

Papel del ácido palmítico en el desarrollo de resistencia a la insulina neuronal y su efecto en la regulación de la expresión de marcadores bioquímicos de la enfermedad de Alzheimer por sirtuina1.

Karina Sánchez Alegría, Ana Brígida Clorinda Arias Álvarez. Depto. Medicina Genómica y Toxicología Ambiental. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. México, Ciudad de México.

Introducción

El consumo de dietas altas en grasas (HFD) contribuye al desarrollo de padecimientos metabólicos como la resistencia a la insulina, obesidad y diabetes mellitus tipo II. En el SNC, las HFDs generan alteraciones estructurales y funcionales que se han observado en etapas tempranas de la enfermedad de Alzheimer (EA), como son la activación de astrocitos y microglía y la fosforilación de la proteína asociada a microtúbulos, tau (Calvo-Ochoa et al., 2014).

El ácido palmítico (AP) es el ácido graso más abundante en las HFD y se ha demostrado que juega un papel importante en el desarrollo de resistencia a la insulina tanto hipotalámica, como hepática, pancreática y músculo-esquelética (Benoit et al., 2009). La insulina parece jugar un papel muy importante en el SNC regulando el crecimiento, la diferenciación y la supervivencia neuronal (Calvo-Ochoa y Arias 2015).

El metabolismo del AP disminuye el contenido celular de NAD+, además de aumentar la producción de ceramida, que participa en el desarrollo de la resistencia a la insulina en músculo y tejido adiposo (Mahfouz et al., 2014; Schmitz-Peiffer et al., 1999). La reducción celular de NAD+ puede disminuir la expresión y funcionamiento de las sirtuinas, que son desacetilasas de clase III dependientes de este cofactor (Yoshino et al., 2011; Zhang et al., 2011), lo que puede alterar el balance acetilación/desacetilación de diversas proteínas, incluyendo algunas involucradas en el desarrollo de marcadores de la EA.

A pesar de estos antecedentes, no se ha descrito el papel del AP y/o su metabolito ceramida, en el desarrollo de la resistencia a la insulina neuronal, ni el mecanismo mediante el cual se afectan los niveles y actividad de SIRT1 y su papel en la expresión de algunos marcadores bioquímicos de EA.

Objetivo General

Estudiar la participación del AP en el desarrollo de resistencia a la insulina neuronal, así como su relación con la disfunción de la SIRT1.

Estudiar el efecto del AP

sobre actividad metabólica:

Realización de ensayos de

MTT

45

min

Evaluar la participación de EROs en

el efecto del AP en respuesta a la

MTT

min

+ Antioxidante mitocondrial

Lectura con

espectrofotómetro

Lectura con

espectrofotómetro

reducción de MTT.

INS

Ayuno

AP

1 hr

insulina.

INS

Ayuno

AP

1 hr

Metodología

Cultivo celular de neuroblastoma humano MSN diferenciadas a neuronas con ácido retinoico y NGF.

Analizar cambios en la vía de señalización de la insulina inducidas por AP: p-Akt, p-mTOR y p-S6K, en

presencia y ausencia de insulina exógena. Evaluar el efecto del AP en la expresión y actividad de SIRT1,

- p-Akt (Ser473)
- p-mTOR (Ser2448)
- p-S6K (Thr389) • SIRT1

Western blot

- tau/ac-lisina 280
- NF-kB p65/ac -lisina 310

Resultados

Figura1. Curva dosis respuesta a la insulina. Existe una diferencia significativa (p<0.05) en la reducción de MTT a una concentración de 10µM lo sugiere que las céulas responden metabólicamente a esta concentración de insulina. N = 3.

Figura 2. Efecto del AP sobre la actividad metabólica en células de neuroblastoma humano diferenciadas. Se observó que el AP disminuye la actividad metabólica de las células en respuesta a la insulina. n=5, p<0.05

Figura 3. Participación de EROs en el efecto del AP. Se observó que el MitoTEMPO, que es un antioxidante mitocondrial, previene el efecto del AP en respuesta a la insulina. n=5, p<0.05

Figura 4. Efecto del AP en la activación de Akt en respuesta a la insulina. Las células fueron tratadas con AP en presencia y ausencia de insulina exógena, se extrajeron proteínas y por medio de western blot se cuantificó p-Akt. Se observó que el AP inhibe la activación de Akt en respuesta a insulina. n=1

p-Akt (Ser473)

β-actina

Conclusiones

Una dosis de 10µM de insulina incrementa de manera significativa la actividad metabólica en células de neuroblastoma humano diferenciadas a neuronas.

El ácido palmítico induce disminución en la actividad mitocondrial en respuesta a la insulina.

el efecto del AP en la actividad mitocondrial de las células de neuroblastoma diferenciadas en respuesta a la insulina.

El AP inhibe la activación de Akt en respuesta a la insulina, desarrollando resistencia a la insulina en células de neuroblastoma humanos diferenciadas.

AGRADECIMIENTOS: Este trabajo es apoyado por CONACyT

Referencias

- 1. Benoit SC, et al. *J Clin Invest*. 2009; **119**: 2577-89.
- Calvo-Ochoa, E., & Arias, C. Diabetes/Metabolism Research and Reviews. 2015;31:1–13.
- Calvo-Ochoa E, et al. J Cereb Blood Flow Metab. 2014; 34: 1001-1008. Mahfouz R, et al. *PLoS One*. 2014;**9**(7):e101865.
- Min SW, et al. Neuron. 2010,67(6):953-66.
- Schmitz-Peiffer C, et al. J Biol Chem. 1999; 274
- Yoshino, J., Mills, et al. Cell Metabolism. 2011;14(4): 528-36. 8. Zhang, F., et al. *Progress in Neurobiology*. 2011;**95**(3): 373–395.