Maximum Points: 20 E2-243: Quiz 2 Duration: 30 minutes

1. State whether the following are TRUE or FALSE.

(1+1+1+1+1 points)

a) Let $\{f_n(x)\}_{n\geq 1}$ be a sequence of functions converging point-wise to f(x). Then, all $f_n(x)$ are bounded $\Rightarrow f(x)$ is bounded. **False**

Explanation Refer Lecture notes part-2 for the solution.

b) Let $\{f_n(x)\}_{n\geq 1}$ be a sequence of functions converging uniformly to f(x). Then, all $f_n(x)$ are bounded $\Rightarrow f(x)$ is not bounded. **False**

Explanation Refer Lecture notes part-2 for the solution.

c) Point-wise convergence preserves integrals. False

Explanation Refer Lecture notes part-2 for the solution.

d) Cauchy criteria ⇒ Convergence in real numbers but not vice-a-verse. False

Explanation From completeness axioms of real numbers, Cauchy criteria \iff Convergence in real numbers

e) Consider the sequence of functions defined over |x| < 1

$$f_n(x) = 1 + x + x^2 + \dots + x^n$$

This sequence of functions does not converge point-wise. False

Explanation This sequence converges point-wise to $\frac{1}{1-x}$, as |x| < 1.

2. Give an example to show that every uniformly convergent sequence of functions is also point-wise convergent and explain it in detail. (5 points)

Solution Consider the sequence of functions defined on [0, a], where a > 0 as shown below

$$f_n(x) = \frac{1}{n+x}$$

Point-wise convergence $\lim_{n\to\infty} f_n(x) = 0, \forall x \in [0, a]$

Uniform Convergence When $\lim_{n\to\infty} f_n(x) = f(x)$, if the sequence of functions are uniformly convergent, for a fixed ϵ there should exist unique N for all x.

$$|f_n(x) - f(x)| < \epsilon$$

$$\left|\frac{1}{n+x}\right| < \epsilon$$

As $x \in [0, a]$,

$$\frac{1}{n+x} \le \frac{1}{n} < \epsilon$$

Hence $N > \frac{1}{\epsilon}$ works for all x. Hence this is a uniformly convergent sequence.

(Or)

Using Weierstrass test

- $0 \le \frac{1}{n+x} \le M_n = \frac{1}{n}, \forall x \in [0, a].$
- $\lim_{n\to\infty} M_n \to 0$

Thus, this is uniformly convergent.

3. Prove $\sum_{n=1}^{\infty} |a_n|$ converges $\Rightarrow \sum_{n=1}^{\infty} a_n$ converges. (5 points)

Solution Consider a sequence $\{x_n\}_{n\geq 1}$ and let

$$S_n = x_1 + x_2 + x_3 + \dots + x_n$$

and

$$S'_n = |x_1| + |x_2| + |x_3| + \dots + |x_n|$$

When m > n, $S_m - S_n = x_{n+1} + x_{n+2} + \dots + x_m$.

Similarly $S'_m - S'_n = |x_{n+1}| + |x_{n+2}| + \dots + |x_m|$. Using,

$$x_i \le |x_i| \ \forall i \in \{1, 2, 3, ..\}$$

We obtain

$$S_m - S_n \le S_m' - S_n' \tag{1}$$

As it is given $\sum |x_n|$ converges, using Cauchy criterion for convergence of real number we can write

For every $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall m > n \geq N$ the following holds true

$$|S_m' - S_n'| < \epsilon$$

Using (1) we can write

$$|S_m - S_n| < \epsilon$$

Hence, $\sum x_n$ converges from cauchy criterion for convergence.

4. Consider a sequence of functions as defined on $(0, \infty)$ as shown below

$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$

Comment on point-wise convergence and uniform convergence of the sequence. (2+3 points)

Solution

Point-wise convergence $\lim_{n\to\infty} f_n(x) = f(x) = \frac{x}{\frac{1}{n} + nx^2} = 0, \forall x \in (0, \infty)$ Hence this sequence converges point-wise.

Uniform convergence When $\lim_{n\to\infty} f_n(x) = f(x) = 0$, if the sequence of functions are uniformly convergent, for a fixed ϵ there should exist unique N for all x.

$$|f_n(x) - f(x)| < \epsilon$$

$$|\frac{nx}{1+n^2x^2}| < \epsilon$$

As nx > 0,

$$|\frac{nx}{1+n^2x^2}|<|\frac{nx}{n^2x^2}|<\frac{1}{nx}<\epsilon$$

Now, we should find $N \in \mathbb{N}$ such that when n = N, the following equation is satisfied $\forall x \in (0, \infty)$.

$$\frac{1}{nx} < \epsilon$$

But, there does not exist such N, hence this is not a uniformly convergent sequence.

(Or)

 $f_n(x)$ has a maximum value of $\frac{1}{2}$ at nx = 1. Now fix $\epsilon = \frac{1}{4}$, the graph can't be trapped in ϵ -band. Hence this is not uniformly convergent.