

Agrupamento de Dados (Clustering)

Huei Diana Lee

Inteligência Artificial CECE/UNIOESTE-FOZ

Clustering

- Clustering (categorização, segmentação ou agrupamento): objetivo de agrupar objetos identificando grupos (clusters) baseados em certos atributos
- Critério de agrupamento:
 - maximizar as similaridades e
 - minimizar as diferenças mediante algum critério
- Exemplo:
 - um conjunto de novas doenças podem ser agrupadas em várias categorias baseadas nas similaridades de seus sintomas, e os sintomas comuns das doenças podem ser usados para descrever um grupo novo de doenças

Família Simpson

Família Simpson Empregados da escola

Família Simpson Empregados da escola

Mulheres

Homens

Propriedades Desejáveis de um Algoritmo de Agrupamento

- Escalabilidade (em termos de espaço e tempo)
- Habilidade de trabalhar com diferentes tipos de dados
- Necessidade mínima de conhecimento de domínio para determinar os parâmetros de entrada
- Habilidade de lidar com ruído e outliers
- Insensibilidade relativa à ordem dos registros de entrada
- Incorporação de restrições especificadas pelo usuário
- Interpretabilidade e usabilidade

Clustering: O que é Similaridade?

Qualidade, caráter ou condição das coisas similares.

Dicionário Houaiss

Similaridade é difícil de definir, mas...

"Nos sabemos quando a vemos"

O real significado de similaridade é uma questão filosófica

Clustering: O que é Similaridade?

http://rockntech.com.br/cachorros-que-se-parecem/ http://dogbreedsjournal.com/best-dogs-for-kids/

Calculando a Distância

- A distância é o método mais natural para dados numéricos
- Valores pequenos indicam maior similaridade
- Métricas de Distância
 - Euclideana
 - Manhattan
 - Entre outras
- Não generaliza muito bem para dados não numéricos
 - Qual a distância entre "masculino" e "feminino"?

Definindo Medidas de Distância

Definição: Sejam O_1 e O_2 dois objetos de um universo de possíveis objetos. A distância (dissimilaridade) entre O_1 e O_2 é um número real denotado por $D(O_1, O_2)$

- As caixas pretas contém alguma função de duas variáveis
- Essas funções podem ser simples ou complexas
- Em qualquer caso é natural perguntar, quais propriedades essas funções devem possuir

Quais propriedades uma medida de distância deve possuir?

•
$$D(A,B) = D(B,A)$$

•
$$D(A,A) = 0$$

•
$$D(A,B) = 0$$
 sse $A = B$

•
$$D(A,B) \leq D(A,C) + D(B,C)$$

Motivos das Propriedades Desejáveis de Medidas

$$D(A,B) = D(B,A)$$

Simetria

Caso contrário você poderia afirmar que "Alex parece com Bob, mas Bob não parece com Alex."

D(A,A) = 0

Constância de Auto-simetria

Caso contrário você poderia afirmar que "Alex parece mais com Bob, do que o próprio Bob."

D(A,B) = 0 sse A=B Positividade

Caso contrário existiriam objetos no seu mundo que são diferentes, mas você não consegue diferenciá-los.

$D(A,B) \leq D(A,C) + D(B,C)$ Desigualdade Triangular

Caso contrário você poderia afirmar que "Alex é parecido com Bob, e Alex é parecido com Carl, mas Bob não se parece com Carl."

Medidas de Distância

Norma Lp

p = 1: Manhattan, também conhecida como City Block (L_1) ;

p = 2: Euclidiana (L_2);

p = 3: Métrica L_3 (L_3);

 $p = \infty$: Chebychev, também denominada Infinita (L_{∞}) .

Medidas de Distância

Coeficiente de Jacard

Estatística usada para comparar similaridade e diversidade entre conjuntos

```
sim(t<sub>i</sub>, t<sub>j</sub>)
= (número de atributos em comum)/
  (número total de atributos em ambos)

= (intersecção entre t<sub>i</sub> e t<sub>j</sub>) / (união entre t<sub>i</sub> e t<sub>j</sub>)
```

Medidas de Distância Coeficiente de Jacard

Coeficiente de Jacard

$$s_{ij} = \frac{p}{p+q+r}$$

onde:

p = no. de variáveis positivas para ambos

q= no. de variáveis positivas no i-ésimo objeto e negativas para j-ésimo objeto

r = no. de variáveis negativas no i-ésimo objeto e positivas no j-ésimo objeto

s = no. de variáveis negativas para ambos

t = p+q+r+s = número total de variáveis

Distância de Jaccard pode ser obtida de:

$$d_{ij} = 1 - s_{ij} = 1 - \frac{p}{p+q+r} = \frac{p+q+r-p}{p+q+r} = \frac{q+r}{p+q+r}$$

Medidas de Distância

Coeficiente de Jacard - Exemplo

Fruta	Formato Esférico	Doce	Azedo	Crocante
Object A=Maçã	Yes(1)	Yes(1)	Yes(1)	Yes(1)
Object B=Banana	No(0)	Yes(1)	No(0)	No(0)

Cada objeto representado por quatro variáveis -> objeto possui

quatro dimensões

Coordenadas Maçã = (1,1,1,1) q = no. de variáveis positivas no i-ésimo

$$p=1$$
, $q=3$, $r=0$ e $s=0$

p = no. de variáveis positivas para ambos

Coordenadas Banana = (0,1,0,0) objeto e negativas para j-ésimo objeto r = no. de variáveis negativas no iésimo objeto e positivas no j-ésimo objeto

Coeficiente de Jaccard entre Maçã e Banana =1/(1+3+0)= 1/4

Distância de Jaccard entre Maçã e Banana =1-(1/4) = 3/4

Medidas de Distância Distância de Hamming

- Em teoria da informação:
 - **Distância de Hamming** (str1, str2)
 - = Número de posições nas quais símbolos correspondentes são diferentes
 - = Número mínimo de substituições necessárias para mudar uma string para a outra ou
 - = Número de erros que poderiam ter transformado uma string na outra
- Uma das principais aplicações: teoria de codificação

Medidas de Distância

Distância de Hamming

Cubo binário de 3bits para encontrar a Distância de Hamming

Dois exemplos:

- 100→011 possui distância 3 (vermelho)
- 010→111 possui distância 2 (azul)

```
hnn("karolin", "kathrin") = 3
hnn("karolin", "kerstin") = 3
```

$$hnn(1011101, 1001001) = 2$$

$$hnn(2173896, 2233796) = 3$$

Clustering

- Estratégias de Clustering:
 - Particionais: construir várias partições e avaliá-las segundo algum critério (ex.: K-means)
 - Hierárquicos: criar uma decomposição hierárquica do conjunto de objetos usando algum critério

<u>Passo 1:</u> Escolha aleatória de clusters e cálculo dos centróides (círculos maiores)

Passo 2: Atribua cada ponto ao centróide mais próximo

<u>Passo 3:</u> Recalcule centróides (neste exemplo, a solução é agora estável)

K-means: Exemplo

K-means Exemplo de Aplicação

Clustering de Genes

- Uma série de experimentos de microarray medindo a expressão de um conjunto de genes a intervalos regulares de tempo numa célula
- Normalização permite comparação entre microarrays
- Produz clusters de genes que variam de forma similar ao longo do tempo
- Hipótese: genes que variam da mesma forma podem ser/estar co-regulados

Amostra de um Array. Linhas são genes e colunas são pontos no tempo

Um cluster de genes coregulados

Comentários sobre o Método K-Means

Pontos fortes

- Relativamente eficiente: O(t.k.n)onde n = 0 # de objetos, k = 0 # de clusters, e t = 0 # iterações. Normalmente, k e t << n
- Freqüentemente termina em um ótimo local. O ótimo global pode ser encontrado utilizando técnicas como: annealing determinístico e algoritmos genéticos

Pontos fracos

- Aplicável somente quando a média pode ser definida. E sobre dados categóricos?
- É necessário especificar k, o número de clusters, a priori
- Incapaz de lidar com ruído e outliers
- Não adequado para descobrir clusters com formatos nãoconvexos

Agrupamento Hierárquico

Número de dendogramas com n folhas = $(2n - 3)!/[(2^{(n-2)})(n - 2)!]$

Número de Possíveis Dendogramas
Dendogramas
3
15
105
 34.459.425

Como não podemos testar todas as possíveis árvores, nós podemos realizar uma busca heurística usando...

Bottom-Up (aglometrativo):

Começando com cada item em seu próprio *cluster*, encontrar o melhor par para aglomerar em um novo *cluster*. Repetir até que todos os *clusters* tenham sido aglomerados em um único

Top-Down (divisivo): Começando com todos os dados em um único *cluster*, considerar cada possível maneira de dividir o *cluster* em dois. Escolher a melhor divisão e repetir recursivamente em ambos os lados

Clustering: Agrupando Clusters

Single Link: Distância entre dois clusters é a distância entre os pontos mais próximos. Também chamado "agrupamento de vizinhos"

<u>Average Link</u>: Distância entre clusters é a distância entre os centróides

<u>Complete Link</u>: Distância entre clusters é a distância entre os pontos mais distantes

Tipos de agrupamento hierárquico

Single-link

Complete-link

Average-link

Tipos de agrupamento hierárquico

Qual tipo de agrupamento hierárquico é melhor?

- Cada tipo tem vantagens e desvantagens
- Single-link
 - Pode encontrar grupos de formato irregular
 - Sensível para outliers
- Complete-link e Average-link
 - Robustos para outliers
 - Tendem a particionar grupos grandes
 - Preferem grupos esféricos

Uma Ferramenta Útil para Resumir as Similaridades

Dendograma

A similaridade entre dois objetos em um dendograma é representada pela altura do nó interno mais baixo que eles compartilham

Um dendograma pode ser usado para determinar o número "correto" de agrupamentos. Por exemplo, a existência de duas árvores bem separadas é um forte indicativo de dois *clusters*.

Um possível uso de dendogramas é a detecção de *outliers*

Considerações sobre Clustering Hierárquico

- Não existe a necessidade de especificar o número de clusters a priori
- A natureza hierárquica é facilmente mapeada pela intuição humana para alguns domínios
- Eles não escalam bem: a complexidade de tempo é pelo menos $O(n^2)$, na qual n é o número de objetos
- Como qualquer algoritmo de busca heurística, mínimos locais são um problema
- A interpretação dos resultados é (muito) subjetiva

Outros métodos de agrupamento

- K-medoids: variação do K-means que usa mediana ao invés da média
- EM agrupamento baseado em probabilidades
- SOM mapas auto-organizáveis

• ...

Avaliação de Clusters

Avaliação Tradicional:

$$Qualidade do Cluster = \frac{Distância Inter - Cluster}{Distância Intra - Clusters}$$

- Avaliação para Clusters Hierárquicos
 - Poucos clusters
 - Cobertura grande → boa generalidade
 - Descrição de clusters grandes
 - Mais atributos → maior poder de inferência
 - Mínima (nenhuma) sobreposição (intersecção) entre clusters
 - Clusters mais distintos → conceitos melhor definidos

Desafios em Clustering

Cálculo de Similaridade

- Resultados dos algoritmos dependem inteiramente da métrica de similaridade utilizada
- Os sistemas de clustering fornecem pouco auxílio em como escolher a similidade adequada aos objetos sendo estudados
- Calcular a correta similaridade de dados de diferentes tipos pode ser difícil
- Similaridade é muito dependente da representação dos dados:
 - Normalizar?
 - Representar um dado numericamente, categoricamente, entre outros?

Seleção de Parâmetros

 Algoritmos atuais requerem muitos parâmetros arbitrários, que devem ser especificados pelo usuário

Exemplos de aplicações

- Reconhecimento de padrões
- Análise de dados espaciais
 - Criação de mapas temáticos em GIS por agrupamento de espaços de características
 - Detecção de clusters espaciais e sua explanação em data mining
- Processamento de imagens
- Pesquisas de mercado
- WWW:
 - Classificação de documentos
 - Agrupamento de dados de weblogs para descobrir padrões similares de acesso

- Alguns slides foram baseados em apresentações de:
 - Profa. Huei Diana Lee
 - Prof. José Augusto Baranauskas
 - Prof. E. Keogh
 - Profa. Bianca Zadrozny
 - Prof. S. A. Demurjian
 - Prof. G. Piatetsky-Shapiro