Worksheet #2
Deterministic Finite Automata

1. What is the maximum number of states that a deterministic finite automaton (DFA) may have?

As long as the number of states is finite (an arbitrarily large finite number).

- 2. How many start states can a DFA have? How many accept states?
 One start state and a finite number of accept states.
- 3. Given a DFA with 4 states and an alphabet of size 10, what is the full size of the δ transition function set? $10\ *\ 4\ =\ 40$
- 4. Suppose M is a DFA. Clearly define L(M). $L(M) = \{w\colon w \text{ is a string over } \Sigma \text{ and M accepts } w\} \\ -or- \\ L(M) = \{w\colon w \text{ is a string over } \Sigma \text{ and } \delta(q,w) \subseteq F\} \\ -where- \\ M = (Q, \Sigma, \delta, q, F)$
- 5. What is the definition of a regular language?

A regular language is a language that is accepted by a DFA.

6. Suppose we have the alphabet $\Sigma = \{a, b, c\}$. Draw a DFA that accepts strings of the form $aabbc_n$ where n > 0.

	а	b	С
q0	q1	R	R
q1	q2	R	R
q2	R	q 3	R
q3	R	q4	R

q4	R	R	q 5
q5	R	R	q 5

