Hands-On Machine Learning in Python

ALS User Meeting

September 11, 2023

Introduction to Machine Learning

Wiebke Köpp

Types of Machine Learning

Supervised Learning Unsupervised Learning

Reinforcement Learning

Towards larger models

https://epochai.org/mlinputs/visualization

Mathematical models for neural networks

1957: Perceptron

First programmed neural network

1950 1960

1950: Turing Test

Can the machine fool a human?

1950: Checkers

A computer learns to play with reinforcement learning

1967: Nearest Neighbors

Early example of supervised learning

1960 1970

Al Winter

Reduced funding and interest in AI research

1970 1980

1986: Backpropagation

Backpropagation for MLPs

1980 1990

1982: Self-Organizing Maps

A different type of neural network

1997: IBM Deep Blue

Deep Blue wins against human player

1990 2000

1992: TD-Gammon

ML that can play the game Backgammon

1995: Support Vector Machines

Classification with hyperplanes in higher dimensions

2009: ImageNet

Large image collection with labels is released

2000 2010

2009: IBM Watson

Watson wins in Jeopardy

2015: ResNet

A new architecture with skip connections

2016: AlphaGo

Alpha Go beats human player

2010

2020

2012: AlexNet

CNN achieves high accuracy on ImageNet

2014: GAN

Generative Adversarial Networks generate images

2017: Transformers

Basis for today's large language models (BERT, GPT, ...)

https://epochai.org/mlinputs/visualization

Types of Machine Learning

Supervised Learning Unsupervised Learning

Reinforcement Learning

Classification

Regression

Supervised Learning: Support Vector Machines / Linear Classifiers

Linearly separable in 3D

Supervised Learning: Decision Trees

Supervised Learning: Decision Trees

Supervised Learning: Decision Trees – a component of Random Forests

Supervised Learning: Gaussian Processes

Supervised Learning: Gaussian Processes

Supervised Learning: Gaussian Processes

Supervised Learning: Artificial Neural Networks

Supervised Learning: Artificial Neural Networks

Other inputs need other architectures, e.g., Convolutional Neural Networks (CNNs) for images

Input Cell

Backfed Input Cell

Noisy Input Cell

Hidden Cell

Probablistic Hidden Cell

Spiking Hidden Cell

Capsule Cell

Output Cell

Match Input Output Cell

Recurrent Cell

Memory Cell

Gated Memory Cell

Kernel

Convolution or Pool

A mostly complete chart of

Neural Networks

©2019 Fjodor van Veen & Stefan Leijnen asimovinstitute.org

Deep Feed Forward (DFF)

Recurrent Neural Network (RNN)

Long / Short Term Memory (LSTM)

Gated Recurrent Unit (GRU)

Auto Encoder (AE)

Variational AE (VAE)

Denoising AE (DAE)

Sparse AE (SAE)

- Input Cell
- Backfed Input Cell
- Noisy Input Cell
- Hidden Cell
- Probablistic Hidden Cell
- Spiking Hidden Cell
- Capsule Cell
- Output Cell
- Match Input Output Cell
- Recurrent Cell
- Memory Cell
- Gated Memory Cell
- Kernel
- Convolution or Pool

A mostly complete chart of

Neural Networks

©2019 Fjodor van Veen & Stefan Leijnen asimovinstitute.org

Hopfield Network (HN) Boltzmann Machine (BM)

Restricted BM (RBM)

Deep Convolutional Network (DCN)

Deconvolutional Network (DN)

Deep Convolutional Inverse Graphics Network (DCIGN)

Input Cell

Backfed Input Cell

Noisy Input Cell

Hidden Cell

Probablistic Hidden Cell

Spiking Hidden Cell

Capsule Cell

Output Cell

Match Input Output Cell

Recurrent Cell

Memory Cell

Gated Memory Cell

Kernel

Convolution or Pool

A mostly complete chart of

Neural Networks

©2019 Fjodor van Veen & Stefan Leijnen asimovinstitute.org

Generative Adversarial Network (GAN)

Liquid State Machine (LSM)

Extreme Learning Machine (ELM)

Echo State Network (ESN)

Deep Residual Network (DRN)

Differentiable Neural Computer (DNC)

Neural Turing Machine (NTM)

Types of Machine Learning

Supervised Learning Unsupervised Learning

Reinforcement Learning

Dimensionality Reduction

Clustering

Unsupervised Learning: Dimensionality Reduction (PCA)

Common alternatives:

Uniform Manifold Approximation and Projection (UMAP), (t-distributed stochastic neighbor embedding) t-SNE

Unsupervised Learning: Dimensionality Reduction (ANNs)

Autoencoder

Self-Organizing Maps

Unsupervised Learning: Clustering

Common alternatives:

k-Means, hierarchical clustering (divisive, agglomerative), Gaussian Mixture Models (GMMs)

Types of Machine Learning

Supervised Learning Unsupervised Learning

Reinforcement Learning

Classification

Regression

Dimensionality Reduction

Clustering

Resources

- https://www.techtarget.com/whatis/A-Timeline-of-Machine-Learning-History
- https://epochai.org/mlinputs/visualization
- ML Course at TU Munich: https://argmax.ai/ml-course/
- ANN Course at KTH Stockholm
- https://setosa.io/ev/principal-component-analysis/
- https://distill.pub/2019/visual-exploration-gaussian-processes/
- https://pair-code.github.io/understanding-umap/ + https://distill.pub/2016/misread-tsne/
- https://www.asimovinstitute.org/neural-network-zoo/
- http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
- https://fleuret.org/public/lbdl.pdf

