강화학습 기반의 영화 추천 시스템

CONTENTS

01 주제에 대한 설명, 목적 및 범위

02 용어정리

03 기능요구사항

04 품질 요구 사항

05 역할 분담 및 일정

06 참고문헌

01 주제에 대한 설명, 목적 및 범위

02용어정리

03. 기능 요구 사항

04. 품질 요구 사항

05. 역할 분담 및 일정

06. 참고문헌

Overview

MovieLens 25M 데이터셋으로

추천 시스템을 만든다

강화학습 모델을 학습 시켜

02용어정리

03. 기능 요구 사항

04. 품질 요구 사항

05. 역할 분담 및 일정

06. 참고문헌

추천 시스템이란?

"특정 사용자가 관심을 가질만한 정보를 추천하는 것"

02용어정리

03. 기능 요구 사항

04. 품질 요구 사항

05. 역할 분담 및 일정

06. 참고문헌

추천 시스템이란?

CONTENT-BASED FILTERING

02용어정리

03. 기능 요구 사항

04. 품질 요구 사항

05. 역할 분담 및 일정

06. 참고문헌

강화학습 + 추천 시스템?

현재 강화학습 기반의 추천 시스템에 대한 연구가 활발히 진행되고 있음 강화학습을 적용함으로써 기존의 추천 시스템이 가진 한계점을 극복할 수 있기 때문

[기존 추천 시스템의 한계점]

- 1. 추천을 "정적"인 과정으로 간주한다. 즉, 사용자와 추천 시스템 간의 상호작용을 무시한다.
- 2. 대부분의 작업이 추천 아이템에 대한 "즉각적인 피드백"에만 집중하며, <u>"장기적인 보상"은 무시</u>한다.

또한 Spotify, Netflix 등 "개인 맞춤형 추천 시스템"으로 유명한 세계적인 기업들이 강화학습 기반의 추천 알고리즘을 사용하는 것으로 알려짐

1 주제에 대한 목적

01 주제에 대한 설명, 목적 및 범위

02용어정리

03. 기능 요구 사항

04. 품질 요구 사항

05. 역할 분담 및 일정

06. 참고문헌

강화학습 + 추천 시스템!

MovieLens에서 제공하는 데이터셋의 사용자의 영화 시청 히스토리와 평점을 이용해

에이전트를 딥러닝을 사용한 강화학습 알고리즘으로 훈련하여

개인 맞춤형 영화 추천 목록을 만들어본다.

01 주제에 대한 범위

언어적 한계와 데이터셋의 한계

01 주제에 대한 설명, 목적 및 범위

02 용어 정리

03. 기능 요구 사항

04. 품질 요구 사항

05. 역할 분담 및 일정

06. 참고문헌

"영화를 추천해주는 추천 시스템" 이지만, 제공되는 데이터셋을 가지고 학습을 하기 때문에 데이터셋을 제공하는 곳의 언어로(영어) 제작된 영화에 대한 평점이 지배적이고, 다른 언어로 제작된 영화에 대한 평점은 적을 수 있다는 한계가 있음.

또한 특정 영화의 데이터셋은 집계가 되지 않아 포함되지 않았을 수 있으며, 글로 작성된 리뷰가 따로 존재하지 않아서 사용자가 진정성 있게 평점을 줬는지 알 수 없기 때문에, 진정성 없는 데이터를 거르는 것에도 한계가 존재함.

02 용어 정리

01 주제에 대한 설명, 목적 및 범위

02용어정리

03. 기능 요구 사항

04. 품질 요구 사항

05. 역할 분담 및 일정

06. 참고문헌

Actor-Critic

정책 네트워크와 밸류 네트워크를 함께 학습하는 방법론

Agent의 행동 확률을 직접적으로 학습하는 방법 (REINFORCE / policy gradient)은 불안정 하기 때문에, Actor-Critic은 가치 함수를 같이 사용해 안정성을 높임

02 용어 정리

01 주제에 대한 설명, 목적 및 범위

02용어정리

03. 기능 요구 사항

04. 품질 요구 사항

05. 역할 분담 및 일정

06. 참고문헌

Streamlit

머신러닝 및 데이터 사이언스를 위한 커스톰 웹앱을 제작할 수 있는 파이썬 오픈 소스 라이브러리

- 웹 개발에 대한 지식이 없어도 페이지 구축이 가능
- 간결하고 명확한 API -> 쉬운 사용
- Markdown 기반으로 작성 가능

03기능요구사항

01 주제에 대한 설명, 목적 및 범위

02 용어 정리

03. 기능 요구 사항

04. 품질 요구 사항

05. 역할 분담 및 일정

06. 참고문헌

User Case Diagram

- show basic movies

영화에 평점을 평가할 수 있는 칸을 추가해서 보여줌 영화를 특정 회수 이상 평가하면 그만둘 수 있음

- user의 별점을 받아 에피소드를 만들고, actor인 agent에 넘김
- Actor2 Agent 강화학습을 통해 추천하는 영화 목록을 시스템에 넘김
- show recommended movies user에게 영화 추천 목록을 보여줌 영화 추천 목록에서 추가로 별점을 평가

04 품질 요구 사항

01 주제에 대한 설명, 목적 및 범위

02 용어 정리

03. 기능 요구 사항

04. 품질 요구 사항

05. 역할 분담 및 일정

06. 참고문헌

개발계획

Deep Reinforcement Learning based Group Recommender System (2021, Zefang Liu, Shuran Wen, Yinzhu Quan) *논문의 방법론을 참고하나, 논문은 그룹 추천 시스템이지만, 이를 개인 추천 시스템으로 변형하여 개발할 예정

개발 언어: python

사용 라이브러리: pytorch, gym, streamlit 등

04 품질 요구 사항

01 주제에 대한 설명, 목적 및 범위

02용어정리

03. 기능 요구 사항

04. 품질 요구 사항

05. 역할 분담 및 일정

06. 참고문헌

최종예상산출물

사용자가 시청한 영화에 별점을 매기면

모델이 유사한 영화를 추천해줌

05 역할분담및일정

01 주제에 대한 설명, 목적 및 범위

02용어정리

03. 기능 요구 사항

04. 품질 요구 사항

05. 역할 분담 및 일정

06. 참고문헌

역할분담및일정

						2021 11							2021 12
SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT
	1	2	3	4	5	6				1	2	3	4
7	8	9	10	11 EDA	12 및 데이터 테이	13	5	6	7	8	9	10	11
14	15	16	17	18	19	20	12	13	14	15	16	17	18
모델 구축 (Actor, Critic, 환경, 에이전트) Embedding 함수, 모델 병합, 평기함수													
21	22	23	24	25	26	27	19	20	21	22	23	24	25
모델 학습 진행 및 streamlit 시각화													
28	29	30					26	27	28	29	30	31	

모델 구축 - Actor, 환경 (손소영) / Critic, 에이전트 (이기천) Embedding, 모델 병합 (손소영) / 평가 함수 (이기천) * 나머지 작업은 계획에 맞게 세부적으로 나눠가며 같이 진행할 예정

06 참고문한

01 주제에 대한 설명, 목적 및 범위

02용어정리

03. 기능 요구 사항

04. 품질 요구 사항

05. 역할 분담 및 일정

06. 참고문헌

참고문헌

Deep Reinforcement Learning based Group Recommender System (2021, Zefang Liu, Shuran Wen, Yinzhu Quan)

바닥부터 배우는 강화학습 (노승은)

https://medium.com/analytics-vidhya/netflix-shuffle-play-one-of-the-best-example-of-reinforcement-learning-b8e69129ad3d

https://towardsdatascience.com/how-is-reinforcement-learning-used-in-business-71592558c93f

[이미지 출처]

https://movielens.org/

https://towardsdatascience.com/reinforcement-learning-fda8ff535bb6

https://towardsdatascience.com/recommender-system-a1e4595fc0f0

https://www.researchgate.net/figure/Content-based-filtering-vs-Collaborative-filtering-Source_fig5_323726564

https://brand.netflix.com/en/assets/

https://newsroom.spotify.com/media-kit/logo-and-brand-assets/

https://towardsdatascience.com/reinforcement-learning-w-keras-openai-actor-critic-models-f084612cfd69

https://discuss.streamlit.io/

#