Objectifs

- Revoir les concepts de base en théorie des probabilités
 - événement, variable aléatoire
 - probabilité conjointe, marginale, conditionnelle
 - règle de chaînage
 - règle de Bayes
 - indépendance (conditionnelle)

Rappel: Utility-based agents

Incertitude

- Soit A, l'action d'aller à l'aéroport t minutes avant le départ de l'avion
 - \bullet A_t me permettra-t-il d'arriver à temps?
- Problèmes :
 - observabilité partielle (conditions routières, etc.)
 - senseurs bruités (annonces du trafic, etc.)
 - incertitude dans l'effet des actions (crevaisons, pannes, etc.)
 - immense complexité pour modéliser les actions et le trafic
- Un raisonnement purement logique et déterministe :
 - risque de tirer des conclusions erronées
 - » « A_{25} me permettra d'arriver à temps » (impossible de faire cette garantie)
 - risque de tirer des conclusions peu exploitables du point de vue de la prise de décision
 - » « A₂₅ me permettra d'arriver à temps, s'il ne pleut pas, s'il n'y a pas d'accident, si mes pneus ne crèvent pas, etc. »
 - » « A₁₄₄₀ me permettra presque certainement d'arriver à temps, mais je devrai passer une nuit à l'aéroport. »

Modéliser l'incertitude à l'aide probabilités

Théorie des probabilités

- permet de modéliser la vraisemblance d'événements
 - » l'information sur la vraisemblance est dérivée
 - des croyances/certitudes d'un agent, ou
 - d'observations empiriques de ces événements
- donne un cadre théorique pour mettre à jour la vraisemblance d'événements après l'acquisition d'observations
 - » après avoir observé qu'il n'y a pas de trafic, la probabilité que A_{25} me permette d'arriver à temps doit changer comment ?
- facilite la modélisation en permettant de considérer l'influence de phénomènes complexes comme du « bruit »