Planche nº 21. Equations différentielles linéaires

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I : Incontournable

Exercice nº 1 (**)

Résoudre sur \mathbb{R} l'équation différentielle proposée :

1)
$$y' + y = 1$$
 2) $2y' - y = \cos x$ 3) $y' - 2y = xe^{2x}$ 4) $y'' - 4y' + 4y = e^{2x}$ 5) $y'' + 4y = \cos(2x)$ 6) $y'' + 2y' + 2y = \cos x \cosh x$.

Exercice nº 2 (*** I)

1) Soit $\alpha \in \mathbb{C}$ tel que $\operatorname{Re}(\alpha) > 0$. Soit $f : \mathbb{R} \to \mathbb{R}$ de classe C^1 sur \mathbb{R} .

On suppose que quand x tend vers $+\infty$, $f' + \alpha f$ tend vers $\ell \in \mathbb{C}$. Montrer que f(x) tend vers $\frac{\ell}{\alpha}$ quand x tend vers $+\infty$.

- $\textbf{2)} \text{ Soit } f \ : \ \mathbb{R} \to \mathbb{C} \text{ de classe } C^2 \text{ sur } \mathbb{R} \text{ telle que } \lim_{x \to +\infty} (f + f' + f'')(x) = 0. \text{ Montrer que } \lim_{x \to +\infty} f(x) = 0.$
- 3) Soient $n \in \mathbb{N}^*$ et $f : \mathbb{R} \to \mathbb{C}$ de classe \mathbb{C}^n sur \mathbb{R}

On note D l'opérateur de dérivation. Soit P un polynôme de degré n unitaire dont tous les zéros ont des parties réelles strictement négatives. Montrer que $\lim_{x \to +\infty} (P(D))(f)(x) = 0 \Rightarrow \lim_{x \to +\infty} f(x) = 0$.

Exercice no 3 (*** I)

Soit f une application de classe \mathbb{C}^2 sur \mathbb{R} à valeurs dans \mathbb{R} telle que $\forall x \in \mathbb{R}$, $f(x) + f''(x) \geq 0$. Montrer que $\forall x \in \mathbb{R}$, $f(x) + f(x + \pi) \geqslant 0.$

Exercice nº 4 (*** I)

Résoudre sur l'intervalle I proposé :

1)
$$xy' - 2y = 0$$
 $(I = \mathbb{R})$ 2) $xy' - y = 0$ $(I = \mathbb{R})$ 3) $xy' + y = 0$ $(I = \mathbb{R})$ 4) $xy' - 2y = x^3$ $(I =]0, +\infty[)$

1)
$$xy' - 2y = 0$$
 $(I = \mathbb{R})$ 2) $xy' - y = 0$ $(I = \mathbb{R})$ 3) $xy' + y = 0$ $(I = \mathbb{R})$ 4) $xy' - 2y = x^3$ $(I =]0, +\infty[)$ 5) $x^2y' + 2xy = 1$ $(I =]\mathbb{R})$ 6) $2x(1-x)y' + (1-x)y = 1$ $(I =]-\infty, 0[,]0, 1[,]1, +\infty[,]-\infty, 1[,]0, +\infty[, \mathbb{R})$

7)
$$|x|y' + (x-1)y = x^3$$
 ($I = \mathbb{R}$).

Exercice no 5 (*** I)

Déterminer le rayon de convergence puis calculer $\sum_{n=0}^{+\infty} (-1)^{n-1} \frac{1}{2n-1} \binom{2n}{n} x^n$ quand x appartient à l'intervalle ouvert de

convergence. En déduire la valeur de $\sum_{n=0}^{+\infty} (-1)^{n-1} \binom{2n}{n} \frac{1}{(2n-1)4^n}$.

Exercice nº 6 (**)

Exercice no 7 (**)

Soit $A \in \mathscr{S}_n^+(\mathbb{R})$. Montrer que pour toute solution de X' = AX, la fonction $t \mapsto \|X(t)\|_2$ est croissante sur \mathbb{R} .

Exercice nº 8 (**)

Résoudre les systèmes

1)
$$\begin{cases} x' = -\frac{1}{2t}x + \frac{1}{2t^2}y + 2t \\ y' = \frac{1}{2}x + \frac{1}{2t}y + t^2 \end{cases} \quad \text{sur }]0, +\infty[\quad \mathbf{2}) \begin{cases} (t^2 + 1)x' = tx - y + 2t^2 - 1 \\ (t^2 + 1)y' = x + ty - 3t \end{cases}$$
3)
$$\begin{cases} \operatorname{sh}(2t)x' = \operatorname{ch}(2t)x - y \\ \operatorname{sh}(2t)y' = -x + \operatorname{ch}(2t)y \end{cases} \quad \text{sur }]0, +\infty[\text{ sachant qu'il existe une solution vérifiant } xy = 1.$$

3)
$$\begin{cases} \sinh(2t)x' = \cosh(2t)x - y \\ \sinh(2t)y' = -x + \cosh(2t)y \end{cases}$$
 sur $]0, +\infty[$ sachant qu'il existe une solution vérifiant $xy = 1$.

Exercice nº 9 (*** I)

Résoudre les équations différentielles suivantes :

soudre les équations différentielles suivantes :
1)
$$(2x+1)y'' + (4x-2)y' - 8y = 0$$
 sur $\left] -\frac{1}{2}, +\infty \right[$ puis sur \mathbb{R} .
2) $(x^2+x)y'' - 2xy' + 2y = 0$ sur $]0, +\infty[$.
3) (I) $4xy'' - 2y' + 9x^2y = 0$ sur $]0, +\infty[$.
4) $(1+x)y'' - 2y' + (1-x)y = xe^{-x}$ sur $]-1, +\infty[$.
5) $y'' + 4y' + 4y = \frac{e^{-2x}}{\sqrt{x^2+1}}$.

2)
$$(x^2 + x)y'' - 2xy' + 2y = 0 \text{ sur }]0, +\infty[.$$

3) (I)
$$4xy'' - 2y' + 9x^2y = 0 \text{ sur }]0, +\infty[$$

4)
$$(1+x)y'' - 2y' + (1-x)y = xe^{-x} \text{ sur }]-1, +\infty[$$

5)
$$y'' + 4y' + 4y = \frac{e^{-2x}}{\sqrt{x^2 + 1}}$$

Exercice nº 10 (**)

Trouver les fonctions f dérivables sur \mathbb{R} vérifiant $\forall x \in \mathbb{R}$, $f'(x) + f(-x) = e^x$.

Exercice no 11 (***)

Trouver toutes les fonctions f dérivables sur $]0,+\infty[$ vérifiant $\forall x>0,$ $f'(x)=f\left(\frac{3}{16x}\right).$

Exercice nº 12 (*** I)

Trouver toutes les applications $f: \mathbb{R} \to \mathbb{R}$, continues sur \mathbb{R} telles que $\forall (x,y) \in \mathbb{R}^2$, $f(x)f(y) = \int_{\infty}^{x+y} f(t) dt$.

Exercice no 13 (*** I)

 $\text{Montrer que } \forall x>0, \ \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} \ dt = \int_0^{+\infty} \frac{\sin t}{t+x} \ dt \ (\text{on déterminera une équation différentielle linéaire du second ordre})$