LESSON 1

Equal and Equivalent sets

Definition:

- Equal sets are sets with the same type and same number of members/elements.
- <u>Equivalent sets</u> are sets with same number of members which may not necessarily be of the same type.

Examples

(i)
$$P = \{0, 2, 4, 6, 8\}$$
 and $Q = \{2, 4, 6, 8, 0\}$

P and Q are equal sets.

We write P = Q.

(ii)
$$X = \{1, 2, 3, 4\}$$
 and $Y = \{a, b, c, d\}$

X and Y are **equivalent sets**.

We can also write X◆→Y

Or: X = Y

New MK Pri. Mtc PB6 page 1

LESSON 2

Unequal sets

<u>Unequal</u> sets are sets with different number of members.

Examples

 $X \neq Y$

X and Y are unequal sets.

(ii) $P = \{m, n, o, p, q\}$ and $Q = \{1, 3, 5, 7, 9, 11, 13\}$

P and Q are unequal sets.

New MK Pri. Mtc PB6 page 2

LESSON 3

Intersection and Union of sets

Definition:

- Intersection of sets refers to the common elements in a given number of sets.
- Union of sets refers to the collection of all elements / members in the given sets together.

NB: When listing the members in a union of sets, the common members are listed once.

Example 1

List the elements of;

(i) MnN

(ii) MUN

Example 2

 $P = \{1, 2, 3, 4, 5, 6\}$ and $R = \{0, 2, 4, 6, 8\}$

LESSON 4

Universal sets

A set of all members in the union set plus those outside the union set.

Example

Given that set Q = {all pupils in p.6} and P = {all girls in p.6}

Set P is part of set Q. Set P is a subset of set P.

Set Q is a universal set of P.

More on universal sets

A = {days of the week starting with letter T} B = {first 4 days} New MK Pri. Mtc PB6 page 5 - 7

LESSON 5

Complement of sets

The complement of sets refers to a list of elements that do not belong to a particular / stated set.

Example

Given that $\Sigma = \{a, b, c, d, e,f\}$

 $M = \{a, d, f\}$

Complement of set M We write; (M') = {b, c, e}

New MK Pri. Mtc PB6 page 8 - 10

LESSON 6

Difference of sets

Example

Given a Venn diagram showing set A and B below

- (i) Elements of set A which are not in B = {a, b, c}.
 - We write; $A B = \{a, b, c\}$
 - > They are members of set A only.
- (ii) Elements of set B which are not in A = $\{f, g, h, i\}$ We write; B – A = $\{f, g, h, i\}$

> They are members of set B only.

New MK Pri. Mtc PB6 page 11 - 15

LESSON 7

Subsets

Given that A is a set of all pupils in primary six.

G = {a set of pupils who are girls in primary six}

B = {a set of all pupils who are boys}

Set G and B are subsets of set A as can be seen on the Venn diagram below.

The symbol "C" means "is a subset of"

Listing all subsets from a given set.

Note:

- An empty set and the given set are subsets of any set.
- The list starts with an empty set and ends with the major set itself.

Examples

 $\overline{(i) A = \{a\}}$ Subsets of set A are as listed below.

{ }, {a}

(ii) B = {a, b} Subsets of set B are; { }, {a}, {b}, {a, b}

New MK Pri. Mtc PB6 page 16 - 19

LESSON 8

Finding the number of subsets.

NOTE:

- A set with one element can be used to form 2 subsets.
- A set with two members can be used to form 4 subsets.
- A set of three members can be used to form 8 subsets.

Therefoer. Number of subsets = 2^n

Example

 $A = \{x, y, z\}$. Find number of subsets in set A.

Solution

 2^n = No. of subsets

Where n stands for number of elements in the given set.

$$2^3 = 2 \times 2 \times 2$$

 4×2

= 8 subsets

(ii) How many subsets can be obtained from a set which has six members? Solution

 2^n = No. of subsets

16 x 2

= 64 subsets

Finding the number of proper subsets.

Formula:

 $2^{n} - 1 = No.$ of proper subsets.

Example 1

Find the number of proper subsets in a set with 3 elements.

$$2^{n} - 1 = No.$$
 of proper subsets

$$2^3 - 1 = (2 \times 2 \times 2) - 1$$

$$8 - 1$$

= 7 proper subsets

New MK Pri. Mtc PB6 page 16 -19

LESSON 9

Finding the number of elements when the number of subsets is given

Example

Find the number of elements in a set which has 16 subsets.

Steps

- Prime factorize the given number of subsets.
 - 2 16 2 8 2 4
 - 2 4 2 1
- Express the prime factors in powers of 2.

$$16 = 2 \times 2 \times 2 \times 2 = 2^4$$

- Apply the formula for number of subsets.

$$2^n$$
 = No. of subsets

$$2^{n} = 16$$

$$2^n = 2^4$$

- Council the bases and remain with the powers.
- n = 4 elements.

New MK Pri. Mtc PB6 page 16 -19

LESSON 10

Solving problems using a Venn diagram.

Example

If
$$X = \{a, b, c, d, e, f\}$$
 and $Y = \{a, c, e, g, h, i, j\}$

(i) Draw a Venn diagram to show the intersection of X and Y.

- (ii) How many elements are in set X?
- (iii) Find n(Y)

New MK Pri. Mtc PB6 page 20 - 21

LESSON 11

Drawing a Venn diagram for number of elements.

Given that $A = \{a, b, c, d, e, f, g, u\}$ and $B = \{d, e, f, g, h, I, j, k\}$

> Comparing listed elements with number of elements in A and B.

$$A = \{a, b, c, d, e, f, g, u\}$$
 and $B = \{d, e, f, g, h, l, j, k\}$

$$n(A) = 7$$

$$n(B) = 8$$

$$AnB = \{d, e, f\}$$

A-B =
$$\{a, b, c, u\}$$

$$n(A-B) = 4$$

$$B-A = \{g, h, l, j, k\}$$

$$n(B-A) = 5$$

Venn diagrams

New MK Pri. Mtc PB6 page 22

LESSON 12

<u>Drawing and representing information on Venn diagrams.</u>

Given that; n(A) = 10, n(B) = 15, n(AnB) = 6.

Draw and complete a Venn diagram for this information.

$$n(\Delta - B) = 10 - 6$$
 $= 4$
 $n(\Sigma) = 19$
 $n(A-B) = 10 - 6$
 $= 4$
 $n(\Sigma) = 4 + 6 + 9$
 $= 19$
 $n(\Sigma) = 19$
 $n(B-A) = 15 - 6$
 $= 9$
 $n(\Sigma) = 19$
 $n(E-A) = 15 - 6$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$
 $= 10$

Lesson 13

Finding number of elements in sets.

Below is a Venn diagram showing number of elements in set A and B.

$$n(\Sigma) = ---- n(A) = ---- 7$$
 4
 12

(a) How many elements are in set A?

$$n(A) = 7 + 4$$

= 11

(b) Find the number of elements in set B.

$$n(B) = 4 + 14$$

= 16

(c) Find the number of elements in the universal set.

$$n(\Sigma) = 7 + 4 + 12$$

= 23

New MK Pri. Mtc PB6 page 24 - 25

LESSON 14

Probability

Definition

- Probability is the measure of chances.
- The chance of an event occuring.

Formula;

Prob. = $\frac{n(Expected outcome)}{n(Possible outcome)}$

Prob. = n(Event)

n(Sample space

Prob. = $\underline{n(E)}$

n(S)

New MK Pri. Mtc PB6 page 26 - 28

LESSON 15

Application of sets.

In a class, 12 pupils like English (E), 15 pupils like Maths (M) and 5 pupils like both Maths and English.

(a) Show the information on a Venn diagram.

- (b) How many pupils like Maths only?
- (c) How many pupils like English only?
- (d) How many pupils are in the class?

New MK Pri. Mtc PB6 page 229 - 30

LESSON 16

More application of sets

Example

In a class of 60 pupils, 30 pupils like Mathematics (M), 25 pupils like English (E) and 8 pupils like none of the two subjects.

(a) Draw a Venn diagram and fill in the information.

Let y be the number of pupils who like both subjects.

$$n(\Sigma)=60$$
 $n(M)=30 \quad n(E)=25$
 $30-y \quad y \quad 25-y$
 8

(b) Find the number of pupils who like both subjects.

New MK Pri. Mtc PB6 page 29 - 30

LESSON 17

Shading and naming different parts of a Venn diagram

LESSON 18

Place values and Values of digits in whole numbers

The table below shows the order of place values of whole numbers.

Etc

Examples

1. Find the place values of 5 in the number; 653,401

H/Th	T/Th	Th	Н	T	0
6	5	3	4	0	1

Tens of thousands

2. Find the value of 4 in; 1,024,893

М	H/Th	T/Th	Th	H	Т	0
1	0	2	4	8	9	3

4 Thousands =
$$4 \times 1000$$

= 4.000

Note; A digit multiplied by its place value gives it value.

New MK Pri. Mtc PB6 Page 34 - 35

LESSON 19

Expanding whole numbers

Numbers can be written in expanded form using;

- (i) Place values.
- (ii) Values.
- (iii) Powers of base ten.

Examples

- 1. Write 46,627 in expanded form.
 - (i) Using place values

T/th	Th	H	Т	0
4	6	6	2	7

$$46,627 = (4 \times 10000) + (6\times1000) + (6\times100) + (2\times10) + (7\times1)$$

(ii)Using values.

('	1)03	ші	y v	aı	uc	7) .				
T/	th	Т	h	ŀ	Τ		Т	0			
	4	(ခ ှ	•	ç		2	. 7			
										=	
							2	x 1	0	= 2	20
								00			
			6	Χ	1,	0	00	=	6,	,00	0

(iii) Using powers

10 ⁴	10 ³	10 ²	10 ¹	10 ⁰
4	6	6	2	7

$$46,627 = (4x10^4) + (6x10^3) + (6x10^2) + (2x10^1) + (7x10^0)$$

New MK Pri. Mtc PB6 Page 36

LESSON 20

Writing the expanded number as a single number

Examples

1. What number has been expanded to give;

400,000+60,000+7,000+90+2

• Add the values to come up with a single number.

400,000 60,000 7,000 90 + 2 467.092

2. Express $(3 \times 10^4) + (5 \times 10^2) + (9 \times 10^1) + (4 \times 10^0)$ as a single number.

 $(3 \times 10^4) = (3 \times 10000) = 30000$

 $(5 \times 10^2) = (5 \times 100) = 500$

 $(9 \times 10^{1}) = (9 \times 10) =$

 $(4 \times 10^{0}) = (4 \times 1) = \frac{+ 4}{20000}$

= <u>30594</u>

90

New MK Pri. Mtc PB6 Page 37 - 38

LESSON 21

Writing number figures in words

Example

Write 1,486,019 in words.

Millions	TI	Į	Jnits			
М	H/Th	T/Th	Th	Н	Т	0
1	4	8	6	0	1	9

1,486,019 = One million, four hundred eighty six thousand, nineteen.

New MK Pri. Mtc PB6 Page 39

LESSON 22

Writing number words in figures.

Example

1. Write in figures; five million, four hundred thousand, seven hundred sixteen.

Five million = 5,000,000

Four hundred

thousand = 400,000

Seven hundred +

sixteen = $\frac{716}{5,400,716}$

2. Write eighteen million, three hundred seventy five thousand, nine hundred twenty six in figures.

Millic	ns	Thousands			Units		
T/M	М	H/Th	T/Th	Th	Н	Т	0
1	8	3	7	5	9	2	6

New MK Pri. Mtc PB6 Page 38 - 39

LESSON 23

Rounding off a whole number to the required place values

Examples

1. Round off 1648 to the nearest hundreds.

2. Round off 68,729 to the nearest thousands.

LESSON 24

Basic Roman Numerals

Hindu arabic	1	5	10	50	100	500	1000
Roman Numerals	I	V	Χ	L	С	D	М

Changing Roman Numerals to Hindu Arabic Numerals

Examples

1. Write CXXVI in Hindu Arabic Numerals.

$$CXXVI = C + XX + VI$$

 $100 + 20 + 6$
 $= 126$

2. Write CCCXCIX in Hindu Arabic Numerals.

3. Write DCXXIV in Hindu Arabic.

$$DCXXIV = DC + XXX + IV$$

 $600 + 30 + 4$
 $= 634$

4. Express MCCLVIII in Hindu Arabic system.

$$MCCLVIII = M + CC + L + VIII$$

 $1000 + 200 + 50 + 8$
 $= 1,258$

New MK Pri. Mtc PB6 Page 49 - 52

LESSON 25

Expressing Hindu Arabic Numerals as Roman Numerals

Examples

1. Write 75 in Roman Numerals.

$$75 = 70 + 5$$

 $LXX + V$
 $= LXXV$

2. Express 768 in Roman Numerals.

New MK Pri. Mtc PB6 Page 49-52

LESSON 26

Addition of whole numbers

Examples

1. Add: 1,784,364 + 336,897

1,784,364 + 336,897 2,121,261

2. Builders laid 249,898 bricks for a building in a day and laid another 1,847,304 to complete the building. How many bricks were used to erect the building?

249,898 + 1,847,304 _ 2,097,202 bricks

New MK Pri. Mtc PB6 Page 54- 55

LESSON 27

Subtraction of whole numbers.

Example

1. Subtract 875,575 from 2,200,950

2,200,950

<u>- 875,575</u>

1,343,375

2. A diary industry produced 6,500,650 litres of milk and sold 5,650,945 litres. How many litres were left?

6,500,650 litres

- <u>5,650,945 litres</u>

849,505 litres

: . 849,505 litres were left.

New MK Pri. Mtc PB6 Page 57

LESSON 28

Multiplication of whole numbers

Examples

- 1. Multiply: 1324 by 132 1324 <u>x 132</u> 2648 3972
 - + 1324 <u>.</u> 174,768
- 2. A company has 850 workers who earn sh. 5,560 each per day. How much does the company spend on wages every day?

1 worker gets sh. 5,560

850 workers will be give; sh 5,560 x 850

5,560 <u>x 850</u> 0000 27800 + 44480

Sh. <u>4,726,000</u>

New MK Pri. Mtc PB6 Page 49-52

LESSON 29

Division of whole numbers

Examples

1. Divide 25025 by 5

$$\begin{array}{c|cccc}
 & 05005 \\
5 & 25025 \\
0x2 & -0 & | & | \\
25 & | & | \\
5x5 & -25 & | & | \\
00 & 0 & 2 & | \\
0x5 & -0 & 2 & | \\
5x5 & -25 & | & | \\
5x5 & -25 & | & | \\
\end{array}$$

2. Divide 6360 b y 120

New MK Pri. Mtc PB6 Page 54 - 55

LESSON 30

Combined operations on whole numbers

Examples

2. Simplify
$$(8-5) - (3 \times 2) + (2 \times 2)$$

 $3-6+4$
 $(3+4)-6$
 $7-6$
= 1

3. Work out:
$$9 - 11 + 4(6 \div 8)$$

 $9 - 11 + \left(4 \times \frac{6}{8}\right)$
 $9 - 11 + 3$
 $(9 + 3) - 11$
 $12 - 11$
 $= 1$

New MK Pri. Mtc PB6 Page 57

LESSON 31 Divisibility tests

Divisibity test for 2

A number is divisible by 2 if its last digit is 0, 2, 4, 6 or 8. Or A number is divisible by 2 if its last digit is an even number. Eg 1372, 248, 904, etc

Divisibility test for 3

A number is divisible by 3 if the sum of its digits is a multiple of 3. E.g 300, 132, 303, 912, etc

Divisibility test for 4

A number is divisible by 4 if its last two digits are zeros or if its last two digits form a multiple of 4. E.g 124, 500, 364, 15684 etc.

Divisibility test for 5

A number is divisible by 5 if its last digit is 0 ro 5. Eg 25, 10, 345, 130, 4005, 915 etc.

Divisibility test for 10

A number is divisible by 10 if its last digit is 0. eg 830, 50, 110, 2020 etc New MK Pri. Mtc PB6 page 65 - 67

LESSON 32

Types of numbers

Whole numbers and counting numbers

- (1) Whole numbers are complete numbers.
- They begin with zero plus counting numbers.

Below is a set of consecutive whole numbers.

- $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \dots\}$
- (2) **Counting numbers** are numbers we use in counting.
- They begin with 1.
- (3) Even and odd numbers.

Even numbers are numbers exactly divisible by 2 while odd numbers give remainder 1 when divided by 2.

New MK Pri. Mtc PB6 page 67 - 75

LESSON 33

Finding consecutive counting numbers.

Remember:

Counting numbers follow the pattern of (+1).

If the first counting number is n, then;

the second will be n+1

the third will be (n+1)+1=n+2

the 4^{th} will be (n+2)+1 = n+3

Study the number line below about consecutive counting numbers.

Example: The sum of three consecutive counting numbers is 24. If the first number is n, find the value of n and list those numbers.

New MK Pri. Mtc PB6 page 76

LESSON 34

Finding consecutive even and odd numbers.

Remember; even and odd numbers consider the pattern of 2.

E.g if x is the first even or odd number, then;

- -the second will be x+2.
- -the third will be (x+2)+2=x+4
- -the 4th will be (x+4)+2=x+6.

Study the number line below showing the sequence of even and odd numbers.

Example: The sum of three consecutive even numbers is 36. Find those numbers.

New MK Pri. Mtc PB6 page 77

LESSON 35

Triangular numbers

Tiangular numbers are numbers got by adding consecutive counting numbers.

sequence	Pattern	No.
1	*	1
1 + 2	*	3
	* *	
1 + 2 + 3	*	6
	* *	
	* * *	
1+2+3+4	*	10
	* *	
	* * *	
	* * * *	

Below is a set of triangular numbers.

*{*1, 3, 6, 10, 15, 21, 28, 36...*}*

New MK Pri. Mtc PB6 page 68 - 69

LESSON 36

Rectangular numbers

Rectangular numbers are numbers got by arranging squares to form a rectangle. Study the pattern below.

Study the pat	terri below.	
Sequence	Pattern	No.
1 by 2		2
2 by 3		6
2 by 4		8
2 by 5		10

Below is a set of rectangular numbers.

{2, 6, 8, 10, 12, 14, 15.....}

New MK Pri. Mtc PB6 page 70

LESSON 37 Square numbers.

Square numbers are numbers got by multiplying two equal numbers.

e.g 3 x 3 = 9
a x a =
$$a^2$$

Study the table below showing the pattern of square numbers.

Sequence	Pattern	Square number
1 x 1	*	1
2 x 2	* *	4
3 x 3	* * * * * * * * *	9
4 x 4	* * * * * * * * * * * *	16

Square numbers = {1, 4, 9, 16, 25, 36, 49, 64,....}

New MK Pri. Mtc PB6 page 71 - 72

LESSON 38

Prime and composite numbers.

- 1. Prime numbers are numbers which have only two factors 1 and itself.
- 2. Composite numbers are numbers which have more than two factors.
- 3. A factor is a number that divides another in an exact number of time.

$$F_2 = \{1, 2\},\$$

$$F_3 = \{1, 3\},\$$

$$F_4 = \{1, 2, 4\},\$$

$$F_5 = \{1, 5\},\$$

$$F_6 = \{1, 2, 3, 6\},\$$

$$F_7 = \{1, 7\}$$

$$F_8 = \{1, 2, 4, 8\},\$$

$$F_9 = \{1, 3, 9\},\$$

$$F_{10} = \{1, 2, 5, 10\},\$$

$$F_{11} = \{1, 11\},\$$

$$F_{12} = \{1, 2, 3, 4, 6, 12\}$$

Numbers with two factors only are Prime numbers.

Numbers with more than two factors are Composite numbers.

New MK Pri. Mtc PB6 page 79 - 80

LESSON 39 Factors of numbers.

A factor is number that divides another in an exact number of time.

Example

Find the factors of 24.

Solution

$$F_{24} = 1 \times 24$$

 2×12
 3×8
 4×6
 $F_{24} = \{1, 2, 3, 4, 6, 8, 12, 24\}$

Note:

- 1 is a factor of every number.
- -1 is the least common factor of every number.
- A number is a factor of itself.

Common factors

A common factor is the one that appears in two or more sets of factors of numbers.

Example

Find the common factors of 12 and 18.

New MK Pri. Mtc PB6 page 81

LESSON 40

Prime factorization of numbers.

Prime factorization is a way of finding the prime factors of a given number.

In this case you divide the given number by the possible consecutive prime numbers using the ladder or factor tree methods.

Examples

- 1. Find the prime factors of 54 (Give your answer in multiplication form)
 - 2 | 54 3 | 27 3 | 9 3 | 3 | 1

$$F_{54} = 2 \times 3 \times 3 \times 3$$

- 2. Prime factorize 36 and give your answer in subscript form)
 - $\begin{array}{c|c}
 2 & 36 \\
 \hline
 2 & 18 \\
 \hline
 3 & 9 \\
 \hline
 3 & 3 \\
 \hline
 & 1
 \end{array}$ $F_{36} = \{2_1, 2_2, 3_1, 3_2\}$
- 3. Prime factorize 18 and give your answer in power form.

New MK Pri. Mtc PB6 page 82

LESSON 41

Finding the prime factorized number

Example

Find the number which has been prime factorized to get

$$\{2_1, 2_2, 2_3, 3_1\}$$

The number for;

$$2_1, 2_2, 2_3, 3_1 = 2 \times 2 \times 2 \times 3$$

 4×6
 $= 24$

Finding the unknown prime factor

Example

The prime factgors of 60 are 2 x 2 x p x 5. Find the value of p.

$$2|60$$
 If $F_{60} = \{2 \times 2 \times p \times 5\}$

$$\frac{2}{3}$$
0 and also $F_{60} = 2x2xpx5$
 $\frac{3}{1}$ 5 Then p = 5

$$315$$
 Then p = 5

OR
$$F_{60} = \{2 \times 2 \times p \times 5\}$$

So, $2 \times 2 \times p \times 5 = 60$
 $(2 \times 2 \times 5) \times p = 60$
 $20 p = 60$
 $20 p = 60$
 $20 p = 3$

New MK Pri. Mtc PB6 page 83

LESSON 42

Values of powers of numbers

Example

$$2^4 = 2 \times 2 \times 2 \times 2 \times 2 \times 4 \times 4$$

2. Find the value of
$$5^0 + 3^2$$

$$1 + (9)$$

Expressing a number as a product of another number

Example

Write 32 in the powers of 2.

New MK Pri. Mtc PB6 page 84

LESSON 43

Finding more values of numbers in power form

Example

Find the value of x^2 if x = 6.

$$x^2 = x x x$$

$$= 6 \times 6$$

$$x^2 = 36$$

Addition of numbers in power form.

Example

1. Find the value of $4^3 + 3^2$

$$4^{3} + 3^{2} = (4 \times 4 \times 4) + (3 \times 3)$$

$$64 + 9$$

$$= 73$$

New MK Pri. Mtc PB6 page 85

LESSON 44

Subtraction of numbers involving powers.

Example

Find the value of
$$2^6 - 6^2$$

$$2^6 - 6^2 = 2x2x2x2x2x2 - 6x6$$

$$4 \times 4 \times 4 - 36$$

Multiplication of numbers in power form.

Example

$$(2 \times 2) \times (3 \times 3)$$

New MK Pri. Mtc PB6 page 85

LESSSON 45

Powers of the same base

Rule 1 When multiplying powers of the same base, we add the powers/indices.

Rule 2 When dividing powers of the same base, we subtract the powers/indices.

Example

2. Simplify $2^{5} - 2^{3}$

$$2^{5} - 2^{3} = 2^{5-3}$$
 or $2x2x2x2x2$
= 2^{2} 2x2x2
= 2^{2}

New MK Pri. Mtc PB6 page 85

LESSON 46

Representing prime factors of numbers on a Venn diagram

Steps taken

- (i) Prime factorize the given numbers.
- NB: Represent the elements in set notation form.
 - (ii) Identify the prime factors in the difference of sets and those in the intersection.
- (iii) Then draw a Venn diagram and represent the elements following their identity. Example

Draw a Venn diagram to show the prime factors of 30 and 36.

$$\begin{array}{c|ccccc}
 & 2 & 30 & & & 2 & 36 \\
\hline
 & 3 & 15 & & & 2 & 18 \\
\hline
 & 5 & 5 & & & & 3 & 9 \\
\hline
 & 1 & & & & & 3 & 3 \\
\hline
 & F_{30} &= \{2_1, 3_1, 5_1\} & & & & 1 & F_{36} &= \{2_1, 2_2, 3_1, 3_2\}
\end{array}$$

Common factors / Intersection = $\{2_1, 3_1\}$

Venn diagram

New MK Pri. Mtc PB6 page 86

LESSON 47

Finding the GCF and LCM from the Venn diagram

NOTE: The product of the intersection gives the GCF while that of the union gives the LCM.

Example

Find the GCF and LCM of 8 and 12 using a Venn diagram

* Draw a Venn diagram to represent the members first.

New MK Pri. Mtc PB6 page 87

LESSON 48

Finding the unknown values in the Venn diagram

Example

Find the value of x and y

New MK Pri. Mtc PB6 page 88 - 89

LESSON 49

Multiples of numbers

A multiple of a number is a product of that number with other numbers.

Example

1. Find the multiples of 8

$$M_8 = \{8, 16, 24, 32, 40, 48, ---\}$$

2. List down the multiples of 9 between 17 and 50.

M9 =
$$\{9, (18)(27), (36), (45), 54---\}$$

M₉ between 17 and 50 are; $\{18, 27, 36, 45\}$

Finding the Lowest Common Multiple

Example

Find the Lowest Common Multiple of 6 and 8.

- * List the multiples of 6 and 8.
- * Identify the common multiples of 6 and 8.
- * Identify the least common multiple of 6 and 8.

New MK Pri. Mtc PB6 page 93

LESSON 50

Finding the LCM and GCF using prime factorization

Example

Find the GCF of 12 and 18.

- * Prime factorize 12 and 18 using the ladder method as you highlight the common factors of 12 and 18.
- * The product of the common factors is the GCF of 12 and 18.

Example 2

Find the LCM of 12 and 15

* The product of the factors of 12 and 15 after the prime factorization is the LCM of 12 and 15.

New MK Pri. Mtc PB6 page 93

LESSON 51

Application of GCF and LCM.

Example

1. What is the biggest divisor of 9 and 12?

Interpretation: What is the biggest number that can be divided by 9 and 12 and leave no remainder?

2. What number can be divede by 6 or 9 to give a remainder of 3?

Guideline: LCM + Remainder.

New MK Pri. Mtc PB6 page 93

LESSON 52

Square numbers.

A square number is a product of two equal numbers. Example

1. Find the square of 27.

The square of
$$27 = 27^2$$

2. Find the square of p

The square of
$$p = p \times p$$

= p^2

Square roots of whole numbers.

Example

Find the square root of 81.

- * Prime factorize the given number (81).
- * Pair the prime factors and drop one from each pair.
- * Multiply the remaining ones to obtain the square root.

New MK Pri. Mtc PB6 page 95, 96 and 97

LESSON 53

Squares of fractions.

Example

Find the square of
$$\frac{5}{8}$$

Square of $\frac{5}{8} = (\frac{5}{8})^2$

$$= \frac{5 \times 5}{8 \times 8}$$

Square roots of fractions

Example

Find the square root of 1/16

$$\frac{1}{16} = \frac{1}{16}$$

$$\frac{1 \times 1}{2 \times 2 \times 2 \times 2}$$

$$= \frac{14}{16}$$

Find the square root of <u>25</u>

100

New MK Pri. Mtc PB6 page 98 - 99

LESSON 54

Squares of decimals.

Example

Find the square of 0.4

- * Express the given decimal into a common fraction.
- * Find the square of the common fraction, then express the answer back to a decimal.

The square of $0.4 = (0.4)^2$ $= \left[\frac{4}{10}\right]^2$ $= \frac{4 \times 4}{10 \times 10}$ $= \frac{16}{100}$ = 0.16

Square roots of decimals.

Example

Find the square root of 0.36

- * Exapress the decimal into a common fraction.
- * Find the square root of the common fraction then express the answer back to decimals New MK Pri. Mtc PB6 page 101 102

LESSON 55

Application of square roots.

Examples

- 1. Solve: $4h^2 = 144$
- * First elliminate the coeficient of x by dividing it on either side of the equation.

$$\frac{4x^2}{4} = \frac{144}{4}$$
 $x^2 = 36$

* Elliminate the square on the unknown by introducing the square root sign on each side.

$$y x^2 = y 36$$

$$x = 6$$

2. Solve:
$$3h^2 + 25 = 100$$

 $3h^2 + 25 - 25 = 100 - 25$
 $3h^2 + 0 = 75$

$$\frac{3h^2}{3} = \frac{75}{3}$$

$$h^2 = 25$$

$$h^2 = \sqrt{25}$$
 $h = 5$

h = 5New MK Pri. Mtc PB6 page