Inference for ATE with Small Strata and Cluster-Level Treatment Assignment

Juri Trifonov

Mar 2024

1 Individual-level treatment assignment

1.1 Notation and Setup

Consider n strata, each of fixed size k. In the case of individual-level treatment assignment, strata are formed by matching individuals according to some function. For cluster-level treatment assignment, strata consist of clusters. Within each stratum, k(d) units are assigned to treatment d, and k(0) units to control. The total number of units is $N=n\times k$ in the individual-level assignment case, and the total number of clusters is $G=n\times k$ in the cluster-level case. We define the share of units assigned to treatment d as $\pi_d=\frac{k(d)}{k}$, and the share assigned to control as $\pi_0=\frac{k(0)}{k}$, where k(d) and k(0) are coprime.

1.2 ATE Estimator

For every treatment $d \in \mathcal{D}$, define the following objects:

$$N_d := \sum_{1 \le i \le N} \mathbb{I}\{D_i = d\}, \text{ and } N_0 := \sum_{1 \le i \le N} \mathbb{I}\{D_i = 0\}.$$

Then, we can define the ATE estimator for every treatment $d \in \mathcal{D}$ as follows:

$$\hat{\theta}_{d}^{adj} = \frac{1}{N_{d}} \sum_{1 \leq i \leq N} Y_{i} \mathbb{I}\{D_{i} = d\} - \frac{1}{N_{0}} \sum_{1 \leq i \leq N} Y_{i} \mathbb{I}\{D_{i} = 0\} - \left[\frac{1}{N_{d}} \sum_{1 \leq i \leq N} \left(\psi_{i} - \bar{\psi}_{N}\right) \mathbb{I}\{D_{i} = d\} - \frac{1}{N_{0}} \sum_{1 \leq i \leq N} \left(\psi_{i} - \bar{\psi}_{N}\right) \mathbb{I}\{D_{i} = 0\} \right]' \hat{\beta}_{d},$$

where $\hat{\beta}_d$ is estimated by running the following regression:

$$\left(\frac{1}{k(d)} \sum_{i \in \lambda_j} Y_i \mathbb{I}\{D_i = d\} - \frac{1}{k(0)} \sum_{i \in \lambda_j} Y_i \mathbb{I}\{D_i = 0\}\right) = \gamma + \left(\frac{1}{k(d)} \sum_{i \in \lambda_j} \psi_i \mathbb{I}\{D_i = d\} - \frac{1}{k(0)} \sum_{i \in \lambda_j} \psi_i \mathbb{I}\{D_i = 0\}\right)' \beta_d + v_i.$$

Remark 1. Note that this estimator is equivalent to the partialled Lin estimator (PLin) discussed in Cytrynbaum (2024). To see this, observe that we can rewrite the estimator in the general form:

$$\hat{\theta}_{adj} = \hat{\theta}_{un} - \left(\bar{\psi}_1 - \bar{\psi}_0\right)'\hat{\beta}.$$

Specifically,

$$\frac{1}{N_1} \sum_{i=1}^{N} (\psi_i - \bar{\psi}_N) D_i = \bar{\psi}_1 - \frac{1}{N_1} N_1 \bar{\psi}_N = \bar{\psi}_1 - \bar{\psi}_N,$$

$$\frac{1}{N_0} \sum_{i=1}^{N} (\psi_i - \bar{\psi}_N)(1 - D_i) = \bar{\psi}_0 - \frac{1}{N_0} N_0 \bar{\psi}_N = \bar{\psi}_0 - \bar{\psi}_N.$$

Subtracting the second expression from the first yields exactly the form used in the PLin estimator.

1.3 Variance Estimator

First, define the adjusted outcome Y_i^a :

$$Y_i^a = Y_i - (\psi_i - \bar{\psi}_N)' \hat{\beta}_d.$$

Next, define the following objects to construct the variance estimator:

$$\hat{\Gamma}_n(d) := \frac{1}{n \times k(d)} \sum_{1 \le i \le N} Y_i^a \mathbb{I}\{D_i = d\}; \quad \hat{\Gamma}_n(0) := \frac{1}{n \times k(0)} \sum_{1 \le i \le N} Y_i^a \mathbb{I}\{D_i = 0\},$$

where $k(d) = \sum_{i \in \lambda_j} \mathbb{I}\{D_i = d\}$ and $k(0) = \sum_{i \in \lambda_j} \mathbb{I}\{D_i = 0\}$, i.e., they represent the number of treated (with treatment d) and untreated observations in each stratum (tuple), respectively.

Then,

$$\hat{\sigma}_n^2(d) := \frac{1}{n \times k(d)} \sum_{1 \le i \le N} \left(Y_i^a - \hat{\Gamma}_n(d) \right)^2 \mathbb{I}\{D_i = d\};$$

$$\hat{\sigma}_n^2(0) := \frac{1}{n \times k(0)} \sum_{1 \le i \le N} \left(Y_i^a - \hat{\Gamma}_n(0) \right)^2 \mathbb{I} \{ D_i = 0 \}.$$

Further, consider the following objects:

$$\begin{split} \hat{\rho}_n(d,0) &:= \frac{1}{n} \sum_{1 \leqslant j \leqslant n} \frac{1}{k(d) \times k(0)} \left(\sum_{i \in \lambda_j} Y_i^a \mathbb{I}\{D_i = d\} \right) \left(\sum_{i \in \lambda_j} Y_i^a \mathbb{I}\{D_i = 0\} \right); \\ \hat{\rho}_n(d,d) &:= \frac{2}{n} \sum_{1 \leqslant j \leqslant \lfloor n/2 \rfloor} \frac{1}{k(d)^2} \left(\sum_{i \in \lambda_{2j-1}} Y_i^a \mathbb{I}\{D_i = d\} \right) \left(\sum_{i \in \lambda_{2j}} Y_i^a \mathbb{I}\{D_i = d\} \right); \\ \hat{\rho}_n(0,0) &:= \frac{2}{n} \sum_{1 \leqslant j \leqslant \lfloor n/2 \rfloor} \frac{1}{k(0)^2} \left(\sum_{i \in \lambda_{2j-1}} Y_i^a \mathbb{I}\{D_i = 0\} \right) \left(\sum_{i \in \lambda_{2j}} Y_i^a \mathbb{I}\{D_i = 0\} \right); \end{split}$$

and also the following components of the variance estimator:

$$\hat{\mathbb{V}}_{1,n}(d) := \hat{\sigma}_n^2(d) - \left(\hat{\rho}_n(d,d) - \hat{\Gamma}_n(d)\right)^2, \quad \hat{\mathbb{V}}_{1,n}(0) := \hat{\sigma}_n^2(0) - \left(\hat{\rho}_n(0,0) - \hat{\Gamma}_n(0)\right)^2;$$

$$\hat{\mathbb{V}}_{2,n}(d,d) := \hat{\rho}_n(d,d) - \hat{\Gamma}_n^2(d), \quad \hat{\mathbb{V}}_{2,n}(0,0) := \hat{\rho}_n(0,0) - \hat{\Gamma}_n^2(0);$$

$$\hat{\mathbb{V}}_{2,n}(d,0) := \hat{\rho}_n(d,0) - \hat{\Gamma}_n(d)\hat{\Gamma}_n(0).$$

Finally, we can define the variance estimator as follows:

$$\hat{\mathbb{V}}^{adj} = \frac{1}{\pi_1} \hat{\mathbb{V}}_{1,n}(d) + \frac{1}{\pi_0} \hat{\mathbb{V}}_{1,n}(0) + \hat{\mathbb{V}}_{2,n}(d,d) + \hat{\mathbb{V}}_{2,n}(0,0) - 2\hat{\mathbb{V}}_{2,n}(d,0).$$

Then, the "adjusted" t-test is defined as:

$$\phi_N^{adj}\left(W^{(N)}\right) = \mathbb{I}\left\{\left|\sqrt{N}\left(\hat{\theta}^{adj} - \theta_0\right)/\hat{\mathbb{V}}^{adj}\right| > z_{1-\alpha/2}\right\},$$

and the test is asymptotically exact, i.e., under the true H_0 :

$$\lim_{n \to \infty} \mathbb{E}\left[\phi_N^{adj}\left(W^{(N)}\right)\right] = \alpha.$$

1.3.1 Mixed Estimator Setup

Consider a mixed estimator that is a weighted average of estimators for observations in "small" and "big" strata, i.e.,

$$\hat{\tau}_{mix} = \frac{N_S}{N} \times \hat{\tau}_S + \frac{N_B}{N} \times \hat{\tau}_B,$$

where N_S and N_B represent the number of observations in "small" and "big" strata respectively.

$$\begin{split} \sqrt{N}(\hat{\tau}_{mix} - \tau) &= \sqrt{N} \left(\left[\frac{N_s}{N} \times \hat{\tau}_S + \frac{N_B}{N} \times \hat{\tau}_B \right] - \left[p_S \times \tau_S + p_B \times \tau_B \right] \right) \\ &= \underbrace{\sqrt{N} \left(\frac{N_B}{N} (\hat{\tau}_B - \tau_B) + \frac{N_S}{N} (\hat{\tau}_S - \tau_S) \right)}_{W} \\ &- \underbrace{\sqrt{N} \left(\tau_B \left(\frac{N_B}{N} - p_B \right) + \tau_S \left(\frac{N_S}{N} - p_S \right) \right)}_{Z} \end{split}$$

Consider the variance of the first term:

$$\mathbb{V}[W] = N \left(\frac{N_B}{N}\right)^2 \times \mathbb{V}[\hat{\tau}_B] + N \left(\frac{N_S}{N}\right)^2 \times \mathbb{V}[\hat{\tau}_S].$$

Now, consider the variance of Z. Note that $\frac{N_S}{N}=1-\frac{N_B}{N}$ and $p_S=1-p_B$. Also, denote $X:=\frac{N_B}{N}-p_B$. Then clearly:

$$\frac{N_S}{N} - p_S = -\frac{N_B}{N} - p_B = -X.$$

Thus, we can rewrite the second term as:

$$Z := \sqrt{N} \left(X(\tau_B - \tau_S) \right) = \sqrt{N} \left[\tau_B \left(\frac{N_b}{N} - p_B \right) - \tau_S \left(\frac{N_B}{N} - p_B \right) \right].$$

We can now compute the $\mathbb{V}[Z]$:

$$\mathbb{V}[Z] = N(\tau_B - \tau_S)^2 \mathbb{V}\left[\frac{N_B}{N} - p_B\right],$$

where

$$\mathbb{V}\left[\frac{N_B}{N} - p_B\right] = \frac{p_B(1 - p_B)}{N}.$$

Thus, using the plug-in estimator, we get:

$$\hat{\mathbb{V}}[Z] = \frac{N_B \times N_S}{N^2} \left(\hat{\tau}_B - \hat{\tau}_S\right)^2.$$

Finally, combining both terms, the variance estimator of $\hat{\tau}_{mix}$ takes the following form:

$$\begin{split} \hat{\mathbb{V}} [\hat{\tau}_{mix}] &= \left(\frac{N_S}{N}\right)^2 \times \hat{\mathbb{V}}_S + \left(\frac{N_B}{N}\right)^2 \times \hat{\mathbb{V}}_B \\ &+ \frac{N_B \times N_S}{N^2} \times (\hat{\tau}_B - \hat{\tau}_S)^2 \end{split}$$

Remark 2. Note that the estimator for $\mathbb{V}[Z]$ coincides with the estimator $\frac{1}{N}\sum_{i=1}^{N} \hat{\Xi}_{2}(s)$ in the expression for a "big-strata" variance estimator (or in **jiang2023**)

2 Cluster-level treatment assignment

2.1 ATE Estimator

It is natural to generalize the setup for the cluster-level treatment assignment.

First, the one-step procedure assigns treatment on a cluster level. That is, either everyone in a cluster is treated or not. Then, the adjusted ATE estimator can be defined for every treatment $d \in \mathcal{D}$ as follows:

$$\begin{split} \hat{\theta}_{d}^{adj} &= \frac{1}{G_{d}} \sum_{1 \leqslant g \leqslant G} N_{g} \bar{Y}_{g} \mathbb{I}\{D_{g} = d\} - \frac{1}{G_{0}} \sum_{1 \leqslant g \leqslant G} N_{g} \bar{Y}_{g} \mathbb{I}\{D_{g} = 0\} \\ &- \left[\frac{1}{G_{d}} \sum_{1 \leqslant g \leqslant G} \left(\psi_{g} - \bar{\psi}_{G} \right) \mathbb{I}\{D_{g} = d\} - \frac{1}{G_{0}} \sum_{1 \leqslant g \leqslant G} (\psi_{g} - \bar{\psi}_{G}) \mathbb{I}\{D_{g} = 0\} \right]' \hat{\beta}_{d}, \end{split}$$

where $\hat{\beta}_d$ is estimated by running the following regression:

$$\begin{split} \left(\frac{1}{k(d)} \sum_{g \in \lambda_j} \bar{Y}_g \bar{N}_G \mathbb{I}\{D_g = d\} - \frac{1}{k(0)} \sum_{g \in \lambda_j} \bar{Y}_g \bar{N}_G \mathbb{I}\{D_g = 0\} \right) = \gamma \\ + \left(\frac{1}{k(d)} \sum_{g \in \lambda_j} \psi_g \mathbb{I}\{D_g = d\} - \frac{1}{k(0)} \sum_{g \in \lambda_j} \psi_g \mathbb{I}\{D_g = 0\} \right)' \beta_d + v_i, \end{split}$$

where $G_d = \sum_{1 \leqslant g \leqslant G} \mathbb{I}\{D_g = d\}N_g, G_0 = \sum_{1 \leqslant g \leqslant G} \mathbb{I}\{D_g = 0\}N_g, \text{ and } \bar{N}_G = \sum_{1 \leqslant g \leqslant G} N_g/G.$

2.2 Variance Estimator

First, define the adjusted cluster-level outcome \bar{Y}_a^a :

$$\bar{Y}_g^a = \frac{N_g}{\frac{1}{G} \sum_{1 \leqslant q \leqslant G} N_g} \bar{Y}_g - \frac{(\psi_g - \bar{\psi}_G)' \hat{\beta}_d}{\frac{1}{G} \sum_{1 \leqslant q \leqslant G} N_g}.$$

Next, define the following objects to construct the variance estimator:

$$\hat{\Gamma}_n(d) := \frac{1}{n \times k(d)} \sum_{1 \leqslant g \leqslant G} \bar{Y}_g^a \mathbb{I}\{D_g = d\}; \ \hat{\Gamma}_n(0) := \frac{1}{n \times k(0)} \sum_{1 \leqslant g \leqslant G} \bar{Y}_g^a \mathbb{I}\{D_g = 0\},$$

where $k(d) = \sum_{g \in \lambda_j} \mathbb{I}\{D_g = 1\}$ and $k(0) = \sum_{g \in \lambda_j} \mathbb{I}\{D_g = 0\}$, i.e., represent the number of treated with treatment d/untreated clusters in each strata (tuple).

Then,

$$\hat{\sigma}_n^2(d) := \frac{1}{n \times k(d)} \sum_{1 \le a \le G} \left(\bar{Y}_g^a - \hat{\Gamma}_n(d) \right)^2 \mathbb{I}\{D_g = d\};$$

$$\hat{\sigma}_n^2(0) := \frac{1}{n \times k(0)} \sum_{1 \le g \le G} \left(\bar{Y}_g^a - \hat{\Gamma}_n(0) \right)^2 \mathbb{I}\{D_g = 0\}.$$

Further, consider the following objects:

$$\begin{split} \hat{\rho}_n(d,0) &:= \frac{1}{n} \sum_{1 \leqslant j \leqslant n} \frac{1}{k(d) \times k(0)} \left(\sum_{g \in \lambda_j} \bar{Y}_g^a \mathbb{I}\{D_g = d\} \right) \left(\sum_{g \in \lambda_j} \bar{Y}_g^a \mathbb{I}\{D_g = 0\} \right); \\ \hat{\rho}_n(d,d) &:= \frac{2}{n} \sum_{1 \leqslant j \leqslant \lfloor n/2 \rfloor} \frac{1}{k(d)^2} \left(\sum_{g \in \lambda_{2j-1}} \bar{Y}_g^a \mathbb{I}\{D_g = d\} \right) \left(\sum_{g \in \lambda_{2j}} \bar{Y}_g^a \mathbb{I}\{D_g = d\} \right); \\ \hat{\rho}_n(0,0) &:= \frac{2}{n} \sum_{1 \leqslant j \leqslant \lfloor n/2 \rfloor} \frac{1}{k(0)^2} \left(\sum_{g \in \lambda_{2j-1}} \bar{Y}_g^a \mathbb{I}\{D_g = 0\} \right) \left(\sum_{g \in \lambda_{2j}} \bar{Y}_g^a \mathbb{I}\{D_g = 0\} \right); \end{split}$$

and also the following components of the variance estimator:

$$\hat{\mathbb{V}}_{1,n}(d) := \hat{\sigma}_n^2(d) - \left(\hat{\rho}_n(d,d) - \hat{\Gamma}_n(d)\right)^2, \ \hat{\mathbb{V}}_{1,n}(0) := \hat{\sigma}_n^2(0) - \left(\hat{\rho}_n(0,0) - \hat{\Gamma}_n(0)\right)^2;$$

$$\hat{\mathbb{V}}_{2,n}(d,d) := \hat{\rho}_n(d,d) - \hat{\Gamma}_n^2(d), \ \hat{\mathbb{V}}_{2,n}(0,0) := \hat{\rho}_n(0,0) - \hat{\Gamma}_n^2(0);$$

$$\hat{\mathbb{V}}_{2,n}(d,0) := \hat{\rho}_n(d,0) - \hat{\Gamma}_n(d)\hat{\Gamma}_n(0).$$

Using these expressions, the variance estimator can be constructed in exactly same way as in the case of individual-level treatment assignment.

$$\hat{\mathbb{V}}^{adj} = \frac{1}{\pi_d} \hat{\mathbb{V}}_{1,n}(d) + \frac{1}{\pi_0} \hat{\mathbb{V}}_{1,n}(0) + \hat{\mathbb{V}}_{2,n}(d,d) + \hat{\mathbb{V}}_{2,n}(0,0) - 2\hat{\mathbb{V}}_{2,n}(d,0).$$

Then, the "adjusted" t-test is defined as:

$$\phi_G^{adj}\left(W^{(G)}\right) = \mathbb{I}\left\{\left|\sqrt{G}\left(\hat{\theta}^{adj} - \theta_0\right)/\hat{\mathbb{V}}^{adj}\right| > z_{1-\alpha/2}\right\},\,$$

and the test is asymptotically exact, i.e. under the true H_0 :

$$\lim_{n \to \infty} \mathbb{E} \left[\phi_G^{adj} \left(W^{(G)} \right) \right] = \alpha$$

5