

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶ : H01L 21/20, 21/762		A1	(11) Numéro de publication internationale: WO 99/08316 (43) Date de publication internationale: 18 février 1999 (18.02.99)
(21) Numéro de la demande internationale: PCT/FR98/01789 (22) Date de dépôt international: 11 août 1998 (11.08.98)		(81) Etats désignés: JP, KR, SG, US, brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Données relatives à la priorité: 97/10288 12 août 1997 (12.08.97) FR		Publiée <i>Avec rapport de recherche internationale.</i>	
(71) Déposant (pour tous les Etats désignés sauf US): COMMIS-SARIAT A L'ENERGIE ATOMIQUE [FR/FR]; 31-33, rue de la Fédération, F-75015 Paris (FR).			
(72) Inventeurs; et (75) Inventeurs/Déposants (US seulement): ASPAR, Bernard [FR/FR]; 110, lot le Hameau des Ayes, F-38140 Rives (FR). BRUEL, Michel [FR/FR]; Presvert n° 9, F-38113 Veurey (FR).			
(74) Mandataire: REVATOME; 25, rue de Ponthieu, F-75008 Paris (FR).			

(54) Title: METHOD FOR MAKING A THIN FILM OF SOLID MATERIAL

(54) Titre: PROCEDE DE FABRICATION D'UN FILM MINCE DE MATERIAU SOLIDE

(57) Abstract

The invention concerns a method for making a thin film of solid material, comprising the following steps: a step of ion implantation through a surface of said solid material substrate by means of ions capable of producing, in the substrate volume and at a depth close to the mean penetration of the ions, a layer of microcavities or microbubbles, said step being carried out at a predetermined temperature and for a predetermined duration; an annealing step for bringing the layer of microcavities or microbubbles to a predetermined temperature and for a predetermined duration to obtain a cleavage on either side of the layer of microcavities or microbubbles. The annealing step is carried out with a predetermined thermal budget, based on the thermal budget of the ion implantation step and optionally on other thermal budgets induced by other steps, to obtain said cleavage of the substrate.

(57) Abrégé

L'invention concerne un procédé de fabrication d'un film mince de matériau solide, comprenant au moins les étapes suivantes: une étape d'implantation ionique au travers d'une face d'un substrat dudit matériau solide au moyen d'ions aptes à créer, dans le volume du substrat et à une profondeur voisine de la profondeur moyenne de pénétration des ions, une couche de microcavités ou de microbulles, cette étape étant menée à une température déterminée et pendant une durée déterminée; une étape de recuit destinée à porter la couche de microcavités ou de microbulles à une température déterminée et pendant une durée déterminée en vue d'obtenir un clivage du substrat de part et d'autre de la couche de microcavités ou de microbulles. L'étape de recuit est menée avec un budget thermique prévu, en fonction du budget thermique de l'étape d'implantation ionique et éventuellement d'autres budgets thermiques induits par d'autres étapes, pour obtenir ledit clivage du substrat.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave de Macédoine	TM	Turkménistan
BF	Burkina Faso	GR	Grèce	ML	Mali	TR	Turquie
BG	Bulgarie	HU	Hongrie	MN	Mongolie	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MR	Mauritanie	UA	Ukraine
BR	Brésil	IL	Israël	MW	Malawi	UG	Ouganda
BY	Bélarus	IS	Islande	MX	Mexique	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	NE	Niger	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NL	Pays-Bas	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norvège	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NZ	Nouvelle-Zélande	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire démocratique de Corée	PL	Pologne		
CM	Cameroun	KR	République de Corée	PT	Portugal		
CN	Chine	KZ	Kazakhstan	RO	Roumanie		
CU	Cuba	LC	Sainte-Lucie	RU	Fédération de Russie		
CZ	République tchèque	LI	Liechtenstein	SD	Soudan		
DE	Allemagne	LK	Sri Lanka	SE	Suède		
DK	Danemark	LR	Libéria	SG	Singapour		
EE	Estonie						

**PROCEDE DE FABRICATION D'UN FILM MINCE DE MATERIAU
SOLIDE**

Domaine technique

5

La présente invention concerne un procédé de fabrication d'un film mince de matériau solide. Ce procédé permet en particulier le transfert d'un film mince de matériau solide homogène ou hétérogène sur un support constitué d'un matériau solide de même nature ou de nature différente.

Etat de la technique antérieure

15

Le document FR-A-2 681 472 décrit un procédé de fabrication de films minces de matériau semiconducteur. Ce document divulgue que l'implantation d'un gaz rare ou d'hydrogène dans un substrat en matériau semiconducteur est susceptible de créer la formation de microcavités ou de microbulles (encore désignées par le terme "platelets" dans la terminologie anglo-saxonne) à une profondeur voisine de la profondeur moyenne de pénétration des ions implantés. Si ce substrat est mis en contact intime, par sa face implantée avec un raidisseur et qu'un traitement thermique est appliqué à une température suffisante, il se produit une interaction entre les microcavités ou les microbulles conduisant à une séparation du substrat semiconducteur en deux parties : un film mince semiconducteur adhèrent au raidisseur d'une part, le reste du substrat semiconducteur d'autre part. La séparation a lieu à l'endroit où les microcavités ou microbulles sont présentes. Le traitement thermique est tel que l'interaction entre les microbulles ou microcavités créées par implantation induit une

séparation entre le film mince et le reste du substrat. Il y a donc transfert d'un film mince depuis un substrat initial jusqu'à un raidisseur servant de support à ce film mince.

5 Ce procédé peut également s'appliquer à la fabrication d'un film mince de matériau solide autre qu'un matériau semiconducteur (un matériau conducteur ou diélectrique), cristallin ou non.

10 Si le film mince délimité dans le substrat est suffisamment rigide par lui-même (à cause de son épaisseur ou à cause de ses propriétés mécaniques) on peut obtenir, après le recuit de transfert, un film autoporté. C'est ce qu'enseigne le document FR-A-2 738 671.

15 Par contre, en l'absence de raidisseur, si le film est trop mince pour induire la fracture sur toute la largeur du substrat, des bulles apparaissent à la surface traduisant la présence de microfissures au niveau de la profondeur moyenne d'implantation des 20 ions. Dans ce cas, le traitement thermique ne produit pas de couches autoportées mais produit uniquement des copeaux.

25 Dans le document FR-A-2 681 472, le traitement thermique est défini à partir de la température de recuit, dans une étape postérieure à l'étape d'implantation, cette température de recuit étant supérieure à la température d'implantation et devant être telle qu'elle provoque la séparation entre le film mince et le reste du substrat.

30 Les documents cités plus haut spécifient que le traitement thermique est mené à une température supérieure à la température d'implantation. Le document FR-A-2 681 472 indique que, dans le cas d'un substrat en silicium la température d'implantation est de préférence comprise entre 20°C et 450°C et que, pour le 35

recuit, une température supérieure, est nécessaire (par exemple une température de 500°C).

Cependant, dans certains cas et pour certaines applications, une température de traitement thermique élevée peut présenter des inconvénients. En effet, il peut être avantageux d'obtenir un clivage du substrat à des températures considérées comme basses, en particulier à des températures inférieures à la température d'implantation. Ceci est important notamment dans le cas où le transfert met en présence des matériaux à coefficients de dilatation thermique différents.

Il peut être avantageux d'effectuer l'étape d'implantation ionique à une température élevée, et qui peut être plus élevée que la température prévue pour l'étape de traitement thermique. L'intérêt de ceci réside dans le fait que, s'il n'y a pas de contrainte sur la température d'implantation, une forte densité de courant d'implantation peut être obtenue sans être obligé de refroidir le substrat. Les durées d'implantation sont alors fortement diminuées.

Par ailleurs, entre l'étape d'implantation ionique et l'étape de traitement thermique (ou recuit) provoquant le clivage, on peut être amené à traiter la face implantée, par exemple en vue de créer des circuits électroniques dans le cas d'un substrat en matériau semiconducteur. Or, ces traitements intermédiaires peuvent être altérés si la température de recuit est trop élevée.

30

Exposé de l'invention

L'invention permet de résoudre ces problèmes de l'art antérieur. Les inventeurs de la 35 présente invention ont en effet découvert qu'il est

possible de baisser la température de recuit si l'on tient compte du budget thermique fourni au substrat au cours des différentes étapes du procédé (étape d'implantation ionique, étape éventuelle d'adhésion du substrat sur le raidisseur, traitements intermédiaires éventuels, étape de recuit permettant la séparation). Par budget thermique, on entend que, pour une étape où un apport thermique est apporté (par exemple lors de l'étape de recuit), il ne faut pas raisonner uniquement sur la température mais sur le couple temps-température fourni au substrat.

A titre d'exemple, pour un substrat en silicium faiblement dopé, implanté avec une dose de $5,5 \cdot 10^{16}$ ions H^+/cm^2 d'énergie 69 keV, à une température de 80°C pendant environ 5 minutes, le clivage apparaît pour un budget thermique, dans le cas d'un recuit isotherme, qui dépend comme on l'a vu du couple temps-température. Ce budget thermique est de 2 h 15 min à 450°C . Si la dose implantée est plus importante par exemple pour un substrat en silicium faiblement dopé implanté avec une dose de 10^{17} ions H^+/cm^2 à 69 keV à une température de 80°C pendant 5 mn, le budget thermique nécessaire pour obtenir le clivage est inférieur au précédent. Ce budget est par exemple de 2 mn 22 s à 450°C ou de 1 h 29 mn à 300°C . Ainsi, le clivage se produit pour des budgets thermiques, dans le cas d'un recuit isotherme, qui sont différents des cas précédents mais qui dépendent toujours du couple temps-température. Le choix des budgets thermiques peut dépendre également du type de matériau et de son niveau de dopage lorsque ce dernier est dopé.

A titre d'exemple pour du silicium fortement dopé (par exemple 10^{20} bore/ cm^3) que l'on implante avec une dose de $5,5 \cdot 10^{16}$ ions H^+/cm^2 d'énergie 69 keV, à une température de 80°C pendant 5 mn, le

clivage est obtenu pour un budget thermique de 4 mn 15 s à 300°C ou 1 h 43 mn à 225°C.

Dans le cas où le traitement thermique est réalisé à l'aide d'une montée progressive en 5 température, il faut tenir compte du budget thermique appliqué aux substrats pendant cette montée en température car il contribue au clivage.

De façon générale, le choix du budget thermique à utiliser pour obtenir la fracture dépend de 10 l'ensemble des budgets thermiques appliqués au matériau de base ou à la structure à partir de l'étape d'implantation. Tous ces budgets thermiques constituent un bilan thermique qui permet d'atteindre le clivage de la structure. Ce bilan thermique est formé par au 15 moins deux budgets thermiques : celui de l'implantation et celui du recuit.

Il peut comporter, en fonction des applications, d'autres types de budgets par exemple : un budget thermique pour renforcer les liaisons 20 moléculaires à l'interface de collage ou pour créer ces liaisons, un ou plusieurs budgets thermiques pour la réalisation d'éléments actifs.

L'invention a donc pour objet un procédé de fabrication d'un film mince de matériau solide, 25 comprenant au moins les étapes suivantes :

- une étape d'implantation ionique au travers d'une face d'un substrat dudit matériau solide au moyen d'ions aptes à créer, dans le volume du substrat et à une profondeur voisine de la profondeur 30 moyenne de pénétration des ions, une couche de microcavités ou de microbulles, cette étape étant menée à une température déterminée et pendant une durée déterminée,

- une étape de recuit destinée à porter la 35 couche de microcavités ou de microbulles à une

température déterminée et pendant une durée déterminée en vue d'obtenir un clivage du substrat de part et d'autre de la couche de microcavités ou de microbulles, caractérisé en ce que l'étape de recuit est 5 menée avec un budget thermique prévu, en fonction du budget thermique de l'étape d'implantation ionique et de la dose et de l'énergie des ions implantés et éventuellement d'autres budgets thermiques induits par d'autres étapes, pour obtenir ledit clivage du 10 substrat.

On définit le terme de clivage au sens large, c'est-à-dire tout type de fracture.

Le procédé selon l'invention permet la réalisation d'un film mince de matériau solide, 15 cristallin ou non, qui peut être un matériau conducteur, un matériau semiconducteur ou un matériau diélectrique. Le substrat de matériau solide peut se présenter sous la forme d'une couche. Le budget thermique prévu pour l'étape de recuit prend également 20 en compte des paramètres de l'étape d'implantation tels que la dose d'ions implantés et l'énergie.

Les ions susceptibles d'être implantés sont avantageusement des ions de gaz rares ou d'hydrogène. La direction d'implantation des ions peut être normale 25 à la face du substrat ou légèrement inclinée.

Par hydrogène, on entend les espèces gazeuses constituées soit sous leur forme atomique (par exemple H) ou sous leur forme moléculaire (par exemple H₂) ou sous leur forme ionique (H⁺, H₂⁺, ...) ou sous 30 leur forme isotopique (Deutérium) ou isotopique et ionique, ...

Le budget thermique de l'étape de recuit peut être également prévu pour obtenir ledit clivage du substrat soit naturellement, soit à l'aide de 35 contraintes appliquées au substrat.

Le budget thermique de l'étape de recuit peut comporter au moins une montée rapide en température et/ou au moins une descente rapide en température. Ces variations rapides en température s'échelonnent de quelques degrés par minute à quelques dizaines voire quelques centaines de degrés par seconde (recuits de type RTA pour "Rapid Thermal Annealing"). Ces recuits peuvent présenter un avantage pour certaines conditions d'implantation car ils facilitent l'étape de formation (ou nucléation) des microcavités.

Le budget thermique de l'étape de recuit peut aussi être nul, le clivage du substrat s'obtenant par l'utilisation de contraintes mécaniques et/ou thermiques. En effet, le budget thermique étant une fonction de la température appliquée et de la durée, le budget thermique de l'étape de recuit peut donc avoir une température qui varie par exemple de 0°C à plus de 1000°C et une durée qui varie de 0 seconde à plusieurs heures. Ainsi, si les budgets thermiques précédant l'étape de recuit sont réalisés avec des températures et/ou des durées importantes et si les doses et l'énergie des ions implantés sont importantes (par exemple pour du silicium quelques 10^{17} H⁺/cm² avec une énergie de 100 keV), le budget thermique de recuit peut même être nul aussi bien en durée qu'en température. De simples contraintes permettent alors le clivage. Ces contraintes sont par exemple de type mécanique (par exemple forces de cisaillement et/ou de traction) ou de type thermique (par exemple par refroidissement de la structure).

Le procédé peut comprendre en outre une étape de fixation de la face implantée du substrat sur un support. La fixation de la face implantée du substrat sur le support peut se faire au moyen d'une

substance adhésive. L'étape de fixation peut inclure un traitement thermique.

L'étape de recuit peut être menée par chauffage impulsional.

5 Le procédé selon la présente invention s'applique en particulier à la fabrication d'un film mince de silicium monocristallin. Dans ce cas, avant d'obtenir le clivage du substrat, tout ou partie d'au moins un élément actif peut être réalisé dans la partie
10 du substrat destinée à former le film mince. Si ladite face du substrat est masquée avant l'étape d'implantation ionique, le "masque" est tel que pour que l'étape d'implantation ionique soit apte à créer des zones de microcavités ou de microbulles
15 suffisamment proches les unes des autres pour que ledit clivage puisse être obtenu.

Le procédé selon la présente invention s'applique également à la fabrication d'un film mince à partir d'un substrat dont ladite face présente des motifs.
20

Il s'applique également à la fabrication d'un film mince à partir d'un substrat comprenant des couches de natures chimiques différentes.

25 Il s'applique aussi à la fabrication d'un film mince à partir d'un substrat comprenant au moins une couche obtenue par croissance. Cette croissance peut être obtenue par épitaxie, la fracture pouvant avoir lieu dans la couche épitaxiée ou au-delà de la couche épitaxiée ou encore à l'interface.

30 L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif.

35 Description détaillée de modes de réalisation de l'invention

Un premier mode de réalisation de l'invention prévoit de réaliser l'étape d'implantation à température relativement élevée.

5 Afin d'augmenter la productivité des équipements, et en particulier des implantateurs, il apparaît intéressant d'utiliser des machines délivrant une forte densité de courant. Par exemple, des courants de 4 mA sur une surface de 100 cm² permettant d'obtenir
10 des doses de 5.10^{16} ions H⁺/cm² en 200 secondes soit environ 3 minutes. Si cette implantation est effectuée à 50 keV (ce qui donne une profondeur moyenne de l'ordre de 500 nm), on obtient une puissance de l'ordre de 2 W/cm², ce qui dans le cas du silicium et pour un
15 implantateur classique sans refroidissement conduit à des températures de l'ordre de 470°C.

En résumé dans ce cas, la dose nécessaire à l'implantation a été obtenue pour une implantation à une température de l'ordre de 470°C et un temps de
20 l'ordre de 3 minutes.

Si un raidisseur est appliqué à ce substrat et qu'un traitement thermique de recuit d'environ 1 heure à 450°C est réalisé sur cette structure, le budget thermique du traitement thermique est tel que
25 les microcavités peuvent interagir entre elles et conduire à la fracture. On obtiendra ainsi le transfert du film mince du silicium sur son raidisseur.

Cet exemple montre bien que si certaines précautions sont prises au niveau des budgets
30 thermiques appliqués au substrat au cours de l'implantation et du traitement thermique, il est possible d'obtenir le clivage à une température inférieure à la température d'implantation.

En conclusion, l'invention consiste à
35 effectuer un traitement thermique avec un budget

thermique minimum et tel qu'il conduit au clivage. Ce budget thermique minimum doit tenir compte de l'ensemble des budgets et notamment du budget thermique fourni par l'implantation et du budget thermique fourni 5 par le recuit.

Un deuxième mode de réalisation de l'invention s'applique au transfert de matériaux présentant des coefficients de dilatation thermique différents de ceux de leurs supports. C'est le cas des 10 hetérostructures.

Dans le cas d'un transfert de silicium sur de la silice pure, le raidisseur a un coefficient de dilatation thermique différent de celui du matériau semiconducteur. Or, les budgets thermiques permettant 15 le transfert du silicium monocristallin dans le cas du silicium faiblement dopé sont de l'ordre de quelques heures (6 heures) 450°C. A cette température, il se produit un décollement du substrat et du support (raidisseur) mis en contact intime, au cours du recuit. 20 Ce décollement se produit au niveau de l'interface de mise en contact et non au niveau de la couche où sont localisées les microcavités ou les microbulles. Par contre, si l'épaisseur du support en silice est suffisamment faible (par exemple 400 µm), l'ensemble ne 25 se décolle pas jusqu'à 250°C. Or, dans le cas où le silicium est fortement dopé (par exemple un dopage de type p de 10^{20} atomes de bores/cm²) le clivage peut être obtenu pour un budget thermique de 250°C pendant 1 heure et pour une implantation d'ions hydrogène d'une 30 dose de l'ordre de 5.10^{16} ions H⁺/cm². Comme il a été dit plus haut, de telles doses peuvent être obtenues avec des temps de l'ordre de quelques minutes dans le cas d'une température d'implantation d'environ 470°C.

Dans ce cas également, le clivage est obtenu pour une température de recuit inférieure à la température d'implantation.

Il est bien entendu que cela marche dans le
5 cas où la température de recuit est supérieure à la température d'implantation.

REVENDICATIONS

1. Procédé de fabrication d'un film mince de matériau solide, comprenant au moins les étapes 5 suivantes :

- une étape d'implantation ionique au travers d'une face d'un substrat dudit matériau solide au moyen d'ions aptes à créer, dans le volume du substrat et à une profondeur voisine de la profondeur 10 moyenne de pénétration des ions, une couche de microcavités ou de microbulles, cette étape étant menée à une température déterminée et pendant une durée déterminée,

- une étape de recuit destinée à porter la 15 couche de microcavités ou de microbulles à une température déterminée et pendant une durée déterminée en vue d'obtenir un clivage du substrat de part et d'autre de la couche de microcavités ou de microbulles, caractérisé en ce que l'étape de recuit est 20 menée avec un budget thermique prévu, en fonction du budget thermique de l'étape d'implantation ionique et de la dose et de l'énergie des ions implantés et éventuellement d'autres budgets thermiques induits par d'autres étapes, pour obtenir ledit clivage du 25 substrat.

2. Procédé selon la revendication 1, caractérisé en ce que le budget thermique de l'étape de recuit est également prévu pour obtenir ledit clivage du substrat soit naturellement, soit à la suite de 30 contraintes appliquées au substrat.

3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que le budget thermique de l'étape de recuit comporte au moins une montée rapide en température et/ou au moins une descente rapide en 35 température.

4. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que le budget thermique de l'étape de recuit est nul, le clivage du substrat s'obtenant par l'utilisation de contraintes mécaniques 5 et/ou thermiques.

5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend en outre une étape de fixation de la face implantée du substrat sur un support.

10 6. Procédé selon la revendication 5, caractérisé en ce que la fixation de la face implantée du substrat sur le support se fait au moyen d'une substance adhésive.

15 7. Procédé selon l'une des revendications 5 ou 6, caractérisé en ce que l'étape de fixation inclut un traitement thermique.

8. Procédé selon la revendication 5, caractérisé en ce que l'étape de fixation est réalisée par adhésion moléculaire.

20 9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'étape de recuit est menée par chauffage impulsif.

25 10. Application du procédé selon l'une quelconque des revendications précédentes à la fabrication d'un film mince de silicium monocristallin.

30 11. Application selon la revendication 10, caractérisée en ce que, avant d'obtenir le clivage du substrat, tout ou partie d'au moins un élément actif est réalisé dans la partie du substrat destinée à former le film mince.

35 12. Application selon l'une des revendications 10 ou 11, caractérisée en ce que, ladite face du substrat étant masquée avant l'étape d'implantation ionique, le masque est tel que pour que l'étape d'implantation ionique soit apte à créer des

zones de microcavités ou de microbulles suffisamment proches les unes des autres pour que ledit clivage puisse être obtenu.

13. Application du procédé selon la revendication 10 à la fabrication d'un film mince à partir d'un substrat dont ladite face présente des motifs.

14. Application du procédé selon la revendication 10 à la fabrication d'un film mince à partir d'un substrat comprenant des couches de natures chimiques différentes.

15. Application du procédé selon la revendication 10 à la fabrication d'un film mince à partir d'un substrat comprenant au moins une couche obtenue par croissance.

16. Application selon la revendication 14, caractérisée en ce que ladite croissance est obtenue par épitaxie.

INTERNATIONAL SEARCH REPORT

Inte	nal Application No
PCT/FR 98/01789	

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 H01L21/20 H01L21/762

According to International Patent Classification(IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 786 801 A (COMMISSARIAT ENERGIE ATOMIQUE) 30 July 1997 see column 3, line 45 - column 6, line 17 ---	1-5,8,9
A	BRUEL M: "APPLICATION OF HYDROGEN ION BEAMS TO SILICON ON INSULATOR MATERIAL TECHNOLOGY" NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION - B: BEAM INTERACTIONS WITH MATERIALS AND ATOMS, vol. 108, no. 3, February 1996, pages 313-319, XP000611125 see page 313, column 2, paragraph 2 - page 314, column 1, paragraph 2 ---	1-6,8,12
A	FR 2 681 472 A (COMMISSARIAT ENERGIE ATOMIQUE) 19 March 1993 cited in the application ----	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

11 November 1998

20/11/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Schuermans, N

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte rnal Application No

PCT/FR 98/01789

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
EP 0786801 A	30-07-1997	FR	2744285 A		01-08-1997
		JP	9213594 A		15-08-1997

FR 2681472 A	19-03-1993	EP	0533551 A	24-03-1993
		JP	5211128 A	20-08-1993
		US	5374564 A	20-12-1994

RAPPORT DE RECHERCHE INTERNATIONALE

Dem. Internationale No

PCT/FR 98/01789

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 6 H01L21/20 H01L21/762

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 6 H01L

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	EP 0 786 801 A (COMMISSARIAT ENERGIE ATOMIQUE) 30 juillet 1997 voir colonne 3, ligne 45 - colonne 6, ligne 17 ---	1-5,8,9
A	BRUEL M: "APPLICATION OF HYDROGEN ION BEAMS TO SILICON ON INSULATOR MATERIAL TECHNOLOGY" NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION - B: BEAM INTERACTIONS WITH MATERIALS AND ATOMS, vol. 108, no. 3, février 1996, pages 313-319, XP000611125 voir page 313, colonne 2, alinéa 2 - page 314, colonne 1, alinéa 2 ---	1-6,8,12 -/-

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

° Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- "&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

11 novembre 1998

Date d'expédition du présent rapport de recherche internationale

20/11/1998

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Schuermans, N

RAPPORT DE RECHERCHE INTERNATIONALEDem Internationale No
PCT/FR 98/01789

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	FR 2 681 472 A (COMMISSARIAT ENERGIE ATOMIQUE) 19 mars 1993 cité dans la demande -----	

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Dern. Internationale No

PCT/FR 98/01789

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)			Date de publication
EP 0786801	A	30-07-1997	FR	2744285 A	01-08-1997
			JP	9213594 A	15-08-1997
FR 2681472	A	19-03-1993	EP	0533551 A	24-03-1993
			JP	5211128 A	20-08-1993
			US	5374564 A	20-12-1994