

Art of Problem Solving 2007 USAMO

USAMO 2007

Day 1	April 24th
Day 1	April 24tii
1	Let n be a positive integer. Define a sequence by setting $a_1 = n$ and, for each $k > 1$, letting a_k be the unique integer in the range $0 \le a_k \le k - 1$ for which $a_1 + a_2 + \ldots + a_k$ is divisible by k . For instance, when $n = 9$ the obtained sequence is $9, 1, 2, 0, 3, 3, 3, \ldots$ Prove that for any n the sequence a_1, a_2, \ldots eventually becomes constant.
2	A square grid on the Euclidean plane consists of all points (m, n) , where m and n are integers. Is it possible to cover all grid points by an infinite family of discs with non-overlapping interiors if each disc in the family has radius at least 5?
3	Let S be a set containing $n^2 + n - 1$ elements, for some positive integer n . Suppose that the n -element subsets of S are partitioned into two classes. Prove that there are at least n pairwise disjoint sets in the same class.
Day 2	April 25th
4	An animal with n cells is a connected figure consisting of n equal-sized cells[1].
	A dinosaur is an animal with at least 2007 cells. It is said to be <i>primitive</i> it its cells cannot be partitioned into two or more dinosaurs. Find with proof the maximum number of cells in a primitive dinosaur.
	(1) Animals are also called <i>polyominoes</i> . They can be defined inductively. Two cells are <i>adjacent</i> if they share a complete edge. A single cell is an animal, and given an animal with n cells, one with $n+1$ cells is obtained by adjoining a new cell by making it adjacent to one or more existing cells.
5	Prove that for every nonnegative integer n , the number $7^{7^n} + 1$ is the product of at least $2n + 3$ (not necessarily distinct) primes.
6	Let ABC be an acute triangle with ω , S , and R being its incircle, circumcircle, and circumradius, respectively. Circle ω_A is tangent internally to S at A and tangent externally to ω . Circle S_A is tangent internally to S at S and tangent internally to S at S and tangent internally to S at S and S are S and S are S and S and S and S and S and S and S are S and S and S and S and S are S and S and S and S are S and S and S and S and S are S and S and S and S and S are S and S and S and S are S and S and S and S and S are S and S and S and S are S are S and S are S and S are S are S are S and S are S and S ar
	$8P_AQ_A \cdot P_BQ_B \cdot P_CQ_C \le R^3 ,$

www.artofproblemsolving.com/community/c4505

Contributors: N.T.TUAN, rrusczyk

Art of Problem Solving 2007 USAMO

with equality if and only if triangle ABC is equilateral.

These problems are copyright © Mathematical Association of America (http://maa.org).

www.artofproblemsolving.com/community/c4505 Contributors: N.T.TUAN, rrusczyk