Homework

Ding Yaoyao, 516030910572 2017-09-15

Exercise 1-1

4

- Reflexive: $\phi(a) = \phi(a) \Rightarrow a \sim a$.
- Symmetric: $a \sim b \Rightarrow \phi(a) = \phi(b) \Rightarrow \phi(b) = \phi(a) \Rightarrow b \sim a$.
- Transitive: If $a \sim b$ and $b \sim c$, then $\phi(a) = \phi(b) = \phi(c)$, which means $a \sim c$.

So relation \sim is an equivalence relation. the partition that a belongs to is $[a] = \{b \mid \phi(b) = \phi(a)\}.$

8

- Reflexive: $ab = ba \Rightarrow (a, b) \sim (a, b)$.
- Symmetric: $(a,b) \sim (c,d) \Rightarrow ad = bc \Rightarrow cb = da \Rightarrow (c,d) \sim (a,b)$.
- Transitive: $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f) \Rightarrow \frac{a}{b} = \frac{c}{d} = \frac{e}{f} \Rightarrow (a,b) \sim (e,f)$.

So relation \sim on S is an equivalence relation.

Exercise 1-2

5

- Closure: If $a, b \in \mathbb{Z}$, then $a \oplus b = a + b 2 \in \mathbb{Z}$.
- Associativity: $(a \oplus b) \oplus c = (a+b-2) \oplus c = (a+b-2) + c 2 = a + (b+c-2) 2 = a \oplus (b+c-2) = a \oplus (b \oplus c)$.
- Identity: There is an element e=2 in Z such that $e\oplus a=a\oplus e=a$ for all a in Z.

• Inverse: If a is in Z, there is an element $a^{-1} = 4 - a$ such that $a \oplus a^{-1} = a^{-1} \oplus a = 2 = e$.

Above all, (Z, \oplus) is a group.

12

We have $x^2 = e \Rightarrow x = x^{-1}$ (for all x in G). Because $ab = a^{-1}b^{-1} = (ba)^{-1} = ba$, then G is an abelian group.

13

- \Rightarrow : $ab = ba \Rightarrow (ab)^2 = abab = aabb = a^2b^2$.
- \Leftarrow : $(ab)^2 = a^2b^2 \Rightarrow abab = aabb \Rightarrow a^{-1}ababb^{-1} = a^{-1}aabbb^{-1} \Rightarrow ba = ab$.

16

Let $S = \{ a \in G \mid a^3 = e \}.$

We have two properties:

1.
$$a \in S \Rightarrow a^{-1} \in S$$

Proof: $a \in S \Rightarrow a^3 = e \Rightarrow (a^{-1})^3 = (a^3)^{-1} = e^{-1} = e \Rightarrow a^{-1} \in S$.

2. $a \in S$ and $a = a^{-1} \Rightarrow a = e$

Proof: $a \in S \Rightarrow a^3 = e \Rightarrow a^2 = a^{-1}$, we also have $a = a^{-1}$, so $a^2 = a$, which means a = e.

From property 1, S consists of many pairs like (a, a^{-1}) .

From property 2, there is the only one pair (e, e^{-1}) such that $a = a^{-1}$.

So the number of elements of S is odd.