Datenbanken, Übung 6

HENRY HAUSTEIN

Aufgabe 1

- (a) Linksreduktion:
 - $CE \in \operatorname{Hul}(F_1, D)$: nein
 - $CE \in \operatorname{Hul}(F_1, C)$: nein

Rechtsreduktion:

- $A \rightarrow BC$
 - $-B \in \operatorname{Hul}(F_1 (A \to BC) \cup (A \to C), A)$: nein
 - $-C \in \operatorname{Hul}(F_1 (A \to BC) \cup (A \to B), A)$: ja, $A \to B \to CD \Rightarrow$ neue Menge F_1'
- $B \to CD$
 - $-C \in \operatorname{Hul}(F_1' (B \to CD) \cup (B \to D), B)$: nein
 - $-D \in \operatorname{Hul}(F_1' (B \to CD) \cup (B \to C), B)$: nein
- \bullet $CD \rightarrow CE$
 - $C \in \operatorname{Hul}(F_1' (CD \to CE) \cup (CD \to E), CD)$: ja, $C \to C \Rightarrow$ neue Menge F_1''
 - $-E \in \operatorname{Hul}(F_1'' (CD \to E) \cup (CD \to \emptyset), CD)$: nein
- $B \to EF$
 - $E \in \operatorname{Hul}(F_1'' (B \to EF) \cup (B \to F), B)$: ja, $B \to CD \to E \Rightarrow$ neue Menge F_1'''
 - $-F \in \operatorname{Hul}(F_1''' (B \to F) \cup (B \to \emptyset), B)$: nein

Streichen von leeren Mengen auf der rechten Seite: nichts zu tun Zusammenfassen

$$F_1''' = \{A \to B, B \to CDF, CD \to E\}$$

- (b) Linksreduktion
 - $BDE \in \operatorname{Hul}(F_2, C)$: nein
 - $BDE \in Hul(F_2, B)$: ja, $B \to C \to DE$ und $B \to B \Rightarrow$ neue Menge F_2'

Rechtsreduktion

- \bullet $A \rightarrow BE$
 - $-B \in \operatorname{Hul}(F_2' (A \to BC) \cup (A \to C), A)$: nein
 - $C \in \operatorname{Hul}(F_2' (A \to BC) \cup (A \to B), A)$: ja, $A \to B \to C \Rightarrow$ neue Menge F_2''
- $B \rightarrow BDE$
 - $-B \in \operatorname{Hul}(F_2'' (B \to BDE) \cup (B \to DE), B)$: ja, $B \to B \Rightarrow$ neue Menge F_2'''

-
$$D \in \operatorname{Hul}(F_2''' - (B \to DE) \cup (B \to E), B)$$
: ja, $B \to C \to DE \Rightarrow$ neue Menge $F_2^{(4)}$ - $E \in \operatorname{Hul}(F_2^{(4)} - (B \to E) \cup (B \to \emptyset), B)$: ja, $B \to C \to DE \Rightarrow$ neue Menge $F_2^{(5)}$

$$\bullet$$
 $D \to F$

$$-D \in \text{Hul}(F_2^{(5)} - (D \to F) \cup (D \to \emptyset), D)$$
: nein

•
$$E \to EG$$

-
$$E \in \operatorname{Hul}(F_2^{(5)} - (E \to EG) \cup (E \to G), E)$$
: ja, $E \to E \Rightarrow$ neue Menge $F_2^{(6)}$
- $G \in \operatorname{Hul}(F_2^{(6)} - (E \to G) \cup (E \to \emptyset), E)$: nein

$$\bullet$$
 $B \to C$

$$-C \in \operatorname{Hul}(F_2^{(6)} - (B \to C) \cup (B \to \emptyset), B)$$
: nein

•
$$C \to DE$$

–
$$D\in \operatorname{Hul}(F_2^{(6)}-(C\to DE)\cup (C\to E),C)$$
: nein

$$-E \in \operatorname{Hul}(F_2^{(6)} - (C \to DE) \cup (C \to D), C)$$
: nein

Entfernen der FDs mit leerer Menge rechts: $B\to\emptyset$ wird entfernt Zusammenfassen:

$$F_2^{(6)} = \{A \rightarrow B, D \rightarrow F, E \rightarrow G, B \rightarrow C, C \rightarrow DE\}$$

Aufgabe 2

- (a) Ist die Tabelle in erster Normalform? ja Um zu überprüfen, ob die Tabelle auch in 2. NF ist, müssen zuerst die funktionalen Abhängigkeiten und daraus ein Schlüssel bestimmt werden:
 - Signatur \rightarrow Titel
 - Benutzer \rightarrow Straße, PLZ, Ort
 - Vorgang \rightarrow Datum, Benutzer
 - $PLZ \rightarrow Ort$
 - ⇒ Schlüssel: {Signatur, Vorgang}. Wir sehen, dass Benutzer/Datum/Straße/PLZ/Ort nur von {Vorgang} funktional abhängig ist, aber nicht von dem kompletten Schlüssel {Signatur, Vorgang}. Ähnliches gilt für den Titel. Damit ist die Relation nicht in 2. NF, aber wir können sie in die 2. NF bringen:
 - R₁: Vorgang, Datum, Benutzer, Straße, Ort, PLZ
 - R_2 : Signatur, Titel
 - R_3 : Vorgang, Signatur
- (b) Betrachten wir die Relation Benutzer \rightarrow Straße, PLZ, Ort. Hier ist weder Benutzer ein Superschlüssel, noch ist {Straße, PLZ, Ort} Teil eines Kandidatenschlüssels. Selbiges gilt für PLZ \rightarrow Ort. Diese funktionalen Abhängigkeiten müssen noch in eigene Relationen gesteckt werden:
 - R₁: Benutzer, Straße, PLZ
 - R_2 : PLZ, Ort
 - R₃: Vorgang, Datum, Benutzer

Aufgabe 3

- (a) Die Tabelle ist nicht mal in 1. NF, also unnormalisiert, da Produkt nicht atomar ist.
- (b) Verk_Nr, Produkt_Name \rightarrow Umsatz
- (c) Die Relation
 - R_1 : <u>Verk_Nr</u>, Verk_Name, Verk_Ort
 - R_2 : Verk_Nr, Produkt_Name, Umsatz

ist schon in 3. NF.

(d) Neue Produkte können nicht eingefügt werden ohne sie verkauft zu haben und wenn Verkäufer kündigen werden auch die Produkte gelöscht. \Rightarrow INSERT- und DELETE-Anomalie

Aufgabe 4

Die Liste der Determinanten ist $\{A, B, C\}$. Die Kandidatenschlüssel sind $\{A\}$ oder $\{B\}$. Damit ist C kein Schlüssel und die funktionale Abhängigkeit $C \to D$ wird in eine eigene Relation ausgelagert. Damit sind die Relationen dann

- R_1 : \underline{A} , B, C (man könnte auch B als Schlüssel wählen)
- R_2 : \underline{C} , D