METODY NUMERYCZNE – LABORATORIUM

Zadanie 4 – całkowanie numeryczne metodą złożonej kwadratury Newtona-Cotesa oraz kwadratury Gaussa-Chebysheva

Opis rozwiązania

Celem tego zadanie było zaimplementowanie dwóch metod całkowania numerycznego: metodę złożonej kwadratury Newtona-Cotesa opartą na trzech węzłach (wzór Simpsona) oraz metodę kwadratury Gaussa-Chebysheva. Całkowanie numeryczne to metoda numeryczna polegająca na przybliżaniu całek oznaczonych.

Przy złożonej kwadraturze Newtona-Cotesa zadany przedział całkowania dzielimy na podprzedziały, których granice oznaczamy jako $< x_0, x_1 >, < x_1, x_2 > \dots$, gdzie $x_1 - x_0 = x_2 - x_1 \dots$ (przedziały te są równej długości). Następnie wykorzystując wzór Simpsona:

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \Big(f(x_0) + f(x_N) + 4 \cdot \Big(f(x_1) + f(x_3) + \dots + f(x_{N-1}) \Big) + 2$$
$$\cdot \Big(f(x_2) + f(x_4) + \dots + f(x_{N-2}) \Big) \Big)$$

$$h = x_{i+1} - x_i \Rightarrow h = const$$
 $N = liczba węzłów$

obliczamy wartości całki na podprzedziale i zwiększamy ilość węzłów aż osiągniemy zadaną przez użytkownika dokładność. Następnie sumujemy wyliczone wartości całek.

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} f(x)dx$$

Przy kwadraturze Gaussa-Chebysheva z wagą $\frac{1}{\sqrt{1-x^2}}$ do przybliżenia wartości całki wykorzystujemy wielomiany Chebysheva oraz odpowiednie wagi:

$$x_i = cos\left(\frac{2i-1}{2n}\pi\right)$$
 $w_i = \frac{\pi}{n}$

A sama całkę obliczamy ze wzoru:

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1 - x^2}} dx \approx \sum_{i=1}^{n} w_i f(x_i)$$

Wyniki

Poniżej przedstawiliśmy wyniki działania naszego programu w postaci tabelki porównawczej obu metod, dla przykładowych funkcji.

Metoda		Metoda			
Newtona-Cotesa		Gaussa-Chebysheva			
Wynik	Wynik	Wynik	Wynik	Wynik	Wynik
(dokł. 0.01)	(dokł. 0.01)	(2 węzły)	(3 węzły)	(4 węzły)	(5 węzłów)
f(x) = 2x + 1					
3.07413475	3.135725939	3.141592656	3.141592656	3.141592656	3.141592656
$f(x) = x^2 + 3$					
10.7397348374	10.957072147	10.995574288	10.995574288	10.995574288	10.995574288
$f(x) = x^3 - 2x - 5$					
-15.437118012	-15.668403215	-15.70796326	-15.70796328	-15.70796326	-15.70796326
f(x) = sinx					
-0.009591874	-0.000923214	$2.2204 \cdot 10^{-16}$	$3.3307 \cdot 10^{-16}$	$1.1102 \cdot 10^{-16}$	$1.1102 \cdot 10^{-16}$

Wnioski

- 1. Wyliczone przez nas wartości są bliskie rzeczywistym.
- 2. Metoda Newtona-Cotesa zwracała wyniki tym bliższe rzeczywistym, im mniejsza była wartość dokładności.
- 3. W metodzie Gaussa-Chebysheva największe różnice wyników od ilością węzłów widzimy przy funkcji trygonometrycznej.
- 4. Węzły kwadratury Gaussa są pierwiastkami odpowiedniego wielomianu ortagonlanego.