Mathematik II für Studierende der Informatik (Analysis und Lineare Algebra)

Thomas Andreae, Benjamin Göbel, Malte Moos

$\begin{array}{c} {\bf Sommersemester} \ {\bf 2013} \\ {\bf Blatt} \ {\bf 8} \end{array}$

A: Präsenzaufgaben am 6. Juni 2013

1. a) Schreiben Sie die Reihe

$$1 + \frac{4}{5} + \left(\frac{4}{5}\right)^2 + \left(\frac{4}{5}\right)^3 + \dots$$

und ebenfalls die n-te Partialsumme s_n dieser Reihe mit dem Summenzeichen auf. Konvergiert diese Reihe? Geben Sie ggf. den Grenzwert an.

b) Wie a) für

$$1 - \frac{4}{5} + \left(\frac{4}{5}\right)^2 - \left(\frac{4}{5}\right)^3 + \dots$$

c) Begründen Sie, weshalb für $q \in \mathbb{R}$ (mit |q| < 1) Folgendes gilt:

$$\sum_{i=0}^{\infty} q^i = \frac{1}{1-q} \ .$$

d) Für $q \in \mathbb{R}$ mit $|q| \geq 1$: Begründen Sie, weshalb die Reihe $\sum_{i=0}^{\infty} q^i$ divergiert.

2. Die Reihe

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

nennt man bekanntlich $Harmonische\ Reihe$; ihre n-te Partialsumme bezeichnet man mit H_n und man nennt H_n die n-te $harmonische\ Zahl$:

$$H_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$$
 $(n = 1, 2, \ldots).$

- a) Schreiben Sie sowohl H_n als auch die Harmonische Reihe mit dem Summenzeichen auf und berechnen Sie H_1, \ldots, H_4 .
- b) Begründen Sie (mündlich) anhand der folgenden Zeile, dass die Harmonische Reihe divergiert:

$$1 + \frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{\geq \frac{1}{2}} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{\geq \frac{1}{2}} + \underbrace{\frac{1}{9} + \ldots + \frac{1}{16}}_{\geq \frac{1}{2}} + \ldots$$

3. Wir betrachten die Reihe $\sum_{i=1}^{\infty} \frac{i}{i^2}$. Auf Seite 19/20 des Skripts wurde nachgewiesen, dass diese Reihe konvergiert – der Beweis war aber nicht sonderlich anschaulich. Nun soll mit Mitteln der Integralrechnung auf eine besonders anschauliche Art nachgewiesen werden, dass die Reihe $\sum_{i=1}^{\infty} \frac{i}{i^2}$ konvergiert.

Anleitung: Skizzieren Sie die Funktion $f(x)=\frac{1}{x^2}$ für x>0 und betrachten Sie geeignete Untersummen.

4. Weisen Sie die Konvergenz der Reihe $\sum_{i=1}^{\infty} \frac{i}{2^i}$ mit dem Quotientenkriterium nach.

Hinweis: Es ist hier (wie in vielen Fällen) zweckmäßig, die Limes-Version des Quotientenkriteriums zu verwenden.

B: Hausaufgaben zum 13. Juni 2013

1. a) In Präsenzaufgabe 4 haben wir die Konvergenz der Reihe $\sum_{i=1}^{\infty} \frac{i}{2^i}$ mit dem Quotientenkriterium nachgewiesen. Führen Sie dasselbe mit dem Wurzelkriterium durch. (Es ist zweckmäßig, die Limes-Version des Wurzelkriteriums zu verwenden.)

Hinweis: Es gilt $\sqrt[i]{i} \to 1$ für $i \to \infty$ (siehe Skript, Abschnitt 2.7.2).

- b) Weisen Sie die Konvergenz der Reihe $\sum_{i=0}^{\infty} \frac{(-1)^i \cdot i!}{i!}$ mit der Limes-Version des Quotientenkriteriums nach.
- c) Berechnen Sie den Konvergenzradius R der Potenzreihe $\sum_{i=0}^{\infty} i^2 2^i x^i$ auf zwei Arten:
 - (i) mit Hilfe der Limes-Version des Quotientenkriteriums;
 - (ii) mit Hilfe der Limes-Version des Wurzelkriteriums.

Hinweis zu c): Gehen Sie ähnlich vor wie im Beispiel auf Seite 121 (unten).

2. Entscheiden Sie, ob Konvergenz oder Divergenz vorliegt:

(i)
$$\sum_{i=1}^{\infty} \frac{-1}{2^{i+1}}$$
 (iii) $\sum_{i=1}^{\infty} \frac{1}{2(i+1)}$ (v) $\sum_{i=0}^{\infty} \frac{(-1)^i}{2i+1}$ (ii) $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{2^i}$ (vi) $\sum_{i=1}^{\infty} \frac{(-1)^i}{2i}$

(ii)
$$\sum_{i=1}^{\infty} \frac{(-1)^i \cdot i}{2(i+1)}$$
 (iv)
$$\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{2^i}$$
 (vi)
$$\sum_{i=1}^{\infty} \frac{(-1)^i}{2i}$$

Für (i) - (iv) gilt: Falls Konvergenz vorliegt, so ermittle man auch den Grenzwert. Falls Sie zu dem Ergebnis gekommen sind, dass im Fall (v) bzw. (vi) Konvergenz vorliegt: Haben Sie eine Idee, welches der Grenzwert ist?

3. a) Skizzieren Sie die Funktion $f(x) = \frac{1}{x}$ für x > 0 und erläutern Sie anhand der Skizze, weshalb Folgendes gilt:

$$\int_{1}^{n+1} \frac{1}{x} dx \le H_n \quad (n = 1, 2, \ldots). \tag{*}$$

Hinweis: Betrachten Sie eine geeignete Obersumme.

b) Erläutern Sie, weshalb (*) ebenfalls eine Begründung für die Divergenz der Harmonischen Reihe liefert.

Hinweis: Berechnen Sie das in (\star) linksstehende Integral.

4. Es sei $f: \mathbb{N} \to \mathbb{R}$ eine Funktion, für die $f(n) \to \infty$ für $n \to \infty$ gilt. In der Informatik wird in vielen Zusammenhängen danach gefragt, wie schnell f(n) gegen unendlich geht. Wir betrachten in dieser Aufgabe die Funktion

$$f(n) = H_n = \sum_{i=1}^{n} \frac{1}{i} \quad (n = 1, 2, ...),$$

die häufig bei der Analyse von Algorithmen auftritt, etwa bei der Laufzeitanalyse von QUICK-SORT, in der das Resultat dieser Ubungsaufgabe eine wichtige Rolle spielt (vgl. Cormen et al.: Algorithmen - Eine Einführung).

a) Zeigen Sie

$$H_n - 1 \le \ln(n) \le H_n \quad (n = 1, 2, ...).$$
 (1)

Hinweis: Die "Hälfte" von (1) wurde im Wesentlichen bereits in Aufgabe 3 erledigt.

b) Folgern Sie aus (1):

$$\lim_{n \to \infty} \frac{\ln(n)}{H_n} = 1. \tag{2}$$

Hinweis: Wenn a) erledigt ist, so geht b) recht schnell.

(Das Ergebnis (1) (bzw. (2)) können wir auch so aussprechen: Die Funktion $f(n) = H_n$ wächst nur recht langsam, nämlich etwa so wie ln(n).)