Suites numériques

I. Rappels

Activité D:

On considère la suite numérique (u_n) définie par $\begin{cases} u_1 = 0 \\ u_{n+1} = \frac{25}{10 - u_n}; n \in \mathbb{N}^* \end{cases}$

- **1.** Calculer u_1, u_2 .
- **2.** Vérifier que $5 u_{n+1} = \frac{5(5 u_n)}{5 + (5 u_n)}$ pour tout $n \in \mathbb{N}^*$ et montrer par récurrence que $5 u_n > 0$ pour tout $n \in \mathbb{N}^*$.
- **3.** On considère (v_n) la suite numérique définie par $v_n = \frac{5}{5-u_n}$.
- **a.** Montrer que (v_n) est une suite arithmétique en déterminant sa raison.
- **b.** Déterminer v_n en fonction de n.
- **c.** Vérifier que $u_n = \frac{5v_n 5}{v_n}$ pour tout $n \in \mathbb{N}^*$.
- **d.** En déduire l'expression de u_n en fonction n.
- **e.** Calculer la somme S_n en fonction de n où : $S_n = v_0 + v_1 + v_2 + \cdots + v_n$.

Activité **②:**

On considère la suite numérique (u_n) définie par $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{2u_n + 3}{u_n + 4}; n \in \mathbb{N} \end{cases}$

- **1.** Calculer u_1, u_2 .
- **2.** Montrer par récurrence que $(\forall n \in \mathbb{N}^*): 0 < u_n < 1$.
- **3.** Montrer que (u_n) est croissante.
- **4.** On considère (v_n) la suite numérique définie par $v_n = \frac{u_n 1}{u_n + 3}$
- **a.** Montrer que (v_n) est une suite géométrique en déterminant sa raison.
- **b.** Déterminer v_n en fonction de n et en déduire l'expression de u_n en fonction n
- **c.** Calculer la somme S_n en fonction de n où : $S_n = v_0 + v_1 + v_2 + \cdots + v_{n+5}$.

	Suite géométrique	Suite arithmétique		
Définition	$u_{n+1} = qu_n$	$u_{n+1} = u_n + r$		
Terme général	$u_n = u_p \times q^{(n-p)}$ $(p \le n)$	$u_n = u_p + (n - p)r$ $(p \le n)$		
Somme des termes consécutifs	$S_n = u_p + u_{p+1} + \dots + u_n$ = $u_p \times \frac{(1 - q^{(n-p+1)})}{1 - q}$	$S_n = u_p + u_{p+1} + \dots + u_n$ $= \left(\frac{n-p+1}{2}\right) \left(u_p + u_n\right)$		
a b et c trois terme consécutifs	$b^2 = ac$	2b = a + c		

$(u_n)_{n\in I}$ majorée par M	$(\forall n \in I) \ u_n \le M$
$(u)_{n\in I}$ minorée par m	$(\forall n \in I) \ u_n \ge m$
$(u_n)_{n\in I}$ bornée par M et m	$(\forall n \in I) \ m \le u_n \le M$
$(u_n)_{n\in I}$ est croissante	$(\forall n \in I) \ u_{n+1} \ge u_n$
$(u_n)_{n\in I}$ est décroissante	$(\forall n \in I) \ u_{n+1} \le u_n$
$(u_n)_{n\in I}$ est constante	$(\forall n \in I) \ u_{n+1} = u_n$

II. Limite d'une suite

1. Définition

Définition :

Soient (u_n) une suite numérique et l un nombre réel.

On dit que l est **la limite** de (u_n) , et on écrit $\lim_{n\to+\infty}u_n=l$ ou plus simplement $\lim_{n\to+\infty}u_n=l$,

si tout intervalle ouvert centré en l contient tous les termes de la suite (u_n) à partir d'un certain indice.

O Exemple:

On considère la suite définie par $u_n = 2 + \frac{1}{n^2}$ pour tout $n \in \mathbb{N}^*$.

u_1	u_5	u_8	u_{10}	u_{100}	u_{1000}
3	2.04	≈2,016	2,001	2,00001	2,0000001

On remarque que de plus en plus l'indice n prend des valeurs très grandes, les termes de la suite s'approchent de plus en plus à 2.

On peut dire que $\lim u_n = 2$.

Limite de suites de références

Propriétés:

Soit p un élément de \mathbb{N} tel que $p \ge 3$, on a :

- $\lim n^2 = +\infty$
- $\oint_{n \to +\infty} \lim_{n \to +\infty} \sqrt{n} = +\infty$ $\oint_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$

- $\lim \frac{1}{x} = 0$
- $\bullet \lim_{n \to +\infty} \frac{1}{n}$

O Exemples:

$$\circ \text{ On a } \lim_{n \to +\infty} \frac{n+1}{\sqrt{n}} = \lim_{n \to +\infty} \frac{n}{\sqrt{n}} + \frac{1}{\sqrt{n}} = \lim_{n \to +\infty} \sqrt{n} + \frac{1}{\sqrt{n}}.$$

o On a
$$\lim_{n \to +\infty} -2n^4 + 3n^2 + 1 = \lim_{n \to +\infty} n^4 \left(-2 + \frac{3}{n^2} + \frac{1}{n^4} \right)$$
.

Puisque $\lim_{n\to+\infty} \sqrt{n} = +\infty$ et $\lim_{n\to+\infty} \frac{1}{\sqrt{n}} = 0$, alors $\lim_{n\to+\infty} \lim_{n\to+\infty} \frac{n+1}{\sqrt{n}} = +\infty$.

O On a $\lim_{n\to+\infty} -2n^4 + 3n^2 + 1 = \lim_{n\to+\infty} n^4 \left(-2 + \frac{3}{n^2} + \frac{1}{n^4}\right)$.

Puisque $\lim_{n\to+\infty} \frac{3}{n^2} = 0$ et $\lim_{n\to+\infty} \frac{1}{n^4} = 0$, alors $\lim_{n\to+\infty} -2 + \frac{3}{n^2} + \frac{1}{n^4} = -2$.

Or $\lim_{n\to+\infty} n^4 = +\infty$, donc $\lim_{n\to+\infty} -2n^4 + 3n^2 + 1 = -\infty$.

Application 0:

Calculer la limite de la suite (u_n) dans les cas suivants :

a.
$$u_n = \frac{n^2 + n + 1}{3n^3 + n - 6}$$

b.
$$u_n = \frac{\frac{3n+n-6}{(n+2)\sqrt{n}}}{\frac{n+4}{n-1}}$$

c.
$$u_n = \frac{\sqrt{n+1}}{\sqrt{n+3}}$$

d.
$$u_n = \sqrt{n+1} - \sqrt{n}$$
.

e.
$$u_n = 2n - \sqrt{n}$$
.

Mefinition: (Convergence d'une suite)

Soit (u_n) une suite numérique.

- On dit que (u_n) est **convergente** si elle admet une limite finie (C-à-d s'il existe un réel l tel que $\lim_{n \to +\infty} u_n = l$).
- On dit que (u_n) est **divergente** s'elle n'est pas convergente (C-à-d si lim $u_n = \pm \infty$ ou s'elle n'a pas de limite).

O Exemples:

- o La suite (u_n) telle que $(\forall n \in \mathbb{N})$ $u_n = \frac{n}{\sqrt{n}+1}$ est divergente car $\lim_{n \to +\infty} u_n = +\infty$.
- o La suite (v_n) telle que $(\forall n \in \mathbb{N})$: $V_n = \sqrt{n+1} \sqrt{n}$ est convergente car $\lim_{n \to +\infty} v_n = 0$.
- La suite (w_n) telle que $(\forall n \in \mathbb{N}) : w_n = (-1)^n$ est divergente car n'a pas de limite.

3. Limite de la suite géométrique (q^n) où $q \in \mathbb{R}^*$

Propriété:

Soit a un réel, on a :

- Si a > 1 alors $\lim a^n = +\infty$.
- Si -1 < a < 1 alors $\lim a^n = 0$.
- Si $a \le -1$ alors la suite (q^n) n'a pas de limite.

Si a = 1 alors $\lim_{n \to \infty} a^n = 1$.

Exemples:

○ $\lim_{n \to \infty} (5)^n = +\infty$ parce que 5 > 1.

o $\lim_{n \to \infty} (-0.5)^n = 0$ parce que -1 < -0.5 < 1.

 $\circ \lim_{n \to +\infty} \left(\frac{7}{8}\right)^n = 0 \quad \text{parce que } -1 < \frac{7}{8} < 1.$

○ La suite $(-3)^n$ n'a pas de limite.

Application 2:

Calculer la limite de la suite (u_n) dans les cas suivants :

a.
$$u_n = \left(\frac{3}{8}\right)^n + \left(\frac{5}{4}\right)^n$$
.
b. $u_n = \frac{5^n}{(-4)^n}$.
c. $u_n = 2^n - 3^n$.

b.
$$u_n = \frac{5^n}{(-4)^n}$$
.

$$u_n = 2^n - 3^n$$

d.
$$u_n = \frac{4^n - 3^n}{4^n + 3^n}$$
.

O Exercice O: Rattrapage 2011

On considère la suite (u_n) définie par $u_0 = 1$ et $(\forall n \in \mathbb{N})$ $u_{n+1} = \frac{6u_n}{1+15u_n}$

1. a. Vérifier que $(\forall n \in \mathbb{N})$: $u_{n+1} - \frac{1}{3} = \frac{u_n - \frac{1}{3}}{15u_n + 1}$

b. Montrer par récurrence que $(\forall n \in \mathbb{N})$: $u_n > \frac{1}{2}$

2. On considère la suite numérique (v_n) définie par $(\forall n \in \mathbb{N})$: $v_n = 1 - \frac{1}{2n}$.

a. Montrer que (v_n) est une suite géométrique de raison $\frac{1}{2}$.

b. Exprimer v_n en fonction de n.

3. Montrer que $(\forall n \in \mathbb{N})$: $u_n = \frac{1}{3-2(\frac{1}{\epsilon})^n}$ puis déduire $\lim_{n \to +\infty} u_n$.

4. Limite de la suite (n^{α}) où $\alpha \in \mathbb{Q}^*$

Propriété:

Soit $\alpha \in \mathbb{Q}^*$, on a:

Si a > 1 alors $\lim_{n \to +\infty} n^{\alpha} = +\infty$.

Si $\alpha < 0$ alors $\lim_{n \to +\infty} n^{\alpha} = 0$.

O Exemples:

 $0 \lim_{n \to +\infty} n^{\frac{5}{3}} = +\infty \text{ parce que } \frac{5}{3} > 0.$

 $\circ \lim_{n \to +\infty} n^{-\frac{1}{3}} = 0 \text{ parce que } -\frac{4}{3} < 0.$

🗷 Application 🗷:

Calculer la limite de la suite (u_n) dans les cas suivants :

$$U_n = n^{\frac{5}{2}} - n^{\frac{4}{3}} U_n = \sqrt{n} - \sqrt[4]{n}$$

$$\mathbf{\mathscr{O}}\,U_n=\sqrt{n}-\sqrt[4]{n}$$

5. Limite et ordre

Propriété :

Soient (u_n) et (v_n) deux suites numériques.

$$\operatorname{Si} \left\{ \begin{aligned} u_n &> v_n \\ \lim_{n \to +\infty} u_n &= l \ et \lim_{n \to +\infty} v_n = l' \ , \ \operatorname{alors} \ l \geq l'. \end{aligned} \right.$$

O Exemple:

Soient (u_n) et (v_n) deux suites numériques définies par $u_n = 2 + \frac{1}{n}$ et $v_n = 2 - \frac{1}{n}$ On a pour tout $n \in \mathbb{N}^*$: $u_n > v_n$ et $\lim_{n \to +\infty} u_n = 2$ et $\lim_{n \to +\infty} v_n = 2$.

Critères de convergence

• Toute suite décroissante, minorée est convergente.

Application @:

On considère la suite (u_n) définie par $: (\forall n \in \mathbb{N})$ $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{1}{2-u_n} \end{cases}$

- **1.** Montrer, pour tout $n \in \mathbb{N}$, que $u_n < 1$.
- **2.** Etudier la monotonie de la suite (u_n) puis en déduire qu'elle est convergente.

Propriété :

Soient (u_n) , (v_n) et (w_n) trois suites numériques et l un nombre réel.

Si
$$\begin{cases} v_n \le u_n \le w_n \\ \lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n = l, \text{ alors } \lim_{n \to +\infty} u_n = l. \end{cases}$$

Application 5:

On considère la suite (u_n) définie par : $u_n = \frac{\cos(n)}{n^2+1} + 2$.

- **1.** Montrer que $(\forall n \in \mathbb{N}): \frac{-1}{n^2+1} + 2 \le u_n \le \frac{1}{n^2+1} + 2$.
- **2.** En déduire la limite de (u_n) .

Propriété :

Soient (u_n) et (v_n) deux suites numériques et $\alpha \in \mathbb{R}_+^*$.

• Si
$$\begin{cases} \alpha u_n \leq v_n \\ \lim_{n \to +\infty} u_n = +\infty, \text{ alors } \lim_{n \to +\infty} v_n = +\infty. \end{cases}$$

• Si
$$\begin{cases} v_n \le \alpha u_n \\ \lim_{n \to +\infty} u_n = -\infty, \text{ alors } \lim_{n \to +\infty} v_n = -\infty. \end{cases}$$

Application 6:

Soient (u_n) et (v_n) deux suites numériques définies par $u_n = \sin(n) + 3n$ et $v_n = \cos(n^2 + 3) - 5n + 1$.

- **1.** Montrer, pour tout $n \in \mathbb{N}$, que $u_n \ge -1 + 3n$ et que $v_n \le 2 5n$.
- **2.** En déduire la limite de (u_n) et (v_n) .

Propriété :

Soient (u_n) , (v_n) deux suites numériques et l un nombre réel et $\alpha \in \mathbb{R}_+^*$.

Si
$$\begin{cases} |u_n - l| \le \alpha v_n \\ \lim_{n \to +\infty} v_n = 0 \end{cases}$$
, alors $\lim_{n \to +\infty} u_n = l$.

Application 2:

On considère la suite (u_n) définie par : $u_n = \frac{(-1)^n}{n} + 1$. Montrer que $\lim_{n \to +\infty} u_n = 1$.

O Exercice O:

Soit (u_n) la suite numérique définie par $u_0 = \frac{1}{3}$ et $(\forall n \in \mathbb{N})$ $u_{n+1} = \frac{2u_n}{u_n+1}$

- **1.** Montrer que $(\forall n \in \mathbb{N}) : 0 < u_n < 1$.
- **2. a.** Vérifier, pour tout $n \in \mathbb{N}$, que $u_{n+1} u_n = -\frac{u_n(u_n-1)}{u_n+1}$
 - **b.** Etudier la monotonie de (u_n) .
 - **c.** En déduire, pour tout $n \in \mathbb{N}$, que $u_n \ge \frac{1}{3}$ et que la suite (u_n) est convergente.
- **3.** 3) **a.** Montrer que $(\forall n \in \mathbb{N})$; $1 u_{n+1} \le \frac{3}{4}(1 u_n)$.
 - **b.** En déduire que $(\forall n \in \mathbb{N})$; $1 u_n \le \left(\frac{3}{4}\right)^n \times \frac{2}{3}$.
 - **c.** Déterminer $\lim_{n\to+\infty} u_n$.
- **4.** 4) pour tout $n \in \mathbb{N}$, on pose : $v_n = \frac{u_n 4}{u_n 2}$
 - **a.** Montrer que la suite (v_n) est géométrique dont on déterminera la raison et le premier terme.
 - **b.** Exprimer v_n et u_n en fonction de n .
 - **c.** Déterminer au nouveau $\lim_{n\to+\infty} u_n$.

Propriété :

Soit f une fonction numérique continue en l et (u_n) une suite convergente et sa limite est l. La suite (v_n) tel que $v_n = f(u_n)$ est une suite convergente et sa limite est f(l).

O Exemple:

Déterminons la limite de la suite (v_n) définie par : $(\forall n \in \mathbb{N})$: $v_n = cos\left(\frac{\pi n + 2}{3n - 1}\right)$.

Application ®:

Calculer les limites des suites (u_n) et (v_n) suivantes $u_n = \sin\left(\frac{1-n^2\pi}{n+6n^2}\right)$ et $v_n = \sqrt{\frac{16n^2-3n+1}{2n^2+1}}$

2. La suite
$$u_{n+1} = f(u_n)$$

Propriété:

Soit f une fonction numérique et I un intervalle de D_f et soit $(u_n)_n$ une suite telle que : $\begin{cases} u_0 \in I \\ u_{n+1} = f(u_n); n \in IN \end{cases}$. Si les conditions suivantes sont vérifiées :

- f est continue sur I.
- $f(I) \subset I$.
- la suite $(u_n)_n$ converge vers l.

Alors f(l) = l.

Application ©:

Soit f la fonction définie sur $[0; +\infty[$ par $: f(x) = x - 2\sqrt{x} + 2.$

- **1.** Montrer que f est décroissante sur [0; 1] et croissante sur $[1; +\infty[$.
- **2.** Montrer, pour tout $x \in [1; +\infty[$, que : $f(x) \le x$.
- **3.** On considère la suite (u_n) définie par $u_0 = 2$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$.
 - **a.** Montrer par récurrence que : $(\forall n \in \mathbb{N})$; $1 \le u_n \le 2$.
 - **b.** Montrer que la suite (u_n) est décroissante.
 - f e. En déduire que la suite (u_n) est convergente puis déterminer sa limite.