

There are some special sets of numbers.

There is the set of positive integers

$$\{1, 2, 3, 4, \dots\}$$

However, we cannot ignore 0 or the negative numbers, so we have \mathbb{Z} , the entire set of integers.

$$\mathbb{Z} = \{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$$

Addition in \mathbb{Z} gives some nice axioms

- commutativity: for any $a, b \in \mathbb{Z}$, a + b = b + a
- associativity: for any $a, b, c \in \mathbb{Z}$, (a+b)+c=a+(b+c)
- \mathbb{Z} has an additive identity element, namely 0, for any $a \in \mathbb{Z}$, a + 0 = 0 + a = a
- \mathbb{Z} has additive inverses: for any $a \in \mathbb{Z}$, there exists $b \in \mathbb{Z}$ such that a + b = b + a = 0. (Of course, b = -a)

We know that \mathbb{Z} has multiplication that is also commutative, associative, and has an identity element, 1.

We also have that

for any
$$a, b, c \in \mathbb{Z}$$
, $a(b+c) = (ab) + (ac)$

We move to the rational numbers due to not having multiplicative inverses.

$$\mathbb{Q} = \{ \frac{m}{n} | m, b \in \mathbb{Z} \text{ and } n \neq 0 \}$$

The set \mathbb{Q} together with the operations of addition and multiplication is what is called a field, and these operation satisfy all the nice properties we want them to have. However there is something missing from \mathbb{Q} .

For example there is no number $x \in \mathbb{Q}$ such that $x^2 = 2$, since, yes in \mathbb{R} we have a solution of $\sqrt{2}$, but in \mathbb{Q} this does not exist.

Definition

Let S be a subset of \mathbb{R} .

- A number $x \in \mathbb{R}$ is called an upper bound for S if for all $y \in S$, we have $y \leq x$. If an upper bound for S exists, we say that S is bounded above.
- A number $x \in \mathbb{R}$ is called a lower bound for S if for all $y \in S$, we have $y \ge x$. If a lower bound for S exists, we say that S is bounded below.
- ullet If S has an upper bound and a lower bound, we say that S is bounded.

There are some special bounds.

Definition

Let S be a subset of \mathbb{R} .

- A number $x \in \mathbb{R}$ is called a least upper bound of S if x is an upper bound for S and if for every $z \in \mathbb{R}$ such that z is an upper bound of S, we have $x \leq z$.
- A number $x \in \mathbb{R}$ is called a greatest lower bound of S if x is a lower bound for S and if for every $z \in \mathbb{R}$ such that z is a lower bound of S, we have $x \geq z$.

In other words, an upper bound of a subset $S \subseteq \mathbb{R}$ is any number greater than or equal to all of the numbers in S. If we can find a smallest possible upper bound for S, then this number is the least upper bound of S. Similarly, a lower bound of S is a number that is less than or equal to all of the numbers in S. If we can find a greatest possible lower bound for S, then this number is the greatest lower bound of S.

The most important subsets of \mathbb{R} that we will be regularly using are intervals:

Definition

A subset I of $\mathbb R$ is called an interval if, for any $a,b\in I$ and $x\in \mathbb R$ such that $a\leq x\leq b$, we have $x\in I$.

Informally, an interval I is a subset of \mathbb{R} without any "holes". If a and b are in I, then all the numbers between a and b are also in I. There are two types of intervals commonly used.

Definition

Let $a \leq b$ be any two real numbers. The open interval (a,b) is defined as the set

$$(a,b) = \{x \in \mathbb{R} | a < x < b\}$$

The closed interval [a, b] is defined as the set

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$$

There are also half-open intervals.

We have one more definition

Definition

Let S be a subset of \mathbb{R} . If $\sup S \in S$, we say that $\sup S$ is the maximal element of S (or simply the maximum of S). If $\inf \in S$, we say that $\inf S$ is the minimal element of S (or simply the minimum of S).

Homework

- 1. Show that there is no number $x \in \mathbb{Q}$ such that $x^2 = 2$.
- 2. Show that the intersection of any two intervals is an interval.
 - Show that the union of any two intervals need not be an interval.
- 3. If A, B are bounded intervals with $A \cap B \neq \emptyset$, then show that $\sup(A \cap B) = \min\{\sup A, \sup B\}$.