UNIVERSIDADE FEDERAL DE ITAJUBÁ - UNIFEI

PROJETO FINAL

ANDRÉ CASADEI MARQUES - 2019010640 GUSTAVO PRIETO ROCHA - 2019013802

ELTD13 Laboratório de Microcontroladores e Microprocessadores 1

ITAJUBÁ

2022

INTRODUÇÃO

O teclado musical a ser projetado, deverá ser capaz de fornecer duas oitavas musicais, com as frequências demonstradas na tabela 1. As chaves SW1 e SW2 irão controlar a oitava que está ativa. O display LCD irá informar, na primeira linha, a oitava ativa e as chaves de SW5 a SW17 irão fornecer as notas musicais. A chave SW3 será utilizada para ajustar o ciclo de trabalho do sinal quadrado enviado ao buzzer, respeitando os valores predeterminados, sendo eles de 25%, 50% e 75%.

O display LCD irá informar na segunda linha o valor de ciclo de trabalho atual e o potenciômetro irá ser usado aumentando a frequência da nota tocada. Por fim, nenhum som deve ser emitido se nenhuma chave estiver pressionada e também não será possível formar sons com mais de uma chave pressionadas ao mesmo tempo.

CÁLCULOS

A C A .	1 1		1	• ,	C		1	TC 1 1 1
As frequências	de cada	nota em	cada	oitava	toram	tornecia	das na	Tabela I

Tecla	Primeira oitava [Hz]	Segunda oitava [Hz]	Nota musica	
SW5	132	264	С	
SW13	140	280	C#	
SW6	148	296	D	
SW14	157	314	D#	
SW7	166	332	Е	
SW8	176	352	F	
SW15	187	374	F#	
SW9	198	396	G	
SW16	209	418	G#	
SW10	222	444	Α	
SW17	235	470	Α#	
SW11	249	498	В	
SW12	132	280	C	

Tabela 1 - Frequência das notas musicais a serem utilizadas.

Para o cálculo das frequências geradas no PWM, tem-se:

$$\begin{split} f_{onda} &= \frac{f_{clk}}{(ARR+1)^*(PSC+1)} \implies (ARR+1)(PSC+1) = \frac{f_{onda}}{f_{clk}} \\ &\Rightarrow PSC = \frac{f_{clk}}{(ARR+1)^*(f_{onda})} - 1 \end{split}$$

Utilizando ARR = 99, temos por exemplo:

$$PSC_{SW5} = \frac{72MHz}{(132Hz \cdot 100)} - 1 = 5454$$

Assim, os resultados podem ser vistos na Tabela 2.

Tecla	Primeir	a oitava	Segunda oitava		
	ARR	PSC	ARR	PSC	
SW5	99	5454	99	2726	
SW13	99	5142	99	2570	
SW6	99	4865	99	2431	
SW14	99	4565	99	2292	

SW7	99	4336	99	2168
SW8	99	4090	99	2044
SW15	99	3849	99	1924
SW9	99	3635	99	1817
SW16	99	3444	99	1721
SW10	99	3242	99	1621
SW17	99	3063	99	1531
SW11	99	2891	99	1445
SW12	99	5454	99	2570

Tabela 2 - Resultados obtidos para o valor de PSC.

CONFIGURAÇÕES

Inicialmente é importante mencionar que foi desenvolvida uma biblioteca para a implementação das funções de configuração do LCD onde também foram implementadas as funções de delay. Esta foi chamada de lcd.

No programa principal chamado main, inclui-se as bibliotecas e são feitas as definições dos pinos utilizados:

```
1 #include "stm32f10x.h"
2 #include "lcd.h"
4 //teclas
5 #define SW1 12
6 #define SW2 13
   #define SW3 14
8 #define SW4 15
9 #define SW5 5
10 #define SW6 4
11 #define SW7 3
   #define SW8 3
13 #define SW9 4
14 #define SW10 8
15 #define SW11 9
16 #define SW12 11
17
   #define SW13 10
18 #define SW14 7
19 #define SW15 15
20 #define SW16 14
21 #define SW17 13
23 //perifericos
24 #define BUZZER 0
25 #define POTENCIOMETRO 1
```

Definição dos valores das notas:

```
27 //notas
28 #define C 132
29 #define Csust 140
30 #define D 148
31 #define Dsust 157
32 #define E 166
33 #define F 176
34 #define F sust 187
35 #define G 189
36 #define Gsust 209
37 #define A 222
38 #define Asust 235
39 #define B 249
```

Em seguidas as funções desenvolvidas para o projeto são declaradas, junto das variáveis de controle usadas.

```
//funcoes desenvolvidas
void inicializar(void);
void som(uint16_t nota);
void timbre(void);
void print(uint16_t valor);
void tecla(uint32_t GPIOA_IDR, uint32_t GPIOB_IDR, uint32_t GPIOC_IDR);
void att_ciclo(uint32_t GPIOB_IDR);
void att_pot(void);
void att_lcd(void);
void clear(void);

//variaveis de controle
uint8_t oitava = 1;
uint8_t ciclo = 25;
uint32_t pot = 0;
```

É implementada a função main em seguida, com o objetivo de inicializar o dispositivo, e entrar num loop infinito para a leitura do valor do potenciômetro e verificação das teclas para emissão do som.

```
57 = int main() {
58     inicializar();
59
60 = while(1) {
61     att_pot();
62     tecla(~(GPIOA->IDR), ~(GPIOB->IDR), ~(GPIOC->IDR));
63     }
64   }
65
```

A função de inicialização configura os clocks, GPIOs, entradas e saídas analógicas e o LCD.

```
66 - void inicializar (void) {
67
       //desativar JTAG
       RCC -> APB2ENR |= RCC_APB2ENR AFIOEN ;
68
69
       AFIO -> MAPR |= AFIO_MAPR_SWJ_CFG_JTAGDISABLE ;
70
      //Ativação dos clocks
71
      RCC->APB2ENR \mid= 0xFC \mid (1<<9);
72
73
       RCC->APB1ENR \mid= (1<<1);
74
75
       //Configuração do GPIOA
76
       GPIOA \rightarrow CRL = 0x43344444; //lcd output
       GPIOA->CRH = 0x34433443; //o resto input
77
78
79
       //Configuração do GPIOB
       GPIOB->CRL = 0x3344430B; //analog input PA1 e PB0 push-pull
80
       \label{eq:gpiob} \texttt{GPIOB->CRH} = 0x444444444; //input SW1~SW7 e SW10~SW13
81
82
83
       //Configuração do GPIOC
       GPIOC->CRH = 0x44433333; //input PC15 PC14 e PC13
84
85
86
       //Configuração do ADC
                          // ADON
87
      ADC1->CR2 = 1;
      ADC1->SMPR2 = 1<<3; //SMP1
88
89
90
       //Configuração do buzzer
      TIM3->CCMR2 = 0x0060; //configura pwm
TIM3->CCER = 0x1 << 8; //CC3P=0 e CC3E=1
91
92
      TIM3->PSC = 10-1;
93
94
95
       //Configuração do LCD
96
       lcd init();
97
       att_lcd();
98
    }
99
```

Uma função para verificar as teclas foi implementada, disparando o som relativo à frequência da tecla pressionada.

```
100 
void tecla(uint32_t GPIOA_IDR, uint32_t GPIOB_IDR, uint32_t GPIOC_IDR) {
    att_ciclo(GPIOB_IDR); //verifica mudano
                                                                                                                                                                                   //verifica mudanca de ciclo
                     102
                                                                                                                                                                                    //verifica teclas
                   else if(GPIOB_IDR & (1<<SW13)) som(oitava * Csust);
else if(GPIOB_IDR & (1<<SW14)) som(oitava * D);
else if(GPIOB_IDR & (1<<SW14)) som(oitava * Dsust);
else if(GPIOB_IDR & (1<<SW14)) som(oitava * Dsust);
else if(GPIOB_IDR & (1<<SW15)) som(oitava * E);
else if(GPIOC_IDR & (1<<SW15)) som(oitava * Fsust);
else if(GPIOC_IDR & (1<<SW15)) som(oitava * G);
else if(GPIOC_IDR & (1<<SW16)) som(oitava * Gust);
else if(GPIOC_IDR & (1<<SW10)) som(oitava * A);
else if(GPIOC_IDR & (1<<SW17)) som(oitava * A);
else if(GPIOB_IDR & (1<<SW17)) som(oitava * B);
else if(GPIOB_IDR & (1<<SW11)) som(oitava * B);
else if(GPIOB_IDR & (1<<SW12)) som(oitava * B);
else if(GPIOB_IDR & (1<<SW12)) som(oitava * B);
else if(GPIOB_IDR & (1<<SW12)) som(oitava * B);
 103
 105
 107
 108
 109
 110
 112
 113
                      114
 115
116
117
```

A função de cálculo da frequência do PWM e do timer baseado no valor da frequência.

Em seguida, a função que recebe o valor do potenciômetro, e realiza a conversão analógico digital e salva o valor em uma variável de controle.

Depois, a função que controla a atualização dos ciclos e das oitavas, também chamando a função que atualiza o display.

```
132 poid att_ciclo(uint32_t GPIOB_IDR) {
133 if (GPIOB_IDR & (1<<SW1)) { //primeira oitava
134
        oitava = 1;
135
        att_lcd();
136
137
138 else if (GPIOB IDR & (1<<SW2)) { //segunda oitava
139
       oitava = 2;
140
        att lcd();
141
142
143 if (GPIOB_IDR & (1<<SW3)) { //mudar ciclo
      ciclo += 25;
144
145
        if(ciclo > 75) ciclo = 25;
146
        att_lcd();
147
148 }
149
```

Por fim, a função que atualiza o display e outras funções, para limpar o display e printar os dígitos.

```
150 ⊟void att lcd(void) {
151
      clear();
152
      lcd print("Oitava: ");
153
      print(oitava);
154
      lcd command(0xC0); //pula linha
      lcd print("Ciclo: ");
155
156
      print(ciclo);
157
    }
158
159 <u>-void</u> print(uint16 t valor) {
160
      lcd data((valor/100)%10 + 0x30); //centena
161
       lcd_data((valor/10)%10 + 0x30); //dezena
162
       lcd data(valor%10 + 0x30);
                                        //unidade
163
    }
164
165 - void clear (void) {
      lcd command (0x01); //limpa
166
167
       lcd command (0x02); //volta linha 1
168
    }
169 4
```