

Greedy Implicit Bounded Quantification

<u>Chen Cui</u>, Shengyi Jiang, Bruno C. d. S. Oliveira October 26, 2023

The University of Hong Kong

Bounded Quantification

Mainstream OOP languages (Java, Scala, C#...) have polymorphic type systems with subtyping and **bounded quantification**.

```
public static \langle S \text{ extends Comparable} \rangle S min(S a, S b) {
   if (a.compareTo(b) \langle = \emptyset \rangle {
      return a;
   } else {
      return b;
      Gives subtyping bounds to type variables.
   }
}

The type of min: \forall (S < Comparable) . S \rightarrow S \rightarrow S.
```

However, there is little work on **type inference** algorithms supporting bounded quantification.

Type Inference

Type inference enables removing redundant type annotations.

The type of map in Java is:

```
<R> Stream<R> map(Function<? super T,? extends R> mapper)
```

- Type argument inference: map is instantiated with type R = Integer
- · Argument inference: s has type String

Research on OOP Type Inference

Surprisingly little work devoted to practical OOP type inference:

- Most production compilers (Java/C#, etc) use algorithms loosely based on:
 - Benjamin C. Pierce, David N. Turner.
 Local type inference. TOPLAS 2000.
- · Scala 2 is based on an improved form of Local type inference:
 - Martin Odersky, Christoph Zenger, Matthias Zenger.

 Colored local type inference. POPL 2001.

Local type inference suffers from some limitations. Next we will identify these limitations in Scala 2^* , and compare it with $F_{<}^b$.

^{*}The implementation of Scala 2 contains some improvements. Scala 3 has more improvements, but it has not been formally studied. Scala 2 type inference remains more faithful to the original work of local type inference.

No support for interdependent bounds

Scala 2 provides some basic support but it fails frequently.

```
def idFun[A, B <: A \Rightarrow A](x: B): (A \Rightarrow A) = x def idInt1: (Int \Rightarrow Int) = (x \Rightarrow x)

X In Scala 2, function idInt2 fails to type-check: def idInt2 = idFun(idInt1)
```

- A is instantiated to \bot ; B is instantiated to Int \rightarrow Int
- · X B <: A \Rightarrow A is not true: Int \rightarrow Int $\leq \bot \rightarrow \bot$ is not true.

No support for interdependent bounds

Scala 2 provides some basic support but it fails frequently.

```
def idFun[A, B <: A \Rightarrow A](x: B): (A \Rightarrow A) = x def idInt1: (Int \Rightarrow Int) = (x \Rightarrow x)
```

In Scala 2, function idInt2 fails to type-check:
def idInt2 = idFun(idInt1)

- A is instantiated to \bot ; B is instantiated to Int \rightarrow Int
- · X B <: A \Rightarrow A is not true: Int \rightarrow Int $\leq \bot \rightarrow \bot$ is not true.
- ✓ In F_{\leq}^b , interdependent bounds are supported:

let idFun:
$$\forall (a \leq \top)$$
. $\forall (b \leq a \rightarrow a)$. $b \rightarrow a \rightarrow a = \Lambda a$. Λb . λx . x , idInt: Int \rightarrow Int $= \lambda x$. x in idFun idInt

Hard-to-synthesize arguments

```
def map[A, B](f: A \Rightarrow B, xs: List[A]): List[B] = ...

X In Scala 2, function mapPlus1 fails to type-check:
def mapPlus1: List[Int] = map(x \Rightarrow 1 + x, List(1, 2, 3))

Local type inference requires the types of function arguments to be synthesized first, but we can never synthesize the type of x \Rightarrow 1 + x.
```


Hard-to-synthesize arguments

```
def map[A, B](f: A \Rightarrow B, xs: List[A]): List[B] = ...

X In Scala 2, function mapPlus1 fails to type-check:
def mapPlus1: List[Int] = map(x \Rightarrow 1 + x, List(1, 2, 3))

Local type inference requires the types of function arguments to be synthesized first, but we can never synthesize the type of x \Rightarrow 1 + x.

V Workaround: Provide type annotations to the function argument. def mapPlus2: List[Int] = map((x : Int)) \Rightarrow 1 + x, List(1, 2, 3))
```


Hard-to-synthesize arguments

in map $(\lambda x. x + 1) [1, 2, 3]$

```
def mapPlus1: List[Int] = map(x \Rightarrow 1 + x, List(1, 2, 3))

Local type inference requires the types of function arguments to be

synthesized first, but we can never synthesize the type of x \Rightarrow 1 + x.

Workaround: Provide type annotations to the function argument.

def mapPlus2: List[Int] = map((x : Int)) \Rightarrow 1 + x, List(1, 2, 3))

\checkmark F_{<}^{b} can type-check the program without additional annotations:
```

def map[A, B](f: A \Rightarrow B, xs: List[A]): List[B] = ...

In Scala 2, function mapPlus1 fails to type-check:

let map: $\forall (a < \top)$. $\forall (b < \top)$. $(a \to b) \to [a] \to [b] = \dots$

No best argument

Sometimes invariant type variables cannot decide a **unique** instantiation.

def snd[A]: (Int
$$\Rightarrow$$
 A \Rightarrow A) = (x \Rightarrow y \Rightarrow y) def id = snd(1)

 \checkmark In Scala 2, the type of **id** is inferred as $\bot \to \bot$. Thus **id** cannot be applied further.

✓ In F^b_{\leq} , unification is deferred. snd 1 can be applied further. let snd: $\forall (a \leq \top)$. Int $\rightarrow (a \rightarrow a) \rightarrow a \rightarrow a = \Lambda a. \ \lambda x. \ \lambda y. \ y$ in snd 1

Higher-rank type inference

Take a polymorphic function as the argument of another function.

def k(f: Int
$$\Rightarrow$$
 Int) = 1
def g(f: ([A <: Int] \Rightarrow A \Rightarrow A) \Rightarrow Int) = 1

- X Scala 3[†], fails to type-check def f = g(k):
 - k has type (Int \rightarrow Int) \rightarrow Int
 - g accepts argument with type $(\forall (a \leq Int). \ a \rightarrow a) \rightarrow Int$
 - X (Int → Int) → Int ≤ (∀(a ≤ Int). a → a) → Int is rejected
 due to its lack of implicit polymorphism.

 $\checkmark F^b_{<}$ has better support for higher-rank polymorphism:

let k:
$$(\operatorname{Int} \to \operatorname{Int}) \to \operatorname{Int} = \lambda f$$
. 1,
g: $((\forall (a \leq \operatorname{Int}). \ a \to a) \to \operatorname{Int}) \to \operatorname{Int} = \lambda f$. 1 in g k

[†]Scala 2 does not support higher-rank types

$F_{<}^{b}$ Calculus

 F^b_{\leq} extends F^e_{\leq} calculus with bounded quantification.

- a variant of kernel $F_{<}$
 - Global type inference (long-distance constraints)
 - · Implicit instantiation for monotypes (type argument inference)

· (Int
$$\rightarrow$$
 Int) \rightarrow Int \leq (\forall ($a \leq$ Int). $a \rightarrow a$) \rightarrow Int

- Explicit type application for polytypes (impredicative polymorphism)
 - · $(\Lambda a. \lambda x. x: \forall (a \leq \top). a \rightarrow a) @(\forall (b \leq \top). b \rightarrow b)$

Philosophy

- · infer easy instantiations
- · use explicit annotations for hard instantiations

Jinxu Zhao, Bruno C. d. S. Oliveira. **Elementary Type Inference**. ECOOP 2022.

Syntax

Type variables	a, b		
Types	A, B, C	::=	$1 \mid a \mid \forall (a \leq B). A$
			$ A \rightarrow B \top \bot$
Expressions	e, t	::=	$x \mid () \mid \lambda x. \ e \mid e_1 \ e_2 \mid (e : A)$
			$\mid e @A \mid \Lambda(a \leq B). \ e : A$
Typing contexts	Δ	::=	$\cdot \mid \Delta, x : A \mid \Delta, a \leq A$
Subtyping contexts	Ψ	::=	$\Delta \mid \Psi, a \lesssim A$

Compared with F^e_{\leq} , F^b_{\leq} now incorporates bounds to support bounded quantification.

Declarative Subtyping Rules

$$|\Psi \vdash A \leq B|$$

A is a subtype of B

$$\begin{array}{c} \overline{\Psi \vdash 1 \leq 1} & \underline{\Psi \vdash A \leq \top} & \underline{\Psi \vdash A \leq \top} & \overline{\Psi \vdash \bot \leq A} \leq \bot \\ \\ \frac{a \leq B \in \Psi}{\Psi \vdash a \leq a} \leq \forall \text{ar} & \underline{u \leq B \in \Psi} & \underline{\Psi \vdash B \leq A} \\ \hline \frac{\Psi \vdash B_1 \leq A_1 & \underline{\Psi \vdash A_2 \leq B_2}}{\Psi \vdash A_1 \to A_2 \leq B_1 \to B_2} \leq \to \\ \\ \underline{\Psi \vdash m \tau} & \underline{\Psi \vdash \tau \leq B} & \underline{\Psi \vdash [\tau/a]A \leq C} & C \text{ is not a } \forall \text{ type} \\ \hline \underline{\Psi \vdash \forall (a \leq B). \ A \leq C} \\ \hline \underline{\Psi \vdash B_1 \leq B_2} & \underline{\Psi \vdash B_2 \leq B_1} & \underline{\Psi, a \lesssim B_2 \vdash A_1 \leq A_2} \\ \underline{\Psi \vdash \forall (a \leq B_1). \ A_1 \leq \forall (a \leq B_2). \ A_2} \leq \forall \end{array}$$

Non-syntactic Monotype

With bounded quantification, if we treat all type variables as monotypes, transitivity breaks due to rule \leq VarTrans.

$$\begin{array}{c} \checkmark \quad \Psi \vdash A \leq B : \\ \frac{b \leq \forall (c \leq 1). \ c \rightarrow 1 \vdash b \leq \top \quad b \leq \forall (c \leq 1). \ c \rightarrow 1 \vdash b \leq b}{b \leq \forall (c \leq 1). \ c \rightarrow 1 \vdash \forall (a \leq \top). \ a \leq b} \\ \end{array} \\ \text{BY} \leq \forall \mathsf{L}$$

- $\begin{tabular}{ll} \checkmark $\Psi \vdash B \le C: \\ $b \le \forall (c<:1). \ c \to 1 \vdash b \le \forall (c<:1). \ c \to 1 \ {\rm BY} \le {\rm VarTrans} \end{tabular}$
- $\begin{array}{c} \mathbf{X} \ \Psi \vdash A \not\leq C \colon \text{bounds are not equivalent} \\ \forall (a \leq \top). \ a \not\leq \forall (c <: 1). \ c \rightarrow 1 \end{array}$

Non-syntactic Monotype

With bounded quantification, if we treat all type variables as monotypes, transitivity breaks due to rule \leq VarTrans.

$$\begin{array}{c} \checkmark \quad \Psi \vdash A \leq B : \\ \frac{b \leq \forall (c \leq 1). \ c \rightarrow 1 \vdash b \leq \top \quad b \leq \forall (c \leq 1). \ c \rightarrow 1 \vdash b \leq b}{b \leq \forall (c \leq 1). \ c \rightarrow 1 \vdash \forall (a \leq \top). \ a \leq b} \\ \end{array} \\ \text{BY } \leq \forall \mathsf{L}$$

$$\begin{tabular}{ll} \checkmark $\Psi \vdash B \le C: \\ $b \le \forall (c <: 1). \ c \to 1 \vdash b \le \forall (c <: 1). \ c \to 1 \ \mbox{BY} \le \mbox{VarTrans} \\ \end{tabular}$$

$$\forall \Psi \vdash A \not\leq C$$
: bounds are not equivalent $\forall (a \leq \top). \ a \not\leq \forall (c <: 1). \ c \to 1$

In F_{\leq}^b , only type variables with bound \top or monotype bounds are regarded as monotypes:

$$\frac{a \leq \top \in \Psi}{\Psi \vdash^m a} \; \text{MTVar} \qquad \qquad \frac{a \leq A \in \Psi \quad \Psi \vdash^m A}{\Psi \vdash^m a} \; \text{MTVarRec}$$

Two Variants of F_{\leq}^b : Complete Algorithm or Not?

In existing predicative HRP approaches, finding implicit instantiations is **greedy**. They rely on the property:

$$\tau_1 \le \tau_2 \Longrightarrow \tau_1 = \tau_2$$

Variant 1: sound, complete and decidable

Type variables with bound \top are monotypes

Variant 2: <u>sound</u> but <u>incomplete</u>; type-checks more programs

Type variables with <u>bound</u> \top or <u>monotype bounds</u> are monotypes It breaks the property due to rule \leq VarTrans:

$$a \leq \operatorname{Int} \vdash a \leq \operatorname{Int} \operatorname{but} a \neq \operatorname{Int}$$

Contributions

- · A declarative bidirectional type system
 - · Predicative implicit bounded quantification
 - · Impredicative explicit type applications
 - Checking subsumption, type safety and completeness w.r.t. kernel F_{\leq}
- · A sound, complete and decidable algorithm of variant 1
 - Worklist formulation[§]
- · A sound algorithm of variant 2 with monotype subtyping
- · Mechanical formalization and implementation
 - · All theorems are verified in Abella (LOC: 24,919)
 - · Haskell implementation

Jinxu Zhao, Bruno C. d. S. Oliveira, and Tom Schrijvers. A Mechanical Formalization of Higher-Ranked Polymorphic Type Inference. ICFP 2019.

Q&A

Implementation, proofs, and the extended version of the paper are available at: https://doi.org/10.5281/zenodo.8202095

