1 (currently amended). A compound of the formula I

wherein

Ring A is (C₃-C₈C₆)-cycloalkanediyl-or (C₃-C₈)-cycloalkanediyl, wherein one or more of the carbon atoms of said (C₃-C₈) cycloalkanediyl and (C₃-C₈) cycloalkanediyl groups are optionally replaced by an oxygen atom;

 R_1 , R_2 are each independently H, F, Br, CF₃, OCF₃, (C₁-C₆)-alkyl, O-(C₁-C₆)-alkyl, SCF₃, SF₅, OCF₂-CHF₂, O-phenyl, OH, or NO₂; or

 R_1 and R_2 , taken together with the carbon atoms of the phenyl ring to which they are attached, form a fused, unsaturated or completely or partially saturated bicyclic (C_9 - C_{12})-aryl-or (C_9 - C_{11}) heteroaryl ring system;

- R3 is H, CF₃, (C₁-C₆)-alkyl, (C₁-C₆)-alkoxy, (C₃-C₈)-cycloalkyl or phenyl;
- X is (C₁-C₆)-alkanediyl, wherein one or more carbon atoms therein is optionally replaced by an oxygen atom;
- Y is (C_1-C_6) -alkanediyl or (C_1-C_6) -alkenediyl, wherein one or more carbon atoms therein is optionally replaced by O, CO, S, SO or SO₂, and wherein said (C_1-C_6) -alkanediyl and (C_1-C_6) -alkenediyl groups are optionally substituted by OH;
- Ring B is a group selected from (a), (b) or (c):
 - (a) phenyl optionally mono- or disubstituted by $NO_{2, Cl, CN}$, (C_1-C_6) -alkyl or (C_1-C_6) -alkoxy
 - (b) tetrazole
 - (c) pyrrolidin-2-one wherein the pyrrolidinyl ring of said pyrrolidin-2-one group contains an additional nitrogen atom or a sulfur atom and is substituted by oxo or thioxo, and is optionally substituted on a nitrogen atom therein by R4;
- R4 is (C₁-C₆)-alkyl, phenyl or benzyl;

and pharmaceutically acceptable salts thereof.

2 (currently amended). The compound of Claim 1 wherein:

- Ring A is (C₃-C₂C₆)-cycloalkanediyl-or (C₃-C₂) cycloalkenediyl, wherein one of the carbon atoms of said (C₃-C₃) cycloalkanediyl and (C₃-C₃) cycloalkenediyl groups is optionally replaced by an oxygen atom;
- R1, R2 are each independently H, F, Br, CF₃, OCF₃, (C₁-C₆)-alkyl, O-(C₁-C₆)-alkyl, SCF₃, SF₅, OCF₂-CHF₂, O-phenyl, OH or NO₂; or

 R_1 and R_2 , taken together with the carbon atoms of the phenyl ring to which they are attached, form a fused, unsaturated or completely or partially saturated bicyclic (C₉- C_{12})-aryl-or- (C_9-C_{14}) -heteroaryl ring system;

- R3 is H, CF₃, (C₁-C₆)-alkyl, (C₃-C₈)-cycloalkyl or phenyl;
- X is (C₁-C₆)-alkanediyl, wherein one carbon atom therein is optionally replaced by an oxygen atom;
- is (C₁-C₆)-alkanediyl or (C₁-C₆)-alkenediyl, wherein one or two carbon atoms of said (C₁-C₆)-alkanediyl and (C₁-C₆)-alkenediyl groups are optionally replaced by O, CO, S, SO or SO₂, and wherein said (C₁-C₆)-alkanediyl and (C₁-C₆)-alkenediyl groups are optionally substituted by OH;
- Ring B is a group selected from (a), (b) or (c):
 - (a) phenyl optionally mono- or disubstituted by $NO_{2, Cl, CN}$ (C_1 - C_6)-alkyl or (C_1 - C_6)-alkoxy
 - (b) tetrazole
 - (c) pyrrolidin-2-one wherein the pyrrolidinyl ring of said pyrrolidin-2-one group contains an additional nitrogen atom or a sulfur atom in the 4-position and is substituted by oxo or thioxo in the 5-position, and is optionally substituted on the nitrogen atom in the 1-position by R4;
- R4 is (C₁-C₆)-alkyl, phenyl or benzyl;

and pharmaceutically acceptable salts thereof.

3 (currently amended). The compound of Claim 2 wherein:

Ring A is (C₂-C₂C₆)-cycloalkanediyl wherein one carbon atom therein is replaced by an exygen atom;

R₁, R₂ are each independently H, F, Br, CF₃, OCF₃, (C₁-C₆)-alkyl, O-(C₁-C₆)-alkyl, SCF₃, SF₅, OCF₂-CHF₂, O-phenyl, OH or NO₂; or

 R_1 and R_2 , taken together with the carbon atoms of the phenyl ring to which they are attached, form a fused, unsaturated or completely or partially saturated bicyclic (C_9 - C_{12})-aryl-or (C_9 - C_{11}) heteroaryl ring system;

- R3 is H, CF₃, (C₁-C₆)-alkyl, (C₃-C₈)-cycloalkyl or phenyl;
- X is (C_1-C_6) -alkanediyl, wherein the carbon atom in the 1-position is replaced by an oxygen atom;
- is (C₁-C₆)-alkanediyl or (C₁-C₆)-alkenediyl, wherein one or two carbon atoms of said (C₁-C₆)-alkanediyl and (C₁-C₆)-alkenediyl groups are optionally replaced by O, CO or SO₂, and wherein said (C₁-C₆)-alkanediyl and (C₁-C₆)-alkenediyl groups are optionally substituted by OH;
- Ring B is a group selected from (a), (b) or (c):
 - (a) phenyl optionally mono- or disubstituted by $NO_{2, Cl, CN}$, (C_1-C_6) -alkyl or (C_1-C_6) -alkoxy
 - (b) tetrazole
 - (c) pyrrolidin-2-one wherein the pyrrolidinyl ring of said pyrrolidin-2-one group contains an additional nitrogen atom or a sulfur atom in the 4-position and is substituted by oxo or thioxo in the 5-position, and is optionally substituted on the nitrogen atom in the 1-position by R4;
- R4 is (C_1-C_6) -alkyl, phenyl or benzyl;

and pharmaceutically acceptable salts thereof.

4 (currently amended). The compound of Claim 3 wherein:

Ring Ais cyclohexane-1,3-diyl;

R_{1.}R₂ are each independently H, F, Br, CF3, OCF3, (C₁-C₆)-alkyl, O-(C₁-C₆)-alkyl, SCF3, SF5, OCF2-CHF2, O-phenyl, OH or NO2; or

R1 and R2, taken together with the carbon atoms of the phenyl ring to which they are attached, form a fused, unsaturated bicyclic (C_9 - C_{10})-aryl-or (C_9 - C_{40})-heteroaryl ring system;

R3 is H, CF3, (C₁-C₆)-alkyl, (C₃-C₆)-cycloalkyl or phenyl;

X is CH2-O;

Y is (C_1-C_4) -alkanediyl, $O-(C_1-C_4)$ -alkenediyl, (C_1-C_4) -alkenediyl, $O-(C_1-C_4)$ -alkenediyl, $O-SO_2$ or O-CO, wherein said (C_1-C_4) -alkanediyl group is optionally substituted by OH;

Ring B is a group selected from (a), (b) or (c):

- (a) phenyl optionally mono- or disubstituted by $NO_{2, Cl, CN}$, (C_1-C_6) -alkyl or (C_1-C_6) -alkoxy
- (b) tetrazole
- (c) thiazolidin-1,4-dione optionally substituted by R4 on the nitrogen in the 3-position-atom;

R4 is (C₁-C₆)-alkyl, phenyl or benzyl;

and pharmaceutically acceptable salts thereof.

5 (original). The compound of Claim 4 wherein:

Ring A is cyclohexane-1,3-diyl;

R₁, R₂ are each independently H, F, Br, CF₃, (C₁-C₆)-alkyl or O-(C₁-C₆)-alkyl; or

 R_1 and R_2 , taken together with the carbon atoms of the phenyl ring to which they are attached, form naphthyl;

R3 is (C₁-C₆)-alkyl, (C₅-C₆)-cycloalkyl or phenyl;

X is CH2-O;

Y is (C1-C₄)-alkanediyl, O-(C1-C₄)-alkanediyl, (C1-C₄)-alkenediyl, O-(C1-C₄)-alkenediyl, O-SO₂ or O-CO, where said (C1-C₄)-alkanediyl group is optionally substituted by OH;

Ring B is a group selected from (a), (b) or (c):

- (a) phenyl optionally mono- or disubstituted by $NO_{2, Cl, CN}$, (C_1-C_6) -alkyl or (C_1-C_6) -alkoxy
- (b) tetrazole
- (c) thiazolidin-2,4-dione optionally substituted by R4 on the nitrogen in the 3-position;

R4 is (C₁-C₆)-alkyl, phenyl or benzyl;

and pharmaceutically acceptable salts thereof.

6 (original). The compound of Claim 5 wherein:

R2 is hydrogen; and

R1 is attached to the carbon of the phenyl ring that is meta- or para- to the carbon by which the phenyl ring is attached to the oxazole ring.

7 (original). The compound of Claim 6 wherein:

Y is -CH2-CH2-.

8 (original). A pharmaceutical composition comprising a pharmaceutically acceptable carrier and one or more compounds of Claim 1.

9 (original). The pharmaceutical composition of Claim 8 further comprising at least one additional active ingredient.

10 (canceled).

11 (original). The pharmaceutical composition of Claim 9 wherein said additional active ingredient is an antidiabetic.

12 (original). The pharmaceutical composition of Claim 9 wherein said additional active ingredient is a lipid modulator.

13 (original). A method of treating disorders of fatty acid metabolism and glucose utilization comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1.

- 14 (original). A method of treating disorders of insulin resistence comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1.
- 15 (original). A method of treating diabetes mellitus including the prevention of the squelae associated therewith comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Claim I.
- 16 (original). A method of treating dyslipidemia and squelae associated therewith comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1.
- 17 (original). A method of treating metabolic syndrome and conditions associated therewith comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1.
- 18 (original). A method of treating disorders of fatty acid metabolism and glucose utilization comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1 in combination with at least one further active compound.
- 19 (original). A method of treating disorders of insulin resistance comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1 in combination with at least one further active compound.