

Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Estatística

Breno Cauã Rodrigues da Silva

Modelo Exponencial por Partes & Modelo Exponencial por Partes Potência

Belém/PA

Breno Cauã Rodrigues da Silva

Modelo Exponencial por Partes & Modelo Exponencial por Partes Potência

Trabalho de Conclusão de Curso, apresentado como requisito parcial para a obtenção do grau de Bacharel em Estatística, pela Universidade Federal do Pará.

Área de concentração: Análise de Sobrevivência

Linha de pesquisa: Modelos semiparamétricos para dados de sobrevivência

Orientador: Prof. Dr. Paulo Cerqueira dos Santos Júnior

Breno Cauã Rodrigues da Silva

Modelo Exponencial por Partes & Modelo Exponencial por Partes Potência

Trabalho de Conclusão de Curso, apresentado como requisito parcial para a obtenção do grau de Bacharel em Estatística, pela Universidade Federal do Pará.

Data de aprovação: DD/MM/AAAAConceito: E[Conceito] = Excelente

Prof. Dr. Paulo Cerqueira dos Santos Júnior Orientador - FAEST/ICEN/UFPA

 $\begin{array}{c} {\rm Professor~(a)} \\ {\it Membro~-~FAEST/ICEN/UFPA} \end{array}$

 $\begin{array}{c} \text{Professor (a)} \\ \textit{Membro - FAEST/ICEN/UFPA} \end{array}$

Agradecimentos

[...].

Resumo

[...].

 $\textbf{Palavras-chave:} \ [...]; \ [...].$

Abstract

[...].

 $\textbf{Keywords:}\ [...];\ [...].$

Lista de Tabelas

Lista de Figuras

3.1	Curva de Sobrevivência de Kaplan-Meier com IC de 95 $\%$			
3.2	Função Risco Acumulado e Função Sobrevivência com IC de 95% segundo			
	o Estimador de Nelson-Aalen	18		
3.3	Comparação Entre as Curvas de Sobrevivência de Kaplan-Meier Nelson-			
	Aalen.	19		
3.4	Funções Densidade de Probabilidade, Sobrevivência, Risco e Risco			
	Acumulado segundo uma Distribuição Exponencial para diferentes valores			
	do Parâmetro de Taxa	21		
3.5	Funções Densidade de Probabilidade, Sobrevivência, Risco e Risco			
	Acumulado segundo uma Distribuição Weibull para diferentes valores do			
	Parâmetro de Forma e um valor fixo para o Parâmetro de Escala	23		
3.6	Funções Densidade de Probabilidade, Sobrevivência, Risco e Risco			
	Acumulado segundo uma Distribuição Log-normal para diferentes valores			
	do Parâmetro de Locação e um valor fixo para o Parâmetro de Escala	25		

Índice

1	Introdução				
2	Rev	Revisão Bibliográfica			
3	Fundamentação Teórica				
	3.1	Conce	itos Básicos	10	
		3.1.1	Tempo de Falha	10	
		3.1.2	Censura	10	
		3.1.3	Representação dos Dados de Sobrevivência	12	
		3.1.4	Especificando o Tempo de Sobrevivência	12	
		3.1.5	Relações entre as Funções	14	
	3.2	Técnic	eas Não Paramétricas	14	
		3.2.1	O Estimador de Kaplan-Meier	14	
		3.2.2	Outros Estimadores Não Parâmetricos	17	
	3.3 Técnicas Paramétricas				
		3.3.1	Distribuição Exponencial	20	
		3.3.2	Distribuição Weibull	22	
		3.3.3	Distribuição Log-normal	24	
		3.3.4	Distribuição Exponencial por Partes	25	
		3.3.5	Distribuição Exponencial por Partes Potência	25	
		3.3.6	Estimação de Parâmetros - Método de Máxima Verossimilhança	25	
	3.4	Model	os de Tempo de Vida Acelerados	27	
	3.5	•			
		3.5.1	O Estimador de Turnbull		
		3.5.2	Estimação de Parâmetros		
\mathbf{R}_{0}	e ferê :	ncias		29	

1 Introdução

2 Revisão Bibliográfica

3 Fundamentação Teórica

3.1 Conceitos Básicos

A Análise de Sobrevivência é uma das áreas da Estatística e Análise de Dados que mais se desenvolveram nas últimas duas décadas do século XX. Esse avanço foi impulsionado pela evolução das técnicas estatísticas aliada ao progresso computacional.

Na Análise de Sobrevivência, a variável resposta é, em geral, o tempo até a ocorrência de um evento de interesse. Especificamente, essa área se concentra em modelar e compreender o tempo necessário para que um evento significativo ocorra, sendo este denominado **tempo de falha**. Como exemplo, Colosimo e Giolo (2006) mencionam casos como o tempo até a morte de um paciente; tempo até a cura de uma doença ou até a recidiva de uma condição clínica.

É comum, surgir entre os pesquisadores que iniciam os estudos em análise de sobrevivência, a dúvida de: por que não utilizar outras técnicas estatísticas? Outros métodos convencionais acabam por se tornar inadequados para dados de sobrevivência devido a uma característica única: a **censura**. Esse conceito refere-se à observação parcial do tempo de falha, como ocorre quando o acompanhamento de um paciente é interrompido antes do evento de interesse. A censura, sendo um elemento essencial da Análise de Sobrevivência, caracteriza situações em que o tempo de falha real é desconhecido, sabendo-se apenas que ele excede determinado ponto.

3.1.1 Tempo de Falha

Em análise de sobrevivência, é fundamental estabelecer alguns pontos iniciais para o estudo. O primeiro deles é o **tempo inicial do estudo**, que deve ser claramente definido para garantir que os indivíduos sejam comparáveis no ponto de partida, diferenciando-se apenas pelas covariáveis medidas. Existem diversas maneiras de definir o tempo inicial, sendo o mais comum o **tempo cronológico**. Contudo, em áreas como Engenharia, outras métricas, como número de ciclos ou quilometragem, também podem ser utilizadas.

Outro aspecto essencial é a **definição do evento de interesse**, frequentemente associado a falhas ou situações indesejáveis. Para garantir resultados consistentes, a definição do evento deve ser clara e objetiva. Um exemplo elucidativo é fornecido por Colosimo e Giolo (2006):

"Em algumas situações, a definição de falha já é clara, como morte ou recidiva, mas em outras pode assumir termos ambíguos. Por exemplo, fabricantes de produtos alimentícios desejam saber o tempo de vida de seus produtos expostos em balcões frigoríficos de supermercados. O tempo de falha vai do momento de exposição (chegada ao supermercado) até o produto se tornar 'inapropriado para consumo'. Esse evento deve ser claramente definido antes do início do estudo. Por exemplo, o produto é considerado inapropriado para consumo quando atinge uma concentração específica de microrganismos por mm² de área."

3.1.2 Censura

Estudos clínicos que tratam a resposta como uma variável temporal geralmente são prospectivos e de longa duração. No entanto, mesmo sendo extensos, esses estudos frequentemente se encerram antes que todos os indivíduos passem pelo evento de interesse.

Uma característica comum nesses estudos é a **censura**, que corresponde a observações incompletas ou parciais. Apesar disso, tais observações fornecem informações valiosas para a análise. Colosimo e Giolo (2006) destacam a relevância de incluir dados censurados na análise:

"Ressalta-se que, mesmo censurados, todos os resultados provenientes de um estudo de sobrevivência devem ser incluídos na análise estatística. Duas razões justificam esse procedimento: (i) mesmo sendo incompletas, as observações censuradas fornecem informações sobre o tempo de vida dos pacientes; (ii) a exclusão das censuras no cálculo das estatísticas pode levar a conclusões enviesadas."

Existem três tipos principais de censura:

- Censura Tipo I: O estudo é encerrado após um período de tempo previamente definido.
- Censura Tipo II: O estudo termina quando um número específico de indivíduos passa pelo evento de interesse.
- Censura Aleatória: Ocorre quando um indivíduo é retirado do estudo antes do evento de interesse.

A censura mais comum é a **censura à direita**, em que o evento ocorre após o tempo registrado. Entretanto, outros tipos de censura, como **à esquerda** e **intervalar**, também são possíveis.

Censura à esquerda ocorre quando o evento já aconteceu antes do início da observação. Um exemplo é um estudo sobre a idade em que crianças aprendem a ler:

"Quando os pesquisadores começaram a pesquisa, algumas crianças já sabiam ler e não se lembravam com que idade isso ocorreu, caracterizando observações censuradas à esquerda."

No mesmo estudo, observa-se censura à direita para crianças que ainda não sabiam ler no momento da coleta de dados. Nesse caso, os tempos de vida são classificados como **duplamente censurados** (Turnbull 1974).

A censura intervalar ocorre em estudos com visitas periódicas espaçadas, onde só se sabe que o evento ocorreu dentro de um intervalo de tempo. Quando o tempo de falha T é impreciso, considera-se que ele pertence a um intervalo $T \in (L, U]$, conhecido como **sobrevivência intervalar**. Casos especiais incluem tempos de falha exatos, em que L = U, sendo U = 0 para censura à direita e L = 0 para censura à esquerda (Lindsey e Ryan 1998). Destaca-se a seguinte observação de Colosimo e Giolo (2006):

"A presença de censura traz desafios para a análise estatística. A censura do Tipo II é, em princípio, mais tratável que os outros tipos, mas para situações simples, que raramente ocorrem em estudos clínicos (Lawless 1982). Na prática, utiliza-se resultados assintóticos para a análise dos dados de sobrevivência."

Ao analisar dados de sobrevicência pode ocorrer a confução entre os conceitos de censura e dados truncados. O truncamento é uma característica de alguns estudos de sobrevivência que, muitas vezes, é confundida com a censura. Ele ocorre quando certos indivíduos são excluídos do estudo devido a uma condição específica. Nesse caso, os pacientes só são incluídos no acompanhamento após passarem por um determinado evento, em vez de serem acompanhados desde o início do processo.

3.1.3 Representação dos Dados de Sobrevivência

Considere uma amostra aleatória de tamanho n. O i-ésimo indivíduo no estudo é geralmente representado pelo par (t_i, δ_i) , onde t_i é o tempo de falha ou censura, indicado pela variável binária δ_i , definida como:

$$\delta_i = \begin{cases} 1, & \text{se } t_i \text{ \'e um tempo de falha} \\ 0, & \text{se } t_i \text{ \'e um tempo de censura.} \end{cases}$$

Portanto, a variável resposta na análise de sobrevivência é representada por duas colunas no conjunto de dados. Se o estudo também incluir covariáveis, os dados são representados por $(t_i, \delta_i, \mathbf{x}_i)$. Caso a censura seja intervalar, a representação é $(li, u_i, \delta_i, \mathbf{x}_i)$. Para exemplos de dados de sobrevivência, veja a Seção 1.5 do livro de Colosimo e Giolo (2006).

3.1.4 Especificando o Tempo de Sobrevivência

Seja T uma variável aleatória (v.a.), na maioria dos casos contínua, que representa o tempo de falha. Assim, o suporte de T é definido nos reais positivos \mathbb{R}^+ . Tal variável é geralmente representada pela sua função risco ou pela função de taxa de falha (ou taxa de risco). Tais funções, e outras relacionadas, são usadas ao longo do processo de análise de dados de sobrevivência. A seguir, algumas dessas funções e as relações entre elas serão definidas.

3.1.4.1 Função de Sobrevivência

Esta é uma das principais funções probabilísticas usadas em análise de sobrevivência. A função sobrevivência é definida como a probabilidade de uma observação não falhar até certo ponto t, ou seja a probabilidade de uma observação sobreviver ao tempo t. Em probabilidade, isso pode ser escrito como:

$$S(t) = P(T > t), \tag{3.1}$$

uma conclusão a qual podemos chegar, é que a probabilidade de uma observação não sobreviver até o tempo t, é a acumulada até o ponto t, logo,

$$F(t) = 1 - S(t). \tag{3.2}$$

3.1.4.2 Função Taxa de Falha ou Função Risco

A probabilidade da falha ocorrer em um intervalo de tempo $[t_1,t_2)$ pode ser expressa em termos da função de sobrevivência como:

$$S(t_1) - S(t_2)$$
.

A taxa de falha no intervalo $[t_1,t_2)$ é definida como a probabilidade de que a falha ocorra neste intervalo, dado que não ocorreu antes de t_1 , dividida pelo comprimento do intervalo. Assim, a taxa de falha no intervalo $[t_1,t_2)$ é expressa por

$$\frac{S\left(t_{1}\right)-S\left(t_{2}\right)}{\left(t_{2}-t_{1}\right)S\left(t_{1}\right)}.$$

De forma geral, redefinindo o intervalo como $[t, t + \Delta t)$ a expressão assume a seguinte forma:

$$\lambda\left(t\right) = \frac{S\left(t\right) - S\left(t + \Delta_{t}\right)}{\Delta t \; S\left(t\right)}.$$

Assumindo Δt bem pequeno, $\lambda (t)$ representa a taxa de falha instantânea no tempo t condicional à sobrevivência até o tempo t. Observe que as taxas de falha são números positivos, mas sem limite superior. A função de taxa de falha $\lambda (t)$ é bastante útil para descrever a distribuição do tempo de vida de pacientes. Ela descreve a forma em que a taxa instantânea de falha muda com o tempo. A função de taxa de falha de T é, então, definida como:

$$\lambda(t) = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t | T \ge t)}{\Delta t}.$$
 (3.3)

A função de taxa de falha é mais informativa do que a função de sobrevivência. Diferentes funções de sobrevivência podem ter formas semelhantes, enquanto as respectivas funções de taxa de falha podem diferir drasticamente. Desta forma, a modelagem da função de taxa de falha é um importante método para dados de sobrevivência.

3.1.4.3 Função Taxa de Falha Acumulada ou Função Risco Acumulado

Outra função útil em análise de dados de sobrevivência é a função taxa de falha acumulada. Esta função, como o próprio nome sugere, fornece a taxa de falha acumulada do indivíduo e é definida por:

$$\Lambda(t) = \int_0^t \lambda(u) \, du. \tag{3.4}$$

A função de taxa de falha acumulada, $\Lambda(t)$, não têm uma interpretação direta, mas pode ser útil na avaliação da função de maior interesse que é a função de taxa de falha, $\lambda(t)$. Isto acontece essencialmente na estimação não paramétrica em que $\Lambda(t)$ apresenta um estimador com propriedades ótimas e $\lambda(t)$ é difícil de ser estimada.

3.1.4.4 Tempo Médio e Vida Média Residual

Outras duas quantidades de interesse em análise de sobrevivência são: o tempo médio de via e a vida média residual. A primeira é obtida pela área sob a função de sobrevivência. Isto é,

$$t_{m} = \int_{0}^{\infty} S(t) dt. \tag{3.5}$$

Já a vida média residual é definida condicional a um certo tempo de vida t. Ou seja, para indivíduos com idade t está quantidade mede o tempo médio restante de vida e é, então, a área sob a curva de sobrevivência à direita do tempo t dividida por S(t). Isto é,

$$\operatorname{vmr}(t) = \frac{\int_0^\infty (u - t) f(u) du}{S(t)} = \frac{\int_0^\infty S(u) du}{S(t)}, \tag{3.6}$$

sendo $f(\cdot)$ a função densidade de T. Observe que $\mathrm{vmr}(0) = t_m$.

3.1.5 Relações entre as Funções

Para T uma variável aleatória contínua e não-negativa, tem-se, em termos das funções definidas anteriormente, algumas relações matemáticas importantes entre elas, a saber:

$$\lambda\left(t\right) = \frac{f\left(t\right)}{S\left(t\right)} = -\frac{d}{dt}\left[\ln\left\{S\left(t\right)\right\}\right]$$

$$\Lambda\left(t\right) = \int_{0}^{t} \lambda\left(u\right) du = -\ln\left\{S\left(t\right)\right\}$$

е

$$S\left(t\right)=\exp\left\{ -\Lambda\left(t\right)\right\} =\exp\left\{ -\int_{0}^{t}\lambda\left(u\right)du\right\}$$

Tais relações mostram que o conhecimento de uma das funções, por exemplo S(t), implica no conhecimento das demais, isto é, F(t), f(t), $\lambda(t)$ e $\Lambda(t)$. Outras relações envolvendo estas funções são as seguintes:

$$S(t) = \frac{\operatorname{vmr}(0)}{\operatorname{vmr}(t)} \exp \left\{ -\int_{0}^{t} \frac{du}{\operatorname{vmr}(u)} \right\}$$

е

$$\lambda(t) = \left(\frac{d\left[\text{vmr}(t)\right]}{dt} + 1\right)/\text{vmr}(t)$$

3.2 Técnicas Não Paramétricas

As técnicas não paramétricas desempenham um importante papel na análise de sobrevivência, pois permitem a estimativa da função de sobrevivência sem a necessidade de pressupor uma distribuição específica dos tempos até a ocorrência do evento de interesse. Essa abordagem é especialmente útil em estudos onde a distribuição dos tempos de falha é desconhecida ou onde se deseja evitar suposições rígidas sobre sua forma.

Diferentemente dos métodos paramétricos, que assumem distribuições predefinidas (como Weibull ou exponencial), as técnicas não paramétricas operam apenas com a ordenação dos eventos observados, tornando-se mais flexíveis e robustas e particularmente úteis na presença de dados censurados.

3.2.1 O Estimador de Kaplan-Meier

Proposto por Kaplan e Meier (1958). É um estimador não paramétrico utilizado para estimar a função de sobrevivência. Tal estimador também é chamado de de estimador limite-produto. O Estimador de Kaplan-Meier é uma adaptação a S(t) empirica que, na ausência de censura nos dados, é definida como:

$$\hat{S}\left(t\right) = \frac{\mathbf{n}^{\mathrm{o}} \text{ de observações que não falharam até o tempo } t}{\mathbf{n}^{\mathrm{o}} \text{ total de observações no estudo}}.$$

 $\hat{S}(t)$ é uma função que tem um formato gráfico de escada com degraus nos tempos observados de falha de tamanho 1/n, onde n é o tamanho amostral.

O processo utilizado até se obter a estimativa de Kaplan-Meier é um processo passo a passo, em que o próximo passo depende do anterior. De forma suscetível, para qualquer t, $S\left(t\right)$ pode ser escrito em termos de probabilidades condicionais. Suponha que existam n pacientes no estudo e $k\left(\leq n\right)$ falhas distintas nos tempos $t_1\leq t_2\leq \cdots \leq t_k$. Considerando $S\left(t\right)$ uma função discreta com probabilidade maior que zero somente nos tempos de falha $t_j,\ j=1,\cdots,k,$ tem-se que:

$$S(t_i) = (1 - q_1)(1 - q_2) \cdots (1 - q_i), \qquad (3.7)$$

em que q_j é a probabilidade de um indivíduo morrer no intervalo $\left[t_{j-1},tj\right)$ sabendo que ele não morreu até t_{j-1} e considerando $t_0=0$. Ou seja, pode se escrever q_j como:

$$q_{j} = P\left(T \in [t_{j-1}, t_{j}) | T \ge t_{j-1}\right),$$
(3.8)

para $j=1,\cdots,k$. A expressão geral do estimador de Kaplan-Meier pode ser apresentada após estas considerações preliminares. Considere:

- $t_1 \leq t_2 \leq \cdots \leq t_k$ os k tempos distintos e ordenados de falha;
- d_j o número de falhas em t_j , com $j=1,\cdots,k$;
- n_j o número de indivíduos sob risco em t_j , ou seja, os indivíduos que não falharam e não foram censurados até o instante imediatamente anterior a t_j .

Com isso, pode-se definir o estimador de Kaplan-Meier como:

$$\hat{S}_{KM}\left(t\right) = \prod_{j:\ t_{i} < t} \left(\frac{n_{j} - d_{j}}{n_{j}}\right) = \prod_{j:\ t_{i} < t} \left(1 - \frac{d_{j}}{n_{j}}\right) \tag{3.9}$$

De forma intuitiva, por assim dizer, a Equação 3.9 é proveniente da Equação 3.7, sendo está, uma decomposição de S(t) em termos q_j 's. Assim, a Equação 3.9 é justificada se os q_j 's forem estimados por d_j/n_j , expresso em termos de probabilidade na Equação 3.8. No artigo original de 1958, Kaplan e Meier provam que a Equação 3.9 é um *Estimador de Máxima Verossimilhança* (EMV) para S(t). Seguindo certos passos, é possível provar que que $\hat{S}_{KM}(t)$ é EMV de S(t). Supondo que d_j observações falham no tempo tempo t_j , para $j=1,\cdots,k$, e m_j observações são censuradas no intervalo $\left[t_j,t_{j+1}\right)$, nos tempos t_{j1},\ldots,t_{jm_j} . A probabilidade de falha no tempo t_j é, então,

$$S(t_i) - S(t_i+)$$
,

com $S\left(t_j+\right)=\lim_{\Delta t\to 0+}S\left(t_j+\Delta t\right),\ j=1,\cdots,k$. Por outro lado, a contribuição para a função de verossimilhança de um tempo de sobrevivência censurado em t_{jl} para $l=1,\ldots,m_j$, é:

$$P\left(T > t_{il}\right) = S\left(t_{il} + \right).$$

A função de verossimilhança pode, então, ser escrita como:

$$L\left(S\left(\cdot\right)\right) = \prod_{j=0}^{k} \left\{ \left[S\left(t_{j}\right) - S\left(t_{j}+\right)\right]^{d_{j}} \prod_{l=1}^{m_{j}} S\left(t_{jl}+\right) \right\}$$

Com isso, é possível provar que $S\left(t\right)$ que maximiza $L\left(S\left(\cdot\right)\right)$ é exatamente a expressão dada pela Equação 3.9.

3.2.1.1 Propriedades do Estimador de Kaplan-Meier

Como um estimador de máxima verossimilhança, o estimador de Kaplan-Meier têm interessantes propriedades. As principais são:

- É não-viciado para grandes amostras;
- É fracamente consistente;
- Converge assintoticamente para um processo gaussiano.

A consistência e normalidade assintótica de $\hat{S}_{KM}(t)$ foram provadas sob certas condições de regularidade, por Breslow e Crowley (1974) e Meier (1975).

3.2.1.2 Variância do Estimador de Kaplan-Meier

Para que se possa construir intervalos de confiança e testar hipóteses para S(t), se faz necessário ter conhecimento quanto variabilidade e precisão do estimador de Kaplan-Meier. Este estimador, assim como outros, está sujeito a variações que devem ser descritas em termos de estimações intervalares. A expressão da variância assintótica do estimador de Kaplan-Meier é dada pela Equação 3.10.

$$\widehat{Var}\left[\widehat{S}_{KM}\left(t\right)\right] = \left[\widehat{S}_{KM}\left(t\right)\right]^{2} \sum_{j:\ t_{j} < t} \frac{d_{j}}{n_{j}\left(n_{j} - d_{j}\right)}$$
(3.10)

A expressão dada na Equação 3.10, é conhecida como fórmula de Greenwood e pode ser obtida a partir de propriedades do estimador de máxima verossimilhança. Os detalhes da obtenção da Equação 3.10 estão disponíveis em Kalbfleisch e Prentice (1980).

Como $\hat{S}_{KM}\left(t\right)$, para um t fixo, tem distribuição assintóticamente Normal. O intervalo de confiança com $100\left(1-\alpha\right)\%$ de confiança para $\hat{S}_{KM}\left(t\right)$ é expresso por:

$$\hat{S}_{KM}\left(t\right)\pm z_{\alpha/2}\sqrt{\widehat{Var}\left[\hat{S}_{KM}\left(t\right)\right]}.$$

Vale salientar que para valores extremos de t, este intervalo de confiança pode apresentar limites que não condizem com a teoria de probabilidades. Para solucionar tal problema, aplica-se uma transformação em $\hat{S}_{KM}(t)$ como, por exemplo, $\hat{U}(t) = \ln \left\{ -\ln \left\{ \hat{S}_{KM}(t) \right\} \right\}$. Esta transformação foi sugerida por Kalbfleisch e Prentice (1980), tendo sua variância estimada por:

$$\widehat{Var}\left[\widehat{U}\left(t\right)\right] = \frac{\sum_{j:t_j < t} \frac{d_j}{n_j(n_j - d_j)}}{\left[\sum_{j:t_j < t} \ln\left\{\frac{n_j - d_j}{n_j}\right\}\right]^2} = \frac{\sum_{j:t_j < t} \frac{d_j}{n_j(n_j - d_j)}}{\left[\ln\left\{\widehat{S}_{KM}\left(t\right)\right\}\right]^2}.$$

Logo, pode-se aproximar um intervalo com 100 $(1-\alpha)\,\%$ de confiança para $S\left(t\right)$ desta forma:

$$\left[\hat{S}_{KM} \left(t \right) \right]^{\exp \left\{ \pm z_{\alpha/2} \sqrt{\widehat{Var} \left[\hat{U} \left(t \right) \right]} \right\}}.$$

Veja uma aplicação do estimador de Kaplan-Meier para os dados de *Leucemia Pediátrica* dispostos no Apêndice (A) do livro *Análise de Sobrevivência Aplicada* de Colosimo e Giolo (2006). De posse do conjunto de dados, pode-se estimar a curva de sobrevivência, tal curva foi ilustrada na Figura 3.1.

Figura 3.1: Curva de Sobrevivência de Kaplan-Meier com IC de 95%

3.2.2 Outros Estimadores Não Parâmetricos

O estimador de Kaplan-Meier é amplamente utilizado para estimar a função de sobrevivência S(t). Ele está disponível em diversos pacotes estatísticos e é frequentemente abordado em materiais introdutórios de estatística. No entanto, dois outros estimadores também possuem relevância na literatura: o estimador de Nelson-Aalen e o estimador de Tabela de Vida.

O estimador de Nelson-Aalen, desenvolvido posteriormente, apresenta similaridades com Kaplan-Meier em termos de propriedades, mas adota uma abordagem diferente ao focar na função risco acumulado $\Lambda(t)$.

Já o estimador da Tabela de Vida, também chamado de tabela atuarial, tem um importante valor histórico, sendo amplamente utilizado por demógrafos e atuários desde o século XIX sendo empregado principalmente em grandes amostras. Seu uso é especialmente relevante em contextos demográficos e atuariais, como estudos de expectativa de vida e análise de dados censitários.

Nesta seção será abordado apenas o estimador de Nelson-Aalen. Para conhecer mais sobre o estimador da Tabela de Vida ou Tabela Atuarial, consulte a Seção 2.4.2 do livro *Análise de Sobrevivência Aplicada* de Colosimo e Giolo (2006).

3.2.2.1 Estimador de Nelson-Aalen

Mais recente que o estimador de Kaplan-Meier, este estimador se baseia na função de sobrevivência expressa da seguinte forma:

$$S(t) = \exp\left\{-\Lambda(t)\right\},\,$$

em que $\Lambda(t)$ é a função de risco acumulado apresentada na Seção 3.1.4.3.

A estimativa para $\Lambda(t)$ foi inicialmente proposta por Nelson (1972) posteriormente retomada por Aalen (1978) que demonstrou suas propriedades assintóticas utilizando

processos de contagem. Na literatura, esse estimador é amplamente conhecido como o estimador de Nelson-Aalen e é definido pela seguinte expressão:

$$\hat{\Lambda}(t) = \sum_{j:t_j < t} \left(\frac{d_j}{n_j}\right),\tag{3.11}$$

onde d_j e n_j são as mesmas definições usadas no estimador de Kaplan-Meier. A variância do estimador, conforme proposta por Aalen (1978), é dada por:

$$\widehat{Var}\left[\widehat{\Lambda}(t)\right] = \sum_{j:t_j < t} \left(\frac{d_j}{n_j^2}\right). \tag{3.12}$$

Uma alternativa para a estimativa da variância de $\hat{\Lambda}(t)$, proposta por Klein (1991), é:

$$\widehat{Var}\left[\hat{\Lambda}(t)\right] = \sum_{j:t_i < t} \frac{(n_j - d_j)d_j}{n_j^3},$$

entretanto, o estimador da Equação 3.12 apresenta menor vício, tornando-o mais preferível que o proposto por Klein (1991).

Desta forma, podemos definir, com base no estimador de Nelson-Aalen, um estimador para a função de sobrevivência, podendo ser expressa por:

$$\hat{S}_{NA}(t) = \exp\left\{-\hat{\Lambda}(t)\right\}.$$

Deve-se, a variância deste estimador, a Aalen e Johansen (1978). Podendo ser mensurada pela expressão:

$$\widehat{Var}\left[\hat{S}_{NA}(t)\right] = \left[\hat{S}_{NA}(t)\right]^2 \sum_{j:t_j < t} \left(\frac{d_j}{n_j^2}\right).$$

Uma aplicação do estimador de Nelson-Aalen foi desenhada na Figura 3.2 em dois subgráficos. O primeiro apresenta a função de risco acumulado $\Lambda(t)$ estimada conforme a Equação 3.11. O segundo mostra a curva de sobrevivência de Nelson-Aalen através das relações entre as funções de análise de sobrevivência.

Figura 3.2: Função Risco Acumulado e Função Sobrevivência com IC de 95% segundo o Estimador de Nelson-Aalen.

Vale destacar que o estimador de Nelson-Aalen apresenta, na maioria dos casos, estimativas próximas ao estimador de Kaplan-Meier. Bohoris (1994) mostrou que $\hat{S}_{NA}(t) \geq \hat{S}_{KM}(t)$ para todo t, isto é, as estimativas obtidas pelo estimador de Nelson-Aalen são maiores ou iguais às estimativas obtidas pelo estimador de Kaplan-Meier.

Figura 3.3: Comparação Entre as Curvas de Sobrevivência de Kaplan-Meier Nelson-Aalen.

3.3 Técnicas Paramétricas

Na análise de sobrevivência, métodos não paramétricos estimam funções sem assumir uma distribuição prévia para o tempo de falha. O estimador de Kaplan-Meier, por exemplo, calcula probabilidades diretamente dos dados, sendo útil para comparar curvas de sobrevivência entre grupos. No entanto, essa abordagem não permite avaliar diretamente o impacto de covariáveis, como idade ou tipo de tratamento, sobre a sobrevivência.

Os modelos paramétricos, por outro lado, assumem uma distribuição específica para o tempo de ocorrência do evento, permitindo estimativas mais estruturadas e eficientes. Assim como ocorre em modelos de regressão (linear, Poisson, logístico), esses métodos possibilitam relacionar covariáveis diretamente ao tempo de sobrevivência, garantindo uma análise mais detalhada e interpretável.

Entretanto, quais distribuições de probabilidade são adequadas para representar o tempo até a ocorrência do evento de interesse? Como o tempo de sobrevivência T é uma variável contínua e não negativa, algumas distribuições comuns — como a normal — não são apropriadas, pois permitem valores negativos. Além disso, dados de sobrevivência frequentemente apresentam assimetria à direita, indicando que poucos indivíduos sobrevivem por períodos longos enquanto a maioria tem eventos precoces. Reforçando a inadequação de algumas distribuições para representação probabilística do tempo de sobrevivência.

3.3.1 Distribuição Exponencial

Se $T \sim \text{Exponencial}(\alpha)$. Sua função densidade de probabilidade é expressa da seguinte forma:

$$f(t) = \alpha \exp\left\{-\alpha t\right\}. \tag{3.13}$$

Desta forma, podemos obter a função sobrevivência com base no completar da distribuição acumulada de T:

$$S(t) = P(T > t) = 1 - P(T \le t) = 1 - F(t)$$

= 1 - [1 - exp {-\alpha t}].

Assim definimos, formalmente, a função sobrevivência como:

$$S(t) = \exp\left\{-\alpha t\right\}. \tag{3.14}$$

Note que o parâmetro α é a velocidade de queda da função sobrevivência. Através das relações entre as funções em análise de sobrevivência, temos a função risco ou taxa de falha. Obtida pela razão entre da função densidade de probabilidade e a função sobrevivência:

$$\lambda(t) = \frac{f(t)}{S(t)} = \frac{\alpha \exp\{-\alpha t\}}{\exp\{-\alpha t\}} = \alpha. \tag{3.15}$$

Sendo a função risco constante para todo tempo observado t, o risco acumulado é função linear no tempo com inclinação da reta dada por α :

$$\Lambda(t) = -\ln\left\{S(t)\right\} = -\ln\left\{\exp\{-\alpha t\}\right\} = -(-\alpha t) = \alpha t \tag{3.16}$$

Veja, a seguir, a Figura 3.4 que mostra as curvas de densidade de probabilidade, de sobrevivência, risco e risco acumulado para diferentes valores do parâmetro α .

Figura 3.4: Funções Densidade de Probabilidade, Sobrevivência, Risco e Risco Acumulado segundo uma Distribuição Exponencial para diferentes valores do Parâmetro de Taxa.

Note que, o parâmetro α deve ser sempre positivo e quanto maior o valor de α (taxa), mais abruptamente a função sobrevivência S(t) decresce, e maior é a inclinação da função de risco acumulado. Quando $\alpha=1$, a distribuição é denominada exponencial padrão.

A distribuição exponencial, por possuir um único parâmetro, é matematicamente simples e apresenta um formato assimétrico. Seu uso em análise de sobrevivência tem uma analogia com a suposição de normalidade em outras técnicas e áreas da estatística. Entretanto, a suposição de risco constante associada a essa distribuição é bastante restritiva e, em muitos casos, pode não ser realista. Essa característica da distribuição exponencial é conhecida como falta de memória, o que significa que o risco futuro é independente do tempo já decorrido.

A média e a variância do tempo de sobrevivência, para uma variável que segue a distribuição exponencial, são expressas como funções inversas do parâmetro de taxa (α) . Assim, quanto maior o risco, menor o tempo médio de sobrevivência e menor a variabilidade em torno da média. As expressões são dadas por:

$$E\left[T\right] = \frac{1}{\alpha},$$

$$Var\left[T\right] = \frac{1}{\alpha^2}.$$

Como a distribuição de T é assimétrica, se torna mais usual utilizar o tempo mediano de sobrevivência ao invés de tempo médio. Pode-se obter o tempo mediano de sobrevivência a partir de um tempo t, tal que, S(t) = 0, 5, logo,

$$S(t) = 0, 5 \Leftrightarrow \exp\{-\alpha t\} = 0, 5 \Leftrightarrow -\alpha t = \ln\{2^{-1}\}$$

$$\alpha t = -(-\ln\{2\}) \Leftrightarrow \alpha t = \ln\{2\}.$$

Desta forma, o tempo mediano de sobrevivência é definido como:

$$T_{mediano} = \frac{\ln{\{2\}}}{\alpha}.$$

Em resumo, o modelo exponencial é apropriado para situações em que o período do experimento é curto o suficiente para que a suposição de risco constante seja plausível.

3.3.2 Distribuição Weibull

Na maioria dos casos de análise de sobrevivência - principalmente na área da saúde - é mais razoável supor que o risco varia ao longo do tempo, em vez de permanecer constante. Atualmente, a Distribuição Weibull é amplamente utilizada, pois permite modelar essa variação do risco ao longo do tempo. Como será demonstrado, a distribuição exponencial é um caso particular da distribuição Weibull.

Se o tempo de sobrevivência T segue uma distribuição Weibull, isto é, $T\sim$ Weibull (γ,α) , sua função densidade de probabilidade é dada por:

$$f(t) = \frac{\gamma}{\alpha^{\gamma}} t^{\gamma - 1} \exp\left\{-\left(\frac{t}{\alpha}\right)^{\gamma}\right\}. \tag{3.17}$$

A partir da Equação 3.17 é possível chegar a função sobrevivência da distribuição Weibull sendo está função definida como:

$$S(t) = \exp\left\{-\left(\frac{t}{\alpha}\right)^{\gamma}\right\},\tag{3.18}$$

A função risco, $\lambda(t)$, depende do tempo de sobrevivência. Apresentando variação no tempo conforme a expressão:

$$\lambda(t) = \frac{f(t)}{S(t)} = \frac{\gamma}{\alpha^{\gamma}} t^{\gamma - 1} \tag{3.19}$$

e a função risco acumulado da distribuição Weibull é dada por:

$$\Lambda(t) = -\ln\left\{S(t)\right\} = -\ln\left\{\exp\left\{-\left(\frac{t}{\alpha}\right)^{\gamma}\right\}\right\} = \left(\frac{t}{\alpha}\right)^{\gamma}.$$
 (3.20)

Note que, o parâmetro γ determina a forma função risco da seguinte maneira:

- $\gamma < 1 \rightarrow$ função de risco decresce;
- $\gamma > 1 \rightarrow$ função de risco cresce;
- $\gamma=1 o$ função de risco constante, caindo no caso particular da distribuição exponencial.

Veja, a seguir, a Figura 3.5 que mostra as curvas de densidade, sobrevivência, risco e risco acumulado para diferentes valores do parâmetro de forma γ e o de escala $\alpha = 1$.

Figura 3.5: Funções Densidade de Probabilidade, Sobrevivência, Risco e Risco Acumulado segundo uma Distribuição Weibull para diferentes valores do Parâmetro de Forma e um valor fixo para o Parâmetro de Escala.

Perceba que α - parâmetro escala - e γ - parâmetro de forma - são definidos dentro dos \mathbb{R}^+ . É incluso a função Gama na média e variância da distribuição Weibull, assim,

$$E[T] = \alpha \Gamma \left[1 + (1/\gamma) \right]$$

e

$$Var[T] = \alpha^2 \left[\Gamma \left[1 + (2/\gamma) \right] - \Gamma \left[1 + (1/\gamma) \right]^2 \right]$$

sendo a função Gama $\Gamma[k]$ expressa por $\Gamma[k] = \int_0^\infty t^{k-1} \exp\{t\} dt$. Afim de se obter o tempo mediano de sobrevivência, igualamos a probabilidade de sobrevivência a 0, 5. Desta forma:

$$S(t) = 0, 5 \Leftrightarrow \exp\left\{-\left(\frac{t}{\alpha}\right)^{\gamma}\right\} = 0, 5$$
$$-\left(\frac{t}{\alpha}\right)^{\gamma} = \ln\left\{2^{-1}\right\} \Leftrightarrow \left(\frac{t}{\alpha}\right)^{\gamma} = \ln\left\{2\right\}$$
$$\frac{t}{\alpha} = \left[\ln\left\{2\right\}\right]^{1/\gamma}.$$

Logo, definimos o tempo mediano de sobrevivência da distribuição Weibull como:

$$T_{mediano} = \alpha [\ln{(2)}]^{1/\gamma}.$$

3.3.3 Distribuição Log-normal

Uma alternativa para modelar o tempo de sobrevivência é a distribuição log-normal. Dizemos que uma variável aleatória T tem distribuição log-normal com parâmetros μ e σ^2 , denotado por $T \sim \text{Log-normal}(\mu, \sigma^2)$, quando o logaritmo natural de T, ou seja, $T^* = \ln \{T\}$, segue uma distribuição normal, isto é, $T^* \sim \text{Normal}(\mu, \sigma^2)$. Nesse caso, μ e σ^2 correspondem à média e variância de $\ln \{T\}$. De forma equivalente, pode-se dizer que se $T^* \sim \text{Normal}(\mu, \sigma^2)$, então $T = \exp \{T^*\} \sim \text{Log-normal}(\mu, \sigma^2)$. A função densidade de probabilidade da distribuição log-normal é dada por:

$$f(t) = \frac{1}{t\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(\frac{\ln(t) - \mu}{\sigma}\right)^2\right\}. \tag{3.21}$$

Quando o tempo de sobrevivência segue essa distribuição, a função sobrevivência S(t) é expressa por meio da função de distribuição da normal padrão:

$$S(t) = \Phi\left(\frac{-\ln\{t\} + \mu}{\sigma}\right). \tag{3.22}$$

Já as funções risco e risco acumulado não têm formas analíticas simples. Porém, podem ser obtidas por meio das relações entre as funções de análise de sobrevivência. Com isso, definimos, respectivamente, a função risco e a função risco acumulado pela expressão:

$$\lambda(t) = \frac{f(t)}{S(t)}, \quad \Lambda(t) = -\ln\left\{S(t)\right\}.$$

A Figura 3.6 ilustras as curvas usadas na análise de sobrevivência segundo uma distribuição log-normal, variando o parâmetro de locação μ e fixando o parâmetro de escala $\sigma=1$.

Figura 3.6: Funções Densidade de Probabilidade, Sobrevivência, Risco e Risco Acumulado segundo uma Distribuição Log-normal para diferentes valores do Parâmetro de Locação e um valor fixo para o Parâmetro de Escala.

O valor esperado e a variância da distribuição log-normal podem ser expressas em termos da distribuição normal. Desta forma, o valor esperado de T é expresso por:

$$E[T] = \exp\left\{\mu + \sigma^2/2\right\}.$$

Já a variância de T é dada por:

$$Var[T] = \exp\left\{2\mu + \sigma^2\right\} \cdot (\exp\left\{\sigma^2\right\} - 1).$$

3.3.4 Distribuição Exponencial por Partes

3.3.5 Distribuição Exponencial por Partes Potência

3.3.6 Estimação de Parâmetros - Método de Máxima Verossimilhança

Foram apresentados alguns modelos probabilísticos. Esses modelos possuem quantidades desconhecidas, denominadas **parâmetros**, ou **parâmetro**, quando o modelo depende de uma única quantidade desconhecida, como no caso da distribuição exponencial.

O Método de Máxima Verossimilhança baseia-se no princípio de que, a partir de uma amostra aleatória, a melhor estimativa para o parâmetro de interesse é aquela que maximiza a probabilidade daquela amostra ter sido observada (Bussab e Morettin 2010), tornando a amostra mais verossímil.

De forma simples, o método de máxima verossimilhança condensa toda a informação contida na amostra, por meio da função de verossimilhança, para encontrar o(s) parâmetro(s) da distribuição que melhor expliquem os dados. Essa abordagem utiliza o produtório das densidades f(t) para cada observação $t_i, i = 1, 2, ..., n$. Em livros introdutórios de estatística, a função de verossimilhança é definida da seguinte maneira, para um parâmetro ou vetor de parâmetros θ :

$$L(\theta) = \prod_{i=1}^{n} f(t_i|\theta).$$

Observe que L é uma função de θ , que pode ser um único parâmetro ou um vetor de parâmetros, como ocorre na distribuição log-normal, onde $\theta = (\mu, \sigma^2)$. No entanto, em análise de sobrevivência, essa definição tradicional de função de verossimilhança é insuficiente, pois os dados frequentemente apresentam **censura**, o que implica que o tempo de evento pode ser apenas parcialmente observado.

Para lidar com essa característica, utiliza-se a variável indicadora δ_i , apresentada na Seção 3.1.3, que identifica se o *i*-ésimo tempo é um tempo de evento ou de censura. Com base nessa informação, a função de verossimilhança é ajustada da seguinte forma:

- Para $\delta_i = 1$, o *i*-ésimo tempo é um tempo de evento, e sua contribuição para $L(\theta)$ é a densidade de probabilidade $f(t_i|\theta)$;
- Para $\delta_i = 0$, o *i*-ésimo tempo é um tempo censurado, e sua contribuição para $L(\theta)$ é a função de sobrevivência $S(t_i|\theta)$.

Assim, a função de verossimilhança ajustada, que incorpora dados censurados, é expressa como:

$$L(\theta) = \prod_{i=1}^{n} \left[f(t_i | \theta) \right]^{\delta_i} \left[S(t_i | \theta) \right]^{1 - \delta_i}$$

$$L(\theta) = \prod_{i=1}^{n} \left[\lambda(t_i | \theta) \right]^{\delta_i} S(t_i | \theta). \tag{3.23}$$

Para encontrar o valor de θ que maximiza $L(\theta)$, utiliza-se a derivada do logaritmo de base neperiana da verossimilhança igualada a zero:

$$\frac{\partial \ln[L(\theta)]}{\partial \theta} = 0.$$

A solução dessa equação fornece o valor de θ que maximiza $\ln[L(\theta)]$, e consequentemente, $L(\theta)$.

3.3.6.1 Método Iterativo de Newton-Raphson

Para algumas distribuições, apresentadas na seção anterior, e outras denifidas na literatura, não há forma analítica para as estimativas de máxima verossimilhança. Assim, as estimativas de tais parâmetros depende de métodos numéricos, sendo o **Método Iterativo de Newton-Raphson** uma abordagem amplamente utilizada.

O Método de Newton-Raphson é um procedimento iterativo eficiente para resolver equações não lineares, muito empregado na estimação de parâmetros de modelos estatísticos. No ajuste de distribuições o método busca maximizar a função de

verossimilhança resolvendo o sistema de equações derivado das condições de otimalidade (gradiente nulo). A fórmula iterativa é:

$$\theta_{n+1} = \theta_n - \mathbf{H}^{-1}(\theta_n) \nabla \ln[L(\theta_n)], \tag{3.24}$$

onde:

- $\ln[L(\theta_n)]$ é o vetor gradiente, contendo as derivadas parciais de $\ln[L(\theta_n)]$ em relação as coordenadas do vetor θ (parâmetros);
- $\mathbf{H}(\theta)$ é a matriz Hessiana, composta pelas segundas derivadas de $\ln[L(\theta_n)]$.

O método apresenta vantagens convenientes no ajuste de parâmetros de modelos estatísticos. Uma das vantagens é a eficiência do método, que apresenta convergência rápida quando o ponto inicial θ_0 está próximo dos valores reais dos parâmetros. Outra vantagem, é flexibilidade, pois pode ser aplicado a diversos modelos probabilísticos, como o modelo Weibull, que é amplamente utilizada para modelar tempos de vida e dados de sobrevivência.

Entretanto, deve-se, também, atentar-se aos cuidados na aplicação do método. Pois, a convergência do método não é garantida caso o ponto inicial esteja muito distante da solução ou se as condições de regularidade do modelo não forem atendidas. Outro ponto que merece atenção é o cálculo da matriz Hessiana, que pode ser computacionalmente custoso, especialmente em modelos com maior complexidade.

Para um melhor entendimento do Método Iterativo de Newton-Raphson veja o Apêndice (D) do livro Análise de Sobrevivência Aplicada de Colosimo e Giolo (2006).

3.4 Modelos de Tempo de Vida Acelerados

Na seção anterior, foram apresentados modelos paramétricos para dados de sobrevivência. Entretanto, esses modelos não contemplam a inclusão de covariáveis na análise do tempo de sobrevivência. Neste capítulo, exploraremos esse método.

No modelo de regressão linear clássico, a relação entre a variável resposta Y e as covariáveis \mathbf{x}^{\top} é aditiva, ou seja, mudanças nas covariáveis alteram Y de maneira linear. O modelo de regressão linear clássico é expresso como:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p + \varepsilon, \tag{3.25}$$

onde ε é a parte estocástica (erro) que segue uma distribuição Normal $(0; \sigma^2)$.

No entanto, em análise de sobrevivência, essa suposição não se sustenta, pois o efeito das covariáveis geralmente acelera ou retarda o tempo de falha, tornando necessária uma abordagem multiplicativa. Este modelo de regressão é chamado de Modelo de *Tempo de Vida Acelerado* (Accelerated Failure Time - AFT).

No modelo AFT, assume-se que o tempo de falha T é afetado por um fator de aceleração exponencial das covariáveis. Esse fator multiplicativo indica se o tempo até o evento será prolongado ou encurtado. Assim, o modelo é definido como:

$$T = \exp\{\mathbf{x}^{\top}\boldsymbol{\beta}\}\boldsymbol{\varepsilon} = \exp\{\beta_0 + \beta_1 X_1 + \beta_2 X_2 \dots + \beta_n X_n\}\boldsymbol{\varepsilon},\tag{3.26}$$

onde ε é um termo de erro multiplicativo que captura a variabilidade não explicada pelas covariáveis. Aplicando a transformação logarítmica em T obtém-se a forma linearizável da Equação 3.26 que aproxima-se da Equação 3.25, de forma que

$$\ln[T] = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \dots + \beta_n X_n + v,$$

onde $v=\ln[\varepsilon]$ segue uma distribuição de valor extremo. Essa escolha para a distribuição dos erros decorre do fato de que os tempos de sobrevivência frequentemente apresentam forte assimetria à direita. Portanto, os erros não podem ser adequadamente representados por uma distribuição normal, sendo mais apropriado assumir distribuições como Lognormal, Weibull ou Exponencial.

Nos modelos AFT, a função de sobrevivência sofre um ajuste devido ao efeito das covariáveis, que podem acelerar ou retardar o tempo de falha. Assim, a função de sobrevivência condicional às covariáveis é expressa como:

$$S(t|\mathbf{x}) = P(T > t/\exp\{\mathbf{x}^{\top}\beta\}). \tag{3.27}$$

Como o tempo de falha é ajustado pelo fator de aceleração, a função de risco também precisa ser reformulada para incorporar o efeito das covariáveis. A forma geral da função de risco em modelos AFT é dada por:

$$\lambda(t|\mathbf{x}) = \lambda_0(t)g(\mathbf{x}). \tag{3.28}$$

Nesta expressão, $\lambda_0(t)$, representa a função de risco basal, isto é, representa o risco no tempo t quando todas as covariáveis são iguais a zero, ou seja, na ausência de efeitos das covariáveis. Já o termo $g(\mathbf{x}) = \exp\{-\mathbf{x}^{\top}\beta\}$ age como um fator de ajuste, mensurando o impacto das covariáveis na taxa de falha.

3.5 Censura Intervalar

3.5.1 O Estimador de Turnbull

3.5.2 Estimação de Parâmetros

Referências

- Aalen, Odd O. 1978. "Nonparametric Inference for a Family of Counting Processes". Annals of Statistics 6 (4): 701–26. https://doi.org/10.1214/aos/1176344247.
- Aalen, Odd O., e Søren Johansen. 1978. "An Empirical Transition Matrix for Non-Homogeneous Markov Chains Based on Censored Observations". Scandinavian Journal of Statistics 5 (3): 141–50.
- Bohoris, G. A. 1994. "Comparison of the Cumulative-Hazard and Kaplan-Meier Estimators of the Survivor Function". *IEEE Transactions on Reliability* 43 (2): 230–32. https://doi.org/10.1109/24.293488.
- Breslow, Norman, e John Crowley. 1974. "A Large Sample Study of the Life Table and Product Limit Estimates under Random Censorship". *The Annals of Statistics* 2 (3): 437–53. https://doi.org/10.1214/aos/1176342705.
- Bussab, Wilton de Oliveira, e Pedro Alberto Morettin. 2010. Estatística Básica. 6ª ed. São Paulo: Saraiva.
- Colosimo, Enrico Antonio, e Suely Ruiz Giolo. 2006. Análise de Sobrevivência Aplicada. 1º ed. São Paulo, Brasil: Blucher.
- Kalbfleisch, John D., e Ross L. Prentice. 1980. The Statistical Analysis of Failure Time Data. Wiley Series em Probability e Mathematical Statistics. New York: Wiley.
- Kaplan, Edward L., e Paul Meier. 1958. "Nonparametric Estimation from Incomplete Observations". *Journal of the American Statistical Association* 53 (282): 457–81. https://doi.org/10.1080/01621459.1958.10501452.
- Klein, John P. 1991. "Small Sample Moments of Some Estimators of the Variance of the Kaplan-Meier and Nelson-Aalen Estimators". Scandinavian Journal of Statistics 18 (4): 333–40. https://doi.org/10.2307/4616203.
- Lawless, J. F. 1982. Statistical Models and Methods for Lifetime Data. Wiley Series em Probability e Statistics. New York: John Wiley & Sons.
- Lindsey, Jane C., e Louise M. Ryan. 1998. "Methods for Interval-Censored Data". Statistics in Medicine 17 (2): 219–38. https://doi.org/10.1002/(SICI)1097-0258(19980130)17:2%3C219::AID-SIM735%3E3.0.CO;2-D.
- Meier, Paul. 1975. "Estimation of a Survival Curve from Incomplete Data". Journal of the American Statistical Association 70 (351): 607–10. https://doi.org/10.1080/01621459.1975.10479872.
- Nelson, Wayne. 1972. "Theory and Applications of Hazard Plotting for Censored Failure Data". *Technometrics* 14 (4): 945–66. https://doi.org/10.1080/00401706.1972.10488981.
- Turnbull, Bruce W. 1974. "Nonparametric Estimation of a Survivorship Function with Doubly Censored Data". *Journal of the American Statistical Association* 69 (345): 169–73. https://doi.org/10.1080/01621459.1974.10480146.