RB310- Fundamentals of Robotics

Dr. Omar Shalash

Eng. Hossam Elsayed

Mimic Nao

Abdelrhman Saeed Mostafa Magdy

Introduction

This project integrates robotics with computer vision to create an interactive experience using a NAO humanoid robot. The primary functionality is for the robot to mimic human movements based on pose estimation and to respond to touch interactions.

System Requirements

NAO Robot with NAOqi OS

Computer with Python 2.7 or 3.x

OpenCV (Python library)

MediaPipe (Python library)

Network connectivity between the computer and NAO robot

Setup and Installation

Ensure that the NAO robot is set up and connected to the same network as the computer.

Install Python dependencies: OpenCV MediaPipe, and NAOqi Python SDK.

Robot Control Script

This script establishes a connection with the NAO robot and controls its actions.

Key Features:

Touch Interaction

Detects and responds to touch events on the robot.

Speech and Movement

Uses the robot's speech and movement capabilities.

(2) Chest Button + Notification LED (3) Scenars (4) Hand Tactile Sensors (5) Foot LEDs (6) Ear LEDs (7) Eyes LEDs (8) Speakers (9) Speakers (9) Microphanes (10) Head Tactile Sensors

Photo Capturing

Captures and transfers photos from the robot to the computer.

Code for NAO control

NAO SCRIPT

Pose Estimation Script

Utilizes OpenCV and MediaPipe for real-time pose estimation from photos captured by the robot.

Key Features:

- Image Processing: Reads and processes images for pose estimation.
- Pose Analysis: Identifies human poses and extracts relevant data.
- Data Output: Writes pose data to a file for the robot to mimic.
- code: Pose Estimation Script

Workflow

Robot Interaction Initiate interaction through a touch event on the robot. Capture and Transfer Robot takes a photo and transfers it to the computer. 3 Pose Estimation The computer script processes the image and performs pose estimation. Mimicry

The robot reads pose data and mimics the movements.

Usage

Start the robot control script on the computer connected to the NAO robot.

Interact with the robot (e.g., touch its head) to trigger actions.

Limitations and Considerations

Dependence on network connectivity for smooth operation.

Accuracy of pose estimation can vary based on image quality and lighting.

DH model

1 Forward Kinematics

Calculating the position of the endeffector (hand) of the robot's arm in relation to its joint angles. 2 Inverse Kinematics

Determining the joint angles required to place the robot's hand at a specific position, such as the desired cup location.

3 Motion Planning

Developing a path planning algorithm to ensure smooth and accurate movements for the robot throughout the game.

4 Rang of joints

Joint Name	Range in Degrees ^o	Range in Radians	
HeadYaw	-119.5° to 119.5°	-2.0857 to 2.0857	
HeadPitch	-38.5° to 29.5°	-0.6720 to 0.5149	

Figure 3.3: NAO head joints and their operational range

Joint Name	Range in Degrees ^o	Range in Radians	
LShoulderPitch	-119.5° to 119.5°	-2.0857 to 2.0857	
LShoulderRoll	-18° to 76°	-0.3142 to 1.3265	
LElbowYaw	-119.5° to 119.5°	1.5446 to 0.0349	
LElbowRoll	-88.5° to -2°	-0.6720 to 0.5149	
RShoulderPitch	-119.5° to 119.5°	-2.0857 to 2.0857	
RShoulderRoll	-38.5° to 29.5°	-1.3265 to 0.3142	
RElbowYaw	-119.5° to 119.5°	-2.0857 to 2.0857	
RElbowRoll	-38.5° to 29.5°	0.0349 to 1.5446	
LWristYaw and RWristYaw disabled		disabled	

DH parameters for the left arm chain of the NAO robot:

a	α	d	θ	
A(0, 0, NeckOffsetZ)				
0	0	0	θ_1	
0	$-\frac{\pi}{2}$	0	$\theta_2 - \frac{\pi}{2}$	
$R_x(\frac{\pi}{2})R_y(\frac{\pi}{2})$				
A(topCameraX, 0, topCameraZ)				
A(bottomCameraX, 0, bottomCameraZ)				
	a 0 0	$A(0,0,0)$ 0 0 0 $-\frac{\pi}{2}$ $R_x(0)$ $A(topCamera)$	$A(0,0,\mathrm{NeckOffsetZ})$ 0 0 0 0 0 0 0 0 0 $R_x(\frac{\pi}{2})R_y(\frac{\pi}{2})$ $A(\mathrm{topCameraX},0,\mathrm{topCameraZ})$	

Future Enhancements

Expand the range of movements and poses the robot can mimic.

Improve the robustness of the pose estimation algorithm.

Integrate more interactive features, such as voice commands.

VIDEO

<u>Video link</u>