Reflexive: $(\chi_{1},y_{1}) \leq (\chi_{1},y_{1})$ since $\chi_{1} \leq \chi_{1}$ and $y_{1} \leq y_{1}$.

Anti-fymmetric: Let $(\chi_{1},y_{1}) \leq (\chi_{2},y_{2})$ and $(\chi_{2},y_{2}) \leq (\chi_{1},y_{1})$, $\chi_{1} \leq \chi_{2}$ and $\chi_{1} \leq y_{2}$ $\chi_{2} \leq \chi_{1}$ and $\chi_{2} \leq y_{1}$ Now, $\chi_{1} \leq \chi_{2}$ and $\chi_{2} \leq \chi_{1} \Rightarrow \chi_{1} = \chi_{2}$ ('\leq' is an anti-symmetrize relation on R.)

and $\chi_{1} \leq \chi_{2}$ and $\chi_{2} \leq \chi_{1} \Rightarrow \chi_{1} = \chi_{2}$

Hence (x1141) = (x2142).

Transitive: Let $(x_1,y_1) \leq (x_2,y_2)$ and $(x_2,y_2) \leq (x_3,y_3)$ \widehat{U} $x_1 \leq x_2 \text{ and } y_1 \leq y_2$ $x_2 \leq x_3 \text{ and } y_2 \leq y_3$

Now, $x_1 \le x_2$ and $x_2 \le x_3 \implies x_1 \le x_3$ } (\le ' is a transitive $y_1 \in y_2$ and $y_2 \le y_3 \implies y_1 \le y_3$ } (\le ' is a transitive relation on R)

Hence (x1, y1) < (n3, y3).

Since \leq is a Endstion on \mathbb{R}^2 which is reflexive, anti-symmetries and transitive, at is a PARTIAL ORPER. It is not a total order since (1,2) and (2,1) in \mathbb{R}^2 are not related, $1 \leq 2$ but $2 \nmid 1$.

2 arb (a < 26.

R is a reflacive relation rince a < 2 a. It is neither page anti-symmetrice mor transitive.

• Take a = 6, b = 3, c = 2arb since a ≤ 2b bkc since b \ 2C but and not related to c since a 7 2c.

• Take a = 3, b = 2then arb and bra but $a \neq b$

 $\frac{3a,b,c3}{a,b,c3}$ Minimum = None $\frac{3a,b,c3}{a,b,c3}$ Minimum = None $\frac{3a,b,c3}{a,b,c3}$ Minimum = None $\frac{3a,b,c3}{a,b,c3}$ Maximum $\frac{3a,b,c3}{a,b,c3}$ Maximum $\frac{3a,b,c3}{a,b,c3}$

need of sound point point be lower Bound p, 863

None Minimum Maximum None Mininal Saibs and Scid3 Maximal {a,b,c} and {a,c,d}

Upper Bd A Love Bd o

(5) (i) We need to show that x is the additive inverse of
$$-x$$
.

By A4,
$$x + (-x) = 0$$

 $\Rightarrow x$ is the additive inverse $f - x$
 $\Rightarrow -(-x) = x$.

(ii) We need to show that
$$x$$
 is the multiplicative inverse of x^{-1} .

(iii) We need to show that
$$y-x$$
 is the additive involve of $x-y$.

Consider $(y-x)+(x-y)$. We need to show it equals 0.

 $y+[(-y)+x]=[y+(-y)]+x=0+x=x$

$$\Rightarrow (-y)+n = n-y \qquad (A4) \qquad -- (*)$$

$$x + \left[(-x) + y \right]^{A2} = \left[x + (-x) \right] + y \stackrel{A+}{=} 0 + y$$

$$\Rightarrow (-x) + y = y - x \quad \angle A4) \qquad - \cancel{AA}$$

Consider (y-n)+(n-y)=(-n)+y+(-y)+(-y)+x A1, A2=(-n)+x+x+(-y) A4=0 A4=0 A4=0 A4=0 A4=0 A4=0

y2+(-x)2 >0 (A3 and AI) Pt.: We we Dix=0 & xelR from the class at some point in this frox. a) Now 0 < y + (-x) and z > 0 (y + (-x))z > 0x<} > x+(-x) < x+(-x) & (x+) > 0 < x+(-x). x= @>y=, + 210. If ney, then nzelye, t x>0 (6) Use Axioms AI-A9 to frome: =0 by (A4)

(A3) (47) => [32+ (-x)=]+xe>xe (44) Zx Z Z (44) => yz+ [(-x+x)z] >xz => y2+ [(-x)2+x2] > x2

(2=2:0) 2x < 0 + 2h

ONDERD Han CEAR-878 (RE)+9 (AF) USE HAT AND TOOK TO SEE YEED MED. (A4) 5x5 (A4)

(b) To frace: If
$$x \le y$$
 and $z \le 0$, then $x \ge 7y \ge 1$.

 $x \le y \Rightarrow 0 \le y + (-x)$ see above

Now $z \le 0$ and $y + (-x) > 0$

Vice part a) to get

 $(y + (-x)) \cdot z \le (y + (-x)) \cdot 0$
 $\downarrow z = 0$

A3

 $= y \cdot z + (-x) \cdot z = 0$

A7

 $= y \cdot z + (-x) \cdot z = 0$

A3

 $\Rightarrow y \cdot z + (-x) \cdot z = 0$

A4

 $\Rightarrow y \cdot z + [(+x) \cdot z + x \cdot z] \le x \cdot z$

A4

 $\Rightarrow y \cdot z + [(+x) + x) \cdot z = 0$

A4

 $\Rightarrow y \cdot z + [(+x) + x) \cdot z = 0$

A4

 $\Rightarrow y \cdot z + 0 \le x \cdot z$

A4

 $\Rightarrow y \cdot z + 0 \le x \cdot z$

A4

 $\Rightarrow y \cdot z + 0 \le x \cdot z$

A4

 $\Rightarrow y \cdot z + 0 \le x \cdot z$

$$\Rightarrow 0 = \chi + (-1) \cdot \chi$$

$$\Rightarrow$$
 $(-1) \cdot x = -x$.

Revised Q8: Prove that:

let a, b & R such that for all portive real numbers x70, a & 6+x.

Then a & to.

Proof:

We prove this by contradiction

Suppose a76.

By hyphothesis, $a \le b + \alpha = b + \frac{a-b}{2} = \frac{a+b}{2} < \frac{a+a}{2} = a$ Hence a < a, which E a contradiction.