Section 2. Angular momentum

- Important example of the use of operators in quantum mechanics
- Leads to analysis of spin
- Lays the foundation for solutions of the Schrödinger equation in 3D

2.1 Definitions, operators and commutators

• In classical mechanics, the angular momentum of a particle at position \underline{r} and with momentum p is:

$$\underline{L} = \underline{r} \times \underline{p}$$

$$= \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ x & y & z \end{vmatrix} = \underline{j} (xp_z - zp_y)$$

$$= \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ x & y & z \end{vmatrix} = -\underline{j} (xp_z - zp_x)$$

$$+\underline{k} (xp_y - yp_x)$$

In quantum mechanics we replace \underline{r} and \underline{p} with the corresponding operators (see section 1.2), so the angular momentum operator becomes:

$$\underline{\hat{L}} = \underline{\hat{r}} \times \underline{\hat{p}}$$

Cartesian components are:

$$\hat{L}_{x} = \hat{y} \, \hat{p}_{z} - \hat{z} \, \hat{p}_{y}$$

$$\hat{L}_{y} = \hat{z} \, \hat{p}_{x} - \hat{x} \, \hat{p}_{z}$$

$$\hat{L}_{z} = \hat{x} \, \hat{p}_{y} - \hat{y} \, \hat{p}_{x}$$

What is the commutator of \hat{L}_x and \hat{L}_y ?

The only non-commuting operators here are \hat{z} and \hat{p}_z , so see section 1.6

$$\begin{bmatrix} \hat{L}_{x}, \hat{L}_{y} \end{bmatrix} = \hat{y}\hat{p}_{x} (\hat{p}_{z}\hat{z} - \hat{z}\hat{p}_{z}) + \hat{x}\hat{p}_{y} (\hat{z}\hat{p}_{z} - \hat{p}_{z}\hat{z})$$

$$= (\hat{x}\hat{p}_{y} - \hat{y}\hat{p}_{x})(\hat{z}\hat{p}_{z} - \hat{p}_{z}\hat{z}) \qquad = [\hat{z}, \hat{p}_{z}] = i\hbar$$
problems sheet for details
$$= i\hbar (\hat{x}\hat{p}_{y} - \hat{y}\hat{p}_{x}) = i\hbar \hat{L}_{z}$$

We find

$$egin{bmatrix} \hat{L}_x, \hat{L}_y \end{bmatrix} = i\hbar \hat{L}_z \ egin{bmatrix} \hat{L}_y, \hat{L}_z \end{bmatrix} = i\hbar \hat{L}_x \ egin{bmatrix} \hat{L}_z, \hat{L}_x \end{bmatrix} = i\hbar \hat{L}_y \ \end{bmatrix}$$

note the cyclic permutation

We can also define the square magnitude of the total angular momentum as

$$\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$$

$$\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$$
 classically: -
$$\underline{L}^2 = \underline{L} \cdot \underline{L} = L_x^2 + L_y^2 + L_z^2$$

What are the commutators of \hat{L}^2 with \hat{L}_x , \hat{L}_y and \hat{L}_{z} ?

e.g
$$\left[\hat{L}^2, \hat{L}_z\right] = \left[\hat{L}_x^2, \hat{L}_z\right] + \left[\hat{L}_y^2, \hat{L}_z\right] + \left[\hat{L}_z^2, \hat{L}_z\right]$$

We find that the first two commutators on the rhs cancel, and the last commutator is zero, so

$$\left[\hat{L}^2, \hat{L}_x\right] = \left[\hat{L}^2, \hat{L}_y\right] = \left[\hat{L}^2, \hat{L}_z\right] = 0$$

see problems sheet

- The separate components of angular momentum are not compatible and cannot be measured simultaneously
- Each component is compatible with the total angular momentum

We can therefore look for solutions which are common eigenfunctions of \hat{L}^2 and \hat{L}_z

see section 1.6

We could choose \hat{L}_x or \hat{L}_y , but \hat{L}_z is conventional

Aside: Spinning top

Spinning top with spin angular momentum $\underline{L}_{\rm spin} = I\underline{\omega}$ precesses about the z axis with orbital angular momentum $\underline{L}_{\rm orbital}$.

Total angular momentum $\underline{L} = \underline{L}_{\rm spin} + \underline{L}_{\rm orbital}$ changes direction, but $|\underline{L}|$ is constant in the absence of an external field.

Observables L_x and L_y are variables, but L^2 and L_z are constants

Uncertainty:

$$\Delta A \, \Delta B \ge \frac{1}{2} \left| \int \psi^* \left[\hat{A}, \hat{B} \right] \psi \right|$$

see section 1.6

$$\left[\hat{L}_{x},\hat{L}_{y}\right]=i\hbar\hat{L}_{z}$$

Commutation relation – see above

So

$$\Delta L_{x} \Delta L_{y} \geq \frac{1}{2} \left| \int \psi^{*} i \hbar \hat{L}_{z} \psi \right|$$

$$\geq \frac{\hbar}{2} \left| \int \psi^{*} \hat{L}_{z} \psi \right|$$

$$\geq \frac{\hbar}{2} \left| \left\langle \hat{L}_{z} \right\rangle \right|$$

|i| = 1

expectation value of \hat{L}_z

Back to the problem: eigenvalues of \hat{L}^2 and \hat{L}_z

• To help in the analysis, we define two more operators

$$\hat{L}_{+}=\hat{L}_{x}+i\hat{L}_{y}$$
 $\hat{L}_{-}=\hat{L}_{x}-i\hat{L}_{y}$

• Properties of \hat{L}_{+} and \hat{L}_{-}

$$\hat{L}_{+}\hat{L}_{-} = (\hat{L}_{x} + i\hat{L}_{y})(\hat{L}_{x} - i\hat{L}_{y}) \qquad (1)$$

$$= \hat{L}_{x}^{2} + \hat{L}_{y}^{2} - i\hat{L}_{x}\hat{L}_{y} + i\hat{L}_{y}\hat{L}_{x}$$

$$= \hat{L}^{2} - L_{z}^{2} - i[\hat{L}_{x}, \hat{L}_{y}]$$

$$= \hat{L}^{2} - L_{z}^{2} + \hbar\hat{L}_{z}$$

$$= i\hbar\hat{L}_{z}$$

Similarly

$$\hat{L}_{-}\hat{L}_{+}^{2} = \hat{L}^{2} - \hat{L}_{z}^{2} - \hbar\hat{L}_{z}$$

So

$$\left[\hat{L}_{_{+}},\hat{L}_{_{-}}
ight]=2\hbar\hat{L}_{_{z}}$$

$$\begin{bmatrix} \hat{L}_{z}, \hat{L}_{+} \end{bmatrix} = \begin{bmatrix} \hat{L}_{z}, \hat{L}_{x} \end{bmatrix} + i \begin{bmatrix} \hat{L}_{z}, \hat{L}_{y} \end{bmatrix}$$

$$= i\hbar (\hat{L}_{y} - i\hat{L}_{x})$$
(2)

So

$$\left[\hat{L}_{z},\hat{L}_{+}
ight] = \hbar\hat{L}_{+}$$

Similarly

$$\left[\hat{L}_{z},\hat{L}_{-}\right] = -\hbar\hat{L}_{-}$$

see problems sheet for details

2.2 Eigenvalues of \hat{L}^2 and \hat{L}_{τ}

Because \hat{L}^2 and \hat{L}_{τ} commute, they must have a common set of eigenfunctions. We can write

$$\hat{L}^{2}|\phi_{n}\rangle = \alpha_{n}|\phi_{n}\rangle$$
 and $\hat{L}_{z}|\phi_{n}\rangle = \beta_{n}|\phi_{n}\rangle$

The eigenvalues α_n and β_n can be determined just using operator expressions, together with the condition

$$\alpha_n \ge \beta_n^2$$

 $\alpha_n \ge \beta_n^2$ Measured value for L_z^2 cannot be larger than measured value for L^2

The algebra....

from above
$$\hat{L}_{z} |\phi_{n}\rangle = \beta_{n} |\phi_{n}\rangle$$

$$\hat{L}_{+}\hat{L}_{z} |\phi_{n}\rangle = \beta_{n} \hat{L}_{+} |\phi_{n}\rangle$$

$$\begin{bmatrix} \hat{L}_{z}, \hat{L}_{+} \end{bmatrix} = \hbar \hat{L}_{+} \quad \text{so} \quad \hat{L}_{+}\hat{L}_{z} = \hat{L}_{z}\hat{L}_{+} - \hbar \hat{L}_{+}$$

$$\therefore \hat{L}_{+}\hat{L}_{z} |\phi_{n}\rangle = (\hat{L}_{z}\hat{L}_{+} - \hbar \hat{L}_{+}) |\phi_{n}\rangle$$

$$= \hat{L}_{z} (\hat{L}_{+} |\phi_{n}\rangle) - \hbar (\hat{L}_{+} |\phi_{n}\rangle)$$

$$= \beta_{n} (\hat{L}_{+} |\phi_{n}\rangle)$$

$$\Rightarrow \hat{L}_{z} (\hat{L}_{+} |\phi_{n}\rangle) = (\beta_{n} + \hbar) (\hat{L}_{+} |\phi_{n}\rangle)$$

Similarly, we can show

$$\hat{L}_{z}\left(\hat{L}_{-}\left|\phi_{n}\right\rangle\right) = \left(\beta_{n} - \hbar\right)\left(\hat{L}_{-}\left|\phi_{n}\right\rangle\right)$$

 $\hat{L}_{+}|\phi_{n}\rangle$ is an eigenfunction of \hat{L}_{z} with eigenvalue $\beta_{n} + \hbar$ (provided $\hat{L}_{+}|\phi_{n}\rangle \neq 0$)

Eigenvalue increased by ħ

 $\hat{L}_{-}|\phi_{n}\rangle$ is an eigenfunction of \hat{L}_{z} with eigenvalue $\beta_{n} - \hbar$ (provided $\hat{L}_{-}|\phi_{n}\rangle \neq 0$)

Eigenvalue decreased by ħ

More algebra....

$$\hat{L}^{2} | \phi_{n} \rangle = \alpha_{n} | \phi_{n} \rangle$$

$$\Rightarrow \hat{L}_{+} \hat{L}^{2} | \phi_{n} \rangle = \alpha_{n} \hat{L}_{+} | \phi_{n} \rangle$$

$$\hat{L}_{-} \hat{L}^{2} | \phi_{n} \rangle = \alpha_{n} \hat{L}_{-} | \phi_{n} \rangle$$

 \hat{L}^2 commutes with \hat{L}_x and \hat{L}_y , so it must commute with \hat{L}_+ and \hat{L}_-

can swop order of operators
$$\hat{L}^{2}(\hat{L}_{+}|\phi_{n}\rangle) = \alpha_{n}(\hat{L}_{+}|\phi_{n}\rangle)$$

$$\hat{L}^{2}(\hat{L}_{-}|\phi_{n}\rangle) = \alpha_{n}(\hat{L}_{-}|\phi_{n}\rangle)$$

 $\hat{L}_+ |\phi_n\rangle$ and $\hat{L}_- |\phi_n\rangle$ are eigenfunctions of \hat{L}^2 with eigenvalue α_n

- For each eigenvalue of \hat{L}^2 there are a set of eigenfunctions with different \hat{L}_z eigenvalues. The \hat{L}_+ and \hat{L}_- operators "raise" or "lower" the eigenfunctions within this set.
- \hat{L}_{+} and \hat{L}_{-} are called "ladder operators" or "creation" and "annihilation" operators

• We now use the condition $\alpha_n \ge \beta_n^2$. This implies there is a maximum and minimum value of β . Call these β_{\max} and β_{\min} , with corresponding eigenfunctions $|\phi_{\max}\rangle$ and $|\phi_{\min}\rangle$

Yet more algebra....

Must be true! The state $\hat{L}_{+}|\phi_{\rm max}\rangle$ of \hat{L}_{z} is zero because it does not exist

$$\hat{L}_{+} \left| \phi_{\text{max}} \right\rangle = 0$$

$$\hat{L}_{+} |\phi_{\text{max}}\rangle = 0$$
 so $\hat{L}_{-}\hat{L}_{+} |\phi_{\text{max}}\rangle = 0$

From above

$$\hat{L}_{-}\hat{L}_{+} = \hat{L}^{2} - \hat{L}_{z}^{2} - \hbar\hat{L}_{z}$$

SO

$$\begin{pmatrix} \hat{L}^2 - \hat{L}_z^2 - \hbar \hat{L}_z \end{pmatrix} |\phi_{\text{max}}\rangle = 0$$

$$\begin{pmatrix} \Delta - \beta_{\text{max}}^2 - \hbar \beta_{\text{max}} \end{pmatrix} |\phi_{\text{max}}\rangle = 0$$

$$\therefore \quad \alpha = \beta_{\max} \left(\beta_{\max} + \hbar \right)$$

In a similar way, starting from $\hat{L} | \phi_{\min} \rangle = 0$ we find

The state
$$\hat{L}_{-}|\phi_{ ext{min}}
angle$$

$$\alpha = \beta_{\min} \left(\beta_{\min} - \hbar \right)$$

of \hat{L}_z is zero because it does not exist

It follows that

$$\beta_{\min} = -\beta_{\max}$$

such that

$$\alpha = \beta_{\min} (\beta_{\min} - \hbar)$$

$$= -\beta_{\max} (-\beta_{\max} - \hbar)$$

$$= \beta_{\max} (\beta_{\max} + \hbar)$$

as required

Neighbouring values of β on the \hat{L}_z "ladder" differ by \hbar , so

$$\beta_{\text{max}} - \beta_{\text{min}} = n\hbar \quad (n \text{ integer})$$
So $\beta_{\text{max}} - (-\beta_{\text{max}}) = 2\beta_{\text{max}} = n\hbar$
or $\beta_{\text{max}} = n\hbar/2$

$$\Rightarrow \beta_{\text{max}} = -\beta_{\text{min}} = \frac{n}{2}\hbar \equiv \ell \hbar$$

So

$$\alpha = \beta_{\text{max}} (\beta_{\text{max}} + \hbar) = \ell \hbar (\ell \hbar + \hbar) = \ell (\ell + 1) \hbar^{2}$$

$$\alpha = \beta_{\text{min}} (\beta_{\text{min}} - \hbar) = \ell \hbar (\ell \hbar + \hbar) = \ell (\ell + 1) \hbar^{2}$$

Then

$$\hat{L}^2 |\phi\rangle = \alpha |\phi\rangle$$
 with $\alpha = \ell(\ell+1)\hbar^2$

 $\ell = n/2$ is integer or half integer

Also

$$\hat{L}_z |\phi\rangle = \beta |\phi\rangle$$
 with $\beta_{\min} = -\ell\hbar$ and $\beta_{\max} = +\ell\hbar$

$$\hat{L}_{z}\left(\hat{L}_{+}\left|\phi\right\rangle\right) = (\beta + \hbar)\left(\hat{L}_{+}\left|\phi\right\rangle\right)$$

$$\hat{L}_{z}(\hat{L}_{-}|\phi\rangle) = (\beta - \hbar)(\hat{L}_{-}|\phi\rangle)$$

Ladder of eigenvalues of \hat{L}_z separated by integer units of \hbar , $\Delta\beta = \pm\hbar$

Finally, we have

Eigenvalues of \hat{L}^2 are $\alpha = \ell(\ell+1)\hbar^2$, with ℓ an integer or "half integer"

For each value of ℓ , eigenvalues of \hat{L}_z can be written as $\beta = m\hbar$, where m varies in integer steps between $-\ell$ and $+\ell$

- For orbital angular momentum (i.e. what we've been talking about so far) only integer values of ℓ matter.
- However, for more general angular momentum, the half integer solutions are also relevant.

0	N/1	D 1. 1. 7 1
ℓ	Magnitude of L	Possible L_z values
0	0	0
1	$\sqrt{2}\hbar$	$-\hbar,0,\hbar$
2	$\sqrt{6}\hbar$	$-2\hbar, -\hbar, 0, \hbar, 2\hbar$
•	• • •	•
1	$\frac{\sqrt{3}}{\hbar}$	$-\frac{\hbar}{2}$
2	$\frac{1}{2}n$	$\overline{2}$, $\overline{2}$

$$L^2 = \ell(\ell+1)\hbar^2 \Rightarrow L = \sqrt{\ell(\ell+1)}\hbar$$
 $L_z = m\hbar, \ m = -\ell, -\ell+1, \dots, +\ell$
For $\ell = 1/2$ see later

2.3 Eigenfunctions of \hat{L}^2 and \hat{L}_z

These cannot be obtained just from operator algebra – we have to solve the equations. It is most convenient to use spherical polar coordinates.

Start from

$$\underline{\hat{L}} = \underline{\hat{r}} \times \underline{\hat{p}} = -i\hbar \ \underline{r} \times \underline{\nabla}$$

Use spherical polars: -

<u>r</u>: intercepts sphere at point P

Unit vectors: -

 \underline{e}_r : in radial direction at point P

 \underline{e}_{θ} : tangent to sphere through point P with constant longitude

 \underline{e}_{ϕ} : tangent to sphere through point P with constant latitude

In spherical polars

$$\underline{\nabla} = \underline{e}_r \frac{\partial}{\partial r} + \underline{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \underline{e}_\phi \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}$$

So

$$\hat{\underline{L}} = -i\hbar \begin{vmatrix} \underline{e}_r & \underline{e}_\theta & \underline{e}_\phi \\ r & 0 & 0 \\ \frac{\partial}{\partial r} & \frac{1}{r} \frac{\partial}{\partial \theta} & \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \end{vmatrix}$$

$$= -i\hbar \left(\underline{e}_\phi \frac{\partial}{\partial \theta} - \underline{e}_\theta \frac{1}{\sin \theta} \frac{\partial}{\partial \phi} \right)$$

The relation between Cartesian and spherical polar unit vectors is: -

$$\begin{pmatrix} \underline{e}_{x} \\ \underline{e}_{y} \\ \underline{e}_{z} \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi & \cos\theta\cos\phi & -\sin\phi \\ \sin\theta\sin\phi & \cos\theta\sin\phi & \cos\phi \\ \cos\theta & -\sin\theta & 0 \end{pmatrix} \begin{pmatrix} \underline{e}_{r} \\ \underline{e}_{\theta} \\ \underline{e}_{\phi} \end{pmatrix}$$

• Unit vector in z direction is

$$\underline{e}_z = \underline{e}_r \cos \theta - \underline{e}_\theta \sin \theta$$

and

$$\hat{L}_z = \underline{e}_z \cdot \hat{\underline{L}} \Rightarrow \hat{L}_z = -i\hbar \frac{\partial}{\partial \phi}$$

where we have used $\underline{e}_r \cdot \underline{e}_{\phi} = 0$, $\underline{e}_{\theta} \cdot \underline{e}_{\theta} = 1$ etc.

• For \hat{L}^2 we find

$$\hat{L}^2 = -\hbar^2 \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right)$$

We want to solve

 ℓ integer

$$\hat{L}^2 \left| Y_{\ell m}(\theta,\phi) \right> = \ell(\ell+1) \, \hbar^2 \left| Y_{\ell m}(\theta,\phi) \right>$$
 $\hat{L}_z \left| Y_{\ell m}(\theta,\phi) \right> = m \hbar \left| Y_{\ell m}(\theta,\phi) \right>$
 $m \text{ integer from } -\ell \text{ to } +\ell$

 $Y_{\ell m}(\theta,\phi)$ are the common eigenfunctions of \hat{L}^2 and \hat{L}_z with eigenvalues $\ell(\ell+1)\hbar^2$ and $m\hbar$ respectively

• The solutions $Y_{\ell m}(\theta, \phi)$ are called spherical harmonics. Derivations of them can be found in textbooks and in other units.

• The lowest few spherical harmonics are

$$Y_{00} = \sqrt{\frac{1}{4\pi}} \qquad \text{s orbital}$$

$$Y_{10} = \sqrt{\frac{3}{4\pi}} \cos \theta$$

$$Y_{1\pm 1} = \mp \sqrt{\frac{3}{8\pi}} \sin \theta \exp(\pm i\phi)$$

$$Y_{20} = \sqrt{\frac{5}{16\pi}} \left(3\cos^2 \theta - 1 \right)$$

$$Y_{2\pm 1} = \mp \sqrt{\frac{15}{8\pi}} \cos \theta \sin \theta \exp(\pm i\phi)$$

$$V_{2\pm 2} = \sqrt{\frac{15}{32\pi}} \sin^2 \theta \exp(\pm 2i\phi)$$

Normalisation: $\int_{0}^{2\pi} \int_{0}^{\pi} |Y_{\ell m}(\theta, \phi)|^{2} \sin \theta \ d\theta d\phi = 1$

2.4 Spin angular momentum

- The Stern-Gerlach experiment allows us to measure the z component of angular momentum. (see additional notes)
- Orbital angular momentum is insufficient to explain results for atoms
- We therefore postulate that quantum particles have an intrinsic angular momentum, or spin
- We postulate spin operators \hat{S}_x , \hat{S}_y , \hat{S}_z with the same commutation properties as \hat{L}_x , \hat{L}_v , \hat{L}_z , i.e.

$$\begin{bmatrix} \hat{S}_{x}, \hat{S}_{y} \end{bmatrix} = i\hbar \hat{S}_{z}$$

$$\begin{bmatrix} \hat{S}_{y}, \hat{S}_{z} \end{bmatrix} = i\hbar \hat{S}_{x}$$

$$\begin{bmatrix} \hat{S}_{z}, \hat{S}_{x} \end{bmatrix} = i\hbar \hat{S}_{y}$$

• We can also define

$$\hat{S}^2 = \hat{S}_x^2 + \hat{S}_y^2 + \hat{S}_z^2$$

All of the previous analysis for angular momentum operators follows through, and we can conclude that:

- Eigenvalues of \hat{S}^2 are $s(s+1)\hbar^2$, with s an integer or "half integer"
- Eigenvalues of \hat{S}_z are $m_s \hbar$, where m_s varies in integer steps between -s and s

For spin, the half integer solutions matter. Atoms with no orbital angular momentum and a single unpaired electron split into two beams in a Stern-Gerlach experiment.

$$\therefore$$
 Electrons are spin-half particles, i.e. $s = \frac{1}{2}$

$$m_s = -1/2 \text{ or } 1/2$$

2.5 Pauli spin matrices

What are the eigenfunctions of \hat{S}^2 and \hat{S}_z for a spin-half particle?

spin is an intrinsic property of a particle

These cannot be functions of the particle's position, and so we need a representation that doesn't depend on spatial coordinates

In section 1.11 we discussed the matrix representation of quantum mechanics. This turns out to be a natural representation for spin angular momentum

Operators become matrices

Bra/Kets become row/column vectors

• The Pauli spin matrices are defined as

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• The spin components are

$$\hat{S}_x = \frac{\hbar}{2} \sigma_x$$
 $\hat{S}_y = \frac{\hbar}{2} \sigma_y$ $\hat{S}_z = \frac{\hbar}{2} \sigma_z$

These obey all the commutation relations, e.g.

$$\begin{bmatrix} \hat{S}_x, \hat{S}_y \end{bmatrix} = \frac{\hbar^2}{4} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} - \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$= \frac{\hbar^2}{4} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} - \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$$

$$= i\hbar \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = i\hbar \hat{S}_z$$

• It is simple to calculate the eigenvalues and eigenfunctions (i.e. eigenvectors) of \hat{S}_x , \hat{S}_v , \hat{S}_z :

Component

Eigenvalue

Eigenvector

$$\hat{S}_x$$

$$+\frac{\hbar}{2}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\hat{S}_{x}$$

$$-\frac{\hbar}{2}$$

$$\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$$

$$\hat{S}_{y}$$

$$+\frac{\hbar}{2}$$

$$\frac{1}{\sqrt{2}} \binom{1}{i}$$

$$\hat{S}_{v}$$

$$-\frac{\hbar}{2}$$

$$\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ -i \end{pmatrix}$$

$$\hat{S}_z$$

$$+\frac{n}{2}$$
 $m_{\rm s} = 1/2$

$$+\frac{\hbar}{2}$$
 $m_s = 1/2$ $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ "spin up"

$$\hat{S}_{z}$$

$$-\frac{\hbar}{2} m_{\rm s} = -1/2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 "spin down"

most commonly used

82

• What about \hat{S}^2 ? We find

$$\hat{S}_{x}^{2} = \hat{S}_{y}^{2} = \hat{S}_{z}^{2} = \frac{\hbar^{2}}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

so $\hat{S}^2 = \hat{S}_x^2 + \hat{S}_y^2 + \hat{S}_z^2$ becomes

$$\hat{S}^2 = \frac{3}{4}\hbar^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- As expected, \hat{S}^2 commutes with \hat{S}_x , \hat{S}_y , \hat{S}_z
- All of the above eigenvectors are also eigenvectors of \hat{S}^2 with eigenvalue $\frac{3}{4}\hbar^2$, as expected for $s = \frac{1}{2}$