Mish: A Self Regularized Non-Monotonic Neural Activation Function

Gobind Puniani MATH 190: Fall 2019 11/14/19

Activation Functions

- Activation functions introduce non-linearity into the network
 - Vital for training and testing
- Only a select few activation functions relied upon:
 - ReLU (Rectified Linear Unit): $f(x) = \max(0, x)$
 - Swish: $f(x) = x \cdot \text{sigmoid}(x)$
 - TanH (Hyperbolic Tangent)
 - Sigmoid
 - Leaky ReLU

ReLU and Swish

- ReLU and Swish are the most popular activation functions
- ReLU
 - Standard/default activation
 - Simple Implementation
 - Virtually unchallenged
- Swish
 - Unbounded above and bounded below

Mish

- Mish function: $f(x) = x \cdot \tanh(\operatorname{softplus}(x)) = x \cdot \tanh(\ln(1 + e^x))$
- Benefits of Mish:
 - Similar to Swish
 - Better performance
 - Easy to implement

Properties of Mish

- Self-gating: scalar input is provided to the gate
- Training factors:
 - Bounded below and unbounded above
 - Smooth
 - Non-monotonic
 - Other factors may help (hard to determine)
- Implemented on any standard deep learning framework
 - Lower learning rate recommended

Experimental Results

- Compared to Swish and ReLU:
 - Mish achieved highest Top-1 accuracy for all models on CIFAR-10
 - Mish achieved highest Top-1 accuracy for most models on CIFAR-100

Findings

- Mish demonstrates significantly higher accuracy than ReLU and Swish
 - Trade-off: higher epoch time (due to additional computational strain)
 - Mish outperformed ReLU even with parameters optimized for ReLU
 - Smoother transitions between scalar magnitudes means smoother loss functions, which are easier to optimize

Questions

Why is introducing non-linearity so important?