Digital Logic Design Assignment 10 - EC2016-17

Priyansh Agrahari

January 2, 2021

1 Question

Assume that all the digital gates in the circuit shown in the figure are ideal, the resistor $R=10~k\Omega$ and the supply voltage is 5 V. The D flip-flops D_1 , D_2 , D_3 , D_4 and D_5 are initialized with logic values 0, 1, 0, 1 and 0, respectively. The clock has a 30% duty cycle.

Figure 1: Question figure

The average power dissipated (in mW) in the resistor R is ______

2 Solution

Let the output waveform be represented by Y. Then, we can infer from the question figure that

$$Y = Q_3 + Q_5 \tag{1}$$

2.1 Truth Table

Clk	\mathbf{Q}_1	\mathbf{Q}_2	\mathbf{Q}_3	\mathbf{Q}_4	\mathbf{Q}_5	$\mathbf{Y} = \mathbf{Q}_3 + \mathbf{Q}_5$
0	0	1	0	1	0	0
1	0	0	1	0	1	1
2	1	0	0	1	0	0
3	0	1	0	0	1	1
4	1	0	1	0	0	1
5	0	1	0	1	0	0

Table 1: Truth Table for the Circuit Diagram given in the Question Figure

Now, using the truth table, we can make the timing diagram as given below.

2.2 Timing Diagram

Figure 2: Timing Diagram for the Circuit Diagram given in the Question Figure

Here, the time 0 to 5 represents one time period T of the clock. From the timing diagram, we can see that out of the total time, the time for which the voltage across the resistor is non-zero for three division out of five.

We can thus calculate the average power using:

$$Average\ power\ dissipated = P_{avg} = \frac{1}{T} \int_0^T VI\ dt \tag{2}$$

writing I in terms of V (5V) and R (10 $k\Omega$), we get:

$$P_{avg} = \frac{1}{T} \frac{V^2}{R} \int_0^T dt \tag{3}$$

placing the value of integral, we get:

$$P_{avg} = \frac{1}{T} \frac{V^2}{R} \frac{3T}{5} \tag{4}$$

finally, placing the values of V and R, we get:

$$P_{avg} = \frac{3}{5} \frac{5^2}{10000} \tag{5}$$

$$P_{avg} = 1.5 (6)$$