Vektor hossza

$$v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \leftarrow \text{ vektor }$$

$$|\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

Skalárral való szorzás

A vektor hosszát és/vagy irányítását változtatja meg.

$$a * \vec{v} = \dots$$

a - skalár

- 1. $a>0 \Rightarrow$ a vektor irányítása megmarad, hossza változik
- 2. $a < 0 \Rightarrow$ a vektor irányítása és hossza is változik
- 3. $a = 0 \Rightarrow$ a szorzat eredménye $\vec{0}$

Lineáris függetlenség

$$\vec{u}, \vec{v}, \vec{w} \cdots \in V$$

V - Vektortér (pl.
$$\mathbb{R}^2,\mathbb{R}^3)$$

$$\alpha*\vec{v}+\beta*\vec{u}+\gamma\vec{w}+\cdots\leftarrow$$
 vektorok lineáris kombinációja \vec{u},\vec{v},\vec{w} lineárisan független, ha lineáris kombinációjuk = $\vec{0}$

w, v, w innearisan fuggetien, na innearis kombinaciójuk = 0 **Generátor rendszer:** vektortér elemeinek részhalmaza, melyek kombinációjával

bármelyik vektor kifejezhető. **Bázis:** vektortér elemeinek halmaza, melyek lineárisan függetlenek egymástól és lineáris kombinációjukkal a vektortér összes elemét meghatározhatjuk.

Pl: $V = \mathbb{R}^2 \Rightarrow \vec{u}\vec{v}$ lineárisan független

$$a*\vec{u} + b*\vec{v} = \vec{w} \Rightarrow \vec{u}, \vec{v}$$
generátor rendszer

$$\Rightarrow \{\vec{u}, \vec{v}\} = B \leftarrow \text{ bázist alkotnak}$$

Két vektor skaláris szorzata

Legyen \vec{u}, \vec{v}

$$\vec{u} * \vec{v} = |\vec{u}| * |\vec{v}| * \cos \varphi$$

$$\varphi \in (\vec{u}, \vec{v}) \in [0, \pi]$$

- 1. két vektor merőleges, ha a skaláris szorzatuk = 0 $\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} * \vec{v} = 0$
- 2. két vektor párhuzamos, ha egymás többszörösei $\vec{u} = x * \vec{v}$

$$\vec{u} = u_1 * \vec{i} + u_2 * \vec{j} + u_3 * \vec{k} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \vec{v} = v_1 * \vec{i} + v_2 * \vec{j} + v_3 * \vec{k} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

$$\vec{u} * \vec{v} = u_1 * v_1 + u_2 * v_2 + u_3 * v_3$$

$$\vec{u} * \vec{v} = |\vec{u}| * |\vec{v}| * \cos \varphi$$

$$\cos \varphi = \frac{\vec{u} * \vec{v}}{|\vec{u}| * |\vec{v}|}$$

Két vektor vektoriális szorzata

 $\vec{u} \times \vec{v} = \vec{w}$ $\vec{w} \perp (\vec{u}, \vec{v})$ síkjára

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \quad \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \quad \vec{u} \times \vec{v} = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$$

Tétel

- 1. $|\vec{u} \times \vec{v}| = \vec{u}$ és \vec{v} -re épített paralelogramma területével
- 2. \vec{u} és \vec{v} -re épített háromszög területe = \vec{u} és \vec{v} -re épített paralelogramma területe felével

$$T_{ABC} = \frac{1}{2} |\vec{u} \times \vec{v}|$$

Vegyes szorzat

 $\vec{u} \times \vec{v} * \vec{w} = (\vec{u}, \vec{v}, \vec{w})$ I vektoriális szorzat II skaláris szorzat Eredménye egy skalár

Tétel

 $\vec{u}\times\vec{v}*\vec{w}=$ az \vec{u},\vec{v},\vec{w} által épített hasáb térfogatával $V_{ABCD}=\frac{1}{6}(\vec{AB}\times\vec{AC}*\vec{AD})$

Vektor tengelyekkel bezárt szöge

Szögfüggvények inverz függvényeivel (arcsin, arccos etc.) lehet meghatározni.

Egyenes egyenlete

Legyen $\vec{PQ} = \vec{OP} + \vec{OQ}$ az e egyenes irányvektora és $\vec{v} \parallel \vec{PQ}$ $P(x_P,y_P,z_P)$ $Q(x_Q,y_Q,z_Q)$

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

$$\vec{v} \parallel \vec{PQ} \Rightarrow \vec{PQ} = t * \vec{v}$$

$$\vec{OP} + \vec{QP} = \vec{OP}$$

$$x_Q = x_P + t * v_1$$

$$e : y_Q = y_P + t * v_2$$

$$z_Q = z_P + t * v_3$$

Sík egyenlete

Egy pont és egy normál vektor határoz meg egy síkot ($n \parallel S$) n - normál vektor, S - sík

Adott: $P(x_P, y_P)$

 $P_0(x_{P0}, y_{P0})$

$$ec{n}: egin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}$$

$$\vec{n} : \begin{bmatrix} n_2 \\ n_3 \end{bmatrix}$$

$$\vec{P_0P} \in S, \vec{n} \perp S \Rightarrow \vec{n} \perp \vec{P_0P} \Leftrightarrow \vec{n} * \vec{P_0P} = \vec{0} \Rightarrow \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix} * \begin{bmatrix} x_P - x_{P0} \\ y_P - y_{P0} \\ z_P - x_{P0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} n_1(x_P - x_{P0}) \\ n_2(y_P - y_{P0}) \\ n_3(z_P - z_{P0}) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow n_2(y_P - y_{P0}) = 0 \Rightarrow S : n_1(x_P - x_{P0}) + n_2(y_P - x_{P0}) + n_3(z_P - z_{P0}) = 0$$

$$y_{P0}) + n_3(z_P - z_{P0}) = 0$$

Egyenes - sík viszonya

 \vec{v} - az egyenes irányvektora

 \vec{n} - a sík normál vektora

Az egyenes párhuzamos a síkkal ha $\vec{v} \perp \vec{n} \Leftrightarrow \vec{n} * \vec{v} = 0$

Az egyenes merőleges a síkkal ha $\vec{v} \parallel \vec{n} \Leftrightarrow = k * \vec{v}$

Sík - sík viszonya

Sík párhuzamos síkkal ha $\vec{n} \parallel \vec{n'}$ Sík merőleges síkkal ha $\vec{n} \perp \vec{n'}$

Polár koordináták

Helyzetvektor hossza és a helyzetvektor tengelyekkel bezárt szöge

A θ szöget szögfüggvények segítségével határozzuk meg.

$$\begin{aligned} &Q(x_Q,y_Q,z_Q)\\ &P(x_P,y_P,z_P)\in e\\ &\text{e-egyenes}\\ &S:Ax+By+Cz+D=0 \end{aligned}$$

Távolság ponttól síkig

$$d(Q,S) = \frac{Ax_Q + By_Q + Cz_Q + D}{\sqrt{A^2 + B^2 + C^2}}$$

Távolság ponttól egyenesig

$$d(Q, e) = \frac{|\vec{v} \times \vec{PQ}|}{|\vec{v}|}$$

Alterek

Egy altér egy nagyobb vektortér része.

$$(V,+,^*,\mathbb{R})$$

Pl:
$$V=\mathbb{R}^2 \to (\mathbb{R}^2,+,*,\mathbb{R})$$

Tétel

 $\vec{u}, \vec{u'} \in U$

- (1.) $\vec{u} + \vec{u'} \in U$ U zárt a "+"-ra nézve
- (2.) $\alpha * \vec{u} \in U$ U zárt a skalárral való szorzásra nézve

Ha a két feltétel igaz, U altere \mathbb{R} -nek

Rⁿ-ben lineáris függetlenség

$$\begin{array}{l} (V,+,*,\mathbb{R})vt.\\ \vec{v_1},\vec{v_2},\ldots,\vec{v_n} \in V\\ \vec{v_1},\vec{v_2},\ldots,\vec{v_n} \text{ line\'arisan f\"uggletlen ha } \alpha_1*\vec{v_1}+\alpha_2*\vec{v_2}+\cdots+\alpha_n\vec{v_n} \Leftrightarrow\\ \alpha_1,\alpha_2,\ldots,\alpha_n=0\\ \vec{v_1},\vec{v_2},\ldots,\vec{v_n} \text{ gener\'ator rendszert alkot ha } \forall \vec{w} \in V \qquad \vec{w}=\beta_1*\vec{v_1}+\beta_2*\vec{v_2}+\cdots+\beta_n*\vec{v_n}\;\vec{v_1},\vec{v_2},\ldots,\vec{v_n} \text{ b\'azis, ha line\'arisan f\"uggetlen \'es gener\'ator rendszer} \end{array}$$

Végtelen vektorterek

Pl. $(F,+,*,\mathbb{R})$ függvények vektortere

Wronskij determináns

$$\begin{array}{l} f_0, f_1, \dots, f_{n-1} \to \text{deriv\'alhat\'o f\"uggv\'eny} \\ (f_0, f_1, \dots, f_{n-1}) \in F \text{ lin. f\"ugg. ?} \\ \alpha_0 * f_0(x) + \alpha_1 * f_1(x) + \dots \alpha_n * f_{n-1}(x) = 0 \\ \alpha_0 * f_0'(x) + \alpha_1 * f_1'(x) + \dots + \alpha_n * f_{n-1}'(x) = 0 \\ \alpha_0 * f_0''(x) + \alpha_1 * f_1''(x) + \dots + \alpha_n * f_{n-1}''(x) = 0 \end{array}$$

$$\begin{bmatrix} f_0(x) & f_1(x) & \dots & f_{n-1}(x) \\ f'_0(x) & f'_1(x) & \dots & f'_{n-1}(x) \\ \vdots & & & & \\ f_0^{n-1}(x) & f_1^{n-1}(x) & \dots & f_{n-1}^{n-1}(x) \end{bmatrix} * \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{n-1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Wronskij-féle determináns

$$W(x) = \begin{bmatrix} f_0(x) & f_1(x) & \dots & f_{n-1}(x) \\ f'_0(x) & f'_1(x) & \dots & f'_{n-1}(x) \\ \vdots & & & & \\ f_0^{n-1}(x) & f_1^{n-1}(x) & \dots & f_{n-1}^{n-1}(x) \end{bmatrix}$$

Tétel

 $W(x)\neq 0 \Rightarrow (f_0,f_1,\dots,f_{n-1})$ - lineárisan független $W(x)=0 \Rightarrow (f*0,f_1,\dots,f*n-1)$ - lineárisan függő

Bázis transzformáció

Pl: $v = \mathbb{R}^2$