Conferencia 1 - Principios de la Teoría de Números

September 9, 2025

Principio del Buen Ordenamiento. Todo A subconjunto no vacío de Z₊ tiene un elemento mínimo. O sea, existe un $m \in A$ tal que para todo $x \in A$ se cumple que m < x.

Principio de Inducción Matemática. Dada una proposición P, si se cumple $P(n_0)$ con $n_0 \in \mathbb{Z}_+$ y, además, para todo $n \geq n_0$ se cumple que $P(n) \Rightarrow P(n+1)$; entonces P(n) se cumple para todo $n \geq n_0$.

Teorema. El Principio del Buen Ordenamiento (PBO) es equivalente al Principio de Inducción Matemática (PIM)

Demostración que el Principio del Buen Ordenamiento implica al Principio de Inducción Matemática

Demostremos que el PBO implica PIM

Sea C el conjunto de los números $n \ge n_0$ que no cumplen P.

Asumamos que $C \neq \emptyset$.

Entonces, por el **Principio del Buen Ordenamiento** existe $m \in C$ tal que m es el mínimo elemento de C.

Luego como $P(n_0)$ se cumple entonces $m > n_0$ por lo que $m - 1 \ge n_0$.

Como m-1 < m entonces $m-1 \notin C$ por lo que P(m-1) se cumple. Por tanto, como para todo $n \geq n_0$ se tiene que $P(n) \Rightarrow P(n+1)$ entonces dado que P(m-1) se cumple se tendría que P(m) también se cumple ilo que es una contradicción! Entonces C es vacío.

Se debe demostar también que el PIM implica PBO

Ejemplo Demuestre, utilizando el Principio del Buen Ordenamiento, que para toda $n \in \mathbb{Z}_+$ se cumple que $\sum_{k=1}^n (2k-1) = n^2$

Sea C el conjunto de los números enteros positivos que no cumplen P.

Asumamos que $C \neq \emptyset$.

Entonces, por el Principio del Buen Ordenamiento existe $m \in C$ tal que m es el mínimo elemento de C.

P(1) se cumple pues $\sum_{k=1}^{1} (2k-1) = 2-1 = 1 = 1^2$, por tanto m > 1 por lo que $m-1 \ge 1$. Ahora, como m > m-1 entonces $m-1 \notin C$ por lo que P(m-1) se cumple. Entonces $\sum_{k=1}^{m-1} (2k-1) = (m-1)^2$.

Ahora se tiene que
$$\sum_{k=1}^{m} (2k-1) = \sum_{k=1}^{m-1} (2k-1) + (2m-1)$$
$$\sum_{k=1}^{m} (2k-1) = (m-1)^2 + (2m-1)$$
$$\sum_{k=1}^{m} (2k-1) = (m^2 - 2m + 1) + (2m-1)$$
$$\sum_{k=1}^{m} (2k-1) = m^2$$

O sea, P(m) se cumple, lo que es una jcontradicción! Luego, C es vacío y se cumple para todos.

Definición. Sean $a \in \mathbb{Z}$, $b \in \mathbb{Z}$, $a \neq 0$, se dice que a divide a b, o que b es *múltiplo de a, denotado a*|b, *si existe* $q \in \mathbb{Z}$ *tal que* b = a * q.

Lema. Todo número $a \in \mathbb{Z}$, es divisor de θ .

Teorema. Sean $a \in \mathbb{Z}$, $b \in \mathbb{Z}$, si b|a y $a \neq 0$ entonces $|a| \geq |b|$

Teorema. La relación **ser divisor de** es transitiva. O sea, si a|b y b|c entonces a|c

Demostración

Se debe demostrar que si a|b y b|c entonces a|c

Como a|b entonces existe $q_1 \in \mathbb{Z}$ tal que $b=aq_1$ Del mismo modo, como b|c existe $q_2 \in \mathbb{Z}$ tal que $c=bq_2$

Ahora, como $c=bq_2=aq_1q_2$ entonces tomando $q=q_1q_2\in\mathbb{Z}$ se tiene entonces que c=a*q y, por tanto, a|c

Teorema. Algoritmo de la División, sean $a \in \mathbb{Z}$, $b \in \mathbb{Z}$, b > 0, entonces existen $q \in \mathbb{Z}$, $r \in \mathbb{Z}$, únicos tales que a = b * q + r donde $0 \le r < b$

Demostración

Por una parte, si b|a entonces existe $q \in \mathbb{Z}$ tal que a = bq, luego, para este caso con r = 0 se cumple que a = bq + r

En el otro caso, si $b \nmid a$ entonces se puede construir el conjunto

 $S = \{a - sb | a - sb > 0, s \in \mathbb{Z}\}$, noten que este es el conjunto los posibles r.

Ahora se debe demostrar que S no es vacío.

Veamos para a>0, entonces para este caso se toma s=0 y es evidente aquí que el conjunto posee al menos al elemento a.

Para a < 0 tomamos a s = a - 1 y por tanto

$$a - sb = a - (a - 1)b$$

$$a - sb = a - ab - b$$

$$a - sb = a(1 - b) + b$$

Como a < 0 y 1 - b < 0 (pues b > 0 y $b \nmid a$) entonces a(1 - b) es mayor que 0 y, por tanto, a(1 - b) + b también lo es.

Luego, sea r el elemento mínimo de S y sea s=q se tiene que a-bq=r entonces a=bq+r

Ahora se debe demostrar que $0 \le r < b$.

Se sabe que r = a - sb > 0

Supongamos que r > b (r = b implicaría que b|a) por tanto

r-b>0 y como r=a-bq entonces r-b=a-qb-b>0 y estos es lo mismo que r-b=a-b(q+1)>0, luego $r-b\in S$ y como r>r-b esto es una contradicción pues r era el elemento mínimo de S.

Ahora se debe demostrar que q y r son únicos.

Supongamos que existen q_1, r_1 tal que $q_1 \neq q$ o $r_1 \neq r$ y $a = bq_1 + r_1 = bq + r$

Entonces $b(q-q1) = r_1 - r$

y como se cumple que $0 \le r < b$ y $0 \le r_1 < b$

se tiene que $-b < r_1 - r < b$ y, por tanto,

$$-b < b(q - q_1) < b$$

$$-1 < q - q_1 < 1$$

Como $q - q_1 \in \mathbb{Z}$ ello implica que $q - q_1 = 0$ y $q = q_1$ por tanto $r = r_1$ y esto es una contradicción, luego q y r son únicos.

Definición. Sea $n \in \mathbb{Z}$ tal que n > 1, se dice que n es un **número primo** si y solo si sus únicos divisores positivos son 1 y n, de lo contrario se dice que n es un **número compuesto**

Corolario. $n \in \mathbb{Z}$, n > 1, es un **número compuesto** si y solo si n = a * b con $a \in \mathbb{Z}$, $b \in \mathbb{Z}$, 1 < a < b < n

Lema. Todo número entero mayor que 1 tiene un divisor primo

Demostración

Demostración 1

Para n > 1

Si n es primo ya está demostrado.

Si n no es primo es compuesto, entonces n = ab, 1 < a, b < n

Si a es primo o b es primo ya queda demostrado.

Sino a es compuesto y es de la forma $a = a_1b_1$, $1 < a_1, b_1 < a_2$

• • •

Como no existe descenso infinito para números positivos, este proceso debe terminar encontrando un número a_i primo que por transitividad divide a n.

Demostración 2

Para n=2 se cumple.

Luego hasta n-1 se cumple.

Entonces si n es primo ya, sino n = ab, 1 < a, b < n.

Si a es primo se cumple sino a es compuesto y como a < n entonces tiene un divisor primo que, por transitividad, lo es de n.

 $Demostraci\'on~\it 3$

Si n es primo, ya está demostrado. Sino, se tiene $D = \{d: d|n, 1 < d < n\}$ y sea m el mínimo elemento de D.

Supongamos que m es compuesto, luego existe p < m tal que p|m, entonces por transitividad p|n y p < m, y esto es un contradicción. Luego m es primo.

Teorema. Hay una infinita cantidad de números primos

Demostración

Por absurdo, asumamos que es finito. Si tenemos el conjunto de todos los primos $A=\{p_1,p_2,\ldots,p_k\}$ entonces tomemos $m=p_1p_2\ldots p_k+1$

Ahora, si $p_i|m(1 \le i \le k)$ como $p_i|p_1p_2...p_k$ entonces $p_i|1$ lo que es una contradicción.

Luego, existe q primo tal que $q|m \ y \ q \not\in A$