Adriann Liceralde
Dr. Brian McPherson
Carbon Science Research at the University of Utah
EGI Arduino Collection Project
Last Updated February 20, 2022

Information for the MH-Z16 CO₂ Sensor

Introduction

- The MH-Z16 is a low-cost rod-shaped sensor that uses NDIR technology to measure CO₂.
- Any microcontroller can control this sensor. However, this guide and the associative codes use an Arduino Uno to operate the device.
- It is compatible with three different communication methods: I²C, UART, and PWM.
- The sensor connects to a blue I²C/UART Interface board that easily connects to an Arduino or Raspberry Pi.

Important Notes

- The sensor is sensitive to sunlight. Therefore, DO NOT place it in direct contact with sunlight.
- Do not expose the sensor to water or rainy conditions.

Specifications

	Via I ² C/UART	Via PWM
Range	0 - 10,000 ppm	0 - 5,000 ppm
Accuracy	± (100ppm+5%	± (50ppm+5%
	reading)	reading)
Resolution	1 ppm	N/A
Current	60 mA (avg)	60 mA (avg)
	150 mA (max)	150 mA (max)
Voltage	4.5 V - 5.5 V	4.5 V - 5.5 V
Response Time	60 sec (T90)	60 sec (T90)
Lifespan	> 5 years	> 5 years

Links

• Product Info:

https://sandboxelectronics.com/?product=mh-z16-ndir-co2-sensor-with-i2cuart-5v3-3v-interface-for-arduinoraspeberry-pi

• Datasheet:

https://sandboxelectronics.com/wp-content/uploads/2018/08/Z16DS.pdf

- Arduino Library:
 - https://github.com/SandboxElectronics/NDIR
- Arduino Code for I²C:
 - https://github.com/RiceAllDay22/EGI Arduino Collection/tree/main/MH-Z16 w I2C
- Arduino Code for PWM: https://github.com/RiceAllDay22/EGI Arduino Collection/tree/main/MH-Z16 w PWM

Figure 1. Picture of the sensor and the interface board connected to an Arduino Uno

Wiring

- Communication with the sensor is performed via the I²C, UART, or PWM methods.
- The Interface board allows for the I²C and UART methods.
- The MH-Z16 sensor is still operable without an Interface board via the PWM method.
- This guide covers how to use the sensor through I²C and PWM.
- NEVER make wiring connections while the Arduino Uno is on.

Wiring – Method # 1 (Recommended for ease and more accurate data)

- This method requires the Interface board so that I²C is used to communicate with the sensor.
- Connect the sensor rod to the interface board using the 7-wire Grove connector. Then connect the interface board to an Arduino Uno using four M/F jumper wires.
- The interface board has a switch. Ensure that it is set to I²C mode.
- Run the MH-Z16 w I2C code to operate.
- Below is a wiring diagram and a schematic diagram of the circuit.

Figure 2. Wiring Diagram between an Arduino Uno and the interface board

fritzing

Figure 3. Schematic between an Arduino Uno and the interface board

Wiring – Method #2 (Not recommended, but is usable)

- This method does not require the Interface board.
- Use this only if an Interface board is unavailable.
- Run the MH-Z16 w PWM code to operate.

[CURRENTLY UNFINISHED]

Calibration for I²C mode

- There is a white button on the blue adaptor.
- Once the sensor has been in a stable condition for a few minutes, hold the button for 10 seconds.
- The sensor starts giving readings around 400 ppm.
- The calibration point is always at 400 ppm and cannot be altered. The workaround to this limitation is to add offset values to a dataset.
- For example, if the gas used for calibration is 500 ppm, add 100 to every measurement after the calibration.

Contact

For any questions or assistance, email Adriann Liceralde at adriann8399@gmail.com.