

Kholoud Ali Ahmad Bin Shwayah, Shatha albader, Sultan Mohammed Almalki

Capstone Project

Project Objects

02 Data Overview

O3 Project Steps

O4 Project Achievement

05 Future

Project Objectives

- The project requirements involve building a data warehouse to support business intelligence (BI) reporting
- The main tools we used in this project:

Project Objectives

The project process

Data Overview

- The weekly sales fact table will be linked to the customer dimension table through a foreign key referencing customer ID.
- This allows us to analyze sales performance by customer segments.

Fact tables	Dimention tables		
Catalog_Sales	Date_Dim		
Web Sales	Customer Item		
Inventory			
FROM S3	Promotion		
	Customer_Gemographics		
	Call_Center		
	Customer_Address		
	Catalog_Page		
	Warehouse		
	Time_Dim		
	Ship_Mode		
	Household_Demographics		
	Icome_Band		
	Web_page		
	Web_Site		

Data Overview

- The weekly sales fact table will be continuously loaded with new sales data each day to keep the weekly sales figures up-to-date.
- dimension tables as containing relatively static data about entities like customers or products.

Amazon EventBridge

Project Steps (cont)...

We will walk through the process of building:

Part 1: Data Ingestion

-Create a Database on Snowflake to store the data.

Project Steps (cont)...

-Launching 2 Ubuntu EC2 Instances in AWS Console, one for **Airbyte** and one for **Metabase**.

Name 🔏	▲ Instance ID	Instance state	Instance type ▽	Status check	Alarm status	Availability Zone ▽
Airbyte	i-06d391f927c505642	⊝ Stopped ② Q	t2.large	-	View alarms +	us-east-1e
Metabase	i-0f0a7301cb2879878	⊝ Stopped ④ Q	t2.small	-	View alarms +	us-east-1c

-Install Docker on both EC2 instances.

Project Steps, (cont)...

-Create an AWS Lambda Function

```
File Edit Find View Go Tools Window
                          Environment Var × +
      lambda functior ×
      import os
      import boto3
     import requests
      import snowflake.connector as sf
      def lambda_handler(event, context):
 10
          url = 'https://de-materials-tpcds.s3.ca-central-1.amazonaws.com/inventory.csv'
          destination_folder = '/tmp'
 11
 12
          file_name = 'inventory.csv'
 13
         local_file_path = '/tmp/inventory.csv'
 15
         # Snowflake connection parameters
 16
         account = 'OPSJOQP-CI49455'
 17
         warehouse = 'COMPUTE_WH'
 18
         database = 'TPCDS'
 19
         schema = 'RAW
 20
         table = 'inventory'
         user = 'shatha1'
         password = 'AbS@123456789'
 23
         role='accountadmin'
 24
         stage_name ='inv_Stage'
 25
 26
          # Download the data from the API endpoint
 27
          response = requests.get(url)
 28
         response.raise_for_status()
 29
 30
 31
          # Save the data to the destination file in /tmp directory
          file noth - as noth join(destination folder file name)
```

```
Environment Var × +
     lambda function ×
35
        # Establish Snowflake connection
37
        conn = sf.connect(user = user, password = password, \
38
                     account = account, warehouse=warehouse, \
39
                      database=database, schema=schema, role=role)
40
41
42
        cursor = conn.cursor()
43
44
        # use schema
        use schema = f"use schema {schema}:"
45
        cursor.execute(use_schema)
47
48
        # create CSV format
49
        create csv format = f"CREATE or REPLACE FILE FORMAT COMMA CSV TYPE = 'CSV' FIELD DELIMITER = ',';"
50
        cursor.execute(create csv format)
51
52
53
        create_stage_query = f"CREATE OR REPLACE STAGE {stage_name} FILE_FORMAT =COMMA_CSV "
54
        cursor.execute(create stage query)
55
        # Copy the file from local to the stage
56
57
        copy_into_stage_query = f"PUT 'file://{local_file_path}' @{stage_name}"
        cursor.execute(copy_into_stage_query)
59
60
        # List the stage
        list_stage_query = f"LIST @{stage name}"
61
        cursor.execute(list stage query)
        # truncate table
65
        truncate table = f"truncate table {schema}.{table};"
        cursor.execute(truncate table)
69
        # Load the data from the stage into a table (example)
        copy_into_query = f"COPY INTO {schema} . {table} FROM @{stage_name}/{file_name} FILE_FORMAT = COMMA_CSV
        cursor.execute(copy into query)
```


Project Steps, (cont)...

-Install and configure Airbyte on one of the EC2 instances. (port: 8000)

Project Steps, (cont)...

Part 2: Data Modeling

- 1. Business Requirements and Data Modeling
 - *Gather and understand the business requirements.
 - *Design the data model to meet the business requirements.
- 2. ETL and Data Loading
 - *Extract, transform, and load the data into the Snowflake database.
- 3. Scheduling with Snowflake
 - *to automate the data loading process.
- 4. Creating Snowflake Stored Procedure
 - Create a Snowflake stored procedure to handle data processing or transformation.
- 5. Creating Snowflake Tasks
 - Create Snowflake tasks to automate the execution of the stored procedure.

Project Achievement:

Final Part: Data Visualization:

-Install and configure Metabase on the second EC2 instance. (port: 3000)

Project Achievement

1. Analyze sales amounts to identify the highest performing items of the week.(2022,2023)

Project Achievement

1. Analyze sales quantities to identify the highest performing items of the week.(2022,2023)

Project Achievement 1. Displaying Items with Low Supply Levels for each week, in (2022,2023)

Project Achievement

1. Detecting Items with Low Stock Levels, along with their corresponding week and warehouse numbers, marked as True.

2022

2023

Future

- Exploring advanced techniques for handling large data volumes or complex transformations.
- Change the date data type from number to date.
- Data cleaning.

Thank you

