5.3.8 Assume $g:(a,b)\to\mathbb{R}$ is differentiable at a point c. If $g'(c)\neq 0$ then there exists a δ -neighborhood $V_{\delta}(c)\subseteq (a,b)$ such that for every $x\in V_{\delta}(c)\backslash\{c\}$, $g(x)\neq g(c)$. Proof: Assume $g'(c)\neq 0$. Suppose for contradiction that for every δ -neighborhood $V_{\delta}(c)\subseteq (a,b)$ there exists $x\in V_{\delta}(c)\backslash\{c\}$, g(x)=g(c). If we consider $V_{\frac{1}{n}}(c)\backslash\{c\}$ then for each n we have an $x_n\in V_{\frac{1}{n}}(c)$ such that $g(x_n)=g(c)$. Therefore $\lim \frac{g(x_n)-g(c)}{x_n-c}=0$, contradicting $g'(c)\neq 0$.