www.microcontroladores.cozm info@microcontroladores.com

1.- DESCRIPCION

Se trata de un driver de propósito general basado en el dispositivo L293B de la firma SGS-THOMSON. Se muestra en la figura 1.

Consiste en 4 canales amplificadores totalmente independientes entre si. Cada canal es capaz de soportar corrientes de salida de 1 A con picos de hasta 2 A. Poseen una alta inmunidad al ruido, protección de sobre temperaturas y tensión de alimentación de las cargas separada de la tensión de alimentación de la lógica. La señal de entrada de cada canal es compatible con señales TTL. Las señales de salida disponen de los correspondientes diodos de absorción para las corrientes inversas que generan las cargas inductivas. La figura 2 muestra el esquema simplificado del driver MSE-A100, junto con una descripción de sus señales.

SEÑAL	DESCRIPCION
E1-E4	Señales de entrada, una por cada canal. Estas
	señales son compatibles con niveles lógicos TTL.
S1-S4	Señales amplificadas de salida, una por cada canal.
	Estas se conectan a las cargas que se desean
	controlar. Cada salida puede soportar cargas de
	hasta 1 A.
+5Vcc	Entrada de +5V para alimentación de la lógica
	interna.
+VM	Entrada de tensión para la alimentación de las
	cargas cuyo valor máximo es de 35V
GND	Tierra de alimentación.

2.- CARACTERISTICAS TECNICAS

PARAMETRO	VALOR	UNIDAD
Dimensiones del circuito	45 x 33	mm
Tensión de alimentación para la lógica interna (+5Vcc)	5	V
Tensión máxima de alimentación de las cargas (+VM)	35	V
Tensión de entrada máxima en E1-E3 a nivel bajo	1.5	V
Tensión de entrada mínima en E1-E3 a nivel alto	2.3	V
Corriente máxima de entrada en E1-E3 a nivel bajo	-10	μΑ
Corriente típica de entrada en E1-E3 a nivel alto	30	μΑ
Intensidad máxima de salida en S1-S3	1000	mA
Intensidad de pico máxima en S1-S3	2000	mA
Disipación total de potencia	5	W

3. CONEXIONADO

Se realiza mediante una serie bornas que permiten una fácil conexión. Se presenta en la figura 3.

El driver MSE-A100 puede controlar diferentes tipos de cargas. A continuación se muestra, a modo de ejemplos, la conexión de MSE-A100 con diferentes tipos de periféricos. Así, la figura 4, muestra la conexión del driver con cargas luminosas de tipo led.

www.microcontroladores.cozm info@microcontroladores.com

La resistencia R de absorción asociada a cada led se debe calcular en función de la tensión +VM empleada según la siguiente fórmula: R = (+VM – VLED) / ILED

La figura 5 muestra la conexión del driver MSE-A100 con dos motores CC. Cada motor se conecta con dos de las salidas y se gobierna desde las correspondientes dos entradas. Tal y como se muestra en la tabla, es posible controlar la conexión/desconexión del motor así como el sentido de giro del mismo. También es posible regular la velocidad de cualquiera de los dos motores. Basta con aplicar por la entrada apropiada una señal PWM.

E1	E2	MOTOR 1
0	0	OFF
0	1	Giro horario
1	0	Giro antihorario
1	1	OFF

La figura 6 muestra la forma de conectar, a modo de ejemplo, dos relés y dos motores CC. En este caso tanto los relés como los motores se conectan a cada una de las 4 salidas disponibles, por lo que únicamente pueden tener el estado ON/OFF. En el caso de los motores sólo pueden tener un único sentido de giro, que será horario o antihorario en función de cómo se realicen las conexiones de los mismos.

www.microcontroladores.cozm info@microcontroladores.com

Finalmente, la figura 7 presenta la conexión del driver MSE-A100 con un motor paso a paso (P-P) de dos bobinas.

Según las combinaciones binarios que se apliquen por las entradas E1-E3, las bobinas se excitan con una determinada polaridad y produciendo un desplazamiento de rotación en el eje del motor. El número de grados de esta rotación o "paso" dependerá del motor empleado. Las siguientes tablas muestran las secuencias binarias que han de aplicarse para producir un giro en uno u otro sentido.

SENTIDO HORARIO							
PASO	E4	E3	E2	E1			
1	1	0	0	1			
2	0	1	0	1			
3	0	1	1	0			
4	1	0	1	0			

SENTIDO ANTI HORARIO						
PASO	E4	E3	E2	E1		
1	1	0	1	0		
2	0	1	1	0		
3	0	1	0	1		
4	1	0	0	1		

4.- AJUSTES

El driver MSE-A100 no necesita de ningún tipo de ajuste ni calibraci

5.- APLICACIONES

MSE-A100 es un driver de 4 canales de propósito general capaz de actuar sobre diferentes tipos de cargas. Su empleo está dirigido a cualquier aplicación en la que sea necesario amplificar señales lógicas de control para ser aplicadas a diferentes tipos de actuadores: diferentes tipos motores, relés, indicadores luminosos, sonoros, etc.