Departamento de Física Universidade de Aveiro

Modelação de Sistemas Físicos

Cap. 6

Osciladores acoplados: Modos Normais e Ondas

Bibliografia:

MSF 2025 - T6

Osciladores Acoplados e Ondas

Waves and oscillations (bhaskar-kamble.github.io)

Programmable coupled oscillators for synchronized locomotion,

Dutta et al., Nature Communications, 2019

MSF 20/25F-27025 - T6

Modelos da matéria

MSF 2025 - T6

2 corpos A e B. Cada um ligado a um ponto fixo através de molas de constante elástica k. Acoplados através de uma mola de constante elástica k'.

Como é o movimento? Existem oscilações regulares? Com que frequências?

MSF 2025 - T6

2 corpos A e B. Cada um ligado a um ponto fixo através de molas de constante elástica k. Acoplados através de uma mola de constante elástica k'.

Vamos tentar encontrar a lei do movimento dos 2 corpos:

- 1. Que forças aplicada a cada um dos corpos?
- 2. Equação dinâmica de Newton para cada corpo
- 3. Resolver a eq. dinâmica pelo método de Euler-Cromer (oscilações)

1. Que forças aplicada a cada um dos corpos?

Corpo A:

$$F_{1A} = -k(x_A - x_{Aeq})$$

$$F_{2A} = -k'[(x_A - x_{Aeq}) - (x_B - x_{Beq})]$$

Corpo B:

$$F_{3B} = -k(x_B - x_{Beq})$$

$$F_{2B} = +k'[(x_A - x_{Aeq}) - (x_B - x_{Beq})] = -F_{2A}$$

2. Equação dinâmica de Newton para cada corpo

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' [(x_A - x_{Aeq}) - (x_B - x_{Beq})]$$

Corpo B
$$m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' [(x_A - x_{Aeq}) - (x_B - x_{Beq})]$$

Note: as equações estão acopladas: Na equação do corpo A aparece a coordenada do corpo B

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B
$$m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

3. Cálculo Numérico:

$$k = 1 \frac{N}{m}$$
; $k' = 0.5 \frac{N}{m}$; $m = 1 \text{ kg}$

$$x_{Aeq} = 1.0 \text{ m } x_{Beq} = 1.2 \text{ m}$$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq}$
 $v_{Ax0} = v_{Bx0} = 0$

Movimento não parece periódico.

Temos de aumentar o instante final para se verificar se existe repetição.

2 Osciladores Harmónicos Simples Acoplados

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B
$$m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

$$k=1\frac{\rm N}{\rm m}$$
; $k'=0.5\frac{\rm N}{\rm m}$; $m=1\,{\rm kg}$; $x_{Aeq}=1.0\,{\rm m}$ $x_{Beq}=1.2\,{\rm m}$

Condições iniciais:

Igualmente afastados das suas posições de equilíbrio

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq} + 0.05 \text{ m}$
 $v_{Ax0} = v_{Bx0} = 0$

A mola do meio não interfere

Movimento periódico harmónico

T= 6.283 s
$$A = x_{eq} + 0.05 \text{ m}$$

$$\omega_1 = 1 \text{ rad/s}$$

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B
$$m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

$$k = 1 \frac{N}{m}$$
; $k' = 0.5 \frac{N}{m}$; $m = 1 \text{ kg}$; $x_{Aeq} = 1.0 \text{ m}$ $x_{Beq} = 1.2 \text{ m}$

Igualmente afastados das suas posições de equilíbrio

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

$$x_{B0} = x_{Beq} - 0.05 \text{ m}$$

$$v_{Ax0} = v_{Bx0} = 0$$

Corpos com movimento em espelho

Movimento periódico harmónico

T= 4.442 s
$$A = x_{eq} + 0.05$$
 m

$$\omega_2 = 1.414 \text{ rad/s}$$

10

15

20

t(s)

25

30

Modo normal 1

$$\omega_1 = 1 \text{ rad/s}$$

$$x_A = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1)$$

$$x_B = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1)$$

Modo normal 2 $\omega_2 = 1.414 \text{ rad/s}$

$$x_A = x_{eqA} + A_2 \cos(\omega_2 t + \phi_2)$$

$$x_B = x_{eqB} - A_2 \cos(\omega_2 t + \phi_2)$$

Temos encontrado 2 soluções com movimento sinusoidal simples

Correspondem a certos condições iniciais

E os outros casos?

Sobreposição dos dois modos normais

Equações do movimento

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$

Substituindo

$$\begin{cases} x_A = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) \\ x_B = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2) \end{cases}$$

Obtêm-se

$$\omega_1 = \sqrt{\frac{k}{m}}$$
 e $\omega_2 = \sqrt{\frac{k+2k'}{m}}$

Qualquer sobreposição dos dois modos normais é solução válida.

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$

$$x_{Aeq} = 1.0 \text{ m } x_{Aeq} = 1.2 \text{ m}$$

Condições iniciais:

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq}$
 $v_{Ax0} = v_{Bx0} = 0$

Movimento não periódico

É uma sobreposição dos modos normais?

$$\begin{cases} x_A = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) \\ x_B = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2) \end{cases}$$
?

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq}$
 $v_{Ax0} = v_{Bx0} = 0$

Proposta de solução:

$$\begin{cases} x_A = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) \\ x_B = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2) \\ v_{xA} = -\omega_1 A_1 \sin(\omega_1 t + \phi_1) - \omega_2 A_2 \sin(\omega_2 t + \phi_2) \\ v_{xB} = -\omega_1 A_1 \sin(\omega_1 t + \phi_1) + \omega_2 A_2 \sin(\omega_2 t + \phi_2) \end{cases}$$

$$\operatorname{Com} \omega_1 = \sqrt{\frac{k}{m}} \quad \operatorname{e} \quad \omega_2 = \sqrt{\frac{k + 2k\prime}{m}}$$

Encontrar valores para as amplitudes e as fases: A_1 , A_2 , ϕ_1 e ϕ_2

para
$$\mathbf{t} = \mathbf{0}$$

$$\begin{cases} x_{eqA} + 0.05 = x_{eqA} + A_1 \cos(\phi_1) + A_2 \cos(\phi_2) \\ x_{eqB} = x_{eqB} + A_1 \cos(\phi_1) - A_2 \cos(\phi_2) \\ 0 = -\omega_1 A_1 \sin(\phi_1) - \omega_2 A_2 \sin(\phi_2) \\ 0 = -\omega_1 A_1 \sin(\phi_1) + \omega_2 A_2 \sin(\phi_2) \end{cases}$$

4 equações a 4 incógnitas.

$$\phi_1 = \phi_2 = 0$$
 e $A_1 = A_2 = 0.025$ m

Obedece as equações de movimento, e concorda com as condições iniciais ⇒ deve ser a solução

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$

$$x_{Aeq} = 1.0 \text{ m } x_{Aeq} = 1.2 \text{ m}$$

Solução geral:

$$\begin{cases} x_A = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) \\ x_B = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2) \end{cases}$$

$$\operatorname{Com} \omega_1 = \sqrt{\frac{k}{m}} \quad \text{e} \quad \omega_2 = \sqrt{\frac{k + 2k'}{m}}$$

 A_1,A_2,ϕ_1 e ϕ_2 encontrados das condições iniciais

Ex.
$$\phi_1 = \phi_2 = 0$$
 e $A_1 = A_2 = 0.025$ m

Qualquer movimento de 2 corpos acoplados por interação elástica é uma sobreposição de MODOS NORMAIS

Movimento (aparentemente) não periódico é sobreposição de 2 movimentos harmónicos de frequências diferentes

https://www.youtube.com/watch?v=YyOUJUOUvso

MSF 2025 - T6 18

Acoplamento Fraco

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq}))$

$$x_{Aeq} = 1.0 \text{ m } x_{Aeq} = 1.2 \text{ m}$$

$$k = 1\frac{N}{m}$$
; $k' = 0.2\frac{N}{m}$; $m = 1 \text{ kg}$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq}$
 $v_{Ax0} = v_{Bx0} = 0$

$$\phi_1 = \phi_2 = 0$$
 e $A_1 = A_2 = 0.025$ m

Parece uma oscilação rápida dentro de uma oscilação lenta

Acoplamento Fraco

$$k = 1\frac{N}{m}$$
; $k' = 0.2\frac{N}{m}$; $m = 1 \text{ kg}$

$$\omega_1 = \sqrt{\frac{k}{m}} = 1 \text{rad/s}$$
 e $\omega_2 = \sqrt{\frac{k+2k'}{m}} = 1.18 \text{rad/s}$

Podemos escrever a solução analítica como um produto de cossenos

$$x_A = x_{eqA} + A_1 \cos(\omega_1 t) + A_1 \cos(\omega_2 t)$$

= $x_{eqA} + 2A_1 \cos(\omega_{rap.} t) \cos(\omega_{lent.} t)$

$$x_B = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2)$$
$$= x_{eqA} + 2A_1 \sin(\omega_{rap.} t) \sin(\omega_{lent.} t)$$

$$\omega_{rap.}=\frac{\omega_1+\omega_2}{2}=$$
 1.09rad/s e $\omega_{lent.}=\frac{\omega_2-\omega_1}{2}=$ 0.09rad/s

Este fenómeno chama se

BATIMENTO

Note a energia transfere de um oscilador ao outro alternadamente

Osciladores Acoplados e Amortecidos

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq})) - bv_{Ax}$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq})) - bv_{Bx}$

$$k = 1 \frac{N}{m}; k' = 0.5 \frac{N}{m}; m = 1 \text{ kg}$$

 $b = 0.05$

$$x_{Aeq} = 1.0 \text{ m } x_{Aeq} = 1.2 \text{ m}$$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq}$
 $v_{Ax0} = v_{Bx0} = 0$

Ambos os osciladores tendem para a sua posição de equilíbrio

Osciladores Acoplados Amortecidos e Forçado no corpo A

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' ((x_A - x_{Aeq}) - (x_B - x_{Beq})) - bv_{Ax} + F_0 \cos(\omega_f t)$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k (x_B - x_{Beq}) + k' ((x_A - x_{Aeq}) - (x_B - x_{Beq})) - bv_{Bx}$

$$k = 1 \frac{N}{m}$$
; $k' = 0.5 \frac{N}{m}$; $m = 1 \text{ kg}$
 $b = 0.05 \text{ kg/s}$
 $F_0 = 0.005 N$; $\omega_f = 1 \text{ rad/s}$

$$x_{Aeq} = 1.0 \text{ m } x_{Beq} = 1.2 \text{ m}$$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq} + 0.05 \text{ m}$
 $v_{Ax0} = v_{Bx0} = 0$

Cada oscilador tende para um regime estacionário Harmónico simples (?)

Podemos calcular a amplitude e a frequência

Osciladores Acoplados Amortecidos e Forçado no corpo A

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k \left(x_A - x_{Aeq} \right) - k' \left(\left(x_A - x_{Aeq} \right) - \left(x_B - x_{Beq} \right) \right) - b v_{Ax} + F_0 \cos(\omega_f t)$$
Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k \left(x_B - x_{Beq} \right) + k' \left(\left(x_A - x_{Aeq} \right) - \left(x_B - x_{Beq} \right) \right) - b v_{Bx}$

Ressonância nos dois corpos na frequência dos modos normais (como no caso de um oscilador)

$$\omega_1=\sqrt{\frac{k}{m}}=1 \text{ rad/s e } \omega_2=\sqrt{\frac{k+2k'}{m}}=1.414 \text{ rad/s}$$

Analise de frequências

A série de Fourier decompõe uma função periódica f(t), de período T ou frequência angular $\omega = 2\pi/T$,

numa soma de funções sinusoidais de frequência angular múltipla de ω ($\omega_n=n\omega$)

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \{a_n \cos \omega_n t + b_n \sin \omega_n t\}$$

Os coeficientes de Fourier são expressos por

$$a_n = \frac{2}{T} \int_0^T f(t) \cos \omega_n t \, dt$$
 $n = 0, 1, 2, ...$ $b_n = \frac{2}{T} \int_0^T f(t) \sin \omega_n t \, dt$ $n = 1, 2, 3, ...$

Joseph Fourier 1768-1830

1.00 0.75 0.50 0.25 -0.25-0.50-0.75-1.00Fourier n =1 Fourier n =5 Fourier n =11 Fourier n =41

Ex.: Onda quadrada

Os coeficientes a e b são

$$\begin{cases} a_n = 0 \\ b_n = \frac{2[(-1)^n - 1]}{n\pi} \end{cases}$$

$$n = 0,1,2,3,...$$

Ex.: 2 Osciladores Acoplados

Modo normal 1

$$\omega_1 = 1 \text{ rad/s}$$

Vamos calcular os coeficientes de Fourier

$$a_n = \frac{2}{T} \int_0^T f(t) \cos \omega_n t \, dt \qquad n = 0, 1, 2, \dots$$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin \omega_n t \, dt \qquad n = 1, 2, 3, \dots$$

$$\omega_n = n\omega = n \frac{2\pi}{T}$$

Mas a função está expressa por pontos!

⇒ Integração numérica usando a aproximação trapezoidal

Cálculo numérico dos coeficientes de Fourier

Calcula os integrais

$$a_n = \frac{2}{T} \int_0^T f(t) \cos \omega_n t \, dt \qquad n = 0, 1, 2, \dots$$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin \omega_n t \, dt \qquad n = 1, 2, 3, \dots$$

pela aproximação trapezoidal.

Input:

dados numéricos **tp** e **xp** (valores de x em momentos t)

it0 e it1

indices de tempo do inicio e do fim do período de analizar:

$$T = tp[it1]-tp[it0]$$

nf

número do coeficiente a calcular

$$\omega_n = n\omega$$

$$\omega = \frac{2\pi}{T}$$

```
def abfourier(tp,xp,it0,it1,nf):
# cálculo dos coeficientes de Fourier a nf e b nf
     a nf = 2/T integral (xp cos(nf w)) dt entre tp(it0) e tp(it1)
    b nf = 2/T integral (xp sin( nf w) ) dt entre tp(it0) e tp(it1)
# integracao numerica pela aproximação trapezoidal
# input: matrizes tempo tp (abcissas)
          posição xp (ordenadas)
     indices inicial it0
         final it1 (ao fim de um período)
    nf índice de Fourier
# output: af bfe bf nf
  dt=tp[1]-tp[0]
  per=tp[it1]-tp[it0]
  ome=2*np.pi/per
  s1=xp[it0]*np.cos(nf*ome*tp[it0])
  s2=xp[it1]*np.cos(nf*ome*tp[it1])
  st=xp[it0+1:it1]*np.cos(nf*ome*tp[it0+1:it1])
  soma=np.sum(st)
  q1=xp[it0]*np.sin(nf*ome*tp[it0])
  q2=xp[it1]*np.sin(nf*ome*tp[it1])
  qt=xp[it0+1:it1]*np.sin(nf*ome*tp[it0+1:it1])
  somq=np.sum(qt)
  intega=((s1+s2)/2+soma)*dt
  af=2/per*intega
  integq=((q1+q2)/2+somq)*dt
  bf=2/per*integq
  return af,bf
```

Ex.: 2 Osciladores Acoplados

Modo normal 1

$$\omega_1 = 1 \text{ rad/s}$$

$$T = 100 \, s$$
 $\omega_n = n\omega = n \frac{2\pi}{T}$

Vamos calcular os coeficientes de Fourier

$$a_n = \frac{2}{T} \int_0^T f(t) \cos \omega_n t \, dt \qquad n = 0, 1, 2, \dots$$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin \omega_n t \, dt \qquad n = 1, 2, 3, \dots$$

Ex.: 2 Osciladores Acoplados

Modo normal 2 $\omega_2 = 1.414 \text{ rad/s}$

$$T = 100 \text{ s}$$
 $\omega_n = n\omega = n \frac{2\pi}{T}$

Vamos calcular os coeficientes de Fourier

$$a_n = \frac{2}{T} \int_0^T f(t) \cos \omega_n t \, dt \qquad n = 0, 1, 2, \dots$$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin \omega_n t \, dt \qquad n = 1, 2, 3, \dots$$

Ex.: 2 Osciladores Acoplados

Condições iniciais gerais

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

$$x_{B0} = x_{Beq}$$

picos em $\omega_n \approx 1 \text{ rad/s}$ e $\omega_n \approx 1.41 \text{ rad/s}$

Confirma que é uma sobreposição dos 2 modos normais

Vamos calcular os coeficientes de Fourier

$$a_n = \frac{2}{T} \int_0^T f(t) \cos \omega_n t \, dt \qquad n = 0, 1, 2, \dots$$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin \omega_n t \, dt \qquad n = 1, 2, 3, \dots$$

Ex.: Oscilador Quártico Não Harmónico Forçado

$$E_p = \alpha x^4$$

 $x(t = 0) = 3.0000 \text{ m}$
 $v_x(t = 0) = 0$
 $k = 1 \text{ N/m}$;

$$m=1$$
 kg; $\omega_0=\sqrt{\frac{k}{m}}=1$ rad/s

$$b = 0.05 \, \text{kg/s}$$

$$\alpha = 0.25 \, \text{m}^{-2}$$

$$F_0 = 7.5 N$$

 $\omega_f = 1 \text{ rad/s}$

Vamos calcular os coeficientes de Fourier

$$a_n = \frac{2}{T} \int_0^T f(t) \cos \omega_n t \, dt \qquad n = 0, 1, 2, \dots$$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin \omega_n t \, dt \qquad n = 1, 2, 3, \dots$$

Não tem frequência carateristica

Problema: 2 osciladores acoplados

Num sistema de 2 corpos, A e B, ligados entre duas paredes por três molas, de constantes elástica k, k' e k, a solução geral do movimento é dado por

$$x_A = x_{eqA} + A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2)$$

$$x_B = x_{eqB} + A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2)$$

em que x_{Aeq} e x_{Beq} são as posições de equilíbrio dos corpos A e B, respetivamente, e em que

$$\omega_1 = \sqrt{\frac{k}{m}}$$
 e $\omega_2 = \sqrt{\frac{k+2k'}{m}}$

Encontre os valores de A_1 , A_2 , ϕ_1 e ϕ_2 , sabendo que no instante inicial

$$x_{A0} = x_{Aeq},$$

 $x_{B0} = x_{Beq},$
 $v_{A0} = 1 \text{m/s}$
 $v_{B0} = -1 \text{m/s}$

Dados:
$$k = 2\frac{N}{m}$$
; $k' = 1\frac{N}{m}$; $m = 1$ kg, $x_{Aeq} = 1.0$ m e $x_{Beq} = 1.2$ m

R:
$$A_1 = 0, A_2 = \frac{1}{2} e \phi_2 = -\frac{\pi}{2}$$

ou $A_1 = 0, A_2 = -\frac{1}{2} e \phi_2 = \frac{\pi}{2} (\phi_1 \text{ qualquar}).$

3 Osciladors Harmónicos Acoplados

Vamos tentar encontrar a lei do movimento dos 3 corpos segundo o eixo OX – oscilações longitudinais

- 1. Que forças estão aplicadas a cada corpo?
- 2. Equação do movimento
- 3. Solução Numérica

3 Osciladors Harmónicos Acoplados

Vamos tentar encontrar a lei do movimento dos 3 corpos segundo o eixo OX – oscilações longitudinais

Força aplicada ao corpo B:

$$F_{Bx} = -k'[(x_B - x_{Beq}) - (x_A - x_{Aeq})] - k'[(x_B - x_{Beq}) - (x_C - x_{Ceq})]$$

e semelhante para corpos A e C

3 Osciladores Harmónicos Acoplados

Vamos tentar encontrar a lei do movimento dos 3 corpos segundo o eixo OX – oscilações longitudinais

Equação dinâmica de Newton para cada corpo

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' [(x_A - x_{Aeq}) - (x_B - x_{Beq})]$$

Corpo B
$$m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k' [(x_B - x_{Beq}) - (x_A - x_{Aeq})] - k' [(x_B - x_{Beq}) - (x_C - x_{Ceq})]$$

Corpo C
$$m \frac{d^2 x_C}{dt^2} = F_{Cx} = -k (x_C - x_{Ceq}) - k' [(x_C - x_{Ceq}) - (x_B - x_{Beq})]$$

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' [(x_A - x_{Aeq}) - (x_B - x_{Beq})]$$

Corpo B
$$m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k' [(x_B - x_{Beq}) - (x_A - x_{Aeq})] - k' [(x_B - x_{Beq}) - (x_C - x_{Ceq})]$$

Corpo C
$$m \frac{d^2 x_C}{dt^2} = F_{Cx} = -k (x_C - x_{Ceq}) - k' [(x_C - x_{Ceq}) - (x_B - x_{Beq})]$$

Resolvidas pelo Método de Euler-Cromer:

$$k = 1\frac{N}{m}$$
; $k' = 0.5\frac{N}{m}$; $m = 1 \text{ kg}$

$$x_{Aeq} = 1.0 \text{ m} \ x_{Beq} = 1.2 \text{ m} \ x_{Ceq} = 1.4 \text{ m}$$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

$$x_{B0} = x_{Beq} \quad x_{C0} = x_{Ceq}$$

$$v_{Ax0} = v_{Bx0} = v_{Cx0} = 0$$

3 Osciladores Harmónicos Acoplados xa0=xaeq+0.05 m xb0=xbeq, xc0=xceq

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' [(x_A - x_{Aeq}) - (x_B - x_{Beq})]$$

Corpo B
$$m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k' [(x_B - x_{Beq}) - (x_A - x_{Aeq})] - k' [(x_B - x_{Beq}) - (x_C - x_{Ceq})]$$

Corpo C
$$m \frac{d^2 x_C}{dt^2} = F_{Cx} = -k (x_C - x_{Ceq}) - k' [(x_C - x_{Ceq}) - (x_B - x_{Beq})]$$

Movimento de cada corpo parece periódico

É uma sobreposição de modos normais?

ou seja

Estas equações admitem soluções sinusoidais?

3 Osciladores Harmónicos Acoplados xa0=xaeq+0.05 m xb0=xbeq, xc0=xceq

3 Osciladores Harmónicos Acoplados:

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' [(x_A - x_{Aeq}) - (x_B - x_{Beq})]$$

Corpo B
$$m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k' [(x_B - x_{Beq}) - (x_A - x_{Aeq})] - k' [(x_B - x_{Beq}) - (x_C - x_{Ceq})]$$

Corpo C
$$m \frac{d^2 x_C}{dt^2} = F_{Cx} = -k (x_C - x_{Ceq}) - k' [(x_C - x_{Ceq}) - (x_B - x_{Beq})]$$

Estas equações admitem soluções sinusoidais para cada corpo?

Já vimos por tentativa e erro os 2 modos normais no caso de 2 osciladores harmónicos = soluções sinusoidais

Vamos procurar um método geral para encontrar os modos normais

3 Osciladors Harmónicos Acoplados:

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' [(x_A - x_{Aeq}) - (x_B - x_{Beq})]$$

Corpo B
$$m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k' [(x_B - x_{Beq}) - (x_A - x_{Aeq})] - k' [(x_B - x_{Beq}) - (x_C - x_{Ceq})]$$

Corpo C
$$m \frac{d^2 x_C}{dt^2} = F_{Cx} = -k (x_C - x_{Ceq}) - k' [(x_C - x_{Ceq}) - (x_B - x_{Beq})]$$

Transformação das variáveis x para o desvio u à posição de equilíbrio x_{eq}

$$x_{A} - x_{Aeq} = u_{A}$$

$$x_{B} - x_{Beq} = u_{B}$$

$$x_{C} - x_{Ceq} = u_{C}$$

$$m \frac{d^{2}u_{A}}{dt^{2}} = -k u_{A} - k'(u_{A} - u_{B})$$

$$m \frac{d^{2}u_{B}}{dt^{2}} = -k'(u_{B} - u_{A}) - k'(u_{B} - u_{C})$$

$$m \frac{d^{2}u_{CA}}{dt^{2}} = -k u_{C} - k'(u_{C} - u_{B})$$

$$\begin{cases} m \frac{d^2 u_A}{dt^2} = -k u_A - k'(u_A - u_B) \\ m \frac{d^2 u_B}{dt^2} = -k'(u_B - u_A) - k'(u_B - u_C) \\ m \frac{d^2 u_{CA}}{dt^2} = -k u_C - k'(u_C - u_B) \end{cases}$$

Suponha-se que
$$u_i = A_i \cos(\omega t + \alpha)$$

Então
$$\frac{d^2}{dt^2}u_i = -\omega^2 u_i$$

Substituir nas equações:

$$\begin{cases} \frac{k+k'}{m} u_A - \frac{k'}{m} u_B &= \omega^2 u_A \\ -\frac{k'}{m} u_A + \frac{2k'}{m} u_B - \frac{k'}{m} u_C &= \omega^2 u_B \\ -\frac{k'}{m} u_B + \frac{k+k'}{m} u_C &= \omega^2 u_C \end{cases}$$

Sistema homogéneo de 3 equações a 3 incógnitas

Suponha-se que
$$u_i = A_i \cos(\omega t + \alpha)$$

Sistema homogéneo de 3 equações a 3 incógnitas

$$\begin{cases} \frac{k+k'}{m} u_A - \frac{k'}{m} u_B &= \omega^2 u_A \\ -\frac{k'}{m} u_A + \frac{2k'}{m} u_B - \frac{k'}{m} u_C &= \omega^2 u_B \\ -\frac{k'}{m} u_B + \frac{k+k'}{m} u_C &= \omega^2 u_C \end{cases}$$

Pode ser escrito com matrizes:

$$\begin{bmatrix} \left(\frac{k+k'}{m}\right) & -\frac{k'}{m} & 0 \\ -\frac{k'}{m} & \left(\frac{2k'}{m}\right) & -\frac{k'}{m} \\ 0 & -\frac{k'}{m} & \left(\frac{k+k'}{m}\right) \end{bmatrix} \begin{bmatrix} u_A \\ u_B \\ u_C \end{bmatrix} = \omega^2 \begin{bmatrix} u_A \\ u_B \\ u_C \end{bmatrix}$$
Problema de valores e vetores próprios
$$\begin{bmatrix} u_A \\ u_B \\ u_C \end{bmatrix}$$
Matriz x vetor = constante x vetor

Valores próprios correspondem às frequências dos modos normais: ω_i^2 Vetores próprios indiquem o padrão do movimento em cada modo

Problema

a) Encontre os valores e os vetores próprios da matriz

$$\begin{bmatrix} \left(\frac{k+k'}{m}\right) & -\frac{k'}{m} & 0 \\ -\frac{k'}{m} & \left(\frac{2k'}{m}\right) & -\frac{k'}{m} \\ 0 & -\frac{k'}{m} & \left(\frac{k+k'}{m}\right) \end{bmatrix}$$

em que
$$k = 1 \frac{N}{m}$$
; $k' = 0.5 \frac{N}{m}$; $m = 1 \text{ kg}$

- b) Calcule as frequências de vibração (= raiz quadrada do valor próprio)
- c) Verifique que os vetores próprios são ortogonais (produto escalar nulo).

Python:

Problema:

a) Encontre os valores e os vetores próprios da matriz

$$\begin{bmatrix} \left(\frac{k+k'}{m}\right) & -\frac{k'}{m} & 0 \\ -\frac{k'}{m} & \left(\frac{2k'}{m}\right) & -\frac{k'}{m} \\ 0 & -\frac{k'}{m} & \left(\frac{k+k'}{m}\right) \end{bmatrix}$$

em que
$$k = 1 \frac{N}{m}$$
; $k' = 0.5 \frac{N}{m}$; $m = 1 \text{ kg}$

b) Calcule as frequências de vibração (= raiz quadrada do valor próprio)

Solução:

import numpy as np

k = 1

k1 = 0.5

m = 1

matriz da dynamica

a = (k+k1)/m

b = k1/m

matdyn = ((a,-b,0),(-b,2*b,-b),(0,-b,a))

encontrar valores e vetores próprios

I,v = np.linalg.eig(matdyn)

frequências são raizes quadrados dos valores próprios

print(np.round(np.sqrt(I),4))
print(np.round(v,4))

Frequências

[0.7071 1.2247 1.4142]

Vetores próprios

[[0<mark>.4082 -0.7</mark>071 0.5774]

[0.<mark>8165 0. -0</mark>.5774]

[0<mark>.4082 0.70</mark>71 0.5774]]

vetores no vertical

Verificar modos normais

- Escolher condições iniciais de acordo com o vetor próprio
- Observar se há oscilações sinusoidais
- A frequência deve concordar com o valor próprio

Modo Normal Simétrico

frequência: 1.22474487

vetor próprio:

$$k=1 rac{
m N}{
m m}$$
; $k'=0.5 rac{
m N}{
m m}$; $m=1$ kg $x_{Aeq}=1.0$ m $x_{Beq}=1.2$ m $x_{Ceq}=1.4$ m

$$x_{A0} = x_{Aeq} - 0.05 \text{ m}$$

$$x_{B0} = x_{Beq}$$

$$x_{C0} = x_{Ceq} + 0.05 \text{ m}$$

$$v_{Ax0} = v_{Bx0} = v_{Cx0} = 0$$

T=5.130 s e
$$\omega$$
= 1.225 rad/s

(c) Longitudinal normal modes

Modo Normal Asimétrico

frequência: 1.41421356

vetor próprio:

$$k=1\frac{\mathrm{N}}{\mathrm{m}}$$
; $k'=0.5\frac{\mathrm{N}}{\mathrm{m}}$; $m=1\ \mathrm{kg}$ $x_{Aeq}=1.0\ \mathrm{m}$ $x_{Beq}=1.2\ \mathrm{m}$ $x_{Ceq}=1.4\ \mathrm{m}$

$$x_{A0} = x_{Aeq} + 0.05 \text{ m}$$

 $x_{B0} = x_{Beq} - 0.05 \text{m}$
 $x_{C0} = x_{Ceq} + 0.05 \text{m}$

$$v_{Ax0} = v_{Bx0} = v_{Cx0} = 0$$

T= 4.443 s e
$$\omega$$
= 1.414 rad/s

Modo Normal 3

frequência: 0.70710678

vetor próprio:

$$k=1\frac{\mathrm{N}}{\mathrm{m}}$$
; $k'=0.5\frac{\mathrm{N}}{\mathrm{m}}$; $m=1~\mathrm{kg}$ $x_{Aeq}=1.0~\mathrm{m}$ $x_{Beq}=1.2~\mathrm{m}$ $x_{Ceq}=1.4~\mathrm{m}$

$$x_{A0} = x_{Aeq} + 0.04 \text{ m}$$

 $x_{B0} = x_{Beq} + 0.08 \text{ m}$
 $x_{C0} = x_{Ceq} + 0.04 \text{ m}$

$$v_{Ax0}=v_{Bx0}=v_{Cx0}=0$$

T= 8.886 s e
$$\omega$$
= 0.707 rad/s

$$\circ \rightarrow \circ \rightarrow$$

3 Osciladors Harmónicos Acoplados

3 modos normais:

Qualquer movimento de 3 corpos acoplados por interação elástica é uma sobreposição dos 3 MODOS NORMAIS

3 Osciladors Harmónicos Acoplados

https://phet.colorado.edu/sims/html/normal-modes/latest/normal-modes_en.html

Amortecido

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' [(x_A - x_{Aeq}) - (x_B - x_{Beq})] - b v_{Ax}$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k' [(x_B - x_{Beq}) - (x_A - x_{Aeq})] - k' [(x_B - x_{Beq}) - (x_C - x_{Ceq})] - b v_{Bx}$
Corpo C $m \frac{d^2 x_C}{dt^2} = F_{Cx} = -k (x_C - x_{Ceq}) - k' [(x_C - x_{Ceq}) - (x_B - x_{Beq})] - b v_{Cx}$

Resolvidas pelo Método de Euler-Cromer:

$$k=1\frac{N}{m}; k'=0.5\frac{N}{m}; m=1 \text{ kg}$$
 $x_{Aeq}=1.0 \text{ m} \ x_{Beq}=1.2 \text{ m} \ x_{Ceq}=1.4 \text{ m}$
 $x_{A0}=x_{Aeq}+0.05 \text{ m}$
 $x_{B0}=x_{Beq}$
 $x_{C0}=x_{Ceq}$
 $x_{C0}=v_{Bx0}=v_{Cx0}=0$

Cada corpo tende para a posição de equilíbrio, à medida que o tempo aumenta.

Oscilador Harmónico Forçado

Corpo A
$$m \frac{d^2 x_A}{dt^2} = F_{Ax} = -k (x_A - x_{Aeq}) - k' [(x_A - x_{Aeq}) - (x_B - x_{Beq})] - b v_{Ax} + F_0 \cos(\omega_f t)$$

Corpo B $m \frac{d^2 x_B}{dt^2} = F_{Bx} = -k' [(x_B - x_{Beq}) - (x_A - x_{Aeq})] - k' [(x_B - x_{Beq}) - (x_C - x_{Ceq})] - b v_{Bx}$
Corpo C $m \frac{d^2 x_C}{dt^2} = F_{Cx} = -k (x_C - x_{Ceq}) - k' [(x_C - x_{Ceq}) - (x_B - x_{Beq})] - b v_{Cx}$

Resolvidas pelo Método de Euler-Cromer:

$$k=1\frac{\rm N}{\rm m}; k'=0.5\frac{\rm N}{\rm m}; \ m=1\ {
m kg}, b=0.05\ {
m kg/s}$$
 $x_{Aeq}=1.0\ {
m m}\ x_{Beq}=1.2\ {
m m}\ x_{Ceq}=1.4\ {
m m}$ $F_0=0.04\ N$; $\omega_f=1\ {
m rad/s}$ $x_{A0}=x_{Aeq}+0.05\ {
m m}$ $x_{B0}=x_{Beq}$ $x_{C0}=x_{Ceq}$ $x_{C0}=x_{Ceq}$

Cada corpo tende para um regime estacionário de um movimento harmónico simples, de frequência igual à da força exterior: ω

$$\omega_A = \omega_B = \omega_C = 1.000 \text{ rad/s}$$

Oscilador Harmónico Forçado: Amplitude no regime estacionário

Ressonâncias nas frequências $\omega_f=0.703,\ 1.225\ {\rm e}\ 1.409\ {\rm rad/s}.$

São as frequências dos modos normais

Osciladores Acoplados

Modos normais:

- Movimento sinusoidal (coseno ou seno) dos elementos do sistema
- Todos se movem com a <u>mesma frequência angular</u>, mas as amplitudes podem ser diferentes
- O número de modos é igual ao número de elementos do sistema (massas)

Qualquer dinâmica pode ser descrito como uma sobreposição dos modos normais.

A combinação específica é determinada pelas condições iniciais.

Modos Normais e Osciladores Forçados

Ressonância:

Quando são forçados por uma força exterior, apresentam Ressonância quando a frequência da força externa for <u>igual à frequência dos modos normais</u>.

⇒ Por medição pode-se determinar as frequências dos modos normais.

Modos normais são:

- Medidos
- Calculados, ou por modelos ou por equações fundamentais da Física.

São usados no estudo da estrutura da matéria: Moléculas, Cristais, Sólidos, ...

Ex: Materiais:

Experiência:

A matéria em estudo é excitada por luz laser, onda eletromagnética (campo elétrico) Força elétrica= Carga * Campo Elétrico

Excita os núcleos atómicos, porque possuem carga elétrica positiva. Quando a frequência do laser produz ressonância, obtêm-se os modos normais.

Teoria:

Modelos fenomenológicos – parâmetros ajustados aos valores experimentais dos modos normais Primeiros Princípios: Todas as quantidades medidas calculadas pela equação fundamental da Mecânica Quântica.

Modos Normais e Ressonância

carbon

Modos Normais e Ressonância

Excitação por lazer, que mede as frequências de ressonância e as dos modos normais serve para determinar a constituição química dos gases.

Problema: 3 osciladores acoplados

Três massas iguais, A, B e C, com massa m=1 kg são acoplados como ilustrada no diagrama. Os constantes elásticas das molas são todos k=1N/m.

O movimento das massas obedece o seguinte sistema de equações:

$$m \frac{d^{2}u_{A}}{dt^{2}} = -k u_{A} - k(u_{A} - u_{B})$$

$$m \frac{d^{2}u_{B}}{dt^{2}} = -k(u_{B} - u_{A}) - k(u_{B} - u_{C})$$

$$m \frac{d^{2}u_{C}}{dt^{2}} = -k u_{C} - k(u_{C} - u_{B})$$

Onde u_A , u_B , u_C são as posições das massas A, B e C respetivamente, relativo às suas posições de equilíbrio.

Mostre que existe um modo normal com frequência $\omega=\sqrt{2+\sqrt{2}}$ em que, no movimento das massas, sempre $u_A=u_C$ e $u_B=-\sqrt{2}u_A$.

N osciladores acoplados

https://youtu.be/yVkdfJ9PkRQ?si=GIIVUJddC8KMYmgk

N osciladores acoplados

- Massas iguais m
- Posições x_i , i = 1,2,3,...,N
- Ligadas por molas de coeficiente *k*

Equação de Newton:

$$m\frac{d^{2}u_{i}}{dt^{2}} = k(u_{i+1} - u_{i}) - k(u_{i} - u_{i-1})$$
$$= k(u_{i+1} - 2u_{i} + u_{i-1})$$

 $u_i =$ desvio do ponto de equilíbrio

Se fazemos um plot dos desvios iniciais das massas, caem numa curva sinusoidal

Com período inversamente proporcional ao número do modo

A padrão continua para N=4, 5, 6.... corpos

MODOS NORMAIS Longitudinais e Transversais

https://phet.colorado.edu/sims/html/normal-modes/latest/normal-modes_en.html

20 osciladores acoplados: modo normal 16º

Posição das massas num certo momento ("snapshot")

Considere 20 osciladores acoplados de igual massa. O modo normal longitudinal 16º apresenta os seguintes desvios às posições de equilíbrio:

Parece uma função sinusoidal!

O comprimento (período) dessa repetição (de máximo a máximo) é $\lambda = 4.4 - 1.4$ m = 3 m.

Análise Fourier desvios em função da posição (não do tempo)

Período T = 3m

Considere 20 osciladores acoplados de igual massa. O modo normal longitudinal 16º apresenta os seguintes desvios às posições de equilíbrio:

O modo normal 16 usando só o termo de Fourier n=1:

$$u_{16}(x_{eq}) = a_1 \cos\left(\frac{2\pi}{3}x_{eq}\right) + b_1 \sin\left(\frac{2\pi}{3}x_{eq}\right)$$
$$= \sqrt{a_1^2 + b_1^2} \cos\left(\frac{2\pi}{3}x_{eq} - \frac{2\pi}{3}1.4\right)$$

 $u={
m desvio}$ da posição de equilíbrio em função de x_{eq} (posição de equilíbrio de uma massa)

Movimento periódico em tempo

e também periódico em espaço

Onda sinusoidal

N osciladores acoplados num modo normal

Cada oscilador com movimento sinusoidal:

$$u_i = A\cos(\omega t + \phi_i)$$

$$u_i = x_i - x_{i eq.}$$

 ϕ_i varia com a posição $x_{i eq.}$: $\phi_i = -cx_{i eq.}$

c constante

Transmissão de energia, não instantânea

variaveis contínuas:

$$\phi = -cx$$

$$u = A\cos(\omega t - cx)$$
 \Rightarrow Onda sinusoidal

Cada modo normal corresponde a uma onda sinusoidal, que oscila no espaço e no tempo

$$\frac{d^2u}{dt^2} = -\omega^2 u \qquad \qquad \frac{d^2u}{dx^2} = -k^2 u$$

Ondas

Ondas longitudinais

perturbação do meio tem a mesma direção da propagação da onda

Ondas

Ondas transversais

a perturbação do meio é perpendicular à direção de propagação da onda

Características de uma onda

Repetição no tempo

$$T$$

$$f = \frac{1}{T}$$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

Repetição no espaço

λ

 $k=rac{2\pi}{\lambda}$ = número de onda

Velocidade de propagação

$$v = \lambda f$$

Problema: Onda sinusoidal

Uma onda transversal harmónica de frequência 400 Hz propaga-se numa corda com uma amplitude de 5 cm. Dois pontos separados de 5.0 cm estão num determinado instante desfasados de $\pi/6$ rad.

- a) Determine o comprimento de onda.
- b) Calcule o valor da velocidade de propagação.
- c) Determine o valor máximo da velocidade de oscilação transversal

N osciladores acoplados: Movimento Geral

https://phet.colorado.edu/pt/simulations/wave-on-a-string

N osciladores acoplados: Movimento Geral

Movimento em modo *n*

$$u_{i} = A_{n} \cos(\omega_{n} t + \phi_{i,n})$$
$$\phi_{i,n} = -n c x_{i eq}.$$

Em geral, o movimento é uma sobreposição de modos normais:

$$u_i = \sum_{n=1}^{N} A_n \cos(\omega_n t + \phi_{i,n})$$

as poições iniciais têm a forma de uma série de Fourier parcial.

N osciladores acoplados

Propagação de um sinal em N osciladores acoplados

Acoplamentos de osciladores: Transmissão de energia, não instantânea

N osciladores acoplados

Propagação de um sinal em N osciladores acoplados

Acoplamentos de osciladores: Transmissão não instantânea de informação e de energia

Com transmissão de energia, o movimento não é necessáriamente sinusoidal

Número grande de osciladores acoplados,

Posições x_i a distância $\delta x = x_{i+1} - x_i$

Massa $m = M \delta x$

Ligadas por molas de coeficiente $k = K/\delta x$

 $u_i =$ desvio do ponto de equilíbrio Longitudinal ou transversal

(se aumentar o número de osciladores, k deve aumentar e m deve diminuir)

Equação de Newton:

$$m\frac{d^2u_i}{dt^2} = k(u_{i+1} - u_i) - k(u_i - u_{i-1})$$
$$= k(u_{i+1} - 2u_i + u_{i-1})$$

Número grande de osciladores acoplados,

$$m\frac{d^2u_i}{dt^2} = k(u_{i+1} - 2u_i + u_{i-1})$$

Escrever $u_i = u(x_i, t)$, função contínua de variáveis x e t

Expansão de Taylor:

$$\begin{aligned} u_{i+1} &= u_i + \frac{\partial u}{\partial x}\Big|_{u_i} \delta x + \frac{1}{2} \frac{\partial^2 u}{\partial x^2}\Big|_{u_i} \delta x^2 + \sigma(\delta x^3), \qquad u_{i-1} &= u_i - \frac{\partial u}{\partial x}\Big|_{u_i} \delta x + \frac{1}{2} \frac{\partial^2 u}{\partial x^2}\Big|_{u_i} \delta x^2 + \sigma(\delta x^3) \\ &\Rightarrow m \frac{\partial^2 u_i}{\partial t^2} = k \left\{ \left(u_i + \frac{\partial u}{\partial x}\Big|_{u_i} \delta x + \frac{1}{2} \frac{\partial^2 u}{\partial x^2}\Big|_{u_i} \delta x^2 \right) - 2u_i + \left(u_i - \frac{\partial u}{\partial x}\Big|_{u_i} \delta x + \frac{1}{2} \frac{\partial^2 u}{\partial x^2}\Big|_{u_i} \delta x^2 \right) \right\} + \sigma(\delta x^3) \\ &= k \frac{\partial^2 u}{\partial x^2}\Big|_{u_i} \delta x^2 + \sigma(\delta x^3) \end{aligned}$$

$$\lim_{\delta x \to 0} \frac{\partial^2 u}{\partial t^2} = \frac{k}{m} \frac{\partial^2 u}{\partial x^2} \delta x^2 = \frac{K}{M \delta x^2} \frac{\partial^2 u}{\partial x^2} \delta x^2 = \frac{K}{M} \frac{\partial^2 u}{\partial x^2}$$

$$k = K/\delta x$$
 $m = M \delta x$

Equação da onda em 1D

$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$$

$$v^2 = \frac{K}{M}$$

Equação da onda em 1D

$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$$

Equação da onda em 3D

$$\frac{\partial^2 u}{\partial t^2} = v^2 \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right]$$

u(x,t)= desvio da posição de equilíbrio a posição x e tempo t Pode ser longitudinal ou transversal

- Propagação de som
- Ondas no oceano
- Vibração de uma corda
- Ondas eletromagnéticas

• ...

$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$$

Solução geral meio infinito

Ex: corda muita comprida, fluido num tubo, agua num canal...

Condição inicial: u(x, 0) = f(x)

Duas soluções:

 $u_1(x,t) = f(x-vt)$ movimento à direita com velocidade v $u_2(x,t) = f(x+vt)$ movimento à esquerda com velocidade v

mantem-se a forma original da onda.

Sem outras condições, a solução geral é a sobreposição de u_1 e u_2 :

$$u(x,t) = \frac{1}{2} [f(x - vt) + f(x + vt)]$$

$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$$

Principal de sobreposição

Se $u_1(x,t)$ é uma solução, e $u_2(x,t)$ e outra solução, então

$$u_1(x,t) + u_2(x,t)$$

é também uma solução

Ex: 2 pulsos movendo em sentidos apostos:

$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$$

meio finito: corda fixa nas extremidades 0 e L

Condições de fronteira:
$$u(0,t) = 0$$
, $u(L,t) = 0$

Tentar solução da forma $u(x,t) = A \sin(kx) \cos(\omega t)$

$$\Rightarrow \frac{\partial^2 u}{\partial x^2} = -k^2 u, \qquad \frac{\partial^2 u}{\partial t^2} = -\omega^2 u = v^2 \frac{\partial^2 u}{\partial x^2} \qquad \Rightarrow \omega = k v$$

$$u(0,t) = 0,$$
 $u(L,t) = A\sin(kL)\cos(\omega t) = 0$ $\Rightarrow kL = \pi, 2\pi, 3\pi, \dots \Rightarrow k = \frac{n\pi}{L}$

$$u(x,t) = A\sin(\frac{n\pi}{L}x)\cos(\frac{n\pi v}{L}t), \qquad n = 1, 2, 3, \dots$$

Modos normais de vibração

$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$$

corda fixa nas extremidades 0 e L

$$u(x,t) = A\sin(\frac{n\pi}{L}x)\cos(\frac{n\pi v}{L}t),$$

n = 1, 2, 3, ...

Modos normais de vibração

Qualquer movimento da corda é uma sobreposição dos MODOS NORMAIS

Compare: série de Fourier

Problema: Modos normais de uma corda

A vibração de uma corda obedece a equação da onda $\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$

- a) Mostre que a função $u(x,t) = A \sin(\frac{n\pi}{L}x) \cos(\frac{n\pi v}{L}t)$ é solução à equação da onda, e que satisfaz a condição que a corda não pode mexer nas extremidades: u(0,t) = u(L,t) = 0.
- b) Calcule as frequências de vibração (em Hertz) dos primeiros três modos normais (n=1,2,3), se considere L=1m e v=400m/s.

Sinais

Um <u>sinal</u> é uma função que varia em espaço e tempo, usada para transmitir informação

Ex. sinal elétrico ou ótico em telecomunicações, sinal eletromagnético para rádio ou televisão

MSF 2025 - T6 85

Sinais

Função de um sinal f(t) pode ser representado como a sobreposição de funções sinusoidais (modos normais) ou seja, a série de Fourier:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \{a_n \cos \omega_n t + b_n \sin \omega_n t\} \qquad a_n = \frac{2}{T} \int_0^T f(t) \cos \omega_n t \, dt \qquad n = 0, 1, 2, \dots$$
ou
$$b_n = \frac{2}{T} \int_0^T f(t) \sin \omega_n t \, dt \qquad n = 1, 2, 3, \dots$$

$$f(t) = \frac{a_0}{2} + \sum_{n=-\infty}^{\infty} c_n \exp(i\omega_n t) \qquad c_n = \frac{1}{T} \int_0^T f(t) \exp(i\omega_n t) \, dt \qquad n$$

$$= \dots, -2, -1, 0, 1, 2, \dots$$

Os coeficientes (a_n e b_n , ou c_n) podem ser considerados uma função de frequência ω

No limite $T \to \infty$ os valores de ω_n são contínuas: **Transformada de Fourier**

MSF 2025 - T6

Sinais

<u>Um sinal pode ser representado:</u>

no domínio de tempo: f(t) = forma de onda (waveform)

OU no domínio de frequências: $c(\omega)$ = espectro

as duas representações contêm a mesma informação

MSF 2025 - T6

Digitalização de sinais

Para representar perfeitemente um sinal contínua f(t), durante um período T, precisamos de um número infinito de coeficientes de Fourier.

Se os dados foram em tempos discretos, $f(t_i)$ com intervalo $\delta t = t_{i+1} - t_i$, é só preciso um número finito de coeficientes.

Teorema de Nyquist:

Se um sinal não contém frequências maiores do que f , o sinal pode ser completamente determinado com valores medidos em pontos separados por menos do que $\delta t = \frac{\pi}{\omega}$

Se os dados consiste de uma sequência de valores em tempos com intervalo δt , a frequência máxima necessário para representar o sinal é $\omega=\frac{\pi}{\delta t}$.

Digitalização de sinais

Aplicação: Digitalização de sinal áudio

O sistema auditivo humano está limitado a perceber frequências entre 20 Hz e 20 000 Hz.

 $f=20000~Hz\iff$ amostragem com $\delta t=1/40000s$ é suficiente para determinar o sinal dentro dos limites de percepção.

Um sinal audio pode ser digitalizado sem nenhum perda aparente de qualidade

Ex: Audio CD e MP3: 44100 valores por segundo

Digitalização de sinais

Compressão de sinal áudio

Algoritmo MP3 (muito simplificado):

- 1. Amostragem do sinal audio 44100 valores/s, amplitude 16--24bit /canal
- 2. Transformação discreta de Fourier representação no domínio de frequências
- 3. Modelo psicoacústica eliminar soms inaudíveis, redução seletiva de resolução
- 4. Compressão dos dados

Processamento de sinais

Outras aplicações:

Processamento e compressão de video e imagens

Telecommunicações (ex: dados fibra, cellular)

Reconhecimento de fala

Aprendizagém de máquina (ex: feature extraction)

. . .

MSF 2025 - T6