1. 강의 개요

수강반 번호		교과 목명	머신러닝	학과	컴	퓨터공학과	학년	시수/ 학점	3/3	담당 교수	변영철
Email	у	ycb@jejunu,kr		TEL	064	-) 754–3657	교재	, , , ,	 강의지	<u></u> 나료 제-	<u>고</u>
교과목 개요	제4차 산업혁명과 관련하여 인공지능 및 머신러닝 전문가는 턱없이 부족하다. 본 교과목에서는 컴 교과목 퓨터로 하여금 스스로 학습하도록 시킬 수 있는 방법을 배우고, 이를 기반으로 사람보다도 훨씬 잘										
주별 강의 계획 (내용은 달라질 수 있습니다.)											
주	월/일 주제			주요 내 용							
1		강의소개 및 유의사항			한 학기동안 공부할 강의 내용 및 일정 설명한다.						
2		4차산업혁명과 인공지능 소개			개	인공지능이란 무엇인가, 그리고 이를 구현하기 위한 머신러닝은 무엇인지 소개한다.					
3		git 소개, 뇌와 뉴런				인공지능은 인간의 뇌를 모방한 것으로 이를 이해하기 위하여 뇌와 뇌를 구성하는 뉴런(신경세포)에 대하여 공부한다.					
4	뉴런과 학습 방법, 실습				놔를 구성하는 신경세포가 어떻게 동작하고 신경세 포를 연결한 신경망이 어떻게 동작하는지 이해한다.						
5	회귀란? 선형 회귀(Linear Re gression), 오류함수, 기울기의 의미, 실습				회귀의 의미에 대하여 공부하고 회귀를 잘 표현하거 나 그렇지 못한 신경세포의 오류에 대하여 이해한 다. 또한 기울기의 의미를 이해한다.						
6		선형 회귀와 학습 방법, 텐서 플로우, 계산그래프, 오류의 의미, 실습				선형회귀를 위한 학습방법, 텐서플로우 이해, 계산그 래프란 무엇이고 오류의 의미를 학습한다.					
7		중간고사				중간고사					
8		논리 회귀(Logistic Regressio n), 이진 결정경계, 신경세포 입력과 결정경계, 실습				1개 뉴런이 만들어내는 논리회귀를 이해하고 이진 결정경계를 이해한다. 신경세포의 입력 수에 따른 결정경계의 모양을 이하한다.					
9	여러 클래스 결정경 맥스, 오류함수, 실			,	E	여러 클래스가 존재할 때 이를 위한 결정경계 만들 기, 이를 위한 오류함수를 이해한다.					
10	플레이스 홀더, XOR 문제, 다층뉴런과 비선형 결정경계, 실습				플레이스 홀더의 필요성, XOR 문제 및 이를 해결 하기 위한 방법으로서 비선형 결정경계를 만들기 위 한 다층뉴런, 다층 신경망을 이해한다.						
11	오류계산 그래프, 활성화함수 와 미분의 의미, 사라지는 영 향역, ReLU, 실습				뉴런 구조에 따른 오류계산 그래프의 모습을 이해하고 활성화 함수의 미분 및 사라지는 영향력을 이해한다.						
12	다층신경망 응용, MNIST, 오 버피팅, Deep Neuralnetwork, 실습				다층신경망을 이용한 응용으로 MNIST 오픈 소스를 공부하고 기타 딥 신경망을 공부한다.						
13	개인별 미니 프로젝트1					개인별로 머신러닝 오픈소스를 찾아 분석, 응용해본 다.					

14	개인별 미니 프로젝트2	개인별로 머신러닝 오픈소스를 찾아 분석, 응용해본 다.
15	기말고사	기말고사

2. 강의 진행 방법

• 온라인 강의 (Slack.com) + 실시간 강의(Zoom - ID: 997 863 0368, PW: 0907)

● 이론 2시간(매주 수요일) + 실습 1시간(매주 목요일)

3. 강의 자료 및 질문방

• 강의 자료: Github.com + Slack.com

● 질문방: Slack.com

4. 평가 방법

● 중간고사 및 기말고사 실시

● 개인별 미니 프로젝트 수행

● 중간고사 30% + 기말고사 30% + 개인 미니 프로젝트 발표 30% + 출석 10% (평가 항목 및 비율 조정 가능)

● 발표 시 평가 요소: 이해도, 난이도, 발표력