МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №6

по дисциплине «Качество и метрология программного обеспечения»

Тема: «Оценка характеристики надежности программы по

структурным схемам надежности»

Студент гр. 7304	Абдульманов Э.М
Преподаватель	Ефремов М.А.

Санкт-Петербург

2021

Задание:

Выполнить расчет характеристик надежности вычислительной системы по структурной схеме надежности, выбранной из таблицы 1 в соответствии с номером студента в списке группы.

В качестве оцениваемых характеристик следует рассматривать:

- Вероятность безотказной работы системы в заданный момент времени.
- Среднее время до отказа системы. Выполнение расчетов следует производить двумя способами:
- Расчетным способом.
- Программным способом с помощью Анализатора структурных схем надежности RSSA.

Ход работы:

Вариант	N1				N2		N3		
	комб.	λ_1	λ_2	λ_3	λ_4	комб.	λ	комб.	λ
	соедин.					соедин.		соедин.	
1	C(3)	2.28	3.8	2.85	-	(1,1)	2.2	(2,2)	3.8

Структура вычислительной системы представляет собой три блока: N1 из трех последовательных элементов, N2 из двух параллельных ветвей (1 элемент на верхней и 1 на нижней) и N3 из двух параллельных ветвей (2 элемента на верхней и 2 элемента на нижней). Так же присутствуют 2 мнимых элемента для перехода от N2 к N3 и для создания конечной вершины. Граф представлен на Рисунке 1.

Рисунок 1 – Граф надежности согласно 1-ому варианту

1. Расчетный способ

$$R_{N1} = e^{-(\lambda_1 + \lambda_2 + \lambda_3)*t} = e^{-8.93*2*10^{-5}} = 0.99982141$$

$$R_{N2} = 1 - (1 - e^{-\lambda_{4,5}*t})^2 = 2 * e^{-\lambda_{4,5}*t} - e^{-2\lambda_{4,5}*t} \cong 1$$

$$R_{N3} = 1 - (1 - e^{-2\lambda_{7,8,9,10}*t})^2 = 2 * e^{-2\lambda_{7,8,9,10}*t} - e^{-4\lambda_{7,8,9,10}*t} \cong 1$$

$$R_{S} = e^{-(\lambda_1 + \lambda_2 + \lambda_3)*t} * (2 * e^{-\lambda_{4,5}*t} - e^{-2\lambda_{4,5}*t}) * (2 * e^{-2\lambda_{7,8,9,10}*t} - e^{-4\lambda_{7,8,9,10}*t})$$

$$= 0.99982141$$

$$MTTF = \int_0^\infty R_s(t)dt =$$

$$= \int_0^\infty e^{-(\lambda_1 + \lambda_2 + \lambda_3) * t} * (2 * e^{-\lambda_{4,5} * t} - e^{-2\lambda_{4,5} * t})$$

$$* (2 * e^{-2\lambda_{7,8,9,10} * t} - e^{-4\lambda_{7,8,9,10} * t})dt \cong 7.705$$

2. Программный способ

Xml файл, соответствующий структуре вычислительной системы, представлен в приложении А. Построенная схема представлена на Рисунке 2.

Рисунок 2 – Внешний вид графа

Результаты вычисления надежности и среднего времени безотказной работы представлены на Рисунке 3.

t	R	Т
2.0	0.9998213909160983	7704.130486055939

Рисунок 3 – Результаты расчетов

Выводы:

В результате выполнения данной лабораторной работы была выполнена оценка характеристики надежности программ по структурным схемам надежности. Результаты вычисления надежности и среднего времени безотказной работы ручным способом практически совпали с результатами, полученными с помощью программы.

приложение А.

Shema.xml

```
<Schema>
     <qraf>
           <Block>
                 <Id>1</Id>
                 <Id2>1</Id2>
                 <failureRate>2.28E-5</failureRate>
                 <name>1</name>
                 <quantity>1</quantity>
                 t>
                       <int>2</int>
                 </list>
                 <type></type>
           </Block>
           <Block>
                 <Id>2</Id>
                 <Id2>2</Id2>
                 <failureRate>3.8E-5</failureRate>
                 <name>2</name>
                 <quantity>1</quantity>
                 t>
                       <int>3</int>
                 </list>
                 <type></type>
           </Block>
           <Block>
                 <Id>3</Id>
                 <Id2>3</Id2>
                 <failureRate>2.85E-5</failureRate>
                 <name>3</name>
                 <quantity>1</quantity>
                 st>
                       <int>4</int>
                       <int>5</int>
                 </list>
                 <type></type>
           </Block>
```

```
<Block>
     <Id>4</Id>
      <Id2>4</Id2>
     <failureRate>2.2E-5</failureRate>
      <name>4</name>
      <quantity>1</quantity>
     t>
           <int>6</int>
      </list>
      <type></type>
</Block>
<Block>
     <Id>5</Id>
      <Id2>5</Id2>
     <failureRate>2.2E-5</failureRate>
     <name>5</name>
     <quantity>1</quantity>
     st>
           <int>6</int>
      </list>
      <type></type>
</Block>
<Block>
     <Id>6</Id>
     <Id2>6</Id2>
     <failureRate>0</failureRate>
      <name>6</name>
      <quantity>1</quantity>
      st>
           <int>7</int>
           <int>9</int>
      </list>
      <type></type>
</Block>
<Block>
     <Id>7</Id>
      <Id2>7</Id2>
      <failureRate>3.8E-5</failureRate>
      <name>7</name>
```

```
<quantity>1</quantity>
      t>
           <int>8</int>
      </list>
      <type></type>
</Block>
<Block>
     <Id>8</Id>
      <Id2>8</Id2>
      <failureRate>3.8E-5</failureRate>
      <name>8</name>
      <quantity>1</quantity>
      st>
           <int>11</int>
      </list>
     <type></type>
</Block>
<Block>
     <Id>9</Id>
     <Id2>9</Id2>
      <failureRate>3.8E-5</failureRate>
      <name>9</name>
     <quantity>1</quantity>
      t>
           <int>10</int>
      </list>
     <type></type>
</Block>
<Block>
      <Id>10</Id>
      <Id2>10</Id2>
      <failureRate>3.8E-5</failureRate>
      <name>10</name>
      <quantity>1</quantity>
      st>
           <int>11</int>
     </list>
      <type></type>
</Block>
```