Dokazování neřešitelnosti, redukce problémů, Riceova věta

Jan Konečný

22. října 2013

1 / 21

Shrnutí předchozích přednášek

Jak ukázat že $L \in \mathbb{R}$:

sestavit TS, který ho rozhoduje.

Jak ukázat že $L \in \check{\mathsf{CR}}$:

sestavit TS, který ho přijímá.

Jak ukázat že $L \notin R$:

• (známe pár individuálních důkazů).

Jak ukázat že $L \notin \check{\mathsf{CR}}$:

• (známe pár individuálních důkazů).

Redukce

Připomínka z PŘEDNÁŠKY 4

Důkaz, že $L_U \notin R$:

Důkaz.

Sporem: předpokládejme, že rekurzivní je. A tedy existuje TS U který rozhoduje L_{II} .

Sestavíme následující TS D:

TS D pro [T], kde T je TS:

- Spustí U pro [T, [T]], pokud
 - U přijme [T, [T]], D zamítne.
 - U zamítne [T, [T]], D přijme.

Takto sestrojený TS D rozhoduje L_d . **SPOR**.

- Převedli jsme L_U na L_d .
- konstatovali jsme, že pokud bychom mohli rozhodovat původní problém, mohli bychom i rozhodovat ten, na který jsme ho převedli.
- došli jsme ke sporu.

4 / 21

Definice

Nechť $L_1,L_2\subseteq \Sigma^*$. Vyčíslitelné zobrazení $r:\Sigma^*\to \Sigma^*$ nazýváme redukce L_1 na L_2 , pokud platí:

$$w \in L_1$$
 právě když $r(w) \in L_2$.

Pokud taková redukce existuje, říkáme, že L_1 je redukovatelný na L_2 . Značíme $L_1 \leq_{\mathbf{r}} L_2$.

Poznámka

Obvykle se spíše hovoří o redukci problémů:

Nechť $\mathcal{P}_1,\mathcal{P}_2$ jsou problémy. Vyčíslitelné zobrazení $r:\Sigma^*\to\Sigma^*$ nazýváme redukce \mathcal{P}_1 na \mathcal{P}_2 , pokud platí:

$$w \in \mathcal{P}_1$$
 právě když $r([w]) \in \mathcal{P}_2$

Grafické znázornění redukce

6 / 21

Věta

Nechť $L_1, L_2 \in \Sigma^*$ a $L_1 \leq_r L_2$. Pak platí:

- Pokud $L_2 \in R$, pak $L_1 \in R$.
- Pokud $L_2 \in \check{C}R$, pak $L_1 \in \check{C}R$.

Důkaz.

Nechť TS T_2 rozhoduje L_2 . Nechť TS R vyčisluje redukci L_1 na L_2 . TS T_1 , který rozhoduje L_1 sestrojíme takto:

 $TS T_1 pro w$

- spustí R pro w, obdržíme r(w),
- **2** spustí T_2 pro r(w), pokud T_2 přijme, T_1 přijme; pokud T_2 zamítne, T_1 zamítne.

Pro druhou část podobně.

Co lze na co redukovat?

8 / 21

Ta věta je nahouby (proč?)

Jak ukázat že $L \in R$:

- sestavit TS, který ho rozhoduje.
- ullet ukázat, že je redukovatelný na nějaký jazyk v R.

Jak ukázat že $L \in \check{\mathsf{CR}}$:

- sestavit TS, který ho přijímá.
- ukázat, že je redukovatelný na nějaký jazyk v ČR.

Jak ukázat že $L \notin R$:

(známe pár individuálních důkazů).

Jak ukázat že $L \notin \check{\mathsf{CR}}$:

• (známe pár individuálních důkazů).

Věta

Nechť $L_1, L_2 \in R$ a L_1 je redukovatelný na L_2 . Pak platí:

- Pokud $L_1 \notin R$, pak $L_2 \notin R$.
- Pokud $L_1 \notin \check{C}R$, pak $L_2 \notin \check{C}R$.

Teď už se to dá použít k dokazování neřešitelnosti.

ldea důkazu.

 $A \Rightarrow B$ je totéž jako $\neg B \Rightarrow \neg A$.

A tak to přímo vyplývá z předchozí věty.

Teď už to není nahouby

Jak ukázat že $L \in R$:

- sestavit TS, který ho rozhoduje.
- ullet ukázat, že je redukovatelný na nějaký jazyk v R.

Jak ukázat že $L \in \check{\mathsf{CR}}$:

- sestavit TS, který ho přijímá.
- ukázat, že je redukovatelný na nějaký jazyk v ČR.

Jak ukázat že $L \notin R$:

ukázat, že jiný nerekurzivní jazyk na něj lze redukovat.

Jak ukázat že $L \notin \check{\mathsf{CR}}$:

 ukázat, že jiný jazyk, který není částečně rekurzivní, na něj lze redukovat.

Ukázka použití

Příklad

Důkaz, že $L_u \notin R$.

$$L_u = \{ [T, w] \mid \mathsf{TS}\ T\ \mathsf{p\check{r}ij\check{n}}\check{m}\check{a}\ w \}$$

Víme, že $\Sigma^* \setminus L_d \notin R$.

 $\mathsf{Redukce} \colon r([T]) = [T,[T]] \text{ (zjevně } [T,[T]] \in L_u \text{ p.k. } [T] \in \Sigma^* \setminus L_d).$

Podle věty od redukci dostáváme $L_u \notin R$.

Příklad

Problém zastavení: redukce predvedena na PŘEDNÁŠCE 3.

(zopakovat na TABULI)

Zkusme si to (jakože cvičení)

Příklad

Zatřiď te následující jazyky:

- $L_{\varepsilon} = \{ [T] \mid T \text{ je TS a } \varepsilon \in L(T) \}.$
- $\bullet \ L_{eq} = \{ [T_1, T_2] \mid \ T_1, T_2 \text{ jsou TS a } L(T_1) = L(T_2) \ \}.$
- $L_1 = \{ [T] \mid T \text{ je TS a } |L(T)| = 1 \}.$
- $L_c = \{ [T_1, T_2] \mid T_1, T_2 \text{ jsou TS a } L(T_1) \cap L(T_2) = \emptyset \}.$
- $L_{<5} = \{ [T] \mid T \text{ je TS a } |L(T)| < 5 \}.$
- $L_L = \{ [T] \mid T \text{ je TS a } L(T) = L \}.$

Riceova věta

Pozorování

- $\bullet \ L_{\varepsilon} = \{ [T] \mid \ T \text{ je TS a } \epsilon \in L(T) \ \}.$
- $L_1 = \{ [T] \mid T \text{ je TS a } |L(T)| = 1 \}.$
- $L_{<5} = \{ [T] \mid T \text{ je TS a } |L(T)| < 5 \ \}.$
- $L_L = \{[T] \mid T \text{ je TS a } L(T) = L \}.$
- \bullet L_{\emptyset} , ...

Společné vlastnosti těchto jazyků?

Pozorování

- $L_{\varepsilon} = \{ [T] \mid T \text{ je TS a } \epsilon \in L(T) \}.$
- $L_1 = \{ [T] \mid T \text{ je TS a } |L(T)| = 1 \}.$
- $\bullet \ L_{<5} = \{[T] \mid \ T \ \mathrm{je} \ \mathsf{TS} \ \mathsf{a} \ |L(T)| < 5 \ \}.$
- $L_L = \{[T] \mid T \text{ je TS a } L(T) = L \}.$
- \bullet L_{\emptyset} , ...

Společné vlastnosti těchto jazyků?

- slova jsou kódy TS,
- zajímáme se o vlastnosti jazyků (nikoli TS),
- jsou netriviální,
- nejsou rekurzivní.

Věta (Riceova)

Nechť L je jazyk, jehož slova jsou kódy TS, a platí

- pokud $L(T_1) = L(T_2)$, pak $[T_1] \in L \Leftrightarrow [T_2] \in L$.
- $\exists T_1, T_2 \ \textit{t.\check{z}}. \ [T_1] \in L, [T_2] \notin L.$

L není rekurzivní.

Ukažte, že obě podmínky z Riceovy věty jsou nutné (minicviko).

ldea důkazu: ukážeme, že $L_U \leq_{\mathsf{r}} L$.

Důkaz.

Předpokládejme,

- že TS $[T_{\emptyset}] \notin L$; $L(T_{\emptyset}) = \emptyset$ (kdyby ne, můžeme toto ukázat pro $\Sigma^* \setminus L$ a použít výsledky z PŘEDNÁŠKY 2).
- že TS $[S] \in L$ (musí existovat z podmínek v Riceově větě).

Nejdříve uveď me následující TS:

 $TS \ H_{\langle T,w \rangle} \ \mathit{pro} \ x$

- ullet spustí T pro w, pokud přijme pokračuje dalším bodem, jinak cyklí.
- chová se jako S pro x.

$$L(H_{\langle T,w\rangle}) = \begin{cases} L(S) & \text{ pokud } w \in L(T) \\ \emptyset & \text{ jinak}. \end{cases}$$

 $r: [T,w] \mapsto [H_{\langle T,w \rangle}]$ je naše redukce.

Jan Konečný Redukce problémů 22. října 2013 18 / 21

Turingovská redukovatelnost

Redukce, kterou jsme uvedli předtím nepokrývá intuitivní pojem redukovatelnosti v obecném smyslu.

Např. uvažme: L_u a $\neg L_u$; Víme, že stačí vědět, že $L_u \in \check{\mathsf{CR}} \setminus \mathsf{R}$, a z toho hned dostaneme $\neg L_u \notin \check{\mathsf{CR}}$.

Teď uvedeme velmi obecný pojem redukovatelnosti: Turingovská redukovatelnost.

Definice

Orákulum pro jazyk B je "externí zařízení", které je schopné odpovědět, jestli $w \in B$. $Oráklový\ TS$ je TS, používající orákulum jako modul.

Nebude nás zajímat jak to orákulum dělá... prostě magie.

Definice

Jazyk A je *Turingovsky redukovatelný* na jazyk B, psáno $A \leq_{\mathsf{T}} B$, pokud A je rozhodovaný relativně k B.

Věta

Pokud $A \leq_T B$ a B je rozhodovaný, pak A je rozhodovaný.

Důkaz.

Pokud B je rozhodovaný, pak můžeme nahradit orákulum pro B strojem, která rozhoduje B. A tedy oráklový TS pro A můžeme nahradit běžným TS, který rozhoduje A.