全国青少年信息学奥林匹克竞赛

NOI2023模拟

时间: 8:00-12:20

题目名称	倍数	花园	期望	分数
题目类型	传统型	传统型	传统型	传统型
目录	multiple	garden	expect	score
可执行文件名	multiple	garden	expect	score
输入文件名	multiple.in	garden.in	expect.in	score.in
输出文件名	multiple.out	garden.out	expect.out	score.out
每个测试点时限	1.0秒	2.0秒	1.0秒	1.0秒
内存限制	512 MB	$1024~\mathrm{MB}$	512MB	512MB
子任务数目	10	10	10	20
测试点是否等分	是	是	是	是

提交源程序文件名

对于C++语言	multiple.cpp	garden.cpp	expect.cpp	score.cpp
---------	--------------	------------	------------	-----------

编译选项

对于C++语言	-lm -std=c++14 -O2
---------	--------------------

注意事项与提醒 (请选手务必仔细阅读)

- 1.文件名 (程序名和输入输出文件名) 必须使用英文小写。
- 2. C++ 中主函数的返回值类型必须是 int,程序正常结束时的返回值必须是 0.
- 3.提交的程序代码文件的放置位置请参照各省的具体要求。
- 4.因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5.若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6.程序可使用的栈内存空间限制与题目的内存限制一致。
- 7.全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 内存 32GB。上述时限以此配置为准。
- 8.评测在当前最新公布的 NOI Linux 下进行, 各语言的编译器版本以其为准。
- 9.终评测时所用的编译命令中不含编译选项之外的任何优化开关。

倍数 (multiple)

【问题描述】

```
给定一个序列 a_1, a_2, \ldots, a_n。
```

一个合法的区间 [L,R] 满足 $\exists k \in [L,R], \forall i \in [L,R], a_k | a_i$ 。

即存在一个数 a_k ,满足区间内所有数都是 a_k 的倍数。

求最长的合法区间并输出这些区间的左端点。

【输入格式】

輸入的第一行一个整数 n, 第二行 n 个数 a_1, a_2, \ldots, a_n 。

【输出格式】

一行两个数 a,b 表示最长区间的个数 a 和最长区间的 R-L=b

然后一行按照递增顺序输出每个最长的区间的左端点

【样例输入1】

```
5
4 6 9 3 6
```

【样例输出1】

```
1 3
2
```

【样例输入2】

```
5
2 3 5 7 11
```

【样例输出2】

```
5 0
1 2 3 4 5
```

【数据范围及约定】

对于所有的数据,保证 $n \leq 5 \times 10^5, a_i < 2^{31}$ 。

测试点编号	n	$a_i <$
1	100	2^{31}
2	600	2^{31}
3	2000	2^{31}
4	20000	1001
5	20000	100001
6	20000	100001
7	100000	2^{31}
8	300000	2^{31}
9	500000	2^{31}
10	500000	2^{31}

花园 (garden)

【题目描述】

H 国是一个神秘的王国,疆域辽阔无边。吉吉是 H 国国王,他在计划分割疆域的一部分来建造他的花园。

 ${
m H}$ 网络可以考虑成一个充分大的二维网格,网格由从上到下和从左到右的正方形单元格密铺而成。有一个单元格是坐标原点。令 (x,y) 表示表示从原点向右移动 x 个单元格,再向上移动 y 个单元格所到达的单元格。这里,向左移动 a 个单元格意味着向右移动 a 个单元格。类似地,向下移动 a 个单元格意味着向上移动 a 个单元格。

在领土内有一些艺术品。这些艺术品根据放置在领土上的方式分为 A 类和 B 类。

- 有 N 种 A 类艺术品。第 i 种艺术品($1 \le i \le N$)放在每个形如($P_i + kD, Q_i + lD$)的单元格上,其中 k,l 为整数。
- 有 M 种 B 类艺术品。第 j 种艺术品($1 \le j \le M$)放在每个形如 $(R_j + kD, y)$ (其中 k, y 为整数)或 $(x, S_j + lD)$ (其中 l, x 为整数)的单元格上。

注意一个单元格中可能包含多种不同类别的艺术品。

吉吉计划在网格中选择一个矩形区域建造花园。换句话说,他会选择四个整数 a,b,c,d。然后形如 (x,y) 的单元格将构成吉吉的花园,其中 x,y 是满足 $a \le x \le b,c \le y \le d$ 的整数。因为吉吉喜欢看到多种艺术品,对于任意 N+M 种艺术品中的一种,吉吉的花园中需要至少包含这种艺术品中的一个。另一方面,如果吉吉计划要建的花园过大,H 国的居民就会生气。因此,吉吉希望最小化花园包含的单元格数使得满足上述条件。

给定艺术品的信息,写一个程序计算吉吉的花园所包含的最小单元格数。

【输入格式】

第一行三个整数 N, M, D。

接下来 N 行,每行两个整数 P_i,Q_i 。

接下来 M 行,每行两个整数 R_i, S_i 。

【输出格式】

输出一行一个整数,表示吉吉的花园所包含的最小单元格数。

【样例输入1】

2 1 5

1 4

2 2

0 0

【样例输出1】

8

【样例解释#1】

下图展示了 H 国领土中的满足 $0 \le x < 10, 0 \le y < 10$ 的单元格 (x, y)。

在本图中,圆形和菱形分别表示 A 类和 B 类艺术品。圆形或菱形中的整数表示艺术品的种数。如果 吉吉选择 a=1,b=2,c=2,d=5,吉吉的花园就是黑色矩形区域。这种情况下,对于这三种艺术品,吉吉的花园中至少会有每种中的一个。花园所占单元格数为 8。因为没有比这个花园占地更小且满足条件的花园了,因此输出 8。

这组样例满足所有子任务的限制。

【样例输入2】

【样例输出 2】

2840

【样例解释 2】

这组样例满足子任务 1,4,5,6 的限制。

【样例输入3】

5 7 5000
1046 365
4122 1166
4009 2896
1815 4065
4372 1651
2382 123
1475 836
3313 4005
2579 568
4300 4867
1050 3214
3589 4653

【样例输出3】

10543092

【样例解释 3】

这组样例满足子任务 1,5,6 的限制。

【数据范围】

对于所有数据,满足: $N,M\geq 1$, $N+M\leq 5\times 10^5$, $1\leq D\leq 5$ 000, $0\leq P_i,Q_i,R_j,S_j< D$

详细子任务附加限制及分值如下表所示。

子任务	附加限制	分值
1	$M \leq 8$	15
2	$D \leq 10, N+M \leq 5000$	10
3	$D \leq 50, N+M \leq 5000$	10
4	$D \leq 100, N+M \leq 5000$	20
5	$N+M \leq 5000$	25
6	无附加限制	20

期望 (expect)

【问题描述】

小 X 在玩 Flappy Bird 的简单模式

他的 Flappy bird 每次移动只能是从 (x,y) 到 (x+1,y)(x+1,y-1)(x+1,y+1),且 y 不能超过 $[1,k]\cap \mathbb{Z}$ 的范围。

简单模式下,只有一个位置会出现上下两个障碍物 a,b,表示覆盖了 $y\in [1,a]$ 和 $y\in [b,k]$ 的部分。

小 X 要从 $(1,\frac{k}{2})$ 飞到 $(n,\frac{k}{2})(2|k)$,现在只知道障碍物在 [2,n-1] 中的某一个位置随机出现。 求期望可行的飞行路径数量 $mod\ 10^9+7$ 。

【输入格式】

输入仅一行四个数 n, k, a, b 如题意。

【输出格式】

输出一行一个整数,表示期望的方案数 $mod~10^9+7$ 。

【样例输入1】

5 4 1 3

【样例输出1】

66666679

【样例1解释】

 $\frac{7+9+7}{3}$

【样例输入2】

5 6 2 5

【样例输出2】

13

【样例输入3】

100 20 4 14

【样例输出3】

725315636

【数据范围及约定】

对于所有的数据点,满足 $3 \leq n \leq 10^9, 1 \leq a < b \leq k \leq 130$ 且 k 为偶数。

测试点编号	$n \le$	$k \le$
1	100	70
2	1000	70
3	10000	70
4	100000	70
5	1000000	60
6	10^{9}	30
7	10^{9}	70
8	10^{9}	90
9	10^{9}	110
10	10^{9}	130

分数 (score)

【问题描述】

BS 中学由 n 栋教学楼组成,用 n-1 条道路连接成一棵树。

为了 pass 期末考,小 X 取得了 m 份答案,但是由于交接不便,这 m 份答案被藏在在这些教学楼中,每一份答案都被一把钥匙锁在盒子里。

已知这 m 份答案的位置 y_i 以及的每份答案的钥匙的位置 x_i ,每一份答案对于提高他的期末考成绩都有一定的影响,用一个值 w_i 表示。

但是由于不确定答案的真实性, w_i 可能会是负数。

这天小 X 准备拿这些答案,但是由于小 X 的行动方式过于诡异,如果经过同一个地方两次就会被抓去训话。

小 X 可以从任意一个地方开始行动,在任意一个地方结束行动,且每到达一栋教学楼后,他**一定会** 先收集钥匙,**一定会**再拿取答案。

请你帮小 \mathbf{X} 拿到最好的期末考分数,即最大的 w_i 之和。

【输入格式】

第一行输入两个正整数 n 和 m 表示教学楼数量和答案数量。

接下来 n-1 行,每行两个整数 a 和 b 描述一条道路;

接下来 m 行,每行三个整数 x_i, y_i, w_i 描述份答案。

【输出格式】

输出仅一行,输出小 X 的最好分数,保证答案 > 0。

【样例输入1】

- 4 2 1 2 2 3
 - 3 4
 - 1 1 100
 - 2 4 -5

【样例输出1】

100

【样例输入2】

4 3
1 2
1 3
1 4
2 1 1
1 3 2
1 3 5

【样例输出2】

8

【数据范围及约定】

对于所有的数据点,满足 $n,m \leq 10^5, |w_i| \leq 1000$ 。

测试点编号	$n \le$	$m \leq$	特殊性质
1	10	10	无
2	100	100	无
3	100	1000	无
4	1000	1000	无
5	100000	15	无
6	100000	15	无
7	100000	100000	$x_i = y_i$
8	100000	100000	$x_i = y_i$
9	100000	100000	$x_i = y_i$
10	100000	100000	$x_i = y_i$
11	100000	100000	$x_i = 1$
12	100000	100000	$x_i = 1$
13	100000	100000	树为一条链
14	100000	100000	树为一条链
15	100000	100000	树为一条链
16	100000	100000	树为一条链
17	100000	100000	无
18	100000	100000	无
19	100000	100000	无
20	100000	100000	无