الدوال العكسية

<u>I- صورة محال بدالة متصلة :</u>

 $f(x) = x^2$: نعتبر الدالة العددية f المعرفة بما يلي : حدد مبيانيا ما يلي :

$$f([-1,1])$$

2 - خاصيات :

- $\left(\mathcal{C}_{\!_{f}}
 ight)$. مورة قطعة بدالة متصلة هي أيضا قطعة \checkmark
- . $\mathbb R$ صورة مجال من $\mathbb R$ بدالة متصلة هي أيضا مجال من
 - $f([a,b]) = [m,M] \quad \checkmark$

$$M = \underset{x \in [a,b]}{Max} f(x)$$
 o $m = \underset{x \in [a,b]}{Min} f(x)$

ملاحظة : يمكن تحديد صورة مجال بدالة متصلة ورتيبة قطعا على مجال من $\mathbb R$ كما يلي :

الشكل	f رتابة الدالة	المجال ا	$f\left(I\right)$ المجال
f (b)		[a,b]	[f(a),f(b)]
	تزایدیة قطعا f	[a,b[$\left[f(a), \lim_{x \to b^{-}} f(x) \right]$
(%)] <i>a</i> , <i>b</i>]	$\lim_{x \to a^+} f(x), f(b)$
f (a)	على المجال <i>I</i>	$[a,+\infty[$	$\left[f\left(a\right), \lim_{x \to +\infty} f\left(x\right)\right]$
+ O a + b]a,+∞[$\lim_{x \to a^{+}} f(x), \lim_{x \to +\infty} f(x) \Big[$
f (a)		[a,b]	[f(b),f(a)]
	تناقصة قطعا f	[a,b[$\lim_{x \to b^{-}} f(x), f(a)$
] <i>a</i> , <i>b</i>]	$\left[f(b), \lim_{x \to a^+} f(x)\right]$
	على المجال 1	$[a,+\infty[$	$\lim_{x \to +\infty} f(x), f(a)$
		$]a,+\infty[$	$\lim_{x \to +\infty} f(x), \lim_{x \to a^{+}} f(x) \Big[$

.
$$f(x) = \frac{x-3}{x-2}$$
 : نعتبر الدالة العددية المعرفة بما يلي : مثال

- .] $-\infty,2$ [و] $2,+\infty$ [: بين أن f تزايدية قطعا على كل من المجالين التاليين f نا
- . [3,4] و $[3,+\infty[$ و $]2,+\infty[$: f استنتج صور كل من المجالات التالية بالدالة

\mathbb{R} الدالة العكسية لدالة متصلة ورتبية قطعا على مجال من \mathbb{R} :

1. تعريف التقايل:

مثال 1:

. $g(x) = x^2$: يما يلي إلى المعرفة على المجال [0,5;2] بما يلي وتعتبر الدالة العددية

У	0,25	1	2	3	4
سوابق 🗸					

g (([0,5;2])	مبيانيا	– حدد	1
	، اُلتالی :			

. y = g(x) : بحيث [0,5;2] بحيث بالدالة g ، بالدالة g ، كل عنصر g من المجال [0,25;4] بعيث بناه وحيدا g ، نلاحظ أن كل عنصر g من المجال g ؛ نلاحظ أن كل عنصر g من المجال g ، في المجال g . لهذا نقول إن g تقابل من المجال g ، في المجال g . g . g نحو المجال . g .

. $h(x) = x^2$: نعتبر الدالة العددية h المعرفة على المجال [-1,2] بما يلى :

У	0	0,25	1	3	4
y سوابق					

.
$$h([-1,2])$$
 حدد

. B نحو A نحو A و A مجموعتین غیر فارغتین ؛ ولتکن A دالة معرفة من A نحو A و A نحو A بالدالة A نحو A بالدالة A نحو A ؛ إذا كان لكل عنصر A من A ؛ سابق وحید A في A بالدالة A

$$\forall y \in B; \exists ! x \in A / y = f(x)$$

2. خاصىة :

أی :

(a < b)

. $I\subset D_f$: حدية وليكن I و I مجالين غير فارغين من $\mathbb R$ بحيث باتكن f

إذا كانت f متصلة ورتيبة قطعا على المجال f

 $J=f\left(I
ight)$ فإنها تكون تقابلا من I نحو المجال J بحيث

. [0,25;4] نحو المجال [0,5;2] نحو المجال [0,5;4] نحو المجال [0,5;4] نحو المجال الدالة الواردة في المثال [0,5;4]

3. التقابل العكسى:

$$f(x) = x^2 - 2x + 3$$

: بما يلي
$$I = \begin{bmatrix} 1,2 \end{bmatrix}$$
 لتكن المجال المجال على دالة معرفة على المجال

. بين أن f تقابل من المجال I نحو مجال J ينبغي تحديده -1

 $x \in I$ وليكن $x \in I$ السابق الوحيد ل $x \in I$ السابق الوحيد ل $x \in I$ وليكن $y \in J$ -2

: ومنه فإن .
$$f'(x) = (x^2 - 2x + 3)' = 2x - 2 = 2(x - 1)$$
 . لدينا . $x \in I$ ومنه فإن .

 $x \in]1,2] \Rightarrow 1 < x \le 2 \Rightarrow x - 1 > 0 \Rightarrow f'(x) > 0$

إذن f'>0 على المجال I باستثناء العدد 1 حيث f'(1)=0 . ومنه نستنتج أن f دالة تزايدية قطعا على المجال f . وبما أن f متصلة على المجال f ، فإن :

رايديد عصف على المجال I نحو المجال أي I

: ليكن $y \in J$ وليكن $x \in I$ السابق الوحيد ل $y \in J$ لدينا -2

$$y = f(x) \Leftrightarrow y = x^{2} - 2x + 3$$
$$\Leftrightarrow y = (x - 1)^{2} + 2$$
$$\Leftrightarrow (x - 1)^{2} = y - 2$$

$$\Leftrightarrow x - 1 = \sqrt{y - 2} \qquad \text{if} \quad x - 1 = -\sqrt{y - 2}$$

$$\Leftrightarrow x-1=\sqrt{y-2}$$
 ($x \ge 1 \Rightarrow x-1 \ge 0$: $\forall x \ge 1 \Rightarrow x = 1 \ge 0$

$$\Leftrightarrow x = 1 + \sqrt{y - 2}$$

الدالة المعرفة من المجال J=[2,3] نحو المجال I=[1,2] والتي تربط كل عنصر J=[2,3] ونرمز له f بالعدد الحقيقي f : ونرمز له المجال f بالعدد الحقيقي f : ونرمز له المجال f . آد و المجال ال

$$f^{-1}$$
: $J = [2,3] \rightarrow I = [1,2]$
 $x \mapsto f^{-1}(x) = 1 + \sqrt{x-2}$

: بالرمز
$$f^{\scriptscriptstyle -1}$$
؛ ونكتب

 $x \mapsto f^{-}(x)=1+\sqrt{x}-2$ مثال: املأ الجدولين التاليين:

х	2	43 16	3
$f^{-1}(x)$			

х	1	<u>5</u> 4	2
f(x)			

f تعریف : D_f دالة متصلة ورتیبة قطعا على مجال غیر فارغ I ؛ ضمن نعلم أن fتقابل من $J=f\left(I
ight)$ المجال I نحو المجال . $J=f\left(I
ight)$

I الدالة المعرفة من المجال J نحو المجال I والتي تربط كل عنصر x من x بالعنصر x بحيث : x=f(y) : تسمى التقابل العكسي للدالة x=f(y)

قاعدة التحويل :

: ليكن f تقابلا من مجال I نحو مجال f ؛ وليكن x عنصرا من f عنصرا من f

$$y = f^{-1}(x) \Leftrightarrow x = f(y)$$

: لدينا . $J=f\left(I\right)$ نحو نحو I لدينا الدينا يناج : ليكن

.
$$f^{-1}(f(x))=x$$
 : I من X

$$f\left(f^{-1}(x)\right)=x$$
 : J من X

$$g(x) = \frac{x}{x-2}$$
 : يتكن g الدالة المعرفة على المجال [3,4] بما يلي : يا الدالة المعرفة على المجال

. ينبغي تحديده I بين أن g تقابل من المجال I نحو مجال المجال عنبغي تحديده .

 g^{-1} حدد التقابل العكسي -2

.
$$\left(O,\vec{i}\,,\vec{j}\,
ight)$$
 في نفس المستوى المنسوب إلى معلم متعامد ممنظم -3

طريقة 1 : إعادة للطريقة المستعملة في المثال 1

.
$$y = g^{-1}(x)$$
 : مريقة 2 : أستعمال قاعدة التحويل . ليكن $X \in J = [2,3]$ و $X \in J = [2,3]$. لدينا

$$y = g^{-1}(x)$$
 \Leftrightarrow $x = g(y)$ \Leftrightarrow $x = \frac{y}{y-2}$ \Leftrightarrow $x(y-2) = y$ \Leftrightarrow $xy - 2x = y$ \Leftrightarrow $y(x-1) = 2x$ \Leftrightarrow $y = \frac{2x}{x-1}$ ($x \in [2,3] \Rightarrow x \neq 1 : 0$)

$$g^{-1}$$
 : $J = [2,3] \rightarrow I = [3,4]$ وبالتالي فإن : $g^{-1}(x) = \frac{2x}{x-1}$

- . J = f(I) تقابل من المجال I نحو المجال f
- . f متصلة على المجال $J=f\left(I\right)$ ؛ ولها نفس رتابة الدالة f^{-1}
- . $\left(O, \vec{i}\,, \vec{j}\,\right)$ متماثلان بالنسبة للمنصف الأول لمعلم متعامد ممنظم ($C_{f^{-1}}$) و $\left(C_{f}\,\right)$

III- مبرهنة القيم الوسطية:

1 – مبرهنة :

إذا كانت f دالة متصلة على مجال[a,b] ؛ إذا كانت f دالة متصلة على مجال f(c) = k بحيث: a,b بحيث: c من المجال a,b بحيث: f(b) = f(a)

مثال:

$$f(x) = \frac{2x - 2}{\sqrt{x^2 - 4x + 5}}$$

: نعتبر الدالة العددية f المعرفة بما يلي

. f(3) و f(2) حسب -1

. [2,3] استنتج أن المعادلة : $f\left(x\right) = 1 + \sqrt{2}$ تقبل على الأقل حلا في المجال

2- استنتاج :

ومنه . $f\left(b\right)$ و $f\left(a\right)$ ومنه محصور بین $f\left(a\right)$ وکان $f\left(a\right)$ وکان وکان $f\left(a\right)$ وکان وکان اذا کانت و متصلة على مجال . $f\left(lpha
ight)=0$: بحيث $\left]a,b\right[$ بحيث برهنة القيم الوسطية، يوجد على الأقل عدد حقيقي lpha من المجال نتىحة :

> $f(a) \times f(b) < 0$ وکان $f(a) \times f(b) < 0$ وکان $f(a) \times f(b) < 0$.]a,b[تقبل على الأقل حلا في المجال $f\left(x\right)=0$

 $f(x) = \frac{1}{2} - 2 \cdot \sqrt{1 + \frac{1}{2}}$

: نعتبر الدالة العددية f المعرفة بما يلي $oldsymbol{t}$

. $\left|\frac{1}{4},\frac{1}{2}\right|$ بين أن المعادلة $f\left(x\right)=0$ تقبل على الأقل حلا في المجال

ملاحظة هامة:

إذا كانت f متصلة ورتيبة قطعا على مجال [a,b] وكان f(a) imes f(b) < 0 ؛ فإن

.]a,b[المعادلة f(x)=0 تقبل **حلا وحيدا** في المجال f(x)=0 نعتبر الدالة العددية f(x)=0 المعرفة بما يلي :

$$f(x) = x^3 - 2$$

مثال 3 :

. [1,2]بين أن المعادلة f(x)=0 تقبل حلا وحيدا في المجال

IV- تطبيقات:

 $(n \ge 1)$. n دالة الجذر من الرتبة -A

 \mathbb{R}^+ مثال تمهیدی : لیکن a من

. $b^3=a$: بحيث \mathbb{R}^+ بحيث : \mathbb{R}^+ بحيث : a بحيث : a نلاحظ أن لكل العدد الحقيقي الموجب b يسمى الجذر من الرتبة a للعدد b ويرمز له بالرمز

 $\left| orall a \in \mathbb{R}^+, \quad orall b \in \mathbb{R}^+, \quad b^3 = a \Leftrightarrow b = \sqrt[3]{a}
ight|$ ونكتب $b = \sqrt[3]{a}$: إ

. $\sqrt[3]{125}$ و $\sqrt[3]{27}$ و $\sqrt[3]{27}$ و $\sqrt[3]{64}$ و $\sqrt[3]{125}$ و $\sqrt[3]{64}$ و $\sqrt[3]{125}$

الدالة $x \mapsto x^3$ متصلة وتزايدية قطعا على الذن فهي تقابل : من $^{+}$ نحو $^{+}$ ، تقابلها العكسي هو الدالة المعرفة بما يلي

$$\sqrt[3]{} : \mathbb{R}^+ \to \mathbb{R}^+
x \mapsto \sqrt[3]{x}$$

1.الحالة العامة : ليكن 1≤ 1.

يسمى ، b يوجد عنصر وحيد b من \mathbb{R}^+ بحيث . $b^n=a$: يوجد عنصر وحيد b من $a\in\mathbb{R}^+$: الجذر من الرتبة n للعدد a ويرمز له بالرمز $\sqrt[n]{a}$ ونكتب العدد العدد

$$\forall a \in \mathbb{R}^+, \quad \forall b \in \mathbb{R}^+, \quad b^n = a \Leftrightarrow b = \sqrt[n]{a}$$

. \mathbb{R}^+ نحو تقابل من \mathbb{R}^+ نحو $x\mapsto x$ الدالة $x\mapsto x$ متصلة ورتيبة قطعا على المجال

$$\stackrel{n}{\sqrt{}} : \mathbb{R}^+ \to \mathbb{R}^+ \\
x \mapsto \stackrel{n}{\sqrt{x}}$$

مثال: بسط الجذور التالية : $\sqrt[4]{64}$ و $\sqrt[64]{64}$ و مثال:

.
$$\left(\sqrt[n]{a}\right)^n=a$$
 : لكن a من a ؛ لدينا : a . 2

$$\int_{0}^{n} \sqrt{a^{n}} = a$$

.
$$\sqrt[n]{a^n} = a$$
 : لكل a من a : لدينا

.
$$\mathbb{R}^+$$
الدالة $\sqrt[n]{}$ متصلة وتزايدية قطعا على

$$\lim_{x \to +\infty} \sqrt[n]{x} = +\infty$$

: لدينا .
$$\mathbb{N}^*$$
 من \mathbb{N}^* . لدينا

$$\sqrt[n]{a} = \sqrt[n]{b} \Leftrightarrow a = b$$

$$\sqrt[n]{a} < \sqrt[n]{b} \Leftrightarrow a < b$$

: لكل
$$a$$
 من \mathbb{R}^+ ولكل b من a

: لكل
$$a$$
 من $^+$ ولكل b من $^+$ دينا : حمرين تطبيقي : حل في $\mathbb R$ المعادلات التالية :

$$x^{6} = 2$$
 : *iii* . $x^{5} = 32$: *i*

$$x^{8} = -1$$
 : iv . $x^{3} = -125$: ii

\cdot العمليات على الجذور من الرتبة n

: لديناn و p من \mathbb{R}^* ؛ وليكن a و b من p من

$$. \sqrt[n]{a}.\sqrt[n]{b} = \sqrt[n]{ab} : iii$$

$$\sqrt[m]{a}.\sqrt[n]{a} = \sqrt[mn]{a^{m+n}}$$

: بین أنn و n و n و n و n عن أنa نيكن a ليكن ليكن a

.
$$A = \frac{\sqrt[3]{4}.\sqrt{8}\left(\sqrt[5]{\sqrt{2}}\right)^2}{\sqrt[3]{4}}$$
 : بسط العدد التالي :

: n ودالة الجذر من الرتبة f ودالة ونهاية مركبة دالة f

. $n \in \mathbb{N}^*$ دالة معرفة على مجال مفتوح (غير فارغ) I؛ وليكن x_0 عنصرا من ا

 $oldsymbol{\cdot}$. I اذا کانت f متصلة وموجبة على اI فإن f تكون متصلة على $oldsymbol{\cdot}$

. $\lim_{x \to x} \sqrt[n]{f(x)} = \sqrt[n]{l}$: فإن $(l \in \mathbb{R})$ $\lim_{x \to x} f(x) = l$ وكان (x) = l وكان (x) = l

. $\lim_{x \to x_0} \sqrt[n]{f(x)} = +\infty$: فإن $\lim_{x \to x_0} f(x) = +\infty$ وكان $\int_{x \to x_0} \sqrt[n]{f(x)} dx$. $\int_{x \to x_0} \sqrt[n]{f(x)} dx$

 $f(x) = \sqrt[5]{x^2 - 4}$

: لتكن f الدالة العددية المعرفة كالآتي

. f عدد D_f محيز تعريف الدالة .a

- . ٻين أن f متصلة في كل نقطة من حيز تعريفها $oldsymbol{b}$
 - . أحسب نهايتي f عند $\infty+$ و ∞

.
$$\lim_{x\to 2} \frac{\sqrt[4]{x} - \sqrt[4]{2}}{x-2}$$
 و $\lim_{x\to 2} \frac{\sqrt[3]{x} - \sqrt[3]{2}}{x-2}$: أحسب النهايتين التاليتين : 2

6. القوة الجذرية لعدد حقيقي موجب قطعا:

$$r=rac{p}{q}$$
 / $p\in\mathbb{Z};\ q\in\mathbb{N}^*$: \mathbb{Q}^* من r من $a>0$: $a>0$ نعریف : لیکن $a>0$.i

- للعدد r نرمز بالرمز a^r للعدد الحقيقي a^r ، $\sqrt[q]{a^p}$ يسمى القوة الجذرية ذات الأساس a^r للعدد . a الحقيقي a^r
 - . $a^r = 1$: فإن r = 0 اذا كان

ملاحظات :

- . لا معنى له $^{rac{5}{3}}$ لا معنى له 0
- : $a^{\frac{p}{q}}$ ليكن p من \mathbb{Z} و \mathbb{R}^* . العدد الحقيقي الموجب قطعا $q\in\mathbb{R}^*$ ، يكتب على الشكل $q\in\mathbb{R}^*$. $q\in\mathbb{R}^*$. $q\in\mathbb{R}^*$. $q\in\mathbb{R}^*$
 - .($r=rac{1}{7}$: مثلا) . $\mathbb{Q}-\mathbb{Z}$ من r
 - . $f\left(x\right)>0$ و $f\left(x\right)\in\mathbb{R}$ يكون العدد $f^{r}\left(x\right)$ معرفا إذا وفقط إذا كان
 - . f(x) > 0 و $f(x) \in \mathbb{R}$ وفقط إذا كان f(x) = 0 و f(x) = 0 .
 - : لدينا . $\mathbb Q$ من r' و و d من $\mathbb R^{+^*}$ وليكن a و b عن a .ii

$$(a^r)^{r'} = a^{rr'} \qquad :iv \qquad . \quad a^r a^{r'} = a^{r+r'} \qquad :i$$

$$a^r b^r = (ab)^r \qquad :v \qquad . \quad \frac{1}{a^r} = a^{-r} \qquad :ii$$

$$\frac{a^r}{b^r} = \left(\frac{a}{b}\right)^r \qquad :vi \qquad . \quad \frac{a^r}{a^{r'}} = a^{r-r'} \qquad :iii$$

. $A = \frac{\sqrt[3]{4} \cdot \sqrt{8} \left(\sqrt[5]{\sqrt{2}}\right)^2}{\sqrt[3]{4}}$: أحسب باستعمال هذه الخاصيات العدد :

تمرين تطبيقي : حدد مجموعة تعريف كل من الدوال التالية :

$$f(x) = (x-5)^{\frac{2}{3}}$$
 : c . $f(x) = (\sqrt[3]{x-5})^2$: b . $f(x) = \sqrt[3]{(x-5)^2}$: a

. $B = \sqrt[4]{\left(\sqrt{7} - 5\right)^4}$: بسط العدد التالي : سؤاك :

: Arctan دالة قوس الظل -B

$$f$$
 : $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\rightarrow \mathbb{R}$: لتكن الدالة

 $x \mapsto \tan(x)$

. $f\left(I\right)=\mathbb{R}$ انحو المجال من I نحو المجال المجال المجال المجال المجال المجال المجال المجال f

$$\lim_{x \to -\frac{\pi^+}{2}} \tan(x) = -\infty \qquad ; \qquad \lim_{x \to \frac{\pi^-}{2}} \tan(x) = +\infty$$

1. خاصية وتعريف:

.
$$\mathbb{R}$$
 نحو $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ نحو $x\mapsto \tan(x)$ نحو

تقابلها العكسي ، يسمي **دالة قوس الظل** ويرمز له بالرمز

$$Arc an : \mathbb{R} \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
 : ولدينا : $Arc an$

2. قاعدة التحويل:

: لکیل
$$x$$
 من x ولکل y ولکل x ولکل y ولکل $y = Arc \tan(x) \Leftrightarrow x = \tan(y)$

$$x = \frac{\pi}{2}$$
 $Arc \tan\left(\sqrt{3}\right)$ و $Arc \tan\left(\frac{1}{\sqrt{3}}\right)$: مثال : أحسب ما يلي

.
$$Arc an(1)$$
 ثم استنتج $an(rac{17\pi}{4})$ عثال $an(1)$

3. نتائج:

.
$$\tan(Arc\tan(x)) = x$$
 : لكل x من \mathbb{R} ؛ لدينا :

$$Arc \tan(\tan(x)) = x$$
 : لكل x من $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ لدينا .b

. \mathbb{R} متصلة وتزايدية قطعا على .c

$$\lim_{x \to -\infty} A rc \tan(x) = -\frac{\pi}{2} \quad ; \quad \lim_{x \to +\infty} A rc \tan(x) = \frac{\pi}{2} \quad .d$$

.
$$A = Arc \tan \left(\tan \left(\frac{\pi}{5} \right) \right)$$
 ; $Arc \tan \left(\tan \left(\frac{2006\pi}{3} \right) \right)$: مثال : أحسب ما يلي

 $\forall x \in \mathbb{R} : Arc \tan(-x) = -Arc \tan(x)$: دالة فردية $Arc \tan(x)$: خاصية $Arc \tan(x)$