Cardiovascular Diagnosis Using Federated Learning

Department of CSE

Jyothi Engineering College

Thrissur

January 22, 2021

Department Mission & Vision

Vision

 Creating eminent and ethical leaders in the domain of computational sciences through quality professional education with a focus on holistic learning and excellence.

Mission

- To create technically competent and ethically conscious graduates in the field of Computer Science & Engineering by encouraging holistic learning and excellence.
- To prepare students for careers in Industry, Academia and the Government.
- To instill Entrepreneurial Orientation and research motivation among the students of the department
- To emerge as a leader in education in the region by encouraging teaching, learning, industry and societal connect.

OUR TEAM

GROUP MEMBERS

- ANN MARIYA (JEC16CS026)
- ② RAHUL M (JEC16CS092)
- MANEESH MANOJ (JEC17CS063)
- RASHI M
 (JEC17CS079)

Guide

Mrs. NAMITHA T N Assistant Professor, Dept. of CSE

Project Github Repository

github.com/mnshmnu/group18

Project Abstract

 Uses decentralized, privacy preserving Federated Learning to diagnose and detect abnormalities in cardiovascular system by observing heart sound.

Project Objectives

The System Aims to:

- Privacy oriented approach to conventional Machine Learning
- Implementing Federated Learning in the healthcare sector
- Discovering effective ways to implement Federated Learning technology

Existing System

- Base Paper: Classification of Heart Sounds Using CNN
- Key Points:
 - Uses CNN to classify PCG signals of heart sound samples
 - Produced 86% validation accuracy in classifying normal vs abnormal heart sounds
 - Single learning entity

Advantages and Disadvantages of Existing System:

- Advantages:
 - Training is comparatively fast
 - Requires less resources
- Disadvantages:
 - Collaborative learning not possible
 - No privacy preserving policies raw data is directly shared with orchestrating server
 - Comparatively less accuracy

Description of the Proposed system

- Federated Learning to diagnose heart conditions
- System includes distributed, collaborative, privacy-preserving deep learning architecture that can perform local training on edge devices
- We are using labeled heart sound collected by Electronic Stethoscopes as our training data
- The local inference learned by each model are transferred, in a way they cannot be re-engineered to raw data, to a central server

Description of the Proposed System Cont.

- Server efficiently aggregate these inferences to form a globally improved model
- This model is transferred to edge devices to create a personalized model using local data, keeping the local data secured at respective devices
- **1** The model architecture used is Gated Recurrent Units (GRU)

Features of Proposed System

- Preserves privacy
- Improves the model entity over time
- Facilitate Distributed-Collaborative Learning
- Can process large amount of data,in small amount of time
- Comparatively need less bandwidth to execute Collaborative learning

Structure Chart

Figure: Distributed Device Architecture

Structure Chart Cont.

- Sending Encrypted Gradients
- 2 Secure Aggregation
- 3 Sending back model updates

2. Federated Learning Architecture

Figure: Federated Learning Architecture

Software Requirement Specifications(SRS)

- Functional Requirements
 - Detect abnormalities from heart sound and diagnose the disease
- Non-Functional Requirements
 - System should maintain Security and Privacy of training data

Use Case Diagram

Data Flow Diagram

Figure: DFD - Level 0

Figure: DFD- Level 1: Pre-Processing

Figure: DFD- Level 1: Prediction

Figure: **DFD- Level 1: Federated Aggregation**

Figure: DFD- Level 1: Federated Optimization

Application of the proposed system

- Detecting heart abnormalities using:
 - Normal heart sounds
 - 2 Abnormal heart sounds
- Aid diagnose of heart conditions non-invasively with limited technology

Course Outcomes

- C410.1 The students will be able to analyse a current topic of professional interest and present it before an audience.
- C410.2 Students will be able to identify an engineering problem, analyse it and propose a work plan to solve it.
- C410.3 Students will have gained thorough knowledge in design, implementations and execution of Computer science related projects.
- C410.4 Students will have attained the practical knowledge of what they learned in theory subjects.
- C410.5 Students will become familiar with usage of modern tools.
- C410.6 Students will have ability to plan and work in a team.

Mapping of Course outcome to PO

Course Outcome							
Program Outcome		C418.1	C418.2	C418.3	C418.4	C418.5	C418.6
	1	3	3	1	3	1	-
	2	3	3	2	3	3	3
	3	3	2	3	2	1	1
	4	2	3	1	3	-	3
	5	2	1	2	3	3	3
	6	3	-	3	2	3	3
	7	2	1	2	3	2	1
	8	_	2	1	1	3	2
	9	3	3	3	1	1	1
	10	3	2	2	3	2	3
	11	2	1	1	3	1	2
	12	1	3	1	3	2	3

Figure: CO-PO Mapping

Pending Works

- Experiment with various ML models to find the best possible one
- Create a federated dataset to simulate Federated paradigm
- Migrate the current model to Federated Learning paradigm

CONCLUSION

- Abnormal heart conditions are diagnosed from heart sound signal
- Pederated Learning enables multiple devices to collaborate and improve together
- Collaborative learning in medical field is possible without sharing the data

REFERENCES

- Gari D Clifford, Chengyu Liu, Benjamin Moody, David Springer, Ikaro Silva, Qiao Li, andRoger G Mark.
 Classification of normal/abnormal heart sound recordings
- Peter Kairouz, H. Brendan McMahan et. al
 Advances and Open Problems in Federated Learning
 CoRR, abs/1912.04977, 2019
- Yang, Qiang and Liu, Yang and Chen, Tianjian and Tong, Yongxin

 Federated machine learning: Concept and applications, ACM TIST, abs/1902.04885, 2019
- Li, Fan and Tang, Hong and Shang, Shang and Mathiak, et.al Classification of Heart Sounds Using Convolutional Neural Network, Applied Sciences, MDP
- 2018. [Online].
 Availablehttps://www.tensorflow.org/federated

Thank You

Any Query?

