TD 2: Programmes Datalog et Évaluation

Exercice 1. (Tramway)

Le tramway fait des siennes. Une relation Acces(x,y,n,E), mise à jour régulièrement, indique que la station y suit la station x sur la ligne n, et que le tramway est dans l'état E de x à y: si E vaut 1 alors la ligne fonctionne de x à y, et sinon la ligne ne fonctionne pas de x à y.

- 1. Quels sont les triplets (x, y, n) tels que la station y suit la station x sur la ligne n, et que le tramway fonctionne de x à y.
- 2. Quels sont les couples (x, y) de stations tels que l'on peut aller de x à y en tramway en suivant la même ligne?
- 3. Quels sont les couples (x, y) de stations tels que l'on peut aller de x à y en tramway, en changeant de ligne si besoin?
- 4. Un voyageur situé à la station u veut bien faire en tout au plus une station de tramway à pieds. A quelles stations peut-il accéder?

Exercice 2. (Réseau social)

Le programme Datalog Π suivant décrit un réseau social. Il a les prédicats :

- personne(Id, N, A): une personne identifiée par Id, du nom N, de l'âge A.
- amitie(Idx, Idy) : les personnes Idx et Idy ont mutuellement confirmé leur lien amical. Une règle prédéfinie assure la symétrie.
- aime(Pid, S) : la personne Pid s'intéresse au sujet S.
- lieu(Lid, L, A, T): un lieu nommé L, identifiant Lid, à l'adresse A, de thématique T.
- frequente(Pid, Lid): la personne Pid fréquente le lieu Lid.

Les identifiants et âges sont des entiers, les autres données des strings. Exemples :

```
personne(3, 'Albert', 29). frequente(3, 1). lieu(1, 'La Doua', '3 rue du l'enfer', 'Étude'). aime(3, 'Sport').
```

- 1. Formulez un prédicat pourrait_interesser(Id, S), qui est vrai si au moins deux amis de la personne Id aiment le sujet S.
- 2. Le réseau social cherche à mettre en relation des gens sur la base de leurs centres d'intérêts. Formulez un prédicat suggestion_amis(Id1, Id2) qui est vrai si les deux personnes dont les identifiants sont Id1 et Id2 ont un ami commun, fréquentent le même lieu, et s'intéressent au même sujet.

Exercice 3. (Évaluation Datalog)

Soit le programme Datalog Π avec les règles suivantes :

$$\begin{array}{c} \mathbf{s}(\mathtt{X}) : - \mathbf{r} \mathbf{1}(\mathtt{X}), \mathbf{r}(\mathtt{X}). \\ \mathbf{t}(\mathtt{X}) : - \mathbf{r} \mathbf{2}(\mathtt{X}), \mathbf{r}(\mathtt{X}). \\ \mathbf{u}(\mathtt{X}) : - \mathbf{r} \mathbf{3}(\mathtt{X}), \mathbf{t}(\mathtt{X}). \\ \mathbf{w}(\mathtt{X}) : - \mathbf{r} \mathbf{4}(\mathtt{X}), \mathbf{s}(\mathtt{Y}), \mathbf{u}(\mathtt{Y}), \mathtt{Y} \neq \mathtt{X}. \end{array}$$

et les faits:

$$r1(a). \ r2(a). \ r3(a). \ r4(a). \ r(a). \ r1(b). \ r3(b). \ r4(c).$$

- 1. Construisez le graphe de dépendances pour Π .
- 2. Calculez le plus petit point fixe de Π .
- 3. L'ensemble suivant est-il un modèle du programme Π ?

$$\{\texttt{r1}(\texttt{a}), \texttt{r2}(\texttt{a}), \texttt{r3}(\texttt{a}), \texttt{r4}(\texttt{a}), \texttt{r(a)}, \texttt{r1}(\texttt{b}), \texttt{r3}(\texttt{b}), \texttt{r4}(\texttt{c}), \texttt{t(a)}, \texttt{s(b)}, \texttt{w(c)}\}$$