Pattern mining

Basic concepts and methods

Pattern Mining: Basic Concepts and Methods

- Basic Concepts
- Frequent Itemset Mining Methods Apriori Algorithm
- Which Patterns Are Interesting? Pattern Evaluation Methods

Pattern Discovery: Basic Concepts

Basic Concepts

- What Is Pattern Discovery? Why Is It Important?
- Bäsic Concepts: Frequent Patterns and Association Rules
- Compressed Representation: Closed Patterns and Max-Patterns

What Is Pattern Discovery?

Motivating examples:

- What products were often purchased together?
- What are the subsequent purchases after buying an iPad?
- What code segments likely contain copy-and-paste bugs?
- What word sequences likely form phrases in this corpus?

What Are Patterns?

- What are patterns?
 - Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets

Frequent item set

Frequent sequences

Frequent structures

What Is Pattern Discovery?

- Pattern discovery:
 Uncovering patterns from massive data sets
- It can answer questions such as:
 - What products were often purchased together?
 - What are the subsequent purchases after buying an iPad?

Pattern Discovery: Why Is It Important?

- Finding inherent regularities in a data set
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis
 - Many types of data: spatiotemporal, multimedia, time-series, and stream data

Pattern Discovery: Basic Concepts

Basic Concepts

- What Is Pattern Discovery? Why Is It Important?
- Bäsic Concepts: Frequent Patterns and Association Rules
- Compressed Representation: Closed Patterns and Max-Patterns

Basic Concepts: Transactional Database

- Transactional Database (TDB)
 - Each transaction is associated with an identifier, called a TID.
 - May also have counts associated with each item sold

Tid	Items bought
1	Beer, Nuts, Diaper
2	Beer, Coffee, Diaper
3	Beer, Diaper, Eggs
4	Nuts, Eggs, Milk
5	Nuts, Coffee, Diaper, Eggs, Milk

Basic Concepts: k-Itemsets and Their Supports

Itemset: A set of one or more items

$$I = \{I_1, I_2, \cdots, I_m\}$$

k-itemset: An itemset containing k items:

$$X = \{x_1, ..., x_k\}$$

- Ex. {Beer, Nuts, Diaper} is a 3-itemset
- Absolute support (count)
 - sup{X} = occurrences of an itemset X
 - Ex. sup{Beer} = 3
 - Ex. sup{Diaper} = 4
 - Ex. sup{Beer, Diaper} = 3
 - Ex. sup{Beer, Eggs} = 1

Tid	Items bought
1	Beer, Nuts, Diaper
2	Beer, Coffee, Diaper
3	Beer, Diaper, Eggs
4	Nuts, Eggs, Milk
5	Nuts, Coffee, Diaper, Eggs, Milk

- Relative support
 - $S\{X\}$ = The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
 - \blacksquare Ex. s{Beer} = 3/5 = 60%
 - \Box Ex. s{Diaper} = 4/5 = 80%
 - \Box Ex. s{Beer, Eggs} = 1/5 = 20%

Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is *frequent* if the support of X is no less than a *minsup* threshold σ
- Let $\sigma = 50\%$ (σ : *minsup* threshold) for the given 5-transaction dataset
 - All the frequent 1-itemsets:
 - Beer: 3/5 (60%); Nuts: 3/5 (60%);
 Diaper: 4/5 (80%); Eggs: 3/5 (60%)
 - All the frequent 2-itemsets:
 - {Beer, Diaper}: 3/5 (60%)
 - All the frequent 3-itemsets?
 - None

Tid	Items bought
1	Beer, Nuts, Diaper
2	Beer, Coffee, Diaper
3	Beer, Diaper, Eggs
4	Nuts, Eggs, Milk
5	Nuts, Coffee, Diaper, Eggs, Milk

- Why do these itemsets (shown on the left) form the complete set of frequent k-itemsets (patterns) for any k?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

From Frequent Itemsets to Association Rules

- Compared to itemsets, association rules can be more telling
 - Ex. Diaper → Beer
 - Buying diapers may likely lead to buying beers

Note: $X \cup Y$: the union of two itemsets

■ The set contains both X and Y

From Frequent Itemsets to Association Rules

- □ How do we compute the strength of an association rule $X \rightarrow Y$ (Both X and Y are itemsets)?
- We first compute the following two metrics, s and c.
 - \Box Support of $X \cup Y$
 - \Box Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
 - \Box Confidence of $X \rightarrow Y$
 - The conditional probability that a transaction containing X also contains Y:

$$c = \sup(X, Y) / \sup(X)$$

 \Box Ex. $c = \sup{\text{Diaper, Beer}/\sup{\text{Diaper}}} = \frac{34}{2} = 0.75$

Tid	Items bought
1	Beer, Nuts, Diaper
2	Beer, Coffee, Diaper
3	Beer, Diaper, Eggs
4	Nuts, Eggs, Milk
5	Nuts, Coffee, Diaper, Eggs, Milk

☐ In pattern analysis, we are often interested in those rules that dominate the database, and these two metrics ensure the popularity and correlation of X and Y.

Mining Frequent Itemsets and Association Rules

Association rule mining

- Given two thresholds: minsup, minconf
- Find all of the rules, $X \rightarrow Y$ (s, c) such that $s \ge minsup$ and $c \ge minconf$
- Let minsup = 50%
 - □ Freq. 1-itemsets: Beer: 3, Nuts: 3,

Diaper: 4, Eggs: 3

Freq. 2-itemsets: {Beer, Diaper}: 3

- \Box Beer \rightarrow Diaper (60%, 100%)
- □ Diaper → Beer (60%, 75%)

	recinio boalbire
1	Beer, Nuts, Diaper
2	Beer, Coffee, Diaper
3	Beer, Diaper, Eggs
4	Nuts, Eggs, Milk
5	Nuts, Coffee, Diaper, Eggs, Milk

Items hought

Observations:

- Mining association rules and mining frequent patterns are very close problems
- Scalable methods are needed for mining large datasets

(Q: Are these all the rules satisfying the two conditions?)

Association Rule Mining: two-step process

1. Find all frequent itemsets:

- By definition, each of these itemsets will occur at least as frequently as a predetermined minimum support count, min_sup.
- This step is computationally expensive

2. Generate strong association rules from the frequent itemsets:

- By definition, these rules must satisfy minimum support and minimum confidence.
- This step is computationally inexpensive

Because of this, the overall performance is determined by step 1