Statistical Inference Course Project - Basic Inferential Data Analysis

Gary Lu

January 7, 2021

Contents

len

Min. : 4.20

1st Qu.:13.07

Median :19.25

Mean :18.81

3rd Qu.:25.27

:33.90

Max.

supp

OJ:30

VC:30

Data Exploration	1 2
Data Exploration	
First, let's load the data and explore the data.	
data("ToothGrowth") # The Effect Of Vitamin C On Tooth Growth In Guinea Pigs	
str(ToothGrowth) # Display the structure of the data	
## 'data.frame': 60 obs. of 3 variables: ## \$ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ## \$ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 2 ## \$ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	
head(ToothGrowth, 5) # Explore the first 5 rows of the data	
## len supp dose ## 1 4.2 VC 0.5 ## 2 11.5 VC 0.5 ## 3 7.3 VC 0.5 ## 4 5.8 VC 0.5 ## 5 6.4 VC 0.5	
summary(ToothGrowth) # Produce summaries of the data	

dose

1st Qu.:0.500

Median :1.000

Mean :1.167

3rd Qu.:2.000

Min.

Max.

:0.500

:2.000

ToothGrowth dataset has 60 observations and 3 variables:

- len: numeric, Tooth length
- supp: factor, Supplement type (VC or OJ).
- dose: numeric, Dose in milligrams/day

From the plot, we can observe the following 2 hypothesis that we will test in the next step:

- 1. Increasing the dosage has a positive effect on tooth growth.
- 2. In general, the OJ type supplement has a better effect than the VC type, but under 2.0 dosage, two supplement types may have similar effect.

Hypothesis Testing

Before we carry out the hypothesis testing, we have to make some assumptions:

- 1. The random variables are independent and identical distributed (i.i.d.);
- 2. The tooth growth roughly follow a normal distribution;
- 3. The variances of tooth growth is different under different supplement and dosage.

And through all the following testing, we will use 5% as the tolerance limit of errors.

Dosage

In order to test the hypothesis that increasing the dosage has a positive effect on tooth growth, we will split the data into 3 group dose_05, dose_10, and dose_20 according to different dosage.

```
dose_05 <- ToothGrowth$len[ToothGrowth$dose == 0.5]
dose_10 <- ToothGrowth$len[ToothGrowth$dose == 1]
dose_20 <- ToothGrowth$len[ToothGrowth$dose == 2]</pre>
```

First, we will compare does_05 and dose_10. The null hypothesis H_0 is $len(dose_05) = len(dose_10)$, and the alternative hypothesis H_a is $len(dose_05) < len(dose_10)$. We will have one-sided t-test with unequal variance.

As the p value (6.342×10^{-8}) is lower than 5%, we reject the null hypothesis.

Next, we will carry out the similar t-test for dose_10 and dose_20. The null hypothesis H_0 is $len(dose_10) = len(dose_20)$, and the alternative hypothesis H_a is $len(dose_10) < len(dose_20)$.

```
##
## Welch Two Sample t-test
##
## data: dose_10 and dose_20
## t = -4.9005, df = 37.101, p-value = 9.532e-06
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf -4.17387
## sample estimates:
## mean of x mean of y
## 19.735 26.100
```

As the p value (9.532×10^{-6}) is lower than 5%, we reject the null hypothesis.

With the testings above, we conclude that it is very likely that a higher dosage has positive effect on tooth growth.

Supplement Type

First, let's test the hypothesis about two different supplement types in general. We will split the data into two groups oj and vc.

```
oj <- ToothGrowth$len[ToothGrowth$supp == 'OJ']
vc <- ToothGrowth$len[ToothGrowth$supp == 'VC']</pre>
```

The null hypothesis H_0 is len(oj) = len(vc), and the alternative hypothesis H_a is len(oj) < len(vc). We will have one-sided t-test with unequal variance.

As the p value (0.03032) is lower than 5%, we reject the null hypothesis.

Next, we will test the hypothesis about two different supplement types when dosage equals to 2.0. We will define the following two groups oj_20 and vc_20.

```
oj_20 <- ToothGrowth$len[ToothGrowth$supp == 'OJ' & ToothGrowth$dose == 2]
vc_20 <- ToothGrowth$len[ToothGrowth$supp == 'VC' & ToothGrowth$dose == 2]
```

The null hypothesis H_0 is $len(oj_20) = len(vc_20)$, and the alternative hypothesis H_a is $len(oj) \neq len(vc)$. We will have two-sided t-test with unequal variance.

```
##
## Welch Two Sample t-test
##
## data: oj_20 and vc_20
## t = -0.046136, df = 14.04, p-value = 0.9639
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.79807 3.63807
## sample estimates:
## mean of x mean of y
## 26.06 26.14
```

As the p value (0.9639) is greater than 5%, we fail to reject the null hypothesis.

With the testings above, we conclude that it is likely that supplement type OJ has a better effect on tooth growth than supplement type VC in general. However, under dosage 2.0 milligrams/day, there is not enough evidence to show that there is a difference between the two types.