Chapter 4: Data Generalization

 Attribute-Oriented Induction — An Alternative Data Generalization Method

What is Concept Description?

- Descriptive vs. predictive data mining
 - Descriptive mining: describes concepts or task-relevant data sets in concise, summarative, informative, discriminative forms
 - Predictive mining: Based on data analysis, constructs a model for the data, and predicts the trend and properties of unknown data based on the model
- Concept description:
 - <u>Characterization</u>: provides a concise and succinct summarization of a *given* collection of data
 - <u>Comparison</u>: provides descriptions *comparing* two or more collections of data

Class Characterization: An Example

Initial Relation

Name	Gender	Major	Birth-Place	Birth_date	Residence	Phone #	GPA
Jim	M	CS	Vancouver,BC,	8-12-76	3511 Main St.,	687-4598	3.67
Woodman Scott Lachance	M	CS	Canada Montreal, Que, Canada	28-7-75	Richmond 345 1st Ave., Richmond	253-9106	3.70
Laura Lee	F	Physics	Seattle, WA, USA	25-8-70	125 Austin Ave.,	420-5232	3.83
•••	•••	•••	•••	•••	Burnaby 	•••	•••
Removed	Retained	Sci, Eng, Bus	Country	Age range	City	Removed	Excl, VG,

Prime Generalized Relation

Gender	Major	Birth_region	Age_range	Residence	GPA	Count
M	Science	Canada	20-25	Richmond	Very-good	16
F	Science	Foreign	25-30	Burnaby	Excellent	22
	•••					

Concept Description

- Data generalization
 - Has close ties with concept description
 - Allows data sets to be generalized at multiple levels of abstraction
 - Example
 - nation => province => city => address

Data Generalization and Summarization-based Characterization

- Data generalization
 - A process which abstracts a large set of task-relevant data in a database from a low conceptual levels to

higher ones

Conceptual levels

- Approach:
 - Attribute-oriented induction approach

Attribute-Oriented Induction

- Proposed in 1989 (KDD '89 workshop)
- Not confined to categorical data
- How it is done?
 - Collect the task-relevant data (initial relation) using a relational database query
 - Perform generalization by attribute removal or attribute generalization
 - Apply aggregation by merging identical, generalized tuples and accumulating their respective counts
 - Interactive presentation with users

Basic Principles of Attribute-Oriented Induction

- <u>Data focusing</u>: task-relevant data including dimensions, and the result is the initial relation
- Attribute-removal: remove attribute A if there is a large set of distinct values for A but there is no generalization operator on A
- Attribute-generalization: If there is a large set of distinct values for A, and there exists a set of generalization operators on A, then select an operator and generalize A
- Attribute-threshold control:
 compare the number of distinct attribute values & threshold, typical 2-8
 Increase the threshold -> drilling down
 reduce the threshold -> rolling up
- Generalized relation threshold control:
 compare the number of (distinct) tuples & threshold
 Increase the threshold -> drilling down
 reduce the threshold -> rolling up

Attribute-Oriented Induction: Basic Algorithm

- <u>InitialRel</u>: Query processing of task-relevant data, deriving the *initial relation*
- PreGen: Based on the analysis of the number of distinct values in each attribute, determine generalization plan for each attribute: removal? or how high to generalize?
- PrimeGen: Based on the PreGen plan, perform generalization to the right level to derive a "prime generalized relation", accumulating the counts
- Presentation: User interaction: (1) adjust levels by drilling and then (2) mapping into rules or cross tabs for visualization

Example

 DMQL: Describe general characteristics of graduate students in the Big-University database

```
use Big_University_DB
mine characteristics as "Science_Students"
in relevance to name, gender, major, birth_place,
  birth_date, residence, phone#, qpa
from student
where status in "graduate"
```

Corresponding SQL statement:

```
select name, gender, major, birth_place, birth_date,
  residence, phone#, gpa
from student
where status in {"Msc", "MBA", "PhD" }
```

Class Characterization: An Example

Initial Relation

Name	Gender	Major	Birth-Place	Birth_date	Residence	Phone #	GPA
Jim	M	CS	Vancouver,BC,	8-12-76	3511 Main St.,	687-4598	3.67
Woodman Scott Lachance	M	CS	Canada Montreal, Que, Canada	28-7-75	Richmond 345 1st Ave., Richmond	253-9106	3.70
Laura Lee	F	Physics	Seattle, WA, USA	25-8-70	125 Austin Ave.,	420-5232	3.83
•••	•••	•••	•••	•••	Burnaby 	•••	•••
Removed	Retained	Sci,Eng, Bus	Country	Age range	City	Removed	Excl, VG,

Prime Generalized Relation

Gender	Major	Birth_region	Age_range	Residence	GPA	Count
M	Science	Canada	20-25	Richmond	Very-good	16
F	Science	Foreign	25-30	Burnaby	Excellent	22

Presentation of Generalized Results

Generalized relation:

 Relations where some or all attributes are generalized, with counts or other aggregation values accumulated

Cross tabulation:

- Mapping results into cross tabulation form (similar to contingency tables).
- <u>Visualization techniques</u>:
 - Pie charts, bar charts, curves, cubes, and other visual forms
- Quantitative characteristic rules:
 - Mapping a generalized result into characteristic rules with quantitative information associated with it, e.g.,

$$grad(x) \land male(x) \Rightarrow$$
 $birth_region(x) = "Canada"[t:53\%] \lor birth_region(x) = "foreign"[t:47\%].$

Data Mining: Concepts and Techniques

Presentation—Generalized Relation

location	item	sales (in million dollars)	count (in thousands)
Asia	TV	15	300
Europe	TV	12	250
North_America	TV	28	450
Asia	computer	120	1000
Europe	computer	150	1200
North_America	computer	200	1800

 $_{\mathrm{sales}}$ count $_{
m sales}$ $_{
m sales}$ count count Asia 300 15120 1000 135 1300 Europe 12 25015012001621450North_America 28 2250 450200 1800 228all_regions 45 1000 470 4000 5255000

computer

both_items

TV

location \ item

Table 5.4: A crosstab for the sales in 1997.

Table 5.3: A generalized relation for the sales in 1997.

Figure 5.3 pie chart representation of the sales in 1999

3-D cube view representation of the sales in 1999

location \ item	TV		com	puter	both_items		
	sales count		sales	count	sales	count	
Asia	15	300	120	1000	135	1300	
Europe	12	250	150	1200	162	1450	
North_America	28	450	200	1800	228	2250	
all_regions	45	1000	470	4000	525	5000	

Table 5.4: A crosstab for the sales in 1997.

$$\forall X, t \text{ arg } et _class(X) \Rightarrow condition_1(X)[t:w_1] \lor ... \lor condition_m[t:w_m]$$

$$\forall X, item(X) = "computer" \Rightarrow$$

$$(location(X) = "Asia")[t:25.00\%] \lor (location(X) = "Europe")[t:30.00\%] \lor (location(X) = "North_America")[t;45.00\%]$$

Mining Class Comparisons

- <u>Comparison:</u> Comparing two or more classes
- Method:
 - Partition a set of relevant data into the target class and the contrasting class(es)
 - Generalize both classes to the same high level concepts
 - Compare tuples with the same high level descriptions
 - Present for every tuple its description and two measures
 - support distribution within single class
 - comparison distribution between classes
 - Highlight the tuples with strong discriminant features

Quantitative Discriminant Rules

- Cj = target class
- \mathbf{q}_{a} = a generalized tuple covers some tuples of a class
 - but can also cover some tuples of a contrasting class
- d-weight
 - range: [0, 1] $d-weight = \frac{count(q \ a \in C_j)}{\sum_{i=1}^{m} count(q \ a \in C_i)}$
- quantitative discriminant rule form

$$\forall X, target_class(X) \Leftarrow condition(X) [d:d_weight]$$

Example: Quantitative Discriminant Rule

Status	Birth_country	Age_range	Gpa	Count
Graduate	Canada	25-30	Good	90
Undergraduate	Canada	25-30	Good	210

Count distribution between graduate and undergraduate students for a generalized tuple

Quantitative discriminant rule

$$\forall X, \ graduate_studen(X) \Leftarrow$$
 birth_country(X) ="Canadd'\age_range(X) ="25-30"\age(X) ="good" [d:30%]

• where
$$90/(90 + 210) = 30\%$$

Class Description

Quantitative characteristic rule

```
\forall X, target\_class(X) \Rightarrow condition(X) [t:t\_weight]
```

- necessary
- Quantitative discriminant rule

```
\forall X, target\_class(X) \Leftarrow condition(X) [d:d\_weight]
```

- sufficient
- Quantitative description rule

```
\forall X, target\_class(X) \Leftrightarrow
condition_{1}(X)[t:w_{1},d:w'_{1}] \lor ... \lor condition_{n}(X)[t:w_{n},d:w'_{n}]
```

necessary and sufficient

Example: Quantitative Description Rule

Location/item		TV			Computer			Both_items	
	Count	t-wt	d-wt	Count	t-wt	d-wt	Count	t-wt	d-wt
Europe	80	25%	40%	240	75%	30%	320	100%	32%
N_Am	120	17.65%	60%	560	82.35%	70%	680	100%	68%
Both_ regions	200	20%	100%	800	80%	100%	1000	100%	100%

Crosstab showing associated t-weight, d-weight values and total number (in thousands) of TVs and computers sold at AllElectronics in 1998

Quantitative description rule for target class Europe

$$\forall X, Europe(X) \Leftrightarrow$$

$$(item(X)="TV")[t:25\%,d:40\%] \lor (item(X)="computer")[t:75\%,d:30\%]$$

Summary

- Generalization Approaches
 - Data-cube approach
 - Attribute-oriented induction