Limits
Let flxxy) be a function with domain P.
$\lim_{(X)Y)\to(a,b)} f(X)Y) = L$
"The limit of foxy) as (x)y) approaches (a)b) is L"
means that we can make fux, p as close
to Las we want as long as we take
CXIXI sufficiently close to ca, b).
Note Ca, b) need not be in D;

Ex	Show	1,m (x)y1->10,0	$\frac{\chi^2 - \gamma^3}{\chi^2 + \gamma^2}$	does not exist
	ich along th		lim Xd X70 X2	
	// // .	″ x=0	1m - y2	= -1
17	<u> </u>	e limit di	pes not ex	iz 7.
	lim Cx)y) → (0,0)	Xy +y &	7	
appr	out along:	le line	y=mx	
im x=>0	$\frac{\times (m \times)^{2}}{\times^{2} + \% (m \times)^{4}}$	- = lim X70	$\frac{m^2 \times^3}{x^2 + m^4 \times^4}$	= lim m2x X-2000 Hm4x2 = 0

Ex show that hm $\frac{3x^2y}{x^2+y^2} = 0$ exists. To actually prove existence we have to use the Squeeze Theorem, Let h(x)y and g(x)y and f(x)y be functions such that $h(x)y \le f(x)y \le g(x)y$ and $\lim_{(x,y)\to(a,b)} h(x,y) = L = \lim_{(x,y)\to(a,b)} g(x,y)$ Then $\lim_{(x,y)\to(a,b)} f(x,y)=L$ let h=0 let g=3lyl $0 \le \frac{3x^{2}|y|}{x^{2}+y^{2}} = \frac{3|y|}{x^{2}+y^{2}} \le \frac{3|y|}{x^{2}+y^{2}} \le \frac{3|y|}{x^{2}+y^{2}}$ $\frac{hm}{y \to 0} = 0$ $\lim_{y \to 0} 3|y| = 0$ $\begin{array}{ccc}
\sqrt{2} & 0 \leq 1 \text{ im} & 3 \times 2 / \sqrt{1} \leq 0 \\
& (\times)(\times) \Rightarrow (0,0) \times 2 / \sqrt{2}
\end{array}$ (1) $(x,y) \rightarrow (0,0)$ $(x,y) \rightarrow (0,0)$ $(x,y) \rightarrow (0,0)$ $\lim_{x \to \infty} \frac{3x^2y}{x^2+y^2} = 0.$