If $(T(t))_{t \ge 0}$ is eventually norm-continuous then $\lim_{t \to \infty} T(t) f$ exists for every $f \in L^1(\mu)$.

<u>Proof.</u> Since the semigroup is positive and eventually norm-continuous its boundary spectrum is cyclic and bounded, i.e. we have $P\sigma(A) \cap i\mathbb{R} = \{0\}$. Moreover there exist $t_O > 0$ and $\tau > 0$ such that $\|T(t_O) - T(t_O + \tau)\| < 1$.

For bounded linear operators $S \in L(L^1)$ one has $\|S\| = \||S\|\|$ (see IV,Thm.1.5 of Schaefer (1974)) hence $\|T(t) - T(t+\tau)\|f\| < \|f\|$ for every $f \in L^1(\mu)$, $f \neq 0$. This shows that condition (2) of Thm.2.6(a) can be true only when $e_2 = 0$, i.e., $X_2 = \emptyset$.

Corollary 2.10. Let $(T(t))_{t\geq 0}$ be an irreducible semigroup on $L^p(\mu)$ satisfying the assumptions of Thm.2.6.

If $P\sigma(A) \cap i\mathbb{R} = \{0\}$ and if there exist $0 \le r < s$, such that $\inf\{T(r), T(s)\} > 0$ then there exists a strictly positive function $h \in L^q(\mu)$ $(p^{-1}+q^{-1}=1)$ such that $\lim_{t \to \infty} T(t)f = \langle f,h \rangle e$ for every $f \in L^p(\mu)$.

Proof. Since $\inf\{T(r),T(s)\}>0$ we have $(\inf\{T(r),T(s)\})e>0$ for the strictly positive fixed vector e. Since the regular operators on $L^p(\mu)$ form a vector lattice it follows by [Schaefer (1974), II.1.4, Formula (5) & (5')] that $|T(r)-T(s)|e=T(r)e+T(s)e-2(\inf\{T(r),T(s)\})e<2e$. Consequently the first alternative of Thm.2.6(b) holds true with $\tau:=s-r$. Equivalently, we have $X_2=\emptyset$ and by Cor.2.7 Pf:= $\lim_{t\to\infty} T(t)$ f exists for every $f\in L^p(\mu)$. The limit P is a positive projection, satisfying PT(t) = T(t)P = P for all $t\ge 0$. It follows that im P \subseteq ker A and im P' \subseteq ker A'. Since P $\ne 0$ (Pe = e) we conclude that ker A' contains positive elements. Now C-III, Prop.3.5(a)-(c) implies that P has the form P = h0e for a strictly positive function $h\in L^q(\mu)=(L^p(\mu))'$.

In a last corollary we consider the case where one operator $T(t_0)$ is a kernel operator, i.e., $T(t_0)$ is induced by a $\mu \theta \mu$ -measurable kernel on X×X. The corollary is of particular interest for semigroups on spaces ℓ^p , $1 \le p < \infty$, where every positive operator is a kernel operator. For a precise definition and fundamental properties of kernel operators we refer to Sec.IV.9 of Schaefer (1974) or Chap.13 of Zaanen (1983). In particular we recall that the restriction of a kernel operator to a sublattice is again a kernel operator and that