VLSI Physical Design with Timing Analysis

Assignment - 3

Qns 1: Consider the following circuit.

Delay values of Flipflop and Combinational circuit are: t_{setup} = 3ns and t_{hold} = 2ns. The delay of the buffer is t_{buf} = 2ns.

Delay	t _{clk-q}	t _{NAND3}	t _{NOT}	t _{NOR}	t _{NAND2}
Max	3 ns	2.5 ns	1 ns	2.5 ns	2 ns
Min	2 ns	1.5 ns	0.3 ns	1.5ns	1.2 ns

The maximum frequency at which the given circuit can operate without failure is __ (MHz) (Rounded to 2 decimal points)

Ans: 90.90 MHz

Qns 2: Choose the correct hold constraint equation for the circuit given in question 1.

a. $4ns - 2ns \le 2ns + 3ns$

b. $4 \text{ns} \leq 2 \text{ns} + 3 \text{ns}$

c. $4 \text{ns} \leq 3 \text{ns} + 5.5 \text{ns}$

d. $4ns - 2ns \le 3ns + 5.5ns$

Ans: (b)

Qns 3: Consider the following circuit.

Delay values of Flipflop and Combinational circuit are: t_{setup} = 3ns and t_{hold} = 2ns. The delay of the buffer is t_{buf} = 2ns.

Delay	t _{clk-q}	t _{NAND3}	t _{NOT}	t _{NOR}	t _{NAND2}
Max	3 ns	2.5 ns	1 ns	2.5 ns	2 ns
Min	2 ns	1.5 ns	0.3 ns	1.5 ns	1.2 ns

The maximum frequency at which the given circuit can operate without failure is___(MHz) (Rounded to 2 decimal points)

Ans: 66.67 MHz

Qns 4: Consider the following circuit.

Delay values of Flipflop and Combinational circuit are: t_{setup} = 3ns and t_{hold} = 2ns. The clock period is T_{CLK} = 20ns.

Delay	t _{clk-q}	t _{NAND3}	t _{NOT}	t _{NOR}	t _{NAND2}
Max	3 ns	2.5 ns	1 ns	2.5 ns	2 ns
Min	2 ns	1.5 ns	0.3 ns	1.5 ns	1.2 ns

What is the maximum allowable jitter (t_{jitter}) in the clock signal so that the given circuit works at the given frequency without failure?

a. 0.5 ns

b. 1.5 ns

c. 2.5 ns

d. 3.5 ns

Ans: (b)

Qns 5: Consider the following circuit.

Delay	$t_{clk-q}(FF_1)$	$t_{clk-q}(FF_2)$	t _{NAND3}	t _{NOT}	t _{NOR}	t _{NAND2}
Max	3.8 ns	5 ns	2.5 ns	1 ns	2.5 ns	2 ns
Min	2 ns	2.8 ns	1.5 ns	0.3 ns	1.5 ns	1.2 ns

The delays of buffers t_{buf1} = 1.2ns, t_{buf2} = 0.9ns, and t_{buf3} = 0.7ns. The setup and hold time of both flipflops is t_{setup} = 2ns and t_{hold} = 1ns respectively.

The On-chip variation is modeled as

set_timing_derate -early 0.9

set_timing_derate -late 1.12

set_timing_derate -late 1.08 -cell_check

With On-chip variation, the maximum frequency at which the given circuit can operate without failure is ____(MHz) (Rounded to 2 decimal points)

Ans: 67.12 MHz

Qns 6: The value of common path pessimism (CPP) in the circuit given in question 5 is ____ps

Ans: 264 ps

Qns 7 to 9: Question Label: Comprehension

Consider the following logic circuit.

Logic gate	Rise delay(ns)	Fall delay(ns)
NAND	4	3
NOR	3	5
AND	2	3
OR	5	4
Buffer	1	2

Arrival Time at all primary inputs A, B, C, D and E is 0/0.

Required Time at node 'N' is 16/13

Qns 7: The fall output arrival time at node 'J' is ____(ns)

Ans: 6 ns

Qns 8: The rise input required time at node 'G' in the given circuit is _____ (ns)

Ans: -3 ns

Qns 9: The slack(rise/fall) at node 'H' in the given circuit is _____

- **a.** 7/2
- **b.** 7/-4
- **c.** 0/-4
- **d**. 7/-4

Ans: (c)

Qns 10: Choose the incorrect option(s) about clock skew and clock jitter.

- a. Excessive skew can cause timing violations (setup or hold violations) leading to functional errors.
- b. Clock skew is non-deterministic in nature while Clock Jitter is deterministic in nature.
- **c.** Clock skew occurs due to noise & instability in clock while clock jitter occurs due to physical layout & propagation delay.
- d. Clock jitter can lead to data corruption in high-speed designs.

Ans: (b, c)

SOLUTION

Sol 1.

The max timing constraint for positive skew is

$$T_{CLR} \geq t_{max} + t_{comb} + t_{setup} - t_{buf}$$

$$t_{comb} = t_{critical} = t_{manpa} + t_{nor} + t_{manpa}$$

$$t_{comb} = 2 + 25 + 25 = 7 ns$$

$$T_{CLR} \geq 3 + 7 + 3 - 2$$

$$T_{CLR} \geq 11 ns$$

$$t_{max} = \frac{1}{T_{CLR}}$$

$$f_{max} = \frac{1}{11 \times 10^9}$$

$$f_{max} = 90.9 \text{ MHz}$$

Sol 2.

Hold timing constraint (min.timing constraint) equation for positive skew:

$$\begin{array}{lll}
t_{hold} + t_{buf} & \stackrel{\leftarrow}{-} t_{cuk-q} + t_{comb} \\
t_{comb} & = t_{nand2} + t_{nor} + t_{nand3} \\
t_{comb} & = 1.2 + 0.3 + 1.5 \\
t_{comb} & = 3 \text{ ns}
\end{array}$$

The positive skew:

$$\begin{array}{lll}
t_{nin} & + t_{nin} & + t_{nin} \\
t_{nand3} & + t_{nand3} & + t_{nand3} \\
t_{comb} & = 3 \text{ ns}
\end{array}$$

The positive skew:

$$\begin{array}{lll}
t_{nin} & + t_{nin} \\
t_{nand2} & + t_{nand3} \\
t_{nand3} & + t_{nand3} \\
t_{nand3}$$

Sol 3.

In this case, max timing constraint equation:

$$T_{CLK} \geq t_{CLKQ} + t_{COMpb.} + t_{setup} + t_{buf}$$

$$t_{compb} = 7 \text{ ns} \quad (calculated in solution of 8.1)$$

$$T_{CLK} \geq 3 + 7 + 3 + 2$$

$$T_{CLK} \geq 15 \text{ ns}$$

$$f_{max.} = \frac{1}{T_{CLK}} = \frac{1}{15 \text{ n}}$$

$$f_{max} = 66.67 \text{ mHz}$$

4.

Case I: Max timing analysis considering clock jitter:

$$T_{CLK} \geq t_{CLK-Q} + t_{compb} + t_{setup} + 2t_{jitter}$$

$$L_{Calculated in solution of 8.1}$$

Sol 4.

Sol 5.

Capture clock path = 1.2+0.7 = 1.9 ns

Launch clock path = 1.2+0.9 = 2.1 ns

max. data path =
$$t_{CLK-Q}$$
 + t_{COMD}

calculated in solution of 0.1

max. data path = $3.8 + 7 = 10.8 \text{ ns}$

With OCV:

 $t_{CLK} + [capture clock path]*(0.9) - t_{Sctup}*(1.08) \ge (Launch clock path + max. data path)*(1.12)$
 $t_{CLK} + 1.9 * 0.9 - 2 * 1.08 \ge (2.1 + 10.8) * 1.12$

$$T_{CLH} + 1.9 * 0.9 - 2 * 1.00 \ge (2.1 + 10.0) \times 1.12$$
 $T_{CLH} + 1.71 - 2.16 \ge 14.448$
 $T_{CLH} \ge 14.098 \text{ ms}$

$$f_{max} = \frac{1}{14.090 \text{ m}}$$

$$f_{max} = 67.12 \text{ mHz}$$

Sol 6.

CPP = Latest AT @ common point - earliest AT @ common point
$$CPP = 1.2 \times 1.12 - 1.2 \times 0.9$$

 $CPP = 0.264 \text{ ns}$
 $CPP = 264 \text{ ps}$

Sol 7-9.

Equations used in the solution:

For inverting gates:	For non inverting gates:
output rise AT = max(input fall AT) + trise	output rise AT = max(input rise AT) + trise
output fall AT = max(input rise AT) + tfall	output fall AT = max(input fall AT) + tfall
input rise RT = min(output fall RT) – tfall	input rise RT = min(output rise RT) – trise
input fall RT = min(output rise RT) – trise	input fall RT = min(output fall RT) – tfall

Sol 10. Refer lecture notes