1 Convolutional neural networks (CNN) für Graphen

1.1 Einleitung

• Anwendungsfälle:

- 1. Aus einer Menge von Graphen soll eine Funktion für Klassifizierungs- oder Regressionsprobleme gelernt werden, die auf nicht bekannte Graphen angewendet werden kann
- 2. lerne Graph-Repräsentationen, um auf Graph-Eigenschaften (fehlende Kanten, Knoteneigenschaften) unbekannter Graphen zu schließen

• Graphrepräsentation:

- Graphen können gerichtet oder ungerichtet sein
- Graphen können zyklisch sein
- Graphen können mehrere unterschiedliche Kantentypen besitzen (mehrere Perceptive-Field-Layer)
- Graphen können mehrere diskrete oder kontinuierliche Werte an ihren Knoten haben
- Methode berechnet lokal verbundene Nachbarschaften der Graphen und benutzt sie als die Receptive Fields des CNN
- die Methode kann für Graphen mit gewichteten Kanten erweitert werden

• <u>Idee</u>: repräsentiere Bilder als Graph

- ein Bild kann als Graph repräsentiert werden, indem die Knoten jeweils einen Pixel repräsentieren und es eine Kante zwischen zwei Knoten gibt, wenn deren Pixel benachbart sind
- die lokale Nachbarschaft eines Pixels wird repräsentiert als ein Quadrat um den Punkt (hier 3×3)
- Aus der Nachbarschaft kann ein Merkmal ermittelt werden
- üblicherweise gibt es keine räumliche Anordnung einer Graph-Repräsentation

• Probleme:

- 1. Welche Nachbarschaften um welche Knoten und in welcher Reihenfolge bilden die Receptive Fiels?
- 2. Wie können die einzelnen Nachbarschafts-Graphen in einem Vektor repräsentiert werden (Normalisierung)?

• Verfahren:

- 1. bestimme eine Knoten-Auswahl inklusive Reihenfolge
- 2. bestimme den Nachbarschafts-Graphen um diesen Knoten mit genau k Knoten
- 3. normalisiere die Nachbarschafts-Graphen
- 4. füttere sie in ein CNN

1.2 Grundlagen

- Graph G = (V, E) mit $V = \{v_1, \dots, v_n\}$ und $E \subseteq V \times V$, wobei n Anzahl der Knoten und m Anzahl der Kanten
- Adjazenzmatrix A mit Größe $n \times n$, wobei $A_{i,j} = 1$, falls eine Kante von v_i nach v_j existiert (sonst 0) $\Rightarrow v_i$ und v_j sind adjazent
- ein Weg ist eine Sequenz von Knoten, bei der benachbarte Knoten adjazent sind
- d(u,v) beschreibt die minimale Distanz zwischen von u nach v
- $N_1(v)$ beschreibt die 1-Nachbarschaft um einen Knoten, d.h. alle Knoten die adjazent sind zu v

1.2.1 Beschriftung und Partitionierung

- ullet eine Graph-Beschriftung $l:V \to S$ bildet einen Knoten auf eine sortierbare Einheit ab
- induziert ein Ranking $r: V \to \{1, \dots, |V|\}$ mit r(u) < r(v) genau dann, wenn l(u) > l(v)
- falls l injektiv, dann gibt es eine totale Ordnung der Knoten in G und eine eindeutige Adjazenzmatrix A^l , bei der die Knoten die Position r(v) haben
- eine Graph-Beschriftung induziert eine Partionierung $\{V_1, \dots V_k\}$ mit $u, v \in V_i$ falls l(u) = l(v)

• Metriken:

- Anteil an kürzesten Wegen von v zu v (Betweeness centrality)
- Grad der Knoten (Anzahl adjazenter Knoten)

- . . .

1.3 Lernen von Graphen

1.3.1 Knotenauswahl

- Auswahl an Knoten, für die ein Receptive Field erstellt werden soll
- ullet Gegeben: Graph-Beschreibung l, Abstand s, Anzahl w an Reciptive Fields
- 1. sortiere die Knoten auf Basis von l
- 2. iteriere über die sortierte Knotenmenge mit Abständen s, bis w Knoten ausgewählt wurden

1.3.2 Nachbarschaftssuche

- \bullet Gegeben: Knoten v, Größe k des Receptive Fields
- 1. setze initiale Knotenmenge N auf v
- 2. wiederhole bis |N| > k:
 - a) berechne für alle Knoten i in N die Nachbarschaften $N_1(i)$ und füge sie zu N hinzu
- Bemerkung: im Allgemein gilt $|N| \neq k$

1.3.3 Normalisierung

- Gegeben: Menge von Graphen \mathcal{G} mit k Knoten, Distanzmetriken für Matrizen d_A und Graphen d_G
- Optimierungsproblem: $\min_{l} \sum_{G \in \mathcal{G}} \sum_{G' \in \mathcal{G}} (d_A(A^l(G), A^l(G') d_g(G, G')))$

1.4 Auswertung

- CNNs mit Bildern können identisch über CNNs mit Graphen dargestellt werden
- Methode funktioniert teilweise deutlich besser als State-of-the-Art Graph-Kerne (z.B. bei Klasifizierungsproblemen)

1.5 Zukünftige Arbeiten

- gewichtete Kanten (oder allgemeiner Graphen mit Kanteneigenschaften)
- Graphen auf andere Netze übertragen, z.B. RNNs
- kombiniere unterschiedliche Receptive Field-Größen