Contents

1	Wa	ve mechanics and the Schrödinger equation	1										
	1.1	Historical foundations of quantum physics	1										
		1.1.1 Black-body radiation	1										
		1.1.2 Photoelectric effect	3										
		1.1.3 Compton Scattering	3										
		1.1.4 Atomic spectra	4										
	1.2	Wave mechanics	6										
		1.2.1 Maxwell's wave equation	6										
		1.2.2 Schrödinger's equation	8										
		1.2.3 Time-independent Schrödinger equation	8										
		1.2.4 Particle flux and conservation of probability	9										
2	Qua	antum mechanics in one dimension	10										
	2.1	Wave mechanics of unbound particles	10										
		2.1.1 Free particle	10										
		2.1.2 Potential step	12										
		2.1.3 Potential barrier	13										
		2.1.4 The rectangular potential well	15										
	2.2	Wave mechanics of bound particles	15										
		2.2.1 The rectangular potential well (continued)	15										
		2.2.2 The δ -function potential well	16										
		2.2.3 Info: The δ -function model of a crystal	17										
3	Ope	erator methods in quantum mechanics	19										
	3.1	Operators	20										
		3.1.1 Time-evolution operator	21										
		3.1.2 Uncertainty principle for non-commuting operators	22										
		3.1.3 Time-evolution of expectation values	23 24										
	3.2	v v 1											
		3.2.1 Observables as generators of transformations	24										
		3.2.2 Consequences of symmetries: multiplets	26										
	3.3	The Heisenberg Picture	27										
	3.4	Quantum harmonic oscillator	27										
	3.5	Postulates of quantum theory	31										
4	-	antum mechanics in more than one-dimension	33										
	4.1	Rigid diatomic molecule	33										
	4.2	Angular momentum	34										
		4.2.1 Commutation relations	34										
		4.2.2 Eigenvalues of angular momentum	34										
	. ~	4.2.3 Representation of the angular momentum states	36										
	4.3	The central potential	38										
	4.4	Atomic hydrogen	39										

CONTENTS vi

5	Mo	tion in a magnetic field 4	4
	5.1	8	14
	5.2	-	16
	5.3		17
	5.4	· ·	18
	5.5	0	50
6	Spi	$_{ m 1}$	3
	6.1		54
	6.2		55
	6.3	· .	56
			6
	6.4		58
		6.4.1 Addition of two spin 1/2 degrees of freedom 5	59
		- , -	60
		6.4.3 Addition of two angular momenta $J=1$ 6	31
7	Apı	proximation methods for stationary states 6	2
·	7.1	v	- 32
			3
			64
		ı ,	35
	7.2		37
	7.3	Ų į	39
	7.4		72
			73
		7.4.2 Next to leading order correction	74
		7.4.3 Connection formulae, boundary conditions and quanti-	
		zation rules	75
8			8
	8.1	· ·	78
	8.2	1 1	30
	8.3	v i	31
	8.4		33
		0 0	34
		8.4.2 Ideal Bose gas	36
9			9
	9.1	v G	90
		0₽	90
		1 0)1
			93
			93
	0.0	V 1	95 06
	9.2		96
	0.9	11	$\frac{97}{2}$
	9.3	Coupling schemes	
		9.3.1 LS coupling scheme	
	0.4	9.3.2 jj coupling scheme	
	9.4	Atomic spectra	
		9.4.1 Single electron atoms	
		9.4.2 Helium and alkali earths	
		9.4.3 Multi-electron atoms	IJ

CONTENTS vii

	9.5	9.5.1	n effect	. 109
10	10.1 10.2 10.3	The H_2^+ The H_2 From m Molecui 10.4.1	cules to solids ion Molecule nolecules to solids lar spectra Molecular rotation	. 116. 118. 122. 124
11	Fiel		Vibrational transitions	. 125 127
		11.1.1 11.1.2 Quantu 11.2.1	zation of the classical atomic chain	. 127 . 130 . 134 . 134
10			Quantum field theory of the electromagnetic field	
12	$12.1 \\ 12.2$	Time-de Time-de "Sudde 12.3.1	ndent perturbation theory ependent potentials: general formalism ependent perturbation theory	. 141. 143. 143
13			transitions	146
	13.1		ng of matter to the electromagnetic field	
	13.3	13.1.2 Selection Lasers 13.3.1 13.3.2	Absorption and stimulated emission on Rules Operating principles of a laser Gain mechanism harmonic oscillator	. 148. 150. 152. 153. 153
14	13.3 13.4 Scat	13.1.2 Selection Lasers 13.3.1 13.3.2 Driven	Absorption and stimulated emission on Rules Operating principles of a laser Gain mechanism harmonic oscillator theory	 148 150 152 153 155 157
14	13.4 Scat 14.1 14.2 14.3 14.4	Selection Lasers 13.3.1 13.3.2 Driven Etering Basics Method The Bo INFO: \$2	Absorption and stimulated emission	. 148 . 150 . 152 . 153 . 155 . 155 . 157 . 158 . 160 . 162 . 164
	13.3 13.4 Scat 14.1 14.2 14.3 14.4 14.5 Rela	Selection Lasers 13.3.1 13.3.2 Driven tering Basics Method The Bo INFO: S Scatter ativistic	Absorption and stimulated emission on Rules Operating principles of a laser Gain mechanism harmonic oscillator theory of of partial waves orn approximation Scattering of identical particles ing by an atomic lattice c Quantum Mechanics	. 148 . 150 . 152 . 153 . 155 . 157 . 158 . 160 . 162 . 164 . 165
	13.3 13.4 Scat 14.1 14.2 14.3 14.4 14.5 Rela 15.1 15.2	Selection Lasers 13.3.1 13.3.2 Driven Etering Basics Method The Bo INFO: S Scatter: Ativistic Klein-G Dirac E 15.2.1 15.2.2 15.2.3 15.2.4	Absorption and stimulated emission on Rules Operating principles of a laser Gain mechanism harmonic oscillator theory of of partial waves orn approximation Scattering of identical particles ing by an atomic lattice	. 148 . 150 . 152 . 153 . 155 . 157 . 158 . 160 . 162 . 164 . 165 . 170 . 172 . 174 . 174 . 175 . 176

CONTENTS viii

		15.4.1 Inf	o: Sca	lar f	ield	: K	leir	ı-G	orc	lon	ec	ιua	tic	n	rev	vis	ite	ed		180
		15.4.2 Inf	o: Ch	arge	d Sc	ala	r F	ielo	ł.											182
		15.4.3 Inf	o: Dir	ac F	ield															183
	15.5	The low en	ergy li	$_{ m mit}$	of t	he i	Dir	ac	equ	ati	ion									184
L 6	Pro	olem sets																		187
	16.1	Problem Se	et I																	187
	16.2	Problem Se	et II .																	200
	16.3	Problem Se	et III .																	207
	16.4	Problem Se	et IV .																	216