見微知著—讓python成為 你的股票理專

組名:教父

組員:

統計系112林家同 資訊系112莊上緣 資訊系112李培綸

Symbol

Request

Start date

End date

2021-6-1

Data description and preprocessing (1)

• 資料來源網站:FinMind

```
In [273]: url = "https://api.finmindtrade.com/api/v4/login"
           account = {
               "user id": "user id",
               "password": "password",
           token = requests.post(url, data=account).json()['token']
          url = "https://api.finmindtrade.com/api/v4/data"
           parameter = {
               "dataset": "TaiwanStockPrice",
               "data id": "2330",
               "start date": "2016-06-04",
               "end date": "2021-06-03",
               "token":token
           data = pd.DataFrame(requests.get(url, params=parameter).json()["data"])
           data['average'] = data["Trading money"]/data["Trading Volume"]
           data
Out[273]:
                                                                            min close spread Trading_turnover
                      date stock_id Trading_Volume Trading_money open max
                                                                                                                average
              0 2016-06-04
                                                      420392883 160.0 160.0 159.5 160.0
                              2330
                                          2631269
                                                                                          -0.5
                                                                                                        1428 159.768113
              1 2016-06-06
                              2330
                                         28898951
                                                     4651663660 161.0 162.0 160.0 161.0
                                                                                          1.0
                                                                                                             160.963063
              2 2016-06-07
                              2330
                                         47573770
                                                     7726094806 161.5 163.5 161.0 162.0
                                                                                                       12269 162.402408
                                                                                          1.0
              3 2016-06-08
                              2330
                                         45587946
                                                    7522713617 164.0 166.0 163.5 165.5
                                                                                          3.5
                                                                                                       15173 165.015410
```

Data description and preprocessing (2)

• Web scraping+將資料表格化

Data description and preprocessing (3)

• 多次資料拓展(更多特徵值)

In [277]: #將多張dataframe 合併 data=data.join(data2) data=data.join(data3) data=data.join(data4) data=data.join(data5) 1222 rows × 24 columns


```
|dt.columns=|"日期","股票編號","国日成父里","国日成父金額","開盛價","販局價","販店價","吸鑑價","且買價差
          df=df.drop("股票編號",axis=1)
         df.set index(["日期"], inplace=True)
         df.insert(loc=0,column="price",value=df["收盤價"].tolist())
         df=df.drop("收盤價",axis=1)
In [304]: for column in df:
             print(column,":",end="")
             print(df[column].rolling(10).corr(df['price']).mean(),"& ",end="")
             print(df[column].rolling(20).corr(df['price']).mean(),"& ",end="")
             print(df[column].rolling(30).corr(df['price']).mean(),"& ",end="")
             print(df[column].rolling(50).corr(df['price']).mean())
          當日成交量 :-0.060926112156154684 & -0.05296856382912049 & -0.05544127975642681 & -0.04084434167185033
                 :0.4481587280886025 & 0.3388784759028325 & 0.28144584272453527 & 0.21574714804626507
          周轉率 :-0.049475140709937 & -0.03937077724579707 & -0.03761868327797625 & -0.014568058668363274
                 :-0.6108921637783956 & -0.5553553371507433 & -0.5104394506348009 & -0.444086698973690
                  :-0.33014910292490435 & -0.40943110762830154 & -0.419215521125947 & -0.3999626081316952
                 :0.5106305586403519 & 0.4517465352706382 & 0.399471632716045 & 0.3389441184408549
          融卷變化:-0.32810124701578475 & -0.22020093084227513 & -0.1607550886785136 & -0.09489854198443934
          融資變化 :0.2727589878694939 & 0.15210300217203415 & 0.09614529663327576 & 0.05731807517399776
          殖利率 :-0.9643120513726858 & -0.948918411884437 & -0.9317468736153713 & -0.9032579832880135
          大盤指數:0.8251026948714778 & 0.8366805187418708 & 0.8344626848624905 & 0.8137610730217018
          大盤漲跌:0.38396996118059395 & 0.2893974317442247 & 0.24042742628246785 & 0.17805969964280277
In [305]: df new=df.drop(['平均成交價',"當日成交量","當日成交金額","周轉率","當日融卷","昨日融卷","當日融資","昨日融資","殖利率"],axis=1)
Out[305]:
                    price 開盤價 最高價 最低價 買賣價差 融卷變化 融資變化 本益比 股價淨值比 大盤融資餘額(百萬) 大盤融卷量 大盤指數 大盤漲跌
```

- 計算各個股市資料特徵值與股價(收盤價)的相關係數,並 drop掉其中低度相關與負相關的特徵值,去蕪存菁後留下可 用資料表格。
- (Which attributes have higher correlation with the prediction target?)


```
In [40]: from sklearn.preprocessing import MinMaxScaler
         values = df new.values
         scaler = MinMaxScaler(feature range=(0, 1))
         scaled = scaler.fit transform(values)
         print(scaled)
         scaled.shape[0]
          [[0.00869565 0.0107949 0.00764818 ... 0.17531891 0.01452332 0.47088767]
          [0.01062802 0.01275761 0.01147228 ... 0.18363432 0.01512964 0.47178086]
           [0.01256039 0.01373896 0.01434034 ... 0.19388207 0.02419057 0.52365922]
           [0.84927536 0.87438665 0.84894837 ... 0.36300702 0.95284463 0.46984675]
           [0.85120773 0.87438665 0.84894837 ... 0.37154895 0.96172279 0.52253771]
           [0.84927536 0.85672228 0.83938815 ...
                                                       nan 0.95091512 0.40174338]]
Out[40]: 1223
In [41]: print(scaled)
         [[0.00869565 0.0107949 0.00764818 ... 0.17531891 0.01452332 0.47088767]
           [0.01062802 0.01275761 0.01147228 ... 0.18363432 0.01512964 0.47178086]
           [0.01256039 0.01373896 0.01434034 ... 0.19388207 0.02419057 0.52365922]
          [0.84927536 0.87438665 0.84894837 ... 0.36300702 0.95284463 0.46984675]
           [0.85120773 0.87438665 0.84894837 ... 0.37154895 0.96172279 0.52253771]
           [0.84927536 0.85672228 0.83938815 ...
                                                      nan 0.95091512 0.40174338]]
```

• Data Normalization(為了套入後面的演算法模型)

```
In [269]: #將時間序列轉換為監督式學習
          from pandas import DataFrame
          from pandas import concat
          def series to supervised(data, n in=1, n out=1, dropnan=True):
              n vars = 1 if type(data) is list else data.shape[1]
              df = DataFrame(data)
              cols, names = list(), list()
              # input sequence (t-n, ... t-1)
              for i in range(n in, 0, -1):
                  cols.append(df.shift(i))
                  names += [('var%d(t-%d)' % (j+1, i)) for j in range(n vars)]
              # forecast sequence (t, t+1, ... t+n)
              for i in range(0, n out):
                  cols.append(df.shift(-i))
                  if i == 0:
                     names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
                     names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]
              # put it all together
              agg = concat(cols, axis=1)
              agg.columns = names
              # drop rows with NaN values
              if dropnan:
                  agg.dropna(inplace=True)
              return agg
          # specify the number of lag hours
          n days = 10 #可再調整
          n_features = df_new.shape[1]
          # frame as supervised learning
          reframed = series to supervised(scaled, n days, 1)
```

Methodology details (2)

• 藉由將輸入的資料像量與predict輸出組成之training data 去跑監督式學習,讓其建立一個learning model

Methodology details(2): DataFrame Output

- 將時間序列資料轉為監督式學習後的資料表格
- time shift

Methodology details (3):Using LSTM

```
In [297]: #Design LSTM model
          import keras
          from keras.models import Sequential
          from keras.layers import Dense
          from keras.layers import LSTM
          from keras.layers import Dropout,BatchNormalization
          model = Sequential()
          model.add(LSTM(50, input shape=(train X.shape[1], train X.shape[2])))
          model.add(Dropout(0.4))
          model.add(Dense(1))
          model.compile(loss='mean squared error', optimizer='adam')
          print(model.summary())
          # fit network
          history = model.fit(train X, train y, epochs=150, batch size=256, validation data=(test X, test y), ver
          # plot history
          plt.plot(history.history['loss'], label='train')
          plt.plot(history.history['val loss'], label='test')
          plt.legend()
          plt.show()
          # make a prediction
          yhat = model.predict(test_X)
          test X = test X.reshape((test X.shape[0], n days*n features))
          # invert scaling for forecast
          inv yhat = concatenate((yhat, test X[:, -12:]), axis=1)
          inv yhat = scaler.inverse transform(inv yhat)
          inv yhat = inv yhat[:,0]
          # invert scaling for actual
          test_y = test_y.reshape((len(test_y), 1))
```

• 利用LSTM來train出 預測模型,並輔以細 部參數微調測試

Methodology details (4):Using stacked LSTM

```
In [300]: ###stacked LSTM
          model=Sequential()
          model.add(LSTM(50,input shape=(train X.shape[1], train X.shape[2]),return sequences=True))
          model.add(Dropout(0.4))
          model.add(LSTM(50,input shape=(train X.shape[1], train X.shape[2])))
          model.add(Dropout(0.4))
          model.add(Dense(1))
          model.compile(loss='mean squared error', optimizer='adam')
          model.summary()
          # fit network
          history = model.fit(train X, train y, epochs=150, validation data=(test X, test y), verbose=0, sl
          # plot history
          plt.plot(history.history['loss'], label='train')
          plt.plot(history.history['val loss'], label='test')
          plt.legend()
          plt.show()
          # make a prediction
          yhat = model.predict(test X)
          test X = test X.reshape((test X.shape[0], n days*n features))
          # invert scaling for forecast
          inv yhat = concatenate((yhat, test X[:, -12:]), axis=1)
          inv yhat = scaler.inverse transform(inv yhat)
          inv yhat = inv yhat[:,0]
          # invert scaling for actual
          test_y = test_y.reshape((len(test_y), 1))
          inv y = concatenate((test y, test X[:, -12:]), axis=1)
          inv y = scaler.inverse transform(inv y)
```

神經網路的深度(堆疊 多層)使其較易在具有 廣泛挑戰性的預測問 題中取得成功。

Evaluation and Results (1)

資料切分:Train/test (訓練與驗證)、X/y (變量與target)

```
In [299]: #用處理過後的二維數據進行rain test切分
values = reframed.values
n_train_day = 1000
train = values[:n_train_day, :]
test = values[n_train_day:, :]

#split into input and outputs
n_obs = n_days * n_features
train_X, train_y = train[:, :n_obs], train[:, -n_features]
test_X, test_y = test[:, :n_obs], test[:, -n_features]

#reshape input to be 3D [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0], n_days, n_features))
test_X = test_X.reshape((test_X.shape[0], n_days, n_features))
print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)

(1000, 10, 13) (1000,) (213, 10, 13) (213,)
```

Evaluation and Results(2):dropout size

Dropout Test	0.0	0.2	0.4	0.6	0.8
RMSE	9.950	13.783	14.781	15.273	16.016
EVS	0.863	0.792	0.762	0.755	0.715
r2	0.832	0.677	0.629	0.604	0.564

Evaluation and Results (3): plot&evaluation

```
def confusion matrix list(real, predict):
    real_tendency=[]
    predicted_tendency=[]
    for i in range(1,len(real)):
        if(real[i]-real[i-1]>0):
            real tendency.append(1)
        if(real[i]-real[i-1]==0):
            real tendency.append(2)
        if(real[i]-real[i-1]<0):</pre>
            real_tendency.append(0)
    for i in range(1,len(predict)):
        if(predict[i]-predict[i-1]>0):
            predicted_tendency.append(1)
        if(predict[i]-predict[i-1]==0):
            pedicted tendency.append(2)
        if(predict[i]-predict[i-1]<0):</pre>
            predicted tendency.append(0)
    return real_tendency,predicted_tendency
```

2603 Stock Price Prediction

150

Real 2603 Stock Price Predicted 2603 Stock Price

100

60

40

趨勢圖(黑線為真實 值,綠線為預測值)

自定義副程式:計算股價真實值與預測值之漲跌 "趨勢"

將趨勢list匯入sklearn之 confusion_matrix並得出其各項預測 精準度評比

```
real,predict=confusion_matrix_list(inv_y,inv_yhat)
from sklearn.metrics import confusion_matrix
matrix=confusion_matrix(real,predict,labels=[1,0,2])
print(matrix)
```

from sklearn.metrics import classification_report
report=classification_report(real,predict,labels=[1,0,2])
print(report)

				0] 0]]	[42 28 [5 5
support	f1-score	recall	precision		
132	0.68	0.70	0.66	1	
70	0.39	0.40	0.39	0	
10	0.00	0.00	0.00	2	
212	0.57			racy	accu
212	0.36	0.37	0.35	avg	macro
212	0.56	0.57	0.54	avg	weighted

Evaluation and Results(4):Loss Function

MAE (Mean-Absolute Error)

0.40

0.35

0.30

0.20

0.15

Test r2: 0.701

MSE (Mean-Square Error)

Test RMSE: 14.781

Test EVS : 0.762

Test r2: 0.629

$$MSE = \frac{1}{n} \sum_{\substack{\text{The square of the difference between actual and predicted}}} 2$$

$$MAE = \underbrace{\frac{1}{n} \sum_{\substack{\text{Sum} \\ \text{of}}} \underbrace{\frac{y}{y} - y}_{\substack{\text{The absolute value of the residual}}}$$

train

test

140

MSE

L-func Test	MSE	MAE
RMSE/MAE	14.781	7.837
EVS	0.762	0.803
r2	0.629	0.701

Evaluation and Results(5):optimizer

Optimizer Test	adam	RMSprop	SGD
RMSE	14.781	13.796	15.848
EVS	0.762	0.785	0.695
r2	0.629	0.677	0.573

Evaluation and Results (6): stacked LSTM

One stack

Layer (type)	Output Shape	Param #
lstm_133 (LSTM)	(None, 50)	12800
dropout_76 (Dropout)	(None, 50)	0
dense_103 (Dense)	(None, 1)	51

Total params: 12,851 Trainable params: 12,851 Non-trainable params: 0

Test RMSE: 14.033 Test EVS : 0.792 Test r2: 0.665

多做一次LSTM之層級堆疊

###stacked LSTM

model=Sequential()
model.add(LSTM(50,input_shape=(train_X.shape[1], train_X.shape[2]),return_sequences=True))
model.add(Dropout(0.4))
model.add(Dropout(0.4))
model.add(Dropout(0.4))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.summary()

Two stack

Layer (type)	Output Shape	Param #
lstm_136 (LSTM)	(None, 10, 50)	12800
dropout_79 (Dropout)	(None, 10, 50)	0
lstm_137 (LSTM)	(None, 50)	20200
dropout_80 (Dropout)	(None, 50)	0
dense_105 (Dense)	(None, 1)	51

Total params: 33,051 Trainable params: 33,051 Non-trainable params: 0

Test RMSE: 6.613 Test EVS: 0.936 Test r2: 0.926

Conclusions and novelty(1):company

Conclusions and novelty(2)

1.監督式學習之標籤:以10天為step size(是否可以更進一步嘗試)

2.多重共線性:

現實生活中,很難找到一組互不相關,又對因變數 y產生主要影響的變數。

The contribution of each team member

組員名稱	貢獻
統計系112林家同	1.使用網路爬蟲自FinMind獲取Dataset並找出較佳的特徵值 2.測試不同的LSTM函式參數並嘗試找出最佳組合 3.測試數據&圖表之統整
資訊系112莊上緣	1.Final project 投影片製作 2.建構自定義副程式並將部分參數微調測試模塊化 3.深度學習之概念查詢並彙整
資訊系112李培綸	1.建構UI圖像化使用者介面 2.LSTM 框架想法提供與觀念釋疑 3.將最終程式碼進行優化並封包