Configurations of points and lines and a question about symbolic powers

Alexandra Seceleanu

University of Nebraska-Lincoln

Symbolic powers of ideals

The *n*-th **symbolic power** $I^{(n)}$ of a radical ideal $I \subset R$ is

$$I^{(n)}=I^nR_W\cap R$$

where R_W is R localized at the complement of the minimal primes of I.

Symbolic powers of ideals

The *n*-th **symbolic power** $I^{(n)}$ of a radical ideal $I \subset R$ is

$$I^{(n)}=I^nR_W\cap R$$

where R_W is R localized at the complement of the minimal primes of I.

In a geometric sense, symbolic powers have an particularly nice meaning:

• Zariski-Nagata: over an algebraically closed field, if $\mathbf{X} = V(P)$ is an algebraic variety, then $P^{(n)}$ is the set of forms that vanish to order at least n at every point of \mathbf{X}

Symbolic powers of ideals

The *n*-th **symbolic power** $I^{(n)}$ of a radical ideal $I \subset R$ is

$$I^{(n)}=I^nR_W\cap R$$

where R_W is R localized at the complement of the minimal primes of I.

In a geometric sense, symbolic powers have an particularly nice meaning:

- Zariski-Nagata: over an algebraically closed field, if $\mathbf{X} = V(P)$ is an algebraic variety, then $P^{(n)}$ is the set of forms that vanish to order at least n at every point of \mathbf{X}
- in characteristic 0, this means the forms that vanish together with their first n-1 partial derivatives at every point of \mathbf{X} .

Comparing symbolic and ordinary powers

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

For any homogeneous ideal $I \subseteq K[\mathbb{P}^N] = K[x_0, \dots, x_N]$, the following containment holds

$$\mathbf{I}^{(Nr)} \subseteq \mathbf{I}^r, \forall r \geq 1$$

proven by

- Ein-Lazarsfeld-Smith (2001), for I unmixed, using multiplier ideals
- Hochster-Huneke (2002) using reduction to characteristic p

Improving the containment

The theorem states that $I^{(Nr)} \subseteq I^r, \forall r \geq 1$. To make containment tighter:

• decrease the symbolic exponent Nr replacing it by Nr - cQuestion: Is there a c such that $I^{(Nr-c)} \subseteq I^r$ holds for all $r \ge 1$, for radical ideals I defining points? $(1 \le c \le N - 1)$

Improving the containment

The theorem states that $I^{(Nr)} \subseteq I^r, \forall r \geq 1$. To make containment tighter:

- decrease the symbolic exponent Nr replacing it by Nr cQuestion: Is there a c such that $I^{(Nr-c)} \subseteq I^r$ holds for all $r \ge 1$, for radical ideals I defining points? $(1 \le c \le N - 1)$
- multiply the ordinary power by powers of $\mathfrak{m}=(x_0,\ldots,x_N)$ Question: Is there a c such that $I^{(Nr)}\subseteq\mathfrak{m}^cI^r$ holds for all $r\geq 1$, for radical ideals I defining points?

A question about symbolic powers

Question (Huneke)

Does

$$I^{(2\cdot 2-1)} = I^{(3)} \subset I^2$$

always hold in the case of $I \subseteq K[\mathbb{P}^2]$ defining a reduced set of points of \mathbb{P}^2 ?

• Bocci-Harbourne: $I^{(3)} \subseteq I^2$ holds for points in general position in \mathbb{P}^2 .

Three classical configurations

Hesse configuration

Fermat-3 configuration

Klein configuration

49 pts & 21 lines 21 quadruple 28 triple

realizable over

$$K[a]/(a^2+a+2)$$

e.g. $\mathbb{R}[\sqrt{-7}]$
or $\mathbb{Z}/7$

Wiman configuration

201 pts & 45 lines 36 quintuple 45 quadruple 120 triple

realizable over

$$K[a]/(a^4 - a^2 + 4)$$

e.g. $\mathbb{Z}/19$
or $\mathbb{Z}/31$

• Dumnicki, Szemberg and Tutaj-Gasińska the Fermat-3 configuration has $I^{(3)} \not\subset I^2$ over $\mathbb C$

$$I = (x_0(x_1^3 - x_2^3), x_1(x_0^3 - x_2^3), x_2(x_0^3 - x_1^3))$$

• Dumnicki, Szemberg and Tutaj-Gasińska the Fermat-3 configuration has $I^{(3)} \not\subset I^2$ over $\mathbb C$

$$I = (x_0(x_1^3 - x_2^3), x_1(x_0^3 - x_2^3), x_2(x_0^3 - x_1^3))$$

• Harbourne -S. the Fermat-n configuration has $I^{(3)} \not\subset I^2$ over K

$$I = (x_0(x_1^n - x_2^n), x_1(x_0^n - x_2^n), x_2(x_0^n - x_1^n))$$

• Dumnicki, Szemberg and Tutaj-Gasińska the Fermat-3 configuration has $I^{(3)} \not\subset I^2$ over $\mathbb C$

$$I = (x_0(x_1^3 - x_2^3), x_1(x_0^3 - x_2^3), x_2(x_0^3 - x_1^3))$$

• Harbourne -S. the Fermat-n configuration has $I^{(3)} \not\subset I^2$ over K

$$I = (x_0(x_1^n - x_2^n), x_1(x_0^n - x_2^n), x_2(x_0^n - x_1^n))$$

• Bauer, Di Rocco, Harbourne, Huizenga, Lundman, Pokora, Szemberg suggest the Klein & Wiman configurations have $I^{(3)} \not\subset I^2$

• Dumnicki, Szemberg and Tutaj-Gasińska the Fermat-3 configuration has $I^{(3)} \not\subset I^2$ over $\mathbb C$

$$I = (x_0(x_1^3 - x_2^3), x_1(x_0^3 - x_2^3), x_2(x_0^3 - x_1^3))$$

• Harbourne -S. the Fermat-n configuration has $I^{(3)} \not\subset I^2$ over K

$$I = (x_0(x_1^n - x_2^n), x_1(x_0^n - x_2^n), x_2(x_0^n - x_1^n))$$

- Bauer, Di Rocco, Harbourne, Huizenga, Lundman, Pokora, Szemberg suggest the Klein & Wiman configurations have $I^{(3)} \not\subset I^2$
- S. gives a proof that the Fermat, Klein & Wiman configurations have

$$I^{(3)} \not\subset I^2$$

Geometric intuition

Let F =the product of all the lines in the configuration

- $F \in I^{(3)}$ is easy to see: every point is a triple point
- $F \notin I^2$ is much harder to prove

Same is true for all of the counterexamples (Fermat-n, Klein, Wiman).

A homological criterion for detecting counterexamples

Theorem (S., 2014)

Let I = (f, g, h) be a homogeneous ideal with minimal generators of the same degree d, defining a reduced set of points in \mathbf{P}^2 over a field of characteristic not equal to 3. Then:

• the minimal free resolution of I³ has the form

$$0 \longrightarrow R^3 \stackrel{\mathbf{Y}}{\longrightarrow} R^{12} \longrightarrow R^{10} \longrightarrow I^3 \longrightarrow 0,$$

• if
$$\begin{bmatrix} f \\ g \\ h \end{bmatrix} \notin \operatorname{Image}(\mathbf{Y}^{\mathsf{T}})$$
 then $\mathbf{I}^{(3)} \not\subset \mathbf{I}^2$.

This applies to the Fermat, Klein, Wiman configurations showing $I^{(3)} \not\subset I^2$.

Relations with curves of high negative self-intersection

The *linear H-constant* of a configuration of points $\mathcal{P} = \{P_1, \dots, P_s\}$ which is the singular locus for a line configuration $\mathcal{L} = \{L_1, \dots, L_d\}$ is

$$H(\mathcal{P},\mathcal{L}) = \frac{d^2 - \sum_{i=1}^s m_{P_i}^2}{s}.$$

Relations with curves of high negative self-intersection

The *linear H-constant* of a configuration of points $\mathcal{P} = \{P_1, \dots, P_s\}$ which is the singular locus for a line configuration $\mathcal{L} = \{L_1, \dots, L_d\}$ is

$$H(\mathcal{P},\mathcal{L}) = \frac{d^2 - \sum_{i=1}^s m_{P_i}^2}{s}.$$

On \mathbb{P}^2 , $H(\mathcal{P},\mathcal{L}) \geq -4$. The closest values to the bound known are

Configuration	$H(\mathcal{P},\mathcal{L})$
Fermat-n	$-3n^2/(n^2+3) \to -3$
Klein	-3
Wiman	-3.36

Question: Is there a connection between configurations of high negative self-intersection and counterexamples to $I^{(3)} \subset I^2$?

Open questions

1 The most conservative version Is it true that $I^{(Nr-1)} \subseteq I^r$ holds for all radical ideals I of finite sets of points in \mathbb{P}^N for all $r \ge 1$ as long as N > 2?

Open questions

● The most conservative version
Is it true that $I^{(Nr-1)} \subseteq I^r$ holds for all radical ideals I of finite sets of points in \mathbb{P}^N for all $r \ge 1$ as long as N > 2?

2 Revised version of C. Huneke's question: Is it always true for the ideal I of a finite set of points in \mathbb{P}^3 that $I^{(5)} \subseteq I^2$?