A practitioner's guide to gain knowledge of investment opportunities, sophisticated principles and proven methods. Basic concept of investment management and instruments are explained with practices.

Investment 101 for IT

Lin, Song

Contact: koalainuwo@hotmail.com

Table of Contents

Risk/Return Measure in Sharpe Ratio	2
How to Read Result of Sharpe Ratio	2
Trial in Excel	2
Trial in VBA	3
Case Study	3
Criticisms and Alternative	4
Solver Function for Optimal Portfolio	5
General case	5
Optimal case	6
Shannon Diversity index	8
How to read	8
HELOC Payment Options	9
Fix term	9
Fix payment	9
Discounted Cash Flow (DCF) Model	10

Risk/Return Measure in Sharpe Ratio

Sharp ratio was derived in 1966 by William F. Sharpe. It's also known as the Sharpe index, the Sharpe measure, or the reward-to-variability ratio.

$$S(x) = \frac{r_x - R_f}{StdDev(x)}$$

The ratio measure the excess return in an investment asset or trading strategy, typically referred as a deviation risk measure.

How to Read Result of Sharpe Ratio

- ➤ A ratio of 1 or better is considered good;
- ➤ 2 or better is very good;
- > 3 or better is considered excellent.

Trial in Excel

	Α	В	С	D	E		
1							
2		Period	Yearly Returns (r _x)	Risk Free Return (r _f)	Excess Return or Risk Premium (x)		
3		1	0.255	0.02	0.235		
4		2	0.184	0.02	0.164		
5		3	0.473	0.02	0.453		
6		4	-0.041	0.02	-0.061		
7		5	0.0659	0.02	0.0459		
8		6	0.0347	0.02	0.0147		
9		7	0.288	0.02	0.268		
10		8	0.317	0.02	0.297		
11		9	0.142	0.02	0.122		
12		10	0.657	0.02	0.637		
13		11	-0.011	0.02	-0.031		
14		12	0.73	0.02	0.71		

$$x = r_x - r_f$$

Average: AVERAGE(E3:E14) = 0.237883333

Standard Deviation (σ): STDEV(E3:E14) = 0.252273145

Sharpe Ratio = Average / Standard Deviation (σ) = 0.942959399

Trial in VBA

Case Study

To help evaluate the performance of portfolio as a risk-adjusted measure of return, for example, comparing two managers return:

Manager A is 15% return and Manager B with 12%, it would appear that manager A is a better performer; however, manager A took much larger risks (standard deviation of 8%).

SR for manager B is 1.4, which is better than Manager A (1.25), means manager B is able to generate a higher return on a risk-adjusted basis.

	А	В
R	15%	12%
R _f	5%	5%
σ	8%	5%
SR	(15%-5%)/8%=1.25	(12%-5%)/5%=1.4

Criticisms and Alternative

The denominator of The Sharpe ratio is the standard deviation, which assumes the returns are normally distributed; unfortunately, financial assets tend to deviate from a normal distribution. Therefore the interpretations of the Sharpe ratio could be misleading.

A variation of the Sharpe ratio:

- \triangleright Treynor ratio: use β (systematic risk) as the risk measure in the denominator.
- Sortino ratio: only factor in downward/negative price volatility on standard deviation.

Solver Function for Optimal Portfolio

General case

A	Α	В	С	D	Е	F	G
1							
2				Trial Solut	ion		
			Mountain	Manada	Trimuelos		
3			Bicycles	Mopeds	Tricycles		
4		Unit Profit	100	300	50		
5							
6		Capital	300	1200	120		
7		Storage	0.5	1	0.5		
8							
9		Order Size	20	40	100		
10							
11		Exit criteria	ResourcesUsed		ResourcesAvailable		Total Profit
12		Capital	66000	≤	93000		19000
13		Storage	100	≤	101	ĺ	
14							

Sum of capital = SUMPRODUCT(C6:E6,OrderSize) = 66000 <= 93000

Sum of storage = SUMPRODUCT(C7:E7,OrderSize) = 100 <= 101

Exit at Total Profit = SUMPRODUCT(UnitProfit,OrderSize) = 19000

Optimal case

		00	▼ (a	<i>f</i> _x =9	UMPRODUCT(C18:E	18,	C23:E23)
	Α	В	С	D	Е	F	G
15							
16				Solver N	lodel		
17			Mountain Bicycles	Mopeds	Tricycles		
18		Unit Profit	100	300	50		
19							
20		Capital	300	1200	120		
21		Storage	0.5	1	0.5		
22							
23		Order Size	94	54	0		
24							
25		Exit criteria	ResourcesUsed		ResourcesAvailable		Total Profit
26			93000	≤	93000		25600
27			101	≤	101		ľ
28							

Microsoft Excel 14.0 Answer Report

Worksheet: [2_Analysis_Shannon Index_Std graph.xlsx]Solver

Report Created: 2017/7/9 9:59:54

Result: Solver found a solution. All Constraints and optimality conditions are satisfied.

Solver Engine

Engine: Simplex LP Solution Time: 0 Seconds. Iterations: 2 Subproblems: 0

Solver Options

Max Time Unlimited, Iterations Unlimited, Precision 0.000001

Objective Cell (Max)

Cell	Name)riginal Valu Fir	nal Value
\$G\$2 OC)	19000	25600

Variable Cells

Cell	Name)riginal Valu	Final ValueInteger
\$C\$23:\$	E\$23		
Ord	er Size		
Mou	ıntain		
\$C\$2: Bio;	ycles	20	94 Contin
\$D\$2: Ord	er Size Mopeds	: 40	54 Contin
\$E\$2: Ord	er Size Tricycle	100	0 Contin

Constraints

1	Cell	Name	Cell Value	Formula	Status	Black
1	Be	esources				
l	\$C\$2LUs	sed	93000	\$C\$26<=\$E\$	Binding	0
1	Re	esources				
	\$C\$2" Us	sed	101	\$C\$27<=\$E\$	Binding	0

Shannon Diversity index

Also known as the Shannon index; it's invented by Claude Shannon to quantify the uncertainty of information contents (entropy).

$$H' = -\sum_{i=1}^{n} \left[\left(\frac{n_i}{N} \right) \ln \left(\frac{n_i}{N} \right) \right]$$

How to read

The higher result means more diverse community, in terms of ecological literature.

E3 ▼ (=(C3/C\$8)*LN(C3/C\$8)					88)
A	Α	В	С	D	Е
1					
2		Assets	Count the weight of each category	Shannon Index Variable Name	Shannon Index Calculation
3		stock options	7	=n1	-0.347
4		T-bills	7	=n2	-0.347
5		mutual bonds	7	=n3	-0.347
6		commodities	7	=n4	-0.347
7					
8		sum:	28	=N	1.386

Sum = -1*SUM(E3:E6) = 1.386

HELOC Payment Options

HELOC: Home Equity Loan of Credit.

Fix term

$$Monthly Payment = \left[rate + \frac{rate}{[[1 + rate]^{month}] - 1}\right] \times principal$$

Fix Term				
	Loan Amount	150000		
	Loan Term	30	years	
	Interest Rate (APR/Annual Percentage Rate)	8	%	
			=(0.08/12+(0.08/12)/(((1+(0.08/12))^360)-1) * 150000	
				1100.65

Fix payment

$$N = \frac{-\log(1 - \frac{iA}{P})}{\log(1 + i)}$$

Fix Payment			
	Loan Amount	200000	A
	Monthly Pay	1264.14	P
	Interest Rate(APR)	6.5	i (6.5/1200)
			=(-LOG(1-(6.5/1200*200000/1264.14)))/(LOG(1+6.5/1200))/12
			30.00

Discounted Cash Flow (DCF) Model