Design of an MBEC Cooler for the EIC

W. F. Bergan, P. Baxevanis, M. Blaskiewicz, E. Wang, Brookhaven National Laboratory, Upton, NY, USA

G. Stupakov, SLAC National Accelerator Laboratory, Menlo Park, California, USA

Turn-by-Turn Beam Simulation

Cooling Rates

Genetic Algorithm

(Note Saturation Only Estimated)

100 GeV

275 GeV

Parameters

Proton Energy (GeV)	100	275
Protons per Bunch	6.9e10	6.9e10
Proton Bunch Length (cm)	7	6
Proton Emittance (x/y) (nm)	30 / 2.7	11.3 / 1
Proton Fractional Energy Spread	9.7e-4	6.8e-4
Electron Normalized Emittance (x/y) (mm-mrad)	2.8 / 2.8	2.8 / 2.8
Electron Bunch Charge (nC)	1	1
Electron Bunch Length (mm)	14	7
Electron Peak Current (A)	8.5	17
Electron Fractional Energy Spread	7e-5	5e-5
Electron/Proton Betas in Modulator (m)	30 / 39	100 / 39
Electron/Proton Betas in Kicker (m)	10 / 39	8/39
Modulator Length (m)	39	39
Number of Amplifier Drifts	2	2
Amplifier Drift Lengths (m)	48.5	48.5
Kicker Length (m)	39	39
R56 in First Two Electron Chicanes (cm)	2.0	0.68
R56 in Third Electron Chicane (cm)	-5.20	-1.52
R56 in Proton Chicane (cm)	-0.52	-0.22
Proton Horizontal Phase Advance (rad)	4.46	4.79
Proton Horizontal Dispersion in Modulator / Kicker (m)	0.76	1
Proton Horizontal Dispersion Derivative in Modulator/Kicker	-0.023 / 0.023	-0.023 / 0.023
Electron Betas in Amplifiers (m)	11.2	2.5
Horizontal / Longitudinal IBS Times (hours)	2.0 / 2.5	2.0 / 2.9
Horizontal / Longitudinal Cooling Times (hours)	1.7 / 1.9	1.3 / 1.8

Parameters

Proton Energy (GeV)	100	275
Protons per Bunch	6.9e10	6.9e10
Proton Bunch Length (cm)	7	6
Proton Emittance (x/y) (nm)	30 / 2.7	11.3 / 1
Proton Fractional Energy Spread	9.7e-4	6.8e-4
Electron Normalized Emittance (x/y) (mm-mrad)	2.8 / 2.8	2.8 / 2.8
Electron Bunch Charge (nC)	1	1
Electron Bunch Length (mm)	14	7
Electron Peak Current (A)	8.5	17
Electron Fractional Energy Spread	7e-5	5e-5
Electron/Proton Betas in Modulator (m)	30 / 39	100 / 39
Electron/Proton Betas in Kicker (m)	10 / 39	8 / 39
Modulator Length (m)	39	39
Number of Amplifier Drifts	2	2
Amplifier Drift Lengths (m)	48.5	48.5
Kicker Length (m)	39	39
R56 in First Two Electron Chicanes (cm)	2.0	0.68
R56 in Third Electron Chicane (cm)	-5.20	-1.52
R56 in Proton Chicane (cm)	-0.52	-0.22
Proton Horizontal Phase Advance (rad)	4.46	4.79
Proton Horizontal Dispersion in Modulator / Kicker (m)	0.76	1
Proton Horizontal Dispersion Derivative in Modulator/Kicker	-0.023 / 0.023	-0.023 / 0.023
Electron Betas in Amplifiers (m)	11.2	2.5
Horizontal / Longitudinal IBS Times (hours)	2.0 / 2.5	2.0 / 2.9
Horizontal / Longitudinal Cooling Times (hours)	1.7 / 1.9	1.3 / 1.8

Parameters

Proton Energy (GeV)	100	275
Protons per Bunch	6.9e10	6.9e10
Proton Bunch Length (cm)	7	6
Proton Emittance (x/y) (nm)	30 / 2.7	11.3 / 1
Proton Fractional Energy Spread	9.7e-4	6.8e-4
Electron Normalized Emittance (x/y) (mm-mrad)	2.8 / 2.8	2.8 / 2.8
Electron Bunch Charge (nC)	1	1
Electron Bunch Length (mm)	14	7
Electron Peak Current (A)	8.5	17
Electron Fractional Energy Spread	7e-5	5e-5
Electron/Proton Betas in Modulator (m)	30 / 39	100 / 39
Electron/Proton Betas in Kicker (m)	10 / 39	8 / 39
Modulator Length (m)	39	39
Number of Amplifier Drifts	2	2
Amplifier Drift Lengths (m)	48.5	48.5
Kicker Length (m)	39	39
R56 in First Two Electron Chicanes (cm)	2.0	0.68
R56 in Third Electron Chicane (cm)	-5.20	-1.52
R56 in Proton Chicane (cm)	-0.52	-0.22
Proton Horizontal Phase Advance (rad)	4.46	4.79
Proton Horizontal Dispersion in Modulator / Kicker (m)	0.76	1
Proton Horizontal Dispersion Derivative in Modulator/Kicker	-0.023 / 0.023	-0.023 / 0.023
Electron Betas in Amplifiers (m)	11.2	2.5
Horizontal / Longitudinal IBS Times (hours)	2.0 / 2.5	2.0 / 2.9
Horizontal / Longitudinal Cooling Times (hours)	1.7 / 1.9	1.3 / 1.8

Electron Energy Error

BROOKHAVEN NATIONAL LABORATORY

100 GeV

275 GeV

Conclusions

 Have MBEC design to adequately cool proton beam at 275 and 100 GeV

Largely insensitive to off-energy electron beam

Work is ongoing to make a realistic lattice

References

- [1] Electron-ion collider at Brookhaven National Laboratory, conceptual design report 2021, https://www.bnl.gov/EC/files/EIC_CDR_Final.pdf
- [2] D. Ratner, "Microbunched electron cooling for high-energy hadron beams", *Phys. Rev. Lett.*, vol. 111, p. 084802, Aug. 2013.
- [3] G. Stupakov, "Cooling rate for microbunched electron cooling without amplification", *Phys. Rev. Accel. Beams*, vol. 21, p. 114402, Nov. 2018.
- [4] G. Stupakov and P. Baxevanis, "Microbunched electron cooling with amplification cascades", *Phys. Rev. Accel. Beams*, vol. 22, p. 034401, Mar. 2019.
- [5] P. Baxevanis and G. Stupakov, "Transverse dynamics considerations for microbunched electron cooling", *Phys. Rev. Accel. Beams*, vol. 22, p. 081003, Aug. 2019.
- [6] P. Baxevanis and G. Stupakov, "Hadron beam evolution in microbunched electron cooling", *Phys. Rev. Accel. Beams*, vol. 23, p. 111001, Nov. 2020.

- [7] P. Baxevanis and G. Stupakov, "Tolerances on energy deviation in microbunched electron cooling", in *Proc. NAPAC'19*, Lansing, MI, USA, Sept. 2019, paper WEPLH16, pp. 837-840.
- [8] G. Wang, "Evolution of ion bunch profile in the presence of longitudinal coherent electron cooling", *Phys. Rev. Accel. Beams*, vol. 22, p. 111002, Nov. 2019.
- [9] W. F. Bergan, "Plasma simulations for an MBEC cooler for the EIC", presented at IPAC'21, Campinas, Brazil, May 2021, paper TUPAB180, this conference.
- [10] E. Zitzler, M. Laumanns, and L. Thiele, "SPEA2: improving the Strength Pareto Evolutionary Algorithm for multiobjective optimization," in *Proc. EUROGEN2001*, Athens, Greece, Sept. 2001, pp. 95-100.

Backup Slides

Theoretical Impedance and Wake

$$Z(k) = G_1 G_2 \frac{4iI_e L_m L_k}{c \Sigma^2 \gamma^3 I_A \sigma_e} q_1 \varkappa e^{-\varkappa^2 q_1^2/2} H_{ep,m}(\varkappa) H_{ep,k}(\varkappa)$$

$$w(z) = -\frac{cr_h}{2\pi\gamma} \int_{-\infty}^{\infty} Z(k)e^{ikz}dk$$

Electron Noise

$$Z_{e,1}(k) = G_1 G_2 \frac{4iI_e L_m L_k}{c \Sigma^2 \gamma^3 I_A \sigma_e} q_1 \varkappa e^{-\varkappa^2 q_1^2/2} H_{ee,m}(\varkappa) H_{ep,k}(\varkappa)$$

(Electrons induce kick analogous to protons)

$$Z_{e,2}(k) = G_1 G_2 \frac{-2ieL_k}{r_e \sum \gamma I_A} H_{ep,k}(\varkappa)$$

(Electron density modulations carried through directly)

Electron Noise

$$\frac{d\sigma_h^2}{dt} = \frac{n}{T} \int_{-\infty}^{\infty} w^2(z) dz$$

$$\frac{d\sigma_h^2}{dt} = \frac{n}{T} \int_{-\infty}^{\infty} \left[w_{e,1}^2(z) + w_{e,2}^2(z) \right] dz + \frac{2n}{T} \int_{-\infty}^{\infty} dz \int_{-\infty}^{\infty} d\delta \frac{1}{\sqrt{2\pi}\sigma} e^{-\delta^2/2\sigma_e^2} w_{e,1}(z) w_{e,2}(z + R_{56}\delta)$$

Wake Function

BROOKHAVEN NATIONAL LABORATORY

100 GeV

275 GeV