Exercice 1: (Sommes classiques.)

1. Soit w la suite arithmétique de premier terme w_0 = 7 et de raison 10.

Calculer $S = w_0 + w_1 + ... + w_{20} = \sum_{k=0}^{k=20} w_k$.

3. Soit v la suite arithmétique telle que $v_{60} = 3$ et de raison 0,76.

Calculer $S = v_4 + v_5 + ... + v_{41} = \sum_{k=4}^{k=41} v_k$.

2. Soit w la suite arithmétique de premier terme $w_0 = 8$ et de raison 4, 5.

Calculer $S = w_{15} + w_{16} + ... + w_{40} = \sum_{k=15}^{k=40} w_k$.

4. Soit u la suite arithmétique telle que $u_8 = \frac{3}{2}$ et $u_{63} = \frac{45}{60}$.

Calculer $S = u_{19} + u_{20} + ... + u_{42} = \sum_{k=10}^{k=42} u_k$.

Exercice 2 : (Avec critères de divisibilités.)

- 1. Calculer la somme de tous les entiers naturels multiples de 3 inférieurs à 1 000.
- 2. Calculer la somme de tous les entiers naturels multiples de 5 inférieurs à 9 999.
- 3. Calculer la somme de tous les nombres entiers naturels inférieurs à 2 154 ayant 3 comme chiffre des unités.

Exercice 3 : (Problème de tuyaux.)

Des tuyaux sont rangés comme indiqué ci-contre:

- 1. Quel est le nombre total de tuyaux dans un empilage de 5 couches ? 12 couches ?
- 2. On a stocké 153 tuyaux, combien y a-t-il de couches ?
- 3. Pour ranger 200 tuyaux, combien faut-il de couches ? Combien reste t-il de tuyaux ?

Exercice 4: (Manipulation de la formule.)

Soit (u_n) une suite arithmétique de raison r, de premier terme u_1 et de n-ième terme u_n . On note $S_n = u_1 + u_2 + \cdots + u_n$.

Les questions sont indépendantes les unes des autres.

- 1. Calculer u_1 et S_{17} lorsque : $u_{17} = 105$ et r = 2
- 2. Calculer u_1 et u_{33} lorsque : r = -7 et S_{33} = 0
- 3. Calculer n et u_1 lorsque : u_n = 14, r = 7 et S_n = -1176