

EN2091 – Laboratory Practice and Projects

Analog Function Generator

Vanguard Silicon

Project Objectives

Waveform Generation

capable of producing sine, square, sawtooth, and triangular waveforms

Variable Amplitude

to offer variable output amplitudes ranging from 0V to 10V

Load Compatibility

can drive at least a 50Ω load without significant waveform distortion

Clean and Noise-Free Waveforms

to deliver clean, noise-free waveforms for sensitive applications

can output waveforms with frequencies adjustable between 20 Hz and 20,000 Hz

Pulse Width Control

Enable variable pulse width control for square waveforms, with a range from 1% to 99%

Project Achievements

Waveform generation

Discovered ways to generate 4 waveforms

Load compatibility test

Could successfully go lower than 50Ω load

Frequency range

Could go beyond 20kHz for some waveforms

Power management

Designed a power supply circuit converting unipolar to bipolar

Noise- free signals

Could tweak circuits for minimal noise waveforms

Could minimize amount of controls

Trianglular Wave Generation

Stable waveform Well aligned peaks

High frquency range

Easy tunability

Low noise

PWM Wave Generation

Sawtooth Wave Generation

Sine Wave Generation

NE5532P Op Amp

2N3906 NPN Transistor

Availability (

Power Supply Design

Unipolar to bipolar design

Low noise and minimal cost

Could drive lower than 50Ω load

Stable ±12 V voltage

Breadboard Implementation

Schematic Design

PCB Design

PCB Design (Final Looking)

3D Design (Initial Sketch)

Final Enclosure Design

BOQ

Components

Rs. 3400

PCB

Rs 4400

Enclosure

Rs 2300

Miscellaneous

Rs 3000±1000

Total BOQ ~Rs 13,500

Our Achievements

Contribution to the Project

Yasiru

Circuit Implementation, Simulations, Debugging

Kavindu

Circuit Implementation, Enclosure Design

Kumuthu

Circuit Implementation, PCB Design

Linuka

Circuit Implementation, PCB Design, Enclosure Design

Thank you