第 42 卷 第 5 期 2017 年 10 月 Vol.42 No.5 Oct.2017

doi: 10. 13624/j. cnki. issn. 1001-7445. 2017. 1793

基于软时间窗的自动化集装箱码头 AGV 路径规划

杨勇生,崔佳羽,梁承姬,许波桅,李军军

(上海海事大学 物流科学与工程研究院,上海 201306)

摘要:为研究只卸不装作业模式下的自动化集装箱码头 AGV 路径规划问题,建立了作业等待时间和 AGV 行驶时间最小的多目标混合整数规划模型。根据已分配的进口箱任务,考虑带有软时间窗和惩罚因子的约束,求解得到岸桥与箱区之间所有的可行路径、每台 AGV 完成任务的顺序以及 AGV 实际完成任务的行驶路径。为检验 AGV 作业路径的有效性,模拟每辆 AGV 通过路径节点的时刻,结果显示:系统中没有出现大量 AGV 排队和岸桥闲置的情况,表明 AGV 行驶路径的合理性、系统运量平衡和岸桥作业的连续性,提高了码头的作业效率。

关键词: 自动化集装箱码头; AGV; 路径规划; 软时间窗

中图分类号: U691. 3; TP301. 6 文献标识码: A 文章编号: 1001-7445(2017) 05-1793-09

Research on the routing of AGV in automated container terminal based on soft time window

YANG Yong-sheng, CUI Jia-yu, LIANG Cheng-ji, XUN Bo-wei, LI Jun-jun (Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China)

Abstract: In order to study the routing of AGV at automated container terminal under the unloading mode, a multi-objective mixed integer programming model for minimizing waiting time and the AGV travel time is established, which is based on the task assignment of imported containers, considering the constraint of soft time window and penalty factor. Thus feasible paths between quays and blocks, the perform sequence and the moving paths of AGV are obtained. Each moment of AGV through nodes on the road is simulated for verifying the validity of the AGV moving paths. The results show that a large number of AGV queuing or invalid operation time of quay crane are not appeared in the process, which verifies the rationality of AGV running path, the balance of AGV traffic and the continuity of the operation of quay, so the operation efficiency of the terminal is improved.

Key words: automated container terminal; automatic guided vehicle (AGV); routing; soft time window

收稿日期: 2017-03-15; 修订日期: 2017-05-11

基金项目: 上海市科委科技创新行动计划项目(14170501500); 上海市科委自然科学基金资助项目(15ZR1420200); 教育部人文社会科学研究青年基金资助项目(15YJC630145、15YJC630059)

通信作者: 杨勇生(1965-), 男, 江西南昌人, 上海海事大学教授, 博士生导师; E-mail: yangys_smu@ 126. com。

引文格式: 杨勇生,崔佳羽,梁承姬,等. 基于软时间窗的自动化集装箱码头 AGV 路径规划 [J].广西大学学报(自然科学版),2017,42(5):1793-1801.

0 引 言

随着经济全球化进程的加快和世界贸易的发展,码头经营管理者为了提高装卸效率和减少人力成本,纷纷开始提高集装箱码头的自动化水平,目前世界上已有几十家自动化集装箱码头。自动化集装箱码头作业任务主要包括岸边作业、水平运输作业和堆场作业三个环节,AGV 是当前自动化码头水平运输应用最广泛的设备。自动化码头的作业环境较为复杂,表现在动态、随机、突发等不确定性,使得AGV 路径规划问题有较高的复杂性;同时 AGV 是连接岸边和堆场的重要环节,对整个码头的作业效率和整体运营情况具有较大影响。

随着 AGV 在越来越多领域的应用,展现出优势的同时,其所存在的问题也逐渐暴露。越来越多的专家学者对 AGV 路径、调度等问题进行了大量研究。Hamed 等^[1]讨论了生产、配送、转运和运输系统中的调度和路线问题,并分别概述文献中优化 AGV 系统相关的方法,包括数学方法、仿真研究、元启发式方法和基于以上方法的人工智能。Errico 等^[2]建立硬时间窗和随机服务时间的路径模型,分别采用分支法和割平面法规划 AGV 路径。苏霞等^[3]提出在柔性制造系统中基于 A* 算法的多 AGV 动态路径规划方法,避免潜在的碰撞和冲突,从而有效搜索最短时间路径。Hamed 等^[4]针对多 AGV 路径规划和调度问题,考虑提前期和延迟期的约束,通过求解最小惩罚函数得到理想解。Tatsushi 等^[5]提出多辆AGV 的分布式路径规划方法,建立 AGV 移动延迟引起 AGV 之间碰撞的概率分布函数,在动态运输环境下仿真计算系统最理想的运行时间。当前有关柔性制造系统的 AGV 路径规划问题的研究主要采用时间窗约束建立模型,并使用不同的搜索算法寻找路径。

对比自动化集装箱码头的 AGV 设备,传统码头的集卡路径研究也有借鉴意义。张彦等^[6]采用带时间窗的动态搜索方法规划码头车辆行驶路径。王军等^[7]在"作业面"作业模式下,建立基于时间最短的集卡调度和路径优化模型,解决边装边卸模式下码头集卡作业路径选择问题。宓为建等^[8]研究码头ALV 和堆场的协调优化问题,考虑时间窗约束,建立带有惩罚因子的多目标混合整数规划模型,通过数值实验得到最优目标延迟时间。

在自动化集装箱码头方面,一般假设船舶靠泊和岸桥作业情况已知,以水平运输路径或作业时间最短为目标,研究码头设备调度的问题。Kim等^[9]以任务的总延迟时间和 AGV 的总运输成本最小为优化目标,采用整数规划模型对自动化码头的 AGV 调度问题进行研究。Xin等^[10]提出在自动化码头中自由搜索生成无碰撞轨迹,建立多 AGV 调度模型,减少整个集装箱装卸完工时间。霍凯歌等^[11]以最小作业费用为目标,以作业限制、时间窗长度、负载平衡等为约束条件,建立多载 AGV 调度问题的混合整数规划模型。

当前 AGV 路径规划的研究主要是在柔性制造系统的背景下,自动化集装箱码头作为近年来刚刚推广应用的领域,有关 AGV 路径规划的研究很少。本文在自动化集装箱码头的背景下,研究 AGV 路径规划问题,采用软时间窗的方法,以作业等待时间和 AGV 的行驶时间最短为目标,建立带惩罚因子的多目标混合整数规划模型,搜索 AGV 的行驶路径,更好地衔接岸边与堆场的作业,减少任务的总完成时间,对于提高自动化集装箱码头作业效率具有重要意义。

1 问题描述

自动化集装箱码头包括岸边作业区、堆场作业区和水平运输区等区域,具体布局如图 1 所示。相对于传统码头,大部分自动化码头的堆场布局方式为垂岸式,水平运输设备行走路径较短,每个箱区的海侧前沿设有多个 AGV 伴侣,AGV 伴侣是集装箱在堆场前沿的暂存区,AGV 可以独自在 AGV 伴侣上完成装卸作业,无需在箱区排队和等待。自动化集装箱码头的路径布局已经提前规划完成,具体路径有

AGV 车道、集卡车道和其他社会车辆车道等,路径分布复杂且密集,在实际完成任务时,AGV 要依据系统发布的任务选择合理的路径,AGV 的行驶路径一般为单向行驶,防止 AGV 之间出现相向冲突。

图 1 自动化集装箱码头布局

Fig. 1 Layout of automated container terminal

码头的卸船任务分配是指已确定集装箱作业任务、卸船的岸桥和集装箱存放箱区三者的对应关系。 软时间窗表示尽可能在时间窗范围内完成任务,对于不能在规定时间范围内完成的任务给予一定的惩 罚,即加权,最后求得总的时间。时间窗的设定是根据任务的优先顺序,确定每个任务每辆 AGV 在岸桥 开始作业之前到达岸桥的时间范围。在路径选择方面,AGV 到岸边取箱的路径需要考虑软时间窗约 束;从岸边到箱区的路径规划没有 AGV 与场桥任务衔接等待的约束,主要考虑 AGV 行驶时间、路径无 冲突以及码头的作业情况的影响。本文主要针对进口箱任务,求解考虑作业等待时间和 AGV 行驶时间 因素的多目标问题,运用软时间窗方法规划 AGV 的行驶路径,并模拟不同时刻 AGV 的行走路径和完成 任务的情况。

2 模型建立

本文是在带时间窗的车辆路径问题(VRPTW)的基础上,考虑自动化码头作业特点和码头路径布局情况,建立自动化码头 AGV 路径规划模型,具有一定的实际意义。根据码头路径布局和任务分配情况,确定岸桥到箱区之间的可行路径,确定每辆 AGV 完成任务的顺序和需要完成任务的个数;根据以上的研究结果确定在软时间窗约束情况下的 AGV 行驶路径。

本文的假设条件是根据自动化集装箱码头的实际情况,具体假设如下:

① 岸桥都为单吊具,只能完成单箱作业;②忽略岸桥、场桥等设备、人为和天气等影响因素;③AGV 行驶路径为单向单行道;④忽略除 AGV 外其他车辆的车道对路径规划的影响。

2.1 符号说明

- 集合
- N: 路径网络中所有节点的集合,用i,i表示, $i,j \in N$;
- Q: 岸桥节点, $Q \subset N$;
- B: 箱区节点, $B \subset N$;
- R:任务集合;

- K: AGV 集合。
- ② 权重因子
- α: 岸桥等待 AGV 的设置惩罚因子;
- β: AGV 在时间窗规定的最早到达时刻之前到达,产生等待时间的惩罚因子;
- μ: 作业等待时间的权重;
- θ : AGV 行驶时间的权重。
- ③ 参数
- d_{ii} : 节点 i 和 j 间的距离;
- $S_{\iota}: AGV$ 的数量;
- V: AGV 的行驶速度;
- $[e_i,l_i]$: AGV 到达岸边的时间窗, $i\in Q$; e_i 表示岸桥允许 AGV 的最早到达时刻; l_i 表示岸桥允许 AGV 的最晚到达时刻;
 - t_a : AGV 的行驶时间;
 - At: AGV 的实际到达时刻;
 - t_a:岸桥实际开始作业时刻;
 - t。: 岸桥作业时间;
 - t_w:作业等待时间;
 - t_{w4}: AGV 等待时间;
 - t_{w0} :岸桥等待时间。
 - ④ 决策变量
 - $X_{iik} \in \{0,1\}$,表示当第 k 辆 AGV 依次通过节点 i 和节点 j 时, X_{iik} 为 1,否则为 0;
 - $Y_{tk} \in \{0,1\}$,表示当第 k 辆 AGV 完成任务 r 时, Y_{tk} 为 1,否则为 0。

2.2 模型建立

为解决自动化码头 AGV 路径规划问题,本文建立了多目标混合整数规划模型,式(1)为目标函数,具体包括两部分,第一部分为岸边作业的等待时间,包括 AGV 等待时间和 AGV 延迟使得岸桥等待 AGV 的时间;第二部分为 AGV 的行驶时间,表示 AGV 从箱区到岸边的行驶时间。分别为两部分加权计算,第一部分赋权重为 μ ;第二部分赋权重为 θ ,其中 μ + θ = 1,受实际操作的影响,防止 AGV 在岸边排队,一般首先选择 AGV 等待时间较短的路径。

$$\min T = \sum_{k \in K} \sum_{j \in B} \sum_{i \in Q} \left[\mu t_{wi} + \theta t_{dji} \right] X_{jik} , \qquad (1)$$

s. t.

$$\sum_{k \in K} \sum_{j \in N} X_{ijk} = 1, \qquad i \in N, \qquad (2)$$

$$\sum_{k \in K} \sum_{i \in N} X_{ijk} = 1, \qquad j \in N,$$

$$(3)$$

$$\sum_{k \in K} Y_{rk} = 1, \qquad r \in R, \qquad (4)$$

$$\sum_{k \in K} X_{jik} = 1, \qquad i \in B, \quad j \in Q , \qquad (5)$$

$$\sum_{i i = 0} X_{ijk} = 1 \to At_i + t_{di} + t_{wi} + t_{oi} \le At_j, \qquad k \in K,$$
 (6)

$$\sum_{k \in K} S_{ki} \le 3, \qquad i \in Q , \qquad (7)$$

其中:式(2)和式(3)表示完成每个任务的AGV在每个节点只能走一次,防止AGV陷入局部循环,是车辆路径规划约束;式(4)表示每个任务都有AGV完成,即不存在任务无法完成的情况;式(5)表示一个

集装箱的任务由同一个 AGV 完成,表示任务与 AGV 的对应关系;式(6)表示同一辆 AGV 作业的优先顺序的约束;式(7)表示第 *i* 个岸桥下排队的 AGV 数量最多为 3 辆,防止大量 AGV 拥堵情况发生。

软时间窗要求在时间窗范围内达到目标的解较优,超过范围也可行,但是要有不同的惩罚程度,如图 2 所示,横坐标 t 为时间,纵坐标 s 表示对解的容忍度,在本文中,当解在 $[0,e_i]$ 之间的容忍度比 $[l_i$,+ ∞] 的容忍度高,表示 AGV 提前和延迟到达的可容忍度的趋势不同,AGV 在时间窗规定的最早到达时刻之前到达的容忍度较高,当解在 $[e_i,l_i]$ 被认为是较优解,但是在选择路径时还要依据目标值大小进行调整。

图 2 软时间窗示意图

当 Y_{n} = 1 时,即任务分配已完成的前提下,有关时间窗的约束条件如式(8)~式(12)所示。

$$t_{ai} = \max\{l_i, At_i\}, \quad i \in Q, \tag{8}$$

$$At_i < e_i \to t_{wi} = t_{wAi} = \beta(e_i - At_i) , \quad i \in Q ,$$
 (9)

$$e_i \leqslant At_i \leqslant l_i \to t_{wi} = t_{wAi} = l_i - At_i, \quad i \in Q,$$
(10)

$$At_i > l_i \rightarrow t_{wi} = t_{w0i} = \alpha (At_i - l_i) , \quad i \in Q ,$$

$$\tag{11}$$

$$t_{wi} \geqslant 0, S_{ki} \geqslant 0, t_d \geqslant 0, \quad i \in Q , \qquad (12)$$

其中: 式(8) 表示第 i 个岸桥的实际开始作业时刻,当 AGV 提前到达时,开始作业时刻为 l_i ;当 AGV 延迟到达时,岸桥开始作业时刻为 AGV 实际到达时刻 At_i 。式(9)~式(11)表示等待时间的约束,当 AGV 在时间窗范围内到达岸边时,作业等待时间为 AGV 等待岸桥时间;当 AGV 到达时刻不在时间窗范围时,作业等待时间为带有惩罚系数的等待时间,其中,由于岸桥等待产生的惩罚因子 α ,AGV 提前于时间窗规定的最早到达时刻的惩罚因子为 β ;式(12)表示参数基本范围。

3 算例分析

3.1 算例描述

算例分析和仿真实验围绕本文数学模型展开,首先搜索所有可行路径,其次根据模型的目标函数和约束选择 AGV 可行路径,最后通过仿真模拟 AGV 完成任务的情况,检验模型和路径的有效性。基于码头的作业情况,将实际问题简化,并根据本文建立的模型求解,图 3 为码头网格路径布局,去除非 AGV 行驶车道,并将岸桥、箱区和 AGV 简化为点,为防止道路拥堵,假设每个相邻岸桥作业所占路径不同。

图 3 码头网格路径布局

Fig. 3 Layout of routes in automated container terminal

 $Q_4 - B_5$

假设 AGV 的行驶速度为 5 m/s,每个任务岸桥的作业时间恒为 120 s,每辆 AGV 只能装载一个 40 英尺的集装箱。AGV 的初始位置在岸桥所在节点,AGV 在完成任务后判断下一任务情况,回到对应岸桥下排队。根据码头布局,防止 AGV 行驶距离过远影响作业效率,将任务作业区分成左右两部分,并分别配有 2 个岸桥、4 辆 AGV 和 4 个箱区,每个作业区完成 10 个任务,具体任务分配情况见表 1。受 AGV 作业范围限制,设置 AGV 到达岸边的时间窗长度为 60 s。为防止大量 AGV 在岸桥下排队,作业等待时间所占比重较高, μ 为 0. 7, θ 为 0. 3。最后,计算每个 AGV 完成每个任务的行驶时间和作业等待时间,规划岸桥与箱区之间的合理路径,最终确定每个 AGV 完成任务时的行驶路径。

Tab. 1 Task assignment of imported containers 任务 岸桥一箱区 任务 岸桥一箱区 $Q_3 - B_6$ 1 11 Q_1 - B_1 2 $Q_4 - B_7$ 12 $Q_4 - B_6$ 3 $Q_3 - B_5$ 13 $Q_3 - B_6$ 4 $Q_2 - B_1$ 14 Q_2-B_3 Q_4 - B_7 5 $Q_3 - B_8$ 15 6 $Q_1 - B_3$ 16 Q_1 - B_2 7 $Q_3 - B_5$ 17 $Q_2 - B_4$ 8 Q_1 - B_1 18 Q_2 - B_4 9 $Q_2 - B_3$ 19 $Q_4 - B_8$

表 1 进口箱任务分配表

3.2 路径选择

本算例搜索每个任务的所有可行路径,统计路径长度和转弯次数,并计算每条路径的目标值,找出目标值最小的路径。在完成任务过程中,为避免大量 AGV 集中在同一路径,本文设置一定的选路原则,具体如下:

20

- ① AGV 路径选择分为两部分,第一部分是从箱区到岸边,有时间窗约束,要依据目标函数和数学模型选择路径;第二部分是从岸边到箱区,没有时间的限制,只要求 AGV 之间无冲突以及 AGV 的行驶时间最短;
 - ② 优先选择等待时间较少的路径,其次选择最短路径;
 - ③ 优先选择直接驶离作业区的路径;
 - ④ 选路前提是 AGV 行驶过程中没有出现冲突和拥堵的情况;

 $Q_1 - B_2$

- ⑤ 由于在码头实际运营时,AGV 在转弯时有转弯半径造成 AGV 的行驶速度降低,引起任务延迟和路段拥堵,因此在选择路径时,尽量选择转弯次数较少的路径;
 - ⑥ 从每个箱区出发的 AGV 行驶的路径节点尽量不重合,避免 AGV 之间碰撞。

3.3 结果输出

AGV 从箱区到岸桥的行驶路径结果如表 2 所示,分别统计了 AGV 行驶时间 t_d 、作业等待时间 t_w 、转弯次数 n 和目标函数值 T。结果显示,等待时间都为正值,没有出现岸桥等待 AGV 的情况, B_1-Q_1 、 B_2-Q_1 、 B_1-Q_2 、 B_2-Q_2 和 B_3-Q_2 有两条参数完全相同的路径,需要进一步模拟检验路径的有效性; B_1-Q_1 、 B_3-Q_1 、 B_3-Q_2 、 B_3-Q_3 和 B_5-Q_4 的作业等待时间 t_w 都小于 10 s,虽然 AGV 行驶距离变长,但避免 AGV 在岸桥处的排队,较为符合码头实际运营的要求。

表 2 AGV 从箱区到岸桥的行驶路径结果

Tab. 2 Paths from blocks to quay crane

最终路径	t_d/s	t_w/s	n	T/s
$B_1 - B_{38} - B_{31} - B_{24} - B_{25} - B_{26} - B_{19} - B_{18} - B_{17} - B_{10} - Q_1 /$	54	6	5	20. 4
$B_1 - B_{38} - B_{31} - B_{32} - B_{33} - B_{26} - B_{19} - B_{18} - B_{17} - B_{10} - Q_1$ $B2 - B_{31} - B_{32} - B_{33} - B_{26} - B_{10} - B_{18} - B_{17} - 10 - Q_1$	48	12	4	22. 8
			·	
$B_3 - B_{33} - B_{34} - B_{27} - B_{20} - B_{13} - B_6 - B_5 - B_4 - Q_1$	54	6	4	20. 4
$B_4 - B_{35} - B_{28} - B_{21} - B_{14} - B_7 - B_6 - B_5 - B_4 - B_{11} - B_{10} - Q_1$	58	2	4	18.8
$B_1 - B_{38} - B_{31} - B_{24} - B_{25} - B_{26} - B_{27} - B_{20} - B_{13} - Q_2$	56	4	4	19. 6
$B_1 - B_{38} - B_{31} - B_{32} - B_{33} - B_{34} - B_{27} - B_{20} - B_{13} - Q_2$				
$B_2 - B_{31} - B_{24} - B_{25} - B_{26} - B_{27} - B_{28} - B_{21} - B_{14} - B_{13} - Q_2 /$	58	2	3	18.8
$B_2 - B_{31} - B_{32} - B_{33} - B_{34} - B_{35} - B_{28} - B_{21} - B_{14} - B_{13} - Q_2$				
$B_3 - B_{33} - B_{26} - B_{27} - B_{28} - B_{21} - B_{14} - B_{13} - Q_2$	48	12	3	22. 8
$B_3 - B_{33} - B_{34} - B_{35} - B_{28} - B_{21} - B_{14} - B_{13} - Q_2$				
$B_4 - B_{35} - B_{28} - B_{21} - B_{14} - B_{13} - Q_2$	36	24	1	25. 2
$B_5 - B_6 - B_{73} - B_{74} - B_{75} - B_{68} - B_{61} - B_{54} - B_{53} - B_{52} - Q_3$	56	4	5	19. 6
$B_6 - B_{73} - B_{66} - B_{67} - B_{68} - B_{61} - B_{54} - B_{53} - B_{52} - Q_3$	48	12	4	22. 8
$B_7 - B_{75} - B_{68} - B_{69} - B_{62} - B_{61} - B_{60} - Q_3$	42	18	3	25. 2
$B_8 - B_{84} - B_{77} - B_{70} - B_{63} - B_{62} - B_{61} - B_{60} - Q_3$	44	16	2	24. 4
$B_5 - B_6 - B_{73} - B_{74} - B_{75} - B_{76} - B_{69} - B_{62} - B_{55} - B_{48} - Q_4$	58	2	3	18.8
$B_6 - B_{73} - B_{66} - B_{67} - B_{68} - B_{69} - B_{62} - B_{55} - B_{48} - Q_4$	50	10	3	22
$B_7\!-\!B_{75}\!-\!B_{76}\!-\!B_{69}\!-\!B_{62}\!-\!B_{55}\!-\!B_{48}\!-\!Q_4$	40	20	3	26
$B_8 - B_{84} - B_{77} - B_{70} - B_{63} - B_{56} - B_{49} - B_{48} - Q_4$	42	18	2	25. 2
	$B_{1}-B_{38}-B_{31}-B_{24}-B_{25}-B_{26}-B_{19}-B_{18}-B_{17}-B_{10}-Q_{1}/$ $B_{1}-B_{38}-B_{31}-B_{32}-B_{33}-B_{26}-B_{19}-B_{18}-B_{17}-B_{10}-Q_{1}$ $B_{2}-B_{31}-B_{32}-B_{33}-B_{26}-B_{19}-B_{18}-B_{17}-10-Q_{1}/$ $B_{2}-B_{31}-B_{24}-B_{25}-B_{26}-B_{19}-B_{18}-B_{17}-10-Q_{1}/$ $B_{3}-B_{33}-B_{34}-B_{27}-B_{20}-B_{13}-B_{6}-B_{5}-B_{4}-Q_{1}$ $B_{4}-B_{35}-B_{28}-B_{21}-B_{14}-B_{7}-B_{6}-B_{5}-B_{4}-B_{11}-B_{10}-Q_{1}$ $B_{1}-B_{38}-B_{31}-B_{24}-B_{25}-B_{26}-B_{27}-B_{20}-B_{13}-Q_{2}/$ $B_{1}-B_{38}-B_{31}-B_{32}-B_{33}-B_{34}-B_{27}-B_{20}-B_{13}-Q_{2}/$ $B_{2}-B_{31}-B_{24}-B_{25}-B_{26}-B_{27}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}/$ $B_{2}-B_{31}-B_{24}-B_{25}-B_{26}-B_{27}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}/$ $B_{2}-B_{31}-B_{32}-B_{33}-B_{34}-B_{35}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}/$ $B_{3}-B_{33}-B_{24}-B_{25}-B_{26}-B_{27}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}/$ $B_{3}-B_{33}-B_{24}-B_{25}-B_{26}-B_{27}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}/$ $B_{3}-B_{33}-B_{24}-B_{25}-B_{26}-B_{27}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}/$ $B_{3}-B_{33}-B_{24}-B_{35}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}/$ $B_{3}-B_{33}-B_{24}-B_{35}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}/$ $B_{3}-B_{33}-B_{34}-B_{35}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}/$ $B_{5}-B_{6}-B_{73}-B_{74}-B_{75}-B_{68}-B_{61}-B_{54}-B_{53}-B_{52}-Q_{3}/$ $B_{6}-B_{73}-B_{66}-B_{67}-B_{68}-B_{61}-B_{54}-B_{53}-B_{52}-Q_{3}/$ $B_{7}-B_{75}-B_{68}-B_{69}-B_{62}-B_{61}-B_{60}-Q_{3}/$ $B_{8}-B_{84}-B_{77}-B_{70}-B_{63}-B_{62}-B_{61}-B_{60}-Q_{3}/$ $B_{5}-B_{6}-B_{73}-B_{74}-B_{75}-B_{68}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}/$ $B_{6}-B_{73}-B_{66}-B_{67}-B_{68}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}/$ $B_{6}-B_{73}-B_{66}-B_{67}-B_{68}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}/$ $B_{7}-B_{75}-B_{76}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}/$ $B_{7}-B_{75}-B_{76}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}/$	$B_{1}-B_{38}-B_{31}-B_{24}-B_{25}-B_{26}-B_{19}-B_{18}-B_{17}-B_{10}-Q_{1}/$ $B_{1}-B_{38}-B_{31}-B_{32}-B_{33}-B_{26}-B_{19}-B_{18}-B_{17}-B_{10}-Q_{1}$ $B_{2}-B_{31}-B_{32}-B_{33}-B_{26}-B_{19}-B_{18}-B_{17}-10-Q_{1}/$ $B_{2}-B_{31}-B_{24}-B_{25}-B_{26}-B_{19}-B_{18}-B_{17}-10-Q_{1}/$ $B_{3}-B_{33}-B_{34}-B_{27}-B_{20}-B_{13}-B_{6}-B_{5}-B_{4}-Q_{1}$ $B_{4}-B_{35}-B_{28}-B_{21}-B_{14}-B_{7}-B_{6}-B_{5}-B_{4}-B_{11}-B_{10}-Q_{1}$ $B_{1}-B_{38}-B_{31}-B_{24}-B_{25}-B_{26}-B_{27}-B_{20}-B_{13}-Q_{2}/$ $B_{1}-B_{38}-B_{31}-B_{24}-B_{25}-B_{26}-B_{27}-B_{20}-B_{13}-Q_{2}/$ $B_{2}-B_{31}-B_{24}-B_{25}-B_{26}-B_{27}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}/$ $B_{2}-B_{31}-B_{24}-B_{25}-B_{26}-B_{27}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}/$ $B_{3}-B_{33}-B_{34}-B_{35}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}/$ $B_{3}-B_{33}-B_{26}-B_{27}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}/$ $B_{3}-B_{33}-B_{34}-B_{35}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}/$ $B_{4}-B_{35}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}/$ $B_{4}-B_{35}-B_{28}-B_{21}-B_{14}-B_{13}-Q_{2}$ $B_{5}-B_{6}-B_{73}-B_{74}-B_{75}-B_{68}-B_{61}-B_{54}-B_{53}-B_{52}-Q_{3}$ $B_{7}-B_{75}-B_{68}-B_{69}-B_{62}-B_{61}-B_{60}-Q_{3}$ $B_{7}-B_{75}-B_{66}-B_{67}-B_{68}-B_{69}-B_{62}-B_{61}-B_{60}-Q_{3}$ $B_{7}-B_{75}-B_{66}-B_{67}-B_{68}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}$ $B_{7}-B_{75}-B_{66}-B_{67}-B_{68}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}$ $B_{7}-B_{75}-B_{66}-B_{67}-B_{68}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}$ $B_{7}-B_{75}-B_{66}-B_{67}-B_{68}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}$ $B_{7}-B_{75}-B_{66}-B_{67}-B_{68}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}$ $B_{7}-B_{75}-B_{66}-B_{67}-B_{68}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}$ $B_{7}-B_{75}-B_{66}-B_{67}-B_{68}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}$ $B_{7}-B_{75}-B_{76}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}$ $B_{7}-B_{75}-B_{76}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}$ $B_{7}-B_{75}-B_{76}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}$ $B_{7}-B_{75}-B_{76}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}$ $B_{7}-B_{75}-B_{76}-B_{69}-B_{62}-B_{55}-B_{48}-Q_{4}$ $B_{7}-B_{75}-B_{76}-B_{69}-B_{62}-B_{55}-B_{48}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

表 3 显示 AGV 从岸桥到箱区的行驶路径,由于箱区前沿有 AGV 伴侣,无需 AGV 等待作业,因此,AGV 从岸边返回箱区时优先选择最短路径,如到达箱区 B_3 、 B_4 、 B_7 和 B_8 的路径;考虑 AGV 的流量分配问题,避免 AGV 在某条路径拥堵,所以到达箱区 B_1 、 B_2 、 B_5 和 B_6 都选择非最短路径,AGV 行驶时间增长。该结果有效地防止大量 AGV 堆积在一条路径上,从而提高整个系统的作业效率。

表 3 AGV 从岸桥到箱区的路径结果

Tab. 3 Paths from quay crane to blocks

箱区	路径	t_d/s	n	箱区	路径	t_d/s	\overline{n}
Q_1 - B_1	$Q_1 - Q_2 - Q_1 - Q_8 - Q_{15} - Q_{22} - Q_{29} - Q_{36} - B_1$	42	2	$Q_3 - B_5$	$Q_3 - Q_{58} - Q_{57} - Q_{64} - Q_{71} - Q_{78} - B_5$	36	2
Q_1 - B_2	$Q_1 - Q_2 - Q_1 - Q_8 - Q_{15} - Q_{22} - Q_{29} - Q_{36} - Q_{37} - B_2$	48	2	$Q_3 - B_6$	$Q_3 - Q_{58} - Q_{57} - Q_{64} - Q_{71} - Q_{78} - B_5 - B_6$	44	2
Q_1 - B_3	$Q_1 - Q_2 - Q_9 - Q_{16} - Q_{23} - Q_{24} - Q_{25} - Q_{32} - Q_{39} - B_3$	58	4	$Q_3 - B_7$	$Q_3 - Q_{58} - Q_{65} - Q_{66} - Q_{67} - Q_{74} - Q_{81} - B_7$	36	4
	$\begin{aligned} Q_1 - Q_2 - Q_9 - Q_{16} - Q_{23} - Q_{24} - Q_{25} - Q_{32} - Q_{39} - Q_{40} - \\ Q_{41} - B_4 - B_4 \end{aligned}$	70	4	$Q_3 - B_8$	$Q_3 - Q_{58} - Q_{65} - Q_{66} - Q_{67} - Q_{74} - Q_{81} - B_7 - B_8$	46	4
Q_2 – B_1	$Q_2 - Q_{11} - Q_{10} - Q_9 - Q_8 - Q_{15} - Q_{22} - Q_{29} - Q_{36} - B_1$	48	2	$Q_4 - B_5$	$Q_4 - Q_{46} - Q_{45} - Q_{44} - Q_{51} - Q_{58} - Q_{65} - Q_{72} - B_5$	46	2
Q_2 - B_2	$Q_2 - Q_{11} - Q_{10} - Q_9 - Q_8 - Q_{15} - Q_{22} - Q_{29} - Q_{36} - Q_{37} - B_2$	54	2	Q_4 – B_6	$Q_4 - Q_{46} - Q_{45} - Q_{44} - Q_{51} - Q_{58} - Q_{65} - Q_{72} - B_5 - B_6$	54	2
Q_2 – B_3	$Q_2 - Q_{11} - Q_{18} - Q_{25} - Q_{32} - Q_{39} - B_3$	34	2	Q_4 - B 7	$Q_4 - Q_{46} - Q_{53} - Q_{60} - Q_{67} - Q_{74} - Q_{81} - B_7$	38	2
Q_2 - B_4	$Q_2 - Q_{11} - Q_{18} - Q_{25} - Q_{32} - Q_{39} - Q_{40} - Q_{41} - B_4$	42	2	Q_4 – B_8	$Q_4 - Q_{46} - Q_{53} - Q_{60} - Q_{67} - Q_{74} - Q_{81} - B_7 - B_8$	44	2

根据 AGV 可行走的路径和任务的先后顺序,为每个任务选择合适的 AGV 来完成任务,并规划每个 AGV 完成其所有任务的行走路径,选择 AGV 考虑的因素包括 AGV 与目标任务(完成卸载进口箱任务的岸桥)的距离、岸桥作业顺序、AGV 是否闲置以及不同路径目标函数值的大小等,AGV 具体完成任务

的顺序结果见表 4。表 4 中显示,受实际作业情况限制,每辆 AGV 的完成任务的数量不同,AGV₁、AGV₃、AGV₆和 AGV₇需要完成三个任务,行驶路径较长,这也反应出这 4 辆 AGV 完成前一个任务后距离下一个需要完成的任务距离较近,能较快的到达目标岸桥处。

表 4 AGV 完成任务的顺序表 Tab. 4 Perform sequence of AGV

AGV	任务	路径	
1	$Q_2 - B_1 - Q_1 - B_2 - Q_2 - B_4$		
2	8,17	$Q_1 - B_1 - Q_2 - B_4$	
3	6,14,16	$Q_1 - B_3 - Q_2 - B_3 - Q_1 - B_2$	
4	9,11	$Q_2 - B_3 - Q_1 - B_1$	
5	3,19	$Q_3 - B_5 - Q_4 - B_8$	
6	2,5,20	$Q_4 - B_7 - Q_3 - B_8 - Q_4 - B_5$	
7	1,15,13	$Q_3 - B_6 - Q_4 - B_7 - Q_3 - B_6$	
8	12,7	$Q_4 - B_6 - Q_3 - B_5$	

使用 Matlab 工具模拟不同时刻的所有 AGV 所在位置节点,检验是否有相同时刻不同 AGV 出现在相同两个节点之间,判断是否存在潜在的 AGV 冲突。模拟岸桥作业、AGV 行走和任务衔接情况,检测是否存在过多无效作业时间,降低码头作业效率。

仿真结果如图 4 显示,纵坐标节点 3、12、47 和 59 分别为 Q_1 、 Q_2 、 Q_4 和 Q_3 ,横坐标为时刻,曲线表示不同 AGV 在不同时刻通过节点的情况。由于作业分为两部分完成,所以仿真结果也显示有两部分 AGV 的行驶路径图。图 4 中显示任务数量相同的 AGV 总完成时间较为接近,AGV 的运量较为平衡,表明 AGV 完成任务的顺序、岸桥作业顺序和任务分配的数量较为合理。岸桥作业时间为不同 AGV 构成的连续水平直线,表明岸桥卸船作业衔接较好,没有出现岸桥等待 AGV 的情况;每个岸桥下等待的 AGV 在时间上有交叉,但最多有两辆 AGV 数据有交叉,存在等待的情况,表示没有出现大量 AGV 在岸桥排队情况。没有出现相同时刻两节点之间有不同 AGV 的情况,即不同 AGV 在不同时刻所在路径的节点不同,AGV 之间没有冲突,也没有出现 AGV 集中在某一节点的情况。仿真结果检验结果的有效性,符合实际码头作业情况。

Fig. 4 Moving nodes of AGV and operation time

4 结 语

自动化集装箱码头 AGV 行驶路径规划受任务分配、岸桥作业时间和 AGV 数量的影响。提高 AGV 水平运输效率是增强自动化集装箱码头连续作业能力的关键因素之一。本文在已知进口箱任务分配情况,求解 AGV 作业等待时间和行驶时间的多目标问题,考虑 AGV 提前和延迟到达的惩罚因子,利用软时间窗的方法规划 AGV 的行驶路径,减少任务过程中的设备闲置时间;确定每辆 AGV 需要完成的任务和作业顺序,模拟每辆 AGV 的实际行走路径和不同时刻的通行节点,检验 AGV 行走路径的合理性、AGV 运量平衡和岸桥作业的连续性。

本文只考虑卸船作业下的码头 AGV 路径规划问题,在实际码头运营中,为提高作业效率,需要考虑 边装边卸的作业任务,因此有关不同作业模式下的 AGV 路径规划问题仍需要深入研究。此外,水平运输是衔接岸桥作业和堆场作业的关键,受码头作业箱量的影响,如何合理规划大规模数量的 AGV 行驶路径,防止 AGV 的排队、拥堵和冲突情况会成为提高码头作业效率的关键。

参考文献:

- [1] HAMED F, MOHAMMAD S. Methodologies to optimize automated guided vehicle scheduling and routing problems: areview study [J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2015, 77(3-4): 525-545.
- [2] ERRICO F, DESAULNIERS G, GENDREAU M, et, al. A priori optimization with recourse for the vehicle routing problem with hard time windows and stochastic service times [J]. European Journal of Operational Research, 2016, 249(1): 55-66.
- [3] 苏霞,李伟光. FMS 中自动导引车路径规划[J]. 机械设计与制造, 2015(1): 201-203+207.
- [4] HAMED F, MOHAMMAD S, ELLIPS M. Mathematical model for deadlock resolution in multiple AGV scheduling and routing network: a case study [J]. Industrial Robot, 2015,42(3): 252-263.
- [5] TATSUSHI N, YUICHIRO H, IGNACIO E. Grossmann. A bi-level decomposition algorithm for simultaneous production scheduling and conflict-free routing for automated guided vehicles [J]. Computers and Operations Research, 2011, 38(5): 876-888.
- [6] 张彦,梁承姬. 离散时间窗下集卡数量动态优化研究 [J]. 武汉理工大学学报(信息与管理工程版), 2013,35(2): 202-206.
- [7] 王军,许晓蕾. 集装箱码头集卡作业的路径选择[J]. 大连海事大学学报, 2011, 37(2): 25-28.
- [8] 宓为建,李央央,胡鸿韬. 集装箱堆场分配与自动化装载小车路径联合优化[J]. 上海海事大学学报, 2015, 36 (4): 16-21.
- [9] KIM K H, BAE J W. A look-ahead dispatching method for automated guided vehicles in automated port container terminals [J]. Transportation Science, 2004, 38(2): 224-234.
- [10] XIN J, RUDY R N, FRANCESCO C, et, al. Control of interacting machines in automated container terminals using a sequential planning approach for collision avoidance [J]. Transportation Research Part C: EmergingTechnologies, 2015, 60: 377-396.
- [11] 霍凯歌,张亚琦,胡志华. 自动化集装箱码头多载 AGV 调度问题研究 [J]. 大连理工大学学报,2016,56(3): 245-251.

(责任编辑 梁碧芬)