

Chen-You Tang, Charlie Tolley, Aria Tomar, Blake Grantham

Background Information

Planetary Orbits

Goal of Our Project

 Simulate the paths/orbital periods of the planets in our solar system.

 Identify potential eclipses, collisions, & alignments from the perspective of Earth.

 Use various initial conditions like given mass and max orbital velocity.

Methods and Techniques

Method

- Arbitrary initial parameters
- Using OOP
 - Vector class to keep track of position with respect to:
 - an arbitrary lab frame
 - the star
 - Planet A
- Using scipy.integrate.odeint, we calculated the positions
 - \circ $F=GMm/r^2$

Findings and Results

Lab frame vs. Earth's perspective

Drawbacks/Limitations

- Relative lack of physics knowledge
- Computational power!
- Originally planned to simulate our solar system and create a simulation like we saw earlier, but the ODE integrator would not run, so we generalized our code for a simulated solar system.

References (MLA Citation)

"Apparent Retrograde Motion." Wikipedia, Wikimedia Foundation, 23 Nov. 2021, https://en.wikipedia.org/wiki/Apparent_retrograde_motion.

"Jplephem." PyPI, https://pypi.org/project/jplephem/.

"Planetary Fact Sheet." NASA, NASA, https://nssdc.gsfc.nasa.gov/planetary/factsheet/.

Various Python Libraries (e.g. jplephem)

