U-ERRE

Universidad Regiomontana

Axel Alberto Mireles Martínez: 739047

Materia: Métodos Numéricos.

Título: Método de Newton - Raphson

Profesor: Sergio Castillo

Fecha: 24/05/2026

Lugar: Monterrey, N.L., México.

Reporte "Método Newton- Baphson" Definición = Es un algoritmo nómerico encontrar varces (solviiones) de una función. Basicamente signe la dirección de la l'pendiente" Función para acerranse Anteredentes: Tue desarrollado Joseph Prophson en los sigles XVIII y XVIII, este método revoluciono el calculo númerico gor so velocidad. con otros métodos: onétodo Newton-Maphson converge mocho más rápido que la bisección, pero mientras la bisección siempre funciona con funciones continuas Newton quede fallor si la derivada es arro o el punto ma alegido. La bisección es más lenta pero infalible * Seconde = El método seconte es similar a Newton-Raphson pero vo requiere calcular la derivada, usando su lugar una aproximación con puntos anteriores profetico chando la

REPORTE "Método Newton-Baphson" Formula = Xn+1= Xn F(Xn) Donde: Xn= aproximación actual FOXN- valor de la Función en Xn. F'(xn)= derivada (pendiente) en ese punto Algoritmo= - Elegir un valor inicial Xa - Calcular FCxo) y so derivada f (xo) - Usar la formula para abtener XI - Repetir has to que Vxn+1-xn1 = E (precisión deseada) Aplicaciones en la vida cotidiana (TTC · Videojuegos= Calcular trayectorias de balas o colsiones en tiempo real - Robotica = Ayoda a vobots a gyestar marmientos precisos Ccomo brazas mecanicos en fabricos)

Machine learning = Entremy reds neuronals más rapido,

ajustando pesas para metros eficientement.

2 Interación	Paso 3
n= 1 Xo= 0	X2 = X1 - FCx1) - 0.5 - 0.1065 F(X1) - 1.6065
Paso 2 Evalvamos F (x)	(X2 = 0.5662)
F(0.5) = e ^{-(0.5)} -(0.5)	
F(0.5)=-==(0.5)-1	Paso 4 error = x2-x1 x 100
(F(0.5)= -1.6065/	0.5662 1 error 11.69%
3 Interaction Pasa 2	Poso 3
F(x2) = e (0,5662) - 0,5662	X3=X2-f(x2)
$f(x_2) = 0.0014$ $f(x_2) = e^{-6.662}$	-4(x2 x3 = 0.5662 - (0.0014) (-1.5676)
E(42)=-1.5676x	(+3=0.5670)
emor: x3 - x2 x100	errar= 10.5670 - 0.5662 x100
4	error=0.1410 90