Lattices

A lattice is a partially ordered set (L, \leq) in which every pair of elements $a, b \in L$ has a greatest lower bound and a least upper bound.

Example

Let Z+ denote the set of all positive integers and let R

denote the relation "division" in Z+ such that for any

time elements a, b ∈ Z+, a R b, if a divides b. Then

(Z+, R) is a lattice in which join of a and b is

least common multiple of a and b ie. a v b = a ⊕ b =

LCM of a and b, and neet of a & b, i.e. a*b = a ∧ b =

GCD of a and b.

Example

0

Set of all divisors of 30. Then $S_{30} = \{1,2,3,5,6,10,15,30\}$ let R denote the relation division. Then (S_{30}, R) is a

Different lattices can be represented by same Hasse Diagram. If (L, &) is a lattice, then (L, >) is also a lattice. The operations of weet and join on (L, &) become the operations of join and neet on (L, >). The statement involving the operations * and * and * and \$ \lambda\$ and \$ \lambda\$ told if we replace * by \$\theta\$, \$\theta\$ by * and \$\lambda\$ by >. The lattices (L, &) and (L, >) are duals each other.

Some properties of Lattices

Let (L, \leq) be a lattice and '.' and '+' denote two binary operation west and join on (L, \leq) . Then for any $a, b, c \in L$ we have

1) Impo Idempotent Laws

a.a = a

a + a = a

- 2) Commutative Laws $a \cdot b = b \cdot a$ a + b = b + a
 - 3) Associative Laws. (a.b).c = a.(b.c) (a+b)+c = a+(b+c)
 - 4) Absorption Laws $a.(a+b) = a \Rightarrow a.a = a.$ $a+(a.b) = a \Rightarrow a+a = a.$

Theorem: Let (L, ξ) be a lattice in which '.' and '+' denote the operations of meet and join respectively. Then $a \xi b \Leftrightarrow a \cdot b = a \Leftrightarrow a + b = b \quad \forall a, b, c \in L$ Proof: Let $a \xi b$ We know that $a \xi a$, therefore $a \xi a \cdot b$ but from definition we have $a \cdot b \xi a$.

.: $a \xi b \Rightarrow a \cdot b = a$ Let us assume that $a \cdot b = a$ but this is possible only if $a \xi b$ i.e. $a \cdot b = a \Rightarrow a \xi b$ i.e. $a \cdot b = a \Rightarrow a \xi b$ i.e. $a \cdot b = a \Rightarrow a \xi b$

Combining these two, a < b (> a.b = a

'Now let a.b=a, then we have $b + (a \cdot b) = b + a + a + b$ but b+ (a.b) = b Hence a+b=b Similarly by assuming a+b=b, we can show that $a\cdot b=a$ Hence a < b (a · b = a <) a + b = b = a Theorem: let (L, &) be a lattice. Then b < c => {a+b < a+c} Proof: By theorem: a < b <> a * b = a <> a + b = b This isto proves when (a*b) * (a*c) = (a*b) (a * b) * (a * c) = a * (b * a) * c (Associative Lan) = a * (a * b) * c (Commutative Lan)= (a * a) * (b * c) = a * (b * () (Absorption law) = (a * b) (Absorption law) : ybsc than axbsakc let bsc => boc=c To show that a Ob & a Oc. It is sufficient to Show that (aBb) D(aDc) = (aDc)

Consider, (aBb) D(aBc) = a D(bD a) Dc

= a 0

Scanned with CamScanner

Viven a poset (x, <), < us a well order (well ordering) and that is well-ordered by < iff every non-empty subset of x has a least element. When X is non-empty if we pick any two element subset, {a,b} of x, Since the subset [a,b] must have a least element, either a < b or b < a i.e., every well-order is a total

eg:- The set of natural number (N) is a well-ordered.

Bounded lattice

A lattice L'es said to be bounded if it has greatest element 1 and a least element 0. eg: - D18= {1,2,3,6,9,18} is a bounded lattice

[Every finite lattice is always bounded].

Complemented lattice

A lattice L is said to be complemented if it is bounded and if it is bounded and if every element I has a complement. Here, each element should have atteast one complement.

eg: D6:{1,2,3,6} is a complemented lattice.

2 3 Hasse Diagram of D. Every element has a complement

I hohat are the complements pair for the following lattices?

There are two complement pair here ->

meet
$$(4,3) = 1$$

join $(4,3) = 12$

There is another poir here - upper & loner bounds are also compliments of each other.