MINISTRY OF EDUCATION, BOTSWANA

in collaboration with

UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE

Botswana General Certificate of Secondary Education

SCIENCE: DOUBLE AWARD

0569/02

Paper 2

October/November 2006

Candidates answer on the Question Paper No Additional Materials are required.

2 hours

Read the following carefully before you start.

Write your centre number, candidate number and name in the spaces provided at the top of this page.

Answer all questions.

Write your answers in the spaces provided on the question paper.

Do not use staples, paper clips, highlighters, glue or correction fluid.

The number of marks is given in brackets [] at the end of each question or part question.

You may use a calculator.

A copy of the Periodic Table is printed on Page 20.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
TOTAL		

1 Fig. 1.1 shows the speed-time graph for the motion of a racing car.

Fig. 1.1

(i) OA

(ii) AB[2]

(b) What is the acceleration of the racing car between A and B?

(c) If the total distance travelled between point A and B is 600 m, determine the value of time "t".

Fig. 2.1 shows a crane lifting a 200 kg bucket of tools from the bottom of a dam 100 m below. (g = 10 N/kg)

Fig. 2.1

The crane takes 20 seconds to lift the bucket of tools to the surface.

(a) (i) Calculate the potential energy gained by the bucket of tools.

(ii) Calculate the useful work done by the crane in lifting the load.

i) Calculate the power developed by the crane.
power = W [2]
The actual energy transferred by the crane is more than the work done by the crane in fting the load. Give a reason for this.
[1]

3 Fig. 3.1 shows an electric kettle used to heat some water of mass 0.5 kg.

Fig. 3.1

(a)	(i)	State the method by which heat energy is transferred from the heating element to the water.
		[1]
	(ii)	Explain why the heating element is placed at the bottom.
		[2]
(b)	Exp	lain how heat energy is spread throughout the water by convection.
		[3]

4	A th cliff.		erstorm approaches Tebogo's village. Tebogo then runs towards the base of a nearby
	(a)	(i)	The thunderstorm produces thunder and lightning. Why does Tebogo see the lightning flash before she hears the thunder?
		Teb	ogo later hears a second sound from the cliff.
		(ii)	State the term used to describe this sound.
		(iii)	Explain why the first sound is louder than the second sound.
			[1]
	(b)	A ra	adio station broadcasts on a frequency of 100 MHz. The speed of radio waves is 10^8 m/s. (1 MHz = 1×10^6 Hz).
		(i)	Calculate the wavelength of the wave.
			•
			wavelength = m [2]
		(ii)	How long does the transmission take to travel 6000 km?
			tima a
			time =s [2]

5 Fig. 5.1 shows three resistors connected in series with a battery.

Fig. 5.1

- (a) Calculate:
 - (i) the total resistance of the circuit.

resistance =
$$\Omega$$
 [1]

(ii) the current in the circuit.

(b) The 12Ω resistor is removed, and the circuit is completed again without it. How will the current in the circuit compare to your answer in (a)(ii)?

Explain your answer.

6	An electric heater consists of a 2 kW element, a 30 W indicator lamp and a 20 W fan, switched on for 10 hours.			
	Calculate:			
	(a)	the total electrical energy in kWh used by the heater.		
		energy = kWh [3]		
	(b)	the cost of using the heater if a unit of electricity is P0.50.		
		CO1		
		cost =[2]		
7	A student reacted 12 g of magnesium with excess dilute hydrochloric acid to produce magnesium chloride and hydrogen. The equation for the reaction is shown.			
		$Mg() + 2HCl() \longrightarrow MgCl2() + H2()$		
	(a)	Complete the equation by writing the state symbols for the reactants and products. [2]		
	(b)	Calculate the number of moles of magnesium used.		
		moles =[2]		
	(c)	Calculate the mass of hydrogen gas produced from this reaction.		
		mass =[2]		
	(d)	Suggest why excess hydrochloric acid was used.		
		[2]		
	(e)	State two observations made during the reaction.		
		1		
		2[2]		

Liqu	uefied petroleum gas (LPG) is used for cooking and lighting.	
(a)	Why is liquefied petroleum gas said to be a good fuel for cooking and lighting?	
	***************************************	.[1].
(b)	State two advantages of using LPG instead of firewood.	
	1	
	2	.[2]
(c)	State one disadvantage of using LPG instead of firewood.	
	•••••••••••••••••••••••••••••••••••••••	[1].
(d)	Give two examples of fossil fuels other than natural gas.	
	and and	.[2]

9 The diagram shows a blast furnace used for the extraction of iron.

(a)	(i)	Name the other two raw materials added in at the top of the furnace.
	(ii)	Explain why component P is obtained above Q .
		[1]
(b)		he blast furnace, there is complete combustion and incomplete combustion of some stances.
		te a balanced equation for the incomplete combustion of one of the substances in the st furnace.
		[2]
(c)	Wri	te the name of one of the components of exhaust gases.
		[1]
(d)	Wh	y is limestone added into the furnace?
		[1]

	(e)	The	iron produced from the	blast furnace can be turn	ed into alloys like stee) .
		(i)	What is an alloy?			
			•••••••••••	•••••••••••••		[1]
		(ii)	Describe how iron from	n the blast furnace is turne	ed into steel.	•
			***********************	•••••••••••••••		
			•••••••••••	•••••••••••••		[2]
		(iii)	Explain why pure iron	is not used for making kitc	hen utensils.	
						[1]
10	Car	bon	exists as different allotro	ppes, diamond and graphit	te.	
	(a)	Wh	at do the allotropes hav	e in common?		
			************************	* * * * * * * * * * * * * * * * * * * *		[1]
	(b)	Cor	nplete the table below r	elating the properties of di	amond and graphite t	o their uses.
			allotrope	property	use	
			diamond			
			graphite	good conductor of electricity		
						[3]
	(C)		w arrows to match the chas been done for you	organic compounds given.	to their homologous s	series. The first
		org	anic compound	hon	nologous series	
		CH _z	CH ₂ CH ₂ OH	alka	noic acids	
			CHCH	_ II		

11 Fig. 11.1 shows a longitudinal section of a kidney.

N	Name the parts lat	elled N and O.		
Two hours after a heavy meal, fluid samples were taken from tubes K, L, M, and a for concentrations of water and urea. Using the words high, low or absent, complete the table to show how the concentration water and urea compare in the tubes. Water has been done for you. Substance K L M water high low high				
Two hours after a heavy meal, fluid samples were taken from tubes K, L, M, and a cor concentrations of water and urea. Using the words high, low or absent, complete the table to show how the concentrativater and urea compare in the tubes. Water has been done for you. Substance K L M water high low high	Y			
or concentrations of water and urea. Jsing the words high, low or absent, complete the table to show how the concentrate water and urea compare in the tubes. Water has been done for you. substance K L M water high low high)			
water high low high	or concentrations of the words high	of water and urea. gh, low or absent, com	plete the table to show	how the concentration
	substance	K	L	M
urea	water	high	low	high
<u> </u>	urea			
	•	L		····

12	suspected a doctor complaining of stomach upset. After diagnosis the doctor said he suspected a bacterial infection and production of too much acid in the stomach. The doctor prescribed two types of drugs.		
	(a)	Wh	ich types of drug would the doctor prescribe for each problem?
		(i)	for the bacterial infection
		(ii)	for the excess acid[2]
	(b)	unti	doctor advised that treatment for the bacterial infection should be taken as prescribed finished. I finished. I gest two reasons for this.
		• • • •	
		• • • •	
			[2]

13 Fig. 13.1 shows part of the digestive system and its blood supply.

Fig. 13.1

(a)	Which blood vessel X, Y or Z carries blood at the highest pressure?	
		[1]
(b)	On the diagram, show the direction of blood flow in vessel \mathbf{X} .	[1]
(c)	Name a gas found in low concentration in the hepatic artery.	
	***************************************	[1]
(d)	State one structural difference between vessels Y and Z .	

		[1]

0569/02/O/N/06

stage C

14 Fig. 14.1 shows some stages which a white blood cell goes through when carrying out its function.

stage B

stage A

(a)	name the type of white blood cell shown in Fig. 14.1. [1]
(b)	Describe what is happening in stage B .
	[1]
(c)	Suggest why the bacteria have disappeared in stage C.

	[1]
(d)	Platelets, like white blood cells, protect the body against infection.
	Describe how platelets carry out this function.
	•••••••••••••••••••••••••••••••••••••••

15 Fig. 15.1 shows the pathway taken by an impulse in a reflex action.

Fig. 15.1

(a)	Identify the structure labelled Y.
(b)	On the diagram draw arrows to show the direction in which impulses travel at X and Z . [1
(c)	What is the role of the effector?
	[1

16 Fig. 16.1 shows changes in Mpho's pulse rate immediately after dancing.

Fig. 16.1

(a)	Describe the change in pulse rate between 0 to 4 minutes.

	[2]
(c)	Explain why the pulse rate is high immediately after Mpho has stopped dancing.

	[1]

17 Fig. 17.1 shows the energy needs for people of different age groups.

Fig. 17.1

(a)	(i)	State two factors which affect energy needs in human beings.
		1
		2[2]
	(ii)	Explain why 14 year olds have higher energy needs than 65 year olds.
		•••••••••••••••••••••••••••••••••••••••

		[2]
(b)		35 year old man eats a protein rich meal. Suggest how his body may use the large antities of amino acids absorbed.
		[3]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (BEC) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

The Periodic Table of the Elements

								2	dno								
													2	>	5	 	0
							+ Hydrogen										4 Helium
7 7 Lithium 3	9 Be 4											5 Boron	42 Carbon	14 Nitrogen	0xygen	19 Fluorine	
23 Na Sodium	Magnesium											- m	28 Si icon		32 S ulphur	_	40 Ar gon
39 K Potassium	Calcium	Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	Manganese 25	56 Fee Iron 26	59 Cobalt 27	59 Nickel 28	64 Copper	65 Zinc 30	70 Gallium 31	73 Ge Germanium 32	75 AS Arsenic	Selenium	80 Br Bromine 35	84 X Krypton 36
85 Rubidium 37	88 Strontium 38	89 Y	91 Zrconium 40	93 Niobium	96 Molybdenum 42	TC Technetium	Huthenium 44	103 Rhodium 45	106 Palladium 46	108 Ag Silver	112 Cd Cadmium 48	115 Indium 49	119 Sn Tin 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I lodine 53	131 Xe Xenon 54
133 CS Caesium 55	137 Ba Barium 56	139 La Lanthanum 57	178 Haf F 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury	204 T1 Thallium 81	207 Pb Lead 82	209 Bis Bismuth	Polonium 84	At Astatine 85	Radon 86
Fr Francium 87	226 Rad ium 88	Actinium 4	_														
3-71 L 0-103	anthano	id series series	}	C 40	141 P	4 N	٦	150 Sm	152 Eu	157 Gd	159 Tb	162 Dy	165 HO	167 Er	169 Tm	173 Yb	175 Lu

Sourios Piones	140	141	144		150	152	157	159	162	165	167	169	173	
	Se	٦	PN	Pa	Sm	T H	D5	T	٥	P	ш	E	Υb	
	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lu 71
a = relative atomic mass	232		238											
X = atomic symbol	4	Pa		a Z	Pu	Am	E	数	さ	ПS	EH	PM	<u>8</u>	
b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Law 103

a 🗙

he volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).