Package 'sccdhm'

February 5, 2024

туре Раскаде
Title Sufficient Condition Conjunction Algorithm Based on Dual Harmony Memories
Version 1.0
Date 2024-2-1
Author Wei Xu
Maintainer Wei Xu <eric.wxu@hotmail.com></eric.wxu@hotmail.com>
Description Pkg{sccdhm} is a package to perform the Sufficient Condition Conjunction Algorithm Based on Dual Harmony Memories.
License GPL (>= 2)
Encoding UTF-8
Imports plyr,purrr,stringr,admisc,dplyr
NeedsCompilation yes
ExperimentalWindowsRuntime ucrt
R topics documented:
coodhm madraga
scedhm-package
bocorrection
chi2test
consistency
coverage
is2kmember
judgecompatible
samplescount
scedhm
scedhmeon
scedhmeov
Index 11

2 bocorrection

sccdhm-package Sufficient Condition Conjunction Memories	n Algorithm Based on Dual Harmony
--	-----------------------------------

Description

Pkgsccdhm is a package to perform the Sufficient Condition Conjunction Algorithm Based on Dual Harmony Memories.

Author(s)

Author:

Wei Xu

Maintainer:

Wei Xu <eric.wxu@hotmail.com

References

Baumgartner, Michael.(2009). Inferring Causal Complexity. Sociological Methods & Research. 38. 10.1177/0049124109339369.

bocorrection	Bonferroni correction for the Chi-squared test.

Description

This function corrects Pearson's Chi-squared test by bonferroni correction.

Usage

bocorrection(screencom, pvaluevec, numofsnps)

Arguments

screencom the snp combination.

pvaluevec the p-value of Pearson's Chi-squared test.

numofsnps the number of SNPs.

Value

A numeric value of pvalue in the pearsons chisquared by bonferroni correction..

References

Benjamini, Y. and D. Yekutieli (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics. 29: 1165-1188.

chi2test 3

Examples

chi2test

Chisquaretest for the Pattern in the Source Data

Description

This function tests whether the pattern is related to the depend variable in the source dataset by Pearson's Chi-squared test.

Usage

```
chi2test(pattern, mvsccsamples)
```

Arguments

pattern the pathogenic pattern, for example, "[2,3]" denotes the mutation of the second

and the third snp.

mvsccsamples the data of samples.

Value

A numeric value of pvalue in the Pearsons Chi-squared test.

References

Haviland MG. Yates's correction for continuity and the analysis of 2 x 2 contingency tables. Stat Med. 1990 Apr;9(4):363-7; discussion 369-83. doi: 10.1002/sim.4780090403. PMID: 2362976.

4 consistency

consistency

Consistency calculation for the Pattern in the Source Data

Description

This function calculates the consistency in the source dataset.

Usage

```
consistency(pattern, sccsamples)
```

Arguments

pattern the pathogenic pattern, for example, "[2,3]" denotes the mutation of the sceond

and the third snp.

sccsamples the data of sccsamples.

Value

A numeric value between 0 and 1.

References

Ragin, C.C. (2008). Redesigning social inquiry: Fuzzy sets and beyond: University of Chicago Press.

coverage 5

COV	۵r	206	2
cov	CΙ	age	7

Coverage calculation for the Pattern in the Source Data

Description

This function calculates the coverage in the source dataset.

Usage

```
coverage(pattern, sccsamples)
```

Arguments

pattern the pathogenic pattern, for example, "[2,3]" denotes the mutation of the second

and the third snp.

sccsamples the data of sccsamples.

Value

A numeric value between 0 and 1.

References

Ragin, C.C. (2008). Redesigning social inquiry: Fuzzy sets and beyond: University of Chicago Press.

Examples

is2kmember

Judge whether the pattern is the member of 2-order set

Description

This function judges whether the pattern is the member of 2-order set.

Usage

```
is2kmember(pattern,set)
```

6 judgecompatible

Arguments

pattern the pathogenic pattern, for example, "[2,3]" denotes the mutation of the sceond

and the third snp.

set the data of set.

Value

A logical value.

Examples

```
set<-array(1:20,dim=c(10,2))
pattern<-list(2,12)
is2kmemberresult<-is2kmember(pattern,set)</pre>
```

judgecompatible

Judge Whether a Sample is Compatible with the Pattern

Description

This function judges whether a sample is compatible with the pattern or not.

Usage

```
judgecompatible(pattern, sample)
```

Arguments

pattern the pathogenic pattern, for example, "[2,3]" denotes that the mutation of the sceond

and third snp.

sample the data of one sample.

Value

Logical value.

samplescount 7

samplescount	Generate a contingency table for the Source Data	

Description

This function generate a contingency table for the source data.

Usage

```
samplescount(snps,factor,class)
```

Arguments

silps the ships matrix, o denotes the missing data; i denotes nomezygous what type	snps	the snps matrix,0 denotes	the missing data,1 denotes	homozygous wild-type al-
--	------	---------------------------	----------------------------	--------------------------

leles, 2 denotes homozygous wild-type alleles,3 denotes homozygous mutant

alleles.

factor the snp combination.

class the disease vector, 1 denotes case and 2 denotes control.

Value

A contingency table for the source data as matrix.

References

Gravetter, F. J., & Wallnau, L. B. (2010). Essentials of Statistics for the Behavioral Sciences (PSY 200 (300) Quantitative Methods in Psychology). Boston: Cengage Learning.

8 sccdhm

sccdhm Sufficient Condition Conjunction Algorithm Based on Dual Harmony Memories	n Algorithm Based on Dual Harmony
--	-----------------------------------

Description

This function completes the sccdhm analysis.

Usage

```
sccdhm(HMS,max_iter,HMCR,PAR,sccsamples,mvsccsamples)
```

Arguments

HMS Harmony Memories Size.

max_iter Max iteration.

HMCR Harmony memory consideration rate.

PAR Pitch-adjustment rate.

sccsamples Dataset.
mvsccsamples Dataset.

Value

The sccdhm solution.

References

Baumgartner, Michael. (2009). Inferring Causal Complexity. Sociological Methods & Research. 38. 10.1177/0049124109339369.

```
library(stringr)
sccsamples<-data.frame(</pre>
mvsccsamples<-data.frame(</pre>
```

sccdhmcon 9

```
HMS = 10;
max_iter =50;
HMCR=0.95;
PAR=0.35;
sccdacsolutioncon<-sccdhm(HMS=HMS,max_iter=max_iter,HMCR=HMCR,PAR=PAR,sccsamples=sccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccsamples=mvsccs
```

sccdhmcon

Sufficient Condition Conjunction algorithm Base on Dual Harmony Memories According to consistency

Description

This function completes the scedhmeon analysis.

Usage

```
sccdhmcon(HMS,max_iter,HMCR,PAR,sccsamples)
```

Arguments

HMS Harmony Memories Size.

max_iter Max iteration.

HMCR Harmony memory consideration rate.

PAR Pitch-adjustment rate.

sccsamples Dataset.

Value

The sccdhmcon solution.

References

Baumgartner, Michael. (2009). Inferring Causal Complexity. Sociological Methods & Research. 38. 10.1177/0049124109339369.

10 sccdhmcov

```
HMCR=0.95;
PAR=0.35;
sccdacsolutioncon<-sccdhmcon(HMS=HMS,max_iter=max_iter,HMCR=HMCR,PAR=PAR,sccsamples=sccsamples)
```

sccdhmcov

Sufficient Condition Conjunction algorithm Base on Dual Harmony Memories According to coverage

Description

This function completes the sccdhmcov analysis.

Usage

```
sccdhmcov(HMS,max_iter,HMCR,PAR,sccsamples)
```

Arguments

HMS Harmony Memories Size.

max_iter Max iteration.

HMCR Harmony memory consideration rate.

PAR Pitch-adjustment rate.

sccsamples Dataset.

Value

The sccdhmcov solution.

References

Baumgartner, Michael.(2009). Inferring Causal Complexity. Sociological Methods & Research. 38. 10.1177/0049124109339369.

```
library(stringr)
sccsamples<-data.frame(</pre>
)
HMS = 10;
max_iter =50;
HMCR=0.95;
PAR=0.35;
sccdacsolutioncon<-sccdhmcov(HMS=HMS, max_iter=max_iter, HMCR=HMCR, PAR=PAR, sccsamples=sccsamples)
```

Index

```
bocorrection, 2

chi2test, 3
consistency, 4
coverage, 5

is2kmember, 5

judgecompatible, 6

samplescount, 7
sccdhm, 8
sccdhm-package, 2
sccdhmcon, 9
sccdhmcov, 10
```