

Interestingness Measure: Lift

■ Measure of dependent/correlated events: lift

$$lift(B,C) = \frac{c(B \to C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$$

- □ Lift(B, C) may tell how B and C are correlated
 - □ Lift(B, C) = 1: B and C are independent
 - □ > 1: positively correlated
 - □ < 1: negatively correlated

For our example,	lift(R C) =	400/1000	-=0.89
Tor our example,	iiji(B,C) =	600/1000×750/100	0 - 0.07
7	(if+(P C) -	200/1000	-=1.33
ι	$iji(B, \neg C) =$	$\frac{200/1000}{600/1000 \times 250/1000}$	$0^{-1.55}$

- □ Thus, B and C are negatively correlated since lift(B, C) < 1;
 - B and ¬C are positively correlated since lift(B, ¬C) > 1

Lift is more telling than s & c

	В	¬B	Σ_{row}
С	400	350	750
¬С	200	50	250
$\Sigma_{col.}$	600	400	1000

Interestingness Measure: χ^2

 \square Another measure to test correlated events: χ^2

$$\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected}$$

- General rules
 - \square $\chi^2 = 0$: independent
 - $\mathbf{\Sigma} \mathbf{\chi}^2 > 0$: correlated, either positive or negative, so it needs additional test

		В	¬B	Σ_{row}
С	740	00 (450)	350 (300)	750
¬C	2(J (150)	50 (100)	250
Σ_{col}		600	400	1000

Expected value

Observed value

Now,
$$\chi^2 = \frac{(400 - 450)^2}{450} + \frac{(350 - 300)^2}{300} + \frac{(200 - 150)^2}{150} + \frac{(50 - 100)^2}{100} = 55.56$$

- χ² shows B and C are negatively correlated since the expected value is 450 but the observed is only 400
- \square χ^2 is also more telling than the support-confidence framework

Lift and χ^2 : Are They Always Good Measures?

- Null transactions: Transactions that contain neither B nor C
- Let's examine the dataset D
 - BC (100) is much rarer than B¬C (1000) and ¬BC (1000), but there are many ¬B¬C (100000)
 - Unlikely B & C will happen together!
- But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated!)
- \square χ^2 = 670: Observed(BC) >> expected value (11.85)
- Too many null transactions may "spoil the soup"!

	В	¬B	Σ_{row}
С	100	1000	1100
¬С	1000	100000	101000
$\Sigma_{\text{col.}}$	1100 (101000	102100

null transactions

Contingency table with expected values added

	В	¬В	Σ_{row}
С	100 (11.85)	1000	1100
¬C	1000 (988.15)	100000	101000
$\Sigma_{\text{col.}}$	1100	101000	102100