N91-14363

With addendum of new results

December 6, 1989

MEMO TO: Roger Bourke, EIS Team FROM: Alan Friedlander, SAIC

SUBJECT: Analysis of Success Probability/Cost Trades for Small Landers in a Mars Network

The premise to be tested in this analysis is whether cost economies may accrue by delivering more landers designed to lower reliability of operation (compared to fewer landers of higher reliability) to obtain a desired probability of achieving a given number of lander successes. Generally, the application in mind is a network of penetrators, although the analysis may apply as well to other small lander concepts or even to simple rovers. In previous MRSR studies, the approach taken to raise the probability of a successful mission (e.g. a rover or sample return objective) was to invoke a dual launch policy utilizing identical flight systems. With this approach we found that a substantial improvement in achieving at least one total mission success was gained for realistic values of system element reliability, albeit at the expense of higher program cost and more complex operations. However, in the case of a large number of small landers whose recurring cost of production might be small compared to the development cost, a single spacecraft carrier may be sufficient to deliver these landers to Mars within acceptable limitations of spacecraft injected mass and launch vehicle performance capability. It seems reasonable to at least explore the question of potential economies if such landers were purposely designed to lower values of reliability. What is specifically meant by lower reliability in this context is that, while fewer lander emplacements will succeed, those that do succeed will accomplish the desired mission objectives. The underlying assumption here is a certain degree of independence of lander system failure modes such that objective-specific elements (science instruments and data communications) are highly reliable while delivery-specific elements (e.g. deorbit propulsion and aeroshell) are less reliable and developed at lower cost with attendant higher risk. This analysis leaves open the important question as to whether such an approach is at all realistic in terms of engineering design, but focuses instead on the first question of potential cost advantage.

The method of analysis is based on a probabilistic model of lander success and a related probabilistic model of project cost including the lander, spacecraft carrier, and integration, but not launch or operations costs. Quantitative results are obtained in a normalized and parametric fashion. Sensitivity to the assumed model parameters is also examined.

1515 Woodfield Road, Suite 350, Schaumburg, Illinois 60173 312) 330 2500

Mission Success Model

Consider (n) landers each of which have the same level of reliability (p) for achieving individual mission success. Assuming that the actual failure events of different landers are statistically independent (even though the underlying failure modes for contributing components may be related), then the probability that exactly (m) of these landers are successful is given by the binomial distribution

$$P(m \text{ successes}) = [n! / (m! * (n - m)!)] * p^m * (1 - p)^{n-m}$$
 (1)

where! denotes the factorial operator and * denotes multiplication. Mission success also depends on the reliability of the launch vehicle and the spacecraft carrier that delivers the landers to Mars. To take these factors into account, we define P_I as the probability of a successful launch event and P_C as the probability of a successful delivery event. Then, the overall probability P that at least m (i. e. m or more) landers will be successful (for a single launch) is calculated by the expression

$$P = P_1 P_C \sum_{i=m \text{ to } n} [n! / (i! * (n-i)!)] * p^i * (1-p)^{n-i}$$
(2)

The relationships of Equation (2) are illustrated in Figure 1 for $P_1 = 0.94$, $P_C = 0.98$, and p = 0.8.

Figure 1 Lander Success Probability P(n, m) for Lander Reliability p = 0.8 Pl = 0.94, Pc=0.98

Mission Cost Model

The lander system development cost is modeled in terms of design reliability by the relationship

$$C_d = C_{do} / (1 - p)^a$$
 (3)

where C_{dO} is a "reference" development cost at p = 0, and the exponent (a) is a model parameter. This equation is graphed in Figure 2 for values of a = 0.1, 0.2, and 0.301.

Figure 2 Lander Development Cost Model

The nominally selected value of the development cost parameter is $a = 0.301 = log_{10} 2$, which gives a doubling of cost from p = 0 to p = 0.9 and doubling again for p = 0.99, etc. For a = 0.1 the increase in cost is only 25% for each additional 9 in reliability. The sensitivity to this parameter will be tested later. Recurring cost for each additional lander is assumed to be a constant fraction of the development cost. Hence, the lander system cost model is represented by

$$LC = C_{d} (1+k_1*n) = C_{d0} (1+k_1*n) / (1-p)^{a}$$
(4)

where the nominal value of the constant is selected as $k_1 = 0.2$. Total project cost includes the lander, carrier, and a cost element associated with hardware integration, management, and

contingency. The carrier spacecraft cost is taken to be proportional to the reference lander cost (development + recurring) at p = 0. Integration, management, and contingency is taken to be proportional to the sum of the carrier cost and the reference lander cost. Hence, the total project cost model is represented by

$$PC = LC + k_2 * C_{do} (1 + k_1 * n) + k_3 * [LC + k_2 * C_{do} (1 + k_1 * n)]$$

$$= C_{do} (1 + k_1 * n) [1/(1-p)^a + k_2 (1 + k_3) + k_3]$$
(5)

where the nominal parameters are a = 0.301, $k_1 = 0.2$, $k_2 = 0.667$, and $k_3 = 0.4$. The final step in the cost model is to normalize LC and PC to their respective values LC* and PC* corresponding to one lander (n = 1) and reliability p = 0.8684 evaluated at the nominal values of the cost model parameters. Hence, LC* = 2.209 C_{do} and PC* = 3.809 C_{do} . Lander system relative cost and total project relative cost are graphed in Figures 3 and 4 as a function of the number of landers and the individual lander reliability.

Results

Solution of the mission success model (Equation 2) was obtained for a constant probability P = 0.8that at least (m) landers will be successful. These calculations assume the nominal values of 0.94 for launch success and 0.98 for carrier success; these values yield the reference lander reliability of p = 0.8684 for a single lander. Results are shown in Figure 5 which plots the required lander reliability as a function of the number of landers (n) and the minimum number of lander successes (m). The solution values for p are then used to evaluate the normalized total project cost which is graphed in Figure 6. Note that for each value of (m) there is a number of landers (n > m) that yields the lowest cost. Generally, (n) is greater than (m) by one or two lander units. This result substantiates the initial contention that more landers of lower reliability may provide cost economy. The intersection points along the minimum cost locus can be mapped into Figure 5 to determine the lander reliability values; the range is $p = \{0.64, 0.87\}$ as m varies from 1 to 8. For example, to obtain at least six lander successess (m = 6) at a probability of 80%, the minimum relative cost is $PC/PC^* = 2.084$ (i.e. twice the single lander project cost) with n = 8 and p = 0.835. Note also that the cost curve is fairly flat for n > 8, so that if n = 10 the project cost increases to only 2.195 but the required lander reliability decreases to p = 0.711. By comparison, if n = m = 6, then the required reliability is quite high at p = 0.977 and the project relative cost increases to 2.563. One could also interpret the results for a constant cost as (m) varies. For example, if $PC/PC^* = 2.0$ or less, then for values of $m = \{1, 2, 3, 4, 5\}$ the minimum necessary lander reliabilities are $\{0.18,$ 0.31, 0.42, 0.57, 0.74} at corresponding values of $n = \{10, 10, 10, 9, 8\}$.

Figure 3 Lander System Relative Cost LC* = 2.209 x Cdo (for n = 1, p = 0.8684)

Figure 4 Total Project Relative Cost PC* = 3.809 x Cdo (for n = 1, p = 0.8684)

Figure 5 Required Lander Reliability for at Least m Lander Successes with Probability P = 0.8 (Pl = 0.94, Pc = 0.98)

Figure 6 Project Cost for at Least m Lander Successes with Probability P = 0.8 (Pl =0.94, Pc = 0.98)

Similar types of solution data are presented in Figures 7 and 8 for a constant success probability of P = 0.9. In this case, of course, the level of both cost and required reliability is raised to satisfy the more demanding 90% success capability. For example, at m = 6, the minimum relative cost is $PC/PC^* = 2.327$ obtained for n = 9 and p = 0.866. If $PC/PC^* = 2.0$ or less, then for values of $m = \{1, 2, 3, 4\}$ the minimum necessary lander reliabilities are $\{0.31, 0.45, 0.61, 0.76\}$ at corresponding values of $n = \{10, 10, 9, 8\}$.

Sensitivity to Model Parameters

Model parameters were varied, generally one at a time, to determine the sensitivity of the minimum PC/PC^* solution. These calculations were made for the case of m=6 and P=0.8 with PC^* held constant at its reference value 3.809 C_{do} . Results are listed in Table 1.

Table 1
Sensitivity to Model Parameters for m = 6 and P = 0.8
(Parameters at Nominal Values Unless Otherwise Noted)

Varied Parameter	<u>n</u>	p 	PC/PC*
a = 0.1	6	0.9768 0.9074	1.611 1.854
0.2 0.301 0.4	7 8 9	0.9074 0.8351 0.7694	2.084 2.302
$k_1 = 0.1$ 0.2 0.3	9 8 8	0.7694 0.8351 0.8351	1.441 2.084 2.725
$k_2 = 0.5 \\ 0.667 \\ 1.0$	8 8 8	0.8351 0.8351 0.8351	1.925 2.084 2.402
$k_3 = 0.2$ 0.4 0.6	8 8 8	0.8351 0.8351 0.8351	1.857 2.084 2.312
$P_1 * P_c = 0.84$ 0.9212 1.00	8 8 8	0.8910 0.8351 0.8014	2.240 2.084 2.020
$P_1*P_c = 0.84, \ a = 0.4$ $k_1 = 0.3, k_2 = 1.0, k_3 = 0.6$	9	0.8338	4.127
$P_1 * P_c = 1.0, k_1 = k_2 = 0$	9	0.7324	1.093

Figure 7 Required Lander Reliability for at Least m Lander Successes with Probability P = 0.9 (PI = 0.94, Pc = 0.98)

Figure 8 Project Cost for at Least m Lander Successes with Probability = 0.9 (Pl = 0.94, Pc = 0.98)

Comparison of One and Two Launch Scenarios

Results presented so far have been for a single launch of (n) landers. Additional calculations were made for two launches, but this required modification of the mission success and cost models. To calculate the probability P for at least (m) lander successes with two launches, it is necessary to use Equation (1) as the basic model for lander success, multiply each term by the product $P_1 * P_C$ except for the m = 0 term which is adjusted to $[(1 - P_1 * P_C) + P_1 * P_C * P_{m=0}]$, and then obtain the various combinations for exactly (m) successess with two launches. The probability for at least (m) lander successes can then be calculated by summation of terms as in Equation (2). The project cost model for two launches is taken as a modification of Equation (5)

$$PC(2) = C_{do} \left\{ (1 + k_1 * n) \left[1/(1 - p)^a + k_3 \right] + 2 * k_2 (1 + k_3) * (1 + k_1 * n/2) \right\}$$
 (6)

where (n) is the total number of landers for two launches.

Employing the nominal values of model parameters, the first comparison case examined is n = 4 and a constant probability P = 0.8 that at least (m) landers will be successful. The single launch carries 4 landers while the dual launch system carries 2 landers each. Results for this case are listed in Table 2.

Table 2 Comparison of One and Two Launches for n = 4 and P = 0.8

	One Laur	nch (n=4)	Two Laune	ches (n = 2+2)
At Least m Successes	p	PC/PC*	p	PC/PC*
1	0.3977	1.180	0.3675	1.417
2	0.6447	1.275	0.7747	1.615
3	0.8336	1.441	0.8951	1.806
4	0.9653	1.929	0.9854	2.561

Although the relative cost for two launches is always higher, if the criterion of comparison is the minimum value of lander reliability (p), then the results indicate that two launches is better only for the condition m = 1. If more than 2 lander successes is desired, a higher reliability is required because of the influence of possible launch and carrier failures.

The second comparison case examined is n = 8 and a constant value of p = 0.8 for the reliability of each lander. In this case we compare the mission success probability P(m) for m = 1 to 8. The relative project costs are $PC(1)/PC^* = 2.018$ and $PC(2)/PC^* = 2.263$ for all values of (m). Results are listed in Table 3.

Table 3 Comparison of One and Two Launches for n = 8 and p = 0.8

At Least m Successes	One Launch (n = 8) P	Two Launches (n = 4+4) P
1	0.9212	0.9936
2	0.9211	0.9898
3	0.9201	0.9665
4	0.9116	0.8992
5	0.8694	0.8008
6	0.7341	0.6763
7	0.4637	0.4271
8	0.1546	0.1424

These results indicate a "success performance" crossover point between one and two launches at the value $m = \{3, 4\}$. That is, two launches are better as measured by probability of success only for the condition m = 1, 2, or 3. If 4 or more lander successes is desired, then the single launch policy yields a somewhat higher probability of that occurrence.

Addendum to December 6, 1989, Memorandum

I did some more sensitivity studies relative to the cost model assumption. The results still confirm the conjecture (generally) that more landers at lower reliability yield lower project cost.

Basic Cost Model No.1
$$C_d/C_{d_o} = \frac{1}{(1-p)^a}$$
 (as per memos)
$$C_d/C_{d_o} = \frac{1}{(1-p)^a}$$
 (modified "Bourke")

Results for m = 6 and $P(m \ge 6) = 0.8$

		<u> </u>	Minimum Cost Solu	<u>ution</u>
Cost Model	а	n	р	PC/C _d
No. 1	0.100	6	0.9768	6.136
	0.301	8	0.8351	7.938
	0.500	9	0.7693	9.561
	1.000	13	0.5767	10.334
No. 2	0.100	6	0.9768	6.130
	0.301	8	0.8351	7.703
	0.500	10	0.7113	8.710
	1.000	15	0.5110	9.513

Note: The greater the sensitivity (a), the more landers (n) desired.

Combining Independent and "Common Cause" Failure Events

Consider (n) landers on a single launch. Each lander has an independent reliability = p_i and a common cause (or bias) reliability component = p_d . Then, if S_m represents the event of exactly m successes, the total conditional probability formula is

$$P(S_m) = P(S_m/\overline{D})P(\overline{D}) + P(S_m/D)P(D)$$

where

 \bar{D} = event that common cause failure *does not* occur D = event that common cause failure *does* occur $P(S_m/\bar{D})$ obtained from binomial distribution, as before

$$P(S_m/D) = \begin{cases} 1.0 \text{ for m=0} \\ 0 \text{ for m>0} \end{cases}$$
$$P(\overline{D}) = p_d; P(D) = 1 - p_d$$

Distribution between failure event types

$$p = p_i p_d = (1 - f_i) (1 - f_d) = 1 - f$$

Let

$$k_d = f_d/f = \frac{1 - p_d}{1 - p_i \cdot p_d}$$
; $0 \le k_d \le 1$

or

$$p_d = \frac{1 - k_d}{1 - k_d p_i} = 1 - k_d (1 - p)$$

Special case:

$$p_i = p_d = \sqrt{p}$$

$$k_d = (1 - \sqrt{p})/(1 - p)$$

р	$p_i = p_d$	k _d
0.5	0.7071	0.5858
0.6	0.7746	0.5635
0.7	0.8367	0.5445
8.0	0.8944	0.5279
0.9	0.9487	0.5132

Parametric Results For m = 6, $p_i = 0.94$, $p_c = 0.98$, P = 0.8

k _d	n	P _i	р _d	$\frac{p_c}{p_{c^*}}$	using	p _i + p _d 2	for cost)
0.2	6 7 8 9 10	0.9777 0.9153 0.8533 0.7984 0.7506	0.9945 0.9793 0.9646 0.9520 0.9413	2.861 2.368 2.314 2.355 2.433			
0.5	6 7 8 9 10	0.9800 0.9336 0.8965 0.8716 0.8576	0.9804 0.9377 0.9062 0.8862 0.8754	2.650 2.279 2.281 2.368 2.494			
$\frac{p_i = p_d}{0.5051}$ 0.5167 0.5259 0.5314 0.5340	6 7 8 9	0.9800 0.9350 0.9014 0.8817 0.8727	0.9800 0.9350 0.9014 0.8817 0.8727	2.645 2.274 2.281 2.377 2.515			
0.8	6 7 8 9 10	0.9858 0.9678 0.9628 0.9622 0.9621	0.9463 0.8859 0.8705 0.8687 0.8684	2.368 2.224 2.352 2.526 2.705			
0.9	6 7 8 9 10	0.9904 0.9838 0.9832 0.9832 0.9832	0.9205 0.8728 0.8687 0.8687 0.8687	2.243 2.233 2.404 2.589 2.774			

	-	
		*

Session B, Submittal No. 6

Manuel I. Cruz TRW

EARTH PENETRATION CONCEPTS

AND

MARS PENETRATOR ENTRY TRADES

MANNY CRUZ TRW

Earth Penetration Concepts

TABLE 1 EARTH PENETHATOH RE-ENTRY TO IMPACT CONCEPTS

	Comments		Very good terminal velocity and flight path control; large CEP considerations	Very good terminal velocity and flight path control, large CEP considerations	Plagued by lateral load carrying capability of impact system medium strength rock	Plagued by rebound and/or ricochet	Exceeds load carrying capability of impact system	Very good velocity and flight path control throughout impact error exceeds
ions	10 Impact Error	(degree) (meters/driver)	-300/driven by low altitude winds ≤ 9 mps	~600 to 900/high altitude density variation ≤ 20 L/D low altitude winds ≤ 9 nps	~300 to 600/high altitude density variation ≤ 20 L/D low altitude winds ≤ 9 mps	~300	Driven by delivery system	Driven by delivery Very good velocity system and flight path control throughout impact error exceeds requirements
Impact Conditions	Gamma	(degree)	06	06	20	09	30	06
edul	^	(mps)	300 to 300	300 to 900	450 to 900	215	2100 to 3400	300 to 900
ions	ц.	(km)	30	30	81	N/A	K N	۲ Ž
Staging Conditions	Gamma	(degree)	06	06	50	V/V	Y/Z	V/A
Stag	>	(sdui)	180 to 250	180 to 250	300 to 300	٧ ٧	A/A	< Z
Ballistic	Coefficient	(kg/m2)	10 ≤ B ≤ 15000	10 ≤ B≤ 15000	730 ≤ B ≤ 15000	2500	9800 ≤ B ≤ 15000	4900 ≤ B ≤ 15000
Control	Mechanism		Drag modulation and staging from low B to high B	Staging from low B to high B	Staging from moderate B to high B	None	None	Lift Modulation
	Concept		Two Stage Ballistic Entry and High Altitude Drag Modulation	Two Stage Ballistic Entry	Two Stage Ballistic Entry	Ballistic Entry Moderate B	Ballistic Entry High B	Maneuvering Re-Entry Pitch/Bank

PENETRATION PREDICTION

 $V \ge 200 \text{ FT/SEC}$ (V-100), D = 0.0031 (S) (N) $\sqrt{W/A}$

D = PENETRATION DEPTH (FT)

= SOIL CONSTANT

N = NOSE PERFORMANCE COEFFICIENT

W = WEIGHT (LB)

A = CROSS-SECTIONAL AREA (FT²)

= VELOCITY AT IMPACT (FT/SEC)

WEIGHT: 850 LBS (MAX) ROLL MI: 14.0K LB-IN² PITCH MI: 265K LB-IN²

860 lb Design Excursion 1 - Target Type 3 (Soil) -2.0 Degrees Angle of Attack

18000140001200010000400040001000

251

FAILURE VELOCITY

2000

860 lb Design Excursion 1 - Target Type 4 (Soil/Rock) -2.0 Degrees Angle of Attack

PENETRATION VS. ANGLE OF ATTACK FOR 4 PENETRATOR CONFIGURATIONS 12 CONFIG. 1 CONFIG. 2 CONFIG. 3 CONFIG. 4 ANGLE OF ATTACK (DEGREES) \Box (MEDIA - SAND) 9 ~ 00 0 120, 100 80 9 49 20 PENETRATION DEPTH (INCHES)

Mars Penetrator Entry Trades

AEROBRAKE DESIGN

MARS ROVER SAMIPLE RETURN

Session B, Submittal No. 7

Richard P. Reinert Ball Space Systems Division

CRAF PENETRATOR-LANDER

FOR MARS

PREPARED FOR MGNM WORKSHOP AT JPL

05/06/90

W. Boynton University of Arizona R. Reinert Ball Space Systems Division

BRIEFING OUTLINE

PRELIMINARY MISSION REQUIREMENTS

POLAR PENETRATOR DERIVED FROM CRAF CONFIGURATION

PV FUNCTIONAL SHOWS CENTRAL ROLE OF C&DH

SCIENCE OBJECTIVES SIMILAR TO CRAF

BASIC INSTRUMENT COMPLEMENT IS IDENTICAL EXCEPT FOR GRS

POLAR PENETRATOR MASS PROPERTIES MATCH BASELINE

POLAR PENETRATORS OCCUPY ONE AEROSHELL

POLAR PENETRATOR CONFIGURATION COMPATIBLE WITH BASELINE AEROSHELL

MPP AEROSHELL/PENETRATOR SYSTEM

PENETRATOR EXTRACTION FORM AEROSHELL

PENETRATOR DEPLOYMENT

PRELIMINARY MISSION REQUIREMENTS

REQUIREMENT	MPP	CRAF
SCIENCE PAYLOAD	MPP INSTRUMENT COMPLEMENT AS DESCRIBED BELOW	CRAF INSTRUMENT COMPLEMENT
MISSION DURATION: (APPROX)	CRUISE 330 D MARS ORBIT 30-60 D OPERATIONAL 7-14 D	6 YR 1 YR (NUCLEUS) 6-7 D
LAUNCH DATE	1998	1995
LAUNCH/TRANSPORT	TITAN IV/CENTAUR/	TITAN
();;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	MODIFIED M/O BUS	MM/II BUS
DEPLOYMENT	DEORBIT/MARS ATMOSPHERE ENTRY DUAL MANIFEST 120 DEG AEROSHELL 30 KG/M**2 M = 2 PARACHUTE EXTRACTION PARACHUTE PROVIDES IMPACT VELOCITY	FREE-FLIGHT TO NUCLEUS ONBOARD PRO- PULSION MODULE PROVIDES IMPACT VELOCITY
IMPACT CONDITIONS S-RANGE VELOCITY MIN DEPTH	3 - 50 50 M/S 1 M	3-200 20-50 M/S 1 M
COMM RELAY BITS/DAY (AVG) BER RANGE (MAX) PASSES/DAY PASS DURATION	256 K 1X10-5 600 KM 2 M 5 M MIN	256 K 1X10-5 100 KM 2 M 10 SEC MIN

POLAR PENETRATORS DERIVED FROM CRAF CONFIGURATION

MPP FUNCTIONAL ARRANGEMENT IS SIMPLER

Approx 90% commonality with CRAF PENL

SCIENCE OBJECTIVES SIMILAR TO CRAF

- Measure strength, depth of penetration
- Detect stratigraphic layers
- Measure initial temperature profile
- Measure thermal diffusivity
- Determine elemental abundances of most major and minor and a few trace elements
- Determine the temperature and enthalpy of phase changes as a diagnostic of the mineralogical/molecular form of the major components
- Determine the identity and vapor pressure
 of major and trace volatile compounds as a
 function of temperature

BASIC INSTRUMENT COMPLEMENT IS IDENTICAL EXCEPT FOR GRS

ELEMENT	BASIC FUNCTION
SEVEN ACCELEROMETERS (ACCs)	MEASURE THE DECELERATION PROFILE ON IMPACT
THREE THERMAL PROBES (TPs)	MEASURE TEMPERATURES AND THERMAL DIFFUSIVITY AS A FUNCTION OF DEPTH
ALPHA BACKSCATTER SPECTROMETER (ABS)	MEASURE IN-SITU ELEMENTAL COMPOSITION
DIFFERENTIAL SCANNING CALORIMETER (DSC)	DETERMINE THE PHASE COMPOSITION OF THE ICES AND MINERALS PRESENT
EVOLVED GAS ANALYZER (EGA)	DETERMINE THE MOLECULAR COMPOSITION OF ENTRAPPED GASES EVOLVED FROM DSC HEATING

POLAR PENETRATOR MASS PROPERTIES MATCH BASELINE

ITEM	MASS,	MASS, KG (1)	RATIONALE
	CRAF	MPP	
MASS SPEC	3.7	0.5	REPLACE GRS WITH ABS
TEMP PROBE GROUP	1.5	1.5	IDENTICAL
ACCELEROMETER GROUP	0.5	0.5	=
DSC ANALYZER	1.9	1.9	=
EGA ANALYZER	5.0	5.0	E
INSTRUMENT ELECTRONICS	2.8	2.3	DELETE GRS HVPS
STRUCTURE	19.5	19.5	IDENTICAL
ELECTRICAL POWER	9.5	9.3	648 W-HR
СФДН	2.1	2.1	IDENTICAL
COMMUNICATIONS	9.0	9.0	16 KBPS/100 KM
THERMAL CONTROL	9.0	9.0	IDENTICAL
PROPULSION	6.9	1	NOT NEEDED
TOTAL	54.3	44.2	

(2) BASELINE MASS = 46.3 KG

NOTES:
(1) CONTINGENCY INCLUDED AT SUBSYSTEM LEVEL

POLAR PENETRATOR CONFIGURATION COMPATIBLE WITH BASELINE AEROSHELL

MPP AEROSHELL/PENETRATOR SYSTEM

POLAR PENETRATORS OCCUPY ONE AEROSHELL

PENETRATOR EXTRACTION FROM

PENETRATOR DEPLOYMENT

ANGLE OF ATTACK – WIND EFFECT

ANGLE OF INCIDENCE - SURFACE UNDULATIONS

ACCEPTABLE UP TO 30° 3 - 200

SURFACE HARDNESS - PENETRABILITY INDEX

ASSUME 2 TO 4 MINUTES PER PASS 12.5 Kbil/sec

COMMUNICATIONS

ACCESSIBILITY TIME

BIT RATE, LINK BUDGET

Session B, Submittal No. 8

Joe D. Gamble Johnson Space Center

MARS GLOBAL NETWORK MISSION WORKSHOP

ENTRY SYSTEM DESIGN CONSIDERATIONS

J. Gamble - NASA/Johnson Space Center

Introduction

This section addresses some of the design issues concerned with the specific workshop question, "What is the best entry system - fixed or deployed aeroshells; parachutes or direct impact?" To address these questions some information about the entry conditions in the Mars environment is required. Results from the 90 day human exploration initiative study were used as a reference point. The MRSR pre-phase A study results were also considered. Finally some parametric data was generated to specifically address the GNM entry design question.

Reference Mission

The 90 day study considered two flight systems each consisting of an orbiter/carrier vehicle with six aeroshells as shown in Figure 1. Each aeroshell contains two penetrator landers as shown in Figure 2 that use parachutes to extract them from the aeroshell just prior to landing. The rigid aeroshells are deployed from the carrier vehicle and spin stabilized at 60 rpm. Small propulsion systems provide the delta V required for the desired atmospheric entry conditions. The aeroshells do not have an active guidance and control system.

The aeroshell design incorporates a rigid conical aeroshell with a spherical nose cap. The aeroshell diameter is 2.2 m and has an entry mass of approximately 110 kg, yielding a ballistic coefficient of 30 kg/m2. The aeroshell uses an ablative heat shield.

Two of the six aeroshells are deployed 2-10 days prior to Mars arrival in order to land at polar sites. The other four aeroshells are deployed after capture into a 1/5 Sol Mars orbit.

Mars Approach Deployed Aeroshells

One of the primary concerns in the MRSR study was the ability to achieve the proper entry conditions during the Mars approach. The entry corridor is bounded by the skip out and maximum allowable g load boundaries as shown in figure 3. Figure 4 shows the entry corridor limits versus L/D for an entry velocity of 6 km/sec. The total corridor width is summarized in figure 5 and shows that the corridor is nearly independent of the ballistic coefficient. The ballistic

coefficient determines whether the vehicle flies higher or lower in the atmosphere during the early portion of the entry. While the MRSR was concerned with aerocapture during the approach phase, the results are also applicable to the entry case. The estimated corridor width for ballistic vehicles are shown on figure 5. For a maximum entry load of 5 g's, the total corridor width is less than one degree. The corridor width increases to 3 and 5.5 for 10 and 15 g limits respectively. The MRSR study concluded that a minimum corridor width of approximately 3 degrees was required in order to accommodate navigation and atmosphere uncertainties. In order to achieve this accuracy, optical navigation was baselined for the study and trajectory corrections were considered within a few hours of entry.

GNM aeroshells deployed several days prior to entry and not having an active guidance and control system will almost certainly require much larger entry corridors than are necessary for the MRSR. It is very possible that a minimum corridor width of at least 5-10 degrees will be required. Figure 6 shows some preliminary results for the aeroshell defined by the 90 day study at an entry velocity of 6 km/sec at 125 km altitude. The figure indicates that g loads in excess of 20 g's will be required to provide a corridor width of 10 degrees. Figure 7 shows that for a 10 degree corridor width, downrange dispersions of +/- 2-5 degrees will occur for nominal entry angles of 15-20 degrees. These results were obtained from three degree-of-freedom simulations entering in a polar plane.

One proposal for decreasing the landing footprint dispersions is to enter at a much steeper entry angle. The results of entering at -35 and -45 degrees are shown as a function of ballistic coefficients in figure 8. The downrange dispersion for 10 degrees change in entry angle is less than one degree although it does increase as the ballistic coefficient increases. One of the primary problems with the steep entry angle is the large load factors that result. Figure 9 shows the maximum g loads (Earth g's) resulting from entry at -35 and -45 degrees. Load factors on the order of 40 -60 g's result from these steep angles.

Deployable Aeroshell Considerations

Use of deployable aeroshell configurations will in general preclude the use of ablator heat shields and the ballistic coefficient will have to be small enough to limit the aeroheating during entry. To achieve a ballistic coefficient of 10 kg/m2 using the 90 day study mass of 110 kg would require an aeroshell diameter of approximately 3.8 m while a diameter of 8.5 m would be required to achieve a ballistic coefficient of 2 kg/m2. It would appear that use of deployed aeroshells of this size would have significant problems operating at 40-60 g's during entry. For this reason it is

questionable whether use of deployable aeroshells for entry during Mars approach is a viable concept.

Mars Orbit Deployed Aeroshells

The lower entry velocity for aeroshells deployed from Mars orbit present much less of a problem than for those deployed during approach. Figure 10 shows that entry corridors of 15 degrees are possible at less than 10 g maximum load. Because the navigation is much better defined for the orbit deployed aeroshell than for the approach deployed case, the entry angle dispersions will be much less. Figure 11 indicates that for entry angle dispersions of +/- 1 degree, the dispersion in the downrange landing site will be well within +/- 1 degree. Aerodynamic heating for the orbit entry cases will also be much lower than for the approach deployed aeroshells. It would appear that these advantages definitely outweigh the delta V penalty associated with capturing the aeroshells into Mars orbit.

Parachute Considerations

One of the primary concerns with use of parachutes for the final surface delivery of the instrument packages is whether acceptable deployment conditions can be achieved during the aeroshell entry. The Viking program used supersonic deployed parachutes which were required because of the uncertainty in the Mars atmosphere. In general deployment of parachutes up to around Mach 2 (approximately 500 m/sec at Mars) is considered well within the state of the art. Figure 12 shows the aeroshell velocity at 5 and 10 km altitude as a function of entry angle for the 30 kg/m2 configuration with an entry velocity of 3.6 km/sec at 125 km altitude. The aeroshell is seen to be subsonic at both altitudes for the range of entry angles shown. Figure 13 shows the variation of the aeroshell velocity at 10 km altitude for various dispersions in the atmosphere. The low density cool COSPAR atmosphere results in barely supersonic conditions for the 30 kg/m2configuration and even a severe 50% decrease in atmospheric density only produces a Mach 2 case. Therefore use of parachutes for landing of the payload should not present any significant deployment problems.

The bibliography lists several references with some applications to the Mars entry problem. A number of these also have extensive bibliographies.

MSNM AEROSHELL/PENETRATOR SYSTEM

Figure 2.

Figure 3.

Figure 4.

G LOAD VS ENTRY ANGLE M/CDA=30 KG/M2 6 km/sec ENTRY VELOCITY

Figure 6.

Figure 7.

285

RANGE VS M/CDA FOR STEEP ENTRY ANGLES 6.0 km/sec ENTRY VELOCITY

G LOAD VS BALLISTIC NO. AND ENTRY ANGLE 6 km/sec ENTRY VELOCITY

Figure 9.

G LOAD VS ENTRY ANGLE M/CDA=30 KG/M2 3.6 km/sec ENTRY VELOCITY

Figure 10.

RANGE VS ENTRY ANGLE M/CDA=30 KG/M2 3.6 km/sec ENTRY VELOCITY

Figure 11.

VEL AT CHUTE DEPLOY VERSUS ENTRY ANGLE 3.6 km/sec ENTRY VELOCITY, M/CDA=30 KG/M 25 -- 10 KM ALTITUDE 20 ENTRY ANGLE AT 125 KM **5 KM ALTITUDE** S 250 200 150 100 20 0 **∑**~⊗ШO OHDTE

Figure 12.

290

VELOCITY AT 10 KM VS M/CDA AND ATMOS 3.6 KM/SEC ENTRY VELOCITY

Figure 13.

BIBLIOGRAPHY

- Repic, E. M., "Final Report, Study of Technology
 Requirements For Atmosphere Braking to Orbit About
 Mars and Venus", North American Rockwell Space Division,
 SD 67-994-2, January, 1968.
- Cruz, M. I., "The Aerocapture Vehicle Mission Design Concept," AIAA Paper 79-0893, May 1979.
- Florence, D. E., "Aerothermodynamic Design Feasibility of a Generic Planetary Aerocapture/Aeromaneuver Vehicle," Thermophysics of Atmospheric Entry, Vol. 82 of Progress in Astronautics and Aeronautics, 1982.
- Cruz, M. I., "Final Report, Generic Planetary
 Aerocapture Research and Technology Development",
 JPL D-691, May 1983.
- French, J.R., and Blanchard, D.P., "Mars Sample Return Mission 1985 Study Report", JPL D-3114, July 1986.
- Walberg, Gerald D., "A Review of Aerobraking for Mars Missions", IAF Paper no. IAF-88-196, October 1988, Bangalore, India.
- Gamble, J., et al., "JSC Pre-Phase A Study, Mars Rover Sample Return Mission - Aerocapture, Entry, and Landing Element", JSC-23230, April 1989
- Euler, E.A., et al., "Viking Navigation", JPL 78-38,
 November 1979

Session B, Submittal No. 9

Byron L. Swenson Science Applications International Corporation

MARS GLOBAL NETWORK MISSION

ENTRY AND TERMINAL DESCENT SYSTEM DESIGN CONSIDERATIONS & ISSUES

PRESENTATION TO THE MARS GLOBAL NETWORK MISSION WORKSHOP FEBRUARY 6-7, 1990

ВҰ

BYRON L. SWENSON

LANDER ENTRY SYSTEM DESIGN

REQUIREMENTS

- TO PROVIDE STABLE & CONTROLLED ATMOSPHERIC DECELERATION FROM HYPERBOLIC OR ORBITAL ENTRIES
- TO PROVIDE PROTECTION FROM AEROTHERMODYNAMIC HEATING
- TO DECELERATE LANDER TO TERMINAL DESCENT SYSTEM DEPLOYMENT CONDITIONS

DESIGN CONSIDERATIONS & ISSUES

- ENTRY CONDITIONS SPEED, FLIGHT-PATH ANGLE, ANGLE OF ATTACK
- MARTIAN ATMOSPHERE LOW DENSITY, VARIATIONS, SITE ELEVATIONS
- FREE-SPACE & ATMOSPHERIC DYNAMICS
- REQUIRED DELIVERY ACCURACIES
- BALLISTIC OR LIFTING TRAJECTORIES
- AERODYNAMIC & AEROTHERMODYNAMIC DATA BASE
- LOW BALLISTIC COEFFICIENT TERMINAL SYSTEM DEPLOYMENT
- SPACECRAFT INTERFACE TARGETING, SEPARATION, ENVELOPE
- AEROSHELL JETTISON

ENTRY SYSTEM OPTIONS

CONFIGURATIONS

• BALLISTIC

BLUNTED CONES - YIKING; PV, GALILEO; DISCOVERER

LIFTING

SYMMETRICAL (C.G. OFFSET) - BICONICS NON-SYMMETRIC - RAKED CONES (AFE); HALF-CONES (M-1)

AEROSHELL DESIGN

RIGID

SKIN/STRINGER; ABLATOR

DEPLOYABLE

COLLAPSABLE - FABRIC/RIB & STRUT; RERADIATOR OR ABLATOR FOLDABLE - RIGID HINGED PANELS; RERADIATOR OR ABLATOR INFLATABLE BALLUTES - FABRIC; RERADIATOR OR ABLATOR

CONFIGURATION OPTIONS

DISCOVERER BALLISTIC LIFTING VIKING

7

AFE

BICONIC

AEROSHELL JETTISON OPTIONS

- PULL OUT OF THE REAR
- REQUIRES LARGE PARACHUTE SYSTEM
- FALL-THRU THE NOSE
- CONSTRAINS LANDER SHAPE NOSE CAP JETTISON
- SEPARATE IN PIECES
- HAZARDOUS REQUIRES EXTENSIVE PYROTECHNICS AND VERY ACCURATE TIMING
- **RETAIN TO LANDING**
- LANDING SYSTEM DESIGN IMPACT

TERMINAL DESCENT SYSTEM DESIGN

REQUIREMENTS

TO PROVIDE A STABLE & CONTROLLED PLATFORM FOR DESCENT IMAGERY

TO PROVIDE STABLE & CONTROLLED SURFACE APPROACH CONDITIONS FOR LANDING

DESIGN CONSIDERATIONS & ISSUES

- DEPLOYMENT CONDITIONS
- TECHNOLOGY BASE
- DESCENT TIME, RATE, & STABILITY FOR IMAGERY
- WINDS ALOFT & SHEARS
- **ELEVATION DIFFERENCES OF SITES**
- REQUIRED LANDING CONDITIONS
- VERTICAL & HORIZONTAL VELOCITY
 STABILITY & DYNAMICS
- SURFACE WINDS & SHEARS

Session B, Submittal No. 10

Arden Albee California Institute of Technology

COMPARISON OF ALTERNATIVE LANDER STRATEGIES

ARDEN ALBEE

CALTECH

"MANY, GLOBALLY-DISPERSED" LANDERS DRIVE DESIGN PACKING AND DEPLOYMENT VS STRUCTURE/PROP MASS

MARS ENTRY & LANDER DESIGN TREE	/ & LANDE DESIGN TREE	DER SYSTEMS
1) LANDER SYSTEM RELEASE	ON APPROACH	ACH FROM ORBIT
2) INITIAL RETRO & ORIENT	BUS DEFLECT.	LANDER DEFLECT.
3) ATM. ENTRY ANGLE	CONSTRAINED	UNCONSTRAINED
4) HIGH/HOT DECELERATION	SHARED TPS	OWN TPS GUIDED ENTRY
5) LOW ATM. DECELERATION (Supersonic to subsonic)	BALLUTE	PARACHUTES L/D SHAPES
6) TERMINAL DECELERATION	DESCENT RETRO.	PROX. IMPACT SURFACE RETRO. ABSORB. PENET

PENETRATOR HARD ROUGH SOFT DIRECT

W/ WO RECEIVER

8) TELEMETRY--ALA-2-90

7) LANDER TYPE--

MARS ENTRY & LANDER SYSTEMS **DESIGN TREE**

SPHERICAL ENTRY SYSTEMS

- A. Venera 8 as it approaches Venus
 B. Separation of descent capsule from carrier bus
 C. Entry into Venerian atmosphere
 D. Deployment of drogue parachute
 E. Deployment of main parachute
 F. Activation of scientific instruments
 G. Landing on the Venerian surface

Sketch of Luna 9 on the lunar surface

(R. Escarcega)

The return of Luna 16 to earth

ORIGINAL PAGE IS OF POOR QUALITY

- Deployment of main parachute
 Detachment of main parachute and ignition of final braking rocket
 Separation of landing capsule
 Landing capsule on the Martian surface with deployed instrumentation A. Mars orbiter after separation of descent apparatus B. Descent apparatus pulling away from Mars orbiter-4.1/2 hr before MOI C. Firing of main descent engine for entry into the Martian atmosphere D. Deployment of drogue parachute
 E. Separation of drogue parachute and upper portion of main parachute housing
 F. Deployment of main parachute and ignition of final braking rocket
 G. Detachment of main parachute and ignition of final braking rocket
 H. Separation of landing capsule
 I. Landing capsule on the Martian surface with deployed instrumentation

Landing sequence of second-generation Mars spacecraft (R. Escarcega)

Viking Entry Through Landing Sequence

Deorbit manoeuvre from low circular orbit.

NETWORK MISSION SCENARIO

Location of entry points at Mars' atmosphere.

Rn=1.25m Rb=1.55m CONE ANGLE=60° M=300kg

Ballistic entry from hyperbolic arrival (performance for different entry angles).

NETWORK MISSION SCENARIO

GAMMA=-15 Rn=1.25m Rb=1.55m CONE ANGLE-60 M=300kg

Ballistic entry from hyperbolic arrival (trajectory parameters).

M=300kg LOW PRESSURE ATMOSPHERE

Ballistic entry from hyperbolic arrival (parachute deployment altitude).

-

Session B, Submittal No. 11

Lester L. Sackett
The Charles Stark Draper Laboratory

GLOBAL NETWORK MISSION WORKSHOP

Achievable Accuracies for Targeting Landing Sites

Les Sackett (617/258-2289) The Charles Stark Draper Laboratory Cambridge, Massachusetts 02139 Workshop held at the Jet Propulsion Laboratory February 6-7, 1990

Data provided by John Higgins (617/2582433) Ken Spratlin (617/258-2441)

Global Network Workshop

Primary Question:

What are the desired and achievable accuracies for targeting the landing sites?

Subsidiary Questions:

What are the navigation (knowledge) uncertainties at the time of aeroshell firings?

What are the landing (guidance) dispersions of the penetrators?

What contributes to the errors in knowledge and targeting accuracy?

How can the errors be reduced?

For the approach targeted aeroshells, what are the errors as a function of the deployment time?

Does onboard nav help and how much?

What is the dispersion due to passage of the aeroshell through the atmosphere?

Due to the time on the parachute?

Due to the error introduced by the small rocket firing?

Does Viking experience help in estimating the targeting accuracies?

What is the effect on the trajectory of the despin from 60 to 15 rpm following the targeting firing?

What is the effect of changing the assumptions or parameter values (e.g., flight path angle, ballistic coefficient, etc.)?

ERRORS FOOTPRINT SENSITIVITY TO BURN 回

(Approach Deployed Aeroshell)

With nominal entry-interface (EI) conditions

$$- h_{EI} = 125 \, \text{km}$$

$$-V_{\infty} = 3.5 \text{ km/s}$$

Accelerometer quantization = 0.005 m/s (typical)

Assume ability to effect burn is comparable to ability to measure burn

Thus, assuming 1 accelerometer quant of AV error per axis

20	0.24	20.32	5.34
10	0.12	10.19	2.68
rc.	90.0	5.13	1.34
2	0.02	2.08	0.55
1	0.01	1.06	0.28
DAYS PRIOR TO EI	(βəp) λγ	ADR (km)	ΔCT (km)

John P. Higgins (617)—258—2433

MARS PENETRATOR VEHICLE

ENTRY DISPERSION ANALYSIS

ASSUMPTIONS

SEMI-MAJOR AXIS = 6986 KM

ECCENTRICITY = 0.485097

ENTRY INTERFACE CONDITIONS

ALTITUDE = 125K KM

VELOCITY = 4.2 KM/S (DEORBIT PENETRATOR)

VELOCITY = 6.0 KM/S (DEPLOYED PENETRATOR)

• GAMMA = -15 / -20 DEGREES

BALLISTIC ENTRY (ZERO LIFT)

PENETRATOR BALLISTIC COEFFICIENT = 30 KG / SQ METERS

PARACHUTE BALLISTIC COEFFICIENT = 3 KG / SQ METERS

DEPLOYED AT 10 KM ALTITUDE

ATMOSPHERE MODEL - MARS NORTHERN MEAN

- CONIC GRAVITY MODEL

ENTRY DISPERSION SOURCES

LIFT—TO—DRAG RATIO

ATMOSPHERIC VARIATIONS

ENTRY INTERFACE FLIGHT PATH ANGLE

DUE TO GN&C DEORBIT BURN PERFORMANCE (PRIMARILY NAVIGATION ERRORS)

DOWNRANGE DISPERSION PRIMARILY DUE TO ENTRY PENETRATION POINT VARIATION

MARS ENTRY DISPERSION ANALYSIS DEORBIT PENETRATOR - EI GAMMA = -20 deg

MARS ENTRY DISPERSION ANALYSIS DEORBIT PENETRATOR - EI GAMMA = -15 deg

MARS ENTRY DISPERSION ANALYSIS DEPLOYED PENETRATOR — EI GAMMA = -20 deg

MARS ENTRY DISPERSION ANALYSIS DEPLOYED PENETRATOR — EI GAMMA = -15 deg

Following is a list of memos produced at the Draper Laboratory on guidance, navigation, and control for the Mars Rover Sample Return Mission. Some of these may be relevant to the Global Network Mission studies.

MRSR MEMO LOG (MARS ROVER SAMPLE RETURN MISSION)

DATE	MRSR-89-/EGB		FROM	SUBJECT
1/3/89	001/EGB-89-001	Distribution	T. Brand	MRSR 1987-1988 Memo Log
1/18/89	002/EGB-89-022	Distribution	S. Bauer	Executive Summary of MRSR Lander Navigation Performance
1/12/89	003/EGB-89-023	Distribution	S. Shepperd	Summary - Mars Communication Orbiter as a Pre-Aerocapture Navigation Aid
2/7/89	004/EGB-89-034	Distribution	T. Brand	Mars Mission - Pre-aerocapture Navi- gation Communication Orbiter as a Nav Aid Preliminary Study
2/27/89	005/ EGB-89-035	Distribution	S. Bauer/ T. Brand	MRSR Deorbit/Entry Navigation Per- formance with Updates from a Communi- cations Orbiter
3/15/89	006/EGB-89-037	File	A. Engel	DSMAC Discussions in January at the Naval Avionics Center
68/1/7	007/EGB-89-084	File	D. Fuhry	High Energy Aerobraking Task Status
4/11/89	008/EJC-89-065R	T. Brand	R. Greenspan	Electronics Burden of Radio Naviga- tion for a Mars Lander
5/11/89	009/EGC-89-118	Distribution	H.L. Malchow	Qualitative MRSR Requirements Survey
5/18/89	010/EGC-89-127	Distribution	L. Sackett	Flight Control Presentation at JSC on April 20, 1989

The Charles Stark Draper Laboratory, Inc.

MARS ROVER SAMPLE RETURN MISSION 1989 MEMOS

MRSR MEMO LOG

DATE	MRSR-89-/EGB-	TO	FROM	SUBJECT
5/19/89	011/EGB-89-115	File	K. Spratlin/ T. Brand	MRSR Entry and Landing Task Presenta- tion to MRSR Videocon
6/21/89	012/EGB-89-137	Distribution	A. Engel	Briefing Charts - Autonomous Landing Study Probability of Safe Landing
6/21/89	013/EGB-89-139	File	A. Engel	Briefing Charts - Safe Landings for MRSR (April 20, 1989)
	014 CANCELLED			
6/21/89	015/EGB-89-141	Distribution	D. Fuhry	CSDL Presentation Given at MRSR Mars Approach Navigation Coordination Meeting
6/21/89	016/ EGB-89-142	D. Smith/JPL	D. Fuḥry	Representative Computer Throughput Requirements for CSDL Predictor/ Corrector Aerocapture Guidance
7/12/89	017/ECB-89-151	Distribution	S. Bauer	MRSR Deorbit/Entry Navigation Performance
7/31/89	018/EGB-89-169	Distribution	A. Engel/ S. Bauer	Briefing Charts - MRSR Probability of Landing and Deorbit/Entry Navigation Performance Studies
8/14/89	019/EGB-89-174	Distribution	T. Brand	Reduced IMU Alignment Error Prior to Deorbit and Entry
6/1/86	020/E&C-89-2-11	Diet	H. Malchow	Attitude Control Configuration Options for the Trans-Mars Cruise Phase of the MRSR Misssion Sample Return Segment

MRSR MEMO LOG

	TO		FROM	SUBJECT
021/EJC-89-157 T. Brand			R. Greenspan	Power Considerations for Radio Navi- gation Aids during Mars Approach
022/EGB-89-216 K. Spratlin		<u>e</u>	W. McClain	Comments on "Trajectory Predrediction Accuracy for Lower Orde Mars Gravity Models"
023/EGC-89-225 Distribution	Distribut	ion	D. McCallum	Charts of Performance Specifications for Attitude Control Actuators and Sensors Rendezvous and Docking Sensors and Accelerometers
024/EGB-89-219 Distribution	Distribut	ion	S. Shepperd	Mars Approach Navigation Constant Power Radiometric Navigation · Performance
025/EGB-89-221 Distribution	Distribut	ion	S. Bauer	MRSR Pointing Accuracy During Entry
026/EGB-89-235 Distribution	Distribut	ion	K. Spratlin	1989 MRSR Final Report Inputs
027/EGB-89-255 File	File		K. Spratlin	CSDL Contribution to Lunar/Mars Transportation Study Requested by D. Long/ JSC
028/EGC-89-275 Distribution	Distribut	ion	D. McCallum	Attitude Control Requirements for Aerocapture Phases of MRSR Mission
029/EGB-89-260 Distrlbution	Distribut	ion	S. Bauer	Mars Entry Navigation Using IMU with- out External Updates
030/EGB-89-299 Distribution	Distribu	tion	S. Bauer	Mars Orbit Navigation with Radiometric Updates from a Communication Orbiter

MARS ROVER SAMPLE RETURN MISSION 1989 MEMOS

MRSR MEMO LOG

DATE	MRSR-89-/EGB	TO	FROM	SUBJECT
12/31/89	031/EGB-89-303	File	D. Brown	Presentation on Sensor Look Angles During Hazard Avoidance

Session B, Submittal No. 12

Bruce A. Crandall Hughes Aircraft Company

LAUNCH VEHICLE ALTERNATIVE STRATEGIES

BRUCE CRANDALL

HUGHES AIRCRAFT CO.

LAUNCH/MISSION OPTIONS

SYSTEM	COST	SATISFACTION
BASELINE TIV/CENTAUR	100%	100%
2-3 ATLAS/CENTAUR *	~20%	€ 100%
4-6 ATLAS/CENTAUR *	100%	>>100%

*EXISTING INTEGRATION FOR 6500+ LB CLASS, 8 FOOT BODY WITH INTEGRAL PROPULSION

LARGE TRADE SPACE EXISTS DUE TO HIGH COST OF TIV/CENTAUR

PROBE INTEGRATION OPTIONS COMPARISON WITH PIONEER VENUS

	PROBE INTEG	INSERT	ORBITAL SCIENCE	PROBE	BUS
GNM CAR/ORB	×	×	×	×	×
PIONEER VENUS					
MULTIPROBE	×			×	×
ORBITER		×	×		×

DIVIDING FUNCTIONS = LESS COMPLEX INTEGRATION MORE ORBITAL FLEXIBILITY COMMUNICATIONS **DEPLOYMENT**

SUMMARY

MAINTAINING A BROAD VIEW OF THE GNM OPTIONS AT THIS TIME WILL LEAD TOWARD THE MOST OPTIMUM DESIGN

ELECTRONICS, PROPULSION, IMAGING AND GUIDANCE...WITH DIRECT SIGNIFICANT MATURE TECHNOLOGIES EXIST IN THE AREA OF HIGH G APPLICABILITY TO..

PENETRATOR DESIGN
DEPLOYMENT PHILOSOPHY
CARRIER INTEGRATION
TARGETING FIDELITY

BEST SATISFACTION TO COST PERFORMANCE MAY BE REALIZED **USING SMALLER LAUNCH VEHICLES AND SATELLITES** SCIENCE MISSION PRIORITIZATION AND CHARACTERIZATION WILL HELP TO CONVERGE MISSION REQUIREMENTS AND DESIGN

		-
		·

Session B, Submittal No. 13

Carlos S. Moreno Jet Propulsion Laboratory/California Institute of Technology

HARD LANDER CONCEPTUAL DESIGN

CARLOS MORENO

JPL

An automated biological laboratory was developed by Philco Aeronutronic Company to study the possibility of a hard-landing entry probe to make simple assays of the Martian environment. One of several studies for Voyager in the mid-1960s, it grouped science instruments that could be programmed for numerous experiments. None of the projects was flown, but they provided understanding of extraterrestrial biology detectors.

			=

Session B, Submittal No. 14

John Garvey McDonnell Douglas

DELTA LAUNCH VEHICLE STRATEGIES

JOHN GARVEY

MDAC

VJX098.1 T1CV

MSP SPACECRAFT BASED ON PIONEER-VENUS BUS

MCDONNELL DOUGLAS

Propellant Tanks (Marisat) Widebeam Omni Antenna UHF Antenna (New) Orbit Insertion Motor Aft Thermal Barrier (Intelsat IV Telesat) S-Band High-Gain Antenna - Equipment Shelf With Penetrator Culouts Radial Thrusters Support Struts Solar Panel Cylinder BAPTA Support BAPTA Added Solar Cells Thrust -Axial, Tube Thrusters Sleeve Dipole Antenna -Penetrator Assembly (TOW) -Secondary Structure (New) -

Session B, Submittal No. 15

Stephen Bailey Johnson Space Center

GNM Mission and System Design Proposal

A Position Paper in Response to the Mars Global Network Workshop, Feb 6-7, 1990

Stephen Bailey NASA/JSC/IZ3 NASAMail SBailey (713) 283-5411