Speaker-Aware Mixture of Mixtures Training for Weakly Supervised Speaker Extraction

INTERSPEECH 2022

Zifeng Zhao, Rongzhi Gu, Dongchao Yang, Jinchuan Tian, Yuexian Zou*

ADSPLAB, School of Electronics and Computer Engineering, Peking University

- Cocktail-party Problem
 - speech sepataion (SS)
 - target speaker extracion (TSE)

- Drawbacks of mix-and-separate paradigm
 - need of clean corpus
 - channel mismatch

- Cocktail-party Problem
 - speech sepataion (SS)
 - target speaker extracion (TSE)

- Drawbacks of mix-and-separate paradigm
 - need of clean corpus
 - channel mismatch

- Cocktail-party Problem
 - speech sepataion (SS)
 - target speaker extracion (TSE)

- Drawbacks of mix-and-separate paradigm
 - need of clean corpus
 - channel mismatch

- Cocktail-party Problem
 - speech sepataion (SS)
 - target speaker extracion (TSE)

- Drawbacks of mix-and-separate paradigm
 - need of clean corpus
 - channel mismatch

- Cocktail-party Problem
 - speech sepataion (SS)
 - target speaker extracion (TSE)

- Drawbacks of mix-and-separate paradigm
 - need of clean corpus
 - channel mismatch

- Cocktail-party Problem
 - speech sepataion (SS)
 - target speaker extracion (TSE)

- Drawbacks of mix-and-separate paradigm
 - need of clean corpus
 - channel mismatch

Intuition

- weakly supervised learning
- premordial speech mixtures as training samples
- speaker identity consistency among: target / enrollment / estimate

Intuition

- weakly supervised learning
- premordial speech mixtures as training samples
- speaker identity consistency among: target / enrollment / estimate

Intuition

- weakly supervised learning
- premordial speech mixtures as training samples
- speaker identity consistency among: target / enrollment / estimate

- Methods
 - STEP 1: Input Generation

Figure 2: The proposed SAMoM training framework.

- Methods
 - STEP 2: Targe Speaker Extraction

Figure 2: The proposed SAMoM training framework.

- Methods
 - STEP 2: Targe Speaker Extraction

Figure 2: The proposed SAMoM training framework.

- Methods
 - STEP 2: Targe Speaker Extraction

Figure 2: The proposed SAMoM training framework.

- Methods
 - **STEP 3**: Mixture Remix

Figure 2: The proposed SAMoM training framework.

• Exp1: Proposed VS Baselines

Data

- ✓ trainset: Libri2Mix (8kHz)
- ✓ testset: Libri2Mix (8kHz)

Models

- ✓ **SS**: Conv-TasNet
- ✓ **TSE**: TD-SpeakerBeam

- Training Methods

- ✓ fully supervised baselines (for SS and TSE)
- ✓ unsupervised MixIT (for SS)
- ✓ weakly supervised SAMoM (for TSE)
- ✓ domain adaptation with SAMoM (for TSE)

	SI-SDRi (dB)	SDRi (dB)	STOI	PESQ
sup SS	13.40	13.82	0.92	2.74
sup TSE	12.86	13.40	0.90	2.75
unsup MixIT	5.72	6.92	0.79	1.98
SAMoM	8.97	9.80	0.85	2.28
+Adaptation	11.06	11.64	0.88	2.41

Table 2: Performance of different training methods for speech separation and speaker extraction on Libri2Mix.

(a) Two-speaker mixture

(b) Source of speaker 1

(d) Estimate of speaker 1

(e) Estimate of speaker

Exp1: Proposed VS Baselines

Data

- ✓ trainset: Libri2Mix (8kHz)
- ✓ testset: Libri2Mix (8kHz)

Models

- ✓ **SS**: Conv-TasNet
- ✓ **TSE**: TD-SpeakerBeam

Training Methods

- ✓ fully supervised baselines (for SS and TSE)
- ✓ unsupervised MixIT (for SS)
- ✓ weakly supervised SAMoM (for TSE)
- ✓ domain adaptation with SAMoM (for TSE)

	SI-SDRi (dB)	SDRi (dB)	STOI	PESQ
sup SS	13.40	13.82	0.92	2.74
sup TSE	12.86	13.40	0.90	2.75
unsup MixIT	5.72	6.92	0.79	1.98
SAMoM	8.97	9.80	0.85	2.28
+Adaptation	11.06	11.64	0.88	2.41

Table 2: Performance of different training methods for speech separation and speaker extraction on Libri2Mix.

(a) Two-speaker mixture

(b) Source of speaker 1

(d) Estimate of speaker 1

(e) Estimate of speaker

• Exp1: Proposed VS Baselines

Data

- ✓ trainset: Libri2Mix (8kHz)
- ✓ testset: Libri2Mix (8kHz)

Models

- ✓ **SS**: Conv-TasNet
- ✓ **TSE**: TD-SpeakerBeam

Training Methods

- ✓ fully supervised baselines (for SS and TSE)
- ✓ unsupervised MixIT (for SS)
- ✓ weakly supervised SAMoM (for TSE)
- ✓ domain adaptation with SAMoM (for TSE)

	SI-SDRi (dB)	SDRi (dB)	STOI	PESQ
sup SS	13.40	13.82	0.92	2.74
sup TSE	12.86	13.40	0.90	2.75
unsup MixIT	5.72	6.92	0.79	1.98
SAMoM	8.97	9.80	0.85	2.28
+Adaptation	11.06	11.64	0.88	2.41

Table 2: Performance of different training methods for speech separation and speaker extraction on Libri2Mix.

(a) Two-speaker mixture

(b) Source of speaker 1

(c) Source of speaker 2

(d) Estimate of speaker 1

(e) Estimate of speaker

Exp2: Cross-Domain Evaluation

Data

- ✓ trainset: Libri2Mix (8kHz)
- ✓ testset: aishell1-2mix (8kHz)

Models

- ✓ SS: Conv-TasNet
- ✓ TSE: TD-SpeakerBeam

- Training Methods

- ✓ fully supervised baselines (for TSE)
- ✓ weakly supervised SAMoM (for TSE)
- ✓ domain adaptation with SAMoM (for TSE)

	Libri2Mix / test set	aishell1-2mix / eval set
#Speakers	40	60
#Utterances	3000	2500
Hours	11	2.08
Language	English	Chinese

Table 1: A comparison between the test set of Libri2Mix and the evaluation set of aishell1-2mix.

	SI-SDRi (dB)	SDRi (dB)	STOI	PESQ
sup TSE	1.99	2.65	0.68	1.77
+Adaptation	4.56	5.48	0.73	2.06
SAMoM	0.73	1.97	0.66	1.72
+Adaptation	5.86	6.64	0.75	2.12

Table 3: Cross-domain evaluation on aishell1-2mix.

Exp2: Cross-Domain Evaluation

Data

- ✓ trainset: Libri2Mix (8kHz)
- ✓ testset: aishell1-2mix (8kHz)

Models

- ✓ **SS**: Conv-TasNet
- ✓ **TSE**: TD-SpeakerBeam

- Training Methods

- ✓ fully supervised baselines (for TSE)
- ✓ weakly supervised SAMoM (for TSE)
- ✓ domain adaptation with SAMoM (for TSE)

_		
	Libri2Mix / test set	aishell1-2mix / eval set
#Speakers	40	60
#Utterances	3000	2500
Hours	11	2.08
Language	English	Chinese

Table 1: A comparison between the test set of Libri2Mix and the evaluation set of aishell1-2mix.

	SI-SDRi (dB)	SDRi (dB)	STOI	PESQ
sup TSE	1.99	2.65	0.68	1.77
+Adaptation	4.56	5.48	0.73	2.06
SAMoM	0.73	1.97	0.66	1.72
+Adaptation	5.86	6.64	0.75	2.12

Table 3: Cross-domain evaluation on aishell1-2mix.

Thanks for Your Attention!

That's All

Zifeng Zhao, Rongzhi Gu, Dongchao Yang, Jinchuan Tian, Yuexian Zou*

ADSPLAB, School of Electronics and Computer Engineering, Peking University

