Вступительное тестирование

Вопросы - минимум

В этом разделе представлены те вопросы, на которые следует знать ответ для того, чтобы слушать курс.

	1.	Можно	ЛИ	умножить	вектор	на	вектор	?
--	----	-------	----	----------	--------	----	--------	---

☑ Да, существует несколько способов это сделать - скалярное, векторное произведение.
□ Нет, вектор надо умножать на матрицу или число.
□ Нет, для векторов всё по-другому работает.
□ Да, умножаем каждую компоненту вектора друг на друга. Это называется скалярное
□ произведение.
2. Может ли норма матрицы быть равна нулю?
☑ Дa
□ Нет

3. Чему равна производная функции $f(x) = x^2$?

4. Чему равна первообразная функции $f(x) = x^2$?

5. Чему равно скалярное произведение векторов $(1,1,1)$ и
(2,3,4)?
\Box (1,2,1,3,1,4)
$\square (1,2,3,4)$
□ (2,3,4)□ Невозможно посчитать
Псвозможно посчитать
6. Как посчитать определитель диагональной матрицы?
□ Сложить все диагональные элементы
Умножить все диагональные элементы
□ Он равен нулю
□ Определитель такой матрицы равен самой матрице.
Вопросы по существу курса.
Если вы уверенно знаете ответы на бОльшую часть предложенных ниже вопросов -
вероятно, курс будет слишком легким для вас.
7. Является ли функция $f(x) = x $ выпуклой?
□ Нет
8. Является ли множество симметричных положительно определенных квадратных матриц выпуклым?
Да□ Нет
9. Чему равен субградиент функции $f(x) = \sin(x-4) + 2 x-4 $ в точке $x=4$?
 □ Функция не дифференцируема в этой точке, значит, субградиента не существует. □ 4
□ Любое число в интервале [-2, 2]
□ Любое число в интервале [-1,1]

\square 0
□ Среди вариантов ответов нет верного
□ Что такое субградиент? (не знаю)
√ Любое число в интервале [-1, 3]
10. Вы обучаете нейросеть классифицировать изображения. Размер обучающей выборки 10000, размер батча 100. Сколько эпох вы сделаете, если произведете 1000 итераций стохастического градиентного спуска?
\Box 1
✓ 10
□ 100
\square 1000
□ 10000
□ Эпоха? (не знаю)
□ Среди вариантов ответов нет верного
11. Логистическая регрессия - это метод решения задачи
□ Регрессии
Кластеризации
12. Пусть решение задачи линейного программирования существует. Симплекс метод в худшем случае:
□ Не сойдется
□ Сойдется полиномиально
☑ Сойдется экспоненциально
13. Является ли задача оптимизации весов нейросети ResNet выпуклой?
□ Да ☑ Нет
□ Данных задачи недостаточно
14. При оптимизации с помощью стохастического

градиентного метода было бы хорошей идеей:
 Уменьшать learning rate к концу обучения □ Увеличивать learning rate к концу обучения □ Не изменять learning rate
15. Истинно ли утверждение: "Добавление регуляризации Тихонова к выпуклой функции делает функцию сильно выпуклой"?
✓ Да□ Нет
16. Найдите минимальную константу Липшица функции $f(x) = Ax - b$, где x - вектор размерности n , A - вектор размерности $m imes n$, b — вектор размерности m .
\square Функция не является Липшициевой. $\square 2\ A\ $ $\square \ A^{\top}A\ $ $$ $\ A\ $ $$ $\ A\ $ $$ $\ e^{\ A\ }$ $$ $\ Ax-b\ $
17. Верно ли, что метод Ньютона сойдется для выпуклой функции, если запустить его из любой точки пространства
□ Да ☑ Нет
18. Пусть вычисление значения функции потерь вашей нейронной сети (forward pass) занимает время t. Сколько по времени займет вычисление градиентов по весам (backward pass). Выберите наиболее близкий ответ.
\square t $ extstyle exts$

t^2	
$\frac{t}{2}$	
$\stackrel{\circ}{e}^t$	
Ot 0 40 t	
Ot 0 40 t^3	
0	
$\supset -t$	
$\ \ N_{weights} \cdot t$	
lomentum одинаково ускоряют метод градиентного спуска	a
пя выпуклой функции с Липшициевым градиентого спуска очки зрения характера сходимости (с точностью до онстантного множителя)	a
ля выпуклой функции с Липшициевым градиентом с очки зрения характера сходимости (с точностью до	a
пя выпуклой функции с Липшициевым градиентом с очки зрения характера сходимости (с точностью до онстантного множителя)	a
ля выпуклой функции с Липшициевым градиентом с очки зрения характера сходимости (с точностью до онстантного множителя)	a
пя выпуклой функции с Липшициевым градиентом с очки зрения характера сходимости (с точностью до онстантного множителя) Да Нет, Nesterov momentum быстрее	a
пя выпуклой функции с Липшициевым градиентом с очки зрения характера сходимости (с точностью до онстантного множителя) Да Нет, Nesterov momentum быстрее Нет, Polyak momentum быстрее	a
пя выпуклой функции с Липшициевым градиентом с очки зрения характера сходимости (с точностью до онстантного множителя) Да Нет, Nesterov momentum быстрее Нет, Polyak momentum быстрее В рерно ли утверждение: В любой задаче оптимизации	a
пя выпуклой функции с Липшициевым градиентом с очки зрения характера сходимости (с точностью до онстантного множителя) Aa Нет, Nesterov momentum быстрее Нет, Polyak momentum быстрее В рерно ли утверждение: В любой задаче оптимизации ункции если точка x_0 является решением задачи	a
пя выпуклой функции с Липшициевым градиентом с очки зрения характера сходимости (с точностью до онстантного множителя) Да Нет, Nesterov momentum быстрее Нет, Polyak momentum быстрее В рерно ли утверждение: В любой задаче оптимизации	a

□ Да **У** Нет