Introduction to Quantum Information Science Homework 2

Due Wednesday, September 15 at 11:59 PM

1. More fun with matrices

a) [1 Point] Give an example of a 2×2 unitary matrix where the diagonal entries are 0 but all of the off-diagonal entries are nonzero.

Solution:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

b) [2 Points] Give an example of a 4×4 unitary matrix satisfying the same condition.

Solution:

$$\frac{1}{\sqrt{3}} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & -1 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & -1 & 0 \end{bmatrix}$$

c) [2 Points] Is it possible to have a 3×3 unitary matrix with this condition? If so, give an example. If not, prove it!

Solution: No. Suppose there was such a matrix

$$U = \begin{bmatrix} 0 & a & b \\ c & 0 & d \\ e & f & 0 \end{bmatrix}.$$

Because U is unitary, the columns are orthogonal to each other. Then, considering the first two columns, $0a + 0b^* + ef^* = ef^* = 0$. But this would imply that either e = 0 or f = 0: a contradiction.

2. Single Qubit Quantum Circuits For the following circuits, calculate the output state before the measurement. Then calculate the measurement probabilities in the specified basis. Here we use:

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad R_{\pi/4} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \quad P = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, \quad T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$$

1

a) [2.5 Points] Measure in the $\{|0\rangle, |1\rangle\}$ -basis:

$$|0\rangle$$
 H Z H P

Solution:

$$|0\rangle \to_H |+\rangle \to_Z |-\rangle \to_H |1\rangle \to_S i\, |1\rangle \to \text{Always measure} \,\, |1\rangle$$

b) [2.5 Points] Measure in the $\{|+\rangle\,, |-\rangle\}$ -basis:

$$|0\rangle$$
 $R_{\pi/4}$ Z Y H

Solution:

$$|0\rangle \to_{R_{\pi/4}} |+\rangle \to_Z |-\rangle \to_Y i |+\rangle \to_H i |0\rangle = i \frac{|+\rangle + |-\rangle}{\sqrt{2}} \to |+\rangle \text{ or } |-\rangle \text{ equally likely}$$

c) [2.5 Points] Measure in the $\{\ket{+},\ket{-}\}$ basis:

$$|+\rangle$$
 T H

Solution:

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \rightarrow_T \frac{|0\rangle + e^{i\pi/4} |1\rangle}{\sqrt{2}} \rightarrow_H \frac{|+\rangle + e^{i\pi/4} |-\rangle}{\sqrt{2}} \rightarrow |+\rangle \text{ or } |-\rangle \text{ equally likely}$$

d) [2.5 Points] Measure in the $\{|i\rangle, |-i\rangle\}$ -basis:

$$|+\rangle$$
 T Z T

Solution:

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \rightarrow_T \frac{|0\rangle + e^{i\pi/4} |1\rangle}{\sqrt{2}} \rightarrow_Z \frac{|0\rangle - e^{i\pi/4} |1\rangle}{\sqrt{2}} \rightarrow_T \frac{|0\rangle - i |1\rangle}{\sqrt{2}} = |-i\rangle \rightarrow \text{Always measure } |-i\rangle$$

- 3. Miscellaneous
- a) [1 Point] Normalize the state $|0\rangle + |+\rangle$.

Solution:

$$(\langle 0| + \langle +|) (|0\rangle + |+\rangle) = \langle 0|0\rangle + \langle +|0\rangle + \langle 0|+\rangle + \langle +|+\rangle = 2 + \frac{2}{\sqrt{2}} = 2 + \sqrt{2}$$

$$\implies |\psi\rangle = \frac{|0\rangle + |+\rangle}{\sqrt{2 + \sqrt{2}}} = \frac{|0\rangle + |+\rangle}{2\cos(\pi/8)}$$

b) [1 **Point**] We say a quantum state vector $|\psi\rangle$ is an eigenvector or eigenstate of a matrix Λ if the following equation holds for some number λ :

$$\Lambda \left| \psi \right\rangle = \lambda \left| \psi \right\rangle$$

 λ is called the eigenvalue of $|\psi\rangle$. Show that the normalized form of the state from part a) is an eigenstate of the H gate. What is the eigenvalue?

Solution:

$$H\frac{|0\rangle + |+\rangle}{2\cos(\pi/8)} = \frac{|+\rangle + |0\rangle}{2\cos(\pi/8)} = \frac{|0\rangle + |+\rangle}{2\cos(\pi/8)} \rightarrow \text{eigenvalue} = 1$$

c) [6 Points] What single-qubit states are reachable from $|0\rangle$ using only H and P, i.e. via any sequence of H and P gates? Are there finitely or infinitely many? Characterize all of the reachable states, up to global phase.

Hint: Start by just playing with applying different sequences of matrices to the $|0\rangle$ state and look for a pattern.

Solution: As the following figure demonstrates, the states that can be generated are:

$$|0\rangle, |1\rangle, |+\rangle, |-\rangle, |i\rangle, |-i\rangle,$$

evidently a finite number.

$$|0\rangle$$

$$H/ \ P$$

$$|+\rangle \ |0\rangle$$

$$H/ \ P$$

$$|0\rangle \ |i\rangle$$

$$H/ \ P$$

$$|-i\rangle \ |-\rangle$$

$$H/ \ P \ H/ \ P$$

$$|i\rangle \ |+\rangle \ |1\rangle \ |-i\rangle$$

$$H/ \ P$$

$$|-\rangle \ |1\rangle$$

The computation of $H|i\rangle = |-i\rangle$ is a little tricky. We have

$$H|i\rangle = \frac{\sqrt{+} + i\sqrt{-}}{\sqrt{2}} = \frac{(1+i)|0\rangle + (1-i)|1\rangle}{2} \cdot \frac{(1+i)}{(1-i)} = \frac{|0\rangle + -i|1\rangle}{\sqrt{2}} = |-i\rangle.$$

For the reverse, that $H |-i\rangle = |i\rangle$, note that H is Hermitian (i.e. $H = H^{\dagger}$), which combined with the fact it's unitary means that H is self-inverse. So since $|i\rangle \mapsto_H |-i\rangle$, then $|-i\rangle \mapsto_H |i\rangle$.

- **4. Distinguishability of states** Say you are given a state $|\psi\rangle$ that is either $|0\rangle$ or $|1\rangle$ but you don't know which. You can distinguish the two via a measurement in the $\{|0\rangle, |1\rangle\}$ -basis.
- a) [6 Points] But what if $|\psi\rangle$ is either $|0\rangle$ or $|+\rangle$ (with equal probability)? Give the protocol that distinguishes the two states with with a failure probability of $\sin^2(\frac{\pi}{8}) \approx .146$. Show explicitly that your

protocol achieves this failure probability.

Note that when we ask for a protocol, we mean some step-by-step algorithm that ends by outputting "I think this was $|0\rangle$ " or "I think this was $|+\rangle$ ".

Solution: (First solution) From the method given in the textbook, begin by computing the perpendicular bisector $|v\rangle$ of the target vectors. On a unit circle with $|0\rangle$ on the horizontal axis and $|1\rangle$ on the vertical, the two vectors fall at $\theta_1 = 0, \theta_2 = \frac{\pi}{4}$, so the bisector is at $\frac{\pi}{8}$. Next, we choose our measurement basis by rotating from the bisector by 45° c.c.w. and clockwise. This gives

$$|b_1\rangle = \cos(\frac{3\pi}{8})|0\rangle + \sin(\frac{3\pi}{8})|1\rangle$$
$$|b_2\rangle = \cos(\frac{-\pi}{8})|0\rangle + \sin(\frac{-\pi}{8})|1\rangle = \cos(\frac{\pi}{8})|0\rangle - \sin(\frac{\pi}{8})|1\rangle.$$

Our protocol is that if we measure and observe $|b_1\rangle$, then guess we had $|+\rangle$. If we observe $|b_2\rangle$, then guess we had $|0\rangle$. If the state was $|0\rangle$, the probability of observing $|b_1\rangle$ and making the wrong guess is $|\langle 0|b_1\rangle|^2 = \cos^2(\frac{3\pi}{8}) = \sin^2(\frac{\pi}{8})$. In the other case, the probability of failure is $1 - |\langle 0|b_2\rangle|^2 = 1 - \cos^2(\frac{\pi}{8}) = \sin^2(\frac{\pi}{8})$.

(Second solution) The best basis has $|0\rangle$ and $|+\rangle$ sandwiched in the middle, so one basis state must be $\propto |1\rangle + |+\rangle$. Normalize:

$$\left(\langle 1|+\langle +|\right)\left(|1\rangle+|+\rangle\right)=\langle 1|1\rangle+\langle +|1\rangle+\langle 1|+\rangle+\langle +|+\rangle=2+2/\sqrt{2}=2+\sqrt{2}$$

So we measure the state $|\psi\rangle = \frac{|1\rangle + |+\rangle}{\sqrt{2+\sqrt{2}}}$. Probabilities are:

$$\begin{aligned} |\langle \psi | + \rangle|^2 &= \left| \frac{\langle 1 | + \rangle + \langle + | + \rangle}{\sqrt{2 + \sqrt{2}}} \right|^2 = \left| \frac{\frac{1}{\sqrt{2}} + 1}{\sqrt{2 + \sqrt{2}}} \right|^2 \approx 0.854 \\ |\langle \psi | 0 \rangle|^2 &= \left| \frac{\langle 1 | 0 \rangle + \langle + | 0 \rangle}{\sqrt{2 + \sqrt{2}}} \right|^2 = \left| 0 + \frac{\frac{1}{\sqrt{2}}}{\sqrt{2 + \sqrt{2}}} \right|^2 \approx 0.146 \end{aligned}$$

If we measure $|\psi\rangle$ then we say the input was $|+\rangle$, and it was $|0\rangle$ otherwise. The total failure probability is (1/2) measuring $|\psi\rangle$ from $|0\rangle$ plus (1/2) not measuring $|\psi\rangle$ from $|+\rangle = (0.146)/2 + (1-0.854)/2 = 0.146$.

Note the bases from our two solutions are the same.

$$|b_{1}\rangle = \cos(\frac{3\pi}{8})|0\rangle + \sin(\frac{3\pi}{8})|1\rangle \cdot \frac{2\cos\frac{\pi}{8}}{2\cos\frac{\pi}{8}} = \frac{2\frac{1}{2}\left(\cos\frac{\pi}{2} + \cos\frac{\pi}{4}\right)|0\rangle + 2\frac{1}{2}\left(\sin\frac{\pi}{2} + \sin\frac{\pi}{4}\right)|1\rangle}{2\cos\frac{\pi}{8}} = \frac{\cos\frac{\pi}{4}|0\rangle\left(1 + \cos\frac{\pi}{4}\right)|1\rangle}{2\cos\frac{\pi}{8}} = \frac{\frac{1}{\sqrt{2}}|0\rangle\left(1 + \frac{1}{\sqrt{2}}\right)|1\rangle}{2\cos\frac{\pi}{8}} = \frac{|1\rangle + |+\rangle}{\sqrt{2 + \sqrt{2}}} = |\psi\rangle.$$

b) [Extra Credit, 5 Points] Prove that this is optimal.

Solution: Let's say the optimal state to measure is $|\psi\rangle = \sin\theta |0\rangle + \cos\theta e^{i\phi} |1\rangle$. This state should

maximize
$$|\langle +|\psi \rangle|^2 = |\frac{\sin\theta + \cos\theta e^{i\phi}}{\sqrt{2}}|^2 = \frac{\sin^2\theta + (e^{i\phi} + e^{-i\phi})\sin\theta\cos\theta + \cos^2\theta}{2}$$
 and minimize $|\langle 0|\psi \rangle|^2 = \sin^2\theta$:

Fidelity $= |\langle +|\psi \rangle|^2 - |\langle 0|\psi \rangle|^2 = \frac{\sin^2\theta + (e^{i\phi} + e^{-i\phi})\sin\theta\cos\theta + \cos^2\theta}{2} - \sin^2\theta$

$$\frac{\partial \text{Fidelity}}{\partial \phi} = (1/2)(i\phi e^{i\phi} + i\phi e^{-i\phi})\sin\theta\cos\theta = 0 \quad \rightarrow \quad \phi = 0$$

$$\frac{\partial \text{Fidelity}}{\partial \theta} = \frac{1}{2}(\sin^2\theta + 2\sin\theta\cos\theta - \cos^2\theta) = \frac{\sin(2\theta) - \cos(2\theta)}{2} = 0$$
Since $\cos(2\theta) = -\sin(2\theta)$ happens when $2\theta = (4n+1)\pi/4$ we pick $\theta = \pi/8$ and get:
$$|\psi\rangle = \sin(\pi/8)|0\rangle + \cos(\pi/8)|1\rangle = \frac{1}{2}\sqrt{2 - \sqrt{2}}|0\rangle + \frac{1}{2}\sqrt{2 + \sqrt{2}}|1\rangle$$

$$= \frac{2|1\rangle + \sqrt{2}|0\rangle + \sqrt{2}|1\rangle}{2\sqrt{2 + \sqrt{2}}} = \frac{|1\rangle + \frac{|0\rangle + |1\rangle}{\sqrt{2}}}{\sqrt{2 + \sqrt{2}}} = \frac{|1\rangle + |+\rangle}{\sqrt{2 + \sqrt{2}}}$$

c) [2 Points] What is the failure probability if you measure in the $\{|0\rangle, |1\rangle\}$ basis?

Solution: If we measure $|1\rangle$, we say the input state must have been $|+\rangle$. If we measure $|0\rangle$, we say the state was $|0\rangle$.

If we are given $|0\rangle$, then our identification is always correct. If we are given $|+\rangle$, the probability of measuring $|0\rangle$ is $|\langle +|0\rangle|^2 = |1/\sqrt{2}|^2 = 1/2$. Thus our average failure probability is 1/4.