MLD

1. Loading data

```
rm(list=ls(all=TRUE))
library(tidyverse)
— Attaching packages -
                                                             tidyverse 1.3.2

√ ggplot2 3.4.0

                     ✓ purrr
                                1.0.1
✓ tibble 3.1.8
                     √ dplyr
                               1.0.10

√ tidyr 1.2.1

                     ✓ stringr 1.4.1

√ readr 2.1.3

                     ✓ forcats 0.5.2
— Conflicts —
                                                      - tidyverse_conflicts()
X dplyr::filter() masks stats::filter()
X dplyr::lag()
                 masks stats::lag()
library(vtable)
Loading required package: kableExtra
Attaching package: 'kableExtra'
The following object is masked from 'package:dplyr':
    group_rows
library(dplyr)
MLD <- read.csv("MLD Data File-1.csv", header=TRUE)</pre>
#Checking the data
vtable(MLD, lush = TRUE)
```

MLD

Name	Class	Values	Missing	Summary
MARRIED	character	'.' '0' '1'	0	nuniq: 3
GDLIN	integer	Num: 0 to 666	0	mean: 1.583, sd: 21.087, nuniq: 3
OBRAT	numeric	Num: 0 to 95	0	mean: 32.389, sd: 8.263, nuniq: 288
BLACK	integer	Num: 0 to 1	0	mean: 0.099, sd: 0.299, nuniq: 2
HISPAN	integer	Num: 0 to 1	0	mean: 0.056, sd: 0.23, nuniq: 2

Name	Class	Values	Missing	Summary		
MALE	character	'.' '0' '1'	0	nuniq: 3		
APPROVE	integer	Num: 0 to 1	0	mean: 0.877, sd: 0.328, nuniq: 2		
LOANPRC	numeric	Num: 0.021 to 2.571	0	mean: 0.771, sd: 0.189, nuniq: 1108		
<pre>dat <- ML filter(</pre>	<pre>#Filtering the data dat <- MLD %>% filter(MARRIED %in% c(0,1) & MALE %in% c(0,1) & LOANPRC <= 1 &</pre>					
<pre>dat\$LOANPRC = dat\$LOANPRC *100</pre>						
<pre>#Convert character to integer dat\$MARRIED = as.integer(dat\$MARRIED) dat\$MALE = as.integer(dat\$MALE)</pre>						
vtable(da	t, lush =	TRUE)				

dat

Name	Class	Values	Missing	Summary
MARRIED	integer	Num: 0 to 1	0	mean: 0.658, sd: 0.474, nuniq: 2
GDLIN	integer	Num: 0 to 1	0	mean: 0.914, sd: 0.281, nuniq: 2
OBRAT	numeric	Num: 0 to 95	0	mean: 32.366, sd: 8.247, nuniq: 286
BLACK	integer	Num: 0 to 1	0	mean: 0.099, sd: 0.299, nuniq: 2
HISPAN	integer	Num: 0 to 1	0	mean: 0.054, sd: 0.225, nuniq: 2
MALE	integer	Num: 0 to 1	0	mean: 0.814, sd: 0.39, nuniq: 2
APPROVE	integer	Num: 0 to 1	0	mean: 0.879, sd: 0.327, nuniq: 2
LOANPRC	numeric	Num: 2.105 to 100	0	mean: 76.075, sd: 16.763, nuniq: 1064

2. EDA for All Races

knitr::kable(d_mean, "pipe")

```
X
MARRIED
                 65.82
SINGLE
                 34.18
GDLIN
                 91.38
GDLIN N
                  8.62
WHITE
                 84.72
BLACK
                  9.91
HISPAN
                  5.37
MALE
                 81.36
FEMALE
                 18.64
                 87.87
APPROVE
DISAPPROVE 12.13
d_min <- c(apply(dat[ , c('OBRAT', 'LOANPRC')], 2, min))
d_max <- c(apply(dat[ , c('OBRAT', 'LOANPRC')], 2, max))
d_mean <- c(apply(dat[ , c('OBRAT', 'LOANPRC')], 2, mean))</pre>
d_median <- c(apply(dat[ , c('OBRAT', 'LOANPRC')], 2, median))</pre>
d_sd <- c(sqrt(apply(dat[ , c('OBRAT', 'LOANPRC')], 2, var)))</pre>
d summary <- round(cbind(d min, d max, d mean, d median, d sd),2)</pre>
knitr::kable(d_summary, "pipe")
```

	d_min	d_max	d_mean	d_median	d_sd
OBRAT	0.00	95	32.37	33	8.25
LOANPRC	2.11	100	76.08	80	16.76

3. EDA for non-Hispanic white

	X
MARRIED	65.82
SINGLE	34.18

```
X
GDLIN
                     91.38
GDLIN N
                      8.62
WHITE
                     84.72
BLACK
                      9.91
                      5.37
HISPAN
MALE
                     81.36
FEMALE
                     18.64
APPROVE
                     87.87
DISAPPROVE 12.13
d_min <- c(apply(dat_white[ , c('OBRAT', 'LOANPRC')], 2, min))
d_max <- c(apply(dat_white[ , c('OBRAT', 'LOANPRC')], 2, max))
d_mean <- c(apply(dat_white[ , c('OBRAT', 'LOANPRC')], 2, mean))</pre>
d_median <- c(apply(dat_white[ , c('OBRAT', 'LOANPRC')], 2, median))
d_sd <- c(sqrt(apply(dat_white[ , c('OBRAT', 'LOANPRC')], 2, var)))</pre>
d_summary <- round(cbind(d_min, d_max, d_mean, d_median, d_sd),2)</pre>
knitr::kable(d_summary, "pipe")
```

	d_min	d_max	d_mean	d_median	d_sd
OBRAT	0.00	95	31.99	32.50	8.18
LOANPRC	2.11	100	74.78	79.86	17.17

4. EDA for non-Hispanic black

	X
MARRIED	65.82
SINGLE	34.18
GDLIN	91.38
GDLIN_N	8.62
WHITE	84.72
BLACK	9.91

```
HISPAN 5.37

MALE 81.36

FEMALE 18.64

APPROVE 87.87

DISAPPROVE 12.13

d_min <- c(apply(dat_black[ , c('OBRAT', 'LOANPRC')], 2, min))
d_max <- c(apply(dat_black[ , c('OBRAT', 'LOANPRC')], 2, max))
d_mean <- c(apply(dat_black[ , c('OBRAT', 'LOANPRC')], 2, mean))
d_median <- c(apply(dat_black[ , c('OBRAT', 'LOANPRC')], 2, median))
d_median <- c(apply(dat_black[ , c('OBRAT', 'LOANPRC')], 2, median))
d_sd <- c(sqrt(apply(dat_black[ , c('OBRAT', 'LOANPRC')], 2, var)))
d_summary <- round(cbind(d_min, d_max, d_mean, d_median, d_sd), 2)
knitr::kable(d_summary, "pipe")
```

	d_min	d_max	d_mean	d_median	d_sd
OBRAT	5.60	63	35.03	35.00	8.13
LOANPRC	28.99	100	82.89	86.06	12.63

5. EDA for hispanic

	X
MARRIED	65.82
SINGLE	34.18
GDLIN	91.38
GDLIN_N	8.62
WHITE	84.72
BLACK	9.91
HISPAN	5.37
MALE	81.36
FEMALE	18.64
APPROVE	87.87

DISAPPROVE 12.13

```
d_min <- c(apply(dat_his[ , c('OBRAT', 'LOANPRC')], 2, min))
d_max <- c(apply(dat_his[ , c('OBRAT', 'LOANPRC')], 2, max))
d_mean <- c(apply(dat_his[ , c('OBRAT', 'LOANPRC')], 2, mean))
d_median <- c(apply(dat_his[ , c('OBRAT', 'LOANPRC')], 2, median))
d_sd <- c(sqrt(apply(dat_his[ , c('OBRAT', 'LOANPRC')], 2, var)))
d_summary <- round(cbind(d_min, d_max, d_mean, d_median, d_sd),2)
knitr::kable(d_summary, "pipe")</pre>
```

	d_min	d_max	d_mean	d_median	d_sd
OBRAT	14.60	62	33.32	33.00	8.56
LOANPRC	40.09	100	83.91	89.31	10.92