《Walter Rudin: Real and Complex Analysis》 読書記録

最終更新: 2023年12月9日

<u>注意</u>: 記述の正確性は保証しません. ややこしいことになりたくないので, 本文の引用は最小限にしています. ? マークは不明/自信なし/要復習を意味しています.

誤植と思われるもの

頁	行	誤	正
62	-13	$f_{\Omega}f d\mu$	$\int_{\Omega} f \ d\mu$

1. Abstract Integration

The Concept of Measurability

(位相, 位相空間, 連続写像) の関係は, $(\sigma$ -algebra, 可測空間, 可測写像) の関係に似ている;

$$f$$
 連続 $\stackrel{\text{def}}{\Longleftrightarrow} f^{-1}($ 開集合 $) =$ 開集合 f 可測 $\stackrel{\text{def}}{\Longleftrightarrow} f^{-1}($ 開集合 $) =$ 可測集合

■1.2 (位相, 位相空間, 連続写像)

- 1. $\tau \subset 2^X$ は以下をみたすとき X の **位相** という.
 - (a) $\varnothing \in \tau$.
 - (b) τ は有限 \cap について閉じている.
 - (c) τ は \cup について閉じている (可算でも, 非可算でも OK).
- 2. 上の状況で, X を 位相空間 とよぶ. τ の要素を X の 開集合 とよぶ.
- 3. X,Y 位相空間, $f:X\to Y$ 写像のとき, f 連続 $\stackrel{\text{def}}{\Longleftrightarrow}$ 開集合 $\subset Y$ の逆像 が開集合 $\subset X$.

■1.3 (*σ*-algebra, **可測空間**, **可測写像**)

- 1. $\mathfrak{M} \subset 2^X$ は以下をみたすとき X の σ -algebra という.
 - (a) $X \in \mathfrak{M}$.
 - (b) \mathfrak{M} は補集合 c について閉じている.
 - (c) \mathfrak{M} は可算 \cup について閉じている.
- 2. 上の状況で, X を 可測空間 とよぶ. $\mathfrak M$ の要素を X の 可測集合 とよぶ.
- 3. X 可測空間, Y 位相空間, $f: X \to Y$ 写像のとき, f 可測 \iff 開集合 $\subset Y$ の逆像が可測集合 $\subset X$.

定義から直ちに得られる可測関数の性質: 1.5, 1.6, 1.7, 1.8, 1.9

- ■1.5 (任意の点で連続 \iff 連続) 両者は別々に定義された. $f: X \to Y$ 連続 \iff 任意の点 $x \in X$ で f 連続
- ■1.7 (連続関数の連続関数は連続/可測関数の連続関数は可測)
- ■1.8 (1.7 **の引数** 2 **次元バージョン**) 複素関数や, 和/積に関する可測性を示すのに使う.
- ■1.9 (シンプルな関数演算で可測性が保たれること, 基本的な関数の可測性) (e) はじめから $\alpha(x)$ を 4 行目のように定義したいところだが, 可測性が全く見えないので, 見えるような表式を採用している. E の可測性: f の可測性と, $\{0\}$ は Euclid 位相で閉集合ゆえ $E^c = \{x: f(x) \neq 0\}$ は可測. よって E も可測.

集合族 $\mathcal F$ が σ -algebra でなくても, それをもとにして σ -algebra を作ることができる.

■1.10 (集合族 $\mathscr F$ から生成される σ -algebra) $\mathscr F \in 2^X$ に対し, $\mathscr F$ を含む最小の σ -algebra $\mathfrak M^*$ が存在する.

とくに、 $\mathscr F$ を開集合族にとって生成した σ -algebra $\mathscr B$ に属する集合を Borel sets という.

■1.11 (Borel Sets) 1.10 で \mathscr{F} を top. sp. X の開集合族にとったときのそれを **Borel sets** という. $X \to Y$ 連続 $\Longrightarrow X \to Y$ Borel measurable をすぐ納得できないと理解が怪しいよ.

可測関数の定義は、実は次のように強くすることができる。普通の教科書はこれが定義になっている;

f 可測 \Longrightarrow (他の本では $\stackrel{\text{def}}{\Longleftrightarrow}$) $f^{-1}(\text{Borel 集合}) =$ 可測集合

また、任意の切断が可測であること(任意の α で、 $f^{-1}((\alpha,\infty])$ 可測)もいえて、これが定義になっていることもある.

- ■1.12 (Borel set **を用いた可測性の書き換え**) X が測度空間, Y が位相空間, f が一般の写像. (d) が 1.7(b) の拡張になっていて重要なのだと思う. (b) も measurable function の定義が強くなっている.
- ■1.14 (sup, lim sup で可測性が保たれる) aaa

積分定義の流れ

簡単のためみんな実可測関数とする.

- 1. 単関数 $s \in (-\infty, \infty)$ で定義 (測度の重みつき有限和).
- $2. f \in [0,\infty]$ で定義 (単関数 $0 \le s \le f$ の積分たちの sup).
- 3. より広い f で定義 $(\int f = \int f^+ \int f^-)$. 「より広い f」とは、右辺が定義できる f のこと. とくに f が L^1 ならよいし、そうでなくても右辺の片方だけ ∞ の場合も定義できる.

実際にやる.

Simple Functions

可測関数に対して積分を定義するために, 単関数という簡単な関数で可測関数を近似することを考える.

■1.16 (単関数) 有限種類の値しかとらない複素関数 $(\pm \infty$ は禁止!) を simple function という. 可測とは限らない. しかし,

$$s = \sum_{i=1}^{n} \alpha_i \chi_{A_i}$$

とかいて, A_i 達が可測のとき, s も可測.

- ■1.17 (可測関数 ≥ 0 は単関数 ≥ 0 の下からの極限でかける) こんなやつ:
 - 1. $0 \le s_1 \le s_2 \le \dots \le f$.
 - 2. 任意の x で $s_n(x) \to f(x)$.

Elementary Properties of Measures

- ■1.18 (測度) 可算加法的. positive measure $\in [0, \infty]$, complex measure は複素数をとる (負実数でも可. $\pm \infty$ はダメ).
- ■1.22 (∞ の演算規則) $0 \cdot \infty = 0$ をしておくと主張が統一的にかける.

Integration of Positive Functions

 $f \ge 0$ をまず考える.

■1.23 (**単関数の積分**, **正可測関数の積分**) 単関数の積分をまず定義:

$$\int_{E} s \ d\mu \stackrel{\text{def}}{=} \sum_{i=1}^{n} \alpha_{i} \mu(A_{i} \cap E)$$

し, 正可測関数 f の積分を, $f \geq s$ なる単関数 s の積分たちの sup として定義する:

$$\int_{E} f d\mu = \sup \int_{E} s \ d\mu. \tag{1}$$

- ■1.25 (積分範囲の和, 和と積分の交換: 単関数バージョン)
- **■**1.26 (Lebesgue, MCT) $f_n \ge 0$ が各点で $f \ge 0$ に、増加しながら収束するとき、積分と極限は交換できる.
- lacksquare1.27 (和と積分の交換: 正可測関数バージョン) $f_n \in [0,\infty]$ のとき、

$$\int_X \sum_{n=1}^{\infty} f_n(x) \ d\mu = \sum_{n=1}^{\infty} \int_X f_n \ d\mu.$$

■1.28 (Fatou) $f_n \in [0,\infty]$ のとき,

$$\int_X (\liminf_{n \to \infty} f_n) \ d\mu \le \liminf_{n \to \infty} \int_X f_n \ d\mu.$$

■1.29 (ちょっとした測度変換) これの逆が Radon-Nikyodým.

Integration of Complex Functions

正可測ならいつでも積分が定義できたが、一般の複素関数 f は、可測であっても積分が定義できるとは限らない;加えて $f \in L^1(\mu)$ でないといけない (例外あり、下に書いている).

■1.31 (複素関数の積分) f = u + iv が可測かつ $f \in L^1(\mu)$ なら、以下で積分が定義できる:

$$\int_{E} f \ d\mu \stackrel{\text{def}}{=} \int_{E} u^{+} \ d\mu - \int_{E} u^{-} \ d\mu + i \int_{E} v^{+} \ d\mu - i \int_{E} v^{-} \ d\mu$$

とくに、実関数のとき、

$$\int_{E} f \ d\mu = \int_{E} f^{+} \ d\mu - \int_{E} f^{-} \ d\mu$$

だが、例外的に、右辺の少なくとも片方が有限なら、 L^1 でなくても、積分 \in $[-\infty,\infty]$ が定義できる.

■1.34 (Lebesgue, DCT) 各点で, $|f_n|$ が L^1 関数で n によらずおさえられるなら,

$$\lim_{n \to \infty} \int_X |f_n - f| \ d\mu = 0$$

で、積分と極限を交換できる.

The Role Played by Sets of Measure Zero

■1.40 任意の領域で f の平均取って S に入ってるなら、 f は a.e. S に入ってる aaa

積分と極限の交換まとめ

- MCT: $0 \le f_n \in [0, \infty] \nearrow f \in [0, \infty]$ a.e. $\Longrightarrow \int \lim f_n = \lim \int f_n$.
- Fatou: $f \in [0, \infty]$ a.e. $\Longrightarrow \int \liminf f_n \leq \liminf \int f_n$.
- **DCT**: a.e., $|f_n|$ を n によらず抑える $g \in L^1$ が存在 $\Longrightarrow \int \lim f_n = \lim \int f_n$.

2. Positive Borel Measures

Topological Preliminaries

最終目的は Urysohn's Lemma を証明すること. それに用いる道具: 定理 2.7, lower/upper semicontinuous の概念.

The Riesz Representation Theorem

■定理 2.14 (Riesz) X を locally compact Hausdorff space とし, Λ を $C_c(X)$ 上の positive linear functional とする. このとき, X 上に, X の Borel set を全て含む σ -algebra $\mathfrak M$ が存在し, 以下のように Λ を表現する唯一の $\mathfrak M$ 上の測度 μ

が存在する:

(a) $\forall f \in C_c(X), \Lambda f = \int_X f \ d\mu.$

そして μ は以下の性質を満たす:

- (b) 任意の compact set $K \subset X$ に対し $\mu(K) < \infty$.
- (c) 任意の $E \in \mathfrak{M}$ に対し,

$$\mu(E) = \inf\{\mu(V) : E \subset V, V \text{ open}\}. \tag{2}$$

(d) 任意の open set $E \ \ \ \mu(E) < \infty$ なる $E \in \mathfrak{M}$ に対し,

$$\mu(E) = \sup\{\mu(K) : K \subset E, K \text{ compact}\}. \tag{3}$$

(e) もし $E \in \mathfrak{M}, A \subset E, \mu(E) = 0$ ならば $A \in \mathfrak{M}$ (completeness)

Regularity Properties of Borel Measures

■2.15 (Borel measure) X: locally compact Hausdorff の上の Borel sets の上の測度を **Borel measure** という.

X 上に regular な μ がほしい. 理由: regular なら, 可測集合 E を外から開集合 V で, 内からコンパクト集合 K で任意の精度で近似でき, そのまま Urysohn の補題が使える. その結果, 任意の精度で E の特性関数に近い連続関数が得られ, さらに, ある程度の誤差 ϵ を許して, 可測関数を連続関数で近似できる.

Riesz thm. より, X 上に outer regular な μ の存在を示せる. inner regularity は, X の仮定を強めないと出ない $\to 2.18$

■2.17 2.14 の仮定に σ -compact の仮定を足すと μ は regular になる.

2.18

- $1. \lambda$ が与えられる.
- 2. $\Lambda f = \int_X f \ d\lambda$ として, Λf から 2.14 の方法で作った μ は 2.17 をみたす.
- 3. μ は regular だからとくに $\lambda = \mu$ を示せば良い.

疑問: 2.14 の uniqueness を直接適用できないのか? \rightarrow 2.14 は, (a) から (e) を すべてみたす μ が一意であるという主張? μ をつくって (a) を最後に証明しているし, どうやらそうっぽい? 証明読まないとわからない

2.14 では X の条件が弱く, 2.14 (a)-(e) をすべてみたす μ の一意性を言った. 2.18 では X の条件をきつくすることで 2.14 (a) をみたすことのみから μ の一意性がいえた. という見方もできるか.

■2.19 (空間 R^k と Euclid 位相の基本性質)

- **■**2.20 (Lebesgue measure **をつくる**) $f \in C_c(R^k)$ は Riemann 可積分. Λf を f の Riemann 積分を等しくなるようにきめて, Riesz の表現定理をつかって, μ をつくる. コンパクト台の連続関数の積分結果だけから Lebesgue measure が決まってしまうのはおもしろい.
 - $\Lambda_N h \Lambda_N g = \epsilon \Lambda_N 1 \le \epsilon \text{Vol}(W)$.
 - n を大きくすればいくらでも $\Lambda_n f$ の振幅を小さくできる.

■2.24 (Lusin)

- 1. $0 \le f < 1$, A compact のときに示す. A compact でないと $A \subset V$ open, \bar{V} compact がとれない.
- 2. f bdd, A compact のときに示す. 上の証明で $n \leq 0$ を許せばできる.
- 3. A compact でないときに示す. $\epsilon > 0$ が与えられる. compact な $K \subset A$ があって, $\mu(A-K) < \epsilon/2$. 一方, $f' := f \cdot 1_{\{x \in K\}}$ とおくと $(A-K)^c$ で は f = f'. f' は compact 台 K をもつから, 上の結果が使えて, 連続関数 g があって $\mu(f' \neq g) < \epsilon/2$. この g に対して,

$$\mu(f \neq g) = \mu(\{f \neq g\} \cap (A - K)) + \mu(\{f \neq g\} \cap (A - K)^c)$$

$$< \epsilon/2 + \mu(\{f' \neq g\} \cap (A - K)^c)$$

$$\leq \epsilon/2 + \mu(f' \neq g)$$

$$< \epsilon$$

でOK.

4. f bdd. でないときに示す.

- (2) がなりたつようにできること g_1 は g の値域を $\pm R$ 内におさめたもの. g が $\pm R$ をはみ出しているところではそもそも $g \neq f$ なので, g を g_1 でおきかえても (1) は保たれる. むしろ評価は改善する.
- **■**2.25 (Vitali-Carathéodory) v-u の変形, 第 2 項の不等式が成り立たない気がする. なにか勘違いしているか.

3. L^p -Spaces

- ■3.1 (凸関数)
- ■3.2 (開区間で凸なら連続)
- **■**3.3 (Jensen)
- ■3.5 (Hölder, Minkowski)

The L^p -spaces

■3.6 ($||\cdot||_p, L^p(\mu)$) 0 : complex measurable のとき,

$$||f||_p \stackrel{\text{def}}{=} \left\{ \int_X |f|^p \ d\mu \right\}^{1/p}$$

で, $||f||_p < \infty$ なる f の集合を $L^p(\mu)$ とかく.

■3.7 ($||\cdot||_{\infty}, L^{\infty}(\mu)$) $g: X \to [0, \infty]$ measurable. $S \ \mathcal{E}$,

$$\mu(g^{-1}((\alpha,\infty])) = 0$$

なる実数 α の集合とする. $\beta = \inf S$ を g の essential supremum という. 実は $\beta \in S$ である.

|f| の ess. sup. を $||f||_{\infty}$ とかく. $||f||_{\infty}<\infty$ なる f の集合を $L^{\infty}(\mu)$ とかく.

- ■3.8 (積の不等式)
- ■3.9 (和の不等式)
- ■3.10 ($L^p(\mu)$ はベクトル空間)
- ■3.11 ($L^p(\mu)$ は完備距離空間)
- ■3.12 (*L*^p-収束列の部分列をうまくとると概収束する)
- \blacksquare 3.13 (狭い台をもつ単関数は $L^p(\mu)$ 内で稠密)
- ■3.14 $(C_c(X)$ は $L^p(\mu)$ 内で稠密) 2.24 のラストで, $R = ||f(x)||_{\infty}$ とおけば, (2) を $\sup |g(x)| \le ||f||_{\infty}$ とできる.

$$||g - s||_p = ||(g - s)1_{g \neq s}||_p$$

$$\leq ||2||s||_{\infty}1_{g \neq s}||_p$$

$$= 2||s||_{\infty}||1_{g \neq s}||_p$$

$$\leq 2||s||_{\infty}\epsilon^{1/p}.$$

- $\blacksquare 3.16 (C_0(X))$
- \blacksquare 3.17 $(C_0(X)$ は \sup ノルム下で $C_c(X)$ の完備化)

Integration on product spaces

Measurability on Cartesian Products

■8.1 (rectangle, measurable rectangle, elementary sets, monotone class) X, Y 集合, $A \subset X, B \subset Y$ のとき $A \times B \subset X \times Y$ の形の集合を $X \times Y$ 中の rectangle という.

 $(X,\mathcal{S}),(Y,\mathcal{T})$ 可測空間, $A\in\mathcal{S},B\in\mathcal{T}$ のとき $A\times B$ を measurable rectangle という.

 $\mathcal{S} \times \mathcal{T}$ を, $X \times Y$ 中の全ての measurable rectangle を含む最小の σ -algebra で定義する.

measurable rectangle の有限・非交差和を **elementary set** といい、それ全体 を \mathcal{E} とかく.

 $monotone class \mathfrak{M}$ は以下の性質をみたす集合の集まり: 単調増加列, 単調減 少列について閉じている.

- ■8.2 $E \in \mathscr{S} \times \mathscr{T}$ のとき, $E_x \in \mathscr{T}$ かつ $E^y \in \mathscr{S}$ (任意の x, y で).
- ■8.3 $\mathscr{S} \times \mathscr{T}$ は全ての elementary sets を含む最小の monotone class である.

Product Measures

- **■8.6** 空間が σ-finite なら測度について Fubini がなりたつ.
- ■8.7 (product measure)

$$(\mu \times \lambda)(Q) \stackrel{\text{def}}{=} \int_X \lambda(Q_x) \ d\mu(x) = \int_Y \lambda(Q^y) \ d\lambda(y). \tag{4}$$

The Fubini Theorem

- **■**8.8 (Fubini) $(X, \mathcal{S}), (Y, \mathcal{T})$: σ -finite 可測空間, $f: X \times Y \perp \mathcal{D}$ ($\mathcal{S} \times \mathcal{T}$)-measurable function とする.
 - 1. $0 \le f \le \infty$ のとき,

$$\phi(x) = \int_{Y} f_x \ d\lambda, \ \psi(y) = \int_{X} f^y \ d\mu \ (x \in X, y \in Y)$$
 (5)

とかけば, ϕ は \mathscr{S} -measurable, ψ は \mathscr{T} -measurable で, さらに,

$$\int_X \phi \ d\mu = \int_{X \times Y} f \ d(\mu \times \lambda) = \int_Y \psi \ d\lambda.$$

2. f complex かつ

$$\phi^*(x) = \int_Y |f|_x \ d\lambda, \ \int_X \phi^* \ d\mu < \infty \tag{6}$$

ならば, $f \in L^1(\mu \times \lambda)$.

3. もし $f \in L^1(\mu \times \lambda)$ なら, $f_x \in L^1(\lambda)$ a.e. $x \in X$, $f^y \in L^1(\mu)$ a.e. $y \in Y$. さらに, a.e. 定義された ϕ, ψ は $L^1(\mu), L^1(\lambda)$ にそれぞれ属し, (6) がなり たつ.

Fubini まとめ

 $(\mathscr{S} \times \mathscr{T})$ -measurable function f の積分の順番は,

- |f| \mathcal{O} iterated integral $< \infty$

のとき入れ替えてよい.

Completion of Product Measures

■8.12 (Fubini, 完備空間への拡張 ver.) https://math.stackexchange.com/questions/3470800/proving-the-lebesgue-measure-space-completes-the-borel-measure-space

Borel space に Lebesgue measure を制限したものを完備化すると, Lebesgue measurable space になる.

参考文献

[1] a