Appunti dal corso Introduzione ai Sistemi Complessi

Grufoony

1 novembre 2021

1 Sistema Complesso

Definizione 1.1. Sistema Complesso è un sistema dinamico composto da sottosistemi interagenti tra loro.

Per lo studio di un sistema complesso si usa solitamente un approccio olistico, ossia studiando prevalentemente le proprietà macroscopiche del sistema totale, senza considerare i singoli sottosistemi. Un'osservazione importante che va effettuata è che un sistema complesso **prevede**, non descrive. Alcune delle proprietà principali sono:

- complessità: presenza di molti d.o.f. (molti sottosistemi)
- **proprietà emergenti**: derivano dal grande numero di sottosistemi. Ad esempio possiamo definire *fluido* un insieme di molte particelle ma la particella singola non può essere fluida.
- autorganizzazione: i sistemi complessi sono ibridi, ossia metà stocastici e metà deterministici. Per studiarli devo dare ugual peso a entrambi gli aspetti.

2 Distribuzioni

Vediamo ora una serie di distribuzioni e teoremi ad esse legati che ci aiuteranno nell'analisi dei sistemi.

Definizione 2.1.

- Gaussiana $\rho(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- Esponenziale $\rho(x) = \frac{1}{k}e^{-\frac{x}{k}}$
- Potenza $\rho(x) \propto \frac{1}{x^a}, \ con \ a > 0$

Definizione 2.2. Momenti di una distribuzione: $\langle x^k \rangle = \int_{-\infty}^{+\infty} x^k \rho(x) dx$

Teorema 2.1. Invarianza di scala:

se
$$\rho(x) \propto \frac{1}{x^a}$$
 allora posto $y = \lambda x$ si ha $\rho(y) = \frac{\lambda^a}{x^a} \propto \frac{1}{y^a}$

Teorema 2.2. Limite centrale:

Siano x_k variabili casuali indipendenti, allora:

$$\lim_{N \to \infty} z = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} x_k = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}}$$

Ora possiamo dare una definizione di probabilità:

Definizione 2.3. Probabilità:

$$p(x \in [a, b]) = \int_a^b \rho(x) dx$$

Definizione 2.4. Probabilità cumulata:

$$p(x \le a) = \int_{-\infty}^{a} \rho(x) dx$$

3 Costruzione di un modello

Punto fondamentale di un sistema complesso è costruire un modello matematico che riesca a riprodurre le sue caratteristiche fondamentali, per poi studiarlo. La prima cosa da definire è l'ambiente in cui ci troviamo. Questo può essere neutro o avere caratteristiche, ad esempio una distribuzione di nutrimento (per sistemi biologici). Altro punto fondamentale è definire spazio e tempo. Spesso non fa differenza la scelta di spazi e tempi discreti rispetto ai continui, quindi è preferibile assumere una discretizzazione iniziale per poi passare al continuo successivamente. Una volta definito lo spazio bisogna poi decidere le condizioni al contorno, ossia il comportamento ai bordi. Posso a questo punto avere barriere di tre tipi:

- riflettenti, dove ho un bordo *non* oltrepassabile. Si crea quindi un fenomeno di attrattività delle pareti.
- **periodico**, dove ho i bordi coincidenti (esco da una parte e rientro dall'altra). Lo spazio assume in questo caso una forma toroidale.
- assorbenti, dove gli oggetti "uscenti" vengono distrutti. In questo caso bisogna di introdurre delle *sorgenti* nel modello per evitare di perdere tutti i soggetti.

Si nota facilmente come più piccolo sia il modello, più importante sia il contributo degli effetti di bordo. Nella maggior parte dei sistemi non tutti i soggetti hanno le stesse caratteristiche: si definiscono allora **classi** di appartenenza, legate tra loro da relazioni matematiche.