EXAMEN FINAL PISICA II A/B/82.02		
Correo niestronko: Custrime stre y effo: 1 2	Iema 2	22 de televano de bista. Patricia
	Professor	Philips II A / B / Bank
	1 1	3 None
to = 8,85 10 to C/m ² N	Hardnid' Towa,	R=E, 22 1/Kmo/

thickers(in magnetics # pure note position and place of place of its major black or research to the proposition of the control B - Lucyo, obtengs la expressor supplicits de B en el germo de la comira, y discreption na valor, dirección y sentido.

b) Defina el coeficiente de autoloducción L en forma general. Explicar, charamante y passe a passe pare sus resolver las expresiones matemáticas, cómo puedo determinar el L de la espira. (Dependera del radio de la espira y de la corriente que circula por ella? Justifique.

Problema 2: Un núcleo cuadrado de material ferromagnético de 30 cm de lado posee una sección (también cuadrada) de em² y dos entrehierros de 1 mm cada uno, como se observa en figura. Sobre el núcleo se colocan dos arrollamientos de N/= 100 y Ny=50 espiras. Por el primero circula una corriente constante I, =5A y el segundo está abierto. Suponga que se puede considerar al material con una permeabilidad equivalente μ_e =1000 μ_o. Si se comienza a reducir el tamaño del entrehierro hasta anularlo en un lapso de 1 ms,

a) estime el valor medio de la fem inducida en el segundo arrollamiento.

b) determine en que sentido circularía la corriente (I2) si el segundo arrollamiento estuviera cerrado sabiendo que Q y S son bordes homólogos (¿de P a Q o de Q a P?) Fundamente mediante la Ley de Lenz.

Un dieléctrico sólido con permitividad relativa 50 llena el espacio entre dos placas conductoras circulares de 5mm de espesor y radios =10cm. Las placas están dispuestas en forma paralela (de tal manera que sus centros queden enfrentados) y separadas una distancia b=0,5cm.

a) Deduzca y calcule la capacidad del conjunto. Justifique las aproximaciones realizadas.

b) Se separa una de las placas de este capacitor dejando un espesor de aire de 2mm entre una placa y dieléctrico. A partir de la definición de capacidad calcule la expresión de la nueva capacidad. Determi su valor (¿es mayor o menor que la de a))?.

Problema 4 (Física IIA y 82.02):

a) A partir de la Ley de Fourier para la conducción del calor, determine el perfil de temperaturas para una par espesor d considerando geometria plana (pared de alto y ancho "infinitos"). Considere que un lado de la pare a temperatura uniforme T_i y el otro a T_d siendo $T_i > T_d$

 b) Dos paredes de espesores d_i=20cm y d₂=10cm y conductividades térmicas λ_i=0,5 W/(m K) y λ₂=20 W son puestas en contacto. En el estado estacionario, las temperaturas de las superficies externas de las pare T₁=80°C y T₂=10°C. Deduzca y calcule la temperatura del lado común a partir del resultado obtenido en las mismas hipótesis.

En la figura, el plano az representa la superficio de separación de dos medios brecates, interropas y ao imagnéticos de permitividades relativas e₁ y e₂. Esa superficie esta cargodo con una decidad superficial o y en su interior

- existen solumente carupos eléctricos uniformes \bar{E}_{y} \bar{E}_{y} , respectivamente, ambos con componente $x \in y$. a) Deduzea, a partir de les leyes fundemenales de la Electricidad y el Magnetismo en condiciones electrostáticas, la relación entre las componentes de los campos eléctricos y entre las componentes de los voctores desplazzeniento sobre la interfaz de la figura
 - b) Si se sabe que el campo eléctrico sobre la interfaz $\vec{E}(y=0^+)$ ($y=0^$ en el semiespacio superior) forma un ángulo de 45° con el eje x y su valor es de 20 k.V/m, σ = 0 , ε_1 = 20 ε_0 y ε_2 = 5 ε_0 , determine el valor del campo eléctrico $\tilde{E}(y=0^-)$ (y=0 del lado del medio con permitividad ε_2). Compare los valores de los campos y diseuta el resultado obtenido.

Un cilindro de paredes rígidas y adiabáticas está separado en dos partes iguales por un pestra adiabásico de masa despreciable que puede moverse sin rozamiento. En cada camara del cilindro (A y B) hay 10 moles de un gas ideal diatómico a la misma temperatura, presión y volumeo (T_0, p_0, V_0) , siendo $T_0 = 20$ °C. En la cámara superior se hace circular una corriente por una resistencia eléctrica que calienta el gas muy lentamente hasta que su volumen toma el valor $V_{fA} = 1.5 V_0$. Aproximando este

 b) Las variaciones de energía interna y de entropia sufridas por ambos gases. Discuta sus valores.

Problema 5 (Fisica IIB):

La figura muestra un circuito de corriente alterna sinusoidal con una bobina L, un resistor R y un capacitor C de placas de placas plano-paralelas. Un dieléctrico de &, = 3,9 ocupa el espacio entre las placas (como muestra la figura) y puede deslizarse entre éstas.

- a) Deduzca la expresión de la capacidad en función de la cantidad de dieléctrico (d) insertado en el capacitor. Considere que la separación entre las placas es b y las placas son cuadradas de lado a. Desprecie efectos de borde.
- b) Si el resistor tiene una resistencia R=50kΩ, la bobina tiene una inductancia L= 1 mH, V_{Geficia}=110V y la frecuencia de resonancia de la combinación es f=1200 Hz cuando el dieléctrico ocupa todo el espacio del condensador (d=a) cuál es el valor numérico de la capacidad del condensador sin dieléctrico? Realice el diagrama fasorial correspondiente.

