Fondamenti di robotica

Andrea Monguzzi, Paolo Rocco

Cinematica del robot

Esercizio 1 – Cinematica del manipolatore UR5

Si consideri il manipolatore UR5 riportato in fig. 1:

Figura 1

1.1 Si compili la tabella dei parametri di Denavit-Hartenberg.

1.2 Si assuma $d_1=0.08916, d_4=0.10915, d_5=0.09465, d_6=0.0823$ e $a_2=-0.425, a_3=-0.39225$. Con il costrutto Link si istanzino in Matlab i sei link del manipolatore e con il costrutto SerialLink il manipolatore nel suo complesso;

Tabella dei parametri di DH:

Link i	d_i [m]	<i>a_i</i> [m]	α_i [rad]
1	0.08916	0.0	$\pi/2$
2	0.0	-0.425	0
3	0.0	-0.39225	0
4	0.10915	0.0	$\pi/2$
5	0.09465	0.0	$-\pi/_{2}$
6	0.0823	0.0	0

- 1.3 Con l'istruzione plot si visualizzi il manipolatore nella postura rappresentata in fig 1 corrispondente alle seguenti coordinate di giunto: $q_{init} = \left[0, -\frac{\pi}{2}, 0, -\frac{\pi}{2}, 0, -\pi\right]$. Si ottiene la configurazione riportata in fig.2.
- 1.4 Con l'istruzione fkine si determini la cinematica diretta del manipolatore nella postura relativa alla posizione assunta per le seguenti variabili di giunto:

 $q_1 = \left[\frac{\pi}{4}, -\frac{3\pi}{4}, -\frac{\pi}{3}, -\frac{\pi}{3}, \frac{\pi}{2}, \frac{\pi}{3}\right]$. Si mostri poi il manipolatore in tale configurazione usando il comando plot. (Nota: usare la funzione pause per visualizzare una figura per volta). Si ottiene il risultato mostrato in fig3.

- 1.5 Con l'istruzione jacob0 si calcoli lo Jacobiano geometrico del manipolatore nella postura q_1 (assegnata al punto precedente) e si verifichi che il robot non si trova in configurazione singolare.
- 1.6 Verificare che le configurazioni riportate di seguito corrispondono a configurazioni singolari:

$$\begin{aligned} q_{sing1} &= [0, -\frac{\pi}{6}, 0, \frac{\pi}{12}, \frac{\pi}{2}, 0] \ , \ q_{sing2} = [15.62, -146.55, 134.73, -184.53, 255.22, -2.10] \cdot \frac{\pi}{180} \\ q_{sing3} &= [\frac{\pi}{4}, -\frac{\pi}{6}, \frac{\pi}{3}, -\frac{\pi}{6}, 0, \frac{\pi}{12}] \end{aligned}$$

Singolarità di gomito (fig 4, q_{sing1}):

Avviene quando il secondo e il terzo link sono allineati, ovvero se $\theta_3=0$ oppure $\theta_3=\pi$. L'effetto risultante è che il gomito si blocca in questa posizione.

Nota: la sfera in blu rappresenta il workspace raccomandato in cui muovere l'end effector per evitare le singolarità di gomito o spalla.

Figura 4

Singolarità di spalla (si noti che l'UR5 non ha polso sferico)(fig 5, q_{sing2}):

Avviene quando il punto di intersezione degli assi dei giunti 5 e 6 giace nel piano contenente gli assi dei giunti 1 e 2. Comporta una rotazione istantanea di 180° dei giunti 1 e 4.

Figura 5

Singolarità di polso (si noti che l'UR5 non ha polso sferico) (fig 6, q_{sing3}):

Avviene quando gli assi del giunto 4 e 6 sono paralleli, ovvero per $\theta_5=0$ oppure $\theta_5=\pi$, limitando la serie di possibili movimenti del manipolatore (i giunti 2,3,4 ruotano sempre nello stesso piano, se questa singolarità è presente anche il giunto 6 ruota su questo piano). Comporta una rotazione istantanea di 180° dei giunti 4 e 6.

Figura 6

- 1.7 Usando un metodo di cinematica inversa (istruzione ikine), calcolare i valori dei giunti corrispondenti all'end effector con posizione nel punto $p_{ee} = [0.5, 0, 0.25]$ e con lo stesso orientamento della terna base. Usare l'istruzione plot per visualizzare il manipolatore in questa configurazione (fig 7).
- 1.7 Usare il metodo .teach per visualizzare il manipolatore in una data configurazione (ad esempio quella appena calcolata) e controllare poi il valore delle variabili di giunto manualmente tramite l'interfaccia.

Conf returned by ikine to reach 0.5 0 0.25

Figura 7

Esercizio 2 – Definizione dello spazio di lavoro di un manipolatore planare a tre link

- 2.1 Si consideri il manipolatore planare a 3 link mostrato in fig 8. Si compili la tabella dei parametri di Denavit- Hartenberg.
- 2.2 Si assuma $a_1=0.5,\ a_2=0.3,\ a_3=0.2.$ Con il costrutto Link si istanzino in Matlab i tre link del manipolatore e tramite il costrutto . qlim si impongano i seguenti vincoli di giunto: $-\frac{\pi}{3} \leq \theta_1 \leq \frac{\pi}{3}$,

 $-\frac{2\pi}{3} \le \theta_2 \le \frac{2\pi}{3}$, $-\frac{\pi}{2} \le \theta_3 \le \frac{\pi}{2}$. Istanziare infine con il costrutto <code>SerialLink</code> il manipolatore.

Tabella dei parametri di DH:

link	a_i	α_i	d_i	θ_i
1	a_1	0	0	$ heta_1$
2	a_2	0	0	θ_2
3	a_3	0	0	θ_3

- 2.3 Utilizzare il comando . plot per visualizzare il manipolatore nella configurazione caratterizzata dalle seguenti coordinate di giunto q = [0,0,0].
- 2.4 Determinare lo spazio di lavoro per punti, discretizzando le escursioni angolari consentite ai giunti. Calcolare quindi la corrispondente posizione della terna end-effector e, tramite il comando plot rappresentare le coordinate x e y. Si ottiene il risultato mostrato dalle figure 9 e 10.

Figura 8

Figura 9

Figura 10

Esercizio 3 Calcolo simbolico dello Jacobiano e delle singolarità

Si consideri il manipolatore cilindrico riportato in fig 11.

3.1 Si compili la tabella dei parametri di Denavit-Hartenberg.

link	a_i	α_i	d_i	θ_i
1	0	0	d_1	$ heta_1$
2	0	$\pi/2$	d_2	$\pi/2$
3	0	0	d_3	0

Figura 11

3.2 Istanziare simbolicamente le variabili di giunto usando la definizione ${\tt syms}$. Nota: è necessario installare il Symbolic Math Toolbox di Matlab.

- 3.3 Scrivere le tre matrici di trasformazione omogenea parziali.
- 3.4 Calcolare simbolicamente la matrice della cinematica diretta come prodotto delle tre matrici definite al punto precedente.
- 3.5 Ricavare gli elementi utili per la costruzione della matrice Jacobiana.
- 3.6 Calcolare simbolicamente il determinante dello Jacobiano e determinare quindi le singolarità