

#### Homogenización de series de tiempo mensuales de precipitación en R

Néstor Ricardo Bernal Suárez, José Daniel Pabón Caicedo Grupo de Investigación GIIAUD, Ingeniería Ambiental, Universidad Distrital Francisco José de Caldas Grupo Tiempo, Clima y Sociedad, Departamento de Geografía, Universidad Nacional de Colombia

Armenía, Quindío, Octubre 25 de 2023

#### Homogenización de series de tiempo mensuales de precipitación en R

Néstor Ricardo Bernal Suárez, José Daniel Pabón Caicedo Grupo de Investigación GIIAUD, Ingeniería Ambiental, Universidad Distrital Francisco José de Caldas Grupo Tiempo, Clima y Sociedad, Departamento de Geografía, Universidad Nacional de Colombia





Estación meteorológica de referencia: 2120516

Estación meteorológica de análisis: 2120557



#### Contenido

- 1. Qué es homogenización de series de tiempo?
- 2. Estudio de caso
- 3. Metodología de homogenización
- Etapa 1: estaciones vecinas
- Etapa 2: estación análisis y referencia
- Etapa 3: detección de cambio en el promedio
- Etapa 4: homogenización
- 4. Análisis posterior a la homogenización: índices climáticos
- 5. Estudio de caso en R-Studio
- 6. Agradecimientos

### 1. Qué es homogenización de series de tiempo?

Cuando se analizan las series de tiempo climáticas, en particular, la de precipitación, constituye un elemento climático (Eslava, 1994; Jaramillo, 2005), en dichas series se detectar heterogeneidades pueden relacionadas con cambios en la ubicación de estación, posibles fallas en los instrumentos de medición o de transmisión, u otro tipo de errores en los datos

### 1. Qué es homogenización de series de tiempo?

Es por ello que los diversos tipos de usuarios de datos de variables climáticas requieren realizar un análisis encaminado a la calidad de los datos. Así cuando se hace referencia a la homogenización de series de tiempo, lo que se desea es lograr series que posean una coherencia temática, espacial y temporal.

#### 2. Estudio de caso

Estudio de caso 1:

Región climatológica: Sabana de Bogotá

Estación meteorológica de análisis: ESTACIÓN:

2120557, La Primavera, Municipio: Subachoque

Estación meteorológica de referencia (vecina):

ESTACIÓN: 2120516, La Ramada, Municipio: Funza

#### 2. Estudios de caso





Estación meteorológica de referencia: 2120516

Estación meteorológica de análisis: 2120557

### 3. Metodología de homogenización

Etapa 1: identificación de estaciones meteorológicas vecinas

Etapa 2: definir la estación de análisis y estación de referencia

Etapa 3: detección de puntos de cambio en el promedio

Etapa 4: ajuste de la serie de análisis, precisamente, se le denomina homogenización de las series

# Etapa 1: identificación de estaciones meteorológicas vecinas

Criterios para identificar una estación meteorológica vecina (Bernal *et al.*, 2012; Lombana *et al.*, 2018)

Una estación "A" es vecina de la estación "B", si la estación "A" cumple estos cuatro criterios:

- i) Que la estación "A" esté en la misma subzona hidrográfica de la estación "B"
- ii) Que la estación "A" esté en el mismo rango de precipitación anual de la estación "B"
- iii) Que la estación "A" esté en el mismo rango de elevación de la estación "B"
- iv) Que el radio de acción de correlación espacial de precipitación sea significativo, es decir, la distancia entre las distancias A y B no superen un radio de acción específico identificado para cada región climatológica, este radio de acción se identificó empleando el índice de Moran.

# Etapa 2: definir la estación de análisis y estación de referencia



Estación meteorológica de referencia: 2120516

Estación meteorológica de análisis: 2120557

# Etapa 3: detección de puntos de cambio en el promedio



# Etapa 3: detección de puntos de cambio en el promedio

• Etapa 3: con la serie de tiempo de precipitación mensual después de realizar el proceso de estimación de datos empleando los datos de GPCC y se aplican las pruebas: Pettitt y Homogeneidad Normal Estándar (SNHT, por sus siglas en inglés), con el propósito es detectar el punto de cambio en el nivel o promedio de la serie.

La hipótesis nula  $(H_0)$  y alterna  $(H_1)$  para la prueba Pettitt son:

$$H_0: \mu_1 = \mu_2$$
  
$$H_1: \mu_1 \neq \mu_2$$

Donde

 $\mu_1$  corresponde al promedio de los datos de la serie de tiempo:  $y_1, y_2,...,y_k$  y  $\mu_2$  indica el promedio de los datos de la serie:  $y_{k+1},y_{k+2},...,y_N$ 

Para la prueba SNHT, supone un modelo de cambio de nivel en el promedio (Buishand, 1984):

$$y_t = \begin{cases} \mu + \varepsilon_t, & t = 1, 2, \dots, k \\ \mu + \Delta + \varepsilon_t, & t = k + 1, k + 2, \dots, n \end{cases}$$

# Etapa 4: Alternativa de la curva de dobles masas (ejemplo 1)

Todo el período



Antes del punto de cambio



#### Después del punto de cambio



# Etapa 4: ajuste de la serie de análisis, precisamente, se le denomina homogenización de las series (ejemplo 2)



Homogenización mes de junio, Estación 2502003 (Guarandá) Tomada de Lombana, L., Bernal, N. y Barrios, J., 2018

### 4. Análisis posterior a la homogenización: índices climáticos

Índices de precipitación empleando series de tiempo mensuales 1. Anomalías estandarizadas

2. Anomalías respecto al promedio

3. Anomalías respecto a la mediana

4. SPI

## 4. Análisis posterior a la homogenización: índices climáticos



Serie de tiempo de índices climáticos basado en la precipitación mensual de ICA-Palmira, índice 1: anomalías respecto al promedio, índice 2: anomalías estandarizadas, índice 3: anomalías respecto a la mediana y SPI

# 4. Análisis posterior a la homogenización: índices climáticos



Serie de tiempo de SPI basado en la precipitación mensual de ICA-Palmira, nota: se ilustra sólo un tramo de la serie

### 5. Estudio de caso en R-Studio, versión 3.6

Estudio de caso 3:

Región Climatológica: Alto Cauca

Estación meteorológica de análisis: ESTACIÓN:

2120516, ICA, Municipio: Palmira

Estación meteorológica de referencia: GPCC

#### 5. Estudio de caso en R-Studio

Grilla datos GPCC y ejemplo de estaciones meteorológicas (IDEAM)



Fuente: Bernal, 2022. NOTAS DE CLASE SOBRE ANÁLISIS DE VARIABILIDAD CLIMÁTICA BASADO EN DATOS DE PRECIPITACIÓN MENSUAL

### 6. Agradecimientos

Al Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), a Ruth Correa y María Inés Cubillos de la Subdirección de Meteorología. A Gustavo Cabrales por el procesamiento y descarga de los datos de GPCC, a Yenny Sánchez por la colaboración en la elaboración de algunos mapas, a Alfonso Ladino, Nicole Rivera y Fernanda Moreno, al Prof. Andreas Becker de GPCC, al Prof. Emel Vega, Diego Quintero y Prof. Ramón Giraldo de la Universidad Nacional de Colombia por las reflexiones de tipo metodológico, relacionadas con el análisis de la similitud entre series y la alternativa de un modelo espacial para estimación de datos faltantes, que se abordaron en el marco del proyecto IDEAM –UNAL en el año 2018.