CHAPTER 2 : MAD EQNS

	MAXWELL'S EDNS -> MAD EANS
	Maxwell's equations describe ELECTRONACNETUM (EM) -> how ELECTRIC as MACNETIC PHOS interact
	James Clerk Maxwell (1831-1875) took exiting experimental laws and uniford them Also figured ow that EM waves and light were same thing
	Maxuelli equo are confusing since there are many different
	ond some people prefer certain variables over others. - untignal form is differential (or point) form
	Vanables (alphascheally) B - magnetic field (magnetic flux density) D - electric displacement (electric flux density)
	E - electric field 1 - magnetic intensity ("mag held strengen" j - "current density (elec corr per unit area)) solvered! Pe - charge density (charge per unit volume)
	" (dretectorie)
	consents & - permitting) "of the space" > racuum \[\mu - permeability \) \[\sigma - conductivity \]
7.00	E > property of medium that determines strength of electric tred for a given charge and geometry. ET ⇒ more charge needed for some E E> €0 (racuum) (Evaner ~ 81€0; latte E ~ €0)
	(Miron 1000 M.) take $\mu \sim \mu o$
	Conshitutive relations $H = B$ $D = E = B$ (Like viscosity in thuids; smess -> shown) (i.e. can finally about 11 D galla!)

(i.e can forget about +1, D rally!)

dA = richor surface dl = rector line styment hagral form GAUSSS LAW (q = toler enclosed charge FOR ELECTRICITY GAUSS'S LAW 2/ FOR MAGNETUM FARADA'S LAW OF MOUCHON ΦB = \$ B. df Magnetic flux AMPERE'S LAW DIFFERENTIAL (ATA POINT") . FORM (T.D= PE CAUSS FARADAY AMPERE

Derivations (quice!) adichy E Brig a hot particle to point @ distance 1, charge 92 > Cowons force between charges F = 1,92 411 8 -2 Electricity = force/unit charge = 2' Elichic flux : de through a small Total through a spherical Agion. 400 = 91, 477, = (NOR swface can be any swface because now can add swfaces of any shope if they do not contain charge since contrib = 9/2 = \$ if more charges contained, JE. dA = JE dV genclosed - Spe dV T.E = Pele

Same for "magnetic charges" (magnetice "poles")

Magnetic flux (tolar)

PB = \(\beta \) \(\beta \) \(\delta \) \(\delt since I no mag manopolis (only NSI magnets!) and again $\oint B \cdot dA = \int P \cdot B \, dV = \emptyset$ => /F.B = 0/ haduchon! More a magnet in and ow of a coil =) current in coil Existence of current >) Existence of a Spokewick dufference rollinge EMF (not not force!) => EMF E & DB/SI & A was of coil Magnetiz Thex PB = B, dA DE (B, dA) = All this instably ho Charge on a plate:

charge per unit

are = 0 + + + MF-DE. de ohze J- lubuhas J (outous . Volb Gauss > E, dA = 2 chago in cylinder - Kerre > 2.217° E totes PE/E
charle in
cylinde ·dl=V/ Sides 11h Electric fred indep held => do not contribute of distance from plate

2 charged planes: Its E total E = E, - Es = Ø Elednic - Pe v V Toku E= E, +E, = E ETOKLE = E, - E, = Ø voltage = potential energy acting on a charge to more it from one point to another = work done perly diogs to moja test charge between thro points = electric potential per unit change PE = work done = force y distance PEOS = Fox . or bw Fox = 0 since For = 9191 4TE(-2) PE, = 2122, r = 2192 > Voltage, V= PE/undage = Q = Er Etter paulum dage So in parallel plates, electric held constant => vollage increases! in distance from 120 So V= Er or more comedy in necos > tolar EMF = p E. dl | if in a loop, say. Combining (3D) and (3C) - $\mathcal{E} = -\frac{\partial \Phi_{B}}{\partial t} = -\frac{\partial}{\partial t} \oint_{S} B \cdot dA = \oint_{S} E \cdot dL$ Note of E. al = O (TXE). de and removing wagran TYE = dB

/	Contained
Ы	Experimentally, found curent in a
	ina induced a negache had around
	Found magnetic wansily to drops ~ 1/r
K	IT & S/A
	Consider around were ladius (; Br H: 1000 of fixed ()
	$ \int H, dl = \int B, dl = B 2\pi \Gamma = L $ $ \int M_0 \qquad M_0 $
	$\Rightarrow B = \frac{1}{2\pi r} \text{and} \frac{1}{2} \text{Bod} = \mu_0 i$
	Stokes th => curry density
	Stopes in s (FYB) ds = pol
,	V S Moj
	Mariall noticed an unconsistency:
	Terre duragence of above => 1:0 j =0
	le trus mue?
	or for many areurs but who about, +. g, a capacitor!
	A/C > when how!
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ac () Test loop; not diregence
	60hz curra flos in trirl
	burnot in our of capacitor!
· · · · · · · · · · · · · · · · · · ·	hashed of cured, excelle field vanis within copacitor
Tonday	
,,	a cut of E, why not the symmetric opposite: time-raying E
	gins use to cond B?
	De jo or Edt : jo
	DISPLACENCE
	CUPETNI

/	
	There per nou
,.	
	The state of the s
	TXB = Moj + Mo Eodt st
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Mon paasty:
	In copa abor
	napacitor, Hoi = prodq = no Eodh dq = precodh d (2) Re Eodh
	= po Eo dA dE = po Eo d (Eode)
	Summing over aga ?
	Summi, or ara ->
	godin poi t po 60 de
	Je de
	men /
	prxs. dr = [noj.dr + noe,] d(E.dr)
,	700 L
	= xx0 = poj + po E, dt
~_~	
11.5 (21.1 11.1 15.1 11.1 15.1 15.1 15.1 15.1	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

VE = PE/EO TXB = MOJ + MOEO DE TXB = MOJ + MOEO DE TXB = MOJ + MOEO DE
 they are LINEAR! V. hardy. Superposable solutions
 o notice pro Eo = 1/12 there c= speed of light
> Equations here are unition is SI units. Other units often used (esp by astronomers) with faces of 4TH floating around.
-> symmethers / contrasts; -> concer difference between E ad B:
change can be singular unexes no mag monopo , changing B can create E; changing E can create B
J electromagnetis warrs. Warrspeed = 6 (umpo electromagnetism & applies!)
-) star pour for speased throng of relating.
 -> describe are electronegachic phenomena!

(see Priest p 436 Appendix 2) A note on units Many different ways of measuring electromag quantities over history - em quanthes measured in "eschoolete units (Esu)" or "electromegnetie unus (Fmu)" - M. E chimensionless or dimensionful! - mass, longth: continuetros & grams (rgs) meros & kalojam (mbs) - "chordised" -s among geometre 4th factors 2 main och: Gaussian cg5: -> Length, mans, hont fundamental units (c,g,,) → q E, P in esu → "stateomonb,... - j,B, 11 in the "atomp,... -> E pe dimensioness by B in GAUSS -> eggs have 47 is in them Ranonaised mbs - part of SI units V ... Length, mass, fine and current (amp) fundamental -> Mo = 4TT x 10 + N amp 2 Eo = 8.854 x 10 12 A2 52 N 1 m 1 - charge in Coulombs ; force in Newton (kg m s²) -, E in Volts/n = / NC' -> Egno have no 4713 !! 8) Liters using ranonalisted mbs. Houser, people still often lack about B in gaus! (Esp astrophysicists) Note 1 gauss = 104 Table 104 grass = 1 ASLA

UNITS FOR MAGNETIC PROPERTIES

Quantity	Symbol	Gaussian & cgs emu ^a	Conversion factor, C ^b	SI & rationalized mks ^c
Magnetic flux density, magnetic induction	В	gauss (G) ^d	10-4	tesla (T), Wb/m ²
Magnetic flux	Φ	maxwell (Mx), G·cm²	10-8	weber (Wb), volt second (V·s)
Magnetic potential difference, magnetomotive force	U, F	gilbert (Gb)	· 10/4π	ampere (A)
Magnetic field strength, magnetizing force	Ħ	oersted (Oe), e Gb/cm	$10^{3}/4\pi$	A/m ^f
(Volume) magnetization ^g	М	emu/cm³ ^h	103	A/m
(Volume) magnetization	$4\pi M$	G	$10^{3}/4\pi$	A/m .
Magnetic polarization, intensity of magnetization	J, I	emu/cm³	$4\pi \times 10^{-4}$	T, Wb/m² l
(Mass) magnetization	σ, Μ	emu/g	$4\pi \times 10^{-7}$	A·m²/kg Wb·m/kg
Magnetic moment	m	emu, erg/G	10^{-3}	A·m², joule per·tesla (J/T)
Magnetic dipole moment	j	emu, erg/G	$4\pi \times 10^{-10}$	Wb·m ¹
(Volume) susceptibility	χ, κ	dimensionless, emu/cm ³	$4\pi (4\pi)^2 \times 10^{-7}$	dimensionless henry per meter (H/m), Wb/(A·m
(Mass) susceptibility	$\chi_{\rho}, \kappa_{\rho}$	cm ³ /g, emu/g	$4\pi \times 10^{-3} \\ (4\pi)^2 \times 10^{-10}$	m³/kg H·m²/kg
(Molar) susceptibility	Xmoi: Kmoi	cm³/mol, emu/mol	$4\pi \times 10^{-6}$ $(4\pi)^2 \times 10^{-13}$	m³/mol H·m²/mol
Permeability	μ	dimensionless	$4\pi \times 10^{-7}$	H/m, Wb/(A·m)
Relative permeability	με	not defined		dimensionless
(Volume) energy density, energy product k	W	erg/cm³	10-1	J/m³
Demagnetization factor	D, N	dimensionless	$1/4\pi$	dimensionless

a. Gaussian units and cgs emu are the same for magnetic properties. The defining relation is $B = H + 4\pi M$. b. Multiply a number in Gaussian units by C to convert it to SI (e.g., $1 \text{ G} \times 10^{-4} \text{ T/G} = 10^{-4} \text{ T}$).

d. 1 gauss = 10^5 gamma (γ).

e. Both oersted and gauss are expressed as cm^{-1/2}·g^{1/2}·s⁻¹ in terms of base units.

Magnetic moment per unit volume.

The designation "emu" is not a unit.

 $\mu_r = \mu/\mu_0 = 1 + \chi$, all in SI. μ_r is equal to Gaussian μ .

c. SI (Système International d'Unités) has been adopted by the National Bureau of Standards. Where two conversion factors are given, the upper one is recognized under, or consistent with, SI and is based on the definition $B = \mu_0(H + M)$, where $\mu_0 = 4\pi \times 10^{-7}$ H/m. The lower one is not recognized under SI and is based on the definition $B = \mu_0 H + J$, where the symbol I is often used in place of J.

f. A/m was often expressed as "ampere-turn per meter" when used for magnetic field strength.

Recognized under SI, even though based on the definition $B = \mu_0 H + J$. See footnote c.

 $B \cdot H$ and $\mu_0 M \cdot H$ have SI units J/m³; $M \cdot H$ and $B \cdot H/4\pi$ have Gaussian units erg/cm³.

R. B. Goldfarb and F. R. Fickett, U.S. Department of Commerce, National Bureau of Standards, Boulder, Colorado 80303, March 1985 NBS Special Publication 696 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

	application	~ (not a	U 00	Lophy	west	
•	arocih (• /	
Y Z E =	- ds	> <u>E</u>		[S	e - hypical i	:: :: 51
	27	L		K	B = " B	
					L hypical	Υ
n wala	Vyb :	Mo jar	, passer.	75	To have	i mac
				-		
Estals 1	Janes Junes Landson		<u> </u>	Land vo	$\frac{1}{cr}\left(\frac{gL}{T}\right) = c$	1 86 2 72
	Õ				· · · · · · · · · · · · · · · · · · ·	~?)
<u>laho</u>	(<u>2</u>	16/292	V:			
Therefore	*	mare by			Max LAN COUR	
	TYB	, , , , , , , , , , , , , , , , , , ,	Po tel di a constalli monditi a manin con co			
Somehone	, march is	ralled"	i Ine	MHD	epporimenion'	1
	ne way 1 1					
Noke	this an	10 M = 10 M	e ido i	lstr od	techning u	
					- but not	
					ej e and mall	pames)
					except in Taxe	
			•	(nd.)		
		arla a seat		1 10	3° m/s 3 cx c: 3	8
 >	30 (Gr CON)	ACCATON SOUR	'	/- \$ \$ == (X10 M/S

	Ohm's Law
	To dose the system, need one further ego to relate the
	current to the electric and magnetic fields
	Ohm's Law is an Empirically determined law !
	11/ 5 5 6/1
	where the dasher meen "neadered in frame moning into
	conductor"
	1' = award density
	E' (F/A) Mechanical
	conducting (ohan) related to "resistance"; more laser)
	From LORNA force & E + UXB
	in a freed trans
	and j'e j in fixed frame, so
	J= O(E + u x B)
	Nok
	-> Probably used to Ohis law "V= Ie":
	For vice length L, cross-section A
	L A Lil 👳 I
	17 ENT is V volls => [E =V/L (rolls/meter)
	ly = o t > I = o V > V = I (Lo)
-	A L
,	R
	- ohn's Lau has different status to Maxwell's topics
	-) NOT Exact
	-> approximation
	-> can be much more complete depending on physics
	-, ohni La in this form teads to MAID north
	-, more complicated forms -, PLASMA PHYSICS !! (page 96)
	and a dayle dayle and a land

MHD works OK to fully longed plasmes

(more on ralidly of MAD lazer)

Induction Equation

Take aut:
$$V \times (\frac{1}{\mu_0 \sigma} \nabla \times B) = V \times E + \nabla \times (u \times B)$$

Eleminate E with O

$$\frac{\nabla \times \left(\frac{1}{\mu v \sigma} \nabla \times \mathcal{B} \right)}{\sigma c} = -\frac{\partial \mathcal{B}}{\partial c} + \frac{\nabla \times \left(\mathcal{U} \times \mathcal{B} \right)}{\sigma c}$$

where
$$\eta = \frac{1}{\mu_0 \sigma}$$
 magnetic diffusivity

INDUCTION EQN

Approximations to get-here are "MHD approximations"

- aga solely for B. Given recogy, describes evolution of B Eliminard Hechz field (and current); have not used equation for charge B is primary total -, can calculate if from TxB - can carcular E from Ohmilan E= from uxB -> can calcular change from pe= TXE [x] = 0 is just a constraint It is preserved by the induction egn! V. { induction iso} ... 2 (V.B) = V. (cuts...) = 8 LORENTZ FORCE (MGAIN) If the induction ego were the only addition to hydrodynamin, then life would be sweet and topy! s the induction equation tells us how the relocity to Hd u ach on the magnetic field Conversely, the magnetic held can act back on that velocity field macroscopically twough the Lorentz force , It is this "anality" that creates all the is subtle "fun" in MID! F=Pe E + j x B , sometimes just this Effectionsking magnetice force but = "Loans fore" (Laplace force" if for (when comyn's wire) I (E. TrE), E But /pe E = EoMo (BL) = EoMo (1) 1 8 × 8 × 8 / if non-relativistic

	> for non-reachistic, macroscale borante force
	E & J × B
	00
	For I (VXB) XB
	This yours stoke the body forces on the RHS of the momentum equation in the Namer-Stokes eggs:
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	pressure , - PVIg + JxB
	D Add
	afferion + p \(\frac{1}{2}y + \frac{1}{3}\(\frac{1}{3}\)
111.74 111.74 111.111.111.74 11.74 11.14 11.1 11.1	
	•
e a alla deleta del deleta es a secució de ser se a suscessiones.	

Sunney of MID tyuchon Electrically-coolductory fund money of reloaty y (x,t) in a magnetic tread B(x,t) in the limit |u| ecc $\frac{D\rho}{Dt} + \rho(\underline{y},\underline{u}) = 0'$ Community ega (cons of man) Construction of PDU = - Pp - p For 4 ([EXB) XB momentum + m/ F'u + 17 (T.4) GNEMAHONET PT DS = - Z (hear (go) (5 = entropy per unit mass; I = energy loss function (P[De-PDE] = - I e = word energy constitution alarons eg laced gas law: P= RpT sothernd: T= To adiabatic: p=p DB + Dx (AxB) + T DrB Inductor Equeron V.B = Ø Magnetic constraint

Validity of Eggs / assumptions made:
Plasma breated as continuum - longhocale of vanations much larger than internal plasme lengths e.g. ion gyroradius
Planne in memodynamic equilibrium un dishbusion truchino close lo Maximellia -> timescale >> collision times lengthscales >> mea fre paths
Constants 1, µ, b are uniform; isotropic
Egns are until in an interhal frame
eclahoshe effects are ignored: flow-speed (8 sand-speed 8 Alphen-speed) << 6
Simple form of Ohmi Law is OK: j= or (E+uxB)
Plasma is breated as a single fluid: astrophysics -> high temp -> ionised: electron are free Plasma (ionised gas) = electron (-), ions (+), newbrah obvs huge # of electron / ions -> statished approach -> PDE of dushis first or devisity of particle -> VLASOV & ON Integrate / fate moments q") Vlasov over macroscale -> "relocaty" -> Equity for each species -> multiflued -> variously is "centre of mass" For fully -ionised plasmas, this level of complexity can be ignored

Incompassible equations Dy + JxB + MPig - (u.v)B - (v.v)B + 1V2B · (V) 4 + (T2 x

Solenorday field D.B=0 Consequences: , V.B =0 is the constraint of no magnetic monopoles , it's a commaint not really an equation V.B=0 initially => V.B=0 for all home 2 (Y.6) = 0 (Take diregence of induction V. 9 OB = VXYXB + VX(qVXB)} $\Rightarrow \frac{\partial}{\partial r} (\vec{V}.\vec{g}) = \vec{V}. (\omega \vec{n}) = \vec{0}$ Not easy to do as above in numerical schemes "HENING! Petrhaps bether way: Since V.B. - a can ALLANS express B as a CWI B = V x A since V. (VXX) = Ø A = VECTOR POTENTIAL only defined up to addition of a godient of a soular since A and A + Vp give same (since TX(A) = TX(A+TQ) since TX TQ=0) one common very of doing this is a POLOIDAL -TOROIDAL DECOMPOSITION ! B = Bp + BT = VXVX(PC) + VX(TC) P = P(x, t) T = T(x, t)[is any rector (eg. & in Caresian; in spherical

Insert in equations and solve for P, T insteed of

B > guarantes V.B=0

Notice this reduces calculation of B = (Bx, By, Bz) 3 components, to calculation of P, T 2 components. This is because not all 3 components of B are independent - they are connected by fig =0. Notice symmetry: cut of poloidal victor is to roidal tricine: Proper in 1 Cactestan. cur of toroidal rector is poloidal Contesião: B= PxT2 + Vx PxP2 + Bx(2) x Bp 7+ By (2) 9 (men frelos separately in Carasian!!) Sphenical: B= +xTx + VxVxPr = B+Bp Note: - to roudal rectors largent to spheres 1. Br =0 = con of pol rectors " 1. Tx Bp=8 Axisymmetric greats (perhaps most clear, useful usage) indeo of azimumd angle o P = P(r, o) T = T(r, o)Sph poka => $B_T = (0, 0, B_{fg})$ arimumal field only $B_{\phi} = -\partial T/\partial \phi$ $B_P = V \times (0, 0, A_{\phi})$ and tomad Ap = - 2P/00-= (Bp, Bro, Ø) no axisymm component

	2D Cartasian	
	B= (Bx (x,y,t), By (x,y,t), Ø)	
	3 = V × A(x,y,+) k	
	Compare to fluid streamfunction.	
.,,		
		:
		Modeled Lecture and Method for a constraint of a constraint of the Method Security of the constraint o
ett etkis hasia sasa etkis kissa etkis tahan etkis setti kan etkis setti kan etkis etkis etkis etkis etkis etk		
		A
e may accommission and the part of the contract of the magnificance.		
		entre de la companya
		a shin di sa an ana tamba shi shin shi shin shi shin shi shin shi shin shi

-) need boundary conditions for magnetic stuff just as you do for valoaty, temperature de

Consider a bounday, or introface, between two media, with normal A

medium 1 "long than Contour" (Amperian) nedium2

V. b = p or in witgen from TO OV = 0 D. ds = Ø for swike S of vol V

A pply to Gaussia pill box: hI Si I

(B. ds = (B. Ada 3) Sp

 $\int_{C} \underline{B} \cdot dS = \int_{C} \underline{\beta} \cdot \hat{\Omega}_{1} dS$

+ \(\begin{aligned} & \begin{

As has & combusion from Si as

 $\int_{S_1} \underline{\beta} \cdot \hat{\Delta_1} = S - \int_{S_2} \underline{\beta} \cdot \hat{\Delta_3} ds = 0$

But n, = -n,

 $= \int_{S} B_{1} \cdot \hat{\Omega}_{1} dS - \int_{S} B_{3} \cdot \hat{\Omega}_{1} dS = 0$

As ds -> or and since S, and S, are some size

$$\int_{S_{1}}^{B_{1}} \left(B_{1} \cdot \hat{\Omega}_{1} - B_{2} \cdot \hat{\Omega}_{3} \right) dS = 0$$

$$\Rightarrow B_{1} \cdot \hat{\Omega}_{1} = B_{3} \cdot \hat{\Omega}_{3}$$

ie the normal component of the magnetic field is

This is often within as a JUMP CONDITION

So use on do all me same again for , and get

What abow tangential componers?

Consider the Amperien "long thin" contour.

As the length of the short side, > 8, then ds > 0
and the integral on the left had ade > 0

I.e. the flux through the shorting suface > 0

(assuming time dear amain finite)

Ø €.de =- (En. dl. - SEn. db. + SET. dla + SEgr. dh Los on hop ≥ E₁, = Ø Tangental component of E are continuous. Vectorally; as a jump | Ex À | = Ø using Ohm's Law, je o (E + 4xb) $\left[\left(\frac{\hat{J}}{\sigma} - / \Psi \times B\right) \times \hat{\Lambda}\right] = \emptyset$ Nohre for fixed position (but possibly monny) Two - stundu: U thin ((4 xB) x n) = & (identically, not abc) 17/2 xx = 8 ronduc hnig i.e. If there is a jump in 6 between media JT/0, = JT/02) = jump in current tangential by release sizes of corductivity

4/. Amplere's Law: Apply to "long thin contour" $\int \nabla \times B \cdot ds = \int \int ds$ If no swace ourself $\left[\frac{B}{M}\times\hat{n}\right]=0$ tangential $\frac{B}{M}$ is If p changes between media Nohce a lot of the times, we assume that the permeasility and conductivity are Essentially gized (another) to ma ho change