Lecture 10: Logistic Regression

COMP90049 Introduction to Machine Learning

Semester 2, 2021

Lida Rashidi, CIS

Copyright @ University of Melbourne 2021. All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm or any other means without written permission from the author.

Acknowledgement: Lea Frermann

Roadmap

Sofar...

- Naive Bayes + KNN
- Optimization (closed-form and iterative)
- Evaluation + Feature Selection

Today: more classification!

Logistic Regression

Logistic Regression

Quick Refresher

Recall Naive Bayes

$$P(x,y) = P(y)P(x|y) = \prod_{i=1}^{N} P(y^{i}) \prod_{m=1}^{M} P(x_{m}^{i}|y^{i})$$

- a **probabilistic generative model** of the joint probability P(x, y)
- · optimized to maximize the likelihood of the observed data
- naive due to unrealistic feature independence assumptions

Quick Refresher

Recall Naive Bayes

$$P(x,y) = P(y)P(x|y) = \prod_{i=1}^{N} P(y^{i}) \prod_{m=1}^{M} P(x_{m}^{i}|y^{i})$$

- a **probabilistic generative model** of the joint probability P(x, y)
- · optimized to maximize the likelihood of the observed data
- naive due to unrealistic feature independence assumptions

For prediction, we apply Bayes Rule to obtain the conditional distribution

$$P(x, y) = P(y)P(x|y) = P(y|x)P(x)$$

$$P(y|x) = \frac{P(y)P(x|y)}{P(x)}$$

$$\hat{y} = \underset{y}{\operatorname{argmax}} P(y|x) \approx P(y)P(x|y)$$

THE UNIVERSITY OF MELBOURNE

How about we model P(y|x) directly? \rightarrow Logistic Regression

Introduction to Logistic Regression

Logistic Regression on a high level

- Is a binary classification model
- Is a probabilistic discriminative model because it optimizes P(y|x) directly
- Learns to optimally discriminate between inputs which belong to different classes
- No model of $P(x|y) \rightarrow$ no conditional feature independence assumption

Aside: Linear Regression

• Regression: predict a real-valued quantity *y* given features *x*, e.g.,

```
housing price given {location, size, age, ...}
success of movie($) given {cast, genre, budget, ...}
air quality given {temperature, timeOfDay, CO2, ...}
```


Aside: Linear Regression

Regression: predict a real-valued quantity y given features x, e.g.,

```
housing price given {location, size, age, ...}
success of movie($) given {cast, genre, budget, ...}
air quality given {temperature, timeOfDay, CO2, ...}
```

- linear regression is the simples regression model
- a real-valued \hat{y} is predicted as a linear combination of weighted feature values

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$$
$$= \theta_0 + \sum_i \theta_i x_i$$

- The weights $\theta_0, \theta_1, \ldots$ are model parameters, and need to be optimized during training
- Loss (error) is the sum of squared errors (SSE): $L = \sum_{i=1}^{N} (\hat{y}^i y^i)^2$

- Let's assume a **binary** classification task, y is true (1) or false (0).
- We model **probabilites** $P(y = 1|x; \theta) = p(x)$ as a function of observations x under parameters θ . [What about $P(y = 0|x; \theta)$?]
- We want to use a regression approach

- Let's assume a **binary** classification task, y is true (1) or false (0).
- We model **probabilites** $P(y = 1|x; \theta) = p(x)$ as a function of observations x under parameters θ . [What about $P(y = 0|x; \theta)$?]
- We want to use a regression approach

- Let's assume a **binary** classification task, y is true (1) or false (0).
- We model probabilites P(y = 1|x; θ) = p(x) as a function of observations x under parameters θ. [What about P(y = 0|x; θ)?]
- We want to use a regression approach
- How about: p(x) as a linear function of x. Problem: probabilities are bounded in 0 and 1, linear functions are not.

$$p(x) = \theta_0 + \theta_1 x_1 + ... \theta_F x_F$$

- Let's assume a **binary** classification task, y is true (1) or false (0).
- We model probabilites P(y = 1|x; θ) = p(x) as a function of observations x under parameters θ. [What about P(y = 0|x; θ)?]
- We want to use a regression approach
- How about: p(x) as a linear function of x. Problem: probabilities are bounded in 0 and 1, linear functions are not.

- Let's assume a **binary** classification task, y is true (1) or false (0).
- We model probabilites P(y = 1|x; θ) = p(x) as a function of observations x under parameters θ. [What about P(y = 0|x; θ)?]
- We want to use a regression approach
- How about: p(x) as a linear function of x. Problem: probabilities are bounded in 0 and 1, linear functions are not.
- How about: log p(x) as a linear function of x. Problem: log is bounded in one direction, linear functions are not.

$$\log p(x) = \theta_0 + \theta_1 x_1 + ... \theta_F x_F$$

- Let's assume a **binary** classification task, y is true (1) or false (0).
- We model probabilites P(y = 1|x; θ) = p(x) as a function of observations x under parameters θ. [What about P(y = 0|x; θ)?]
- We want to use a regression approach
- How about: p(x) as a linear function of x. Problem: probabilities are bounded in 0 and 1, linear functions are not.
- How about: log p(x) as a linear function of x. Problem: log is bounded in one direction, linear functions are not.

- Let's assume a **binary** classification task, y is true (1) or false (0).
- We model probabilites P(y = 1|x; θ) = p(x) as a function of observations x under parameters θ. [What about P(y = 0|x; θ)?]
- We want to use a regression approach
- How about: p(x) as a linear function of x. Problem: probabilities are bounded in 0 and 1, linear functions are not.
- How about: log p(x) as a linear function of x. Problem: log is bounded in one direction, linear functions are not.
- How about: minimally modifying log p(x) such that is is unbounded, by applying the logistic transformation

$$log \frac{p(x)}{1 - p(x)} = \theta_0 + \theta_1 x_1 + \dots \theta_F x_F$$

$$log \frac{p(x)}{1 - p(x)} = \theta_0 + \theta_1 x_1 + ...\theta_F x_F$$

- also called the log odds
- the odds are defined as the fraction of success over the fraction of failures

$$odds = \frac{P(success)}{P(failures)} = \frac{P(success)}{1 - P(success)}$$

• e.g., the odds of rolling a 6 with a fair dice are:

$$\frac{1/6}{1 - (1/6)} = \frac{0.17}{0.83} = 0.2$$

$$log \frac{P(x)}{1 - P(x)} = \theta_0 + \theta_1 x_1 + ...\theta_F x_F$$

If we rearrange and solve for P(x), we get

$$P(x) = \frac{exp(\theta_0 + \theta_1 x_1 + ...\theta_F x_F)}{1 + exp(\theta_0 + \theta_1 x_1 + ...\theta_F x_F)} = \frac{exp(\theta_0 + \sum_{f=1}^F \theta_f x_f)}{1 + exp(\theta_0 + \sum_{f=1}^F \theta_f x_f)}$$
$$= \frac{1}{1 + exp(-(\theta_0 + \theta_1 x_1 + ...\theta_F x_F))} = \frac{1}{1 + exp(-(\theta_0 + \sum_{f=1}^F \theta_f x_f))}$$

- where the RHS is the inverse logit (or logistic function)
- we pass a regression model through the logistic function to obtain a valid probability predicton

Logistic Regression: Interpretation

$$P(y|x;\theta) = \frac{1}{1 + exp(-(\theta_0 + \sum_{f=1}^F \theta_f x_f))}$$

A closer look at the logistic function

Most inputs lead to P(y|x)=0 or P(y|x)=1. That is intended, because all true labels are either 0 or 1.

- $(\theta_0 + \sum_{f=1}^F \theta_f x_f) > 0$ means y = 1
- $(\theta_0 + \sum_{f=1}^F \theta_f x_f) \approx 0$ means most uncertainty
- $(\theta_0 + \sum_{f=1}^F \theta_f x_f) < 0$ means y = 0

Logistic Regression: Prediction

• The logistic function returns the probability of P(y = 1) given an in put x

$$P(y = 1 | X_1, X_2, ..., X_F; \theta) = \frac{1}{1 + \exp(-(\theta_0 + \sum_{f=1}^F \theta_f X_f))} = \sigma(X; \theta)$$

• We define a **decision boundary**, e.g., predict y = 1 if $P(y = 1 | x_1, x_2, ..., x_F; \theta) > 0.5$ and y = 0 otherwise

Example!

$$P(y = 1 | x_1, x_2, ..., x_F; \theta) = \frac{1}{1 + \exp(-(\theta_0 + \sum_{f=1}^F \theta_f x_f))} = \frac{1}{1 + \exp(-(\theta^T x))} = \sigma(\theta^T x)$$

Model parameters

$$\theta = [0.1, -3.5, 0.7, 2.1]$$

(Small) Test Data set

`	Outlook	Temp	Humidity	Class
	rainy	cool	normal	0
	sunny	hot	high	1

Feature Function

$$x_0 = \begin{cases} 1 \text{ (bias term)} \\ 1 \text{ if outlook=sunny} \\ 2 \text{ if outlook=overcast} \\ 3 \text{ if outlook=rainy} \end{cases}$$

$$x_2 = \begin{cases} 1 \text{ if temp=hot} \\ 2 \text{ if temp=mild} \\ 3 \text{ if temp=cool} \end{cases}$$

$$x_3 = \begin{cases} 1 & \text{if humidity=normal} \\ 2 & \text{if humidity=high} \end{cases}$$

Example!

$$P(y = 1 | x_1, x_2, ..., x_F; \theta) = \frac{1}{1 + \exp(-(\theta_0 + \sum_{f=1}^F \theta_f x_f))} = \frac{1}{1 + \exp(-(\theta^T x))} = \sigma(\theta^T x)$$

Model parameters

$$\theta = [0.1, \ -3.5, \ 0.7, \ 2.1]$$

(Small) Test Data set

•	Outlook	Temp	Humidity	Class
	rainy	cool	normal	0
	sunny	hot	high	1

Feature Function

$$x_0 = \begin{cases} 1 \text{ (bias term)} \\ 1 \text{ if outlook=sunny} \\ 2 \text{ if outlook=overcast} \\ 3 \text{ if outlook=rainy} \end{cases}$$

$$x_2 = \begin{cases} 1 \text{ if temp=hot} \\ 2 \text{ if temp=mild} \\ 3 \text{ if temp=cool} \end{cases}$$

$$x_3 = \begin{cases} 1 & \text{if humidity=normal} \\ 2 & \text{if humidity=high} \end{cases}$$

Parameter Estimation

What are the four steps we would follow in finding the optimal parameters?

Objective Function

Mimimize the Negative conditional log likelihood

$$\mathcal{L}(\theta) = -P(Y|X;\theta) = -\prod_{i=1}^{N} P(y^{i}|x^{i};\theta)$$

note that

$$P(y = 1|x; \theta) = \sigma(\theta^{T}x)$$

$$P(y = 0|x; \theta) = 1 - \sigma(\theta^{T}x)$$

Objective Function

Mimimize the Negative conditional log likelihood

$$\mathcal{L}(\theta) = -P(Y|X;\theta) = -\prod_{i=1}^{N} P(y^{i}|x^{i};\theta)$$

note that

$$P(y = 1|x; \theta) = \sigma(\theta^{T}x)$$

$$P(y = 0|x; \theta) = 1 - \sigma(\theta^{T}x)$$

SO

$$\mathcal{L}(\theta) = -P(Y|X;\theta) = -\prod_{i=1}^{N} P(y^{i}|x^{i};\theta)$$
$$= -\prod_{i=1}^{N} (\sigma(\theta^{T}x^{i}))^{y^{i}} * (1 - \sigma(\theta^{T}x^{i}))^{1-y^{i}}$$

Objective Function

Mimimize the Negative conditional log likelihood

$$\mathcal{L}(\theta) = -P(Y|X;\theta) = -\prod_{i=1}^{N} P(y^{i}|x^{i};\theta)$$

note that

$$P(y = 1|X; \theta) = \sigma(\theta' X)$$

$$P(y = 0|X; \theta) = 1 - \sigma(\theta^{T} X)$$

SO

$$\mathcal{L}(\theta) = -P(Y|X;\theta) = -\prod_{i=1}^{N} P(y^{i}|x^{i};\theta)$$
$$= -\prod_{i=1}^{N} (\sigma(\theta^{T}x^{i}))^{y^{i}} * (1 - \sigma(\theta^{T}x^{i}))^{1-y^{i}}$$

take the log of this function

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

Preliminaries

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

Also

- Derivative of sum = sum of derivatives → focus on 1 training input
- Compute $\frac{\partial \mathcal{L}}{\partial \theta_i}$ for each θ_j individually, so focus on 1 θ_j

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_j} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_j} \quad \text{ where } p = \sigma(\theta^T x) \text{ and } z = \theta^T x$$

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

$$\begin{split} \frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_j} &= \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_j} \quad \text{where } p = \sigma(\theta^T x) \text{ and } z = \theta^T x \\ &\qquad \qquad \qquad \qquad \qquad \\ \frac{\partial \log \mathcal{L}(\theta)}{\partial p} &= -(\frac{y}{p} - \frac{1-y}{1-p}) \\ &\qquad \qquad \text{(because } \mathcal{L}(\theta) = -[ylogp + (1-y)log(1-p)] \end{split}$$

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_j} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_j} \quad \text{where } p = \sigma(\theta^T x) \text{ and } z = \theta^T x$$

$$\frac{\partial p}{\partial z} = \frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 - \sigma(z)]$$

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_{j}} \quad \text{where } p = \sigma(\theta^{T} x) \text{ and } z = \theta^{T} x$$

$$\frac{\partial z}{\partial \theta_{j}} = \frac{\partial \theta^{T} x}{\partial \theta_{j}} = x_{j}$$

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_{j}} \quad \text{where } p = \sigma(\theta^{T} x) \text{ and } z = \theta^{T} x$$

$$= -\frac{y}{p} - \frac{1 - y}{1 - p} \times \sigma(z)[1 - \sigma(z)] \times x_{j}$$

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_{j}} \quad \text{where } p = \sigma(\theta^{T} x) \text{ and } z = \theta^{T} x$$

$$= -\frac{y}{p} - \frac{1 - y}{1 - p} \times \sigma(z)[1 - \sigma(z)] \times x_{j}$$

$$= \left[\sigma(\theta^{T} x) - y\right] \times x_{j}$$

Logistic Regression: Parameter Estimation III

The derivative of the log likelihood wrt. a single parameter θ_j for **all** training examples

$$\frac{\log \mathcal{L}(\theta)}{\partial \theta_j} = \sum_{i=1}^{N} \left(\sigma(\theta^T x^i) - y^i \right) x_j^i$$

- Now, we would set derivatives to zero (Step 3) and solve for θ (Step 4)
- Unfortunately, that's not straightforward here (as for Naive Bayes)
- Instead, we will use an iterative method: Gradient Descent

Logistic Regression: Parameter Estimation III

The derivative of the log likelihood wrt. a single parameter θ_j for **all** training examples

$$\frac{\log \mathcal{L}(\theta)}{\partial \theta_j} = \sum_{i=1}^{N} \left(\sigma(\theta^T x^i) - y^i \right) x_j^i$$

- Now, we would set derivatives to zero (Step 3) and solve for θ (Step 4)
- Unfortunately, that's not straightforward here (as for Naive Bayes)
- Instead, we will use an iterative method: Gradient Descent

$$\begin{aligned} & \theta_{j}^{(\textit{new})} \leftarrow \theta_{j}^{(\textit{old})} - \eta \frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} \\ & \theta_{j}^{(\textit{new})} \leftarrow \theta_{j}^{(\textit{old})} - \eta \sum_{i=1}^{N} \left(\sigma(\theta^{T} x^{i}) - y^{i} \right) x_{j}^{i} \end{aligned}$$

Multinomial Logistic Regression

 So far we looked at problems where either y = 0 or y = 1 (e.g., spam classification: y ∈ {play, not_play})

$$P(y = 1|x; \theta) = \sigma(\theta^T x) = \frac{exp(\theta^T x)}{1 + exp(\theta^T x)}$$

$$P(y = 0|x; \theta) = 1 - \sigma(\theta^T x) = 1 - \frac{exp(\theta^T x)}{1 + exp(\theta^T x)}$$

Multinomial Logistic Regression

 So far we looked at problems where either y = 0 or y = 1 (e.g., spam classification: y ∈ {play, not_play})

$$P(y = 1|x; \theta) = \sigma(\theta^{T}x) = \frac{exp(\theta^{T}x)}{1 + exp(\theta^{T}x)}$$

$$P(y = 0|x; \theta) = 1 - \sigma(\theta^{T}x) = 1 - \frac{exp(\theta^{T}x)}{1 + exp(\theta^{T}x)}$$

- But what if we have more than 2 classes, e.g., $y \in \{\text{positive}, \text{negative}, \text{neutral}\}$
- we predict the probability of each class c by passing the input representation through the softmax function, a generalization of the sigmoid

$$p(y = c|x; \theta) = \frac{exp(\theta_c x)}{\sum_k exp(\theta_k x)}$$

• we learn a parameter vector θ_c for each class c

Example! Multi-class with 1-hot features

$$p(y = c|x; \theta) = \frac{exp(\theta_c x)}{\sum_k exp(\theta_k x)}$$

Model parameters

$$\theta_{c0} = [0.1, -3.5, 0.7, 2.1]$$

 $\theta_{c1} = [0.6, 2.5, 2.7, -2.1]$
 $\theta_{c2} = [3.1, 1.5, 0.07, 3.6]$

(Small) Test Data set

(Oman) rest Bata set					
Outlook	Temp	Humidity	Class		
rainy	cool	normal	0 (don't play)		
sunny	cool	normal	1 (maybe play)		
sunny	hot	high	2 (play)		
	Outlook rainy sunny	Outlook Temp rainy cool sunny cool	Outlook Temp Humidity rainy cool normal sunny cool normal		

Feature Function

$$x_0 = \begin{array}{c} 1 \text{ (bias term)} & x_0 = \begin{array}{c} 1 \text{ (bias term)} \\ x_1 = \begin{cases} 1 \text{ if outlook=sunny} \\ 2 \text{ if outlook=overcast} \\ 3 \text{ if outlook=rainy} \end{cases} & x_1 = \begin{cases} [100] \text{ if outlook=sunny} \\ [010] \text{ if outlook=sunny} \end{cases}$$

$$x_2 = \begin{cases} 1 \text{ if temp=hot} \\ 2 \text{ if temp=mild} \\ 3 \text{ if temp=cool} \end{cases} & x_2 = \begin{cases} [100] \text{ if temp=hot} \\ [010] \text{ if temp=mild} \\ [001] \text{ if temp=cool} \end{cases}$$

$$x_3 = \begin{cases} 1 \text{ if humidity=normal} \\ 2 \text{ if humidity=high} \end{cases} & x_3 = \begin{cases} [10] \text{ if humidity=normal} \\ [01] \text{ if humidity=high} \end{cases}$$

Example! Multi-class with 1-hot features

$$p(y = c|x; \theta) = \frac{exp(\theta_c x)}{\sum_k exp(\theta_k x)}$$

(Small) Test Data set

Outlook	Temp	Humidity	Class
0 0 1	0 0 1	1 0	0
100	0 0 1	1 0	1
100	100	0 1	2

Feature Function

$$x_0 = 1 \text{ (bias term)}$$

$$x_1 = \begin{cases} [100] \text{ if outlook=sunny} \\ [010] \text{ if outlook=overcast} \\ [001] \text{ if outlook=rainy} \end{cases}$$

$$x_2 = \begin{cases} [100] \text{ if temp=hot} \\ [010] \text{ if temp=cool} \end{cases}$$

$$x_3 = \begin{cases} [10] \text{ if humidity=normal} \\ [01] \text{ if humidity=high} \end{cases}$$

Logistic Regression: Final Thoughts

Pros

- Probabilistic interpretation
- No restrictive assumptions on features
- · Often outperforms Naive Bayes
- Particularly suited to frequency-based features (so, popular in NLP)

Cons

- Can only learn linear feature-data relationships
- Some feature scaling issues
- Often needs a lot of data to work well
- Regularisation a nuisance, but important since overfitting can be a big problem

Summary

- Derivation of logistic regression
- Prediction
- Derivation of maximum likelihood

References

Cosma Shalizi. *Advanced Data Analysis from an Elementary Point of View.* Chapters 11.1 and 11.2. Online Draft.

https://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf

Dan Jurafsky and James H. Martin. *Speech and Language Processing*. Chapter 5. Online Draft V3.0.

https://web.stanford.edu/~jurafsky/slp3/

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} \times \frac{\partial B}{\partial C}$

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

Preliminaries

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C}$

Also

- Derivative of sum = sum of derivatives → focus on 1 training input
- Compute $\frac{\partial \mathcal{L}}{\partial \theta_j}$ for each θ_j individually, so focus on 1 θ_j

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_j} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_j} \quad \text{ where } p = \sigma(\theta^T x) \text{ and } z = \theta^T x$$

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} \times \frac{\partial B}{\partial C}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_j} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_j} \quad \text{where } p = \sigma(\theta^T x) \text{ and } z = \theta^T x$$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial p} = -\left(\frac{y}{p} - \frac{1 - y}{1 - p}\right)$$

$$(\text{because } \mathcal{L}(\theta) = -[ylogp + (1 - y)log(1 - p)]$$

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} \times \frac{\partial B}{\partial C}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_{j}} \quad \text{where } p = \sigma(\theta^{T} x) \text{ and } z = \theta^{T} x$$

$$\frac{\partial p}{\partial z} = \frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 - \sigma(z)]$$

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} \times \frac{\partial B}{\partial C}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_{j}} \quad \text{where } p = \sigma(\theta^{T} x) \text{ and } z = \theta^{T} x$$

$$\frac{\partial z}{\partial \theta_{j}} = \frac{\partial \theta^{T} x}{\partial z} = x_{j}$$

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

Preliminaries

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} \times \frac{\partial B}{\partial C}$

 $= - \left[y(1-p) - p(1-y) \right] \times x_i$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_{j}} \quad \text{where } p = \sigma(\theta^{T}x) \text{ and } z = \theta^{T}x$$

$$= -\left[\frac{y}{p} - \frac{1 - y}{1 - p}\right] \times \sigma(z)[1 - \sigma(z)] \times x_{j} \quad \text{[[combine 3 derivatives]]}$$

$$= -\left[\frac{y}{p} - \frac{1 - y}{1 - p}\right] \times p[1 - p] \times x_{j} \quad \text{[[} \sigma(z) = p]\text{]}$$

$$= -\left[\frac{y(1 - p)}{p(1 - p)} - \frac{p(1 - y)}{p(1 - p)}\right] \times p[1 - p] \times x_{j} \quad \text{[[} x \times \frac{1 - p}{1 - p} \text{ and } \frac{p}{p} \text{]]}$$

[[cancel terms]]

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} \times \frac{\partial B}{\partial C}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_{j}} \quad \text{where } p = \sigma(\theta^{T}x) \text{ and } z = \theta^{T}x$$

$$= -\left[y(1-p) - p(1-y)\right] \times x_{j} \quad \text{[[copy from last slide]]}$$

$$= -\left[y - yp - p + yp\right] \times x_{j} \quad \text{[[multiply out]]}$$

$$= -\left[y - p\right] \times x_{j} \quad \text{[[-yp+yp=0]]}$$

$$= \left[p - y\right] \times x_{j} \quad \text{[[-[y-p] = -y+p = p-y]]}$$

$$= \left[\sigma(\theta^{T}x) - y\right] \times x_{j} \quad \text{[[p = \sigma(z), z = \theta^{T}x]]}$$

