DOŚWIADCZALNE SPRAWDZENIE DRUGIEJ ZASADY DYNAMIKI

T. Fas

8 listopada 2017

STRESZCZENIE

Celem doświadczenia było sprawdzenie, czy w warunkach eksperymentu spełniona jest druga zasada dynamiki Newtona. Udało się udowodnić, że przyśpieszenie jest wprost proporcjonalne do działającej siły oraz odwrotnie proporcjonalne do masy ciała. Dodatkowo, korzystając z wyznaczonej doświadczalnie masy układu, wyznaczono masę efektywną bloczka $m_{eff}=0,0598\pm0,0084$ kg.

WSTEP

Zgodnie z drugą zasadą dynamiki Newtona, jeśli na ciało o masie m działa siła F lub siły o wypadkowej F, to ciało to porusza się z przyspieszeniem:

$$a = \frac{1}{m}F. (1)$$

Dla układu przedstawionego na Rysunku 1 zależność z Równania (1) przyjmuje postać:

$$a = \frac{mg}{M_w + M_o + m + I/R^2} = \frac{mg}{M},$$
(2)

gdzie I jest momentem bezwładności krążka, a R jego promieniem. Celem doświadczenia było sprawdzenie, czy przy stałej masie układu $M = M_w + M_o + m + I/R^2$ przyśpieszenie jest wprost proporcjonalne do siły oraz czy przy stałej sile mg przyspieszenie jest odwrotnie proporcjonalne do masy.

UKŁAD DOŚWIADCZALNY

Rysunek 1: Układ doświadczalny.

W doświadczeniu wykorzystano: wózek o masie M_w , 4 druty jako ciężarki o masie m, ciężarki o masach M_o , bloczek o promieniu zewnętrznym R_1 i wewnętrznym R_2 i o masie m_b , miarkę, wagę, nitkę oraz tor powietrzny wyposażony w fotokomórki. Układ był złożony tak, jak przedstawia to Rysunek 1, gdzie trójkąty symbolizują położenie fotokomórek.

WYNIKI POMIARÓW

W pierwszej kolejności zważono wózek oraz ciężarki i otrzymano wartości: $M_w=0,957$ kg, $M_{o1}=0,500$ kg, $M_{o2}=0,500$ kg, $M_{o3}=0,499$ kg, $M_{o4}=0,250$ kg oraz m=0,010 kg dla każdego drutu. Za niepewność pomiaru przyjęto wartość $u_m=0,001$ kg.

Następnie zmierzono szerokość fotokomórki d=1,4 cm i ustawiono je w odległościach $x_1=x_2=x_3=21,4$ cm. W ten sposób odległość między środkami fotokomórek wynosi 20 cm. Pomiarów dokonano przy pomocy miarki o działce pomiaru $\Delta_x=0,1$ cm. Działka pomiaru fotokomórki wynosi $\Delta_t=0,01$ s.

Przy takiej konfiguracji zmierzono trzykrotnie czasy przejazdu wózka między pierwszą fotokomórką, a każdą kolejną. W pierwszej części wózek był obciążony drutami i po każdych trzech pomiarach przekładano drut z wózka i doczepiano go do końcówki nitki. W ten sposób zwiększano siłę wymuszającą ruch, jednocześnie zachowując stałą masę układu.

W drugiej części pomiarowej do końcówki nitki doczepiono cztery druty i nie zmieniano ich liczby przez cały czas trwania pomiaru. W ten sposób zapewniono stałość siły wymuszającej. Obciążenie wózka zmieniano wykorzystując ciężarki o masach 500 g i 250 g w różnych konfiguracjach. Obciążenie wózka było zmieniane po każdych trzech pomiarach czasu przejazdu.

Po wykonaniu pomiarów przesunięto fotokomórki na nowe pozycje, tworząc tym samym nowe odległości i nowe punkty pomiarowe. Nowe odległości wynosiły: $x_1=26,4$ cm, $x_2=26,4$ cm, $x_3=18,4$ cm. Wszystkie wyniki zostały zebrane w Tabeli 1 i Tabeli 2 oraz Tabeli 3.

Tabela 1: Wyniki pomiarów: stała masa układu.

Je	Jeden drucik $(m = 0, 01 \text{ kg})$							Dwa d	ruciki (m=0.	02 kg)	
Odległość s [m]	0,20	0,40	0,60	0,25	0,50	0,67	0,20	0,40	0,60	0,25	0,50	0,67
Czas t_1 [s]	1,36	2,17	2,83	1,58	2,48	2,98	0,95	1,52	1,98	1,10	1,74	2,09
Czas t_2 [s]	1,36	2,17	2,83	1,58	2,48	2,98	0,95	1,52	1,99	1,11	1,74	2,10
Czas t_3 [s]	1,36	2,17	2,84	1,57	2,48	2,98	0,95	1,52	1,99	1,11	1,74	2,10
T	rzy dru	ciki (m	= 0,0	3 kg)			(Cztery	druciki	m = 0	0,04 kg	
Czas t_1 [s]	0,77	1,24	1,62	0,90	1,42	1,71	0,67	1,07	1,40	0,77	1,22	1,47
Czas t_2 [s]	0,77	1,24	1,62	0,90	1,42	1,70	0,67	1,07	1,40	0,78	1,22	1,47
Czas t_3 [s]	0,77	1,24	1,62	0,91	1,41	1,69	0,67	1,06	1,39	0,78	1,23	1,47

Tabela 2: Wyniki pomiarów: stała siła

	rabeia 2: Wyniki pomiarow: staia siia											
	Λ	$M_o = 0,$	25 kg						$M_o =$	0,5 kg		
Odległość [m]	0,20	0,40	0,60	0,25	0,50	0,67	0,20	0,40	0,60	0,25	0,50	0,67
Czas t_1 [s]	0,74	1,19	1,56	0,87	1,37	1,65	0,81	1,30	1,70	0,96	1,50	1,81
Czas t_2 [s]	0,74	1,19	1,56	0,87	1,37	1,65	0,81	1,30	1,70	0,95	1,50	1,80
Czas t_3 [s]	0,74	1,19	1,56	0,87	1,37	1,65	0,81	1,30	1,70	0,95	1,49	1,79
	Λ	$M_o = 0,$	75 kg						$M_o =$	= 1 kg		
$Czast_1$ [s]	0,88	1,40	1,84	1,03	1,62	1,95	0,94	1,50	1,97	1,10	1,73	2,07
Czas t_2 [s]	0,89	1,40	1,84	1,03	1,62	1,95	0,94	1,50	1,97	1,10	1,73	2,08
Czas t_3 [s]	0,88	1,40	1,84	1,03	1,62	1,94	0,94	1,50	1,97	1,11	1,74	2,09
	Λ	$M_o = 1$	25 kg						$M_o =$	1,5 kg		
$Czast_1$ [s]	1,00	1,60	2,09	1,17	1,84	2,21	1,05	1,69	2,20	1,23	1,94	2,33
Czas t_2 [s]	1,00	1,60	2,09	1,17	1,84	2,21	1,05	1,69	2,20	1,24	1,94	2,33
Czas t_3 [s]	1,00	1,60	2,09	1,17	1,84	2,21	1,05	1,70	2,20	1,23	1,93	2,32

Tabela 3: Stała siła: pomiar kontrolny

			1							
$M_o = 0 \text{ kg}$										
Odległość [m]	0,20	0,40	0,60	0,25	0,50	0,67				
Czas t_1 [s]	0,67	1,07	1,40	0,78	1,23	1,47				
Czas t_2 [s]	0,67	1,07	1,40	0,78	1,23	1,47				
Czas t_3 [s]	0,67	1,07	1,40	0,78	1,23	1,47				

ANALIZA DANYCH

W pierwszej kolejności obliczono odległość s między środkiem pierwszej fotokomórki i każdej kolejnej. Odległości te dane są wzorami:

$$s_1 = x_1 - d \tag{3}$$

$$s_2 = x_1 + x_2 - 2d \tag{4}$$

$$s_3 = x_1 + x_2 + x_3 - 3d \tag{5}$$

Otrzymano wartości takie jak w Tabeli 1. Niepewności tych wielkości można obliczyć, korzystając z metody propagacji małych błędów. Ogólny wzór przenoszenia niepewności w tej metodzie jest następujący:

$$u_f^2 = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i} u_i\right)^2 + \sum_{i=1, i \neq j}^n \left(\frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} c_{ij}\right),\tag{6}$$

gdzie wielkość f zależy od wielkości x_i o niepewnościach u_i i o ocenach kowariancji c_{ij} [1]. W rozpatrywanym przypadku kowariancja wynosi zero. Niepewność pomiaru odległości lub szerokości fotokomórki dana jest wzorem:

$$u_x = \frac{\Delta_x}{\sqrt{3}} \quad [2]. \tag{7}$$

Łącząc Równanie (6) z Równaniem (5) i równaniem (7) otrzymano:

$$u_{s1} = \frac{\sqrt{2}\Delta_x}{\sqrt{3}} \tag{8}$$

$$u_{s2} = \frac{2\Delta_x}{\sqrt{3}} \tag{9}$$

$$u_{s3} = \frac{\sqrt{6}\Delta_x}{\sqrt{3}}. (10)$$

W przypadku analizy czasów przejazdu wyznaczono średnią dla każdego odcinka jak i niepewność tej średniej korzystając ze wzorów:

$$\bar{t} = \sum_{i=1}^{n} \frac{t_i}{n} \tag{11}$$

$$f_{\bar{t}}^2 = \sum_{i=1}^n \frac{(t_i - \bar{t})^2}{n(n-1)} \quad [2]. \tag{12}$$

Przy czym na mocy równania (6) ostateczna niepewność pomiaru czasu dana jest wzorem;

$$u_t = \sqrt{f_{\bar{t}}^2 + \frac{\Delta_t^2}{3}}. (13)$$

Wartości odległości, średniego czasu oraz ich niepewności znajdują się w Tabeli 4, Tabeli 5 i Tabeli 6.

W dalszej części analizy zastąpiono oznaczenie \bar{t} zwykłym t ze względu na prostotę i estetykę.

Zależność s(t) jest klasycznym przykładem prostoliniowego ruchu z przyśpieszeniem, który wyraża się wzorem:

$$r(t) = r_0 + v_0 t + \frac{1}{2} a t^2, (14)$$

gdzie r_0 jest położeniem początkowym, a v_0 jest prędkością początkową. Zależność tę można sprowadzić do postaci liniowej dzieląc obie strony przez t:

$$\frac{r - r_0}{t} = v_0 + \frac{1}{2}at\tag{15}$$

Dodatkowo w rozpatrywanym przypadku $r - r_0 = s$, co dodatkowo upraszcza zależność. Oznaczając s/t = w można tę zależność zapisać jako:

$$w = At + B, (16)$$

gdzie $a=0, 5 \cdot a$, $B=v_0$. Aby znaleźć wartości przyśpieszeń, należy do punktów z Tabeli 5 dopasować prostą według Równania (15) i Równania (16). W tym celu posłużono się metodą najmniejszych kwadratów. Polega ona na minimalizacji wielkości, która w tym przypadku dana jest wzorem:

$$R(A,B) = \sum_{i=1}^{6} \left(\frac{w_i - At - B}{u_{w_i}}\right)^2$$
 [3]

Tabela 4: Analiza danych: stała masa układu.

Tabola 1. Tillaliza daliyoli. Stala lilasa dillada.												
s [m]	0,200	0,400	0,600	0,250	0,500	0,670						
u_s [m]	0,00082	0,00115	0,00141	0,00082	0,00115	0,00141						
m=0,01 kg												
\bar{t} [s]	\bar{t} [s] 1,3600 2,1700 2,8333 1,5767 2,4800 2,9800											
$u_{ar{t}} [\mathrm{s}]$	0,0058	0,0058	0,0067	0,0067	0,0058	0,0058						
m = 0,02 kg												
\bar{t} [s]	0,9500	1,5200	1,9867	1,1067	1,7400	2,0967						
$u_{ar{t}} [\mathrm{s}]$	0,0058	0,0058	0,0067	0,0067	0,0058	0,0067						
		1	m = 0.03 l	ζg								
\bar{t} [s]	0,7700	1,2400	1,6200	0,9033	1,4167	1,7000						
$u_{ar{t}} [\mathrm{s}]$	0,0058	0,0058	0,0058	0,0067	0,0067	0,0082						
	m = 0,04 kg											
\bar{t} [s]	0,6700	1,0667	1,3967	0,7767	1,2233	1,4700						
$u_{ar{t}} [\mathrm{s}]$	0,0058	0,0067	0,0067	0,0067	0,0067	0,0058						

Tabela 5: Analiza danych: stała siła.

					1		T							
s [m]	0,20000	0,4000	0,6000	$0,\!2500$	0,5000	0,6700	0,20000	0,4000	0,6000	0,2500	0,5000	0,6700		
u_s [m]	0,00082	0,00115	0,00141	0,00082	0,00115	0,00141	0,00082	0,0012	0,0014	0,0008	0,0012	0,0014		
	$M_o = 0,25 \text{ kg}$								$M_o = 0$),5 kg		1,8000 0,0580 2,0800 0,0580		
\bar{t} [s]	0,7400	1,1900	1,5600	0,8700	1,3700	1,6500	0,8100	1,3000	1,7000	0,9533	1,4967	1,8000		
$u_{\bar{t}}$ [s]	0,0058	0,0058	0,0058	0,0058	0,0058	0,0058	0,0058	0,0058	0,0058	0,0442	0,0442	0,0580		
		Λ	$I_o = 0,75$	kg					$M_o =$	1 kg		2,0800		
\bar{t} [s]	0,8833	1,4000	1,8400	1,0300	1,6200	1,9467	0,9400	1,5000	1,9700	1,1033	1,7333	2,0800		
$u_{ar{t}}$ [s]	0,0442	0,0058	0,0058	0,0058	0,0058	0,0442	0,0058	0,0058	0,0058	0,0442	0,0442	0,0580		
		Λ	$I_o = 1,25$	kg					$M_o = 1$	1,5 kg				
\bar{t} [s]	1,0000	1,6000	2,0900	1,1700	1,8400	2,2100	1,0500	1,6933	2,2000	1,2333	1,9367	2,3267		
$u_{\bar{t}}$ [s]	0,0058	0,0058	0,0058	0,0058	0,0058	0,0058	0,0058	0,0442	0,0058	0,0442	0,0442	0,0442		

Tabela 6: Stała siła: pomiar kontrolny.

s [m]	0,200	0,400	0,600	0,250	0,500	0,670				
u_s [m]	0,00082	0,00115	0,00141	0,00082	0,00115	0,00141				
$M_o = 0 \text{ kg}$										
\bar{t} [s]	0,6700	1,0700	1,4000	0,7800	1,2300	1,4700				
$u_{\bar{t}}$ [s]	0,0058	0,0058	0,0058	0,0058	0,0058	0,0058				

Niepewności w_i otrzymano, korzystając z Równania (6):

$$u_{w_i} = w_i \sqrt{\frac{u_{t_i}^2}{t_i^2} + \frac{u_{s_i}^2}{s_i^2}}$$
 (18)

Ostateczne wartości parametrów wraz z ich niepewnościami podano w Tabeli 7. dodatkowo podano też wartości przyśpieszeń a wraz z niepewnościami.

Tabela 7: Dopasowywanie prostej: stała masa układu.

m [kg]	0,01	0,02	0,03	0,04
$A [m/s^2]$	0,04632	0,0925	0,1382	0,1896
$u_A [\mathrm{m/s^2}]$	0,00052	0,0013	0,0024	0,0035
B [m/s]	0,08471	0,1233	0,1527	0,1730
$u_B [\mathrm{m/s}]$	0,00126	0,0023	0,0033	0,0042
$a [\mathrm{m/s^2}]$	0,0926	0,1850	0,2763	0,3792
$u_a [\mathrm{m/s^2}]$	0,0010	0,0027	0,0048	0,0070

W ten sposób otrzymano zestaw punktów pozwalających na sprawdzenie zależności opisanej przez Równanie (2). Aby dopasować dane z Tabeli 7 do Równania (2) ponownie zastosowano metodę najmniejszych kwadratów oraz Równanie (17) dla B=0. Przyjęto, że $g=9,81~\text{m/s}^2$ jest wartością znaną dokładnie. Wyniki tej analizy

przedstawiono w Tabeli 8. Krzywą najlepszego dopasowania, wraz ze słupkami niepewności przedstawiono na Rysunku 2.

Tabela 8: Regresja liniowa: stała masa układu.

Tabela 0. 1	itegresja ii.	mowa. suc	iia iiiasa	umadu.						
m [kg]	0,01	0,02	0,03	0,04						
mg [N]	0,04632	0,0925	0,1382	0,1896						
$a [\mathrm{m/s^2}]$	0,0926	0,1850	0,2763	0,3792						
$u_a [\mathrm{m/s^2}]$	0,0010	0,0027	0,0048	0,0070						
$1/M_d = 0,9462 \pm 0,0069 \text{ 1/kg}$										

Rysunek 2: Krzywa najlepszego dopasowania.

Aby zyskać pewność, co do poprawnego dopasowania krzywej, przeprowadzono test χ^2 . Test ten pozwoli też określić, czy dane są w zgodności z drugą zasadą dynamiki.

W rozpatrywanym przypadku wartość χ^2 dana jest wzorem:

$$\chi^2 = \sum_{i=1}^4 \left(\frac{a_i - \frac{1}{M_d} F_i}{u_{a_i}} \right)^2 \tag{19}$$

Za prawdopodobieństwo popełnienia błędu pierwszego rodzaju przyjęto p=0,005. Przy 4-1=3 stopniach swobody wartość krytyczna $\chi_0^2=12,84$ Wartość obliczona wynosi $\chi^2=1,57$. Wartość ta jest mniejsza od wartości krytycznej, czyli dane otrzymane w doświadczeniu nie są sprzeczne z drugą zasadą dynamiki Newtona.

Współczynnik M_d jest masą układu wyznaczoną doświadczalnie. Można porównać ją z wartością otrzymaną w bezpośrednich pomiarach mas wózka i drutów. Wiadomo, że masa krążka wynosiła $m_b=36$ g, a jego promienie, zewnętrzny i wewnętrzny wynosiły kolejno: $R_1=96$ mm i $R_2=8$ mm. Bezwładność krążka wynosiła $I=\frac{1}{2}m_b(R_1^2+R_2^2)$. Oznaczmy $I/mR_1^2=m_{eff}$. Wtedy $M=M_w+4m+m_{eff}=1,0568$ kg. Niepewność tej wielkości obliczono, korzystając z Równania (6). Otrzymano $u_M=0,0065$ kg. W analizie danych założono, że wielkość m_{eff} jest znana dokładnie. Aby porównać, czy M jest zgodne z wartością M_d przeprowadzono test 3σ . Polega on na sprawdzeniu, czy wielkość $|M-M_d|$ jest mniejsza od trzykrotności niepewności tej różnicy. Otrzymano wartości: $(|M-M_d|=(0,0477>3*0,077)$ kg. Jak widać, współczynniki te nie są ze sobą zgodne. Mimo to postanowiono założyć, że $M_d=M_w+4m+m_{eff}$ aby obliczyć eksperymentalną wartość masy efektywnej m_{deff} . Niepewność tej wielkości obliczono, korzystając z Równania (6). Otrzymano : $m_{deff}=0,0598\pm0,0084$ kg. Porównując tę wartość z wartością m_{eff} i przeprowadzając test 3σ otrzymano zgodność wyników. Zgodność wyników wynika z dużej niepewności, jaką obarczona jest wielkość m_{deff} .

Szukanie przyśpieszeń dla stałej siły wymuszającej wyglądało podobnie, jak w przypadku stałej masy układu. Wyniki analizy dla wartości z Tabeli 5 i Tabeli 6 przedstawiono w Tabeli 9.

W przypadku stałej siły wymuszającej Równanie (2) można przekształcić do postaci:

$$\frac{g}{a_i} = \frac{1}{4m} M_i + \left(1 + \frac{I}{4mR_1^2}\right),\tag{20}$$

Tabela 9: Analiza danych: stała siła.

M_o [kg]	0	0,25	0,50	0,75	1,00	1,25	1,50
L / J	,	,		/	,	0,1671	,
$u_a [\mathrm{m/s^2}]$	0,0066	0,0049	0,0055	0,0047	0,0037	0,0022	0,0028

gdzie M_i to masa układu przy i-tym pomiarze.

W ten sposób otrzymano zależność liniową $\eta = \alpha M_i + \beta$. Do takiej zależności można dostosować prostą przy pomocy metody najmniejszych kwadratów. Stosując Równanie (17) oraz Równanie (6) względem Równania (20) otrzymano wartości przedstawione w Tabeli 10.

Tabela 10: Regresja liniowa: stała siła.

M_i [kg]	0,9970	1,2470	1,4970	1,7470	1,9970	2,2470	2,4970	
$a_i [\mathrm{m/s^2}]$	0,3780	0,2955	0,2496	0,2172	0,1879	0,1678	0,1502	
$u_a [\mathrm{m/s^2}]$	0,0537	0,0428	0,0400	0,0338	0,0293	0,0238	0,0229	
g/a_i	25,9511	33,1986	39,3085	45,1585	52,2099	58,4574	65,2923	
u_{gai}	3,6888	4,8080	6,3008	7,0204	8,1370	8,3026	9,9342	
$\alpha = 25,92 \pm 0,35 \text{ 1/kg}$				$\beta = 0,38 \pm 0,63$				

Krzywą na podstawie tych danych przedstawiono na Rysunku 3.

Rysunek 3: Krzywa najlepszego dopasowania.

Obliczono wartość $\chi^2=0,31$, przy czym wartość krytyczna dla 7-2=5 punktów swobody wynosi $\chi^2_0=16,75$. $\chi^2<\chi^2_0$ więc dane nie są sprzeczne z drugą zasadą dynamiki Newtona. Warto jeszcze porównać otrzymane współczynniki z ich wartościami teoretycznymi.

Wartość 1/4m=25 1/kg dla drucików o $m=0,01\pm0,001$ kg. Przeprowadzając test 3σ dla tej wartości i wartości α uzyskano zgodność wyników. Zaniechano przeprowadzenie testu dla wartości β , gdyż jej wartość jest mniejsza od niepewności z nią związaną oraz dlatego, iż aktualna wartość β sugeruje ujemną wartość bezwładności krążka.

DYSKUSJA WYNIKÓW I WNIOSKI

W obu przypadka uzyskano zgodność danych z drugą zasadą dynamiki. Jednak niepokojącym jest fakt, iż nie zawsze udało się uzyskać zgodność wyznaczonych współczynników z ich przewidywaniami teoretycznymi. Prawdopodobnie wynika to z propagacji błędów przez wszystkie etapy analizy. Jednak w ogólności, zważywszy na niskie wartości χ^2 , można stwierdzić, iż w warunkach eksperymentu druga zasada dynamiki jest spełniona.

Literatura

- [1] J. R. Taylor, Wstęp do analizy błędu pomiarowego, PWN, Warszawa, 1995, s. 197.
- [2] J. R. Taylor, Wstep do analyz bledu pomiarowego, PWN, Warszawa, 1995, s. 101.
- [3] J. R. Taylor, Wstep do analizy błędu pomiarowego, PWN, Warszawa, 1995, s. 175.