目录

一,	关系运算:	4
	1. 等值比较: =	4
	2. 不等值比较: <>	4
	3. 小于比较: <	4
	4. 小于等于比较: <=	4
	5. 大于比较: >	5
	6. 大于等于比较: >=	5
	7. 空值判断: IS NULL	5
	8. 非空判断: IS NOT NULL	6
	9. LIKE 比较: LIKE	6
	10. JAVA 的 LIKE 操作: RLIKE	6
	11. REGEXP 操作: REGEXP	7
二、	数学运算:	
	1. 加法操作: +	7
	2. 减法操作:	7
	3. 乘法操作: *	8
	4. 除法操作: /	
	5. 取余操作: %	8
	6. 位与操作: &	
	7. 位或操作:	
	8. 位异或操作: ^	
	9. 位取反操作: ~	
三、	逻辑运算:	
	1. 逻辑与操作: AND	
	2. 逻辑或操作: OR	
	3. 逻辑非操作: NOT	
四、	数值计算	
	1. 取整函数: round	
	2. 指定精度取整函数: round	
	3. 向下取整函数: floor	
	4. 向上取整函数: ceil	
	5. 向上取整函数: ceiling	
	6. 取随机数函数: rand	
	7. 自然指数函数: exp	
	8. 以 10 为底对数函数: log10	
	9. 以 2 为底对数函数: log2	
	10. 对数函数: log	
	11. 幂运算函数: pow	
	12. 幂运算函数: power	
	13. 开平方函数: sqrt	
	14. 二进制函数: bin	.14

	15. 十六进制函数: hex	15
	16. 反转十六进制函数: unhex	15
	17. 进制转换函数: conv	15
	18. 绝对值函数: abs	16
	19. 正取余函数: pmod	16
	20. 正弦函数: sin	16
	21. 反正弦函数: asin	16
	22. 余弦函数: cos	17
	23. 反余弦函数: acos	17
	24. positive 函数: positive	17
	25. negative 函数: negative	17
五、	日期函数	18
	1. UNIX 时间戳转日期函数: from_unixtime	18
	2. 获取当前 UNIX 时间戳函数: unix_timestamp	18
	3. 日期转 UNIX 时间戳函数: unix_timestamp	18
	4. 指定格式日期转 UNIX 时间戳函数: unix_timestamp	18
	5. 日期时间转日期函数: to_date	19
	6. 日期转年函数: year	19
	7. 日期转月函数: month	19
	8. 日期转天函数: day	19
	9. 日期转小时函数: hour	20
	10. 日期转分钟函数: minute	20
	11. 日期转秒函数: second	20
	12. 日期转周函数: weekofyear	20
	13. 日期比较函数: datediff	21
	14. 日期增加函数: date_add	21
	15. 日期减少函数: date_sub	21
六、	条件函数	21
	1. If 函数: if	21
	2. 非空查找函数: COALESCE	22
	3. 条件判断函数: CASE	22
	4. 条件判断函数: CASE	22
七、	字符串函数	23
	1. 字符串长度函数: length	23
	2. 字符串反转函数: reverse	23
	3. 字符串连接函数: concat	23
	4. 带分隔符字符串连接函数: concat_ws	23
	5. 字符串截取函数: substr,substring	24
	6. 字符串截取函数: substr,substring	24
	7. 字符串转大写函数: upper,ucase	24
	8. 字符串转小写函数: lower,lcase	25
	9. 去空格函数: trim	25
	10. 左边去空格函数: Itrim	25
	11. 右边去空格函数: rtrim	25

	12. 正则表达式替换函数: regexp_replace	.26
	13. 正则表达式解析函数: regexp_extract	.26
	14. URL 解析函数: parse_url	.26
	15. json 解析函数: get_json_object	.27
	16. 空格字符串函数: space	.27
	17. 重复字符串函数: repeat	.27
	18. 首字符 ascii 函数: ascii	.28
	19. 左补足函数: lpad	.28
	20. 右补足函数: rpad	.28
	21. 分割字符串函数: split	.28
	22. 集合查找函数: find_in_set	.29
八、	集合统计函数	.29
	1. 个数统计函数: count	.29
	2. 总和统计函数: sum	.29
	3. 平均值统计函数: avg	.30
	4. 最小值统计函数: min	.30
	5. 最大值统计函数: max	.30
	6. 非空集合总体变量函数: var_pop	.30
	7. 非空集合样本变量函数: var_samp	.31
	8. 总体标准偏离函数: stddev_pop	.31
	9. 样本标准偏离函数: stddev_samp	.31
	10. 中位数函数: percentile	.31
	11. 中位数函数: percentile	.31
	12. 近似中位数函数: percentile_approx	.32
	13. 近似中位数函数: percentile_approx	.32
	14. 直方图: histogram_numeric	.32
九、	复合类型构建操作	.32
	1. Map 类型构建: map	.32
	2. Struct 类型构建: struct	.33
	3. array 类型构建: array	.33
十、	复杂类型访问操作	.33
	1. array 类型访问: A[n]	.33
	2. map 类型访问: M[key]	.34
	3. struct 类型访问: S.x	.34
+-	-、复杂类型长度统计函数	.34
	1. Map 类型长度函数: size(Map <k.v>)</k.v>	.34
	2. array 类型长度函数: size(Array <t>)</t>	.34
	3. 类型转换函数	.35

一、关系运算:

1. 等值比较:=

语法: A=B

操作类型: 所有基本类型

描述:如果表达式 A 与表达式 B 相等,则为 TRUE;否则为 FALSE

举例:

hive> select 1 from lxw_dual where 1=1;

1

2. 不等值比较: <>

语法: A <> B

操作类型: 所有基本类型

描述:如果表达式 A 为 NULL,或者表达式 B 为 NULL,返回 NULL;如果表达式 A 与表

达式 B 不相等,则为 TRUE; 否则为 FALSE

举例:

hive> select 1 from lxw_dual where 1 <> 2;

1

3. 小于比较: <

语法: A < B

操作类型: 所有基本类型

描述:如果表达式 A 为 NULL,或者表达式 B 为 NULL,返回 NULL;如果表达式 A 小于

表达式 B,则为 TRUE;否则为 FALSE

举例:

hive> select 1 from lxw_dual where 1 < 2;

1

4. 小于等于比较: <=

语法: A <= B

操作类型: 所有基本类型

描述: 如果表达式 A 为 NULL,或者表达式 B 为 NULL,返回 NULL;如果表达式 A 小于

或者等于表达式 B,则为 TRUE;否则为 FALSE

举例:

hive> select 1 from lxw_dual where 1 <= 1;

5. 大于比较:>

语法: A > B

操作类型: 所有基本类型

描述: 如果表达式 A 为 NULL,或者表达式 B 为 NULL,返回 NULL;如果表达式 A 大于

表达式 B,则为 TRUE;否则为 FALSE

举例:

hive> select 1 from lxw_dual where 2 > 1;

1

6. 大于等于比较: >=

语法: A >= B

操作类型: 所有基本类型

描述:如果表达式 A 为 NULL,或者表达式 B 为 NULL,返回 NULL;如果表达式 A 大于

或者等于表达式 B,则为 TRUE;否则为 FALSE

举例:

hive> select 1 from lxw_dual where 1 >= 1;

1

注意: String 的比较要注意(常用的时间比较可以先 to_date 之后再比较)

hive> select * from lxw_dual;

OK

2011111209 00:00:00 2011111209

hive> select a,b,a<b,a>b,a=b from lxw_dual;

2011111209 00:00:00 2011111209 false true false

7. 空值判断: IS NULL

语法: A IS NULL

操作类型: 所有类型

描述: 如果表达式 A 的值为 NULL,则为 TRUE;否则为 FALSE

举例:

hive> select 1 from lxw_dual where null is null;

1

8. 非空判断: IS NOT NULL

语法: A IS NOT NULL 操作类型: 所有类型

描述: 如果表达式 A 的值为 NULL,则为 FALSE; 否则为 TRUE

举例:

hive> select 1 from lxw_dual where 1 is not null;

1

9. LIKE 比较: LIKE

语法: A LIKE B

操作类型: strings

描述: 如果字符串 A 或者字符串 B 为 NULL,则返回 NULL;如果字符串 A 符合表达式 B 的正则语法,则为 TRUE;否则为 FALSE。B 中字符"_"表示任意单个字符,而字符"%"表示任意数量的字符。

举例:

hive> select 1 from lxw_dual where 'football' like 'foot%';

1

hive> select 1 from lxw_dual where 'football' like 'foot____';

1

注意: 否定比较时候用 NOT A LIKE B

hive> select 1 from lxw_dual where NOT 'football' like 'fff%';

1

10. JAVA 的 LIKE 操作: RLIKE

语法: A RLIKE B

操作类型: strings

描述:如果字符串 A 或者字符串 B 为 NULL,则返回 NULL;如果字符串 A 符合 JAVA 正则表达式 B 的正则语法,则为 TRUE;否则为 FALSE。

举例:

hive> select 1 from lxw_dual where 'footbar' rlike '^f.*r\$';

1

注意: 判断一个字符串是否全为数字:

hive>select 1 from lxw_dual where '123456' rlike '^\\d+\$';

1

hive> select 1 from lxw_dual where '123456aa' rlike '^\\d+\$';

11. REGEXP 操作: REGEXP

语法: A REGEXP B 操作类型: strings

描述: 功能与 RLIKE 相同

举例:

hive> select 1 from lxw_dual where 'footbar' REGEXP '^f.*r\$';

1

二、数学运算:

1. 加法操作:+

语法: A + B

操作类型: 所有数值类型

说明:返回 A 与 B 相加的结果。结果的数值类型等于 A 的类型和 B 的类型的最小父类型(详见数据类型的继承关系)。比如,int + int 一般结果为 int 类型,而 int + double 一般结果为 double 类型

举例:

hive> select 1 + 9 from lxw_dual;

10

hive> create table lxw_dual as select 1 + 1.2 from lxw_dual;

hive> describe lxw_dual;

_c0 double

2. 减法操作:-

语法: A - B

操作类型: 所有数值类型

说明:返回 A 与 B 相减的结果。结果的数值类型等于 A 的类型和 B 的类型的最小父类型 (详见数据类型的继承关系)。比如,int - int 一般结果为 int 类型,而 int - double 一般结果为 double 类型

举例:

hive> select 10 - 5 from lxw_dual;

5

hive> create table lxw_dual as select 5.6 – 4 from lxw_dual;

hive> describe lxw_dual;

_c0 double

3. 乘法操作:*

语法: A * B

操作类型: 所有数值类型

说明:返回 A 与 B 相乘的结果。结果的数值类型等于 A 的类型和 B 的类型的最小父类型(详见数据类型的继承关系)。注意,如果 A 乘以 B 的结果超过默认结果类型的数值范围,则需要通过 cast 将结果转换成范围更大的数值类型

举例:

hive> select 40 * 5 from lxw_dual; 200

4. 除法操作: /

语法: A / B

操作类型: 所有数值类型

说明:返回A除以B的结果。结果的数值类型为double

举例:

hive> select 40 / 5 from lxw_dual;

8.0

注意: hive 中最高精度的数据类型是 double,只精确到小数点后 16 位,在做除法运算的时候要特别注意

hive>select ceil(28.0/6.9999999999999999) from lxw_dual limit 1;

结果为4

hive>select ceil(28.0/6.999999999999) from lxw_dual limit 1;

结果为5

5. 取余操作:%

语法: A % B

操作类型: 所有数值类型

说明:返回 A 除以 B 的余数。结果的数值类型等于 A 的类型和 B 的类型的最小父类型 (详见数据类型的继承关系)。

举例:

hive> select 41 % 5 from lxw dual;

1

hive> select 8.4 % 4 from lxw dual;

0.40000000000000036

注意: 精度在 hive 中是个很大的问题,类似这样的操作最好通过 round 指定精度 hive> select round(8.4 % 4, 2) from lxw_dual;

6. 位与操作: &

语法: A & B

操作类型: 所有数值类型

说明:返回 A 和 B 按位进行与操作的结果。结果的数值类型等于 A 的类型和 B 的类型的最小父类型(详见数据类型的继承关系)。

举例:

hive> select 4 & 8 from lxw_dual;

ſ

hive> select 6 & 4 from lxw_dual;

4

7. 位或操作: |

语法: A | B

操作类型: 所有数值类型

说明:返回 A 和 B 按位进行或操作的结果。结果的数值类型等于 A 的类型和 B 的类型的最小父类型(详见数据类型的继承关系)。

举例:

hive> select 4 | 8 from lxw_dual;

12

hive> select 6 | 8 from lxw_dual;

14

8. 位异或操作: ^

语法: A ^ B

操作类型: 所有数值类型

说明:返回 A 和 B 按位进行异或操作的结果。结果的数值类型等于 A 的类型和 B 的类型的最小父类型(详见数据类型的继承关系)。

举例:

hive> select 4 ^ 8 from lxw_dual;

12

hive> select 6 ^ 4 from lxw_dual;

2

9. 位取反操作:~

语法: ~A

操作类型: 所有数值类型

说明:返回 A 按位取反操作的结果。结果的数值类型等于 A 的类型。

举例:

hive> select ~6 from lxw_dual;

-7

hive> select ~4 from lxw_dual;

-5

三、逻辑运算:

1. 逻辑与操作: AND

语法: A AND B

操作类型: boolean

说明:如果A和B均为TRUE,则为TRUE;否则为FALSE。如果A为NULL或B为NULL,

则为 NULL

举例:

hive> select 1 from lxw_dual where 1=1 and 2=2;

1

2. 逻辑或操作: OR

语法: A OR B

操作类型: boolean

说明: 如果 A 为 TRUE, 或者 B 为 TRUE, 或者 A 和 B 均为 TRUE, 则为 TRUE; 否则为 FALSE

举例:

hive> select 1 from lxw_dual where 1=2 or 2=2;

1

3. 逻辑非操作: NOT

语法: NOT A

操作类型: boolean

说明:如果 A 为 FALSE,或者 A 为 NULL,则为 TRUE;否则为 FALSE

举例:

hive> select 1 from lxw_dual where not 1=2;

四、数值计算

1. 取整函数: round

语法: round(double a)

返回值: BIGINT

说明:返回 double 类型的整数值部分 (遵循四舍五入)

举例:

hive> select round(3.1415926) from lxw_dual;

3

hive> select round(3.5) from lxw_dual;

4

hive> create table lxw_dual as select round(9542.158) from lxw_dual;

hive> describe lxw_dual;

_c0 bigint

2. 指定精度取整函数: round

语法: round(double a, int d)

返回值: DOUBLE

说明: 返回指定精度 d 的 double 类型

举例:

hive> select round(3.1415926,4) from lxw_dual;

3.1416

3. 向下取整函数: floor

语法: floor(double a)

返回值: BIGINT

说明: 返回等于或者小于该 double 变量的最大的整数

举例.

hive> select floor(3.1415926) from lxw_dual;

3

hive> select floor(25) from lxw_dual;

25

4. 向上取整函数: ceil

语法: ceil(double a) 返回值: BIGINT

说明: 返回等于或者大于该 double 变量的最小的整数

举例:

hive> select ceil(3.1415926) from lxw_dual;

4

hive> select ceil(46) from lxw_dual;

46

5. 向上取整函数: ceiling

语法: ceiling(double a)

返回值: BIGINT

说明:与 ceil 功能相同

举例:

hive> select ceiling(3.1415926) from lxw_dual;

Δ

hive> select ceiling(46) from lxw_dual;

46

6. 取随机数函数: rand

语法: rand(),rand(int seed)

返回值: double

说明: 返回一个 0 到 1 范围内的随机数。如果指定种子 seed,则会等到一个稳定的随机

数序列 举例:

hive> select rand() from lxw_dual;

0.5577432776034763

hive> select rand() from lxw_dual;

0.6638336467363424

hive> select rand(100) from lxw_dual;

0.7220096548596434

hive> select rand(100) from lxw_dual;

0.7220096548596434

7. 自然指数函数: exp

语法: exp(double a) 返回值: double

说明: 返回自然对数 e 的 a 次方

举例:

hive> select exp(2) from lxw_dual;

7.38905609893065 自然对数函数: In 语法: In(double a) 返回值: double

说明: 返回 a 的自然对数

举例:

hive> select ln(7.38905609893065) from lxw_dual;

2.0

8. 以 10 为底对数函数: log10

语法: log10(double a)

返回值: double

说明: 返回以 10 为底的 a 的对数

举例:

hive> select log10(100) from lxw_dual;

2.0

9. 以 2 为底对数函数: log2

语法: log2(double a) 返回值: double

说明: 返回以2为底的a的对数

举例:

hive> select log2(8) from lxw_dual;

3.0

10. 对数函数: log

语法: log(double base, double a)

返回值: double

说明: 返回以 base 为底的 a 的对数

举例:

hive> select log(4,256) from lxw_dual;

4.0

11. 幂运算函数: pow

语法: pow(double a, double p)

返回值: double

说明:返回a的p次幂

举例:

hive> select pow(2,4) from lxw_dual;

16.0

12. 幂运算函数: power

语法: power(double a, double p)

返回值: double

说明:返回 a 的 p 次幂,与 pow 功能相同

举例:

hive> select power(2,4) from lxw_dual;

16.0

13. 开平方函数: sqrt

语法: sqrt(double a) 返回值: double

说明:返回 a 的平方根

举例:

hive> select sqrt(16) from lxw_dual;

4.0

14. 二进制函数: bin

语法: bin(BIGINT a)

返回值: string

说明: 返回 a 的二进制代码表示

举例:

```
hive> select bin(7) from lxw_dual;
111
```

15. 十六进制函数: hex

语法: hex(BIGINT a) 返回值: string 说明: 如果变量是 int 类型,那么返回 a 的十六进制表示; 如果变量是 string 类型,则 返回该字符串的十六进制表示 举例: hive> select hex(17) from lxw_dual; 11 hive> select hex('abc') from lxw_dual; 616263

16. 反转十六进制函数: unhex

语法: unhex(string a) 返回值: string 说明: 返回该十六进制字符串所代码的字符串举例:
hive> select unhex('616263') from lxw_dual; abc
hive> select unhex('11') from lxw_dual;
hive> select unhex(616263) from lxw_dual; abc

17. 进制转换函数: conv

语法: conv(BIGINT num, int from_base, int to_base) 返回值: string 说明: 将数值 num 从 from_base 进制转化到 to_base 进制举例: hive> select conv(17,10,16) from lxw_dual; 11 hive> select conv(17,10,2) from lxw_dual; 10001

18. 绝对值函数: abs

语法: abs(double a) abs(int a) 返回值: double int 说明: 返回数值 a 的绝对值

举例:

hive> select abs(-3.9) from lxw_dual;

3.9

hive> select abs(10.9) from lxw_dual;

10.9

19. 正取余函数: pmod

语法: pmod(int a, int b),pmod(double a, double b)

返回值: int double

说明: 返回正的 a 除以 b 的余数

举例:

hive> select pmod(9,4) from lxw_dual;

1

hive> select pmod(-9,4) from lxw_dual;

3

20. 正弦函数: sin

语法: sin(double a) 返回值: double

说明: 返回 a 的正弦值

举例:

hive> select sin(0.8) from lxw_dual;

0.7173560908995228

21. 反正弦函数: asin

语法: asin(double a) 返回值: double

说明:返回 a 的反正弦值

举例.

hive> select asin(0.7173560908995228) from lxw_dual;

22. 余弦函数: cos

语法: cos(double a) 返回值: double

说明:返回 a 的余弦值

举例:

hive> select cos(0.9) from lxw_dual;

0.6216099682706644

23. 反余弦函数: acos

语法: acos(double a)

返回值: double

说明:返回 a 的反余弦值

举例:

hive> select acos(0.6216099682706644) from lxw_dual;

0.9

24. positive 函数: positive

语法: positive(int a), positive(double a)

返回值: int double

说明: 返回 a

举例:

hive> select positive(-10) from lxw_dual;

-10

hive> select positive(12) from lxw_dual;

12

25. negative 函数: negative

语法: negative(int a), negative(double a)

返回值: int double

说明: 返回-a

举例:

hive> select negative(-5) from lxw_dual;

5

hive> select negative(8) from lxw_dual;

五、日期函数

1. UNIX 时间戳转日期函数: from_unixtime

语法: from_unixtime(bigint unixtime[, string format])

返回值: string

说明: 转化 UNIX 时间戳(从 1970-01-01 00:00:00 UTC 到指定时间的秒数)到当前时区

的时间格式

举例:

hive> select from_unixtime(1323308943,'yyyyMMdd') from lxw_dual;

20111208

2. 获取当前 UNIX 时间戳函数: unix_timestamp

语法: unix_timestamp()

返回值: bigint

说明: 获得当前时区的 UNIX 时间戳

举例:

hive> select unix timestamp() from lxw dual;

1323309615

3. 日期转 UNIX 时间戳函数: unix_timestamp

语法: unix_timestamp(string date)

返回值: bigint

说明:转换格式为"yyyy-MM-dd HH:mm:ss"的日期到 UNIX 时间戳。如果转化失败,则返

回 0。 举例:

hive> select unix_timestamp('2011-12-07 13:01:03') from lxw_dual;

1323234063

4. 指定格式日期转 UNIX 时间戳函数: unix_timestamp

语法: unix_timestamp(string date, string pattern)

返回值: bigint

说明:转换 pattern 格式的日期到 UNIX 时间戳。如果转化失败,则返回 0。

举例:

hive> select unix_timestamp('20111207 13:01:03','yyyyMMdd HH:mm:ss') from lxw_dual;

1323234063

5. 日期时间转日期函数: to_date

语法: to_date(string timestamp)

返回值: string

说明: 返回日期时间字段中的日期部分。

举例:

hive> select to_date('2011-12-08 10:03:01') from lxw_dual;

2011-12-08

6. 日期转年函数: year

语法: year(string date)

返回值: int

说明: 返回日期中的年。

举例:

hive> select year('2011-12-08 10:03:01') from lxw_dual;

2011

hive> select year('2012-12-08') from lxw_dual;

2012

7. 日期转月函数: month

语法: month (string date)

返回值: int

说明: 返回日期中的月份。

举例.

hive> select month('2011-12-08 10:03:01') from lxw_dual;

12

hive> select month('2011-08-08') from lxw_dual;

8

8. 日期转天函数: day

语法: day (string date)

返回值: int

说明: 返回日期中的天。

举例.

hive> select day('2011-12-08 10:03:01') from lxw_dual;

hive> select day('2011-12-24') from lxw_dual; 24

9. 日期转小时函数: hour

语法: hour (string date)

返回值: int

说明: 返回日期中的小时。

举例:

hive> select hour('2011-12-08 10:03:01') from lxw_dual;

10

10. 日期转分钟函数: minute

语法: minute (string date)

返回值: int

说明: 返回日期中的分钟。

举例:

hive> select minute('2011-12-08 10:03:01') from lxw_dual;

3

11. 日期转秒函数: second

语法: second (string date)

返回值: int

说明:返回日期中的秒。

举例:

hive> select second('2011-12-08 10:03:01') from lxw_dual;

1

12. 日期转周函数: weekofyear

语法: weekofyear (string date)

返回值: int

说明: 返回日期在当前的周数。

举例:

hive> select weekofyear('2011-12-08 10:03:01') from lxw_dual;

13. 日期比较函数: datediff

语法: datediff(string enddate, string startdate)

返回值: int

说明: 返回结束日期减去开始日期的天数。

举例:

hive> select datediff('2012-12-08','2012-05-09') from lxw_dual;

213

14. 日期增加函数: date_add

语法: date_add(string startdate, int days)

返回值: string

说明:返回开始日期 startdate 增加 days 天后的日期。

举例:

hive> select date_add('2012-12-08',10) from lxw_dual;

2012-12-18

15. 日期减少函数: date_sub

语法: date_sub (string startdate, int days)

返回值: string

说明:返回开始日期 startdate 减少 days 天后的日期。

举例:

hive> select date sub('2012-12-08',10) from lxw dual;

2012-11-28

六、条件函数

1. If 函数: if

语法: if(boolean testCondition, T valueTrue, T valueFalseOrNull)

返回值:T

说明: 当条件 testCondition 为 TRUE 时,返回 valueTrue; 否则返回 valueFalseOrNull

举例:

hive> select if(1=2,100,200) from lxw_dual; 200 hive> select if(1=1,100,200) from lxw_dual; 100

2. 非空查找函数: COALESCE

语法: COALESCE(T v1, T v2, …)

返回值:T

说明: 返回参数中的第一个非空值;如果所有值都为 NULL,那么返回 NULL

举例:

hive> select COALESCE(null,'100','50') from lxw_dual;

100

3. 条件判断函数: CASE

语法: CASE a WHEN b THEN c [WHEN d THEN e]* [ELSE f] END

返回值:T

说明:如果 a 等于 b,那么返回 c;如果 a 等于 d,那么返回 e;否则返回 f

举例:

hive> Select case 100 when 50 then 'tom' when 100 then 'mary' else 'tim' end from lxw dual;

mary

hive> Select case 200 when 50 then 'tom' when 100 then 'mary' else 'tim' end from lxw_dual;

tim

4. 条件判断函数: CASE

语法: CASE WHEN a THEN b [WHEN c THEN d]* [ELSE e] END

返回值:T

说明:如果 a 为 TRUE,则返回 b;如果 c 为 TRUE,则返回 d;否则返回 e

举例:

hive> select case when 1=2 then 'tom' when 2=2 then 'mary' else 'tim' end from lxw_dual;

hive> select case when 1=1 then 'tom' when 2=2 then 'mary' else 'tim' end from lxw_dual; tom

七、字符串函数

1. 字符串长度函数: length

语法: length(string A)

返回值: int

说明:返回字符串 A 的长度

举例:

hive> select length('abcedfg') from lxw_dual;

7

2. 字符串反转函数: reverse

语法: reverse(string A)

返回值: string

说明:返回字符串 A 的反转结果

举例:

hive> select reverse(abcedfg') from lxw_dual;

gfdecba

3. 字符串连接函数: concat

语法: concat(string A, string B…)

返回值: string

说明: 返回输入字符串连接后的结果,支持任意个输入字符串

举例:

hive> select concat('abc','def','gh') from lxw_dual;

abcdefgh

4. 带分隔符字符串连接函数: concat_ws

语法: concat_ws(string SEP, string A, string B…)

返回值: string

说明:返回输入字符串连接后的结果,SEP表示各个字符串间的分隔符

举例:

hive> select concat_ws(',','abc','def','gh') from lxw_dual;

abc,def,gh

5. 字符串截取函数: substr,substring

```
语法: substr(string A, int start), substring(string A, int start) 返回值: string
```

说明:返回字符串 A 从 start 位置到结尾的字符串

举例:

hive> select substr('abcde',3) from lxw_dual;

cde

hive> select substring('abcde',3) from lxw_dual;

cde

hive> select substr('abcde',-1) from lxw_dual; (和 ORACLE 相同)

e

6. 字符串截取函数: substr,substring

语法: substr(string A, int start, int len), substring(string A, int start, int len)

返回值: string

说明:返回字符串 A 从 start 位置开始,长度为 len 的字符串

举例:

hive> select substr('abcde',3,2) from lxw_dual;

cd

hive> select substring('abcde',3,2) from lxw_dual;

cd

hive>select substring('abcde',-2,2) from lxw_dual;

de

7. 字符串转大写函数: upper,ucase

语法: upper(string A) ucase(string A)

返回值: string

说明:返回字符串 A 的大写格式

举例:

hive> select upper('abSEd') from lxw_dual;

ABSED

hive> select ucase('abSEd') from lxw dual;

ABSED

8. 字符串转小写函数: lower,lcase

语法: lower(string A) lcase(string A)

返回值: string

说明:返回字符串 A 的小写格式

举例:

hive> select lower('abSEd') from lxw_dual;

absed

hive> select lcase('abSEd') from lxw_dual;

absed

9. 去空格函数: trim

语法: trim(string A)

返回值: string

说明: 去除字符串两边的空格

举例:

hive> select trim(' abc ') from lxw_dual;

abc

10. 左边去空格函数: Itrim

语法: Itrim(string A)

返回值: string

说明: 去除字符串左边的空格

举例.

hive> select ltrim(' abc ') from lxw_dual;

abc

11. 右边去空格函数: rtrim

语法: rtrim(string A)

返回值: string

说明: 去除字符串右边的空格

举例:

hive> select rtrim(' abc ') from lxw_dual;

abc

12. 正则表达式替换函数: regexp_replace

语法: regexp_replace(string A, string B, string C)

返回值: string

说明:将字符串 A 中的符合 java 正则表达式 B 的部分替换为 C。注意,在有些情况下要使用转义字符,类似 oracle 中的 regexp replace 函数。

举例:

hive> select regexp_replace('foobar', 'oo|ar', '') from lxw_dual; fb

13. 正则表达式解析函数: regexp_extract

语法: regexp_extract(string subject, string pattern, int index)

返回值: string

说明:将字符串 subject 按照 pattern 正则表达式的规则拆分,返回 index 指定的字符。

举例:

 $\label{linear} \mbox{hive> select regexp_extract('foothebar', 'foo(.*?)(bar)', 1) from lxw_dual;}$

the

hive> select regexp_extract('foothebar', 'foo(.*?)(bar)', 2) from lxw_dual;

bar

hive> select regexp_extract('foothebar', 'foo(.*?)(bar)', 0) from lxw_dual;

foothebar

注意,在有些情况下要使用转义字符,下面的等号要用双竖线转义,这是 java 正则表达式的规则。

select data field,

 $regexp_extract(data_field,'.*?bgStart\=([^&]+)',1)$ as aaa,

regexp_extract(data_field,'.*?contentLoaded_headStart\\=([^&]+)',1) as bbb,

regexp_extract(data_field,'.*?AppLoad2Req\\=([^&]+)',1) as ccc

from pt nginx loginlog st

where pt = '2012-03-26' limit 2;

14. URL 解析函数: parse_url

语法: parse_url(string urlString, string partToExtract [, string keyToExtract])

返回值: string

说明:返回 URL 中指定的部分。partToExtract 的有效值为: HOST, PATH, QUERY, REF, PROTOCOL, AUTHORITY, FILE, and USERINFO.

举例:

hive> select parse_url('http://facebook.com/path1/p.php?k1=v1&k2=v2#Ref1', 'HOST') from lxw_dual;

```
facebook.com
hive> select parse_url('http://facebook.com/path1/p.php?k1=v1&k2=v2#Ref1', 'QUERY', 'k1')
from lxw_dual;
v1
```

15. json 解析函数: get_json_object

```
语法: get_json_object(string json_string, string path)
返回值: string
说明:解析 json 的字符串 json_string,返回 path 指定的内容。如果输入的 json 字符串无效,那么返回 NULL。
举例:
hive> select get_json_object('{"store":
> {"fruit":\{{"weight":8,"type":"apple"},{"weight":9,"type":"pear"}},
> "bicycle":{"price":19.95,"color":"red"}
> },
> "email":"amy@only_for_json_udf_test.net",
> "owner":"amy"
> }
> ','$.owner') from lxw_dual;
amy
```

16. 空格字符串函数: space

```
语法: space(int n) 返回值: string 说明: 返回长度为 n 的字符串举例: hive> select space(10) from lxw_dual; hive> select length(space(10)) from lxw_dual; 10
```

17. 重复字符串函数: repeat

```
语法: repeat(string str, int n) 返回值: string 说明: 返回重复 n 次后的 str 字符串举例:
hive> select repeat('abc',5) from lxw_dual; abcabcabcabcabc
```

18. 首字符 ascii 函数: ascii

语法: ascii(string str)

返回值: int

说明:返回字符串 str 第一个字符的 ascii 码

举例:

hive> select ascii('abcde') from lxw_dual;

97

19. 左补足函数: lpad

语法: lpad(string str, int len, string pad)

返回值: string

说明:将 str 进行用 pad 进行左补足到 len 位

举例:

hive> select lpad('abc',10,'td') from lxw_dual;

tdtdtdtabc

注意:与GP,ORACLE不同,pad 不能默认

20. 右补足函数: rpad

语法: rpad(string str, int len, string pad)

返回值: string

说明:将 str 进行用 pad 进行右补足到 len 位

举例:

hive> select rpad('abc',10,'td') from lxw dual;

abctdtdtdt

21. 分割字符串函数: split

语法: split(string str, string pat)

返回值: array

说明:按照 pat 字符串分割 str,会返回分割后的字符串数组

举例:

hive> select split('abtcdtef','t') from lxw_dual;

["ab","cd","ef"]

22. 集合查找函数: find_in_set

```
语法: find_in_set(string str, string strList) 返回值: int 说明: 返回 str 在 strlist 第一次出现的位置,strlist 是用逗号分割的字符串。如果没有找该 str 字符,则返回 0 举例:
hive> select find_in_set('ab','ef,ab,de') from lxw_dual;
hive> select find_in_set('at','ef,ab,de') from lxw_dual;
0
```

八、集合统计函数

1. 个数统计函数: count

```
语法: count(*), count(expr), count(DISTINCT expr[, expr_.]) 返回值: int 说明: count(*)统计检索出的行的个数,包括 NULL 值的行; count(expr)返回指定字段的非空值的个数; count(DISTINCT expr[, expr_.])返回指定字段的不同的非空值的个数举例:
hive> select count(*) from lxw_dual;
20
hive> select count(distinct t) from lxw_dual;
10
```

2. 总和统计函数: sum

```
语法: sum(col), sum(DISTINCT col) 返回值: double 说明: sum(col)统计结果集中 col 的相加的结果; sum(DISTINCT col)统计结果中 col 不同值相加的结果举例: hive> select sum(t) from lxw_dual; 100 hive> select sum(distinct t) from lxw_dual; 70
```

3. 平均值统计函数: avg

语法: avg(col), avg(DISTINCT col)

返回值: double

说明: avg(col)统计结果集中 col 的平均值; avg(DISTINCT col)统计结果中 col 不同值相加

的平均值 举例:

hive> select avg(t) from lxw_dual;

50

hive> select avg (distinct t) from lxw_dual;

30

4. 最小值统计函数: min

语法: min(col) 返回值: double

说明: 统计结果集中 col 字段的最小值

举例:

hive> select min(t) from lxw_dual;

20

5. 最大值统计函数: max

语法: maxcol) 返回值: double

说明:统计结果集中 col 字段的最大值

举例:

hive> select max(t) from lxw_dual;

120

6. 非空集合总体变量函数: var_pop

语法: var_pop(col) 返回值: double

说明:统计结果集中 col 非空集合的总体变量(忽略 null)

举例:

7. 非空集合样本变量函数: var_samp

语法: var_samp (col) 返回值: double

说明:统计结果集中 col 非空集合的样本变量(忽略 null)

举例:

8. 总体标准偏离函数: stddev_pop

语法: stddev pop(col)

返回值: double

说明:该函数计算总体标准偏离,并返回总体变量的平方根,其返回值与 VAR POP 函

数的平方根相同

举例:

9. 样本标准偏离函数: stddev_samp

语法: stddev_samp (col)

返回值: double

说明: 该函数计算样本标准偏离

举例:

10. 中位数函数: percentile

语法: percentile(BIGINT col, p)

返回值: double

说明: 求准确的第 pth 个百分位数, p 必须介于 0 和 1 之间, 但是 col 字段目前只支持

整数,不支持浮点数类型

举例:

11. 中位数函数: percentile

语法: percentile(BIGINT col, array(p1 [, p2]…))

返回值: array<double>

说明:功能和上述类似,之后后面可以输入多个百分位数,返回类型也为 array<double>,

其中为对应的百分位数。

举例:

12. 近似中位数函数: percentile_approx

语法: percentile_approx(DOUBLE col, p [, B])

返回值: double

说明:求近似的第 pth 个百分位数,p 必须介于 0 和 1 之间,返回类型为 double,但是 col 字段支持浮点类型。参数 B 控制内存消耗的近似精度,B 越大,结果的准确度越高。默认为 10,000。当 col 字段中的 distinct 值的个数小于 B 时,结果为准确的百分位数举例:

13. 近似中位数函数: percentile_approx

语法: percentile_approx(DOUBLE col, array(p1 [, p2]…) [, B])

返回值: array<double>

说明:功能和上述类似,之后后面可以输入多个百分位数,返回类型也为 array<double>,

其中为对应的百分位数。

举例:

14. 直方图: histogram_numeric

语法: histogram_numeric(col, b)

返回值: array<struct { 'x', 'y'}>

说明:以b为基准计算col的直方图信息。

举例:

hive> select histogram_numeric(100,5) from lxw_dual;

[{"x":100.0,"y":1.0}]

九、复合类型构建操作

1. Map 类型构建: map

语法: map (key1, value1, key2, value2, …)

说明:根据输入的 key 和 value 对构建 map 类型

举例:

hive> Create table lxw_test as select map('100','tom','200','mary') as t from lxw_dual;

hive> describe lxw test;

t map<string,string>

```
hive> select t from lxw_test; {"100":"tom","200":"mary"}
```

2. Struct 类型构建: struct

```
语法: struct(val1, val2, val3, ···)
说明: 根据输入的参数构建结构体 struct 类型
举例:
hive> create table lxw_test as select struct('tom','mary','tim') as t from lxw_dual;
hive> describe lxw_test;
t struct<col1:string,col2:string,col3:string>
hive> select t from lxw_test;
{"col1":"tom","col2":"mary","col3":"tim"}
```

3. array 类型构建: array

```
语法: array(val1, val2, ···)
说明:根据输入的参数构建数组 array 类型
举例:
hive> create table lxw_test as select array("tom","mary","tim") as t from lxw_dual;
hive> describe lxw_test;
t array<string>
hive> select t from lxw_test;
["tom","mary","tim"]
```

十、复杂类型访问操作

1. array 类型访问: A[n]

```
语法: A[n]
操作类型: A 为 array 类型,n 为 int 类型
说明: 返回数组 A 中的第 n 个变量值。数组的起始下标为 0。比如,A 是个值为['foo', 'bar']
的数组类型,那么 A[0]将返回'foo',而 A[1]将返回'bar'
举例:
hive> create table lxw_test as select array("tom","mary","tim") as t from lxw_dual;
hive> select t[0],t[1],t[2] from lxw_test;
tom mary tim
```

2. map 类型访问: M[key]

语法: M[key]

操作类型: M 为 map 类型, key 为 map 中的 key 值

说明:返回 map 类型 M 中,key 值为指定值的 value 值。比如, M 是值为{'f' -> 'foo', 'b'

-> 'bar', 'all' -> 'foobar'}的 map 类型,那么 M['all']将会返回'foobar'

举例:

hive> Create table lxw_test as select map('100','tom','200','mary') as t from lxw_dual;

hive> select t['200'],t['100'] from lxw_test;

mary tom

3. struct 类型访问: S.x

语法: S.x

操作类型: S 为 struct 类型

说明:返回结构体S中的x字段。比如,对于结构体 struct foobar {int foo, int bar},

foobar.foo 返回结构体中的 foo 字段

举例:

hive> create table lxw_test as select struct('tom','mary','tim') as t from lxw_dual;

hive> describe lxw test;

t struct<col1:string,col2:string,col3:string>

hive> select t.col1,t.col3 from lxw_test;

tom tim

十一、复杂类型长度统计函数

1. Map 类型长度函数: size(Map<K.V>)

语法: size(Map<K.V>)

返回值: int

说明:返回 map 类型的长度

举例:

hive> select size(map('100','tom','101','mary')) from lxw_dual;

2

2. array 类型长度函数: size(Array<T>)

语法: size(Array<T>)

返回值: int

说明:返回 array 类型的长度

举例:

hive> select size(array('100','101','102','103')) from lxw_dual;

4

3. 类型转换函数

类型转换函数: cast

语法: cast(expr as <type>)

返回值: Expected "=" to follow "type"

说明:返回 array 类型的长度

举例:

hive> select cast(1 as bigint) from lxw_dual;

1