INP-ENSEEIHT 1° année SN

TP1 – Maximum de vraisemblance

La figure 1 montre n observations indépendantes que l'on considère comme une réalisation (x_1, \ldots, x_n) d'un n-uplet (X_1, \ldots, X_n) de variables aléatoires « iid » (indépendantes et identiquement distribuées). La loi des n variables X_i est soit $f_{\theta_1}(x)$ soit $f_{\theta_2}(x)$, de paramètres respectifs θ_1 et θ_2 , qui se déduisent l'une de l'autre par translation. Bien sûr, ces données sont plus probablement issues de la densité $f_{\theta_1}(x)$ que de la densité $f_{\theta_2}(x)$.

Comment formaliser cette intuition? Par la notion de vraisemblance, généralement notée L (pour likelihood). La vraisemblance $L_{\theta}(x_1, \ldots, x_n)$ est la loi du n-uplet (X_1, \ldots, X_n) , qui dépend de paramètres θ supposés connus :

$$L_{\theta}(x_1, \dots, x_n) = \prod_{i=1}^n f_{\theta}(x_i)$$
(1)

où f_{θ} est la densité de probabilité commune à toutes les variables indépendantes X_i (que l'on suppose continues). Le but de ce TP est de montrer l'intérêt du maximum de vraisemblance pour l'estimation des paramètres. La loi qui semble le mieux « expliquer » les observations de la figure 1 est celle qui maximise leur vraisemblance $L_{\theta}(x_1, \ldots, x_n)$. On trouve ainsi la valeur θ^* de θ qui explique le mieux les observations (x_1, \ldots, x_n) .

FIGURE 1 – Les n observations indépendantes (en rouge) d'un n-uplet de variables aléatoires correspondent plus probablement à la densité $f_{\theta_1}(x)$, en vert, qu'à la densité $f_{\theta_2}(x)$, en bleu, qui est une translatée de $f_{\theta_1}(x)$.

Estimation des paramètres d'un cercle par maximum de vraisemblance

Lancez le script donnees, qui tire aléatoirement le centre C_0 et le rayon R_0 d'un cercle, ainsi que n points $P_i = (x_i, y_i)$ situés au voisinage de ce cercle. On souhaite estimer les paramètres (C_0, R_0) à partir des seuls P_i . Si $\epsilon(P_i) = d(P_i, C_0) - R_0$ désigne l'écart entre le rayon R_0 et la distance $d(P_i, C_0)$ du point P_i au centre C_0 , il semble légitime de modéliser ces écarts par une loi normale tronquée d'écart-type σ :

$$f_{(C_0,R_0)}(P_i) = \begin{cases} K \exp\left\{-\frac{\epsilon(P_i)^2}{2\sigma^2}\right\} & \text{si } \epsilon(P_i) \ge -R_0\\ 0 & \text{sinon} \end{cases}$$
 (2)

Les écarts $\epsilon(P_i)$ prenant leurs valeurs dans $[-R_0, +\infty[$ et non dans \mathbb{R} , le coefficient de normalisation K n'est pas exactement égal à $(\sigma\sqrt{2\pi})^{-1}$. Il est facile de vérifier que K dépend de R_0 , mais pas de C_0 .

Exercice 1 : estimation de la position du centre

Dans un premier temps, le rayon $R_0 = 8$ du cercle est supposé connu. Seule la position C_0 de son centre est inconnue, donc $\theta = (C, R_0)$. Comme un produit est plus difficile à maximiser qu'une somme, et que la fonction logarithme est strictement croissante, il est préférable de maximiser la log-vraisemblance $\ln L_{(C,R_0)}(P_1, \ldots, P_n)$:

$$C^* = \underset{C \in \mathbb{R}^2}{\arg \max} \left\{ \ln \prod_{i=1}^n f_{(C,R_0)}(P_i) \right\} = \underset{C \in \mathbb{R}^2}{\arg \min} \sum_{i=1}^n \left\{ \left[d(P_i,C) - R_0 \right]^2 \right\}$$
 (3)

Écrivez la fonction estimation_1, appelée par le script exercice_1, censée résoudre le problème (3) par tirages aléatoires selon deux lois uniformes (fonction rand de Matlab), si possible sans boucle for. Faites varier le nombre n de points, l'écart-type σ de la distance des P_i au cercle, le nombre ntests de positions de C.

INP-ENSEEIHT 1° année SN

Exercice 2 : estimation simultanée du centre et du rayon

On suppose maintenant ni C_0 ni R_0 ne sont connus. L'estimation du rayon est un peu plus délicate, car le facteur de normalisation K de la loi (2) dépend de R_0 . Au lieu de (3), on doit maintenant résoudre :

$$(C^*, R^*) = \underset{(C, R) \in \mathbb{R}^2 \times \mathbb{R}^+}{\arg \max} \left\{ \ln \prod_{i=1}^n f_{(C, R)}(P_i) \right\} = \underset{(C, R) \in \mathbb{R}^2 \times \mathbb{R}^+}{\arg \min} \sum_{i=1}^n \left\{ -\ln K + \frac{\left[d(P_i, C) - R \right]^2}{2\sigma^2} \right\}$$
(4)

Pour connaître la dépendance de K en R_0 , écrivons la normalisation de la loi (2) en coordonnées polaires :

$$K \int_{\theta=0}^{2\pi} d\theta \int_{\rho=0}^{+\infty} \exp\left\{-\frac{(\rho - R_0)^2}{2\sigma^2}\right\} \rho \, d\rho = 1 \tag{5}$$

qui devient, avec le changement de variable $\tau = \rho - R_0$:

$$\int_{\tau = -R_0}^{+\infty} \exp\left\{-\frac{\tau^2}{2\sigma^2}\right\} \tau \, d\tau + R_0 \int_{\tau = -R_0}^{+\infty} \exp\left\{-\frac{\tau^2}{2\sigma^2}\right\} \, d\tau = \frac{1}{K \, 2\pi} \tag{6}$$

Dans (6), la première intégrale est facile à calculer, mais il n'existe pas d'expression analytique pour la seconde. En supposant $R_0 \gg \sigma$, on peut néanmoins écrire l'approximation suivante (la borne rouge est inexacte) :

$$\sigma^2 \exp\left\{-\frac{R_0^2}{2\sigma^2}\right\} + R_0 \int_{\tau=-\infty}^{+\infty} \exp\left\{-\frac{\tau^2}{2\sigma^2}\right\} d\tau \approx \frac{1}{K 2\pi}$$
 (7)

Dans cette expression, on reconnaît l'intégrale de Gauss, donc

$$\sigma^2 \exp\left\{-\frac{R_0^2}{2\sigma^2}\right\} + R_0 \,\sigma \,\sqrt{2\pi} \approx \frac{1}{K \,2\pi} \tag{8}$$

L'hypothèse $R_0 \gg \sigma$ permet de négliger le premier terme du premier membre de (8), ce qui donne enfin :

$$K \approx \frac{1}{R_0 \sigma (2\pi)^{3/2}} \tag{9}$$

La résolution du problème (4) revient donc à l'estimation approchée suivante :

$$(x_C^*, y_C^*, R^*) \approx \underset{(x_C, y_C, R) \in \mathbb{R}^2 \times \mathbb{R}^+}{\arg \min} \sum_{i=1}^n \left\{ \ln R + \frac{[d(P_i, C) - R]^2}{2\sigma^2} \right\}$$
 (10)

En utilisant à nouveau l'hypothèse $R_0 \gg \sigma$, on voit que le premier terme de l'argument peut être négligé :

$$(x_C^*, y_C^*, R^*) \approx \underset{(x_C, y_C, R) \in \mathbb{R}^2 \times \mathbb{R}^+}{\arg \min} \sum_{i=1}^n \left\{ [d(P_i, C) - R]^2 \right\}$$
 (11)

Remarquez néanmoins qu'il aurait été impropre de déduire (11) de (3), puisque (11) est une approximation.

Dupliquez exercice_1 et estimation_1, sous les noms exercice_2 et estimation_2, puis modifiez ces copies de manière à résoudre le problème (11) par tirages aléatoires, avec par exemple $0 \le R \le 2R_0$. Effectuez le même nombre n_{tests} de tirages pour C et pour R, puis testez chaque couple (C_i, R_i) , $i \in \{1, \ldots, n_{\text{tests}}\}$.

Exercice 3 : données partiellement occultées

Faites une copie du script exercice_2, de nom exercice_3, où vous remplacerez l'appel donnees par donnees_occultees. Pour écrire donnees_occultees, faites une copie de donnees, que vous modifierez de manière à tirer aléatoirement deux angles θ_1 et θ_2 dans $[0, 2\pi[$, puis à conserver seulement les points P_i d'angles polaires $\theta_i \in [\theta_1, \theta_2]$ si $\theta_1 \leq \theta_2$, et les points P_i d'angles polaires $\theta_i \in [0, \theta_2] \cup [\theta_1, 2\pi[$, dans le cas où $\theta_1 > \theta_2$.

Exercice 4 : modification des tirages aléatoires (facultatif)

Plutôt que des lois uniformes, il semble plus pertinent d'utiliser des lois normales pour les tirages aléatoires. Faites une copie du script exercice_2, de nom exercice_4, où vous appellerez le script exercice_2 au lieu du script donnees, et où vous traduirez cette idée à l'aide de la fonction randn de Matlab (le n final indique qu'il s'agit d'une loi normale). Vous devriez constater une amélioration dans les estimations.