Homework 3-Solution

Reading assignment: Read Section 3.5 of Prof. Kim's notes on functions of a random variable before addressing Problem 1.

1. Let $\{X_k\}_{k\geq 1}$ be a random process over an underlying probability space $(\Omega, \mathcal{F}, \mathbf{P}(\cdot))$. Show that $X = \inf_{k\geq 1} X_k$ is a random variable.

Solution: First note that in order to show that a function $Z:\Omega\to\mathbb{R}$ is a random variable, it is enough to show that $Z^{-1}([a,\infty))\in\mathcal{F}$ for all $a\in\mathbb{R}$. This is true as this condition holds if and only if $Y^{-1}((-\infty,-a])\in\mathcal{F}$ for Y=-Z and all $a\in\mathbb{R}$, which holds iff Y is a random variable. But if Y is a random variable, Y=-Z would be a random variable.

So, for $X = \inf k \ge 1X_k$, it suffice to show that for all a

$$X^{-1}([a,\infty)) \in \mathcal{F}.$$

By definition, we have

$$(\inf_{k} X_{k})^{-1}([a, \infty)) = \left\{ \omega \middle| \inf_{k} X_{k}(\omega) \ge a \right\} \triangleq \left\{ \inf_{k} X_{k} \ge a \right\}.$$

Since the infimum of a sequence is greater than or equal to a if and only if every term is greater than or equal to a, we have

$$\left\{\inf_{k} X_k \ge a\right\} = \bigcap_{k=1}^{\infty} \left\{X_k \ge a\right\} \in \mathcal{F},$$

where follows from the fact that X_k s are random variables.

2. Problem 3.9 of Prof. Kim's notes.

Solution:

(a) For $x \ge 0$, we have $P(X < x) = 1 - e^{-\lambda x}$ and P(X < x) = 0 for x < 0. Let k be a non-negative integer. Then we have,

$$P(Y = k) = P(k \le X < k + 1)$$

$$= P(X < k + 1) - P(X < k) = e^{-\lambda k} - e^{-\lambda(k+1)} = e^{-\lambda k} (1 - e^{-1}).$$
(1)

(b) Note that for $z \in [0,1)$, we have $\{Z < z\} = \bigcup_{k=0}^{\infty} \{k \le X < k+z\}$. Therefore,

$$P(Z \le z) = \sum_{k=0}^{\infty} P(k \le X < k + z)$$
$$\sum_{k=0}^{\infty} e^{-\lambda k} - e^{-\lambda (k+z)} = \sum_{k=0}^{\infty} e^{-\lambda k} (1 - e^{-\lambda z})$$
$$= \frac{1 - e^{-\lambda z}}{1 - e^{-\lambda}}.$$

Then, the pdf of Z is given by $\frac{dP(Z < z)}{dz} = \frac{\lambda e^{-\lambda z}}{1 - e^{-\lambda}}$ for $z \in [0, 1)$ and 0 otherwise.

- 3. Let $\{X_k\}$ to be a random process over an underlying probability space $(\Omega, \mathcal{F}, \mathbf{P}(\cdot))$.
 - (a) For any $\alpha \in \mathbb{R}$, show that the event E_{α} where the limiting point of $X_k(\omega) = \alpha$ is an event in \mathcal{F} :

$$E_{\alpha} = \{ \omega \in \Omega \mid \lim_{k \to \infty} X_k(\omega) = \alpha \}.$$

(b) Show that the set E of sample points that X_k has limit is measurable (i.e., it is an event in \mathcal{F}):

$$E = \{ \omega \in \Omega \mid \lim_{k \to \infty} X_k(\omega) \text{ exists} \}.$$

Solution: First, we prove

$$\inf_{k} X_{k} \quad \sup_{k} X_{k} \quad \limsup_{k \to \infty} X_{k} \quad \liminf_{k \to \infty} X_{k}$$

are random variables. $(\inf_k X_k \triangleq \inf\{X_1, X_2, \ldots\})$ and $\sup_k X_k \triangleq \sup\{X_1, X_2, \ldots\}$

Proof. We have to show for all a

$$(\inf_{k} X_k)^{-1}((-\infty, a)) \in \mathcal{F}.$$

By definition, we have

$$\left(\inf_{k} X_{k}\right)^{-1}((-\infty, a)) = \left\{\omega \middle| \inf_{k} X_{k}(\omega) < a\right\} \triangleq \left\{\inf_{k} X_{k} < a\right\}.$$

Since the infimum of a sequence is less than a if and only if some term is less than a (if all terms are greater or equal to a then so is the infimum), we have

$$\left\{\inf_{k} X_k < a\right\} = \bigcup_{k=1}^{\infty} \left\{X_k < a\right\} \in \mathcal{F},$$

where follows from the fact that X_k s are random variables. A similar argument shows $\{\sup_k X_k > a\} = \bigcup_k \{X_k > a\} \in \mathcal{F}$. For the last two, we observe

$$\lim_{k \to \infty} \inf X_k = \sup_{k} \left(\inf_{m \ge k} X_m \right)$$

$$\lim_{k \to \infty} \sup_{k \to \infty} X_k = \inf_{k} \left(\sup_{m > k} X_m \right)$$

To complete the proof in the first case, note that $Y_k = \inf_{m \geq k} X_m$ is a random variable for each k, so $\sup_k Y_k$ is as well.

(a) We have

$$\begin{split} E_{\alpha} &= \{\omega \in \Omega \mid \lim_{k \to \infty} X_k(\omega) = \alpha \} \\ &= \{\omega \in \Omega \mid \liminf_{k \to \infty} X_k(\omega) = \alpha \} \cap \{\omega \in \Omega \mid \limsup_{k \to \infty} X_k(\omega) = \alpha \} \in \mathcal{F}, \end{split}$$

where follow from the fact $\liminf_{k\to\infty} X_k$ and $\limsup_{k\to\infty} X_k$ are random variables, and so

$$(\liminf_{k\to\infty} X_k)^{-1}(\{\alpha\}), (\limsup_{k\to\infty} X_k)^{-1}(\{\alpha\}) \in \mathcal{F}.$$

(b) We have

$$E = \{\omega \in \Omega \mid \lim_{k \to \infty} X_k(\omega) \text{ exists} \}$$

$$= \{\omega \in \Omega \mid \liminf_{k \to \infty} X_k(\omega) = \limsup_{k \to \infty} X_k(\omega) \},$$

$$= \{\omega \in \Omega \mid \liminf_{k \to \infty} X_k(\omega) - \limsup_{k \to \infty} X_k(\omega) = 0 \},$$

$$= (\liminf_{k \to \infty} X_k - \limsup_{k \to \infty} X_k)^{-1} (\{0\}) \in \mathcal{F}.$$

4. Find a sequence of random variables (i.e., a random process) $\{X_k\}$ such that its limit exists and $\mathbb{E}[\lim_{k\to\infty} X_k] \neq \lim_{k\to\infty} \mathbb{E}[X_k]$. (if you cannot do it by yourself, do research on finding such random variables)

Solution: Let

$$X_k = \begin{cases} 0, & \text{with probaility } 1 - \frac{1}{k^2} \\ k^2, & \text{with probaility } \frac{1}{k^2} \end{cases}.$$

Therefore, $\mathbb{E}[X_k] = 1$ for all k, and hence $\lim_{k \to \infty} \mathbb{E}[X_k] = 1$. Now, we want to show that $\lim_{k \to \infty} X_k = 0$, and hence $\mathbb{E}[\lim_{k \to \infty} X_k] = 0$, which is not equal to $\lim_{k \to \infty} \mathbb{E}[X_k] = 1$.

To prove, consider the sequence of events

$$E_k = \{X_k > 0\}$$

which happens with probability $\mathbf{P}(E_k) = \frac{1}{k^2}$. Since $\sum_{k=1}^{\infty} \mathbf{P}(E_k) < \infty$ and these events are independent, the Borel-Cantelli lemma implies that $\mathbf{P}(\{E_k. \text{ i.o.}\}) = 0$. This implies that for almost all $\omega \in \Omega$, there exists some $T(\omega)$ such that $X_k(\omega) = 0$ for $k \geq T(\omega)$, i.e., $\lim_{k \to \infty} X_k(\omega) = 0$ almost surely.

5. In the spirit of HW1-Problem 7, let $\{w_k\}$ be an i.i.d. random process that is uniformly distributed over [-1, 1], i.e., they admit the PDF

$$f(x) = \begin{cases} \frac{1}{2} & x \in [-1, 1] \\ 0 & \text{otherwise} \end{cases}.$$

- (a) Show that $P(\{|w_k| > \frac{1}{4} \text{ i.o.}\}) = 1$.
- (b) Using this and the definition of convergent series, show that the process $\{w_k\}$ is almost surely not summable, i.e., $\sum_{k=1}^{\infty} w_k$ does not exists with probability one.

Solution:

(a) Consider the sequence of events

$$E_k = \left\{ w_k \ge \frac{1}{4} \right\}.$$

Hence, $\mathbf{P}(E_k) = \frac{3}{8}$, and so $\sum_{k=1}^{\infty} \mathbf{P}(E_k) = \infty$. Since, w_k s are independent, Borel-Cantelli lemma implies that $\mathbf{P}(\{E_k, \text{ i.o.}\}) = 1$.

(b) To show that the probability of $z_k := w_1 + \cdots + w_k$ not having a limit is equal to one it is sufficient to show that the probability of $\limsup_{k \to \infty} w_k > 0$ is one.

So, to solve the problem, it is enough to show that $\mathbf{P}(\{\limsup_{k\to\infty} w_k > 0\}) = 1$. We know $P(\{|w_k| > \frac{1}{4} \text{ i.o.}\}) = 1$. This implies that $\limsup_{k\to\infty} w_k \geq \frac{1}{4}$ with probability 1 which proves the result.

6. Using the general definition of $\mathbb{E}[X]$ that we discussed in the class, show that for a non-negative discrete random variable X

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} m_k p_X(m_k),$$

where $P(X \in M) = 1$ and $M = \{m_k \mid k \ge 1\}$.

Solution: Let us define the simple function $X_i = \sum_{k=1}^i m_k \mathbf{1}_{\{X=m_k\}}$ for all $i \geq 1$. Therefore, from the definition of expectation of simple functions, $\mathbb{E}[X_i] = \sum_{k=1}^i m_k p_X(m_k)$. Since, $X_1 \leq X_2 \leq \cdots \leq X = \lim_{i \to \infty} X_i$, from Monotone Convergence Theorem, we have

$$\mathbb{E}[X] = \mathbb{E}[\lim_{k \to \infty} X_k] = \lim_{k \to \infty} \mathbb{E}[X_k] = \sum_{k=1}^{\infty} m_k p_X(m_k).$$

- 7. Let X be a finite random variable on $(\Omega, \mathcal{F}, \mathbf{P})$ (i.e., $P(X = \infty) = P(X = -\infty) = 0$. Show that its distribution function F_X satisfies the following properties:
 - (a) F_X is non-decreasing.
 - (b) $\lim_{x\to-\infty} F_X(x) = 0$, and $\lim_{x\to\infty} F_X(x) = 1$.
 - (c) $F_X(\cdot)$ is right-continuous, i.e., for any $x \in \mathbb{R}$, $\lim_{y \to x^+} F_X(y) = F_X(x)$.
 - (d) Define $F_X(x^-) := \lim_{y \uparrow x} F_X(y)$, then

$$F_X(x^-) = \mathbf{P}[X < x] = \mathbf{P}[\{\omega \in \Omega \mid X(\omega) < x\}].$$

(e) For any $x \in \mathbb{R}$, we have $\mathbf{P}[X = x] = F_X(x) - F_X(x^-)$.

Solution:

- (a) If x < y, then $\{X \le x\} \subset \{X \le y\}$, which implies that $F_X(x) \le F_Y(y)$.
- (b) If $x_n, n \ge 1$ is an increasing sequence such that $x_n \to \infty$, then the events $E_n = \{X \le x_n\}$ form an increasing sequence with

$$\{X < \infty\} = \bigcup_{n=1}^{\infty} E_n.$$

It follows from the continuity properties of probability measures that

$$\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} \mathbf{P}(E_n) = \mathbf{P}(X < \infty) = 1.$$

Likewise, if $x_n, n \ge 1$ is a decreasing sequence such that $x_n \to -\infty$, then the events $E_n = \{X \le x_n\}$ form a decreasing sequence with

$$\emptyset = \bigcap_{n=1}^{\infty} E_n.$$

In this case, the continuity properties of measures imply that

$$\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} \mathbf{P}(E_n) = \mathbf{P}(\emptyset) = 0.$$

(c) If $x_n, n \ge 1$ is a decreasing sequence converging to x, then the sets $E_n = \{X \le x_n\}$ also form a decreasing sequence with

$$\{X \le x\} = \bigcap_{n=1}^{\infty} E_n.$$

Consequently,

$$\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} \mathbf{P}(E_n) = \mathbf{P}\{X \le x\} = F_X(x)$$

(d) If $x_n, n \ge 1$ is a increasing sequence converging to x, then the sets $E_n = \{X \le x_n\}$ also form a increasing sequence with

$$\{X < x\} = \bigcup_{n=1}^{\infty} E_n.$$

Consequently,

$$\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} \mathbf{P}(E_n) = \mathbf{P}\{X < x\} = F_X(x^-).$$

(e) We have

$$P[X = x] = P[X < x] - P[X < x] = F_X(x) - F_X(x^-).$$