1.9.19 Tvrzení. Platí

3-barevnost $\triangleleft_p ILP$.

1.9.20 Převod 3-barevnosti na ILP. Je dán prostý neorientovaný graf bez smyček G=(V,E). Zkonstruujeme instanci I úlohy celočíselného lineárního programování takovou, že I má přípustné řešení právě tehdy, když graf G je 3-barevný.

Všechny proměnné budou nabývat hodnot 0 nebo 1 (tj. bude se jednat o tzv. 0-1 celočíselné lineární programování).

Proměnné: Pro každý vrchol $v \in V$ zavedeme tři proměnné:

$$x_v^c, x_v^m, x_v^z$$
.

Význam: Fakt, že proměnná x_v^b je rovna 1, $b \in \{c, m, z\}$, znamená, že vrchol v má barvu b.

Podmínky:

• Pro každý vrchol $v \in V$ máme rovnici, která zaručuje, že vrchol v má právě jednu barvu – buď c nebo m nebo z:

$$x_v^c + x_v^m + x_v^z = 1.$$

• Pro každou hranu $e = \{u, v\}$ máme tři nerovnosti (pro každou barvu jednu) zaručující, že oba vrcholy u a v nemohou mít stejnou barvu:

$$x_u^c + x_v^c \le 1$$
, $x_u^m + x_v^m \le 1$, $x_u^z + x_v^z \le 1$.

Platí: Graf G je 3-barevný právě tehdy, když I má přípustné řešení.

Instance I má 3|V| proměnných a |V|+3|E| podmínek. Jedná se tedy o instanci velikosti $\mathcal{O}(n+m)$, kde n=|V| a m=|E|.

- **1.9.21** Důsledek. Protože ILP je ve třídě \mathcal{NP} , jedná se o \mathcal{NP} úplnou úlohu.
- **1.9.22 Rozklad množiny.** Je dána konečná množina X a systém jejích podmnožin \mathcal{A} . Řekneme, že \mathcal{A} je rozklad množiny X, jestliže jsou splněny následující dvě podmínky
 - 1. každý prvek $x \in X$ leží v některé podmnožině $B \in \mathcal{A}$, (tj. $\bigcup \{B \mid B \in \mathcal{A}\} = X$);
 - 2. žádné dvě různé podmnožiny z ${\mathcal A}$ nemají společný prvek, tj. jsou po dvou disjunktní.
- **1.9.23 Problém rozkladu.** Úloha: Je dána konečná množina X a systém jejích podmnožin $\mathcal{S}.$

Otázka: Je možné z S vybrat prvky tak, že tvoří rozklad množiny X? Jinými slovy, existuje $A \subseteq S$ tak, že A je rozklad množiny X?

1.9.24 Tvrzení. Platí

3-barevnost \triangleleft_p problém rozkladu.

1.9.25 Převod vrcholového pokrytí na problém rozkladu. Je dán neorientovaný prostý graf bez smyček G=(V,E). Zkonstruujeme množinu X a systém jejích podmnožin $\mathcal S$ tak, že z graf G je tříbarevný právě tehdy, když ze systému $\mathcal S$ lze vybrat rozklad množiny X.

Množina X:

• Pro každý vrchol $v \in V$ dáme do množiny X prvky

$$v, p_v^c, p_v^m, p_v^z$$
.

 \bullet Pro každou hranu $e=\{u,v\}$ dáme do množiny Xprvky

$$q_{uv}^c, q_{uv}^m, q_{uv}^z, q_{vu}^c, q_{vu}^m, q_{vu}^z.$$

Množina X má 4|V| + 6|E| prvků.

Systém podmnožin $\mathcal S$ tvoří tyto množiny:

1. Pro každý vrchol $v \in V$:

$$\{v,p_v^c\}, \{v,p_v^m\}, \{v,p_v^z\}.$$

2. Pro každý vrchol $v \in V$ označme N(v) množinu všech sousedů vrcholu v (tj. $N(v) = \{u \mid \{u, v\} \in E\}$). Do $\mathcal S$ dáme množiny:

$$S_v^c = \{p_v^c, q_{vu}^c \, | \, u \in N(v)\}, S_v^m = \{p_v^m, q_{vu}^m \, | \, u \in N(v)\}, S_v^z = \{p_v^z, q_{vu}^z \, | \, u \in N(v)\}.$$

3. Pro každou hranu $e = \{u, v\}$ dáme do S množiny:

$$\{q_{uv}^c, q_{vu}^m\}, \{q_{uv}^c, q_{vu}^z\}, \{q_{uv}^m, q_{vu}^c\}, \{q_{uv}^m, q_{vu}^z\}, \{q_{uv}^z, q_{vu}^c\}, \{q_{uv}^z, q_{vu}^c\}, \{q_{uv}^z, q_{vu}^m\}.$$

Systém S má 3|V| množin z 1), 3|V| množin z 2) a 6|E| množina z 3).

Je-li graf G 3-barevný, je možné jeho vrcholy obarvit barvami $\{c, m, z\}$. Označme b(v) barvu vrcholu $v \in V$. Z systému S vybereme A takto:

\mathcal{A} se skládá z:

- 1. $\{v, p_v^{b(v)}\}$ pro všechny $v \in V$,
- 2. $S_v^{b_1}$ a $S_v^{b_2},$ kde b_1 a b_2 jsou zbylé dvě barvy, kterými není obarven vrchol v,
- 3. $\{q_{uv}^{b(u)},q_{vu}^{b(v)}\}$ pro každou hranu $e=\{u,v\},$

Jestliže existuje rozklad $\mathcal{A}\subseteq\mathcal{S}$ množiny X,pak sestrojíme obarvení grafuGtakto:

$$b(v) := b, b \in \{c, m, z\}$$
 iff $\{v, p_v^b\} \in \mathcal{A}$.

Není těžké dokázat, že z volby systému $\mathcal S$ a $\mathcal A$ vyplývá: b je obarvení vrcholů třemi barvami.

1.9.26 Důsledek. Protože problém rozkladu je ve třídě \mathcal{NP} , jedná se o \mathcal{NP} úplnou úlohu.