Comparação Empírica de Algoritmos Exatos e Aproximativos para o Problema da Mochila 0-1

Chrystian Paulo Ferreira de Melo Departamento de Ciência da Computação – UFMG chrystian1@ufmg.br

06/07/2025

Resumo

O problema da mochila 0-1 (0-1 Knapsack) é NP-difícil e, portanto, abordagens exatas tornamse inviáveis em instâncias de grande porte. Neste artigo comparamos três estratégias clássicas: Branch-and-Bound (exato), algoritmo 2-aproximativo e FPTAS (Fully Polynomial-Time Approximation Scheme). Implementamos os três métodos em Python 3 e avaliamos tempo, uso de memória e erro relativo em instâncias low-dimensional e large-scale. Os resultados confirmam as previsões teóricas: (i) o Branch-and-Bound encontra a solução ótima, mas o tempo explode exponencialmente a partir de $n \approx 25$; (ii) o 2-aproximativo preserva tempo quase linear, com mediana de erro de 0,25% e piores casos de 30%; (iii) o FPTAS com $\varepsilon = 0,02$ equilibra custo $O(n^3/\varepsilon)$ com erro máximo observado 0,13% e memória até 18 MiB. Delineamos faixas de uso recomendadas para cada abordagem.

1 Introdução

O problema da mochila 0-1 (Maximum Knapsack Problem - MKP) consiste em selecionar um subconjunto de itens com valores v_i e pesos w_i de modo a maximizar o lucro sem exceder a capacidade W. Trata-se de um problema NP-difícil [1, 2]. Na prática, é fundamental equilibrar qualidade da solução, tempo e memória. Este trabalho, alinhado ao Trabalho Prático 2 da disciplina Algoritmos 2 [7], investiga:

- o desempenho real do Branch-and-Bound (Aula 12) [3];
- o impacto do fator de aproximação 2 do algoritmo guloso (Aula 13) [4];
- a eficácia prática do FPTAS de tempo $O(n^3/\varepsilon)$ (Aulas 14–15) [5, 6].

O artigo organiza-se assim: Seção 2 revisa a base teórica; Seção 3 descreve as implementações; Seções 4.1–4.4 analisam os resultados; Seção 5 discute implicações; Seção 6 conclui.

2 Fundamentos e Trabalhos Relacionados

2.1 Complexidade e limites teóricos

MKP é NP-completo mesmo na forma binária [2]. Algoritmos exatos polinomiais implicariam P = NP. Branch-and-Bound (BnB) explora o espaço de busca podando subárvores por bounds superiores [3]; o pior caso continua exponencial.

Para contornar esse limite, algoritmos aproximativos fornecem fatores c de desempenho. O guloso da Aula 13 é 2-aproximativo $(V_{\text{alg}} \geq \frac{1}{2}V^*)$. O FPTAS fornece $(1 - \varepsilon)$ -aproximação em tempo $O(n^3/\varepsilon)$ via scaling de valores [6].

2.2 Estado da arte

Estudos recentes combinam heurísticas e meta-heurísticas, mas (author?) [5] mostram que o FPTAS permanece competitivo para $\varepsilon \in [0,01,0,1]$ em instâncias grandes.

3 Metodologia

3.1 Instâncias e ambiente

Foram usados dois conjuntos: (i) low-dimensional (100–1000 itens) [8] e (ii) large-scale (até 10 000 itens) [9]. Os experimentos rodaram em um Intel i7, 16 GB RAM, Python 3.11, limitando cada execução a 30 min conforme [7].

3.2 Implementação dos algoritmos

Branch-and-Bound. Busca best-first com fila de prioridades; o upper bound de um nó nível k é $v_{\text{corrente}} + \text{GreedyFrac}(k)$ [3]. Itens são pré-ordenados por v_i/w_i ($O(n \log n)$).

2-aproximativo. Guloso ordenado por v_i/w_i (Alg. 1 da Aula 13) com custo $O(n \log n)$.

FPTAS. Escalona valores por $\mu = \varepsilon v_{\text{max}}/n$ (slide 19 da Aula 15) e resolve DP $O(n^3/\varepsilon)$; foram testados $\varepsilon \in \{0,02,0,1\}$.

3.3 Métricas

Mede-se tempo de CPU (s), pico de memória (MiB, tracemalloc) e erro relativo $e = 1 - \frac{V_{\text{alg}}}{V^*}$, usando V^* do BnB quando viável; nos demais casos, usa-se o melhor valor conhecido.

4 Resultados e Análise

4.1 Tempo de execução

A Figura 1 (escala log) confirma a análise assintótica: para n < 15 o BnB domina; a partir de $n \approx 25$ o tempo cresce exponencialmente, alcançando **30,6** s na pior instância (registrada em bnb_results.csv). O FPTAS cresce próximo de $O(n^3)$ (máximo: 475 s antes do timeout); o 2-aproximativo permanece abaixo de 7 ms em todas as instâncias.

Figura 1: Tempo × tamanho da instância (escala log).

4.2 Qualidade da solução

O diagrama violino da Figura 2 resume os erros relativos:

- BnB: erro nulo.
- **FPTAS** ($\varepsilon = 0.02$): erro máximo 0,13%, mediana 0%, validando a cota (1ε) .
- 2-aprox.: mediana 0,25%, piores casos 30,4%, coerentes com o limite de fator 2.

Figura 2: Erro relativo $(1 - \text{lucro}/\text{\acute{o}timo})$.

4.3 Uso de memória

O FPTAS consumiu até 17,9 MiB ($n = 10^4$, $\varepsilon = 0.02$), em linha com $O(n^2/\varepsilon)$ [6]. O BnB apresentou grande variância, chegando a 223 MiB em instâncias densas, aproximando o pior caso $O(2^n)$.

4.4 Timeouts e instâncias NaN

Três instâncias (21,4%) excederam 30 min no FPTAS e foram marcadas como timeout, todas com 500–1000 itens e capacidade pequena, gerando tabelas DP com $> 1,2 \times 10^8$ entradas. O fenômeno reitera o alerta de ? [6] sobre o fator $1/\varepsilon$ no custo efetivo do FPTAS.

5 Discussão

- BnB: recomendado para $n \le 20$ ou quando a otimalidade é mandatória (e.g. planejamento financeiro de poucos ativos).
- **FPTAS**: viável até $n=10^4$ com $\varepsilon=0.02$; ideal quando exige-se erro <1% e há memória moderada.
- **2-aprox.**: indicado para cenários *online* ou de streaming, onde latência é crítica e admite-se possível perda de até 50 %.

A ordem por v_i/w_i afeta diretamente o bound do BnB [3]; em instâncias quase uniformes a poda perde eficácia.

Figura 3: Distribuição do pico de memória.

6 Conclusão

Branch-and-Bound completou todas as 14 instâncias em $\leq 30, 6$ s; a mediana foi 1, 3 ms. O consumo de memória variou de 38 MiB a 223 MiB. Continua a melhor escolha quando o ótimo é obrigatório e a instância cabe em memória, mas requer atenção à escalabilidade espacial.

FPTAS ($\varepsilon = 0.02$) manteve $e \le 0.13\%$ com até 17,9 MiB. Três instâncias excederam o timeout, confirmando o impacto do termo $1/\varepsilon$. A exploração de scaling adaptativo e compressão de tabela é linha futura promissora.

2-aproximativo teve pior erro 30,4% porém mediana 0,25%, e tempo sub-10 ms mesmo para $n=10^4$. É imbatível em latência para aplicações em tempo real.

Síntese comparativa.

- Qualidade: BnB = $\acute{o}timo > FPTAS (\le 0.13\%) > 2$ -aprox. ($\le 30.4\%$, med. 0.25%).
- Tempo: 2-aprox. < FPTAS (até 8 min) < BnB (até 31 s, mas exponencial no pior caso).
- Memória: 2-aprox. \approx negligível < FPTAS (\le 18 MiB) < BnB (\le 223 MiB).

Os resultados reforçam as lições de sala: busca exata sofre com explosão combinatória; esquemas polinomiais equilibram precisão e custo; heurísticas simples oferecem latência incomparável.

Perspectivas. Propõe-se: (i) paralelizar a fila de prioridades do BnB; (ii) FPTAS adaptativo que ajuste ε conforme a variância dos valores; (iii) meta-heurísticas (GRASP, ILS) para pré-aquecer bounds quando $n > 10^5$.

Referências

- [1] R. Vimieiro. Aula 07 Introdução à Teoria da Complexidade (Parte 1). DCC/ICEx/UFMG, 2025.
- [2] R. Vimieiro. Aula 08 Introdução à Teoria da Complexidade (Parte 2). DCC/ICEx/UFMG, 2025.
- [3] R. Vimieiro. Aula 12 Soluções exatas para problemas difíceis (Branch-and-Bound). DCC/ICEx/UFMG, 2025.
- [4] R. Vimieiro. Aula 13 Soluções aproximadas para problemas difíceis. DCC/ICEx/UFMG, 2025.

- [5] R. Vimieiro. Aula 14 Soluções aproximadas (Parte 2). DCC/ICEx/UFMG, 2025.
- [6] R. Vimieiro. Aula 15 Soluções aproximadas (Parte 3). DCC/ICEx/UFMG, 2025.
- [7] R. Vimieiro. Trabalho Prático 2 Soluções para problemas difíceis. DCC/ICEx/UFMG, 2025.
- [8] Conjunto de instâncias low-dimensional para 0-1 Knapsack. http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP/.
- [9] Conjunto de instâncias *large-scale* para 0-1 Knapsack. https://www.kaggle.com/datasets/sc0v1n0/large-scale-01-knapsack-problems.
- [10] J. Kleinberg and É. Tardos. Algorithm Design. Pearson, 2005.
- [11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. *Introduction to Algorithms*. MIT Press, 4th ed., 2022.
- [12] Python Software Foundation. tracemalloc Trace memory usage. Documentação Python 3.11, 2024.