ÇİZELGE 1. BETON MEKANİK ÖZELİKLERİ

Beton Sınıfı	C16	C18	C20	C25	C30	C35	C40	C45	C50
fck Karakteristik Basınç Dayanımı (MPa)	16	18	20	25	30	35	40	45	50
fcd Tasarım Basınç Dayanımı (MPa)	11	12	13	17	20	23	27	30	33
fctk Karakteristik Çekme Dayanımı (MPa)	1.4	1.5	1.6	1.8	1.9	2.1	2.2	2.3	2.5
fctd Tasarım Çekme Dayanımı (MPa)	0.90	0.95	1.00	1.15	1.25	1.35	1.45	1.55	1.65
Ec 28 günlük elastisite modulü	27000	27500	28000	30000	32000	33000	34000	36000	37000
Gc 28 günlük kayma modulü	10800	11000	11200	12000	12800	13200	13600	14400	14800
k ₁ Basınç bloğu katsayısı	0.85				0.82	0.79	0.76	0.73	0.70
μ _c Poisson oranı	0.2								
ε _{cu} Ezilme birim kısalması	0.003								

ÇİZELGE 2. DONATI MEKANİK ÖZELİKLERİ

	D	oğal sertlik	te	Soğukta işlem görmüş			
	S220 BÇIa	S420 BÇIIIa	S500 BÇIVa	S420b BÇIIIb	S500bs BÇIVbs	S500bk BÇIVbk	
f _{yk} Karakteristik akma dayanımı (MPa)	220	420	500	420	500	500	
f _{yd} Tasarım dayanımı (MPa)	191	365	435	435 365		435	
Türü	Çubuk Donatı Hasır Donatı						
Yüzey şekli	Düz Nervürlü yada profilli Düz, nervürlü yad profilli						
Es Elastisite modulü (MPa)	2 x 10 ⁵						
μ _s Poisson oranı	Elastik Bölgede : 0.3 Plastik Bölgede : 0.5						
E _{su} Kopma birim uzaması	0.1						

DONATI ADEDİ

(mm ²)
ÇİZELGESİ
TALANI
I ENKESİ
ONAT

ÇİZELGE 3 KİRİŞLERİN BOYUT VE DONATILARINA İLİŞKİN KOŞULLAR

Büyüklük	Sembol	<u>></u> <	Sınır Değerler ve Açıklamalar				
Kiriş yüksekliği	$h_{ m k}$	2					
		<	$3.5 \cdot b_w$ $\ell_w/4$ sağlanmazsa gövde donatısı gerekmekte				
Kiriş genişliği	b_w	<u>></u>	250 mm (<i>Deprem Yönetmeliği koşulu</i>) 200 mm (<i>TS500 koşulu</i>) Kolon genişliği + kiriş yüksekliği				
Net beton örtüsü	c_c	<u> </u>	25 mm (yapı kenarlarındaki kirişlerde) 20 mm (yapı içinde bulunan kirişlerde)				
Mesnet ve açıklıkta çekme donatısı oranları	ρ	>	$0.8 f_{ctd} / f_{yd}$				
Çekme donatısı oranı	ρ	<u> </u>	$0.85 \rho_b$ Zorunlu koşul 0.02 DepremYönemn.sadece ρ için) $0.235 f_{ctd} / f_{yd}$ (açıklıkta sehim için önerilen)				
Çekme-basınç donatı oranları farkı	ρ- ρ'	≤	0,85 ρ _b				
Donatılar arasındaki net aralık	e_1 ve e_2	2	25 mm Ø D en büyük agrega çapı 4D/3				
Sarılma bölgesinde etriye aralığı	s_k	<	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Orta bölgede etriye aralığı	s_o	<u> </u>	$ d/2 V_d \le 3 V_{cr} \text{ ise} $ $ d/4 V_d > 3 V_{cr} \text{ ise} $				
Sarılma bölgesi uzunluğu	ℓ_k	2	2 h _k				
Boyuna donatı çapı	ø	2	12 mm				
Etriye çapı	$\phi_{\scriptscriptstyle \mathrm{W}}$	≥	8 mm				
<i>h</i> >600 mm olan kirişlerde gövde	Alanı A_{sl}	<u>></u>	0,001 b _w d 0,30 A _s (Deprem Yönetmeliği koşulu, A _s kirişteki en büyük donatı alanı) 10 mm (TS500 koşulu)				
donatisi	çapı	2	12 mm (Deprem Yönetmeliği koşulu)				
	aralığı	_ <	300 mm				

ÇİZELGE 4 TEK DONATILI DİKDÖRTGEN KESİTLER İÇİN KESİT HESABI (Kesit Taşıma Gücünün Hesabı) AKIŞ DİYAGRAMI

ÇİZELGE 5 TEK DONATILI DİKDÖRTGEN KESİTLER İÇİN KESİT TASARIMI AKIŞ DİYAGRAMI

ÇİZELGE 6 ÇİFT DONATILI DİKDÖRTGEN KESİTLER İÇİN KESİT HESABI (Kesit Taşıma Gücünün Hesabı) AKIŞ DİYAGRAMI

ÇİZELGE 7 ÇİFT DONATILI DİKDÖRTGEN KESİTLER İÇİN KESİT TASARIMI AKIŞ DİYAGRAMI

Kaynak: Doğangün, A., 2007. "Betonarme Yapıların Hesap ve Tasarımı", Birsen Yayınevi.

ÇİZELGE 8 TEK DONATILI TABLALI KİRİŞLER İÇİN KESİT HESABI (Kesit Taşıma Gücünün Hesabı) AKIŞ DİYAGRAMI

ÇİZELGE 9 TEK DONATILI TABLALI KİRİŞLER İÇİN KESİT TASARIMI AKIŞ DİYAGRAMI

ÇİZELGE 10 KİRİŞLERDE KESME DONATISI HESABI AKIŞ DİYAGRAMI

ÇİZELGE 10'un devamı

Kesitlerin taşıma gücü momentlerinin hesabı: Malzeme hesap dayanımlarına, kesit boyutlarına, donatı miktar ve konumuna bağlı olarak hesaplabilir. Yaklaşık hesabı aşağıdaki bağıntı ile yapılabilir:

 $\frac{M_r \cong A_s f_{yd} (d - d')}{\downarrow}$

Kapasite (pekleşmeli taşıma gücü) momentlerinin hesabı: Kirişin i ve j uçları için çekmenin altta ve üstte olması durumları için dört moment $(M_{pil}, M_{pi2}, M_{pjl})$ ve M_{pj2} aşağıdaki bağıntı ile hesaplanır:

$$M_p \cong 1,4 M_r$$

Basit kiriş mesnet yüzündeki kesme kuvveti hesabı. Bu kesme kuvveti deprem yük bileşimindeki düşey yüklerden belirlenmektedir. Yükler düzgün yayılı ise $(p_a=g+q)$

$$V_{dy} = p_d \cdot \ell_n / 2$$

