```
In [1]:
         import warnings
         warnings.filterwarnings("ignore")
In [2]: import pandas as pd
         import matplotlib. pyplot as plt
         import seaborn as sns
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LogisticRegression
In [3]: lung_data = pd.read_csv("survey lung cancer.csv")
         lung_data
In [4]:
Out[4]:
                                                                                    CHRONIC
               GENDER AGE SMOKING YELLOW_FINGERS ANXIETY PEER_PRESSURE
                                                                                              FATIGU
                                                                                    DISEASE
            0
                          69
                                     1
                                                       2
                                                                2
                                                                                 1
                                                                                           1
                     M
            1
                     Μ
                          74
                                     2
                                                       1
                                                                1
                                                                                 1
                                                                                           2
                     F
            2
                                     1
                                                                                 2
                          59
                                                       1
                                                                1
                                                                                           1
            3
                     Μ
                          63
                                     2
                                                       2
                                                                2
                                                                                 1
                                                                                           1
                     F
                          63
                                     1
                                                       2
                                                                                 1
                                                                1
                                                                                           1
           ...
                     F
                                                                                           2
          304
                          56
                                     1
                                                       1
                                                                1
                                                                                 2
                                     2
          305
                     Μ
                          70
                                                                1
                                                                                 1
                                                                                           1
                                     2
          306
                          58
                                                                1
                                     2
                                                                2
          307
                     Μ
                          67
                                                                                 1
                                                                                           1
          308
                          62
                                     1
                                                                1
                                                                                 2
                                                                                           1
                     M
         309 rows × 16 columns
         lung_data.head()
In [5]:
Out[5]:
                                                                                  CHRONIC
             GENDER AGE SMOKING YELLOW_FINGERS ANXIETY PEER_PRESSURE
                                                                                            FATIGUE
                                                                                  DISEASE
          0
                                                              2
                        69
                                   1
                                                     2
                                                                               1
                                                                                                  2
                   Μ
                                                                                         1
          1
                   Μ
                        74
                                   2
                                                     1
                                                              1
                                                                               1
                                                                                         2
                                                                                                  2
          2
                   F
                        59
                                   1
                                                     1
                                                                               2
                                                                                         1
                                                                                                  2
                                   2
                                                     2
                                                              2
          3
                   М
                        63
                                                                               1
                                                                                         1
                                                                                                  1
                   F
                                                     2
                        63
                                   1
                                                              1
          4
                                                                               1
                                                                                         1
                                                                                                  1
```

```
In [6]:
          lung_data.tail()
Out[6]:
                                                                                         CHRONIC
                GENDER AGE SMOKING YELLOW_FINGERS ANXIETY PEER_PRESSURE
                                                                                                    FATIGU
                                                                                          DISEASE
                      F
                                       1
                                                                                      2
           304
                           56
                                                          1
                                                                    1
                                                                                                 2
           305
                                       2
                                                                                      1
                      Μ
                           70
                                                          1
                                                                    1
                                                                                                 1
           306
                           58
                                       2
                                                                                      1
                      Μ
                                                          1
                                                                    1
                                                                                                 1
           307
                      Μ
                           67
                                       2
                                                                    2
                                                                                      1
                                                                                                 1
                                                                                      2
           308
                      M
                           62
                                       1
                                                                    1
                                                                                                 1
In [7]:
          #dependent_variable
          x = lung_data.iloc[:,0:-1]
          print(x)
              GENDER
                        AGE
                              SMOKING
                                        YELLOW_FINGERS
                                                            ANXIETY
                                                                      PEER_PRESSURE
          0
                         69
                                     1
                                                        2
                                                                   2
                    Μ
                                                                                     1
                                     2
          1
                    Μ
                         74
                                                        1
                                                                   1
                                                                                     1
                                     1
                                                                   1
          2
                    F
                         59
                                                        1
                                                                                     2
                                     2
                                                        2
                                                                   2
          3
                    Μ
                         63
                                                                                     1
          4
                    F
                                     1
                                                        2
                                                                   1
                                                                                     1
                         63
          304
                    F
                         56
                                     1
                                                        1
                                                                   1
                                                                                     2
          305
                    Μ
                         70
                                     2
                                                        1
                                                                   1
                                                                                     1
                                     2
                    Μ
                         58
                                                        1
                                                                   1
                                                                                     1
          306
          307
                    Μ
                         67
                                     2
                                                        1
                                                                   2
                                                                                     1
          308
                    Μ
                         62
                                     1
                                                        1
                                                                   1
                                                                                     2
                CHRONIC DISEASE
                                    FATIGUE
                                              ALLERGY
                                                         WHEEZING
                                                                     ALCOHOL CONSUMING
                                                                                            COUGHING
          0
                                           2
                                                      1
                                                                  2
                                                                                        2
                                1
                                                                                                    2
          1
                                2
                                           2
                                                      2
                                                                  1
                                                                                        1
                                                                                                    1
          2
                                1
                                           2
                                                      1
                                                                  2
                                                                                        1
                                                                                                    2
                                           1
                                                      1
                                                                  1
                                                                                        2
          3
                                1
                                                                                                    1
                                                                  2
          4
                                1
                                           1
                                                      1
                                                                                        1
                                                                                                    2
                                           2
          304
                                2
                                                      1
                                                                  1
                                                                                        2
                                                                                                    2
                                           2
                                                      2
                                                                  2
                                                                                        2
                                                                                                    2
          305
                                1
          306
                                           1
                                                      2
                                                                  2
                                                                                        2
                                                                                                    2
                                1
                                           2
                                                      2
                                                                  1
                                                                                        2
                                                                                                    2
          307
                                1
          308
                                           2
                                                      2
                                                                  2
                                                                                        2
                                                                                                    1
                                1
                SHORTNESS OF BREATH
                                         SWALLOWING DIFFICULTY
                                                                    CHEST PAIN
          0
                                     2
                                                                 2
                                                                               2
          1
                                     2
                                                                 2
                                                                               2
          2
                                     2
                                                                 1
                                                                               2
          3
                                     1
                                                                 2
                                                                               2
          4
                                     2
                                                                 1
                                                                               1
                                     2
                                                                               1
          304
                                                                 2
          305
                                     2
                                                                1
                                                                               2
          306
                                     1
                                                                 1
                                                                               2
                                     2
                                                                               2
          307
                                                                 1
          308
                                     1
                                                                 2
                                                                               1
```

[309 rows x 15 columns]

```
#independent_variable
In [8]:
         y = lung_data. iloc[:,-1:]
         print(y)
              LUNG_CANCER
         0
                      YES
         1
                      YES
         2
                       NO
         3
                       NO
         4
                       NO
         304
                      YES
         305
                      YES
                      YES
         306
         307
                      YES
                      YES
         308
         [309 rows x 1 columns]
 In [9]: lung_data.GENDER = lung_data.GENDER.map({"M":1,"F":2})
         lung_data.LUNG_CANCER = lung_data.LUNG_CANCER.map({"YES":1,"NO":2})
In [10]: lung_data.shape
Out[10]: (309, 16)
In [11]: |lung_data.isnull().sum()
Out[11]: GENDER
                                    0
         AGE
                                    0
         SMOKING
                                    0
         YELLOW FINGERS
                                    0
                                    0
         ANXIETY
                                    0
         PEER_PRESSURE
         CHRONIC DISEASE
                                    0
         FATIGUE
                                    0
         ALLERGY
                                    0
                                    0
         WHEEZING
         ALCOHOL CONSUMING
                                    0
         COUGHING
                                    0
         SHORTNESS OF BREATH
                                    0
                                    0
         SWALLOWING DIFFICULTY
         CHEST PAIN
                                    0
         LUNG_CANCER
                                    0
         dtype: int64
```

In [12]: lung_data.dtypes Out[12]: GENDER int64 AGE int64 **SMOKING** int64 YELLOW_FINGERS int64 **ANXIETY** int64 PEER_PRESSURE int64 CHRONIC DISEASE int64 **FATIGUE** int64 **ALLERGY** int64 WHEEZING int64 ALCOHOL CONSUMING int64 int64 COUGHING SHORTNESS OF BREATH int64 SWALLOWING DIFFICULTY int64 CHEST PAIN int64 LUNG_CANCER int64 dtype: object

In [13]: lung_data.head()

Out[13]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE
0	1	69	1	2	2	1	1	2
1	1	74	2	1	1	1	2	2
2	2	59	1	1	1	2	1	2
3	1	63	2	2	2	1	1	1
4	2	63	1	2	1	1	1	1
4								•

In [14]: lung_data.tail()

Out[14]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGU
304	2	56	1	1	1	2	2	
305	1	70	2	1	1	1	1	
306	1	58	2	1	1	1	1	
307	1	67	2	1	2	1	1	
308	1	62	1	1	1	2	1	
4								•

In [15]: #the describe() method returns description of data in DataFrame
lung_data.describe()

Out[15]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHR
count	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000	309.00
mean	1.475728	62.673139	1.563107	1.569579	1.498382	1.501618	1.50
std	0.500221	8.210301	0.496806	0.495938	0.500808	0.500808	0.50
min	1.000000	21.000000	1.000000	1.000000	1.000000	1.000000	1.00
25%	1.000000	57.000000	1.000000	1.000000	1.000000	1.000000	1.00
50%	1.000000	62.000000	2.000000	2.000000	1.000000	2.000000	2.00
75%	2.000000	69.000000	2.000000	2.000000	2.000000	2.000000	2.00
max	2.000000	87.000000	2.000000	2.000000	2.000000	2.000000	2.00
4							•

In [16]: #the info() method prints information of the database lung_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 309 entries, 0 to 308
Data columns (total 16 columns):

Ducu	COTAMILIS (COCAT TO COTAM		
#	Column	Non-Null Count	Dtype
0	GENDER	309 non-null	int64
1	AGE	309 non-null	int64
2	SMOKING	309 non-null	int64
3	YELLOW_FINGERS	309 non-null	int64
4	ANXIETY	309 non-null	int64
5	PEER_PRESSURE	309 non-null	int64
6	CHRONIC DISEASE	309 non-null	int64
7	FATIGUE	309 non-null	int64
8	ALLERGY	309 non-null	int64
9	WHEEZING	309 non-null	int64
10	ALCOHOL CONSUMING	309 non-null	int64
11	COUGHING	309 non-null	int64
12	SHORTNESS OF BREATH	309 non-null	int64
13	SWALLOWING DIFFICULTY	309 non-null	int64
14	CHEST PAIN	309 non-null	int64
15	LUNG_CANCER	309 non-null	int64

dtypes: int64(16)
memory usage: 38.8 KB


```
In [18]: lung_data['LUNG_CANCER'].value_counts()
```

Out[18]: 1 270 2 39

Name: LUNG_CANCER, dtype: int64

Out[22]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGU
0	1	69	1	2	2	1	1	
1	1	74	2	1	1	1	2	
2	2	59	1	1	1	2	1	
3	1	63	2	2	2	1	1	
4	2	63	1	2	1	1	1	
								•
304	2	56	1	1	1	2	2	
305	1	70	2	1	1	1	1	
306	1	58	2	1	1	1	1	
307	1	67	2	1	2	1	1	
308	1	62	1	1	1	2	1	

309 rows × 15 columns

```
In [23]: #independent_variable
y = lung_data.iloc[:,-1:]
y
```

Out[23]:

	LUNG_CANCER
0	1
1	1
2	2
3	2
4	2
304	1
305	1
306	1
307	1
308	1

309 rows × 1 columns

```
In [24]: from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import confusion_matrix
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import precision_score
    from sklearn.metrics import recall_score
    from sklearn.metrics import f1_score
```

```
In [26]: from sklearn.linear_model import LogisticRegression
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=1/3,random_state=0)
```

Logistic Regression

```
In [27]: #Fitting simple linear regression to the training test
    Model1 = LogisticRegression()
    Model1.fit(x_train, y_train)
    #Predicting the test set results
    prediction1 = Model1.predict(x_test)
```

```
In [28]: prediction1
```

```
from sklearn.metrics import confusion_matrix
In [29]:
         from sklearn.metrics import accuracy_score
         confusion_matrix(y_test,prediction1)
Out[29]: array([[85, 2],
                 [10, 6]], dtype=int64)
In [30]: | accuracy_score(y_test,prediction1)
Out[30]: 0.883495145631068
In [31]: from sklearn.metrics import precision_score
         probs = Model1.predict_proba(x_test)
         precision score(y test, prediction1, average = None)
Out[31]: array([0.89473684, 0.75
                                       1)
In [32]: | from sklearn.metrics import precision_score, recall_score, f1_score
         \# assuming your predicted and actual labels are stored in variables y_pred and y_
         accuracy = accuracy_score(y_test, prediction1)
         precision = precision_score(y_test, prediction1)
         recall = recall_score(y_test, prediction1)
         f1 = f1_score(y_test, prediction1)
         print("Accuracy:", accuracy)
print("Precision:", precision)
         print("Recall:", recall)
         print("F1 score:", f1)
         Accuracy: 0.883495145631068
         Precision: 0.8947368421052632
         Recall: 0.9770114942528736
         F1 score: 0.9340659340659342
In [33]: from sklearn.metrics import recall score
         from sklearn.metrics import f1 score
In [34]: recall_score(y_test, prediction1, average = None)
Out[34]: array([0.97701149, 0.375
                                       ])
In [35]: |f1_score(y_test, prediction1, average = None)
Out[35]: array([0.93406593, 0.5
                                       ])
```

```
In [36]: cm = confusion_matrix(y_true = y_test, y_pred = prediction1)
#plot_confusion_matrix(cm,level,title = "confusion_matrix")
sns.heatmap(cm, annot=True, cmap="Blues", fmt="d")
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.title("Confusion Matrix")
plt.show()
```


KNN

```
from sklearn.metrics import confusion_matrix
In [44]:
         from sklearn.metrics import accuracy_score
         confusion_matrix(y_test,prediction2)
Out[44]: array([[86, 1],
                [12, 4]], dtype=int64)
In [45]: from sklearn.metrics import precision_score, recall_score, f1_score
         # assuming your predicted and actual labels are stored in variables y pred and y
         accuracy = accuracy_score(y_test, prediction2)
         precision = precision_score(y_test, prediction2)
         recall = recall_score(y_test, prediction2)
         f1 = f1_score(y_test, prediction2)
         print("Accuracy:", accuracy)
         print("Precision:", precision)
         print("Recall:", recall)
         print("F1 score:", f1)
         Accuracy: 0.8737864077669902
         Precision: 0.8775510204081632
         Recall: 0.9885057471264368
         F1 score: 0.9297297297297
In [46]: |accuracy_score(y_test,prediction2)
Out[46]: 0.8737864077669902
In [47]: probs = Model1.predict_proba(x_test)
         precision_score(y_test, prediction2, average = None)
Out[47]: array([0.87755102, 0.8
                                      1)
In [48]: recall_score(y_test, prediction2, average = None)
Out[48]: array([0.98850575, 0.25
                                      1)
In [49]: | f1_score(y_test, prediction2, average = None)
Out[49]: array([0.92972973, 0.38095238])
```

```
In [50]: cm = confusion_matrix(y_true = y_test, y_pred = prediction2)
#plot_confusion_matrix(cm,level,title = "confusion_matrix")
sns.heatmap(cm, annot=True, cmap="Blues", fmt="d")
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.title("Confusion Matrix")
plt.show()
```


Decision Tree

```
In [54]: from sklearn.metrics import precision_score, recall_score, f1_score
         \# assuming your predicted and actual labels are stored in variables y_pred and y_
         accuracy = accuracy_score(y_test, prediction3)
         precision = precision_score(y_test, prediction3)
         recall = recall_score(y_test, prediction3)
         f1 = f1 score(y test, prediction3)
         print("Accuracy:", accuracy)
         print("Precision:", precision)
         print("Recall:", recall)
         print("F1 score:", f1)
         Accuracy: 0.8737864077669902
         Precision: 0.8775510204081632
         Recall: 0.9885057471264368
         F1 score: 0.9297297297297
In [55]: accuracy_score(y_test,prediction3)
Out[55]: 0.8737864077669902
In [56]: probs = Model1.predict_proba(x_test)
         precision_score(y_test, prediction3, average = None)
Out[56]: array([0.87755102, 0.8
                                      ])
In [57]: recall_score(y_test, prediction3, average = None)
Out[57]: array([0.98850575, 0.25
                                      1)
In [58]: |f1_score(y_test, prediction3, average = None)
Out[58]: array([0.92972973, 0.38095238])
```

```
In [59]: cm = confusion_matrix(y_true = y_test, y_pred = prediction3)
#plot_confusion_matrix(cm,level,title = "confusion_matrix")
sns.heatmap(cm, annot=True, cmap="Blues", fmt="d")
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.title("Confusion Matrix")
plt.show()
```


Support Vector Machine

```
In [62]: from sklearn.metrics import precision_score, recall_score, f1_score
         \# assuming your predicted and actual labels are stored in variables y_pred and y_
         accuracy = accuracy_score(y_test, prediction4)
         precision = precision_score(y_test, prediction4)
         recall = recall_score(y_test, prediction4)
         f1 = f1 score(y test, prediction4)
         print("Accuracy:", accuracy)
         print("Precision:", precision)
         print("Recall:", recall)
         print("F1 score:", f1)
         Accuracy: 0.8446601941747572
         Precision: 0.8446601941747572
         Recall: 1.0
         F1 score: 0.9157894736842105
In [63]: accuracy_score(y_test,prediction4)
Out[63]: 0.8446601941747572
In [64]: probs = Model1.predict_proba(x_test)
         precision_score(y_test, prediction4, average = None)
Out[64]: array([0.84466019, 0.
                                      ])
In [65]: recall_score(y_test, prediction4, average = None)
Out[65]: array([1., 0.])
In [66]: |f1_score(y_test, prediction4, average = None)
Out[66]: array([0.91578947, 0.
                                      ])
```

```
In [67]: cm = confusion_matrix(y_true = y_test, y_pred = prediction4)
#plot_confusion_matrix(cm,level,title = "confusion_matrix")
sns.heatmap(cm, annot=True, cmap="Blues", fmt="d")
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.title("Confusion Matrix")
plt.show()
```


Navie Bayes

```
In [70]: from sklearn.metrics import precision_score, recall_score, f1_score
         \# assuming your predicted and actual labels are stored in variables y_pred and y_
         accuracy = accuracy_score(y_test, prediction5)
         precision = precision_score(y_test, prediction5)
         recall = recall_score(y_test, prediction5)
         f1 = f1 score(y test, prediction5)
         print("Accuracy:", accuracy)
         print("Precision:", precision)
         print("Recall:", recall)
         print("F1 score:", f1)
         Accuracy: 0.8640776699029126
         Precision: 0.9101123595505618
         Recall: 0.9310344827586207
         F1 score: 0.9204545454545454
In [71]: accuracy_score(y_test,prediction5)
Out[71]: 0.8640776699029126
In [72]: probs = Model1.predict_proba(x_test)
         precision_score(y_test, prediction5, average = None)
Out[72]: array([0.91011236, 0.57142857])
In [73]: recall_score(y_test, prediction5, average = None)
Out[73]: array([0.93103448, 0.5
                                      1)
In [74]: |f1_score(y_test, prediction5, average = None)
Out[74]: array([0.92045455, 0.53333333])
```

```
In [75]: cm = confusion_matrix(y_true = y_test, y_pred = prediction5)
#plot_confusion_matrix(cm,level,title = "confusion_matrix")
sns.heatmap(cm, annot=True, cmap="Blues", fmt="d")
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.title("Confusion Matrix")
plt.show()
```


Random Forest

```
In [76]: from sklearn.ensemble import RandomForestClassifier

# Initialize the classifier

rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)

# Train the model using training dataset

rf_classifier.fit(x_train, y_train)

# Make predictions on test dataset

prediction6 = rf_classifier.predict(x_test)

# Evaluate the accuracy of the model

#accuracy = rf_classifier.score(x_test, y_test)

#print("Accuracy:", accuracy)
```

```
In [78]: from sklearn.metrics import precision_score, recall_score, f1_score
         \# assuming your predicted and actual labels are stored in variables y_pred and y_
         accuracy = accuracy_score(y_test, prediction6)
         precision = precision_score(y_test, prediction6)
         recall = recall_score(y_test, prediction6)
         f1 = f1 score(y test, prediction6)
         print("Accuracy:", accuracy)
         print("Precision:", precision)
         print("Recall:", recall)
         print("F1 score:", f1)
         Accuracy: 0.8932038834951457
         Precision: 0.9042553191489362
         Recall: 0.9770114942528736
         F1 score: 0.9392265193370166
In [79]: | accuracy_score(y_test,prediction6)
Out[79]: 0.8932038834951457
In [80]: probs = Model1.predict_proba(x_test)
         precision_score(y_test, prediction6, average = None)
Out[80]: array([0.90425532, 0.77777778])
In [81]: recall_score(y_test, prediction6, average = None)
Out[81]: array([0.97701149, 0.4375
                                      1)
In [82]: |f1_score(y_test, prediction6, average = None)
Out[82]: array([0.93922652, 0.56
                                      ])
```

```
In [83]: cm = confusion_matrix(y_true = y_test, y_pred = prediction6)
#plot_confusion_matrix(cm,level,title = "confusion_matrix")
sns.heatmap(cm, annot=True, cmap="Blues", fmt="d")
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.title("Confusion Matrix")
plt.show()
```


Out[84]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE
GENDER	1.000000	-0.021306	-0.036277	0.212959	0.152127	0.275564
AGE	-0.021306	1.000000	-0.084475	0.005205	0.053170	0.018685
SMOKING	-0.036277	-0.084475	1.000000	-0.014585	0.160267	-0.042822
YELLOW_FINGERS	0.212959	0.005205	-0.014585	1.000000	0.565829	0.323083
ANXIETY	0.152127	0.053170	0.160267	0.565829	1.000000	0.216841
PEER_PRESSURE	0.275564	0.018685	-0.042822	0.323083	0.216841	1.000000
CHRONIC DISEASE	0.204606	-0.012642	-0.141522	0.041122	-0.009678	0.048515
FATIGUE	0.083560	0.012614	-0.029575	-0.118058	-0.188538	0.078148
ALLERGY	-0.154251	0.027990	0.001913	-0.144300	-0.165750	-0.081800
WHEEZING	-0.141207	0.055011	-0.129426	-0.078515	-0.191807	-0.068771
ALCOHOL CONSUMING	-0.454268	0.058985	-0.050623	-0.289025	-0.165750	-0.159973
COUGHING	-0.133303	0.169950	-0.129471	-0.012640	-0.225644	-0.089019
SHORTNESS OF BREATH	0.064911	-0.017513	0.061264	-0.105944	-0.144077	-0.220175
SWALLOWING DIFFICULTY	0.078161	-0.001270	0.030718	0.345904	0.489403	0.366590
CHEST PAIN	-0.362958	-0.018104	0.120117	-0.104829	-0.113634	-0.094828
LUNG_CANCER	0.067254	-0.089465	-0.058179	-0.181339	-0.144947	-0.186388
4						>

```
In [85]: #Correlation
    cmap=sns.diverging_palette(260,-10,s=50, l=75, n=6,
    as_cmap=True)
    plt.subplots(figsize=(18,18))
    sns.heatmap(cn,cmap="Blues",annot=True, square=True)
    plt.show()
```



```
In [86]: num_list = list(lung_data.columns)

fig = plt.figure(figsize=(10,30))

for i in range(len(num_list)):
    plt.subplot(8,2,i+1)
    plt.title(num_list[i])
    plt.xticks(rotation=45)
    plt.hist(lung_data[num_list[i]],color='blue',alpha=0.5)

plt.tight_layout()
```


In []: