V. VARIA.

12. LOCALLY COMPACT FIELDS.

A <u>locally compact</u> <u>field</u> is a field K provided with a locally compact topology such that K is a topological group under addition and K\{0} is a topological group under multiplication. IN THIS SECTION K IS A NON-DISCRETE LOCALLY COMPACT FIELD.

Let m be a Haar measure on (the additive group) K. For every $a \in K$, $X \longmapsto m(aX)$ is a left invariant measure on the Borel 6-algebra of K. By the uniqueness of the Haar measure there exists a function $D: K \longrightarrow [0,\infty)$ for which m(aX) = D(a)m(X) (a $\in K$; $X \subset K$ Borel).

Evidently,

$$D(ab) = D(a)D(b)$$
 (a, b \in K)

and

$$D(a^{-1}) = \frac{1}{D(a)}$$
 $(a \in K, a \neq 0)$.

 $0 \in K$ has a compact neighborhood C; this C is an infinite set (K is not discrete) but has finite measure. It follows that $m(\{x\}) = 0$ for every $x \in K$. Thus,

$$D(a) = 0$$
 if and only if $a = 0$.

12.1. LEMMA. D is continuous.

Proof. Let $a \in K$, c > D(a). Choose a compact $X \subset K$, m(X) > 0. By the regularity of m there exists an open $U \supset aX$ such that m(U) < c m(X). According to Lemma 3.2 the set $W := \{x \in K : xX \subset U\}$ is an open set containing a. For all $x \in W$ we have $D(x)m(X) \leq m(U) < cm(X)$, i.e. D(x) < c.

Thus, $\{x \in K : D(x) < c\}$ is open for every $c \in \mathbb{R}$. Further, for c > 0 we have $\{x \in K : D(x) > c\} = \{x \in K \setminus \{0\} : D(x^{-1}) < c^{-1}\}$. Hence, D is continuous.

Apparently, $\{0\}$ is the intersection of the open sets $\{x : D(x) < n^{-1}\}$ (neN). Exercise 3.L implies:

12.2. THEOREM. K is metrizable.

If x_1, x_2, \dots is a sequence that is contained in a compact set $C \subset K$ and if $\lim D(x_n) = 0$, then $\lim x_n = 0$. In fact, assume that this conclusion is false. Then 0 has an open neighborhood U such that $C\setminus U$ contains x_n for infinitely many n. As $C\setminus U$ is compact the sequence x_1, x_2, \dots must have a subsequence y_1, y_2, \dots that lies in $C\setminus U$ and converges to some $y \in C\setminus U$. Consequently, $D(y) = \lim D(y_n) = \lim D(x_n) = 0$, so y = 0. But $0 \notin C\setminus U$.

12.3. THEOREM. For every $c \ge 0$ the set $\{x \in K : D(x) \le c\}$ is compact.

Proof. Let $c \ge 0$; set $A := \{x : D(x) \le c\}$. By Theorem 12.2, A is closed.

Choose an open neighborhood U of O with compact closure and let W:= $\{x \in K : xU \subset U\}$. This W is a neighborhood of O because W > $\{x : x\overline{U} \subset U\}$ (apply Lemma 3.2); and W has compact closure because for every $a \in U \setminus \{0\}$, W is contained in the compact set $\overline{U}a^{-1}$. Furthermore,

if $a,b \in W$, then $ab \in W$.

Take $s \in W$, 0 < D(s) < 1. (Such s exist since K is not discrete.) W is a semigroup under multiplication, so that

$$W \subset s^{-1}W \subset s^{-2}W \subset \dots$$

We have $s, s^2, s^3, \ldots \in \overline{\mathbb{W}}$ and $\lim \mathbb{D}(s^n) = \lim \mathbb{D}(s)^n = 0$. By the remark we made before formulating this theorem it follows that $\lim s^n = 0$. Then $\lim s^n x = 0$ for all $x \in K$. A fortiori, for every x there exists an n such that $s^n x \in \mathbb{W}$. Thus,

 $\bigcup_{n} s^{-n} W = K.$

We prove that $A \subset s^{-n}W$ for some n. (Then A, being a closed subset of the compact $s^{-n}\overline{W}$, is itself compact.) If A is not contained in any $s^{-n}W$ then it must intersect infinitely many of the sets $s^{-n-1}W \setminus s^{-n}W$, i.e. there exists a subsequence n_1, n_2, \ldots of $1, 2, \ldots$ and there exist $x_1, x_2, \ldots \in A$ such that $x_i \in s^{-n_i-1}W \setminus s^{-n_i}W$ for each i. Now each $x_i s^{n_i}$ lies

in the compact set $s^{-1}\overline{w}$, and $\lim D(x_i)D(s)^n i = 0$. Hence, $\lim_{i \to \infty} x_i s^{n} i = 0$. But each $x_i s^{n} i$ lies in the closed set $K\backslash W$ which does not contain 0: contradiction.

12.4. COROLLARY. K is 6-compact.

K:

12.5. COROLLARY. A sequence $x_1, x_2, \dots \in K$ converges to 0 if and only if $\lim D(x_n) = 0$.

Proof. The "only if" is true because of the continuity of D, the "if" because of Theorem 12.3 and the boundedness of a converging sequence of real numbers.

For the dual group \hat{K} of K we use the additive notation: $(\chi_1 + \chi_2)(x) = \chi_1(x)\chi_2(x) \qquad (\chi_1, \chi_2 \in \hat{K}; x \in K)$

and O denotes the constant function 1 on K. From the σ -compactness of K it follows that \hat{K} is metrizable (Exercise 7.C).

The following definition makes \hat{K} into a vector space over

$$(x\chi)(y) := \chi(xy)$$
 $(\chi \in \hat{K}; x, y \in K).$

The scalar multiplication $(x,y) \mapsto xy$ is continuous $K \times \hat{K} \to \hat{K}$. To prove this statement, let $\lim x_n = x$ in K, $\lim \beta_n = \beta$ in \hat{K} , let $C \subset K$ be compact and g > 0: we prove $x\beta - x_n\beta_n \in N(C:g)$ for large n. The set $C' := \{x, x_1, x_2, \dots\}$ is compact, so that C'C is also compact. For all n,

$$\sup_{y \in C} \left| (x\beta)(y) - (x_n\beta_n)(y) \right| \le \sup_{y \in C} \left| \beta(xy) - \beta(x_ny) \right| + \sup_{y \in C} \left| \beta(x_ny) - \beta_n(x_ny) \right| \le$$

$$\leq \sup_{y \in C} |\beta(xy-x_ny)-1| + \sup_{z \in C'C} |\beta(z)-\beta_n(z)|.$$

For large n, $\beta-\beta_n\in N(C^*C^*;\frac{1}{3}\varrho)$, i.e. $\sup_{z\in C^*C}|\beta(z)-\beta_n(z)|\leq \frac{1}{3}\varrho$. By Lemma 3.2 there exists a neighborhood U of O for which $UC\subset\{z\in K:|\beta(z)-1|<\frac{1}{3}\varrho\}$. If n is large enough, then $x-x_n\in U$, so $|\beta(xy-x_ny)-1|<\frac{1}{3}\varrho$ for all $y\in C$ and $\sup_{y\in C}|\beta(xy-x_ny)-1|\leq \frac{1}{3}\varrho$. This proves that $x\beta-x_n\beta_n\in N(C^*\varrho)$ $y\in C$ for large n.

Choose $\beta \in \hat{K}$, $\beta \neq 0$. For $x \in K$ set $\Phi(x) := x\beta$. Then Φ is injective and continuous $K \longrightarrow K\beta$. We prove that Φ is a homeomorphism $K \longrightarrow K\beta$ and that $K\beta$ is closed in \hat{K} . It suffices to prove

(*) $\frac{\text{if } a_1, a_2, \dots \in K \text{ and if } \chi := \lim a_n \beta \text{ exists, then}}{\text{the sequence } a_1, a_2, \dots \text{ converges to some } a \in K, \text{ and } \gamma = a\beta.}$

Let $a_1, a_2, \dots \in K$ and $\beta = \lim_{n \to \infty} a_n \beta$. If the sequence $D(a_1)$, $D(a_2), \dots$ is bounded there is a compact set $A \subset K$ containing all the a_n (Theorem 12.3). The restriction of Φ to A is then a homeomorphism $A \longrightarrow \Phi(A) \subset K\beta$, and we are done. Otherwise the sequence $1, 2, \dots$ has a subsequence n_1, n_2, \dots such that $\lim_{n \to \infty} D(a_n) = \infty$. Then $\lim_{n \to \infty} D(a_n) = 0$, so $\lim_{n \to \infty} a_{n_1} = 0$ and $\lim_{n \to \infty} 0 = 0$ and

Suppose K $\beta \neq \hat{K}$. Then \hat{K} has a non-trivial character that is 1 on K (Theorem 7.2 (b)). By the Duality Theorem there is an $a \in K$, $a \neq 0$ such that $(x\beta)(a)=1$ $(x \in K)$. Then $\beta(xa)=1$ for all x, so $\beta=0$, and we again have a contradiction.

We have thus proved:

12.6. THEOREM. Choose $\beta \in \hat{K}$, $\beta \neq 0$. The map $x \mapsto x\beta$ is a homeomorphism and a group isomorphism of K onto \hat{K} .

Suppose K contains a non-zero compact subgroup C (under addition). Take $c \in C$, $c \neq 0$. Then every $a \in K$ lies in a compact subgroup of K (viz. $ac^{-1}C$).

It follows now from the corollary (8.3) to the Structure Theorem for locally compact abelian groups that K contains an open subgroup that is either isomorphic to \mathbb{R}^m (some $m \in \mathbb{N}$) or compact.

Case I. Let Φ be a homeomorphism-and-isomorphism of an m-dimensional vector space E onto an open subgroup of K. Choose $a \in K$, $a \neq 0$ and $b \in \Phi(E)$, $b \neq 0$. Then $a^{-1}b \Phi(E)$ is an open subgroup of K, so $\Phi(E) \land a^{-1}b \Phi(E)$ is an open subgroup of $\Phi(E)$. But E has no proper open subgroups, so $\Phi(E) \subset a^{-1}b \Phi(E)$,

and $a=ab^{-1}b \in ab^{-1}a^{-1}b \Phi(E) = \Phi(E) : \Phi \underline{\text{maps } E \text{ onto } K.}$

Let $e:=\Phi^{-1}(1)$. Define $\varphi\colon\mathbb{R}\to K$ by $\varphi(\lambda):=\Phi(\lambda e)$. Then φ is an isomorphism of \mathbb{R} onto a subfield \mathbb{R} of K. It is not hard to prove that

$$\Phi\left(\sum_{i=1}^{n} \lambda_{i} a_{i}\right) = \sum_{i=1}^{n} \varphi(\lambda_{i}) \Phi\left(a_{i}\right) \quad (n \in \mathbb{N}; \lambda_{1}, \dots, \lambda_{n} \in \mathbb{R}; a_{1}, \dots, a_{n} \in \mathbb{E}).$$

(Prove the formula for rational $\lambda_1,\dots,\lambda_n$ first.) Then K is a finite dimensional vector space over R, hence is an algebraic extension of R. But R is isomorphic to R, so $\dim_R K \leq 2$. Thus, for E we may take either R or C. It is easy to see that in either case Φ is multiplicative ($\Phi(xy) = \Phi(x) \Phi(y)$), so that K, as a topological field, is isomorphic to either R or C.

Case II. Let U be a compact open subgroup of K. Set $W:=\{x\in K: xU\subset U\}$. As in the proof of Theorem 12.3 W is a neighborhood of O, \overline{W} is compact, and ab $\in W$ for all a, b $\in W$. But this time U is closed and a subgroup of K: consequently W is a compact open subring of K.

We prove

(*) <u>if</u> $a \in K$ <u>and</u> D(a) < 1, <u>then</u> D(1-a) = 1. Let $a \in K$, D(a) < 1. Then $\lim_{n \to \infty} a^n = 0$ (Corollary 12.5), so $a^n \in W$

for some NeN.

 $W' := W + aW + a^2W + ... + a^{N-1}W$

is a compact open subgroup and aW' \subset W'. Therefore, (1-a)W' \subset W', so $D(1-a) \leq 1$. But also $(1+a+a^2+\ldots+a^n)$ W' \subset W', so $D(1+a+\ldots+a^n) \leq 1$ $(n \in \mathbb{N})$. Now $\lim_{n \to \infty} (1+a+\ldots+a^n) = (1-a)^{-1}$. Hence, $D((1-a)^{-1}) \leq 1$, i.e. $D(1-a) \geq 1$.

This proves (*). But (*) leads to

(**) if $a,b \in K$ and D(a) < D(a+b), then D(a+b) = D(b). In fact, if D(a) < D(a+b), then $D(\frac{a}{a+b}) < 1$, so $1 = D(1 - \frac{a}{a+b}) = D(\frac{b}{a+b})$, whence D(a+b) = D(b).

By (**), for all a,b \in K, $D(a+b) \leq max (D(a),D(b)).$ In particular, D determines a metric d by d(a,b):= D(a-b).

By Corollary 12.5, the topology of K is just the one induced by d.

A <u>valuation</u> on a field F is a map $x \mapsto x$ of F into R such that

- (i) $|x| \ge 0$ for all $x \in F$; |x| = 0 if and only if x = 0.
- (ii) $[x+y] \leq [x]+[y]$ $(x,y \in F)$.
- (iii) |xy| = |x| + |y| $(x, y \in F)$.

Such a valuation is non-Archimedean if (ii) can be strengthened to

(ii*) $x+y \le max(x, y)$ (x, y \in F).

Every valuation $[\]$ on F induces a metric d by d(x,y):=[x-y],

which turns F into a topological field.

In the above we have proved the following.

- 12.7. THEOREM. (PONTRYAGIN-KOWALSKY). If K is connected, it is isomorphic (as a topological field) to either R or C.

 Otherwise there is a non-Archimedean valuation on K which induces the given topology of K.
- 12.A. EXERCISE. Let K be a (non-discrete) locally compact field with a non-Archimedean valuation. Then, as a locally compact abelian group, K is not compactly generated. (In particular, K is not compact.)

12.B. EXERCISE The p-adic numbers.

Let p be a prime number. Every non-zero rational number x can be written in the form $p^n\frac{a}{b}$ where $n,a,b\in \mathbb{Z}$ while neither a nor b is divisible by p; we then set $D(x):=p^{-n}$. (This definition is unambiguous: if $p^n\frac{a}{b}=p^{n'}\frac{a'}{b'}$ and a,b,a',b' are not divisible by p, then n=n'.) Further, we D(0):=0.

This D is determined by the following properties.

$$D(p) = p^{-1}$$
, $D(0) = 0$;
 $D(m) = 1$ if $m \in \mathbb{Z}$ is not divisible by p;
 $D(xy) = D(x)D(y)$ $(x,y \in \mathbb{Q})$.

p is a non-Archimedean valuation on Q.

By \mathbf{Q}_p we denote the completion of \mathbf{Q} relative to the metric induced by D. Then D has a unique continuous extension to \mathbf{Q}_p ; we denote this extension by $|\mathbf{Q}_p|$. The metric on \mathbf{Q}_p turns out to be

$$(x,y) \mapsto |x-y|_p$$
 $(x,y \in \mathbb{Q}_p).$

Addition and multiplication have unique continuous extensions $\mathbf{Q}_p \times \mathbf{Q}_p \longrightarrow \mathbf{Q}_p$. Thus, \mathbf{Q}_p becomes a non-Archimedean valued field, complete relative to the metric induced by its valuation | | p.

The elements of Qp are called p-adic numbers.

The closure of ${\bf Z}$ in ${\bf Q}_p$ is isometric and isomorphic to the group ${\bf Z}_p$ of p-adic integers. (See Exercise 7.A.) We view ${\bf Z}_p$ as a (compact) subgroup of ${\bf Q}_p$. Then

$$\mathbf{z}_{p} = \{x \in \mathbf{Q}_{p} : |x|_{p} \leq 1\}.$$

(Hint to proving the inclusion \supset . Let $x \in \mathbb{Q}_p$, $|x|_p \le 1$ and let $\epsilon > 0$. Choose $n \in \mathbb{N}$ so that $p^{-n} < \epsilon$. There exist $k, l \in \mathbb{Z}$, $l \ne 0$ so that $|x - \frac{k}{l}|_p < p^{-n}$; then $|\frac{k}{l}|_p \le 1$. We may assume that l is not divisible by p. Then p^n and l are relatively prime and there exists an $m \in \mathbb{Z}$ such that k-ml is divisible by p^n . Now $|x-m|_p < \epsilon$.)

Qp is locally compact.

If m is a Haar measure on \mathbb{Q}_p , then $m(aX) = |a|_p m(X) \qquad (a \in \mathbb{Q}_p; X \subset \mathbb{Q}_p \text{ Borel}).$

