Jiankun_Dong_CS555_HW2

Jiankun (Bob) Dong CM3226

2023-10-06

Problem 1:

```
kid_cal <- read.csv("kid_cal.csv")</pre>
Kid meal <- kid cal$Calories[kid cal$trt == T]</pre>
Kid no meal <- kid cal$Calories[kid cal$trt == F]</pre>
IQparticipant <- 1.5*(quantile(Kid_meal,.75)[[1]]-quantile(Kid_meal,.25)[[1]])</pre>
outlierMeal <- Kid meal < quantile(Kid meal,.25)[[1]]-IQparticipant | Kid meal > quantile(Kid me
al, .75)[[1]]+IQparticipant
#sum(outlierMeal) There are no outliers
mealFrame <- data.frame(</pre>
  Mean = mean(Kid meal),
  Median = median(Kid meal),
  SD = sd(Kid_meal),
  First Quantile = quantile(Kid meal,.25)[[1]],
  Third_Quantile = quantile(Kid_meal,.75)[[1]],
  Min = min(Kid meal),
  Max = max(Kid_meal),
  outlier = "NULL"
)
IQNonparticipant <- 1.5*(quantile(Kid_no_meal,.75)[[1]]-quantile(Kid_no_meal,.25)[[1]])</pre>
outlierNoMeal <- Kid no meal< quantile(Kid no meal, .25)[[1]]-IQNonparticipant | Kid no meal > qu
antile(Kid_no_meal,.75)[[1]]+IQNonparticipant
noMealFrame <- data.frame(</pre>
  Mean = mean(Kid no meal),
  Median = median(Kid no meal),
  SD = sd(Kid no meal),
  First Quantile = quantile(Kid no meal, .25)[[1]],
  Third_Quantile = quantile(Kid_no_meal,.75)[[1]],
  Min = min(Kid_no_meal),
  Max = max(Kid_no_meal),
  outliner = Kid no meal[outlierNoMeal]
)
```

Summary of Calorie for Participants of Meal Preparation:

```
(mealTable <- kable(mealFrame, "simple"))</pre>
```

Mean	Median	SD	First_Quantile	Third_Quantile	Min	Max outlier
410.0796	424.94	121.5138	298.38	456.3	210.99	635.21 NULL

Summary of Calorie for Non-Participants of Meal Preparation:

```
(nomealTable <- kable(noMealFrame, "simple"))</pre>
```

Mean	Median	SD	First_Quantile	Third_Quantile	Min	Max	outliner
374.0718	374.74	133.1393	296.3925	445.5575	139.69	688.77	688.77

Calorie Distribution for Participant Calorie Distribution for Non-Participa

The graph of non-participant's meal calorie distribution follows roughly a normal distribution, with ONE outlier on the right side of the graph.

The graph of participant's meal calorie distribution also roughly follows a normal distribution, but without any outlier.

Both graph have similar shape, but non-participant's graph has a wider range of calorie.

Problem 2:

alpha <- 0.05
n <- length(Kid_meal)

Step 1: H_0 : $\mu 0 = 425~H_1$: $\mu 1 \neq 425~lpha = 0.05$ and n = 25, df = 24

Step 2: because the population σ is unknown and the sample is small, use the t test where $t=rac{\overline{x}-\mu}{\frac{S}{\sqrt{n}}}$

Step 3: Decision rule: Reject H_0 if $t \geq 2.064$ or $t \leq -2.064$

Step 4:

```
xbar <- mean(Kid_meal)
S <- sd(Kid_meal)
t <- (xbar - 425)*sqrt(25)/S</pre>
```

the t value is -0.6139386

Step 5: Do not reject H_0

We do not have strong evidence that at confidence level $\alpha=0.05$ that the mean calorie consumption for those who participated in the meal preparation differ from 425.

Problem 3:

The 90% confidence interval's lower bound is 368.5004482, and upper bound is 451.6587518.

This means that at 90% confidence level, we will reject hypothesis that states the mean of the participant's meal calorie is below368.5004482, or higher than 451.6587518.

Problem 4:

Step1: $H_0: \mu1=\mu2, H1: \mu1\geq \mu2, \alpha=0.05, df=21$ where non-participant correspond to $\mu2$ Step2: $t=\frac{(\overline{x_1}-\overline{x_2})-(\mu1-\mu2)}{\sqrt{\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}}}$

Step3: Decision rule: we reject H_0 if t > 1.721

Step4:

Step5: Fail to reject H_0 because 0.9636039 is not greater than 1.721

We do not have significant evidence that at $\alpha=0.05$ level that participants consume more calorie than non-participants.

Problem 5:

The is indeed one outlier in the non-participant dataset. Furthermore, we don't know the method the data was taken, therefore we can't say with confidence that the samples are independent.