SELECTIVE INATTENTION TO INTEREST RATES

 $\begin{array}{c} \text{Pierfrancesco Mei} \\ \text{Harvard} \rightarrow \text{Goldman Sachs} \end{array}$

Tim de Silva Stanford GSB & SIEPR

April 2025

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated macro models with info. frictions Auclert et al. 20, McKay-Wieland 21, Beraja-Wolf 22
 - ⇒ Average expectation is slow-moving and under-reacts Coibion-Gorodnichenko 12, 15

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated macro models with info. frictions Auclert et al. 20, McKay-Wieland 21, Beraja-Wolf 22
- Introspection: macro expectations much more important for "big" decisions
 - These big decisions also tend to occur less frequently
 - Example: interest rates important when **buying a house**, but less so for groceries

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated macro models with info. frictions Auclert et al. 20, McKay-Wieland 21, Beraia-Wolf 22
- Introspection: macro expectations much more important for "big" decisions
- Question: Do HHs select into paying attention based on types of decisions?

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated macro models with info. frictions Auclert et al. 20, McKay-Wieland 21, Beraia-Wolf 22
- Introspection: macro expectations much more important for "big" decisions
- Question: Do HHs select into paying attention based on types of decisions?
- If yes, how does this selection affect the aggregate responses to shocks?
 - Belief heterogeneity \Rightarrow average may not be the relevant object Miller 77, Afrouzi et al. 24

THIS PAPER

Is there selective inattention to interest rates based on <u>durables purchases</u>?

"decision-making" (DM)

- 1 Use existing surveys to study how interest rate expectations differ based on DM
 - Benefit: high-quality data on expectations
 - Cost: hard to identify DM status + hard to isolate attention

THIS PAPER

Is there selective inattention to interest rates based on <u>durables purchases</u>?

"decision-making" (DM)

- Use existing surveys to study how interest rate expectations differ based on DM
- Conduct a new survey to identify how macro attention changes based on DM
 - Benefit: better identify **DM status** + elicit information acquisition directly
 - Cost: hard to study accuracy in expectations given one cross-section

THIS PAPER

Is there selective inattention to interest rates based on durables purchases? \checkmark

How does selective inattention affect aggregate responses to rate changes?

- Use existing surveys to study how interest rate expectations differ based on DM
- Conduct a new survey to identify how macro attention changes based on DM

3 Develop a PE incomplete markets model with durables + dynamic IA about rates

DM in model

- B Develop a PE incomplete markets model with durables + dynamic IA about rat
 - Use patterns in IA from survey to discipline information cost parameter(s)
 - Compare model IRFs to level and volatility of rates with exogenous inattention

 $DM \perp beliefs \Rightarrow no selection$

Is there selective inattention to interest rates based on durables purchases?

- Interest rate expectations of decision-makers are more accurate
 - Nowcast and forecast errors of interest rates are 50% lower
 - Dispersion of beliefs is 70% lower and subjective uncertainty decreases

Is there selective inattention to interest rates based on durables purchases?

- 1 Interest rate expectations of decision-makers are more accurate
 - Nowcast and forecast errors of interest rates are 50% lower
 - Dispersion of beliefs is 70% lower and subjective uncertainty decreases
- Information acquisition is concentrated prior to purchases
 - Purchase in \leq 6 months \Rightarrow twice as likely to acquire information
 - Information acquisition focuses on current values of decision-relevant rates

How does selective inattention affect aggregate responses to rate changes?

- 3 Like exogenous inattention, selection dampens some responses
 - Aggregate beliefs are slow-moving and under-react
 - Consumption responds sluggishly to rate changes

How does selective inattention affect aggregate responses to rate changes?

- 3 Like exogenous inattention, selection dampens some responses
 - Aggregate beliefs are slow-moving and under-react
 - Consumption responds sluggishly to rate changes
- 4 Unlike exogenous inattention, selective inattention implies
 - Durables spending responds almost as quickly as with RE to rate changes

How does selective inattention affect aggregate responses to rate changes?

- 3 Like exogenous inattention, selection dampens some responses
 - Aggregate beliefs are slow-moving and under-react
 - Consumption responds sluggishly to rate changes
- 4 Unlike exogenous inattention, selective inattention implies
 - Durables spending responds almost as quickly as with RE to rate changes
 - When rate volatility doubles, aggregate beliefs update twice as frequently ⇒ ...

How does selective inattention affect aggregate responses to rate changes?

- 3 Like exogenous inattention, selection dampens some responses
 - Aggregate beliefs are slow-moving and under-react
 - Consumption responds sluggishly to rate changes
- 4 Unlike exogenous inattention, selective inattention implies
 - Durables spending responds almost as quickly as with RE to rate changes
 - When rate volatility doubles, aggregate beliefs update twice as frequently ⇒ ...
 - ... total spending falls by over 50% less when rate volatility doubles
 - ... consumption becomes **more** (not less) sensitive to rates when volatility doubles

How does selective inattention affect aggregate responses to rate changes?

- 3 Like exogenous inattention, selection dampens some responses
 - Aggregate beliefs are slow-moving and under-react
 - Consumption responds sluggishly to rate changes
- 4 Unlike exogenous inattention, selective inattention implies
 - Durables spending responds almost as quickly as with RE to rate changes
 - When rate volatility doubles, aggregate beliefs update twice as frequently \Rightarrow ...
 - ... total spending falls by over 50% less when rate volatility doubles
 - ... consumption becomes **more** (not less) sensitive to rates when volatility doubles

Micro-level patterns in attention can distinguish between models with same **macro-level** inattention, but different counterfactual predictions

- ullet Household expectation formation o *Tie belief formation to durables purchases*
 - Coibion & Gorodnichenko (2015), Bordalo et al. (2020), D'Acunto et al. (2023), ...

- Household expectation formation \rightarrow *Tie belief formation to durables purchases*
- Information acquisition in the field → Focus on differences based on DM status
 - Coibion et al. (2018), Capozza et al. (2021), Link et al. (2023), Roth et al. (2022)

- Household expectation formation → Tie belief formation to durables purchases
- ullet Information acquisition in the field o Focus on differences based on DM status
- ullet Models of durable adjustments o First model with dynamic info. acquisition
 - Caballero (1990), Barsky et al. (2007), Berger & Vavra (2015), McKay & Wieland (2021), Gavazza & Lanteri (2021), Beraja & Wolf (2022), Beraja & Zorzi (2024)

- Household expectation formation → Tie belief formation to durables purchases
- ullet Information acquisition in the field o Focus on differences based on DM status
- Models of durable adjustments → First model with dynamic info. acquisition
- Rational inattention → Nest in a rich (non-quadratic) HH model with 2 actions
 - Sims (2003), Mackowiak & Wiederholt (2009), Alvarez et al. (2011, 2013), Zhong (2022),
 Hebert & Woodford (2023), Mackowiak et al. (2023), Afrouzi et al. (2024), Ahn et al. (2024)

- Household expectation formation → Tie belief formation to durables purchases
- Information acquisition in the field → Focus on differences based on DM status
- ullet Models of durable adjustments o First model with dynamic info. acquisition
- Rational inattention → Nest in a rich (non-quadratic) HH model with 2 actions
- Exogenous inattention as a source of macro sluggishness → When inattention is endogenous, whether dampening occurs is decision-specific
 - Lucas (1972), Gabaix & Laibson (2001), Mankiw & Reis (2002), Angeletos & Lian (2016), Carroll et al. (2018), Auclert et al. (2020), McKay & Wieland (2021), Beraja & Wolf (2022), Cochrane (2025), ...

- Household expectation formation → Tie belief formation to durables purchases
- Information acquisition in the field → Focus on differences based on DM status
- ullet Models of durable adjustments o First model with dynamic info. acquisition
- ullet Rational inattention ullet Nest in a rich (non-quadratic) HH model with 2 actions
- Exogenous inattention as a source of macro sluggishness → When inattention is endogenous, whether dampening occurs is decision-specific
- ullet Effects of (interest rate) uncertainty o effects are mediated by info. acquisition

Sandmo (1974), Bloom (2014), Bloom et al. (2020), Ilut et al. (2024)

OUTLINE

- 1 Motivating Evidence: Expectations and Decision-Making in the SCE
- 2 New Survey: Information Acquisition around Decision-Making
- 3 Incomplete Markets Model with Selective Inattention
- 4 Aggregate Implications of Selective Inattention
- 6 Conclusion

OUTLINE

- 1 Motivating Evidence: Expectations and Decision-Making in the SCE
- New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- Aggregate Implications of Selective Inattention
- **5** Conclusion

NY FED SURVEY OF CONSUMER EXPECTATIONS

- ullet Sample: \sim 8K respondents between 2014 and 2022 from annual housing module
- Variables of interest:
 - 1 Nowcasts of current average 30-year fixed mortgage rate
 - 2 Forecasts of one-year ahead average 30-year fixed mortgage rate
 - 3 DM status based on distance from past or (expected) future home purchase
- Construct errors using average 30-year fixed rate in Freddie Mac PMMS
- Run the following regression:

$$|\mathsf{Error}_{it}| = \sum_{s} \beta_{s} \cdot \mathbf{1} \, (\mathsf{DM} \, \mathsf{Status}_{it} = s) + \mathsf{Controls}_{it} + \delta_{t} + \epsilon_{it}$$

NY FED SURVEY OF CONSUMER EXPECTATIONS

- ullet Sample: \sim 8K respondents between 2014 and 2022 from annual housing module
- Variables of interest:
 - 1 Nowcasts of current average 30-year fixed mortgage rate
 - 2 Forecasts of one-year ahead average 30-year fixed mortgage rate
 - 3 DM status based on distance from past or (expected) future home purchase
- Construct errors using average 30-year fixed rate in Freddie Mac PMMS
- Run the following regression:

$$|\mathsf{Error}_{it}| = \sum_{s} \beta_{s} \cdot \mathbf{1} \ (\mathsf{DM} \ \mathsf{Status}_{it} = s) + \mathsf{Controls}_{it} + \delta_{t} + \epsilon_{it}$$

Not shown today: quantitatively similar results from ECB household survey

DECISION-MAKERS HAVE MORE ACCURATE BELIEFS

Errors of prospective buyers \approx 50% lower than those with no purchase plan

LESS DISPERSION AMONG DECISION-MAKERS' BELIEFS

Disagreement of prospective buyers \approx 70% lower than those with no purchase plan

OUTLINE

- 1 Motivating Evidence: Expectations and Decision-Making in the SCE
- 2 New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- Aggregate Implications of Selective Inattention
- **5** Conclusion

We design and conduct a cross-sectional survey of U.S. households via Prolific

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

Home decision-making: distance from primary home purchase

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- Home decision-making
- 2 Other decisions: distance from car purchase + other major financial decisions

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- Home decision-making
- Other decisions
- 3 Information acquisition: time since last search + type/source of info searched

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- Home decision-making
- Other decisions
- 3 Information acquisition
- Macro expectations: beliefs about mortgage rates, T-Bill rates, and inflation

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- Home decision-making
- 2 Other decisions
- 3 Information acquisition
- 4 Macro expectations
- 6 Background & financial situation: info on household's balance-sheet using SCF format, demographics, job relocations

► Questions

Information Acquisition is Concentrated Pre-Decision

► Sources ► Heterogeneity

→ Owners

Information Acquisition is Concentrated Pre-Decision

 → Owners

IA IS CONCENTRATED ON DECISION-RELEVANT VARIABLES

Info. Acquisition_i = $\sum_{d} \frac{\beta_{d}}{\epsilon_{d}} \cdot \mathbf{1}$ (Home Distance_i = d) + Controls_i + Other Distances_i + ϵ_{i}

IA IS CONCENTRATED ON DECISION-RELEVANT VARIABLES

Info. Acquisition_i = $\sum_{d} \frac{\beta_{d} \cdot \mathbf{1}}{\beta_{d} \cdot \mathbf{1}}$ (Home Distance_i = d) + Controls_i + Other Distances_i + ϵ_{i}

PATTERNS IN INFORMATION ACQUISITION ARE DECISION-SPECIFIC

PATTERNS IN INFORMATION ACQUISITION ARE DECISION-SPECIFIC

IA IS PRIMARILY ABOUT CURRENT VALUES OF VARIABLES

ENDOGENEITY OF DECISION-MAKING

- Concern: decision-making is **endogenous** to information acquisition and beliefs
- (Current) Solution: IV = anticipated moves due to job relocations

ENDOGENEITY OF DECISION-MAKING

- Concern: decision-making is **endogenous** to information acquisition and beliefs
- (Current) Solution: IV = anticipated moves due to job relocations

Dependent Variable: Information Acquisition

Variable	OLS	First Stage	IV	OLS	First Stage	IV
Home Decision-Maker	0.33***		0.83***	0.32***		0.88***
	(0.07)		(0.29)	(0.07)		(0.29)
Job Relocation		0.28***			0.28***	
		(80.0)			(80.0)	
N	749	749	749	749	749	749
Controls				\checkmark	\checkmark	\checkmark
F-stat		12.14			4.43	

DECISION-MAKERS BELIEFS APPEAR (WEAKLY) MORE INFORMED

DECISION-MAKERS BELIEFS APPEAR (WEAKLY) MORE INFORMED

As households get closer to durable choices

As households get closer to durable choices

Information is acquired more frequently...

As households get closer to durable choices

Information is acquired more frequently...

... about current values of about decision-relevant interest rates

As households get closer to durable choices

 \downarrow

Information is acquired more frequently...

... about current values of about decision-relevant interest rates

Interest rate beliefs become more accurate and less dispersed

As households get closer to durable choices

 \Downarrow

Information is acquired more frequently...

... about current values of about decision-relevant interest rates

 $\downarrow \downarrow$

Interest rate beliefs become more accurate and less dispersed

 \Downarrow

?

OUTLINE

- Motivating Evidence: Expectations and Decision-Making in the SCE
- New Survey: Information Acquisition around Decision-Making
- 3 Incomplete Markets Model with Selective Inattention
- Aggregate Implications of Selective Inattention
- **5** Conclusion

 $\underbrace{\text{Partial equilibrium incomplete markets model} + \text{durables}}_{\text{McKay-Wieland 2021}} + \underbrace{\text{dynamic info. acquisition}}_{\approx \text{ rational inattention}}$

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

11

Rich model of how beliefs about $r \longrightarrow \mathbf{c}, \mathbf{d}'$

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

Rich model of how beliefs about $r \longrightarrow \mathbf{c}, \mathbf{d}'$

Information Acquisition

HHs receive signals of endogenous precision about current *r*

- Cost of signal = $\omega \times$ mutual info.
- Benefit of signal = better choice of c, d'
- Interest rate is persistent ⇒ prior beliefs are state variables

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

Rich model of how beliefs about $r \longrightarrow \mathbf{c}, \mathbf{d}'$

Information Acquisition

HHs receive signals of endogenous precision about current *r*

- Cost of signal = $\omega \times$ mutual info.
- Benefit of signal = better choice of c, d'
- Interest rate is persistent ⇒ prior beliefs are state variables

Endogenous beliefs about *r* that come from dynamic information acquisition

Define belief wedges about next period states:

$$\Delta_r = \rho \left[\widehat{\mathbf{E}}(r) - r \right], \quad \Delta_b = b \left[\exp \widehat{\mathbf{E}}(r) - \exp(r) \right]$$

Define belief wedges about next period states:

$$\Delta_r = \rho \left[\widehat{\mathbf{E}}(r) - r \right], \quad \Delta_b = b \left[\exp \widehat{\mathbf{E}}(r) - \exp(r) \right]$$

• Given beliefs, households solve at state $\mathbf{s} = (b, d, r, y, \xi, \text{beliefs})$:

Define belief wedges about next period states:

$$\Delta_r = \rho \left[\widehat{\mathbf{E}}(r) - r \right], \quad \Delta_b = b \left[\exp \widehat{\mathbf{E}}(r) - \exp(r) \right]$$

• Given beliefs, households solve at state $\mathbf{s} = (b, d, r, y, \xi, \text{beliefs})$:

$$\mathbf{c(s)}, \mathbf{d'(s)} = \argmax_{c,d'} U(c, m(d')) + \beta \cdot \mathbf{E}V\left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \text{beliefs'}\right)$$

- Define belief wedges about next period states: Δ_r , Δ_b
- Given beliefs, households solve at state $\mathbf{s} = (b, d, r, y, \xi, \text{beliefs})$:

$$\mathbf{c(s)}, \mathbf{d'(s)} = \argmax_{c,d'} U(c, \textit{m(d')}) + \beta \cdot \mathbf{E}V\left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \text{beliefs'}\right)$$

$$c + b' + d' = y + [\exp(r) + \tau_b \mathbf{1}_{b < 0}] b + (1 - \delta) d - A(d, d'),$$

- Define belief wedges about next period states: Δ_r , Δ_b
- Given beliefs, households solve at state $\mathbf{s} = (b, d, r, y, \xi, \text{beliefs})$:

$$\mathbf{c(s)}, \mathbf{d'(s)} = \argmax_{c,d'} U(c, \textit{m(d')}) + \beta \cdot \mathbf{E} \textit{V}\left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \text{beliefs'}\right)$$

$$c + b' + d' = y + [\exp(r) + \tau_b \mathbf{1}_{b < 0}] b + (1 - \delta) d - A(d, d'), \quad b' \ge -\lambda d'$$

- Define belief wedges about next period states: Δ_r , Δ_b
- Given beliefs, households solve at state $\mathbf{s} = (b, d, r, y, \xi, \text{beliefs})$:

$$\mathbf{c(s)}, \mathbf{d'(s)} = \underset{c,d'}{\text{arg max}} \ U(c, m(d')) + \beta \cdot \mathbf{E} \ V\left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \text{beliefs'}\right)$$

$$c + b' + d' = y + \left[\exp(r) + \tau_b \mathbf{1}_{b < 0}\right] b + (1 - \delta) d - \mathbf{A(d, d')}, \quad b' \ge -\lambda d'$$

$$\mathbf{A(d, d')} = \begin{cases} \underbrace{\nu \cdot d}_{\text{op. costs}} & \text{if } d' = \underbrace{(1 - \delta)d}_{\text{depreciation}} + \underbrace{\delta \cdot \chi \cdot d}_{\text{maint. costs}} \\ \underbrace{\nu \cdot d}_{\text{op. costs}} + \underbrace{f \cdot (1 - \delta)d}_{\text{ixed adi. cost}} & \text{else} \end{cases}$$

- Define belief wedges about next period states: Δ_r , Δ_b
- Given beliefs, households solve at state $\mathbf{s} = (b, d, r, y, \xi, \text{beliefs})$:

$$\begin{aligned} \mathbf{c}(\mathbf{s}), \mathbf{d}'(\mathbf{s}) &= \operatorname*{max}_{c,d'} U(c, \mathbf{m}(d')) + \beta \cdot \mathbf{E} V \left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \mathrm{beliefs'} \right) \\ c + b' + d' &= y + \left[\exp(r) + \tau_b \mathbf{1}_{b < 0} \right] b + (1 - \delta) \, d - A(d, d'), \quad b' \geq -\lambda d' \\ \mathbf{m}(d') &= d' \times \max \left\{ \xi, \mathbf{1}_{d' \neq (1 - \delta + \delta \cdot \chi) d} \right\}, \quad \xi \sim \mathrm{Bern}(\overline{\xi}) = \mathrm{match-quality \ shock} \end{aligned}$$

 $\xi = 0 \Rightarrow$ have to adjust for **exogenous** reasons (e.g. job relocation)

- Define belief wedges about next period states: Δ_r , Δ_b
- Given beliefs, households solve at state $\mathbf{s} = (b, d, r, y, \xi, \text{beliefs})$:

$$\mathbf{c(s)}, \mathbf{d'(s)} = \argmax_{c,d'} U(c, \textit{m(d')}) + \beta \cdot \mathbf{E} \textit{V}\left(b' + \Delta_b, d', r' + \Delta_r, y', \xi', \text{beliefs'}\right)$$

$$c + b' + d' = y + [\exp(r) + \tau_b \mathbf{1}_{b < 0}] b + (1 - \delta) d - A(d, d'), \quad b' \ge -\lambda d'$$

- log y follows AR1 + observed by households
- r follows an AR1 + HHs know DGP, but observe noisy signal of current rate

- Simplifying assumption: HHs can only acquire **Gaussian** signals about **current** *r*
 - \Rightarrow Prior beliefs in each period can be summarized by: $r \sim N(\mu, \Sigma)$

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
- Households choose signal variance Σ_s , anticipating choices of **c** and **d**':

$$V(\mathbf{s}) = \max_{\Sigma_s} \mathbf{E} \Big[U(\mathbf{c}, m(\mathbf{d}')) + \beta V(\mathbf{s}') \Big]$$

- Simplifying assumption: HHs can only acquire **Gaussian** signals about **current** *r*
- Households choose signal variance Σ_s , anticipating choices of **c** and **d**':

$$V(\mathbf{s}) = \max_{\Sigma_s} \mathbf{E} \Big[U(\mathbf{c}, m(\mathbf{d}')) + \beta V\left(\mathbf{s}'\right) \Big] - \omega \cdot \underbrace{\log\left(1 - G\right)}_{ ext{mutual info.}}$$
 $G = \frac{\Sigma}{\Sigma + \Sigma_s}$

- Simplifying assumption: HHs can only acquire **Gaussian** signals about **current** *r*
- Households choose signal variance Σ_s , anticipating choices of **c** and **d**':

$$egin{aligned} V(\mathbf{s}) &= \max_{\Sigma_s} \mathbf{E} \Big[U(\mathbf{c}, m(\mathbf{d}')) + eta V\left(\mathbf{s}'
ight) \Big] - \omega \cdot \underbrace{\log\left(1 - G
ight)}_{ ext{mutual info.}} \ G &= rac{\Sigma}{\Sigma + \Sigma_s} \ \widehat{\mathbf{E}}(r) &= (1 - G)\mu + G\left(r + s
ight), \quad s \sim N(0, \Sigma_s) \end{aligned}$$

- Simplifying assumption: HHs can only acquire **Gaussian** signals about **current** *r*
- Households choose signal variance Σ_s , anticipating choices of **c** and **d**':

$$\begin{split} V(\mathbf{s}) &= \max_{\Sigma_{\mathbf{s}}} \mathbf{E} \Big[U(\mathbf{c}, m(\mathbf{d}')) + \beta V\left(\mathbf{s}'\right) \Big] - \omega \cdot \underbrace{\log\left(1 - G\right)}_{\text{mutual info.}} \\ G &= \frac{\Sigma}{\Sigma + \Sigma_{\mathbf{s}}} \\ \widehat{\mathbf{E}}(r) &= (1 - G)\mu + G(r + s) \,, \quad s \sim N(0, \Sigma_{\mathbf{s}}) \\ \mu' &= (1 - \rho)\overline{r} + \rho \widehat{\mathbf{E}}(r), \quad \Sigma' = \rho^2 \Sigma (1 - G) + \sigma^2 \end{split}$$

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
- Households choose signal variance Σ_s , anticipating choices of **c** and **d**':

$$\begin{split} V(\mathbf{s}) &= \max_{\Sigma_s} \mathbf{E} \Big[U(\mathbf{c}, m(\mathbf{d}')) + \beta V\left(\mathbf{s}'\right) \Big] - \omega \cdot \underbrace{\log\left(1 - G\right)}_{\text{mutual info.}} \\ G &= \frac{\Sigma}{\Sigma + \Sigma_s} \\ \widehat{\mathbf{E}}(r) &= (1 - G)\mu + G(r + s) \,, \quad s \sim N(0, \Sigma_s) \\ \mu' &= (1 - \rho)\overline{r} + \rho \widehat{\mathbf{E}}(r), \quad \Sigma' = \rho^2 \Sigma(1 - G) + \sigma^2 \end{split}$$

- c, d' maximize objective with **belief wedges** which depend on $\widehat{\mathbf{E}}(r)$
 - Lower $\Sigma_s \Rightarrow$ wedges $\longrightarrow 0 \Rightarrow \widehat{\mathbf{E}}(r) \longrightarrow r \Rightarrow$ smaller utility loss from \mathbf{c}, \mathbf{d}'

CALIBRATED PARAMETERS

Parameter	Description	Value	Source			
Internally-Calibrated						
β	Discount factor	0.9829	Net Assets/GDP = 0.87			
ψ	Non-durables exponent	0.627	d/c ratio = 2.64			
f	Fixed cost	0.11	Quarterly adjustment probability = 0.0475			
$1-\overline{\xi}$	Match-quality shock probability	0.034	$P(\xi = 0 \text{adjust durables}) = 0.75$			
ω	Information cost	$10^{-3.541}$	Ratio of DM to non-DM information acquisition = 2.03*			
Externally-Calibrated						
γ	RRA (and inverse EIS)	2	Standard value			
ε	Durables elasticity of substitution	0.5	McKay & Wieland (2021)			
$1 - \lambda$	Required downpayment	0.2	Standard value			
δ	Depreciation rate	0.017	McKay & Wieland (2021)			
χ	Maintenance share	0.35	McKay & Wieland (2021)			
ν	Operating cost	0.012	McKay & Wieland (2021)			
ρ_y	Income persistence	0.977	Floden and Lindé (2001)			
σ_{ϵ}	Income shock std. dev.	0.058	Floden and Lindé (2001)			
\overline{r}	Real rate mean	0.0143	10-Year Treasury Rate: 1961-2024			
ρ	Real rate persistence	0.979	10-Year Treasury Rate: 1961-2024			
σ	Real rate shock std. dev.	0.0014	10-Year Treasury Rate: 1961-2024			
$ au_b$	Borrowing spread	0.004156	Average 30-Year Fixed Rate Mortgage Rate: 1971-2024			

► Durables Adjustment Hazard

EFFECT OF INFORMATION COST ON INFORMATION ACQUISITION

Beliefs and Information Acquisition at the Micro-Level

EXTENSIVE MARGIN OF INFO. ACQUISITION IN EVENT-TIME

EXTENSIVE MARGIN OF INFO. ACQUISITION IN EVENT-TIME

EXTENSIVE MARGIN OF INFO. ACQUISITION IN EVENT-TIME

INTENSIVE MARGIN OF INFO. ACQUISITION IN EVENT-TIME

► Durables Share ► Information Acquisition sS

ENDOGENOUS ADJUSTMENTS ⇒ INFO. ACQUISITION PRE-CHOICE

Nowcast Errors in Event-Time

Nowcast Errors in Event-Time

BELIEFS AT THE MACRO-LEVEL

AGGREGATE BELIEFS ARE SLUGGISH, LIKE IN THE DATA...

• Direct evidence of information-rigidity = CG (2015) regression

$$\underbrace{r_{t+3} - \overline{F}_t r_{t+3}}_{\text{forecast error}} = \alpha + \beta_{CG} \underbrace{\left(\overline{F}_t r_{t+3} - \overline{F}_{t-1} r_{t+3}\right)}_{\text{forecast revision}} + \epsilon_t$$

- Common finding: $\beta_{CG} > 0 \Rightarrow$ aggregate expectations are **sluggish**
- In a sticky-information model (constant probability of updating expectations),

Implied Update Frequency
$$= \frac{3}{1 - \frac{\beta_{CG}}{1 + \beta_{CG}}}$$
 Months

⇒ Common target for calibrating sticky information models (e.g. McKay-Wieland 2021)

AGGREGATE BELIEFS ARE SLUGGISH, LIKE IN THE DATA...

Implied Update Frequency
$$= rac{3}{1 - rac{eta_{CG}}{1 + eta_{CG}}}$$
 Months

... But This Masks Substantial Selection into Attention!

Implied Update Frequency
$$= rac{3}{1 - rac{eta_{CG}}{1 + eta_{CG}}}$$
 Months

OUTLINE

- Motivating Evidence: Expectations and Decision-Making in the SCE
- New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- 4 Aggregate Implications of Selective Inattention
- 5 Conclusion

RESPONSES TO INTEREST RATE CHANGES

IMPULSE RESPONSE OF BELIEFS TO RATE CUT

Rational Expectations: $\omega = 0 \Rightarrow$ rational expectations

► Decomposition

IMPULSE RESPONSE OF BELIEFS TO RATE CUT

Exogenous Inattention: *G* set to a constant to match β_{CG} in baseline model

► Decomposition

IMPULSE RESPONSE OF BELIEFS TO RATE CUT

Selective Inattention: baseline model with endogenous information acquisition

► Decomposition

Non-durable consumption response \approx **exogenous inattention**...

► Incorporating GE Effects ► Aggregate Expenditure

... but **durable** expenditure response \approx **rational expectations!**

EFFECTS OF CHANGES IN INTEREST RATE VOLATILITY

MOTIVATION: RECENT RISE IN RATE VOLATILITY

MOTIVATION: RECENT RISE IN RATE VOLATILITY

⇒ Use model to ask what happens if interest rate volatility doubles?

EFFECTS OF INCREASED VOLATILITY ON BELIEFS

 \uparrow volatility $\Rightarrow \uparrow$ info. acquisition $\Rightarrow \downarrow$ belief rigidity

IMPULSE RESPONSE OF BELIEFS TO INCREASE IN VOLATILITY

IMPULSE RESPONSE OF SPENDING TO INCREASE IN VOLATILITY

↑ volatility ⇒ spending falls due to precautionary motives... Sandmo 74

► Aggregate Expenditure

IMPULSE RESPONSE OF SPENDING TO INCREASE IN VOLATILITY

... which is stronger with exogenous inattention because of more uncertainty...

► Aggregate Expenditure

IMPULSE RESPONSE OF SPENDING TO INCREASE IN VOLATILITY

... but **selective inattention** undoes over 50% of this fall due to \(\gamma\) info. acquisition!

► Aggregate Expenditure

EFFECTS OF INCREASED VOLATILTY ON 25 BPS RATE CUT RESPONSE

↑ volatility ⇒ consumption is less response to interest rates

► Change After 8 Quarters

EFFECTS OF INCREASED VOLATILTY ON 25 BPS RATE CUT RESPONSE

... but not with **selective inattention** because of increased info. acquisition!

► Change After 8 Quarters

OUTLINE

- Motivating Evidence: Expectations and Decision-Making in the SCE
- New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- 4 Aggregate Implications of Selective Inattention
- **5** Conclusion

CONCLUSION

- Households are selectively inattentive to interest rates
 - IA is concentrated around durables purchases, where beliefs are more accurate
- Both exogenous and selective inattention ⇒ slow-moving aggregate beliefs

Conclusion

- Households are selectively inattentive to interest rates
 - IA is concentrated around durables purchases, where beliefs are more accurate
- Both exogenous and selective inattention ⇒ slow-moving aggregate beliefs
- But unlike exogenous inattention, selective inattention implies
 - Durables spending behaves close to rational expectations case
 - Changes in volatility have different effects because of changes in info. acquisition

Conclusion

- Households are selectively inattentive to interest rates
 - IA is concentrated around durables purchases, where beliefs are more accurate
- Both exogenous and selective inattention ⇒ slow-moving aggregate beliefs
- But unlike exogenous inattention, selective inattention implies
 - Durables spending behaves close to rational expectations case
 - Changes in volatility have different effects because of changes in info. acquisition

• Takeaways:

- Micro-level patterns in attention are useful identifying moments
- Beliefs of **decision-makers** matter, not just cross-sectional averages

THANK YOU!

pierfrancescomei@g.harvard.edu

tdesilva@stanford.edu

Main Survey Questions

Eliciting our main measure of information acquisition

Step 1: In the last 3 years, did you actively search for information about any of the following economic variables in the U.S.?

By "active search" we mean a deliberate effort to find information which could include searching online, reading news articles or reports, talking to a financial advisor or broker, or any other intentional effort to gather information.

Step 2: How many months ago did you last actively search for information about mortgage rates?

Eliciting households' distance from the primary home purchase

Owners: How many months ago did you finalize the purchase of your current primary residence?

Renters: How many months from now do you expect the closing on your primary residence purchase?

By "closing", we mean signing the final documents to officialize the purchase.

◆ Back

Sources of Information Acquisition

HETEROGENEITY IN INFORMATION ACQUISITION

39

HETEROGENEITY IN INFORMATION ACQUISITION OF OWNERS

◆ Back: IA ◆ Back: Current

IA IS PRIMARILY ABOUT CURRENT VALUES OF VARIABLES

Back
 Back
 Back
 Back
 Back
 Back

ADJUSTMENT PROBABILITY AS A FUNCTION OF DURABLES GAP

CONCENTRATION IN INFO. ACQUISITION \(\sqrt{Durables Share} \)

Baseline: $\psi = 0.63$

Low Durables Share: $\psi = 0.99$

◆ Back

DURABLES ADJUSTMENT SHIFT SS BANDS OF INFO. ACQUSITION

Back
 Bac

DURABLES ADJUSTMENT SHIFT SS BANDS OF INFO. ACQUSITION

45

DECOMPOSITION OF AGGREGATE BELIEF RESPONSE

Beliefs of **decision-makers** respond \geq 2 times as fast

IRFs to Romer-Romer Rate Cut with Agg. Y and P Response

IMPULSE RESPONSE OF AGG. SPENDING TO RATE CUT

IMPULSE RESPONSE OF AGG. SPENDING TO INCREASE IN VOLATILITY

EFFECTS OF INCREASED VOLATILTY ON 25 BPS RATE CUT RESPONSE

◆ Back