統測數學 Exercise 2

- ·、單選題:(100 小題,每格 1 分,共 100 分)
- **1.** ()如圖,已知 $A \cdot B$ 兩城市在平面上坐標位置為 $A(-5,4) \cdot B(7,10)$,今兩市市長想在兩 城市之間建造一條筆直的公路,其中公路上的任意一點到兩城市的距離相等,試求此公 路所在的直線方程式。

- (A) 2x + y + 9 = 0 (B) 2x + y 9 = 0 (C) 2x y 9 = 0 (D) 2x y + 9 = 0
- 2. ()已知直線通過點(2,3),斜率為4,則此直線方程式為 (A)4x-y-5=0 (B)x-4y+10=0(C) 4x + y - 11 = 0 (D) x + 4y - 14 = 0
-)已知直線通過兩點 $A(3,a) \cdot B(1,4)$,且此直線之斜率為3,則 a = (A)5**3.** ((B) 6 (C)8 (D)10
-)已知直線通過兩點 $A(1,2) \cdot B(1,5)$,則此直線之斜率為 4. ((A)1(B) 2 (C)0(D)不存在
-)已知直線通過兩點A(1,2)、B(3,6),則此直線之斜率為 **5.** ((A)1(B) 2 (C)3 (D)不存在
-)已知直線3x-4y+12=0,則此直線之圖形**不經過**第幾象限? **6.** (

- (A)— (B)— (C)— (D)—
- **7.** () 小克在天文雜誌上看到以下的資訊「可利用北斗七星斗杓的天璇與天樞這兩顆星來尋找 北極星:由天璇起始向天樞的方向延伸便可找到北極星,其中天樞與北極星的距離為天 樞與天璇距離的 5 倍。」今小克將所見的星空想像成一個坐標平面,其中天璇的坐標為 A(10,9)及天樞的坐標為B(8,12)。試求北極星C(x,y)所在的直線方程式。 北極星

- (A) 3x + 2y + 48 = 0 (B) 3x + 2y 48 = 0 (C) 3x 2y + 48 = 0 (D) 3x 2y 48 = 0
-) 設m < 0 ,直線y = mx + 5與|x| + |y| = 1的圖形恰交於一點,則m = 1**8.** (
 - $(A)1 \quad (B)-1 \quad (C)5 \quad (D)-5$

- **9.** () 設直線L過A(1,3)與B(2,12)兩點,則L的斜率為何? (A)5 (B)8 (C)9 (D)18
- **10.** () 試求與直線 2x-3y-7=0 平行之直線斜率為 $(A)\frac{3}{2}$ $(B)-\frac{3}{2}$ $(C)\frac{2}{3}$ $(D)-\frac{2}{3}$
- **11.** () 下列各直線方程式中,具有最大斜率的直線為 (A) $y = \frac{1}{3}x 1$ (B) y + 5 = -3(x 1) (C) $\frac{x}{2} + \frac{y}{3} = 1$ (D) 3x y + 1 = 0
- **12.** () 與直線x+2y+3=0垂直的直線之斜率為 (A) $-\frac{1}{2}$ (B)2 (C) $\frac{1}{2}$ (D)-2
- 13. () 直線過 A(-2,5), B(2,1) 兩點,其斜率為何? (A)0 (B)1 (C)-1 (D)不存在
- **14.** () 直線 L_1 的斜率為 $m_1 = \frac{4}{5}$,若 $L_1 // L_2$,則 L_2 的斜率 m_2 為 (A) $\frac{4}{5}$ (B) $-\frac{4}{5}$ (C) $\frac{5}{4}$ (D) $-\frac{5}{4}$
- **15.** ()已知直線 L 通過 A(2020,5) 、 B(2020,20) 兩點,則此直線方程式為何? (A) y=5 (B) x=2020 (C) y=20 (D) 5x+20y=2020
- **16.** () 直線L: 4x+3y=12和兩坐標軸所圍成的三角形面積為 (A)3 (B)6 (C)9 (D)12
- **17.** ()若直線L: ax+by+c=0的圖形如圖,則點P(ab,ac)在第幾象限?

- **18.** ()已知 k > 0,且直線 y = 2x + k 與點 (1,1) 之距離為 $\sqrt{5}$,則 k 之值為 (A) 3 (B) 4 (C) 5 (D) 6
- **19.** ()若直線 L: 3x + ky 4 = 0 的 y 截距為 8,則直線 L 的斜率為何? (A)-6 (B)- $\frac{1}{6}$ (C) $\frac{1}{6}$ (D)6
- **20.** ()已知三直線 $L_1 \, \cdot \, L_2 \, \cdot \, L_3$,其方程式分別為 $ax + 4y = 1 \, \cdot \, x by = 7 \, \cdot \, ax + by = 5$,若 $L_1 \, \cdot \, L_2$ 之交點為(3, -2),則 L_3 的斜率為何? (A) $-\frac{2}{3}$ (B) $-\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{3}{2}$
- **21.** () 已知直線 L: 5x 8 = 0,則 L 的斜率為何? (A) $\frac{8}{5}$ (B) $\frac{5}{8}$ (C) 0 (D) 不存在
- **22.** () 一直線上有兩點 $A(3,-1) \cdot B(5,5)$,則此直線之斜率為何? (A) $-\frac{1}{3}$ (B) $\frac{1}{3}$ (C) 1 (D) 3
- 23. () 平面上有三點 $A(2,4) \times B(a,0) \times C(-2,8)$,若此三點共線,則 a 之值為何? (A)5 (B)6 (C)7 (D)8
- **24.** ()已知過 $P(a,2) \cdot Q(1,a+3)$ 兩點之直線斜率為 -2,則 a 之值為何? (A)-3 (B)3 (C) $-\frac{1}{3}$ (D) $\frac{1}{3}$
- **25.** ()已知 $\triangle ABC$ 之三頂點 A(3,5)、B(4,-1)、C(-2,3),則 \overline{BC} 邊上的中線斜率為何? (A)1 (B)2 (C)3 (D)4
- **26.** ()已知A(2,1)、B(6,3)、C(k,5)三點在坐標平面上無法構成一個三角形,則k之值為何? (A)10 (B)12 (C)14 (D)18
- 27. () 如圖,有一3×3的方格,每格均是正方形,在不考慮斜率不存在之條件下,任意連其

中2點,則有多少種不同之斜率?

(A)8 (B)10 (C)15 (D)18

- **28.** ()已知直線L之斜率為2,x 截距為3。試問L與兩坐標軸所包圍三角形之面積為何? (A) $\frac{9}{4}$ (B) $\frac{9}{2}$ (C) 6 (D) 9
- **29.** () 如圖,已知 $A \times B$ 兩大城市在平面上坐標位置為 $A(-5,4) \times B(7,10)$,因兩城市人口數量龐大,為了紓解兩市市民往來交通問題,今兩市市長想在兩城市之間建造一條筆直的輕軌捷運,供民眾使用,試求此捷運路線所在的直線方程式。

(A) x-2y-13=0 (B) x+2y+13=0 (C) x+2y-13=0 (D) x-2y+13=0

- **30.** ()若 L 表直線 3x+4y+4=0,又 a 表 (1,2) 至 L 的距離,且 b 表與 L 平行之直線 6x+8y+4=0 至 L 的距離,下列敘述何者正確? (A) a=3 , a+b=3 (B) b=2 , $a+b=\frac{7}{5}$ (C) $b=\frac{2}{5}$, $a+b=\frac{17}{5}$ (D)以上皆非
- **31.** ()設直線L通過A、B兩點,若A點坐標為 $\left(3,\sqrt{2}\right)$,B點坐標為 $\left(5,\sqrt{2}\right)$,則L之斜率為何? (A) $\frac{1}{2}$ (B) $-\frac{1}{2}$ (C) 0 (D)不存在
- **32.** () 若 $A(0,3) \cdot B(-6,5) \cdot C(k,2)$ 三點共線,則 k = (A)3 (B) $\frac{3}{2}$ (C) -2 (D) $\frac{5}{2}$
- 33. () 若A(1,3)、B(-1,12)、C(7,4) 為坐標平面上三點,且D 為 \overline{BC} 之中點,則 \overrightarrow{AD} 的直線方程式為 (A)5x-2y+1=0 (B)5x+2y-11=0 (C)2x-5y+13=0 (D)2x+5y-17=0
- **34.** () 如圖,有四個線段 \overline{OA} 、 \overline{OB} 、 \overline{OC} 、 \overline{OD} ,試問:哪一線段的斜率最小?

(A) \overline{OA} (B) \overline{OB} (C) \overline{OC} (D) \overline{OD}

35. ()設 ABCDE 為正五角星(如圖),若 \overline{BE} 之斜率為 0,則 \overline{AC} 、 \overline{CE} 、 \overline{AD} 、 \overline{BD} 四個線段何者斜率最小?

(A) \overline{AC} (B) \overline{CE} (C) \overline{AD} (D) \overline{BD}

- **36.** () 設A(0,4)、B(a,1)、C(1,2) 三點共線,則a 之值為 $(A)\frac{3}{2}$ $(B)\frac{2}{3}$ (C)2 $(D)\frac{1}{2}$
- 37. ()已知 \overline{AB} 的斜率 $m_{\overline{AB}} = \frac{7}{2}$, \overline{CD} 的斜率 $m_{\overline{CD}} = \frac{x}{14}$,若 $\overline{AB} \perp \overline{CD}$,则x之值為 (A)2 (B)-2 (C)4 (D)-4
- 38. () 過點 A(3,5) 與 B(1,-1) 之直線 L 方程式為 (A) 3x-y+4=0 (B) 3x+y-4=0 (C) 3x-y-4=0 (D) 3x+y+4=0
- **39.** () 通過 A(3,5) 、 B(-3,5) 兩點的直線方程式為 (A) y=5 (B) y=4 (C) x=3 (D) x=-3
- **40.** () 斜率為 $\frac{2}{3}$,且 y 截距為-6的直線方程式為 (A) 2x+3y-18=0 (B) 2x-3y+18=0 (C) 2x+3y+18=0 (D) 2x-3y-18=0
- **41.** ()已知直線 L_2 通過點 (-3,5) 且與直線 $L_1: x-2y-3=0$ 垂直,則 L_2 的直線方程式為 (A) 2x+y-1=0 (B) 2x+y+1=0 (C) 2x-y+11=0 (D) 2x-y-11=0
- **42.** () 兩平行線 $L_1: 3x-4y-10=0$ 與 $L_2: 3x-4y-5=0$ 的距離為 (A)5 (B)3 (C)2 (D)1
- **43.** ()設 $A(3,3) \times B(-1,-5) \times C(6,0) \times P(8,-6)$,若直線 L 過 P 點且與 $\triangle ABC$ 相交,則下列何 值不可能是 L 之斜率? (A) $-\frac{5}{2}$ (B)-2 (C)-1 (D) $\frac{-1}{10}$
- 44. ()已知 $\triangle ABC$ 為直角三角形,其中 $\angle C = 90^\circ$,其三頂點坐標分別為 A(-1,5) 、 B(-3,1) 、 C(k-2,2) ,且 B 、 C 兩點在同一象限,則 k = (A) -2 (B) -1 (C) 0 (D) 2
- **45.** ()設 $A(3,-2) \cdot B(-1,-3)$ 以及直線 L:2x+3y+4=0,若直線 $L \, \overline{\bigcirc} \, \overline{AB}$ 於 P 點,則 $\overline{AP}:\overline{BP}$ 之值為何? (A)4:7 (B)3:5 (C)5:8 (D)2:3
- **46.** ()設直線L通過(3,4)與(9,-4)兩點,則原點(0,0)與直線L的距離與下列何者最接近? (A)4 (B)5 (C)16 (D)24
- **47.** () 由點(3,2)至直線3x+4y+8=0之距離等於 (A)6 (B)5 (C)4 (D)3
- **48.** ()已知 $\triangle ABC$ 中,頂點A的坐標為(-2,1),頂點B和頂點C位於直線2x+3y=12上,試求 \overline{BC} 邊上的高為 (A)12 (B)13 (C) $\sqrt{13}$ (D)24
- **49.** ()已知直線通過兩點 A(-1,2) 、 B(2,8) ,則此直線方程式為何? (A) 2x+y-12=0 (B) x+2y-3=0 (C) x-2y+14=0 (D) 2x-y+4=0
- **50.** ()下列選項,何者與直線 2x+5y+10=0垂直? (A) 2x+5y-10=0 (B) 2x-5y-20=0 (C) 5x+2y-10=0 (D) 5x-2y-20=0
- **51.** ()設L: 6x+8y-3=0為平面上一直線,則下列方程式中何者與L平行,且與L之距離為 $\frac{5}{2}$? (A) 3x+4y-28=0 (B) 3x+4y+11=0 (C) 6x+8y-19=0 (D) 6x+8y+19=0
- **52.** () 設 $\triangle ABC$ 中,頂點 A 的坐標為 (-2,1),頂點 B 和頂點 C 位於直線 2x + 3y 12 = 0 上,則 \overline{BC} 邊上的高為何? (A)12 (B)13 (C) $\sqrt{13}$ (D)24

- **53.** () 直線 L: 5x+8=0 的斜率為 (A) $\frac{5}{8}$ (B) $-\frac{5}{8}$ (C) 0 (D) 不存在
- **54.** ()設點 P(3,2)、直線 L:3x+4y+8=0,則點 P 到直線 L 之距離為何? (A)3 (B)4 (C)5 (D)6
- 55. ()設直線 $L_1: 5x 12y + 17 = 0$, $L_2: 5x 12y 9 = 0$,則 L_1 與 L_2 之距離為何? (A) $\frac{10}{13}$ (B) $\frac{20}{13}$ (C)2 (D)4
- **56.** ()已知點(3,k)與直線 L: 3x-y+1=0 的距離為 $\frac{\sqrt{10}}{2}$,則 k 之值為何? (A)5 或 15 (B)-5 或 10 (C)-9 或 3 (D)-4 或 6
- 57. ()已知平面上有一點 P(3,4)、一直線 L:3x-2y=5,則過 P 點且垂直 L 之直線方程式為何? (A)3x-2y-1=0 (B)3x+2y-17=0 (C)2x-3y+6=0 (D)2x+3y-18=0
- **58.** () 平面上兩直線 $L_1: ax-6y=5a-3$, $L_2: 2x+(a-7)y=29-7a$,若 $L_1//L_2$,則 a 之值為何? (A)1 (B)2 (C)3 (D)4
- **59.** () 求通過(2,7) 且垂直 L_2 : 4x+3y+1=0的直線方程式為 (A) 3x+4y-34=0 (B) 3x-4y+22=0 (C) 4x-3y+13=0 (D) 4x+3y-29=0
- **60.** ()已知直線 $L_1 \cdot L_2$ 方程式分別為 $L_1 : 4x + (m-1)y = 15 \cdot L_2 : (2m+3)x + 6y = 7 \cdot 且 L_1 垂直 L_2$, 則m之值為何? (A) $-\frac{13}{7}$ (B) $-\frac{7}{6}$ (C) $-\frac{3}{7}$ (D) $-\frac{3}{8}$
- **61.** ()設點 A 坐標為(1,-2),且 $B \cdot C$ 兩點在直線 L: 3x-4y=1 上,若線段 \overline{BC} 的長為 3,則 $\triangle ABC$ 的面積為何? (A)1 (B)2 (C)3 (D)6
- **62.** () 設直線 L_1 的斜率為-2且通過點(0,-4),又直線 L_2 的x、y軸截距分別為1、2,則下列 敘述何者正確? (A) L_1 與 L_2 相交於點(2,-8) (B) L_1 與 L_2 相交於點(4,-6) (C) L_1 與 L_2 平行且兩線相距 $\frac{2}{\sqrt{5}}$ (D) L_1 與 L_2 平行且兩線相距 $\frac{6}{\sqrt{5}}$
- **63.** ()已知直線 $L_1: 3x-4y-3=0$ 、 $L_2: 2x-3y-13=0$ 、 $L_3: x+y+1=0$,求 L_2 和 L_3 之交點到直線 L_1 之距離為何? (A)1 (B)2 (C)3 (D)4
- 64. ()已知直線 L: 3x-4y-12=0 及 A(0,0) 、 B(6,-3) 兩點 。若 d_1 為點 A 到直線 L 的距離 , d_2 為點 B 到直線 L 的距離 ,則下列何者正確 ? (A) $d_1=\frac{13}{5}$ (B) $d_1>\frac{13}{5}$ (C) $d_2=\frac{18}{5}$ (D) $d_2<\frac{18}{5}$
- **65.** () 平面上 L_1 : $y = \frac{-3}{4}x + \frac{1}{4}$ 與 L_2 : 6x + 8y = -13為兩直線方程式,則 L_1 與 L_2 的距離為何? (A) $\frac{6}{5}$ (B) $\frac{3}{2}$ (C) 3 (D) 12
- 66. () 通過兩直線 3x-y-6=0 與 x+3y-2=0 的交點並與直線 x+y-1=0 平行的直線方程式為何? (A) x+y-2=0 (B) x-y+2=0 (C) x+y+2=0 (D) x-y-2=0
- 67. ()已知平面上直線 L 通過點 (0,1) ,且與直線 2x+4y-7=0 垂直,則 L 之方程式為何? (A) x+2y-2=0 (B) 2x-y+1=0 (C) x-2y+2=0 (D) 2x+y-1=0
- **68.** () 如圖,已知 $A \times B$ 兩城市在平面上坐標位置為 $A(-3,2) \times B(3,4)$,今兩市市長想在兩城市 之間建造一條筆直的公路,其中公路上的任意一點到兩城市的距離相等,則此公路所在 的直線方程式為

(A)
$$3x - y + 3 = 0$$
 (B) $3x - y - 3 = 0$ (C) $3x + y + 3 = 0$ (D) $3x + y - 3 = 0$

- **69.** ()若點P(-1,a)在第二象限,且點P到直線L: 3x+4y+3=0的距離為4,則a=(A)2 (B)3 (C)4 (D)5
- **70.** ()已知直線 L_1 的斜率為 $\frac{7}{5}$,若直線 L_2 與 L_1 平行,則直線 L_2 的斜率為何? (A) $\frac{7}{5}$ (B) $\frac{5}{7}$ (C) $-\frac{5}{7}$ (D) $-\frac{7}{5}$
- 71. ()過點(1,-2)且垂直3x+2y-5=0的直線方程式為 (A)3x+2y+1=0 (B)3x-2y+7=0 (C) 2x+3y+4=0 (D)2x-3y-8=0
- 72. ()設兩直線 $L_1: \frac{x}{3} + \frac{y}{4} = 5$ 、 $L_2: \frac{x}{3} + \frac{y}{4} = 10$,則 L_1 與 L_2 之距離為(提示:先將 L_1 、 L_2 化為一般式) (A)5 (B)6 (C)10 (D)12
- **73.** () 如圖,設 A(3,3)、B(-1,-5)、C(6,0)、P(8,-6),若直線 L 過 P 點且與 $\triangle ABC$ 相交,則下列何值**不可能**是 L 之斜率?

(A)
$$-\frac{5}{2}$$
 (B) -2 (C) -1 (D) $-\frac{1}{10}$

- **74.** ()已知 L_1 、 L_2 為與直線 3x+4y=0 平行的二直線 。若 L_1 過點 (-29,23) , L_2 過點 (31,23) , 則此二平行線間的距離為何? (A) 23 (B) 36 (C) 48 (D) 60
- **75.** ()直線方程式3x+5=0的斜率為何? (A)0 (B)不存在 (C)-6 (D)6
- 76. ()已知直角三角形的三個頂點為 A(1,2) 、 B(4,7) 、 C(a,5) ,且 \overline{BC} 為斜邊,則 a=? (A) -4 (B) -3 (C) 3 (D) 4
- 77. () 已知 3x + 4y = 12,則 $\sqrt{(x-2)^2 + (y-4)^2}$ 之最小值為何? (A) $\sqrt{3}$ (B)2 (C)3 (D) $\sqrt{7}$
- **78.** ()若直線 $L_1: y = mx + b$ 與直線 L: 2x + 3y = 1 平行,且直線 L_1 與 x 軸的交點之 x 坐標為 2,則下列何者正確? (A) $m + b = \frac{2}{3}$ (B) m + b = 6 (C) $m \times b = \frac{2}{3}$ (D) $m \times b = 9$
- 79. ()已知 $a \cdot b$ 為實數。若直線 2x + ay + b = 0 通過 10x 2y + 5 = 0 與 6x y + 7 = 0 之交點,且斜率為 2 ,則 a + b = (A) -12 (B) -10 (C) 10 (D) 12
- **80.** ()已知直角坐標平面上有三點 $A(3,1) \cdot B(5,-2) \cdot C(-7,3)$,求點 A 到直線 \overrightarrow{RC} 的距離。

- (A)1 (B)2 (C)3 (D)4
- 81. () 設點(a,2)落在(1,3)與(2,5)兩點的連線上,則a=(A)-1 (B)-0.5 (C)0.5 (D)1
- **82.** ()已知點 $A(1,3) \cdot B(2,-4) \cdot C(0,-4) \cdot D(-2,-1)$,則下列哪一條線段斜率最小? (A) \overline{AB} (B) \overline{BC} (C) \overline{CD} (D) \overline{DA}
- **83.** ()設線段 AB 的兩端點為 A(-1,3) 與 B(1,7) ,若直線 x+ay+b=0 為 \overline{AB} 的垂直平分線,則 a+b 之值等於 (A)7 (B)-7 (C)8 (D)-8
- **84.** ()已知平面上兩點 $A(1,-2) \cdot B(3,4)$,則線段 \overline{AB} 之垂直平分線方程式為何? (A)x-3y+5=0 (B)x-3y-5=0 (C)x+3y+5=0 (D)x+3y-5=0
- **85.** ()直線 L: ax by = -3 ($ab \neq 0$) 的圖形**不經過**第二象限,則 (A)a > 0,b > 0 (B)a < 0,b < 0 (C)a > 0,b < 0 (D)a < 0,b > 0
- **86.** () 平面上四點 A(1,1)、B(a,2)、C(b,-1)、D(0,-2),其中 b 為正數,若 \overline{AB} 與 \overline{CD} 互相平行,且 \overline{BD} 與 \overline{AC} 互相垂直,求 a+2b 之值為何? (A)7 (B)8 (C)9 (D)10
- **87.** ()已知 m_1 與 m_2 分別為直線 L_1 與直線 L_2 的斜率,且 m_1 、 m_2 皆不為0。若直線 L_1 通過第一、三象限,而直線 L_2 與直線 L_1 垂直,則點 (m_1,m_2) 落在第幾象限? (A)一 (B)二 (C)三 (D)四
- **88.** ()設 *ABCDE* 是坐標平面上一個正五邊形,它的中心與原點重合,且頂點 *E* 在 *y* 軸的負向上 (如圖所示),試問通過下列各線段的直線中,斜率最小者為何?

- (A) \overline{AB} (B) \overline{BC} (C) \overline{CD} (D) \overline{DE}
- **89.** ()若坐標平面上三點 A(-2,6)、 B(10,2)、 C(t,t+4) 在同一直線上,則 t 之值為何? (A) 1 (B) -1 (C) 2 (D) -2
- 90. ()已知直線 L 過點 (1,5) ,且垂直於直線 2x-3y+6=0 ,則 L 與 x 軸的交點坐標為何? (A) $\left(\frac{13}{3},0\right)$ (B) $\left(-\frac{13}{3},0\right)$ (C) (-3,0) (D) (0,-3)
- 91. ()已知直線 L之x 截距為6,y 截距為3,則下列敘述何者正確? (A)直線 L之斜率大於零 (B)直線 L之方程式為x+2y=12 (C)直線 L之方程式為2x+y=12 (D)直線 L之方程式 為x+2y=6
- 92. ()設A(3,5)、B(5,-1)、C(-1,-1),若直線L通過A點,且將 $\triangle ABC$ 平分為等面積的兩個部分,則L方程式為 (A)6x+y+13=0 (B)6x-y-13=0 (C)6x+y-13=0 (D)6x-y+13=0
- 93. ()在坐標平面上,若直線L通過兩點A(2,a)、B(a,5),且直線L的斜率為2,則a=(A)-2 (B)1 (C)2 (D)3
- **94.** () 求過坐標平面上兩點(0,0)、(-1,5)之直線的斜率為何? (A)-5 (B) $\frac{-1}{5}$ (C) $\frac{1}{5}$ (D)5
- 95. () 若坐標平面上三點A(-2,6)、B(10,2)、C(a,a+4)在同一直線上,則a=(A)-2 (B)-1 (C)1 (D)2

- 96. ()已知平面上三點A(2,1)、B(1,3)、C(4,k),若線段 \overline{AB} 及 \overline{AC} 垂直,則k=(A)1 (B)2 (C)3 (D)4
- 97. ()已知直角坐標平面兩點 A(-4,-1)、 B(-5,4) ,且 C 為線段 \overline{AB} 上的點。若 O 為原點,則下列何者可能為 \overrightarrow{OC} 的直線方程式? (A) y=-2x (B) y=-x (C) y=0.2x (D) y=x
- 98. () 設 P(-2,4) 與 Q(2,-2) ,若直線 L: ax+3y+b=0 為 \overline{PQ} 的垂直平分線,求 a+b 之值為何? (A) $-\frac{15}{2}$ (B) -5 (C) -1 (D) $\frac{3}{2}$
- 99. ()若直線 24x-7y=53 與二直線 x=0 、 x=7 分別交於 A 、 B 二點,則線段 \overline{AB} 的長度為何? (A) $\frac{24}{7}$ (B) $\frac{53}{7}$ (C) 25 (D) 53
- **100.** ()已知直線 $L_1: y = m_1 x + b_1$ 及直線 $L_2: y = m_2 x + b_2$,如圖所示,則下列敘述何者正確?

(A) $m_1 < 0 \perp b_1 > 0$ (B) $m_1 > 0 \perp b_1 < 0$ (C) $m_2 < 0 \perp b_2 > 0$ (D) $m_2 > 0 \perp b_2 < 0$