Tangentes et nombre dérivé - Fiche d'exercices 5

Exercice 1

Etablir les égalités suivantes :

a.
$$\frac{x}{x+1} - \frac{2x-3}{x-1} = \frac{3-x^2}{x^2-1}$$

b.
$$\frac{1}{x} + \frac{1}{x+1} + \frac{1}{(x+1)^2} = \frac{2x^2 + 4x + 1}{x \cdot (x+1)^2}$$

c.
$$\frac{\frac{1}{x+1} + \frac{2}{2x-1}}{x} = \frac{4x+1}{x \cdot (x+1) \cdot (2x-1)}$$

Exercice 2

1. Soit f la fonction définie par la relation : $f(x) = x^2 - 3 \cdot x + 2$

Déterminer, pour $h \in \mathbb{R}$, un expression simplifiée de f(1+h).

2. Soit g la fonction définie par la relation :

$$g(x) = \frac{\sqrt{2x - 1} - 3}{x - 5}$$

Etablir , pour tout
$$h \in \mathbb{R}^*$$
, l'égalité :
$$g(h+5) = \frac{2}{\sqrt{2h+9}+3}$$

Exercice 3

Ci-dessous est représentée, dans le repère (O; I; J), la courbe \mathscr{C}_f et quatre de ses tangentes :

1. La droite (T_1) s'appelle :

"La tangente à la courbe \mathcal{C}_f au point d'abscisse -1,5"

Nommez de même les trois autres droites.

Déterminer l'équation réduite de chacune de ces quatres tangentes.

Exercice 4

Déterminer les coefficients directeurs des quatre droites représentées ci-dessous :

Exercice 5

Tracer la courbe représentative d'une fonction passant par tous les points indiquées et respectant en chacun d'eux la tangente représentée :

Exercice 6

On considère le plan muni d'un repère (O; I; J) dans lequel sont représentées :

- La courbe \mathscr{C}_f représentative de la fonction f;
- Les cordes (d_1) , (d_2) , (d_3) et (d_4) à la courbe \mathscr{C}_f .

- 1. Déterminer les coefficients directeurs des quatre cordes à la courbe \mathscr{C}_f .
- a. Tracer, à l'aide d'un règle, la tangente à la courbe \mathscr{C}_f au point de coordonnées (5;-1).
 - b. Donner une valeur approchée du coefficient directeur de la tangente (T).

Exercice 7

Dans le repère (O; I; J) orthonormé ci-contre est donnée la courbe \mathcal{C}_f représentative de la function f.

On considère les points A, B, Cde la courbe \mathcal{C}_f d'abscisses respectives 0, 1 et 2

- 1. Placer les points A, B et C et par lecture graphique, donner leur coordonnée.
- Calculer le taux de variation de la fonction f:
 - a. entre 0 et 2
 - b. entre 1 et 2

Exercice 8

On donne ci-dessous la courbe \mathscr{C} représentative d'une fonction dans un repère (0; I; J):

- a. Tracer la tangente (d) à la courbe \mathscr{C} au point d'abs
 - b. Donner le coefficient directeur de la droite (d).
- a. Tracer la tangente (Δ) à la courbe \mathscr{C} au point d'abs
 - b. Donner le coefficient directeur de la droite (Δ) .

Exercice 9

On considère trois fonctions f, g et h trois fonctions définies sur \mathbb{R}_{+}^{*} par les relations :

$$f(x) = \frac{x+2}{x^2+3}$$
 ; $g(x) = \frac{2 \cdot x - 1}{\sqrt{x}}$; $h(x) = \frac{2 \cdot x^2 + x}{5 \cdot x}$

On donne ci-dessous un tableau de valeurs pour chacune des fonctions:

x	1	0,1	0,01	0,001	0,0001
£()	3	2,1	2,01	2,0001	2,00001
f(x)	$\frac{1}{4}$	3,01	$\overline{3,0001}$	$\overline{3,000001}$	$\overline{3,00000001}$

x	0,01	0,0001	0,000 001
g(x)	-0,98	-0,9998	-0,999998
9(2)	0,1	0,01	0,00 1

x	1	0,1	0,01	0,001	0,0001
1. ()	3	0,12	0,0102	0,001 002	0,00010002
h(x)	$\frac{-}{5}$	$\overline{0,5}$	0,05	0,005	-0,0005

Remarquez que, dans chaque tableau, les valeurs de x "progressent lentement" vers 0.

- 1. a. Pour chaque tableau et à l'aide de la calculatrice, observer la progression de des valeurs approchées de ces quotients.
 - b. Dans chaque cas, faire une conjecture sur la valeur limite de ces images lorsque:

"x tend vers 0 par des valeurs supérieures à 0" Pour la fonction f, cette valeur se note :

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) \text{ ou } \lim_{x \to 0^+} f(x)$$

A l'aide de votre calculatrice, tracer les courbes représentatives de ces fonctions et observer la courbe au "voisinage" de l'axe des ordonnées.

Exercice 10

Déterminer les limites suivantes :

$$\lim_{h \to 0} h - 2$$

b.
$$\lim_{h \to 0} \frac{2h^2 + h}{h}$$

a.
$$\lim_{h \to 0} h - 2$$
 b. $\lim_{h \to 0} \frac{2h^2 + h}{h}$ c. $\lim_{h \to 0} \frac{5h^3 + 2h^2}{h}$ d. $\lim_{h \to 0} \frac{h + 1}{h + 2}$ e. $\lim_{h \to 0} \frac{2h^2 + h}{3h}$ f. $\lim_{h \to 0} \frac{h^3 + 2h^2}{2h}$

d.
$$\lim_{h \to 0} \frac{h+1}{h+2}$$

e.
$$\lim_{h \to 0} \frac{2h^2 + h}{3h}$$

f.
$$\lim_{h \to 0} \frac{h^3 + 2h}{2h}$$

Exercice 11

Dans un repère (O; I; J), on considère la courbe représentative de la fonction f définie sur \mathbb{R} par la relation : $f(x) = x^2 - 4x + 2$

$$f(x) = x^2 - 4x + 2$$

Au cours de cet exercice, nous allons déterminer l'équation réduite de la tangente à la courbe \mathscr{C}_f au point A(1;-1).

a. Etablir l'égalité suivante :
$$\frac{f(x)-f(1)}{x-1}=x-3 \qquad \text{pour tout } x\!\in\!\mathbb{R}\backslash\{1\}$$

- b. En déduire le coefficient directeur de la corde à la courbe \mathscr{C}_f passant par les points A et B(2;-2). Vérifier graphiquement votre réponse.
- 2. On considère les deux fonctions u et v définie sur $\mathbb{R}\setminus\{1\}$ par les relations :

ar les relations :
$$u(x) = \frac{f(x) - f(1)}{x - 1} \quad ; \quad v(x) = x - 3$$

a. Voici deux tableaux de valeurs de u et de v:

x	1,1	1,01	1,001	1,0001
u(x)	$\frac{-0.19}{0.1}$	$\frac{-0,0199}{0,01}$	$\frac{-0,001999}{0,001}$	$\frac{-0,00019999}{0,0001}$
x	1,1	1,01	1,001	1,0001
v(x)	-1,9	-1,99	-1,999	-1,9999

Que peut-on dire de la valeur de u(x) lorsque le nombre x se rapproche de la valeur 1?

b. Tracer dans le repère la droite (d) d'équation : (d): y = -2x + 1

Exercice 12

On considère la fonction f définie sur $\mathbb R$ par la relation : $f: x \longmapsto \frac{1}{2} \cdot x^2 - 2 \cdot x + 1$

- 1. a. Montrer que, pour tout $h \in \mathbb{R}$, on a : $f(4+h) - f(4) = \frac{1}{2} \cdot h^2 + 2 \cdot h$
 - b. Déterminer la valeur de la limite : $\lim_{h\to 0} \frac{f(4+h)-f(4)}{h}$
- 2. Dans le plan muni d'un repère (O; I; J) orthonormal, on donne la courbe \mathcal{C}_f représentative de la fonction f:

- Tracer dans le repère ci-dessous, la droite (d) admettant pour équation réduite : y = 2x - 7
- b. Justifier que la droite (d) est une tangente à la courbe \mathcal{C}_f dont on précisera le point de contact.

Exercice 13

- 1. Le nombre dérivé de la fonction carré en 2 :
 - a. Pour $x \neq 2$, établir l'égalité suivante : $\frac{x^2-2^2}{x-2} = x+2$
 - b. Soit f la fonction carrée. En déduire la valeur de la limite : $\lim_{x\to 2} \frac{f(x) - f(2)}{x-2}$
- 2. Le nombre dérivée de la fonction inverse en 3 :
 - a. Pour $x \neq 3$, éetablir l'égalité suivante : $\frac{\frac{1}{x} \frac{1}{3}}{x 3} = -\frac{1}{3x}$
 - b. Soit g la fonction inverse. En déduire la limite suivante : $\lim_{x \to 3} \frac{g(x) - g(3)}{x - 3}$
- 3. Le nombre dérivée de la fonction racine carrée en 3 :
 - a. Pour $x \neq 2$, établir que : $\frac{\sqrt{x-\sqrt{2}}}{x-2} = \frac{1}{\sqrt{x+2}}$

b. Soit h la fonction racine carrée.

En déduire la valeur de la limite : $\lim_{x \to 2} \frac{h(x) - h(2)}{x - 2}$

Exercice 14

Déterminer l'expression des fonctions dérivées des fonctions polynomiales suivantes:

- 1. $f: x \longmapsto -3x + 2$
- $g: x \longmapsto 4x^2 4$
- 3. $h: x \longmapsto 2x^2 + 3x$ 4. $i: x \longmapsto 5x^3 2x^2$
- 5. $k: x \longmapsto -2x^2 + 2x$ 6. $\ell: x \longmapsto (3x+11)(4-x)$

Exercice 15

On considère la fonction f dont l'image de x est définie par

$$f(x) = \frac{1}{8}x^3 - \frac{1}{2}x^2 - \frac{1}{2}x + 1$$

On note \mathcal{C}_f la courbe représentative de la fonction f dans un repère orthonormé.

- 1. Donner l'expression de la fonction f' dérivée de la fonc-
- 2. On considère la tangente (T) à la courbe \mathscr{C}_f au point d'abscisse 2.
 - a. Donner la valeur du coefficient directeur de (T).
 - b. Déterminer l'équation réduite de la tangente (T).
 - c. Dans le repère ci-dessous, tracer la tangente (T).
- 3. On considère la droite (d) admettant l'équation réduite : (d): y = -x + 1

Déterminer les coordonnées des points d'intersection de la droite (d) et de la courbe \mathscr{C}_f .

Exercice 16

Déterminer les fonctions dérivées associées aux fonctions suivantes:

- a. $f: x \longmapsto x 2\sqrt{x}$ b. $g: x \longmapsto 2 \times \frac{1}{x}$
- c. $h: x \longmapsto \frac{-5}{x} + \sqrt{x}$ d. $k: x \longmapsto x^2 \frac{1}{x}$

Exercice 17

Déterminer l'expression de la dérivée de chacune des fonctions ci-dessous:

- 1. $f: x \longmapsto x \frac{1}{x}$ 2. $g: x \longmapsto 2 \cdot \sqrt{x}$
- 3. $h: x \mapsto \frac{3}{x} 2\sqrt{x}$ 4. $j: x \mapsto 2x^3 + \frac{2}{x}$

On présentera l'expression des dérivées sous la forme d'un quotient.

Exercice 18

Déterminer l'expression des dérivées des fonctions suivantes :

a.
$$f(x) = 3x^2$$

b.
$$g(x) = \frac{1}{12}x$$

a.
$$f(x) = 3x^2$$
 b. $g(x) = \frac{1}{12}x^6$ c. $h(x) = 4\sqrt{x}$

d.
$$j(x) = \frac{\sqrt{x}}{2}$$
 e. $k(x) = \frac{1}{2x}$ f. $l(x) = -\frac{2}{x}$

e.
$$k(x) = \frac{1}{2x}$$

f.
$$l(x) = -\frac{2}{x}$$

Exercice 19*

Déterminer l'expression de la dérivée de chacune des fonctions suivantes:

a.
$$f: x \longmapsto 3x^2 + 5x$$

a.
$$f: x \longmapsto 3x^2 + 5x$$
 b. $g: x \longmapsto \frac{3}{x} + 2\sqrt{x}$

c.
$$h: x \longmapsto 5x^3 - \frac{3}{x}$$

c.
$$h: x \longmapsto 5x^3 - \frac{3}{x}$$
 d. $j: x \longmapsto \frac{8x^3 - 2x^2}{x}$

Les dérivées des fonctions g et h seront présentées sous forme de quotient.

Exercice 20*

On considère la fonction f définie sur $]0; +\infty[$ par la rela-

$$f(x) = x + \frac{2}{x} - 2$$

La courbe \mathscr{C}_f représentative de la fonction f est donnée cidessous dans un repère (O; I; J) orthonormé:

Montrer que la fonction f admet pour dérivée la fonction f' dont l'expression est donnée par : $f'(x) = \frac{x^2 - 2}{x^2}$

$$f'(x) = \frac{x^2 - 2}{x^2}$$

- On souhaite déterminer l'équation réduite de la tangente (T) à la courbe \mathscr{C}_f au point d'abscisse 2.
 - a. Donner le coefficient directeur de la tangente (T). Justifier votre démarche.
 - b. Déterminer l'équation réduite de la tangente (T).
 - c. Tracer la droite (T) dans le repère ci-dessus.
- 3. On considère la droite (d) d'équation réduite :

$$(d): y = \frac{1}{2} \cdot x$$

- a. Sur $]0; +\infty[$, étudier le signe de l'expression : $f(x) - \frac{1}{2} \cdot x$
- b. En déduire la position relative de la courbe \mathscr{C}_f et de

la droite (d).

Exercice 21

On considère la fonction f définie sur \mathbb{R}_+ par la relation :

$$f(x) = -x + 2\sqrt{x}$$

Dans le repère (O; I; J) ci-dessous, est donnée la courbe \mathscr{C}_f représentative de la fonction f.

a. Montrer que la fonction f admet pour dérivée, sur $\mathbb{R}_+^*,$ la fonction f' dont l'expression est donnée par :

$$f'(x) = \frac{1 - \sqrt{x}}{\sqrt{x}}$$

- b. Déterminer la valeur des nombres dérivées de la fonction f en $\frac{1}{4}$ et en 4.
- 2. On note (d) et (Δ) les tangentes à la courbe \mathscr{C}_f aux points d'abscisse respectifs $\frac{1}{4}$ et 4.
 - a. Déterminer les équations réduites des tangentes (d) et
 - b. Montrer que les deux droites (d) et (Δ) s'interceptent au point de coordonnées $\left(1;\frac{3}{2}\right)$
 - c. Tracer sur le graphique les droites (d) et (Δ) .

Exercice 22

Soit f définie sur \mathbb{R} par la relation : $f(x) = 4x^2 - 4x - 3$

- 1. Calculer le nombre dérivé de la fonction f en 2.
- Déterminer l'équation de la tangente à la courbe \mathscr{C}_f au point d'abscisse 2.

Exercice 23

- 1. Donner l'équation réduite de la tangente à la courbe de la fonction carrée au point d'abscisse -2.
- 2. Donner l'équation réduite de la tangente à la courbe représentative de la fonction inverse au point d'abscisse 3.

Exercice 24

On souhaite déterminer les expressions des dérivées des fonc-

$$f: x \longmapsto (3x^2 + 3x)(2x + 2) \quad ; \quad g: x \longmapsto (2x^2 + 1)\sqrt{x}$$

$$h: x \longmapsto \frac{1}{x} \cdot (3 - x^2) \qquad \qquad ; \quad j: x \longmapsto \frac{2}{x} \cdot \sqrt{x}$$

1. L'expression de chacune de ces fonctions est donnée sous la forme d'un produit $u \cdot v$. Compléter le tableau cidessous afin d'identifier les deux facteurs de ce produit

et leur dérivée respective.

	u(x)	v(x)	u'(x)	v'(x)
f(x)				
g(x)				
h(x)				
j(x)				

2. En utilisant la formule de dérivation d'un produit :

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

Etablir que ces fonctions admettent pour dérivée les fonctions ci-dessous:

$$f': x \longmapsto 18x^2 + 24x + 6 \quad ; \quad g': x \longmapsto \frac{10x^2 + 1}{2\sqrt{x}}$$

$$h': x \longmapsto \frac{-x^2 - 3}{x^2}$$
 ; $j': x \longmapsto -\frac{1}{x \cdot \sqrt{x}}$

Exercice 25

On considère la fonction f définie sur \mathbb{R}_+ par la relation : $f(x) = (x-4)\sqrt{x}$

La courbe \mathcal{C}_f représentative de la fonction f est donnée dans le repère (O; I; J) orthonormé :

- 1. a. Déterminer l'expression de la fonction f' dérivée de la fonction f.
 - b. Déterminer l'image et le nombre dérivé de la fonction f en 4.
 - c. Déterminer l'équation réduite de la tangente (T_1) à la courbe \mathcal{C}_f au point d'abscisse 4.
 - d. Tracer la tangente (T_1) .
- a. Déterminer l'équation réduite de la tangente (T_2) à la courbe \mathcal{C}_f au point d'abscisse 1.
 - b. Tracer la tangente (T_2) .

Exercice 26

On souhaite déterminer les expressions des dérivées des fonctions suivantes:

$$f: x \longmapsto \frac{3-2x}{x+1}$$
 ; $g: x \longmapsto \frac{x^2+4x-1}{2x-1}$

$$h: x \longmapsto \frac{3}{2-x}$$
 ; $j: x \longmapsto \frac{\sqrt{x}}{x+1}$

1. L'expression de chacune de ces fonctions est donnée sous la forme d'un produit $\frac{u}{v}$. Compléter le tableau ci-dessous afin d'identifier le numérateur et le dénominateur de ce quotient et leurs dérivées respectives.

	u(x)	v(x)	u'(x)	v'(x)
f(x)				
g(x)				
h(x)				
j(x)				

2. En utilisant la formule de dérivation d'un produit :

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

 $\left(\frac{u}{v}\right)'=\frac{u'\cdot v-u\cdot v'}{v^2}$ Etablir que ces fonctions admettent pour dérivée les fonctions ci-dessous

$$f': x \longmapsto -\frac{5}{(x+1)^2}$$
 ; $g': x \longmapsto \frac{2x^2 - 2x - 2}{(2x-1)^2}$

$$h': x \longmapsto \frac{3}{(x-2)^2}$$
 ; $j': x \longmapsto \frac{1-x}{2(x+1)^2 \cdot \sqrt{x}}$

Exercice 27

Déterminer l'expression des fonctions dérivées de chacune des fonctions ci-dessous:

a.
$$f: x \longmapsto \frac{2-2x}{5x+1}$$

b.
$$g: x \longmapsto (3x-2)(2x^2+1)$$

c.
$$h: x \longmapsto \frac{1}{3x+1}$$

c.
$$h: x \longmapsto \frac{1}{2x+1}$$
 d. $j: x \longmapsto (2x^2+3x) \cdot \sqrt{x}$

Exercice 28

On considère les deux fonctions f et g définies par les rela-

$$f(x) = (x^2 - 3x) \cdot \sqrt{x}$$
 ; $g(x) = \frac{3 - 2x}{x^2 - 3x - 1}$

Déterminer les expressions des fonctions dérivées f' et g'. (On donnera l'expression de la fonction f' sous la forme d'un quotient simplifié).

Exercice 29

1. On considère les deux fonctions
$$f$$
 et g par :
$$f(x) = (2x+1)(3x^2-x+1) \quad ; \quad g(x) = \frac{2x+5}{1-4x}$$

Déterminer l'expression de la fonction dérivée de chacune de ces deux fonctions.

2. On considère la fonction h dont l'image de x est défini par la relation:

$$h(x) = \frac{x^2 - 2x + 1}{x^2 - 5x + 6}$$

- a. Déterminer l'ensemble de définition de la fonction h.
- b. Montrer que le nombre de dérivée de h en x s'exprime

$$h'(x) = -\frac{3x^2 - 10x + 7}{(x^2 - 5x + 6)^2}$$

Exercice 30

Le tableau ci-dessous vous présente, pour chaque ligne, l'expression de l'image de x par une fonction et l'expression du nombre dérivé en x de cette fonction. Vérifier l'exactitude de l'expression du nombre dérivée en x:

Fonction	$\operatorname*{Image\ de}_{x}$	Nombre dérivé en x
f	$x^3 - 5x^2 + x - 3$	$3x^2 - 10x + 1$
g	$\frac{2x-1}{x^2+x}$	$-\frac{2x^2 - 2x - 1}{x^2 \cdot (x+1)^2}$
h	$(x^2-3)\cdot\sqrt{x}$	$\frac{5x^2 - 3}{2 \cdot \sqrt{x}}$
j	$\frac{3x-2}{2-x}$	$\frac{4}{(x-2)^2}$