X is a Banach space if

. X is a vector space

. X has a norm $||\cdot||$ operation

. The metric d(x,y):=||x-y|| is complete $x \in X$

Let X be a normed vector space. A map $T: X \to X$, is a contraction mapping with modulus $Y \in (o_1)$ if $\|Tx - Ty\| \le \gamma \|x - y\|$ for all $x, y \in X$. We take γ to be the smallest such constant in (\circ, i) .

Let $f: X \to X$ be a function. A fixed point of f is a point $x \in X$ such that f(x) = x.

Let Ω be a set. \mathbb{R}^{Ω} is the set of all functions $f: \Omega \to \mathbb{R}$ \mathbb{R}^{Ω} will denote the set of bounded functions $f: \Omega \to \mathbb{R}$. \mathbb{R}^{Ω} \mathbb{R}^{Ω} \mathbb{R}^{Ω} \mathbb{R}^{Ω} \mathbb{R}^{Ω} \mathbb{R}^{Ω} \mathbb{R}^{Ω} and with \mathbb{R}^{Ω} is a Banach space

If Ω is finite then $BIR^{\Omega}=R^{\Omega}$ (this is the only case of equality)

Barach's fixed point theorem

Theorem Let X be a Banach space, and let $T: \mathcal{B} \to \mathcal{B}$ be a contraction mapping with modulus $\gamma \in (0,1)$. Then T has a unique fixed point x^{+} .

Corollary If $x_0 \in X$ is arbitrary, then the "fixed-point" algorithm $x_n := T \times_{n-1} \qquad n = 1, 2, \dots$ conveyes to x^* . That is, $N \times_n - x^* N \longrightarrow \infty$

Uriguruss If $Tx^* = x^*$ and $Ty^* = y^*$ then $\|x^* - y^*\| = \|Tx^* - Ty^*\| \le \gamma \|x^* - y^*\|$ So $\|x^* - y^*\| \le \gamma \|x^* - y^*\|$. Since $0 < \gamma < 1$, we must have $\|x^* - y^*\| = 0$, so $x^* = y^*$

Cordlond $\lim_{n\to\infty} |x_n-x^*| = \lim_{n\to\infty} |x_n-x^*| = \lim_{n\to\infty} |x_n-x^*|$ (repeat the argument) $\lim_{n\to\infty} |x_n-x^*| = \lim_{n\to\infty} |x_n-x^*|$ $\lim_{n\to\infty} |x_n-x^*| = \lim_{n\to\infty} |x_n-x^*| = \lim_{n\to\infty}$

Application to MDPs.

Assume ISI < 00, IAI < 00. Discourt factor is y & (0,1)

function y Satisfus

for all s, $V(s) = \max_{a \in A} \left\{ C(s, a) + \gamma \sum_{s' \in S} Y(s') P(s'|s, a) \right\}$

VERS = BRS. Define By: RS -> RS as

 $(B_{\gamma}f)(s) = \max_{\alpha \in A} \{r(s,\alpha) + \gamma \sum_{s' \in S} f(s') P(s'|s,\alpha)\}$

So $B_{\gamma} v = v$. In fact, B_{γ} is a contraction mapping with modulus γ . Thus v is the unique fixed point, and from an arbitron function $v_o \in IRS$, with $v_n := B_T v_{n-1}$, n=1,2,-. we have that $v_n \rightarrow v$ in the uniform norm topology.