Rappels de première année : fonctions numériques

1 Régularité des fonctions numériques (« fonction de classe C^k »)

1.1 Rappels de cours

(Dans tout ce rappel, I désigne un **intervalle** de \mathbb{R} .)

Définition 1 (Classe d'une fonction numérique)

Soit $f: I \to \mathbb{R}$ une fonction numérique.

- On dit que f est de classe C^n (pour un entier $n \in \mathbb{N}$) si
 - f est n fois dérivable **et**
 - sa dérivée $n^{\text{ième}}$ est continue.
- On dit que f est de classe \mathcal{C}^{∞} si f est dérivable « autant de fois que l'on veut ».

Remarque: fonctions usuelles

Les fonctions usuelles ci-dessous sont de classe \mathcal{C}^{∞} sur leur domaine de définition.

- ightharpoonup polynomiales définies sur $\mathbb R$
- ▶ fractions rationnelles s'écrivant $r(x) = \frac{n(x)}{d(x)}$ (pour n, d fonctions polynomiales), avec r définie en dehors des zéros du dénominateur d(x)
- ▶ logarithme définie sur $]0; +\infty[$
- ightharpoonup exponentielle définie sur $\mathbb R$
- ▶ puissances $x \mapsto x^a = \exp(a \ln(x))$ définies sur $[0; +\infty[$, (pour $a \in \mathbb{R}$ une constante quelconque).

La vérification de la régularité d'une fonction numérique est le plus souvent une routine grâce à la proposition suivante :

Proposition 2 (Opérations usuelles et régularité)

Soient $u, v : I \to \mathbb{R}$ deux fonctions dérivables (respectivement de classe C^n , respectivement C^{∞}) Alors chaque fonction f définie ci-dessous est aussi dérivable (resp. de classe C^n , resp. C^{∞}):

- Combinaison linéaire soit $f = \lambda u + \mu v$
- **Produit** soit $f = u \times v$
- ▶ Quotient défini soit $f = \frac{u}{v}$ (le dénominateur v ne s'annulant pas sur I!)
- ▶ Composition soit $f = u \circ v$, c'est-à-dire f(x) = u(v(x)),

(les fonctions u et v étant composables dans l'ordre indiqué!)

(ces fonctions u et v n'ont pas besoin d'être définies sur le même intervalle)

Fonctions problématiques

Les problèmes de régularité seront donc toujours (?) liés à l'un des trois cas de figure suivants :

- ▶ Valeur absolue
- ▶ Partie entière
- ▶ Problèmes de recollement : le problème le plus courant dans les sujets : des fonctions « définies suivant des cas » (par exemple pour x < 0 et $x \ge 0$, voir Exercice 1).

1.2 Exercices

Exercice 1 (Un exemple de recollement)

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par : $\forall x \in \mathbb{R}, \ f(x) = \begin{vmatrix} 1 - e^{-x} & \text{pour } x \geqslant 0 \\ 0 & \text{pour } x < 0 \end{vmatrix}$

- **1.** Montrer que la fonction f est continue sur \mathbb{R} .
- **2.** Étudier les demi-tangentes en 0. La fonction f est-elle dérivable sur \mathbb{R} ?
- 3. Représenter le graphe de la fonction f. (De quelle densité f est-elle la fonction de répartition?)

Exercice 2 (Un calcul de dérivée)

Soit $a \in \mathbb{R}$. Pour $n \in \mathbb{N}$, on définit sur \mathbb{R} la fonction f_n par : $\forall x \in \mathbb{R}$, $f_n(x) = \frac{x^n}{n!} e^{ax}$.

- 1. Montrer que la fonction f_n est de classe \mathcal{C}^{∞} sur son domaine de définition.
- **2.** Vérifier l'équation $f'_n = f_{n-1} + af_n$.
- **3.** Résoudre l'équation $f'_n(x) = 0$ pour $x \in \mathbb{R}$.

Exercice 3 (Dérivées successives)

Soit f la fonction définie par $f(x) = \frac{1}{1-x}$.

- 1. Quel est le domaine de définition de la fonction f?
- 2. Montrer que la fonction f est de classe \mathcal{C}^{∞} sur son domaine de définition.
- 3. Montrer par récurrence que

$$\forall n \in \mathbb{N}, \quad \forall x \neq 1, \quad f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}.$$

2 Théorèmes des valeurs intermédiaires et de la bijection

2.1 Rappels de cours

Proposition 3 (Théorème des valeurs intermédiaires)

Soit $f: I \to \mathbb{R}$ une fonction numérique continue, et $a < b \in I$.

Soit y_0 dans le segment [f(a); f(b)] $(ou\ [f(b); f(a)])$

Alors la valeur y_0 est prise **au moins une fois** par f entre les abscisses a et b:

$$\exists x_0 \in [a; b], \text{ tel que } f(x_0) = y_0.$$

Reformulation de la conclusion

L'équation $f(x) = y_0$ admet **au moins** une solution pour $x \in [a; b]$.

Le plus souvent, on utilisera directement le théorème de la bijection monotone :

Théorème 4 (de la bijection monotone)

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I. On suppose que :

- f est **continue** sur I,
- f est strictement monotone sur I.

Alors la fonction f définit une bijection de I sur l'intervalle f(I).

Remarques

ightharpoonup Bijectivité de f

Dire que la fonction f est bijective de I vers J = f(I) signifie que pour **chaque** $y_0 \in J$, **l'équation** des antécédents $y_0 = f(x)$ admet une solution et une seule $x = x_0 \in I$.

(Exprimer ce x en fonction de y revient à calculer la **bijection réciproque** f^{-1} de f.)

ightharpoonup Explicitation de f(I)

De plus l'intervalle f(I) est **délimité** par les $\left|\begin{array}{c} \text{valeurs} \\ \text{limites} \end{array}\right|$ de f aux bornes de l'intervalle I.

2.2 Exercices

Exercice 4 (D'après Esc Ect 2013)

(On ne traitera que les questions 1., 2. et 5.)

On considère la fonction f définie sur $]0; +\infty[$ par $: f(x) = \ln(x) - 2x + 3$, pour x > 0.

On note \mathcal{C} sa courbe dans un repère orthonormé d'unité 2 cm. (on donne $\ln(2) \simeq 0.7.$)

- **1.** a) Calculer $\lim_{x\to 0} f(x)$. Que peut-on en déduire sur la courbe \mathcal{C} ?
 - **b)** Calculer $\lim_{x \to +\infty} f(x)$.
- **2.** a) Calculer f'(x) pour tout réel x > 0.
 - b) Dresser le tableau de variations de f. On fera figurer : \rightarrow les limites aux bornes,
 - $f\left(\frac{1}{2}\right) (exact + approx.)$

- **3.** Établir que f est concave sur $]0; +\infty[$.
- 4. a) Déterminer une équation de la tangente $\mathcal T$ à la courbe $\mathcal C$ au point d'abscisse 1.
 - **b)** Justifier sans calcul que \mathcal{T} est située au dessus de \mathcal{C} sur $]0;+\infty[$.
- **5.** a) Montrer que l'équation f(x) = 0 admet exactement deux solutions α et β dans $[0; +\infty[$ avec $\alpha < \beta$.
 - **b)** Justifier que $\beta \in]1;2[$.
- **6.** Tracer l'allure de la \mathcal{C} et de \mathcal{T} . On donne $\alpha \simeq 0.06 \ \beta \simeq 1.79$.

Exercice 5 (D'après Ecricome Ect 2012)

On considère la fonction f définie sur $[1; +\infty[$ par $: \forall x \in [1; +\infty[, f(x) = \frac{x^2}{2x-1}].$

- 1. Donner la valeur de $\lim_{x \to +\infty} f(x)$.
- 2. Variations de f
 - a) Calculer f'(x), pour $x \in [1; +\infty[$.
 - b) Préciser le sens de variation de f sur $[1; +\infty[$.
- 3. Étude d'une réciproque
 - a) Montrer que la fonction f réalise une bijection de $[1; +\infty[$ sur $[1; +\infty[$.
 - b) Soit $t \in [1; +\infty[$. Prouver que l'équation $x^2 2tx + t = 0$ (d'inconnue x) admet des solutions réelles et les donner.
 - c) Soit $t \in [1; +\infty[$. Déterminer l'unique réel $x \in [1; +\infty[$ tel que f(x) = t.

3 Intégration

3.1 Sur un segment

Proposition 5 (Intégrale et primitive)

Soit $f: I \to \mathbb{R}$ une fonction continue. Alors pour tout segment $[a;b] \subseteq I$ sur lequel f est définie :

- 1. l'intégrale $\int_a^b f(t) dt$ sur un segment est bien définie et $\in \mathbb{R}$.
- **2.** la fonction f admet une **primitive** F sur I, unique à une constante près.
- **3.** on a la relation : $\int_a^b f(t) dt = \left[F(t) \right]_a^b$

Remarque

La relation intégrale-primitive peut (dans une certaine mesure...) être prise à la fois pour définition de l'intégrale ou d'une primitive (!).

On a aussi la merveilleuse technique de calcul suivante :

Proposition 6 (Intégration par parties)

Soient $u, v : I \to \mathbb{R}$ deux fonctions numériques de classe \mathcal{C}^1 . Alors on a

$$\underbrace{\int_a^b u'(t) \, v(t) \, \mathrm{d}t}_{\text{int. du prod. crois\'e}} = \underbrace{\left[u(t) \, v(t)\right]_a^b}_{\text{terme tout int\'egr\'e}} - \underbrace{\int_a^b u(t) \, v'(t) \, \mathrm{d}t}_{\text{int. de l'autre prod. crois\'e}}$$

Rédaction de l'intégration par parties pour l'intégrale $I = \int_1^2 \ln(t) dt$

Les fonctions u, v définies ci-dessous sont de classe C^1 sur le segment d'intégration [1;2].

$$\begin{cases} u = \ln(t) \\ v' = 1 \end{cases} \rightsquigarrow \begin{cases} u' = \frac{1}{t} \\ v = t \end{cases}$$

On peut donc procéder à l'intégration par parties sur $I = \int_1^2 \ln(t) dt$, et il vient :

$$I = \left[t \ln(t)\right]_1^2 - \int_1^2 t \times \frac{1}{t} dt = 2\ln(2) - \int_1^2 1 dt = 2\ln(2) - 1 = \ln\left(\frac{4}{e}\right)$$

Exercices

Exercice 6 (Intégrations par parties Eulériennes)

On définit $F(x) = \int_0^x t e^{-2t} dt$ et $G(x) = \int_1^x \ln(t) dt$

- 1. Pour quelles valeurs de $x \in \mathbb{R}$ chacune de ces intégrales est-elle bien-définie?
- 2. Calculer F(x) et G(x) par la bonne intégration par parties.

Exercice 7 (Primitivation d'une fraction rationnelle)

On définit $F(x) = \int_0^x \frac{t}{(1+t)^2} dt$.

- 1. Pour quelles valeurs de $x \in \mathbb{R}$ cette intégrale est-elle bien-définie?
- 2. Par une intégration par parties, montrer que $\forall x > -1$, $F(x) = -\frac{x}{1+x} + \ln(1+x)$.
- 3. Retrouver la même formule en identifiant les deux constantes $a,b \in \mathbb{R}$ telles que

$$\forall t \neq 1, \quad \frac{t}{(1+t)^2} = \frac{a}{(1+t)^2} + \frac{b}{(1+t)}$$

(pour retrouver la même primitive, on utilisera sans doute l'écriture : $-\frac{x}{1+x} = \frac{1}{1+x} - 1$)

3.2 Convergence

Étudier la convergence d'une intégrale **impropre** (ou **indéfinie**), c'est étudier **la limite sur une des bornes** de l'intégrale sur un segment générique.

Définition 7 (Deux cas de convergence)

Soit $f: I \to \mathbb{R}$ une fonction continue.

On définit deux notions d'intégrales convergentes hors d'un segment.

▶ Convergence en $+\infty$ (On suppose que I contient $[a; +\infty[$.)

On dit que l'intégrale $\int_a^{+\infty} f(t) dt$ converge si la limite $J = \lim_{X \to +\infty} \underbrace{\int_a^X f(t) dt}$ existe.

 $\int_{a}^{+\infty} f(t) dt = J = \lim_{X \to +\infty} J_X = \lim_{X \to +\infty} \int_{a}^{X} f(t) dt.$

► Convergence en 0 (On suppose que I est l'intervalle ouvert]0;1].)

On dit que l'intégrale $\int_a^{+\infty} f(t) dt$ converge si la limite $K = \lim_{\epsilon \to 0} \underbrace{\int_{\epsilon}^{1} f(t) dt}$ existe.

 $\int_0^1 f(t) dt = K = \lim_{\epsilon \to 0} K_{\epsilon} = \lim_{\epsilon \to 0} \int_{\epsilon}^1 f(t) dt.$ On note alors

Exercices

Exercice 8 (Intégrales convergentes de référence)

▶ Intégrales exponentielles

Montrer que l'intégrale $\int_0^{+\infty} e^{-at} dt$ converge ssi a > 0 et qu'elle vaut alors $\frac{1}{a}$.

▶ Intégrales de Riemann Montrer que l'intégrale $\int_1^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge ssi $\alpha > 1$ et qu'elle vaut alors $\frac{1}{\alpha - 1}$.

Exercice 9 (Convergence des intégrales Eulériennes)

On utilisera les expressions obtenues à l'exercice 6

- 1. Montrer que l'intégrale $I = \int_0^{+\infty} t e^{-2t} dt$ converge et la calculer.
- 2. Montrer que l'intégrale $J = \int_0^1 \ln(t) dt$ converge et la calculer.