Devoir surveillé 2.

Exercice 1

1°) Calculons:

$$\star u_1 = 2u_0 + 1 = \boxed{3}$$

$$\star u_2 = 2(u_0 + u_1) + 1 = \boxed{9}$$

$$\star u_3 = 2(u_0 + u_1 + u_2) + 1 = 27$$

On conjecture : pour n entier, on a $u_n = 3^n$.

2°) Posons, pour tout $n \in \mathbb{N}$, $P_n : \langle u_n = 3^n \rangle$.

 \star Initialisation

 $u_0 = 1 = 3^0$, donc P_0 est vraie.

★ Hérédité

Soit $n \in \mathbb{N}$ fixé. Supposons P_k vraie pour tout entier k entre 0 et n. Montrons P_{n+1} . On a :

$$u_{n+1} = 2\sum_{k=0}^{n} u_k + 1$$

$$= 2\sum_{k=0}^{n} 3^k + 1 \quad \text{par } P_0, \dots, P_n$$

$$= 2\frac{1 - 3^{n+1}}{1 - 3} + 1 \quad \text{car } 3 \neq 1$$

$$= 2\frac{3^{n+1} - 1}{2} + 1$$

$$= 3^{n+1}$$

d'où P_{n+1} .

★ Conclusion

Pour tout $n \in \mathbb{N}$, $u_n = 3^n$.

3°) Pour tout $n \in \mathbb{N}^*$:

$$u_{n+1} = 2\sum_{k=0}^{n} u_k + 1$$
$$= 2u_n + 2\sum_{k=0}^{n-1} u_k + 1$$
$$= 3u_n$$

Et pour n = 0, on a : $u_1 = 3$ et $u_0 = 1$ donc $u_1 = 3u_0$.

Ainsi, pour tout $n \in \mathbb{N}$, $u_{n+1} = 3u_n$

La suite $(u_n)_{n\in\mathbb{N}}$ est donc géométrique de raison 3, donc pour tout $n\in\mathbb{N}$, $u_n=3^nu_0=\boxed{3^n}$

Exercice 2

1°) a) φ est continue sur \mathbb{R}^+ comme quotient de fonctions continues.

La fonction $x \mapsto 2\sqrt{x}$ est dérivable sur \mathbb{R}_+^* , et $x \mapsto x+1$ est dérivable sur \mathbb{R} donc sur \mathbb{R}_+^* , donc par quotient φ est au moins dérivable sur \mathbb{R}_+^*

Pour tout x > 0,

$$\varphi'(x) = \frac{\frac{2}{2\sqrt{x}}(1+x) - 2\sqrt{x}}{(1+x)^2} = \frac{(1+x) - 2x}{\sqrt{x}(1+x)^2} = \boxed{\frac{1-x}{\sqrt{x}(1+x)^2}}.$$

Étudions la dérivabilité en 0 : pour tout x > 0,

$$\frac{\varphi(x) - \varphi(0)}{x} = \frac{2\sqrt{x}}{x(1+x)} = \frac{2}{\sqrt{x}(1+x)}$$

Ceci tend vers $+\infty$ lorsque x tend vers 0 donc φ n'est pas dérivable en 0

b) Soit $x \in \mathbb{R}_+^*$. $\varphi'(x)$ est du signe de 1 - x d'où :

Justifions la limite de φ en $+\infty$:

$$\forall x > 0, \varphi(x) = \frac{2\sqrt{x}}{x\left(1 + \frac{1}{x}\right)} = \frac{2}{\sqrt{x}\left(1 + \frac{1}{x}\right)} \xrightarrow[x \to +\infty]{} 0.$$

 2°) a) On a $f = Arcsin \circ \varphi$.

D'après l'étude de φ à la question précédente (en particulier d'après son tableau de variations), on a : $\forall x \in \mathbb{R}_+, \varphi(x) \in [0,1]$. Comme le domaine de définition de Arcsin est [-1,1], on en déduit que $f = Arcsin \circ \varphi$ est bien définie sur \mathbb{R}_+

Comme φ et Arcsin sont continues sur leurs intervalles de définitions respectifs,

f est continue sur son domaine de définition \mathbb{R}_+

On a
$$\varphi(0) = 0$$
 donc $f(0) = Arcsin(0) = 0$.

 $\begin{cases} \varphi(x) \underset{x \to +\infty}{\longrightarrow} 0 \\ \operatorname{Arcsin}(X) \underset{X \to 0}{\longrightarrow} \operatorname{Arcsin}(0) = 0 \text{ par continuit\'e de Arcsin en } 0 \end{cases}$ donc, par composition de

b) Commençons par montrer que $\lim_{h\to 0} \frac{\operatorname{Arcsin}(h)}{h} = 1$: Comme $\operatorname{Arcsin}(0) = 0$, on reconnaît la limite du taux d'accroissement de Arcsin en 0. Comme Arcsin est dérivable en 0, cette limite existe et vaut donc $\operatorname{Arcsin}'(0) = \frac{1}{\sqrt{1-0^2}} = \boxed{1}$. Calculons maintenant le taux d'accroissement de f en 0: pour tout x > 0,

$$\frac{f(x) - f(0)}{x} = \frac{\operatorname{Arcsin}(\varphi(x))}{x} = \frac{\operatorname{Arcsin}(\varphi(x))}{\varphi(x)} \frac{\varphi(x)}{x}$$

Or $\lim_{x\to 0} \varphi(x) = 0$, donc par composition de limites, $\lim_{x\to 0} \frac{\operatorname{Arcsin}(\varphi(x))}{\varphi(x)} = 1$.

Pour tout x > 0, $\frac{\varphi(x)}{x} = \frac{2}{(1+x)\sqrt{x}}$; ceci tend vers $+\infty$ lorsque x tend vers 0.

Finalement, on obtient:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = +\infty$$

On en déduit que f n'est pas dérivable en 0, mais que sa courbe représentative admet une tangente verticale au point d'abscisse 0.

c) $\forall x \in \mathbb{R}_+, f(x) = Arcsin(\varphi(x)).$

La fonction φ est dérivable sur \mathbb{R}_+^* . On sait que Arcsin est dérivable seulement sur] -1,1[. D'après les variations de $\varphi: \forall x \in \mathbb{R}_+, \varphi(x) > 0$ et $\varphi(x) = 1 \iff x = 1$.

Par composition, f est dérivable au moins sur $\mathbb{R}_+^* \setminus \{1\}$.

d) Pour tout $\mathbb{R}_+^* \setminus \{1\}$,

$$f'(x) = \varphi'(x) \frac{1}{\sqrt{1 - (\varphi(x))^2}}$$

$$= \frac{1 - x}{\sqrt{x}(1 + x)^2} \frac{1}{\sqrt{1 - \frac{4x}{(1 + x)^2}}}$$

$$= \frac{1 - x}{\sqrt{x}(1 + x)^2} \frac{1}{\sqrt{\frac{1 + x^2 + 2x - 4x}{(1 + x)^2}}}$$

$$= \frac{1 - x}{\sqrt{x}(1 + x)^2} \frac{\sqrt{(1 + x)^2}}{\sqrt{1 + x^2 - 2x}}$$

$$= \frac{1 - x}{\sqrt{x}(1 + x)^2} \frac{(1 + x)}{\sqrt{(1 - x)^2}} \quad \text{car } 1 + x > 0$$

$$= \frac{1 - x}{\sqrt{x}(1 + x)|1 - x|}$$

Pour tout
$$x \in]0,1[]$$
, on a $1-x>0$ donc $f'(x)=\frac{1}{\sqrt{x}(x+1)}=\boxed{\psi(x)}$.
Pour tout $x \in]1,+\infty[]$, on a $1-x<0$ donc $f'(x)=\frac{-1}{\sqrt{x}(x+1)}=\boxed{-\psi(x)}$.

3°) a) La fonction $u: x \mapsto \sqrt{x}$ est définie sur \mathbb{R}_+ et Arctan est définie sur \mathbb{R} .

Donc $g = \operatorname{Arctan} \circ u$ est définie sur \mathbb{R}_+

De plus, g est continue sur \mathbb{R}_+ comme composée de fonctions continues.

Arctan est dérivable sur \mathbb{R} et u est dérivable sur \mathbb{R}_+^* .

Donc par composition, g est dérivable (au moins) sur \mathbb{R}_+^*

Pour tout $x \in \mathbb{R}_+^*$,

$$g'(x) = \frac{1}{2\sqrt{x}} \frac{1}{1 + (\sqrt{x})^2} = \boxed{\frac{1}{2\sqrt{x}(1+x)} = \frac{1}{2}\psi(x)}.$$

b) Ainsi, pour tout $x \in]0,1[$, f'(x) = 2g'(x). Comme]0,1[est un intervalle, il existe une constante réelle C_1 telle que :

$$\forall x \in]0,1[, f(x) = 2g(x) + C_1.$$

Comme f et g sont continues en 0, c'est encore valable en $0: f(0) = 2g(0) + C_1$ i.e. $0 = C_1$. De même, pour tout $x \in]1, +\infty[$, f'(x) = -2g'(x). Comme $]1, +\infty[$ est un intervalle, il existe une constante réelle C_2 telle que :

$$\forall x \in]1, +\infty[, f(x) = -2g(x) + C_2.$$

Comme f et g sont continues en 1, c'est encore valable en 1 : $f(1) = -2g(1) + C_2$ i.e. $Arcsin(1) = -2 Arctan(1) + C_2$ d'où $C_2 = \frac{\pi}{2} + 2\frac{\pi}{4} = \pi$. Ainsi:

$$f(x) = \begin{cases} 2g(x) \text{ si } x \in [0, 1] \\ -2g(x) + \pi \text{ si } x \in [1, +\infty[$$

Exercice 3

Partie 1 : Définition de la fonction th

1°) Les fonctions sh et ch sont définies sur \mathbb{R} et ch ne s'annule pas (on a même, ch $x \geq 1$ pour tout $x \in \mathbb{R}$). Ainsi, th est bien définie sur \mathbb{R} .

 $\forall x \in \mathbb{R}, \operatorname{th}(-x) = \frac{\operatorname{sh}(-x)}{\operatorname{ch}(-x)} = \frac{-\operatorname{sh} x}{\operatorname{ch} x} = -\operatorname{th} x$ par imparité de sh et par parité de ch.

Donc, th est impaire.

 $\mathbf{2}^{\circ})$ th est dérivable sur $\mathbb R$ comme quotient de fonctions dérivables.

$$\forall x \in \mathbb{R}, \text{th}'(x) = \frac{\operatorname{ch}^2 x - \operatorname{sh}^2 x}{\operatorname{ch}^2 x} \operatorname{donc} \left[\operatorname{th}'(x) = \frac{1}{\operatorname{ch}^2 x} = 1 - \operatorname{th}^2 x \right]$$

3°) $\forall x \in \mathbb{R}, \text{th}'(x) = \frac{1}{\text{ch}^2 x} > 0$. Ainsi, th est strictement croissante sur l'intervalle \mathbb{R} .

Calculons les limites de th aux bornes de
$$\mathbb{R}$$
.
th $x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^x (1 - e^{-2x})}{e^x (1 + e^{-2x})} = \frac{1 - e^{-2x}}{1 + e^{-2x}} \text{ donc } \lim_{x \to +\infty} \text{ th } x = 1.$

Par imparité, $\lim_{x \to -\infty} \operatorname{th} x = -1$

Finalement,

x	$-\infty$	$+\infty$
th'(x)	+	
th	-1	1

Partie 2: Un calcul de somme

 $\mathbf{1}^{\circ}$) Soit $x \in \mathbb{R}$.

$$\frac{2 \operatorname{th}(x)}{1 + \operatorname{th}^{2}(x)} = 2 \frac{\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}}{1 + \left(\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\right)^{2}}$$

$$= 2 \times \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \times \frac{(e^{x} + e^{-x})^{2}}{(e^{x} + e^{-x})^{2} + (e^{x} - e^{-x})^{2}}$$

$$= 2 \frac{(e^{x} - e^{-x})(e^{x} + e^{-x})}{e^{2x} + 2 + e^{-2x} + e^{2x} - 2 + e^{-2x}}$$

$$= \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}$$

$$\boxed{\frac{2 \operatorname{th}(x)}{1 + \operatorname{th}^{2}(x)} = \operatorname{th}(2x)}$$

 2°) Soit $k \in \mathbb{N}^*$ et $x \in \mathbb{R}_+^*$.

Par la question précédente, pour tout $u \in \mathbb{R}$, $\operatorname{th}(2u) = \frac{2 \operatorname{th} u}{1 + \operatorname{th}^2 u}$.

Si $u \neq 0$ alors $\operatorname{th}(2u) \neq 0$ et $1 + \operatorname{th}^2 u = \frac{2 \operatorname{th}(u)}{\operatorname{th}(2u)}$.

En posant $u = \frac{x}{2^k}$ on obtient, puisque $u \neq 0$, $1 + \text{th}^2\left(\frac{x}{2^k}\right) = \frac{2 \text{th}\left(\frac{x}{2^k}\right)}{\text{th}\left(\frac{x}{2^{k-1}}\right)}$.

Donc,
$$a = \frac{x}{2^k}$$
 et $b = \frac{x}{2^{k-1}}$ conviennent.

3°) Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}_+^*$.

$$S_n(x) = \sum_{k=1}^n \ln\left(2\frac{\operatorname{th}\left(\frac{x}{2^k}\right)}{\operatorname{th}\left(\frac{x}{2^{k-1}}\right)}\right)$$

$$= \sum_{k=1}^n \left(\ln 2 + \ln\left(\operatorname{th}\left(\frac{x}{2^k}\right)\right) - \ln\left(\operatorname{th}\left(\frac{x}{2^{k-1}}\right)\right)\right)$$

$$= \sum_{k=1}^n \ln 2 + \sum_{k=1}^n \ln\left(\operatorname{th}\left(\frac{x}{2^k}\right)\right) - \sum_{k=1}^n \ln\left(\operatorname{th}\left(\frac{x}{2^{k-1}}\right)\right)$$

$$S_n(x) = n \ln 2 + \ln\left(\operatorname{th}\left(\frac{x}{2^n}\right)\right) - \ln(\operatorname{th}x)$$
par téléscopage

Remarque: Comme le résultat était donné, on pouvait aussi faire un récurrence.

 $\mathbf{4}^{\circ}) \ \mathbf{a)} \ \operatorname{Soit} \ t \in \mathbb{R}^*, \frac{\operatorname{th} t}{t} = \frac{\operatorname{th} t - \operatorname{th} 0}{t - 0}.$

On reconnaît le taux d'accroissement de la fonction th en 0.

Comme th est dérivable en 0 et th'(0) = $1 - \text{th}^2(0) = 1$, on en déduit que $\lim_{t\to 0} \frac{\text{th } t}{t} = 1$

b) Soit x > 0 fixé. Soit $n \in \mathbb{N}^*$.

$$S_n(x) = \ln(2^n) + \ln\left(\operatorname{th}\left(\frac{x}{2^n}\right)\right) - \ln(\operatorname{th}x)$$

$$= \ln\left(2^n \operatorname{th}\left(\frac{x}{2^n}\right)\right) - \ln(\operatorname{th}x)$$

$$= \ln\left(\frac{\operatorname{th}\left(\frac{x}{2^n}\right)}{\frac{x}{2^n}} \times x\right) - \ln(\operatorname{th}x)$$

$$\begin{cases} \frac{x}{2^n} \underset{n \to +\infty}{\longrightarrow} 0 \\ \frac{\operatorname{th} t}{t} \underset{t \to 0}{\longrightarrow} 1 \end{cases} \text{ donc, par composition de limites } \frac{\operatorname{th} \left(\frac{x}{2^n}\right)}{\frac{x}{2^n}} \underset{n \to +\infty}{\longrightarrow} 1. \text{ Finalement, par produit, composition et somme, il vient : } \boxed{S_n \underset{n \to +\infty}{\longrightarrow} \ln(x) - \ln(\operatorname{th} x) = \ln\left(\frac{x}{\operatorname{th} x}\right)}.$$

Exercice 4

 $\mathbf{1}^{\circ}$) Soit $k \in \mathbb{N}$.

Si k est pair, $k = 2\ell$ avec $\ell \in \mathbb{N}$, et $i^k = (i^2)^\ell = (-1)^\ell$.

Si
$$k$$
 est impair, $k = 2\ell + 1$ avec $\ell \in \mathbb{N}$, et $i^k = i^{2\ell}i = (-1)^{\ell}i$.

On résume :
$$\begin{cases} i^k = (-1)^{\frac{k}{2}} \text{ si } k \text{ est pair} \\ i^k = (-1)^{\frac{k-1}{2}} \text{ si } k \text{ est impair} \end{cases}$$
.

 2°) Soit $m \in \mathbb{N}$.

Si m est pair, m s'écrit : $m = 2\ell$ où $\ell \in \mathbb{N}$. Alors $\cos(m\pi) = \cos(2\ell\pi) = 1 = (-1)^m$.

Si m est impair, m s'écrit $m=2\ell+1$ où $\ell\in\mathbb{N}$. Alors $\cos(m\pi)=\cos(2\ell\pi+\pi)=-1=(-1)^m$.

Ainsi, pour tout $m \in \mathbb{N}$, $\cos(m\pi) = (-1)^m$

 3°) Soit $\theta \in \mathbb{R}$.

$$1 + e^{i2\theta} = e^{i\theta} \left(e^{-i\theta} + e^{i\theta} \right)$$
$$1 + e^{i2\theta} = e^{i\theta} 2\cos(\theta)$$

4°) Soit $\theta \in \mathbb{R}$. Soit $\in \mathbb{N}^*$.

$$A_n(\theta) = \sum_{k=0}^n \binom{n}{k} \left(e^{i2\theta}\right)^k 1^{n-k}$$

$$A_n(\theta) = \left(e^{i2\theta} + 1\right)^n \quad \text{par la formule du binôme}$$

$$= \left(e^{i\theta} 2\cos(\theta)\right)^n$$

$$= e^{in\theta} 2^n \left(\cos(\theta)\right)^n$$

Ainsi, comme $2^n (\cos(\theta))^n$ est un réel et que $\operatorname{Re}(e^{in\theta}) = \cos(n\theta)$, on a $\operatorname{Re}(A_n(\theta)) = 2^n (\cos(\theta))^n \cos(n\theta)$ 5°)

$$\operatorname{Re}\left(A_{2p}\left(\frac{\pi}{4}\right)\right) = \left(2\cos\left(\frac{\pi}{4}\right)\right)^{2p}\cos\left(2p\frac{\pi}{4}\right)$$
$$= \left(2\frac{\sqrt{2}}{2}\right)^{2p}\cos\left(p\frac{\pi}{2}\right)$$
$$= \sqrt{2}^{2p}\cos\left(p\frac{\pi}{2}\right)$$
$$= 2^{p}\cos\left(p\frac{\pi}{2}\right)$$

Si p est impair, il s'écrit p=2m+1 avec $m\in\mathbb{N}$, et $\cos\left(p\frac{\pi}{2}\right)=\cos\left(m\pi+\frac{\pi}{2}\right)=0$. On a donc $\operatorname{Re}\left(A_{2p}\left(\frac{\pi}{4}\right)\right) = 0.$

Si p est pair, , il s'écrit p=2m avec $m \in \mathbb{N}$, et $\cos\left(p\frac{\pi}{2}\right)=\cos\left(m\pi\right)=(-1)^m$. On a donc $\operatorname{Re}\left(A_{2p}\left(\frac{\pi}{4}\right)\right)=(-1)^m2^p=(-1)^{\frac{p}{2}}2^p$.

On résume :
$$\begin{cases}
\operatorname{Re}\left(A_{2p}\left(\frac{\pi}{4}\right)\right) = 0 & \text{si } p \text{ est impair} \\
\operatorname{Re}\left(A_{2p}\left(\frac{\pi}{4}\right)\right) = (-1)^{\frac{p}{2}}2^{p} & \text{si } p \text{ est pair}
\end{cases}.$$

6°) Or, par ailleurs,

$$A_{2p}\left(\frac{\pi}{4}\right) = \sum_{k=0}^{2p} {2p \choose k} e^{ik\frac{\pi}{2}} = \sum_{k=0}^{2p} {2p \choose k} \left(e^{i\frac{\pi}{2}}\right)^k = \sum_{k=0}^{2p} {2p \choose k} i^k$$

Or on sait que i^k est imaginaire pur si k est impair, et réel si k est pair. Donc

$$\operatorname{Re}\left(A_{2p}\left(\frac{\pi}{4}\right)\right) = \sum_{\ell=0}^{p} \binom{2p}{2\ell} i^{2\ell} = \sum_{\ell=0}^{p} \binom{2p}{2\ell} (-1)^{\ell} = S_p$$

Finalement, $S_p = (-1)^{\frac{p}{2}} 2^p$ si p est pair et $S_p = 0$ si p est impair.

Exercice 5

- 1°) f est définie sur \mathbb{R} comme somme et composée de fonctions définies sur \mathbb{R} . f est dérivable sur \mathbb{R} comme somme et composée de fonctions dérivables sur \mathbb{R} . Soit $x \in \mathbb{R}$, $f'(x) = \frac{1}{1+(x-3)^2} + \frac{1}{1+x^2} + \frac{1}{1+(x+3)^2} > 0$. f est donc strictement croissante sur l'intervalle \mathbb{R} .
- 2°) f est continue sur \mathbb{R} , strictement croissante sur \mathbb{R} , et \mathbb{R} est un intervalle.

$$\lim_{x \to +\infty} f(x) = +\frac{3\pi}{2}, \quad \lim_{x \to -\infty} f(x) = -\frac{3\pi}{2},$$

donc f réalise une bijection de $\mathbb R$ dans $\left] -\frac{3\pi}{2}, \frac{3\pi}{2} \right[$.

Or, $\frac{5\pi}{4} \in \left] -\frac{3\pi}{2}, \frac{3\pi}{2} \right[$, donc $\frac{5\pi}{4}$ admet un unique antécédent x_0 par f.

Autrement dit (*) possède une unique solution $x_0 \in \mathbb{R}$.

- 3°) Calculons $f(4) = \operatorname{Arctan}(1) + \operatorname{Arctan}(4) + \operatorname{Arctan}(7) = \frac{\pi}{4} + \operatorname{Arctan}(4) + \operatorname{Arctan}(7)$. Comme $\operatorname{Arctan}(4) < \frac{\pi}{2}$ et $\operatorname{Arctan}(7) < \frac{\pi}{2}$, on en tire que $f(4) < \frac{\pi}{4} + \frac{\pi}{2} + \frac{\pi}{2} = \frac{5\pi}{4}$. Ainsi, $f(4) < f(x_0)$. Si on avait $4 \ge x_0$, par croissance de f, on aurait $f(4) \ge f(x_0)$: absurde. Donc $4 < x_0$.
- 4°) Comme 1 < 2 et que Arctan est strictement croissante, $\frac{\pi}{4} = \operatorname{Arctan}(1) < \operatorname{Arctan}(2)$. On a aussi $\operatorname{Arctan}(2) < \frac{\pi}{2}$ puisque Arctan est à valeurs dans $\left] \frac{\pi}{2}, \frac{\pi}{2} \right[$. De même, $\frac{\pi}{4} < \operatorname{Arctan}(5) < \frac{\pi}{2}$, donc par somme $\frac{\pi}{2} < \theta < \pi$. Donc $\tan(\theta)$ est bien défini. Calculons :

$$\tan(\theta) = \tan(\operatorname{Arctan}(2) + \operatorname{Arctan}(5)) = \frac{\tan(\operatorname{Arctan}(2)) + \tan(\operatorname{Arctan}(5))}{1 - \tan(\operatorname{Arctan}(2)) \tan(\operatorname{Arctan}(5))}$$
$$= \frac{2 + 5}{1 - 2 \times 5}$$
$$\tan(\theta) = -\frac{7}{9}$$

5°) $f(5) = \operatorname{Arctan}(2) + \operatorname{Arctan}(5) + \operatorname{Arctan}(8) = \theta + \operatorname{Arctan}(8)$. Or, de même qu'à la question précédente, on a $\frac{\pi}{4} < \operatorname{Arctan}(8) < \frac{\pi}{2}$, et on a vu que $\frac{\pi}{2} < \theta < \pi$, ce qui donne $\frac{3\pi}{4} < f(5) < \frac{3\pi}{2}$. Ainsi $\tan(f(5))$ existe, et :

$$\tan(f(5)) = \tan(\theta + \arctan(8)) = \frac{\tan(\theta) + \tan(\arctan(8))}{1 - \tan(\theta) \tan(\arctan(8))}$$

$$= \frac{-\frac{7}{9} + 8}{1 + \frac{7}{9} \times 8}$$

$$= \frac{\frac{-7 + 72}{9}}{\frac{9 + 56}{9}}$$

$$= \frac{-7 + 72}{9 + 56}$$

$$= \frac{65}{65}$$

$$\tan(f(5)) = 1$$

Ainsi, $\tan(f(5)) = \tan\left(\frac{\pi}{4}\right)$. On en tire que $\exists k \in \mathbb{Z}, \ f(5) = \frac{\pi}{4} + k\pi$. Comme $f(5) \in \left[\frac{3\pi}{4}, \frac{3\pi}{2}\right]$, la seule possibilité est $f(5) = \frac{\pi}{4} + \pi = \frac{5\pi}{4}$.

Par unicité de la solution de (*), on en tire que $x_0 = 5$.