Contents

1	Multivariable Calculus	3
	1.1 Linear Algebra	3

Chapter 1

Multivariable Calculus

1.1 Linear Algebra

Definition (Normed vector space): Let V be a vector space. A **norm** is a real valued function $\|\cdot\|:V\to\mathbb{R}$ which has the following properties

- 1. $\forall x \in V, ||x|| > 0.$
- 2. $||x|| = 0 \implies x = 0$.
- 3. $\forall x \in V \ \forall \alpha \in \mathbb{F}, \ \|\alpha x\| = |\alpha| \ \|x\|.$
- 4. $\forall x, y \in V \|x + y\| \le \|x\| + \|y\|$.

Each normed vector space induces a metric space (V, d) where d(x, y) = ||y - x||.

Definition: Assume V is a vector space and let $\|\cdot\|_1$, $\|\cdot\|_2$ be two norms for V. They are said to be equivalent when

$$\exists c_1, c_2 > 0 \ \forall x : c_1 \|x\|_1 \le \|x\|_2 \le c_2 \|x\|$$

To check if the above definition is indeed an equivalence relation, we must show that following:

Reflexive $\|\cdot\|_1 \sim \|\cdot\|_1$.

 $\mathbf{Symmetric} \ \|\cdot\|_1 \sim \|\cdot\|_2 \implies \|\cdot\|_2 \sim \|\cdot\|_1.$

 $\textbf{Transitive} \ \|\cdot\|_1 \sim \|\cdot\|_2 \,, \ \|\cdot\|_2 \sim \|\cdot\|_3 \implies \|\cdot\|_1 \sim \|\cdot\|_3.$

Theorem 1.1. All norms defined on a finite dimensional vector spaces V are equivalent.

Proof. Let $\|\cdot\|$ be an arbitrary norm on V and $\{e_1, e_2, \ldots, e_n\}$ be a basis of V. Let $\|\cdot\|_2$ be L_2 -norm (Euclidean norm). It will suffice to show $\|\cdot\| \sim \|\cdot\|_2$. Let

$$M = \max(\|e_1\|, \dots, \|e_n\|)$$

Take $x \in V$, writing $x = \sum_{i=1}^{n} \xi_i e_i$ we have:

$$||x|| = \left\| \sum_{i=1}^{n} \xi_i e_i \right\| \le \sum_{i=1}^{n} |\cdot| \xi_i ||e_i|| \le M\sqrt{n} ||x||_2$$

Taking $c_2 = M\sqrt{n}$ proves the right inequality. For the left inequality we need the following lemma

Lemma 1.2. If V is a normed vector space with $\|\cdot\|_2$, as defined above, is viewed as metric space $(V, \|\cdot\|_2)$ then $\|\cdot\| : V \to \mathbb{R}$ is continuous.

Proof. Let $x_0 \in V$ and M be defined as above. For any $\epsilon > 0$ consider $\delta = \frac{\epsilon}{M\sqrt{n}}$ then if $\|x - x_0\|_2 < \delta$

$$|||x| - || \cdot ||x_0|| \le ||x - x_0|| \le M\sqrt{n} ||x - x_0|| \le \epsilon$$

Now consider the sphere of radius r=1 centered at 0, $S_1(0)=S_1=\{x\in V:\|x\|_2=1\}$. One can show that S is compact. Therefore, $\|x\|$ assumes its minimum on S. Let $a=\|x_0\|$ be the minimum. Since $0\notin S$ then a>0. By letting $y=x/\|x\|_2$, we have $y\in S$ and thus $a\leq \|y\|$ which is

$$a \|x\|_2 \le \|x\|$$

Taking $c_1 = a$ proves the theorem.

Theorem 1.3. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ linear transformation is invertible if and only if there exists a c such that:

$$c \|x\| \le \|f(x)\|$$

Proof. A linear transformation $f: \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one if and only if it is surjective because dim Im f + dim ker f = n. Hence, we only need to show that f is one-to-one.