1 Title

2 Networks in the Bad Old Days

- Large networks
- many devices needed individual management
- configuration version control unheard of (well, mostly)
- expensive to manage and easy to mess up

3 The Brave New World!

- Centralized management
- more responsive potentially
- easy (-ier) to manage
- potentially more responsive
- applications, controllers, repositories combine to provide better infrastructure control

4 Brave New implications

(see slides)

5 host \iff switch

- Confidentiality not critical
 - switches don't consume host services
 - hosts don't confirm delivery by a specific switch (usually)
 - no *explicit* control traffic
- Integrity vital
 - hosts expect reliable data plane information transfer
 - switches don't communicate to hosts
- Availability expected
 - Hosts do want networks up when they need them, but a data plane concern
- Non-repudiation
 - Hosts don't expect non-repudiation of traffic handling
 - Switches don't handle non-repudiation of handled traffic (though other devices might to this, forensics, auditing, etc.)
- Authentication
 - Hosts generally don't need to authenticate a switch, though with very sensitive traffic this may be important
 - Switches may authenticate hosts when doing data plane traffic prioritization or service shaping

6 switch \iff controller

- Confidentiality only important in some edge cases
 - Not generally important as the effects of any controller messages is visible
 - Defense-oriented messages (e.g. related to malicious traffic redirection) may need to be confidential; this implies all traffic kept confidential in these cases

· Integrity again vital

- Switches need to be able to trust controller messages
- Controllers will very likely issue commands to specific switches based on switch status, so messages from switches to controllers must be trustworthy

Availability paramount

- Controllers must be available to switches for SDN to work correctly;
 otherwise, switch behavior is undefined, though they will usually
 use the most recent flow table for a while
- Switch availability is much less important from a control-plane perspective

• Non-repudiation perhaps more important

- Useful for forensics, network debugging, to see which controllers issued which commands and past switch status
- Useful for trust measures

• Authentication of controllers important

- Switches should be able to authenticate a given controller to establish controller authority
- Controllers may only need to authenciate switches in high security environments, to assure that all managed switches are in fact authorized to handle traffic on a network

7 controller \iff repository

Important to note, this model can be implemented via application access to controllers as well

- · Confidentiality not always vital
 - Controllers may need to access repositories for global state information
 - Repositories may send information to controllers
 - In either case, the information can generally be derived from other sources
 - Security-related information may be important in some cases
- · Integrity important, as usual
 - Controllers need to be able to trust actionable information from repositories
 - Repositories generally have no data dependencies on controllers, though they may in cases where controllers report status to enable global network awareness
- Availability not vital
 - Controllers can make local decisions that can aggregate into a nearly optimal global state
 - Global state information becomes more important at scale as the cost of cumulative inefficiency grows
- Non-repudiation a big less important for core control plane functions
 - Again most useful for trust evaluation and forensics
- Authentication of repositories important
 - If a controller is going to use repository supplied information to make control decisions, the source of that information must be trustworthy
 - Likewise, repositories collecting information from controllers (or other sources) must be able to have confidence that the information delivered is from a source that can be trusted

8 controller \iff application

Applications are generalities of the previous repository construct, but run into issues when we have multiple applications accessing a given controller

- Confidentiality based on application
 - Confidentiality requirements are really based on the application type and the information submitted to the controller; e.g. logging apps may not be as important as security apps
- Integrity important, as usual
 - Controllers need to be able to trust actionable information, and applications need to be able to trust controllers for data collection
- Availability not vital
 - Heavily dependent on the specific application
- Non-repudiation needs again based on application
 - Most useful for trust evaluation and forensics
- Authentication of certain applications important
 - If an app can influence a controller, it must be authenticated
 - If a controller submits data to an app, it must be authenticated

9 Attribute Commonality

Confidentiality

- Usually information can be derived from network behavior
- Exceptions for cyber-security use cases; these can drive confidentiality needs into entire system

Integrity

 Actionable information leading to control-plane decisions needs to be trustworthy

Availability

- Of varying importance
- Most important in switch ← controller relationships

• Non-repudiation

- Not that important, usually relegated to trust or forensics use cases
- Cheap to add if we already have authentication and message integrity though

Authentication

- Related to integrity
- Control agents (controllers, etc.) need to be able to establish that
 a source is trustworthy as well as that the information from that
 source has not been tampered with

10 Differentiating Attributes of SDN

Compared to other more agent-centric systems, SDN control systems have some advantages:

- Limited control-plane volatility
 - MANETs and agent-based systems are much more chaotic with respect to functional distribution (many devices wear multiple communication hats) and suffer from frequent attach / detach issues
- Centralized High-Availability
 - Any high-availability requirements are constrained to specific functional areas (e.g. controllers)
- Clearly Defined Roles
 - SDN entities have clear roles; systems in MANETs or agent-based systems frequently do not
- Predicable Expected Behavior
 - Clearly defined roles should lead to more predicable behavior and correspondingly easier behavioral outlier detection

11 Comments and Questions

(see slides)