Parameter-Efficient Transfer Learning for NLP

ACL 2022

Neil Houlsby¹, Andrei Giurgiu¹*, Stanisław Jastrze¸bski²*, Bruna Morrone¹, Quentin de Laroussilhe¹, Andrea Gesmundo¹, Mona Attariyan¹, Sylvain Gelly¹

¹Google Research ²Jagiellonian University

Transfer Learning

- Transfer from pre-trained models yields strong performance on many NLP tasks
- BERT, a Transformer network
 - Train on large text corpora with an unsupervised loss
 - Attain state-of-the-art performance on text classification and extractive question answering

Transfer Learning

- Research Area
 - Address the online setting, where tasks arrive in a stream
- Goal
 - Build a system that performs well on all of them, but without training an entire new model for every new task
- Motive
 - A high degree of sharing between tasks is particularly useful for applications such as cloud services
 - Models need to be trained to solve many tasks that arrive from customers in sequence
- Our Proposal
 - A transfer learning strategy that yields compact and extensible downstream models
 - Compact models: Solve many tasks using a small number of additional parameters per task
 - Extensible models: Train incrementally to solve new tasks, without forgetting previous ones
 - Our method yields a such models without sacrificing performance

Transfer Learning

- Most common transfer learning techniques in NLP
 - Feature-based transfer & Fine-tuning
- Feature-based transfer
 - Pre-training real-valued embeddings vectors:
 - These embeddings may be at the word, sentence, or paragraph level
 - The embeddings are then fed to custom downstream models
- Fine-tuning
 - Copy the weights from a pre-trained network and tuning them on the downstream task
- Instead, we propose an alternative transfer method based on adapter modules
 - Adapter tuning method is even more parameter efficient

Most common transfer learning techniques in NLP

- Feature-based transfer & Fine-tuning
- Feature-based transfer
 - Pre-training real-valued embeddings vectors:
 - These embeddings may be at the word, sentence, or paragraph level
 - The embeddings are then fed to custom downstream models
- Fine-tuning
 - Copy the weights from a pre-trained network and tuning them on the downstream task

Adapter-tuning VS Fine-tuning

Adapter tuning method is even more parameter efficient

Trade-off

- The x-axis corresponds to the marginal increase in the model size required to solve each additional task
- Adapter-based tuning requires training two orders of magnitude fewer parameters to finetuning
- Attain similar performance to full fine-tuning with fewer trained parameters.

Adapter-based tuning

- Adapters are new modules added between layers of a pre-trained network
- $_{\circ}$ Feature-based transfer $\chi_{m{v}}(\phi_{m{w}}(m{x}))$
 - Only the new, taskspecific, parameters, $oldsymbol{v}$, are then trained
 - Fine-tuning involves adjusting the original parameters, $m{w}$, for each new task, limiting compactness.
- $_{\circ}$ Adapter-tuning $\psi_{oldsymbol{w},oldsymbol{v}}(oldsymbol{x})$
 - Parameters $oldsymbol{w}$ are copied over from pre-training
 - The initial parameters $oldsymbol{v}_0$ are set such that the new function resembles the original

$$\psi_{\boldsymbol{w},\boldsymbol{v}_0}(\boldsymbol{x}) \approx \phi_{\boldsymbol{w}}(\boldsymbol{x})$$

- During training, only ${\bm v}$ are tuned. For deep networks, defining $\psi_{{\bm w},{\bm v}}$ typically involves adding new layers to the original network $\phi_{{\bm w}}$
- If one chooses $|m{v}| \ll |m{w}|$, the resulting model requires $\; \sim |m{w}| \;$ parameters for many tasks
- Since $m{w}$ is fixed, the model can be extended to new tasks without affecting previous ones

Adapter-based tuning

- We demonstrate on a large and diverse set of text classification tasks that adapters yield parameter-efficient tuning for NLP
- The key innovation is to design an effective adapter module and its integration with the base model
- Propose a simple yet effective, bottleneck architecture
- Observe similar results on a further 17 public text datasets, and SQuAD extractive question answering
- Adapter-based tuning yields a single, extensible model that attains near state-of-the-art performance in text classification

Part 2. Adapter tuning for NLP

A strategy for tuning a large text model on several downstream tasks

- Attain good performance
- Permit training on tasks sequentially, that is, it does not require simultaneous access to all datasets
- Add only a small number of additional parameters per task

Part 2. Adapter tuning for NLP

Vanilla fine-tuning

- A modification is made to the top layer of the network
- This is required because the label spaces and losses for the upstream and downstream tasks differ

Tuning with adapter modules

- Adding a small number of new parameters to a model trained on the downstream task
- More general architectural modifications to re-purpose a pretrained network for a downstream task
- The adapter tuning strategy involves injecting new layers into the original network
- The weights of the original network are untouched, whilst the new adapter layers are initialized at random
- The parameters of the original network are frozen and therefore may be shared by many tasks

Part 2. Adapter tuning for NLP

A strategy for tuning a large text model on several downstream tasks

- Attain good performance
- Permit training on tasks sequentially, that is, it does not require simultaneous access to all datasets
- Add only a small number of additional parameters per task

Vanilla fine-tuning

- A modification is made to the top layer of the network
- This is required because the label spaces and losses for the upstream and downstream tasks differ

Tuning with adapter modules

- Adding a small number of new parameters to a model trained on the downstream task
- More general architectural modifications to re-purpose a pretrained network for a downstream task

Part 3. Instantiation for Transformer Networks

A strategy for tuning a large text model on several downstream tasks

Adapter Module

- Insert two serial adapters after each of these sub-layers
- The adapter is always applied directly to the output of the sub-layer
 - After the projection back to the input size
 - Before adding the skip connection back
- The output of the adapter is then passed directly into the following layer normalization

Part 3. Instantiation for Transformer Networks

A bottleneck architecture

- First project the original d-dimensional features into a smaller dimension, ${m m}$, apply a nonlinearity, then project back to d dimensions $m\ll d$
- The total number of parameters added per layer, including biases $\ 2md+d+m$
- Use around 0.5-8% of the parameters of the original model

- The adapter module itself has a skip-connection internally
 - If the parameters of the projection layers are initialized to near-zero
 - The module is initialized to an approximate identity function

Part 3. Instantiation for Transformer Networks

A bottleneck architecture

- Train new layer normalization parameters per task
- Previous Work
 - Technique similar to conditional batch normalization (De Vries et al., 2017), FiLM (Perez et al., 2018), and selfmodulation (Chen et al., 2019) yields parameterefficient adaptation of a network
- Training the layer normalization parameters alone is insufficient for good performance

Parameter efficient transfer for text tasks

- GLUE benchmark (Wang et al., 2018),
 - Adapter tuning is within 0:4% of full fine-tuning of BERT
 - Add only 3% of the number of parameters trained by fine-tuning

Experimental Settings

- Baseline
 - Pre-trained BERT Transformer network

Training procedure

- Adam (Kingma & Ba, 2014)
- Learning rate is increased linearly over the first 10% of the steps, and then decayed linearly to zero
- Run a hyperparameter sweep and select the best model according to accuracy on the validation set

GLUE benchmark

- Adapter size is the only adapter-specific hyperparameter that we tune
 - Use a fixed adapter size (number of units in the bottleneck)
 - Select the best size per task from $\{8, 64, 256\}$
- Training instability
 - Re-run 5 times with different random seeds and select the best model on the validation set
- Fine-tuning requires $9\times$ the total number of BERT parameters
- In contrast, adapters require only $1.3\times$ parameters

McNemar's test

	Total num params	Trained params / task	CoLA	SST	MRPC	STS-B	QQP	MNLI _m	MNLI _{mm}	QNLI	RTE	Total
BERT _{LARGE}	9.0×	100%	60.5	94.9	89.3	87.6	72.1	86.7	85.9	91.1	70.1	80.4
Adapters (8-256)	1.3×	3.6%	59.5	94.0	89.5	86.9	71.8	84.9	85.1	90.7	71.5	80.0
Adapters (64)	1.2×	2.1%	56.9	94.2	89.6	87.3	71.8	85.3	84.6	91.4	68.8	79.6

Experiment

McNemar's test

- A statistical test used on paired nominal data
- The null hypothesis of marginal homogeneity states that the two marginal probabilities for each outcome are the same
- Alternative hypothesis would mean that the marginal proportions are different from each other

The null hypotheses

The alternative hypotheses

$$H_0:\ p_b=p_c$$

$$H_0:\ p_b=p_c \quad \ H_1:\ p_b
eq p_c$$

The McNemar test statistic

$$\chi^2 = \frac{(b-c)^2}{b+c}$$

2 × 2 contingency tables with matched pairs of subjects

	GTS						
		GTS 1	GTS 2				
C2	Seq2seq 1	а	q				
Seq2seq	Seq2seq 2	С	d				

Additional Classification Tasks

Dataset	No BERT	BERTBASE	BERT _{BASE}	BERT _{BASE}
	baseline	Fine-tune	Variable FT	Adapters
20 newsgroups	91.1	92.8 ± 0.1	92.8 ± 0.1	91.7 ± 0.2
Crowdflower airline	84.5	83.6 ± 0.3	84.0 ± 0.1	84.5 ± 0.2
Crowdflower corporate messaging	91.9	92.5 ± 0.5	92.4 ± 0.6	92.9 ± 0.3
Crowdflower disasters	84.9	85.3 ± 0.4	85.3 ± 0.4	84.1 ± 0.2
Crowdflower economic news relevance	81.1	82.1 ± 0.0	78.9 ± 2.8	82.5 ± 0.3
Crowdflower emotion	36.3	38.4 ± 0.1	37.6 ± 0.2	38.7 ± 0.1
Crowdflower global warming	82.7	84.2 ± 0.4	81.9 ± 0.2	82.7 ± 0.3
Crowdflower political audience	81.0	80.9 ± 0.3	80.7 ± 0.8	79.0 ± 0.5
Crowdflower political bias	76.8	75.2 ± 0.9	76.5 ± 0.4	75.9 ± 0.3
Crowdflower political message	43.8	38.9 ± 0.6	44.9 ± 0.6	44.1 ± 0.2
Crowdflower primary emotions	33.5	36.9 ± 1.6	38.2 ± 1.0	33.9 ± 1.4
Crowdflower progressive opinion	70.6	71.6 ± 0.5	75.9 ± 1.3	71.7 ± 1.1
Crowdflower progressive stance	54.3	63.8 ± 1.0	61.5 ± 1.3	60.6 ± 1.4
Crowdflower US economic performance	75.6	75.3 ± 0.1	76.5 ± 0.4	77.3 ± 0.1
Customer complaint database	54.5	55.9 ± 0.1	56.4 ± 0.1	55.4 ± 0.1
News aggregator dataset	95.2	96.3 ± 0.0	96.5 ± 0.0	96.2 ± 0.0
SMS spam collection	98.5	99.3 ± 0.2	99.3 ± 0.2	95.1 ± 2.2
Average	72.7	73.7	74.0	73.3
Total number of params		17×	9.9×	1.19×
Trained params/task	_	100%	52.9%	1.14%

- A diverse set of tasks
 - Training Example: 900~330k
 - Classes: 2~157
 - The average text length:

57~1.9k characters

- Fine-tuning requires $17\times$ the number of parameters to BERT_{BASE}
- 1.14% New parameters per task, resulting in $1.19\times$ parameters for all 17 tasks.

Parameter/Performance trade-off

- Explore the trade-off (The parameter efficiency, Performance)
 - Fine-tuning of only the top K layers of BERT_{BASE}
 - Tuning only the layer normalization parameters
- Adapters yield good performance with fewer parameter size

The parameter/performance trade-off aggregated over all classification tasks

- GLUE: performance decreases dramatically from training fewer layers
- Some of the additional tasks benefit from training fewer layers

Parameter/Performance trade-off

- Explore the trade-off (The parameter efficiency, Performance)
 - Fine-tuning of only the top K layers of BERT_{BASE}
 - Tuning only the layer normalization parameters
- When fine-tuning, performance decreases compared to adapters

Accuracy versus the number of trained parameters

Orange: Adapter sizes $n = 0 \dots 9$

Blue: Fine-tuning the top k layers for k = 0 ... 12

Green: The layer normalization parameters

SQuAD Extractive Question Answering

- Adapters work on tasks other than classification by running on SQuAD v1.1
- Given a question and Wikipedia paragraph, this task requires selecting the answer span to the question from the paragraph
- Adapters attain performance comparable to full fine-tuning, while training many fewer parameters

Validation accuracy for SQuAD v1.1

- Fine-tuning: Sweep the number of trained layers, learning rate in $\{3\cdot10^{-5},5\cdot10^{-5},1\cdot10^{-4}\}$, number of epochs in $\{2,3,5\}$
- Adapter: Sweep the adapter size, learning rate in $\{3\cdot 10^{-5}, 1\cdot 10^{-4}, 3\cdot 10^{-4}, 1\cdot 10^{-3}\}$, number of epochs in $\{3, 10, 20\}$

Analysis and Discussion

- The elements on the heatmaps' diagonals show the performances of removing adapters from single layers
- Observe that removing any single layer's adapters has only a small impact on performance
- One intuition is that the lower layers extract lower-level features that are shared among tasks, while the higher layers build features that are unique to different tasks

Ablation of trained adapters from continuous layer spans

- The y and x axes indicate the first and last layers ablated (inclusive), respectively
- The diagonal cells, highlighted in green, indicate ablation of a single layer's adapters
- The cell in the top-right indicates ablation of all adapters

Analysis and Discussion

- Investigate the robustness of the adapter modules to the number of neurons and initialization scale
- The weights in the adapter module were drawn from a zero-mean Gaussian with standard deviation 10^{-2} , truncated to two standard deviations
- The performance of adapters is robust for standard deviations below 10^{-2}
- When the initialization is too large, performance degrades, more substantially on CoLA

Performance of BERT Base using adapters

X-axis: The standard deviation of the initialization distribution

Part 6. Conclusion

Adapter tuning for NLP

- A strategy for tuning a large text model on several downstream tasks
 - Attain good performance
 - Permit training on tasks sequentially, that is, it does not require simultaneous access to all datasets
 - Add only a small number of additional parameters per task

Vanilla fine-tuning

- A modification is made to the top layer of the network
- This is required because the label spaces and losses for the upstream and downstream tasks differ

Tuning with adapter modules

- Adding a small number of new parameters to a model trained on the downstream task
- More general architectural modifications to re-purpose a pretrained network for a downstream task