

2015/01/30 - 1 - Version 1.0

Table of Contents

REVISIO	ON HISTORY	4
FEATUR	RES	5
GENER.	AL DESCRIPTION	11
BLOCK	DIAGRAM	12
PIN COI	NFIGURATION	
1.	TFBGA-305	3
PIN DES	SCRIPTIONS	16
1.	NT96658BG 305 PINS	17
1.1.	System interface (9)	17
1.2.	RTC & Power Button Controller (7)	17
1.3.	DDR3 (5)	17
1.4.	RTC & Power Button Controller (7) DDR3 (5) Sensor interface (33)	18
1.5.	Memory Card interface (29)	20
1.6.	Memory Card interface (29)LCD interface (23)	22
1.7.	PWM (20)	24
1.8.	Peripheral I/O (19)	25
1.9.	ADC interface (8)	26
1.10	9. Audio Codec(10)	27
1.11	1. TV interface (2)	27
1.12	2. MIPI DSI (7)	27
1.13	3. HDMI (13)	28
1.14	4. USB device interface (4)	28
1.1	5. Power (116)	28
PACKA	GE OUTLINE	30
1.	TFBGA-305	30
ELECTF	RICAL CHARACTERISTICS	31

1.	ABSOLUTE MAXIMUM RATINGS	31
2.	ESD PERFORMANCE	32
3.	LATCH-UP IMMUNITY	32
4.	RECOMMENDED OPERATING CONDITIONS	32
5.	AC/DC CHARACTERISTICS	33
5.1	Power on Sequence	33
5.2	. General I/O	36
5.3	Specific function I/O(RTC, Reset, LVD and PBC)	39
5.4	DRAM	40
5.5	High speed serial interface(MIPI CSI, LVDS, HiSPi)	40
5.6		42
5.7		43
5.8	Z. TV encoder	43
5.9	D. MIPI DSI Tx	44
5.1		49
5.1		50
5.1	2. USB Charging Port Detect	54
N	OVATEROSCIONO	

Revision History

Rev.	Date	Author	Contents			
0.1	2012/02/13	Kevin Hung	First draft version.			
0.2	2012/03/16	Kevin Hung	For PM			
0.3	2012/09/07	Kevin Hung	Add pin number & DDR_PHY(DLL) power issue (ES version)			
0.4	2012/09/28	Kevin Hung	Change AVDD_MPLL1.0V→ 1.5V Exchange function pin-out about SN_SHUTTER and SN_FLASH Exchange Microphone R-ch and L-ch Remove HV description			
0.5	2012/11/29	Roy Lo	 Update GPIO pull up/down spec Change RESET, HIS, I/Oz pull up/down resistor symbol. Add I/OSS driving and pull up/down DC characteristics Add I/Os2 driving spec. Change I/O 2.5V spec to 2.8V spec. Add RESET pin Schmitt trigger level spec change TV_RADJ's resistor 470→430 Ohm 			
0.5	2012/12/20	Roy Lo	Update DDRIII I/O driving/sinking spec.			
0.5	2013/01/18	Kevin Hung	Remove DR_CS#, modify N4/K3 pin define for Ver. A/B			
0.5	2013/03/11	Joel	Update CPU & DRAM max. operating frequency			
0.6	2013/05/13	Kevin Hung	Modify default status of MC14 internal resistor from p/u → p/d			
0.6	2013/05/14	Kevin Hung	Exchange N4/K3 pin define for Ver. B/C			
0.7	2013/06/14	Kevin Hung	Add NT96656 in this common version			
0.8	2013/07/30	Kevin Hung	Separate from common version			
0.9	2014/08/12	Kevin Wu	NT96658 Package (MCM)			
1.0	2015/01/30	Kevin Hung	Modify core logic operating voltage			

Features

•	Hig	h Performance 32-bit CPU
		MIPS32 24Kec with ASE DSP extension
		MMU embedded
		16KB instruction and 16KB data cache
		Embedded ICE makes firmware debugging easier
		CPU operating frequency up to 432MHz, on the fly programmable
•	Pov	ver Management Features
		Firmware configurable operating frequency of each functional block to meet best power
		budget
		Internal power domain partition
•	Inte	grated Clock Generator
		Internal PLL with spread spectrum capability
		12MHz system/USB oscillator
		32768Hz RTC oscillator
•	Mer	mory
		Built-in 1Gb DDR3 SDRAM
		DRAM operating frequency up to 400MHz without ODT
		Tunable DDR frequency on the fly for power saving
9	Sen	sor Interface Engine
//	P	Support up to 50M pixels CCD/CMOS image sensor
		Support high speed serial interface like sub-LVDS/Mipi/HiSPi up to 10 channels for most
		commercial CMOS sensors including Sony, Panasonic, Aptina, Samsung, Sharp and
		Omnivision, etc. (8 channels for dual MIPI version)
		Support parallel sensor interface for most commercial CCD sensors including Sony,
		Panasonic, Sharp and CMOS sensors including Aptina and Omnivision
		Support BT.601/656 video input
		Support dual sensors input (dual MIPI version only)
		Support 12-bit (serial) sensor data input
		Support high speed serial interface sensor pixel rate up to 576MPixels/sec
		Support continuous shot up to 10 fps for 16MP sensor
		Support parallel interface sensor pixel clock up to 108MHz
		Support movie CCD, and horizontal division CCD of SONY
2015/	′01/3	0 - 5 - Version 1.0

2015	5/01/3	
		High quality scaling engine for seamless digital zooming from 1/16x to 16x
•	lma	ge Manipulation Engine
		Support wide dynamic range (WDR) for local illumination enhancement
		False color suppression
		3D color conversion for specific color preference tuning
		Specific color control technology (Patent)
		Brightness/contrast and hue/saturation adjustment
		High precision color correction matrix for sRGB or specific color requirement
		R/G/B Gamma LUT
		Support temporal noise reduction with ghost reduction
		Support motion compensated temporal filtering (MCTF) for efficient video noise reduction
		Powerful noise reduction technology for still and video recording
//		Flexible edge rendering, control and enhancement
		Proprietary advanced anti-alias Bayer CFA color interpolation
•		ge Processing Engine
		Flash light control
		Mechanical shutter control
		Support rolling shutter correction for CMOS sensor
		Support in-frame dark frame subtraction with smart defect detection algorithm
		Support CMOS sensor spatial crosstalk cancellation
		In-pipeline geometric distortion correction technology In-pipeline color aberration correction technology
		In-pipeline color shading compensation technology In pipeline geometric distortion correction technology
		In-pipeline lens shading compensation technology
		R/G/B Gamma LUT for sensor linearization correction
		Automatic flicker detection P/C/P Commo LLIT for concer linearization correction
		Programmable histogram analysis
		Flexible image analysis flow for AE, AWB and AF purpose
		Raw image sub-sample for video & high ISO image
		Efficient defect concealment algorithm
		Sensor black level clamping
		Built-in color pattern generation
		Support smear reduction for CCD sensor
		Support multiple field, line interleaved CCD of Sharp

	Support thumbnail image generation
	Forward/inverse color space transform
• Fac	ce Detection Engine
	Very high speed face detection and tracking
	High accuracy under different light source
	Programmable target data base
• Dig	ıjtal Image Stabilizer
	Remove unintended hand movement from an image sequence
	Single frame compensation for video (Total compensation)
	Accumulate frame compensation for video (Smart compensation)
	Motion refresh rate 60Hz
	Interface search range up to ±32
	Programmable total compensation range
	Accommodate resolution 1080p
	Adjustable number of motion vectors for motion estimation. Maximum 1024 motion vectors
	per process (16 regions x 64 blocks/region).
• LC	D/TV Display
	Support dual display including LCD panel and HDMI/TV display simultaneously
	High performance scaling up/down engine, programmable gamma correction, color
n	transform and color management for LCD or TV display
nd/	Separate OSD for LCD panel and TV
	Support digital LCD interface for AUO, Casio, CMI (all digital panels will be supported)
	Support 16-bit RGB parallel interface (RGB565 or Delta RGB) LCD panel up to 1024x1024
	resolution
	Support MIPI DSI for mobile display
	Support 90° rotation/flip/mirror
	Support PAL / NTSC video encoder (CVBS format)
	Integrated 1 internal 10-bit video DACs
	Support digital interface BT.601/656/1120 output port
	3.3V / 1.8V LCD / Digital video out
• HD	MI
	Support HDMI v1.3a
	Support DDC with maximum 100khz access rate for CEA-861-D format
00.45/0.4/	Support CEC
2015/01/	30 - 7 - Version 1.0

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any such information.

	eo 16-bits DAC audio playback	
J ster	3	
.	eo 16-bits ADC audio recording	
ł/W Au	dio CODEC	
] Nois	se cancellation for background noise, motor operation, and wind	
] ADF	PCM encode / decode	
J AAC	C encode / decode (32KHz, 48KHz @ 192kbps)	
/W Au	dio CODEC	
э мв	mode: 16x16, 16x8, 8x16, 8x8, skip, and direct (B-frame)	
_		
] [-12	4.75,+124.75] search range in horizontal component	
/lotion	Estimation	
] Auto	omatic frame sync for high frame rate	
$\mathcal{M} \subseteq$		
מוו יו		
-		
•		
•		D
_		n
		N L
-	oit DES 3DES and AES-128	$\sim \ M\ _n$
_	port natuwate acceleration for multi-frame processing	a
•	•	
•		
		on and alpha
	·	
-		
raphic	: Engine	
∃ Sup	port 16 bits PCM 32 KHz, 44.1 KHz, 48KHz for maximum 2 channels audi	io output
	Fraphic Cop	Graphic Engine Copy and paste Geometric operation including mirror, flip and rotation Arithmetic operation including addition, subtraction, color keying, logic operation blending Support warping function Support anti-alias affine transform Support hardware acceleration for multi-frame processing Cipher Get-bit DES, 3DES, and AES-128 Both encryption and decryption Big and little endian of input data 1.264/AVC CODEC Support encoder BP/MP, level 4.1 Support encoder HP, level 4.2 Support real-time capability for 1080p30, 720p60, 480p120 Support full frame still capture while video recording H.264 high/main profile Freference picture for P-frame, 2 reference pictures for B-frame Support video format MP4, AVI, MOV Support bit rate control Automatic frame sync for high frame rate Motion Estimation [-124.75, +124.75] search range in horizontal component MB mode: 16x16, 16x8, 8x16, 8x8, skip, and direct (B-frame) //W Audio CODEC AAC encode / decode Noise cancellation for background noise, motor operation, and wind //W Audio CODEC

	Programmable ALC / Noise Gate I
	Audio sampling rate: 8k, 11.025k, 12k, 16k, 22.05k, 24k, 32k, 44.1k, 48kHz
	Support dual microphone inputs
	On-chip speaker driver / stereo headphone drive
• JPI	EG CODEC
	Supports Motion JPEG 30fps@1080P30 video clip/playback function
	Max. pixel clock 120Mpixel / sec
	Support ISO/IEC 10918-1 baseline JPEG compression/decompression.
	Still image maximum resolutions will be up to 65536x65536 pixels
	Support input format: 422, 420, 411, 400, 211
	JPEG supports downloadable Quantization and Huffman tables
	Support Exchangeable Image File format (EXIF 2.2.3 and newer)
	Support MPO file format for 3D image
• Dig	ital Audio Interface
	Support I ² S codec interface
	Audio clock generator
• Du	al Graphic-based OSD
	Support 8-bit palette and ARGB(4565 or 8565) OSD architecture
	256 colors simultaneously out of true color at 8-bit palette OSD
	8 levels of opacity for 8-bit palette OSD
NDM	Programmable width & height to meet LCD/TV's resolution exactly
	Picture in picture function
	Dedicated 16 face frames for face detection function
• Sto	rage Memory Controller
	Secure Digital card and SDIO
	Support SD 3.0
	Support UHS-I: UHS50, UHS104 (Max. freq. 108MHz)
	Support eMMC and hot boot
	Support eyeFi for wireless connection
	Multi-Media card
	SLC NAND type flash
• US	В
	Fully compliant with USB2.0 device/host
	High speed (480Mbps) supported
2015/01/3	30 - 9 - Version 1.0

		Optionally switchable to be fully compliant with USB 1.1
		Support Control / Isochronous / Interrupt and Bulk transfer
		Support PC camera mode
•	Tim	ners
		RTC can be powered by separate backup battery and operating from 1.5V to 3.6V
		Watch dog timer
		16 programmable HW timers support resolution up to 3MHz and 32 bits counter
•	Per	ipheral Interface
		Support I ² C interface
		Support 20 channels PWM including built-in 16 (4 sets) pattern generators for μ-Stepping motor control.
		Support GPIO and flexible PWM interface with micro-stepping
		Support programmable 3-wired serial interface
		Support SPI for gyroscope reading
		Support UART interface
		Support 8 channels of 10-bit ADC with touch panel interface (2 channels), the max. sample
		rate up to 12.5 KHz per channel
•	On-	-chip Boot Strap Loader
		Built-in on-chip mask ROM
(P		User program can be stored in NAND-type flash and external static memory is not necessary
\		On-chip mask ROM can be disabled
		System can boot from SPI flash, NAND flash, memory cards, eMMC and USB
•	Trip	ole Voltage Power Supply
		1.05V core logic voltage
		1.5V DDRIII SDRAM voltage
		3.3V I/O interface and analog circuit voltage
•	Pac	ckage
	NTS	96658BG: 305 ball TFBGA, 13x13 mm ²

2015/01/30 - 10 - Version 1.0

General Description

NT96658BG is a high image quality, high performance, power saving and cost effective digital still camera (DSC) and digital video camera (DV) controller with excellent digital still image capturing and video streaming capabilities. It is targeted for the application of VGA to 50M pixel DSC/DV resolutions. It can be easily adapted to many high speed CMOS and conventional CCD image sensors with on chip programmable interface timing approach. The controller provides sophisticated video processing methods with built-in hardware acceleration pipeline. This is essential for achieving high performance for per-shot, shot-to-shot, and continuous shooting pictures. The controller provides flexible mechanism for auto white balance, auto exposure and auto-focusing in order to better tradeoff hardware and software efforts over the performance. Embedded H.264 video CODEC supports video recording up to full-HD 1080p30. The HDMI 1.3 Tx is also equipped for HDTV output. Rich storage interfaces are supported to make it ideal for the storage of still pictures and video streaming data. The USB2.0 high speed interface can upload/download the audio/video data efficiently to/from PC.

Block Diagram

Pin Configuration

1.

TFBGA-305

Pin No	Pin Name	Pin No	Pin Name	Pin No	Pin Name	Pin No	Pin Name
A1	PWM8	E16	GND	K11	GND	R3	GND
A2	SN_DGPIO7	E17	VDD_IO	K12	PWM14	R16	MC16
A3	SP_CLK	E18	SB_CS3	K13	DDC_SCL	R18	XTAL_SYSO
A4	SN_DGPIO6	E19	HDMI_CEC	K14	AVDD_HDMI	R19	XTAL_SYSI
A5	SN_SCK	F1	GND	K16	TV_CVBS	T1	GND
A6	SN_VD	F2	GND	K17	TV_FSADJ	T2	GND
A7	HSI_D0P	F3	GND	K18	HDMI_TX0P	T3	GND
A8	HSI_D2P	F6	VDD_IO	K19	HDMI_TX0N	T4	MC1
A9	HSI_D4P	F7	AVDD_HSI_K	L1	VREFDQ_KGD	T7	MC3
A10	HSI_CK0P	F8	AVDD_HSI_K	L2	GND	T8	MC11
A11	HSI_D6P	F9	AVDD_HSI_RX	L3	GND	Т9	MC12
A12	HSI_D8P	F10	VDD_HSI_IO	L4	AGND_DLL	T10	MC14
A13	PWR_SW3	F11	VDD_VBAT	L6	VDD_DR	T11	AD_IN3
A14	PWR_EN	F12	TESTEN	L7	GND	T12	LCD0
A15	RESET#	F13	PWR_SW4	L8	GND	T13	AD_IN1
A16	PWM19	F14	GND	L9	GND	T16	AVDD_SPK
A17	PWM18	F16	AGND_USB	L10	GND	T17	AVDD AUD
A18	UART2_CTS	F18	VBUSI	L11	GND	T18	GND_MPLL
A19	REMOTE_RX	F19	USB_DP	L12	GND	T19	AVDD MPLL
B1	PWM9	G1	GND	L13	VDDK	U1	GND
B2	PWM4	G2	GND	L14	VDDK	U2	MC4
B3	SN_DGPIO5 FL TRIG	G3	GND	L16	SD CAP	U3 U4	MC7
B4	_	G4	AVDD_HDLL	L17	VDD SDLI	U5	MC8
B5 B6	SN_DAT SN_HD	G6 G7	VDD_SN VDDK	L18	HDMI_TXCP	U6	MC10 MC13
B7	HSI_DON	G8	VDDK	M1	GND	U7	MC15
B8	HSI D2N	G9	VDDK	M2	GND	U8.	LCD22
B9	HSI D4N	G10	VDDK	M3	GND	U9	LCD22
B10	HSI CK0N	G11	AGND HSI	M4	GND	U10	LCD4
B11	HSI_D6N	G12	AGND_HSI	M6	GND	U11	LCD1
B12	HSI D8N	G14	SB CK23	M7	GND	U12	AD INO
B13	PWR_SW2#	G15	AGND_HDMI	M8	GND	U13	AVDD_ADC
B14	DGPIO0	G17	USB RREF	M9	GND	U14	AD INY
B15	PWM13	G18	AVDD USB FS	M10	MC2	U15	AGND ADC
B16 🔥	DGPIO3	G19	USB_DM	M11	MC26	U16	AGND_SPK
B17	PWM17	H1	VDD_KGD	M12	MC27	U17	AUD_VMIDX
B18	UART2_RTS 1	H2	GND	M13	GND	U18	MIC_LINP
B19	SB_DAT23	H3	GND	M14	GND	U19	MIC_LINN
C1	PWM10	H4	AVDD_DR_1V	M16	MC18	V1	MC6
C2	PWM6	H6	GND	M17	MC17	V2	LCD21
C3	PWM7	H7	GND	M18	MC21	V3	LCD19
C4	PWM5	H8	GND	M19	MC23	V4	LCD15
C5	SN_DGPIO4	H9	VDDK	N1	GND	V5	LCD14
<u>C6</u>	SN_CS	H11	GND	N2	ODT_KGD	V6	LCD12
<u>C7</u>	SN_PXCLK	H12	GND	N3	GND	V7	LCD11
C8	HSI_D1P	H13	UART_TX	N4	GND	V8	LCD10
C9	HSI_D3P	H14	VDDK	N6	GND	V9	LCD8
C10	HSI_D5P	H16	AGND_DAC	N7	MC0 VDDK	V10	LCD3
C11 C12	HSI_D7P HSI_D9P	H17 H18	AVDD_USB_LI HDMI_TX2P	N8 No	VDDK VDDK	V11 V12	DSI_D0N DSI_CKN
C12	VDD_RTC	H18	HDMI_TX2P HDMI_TX2N	N9 N10	MC9	V12 V13	DSI_CKN DSI_D1N
C13	XTAL RTCI	птэ 	GND	N10 N11	MC24	V13 V14	AD_INX
C15	PWM15	J2	GND	N12	JTAG_TMS	V14 V15	TP_XM
C16	DGPIO1	J3	GND	N13	VDDK	V15 V16	HP L
C17	UART2 RX	J4	DR VREF	N14	MC25	V17	AGND AUD
C18	UART2 TX	J6	VDD DR	N16	MC19	V17	MIC_RINP
C19	HDMI PLUG	J7	VDD_DR	N17	JTAG TDO	V19	MIC RINN
D1	PWM11	J8	GND	N18	MC20	W1	VDD MC
D2	PWM1	J9	GND	N19	JTAG_TRST#	W2	LCD18
			<u> </u>		55_11.61#		

2015/01/30 - 14 - Version 1.0

NT96658

D3	PWM3	J10	GND	P1	VDD_KGD	W3	LCD17
D4	PWM2	J11	DGPIO2	P2	ZQ_KGD	W4	LCD16
D7	SN_MCLK	J12	UART_RX	P3	GND	W5	LCD13
D8	HSI_D1N	J13	PWM16	P6	GND	W6	LCD9
D9	HSI_D3N	J14	HDMI_REXT	P7	MC5	W7	LCD7
D10	HSI_D5N	J17	AVDD_DAC	P8	VDD_LCD	W8	LCD6
D11	HSI_D7N	J18	HDMI_TX1P	P9	VDD_LCD	W9	LCD5
D12	HSI_D9N	J19	HDMI_TX1N	P10	DSI_CAP	W10	LCD2
D13	PWR_SW1	K1	VDD_KGD	P11	AVDD_DSI_K	W11	DSI_D0P
D15	XTAL_RTCO	K2	VDD_KGD	P12	AGND_DSI	W12	DSI_CKP
D16	DDC_SDA	K3	GND	P13	VDD_DSI_IO	W13	DSI_D1P
D17	SB_CS2	K4	GND_CLK	P14	VDD_IO	W14	AD_IN2
D18	I2C_SDA	K6	VDD_DR	P17	MC22	W15	TP_YP
D19	I2C_SCL	K7	VDD_DR	P18	JTAG_TCK	W16	HP_R
E1	VDD_KGD	K8	VDD_DR	P19	JTAG_TDI	W17	SPK_P
E2	GND	K9	VDD_DR	R1	GND	W18	SPK_N
E3	PWM0	K10	GND	R2	VREFCA_KGD	W19	MIC_BIAS
F15	PWM12						

Pin Descriptions

I = input port with Schmitt trigger

O = output port with normal driving/sinking

I/O = bi-directional port with normal driving/sinking and Schmitt input

mvI/O = multi voltage bi-direction port with Schmitt input

HSI = high speed serial interface with multi voltage input port

I/Osw = bi-directional port with strong driving/sinking and wide Schmitt input range

I/Ow = bi-directional port with wide Schmitt input range

I/Os = bi-directional port with strong driving/sinking

I/Os2 = bi-directional port with strong driving/sinking

I/Oss = bi-directional port with strong driving/sinking

I/Oz = bi-directional port with large pull/down resistor

I/O_{5VT} = bi-directional port with normal driving/sinking and Schmitt input

OD = open drain output with normal sinking

I/OD = bi-directional port, open drain output

LVD = low voltage detect function pin

p/u = internal pull-up

p/d = internal pull-down

AI = analog input port

Al_{5VT} = analog 5V tolerant input port

AO = analog output port

AI/O = analog bi-directional port

H = output high

L = output low

P = power or ground

Note: * means this pin has interrupted function.

1.

NT96658BG 305 pins

Total: 305 pins

Alternative GPIO: 133 pins

1.1. System interface (9)

	Cystem interface (,		
Pin No.	Name	Type	Reset	Descriptions
R19	XTAL_SYSI	Al	-	Crystal input for system oscillator. (12MHz)
R18	XTAL_SYSO	AO	-	Output for system oscillator.
A15	RESET#	LVD	p/u	System Reset. Connect a capacitor to ground for reset time control.
F12	TESTEN	I	I p/d	Test mode enable. Keep low for normal operation.
N19	JTAG_TRST# / P_GPIO[31]*	Ю	I p/u	JTAG test logic reset(active low).
N12	JTAG_TMS / P_GPIO[32]*	Ю	I p/d	JTAG test mode select.
P18	JTAG_TCK / P_GPIO[33]*	Ю	I p/d	JTAG test clock input.
P19	JTAG_TDI / P_GPIO[34]*	Ю	I p/d	JTAG test data input.
N17	JTAG_TDO / P_GPIO[35]*	10/	I p/d	JTAG test data output.

1.2. RTC & Power Button Controller (7)

Pin No.	Name	Type	Default	Descriptions
C14	XTAL_RTCI	AI		Crystal input for real time clock oscillator. (32.768KHz).
D15	XTAL_RTCO	AO	-	Output for real time clock oscillator.
D13	PWR_SW1*	AI	I p/d	Power on/off signal input. (ON/OFF switch use)
B13	PWR_SW2*#	Al	I p/u	Power on/off signal input. (falling edge trigger)
A13	PWR SW3		l n/d	Power on/off signal input. (5V tolerance Input for VBUSI
AIS	PVVK_SVV3	I _{5VT} Z	I p/d	use)
F13	PWR_SW4	Al	I p/d	Power on/off signal input. (Bettery in use)
A14	PWR_EN	AO	-	Power enable signal output.

^{*} PWR_SW can trigger interrupt (share RTC interrupt). If this pin isn't used, Novatek recommends connecting this pin to GND.

1.3. DDR3 (5)

Pin No.	Name	Type	Reset	Descriptions
J4	J4 DR_VREF AI			DRAM controller side reference voltage input.
L1	VREFDQ_KGD	Al	-	DDR3 KGD Data reference voltage input
R2	VREFCA_KGD	Al	-	DDR3 KGD Command / Address reference voltage input

2015/01/30 - 17 - Version 1.0

N2	ODT_KGD	I	DDR3 KGD ODT control pin High: Enable DDR3 SDRAM On Die Termination - Low: Disable DDR3 SDRAM On Die Termination The ODT_KGD pin will be ignored if MR1 and MR2 are programmed to disable RTT
P2	ZQ_KGD	Al	DDR3 KGD reference pin for ZQ calibration - 240 ohm +/- 0.1% tolerance external resistor connected between the ZQ_KGD pin and GND

1.4. Sensor interface (33)

Pin No.	Name	Type	Reset	Descriptions
B7	HSI_D0N / S_GPI[0]			Λ Λ
A7	HSI_D0P / S_GPI[1]			
D8	HSI_D1N / S_GPI[2]			
C8	HSI_D1P / S_GPI[3]			
B8	HSI_D2N / S_GPI[4]			
A8	HSI_D2P / S_GPI[5]	-n/	7 ((
D9	HSI_D3N S_GPI[6]			
C9	HSI_D3P S_GPI[7]			High speed differential sensor interface and parallel interface.
B9	HSI_D4N / S_GPI[8] \	HSI		(when sensor interface is configured as high speed differential sensor interface, the clock lane should be a
A9	HSI_D4P S_GPI[9]			dedicated differential lane. And each data lanes may be permuted in established
B10	HSI_CK0N / S_GPI[10]			group, refer to below table)
A10	HSI_CK0P / S_GPI[11]			
D10	HSI_D5N / S_GPI[12]			
C10	HSI_D5P / S_GPI[13]			
B11	HSI_D6N / S_GPI[14]			
A11	HSI_D6P / S_GPI[15]			
D11	HSI_D7N / S_GPI[16]			
C11	HSI_D7P /			

2015/01/30 - 18 - Version 1.0

	S GPI[17]			
	HSI D8N /			
B12	S_GPI[18]			
A 4 0	HSI D8P /			
A12	S_GPI[19]			
D12	HSI_D9N /			
DIZ	S_GPI[20]			
C12	HSI_D9P /			
OTZ	S_GPI[21]			
D7	SN_MCLK /	mvl/Os	I p/d	Programmable Clock output for sensor
	S_GPIO[24]		. p, a	- regrammable creek culput for contest
C7	SN_PXCLK /	mvl/Os	I p/d	Sensor Pixel Clock Input
	S_GPIO[25]		'	,
A6	SN_VD /	mvl/O	I p/d	Sensor Vertical Sync input / output
	S_GPIO[26] SN_HD /			
B6	S_GPIO[27]	mvl/O	I p/d	Sensor Horizontal Sync input / output
	SN_CS /			
C6	SPI3_CS /	mvlOs	I p/u	General serial interface 0 or Serial Peripheral Interface 3
	P_GPIO[56]			Chip Select
	SN_SCK /			General serial interface 0 or Serial Peripheral Interface 3
A5	SPI3_CLK /	mvIOD	I p/u	clock output.
Α3	I2C_SCL /	IIIVIOD	7 9/0	I2C-BUS clock output(Open Drain IO structure)
	P_GPIO[57]			izo-bos ciock dalpattopen brain to structure)
	SN_DAT			General serial interface 0 or Serial Peripheral Interface 3
B5	SPI3_DO	mvlOD	I p/u	data output.
	I2C_SDA		116	I2C-BUS data input / output(Open Drain IO structure)
1) /20	P_GPI0[58]		7) // <	<u> </u>
C5	SN_DGPIO4*	mvIO		General purpose Input / output
B3	SN_DGPIO5* SPI3_DI	myIO	l p/d	General purpose Input / output
A4	SN_FLASH	mvlO	l p/d	Serial Peripheral Interface 3 data input.
A4	SN_DGPIO6*	IIIVIO	i p/u	Flash Signal input from sensor
	SN SHUTTER /			
A2	SN_DGPIO7*	mvIO	I p/d	Shutter signal input from sensor
L	10.1_00.107	i	l	l

Note*: The pin can trigger interrupt.

Note1: The input voltage of HSI corresponds to GVDD_SN.

Note2: The mvl/O voltage of Sensor interface corresponds to VDD_SN.

Name	LVDS		HiSPi		MIPI CSI		Parallel (12 bits	s)	CCIR601 (16 bit	ts)	CCIR601 (8 bits	s)
S GPI[0]	HSI D0N	I	SLVS DON	ı	CSI D0N	ı	SN D0	ı				
S_GPI[1]	HSI_D0P	Ι	SLVS_D0P	ı	CSI_D0P		SN_D1	ı				
S_GPI[2]	HSI_D1N	Ι	SLVS_D1N	ı	CSI_D1N		SN_D2	ı				
S_GPI[3]	HSI_D1P	Ι	SLVS_D1P	ı	CSI_D1P		SN_D3	ı				
S_GPI[4]	HSI_D2N	Ι	SLVS_D2N	ı	CSI_D2N		SN_D4	ı	CCIR_Y0	1		
S_GPI[5]	HSI_D2P	Ι	SLVS_D2P	ı	CSI_D2P		SN_D5	ı	CCIR_Y1	1		
S_GPI[6]	HSI_D3N	I	SLVS_D3N	I	CSI_D3N		SN_D6	ı	CCIR_Y2	1		

2015/01/30 - 19 - Version 1.0

S_GPI[7]	HSI_D3P	I	SLVS_D3P	Ι	CSI_D3P	I	SN_D7	I	CCIR_Y3	I		
S_GPI[8]	HSI_D4N	I					SN_D8	I	CCIR_Y4	ı		
S_GPI[9]	HSI_D4P	I					SN_D9	I	CCIR_Y5	ı		
S_GPI[10]	HSI_CK0N	I	SLVS_CKN	ı	CSI_CKN	I	SN_D10	I	CCIR_Y6	ı		
S_GPI[11]	HSI_CK0P	I	SLVS_CKP	ı	CSI_CKP	I	SN_D11	I	CCIR_Y7	ı		
S_GPI[12]	HSI_D5N	I							CCIR_C0	ı	CCIR_YC0	
S_GPI[13]	HSI_D5P	I							CCIR_C1		CCIR_YC1	
S_GPI[14]	HSI_D6N	I							CCIR_C2		CCIR_YC2	_
S_GPI[15]	HSI_D6P	ı							CCIR_C3	ı	CCIR_YC3	
S_GPI[16]	HSI_D7N	ı							CCIR_C4	ı	CCIR_YC4	
S_GPI[17]	HSI_D7P	ı							CCIR_C5	ı	CCIR_YC5	
S_GPI[18]	HSI_D8N	1							CCIR_C6	-	CCIR_YC6	_
S_GPI[19]	HSI_D8P	1							CCIR_C7		CCIR_YC7	_
S_GPI[20]	HSI_D9N	I							CCIR_VD	ı	CCIR_VD	_
S_GPI[21]	HSI_D9P	ı							CCIR_HD	ı	CCIR_HD	
S_GPI[24]	SN_MCLK	0	SN_MCLK	0	SN_MCLK	0	SN_MCLK	0				
S_GPI[25]	SN_PXCLK	I					SN_PXCLK	I				
S_GPI[26]	SN_VD	I/O					SN_VD	I/O			n	
S_GPI[27]	SN_HD	I/O					SN_HD	I/O	-			
SN_DGPIO4									CCIR_CLK	1	CCIR CLK	

1.5. Memory Card interface (29)

Pin No.	Name	Type	Reset	Descriptions
L16	SD_CAP	P	-	Internal Supply Voltage decoupling for SDIO interface. (3.3/1.8V switchable, default 3.3V)
N7	MC0 / C_GPIO[0]	mvl/O	l p/u	
T4	MC1 / C_GPIO[1]	mvl/O	I p/u	
M10	MC2 C_GPIO[2]	mvl/O	I p/u	
T7	MC3 / C_GPIO[3]	mvl/O	l p/u	
U2	MC4 C_GPIO[4]	mvl/O	l p/u	
P7	MC5 C_GPIO[5]	mvl/O	I p/u	
V1	MC6 / C_GPIO[6]	mvl/O	I p/u	Memory Card interface(see below table)
U3	MC7 / C_GPIO[7]	mvl/O	I p/u	
U4	MC8 / C_GPIO[8]	mvI/O	I p/u	
N10	MC9 / C_GPIO[9]	mvl/O	I p/u	
U5	MC10 / C_GPIO[10]	mvl/O	I p/u	
Т8	MC11 / C_GPIO[11]	mvl/O	I p/u	
Т9	MC12 / C_GPIO[12]	mvl/O	I p/d	

2015/01/30 - 20 - Version 1.0

U6	MC13 / C_GPIO[13]	mvI/O	I p/d	
T10	MC14 / C_GPIO[14]	mvI/O	I p/d	
U7	MC15 / C_GPIO[15]*	mvI/O	I p/u	
R16	MC16 / C_GPIO[16]	I/Os	I p/d	
M17	MC17 / C_GPIO[17]	I/O	I p/u	
M16	MC18 / C_GPIO[18]	I/O	I p/u	
N16	MC19 / C_GPIO[19]	I/O	I p/u	A 1
N18	MC20 / C_GPIO[20]	I/O	I p/u	
M18	MC21 / C_GPIO[21]*	I/O	I p/u	
P17	MC22 / C_GPIO[22]*	I/Os	I p/d	
M19	MC23 / C_GPIO[23]*	I/O	I p/u	
N11	MC24 / C_GPIO[24]*	I/O	l p/u	
N14	MC25 C_GPIO[25]*	1/0	l p/u	
M11	MC26 C_GPIO[26]*	I/O	I p/u	
M12	MC27 C_GPIO[27]*\	yo //	l p/u	

Note*: The pin can trigger interrupt.

Note1: The mvI/O voltage of MC0~15 corresponds to VDD_MC.

Note2: The IO voltage of MC16~21 corresponds to SD_CAP, it could be switched between 3.3/1.8V by the register.

Memory card interface pinmux table

		1									
Name	NAND Flash		SD/MMC/eMN	ΛС	SD		SPI flash		SPI	I2S	
MC0	NAND_D0	I/O	eMMC_D0	I/O		SP	I_DO/D0	I/O			
MC1	NAND_D1	I/O	eMMC_D1	I/O		SP	I_DI/D1	I/O			
MC2	NAND_D2	I/O	eMMC_D2	I/O		SP	I_CLK	0			
MC3	NAND_D3	I/O	eMMC_D3	I/O		SP	I_WP/D2	I/O			
MC4	NAND_D4	I/O	eMMC_D4	I/O		SP	I_HOLD/D3	I/O			
MC5	NAND D5	I/O	eMMC D5	I/O							
MC6	NAND_D6	I/O	eMMC_D6	I/O							
MC7	NAND D7	I/O	eMMC D7	I/O							
MC8	NAND_CS0#	0				SP	I_CS#	0			
MC9	NAND_CS1#	0	eMMC_CLK	0							

2015/01/30 - 21 - Version 1.0

MC10	NAND_WE#	0									
MC11	NAND_RE#	0	eMMC_CMD	I/O							
MC12	NAND_CLE	0									
MC13	NAND_ALE	0									
MC14	NAND_WP#	0									
MC15	NAND_RDY	Ι									
MC16					SD_CLK	0					
MC17					SD_CMD	I/O					
MC18					SD_D0	I/O					
MC19					SD_D1	I/O					
MC20					SD_D2	I/O					
MC21					SD_D3	I/O					
MC22			SDIO_CLK	0				SPI_CLK	0	I2S_MCLK	0
MC23			SDIO_CMD	I/O				SPI_CS#	0	I2S_BCLK	I/O
MC24			SDIO_D0	I/O				SPI_DI	Ι	I2S_SYNC	0
MC25			SDIO_D1	I/O			•	SPI_DO	0	I2S_DO	0
MC26			SDIO_D2	I/O			•			I2S_DI	
MC27			SDIO_D3	I/O						n	

1.6. LCD interface (23)

MC27	SI	DIO_D3	I/O				
1.6. l	_CD interface (23))					TIAL
Pin No.	Name	Type	Reset			escriptions	
T12	LCD0 / L_GPIO[0] / BS0	mvI/O	I p/d	The boot s 0x0: NAND	ource setting with RS ECC		
U11	LCD1 / L_GPIO[1] / BS1	mvl/O	l p/d	0x2: eMM0 0x3: USB f	(SDIO2_2) ull speed	y BOOT_CARE	
W10	LCD2 L_GPIO[2] BS2	mvI/O	l p/d	0x4: SPI fla 0x5: USB r 0x6: NAND 0x7: BMC	nigh speed with Hammir	ng ECC	
V10	LCD3 L_GPIO[3] BS3	mvl/O	I p/d	flow) BS63 is freset signal	or IC debugg I rising edge.	ging setting. P	F/W(MPLL control lease keep low at
U10	LCD4 / L_GPIO[4] / BS4	mvl/O	l p/d	LCD Signa Boot card s 0: SD 1: SDIO (S	select	BOOT_CARD	
W9	LCD5 / L_GPIO[5] / BS5	mvl/O	I p/d	LCD Signa EJTAG sel	l Bus / BS5 : l ect	EJTAG_SEL CK, TDI, TDO a	are GPIO)
W8	LCD6 / L_GPIO[6] / BS6	mvl/O	I p/d	Select cloc 0: APLL clo	k source of Pock output (Fr	MPLL_CLK_SE LL. om APLL clock xternal clock)	
W7	LCD7 / L_GPIO[7] / BS7	mvl/O	I p/d		Bus / BS7 : I t bus width	EMMC_BUSW	IDTH

2015/01/30 - 22 -Version 1.0

	1	1		
				1: 8 bits data bus
V9	LCD8 / L_GPIO[8]	mvI/O	I p/d	
W6	LCD9 / L_GPIO[9]	mvI/O	I p/d	LCD Signal Bus
V8	LCD10 / L_GPIO[10]	mvl/O	I p/d	LCD Signal Bus
V7	LCD11 / L_GPIO[11]	mvl/O	I p/d	
V6	LCD12 / L_GPIO[12] / BS8	mvl/O	I p/d	LCD Signal Bus / BS8 : EMMC_BOOTMODE eMMC boot mode 0: single rate + backward timing 1: dual rate + high speed timing
W5	LCD13 / L_GPIO[13] / BS9	mvl/O	I p/d	LCD Signal Bus/ BS9 : EMMC_DDR_DATA_ORDER eMMC DDR data order 0: Odd byte (1 st byte) first 1: Even byte (2 nd byte) first
V5	LCD14 / L_GPIO[14] / BS10	mvl/O	I p/d	LCD Signal Bus/ BS10: MIPS_DEBUG_MODE_SEL Enable NT9665x enters CPU debug mode. Internal CPU state will be outputted to debug port on storage interface (MC[180]) 0: Normal mode 1: CPU debug mode BS10 for IC debugging setting. Please keep low at reset signal rising edge.
V4	LCD15/ L_GPIO[15]	mvt/O	I p/d	
W4	LCD16 / L_GPIO[16]	mvl/O	lp/d	
W3	LCD17 L_GPIO[17]	mvI/O	I p/d	
W2	LCD18 // L_GPIO[18]*	mvl/O	I p/d	LCD Signal Bus
V3	LCD19 / L_GPIO[19]*	mvl/O	I p/d	LOD Signal Bus
U9	LCD20 / L_GPIO[20]	mvl/O	I p/d	
V2	LCD21 / L_GPIO[21]	mvl/O	I p/d	
U8	LCD22 / L_GPIO[22]	mvI/O	I p/d	

Note1: The mvI/O voltage of LCD interface corresponds to VDD_LCD.

LCD interface pinmux table

Name	CCIR(8 bits)	Serial RGB	CCIR(16 bits)	i80/M68	CCIR & RGB	MPU Serial
	, , ,		, ,		(secondary panel)	(secondary panel)

2015/01/30 - 23 - Version 1.0

LCD0	CCIR YC0	0	RGB D0	0	CCIR Y0	0	MPU_D0	I/O				
LCD1	CCIR_YC1		RGB_D1		CCIR_Y1		MPU_D1	I/O				
LCD2	CCIR_YC2	0	RGB_D2	0	CCIR_Y2	0	MPU_D2	I/O				
LCD3	CCIR_YC3	0	RGB_D3	0	CCIR_Y3	0	MPU_D3	I/O				
LCD4	CCIR_YC4	0	RGB_D4	0	CCIR_Y4	0	MPU_D4	I/O				
LCD5	CCIR_YC5	0	RGB_D5	0	CCIR_Y5	0	MPU_D5	I/O				
LCD6	CCIR_YC6	0	RGB_D6	0	CCIR_Y6	0	MPU_D6	I/O				
LCD7	CCIR_YC7	0	RGB_D7	0	CCIR_Y7	0	MPU_D7	I/O				
LCD8	CCIR_CLK	0	RGB_CLK	0	CCIR_CLK	0	MPU_TE	ı				
LCD9	CCIR_VD	0	RGB_VD	0	CCIR_VD	0	MPU_CS#	0				
LCD10	CCIR_HD	0	RGB_HD	0	CCIR_HD	0	MPU_RS	0				
LCD11					CCIR_DE	0	MPU_WR#	0				
LCD12					CCIR_C0	0	MPU_RD#	0	RGB_YC0	0		
LCD13					CCIR_C1	0	MPU_D8	I/O	RGB_YC1	0	MPU_SDO	0
LCD14					CCIR_C2	0	MPU_D9	I/O	RGB_YC2	0	MPU_SDI	ı
LCD15					CCIR_C3	0	MPU_D10	I/O	RGB_YC3	0	MPU_CS	0
LCD16					CCIR_C4	0	MPU_D11	I/O	RGB_YC4	0	MPU_RS	0
LCD17					CCIR_C5	0	MPU_D12	I/O	RGB_YC5	0	MPU_CLK	0
LCD18					CCIR_C6	0	MPU_D13	I/O	RGB_YC6	0	MPU SDIO	I/O
LCD19					CCIR_C7	0	MPU_D14	I/O	RGB_YC7	0	MLTE	
LCD20	LCD_CS	0					MPU_D15	I/O	RGB_CLK	0	11 300	
LCD21	LCD_CLK	0					MPU_D16	I/O	RGB_VD	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
LCD22	LCD_DAT	0					MPU_D17	I/O	RGB_HD	0		

1.7. PWM (20)

Pin No.	Name	Type	Reset	Descriptions
E3	PWM0 / ME_SHUT0 / P_GPIO[36]	1/0	l p/d	
D2	PWM1 ME_SHUT1 P_GPIO[37]	VO	l p/d	PWM output pin. Mechanical Shutter control output. Micro-stepping control module 1.
D4	PWM2 / P_GPIO[38]	1/0	l p/d	ivildio-stepping control module 1.
D 3	PWM3 P_GPIO[39]	0	l p/d	
B2	PWM4 / P_GPIO[40]	I/O	l p/d	
C4	PWM5 / P_GPIO[41]	I/O	I p/d	PWM output pin. Micro-stepping control module 2.
C2	PWM6 / P_GPIO[42]	I/O	I p/d	Serial Peripheral Interface
C3	PWM7 / P_GPIO[43]	I/O	I p/d	
A1	PWM8 / P_GPIO[44]	I/O	I p/d	
B1	PWM9 / P_GPIO[45]	I/O	I p/d	PWM output pin.
C1	PWM10 / P_GPIO[46]	I/O	I p/d	Micro-stepping control module 3.
D1	PWM11 / P_GPIO[47]	I/O	I p/d	

2015/01/30 - 24 - Version 1.0

E15	PWM12 / P_GPIO[48]	I/O	I p/d	
B15	PWM13 / P_GPIO[49]	I/O	I p/d	PWM output pin.
K12	PWM14 / P_GPIO[50]	I/O	I p/d	Micro-stepping control module 4.
C15	PWM15 / P_GPIO[51]	I/O	I p/d	
J13	PWM16 / ME_SHUT0 / P_GPIO[52]	I/O	I p/d	PWM output pin.
B17	PWM17 / ME_SHUT1 / P_GPIO[53]	I/O	I p/d	Mechanical Shutter control output.
A17	PWM18 / P_GPIO[54]*	I/O	I p/d	PWM output pin.
A16	PWM19 / P_GPIO[55]*	I/O	I p/d	PWM output pin.

Name	PWM		M-shutter		u-stepping		SPI			**	
	PWM0	0	ME_SHUT0	0	uSTP1_A	0	11111			D	
PWM1	PWM1	0	ME_SHUT1	0	uSTP1_B	0	410	•	MIN II		
PWM2	PWM2	0			uSTP1_C	0		\backslash	1111/24		
PWM3	PWM3	0	. 1		uSTP1_D	0			U		
PWM4	PWM4	0			uSTP2_A	0	SPI3_CLK	0			
PWM5	PWM5	0			uSTP2_B	0	SPI3_CS#	0			
PWM6	PWM6	0		<u> </u>	uSTP2_C	0	SPI3_DO	0			
PWM7	PWM7 1	0			uSTP2 D	0	SPI3_DI	0			
PWM8	PWM8	0	11 -	Ω	uSTP3_A	0					
PWM9	PWM9	0		97	uSTP3_B	0					
PWM10	PWM10	0		- 11	uSTP3_C	0					
PWM11	PWM11	0			uSTP3_D	0					
PWM12	PWM12	0			uSTP4_A	0					
PWM13	PWM13	0			uSTP4_B	0					
PWM14	PWM14	0	7		uSTP4_C	0					
PWM15	PWM15	0			uSTP4_D	0					
	PWM16		ME_SHUT0	0							
PWM17	PWM17	0	ME_SHUT1	0							
	PWM18	0									
PWM19	PWM19	0									

1.8. Peripheral I/O (19)

Pin No.	Name	Type	Reset	Descriptions
D18	I2C_SDA / P_GPIO[0]*	I/OD	I p/u	I2C-BUS clock output(Open Drain IO structure)
D19	I2C_SCL / P_GPIO[1]*	I/OD	I p/u	I2C-BUS data input / output(Open Drain IO structure)
D17	SB_CS2 / SPI3_CS /	I/O		Serial Interface Chip Select 2 Serial Peripheral Interface 3 chip select output

2015/01/30 - 25 - Version 1.0

	P_GPIO[7]*			
E18	SB_CS3 / SPI3_DI / P_GPIO[8]*	I/O	I p/u	Serial Interface Chip Select 3 Serial Peripheral Interface 3 data input
G14	SB_CK23 / SPI3_CLK / P_GPIO[9]*	I/O	I p/d	Serial Interface Clock 2 & 3 Serial Peripheral Interface 3 clock output
B19	SB_DAT23	I/O	I p/d	Serial Interface Data 2 & 3 Serial Peripheral Interface 3 data output
H13	UART_TX / P_GPIO[15]	I/O	0	UART Transmit
J12	UART_RX / P_GPIO[16]*	I/O	I p/u	UART Receive
C18	UART2_TX / SPI2_CS / P_GPIO[17]*	I/O	I p/u	UART2 Transmit Serial Peripheral Interface 2 chip select output
C17	UART2_RX / SPI2_CLK / P_GPIO[18]*	I/O	I p/u	UART2 Receive Serial Peripheral Interface 2 clock output
B18	UART2_RTS / SPI2_DO / P_GPIO[19]*	I/O	I p/u	UART2 Request To Send Serial Peripheral Interface 2 data output
A18	UART2_CTS / SPI2_DI P_GPIO[20]*	VO	l p/u	UART2 Clear To Send Serial Peripheral Interface 2 data input
A19	REMOTE_RX / PICNT3 / P_GPIO[25]*	I/Os2	/p/u	Infrared Remote-control Received Data Pulse Counter 3 input
В4	FL_TRIG S_GPIO[28]	I/Os	I p/d	Flash Light Trigger Control
А3	SP_CLK \\ PICNT4 /\ S_GPIO[29]*	I/Oss	I p/d	Clock Output for Micro-stepping Motor Control Pulse Counter 4 input
B14	PICNT1 / DGPIO0*	I/Osw	I p/d	Pulse Counter 1 input
C16	PICNT2 / DGPIO1*	I/Osw	I p/d	Pulse Counter 2 input
J11	SD_CD# / DGPIO2*	I/Osw	I p/u	Card Detect input pin
B16	SD_WP# / DGPIO3*	I/Osw	I p/u	Write protect input pin

1.9. ADC interface (8)

Pin No.	Name	Type	Reset	Descriptions
U12	AD_IN0	Al	-	General ADC 0 Input with buffer.

2015/01/30 - 26 - Version 1.0

T13	AD_IN1*	ΑI	-	General ADC 1 Input with configurable trigger function
W14	AD_IN2*	ΑI	-	General ADC 2 Input with configurable trigger function
T11	AD_IN3	Al	-	General ADC 3 Input with buffer.
V14	AD_INX	ΑI	ı	General ADC X Input and Touch Panel Control Interface
U14	AD_INY	ΑI	-	General ADC Y Input and Touch Panel Control Interface
W15	TP_YP	ΑI	-	Touch Panel Control Interface
V15	TP_XM	Al	-	Touch Panel Control Interface

1.10. Audio Codec(10)

Pin No.	Name	Type	Reset	Descriptions
W19	MIC_BIAS	AO	-	Microphone working bias output.
V18	MIC_RINP	ΑI	-	Right channel microphone differential input positive side.
V19	MIC_RINN	ΑI	-	Right channel microphone differential input negative side.
U18	MIC_LINP	ΑI	-	Left channel microphone differential input positive side
U19	MIC_LINN	ΑI	-	Left channel microphone differential input negative side.
U17	AUD_VMIDX	АО	-	Decoupling for audio codec reference voltage. Connect 4.7uF capacitor to ground.
W16	HP_R	AO	-	Right channel headphone output. (or Line out)
V16	HP_L	AO	-	Left channel headphone output. (or Line out)
W17	SPK_P	AO	-	Speaker Output of Right Channel
W18	SPK_N	AO	- //	Speaker Output of Left Channel

** 10	01 11_11	7()		Speaker Supply of Eart Sharmor
1.11.	TV interface (2)			
Pin No.	Name	Type	Reset	Descriptions
K16	TV_CVBS	AO	$\int \int $	Video Data Output Composite video output.
K17	TV_FSAD	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	Full Screen Adjust Pin TV DAC Full-scale adjust control pin. A 430 Ω /1% resistor connected between this pin and GND controls the full-scale output current on the TV_CVBS output.

1.12. MIPI DSI (7)

Pin No.	Name	Type	Reset	Descriptions
P10	DSI_CAP	Р	_	Internal Supply Voltage decoupling for DSI LP mode circuit.
W12	DSI_CKP	AO	-	MIDL DCI differential alook lone output
V12	DSI_CKN	AO	-	MIPI DSI differential clock lane output
W11	DSI_D0P	AO	-	
V11	DSI_D0N	AO	-	MIDL DCI differential data land input / quitaut
W13	DSI_D1P	AO	-	MIPI DSI differential data lane input / output
V13	DSI_D1N	AO	-	

2015/01/30 - 27 -Version 1.0

1.13. HDMI (13)

Pin No.	Name	Type	Reset	Descriptions				
L18	HDMI_TXCP	AO	_	TMDS Low Voltage Differential Signal Output Clock				
L19	HDMI_TXCN	٨٥		TIVIDO LOW VOItage Differential Signal Output Clock				
K18	HDMI_TX0P							
K19	HDMI_TX0N							
J18	HDMI_TX1P	AO		TMDS Low Voltage Differential Signal Output Data				
J19	HDMI_TX1N	AO	_	Tivido Low voltage differential oliginal output data				
H18	HDMI_TX2P							
H19	HDMI_TX2N							
J14	HDMI_REXT	AI	-	Voltage Swing Adjust. Connect 1.2KΩ/1% resistor to HDMI GND				
E19	HDMI_CEC / P_GPIO[27]*	I/O _{5VT}	I p/u	Consumer Electronics Control. CEC is 5V tolerance input.				
D16	DDC_SDA / P_GPIO[28]	I/OD _{5VT}	I p/u	Display Data Channel SDA. DDCSDA is 5V tolerance input.				
K13	DDC_SCL / P_GPIO[29]	I/OD _{5VT}	I p/u	Display Data Channel SCL. DDCSCL is 5V tolerance input.				
C19	HDMI_PLUG / P_GPIO[30]*	I/O _{5VT}	I p/d	Hot Plug Detect, HOTPLUG is 5V tolerance input.				

1.14. USB device interface (4)

Pin No.	Name	Type	Reset	Descriptions
F18	VBUSI*	1 _{5VTZ}	l p/d	USB V _{BUS} Input. This pin is 5V tolerance input
F19	USB_DP	AI/O	- 6	USB FS/HS Differential Data Plus (D+)
G19	USB_DM	AI/O	2116	USB FS/HS Differential Data Minus (D-)
G17	USB RREF		11/1/	USB reference resistor. Connect 12KΩ/1% resistor to
18/11/1	USB_KKEF	77 11		GND

1.15. Power (116)

Pin No.	Name	Туре	Descriptions						
G7, G8, G9, G10,									
H9, H14, L13, L14,	VDDK(11)	Р	Core Power						
N8, N9, N13,									
E17, F6, P14	VDD_IO(3)	Р	I/O Pad Power						
E2, E16, F1, F2,									
F3, F14, G1, G2,									
G3, H2, H3, H6,									
H7, H8, H11, H12,	GND(55)	Р	Digital Ground						
J1 , J2, J3, J8,	GND(33)		Digital Ground						
J9, J10, K3, K10,									
K11, L2, L3, L7,									
L8, L9, L10, L11,									

2015/01/30 - 28 - Version 1.0

L12, M1, M2, M3,			
M4, M6, M7, M8,			
M9, M13, M14, N1,			
N3, N4, N6, P3,			
P6, R1, R3, T1,			
T2, T3, U1			
E1, H1, K1, K2,	VDD_KGD(5)	Р	DDR3 KGD 1.5V Power
P1, J6, J7, K6, K7,			
K8, K9, L6	VDD_DR(7)	Р	DRAM interface 1.5V I/O power.
H4	AVDD_DR_1V	Р	Analog 1.0V power for DDR PHY
G4	AVDD_HDLL	Р	DLL power.
L4	AGND_DLL	Р	Gorund for DLL
K4	GND_CLK	Р	Ground for DRAM Clock
C13	VDD_RTC	Р	RTC Power
F11	VDD_VBAT	Р	Battery input for power button controller
W1	VDD_MC	Р	Multi-level IO power for Memory Card
F7, F8	AVDD_HSI_K (2)	Р	Analog 1.0V power for HSI core power
F9	AVDD HSI RX	Р	Analog 3.3V power for HSI receiver
F10	VDD HSI IO	Р	Multi-level input power of HSI
G11, G12	AGND_HSI(2)	P	Ground for High Speed Interface
Ğ6	VDD_SN	P	Multi-level IO Power for sensor interface
P8, P9	VDD_LCD(2)\/	Р	Multi-level IO power for LCD interface
L17	VDD SDLI	9	LDO's input power for Card IO
P11 1	AVDD DSI K	Р	Analog power for MIPI DSI core
P13	VDD DSI_IO	P	LDO's input power for MIPI DSI LP IO
P12	AGND_DSI	\\P\	Ground for MIPI DSI
U13	AVDD ADC		Analog 3.3V power for ADC
U15	AGND_ADC	Р	Ground for ADC
J 17	AVDD_DAC	Р	Analog 3.3V power for TV DAC
H16	AGND_DAC	Ρ	Ground for TV DAC
T17	AVDD_AUD	Ρ	Analog 3.3V power for Audio Codec
V17	AGND_AUD	Ρ	Ground for Audio Codec
T16	AVDD_SPK	Ρ	Analog 3.3V power for Speaker Amplifier
U16	AGND_SPK	Ρ	Ground for Speaker Amplifier
K14	AVDD_HDMI	Р	Analog HDMI interface Power
G15	AGND_HDMI	Р	Ground for HDMI interface
H17	AVDD_USB_LI	Р	LDO's input power for USB PHY
G18	AVDD_USB_FS	Р	USB Full Speed Transceiver Power
F16	AGND_USB	Р	Ground for USB
T19	AVDD_MPLL	Р	Multiple PLL analog Power
T18	AGND_MPLL	Р	PLL analog Power

2015/01/30 - 29 - Version 1.0

Package Outline

1.

TFBGA-305

2015/01/30 - 30 - Version 1.0

Electrical Characteristics

1.

Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Supply Voltage of 1.0V Core power	V_{DDK}	-0.3 ~ +1.2	V
Supply Voltage of DRAM interface I/O	$V_{DD\ DR}$	-0.3 ~ +1.8	V
Supply Voltage of DDR3 KGD	V_{DD_KGD}	-0.3 ~ +1.8	V
Supply Voltage of 3.3V Digital I/O	V _{DD_IO} , V _{DD_RTC} , V _{DD_VBAT} , V _{DD_SDLI} , V _{DD_DSI_IO}	-0.3 ~ +3.8	V
Supply Voltage of multi-level I/O	$V_{\text{DD_MC}}, V_{\text{DD_HSI_IO}}, V_{\text{DD_SN}}, V_{\text{DD_LCD}}$	-0.3 ~ +3.8	
Supply Voltage of 1.0V analog block	AV _{DD_DR_1V} , AV _{DD_HSI_K} , AV _{DD_DSI_K} ,	0.3 + +1.2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Supply Voltage of 1.5/1.8V analog block	AV _{DD_MPLL} AV _{DD_HDMB} AV _{DD_USB_LI}	-0.3 ~ +2.1	V
Supply Voltage of 3.3V analog block	AVDD_HDLL, AVDD_HSI_RX, AVDD_USB_FS, AVDD_ADC, AVDD_DAC, AVDD_DAC, AVDD_SPK,	-0.3 ~ +3.8	V
Input/Output Voltage	I/O	-0.3 ~ V _{DD IO} +0.3	V
Input Voltage(5V Tolerant)	I/O _{5VT}	-0.3 ~ +5.8	V
Operating Ambient Temperature	Topr	-10 ~ 70	°C
Storage Temperature	Тѕтс	-55 ~ 125	°C

Comment

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

2015/01/30 - 31 - Version 1.0

ESD performance

Model	Standard	Classification	Note
Human Body Mode(HBM)	MIL-STD-883G Method 3015.7	Class : 2	2K~4KV
Machine Mode(MM)	JEDEC Specification EIA/JESD22-A115	Class : B	200~400V
CDM Mode(CDM)	JEDEC Specification JESD22-C101		

Latch-up Immunity

Model	Standard	Classification	Note
Latch up	JEDEC Specification JESD-78A	Class:\	±200mA

Latala	IEDE	0 0'('	- (' T	Ola Sall Cooks A					
Latch up	_atch up JEDEC Specification JESD-78A Class : 1 ±200mA								
1	Recommended Operating Conditions								
<u> </u>	Recommend	led Operat	ing Cond	itions					
Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions			
V_{DDK}	Core Logic Operating Voltage	1.2	1.06	1	Y				
V_{DD_DR}	DRAM Interface Operating Voltage	1.425	5 (1.5)	1.575	V				
V_{DD_KGD}	DDR3 KGD Operating Voltage	1.425	1.5	1.575	V				
V _{DD_IO}	General I/O Interface Operating Voltage	3.0	3.3	3.6	V				
$V_{DD\ RTC}$	RTC Operating Voltag	e 1.5	-	3.6	V				
V_{DD_RTC}	RTC Maintenance Voltage	1	-	3.6	V				
V_{DD_VBAT}	Power Controller Operating Voltage	1.5	-	3.6	V				
V_{DD_SDLI}	I/O of SD Card Operating Voltage	3.0	3.3	3.6	V				
V _{DD_DSI_IO}	LDO of MIPI DSI Operating Voltage	3.0	3.3	3.6	V				
V_{DD_MC}	I/O of Memory Card Interface Operating Voltage	1.62	3.3	3.6	V	1.8V~3.3V			
V _{DD_HSI_IO}	Input of High Speed Interface Operating Voltage	1.62	3.3	3.6	V	1.8V~3.3V			
$V_{DD SN}$	I/O of Sensor Interface	1.62	3.3	3.6	V	1.8V~3.3V			

2015/01/30 - 32 -Version 1.0

	Operating Voltage					
V _{DD_LCD}	I/O of LCD Interface Operating Voltage	1.62	3.3	3.6	V	1.8V~3.3V
AV _{DD_DR_1V}	Core Logic of DDR PHY Operating Voltage	1.2	1.06	1.1	٧	
AV _{DD_HSI_K}	Core Logic of High Speed Interface Operating Voltage	0.9	1.0	1.1	٧	
AV _{DD_DSI_K}	Core Logic of MIPI DSI Operating Voltage	0.9	1.0	1.1	V	
AV _{DD_MPLL}	MPLL Operating Voltage	1.425	1.5	1.9	٧	
AV_{DD_HDLL}	DLL Operating Voltage	3.0	3.3	3.6	V	
AV _{DD_HDMI}	Transceiver of HDMI Operating Voltage	1.425	1.5	1.9	٧	
AV _{DD_USB_LI}	LDO of USB PHY Operating Voltage	1.425	1.5	1.9	>	
AV _{DD_HSI_RX}	Receiver of High Speed Interface Operating Voltage	3.0	3.3	3.6	74	
AV _{DD_USB_FS}	Transceiver of USB Full Speed Operating Voltage	3.0	3.3	3.6	> \(\)	IRE "
AV _{DD ADC}	ADC Operating Voltage	3.0	3.3	3.6	V	
AV _{DD_DAC}	Video DAC Operating Voltage	3.0	3.3	3.6)) _{>}	
AV _{DD_AUD}	Audio Codec Operating Voltage	3.0	3.3	3.6	V	
AV _{DD_SPK}	Speaker Amplifier Operating Voltage	3.0	3.3	3.6	V	

5.

AC/DC Characteristics

5.1. Power on Sequence

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
Power on sequence and Reset						
T _{RST}	RESET# sustained time	1	-	-	ms	after power being stable
ם אירם	Core power prior to I/O power time	1	-	-	ms	

2015/01/30 - 33 - Version 1.0

Note: Even $t_1 {\ge} 0$ ms or $t_1 {<} 0$ ms is acceptable, but it is necessary to make sure $t_2 {>} 0$ ms .

Note:

Novatek recommends that $t_4>0$ ms, $t_5>0$ ms, and $t_6>0$ ms for a stable system application. But they are not the required restrictions for Novatek's DSP.

2015/01/30 - 35 - Version 1.0

5.2. General I/O

(V_{DDK}=1.0V, Temp=25⁰C)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions	
P _{RUN}	Operating Power Consumption	-	TBD	-	mW	Preview	
I/O General characteristic							
		2.0	-	-	V		
V_{IH}	Input High Voltage (I/O)	1.7	-	-	V	$V_{DD} = 3.3/2.5/1.8V$	
		1.2	-	-	V		
		-	-	0.8	V		
V_{IL}	Input Low Voltage (I/O)	-	-	0.7	V	$V_{DD} = 3.3/2.5/1.8V$	
		-	-	0.6	V		
	Schmitt Trigger Positive	-	1.73	2.0	V		
V_{T+}	Going Threshold (I/O)	-	1.38	1.6	V	$V_{DD} = 3.3/2.5/1.8V$	
	Comp Theshold (#O)	-	1.08	1.2	V		
	Cobmitt Trigger Negative	1.1	1.26	-	V		
V_{T-}	Schmitt Trigger Negative Going Threshold (I/O)	0.8	1.00	955	\ \ \\	$V_{DD} = 3.3/2.5/1.8V$	
	Going Theshold (I/O)	0.6	0.72	S/1/1/2	V)		
V_{HYST}	Hysteresis voltage	200		500	mV		
V _{OH}	Output High Voltage	V _{DD} .					
V _{OL}	Output Low Voltage			0.4	NV-		
	35121	2.5		<i>J-1</i>	mΑ		
	Output Driving Current	5	2 /f L		mΑ	$V_{OH} = V_{DD} - 0.4V$	
I _{OH}	$(V_{DD} = 3.3V)$	7.5		-	mA	@ 2.5/5/7.5/10 mA setting	
~ 11		10	-	-	mΑ	-	
		2.5	-	1	mΑ		
	Output Sinking Current	5	-	-	mΑ	$V_{OL} = GND + 0.4V$	
IOL	$(V_{DD} = 3.3V)$	7.5	-	-	mΑ	@ 2.5/5/7.5/10 mA setting	
	, 22	10	-	-	mΑ	_	
		2	-	-	mΑ		
	Output Driving Current	4	-	-	mΑ	$V_{OH} = V_{DD}-0.4V$	
I _{OH}	$(V_{DD} = 2.8V)$	6	-	-	mΑ	@ 2.5/5/7.5/10 mA setting	
		8	-	-	mΑ		
		2	-	-	mΑ		
	Output Sinking Current	4	-	-	mΑ	$V_{OL} = GND + 0.4V$	
I _{OL}	$(V_{DD} = 2.8V)$	6	-	-	mΑ	@ 2.5/5/7.5/10 mA setting	
		8	-		mΑ		
		1.5	-	-	mΑ		
	Output Driving Current	3	-	_	mΑ	$V_{OH} = V_{DD} - 0.4V$	
I _{OH}	$(V_{DD} = 1.8V)$	4.5	-	-	mΑ	@ 2.5/5/7.5/10 mA setting	
	<u>,</u>	6	-	-	mΑ		
	Output Sinking Current	1.5	-	-	mΑ	$V_{OL} = GND + 0.4V,$	
l _{OL}	$(V_{DD} = 1.8V)$	3	-	_	mΑ	@ 2.5/5/7.5/10 mA setting	

2015/01/30 - 36 - Version 1.0

4.5 -	-	mΑ	
6 -	-	mΑ	<u> </u>
I _{ILeakage} Input Leakage Current -10 ±1	+10	uA	GND $\leq V_{IN} \leq V_{DD}$, input w/o R_{PU}/R_{PD}
I _{HIZ} Output Tri-state Leakage current ±1	+10	uA	
- 28.5	-	ΚΩ	V CND
R _{PU} Internal Pull-up Resistor - 37.5	-	ΚΩ	V _{IN} =GND,
- 56.5	_	ΚΩ	$V_{DD} = 3.3/2.8/1.8V$
- 28.5	_	ΚΩ	
R _{as} Internal Pull-down - 37.5	-	ΚΩ	$V_{IN}=V_{DD}$
Resistor - 56.5	_	ΚΩ	$V_{DD} = 3.3/2.8/1.8V$
I/O _{5VT} (5V tolerance I/O So	chmitt in		nge)
V _{T+} Schmitt Trigger Positive Going Threshold (I/O _{5VT}) - 1.7	2.0	V	
V- Schmitt Trigger Negative 1.0 1.40	-	V	- IO voltage @ 3.3V
Going Threshold (I/O _{5VT}) 1.0 1.40	+ *****	0 m d m	ull days register)
HSI (High Speed Interface Schmitt inpu		and p	ull-down resistor)
Schmitt Trigger Positive - 1.7	2.0	N I	V 20/0 0/4 0V
V _{T+} Going Threshold (HSI)	1.8		$V_{DD} = 3.3/2.8/1.8V$
· / - /0	1.2	V	
Schmitt Trigger Negative 1.1 1.4	11 -~	V	
Going Threshold (HSI)	-	V	$V_{DD} = 3.3/2.8/1.8V$
0.6 0.8	-((V	
Internal Pull-down	<i>)</i> - (ΚΩ	$V_{IN}=V_{DD}$
Resistor - 135		ΚΩ	$V_{DD} = 3.3/2.8/1.8V$
Resistor 400	-	ΚΩ	$V_{DD} = 3.3/2.0/1.0V,$
I/Oz (large pull-dov	vn resist	or)	
R _{PD_Z} Internal Pull-down - 1	-	ΜΩ	V _{IN} =GND, V _{DD} =3.3V
I/Ow (wide Schmitt i	nput rar	nge)	
V _{T+} Schmitt Trigger Positive Going Threshold (I/Ow) - 1.7	2.0	V	V 0.0V
V _{T-} Schmitt Trigger Negative Going Threshold (I/Ow) 0.8 1.1	-	V	$V_{DD}=3.3V$
V _{HYST} Hysteresis voltage 500 -	750	mV	
I/O _s (strong driving/sinking			rity)
5 -	y output	mA	
	-		\/ =\/ 0.4\/
		mA m^	$V_{OH} = V_{DD} - 0.4V,$ @ 5/10/15/20 mA setting
$(V_DD = 3.3V) \qquad \qquad 13 \qquad -$	-	mA	w 5/10/15/20 mA setting
20 -	-	mA m ^	
5 -	-	mΑ	
Output Sinking Current 10 -	-	mA	$V_{OL} = GND + 0.4V$
$ V_{DD} = 3.3V$	-	mΑ	@ 5/10/15/20 mA setting
			T. Control of the Con
I _{OH} Output Driving Current 4 -	-	mA mA	$V_{OH} = V_{DD}$ -0.4V,

2015/01/30 - 37 - Version 1.0

	In	I	1			0 = // 2 // = /2 2
	$(V_{DD} = 2.8V)$	8	-	-	mΑ	@ 5/10/15/20 mA setting
		12	-	-	mΑ	
		16	-	-	mΑ	
		4	-	-	mΑ	
I _{OL}	Output Sinking Current	8	-	-	mΑ	$V_{OL} = GND + 0.4V$
IOL	$(V_{DD} = 2.8V)$	12	-	-	mΑ	@ 5/10/15/20 mA setting
		16	-	-	mΑ	
		3	-	-	mΑ	
la	Output Driving Current	6	-	-	mΑ	$V_{OH} = V_{DD}$ -0.4V,
Іон	$(V_{DD} = 1.8)$	9	-	-	mΑ	@ 5/10/15/20 mA setting
		12	-	-	mΑ	
		3	-	-	mΑ	
	Output Sinking Current	6	-	-	mΑ	$V_{OL} = GND + 0.4V$,
l _{OL}	$(V_{DD} = 1.8)$	9	-	-	mΑ	@ 5/10/15/20 mA setting
		12	-	-	mΑ	
	I/O _{s2} (str	ong drivi	ing/sinkir	ng output	capa	city)
		12.5	•	-	mΑ	
	Output Driving Current	15	-	-	mA	$V_{OH} = V_{DD} - 0.4V$
I _{OH}	$(V_{DD} = 3.3V)$	17.5	-		mΑ	@ 5/10/15/20 mA setting
	ĺ	20	{	Z	mA	
		12.5			mΑ	
	Output Sinking Current	15	ر -)) ج	11 -	mA	$V_{OL} = GND + 0.4V$
l _{OL}	$(V_{DD} = 3.3V)$	17.5	Л	-(mΑ	@ 5/10/15/20 mA setting
		20	5	(mA	
	I/O _{ss} (double	strong	driving/si	nking ou	tput ca	apacity)
		12.5			mA	
- (15		-	mΑ	
		17.5	-	-	mA	
IMI,	Output Driving Current	20	-	-	mA	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
IOH	$(V_{DD} = 3.3V)$	25	-	-	mA	$V_{OH} = V_{DD} - 0.4V$
	11 3	-	30	-	mA	
	_	-	35	-	mA	
		-	40	-	mA	
		12.5	-	-	mA	
		15	-	-	mA	
		17.5	-	-	mA	
	Output Sinking Current	20	-	-	mA	V 0ND 0 01
I _{OL}	$(V_{DD} = 3.3V)$	25	-	-	mA	$V_{OL} = GND + 0.4V$
		-	30	-	mA	
		-	35	-	mA	
		-	40	-	mA	
R _{PU SS}	Internal Pull-up Resistor	-	14	-	ΚΩ	V _{IN} =GND
	Internal Pull-down					
R_{PD_SS}	Resistor	-	14	-	ΚΩ	$V_{IN}=V_{DD}$

2015/01/30 - 38 - Version 1.0

5.3. Specific function I/O(RTC, Reset, LVD and PBC)

5.3.	Specific function I/O(RTC, I	Teset, L	D allu F	BC)						
Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions				
			RTC							
T _{START_UP}	RTC 32768Hz crystal start up time	-	250	-	ms	V _{DD_RTC} =3.0V				
I _{RTC}	Operating current of RTC	-	1	-	uA	V_{DD_RTC} =2.5 V				
V _{DD_RTCO}	Operating voltage of RTC	1.5	ı	3.6	V	$V_{DD_VBAT} >= 2.2V$				
VDD_RTCM	Maintenance voltage of RTC	1	-	3.6	V	no V _{DD_VBAT}				
RESET# & Low Voltage Detector										
R _{PU_RST}	Pull-Up Resistor of RESET#	80	100	130	ΚΩ	VDD=3.3V				
R _{PD_RST}	Pull-Down Resistor of RESET#	-	600	ı	Ω	VDD=3.3V				
V_{DET}	Detect level of LVD	-	2.65	2.9	V					
VHYST	Hysteresis voltage of LVD	-	90	-	mV					
V _{T+_RESET}	Schmitt Trigger Positive Going Threshold (RESET)	-	2.4	-	Y					
V _{TRESET}	Schmitt Trigger Negative Going Threshold (RESET)	-	1.8	NIE.						
		Power	Button C	Controller						
V _{T+}	Schmitt Trigger Positive Going Threshold (PWR_SW1,PWR_SW2, PWR_SW3,PWR_SW4)		1.5	1.8		V _{DD_RTC} =3.0V				
V _T -	Schmitt Trigger Negative Going Threshold (PWR_SW1,PWR_SW2, PWR_SW3,PWR_SW4)		1.3	-	V	V _{DD_RTC} =3.0V				
V _{PFD+}	PFD Positive Going Threshold Voltage (Core power)	-	0.85	0.9	V	$V_{DD_{VBAT}} = 2.2 \sim 3.6 V$				
V _{PFD} -	PFD Negative Going Threshold Voltage (Core power)	0.75	0.8	•	V	V _{DD_VBAT} = 2.2~3.6V				
I _{PD1}	Pull-Down Current (PWR_SW1)	-	10	-	uA	V _{DD_RTC} =3.0V				
l _{PU2}	Pull-Up Current (PWR_SW2)	-	10	-	uA	V _{DD_RTC} =3.0V				
I _{PD3}	Pull-Down Current (PWR_SW3)	-	3	_	uA	V _{DD_RTC} =3.0V				
I _{PD4}	Pull-Down Current (PWR_SW4)	-	1	-	uA	V _{DD_RTC} =3.0V				
R _{OH}	Resistor of PWR_EN Output High	1100	1300	1500	Ω	V _{OH} =2.9V, V _{DD_RTC} =3.3V				
R _{OL}	Resistor of PWR_EN	180	250	220	Ω	V_{OL} =0.4V, $V_{DD\ RTC}$ =3.3V				

2015/01/30 - 39 - Version 1.0

	Output Low					
V _{OH}	PWR_EN Output High Voltage	V _{BAT} - 0.2	-	ı	>	@ I _{OH} = 100uA
V _{OL}	PWR_EN Output Low Voltage	-	-	0.1	V	@ I _{OL} = -100uA
Note						

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
$R_{\text{EN-CL}}$	PWR_EN Current Limit resistor	-	1K	ı	Ohm	
V _{OH}	PWR_EN Output High Voltage	V _{BAT} - 0.2	-	-	V	@ I _{OH} = 100uA
V_{OL}	PWR_EN Output Low Voltage	-	-	0.1	V	@ $I_{OL} = -100uA$
R _{EN-CL}	PWR_EN Current Limit resistor	-	1K	-	Ohm	

5.4. DRAM

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
V_{REF}	DRAM Controller side	0.49*		0.51*	N	
V REF	reference voltage input.	V_{DD_DR}	-	V _{DD} DR	1101	
\/	DDR3 KGD Data	0.49*		0.51*	11 12	
V REF_DQ_KGD	reference voltage input	V_{DD} KGD		$V_{DD, KGD}$	V	
	DDR3 KGD Command /	0.49*		0.51*		
V _{REF_CA_KGD}	Address reference				A	
	voltage input	V_{DD_KGD}	7	V_{DD_KGD}		/

5.5. High speed serial interface(MIPI CSI, LVDS, HiSPi)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions				
	Input Impedance									
Z_{ID}	Impedance of Differential Terminator	80	100	125	Ohm	(check resistor's accuracy)				
	LVDS/HiSPi(Sub-	LVDS/Hi	VCM) HS	Receive	er DC S	Specifications				
V _{CMRX(DC)}	Common-mode voltage HS receive mode	600	900	1200	mV					
VIDTH	Differential input high threshold	-	-	70	mV	("Z" : 25mV)				
VIDTL	Differential input low threshold	-70	1	1	mV	("Z" : -25mV)				
VIHHS	Single-ended input high voltage	ı	ı	1500	mV	(1200+300)				
VILHS	Single-ended input low voltage	400	-	-	mV					
	HiSPi(S	LVS) HS	Receiver	DC Spec	cificati	ons				
$V_{\text{CMRX(DC)}}$	Common-mode voltage	150	200	250	mV					

2015/01/30 - 40 - Version 1.0

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

	HS					
	receive mode					
VIDTH	Differential input high threshold	-	-	70	mV	("Z" : 25mV)
VIDTL	Differential input low threshold	-70	-	-	mV	("Z" : -25mV)
VIHHS	Single-ended input high voltage	-	-	490	mV	(360+130))
VILHS	Single-ended input low voltage	-10	-	-	mV	(120-130)
		l HS Rec	eiver DC	Specifica	ations	
	Common-mode voltage					
V _{CMRX(DC)}	HS receive mode	70	-	330	mV	Note 1,2
VIDTH	Differential input high threshold	-	-	70	mV	
VIDTL	Differential input low threshold	-70	-	-	mV	
Vihhs	Single-ended input high voltage	ı	-	460	mV	Note 1
VILHS	Single-ended input low voltage	-40		MIL	mV	Note 1
Note	2. This table value include	es a grou	ınd differ	ence of 5	50mV	eak sine wave beyond 450MHz. between the transmitter and the variation below 450MHz.
	MIP	I LP Rec	eiver DC	specifica	ations	
V _{IH}	Logic 1 input voltage	880)) <u> </u>	-	mV	
WILL	Logic 0 input voltage, not in ULP State		-	500	mV	
V_{HYST}	Input Hysteresis	25	-	-	mV	
		al Purpos	se Input	DC speci	ficatio	ins
V _{T+}	Schmitt Trigger Positive Going Threshold	-	1.6	2.0	V	$V_{DD_GPI} = 3.3V$
V _{T-}	Schmitt Trigger Negative Going Threshold	0.8	1.2	-	V	$V_{DD_GPI} = 3.3V$
R_{PD}	Pull Down Resistance	-	100K	-	Ohm	$V_{DD GPI} = 3.3V$
V_{HYST}	Input Hysteresis	300	-	-	mV	$V_{DD GPI} = 3.3V$
		/HiSPi R	eceiver A	C Specif	ication	ns
ССМ	Common-mode termination	-	10	-	pF	(5pF option)
	MIP	I HS Rec	eiver AC	Specifica	ations	
F _{CLK}		40	-	500	MHz	160MHz Tx T hs_exit > 16 HSCLK
$\Delta V_{CMRX\ HF}$	Common-mode	-	-	100	mV	Note 2

2015/01/30 - 41 - Version 1.0

	interference beyond 450MHz							
ΔV_{CMRX_LF}	Common-mode interference 50MHz-450MHz	-50	-	50	mV	Note 1,4		
Ссм	Common-mode termination	-	10	60	рF	Note 3 (5pF option)		
Note	 Excluding 'static' ground shift of 50mV ΔV_{CMRX(HF)} is the peak amplitude of a sine wave superimposed on the receiver inputs. For higher bit rates a 14pF capacitor will be needed to meet the common-mode return loss specification. Voltage difference compared to DC average common-mode potential. 							
	MIP	l LP Rec	eiver AC	specifica	ations			
e spike	MIP Input pulse rejection	l LP Rec	eiver AC -	specifica 300		Note 1,2,4		
e _{SPIKE}		PI LP Rec - 20	eiver AC - -	_	V·ps	Note 1,2,4 Note 4		
	Input pulse rejection Minimum pulse width	-	eiver AC - - -	_	V·ps			
T _{MIN-RX}	Input pulse rejection Minimum pulse width response Peak interference	-	eiver AC - - -	300	V·ps ns			

5.6. ADC

Symbol	Parameter		Min.	Тур.	Max.	Unit	Conditions
$V_{DD\ ADC}$	Supply Voltage		3.0	3.3	3.6	V	
RES	ADC Effective Resolution		-	9	-	Bits	10bits SAR ADC structure (≦125KSPS
V_{IN}	Input signal level		0	1	$V_{\text{DD ADC}}$	٧	
INL	Integral nonlinearity		-	±1	-	LSB	
DNL	Differential nonlinearit	ty	-	±0.5	-	LSB	
C_{IN}	Input capacitance		-	20	-	рF	Except ADC_IN0,ADC_IN3
C _{IN-buffer}	Input capacitance of buffer		-	1	-	pF	ADC_IN0,ADC_IN3
	Touch panel switch	Р	-	15	-	Ω	
R _{SW}	on resistance	N		15		Ω	
Ъ	Programmable	Max	-	65	-	ΚΩ	MOS switch parasitic resistance
R_{PU}	resistor range	Min	-	2	-		is about 1kOhm.
R _{RPS}	Programmable resisto step size	or	-	1	-	ΚΩ	

2015/01/30 - 42 - Version 1.0

1	Current cource	Max	-	200	-	uA	
I _P Current source	Current Source	Min	-	100	-	uA	
V_{T+}	Touch Panel Pen Dow Schmitt Trigger Positiv Going Threshold		-	1.8	-	V	
V_{T-}	Touch Panel Pen Dow Schmitt Trigger Negat Going Threshold		-	1.4	-	V	

5.7. Audio Codec

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
		ľ	Micropho	ne		
$V_{MIC\ BIAS}$	Mic Bias Output Level	-	2.0	-	V	
V_{IN}	Input Full Scale Level	-	1	-	Vp-p	0dB gain
SNR	Signal to Noise Ratio	-	68	-	dBA	0dB gain, A-weighting
THD+N	Total Harmonic Distortion Plus Noise Ratio	-	-65	-	dBA	0dB gain, A-weighting
		-	2.38		ΚΩ	PGA gain set to +25.5 dB
R_{IN}	Input Resistance	-	24	n-SC	KΩ	PGA gain set to 0 dB
		-	44.2	11 H/A	ΚΩ	PGA gain set to -21 dB
G_{PGA}	Programmable Gain Amplifier Range	-21	> (<u>-</u>))	+25.5	dB	32 steps
G _{STEP}	Programmable Gain Amplifier Step Size		1.5		dB	
G _{Boost}	Boost Gain	-	20		dB	0/10/15/20 dB
		Headp		Line Out		
Vou	Line output full scale)) 	0.698	-	V_{RMS}	
SNR	Signal to noise ratio	ال ال	85	-	dBA	
THD+N	Total harmonic distortion plus noise ratio	-	-80	-	dBA	
		Speaker	BTL Out	put @ 8	Ω	
SNR	Signal to Noise Ratio	-	90	-	dB	A-weighting
THD+N	Total Harmonic Distortion Plus Noise Ratio	-	TBD	-	dB	A-weighting
G_{PGA}	Programmable Gain Amplifier Range	-31.6	-	+6	dB	32 steps
G _{STEP}	Programmable Gain Amplifier Step Size	ı	1.17	-	dB	
D	BTL Speaker Output	-	280	-	mW	THD @ 10%
P _{SPK}	Power	-	180	-	mW	THD @ 1%
Note	1. The SNR of audio outp	ut is mea	sured ac	cording	to AES	S17-1998 CL 9.3

5.8. TV encoder

 $(R_{LOAD} = 37.5 \Omega, Conversion rate = 27MHz)$

2015/01/30 - 43 - Version 1.0

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
RES	Video DAC Effective Resolution	-	10	-	bits	10-Bits I-Steering DAC structure
INL	Integral Nonlinearity, INL	1	±1	-	LSB	
DNL	Differential Nonlinearity, DNL	-	±0.5	-	LSB	
I _{CODE}	Output Current-DAC Code 1023 (lout FS)	-	34.08	-	mA	R _{load} = 37.5 Ohm
V _{CODE}	Out Voltage-DAC Code 1023	-	1.28	-	V	R _{load} = 37.5 Ohm
VLE	Video Level Error	-5	-	+5	%	
V _{oc}	Output Compliance Range	0	-	1.4	V	
F _{CLK}	Conversion rate	-	27	-	MHz	

5.9. MIPI DSI Tx

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions			
	M	IPI D-PH	Y DC sp	ecificati	ons				
	HS Transmitter								
V_{CMTX}	HS transmit static common mode voltage	150	200	250	mV	Note.			
ΔV _{CMTX} (1,0)	VCMTX mismatch when output is Differential-1 or Differential-0			5	mV	Note. 2			
V _{OD}	HS transmit differential voltage	140	200	270	mV	Note. 1			
ΔV _{OD}	VOD mismatch when output is Differential-1 or Differential-0) .	10	mV	Note. 2			
Vohes	HS output high voltage			360	mV	Note. 1			
Zos	Single ended output impedance	40	50	62.5	Ω				
ΔZ _{OS}	Single ended output impedance Mismatch	ı	ı	10	%				
Note	Value when driving int It is recommended the radiation and optimize	impleme	enter min			the Z_{ID} range. d $\Delta V_{CMTX (1.0)}$ in order to minimize			
		LF	P Transm	itter					
V_{OH}	Thevenin output high level	1.1	1.2	1.3	V	VOH			
V_{OL}	Thevenin output low level	-50	-	50	mV	VOL			
Z _{OLP}	Output impedance of LP transmitter	110	-	-		Note. 1,2			
Note	 See Figure 42 and Fig Though no maximum 					ition. P transmitter output impedance			

2015/01/30 - 44 - Version 1.0

							1110000		
	shall er	nsure the T_{RLP}/T	FLP spec	ification	is met.				
LP Receiver									
V _{IH}	Logic 1 inpu	ıt voltage	880	-	-	mV			
		ıt voltage, not							
V_{IL}	in	-	-	-	500	mV			
	ULP State								
V_{IL_ULPS}		ıt voltage, ULP	_	_	300	mV			
	State								
V _{HYST}	Input Hyster		25	-	-	mV			
NI (gure 42 and Fig					ition. P transmitter output impedance		
Note		nsure the T_{RLP}/T					· ·		
		(Contentio	n Detect	tor (LP-C	D)			
V	Logic 1 cont		450	-	-	m۷	1911		
V _{IHCD}	threshold								
V_{ILCD}	Logic 0 conf	tention	-	-	200	mV			
VILCD	threshold					IIII			
MIPI D-PHY AC specifications									
	HS Transmitter								
ΔV_{CMTX}		vel variations		> (())	11 ~	mV			
(HF)	above 450MHz	- 17	7 -11	J.	15	RMS			
ΔV_{CMTX}		vel variation		- 1	(()	m√			
(LF)	between 50		<u> </u>		25	PEAK			
	20%-80% ri		nC	<u> </u>					
t _{R and} t _F	fall time		\mathcal{J}_{H}^{ω}		0.3	UI	Note. 1		
			150	-	-	ps			
Note	1. UI is equ	ual to 1/(2*fh).	See secti	on 7.3 fc	r the def	inition	of fh		
Note		,							
			LF	P Transm	nitter				
T _{RLP} /T _{FLP}	15%-85% ristall time	se time and		-	25	ns	Note. 1		
T _{REOT}	30%-85% ris	se time and	-	-	35	ns	Note. 1, 5, 6		
		First LP							
		exclusive-OR							
	Pulse width	clock pulse							
T _{LP-PULSE-T}		after Stop							
	exclusive-	state or last	40	-	-	ns	Note. 4		
Х	OR clock	pulse before							
		Stop state							
		Allothor							
		All other pulses	20	-	-	ns	Note 4		
		puises				l			

2015/01/30 - 45 - Version 1.0

T _{LP-PER-TX}	Period of the LP exclusive-OR clock	90	-	-	ns	
$\delta V/\delta t_{SR}$	Slew rate @ CLOAD = 0pF	-	-	500	mV/ns	Note 1, 3, 7, 8
	Slew rate @ CLOAD = 5pF	-	-	300	mV/ns	Note 1, 3, 7, 8
	Slew rate @ CLOAD = 20pF	-	1	250	mV/ns	Note 1, 3, 7, 8
	Slew rate @ CLOAD = 70pF	-	-	150	mV/ns	Note 1, 3, 7, 8
	Slew rate @ CLOAD = 0 to 70pF (Falling Edge Only)	30	1	-	mV/ns	Note 1, 2, 3
	Slew rate @ CLOAD = 0 to 70pF (Rising Edge Only)	30	1	1	mV/ns	Note 1, 3, 9
	Slew rate @ CLOAD = 0 to 70pF (Rising Edge Only)	30 – 0.075 * (VO,IN ST – 700)	-		mV/ns	Note, 1, 10, 11
C _{LOAD}	Load capacitance	Ó	((-))	70	рF	Note 1
	1 Coas includes the low-	frequenc	v equiva	lent trans	smissi	on line canacitance. The

- 1. C_{LOAD} includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be <10pF. The distributed line capacitance can be up to 50pF for a transmission line with 2ns delay.
- 2. When the output voltage is between 400 mV and 930 mV.
- 3. Measured as average across any 50 mV segment of the output signal transition.
- 4. This parameter value can be lower than T_{LPX} due to differences in rise vs. fall signal slopes and trip levels and mismatches between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior as described in section 8.2.2.

Note

- 5. The rise-time of T_{REOT} starts from the HS common-level at the moment the differential amplitude drops below 70mV, due to stopping the differential drive.
- 6. With an additional load capacitance CCM between 0 and 60pF on the termination center tap at RX side of the Lane
- 7. This value represents a corner point in a piecewise linear curve. See Figure 45 and Figure 46.
- 8. When the output voltage is in the range specified by V_{PIN} (absmax).
- 9. When the output voltage is between 400 mV and 700 mV.
- 10. Where $V_{O,INST}$ is the instantaneous output voltage, V_{DP} or V_{DN} , in millivolts.
- 11. When the output voltage is between 700 mV and 930 mV.

	LP Receiver								
e _{SPIKE}	Input pulse rejection	ı	-	300	V·ps	Note 1,2,3			
T _{MIN-RX}	Minimum pulse width response	20	-	-	ns	Note 4			
V _{INT}	Peak interference	-	-	200	mV				

2015/01/30 - 46 - Version 1.0

	amplitude						
f _{INT}	Interference frequency	450	-	-	MHz		
Note	 Time-voltage integration of a spike above V_{IL} when being in LP-0 state or below V_{IH} when being in LP-1 state. An impulse less than this will not change the receiver state. In addition to the required glitch rejection, implements shall ensure rejection of known RF-interferences. An input pulse greater than this shall toggle the output. 						
	Pi	n Charac	teristic S	Specificat	ions		
V_{PIN}	Pin signal voltage range	-50	-	1350	mV		
I _{LEAK}	Pin leakage current	-10	-	10	uA		
V_{GNDSH}	Ground shift	-50	•	50	mV		
V _{PIN}	Transient pin voltage level	-0.15	-	1.45	V		
T _{VPIN} (absmax)	Maximum transient time above VPIN(max) or below VPIN(min)	-	-	20	ns		
Note	 When the pad voltage is in the signal voltage range from V_{GNDSH}, MIN to VOH + V_{GNDSH}, MAX and the Lane Module is in LP receive mode. The voltage overshoot and undershoot beyond the V_{PIN} is only allowed during a single 20ns window after any LP-0 to LP-1 transition or vice versa. For all other situations it must stay within the V_{PIN} range. This value includes ground shift. 						

Figure. D-PHY signaling level

Figure. Signaling and contention Voltage levels

2015/01/30 - 48 - Version 1.0

5.10. HDMI Tx

	1 12 1111 1111									
Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions				
	Transmitter DC Specifications									
V _{OFF}	Single-ended standby output voltage	3.125	3.3	3.475	V					
V _{SWING}	Single-ended output swing voltage	400	500	600	mV					
VH	Single-ended high level output voltage	2.935	3.3	3.475	V					
V_L	Single-ended low level output voltage	2.435	2.8	3.065	V					
	Transmitter AC Specifications									
	Rise/fall time	75	-	-	ps					
	Intra-Pair Skew at source connector	-	-	0.15	T _{bit}					
	Inter-Pair Skew at source connector	1	-	0.20	T _{char.}					
	Clock duty cycle	40	50	60	%					
	TMDS Differential Clock Jitter	1	-	0.25	T _{bit}					
		Hot Plug	Detecti	on Sign	al					
V _{IH}	Input High Voltage (HDMI_PLUG)	2.0	-	-	V	Max 5.3V				
V_{IL}	Input Low Voltage	-	-	8.0	V					

2015/01/30 - 49 - Version 1.0

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

	(HDMI_PLUG)			
Note				

5.11. USB

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
		gh Spee	d DC Sp		ons	
	Inp	ut Level	s (differe	ntial rece	eiver)	
V _{HSDIFF}	High speed differential input sensitivity	300	-	-	mV	V _{I(DP)} -V _{I(DM)} measured at the connection as application circuit
V _{HSCM}	High speed data signaling common mode voltage range	-50	-	500	mV	
V_{HSSQ}	High speed squelch detection threshold	- 150	-	100	mV mV	squelch detected no squelch detected
V _{HSDSC}	High speed disconnection	625	-	-	mV	disconnection detected
110000	detection threshold	-		525	mV	disconnection not detected
	I link an and i link i	O	utput Le	vels	711	
V _{HSOI}	High speed idle level output voltage (differential)	-10		10	mV	
V _{HSOL}	High speed low level output voltage (differential)	7 -10		10	mV	
V _{HSOH}	High speed high level output voltage (differential)	-360		400	mV	
V _{CHRPJ}	Chirp-J output voltage (differential)	700))	1100	mV	
VCHIRPK	Chirp-K output voltage (differential)	-900	-	-500	mV	
			Resistan	ce		
R_{DRV}	Driver output impedance	3	6	9	Ω	equivalent resistance used as internal chip only
INDRV	Driver output impedance	40.5	45	49.5	Ω	overall resistance including external resistor
		-	Terminati	on		
V_{TERM}	Termination voltage for pull-up resistor on pin RPU	3.0	ı	3.6	V	
	Fi	ıll Spee	d DC Sp	ecification	ons	
	1	ut Level	s (differe	ntial rece	eiver)	
V_{DI}	Differential input sensitivity	0.2	-	-	V	V _{I(DP)} -V _{I(DM)}
V _{CM}	Differential common mode voltage	0.8	-	2.5	V	
	Input	Levels	single-e	nded rec	eivers)

2015/01/30 - 50 - Version 1.0

V_{SE}	Single ended receiver threshold	8.0	-	2.0	V					
		0	utput Le	vels						
V _{OL}	Low-level output voltage	0	-	0.3	V					
V _{OH}	High-level output voltage	2.8	-	3.6	V					
31.		gh Spee	d AC Sp	ecificati	ions					
			r Charac							
THEORATE	High speed TX data rate	479.76	-	480.24	Mbps					
	High speed RX data rate	479.76	-	480.24						
t _{HSR}	High speed differential rise time	500	-	-	ps					
t _{HSF}	High speed differential fall time	500	-	-	ps	_				
		D	riving tim	nina						
	Driver waveform requirement		e pattern		ate 1	Follow template1 described in USB2.0 spec				
		Re	eceiver tii	ming						
	Data source jitter and receiver jitter tolerance		e pattern		ate 4	Follow template 4 described in USB2.0 spec				
Full Speed AC Specifications										
Driver Characteristics										
T _{FSDRATE}	Full speed TX data rate	11.994	> ((-))	12.006	Mbps					
	Full speed RX data rate	1 11.97		12.03	Mbps					
t _{FR}	Rise time	4		20	ns	CL=50pF; 10 to 90% of V _{OH} -V _{OL}				
t _{FF}	Fall time	40		20	ns	CL=50pF; 90 to 10% of V _{OH} -V _{OL}				
t _{FRMA}	Differential rise/fall time matching (ter/ter)	90/0	<u> </u>	110	%	Excluding the first transition from idle mode				
V _{CRS}	Output signal crossover voltage	1.3	-	2.0	V	Excluding the first transition from idle mode				
		D	riving tim	ning						
	VI, FSE0, OE to DP, DN propagation delay	-	-	15	ns	for detailed description of VI, FSE0 and OE, please refer to USB1.1 spec				
T _{FDEOP}	Source jitter for differential transition to SE0 transition	-2	-	5	ns					
T_{JR1}	Receiver jitter	-18.5	-	18.5	ns	To next transition				
T_{JR2}	Receiver jitter	-9	-	9	ns	For paired transition				
T _{FEOPT}	Source SE0 interval of EOP	160	-	175	ns					
T _{FEOPR}	Receiver SE0 interval of EOP	82	-	-	ns					
T _{FST}	Width of SE0 interval during differential transition	-	-	14	ns					

2015/01/30 - 51 - Version 1.0

	Receiver timing								
	Receiver propagation delay (DP; DM to RCV)	-	-	15	i ne	for detailed description of RCV, please refer to USB1.1 spec			
TPLH(single)	Receiver propagation delay (DP; DM to VOP, VON)	1	1	15	ns				
Note		•		•					

2015/01/30 - 53 - Version 1.0

5.12. USB Charging Port Detect

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
V_{DAT_REF}	Data Detect Voltage	0.25	•	0.4	V	
$V_{DM\ SRC}$	D- Source Voltage	0.5	•	0.7	V	
V_{DP_SRC}	D+ Source Voltage	0.5	ı	0.7	V	
V_{LGC}	Logic Threshold	8.0	•	2.0	V	
V_{LGC_HI}	Logic High	2.0	ı	3.6	V	
V_{LGC_LOW}	Logic Low	0	-	8.0	V	
I_{DM_SINK}	D- Sink Current	25	ı	175	uA	
I _{DP_SINK}	D+ Sink Current	25	ı	175	uA	
I _{DP_SRC}	Data Contact Detect Current Source	7	ı	13	uA	
R _{DM DWN}	D- Pull-down resistance	14.25	-	24.8	kΩ	7

