Diagnosis

- Introduction
- Logic Diagnosis
 - SSF diagnosis
 - * Static Cause-effect diagnosis
 - Dynamic Cause-effect diagnosis
 - * Effect-cause diagnosis
 - Path Tracing: CPT, STAR
 - Pruning
 - Ranking
 - Unmodeled / multiple fault diagnosis
- Scan Chain Diagnosis
- Failure Analysis
- Conclusions

Review

cause-effect diagnosis

effect-cause diagnosis

Test Failure

NO fault dictionary

Diagnosis

Typical Effect-Cause Diagnosis Flow

test failures test patterns, ckt **Path-Tracing CPT, STAR** candidate faults **Pruning** Set operation, Layout, Timing ... suspect faults Ranking **Fault Simulation**

* This flow can be modified in different diagnosis tools

ranked suspect faults

Diagnosis

- Introduction
- Logic Diagnosis
 - SSF diagnosis
 - * Static Cause-effect diagnosis
 - Dynamic Cause-effect diagnosis
 - * Effect-cause diagnosis
 - Path Tracing: CPT, STAR
 - Pruning
 - Ranking
 - Unmodeled / multiple fault diagnosis
- Scan Chain Diagnosis
- Failure Analysis
- Conclusions

Review: Critical Path (see CH 5)

- x is Critical Signal
 - x's value change causes some primary output values to change
- Example: when gate output is critical
 - (1) If all gate inputs are non-controlling, they are all critical
 - (2) If only on gate input is controlling, it is critical
 - (3) Otherwise, no input is critical

critical signals are circled

Review: Critical Path Tracing (see CH 5)

- CPT: trace critical signals from output
- CPT is simple in fanout-free cone (FFC)
 - Linear time algorithm. No fault simulation needed
- Example: Critical signals: a, b, f, g.

CPT (O) /*O is a node*/

- 1. **foreach** gate input *g* of *O*
- 2. **if** (*g* is critical signal) **then**
- 3. CPT(g);
- 4. else return;

CPT for Diagnosis

- CPT from failing output
 - Critical signals are candidate fault sites
 - Stuck values are opposite to their good logic values
- Example: CPT from failing output g
 - 4 candidate faults: g SA0, f SA0, a SA0, b SA0

THEOREM:

Assume there is only one SSF in FFC.

The fault must be one of candidate faults using CPT.

Quiz

Q: Suppose a CUT fails this test pattern.

(1) Use CPT to find candidate faults. (2) How do you know fanout stem *E* is critical or not?

A:

CPT Cannot Decide Criticality of Fanout Stem

Four Cases for Fanout

All four cases are possible

- Case 4 example: multiple path sensitization
 - No branch is critical but stem is critical. How to trace?

Case 4 Very Bad for Diagnosis

Diagnosis

- Introduction
- Logic Diagnosis
 - SSF diagnosis
 - * Static Cause-effect diagnosis
 - Dynamic Cause-effect diagnosis
 - Effect-cause diagnosis
 - Path Tracing: CPT, STAR
 - Pruning
 - Ranking
 - Unmodeled / multiple fault diagnosis
- Scan Chain Diagnosis
- Failure Analysis
- Conclusions

STAR Can Handle Fanouts

STAR Tracing [Akers 90]

- A starred signal means that it can be a candidate fault site
- When a gate output is starred
 - (1) If all gate inputs are non-controlling, they are all starred
 - (2) If only on gate input is controlling, it is starred
 - (3) Otherwise, randomly select one to be starred

- When any fanout branch is starred, its fanout stem is starred
 - otherwise, fanout stem is NOT starred

STAR Tracing for Diagnosis

- Run StarTracing() from each failing output
 - Starred signals are candidate fault sites
 - Stuck-at values are opposite to its good logic value
- Example: 5 candidate faults

StarTracing (O)

- 1. **foreach** gate input *g* of *O*
- 2. **if** (g is starred) **then**
- 3. StarTracing (g);
- 4. else return;

Another STAR Tracing

- STAR tracing can be performed multiple times for a pattern
 - Each time can result in different candidate faults
- Example: 5 (different) candidate faults
 - Fanout stem is still one of candidates

StarTracing (O)

- 1. **foreach** gate input g of O
- 2. **if** (g is starred) **then**
- 3. StarTracing (g);
- 4. else return;

THEOREM: (to be proved in FFT)

Assume there is only one SSF in CUT. The fault must be one of candidate faults using STAR Tracing.

STAR Tracing Example (pattern 1/2)

- Example: STAR Tracing from failing output Z
 - → 7 candidate faults: Z SAO, R₂ SA1, R SA1, Q₁ SAO, Q SAO, B SAO, D SA1

STAR Tracing Example (pattern 2/2)

Q: Apply another pattern. Y and Z are failing outputs.

(1) Which signals are starred? (2) What are candidate faults?

(Suppose we randomly select P and C)

ANSWER

Q: Apply another pattern. Y and Z are failing outputs.

- (1) Which signals are starred? 12
- (2) What are candidate faults?

Y SA0, Z SA0, R₁ SA1, R SA1, P SA1, B SA0, Q₁ SA0, Q₂ SA0, Q SA0, C₂ SA1, C SA1, E SA0

Diagnosis

- Introduction
- Logic Diagnosis
 - SSF diagnosis
 - * Static Cause-effect diagnosis
 - Dynamic Cause-effect diagnosis
 - * Effect-cause diagnosis
 - Path Tracing: CPT, STAR
 - Pruning
 - Ranking
 - Unmodeled / multiple fault diagnosis
- Scan Chain Diagnosis
- Failure Analysis
- Conclusions

Typical Effect-Cause Diagnosis Flow

test failures test patterns, ckt **Path-Tracing** candidate faults **Pruning** Set operation, Layout, Timing ... suspect faults Ranking ranked suspect faults

Single Fault / Multiple Faults (*not in exam)

- Single fault : take intersection of candidate faults
 - guaranteed to be correct

X true fault X false fault

- Multiple fault: take union of candidate faults
 - may be incorrect : can miss some true faults (Why? FFT)

Example (Cont'd)

- After pattern 1
 - 7 candidate faults:

Z SA0, R_2 SA1, R SA1, Q_1 SA0, Q SA0, B SA0, D SA1

- After pattern 2
 - 12 candidate faults:

Y SA0, Z SA0, R_1 SA1, R SA1, P SA1, B SA0, Q_1 SA0, Q_2 SA0, Q SA0, C_2 SA1, C SA1, E SA0

- After Intersection
 - 5 suspect faults

Z SA0, R SA1, Q₁ SA0, Q SA0, B SA0

Other Pruning Techniques (* not in exam)

- Layout information for bridging fault diagnosis
 - Bridging pairs must be neighbors on layout
 - If two faults are physically far from each other
 - They can be pruned

- Timing information for delay fault diagnosis
 - If a fault fails short path but pass longer path
 - It can be pruned

Diagnosis

- Introduction
- Logic Diagnosis
 - SSF diagnosis
 - Static Cause-effect diagnosis
 - Dynamic Cause-effect diagnosis
 - * Effect-cause diagnosis
 - Path Tracing: CPT, STAR
 - Pruning
 - Ranking
 - Unmodeled / multiple fault diagnosis
- Scan Chain Diagnosis
- Failure Analysis
- Conclusions

Typical Effect-Cause Diagnosis Flow

test failures test patterns, ckt **Path-Tracing** candidate faults **Pruning** suspect faults Ranking **Fault Simulation**

ranked suspect faults

Ranking

- Fault simulate 5 suspect faults
 - → Z SA0, R SA1, Q₁ SA0, Q SA0, B SA0
- Q SA0 is ranked #1

$$Diagnosis Score = \frac{TFSF}{TFSP + \alpha \cdot TPSF + TFSF} \times 100\%$$

	faults	pattern1		pattern2		Diagnosis score			
		Υ	Z	Υ	Z	TFSF	TPSF	TFSP	score
1	Z SA0		Х		Х	2		1	0.67
2	R SA1			Х		1		2	0.33
3	Q ₁ SA0		Х	Х		2		1	0.67
4	Q SA0		Х	Х	Х	3			1.00
5	B SA0			Х		1		2	0.33
	Test Failure		Х	X	X				

Summary

- Effect-Cause Diagnosis
 - No dictionary is needed
 - Most effective diagnosis nowadays
- Typical flow
 - Path tracing, Pruning, Ranking
- STAR tracing
 - Fast. No fault simulation needed.
 - Guaranteed correct if SSF
 - Multiple path sensitization is OK

FFT #1

- Q: All four cases are possible
 - Please give examples for cases 1, 2, 3
 - Can we handle them by STAR tracing?

FFT #2

Please prove the theorem

THEOREM:

Assume there is only one SSF in CUT. The fault must be one of candidate faults using STAR Tracing.

StarTracing (O)

- 1. **foreach** gate input *g* of *O*
- 2. **if** (g is starred) **then**
- 3. StarTracing (g);
- 4. else return;

FFT #3

- Multiple fault: take union of candidate faults
 - may be incorrect
 - can miss some true suspect faults
- Q: Why we cannot guarantee to find all multiple faults using STAR tracing?

