EJERCICIOS (420)

1) 1-1

1.1.1 Is $\gamma(t) = (t^2, t^4)$ a parametrization of the parabola $y = x^2$?

No, pues 2º no toma todos los valores de R, i.e r Solo parametriza media parábola.

- 1.1.2 Find parametrizations of the following level curves:
 - (i) $y^2 x^2 = 1$;
 - (ii) $\frac{x^2}{4} + \frac{y^2}{9} = 1$.

Sol.

De (i): Tome $y = \cosh(t)$ $y = \sinh(t)$, como $\cosh^2(t) - \sinh^2(t) = 1$, $\forall t \in \mathbb{R}$, entonces $y^2 - x^2 = 1$. As- $\alpha(t) = (\sinh(t), \cosh(t))$, $\forall t \in \mathbb{R}$ es una parametritación.

De (ii): tome B(+) = (2005+, 3 sent), YtEIR

- 1.1.3 Find the Cartesian equations of the following parametrized curves:
 - (i) $\gamma(t) = (\cos^2 t, \sin^2 t);$
 - (ii) $\gamma(t) = (e^t, t^2)$.

Sol.

De (i):

Claramente $x = \cos^2 t$ y $y = \sin^2 t$ cumplen x+y=1, luego y=1-x. De (ii):

Solutions

Chapter 1

- 1.1.1 It is a parametrization of the part of the parabola with $x \geq 0$.
- 1.1.2 (i) $\gamma(t) = (\sec t, \tan t)$ with $-\pi/2 < t < \pi/2$ and $\pi/2 < t < 3\pi/2$. Note that γ is defined on the union of two disjoint intervals: this corresponds to the fact that the hyperbola $y^2 x^2 = 1$ is in two pieces, where $y \ge 1$ and where $y \le -1$. (ii) $\gamma(t) = (2\cos t, 3\sin t)$.
- 1.1.3 (i) x + y = 1. (ii) $y = (\ln x)^2$.
- 1.1.4 (i) $\dot{\gamma}(t) = \sin 2t(-1,1)$. (ii) $\dot{\gamma}(t) = (e^t, 2t)$.
- 1.1.5 $\dot{\gamma}(t) = 3 \sin t \cos t(-\cos t, \sin t)$ vanishes where $\sin t = 0$ or $\cos t = 0$, i.e., $t = n\pi/2$ where n is any integer. These points correspond to the four cusps of the astroid (see Exercise 1.3.3).

407

- 1.2.4 Since **u** is a unit vector, $|\dot{\gamma} \cdot \mathbf{u}| = ||\dot{\gamma}|| \cos \theta$, where θ is the angle between $\dot{\gamma}$ and \mathbf{u} , so $\dot{\gamma} \cdot \mathbf{u} \le ||\dot{\gamma}||$. Then, $(\mathbf{q} \mathbf{p}) \cdot \mathbf{u} = (\gamma(b) \gamma(a)) \cdot \mathbf{u} = \int_a^b \dot{\gamma} \cdot \mathbf{u} \, dt \le \int_a^b ||\dot{\gamma}|| \, dt$. Taking $\mathbf{u} = (\mathbf{q} \mathbf{p}) / ||\mathbf{q} \mathbf{p}||$ gives the result.
- 1.3.1 (i) $\dot{\gamma} = \sin 2t(-1,1)$ vanishes when t is an integer multiple of $\pi/2$, so γ is not regular. (ii) γ is regular since $\dot{\gamma} \neq \mathbf{0}$ for $0 < t < \pi/2$. (iii) $\dot{\gamma} = (1, \sinh t)$ is obviously never zero, so γ is regular.
- 1.3.2 $x = r \cos \theta = \sin^2 \theta$, $y = r \sin \theta = \sin^2 \theta \tan \theta$, so the parametrization in terms of θ is $\theta \mapsto (\sin^2 \theta, \sin^2 \theta \tan \theta)$. Since $\theta \mapsto \sin \theta$ is a bijective smooth map $(-\pi/2, \pi/2) \to (-1, 1)$, with smooth inverse $t \mapsto \sin^{-1} t$, $t = \sin \theta$ is a reparametrization map. Since $\sin^2 \theta = t^2$, $\sin^2 \theta \tan \theta = t^3/\sqrt{1-t^2}$, so the reparametrized curve is as stated.
- 1.3.3 (i) $\dot{\gamma} = \mathbf{0}$ at $t = 0 \Longleftrightarrow m$ and n are both ≥ 2 . If m > 3 the first components of $\ddot{\gamma}$ and $\ddot{\gamma}$ are both 0 at t = 0 so $\ddot{\gamma}$ and $\ddot{\gamma}$ are linearly dependent at t = 0; similarly if n > 3. So there are four cases: if (m, n) = (2, 2) or (3, 3) then either $\ddot{\gamma}$ or $\ddot{\gamma}$ is zero at t = 0, so the only possibilities for an ordinary cusp are (m, n) = (2, 3) and (3, 2) and then $\ddot{\gamma}$ and $\ddot{\gamma}$ are easily seen to be linearly independent at t = 0. (ii) Using the parametrization $\gamma(t) = \left(t^2, \frac{t^3}{\sqrt{1-t^2}}\right)$, we get $\dot{\gamma} = \mathbf{0}$, $\ddot{\gamma} = (2, 0)$, $\ddot{\gamma} = (0, 6)$ at t = 0 so the origin is an ordinary cusp. (iii) Let $\tilde{\gamma}(\bar{t})$ be a reparametrization of $\gamma(t)$, and suppose γ has an ordinary cusp at $t = t_0$. Then, at $t = t_0$, $d\tilde{\gamma}/d\tilde{t} = (d\gamma/dt)(dt/d\tilde{t}) = 0$, $d^2\tilde{\gamma}/d\tilde{t}^2 = (d^2\gamma/dt^2)(dt/d\tilde{t})^2$, $d^3\tilde{\gamma}/d\tilde{t}^3 = (d^3\gamma/dt^3)(dt/d\tilde{t})^3 + 3(d^2\gamma/dt^2)(dt/d\tilde{t})(d^2t/d\tilde{t}^2)$. Using the fact that $dt/d\tilde{t} \neq 0$, it is easy to see that $d^2\tilde{\gamma}/d\tilde{t}^2$ and $d^3\tilde{\gamma}/d\tilde{t}^3$ are linearly independent when $t = t_0$.
- 1.3.4 (i) If $\tilde{\gamma}(t) = \gamma(\varphi(t))$, let ψ be the inverse of the reparametrization map φ . Then $\tilde{\gamma}(\psi(t)) = \gamma(\varphi(\psi(t))) = \gamma(t)$. (ii) If $\tilde{\gamma}(t) = \gamma(\varphi(t))$ and $\hat{\gamma}(t) = \tilde{\gamma}(\psi(t))$, where φ and ψ are reparametrization maps, then $\hat{\gamma}(t) = \gamma((\varphi \circ \psi)(t))$ and $\varphi \circ \psi$ is a reparametrization map because it is smooth and $\frac{d}{dt}(\varphi(\psi(t)) = \dot{\varphi}(\psi(t))\dot{\psi}(t) \neq 0$ as $\dot{\varphi}$ and $\dot{\psi}$ are both $\neq 0$.
- 1.4.1 It is closed because $\gamma(t+2\pi)=\gamma(t)$ for all t. Suppose that $\gamma(t)=\gamma(u)$. Then $\cos^3t(\cos 3t, \sin 3t)=\cos^3u(\cos 3u, \sin 3u)$. Taking lengths gives $\cos^3t=\pm\cos^3u$ so $\cos t=\pm\cos u$, so $u=t,\pi-t,\pi+t$ or $2\pi-t$ (up to adding multiples of 2π). The second possibility forces $t=n\pi/3$ for some integer n and the third possibility is true for all t. Hence, the period is π and for the self-intersections we need only consider $t=\pi/3, 2\pi/3$, giving $u=2\pi/3, \pi/3$, respectively. Hence, there is a unique self-intersection at $\gamma(\pi/3)=(-1/8,0)$.
- 1.4.2 The curve $\tilde{\gamma}(t) = (\cos(t^3 + t), \sin(t^3 + t))$ is a reparametrization of the circle $\gamma(t) = (\cos t, \sin t)$ but it is not closed.

- 1.1.6 (i) The squares of the distances from **p** to the foci are $(p\cos t \pm \epsilon p)^2 + q^2\sin^2 t = (p^2 q^2)\cos^2 t \pm 2\epsilon p^2\cos t + p^2 = p^2(1 \pm \epsilon\cos t)^2$, so the sum of the distances is 2p.
 - (ii) $\dot{\gamma} = (-p\sin t, q\cos t)$ so if $\mathbf{n} = (q\cos t, p\sin t)$ then $\mathbf{n} \cdot \dot{\gamma} = 0$. Hence the distances from the foci to the tangent line at $\gamma(t)$ are $\frac{(p\cos t\mp \epsilon p, q\sin t)\cdot \mathbf{n}}{\|\mathbf{n}\|} = \frac{pq(1\mp\epsilon\cos t)}{(p^2\sin^2 t + q^2\cos^2 t)^{1/2}}$ and their product is $\frac{p^2q^2(1-\epsilon^2\cos^2 t)}{(p^2\sin^2 t + q^2\cos^2 t)} = q^2$.
 - (iii) It is enough to prove that $\frac{(\mathbf{p}-\mathbf{f}_1)\cdot\mathbf{n}}{\|\mathbf{p}-\mathbf{f}_1\|} = \frac{(\mathbf{p}-\mathbf{f}_2)\cdot\mathbf{n}}{\|\mathbf{p}-\mathbf{f}_2\|}$. Computation shows that both sides are equal to q.

- 1.1.7 When the circle has rotated through an angle t, its centre has moved to (at,a), so the point on the circle initially at the origin is now at the point $(a(t-\sin t),a(1-\cos t))$ (see the diagram above).
- 1.1.8 Suppose that a point (x,y,z) lies on the cylinder if $x^2+y^2=1/4$ and on the sphere if $(x+\frac{1}{2})^2+y^2+z^2=1$. From the second equation, $-1 \le z \le 1$ so let $z=\sin t$. Subtracting the two equations gives $x+\frac{1}{4}+\sin^2 t=\frac{3}{4}$, so $x=\frac{1}{2}-\sin^2 t=\cos^2 t-\frac{1}{2}$. From either equation we then get $y=\sin t\cos t$ (or $y=-\sin t\cos t$, but the two solutions are interchanged by $t\mapsto \pi-t$).
- 1.1.9 $\dot{\gamma} = (-2\sin t + 2\sin 2t, 2\cos t 2\cos 2t) = \sqrt{2}(\sqrt{2} 1, 1)$ at $t = \pi/4$. So the tangent line is $y (\frac{1}{\sqrt{2}} 1) = (x \sqrt{2})/(\sqrt{2} 1)$ and the normal line is $y (\frac{1}{\sqrt{2}} 1) = -(x \sqrt{2})(\sqrt{2} 1)$.
- 1.2.1 $\dot{\gamma}(t) = (1, \sinh t)$ so $\|\dot{\gamma}\| = \cosh t$ and the arc-length is $s = \int_0^t \cosh u \, du = \sinh t$.
- 1.2.3 Denoting $d/d\theta$ by a dot, $\dot{\gamma} = (\dot{r}\cos\theta r\sin\theta, \dot{r}\sin\theta + r\cos\theta)$ so $\|\dot{\gamma}\|^2 = \dot{r}^2 + r^2$. Hence, γ is regular unless $r = \dot{r} = 0$ for some value of θ . It is unit-speed if and only if $\dot{r}^2 = 1 r^2$, which gives $r = \pm \sin(\theta + \alpha)$ for some constant α . To see that this is the equation of a circle of radius 1/2, see the diagram in the proof of Theorem 3.2.2.
- 1.4.3 If γ is T-periodic then it is kT-periodic for all $k \neq 0$ (this can be proved by induction on k if k > 0, or on -k if k < 0). If γ is T_1 -periodic and T_2 -periodic then it is k_1T_1 and k_2T_2 -periodic for all non-zero integers k_1, k_2 , so $\gamma(t + k_1T_1 + k_2T_2) = \gamma(t + k_1T_1)$ as γ is k_2T_2 -periodic, which $= \gamma(t)$ as γ is k_1T_1 -periodic.
- 1.4.4 If γ is T-periodic write $T=kT_0+T_1$ where k is an integer and $0 \leq T_1 < T_0$. By Exercise 1.4.3 γ is T_1 -periodic; if $T_1 > 0$ this contradicts the definition of T_0 .
- 1.4.5 (i) Choose $T_1>0$ such that γ is T_1 -periodic; then T_1 is not the smallest positive number with this property, so there is a $T_2>0$ such that γ is T_2 -periodic. Iterating this argument gives the desired sequence. (ii) The sequence $\{T_r\}_{r\geq 1}$ in (i) is decreasing and bounded below, so must converge to some $T_\infty\geq 0$. Then γ is T_∞ -periodic because (using continuity of γ) $\gamma(t+T_\infty)=\lim_{r\to\infty}\gamma(t+T_r)=\lim_{r\to\infty}\gamma(t)=\gamma(t)$. By Exercise 1.4.3, γ is (T_r-T_∞) -periodic for all $r\geq 1$, and this sequence of positive numbers converges to 0. (iii) If $\{T_r\}$ is as in (i) and $T_r\to 0$ as $r\to\infty$, then by the mean value theorem $0=(f(t+T_r)-f(t))/T_r=\dot{f}(t+\lambda T_r)$ for some $0<\lambda<1$. Letting $r\to\infty$ gives $\dot{f}(t)=0$ for all t, so f is constant.
- 1.4.6 Following the hint, since $T_0 = (k_i/k)T_i$ is an integer multiple of T_i , each γ_i is T_0 -periodic. Let \mathcal{T} be the union of the finite sets of real numbers $\{T_i, 2T_i, \ldots, k_iT_i\}$ over all i such that γ_i is not constant, and let $\mathcal{P} = \{T' \in \mathcal{T} \mid \gamma \text{ is } T'\text{-periodic}\}$. Then \mathcal{P} is finite (because \mathcal{T} is) and non-empty (because $T \in \mathcal{P}$). The smallest element of \mathcal{P} is the smallest positive number T'_0 such that γ is T'_0 -periodic (since if γ is T'-periodic either T' > T or $T' \in \mathcal{P}$). By Exercise 1.4.4, $T_0 = k'T'_0$ for some integer k' and then there are integers k'_i such that $T'_0 = k'_iT_i$ for all i such that γ_i is not constant. Then, $k_iT_i/k = k'k_iT_i$ so kk' divides each k_i . As k is the largest such divisor, k' = 1, so $T_0 = T'_0$.
- 1.5.1 $x(1-x^2) \ge 0 \iff x \le -1$ or $0 \le x \le 1$ so the curve is in (at least) two pieces. The parametrization is defined for $t \le -1$ and $0 \le t \le 1$ and it covers the part of the curve with $y \ge 0$.
- 1.5.2 If $\gamma(t) = (x(t), y(t), z(t))$ is a curve in the surface f(x, y, z) = 0, differentiating f(x(t), y(t), z(t)) = 0 with respect to t gives $\dot{x}f_x + \dot{y}f_y + \dot{z}f_z = 0$, so $\dot{\gamma}$ is perpendicular to $\nabla f = (f_x, f_y, f_z)$. Since this holds for every curve in the surface, ∇f is perpendicular to the surface. The surfaces f = 0 and g = 0 should intersect in a curve if the vectors ∇f and ∇g are not parallel at any point of the intersection.
- 1.5.3 Let $\gamma(t) = (u(t), v(t), w(t))$ be a regular curve in \mathbb{R}^3 . At least one of $\dot{u}, \dot{v}, \dot{w}$ is non-zero at each value of t. Suppose that $\dot{u}(t_0) \neq 0$ and $x_0 = u(t_0)$. As

in the 'proof' of Theorem 1.5.2, there is a smooth function h(x) defined for x near x_0 such that t=h(x) is the unique solution of x=u(t) for each t near t_0 . Then, for t near t_0 , $\gamma(t)$ is contained in the level curve f(x,y,z)=g(x,y,z)=0, where f(x,y,z)=y-v(h(x)) and g(x,y,z)=z-w(h(x)). The functions f and g satisfy the conditions in the previous exercise, since $\nabla f=(-\dot{v}h',1,0), \nabla g=(-\dot{w}h',0,1)$, a dash denoting d/dx.

Chapter 2

- $\begin{array}{lll} 2.1.1 & \text{(i) } \pmb{\gamma} \text{ is unit-speed (Exercise 1.2.2(i)) so } \kappa = \parallel \ddot{\pmb{\gamma}} \parallel = \parallel (\frac{1}{4}(1+t)^{-1/2}, \\ \frac{1}{4}(1-t)^{-1/2}, 0) \parallel = \frac{1}{\sqrt{8(1-t^2)}}. & \text{(ii) } \pmb{\gamma} \text{ is unit-speed (Exercise 1.2.2(ii)) so } \\ \kappa = \parallel \ddot{\pmb{\gamma}} \parallel = \parallel (-\frac{4}{5}\cos t, \sin t, \frac{3}{5}\cos t) \parallel = 1. \\ & \text{(iii) } \kappa = \frac{\parallel (1,\sinh t,0)\times (0,\cosh t,0)\parallel}{\parallel (1,\sinh t,0)\parallel^3} = \frac{\cosh t}{\cosh^3 t} = \operatorname{sech}^2 t \text{ using Proposition 2.1.2.} \\ & \text{(iv) } (-3\cos^2 t \sin t, 3\sin^2 t \cos t, 0)\times (-3\cos^3 t + 6\cos t \sin^2 t, 6\sin t \cos^2 t 3\sin^3 t, 0) = (0,0,-9\sin^2 t \cos^2 t), \text{ so } \kappa = \frac{\parallel (0,0,-9\sin^2 t \cos^2 t)\parallel}{\parallel (-3\cos^2 t \sin t, 3\sin^2 t \cos t, 0)\parallel^3} = \frac{1}{3|\sin t \cos t|}. \text{ This becomes infinite when } t \text{ is an integer multiple of } \pi/2, \text{ i.e., at the four cusps } (\pm 1,0) \text{ and } (0,\pm 1) \text{ of the astroid.} \\ \end{array}$
- 2.1.2 The proof of Proposition 1.3.5 shows that, if $\mathbf{v}(t)$ is a smooth (vector) function of t, then $\parallel \mathbf{v}(t) \parallel$ is a smooth (scalar) function of t provided $\mathbf{v}(t)$ is non-zero for all t. The result now follows from the formula in Proposition 2.1.2. The curvature of the regular curve $\gamma(t) = (t, t^3)$ is $\kappa(t) = 6|t|/(1+9t^4)^{3/2}$, which is not differentiable at t=0.
- 2.2.1 Differentiate $\mathbf{t} \cdot \mathbf{n}_s = 0$ and use $\dot{\mathbf{t}} = \kappa_s \mathbf{n}_s$.
- 2.2.2 If γ is smooth, $\mathbf{t} = \dot{\gamma}$ is smooth and hence so are $\dot{\mathbf{t}}$ and \mathbf{n}_s (since \mathbf{n}_s is obtained by applying a rotation to \mathbf{t}). So $\kappa_s = \dot{\mathbf{t}} \cdot \mathbf{n}_s$ is smooth.
- 2.2.3 For the first part, from the results in Appendix 2 it suffices to show that $\tilde{\kappa}_s = -\kappa_s$ if M is the reflection in a straight line l. But this is clear: if we take the fixed angle φ_0 in Proposition 2.2.1 to be the angle between l and the positive x-axis, then (in the obvious notation) $\tilde{\varphi} = -\varphi$. Conversely, if γ and $\tilde{\gamma}$ have the same non-zero curvature, their signed curvatures are either the same or differ in sign. In the first case the curves differ by a direct isometry by Theorem 2.2.5; in the latter case, applying a reflection to one curve gives two curves with the same signed curvature, and these curves then differ by a direct isometry, so the original curves differ by an opposite isometry.

- 2.2.4 The first part is obvious as the effect of the dilation is to multiply s by a and leave φ unchanged. For the second part, consider the small piece of the chain between the points with arc-length s and $s+\delta s$. The net horizontal force on this piece is (in the obvious notation) $\delta(T\cos\varphi)$, and as this must vanish $T\cos\varphi$ must be a constant, say λ . The net vertical force is $\delta(T\sin\varphi)$, and this must balance the weight of the piece of chain, which is a constant multiple of δs . This shows that $T\sin\varphi = \mu s + \nu$ for some constants μ, ν , and ν must be zero because $\varphi = s = 0$ at the lowest point of $\mathcal C$. From $T\cos\varphi = \lambda$, $T\sin\varphi = \mu s$, we get $\tan\varphi = s/a$ where $a = \lambda/\mu$. Hence, $\sec^2\varphi \frac{d}{ds} = 1/a$, so the signed curvature is $\kappa_s = d\varphi/ds = 1/a\sec^2\varphi = 1/a(1+\tan^2\varphi) = \frac{1}{a}(1+s^2/a^2)^{-1}$. Using the first part and Example 2.2.4 gives the result.
- 2.2.5 We have $d\gamma^{\lambda}/dt = d\gamma/dt + \lambda d\mathbf{n}_s/dt = (1 \lambda \kappa_s)ds/dt \,\mathbf{t}$, so the arclength s^{λ} of γ^{λ} satisfies $ds^{\lambda}/dt = |1 \lambda \kappa_s|ds/dt$. The unit tangent vector of γ^{λ} is $\mathbf{t}^{\lambda} = (d\gamma^{\lambda}/dt)/(ds^{\lambda}/dt) = \epsilon \mathbf{t}$, hence the signed unit normal of γ^{λ} is $\mathbf{n}_s^{\lambda} = \epsilon \mathbf{n}_s$. Then, the signed curvature κ_s^{λ} of γ^{λ} is given by $\kappa_s^{\lambda} \mathbf{n}_s^{\lambda} = d\mathbf{t}^{\lambda}/ds^{\lambda} = (d\mathbf{t}^{\lambda}/dt)/|1 \lambda \kappa_s|(ds/dt) = \epsilon |1 \lambda \kappa_s|^{-1}d\mathbf{t}/ds = \kappa_s(1 \lambda \kappa_s)^{-1}\mathbf{n}_s = \epsilon \kappa_s(1 \lambda \kappa_s)^{-1}\mathbf{n}_s^{\lambda} = \kappa_s|1 \lambda \kappa_s|^{-1}\mathbf{n}_s^{\lambda}$.
- 2.2.6 $\epsilon(s_0)$ lies on the perpendicular bisector of the line joining $\gamma(s_0)$ and $\gamma(s_0+\delta s)$. So

$$(\boldsymbol{\epsilon}(s_0) - \frac{1}{2}(\boldsymbol{\gamma}(s_0) + \boldsymbol{\gamma}(s_0 + \delta s))) \cdot (\boldsymbol{\gamma}(s_0 + \delta s) - \boldsymbol{\gamma}(s_0)) = 0.$$

Using Taylor's theorem, and discarding terms involving powers of δs higher than the second, this gives (with all quantities evaluated at s_0) $(\epsilon - \gamma) \cdot \dot{\gamma} \delta s + \frac{1}{2} (\epsilon \cdot \ddot{\gamma} - 1 - \gamma \cdot \ddot{\gamma}) (\delta s)^2 = 0$. This must also hold when δs is replaced by $-\delta s$; adding and subtracting the two equations give $(\epsilon - \gamma) \cdot \dot{\gamma} = 0$ and $(\epsilon - \gamma) \cdot \ddot{\gamma} = 1$. The first equation gives $\epsilon = \gamma + \lambda \mathbf{n}_s$ for some scalar λ , and since $\ddot{\gamma} = \kappa_s \mathbf{n}_s$ the second gives $\lambda = 1/\kappa_s$.

2.2.7 The tangent vector of $\boldsymbol{\epsilon}$ is $\mathbf{t} + \frac{1}{\kappa_s}(-\kappa_s\mathbf{t}) - \frac{\dot{\kappa}_s}{\kappa_s^2}\mathbf{n}_s = -\frac{\dot{\kappa}_s}{\kappa_s^2}\mathbf{n}_s$ so its arc-length is $u = \int \parallel \dot{\boldsymbol{\epsilon}} \parallel ds = \int \frac{\dot{\kappa}_s}{\kappa_s^2} ds = u_0 - \frac{1}{\kappa_s}$, where u_0 is a constant. Hence, the unit tangent vector of $\boldsymbol{\epsilon}$ is $-\mathbf{n}_s$ and its signed unit normal is \mathbf{t} . Since $-d\mathbf{n}_s/du = \kappa_s\mathbf{t}/(du/ds) = \frac{\kappa_s^3}{\kappa_s}\mathbf{t}$, the signed curvature of $\boldsymbol{\epsilon}$ is $\kappa_s^3/\dot{\kappa}_s$.

Any point on the normal line to γ at $\gamma(s)$ is $\gamma(s) + \lambda \mathbf{n}_s(s)$ for some λ . Hence, the normal line intersects ϵ at the point $\epsilon(s)$, where $\lambda = 1/\kappa_s(s)$, and since the tangent vector of ϵ there is parallel to $\mathbf{n}_s(s)$ by the first part, the normal line is tangent to ϵ at $\epsilon(s)$.

Denoting d/dt by a dash, $\gamma' = a(1 - \cos t, \sin t)$ so the arc-length s of γ is given by $ds/dt = 2a\sin(t/2)$ and $\mathbf{t} = d\gamma/ds = (\sin(t/2), \cos(t/2))$. So $\mathbf{n}_s = (-\cos(t/2), \sin(t/2))$ and $\dot{\mathbf{t}} = (d\mathbf{t}/dt)/(ds/dt) = \frac{1}{4a\sin(t/2)}(\cos(t/2),$