University of Delaware Interdisciplinary Science Learning Laboratories (ISLL)

SCEN 101: Lab Overview Lab 05. Goldilocks Zone

GTA: Siddharth Chaini → <u>chaini@udel.edu</u>

Section: 012

Office Hours: Wed, 3:00 pm - 5:00 pm (ISE 314)

Objective(s):

- Experiment with three different ratios of hot- and coldwater mixtures.
- Practice computing the final temperature of mixtures. Weighted averages.
- Verify the conservation of heat energy.
- Explore conservation of heat energy in everyday life.
- Possibilities for R & E.

Experimentation setup

Figure 1. Cup filled with water and Vernier Wide-Range Temperature Probe (experiment setup)(left), insulated metal cup (575 mL) for hot liquids (middle), and insulated plastic cup (485 mL) for cold/cool liquids (right).

Save <u>1 photo</u> of experiment setup showing all materials

Save 3 graphs (one per trial) from Graphical!

Figure 2. Temperature vs. Time, $m_c \approx m_h$ (Trial 1)

Table 5.1. Data for hot- and cold-water mixtures: measurements and calculations

m _{c,cup} =	g	m _{h,cup} =	g				Measured	Calculated	
Trial	m _{c,cup} +m _{cold} (g)	m _{h,cup} +m _{hot} (g)	m _{cold} (g)	m _{hot} (g)	T _{cold} (°C)	T _{hot} (°C)	T _{f,Expt.} (°C)	T _{f,Theor} .	% difference between T _{f,Expt.} and T _{f,Theor.}
1									
m _c ≈m _h									
2									
m _c >m _h									
3							A		
m _c <m<sub>h</m<sub>									
		•		,	*	•	*	Average % difference	

between T_{f,Expt}.
and T_{f,Theor}.:

CREATE YOUR OWN DATA SPREADSHEET!

$$(Total Q_{lost}) + (Total Q_{gained}) = 0$$

$$m_h c_w \Delta T + m_c c_w \Delta T = 0$$

$$m_h c_w (T_f - T_h) + m_c c_w (T_f - T_c) = 0$$

$$T_f = ???$$

$$Value_1 - Value_2$$

$$Value_1 + Value_2$$

$$2$$

$$x 100%$$

Lab Safety Reminder

You must use gloves when measuring, transporting, and experimenting with hot liquids!

Lab 05. Goldilocks Zone

Deliverables

- 1. Photo 1. Experiment setup... name accordingly
- 2. Figure 1. Temperature vs. Time, $m_c \approx m_h$ (Trial 1)
- 3. Figure 2. Temperature vs. Time, m $_{c} > m_{h}$ (Trial 2)
- 4. Figure 3. Temperature vs. Time, m < < m h (Trial 3)
- 5. Completed Tables 5.1, with final numbers
- 6. Calculations, showing formulas used and all work

*The labels for visuals are examples, be sure to be more descriptive AND include appropriate selections within each graph.

ANY QUESTIONS?