

Machine Learning

Session 2 - Supervised classification

hadrien.salem@centralelille.fr

<u>introduction-to-data-science</u>

Introduction

What did we do last time?

Course outline

Intro to ML course

Session 1: Introduction to ML & Regression

Session 2: Supervised classification

Session 3: Decision trees & Ensemble methods

Deep Learning

What is classification?

$$\left|f^*(x) = rg\max_k \mathbb{P}(C_k|x)
ight|$$

Where f^* is a rule for classification, C_k are the **classes**, and x the **examples**

The goal of a classification algorithm is to find this rule

Families of classification models

While they are all classification models, they have different purposes

There are three main families of classification models

Discriminant functions

- The algorithm learns a function that finds the class directly
- Example: K-nearest-neighbours

Discriminant models

- The algorithm models the decision boundary
- Example: Support Vector Machines

Generative models

- The algorithm models the data distribution (meaning you can generate your own data)
- Example: Gaussian Mixture Model

When K is small, the algorithm is very sensitive to **local variations** (risk of overfitting)

When K is large, the algorithm is more stable, but does not take small variations into account (risk of underfitting)

⇒ When choosing the parameters, there is a compromise between the two

Common classification algorithms

K-nearest neighbours

Decision boundary	Non-linear			
Advantages	 Easy to use and understand No assumptions 			
Disadvantages	 Slow for large datasets Inefficient in high dimension 			

The objective is to **find a hyperplane** such that the **margin between the two classes is maximized**.

Data can be transformed into a higher-dimensional space if it is not linearly separable in the feature space. This is achieved with **kernels** (e.g. polynomial, sigmoid, etc.).

Decision boundary	Linear in the transformed space, can be non-linear in the feature space			
Advantages	 Works well in high dimension Robust to outliers Low memory consumption 			
Disadvantages	 Slow for large datasets Choosing a kernel can be difficult 			

Other methods for supervised classification

Logistic Regression

- THIS IS A CLASSIFICATION METHOD
- Only works when data is linearly separable
- Easy to use, good baseline method

Naive Bayes

- Assumes that features are independent
- Non-linear decision boundary (computes class membership probabilities)
- Low-cost, also good baseline

Linear / Quadratic discriminant analysis

- Assumes that data follows a normal distribution
- Limited to linear / quadratic decision boundaries
- Good baseline

And other algorithms we will study later

- Decision trees / Random Forests
- Ensemble methods
- Neural networks

Evaluating a classification algorithm

		Real (Actual, Observed)			oserved)	
			Real Negatives TN+FP		Real Positives TP+FN	
Predicted	Predicted Negatives TN+FN	1	true negatives (TN)	- 1	false negatives (FN)	
Fredicted	Predicted Positives TP+FP		false positives (FP)		true positives (TP)	- Precision = true positives/ PRE di C ted positives TP/(TP+FP)
			Specificity IN (SPecificity Is Negative) e negatives/real negatives TN/(TN+FP)	Sensitivity SNIP (SeNsitivity Is Positive) true positives/real positives TP/(TP+FN)		Accuracy true predictions/all predictions (TP+TN)/(TP+TN+FP+FN)
				tru	Recall te positives/REAL positives TP/(TP+FN) Recall = Sensitivity	

F1 Score =
$$\frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}}$$
$$= \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Practical work

The notebook contains all the necessary instructions

Debrief

Debrief

What did we learn today?

What could we have done better?

What are we doing next time?

Machine Learning

Session 2 - Supervised classification

hadrien.salem@centralelille.fr

<u>introduction-to-data-science</u>