[Abstract] [PDF Full-Text (395 KB)] IEEE CNF

## 5 Low defects and high quality Al/sub 2/O/sub 3/ Ge-on-insulator MOSFETs

Yu, D.S.; Huang, C.H.; Chin, A.; Chen, W.J.; Device Research Conference, 2003, 23-25 June 2003 Pages:39 - 40

[Abstract] [PDF Full-Text (290 KB)] IEEE CNF

6 Very low defects and high performance Ge-on-insulator p-MOSFETs with Al/sub 2/O/sub 3/ gate dielectrics

Huang, C.H.; Yang, M.Y.; Albert Chin; Chen, W.J.; Zhu, C.X.; Cho, B.J.; Li, M.-F.; Kwong, D.L.;

VLSI Technology, 2003. Digest of Technical Papers. 2003 Symposium on , 10-12 June 2003

Pages:119 - 120

[Abstract] [PDF Full-Text (261 KB)] IEEE CNF

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

Copyright © 2004 IEEE - All rights reserved

# Very Low Defects and High Performance Ge-On-Insulator p-MOSFETs with Al<sub>2</sub>O<sub>3</sub> Gate Dielectrics

C. H. Huang<sup>1</sup>, M. Y. Yang<sup>1</sup>, Albert Chin<sup>1</sup>, W. J. Chen<sup>2</sup>, C. X. Zhu<sup>3</sup>, B. J. Cho<sup>3</sup>, M.-F. Li<sup>3</sup>, and D. L. Kwong<sup>4</sup>

<sup>1</sup>Dept. of Electronics Eng., National Chiao Tung Univ., Hsinchu, Taiwan

<sup>2</sup>Dept. of Mechanical Materials Eng., National Yun-Lin Polytechnic Inst., Huwei, Taiwan

<sup>3</sup>Si Nano Device Lab., Dept. of Electrical & Computer Eng., National Univ. of Singapore, Singapore

<sup>4</sup>Dept. of Electrical & Computer Engineering, The Univ. of Texas, Austin, TX 78712, USA

#### Abstract

We demonstrate for the first time high quality and dislocation free Ge-on-insulator (GOI) p-MOSFETs with Al<sub>2</sub>O<sub>3</sub> gate dielectrics [EOT=1.7nm]. Compared to control Al<sub>2</sub>O<sub>3</sub>/Si p-MOSFETs, the Al<sub>2</sub>O<sub>3</sub>/GOI devices show similar leakage current for the same EOT, 2X increase in drive current, and 2.5X increase in hole mobility. In addition, the Al<sub>2</sub>O<sub>3</sub>/GOI devices exhibit 1.3X enhanced hole mobility over the SiO<sub>2</sub>/Si universal hole mobility at E<sub>eff</sub> of 1MV/cm.

#### Introduction

Pure Ge channel MOSFETs have attracted much attention due to its enhanced electron and hole mobility over conventional Si-MOSFET [1]. These improvements are especially important for high-k gate dielectric MOSFETs where the mobility degradation is the main technology bottleneck. Both strained and relaxed Ge channel and Ge bulk p-MOSFETs have recently been reported [2]-[3]. In this paper, we demonstrate for the first time high quality and dislocation free Ge-on-insulator (GOI) p-MOSFETs with Al<sub>2</sub>O<sub>3</sub> gate dielectrics [4]. This low defects are mandatory for real VLSI manufacture (<1 dislocation/cm²) to achieve a high yield. In additional to the orders of magnitude lower defect density than strained Si or relaxed SiGe on Si, the Al<sub>2</sub>O<sub>3</sub>/GOI devices show similar leakage current for the same EOT, 2X increase in drive current, and 2.5X increase in hole mobility compared to control Al<sub>2</sub>O<sub>3</sub>/Si p-MOSFETs. In addition, the Al<sub>2</sub>O<sub>3</sub>/GOI devices exhibit 1.3X enhancement of hole mobility over the SiO<sub>2</sub>/Si universal mobility.

### Experimental

After depositing 75 nm SiO<sub>2</sub> on Ge and Si wafers, the GOI was formed by bonding SiO<sub>2</sub>/Ge and SiO<sub>2</sub>/Si at 500°C for 10 hrs. To enhance the bonding at such low temperature, O<sub>2</sub> plasma was used to activate the SiO<sub>2</sub> surface before bonding [5] and a constant pressure was applied during bonding process. After etch back, a 400nm isolation SiO<sub>2</sub> was deposited on Ge. The p' source and drain were formed by implanting B', followed by 500°C furnace anneal. Al<sub>2</sub>O<sub>3</sub> gate dielectric [4] was deposited on Ge, followed by Al gate electrode formation. For comparison, Al<sub>2</sub>O<sub>3</sub>/Si<sub>0.3</sub>Ge<sub>0.7</sub> and Al<sub>2</sub>O<sub>3</sub>/Si p-MOSFETs were also fabricated, where a solid-phase epitaxy was used to form the Si<sub>0.3</sub>Ge<sub>0.7</sub> on Si [3].

#### Results and Discussion

#### A. GOI characterization

Fig. 1 shows the X TEM of GOI wafer. The different contrast between top and bottom layers is due to the different electron scattering of Ge and Si atoms and small crystal orientation misalignment. No defect can be observed on top

Ge. To our knowledge, this is the first demonstration of defect free GOI structure. The GOI structure was further characterized by Energy Dispersive Spectroscopy (EDS) shown in Fig. 2, and a Ge layer on SiO<sub>2</sub>/Si was confirmed. An interfacial layer at the bonding interface and middle of SiO<sub>2</sub> is due to the O<sub>2</sub> plasma treatment [5]. Very smooth Ge/SiO<sub>2</sub> interface, comparable SOI, is achieved, and is essential for ultra-thin body GOI MOSFET.

#### B. Al<sub>2</sub>O<sub>4</sub>/GOI capacitor and reliability

Figs. 3 and 4 present the respective J-V and C-V characteristics of Al<sub>2</sub>O<sub>3</sub> capacitors on GOI, Si<sub>0.3</sub>Ge<sub>0.7</sub>/Si, and Si substrates. Comparable leakage current is observed for these devices with similar EOT=1.7nm from C-V measurement. A Jg=1.5×10<sup>-3</sup> A/cm<sup>2</sup> at IV for Al<sub>2</sub>O<sub>3</sub>/GOI with EOT=1.7nm is 3 orders of magnitude lower than that in SiO<sub>2</sub>/Si. Good reliability for Al<sub>2</sub>O<sub>3</sub>/GOI gate dielectric is evidenced from the high t<sub>BD</sub> and MTTF, as shown in Fig. 5, and is comparable to Al<sub>2</sub>O<sub>3</sub>/Si devices. An extrapolated max operating voltage of 2.5V is obtained for 10 years lifetime. C. Al<sub>2</sub>O<sub>3</sub>/GOI p-MOSFET and mobility

Figs. 6 and 7 show the  $L_I$ - $V_d$  of  $Al_2O_3/Si_{0.3}Ge_{0.7}/Si$  and  $Al_2O_3/GOI$ , respectively, and the control  $Al_2O_3/Si$  device is also shown in Fig. 6. Significant enhancement in  $I_d$  for both  $Al_2O_3/GOI$  and  $Al_2O_3/Si_{0.3}Ge_{0.7}/Si$  over  $Al_2O_3/Si$  devices is observed, with the  $Al_2O_3/GOI$  device showing the highest  $I_d$ . The relatively large  $I_{d-OFF}$  shown in Fig. 8 can be improved by thinning down the top Ge layer. The effective mobility is plotted in Fig. 9. As can be seen clearly, the hole mobility increases with increasing Ge content, where the mobility for  $Al_2O_3/Si_{0.3}Ge_{0.7}/Si$  and  $Al_2O_3/GOI$  are 1.7X and 2.5X, respectively, higher than  $Al_2O_3/Si$  control device at  $E_{eff}$  of 1.0MV/cm. The hole mobility is also 1.3X higher than the published universal mobility data from thermal  $SiO_2/Si$  at 1MV/cm  $E_{eff}$ .

### Conclusions

We have demonstrated for the first time a defect free GOI structure and a high performance Ge p-MOSFET with  $Al_2O_3$  gate dielectric (EOT=1.7nm). Results show that  $Al_2O_3$ /GOI p-MOSFET has low gate leakage current of  $1.5\times10^{-3}$  A/cm<sup>2</sup> at 1V and 2.5X enhancement in hole mobility over control  $Al_2O_3$ /Si devices. In addition, the  $Al_2O_3$ /GOI devices exhibit 1.3X enhancement of hole mobility over the SiO<sub>2</sub>/Si universal mobility at  $E_{\rm eff}$  of 1MV/cm.

#### References

- [1] C. O. Chui et al, IEDM Tech. Dig. (2002), p. 437.
- [2] J. Hoyt et al, IEDM Tech. Dig. (2002), p. 23.
- [3] Y. H. Wu and A. Chin, IEEE EDL 21, p. 350 (2000).
- [4] A. Chin et al, Symp. On VLSI Tech. (1999), p.135.
- [5] Y. H. Wu et al, J. Electrochemical Soc. 147, p. 2254 (2000).



Fig. 1. Cross-sectional TEM of GOI. The different contrast between the top Ge and bottom Si substrate is due the different atomic scattering of electron beams and small crystal orientation misalignment. No dislocations can be observed in GOI.



Spectroscopy from top and bottom layers, which confirms the GOI structure shown in Fig. 1. The Carbon signal is from the glue.

Fig. 2. The measured Energy Dispersive Fig. 3. The measured J-V characteristics of Al<sub>2</sub>O<sub>3</sub> gate dielectric on GOI, Si<sub>0.3</sub>Ge<sub>0.7</sub>/Si and Si. The comparable gate leakage current indicates that high quality Al<sub>2</sub>O<sub>3</sub> gate dielectric can be formed on GOI.



Fig. 4. The 1MHz C-V characteristics of Al2O3 gate dielectric on GOI, Sio3Geo7/Si and Si. A k value of 9 and EOT of 1.7nm are obtained.



breakdown time t<sub>BD</sub> distribution plot.



Fig. 5. The measured and extrapolated Fig. 6. The I<sub>d</sub>V<sub>d</sub> characteristics of Mean-Time to Failure MTTF as a function Al<sub>2</sub>O<sub>3</sub>/Si<sub>0.3</sub>Ge<sub>0.7</sub>/Si and Al<sub>2</sub>O<sub>3</sub>/Si p-MOSFETs. of gate voltage from the inserted dielectric At the same Vg-Vv the Id from Al2Oy/ Si<sub>0.3</sub>Ge<sub>0.7</sub>/Si device is 1.8X higher than Al2O3/Si control p-MOSFETs.



Fig. 7. The  $I_d$ - $V_d$  characteristics of Al<sub>2</sub>O<sub>3</sub>/GOI PMOSFETs. At the same V<sub>g</sub>-V<sub>p</sub> the Id from Al2O3/GOI device is 2.0X higher than Al<sub>2</sub>O<sub>3</sub>/Si control p-MOSFETs in Fig. 6.



than others that is due to the highest Ge%.



Fig. 8. The  $I_d$ - $V_g$  characteristics of Fig. 9. The hole mobility of  $Al_2O_3/GOI$ , Al<sub>2</sub>O<sub>3</sub>/GOI, Al<sub>2</sub>O<sub>3</sub>/Si<sub>0.3</sub>Ge<sub>0.7</sub>/Si and Al<sub>2</sub>O<sub>3</sub>/Si Al<sub>2</sub>O<sub>3</sub>/Si<sub>0.3</sub>Ge<sub>0.7</sub>/Si and Al<sub>2</sub>O<sub>3</sub>/Si p-MOSFETs: p-MOSFETs. At the same 10 µm gate length, The hole mobility increases with increasing the Id from Al2O3/GOI device is the highest. Ge content and is higher than the universal SiO2/Si hole mobility at GOI device.