Decade Counter

The MC14017B is a five–stage Johnson decade counter with built–in code converter. High speed operation and spike–free outputs are obtained by use of a Johnson decade counter design. The ten decoded outputs are normally low, and go high only at their appropriate decimal time period. The output changes occur on the positive–going edge of the clock pulse. This part can be used in frequency division applications as well as decade counter or decimal decode display applications.

- Fully Static Operation
- DC Clock Input Circuit Allows Slow Rise Times
- Carry Out Output for Cascading
- Divide-by-N Counting
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–power TTL Loads or One Low–power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4017B
- Triple Diode Protection on All Inputs

$\textbf{MAXIMUM RATINGS} \text{ (Voltages Referenced to V}_{SS} \text{) (Note 2.)}$

Symbol	Parameter Value		Unit	
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V	
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V	
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA	
P _D	Power Dissipation, per Package (Note 3.)	500	mW	
T _A	Ambient Temperature Range	-55 to +125	°C	
T _{stg}	Storage Temperature Range	-65 to +150	°C	
T _L	Lead Temperature (8–Second Soldering)	260	°C	

- Maximum Ratings are those values beyond which damage to the device may occur.
- Temperature Derating: Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor

http://onsemi.com

MARKING DIAGRAMS

PDIP-16 P SUFFIX CASE 648

SOIC-16 D SUFFIX CASE 751B

SOEIAJ-16 F SUFFIX CASE 966

A = Assembly Location
WL or L = Wafer Lot
YY or Y = Year
WW or W = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC14017BCP	PDIP-16	2000/Box
MC14017BD	SOIC-16	48/Rail
MC14017BDR2	SOIC-16	2500/Tape & Reel
MC14017BF	SOEIAJ-16	See Note 1.
MC14017BFEL	SOEIAJ-16	See Note 1.

 For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.

PIN ASSIGNMENT

FUNCTIONAL TRUTH TABLE (Positive Logic)

Clock	Clock Enable	Reset	Decode Output=n
0	Х	0	n
Χ	1	0	n
Χ	Х	1	Q0
	0	0	n+1
~	Х	0	n
Χ		0	n
1	~	0	n+1

X = Don't Care. If n < 5 Carry = "1", Otherwise = "0".

BLOCK DIAGRAM

LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			V _{DD}	- 55	5°C		25°C		125	°C	
Characteristic		Symbol	Vdc	Min	Max	Min	Typ ^(4.)	Max	Min	Max	Unit
Output Voltage "C V _{in} = V _{DD} or 0)" Level	V _{OL}	5.0 10 15	_ _ _	0.05 0.05 0.05	_ _ _	0 0 0	0.05 0.05 0.05	_ _ _	0.05 0.05 0.05	Vdc
$V_{in} = 0 \text{ or } V_{DD}$ "1	l" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	_ _ _	4.95 9.95 14.95	5.0 10 15	_ _ _	4.95 9.95 14.95	_ _ _	Vdc
Input Voltage "CONTINUS (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc))" Level	V _{IL}	5.0 10 15		1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	_ _ _	1.5 3.0 4.0	Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	" Level	V _{IH}	5.0 10 15	3.5 7.0 11	_ _ _	3.5 7.0 11	2.75 5.50 8.25	_ _ _	3.5 7.0 11	_ _ _	Vdc
Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ $ (V_{OH} = 4.6 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $	Source	Іон	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	_ _ _ _	- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	_ _ _ _	- 1.7 - 0.36 - 0.9 - 2.4	_ _ _ _	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	l _{OL}	5.0 10 15	0.64 1.6 4.2	_ _ _	0.51 1.3 3.4	0.88 2.25 8.8	_ _ _	0.36 0.9 2.4	_ _ _	mAdc
Input Current		l _{in}	15	_	± 0.1	_	±0.00001	± 0.1	_	± 1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}		_	_	_	5.0	7.5	_	_	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	_ _ _	5.0 10 20	_ _ _	0.005 0.010 0.015	5.0 10 20	_ _ _	150 300 600	μAdc
Total Supply Current ^(5.) (6.) (Dynamic plus Quiescent Per Package) (C _L = 50 pF on all outputs buffers switching)	•	Ι _Τ	5.0 10 15			$I_{T} = (0.$	27 μΑ/kHz) 1 55 μΑ/kHz) 1 83 μΑ/kHz) 1	+ I _{DD}			μAdc

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.0011.

SWITCHING CHARACTERISTICS (7.) $(C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C})$

Characteristic	Symbol	V _{DD} Vdc	Min	Тур ^(8.)	Max	Unit
Output Rise and Fall Time $t_{TLH}, t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ $t_{TLH}, t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ $t_{TLH}, t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$	t _{TLH} , t _{THL}	5.0 10 15	_ _ _	100 50 40	200 100 80	ns
Propagation Delay Time Reset to Decode Output t _{PLH} , t _{PHL} = (1.7 ns/pF) C _L + 415 ns t _{PLH} , t _{PHL} = (0.66 ns/PF) C _L + 197 ns t _{PLH} , t _{PHL} = (0.5 ns/pF) C _L + 150 ns	t _{PLH} , t _{PHL}	5.0 10 15	_ _ _	500 230 175	1000 460 350	ns
Propagation Delay Time Clock to C_{out} t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 315 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 142 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 100 \text{ ns}$	t _{PLH} , t _{PHL}	5.0 10 15	_ _ _ _	400 175 125	800 350 250	ns
Propagation Delay Time Clock to Decode Output t _{PLH} , t _{PHL} = (1.7 ns/pF) C _L + 415 ns t _{PLH} , t _{PHL} = (0.66 ns/pF) C _L + 197 ns t _{PLH} , t _{PHL} = (0.5 ns/pF) C _L + 150 ns	t _{PLH} , t _{PHL}	5.0 10 15	_ _ _ _	500 230 175	1000 460 350	ns
Turn–Off Delay Time Reset to C_{out} $t_{PLH} = (1.7 \text{ ns/pF}) C_L + 315 \text{ ns}$ $t_{PLH} = (0.66 \text{ ns/pF}) C_L + 142 \text{ ns}$ $t_{PLH} = (0.5 \text{ ns/pF}) C_L + 100 \text{ ns}$	t _{PLH}	5.0 10 15	_ _ _	400 175 125	800 350 250	ns
Clock Pulse Width	t _{w(H)}	5.0 10 15	250 100 75	125 50 35	_ _ _	ns
Clock Frequency	f _{cl}	5.0 10 15	_ _ _	5.0 12 16	2.0 5.0 6.7	MHz
Reset Pulse Width	t _{w(H)}	5.0 10 15	500 250 190	250 125 95	_ _ _	ns
Reset Removal Time	t _{rem}	5.0 10 15	750 275 210	375 135 105	_ _ _	ns
Clock Input Rise and Fall Time	t _{TLH} , t _{THL}	5.0 10 15		No Limit		_
Clock Enable Setup Time	t _{su}	5.0 10 15	350 150 115	175 75 52	_ _ _	ns
Clock Enable Removal Time	t _{rem}	5.0 10 15	420 200 140	260 100 70	_ _ _	ns

^{7.} The formulas given are for the typical characteristics only at 25°C.
8. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

	Output Sink Drive	Output Source Drive
Decode Outputs	(S1 to A)	Clock to desired outputs (S1 to B)
Carry	Clock to 5 thru 9 (S1 to B)	S1 to A
V _{GS} =	V_{DD}	– V _{DD}
V _{DS} =	V _{out}	$V_{out} - V_{DD}$

Figure 1. Typical Output Source and Output Sink Characteristics Test Circuit

Figure 2. Typical Power Dissipation Test Circuit

APPLICATIONS INFORMATION

Figure 3 shows a technique for extending the number of decoded output states for the MC14017B. Decoded outputs are sequential within each stage and from stage to stage, with no dead time (except propagation delay).

Figure 3. Counter Expansion

Figure 4. AC Measurement Definition and Functional Waveforms

PACKAGE DIMENSIONS

NOTES:

- NOTES:
 1 DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN
 FORMED PARALLEL.

- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INCHES MILLIMETERS						
	INC	HES	MILLIN	IETERS			
DIM	MIN	MAX	MIN	MAX			
Α	0.740	0.770	18.80	19.55			
В	0.250	0.270	6.35	6.85			
С	0.145	0.175	3.69	4.44			
D	0.015	0.021	0.39	0.53			
F	0.040	0.70	1.02	1.77			
G	0.100	BSC	2.54 BSC				
Н	0.050	BSC	1.27	BSC			
J	0.008	0.015	0.21	0.38			
K	0.110	0.130	2.80	3.30			
L	0.295	0.305	7.50	7.74			
М	0°	10 °	0°	10 °			
S	0.020	0.040	0.51	1.01			

⊕ 0.25 (0.010) M T B S A S

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

- PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

PACKAGE DIMENSIONS

SOEIAJ-16 **F SUFFIX** PLASTIC EIAJ SOIC PACKAGE

CASE 966-01 **ISSUE O**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS D AND E DO NOT INCLUDE
- MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
- is. The lead width dimension (b) does not include Dambar Protrusion. Allowable DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
С	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
Ε	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050) BSC
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10°	0 °	10 °
Q ₁	0.70	0.90	0.028	0.035
Z		0.78		0.031

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, purpose, not does of the application of does of the application of does of the application of the does of the application of th intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (M-F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore: 001-800-4422-3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549

Phone: 81-3-5740-2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

This datasheet has been downloaded from:

www.EEworld.com.cn

Free Download
Daily Updated Database
100% Free Datasheet Search Site
100% Free IC Replacement Search Site
Convenient Electronic Dictionary
Fast Search System

www.EEworld.com.cn

Copyright © Each Manufacturing Company