2016 IMO #2

Tristan Shin

15 Sep 2017

Find all integers n for which each cell of $n \times n$ table can be filled with one of the letters I, M and O in such a way that:

- in each row and each column, one third of the entries are I, one third are M and one third are O; and
- in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are I, one third are M and one third are O.

Note. The rows and columns of an $n \times n$ table are each labelled 1 to n in a natural order. Thus each cell corresponds to a pair of positive integer (i,j) with $1 \le i,j \le n$. For n > 1, the table has 4n - 2 diagonals of two types. A diagonal of first type consists all cells (i,j) for which i+j is a constant, and the diagonal of this second type consists all cells (i,j) for which i-j is constant.

The answer is n a multiple of 9.

Assume that we can fill the grid to satisfy the problem constraints. It is obvious that $3 \mid n$, so let n = 3k.

We now consider the following: label every square of the board with the number 0. We associate an ordered pair (i, j) with each square as a coordinate system for the *i*th row and *j*th column.

Now, add 1 to the label of a square for every one of the following events:

- (1) $i \equiv 2 \pmod{3}$ (this is a row)
- (2) $j \equiv 2 \pmod{3}$ (this is a column)
- (3) $i + j \equiv 1 \pmod{3}$ (this is a set of 2k 1 diagonals with the condition)
- (4) $i-j \equiv 0 \pmod{3}$ (this is the other set of diagonals with the condition).

Check that exactly one condition is satisfied for any (i, j) that is not $(2, 2) \pmod{3}$. In the case of $(2, 2) \pmod{3}$, all four conditions are satisfied.

But now notice that each of the conditions correspond to sets in which I, M, O must be evenly distributed and the entire board must have I, M, O be evenly distributed. If we now subtract 1 from the label of each square, we have all of the $(2,2) \pmod{3}$ square remaining. But then I, M, O must be evenly distributed across these, of which there are k^2 . Then 3 divides k, so 9 divides n.

Now, if 9 divides n, then we can just create $\frac{n^2}{81}$ copies of

2016 IMO #2 Tristan Shin

Ι	Ι	I	M	M	M	О	О	О
О	О	О	Ι	I	I	Μ	Μ	М
M	М	М	О	О	О	Ι	Ι	Ι
Ι	Ι	Ι	М	M	M	О	О	О
О	О	О	Ι	I	I	Μ	Μ	M
M	M	М	О	О	О	Ι	Ι	Ι
Ι	Ι	Ι	М	M	M	О	О	О
О	О	О	Ι	Ι	Ι	Μ	Μ	М
M	M	М	О	О	О	Ι	Ι	Ι

and we are done.