

## NUMERICAL METHODS (MCSC-202) USING PYTHON

By

Samir Shrestha
Department of Mathematics
Kathmandu University, Dhulikhel

**Exercise-1** 



1. Open a Python shell, enter the following expressions, and observe the results:

(a) 6

(b) 6\*2

(c) 6\*\*2

(d) 6\*\*2\*\*2

(e) 6/12

(f) 6//12

(g) 6/0

(h) 24%5

(i) 3.14\*3\*\*2

(j) 3//2\*5.0

(k) 3/2\*5

(1) 2\*2e+2

(m) 2\*2e-2

(n) (2e + 14/15)

(o) (2e + 14)/15

 $(p) \exp(1)$ 

(q) >>> 3 + 4\*\

... 2\*\*5

2. Let x = 8 and y = 2. Write the values of the following expressions:

(a) 
$$x + y * 3$$

(b) 
$$(x+y)*3$$

(c) 
$$x * *y$$

(d) 
$$x\%y$$

(e) 
$$x/12.0$$

(f) 
$$x//6$$

| 3. | Let $x = 2.354$ . Write the                                                | valu | es of the following ex              | press | sions.  |
|----|----------------------------------------------------------------------------|------|-------------------------------------|-------|---------|
|    | (a) round(x)                                                               | (d)  | floor(x)                            | (g)   | abs(x)  |
|    | (b) int(x)                                                                 | (e)  | ceil(x)                             | (h)   | type(x) |
|    | (c) sign(x)                                                                | (f)  | $\operatorname{sqrt}(x)$            | (i)   | e**x    |
| 4. | For $x = 3 + 2j$ , Enter the following expression and observe the results: |      |                                     |       |         |
|    | (a) real(x)                                                                | (b)  | imag(x)                             | (c)   | abs(x)  |
|    | Python considers $j$ as an                                                 | ima  | ginary unit.                        |       |         |
| 5. | Enter the following expressions, and observe the results:                  |      |                                     |       |         |
|    | (a) $\sin(pi/2)$                                                           | (c)  | $\sin(\text{radians}(90))$          |       |         |
|    | (b) $\sin(90)$                                                             | (d)  | $\sin(\text{degrees}(\text{pi}/2))$ |       |         |

- 6. The distance traveled by a ball falling in the air is given by the equation  $x = x_0 + v_0 t + 0.5at^2$ . Use Python to calculate the position of the ball at time t = 5 second if  $x_0 = 10$  m,  $v_0 = 15$  m/s, and a = -9.81 m/s<sup>2</sup>.
- 7. Exponential and Logarithm The mathematical quantities  $e^x$ ,  $\ln x$  and  $\log x$  are calculated with exp(x),  $\log(x)$  and  $\log 10(x)$  respectively. Calculate the following quantities.
  - $e^2$ ,  $e^{\pi\sqrt{163}}$ ,  $\ln(e^2)$ ,  $\log 10(e^2)$  and  $\log 10(10^5)$
  - The solution of the equation  $3^x = 17$  is  $x = \frac{\ln 17}{\ln 3}$ . Calculate this x using Python.