Foundations of data science, summer 2020

Jonathan Lennartz, Michael Nüsken, Annika Tarnowski

8. Exercise sheet Hand in solutions until Thursday, 11 June 2020, 12:00

Exer	cise 8.1 (The greedy algorithm works). (14 points)	
comp	yould like to check that the greedy algorithm works in a further sense: pare the definition to the singular value decomposition, ie. numerithe result of the numpy command numpy.linalg.svd().	
	may use for your implementation that if we have a singular value deposition $A = \sum_{i < b} \sigma_i u_i\rangle \langle v_i $ we have that $ v_0\rangle$ is exactly the first singular	
vecto	or.	
(i)	Prove that the second singular vector $ v_1\rangle$ is exactly the first singular vector of the matrix	3
	$A \cdot (1 - v_0\rangle \langle v_0).$	
(ii)	Write a Python routine first that for any matrix A returns the first singular vector. You may use numpy.linalg.svd() for this.	4
(iii)	Randomly generate a matrix for at least dimension $d=4$ and sample size $n=8$ (to get an $n\times d$ -matrix). Apply this routine to the matrix to obtain the first singular vector and apply (i) to also obtain the second.	3
(iv)	Compare numerically the second singular vector to the vector $ v_1\rangle$ from the SVD given by numpy.linalg.svd().	1
(v)	With a method similar to (i), compute also the third singular vector and compare it to the SVD.	3