```
In [9]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from scipy import stats
        import glob
        import geopandas
        import buildtools as bt
```

Read a single file as points

```
df = bt.read_blickfeld_log('object_list_1674494142583.json')
df.head()
```

Out[3]:		uuid	timestamp	pose.position.x	pose.position.y	pose.position.z	pose.orientation.x	pose.orientation.y	pose.orientation
	0	39b99482- cc81-454d- 8b25- 7b86854dd258	2023-01- 23T17:15:41.792557669Z	29.952789	25.005157	0	0	0	0.9251
	1	6bf7f61d- 2532-493b- b566- 4472c10afd7c	2023-01- 23T17:15:41.792557669Z	28.839567	16.688398	0	0	0	0.1394
	2	c35ebc1e- 877d-47c4- 9c6e- 91a566456f6a	2023-01- 23T17:15:41.792557669Z	3.119906	8.426128	0	0	0	0.9189(
	3	23eca0b8- d7b6-41df- b05b- 5d14b4d33271	2023-01- 23T17:15:41.792557669Z	0.526950	8.479430	0	0	0	-0.48746
	4	58d35268- 7c4f-4377- 9653-	2023-01- 23T17:15:41.792557669Z	13.388733	5.508290	0	0	0	0.86790

5 rows × 26 columns

df.plot(column='linearVelocity')

877658d51c13

```
df['linearVelocity'] = (df['linearVelocity.x']**2 + df['linearVelocity.y']**2)**.5
```

<AxesSubplot:> Out[6]:

0

-20

-10

Read a single file as a line

```
df = bt.read_blickfeld_log('object_list_1674494142583.json',geometry='line')
        df.plot()
        fail
        fail
        fail
        fail
        <AxesSubplot:>
Out[8]:
          20
         10
```

Write out the data with a Building Coordinate Reference System (BCRS)

```
In [73]: fn = 'object_list_1674494142583.json'
                                         df = bt.read_blickfeld_log(fn,geometry='line')
                                          # These are defined by the coordinate system of your space; the origin and rotation.
                                         lat, lon, rotation = 37.227546, -80.41708, -31
                                         crs = bt.make_bcrs(lat,lon,rotation,'cid_bcrs',method='aeqd')
                                         df.to_file('out/' + fn + '.shp',crs=crs)
                                         fail
                                         fail
                                         fail
                                         \texttt{C:} \verb|Users\\ thoma\\ \verb|AppData\\ \verb|Local\\ \verb|Temp\\ ipykernel\_5124\\ \verb|1323299147.py:9: UserWarning: Column names longer than 10 charms of the column names of the col
                                        acters will be truncated when saved to ESRI Shapefile.
                                              df.to_file('out/' + fn + '.shp',crs=crs)
```

Read multiple files and aggregate

20

40

60

```
In [75]: fns = glob.glob('N:\Projects\BUILD\percept_logs\*.json')
         fns = fns[500:520]
         df = pd.concat([bt.read_blickfeld_log(fn) for fn in fns])
         df_lines = bt.points_to_lines(df)
```

df lines.plot() In [76]: <AxesSubplot:>

Out[76]:

Make a vector plot

```
df = df.dropna()
         x,y,u,v = df['pose.position.x'].values,df['pose.position.y'].values, \
                   df['linearVelocity.x'].values,df['linearVelocity.y'].values
In [78]: plt.figure(figsize=(12,8))
```

plt.quiver(x,y,u,v) <matplotlib.quiver.Quiver at 0x2140efbc7f0> Out[78]:

