Math-183 Differential Equations

Note taken by: Turja Roy ID: 2108052

Contents

1	Differential Equations and Their Solutions			2
	1.1			2
	1.2			3
		A	Nature of Solutions	3
		В	Methods of Solution	4
	1.3	Initial	-Value and Boundary-Value Problems, and Existence of Solutions	5
		A	Initial-value Problems and Boundary-value Problems	5
		В	Existence of Solutions	6
2	First Order Equations for Which Exact Solutions Are Obtainable			
	2.1	Exact	Differential Equations and Integrating Factors	Ö
		A	Standard Forms of First-Order Differential Equations	Ć
		В	Exact Differential Equations	G
		\mathbf{C}	The Solution of Exact Differential Equations	11
		D	Integrating Factors	12

1 Differential Equations and Their Solutions

1.1 Classification of Differential Equations

Definition 1.1.1: Differential Equation

Differential equation is an equation involving derivatives of one or more dependent variables with respect to one or more independent variables.

Definition 1.1.2: Ordinary Differential Equation

A differential equation involving ordinary derivatives of one or more dependent variables with respect to a single independent variable is called an ordinary differential equation.

Example 1.1.1: Ordinary Differential Equations:

$$\frac{dy}{dx} + xy\left(\frac{d}{dx}\right)^2 = 0\tag{1.1.1}$$

$$\frac{d^4x}{dt^4} + 5\frac{d^2x}{dt^2} + 3x = \sin t \tag{1.1.2}$$

Definition 1.1.3: Partial Differential Equation

A differential equation involving partial derivatives of one or more dependent variables with respect to more than one independent variables is called an partial differential equation.

Example 1.1.2: Partial Differential Equations:

$$\frac{\partial v}{\partial s} + \frac{\partial v}{\partial t} = v \tag{1.1.3}$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0 \tag{1.1.4}$$

Definition 1.1.4: Order and Degree of Differential Equations

Order of DE: The order of the highest ordered derivative involved in a differential equation is called the order of the differential equation.

Degree of DE: The power of the highest order derivative involved in a differential equation is called the degree of the differential equation.

Definition 1.1.5: Linearity of Differential Equations

If the dependent variable and its various derivatives occur to the first degree only, the DE is a linear DE. Otherwise it's a non-linear DE.

$$a_0(x)\frac{d^n y}{dx^n} + a_1(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_{n-1}(x)\frac{dy}{dx} + a_n(x)y = b(x)$$

Linear DE can also be classified as linear with *constant* and *variable* coefficients.

Example 1.1.3: Ordinary Differential Equations: Orders, Degree, Linearity

$$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} - 3\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3\frac{\mathrm{d}y}{\mathrm{d}x} - 6y = \sin x \qquad \text{3rd ord 1st deg Lin}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + y = 0 \qquad \text{2nd ord 1st deg Non-Lin}$$

$$y = x\frac{\mathrm{d}y}{\mathrm{d}x} + \sqrt{1 + \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}} \qquad \text{2nd ord 1st deg Non-Lin}$$

$$\frac{\mathrm{d}^4 x}{\mathrm{d}t^4} + t^2 \frac{\mathrm{d}^3 x}{\mathrm{d}t^3} + \frac{\mathrm{d}y}{\mathrm{d}x} = \sin t \qquad \text{4th ord 1st deg Lin}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 5\frac{\mathrm{d}y}{\mathrm{d}x} + 6y^2 = 0 \qquad \text{2nd ord 1st deg Non-Lin}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 5\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3 + 6y = 0 \qquad \text{2nd ord 1st deg Non-Lin}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 5y\frac{\mathrm{d}y}{\mathrm{d}x} + 6y = 0 \qquad \text{2nd ord 1st deg Lin}$$

1.2 Solutions

A Nature of Solutions

An nth-order Differential Equation:

$$F\left[x, y, \frac{\mathrm{d}y}{\mathrm{d}x}, \cdots, \frac{\mathrm{d}^n y}{\mathrm{d}x^n}\right] = 0 \tag{1.2.1}$$

Definition 1.2.1: Explicit solution

f is an explicit solution of (1.2.1) if

$$\forall x \in I, F\left[x, f(x), f'(x), \cdots, f^{(n)}(x)\right] = 0$$

where I is a real interval.

Definition 1.2.2: Implicit solution

g(x,y) = 0 is an implicit solution if this relation defines at least one real function f(x) on an interval I such that f is an explicit solution of (1.2.1)

Example 1.2.1: Explicit and Implicit Solutions

$$x^2+y^2-25=0$$
 : Implicit solution
$$2x+2y\frac{\mathrm{d}y}{\mathrm{d}x}=0$$

$$x+y\frac{\mathrm{d}y}{\mathrm{d}x}=0$$
 : Differential Equation
$$y=\pm\sqrt{25-x^2}\;;\;-5\leq x\leq 5$$
 : Explicit solution

B Methods of Solution

The study of a Differential Equation consists of 3 phases:

- 1. Formulation of DE from the given physical situation.
- 2. Solutions of DE, evaluating the arbitrary constants from the given condition.
- 3. Physical interpretation of the solution.

Example 1.2.2: Show that the function $f(x)=e^x+2x^2+6x+7$ is a solution to the DE $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}-3\frac{\mathrm{d}y}{\mathrm{d}x}+2y=4x^2$

$$f(x) = e^{x} + 2x^{2} + 6x + 7$$
$$f'(x) = e^{x} + 4x + 6$$
$$f''(x) = e^{x} + 4$$

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = (e^x + 4) - 3(e^x + 4x + 6) + 2(e^x + 2x^2 + 6x + 7)$$
$$= 0 \cdot e^x + 0 \cdot x + (4 - 18 + 14) + 4x^2$$
$$= 4x^2$$

Example 1.2.3: Show that the function $f(x)=\frac{1}{1+x^2}$ is a solution to the DE $(1+x^2)\frac{\mathrm{d}^2y}{\mathrm{d}x^2}+4\frac{\mathrm{d}y}{\mathrm{d}x}+2y=0$

$$f(x) = \frac{1}{1+x^2}$$
$$(1+x^2)f(x) = 1$$
$$(1+x^2)f'(x) + 2xf(x) = 0$$
$$(1+x^2)f''(x) + 2xf'(x) + 2xf'(x) + 2f(x) = 0$$
$$(1+x^2)\frac{d^2y}{dx^2} + 4x\frac{dy}{dx} + 2y = 0$$

Example 1.2.4: Show that the function $y = (2x^2 + 2e^{3x} + 3)e^{-2x}$ satisfies the DE

$$\frac{dy}{dx} + 2y = 6e^x + 4xe^{-2x}$$

$$y = (2x^{2} + 2e^{3x} + 3)e^{-2x}$$

$$y_{1} = (4x + 6e^{3x})e^{-2x} - (2x^{2} + 2e^{3x} + 3)2e^{-2x}$$

$$y_{1} = 4xe^{-2x} + 6e^{x} - 2y$$

$$\frac{dy}{dx} + 2y = 6e^{x} + 4e^{-2x}$$

1.3 Initial-Value and Boundary-Value Problems, and Existence of Solutions

A Initial-value Problems and Boundary-value Problems

One of the most frequently encountered type of problems in Differential Equations involves both a DE and one or more supplementary conditions which the solution of the given DE must satisfy.

Definition 1.3.1: IVP and BVP

Consider the first-order DE

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$$

where f is a continuous function of x and y in some domain D of the xy plane; and let (x_0, y_0) be a point of D. The **initial-value problem** associated with the DE is to find a solution ϕ of the DE, defined on some real interval containing x_0 , and satisfying the initial condition

$$\phi(x_0) = y_0$$

In the customary abbreviated notation, this initial-value problem may be written

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y)$$

$$y(x_0) = y_0$$

If the conditions relate to two different x values (the extreme or boundary values), the proble is called a **Two-Point Boundary-Value Problem** or simply a **Boundary-Value Problem** (BVP).

Example 1.3.1: Find the solution of the DE $\frac{\mathrm{d}y}{\mathrm{d}x}=2x$ such that $\forall x\in I, f'(x)=2x$ and f(1)=4

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$$

$$\int \frac{\mathrm{d}y}{\mathrm{d}x} \, dx = \int 2x \, dx$$

$$y = x^2 + c$$

Substituting y = 4 and x = 1,

$$4 = 1 + c \text{ or } c = 3$$

$$\therefore$$
 Solution: $y^2 = x + 3$

Example 1.3.2: $\frac{dy}{dx} = -\frac{x}{y}$, y(3) = 4

$$x + y \frac{dy}{dx} = 0$$

$$\int x \, dx + \int y \frac{dy}{dx} \, dx = 0$$

$$\frac{x^2}{2} + \frac{y^2}{2} = c'$$

$$x^2 + y^2 = c$$

Substituting x = 3 and y = 4,

$$16^2 + 3^2 = c \text{ or } c = 25$$

:. Solution:
$$x^2 + y^2 - 25 = 0$$

B Existence of Solutions

Not all initial-value and boundary-value problems have solutions. For example,

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + y = 0$$

$$y(0) = 1$$
 , $y(\pi) = 5$

has no solutions! Thus arises the question of *existence* of solutions. We can say, every initial-value problem that satisfies definition (1.3.1) has *at least one* solution. However, there arises another question. Can a problem have more than one solution?

Let's consider the initial-value problem

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y^{1/3} \; ; \; y(0) = 0$$

One may verify that the functions f_1 and f_2 defined, respectively, by

$$\forall x \in \mathbb{R}, \ f_1(x) = 0$$

and

$$f_2(x) = (\frac{2}{3}x)^{3/2}, \quad x \ge 0; \quad f_2(x) = 0, \quad x \le 0$$

are both solutions of this initial-value problem. In fact, this problem has infinitely many solutions. Hence, we can state that the initial-value problem need not have a *unique* solution. In order to ensure uniquess, some additional requirement must certainly be imposed.

Theorem 1.3.1 (Basic Existence and Uniqueness Theorem):

Hypothesis: Consider the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) \tag{1.3.1}$$

where

- The function f is a continuous function of x and y in some domain D of the xy plane, and
- The partial derivative $\frac{\partial f}{\partial y}$ is also a continuous function of x and y in D; and let (x_0, y_0) be a point in D.

Conclusion: There exists a unique solution ϕ of the differential equation (1.3.1), defined on some interval $|x - x_0| \le h$, where h is sufficiently small, that satisfies the condition

$$\phi(x_0) = y_0$$

Example 1.3.3: Show that

$$y = 4e^{2x} + 2e^{-3x}$$

is a solution of the initial-value problem

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} - 6y = 0$$
$$y(0) = 6$$
$$y'(0) = 2$$

Is $y=2e^{2x}+4e^{-3x}$ also a solution of this problem? Explain why or why not.

$$y = 4e^{2x} + 2e^{-3x}$$

$$y_1 = 8e^{2x} - 6e^{-3x}$$

$$y_2 = 16e^{2x} + 18e^{-3x}$$

$$y_2 + y_1 - 6y = (16e^{2x} + 18e^{-3x}) + (8e^{2x} - 6e^{-3x}) - 6(4e^{2x} + 2e^{-3x})$$

$$= 0 \cdot e^{2x} + 0 \cdot e^{-3x}$$

The solution also satisfies y(0) = 6 and y'(0) = 2

Now, for
$$y = 2e^{2x} + 4e^{-3x}$$
,

$$y_2 + y_1 - 6y = (8e^{2x} + 36e^{-3x}) + (4e^{2x} - 12e^{-3x}) - 6(2e^{2x} + 4e^{-3x})$$
$$= 0 \cdot e^{2x} + 0 \cdot e^{-3x}$$
$$= 0$$

 $y_1 = 4e^{2x} - 12e^{-3x}$; $y_2 = 8e^{2x} + 36e^{-3x}$

However, in this case,

$$y(0) = 6 \; ; \; y'(0) = -8$$

As we can see, this solution doesn't satisfy the initial-value problem. Hence $y = 2e^{2x} + 4e^{-3x}$ is not a solution of this problem.

Example 1.3.4: Given that every solution of

$$x^{3} \frac{d^{3}y}{dx^{3}} - 3x^{2} \frac{d^{2}y}{dx^{2}} + 6x \frac{dy}{dx} - 6y = 0$$

may be written in the form $y=c_1x+c_2x^2+c_3x^3$ for some choice of the arbitrary constants c_1 , c_2 , and c_3 , solve the initial-value problem consisting of the above DE plus the three conditions

$$y(2) = 0$$
 , $y'(2) = 2$, $y''(2) = 6$

$$y = c_1 x + c_2 x^2 + c_3 x^3$$

$$y(2) = 0 \text{ or, } 8c_3 + 4c_2 + 2c_1 = 0$$

$$y' = c_1 + 2c_2 x + 3c_3 x^2$$
(1.3.2)

$$y'(2) = 2 \text{ or, } 12c_3 + 4c_2 + c_1 = 2$$
 (1.3.3)

$$y'' = 0 + 2c_2 + 6c_3x$$

$$y''(2) = 6 \text{ or, } 12c_3 + 2c_2 + 0c_1 = 6$$
 (1.3.4)

Solving (1.3.1), (1.3.2), and (1.3.3) we get,

$$c_1 = 2$$
 , $c_2 = -3$, $c_3 = 1$

$$\therefore$$
 Solution: $y = 2x - 3x^2 + x^3$

2 First Order Equations for Which Exact Solutions Are Obtainable

2.1 Exact Differential Equations and Integrating Factors

A Standard Forms of First-Order Differential Equations

The first-order differential equations may be expressed in either the **Derivative Form**

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) \tag{2.1.1}$$

or the Differential Form

$$M(x,y) dx + N(x,y) dy = 0 (2.1.2)$$

Example 2.1.1: Standard Forms

The equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 + y^2}{x - y}$$

is the form (2.1.1). It may be written as

$$(x^2 + y^2) dx + (y - x) dy = 0$$

which is of the form (2.1.2).

Again, the equation

$$(\sin x + y) dx + (x+3y) dy = 0$$

is of the form (2.1.2), which can also be written as

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\sin x + y}{x + 3y}$$

B Exact Differential Equations

Definition 2.1.1: Exact Differential

Let F be a function of two real variables such that F has continuous first partial derivatives in a domain D. The total differential dF of the function F is defined by the formula

$$dF(x,y) = \frac{\partial F(x,y)}{\partial x} dx + \frac{\partial F(x,y)}{\partial y} dy$$

for all $(x, y) \in D$.

Comparing dF(x,y) with the form (2.1.2), we get

$$\frac{\partial F(x,y)}{\partial x} = M(x,y)$$
 and $\frac{\partial F(x,y)}{\partial y} = N(x,y)$

Example 2.1.2

Let F be a function

$$F(x,y) = xy^2 + 2x^3y$$

for all real (x, y). Then

$$\frac{\partial F(x,y)}{\partial x} = y^2 + 6x^2y, \quad \frac{\partial F(x,y)}{\partial y} = 2xy + 2x^3$$

and the total differential dF is defined by

$$dF(x,y) = (y^2 + 6x^2y) dx + (2xy + 2x^3) dy$$

for all real (x, y)

Definition 2.1.2: Exact Differential Equation

The expression

$$M(x,y) dx + N(x,y) dy (2.1.3)$$

is called an exact differential in a domain D if there exists a function F of two real variables such that this expression equals the total differential dF(x,y) for all $(x,y) \in D$. That is, expression (2.1.3) is an exact differential in D if there exists a function F such that

$$\frac{\partial F(x,y)}{\partial x} = M(x,y)$$
 and $\frac{\partial F(x,y)}{\partial y} = N(x,y)$

for all $(x, y) \in D$.

If M(x,y) dx + N(x,y) dy is an exact differential, then the differential equation

$$M(x,y) dx + N(x,y) dy = 0$$

is called an Exact Differential Equation.

Theorem 2.1.1 (Exact Differential Equation):

1. If the DE M(x, y) dx + N(x, y) dy = 0 is exact in D, then

$$\forall (x,y) \in D, \quad \frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$$

2. Conversely, if

$$\forall (x,y) \in D, \quad \frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$$

then the DE is exact in D.

Proof (1):

C The Solution of Exact Differential Equations

Theorem 2.1.2 (Solution of Exact DE):

If M(x,y) dx + N(x,y) dy = 0 is exact in domain D, then

$$\forall (x,y) \in D, \exists F(x,y): \frac{\partial F(x,y)}{\partial x} = M(x,y) \quad and \quad \frac{\partial F(x,y)}{\partial y} = N(x,y)$$

Then the equation may be written

$$\frac{\partial F(x,y)}{\partial x} dx + \frac{\partial F(x,y)}{\partial y} dy = 0$$

or simply,

$$dF(x,y) = 0$$

Here, F(x,y) = c is a one-parameter family of solutions of this DE, where c is an arbitrary constant.

Example 2.1.3: Solve the equation

$$(3x^2 + 4xy) dx + (2x^2 + 2y) dy = 0$$

Standard Method:

$$\frac{\partial F(x,y)}{\partial x} = M(x,y) = 3x^2 + 4xy$$
$$F(x,y) = \int (3x^2 + 4xy) \, \partial x + \phi(y)$$
$$= x^3 + 2x^2y + \phi(y)$$

Again,

$$\frac{\partial F(x,y)}{\partial y} = 2x^2 + \frac{\partial \phi(y)}{\partial y} = 2x^2 + 2y$$
$$\frac{d\phi(y)}{dy} = 2y$$
$$\int \frac{d\phi(y)}{dy} dy = \int 2y dy$$
$$\phi(y) = y^2 + c_0$$

Thus, we get

$$F(x,y) = x^3 + 2x^2y + y^2 + c_0$$

Hence, a one-parameter family of the solution is $F(x,y) = c_1$ or

$$x^3 + 2x^2y + y^2 + c_0 = c_1$$

$$x^{3} + 2x^{2}y + y^{2} = c$$

Method of Grouping:

$$(3x^{2} + 4xy) dx + (2x^{2} + 2y) dy = 0$$
$$3x^{2} dx + (4xy dx + 2x^{2} dy) + 2y dy = 0$$
$$d(x^{3}) + d(2x^{2}y) + d(y^{2}) = d(c)$$
$$x^{3} + 2x^{2}y + y^{2} = c$$

Example 2.1.4: Solve the initial-value problem

$$(2x\cos y + 3x^2y) dx + (x^3 - x^2\sin y - y) dy = 0 ; y(0) = 2$$

$$(2x\cos y \, dx - x^2 \sin y \, dy) + (3x^2 y \, dx + x^3 \, dy) - y \, dy = 0$$
$$d(x^2 \cos y) + d(x^3 y) + d(\frac{y^2}{2}) = d(c_1)$$
$$2x^2 \cos y + x^3 y + y^2 = c$$

Substituting x = 0 and y = 2,

$$2^2 = c$$

Hence, the solution is:

$$2x^2 \cos y + x^3 y + y^2 = 4$$

D Integrating Factors

Definition 2.1.3: Integrating Factor (IF)

If the DE

$$M(x,y) dx + N(x,y) dy = 0 (2.1.4)$$

is not exact in a domain D but the DE

$$\mu(x,y)M(x,y) dx + \mu(x,y)N(x,y) dy = 0$$
(2.1.5)

is exact in D, then $\mu(x,y)$ is called an **Integrating Factor** of the DE.

Example 2.1.5: Integrating factor

Consider the DE

$$(3y + 4xy^2) dx + (2x + 3x^2y) dy = 0 (2.1.6)$$

This equation is of the form (2.1.4), where

$$M(x,y) = 3y + 4xy^2,$$
 $N(x,y) = 2x + 3x^2y$ $\frac{\partial M(x,y)}{\partial y} = 3 + 8xy,$ $\frac{\partial N(x,y)}{\partial x} = 2 + 6xy$

Since

$$\frac{\partial M(x,y)}{\partial y} \neq \frac{\partial N(x,y)}{\partial x}$$

except for (x, y) such that 2xy + 1 = 0, Equation (2.1.4) is not exact in any rectangular domain D.

Let $\mu(x,y)=x^2y$. Then the corresponding DE of the form (2.1.5) is

$$(3x^2y^2 + 4x^3y^3) dx + (2x^3y + 3x^4y^2) dy = 0$$

This equation is exact in every rectangular domain D, since

$$\frac{\partial [\mu(x,y)M(x,y)]}{\partial y} = 6x^2y + 12x^3y^2 = \frac{\partial [\mu(x,y)N(x,y)]}{\partial x}$$

For all real (x, y). Hence, $\mu(x, y) = x^2 y$ is an integrating factor of Equation (2.1.6).