Nonhomogeneous systems of linear differential equations

by Professor Pham Huu Anh Ngoc Department of Mathematics International university

2020

1. General solution of nonhomogeneous systems

Theorem: Let X_p be a particular solution to the nonhomogeneous system

$$X'(t) = A(t)X(t) + F(t)$$
(0.1)

on the interval I, and let $\{X_1, X_2, ..., X_n\}$ be a fundamental solution set on I for the corresponding homogeneous system X'(t) = A(t)X(t). Then every solution to (0.1) on I can be expressed in the form

$$c_1X_1(t) + c_2X_2(t) + \dots + c_nX_n(t) + X_p(t),$$
 (0.2)

where $c_1, c_2, ..., c_n$ are constants.

1. General solution of nonhomogeneous systems

Theorem: Let X_p be a particular solution to the nonhomogeneous system

$$X'(t) = A(t)X(t) + F(t)$$
(0.1)

on the interval I, and let $\{X_1, X_2, ..., X_n\}$ be a fundamental solution set on I for the corresponding homogeneous system X'(t) = A(t)X(t). Then every solution to (0.1) on I can be expressed in the form

$$c_1X_1(t) + c_2X_2(t) + \cdots + c_nX_n(t) + X_p(t),$$
 (0.2)

where $c_1, c_2, ..., c_n$ are constants.

The linear combination of $X_1, X_2, ..., X_n, X_p$:

$$X(t) = c_1 X_1(t) + c_2 X_2(t) + \cdots + c_n X_n(t) + X_p(t),$$

with arbitrary constants $c_1, c_2, ..., c_n$ is called the **general solution** of (0.1).

2. Particular solution of nonhomogeneous linear differential systems

$$X'(t) = A(t)X(t) + F(t)$$
 (0.3)

How to find a particular solution of the nonhomogeneous linear differential system (0.3)?

2. Particular solution of nonhomogeneous linear differential systems

$$X'(t) = A(t)X(t) + F(t)$$

$$(0.3)$$

How to find a particular solution of the nonhomogeneous linear differential system (0.3)?

1. Method of variation of parameters.

This method can be applied to any nonhomogeneous linear differential systems.

2. Particular solution of nonhomogeneous linear differential systems

$$X'(t) = A(t)X(t) + F(t)$$
 (0.3)

How to find a particular solution of the nonhomogeneous linear differential system (0.3)?

1. Method of variation of parameters.

This method can be applied to any nonhomogeneous linear differential systems.

2. Method of undetermined coefficients

This method can be applied to a nonhomogeneous linear differential system of the form:

$$X'(t) = AX(t) + F(t)$$
(0.4)

where $A \in \mathbb{R}^{n \times n}$ is a constant matrix and the entries of F(t) are constants, polynomials, exponential functions, sines, cosines, or finite sums and products of these functions.

We look for a particular solution of the nonhomogeneous system

$$X'(t) = A(t)X(t) + F(t).$$
 (0.5)

We look for a particular solution of the nonhomogeneous system

$$X'(t) = A(t)X(t) + F(t).$$
 (0.5)

Let $\{X_1(t), X_2(t), ..., X_n(t)\}$ be a fundamental solution set on I = (a, b) for the corresponding homogeneous system

$$X'(t) = A(t)X(t). (0.6)$$

Define $M(t) := [X_1(t) \ X_2(t) \ ... \ X_n(t)]$. Then M(t) is said to be a fundamental matrix solution of (0.6). The general solution of (0.6) is now given by

$$X(t) = M(t)C, \ t \in (a,b), \qquad C := \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n.$$
 (0.7)

We look for a particular solution of the nonhomogeneous system

$$X'(t) = A(t)X(t) + F(t).$$
 (0.5)

Let $\{X_1(t), X_2(t), ..., X_n(t)\}$ be a fundamental solution set on I = (a, b) for the corresponding homogeneous system

$$X'(t) = A(t)X(t). (0.6)$$

Define $M(t) := [X_1(t) \ X_2(t) \ ... \ X_n(t)]$. Then M(t) is said to be a fundamental matrix solution of (0.6). The general solution of (0.6) is now given by

$$X(t) = M(t)C, \ t \in (a,b), \qquad C := \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n.$$
 (0.7)

We seek a solution of (0.5) in the form $X_p(t) = M(t)C(t)$, where C(t) is now a vector function of t.

Let $X_p(t) = M(t)C(t)$. Note that $X_p'(t) = M'(t)C(t) + M(t)C'(t)$. Since $X_p(t)$ is a solution of

$$X'(t) = A(t)X(t) + F(t)$$
 (0.8)

it follows that $X_p'(t) = A(t)X_p(t) + F(t)$. That is,

$$A(t)M(t)C(t) + M(t)C'(t) = A(t)M(t)C(t) + F(t).$$

Let $X_p(t) = M(t)C(t)$. Note that $X_p'(t) = M'(t)C(t) + M(t)C'(t)$. Since $X_p(t)$ is a solution of

$$X'(t) = A(t)X(t) + F(t)$$
(0.8)

it follows that $X_{p}'(t) = A(t)X_{p}(t) + F(t)$. That is,

$$A(t)M(t)C(t) + M(t)C'(t) = A(t)M(t)C(t) + F(t).$$

Therefore, M(t)C'(t) = F(t).

Let $X_p(t) = M(t)C(t)$. Note that $X'_p(t) = M'(t)C(t) + M(t)C'(t)$. Since $X_p(t)$ is a solution of

$$X'(t) = A(t)X(t) + F(t)$$
(0.8)

it follows that $X_p'(t) = A(t)X_p(t) + F(t)$. That is,

$$A(t)M(t)C(t) + M(t)C'(t) = A(t)M(t)C(t) + F(t).$$

Therefore, M(t)C'(t) = F(t). Since M(t) is a fundamental matrix solution, it follows that $\det M(t) \neq 0, \forall t \in (a, b)$. Thus,

$$C'(t) = M(t)^{-1}F(t).$$

Then, we have

$$C(t) = \int M(t)^{-1} F(t) dt,$$

and

$$X_{\rho}(t) = M(t) \int M(t)^{-1} F(t) dt.$$

Thus, the **general solution** of the nonhomogeneous system

$$X(t) = c_1 X_1(t) + c_2 X_2(t) + \cdots + c_n X_n(t) + X_p(t),$$

now becomes

$$X(t) = M(t)C + M(t) \int M(t)^{-1}F(t)dt,$$

where
$$C:=\left(\begin{array}{c}c_1\\ \vdots\\ c_n\end{array}\right)\in\mathbb{R}^n,$$
 is an arbitrary constant vector.

Thus, the **general solution** of the nonhomogeneous system

$$X(t) = c_1 X_1(t) + c_2 X_2(t) + \cdots + c_n X_n(t) + X_n(t),$$

now becomes

$$X(t) = M(t)C + M(t)\int M(t)^{-1}F(t)dt,$$

where
$$C:=\left(\begin{array}{c}c_1\\ \vdots\\ c_n\end{array}\right)\in\mathbb{R}^n,$$
 is an arbitrary constant vector.

Remark: The solution of the initial value problem:

$$X'(t) = A(t)X(t) + F(t), \qquad X(t_0) = X_0,$$

is given by

$$X(t) = M(t)M(t_0)^{-1}X_0 + M(t)\int_{t_0}^t M(\tau)^{-1}F(\tau)d\tau$$
.

This equation is called the variation of parameters formula for linear differential systems.

Solve the system

$$\frac{d}{dt}\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)=\left(\begin{array}{cc}\frac{1}{t}&1\\0&\frac{2}{t}\end{array}\right)\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)+\left(\begin{array}{c}t\\t^2\end{array}\right).$$

Solve the system

$$\frac{d}{dt}\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)=\left(\begin{array}{cc}\frac{1}{t}&1\\0&\frac{2}{t}\end{array}\right)\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)+\left(\begin{array}{c}t\\t^2\end{array}\right).$$

Solution: First, we find a fundamental solution set for the corresponding homogeneous system

$$\frac{d}{dt} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} \frac{1}{t} & 1 \\ 0 & \frac{2}{t} \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}. \tag{0.9}$$

Solving (0.9) yields

$$x_1(t) = c_1 t + c_2 (\frac{t^3}{2} - \frac{t}{2}); \quad x_2(t) = 0c_1 + c_2 t^2.$$

Solve the system

$$\frac{d}{dt}\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)=\left(\begin{array}{cc}\frac{1}{t}&1\\0&\frac{2}{t}\end{array}\right)\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)+\left(\begin{array}{c}t\\t^2\end{array}\right).$$

Solution: First, we find a fundamental solution set for the corresponding homogeneous system

$$\frac{d}{dt} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} \frac{1}{t} & 1 \\ 0 & \frac{2}{t} \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}. \tag{0.9}$$

Solving (0.9) yields

$$x_1(t) = c_1 t + c_2(\frac{t^3}{2} - \frac{t}{2}); \quad x_2(t) = 0c_1 + c_2 t^2.$$

In other words, $\{X_1(t)=\begin{pmatrix}t\\0\end{pmatrix};\quad X_2(t)=\begin{pmatrix}\frac{t^3}{2}-\frac{t}{2}\\t^2\end{pmatrix}\}$ forms a

fundamental solution set of (0.9). So the fundamental matrix solution of (0.9) is given by:

$$M(t) := [X_1(t) \ X_2(t)] = \begin{pmatrix} t & \frac{t^3}{2} - \frac{t}{2} \\ 0 & t^2 \end{pmatrix}$$

Let $F(t) := \begin{pmatrix} t \\ t^2 \end{pmatrix}$. To find the general solution,

$$X(t) = M(t)C + M(t) \int M(t)^{-1} F(t) dt,$$

we calculate $M(t)^{-1}$. Recall that $M(t):=\left(\begin{array}{cc} t & \frac{t^3}{2}-\frac{t}{2} \\ 0 & t^2 \end{array}\right)$. Then we have

$$M(t)^{-1} = \begin{pmatrix} \frac{1}{t} & \frac{1}{2t^2} - \frac{1}{2} \\ 0 & \frac{1}{t^2} \end{pmatrix}.$$

Thus,

$$X(t) = \left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right) =$$

$$\left(\begin{array}{cc}t&\frac{t^3}{2}-\frac{t}{2}\\0&t^2\end{array}\right)\left(\begin{array}{c}c_1\\c_2\end{array}\right)+\left(\begin{array}{cc}t&\frac{t^3}{2}-\frac{t}{2}\\0&t^2\end{array}\right)\int\left(\begin{array}{cc}\frac{1}{t}&\frac{1}{2t^2}-\frac{1}{2}\\0&\frac{1}{t^2}\end{array}\right)\left(\begin{array}{c}t\\t^2\end{array}\right)dt.$$

Find the solution of the initial value problem

$$\frac{d}{dt}\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)=\left(\begin{array}{cc}\frac{1}{t}&1\\0&\frac{2}{t}\end{array}\right)\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)+\left(\begin{array}{c}t\\t^2\end{array}\right),\quad \left(\begin{array}{c}x_1(2)\\x_2(2)\end{array}\right)=\left(\begin{array}{c}1\\-1\end{array}\right)$$

Find the solution of the initial value problem

$$\frac{d}{dt}\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)=\left(\begin{array}{c}\frac{1}{t}&1\\0&\frac{2}{t}\end{array}\right)\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)+\left(\begin{array}{c}t\\t^2\end{array}\right),\quad \left(\begin{array}{c}x_1(2)\\x_2(2)\end{array}\right)=\left(\begin{array}{c}1\\-1\end{array}\right)$$

Solution: The solution of the initial value problem is given by

$$X(t) = M(t)M(t_0)^{-1}X_0 + M(t)\int_{t_0}^t M(\tau)^{-1}F(\tau)d\tau,$$

where
$$t_0 := 2$$
; $X_0 := \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $F(t) := \begin{pmatrix} t \\ t^2 \end{pmatrix}$.

Find the solution of the initial value problem

$$\frac{d}{dt}\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)=\left(\begin{array}{c}\frac{1}{t}&1\\0&\frac{2}{t}\end{array}\right)\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)+\left(\begin{array}{c}t\\t^2\end{array}\right),\quad \left(\begin{array}{c}x_1(2)\\x_2(2)\end{array}\right)=\left(\begin{array}{c}1\\-1\end{array}\right)$$

Solution: The solution of the initial value problem is given by

$$X(t) = M(t)M(t_0)^{-1}X_0 + M(t)\int_{t_0}^{t} M(\tau)^{-1}F(\tau)d\tau,$$

where
$$t_0 := 2$$
; $X_0 := \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $F(t) := \begin{pmatrix} t \\ t^2 \end{pmatrix}$. Recall that

$$M(t) := \begin{pmatrix} t & \frac{t^3}{2} - \frac{t}{2} \\ 0 & t^2 \end{pmatrix}$$
 and $M(t)^{-1} = \begin{pmatrix} \frac{1}{t} & \frac{1}{2t^2} - \frac{1}{2} \\ 0 & \frac{1}{t^2} \end{pmatrix}$. Thus

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} \frac{t}{2} & \frac{t^3}{8} - \frac{t}{2} \\ 0 & \frac{t^2}{4} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \int_2^t \begin{pmatrix} \frac{t}{\tau} & \frac{t^3}{2\tau^2} - \frac{t}{2} \\ 0 & \frac{t^2}{\tau^2} \end{pmatrix} \begin{pmatrix} \tau \\ \tau^2 \end{pmatrix} d\tau$$

$$= \left(\begin{array}{c} \frac{t^4}{3} - \frac{7t^3}{8} + t^2 - \frac{2t}{3} \\ t^3 - \frac{9t^2}{4} \end{array}\right).$$

Consider the nonhomogeneous linear time-invariant system

$$X'(t) = AX(t) + F(t)$$
(0.10)

where $A \in \mathbb{R}^{n \times n}$ is a constant matrix and F(t) is a vector-valued function whose entries are constants, polynomials, exponential functions, sines, cosines, or finite sums and products of these functions.

We consider two special cases:

a) $A \in \mathbb{R}^{n \times n}$ is a nonsingular matrix (i.e. 0 is not a root of the characteristic equation) and F(t) is a vector of polynomials in t:

$$F(t) := t^{k} X_{k} + t^{k-1} X_{k-1} + \dots + X_{0},$$

where $X_0, X_1, ..., X_k \in \mathbb{R}^n$ are constant vectors.

b) $F(t) := e^{rt}B_0$, where $B_0 \in \mathbb{R}^n$ is a constant vector and r is not a root of the characteristic equation:

$$\det(rI_n-A)\neq 0.$$

Consider the nonhomogeneous linear time-invariant system

$$X'(t) = AX(t) + F(t)$$

$$(0.11)$$

where $A \in \mathbb{R}^{n \times n}$ is a nonsingular matrix (i.e. 0 is not a root of the characteristic equation) and F(t) is a vector of polynomials in t:

$$F(t) := t^k X_k + t^{k-1} X_{k-1} + \dots + X_0,$$

where $X_0, X_1, ..., X_k \in \mathbb{R}^n$ are constant vectors.

In this case, we can find a particular solution of (0.11) in the form

$$X_p(t) := t^k C_k + t^{k-1} C_{k-1} + ... + C_0,$$

where $C_0, C_1, ..., C_k \in \mathbb{R}^n$ are constant vectors.

Find a particular solution of

$$\frac{d}{dt}\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)=\left(\begin{array}{cc}1&1\\-1&2\end{array}\right)\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)+\left(\begin{array}{c}t\\t^2\end{array}\right).$$

Find a particular solution of

$$\frac{d}{dt}\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)=\left(\begin{array}{cc}1&1\\-1&2\end{array}\right)\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)+\left(\begin{array}{c}t\\t^2\end{array}\right).$$

Solution: Let $F(t) := \begin{pmatrix} t \\ t^2 \end{pmatrix}$. Then F(t) can be represented in the form

$$F(t) = t^2 \left(egin{array}{c} 0 \ 1 \end{array}
ight) + t \left(egin{array}{c} 1 \ 0 \end{array}
ight).$$

Since 0 is not a root of the characteristic equation, we seek a particular solution in the form

$$X_{
ho}(t) := \left(egin{array}{c} x_1(t) \\ x_2(t) \end{array}
ight) = t^2 \left(egin{array}{c} a_1 \\ a_2 \end{array}
ight) + t \left(egin{array}{c} b_1 \\ b_2 \end{array}
ight) + \left(egin{array}{c} c_1 \\ c_2 \end{array}
ight)$$

If $X_p(t)$ is a solution of the given system then

$$2t\left(\begin{array}{c}a_1\\a_2\end{array}\right)+\left(\begin{array}{c}b_1\\b_2\end{array}\right)=$$

$$\left(\begin{array}{cc} 1 & 1 \\ -1 & 2 \end{array}\right) \left[t^2 \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right) + t \left(\begin{array}{c} b_1 \\ b_2 \end{array}\right) + \left(\begin{array}{c} c_1 \\ c_2 \end{array}\right)\right] + t^2 \left(\begin{array}{c} 0 \\ 1 \end{array}\right) + t \left(\begin{array}{c} 1 \\ 0 \end{array}\right) =$$

If $X_p(t)$ is a solution of the given system then

$$2t \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} =$$

$$\begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{bmatrix} t^2 \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + t \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \end{bmatrix} + t^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} =$$

$$t^2 \begin{bmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{bmatrix} + t \begin{bmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix} + \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

If $X_p(t)$ is a solution of the given system then

$$2t \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} =$$

$$\begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{bmatrix} t^2 \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + t \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \end{bmatrix} + t^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} =$$

$$t^2 \begin{bmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{bmatrix} + t \begin{bmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix}$$

$$+ \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

This implies

$$\begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}; \quad \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

Solving the above system, we get

$$\left(\begin{array}{c} a_1 \\ a_2 \end{array}\right) = \frac{1}{3} \left(\begin{array}{c} 1 \\ -1 \end{array}\right); \quad \left(\begin{array}{c} b_1 \\ b_2 \end{array}\right) = \frac{1}{3} \left(\begin{array}{c} 0 \\ -1 \end{array}\right); \quad \left(\begin{array}{c} c_1 \\ c_2 \end{array}\right) = \frac{1}{9} \left(\begin{array}{c} 1 \\ -1 \end{array}\right).$$

Therefore,

$$X_p(t)=\left(egin{array}{c} x_1(t) \ x_2(t) \end{array}
ight)=rac{t^2}{3}\left(egin{array}{c} 1 \ -1 \end{array}
ight)+rac{t}{3}\left(egin{array}{c} 0 \ -1 \end{array}
ight)+rac{1}{9}\left(egin{array}{c} 1 \ -1 \end{array}
ight)$$

Consider the nonhomogeneous linear time-invariant system

$$X'(t) = AX(t) + e^{rt}B_0,$$
 (0.12)

where $A \in \mathbb{R}^{n \times n}$ is a constant matrix such that r is not a root of the characteristic equation (i.e. $\det(rI_n - A) \neq 0$) and $B_0 \in \mathbb{R}^n$ is a (given) constant vector

Consider the nonhomogeneous linear time-invariant system

$$X'(t) = AX(t) + e^{rt}B_0,$$
 (0.12)

where $A \in \mathbb{R}^{n \times n}$ is a constant matrix such that r is not a root of the characteristic equation (i.e. $\det(rI_n - A) \neq 0$) and $B_0 \in \mathbb{R}^n$ is a (given) constant vector.

We seek a solution of (0.12) the form:

$$X_p(t) = e^{rt} C$$

where $C \in \mathbb{R}^n$ is a constant vector.

Consider the nonhomogeneous linear time-invariant system

$$X'(t) = AX(t) + e^{rt}B_0,$$
 (0.12)

where $A \in \mathbb{R}^{n \times n}$ is a constant matrix such that r is not a root of the characteristic equation (i.e. $\det(rI_n - A) \neq 0$) and $B_0 \in \mathbb{R}^n$ is a (given) constant vector.

We seek a solution of (0.12) the form:

$$X_p(t) = e^{rt} C$$

where $C \in \mathbb{R}^n$ is a constant vector. If $X_p(t)$ is a solution of (0.12) then

$$re^{rt}C = Ae^{rt}C + e^{rt}B_0.$$

This gives

$$(rI_n - A)C = B_0.$$

Since $rI_n - A$ is invertible, it follows that

$$C = (rI_n - A)^{-1}B_0.$$

Thus,

$$\overline{X_p(t) = e^{rt}(rI_n - A)^{-1}B_0}.$$

Find a particular solution of the system

$$\frac{d}{dt}\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)=\left(\begin{array}{cc}1&1\\-1&2\end{array}\right)\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)+e^t\left(\begin{array}{c}1\\2\end{array}\right).$$

Find a particular solution of the system

$$\frac{d}{dt}\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)=\left(\begin{array}{cc}1&1\\-1&2\end{array}\right)\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)+e^t\left(\begin{array}{c}1\\2\end{array}\right).$$

Solution: Let $A:=\begin{pmatrix}1&1\\-1&2\end{pmatrix}$, $B_0:=\begin{pmatrix}1\\2\end{pmatrix}$ and r=1. The characteristic equation is given by

$$\det(zI_2-A)=\det\begin{pmatrix} z-1 & -1\\ 1 & z-2 \end{pmatrix}=0.$$

This gives $z = \frac{3 \pm i\sqrt{3}}{2}$. Since r = 1 is not a root of the characteristic equation, a particular solution is given by

$$X_p(t) = e^t (I_n - A)^{-1} B_0 = e^t \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = e^t \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Find a particular solution of the system

$$\frac{d}{dt} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} + \begin{pmatrix} e^t \\ t \end{pmatrix}. \tag{0.13}$$

Find a particular solution of the system

$$\frac{d}{dt} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} + \begin{pmatrix} e^t \\ t \end{pmatrix}. \tag{0.13}$$

Solution: We seek particular solutions of the following systems

$$\frac{d}{dt} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} + e^t \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
(0.14)

and

$$\frac{d}{dt} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \tag{0.15}$$

Let $X_1(t)$ and $X_2(t)$ be solutions of (0.14) and (0.15), respectively. Then $X_1(t) + X_2(t)$ is a particular solution of (0.13).

Do it!

Determine the form of a particular solution for the system

$$\frac{d}{dt} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} + \begin{pmatrix} -2e^{-t} + 1 \\ e^{-t} - 5t + 7 \end{pmatrix}. \quad (0.16)$$

Determine the form of a particular solution for the system

$$\frac{d}{dt} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} + \begin{pmatrix} -2e^{-t} + 1 \\ e^{-t} - 5t + 7 \end{pmatrix}. \quad (0.16)$$

Solution: Let
$$F(t) := \begin{pmatrix} -2e^{-t} + 1 \\ e^{-t} - 5t + 7 \end{pmatrix}$$
. Then $F(t)$ can be rewritten as

$$F(t) := e^{-t} \begin{pmatrix} -2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 0 \\ -5 \end{pmatrix} + \begin{pmatrix} 1 \\ 7 \end{pmatrix}$$

Determine the form of a particular solution for the system

$$\frac{d}{dt} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} + \begin{pmatrix} -2e^{-t} + 1 \\ e^{-t} - 5t + 7 \end{pmatrix}. \quad (0.16)$$

Solution: Let $F(t) := \begin{pmatrix} -2e^{-t} + 1 \\ e^{-t} - 5t + 7 \end{pmatrix}$. Then F(t) can be rewritten as

$$F(t) := e^{-t} \begin{pmatrix} -2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 0 \\ -5 \end{pmatrix} + \begin{pmatrix} 1 \\ 7 \end{pmatrix}$$

Since -1 is not a root of the characteristic equation, the form of a particular solution of

$$\frac{d}{dt} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} + e^{-t} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
(0.17)

is

$$X_1(t) = e^{-t} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Since 0 is not a root of the characteristic equation, the form of a particular solution of

$$\frac{d}{dt} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} + t \begin{pmatrix} 0 \\ -5 \end{pmatrix} + \begin{pmatrix} 1 \\ 7 \end{pmatrix} (0.18)$$

is

$$X_2(t) := t \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

By the super-position principle, the form of a particular solution for the system

$$\frac{d}{dt} \left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array} \right) = \left(\begin{array}{cc} 5 & 3 \\ -1 & 1 \end{array} \right) \left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array} \right) + e^{-t} \left(\begin{array}{c} -2 \\ 1 \end{array} \right) + t \left(\begin{array}{c} 0 \\ -5 \end{array} \right) + \left(\begin{array}{c} 1 \\ 7 \end{array} \right)$$

is

$$X_p(t) = e^{-t} \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) + t \left(\begin{array}{c} b_1 \\ b_2 \end{array} \right) + \left(\begin{array}{c} c_1 \\ c_2 \end{array} \right).$$