5a. Lineare Nebenbedingungen Gleichungen

Optimierung SoSe 2020 Dr. Alexey Agaltsov

Plan

- Optimalitätsbedingungen
- Sensitivitätsanalyse
- Quadratische Programme mit Gleichungsnebenbedingungen

Mathematisches Programm

```
Minimiere f(x) über x \in \mathbb{R}^n

u.d.N. Ax = b

f \in C^1(\mathbb{R}^n), A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m
```

- Angenommen, rang(A) = m und m < n
- Sei x_* eine optimale Lösung
- Wie kann man x_* charakterisieren und bestimmen?

Geometrische Intuition

Minimiere
$$f(x)$$

u.d.N. $a^T x = b$

- Wir starten auf der Hyperfläche f = C mit großem C
- Wir verkleinern C bis die Hyperfläche f=C die Hyperebene $a^Tx=b$ berührt
- Berührbedingung im Punkt x_* :

$$\nabla f(x_*) = \lambda a$$

$$\leftarrow Lagrange-Multiplikator$$

Eliminierung

• In unrestringiertem Fall erfüllt ein optimales x_* die Bedingung:

$$\nabla f(x_*) = 0$$

- Mit der Gleichung Ax = b kann man einige Entscheidungsvariablen eliminieren
- Damit kann man Optimalitätskriterien für unrestringierte Programme auf Gleichungsrestringierte Probleme übertragen

Modifikationen

Minimiere f(x) über $x \in \mathbb{R}^n$

$$\nabla f(x_*) = 0$$

$$\nabla^2 f(x_*) \geqslant 0$$

Minimiere f(x) über $x \in \mathbb{R}^n$

u.d.N.
$$Ax = b$$

OB
Lagrange-Multiplikatoren
$$\nabla f(x_*) \perp \ker A \iff \nabla f(x_*) = A^T \lambda$$

$$\nabla^2 f(x_*)|_{\ker A} \geqslant 0$$

Satz 5.1. Optimalitätsbedingungen

Minimiere
$$f(x)$$

u.d.N. $Ax = b$

 $f \in C^1(\mathbb{R}^n), A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ $\operatorname{rang}(A) = m < n$

Lagrange-Multiplikatoren

- 1. Sei x_* ein lokales Minimum , so $\exists ! \overline{\lambda_*} \in \mathbb{R}^m$ so dass $\nabla f(x_*) = A^T \lambda_*$ Ist zusätzlich $f \in C^2(\mathbb{R}^n)$, so gilt $\nabla^2 f(x_*)|_{\ker A} \geqslant 0$:
- 2. Sei $f \in C^2(\mathbb{R}^n)$. Seien $x_* \in \mathbb{R}^n$, $\lambda_* \in \mathbb{R}^m$ so, dass: $Ax_* = b$ $\nabla f(x_*) = A^T \lambda_*, \ \nabla^2 f(x_*)|_{\ker A} > 0$

Dann ist x_* ein lokales Minimum

Beweis: Eliminierung

- Wähle $\mathcal{B} \in \{1, ... n\}$ so, dass $A_{\mathcal{B}} \coloneqq A[:, \mathcal{B}]$ regulär ist.
- Setze $\mathcal{N} = \mathcal{B}^c$ und $A_{\mathcal{N}} \coloneqq A[:, \mathcal{N}]$

$$Ax = b$$

$$A_{\mathcal{B}}x[\mathcal{B}] + A_{\mathcal{N}}x[\mathcal{N}] = b$$

$$x[\mathcal{B}] = A_{\mathcal{B}}^{-1}(b - A_{\mathcal{N}}x[\mathcal{N}])$$

Beweis: Eliminierung

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}^n$
u.d.N. $Ax = b$ Angenommen, $\mathcal{B} = \{1, ..., m\}$
are $f(x[\mathcal{B}], x[\mathcal{M}])$ über $x[\mathcal{B}] \in \mathbb{D}^m$ $x[\mathcal{M}] \in \mathbb{D}^{n-m}$

Minimiere
$$f(x[\mathcal{B}], x[\mathcal{N}])$$
 über $x[\mathcal{B}] \in \mathbb{R}^m, x[\mathcal{N}] \in \mathbb{R}^{n-m}$ u.d.N. $A_{\mathcal{B}}x[\mathcal{B}] + A_{\mathcal{N}}x[\mathcal{N}] = b$

$$x[\mathcal{N}]=y$$

$$x[\mathcal{B}]=A_{\mathcal{B}}^{-1}(b-A_{\mathcal{N}}y)$$
 Minimiere $\bar{f}(y)=f(A_{\mathcal{B}}^{-1}(b-A_{\mathcal{N}}y),y)$ über $y\in\mathbb{R}^{n-m}$

 x_* ist ein lokales Min. $\Leftrightarrow y_* = x_*[\mathcal{N}]$ ist ein lokales Min.

Beweis: NOB erster Ordnung

Minimiere $\bar{f}(y) = f(A_{\mathcal{B}}^{-1}(b - A_{\mathcal{N}}y), y)$ über $y \in \mathbb{R}^{n-m}$

Sei
$$y_* = x_*[\mathcal{N}]$$
 ein lokales Minimum
$$\nabla_y f \left(A_{\mathcal{B}}^{-1}(b - A_{\mathcal{N}}y_*), y_* \right) = 0$$

$$-A_{\mathcal{N}}^T A_{\mathcal{B}}^{-T} \nabla_{\mathcal{B}} f(x_*) + \nabla_{\mathcal{N}} f(x_*) = 0$$

$$\nabla_{\mathcal{B}} f(x_*) = A_{\mathcal{B}}^T \lambda_*$$

$$\nabla_{\mathcal{N}} f(x_*) = A_{\mathcal{N}}^T \lambda_*$$

$$\Leftrightarrow \nabla f(x_*) = A^T \lambda_*$$

Beweis: OB zweiter Ordnung

$$\bar{f}(y) = f(A_{\mathcal{B}}^{-1}(b - A_{\mathcal{N}}y), y)$$

$$\nabla^2 \bar{f} = [-A_{\mathcal{N}}^T A_{\mathcal{B}}^{-T} \quad I] \nabla^2 f \begin{bmatrix} -A_{\mathcal{B}}^{-1} A_{\mathcal{N}} \end{bmatrix}$$

$$p^T(\nabla^2 \bar{f}) p = d^T(\nabla^2 f) d, \quad d = \begin{bmatrix} -A_{\mathcal{B}}^{-1} A_{\mathcal{N}} p \\ p \end{bmatrix}$$

$$p^T(\nabla^2 \bar{f}) p = d^T(\nabla^2 f) d, \quad d = \begin{bmatrix} -A_{\mathcal{B}}^{-1} A_{\mathcal{N}} p \\ p \end{bmatrix}$$

$$p \in \mathbb{R}^{n-m} \Leftrightarrow d \in \ker A$$
Satz 2.19
$$\nabla^2 \bar{f} \geqslant 0 \Leftrightarrow \nabla^2 f|_{\ker A} \geqslant 0$$

$$\nabla f(x_*) = A^T \lambda^*, \nabla^2 f(x_*)|_{\ker A} \geqslant 0$$

$$\nabla f(x_*) = A^T \lambda^*, \nabla^2 f(x_*)|_{\ker A} \geqslant 0$$
Satz 2.19

12

Aufgabe 5.2. Konvexe Zielfunktion

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}^n$ u.d.N. $Ax = b$

- Sei $f \in C^1(\mathbb{R}^n)$ konvex. Seien $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, rang(A) = m < n
- $x_* \in \mathbb{R}^n$ mit $Ax_* = b$ ist eine optimale Lösung $\Leftrightarrow \exists \lambda_* \in \mathbb{R}^m$:

$$\nabla f(x_*) = A^T \lambda_*$$

Tipp: Benutzen Sie Eliminierung und verweisen Sie auf Satz 2.20

Lagrange-Funktion

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}^n$ $f \in C^1(\mathbb{R}^n)$ u.d.N. $Ax = b$ $A \in \mathbb{R}^{m \times n}$, rang $(A) = m < n$

Die Lagrange-Funktion ist gegeben durch:

$$\mathcal{L}(x,\lambda) = f(x) + \lambda^{T}(b - Ax), \quad x \in \mathbb{R}^{n}, \quad \lambda \in \mathbb{R}^{m}$$

$$\nabla_{x}\mathcal{L}(x,\lambda) = \nabla f(x) - A^{T}\lambda$$

$$\nabla_{\lambda}\mathcal{L}(x,\lambda) = b - Ax$$

• $x_* \in \mathbb{R}^n$ ist ein lokales Min. $\Rightarrow \exists \lambda_* \in \mathbb{R}^m$ sodass

$$\nabla_{x} \mathcal{L}(x_*, \lambda_*) = 0, \ \nabla_{\lambda} \mathcal{L}(x_*, \lambda_*) = 0$$

Beispiel

Minimiere
$$f(x) = ||x||_2^2$$
 über $x \in \mathbb{R}^n$
u.d.N. $Ax = b$
 $A \in \mathbb{R}^{m \times n}$, rang $(A) = m < n$

Optimalitätsbedingung

Dealinguing
$$\mathcal{L}(x,\lambda) = x^T x + \lambda^T (b - Ax)$$

$$\nabla_x \mathcal{L}(x_*,\lambda_*) = 2x_* - A^T \lambda_* = 0$$

$$\nabla_\lambda \mathcal{L}(x_*,\lambda_*) = Ax_* - b = 0$$

$$\Rightarrow x_* = A^T \lambda_* / 2$$

$$\lambda_* = 2b(AA^T)^{-1}$$

$$x_* = A^T (AA^T)^{-1}b \leftarrow$$

$$A^+ \quad Pseudo-Inverse$$

f ist konvex \Rightarrow optimale Lösung (Aufgabe 5.2)

Plan

- Optimalitätsbedingungen
- Sensitivitätsanalyse
- Quadratische Programme mit Gleichungsnebenbedingungen

Sensitivitätsanalyse

- Häufig wollen wir wissen, wie sich der Optimalwert ändert, wenn sich ein oder mehrere Parameterwerte ändern
- Die Lagrange-Multiplikatoren messen die Sensitivät des Optimalwertes auf Änderungen in den rechten Seiten der Nebenbedingungen

Intuition: Störungen in den rechten Seiten

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}^n$ Angenommen:
u.d.N. $a_i^T x = b_i$, $i = 1, ..., m$ eindeutige Lösung $\forall b$

- Seien x_* , λ_* eine optimale Lösung und der Vektor der zugehörigen Lagrange-Multiplikatoren
- Ersetze b_i durch $b_i+\Delta b_i$ für $i=1,\dots,m$ und bezeichne die neue optimale Lösung als $x_*+\Delta x$

$$f(x_* + \Delta x) \approx f(x_*) + \nabla f(x_*)^T \Delta x \qquad \nabla f(x_*) = [a_1, \dots, a_m] \lambda_*$$

$$= f(x_*) + \sum_{i=1}^m \lambda_{*,i} a_i^T \Delta x \qquad a_i^T \Delta x = \Delta b_i$$

$$= f(x_*) + \sum_{i=1}^m \lambda_{*,i} \Delta b_i \qquad a_i^T \Delta x = \Delta b_i$$

Satz 5.3. Umhüllungssatz

$$g(a) = \min\{f(x, a): x \in \mathbb{R}^n\}, a \in \mathbb{R}^k$$
$$f \in C^1(\mathbb{R}^n \times \mathbb{R}^k)$$

• Angenommen, $x_*(a)$ ist ein eindeutiges Minimum $\forall a \in \mathbb{R}^k$ und $x_*(a) \in C^1(\mathbb{R}^k)$. Dann gilt:

Ist $f \in C^2(\mathbb{R}^n)$ und $\nabla^2_{xx} f(x_*(a), a) > 0$, so folgt es aus dem Satz von der impliziten Funktion

Beweis

$$g(a) = f(x_*(a), a)$$

$$\frac{\partial g}{\partial a_j}(a) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x_*(a), a) \frac{\partial x_{*,i}(a)}{\partial a_j} + \frac{\partial f}{\partial a_j}(x_*(a), a)$$

$$= 0 \quad Optimalitätsbedingung$$

$$\frac{\partial g}{\partial a_j}(a) = \frac{\partial f}{\partial a_j}(x_*(a), a)$$

Satz 5.4. Interpretation der Lagrange-Multiplikatoren

Minimiere
$$f(x)$$
 über $x \in \mathbb{R}^n$ u.d.N. $Ax = b$

$$f \in C^{1}(\mathbb{R}^{n})$$

$$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$$

$$\operatorname{rang}(A) = m < n$$

- Sei $x_*(b)$ ein eindeutiges Minimum und $\lambda_*(b) \in \mathbb{R}^m$ der zugehörige Lagrange-Multiplikator $\forall b \in \mathbb{R}^m$. Angenommen, $x_*(b) \in \mathcal{C}^1(\mathbb{R}^m)$
- Dann gilt:

$$\nabla_b f(x_*(b)) = \lambda_*(b)$$

Ist $f \in C^2(\mathbb{R}^n)$, $\nabla^2 f|_{\ker A} > 0$, so folgt es aus dem Satz von der impliziten Funktion

Beweis

Angenommen (o.B.d.A.), $A[:,\mathcal{B}]$ ist regulär mit $\mathcal{B} = \{1, ..., m\}$ $f(x_*(b)) = \min\{f(A_{\mathcal{B}}^{-1}(b - A_{\mathcal{N}}y), y) \text{ ""ber } y \in \mathbb{R}^{n-m}\}$ $y_*(b) = x_*[\mathcal{B}^c]$ $= f(A_{\mathcal{B}}^{-1}(b - A_{\mathcal{N}}y_*(b)), y_*(b)) \qquad \text{Umhüllungssatz 5.3}$ $\nabla_b f(x_*(b)) = \nabla_b f(A_{\mathcal{B}}^{-1}(b - A_{\mathcal{N}}y), y) \Big|_{y=y_*(b)}$ $= A_{\mathcal{B}}^{-T} \nabla_{\mathcal{B}} f(x_*(b))$

Plan

- Optimalitätsbedingungen
- Sensitivitätsanalyse
- Quadratische Programme mit Gleichungsnebenbedingungen

Quadratisches Programm mit GNB

Minimiere
$$f(x) = \frac{1}{2}x^TQx - c^Tx + r$$
 über $x \in \mathbb{R}^n$ u.d.N. $Ax = b$
$$Q \in \mathbb{S}^n_{\geqslant} \ , \quad A \in \mathbb{R}^{m \times n}, \operatorname{rang}(A) = m < n$$

$$\nabla f(x) = Qx - c$$

$$\nabla^2 f(x) = Q \geqslant 0$$
 $\Rightarrow f \text{ ist konvex}$

Optimalitätsbedingung

$$\mathcal{L}(x,\lambda) = \frac{1}{2}x^{T}Qx - c^{T}x + r + \lambda^{T}(Ax - b)$$

$$\nabla_{x}\mathcal{L}(x,\lambda) = Qx - c + A^{T}\lambda = 0$$

$$\nabla_{\lambda}\mathcal{L}(x,\lambda) = b - Ax = 0$$

$$\Rightarrow Qx_{*} + A^{T}\lambda_{*} = c$$

$$Ax_{*} = b$$

$$\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ \lambda^* \end{bmatrix} = \begin{bmatrix} c \\ b \end{bmatrix}$$
 Sattelpunktsgleichung

Satz 5.5. Optimalitätsbedingungen

Minimiere
$$f(x) = \frac{1}{2}x^TQx - c^Tx + r$$
,
u.d.N. $Ax = b$
 $Q \in \mathbb{S}_{\geq}^n, A \in \mathbb{R}^{m \times n}$, rang $(A) = m < n$

- Die folgenden Aussagen sind äquivalent:
 - 1. x^* ist eine optimale Lösung
 - 2. $\exists \lambda^* \in \mathbb{R}^m$, sodass (x^*, λ^*) erfüllt $\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ \lambda^* \end{bmatrix} = \begin{bmatrix} c \\ b \end{bmatrix}$ \leftarrow Aulgabe 5.2
- Besitzt die Sattelpunktgleichung keine Lösung, so ist das Problem nicht nach unten beschränkt

Beweis: Keine Lösung ⇒ Unbeschränktheit

$$K\begin{bmatrix} x_* \\ \lambda_* \end{bmatrix} = \begin{bmatrix} c \\ b \end{bmatrix} \text{ besitzt keine Lösung, } K = \begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix}$$

$$\begin{bmatrix} c \\ b \end{bmatrix} \notin \text{im}(K) = \text{ker}(K)^{\perp}$$

$$\exists [v, w]^T \in \text{ker } K \colon v^T c + w^T b > 0$$

$$Qv + A^T w = 0, \ Av = 0$$

$$\text{Sei } x \text{ so, dass } Ax = b$$

$$x + tv \text{ ist zulässig } \forall t$$

$$f(x + tv) = f(x) + t(v^T Qx - c^T v) + \frac{1}{2}t^2 v^T Qv$$

$$= f(x) - t(w^T Ax + c^T v) - \frac{1}{2}t^2 w^T Av$$

$$= f(x) - t(w^T b + c^T v)$$

$$Ax = b, Av = 0$$

Lösung der Sattelpunktsgleichung

$$\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x_* \\ \lambda_* \end{bmatrix} = \begin{bmatrix} c \\ b \end{bmatrix} \qquad \text{Angenommen, } Q \in \mathbb{S}^n_> \\ A \in \mathbb{R}^{m \times n}, \operatorname{rang}(A) = m < n \\ Qx + A^T \lambda_* = c \qquad \text{Multipliziere mit } Q^{-1} \\ x_* + Q^{-1}A^T \lambda_* = Q^{-1}c \qquad \text{Multipliziere mit } A \\ Ax_* + AQ^{-1}A^T \lambda_* = AQ^{-1}c \qquad Ax_* = b \\ AQ^{-1}A^T \lambda_* = AQ^{-1}c - b \qquad AQ^{-1}A^T \text{ ist regulär} \\ \lambda_* = (AQ^{-1}A^T)^{-1}(AQ^{-1}c - b) \\ x_* = Q^{-1}c - Q^{-1}A^T \lambda_*$$

Aufgabe 5.6: Lösbarkeit des Sattelpunktsgleichung

$$\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ \lambda^* \end{bmatrix} = \begin{bmatrix} c \\ b \end{bmatrix} \qquad Q \in \mathbb{S}^n_{\geq}$$

$$A \in \mathbb{R}^{m \times n}, \operatorname{rang}(A) = m < n$$

Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- 1. Die Sattelpunktsgleichung ist eindeutig lösbar für alle c,b
- 2. $\ker Q \cap \ker A = \{0\}$
- $3. \quad Q + A^T A > 0$
- 4. $Z^T QZ > 0$ wobei $Z \in \mathbb{R}^{n \times n m}$ mit im $Z = \ker A$

Zusammenfassung

- Optimalitätsbedingungen
- Sensitivitätsanalyse
- Quadratische Programme mit Gleichungsnebenbedingungen

Nächstes Video

• 5b. Lineare Nebenbedingungen: Ungleichungen