1. Moagem

Para a simulação do moinho de bolas o modelo baseia-se na chamada Teoria do Modelo Populacional. Esta teoria introduziu dois conjuntos de parâmetros: a Função de Seleção *S* e a função de quebra *B*. O primeiro conjunto referese à cinética de moagem de cada partícula independente do segundo conjunto, que caracteriza a distribuição do tamanho dos fragmentos produzidos como resultado de um evento de quebra.

A Figura abaixo ajuda a definir ambos os conceitos com maior clareza. Considere que em qualquer instante t, a distribuição de tamanho do sólido em um moinho é quantificada pelas frações f_i (i = 1, n) retida nas n malhas diferentes representadas à esquerda dessa figura. Após um intervalo de tempo Δt , a distribuição de tamanho resultante é representada à direita da mesma figura. Durante este intervalo algumas partículas serão fraturadas e seus fragmentos redistribuídos para as malhas inferiores. Para as partículas retidas na malha 'i + 1' (a fração 'i'), a função de seleção Si (min⁻¹) representa a velocidade de quebra, ou seja, a fração das partículas na faixa de tamanho [di + 1, di] que são fraturadas, por unidade de tempo. Portanto, o produto ($S_i\Delta t$) representa a fração do material retido na malha 'i + 1', no tempo t, que será fraturada pela ação da carga moedora, durante o período de tempo Δt . A Função de Quebra bij denota a distribuição dos fragmentos decorrentes da quebra das partículas retida na malha 'j + 1' para retidas na malha inferior 'i + 1'.

Com relação à figura acima, é possível estabelecer, para cada fração de tamanho i, o seguinte balanço populacional de partículas:

[Partículas na fração i no tempo $(t + \Delta t)$] =

[Partículas na fração i no instante t]

- [Partículas na fração i quebradas durante o intervalo de tempo Dt]
- +[Somatório de partículas adicionadas à fração i como resultado da quebra de partículas nas frações mais grossas (j = 1, i-1)]

então, se W representa a massa do minério no moinho:

$$f_i(t + \Delta t)W = f_i(t)W - S_i \Delta t f_i(t)W + b_{i1} S_1 \Delta t f_1(t)W + b_{i2} S_2 \Delta t f_2(t)W + \cdots + b_{i,i-1} S_{i-1} \Delta t f_{i-1}(t)W$$

Considerando a condição limite quando Δt se aproxima de zero, a expressão acima reduz-se ao sistema de equações diferenciais de primeira ordem:

$$\frac{d(f_i)}{dt} = -S_i f_i + \sum_{j=i-1}^{1} b_{ij} S_j f_j$$

A solução analítica deste complexo sistema de equações diferenciais é felizmente conhecida, sob a suposição restritiva de que os parâmetros S e B são invariantes com o tempo; dando origem a uma solução particular do sistema geral denotado 'Modelo Linear', que em sua matriz é expresso como:

$$f = (TJT^{-1})f^o$$

Onde,

$f = \{f_i i = 1, 2,, n\}$	Vetor	da	distribuição	granulométrica	do	produto	do	moinho.
$f^o = \{f_i i = 1, 2,, n\}$	Vetor d	a a dis	tribuição granu	lométrica da alimer	ntação	do moinho		
$T = \{T_{ij} i = 1, 2, \dots, n\}$	$T_{ij} = 0$ $T_{ij} = 1$	quand	lo i <j< th=""><th>valores Tij definida o >j.</th><th>como:</th><th></th><th></th><th></th></j<>	valores Tij definida o >j.	como:			

Ε,

$$J=\{J_{ij}\big|i=1,2,\ldots,n\}$$
 Matriz diagonal definida como:
$$J=\left(1+\frac{S_i\tau}{N}\right)^{-N} \text{ quando i=j}$$
 $J=0$ quando i \neq j

onde τ é o tempo de residência médio - e N o números de misturadores perfeitos em série. O método para determinar o valor deste parâmetro pode ser baseado na relação entre comprimento e diâmetro do moinho ou considerar ainda a viscosidade da polpa e velocidade de rotação, entretanto o valor de N=3 misturadores perfeitos é usualmente válido na maioria dos casos.

O modelo para a Função Seleção e Quebra é representado pelas seguintes relações:

Para a função de seleção

$$Si = [1/(1+\alpha_{02}/\alpha_{01})] \{\alpha_{01}(d_i^*)\alpha_{11}/[1+d_i^*/d_{crit})\alpha_2] + \alpha_{02}(d_i^*)\alpha_{12}\}$$

Ε

$$d_i^* = (d_i * d_{j+1})^{0.5}$$

$$d_{crit} = \exp(7.27 + 0.5 * d_{mu})$$

Onde,

d_{mu}	Diâmetro em polegada do top-size de reposição da carga de bolas.
α_{02} , α_{01} , α_{011} , α_{2} , α_{12}	Parâmetros de ajuste da Função Seleção.

• Para a função quebra:

$$B_{ij} = \beta_{0j} \left(\frac{d_i}{d_{i+1}} \right)^{\beta_1} + (1 - \beta_{0j}) \left(\frac{d_i}{d_{i+1}} \right)^{\beta_2}$$

Ε

$$\beta_{0j} = \beta_{00} \left(\frac{d_{j+1}}{1000} \right)^{-\beta_{01}}$$

β00, β01, β1, β2	parâmetros da função quebra determinados a partir de teste de laboratório.
------------------	--

A abordagem energética da moagem é introduzida para possibilitar o cáclculo da energia consumida pelo moinho em função de suas características, utilizando a fórmula empírica dada por Hogg & Fuerstenau ("Power Relations for

Tumbling Mills", Trans. SME-AIME, Vol. 252, pp. 418-432, 1972), aqui expandida a partir de sua formulação original para considerar a contribuição de cada componente da carga do moinho (bolas e polpa) na energia total.

O escalonamento da função seleção é feito através do consumo específico de energia (kWh/tonelada) pela relação:

$$S_i \tau = Si^E * P/W$$

Onde,

W: Taxa de sólidos da descarga do moinho.

$$P = \eta P_{gross} = 0.238 D^{3.5} \left(\frac{L}{D}\right) N_c \rho_{ap} (J - 1.065 J^2) \sin(\alpha)$$

Onde,

P_{gross}	Energia bruta do moinho (kW) = Pnet / η.
η	eficiência elétrica e de transmissão de energia, ° / 1.
D	diâmetro interno efetivo do moinho, pés.
L	comprimento interno efetivo do moinho, pés.
N_{c}	velocidade de rotação; expresso como fração (° / 1) da velocidade crítica
J	enchimento volumétrico aparente do moinho fracionário, ° / 1 (incluindo as bolas e
	os vazios intersticiais).
α	ângulo de elevação de carga (define o posicionamento do centro de gravidade da
	carga do moinho (o 'feijão') em relação à direção vertical. Tipicamente na faixa de
	30 ° a 35 °.

e

$$\rho_{ap} = \{ (1 - f_v)\rho_b J_b + \rho_p J_p f_v J_b + \rho_p (J - J_b) \} / J$$

e ρ_{ap} representa a densidade aparente da carga (tonelada / m3), que pode ser determinada com base nos componentes de carga (bolas, preenchimento intersticial e polpa em suspensão ou *overfilling*).

Onde,

f_v	fração de volume (° / 1) de vazios intersticiais entre as bolas (tipicamente assumido como sendo 40% do volume aparentemente ocupado pelas bolas).
J_b	preenchimento de bolas aparentes (° / 1) (incluindo bolas, polpa e os vazios intersticiais entre as bolas).
J_p	enchimento de polpa intersticial (° / 1), correspondente à fração dos vazios intersticiais (entre a carga de bola) realmente ocupada pela polpa.
ρ_n	densidade da polpa (tonelada / m3).