Part. 1. Statistiques mathématiques : Estimation et tests

K. Meziani, IASD

Table des matières

Plan Partie 1

- 2 Estimation paramétrique
 - Chantillon
 - Statistique paramétrique
 - Qualité et comparaison des estimateurs
 - Loi asymptotique des estimateurs
- 3 Tests
 - Tests
 - 2 Tests asymptotiques
 - Intervalle de confiance
 - p-value

2.1. Échantillon

Matériel de départ : données collectées à partir d'une partie d'une population (de différentes tailles et nature.)

Echantillon : point de vue "Applications"

Suite (x_1, \dots, x_n) finie d'observations/données au cours d'une expérience.

En statistiques descriptives: (x_1,\cdots,x_n) est appelée série statistique

Echantillon : point de vue "Mathématiques"

Suite (X_1, \dots, X_n) finie de variables aléatoires.

 \bigcirc Dans le modèle le plus simple, les variables X_1, \dots, X_n sont **i.i.d.**, **indépendantes et identiquement distribuées**, de même loi F inconnue.

Objectif : estimer une loi inconnue (ou inférer au sujet d'une loi inconnue) $\frac{1}{2}$ partir d'un échanillon X_1, \dots, X_n i.i.d. de même loi F inconnue. On note

$$X_i \stackrel{i.i.d}{\sim} F$$

2.2. Statistique paramétrique

Dans ce cours, F connue à un paramètre $\theta \subseteq \mathbb{R}^r$ près. On parle de statistique paramétrique.

Modèle statistique (paramétrique)

Soit $r \in \mathbb{N}^*$,

$$\{F_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^r\},\$$

Hypothèse d'identifiabilité

Pour tout θ , $\theta' \in \Theta$

$$F_{\theta}(\cdot) = F_{\theta'}(\cdot) \Rightarrow \theta = \theta'.$$

Exemple : (Lancer pièce de monnaie) On peut modéliser l'expérience par une loi de Bernouilli de paramètre θ :

$$F := F_{\theta} = \mathcal{B}(\theta)$$
 où $\theta \in [0,1]$

Estimation statistique

Estimateur du vrai θ^*

Un estimateur de la vrai valeur θ^* est construit à partir d'un échantillon (X_1,\cdots,X_n) et est noté

$$\widehat{\theta}_n := \widehat{\theta}_n(X_1, \cdots, X_n)$$

Estimateur du maximum vraissemblance

- La vraissemblance est la loi jointe de (X_1, \dots, X_n)
- Pour un echantillon i.i.d de loi f_{θ} , la vraissemblance est

$$L(X_1,\cdots,X_n,\theta)=f_{\theta}(X_1)f_{\theta}(X_2)\cdots f_{\theta}(X_n)$$

ullet Pour un echantillon donnée, **l'estimateur du maximum de vraissemblance** $\widehat{ heta}$ maxime la vraissemblance en θ

$$\widehat{\theta} = \arg\max_{\theta \in \Theta} L(X_1, \cdots, X_n, \theta)$$

<u>Remarque</u> Il existe d'autres estimateurs célèbres : estimateur des moindres carrés, estimateur des moments,···

Quelques estimateurs "classiques"

Estimateurs classiques $\widehat{\theta}$

• Un estimateur de $\theta = E(X)$ est

$$\widehat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X}_n.$$

• Un estimateur de $\theta = V(X)$ est

$$\widehat{\theta}_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = s_X^2.$$

• Un estimateur de $\theta = Cov(X, Y)$ est

$$\widehat{\theta}_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)(Y_i - \overline{Y}_n) = s_{X,Y}.$$

2.3. Qualité et comparaison des estimateurs

- Qu'est-ce qu'un bon estimateur?
- ightarrow Intuitivement, un estimateur est bon, s'il est proche de la vraie valeur du paramètre.
- Difficulté : un estimateur est une variable aléatoire:
- \rightarrow La notion de proximité peut avoir plusieurs interprétations.

Biais

Biais

Un estimateur $\widehat{\theta}_n$ de θ est sans biais si

$$E[\widehat{\theta}_n] = \theta.$$

i.e. en moyenne $\widehat{\theta}_n$ est égal à θ .

 \otimes $E[\widehat{\theta}_n] \neq \theta$, $\widehat{\theta}_n$ est dit "biaisé".

Remarques:

- \overline{X} est un estimateur sans biais de la moyenne.
- s^2 est un estimateur biaisé de la variance.
- Un estimateur sans biais de la variance est

$$s_{X_C}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Consistance

Consistance

Un estimateur $\widehat{\theta}_n$ de θ est **consistant** si

$$\widehat{\theta}_n \xrightarrow[n \to +\infty]{P_{\theta}} \theta.$$

i.e. pour un n très grand $\widehat{\theta}_n$ est égal à θ .

Remarques:

- \bullet \overline{X} est un estimateur consistant de la moyenne.
- s_X^2 est un estimateur consistant de la variance.

Est-ce suffisant pour juger de la qualité d'un estimateur?

Consistance

Si a_n une suite déterministe arbitraire telle que $a_n \to 1$ alors

$$a_n\widehat{\theta}_n \xrightarrow[n \to +\infty]{P_{\theta}} \theta.$$

- Pas assez informative pour nous guider dans le choix d'estimateurs.
- Les estimateurs non consistants doivent être avec certitude exclus.

Biais

Valoir en moyenne le bon paramètre n'est pas suffisant si grande variance.

Risque quadratique d'un estimateur

Risque quadratique

Risque quadratique (erreur moyenne quadratique) de $\widehat{\theta}_n$ au point $\theta \in \mathbb{R}$

$$R_n(\theta, \widehat{\theta}_n) = E[(\widehat{\theta}_n - \theta)^2].$$

Mesure la distance entre $\widehat{\theta}_n$ et un θ .

Structure du risque : biais et variance

$$R_n(\theta, \widehat{\theta}_n) = \underbrace{\left(E[\widehat{\theta}_n] - \theta\right)^2}_{\text{terme de biais}} + \underbrace{Var\left[\widehat{\theta}_n\right]}_{\text{terme de variance}}.$$

Discussion

Discussion

- Un bon critère est le risque. Ainsi, un "bon" estimateur fera le bon "équilibre" entre le biais et la variance.
- Un estimateur sans biais peut être moins efficace qu'un estimateur biaisé.
- Tous les estimateurs raisonnables sont asymptotiquement sans biais.
- Privilégier la comparaison asymptotique d'estimateurs.

2.4. Loi asymptotique des estimateurs

Théorème important

Lorsqu'un estimateur est **consistant**, on peut montrer sous certaines hypothèses

$$\sqrt{n}\left(\widehat{\theta}_n - \theta\right) \overset{Loi_{\theta}}{\underset{n \to +\infty}{\longrightarrow}}$$
 Loi normale centrée.

3. Introduction

Détection de missiles

Une des premières applications de la théorie des tests : problème militaire de détection de missiles à l'aide de radar.

 \mathcal{H}_0 : L'écho de radar est "grand" si un missile est présent.

 \mathcal{H}_1 : L'écho de radar est "petit" dans le cas contraire.

3.1. Test

Test

Un **test** \mathcal{H}_0 vs \mathcal{H}_1 est une règle qui, pour tout échantillon donné $\mathcal{X}_n = (X_1, \cdots, X_n)$, dit si l'on rejette ou non \mathcal{H}_0 . Pour cela, on définit une **région de rejet** R telle que

- $\mathcal{X}_n \in R$ on rejette \mathcal{H}_0 .
- $\mathcal{X}_n \notin R$ on ne rejette pas \mathcal{H}_0 .

Risques

Risque de première espèce

Probabilité de rejetter \mathcal{H}_0 alors que \mathcal{H}_0 est vraie. Rejet sans raison de \mathcal{H}_0 : un missile est présent (\rightarrow dangereux).

Risque de seconde espèce

Probabilité de ne pas rejetter \mathcal{H}_0 alors que \mathcal{H}_0 est fausse. Fausse alerte missile (\rightarrow moins grave).

Détection de missiles

Choisir de R? Minimiser les deux risques simultanément.

Problème:

- Minimiser risque de première espèce

 ⇔ choisir R aussi petit que possible.
- Minimiser risque de seconde espèce
 ⇔ choisir R aussi grand que possible.

Risques

Risque de première espèce

Probabilité de rejetter \mathcal{H}_0 alors que \mathcal{H}_0 est vraie. Rejet sans raison de \mathcal{H}_0 : un missile est présent (\rightarrow dangereux).

Risque de seconde espèce

Probabilité de ne pas rejetter \mathcal{H}_0 alors que \mathcal{H}_0 est fausse. Fausse alerte missile (\rightarrow moins grave).

Approche Neyman- Pearson

1. On fixe une borne $\alpha \in]0,1[$ pour le risque de première espèce :

Risque de première espèce $\leq \alpha$, avec α petit (1%, 5% et 10%).

On dit que le test est de niveau α .

2. Ayant borné/fixé le risque de première espèce, il est naturel de chercher à minimiser le risque de seconde espèce.

Exemple : \mathcal{H}_0 : $\theta = 0$ contre \mathcal{H}_1 : $\theta \neq 0$

3.2. Tests asymtotiques

Test asymptotique d'hypothèse

Un **test asymptotique d'hypothèse** \mathcal{H}_0 est une règle qui, pour tout échantillon donné $\mathcal{X}_n = (X_1, \cdots, X_n)$, dit si l'on rejette ou non \mathcal{H}_0 . On fixe une borne $\alpha \in]0,1[$ pour

 $\lim_{n\to\infty}$ Risque de première espèce $\leq \alpha$, avec α petit.

3.3. Intervalle de confiance

Intervalle de confiance de niveau $1-\alpha$ pour θ

Un ensemble aléatoire $\mathcal{C}(\mathcal{X}_n)\subseteq \mathbb{R}^r$ tel que pour tout $\theta\in\Theta$

Probabilité(
$$\theta \in \mathcal{C}(\mathcal{X}_n)$$
) $\geq 1 - \alpha$.

Intervalle de confiance de niveau asymptotique $1-\alpha$ pour θ

Un ensemble aléatoire $\mathcal{C}(\mathcal{X}_n)\subseteq\mathbb{R}^r$ tel que pour tout $\theta\in\Theta$

$$\lim_{n\to\infty}$$
 Probabilité $(\theta \in \mathcal{C}(\mathcal{X}_n)) \geq 1 - \alpha$.

Remarque: Sous R, la commande confit() retourne un intervalle de confiance à 95%.

3.4. *p-value*

On résume souvent un test à sa *p-value*. (Quel niveau de test faudrait-il pour que l'intervalle de confiance contienne la valeur d'intérêt?)

p-value

Pour un échantillon \mathcal{X}_n fixé et un test donné, la *p-value* du test est le seuil α^* tel que pour tout

- $\alpha > p$ -value α^* on rejette \mathcal{H}_0 .
- $\alpha < p$ -value α^* on ne rejette pas \mathcal{H}_0 .

Interprétation: La p-value peut être comprise comme l'erreur de première espèce minimale que l'on est prête à faire pour rejeter \mathcal{H}_0 .

p-value en pratique

Les différents logiciels donnent la **p-value** du test demandé qui permet de conclure sur le résultat d'un test statistique.

En comparant à seuil s de référence choisi (traditionnellement s=5%)

- Si la **p-value** < s (il faut un risque de première espèce petit pour rejeter \mathcal{H}_0), on rejette l'hypothèse nulle en faveur de l'hypothèse alternative. Le test est déclaré "statistiquement significatif".
- Si la **p-value**> s (il faut un risque de première espèce très grand pour rejeter \mathcal{H}_0), on ne rejette pas l'hypothèse nulle, et on ne peut rien conclure quant aux hypothèses formulées.

Exemple du test de Shapiro

Tirer au hasard 100 valeurs selon une loi normale $\mathcal{N}(0,1)$.

```
set.seed(2021)
X=rnorm(100,0,1)
```

Test de Shapiro: Commande sous R shapiro.test()

$$\mathcal{H}_0$$
: $x \sim \mathcal{N}(0,1)$ v.s. \mathcal{H}_1 : $\overline{\mathcal{H}_O}$.

```
##
## Shapiro-Wilk normality test
##
## data: X
## W = 0.98262, p-value = 0.2116
```

shapiro.test(X)

 \Rightarrow grande p-value, on ne rejette pas \mathcal{H}_0 , l'echanillon X est issu d'une $\mathcal{N}(0,1)$.

Ouvrir Rstudio et ouvrir le fichier Participant1.Rmd

Question 1: Tirer au hasard un échantillon Y de 100 valeurs selon une loi uniforme $\mathcal{U}(0,1)$ (commande runif()). (Mettre une seed)

Question 1: Tirer au hasard un échantillon Y de 100 valeurs selon une loi uniforme $\mathcal{U}(0,1)$ (commande runif()). (Mettre une seed)

```
set.seed(2021)
Y=runif(100,0,1)
```

Question 2: Y est-il issu d'une loi normale $\mathcal{N}(0,1)$? (Test de Shapiro (commande shapiro.test()))

```
Question 2: Y est-il issu d'une loi normale \mathcal{N}(0,1)? (Test de Shapiro (commande shapiro.test()))
```

```
shapiro.test(Y)
```

```
##
## Shapiro-Wilk normality test
##
## data: Y
## W = 0.93204, p-value = 6.513e-05
```

 \Rightarrow petite p-value, on rejette \mathcal{H}_0 , l'echanillon Y n'est pas issu d'une $\mathcal{N}(0,1).$