Lecture notes on Lie Groups, Lie Algebras and representations

November 13, 2024

Abstract

Lie Groups, SU(3), enveloping algebras and so on...

Contents

1	Intr	roduction	1
2	Stru	ucture of semisimple Lie Algebras $(k=\mathbb{C})$	1
	2.1	$sl_2 \ldots \ldots \ldots \ldots \ldots$	1
	2.2	sl_n	1
	2.3	Better picture of the root system	3
		General Case (statements and definitions)	
		2.4.1 Root Space Decomposition	
		2.4.2 Metric structure on h^*	

1 Introduction

2 Structure of semisimple Lie Algebras $(k = \mathbb{C})$

2.1 sl_2

$2.2 sl_n$

First idea: pick a semisimple element and decompose sl_n accordingly. Better ideas is to pick a maximal subspace in sl_n of commuting, semisimple element. One example is

$$h = \left\{ \begin{pmatrix} * & \dots \\ & * & \\ \dots & * & \end{pmatrix} \right\}$$

We can decompose sl_n into simultaneous ad(h) eigenspaces for all $h \in h$.

$$g = \mathrm{sl}_n = \oplus_{\lambda \in h^*} g_\lambda$$

where $g_{\lambda} = \{x \in g | \forall h \in h, [h, x] = \lambda(h)x\}$

$$h = \{diag(\varepsilon_1, ..., \varepsilon_n) | \sum \varepsilon_i = 0\}$$

$$h^* = \oplus \mathbb{C}\epsilon_i/(\sum \epsilon_i)$$

where $\epsilon_i(\varepsilon_j) = \delta_{ij}$. Set of $\lambda \in h^*$ s.t. $g_{\lambda} \neq \{0\}$ and g_{λ} .

$$\left[\sum \varepsilon_i E_i i, \sum a_{ij} E_{ij}\right] = \sum_{ij} (\varepsilon_i - \varepsilon_j) a_{ij} E_{ij} = 2 \lambda(\varepsilon_i, \varepsilon_j) \sum_{ij} a_{ij} E_{ij}$$

i.e. $\varepsilon_i - \varepsilon_j = \lambda(\varepsilon_i, \dots, \varepsilon_n)$ s.t. $a_{ij} \neq 0$.

hence, either $a_{ij} = 0$ for all but one pair (i, j) with $i \neq j$ or $a_{ij} = 0$ for all $i \neq j$. This implies

$$g_0 = h$$

and

$$g_{\epsilon_i - \epsilon_i} = \mathbb{C}E_{ij}, \quad i \neq j$$

We have a nice piramid "Skeleton of sl_n "

$$\epsilon_{1} - \epsilon_{n}$$

$$\vdots$$

$$\epsilon_{1} - \epsilon_{3} \epsilon_{2} - \epsilon_{4} \dots \epsilon_{n-2} - \epsilon_{n}$$

$$\epsilon_{1} - \epsilon_{2} \epsilon_{2} - \epsilon_{3} \dots \epsilon_{n-1} - \epsilon_{n}$$

$$\epsilon_{2} - \epsilon_{1} \epsilon_{3} - \epsilon_{2} \dots \epsilon_{n} - \epsilon_{n-1}$$

$$\vdots$$

$$\vdots$$

$$\epsilon_{n} - \epsilon_{1}$$

What happens when we consider $[g_{\lambda}, g_{\mu}]$? Let $x_{\lambda} \in g_{\lambda}, x_{\mu} \in g_{\mu}, h \in h$.

$$[h, [x_{\lambda}, x_{\mu}]] = [[h, x_{\lambda}], x_{\mu}] + [x_{\lambda}, [h, x_{\mu}]] = [\lambda(h)x_{\lambda}, x_{\mu}] + [x_{\lambda}, \mu(h)x_{\mu}] = (\lambda + \mu)(h)[x_{\lambda}, x_{\mu}]$$

i.e. $[g_{\lambda}, g_{\mu}] \subset g_{\lambda+\mu}$. Since dim $g_{\sigma} = 1$ if $\sigma \neq 0$ then if $\lambda, \mu, \lambda + \mu \neq 0$ this describes completely $[g_{\lambda}, g_{\mu}]$ up to scalar.

Notation:

$$\Delta := \{ \lambda \in h^* | g_\lambda \neq \{0\} \} \setminus \{0\}$$

is called the root system of g with respect to h and an element in Δ is a root. In the piramid, $\Delta^+ = -\Delta^-$ being upper and lower triangles in the graph. Indeed,

Choosing

$$\Delta^+ := \{ \epsilon_i - \epsilon_j | i < j \}$$

$$\Delta^{-} := \{ \epsilon_i - \epsilon_j | i > j \}$$

we get $\Delta^+ = -\Delta^-$ and $(\Delta^{\pm} + \Delta^{\pm}) \cap \Delta \subset \Delta^{\pm}$ which implies

$$\bigoplus_{\lambda \in \Delta^+} g_{\lambda}$$

is a Lie subalgebra. but one would also get some splitting by choosing

$$\Delta^+ := \{ \epsilon_i - \epsilon_j | \sigma(i) < \sigma(j) \}$$

, $\Delta^+ = -\Delta^-$ for any fixed $\sigma \in S_n$

Example 2.1. n = 3 and $\sigma = (12)(3)$. So $\Delta^+ = \{\epsilon_2 - \epsilon_1, \epsilon_1 - \epsilon_3, \epsilon_2 - \epsilon_3\}$

$$\begin{pmatrix} 0 & 0 & * \\ * & 0 & * \\ & & 0 \end{pmatrix}$$

example: first row * is $\epsilon_1 - \epsilon_3$.

2.3 Better picture of the root system

Recall that sl_n has a Killing form K_q which is invariant and nondegenerate.

Lemma 2.2. $\mathcal{K}_g(g_\lambda, g_\mu) = 0$ if $\lambda + \mu \neq 0$.

Proof. Pick $x_{\lambda} \in g_{\lambda}, x_{\mu} \in g_{\mu}, h \in h$.

$$\mathcal{K}_g([h, x_{\lambda}], x_{\mu}) + \mathcal{K}_g(x_{\lambda}, \underbrace{[h, x_{\mu}]}_{\mu(h)x_{\mu}}) = 0 = (\lambda + \mu)(h)\mathcal{K}_g(x_{\lambda}, x_{\mu})$$

Corollary 2.3. 1. $\mathcal{K}_q|_h$ is nondegenerate.

2. $g_{\lambda}^* = g_{-\lambda}$ and in particular they are one dim.

We can use the isomorphisme $h \sim h^*$ coming from 1. to transport K_g to nondegenerate form on h^* .

Digression 2.4. V a vector space. $(,): V \otimes V \to \mathbb{C}$ non degenerate. $\forall v \in V$, define $\lambda_v: u \mapsto (v, u)$ so the map $v \mapsto \lambda_v$

$$V \to V^*$$

is an isomorphism.

This implies $g_{\lambda} \subset g \sim g^* - - - - >> g^*_{-\lambda}$

Lemma 2.5. • $span_{\mathbb{C}} = h^*$

- $span_{\mathbb{R}} = h_{\mathbb{R}}^*$ is a real form of h^* i.e. $h_{\mathbb{R}}^* \otimes_{\mathbb{R}} \mathbb{C} = h^*$
- $(h_{\mathbb{R}}^*, (,))$ is a euclidean vector space.

Example 2.6. Up to normalization

$$\mathcal{K}_g(E_{ij}, E_{ji}) = 1$$

$$\mathcal{K}_g(E_{ii}, E_{jj}) = \delta_{ij}$$

all others are 0. $h^* = \bigoplus_{i=1}^{n-1} \mathbb{C}\alpha_i$ and $\alpha_i := \epsilon_i - \epsilon_{i+1}$, $h^*_{\mathbb{R}} = \bigoplus_{i=1}^{n-1} \mathbb{R}\alpha_i$ so

$$(\epsilon_i, \epsilon_j) = \delta_{ij}, \quad (\alpha_i, \alpha_j) = \begin{cases} 0 & |i - j| > 1 \\ -1 & |i - j| = 2 \\ 2 & i = j \end{cases}$$

Matrix of (,) in basis $\{\alpha_i\}$ is

$$\begin{pmatrix} 2 & -1 & \dots \\ -1 & \dots & 0 \\ \dots & & -1 \\ \dots & -1 & 0 \\ \end{pmatrix}$$

This is positive definite. Check.

Example 2.7. For
$$sl_3$$
 $h^* = \mathbb{C}\alpha_1 \oplus \mathbb{C}\alpha_2$ so $(\alpha_i, \alpha_i) = 2$, $|\alpha_1| = \sqrt{2} = |\alpha_2|$, $(\alpha_1, \alpha_2) = -1$ so $\cos(angle(\alpha_1, \alpha_2)) = -1/2$ so $angle(\alpha_1, \alpha_2) = 2\pi/3$.

$$\Delta = \{\alpha_1, \alpha_2, \alpha_1 + \alpha_2, -\alpha_1, -\alpha_2, -\alpha_1 - \alpha_2\}$$

Possible choices for Δ^+ :

$$\begin{cases} \sigma = (1)(2)(3) & \alpha_1, \alpha_2, \alpha_1 + \alpha_2 \\ \sigma = (13)(2) & -\alpha_1, -\alpha_2, -\alpha_1 - \alpha_2 \\ \sigma = (12)(3) & -\alpha_1, \alpha_1 + \alpha_2, \alpha_2 \\ \sigma = (23)(1) & -\alpha_1, \alpha_1 + \alpha_2, \alpha_2 \\ \vdots \end{cases}$$

 $\alpha_1 = \epsilon_1 - \epsilon_2 \in h^*, \ g_{\alpha_1} = E_{12},$

$$[diag(\varepsilon_1, \varepsilon_2, \varepsilon_3), E_{12}] = (\varepsilon_1 - \varepsilon_2)E_{12}$$

Group of symmetries of the root system is D_3 which is isomorphic to S_3 .

We may use the same picture to understand finite dimensional representations. Let V be a finite dimensional sl_n -representation. h acts by diagonalizable operators commuting between them. Therefore,

$$V = \bigoplus_{\lambda \in h^*} V_{\lambda}$$

where $V_{\lambda} = \{v \in V | \forall v \in h, h \cdot v = \lambda(h)v\} \ wt(V) := \{\lambda \in h^* | V_{\lambda} \neq \{0\}\}.$

Lemma 2.8. $g_{\lambda} \cdot V_{\mu} \subset V_{\lambda+\mu}$

$$g \otimes V \to V$$
 then $g_{\lambda} \otimes V_{\mu} \to V_{\lambda+\mu}$

Proof.

$$h \cdot (x_{\lambda}v_{\mu}) = [h, x_{\lambda}] \cdot v_{\mu} + x_{\lambda} \cdot (h \cdot v_{\mu})$$
$$= \lambda(h)x_{\lambda} \cdot v_{\mu} + \mu(h)x_{\lambda} \cdot v_{\mu}$$

Example 2.9. sl_3 . $V = \mathbb{C}$ with usual action. $wt(V) = \{\epsilon_1, \epsilon_2, -\epsilon_1 - \epsilon_2\}$ Indeed, $h = diag\epsilon_1, \epsilon_2, \epsilon_3, v^T = (v_1, v_2, v_3)$. We want to solve $h \cdot v = \lambda(h)v$

$$\begin{cases} \lambda v_{\epsilon_1} = \begin{pmatrix} * \\ 0 \\ 0 \end{pmatrix} \\ \lambda v_{\epsilon_2} = \begin{pmatrix} 0 \\ * \\ 0 \end{pmatrix} \\ \lambda v_{-\epsilon_1 - \epsilon_2} = \begin{pmatrix} 0 \\ 0 \\ * \end{pmatrix} \end{cases}$$

$$\epsilon_1 = \frac{2}{3}\alpha_1 + \frac{1}{3}\alpha_2, \ \epsilon_2 = -\frac{2}{3}\alpha_1 + \frac{1}{3}\alpha_2 \ and \ \epsilon_3 = -\frac{2}{3}\alpha_1 - \frac{1}{3}\alpha_2.$$

 $\epsilon_1 = \frac{2}{3}\alpha_1 + \frac{1}{3}\alpha_2$, $\epsilon_2 = -\frac{2}{3}\alpha_1 + \frac{1}{3}\alpha_2$ and $\epsilon_3 = -\frac{2}{3}\alpha_1 - \frac{1}{3}\alpha_2$. Weights form a triangle pointing down inside the hexagon. This shows you the action of the rep.

Finally, the dual $wt(V^*) = -wt(V)$, the weights form a pointing up triangle.

2.4 General Case (statements and definitions)

Let g be a semisimple Lie Algebra over \mathbb{C} .

Definition 2.10. A Cartan subalgebra is a Lie subalgebra $h \subset g$ s.t.

- 1. h is abelian
- 2. any $h \in h$ is semisimple
- 3. h is maximal with respect to 1. and 2.

Theorem 2.11. Chavalley Any two Cartan subalgebras are Aut(g)-conjugate.

Definition 2.12. $rank(g) = \dim h$ (for any Cartan subalgebra h)

Example 2.13. $rank(sl_n) = n - 1$

How two construct Cartan subalgebras?

Definition 2.14. An element $x \in g$ is regular if $g^x := \{y \in g | [x, y] = 0\}$ is of minimal dimension among all x.

Fact: The function $x \mapsto \dim g^x$ is upper semicontinous. i.e. $\forall n, f^{-1}([0, n])$ is open. In particular, $g^{reg} = \{x | x \text{ is reg}\}$ is open in g.

Example 2.15. $g = sl_n$

$$x = \begin{pmatrix} Id_n 1a_1 & \dots & \\ & Id_2 a_2 & \\ \dots & & Id_n a_n \end{pmatrix}$$

 $a_i \neq a_j$ for $i \neq j$. Then

$$g^x = \begin{pmatrix} \boxed{*} & \dots & \dots \\ \dots & \boxed{*} & \end{pmatrix}$$

 $\dim g^x$ is minimal if $n_1 = ... = n_k = 1$. When it happens, it is equal to n - 1.

Fact: For sl_n , n-1 is the minimal dimension for g^x .

$$\{diag(a_1,...,a_n)|a_i \neq a_j \text{ for } i \neq j\} \subset g^{reg}$$

Jordan block are in g^{reg} . Exercise: x regular $\iff \exists$ at most one Jordan block for every eigenvalue λ .

Proposition 2.16. $g^{reg} \cap g^{ss}$ is open and dense in g. Exercise: For sl_n , $g^{reg} \cap g^{ss}$ is the set of matrices with characteristic polynomial with simple roots.

Theorem 2.17. 1. $\forall x \in g^{reg} \cap g^{ss}$, g^x is cartan subalgebra

2. Any cartan subalgebra is of this form.

Example 2.18. sl_n , let $x = diag(a_1, ..., a_n)$ $a_i \neq a_j$. then

$$g^x = \left\{ \begin{pmatrix} * & \dots \\ & * & \\ \dots & * & \end{pmatrix} \right\}$$

2.4.1 Root Space Decomposition

Fix a Cartan subalgebra h. For $\alpha \in h^*$,

$$g_{\alpha} := \{ x \in g | \forall h \in h, [h, x] = \alpha(h)x \}$$
$$g = \bigoplus_{\lambda \in h^*} g_{\lambda}$$

Definition 2.19.

$$\Delta := \{ \alpha \in h^* \{ 0 \} | q_{\alpha} \neq 0 \}$$

is the root system of g with respect to h.

Theorem 2.20. 1. $g_0 = h \ (\implies \dim g_0 = rh(g))$

- 2. $\forall \alpha \in \Delta, \dim g_{\alpha} = 1$
- 3. $[g_{\lambda}, g_{\mu}] \subset g_{\lambda+\mu} \ \forall \lambda, \mu$.

2.4.2 Metric structure on h^*

$$\begin{split} \text{Exercise:} span_{\mathbb{C}} &= h^* \text{ (hint: } Z(g) = \{0\}). \\ \text{Let } \mathcal{K}_g \text{ be the Killing form on } g. \end{split}$$

Lemma 2.21. 1. $\mathcal{K}_g(g_\lambda, g_\mu) = 0$ if $\lambda + \mu \neq 0$

2. $\mathcal{K}_g|_h$ is non-degenerate.

Using $h \tilde{\to} h^*$ we can transport \mathcal{K}_g to a non-degenerate form on h^* Notation: $t_\alpha \in h$ corresponds to $\alpha \in h^*$ $\mathcal{K}_g(t_\alpha, h) = \alpha(h) \ \forall h \in h$.

Lemma 2.22.

$$[g_{\alpha}, g_{-\alpha}] = \mathbb{C}t_{\alpha}$$

and $\mathcal{K}_g(t_\alpha, t_\alpha) \neq 0$

Proposition 2.23. $h_{\mathbb{R}}^* := span_{\mathbb{R}}$ is a Euclidean space and a real form of h^* .

Example 2.24. There exists a Lie Algebras called g_2 of rank 2 whose root system is:

 $\dim g_2 = 14$