Feuille d'exercices 3 : Espaces euclidiens / Espaces affines

Exercice 1. Dans \mathbb{R}^3 , soit p le projecteur orthogonal sur \mathcal{P} d'équation x + 2y - 2z = 0 et u le vecteur u = (1, 1, 1). Déterminer l'image p(u) de u. En déduire la distance $d(u, \mathcal{P})$.

Exercice 2. Soit $M = \frac{1}{9} \begin{pmatrix} 1 & 8 & -4 \\ 8 & 1 & 4 \\ -4 & 4 & 7 \end{pmatrix}$ et soit f l'application linéaire associée à M dans la base canonique.

Montrer que f est une isométrie et préciser sa nature.

Exercice 3. Pour $A, B \in M_n(\mathbb{R})$, on définit $\varphi(A, B) = \text{Tr}({}^tAB)$. Montrer que φ définit un produit scalaire sur $M_n(\mathbb{R})$.

Exercice 4. (D'après le partiel 2020)

- 1. Dans \mathbb{R}^2 muni du produit scalaire usuel, démontrer que pour tout $u, v \in \mathbb{R}^2$ de norme 1, il existe une unique réflexion r telle que r(u) = v. Préciser ses éléments caractéristiques.
- 2. Lorsque $u=(\frac{1}{2};\frac{\sqrt{3}}{2})$ et v=(-1,0), représenter ces éléments caratéristiques sur un schéma, puis donner la matrice associée à la réflexion dans la base canonique.

Exercice 5. (D'après le partiel 2020)

Soit E un \mathbb{R} -espace vectoriel euclidien de dimension n. Soient u, v deux vecteurs orthogonaux non nuls de E et de norme 1. On note F le sous-espace vectoriel engendré par u et v. Pour tout $x \in E$, on pose

$$f(x) = x - \langle u, x \rangle u - \langle v, x \rangle v.$$

- 1. Montrer que pour tout $x, f(x) \in F^{\perp}$.
- 2. Montrer que f est une projection orthogonale et préciser ses caractéristiques géométriques.
- 3. Dans \mathbb{R}^3 , on choisit u = (1, 1, 1) et v = (1, -1, 1). En adaptant le résultat précédent, exprimer à l'aide de u et v la projection orthogonale de mêmes caractéristiques que dans la question précédente.

Exercice 6. Soit $y \in \mathbb{R}^n$ tel que ||y|| = 1. Pour tout x de \mathbb{R}^n , on pose

$$f(x) = x - 2\langle x, y \rangle y.$$

- 1. Montrer que f est une isométrie et préciser sa nature.
- 2. On choisit n=3 et $y=\left(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}\right)$. Existe-t-il une base dans laquelle la matrice de f s'écrit simplement? Comment obtenir alors la matrice de f dans la base canonique?

Exercice 7. Soit (u,v) une famille orthonormée de vecteurs de \mathbb{R}^n . Pour tout x de \mathbb{R}^n , on pose

$$f(x) = x - \langle x, u + v \rangle u - \langle x, v - u \rangle v.$$

Montrer que f est une isométrie et préciser sa nature. Donner sa matrice dans une base bien choisie.

Exercice 8. (*) Soit p un projecteur d'un espace vectoriel euclidien E. Montrer que p est orthogonal si et seulement si pour tout $x \in E$, $||p(x)|| \le ||x||$.

Exercice 9. (*?)

1. Soit $\alpha \in \mathbb{R}$. Montrer que pour $P, Q \in \mathbb{R}_n[X]$,

$$\varphi(P,Q) = \sum_{k=0}^{n} P^{(k)}(\alpha)Q^{(k)}(\alpha)$$

où $P^{(k)}$ désigne la dérivée k-ième de P, définit un produit scalaire sur $\mathbb{R}_n[X]$.

- 2. Montrer qu'il existe une unique base (P_0, \ldots, P_n) orthonormale pour le produit scalaire φ telle que chaque P_i soit de degré i et de terme de degré maximal positif.
- 3. Calculer $P_i^{(k)}(\alpha)$ pour tout $k \in \mathbb{N}$.

1. Systèmes d'équations affines

Exercice 10. On note F l'ensemble des $(x, y, z) \in \mathbb{R}^3$ vérifiant le système d'équations suivant :

- 1. Montrer que F est un sous-espace affine de \mathbb{R}^3 et préciser sa direction \overrightarrow{F} . Quelle est la nature de F? Donner une équation paramétrique de F.
- 2. Écrire ce système sous forme matricielle, puis à l'aide d'une application linéaire f. Identifier le sousespace affine F à l'aide de f.
- 3. Interpréter le système d'équations à l'aide d'hyperplans.

Exercice 11. Soient $\lambda \in \mathbb{R}$ un paramètre.

1. À quelles conditions sur λ les deux systèmes d'équations

$$\left\{ \begin{array}{lll} -x + \lambda y - 3z & = & \lambda - 1 \\ x - 3y + \lambda z & = & -2 \end{array} \right. \quad \left\{ \begin{array}{lll} y + z & = & -\lambda + 2 \\ \lambda x - 2z & = & 0 \end{array} \right.$$

décrivent-ils des droites affines de \mathbb{R}^3 ?

- 2. On suppose les conditions du 1. satisfaites. Trouver pour chaque droite son équation paramétrique.
- 3. Etudier selon la valeur de λ les positions relatives de ces 2 droites. On précisera lorsqu'elles sont parallèles, confondues, sécantes.

Exercice 12. Soient α, β, a, b, c des réels. On considère trois plans P_1, P_2 et P_3 de \mathbb{R}^3 , d'équations respectives : $x + 2y + \beta z = a$, 2x + 4y = b et $\alpha x + (\alpha + 1)y = c$. Déterminer, suivant les valeurs de α, β, a, b, c , la dimension du sous-espace affine $P_1 \cap P_2 \cap P_3$ (si cette intersection est non vide).

Exercice 13. On note F l'ensemble des quintuplets $(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5$ vérifiant le système d'équations affine suivant :

$$\begin{cases} x_1 + x_2 + x_3 + x_4 & = 1, \\ x_1 - x_2 + x_4 - x_5 & = 1, \\ -x_1 + 3x_2 + x_3 - x_4 + 2x_5 & = -1. \end{cases}$$

Montrer que F est un sous-espace affine de \mathbb{R}^5 , donner sa dimension, sa direction \overrightarrow{F} et une base de celle-ci.

2. Droites et plans dans \mathbb{R}^3

Exercice 14. On se place dans \mathbb{R}^3 .

- 1. Déterminer une équation du plan V engendré par les vecteurs (1,2,1) et (0,1,1) et passant par l'origine.
- 2. Déterminer une équation du plan V' parallèle à V et passant par le point (0,0,1). Quelle est son équation paramétrique?
- 3. Soit D la droite passant par (1,0,0) et dirigée par le vecteur (1,0,1). Déterminer les points d'intersection de V' et de D.

Exercice 15. Déterminer une équation de la droite de \mathbb{R}^3 passant par les points (1,1,1) et (1,0,2).

Exercice 16. Dans l'espace \mathbb{R}^3 , on considère le plan P d'équation x + y + z = 1.

- 1. Déterminer une équation de plan P' passant par les points (2, -1, 0), (0, 0, 2) et (-1, 1, 2).
- 2. Déterminer la nature de $\overrightarrow{P} \cap \overrightarrow{P'}$.
- 3. Déduire de la question précédente que $P \cap P'$ est non vide, et préciser sa nature.
- 4. Déterminer les caractéristiques géométriques de $P \cap P'$ (point et base de sa direction).

3. Autres exemples d'espaces affines

Exercice 17. Déterminer parmi les sous-ensembles suivants ceux qui sont des sous-espaces affines de \mathbb{R}^3 et préciser alors leurs directions et leurs dimensions.

- 1. $V_1 = \{(x, y, z) \in \mathbb{R}^3, x + 2y + z = 1\}$
- 2. $V_2 = \{(x, y, z) \in \mathbb{R}^3, x + 2y + z = 1 \text{ et } x = y = 0\}$
- 3. $V_3 = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 = 1\}$
- 4. $V_4 = \{(x, y, z) \in \mathbb{R}^3, x^2 + 2xy + y^2 = 0\}$
- 5. $V_5 = \{(x, y, z) \in \mathbb{R}^3, x^2 + 2xy + y^2 = 1\}$

Exercice 18. Soit $n \in \mathbb{N}^*$. On note E_n l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} qui sont polynomiales de degré inférieur ou égal à n. Soit $F_0 = \{ f \in E_n, \int_0^1 f(t)dt = 0 \}$ et $F_1 = \{ f \in E_n, \int_0^1 f(t)dt = 1 \}$.

- 1. Montrer que F_0 est un \mathbb{R} -espace vectoriel.
- 2. Montrer que F_1 est un espace affine dont l'espace vectoriel sous-jacent est F_0 . Quelle est la dimension de F_1 ?
- 3. On suppose n=4. Montrer que la partie V de F_1 formée des polynômes divisibles par $\left(x-\frac{1}{2}\right)^2$ est un plan affine de F_1 .

Exercice 19. Soit a et b deux réels. Montrer que les suites de réels $(u_n)_{n\geq 0}$ vérifiant $u_{n+1}=au_n+b$ pour tout $n\geq 0$ est un sous-espace affine de l'espace vectoriel des suites réelles. Préciser la dimension de ce sous-espace affine.

Exercice 20. Soit E un sous-espace vectoriel de $\mathbb{R}[X]$, on note $F = \{P \in E, P'(0) = 1\}$.

- 1. Montrer que F est un sous-espace affine de E.
- 2. On suppose que $E = \mathbb{R}_5[X]$. Déterminer la nature de F ainsi qu'une base de sa direction.
- 3. On suppose ici que $E = \mathbb{R}[X]$. Montrer que F est un hyperplan affine.

4. Exercices théoriques

Exercice 21. (\star) Soit E un espace affine.

- 1. Soit F une partie non vide de E. Montrer que F est un sous-espace affine de E si et seulement si toute droite passant par deux points distincts de F est contenue dans F.
- 2. Décrire le sous-espace affine engendré par deux droites affines non coplanaires dans un espace affine.
- 3. Soient F_1 et F_2 deux sous-espaces affines de E. Montrer que $F_1 \cup F_2$ est un sous-espace affine de E si et seulement si $F_1 \subset F_2$ ou $F_2 \subset F_1$.

Exercice 22. (\star) On considère deux sous-espaces affines V et W d'un espace affine E et on note T le sous-espace affine engendré par $V \cup W$.

- 1. Pour tout $a \in V$ et tout $b \in W$, montrer qu'on a $\overrightarrow{T} = \overrightarrow{V} + \overrightarrow{W} + \text{Vect}(\overrightarrow{ab})$.
- 2. Pour tout $a \in V$ et tout $b \in W$, montrer que V rencontre W si et seulement si le vecteur \overrightarrow{ab} est dans $\overrightarrow{V} + \overrightarrow{W}$.
- 3. En déduire que dim $(T) = \dim (()\overrightarrow{V} + \overrightarrow{W}) + 1$ si V ne rencontre pas W, et que dim $(T) = \dim (()\overrightarrow{V} + \overrightarrow{W})$ sinon

5. Transformations affines-Définitions

Exercice 23. Dans \mathbb{R}^2 , on note a = (0,0), b = (1,0), c = (1,1) et d = (0,1). Représenter l'image de abcd par les applications affines suivantes :

- 1. l'application g telle que g(a) = c et $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ est la matrice de \overrightarrow{g} dans la base canonique;
- 2. l'application h telle que h(a)=d et $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ est la matrice de \overrightarrow{h} dans la base canonique.
- 3. h et g sont-elles égales? Donner une application affine envoyant g(a), g(b), g(c) sur h(a), h(b), h(c). Ecrire la matrice de son application linéraire associée. Que constate-t-on?

Exercice 24. Soit f une application affine qui envoie abcd sur a'b'c'd', comme indiqué sur l'une des figures suivantes.

- 1. Justifier que f ne définit une application affine que dans un seul des cas représentés. Montrer qu'elle est alors unique.
- 2. f est-elle bijective?
- 3. Donner la matrice de l'application linéaire associée dans la base $(\overrightarrow{ab}, \overrightarrow{ad})$ puis dans la base $(\overrightarrow{ab}, \overrightarrow{ac})$. En déduire l'expression matricielle de f dans le répère (a, b, c).

Exercice 25. Déterminer toutes les applications affines d'un espace affine de dimension 1.

6. Translations-Homothéties

Exercice 26. Démontrer qu'une application affine qui commute avec toutes les translations est elle-même une translation.

Exercice 27. On définit quatre points a = (1,1), a' = (-2,2), b = (1,3) et b' = (-2,1). Montrer qu'il existe une homothétie h transformant a en a' et b en b'. Préciser son centre et son rapport.

Exercice 28. Soit f une transformation affine du plan. Soient a, b et c trois points non alignés. On note a', b' et c' les images respectives de a, b et c par f. On suppose que (a'b') est parallèle à (ab), (a'c') à (ac) et (b'c') à (bc). Montrer que f est une homothétie ou une translation.

Exercice 29. (\star) Theorème de Desargues. Soient deux triangles non aplatis abc et a'b'c' sans sommets communs. On suppose que (ab) est parallèle à (a'b'), que (bc) est parallèle à (b'c') et que (ac) est parallèle à (a'c'). Montrer que les droites (aa'), (bb') et (cc') sont concourantes ou parallèles.

Exercice 30. Soit E un espace affine, a et b deux points (non nécessairement distincts) de E et λ, μ deux réels non nuls et différents de 1. On note h l'homothétie de centre a et de rapport λ et h' celle de centre b et de rapport μ .

- 1. On suppose $\lambda \mu = 1$. Déterminer la nature de $h' \circ h$ et $h \circ h'$.
- 2. On suppose $\lambda = 1/3$ et $\mu = 2$. Déterminer $h' \circ h$ et $h \circ h'$.

Exercice 31. Montrer que 2 homothéties commutent si et seulement si elles ont le même centre.