CSCE 222-501 Discrete Structures for Computing Fall 2014 – Hyunyoung Lee

Problem Set 4

Due dates: Electronic submission of hw4.tex and hw4.pdf files of this homework is due on 10/13/2014 before 23:59 on csnet.cs.tamu.edu. Please do not archive or compress the files. A signed paper copy of the pdf file is due on 10/14/2014 at the beginning of class. If you do not turn in a signed hardcopy, your work will not be graded.

Name: Eric E. Gonzalez

Resources. (Discrete Mathematics and its Applications 7th Edition by Rosen)

On my honor, as an Aggie, I have neither given nor received any unauthorized aid on any portion of the academic work included in this assignment. Furthermore, I have disclosed all resources (people, books, web sites, etc.) that have been used to prepare this homework.

Signature:		
oignature:		

Problem 1. (5 points) Section 1.3, Exercise 10 (d), page 35

Solution.

(D)

$$P = [(p \lor q) \land (p \to r) \land (q \to r)] \to r$$

p	q	r	$p \lor q$	$p \rightarrow r$	$q \rightarrow r$	$(p \lor q) \land (p \to r)$	$(p \lor q) \land (p \to r) \land (q \to r)$	P
T	T	T	T	T	T	T	T	T
$\mid T$	T	F	T	F	F	F	F	$\mid T \mid$
$\mid T$	F	T	T	T	T	T	T	$\mid T \mid$
$\mid T$	F	F	T	F	T	F	F	$\mid T \mid$
F	T	T	T	T	T	T	T	$\mid T \mid$
F	T	F	T	T	F	T	F	$\mid T \mid$
F	F	T	F	T	T	F	F	$\mid T \mid$
F	F	F	F	T	T	F	F	$\mid T \mid$

Problem 2. (15 points) Section 1.3, Exercise 50, page 36 (you find the definition of functionally complete on page 35).

Solution.

(A)

p	p	$\downarrow p$	$p \neg q$
T	T	F	F
T	F	F	F
F	T	F	F
F	F	T	T

	p	q	$p \downarrow q$	$(p \downarrow q) \downarrow (p \downarrow q)$	$ (p \lor q) $
ĺ	T	T	F	T	T
	T	F	F	T	T
	F	T	F	T	T
	F	F	T	F	F

(C) Therefore, $\{\downarrow\}$ is a complete list of logical operators.

Problem 3. (10 points) Section 1.4, Exercise 32, page 55

Solution.

(a) All dogs have fleas.

 $\forall x (dog(x) \rightarrow fleas(x))$

Negation: $\forall x (dog(x) \rightarrow fleas(x)) \equiv \exists x (dog(x) \land fleas(x))$

There is a dog that does not have fleas.

(b) There is a horse that can add.

 $\exists x (horse(x) \land add(x))$

Negation: $\neg \exists x (horse(x) \land add(x)) \equiv \forall x (horse(x) \rightarrow \neg add(x))$ No horse can add.

(c) Every koala can climb.

 $\exists x (koala(x) \rightarrow climb(x))$

Negation: $\forall x (koala(x) \rightarrow climb(x)) \equiv \exists x (koala(x) \land \neg climb(x))$ There is a koala that cannot climb.

d) No monkey can speak French.

 $\forall x (monkey(x) \rightarrow \neg speakFrench(x))$

Negation: $\neg \forall x \ \neg (monkey(x) \rightarrow \neg speakFrench(x)) \equiv \exists x \ (monkey(x) \land speakFrench(x))$

There is a monkey that can speak French.

e) There exists a pig that can swim and catch fish.

 $\exists x \ (pig(x) \land swim(x) \land catchFish(x))$

Negation: $\neg \exists x (pig(x) \land swim(x) \land catchFish(x)) \equiv$

 $\forall x \neg (pig(x) \land swim(x) \land catchFish(x)) \equiv$

 $\forall x (pig(x) \rightarrow \neg(swim(x) \land catchFish(x)))$

There is no pig that can swim and catch fish.

Problem 4. (10 points) Section 1.5, Exercise 6, pages 64–65

Solution.

- (A) Randy Goldberg is enrolled in CS 252.
- (B) A student is enrolled in Math 695.
- (C) Carol Sitea is enrolled in a class.
- (D) A student is enrolled in Math 222 and CS 252.
- (E) If a student is enrolled in a certain class, then another student is enrolled in that same class.
- (F) If and only if a student is enrolled in a certain class, then another student is enrolled in that same class.

Problem 5. (10 points) Section 1.6, Exercise 4, page 78

Solution.

- (A) Simplification
- (B) Disjunctive syllogism
- (C) Modus ponens
- (D) Addition
- (E) Hypothetical syllogism

Problem 6. (10 points) Section 1.6, Exercise 8, page 78

Solution.

Universal instantiation and Modus tollens.

Problem 7. (10 points) Section 1.6, Exercise 14 (c) and (d), page 79

Solution.

(C) Step 1: Universal instantiation

Step 2: Modus ponens

Step 3: Universal instantiation

Step 4: Modus ponens

(D) Step 1: Existential instantiation

Step 2: Simplification

Step 3: Universal instantiation

Step 4: Modus ponens

Step 5: Simplification

Step 6: Conjunction

Step 7: Existential generalization

Problem 8. (10 points) Section 1.7, Exercise 18, page 91

Solution.

(A) Assume that n is odd. 3n + 2 = 3(2k + 1) + 2.

=6k+3+2

=6k + 5

=6(k+4)+1

=2(3k+2)+1

Which is odd.

Therefore, if n is an integer, and 3n + 2 is even, then n is also even.

(B) Seeking a proof by contradiction, assume that 3n + 2 is even and n is odd. Since n is odd, 3n + 2 is also odd since the product of two odd numbers is odd and remains odd when added by two. Therefore, the assumption is false. As such, if n is an integer, and 3n + 2 is even, then n is also even.

Problem 9. (10 points) Let n > 1 be an integer. Prove by contradiction that if n is a perfect square, then n + 3 cannot be a perfect square.

Solution.

If n is a perfect square, then there must exist some integer k such that $n = k^2$. Seeking a contradiction, we assume that if n is a perfect square, n + 3 is also a perfect square.

$$n = k^{2}$$

$$n + 3 = (k + 1)^{2} = k^{2} + 2k + 1$$

$$2k + 1 = 3$$

$$2k = 2$$

$$k = 1$$

$$k = 1$$

 $n = k^2 = (1)^2 = 1$

Since $n=1,\,n+3$ is not a perfect square because n>1 is needed for a perfect square. Statement holds by contradiction.

Problem 10. (10 points) Prove by induction that

$$\sum_{i=0}^{n} 3^{i} = \frac{3^{n+1} - 1}{2}$$

holds for every non-negative integer n.

Solution.

Let n = k + 1

Induction Basis: We assume that

$$\sum_{i=0}^{k+1} 3^0 = \frac{3^{0+1} - 1}{2}$$

simplifies to 1 = 1

Induction Step: Assume that

$$\sum_{i=0}^{k+1} 3^i = \frac{3^{(k+1)+1} - 1}{2}$$

which simplifies to:

$$\frac{3^{k+2}-1}{2} = \frac{3^{k+2}-1}{2}$$

As such, 1 = 1.

The statement holds for all non-negative integers n.

\mathbf{C}	hecklist:
	Did you add your name?
	Did you disclose all resources that you have used?
	(This includes all people, books, websites, etc. that you have consulted)
	Did you sign that you followed the Aggie honor code?
	Did you solve all problems?
	Did you submit (a) your latex source file and (b) the resulting pdf file of your
	homework on csnet?
	Did you submit (c) a signed hardcopy of the pdf file in class?