

Research on Key Technologies of THz Radar Information Processing for Situation Awareness A Case of Biomedical Application

Ph.D. Candidate: Ruochen Wu

Supervisor: Antoni Broquetas Ibars

Co-supervisor: Jordi J. Mallorqui Franquet

The non-contact radar can provide respiration and heartbeat measurements.

- Vital sign detection
- Vital signal processing

The radar is calibrated using a sphere as a reflector

https://ars.upc.edu/projects/radar-for-medical-applications

Terahertz (THz)

~ GHz — THz

Band range: 0.1mm ~ 1mm

Frequency range: 0.1THz ~ 10THz

Characteristics:

- 24/7 observation
- Suitable for all weather conditions
- Short wavelength, large bandwidth
 - → **High** Doppler resolution
- NO ionizing effect on irradiated organisms

Tissue Imaging Thickness Measurement **TERAHERTZ RADIATION Explosives Screening Quality Control Envelop Scanning** Vireless Communication

Data Transmission

. . .

FMCW Radar Prototype of Radar

Workspace in the Hardware Laboratory of TSC Department

Prototype of 120GHz radar

FMCW Radar Block Diagram

Micro-Doppler (I)

- Doppler effect: Doppler frequency SHIFT occurs when there is relative motion between the radar and the target
- Micro-motion: other tiny movements of the target itself

Micro-Doppler (II)

Victor C. Chen

- Rigid body
 - Human body
 - Helicopter propeller
 - Pendulum

. . .

- Non-rigid body
 - Human limbs, vital sign…

. . .

Radar echo of body motion: **Doppler** information

Radar echo of wobbling limbs: **micro-Doppler** information

Different targets will cause different micro-motion modulations that result in the radar echo due to their own physical properties.

Vital Signal Analysis Heartbeat Signal Detection (I)

The breathing signal with some small ripple perturbations belonging to heartbeats.

Vital Signal Analysis Heartbeat Signal Detection (II)

Zoom of the heartbeat signal

Aortic pulse pressure waveform detected using a contact sensor (Stoner L, Young JM, Fryer S. Assessments of arterial stiffness and endothelial function using pulse wave analysis. Int J Vasc Med.)

Vital Signal Analysis

Real Time Vital Parameters monitoring with 120GHz Radar

Breathing/hearbeat signals:

$$s(t) = R_0 + A_b \sin(2\pi f_b t) + A_h \sum_{n=0}^{\infty} p_h (t - nT_h) + N$$

Eyelid signal:

$$s_e(t) = A_e \sum_{n=0}^{\infty} p_e(t - nT_e) + N + A_m M(t)$$

Eyelid detection:

Case 1: Clinical Assignment

Case 2: Driving Behavior

J. Hu et al., "BlinkRadar: Non-Intrusive Driver Eye-Blink Detection with UWB Radar," 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), Bologna, Italy, 2022.

Problems and Objectives

Promblems:

- Heartbeat signal: difficult to distinguish
- Eyelid signal: easy to lose signal data in complex situations

Applications:

- Clinical diagnosis (hospital...)
- Fatigue detection (driver...)
- Person/behavior recognition (fall...)
- Emotion recognition (happy...)

. . .

Collaboration:

UPC – Hospital Sant Joan de Déu Barcelona

. . .

Ph.D. dissertation:

- Radar optimization
- Signal situation awareness technology
- Micro-motion signal detection
- Vital target recognition

Time-frequency Analysis

- Essence of micro-Doppler extraction: echo signal processing
- Detection of the time-varying frequency in the target echo
- Extraction of the superimposed micro-motion signal components

Empirical Mode Decomposition (EMD)

 Decomposition of the frequency modulation mode of the micro-motion characteristic signal into different modulation modes

Artificial Neural Network (ANN/NN)

- Learn based on signal sample data
- Interaction between neurons Correlation of signal samples: included in the network structure
- Process: data normalization, denoising, numbering, training, and classification

Support Vector Machine (SVM)

- Find the optimal hyperplane for binary classification
- High signal classification/recognition rates with fewer data samples

References

- Christina Chaccour, Mehdi Naderi Soorki, Walid Saad, Mehdi Bennis, Petar Popovski, and Mérouane Debbah. Seven defining features of terahertz (thz) wireless systems: A fellowship of communication and sensing. *IEEE* Communications Surveys & Tutorials, 24(2):967–993, 2022.
- A. Prat, S. Blanch, A. Aguasca, J. Romeu and A. Broquetas, "Collimated Beam FMCW Radar for Vital Sign Patient Monitoring," in IEEE Transactions on Antennas and Propagation, vol. 67, no. 8, pp. 5073-5080, Aug. 2019.
- Hongying Zhang. Research on high-accuracy measurement of human life signal based on terahertz radar. National University of Defense Technology, 2019.
- Gennarelli G, Ludeno G, Soldovieri F. Real-Time Through-Wall Situation Awareness Using a Microwave Doppler Radar Sensor. *Remote Sensing*, 8(8):621, 2016.
- Yali Yuan. The Application of Neural Network Algorithm in the Signal Situational Awareness. Beijing University of Posts and Telecommunications, 2016.
- Y-X Liu, Xiang Li, and Z-W Zhuang. Estimation of micro-motion parameters based on micro-doppler. *IET signal processing*, 4(3):213–217, 2010.
- Victor C Chen, Fayin Li, S-S Ho, and Harry Wechsler. Micro-doppler effect in radar: phenomenon, model, and simulation study. *IEEE Transactions on Aerospace and electronic systems*, 42(1):2–21, 2006.

. . .

MANY THANKS FOR YOUR ATTENTION!

Universitat Politècnica de Catalunya

2023 · BARCELONA