SSC0951 Desenvolvimento de Código Otimizado

Atividade 2 Planejamento de Experimento

Nome: Gabriel Van Loon Bodê da Costa Dourado Fuentes Rojas

Alberto Campos Neves

1. Introdução e resultados da prática 1

Nesta prática iremos analisar a influência de cada métrica utilizada na prática anterior no algoritmo de multiplicação de matrizes. Para isso vamos primeiro relembrar quais foram estes resultados.

Experimento	Dimensão <i>N</i>	Técnica <i>U</i> ou <i>I</i>	L1-dcache loads	L1-dcache loads-misses	branch- instructions	branch- misses
1	10¹	U	800e3 + 2e3	48e3 + 3e3	524e3 + 2e3	16,2e3 + 0,2e3
2	10²	U	20.730e3 + 0,2e3	210e3 + 5e3	1.190e3 + 2e3	18e3 + 0,2e3
3	10³	U	19.370e6 + 0,4e6	1.260e6 + 0,8e6	257.410e3 +24e3	1.310e3 + 2e3
4	10¹	I	810e3 + 20e3	45e3 + 2e3	520e3 + 10e3	16,3e3 + 0,4e3
5	10²	I	23.427e3 +1e3	183e3 + 2e3	2.985e3 + 1e3	28,3e3 + 0,1e3
6	10³	I	220.661e5 + 7e5	134e6 + 4e6	20.463e5 + 0,4e5	127e4 + 0,7e4

Tabela 1 - Resultados obtidos na prática 1. As siglas na coluna técnica representam os métodos de Loop Interchange (I) e Loop Unrolling (U).

Nosso interesse neste projeto será apenas nos experimentos de número 2,3,5 e 6 em que iremos utilizar a técnica de planejamento conhecida como *Planejamento Fatorial*.

Para isso vamos adaptar a tabela anterior para a seguinte:

Experimento	Dimensão <i>N [A]</i>	Técnica <i>U</i> ou <i>I [B]</i>	L1-dcache loads	L1-dcache loads-misses	branch- instructions	branch- misses
2	10² [-1]	U [-1]	20.730e3 + 0,2e3	210e3 + 5e3	1.190e3 + 2e3	18e3 + 0,2e3
3	10³ [+1]	U [-1]	19.370e6 + 0,4e6	1.260e6 + 0,8e6	257.410e3 +24e3	1.310e3 + 2e3
5	10² [-1]	I [+1]	23.427e3 +1e3	183e3 + 2e3	2.985e3 + 1e3	28,3e3 + 0,1e3
6	10³ [+1]	I [+1]	220.661e5 + 7e5	134e6 + 4e6	20.463e5 + 0,4e5	127e4 + 0,7e4

Tabela 2 - Definindo os experimentos que serão utilizados e o sinal de cada um dos fatores.

2. Analisando os parâmetros (q_i)

Primeiramente, vamos calcular as médias e os parâmetros conforme demanda o planejamento fatorial com base nos dados da tabela 2.

Parâmetros	Média estimada					
Parametros	L1-dcache loads	L1-dcache loads-misses	branch- instructions	branch- misses		
q_0	10.370e6	349e6	577e6	657e3		
$q_{\scriptscriptstyle A}$	10.347e6	348e6	575e6	633e3		
q_{B}	675e6	-281e6	448e6	-7e3		
q_{AB}	673e6	-281e6	447e6	-13e3		
SST	431,875852e18	1,127718394e18	2,922030634e18	1,60576269e12		

Tabela 3 - Calculando os parâmetros e a Soma dos Quadrados Total (SST) de cada uma das 4 métricas sendo levantadas pelos experimentos.

Agora podemos seguir nossa análise e verificar o quanto cada um dos fatores afeta as nossas métricas, resultando nos dados a seguir:

Parâmetros	Variação %					
Parametros	L1-dcache L1-dcache branch- loads loads-misses instructions		branch- misses			
q_0						
$q_{\scriptscriptstyle A}$	0,991585045	0,489133201	0,452596213	0,998127563		
$q_{\scriptscriptstyle B}$	0,004219963	0,318919661	0,274745922	0,00012206		
q_{AB}	0,004194993	0,191947138	0,273520746	0,000420984		

Tabela 4 - Calculando a influência de cada um dos fatores baseado nos parâmetros obtidos na tabela 3.

Como podemos ver pela tabela acima, o fator A (Tamanho da Matriz) é o fator com maior grau de influência em nossas métricas. E isto é condizente com o esperado, uma vez que sabemos que nosso algoritmo de multiplicação de matrizes é fortemente influenciado por ter uma complexidade cúbica ($O(N^3)$) e portanto, ao aumentar a dimensão das matrizes em 10x estamos tornando o algoritmo $10^3 x$ mais caro.

Já no fator B (Técnica Utilizada), vemos que variação não afeta tanto a quantidade de loads, mas é importante para determinar a quantidade de load-misses que o programa irá sofrer. Por outro lado, quantidade de branchs é afetada enquanto a quantidade de branch-misses não.

Por fim, vemos que a interação entre os fatores A e B também possui efeito na quantidade de misses na cache e na quantidade de branch instructions, sendo interessante, portanto, otimizar ambos os parâmetros, uma vez que elas são capazes de melhorar 50% dos parâmetros definidos como de interesse neste relatório.