High-Dimensional Sparse Linear Bandits

Botao Hao, Tor Lattimore, Mengdi Wang Deepmind and Princeton University

Neural Information Processing Systems (2020)

Problem Setting

• At each round t, the agent chooses an action $A_t \in \mathcal{A} \subseteq \mathbb{R}^d$ (finite, fixed action set) and receives a reward:

$$Y_t = \langle A_t, \theta^* \rangle + \eta_t, \ t \in [n],$$

where $\|\theta^*\|_0 = s \ll d$, η_t is 1-sub-Gaussian noise and $|\mathcal{A}| = K$.

• Interested in **high-dimensional regime**: d > n.

1

Problem Setting

• At each round t, the agent chooses an action $A_t \in \mathcal{A} \subseteq \mathbb{R}^d$ (finite, fixed action set) and receives a reward:

$$Y_t = \langle A_t, \theta^* \rangle + \eta_t, \ t \in [n],$$

where $\|\theta^*\|_0 = s \ll d$ and η_t is 1-sub-Gaussian noise.

- Unfortunately, there exists a $\Omega(\sqrt{dsn})^1$ minimax lower bound in general (no additional assumption on \mathcal{A} and θ^*).
- High-dimensional regime (d > n) leads to linear regret!

¹Section 24.3 of Bandit Algorithms

Problem Setting

• At each round t, the agent chooses an action $A_t \in \mathcal{A} \subseteq \mathbb{R}^d$ (finite, fixed action set) and receives a reward:

$$Y_t = \langle A_t, \theta^* \rangle + \eta_t, \ t \in [n],$$

where $\|\theta^*\|_0 = s \ll d$ and η_t is 1-sub-Gaussian noise.

- Unfortunately, there exists a $\Omega(\sqrt{dsn})^2$ minimax lower bound in general (no additional assumption on \mathcal{A} and θ^*).
- High-dimensional regime (d > n) leads to linear regret!

But, minimax bounds Do Not tell the whole story!

²Section 24.3 of Bandit Algorithms

Why Minimax Bounds Do Not Tell The Whole Story?

- Why? A crude maximisation over all environments hides much of the rich structure of linear bandits with sparsity.
- Contribution: derive a sharp $\Omega(\text{poly}(s)n^{2/3})$ lower bound in high-dimensional regime where the feature vectors admit a well-conditioned exploration distribution.
- Implication: provide an example where carefully balancing the trade-off between information and regret is necessary, in terms of worse-case regret.

A Novel Minimax Lower Bound

Definition. Let $\mathcal{P}(A)$ be the space of probability measures over A. Then we define

$$C_{\mathsf{min}}(\mathcal{A}) = \sup_{\mu \in \mathcal{P}(\mathcal{A})} \sigma_{\mathsf{min}} \Big(\mathbb{E}_{\mathcal{A} \sim \mu} \big[\mathcal{A} \mathcal{A}^{\top} \big] \Big).$$

Theorem (Minimax Lower Bound). For any policy π , there exists s-sparse parameter $\theta \in \mathbb{R}^d$ and an action set \mathcal{A} where $\mathcal{C}_{\min}(\mathcal{A})$ is independent of d, n such that

$$R_{\theta}(n) \gtrsim \min\left(C_{\min}^{-\frac{1}{3}}(\mathcal{A})s^{\frac{1}{3}}n^{\frac{2}{3}},\sqrt{dn}\right),$$

where \gtrsim just hides universal constants.

