Analyses on Visual Inspection Data of Bridges + Project Progress

Zachary Hamida Doctorant James-A. Goulet Professeur

Polytechnique Montréal, Canada Département des génies civil, géologique et des mines

April 30, 2019

Transports,
Mobilité durable
et Électrification
des transports

Partenaire

Context

Deterioration Model

Model Verification

Real Data Analyses

Progress & Next Steps

Database of Visual Inspections

structure

Database of Visual Inspections

année

Database of Visual Inspections

Context

Example: Series of Inspections on Structural Element

Objectives

 Model the deterioration behaviour based on the data from network of bridges

Deterioration Model

- 2.1 Proposed Deterioration Model
- 2.2 Model Parameter Estimation

Deterioration Model Flowchart

Model Parameter Estimation

$$\mathcal{P} = \left\{ \underbrace{\sigma_{v}(\mathit{I}_{1}), \sigma_{v}(\mathit{I}_{2}), \cdots, \sigma_{v}(\mathit{I}_{1})}_{\text{Inspector std.}}, \underbrace{\sigma_{w}}_{\text{Process error std.}}, \underbrace{n}_{\text{Transform. Param.}}, \underbrace{\dot{\mu}_{0}, \ddot{\mu}_{0}, \sigma_{0}^{x}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}}_{\text{Inspector std.}}, \underbrace{\sigma_{w}}_{\text{Transform. Param.}}, \underbrace{\dot{\mu}_{0}, \ddot{\mu}_{0}, \sigma_{0}^{x}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}}_{\text{Inspector std.}}, \underbrace{\dot{\mu}_{0}, \ddot{\mu}_{0}, \sigma_{0}^{x}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}}_{\text{Inspector std.}}, \underbrace{\dot{\mu}_{0}, \ddot{\mu}_{0}, \sigma_{0}^{x}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}}_{\text{Inspector std.}}, \underbrace{\dot{\mu}_{0}, \ddot{\mu}_{0}, \sigma_{0}^{x}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}}_{\text{Inspector std.}}, \underbrace{\dot{\mu}_{0}, \ddot{\mu}_{0}, \ddot{\mu}_{0}, \sigma_{0}^{x}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}}_{\text{Inspector std.}}, \underbrace{\dot{\mu}_{0}, \ddot{\mu}_{0}, \ddot{\mu}_{0}, \sigma_{0}^{x}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}}_{\text{Inspector std.}}, \underbrace{\dot{\mu}_{0}, \ddot{\mu}_{0}, \sigma_{0}^{x}, \sigma_{0}^{\dot{x}}, \sigma_$$

Model Parameter Estimation

Deterioration Model 000000

$$\mathcal{P} = \left\{ \underbrace{\sigma_{v}(\mathit{I}_{1}), \sigma_{v}(\mathit{I}_{2}), \cdots, \sigma_{v}(\mathit{I}_{1})}_{\text{Inspector std.}}, \underbrace{\sigma_{w}}_{\text{Transform. Param.}}, \underbrace{\dot{\mu}_{0}, \ddot{\mu}_{0}, \sigma_{0}^{x}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}}_{\text{Initial state.}}, \underbrace{\dot{\mu}_{0}, \ddot{\mu}_{0}, \sigma_{0}^{x}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}}_{\text{Initial state.}}, \underbrace{\dot{\mu}_{0}, \ddot{\mu}_{0}, \ddot{\mu}_{0}, \sigma_{0}^{x}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}}}_{\text{Initial state.}}, \underbrace{\dot{\mu}_{0}, \ddot{\mu}_{0}, \ddot{\mu}_{0}, \sigma_{0}^{x}, \sigma_{0}^{\dot{x}}, \sigma_{0}^{\dot{x}$$

$$\mathcal{P}^* = \underset{\mathcal{P}}{\text{arg max}} \quad \mathcal{L}(\mathcal{P}),$$

subject to: (parameters feasible domain)

Optimization Algorithm:

Model Parameter Estimation

Parameter Estimation Method

Optimization Algorithm: Newton-Raphson.

Optimization Algorithm: Newton-Raphson.

Optimization Hierarchy & Hypotheses:

Optimization Algorithm: Newton-Raphson.

Optimization Hierarchy & Hypotheses:

Optimize: $\mathcal{P}_0 = \{\sigma_W, \sigma_V, \sigma_0^x, p_1, p_2, p_3\} \subseteq \mathcal{P}$

For each time-series:

Optimization Algorithm: Newton-Raphson.

Optimization Hierarchy & Hypotheses:

Optimize:
$$\mathcal{P}_0 = \{\sigma_W, \sigma_V, \sigma_0^x, p_1, p_2, p_3\} \subseteq \mathcal{P}$$

For each time-series:

$$\mu_0 = \frac{\sum_{t=1}^3 y_t}{3}, \qquad [\sigma_0^{\mathsf{x}}]^2 = \max([\sigma_0^{\mathsf{x}}]^2, [\sigma_{\mathsf{v}}(I_i)]^2) \\ [\sigma_0^{\mathsf{x}}]^2 = 0, \qquad [\sigma_0^{\mathsf{x}}]^2 = p_1^2 * (100 - \tilde{\mu}_{1|T}) + p_2^2, \\ [\sigma_0^{\mathsf{x}}]^2 = p_3^2$$

Optimization Algorithm: Newton-Raphson.

Optimization Hierarchy & Hypotheses:

Optimize:
$$\mathcal{P}_0 = \{\sigma_W, \sigma_V, \sigma_0^x, p_1, p_2, p_3\} \subseteq \mathcal{P}$$

For each time-series:

$$\mu_0 = \frac{\sum_{t=1}^3 y_t}{3}, \qquad [\sigma_0^{\mathsf{x}}]^2 = \max([\sigma_0^{\mathsf{x}}]^2, [\sigma_{\mathsf{v}}(I_i)]^2) \\ [\sigma_0^{\mathsf{x}}]^2 = 0, \qquad [\sigma_0^{\mathsf{x}}]^2 = p_1^2 * (100 - \tilde{\mu}_{1|T}) + p_2^2, \\ [\sigma_0^{\mathsf{x}}]^2 = p_3^2$$

Initialize:
$$\sigma_{V}(I_{i}) = \sigma_{V}, \ \forall \sigma_{V}(I_{i}) \in \mathcal{I}$$

Optimize: $\mathcal{I} = \{\sigma_{V}(I_{1}), \sigma_{V}(I_{2}), \cdots, \sigma_{V}(I_{1})\} \subset \mathcal{P}$

9/29

Optimization Framework

Any time-series with one or more of the following criteria is excluded from the training data:

Any time-series with one or more of the following criteria is excluded from the training data:

Number of observations less or equal to 2 observations.

Any time-series with one or more of the following criteria is excluded from the training data:

- Number of observations less or equal to 2 observations.
- High noise in one of the observations: $\max(|y_t - y_{t-1}|) > 15.$

Any time-series with one or more of the following criteria is excluded from the training data:

- Number of observations less or equal to 2 observations.
- High noise in one of the observations: $\max(|y_t - y_{t-1}|) > 15.$
- Dominance of observations showing condition improvement: Number of $((y_t - y_{t-1}) > 5) > \text{Number of } ((y_t - y_{t-1}) \le 5)$.

11/29

Model Verification

Model Verification

- 3.1 Synthetic Data Characteristics
- 3.2 Verification Results

Synthetic Data Characteristics

Generating Synthetic Data

Generating Synthetic Data

$$\overbrace{\pmb{x}_t = \pmb{A}\pmb{x}_{t-1} + \pmb{w}_t}^{ ext{transition model}}$$

Generating Synthetic Data

$$oxed{ ext{transition model}} oxed{x_t = oldsymbol{A} x_{t-1} + oldsymbol{w}_t}, \ oxed{w_t : oldsymbol{W} \sim \mathcal{N}(oldsymbol{w}; oldsymbol{0}, oldsymbol{Q}_t)}}$$

Synthetic Data Characteristics

Generating Synthetic Data

$$\overbrace{ extbf{x}_t = extbf{A} extbf{x}_{t-1} + extbf{w}_t}^{ ext{transition model}}, \ \ \underbrace{ extbf{w}_t : extbf{W} \sim \mathcal{N}(extbf{w}; extbf{0}, extbf{Q}_t)}_{ ext{process error}}$$

$$\overbrace{\pmb{y_t = Cx_t + v_t}}^{\text{observation model}}, \ \underline{\pmb{v_t : V} \sim \mathcal{N}(\pmb{v}; \pmb{0}, \pmb{R_t})}_{\text{observation error}}$$

Generating Synthetic Data

Method: Transition & Observation Models

$$oxed{ ext{transition model}} oxed{x_t = oldsymbol{A} x_{t-1} + oldsymbol{w}_t}, \ oxed{w_t : oldsymbol{W} \sim \mathcal{N}(oldsymbol{w}; oldsymbol{0}, oldsymbol{Q}_t)}$$

observation model

$$\widetilde{\mathbf{y}_t = \mathbf{C}\mathbf{x}_t + \mathbf{v}_t}, \ \underbrace{\mathbf{v}_t : \mathbf{V}(\mathbf{l}_i) \sim \mathcal{N}(\mathbf{v}; \mathbf{0}, \mathbf{R}_t(\mathbf{l}_i))}_{\text{observation error}}$$

Generating Synthetic Data

Method: Transition & Observation Models

$$\overbrace{\pmb{x_t = Ax_{t-1} + w_t}}^{\mathsf{transition \ model}}, \ \underline{\pmb{w_t : W} \sim \mathcal{N}(\pmb{w}; \pmb{0}, \pmb{Q_t})}_{\mathsf{process \ error}}$$

observation model

$$oxed{y_t = Cx_t + v_t}, \ \underbrace{v_t : V(I_i) \sim \mathcal{N}(v; 0, R_t(I_i))}_{ ext{observation error}}$$

$$\underbrace{I_i \in [I_1, I_2, \dots, I_{\mathtt{I}}] = \mathcal{I}}_{\mathsf{inspectors}}$$

- Life-time of Beam elements is considered: T=60 years.

- Life-time of Beam elements is considered: T=60 years.
- Any synthetic time-series with one or more of the following conditions is rejected:

- Life-time of Beam elements is considered: T=60 years.

Model Verification

- Any synthetic time-series with one or more of the following conditions is rejected:
 - Exceeding a speed threshold: $\dot{x}_1 < 0.01 * x_1 1.1$

- Life-time of Beam elements is considered: T=60 years.
- Any synthetic time-series with one or more of the following conditions is rejected:
 - Exceeding a speed threshold: $\dot{x}_1 < 0.01 * x_1 1.1$
 - Exceeding an acc. threshold: $\ddot{x}_1 < 0.001 * x_1 0.11$

- Life-time of Beam elements is considered: T=60 years.
- Any synthetic time-series with one or more of the following conditions is rejected:
 - Exceeding a speed threshold: $\dot{x}_1 < 0.01 * x_1 1.1$
 - Exceeding an acc. threshold: $\ddot{x}_1 < 0.001 * x_1 0.11$
 - Slow-fast deterioration cases: $x_{\frac{7}{2}} > 0.85 * x_1$

- Life-time of Beam elements is considered: T=60 years.
- Any synthetic time-series with one or more of the following conditions is rejected:
 - Exceeding a speed threshold: $\dot{x}_1 < 0.01 * x_1 1.1$
 - Exceeding an acc. threshold: $\ddot{x}_1 < 0.001 * x_1 0.11$
 - Slow-fast deterioration cases: $x_{\frac{T}{2}} > 0.85 * x_1$
 - Having a plateau curve: $x_T > 0.5 * x_1$

15/29

Qualitative Characteristics

- Life-time of Beam elements is considered: T=60 years.

0000000

- Any synthetic time-series with one or more of the following conditions is rejected:
 - Exceeding a speed threshold: $\dot{x}_1 < 0.01 * x_1 1.1$
 - Exceeding an acc. threshold: $\ddot{x}_1 < 0.001 * x_1 0.11$
 - Slow-fast deterioration cases: $x_{\frac{T}{2}} > 0.85 * x_1$
 - Having a plateau curve: $x_T > 0.5 * x_1$
 - Other conditions that ensures diversity in the starting conditions.

Estimating Inspectors Parameters

Predicting Speed - Scatter

Model Verification ○○○○○○

Predicting Condition - Scatter

Predicting Condition - Scatter

Predicting Condition - Scatter

Real Data Analyses

- 4.1 Validation with Real Data
- 4.2 Prediction Real Data

0000000

Condition Validation

Condition Validation

- Database with inspections up to year 2017.

Condition Validation

- Database with inspections up to year 2017. → Training.

Validation with Real Data

Condition Validation

- Database with inspections up to year 2017. → Training.
- Database with inspections up to year 2019.

Condition Validation

- Database with inspections up to year 2017. → Training.
- Database with inspections up to year 2019. \rightarrow Validation.

Condition Validation

- Database with inspections up to year 2017. → Training.
- Database with inspections up to year 2019. \rightarrow Validation.

- Conditions:

Condition Validation

- Database with inspections up to year 2017. → Training.
- Database with inspections up to year 2019. → Validation.

- Conditions:
- Inspections associated with new inspectors are Excluded.

Condition Validation

- Database with inspections up to year 2017. → Training.
- Database with inspections up to year 2019. → Validation.

- Conditions:
- Inspections associated with new inspectors are Excluded.
- The Training Conditions (Mentioned Earlier).

Condition Validation Scatter - Number of Years

Condition Validation Scatter - Number of Years

Normalized Histogram of the Difference between the Model Prediction and The New Observation

Real Data Analyses 00000000

Low Variability Case

Low Variability Case

Low Variability Case

Low Variability Case

23/29

Prediction - Real Data

Medium Variability Case

Medium Variability Case

Medium Variability Case

Medium Variability Case

24/29

High Variability Case A

Zachary Hamida & James-A. Goulet

High Variability Case A

25/29

High Variability Case A

Time[Year]

High Variability Case A

Zachary Hamida & James-A. Goulet

Polytechnique Montréal

High Variability Case B

Zachary Hamida & James-A. Goulet

26/29

High Variability Case B

Time[Year]

High Variability Case B

High Variability Case B

Zachary Hamida & James-A. Goulet

Polytechnique Montréal

Progress & Next Steps

- 5.1 Project Progress
- 5.2 Next Steps

1. Improved hypotheses for generating synthetic data.

- 1. Improved hypotheses for generating synthetic data.
- 2. Improve Existing Toolboxes (e.g. generate synthetic data).

- 1. Improved hypotheses for generating synthetic data.
- 2. Improve Existing Toolboxes (e.g. generate synthetic data).
- 3. Build additional toolboxes (e.g. Single time-series analyses and Initial State Analyses).

- 1. Improved hypotheses for generating synthetic data.
- 2. Improve Existing Toolboxes (e.g. generate synthetic data).
- 3. Build additional toolboxes (e.g. Single time-series analyses and Initial State Analyses).
- 4 Validation with real data

Next:

1. Examine the bounds for synthetic data.

Next:

- 1. Examine the bounds for synthetic data.
- 2. Improve the software.