Lógica e Álgebra de Boole

Introdução à Ciência da Computação ICC0001

Prof. Diego Buchinger

Introdução

- Muitos problemas podem ser resolvidos através de lógica:
 - Problema do menor número de jogadas do cavalo
 - Teste de Einstein
 - Inclusive operações matemáticas
- O que é Álgebra de Boole e o que ela tem a ver com isso?

Introdução

George Boole

- Álgebra Booleana ou álgebra de Boole (1854)
 - o Homenagem ao matemático inglês George Boole
 - o Realizar uma análise matemática da lógica
 - O Baseada nos sistemas binários
 - o (1938) Percebeu-se que os estudos de matemática lógica poderiam ser aplicados a circuitos lógicos:
 - Circuitos podem executar operações booleanas
 - Equações booleanas podem representar circuitos

Termos utilizados na Álgebra de Boole

• Variável:

• Letra ou símbolo que pode assumir qualquer valor em um conjunto de números, desde que o conjunto tenha mais de um número.

• Variável lógica:

O Variável de um problema que só pode assumir dois valores:

Verdadeiro (1) ou Falso (0)

Os dois valores são mutuamente excludentes:

$$A = 0 \text{ ou } 1$$
 $B = 0 \text{ ou } 1$

• Complemento:

o Indica o inverso de uma variável (\bar{A} ou A' \rightarrow A negado ou A barrado)

• Literal:

o Referencia uma variável lógica ou seu complemento.

Operações Booleanas

- Operação realizada sobre variáveis lógicas
- Compara valores e gera um novo valor lógico com base em regras bem definidas

Operações:

- o Adição ou Conjunção → Operador AND (E)
- o Multiplicação ou Disjunção → Operador OR (OU)
- o Negação → Operador NOT (NÃO)

Multiplicação / Disjunção Booleana

- Representada por AND, E ou . (ponto)
- Operador Binário (requer dois operandos)
- <u>REGRA</u>: uma sentença é verdadeira somente se ambos os operandos / termos forem verdadeiros
- Sinônimo de intersecção na teoria dos conjuntos
- Exemplo
 - A . B

Resultados possíveis:

$$0.0 = 0$$

 $0.1 = 0$

1.0 =
$$\mathbf{0}$$

$$1.1 = 1$$

Adição/Conjunção Booleana

- Representada por **OR**, **OU**, +
- Operador Binário (requer dois operandos)
- <u>REGRA</u>: uma sentença é verdadeira quando ao menos um dos operandos / termos for verdadeiro
- Sinônimo de união na teoria dos conjuntos
- Exemplo
 - \bullet A + B

Resultados possíveis:

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 1$

Negação ou Complemento Booleano

- Representada por **NOT**, **NÃO**, ' (apóstrofo) ou horizontal sobre o termo) (barra
- Operador Unário (requer um operando)
- REGRA: inverte o valor do literal
- Sinônimo de complemento em teoria dos conjuntos
- Exemplo
 - *Ā*

Resultados possíveis:

$$\overline{0} = 1$$

$$\overline{1} = 0$$

Tabela Verdade

- Conjunto de todas as possibilidades combinatórias entre os valores de diversas variáveis lógicas e um conjunto de operadores lógicos;
- Constrói-se uma tabela verdade com o objetivo de dispor de uma maneira prática os valores lógicos envolvidos em uma expressão lógica;
- Cada operador tem a sua coluna na tabela verdade;

Tabela Verdade

Negação

A	não A
F	V
V	F

Conjunção

Α	В	A e B
F	F	F
F	V	F
V	F	F
V	V	V

Disjunção

Α	В	A ou B
F	F	F
F	V	V
V	F	V
V	V	V

Funções Lógicas

- A composição de variáveis lógicas associadas a um resultado é uma função lógica:
 - \bullet X = A + B
 - \bullet $X = A \cdot B$

- O valor de X depende da combinação dos valores de A e B
- Poderia ser escrito como:
 - $\bullet \ F(A,B) = A + B$
 - F(A,B) = A . B

Funções Lógicas

Ordem de solução

• Em um dado momento é possível se deparar com mais de uma operação lógica em uma função:

$$F(A,B) = A + B \cdot \bar{A}$$

• A prioridade de solução dos operadores deve ser:

(i.e. resolver primeiro NOT, depois E, depois OU)

• Cuidado:

$$F(A,B) = \overline{A+B}$$

• Neste caso o operador NOT é aplicado ao resultado da disjunção.

Funções Lógicas

Ordem de solução

$$F(A,B) = A + B \cdot \bar{A}$$

- Se A for 1 e B for 0, o resultado será?
- E se A for 0 e B for 1?

$$F(A,B) = \overline{A+B}$$

• E neste caso?

Tabela Verdade

• $F(A,B) = A + B \cdot \bar{A}$

A	В	\overline{A}	$B.\overline{A}$	F(A,B)
F	F	V	F	F
F	V	V	V	V
V	F	F	F	V
V	V	F	F	V

OBS: Pode-se utilizar 1's e 0's ao invés de V's e F's (respectivamente). Ambos estão corretos.

Tabela Verdade

•
$$F(A,B) = \overline{A+B}$$

A	В	A + B	F(A,B)
F	F	F	V
F	V	V	F
V	F	V	F
V	V	V	F

Operador OU Exclusivo (XOR)

- Representada por XOR, 🕀 (símbolo da adição circulado)
- Operador Binário (requer dois operandos)
- <u>REGRA</u>: uma sentença é verdadeira quando apenas um dos operandos / termos for verdadeiro
- Sinônimo de diferença simétrica na teoria dos conjuntos
- $F(A,B) = A \oplus B$

A	В	F(A,B)
F	F	F
F	V	V
V	F	V
V	V	F

Implicação

- Representada por **Implica em** ou \rightarrow
- Operador Binário (requer dois operandos)
- $F(A,B) = A \rightarrow B$
- Uma implicação só não é verdadeira quando o antecedente é verdadeiro e o consequente é falso.
- Pode ser reescrita como: A' V B
- Ex: "Se João esquia, Maria nada"

A	В	F(A,B)
F	F	V
F	V	V
V	F	F
V	V	V

Bi-implicação

- Representada por **Bi-implica em** ou 👄
- Operador Binário (requer dois operandos)
- $F(A,B) = A \leftrightarrow B$
- Uma implicação só não é verdadeira quando o antecedente e o consequente são iguais.
- Ex: "João esquia, se e somente se, Maria nada"

• Pode ser reescrita como?

A	В	F(A,B)
F	F	V
F	V	F
V	F	F
V	V	V

Operador OU Exclusivo (XOR)

Tautologia

somente verdade

Contradição

somente falsidades

Contingência

demais casos

A	В	F(A,B)
F	F	V
F	V	V
V	F	V
V	V	V

A	В	F(A,B)
F	F	F
F	V	F
V	F	F
V	V	F

NOTA Computacional

 Em um computador é a unidade lógica e aritmética (ALU – Arithmetic Logic Unit) que realiza as operações lógicas booleanas e aritméticas sobre os dados digitais

Representação de circuitos

Álgebra de Boole e Circuitos

- Cada variável lógica é representada por uma trilha
- Cada operador lógico é representado por um componente

Componentes adicionais

• Para simplificar os circuitos existem componentes compostos. Os mais usuais são:

- NAND → Negação do AND
- o NOR → Negação do OR

Operador NAND

- Representa a negação de AND
- Resultado: inverso do operador AND

•
$$F(A,B) = \overline{A.B}$$

A	В	F(A,B)
F	F	V
F	V	V
V	F	V
V	V	F

Operador NOR

- Representa a negação de OR
- Resultado: inverso do operador OR

•
$$F(A,B) = \overline{A+B}$$

A	В	F(A,B)
F	F	V
F	V	F
V	F	F
V	V	F

Uso dos Componentes

Circuitos integrados

Uso dos Componentes

Transformar expressão lógica \rightarrow circuito:

$$F(A,B)=A+B.\overline{A}$$

Transformar expressão lógica \rightarrow circuito:

$$F(A,B) = A + B \cdot \overline{A}$$

Transformar expressão lógica \rightarrow circuito:

OBS: As trilhas podem passar "por cima" de outras trilhas, mas procurar evitar para facilitar o entendimento

$$F(A,B)=A+B.\overline{A}$$

Transformar expressão lógica \rightarrow circuito:

$$F(A,B) = \overline{A+B}$$

Transformar circuito \rightarrow expressão lógica:

$$F(A,B) = (\overline{A} \cdot B) \oplus \overline{A}$$

Transformar circuito \rightarrow expressão lógica:

$$F(A,B)=?$$

OBS: um circuito pode contar múltiplas saídas

34

Representação via Software

Logisim

Teoremas e Simplificações

Introdução

- Álgebra de Boole:
 - Variáveis lógicas
 - Representação de sentenças lógicas
 - Representação de circuitos como sentenças lógicas (vice-versa)
- Existe alguma motivação para simplificar expressões lógicas?

Introdução

- Existe alguma motivação para simplificar expressões lógicas?
 - Sim!!
 - Expressões com muitos operadores lógicos → circuitos com mais componentes → circuitos mais caros
 - Expressões com menos operadores lógicos → circuitos com menos componentes → circuitos mais baratos

Teoremas e Simplificações

- Algumas expressões lógicas podem ser simplificadas
- Fazemos simplificações mais sofisticadas & complexas com base em teoremas (simplificações) básicos
- Relembrando: em expressões lógicas podemos ter
 - <u>Variáveis lógicas</u>: que podem assumir os valores 1 ou 0
 - Constantes lógicas: que sempre assumem o valor 1 ou o valor 0

$$A + 0 = A$$

A	0	T(1) = A + 0
0	0	0
1	0	1

$$A + 1 = 1$$

A	1	T(2) = A + 1
0	1	0
1	1	1

$$A + A = A$$

A	T(3) = A + A
0	0
1	1

$$\mathbf{A} + \overline{\mathbf{A}} = \mathbf{1}$$

A	Ā	$T(4) = A + \overline{A}$
0	1	1
1	0	1

$$A \cdot 1 = A$$

A	1	$T(5) = A \cdot 1$
0	1	0
1	1	1

$$\mathbf{A} \cdot \mathbf{0} = \mathbf{0}$$

A	0	$T(6) = A \cdot 0$
0	0	0
1	0	0

$$A \cdot A = A$$

A	$T(7) = A \cdot A$
0	0
1	1

$$A \cdot \overline{A} = 0$$

A	Ā	$T(8) = A \cdot \overline{A}$
0	1	0
1	0	0

Teorema da dupla negação

$$\overline{\overline{A}} = A$$

A	Ā	$\overline{\overline{A}}$
0	1	0
1	0	1

Obs: parecido com "não encontrei ninguém"

Teorema de De Morgan

$$\overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$$

$$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$$

A	В	Ā	$\overline{\mathbf{B}}$	$\overline{A+B}$	$\overline{A.B}$	$\overline{\mathbf{A}}$. $\overline{oldsymbol{B}}$	$\overline{\mathbf{A}} + \overline{\mathbf{B}}$
0	0	1	1	1	1	1	1
0	1	1	0	0	1	0	1
1	0	0	1	0	1	0	1
1	1	0	0	0	0	0	0

Pausa para o café

Leis da Álgebra Booleana

• Lei Comutativa

$$A + B = B + A$$

A . B = B . A

Cuidado!!!

$$A + B \cdot C \neq B + A \cdot C$$

Pausa para o café

Leis da Álgebra Booleana

Lei Associativa

$$A + (B + C) = (A + B) + C$$

A . (B . C) = (A . B) . C

• <u>Lei Distributiva</u>

$$A.(B + C) = (A.B) + (A.C)$$

 $A + (B.C) = (A + B).(A + C)$

Nota: o caminho reverso também é possível

$$A + A \cdot B = A$$

A	В	A.B	$T(9) = A + A \cdot B$
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

$$A + A \cdot B = A$$

Pensando algebricamente:

$$A + A \cdot B$$

$$A \cdot (1 + B) \qquad [fatorando]$$

A [teorema 5]

$$A \cdot (A + B) = A$$

A	В	A + B	$T(10) = A \cdot (A + B)$
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

$$A \cdot (A + B) = A$$

Pensando algebricamente:

$$A \cdot (A + B)$$
 $(A + 0) \cdot (A + B)$ [teorema 1]
 $A + (0 \cdot B)$ [fatorando]
 $A + (0)$ [teorema 1]
 A

$$A \cdot B + A \cdot \overline{B} = A$$

A	В	$\overline{\mathbf{B}}$	A.B	$A.\overline{B}$	$T(11) = A.B + A.\overline{B}$
0	0	1	0	0	0
0	1	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1

$$A \cdot B + A \cdot \overline{B} = A$$

Pensando algebricamente:

 $A.B + A. \overline{B}$

A. $(B + \overline{B})$ [fatorando]

A

A.(1) [teorema 4]

[teorema 5]

$$(A + B) \cdot (A + \overline{B}) = A$$

A	В	$\overline{\mathbf{B}}$	A+B	$A+\overline{B}$	$T(12) = (A+B) \cdot (A.\overline{B})$
0	0	1	0	1	0
0	1	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	1

$$(A + B) \cdot (A + \overline{B}) = A$$

Pensando algebricamente:

$$(A + B) \cdot (A + \overline{B})$$
 $A + (B \cdot \overline{B})$ [fatorando]
 $A + (0)$ [teorema 7]
 A [teorema 1]

$$A + \overline{A}.B = A + B$$

A	В	Ā	A.B	$T(13) = A + \overline{A}.B$	A + B
0	0	1	0	0	0
0	1	1	1	1	1
1	0	0	0	1	1
1	1	0	1	1	1

$$A + \overline{A}.B = A + B$$

Pensando algebricamente:

$$A + \overline{A}.B$$
 $(A + \overline{A}).(A + B)$ [distributiva]
 $(1).(A + B)$ [teorema 4]
 $A + B$ [teorema 5]

$$A \cdot (\overline{A} + B) = A \cdot B$$

A	В	Ā	$\overline{A} + B$	$T(14) = A \cdot (\overline{A} + B)$	A.B
0	0	1	1	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	1	0	1	1	1

$$A \cdot (\overline{A} + B) = A \cdot B$$

Pensando algebricamente:

A.
$$(\overline{A} + B)$$

 $(A . \overline{A}) + (A . B)$ [distributiva]
 $(0) + (A . B)$ [teorema 8]
A. B [teorema 1]

$$A + B.C = (A + B).(A + C)$$

(Aplicação da distributiva)

Para confirmar a igualdade construa a tabela verdade ;)

$$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$$

(Aplicação da distributiva)

Para confirmar a igualdade construa a tabela verdade;)

$$A \cdot B + \overline{A} \cdot C = (A + C) \cdot (\overline{A} + B)$$

A princípio não há simplificação / redução, mas será útil mais para frente devido a mudança dos operadores lógicos

$$A \cdot B + \overline{A} \cdot C = (A + C) \cdot (\overline{A} + B)$$

A	В	C	AB	ĀC	AB+ĀC	(A+C)	$(\overline{A}+B)$	$(A+C) \cdot (\overline{A}+B)$
0	0	0	0	0	0	0	1	0
0	0	1	0	1	1	1	1	1
0	1	0	0	0	0	0	1	0
0	1	1	0	1	1	1	1	1
1	0	0	0	0	0	1	0	0
1	0	1	0	0	0	1	0	0
1	1	0	1	0	1	1	1	1
1	1	1	1	0	1	1	1	1

$$(A + C) \cdot (\overline{A} + B) = A \cdot B + \overline{A} \cdot C$$
 [invertido]

Fazendo
$$X = A+C$$

$$X \cdot (\overline{A} + B)$$

$$(X \cdot \overline{A}) + (X \cdot B)$$

$$((A+C) \cdot \overline{A}) + ((A+C) \cdot B)$$

$$(A \cdot \overline{A} + C \cdot \overline{A}) + (AB+BC)$$

$$0 + \overline{A}C + AB + BC$$

$$AB + \overline{A}C + BC$$

(... continua no próximo episódio...err.. .Teorema.)

$$(A.B) + (\overline{A}.C) + (B.C) = (A.B) + (\overline{A}.C)$$

A	В	C	Ā	AB	ĀC	BC	T(19)	$AB + \overline{A}C$
0	0	0	1	0	0	0	0	0
0	0	1	1	0	1	0	1	1
0	1	0	1	0	0	0	0	0
0	1	1	1	0	1	1	1	1
1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	1	0	0	1	0	0	1	1
1	1	1	0	1	0	1	1	1

$$(A.B) + (\overline{A}.C) + (B.C) = (A.B) + (\overline{A}.C)$$

Pensando algebricamente:

$$(A.B) + (\overline{A}.C) + (B.C)(1)$$
 [ident.]
$$(A.B) + (\overline{A}.C) + (B.C)(A+\overline{A})$$
 [ident. compl.]
$$(A.B) + (\overline{A}.C) + (B.C.A) + (B.C.\overline{A})$$
 [distrib.]
$$(A.B + A.B.C) + (\overline{A}.C + \overline{A}.C.B)$$

$$fazendo X = A.B e Y = \overline{A}.C$$

$$(X+XC) + (Y+YB)$$

$$X + Y = A.B + \overline{A}.C$$

$$(A+B) \cdot (\overline{A}+C) \cdot (B+C) = (A+B) \cdot (\overline{A}+C)$$

A	В	C	Ā	A+B	$\overline{\mathbf{A}} + \mathbf{C}$	B+C	T(20)	$(A+B) \cdot (\overline{A}+C)$
0	0	0	1	0	1	0	0	0
0	0	1	1	0	1	1	0	0
0	1	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	0	1	0	0	0	0
1	0	1	0	1	1	1	1	1
1	1	0	0	1	0	1	0	0
1	1	1	0	1	1	1	1	1

$$(A+B) \cdot (\overline{A}+C) \cdot (B+C) = (A+B) \cdot (\overline{A}+C)$$

Pensando algebricamente:

Mesma ideia do teorema 19

Fica como exercício

(ou quem sabe para a prova)

Tabelão

Ordem	Teorema	Ordem	Teorema
1	A + 0 = A	11	$A.B + A. \overline{B} = A$
2	A + 1 = 1	12	$(A+B) \cdot (A+\overline{B}) = A$
3	A + A = A	13	$A + (\overline{A} \cdot B) = A + B$
4	$A + \overline{A} = 1$	14	$A \cdot (\overline{A} + B) = A \cdot B$
5	A . 1 = A	15	A + B.C = (A+B).(A+C)
6	$A \cdot 0 = 0$	16	$A \cdot (B+C) = AB + AC$
7	A . A = A	17	$A.B + \overline{A}.C = (A+C).(\overline{A} + B)$
8	$A.\overline{A}=0$	18	$AB + \overline{A}C + BC = AB + \overline{A}C$
9	A + A.B = A	19	$(A+B).(\overline{A}+C).(B+C) = (A+B).(\overline{A}+C)$
10	$A \cdot (A + B) = A$		

Exemplo

$$(1) \quad F = A + \overline{ABC}$$

$$(2) \quad F = AB + C + B\overline{C}$$

(3)
$$F = AB \cdot \overline{(AC + \overline{A}B + CB)}$$

Lógica e Álgebra de Boole

Introdução à Ciência da Computação ICC0001

Prof. Diego Buchinger