Отчет по первому практическому заданию

Царькова Анастасия

Формулы для градиента и гессиана функции логистической регрессии:

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \ln(1 + \exp(-b_i a_i^T x)) + \frac{\lambda}{2} ||x||_2^2 = \frac{1}{m} \ln(1 + \exp(-b * Ax)) + \frac{\lambda}{2} x^T x$$

$$\nabla f(x) = -\frac{1}{m} A^T \left(b * \left(\frac{1}{1 - \exp(b * Ax)} \right) \right) + \lambda x = -\frac{1}{m} A^T \left(b * Expit(-b * Ax) \right) + \lambda x$$

$$\nabla^2 f(x) = \frac{1}{m} A^T Diag \left(\left(1 - \left(\frac{1}{1 - \exp(b * Ax)} \right) \right) * \left(\frac{1}{1 - \exp(b * Ax)} \right) \right) A + \lambda I =$$

$$= \frac{1}{m} A^T Diag \left(1 - Expit(b * Ax) \right) * \left(Expit(-b * Ax) \right) A + \lambda I$$

Первый эксперимент.

Зависимость поведения метода от обусловденности функции.

В данном эксперименте предлагается проанализировать траекторию градиентого спуска в зависимости от:

- 1. Обусловленности функции
- 2. Выбора начальной точки
- 3. Стратегии выбора шага

Сравнивая графики с линиями уровня функции и траекториями методов.

Зададим объекты на которых будем сравнивать поведения методов:

1. Функции – двемерные квадратичные функции с d нулю(для простоты) $f(x) = x^T A x + b x = x^T A x$.

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \ M_2 = \begin{pmatrix} 1 & 0 \\ 0 & 60 \end{pmatrix}$$

2. Начальные точки

$$x_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \ x_2 = \begin{pmatrix} 20 \\ 30 \end{pmatrix}$$

3. Стратегии выбора шага: Armijo, Wolfe, Constant

Результаты эксперимента:

• Constant

Видно что метод работает не очень хорошо. Делает слишком много шагов, но не слишком чувствителек к выбору начальной точки.

Более того крайне чувствителен к обусловленности функции, на M_2 метод возвращает $computational_error$, поэтому я взяла вместо нее $M=\begin{pmatrix} 1 & 0 \\ 0 & 10 \end{pmatrix}$ и все равно получила $iterations_exceeded$, но полученные графики очень показательны. Кажется что метот вряд ли сойдется при увеличениии числа итераций.

\bullet Armijo

Видно что метод очень чувствутелен к обусловленности функции. Так же есть небольшая зависимость о выбора начальной точки.

Зависимость поведения метода от начальной точки

Зависимость поведения метода от стратегии выбора шага.

Зависимость числа итераций градиентного спуска от числа обусловленности и размерности пространства.

Сравнение методов градиентного спуска и Ньютона на реальной задаче логистической регрессии.

w8a

gisette-scale

 ${\rm real\text{-}sim}$

Оптимизация вычислений в градиентном спуске.

Стратегия выбора длины шага в методе ньютона

