Università degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE220 A.A. 2010-2011 - Docente: Prof. Edoardo Sernesi

Tutori: Filippo Maria Bonci, Annamaria Iezzi e Maria Chiara Timpone

Tutorato 2 (24 Marzo 2011)

- 1. Descrivere la topologia relativa su \mathbb{Z} come sottospazio di \mathbb{R} con la topologia cofinita. Dire se i punti sono chiusi in questa topologia. Dire se la topologia discreta è strettamente più fine giustificando la risposta.
- 2. Sia $X = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y > 0\}$. Dire quale dei seguenti sottoinsiemi sono chiusi in X con la topologia di sottospazio di \mathbb{R}^2 :

```
\begin{split} A &= \{(x,y): xy = 1, x > 0\}; \\ B &= \{(\frac{1}{n},1): n \geq 1, n \in \mathbb{N}\}; \\ C &= \{(x,y): x + y = 1, x > 0, y > 0\}; \\ D &= \{(1,\frac{1}{n}): n \geq 1, n \in \mathbb{N}\}. \end{split}
```

- 3. $Sia(X, \mathcal{T})$ uno spazio topologico e siano A e B sottoinsiemi di X; verificare:
 - (a) $\operatorname{Fr}(A \cup B) \subseteq \operatorname{Fr}(A) \cup \operatorname{Fr}(B)$;
 - (b) $\operatorname{Int}(A \cup B) \supseteq \operatorname{Int}(A) \cup \operatorname{Int}(B)$; $\operatorname{Int}(A \cap B) = \operatorname{Int}(A) \cap \operatorname{Int}(B)$;
 - (c) $\overline{A \cup B} = \overline{A} \cup \overline{B}$; $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$;
- 4. Determinare opportuni intervalli A e B della retta euclidea $\mathbb R$ in modo che siano verificate le seguenti condizioni:
 - (a) $\operatorname{Fr}(A \cup B) \subsetneq \operatorname{Fr}(A) \cup \operatorname{Fr}(B)$; $\operatorname{Fr}(A \cap B) \not\subseteq \operatorname{Fr}(A) \cap \operatorname{Fr}(B)$; $\operatorname{Fr}(A \cap B) \not\supseteq \operatorname{Fr}(A) \cap \operatorname{Fr}(B)$;
 - (b) $\operatorname{Int}(A \cup B) \supseteq \operatorname{Int}(A) \cup \operatorname{Int}(B)$;
 - (c) $\overline{A \cap B} \subsetneq \overline{A} \cap \overline{B}$;
- 5. Sia $f: \mathbb{R} \to \mathbb{R}$ l'applicazione così definita: $f(x) = x^2, \forall x \in \mathbb{R}$. Consideriamo le seguenti topologie su \mathbb{R} : $\varepsilon, i_d := \{(b, +\infty) : b \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}, j_d \text{ (la topologia che ha per base l'insieme } \mathcal{B}_d = \{[a, b) \subseteq \mathbb{R}, \forall a, b \in \mathbb{R}, a < b\}$). Verificare che:
 - (a) $f: (\mathbb{R}, \varepsilon) \to (\mathbb{R}, \varepsilon)$ è continua;
 - (b) $f: (\mathbb{R}, i_d) \to (\mathbb{R}, i_d)$ non è continua;
 - (c) $f: (\mathbb{R}, j_d) \to (\mathbb{R}, j_d)$ non è continua.
- 6. (a) Costruire esplicitamente un omeomorfismo tra due segmenti chiusi e limitati X ed Y assegnati in \mathbb{R}^2 .
 - (b) Assegnate le poligonali di vertici rispettivamente $P_1(1,3), P_2(3,1), P_3(5,1), P_4(5,4)$ e $Q_1(0,0), Q_2(3,2), Q_3(5,2), Q_4(3,0)$, costruire un omeomorfismo tra $\prod (P_1, P_2, P_3, P_4)$ e $\prod (Q_1, Q_2, Q_3, Q_4)$.
 - (c) Assegnate le poligonali di vertici rispettivamente $P_1(1,3), P_2(3,1), P_3(5,1)$ e $Q_1(0,0), Q_2(3,2), Q_3(5,2), Q_4(3,0)$, costruire un omeomorfismo tra $\prod (P_1, P_2, P_3)$ e $\prod (Q_1, Q_2, Q_3, Q_4)$.
- 7. Dimostrare che le topologie j_d e j_s su $\mathbb R$ sono omeomorfe.
- 8. Dimostrare che se X è un insieme infinito con la topologia cofinita ogni aperto non vuoto è denso.
- 9. Sia (X, \mathcal{T}) uno spazio topologico separabile. Siano \mathcal{T}' e \mathcal{T}'' due topologie su X tali che $\mathcal{T}' < \mathcal{T} < \mathcal{T}''$.
 - (a) Dimostrare che (X, \mathcal{T}') è separabile;
 - (b) verificare con un esempio (X, \mathcal{T}'') può non essere separabile.
- 10. Siano (X, \mathcal{T}_1) e (Y, \mathcal{T}_2) due spazi topologici metrizzabili. Se X ed Y sono insiemi con almeno due elementi, verificare che $\mathcal{T}_1 \cdot \mathcal{T}_2$ non è una topologia su $X \times Y$.
- 11. Dimostrare che lo spazio topologico euclideo ($\mathbb{R}^2, \varepsilon$) verifica il 2° assioma di numerabilità, provando che l'insieme (numerabile) di dischi euclidei $\mathfrak{D} := \{D_h(q), \forall q \in \mathbb{Q}^2, h \in \mathbb{Q}, h > 0\}$ è una base di ε .