A practical walk through formal scattering theory

Connecting bound states, resonances, and scattering states in exotic nuclei and beyond

The radial Schrödinger equation

Sebastian König, NC State University

Configuration-space wavefunctions

- ullet consider a scattering state with momentum k and angular quantum numbers l,m
- by spherical symmetry, its wavefunction can be composed as

$$\langle \mathbf{r} | \psi_{lm,p}^{(+)}
angle = R_l(r) Y_{lm}(\hat{r}) = rac{u(r)}{r} Y_{lm}(\hat{r}) \qquad (1)$$

ullet u(r) is called the reduced radial wavefunction, and it satisfies the radial Schrödinger equation

$$\left[-rac{\mathrm{d}^2}{\mathrm{d}r^2}+rac{l(l+1)}{r^2}+2\muigl[V(r)-E_kigr]
ight]u(r)=0 \hspace{1.5cm} (2)$$

- ullet it is customary (and convenient) to define $U(r)=2\mu V(r)$ and rewrite Eq. (2) entirely in terms of momentum using $k^2=2\mu E_k$
- ullet more generally, Eq. (2) my involce a non-local potential V(r,r'):

$$ightarrow V(r)u(r) \longrightarrow \int\!\mathrm{d}r' V(r,r')u(r')$$

Free radial Schrödinger equation

ullet in the absence of interactions, V(r)=0, we are left with the **free radial** Schrödinger equation:

$$\left[rac{\mathrm{d}^2}{\mathrm{d}r^2}-rac{l(l+1)}{r^2}+k^2
ight]u(r)=0 \hspace{1.5cm} (3)$$

- ullet in particular, for finite-range interactions $(V(r)=0 \ \text{for} \ r>R)$, this equation is exact outside the interaction range
- ullet for short-range interactions $(V(r) o 0 \,$ faster than any power law) one can still assume this free equation asymptotically
- Eq. (3) has two linearly independent solutions:
 - ullet Riccati-Bessel functions $\hat{j_l}(z)=zj_l(z)\sim z^{l+1}$ for z o 0 (regular)
 - ullet Riccati-Neumann functions $\hat{n_l}(z) = z n_l(z) \sim z^{-l}$ for z o 0 (irregular)
 - ullet (alternative: Riccati-Bessel function of the second kind, $\hat{y_l}(z) = -\hat{n_l}(z)$)
- any solution of the full radial Schrödinger equation (2) can be written as a linear combination of $\hat{j}_l(kr)$ and $\hat{n}_l(kr)$
 - ▶ coefficients in this linear combination depend only on k

Riccati functions

- ullet the lowest-order Riccati functions are simply $\hat{j_0}(z)=\sin(z)$ and $\hat{n}_0(z)=\cos(z)$
- for l>0, both $\hat{j}_l(z)$ and $\hat{n}_l(z)$ are combinations of $\sin(z)$ and $\cos(z)$ with prefactors that are polynomials in 1/z
- ullet asymptotically, $\hat{j_l}(z) = \sin(z l\pi/2)$, and similarly for $\hat{n_l}(z)$
 - ▶ note: several different phase conventions and notations in the literature
 - ► quoted here: Taylor, Messiah
- the Riccati-Bessel functions satisfy a simple orthogonality relation:

$$\int_0^\infty \mathrm{d}r \, \hat{j}_l(kr) \hat{j}_l(k'r) = \frac{\pi}{2} \delta(k - k') \tag{4}$$

 Riccati-Hankel functions are used to represent the radial parts of in- and outgoing spherical waves:

$${\hat h}_l^\pm(z)={\hat n}_l(z)\pm {
m i}{\hat j}_l(z)\sim {
m e}^{{
m i}z} \ {
m for} \ z o\infty$$

Boundary conditions

- a boundary condition is needed to fully specify a solution of Eq. (2)
- ullet any physical solution needs to satisfy u(0)=0
 - otherwise, the full wavefunction $\langle {f r}|\psi_{lm,k}^{(+)}
 angle$ would be singular at the origin
 - ullet this fixes u(r) up to its overall normalization
 - ullet in a numerical implementation as initial value problem, specifying the slope u'(r) at r=0 determines the overall amplitude
- ullet the **normalized radial wavefunctions** $u_{l,k}(r)$ are defined as the set of solutions satisfying

$$\int_0^\infty \mathrm{d}r \, u_{l,k}(r) u_{l,k'}(r) = \frac{\pi}{2} \delta(k - k') \tag{6}$$

- ► same orthogonality relation as for Riccati-Bessel functions
- ▶ **Note:** Taylor denotes these solutions as $\psi_{l,p}(r)$ (with p=k)
- ullet alternatively, one can specify the asymptotic behavior for large r
 - ► more relevant formally than practically
 - we'll come back to this shortly to define the so-called Jost solutions

Asymptotic behavior

ullet for $r o \infty$, the normalized wavefunction can be written in the form

$$u_{l,k}(r) \sim \hat{j_l}(kr) + kf_l(k)\hat{h}_l^+(kr)$$
 (7)

- this directly reflects the physical picture:
 - ▶ incoming plane wave component
 - scattered outgoing spherical wave
- $f_l(k)$ here is the partial-wave scattering amplitude, related to the partial-wave S-matrix $S_l(k)$ via

$$f_l(p) = rac{S_l(k) - 1}{2\mathrm{i}k} = rac{\mathrm{e}^{\mathrm{i}\delta_l(k)}\sin\delta_l(k)}{k}$$
 (8)

alternatively, using the properties of the Riccati functions, one finds that

$$u_{l,k}(r) \sim \sin \left(kr - l\pi/2 + \delta_l(k)
ight)$$
 (9)

ullet this explains the name of the **scattering phase shift** $\delta_l(k)$

Scattering phase shift

- ullet assume now we have a numerical representation of $u_{l,k}(r)$ and want to extract the phase shift $\delta_l(k)$ from the asymptotic form
- ullet in principle, we could pick a set of points r_i , each satisfying $r_i\gg R$ and fit the numerical data to $\mathcal{N}\sin\left(kr-l\pi/2+\delta_l(k)
 ight)$, thus determining \mathcal{N} and $\delta_l(k)$
- an easier way uses yet another way to express the asymptotic wavefunction:

$$u_{l,k}(r) \sim \hat{n_l}(kr) - \cot \delta_l(k) \hat{j_l}(kr)$$
 (10)

ullet with Eq. (10) we need only find an $r_0\gg R$ at which the wavefunction goes through zero, then

$$\cot \delta_l(k) = -rac{\hat{n_l}(kr_0)}{\hat{j_l}(kr_0)} \qquad \qquad (11)$$

- in particular, we do not actually care how our numerical solution is normalized
- ullet r_0 is determined numerically by a **root finding algorithm**

Jupyter demo

Scattering phase shift from radial Schrödinger equation

The regular solution

- let us now consider a solution that is fully determined (including its normalization)
 by a boundary condition at the origin
- ullet the so-called **regular solution** $\phi_{l,k}(r)$ of the radial Schrödinger equation satisfies

$$\phi_{l,k}(r)\sim \hat{j_l}(kr) ext{ for } r o 0\,,$$

i.e.,
$$\lim_{r o 0}\phi_{l,k}(r)/\hat{j_l}(kr)=1$$

• this solution is purely real because both the radial Schrödinger equation as well as the boundary condition are real

Note

- beware of different conventions in the literature!
- in Eq. (12) we have followed Taylor's book
 - ullet an alternative way to write Eq. (12) is $\phi_{l,k}(0)=0$ and $\phi'_{l,k}(0)=k$
- ullet Newton defines a regular solution arphi(r) that satisfies arphi(0)=0 and arphi'(0)=1
 - ▶ this has the advantage of being independent of k

The Jost solutions and functions

- alternative, one can fully determine solutions by a boundary condition at infinity
- ullet the so-called **Jost solutions** $u_{l,k}^\pm(r)$ are solutions of Eq. (2) that satisfy

$$\lim_{r o\infty} \mathrm{e}^{\mp\mathrm{i}kr} u_{l,k}^\pm(r) = 1$$
 (13)

- ullet at the origin, these are then in general not regular $(u_{l,k}^\pm(0)
 eq 0\,)$
- ullet it holds that $u_{l.k}^-(r)=[u_{l.k}^+(r)]^*$
- ullet except for p=0 , $u_{l,k}^+(r)$ and $u_{l,k}^-(r)$ are linearly independent
 - \hookrightarrow regular solution can be written as linear combination of Jost solutions,

$$\phi_{l,k}(r) = a(k)u_{l,k}^-(r) + b(k)u_{l,k}^+(r) \;,\; b(k) = a(k)^*$$

- the coefficient a(k) of $u_{l,k}^-(r)$ in Eq. (14), with a factor i/2 taken out, is called **Jost function** and denoted by $J_l^+(k)$ in the following, and $J_l^+(k)^* = J_l^-(k)$
- ullet alternatively one can introduce the Jost functions as Wronskians (o later)

S-matrix as ratio of Jost functions

yet another way to write the normalized solution is

$$u_{l,k}(r) \mathop{\sim}\limits_{r o \infty} rac{\mathrm{i}}{2} \left[\hat{h}_l^-(kr) + S_l(k) \hat{h}_l^+(kr)
ight]$$
 (15)

• this can now be compared to the regular solution:

$$\phi_{l,k}(r) = J_l^+(k)u_{l,k}^-(r) + J_l^-(k)^*u_{l,k}^+(r)$$
(16)

it follows that

$$S_l(k) = rac{J_l^-(k)}{J_l^+(k)} ext{ and } \phi_{l,k}(r) = J_l^+(k) u_{l,k}(r)$$
 (17)

• for scattering calculations this is not particularly relevant, but it allows us to study the analytic continuation of the S-matrix

Analytic properties of the Jost function

• we now consider the radial Schrödinger equation for complex momenta:

$$\left[rac{\mathrm{d}^2}{\mathrm{d}r^2}-rac{l(l+1)}{r^2}-U(r)+k^2
ight]u(r)=0\;,\;k\in\mathbb{C}$$

- ullet the free solutions $\hat{j_l}(kr)$ and $\hat{n_l}(kr)$ exist for all $k\in\mathbb{C}$
 - ▶ because they are defined as power series that converge everywhere
 - ▶ in fact, they are analytic functions in k for fixed r
- ullet based on this, it can be shown the regular solution $\phi_{l,k}(r)$ is an entire analytic function of k
- ullet thas is, the physically relevant solutions have a **unique analytic continuation** into the complex k plane
- for the Jost functions, one finds that
 - ullet $J_l^+(k)$ is analytic in ${
 m Im}\, k>0$ and continuous in ${
 m Im}\, k\geq 0$
 - $ullet J_l^+(k)^* = J_l^-(k) = J_l^+(-k)$
 - lacktriangle for sufficiently short ranged potentials (fall-off faster than an exponential), $J_l^+(k)$ is analytic in ${
 m Im}\, k < 0$ as well

The analytic S-matrix

• recall that the S-matrix is given by the ratio of Jost functions:

$$S_l(k) = \frac{J_l^-(k)}{J_l^+(k)} = \frac{J_l^+(-k)}{J_l^+(k)}$$
(19)

- numerator and denominator are analytic in k, but they may vanish at certain points
- ullet therefore, the S-matrix is a **meromorphic function** on the complex k plane
 - ► it may have (simple) poles

Bound states

- ullet bound states, if supported by a given potential V, are proper eigenstates with negative eigenvalues, E < 0
- ullet in the complex momentum plane, they are represented by $k={
 m i}\kappa$, where $\kappa>0$ is called the <code>binding momentum</code>
- ullet setting $k=-\mathrm{i}\kappa$ yields negative energies as well, this case will be discussed later
- ullet bound-state wavefunctions are normalizable: $\int_0^\infty \mathrm{d} r \left| u(r)
 ight|^2 < \infty$
- based on the general form of the regular solution,

$$\phi_{l,k}(r) = J_l^+(k) u_{l,k}^-(r) + J_l^-(k) u_{l,k}^+(r) \, ,$$

we can infer that $\mathscr{F}_l(k)$ needs to vanish at $k=\mathbf{i}\kappa$, to eliminate an exponentially rising component

ullet the wavefunction is then directly proportional to the Jost solution $u_{l.k}^+(r)$, and

$$u(r) \mathop{\sim}\limits_{r o \infty} A \operatorname{e}^{-\kappa r}$$
 (20)

Bound states as S-matrix poles

- ullet we just derived that $J_l^+(k)=0$ for a bound state at $k=\mathrm{i}\kappa$
- ullet this implies that the S-matrix $S_l(k)=J_l^+(-k)/J_l^+(k)$ has a simple pole at this point in the complex k plane
- the normalized scattering wavefunction

$$u_{l,k}(r) \mathop{\sim}\limits_{r o \infty} rac{\mathrm{i}}{2} \Big[\hat{h}_l^-(kr) + S_l(k) \hat{h}_l^+(kr) \Big]$$

is not defined at $k=\mathrm{i}\kappa$ due to this pole, but the regular solution

$$\phi_{l,k}(r) = J_l^+(k) u_{l,k}^-(r) + J_l^+(k)^* u_{l,k}^+(r)$$

can be analytically continued from k>0 to $k=\mathrm{i}\kappa$ Fäldt+Wilkin, Physica Scripta **56** 566 (1997)

• the residue of the pole is proportional to the **asymptotic normalization constant** that appears in the bound-sate wavefunction:

$$\mathrm{Res}_{k=\mathrm{i}\kappa}S_l(p)\sim A^2$$