

Lecture 02 - Introduction to Asymptotic Notations

Design and Analysis of Algorithms – IT1205

Year 02 Semester 02

Lecture Contents

- Asymptotic Notations
 - O Notation
 - \Box θ Notation
 - \square Ω Notation
- Selection Sort Algorithm
- Bubble Sort Algorithm

Asymptotic Notations

Asymptotic notations are the <u>mathematical notations</u> used to describe the running time of an algorithm. It used when the input tends towards a particular value or a limiting value.

Why we need of Asymptotic Notation?

- Ignore machine dependent constants.
- RAM Model have some problems.
- Exact analysis is very complicated
- Sufficiently large size of n.
- Growth of T(n) as $n --> \infty$

Asymptotic Notations (Cont.)

Step count is determined to be

$$c_1 n^2 + c_2 n + c_3$$
, $c_1 > 0$

Let's take the ratio $r(n) = \frac{c_2 n + c_3}{c_1 n^2}$

When n is large r(n) tends to zero.

n

Asymptotic Notations(Contd.)

Suppose that programs A and B perform the same task. Assume that one person has determined the step counts of these programs to be $\mathbf{t}_{A}(\mathbf{n}) = 2\mathbf{n}^{2} + 3\mathbf{n}$ and $\mathbf{t}_{B}(\mathbf{n}) = 13\mathbf{n}$.

- Which program is the faster one ?
- What is the answer ,if the step count of the program B is 2^n+n^2 ?

Graphs of functions

 $N^n > n! > 2^n > n^3 > n^2 > n \log a > n > \log n > 1$

Asymptotic Notations(Contd.)

There are three notations.

- **O** Notation
- Θ Notation
- Ω Notation

Asymptotic Notations (Contd.)

- Focus on what's important by abstracting away low-order terms and constant factors.
- How we indicate running times of algorithms.
- A way to compare "sizes" of functions:
 - O ≈ ≤ -- Consider the Upper Bound
 - $\Theta \approx \ge$ --Consider the Both(Average)
 - $\Omega \approx =$ -- Consider the **Lower Bound**

Big O - Notation

- Introduced by Paul Bechman in 1892.
- We use Big O-notation to give an <u>upper bound</u> on a function. And consider as the **Worst Case Scenarios**.

Definition:

```
O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.
```

Eg: What is the big O value of
$$f(n)=2n + 6$$
?
 $g(n)=n$ therefore $f(n)=O(n)$

 $\mathbf{a_n} \times^{\mathbf{n}} + ... + \mathbf{a_1} \times + \mathbf{a_0}$ is $\mathbf{O}(\mathbf{x^n})$ for any real numbers $\mathbf{a_n}$, ..., $\mathbf{a_0}$ and any nonnegative number \mathbf{n} .

Big O – Notation(Contd.)

Assignment (s \leftarrow 1)

Addition (s+1)

Multiplication (s*2)

Comparison (S<10)

O(1)

Big O – Notation(Contd.)

Find the Big Oh value for following fragment of code.

$$n * (n^2-3n+2)=n^3-3n^2+2n$$

Big O – Notation(Contd.)

Find the Big O value for the following functions.

(i)
$$T(n) = 3 + 5n + 3n^2$$

(ii)
$$f(n) = 2^n + n^2 + 8n + 7$$

(iii)
$$T(n) = n + logn + 6$$

Answers:

- (i) $O(n^2)$
- (ii) $O(2^n)$
- (iii) O(n)

Back to the example

Alternative calculation:

	cost	times	
$sum \leftarrow 0$	c_1	1	
for $i \leftarrow 1$ to n	c_2	n+1	
$sum \leftarrow sum + A[i]$	c_3	n	
$T(n) = c_1 + c_2 (n+1) + c_3 n = (n+1) + c_3$	$(c_1 + c_2) + (c_1 + c_2) + (c_1 + c_2) + (c_1 + c_2) + (c_2 + c_2) + (c_1 + c_2) + (c_2 + c_2) + $	$(c_2 + c_3) n = c$	$c_4 + c_5 n$
$\rightarrow O(n)$			

Proof: $c_4 + c_5 n \le c n \rightarrow \text{TRUE for } n \ge 1 \text{ and } c \ge c_4 + c_5$

Ω - Notation

Which will provide the **lower bound** of the function. And consider as the **Best Case Scenarios**.

Definition:

```
\Omega(g(n)) = \{ f(n) : \text{there exist positive constants c and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_o \}
```

Ω -notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic lower bound* for f(n).

Θ - Notation

This is used when the function f can be bounded both from above and below by the same function g.

Definition:

 $\Theta(g(n)) = \{ f(n): \text{ there exist positive constant } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

Θ - Notation (Cont.)

Θ-notation

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

Lecture Notes for Chapter 3: Growth of Functions

g(n) is an *asymptotically tight bound* for f(n).

Analysis of Selection Sort Algorithm

- This is an another efficient algorithm for sorting small number of elements.
- Selection Sort Algorithm consist of 5 main steps.
 - 1. Initialize the "min" as leftmost element
 - 2. Search the minimum value in the list
 - 3. Swap with leftmost value and minimum value
 - 4. leftmost "min" incremented by 1, to go for next occurance
 - 5. Repeat the process until the numbers are sorted

Pseudocode for Selection Sort

```
Selection-SORT(A)
1 \text{ for } i = 1 \text{ to } n - 1
     min = i
       for j = i+1 to n
          if A[j] < A[min] then
              min = j;
         end if
      end for
         swap A[min] and A[i]
    end for
```

Analysis of Bubble Sort Algorithm

- Bubble Sort Algorithm consist of 5 main steps.
 - 1. Start with the first element.
 - 2. Compare the current element with the next element.
 - 3. If the current element is greater than the next element, then swap both the elements. If not, move to the next element.
 - 4. Repeat steps 1-3 until we get the sorted list.

Pseudocode for Bubble Sort

```
Bubble-SORT(A)
1 \text{ for } i = 1 \text{ to } n - 1
       for j = 1 to n-1
           if A[j] > A[j+1] then
               swap A[j] and A[j+1]
         end if
        end for
end for
```

Activity

Convert this number set into Ascending Order using,

- Selection Sort
- Bubble Sort

1.	3	9	7	4	1	5
----	---	---	---	---	---	---

2.	5	3	1	4	7	6
----	---	---	---	---	---	---

Summary

Asymptotic Notations

- ☐ O Notation
- \Box θ Notation
- \Box Ω Notation

Selection Sort Algorithm Bubble Sort Algorithm

