Instructor: Saravanan Vijayakumaran Indian Institute of Technology Bombay

Midsem Exam: 25 points March 1, 2018

1. (5 points) Prove that if $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then $|\mathcal{K}| \geq |\mathcal{M}|$.

Solution: See proof of Theorem 2.10 in Katz/Lindell.

2. (5 points) If a private-key encryption scheme Π is perfectly indistinguishable, prove that it is perfectly secret.

Solution: This proof was done in class. Check your lecture notes.

3. Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a keyed pseudorandom permutation (the first argument is the key). Consider the keyed function $F': \{0,1\}^n \times \{0,1\}^{2n} \to \{0,1\}^{2n}$ defined for all $x, x' \in \{0,1\}^n$ by

$$F'_k(x||x') = F_k(x)||F_k(x \oplus x').$$

(a) (1 point) Prove that F'_k is a permutation for all $k \in \{0,1\}^n$.

Solution: Since the domain and range of F'_k are equal to the finite site $\{0,1\}^{2n}$, it is enough to show that F'_k is one-to-one. That is, for all $X,Y \in \{0,1\}^{2n}$ we have to show that $X \neq Y \implies F'_k(X) \neq F'_k(Y)$.

Let X = x || x' and Y = y || y' where $x, x', y, y' \in \{0, 1\}^n$. Given $X \neq Y$, either $x \neq y$ or $x' \neq y'$. If $x \neq y$, then $F_k(x) \neq F_k(y)$ as F_k is a permutation. This implies that the **first** n bits of $F'_k(X)$ and $F'_k(Y)$ are different. Hence $F'_k(X) \neq F'_k(Y)$.

If x = y, then $x' \neq y'$. Then $x \oplus x' = y \oplus x' \neq y \oplus y'$. Then $F_k(x \oplus x') \neq F_k(y \oplus y')$ since F_k is a permutation. This implies that the **last** n bits of $F'_k(X)$ and $F'_k(Y)$ are different. Hence $F'_k(X) \neq F'_k(Y)$.

(b) (4 points) Prove that F'_k is **not** a pseudorandom permutation.

Solution: Let $0_{2n} = \underbrace{000 \cdots 000}_{2n \text{ times}}$ and $0_n = \underbrace{000 \cdots 000}_{n \text{ times}}$.

The distinguisher queries the oracle on 0_{2n} .

- If the oracle is responding to queries using F'_k , then its response is $F'_k(0_{2n}) = F_k(0_n) \|F_k(0_n \oplus 0_n) = F_k(0_n) \|F_k(0_n)$.
- If the oracle is responding to queries using an $f: \{0,1\}^{2n} \to \{0,1\}^{2n}$ which was uniformly chosen from Perm_{2n} , then its response is $f(0_{2n})$ which can take any value in $\{0,1\}^{2n}$ with probability $\frac{1}{2^{2n}}$.

Let $y \in \{0,1\}^{2n}$ be the response to the query on input 0_{2n} . The distinguisher outputs 1 if the first n bits of y are equal to the last n bits of y. If not, the distinguisher outputs 0.

The $\Pr\left[D^{F_k'(\cdot)}(1^n)=1\right]=1$. But $\Pr\left[D^{f(\cdot)}(1^n)=1\right]=\frac{2^n}{2^{2n}}=\frac{1}{2^n}$. The latter follows from the observation that there are exactly 2^n bitstrings in $\{0,1\}^{2n}$ whose first n bits are equal to the last n bits.

Thus $\left|\Pr\left[D^{F_k'(\cdot)}(1^n)=1\right]-\Pr\left[D^{f(\cdot)}(1^n)=1\right]\right|=1-\frac{1}{2^n}$ which is not negligible. Since D is a polynomial time distinguisher, F_k' is not a pseudorandom permutation.

4. (5 points) Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a pseudorandom permutation. Suppose messages of size dn bits have to be encrypted where d > 1. The message m is divided into d blocks of n bits each where m_i is the ith block. Consider the mode of operation in which a uniform value $\mathsf{ctr} \in \{0,1\}^n$ is chosen, and the ith ciphertext block c_i is computed as $c_i := F_k(\mathsf{ctr} + i + m_i)$. The value ctr is sent in the clear, i.e. the eavesdropper observes ctr , $c_1, c_2, c_3, \ldots, c_d$. The sum $\mathsf{ctr} + i + m_i$ is calculated modulo 2^n ensuring that the argument of F_k belongs to $\{0,1\}^n$. Show that this scheme does **not** have indistinguishable encryptions in the presence of an eavesdropper.

Solution: The adversary observes ctr, c_1, c_2, \ldots, c_d where d > 1. Let the messages m_0, m_1 chosen by the adversary be given by

$$m_0 = \begin{bmatrix} m_{0,1} & m_{0,2} & \cdots & m_{0,d} \end{bmatrix},$$

 $m_1 = \begin{bmatrix} m_{1,1} & m_{1,2} & \cdots & m_{1,d} \end{bmatrix}.$

The blocks in m_0 are chosen as $m_{0,i} = (2^n - i) \mod 2^n$. This implies that the *i*th block of the ciphertext corresponding to m_0 is given by

$$c_i = F_k(\mathsf{ctr} + i + 2^n - i \bmod 2^n) = F_k(\mathsf{ctr}).$$

So all the ciphertext blocks (after ctr) are equal when m_0 is transmitted.

The first two blocks in m_1 are chosen as $m_{1,1} = (2^n - 1) \mod 2^n$ and $m_{1,2} = (2^n - 1) \mod 2^n$. The remaining message blocks $m_{1,3}$ to $m_{1,d}$ are arbitrarily chosen. This implies that the first two blocks of the ciphertext corresponding to m_1 are given by

$$c_1 = F_k (\operatorname{ctr} + 1 + 2^n - 1 \mod 2^n) = F_k (\operatorname{ctr}),$$

 $c_2 = F_k (\operatorname{ctr} + 2 + 2^n - 1 \mod 2^n) = F_k (\operatorname{ctr} + 1).$

As F_k is a permutation, the first two ciphertext blocks (after ctr) are always not equal when m_1 is transmitted.

Let the adversary's estimate of b be given by $b' = \mathcal{A}(\mathsf{ctr}, c_1, c_2, \dots, c_d)$. The adversary determines b' as follows:

$$\mathcal{A}(\mathsf{ctr}, c_1, c_2, \dots, c_d) = \begin{cases} 0 & \text{if } c_1 = c_2, \\ 1 & \text{if } c_1 \neq c_2. \end{cases}$$

By our construction, b' = b irrespective of the value of ctr. So the adversary succeeds with probability 1 which is not bounded by $\frac{1}{2} + \text{negl}(n)$. The existence of such an adversary (which operates in polynomial time) shows that the scheme does not have indistinguishable encryptions in the presence of an eavesdropper.

5. (5 points) Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a pseudorandom function. Show that the following MAC for messages of length 2n is **insecure**: **Gen** outputs a uniform $k \in \{0,1\}^n$. To authenticate a message $m_1||m_2|$ with $|m_1| = |m_2| = n$, compute the tag $t = F_k(m_1)||F_k(F_k(m_2))$.

Solution: Suppose the adversary queries the tag generation algorithm $\operatorname{Mac}_k(\cdot)$ on messages $m_1 \| m_2$ and $m_1' \| m_2'$ where $m_1, m_2, m_1', m_2' \in \{0, 1\}^n$ and $m_1 \neq m_1', m_2 \neq m_2'$.

Let $t = F_k(m_1) \| F_k(F_k(m_2))$ and $t' = F_k(m'_1) \| F_k(F_k(m'_2))$ be the tags returned by the tag generation algorithm. The query set is given by $\mathcal{Q} = \{m_1 \| m_2, m'_1 \| m'_2\}$.

Consider the message $m_1||m'_2$. By our assumptions, this message is not in Q. The adversary presents the tag $t'' = F_k(m_1)||F_k(F_k(m'_2))|$ for $m_1||m'_2|$ by combining the first n bits of t with the last n bits of t'. Thus the adversary succeeds in generating a tag for a message not in the query set Q with probability 1.