## Reward shaping & Language Augmented RL



March 8th, 2022

### Since last time



- Reward shaping
- Literature review: Language Augmented RL

### Reward shaping

#### Previous reward



$$\begin{split} R_{dist\_reward}^t &= -D(object, landmark)^2 \\ &- \frac{1}{n_{agent}} \sum_{i=1}^{n_{agent}} D(agent_i, object) \\ &+ \rho, \end{split}$$

with  $\rho$  the collision penalty, fixed at -10.



# Reward shaping

#### New reward



Sparse reward: big positive reward for success

$$\Rightarrow R_{sparse}(s_{t+1}) = \mathbb{1}_{success}(s_{t+1}) \times 50$$

+ penalty for every steps:

$$\Rightarrow R_{step}(s_{t+1}) = -0, 1$$

+ shaping reward (Ng et al., 1999)<sup>1</sup>

$$\Rightarrow R_{shaped}(s_{t+1}) = \sigma(D_{obj,lm}(s_t) - D_{obj,lm}(s_{t+1})), \text{ with }$$

$$\sigma = \begin{cases} 100, & \text{if } R_{shaped} > 0, \\ 10, & \text{if } R_{shaped} < 0, \end{cases}$$

$$\Rightarrow R_{tot} = R_{sparse} + R_{step} + R_{shaped}$$

<sup>&</sup>lt;sup>1</sup>Policy Invariance Under Reward Transformations: Theory and Application to Reward Shaping, Ng et al., 1999 

# Reward shaping

#### Results



#### **MADDPG**



Often doesn't even push the object.

Can't learn a good strategy?

Suffer from random initial positions ?

Literature review



#### Our goal:

Teach a language to agents to give them:

- ▶ A **developmental tool**, to understand their environment, using language for generalising acquired knowledge.
- A social tool, to share information, to coordinate, to interact with humans.

Vygotsky: The developmental and social aspect of language develop concurrently.





| Paper                                                                                           | Model<br>name | Task                                     | Algo type                                 | Type of language inputs              |
|-------------------------------------------------------------------------------------------------|---------------|------------------------------------------|-------------------------------------------|--------------------------------------|
| Neural Module Networks, Andreas et al., 2016                                                    | NMN           | Visual question answering                | Supervised                                | Sentences                            |
| Grounded Language Learning in a Simulated 3D<br>World, Hermann et al., 2017                     |               | Finding objects in a 3D environment      | RL + auto-regressive<br>objectives        | Phrases, groups of words             |
| IQA: Visual Question Answering in Interactive<br>Environments, Gordon et al., 2018              | HIMN          | Visual question answering                | RL + supervised                           | Sentences from pre-defined templates |
| Speaker-Follower Models for Vision-and-Language<br>Navigation, Fried et al., 2018               |               |                                          |                                           |                                      |
| Learning to Understand Goal Specifications by<br>Modelling Reward, Bahdanau et al., 2019        | AGILE         | Reproducing shapes in a<br>2D grid world | Reward modelling + RL                     | Semantic grammar                     |
| Language as an Abstraction for Hierarchical Deep<br>Reinforcement Learning, Jiang et al., 2019  | HAL           | Arranging objects in a 3D environment    | Hierarchical RL                           | Sentence instructions                |
| Interactively Shaping Robot Behaviour with Unlabeled Human Instructions, Najar et al., 2020     | TICS          | Object sorting, Maze                     | RL + evaluative<br>feedback + TD Learning | Non-verbal, visual (gestures)        |
| Grounding Language to Autonomously-Acquired<br>Skills via Goal Generation, Akakzia et al., 2021 | DECSTR        | Manipulating objects with<br>a robot arm | RL + C-VAE                                | Semantic grammar                     |



Literature review

How is language used to augment RL?

How to interpret language ?

What language is learnt?

#### Literature review



How is language used to augment RL?

- Goal description
  - ▶ Hermann et al., 2017: phrase describing an object to pick
  - ▶ Bahdanau et al., 2019: semantic representation of goal state
  - ▶ Akakzia et al., 2021: semantic representation of goal state
- Instruction following
  - Jiang et al., 2019: high-level policy chooses instructions to follow
- Structuring the model
  - Andreas et al., 2016: modules with complementary roles
- Induction of reward from language
- ► Text in the action or observation space
- ► Transfer from domain-specific textual resource

#### Literature review



### How to interpret language ?

### Learning to encode language based on reward

- ► Jiang et al., 2019: GRU encodes instructions, parameters learnt with DQN
- ▶ Gordon et al., 2018: LSTM + A3C

### Decoupling language learning and policy learning

- Bahdanau et al., 2019: learn a reward model from goal states with supervised learning
- Akakzia et al., 2021: learn to map sentence to semantic goal configuration with a VAE

#### Adding auxiliary objectives

► Hermann et al., 2017: unsupervised learning added to RL to help learning the language

#### Literature review



### What language can be learnt?

- Semantic representations
  - Bahdanau et al., 2019: e.g. "NorthFrom(Color('red', Shape('circle', SCENE))), Color('blue', Shape('square', SCENE)))"
- Sentences, phrases (with pre-defined templates)
  - ▶ Hermann et al., 2017
  - ► Gordon et al., 2018
  - ▶ Jiang et al., 2019
  - Akakzia et al., 2021
- Non-verbal
  - ▶ Najar et al., 2019: gestures

Literature review



### Percs of using language:

- Faster convergence
- Generalisation
- ► Curriculum design (Hermann et al., 2017)
- ▶ Human in the loop (Najar et al., 2019)

Literature review



### Issues with previous papers:

- Often rely on discrete states and actions
- Inflexible use of language
  - Pre-defined structures of sentences
  - Semantic representations ⇒ hard to understand/use by humans

### Next steps



#### Reward:

- Continue exploring ideas
- Fixing bugs ?

#### Literature Review:

- Language-Augmented RL
- Hierarchical RL
- Communication with pre-defined language

# Thank you!