

Introduction to the course: Database Design I

George Fakas (Labs)

georgios.fakas@it.uu.se

Khalid Mahmood (only lectures)

Overview of this lecture

- Motivation.
- Overview of the course.
 - Textbooks.
 - Content.
 - Project.
 - Examination.
 - Exams will be on Inspera
- Course preparation

Textbooks

- Fundamentals of database systems (7E, older versions will be ok)
 - R. Elmasri, S. Navathe.
 - Chapters 1, 3, 4, 5, 6, 7, 9, 10, 14, 20, 30 (part), 24.
- Databasteknik
 - T. Padron-McCarthy, T. Risch.
- Each lecture focuses on one or more chapters.

Course info

- All the information and material is posted on the studium.
- Groups formation,
- Project Submission, etc.

MOTIVATION & INTENDED LEARNING OUTCOMES

A fundamental asset in nearly all organizations.

Complete, relevant, consistent, and up-to-date data are vital to enable basic operations.

data

Think of Uppsala University.

data

algorithms

Are steril han hers hand her applications

data

databases

querying

(larger set of potential users)

In this course

- Relational Database Management Systems (RDBMS).
- Represent data as mathematical relations.
- Corresponding to the user-friendly concept of table.

STUDENT

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

GRADE_REPORT

Student_number	Section_identifier	Grade	
17	112	В	
17	119	С	
8	85	Α	
8	92	Α	
8	102	В	
8	135	Α	

PREREQUISITE

Course_number	Prerequisite_number	
CS3380	CS3320	
CS3380	MATH2410	
CS3320	CS1310	

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

Main RDBMSs:

- Oracle Server
- IBM DB2
- MS SQLServer
- SyBase
- IBM Informix
- Teradata
- MySQL
- PostgreSQL
- SQLite
- MS Access

RDBMSs in real life

- E-Commerce (Ebay, Amazon, ...)
- Banks, credit cards, ...
- Hospitals, ...
- Scientific databases (EPDB, ...)
- •

OVERVIEW OF THE COURSE

Intended Learning Outcomes (course)

- **Design and use** relational databases in both theory and practical application.
- Explain basic **differences** between database design and conventional programming.
- **Present and discuss** the course content orally and in writing with proficiency appropriate to the course level.

Lectures 1-5: from requirements to the database

Lectures 2-3: Conceptual data modeling

A university offers courses to students.

For every student we register name, surname, address, year and student ID.

Every course instance is given on a specific year by a professor,

for whom we store the income and the supervisor.

For each exam we save the date and the grade of the student.

Lectures 2-3: Conceptual data modeling

A **university** offers courses to **students**. For every student we register name, surname, address, year and student ID Every course instance is given on a specific year by a professor, for whom we store the income and the <u>supervisor</u>. For each exam we save the date and the grade of the student. Conceptual model

Lectures 2-3: EER conceptual data modeling

Lectures 4-5: Relational model

Lectures 4-5: Relational model (diagram)

Lectures 4-5: Relational model (SQL)

```
-- Database Section
13
14
15 create database EER;
17
   -- DBSpace Section
19
20
21
   -- Tables Section
23
24
25 create table Course (
26
      ID varchar(20) not null,
Name varchar(100) not null,
Year numeric(4) not null,
29 Tea ID char(1) not null,
    constraint ID Course ID primary key (ID));
30
31
32 create table Exam (
```

DEMO

Lectures 6-8: SQL as a query language

Lectures 6-8: SQL as a query language

DEMO

Lectures 9-10: Data quality and normalization

- If you follow the methodology learned so far, you will probably design a good model.
- Often, data already exists and must be improved.
 - This being an euphemism.
- Theory of normalization.
 - A formal way to check if a database suffers from specific quality issues and fix it.

Essentially, all models are wrong, but some are useful.

George E. P. Box

Two/three lectures

- Database programming.
 - SQL + Java.
- Transactions.
 - Transfer 50\$ from Account A to account B
 - Remove 50\$ from A account
 - Add 50\$ to B account
- Security.
 - Many users accessing various part of the database

Project: A trading database

- Your group has been asked to help with a project for AltOnline AB, a new Swedish company which, inspired
 - by the tremendous success of Amazon.com, Inc.,
 wants to become a market leader in online sales in Sweden.
 - The project is rather large and your part is to design and implement a database system for its online store.

Project: A trading database

- The project gives you the opportunity to practice a relational database design process from A to Z:
 - Reading the customer specification, which might be redundant, vague or even inconsistent;
 - Conceptual modelling using ER diagrams;
 - Creating, populating and querying the database in an RDBMS; SQL queries
 - Normalisation
 - Writing applications accessing and modifying the stored data.

PRACTICAL ISSUES

Examination

- Project (2 credits in total).
 - They are part of the examination,
 - But the objective is to learn through practical applications.
 - Make sure you register on Ladok on time
- Exam (3 credits, theory and practice).
 - The most important part for some of you.
 - The least for me.
 - You will receive a lot of material, but do not assume to find exams with the same structure as the previous ones.

Groups for the Project

- Projects are done by groups of 3-5 students.
- Every group has reserved lab room and a tutor.
 - Feel free to "use" your tutor, but do not ask questions to both me and them.
 - For each Lab, I will make a **doodle** to choose from a number of slots (First come first serve). I will email you instructions (so expect an email)
 - You need to attend only one slot per week (thus 4 in total)
- Form your group on Studium
 - Register autonomously to one group **today**.
 - End of next week the group page will be locked.
 - We have created a discussion forum on studium that you can use as to join or form a group

To do list (this week)

- 1. If you aren't admitted to the course email: *it-kansli@it.uu.se*.
 - Master students: studievagledare@it.uu.se
 - Exchange students: ulrika.jaresund@it.uu.se
- 2. Register-form a group.
- 3. Install MySQL on your laptop.
 - Details will be provided on the portal SOON.

Wrap up

- Importance and role of database systems.
- Basic terminology.
 - Data, database, DBMS, database system.
- Key concepts.
 - Data model Schema and instance.
 - Data independence.
- Next: database design with the ER model.

Something about yourself

- What is your program?
- What is your current knowledge of database systems?
 - Database what? Beginner? Expert? Guru?
- What do you expect from this course?
- Other questions.