

Problem Set #1: Passives & MOS Device & Single-Stage Amplifiers

Problem 1

- (a) If the resistivity of poly-silicon is $10^{-4}~\Omega$.m and thickness of poly-silicon layer is 1 μ m, calculate the sheet resistance R $_{\square}$.
- (b) If the distance between two metal layers is 100nm and the space between the two metals is filled with silicon oxide ($\varepsilon=3\times10^{-11}$ F/m), calculate the capacitance per unit area.

Problem 2

Find the value of the capacitor shown below for w=300 μ m, s=t=t_{ox}=L=1 μ m, and ϵ =3×10⁻¹¹ F/m.

Problem 3 (Book 2.8)

Sketch V_{out} as a function of V_{in} as V_{in} varies from 0 to V_{DD} for the circuit shown with V_{DD} = 3V. $\mu_n C_{ox}$ =50 μ A/V², V_{TH} = 0.8V, 2 φ_F = 0.7V, and γ =0.4V^{0.5}

Problem 4 (Book 2.27)

An NMOS device operating in the sub-threshold region has a ζ of 1.5. What variation in V_{GS} results in a tenfold change in I_D ? If I_D =10 μ A, calculate g_m .

Problem 5 (Book 2.13 & 2.14)

(a) Show that the transit frequency of a MOS device is given by:

$$f_T = \frac{g_m}{2\pi (C_{GD} + C_{GS})}$$

(b) Calculate the transit frequency for a device in sub-threshold region (weak inversion) and compare that with the result obtained in (a).

Problem 6

For the source-follower circuit shown, M₁ and M₂ are identical.

 $\mu_n C_{ox} = 50 \mu A/V^2$, (W/L)= $2 \mu m/1 \mu m$, $V_{TH} = 0.8 V$, and $V_b = 2 V$, $\lambda = 0.02 V^{-1}$, Find:

- (a) Gain ($=V_{out}/V_{in}$) and G_m if $\gamma=0$. Repeat if body effect is not neglected ($\gamma=0.4$).
- (b) R_{out} if $\gamma=0$. Repeat if body effect is not neglected ($\gamma=0.4$).
- (c) Poles at the input and output. $C_{ox}=10 fF/\mu m^2$ and $C_{ov}=1 fF/\mu m$ Assume $R_S=100\Omega$ and $C_L=10 pF$. Consider C_{gs} and C_{gd} only and use Miller theory.

