Neural Networks and Back Propagation

Dr. Santosh Kumar Vipparthi

Dept. of C.S.E

Website: https://visionintelligence.github.io/

Malaviya National Institute of Technology (MNIT), Jaipur

What is a Feature?

A feature is a significant piece of information extracted from an image which provides more detailed understanding of the image.

A Picture Is Worth More Than A Thousand Words

Image analysis (understanding),

image processing & computer vision plays an important role in society today because

- * A picture gives a much clearer impression of a situation or an object.
- * Having an accurate visual perspective of things has a high social, technical and economic value.

The machine learning framework

• Apply a prediction function to a feature representation of the image to get the desired output:

The machine learning framework

- **Training:** given a *training set* of labeled examples $\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_N, \mathbf{y}_N)\}$, estimate the prediction function f by minimizing the prediction error on the training set
- **Testing:** apply f to a never before seen *test example* \mathbf{x} and output the predicted value $\mathbf{y} = \mathbf{f}(\mathbf{x})$

Machine learning structure

Steps

Testing

Lazebnik

Image Retrieval

Object Detection & Classification

Macro v/s Micro Expressions

Anger

Fear

Sad

MMI Dataset

Macro Expression

Sample Micro Expression

Disgust Expression

Happy expression

Regular Vs Aerial View

Regular View Aerial View

Difference between regular and aerial view

Sample Results

Image Captioning

Automatically describing the content of an image and generate a reasonable description in plain English. NIC(Neural Image Caption) is model which take image in input and generate description.

Generalization

Training set (labels known)

Test set (labels unknown)

How well does a learned model generalize from the data it was trained on to a new test set?

Local Binary & Ternary Patterns (LBP & LTP)

Fig: Example of obtaining LBP and LTP for the 3×3 pattern

Example

Deep Learning

Deep learning is a machine learning technique that can learn useful representations or features directly from images, text and sound

Quantitative Analysis

TABLE II recognition accuracy comparison on MMI dataset

Methods	6-Class	7-Class
	Exp.	Exp.
LBP [9]	76.5	81.7
Two-Phase [10]	75.4	82.0
LDP [11]	80.5	84.0
LDN [12]	80.5	83.0
LDTexP[13]	83.4	86.0
LDTerP[14]	80.6	80.0
Spatio-	81.2	
Temopral* [25]	01.2	_
QUEST	83.05	84.0

TABLE III recognition accuracy comparison on GEMEP-FERA dataset

Methods	5-Class	6-Class
	Exp.	Exp.
LBP [9]	92.2	87.8
Two-Phase [10]	88.6	85.0
LDP [11]	94.0	90.0
LDN [12]	93.4	91.0
LDTexP [13]	94.0	91.8
QUEST	94.3	91.33

Feed Forward & Backpropagation in Neural Networks

Credits to:

- 1. http://cs231n.stanford.edu/
- 2. http://cs231n.github.io/optimization-2/
- 3. http://neuralnetworksanddeeplearning.com/chap2.ht3
- 4. https://mattmazur.com/2015/03/17/

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

 $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

 $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x)=e^x \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=e^x \hspace{1cm} f(x)=rac{1}{x} \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=-1/x^2 \hspace{1cm} f_c(x)=ax \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=a \hspace{1cm} f_c(x)=c+x \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x)=e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=e^x \hspace{1cm} f(x)=rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx}=-1/x^2 \ f_a(x)=ax \hspace{1cm} o \hspace{1cm} rac{df}{dx}=a \hspace{1cm} f_c(x)=c+x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx} = -1/x^2 \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a \hspace{1cm} f(x) = c + x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx} = -1/x^2 \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a \hspace{1cm} f_c(x) = c + x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a \ \end{array} egin{aligned} f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \ \end{array}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad f(x)=rac{1}{x} \qquad o \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \qquad f_c(x)=c+x \qquad o \qquad rac{df}{dx}=1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ & & \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a \end{aligned}$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \qquad f_a(x)=a$$

$$egin{aligned} f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

sigmoid function

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{(1+e^{-x})^2} = \left(rac{1+e^{-x}-1}{1+e^{-x}}
ight) \left(rac{1}{1+e^{-x}}
ight) = \left(1-\sigma(x)
ight)\sigma(x)$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

sigmoid function

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{(1+e^{-x})^2} = \left(rac{1+e^{-x}-1}{1+e^{-x}}
ight) \left(rac{1}{1+e^{-x}}
ight) = \left(1-\sigma(x)
ight)\sigma(x)$$

add gate: gradient distributor

add gate: gradient distributor

Q: What is a max gate?

add gate: gradient distributor

max gate: gradient router

add gate: gradient distributor

max gate: gradient router

Q: What is a **mul** gate?

add gate: gradient distributor

max gate: gradient router

mul gate: gradient switcher

Gradients add at branches

Jacobian matrix

4096-d input vector

Q: what is the size of the Jacobian matrix?

4096-d output vector

Jacobian matrix

4096-d input vector

Q: what is the size of the Jacobian matrix? [4096 x 4096!]

4096-d output vector

4096-d input vector

Q: what is the size of the Jacobian matrix? [4096 x 4096!]

i.e. Jacobian would technically be a [409,600 x 409,600] matrix :\

Neural Network

Deep means many hidden layers

Neural Network

Neural Network

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Back Propagation In NN

- Every Hidden node and output has 2 values:
 - Net value (z)
 - Out value (a)

$$z = w1 * i1 + w2 * i2 + bias$$

a is activation function

- We are going to use a neural network with:
 - two inputs,
 - two hidden neurons,
 - two output neurons.
- Additionally, the hidden and output neurons will include a bias.

Basic Structure of NN

Here are the initial weights, the biases, and training inputs/outputs:

Example of NN

Forward Pass

Lets see what the neural network currently predicts given the weights and biases above and inputs of 0.05 and 0.10.

0.3775

=> Output for **hidden layer** with **sigmoid activation function**:

$$net h_1 = w_1 * i_1 + w_1 * i_2 + b_1 * 1$$

$$net \ h1 = 0.05 * 0.15 + 0.2 * 0.1 + 0.35 * 1$$

out
$$hI = \frac{1}{1 + e^{-net \, h1}}$$
 (sigmoid activation function)

out
$$h1 = \frac{1}{1+e^{-0.3775}}$$
 \rightarrow 0.5932699

similarly,

out
$$h2 = 0.5968843$$

Repeat above process for the output layer neurons, using the output from the hidden layer neurons as inputs.

net
$$o1 = 0.4 \times 0.5932699 + 0.45 \times 0.5968843 + 0.6 \times 1 \implies 1.105905967$$

out o1 =
$$\frac{1}{1+e^{-1.105905}}$$
 \rightarrow 0.75136507 (Out1 but target is 0.01)

out o2 =0.772928 (Out2 but target is 0.99)

Total Error

We can now calculate the error for each output neuron using the **squared error function** and sum them to get the total error:

$$E total = \sum \frac{1}{2} (target - output)^2$$

$$E total = Eo1 + Eo2$$

$$E_{01} = \frac{1}{2}(0.01 - 0.75136507)^2 \rightarrow 0.274811083$$

$$E_{02} = 0.023560026$$

$$E total = Eo1 + Eo2 = 0.298371109$$

Backward Propagation

b1 0.35

For output layer:

b2 0.60

$$\frac{\partial E total}{\partial w5} = \frac{\partial E total}{\partial outo1} * \frac{\partial outo1}{\partial neto1} * \frac{\partial neto1}{\partial w5}$$

$$\downarrow 0.15 \text{ w1} \qquad h \qquad 0.40 \text{ w5} \qquad 0 \qquad 0.0 \qquad 0.0 \qquad 0.20 \text{ w2} \qquad 0.50 \text{ w2} \qquad 0.50 \text{ w2} \qquad 0.50 \text{ w2} \qquad 0.55 \text{ w8} \qquad 0.9 \qquad 0.$$

E total =
$$\frac{1}{2}$$
 (target o1 – Out o1)² + $\frac{1}{2}$ (target o2 – Out o2)²
Derivative w.r.t Out o1

$$\frac{\partial Etotal}{\partial outo1} = -(target\ o1 - Out\ o1) + 0 = 0.74136507$$

Out o1 =
$$\frac{1}{1 + e^{-net \ o1}}$$

$$\frac{\partial outo1}{\partial neto1}$$
 = Out o1 (1 – Out o1) = **0.18681560**

net o1 = w5 x out h1+ w6 x out h2 + b2 x 1

$$\frac{\partial neto1}{\partial w^5}$$
 = Out h1 = **0.5932699**

Constant are in RED color

Backward Propagation

$$\frac{\partial Etotal}{\partial w5} = \frac{\partial Etotal}{\partial outo1} * \frac{\partial outo1}{\partial neto1} * \frac{\partial neto1}{\partial w5}$$

$$\frac{\partial Etotal}{\partial w5} = \mathbf{0.082167041}$$

Updation of weight w5:

w5_new = w5 -
$$\eta x \frac{\partial Etotal}{\partial w5}$$

$$W5_new = 0.40 - 0.5 \times 0.082167 = .358916$$

η is learning rate here 0.5

w5 is now updated to w5_newIn next Forward pass w5_new is used

Find out updated values of weights w6, w7, w8 and bias b2 with the same procedure.

*Remember new values only considered in next Forward pass after complete updation of weights.

Next, we'll continue the backwards pass by calculating new values for w1

$$\frac{\partial Etotal}{\partial w1} = \frac{\partial Etotal}{\partial outh1} \ * \frac{\partial outh1}{\partial neth1} \ * \ \frac{\partial neth1}{\partial w1}$$

$$Etotal = Eo1 + Eo2$$

$$Eo1 = \frac{1}{2}(targeto1 - Outo1)^{2}$$

$$Eo2 = \frac{1}{2}(targeto2 - Outo2)^{2}$$
(5.1 and 5.2 met directly depend

(Eo1 and Eo2 not directly depend on outh1)

$$\frac{\partial Etotal}{\partial outh1} = \frac{\partial Eo1}{\partial outh1} + \frac{\partial Eo2}{\partial outh1}$$

we will take both separately

neto1 = w5 * outh1 + w6 * outh2 + b2 * 1

$$\frac{\partial neto1}{\partial outh1} = w5 = 0.40$$

$$\frac{\partial Eo1}{\partial outh1} = \frac{\partial Eo1}{\partial neto1} * \frac{\partial neto1}{\partial outh1} = 0.1384985 \times 0.40 = 0.0553994$$

Eo2 =
$$\frac{1}{2}$$
 (target o2 – out o2)²
 $\frac{\partial Eo2}{\partial outo2}$ = -(target o2 – out o2) = -(0.99 – 0.772928)

$$\frac{\partial Eo2}{\partial outo2} = -0.217072$$

$$\frac{\partial Eo2}{\partial neto2} = \frac{\partial Eo2}{\partial outo2} * \frac{\partial outo2}{\partial neto2}$$
Out o2 =
$$\frac{1}{1 + e^{-neto2}}$$

$$\frac{\partial outo2}{\partial neto2}$$
 = Out o2 (1 – Out o2)

$$\frac{\delta \delta u t \delta z}{\partial net \delta 2} = \text{Out o2} (1 - \text{Out o2})$$
$$= (0.7729284)(1 - 0.7729284) = 0.1755100$$

$$\frac{\partial Eo2}{\partial neto2} = (-0.217072) * (0.1755100) = -0.0380983$$

$$\frac{\partial Eo2}{\partial outh1} = \frac{\partial Eo2}{\partial neto2} * \frac{\partial neto2}{\partial outh1}$$

$$\frac{\partial Eo2}{\partial neto2} = -0.0380983$$

$$neto2 = w7 * outh1 + w8 * outh2 + b2 * 1$$

$$\frac{\partial neto2}{\partial outh1} = w7 = 0.50$$

$$\frac{\partial Eo2}{\partial outh1} = \frac{\partial Eo2}{\partial neto2} * \frac{\partial neto2}{\partial outh1}$$

$$\frac{\partial Eo2}{\partial outh1} = -0.0380983 * 0.50 = -0.0190491$$

$$\frac{\partial Etotal}{\partial w1} = \frac{\partial Etotal}{\partial outh1} * \frac{\partial outh1}{\partial neth1} * \frac{\partial neth1}{\partial w1}$$

$$\frac{\partial Etotal}{\partial outh1} = \frac{\partial Eo1}{\partial outh1} + \frac{\partial Eo2}{\partial outh1}$$

$$\frac{\partial Etotal}{\partial outh1} = 0.0553994 + -0.0190491 = 0.0363503$$

$$\frac{\partial Etotal}{\partial w1} = \frac{\partial Etotal}{\partial outh1} \left(* \frac{\partial outh1}{\partial neth1} \right) * \frac{\partial neth1}{\partial w1}$$

$$outh1 = \frac{1}{1 + e^{-net h_1}}$$

$$\frac{\partial outh1}{\partial neth1}$$
 = outh1 x (1 - outh1) = 0.5932699 X (1- 0.5932699)

$$\frac{\partial outh1}{\partial neth1} = 0.2413007$$

$$\frac{\partial Etotal}{\partial w1} = \frac{\partial Etotal}{\partial outh1} * \frac{\partial outh1}{\partial neth1} * \frac{\partial neth1}{\partial w1}$$

$$neth1 = i1 * w1 + i2 * w2 + b1 * 1$$

$$\frac{\partial neth1}{\partial w1} = i1 = 0.05$$

$$\frac{\partial Etotal}{\partial w_1}$$
 = 0.0363503 * 0.2413007 * 0.05

$$\frac{\partial Etotal}{\partial w_1} = \mathbf{0.00043856}$$

Updation of weight w1:

$$w1_new = w1 - \eta x \frac{\partial Etotal}{\partial w1}$$

$$w1_new = 0.15 - 0.5 * 0.00043856 = 0.149780$$

With the same procedure weights **w2 w3 w4** and bias **b1** will be computed.

 $w1_new = 0.19956143$

 $w2_new = 0.24975114$

 $w3_new = 0.29950229$

Example of NN

- Finally, we've updated all of our weights! When we fed forward the 0.05 and 0.1 inputs originally, the error on the network was 0.298371109.
- After this first round of backpropagation, the total error is now down to 0.291027924.
- It might not seem like much, but after repeating this process 10,000 times, for example, the error plummets to 0.0000351085.
- At this point, when we feed forward 0.05 and 0.1, the two outputs neurons generate 0.015912196 (vs 0.01 target) and 0.984065734 (vs 0.99 target).

☐ The number of trainable parameters becomes extremely large.

☐ Little or no invariance to shifting, scaling, and other forms of distortion

☐ Little or no invariance to shifting, scaling, and other forms of distortion

☐ Little or no invariance to shifting, scaling, and other forms of distortion

Definition of Loss

In a supervised deep learning context the **loss function** measures the **quality** of a particular set of parameters based on how well the output of the network **agrees** with the ground truth labels in the training data.

Nomenclature

loss function

cost function

objective function

error function

Loss function (1)

How good does our network with the training data?

labels (ground truth)

$$\mathcal{L}(w) = \underset{\mathsf{parameters}}{\textit{distance}(f_{ heta}(x), y)}$$

input <

Common types of loss functions (1)

- Loss functions depen on the type of task:
 - Regression: the network predicts continuous, numeric variables
 - Example: Length of fishes in images, temperature from latitude/longitud
 - Absolute value, square error

Common types of loss functions (2)

- Loss functions depen on the type of task:
 - Classification: the network predicts categorical variables (fixed number of classes)
 - Example: classify email as spam, predict student grades from essays.
 - hinge loss, Cross-entropy loss

Absolute value, L1-norm

- Very intuitive loss function
 - produces sparser solutions
 - good in high dimensional spaces
 - prediction speed
 - less sensitive to outliers

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} |y_i - f_{\theta}(x_i)|$$

Square error, Euclidean loss, L2-norm

- Very common loss function
 - More precise and better than L1-norm
 - Penalizes large errors more strongly
 - Sensitive to outliers

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2$$

Classification (1)

We want the network to classify the input into a fixed number of classes

Classification (2)

- Each input can have only one label
 - One prediction per output class
 - The network will have "k" outputs (number of classes)

Classification (3)

- How can we create a loss function to improve the scores?
 - Somehow write the labels (ground truth of the data) into a vector → One-hot encoding
 - Non-probabilistic interpretation → hinge loss
 - Probabilistic interpretation: need to transform the scores into a probability function → Softmax

Softmax (1)

- Convert scores into probabilities
 - From 0.0 to 1.0
 - Probability for all classes adds to 1.0

Softmax (2)

Softmax function

$$S(l_i) = rac{e^{l_i}}{\sum_k e^{l_k}}$$

Neural Networks and Deep Learning (softmax)

One-hot encoding

- Transform each label into a vector (with only 1 and 0)
 - Length equal to the total number of classes "k"
 - Value of 1 for the correct class and 0 elsewhere

class "1"	class "2"	class "3"
1	0	0
0	1	0
0	0	1

Cross-entropy loss (1)

$$\mathcal{L}_i = -\sum_k y_k \log(S(l_k)) = -\log(S(l))$$

Cross-entropy loss (2)

$$\mathcal{L}_i = -\sum_k y_k \log(S(l_k)) = -\log(S(l))$$

Cross-entropy loss (3)

For a set of n inputs
$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}$$

Legis (one-hot)
$$\mathcal{L} = -\sum_{i=1}^{n} \mathbf{y}_i \log(S(f_{\theta}(\mathbf{x}_i)))$$
 Softmax

Multi-label classification (1)

- Outputs can be matched to more than one label
 - "car", "automobile", "motor vehicle" can be applied to a same image of a car.
- Use sigmoid at each output independently instead of softmax

$$\sigma(l_i) = \frac{1}{1 + e^{-l_i}}$$

Multi-label classification (2)

Cross-entropy loss for multi-label classification:

$$\mathcal{L}_i = -\sum_k y_k \log(\sigma(l_i)) + (1 - y_k) \log(1 - \sigma(l_i))$$

Thanks! Questions?