Agenda

2. Lineare Optimierung

- 2.1 Modellbildung
- 2.2 Graphische Lösung
- 2.3 Primaler Simplex
- 2.4 Dualer Simplex
- 2.5 Sonderfälle
- 2.6 Dualität

2.7 Sensitivitätsanalyse

2.8 Multikriterielle Optimierung

Sensitivitätsanalyse

Bisher

Suchen einer Optimallösung unter der Annahme bestimmter Inputdaten

Realität

► Koeffizienten aus Beobachtungen, "Messungen" unsicher

► Koeffizienten aus Prognosen unsicher

► Koeffizienten aus Verfügbarkeitsannahmen änderbar

Koeffizienten unterliegen Schwankungen

▶ Kosten

▷ Angebot

Nachfrage

敏感性分析 过去

▶ 在假定特定输入数据的情况下寻找最佳解决方案 现实

📘 系数来自观察,"测量"不确定 ▷ 系数来自预测不确定

🔼 系数来自可用性假设可更改

▶ 系数受波动影响

▷ 成本

▷ 利润率

▷ 供应 ▷ 需求

问题

Problem

▶ Das Aufstellen und Lösen eines LPs mit verschiedenen Par∰metern führt bei großen Modellen zu einem unangemessenen Aufwand

Sensitivitätsanalyse

Definition

Das Testen einer optimalen Lösung eines linearen Programms bzgl. einer Veränderung der Eingabedaten bezeichnet man als Sensitivitäts- oder Sensibilitätsanalyse. 定义

对线性规划的最优解讲行测试。以考察输入数据变化的过程被称为敏感性分析或灵敏度分

析。

Vorgehensweise

步骤

(2) 考虑输入数据

- Lösung des LPs mit bestmöglich geschätzten Parametern(1)使用最佳估计的参数解决线性规划问题
- Betrachtung der Eingabedaten

 - rechte Seiten der Nebenbedingungen bi
 - Koeffizienten der Nebenbedingungen au

- ▷ 目标函数系数 ci
- ▷ 约束条件右侧 bi ▷ 约束条件系数 aii
- 🔽 通过敏感性分析,可以相对轻松地了解解的稳定性。它检查单个参数可以变化到什么程 度,而不会对解的质量产生影响。在此过程中,所有其他大小都保持不变。
- 如果基本变量和非基本变量的结构发生变化、即原来的非基本变量变为基本变量、反之亦
- 然,则存在质的变化。 Mit der Sensitivitätsanalyse lässt sich mit verhältnismäßig geringem Aufwand ein Eindruck von der Stabilität der Lösung gewinnen. Es wird überprüft, inwieweit sich einzelne Parameter ändern dürfen, ohne dass sich an der Lösung etwas qualitativ ändert. Dabei werden alle anderen Größen konstant gehalten.
- ▶ Eine qualitative Änderung liegt dann vor. wenn sich die Struktur von Basis- und Nicht-Basisvariablen ändert. d. h. eine bisherige Nicht-Basisvariable Basisvariable wird und vice versa.

Sensitivitätsanalyse

Annahmen

- ► Lineares Problem

 - \triangleright Strukturvariablen x_1, \ldots, x_p
 - \triangleright Schlupfvariablen x_{p+1}, \ldots, x_{p+m}
- ► Es liegt keine Degeneration vor

Bezeichnung der Koeffizienten im optimalen Simplextableau

- $ightharpoonup c_i^*$
- ▶ b_i*
- ▶ a_{ij}*

Die Modifikation eines Zielfunktionskoeffizienten heißt in jedem Fall, die Neigung der Zielhyperebene in entsprechender Koordinatenrichtung zu ändern; man dreht also die Zielebene um den optimalen Punkt.

-Team Operations Research Technische Universität Berlin – Workgroup for Infrastructure Policy (WIP)

Die Modifikation eines Zielfunktionskoeffizienten heißt in jedem Fall, die Neigung der Zielhyperebene in entsprechender Koordinatenrichtung zu ändern; man dreht also die Zielebene um den optimalen Punkt.

-202 -

Die Modifikation eines Zielfunktionskoeffizienten heißt in jedem Fall, die Neigung der Zielhyperebene in entsprechender Koordinatenrichtung zu ändern; man dreht also die Zielebene um den optimalen Punkt.

Die Modifikation eines Zielfunktionskoeffizienten heißt in jedem Fall, die Neigung der Zielhyperebene in entsprechender Koordinatenrichtung zu ändern; man dreht also die Zielebene um den optimalen Punkt.

Die Modifikation eines Zielfunktionskoeffizienten heißt in jedem Fall, die Neigung der Zielhyperebene in entsprechender Koordinatenrichtung zu ändern; man dreht also die Zielebene um den optimalen Punkt.

Fragestellung

▶ In welchem Bereich $[c_k - c_k^-; c_k + c_k^+]$ kann der Zielfunktionskoeffizient c_k der Variable x_k geändert werden, ohne dass die optimale Basislösung ihre Optimalität verliert?

Unterscheidung, ob xk Basis- oder Nichtbasisvariable der Optimallösung ist

- Nichtbasisvariable
 - $\triangleright c_{\nu} = \infty$, da eine Verminderung des Nutzens von x_{k} (bei Maximierung) nicht zu einer Aufnahme in die Basis führen kann.
 - ho $c_{
 u}^{+}=c_{
 u}^{+}$, da bei einem größeren Wert die Opportunitätskosten von x_{k} n 变危阻 $[c_{i}:c_{i}]$ 对于一个维性规划问题中的变量 z_{k} 的影响,不会导致当前的最优 tuelle Lösung nicht mehr optimal.
- Basisvariable
 - $\triangleright c_{k}^{-} = \infty$, falls alle a_{ki}^{*} mit $j \neq k$ nicht-positiv sind, sonst
 - $\triangleright c_k^- = \min \frac{c_j^*}{a_{ki}^*} \text{ mit } j \neq k \text{ für positive } a_{kj}^*$
 - $c_k^+ = \infty$, falls alle a_{ki}^* mit $j \neq k$ nicht-negativ sind, sonst
 - $ho c_k^+ = \min \frac{c_j^*}{a^*} \text{ mit } j \neq k \text{ für negative } a_{kj}^*$

虑目标函数的系数变化对最优解的影响。图片中的内容是在讲解目标函数系数 c_k 的 銀件の付けまで

这里解释了两种情况: 当 x 2 是基变量和非基变量时, 目标函数系数的变化对最优性 的影响。

非基变量的情况

- $c_{-} = \infty$. 意味着 x_{+} 的目标函数系数可以无限减小而不会被引入到基中(因为 在最大化问题中,这会导致 x_i 的边际收益下降到负无穷,所以不会选择这个变 量进入基)。
- $c_k^+ = c_k^*$,表示当目标函数系数增加到某个点时, x_k 将不再是最优的,因为增加 会导致它的机会成本变成色的 从而会被引入到其由

其你是dolesto.

- $c_k^- = \infty$, 如果所有与 x_k 相关的 a_k^* (从对偶问题中来) 是非正的。
- $c_{i} = \min \stackrel{c}{\hookrightarrow}$,对于所有正的 a_{i}^{*} 和 $i \neq k$,这表示 x_{k} 的目标函数系数可以减 少多少而不影响当前的最优解。
- c_i⁺ = ∞, 如果所有与 x_i 相关的 a_i^{*}. (从对偶问题中来) 是非负的。
- $c_k^+ = \min \frac{c_j}{c_k}$,对于所有负的 a_k^* ,和 $j \neq k$,这表示 x_k 的目标函数系数可以 增加多少而不影响当前的最优解。

Sensitivitätsanalyse – Beispielproblem

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃					<i>X</i> ₈	b _i
X ₄	0	0	-27/5	1	-8/5	0	6/5	0	28
<i>X</i> ₂	0	1	0	0	0	0	1	0	90
<i>X</i> ₁	1	0	4/5	0	1/5	0	-2/5	0	34
<i>X</i> ₆	0	0	-4/5	0	-1/5	1	2/5	0	6
<i>X</i> 8	0	0	1	0	0	0	0	1	300
Z	0	0	40	0	20	0	10	0	7900

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	<i>X</i> ₈	b _i
<i>X</i> ₄	0	0	-27/5	1	-8/5	0	6/5	0	28
<i>X</i> ₂	0	1	0	0		0	1	0	90
<i>X</i> ₁	1	0	4/5	0	1/5	0	-2/5	0	34
<i>X</i> ₆	0	0	-4/5	0	-1/5	1	2/5	0	6
<i>X</i> ₈	0	0	1	0	0	0	0	1	300
Z	0	0	40	0	20	0	10	0	7900

- ▶ Um die Intervalle $[c_k c_k^-; c_k + c_k^+]$ der Sensitivitätsanalyse zu berechnen, müssen c_k , c_k^+ und c_k^- bestimmt werden.
- ► Für die Sensitivitätsanalyse der Zielfunktionskoeffizienten wird zwischen Basis- und Nichtbasisvariablen in der Optimallösung unterschieden.
- ► Aus dem Optimaltableau lässt sich ablesen, dass x_1 , x_2 , x_4 , x_6 und x_8 Basisvariablen und x_3 , x_5 und x_7 Nichtbasisvariablen sind.

 \blacktriangleright Zunächst betrachten wir den Zielfunktionskoeffizienten von x_3 , dieser heißt c_3 .

- ightharpoonup Zunächst betrachten wir den Zielfunktionskoeffizienten von x_3 , dieser heißt c_3 .
- lacktriangle Der Ausgangswert des Zielfunktionskoeffizienten ist 40, somit ist $c_3=40$.

- ightharpoonup Zunächst betrachten wir den Zielfunktionskoeffizienten von x_3 , dieser heißt c_3 .
- ▶ Der Ausgangswert des Zielfunktionskoeffizienten ist 40, somit ist $c_3 = 40$.
- ightharpoonup Da x_3 eine Nichtbasisvariable ist, müssen die folgenden Regeln angewendet werden: $c_k^-=\infty$ und $c_k^+=c_k^*$.

$$c_3^-=\infty$$
 $c_3^+=40.$

- ightharpoonup Zunächst betrachten wir den Zielfunktionskoeffizienten von x_3 , dieser heißt c_3 .
- ▶ Der Ausgangswert des Zielfunktionskoeffizienten ist 40, somit ist $c_3 = 40$.
- lacktriangledown Da x_3 eine Nichtbasisvariable ist, müssen die folgenden Regeln angewendet werden: $c_k^-=\infty$ und $c_k^+=c_k^*$.

$$c_3^-=\infty$$
 $c_3^+=40.$

▶ Daraus lässt sich das Intervall für c_3 ableiten: $[40 - \infty; 40 + 40] = [-\infty; 80]$.

- ightharpoonup Zunächst betrachten wir den Zielfunktionskoeffizienten von x_3 , dieser heißt c_3 .
- \blacktriangleright Der Ausgangswert des Zielfunktionskoeffizienten ist 40, somit ist $c_3=40$.
- lacktriangledown Da x_3 eine Nichtbasisvariable ist, müssen die folgenden Regeln angewendet werden: $c_k^-=\infty$ und $c_k^+=c_k^*$.

$$c_3^-=\infty$$
 $c_3^+=40.$

- ▶ Daraus lässt sich das Intervall für c_3 ableiten: $[40 \infty; 40 + 40] = [-\infty; 80]$.
- ▶ Analog lassen sich auch die Intervalle für c_5 und c_7 berechnen.

$$c_5 = 0$$
 $c_5^- = \infty$ $c_5^+ = 20$ $[0 - \infty; 0 + 20] = [-\infty; 20]$
 $c_7 = 0$ $c_7^- = \infty$ $c_7^+ = 10$ $[0 - \infty; 0 + 10] = [-\infty; 10]$

	<i>X</i> ₁	x_2				X 6		X 8	bi
X4	0	0	-27/5	1	-8/5	0	6/5	0	28
<i>X</i> ₂			0				1	0	90
<i>X</i> ₁	1	0	4/5	0	1/5	0	-2/5		34
<i>x</i> ₆	0	0	-4/5	0	-1/5	1	2/5	0	6
<i>X</i> ₈	0	0	1	0	0	0	0	1	300
Z	0	0	40	0	20	0	10	0	7900

-Team Operations Research Technische Universität Berlin – Workgroup for Infrastructure Policy (WIP)

 \blacktriangleright Zunächst betrachten wir den Zielfunktionskoeffizienten von x_1 , dieser heißt c_1 .

- ightharpoonup Zunächst betrachten wir den Zielfunktionskoeffizienten von x_1 , dieser heißt c_1 .
- lacktriangle Der Ausgangswert des Zielfunktionskoeffizienten ist 100, somit ist $c_1=100$.

- ightharpoonup Zunächst betrachten wir den Zielfunktionskoeffizienten von x_1 , dieser heißt c_1 .
- ightharpoonup Der Ausgangswert des Zielfunktionskoeffizienten ist 100, somit ist $c_1 = 100$.
- ▶ Da nicht nur nicht-positive oder nicht nur nicht-negative a_{kj}^* in der Zeile von x_1 zu finden sind, muss für c_1^- folgende Regel angewendet werden: $c_k^- = \min \frac{c_j}{a_{kj}}$ mit $j \neq k$ für alle positiven a_{kj}^* .

$$c_1^- = min\left[\frac{40}{\frac{4}{5}}; \frac{20}{\frac{1}{5}}\right] = 50.$$

- ightharpoonup Zunächst betrachten wir den Zielfunktionskoeffizienten von x_1 , dieser heißt c_1 .
- ightharpoonup Der Ausgangswert des Zielfunktionskoeffizienten ist 100, somit ist $c_1 = 100$.
- ▶ Da nicht nur nicht-positive oder nicht nur nicht-negative a_{kj}^* in der Zeile von x_1 zu finden sind, muss für c_1^- folgende Regel angewendet werden: $c_k^- = \min \frac{c_1}{a_{kj}}$ mit $j \neq k$ für alle positiven a_{kj}^* .

$$c_1^- = min\left[\frac{40}{\frac{4}{5}}; \frac{20}{\frac{1}{5}}\right] = 50.$$

Aus dem oben genannten Grund muss für c_1^+ die folgende Regel angewandt werden: $c_k^+ = min - \frac{c_j}{a_{kj}}$ mit $j \neq k$ für alle negativen a_{kj}^* .

$$c_1^+ = min\left[-\frac{10}{-\frac{2}{5}}\right] = 25.$$

- \blacktriangleright Zunächst betrachten wir den Zielfunktionskoeffizienten von x_1 , dieser heißt c_1 .
- \blacktriangleright Der Ausgangswert des Zielfunktionskoeffizienten ist 100, somit ist $c_1 = 100$.
- ▶ Da nicht nur nicht-positive oder nicht nur nicht-negative a_{kj}^* in der Zeile von x_1 zu finden sind, muss für c_1^- folgende Regel angewendet werden: $c_k^- = \min \frac{c_j}{a_{kj}}$ mit $j \neq k$ für alle positiven a_{kj}^* .

$$c_1^- = min\left[\frac{40}{\frac{4}{5}}; \frac{20}{\frac{1}{5}}\right] = 50.$$

Aus dem oben genannten Grund muss für c_1^+ die folgende Regel angewandt werden: $c_k^+ = min - \frac{c_j}{a_{kj}}$ mit $j \neq k$ für alle negativen a_{kj}^* .

$$c_1^+ = min \left[-\frac{10}{-\frac{2}{\varepsilon}} \right] = 25.$$

Daraus ergibt sich für c_1 das Intervall [100 - 50; 100 + 25] = [50; 125].

	<i>X</i> ₁	x_2	<i>X</i> ₃	χ_4	X 5	<i>X</i> ₆	X 7
X ₄	0	0	-27/5	1	-8/5	0	6/5
x_2	0	1	0 4/5	0	0	0	1
X_1	1	0	4/5	0	1/5	0 -	-2/5
x_6	0	0	-4/5	0	-1/5	1	2/5
<i>x</i> ₈	0	0	1	0	0	0	0
7	0	Λ.	40	0	20	0	10

Team Operations Research
Technische Universität Berlin – Workgroup for Infrastructure Policy (WIP)

► Analog und mithilfe der anderen Formeln lassen sich nun die Intervalle für c₂, c₄, c₆ und c₆ berechnen.

$$c_{2} = 50 c_{2}^{-} = min\left[\frac{10}{1}\right] = 10 c_{2}^{+} = \infty [50 - 10; 50 + \infty] = [40; \infty]$$

$$c_{4} = 0 c_{4}^{-} = min\left[\frac{10}{\frac{6}{5}}\right] = \frac{50}{6} c_{4}^{+} = min\left[-\frac{40}{-\frac{27}{5}}; -\frac{20}{-\frac{8}{5}}\right] = \frac{200}{27} [0 - \frac{50}{6}; 0 + \frac{200}{27}] = [-\frac{50}{6}; \frac{200}{27}]$$

$$c_{6} = 0 c_{6}^{-} = min\left[\frac{10}{\frac{2}{5}}\right] = 25 c_{6}^{+} = min\left[-\frac{40}{-\frac{4}{4}}; -\frac{20}{-1}\right] = 50 [0 - 25; 0 + 50] = [-25; 50]$$

$$c_8 = 0 \qquad c_8^- = \text{min}\left[\frac{10}{1}\right] = 40 \qquad c_8^+ = \infty \qquad \qquad \left[0 - 40; 0 + \infty\right] = \left[-40; \infty\right]$$

Fragestellung

▶ In welchem Bereich $[b_k - b_k^-; b_k + b_k^+]$ kann die rechte Seite b_k der k-ten Nebenbedingung variieren, ohne dass die optimale Basislösung ihre Optimalität verliert, d. h. ein Basistausch notwendig wird?

Eine Änderung von bk beeinflusst die Schlupfvariable der k-ter 1. 基变量的情况: und q = p + k.

Unterscheidung, ob x_a Basis oder Nichtbasisvariable der Optin

- Basisvariable
 - $b b_{\mu}^{-} = x_{a}$, da bei diesem Wert die k-te Nebenbeding die Basis verlässt.
 - $b b_{\nu}^{+} = \infty$, da bei einer Vergrößerung der rechten Se erfüllt ist und somit x_a die Basis nicht verlässt.
- Nichtbasisvariable
 - $b_k^- = \infty$, falls alle a_{ia}^* nicht-positiv sind, sonst
 - $\triangleright b_k^- = \min \frac{b_j^*}{a_{in}^*}$ mit $j \neq k$ für positive a_{iq}^*
 - $b b_k^+ = \infty$, falls alle a_{iq}^* nicht-negativ sind, sonst
 - $\triangleright b_k^+ = \min \frac{b_i^*}{a^*}$ für negative a_{iq}^*

- $b_{\iota}^- = x_q$,其中 q 是结构变量的总数加上 k 。这表示如果第 k 个约束的右侧值减 小到 x_q , 约束将被等号满足, 这是最小的值而不需要进行基变换(即最优解不 变)。
- ・ $b_k^+=\infty$,表示第 k 个约束的右侧值可以无限增加而不会使得该约束不再以等式 满足 因此不需要讲行基变换
- 2. 非基变量的情况:
 - $b_{i}^{-}=\infty$,只要所有与约束相关的对偶变量 a_{i}^{*} ,都不是正的(即所有的 $a_{i}^{*}\leq 0$),这意味着可以减小 b_k 而不会使任何非基变量变得有利可图加入到基变量中。
 - $b_k^- = \min rac{b_j^*}{a_k^*}$,对于所有正的 a_{kj}^* ,是使第 k 个约束的右侧值减小而不引起基变 换的最小值。
 - $b_{k}^{+}=\infty$,只要所有与约束相关的对偶变量 $a_{k,i}^{*}$ 都不是负的(即所有的 $a_{k,i}^{*}\geq 0$
 - $b_k^+ = \min \frac{b_j^*}{a_k^*}$,对于所有负的 a_{kj}^* ,是使第k个约束的右侧值增加而不引起基 变换的最大值。

Sensitivitätsanalyse – Beispielproblem

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃					<i>X</i> ₈	b _i
X ₄	0	0	-27/5	1	-8/5	0	6/5	0	28
<i>X</i> ₂	0	1	0	0	0	0	1	0	90
<i>X</i> ₁	1	0	4/5	0	1/5	0	-2/5	0	34
<i>X</i> ₆	0	0	-4/5	0	-1/5	1	2/5	0	6
<i>X</i> 8	0	0	1	0	0	0	0	1	300
Z	0	0	40	0	20	0	10	0	7900

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	<i>X</i> ₈	b _i
<i>X</i> ₄	0	0	-27/5	1	-8/5	0	6/5	0	28
<i>X</i> ₂	0	1			0	0	1	0	90
<i>X</i> ₁	1	0	4/5	0	1/5	0	-2/5	0	34
<i>X</i> ₆	0	0	-4/5	0	-1/5	1	2/5	0	6
<i>X</i> ₈	0	0	1	0	0	0	0	1	300
Z	0	0	40	0	20	0	10	0	7900

- ▶ Diese Art der Sensitivitätsanalyse bezieht sich auf die Veränderung der rechten Seiten der Nebenbedingungen (b₁).
- ▶ Die Veränderung eines b_i beeinflusst die Schlupfvariable der jeweiligen Nebenbedingung. Im gegebenen Beispiel bezieht sich somit die Ressourcenbeschränkung der ersten Nebenbedingung auf x_4 , die der zweiten Nebenbedingung auf x_5 , die der 3. Nebenbedingung auf x_6 und so weiter.
- ▶ Zur Berechnung der Intervalle $[b_k b_k^-; b_k + b_k^+]$ muss nun wieder unterschieden werden, ob die Schlupfvariablen im Optimaltableau Basis- oder Nichtbasisvariablen sind. Aus dem Optimaltableau lässt sich ablesen, dass x_4 , x_6 und x_8 Basisvariablen und x_5 und x_7 Nichtbasisvariablen sind.

► Zunächst betrachten wir die Ressourcenbeschränkung der ersten Nebenbedingung *b*₁, diese bezieht sich auf die Schlupfvariable *x*₄.

- ➤ Zunächst betrachten wir die Ressourcenbeschränkung der ersten Nebenbedingung *b*₁, diese bezieht sich auf die Schlupfvariable *x*₄.
- ightharpoonup Der Ausgangswert der Ressourcenbeschränkung ist 480, somit ist $b_1=480$.

- ➤ Zunächst betrachten wir die Ressourcenbeschränkung der ersten Nebenbedingung b₁, diese bezieht sich auf die Schlupfvariable x₄.
- ▶ Der Ausgangswert der Ressourcenbeschränkung ist 480, somit ist $b_1 = 480$.
- ▶ Da x_4 eine Basisvariable ist, müssen die folgenden Regeln angewendet werden: $b_k^- = x_q^*$ und $b_k^+ = \infty$, wobei x_q^* der Optimalwert der Schlupfvariable ist.

$$b_1^- = 28$$
 $b_1^+ = \infty.$

- ➤ Zunächst betrachten wir die Ressourcenbeschränkung der ersten Nebenbedingung b₁, diese bezieht sich auf die Schlupfvariable x₄.
- ▶ Der Ausgangswert der Ressourcenbeschränkung ist 480, somit ist $b_1 = 480$.
- ▶ Da x_4 eine Basisvariable ist, müssen die folgenden Regeln angewendet werden: $b_k^- = x_q^*$ und $b_k^+ = \infty$, wobei x_q^* der Optimalwert der Schlupfvariable ist.

$$b_1^- = 28$$
 $b_1^+ = \infty.$

▶ Daraus lässt sich das Intervall für b_1 ableiten: $[480 - 28; 480 + \infty] = [452; \infty]$.

- ► Zunächst betrachten wir die Ressourcenbeschränkung der ersten Nebenbedingung b₁, diese bezieht sich auf die Schlupfvariable x₄.
- ightharpoonup Der Ausgangswert der Ressourcenbeschränkung ist 480, somit ist $b_1=480$.
- ▶ Da x_4 eine Basisvariable ist, müssen die folgenden Regeln angewendet werden: $b_k^- = x_q^*$ und $b_k^+ = \infty$, wobei x_q^* der Optimalwert der Schlupfvariable ist.

$$b_1^- = 28$$
 $b_1^+ = \infty.$

- ▶ Daraus lässt sich das Intervall für b_1 ableiten: $[480 28; 480 + \infty] = [452; \infty]$.
- ightharpoonup Analog lassen sich auch die Intervalle für b_3 und b_5 berechnen.

$$\begin{array}{lll} b_3 = 40 & b_3^- = 6 & b_3^+ = \infty & [40 - 6; 40 + \infty] = [34; \infty] \\ b_5 = 300 & b_5^- = 300 & b_5^+ = \infty & [300 - 300; 300 + \infty] = [0; \infty] \end{array}$$

	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	X 5	x 6	X 7	<i>X</i> ₈	bi	$\max z = $ s.t.		++	$50x_2$ $2x_2$		40 <i>x</i> ₃	< 480
X4	0	0	-27/5	1	-8/5	0	6/5	0	28	5.1.			_		-	_
	100		,	^	,		-/-				5 <i>x</i> ₁	+	$2x_2$	+	$4x_3$	< 350
x_2	0	1	0	0	0	0	1	0	90							< 40
X ₁	1	0	4/5	0	1/5	0	-2/5	0	34		<i>X</i> ₁					\(\perp \)
<i>x</i> ₆	0	0	-4/5	0	-1/5	1	2/5	0	6				<i>X</i> ₂			≤ 90
<i>X</i> ₈	0	0	1	0	0	0	0	1	300						<i>X</i> ₃	\leq 300
Z	0	0	40	0	20	0	10	0	7900						$X_{1,2,3}$	≥ 0
										− 223 −						

► Zunächst betrachten wir die Ressourcenbeschränkung der zweiten Nebenbedingung b₂, diese bezieht sich auf die Schlupfvariable x₅.

- ➤ Zunächst betrachten wir die Ressourcenbeschränkung der zweiten Nebenbedingung b₂, diese bezieht sich auf die Schlupfvariable x₅.
- ightharpoonup Der Ausgangswert der Ressourcenbeschränkung ist 350, somit ist $b_2=350$.

- ▶ Zunächst betrachten wir die Ressourcenbeschränkung der zweiten Nebenbedingung b_2 , diese bezieht sich auf die Schlupfvariable x_5 .
- ightharpoonup Der Ausgangswert der Ressourcenbeschränkung ist 350, somit ist $b_2=350$.
- ▶ Da x_5 im Optimaltableau eine Nichtbasisvariable ist und in der Spalte von x_5 nicht nur nicht-positive oder nicht nur nicht-negative Einträge vorhanden sind, muss für b_2^- die folgende Regel angewendet werden: $b_k^- = min \frac{b_1^+}{a_{lq}^+}$ für alle positiven a_{lq}^* .

$$b_2^- = \min\left[\frac{34}{\frac{1}{5}}\right] = 170.$$

- ▶ Zunächst betrachten wir die Ressourcenbeschränkung der zweiten Nebenbedingung b_2 , diese bezieht sich auf die Schlupfvariable x_5 .
- ▶ Der Ausgangswert der Ressourcenbeschränkung ist 350, somit ist $b_2 = 350$.
- ▶ Da x_5 im Optimaltableau eine Nichtbasisvariable ist und in der Spalte von x_5 nicht nur nicht-positive oder nicht nur nicht-negative Einträge vorhanden sind, muss für b_2^- die folgende Regel angewendet werden: $b_k^- = min \frac{b_1^*}{a_{lq}^*}$ für alle positiven a_{lq}^* .

$$b_2^- = \min\left[\frac{34}{\frac{1}{5}}\right] = 170.$$

Für die Berechnung von b_2^+ muss die folgende Regel angewendet werden: $b_k^+ = min - rac{b_k^-}{a_{iq}^+}$ für alle negativen a_{iq}^* .

$$b_2^+ = min\left[-\frac{6}{-\frac{1}{5}}; -\frac{28}{-\frac{8}{5}}\right] = 17,5.$$

- ▶ Zunächst betrachten wir die Ressourcenbeschränkung der zweiten Nebenbedingung b_2 , diese bezieht sich auf die Schlupfvariable x_5 .
- ▶ Der Ausgangswert der Ressourcenbeschränkung ist 350, somit ist $b_2 = 350$.
- ▶ Da x_5 im Optimaltableau eine Nichtbasisvariable ist und in der Spalte von x_5 nicht nur nicht-positive oder nicht nur nicht-negative Einträge vorhanden sind, muss für b_2^- die folgende Regel angewendet werden: $b_k^- = min \frac{b_1^*}{a_{lq}^*}$ für alle positiven a_{lq}^* .

$$b_2^- = \min\left[\frac{34}{\frac{1}{5}}\right] = 170.$$

Für die Berechnung von b_2^+ muss die folgende Regel angewendet werden: $b_k^+ = min - rac{b_k^+}{a_{lq}^+}$ für alle negativen a_{lq}^* .

$$b_2^+ = min\left[-\frac{6}{-\frac{1}{5}}; -\frac{28}{-\frac{8}{5}}\right] = 17.5.$$

▶ Daraus lässt sich das Intervall für b_2 ableiten: [350 - 170; 350 + 17,5] = [180; 367,5].

Analog lässt sich das Intervall für b₄ berechnen.

$$b_4 = 90$$
 $b_4^- = min\left[\frac{28}{\frac{6}{5}}; \frac{90}{1}; \frac{6}{\frac{2}{5}}\right] = 15$

$$b_4 = 90$$
 $b_4^- = min\left[\frac{28}{\frac{6}{5}}; \frac{90}{1}; \frac{6}{\frac{2}{5}}\right] = 15$ $b_4^+ = min\left[-\frac{34}{-\frac{2}{5}}\right] = 85$ $[90 - 15; 90 + 85] = [75; 175]$

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	X 6	X 7	<i>X</i> ₈	bi
X4	0	0	-27/5	1	-8/5	0	6/5	0	28
<i>X</i> ₂	0	1	0	0	0	0	1	0	90
<i>X</i> ₁	1	0	4/5	0	1/5	0	-2/5	0	34
<i>x</i> ₆	0	0	-4/5	0	-1/5	1	2/5	0	6
<i>X</i> ₈	0	0	1	0	0	0	0	1	300
z	0	0	40	0	20	0	10	0	7900