CÁLCULO NUMÉRICO

Número:	Curso:	Nome:	
I CLILICI O.		I . OIIIO.	

A primeira parte do teste é constituida por 5 questões de escolha múltipla.

Nas questões 1 a 5 assinale com "x" a resposta correcta.

Cada resposta correcta vale 1.0 valor. Respostas em branco valem 0 valores.

Se responder erradamente ou de forma ambígua ser-lhe-á atribuída uma cotação negativa correspondente a 0.2 valores.

Se a soma das cotações da escolha múltipla for negativa, será atribuído 0 valores à escolha múltipla.

Classificação
EM -
TOTAL-

1. Considere o intervalo [a, b], com $a = x_0 < x_1 < ... < x_n = b$ e a função f para a qual se conhece os valores $f(x_0), f(x_1), ..., f(x_n)$.

Seja p o polinómio de Lagrange de grau menor ou igual a n, tal que, $p(x_i) = f(x_i)$, i = 0, 1, ..., n e q o polinómio do segundo grau que aproxima a função segundo a técnica dos mínimos quadrados. Considere ainda o spline cúbico natural, S, interpolador de f nos pontos dados. Verifica-se sempre:

$$\Box$$
 a) $\sum_{i=0}^{n} [f(x_i) - q(x_i)]^2 = 0$

$$\Box$$
 b) $\sum_{i=0}^{n} [f(x_i) - S(x_i)]^2 = \sum_{i=0}^{n} [f(x_i) - p(x_i)]^2$

2. Sejam f uma função definida em [a,b] e $a=x_0 < x_1 < x_2 < x_3 = b$. Considere o spline cúbico natural S(x) interpolador de f(x) nos nodos x_0, x_1, x_2 e x_3 , e $p_3(x)$ o polinómio de Newton com diferenças divididas de grau ≤ 3 interpolador de f(x) nos nodos x_0, x_1, x_2 e x_3 . Verifica-se sempre:

$$\Box$$
 a) $f(x) - p_3(x) = (x - x_0)(x - x_1)(x - x_2)(x - x_3)\frac{f^{(3)}(\theta)}{3!}, \theta \in]a, b[$

$$\sqcap$$
 b) $S(x) \neq p_3(x), \forall x \in [a, b]$

$$\cap$$
 c) $S(x_i) = p_3(x_i), i = 0, ..., 3$

$$\Box$$
 d) $S(x) = p_3(x), \forall x \in [a, b]$

- 3. Seja $I = \int_0^2 f(x) dx$ e $\bar{I} = 8$ uma aproximação de I obtida pela regra de Simpson com h = 1. Sabendo que f é um polinómio de grau 4 cujo coeficiente de grau 4 é igual a 3, qual é o valor de I?
 - \square a) I=7
 - \Box **b**) $I = \frac{36}{5}$
 - \Box c) I=9
 - \Box **d**) $I = \frac{49}{5}$
- 4. Considere que f(x) é um polinómio de grau n. Qual das seguintes afirmações é verdadeira?
- \square a) Todas as diferenças divididas de ordem > n são iguais a uma constante $K \neq 0$;
- \sqcap **b)** Todas as $f[x_i, x_{i+1}, ..., x_{i+n}]$ são nulas;
- \Box **c**) Todas as $f[x_i, x_{i+1}, ..., x_{i+n}]$ são iguais a uma constante $K \neq 0$;
- \sqcap d) Nenhuma das afirmações anteriores é verdadeira.
- 5. Seja $I = \int_{-1}^{1} f(x) dx$ e $f(x) \in C^{4}[-1, 1]$ uma função que verifica $|f_{(4)}(x)| \leq 30$, $\forall x \in [-1, 1]$. Se pretendesse determinar um valor aproximado de I, com pelo menos 3 casas decimais significativas, utilizando a regra de Simpson, qual o menor número de sub-intervalos de igual amplitude em que teria de dividir o intervalo [-1, 1]?
 - $\sqcap \mathbf{a})$ 5
 - □ **b**) 10
 - □ **c**) 6
 - \sqcap d) 12

A segunda parte do teste é constituida por 3 grupos de questões. Cada resposta deverá estar convenientemente justificada.

Cotações: Questão 6: 4 valores; Questão 7: 6 valores; Questão 8: 4 valores.

6. Considere o seguinte spline natural no intervalo [0,2] interpolador da função f(x):

$$S(x) = \begin{cases} 1 + 2x - x^3, & 0 \le x < 1\\ 2 + a(x - 1) + b(x - 1)^2 + c(x - 1)^3, & 1 \le x \le 2 \end{cases}$$

- a) Encontre a, b, c e escreva a expressão do spline.
- **b)** Obtenha uma aproximação para f(1.5).
- 7. Considere a seguinte tabela de dados em que t representa o tempo e y respresenta o valor observado de uma determinada variável física que varia linearmente com o tempo :

t	0	1	2	3	4
y	0	1	2.5	2	3.5

a) Esboçe num gráfico os pontos apresentados na tabela.

Que método na sua opinião deverá ser utilizado para obter o polinómio que interpola/aproxima os dados e melhor capta o comportamento evidenciado por estes? Justifique.

- b) Determine a aproximação $m_1(t) = a_0 + a_1 t$ aos dados fornecidos utilizando a técnica dos minimos quadrados. Deverá apresentar o sistema de equações equações normais.
- c) Calcule o erro quadrático da aproximação obtida na alinea anterior.
- d) Seja $m_4(t)$ o polinómio de grau menor ou igual a 4 que aproxima os dados da tabela, obtido pela técnica dos mínimos quadrados. Sem determinar m_4 , indique qual o valor de $\sum_{i=0}^4 (y(t_i) m_4(t_i))^2$ onde $t_i = i$, i = 0, 1, 2, 3, 4. Justifique.
- 8. Considere o integral $I = \int_0^1 e^{x^2} dx$.
 - a) Determine um valor aproximado \bar{I} de I pela regra do ponto médio e pela regra dos trapézios ambas com 4 aplicações da regra. Nos cálculos utilize 5 casas décimais convenientemente arredondadas.

b) Determine um majorante do erro absoluto associado a ambas as aproximações obtidas na alinea anterior.

Quantos algarismos significativos pode garantir para aproximação dada pela regra do ponto médio e pela regra dos trapézios?

Conclua justificando qual das regras proporciona neste caso uma melhor aproximação ao valor real do integral.