

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 14 martie 2015

SOLUŢII ŞI BAREME ORIENTATIVE – CLASA a VI-a

Problema 1. Pe o tablă sunt scrise la început numerele 11 și 13. Un pas înseamnă scrierea pe tablă a unui număr nou, egal cu suma a două numere oarecare scrise deja pe tablă. Arătaţi că:

- a) indiferent câți pași s-ar efectua, pe tablă nu se poate scrie numărul 86;
- b) este posibil ca, după mai mulți pași, pe tablă să fie scris numărul 2015.

Gazeta Matematică

Soluţie

a) Orice număr care poate fi scris pe tablă este de forma $11a + 13b$, unde $a, b \in \mathbb{N}^*$	1p
Dacă ar exista $a, b \in \mathbb{N}^*$ astfel încât $86 = 11a + 13b$, atunci $b \leq 6$	1p
Atunci $13b \in \{13, 26, 39, 52, 65, 78\}$, deci $11a = 86 - 13b \in \{73, 60, 47, 34, 21, 8\}$	1p
Niciunul dintre aceste numere nu se divide cu 11, deci 86 nu se poate scrie pe tablă	1p
b) 2015=11 · 182 + 13	1p
Putem obține numărul 2015 prin 182 de pași astfel:	
$13 + 11 = 24 \xrightarrow{+11} 13 + 2 \cdot 11 = 35 \xrightarrow{+11} 13 + 3 \cdot 11 = 46 \xrightarrow{+11} \dots \xrightarrow{+11} 13 + 182 \cdot 11 = 2015 \dots$	2p

Problema 2. Fie triunghiul ABC obtuzunghic cu AB = AC. Notăm cu M simetricul punctului A față de punctul C și cu P intersecția dreptei AB cu mediatoarea segmentului [AM]. Știind că dreapta PM este perpendiculară pe BC, arătați că triunghiul APM este echilateral.

Soluție

Rezultă $90^{\circ} - x = 2x$, de unde $x = 30^{\circ}$
Problema 3. Determinați pătratele perfecte de cinci cifre, cu primele două cifre identice, care au răsturnatul pătrat perfect de cinci cifre.
Soluţie Fie \overline{aabcd} un pătrat perfect cu $a \neq 0, d \neq 0$, astfel încât \overline{dcbaa} este pătrat perfect. Deoarece \overline{dcbaa} este pătrat perfect, rezultă $a \in \{1,4,5,6,9\}$
Numerele de forma $\overline{dcb11}$ sau $\overline{dcb99}$ nu pot fi pătrate perfecte deoarece dau restul 3 la împărțirea
cu 4
Problema 4. Determinați numerele naturale nenule A și B , care au același număr de cifre, știind că
$2 \cdot A \cdot B = \overline{AB},$
unde \overline{AB} este numărul obținut prin scrierea cifrelor lui B după cifrele lui A .
Soluție Fie n numărul de cifre ale lui A și B . Din relația din enunț avem $(2A-1)B=10^nA$, de unde $2A-1\mid 10^nA$
$2 \cdot 2^{n-1} \cdot 5^{n-1} \le 5 \cdot 5^{n-1} + 1 \le 6 \cdot 5^{n-1},$
deci $2^n \le 6$, de unde $n \in \{1, 2\}$