## Machine Learning Foundations

(機器學習基石)



Lecture 15: Validation

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)



## Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

### Lecture 14: Regularization

minimizes augmented error, where the added regularizer effectively limits model complexity

#### Lecture 15: Validation

- Model Selection Problem
- Validation
- Leave-One-Out Cross Validation
- V-Fold Cross Validation

## So Many Models Learned

## Even Just for Binary Classification ....

$$\mathcal{A} \in \{ \text{ PLA, pocket, linear regression, logistic regression} \} \\ \times \\ T \in \{ 100, 1000, 10000 \} \\ \times \\ \eta \in \{ 1, 0.01, 0.0001 \} \\ \times \\ \Phi \in \{ \text{ linear, quadratic, poly-10, Legendre-poly-10} \} \\ \times \\ \Omega(\mathbf{w}) \in \{ \text{ L2 regularizer, L1 regularizer, symmetry regularizer} \} \\ \times \\ \lambda \in \{ 0, 0.01, 1 \}$$

in addition to your favorite combination, may need to try other combinations to get a good g

#### Model Selection Problem



which one do you prefer? :-)



- given: M models  $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_M$ , each with corresponding algorithm  $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_M$
- goal: select  $\mathcal{H}_{m^*}$  such that  $g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$  is of low  $E_{\mathrm{out}}(g_{m^*})$
- unknown  $E_{out}$  due to unknown  $P(\mathbf{x}) \& P(y|\mathbf{x})$ , as always :-)
- arguably the most important practical problem of ML

how to select? visually?
—no, remember Lecture 12? :-)

# Model Selection by Best $E_{in}$



select by best Ein?

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}} (E_m = \underline{E}_{in}(\mathcal{A}_m(\mathcal{D})))$$



- Φ<sub>1126</sub> always more preferred over Φ<sub>1</sub>;  $\lambda = 0$  always more preferred over  $\lambda = 0.1$ —overfitting?
- if  $A_1$  minimizes  $E_{in}$  over  $\mathcal{H}_1$  and  $A_2$  minimizes  $E_{in}$  over  $\mathcal{H}_2$ ,
  - $\Longrightarrow q_{m^*}$  achieves minimal  $E_{in}$  over  $\mathcal{H}_1 \cup \mathcal{H}_2$
  - $\implies$  'model selection + learning' pays  $d_{VC}(\mathcal{H}_1 \cup \mathcal{H}_2)$
  - —bad generalization?

selecting by  $E_{in}$  is dangerous

# Model Selection by Best Etest



select by best  $E_{test}$ , which is evaluated on a fresh  $\mathcal{D}_{test}$ ?

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}} (E_m = E_{\text{test}}(\mathcal{A}_m(\mathcal{D})))$$



• generalization guarantee (finite-bin Hoeffding):

$$m{\mathcal{E}_{\mathsf{out}}(g_{\mathit{m}^*}) \leq m{\mathcal{E}_{\mathsf{test}}(g_{\mathit{m}^*})} + O\left(\sqrt{rac{\log \mathit{M}}{\mathit{N}_{\mathsf{test}}}}
ight)$$

- -yes! strong guarantee :-)
- but where is D<sub>test</sub>?—your boss's safe, maybe? :-(

selecting by Etest is infeasible and cheating

# Comparison between $E_{in}$ and $E_{test}$

### in-sample error Ein

- calculated from D
- feasible on hand

### test error E<sub>test</sub>

- calculated from  $\mathcal{D}_{\text{test}}$
- infeasible in boss's safe
- 'clean' as D<sub>test</sub> never used for selection before

#### something in between: E<sub>val</sub>

- calculated from  $\mathcal{D}_{\mathsf{val}} \subset \mathcal{D}$
- feasible on hand
- 'clean' if  $\mathcal{D}_{\text{val}}$  never used by  $\mathcal{A}_m$  before

selecting by  $E_{\text{val}}$ : legal cheating:-)

#### Fun Time

For  $\mathcal{X}=\mathbb{R}^d$ , consider two hypothesis sets,  $\mathcal{H}_+$  and  $\mathcal{H}_-$ . The first hypothesis set contains all perceptrons with  $w_1\geq 0$ , and the second hypothesis set contains all perceptrons with  $w_1\leq 0$ . Denote  $g_+$  and  $g_-$  as the minimum- $E_{\text{in}}$  hypothesis in each hypothesis set, respectively. Which statement below is true?

- 1 If  $E_{in}(g_+) < E_{in}(g_-)$ , then  $g_+$  is the minimum- $E_{in}$  hypothesis of all perceptrons in  $\mathbb{R}^d$ .
- 2 If  $E_{\text{test}}(g_+) < E_{\text{test}}(g_-)$ , then  $g_+$  is the minimum- $E_{\text{test}}$  hypothesis of all perceptrons in  $\mathbb{R}^d$ .
- The two hypothesis sets are disjoint.
- 4 None of the above

## Validation Set $\mathcal{D}_{val}$

$$E_{\text{in}}(h) \qquad \qquad E_{\text{val}}(h) \\ \uparrow \\ \mathcal{D} \qquad \rightarrow \qquad \underbrace{\mathcal{D}_{\text{train}}}_{\text{size } N-K} \qquad \cup \qquad \underbrace{\mathcal{D}_{\text{val}}}_{\text{size } K} \\ \downarrow \\ g_m = \mathcal{A}_m(\mathcal{D}) \qquad g_m^- = \mathcal{A}_m(\mathcal{D}_{\text{train}})$$

- $\mathcal{D}_{val} \subset \mathcal{D}$ : called **validation set**—'on-hand' simulation of test set
- to connect  $E_{\text{val}}$  with  $E_{\text{out}}$ :  $\mathcal{D}_{\text{val}} \stackrel{\textit{iid}}{\sim} P(\mathbf{x}, \mathbf{y}) \iff \text{select } K \text{ examples from } \mathcal{D} \text{ at random}$
- to make sure  $\mathcal{D}_{\text{val}}$  'clean': feed only  $\mathcal{D}_{\text{train}}$  to  $\mathcal{A}_m$  for model selection

$$E_{\mathsf{out}}(\underline{g_m^-}) \leq E_{\mathsf{val}}(\underline{g_m^-}) + O\left(\sqrt{rac{\log M}{K}}
ight)$$

# Model Selection by Best $E_{\text{val}}$

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}}(E_m = E_{\text{val}}(\mathcal{A}_m(\mathcal{D}_{\text{train}})))$$

generalization guarantee for all m:

$$E_{\mathsf{out}}(\underline{g_m^-}) \leq E_{\mathsf{val}}(\underline{g_m^-}) + O\left(\sqrt{\frac{\log M}{K}}\right)$$

heuristic gain from N – K to N:

$$E_{ ext{out}}\left(\underbrace{oldsymbol{g_{m^*}}}_{\mathcal{A}_{m^*}(\mathcal{D})}
ight) \leq E_{ ext{out}}\left(\underbrace{oldsymbol{g_{m^*}}}_{\mathcal{A}_{m^*}(\mathcal{D}_{ ext{train}})}
ight)$$

-learning curve, remember? :-)



$$E_{\mathrm{out}}(g_{m^*}) \leq E_{\mathrm{out}}(g_{m^*}^-) \leq E_{\mathrm{val}}(g_{m^*}^-) + O\left(\sqrt{\frac{\log M}{K}}\right)$$

#### Validation in Practice

#### use validation to select between $\mathcal{H}_{\Phi_5}$ and $\mathcal{H}_{\Phi_{10}}$



- in-sample: selection with E<sub>in</sub>
- optimal: cheating-selection with *E*<sub>test</sub>
- sub-g: selection with E<sub>val</sub> and report g<sub>m\*</sub>
- full-g: selection with  $E_{\text{val}}$  and report  $g_{m^*}$   $-E_{\text{out}}(g_{m^*}) \leq E_{\text{out}}(g_{m^*}^-)$ indeed

why is sub-g worse than in-sample some time?

#### The Dilemma about K

reasoning of validation:

- large K: every  $E_{\text{val}} \approx E_{\text{out}}$ , but all  $g_m^-$  much worse than  $g_m$
- small K: every g<sub>m</sub> ≈ g<sub>m</sub>,
   but E<sub>val</sub> far from E<sub>out</sub>



practical rule of thumb:  $K = \frac{N}{5}$ 

#### Fun Time

For a learning model that takes  $N^2$  seconds of training when using N examples, what is the total amount of seconds needed when running the whole validation procedure with  $K = \frac{N}{5}$  on 25 such models with different parameters to get the final  $g_{m^*}$ ?

- $0 6N^2$
- $2 17N^2$
- $3 25N^2$
- $4 26N^2$

#### Extreme Case: K = 1

#### reasoning of validation:

$$E_{
m out}(g) pprox E_{
m out}(g^-) pprox E_{
m val}(g^-) \ ({
m large} \ {\it K})$$

- take K=1?  $\mathcal{D}_{\text{val}}^{(n)}=\{(\mathbf{x}_n,y_n)\}$  and  $\mathbf{E}_{\text{val}}^{(n)}(\mathbf{g}_n^-)=\operatorname{err}(\mathbf{g}_n^-(\mathbf{x}_n),y_n)=e_n$
- make  $e_n$  closer to  $E_{\text{out}}(g)$ ?—average over possible  $E_{\text{val}}^{(n)}$
- leave-one-out cross validation estimate:

$$E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \text{err}(g_n^{-}(\mathbf{x}_n), y_n)$$

hope:  $E_{loocy}(\mathcal{H}, \mathcal{A}) \approx E_{out}(g)$ 

### Illustration of Leave-One-Out



### Theoretical Guarantee of Leave-One-Out Estimate

does  $E_{loocv}(\mathcal{H}, \mathcal{A})$  say something about  $E_{out}(g)$ ? yes, for average  $E_{out}$  on size-(N-1) data

$$\mathcal{E}_{\mathcal{D}} E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) = \mathcal{E}_{\mathcal{D}} \frac{1}{N} \sum_{n=1}^{N} e_{n} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{\mathcal{D}} e_{n}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{\mathcal{E}}{\mathcal{D}_{n}(\mathbf{x}_{n}, \mathbf{y}_{n})} \text{err}(\mathbf{g}_{n}^{-}(\mathbf{x}_{n}), \mathbf{y}_{n})$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{\mathcal{E}}{\mathcal{D}_{n}} E_{\text{out}}(\mathbf{g}_{n}^{-})$$

$$= \frac{1}{N} \sum_{n=1}^{N} \overline{E_{\text{out}}}(N-1) = \overline{E_{\text{out}}}(N-1)$$

expected  $E_{\text{loocv}}(\mathcal{H}, \mathcal{A})$  says something about expected  $E_{\text{out}}(g^-)$  —often called 'almost unbiased estimate of  $E_{\text{out}}(g)$ '

### Leave-One-Out in Practice



#### Fun Time

Consider three examples  $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3)$  with  $y_1 = 1$ ,  $y_2 = 5$ ,  $y_3 = 7$ . If we use  $E_{loocv}$  to estimate the performance of a learning algorithm that predicts with the average y value of the data set—the optimal constant prediction with respect to the squared error. What is  $E_{loocv}$  (squared error) of the algorithm?

- **1** 0
- 2 <u>56</u> 9
- $\frac{60}{9}$
- **4** 14

## Disadvantages of Leave-One-Out Estimate

### Computation

$$E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \text{err}(g_n^-(\mathbf{x}_n), y_n)$$

- N 'additional' training per model, not always feasible in practice
- except 'special case' like analytic solution for linear regression

## Stability—due to variance of single-point estimates



 $E_{loocv}$ : not often used practically

#### V-fold Cross Validation

### how to decrease computation need for cross validation?

- essence of leave-one-out cross validation: partition  $\mathcal D$  to N parts, taking N-1 for training and 1 for validation orderly
- V-fold cross-validation: random-partition of  $\mathcal{D}$  to V equal parts,

take V-1 for training and 1 for validation orderly

$$E_{\text{cv}}(\mathcal{H}, \mathcal{A}) = \frac{1}{V} \sum_{v=1}^{V} E_{\text{val}}^{(v)}(g_v^-)$$

• selection by  $E_{cv}$ :  $m^* = \underset{1 \le m \le M}{\operatorname{argmin}} (E_m = E_{cv}(\mathcal{H}_m, \mathcal{A}_m))$ 

practical rule of thumb: V = 10

#### Final Words on Validation

### 'Selecting' Validation Tool

- V-Fold generally preferred over single validation if computation allows
- 5-Fold or 10-Fold generally works well:
   not necessary to trade V-Fold with Leave-One-Out

#### Nature of Validation

- all training models: select among hypotheses
- all validation schemes: select among finalists
- all testing methods: just evaluate

validation still more optimistic than testing

do not fool yourself and others :-), report test result, not best validation result

#### Fun Time

For a learning model that takes  $N^2$  seconds of training when using N examples, what is the total amount of seconds needed when running 10-fold cross validation on 25 such models with different parameters to get the final  $g_{m^*}$ ?

- $1 \frac{47}{2} N^2$
- $247N^2$
- $\frac{407}{2}N^2$
- $407N^2$

## Summary

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

#### Lecture 14: Regularization

#### Lecture 15: Validation

- Model Selection Problem dangerous by E<sub>in</sub> and dishonest by E<sub>test</sub>
- Validation

### select with $E_{\text{val}}(\mathcal{A}_m(\mathcal{D}_{\text{train}}))$ while returning $\mathcal{A}_{m^*}(\mathcal{D})$

Leave-One-Out Cross Validation

#### huge computation for almost unbiased estimate

- V-Fold Cross Validation
   reasonable computation and performance
- next: something 'up my sleeve'