

CyC - Practica 4

Facundo Tomatis

(Ejercicio 1)

Consigna:

Construir una máquina de Turing que escriba en la primera cinta las palabras de $\{0,1\}^*$ en orden canónico separadas por un símbolo ";". Obviamente esta máquina nunca se detiene.

Respuesta:

S	imuladorMT
q0,B,B q1,;,D,1,S	
q1,B,1 q2,B,S,0,I	
q1,B,0 q3,B,S,1,I	
q2,B,1 q2,B,S,0,I	
q2,B,0 q3,B,S,1,I	
q2,B,B q4,B,S,1,D	

(Ejercicio 2)

Consigna:

Sean $\Sigma = \{a, b\}$ y \mathcal{L} el conjunto de todos los lenguajes definidos sobre Σ . Diga si las siguientes afirmaciones son verdaderas o falsas:

$$1.\mathcal{L}-R=\varnothing$$

2.
$$\Sigma^* \in \mathbf{R}$$

3. ab
$$\in \Sigma^*$$

4. RE - R
$$\neq \emptyset$$

5.
$$\emptyset \in RE$$

6.
$$CO-R \subset CO-RE$$

7.
$$\{\lambda\} \in (\mathcal{L}\text{-CO-RE})$$

8.
$$CO-RE = RE$$

9.
$$a \in R$$

10. RE
$$\cup$$
 R = \mathcal{L}

$$11.(\mathcal{L}-RE) = CO-RE$$

$$12.\{a\} \in RE$$

Respuesta:

- 1. \mathscr{L} -R= \varnothing 🗶 Contraejemplo: L_D no esta en R y esta en \mathscr{L}
- 2. $\Sigma^* \in \mathbb{R}$ Existe una MT tal que acepta el lenguaje Σ^* $(q_0w \vdash q_A)$
- 4. RE R $\neq \emptyset$ \square Por absurdo: $RE R = \emptyset$ y $L_U \in RE R$ es absurdo, $\therefore RE R \neq \emptyset$

- 5. $\emptyset \in \text{RE }$ Existe una MT que acepta el lenguaje \emptyset tal que $(q_0w \vdash q_R)$ $\therefore \emptyset \in R$ y por definicion $\emptyset \in RE$
- 6. CO-R \subset CO-RE \overline{L} $L \in$ CO-R $\Leftrightarrow \overline{L} \in R \Leftrightarrow \overline{L} \in RE \Leftrightarrow L \in$ CO-RE
- 7. $\{\lambda\} \in (\mathcal{L}\text{-CO-RE})$ \blacksquare Existe una MT tal que acepte el lenguaje $\{\lambda\}$ y sea recursivo $(q_0w \vdash q_A, w = \lambda)$ c.c $(q_0w \vdash q_R)$ \therefore $\{\lambda\} \notin (\mathcal{L}\text{-CO-RE})$
- 8. CO-RE = RE \boxtimes Por absurdo: CO-RE RE= \varnothing y existe $L_D \in$ (CO-RE RE) \therefore CO-RE RE $\neq \varnothing$
- 9. $a \in R \ \blacksquare \ R = \{\emptyset, \{a\}, \{b\}, \{a,b\}, ...\} : a \notin R$
- 10. RE \cup R = \mathscr{L} \nearrow $RE \cup R = RE$ y existe $L_D \notin RE, L_D \in \mathscr{L} : RE \cup R \neq \mathscr{L}$
- 12. $(\mathscr{L}-\text{RE})=\text{CO-RE} \not\boxtimes (\mathscr{L}-\text{RE})=\text{CO-RE} \Leftrightarrow \mathscr{L}-\text{RE}-\text{CO-RE}=\varnothing$ y existe un lenguaje $L=\{1w/w\in L_D\}\cup\{0w/w\notin L_D\}$ tal que $L\notin(\text{RE}\cup\text{CO-RE})$: $(\mathscr{L}-\text{RE})\neq\text{CO-RE}$

(Ejercicio 3)

Consigna:

Si L∈(RE - R)

- a) ¿Existirá alguna máquina de Turing que rechace parando en q_R si su entrada está en L y rechace loopeando si su entrada no está en L?
- b) ¿Existirá alguna máquina de Turing que rechace loopeando si su entrada está en L y rechace parando en q_R si su entrada no está en L?
- c) De existir, que lenguaje reconocería esta máquina de Turing.

Respuesta:

a) .

- b) No, ya que no puedo saber si va a parar o seguir loopeando si la entrada no esta en L
- c) La primer maquina aceptaria el lenguaje \varnothing ya que rechaza cualquier sea la entrada.

(Ejercicio 4)

Consigna:

Sea L = $\{w | \text{ Existe alguna Máquina de Turing M que acepta w} \}$ $\xi L \in \mathbb{R}$? Justifique.

Respuesta:

Si lo acepta significa que el lenguaje es RE, no se detalla que va a parar por lo tanto no estoy seguro de que sea recursivo.

(Ejercicio 5)

Consigna:

Conteste y justifique:

- a) \mathcal{L} es un conjunto infinito contable?
- b) ¿RE es un conjunto infinito contable?
- c) \mathcal{L} RE es un conjunto infinito contable?
- d) Existe algún lenguaje $L \in \mathcal{L}$, tal que L sea infinito no contable

Respuesta:

- a) No, ya que \mathscr{L} es lo mismo que decir $\rho(\Sigma^*)$, se demostro anteriormente el teorema que demuestra la siguiente afirmación para cualquier conjunto: $|A| < |\rho(A)|$, donde $\rho(A)$ es no contable.
- b) Si, ya que se puede mapear la codificación de una maquina de turing a un numero natural.
- c) No ya que \mathscr{L} es infinito incontable y la resta de un conjunto infinito incontable con un infinito contable es infinito incontable.
- d) No, si es un lenguaje con un alfabeto Σ siempre va a ser contable.

(Ejercicio 6)

Consigna:

Sea L un lenguaje definido sobre Σ . Demostrar que:

- a) $\overline{L} \notin R \Rightarrow L \notin R$
- **b)** $(L_1 \in RE) \text{ AND } (L_2 \in RE) \Rightarrow L_1 \cap L_2 \in RE$
- c) $(L_1 \in RE) \text{ AND } (L_2 \in RE) \Rightarrow L_1 \cup L_2 \in RE$

d) La unión de un número finito de lenguajes recursivamente enumerables es un lenguaje recursivamente enumerable.

Respuesta:

- a) $\overline{L} \notin R \Leftrightarrow L \notin \text{CO-R} \Leftrightarrow L \notin R$ ya que CO-R=R
- b) .

c) .

d) .

(Ejercicio 7)

Consigna:

Para los casos a), b) y c) del punto anterior ¿valen las recíprocas? Justifique.

Respuesta:

- a) $L \notin R \Leftrightarrow L \notin \text{CO-R} \Leftrightarrow \overline{L} \notin R$ ya que CO-R=R
- b) No, ya que por ejemplo $L_D\cap \overline{L_D}=\varnothing$ y $\varnothing\in$ RE. $L_D\in$ CO-RE, $\overline{L_D}\in$ RE
- c) No, ya que por ejemplo $L_D \cup \overline{L_D} = \Sigma^* \text{ y } \Sigma^* \in \text{RE}.$

(Ejercicio 8)

Consigna:

Si L es un subconjunto de un lenguaje recursivamente enumerable, ¿Puede afirmarse entonces que L es recursivamente enumerable? Justifique.

Respuesta:

Si L es un subconjunto de un lenguaje recursivamente enumerable va a ser recursivamente enumerable solamente que va a ser aceptado menos veces. Esto puede ser que este mal, que pasa si L es subconjunto de Σ^* y que el mismo no pertenezca a RE

(Ejercicio 9)

Consigna:

Dado L_1 , un lenguaje recursivo cualquiera

$$L_2 = \{ < M > | L(M) = L_1 \}$$

$$L_3 = \{ \langle M \rangle | L(M) = L_1 \text{ y } M \text{ siempre se detiene} \}$$

Determine si $(L_2 - L_3) = \emptyset$. Justifique su respuesta.

Respuesta:

Contraejemplo: Existe una maquina <M> que cuando recibe cualquier w lo rechaza loopeando en el estado inicial $[(q_0, x) \to (q_0, x, S)]$ tal que $x \in \Gamma$, el lenguaje de esta maquina es \varnothing que pertenece al conjunto de lenguajes R y la codificación de esta maquina perteneceria al conjunto L_2 ya que lo acepta pero no pertenece al conjunto L_3 ya que nunca se detiene $L_2 = L_3 \neq \varnothing$

(Ejercicio 10)

Consigna:

Sean los lenguajes $L = \{ < M > | M \text{ siempre se detiene} \}$ y $L_R = \{ < M > | L(M) \in R \}$. Cuál es la afirmación correcta:

- a) $L \subset L_R$
- b) $L\supset L_R$
- c) $L = L_R$

Respuesta:

Al igual que el ejercicio 9 existe una maquina que puede rechazar loopeando si acepta un lenguaje recursivo por lo que la opción correcta es $L \subset L_R$

(Ejercicio 11)

Consigna:

Encuentre una justificación para cada una de las siguientes afirmaciones

- a) $\varnothing \in RE$
- b) Si L es un lenguaje formado por una sola palabra, entonces $L \in R$
- c) Si L es un lenguaje finito, entonces $L \in R$

Respuesta:

- a) \varnothing es un lenguaje, $\varnothing \in R$ y por definición $\varnothing \in RE$
- **b)** Ejemplo, existe una MT tal que $(q_0w \vdash q_A, \text{ si } w \text{ pertenece al lenguaje, c.c } q_R)$
- c) Es el mismo ejemplo, si w pertenece al lenguaje aceptarlo, si no rechazarlo

(Ejercicio 12)

Consigna:

Demuestre que si el Halting Problem (HP) es un lenguaje recursivo entonces podría construirse una máquina de Turing que acepte el lenguaje universal L_u , y que se detenga para todo $w \in \Sigma^*$ ¿Qué puede decir entonces sobre la recursividad de HP?

$$L_u = \{(\langle M \rangle, w) / M \text{ acepta } w\}$$

$$HP = \{(\langle M \rangle, w) / M \text{ se detiene con input } w\}$$

Respuesta:

Se puede hacer la reduccion $L_u \alpha HP$ y como $L_u \notin R$ poor lo tanto $HP \notin R$

Demostracion:

MT llamada M_f que computa la funcion de reducibilidad f

$$M_f((, w)) = (, w)$$

Si el par no es valido o la maquina <M> no es valida se borra la cinta, c.c se buscan los estados q_R y se reemplazan por un estado q, se agregan las transiciones para que loopee si para en q

Probar:

- 1) f es computable? Rta: Si, ya que M_f siempre se detiene al ser una entrada finita, luego de recorrerla se agregar/modifica un numero finito de tuplas y se detiene
- 2) $(<M>,w) \in L_u \Leftrightarrow (<M'>,w) \in HP$
 - a) $(<M>,w) \in L_u \Rightarrow (<M'>,w) \in HP$
 - **b)** $(<M>,w) \notin L_u \Rightarrow (<M'>,w) \notin HP$
- **2a)** $(<M>,w) \in L_u \Rightarrow (<M'>,w) \in HP$
 - \Rightarrow M acepta w
 - \Rightarrow M para en q_A
 - \Rightarrow M' para en q_A
 - \Rightarrow M' se detiene con input w
 - $\Rightarrow (<M'>,w) \in HP$
- **2b)** $(<M>,w) \notin L_u \Rightarrow (<M'>,w) \notin HP$
 - i. Si el par no es valido o <M> no es un codigo valido (<M'>,w) = $\lambda \Rightarrow (<$ M'>,w) $\notin HP$
 - ii. \Rightarrow M no acepta w
 - \Rightarrow M loopea o para en q_R
 - \Rightarrow M' loopea en q
 - \Rightarrow M' no se detiene con input w
 - $\Rightarrow (<M'>,w) \notin HP$

(Ejercicio 13)

Consigna:

Demuestre que $L_{NV} \in RE$

$$L_{NV} = \{(\langle \mathbf{M} \rangle) / \mathbf{L}(\mathbf{M}) \neq \emptyset\}$$

Respuesta:

Se puede demostrar creando una maquina M que simule con el codigo de maquina cada palabra del lenguaje en orden canónico, en un principio se simula una sola maquina j pasos con el primer w del lenguaje, una vez se terminan los j pasos se mueve el cabezal y se simula con la maquina 2 con la segunda w haciendo j pasos en las dos maquinas, y asi sucesivamente hasta encontrar qA (entonces no es el lenguaje vacio), si el lenguaje es \varnothing esta maquina va a rechazar cada w de forma infinita parando en qR. <M> tambien puede loopear con el w dado como input, por lo que queda demostrado que $L_{NV} \in RE$ y no acepta el lenguaje \varnothing .

Maquina de j pasos con MTs simulando cada palabra del lenguaje ordenado de forma canonica