THERMODYNAMIQUE CHIMIQUE

PCSI

Physique: premier principe: U, H, corps purs; second principe: S, machines thermiques

Chimie: Equilibre chimique / transformation totale; K° , Q_{r} , a_{i} (premier cours de chimie)

PC

Chimie: Application du premier principe en réacteur monobare: $\Delta_r H^\circ$; application du second principe: G, \mathcal{A} , μ_i , $\Delta_r G$, $\Delta_r G^\circ$.

Description et évolution d'un système vers un EF

Pré-requis : Lycée (avancement, réaction totale, Ka)

La transformation n'est-elle toujours totale. Peut-on prévoir la composition dans l'état final ?

---- niveau PCSI

Grandeur de réaction △,Z

Effets thermiques en réacteur monobare

Evolution et équilibre

Optimisation d'un procédé chimique

Description du système physicochimique dans un état donné

Le système étudié : Fermé au repos

En contact avec une seule source de chaleur

De composition variable donc en réaction

Constituant physicochimique, noté A_i formule chimique (état physique)

Nombre de paramètres nécessaires à priori

Paramètres physiques T, P ou V

Paramètres de composition Extensifs : n_i , m_i

Intensifs: X_i , W_i , C_i , \mathcal{M}_i

Soit **2 + N paramètres à priori**, si N est le nombre total de constituant physicochimique

Modélisation d'une transformation chimique

La <u>variation de composition</u> est <u>modélisée</u> par une ou plusieurs <u>réactions</u> <u>chimiques</u>

Chaque réaction chimique R est représentée par une équation de réaction

qui traduit : la conservation des éléments

la conservation de charge

Ecriture formelle : $\mathbf{0} = \sum v_i \mathbf{A}_i$

avec $v_i > 0$ si A_i est un produit, $v_i < 0$ A_i est un réactif

Soit l'équation de réaction : $\mathbf{0} = \sum v_i \mathbf{A}_i$

Avancement de la réaction ξ (Vu au lycée)

Dans un réacteur isotherme (500°C) et isobare (1 bar) on introduit un mélange équimolaire de dioxyde de soufre et de dioxygène. Il se produit la réaction suivante : $2 SO_{2(g)} + O_{2(g)} = 2 SO_{3(g)}$ Décrire la composition du système quand 97% de SO_2 a été transformé (taux de conversion de SO_2 de 97%).

Et s'il y a plusieurs réactions?

Peut-on faire la somme de 2 équations de réaction ?

$$A + B \rightarrow D$$

 $A + C \rightarrow E$

NON

$$A + B \rightarrow D$$

 $D + C \rightarrow E$

OUI

Sous certaines conditions

Comment exprimer les quantités de matière?

Composition chimique dans l'EF

Etat d'équilibre chimique / transformation totale

Le symbolisme des flèches

Constante d'équilibre K°

Marcellin Berthelot : étude de l'estérification

Activité d'un constituant physicochimique

Constituant physico-chimique	Expression de a _i
A _i en phase gazeuse parfaite	$a_i = p_i/p^\circ$ où $p^\circ = 1$ bar
Ai en mélange liquide ou solide idéal	$a_i = x_i$
A _i en solution aqueuse idéale - Solvant - Soluté	$a_i = x_i \approx 1$ $a_i = \frac{A_i}{C^\circ}$ où $C^\circ = 1 \text{ mol.L}^{-1}$

Etat standard d'un constituant physicochimique

<u>Tableau 1</u>: Définition des états standard [2]

Pression et environnement sont imposés, mais pas T

Constituant physico-chimique	Etat standard à T	
Ai en phase gazeuse, pur ou en mélange	Gaz parfait de même formule chimique à T et	
	$p^{\circ} = 1 \text{ bar}$	
Ai pur ou en mélange liquide ou solide	Ai pur dans la même phase que le mélange à T et	
	$p^{\circ} = 1 \text{ bar}$	
A _i en solution :		
- solvant	- Solvant pur à T et p° = 1 bar	
- solutés*	- A_i à $m^{\circ} = 1 \text{ mol.kg}^{-1}$ dans un environnement	
	identique à la dilution infinie à T et $p^{\circ} = 1$ bar	

^{*} En solution aqueuse diluée, les valeurs numériques de la concentration et de la molalité peuvent être confondues.

Evolution spontanée

On étudie la réaction d'estérification de l'éthanol par l'acide éthanoïque.

$$CH_3COOH + CH_3CH_2OH = CH_3COOCH_2CH_3 + H_2O$$

On réalise deux mélanges A et B dont les compositions initiales, en mole, sont données par le tableau ci-dessous. On laisse évoluer les mélanges A et B à 25°C. Seule la composition du mélange A reste constante.

- a/ Montrer que $K^{\circ}_{298} = 5,4$
- b/ Dans quel sens évolue le mélange B?
- c/ Déterminer la composition finale du mélange B.

	CH₃COOH	C_2H_5OH	CH ₃ COOC ₂ H ₅	H_2O
Mélange A	0,30	0,30	0,70	0,70
Mélange B	0,20	0,20	0,70	0,70

Quotient réactionnel

Détermination expérimentale de K°

Dans un réacteur isotherme (500°C) et isobare (1 bar) on introduit un mélange équimolaire de dioxyde de soufre et de dioxygène. Il se produit la réaction suivante :

$$2 SO_{2(g)} + O_{2(g)} = 2 SO_{3(g)}$$

A l'équilibre, 97% de SO_2 a été transformé (taux de conversion de SO_2 de 97%). Calculer K°_{773} , constante de l'équilibre à 773 K.