THÉORIE DES LANGAGES

DEVAN SOHIER

Pour chacun des automates demandés par la suite, vous donnerez une représentation graphique, sa représentation formelle (quintuplet) et des exécutions sur deux mots : l'un appartenant au langage de l'automate, et l'autre pas.

Exercice 1

Donnez des automates reconnaissant les langages définis par les expressions régulières ci-dessous. On vous demande une construction "intuitive", et pas d'appliquer un algorithme.

- $(1) (a|b)^*$;
- (2) a^*b ;
- (3) ba^* ;
- $(4) \ a^*b|ba^*$;
- (5) (a*b|ba*)*.

Exercice 4

Construire par la méthode des ε -transitions, des automates reconnaissant les langages définis par les expressions régulières ci-dessous :

- (1) $1(0|1)^*|0$ (les entiers en binaire);
- (2) $1(0|1)^*|1$ (les entiers impairs en binaire);
- (3) $(a|b)^*aa(a|b)^*$ (les mots sur $\Sigma = \{a,b\}$ contenant deux a consécutifs);
- (4) $(b|ab)^*(a|\varepsilon)$ (les mots sur $\Sigma = \{a,b\}$ ne contenant pas deux a consécutifs);
- (5) $(a|b)(a|b|c)^*|\varepsilon$ (les mots sur $\Sigma = \{a, b, c\}$ ne commençant pas par un c);

Exercice 5

Construisez par la méthode des automates standards des automates reconnaissant les langages définis par les expressions régulières ci-dessous :

- $(1) (a|b)^*$;
- (2) a^*b ;
- (3) ba^* ;
- $(4) \ a^*b|ba^*$;
- $(5) (a^*b|ba^*)^*.$