Révision 1 – Résolution des problèmes de statique – Statique 2D

l'Ingénieur

TD 01

Documents de TP

Étude théorique de la barrière Sympact

Savoirs et compétences :

Modélisation cinématique de la barrière Sympact

Schéma cinématique

On pose
$$\overrightarrow{AB} = H \overrightarrow{y_0}$$
, $\overrightarrow{BC} = R \overrightarrow{x_2}$ et $\overrightarrow{AC} = \lambda(t)\overrightarrow{x_1}$).

Détermination de la loi Entrée / Sortie

La fermeture de chaîne cinématique s'écrit ainsi : $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$ soit $\overrightarrow{Hy_0} + \overrightarrow{Rx_2} - \lambda(t)\overrightarrow{x_1} = \overrightarrow{0}$ Projetons cette relation dans le repère $\mathcal{R}_0: H\overrightarrow{y_0} + R(\cos\theta(t)\overrightarrow{x_0} + \sin\theta(t)\overrightarrow{y_0}) - \lambda(t)(\cos\varphi(t)\overrightarrow{x_0} + \sin\varphi(t)\overrightarrow{y_0}) = \overrightarrow{0}$. $R\cos\theta(t) - \lambda(t)\cos\varphi(t) = 0$ $H + R\sin\theta(t) - \lambda(t)\sin\varphi(t) = 0$

Pour exprimer la loi entrée sortie, il faut déterminer φ en fonction de θ . $\begin{cases} R\cos\theta(t) = \lambda(t)\cos\varphi(t) \\ H + R\sin\theta(t) = \lambda(t)\sin\varphi(t) \end{cases}$

En faisant le rapport, on a donc $\tan \varphi(t) = \frac{H + R \sin \theta(t)}{R \cos \theta(t)}$. **Expression analytique de** λ . On peut aussi vouloir exprimer $\lambda(t)$ en fonction de $\varphi(t)$ (nécessaire en statique).

On a donc : $\begin{cases} R\cos\theta(t) = \lambda(t)\cos\varphi(t) \\ R\sin\theta(t) = \lambda(t)\sin\varphi(t) - H \end{cases} \text{ et } R^2 = \left(\lambda(t)\cos\varphi(t)\right)^2 + \left(\lambda(t)\sin\varphi(t) - H\right)^2 \text{ soit } R^2 = \lambda(t)^2 + H^2 - H^2 + L^2 +$ $2\lambda(t)\sin\varphi(t)H$.

1

On résout donc $\lambda(t)^2 - 2\lambda(t)\sin\varphi(t)H + H^2 - R^2 = 0$. $\Delta = 4H^2\sin^2\varphi(t) - 4(H^2 - R^2)$ et donc $\lambda = \frac{2\sin\varphi(t)H \pm \sqrt{4H^2\sin^2\varphi(t) - 4(H^2 - R^2)}}{2}.$ $\lambda = \sin\varphi(t)H \pm \sqrt{H^2\sin^2\varphi(t) - (H^2 - R^2)}.$

$$\lambda = \frac{2\sin\varphi(t)H \pm \sqrt{4H^2\sin^2\varphi(t) - 4(H^2 - R^2)}}{2}$$

$$\lambda = \sin \varphi(t) H \pm \sqrt{H^2 \sin^2 \varphi(t) - (H^2 - R^2)}.$$

Détermination de la loi en vitesse

Tracé des courbes

Application numérique :

Détermination du couple moteur en statique

Isolement du galet 3

On isole le galet (3) soumis à deux glisseurs.

BAME

- Pivot entre 2 et 3: $\{\mathcal{T}(2 \rightarrow 3)\}$.
- Sphère plan entre 1 et 3 : $\{\mathcal{T}(1 \rightarrow 3)\}$.

Application du PFS D'après le PFS, on a donc : $\{\mathcal{T}(2 \to 3)\} + \{\mathcal{T}(1 \to 3)\} = \{0\}$

soit
$$\{\mathcal{T}(2 \to 3)\} = -\{\mathcal{T}(1 \to 3)\} = \left\{\begin{array}{c} F\overrightarrow{y_1} \\ \overrightarrow{0} \end{array}\right\}_I$$
.

Isolement de la manivelle 2 + Galet 3

BAME

- Pivot entre 0 et 2 : $\{\mathcal{T}(0 \rightarrow 2)\}$.
- Sphère plan entre 1 et 3: $\{\mathcal{T}(1 \to 3)\} = \left\{\begin{array}{c} -F \overrightarrow{y_1} \\ \overrightarrow{0} \end{array}\right\}_{T}$.
- Moteur entre 0 et 2: $\{\mathscr{T}(0 \to 2)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_m \overrightarrow{z_0} \end{array}\right\}_{VD}$.

Application du PFS

On utilise le théorème du moment statique en B en projection sur l'axe \overrightarrow{z} .

Déplacement de $\{\mathcal{T}(3 \rightarrow 2)\}\$ en B.

On a
$$\overline{\mathcal{M}(B, 3 \to 2)} \cdot \overline{z_0} = (\overline{\mathcal{M}(I, 3 \to 2)} + \overline{BI} \wedge \overline{R(3 \to 2)}) \overline{z_0}$$

$$= ((\overline{BC} + \overline{CI}) \wedge \overline{R(3 \to 2)}) \overline{z_0}$$

$$= ((R \overline{x_2} - r \overline{y_1}) \wedge (-F \overline{y_1})) \overline{z_0} = -rF(\overline{x_2} \wedge \overline{y_1}) \overline{z_0} = -rF(\overline{y_1} \wedge \overline{z_0}) \cdot \overline{x_2} = -rF \overline{x_1} \cdot \overline{x_2} = -rF \cos(\theta - \varphi)$$
Le TMS en B s'écrit donc sous la forme $C_m = rF \sin(\theta - \varphi)$

2.3 Isolement de la barrière 1

- Pivot entre 0 et 1 : $\{\mathcal{T}(0 \to 1)\}$.
- Sphère plan entre 1 et 2 : $\{\mathcal{T}(3 \to 2)\} = \left\{\begin{array}{c} -F\overrightarrow{y_1} \\ \overrightarrow{0} \end{array}\right\}$.
- Ressort entre 0 et 1: $\{\mathcal{T}(0 \to 1)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_r \overrightarrow{z_0} \end{array}\right\}_{\forall P}$. Pesanteur sur 1: $\{\mathcal{T}(\text{pes} \to 1)\} = \left\{\begin{array}{c} -Mg\overrightarrow{y_0} \\ 0 \end{array}\right\}_G$ avec G tel que $\overrightarrow{AG} = \mu \overrightarrow{x_1'}$

Application du PFS

On utilise le théorème du moment statique en A en projection sur l'axe \overrightarrow{z} .

• Déplacement de $\{\mathcal{T}(3 \to 2)\}\$ en A.

On a
$$\overline{\mathcal{M}(A, 3 \to 2)} \cdot \overline{z_0} = \left(\overline{\mathcal{M}(I, 3 \to 2)} + \overline{AI} \wedge \overline{R(3 \to 2)}\right) \overline{z_0}$$

$$= \left(\left(\overline{AC} + \overline{CI}\right) \wedge \overline{R(3 \to 2)}\right) \overline{z_0} = \left(\left(\lambda \overline{x_1} - r \overline{y_1}\right) \wedge \left(-F \overline{y_1}\right)\right) \overline{z_0} = \left(\lambda \overline{x_1} \wedge \left(-F \overline{y_1}\right)\right) \overline{z_0} = -\lambda F$$

• Déplacement de $\{\mathscr{T}(\text{pes} \to 1)\}\$ en A. On a $\overline{\mathscr{M}(A, \text{pes} \to 1)} \cdot \overrightarrow{z_0} = \left(\overrightarrow{AG} \wedge \left(-Mg\overrightarrow{y_0}\right)\right)\overrightarrow{z_0} = \left(\mu\overrightarrow{x_1'} \wedge \left(-Mg\overrightarrow{y_0}\right)\right)\overrightarrow{z_0}$ $=-Mg\mu(\overrightarrow{y_0}\wedge\overrightarrow{z_0})\overrightarrow{x_1'}=-Mg\mu\overrightarrow{x_0}\cdot\overrightarrow{x_1'}=-Mg\mu\cos(\varphi-\alpha)$ Le TMS en B s'écrit donc sous la forme $-\lambda F+C_r-Mg\mu\cos(\varphi-\alpha)=0$.

Résolution

On a:
$$\begin{cases} C_m = rF\sin(\theta - \varphi) \\ -\lambda F + C_r - Mg\mu\cos(\varphi - \alpha) = 0 \Leftrightarrow F = \frac{C_r - Mg\mu\cos(\varphi - \alpha)}{\lambda} \end{cases}$$
On a donc $C_m = r\sin(\theta - \varphi)\frac{C_r - Mg\mu\cos(\varphi - \alpha)}{\lambda}$.

Expression de C_r

La raideur du ressort est de 100° pour 40 Nm soit $\frac{180 \times 40}{100\pi}$ Nm par radian soit 23 Nm rad⁻¹.

De plus,
$$C_r(\varphi) = k\varphi + C_0$$
 avec
$$\begin{cases}
C_r\left(\frac{3\pi}{4}\right) = 0 = k\frac{3\pi}{4} + C_0 \\
C_r\left(\frac{\pi}{4}\right) = 23\frac{\pi}{2} = k\frac{\pi}{4} + C_0
\end{cases} \iff \begin{cases}
C_0 = -k\frac{3\pi}{4} \\
23\frac{\pi}{2} = k\frac{\pi}{4} - k\frac{3\pi}{4}
\end{cases} \iff \begin{cases}
C_0 = 23\frac{3\pi}{4} \\
k = -23
\end{cases}$$

Au final, $C_r(\varphi) = -23\varphi + 23\frac{3\pi}{4}$.

Références

[1] xx