EMTH211 Statistics

Fabian Dunker

University of Canterbury

2019

Lecturer

- Fabian Dunker
- fabian.dunker@canterbury.ac.nz
- Office hour Friday 11pm 12pm and by appointment.
- Erskine 703

Outline

Outline

- Descriptive statistics
- 2 Simple linear regression
- Multiple linear regression

Lecture notes

- Lecture notes by Richard Vale
- Slides

are available on Learn.

1. Descriptive statistics

1.1 Random variables and data

Random variables

Statistical methods are useful if we have observations or measurements which cannot be (exactly) predicted.

For example: measurement with measurement errors and perturbations, or events that occur with uncertainty.

Definition

- We call an experiment or measurement whose outcome cannot be predicted a random experiment.
- A map that assigns real numbers to the outcomes of a random experiment is called random variable.

Remark

You can think of a random variable as a real valued variable whose value is random, i.e. it can be differnt every time we observe the variable.

Examples

- rolling a dice, possible outcomes are 1,2,3,4,5, or 6
- tossing a coin, we assign tail = 0, head = 1 to get a real valued variable.
- polls and surveys
- daily mean temperature
- electricity consumption
- life time of a machine in sec, min, hours, or years
- precision of a machine (often influenced by run time)
- measurement with measurement errors: temperature, pressure, velocity, voltage, current, . . .
- bugs in a software
- Randomised software testing has a random variable as input.
 Hence, the output is also a random variable.

Data

- Observing a random variable generates **data**.
- A collection of one or more observations is called a sample.
- The number of observation in a sample is called the sample size and is usually denoted by n.
- Statistical methods try to learn properties of the random variable by analysing properties of the sample.
- However, properties of a sample can differ from the properties of the random variable due to random perturbations. We need to be careful!

Example

The average of a sample indicates what the average outcome of a random variable might be.

If we happen to get tail three times in a row when tossing a coin, the average of this sample will be misleading.

• 3 times tail =
$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$$

=12.5%

· Fair coin 50% head or tail

Data vector

We store each sample in a vector, e.g.

$$\mathbf{x}=(x_1,x_2,\ldots,x_n)^{\top},$$

where x_1, x_2, \dots, x_n are the individual observations. The sample size is n.

Notation

- x, y, b vectors on the slides.
- \underline{x} , y, \underline{b} vectors on the white board.
- $\overline{\mathbf{x}}$, $\overline{\mathbf{y}}$, $\overline{\mathbf{b}}$ mean of a data vector (next lecture).

· Vectors on the strans bold letters

 $\chi = (\chi_1 \chi_2 \dots \chi_n)^T$ meen on the board $\widetilde{\chi}$

 \mathcal{Z}_{j}

Two ore more random variables

Often two or more random variables are observed simultaneously.

Example Temperature and pressure in a boiler.

Temp (°C)	Pressure (kPa)
0	91
10	95
20	100
30	101
40	107
50	112

$$\mathbf{x} = (0, 10, 20, 30, 40, 50)^{\top}$$

 $\mathbf{y} = (91, 95, 100, 101, 107, 112)^{\top}$

Goals Describe and quantify by using linear algebra:

- probabilistic properties of one (or more) random variable,
- how variations in one random variable is linked to another random variable.

Example for random variables that depend on each other

- temperature (T) and pressure (P) ldeal gas law: P = cT with some constant c.
- voltage (II) and current (I) II = RI with resistance R.
- daily mean temperature and electricity consumption in Christchurch
 The lower the temperature the higher the electricity consumption.
 - (This will be different in other places, e.g. New York)
- live time of a machine and production costs of a machine
 A more durable machine is more expensive to produce.
- Number of bugs in a software and number of randomised software tests.

Scatter plot

Plotting the values of two random variables against each other is called a **scatter plot**. Matlab command: scatter(x,y)

A scatter plot can give a rough idea about the data.

Temp (°C)	Pressure (kPa)
0	91
10	95
20	100
30	101
40	107
50	112
1	·

Mean and centering

1.2 Sample mean and centering

Sample mean # Want to find the average outcome

- An important characteristic of a random variable is its average outcome.
- We will use the average of a sample to estimate the average of the random variable.

Definition

For a data vector $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$ the sample mean is defined as

$$\bar{\mathbf{x}} = \frac{1}{n}(x_1 + x_2 + \ldots + x_n) = \frac{1}{n}\sum_{i=1}^n x_i.$$

Note

- The average outcome of the random variable is called
 expectation or population mean. It is not the same as the sample mean.
- Often the sample mean and the expectation are both just called the mean. Do not confuse these two concepts!

$$2l = (x_1 x_2 ... x_n)^T \qquad (Proofs)$$

$$y = (y_1 y_2 ... y_n)^T$$

$$(1):$$

$$x_1 = \frac{1}{n} \sum_{i=1}^{n} (x_i + y_i) = (\frac{1}{n} \sum_{i=1}^{n} x_i) + (\frac{1}{n} \sum_{i=1}^{n} y_i)$$

$$= \hat{x} + \hat{y}$$

$$CER$$

$$C(Cislinent)$$

$$C(X) = C \cdot 1 \sum_{i=1}^{n} x_i$$

$$2 \cdot 2 \sum_{i=1}^{n} x_i$$

(2):

(3)

$$\bot = (1.1...1)^{T}$$

$$2c + C \times \bot = (c_1 + c) + (x_2 + c) ... + (c_n + c)^{T}$$

$$= x + C$$

 $T = \frac{1}{N} \sum_{i=1}^{N} \cdot 1 = \frac{N}{N} = 1$

Sample mean

Properties

Let \mathbf{x}, \mathbf{y} be two vectors of the same length n and $c \in \mathbb{R}$.

(1) •
$$\overline{x+y} = \overline{x} + \overline{y}$$

(2)
$$\overline{cx} = c\overline{x}$$

(3)• Hence, the sample mean is a linear map from \mathbb{R}^n to \mathbb{R} .

Example

- x temperature values in degree Celsius
- ullet x + 237.5 imes 1 temperature values in degree Kelvin
- Hence, the mean temperature in Kelvin is

$$\overline{\mathbf{x} + 237.5 \times \mathbf{1}} = \overline{\mathbf{x}} + \overline{237.5 \times \mathbf{1}} = \overline{\mathbf{x}} + 237.5 \times \overline{\mathbf{1}} = \overline{\mathbf{x}} + 237.5$$

Notation

$$\mathbf{1} = (1, 1, \dots, 1)^{\top}$$
 with length n (sample size).

Sample mean

Remark

The sample mean is not necessarily a good guess for future observations.

Example

- The sample mean for a fair dice will be about 3.5. This is an impossible result for future observations.
- However, the average daily max temperature in Christchurch is 16.8°C. We have many days with a similar max temperature.

Cantering

$$\frac{\chi}{-25-15-5} = \frac{1}{5} = \frac{1}{5}$$

$$\frac{1}{2} = \frac{1}{2} - \frac{1}{2}$$

$$= \frac{1}{2} - \frac{1}{2}$$

$$= \frac{1}{2} - \frac{1}{2}$$

$$= \frac{1}{2} - \frac{1}{2}$$

$$= \frac{1}{2} - \frac{1}{2}$$

· Last Lecture

· random variables

· Sample x, , 262, ... 21n

· data vector ze = (c, ... >(n)

• Semple meen $\overline{x} = \frac{1}{2} \sum_{i=1}^{n} x_i$ • Central data vector $\frac{1}{2} = \frac{1}{2} \sum_{i=1}^{n} x_i$

CEIR ZEIR"

2+C=Z\$CT

me mont to keep truck of th fact that the is a vector

Centering

Mean and centering

It is sometimes more convenient to work with a sample that has mean 0.

Definition

We call

$$\widetilde{\mathbf{x}} = \mathbf{x} - \overline{\mathbf{x}} \mathbf{1} = (x_1 - \overline{\mathbf{x}}, x_2 - \overline{\mathbf{x}}, \dots, x_n - \overline{\mathbf{x}})^{\top}$$

the centred data vector.

Example

Temperature
$$\mathbf{x} = (0, 10, 20, 30, 40, 50)^{\top}$$

$$\overline{\mathbf{x}} = \frac{1}{6}(0 + 10 + 20 + 30 + 40 + 50)$$

$$= \frac{150}{6} = 25$$

$$\widetilde{\mathbf{x}} = \mathbf{x} - \overline{\mathbf{x}} = (-25, -15, -5, 5, 15, 25)^{\top}$$

$$\frac{2}{2} \cdot \frac{1}{1} = \left(\frac{2(-2\sqrt{1}) \cdot 1}{2(-2\sqrt{1}) \cdot 1}\right)$$

$$= \sum_{i=1}^{n} 2_i \cdot 2_i$$

· Vector diagram

. Sc contains all other information.

Centering

A centred vector has two important properties.

Properties

Centred vectors have 0 mean

$$\overline{\widetilde{\mathbf{x}}} = 0.$$

 $oldsymbol{0}$ Centred vectors are orthogonal to $oldsymbol{1}$

$$\widetilde{\mathbf{x}} \cdot \mathbf{1} = 0.$$

Orthogonal decomposition

Centering and mean decompose \mathbb{R}^n into two orthogonal subspaces

$$V = \left\{ \mathbf{x} : \sum_{i=1}^{n} x_i = 0 \right\}$$
 and $V^{\perp} = span\{\mathbf{1}\}$

with dim(V) = n - 1 and $dim(V^{\perp}) = 1$.

Hence, every $\mathbf{x} \in \mathbb{R}^n$ can be written as

$$\mathbf{x} = \underbrace{\mathbf{x} - \overline{\mathbf{x}} \mathbf{1}}_{= \widetilde{\mathbf{x}} \in V} + \underbrace{\overline{\mathbf{x}} \mathbf{1}}_{\in V^{\perp}}.$$

Degrees of freedom

- All centred vectors of length n form a n-1 dimensional space.
- A centred vector of length n contains the same amount of information as a non-centred vector of length n-1.
- We say $\widetilde{\mathbf{x}}$ has n-1 degrees of freedom

· Sprad

Small spread

Large spread

1.3 Spread

The mean gives a rough idea where the data are. Now we want to describe how much the data vary between measurements, i.e. how they spread around the sample mean.

Sample variance

We measure the spread of \mathbf{x} around the sample mean $\overline{\mathbf{x}}$ by the squared Euclidean norm of $\mathbf{x} - \overline{\mathbf{x}} = \widetilde{\mathbf{x}}$ normalised by its *degrees of freedom*.

Remember
$$\widetilde{\mathbf{x}} \in V$$
 and $dim(V) = n - 1$.

Definition

The sample variance of \mathbf{x} is

$$var(\mathbf{x}) = \frac{1}{n-1} \|\widetilde{\mathbf{x}}\|^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{\mathbf{x}})^2.$$

Sample variance

Notation

- We will often just say variance instead of sample variance.
- A similar concept exists for random variables. It called the population variance.

Example

Temperature
$$\mathbf{x} = (0, 10, 20, 30, 40, 50)^{\top}$$

$$\widetilde{\mathbf{x}} = (-25, -15, -5, 5, 15, 25)^{\top}$$

$$\|\widetilde{\mathbf{x}}\|^2 = 25^2 + 15^2 + 5^2 + 5^2 + 15^2 + 25^2 = 1750$$

$$var(\mathbf{x}) = \frac{1}{6-1} \|\widetilde{\mathbf{x}}\|^2 = \frac{1750}{5} = 350.$$

· Check

Var(C21) = 1 1 1 C21/2

2C+C1=2C+C1-(2+C1)]

= x + C 1 - (x - C)1

= x->z] = 2

var(2c+CI) = Var(I)

 $= \perp c^2 ||x||^2$

= C2 Nor(32)

Sample variance

Properties

Let $c \in \mathbb{R}$.

- $var(\mathbf{x} + c\mathbf{1}) = var(\mathbf{x})$ translation invariance
- $var(c\mathbf{x}) = c^2 var(\mathbf{x})$
- The smaller the variance the closer are $x_1, x_2, ..., x_n$ to the sample mean $\overline{\mathbf{x}}$.

Example

Assume x are some distances measured in metre and y are the same distances measured in centimetre.

•
$$\overline{y} = 100\overline{x}$$
 # fixed by Stendard deviation

•
$$var(y) = 10000 var(x)$$

$$5d(x) = \sqrt{\frac{||Cx||^2}{||C||^2}}$$

= $\sqrt{\frac{1}{n-1}} ||Cx||^2$

= VC2 vor(32)

Var (20)= 02 0 = Sigma

sd(2) = 0x

Standard deviation

The quadratic change of the variance when changing the units of measurements is counterintuitive and does sometimes cause problems.

jnst 59 *** foot #**

Definition The standard deviation of x is

$$sd(\mathbf{x}) = \frac{1}{\sqrt{n-1}} \|\widetilde{\mathbf{x}}\| = \sqrt{var(\mathbf{x})}.$$

Properties Let $c \in \mathbb{R}$.

- sd(x + c1) = sd(x) translation invariance
- $sd(c\mathbf{x}) = |c|sd(\mathbf{x})$

The standard deviation is in the same units of measurement as the data **x**. Changing from metre to centimetre results in multiplication by 100.

Sample variance and standard deviation

Notation

Some textbooks use the following notation

- $s_{\mathbf{x}}^2 = var(\mathbf{x})$
- $s_x = sd(x)$.

Remark

Other measures for the spread such as

$$\frac{1}{n-1}\sum_{i=1}^{n}|x_i-\overline{\mathbf{x}}|=\frac{1}{n-1}\|\mathbf{x}-\overline{\mathbf{x}}\|_1=\frac{1}{n-1}\|\widetilde{\mathbf{x}}\|_1$$

are possible. But they would lead to complicated formulas next week! In most fields of statistics *var* and *sd* are used for convenience. However, in image processing and big data other measures of the spread are sometimes useful.

· Scatter plot

· linear relationship

· non-linear relationships

· for centred vectors

For centred vectors
$$\gamma = y - \overline{y} = (bx + a \bot) - (bx + a \bot) \bot$$

$$= bx + ax - bx$$

$$= bx - bx$$

$$= bx$$

· vector diagram

1.4 Covariance and correlation

We want to quantify how two data vectors \mathbf{x} and \mathbf{y} of the same length n behave together. Can \mathbf{x} predict \mathbf{y} in a linear way?

$$\mathbf{y} = b\mathbf{x} + a\mathbf{1}, \quad a, b \in \mathbb{R}$$

It is easier to work with the centred vectors. If the linear equation holds, then

$$\widetilde{\mathbf{y}}=b\widetilde{\mathbf{x}}.$$

The a1 cancels out.

Such a perfect linear relation is often too much to ask for. But

$$\widetilde{\mathbf{y}} = b\widetilde{\mathbf{x}} + \mathbf{y}'$$
 with $\mathbf{y}' \in span\{\widetilde{\mathbf{x}}\}^{\perp}$

holds.

Idea The b quantifies the linear dependency while \mathbf{y}' is a component of $\widetilde{\mathbf{y}}$ which is linear independent of $\widetilde{\mathbf{x}}$.

check
$$cov(26, 9) = \frac{1}{n-1} \approx .9^2 = \frac{1}{n-1} \approx (6)^2 + 9')$$

= 1 % . b x + x . y'

= b 1 ||x||2 = bver(x)

= 5上 元.%

with y'. 2 =0

(orthogonal)

Sample covariance

$$cov(\mathbf{x}, \mathbf{y}) = \frac{1}{n-1}\widetilde{\mathbf{x}} \cdot \widetilde{\mathbf{y}} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{\mathbf{x}})(y_i - \overline{\mathbf{y}})$$

Notation

- We will often say covariance instead of sample covariance.
- Some textbooks use the notation $c_{\mathbf{x},\mathbf{y}} = cov(\mathbf{x},\mathbf{y})$.

Properties Let $c \in \mathbb{R}$

- \bullet cov(x, y) = b \times var(x)
- $oldsymbol{o}$ $cov(\mathbf{x}, \mathbf{x}) = var(\mathbf{x})$
- $cov(\mathbf{x}, \mathbf{y}) = cov(\mathbf{y}, \mathbf{x})$ symmetry
- $cov(cx, y) = c \times cov(x, y) = cov(x, cy)$
- $cov(\mathbf{x} + c\mathbf{1}, \mathbf{y}) = cov(\mathbf{x}, \mathbf{y}) = cov(\mathbf{x}, \mathbf{y} + c\mathbf{1})$ translation invariance

Cov(
$$x, x) = \frac{1}{n-1} \approx x \cdot x = \frac{1}{n-1} ||x||^{x}$$

$$= var(x)$$

$$cov(\underline{x},\underline{y}) = \underline{1}_{n-1} \approx \cdot \hat{y} = \underline{1}_{n-1} \hat{y} \cdot \hat{x} = cov(\underline{x},\underline{x})$$

620 cov(x,y)20

$$b < 0 \quad cov(x,y) = 1 \sum_{n=1}^{n} (x,-x)(y,-y)$$

Sample covariance

Interpretation

- The covariance quantifies the linear relation between **x** and **y**.
- If they do not even have an approximately linear relation,
 cov(x, y) = 0. In this case x · y = 0.
- If x and y tend to be above their respective means at the same time and below their respective means at the same time, then cov(x, y) > 0.
- If x and y tend to go into opposite directions relative to their their respective means, then cov(x, y) < 0.
- The absolute value of $cov(\mathbf{x}, \mathbf{y})$ depends on $var(\mathbf{x})$ and by symmetry also on $var(\mathbf{y})$.

Example

- Voltage and current in a wire will have positive covariance.
- Electricity consumption and temperature in Christchurch will have negative covariance.

Sample correlation

Let us remove the dependency on $var(\mathbf{x})$ and $var(\mathbf{y})$ from the covariance.

Definition The sample correlation of x and y is

$$corr(\mathbf{x}, \mathbf{y}) = \frac{cov(\mathbf{x}, \mathbf{y})}{sd(\mathbf{x})sd(\mathbf{y})} = \frac{\widetilde{\mathbf{x}} \cdot \widetilde{\mathbf{y}}}{\|\widetilde{\mathbf{x}}\| \|\widetilde{\mathbf{y}}\|}.$$

Notation

- We will often just say correlation instead of sample correlation.
- This concept is also called Pearson correlation.
- Some textbooks use the notation $r_{x,y} = corr(x, y)$.

· corr is symmetric because cov is symmetric.

• corr(
$$2C+C\perp$$
, $2+C\perp=2$

perfect linear relation

J. K.

Sample correlation

Properties Let $c \in \mathbb{R}$.

- $corr(\mathbf{x}, \mathbf{y})$ and $cov(\mathbf{x}, \mathbf{y})$ have the same sign. $corr(\mathbf{x}, \mathbf{y}) = 0$ if and only if $cov(\mathbf{x}, \mathbf{y}) = 0$.
- $corr(\mathbf{x}, \mathbf{y}) = corr(\mathbf{y}, \mathbf{x})$ symmetry
- $corr(\mathbf{x} + c\mathbf{1}, \mathbf{y}) = corr(\mathbf{x}, \mathbf{y}) = corr(\mathbf{x}, \mathbf{y} + c\mathbf{1})$ translation invariance
- corr(cx, y) = sign(c)corr(x, y) = corr(x, cy)
 scale invariance
- $corr(\mathbf{x}, \mathbf{y}) = cos(\angle \widetilde{\mathbf{x}}, \widetilde{\mathbf{y}})$
- $-1 \le corr(x, y) \le 1$.

Here $\angle \widetilde{\mathbf{x}}, \widetilde{\mathbf{y}}$ is the angle between $\widetilde{\mathbf{x}}$ and $\widetilde{\mathbf{y}}$ and

$$sign(c) = egin{cases} -1 & ext{if } c < 0 \\ 0 & ext{if } c = 0 \\ 1 & ext{if } c > 0. \end{cases}$$

Sample correlation

Note

- $corr(\mathbf{x}, \mathbf{y}) = 1$ if $\widetilde{\mathbf{y}} = b\widetilde{\mathbf{x}}$ with b > 0, i.e. $\angle \widetilde{\mathbf{x}}, \widetilde{\mathbf{y}} = 0$
- $corr(\mathbf{x}, \mathbf{y}) = -1$ if $\widetilde{\mathbf{y}} = b\widetilde{\mathbf{x}}$ with b < 0, i.e. $\angle \widetilde{\mathbf{x}}, \widetilde{\mathbf{y}} = \pi$ (180°).

Interpretation

The correlation measures how perfect the linear relation $\widetilde{\mathbf{y}} = b\widetilde{\mathbf{x}} + \mathbf{y}'$ is.

Be careful when interpreting **cov** and **corr!** Only approximately linear relations are detected.

Covariance and correlation

Example

Temperature and pressure in a boiler.

$$\widetilde{\mathbf{x}} = (-25, -15, -5, 5, 15, 25)^{\top}$$

$$\widetilde{\mathbf{y}} = (-10, -6, -1, 0, 6, 11)^{\top}$$

$$cov(\mathbf{x}, \mathbf{y}) = \frac{1}{6-1} \Big((-25)(-10) + (-15)(-6) + (-5)(-1) + (5)(0) + (15)(6) + (25)(11) \Big)$$

$$= \frac{710}{5} = 142$$

$$(-25)(-10) + (-15)(-6) + (-5)(-1) + (5)(0) + (15)(6) + (25)(11) + (25)($$

$$corr(\mathbf{x}, \mathbf{y}) = \frac{(-25)(-10) + (-15)(-6) + (-5)(-1) + (5)(0) + (15)(6) + (25)(11)}{\sqrt{25^2 + 15^2 + 5^2 + 5^2 + 15^2 + 25^2}\sqrt{10^2 + 6^2 + 1^2 + 0^2 + 6^2 + 11^2}}$$

$$= \frac{710}{\sqrt{1750}\sqrt{294}} \approx 0.9898$$

•
$$cov(x, x) = \frac{2\sqrt{3}}{2\sqrt{3}}$$

- · translation inversione
- · Symmetre
- · cov(cx,知)=ccov(公身)

• corr
$$(24) = \frac{\cancel{x} \cdot \cancel{y}}{|\cancel{x}|||\cancel{y}||} = \cos(\cancel{x}, \cancel{y})$$

• + renshation invarionce

- · Scale in variable
- Symmetric

el-monthly electricity in kWh temp-monthly mean temperature in of house in upstate NY

coveriance matrix

$$con(si'+ub)$$

$$con(x'a) = \begin{pmatrix} con(x'a) & con(x'a) \end{pmatrix}$$