

15-250X Faster than Software Implementation

Contact Information

Anupam Chattopadhyay

Email: anupam@ntu.edu.sg

Office: N4-02c-105

Attoseconds

Plan for the 2nd half of the semester

Full-Time Course

Week	Pre-Recorded Lectures	Monday (LT19A) 830-920	Thursday (Zoom) 1630-1720	Tutorial	Lab
7	L13-L14				
		Recess Wee	k		
8	L15-L16	L13-L14 Summary		Tutorial 6	+ quiz 3
9	L17-L18	L15-L16 Summary		Tutorial 7	Experiment 4 + quiz 4
10	L19-L20	L17-L18 Summary	Online	Tutorial 8	· quiz +
11	L21-L22	L19-L20 Summary (Zoom)	Consultation (Zoom)	Tutorial 9	Experiment 5 + quiz 5
12	L23	L21-L22 Summary		Tutorial 10	· quiz 3
13		Public holiday			

Plan for the 2nd half of the semester (contd.) NANYANG TECHNOLOGICAL UNIVERSITY

Part-Time Course

Week	Pre-Recorded Lectures	Tuesday (LT11) 1830-2130		Lab
7	L13-L14			
		Recess Week		
8	L15-L16	L13-L14 Summary	Tutorial 6	
9	L17-L18	L15-L16 Summary	Tutorial 7, 8	
10	L19-L20	L17-L19 Summary	Tutorial 9	
11	L21-L22			Experiment 4 + quiz 4
12	L23	L20-L22 Summary	Tutorial 10	
13				Experiment 5 + quiz 5

Plan for the 2nd half of the semester (contd.) NANYANG TECHNOLOGICAL TO THE VALUE OF THE SEMESTER (CONTD.)

- Online Tasks for L13 to L22
 - Will not be graded
- Discussion lectures (Monday, 8:30-9:20 AM, LT19A)
 - You are required to view the pre-recorded lectures
 - Recap and discussion (slides to be uploaded afterwards)
 - Additional examples and exercises
 - Polls through Wooclap (QR code in respective slides)

Plan for the 2nd half of the semester (contd.)

- Participation in Course
 - Use NTULearn Discussion Forum to ask follow-up questions

- Consultation Slots on (Thursday, 4:30-5:20 PM, Zoom)
 - Limit yourself to 3 questions
 - Avoid the clarification on tutorial
 - https://ntu-sg.zoom.us/j/81954891824

Meeting ID: 819 5489 1824

Passcode: 364003

SC1005 Digital Logic

Recap and Discussion

Lecture 17

Sequential Circuits

Summary of Lecture 17

- Sequential Circuits
 - Set-Reset (SR) Latch
 - Transparent D-Latch
 - Clock and Timing

Recap: Combinational vs. Sequential Circuits

- The output of a combinational circuit is purely a function of the present inputs to it
 - output = f(input)

The output of a sequential circuit depends on both the current and previous inputs.

Exercise 1

- Consider two styles of fan speed control:
 - Dial-based (0,1,2,3,4,5)
 - Button-based (+,–)
- Which of the following correctly define the type of circuit used for implementing the fan control for L and R?

L – Combinational L – Sequential R - Combinational R - Combinational

L – Combinational

R – Sequential

L – Sequential

R – Sequential

Recap: Latches

Set-Reset (SR) Latch

Enabled SR Latch

D Latch

S	R	Q+	Function
0	0	Q	Store
0	1	0	Reset
1	0	1	Set
1	1	?	Undefined

Ε	S	R	Q+	Function
0	Χ	Χ	Q	Store
1	0	0	Q	Store
1	0	1	0	Reset
1	1	0	1	Set
1	1	1	?	Undefined

Ε	D	Q+
0	Χ	Q
1	0	0
1	1	1

Problem: When both S and R are asserted and then de-asserted at the same time, we may get output oscillation.

Recap: Transparent D Latch

Active-High D Latch

Ε	D	Q+	Function
0	Χ	Q	Store
1	0	0	Transparent
1	1	1	Transparent

Active-Low D Latch

E	D	Q+	Function
1	X	Q	Store
0	0	0	Transparent
0	1	1	Transparent
1 D			1

The Clock

- In digital systems, sequential components are connected to what we call a "clock"
- The clock is a signal that continuously toggles between 0 and 1 at a fixed rate:

- The period of the clock is the time it takes to complete one complete cycle – we call this a cycle
- The frequency is the inverse of the period:
 - 10ns period = $10x10^{-9}$ s, $1/10x10^{-9}$ = 10^8 Hz = 100MHz
 - 1ns period = $1x10^{-9}$ s, $1/1x10^{-9}$ = 10^{9} Hz = 1GHz

Timing in Circuits

Assume an and gate has a delay of 4ns and an inverter has a delay of 2ns:

- The propagation delay, t_p, may differ between different inputs and outputs in the same circuit
- If we report a single number, we always use the worst (i.e. longest path)

SC1005 Digital Logic

Recap and Discussion

Lecture 18

Sequential Circuits

Summary of Lecture 18

- Introduction to Verilog HDL
 - Gated/Enabled S-R Latch
 - Transparent D-Latch
 - Edge-Triggered Flip-Flop

Timing of Latches

Consider a chain of latches:

- When Clk_A is 1, how many latches will the input pass through?
- With Clk A, it may be more, Clk B, fewer

Timing of Latches

Recap: Edge Triggered Flip-Flops

 Use edge triggered flip-flop to overcome the limitation of latches

Edge-Triggered Flip-Flops

- Master-Slave implies two latch stages:
 - Master stage is enabled when control is low, and samples the current input, while slave is disabled, locking it in the middle
 - When control goes high, the master is disabled, and the slave uses the value from the middle to determine its output
- Hence, the only time an output will change is at the rising edge
 - For a negative-edge triggered setup, the master responds to high enable, and the slave to low enable

Edge-Triggered Flip-Flops

The timing diagram for for a D-type flip-flop is as follows:

 Note transitions on the output only occur at the (rising) clock edge

Exercise 2

If enable = 1 and the current state of the circuit is $Q_3Q_2Q_1Q_0 = 0101$, what is the next state?

Edge-Triggered Flip-Flops

NANYANG TECHNOLOGICAL UNIVERSITY

- We've seen the D flip-flop:
 - Q takes the value on D at the rising edge of C
- There's also a J-K flip-flop:
 - Q becomes 1 if J is asserted at the rising edge and 0 if K is asserted
 - If both J and K are asserted, the output toggles at the rising edge
- And a T flip-flop:
 - Q toggles at the rising edge if T=1
- (Also a lesser seen SR flip-flop)

Exercise 3

Initially both Q_0 and Q_1 are set to 1 (before the first clock cycle). The outputs

 3^{rd} clock cycle, $Q_1Q_0 = 11$; 4^{th} clock cycle, $Q_1Q_0 = 00$; 3^{rd} clock cycle, $Q_1Q_0 = 11$; 4^{th} clock cycle, $Q_1Q_0 = 01$; 3^{rd} clock cycle, $Q_1Q_0 = 00$; 4^{th} clock cycle, $Q_1Q_0 = 11$; 3^{rd} clock cycle, $Q_1Q_0 = 01$; 4^{th} clock cycle, $Q_1Q_0 = 01$;

Registers

- Flip-flop is a circuit that changes outputs only at the control signal's edges; positive edge-triggered or negative edgetriggered
- The D-type flip-flop is the fundamental building block in synchronous design
- But we often deal with multi-bit signals

When we combine multiple D flip-flops together to store

multiple bits, we call this a register:

Q

Shift Register

END OF L17,L18 SUMMARY