Devoir à la maison n° 5

À rendre le 9 novembre

I. Une équation différentielle non linéaire

L'objectif de ce problème est de déterminer l'ensemble des solutions réelles de l'équation de Riccati, définie pour x>0 par :

$$y'(x) + y^2(x) = \frac{1}{x^2}.$$
 (\mathref{R})

On admet que le théorème de Cauchy-Lipschitz est toujours valable : par tout point de $\mathbb{R}_+^* \times \mathbb{R}$ passe une et une seule courbe solution.

Il n'est plus ici évident que toute les solutions de cette équation sont définies sur \mathbb{R}_{+}^{*} . On raisonne donc par analyse-synthèse.

Soit $I \subset \mathbb{R}_+^*$ un intervalle et $y: I \to \mathbb{R}$ une solution de (\mathscr{R}) .

1) Soit $r \in \mathbb{R}$. Montrer que $x \mapsto \frac{r}{x}$ est solution de (\mathcal{R}) si et seulement si $r^2 - r - 1 = 0$.

Soit $r = \frac{1+\sqrt{5}}{2}$. On remarquera que $r^2 - r - 1 = 0$. On pose $y_0 : x \mapsto \frac{r}{x}$, on suppose que $y \neq y_0$ et l'on considère $z = y - y_0$.

- 2) Justifier que z ne s'annule pas.
- 3) Montrer que z est solution de l'équation

$$z'(x) + 2y_0(x)z(x) = -z^2(x). (\mathscr{B})$$

4) On pose $u(x) = \frac{1}{z(x)}$. Montrer que u est solution de l'équation

$$u'(x) - \frac{1+\sqrt{5}}{x}u(x) = 1. \tag{2}$$

- 5) Déterminer l'ensemble $\mathscr{S}_{\mathscr{L}}$ des solutions sur I de l'équation (\mathscr{L}) .
- **6)** Parmi les fonctions de $\mathscr{S}_{\mathscr{L}}$, lesquelles s'annulent? En quel(s) points?

- 7) En déduire la forme de y et le plus grand I possible.
- 8) Réaliser la phase de synthèse : vérifier que la fonction trouvée précédemment est bien solution de (\mathcal{R}) .
- 9) Écrire l'ensemble des solutions de (\mathcal{R}) .
- 10) On considère y, une solution de (\mathscr{R}) définie en 1. Sous quelle condition sur y(1) est-ce que y est bien définie sur \mathbb{R} tout entier?

 Esquisser sur un même dessin les deux solutions de (\mathscr{R}) obtenues à la question 1), une solution définie sur \mathbb{R}_+^* tout entier et tous les types possibles de solutions qui ne sont pas définies sur \mathbb{R}_+^* entier.

— FIN —