SBML Model Report

Model name: "Fribourg2014 - Dynamics of viral antagonism and innate immune response (H1N1 influenza A virus - Cal/09)"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Miguel Fribourg² at April third 2014 at 1:51 p.m. and last time modified at February 24th 2015 at 8:30 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	3
species types	2	species	13
events	0	constraints	0
reactions	12	function definitions	0
global parameters	49	unit definitions	5
rules	5	initial assignments	0

Model Notes

Fribourg2014 - Dynamics of viral antagonism and innate immune response (H1N1 influenza A virus - Cal/09)

¹EMBL-EBI, viji@ebi.ac.uk

²Icahn School of Medicine at Mount Sinai, miguel.fribourg@mssm.edu

The dynamics of the interplay between the viral antagonism and the innate immune response has been studied using modelling approaches. The responses of human monocytederived dendritic cells infected by two influenza A H1N1 strains (the pandemic swine-origin A/California/4/2009 (Cal/09) and the seasonal A/New Caledonia/20/1999 (NC/99)) that have different clinical outcomes have been modelled. From the time course gene expression measurements of a set of selected genes, the dynamic features of viral antagonism and innate immune response are extracted. It is found that the strength and the time scale of action of viral antagonism is significantly different between the two viruses. This model describes the viral infection by seasonal Cal/09.

This model is described in the article:Model of influenza A virus infection: Dynamics of viral antagonism and innate immune response. Fribourg M, Hartmann B, Schmolke M, Marjanovic N, Albrecht RA, Garca-Sastre A, Sealfon SC, Jayaprakash C, Hayot F.J Theor Biol. 2014 Mar 2;351C:47-57.

Abstract:

Viral antagonism of host responses is an essential component of virus pathogenicity. The study of the interplay between immune response and viral antagonism is challenging due to the involvement of many processes acting at multiple time scales. Here we develop an ordinary differential equation model to investigate the early, experimentally measured, responses of human monocyte-derived dendritic cells to infection by two H1N1 influenza A viruses of different clinical outcomes: pandemic A/California/4/2009 and seasonal A/New Caledonia/20/1999. Our results reveal how the strength of virus antagonism, and the time scale over which it acts to thwart the innate immune response, differs significantly between the two viruses, as is made clear by their impact on the temporal behavior of a number of measured genes. The model thus sheds light on the mechanisms that underlie the variability of innate immune responses to different H1N1 viruses.

This model is hosted on BioModels Database and identified by: MODEL1403310002.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resourcefor published quantitative kinetic models.

To the extent possible under law, all copyright and related orneighbouring rights to this encoded model have been dedicated to the publicdomain worldwide. Please refer to CCO Public DomainDedication for more information.

2 Unit Definitions

This is an overview of five unit definitions.

2.1 Unit substance

Name substance

Definition 10^{-6} mol

2.2 Unit volume

Name volume

Definition 1

2.3 Unit area

Name area

Definition m²

2.4 Unit length

Name length

Definition m

2.5 Unit time

Name time

Definition 3600 s

3 Compartments

This model contains three compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
default		0000290	3	1	litre		
c2	Environment	0000290	3	1	litre	$\overline{\mathbf{Z}}$	default
compartment	Cell	0000290	3	1	litre	$ \overline{\mathbf{Z}} $	default

3.1 Compartment default

This is a three dimensional compartment with a constant size of one litre.

SBO:0000290 physical compartment

3.2 Compartment c2

This is a three dimensional compartment with a constant size of one litre, which is surrounded by default.

Name Environment

SBO:0000290 physical compartment

3.3 Compartment compartment

This is a three dimensional compartment with a constant size of one litre, which is surrounded by default.

Name Cell

SBO:0000290 physical compartment

4 Species types

This is an overview of two species types.

4.1 Species type mRNA

Name mRNA

This model does not contain any species of this type.

4.2 Species type Protein

Name Protein

This model does not contain any species of this type.

5 Species

This model contains 13 species. The boundary condition of one of these species is set to true so that this species' amount cannot be changed by any reaction. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

		Two to controportions of twent species.			
Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
W	W	compartment	$10^{-6} \text{ mol} \cdot 1^{-1}$		
${\tt IFNb_mRNA}$	IFNb_mRNA	compartment	$10^{-6} \text{mol} \cdot 1^{-1}$		
${\tt IFNb_env}$	IFNb_env	c2	$10^{-6} \text{mol} \cdot 1^{-1}$		\Box
STATP2n	STATP2n	compartment	$10^{-6} \text{mol} \cdot 1^{-1}$		\Box
SOCS1m	SOCS1m	compartment	$10^{-6} \text{mol} \cdot 1^{-1}$		
IRF7m	IRF7m	compartment	$10^{-6} \mathrm{mol}\cdot\mathrm{l}^{-1}$		
IRF7Pn	IRF7Pn	compartment	$10^{-6} \mathrm{mol}\cdot\mathrm{l}^{-1}$		
${\tt IFNa_mRNA}$	IFNa_mRNA	compartment	$10^{-6} \mathrm{mol}\cdot\mathrm{l}^{-1}$	\Box	
${\tt IFNa_env}$	IFNa_env	c2	$10^{-6} \text{mol} \cdot 1^{-1}$		\Box
TNFam	TNFam	compartment	$10^{-6} \mathrm{mol}\cdot\mathrm{l}^{-1}$		
TNFenv	TNFenv	c2	$10^{-6} \mathrm{mol}\cdot\mathrm{l}^{-1}$		
STATm	STATm	compartment	$10^{-6} \mathrm{mol}\cdot\mathrm{l}^{-1}$		
STAT	STAT	compartment	$10^{-6} \operatorname{mol} \cdot 1^{-1}$		

6 Parameters

This model contains 49 global parameters.

Table 4: Properties of each parameter.

NS r5	Id	Name	SBO	Value	Unit	Constant
n3 5.000 10 ⁻⁶ mol ✓ bm 6.000 10 ⁻⁶ mol ✓ IC1 0.000 □ □ sp 0.300 10 ⁻⁶ mol ✓ n1 1.000 10 ⁻⁶ mol ✓ n1 1.000 10 ⁻⁶ mol ✓ sv 0.100 10 ⁻⁶ mol ✓ delta2 0.400 10 ⁻⁶ mol ✓ sv 0.100 10 ⁻⁶ mol ✓ delta2 0.400 10 ⁻⁶ mol ✓ r2 5.000 10 ⁻⁶ mol ✓ r3 0.000 □ □ r4 10 ⁻⁶ mol ✓ r5 0.004 10 ⁻⁶ mol ✓ r0 0.001 10 ⁻⁶ mol ✓ r0 0.001<	NS			0.000		
bm 6.000 10−6 mol ☑ IC1 0.000 □ □ sp 0.300 10−6 mol ☑ delta1 0.100 10−6 mol ☑ n1 1.000 10−6 mol ☑ IC2 0.000 □ □ sv 0.100 10−6 mol ☑ delta2 0.400 10−6 mol ☑ n2 5.000 10−6 mol ☑ IC2ifa 0.000 □ □ TJ 0.000 □ □ TJ 0.000 □ □ K3 0.004 10−6 mol ☑ K9 780.000 10−6 mol ☑ K9 780.000 10−6 mol ☑ k15 3.6·10−8 10−6 mol ☑ k15 3.6·10−8 10−6 mol ☑ tao1 2.500 10−6 mol ☑ wmax2 72000.000 10−6 mol ☑	r5			1.000	dimensionless	\square
bm 6.000 10-6 mol ☑ IC1 0.0000 □ □ sp 0.300 10-6 mol ☑ delta1 0.100 10-6 mol ☑ n1 1.000 10-6 mol ☑ sv 0.100 10-6 mol ☑ delta2 0.400 10-6 mol ☑ n2 5.000 10-6 mol ☑ IC2ifa 0.000 □ □ TJ 0.000 □ □ K3 0.004 10-6 mol ☑ K3 0.004 10-6 mol ☑ K9 780.000 10-6 mol ☑ K9 780.000 10-6 mol ☑ k15 3.6·10-8 10-6 mol ☑ k15 3.6·10-8 10-6 mol ☑ k2 50000.000 10-6 mol ☑ K2 0.002 10-6 mol ☑ K3 0.010 10-6 mol ☑	n3			5.000	10^{-6}mol	
IC1	bm			6.000	10^{-6} mol	_
delta1 0.100 10 ⁻⁶ mol ✓ n1 1.000 10 ⁻⁶ mol ✓ IC2 0.000 □ □ sv 0.100 10 ⁻⁶ mol ✓ delta2 0.400 10 ⁻⁶ mol ✓ n2 5.000 10 ⁻⁶ mol ✓ IC2ifa 0.000 □ □ TJ 0.000 □ □ K3 0.004 10 ⁻⁶ mol ✓ K3 0.004 10 ⁻⁶ mol ✓ K9 780.000 10 ⁻⁶ mol ✓ k6 780.000 10 ⁻⁶ mol ✓ k15 3.6·10 ⁻⁸ 10 ⁻⁶ mol ✓ k15 3.6·10 ⁻⁸ 10 ⁻⁶ mol ✓ tao1 2.500 10 ⁻⁶ mol ✓ tao2 72000.000 10 ⁻⁶ mol ✓ wmx2 72000.000 10 ⁻⁶ mol ✓ K5 0.010 10 ⁻⁶ mol ✓ tao3 0.560 10 ⁻⁶ mol ✓ k8 0.040 10 ⁻⁶ mol ✓ k8 <td>IC1</td> <td></td> <td></td> <td>0.000</td> <td></td> <td></td>	IC1			0.000		
delta1 0.100 10 ⁻⁶ mol ✓ n1 1.000 10 ⁻⁶ mol ✓ sv 0.100 10 ⁻⁶ mol ✓ delta2 0.400 10 ⁻⁶ mol ✓ n2 5.000 10 ⁻⁶ mol ✓ IC2ifa 0.000 □ □ TJ 0.000 □ □ K3 0.004 10 ⁻⁶ mol ✓ K9 780.000 10 ⁻⁶ mol ✓ k9 780.000 10 ⁻⁶ mol ✓ r0 0.001 10 ⁻⁶ mol ✓ k15 3.6·10 ⁻⁸ 10 ⁻⁶ mol ✓ tao1 2.500 10 ⁻⁶ mol ✓ tao1 2.500 10 ⁻⁶ mol ✓ vmax2 72000.000 10 ⁻⁶ mol ✓ K2 0.002 10 ⁻⁶ mol ✓ K5 0.010 10 ⁻⁶ mol ✓ tao3 0.560 10 ⁻⁶ mol ✓ tao3 0.560 10 ⁻⁶ mol ✓ k8 0.046 10 ⁻⁶ mol ✓	sp			0.300	10^{-6} mol	
n1 1.000 10 ⁻⁶ mol ☑ sv 0.000 □ □ delta2 0.400 10 ⁻⁶ mol ☑ n2 5.000 10 ⁻⁶ mol ☑ IC2ifa 0.000 □ □ TJ 0.000 □ □ K3 0.004 10 ⁻⁶ mol ☑ K9 780.000 10 ⁻⁶ mol ☑ k9 780.000 10 ⁻⁶ mol ☑ r0 0.001 10 ⁻⁶ mol ☑ k15 3.6·10 ⁻⁸ 10 ⁻⁶ mol ☑ tao1 2.500 10 ⁻⁶ mol ☑ vmax2 72000.000 10 ⁻⁶ mol ☑ K2 0.002 10 ⁻⁶ mol ☑ K5 0.010 10 ⁻⁶ mol ☑ K8 0.560 10 ⁻⁶ mol ☑ tao3 0.560 10 ⁻⁶ mol ☑ k8 0.004 10 ⁻⁶ mol ☑ k8 0.004 10 ⁻⁶ mol ☑ k8 0.006 10 ⁻⁶ mol ☑ k11 <td>delta1</td> <td></td> <td></td> <td>0.100</td> <td>10^{-6}mol</td> <td>_</td>	delta1			0.100	10^{-6}mol	_
IC2	n1			1.000	10^{-6} mol	_
sv 0.100 10⁻⁶ mol ☑ delta2 0.400 10⁻⁶ mol ☑ n2 5.000 10⁻⁶ mol ☑ IC2ifa 0.000 □ □ TJ 0.000 □ □ K3 0.004 10⁻⁶ mol ☑ K9 780.000 10⁻⁶ mol ☑ k9 780.000 10⁻⁶ mol ☑ k0elta 3⋅10⁻⁶ mol ☑ ☑ k9 780.000 10⁻⁶ mol ☑ k9 780.000 10⁻⁶ mol ☑ k9 780.000 10⁻⁶ mol ☑ k15 3.6⋅10⁻⁶ mol ☑ k15 3.6⋅10⁻⁶ mol ☑ tao1 2.500 10⁻⁶ mol ☑ vmax2 72000.000 10⁻⁶ mol ☑ k2 0.002 10⁻⁶ mol ☑ k5 0.010 10⁻⁶ mol ☑ k8 0.046 10⁻⁶ mol ☑ k8 0.040 10⁻⁶ mol ☑ k11 3.6⋅10⁻弮 10⁻₆ mol	IC2			0.000		
delta2 0.400 10 ⁻⁶ mol ✓ n2 5.000 10 ⁻⁶ mol ✓ IC2ifa 0.000 □ □ TJ 0.000 □ □ TJtot 10 ⁻⁴ 10 ⁻⁶ mol ✓ K3 0.004 10 ⁻⁶ mol ✓ K9 780.000 10 ⁻⁶ mol ✓ K9 780.000 10 ⁻⁶ mol ✓ k0 780.000 10 ⁻⁶ mol ✓ k15 3.6·10 ⁻⁸ 10 ⁻⁶ mol ✓ k15 3.6·10 ⁻⁸ 10 ⁻⁶ mol ✓ tao1 2.500 10 ⁻⁶ mol ✓ tao2 500000.000 10 ⁻⁶ mol ✓ vmax2 72000.000 10 ⁻⁶ mol ✓ vm 6.023·10 ²³ 10 ⁻⁶ mol ✓ K5 0.010 10 ⁻⁶ mol ✓ tao3 0.560 10 ⁻⁶ mol ✓ r3 10 ⁻⁷ 10 ⁻⁶ mol ✓ k8 0.040 10 ⁻⁶ mol ✓ k11 3.6·10 ⁻⁴ 10 ⁻⁶ mol ✓ k14 3.204·10 ⁻⁷ 10 ⁻⁶ mol ✓ k12 360.000 10 ⁻⁶ mol ✓ k16 <td>sv</td> <td></td> <td></td> <td>0.100</td> <td>10^{-6} mol</td> <td></td>	sv			0.100	10^{-6} mol	
Decision Decision	delta2			0.400	10^{-6} mol	
TJ	n2			5.000	10^{-6} mol	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IC2ifa			0.000		
K3 0.004 10^{-6} mol \mathbb{Z} K9 780.000 10^{-6} mol \mathbb{Z} delta $3 \cdot 10^{-4}$ 10^{-6} mol \mathbb{Z} r0 0.001 10^{-6} mol \mathbb{Z} k15 $3.6 \cdot 10^{-8}$ 10^{-6} mol \mathbb{Z} tao1 2.500 10^{-6} mol \mathbb{Z} Vmax2 72000.000 10^{-6} mol \mathbb{Z} NA $6.023 \cdot 10^{23}$ 10^{-6} mol \mathbb{Z} K2 0.002 10^{-6} mol \mathbb{Z} K5 0.010 10^{-6} mol \mathbb{Z} tao3 0.560 10^{-6} mol \mathbb{Z} tao4 0.460 10^{-6} mol \mathbb{Z} k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol \mathbb{Z} k12 360.000 10^{-6} mol \mathbb{Z} k16 0.360 10^{-6} mol \mathbb{Z} tao8 2.000 10^{-6} mol \mathbb{Z}	TJ			0.000		
K3 0.004 10^{-6} mol \checkmark K9 780.000 10^{-6} mol \checkmark delta $3 \cdot 10^{-4}$ 10^{-6} mol \checkmark r0 0.001 10^{-6} mol \checkmark k15 $3.6 \cdot 10^{-8}$ 10^{-6} mol \checkmark tao1 2.500 10^{-6} mol \checkmark C 500000.000 10^{-6} mol \checkmark vmax2 72000.000 10^{-6} mol \checkmark NA $6.023 \cdot 10^{23}$ 10^{-6} mol \checkmark K2 0.002 10^{-6} mol \checkmark K5 0.010 10^{-6} mol \checkmark K5 0.010 10^{-6} mol \checkmark tao3 0.560 10^{-6} mol \checkmark k8 0.004 10^{-6} mol \checkmark k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol \checkmark k12 360.000 10^{-6} mol \checkmark k16 0.360 10^{-6} mol \checkmark tao8 2.000 10^{-6} mol \checkmark	TJtot			10^{-4}	10^{-6} mol	7
K9 780.000 10^{-6} mol delta $3 \cdot 10^{-4}$ 10^{-6} mol r0 0.001 10^{-6} mol 20^{-6} k15 $3.6 \cdot 10^{-8}$ 10^{-6} mol 20^{-6} tao1 2.500 10^{-6} mol 20^{-6} C 500000.000 10^{-6} mol 20^{-6} vmax2 72000.000 10^{-6} mol 20^{-6} NA $6.023 \cdot 10^{23}$ 10^{-6} mol 20^{-6} K2 0.002 10^{-6} mol 20^{-6} K5 0.010 10^{-6} mol 20^{-6} tao3 0.560 10^{-6} mol 20^{-6} tao4 0.004 10^{-6} mol 20^{-6} k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol 20^{-6} k14 $3.204 \cdot 10^{-7}$ 10^{-6} mol 20^{-6} k12 360.000 10^{-6} mol 20^{-6} k16 0.360 10^{-6} mol 20^{-6} tao8 2.000 10^{-6} mol 20^{-6}	КЗ			0.004	10^{-6} mol	
delta $3 \cdot 10^{-4}$ 10^{-6} mol r0 0.001 10^{-6} mol k15 $3.6 \cdot 10^{-8}$ 10^{-6} mol tao1 2.500 10^{-6} mol Vmax2 72000.000 10^{-6} mol NA $6.023 \cdot 10^{23}$ 10^{-6} mol K2 0.002 10^{-6} mol K5 0.010 10^{-6} mol tao3 0.560 10^{-6} mol r3 10^{-7} 10^{-6} mol k8 0.004 10^{-6} mol k8 0.004 10^{-6} mol k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol k14 $3.204 \cdot 10^{-7}$ 10^{-6} mol k12 360.000 10^{-6} mol k16 0.360 10^{-6} mol tao8 2.000 10^{-6} mol	К9			780.000	10^{-6} mol	
r0 0.001 10^{-6} mol k15 $3.6 \cdot 10^{-8}$ 10^{-6} mol tao1 2.500 10^{-6} mol 2.500 C 500000.000 10^{-6} mol 2.500 Vmax2 72000.000 10^{-6} mol 2.500 NA $6.023 \cdot 10^{23}$ 10^{-6} mol 2.500 K2 0.002 10^{-6} mol 2.500 K5 0.010 10^{-6} mol 2.500 tao3 0.560 10^{-6} mol 2.500 k8 0.004 10^{-6} mol 2.500 k8 0.004 10^{-6} mol 2.5000 k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol 2.5000 k12 $3.60.000$ 10^{-6} mol 2.5000 k16 0.360 10^{-6} mol 2.5000 tao8 2.000 10^{-6} mol 2.5000	delta			$3 \cdot 10^{-4}$	10^{-6} mol	
k15 $3.6 \cdot 10^{-8}$ 10^{-6} mol tao1 2.500 10^{-6} mol C 500000.000 10^{-6} mol vmax2 72000.000 10^{-6} mol NA $6.023 \cdot 10^{23}$ 10^{-6} mol K2 0.002 10^{-6} mol K5 0.010 10^{-6} mol tao3 0.560 10^{-6} mol r3 10^{-7} 10^{-6} mol k8 0.004 10^{-6} mol tao4 0.460 10^{-6} mol k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol k14 $3.204 \cdot 10^{-7}$ 10^{-6} mol tao6 1.000 2.000 k12 360.000 10^{-6} mol k16 0.360 10^{-6} mol tao8 2.000 10^{-6} mol	r0			0.001	10^{-6} mol	_
tao1 2.500 10^{-6} mol \checkmark C 500000.000 10^{-6} mol \checkmark vmax2 72000.000 10^{-6} mol \checkmark NA $6.023 \cdot 10^{23}$ 10^{-6} mol \checkmark K2 0.002 10^{-6} mol \checkmark K5 0.010 10^{-6} mol \checkmark tao3 0.560 10^{-6} mol \checkmark r3 10^{-7} 10^{-6} mol \checkmark k8 0.004 10^{-6} mol \checkmark k10 0.460 10^{-6} mol \checkmark k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol \checkmark k14 $3.204 \cdot 10^{-7}$ 10^{-6} mol \checkmark k12 360.000 10^{-6} mol \checkmark k16 0.360 10^{-6} mol \checkmark tao8 2.000 10^{-6} mol \checkmark	k15			$3.6 \cdot 10^{-8}$	10^{-6} mol	
C 500000.000 10^{-6} mol vmax2 72000.000 10^{-6} mol NA $6.023 \cdot 10^{23}$ 10^{-6} mol K2 0.002 10^{-6} mol K5 0.010 10^{-6} mol tao3 0.560 10^{-6} mol r3 10^{-7} 10^{-6} mol k8 0.004 10^{-6} mol tao4 0.460 10^{-6} mol k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol k14 $3.204 \cdot 10^{-7}$ 10^{-6} mol tao6 1.000 k12 360.000 10^{-6} mol k16 0.360 10^{-6} mol tao8 2.000 10^{-6} mol	tao1			2.500	10^{-6}mol	_
vmax2 72000.000 10^{-6} mol \boxed{Z} NA $6.023 \cdot 10^{23}$ 10^{-6} mol \boxed{Z} K2 0.002 10^{-6} mol \boxed{Z} K5 0.010 10^{-6} mol \boxed{Z} tao3 0.560 10^{-6} mol \boxed{Z} tao3 10^{-7} 10^{-6} mol \boxed{Z} k8 0.004 10^{-6} mol \boxed{Z} tao4 0.460 10^{-6} mol \boxed{Z} k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol \boxed{Z} k14 $3.204 \cdot 10^{-7}$ 10^{-6} mol \boxed{Z} k12 360.000 $\boxed{10^{-6}$ mol \boxed{Z} k16 0.360 $\boxed{10^{-6}$ mol \boxed{Z} tao8 2.000 $\boxed{10^{-6}$ mol \boxed{Z}	C			500000.000	10^{-6}mol	_
NA $6.023 \cdot 10^{23}$ 10^{-6} mol K2 0.002 10^{-6} mol K5 0.010 10^{-6} mol tao3 0.560 10^{-6} mol r3 10^{-7} 10^{-6} mol k8 0.004 10^{-6} mol tao4 0.460 10^{-6} mol k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol k14 $3.204 \cdot 10^{-7}$ 10^{-6} mol tao6 1.000 \checkmark k12 360.000 10^{-6} mol k16 0.360 10^{-6} mol tao8 2.000 10^{-6} mol	vmax2			72000.000	10^{-6}mol	
K5 0.010 10^{-6} mol \checkmark tao3 0.560 10^{-6} mol \checkmark r3 10^{-7} 10^{-6} mol \checkmark k8 0.004 10^{-6} mol \checkmark tao4 0.460 10^{-6} mol \checkmark k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol \checkmark k14 $3.204 \cdot 10^{-7}$ 10^{-6} mol \checkmark tao6 1.000 \checkmark k12 360.000 10^{-6} mol \checkmark k16 0.360 10^{-6} mol \checkmark tao8 2.000 10^{-6} mol \checkmark	NA			$6.023 \cdot 10^{23}$		_
tao3 0.560 10^{-6} mol r3 10^{-7} 10^{-6} mol k8 0.004 10^{-6} mol tao4 0.460 10^{-6} mol k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol k14 $3.204 \cdot 10^{-7}$ 10^{-6} mol tao6 1.000 k12 360.000 10^{-6} mol k16 0.360 10^{-6} mol tao8 2.000 10^{-6} mol	K2			0.002	10^{-6} mol	
tao3 0.560 10^{-6} mol \checkmark r3 10^{-7} 10^{-6} mol \checkmark k8 0.004 10^{-6} mol \checkmark tao4 0.460 10^{-6} mol \checkmark k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol \checkmark k14 $3.204 \cdot 10^{-7}$ 10^{-6} mol \checkmark tao6 1.000 \checkmark k12 360.000 10^{-6} mol \checkmark k16 0.360 10^{-6} mol \checkmark tao8 2.000 10^{-6} mol \checkmark	K5			0.010	10^{-6} mol	
k8 0.004 10^{-6} mol \checkmark tao4 0.460 10^{-6} mol \checkmark k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol \checkmark k14 $3.204 \cdot 10^{-7}$ 10^{-6} mol \checkmark tao6 1.000 \checkmark k12 360.000 10^{-6} mol \checkmark k16 0.360 10^{-6} mol \checkmark tao8 2.000 10^{-6} mol \checkmark	tao3			0.560	10^{-6}mol	
k8 0.004 10^{-6} mol \checkmark tao4 0.460 10^{-6} mol \checkmark k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol \checkmark k14 $3.204 \cdot 10^{-7}$ 10^{-6} mol \checkmark tao6 1.000 \checkmark k12 360.000 10^{-6} mol \checkmark k16 0.360 10^{-6} mol \checkmark tao8 2.000 10^{-6} mol \checkmark	r3			10^{-7}	10^{-6}mol	_
k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol k14 $3.204 \cdot 10^{-7}$ 10^{-6} mol tao6 1.000 \mathbb{Z} k12 360.000 10^{-6} mol \mathbb{Z} k16 0.360 10^{-6} mol \mathbb{Z} tao8 2.000 10^{-6} mol \mathbb{Z}	k8			0.004	10^{-6}mol	
k11 $3.6 \cdot 10^{-4}$ 10^{-6} mol k14 $3.204 \cdot 10^{-7}$ 10^{-6} mol tao6 1.000 \bigsize k12 360.000 10^{-6} mol k16 0.360 10^{-6} mol tao8 2.000 10^{-6} mol	tao4			0.460		_
k14 $3.204 \cdot 10^{-7}$ 10^{-6} mol tao6 1.000 k12 360.000 10^{-6} mol k16 0.360 10^{-6} mol tao8 2.000 10^{-6} mol	k11			$3.6 \cdot 10^{-4}$	$10^{-6} \mathrm{mol}$	
$tao6$ 1.000 \checkmark $k12$ 360.000 10^{-6} mol \checkmark $k16$ 0.360 10^{-6} mol \checkmark $tao8$ 2.000 10^{-6} mol \checkmark	k14			$3.204 \cdot 10^{-7}$	10^{-6} mol	_
k12 $360.000 ext{ } 10^{-6} ext{ mol}$ k16 $0.360 ext{ } 10^{-6} ext{ mol}$ tao8 $2.000 ext{ } 10^{-6} ext{ mol}$	tao6			1.000		_
k16 $0.360 10^{-6} mol$ tao8 $2.000 10^{-6} mol$	k12			360.000		
tao8 $2.000 10^{-6} mol$	k16			0.360		
	tao8			2.000		
	vmax17			72000.000	10^{-6}mol	

Id	Name	SBO	Value	Unit	Constant
K17			0.002	$10^{-6} \mathrm{mol}$	$\overline{\hspace{1cm}}$
r1			10^{-4}	$10^{-6} \mathrm{mol}$	$ \overline{\mathbf{Z}} $
rmax20			0.001	$10^{-6} \mathrm{mol}$	
K20			$6 \cdot 10^{-4}$	$10^{-6} \mathrm{mol}$	$ \overline{\mathbf{Z}} $
tao9			2.000	10^{-6}mol	
vmax19			154800.000	10^{-6}mol	
K19			0.004	10^{-6} mol	
r4			10^{-5}	10^{-6} mol	
k26			0.360	10^{-6} mol	
tao12			1.000	10^{-6}mol	
k28			360.000	$10^{-6} \mathrm{mol}$	
tao13			15.000	10^{-6} mol	\square

7 Rules

This is an overview of five rules.

7.1 Rule NS

Rule NS is an assignment rule for parameter NS:

$$NS = \frac{r5 \cdot time^{n3}}{bm^{n3} + time^{n3}} \tag{1}$$

 $\textbf{Derived unit} \ \left(3600 \ s\right)^5 \cdot \left(10^{-6} \ mol\right)^{-5}$

7.2 Rule IC1

Rule IC1 is an assignment rule for parameter IC1:

$$IC1 = \frac{1 + sp \cdot \left(\frac{NS}{delta1}\right)^{n1}}{1 + \left(\frac{NS}{delta1}\right)^{n1}}$$
(2)

7.3 Rule IC2

Rule IC2 is an assignment rule for parameter IC2:

$$IC2 = 1 (3)$$

7.4 Rule IC2ifa

Rule IC2ifa is an assignment rule for parameter IC2ifa:

$$IC2ifa = 1 (4)$$

7.5 Rule TJ

Rule TJ is an assignment rule for parameter TJ:

$$TJ = \frac{\frac{TJtot \cdot ([IFNb_env] + [IFNa_env])}{K3 + [IFNb_env] + [IFNa_env]} \cdot 1}{1 + \frac{K9 \cdot [SOCS1m]}{delta}}$$
(5)

8 Reactions

This model contains twelve reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	J1	J1	$w \xrightarrow{IRF7Pn} IFNb_mRNA$	
2	J2	J2	$w \xrightarrow{IFNb_mRNA} IFNb_env$	
3	Ј3	J3	$w \xrightarrow{STAT} STATP2n$	
4	J4	J4	$w \xrightarrow{STATP2n} SOCS1m$	
5	J5	J5	w $\xrightarrow{\text{STATP2n, IRF7Pn}}$ IRF7m	
6	J6	J6	$w \xrightarrow{IRF7m} IRF7Pn$	
7	J7	J7	$w \xrightarrow{IRF7Pn} IFNa_mRNA$	
8	Ј8	18	$w \xrightarrow{IFNa_mRNA} IFNa_env$	
9	J9	J9	$w \xrightarrow{TNFenv} TNFam$	
10	J10	J10	$w \xrightarrow{TNFam} TNFenv$	
11	J11	J11	$w \xrightarrow{STATP2n} STATm$	
12	J12	J12	$w \xrightarrow{STATm} STAT$	

8.1 Reaction J1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name J1

Reaction equation

$$w \xrightarrow{IRF7Pn} IFNb_mRNA$$
 (6)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
W	W	

Modifier

Table 7: Properties of each modifier.

Id	Name	SBO
IRF7Pn	IRF7Pn	

Product

Table 8: Properties of each product.

Id	Name	SBO
IFNb_mRNA	IFNb_mRNA	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = (r0 \cdot IC1 + k15 \cdot [IRF7Pn]) \cdot IC2 - \frac{[IFNb_mRNA] \cdot ln2}{tao1}$$
 (7)

8.2 Reaction J2

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name J2

Reaction equation

$$w \xrightarrow{IFNb_mRNA} IFNb_env$$
 (8)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
W	W	

Modifier

Table 10: Properties of each modifier.

Id	Name	SBO
IFNb_mRNA	IFNb_mRNA	

Product

Table 11: Properties of each product.

Id	Name	SBO
IFNb_env	IFNb_env	

Kinetic Law

Derived unit contains undeclared units

$$v_{2} = \frac{\frac{1000000000 \cdot \text{C} \cdot \text{vmax2}}{\text{NA}} \cdot [\text{IFNb_mRNA}]}{\text{K2} + [\text{IFNb_mRNA}]}$$
(9)

8.3 Reaction J3

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name J3

Reaction equation

$$w \xrightarrow{STAT} STATP2n \tag{10}$$

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
W	W	

Modifier

Table 13: Properties of each modifier.

Id	Name	SBO
STAT	STAT	

Product

Table 14: Properties of each product.

Id	Name	SBO
STATP2n	STATP2n	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \frac{\frac{\text{K5-TJ-[STAT]}}{2}}{\text{K5} + [\text{STAT}]} - \frac{[\text{STATP2n}] \cdot \ln 2}{\tan 3}$$
 (11)

8.4 Reaction J4

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name J4

Reaction equation

$$w \xrightarrow{STATP2n} SOCS1m \tag{12}$$

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
W	W	

Modifier

Table 16: Properties of each modifier.

Id	Name	SBO
STATP2n	STATP2n	

Product

Table 17: Properties of each product.

Id	Name	SBO
SOCS1m	SOCS1m	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = (r3 \cdot IC1 + k8 \cdot [STATP2n]) \cdot IC2 - \frac{[SOCS1m] \cdot ln \cdot 2}{tao4}$$
 (13)

8.5 Reaction J5

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name J5

Reaction equation

$$w \xrightarrow{STATP2n, IRF7Pn} IRF7m$$
 (14)

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
W	W	

Modifiers

Table 19: Properties of each modifier.

Id	Name	SBO
STATP2n	STATP2n	
IRF7Pn	IRF7Pn	

Product

Table 20: Properties of each product.

Id	Name	SBO
IRF7m	IRF7m	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = (k11 \cdot [STATP2n] + k14 \cdot [IRF7Pn]) \cdot IC2 - \frac{[IRF7m] \cdot ln2}{tao6}$$
 (15)

8.6 Reaction J6

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name J6

Reaction equation

$$w \xrightarrow{IRF7m} IRF7Pn \tag{16}$$

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
W	W	

Modifier

Table 22: Properties of each modifier.

Id	Name	SBO
IRF7m	IRF7m	

Product

Table 23: Properties of each product.

Id	Name	SBO
IRF7Pn	IRF7Pn	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = k12 \cdot IC1 \cdot [IRF7m] \tag{17}$$

8.7 Reaction J7

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name J7

Reaction equation

$$w \xrightarrow{IRF7Pn} IFNa_mRNA$$
 (18)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
W	W	

Modifier

Table 25: Properties of each modifier.

Id	Name	SBO
IRF7Pn	IRF7Pn	

Product

Table 26: Properties of each product.

Tuble 20: I Toperties of each product:			
Id	Name	SBO	
IFNa_mRNA	IFNa_mRNA		

Kinetic Law

Derived unit contains undeclared units

$$v_7 = k16 \cdot [IRF7Pn] \cdot IC2ifa - \frac{[IFNa_mRNA] \cdot ln2}{tao8}$$
 (19)

8.8 Reaction J8

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name J8

Reaction equation

$$w \xrightarrow{IFNa_mRNA} IFNa_env$$
 (20)

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
W	W	

Modifier

Table 28: Properties of each modifier.

Id	Name	SBO
IFNa_mRNA	IFNa_mRNA	

Table 29: Properties of each product.

Id	Name	SBO
IFNa_env	IFNa_env	

Derived unit contains undeclared units

$$v_8 = \frac{\frac{1000000000 \cdot \text{C} \cdot \text{vmax} 17}{\text{NA}} \cdot [\text{IFNa_mRNA}]}{\text{K17} + [\text{IFNa_mRNA}]}$$
(21)

8.9 Reaction J9

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name J9

Reaction equation

$$w \xrightarrow{TNFenv} TNFam \tag{22}$$

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
W	W	

Modifier

Table 31: Properties of each modifier.

Id	Name	SBO
TNFenv	TNFenv	

Table 32: Properties of each product.

Id	Name	SBO
TNFam	TNFam	

Derived unit contains undeclared units

$$v_9 = \left(r1 \cdot IC1 + \frac{rmax20 \cdot [TNFenv]}{K20 + [TNFenv]}\right) \cdot IC2 - \frac{[TNFam] \cdot ln 2}{tao9}$$
 (23)

8.10 Reaction J10

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name J₁₀

Reaction equation

$$w \xrightarrow{\text{TNFam}} \text{TNFenv} \tag{24}$$

Reactant

Table 33: Properties of each reactant.

Id	Name	SBO
W	W	

Modifier

Table 34: Properties of each modifier.

Id	Name	SBO
TNFam	TNFam	

Table 35: Properties of each product.

Id	Name	SBO
TNFenv	TNFenv	

Derived unit contains undeclared units

$$v_{10} = \frac{\frac{1000000000 \cdot \text{C} \cdot \text{vmax} 19}{\text{NA}} \cdot [\text{TNFam}]}{\text{K}19 + [\text{TNFam}]}$$
(25)

8.11 Reaction J11

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name J11

Reaction equation

$$w \xrightarrow{STATP2n} STATm$$
 (26)

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
W	W	

Modifier

Table 37: Properties of each modifier.

Id	Name	SBO
STATP2n	STATP2n	

Table 38: Properties of each product.

Id	Name	SBO
STATm	STATm	

Derived unit contains undeclared units

$$v_{11} = (r4 \cdot IC1 + k26 \cdot [STATP2n]) \cdot IC2 - \frac{[STATm] \cdot ln2}{tao12}$$
(27)

8.12 Reaction J12

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name J12

Reaction equation

$$w \xrightarrow{STATm} STAT \tag{28}$$

Reactant

Table 39: Properties of each reactant.

Id	Name	SBO
W	W	

Modifier

Table 40: Properties of each modifier.

Id	Name	SBO
STATm	STATm	

Table 41: Properties of each product.

Id	Name	SBO
STAT	STAT	

Id	Name	SBO

Derived unit $(10^{-6} \text{ mol})^2 \cdot 1^{-1}$

$$v_{12} = k28 \cdot [STATm] - \frac{[STAT] \cdot \ln 2}{\tan 13}$$
 (29)

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

9.1 Species w

Name w

SBO:0000291 empty set

Initial concentration $0.10^{-6} \, \mathrm{mol} \cdot l^{-1}$

This species takes part in twelve reactions (as a reactant in J1, J2, J3, J4, J5, J6, J7, J8, J9, J10, J11, J12), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{w} = 0\tag{30}$$

9.2 Species IFNb_mRNA

Name IFNb_mRNA

Initial concentration $0.10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in J1 and as a modifier in J2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IFNb_mRNA} = v_1 \tag{31}$$

9.3 Species IFNb_env

Name IFNb_env

Initial concentration $0.10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a product in J2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IFNb_env} = v_2 \tag{32}$$

9.4 Species STATP2n

Name STATP2n

Initial concentration $0.10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a product in J3 and as a modifier in J4, J5, J11).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{STATP2n} = v_3 \tag{33}$$

9.5 Species SOCS1m

Name SOCS1m

Initial concentration $0.10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a product in J4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SOCS1m} = v_4 \tag{34}$$

9.6 Species IRF7m

Name IRF7m

Initial concentration $0.10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in J5 and as a modifier in J6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IRF7m} = v_5 \tag{35}$$

9.7 Species IRF7Pn

Name IRF7Pn

Initial concentration $0.10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a product in J6 and as a modifier in J1, J5, J7).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IRF7Pn} = v_6 \tag{36}$$

9.8 Species IFNa_mRNA

Name IFNa_mRNA

Initial concentration $0.10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in J7 and as a modifier in J8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IFNa_mRNA} = v_7 \tag{37}$$

9.9 Species IFNa_env

Name IFNa_env

Initial concentration $0.10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a product in J8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IFNa_env} = v_8 \tag{38}$$

9.10 Species TNFam

Name TNFam

Initial concentration $0.10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in J9 and as a modifier in J10).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TNFam} = v_9 \tag{39}$$

9.11 Species TNFenv

Name TNFenv

Initial concentration $0.10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in J10 and as a modifier in J9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TNFenv} = v_{10} \tag{40}$$

9.12 Species STATm

Name STATm

Initial concentration $0.10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in J11 and as a modifier in J12).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{STATm} = v_{11} \tag{41}$$

9.13 Species STAT

Name STAT

Initial concentration $0.1 \ 10^{-6} \ \text{mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in J12 and as a modifier in J3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{STAT} = |v_{12}| \tag{42}$$

A Glossary of Systems Biology Ontology Terms

SBO:0000290 physical compartment: Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions

SBO:0000291 empty set: Entity defined by the absence of any actual object. An empty set is often used to represent the source of a creation process or the result of a degradation process.

SBML2LATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany