Exercises

February 21, 2025

```
from notebookfuncs import *
[2]: import numpy as np
     import matplotlib.pyplot as plt
     from matplotlib.pyplot import subplots
     import pandas as pd
     from ISLP import load_data
     import seaborn as sns
     from numpy import median
[3]: College = pd.read_csv("College.csv")
     College
[3]:
                                Unnamed: 0 Private
                                                       Apps
                                                             Accept
                                                                       Enroll
                                                                               Top10perc
     0
             Abilene Christian University
                                                 Yes
                                                       1660
                                                                1232
                                                                          721
                                                                                       23
     1
                        Adelphi University
                                                 Yes
                                                       2186
                                                                1924
                                                                          512
                                                                                       16
     2
                            Adrian College
                                                 Yes
                                                       1428
                                                                1097
                                                                          336
                                                                                       22
     3
                      Agnes Scott College
                                                 Yes
                                                        417
                                                                 349
                                                                          137
                                                                                       60
     4
                Alaska Pacific University
                                                 Yes
                                                        193
                                                                 146
                                                                           55
                                                                                       16
                                                                                        4
     772
                  Worcester State College
                                                  No
                                                       2197
                                                                1515
                                                                          543
     773
                                                                                       24
                         Xavier University
                                                 Yes
                                                       1959
                                                                1805
                                                                          695
     774
                                                                                       34
          Xavier University of Louisiana
                                                 Yes
                                                       2097
                                                                1915
                                                                          695
     775
                           Yale University
                                                 Yes
                                                      10705
                                                                2453
                                                                         1317
                                                                                       95
     776
             York College of Pennsylvania
                                                       2989
                                                                          691
                                                 Yes
                                                                1855
                                                                                       28
           Top25perc
                      F.Undergrad P.Undergrad
                                                  Outstate
                                                              Room.Board
                                                                           Books
     0
                  52
                              2885
                                              537
                                                       7440
                                                                     3300
                                                                             450
     1
                  29
                              2683
                                            1227
                                                                             750
                                                      12280
                                                                     6450
     2
                  50
                              1036
                                               99
                                                                     3750
                                                                             400
                                                      11250
     3
                               510
                                              63
                                                                             450
                  89
                                                      12960
                                                                     5450
     4
                  44
                               249
                                              869
                                                       7560
                                                                     4120
                                                                             800
                  26
                                            2029
     772
                              3089
                                                       6797
                                                                     3900
                                                                             500
     773
                                                                     4960
                                                                             600
                  47
                              2849
                                            1107
                                                      11520
     774
                              2793
                                                                     4200
                                                                             617
                  61
                                              166
                                                       6900
     775
                  99
                              5217
                                              83
                                                      19840
                                                                     6510
                                                                             630
     776
                  63
                              2988
                                                                     3560
                                                                             500
                                            1726
                                                       4990
```

	Personal	PhD	Terminal	S.F.Ratio	perc.alumni	Expend	Grad.Rate
0	2200	70	78	18.1	12	7041	60
1	1500	29	30	12.2	16	10527	56
2	1165	53	66	12.9	30	8735	54
3	875	92	97	7.7	37	19016	59
4	1500	76	72	11.9	2	10922	15
			•••	•••		•••	
772	1200	60	60	21.0	14	4469	40
773	1250	73	75	13.3	31	9189	83
774	781	67	75	14.4	20	8323	49
775	2115	96	96	5.8	49	40386	99
776	1250	75	75	18.1	28	4509	99

[777 rows x 19 columns]

Abilene Christian University

[4]: college2 = pd.read_csv("College.csv", index_col=0)
college2

:	Private	Apps	Accept	Enroll	Top10	perc \	
Abilene Christian University	Yes	1660	1232	721	_	23	
Adelphi University	Yes	2186	1924	512		16	
Adrian College	Yes	1428	1097	336		22	
Agnes Scott College	Yes	417	349	137		60	
Alaska Pacific University	Yes	193	146	55		16	
•••	•••		•••	•••			
Worcester State College	No	2197	1515	543		4	
Xavier University	Yes	1959	1805	695		24	
Xavier University of Louisian	na Yes	2097	1915	695		34	
Yale University	Yes	10705	2453	1317		95	
York College of Pennsylvania	Yes	2989	1855	691		28	
	Top25pe	erc F.U	Jndergrad	P.Unde	ergrad	Outstate	\
Abilene Christian University		52	2885		537	7440	
Adelphi University		29	2683		1227	12280	
Adrian College		50	1036		99	11250	
Agnes Scott College		89	510		63	12960	
Alaska Pacific University		44	249		869	7560	
•••	•••		•••	•••	•••		
Worcester State College		26	3089		2029	6797	
Xavier University		47	2849		1107	11520	
Xavier University of Louisian	na	61	2793		166	6900	
Yale University		99	5217		83	19840	
York College of Pennsylvania		63	2988		1726	4990	
	Room.Bo	ard Bo	ooks Per	sonal F	hD Te	rminal \	

	Adel	phi Univers	sity		6450	750		1500	29	30)	
		an College			3750	400		1165	53	66	5	
	Agne	s Scott Col	llege		5450	450		875	92	97	•	
	Alas	ka Pacific	University		4120	800		1500	76	72	?	
	•••				•••	•••			•••			
	Worc	ester State	e College		3900	500		1200	60	60)	
	Xavi	er Universi	ity		4960	600		1250	73	75		
	Xavi	er Universi	ity of Louisiana		4200	617		781	67	75		
		University	•		6510	630		2115	96	96	;	
		•	Pennsylvania		3560			1250	75	75		
		Ü	J									
				S.F.	.Ratio	perc.al	umni	Expen	d Gra	d.Rate		
	Abil	ene Christi	an University		18.1	•	12	704		60		
		phi Univers	•		12.2		16	1052	7	56		
	•	an College			12.9		30	873		54		
		s Scott Col	lege		7.7		37	1901		59		
	_		University		11.9		2	1092		15		
	mad.	na radirio	onivorbioy		11.0			1002	-	10		
	Word	ester State	College		21.0	•••	14	446		40		
		er Universi		13.3		31	918		83			
			•		14.4		20	832		49		
	Xavier University of Louisiana Yale University York College of Pennsylvania				5.8		49	4038		99		
					18.1		28	450		99		
	IOIK	College of	. i emisyivamia		10.1		20	400	9	33		
	[777	rows x 18	columns]									
F=3	a 11	0 0 7	/ ()		011 11	a	,	. 4				
[5]:		_	Lege.rename({"Un	named	: 0": "	College"	}, az	cis=1)				
		_	ndex("College")									
	Coll	ege3										
[5]:			Co	11000	Privat	o Anna	٨٥٨	ept E	nroll	Top10p	orc	\
[5].	0	Abilono		_				.ерт <u>г</u> 1232	721	TopTop	23	\
		Apriene	Christian Unive	•								
	1		Adelphi Unive	•	Ye			1924	512		16	
	2		Adrian Co	_	Ye			1097	336		22	
	3		Agnes Scott Co	_	Ye			349	137		60	
	4	Alask	ka Pacific Unive	rsity	Ye	s 193		146	55		16	
	• •											
	772	Wor	cester State Co	_	N			L515	543		4	
	773		Xavier Unive	-	Ye			1805	695		24	
	774	Xavier Uni	lversity of Loui		Ye			l915	695		34	
	775		Yale Unive	rsity	Ye	s 10705	2	2453	1317		95	
	776	York Col	llege of Pennsyl	vania	Ye	s 2989	1	1855	691		28	
		m 05	.		_	0	_	-		, ,		
	_	Top25perc	F.Undergrad P	.Under	_	Outstate		om.Boar				
	0	52	2885		537	7440		330		50		
	1	29	2683		1227	12280		645		50		
	2	50	1036		aa	11250		275	n 1	$\cap \cap$		

3	89		510	63	12960	545	0 450
4	44		249	869	7560	412	0 800
	•••		•••	•••		•••	
772	26		3089	2029	6797	390	0 500
773	47		2849	1107	11520	496	0 600
774	61		2793	166	6900	420	0 617
775	99		5217	83	19840	651	0 630
776	63		2988	1726	4990	356	0 500
	Personal	PhD	Terminal	S.F.Ratio	perc.alumni	Expend	Grad.Rate
0	2200	70	78	18.1	12	7041	60
1	1500	29	30	12.2	16	10527	56
2	1165	53	66	12.9	30	8735	54
3	875	92	97	7.7	37	19016	59
4	1500	76	72	11.9	2	10922	15
			•••	•••		•••	
772	1200	60	60	21.0	14	4469	40
773	1250	73	75	13.3	31	9189	83
774	781	67	75	14.4	20	8323	49
775	2115	96	96	5.8	49	40386	99
776	1250	75	75	18.1	28	4509	99

[777 rows x 19 columns]

[6]: College = College3

[6]:				College	Priva	te	Apps	Accept	Enr	011 7	Γοp10	perc	\
2-3	0	Abilene	Christian Uni	•		es	1660	1232		721	r	23	•
	1		Adelphi Uni	•		es	2186	1924		512		16	
	2		Adrian		es	1428	1097		336		22		
	3		Agnes Scott		es	417	349		137		60		
	4	Alask	a Pacific Uni		es	193	146 55				16		
					•••	•••							
	772	Wor	cester State		No	2197	1515		543		4		
	773		Xavier Uni		es	1959	1805		695		24		
	774	Xavier Uni	versity of Lo		es	2097	1915		695		34		
	775			es	10705	2453		317		95			
	776	Yale University York College of Pennsylvania				es	2989	1855		691		28	
			O	J									
		Top25perc	F.Undergrad	P.Under	rgrad	Out	tstate	Room.Bo	ard	Books	3 \		
	0	52	2885		537		7440	3	300	450)		
	1	29	2683		1227		12280	6	450	750)		
	2	50	1036		99		11250	3	750	400)		
	3	89	510		63		12960	5	450	450)		
	4	44	249		869		7560	4	120	800)		
		•••	•••	•••									
	772	26	3089		2029		6797	3	900	500)		

773	47		2849	1107	11520	496	600
774	61		2793	166	6900	420	0 617
775	99		5217	83	19840	651	0 630
776	63		2988	1726	4990	356	500
	Personal	PhD	Terminal	S.F.Ratio	perc.alumni	Expend	Grad.Rate
0	2200	70	78	18.1	12	7041	60
1	1500	29	30	12.2	16	10527	56
2	1165	53	66	12.9	30	8735	54
3	875	92	97	7.7	37	19016	59
4	1500	76	72	11.9	2	10922	15
			•••	•••		•••	
772	1200	60	60	21.0	14	4469	40
773	1250	73	75	13.3	31	9189	83
774	781	67	75	14.4	20	8323	49
775	2115	96	96	5.8	49	40386	99
776	1250	75	75	18.1	28	4509	99

[777 rows x 19 columns]

[7]: College.describe()

[7]:		Apps	Accept	Enroll	Top10perc	Top25perc \	
L' J •	count	777.000000	777.000000	777.000000	777.000000	777.000000	
	mean	3001.638353	2018.804376	779.972973	27.558559	55.796654	
	std	3870.201484	2451.113971	929.176190	17.640364	19.804778	
	min	81.000000	72.000000	35.000000	1.000000	9.000000	
	25%	776.000000	604.000000	242.000000	15.000000	41.000000	
	50%	1558.000000	1110.000000	434.000000	23.000000	54.000000	
	75%	3624.000000	2424.000000	902.000000	35.000000	69.000000	
	max	48094.000000	26330.000000	6392.000000	96.000000	100.000000	
		F.Undergrad	P.Undergrad	Outstate	Room.Boar	d Books	\
	count	777.000000	777.000000	777.000000	777.00000	0 777.000000	
	mean	3699.907336	855.298584	10440.669241	4357.52638	4 549.380952	
	std	4850.420531	1522.431887	4023.016484	1096.69641	6 165.105360	
	min	139.000000	1.000000	2340.000000	1780.00000	96.000000	
	25%	992.000000	95.000000	7320.000000	3597.00000	0 470.000000	
	50%	1707.000000	353.000000	9990.000000	4200.00000	0 500.000000	
	75%	4005.000000	967.000000	12925.000000	5050.00000	0 600.000000	
	max	31643.000000	21836.000000	21700.000000	8124.00000	0 2340.000000	
		Personal	PhD	Terminal S.	F.Ratio per	c.alumni \	
	count	777.000000	777.000000 77	7.000000 777	-	7.00000	
	mean	1340.642214	72.660232 7	9.702703 14	.089704 2	2.743887	
	std	677.071454	16.328155 1	4.722359 3	.958349 1	2.391801	
	min	250.000000	8.000000 2	4.000000 2	.500000	0.000000	

```
25%
        850.000000
                      62.000000
                                  71.000000
                                                             13.000000
                                               11.500000
50%
       1200.000000
                      75.000000
                                  82.000000
                                               13.600000
                                                             21.000000
75%
       1700.000000
                      85.000000
                                  92.000000
                                               16.500000
                                                             31.000000
       6800.000000
                     103.000000
                                  100.000000
                                               39.800000
                                                             64.000000
max
```

```
Expend
                      Grad.Rate
         777.000000
                      777.00000
count
        9660.171171
                       65.46332
mean
std
        5221.768440
                       17.17771
min
        3186.000000
                       10.00000
25%
        6751.000000
                       53.00000
50%
        8377.000000
                       65.00000
75%
       10830.000000
                       78.00000
       56233.000000
                      118.00000
max
```

[8]: pd.plotting.scatter_matrix(College[["Top10perc", "Apps", "Enroll"]]);


```
[9]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("Outstate", by="Private", ax=ax);
```

Executing <handle IOLoop._run_callback(functools.par...7dd256f2f600>)) created at /home/linus/ISLP/islpenv/lib/python3.12/site-packages/tornado/platform/asyncio.py:235> took 0.122 seconds IOStream.flush timed out Executing <handle BaseAsyncIOLoop._handle_events(28, 1) created at /usr/lib/python3.12/asyncio/selector_events.py:280> took 0.134 seconds

Boxplot grouped by Private

[10]: College["Top10perc"]

[10]: 0 23 1 16 2 22

```
60
      3
      4
             16
             . .
      772
             4
      773
             24
      774
             34
      775
             95
      776
             28
     Name: Top10perc, Length: 777, dtype: int64
[11]: College["Elite"] = pd.cut(College["Top10perc"], [0, 50, 100], labels=["No", ___
      ⊹"Yes"])
      College["Elite"].value_counts()
[11]: Elite
     No
             699
              78
      Yes
     Name: count, dtype: int64
[12]: fig, ax = subplots(figsize=(8, 8))
      College.boxplot("Outstate", by="Elite", ax=ax);
```


[13]: College.plot.hist();


```
[14]: fig, ax = subplots(figsize=(8, 8))
College.hist("Apps", ax=ax);
```



```
[15]: numeric_columns = College.select_dtypes(include="number").columns.tolist()
    numeric_columns

[15]: ['Apps',
    'Accept',
    'Enroll',
    'Top10perc',
    'Top25perc',
    'F.Undergrad',
    'P.Undergrad',
    'Outstate',
    'Room.Board',
    'Books',
```

```
'PhD',
           'Terminal',
           'S.F.Ratio',
           'perc.alumni',
           'Expend',
           'Grad.Rate']
[16]: fig, axs = subplots(4, 4, figsize=(16, 16))
         for row in range(0, 4):
                for column in range(0, 4):
                      College.hist(numeric_columns[row * 4 + column], ax=axs[row, column])
                                                          Accept
                                                                                        Enroll
                                                                                                                    Top10perc
                                             600 -
                                                                           500 -
                                             500
                500
                                                                           400
                                              400
                                                                                                         150
                400
                                                                           300
                300
                                                                                                         100
                                                                           200
                                             200
                200
                                                                            100
                                             100
                      10000 20000 30000 40000 50000
                                                    5000 10000150002000025000
                           Top25perc
                                                        F.Undergrad
                                                                                     P.Undergrad
                                                                                                                    Outstate
                140
                                                                           700 -
                                                                                                         140
                                             500 -
                120
                                                                           600
                                                                                                         120
                                              400
                100
                                                                           500
                                                                                                         100
                80
                                                                           400
                                             300
                60
                                                                           300
                                                                                                          60
                                             200
                 40
                                                                           200
                                                                                                          40
                                              100
                20
                                                                           100
                                                                                                          20
                          40
                              60
                                   80
                                                      10000
                                                            20000
                                                                                  5000 10000 15000 20000
                                                                                                               5000 10000 15000 20000
                          Room.Board
                                                          Books
                                                                                       Personal
                                                                                                         175
                175
                                                                           300
                                             350
                                                                                                         150
                150
                                                                           250
                                             300
                                                                                                         125
                125
                                             250
                                                                           200
                                                                                                         100
                100
                                             200
                                                                           150
                75
                                             150
                                                                           100
                                                                                                          50
                50
                                                                            50
                                                                                                          25
                25
                                              50
                   2000
                                                    500 1000 1500 2000
                                                                                          4000
                                                                                                                        60
                           Terminal
                                                         S.F.Ratio
                                                                                     perc.alumni
                                                                                                                     Expend
                                                                                                         400 -
                175
                                             300
                                                                                                         350
                                                                           150
                150
                                             250
                                                                                                         300
                                                                           125
                125
                                             200
                                                                                                         250
                                                                           100
                100
                                             150
                                                                                                         200
                75
                                                                            75
                                                                                                         150
                                              100
                50
                                                                            50
                                                                                                         100
                25
                                                                            25
                                                                                                          50
```

'Personal',

0.0.1 Count of private and public colleges

```
[17]: College["Private"].value_counts()
[17]: Private
      Yes
             565
             212
      No
      Name: count, dtype: int64
[18]: College["AcceptanceRate"] = round(College["Accept"] / College["Apps"] * 100, 2)
      College["AcceptanceRate"]
[18]: 0
             74.22
             88.01
      1
             76.82
      2
      3
             83.69
             75.65
      772
             68.96
      773
             92.14
      774
             91.32
      775
             22.91
      776
             62.06
      Name: AcceptanceRate, Length: 777, dtype: float64
[19]: ### Plot boxplot for acceptance rate by College Type : Elite or not
[20]: fig, ax = subplots(figsize=(8, 8))
      College.boxplot("AcceptanceRate", by="Elite", ax=ax);
```



```
[21]: ### Plot boxplot for acceptance rate for Private colleges or not
[22]: fig, ax = subplots(figsize=(8, 8))
    College.boxplot("AcceptanceRate", by="Private", ax=ax);
```



```
[23]: College["EnrollmentRate"] = round(College["Enroll"] / College["Accept"] * 100, U 42)

College["EnrollmentRate"]

[23]: 0 58.52
```

1 26.61 2 30.63 3 39.26 4 37.67 ... 772 35.84

```
773 38.50
774 36.29
775 53.69
776 37.25
```

Name: EnrollmentRate, Length: 777, dtype: float64

```
[24]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("EnrollmentRate", by="Elite", ax=ax);
```



```
[25]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("EnrollmentRate", by="Private", ax=ax);
```



```
[26]: College["StudentCosts"] = (
        College["Outstate"] + College["Room.Board"] + College["Books"] +
        College["Personal"]
)

[27]: fig, ax = subplots(figsize=(8, 8))
        College.boxplot("StudentCosts", by="Elite", ax=ax);
```



```
[28]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("StudentCosts", by="Private", ax=ax);
```



```
[29]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("PhD", by="Private", ax=ax);
```



```
[30]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("PhD", by="Elite", ax=ax);
```



```
[31]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("Terminal", by="Elite", ax=ax);
```



```
[32]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("Terminal", by="Private", ax=ax);
```



```
[33]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("S.F.Ratio", by="Private", ax=ax);
```



```
[34]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("S.F.Ratio", by="Elite", ax=ax);
```



```
[35]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("perc.alumni", by="Elite", ax=ax);
```



```
[36]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("perc.alumni", by="Private", ax=ax);
```



```
[37]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("Expend", by="Private", ax=ax);
```



```
[38]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("Expend", by="Elite", ax=ax);
```



```
[39]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("Grad.Rate", by="Elite", ax=ax);
```



```
[40]: fig, ax = subplots(figsize=(8, 8))
College.boxplot("Grad.Rate", by="Private", ax=ax);
```


[41]:		AcceptanceRate	${\tt EnrollmentRate}$	Grad.Rate
	Elite			
	No	76.963834	41.586452	63.463519
	Yes	54.340128	37.748205	83.384615


```
[43]: Auto = pd.read_csv("Auto.csv", na_values={"?"})
      print(Auto.shape)
      np.unique(Auto["horsepower"])
     (397, 9)
                               52.,
                                      53.,
                    48.,
                          49.,
                                            54.,
                                                  58.,
                                                        60.,
                                                              61.,
                                                                    62.,
[43]: array([ 46.,
              64.,
                    65.,
                          66.,
                                67.,
                                      68.,
                                            69.,
                                                  70.,
                                                        71.,
                                                              72.,
                                                                    74.,
                    77.,
                         78.,
                               79.,
                                      80.,
                                            81.,
                                                  82., 83.,
                                                              84.,
              76.,
                                                                    85.,
              87.,
                    88.,
                          89.,
                                90.,
                                      91.,
                                            92., 93.,
                                                        94.,
                                                              95.,
              98., 100., 102., 103., 105., 107., 108., 110., 112., 113., 115.,
             116., 120., 122., 125., 129., 130., 132., 133., 135., 137., 138.,
             139., 140., 142., 145., 148., 149., 150., 152., 153., 155., 158.,
             160., 165., 167., 170., 175., 180., 190., 193., 198., 200., 208.,
             210., 215., 220., 225., 230., nan])
```

0.0.2 Which predictors are quantitative and which are qualitative?

Rename the misleading column name acceleration to timetoacceleration since it's a tad misleading.

```
[44]: Auto["timetoacceleration"] = Auto["acceleration"]
      Auto = Auto.drop("acceleration", axis=1)
[44]:
                  cylinders
                              displacement
                                             horsepower
                                                          weight
                                                                   year
                                                                          origin
             mpg
      0
            18.0
                           8
                                      307.0
                                                   130.0
                                                             3504
                                                                     70
                                                                               1
      1
            15.0
                           8
                                                   165.0
                                                                     70
                                                                               1
                                      350.0
                                                             3693
      2
            18.0
                           8
                                      318.0
                                                   150.0
                                                             3436
                                                                     70
                                                                               1
      3
            16.0
                           8
                                                   150.0
                                                             3433
                                                                     70
                                      304.0
                                                                               1
      4
            17.0
                           8
                                      302.0
                                                   140.0
                                                             3449
                                                                     70
                                                                               1
      . .
            •••
                                                     •••
           27.0
      392
                           4
                                      140.0
                                                    86.0
                                                             2790
                                                                     82
                                                                               1
      393
           44.0
                           4
                                       97.0
                                                    52.0
                                                             2130
                                                                     82
                                                                               2
                                                             2295
      394
           32.0
                           4
                                                    84.0
                                                                     82
                                                                               1
                                      135.0
                                                                     82
      395
           28.0
                           4
                                      120.0
                                                    79.0
                                                             2625
                                                                               1
      396
           31.0
                           4
                                      119.0
                                                    82.0
                                                             2720
                                                                     82
                                                                               1
                                         timetoacceleration
                                  name
      0
            chevrolet chevelle malibu
                                                        12.0
                    buick skylark 320
      1
                                                        11.5
      2
                   plymouth satellite
                                                        11.0
      3
                         amc rebel sst
                                                        12.0
      4
                           ford torino
                                                        10.5
      392
                       ford mustang gl
                                                        15.6
      393
                             vw pickup
                                                        24.6
                         dodge rampage
      394
                                                        11.6
      395
                           ford ranger
                                                        18.6
      396
                            chevy s-10
                                                        19.4
      [397 rows x 9 columns]
[45]: Auto = Auto.dropna()
      Auto.shape
[45]: (392, 9)
[46]:
      Auto.describe()
[46]:
                            cylinders
                                        displacement
                                                       horsepower
                                                                          weight
                     mpg
      count
              392.000000
                           392.000000
                                          392.000000
                                                       392.000000
                                                                     392.000000
      mean
               23.445918
                             5.471939
                                          194.411990
                                                       104.469388
                                                                    2977.584184
                7.805007
                             1.705783
                                          104.644004
                                                        38.491160
                                                                     849.402560
      std
                                                                    1613.000000
      min
                9.000000
                             3.000000
                                           68.000000
                                                        46.000000
      25%
               17.000000
                             4.000000
                                          105.000000
                                                        75.000000
                                                                    2225.250000
```

```
50%
              22.750000
                           4.000000
                                       151.000000
                                                    93.500000 2803.500000
      75%
                                       275.750000 126.000000 3614.750000
              29.000000
                           8.000000
      max
              46.600000
                           8.000000
                                       455.000000
                                                   230.000000 5140.000000
                             origin timetoacceleration
                   year
             392.000000 392.000000
                                             392.000000
      count
              75.979592
                           1.576531
                                              15.541327
     mean
      std
               3.683737
                           0.805518
                                               2.758864
     min
              70.000000
                           1.000000
                                               8.000000
      25%
              73.000000
                           1.000000
                                              13.775000
     50%
              76.000000
                           1.000000
                                              15.500000
      75%
              79.000000
                           2.000000
                                              17.025000
     max
              82.000000
                           3.000000
                                              24.800000
[47]: Auto["origin"] = Auto.origin.astype("category")
      Auto["year"] = Auto.year.astype("category")
      Auto["cylinders"] = Auto.cylinders.astype("category")
      print(np.unique(Auto["year"]))
      print(np.unique(Auto["cylinders"]))
     [70 71 72 73 74 75 76 77 78 79 80 81 82]
     [3 4 5 6 8]
     /tmp/ipykernel_14396/803089839.py:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       Auto["origin"] = Auto.origin.astype("category")
     /tmp/ipykernel_14396/803089839.py:2: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       Auto["year"] = Auto.year.astype("category")
     /tmp/ipykernel_14396/803089839.py:3: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
       Auto["cylinders"] = Auto.cylinders.astype("category")
[48]: Auto["origin"] = Auto["origin"].cat.rename_categories(
          {1: "American", 2: "European", 3: "Japanese"}
      )
```

```
/tmp/ipykernel 14396/29212070.py:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       Auto["origin"] = Auto["origin"].cat.rename_categories(
[48]: array(['American', 'European', 'Japanese'], dtype=object)
[49]: Auto.head()
[49]:
                         displacement
          mpg cylinders
                                        horsepower
                                                     weight year
                                                                     origin \
      0 18.0
                       8
                                 307.0
                                              130.0
                                                       3504
                                                              70
                                                                  American
      1 15.0
                       8
                                 350.0
                                              165.0
                                                       3693
                                                              70
                                                                   American
                       8
      2 18.0
                                 318.0
                                              150.0
                                                       3436
                                                              70
                                                                   American
                       8
      3 16.0
                                 304.0
                                              150.0
                                                       3433
                                                                   American
      4 17.0
                       8
                                              140.0
                                                                  American
                                 302.0
                                                       3449
                                                              70
                               name
                                     timetoacceleration
         chevrolet chevelle malibu
                                                    12.0
      0
      1
                 buick skylark 320
                                                    11.5
      2
                                                    11.0
                plymouth satellite
      3
                      amc rebel sst
                                                    12.0
      4
                        ford torino
                                                    10.5
      Auto = Auto.set_index("name")
[50]:
                                   mpg cylinders
                                                   displacement horsepower weight
      name
      chevrolet chevelle malibu
                                 18.0
                                                8
                                                          307.0
                                                                       130.0
                                                                                3504
      buick skylark 320
                                  15.0
                                                8
                                                          350.0
                                                                       165.0
                                                                                3693
      plymouth satellite
                                  18.0
                                                8
                                                          318.0
                                                                       150.0
                                                                                3436
      amc rebel sst
                                  16.0
                                                8
                                                          304.0
                                                                       150.0
                                                                                3433
      ford torino
                                  17.0
                                                8
                                                                       140.0
                                                                                3449
                                                          302.0
                                                          140.0
                                                                        86.0
                                                                                2790
      ford mustang gl
                                  27.0
                                                4
                                                           97.0
                                                                        52.0
      vw pickup
                                  44.0
                                                4
                                                                                2130
      dodge rampage
                                  32.0
                                                4
                                                          135.0
                                                                        84.0
                                                                                2295
      ford ranger
                                  28.0
                                                          120.0
                                                                        79.0
                                                                                2625
                                                4
      chevy s-10
                                  31.0
                                                          119.0
                                                                        82.0
                                                                                2720
                                         origin timetoacceleration
                                 year
      name
      chevrolet chevelle malibu
                                   70
                                       American
                                                                 12.0
      buick skylark 320
                                   70
                                       American
                                                                 11.5
```

np.unique(Auto["origin"])

plymouth satellite		70	American	11.0
amc rebel sst		70	American	12.0
ford torino		70	American	10.5
	•••		•••	
ford mustang gl		82	American	15.6
vw pickup		82	European	24.6
dodge rampage		82	American	11.6
ford ranger		82	American	18.6
chevy s-10		82	American	19.4

[392 rows x 8 columns]

[51]:	Auto
-------	------

[51]:		mpg	cylinders	displacement	horsepower	weight	\
	name						
	chevrolet chevelle malibu	18.0	8	307.0	130.0	3504	
	buick skylark 320	15.0	8	350.0	165.0	3693	
	plymouth satellite	18.0	8	318.0	150.0	3436	
	amc rebel sst	16.0	8	304.0	150.0	3433	
	ford torino	17.0	8	302.0	140.0	3449	
	•••	•••	•••	•••			
	ford mustang gl	27.0	4	140.0	86.0	2790	
	vw pickup	44.0	4	97.0	52.0	2130	
	dodge rampage	32.0	4	135.0	84.0	2295	
	ford ranger	28.0	4	120.0	79.0	2625	
	chevy s-10	31.0	4	119.0	82.0	2720	
				+÷	.		
		year	origin	timetoaccelera	tion		
	name	70			40.0		
	chevrolet chevelle malibu		American		12.0		
	buick skylark 320	70			11.5		
	plymouth satellite		American		11.0		
	amc rebel sst		American		12.0		
	ford torino	70	American		10.5		
		••	•••	•••			
	ford mustang gl	82	American		15.6		
	vw pickup	82	European		24.6		
	dodge rampage	82	American		11.6		
	ford ranger	82	American		18.6		
	chevy s-10	82	American		19.4		

[392 rows x 8 columns]

```
[52]: Auto_new = Auto.drop(Auto.index[10:86])
Auto_new.describe()
```

```
[52]:
                           displacement
                                          horsepower
                                                             weight
                                                                     timetoacceleration
                     mpg
      count
              282.000000
                             282.000000
                                          282.000000
                                                        282.000000
                                                                              282.000000
                             180.120567
      mean
               25.006028
                                           99.039007
                                                       2884.939716
                                                                               15.713121
                                                        793.236373
      std
                7.921384
                              96.164263
                                           34.197280
                                                                                2.601575
                                                       1755.000000
      min
               11.000000
                              68.000000
                                           46.000000
                                                                                8.500000
      25%
                                           74.250000
               18.125000
                              98.000000
                                                       2188.500000
                                                                               14.000000
      50%
               24.500000
                             140.000000
                                           90.000000
                                                       2715.500000
                                                                               15.500000
      75%
               31.000000
                             250.000000
                                          112.000000
                                                       3435.250000
                                                                               17.275000
               46.600000
                             455.000000
                                          230.000000
                                                       4952.000000
                                                                               24.600000
      max
[53]:
      Auto_new
[53]:
                                                                          weight year
                             mpg cylinders
                                             displacement
                                                            horsepower
      name
      buick skylark 320
                            15.0
                                          8
                                                     350.0
                                                                  165.0
                                                                            3693
                                                                                    70
                                          8
                                                                            3436
      plymouth satellite
                            18.0
                                                     318.0
                                                                  150.0
                                                                                    70
      amc rebel sst
                            16.0
                                          8
                                                     304.0
                                                                  150.0
                                                                            3433
                                                                                    70
      ford torino
                            17.0
                                          8
                                                     302.0
                                                                  140.0
                                                                            3449
                                                                                    70
      amc ambassador dpl
                            15.0
                                          8
                                                     390.0
                                                                  190.0
                                                                            3850
                                                                                    70
                                                                  ... ...
      ford mustang gl
                            27.0
                                          4
                                                     140.0
                                                                   86.0
                                                                            2790
                                                                                    82
      vw pickup
                            44.0
                                          4
                                                      97.0
                                                                   52.0
                                                                            2130
                                                                                    82
      dodge rampage
                            32.0
                                          4
                                                                   84.0
                                                                            2295
                                                                                    82
                                                     135.0
      ford ranger
                            28.0
                                          4
                                                     120.0
                                                                   79.0
                                                                            2625
                                                                                    82
      chevy s-10
                                          4
                                                     119.0
                                                                   82.0
                                                                            2720
                                                                                    82
                            31.0
                                       timetoacceleration
                              origin
      name
      buick skylark 320
                            American
                                                      11.5
      plymouth satellite
                                                      11.0
                            American
      amc rebel sst
                            American
                                                      12.0
      ford torino
                                                      10.5
                            American
                                                       8.5
      amc ambassador dpl
                            American
      ford mustang gl
                                                      15.6
                            American
      vw pickup
                                                      24.6
                            European
      dodge rampage
                            American
                                                      11.6
      ford ranger
                                                      18.6
                            American
      chevy s-10
                            American
                                                      19.4
```

Using the full data set, investigate the predictors graphically, using scatter plots or other tools of your choice. Create some plots highlighting the relationships among the predictors. Comment on your findings.

```
[54]: pd.plotting.scatter_matrix(Auto, figsize=(14, 14));
```

[282 rows x 8 columns]

0.0.3 Findings:

- 1. Weight and displacement seem to be negatively correlated with MPG.
- 2. timetoacceleration (0–60 mph in seconds) seems to be positively correlated with MPG. As time to acceleration increases, MPG also increases. The longer the time to acceleration, the better the fuel efficiency.
- 3. weight is also positively correlated with displacement. As weight increases, so does displacement, i.e., as the body weight increases, so does displacement need to increase.
- 4. Displacement is seen to increase as the number of cylinders increase. This is expected since displacement is a function of the number of cylinders, amongst other components.

We can conclude that MPG can be predicted using the variables weight, displacement and time-toacceleration.

```
[55]: mean_mpg_origin = Auto.groupby(["origin"], observed=True)[["mpg"]].mean()
      mean_mpg_origin
[55]:
                      mpg
      origin
      American
                20.033469
      European
                27.602941
      Japanese
                30.450633
[56]: mean_mpg_year = Auto.groupby(["year"], observed=True)[["mpg"]].mean()
      mean_mpg_year
[56]:
                  mpg
      year
      70
            17.689655
      71
            21.111111
      72
            18.714286
      73
            17.100000
      74
            22.769231
      75
            20.266667
      76
            21.573529
      77
            23.375000
      78
            24.061111
      79
            25.093103
      80
            33.803704
      81
            30.185714
      82
            32.000000
[57]: mean_mpg_cylinders = Auto.groupby(["cylinders"], observed=True)[["mpg"]].mean()
      mean_mpg_cylinders
[57]:
                       mpg
      cylinders
      3
                 20.550000
      4
                 29.283920
      5
                 27.366667
      6
                 19.973494
      8
                 14.963107
```

We can also observe that fuel efficiency is affected by the make of the car. Japanese > European > American The year also plays a significant role. Later model cars are more fuel efficient than the earlier models. Cars are also more fuel efficient with lesser number of cylinders. These can also be used as predictors to deduce the MPG.

```
[58]: Boston = load_data("Boston")
Boston.columns
```

[59]: Boston.shape

[59]: (506, 13)

The rows represent data for 506 suburbs in Boston. The columns represent housing values and variables of interest that may predict housing values in each suburb.

[60]: Boston.describe()

[60]:		crim	zn	indus	chas	nox	rm	\
[00].	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	`
	mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	
	min	0.006320	0.000000	0.460000	0.00000	0.385000	3.561000	
	25%	0.082045	0.000000	5.190000	0.00000	0.449000	5.885500	
	50%	0.256510	0.000000	9.690000	0.00000	0.538000	6.208500	
	75%	3.677083	12.500000	18.100000	0.00000	0.624000	6.623500	
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	
		age	dis	rad	tax	ptratio	lstat	\
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
	mean	68.574901	3.795043	9.549407	408.237154	18.455534	12.653063	
	std	28.148861	2.105710	8.707259	168.537116	2.164946	7.141062	
	min	2.900000	1.129600	1.000000	187.000000	12.600000	1.730000	
	25%	45.025000	2.100175	4.000000	279.000000	17.400000	6.950000	
	50%	77.500000	3.207450	5.000000	330.000000	19.050000	11.360000	
	75%	94.075000	5.188425	24.000000	666.000000	20.200000	16.955000	
	max	100.000000	12.126500	24.000000	711.000000	22.000000	37.970000	
		medv						
	count	506.000000						
	mean	22.532806						
	std	9.197104						
	min	5.000000						
	25%	17.025000						
	50%	21.200000						
	75%	25.000000						
	max	50.000000						

[61]: Boston_quant = Boston.drop("chas", axis=1)

[61]: ptratio crim zn indus nox rmage dis rad tax 0 0.00632 18.0 2.31 0.538 6.575 65.2 4.0900 296 15.3 0.02731 0.0 7.07 0.469 6.421 78.9 4.9671 242 1 17.8

```
3
           0.03237
                            2.18
                                  0.458 6.998
                                                 45.8
                                                       6.0622
                                                                     222
                                                                             18.7
                      0.0
                                                                  3
                                  0.458
                                                       6.0622
      4
           0.06905
                      0.0
                            2.18
                                        7.147
                                                 54.2
                                                                     222
                                                                             18.7
      . .
      501
           0.06263
                      0.0
                           11.93
                                  0.573 6.593
                                                 69.1
                                                       2.4786
                                                                     273
                                                                             21.0
                                                                  1
      502 0.04527
                      0.0 11.93
                                  0.573 6.120
                                                                     273
                                                                             21.0
                                                 76.7
                                                       2.2875
      503
           0.06076
                      0.0
                          11.93
                                  0.573
                                         6.976
                                                 91.0
                                                       2.1675
                                                                     273
                                                                             21.0
                                                                  1
           0.10959
                           11.93
                                  0.573
                                         6.794
                                                                             21.0
      504
                      0.0
                                                 89.3
                                                       2.3889
                                                                  1
                                                                     273
                      0.0
      505
           0.04741
                          11.93 0.573
                                         6.030
                                                 80.8
                                                       2.5050
                                                                     273
                                                                             21.0
           1stat medv
      0
            4.98
                  24.0
      1
            9.14 21.6
      2
            4.03 34.7
      3
            2.94 33.4
      4
            5.33 36.2
      . .
             •••
      501
            9.67 22.4
      502
            9.08 20.6
      503
            5.64 23.9
      504
            6.48 22.0
      505
            7.88 11.9
      [506 rows x 12 columns]
[62]: print(np.unique(Boston_quant["zn"]))
      median_medv = Boston_quant.groupby(["zn"], observed=True)[["medv"]].median()
      median_medv
                                             22.
     Γ 0.
              12.5 17.5
                                 20.
                                       21.
                                                    25.
                                                          28.
                                                                30.
                                                                       33.
                                                                             34.
                          18.
       35.
              40.
                    45.
                          52.5
                                55.
                                       60.
                                             70.
                                                    75.
                                                          80.
                                                                82.5
                                                                      85.
                                                                             90.
             100.]
       95.
[62]:
              medv
      zn
      0.0
             19.75
      12.5
             19.90
      17.5
             33.00
      18.0
             24.00
      20.0
             35.20
      21.0
             21.95
      22.0
             24.45
      25.0
             23.10
      28.0
             22.90
      30.0
             22.75
      33.0
             30.90
      34.0
             26.40
      35.0
             19.40
```

242

17.8

2

2

0.02729

0.0

7.07 0.469 7.185

61.1

4.9671

```
40.0
       32.00
45.0
       33.45
52.5
       23.20
55.0
       23.90
60.0
       26.60
70.0
       24.80
75.0
       30.80
80.0
       24.50
82.5
      33.20
85.0
      23.90
90.0
       35.40
95.0
      41.70
100.0 31.60
```

```
[63]: sns.catplot(
    data=Boston_quant,
    x="zn",
    y="medv",
    kind="bar",
    height=10,
    aspect=2,
    estimator=median,
);
```



```
[64]: print(np.unique(Boston_quant["rad"]))
mean_rad = Boston_quant.groupby(["rad"], observed=True)[["medv"]].mean()
mean_rad
```

[1 2 3 4 5 6 7 8 24]

```
[64]:
                 medv
      rad
      1
           24.365000
      2
           26.833333
      3
           27.928947
      4
           21.387273
      5
           25.706957
      6
           20.976923
      7
           27.105882
      8
           30.358333
      24
           16.403788
```

```
[65]: sns.catplot(data=Boston_quant, x="rad", y="medv", kind="bar", height=10,⊔

→aspect=2);
```


Executing <Handle BaseSelectorEventLoop._read_from_self() created at /usr/lib/python3.12/asyncio/selector_events.py:280> took 0.289 seconds Executing <Handle IOLoop._run_callback(functools.par...7dd251c1b880>)) created at /home/linus/ISLP/islpenv/lib/python3.12/site-packages/tornado/platform/asyncio.py:235> took 0.111 seconds Executing <Task pending name='Task-2' coro=<Kernel.poll_control_queue() running at /home/linus/ISLP/islpenv/lib/python3.12/site-packages/ipykernel/kernelbase.py:304> wait_for=<Future pending cb=[Task.task_wakeup()] created at /home/linus/ISLP/islpenv/lib/python3.12/site-packages/tornado/queues.py:248> cb=[_chain_future.<locals>._call_set_state() at

/usr/lib/python3.12/asyncio/futures.py:394] created at /usr/lib/python3.12/asyncio/tasks.py:695> took 0.159 seconds

Plotting the other quantitative columns against medv (Median value of owner-occupied homes), we can see that: 1. crim is negatively correlated with medv. i.e., as crime rate increases, median value of homes decrease. 2. indus is negatively correlated with medv which is expected as industrialisation of a town increases, the house prices decrease. 3. nox is negatively correlated with medv which is also expected. 4. as the number of rooms (rm) increase, so does the value of the home. 5. as the proportion of homes built prior to 1940 increase, the value of homes in that area decrease. There are some notable outliers, but that appears to be the general trend. 6. There is a clear relationship in the lsat (lower status of population percent) versus medv where medv decreases with the increase in lstat on the x-axis.

```
[67]: Boston_quant["zn"].value_counts()
[67]: zn
       0.0
                 372
       20.0
                   21
       80.0
                   15
       22.0
                   10
       12.5
                   10
       25.0
                   10
       40.0
                    7
       45.0
                    6
       30.0
                    6
       90.0
                    5
       95.0
                    4
       60.0
                    4
       21.0
                    4
       33.0
                    4
       55.0
                    3
                    3
       70.0
       34.0
                    3
                    3
       52.5
                    3
       35.0
       28.0
                    3
                    3
       75.0
                    2
       82.5
       85.0
                    2
       17.5
                    1
       100.0
                    1
       18.0
                    1
```

Name: count, dtype: int64

```
[69]: sns.catplot(data=Boston_quant, x="zn", y="crim", kind="bar", height=6, ⊔

→aspect=2);
```



```
[71]: sns.displot(data=Boston_quant, x="age", y="crim", height=4, aspect=3);
```

Executing <Handle BaseAsyncIOLoop._handle_events(28, 1) created at

indus

/usr/lib/python3.12/asyncio/selector_events.py:280> took 0.290 seconds
Executing <Handle IOLoop._run_callback(functools.par...7dd2511184a0>)) created
at /home/linus/ISLP/islpenv/lib/python3.12/sitepackages/tornado/platform/asyncio.py:235> took 0.299 seconds

[73]: sns.displot(data=Boston_quant, x="dis", y="crim", height=4, aspect=3);

We've already seen that there appears to be a relationship b/w crime rate and medv where a higher crime rate is associated with lower property prices. Additionally, plotting the other quantitative variables against crime rate (crim), we can perceive the following: 1. No-zoned areas or towns are associated with higher crime rate compared to all other zoning percentages. 2. For some reason, industrialization of around 18% displays a spike in the crime rate compared to the other suburbs. This might be worth investigating further. 3. Suburbs with nox > 0.55 or so have an elevated crime rate. That could be because lower strata income people live in those areas, and they are more inclined to criminal activities. 4. There also seems to be an increasing relationship b/w crime rate and percentage of homes built prior to 1940. Once that percentage crosses 40%, there is an increasing number of suburbs that exhibit elevated crime rates. 5. Suburbs within a distance to Boston employment centres that range from 1 to 4.5 show an elevated crime rate. This needs to be investigated further. Where are these employment centres located? 6. There seems to be a higher incidence of crimes for areas with tax rate around 670. Why? 7. The crime rate does not seem to have a strong relationship with ptratio, but for around point 20.1 where the crime rate spikes compared to the other areas. 8. Crime rate decreases as the median value of properties rise across

suburbs as a whole.

Do any of the suburbs of Boston appear to have particularly high crime rates? Tax rates? Pupil-teacher ratios? Comment on the range of each predictor.

```
[76]: Boston_crim = Boston_quant.sort_values(
          by="crim", axis=0, ascending=False, inplace=False
      top_crim = Boston_crim.head()
      print(top crim)
      df = pd.DataFrame((Boston_quant.min(), Boston_quant.max()), index=["Min", |

¬"Max"])
      df
                          indus
                                                                            ptratio
              crim
                      zn
                                    nox
                                             rm
                                                   age
                                                            dis
                                                                 rad
                                                                       tax
     380
           88.9762
                    0.0
                           18.1
                                 0.671
                                         6.968
                                                  91.9
                                                         1.4165
                                                                  24
                                                                       666
                                                                               20.2
     418
           73.5341
                    0.0
                           18.1
                                 0.679
                                         5.957
                                                 100.0
                                                        1.8026
                                                                  24
                                                                       666
                                                                               20.2
     405
           67.9208
                    0.0
                           18.1
                                 0.693
                                         5.683
                                                 100.0
                                                         1.4254
                                                                  24
                                                                       666
                                                                               20.2
                           18.1
                                                                               20.2
     410
           51.1358
                    0.0
                                  0.597
                                         5.757
                                                 100.0
                                                         1.4130
                                                                  24
                                                                       666
     414
           45.7461
                    0.0
                           18.1
                                         4.519
                                 0.693
                                                 100.0
                                                        1.6582
                                                                  24
                                                                       666
                                                                               20.2
           lstat
                  medv
     380
           17.21
                  10.4
     418
           20.62
                   8.8
     405
           22.98
                   5.0
           10.11
     410
                  15.0
           36.98
     414
                   7.0
[76]:
                crim
                              indus
                                                                 dis
                                                                       rad
                                                                               tax
                          zn
                                        nox
                                                rm
                                                       age
      Min
             0.00632
                         0.0
                               0.46
                                      0.385
                                             3.561
                                                       2.9
                                                              1.1296
                                                                       1.0
                                                                             187.0
           88.97620
                                                            12.1265
                                                                      24.0
                                                                             711.0
      Max
                      100.0
                              27.74
                                     0.871
                                             8.780
                                                     100.0
           ptratio
                     lstat
                             medv
      Min
               12.6
                      1.73
                              5.0
               22.0
                    37.97
                             50.0
      Max
```

As we can see from the dataset above, the top five crime rate suburbs are unzoned, have an industrialization rate of 18.1%, nox of 0.671, rooms ranging from 4.5 to 7, percentage of houses built prior to 1940 ranging from 92 to 100%, high tax rate of 666per10,000 property tax, ptratio of 20.2. The lstat varies from 10.11 rto 36.98 and the median house values from 5.0 to 15.0 which are among the lowest. The index of accessibility to radial highways is 24 which is the best rank amongst all the suburbs.

How many of the suburbs in this data set bound the Charles River?

```
[77]: len(Boston.query("chas == 1"))
```

[77]: 35

What is the median pupil-teacher ratio among the towns in this data set?

```
[78]: median(Boston_quant["ptratio"])
```

[78]: 19.05

Which suburb of Boston has lowest median value of owner-occupied homes? What are the values of the other predictors for that suburb, and how do those values compare to the overall ranges for those predictors? Comment on your findings.

```
[79]: lowest_medv = Boston_quant[Boston_quant["medv"] == Boston_quant["medv"].min()] lowest_medv
```

```
[79]:
               crim
                       zn
                            indus
                                      nox
                                                              dis
                                                                    rad
                                                                         tax
                                                                               ptratio
                                               rm
                                                     age
      398
            38.3518
                      0.0
                             18.1
                                   0.693
                                           5.453
                                                   100.0
                                                           1.4896
                                                                     24
                                                                         666
                                                                                   20.2
                                                   100.0
      405
            67.9208
                      0.0
                             18.1
                                   0.693
                                           5.683
                                                           1.4254
                                                                     24
                                                                         666
                                                                                   20.2
            lstat
                   medv
            30.59
      398
                     5.0
      405
            22.98
                     5.0
```

From the above two data points with the lowest median value for owner-occupied homes, it's evident that crime rate by itself does not determine the median value of homes for those regions. Except for lstat and crim, the other predictors match exactly the two data points. Istat for these two data points are high at 22.98 and 30.59 respectively. In these two cases, the other predictors do a better job of explaining the median value for the homes in these suburbs or these suburbs are neighbouring each other.

In this data set, how many of the suburbs average more than seven rooms per dwelling? More than eight rooms per dwelling? Comment on the suburbs that average more than eight rooms per dwelling.

```
[80]: len(Boston_quant[Boston_quant["rm"] > 7])
```

[80]: 64

```
[81]: eight_rooms = Boston_quant[Boston_quant["rm"] > 8]
    print(len(eight_rooms))
    eight_rooms
```

13

```
[81]:
               crim
                        zn
                            indus
                                       nox
                                                rm
                                                      age
                                                               dis
                                                                    rad
                                                                          tax
                                                                               ptratio
      97
            0.12083
                       0.0
                              2.89
                                    0.4450
                                             8.069
                                                     76.0
                                                           3.4952
                                                                       2
                                                                          276
                                                                                   18.0
      163
           1.51902
                       0.0
                            19.58
                                    0.6050
                                             8.375
                                                     93.9
                                                           2.1620
                                                                      5
                                                                          403
                                                                                   14.7
           0.02009
                                                     31.9
                                                                      4
                                                                          224
                                                                                   14.7
      204
                      95.0
                             2.68
                                    0.4161
                                             8.034
                                                           5.1180
                                    0.5040
      224
           0.31533
                       0.0
                             6.20
                                             8.266
                                                     78.3
                                                           2.8944
                                                                      8
                                                                          307
                                                                                   17.4
      225
           0.52693
                              6.20
                                             8.725
                                                     83.0
                                                                          307
                                                                                   17.4
                       0.0
                                    0.5040
                                                           2.8944
                                                                      8
      226
           0.38214
                       0.0
                             6.20
                                    0.5040
                                             8.040
                                                     86.5
                                                           3.2157
                                                                      8
                                                                          307
                                                                                   17.4
      232
           0.57529
                       0.0
                             6.20
                                    0.5070
                                             8.337
                                                     73.3
                                                           3.8384
                                                                      8
                                                                          307
                                                                                   17.4
           0.33147
                                    0.5070
                                                                      8
                                                                          307
      233
                       0.0
                             6.20
                                             8.247
                                                     70.4
                                                           3.6519
                                                                                   17.4
      253
           0.36894
                     22.0
                             5.86
                                    0.4310
                                             8.259
                                                      8.4
                                                           8.9067
                                                                      7
                                                                          330
                                                                                   19.1
```

```
86.9
257
     0.61154
               20.0
                      3.97
                             0.6470
                                      8.704
                                                    1.8010
                                                               5
                                                                  264
                                                                           13.0
262
     0.52014
               20.0
                                      8.398
                                             91.5
                                                    2.2885
                                                               5
                                                                  264
                                                                           13.0
                      3.97
                             0.6470
                                                               5
267
     0.57834
               20.0
                      3.97
                             0.5750
                                      8.297
                                              67.0
                                                    2.4216
                                                                  264
                                                                           13.0
     3.47428
                             0.7180
                                      8.780
                                             82.9
                                                    1.9047
                                                                  666
                                                                           20.2
364
                0.0
                     18.10
                                                              24
```

```
lstat
             medv
97
      4.21
             38.7
      3.32
163
             50.0
204
      2.88
             50.0
224
      4.14
             44.8
225
      4.63
             50.0
226
      3.13
             37.6
232
      2.47
             41.7
233
      3.95
             48.3
253
      3.54
             42.8
257
      5.12
             50.0
262
      5.91
             48.8
267
      7.44
             50.0
364
      5.29
             21.9
```

There are 13 suburbs that average more that 8 rooms per dwelling.

The median value for these dwellings range from 21.9 to 50.0 which is the priciest.

The crime rate in these suburbs is extremely low with the highest at around 3.5%.

Industrialization of these suburbs is also low with 19.58 the maximum.

The percentage of people from the lower income strata tops out at 7.44%

A substantial percentage of dwellings are built prior to 1940 which could explain the higher number of rooms with only one outlier at 8.4%.

[82]: allDone()

<IPython.lib.display.Audio object>