Il Seminarium Python Geo Data Science Hel 6-10 maj 2019

Normal text file | length : 5 888 908 | lines : 200 001

Zdjęcia satelitarne

DATA **SCIENCE**

DATA ENGINEERING

COMPUTATIONAL DATA SCIENCE

POZYSKIWANIE

PRZYGOTOWANIE

ANALIZA

RAPORTOWANIE

DZIAŁANIE

PLIKI TEKSTOWE BAZY DANYCH Web serwisy No SQL storage

Eksploracja EDA

PREPROCESSING

Korelacja

Trend

Outliers

Statystyki

Czyszczenie Transformacja

Scailing

Transformation

Feature selection

Duplicate

Inconsistent

Missing

Regression

Classification

Clustering

Graph Analytics

Wizualizacja

Outlier **Dimensions PCA**

Histogramy Boxplots Line graph

https://github.com/urbanskigis/HEL-geodata-science

Struktura danych - Tidy data

Tidy data to dane otrzymywane jako rezultat procesu zwanego **data tidying**. Jest to istotny etap czyszczenia danych podczas wstępnego opracowywania **big data** i jest istotnym praktycznym etapem data science. **Tidy data** posiadają strukturę zapewniającą ich łatwe przetwarzanie, modelowanie i wizualizację. **Tidy** zbiory danych (data sets) są zorganizowane tak, że każda zmienna tworzy kolumnę, a każda obserwacja tworzy wiersz.

Ta struktura danych tworzy standard dla data cleaning dając dostęp do wszystkich potrzebnych opcji.

Podsumowanie:

- 1. Każda zmienna, która jest mierzona (pozyskiwana) powinna być w jednej kolumnie.
- 2. Każda oddzielna obserwacja szeregu zmiennych powinna tworzyć oddzielny wiersz.
- 3. Dla każdego typu zmiennych powinna być oddzielna tabela.
- 4. Jeżeli posiadamy parę tablic, powinny zawierać kolumnę, która umożliwi ich łączenie.

https://towardsdatascience.com/

https://dataelixir.com/newsletters/

https://statquest.org/video-index/

https://www.youtube.com/watch?v=X3paOmcrTjQ

Prezentacja – Data Science start

Wprowadzenie do jupyter notebook - film i ćwiczenia

Podstawowe operacje NumPy - trochę zadań NumPy – praca z rastrami NumPy algebra liniowa – parę zadań (jak to działa)

Matplotlib podstawy

Praca z czasem w Pythonie

Wykorzystanie składni LaTex a w Jupyter Notebook

Jupyter Notebook

NumPy

Matplotlib

Pandas I Pandas II

Wizualizacja – podstawowe rysunki w Pandas Wizualizacja - Seaborn

Pandas w praktyce (praca samodzielna)

Jupyter Notebook

Pandas

Seaborn

Geopandas – plus zadania (mapy)

Machine Learning — prezentacja Naive Bayes - prezentacja Gaussian Naive Bayes — przykład (wino)

Gaussian Naive Bayes – zadanie (Iris flower data set)

Ćwiczenia tworzenie rysunków (biblioteki Matplotlib, pandas, seaborn)

ML

Jupyter Notebook
Pandas
Geopandas
Naive Bayes
Seaborn
Matplotlib

klasyfikacja

k – nearest neighbors classification (prezentacja)

k - nearest neighbors classification (przykład i zadania – MNIST, wino, storczyki)

Modified National Institute of Standards and Technology database

klasteryzacja

Hierarchiczna klasteryzacja (dendrogram)

Klasteryzacja – prezentacja

k – means clastering (przykład)

k – means clastering (zadanie-Iris) + t-SNE

t-Distributed Stochastic Neighbor Embedding"

regresja

Regresja – prezentacja

Regresja (przykład – Boston)

Regresja (zadanie – zanieczyszczenia)

Generowanie zbiorów testowych

Decision Tree, Random Forest – prezentacja

Decision Tree Random Forest – przykład (wizualizacja drzew decyzyjnych Webgraphviz)

Logistic Tree Regression, SVM – prezentacja

Logistic Regression, SVM – przykład (Permutation Importance)

Zapisywanie modeli ML

Analiza danych czasowych – podstawy, I, II

