

UNIVERSIDAD DEL PACÍFICO

Departamento Académico de Economía Matemáticas III (30651)

Segundo Semestre 2015

Profesores Diego Winkelried, Orestes Bueno, Diego Bohorquez y Jorge Cortez

Práctica Calificada 2

1. Manipulación de matrices (6 ptos)

Sea A una matriz semidefinida positiva distinta de la matriz nula, de dimensión n. Además, sea $\theta > 0$ un escalar.

- a) (1 pto) Muestre que los valores propios de $A + \theta I_n$ son iguales a los valores propios de A, más θ . Concluya que $A + \theta I_n$ es no singular.
- b) (3 ptos) Muestre que los valores propios de la matriz

$$\boldsymbol{B} = \boldsymbol{A}(\boldsymbol{A} + \theta \boldsymbol{I}_n)^{-1}$$

son tales que $\lambda_B \in [0,1)$. Ayuda: Recuerde que \boldsymbol{A} es diagonalizable.

c) (2 ptos) Considere la función

$$f(\theta) = \operatorname{traza} \left\{ \boldsymbol{A} (\boldsymbol{A} + \theta \boldsymbol{I}_n)^{-1} \right\}.$$

Muestre que $f(\theta)$ es un función decreciente de θ . Asimismo, encuentre el límite de $f(\theta)$ conforme $\theta \to 0$ y $\theta \to \infty$.

2. Matrices pequeñas (6 ptos)

Sea 0 < a < 1. Considere las matrices

$$\mathbf{A} = \begin{bmatrix} a & \sqrt{1-a^2} \\ \sqrt{1-a^2} & -a \end{bmatrix}$$
 y $\mathbf{B} = \begin{bmatrix} a & a-a^2 \\ 1 & 1-a \end{bmatrix}$.

Para cada una de estas matrices:

- a) (1.5 ptos cada una) Encuentre sus valores y vectores propios.
- b) (0.5 ptos cada una) Indique condiciones suficientes para que las matrices sean diagonalizables.
- c) (1 pto cada una) Encuentre, utilizando la descomposición espectral de las matrices, expresiones lo más simple posible para las matrices A^k y B^k , donde k es un entero positivo.

3. Una matriz de 3 x 3 (3 ptos)

Considere la siguiente matriz

$$\boldsymbol{A} = \left[\begin{array}{ccc} c & 0 & 0 \\ 0 & a & b \\ 0 & b & a \end{array} \right] ,$$

donde a, b y c son escalares, con b > 0. Encuentre el valor de a, b y c si se sabe que...

- \dots la traza de \boldsymbol{A} es igual a 1,
- \dots el mayor valor propio de A es igual a 3,
- ... la multiplicidad algebraica del menor valor propio es igual a 2.

4. Misceláneos (5 ptos)

Determine la veracidad o falsedad de las siguientes afirmaciones:

- a) (1 pto) Sean a, b dos vectores de \mathbb{R}^4 , distintos del vector nulo. Luego, la matriz A = ab' es singular.
- b) (2 ptos) Si v es un vector propio de las matrices A y B, entonces también será un vector propio de la matriz $C = \alpha A + \beta B$, donde α y β son escalares.
- c) (2 ptos) Si v_1 y v_2 son dos vectores propios linealmente independientes de la matriz A, entonces cualquier combinación lineal de éstos, $w = \alpha_1 v_1 + \alpha_2 v_2$, será un vector propio de A.