Exercice 1.

1. Soit
$$J = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 et $T = \begin{pmatrix} -2 & 0 & 0 \\ 2 & -2 & 0 \\ 0 & 1 & -2 \end{pmatrix}$

- a) Calculer J^2 et J^3 . En déduire J^k pour tout entier $k \ge 3$.
- **b)** Ecrire T sous la forme T = aI + bJ, où a et b sont des réels à déterminer.
- c) Montrer, à l'aide de la formule du binôme de Newton, que pour tout n entier naturel,

$$T^{n} = \begin{pmatrix} (-2)^{n} & 0 & 0\\ 2n \times (-2)^{n-1} & (-2)^{n} & 0\\ (-2)^{n-2}n(n-1) & n(-2)^{n-1} & (-2)^{n} \end{pmatrix}.$$

2. Soit $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ des suites définies par $x_1=y_1=1, z_1=-1$ et pour tout $n\geqslant 2$ par :

$$\begin{cases} x_n &= -2x_{n-1} \\ y_n &= 2x_{n-1} - 2y_{n-1} \\ z_n &= y_{n-1} - 2z_{n-1} \end{cases}$$

Pour tout n entier naturel non nul, on note $X_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$.

- **a)** Calculer x_2 , y_2 et z_2 .
- **b)** Montrer que pour tout n entier naturel, $X_n = TX_{n-1}$.
- c) En déduire par récurrence que pour tout n entier naturel non nul, $X_n = T^{n-1}X_1$.
- **d)** En déduire les expressions de x_n , y_n et z_n en fonction de n.