Coordination of autonomous vehicles

Jeroen van Riel

January 2025

Coordination of autonomous vehicles

- Less human intervention (less traffic lights required)
- Better guarantees on safety
- Potentially reduce economic costs

...as optimal control problem

- Multi-agent optimal control problem
 - Minimize total travel time
 - Avoid collisions

...as optimal control problem

- Some simplifying assumptions
 - Central control with perfect communication
 - Fixed routes
 - All future arrivals known

How to solve it?

- Direct transcription methods
 - Provide optimal trajectories
 - Computationally very demanding
- How to solve large instances?
 - Need for approximation
 - Exploit problem structure (decomposition)
 - Automatically derive heuristics (learning)

Research questions

Q1: Exploit problem structure (decomposition)

How can we model the offline trajectory optimization problem, modeling coordination of autonomous vehicles in networks of unsignalized intersections, as a variant of job-shop scheduling to effectively reduce the dimensionality of the problem, while guaranteeing the generation of collision-free trajectories?

Q2: Automatically derive heuristics (learning)

Can recent deep reinforcement learning formulations for combinatorial optimization problems, like job-shop scheduling, be adapted to the offline trajectory optimization problem, formulated in terms of job-shop scheduling, in order to provide a scalable optimization algorithm that automatically learns to exploit hidden structures in problem instances?

Decomposition

- Upper-level crossing time scheduling
 - Mixed-Integer Linear Programming (MILP)

- Lower-level trajectory optimization problem
 - $\bullet \ \, \mathsf{Direct} \ \, \mathsf{transcription} \, \to \mathsf{linear} \ \, \mathsf{programming}$

Determine crossing times

8

• Crossing times follow from crossing order

- Map instance to optimal crossing order
- Use step-by-step construction...

Learn crossing order

- Map instance to optimal crossing order
- Map partial order to next partial order (policy)
- We can learn this policy from examples!
 - Imitation learning from optimal MILP solutions
 - Reinforcement learning with dense delay reward

Overview of project plan

- Coordination as optimal control problem
- Vehicle scheduling + trajectory optimization
- Sequentially construct crossing order
- Learn from examples

Appendix: Disjunctive graph

Disjunctive graph

- Partial solutions encoded as disjunctive graph augmented with lower bounds on crossing times
- Parameterize ordering policy based on graph neural network embedding of augmented disjunctive graph

Disjunctive graph

 Partial solutions encoded as disjunctive graph augmented with lower bounds on crossing times - Parameterize ordering policy based on graph neural network embedding of augmented disjunctive graph

17

Appendix: Related literature

- Autonomous intersections
- Neural combinatorial optimization

Autonomous intersections

- "Autonomous Intersection Control" (Dresner & Stone)
 - Single intersection
 - Time slot reservation-based protocol
 - Central intersection manager

Autonomous intersections

- "Approximate Optimal Coordination" (Hult et al.)
 - Single intersection
 - Single vehicle per lane
 - Explicit collision-avoidance constraints

Neural combinatorial optimization

- "Learn to dispatch" (Zhang et al.)
 - Job-shop scheduling problem
 - Dispatch next operation
 - Policy using Graph Isomorphism Network (GIN)

Appendix: Single intersection

- Notation
- Upper-level crossing time scheduling
- Lower bound on starting times
- Imitation learning with neural policy
- Lower-level trajectory optimization

Notation

- ullet vehicle indices ${\cal N}$
- y(i) is crossing time of vehicle i
- r_i earliest crossing time of vehicle i

- i and j same lane: $y(i) + \rho \le y(j)$
- *i* and *j* distinct lanes: $y(i) + \sigma \le y(j)$ or $y(j) + \sigma \le y(i)$

Upper-level crossing time scheduling

- ullet conjunctive constraints ${\cal C}$
- ullet disjunctive (conflict) constraints ${\cal D}$

$$\begin{aligned} & \underset{y}{\text{min}} & & \sum_{i \in \mathcal{N}} y(i) \\ & \text{s.t.} & & r_i \leq y(i), & \text{for all } i \in \mathcal{N}, \\ & & y(i) + \rho \leq y(j), & \text{for all } (i,j) \in \mathcal{C}, \\ & & y(i) + \sigma \leq y(j) \text{ or } y(j) + \sigma \leq y(i), & \text{for all } (i,j) \in \mathcal{D} \end{aligned}$$

Upper-level crossing time scheduling

- Formulate as mixed-integer linear program (MILP)
- Introduce binary decision variables γ_{ij}
- Use big-M technique

$$\begin{aligned} & \underset{y}{\text{min}} & & \sum_{i \in \mathcal{N}} y_i \\ & \text{s.t.} & & r_i \leq y_i, & \text{for all } i \in \mathcal{N}, \\ & & y_i + \rho_i \leq y_j, & \text{for all } (i,j) \in \mathcal{C}, \\ & & y_i + \sigma_i \leq y_j + \gamma_{ij} M, & \text{for all } (i,j) \in \mathcal{D}, \\ & & y_j + \sigma_j \leq y_i + (1 - \gamma_{ij}) M, & \text{for all } (i,j) \in \mathcal{D}, \\ & & \gamma_{ij} \in \{0,1\}, & \text{for all } (i,j) \in \mathcal{D}. \end{aligned}$$

Lower bounds on starting times

- Disjunctive graph given current order π
- ullet Nodes are vehicle indices ${\cal N}$
- Edges $i \xrightarrow{w(i,j)} j$
 - Conjunctive edges $i \xrightarrow{\rho} j$
 - Disjunctive edges $i \xrightarrow{\sigma} j$ or $j \xrightarrow{\sigma} i$
- ullet Lower bounds LB $_\pi$ on starting times given current order π

$$\mathsf{LB}_{\pi}(j) = \mathsf{max}\{r_j, \mathsf{LB}_{\pi}(i) + w(i,j)\}$$

Imitation learning with neural policy

- crossing order $\pi = ((1,1),(2,1))$ of vehicles
- step-by-step construction of this order
 - 1. choose (1,1)
 - 2. choose (2,1)
 - 3. ..

Imitation learning with neural policy

- get optimal trajectories from MILP solver
- ullet parameterize policy based on LB $_{\pi}$
 - only consider $LB_{\pi}(j)$ for unscheduled j
 - recurrent embedding of $LB_{\pi}(j)$ per lane
 - alternatively, use zero padding
- fit policy parameters to expert transitions

Lower-level trajectory optimization

- position x, velocity v, control input u
- position of vehicle in front x', follow distance L
- ullet position of intersection B, crossing time au

$$\begin{aligned} & \operatorname{arg\,min}_{x:[0,\tau]\to\mathbb{R}} \int_0^\tau |x(t)| dt \\ & \operatorname{s.t.} \ \ddot{x}(t) = u(t), & \text{for all } t \in [0,\tau], \\ & |u(t)| \leq a_{\max}, & \text{for all } t \in [0,\tau], \\ & 0 \leq \dot{x}(t) \leq v_{\max}, & \text{for all } t \in [0,\tau], \\ & x'(t) - x(t) \geq L, & \text{for all } t \in [0,\tau], \\ & (x(0), \dot{x}(0)) = s_0, \\ & (x(\tau), \dot{x}(\tau)) = (B, v_{\max}) \end{aligned}$$