

Lecture 1:

Entropy, Divergence and Mutual Information

Probability

- A random variable X, takes on values in the set \mathcal{X} . The event $\{X = x\}$ is the event that X takes on the particular value $x \in \mathcal{X}$.
- We write $X \sim P_X$ to denote that P_X is the pmf of X, when X is discrete.
- When $|\mathcal{X}| = M$ is finite, the pmf P_X is also represented as the probability vector

$$\mathbf{p} = (p_1, p_2, \dots, p_M), \quad p_i = P_X(x_i)$$

where we assume a given (fixed) indexing of the elements of \mathcal{X} with the integers $1, \ldots, M$.

- A probability vector \mathbf{p} has non-negative components that satisfy $\sum_i p_i = 1$, therefore, it is a point in the probability simplex.
- A random sequence, or discrete-time random process is $\{X_i : i = 1, 2, \ldots\}$.

i.i.d. Sequences and Joint pmf

• The sequence is i.i.d., with marginal pmf P_X , if for any i_1, i_2, \ldots, i_n we have

$$\mathbb{P}(X_{i_1} = x_{i_1}, \dots, X_{i_n} = x_{i_n}) = \prod_{j=1}^n P_X(x_{i_j})$$

- We indicate a random *n*-sequence (random vector) as $X^n = (X_1, \dots, X_n)$.
- A random n-sequence X^n takes on values in \mathcal{X}^n , the set of (row) vectors of length n over \mathcal{X} , denoted by $\mathbf{x} = (x_1, \dots, x_n)$.
- The joint pmf of Xⁿ is denoted by

$$P_{X^n}(\mathbf{x}) = \mathbb{P}(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

Conditional pmf

By definition

$$\mathbb{P}(\mathsf{A}|\mathsf{B}) = \frac{\mathbb{P}(\mathsf{A},\mathsf{B})}{\mathbb{P}(\mathsf{B})}$$

(defined only if $\mathbb{P}(\mathsf{B}) > 0$).

Conditional probability mass function of Y given X:

$$P_{Y|X}(y|x) = \mathbb{P}(Y = y|X = x)$$

Telescopic property of probability

$$\mathbb{P}(X = x, Y = y, Z = z) = \mathbb{P}(X = x)\mathbb{P}(Y = y | X = x)\mathbb{P}(Z = z | X = x, Y = y)$$

(obviously, this generalizes to random vectors X^n).

Written in terms of probability mass functions:

$$P_{X,Y,Z}(x,y,z) = P_X(x)P_{Y|X}(y|x)P_{Z|X,Y}(z|x,y)$$

Entropy

Definition 1. The entropy H(X) of a discrete random variable $X \sim P_X$ over \mathcal{X} is defined by:

$$H(X) = -\sum_{x \in \mathcal{X}} P_X(x) \log(P_X(x)) = -\mathbb{E}\left[\log(P_X(X))\right]$$

Example 1. Binary entropy function: for $X \sim Bernoulli-p$, we have

$$H(X) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p} = \mathcal{H}_2(p)$$

More in general, we indicate by $\mathcal{H}(\mathbf{p})$ the entropy function denoted as a function of the probability vector \mathbf{p} .

Binary Entropy Function $\mathcal{H}_2(p)$

46

Joint and Conditional Entropy

Definition 2. The joint entropy of a discrete random n-sequence $X^n \sim P_{X^n}$ over \mathcal{X} is:

$$H(X^n) = -\sum_{\mathbf{x} \in \mathcal{X}^n} P_{X^n}(\mathbf{x}) \log(P_{X^n}(\mathbf{x})) = -\mathbb{E}\left[\log(P_{X^n}(X^n))\right]$$

Definition 3. For two jointly distributed random vectors X^n, Y^m over \mathcal{X} and \mathcal{Y} , respectively, with joint pmf P_{X^n,Y^m} , the conditional entropy of X^n given Y^m is:

$$H(X^{n}|Y^{m}) = -\sum_{\mathbf{x} \in \mathcal{X}^{n}, \mathbf{y} \in \mathcal{Y}^{m}} P_{X^{n}, Y^{m}}(\mathbf{x}, \mathbf{y}) \log(P_{X^{n}|Y^{m}}(\mathbf{x}|\mathbf{y}))$$
$$= -\mathbb{E} \left[\log P_{X^{n}|Y^{m}}(X^{n}|Y^{m}) \right]$$

 \Diamond

Chain Rule for Entropy

Lemma 1. Chain Rule for Entropy: we have

$$H(X^{n}) = H(X_{1}) + H(X_{2}|X_{1}) + H(X_{3}|X_{1}, X_{2}) + \dots + H(X_{n}|X_{1}, \dots, X_{n-1})$$

$$= \sum_{i=1}^{n} H(X_{i}|X_{1}, \dots, X_{i-1})$$

$$= \sum_{i=1}^{n} H(X_{i}|X^{i-1})$$

Notice: the chain rule follows from the telescoping property

$$P_{X^n} = P_{X_1} P_{X_2|X_1} P_{X_3|X_1,X_2} \cdots P_{X_n|X_1,\dots,X_{n-1}}$$

Examples

"Developing" entropy in different ways:

$$H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)$$

$$H(X,Y|Z) = H(X|Z) + H(Y|X,Z) = H(Y|Z) + H(X|Y,Z)$$

Notice that, in general,

$$H(Y|X) \neq H(X|Y)$$

however

$$H(X) - H(X|Y) = H(Y) - H(Y|X)$$

Divergence (Cross-Entropy)

Definition 4. Let P_X and Q_X denote two pmfs over \mathcal{X} . The divergence (aka, cross-entropy) of P_X and Q_X is given by

$$D(P_X || Q_X) = \sum_{x \in \mathcal{X}} P_X(x) \log \frac{P_X(x)}{Q_X(x)}$$

- Also known just as Kullback-Leibler Distance, Information Divergence or Relative Entropy.
- Non-symmetric: $D(P_X||Q_X) \neq D(Q_X||P_X)$ in general.
- If for some $x \in \mathcal{X}$ we have $Q_X(x) = 0$ and $P_X(x) > 0$, then $D(P_X || Q_X) = \infty$.
- It is a "sort of distance" between two pmfs.

Conditional divergence

Definition 5. Let $P_{Y|X}$ and $Q_{Y|X}$ denote two conditional pmfs for Y given X, and let P_X denote a pmf for X. The conditional divergence of $P_{Y|X}$ and $Q_{Y|X}$ with respect to P_X is given by

$$D(P_{Y|X}||Q_{Y|X}||P_X) = \sum_{x \in \mathcal{X}} P_X(x) \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \log \frac{P_{Y|X}(y|x)}{Q_{Y|X}(y|x)}$$

 $\langle \rangle$

Lemma 2. Chain Rule for Divergence: for two joint pmfs $P_{X,Y} = P_X P_{Y|X}$ and $Q_{X,Y} = Q_X Q_{Y|X}$ we have

$$D(P_{X,Y}||Q_{X,Y}) = D(P_X||Q_X) + D(P_{Y|X}||Q_{Y|X}||P_X)$$

Mutual Information

Definition 6. Let $X, Y \sim P_{X,Y}$. The mutual information of X and Y is given by

$$I(X;Y) = D(P_{X,Y} || P_X P_Y) = \sum_{x,y} P_{X,Y}(x,y) \log \frac{P_{X,Y}(x,y)}{P_X(x)P_Y(y)}$$

 \Diamond

Mutual information in terms of conditional divergence:

$$I(X;Y) = D(P_{Y|X}||P_Y||P_X)$$

• Mutual information as a difference of divergences: let $X,Y\sim P_{X,Y}=P_XP_{Y|X}$ and let Q_Y be an arbitrary marginal pmf for Y, then

$$I(X;Y) = D(P_{Y|X} ||Q_Y|P_X) - D(P_Y ||Q_Y|) \le D(P_{Y|X} ||Q_Y|P_X)$$

(the upper bound will be clear in a moment)

Symmetry of Mutual Information

• From the definition:

$$I(X;Y) = \sum_{x,y} P_{X,Y}(x,y) \log \frac{P_{Y|X}(y|x)}{P_{Y}(y)}$$

$$= \sum_{x,y} P_{X,Y}(x,y) \log \frac{P_{X|Y}(x|y)}{P_{X}(x)}$$

$$= \mathbb{E} \left[\log \frac{P_{X,Y}(X,Y)}{P_{X}(X)P_{Y}(Y)} \right]$$

$$= \mathbb{E} \left[\log \frac{P_{Y|X}(Y|X)}{P_{Y}(Y)} \right]$$

$$= \mathbb{E} \left[\log \frac{P_{X|Y}(X|Y)}{P_{X}(X)} \right]$$

$$= I(Y;X)$$

Mutual Information in terms of Entropies

It is immediate to see that:

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = H(X) + H(Y) - H(X,Y)$$

- If X and Y are independent, then I(X;Y)=0.
- I(X; X) = H(X).

Chain rule for mutual information

Lemma 3. Chain Rule for Mutual Information: Let X^n and Y be jointly distributed as $P_{X^n,Y}$, then we have

$$I(X^{n};Y) = I(X_{1};Y) + I(X_{2};Y|X_{1}) + \dots + I(X_{n};Y|X_{1},\dots,X_{n-1})$$

$$= \sum_{i=1}^{n} I(X_{i};Y|X_{1},\dots,X_{i-1})$$

$$= \sum_{i=1}^{n} I(X_{i};Y|X^{i-1})$$

Elementary Inequalities

- No general inequality relationship between I(X;Y|Z) and I(X;Y) exists, but there are special cases.
- Special case 1: if $P_{X,Y,Z} = P_X P_Z P_{Y|X,Z}$ then

$$I(X;Y|Z) \ge I(X;Y)$$

• Special case 2: if $P_{X,Y,Z}=P_ZP_{X|Z}P_{Y|X}$, i.e., if $Z\to X\to Y$ (Markov chain), then

$$I(X;Y|Z) \le I(X;Y)$$

Technische Universität

Convex sets

- $\mathcal{R} \subseteq \mathbb{R}^d$ is a convex set if $\mathbf{x}, \mathbf{y} \in \mathcal{R}$ implies that $\alpha \mathbf{x} + (1 \alpha) \mathbf{y} \in \mathcal{R}$ for all $\alpha \in [0, 1]$.
- \mathcal{R} is convex if it contains all convex combinations of its points: $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathcal{R}$, then

$$\sum_{i=1}^{n} \alpha_i \mathbf{x}_i \in \mathcal{R}, \quad \text{for all coefficients} \ \ \alpha_i \geq 0, \ \ \sum_{i=1}^{n} \alpha_i = 1$$

• The convex hull of a set $S \subseteq \mathbb{R}^d$ is the smallest convex set that contains S. We write $\mathcal{R} = \mathrm{coh} S$.

Lemma 4. Fenchel-Eggleston-Carathéodory: let $S \subseteq \mathbb{R}^d$ be a connected compact (i.e., closed and bounded) set. Any point in $\mathcal{R} = \cosh S$ can be represented as the convex combination of at most d points in S.

Technische Universität

Convex Functions

• Let $g:\mathbb{R}^d \to \mathbb{R}$ denote a real-valued function, and define its *epigraph* as the set

$$\mathrm{Epi}(g) = \{ (\mathbf{x}, a) : g(\mathbf{x}) \le a \}$$

- g is a convex function if $\mathrm{Epi}(g)$ is a convex set.
- In simpler terms, g is convex if for any \mathbf{x},\mathbf{y} in its domain and $\alpha\in[0,1]$ we have

$$\alpha g(\mathbf{x}) + (1 - \alpha)g(\mathbf{y}) \ge g(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y})$$

- g is called concave if -g is convex.
- If g is twice differentiable, then g is convex iff its Hessian (matrix of second derivatives)

$$\nabla \times \nabla g(\mathbf{x}) = \left[\frac{\partial^2 g(\mathbf{x})}{\partial x_i \partial x_j}\right] \succeq 0, \quad \forall \ \mathbf{x} \in \text{Dom}(g)$$

Jensen's Inequality

Lemma 5. Jensen's Inequality: Let g denote a convex function over \mathbb{R}^n and let X^n denote a random n-sequence, then

$$\mathbb{E}\left[g(X^n)\right] \ge g\left(\mathbb{E}[X^n]\right)$$

Information Inequality (1)

Theorem 1. Information Inequality: Let P_X, Q_X be two pmfs defined on \mathcal{X} , then

$$D(P_X || Q_X) \ge 0$$

with equality iff $P_X(x) = Q_X(x)$ for all $x \in \mathcal{X}$ where they are both non-zero. \square

Proof: Define $A = \{x \in \mathcal{X} : P_X(x) > 0\}$. Then

$$\begin{split} -D(P_X\|Q_X) &= \sum_{x\in\mathcal{A}} P_X(x)\log\frac{Q_X(x)}{P_X(x)} \\ &\leq \log\left(\sum_{x\in\mathcal{A}} P_X(x)\frac{Q_X(x)}{P_X(x)}\right) \quad \text{Jensen's Ineq.} \\ &= \log\sum_{x\in\mathcal{A}} Q_X(x) \leq \log\sum_{x\in\mathcal{X}} Q_X(x) = 0 \end{split}$$

Information Inequality (2)

Corollary 1.

$$I(X;Y) \ge 0$$

with equality iff X and Y are independent.

Corollary 2.

$$I(X;Y|Z) \ge 0$$

with equality iff X and Y are conditionally independent given Z.

Corollary 3. Conditioning reduces entropy:

 $H(Y) \ge H(Y|X)$ with equality iff X and Y are independent.

Information Inequality (3)

Corollary 4. The uniform pmf maximizes entropy: for $X \sim P_X$ over the finite set \mathcal{X} of size $|\mathcal{X}|$, we have

$$H(X) \le \log |\mathcal{X}|$$

with equality iff X is uniform over \mathcal{X} .

Theorem 2. Independence bound on joint entropy:

$$H(X^n) \le \sum_{i=1}^n H(X_i)$$

with equality iff X^n has independent components.

Convexity Properties

Theorem 3. Convexity of divergence: Consider $D(P_X||Q_X)$ as a function of the vector (\mathbf{p}, \mathbf{q}) , where \mathbf{p} is the probability vector associated with P_X and \mathbf{q} is the probability vector associated with Q_X . Then, $D(P_X||Q_X)$ is a convex function.

Corollary 5. Concavity of entropy: Consider H(X) as a function $H(\mathbf{p})$ of the probability vector associated with P_X . Then H(X) is a concave function.

Corollary 6. Concavity/Convexity of mutual information: Consider I(X;Y) as a function of \mathbf{p} , the probability vector associated with P_X , and of \mathbf{P} , the conditional probability matrix associated with $P_{Y|X}$. Then, I(X;Y) is a concave function of \mathbf{p} for any fixed \mathbf{P} , and a convex function of \mathbf{P} for any fixed \mathbf{p} .

Data Processing Inequality

Theorem 4. Data processing inequality: If $X \to Y \to Z$ (i.e., $P_{X,Y,Z} = P_X P_{Y|X} P_{Z|Y}$), then $I(X;Z) \leq I(Y;Z)$ and $I(X;Z) \leq I(X;Y)$.

Proof: Expand I(X, Y; Z) in two ways

$$I(X,Y;Z) = I(X;Z) + I(Y;Z|X)$$
$$= I(Y;Z) + I(X;Z|Y)$$

and notice that I(X;Z|Y)=0 while $I(Y;Z|X)\geq 0$ (operating on I(X;Y,Z) we prove the other inequality).

Fano Inequality

Theorem 5. Fano Inequality: Let $(X,\widehat{X}) \sim P_{X,\widehat{X}}$ be two jointly distributed random variables taking on values in the same alphabet \mathcal{X} , and define $P_e = \mathbb{P}(X \neq \widehat{X})$. Then,

$$H(X|\widehat{X}) \le \mathcal{H}_2(P_e) + P_e \log |\mathcal{X}| \le 1 + P_e \log |\mathcal{X}|$$

Proof: Define $E = 1\{X \neq \widehat{X}\}$ be the error indicator random variable. Then, we use the chain rule and write:

$$H(X, E|\widehat{X}) = H(X|\widehat{X}) + H(E|X, \widehat{X})$$
$$= H(E|\widehat{X}) + H(X|E, \widehat{X})$$

Since $H(E|X, \widehat{X}) = 0$, $H(E|\widehat{X}) \leq H(E) = \mathcal{H}_2(P_e)$ and

$$H(X|E, \widehat{X}) = P_e H(X|E = 1, \widehat{X}) + (1 - P_e)H(X|E = 0, \widehat{X}) \le P_e \log |\mathcal{X}|$$

the result follows.

End of Lecture 1