

Statistics

Testing Hypothesis

Name teacher

Learning objective

After this class you are able to

- Set up and carry out statistical hypothesis tests
- Interpret the results of statistical hypothesis tests

Book: Chapters 25 and 26

Statistics

Before this class (week 3.1 lesson 1):

Watch prelecture 'Hypothesis testing'

Book: Section 25.1

Programme

Test statistics

Tail probabilities

Significance level

Practice

Relation to confidence intervals

What is the H_1 the police uses?

Note: BAC = Blood Alcohol Content = promillage alcohol Maximum allowed in the Netherlands for new drivers is 0.2

- A) $H_1: BAC < 0.2$
- B) $H_1: BAC = 0.2$
- c) $H_1: BAC > 0.2$
- D) I have no clue

What type of error did the police make?

- A) Type I
- B) Type II
- C) I have no clue

The three steps of hypothesis testing

- 1. Formulate H₀ and H₁
- 2. Do the experiment
- 3. Calculate whether results justify rejecting *H*₀

Result:	
Do not reject H₀	Reject Ho
Insufficient evidence to support H_1	<i>H</i> ₁ true "beyond reasonable doubt"

Test Statistic

Definition:

Suppose the data are modelled as a realization of random variables X_i . A <u>test statistic</u> is any sample statistic

$$T = h(X_1, X_2, \ldots, X_n)$$

whose numerical value is used to decide whether we reject H_0 .

Exercise

Suppose X_i are i.i.d. uniform on $[0, \theta]$ for some $\theta > 0$.

Our data are a realization of this sample, and we test

$$H_0: \theta = 5$$

against

$$H_1: \theta \neq 5$$

- a. With $T_1 = \max\{X_1, X_2, \dots, X_n\}$ as test statistic, what values of T_1 are in favor of H_0 , and what values are in favor of H_1 ?
- b. Same as a. but using $T_2 = |2\bar{X}_n 5|$.

Tail probabilities

Definition:

Given a test statistic T, a <u>left tail probability</u> is $P(T \le t)$ for some t, a right tail probability is $P(T \ge t)$.

Definition:

The <u>p-value</u> is the probability, given H_0 is true, of an event at least as extreme as the observations in the direction which provides evidence for H_1 .

Suppose we test H_0 using the test statistic T. We observe the realization t. Suppose we reject H_0 if $P(T \ge t) \le 0.05$. Let

$$t = 3.15, \qquad P(T \ge 3.15) = 0.97$$

what is the p-value, and should we reject H_0 ?

A)
$$p = 0.03$$
, Do not reject H_0

B)
$$p = 0.03$$
, Reject H_0

C)
$$p = 0.97$$
, Do not reject H_0

D)
$$p = 0.97$$
, Reject H_0

⇔ Feedback**Fruits**

Suppose we test H_0 using the test statistic T. We observe the realization t. Suppose we reject H_0 if $P(T \ge t) \le 0.05$. Let

$$t = 1.73, \qquad P(T \le 1.73) = 0.11$$

what is the p-value, and should we reject H_0 ?

A)
$$p = 0.11$$
, Do not reject H_0

B)
$$p = 0.11$$
, Reject H_0

C)
$$p = 0.89$$
, Do not reject H_0

D)
$$p = 0.89$$
, Reject H_0

⇔ Feedback**Fruits**

Suppose we test H_0 using the test statistic T. We observe the realization t. Suppose we reject H_0 if $P(T \ge t) \le 0.05$. Let

$$t = 0.94$$
, $P(T \le 3.12) = 0.02$

what is the p-value, and should we reject H_0 ?

- A) p > 0.02, Do not reject H_0
- B) p < 0.02, Reject H_0
- C) p > 0.98, Do not reject H_0
- D) p > 0.89, Reject H_0

Significance level and critical region

Definition:

The <u>significance level</u> α is the largest acceptable probability of committing a type I error.

Definition:

Suppose we test H_0 against H_1 by means of the test statistic T. The set of values for T for which we reject H_0 in favor of H_1 is called the <u>critical region</u>. Values on the boundary of this region are called critical values.

Exercise

Given a realization t of a random variable $T \sim N(\mu, 2)$. We test $H_0: \mu = 0$ against $H_1: \mu \neq 0$ using T as test statistic. We reject H_0 if $|t| \geq 2$.

- a. Assuming H_0 is true, what is the probability of committing a type I error?
- b. Suppose the real value is $\mu=1$. What is the probability of committing a type II error?
- c. Now we change our rule to reject H_0 if $|t| \ge 4$. What do the answers of a and b become then?

Relation to confidence intervals

Theorem:

```
Suppose we test H_0: \theta=\theta_0 against H_1: \theta>\theta_0. We reject H_0 at level \alpha if and only if \theta_0 is not in the 100(1-\alpha)\% one-sided confidence interval for \theta.
```


For next class (week 3.9 lesson 1):

Complete MyStatlab assignments and

book exercises 25.1, 26.3, 26.4, 26.7

Watch prelectures 'The t-test'

Book: Section 27.1, 27.2 (only 'normal data')

After this class you can

- Perform statistical hypothesis tests for the mean, under various assumptions
- Perform statistical hypothesis tests for the difference between the mean of two groups

