COMP90042 - Natural Language Processing

Workshop Week 3

Biaoyan Fang 16 March 2020

Recap Pre-processing

Pipeline

- Formatting
- Sentence Segmentation
- Tokenisation
- Normalisation
 - · Lemmatisation
 - Stemming
- · Remove Stopwords

Outline

- 1. Text-classification
- 2. Language Model

Bag of words

The Bag of Words Representation

the I love this movie! It's sweet. but with satirical humor. The fairy always and dialogue is great and the seen adventure scenes are fun anvone vet dialogue It manages to be whimsical would and romantic while laughing whimsical at the conventions of the times romantic sweet fairy tale genre. I would several the humor satirical recommend it to just about adventure would anyone. I've seen it several to scenes I the manages aenre times, and I'm always happy fairy and to see it again whenever I humor while whenever have a friend who hasn't have have conventions seen it yet! great 15

K-Nearest Neighbour

Euclidean distance: Usually length is not a distinguishing character

Cosine similarity: Better; Suffer from high-dimensionality problem

Abbildung 2: k-nearest neighbour

Decision Tree

Can be useful in finding meaningful features

Spurious correlation; Tend to rare features

Abbildung 3: Decision Tree

Naive Bayes

Conditional independence of features

Surprisingly useful

Bayes law

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Then

$$p(c_n|f_1,\ldots,f_m)=\prod_{i=1}^m p(f_i|c_n)p(c_n)$$

Logistic Regression

Useful. Relax the conditional independence requirement of Naive Bayes

Handle large numbers of features

Abbildung 4: Logistic Regression

SVM

More powerful

Suffer form multiple classes problem

Abbildung 5: SVM

Probabilistic Language Model

A probability distribution over sequences of words. Given such a sequence, say of length m, it assigns a probability $P(w_1, \ldots, w_m)$ to the whole sequence.

Goal: compute the probability of a sentence or sequence of words:

$$P(W) = P(W_1, W_2, \dots, W_m)$$

Chain rule:

$$P(w_1, w_2, \dots, w_m) = P(w_1)P(w_2|w_1)\dots P(w_m|w_1, \dots w_{m-1})$$

Probabilistic Language Model

Markvo assumption:

$$P(w_i|w_1,...,w_{i-1}) \approx P(w_i|w_{i-n+1},...,w_{i-1})$$

While,

n = 1, unigram language model:

$$P(w_1, w_2, \dots, w_m) = \prod_{i=1}^{m} P(w_i)$$

n=2, bigram language model:

$$P(w_1, w_2, \dots, w_m) = \prod_{i=1}^m P(w_i | w_{i-1})$$

n = 3, trigram language model:

$$P(W_1, W_2, \dots, W_m) = \prod_{i=1}^m P(W_i | W_{i-2} W_{i-1})$$

Probabilistic Language Model

Continuation counts:

$$P_{cont}(w_i) = \frac{|\{w_{i-1} : C(w_{i-1}, w_i) > 0\}|}{\sum_{w_i} |\{w_{i-1} : C(w_{i-1}, w_i) > 0\}|}$$

Discussion

Questions