

前 m 大 曾 LANZHOU UNIVERSITY

Problem 1.
proof:
(a) O Since $\phi \in \mathcal{I}$, $x \cdot x = \phi$ is finite. $x, \phi \in \mathcal{I}$.
JETO For [Az]zez & T. WLOG, suppose for
$\forall \lambda \in \Lambda$ $A_{\lambda} \neq \phi$. Then $\lambda \setminus A_{\lambda}$ is finite. $\lambda \in A_{\lambda} \subseteq X$
Apply De Morgan's Law, X , YAA = , Q, X Ax is finite
thus ZENAX & E J.
3. For A.BEJ. WLOG, Suppose A.B≠ Ø. ANB ⊆A ⊆ X.
Then XIA, XIB is are finite.
1 X \(A ∩ B)] = (X \ A) U(X \ B) ≤ X \ A + X \ B < ∞.
Thus XIANB is finite. ANBEJ.
Therefore, J. is a topology on X.
•
16) $0 \times x = \phi$ is countable. $\phi. x \in \mathcal{T}_2$.
2 For A. B ∈ J2. WLOG. Suppose A. B ≠ \$. A ∩B = A = X.
XIA, X'B are countable. XI(AAB) = (XIA) U(XIB)
is also countable. ANB⊈EJ2.
3 For [Az] zen ∈ Jz. WLOG. Suppose for YZEN.
Aλ # φ. X \ Aλ is countable. NEM Aλ = X.
$A_{\lambda} \neq \phi$. $X \setminus A_{\lambda}$ is countable. $X \in A_{\lambda} \in X$. $X \setminus A_{\lambda} \in A_{\lambda} = A_{\lambda} \in A_{\lambda} (X \setminus A_{\lambda})$ is countable. $A_{\lambda} \in A_{\lambda} \in \mathcal{I}_{2}$

前 m 大 賞 LANZHOU UNIVERSITY

IC) ① Since pEX. $\phi.XET_a$
1C) ① Since $p \in X$. $φ$. $X \in \mathcal{I}_{\delta}$ Por $\phi \neq A$, $B \in \mathcal{I}_{\delta}$. $p \in X$. $p \in A$. $p \in B$. thus $p \in A \cap B$
$Anbe \mathcal{I}_{3}$
3 For \$ = {Az} ZENEJ3. For PEX. PEAZ. ZEN.
then pe Ala. DENALE 93
Thus, Jz is a topology on X.
2. (proof >. To prove that the metrics of and d' generate
the same topology on M. We need to show that
every open set in (M.d) is open in (M.d', and vice versa.
Step 1. Open sets in (M,d) are open in (M.d')
Let U be an open set in IM.d). Then for 4x6U.
Then $d'(x, y) = C \cdot d(x, y) \leq C \in thus d(x, y) \leq E$
then d'(x, y) = c·d(x,y) < c \(\). thus d(x,y) < \(\).
then $d'(x,y) = c \cdot d(x,y) < c \in .$ thus $d(x,y) < E \cdot B$. $y \in B_X(E) \subseteq U$. So $B_X(CE) \subseteq U$. Showing U is open in (M, M) .
Step 2. Open sets in (M.d.) are open in (M.d).
Let V be an open set in (M, d') Then for $\forall x \in V$.
$=$ $\exists 8>0 S.t. Bx (3) E V$
For B'(δ/c) in (M.d). y∈B'(δ/c). d(x,y)= = d(x,y)<δ/c
For $B_{x}^{(d)}(\delta/c)$ in (M,d) . $y \in B_{x}^{(d)}(\delta/c)$. $d(x,y) = \frac{1}{c}d(x,y) < \delta/c$ $d'(x,y) < \delta \cdot y \in B_{x}^{(d)}(\delta) = V, B_{x}^{(d)}(\delta/c) = V, V \text{ is open in } (M,c)$ Thus the topologies generated by d and d_{x}^{c} are the same
Thus the topologies generated by a and of are the same

Problem 3
(proof > . (a).
Step 1. X\B = 1X \ Int(B).
Let x E XIB, then every neighborhood contains
a peint of $X \cdot B$. If $X \in Int(B)$, then there exists
a neighborhood contained in B, which has no points in XIB
this is a contradiction. so XIB = XIInt(B)
Step 2 X · Int (B) = X · B.
Let x E X Int 18), then x & Int (B), so there is no
neighborhood contained in B. which implies every
neighborhoed contains a joint of XIB X EXIB.
Therefore XIB = Ins (B).
(b) Apply the conclusion in (a)
X' IntiX'B) = X'IX'B) = B
thus X · B = X · (X · Int · X · B)) = Int · X · B).
×
Problem 4.
proof, Lemma: A corregins all limit perati of A
sproof. Suppose not. then there exist a linuit
Since \bar{A} is closed then $x \in X \setminus \bar{A}$ is open
第

50 there exists a neighborhood contained in XIA.
which is a contradiction with the definition of the
limit point.
⇒ I For a dozed subset A EX. A = Ā contains all
its limit points
= If A contains all limit points, then denote
A'= {x x is a limit point of A = x}. A'=A.
AUA'= A. but A = AUA'. therefore A = AUA' = Ā
which is closed p
(proof)
5 (a) => For an arbitrary A = X. f(A) is closed in Y.
Since f is continuous. f'(f(A)) is closed.
f(A) = f(A), then $A = f'(f(A))$. Since RHS is a closed
$\overline{A} \subseteq f^{-1}(\overline{f(A)}). f(\overline{A}) \subseteq \overline{f(A)}.$
(= For any closed subset B = Y. let C = f'(B) = X.
Since $f(\overline{c}) = \overline{f(c)} = \overline{B} = B$. $\overline{c} = \overline{f'(B)} = C$.
thus C= c is closed f is continuous.
(b) => f is continuous. For any BEY. Int B is open, thus
f"(Int B) is open. since Int B = B. f"(Int (B)) = f"(B)
Since Int(f-1(B)) is the largest open set contained in f-1
Since $Int(f'(B))$ is the largest open set contained in $f'(Int(B)) \subseteq Int(f'(B))$. 第页

(= f'(In+B) = f Int,f'(B)) for all B=Y. Consider any
open set $U = Y$. Int $U = U$. $f'(u) = Int f'(u)$
$C_{1} = \frac{7}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{7}{2} \left(\frac{1}{2} \right) \right) = \frac{7}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{7}{2} \left(\frac{1}{2} \right) \right)$
open set $U = Y$. Int $U = U$. $f'(u) = Int f'(u)$. Since $Int f'(u) = f'(u)$, $f'(u) = Int f'(u)$ is open.
17