How to prove it: Phase transitions in logic

Florian Pelupessy

Tohoku University

SLS2016, Sendai, 29 January 2016

Overview:

- Introduction
- 2 Lower bounds
- Opper bounds
- 4 Sharpening

Phase transitions for incompleteness are results of the following form:

- \bullet $T \nvdash \varphi_{f_n}$, but
- $2 T \vdash \varphi_f,$

where parameter values f_n approach f as n increases.

Phase transitions for incompleteness are results of the following form:

- **1** $T \nvdash \varphi_{f_n}$, but
- $2 T \vdash \varphi_f,$

where parameter values f_n approach f as n increases.

In this talk we will treat the heuristics for these results. We will use the easy example of miniaturised Dickson's lemma to illustrate.

Definition

Given $a, b \in \mathbb{N}^c$:

- **1** |.| denotes the sup-norm: $|a| = \max_{i < c}(a)_i$,
- **②** ≤ denotes coordinatewise ordering:

$$a \leq b \Leftrightarrow (a)_0 \leq (b)_0 \wedge \cdots \wedge (a)_{c-1} \leq (b)_{c-1}$$
.

Definition

Given $a, b \in \mathbb{N}^c$:

- **1** |.| denotes the sup-norm: $|a| = \max_{i < c}(a)_i$,
- **②** ≤ denotes coordinatewise ordering:

$$a \leq b \Leftrightarrow (a)_0 \leq (b)_0 \wedge \cdots \wedge (a)_{c-1} \leq (b)_{c-1}$$
.

Definition (MDL_f)

For every l, c there exists $D =: D_f(c, l)$ such that for every sequence m_0, \ldots, m_D of c-tuples, with $|m_i| \leq l + f(i)$, there exist $i < j \leq D$ with $m_i \leq m_j$.

Fact

The provably recursive functions of RCA_0 are precisely the primitive recursive functions.

Fact

The provably recursive functions of RCA_0 are precisely the primitive recursive functions.

Fact

Define $A_0(x) = x + 1$ and $A_{n+1}(x) = A_n^{(x)}(x)$. For every primitive recursive function f there exists n such that:

$$f \leq A_n$$

Definition

We call a sequence m_0, \ldots, m_R bad if $m_i \not\leq m_i$ for all $i < j \leq R$.

Definition

We call a sequence m_0, \ldots, m_R bad if $m_i \not\leq m_i$ for all $i < j \leq R$.

Exercise

For every I, n there exists a bad sequence

$$m_0, \ldots, m_{A_n(I)}$$

of
$$(n+1)$$
-tuples such that $|m_i| \leq (l+1) + i$.

Definition

We call a sequence m_0, \ldots, m_R bad if $m_i \not\leq m_i$ for all $i < j \leq R$.

Exercise

For every I, n there exists a bad sequence

$$m_0, \ldots, m_{A_n(I)}$$

of
$$(n+1)$$
-tuples such that $|m_i| \leq (l+1) + i$.

Corollary

 $RCA_0 \nvdash MDL_{id}$.

Notice that, by the finite pigeonhole principle:

$$RCA_0 \vdash MDL_{x \mapsto a}$$

for every a.

Notice that, by the finite pigeonhole principle:

$$RCA_0 \vdash MDL_{x \mapsto a}$$

for every a.

Our goal is to classify some $f: \mathbb{N} \to \mathbb{N}$ according to the provability of MDL_f .

Examine the following function:

$$a \mapsto D_{x \mapsto a}(c, I)$$
.

Examine the following function:

$$a \mapsto D_{x \mapsto a}(c, I)$$
.

Exercise

$$D_{x\mapsto a}(c,I)=(I+a+1)^c.$$

Observe: Take $I_n(a) = a^n$, for every n there exist c, I such that:

$$I_n \leq a \mapsto D_{x \mapsto a}(c, I).$$

Observe: Take $I_n(a) = a^n$, for every n there exist c, I such that:

$$I_n \leq a \mapsto D_{x\mapsto a}(c, I).$$

Take $u(a) = 2^a$, for every c, l:

$$a \mapsto D_{x \mapsto a}(c, l) \leq u$$
.

Observe: Take $I_n(a) = a^n$, for every n there exist c, I such that:

$$I_n \leq a \mapsto D_{x \mapsto a}(c, I).$$

Take $u(a) = 2^a$, for every c, l:

$$a \mapsto D_{x \mapsto a}(c, l) \leq u$$
.

Experience suggests that using I_n^{-1} as a parameter value will result in *independence*, whilst using u^{-1} will result in *provability*.

Theorem

- $\bullet \ \operatorname{RCA}_0 \nvdash \operatorname{MDL}_{\mathfrak{Y}}, \ \textit{but}$
- **2** $RCA_0 \vdash MDL_{log}$.

Lower bounds

Exercise

For *I* >?:

$$D_{\mathrm{id}}(c, l) \leq D_{\mathcal{N}}(c + n + 1, l).$$

Lower bounds

Exercise

For *I* >?:

$$D_{\mathrm{id}}(c,l) \leq D_{\mathcal{N}}(c+n+1,l).$$

Corollary

 $RCA_0 \nvdash MDL_{\cancel{0}}$.

Upper bounds

Exercise

If $i \le 2^l$, then $\log i \le l$, so for l > ?:

$$D_{\log}(c, l) \leq D_l(c, l) \leq 2^l$$
.

Upper bounds

Exercise

If $i \le 2^l$, then $\log i \le l$, so for l > ?:

$$D_{log}(c, I) \leq D_I(c, I) \leq 2^I$$
.

Corollary

 $RCA_0 \vdash MDL_{log}$.

Lemma

$$RCA_0 \nvdash MDL_f$$
 for $f(x) = A^{-1}(x)/x$.

Proof: We examine D_f . Assume, for a contradiction, that:

$$D_f(2I+2,I+1) \leq A(I),$$

Lemma

 $RCA_0 \nvdash MDL_f$ for $f(x) = A^{-1}(x)/x$.

Proof: We examine D_f . Assume, for a contradiction, that:

$$D_f(2I+2,I+1) \leq A(I),$$

If $i \leq A(I)$,

Lemma

 $RCA_0 \nvdash MDL_f$ for $f(x) = A^{-1}(x)/x$.

Proof: We examine D_f . Assume, for a contradiction, that:

$$D_f(2I+2,I+1) \leq A(I),$$

If $i \leq A(I)$, then $A^{-1}(i) \leq I$,

Lemma

$$RCA_0 \nvdash MDL_f$$
 for $f(x) = A^{-1}(x)/x$.

Proof: We examine D_f . Assume, for a contradiction, that:

$$D_f(2I+2,I+1) \leq A(I),$$

If $i \leq A(I)$, then $A^{-1}(i) \leq I$, hence $f(i) \geq \sqrt[I]{i}$,

Lemma

 $RCA_0 \nvdash MDL_f$ for $f(x) = {}^{A^{-1}(x)}\sqrt{x}$.

Proof: We examine D_f . Assume, for a contradiction, that:

$$D_f(2I+2,I+1) \leq A(I),$$

If $i \leq A(I)$, then $A^{-1}(i) \leq I$, hence $f(i) \geq \sqrt[I]{i}$, so

$$D_f(2I+2,I+1) \geq D_{\downarrow l}(2I+2,I+1).$$

By earlier proofs, we already know:

Lemma

$$RCA_0 \nvdash MDL_f$$
 for $f(x) = {}^{A^{-1}(x)}\sqrt{x}$.

Proof: We examine D_f . Assume, for a contradiction, that:

$$D_f(2I+2,I+1) \leq A(I),$$

If $i \leq A(I)$, then $A^{-1}(i) \leq I$, hence $f(i) \geq \sqrt[I]{i}$, so

$$D_f(2l+2,l+1) \geq D_{y}(2l+2,l+1).$$

By earlier proofs, we already know:

$$D_{V}(I+I+2,I+1) > A_{I}(I).$$

Lemma

$$RCA_0 \nvdash MDL_f$$
 for $f(x) = A^{-1}(x)/x$.

Proof: We examine D_f . Assume, for a contradiction, that:

$$D_f(2I+2,I+1) \leq A(I),$$

If $i \leq A(I)$, then $A^{-1}(i) \leq I$, hence $f(i) \geq \sqrt[I]{i}$, so

$$D_f(2l+2,l+1) \geq D_{y}(2l+2,l+1).$$

By earlier proofs, we already know:

$$D_{V}(I+I+2,I+1) > A_{I}(I).$$

Contradiction!

Lemma

 $\mathrm{RCA}_0 \vdash \mathrm{MDL}_{f_n}$ for $f_n(x) = A_n^{-1}(x)/x$.

Proof: Assume, without loss of generality, that $A_n^{-1}(i^{A_n(i)}) = i$,

Lemma

$$RCA_0 \vdash MDL_{f_n}$$
 for $f_n(x) = A_n^{-1}(x)/x$.

Proof: Assume, without loss of generality, that $A_n^{-1}(i^{A_n(i)}) = i$, notice that

$$f_n((i+1)^{A_n(i+1)}) = \sqrt[i+1]{(i+1)^{A_n(i+1)}} > i.$$

Lemma

$$RCA_0 \vdash MDL_{f_n}$$
 for $f_n(x) = A_n^{-1}(x)/x$.

Proof: Assume, without loss of generality, that $A_n^{-1}(i^{A_n(i)}) = i$, notice that

$$f_n((i+1)^{A_n(i+1)}) = \sqrt[i+1]{(i+1)^{A_n(i+1)}} > i.$$

So f_n is unbounded, hence for any I there exists $k \ge I$ such that $f_n(i) \le f_n(k^{A_n(k)})$ for all $i \le k^{A_n(k)}$.

Lemma

$$RCA_0 \vdash MDL_{f_n}$$
 for $f_n(x) = A_n^{-1}(x)/x$.

Proof: Assume, without loss of generality, that $A_n^{-1}(i^{A_n(i)}) = i$, notice that

$$f_n((i+1)^{A_n(i+1)}) = \sqrt[i+1]{(i+1)^{A_n(i+1)}} > i.$$

So f_n is unbounded, hence for any I there exists $k \ge I$ such that $f_n(i) \le f_n(k^{A_n(k)})$ for all $i \le k^{A_n(k)}$.

Fix $c, l > 2^c$ and k with the above property.

We claim:

$$D_{f_n}(c,I) \leq k^{A_n(k)}.$$

We claim:

$$D_{f_n}(c, l) \leq k^{A_n(k)}$$
.

If $i \leq k^{A_n(k)}$, then $f_n(i) \leq f_n(k^{A_n(k)})$, so:

$$D_{f_n}(c, l) \leq D_{f_n(k^{A_n(k)})}(c, l) \leq (l + f_n(k^{A_n(k)}))^c \leq$$

We claim:

$$D_{f_n}(c,l) \leq k^{A_n(k)}$$
.

If $i \leq k^{A_n(k)}$, then $f_n(i) \leq f_n(k^{A_n(k)})$, so:

$$D_{f_n}(c, I) \leq D_{f_n(k^{A_n(k)})}(c, I) \leq (I + f_n(k^{A_n(k)}))^c \leq$$

$$(1+\sqrt[k]{k^{A_n(k)}})^c \le (2\sqrt[k]{k^{A_n(k)}})^c \le k^{A_n(k)}.$$

Thank you for listening.

ペルペッシー フロリャン florian.pelupessy@operamail.com pelupessy.github.io