A Failure detector for Wireless Networks with Unknown Membership

L.Arantes, P.Sens, V. Simon Univ. Paris 6 / INRIA/ CNRS

Fabiola Greve UFBA

[Europar 2011 and Computer Journal 2012]

IME -2013

Outline

- · Background:
 - Models of synchronization
 - Consensus problem
 - Unreliable failure detector (FD)
- Current implementations of FDs
- · System model for dynamic networks
- Properties to achieve eventually strong FD
- Our proposal algorithm

Background

Synchronous model

- · A distributed system is synchronous if:
 - there is a known upper bound on the transmission delay of messages
 - there is a known upper bound on processor speed
- · A distributed system is asynchronous if:
 - there is no bound on the transmission delay of messages
 - there is no bound on processor speed
- A distributed system is <u>partial synchronous</u> if:
 - There is a global stabilization time (GST)
 - · Until GST system is asynchronous
 - After GST system is synchronous
 - · GST is not know

IME -2013

3

Background

Consensus in distributed system

- In the consensus problem, the processes propose values and have to agree on one among these values
 - Solving consensus is key to solving many problems in distributed computing (e.g., total order broadcast, atomic commit, group membership).

- Properties:
 - Validity: Any value decided is a value proposed
 - * Agreement: No two correct* processes decide differently
 - * Termination: Every correct* process eventually decides
 - * Integrity: No process decides twice

^{*} Correct process: process that never fails

Background

Consensus in asynchronous systems

- FLP Impossibility result (Fischer, Lynch, and Paterson 85): Consensus cannot be solved deterministically in an asynchronous system subject to even a single process crash.
 - The idea: impossible to distinguish faulty hosts from slow ones

- Possibility result (Chandra & Toueg 96): Consensus can be solved in an asynchronous system subject to failures with an unreliable failure detector
 - The idea: partial synchrony assumptions are encapsulated in the unreliability of failure detectors.

IME -2013

Background

Unreliable failure detectors

- Introduced in the beginning of 90's by Chandra and Toueg
- Failure detector = an oracle per node
- Oracles provide a list of hosts suspected to have crashed
 - possibly false detections
- Abstractly characterized in terms of two properties: completeness and accuracy
 - Completeness characterizes the capacity with which failed processes are suspected by correct processes
 - Accuracy characterizes the capacity with which correct processes are not suspected, i.e., restricts the false suspicions that a failure detector can make

Background

Properties of FD

Strong completeness:

Eventually every process that crashes is permanently suspected by every correct process

- [Eventual] Strong: [There is a time after which] correct processes are not suspected by any
- [Eventual] Weak: [There is a time after which] **some** correct processes are not suspected by any correct processes are not suspected by any correct process.

	Accuracy			
	Strong	Weak	Eventual Strong	Eventual weak
Strong completeness	Р	S	◊P	∜S

S the weakest FD to solve consensus

IME -2013

FD Implementation Timer-based implementation of FD Δ_{H} Pinging p Δ_{to} p up q's FD Heartbeat Δ_{to} p up p up q's FD p down

FD Implementation

Asynchronous implementations

- Base on query-response mechanism
 [Mostefaoui, Mourgaya, Raynal 03]
- Assumptions:
 - $-\prod = \{p1,p2, ..., pn\}$ known processes
 - Completed graph
 - f = maximum number of crashes
- · Principle:

send REQUEST to **n** nodes
wait for **n**-f RESPONSE
suspected = set of nodes that do not response

IME -2013

Dynamic System Model

Features of dynamic systems

- · Unknown membership
 - set and number of nodes are unknown
- Dynamic graph due to mobility
- Communication via transmission range (broadcast to neighborhoods)

 Complex to fix timeout of transmission delays due to the dynamics of the network

IMF -2013

Dynamic System Model

Definitions

- $\Pi = \{p_1, p_2, ..., p_n\}$ - Π and \mathbf{n} are unknown
- Processes can crash or leave the system
- The wireless mobile network is represented by a communication graph G = (V, E)
 - $-V=\Pi$
 - E= set of logical links
- R_i be the transmission range of p_i
- N_i: set of 1-hop neighbors (nodes within R_i) at t
- d_i^t : range density $(d_i^t = |N_i^t|)$
- f_i = maximum number of failures in the neighborhood of process p_i

IMF -2013

11

Dynamic System Model

Processes status in a network with unknown membership

- · Wireless Mesh Networks
- Wireless Sensor Networks

- In order to implement FDs with an unknown membership, processes should interact with some others to be known.
 - The actual membership of the system is in fact defined by the KNOWN set. A process is *known* if, after having joined the system, it has been identified by some stable node.
- A stable process is a non faulty process that, after had entered the system for some point in time, never departs; otherwise, it is faulty.

IME -2013

Dynamic System Model

System Membreship

- Let UP(t) be the set of processes that are in the system at time t. Let known_q set denotes the partial knowledge of q
 - initiallly, $known_q = \{q\}$

 The membership of the system is actually defined by the KNOWN set.

IME -2013

13

Dynamic System Model

Communication Model

- Links reliable:
 - No message loss neither corruption nor duplication
 - Reliable delivery of broadcast data in transmission range
 - · All stable neighbors receive the message
- Connectivity:
 - Eventually there is a path between every pair of stable (correct) processes
 - in spite of changes in the topology of G, from some point in time t, the set KNOWN ∩ STABLE forms a strongly connected component in G.

IMF -2013

Dynamic System Model

♦S^M: Eventually strong FD with unknown membership

- ♦S^M FD is time-free and based on a local queryresponse communication mechanism
 - A process p_i launches the primitive by sending a query(m) with a message m to its neighbors within its transmission range.
 - When a process p_j delivers this query, it systematically answers by sending back a response(m') with a message m' to p_i.
 - When p_i has received at least α_i responses from different processes, the current query-response terminates.
 - $\alpha_i = N^t_i f_i$

IME -2013

15

Properties

Properties of ◊S^M

- Same properties of ◊S FD, but restricted to known processes
 - Strong completeness: every known and faulty process is eventually suspected by all known and stable processes.

```
\{\exists t, \forall t \ ' \ge t, \forall p \in STABLE \cap FAULTY => p \in susp_q, \forall q \in KNOWN \cap STABLE\}
```

 Eventual weak accuracy: Eventually, at least one stable and known process is never suspected by any known and stable processes.

 $\{ \exists t, \ \forall t \ ' \geq t, \ \exists \ p \in \mathsf{KNOWN} \ \cap \mathsf{STABLE} => \\ p \not\in \mathsf{susp}_q, \ \forall \ q \in \mathsf{KNOWN} \cap \mathsf{STABLE} \}$

IME -2013

Properties

Properties to implement a ◊SM FD

- Stable Termination Property (SatP): Each QUERY must be received by at least one stable and known node
- ⇒ Necessary for the diffusion of the information
- 2) <u>Mobility Property</u> (MobiP): In its new neighborhood, a moving node should have received a QUERY for at at least one stable neighbor.
- \Rightarrow p_i updates its state with recent information
- 3) <u>Stabilized Responsiveness Property</u> (SRP (p_i)): eventually, the set of responses received by any neighbor of p_i to their last QUERY always includes a response from p_i . Moreover, neighbors of p_i eventually stop moving outside p_i 's transmission range.
- ⇒ SRP should be hold for at least one stable known node
- Necessary for weak accuracy (eventually the "SRP node" will not be suspected)

IME -2013

17

Algorithm

Time-free ◊S^M FD Algorithm (1)

- Principles :
 - Local detection of neighbor's failure based on query-response exchange
 - Flooding of failure information (suspected nodes and mistakes)
- Notations:
 - susp: set of processes suspected of being faulty
 - mist.: set of nodes which were previously suspected of being faulty but such suspicions are currently considered to be a mistake.
 - $\,\circ\,$ suspected $\,$ and mistake information are tagged by a local counter.
 - rec_from: set of nodes from which p_i has received responses to its last query message.
 - known: denotes the current knowledge of p_i about its neighborhood.

IMF -201

Performance Evaluation

- OMNet++
- QoS Metrics (Chen et. al.)
 - Detection Time: time that elapses from p's crash to the time when q starts to suspects p permanently;
 - Mistake Recurrence Time: The time between two consecutive mistakes;
 - Mistake Duration: The time it takes for the FD to correct a mistake.

IME -2013

Performance evaluation

- Parameters
 - -N=100
 - Two-dimensional regions:
 - 600mx600m
 - 200mx1800m
 - Every node has at least 5 neighbors
 - At most 2 neighbors can crash
 - 10% of total nodes can crash
 - 10 nodes every 70s starting at 10s
 - Delay of 1s between every query was introduced

IME -2013

23

Performance Evaluation

- Impact of the number of neighbors on the failure detection time.
 - Transmission range r varies from 100m to 380m
 - · Variation of the number of neighbors

Performance Evaluation

- Impact of Mobility: accuracy property when both ten nodes located at one boundary of the network move at a speed of 2m/s.
 - First one starts moving at 100s and at every 5s a new start moving

IME -2013

Performance Evaluation

- Distribution of False Suspicion Duration
 - 200m x1800m region
 - For all nodes when 10 nodes located at one boundary move

Performance Evaluation

- Distribution of total number of false suspicions
 - 200m x1800m region
 - for the N=100 nodes when 10 nodes located at one boundary

IME -2013

Conclusions

- Implementation of FD for dynamic networks with unknown membership:
 - Timer-free
 - Based on local failure detection and diffusion
- Definition of properties for ◊S^M
 - Membership
 - Minimum stability of moving nodes
 - Stable Responsiveness to Queries

IME -2013

Other Related Work and Perspectives

- A relaxed model with path constructed over time
 - Time Varying Graph (Casteigts et al 2010)
 - Computer Journal 2012
- Byzantine time-free Failure Detector
 - Strong Byzantine completeness: eventually, every stable known process suspects permanently every process that has detectably deviated from algorithm A;
 - When A requires processes to exchange a message m, every process p waits until the reception of m from at least f_p+1 distinct senders.
 - Majority of correct messages: |N_p| > 2f_p
 - EDCC 2012 and WRAITS 2011
- Algorithm: Implementation of Ω (eventual leader election)
 - Solve consensus
 - · current work

IME -2013

29

Some other recent work

- Distributed Mutual Exclusion
 - Nodes communicate only by message passing.
 - · Logically organized: ring, tree, complete graph
 - Shared Resource; The code that access the shared resource is called the *critical section (CS)*.
 - Ensures two properties :
 - Safety: at most one process can execute the critical section at any given time
 - · Liveness: all critical section requests will be satisfied
 - Divided into two families:
 - Token-based
 - A node can access the resource if it holds a token, which is unique in the system.
 - Permission-based
 - A node can access the resource only after having received permission from all nodes

IME -2013

Some other recent work

Distributed Mutal Exclusion: Dynamic Networks

- IME (Alfredo Goldman and Paulo Floriano)
- Formalization of the Necessary and Sufficient Connectivity Conditions to the Distributed Mutual Exclusion Problem in Dynamic Networks.
 - Framework : Evolving Graphs and Graph Rellabelings
 - NCA 2011 and SBRC 2012

IME -2013

31

Some other recent work

Distributed Mutual Exclusion in Clouds

- SLA-oriented mutual exclusion algorithm
 - Service Level Agreement (quality of service) assigned to requests:
 - Priority
 - Response time (deadline)
 - Token-based solutions where nodes are organised on a logical static tree
 - Adaptation of Raymond and Kankar-Chaki algorithms
 - · Aim: to reduce the number of SLA violations
 - CCGRID 2012

IME -2013

Fault tolerant k-mutual exclusion

- K-mutex: At any time k units of the resources can be used
 - Fault tolerant solution for Hypercube topologies
 - · Hi-ADSD diagnostic system
 - Spanning tree
 - Universidade Federal do Parana
 - WTF 2012 and ISPDC 2013

IME -2013

33

Some other recent works

- · Gossip algorithms on large-scale networks
 - Information dissemination to all other sites
 - Topology is a not complete graph.
 - Flooding algorithm presents poor performance
 - Upon the first reception of a message, every site of the network relays it once to its neighbors
 - » High number of redundant messages
 - Gossip protocols
 - Upon the first reception of a message, every site of relays it once to its neighbors based on some probability
 - » reduces the number of redundant message
 - » Should guarantee high reliability: percentage of nodes that receive all broadcast messages.

IME -2013

Some other recent works

- Performance evaluation comparison of gossip algorithms over different topologies, message complexity, dissemination of information, number of infected nodes, latency, etc.
- SRDS 2012
- A new gossip protocol for scale-free topologies that exploits the dissemination power of hubs of scale-free networks
 - Submitted to ICPP 2013

 STIC-Amsud (Yahoo Research (Chile), UFSCar, San Louis (Argentina), LIP6): search of information in disaster area

IME -2013

35

Laboratoire d'Informatique de Paris 6 LIP6

- Attached to the University Pierre et Marie Curie (Paris 6) and CNRS
 - 177 researchers and 200 PhD students
 - 5 Departments:
 - Réseaux et Systèmes Répartis
 - →−Regal
 - Move,
 - ARP
 - NPA.
 - Phare
 - Complex Network
 - · Calcul Scientifique
 - · Decision, Systèmes Intelligents, Recherche Opérationelle
 - · Données et Apprentissage Artificiel
 - · Systèmes Embarques sur Puce

IME -2013

Regal

➤ Joint project-team with INRIA Research Team
✓ 8 faculty members, 3 researchers, 2 engineers, 12 PhD students

Scientific context

Distributed system for large and dynamic networks

Focus on information sharing, distributed algorithms

Challenges Features Large number of resources Fault Tolerance - Heterogeneity - Scalability nο Asynchronous networks - Data Storage, availability global state - Deployment/efficient accesses Dynamicity (Failure, disconnection) to remote services - Security Dynamic adaptation Regal approach : end-to-end (from algorithms to experimentations) \rightarrow Algorithm \rightarrow Prototype \rightarrow Experimentation \rightarrow Evaluation

Regal

Some Projects:

IME -2013

- Distributed Algorithms or large scale systems, mobile systems, dynamic systems, Grids, and Clouds
 - Fault tolerance, failure detection, dynamicity, auto-stabilisation, elasticity, MapReduce
- P2P Data Storage
 - Pastis (File System), Publish-subscriber Systems, Indexing/caching, replication
- Replication and Consistency for large scale systems
 - Optimistic approach, weaker models, *Actions-Constraints Formalism* formal model
- Dynamic configuration of OS
 - VVM: programming and an execution environment allowing to adapt the java virtual machine on the fly.
 - · Dynamic detection of bugs