ASSIGNMENT 3 PROGRAMMING TECHNIQUE I (SCSJ 1013)

INSTRUCTIONS TO THE STUDENTS:

- This assignment must be done in pairs (you can choose your own partner).
- Your programs must follow the input and output as required in the text and shown in the examples. You must test the programs with (but not limited to) all the input given in the examples.
- Any form of plagiarisms is **NOT ALLOWED**. Students who copied other student's program/ assignment will get **ZERO** mark (both parties, student who copied and student that share their work).
- Please insert your <u>name, IC Number, section of your class and date</u> as a comment in your program.

SUBMISSION PROCEDURE:

- Only one submission per pairs (partners) that includes 2 files are required for the submission which is the source code (the file with the extension .cpp) and the input file (the file with the extension .txt).
- Submit the assignment via the UTM's e-learning system.

QUESTION

Ministry of Transport Malaysia is required to prepare a report of the total road accidents by states in Malaysia from the year, 2006 to 2015.

Instructions:

Write a C++ program to calculate the average number of road accidents for each state and find the highest number of road accidents from 2006 to 2015. Your program should be able to do the following tasks:

(a) The program should use the following **struct** definition:

```
struct dataAcc
{
   int numAcc[10]; //number of road accidents from 2006-2015
   string state; //states in Malaysia
   float avg; //average number of road accidents for 2006-2015
}
```

- (b) The program should use an array of **struct** defined in (a) to store the total road accidents by states in Malaysia from 2006 to 2015.
- (c) The program will read input data from an input file named "input1.txt" into the array of struct declared in (b). Example of input data in "input1.txt" is shown in **Figure 2**.
- (d) The program should have two (2) global constants and one (1) global variable as follows: *Global contants:*

```
NUM\_STATE = 14 \Rightarrow Number of states

NUM\_YEAR = 10 \Rightarrow Number of years
```

Global variable:

out ⇒ Variable to point to output file named "output.txt"

(e) Besides the function main(), the program has three (3) other functions as described in **Table 2**. One of the functions is given below:

```
void displayLine()
{
   for (int i = 0; i < 98; i++)
     out << "-";
   out << endl;
}</pre>
```

Based on the description given in **Table 2**, the program needs to define two (2) more functions. You should use appropriate argument(s) (if necessary) for each function.

Table 2: Description of functions

Function	Description
displayLine()	To display lines using 98 characters of '-' in the output file using
	a loop.
cal_Avg()	To calculate the average number of road accidents for each state.
	The function should accept a 1D array of the number of road
	accidents for 10 years for each state as its argument. The
	function should return the average number of road accidents for
	each state.
find_HighLow()	To find and display the highest number of road accidents from
	2006 to 2015. The function should accept a 1D array of
	structures as its argument.

- (f) The program needs to display the following information. **Figure 3** shows the output of the successful program. You should use a proper output formatting.
 - Name of state.
 - Number of road accidents for 2006-2015 in each state.
 - Average number of road accidents for 10 years in each state.
 - The highest number of road accidents for 10 years with the name of state and year.

1160 1364 1417 1633 1548 1791 1881 1895 1888 1861 PERLIS
15505 16172 16520 17701 17966 19699 19935 20228 20159 22016 KEDAH
32573 33881 34049 33719 34306 37158 37851 39361 38747 39856 PULAU PINANG
27432 29203 30539 32327 32072 33506 34714 35408 35131 36736 PERAK
92632 99157 100380 107429 115565 128876 129106 135024 137809 140957 SELANGOR
46254 49454 48671 51942 53493 58795 61872 64527 63535 64664 KUALA LUMPUR
15197 16079 17362 18369 19407 21157 22146 23066 23748 22939 NEGERI SEMBILAN
10707 11720 12105 13275 14110 14720 15195 16083 16375 17069 MELAKA
43757 46584 48667 51747 55381 59501 62316 64600 64473 67112 JOHOR
13242 13982 15629 17068 17315 19001 20554 20130 19071 19635 PAHANG
7337 8116 8842 9549 9707 9603 9968 9748 10326 9960 KELANTAN
7098 8155 8814 10118 10106 10684 10861 10996 9383 10381 TERENGGANU
13550 14256 14588 15798 16192 16585 17446 17438 17858 17290 SABAH
14808 15196 15488 16655 17253 17964 18578 18700 17693 19130 SARAWAK

Figure 2: Input file named "input1.txt"

STATE	2006	2007					2012		2014		AVERAGE
PERLIS	1160				1548		1881				
KEDAH	15505	16172	16520	17701	17966	19699	19935	20228	20159	22016	18590.1
PULAU PINANG	32573	33881	34049	33719	34306	37158	37851	39361	38747	39856	36150.1
PERAK	27432	29203	30539	32327	32072	33506	34714	35408	35131	36736	32706.8
SELANGOR	92632	99157	100380	107429	115565	128876	129106	135024	137809	140957	118693.5
KUALA LUMPUR	46254	49454	48671	51942	53493	58795	61872	64527	63535	64664	56320.
NEGERI SEMBILAN	15197	16079	17362	18369	19407	21157	22146	23066	23748	22939	19947.0
MELAKA	10707	11720	12105	13275	14110	14720	15195	16083	16375	17069	14135.9
JOHOR	43757	46584	48667	51747	55381	59501	62316	64600	64473	67112	56413.
PAHANG	13242	13982	15629	17068	17315	19001	20554	20130	19071	19635	17562.
KELANTAN	7337	8116	8842	9549	9707	9603	9968	9748	10326	9960	9315.
TERENGGANU	7098	8155	8814	10118	10106	10684	10861	10996	9383	10381	9659.
SABAH	13550	14256	14588	15798	16192	16585	17446	17438	17858	17290	16100.
SARAWAK	14808	15196	15488	16655	17253	17964	18578	18700	17693	19130	17146.5
he highest number	of roa	d accid	dents =	140957	at SELA	ANGOR or	n 2015				

Figure 3: Example output in output file named "output1.txt"