完全動的索引によるグラフ上の 影響力推定・影響最大化クエリ

<u>大坂 直人(東京大学)</u>

秋葉 拓哉(NII)

吉田 悠一(NII & PFI)

河原林 健一(NII)

河原林巨大グラフプロジェクト

ERATO Kawarabayashi Large Graph Project

ネットワーク上の拡散

- ニュース・世論・噂 [Valente. 1995]
- □□≡ [Brown, Reinegen. 1987]
- 感染症 [Bailey. 1975]
- 水質汚染 [Ostfeld, Uber, Salomons. 2006]
- Twitterにおけるリツイート

http://cnets.indiana.edu/wp-content/uploads/tcot.png

近年の注目

ソーシャルネットワーク上の情報拡散

計算機科学・統計物理学等の分野において

バイラルマーケティング

[Domingos, Richardson, KDD'01], [Richardson, Domingos, KDD'02]

無料/割引商品

目標: 費用を抑えて 利益を最大化

- Q. 各頂点の影響力は? → 影響力推定
- Q. 最も影響力の高い頂点集合は?

影響最大化

離散最適化問題

[Kempe, Kleinberg, Tardos. KDD'03]

これまでの研究 – いかに速く解くか?

影響最大化 (近似): $O(頂点数 \times 边数 \times \#Sim.)$ 時間

- '06年~'14年で進歩
- [Ohsaka, Akiba, Yoshida, Kawarabayashi. AAAl'14] 数千万辺を数百秒 [大坂, 秋葉, 吉田, 河原林. DEIM'14]

影響力推定 (近似): $O(\mathbf{UX} \times \#\mathbf{Sim}.)$ 時間

現実のグラフは動的・大規模

Twitter 6,000Tweets/秒

https://about.twitter.com/company/

グラフサイズの線形時間未満へ

本研究の貢献

動的グラフ上の影響力推定・影響最大化クエリ の完全動的索引データ構造の提案

辺追加・辺削除・辺確率変更・頂点追加・頂点削除

影響力最大はA

Bの影響力は3

Bの影響力は2

できること

成長するネットワーク(Epinions.com)上の 頂点の影響力の軌跡

独立カスケードモデル

[Goldenberg, Libai, Muller. Market. Lett.'01]

- 入力
 - グラフ G = (V, E)
 - 辺確率 p_e $(e \in E)$
 - シードS⊆V

頂点の状態

影響拡散 $\sigma(S)$:

Sをシードとして**活性化**する頂点数の期待値

取り組む問題と既存結果

問題1 (影響力推定)

入力: $S \subseteq V$

出力: $\sigma(S)$

厳密計算は #P-hard

[Chen, Wang, Wang. KDD'10]

Monte-Carloシミュレーション により近似可能

問題2 (影響最大化)

[Kempe, Kleinberg, Tardos. KDD'03]

入力: $k \in \mathbb{N}$

出力: $argmax \sigma(S)$

S:|S|=k

厳密計算は NP-hard

[Kempe, Kleinberg, Tardos. KDD'03]

貪欲アルゴリズムが

 $\left(1-\frac{1}{e}\right)\approx 63\%$ 近似

 $\sigma(\cdot)$ の**劣モジュラ性**より

[Nemhauser, Wolsey, Fisher. Math. Program.'78]

いかに $\sigma(\cdot)$ を高速・精確に見積もるか?

スケッチ手法 [Borgs, Brautbar, Chayes, Lucier. SODA'14]

シードを**ランダム**に選び **逆シミュレーション**

- 1. 頂点 を一様ランダムに選択
- **2.** 逆グラフ上の拡散過程を zからシミュレート
- 3. スケッチ = 訪れた頂点集合

探索した辺数 $\leq R =$ $\Theta(\epsilon^{-3}(|V| + |E|) \log|V|)$

スケッチ手法 [Borgs, Brautbar, Chayes, Lucier. SODA'14]

シードを**ランダム**に選び **逆シミュレーション**

観察: 「スケッチに多く現れる頂点は影響力が高そう」

影響力推定・影響最大化クエリは σ({v}) ∝ E[vを含むスケッチ数] を元に近似計算可能

概観

索引更新

CA追加

索引更新

動的更新にスケッチ = {訪れた頂点} は不十分

AD削除

元のグラフ G_2

動的更新に スケッチ $= {$ 訪れた頂点 $}$ は不十分

辺削除のときには 影響の経路が必要 なので アイデア 成功・失敗した辺 を索引に加える

索引構造・索引構築

一つのスケッチ (z_i, x_i, H_i)

$$I = \{(z_i, x_i, H_i)\}_i$$

- **■** Z_i:目標頂点
- *x_i*:辺に振った乱数
- H_i: Gの部分グラフ各スケッチの

$E(H_i)$ の辺の状態

- 。成功: $x_i(e) < p_e$ な辺e
- 失敗: $x_i(e) \ge p_e$ な辺e
- ■無意:影響の経路に関わらない

成功辺で Z_i に**到達可能**な $V(H_i)$ をうまく更新

辺削除によるスケッチ更新

クエリ:辺(u,v)を削除

 $(uからz_i$ への経路があったときに)

 $\lceil (u,v)$ を通らないuから z_i への成功経路があるか?」

辺削除によるスケッチ更新

クエリ:辺(u,v)を削除

 $(uからz_i$ への経路があったときに)

 $\lceil (u,v)$ を通らないuから z_i への成功経路があるか?」

uの近傍のみからの判定は難しい・・・

辺削除によるスケッチ更新

クエリ:辺(u,v)を削除

 $(uからz_i$ への経路があったときに)

 $\lceil (u,v)$ を通らないuから z_i への成功経路があるか?」

- 1. (u,v)を除き z_i から成功辺のみで逆幅優先探索
- **2.** 未訪問の頂点を削除 ⇒ *H_i*が収縮

理論的解析

定理 11. 動的更新による索引の非退化性

以下が**任意の時点**で成立 (H_iの頂点数・辺数の総和)= Θ(ϵ⁻³(|V| + |E|) log |V|)

定理 3. 影響力推定 [Borgs, Brautbar, Chayes, Lucier. SODA'14] 高確率で $\sigma(S) \pm \epsilon n$ の範囲の推定値を返す

定理 4. 影響最大化 [Borgs, Brautbar, Chayes, Lucier. SODA'14] 高確率で近似比 $\left(1-\frac{1}{e}-\epsilon\right)$ の解を返す

■実験

索引構築・更新時間 [s]

	Epinions	ions Facebook	
	V =114K, $ E $ =717K	V =64K, $ E $ =1.6M	
索引構築	320	750	
1頂点追加	0.003	0.01	
1頂点削除	6	50	
1辺追加	0.4	0.5	
1辺削除	0.6	1.7	
辺確率変更	0.6	0.9	

追加:1秒未満 索引構築の100倍高速

■ 削除:数十秒 高コストな逆幅優先探索が原因

データセットはKONECT: The Koblenz Network Collectionより Environment: Intel Xeon X5670 (2.93GHz), 48GB, Language: C++

実験

影響解析クエリの処理時間

Epinions |V| = 114K, |E| = 717K

影響力推定 (1頂点あたり) **影響最大化** (50頂点選択)

提案手法	0.024 ms
スケッチ手法 [Borgs+14]	6.7 s
シミュレーション	3.6 s

	/
提案手法	0.4 s
スケッチ手法 [Borgs+14]	7.6 s
PMC [Ohsaka+14]	8.4 s
IRIE [Jung+12]	9.7 s

100,000頂点/秒の 影響力の追従が可能

既存手法の10倍高速

まとめ

- 動的グラフ上の影響解析の索引手法を提案 任意の時点でクエリの精度を保証
- 実験結果

頂点・辺追加:**1秒未満**

頂点・辺削除:数十秒

影響力推定:100,000頂点/秒

影響最大化:50頂点抽出/秒

今後の課題

より大きいグラフでより高速に処理するには?

進行中の解決方策

■ 索引構造の簡略化によるメモリ使用量の削減

- (最短路)木の更新による頂点・辺削除の高速化
 - 逆幅優先探索なく代わりの経路を見つける

グラフ全体を走査する無駄な例 ⇒

ポスター発表で議論しましょう!

6/1(月) 9:00~11:00