EI SEVIER

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Corrigendum

Mashael Yazdanie*, Fabrizio Noembrini, Lionel Dossetto, Konstantinos Boulouchos

Aerothermochemistry and Combustion Systems Laboratory, Institute of Energy Technology, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology Zurich, ML J41.3, Sonneggstrasse 3, 8092 Zurich, Switzerland

The authors regret that there were footnote reference errors in Table 5 of the article. The correct footnote references are given in the table below.

Hydrogen production process		Process input							Hydrogen	Process
		Electricity	Heat (nuclear)	Solar energy	Natural gas (methane)	Coal (carbon)	Biomass	Ethanol	output	efficiency
Electrolysis	Low temperature electrolysis [14]	0.192 GJ/kg _{H2} ^a (100%)							0.12 GJ/kg _{H2} ^b	62.50%
	High temperature electrolysis [15]	0.119 GJ/kg _{H2} (83%)	0.025 GJ/kg _{H2} (17%)						0.12 GJ/kg _{H2} ^b	83.30%
Thermochemical dissociation [40]	Solar thermal dissociation	7439 GJ/a (2%)	(1770)	346,984 GJ/a (98%)					100,300 GJ/a ^c	28.30%
Photobiological splitting [19]	Direct – Hydrogenase	(270)		1408 kJ (100%)					572.5 kJ	40.70%
	Direct – Nitrogenase			2816 kJ (100%)					572.5 kJ	20.30%
	Indirect –			2112 kJ					572.5 kJ	27.10%
	Hydrogenase Indirect –			(100%) 3520 kJ					572.5 kJ	16.30%
Gasification	Nitrogenase Coal gasification [23]			(100%)		0.271 GJ/ kg _{H2} ^{a,b} (100%)			0.12 GJ/kg _{H2} b	44.30%
	Biomass gasification [41]	0.006 GJ/kg _{H2}			0.006 GJ/kg _{H2} b	(100%)	0.251 GJ/ kg _{H2} ^{a,b}		0.12 GJ/kg _{H2} b	45.60%
		(2%) 0.002 GJ/kg _{H2}			(2%) 0.165 GJ/kg _{H2} ^b		(96%)		0.12 GJ/kg _{H2} ^b	71.90%

DOI of original article: http://dx.doi.org/10.1016/j.jpowsour.2013.10.043.

^{*} Corresponding author. Tel.: +41 78 881 6274; fax: +41 44 632 1102.

E-mail addresses: mashael.yazdanie@gmail.com, yazdanie@lav.mavt.ethz.ch
(M. Yazdanie), noembrini@lav.mavt.ethz.ch (F. Noembrini), lionel.dossetto@accenture.com (L. Dossetto), boulouchos@lav.mavt.ethz.ch (K. Boulouchos).

(continued)

Hydrogen production process		Process input							Hydrogen	Process
		Electricity	Heat (nuclear)	Solar energy	Natural gas (methane)	Coal (carbon)	Biomass	Ethanol	output	efficiency
Steam reforming	Steam methane reforming [42]	(1%)			(99%)					
	Steam ethanol reforming [43]	0.009 GJ/kg _{H2}						0.176 GJ/ kg _{H2} ^{a,b}	0.12 GJ/kg _{H2} ^b	64.90%
		(5%)						(95%)		
Partial oxidation [26]					0.804 MJ/kg _{H2} ^b (100%)				0.721 MJ/kg _{H2} ^{b,d}	89.70%
					0.804 MJ/kg _{H2} ^b (100%)				0.438 MJ/kg _{H2} ^{b,e}	54.50%

Current value based on 2005 study.
 Based on lower heating value (LHV) of hydrogen.
 Based on higher heating value (HHV).
 Output based on the assumption of 100% reactant conversion.
 Output based on the assumption of 60.8% reactant conversion.