Documentation: data input

- Transient 1D reactive transport class:
 - o Line 1: Name of the problem
 - o Line 2: Section separation
 - o Line 3: Section name
 - Line 4: Num_time (integer)
 - Number of time steps
 - Line 5: Delta_t (real)
 - Time step
 - Note: If discretization is not uniform, you must write the array of time steps on the same line
 - Line 6: int_method (integer)
 - Time integration method:
 - 1. Euler explicit
 - 2. Euler fully implicit
 - 3. Crank-Nicolson
 - o Line 7: end of section

'TITLE OF THE PRO	OBLEM: Gypsum in equilibrium'
'	'
'TIME'	
10	! number of time steps
1d1	! time step (we assume uniform time discretisation) Δt
1	! time integration method for chemical reactions
1*1	
'	'
'end'	

• Transient 1D transport class:

- o Line 1: Name of the problem
- o Line 2: Section separation
- o **Line 3**: Section name
- Line 4: Flag_porosity (logical), porosity (real scalar or vector)
 - Flag porosity=true: porosity is homogenous
 - Flag porosity=false: porosity is heterogeneous (in this case you must write the porosities in the same line)
- o **Line 5**: end of section
- o **Line 6**: Section separation
- o **Line 7**: Section name
- Line 8: num_mix_ratios (integer), mixing_ratios (real vector)
 - num_mix_ratios: number of mixing ratios in each target
 - mixing_ratios: mixing ratios in each target (contains sink/sources and boundary terms)
- o **Line 9**: end of mixing ratios pseudomatrix
- o Line 10: end of section
- Line 11: section separation
- o Line 12: name of section
- o Line 13: ind_tar_wat (integer), mix_wat_indices (integer vector)
 - *ind_tar_wat*: index of target water
 - mix_wat_indices: indices of target waters associated to each mixing ratio
- o **Line 14**: end of section
- o Line 15: end of file

'TITLE OF THE PROBLEM: Gypsum in equilibrium' 'TRANSPORT PROPERTIES' ! in this line: flag for homogeneous property, .true. 5d-1 porosity 'MIXING RATIOS' ! in each line: number of mixing ratios, mixing ratios at each target (including sink/sources and boundary terms) 1 1.00000E+00 3 9.20000E-01 4.20000E-02 3.80000E-02 3 9.20000E-01 4.20000E-02 3.80000E-02 9.20000E-01 4.20000E-02 3.80000E-02 3 9.20000E-01 4.20000E-02 3.80000E-02 3 9.20000E-01 4.20000E-02 3.80000E-02 1.00000E+00 0 ! indicates the end of the mixing ratios pseudomatrix 'MIXING WATERS' ! target water index, water indices in 'MIXING RATIOS' 1 1 2 3 3 8 8 9 9 10 I_1, I_2, I_3, \dots 10 10 11 11 11 'end'

Chemical system class:

- o Line 1: Name of the problem
- Line 2: Section separation
- o **Line 3**: Section name
 - If Section name = 'PRIMARY AQUEOUS SPECIES' or 'AQUEOUS COMPLEXES':
 - 0. **Line 3a**: *sp_name* (string)
 - Name of species in database "master25_modif.dat"
 - 1. **Line 3b**: end of section
 - If Section name = 'MINERALS' or 'GASES':
 - 0. **Line 3a**: sp_name (string), $flag_eq$ (logical), $flag_cst_act$ (logical)
 - sp_name: Name of species in database "master25_modif.dat"
 - o flag_eq: TRUE if equilibrium reaction, FALSE otherwise
 - o flag_cst_act: TRUE if species has constant activity, FALSE otherwise
 - 1. Line 3b: end of section
 - If Section name = 'REDOX REACTIONS':
 - 0. Line 3a: react_name (string), flag_eq (logical)
 - o react_name: Name of redox reaction in database "reacciones_monod.dat"
 - o flag_eq: TRUE if equilibrium reaction, FALSE otherwise
 - 1. **Line 3b**: end of section
 - If Section name = 'SURFACE COMPLEXES':
 - 0. **Line 3a**: *sp_name* (string)
 - o sp_name: Name of species in database "master25_modif.dat"
 - 1. **Line 3b**: end of section
- Line 4: end of sectionLine 5: end of file

'TITLE OF THE PROBLEM: Gypsum in equilibrium'		
'	'	
'PRIMARY AQUEOUS SPECIES'		
'h2o'	! name of primary aqueous species	
'ca+2'		
'so4-2'		
1*1		
'AQUEOUS COMPLEXES'		
1*1	! name of aqueous complex	
'MINERALS'		
'gypsum' .truetrue.	! name of mineral, flag equilibrium, flag constant activity	
¹*¹ .truetrue.		
'GASES'		
¹*¹ .truetrue.	! name of gas, flag equilibrium, flag constant activity	
'SURFACE COMPLEXES'		
1*1	! name of surface complex	
¹	'	
'end'		

Aqueous chemistry class:

- O Line 1: Name of the problem
- O Line 2: Section separation
- O Line 3: Section name: 'INITIAL AND BOUNDARY WATER TYPES'
- Line 4: act_coeffs_model (integer)
 - 0. Ideal
 - 1. Debye-Hückel
 - 2. Debye-Hückel extended
 - 3. Davies
 - 4. Truesdell-Jones
- O Line 5: num_wat_types (integer)
 - 0. Number of water types (include initial, recharge, boundary etc)
- Line 6: ind_wat_type (integer), temp (real)
 - *ind_wat_type*: index of water type
 - *temp*: temperature of solution
- Line 6a: name (string)
 - Name of water type
- o Line 6b: water type data begins
 - *Icon*: initial condition type
 - 1. prescribed primary concentration
 - 2. prescribed total concentration
 - 3. prescribed activity
 - 4. primary species is in equilibrium with a phase
 - Guess: Initial guess for primary species concentration
 - <u>Cto</u>t:
 - 0. *Icon=1*: primary species concentration
 - 1. *Icon=2*: total concentration of primary species
 - 2. *Icon=3*: activity of primary species
 - 3. Icon=4: activity of phase that is in equilibrium with this primary species
 - Constrain: if icon=4, it is the phase in equilibrium with the primary species
- o Line 6c: prim_sp_name (string), icon (integer), guess (real), ctot (real), constrain (string)
- o **Line 6d**: end of water type data
- o Line 7: end of section

'TITLE OF THE PROBLEM: Gypsum in equilibrium'	
'	
'INITIAL AND BOUNDARY WATER TYPES'	
0	! activity coefficients model
2	! number of water types
1 25.0	! index water type, temp (C)
'boundary'	! name of water type
' icon guess ctot constrain'	
'h2o' 1 1d0 1d0 "	
'ca+2' 1 1d-3 1d-3 "	
'so4-2' 4 1d-5 1d0 'gypsum'	
'*' 0 0.0 0.0 ''	
2 25.0	! index water type, temp (C)
'initial'	! name of water type
' icon guess ctot constrain'	
'h2o' 1 1d0 1d0 "	
'ca+2' 1 1d-5 1d-5 "	
'so4-2' 4 1d-5 1d0 'gypsum'	
'*' 0 0.0 0.0 ''	

Solid chemistry class:

- O Line 1: Section name: 'INITIAL MINERAL ZONES'
- O Line 2: num_min_zones (integer)
 - Number of mineral zones
- Line 3a: ind_min_zone (integer), temp (real)
 - *ind_min_zone*: index of mineral zone
 - *temp*: temperature of mineral zone
- o **Line 3b**: mineral zone data begins
- Line 3c: min_name (string), vol_frac (real), react_surf (real)
 - min_name: name of mineral in mineral zone (must be in the chemical system)
 - *vol.frac.:* initial volumetric fraction of mineral
 - react_surf: specific surface area
- o Line 3d: end of block
- Line 4: end of section

'INITIAL MINERAL ZONES'	
1	! number of mineral zones
1 25.0	! index of mineral zone, temp (C)
'mineral vol.frac. area(m2/m3rock)'	
'gypsum' 0.50 0.1d+3	
'*' 0.00 0.00	
·	······································

Gas chemistry class:

- O Line 1: Section name: 'INITIAL GAS ZONES'
- O Line 2: num_gas_zones (integer)
 - Number of gas zones
- Line 3a: ind_gas_zone (integer), temp (real), vol (real)
 - ind_gas_zone: index of gas zone
 - temp: temperature of gas zone
 - vol: total volume of gas
- o Line 3b: gas zone data begins
- Line 3c: gas _name (string), part_press (real)
 - gas_name: name of gas in gas zone (must be in the chemical system)
 - part_press: initial partial pressure (equivalent to activity) of gas
- o Line 3d: end of block
- o Line 4: end of section
- o Line 5: end of file

'INITIAL (GAS ZONES	1		
1				! number of initial gas zones
1	25	1d0		! index gas type, temp (ºC), volume
'gas			partial pressure'	! pressure in atm
'co2(g)'			3.5d-4	
'o2(g)'			2d-1	
'n2(g)'			7.99965d-1	
1*1			0.00	
'				'
'end'				

Chemistry class:

- O Line 3: Section name: 'TARGET WATERS'
- O Line 4: num_tar_wat (integer)
 - Number of target waters
- Line 5: Subsection name: 'external waters'
- o Line 5a: num_ext_wat (integer)
 - Number of external target waters
- Line 5b: ind_tar_wat (integer), iwtype (integer)
 - ind_tar_wat: Index target water
 - *iwtype*: Index water type
- Line 6: Subsection name: 'domain waters'
- Line 6a: ind_tar_wat (integer), iwtype (integer), ind_sol_zone (integer), ind_gas_zone (integer)
 - ind_tar_wat: Index target water
 - *iwtype*: Index water type
 - ind_sol_zone: Index solid zone
 - *ind_gas_zone*: Index gas zone
- o **Line 7**: end of section

'TITLE (OF THE PI	ROBLEM:	: Gypsum in equil	ibrium'
,				'
'TARGE	T WATER	RS'		
11				! number of target waters
				, names of talget naters
'extern	al waters	; '		
1				! number of external target waters (recharge, boundary, etc)
1	1			! target water index, water type index
'domai	n waters'			
2	2	1	0	! target water index, water type index, solid zone index, gas zone index
3	2	1	0	
4	2	1	0	
5	2	1	0	
6	2	1	0	
7	2	1	0	
8	2	1	0	
9	2	1	0	
10	2	1	0	
11	2	1	0	
'				'
'end'				

Chem_out_options type:

- Section 'TIME STEPS':
 - Line 1: *nits* (integer)
 - Nº intermediate time steps
 - If nits = 0: only initial and final waters are considered for output
 - If nits = -1: all intermediate time steps considered
 - Line 2: inter_time_steps (integer array)
 - Intermediate time steps
 - If *nits* < 1: skip line
 - Else: must have dimension = nits
- Section 'TARGET WATERS':
 - Line 1: notw (integer)
 - Nº output target waters
 - If notw = 0: all target waters considered
 - Line 2: tar_wat (integer array)
 - target waters
 - If *notw* = 0: skip line
 - Else: must have dimension = notw
- Section 'VARIABLES':
 - Line 1: var (string)
 - name of variable that will be included in output file
 - if var='all': all of them will be written
 - if <u>var='conc'</u>: concentrations
 - if <u>var='act'</u>: activities
 - if <u>var='react_rate'</u>: reaction rates
 - if <u>var='vol_frac'</u>: volumetric fractions of minerals
- Section 'AQUEOUS SPECIES':
 - Line 1: aq_sp_name (string)
 - Name of aqueous species that will be included in output file
 - If aq_sp_name='all': all aqueous species included
- Section 'MINERALS':
 - Line 1: min_name (string)
 - Name of minerals that will be included in output file
 - If min name='all': all minerals included
- o Section 'REACTIONS':
 - Line 1: react_name (string)
 - Name of reaction that will be included in output file
 - If react_name='all': all reactions included

'TITLE OF THE PROBLEM: G	ypsum in equilibrium'
'TIME STEPS'	
2	! number of intermediate output time steps
15	! intermediate time steps for output file
·	
'TARGET WATERS'	
6	! number of output targets
1357911	! targets for output file
·	
'VARIABLES'	! names of variables that will be written in output file
'conc'	
'react_rate'	
'vol_frac'	
1*1	
'AQUEOUS SPECIES'	! names of aqueous species that will be considered in output file
'all'	
'MINERALS'	! names of minerals that will be considered in output file
'all'	
1*1	
'REACTIONS'	! names of reactions that will be considered in output file
'gypsum'	
1*1	