Le	tre 0
Co	n generalize to regression easily up a Squared error loss.
[Var	e difficult to generalize to other lower
	Can do Gradient Boosting.
Sh	rinkase:
	$\hat{f}(x) = Sign\left(\frac{B}{b}, b\right)$ $\hat{f}(x) = \frac{B}{b} \cdot b \cdot A$ $\hat{f}(x) = \frac{B}{b} \cdot b \cdot A$
	$f(x) = Sign \left(\sum V x_b + f(x) \right)$
	b=1
Kerv	nel Regnession
For	regression wanted to model E[Y X=X]
V) app to do this:
	(1) linear respian
	$E[Y X=X] \approx XB$
U	2) paynomial regression
	E[Y X=x]~Bo+Bix+Bex2+~Bpxp
1 100	1/6[4]
	E[Y X=x] = mean of nearby ys

KNN regression: $f(x) = \sum_{n=1}^{N} \omega_n(x) y_n$ N = 1 $W_{h}(x) = \frac{1}{K} \mathbf{1} (\chi_{h} \in N_{k}(x))$ = { /K Xn ENk(x) else W(x) Note: weight isn't very smooth-maybe use Smoother weights? This is called Kernel Smoothing (regression) Defu a Kernel is a function K $(i) : \mathbb{R}^{p} \to \mathbb{R}$ typically also assume [PPF of some RY] $(3) \int K(x) dx = 1$ (symmetric) (4) K(x) = K(-x)

KNN rels typ. have some "bandwidth" \mathbb{E}_{X} $\mathbb{E}_{X}(X) = \mathbb{E}_{X}(-XX^{2})$ $K_{g}(x) = \frac{1}{1 + \chi^{2}/\chi}$ the