os p) -g(1-gi) (os p)

 $= \chi(1-y) - y(y-x)$   $= \chi(1-y) - y(y-x)$ 



{(1,0)} is an attractor, since we can choose any open ball around it that excludes (0,0). (since starting from (0,0), we stary at (0,0)).

So () could be R2\{(0,0)?.

## Definitions ((ontd.):

- (d) A compact invariant set M is asymptotically stable if it is diapunou stable and an altractor.
- (e) A compact invariant set Mis globally asymp. stable if it is asymp. Stable with domain of attraction Rd.

Eq. (i)  $\dot{x}(t) = Hx(t)$ , d=2,  $Re(\lambda i) < 0$ 

[(0,0)] is globally asymp. stable.

(ii)  $\dot{x}(t) = x(1-x^2)$ ,  $x \in \mathbb{R}$ .



M<sub>1</sub>= [-1, 1] is compact, invariant, attractor, diapunor stable, and hence asymp.

(infact globally asymptotable)

M2 = [0,1] is compact, invaviant, not an attractor, not Liapunov stable.

| (f) A compact invariant set, M, is internally clain transitive (ICT) (or ict) if $\forall x,y \in M$ , $\forall \epsilon > 0$ , $\forall T > 0$ Reve |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| exist $n \ge 1$ and $n+1$ points,<br>$z = 20, x_1, x_2, \dots, x_n = y$                                                                              |
| such that a trajectory initiated at $x_i$ meets the $E$ -nbd of $x_{i+1}$ at time $t_i \ge T$ , $i=0,1,,n-1$ .                                       |
| Jumps of size E are allowed                                                                                                                          |
| Examples: $\dot{x}(t) = x(t) \left(1-(x(t))^2\right)$                                                                                                |
| (a) M = [-1,1] is globally asymptotable. But it is not ict                                                                                           |
| To see this, consider Dirrofflow:                                                                                                                    |
| 7,7 Chosen very large E Chosen very small                                                                                                            |
| (b) {0} is ict . So is {-1}, {+1}.                                                                                                                   |



| & (A1) | holds. | Assume | (A2)-(A4). | Fon an conveyed       |
|--------|--------|--------|------------|-----------------------|
|        |        |        |            |                       |
|        |        |        | $\chi_{n}$ | +1 ex 2/n -> 0 ex 2/n |
|        |        |        |            | <b>→_</b><br>a.s.     |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |
|        |        |        |            |                       |