

Graphentheorie I

Martin Thoma | 2. Juli 2013

INSTITUT FÜR STOCHASTIK

Contents

Grundlagen

2 Königsberger Brückenproblem

Graph

Graph

Ein Graph ist ein Tupel (E,K), wobei $E\neq\emptyset$ die Eckenmenge und $K\subseteq E\times E$ die Kantenmenge bezeichnet.

Graph

Graph

Ein Graph ist ein Tupel (E,K), wobei $E\neq\emptyset$ die Eckenmenge und $K \subseteq E \times E$ die Kantenmenge bezeichnet.

Synonyme

Knoten ⇔ Ecken

Inzidenz

Inzidenz

Sei $e \in E$ und $k = \{v_1, v_2\} \in K$. e heißt **inzident** zu $k :\Leftrightarrow e = e_1$ oder $e = e_2$

Inzidenz

Inzidenz

Sei $e \in E$ und $k = \{v_1, v_2\} \in K$. e heißt **inzident** zu $k :\Leftrightarrow e = e_1$ oder $e = e_2$

Vollständige Graphen

Vollständiger Graph

Sei G = (E, K) ein Graph.

G heißt vollständig : $\Leftrightarrow = E \times E \setminus \{ e \in E : \{ e, e \} \}$

Ein vollständiger Graph mit n Ecken wird als K_n bezeichnet.

Vollständige Graphen

Vollständiger Graph

Sei G = (E, K) ein Graph.

G heißt vollständig : $\Leftrightarrow = E \times E \setminus \{e \in E : \{e, e\}\}$

Ein vollständiger Graph mit n Ecken wird als K_n bezeichnet.

Bipartite Graphen

Bipartite Graph

Sei G=(E,K) ein Graph und $A,B\subset V$ zwei disjunkte Eckenmengen mit $E\setminus A=B.$

 ${\cal G}$ heißt **bipartit**

$$:\Leftrightarrow \forall_{k=\{\ e_1,e_2\ \}\in K}: (e_1\in A\ \mathsf{und}\ e_2\in B)\ \mathsf{oder}\ (e_1\in B\ \mathsf{und}\ e_2\in A)$$

TODO: 8 Bilder von Graphen

Vollständig bipartite Graphen

Vollständig bipartite Graphen

Sei G=(E,K) ein bipartiter Graph und $\{\,A,B\,\}$ bezeichne die Bipartition.

G heißt vollständig bipartit : $\Leftrightarrow \forall_{a \in A} \forall_{b \in B} : \{\ a, b\ \} \in K$

Vollständig bipartite Graphen

Bezeichnung: Vollständig bipartite Graphen mit der Bipartition $\{A, B\}$ bezeichnet man mit $K_{|A|,|B|}$.

Kantenzug

Kantenzug

Sei G = (E, K) ein Graph.

Dann heißt eine Folge k_1,k_2,\ldots,k_s von Kanten, zu denen es Ecken e_0,e_1,e_2,\ldots,e_s gibt, so dass

- $k_1 = \{ e_0, e_1 \}$
- $k_2 = \{ e_1, e_2 \}$
-
- $k_s = \{ e_{s-1}, e_s \}$

gilt ein Kantenzug, der e_0 und e_s verbindet und s seine Länge.

Geschlossener Kantenzug

Geschlossener Kantenzug

Sei G=(V,E) ein Graph und $A=(e_1,e_2\ldots,e_s)$ ein Kantenzug.

A heißt **geschlossen** : $\Leftrightarrow v_s = v_0$.

Weg

Weg

Sei G = (V, E) ein Graph und $A = (e_1, e_2, \dots, e_s)$ ein Kantenzug.

A heißt **Weg** : $\Leftrightarrow \forall_{i,j \in [1,s] \cap \mathbb{N}} : i \neq j \Rightarrow e_i \neq e_j$.

TODO: 8 Bilder

12/23

Kreis

Kreis

Sei G=(V,E) ein Graph und $A=(e_1,e_2\ldots,e_s)$ ein Kantenzug.

A heißt **Kreis** : \Leftrightarrow *A* ist geschlossen und ein Weg.

Zusammenhängender Graph

Zusammenhängender Graph

Sei G = (V, E) ein Graph.

G heißt zusammenhängend : $\Leftrightarrow \forall v_1, v_2 \in V$: Es ex. ein Kantenzug, der v_1 und v_2 verbindet

Grad einer Ecke

Grad einer Ecke

Der **Grad** einer Ecke ist die Anzahl der Kanten, die von dieser Ecke ausgehen.

Isolierte Ecken

Hat eine Ecke den Grad 0, so nennt man ihn **isoliert**.

Königsberger Brückenproblem

TODO: Allgemeine Beschreibung

16/23

Übersetzung in einen Graphen

TODO: Übersetzung in Graph

17/23

Eulerscher Kreis

Eulerscher Kreis

Sei G ein Graph und A ein Kreis in G.

A heißt eulerscher Kreis : $\Leftrightarrow \forall_{e \in E} : e \in A$.

Eulerscher Graph

Ein Graph heißt eulersch, wenn er einen eulerschen Kreis enthält.

Eulerscher Kreis

TODO: K_5 eulerkreis animieren

19/23

Satz von Euler

Satz von Euler

Wenn ein Graph G eulersch ist, dann hat jeder Knoten von G geraden Grad.

Wenn G einen Knoten mit ungeraden Grad hat, ist G nicht eulersch.

Umkehrung des Satzes von Euler

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jeder Knoten geraden Grad hat, dann ist G eulersch.

Beweis per Induktion TODO

Offene eulersche Linie

Offene eulersche Linie

Sei ${\cal G}$ ein Graph und ${\cal A}$ ein Weg, der kein Kreis ist.

A heißt **offene eulersche Linie** von $G:\Leftrightarrow$ Jede Kante in G kommt genau ein mal in A vor.

Ein Graph kann genau dann "in einem Zug" gezeichnet werden, wenn er eine offene eulersche Linie besitzt.

Offene eulersche Linie

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie : $\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

TODO: Haus des Nikolaus-Animation. TODO: Beweis