Цель работы: изучение спектрального состава периодических электрических сигналов.

В работе используются: анализатор спектра, генератор прямоугольных импульсов, генератор сигналов специальной формы, осциллограф.

В работе используется спектральный состав периодических электрических сигналов различной формы: последовательности прямоугольных импульсов, последовательности цугов и амплитудномодулированных гармонических колебаний. Спектры этих сигналов наблюдаются с помощью промышленного анализатора спектра и сравниваются с рассчитанными теоретически.

1 Теоретический материал

1.1 Анализатор спектра СК4-56

Восстановление спектрального состава входного сигнала f(t) происходит периодически с некоторым заданным периодом. Линейно нарастающее во времени напряжение с генератора разверстки подается на гетеродин, который генерирует переменное напряжение с частотой пропорциональной этому напряжению, но с постоянной амплитудой.

Исследуемый сигнал f(t) и переменное напряжение подается на смеситель. Для анализа используется только разностный сигнал (сигнал разностной частоты).

Со смесителя сигнал поступает на фильтр. Таким образом, мы получаем из спектра f(t) переменное напряжение с частотой равной разности частот гетеродина и фильтра ($\nu_{filter} = 128$ к Γ ц).

Затем эти колебания подаются на вертикальный вход электронно-лучевой трубки (далее ЭЛТ). Сигнал с генератора развёртки подаётся на горизонтальный вход ЭЛТ. Таким образом, получаем график $A(\nu)$, то есть фурье-спектр сигнала f(t).

1.2 Спектральный анализ

Рассмотрим функцию вида:

$$f(t) = A_1 * cos(\omega_1 * t - \alpha_1) + ... + A_n * cos(\omega_n * t - \alpha_n)$$
 или, что то же самое: $f(t) = \sum_{i=1}^n A_i * cos(\omega_i * t - \alpha_i)$

Причем A_i, ω_i, α_i - постоянные константы. Множество пар (ω_i, A_i) $i \subseteq 1..N$ - называется спектром функции f(t).

1.3 Периодические сигналы

Часто встречаемая задача - разложение сложного сигнала на гармонические колебания различных частот ω. Представление периодического сигнала в виде суммы гармонических сигналов называется разложением в ряд Фуръе.

Пусть заданная функция f(t) - периодически повторяется с частотой $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения сигнала f(t)

Её разложение в ряд Фурье имеет вид:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t)$$
(1)

или

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n)$$
(2)

 $\frac{a_0}{2}$ - среднее значение функции f(t). Постоянные a(n) и b(n) определяются выражениями:

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt$$
(3)

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt$$
 (4)

причем точку t_1 можно выбрать любую.

$$A_n = \sqrt{a_n^2 + b_n^2} \tag{5}$$

$$\psi_n = \arctan \frac{b_n}{a_n} \tag{6}$$

1.4 Примеры спектров периодических функций

Периодическая последовательность прямоугольных сигналов

Рис. 1: Периодическая последовательность прямоугольных импульсов

 V_0 - амплитуда, au - длительность, $\Omega_1 = \frac{2\pi}{T}$ - частота повторения. Согласно формуле $\frac{3}{T}$ находим:

$$\langle V \rangle = \frac{1}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 \, dt = V_0 \frac{\tau}{T}$$

$$a_n = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 \cos(n\Omega_1 t) dt \sim \frac{\sin(x)}{x}$$
 (7)

В силу чётности функции $\forall n \in \mathbb{N} \Rightarrow b_n = 0$

Периодическая последовательность цугов

Рассмотрим периодическую последовательность *цугов* гармонического колебания $V_0 \cos(\omega_0 t)$ с длительностью цуга τ . Тогда согласно 3:

$$a_n = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 \cos(\omega_0 t) \cdot \cos(n\Omega_1) dt$$
 (8)

Амплитудно-модулированные колебания

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых, в свою очередь, меняется по гармоническому закону с частотой $\Omega \ll \omega_0$.

$$f(t) = A_0[1 + m\cos(\Omega t)]\cos(\omega_0 t) \tag{9}$$

Рис. 3: Гармонические колебания, модулированные по амлитуде

Коэффициент m - глубина модуляции и по определению:

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} \tag{10}$$

Рис. 4: Спектр АМ-колебаний

Спектр АМ-колебаний содержит три составляющих. На Рис.4 колебание с частотой ω_0 является исходным, частота ω_0 - несущей, а колебания с частотами $\omega\pm\Omega$ - являются новыми гармоническими колебаниями с амлитудами $A_{bok}=\frac{A_0m}{2}$

2 Ход работы

2.1 Исследование спектра периодической последовательности прямоугольных импульсов

Соберем схему согласно рисунку выше. Получим спектр импульсов с параметрами $f_0=10^3$ Гц; $\tau=25$ мкс; частотный масштаб $m_x=5$ кГц/дел.

Проанализируем, как меняется спектр, в зависимости от au и f_0 .

 2τ 2 f_0

Как видно из фотографий, при увеличении τ ширина спектра $\triangle \nu$ уменьшается. А при увеличении f_0 возрастает амплитуда.

Проведем измерения $\Delta \nu(\frac{1}{\tau})$.

Как видно из графика, функция $\triangle \nu(\frac{1}{\tau})$ хорошо аппроксимируется линейной, с коэффициентом 1 перед $\frac{1}{\tau}$, что подтверждает справедливость соотношения неопределенностей ($\triangle \nu \triangle t \approx 1$).

τ , MKC	25.0	50.0	75.0	100.0	125.0	150.0	175.0	200.0
$1/ au$, 10^3 Гц	40.0	20.0	13.3	10.0	8.0	6.7	5.7	5.0
$\triangle \nu$, дел	7	4.5	3	2	1.5	1.25	1	0.75
$\triangle \nu, 10^3, \Gamma$ ц	35.0	22.5	15.0	10.0	7.5	6.3	5.0	3.8

Абсолютную погрешность измерений $\Delta \nu$ положим $\sigma_{\Delta \nu}=\frac{1}{2}$ клетки, то есть 2.5 к Γ ц.

Коэффициент наклона прямой, рассчитанный по методу наименьших квадратов, k=0.94 Для расчета погрешности определения коэффициента наклона прямой воспользуемся формулой:

$$\sigma_k = \frac{k_1 - k_2}{\sqrt{n}}$$

где k1 - коэффициент,при котором точек над графиком в два раза меньше, чем под графиком (k_2 - наоборот) получим $\sigma_k=0.1$

В итоге:

$$k = 0.9 \pm 0.1$$

Рис. 5: Спектры при разных длительностях импульсов ($\triangle \nu \triangle t \approx 1$)

$$\tau{=}50~\mathrm{mkc}$$
 $\tau=100~\mathrm{mkc}$

2.2 Исследование спектра периодической последовательности цугов гармонических колебаний

Соберем схему согласно рисунку выше. Получим спектр импульсов с параметрами $\nu_0=25\cdot 10^3~\Gamma$ ц; $\tau=25~\rm mkc$; частотный масштаб $m_x=5~\rm k\Gamma$ ц/дел.

Рассмотрим, как меняется спектр при изменении τ и ν_0 . Как видно из рисунка (см. Рис. 6 а) и б)) при увеличении τ ширина спектра $\Delta \nu$ уменьшается. Также мы видим, что их максимумы сдвинуты по частоте. Построим график зависимости $\Delta \nu(f)$. Как видно из графика (см. Рис. 7) зависимость линейная.

Рис. 6:

а)
$$\tau = 50$$
 мкс, $f_0 = 1$ к Γ ц б) $\tau = 100$ мкс, $f_0 = 1$ к Γ ц

в)
$$\tau = 100$$
 мкс, $\nu = 10$ к Γ ц

f , к Γ ц	1.0	2.0	3.0	4.0	5.0
$\triangle \nu$, дел	7.0	8.0	8.5	9.0	10.0
$\triangle \nu, 10^3, \Gamma$ ц	35.0	40.0	42.5	45	50

Абсолютную погрешность измерений $\Delta \nu$ положим $\sigma_{\Delta \nu} = \frac{1}{2}$ клетки, то есть 2.5 кГц. Однако график не подтверждает соотношение неопределенностей. Возможно, в процессе эксперимента была допущена ошибка в настройке прибора. Предположение об ошибке в настройке приборов подтверждает линейная зависимость: скорее всего, был выбран неправильный масштаб измерений.

2.3 Исследование спектра гармонических сигналов, модулированных по амлитуде

Соберем схему согласно рисунку выше и будем измерять глубину модуляции m. Чтобы измерить глубину модуляции, измерим A_{max} , A_{min} и подставим в формулу 10. Построим график отношения a_{side}/a_{gen} в зависимости от m.

Рассчитаем теоретический коэффициент наклона, воспользовавшись формулой:

$$f(t) = A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega t) + \frac{A_0 m}{2} \cos(\omega_0 - \Omega t). \tag{11}$$

$$a_{gen} = A_0, \ a_{side} = \frac{A_0 m}{2} \Rightarrow k_{theory} = 0.5$$

 $a_{gen}=A_0,\,a_{side}=rac{A_0m}{2}\Rightarrow k_{theory}=0.5.$ В результате эксперимента был получен коэффициент наклона k=

Посмотрим, как меняется спектр при 100% глубине модуляции в зависимости от частоты модулирующего сигнала.

$2A_{max}$, дел.	1.8	1.1	1.3	2.6	2.8
$2A_{min}$, дел.	1.0	0.8	0.5	0.2	0.1
\overline{m}	0.29	0.16	0.44	0.86	0.93
a_{side}	1.0	1.5	2.5	3.0	3.0
a_{gen}	7.0	6.8	7.0	7.0	6.5
a_{side}/a_{gen}	0.14	0.22	0.35	0.42	0.46

Построим график зависимости $a_{side}/a_{gen}(m)$.

Коэффициент наклона, рассчитанный по методу МНК, k = 0.4. Рассчитаем погрешность коэффициента наклона тем же методом, что и в пункте 2.1:

$$k = \frac{\langle xy \rangle}{x^2} \Rightarrow k = 0.54$$

Погрешность измерения $\sigma_k=\frac{k_1-k_2}{\sqrt{n}}=0.1\Rightarrow k=0.5\pm0.1,$ что хорошо совпадает с теоретическим значением.

Рис. 8: спектр при 100% модуляции.