uc3m Universidad Carlos III de Madrid

Universidad Carlos III de Madrid

APRENDIZAJE AUTOMÁTICO, GRADO EN ESTADÍSTICA Y EMPRESA

Práctica I: KNN y Árboles de clasificación

Marcos Álvarez Martín Fabio Scielzo Ortiz

${\rm \acute{I}ndice}$

1	Objetivos				
2	Pro	blema		3	
3	Dat	os		3	
4	Des	arrollo	o de la práctica	4	
	4.1	Carga	de los datos	4	
	4.2	EDA e	en R	7	
		4.2.1	EDA con skimr	7	
		4.2.2	EDA con DataExplorer	8	
	4.3	EDA e	en Python	10	
		4.3.1	Estructura del data-set	10	
		4.3.2	Resumen Estadístico Descriptivo Básico	15	
		4.3.3	Análisis gráfico general	17	
		4.3.4	Box-plots para las variables cuantitativas	22	
		4.3.5	Análisis de la relación entre los predictores categoricos y la respuesta	24	
		4.3.6	4.3.5. Análisis de la relación entre los predictores cuantitativos y la respuesta	32	
	4.4	Arbole	es de clasificación en R	38	
		4.4.1	Algoritmo rpart con R	4	
		4.4.2	Algoritmo C5.0 con R	45	
		4.4.3	Algoritmo CART en R con mlr3	54	
		4.4.4	4.4.4. Algoritmo C5.0 en R con mlr3	58	
		4.4.5	4.4.5. Comparación entre R y mlr3	60	
		4.4.6	4.4.6. Comparación de resultados	61	
	4.5	4.5. A	rboles de clasificación en Python	62	
		4.5.1	4.5.1. Arboles de clasificación: teoría	62	
		4.5.2	Definicion formal de los arboles de clasificación:	63	

1 Objetivos

- Conocer un contexto de aplicación real.
- Ejercitarnos en el análisis de datos y la implementación de algoritmos de clasificación, para adquirir criterio en la aplicación de los mismos.
- Evaluar las capacidades de R y mlr para la implementación.

2 Problema

• Resolver un problema de clasificación para el diagnóstico de pacientes hepáticos.

3 Datos

- Usaremos el conjunto de datos "Indian Liver Patient Dataset": Los pacientes con enfermedades del hígado han ido aumentando continuamente debido al consumo excesivo de alcohol, inhalación de gases nocivos, ingesta de alimentos contaminados, encurtidos y drogas.
- Este conjunto de datos se utilizó para evaluar los algoritmos de predicción en un esfuerzo por reducir la cargapara los médicos. Este conjunto de datos contiene 416 registros de pacientes hepáticos y 167 registros de pacientes no hepáticos recopilados en el noreste de Andhra Pradesh, India.
- La variable de respuesta es "diseased" (personas que tienen enfermedad del hígado)
- El data set encuentra en la librería "mlr3data". data("ilpd", package = "mlr3data")

4 Desarrollo de la práctica

Vamos a desarrollar esta práctica en los lenguajes de programación R y Python simultaneamente.

En general lo haremos a través el lenguaje Python utilizando un paquete llamado rpy2 que permite ejecutar codigo R desde Python

4.1 Carga de los datos

Empezamos la práctica cargando los datos, tanto en R como en Python :

Importamos en Python la libreria rpy2 que nos será esencial para trabajar con R y Python simultaneamente desde el mismo entorno:

```
import warnings
warnings.filterwarnings("ignore")

import rpy2

%load_ext rpy2.ipython

%%R

# install.packages("mlr3data")
# install.packages("mlr3")
```

Cargamos los datos en R

```
%%R
data("ilpd", package = "mlr3data")
head(ilpd,5)
```

```
age gender total_bilirubin direct_bilirubin alkaline_phosphatase
1
  65 Female
                          0.7
                                           0.1
                                                                  187
                         10.9
                                           5.5
2
  62
        Male
                                                                 699
                                           4.1
3
  62
        Male
                          7.3
                                                                 490
4
  58
        Male
                          1.0
                                           0.4
                                                                 182
5 72
        Male
                          3.9
                                           2.0
                                                                 195
  alanine_transaminase aspartate_transaminase total_protein albumin
1
                    16
                                            18
                                                          6.8
                                                                  3.3
                    64
                                           100
                                                          7.5
2
                                                                  3.2
3
                    60
                                            68
                                                          7.0
                                                                  3.3
4
                     14
                                            20
                                                          6.8
                                                                  3.4
                    27
                                                          7.3
5
                                            59
                                                                  2.4
  albumin_globulin_ratio diseased
1
                    0.90
                               yes
2
                    0.74
                               yes
3
                    0.89
                               yes
4
                    1.00
                               yes
5
                    0.40
                               yes
```

Cargamos los datos en Python

```
import pandas as pd
Data_Python = pd.read_csv('indian_liver_patient.csv')
Data_Python = Data_Python.rename({'Dataset': 'Diseased'}, axis=1)
Data_Python.head()
                Total_Bilirubin Direct_Bilirubin Alkaline_Phosphotase
   Age
        Gender
        Female
0
    65
                             0.7
    62
          Male
                            10.9
                                                 5.5
                                                                        699
1
2
    62
          Male
                             7.3
                                                 4.1
                                                                        490
3
    58
          Male
                              1.0
                                                 0.4
                                                                        182
4
    72
          Male
                             3.9
                                                 2.0
                                                                        195
                                                            Total Protiens
   Alamine_Aminotransferase Aspartate_Aminotransferase
0
                          16
                                                        18
                                                                        6.8
1
                          64
                                                       100
                                                                        7.5
2
                          60
                                                        68
                                                                        7.0
3
                                                        20
                                                                        6.8
                          14
4
                                                                        7.3
                          27
                                                        59
            Albumin_and_Globulin_Ratio Diseased
   Albumin
0
       3.3
                                    0.90
                                                  1
                                    0.74
1
       3.2
                                                  1
2
       3.3
                                    0.89
                                                  1
3
       3.4
                                    1.00
                                                  1
       2.4
                                    0.40
                                                  1
```

Describiremos cada una de las variables:

- age: edad del paciente. A los pacientes que exceden 89 son listados con la edad 90
- gender: género del paciente.
- total bilirubin: Total de bilirubina.
- direct bilirubin: Bilirubina directa.
- alkaline_phosphatase: Fosfatasa alcalina.
- alanine_transaminase: alanina aminotransferasa o transamisana glutámico pirúvica.
- aspartate_trasaminase: aspartato aminotransferasa.
- total_protein: proteins totales.
- albumin: albúmina.
- albumin_globulin_ratio: albúmina y globulina ratio.
- diseased: Si tienen (1) o no (2) enfermadad en el hígado.

Ahora que ya tenenmos cargados los datos y hemos visto la apariencia de los mismo procedemos a hacer un EDA (exploratory data analysis).

4.2 EDA en R

4.2.1 EDA con skimr

Haremos el EDA con la librería skimr, como se pide en el enunciado de la práctica.

```
%%R
# install.packages('skimr')
library(skimr) # Cargamos librería
skim(ilpd) # EDA con librería
-- Data Summary -----
                      Values
Name
                      ilpd
Number of rows
                      583
Number of columns
                      11
Column type frequency:
                      2
 factor
 numeric
Group variables
                      None
-- Variable type: factor ------
 skim_variable n_missing complete_rate ordered n_unique top_counts
1 gender
                   0
                               1 FALSE
                                             2 Mal: 441, Fem: 142
2 diseased
                    0
                               1 FALSE
                                             2 yes: 416, no: 167
-- Variable type: numeric ------
                                           mean sd p0
 skim_variable
                    n_missing complete_rate
                                                            p25
                      0 1 44.7 16.2 4
1 age
                                                           33
                           0
2 total_bilirubin
                                      1 3.30 6.21 0.4 0.8
3 direct_bilirubin
                           0
                                       1 1.49
                                                 2.81
                                                       0.1 0.2
4 alkaline_phosphatase
                                       1 291.
                                               243.
                                                      63 176.
                          0
                                       1 80.7
5 alanine_transaminase
                           0
                                               183.
                                                      10
                                                           23
6 aspartate_transaminase
                           0
                                      1 110.
                                               289.
                                                      10
                                                           25
7 total_protein
                           0
                                      1 6.48 1.09 2.7 5.8
                                          3.14
8 albumin
                           0
                                                 0.796 0.9
                                                            2.6
9 albumin_globulin_ratio
                                          0.947
                                                 0.318 0.3
                                                            0.7
    p50 p75
              p100 hist
1 45
        58
              90 <U+2582><U+2586><U+2587><U+2585><U+2581>
2
         2.6 75 <U+2587><U+2581><U+2581><U+2581><U+2581>
  1
  0.3
         1.3 19.7 <U+2587><U+2581><U+2581><U+2581><U+2581>
4 208
        298 2110 <U+2587><U+2581><U+2581><U+2581><U+2581>
         60.5 2000
5 35
                  <U+2587><U+2581><U+2581><U+2581><U+2581>
         87 4929 <U+2587><U+2581><U+2581><U+2581><U+2581>
6 42
```

```
7 6.6 7.2 9.6 <U+2581><U+2582><U+2587><U+2587><U+2581>
8 3.1 3.8 5.5 <U+2581><U+2585><U+2587><U+2586><U+2581>
9 0.947 1.1 2.8 <U+2586><U+2587><U+2582><U+2581><U+2581>
```

También haremos uso de la función str() que nos da la estructura de nuestro dataset.

```
%%R
str(ilpd) # Analizamos la estructura de los datos
```

```
'data.frame':
               583 obs. of 11 variables:
                         : int 65 62 62 58 72 46 26 29 17 55 ...
$ age
                         : Factor w/ 2 levels "Female", "Male": 1 2 2 2 2 1 1 2 2 ...
$ gender
$ total_bilirubin
                         : num 0.7 10.9 7.3 1 3.9 1.8 0.9 0.9 0.9 0.7 ...
$ direct_bilirubin
                        : num 0.1 5.5 4.1 0.4 2 0.7 0.2 0.3 0.3 0.2 ...
$ alkaline phosphatase : int
                                187 699 490 182 195 208 154 202 202 290 ...
$ alanine_transaminase : int
                                16 64 60 14 27 19 16 14 22 53 ...
                                18 100 68 20 59 14 12 11 19 58 ...
$ aspartate_transaminase: int
$ total_protein
                                6.8\ 7.5\ 7\ 6.8\ 7.3\ 7.6\ 7\ 6.7\ 7.4\ 6.8\ \dots
                         : num
$ albumin
                                3.3 3.2 3.3 3.4 2.4 4.4 3.5 3.6 4.1 3.4 ...
                         : num
$ albumin globulin ratio: num
                                0.9 0.74 0.89 1 0.4 1.3 1 1.1 1.2 1 ...
$ diseased
                         : Factor w/ 2 levels "yes", "no": 1 1 1 1 1 1 1 1 2 1 ...
```

Claramente podemos ver como con skimr, las variables que son numéricas las considera todas numéricas, mientras que la función str nos especifica las variables numéricas en si son variables que toman valores reales o enteros.

4.2.2 EDA con DataExplorer

Por último sacaremos un reporte con la librería DataExplorer:

```
%%R
# install.packages('DataExplorer')
# DataExplorer::create_report(ilpd,y="diseased")
```

Se genera un reporte en HTML que puede ser abierto en el navegador.

Aqui esta la version en PDF de dicho reporte:

https://github.com/FabioScielzoOrtiz/Estadistica4all.github.io/blob/main/Notebooks/Aprendizaje%20Automatico/Data%20Profiling%20Report.pdf

Aunque hemos visto el número de valores ausentes en la salida que nos da skimr, esto se puede hacer a mano como sigue:

```
%%R
library(tidyverse)

ilpd %>% map_dbl(.f = function(x){sum(is.na(x))})

# Número de missing values
```

age	gender	total_bilirubin
0	0	0
direct_bilirubin	alkaline_phosphatase	alanine_transaminase
0	0	0
aspartate_transaminase	${ t total_protein}$	albumin
0	0	0
albumin_globulin_ratio	diseased	
0	0	

Podemos sacar las siguientes conclusiones del EDA anterior: - Se dispone de 583 instancias y 11 variables (2 de tipo factor biclase, 5 de tipo numérico y 4 enteras) - No hay ausencia de valores por lo que no habrá que eliminar instancias o al menos los modelos no se verán dificultados por los mismos. - La variable respuesta es diseased que es una de las variables tipo factor biclase que puede tomar valores "yes" o "no". Se puede ver como esta variable está un poco desbalanceada ya que tenemos muchas más observaciones con valor "yes" (416 observaciones) que con valor "no" (167 observaciones). - En cuanto a las correlaciones se puede ver que son relativamente altas entre los pares que tienen que ver con sustancias similares, como bilirubina directa y bilirubina total. Con respecto a la variable respuesta podemos ver como hay relaciones directas con el resto de variables y una correlacion similar en torno a 0.7.

4.3 EDA en Python

Ahora vamos a realizar un EDA del data-set pero usando Python

El EDA (Exploratory Data Analysis) en lineas generales va a consistir en:

- Analizar estructura del data-set que tenemoss (dimensiones, tipo de variables, valores faltantes, etc)
- Cálculo de estadísticos básicos para cada variable
- Generación de gráficos que aporten información relevante (histogramas, diagramas de barras, scatter plots, box plots, etc)
- Análisis de relaciones entre los predictores y la respuesta.

4.3.1 Estructura del data-set

```
import warnings
warnings.filterwarnings("ignore")
```

Data_Python.shape

(583, 11)

Tenemos un data-set con 11 variables y 583 observaciones.

Las variables son:

- 10 predictores (age , gender , Total_Bilirubin , Direct_Bilirubin , Alkaline_Phosphotase , Alamine_Aminotransferase , Aspartate_Aminotransferase , Total_Protiens , Albumin , Albumin_and_Globulin_Ratio)
- 1 respuesta (Diseased)

La variables categoricas del data-set son:

• Diseased y Gender (binarias)

Las variables cuantitativas del data-set son:

• age , Alkaline_Phosphotase, Alamine_Aminotransferase , Aspartate_Aminotransferase (discretas) y Total_Bilirubin , Direct_Bilirubin, Total_Protiens, Albumin, Albumin_and_Globulin_Ratio (continuas)

Con el siguiente código podemos ver el tipo de cada una de las variables en Python (que podría no coincidir con el descrito anteriormente, en su caso habría que modificarlo.)

Data_Python.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 583 entries, 0 to 582
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Age	583 non-null	int64
1	Gender	583 non-null	object
2	Total_Bilirubin	583 non-null	float64
3	Direct_Bilirubin	583 non-null	float64
4	Alkaline_Phosphotase	583 non-null	int64
5	Alamine_Aminotransferase	583 non-null	int64
6	Aspartate_Aminotransferase	583 non-null	int64
7	Total_Protiens	583 non-null	float64
8	Albumin	583 non-null	float64
9	Albumin_and_Globulin_Ratio	583 non-null	float64
10	Diseased	583 non-null	int64

dtypes: float64(5), int64(5), object(1)

memory usage: 50.2+ KB

En este caso el tipo en Python es correcto para todas las variables salvo para la respuesta (Diseased) ya que Python la considera entera (cuantitativa discreta: int64) cuando realmente es categórica binaria, por ello tranformamos su tipo de int64 a object (el tipo clasico de las variables categoricas en Python).

```
Data_Python['Diseased'] = Data_Python['Diseased'].astype('object')
```

Comprobamos que los cambios se han producido correctamente:

```
Data_Python.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 583 entries, 0 to 582
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Age	583 non-null	int64
1	Gender	583 non-null	object
2	Total_Bilirubin	583 non-null	float64
3	Direct_Bilirubin	583 non-null	float64
4	Alkaline_Phosphotase	583 non-null	int64
5	Alamine_Aminotransferase	583 non-null	int64

6	Aspartate_Aminotransferase	583 non-null	int64
7	Total_Protiens	583 non-null	float64
8	Albumin	583 non-null	float64
9	Albumin_and_Globulin_Ratio	583 non-null	float64
10	Diseased	583 non-null	object

dtypes: float64(5), int64(4), object(2)

memory usage: 50.2+ KB

Ahora vamos a ver si existe algún valor nulo en el data-set:

Data_Python.isnull().sum()

Age	0		
Gender	0		
Total_Bilirubin	0		
Direct_Bilirubin	0		
Alkaline_Phosphotase	0		
Alamine_Aminotransferase	0		
Aspartate_Aminotransferase			
Total_Protiens	0		
Albumin	0		
Albumin_and_Globulin_Ratio			
Diseased	0		
dtype: int64			

Ninguna de las variables tiene valores faltantes (nulos).

Ahora vamos a ver cual es el rango de las variables categoricas, y posteriormete lo codificaremos en formato estandar $\{0,1,2,...\}$, si es que no lo están ya.

```
Data_Python['Gender'].unique()
array(['Female', 'Male'], dtype=object)
Data_Python['Diseased'].unique()
```

```
array([1, 2], dtype=object)
```

Vamos a codificar en formato estandar la variable Gender tal que: Female=0, Male=1, y la variable Diseased tal que: 1=0, 2=1

Para ello vamos a apoyarnos en la libreria sklearn, que posteriormente volverá a ser usada. Se podría hacer esto de otras formas, como con un bucle for, pero en casos en los que el número de categorias es alto, la opción aportada por sklearn es bastante más eficiente que un bucle.

```
from sklearn.preprocessing import OrdinalEncoder

ord_enc = OrdinalEncoder()
```

```
Data_Python['Gender'] = ord_enc.fit_transform(Data_Python[['Gender']])
Data_Python['Diseased'] = ord_enc.fit_transform(Data_Python[['Diseased']])
```

Comprobamos que los cambios se han realizado correctamente:

```
Data_Python['Gender'].unique()
array([0., 1.])
Data_Python['Diseased'].unique()
```

```
array([0., 1.])
```

Pero cuidado, tras realizar estos cambios tambien se cambia en Python el tipo de las variables codificadas a 'float64', que es un tipo cuantitativo (continuo), por lo que debemos volver a fijar el tipo de Diseased y Gender como 'object' (ya que son categoricas).

Data_Python.dtypes

```
int64
Age
Gender
                               float64
Total_Bilirubin
                               float64
Direct_Bilirubin
                               float64
Alkaline_Phosphotase
                                 int64
Alamine_Aminotransferase
                                 int64
Aspartate_Aminotransferase
                                 int64
Total_Protiens
                               float64
Albumin
                               float64
Albumin_and_Globulin_Ratio
                               float64
                               float64
Diseased
dtype: object
```

```
Data_Python['Diseased'] = Data_Python['Diseased'].astype('object')
Data_Python['Gender'] = Data_Python['Gender'].astype('object')
```

Verificamos que se han realizado correctamente los cambios:

Data_Python.dtypes

Age	int64
Gender	object
Total_Bilirubin	float64
Direct_Bilirubin	float64
Alkaline_Phosphotase	int64
Alamine_Aminotransferase	int64
Aspartate_Aminotransferase	int64
Total_Protiens	float64
Albumin	float64
Albumin_and_Globulin_Ratio	float64
Diseased	object
3. 3	

dtype: object

4.3.2 Resumen Estadístico Descriptivo Básico

Ahora vamos a hacer una descripcion estadística básica de las variables del data-set:

	Y	Age	Gender	Total_Bilirubin	Direct_Bilirubin	
count	583.0	583.000000	583.0	583.000000	583.000000	
unique	2.0	NaN	2.0	NaN	NaN	
top	0.0	NaN	1.0	NaN	NaN	
freq	416.0	NaN	441.0	NaN		
mean	NaN	44.746141	NaN	3.298799	1.486106	
std	NaN	16.189833	NaN	6.209522	2.808498	
min	NaN	4.000000	NaN	0.400000	0.100000	
25%	NaN	33.000000	NaN	0.800000	0.200000	
50%	NaN	45.000000	NaN	1.000000	0.300000	
75%	NaN	58.000000	NaN	2.600000	1.300000	
max	NaN	90.000000	NaN	75.000000	19.700000	
	Alkali	ne_Phosphota	se Alami	ine_Aminotransfer	ase	
count	11111411	583.0000		583.000		
unique			aN	NaN		
top			aN	NaN		
freq			aN	NaN		
mean		290.5763		80.713	551	
std		242.9379	89	182.620		
min		63.0000	00	10.000	000	
25%		175.5000	00	23.000	000	
50%		208.0000	00	35.000	000	
75%		298.0000	00	60.500000		
max		2110.0000	00	2000.000000		
	Aspart	ate_Aminotra	nsferase	Total_Protiens	Albumin	
count	F		3.000000	583.000000	583.000000	
unique			NaN	NaN	NaN	
top			NaN			
freq			NaN			
mean		10	09.910806	6.483190	3.141852	
std		28	88.918529	1.085451	0.795519	
min		1	0.000000	2.700000	0.900000	
25%		2	5.000000	5.800000	2.600000	
50%		4:	2.000000	6.600000	3.100000	
		7.000000	7.200000	3.800000		
max		4:	929.00000	9.600000	5.500000	

	Albumin_and_Globulin_Ratio
count	583.000000
unique	NaN
top	NaN
freq	NaN
mean	0.947064
std	0.318492
min	0.300000
25%	0.700000
50%	0.947064
75%	1.100000
max	2.800000

4.3.3 Análisis gráfico general

Histogramas para las variables cuantitativas

Vamos a generar un histograma para cadda variable cuantitativa.

```
import numpy as np
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
```

```
fig, axs = plt.subplots(3, 3, figsize=(13, 13))
p1 = sns.histplot(data=Data_Python, x="Total_Bilirubin",

    stat="proportion", bins=15, color="skyblue", ax=axs[0, 0])

p1.set_xticks( range(int(Data_Python['Total_Bilirubin'].min()) ,
→ int(Data_Python['Total_Bilirubin'].max()) , 10) )
p1.set_yticks( np.arange(0, 1, 0.1) )
p2 = sns.histplot(data=Data_Python, x="Direct_Bilirubin",

    stat="proportion", bins=15, color="olive", ax=axs[0, 1])

p2.axes.set(xlabel='Direct_Bilirubin', ylabel=' ')
p2.set_xticks( range(int(Data_Python['Direct_Bilirubin'].min()) ,
→ int(Data_Python['Direct_Bilirubin'].max()) , 3) )
p2.set_yticks( np.arange(0, 1, 0.1) )
p3 = sns.histplot(data=Data_Python, x="Alkaline_Phosphotase",

    stat="proportion", bins=15, color="blue", ax=axs[0, 2])

p3.axes.set(xlabel='Alkaline_Phosphotase', ylabel=' ')
p3.set_xticks( range(int(Data_Python['Alkaline_Phosphotase'].min()) ,
→ int(Data_Python['Alkaline_Phosphotase'].max()) , 320) )
p3.set_yticks( np.arange(0, 1, 0.1) )
p4 = sns.histplot(data=Data_Python, x="Alamine_Aminotransferase",

    stat="proportion", bins=15, color="teal", ax=axs[1, 0])

p4.axes.set(xlabel='Alamine_Aminotransferase', ylabel=' ')
p4.set_xticks( range(int(Data_Python['Alamine_Aminotransferase'].min()) ,

    int(Data_Python['Alamine_Aminotransferase'].max()) , 300) )

p4.set_yticks( np.arange(0, 1, 0.1) )
p5 = sns.histplot(data=Data_Python, x="Aspartate_Aminotransferase",

    stat="proportion", bins=15, color="purple", ax=axs[1, 1])

p5.axes.set(xlabel='Aspartate_Aminotransferase', ylabel=' ')
p5.set_xticks( range(int(Data_Python['Aspartate_Aminotransferase'].min())
→ , int(Data_Python['Aspartate_Aminotransferase'].max()) , 850) )
p5.set_yticks( np.arange(0, 1, 0.1) )
p6 = sns.histplot(data=Data_Python, x="Total_Protiens", stat="proportion",
\rightarrow bins=15, color="pink", ax=axs[1, 2])
```

```
p6.axes.set(xlabel='Total_Protiens', ylabel=' ')
p6.set_xticks( range(int(Data_Python['Total_Protiens'].min()) ,

    int(Data_Python['Total_Protiens'].max()+1) , 1) )
p6.set_yticks( np.arange(0, 1, 0.1) )
p7 = sns.histplot(data=Data_Python, x="Albumin", stat="proportion",

    bins=15, color="orange", ax=axs[2, 0])

p7.axes.set(xlabel='Albumin', ylabel=' ')
p7.set_xticks( range(int(Data_Python['Albumin'].min()) ,

    int(Data_Python['Albumin'].max()+1) , 1) )

p7.set_yticks( np.arange(0, 1, 0.1) )
p8 = sns.histplot(data=Data_Python, x="Albumin_and_Globulin_Ratio",

    stat="proportion", bins=15, color="red", ax=axs[2, 1])

p8.axes.set(xlabel='Albumin_and_Globulin_Ratio', ylabel=' ')
p8.set xticks( np.arange(0, 2, 0.5)
p8.set_yticks( np.arange(0, 1, 0.1) )
p9 = sns.histplot(data=Data_Python, x="Age", stat="proportion", bins=15,

    color="green", ax=axs[2, 2])

p9.axes.set(xlabel='Age', ylabel=' ')
p9.set_xticks( range(int(Data_Python['Age'].min()) ,

    int(Data_Python['Age'].max()) , 10) )

p9.set_yticks( np.arange(0, 1, 0.1) )
plt.show()
```


Figure 1: Histogramas variables cuantitativas

Diagramas de barras para las variables categóricas

Ahora vamos a realizar una serie de operaciones para generar dos diagramas de barrras, uno para la variable Gender y otro para Diseased.

```
Data_Python['proportion_Gender'] = 0

for i in range(0, len(Data_Python)):
    if Data_Python['Gender'][i] == 0 :
        Data_Python['proportion_Gender'][i] = proportion_Female
    else :
        Data_Python['proportion_Gender'][i] = proportion_Male
```

```
Data_Python['proportion_Diseased'] = 0

for i in range(0, len(Data_Python)):
    if Data_Python['Diseased'][i] == 0 :
        Data_Python['proportion_Diseased'][i] = proportion_Diseased_yes
    else :
        Data_Python['proportion_Diseased'][i] = proportion_Diseased_no
```


Figure 2: Diagramas de barras variables categoricas

```
[ proportion_Female , proportion_Male ]
```

[0.24356775300171526, 0.7564322469982847]

```
[ proportion_Diseased_yes , proportion_Diseased_no ]
```

 $[0.7135506003430532,\ 0.2864493996569468]$

Como puede verse el porcentaje de mujeres en la muestra es del 24.36% , mientras que el de hombres es del 75.64%

Por otro lado el porcentaje de endfermos es del
71.36%, mientras que el de no enfermos es del 28.64%

4.3.4 Box-plots para las variables cuantitativas

```
fig, axs = plt.subplots(3, 3, figsize=(13, 13))
p1 = sns.boxplot(x=Data Python['Age'], color="palegreen", ax=axs[0, 0])
p1.set_xticks( range(int(Data_Python['Age'].min()) ,
→ int(Data_Python['Age'].max()+10) , 10) )
p2 = sns.boxplot(x=Data_Python['Direct_Bilirubin'], color="olive",
\rightarrow ax=axs[0, 1])
p2.set_xticks( range(int(Data_Python['Direct_Bilirubin'].min()) ,
→ int(Data_Python['Direct_Bilirubin'].max()) , 10) )
p3 = sns.boxplot(x=Data_Python['Alkaline_Phosphotase'], color="blue",
\rightarrow ax=axs[1, 0])
p3.set_xticks( range(int(Data_Python['Alkaline_Phosphotase'].min()) ,

    int(Data_Python['Alkaline_Phosphotase'].max() ) , 300) )

p4 = sns.boxplot(x=Data_Python['Alamine_Aminotransferase'], color="teal",
\rightarrow ax=axs[1, 1])
p4.set_xticks( range(int(Data_Python['Alamine Aminotransferase'].min()) ,
→ int(Data_Python['Alamine_Aminotransferase'].max()) , 500) )
p5 = sns.boxplot(x=Data_Python['Aspartate_Aminotransferase'],

    color="purple", ax=axs[0, 2])

p5.set_xticks( range(int(Data_Python['Aspartate_Aminotransferase'].min())
, int(Data_Python['Aspartate_Aminotransferase'].max()) , 850) )
p6 = sns.boxplot(x=Data_Python['Total_Protiens'], color="pink", ax=axs[1,

→ 2])

p6.set_xticks( range(int(Data_Python['Total_Protiens'].min()) ,

    int(Data_Python['Total_Protiens'].max()) , 10) )
p7 = sns.boxplot(x=Data_Python['Albumin'], color="orange", ax=axs[2, 2])
p7.set_xticks( range(int(Data_Python['Albumin'].min()) ,
→ int(Data_Python['Albumin'].max()) , 10) )
p8 = sns.boxplot(x=Data_Python['Albumin and Globulin Ratio'], color="red",
\rightarrow ax=axs[2, 1])
p8.set_xticks( range(int(Data_Python['Albumin_and_Globulin_Ratio'].min())
→ , int(Data_Python['Albumin_and_Globulin_Ratio'].max()) , 10) )
p9 = sns.boxplot(x=Data_Python['Total_Bilirubin'], color="skyblue",
\rightarrow ax=axs[2, 0])
p9.set_xticks( range(int(Data_Python['Total_Bilirubin'].min()) ,

    int(Data_Python['Total_Bilirubin'].max()) , 10) )
```


Figure 3: Box-plots variables cuantitativas $\,$

4.3.5 Análisis de la relación entre los predictores categoricos y la respuesta

Analisis relación entre respuesta (Diseased) y Gender

Frecuencia relativa de genero condicionada a enfermedad

Ahora vamos a realizar una serie de operaciones para obtener una tabla de frecuencias relativas de la variable Gender condicionada a la respuesta (Diseased). También obtendremos el gráfico de barras asociado a esta tabla.

```
Df Diseased Yes = Data_Python.loc[ Data_Python['Diseased']==0 , :]
proportion_Female_in_Diseased_Yes = len(
→ Df_Diseased_Yes.loc[Df_Diseased_Yes['Gender']==0 , :] ) /
→ len(Df_Diseased_Yes)
#####################
Df_Diseased_Yes = Data_Python.loc[ Data_Python['Diseased'] == 0 , :]
proportion_Male_in_Diseased_Yes = len(
→ Df_Diseased_Yes.loc[Df_Diseased_Yes['Gender']==1 , :] ) /
→ len(Df_Diseased_Yes)
####################
Df_Diseased_No = Data_Python.loc[ Data_Python['Diseased'] == 1 , :]
proportion_Female_in_Diseased_No = len(
→ Df_Diseased_No.loc[Df_Diseased_No['Gender']==0 , :] ) /
→ len(Df_Diseased_No)
#####################
Df_Diseased_No = Data_Python.loc[ Data_Python['Diseased']==1 , :]
proportion_Male_in_Diseased_No = len(
→ Df_Diseased_No.loc[Df_Diseased_No['Gender']==1 , :] ) /
   len(Df_Diseased_No)
```

Función para calcular tablas de frecuencias relativas condicionadas con dos variables:

```
Frec_Relativas_Condicionadas_Gender_in_Diseased =

Table_Con_Rel_Freq_2_Var_Py (Data_Python, Data_Python['Diseased'], 1,

1, var1_name='Diseased', var2_name='Gender')

Frec_Relativas_Condicionadas_Gender_in_Diseased.index = ['Female',

'Male']

Frec_Relativas_Condicionadas_Gender_in_Diseased.columns = ['Yes', 'No']

Frec_Relativas_Condicionadas_Gender_in_Diseased =

Frec_Relativas_Condicionadas_Gender_in_Diseased.style.set_caption("Gender

Diseased")
```


Figure 4: Diagrama de barras de Gender condicionada a Diseased

Frec_Relativas_Condicionadas_Gender_in_Diseased

Gender | Diseased

```
Yes No
Female 0.221154 0.299401
Male 0.778846 0.700599
```

```
[proportion_Female_in_Diseased_Yes , proportion_Male_in_Diseased_Yes]
```

```
[0.22115384615384615, 0.7788461538461539]
```

```
[proportion_Female_in_Diseased_No , proportion_Male_in_Diseased_No]
```

```
[0.2994011976047904, 0.7005988023952096]
```

Como puede observarse el porcentaje de mujeres dentro del grupo de los enfermos es del 22.12%, mientras que el de hombres es del 77.88%.

Por otro lado el porcentaje de mujeres dentro del grupo de los no enfermos es del 29.94%, mientras que el de hombres es del 70.06%

Frecuencia relativa de enfermedad condicionada al genero

Ahora vamos a realizar una serie de operaciones para obtener una tabla de frecuencias relativas de la variable respuesta (Diseased) condicionada a la variable Gender . También obtendremos el gráfico de barras asociado a esta tabla.

```
p = sns.countprot(data=bata_rython, x= dender, nde= biseased,

→ palette="husl")

p.set_xticklabels(['Female', 'Male'])

p.legend(title='Diseased', loc='upper right', labels=['Yes', 'No'])
```


Figure 5: Diagrama de barras de Diseased condicionada a Gender

Frec_Relativas_Condicionadas_Diseased_in_Gender

Diseased | Gender

Female Male
Yes 0.647887 0.734694
No 0.352113 0.265306

Como puede observarse el porcentaje de enfermos dentro del grupo de as mujeres es del 64.79%, mientras que el de no enfermos es del 35.21%.

Por otro lado el porcentaje de enfermos dentro del grupo de los hombres es del 73.47%, mientras que el de no enfermos es del 26.53%

Analisis relación entre respuesta (Diseased) y Grupo de Edad

Frecuecnia relativa de enfermedad en funcion del grupo de edad

Tenemos que categorizar la variable cuantitativa Age (edad), para ello debemos emplear una regla de categorización (mediana, media, cuartiles, Scott ...)

Usaremos la regla de los cuartiles por simplicidad:

```
intervals = np.quantile( Data_Python['Age'] , [0, 0.25, 0.5, 0.75 , 1])
intervals
```

```
array([ 4., 33., 45., 58., 90.])
```

Nos apoyaremos en la funcion cut() de la libreria Pandas para categorizar la variable Age usando la regla de los cuartiles.

A esta función le das un vector (bins) y construye unos intervalos con los elementos del vector, en este caso (3, 33], (33, 45], (45, 58], (58, 90]. Luego te devuelve a qué intervalo pertenece cada observación de una variable dada (en nuestro caso Age), y también nos permite codificar estos intervalos con la codificación estandar (0,1,2,...), y así obtener una nueva variable que es una versión categorizada de la variable pasada (Age en nuestro caso).

Vamos a restar una cantidad positiva (por ejemplo 1) al mínimo de Age, puesto que ese valor será el extremo inferior del primer intervalo, y dicho intervalo será abierto en ese extremo (por configuración de la función cut), por tanto si no restasemos una cantidad positiva, el valor mínimo de Age no estaría en ninguno de los intervalos generados por cut()

```
intervals[0] = intervals[0] - 1
intervals
```

```
array([ 3., 33., 45., 58., 90.])
```

```
pd.cut(x=Data_Python['Age'] , bins=intervals , right=True)
```

```
0
       (58.0, 90.0]
       (58.0, 90.0]
1
2
       (58.0, 90.0]
       (45.0, 58.0]
3
4
       (58.0, 90.0]
       (58.0, 90.0]
578
579
       (33.0, 45.0]
       (45.0, 58.0]
580
         (3.0, 33.0]
581
582
       (33.0, 45.0]
Name: Age, Length: 583, dtype: category
```

```
pd.cut(x=Data_Python['Age'] , bins=intervals , labels=False)
0
       3
1
       3
2
       3
3
       2
4
       3
578
579
       2
580
581
       0
582
Name: Age, Length: 583, dtype: int64
Data_Python['Age_cat'] = pd.cut(x=Data_Python['Age'] , bins=intervals ,
\rightarrow labels=False)
```

La nueva variable Age_cat es tal que:

$$Age_cat_i = \begin{cases} 0, & \text{if } Age_i \in [Min(Age), Q(0.25, Age)] \\ \\ 1, & \text{if } Age_i \in (Q(0.25, Age), Q(0.50, Age)] \\ \\ 2, & \text{if } Age_i \in (Q(0.50, Age), Q(0.75, Age)] \\ \\ 3, & \text{if } Age_i \in (Q(0.75, Age), Max(Age)] \end{cases}$$

para i = 1, ..., n

Ahora tenemos una variable que nos indica el grupo de edad de cada individuo. Tenemos tes grupos de edad.

Grupo 0: ≤ 33 años

Grupo 1: entre 33 y 45 años

Grupo 2: entre 45 y 58 años

grupo 3: > 58 años

Ahora vamos a generar una tabla de frecuencias relativas de la variable respuesta (Diseased) condicionada a la nueva variable Grupo de edad (Age_cat), también generaremos su gráfico de barras asociado.

```
Frec_Relativas_Condicionadas_Diseased_in_Aged =

\( \to Table_Con_Rel_Freq_2_Var_Py \) (Data_Python, Data_Python['Age_cat'], 3,
\( \to 1, var1_name='Age_cat' \), var2_name='Diseased')

Frec_Relativas_Condicionadas_Diseased_in_Aged.index = ['Yes' , 'No']

Frec_Relativas_Condicionadas_Diseased_in_Aged.columns = ['(3, 33]', '(33, \( \to 45)' \), '(45, 58]' , '(58, 90]']

Frec_Relativas_Condicionadas_Diseased_in_Aged =
\( \to Frec_Relativas_Condicionadas_Diseased_in_Aged.style.set_caption("Diseased \( \to Age Group") \)
```


Figure 6: Grafico de barras de Diseased condicionada a grupo de edad (Age cat)

${\tt Frec_Relativas_Condicionadas_Diseased_in_Aged}$

Diseased | Age Group

	(3, 33]	(33, 45]	(45, 58]	(58, 90]
Yes	0.645570	0.676056	0.800000	0.736842
No	0.354430	0.323944	0.200000	0.263158

Como puede observarse dentro del grupo de los más jovenes (de edad menor o igual a 33) el procentaje de enfermos es del 64.56%, este porcentaje aumenta hasta el 67.60% en el grupo de individuos cuya edad esta entre 33 y 45 años, y hasta el 80% en el de los individuos con una edad entre 45 y 58 años, luego pasa a ser del 73.68% en el grupo de edad superior a 58 años.

Frecuecnia relativa de grupo de edad en funcion de enfermedad

Ahora vamos a generar una tabla de frecuencias relativas de la variable grupo de edad (Age_cat) condicionada a la variable respuesta, también generaremos su gráfico de barras asociado.

Figure 7: Grafico de barras de grupo de edad (Age_cat) condicionada Diseased

Age Group | Diseased

	Yes	No
(3, 33]	0.245192	0.335329
(33, 45]	0.230769	0.275449
(45, 58]	0.288462	0.179641
(58, 90]	0.235577	0.209581

Se puede apreciar que dentro del grupo de los enfermos , el grupo de edad mas frecuente seria el de los individuos con una edad entre 45 y 58 años, seguido del de más de 58 años.

Por otro lado dentro del grupo de los no enfermos el grupo de edad claramente mayoritario es el de los mas jovenes (edad menor o igual a 33 años), seguido del siguiente grupo mas joven (edad entre 33 y 45).

4.3.6 4.3.5. Análisis de la relación entre los predictores cuantitativos y la respuesta

Resumen Estadístico Descriptivo Cuantitativo en función de Diseased

Ahora vamos a hacer una serie de operaciones para obtener una tabla en la que se pueden comparar los valores de diferentes estadísticos descriptivos básicos para cada variable cuantitativa en función del valor de la respuesta (Diseased).

```
Data_Python_Quantitative_Diseased_yes = Data_Python.loc[

Data_Python['Diseased'] == 0 , (Data_Python.columns != 'Gender') &

(Data_Python.columns != 'Diseased') & (Data_Python.columns !=

'proportion_Gender') & (Data_Python.columns != 'proportion_Diseased')

& (Data_Python_Columns != 'Age_cat') ]

Data_Python_Quantitative_Diseased_no = Data_Python.loc[

Data_Python['Diseased'] == 1 , (Data_Python.columns != 'Gender') &

(Data_Python.columns != 'Diseased') & (Data_Python.columns !=

'proportion_Gender') & (Data_Python.columns != 'proportion_Diseased')

& (Data_Python.columns != 'Age_cat') ]
```

```
std_yes = Data_Python_Quantitative_Diseased_yes.std()
std_no = Data_Python_Quantitative_Diseased_no.std()

mean_yes = Data_Python_Quantitative_Diseased_yes.mean()
mean_no = Data_Python_Quantitative_Diseased_no.mean()

Q25_yes = Data_Python_Quantitative_Diseased_yes.quantile(q=0.25)
```

```
Q25_no = Data_Python_Quantitative_Diseased_no.quantile(q=0.25)
Q50_yes = Data_Python_Quantitative_Diseased_yes.quantile(q=0.5)
Q50_no = Data_Python_Quantitative_Diseased_no.quantile(q=0.5)
Q75_yes = Data_Python_Quantitative_Diseased_yes.quantile(q=0.75)
Q75_no = Data_Python_Quantitative_Diseased_no.quantile(q=0.75)
min_yes = Data_Python_Quantitative_Diseased_yes.min()
min_no = Data_Python_Quantitative_Diseased_no.min()
max_yes = Data_Python_Quantitative_Diseased_yes.max()
max_no = Data_Python_Quantitative_Diseased_no.max()
df_yes = pd.DataFrame({'mean':mean_yes , 'min':min_yes , 'Q25':Q25_yes
\rightarrow 'median':Q50_yes , 'Q75':Q75_yes , 'max':max_yes , 'std':std_yes})
df_no = pd.DataFrame({'mean':mean_no , 'min':min_no , 'Q25':Q25_no
\rightarrow 'median':Q50_no , 'Q75':Q75_no , 'max':max_no , 'std':std_no})
Statistics_Quantitatives_Diseased = pd.DataFrame({
              'Age_yes':df_yes.iloc[0,:]
              'Age_no':df_no.iloc[0,:],
              'Total_Bilirubin_yes':df_yes.iloc[1,:]
              'Total_Bilirubin_no':df_no.iloc[1,:],
              'Direct_Bilirubin_yes':df_yes.iloc[2,:]
              'Direct_Bilirubin_no':df_no.iloc[2,:],
              'Alkaline_Phosphotase_yes':df_yes.iloc[3,:]
              'Alkaline Phosphotase no':df no.iloc[3,:],
              'Alamine_Aminotransferase_yes':df_yes.iloc[4,:]
              'Alamine_Aminotransferase_no':df_no.iloc[4,:],
              'Aspartate_Aminotransferase_yes':df_yes.iloc[5,:]
              'Aspartate_Aminotransferase_no':df_no.iloc[5,:],
              'Total_Protiens_yes':df_yes.iloc[6,:]
              'Total_Protiens_no':df_no.iloc[6,:],
              'Albumin_yes':df_yes.iloc[7,:]
              'Albumin_no':df_no.iloc[7,:],
              'Albumin_and_Globulin_Ratio_yes':df_yes.iloc[8,:]
              'Albumin_and_Globulin_Ratio_no':df_no.iloc[8,:],
               })
```

${\tt Statistics_Quantitatives_Diseased}$

	Age_yes	Age_no	Total	Riliruhin was	Total_Bilirubin_no	
mean	46.153846	41.239521	10001_	4.164423	1.142515	
min	7.000000	4.000000		0.400000	0.500000	
Q25	34.000000	28.000000		0.800000	0.700000	
median	46.000000	40.000000		1.400000	0.800000	
Q75	58.000000	55.000000		3.625000	1.100000	
-	90.000000	85.000000		75.000000	7.300000	
max std	15.654412	16.999366		7.144831	1.004472	
sta	15.054412	10.999300		7.144031	1.004472	
	Direct_Bil	irubin_yes	Direct	_Bilirubin_no	Alkaline_Phosphotase_yes	
mean	_	1.923558		0.396407	319.007212	
min		0.100000		0.100000	63.000000	
Q25		0.200000		0.200000	186.000000	
median		0.500000		0.200000	229.000000	
Q75		1.800000		0.350000	315.250000	
max		19.700000		3.600000	2110.000000	
std		3.206901		0.519255	268.307911	
	Alkaline_P	-		mine_Aminotran	•	
mean		219.7544			99.605769	
min		90.0000		12.000000		
Q 25		161.5000		25.00000		
median		186.0000		41.000000		
Q75		213.0000			76.500000	
max		1580.0000			2000.000000	
std		140.9862	262		212.768472	
Alk	aline_Phosp	hotase_no	Alamine	_Aminotransfer	ase_yes	
mean		219.7544	191		99.605769	
min		90.0000	000		12.000000	
Q25		161.5000	000		25.000000	
median		186.0000	000	41.000000		
Q75		213.0000	000	76.500000		
max		1580.0000	000	2000.000000		
std		140.9862	262		212.768472	
	Alamina Am	inotronafor		Agnomtata Ami	notmonaforma voa	
	Alamine_Am	ninotransfer	_	Aspartate_Ami	notransferase_yes	
mean			.652695			
min			.000000		11.000000 29.750000	
Q25			000000			
median			.000000		52.500000	
Q75			.500000		108.750000	
max			.000000			
std		25.	.060392		337.389980	

	Aspartate_Aminotransferase_no	Total_Protiens_yes	Total_Protiens_no
mean	40.688623	6.459135	6.543114
min	10.000000	2.700000	3.700000
Q25	21.000000	5.700000	5.900000
median	29.000000	6.550000	6.600000
Q75	43.500000	7.200000	7.300000
max	285.000000	9.600000	9.200000
std	36.411620	1.094659	1.063042
Total_Protiens_yes Total_Protiens_no Albumin_yes Albumin_no			
mean	6.459135	6.543114 3.060577	3.344311
min	2.700000	3.700000 0.900000	1.400000
Q25	5.700000	5.900000 2.500000	2.900000
median	6.550000	3.000000	3.400000
Q75	7.200000	7.300000 3.625000	4.000000
max	9.600000	9.200000 5.500000	5.000000
std	1.094659	1.063042 0.786595	0.783690
Albumin_and_Globulin_Ratio_yes Albumin_and_Globulin_Ratio_no			
mean	0.914337	7	1.028588
min	0.300000)	0.370000
Q 25	0.700000)	0.900000
median	0.900000)	1.000000
Q75	1.100000)	1.200000
max	2.800000)	1.900000
std	0.325374	1	0.285658

Esta tabla nos aporta información muy relevante, algunos ejemplos son los siguientes:

- $\bullet\,$ La media de edad en el grupo de los enfermos es de 46 años mientras que en el de no enfermos es 41.24
- Hay un 25% de los enfermos que tienen un valor de Total_Bilirubin superior a 3.62, mientras que en el grupo de los no enfermos solo un 25% supera un valor de 1.1.

Diagrama de puntos de la respuesta (Diseased) en función de predictores cuantitativos

En este caso vamos a generar unos diagramas de puntos de la respuesta en función de cada uno de los predictores cuantitativos. El diagrama de puntos que usaremos es un tipo especial que añade ruido horizontal a los puntos para poder así visulalizar varios puntos que tengan un mismo valor real (valor sin ruido).

```
fig, axs = plt.subplots(3, 3, figsize=(15, 15))
p1 = sns.stripplot(data=Data_Python, x="Diseased", y="Age", jitter=0.3,

    size=4, color='red', ax=axs[0, 0])

p1.set_xticklabels(['Yes', 'No'])
p1.set_yticks( range(int(Data_Python['Age'].min()) ,
→ int(Data_Python['Age'].max()) , 7) )
p2 = sns.stripplot(data=Data_Python, x="Diseased", y="Direct_Bilirubin",

→ jitter=0.3, size=4, color='red', ax=axs[0, 1])
p2.set_xticklabels(['Yes', 'No'])
p3 = sns.stripplot(data=Data_Python, x="Diseased",
y="Alkaline_Phosphotase", jitter=0.3, size=4, color='red', ax=axs[1,
\hookrightarrow 0])
p3.set_xticklabels(['Yes', 'No'])
p4 = sns.stripplot(data=Data_Python, x="Diseased",
→ y="Alamine_Aminotransferase", jitter=0.3, size=4, color='red',
\rightarrow ax=axs[1, 1])
p4.set_xticklabels(['Yes', 'No'])
p5 = sns.stripplot(data=Data_Python, x="Diseased",

→ y="Aspartate_Aminotransferase", jitter=0.3, size=4, color='red',
\rightarrow ax=axs[0, 2])
p5.set_xticklabels(['Yes', 'No'])
p6 = sns.stripplot(data=Data_Python, x="Diseased", y="Total_Protiens",

    jitter=0.3, size=4, color='red', ax=axs[1, 2])
p6.set_xticklabels(['Yes', 'No'])
p7 = sns.stripplot(data=Data_Python, x="Diseased", y="Albumin",

    jitter=0.3, size=4, color='red', ax=axs[2, 2])

p7.set_xticklabels(['Yes', 'No'])
p8 = sns.stripplot(data=Data_Python, x="Diseased",

→ y="Albumin_and_Globulin_Ratio", jitter=0.3, size=4, color='red',
\rightarrow ax=axs[2, 1])
p8.set_xticklabels(['Yes', 'No'])
p9 = sns.stripplot(data=Data_Python, x="Diseased", y="Total_Bilirubin",

    jitter=0.3, size=4, color='red', ax=axs[2, 0])
```

```
p9.set_xticklabels(['Yes', 'No'])
plt.show()
```


Figure 8: Diagrama de puntos Diseased en función de los predictores cuantitativos

4.4 Arboles de clasificación en R

4.4.1 Algoritmo rpart con R

```
%%R
library(rpart)
library(rpart.plot)
library(caret)
library(tidyverse)
```

Vamos a hacer la visualización del arbol con rpart

Figure 9: Arbol rpart con R

Ahora vamos a calcular las predicciones y la matriz de confusión:

```
%%R
prediccion1<-predict(arbol_0,newdata=datos_test,type="class")</pre>
matriz_confusion1<-confusionMatrix(prediccion1,datos_test[["diseased"]])</pre>
%%R
prediccion1
 1
               5
                   6
                      7
                          8
                             9
                                10 11
                                      12 13
                                             14
                                                 15
                                                    16
                                                        17
                                                            18
no no yes yes yes yes
                     no yes
                            no yes yes yes yes
                                                 no yes yes yes yes
                                             no
       23 24 25
                 26
                     27
                         28
                            29
                                30 31 32 33
                                              34
                                                 35
                                                    36
                                                        37
                                                            38
                                                               39
43
           44 45
                 46
                     47
                         48
                            49
                                50 51
                                      52 53 54
                                                 55
                                                    56 57
   42
                                                           58
                                                               59
no yes no
           no yes yes yes no yes yes yes no yes yes yes yes yes yes
                         68 69
                                       72 73
                                             74
                                                 75
                                                        77 78 79 80
61 62
       63
           64 65 66
                     67
                                70 71
                                                     76
                                       no yes yes
yes yes yes
           no no yes yes
                        no yes yes yes
                                                     no yes yes yes yes
                                                 no
                                                     96
81 82 83 84 85 86 87
                        88
                           89
                               90 91
                                       92 93 94
                                                 95
                                                        97
                                                            98 99 100
yes yes no yes no yes yes yes yes no yes no no no yes yes no yes yes
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
yes yes yes yes no no yes yes yes no no no yes no yes yes no yes
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
yes yes yes no yes yes no yes yes no yes yes yes yes yes yes yes yes
141
yes
Levels: yes no
%%R
matriz_confusion1
Confusion Matrix and Statistics
        Reference
Prediction yes no
      yes 80 25
      no
          22 14
```

Kappa: 0.1468

95% CI: (0.5824, 0.7437)

Accuracy : 0.6667

No Information Rate: 0.7234 P-Value [Acc > NIR]: 0.9431

```
Mcnemar's Test P-Value : 0.7705

Sensitivity : 0.7843
Specificity : 0.3590
Pos Pred Value : 0.7619
Neg Pred Value : 0.3889
Prevalence : 0.7234
Detection Rate : 0.5674
Detection Prevalence : 0.7447
Balanced Accuracy : 0.5716

'Positive' Class : yes
```

Debido a la alta complejidad de estos arboles le vamos a hacer un proceso de prepoda, para ello podemos hacer uso tanto del parámetro cp o directamente manipulando los hiperparametros de los modelos.

Arbol podado con una profundidad maxima de 4:

Figure 10: Arbol rpart podado en R

Con esto hemos conseguido un modelo mucho más simple que el anterior sin prepoda. El cual es más facil de interpretar.

En estos gráficos, cada uno de los rectángulos representa un nodo de nuestro árbol, con su regla de clasificación.

Cada nodo está coloreado de acuerdo a la categoría mayoritaria entre los datos que agrupa. Esta es la categoría que ha predicho el modelo para ese grupo.

Dentro del rectángulo de cada nodo se nos muestra qué proporción de casos pertenecen a cada categoría y la proporción del total de datos que han sido agrupados allí.

Estas proporciones nos dan una idea de la precisión de nuestro modelo al hacer predicciones.

Calculamos las predicciones y la matriz de confusión:

```
%%R
prediccion2 <-predict(arbol_1,newdata=datos_test2,type="class")
matriz_confusion2<-confusionMatrix(prediccion2,datos_test2[["diseased"]])</pre>
```

```
%%R
prediccion2
```

```
7
 1
     2
        3
            4
                5
                   6
                          8
                                           13
                                               14
                                                  15
                                                      16
                                                         17
                              9
                                 10
                                    11
                                        12
                                                             18
                                                                    20
    no yes yes yes yes
                      no yes
                             no yes yes yes yes
                                                  no yes yes yes yes
                                               no
                      27
                         28
                             29
                                30
                                    31
                                        32
                                           33
                                               34
                                                      36
                                                         37
       23
           24
               25
                  26
                                                  35
                                                             38
                                                                39
yes yes yes yes
               42
        43
           44
               45
                  46
                      47
                         48
                             49
                                50
                                    51
                                        52
                                           53
                                               54
                                                  55
                                                      56
                                                         57
                                                             58
no yes yes
           no yes yes yes
                         no yes yes yes yes
                                               no yes yes yes yes yes
    62
       63
           64
               65
                  66
                      67
                         68
                             69
                                70
                                    71
                                       72
                                           73
                                               74
                                                  75
                                                      76
                                                         77
                                                             78
                                                                79
yes yes yes
           no
               no yes yes
                         82
       83
           84
               85
                  86
                         88
                                90
                                    91
                                        92
                                           93
                                               94
                                                  95
                                                      96
                                                         97
                                                             98
                                                                99 100
81
                      87
                             89
yes yes no yes yes yes yes yes yes yes yes
                                           no yes
                                                  no yes yes
                                                             no yes yes
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
yes yes yes yes yes no yes yes no no
                                           no yes no yes yes yes yes
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
yes yes yes yes yes yes yes no yes yes no yes yes yes yes yes yes yes yes
141
```

Levels: yes no

yes

%%R

matriz_confusion2

Confusion Matrix and Statistics

Reference

Prediction yes no yes 87 29

no 15 10

Accuracy : 0.6879

95% CI : (0.6045, 0.7633)

No Information Rate : 0.7234 P-Value [Acc > NIR] : 0.84963

Kappa : 0.123

Mcnemar's Test P-Value : 0.05002

Sensitivity : 0.8529

Specificity: 0.2564

Pos Pred Value : 0.7500 Neg Pred Value : 0.4000

Prevalence: 0.7234

Detection Rate: 0.6170

Detection Prevalence: 0.8227

Balanced Accuracy: 0.5547

'Positive' Class : yes

Se puede ver como hemos mejorado un poco la precisión de la predicción simplemente cambiando la profundidad máxima. Cabe remarcar que el algoritmo de los CART utilizan el índice de Gini como criterio de división.

4.4.2 Algoritmo C5.0 con R

Cargamos el paquete específico del Arbol de clasificación C5.0

```
%%R
# install.packages("C50", dependencies=TRUE)
library(C50)
```

Realizamos la partición en datos de entrenaminento y test:

```
%%R

set.seed(0)
tamano_total<-nrow(ilpd)
tamano_entreno<-round(tamano_total*0.75)
datos_indices<-sample(1:tamano_total,size = tamano_entreno)
datos_entreno<-ilpd[datos_indices,]
datos_test<-ilpd[-datos_indices,]</pre>
```

Las siguientes proporciones deberían de ser relativamente similares para que los arboles den unos buenos resultados:

```
%%R
round(table(datos_entreno$diseased)/nrow(datos_entreno), 3)

yes no
0.709 0.291

%%R
round(table(datos_test$diseased)/nrow(datos_test), 3)

yes no
0.726 0.274
```

Ejecución del modelo de clasificación C5.0

```
%%R
modeloC50 <- C5.0(diseased~.,data=datos_entreno,trials=1,rules=FALSE)</pre>
```

```
%%R
summary(modeloC50)
Call:
C5.0.formula(formula = diseased ~ ., data = datos_entreno, trials = 1, rules
= FALSE)
C5.0 [Release 2.07 GPL Edition]
                                 Thu Oct 13 16:14:45 2022
Class specified by attribute `outcome'
Read 437 cases (11 attributes) from undefined.data
Decision tree:
direct_bilirubin > 0.9: yes (135/9)
direct_bilirubin <= 0.9:</pre>
:...alanine_transaminase > 65:
    :...albumin \leq 3.9: yes (35/1)
        albumin > 3.9:
        :...aspartate_transaminase <= 99: no (4/1)
            aspartate_transaminase > 99: yes (4)
    alanine_transaminase <= 65:</pre>
    :...alkaline_phosphatase > 211:
        :...total_bilirubin <= 0.8:
            :...gender = Female:
            : :...age <= 39: yes (2)
                    age > 39: no (5)
            :
                gender = Male:
                :...age <= 13: no (3)
                    age > 13:
                     :...albumin_globulin_ratio <= 0.55: no (2)
                         albumin_globulin_ratio > 0.55: yes (25/4)
        :
           total_bilirubin > 0.8:
            :...age > 37: yes (27/1)
        :
                age <= 37:
                :...total_bilirubin > 1.6: no (2)
                    total_bilirubin <= 1.6:</pre>
                     :...alanine_transaminase <= 23: no (2)
                         alanine_transaminase > 23: yes (10/1)
        alkaline_phosphatase <= 211:</pre>
        :...direct_bilirubin <= 0.1:
            :...gender = Male: yes (21/5)
                gender = Female:
```

```
: :...alkaline_phosphatase <= 168: no (4)
        alkaline_phosphatase > 168: yes (8/2)
direct_bilirubin > 0.1:
:...total_bilirubin <= 0.7:
    :...alanine_transaminase > 33:
        :...aspartate_transaminase > 64: yes (3)
            aspartate_transaminase <= 64:</pre>
            :...aspartate_transaminase <= 41: yes (2)
                aspartate_transaminase > 41: no (2)
        alanine_transaminase <= 33:</pre>
        :...albumin_globulin_ratio > 0.9: no (19)
            albumin_globulin_ratio <= 0.9:</pre>
            :...gender = Female:
                 :...alkaline phosphatase <= 176: yes (3/1)
                     alkaline_phosphatase > 176: no (3)
                gender = Male:
                 :...age <= 34: no (2)
                     age > 34: yes (5/1)
    total_bilirubin > 0.7:
    :...gender = Female:
        :...alanine_transaminase > 29: no (7)
            alanine_transaminase <= 29:</pre>
            :...total_bilirubin > 0.9: no (7/1)
                total_bilirubin <= 0.9:</pre>
                 :...albumin <= 4.3: yes (23/3)
                     albumin > 4.3: no (4/1)
        gender = Male:
        :...aspartate_transaminase <= 25:
            :...albumin <= 3.9: no (18/1)
                albumin > 3.9: yes (5/1)
            aspartate_transaminase > 25:
            :...aspartate_transaminase > 70: no (4)
                aspartate_transaminase <= 70:</pre>
                 :...albumin_globulin_ratio <= 0.58: no (3)
                     albumin_globulin_ratio > 0.58: yes (38/11)
```

Evaluation on training data (437 cases):

(a): class yes

4

306

40 87 (b): class no

Attribute usage:

```
100.00% direct_bilirubin
69.11% alanine_transaminase
59.27% alkaline_phosphatase
51.72% total_bilirubin
43.94% gender
22.88% albumin_globulin_ratio
21.28% albumin
19.45% age
18.99% aspartate_transaminase
```

Time: 0.0 secs

Podemos ver el gráfico del modelo:

```
%%R
plot(modeloC50)
```


Figure 11: Arbol C5.0 en R

Calculamos las predicciones del modelo:

Calculamos la matriz de confusión:

TAC = 0.6986

```
%%R

(matriz_confusion<-table(predicho=prediccion, real=datos_test$diseased))

real
predicho yes no
    yes 92 30
    no 14 10</pre>
```

Calculamos la tasa de acierto en la clasificacion (TAC) obtenida parte del modelo, es decir el porcentaje de clasificaciones correctas.

```
%%R
100*sum(diag(matriz_confusion))/sum(matriz_confusion)
[1] 69.86301
```

Calculamos la tasa de error de clasificacion (TEC = 1 - TAC) cometido por el modelo, que es el porcentaje de clasificaciones incorrectas

```
%%R
error_clas<-round(mean(prediccion != datos_test$diseased),3)</pre>
```

[1] "El error de clasificacion es del: 30.1 %. 102 clasificaciones correctas de un total $\label{eq:TEC} {\rm TEC} = 0.301$

Ahora vamos a podar el arbol con la libreria C5.0

Seleccionamos la submuestra del 75% de los datos

```
%%R
set.seed(0)
tamano_total<-nrow(ilpd)
tamano_entreno<-round(tamano_total*0.75)
datos_indices<-sample(1:tamano_total, size = tamano_entreno)
datos_entreno<-ilpd[datos_indices,]
datos_test<-ilpd[-datos_indices,]</pre>
```

Las siguientes proporciones deberían de ser relativamente similares para que los arboles den unos buenos resultados:

```
%%R
round(table(datos_entreno$diseased)/nrow(datos_entreno), 3)

yes no
0.709 0.291

%%R

round(table(datos_test$diseased)/nrow(datos_test), 3)

yes no
0.726 0.274
```

Ejecución del arbol de clasificación podado con la libreria C5.0

```
%%R
modeloC50<-C5.0(diseased~.,data=datos_entreno,trials=1,rules=FALSE,control
Información del modelo creado
%%R
summary(modeloC50)
Call:
C5.0.formula(formula = diseased ~ ., data = datos_entreno, trials = 1, rules
= FALSE, control = C5.0Control(minCases = 10, earlyStopping = TRUE))
                                   Thu Oct 13 16:14:56 2022
C5.0 [Release 2.07 GPL Edition]
Class specified by attribute `outcome'
Read 437 cases (11 attributes) from undefined.data
Decision tree:
direct_bilirubin > 0.9: yes (135/9)
direct_bilirubin <= 0.9:</pre>
:...alanine_transaminase > 65: yes (43/4)
    alanine_transaminase <= 65:</pre>
    :...alkaline_phosphatase > 211: yes (78/20)
        alkaline_phosphatase <= 211:</pre>
        :...direct_bilirubin <= 0.1: yes (33/11)
           direct_bilirubin > 0.1:
            :...total_bilirubin <= 0.7: no (39/11)
               total_bilirubin > 0.7:
               :...gender = Female:
                    :...total_bilirubin <= 0.8: yes (20/5)
                       total_bilirubin > 0.8: no (21/7)
                   gender = Male:
                    :...aspartate_transaminase <= 25: no (23/5)
                       aspartate_transaminase > 25: yes (45/18)
Evaluation on training data (437 cases):
       Decision Tree
```

```
Size Errors
9 90(20.6%) <<
```

```
(a) (b) <-classified as
---- 287 23 (a): class yes
67 60 (b): class no
```

Attribute usage:

```
100.00% direct_bilirubin
69.11% alanine_transaminase
59.27% alkaline_phosphatase
33.87% total_bilirubin
24.94% gender
15.56% aspartate_transaminase
```

Time: 0.0 secs

Gráfico del modelo:

%%R

plot(modeloC50)

Figure 12: Arbol C5.0 podado con R

Calculamos las predicciones:

```
%%R
(prediccion<-predict(modeloC50, newdata = datos test,type="class"))</pre>
  [1] no no yes yes yes yes yes yes no yes yes yes yes yes yes yes
 [37] yes yes yes yes yes yes yes yes no yes no no yes yes yes yes
 [55] yes yes yes yes yes yes yes yes no no yes no yes no no yes yes
 [73] no yes yes yes yes no yes yes yes yes yes yes yes no yes no
 [91] yes no yes yes yes yes no yes no yes no yes no yes yes yes
[109] yes yes yes yes yes yes no yes yes no no yes yes yes yes yes yes
[127] yes yes yes yes yes yes no yes yes no yes yes yes yes yes yes yes
[145] yes yes
Levels: yes no
Calculamos la matriz de confusión:
%%R
(matriz_confusion<-table(predicho=prediccion, real=datos_test$diseased))</pre>
       real
predicho yes no
    yes 92 28
       14 12
    no
Porcentaje de clasificados correctamente:
%%R
100*sum(diag(matriz_confusion))/sum(matriz_confusion)
[1] 71.23288
\mathrm{TAC} = 0.7123
```

Error de clasificación :

[1] "El error de clasificacion es del: 28.8 %. 104 clasificaciones correctas de un total $\label{eq:TEC} {\rm TEC} = 0.288$

4.4.3 Algoritmo CART en R con mlr3

No es necesario preprocesar los datos para árboles (dummy y normalización).

```
%%R
# install.packages('mlr3extralearners')
library(mlr3)
library(mlr3learners)

R[write to console]:
Attaching package: 'mlr3'

R[write to console]: The following object is masked from 'package:skimr':
    partition

Creamos la tarea de clasificación:

%%R
```

ILPD_task <- as_task_classif(ilpd , target = "diseased")</pre>

Partimos el data-set en parte de test y parte de train:

```
%%R
res_desc <- rsmp("holdout" , ratio=0.75)
set.seed(0)
res_desc$instantiate(ILPD_task)</pre>
```

Definimos el método de aprendizaje:

```
%%R
tree_learner <- lrn("classif.rpart" , maxdepth=4)</pre>
```

Entrenamos y evaluamos el modelo:

```
INFO [16:15:05.775] [mlr3] Applying learner 'classif.rpart' on task 'ilpd' (iter 1/1)
```

Calculamos las predicciones:

```
%%R

tree_test<-tree_resample$predictions()
tree_test[[1]]</pre>
```

<PredictionClassif> for 146 observations:

```
row_ids truth response
          yes
                    no
      9
          no
                    no
     11
          yes
                   yes
    575
                   yes
          yes
    577
          yes
                   yes
    583
          no
                   yes
```

Calculamos la accuracy (que es la TAC):

%%R

```
tree acc <- tree resample$aggregate(msr("classif.acc"))</pre>
tree_acc
classif.acc
  0.6917808
Visualizamos el modelo:
Primero obtenderemos la expresion en texto del modelo, luego su gráfico.
%%R
tree_learner<-tree_resample$learners[[1]]</pre>
tree_learner$model
n = 437
node), split, n, loss, yval, (yprob)
      * denotes terminal node
 1) root 437 127 yes (0.70938215 0.29061785)
   2) alkaline_phosphatase>=211.5 216 28 yes (0.87037037 0.12962963)
     4) total_bilirubin>=0.85 169 14 yes (0.91715976 0.08284024) *
     5) total_bilirubin< 0.85 47 14 yes (0.70212766 0.29787234)
      10) aspartate_transaminase>=45.5 20  2 yes (0.90000000 0.10000000) *
      11) aspartate_transaminase< 45.5 27 12 yes (0.55555556 0.44444444)
       23) aspartate_transaminase>=27.5 13
                                            4 no (0.30769231 0.69230769) *
   3) alkaline_phosphatase< 211.5 221 99 yes (0.55203620 0.44796380)
     6) total_bilirubin>=1.75 36
                                 5 yes (0.86111111 0.13888889) *
     7) total_bilirubin< 1.75 185 91 no (0.49189189 0.50810811)
      14) aspartate transaminase>=26.5 99 42 yes (0.57575758 0.42424242) *
      15) aspartate_transaminase< 26.5 86 34 no (0.39534884 0.60465116) *
```


Figure 13: Arbol rpart con mlr3

4.4.4 4.4.4. Algoritmo C5.0 en R con mlr3

```
%%R
library(mlr3)
library(mlr3learners)
library(mlr3extralearners)
```

Cambiamos el tipo de los datos a numerico porque si no el algoritmo no funciona.

```
%%R

ilpd$age<-as.numeric(ilpd$age)

ilpd$alkaline_phosphatase<-as.numeric(ilpd$alkaline_phosphatase)

ilpd$alanine_transaminase<-as.numeric(ilpd$alanine_transaminase)

ilpd$aspartate_transaminase<-as.numeric(ilpd$aspartate_transaminase)</pre>
```

Creamos la tarea de clasificación:

```
%%R

ILPD_task<-as_task_classif(ilpd,target = "diseased")</pre>
```

Definimos el método de evaluación:

```
%%R

res_desc<-rsmp("holdout",ratio=0.75)
set.seed(0)
res_desc$instantiate(ILPD_task)</pre>
```

Definimos el método de aprendizaje:

```
%%R
tree_learner<-lrn("classif.C50")</pre>
```

Entrenamos y evaluamos el modelo:

```
INFO [16:15:13.538] [mlr3] Applying learner 'classif.C50' on task 'ilpd' (iter 1/1)
```

Obtenemos la predicciones del modelo:

```
%%R
tree_test<-tree_resample$predictions()</pre>
tree_test[[1]]
<PredictionClassif> for 146 observations:
    row_ids truth response
              yes
                         no
          9
              no
                        yes
         11
              yes
                       yes
        575
             yes
                        yes
        577
              yes
                        yes
        583
              no
                        yes
Calculamos la accuracy (TAC) del modelo:
%%R
tree_acc<-tree_resample$aggregate(msr("classif.acc"))</pre>
tree_acc
classif.acc
  0.6986301
Visualizamos el modelo:
%%R
tree_learner<-tree_resample$learners[[1]]</pre>
tree_learner$model
Call:
C50::C5.0.formula(formula = f, data = data, control = ctrl)
Classification Tree
Number of samples: 437
Number of predictors: 10
Tree size: 35
Non-standard options: attempt to group attributes
```

Como vemos no da plena información sobre la estructura del modelo.

Ahora hemos intentado graficar el modelo, pero nos sale un error.

```
%%R
# plot(tree_learner$model)
```

NULL

4.4.5 4.4.5. Comparación entre R y mlr3

Algoritmo RPART con Rpart (R) Inicializamos la semilla y dividimos el data frame en datos de muestra de entrenamiento y muestra de test con funciones de dplyr. Después creamos el modelo con rpart y le metemos la modelo la variable respuesta, el data frame de entrenamiento, el método y el coeficiente de partición que nos poda el árbol. Posteriormente, sacamos las predicciones a partir del modelo, el data frame de test y el type. Por último, lo que hacemos es sacar la matriz de confusiones, que nos da una medida de cómo de bueno es nuestro modelo. Más concretamente, en este problema, nos interesa la accuracy.

Aunque no se pide, para poder podar los árboles en este caso, lo que se puede hacer es ajustar los hiperparámetros como pueden ser la profundidad máxima. Y en este tipo de árboles se utiliza GINI como criterio de división.

Algoritmo C5.0 con C5.0 (R) Lo primero que hacemos es crear la semilla y dividir el data frame en datos de entrenamiento y datos de test. Hecho esto, hacemos el modelo con C5.0 y le metemos la variable respuesta, el data frame de entrenamiento, si queremos que nos saque las reglas y el número de intentos (este es un argumento que nos es útil en un proceso de boosting). Para ver la información del modelo creado lo que hacemos es uso de la función summary y lo graficamos con plot. Por último, lo que hacemos es como en el caso anterior sacar las predicciones con predict y la matriz de confusiones, en este caso la hemos sacado con table, que no te saca como en el caso anterior otros estadísticos a parte de la accuaracy como puede ser Kappa. En este caso, no es así y para sacar la accuracy, tenemos que calcularla a mano.

Para podar, este tipo de árboles lo que se puede hacer es usar control dentro de la función que crea el modelo, en nuestro caso hemos puesto un mínimo de casos y una parada rápida. La diferencia principal entre los algoritmos es que el C5.0 utiliza la entropía como criterio de división.

Algoritmo RPART con Mlr3 Lo primero que hacemos es crear una tarea de clasificación, donde tenemos los datos y el problema a resolver. Después le metemos el método de evaluación, en este caso holdout al 75% y dividimos los datos en test y entrenamiento. Posteriormente, definimos el método de aprendizaje con un learner donde se contiene el método a utilizar. Lo entrenamos y evaluamos con resample y los distintos objetos que hemos creado en pasos anteriores. Para sacar las predicciones, la accuracy y visualizar el modelo, lo que debemos hacer es llamar a los elementos del modelo pertinentes, y no como en R que debemos calcularlos a mano.

Algoritmo C5.0 con Mlr3 Lo primero que hacemos es cambiar las variables que son enteras a numéricas. Después, de la misma forma que para rpart creamos la tarea donde metemos

los datos y le indicamos la variable respuesta. Definimos el método de evaluación, que como en el anterior usamos un holdout al 75% y dividimos los datos en estrenamiento y test. Posteriormente, definimos el método de aprendizaje con un learner y en este caso es "classif.c50". A partir de aquí, procedemos de la misma forma que en el caso anterior con las predicciones, accuracy y visualización del modelo.

A modo de resumen, con R es bastante intutivo el proceso, pero tiene el problema de que cuando quieres sistematizar el análisis, ya que este tipo de árboles dependen mucho de como sea la partición en muestra entrenamiento y muestra test, es realmente complicado. También podemos ver como el ajuste de hiperparámetros o la poda de los árboles es bastante manual, por lo que esto no es demasiado eficiente.

En general, en mlr3 está todo el proceso mucho más optimizado y de forma más automática. Además el preproceso o el ajuste de hiperparámetros es mucho más fácil que con R. Podemos decir que mlr3 es una familia de paquetes que forman un ecosistema muy avanzado para algoritmos de machine learning, aun así es algo complicado acostumbrarnos a la sintaxis del paquete y a su filosofía. Después de haber trabajado un tiempo con este grupo de paquetes, está claro que es mucho mejor que hacerlo con R y algunas librerías sueltas.

A modo de resumen, en R puedes hacer problemas básicos, pero a la hora de hacer un proceso completo, lo idóneo es usar la librería mlr3 a pesar de que la curva de aprendizaje y aclimatación al paquete por su filosofía y sintaxis pueda parecer algo complicada al principio. Todo ello sin decir que con mlr3 todos los algoritmos se programan de una forma similar, ahorrando líneas de código con respecto a hacerlo con rpart y C5.0.

En ninguno de los casos, hace falta un preproceso de los datos.

4.4.6 4.4.6. Comparación de resultados

Rpart con R

Sin podar:

5 predicciones primeras: NO NO YES YES YES

Accuracy modelo: 0.6667

Primeros índices: 1 2 3 5 6

Podado:

5 predicciones primeras: NO NO YES YES YES

Accuracy modelo: 0.6879 Primeros índices: 1 2 3 5 6

C5.0 con R

Sin podar:

5 predicciones primeras: NO YES YES YES YES

Accuracy modelo: 0.6986 Primeros índices: 1 2 3 5 6

Podado:

5 predicciones primeras: NO NO YES YES YES

Accuracy modelo: 0.7123 Primeros índices: 1 2 3 5 6

Rpart con Mlr3

5 predicciones primeras: NO NO YES YES YES

Accuracy modelo: 0.6917

Primeros índices: 4 9 11 12 13

C5.0 con Mlr3

5 predicciones primeras: NO YES YES YES YES

Accuracy modelo: 0.6986

Primeros índices: 4 9 11 12 13

Se puede ver como dan cosas distintas con R y Mlr3 aunque la diferencia es mínima. También vemos diferencias entre algoritmos ya que parece que dan una mayor precisión los algoritmos c5.0 además de una mayor eficiencia computacional. En cuanto a los índices, podemos ver como Mlr3 coge distintos de los que toma R. También tenemos que remarcar que la semilla es la misma en todos los casos.

4.5 4.5. Arboles de clasificación en Python

4.5.1 4.5.1. Arboles de clasificación: teoría

Vamos a considerar el siguiente tipo de arboles (matematicos):

```
from IPython.display import Image
Image(filename='arbol.jpg', width = 1000, height = 400)
```


Figure 14: jpeg

Es importante tener en cuenta los elementos que estan reflejados, pues los usaremos posteriormente. Los arboles estan compuestos de iteraciones, que a su vez cada una de ellas se dividen en dos tallos. La union de tallos de distintas iteraciones da lugar a las ramas del arbol.

4.5.1.1 Arboles de clasificación La idea de los algoritmos de arboles de clasificacion es segmentar las observaciones de los predictores $X_1, ..., X_p$ para predecir el valor de la respuesta Y en base a esa informacion segmentada. Es algo asi como predecir Y por grupos/segmentos.

4.5.2 Definicion formal de los arboles de clasificación:

Elementos Básicos

- Tenemos unos predictores $X_1,...,X_p$ y una variable respuesta **categorica** Y
- Tenemos un arbol T de la forma del expuesto en la imagen con m-1 iteraciones y m ramas.
- r_{ht} es la rama h del arbol con t iteraciones.
- Cada iteración del arbol tiene asociado uno de los predictores $X_1, ..., X_n$
- Cada iteración del arbol tiene dos tallos (tallo 1 (izquierdo) y tallo 2 (derecho)).
- En cada tallo de una iteración se define un intervalo.
- I_{lt} es el intervalo asociado al tallo l de la iteración t
- Para simplificar el problema consideraremos $I_{1t} = (-\infty, s_t)$ y $I_{2t} = [s_t, \infty]$ donde s_t es llamado punto de corte de la iteración t del arbol
- R_{ht} es la region (rectangulo *n*-dimensional) definida por la rama h de un arbol con t iteraciones

4.5.2.0.1 Criterio de prediccion de la variable respuesta Dada una nueva observacion $x_{new} = (x_{new,1}, x_{new,2}, ..., x_{new,p})$ la idea es predecir y_{new} como sigue:

Sea $f_{r, R_{ht}}$ \$ la frecuencia relativa de la clase/grupo r en la rama h de un arbol con t iteraciones.

Es decir, es la proporcion de individuos de la muestra de entrenamiento que caen en la rama h de un arbol con t iteraciones que pertenecen a la clase r (es decir, para los que Y=r):

$$f_{r,R_{ht}} = \frac{\# \{i / x_i \in R_{ht} \ y \ y_i = r\}}{\# \{i / x_i \in R_{ht}\}}$$

Donde: $r \in Rango(Y) = \{0, 1, ..., c - 1\}$

 $Si \ x_{new} \in R_{ht} \Rightarrow x_{new}$ es clasificado en la clase/grupo mayoritaria (mas frecuente) en la rama $h(r_h)$

Por tanto:

$$Si \ r_{R_{ht}}^* = arg \ Max \ (f_{r,R_{ht}}) \ , entonces :$$

$$Si \ x_{new} \in R_h \ \Rightarrow \ \widehat{y}_{new} = r_{R_{ht}}^*$$

Observación:

Definida la region R_{ht} , es relativamente sencillo resolver el problema M_r^{ax} ($f_{r,R_{ht}}$) y asi obtener $r_{R_{ht}}^*$

4.5.2.0.2 Objetivo : Usando la tasa de error de clasificacion como métrica a optimizar Definimos el error de entrenamiento de la rama h de un arbol de clasificacion con t iteraciones como la tasa de error de clasificacion para las observaciones de entrenamiento que caen en la rama h de dicho arbol, es decir, como:

$$TEC(R_{ht}) = 1 - f_{r_{R_{ht}}^*, R_{ht}}$$

Observación:

 $f_{r_{R_{ht}}^*,R_{ht}}$ es la proporcion de individuos de la muestra de entrenamiento que caen en la rama h de un arbol con t iteraciones que son de la clase/grupo $r_{R_{ht}}^*$ (el valor de la variable respuesta para ellos es $r_{R_{ht}}^*$)

Como el modelo clasifica a los que caen en esa rama como de la clase $r_{R_{ht}}^*$, es decir, como la predicion de la respuesta para todo individuo que pertenezaca a esa rama es $r_{R_{ht}}^*$, por parte del modelo, entonces se tiene lo siguiente:

 $f_{r_{R_{ht}}^*,R_{ht}}$ es la proporcion de individuos de la muestra de entrenamiento que caen en la rama h de un arbol con t iteraciones que son correctamente clasificados por el modelo (proporcion de individuos de la region R_{ht} a los que se les ha predicho bien la respuesta).

 $TEC(R_{ht})$ es la proporcion de individuos de la muestra de entrenamiento que caen en la rama h de un arbol con t iteraciones (sus observaciones de los predictores pertenecen a R_{ht}) y que han sido clasificados erroneamente. Se les ha clasificado en la clase $r_{R_{ht}}^*$ y su clase era otra diferente, es decir, tenian un valor distinto a $r_{R_{ht}}^*$ para la variable respeusta, que es el valor que el modelo les predice para la respuesta.

Definimos el **error global de entrenamiento de un arbol de clasificación** como la suma de los errores de entrenamiento de las ramas del arbol de clasificación:

$$\sum_{h=1}^{m} TEC(R_h)$$

El objetivo es construir un arbol de regresion con m ramas tal que **minimice** el **error** global de entrenamiento.

Es decir, formalmente el objetivo es:

$$\min_{R_1,\dots,R_m} \sum_{h=1}^m TEC(R_h)$$

Pero para escoger las regiones $R_1, ..., R_m$ que definen las ramas del arbol hay que determinar dos elementos que definen a su vez a las regiones:

- 1. Qué predictores estan asociados a cada iteración del arbol \Rightarrow Para cada iteración i escoger X_i \$(\$ es decir, escoger j)
- 2. Qué intervalos estan asociados a cada uno de los dos tallos de cada interaccion \Rightarrow Para cada iteracion i escoger I_{1i} y I_{2i} (es decir, escoger el punto de corte s_i)

Por tanto el porblema a resolver se puede reformular como:

Para cada iteracion i escoger X_j (es decir j) y (I_{1i}, I_{2i}) (es decir s_i) tal que se acaben formando un arbol cuyas ramas definan unas regiones $R_1, ..., R_m$ que **minimicen** $\sum_{h=1}^m TEC(R_h)$

4.5.2.0.3 Objetivo : Usando el índice de Gini como métrica a optimizar Definimos el error de entrenamiento de la rama h de un arbol de clasificacion con t iteraciones como el índice de Gini de la respuesta en la rama h del arbol con t iteraciones (indice de gini de la respuesta en la region R_{ht}), es decir, como:

$$G_{R_{ht}} = \sum_{r=0,1,\dots,c-1} f_{r,R_{ht}} \cdot (1 - f_{r,R_{ht}})$$

Donde: $Rango(Y) = \{0, 1, ..., c - 1\}$

 $G_{R_{ht}}$ toma valores pequeños cuando la frecuencia de una clase r = 0, 1, ... en la region R_{ht} es alta , y por tanto la del resto baja.

 $G_{R_{ht}}$ toma valores altos cuando las frecuencias de las clases se reparten de manera "igualitaria" en la region R_{ht} . Y cuanto mas igualitaria es la reparticion de las classes, mas alto es $G_{R_{ht}}$. Hasta el punto que cuando la reparticion es totalmente igualitaria, esto es, cada clase tiene la misma frecuencia , si hay c clases, cada una tiene una frecuencia relativa de 1/c en la region, entonces en indicide de Gini alcanza su maximo valor.

Ejemplo:

Para c = 3 $(Rango(Y) = \{0, 1, 2\})$

Si tenemos: $f_{0,R_{ht}} = 0.40$, $f_{1,R_{ht}} = 0.30$ y $f_{2,R_{ht}} = 0.30$ \Rightarrow \$G_{R_{ht}} = 0.66 \$

Si tenemos: $f_{0,R_{ht}} = 0.80$, $f_{1,R_{ht}} = 0.10$ y $f_{2,R_{ht}} = 0.10$ \Rightarrow \$G_{R_{ht}} = 0.34 \$

Si tenemos: $f_{0,R_{ht}} = 0.9$, $f_{1,R_{ht}} = 0.05$ y $f_{2,R_{ht}} = 0.05$ \Rightarrow \$G_{R_{ht}} = 0.185 \$

Teniendo esto en cuenta nos interesan que en cada rama (region R_{ht}) la frecuencia de la clase mayoritaria sea lo mayor posible, y eso equivale a que el indice de Gini sea lo menos posible dentro de cada rama, siguiendo la filosofia empleada con la TEC, donde nos interesaba que $f_{r_{R_{ht}}^*,R_{ht}}$ fuese lo mayor posible en cada rama.

Definimos el **error global de entrenamiento de un arbol de clasificación** como la suma de los errores de entrenamiento de las ramas del arbol de clasificación:

$$\sum_{h=1}^{m} G_{R_{ht}}$$

El **objetivo** es construir un arbol de regresion con m ramas tal que **minimice** el **error** global de entrenamiento.

Es decir, formalmente el objetivo es:

$$\underset{R_{1,..,R_{m}}}{Min} \sum_{h=1}^{m} G_{R_{ht}}$$

En el fondo minimizar el error de clasificacion de un arbol de clasificacion equivale a minimizar el indice de Gini en las ramas del arbol conjuntamente (a nivel global).

Pero para escoger las regiones $R_1, ..., R_m$ que definen las ramas del arbol hay que determinar dos elementos que definen a su vez a las regiones:

- 1. Qué predictores estan asociados a cada iteracion del arbol \Rightarrow Para cada iteracion i escoger X_j \$(\$ es decir, escoger j)
- 2. Qué intervalos estan asociados a cada uno de los dos tallos de cada interaccion \Rightarrow Para cada iteracion i escoger I_{1i} y I_{2i} (es decir, escoger el punto de corte s_i)

Por tanto el porblema a resolver se puede reformular como:

Para cada iteracion i escoger X_j (es decir j) y (I_{1i}, I_{2i}) (es decir s_i) tal que se acaben formando un arbol cuyas ramas definan unas regiones $R_1, ..., R_m$ que **minimicen** $\sum_{h=1}^m G_{R_{ht}}$

4.5.2.1 Algoritmo para la resolucion del problema ⇒ Algoritmo de particion binaria El siguiente algoritmo es una forma de resolver el problema planteado anteriormente. Consiste en ir generando el arbol de manera secuencial, iteracion a iteracion, minimizando en cada paso el error de clasificacion para las observaciones de train que caen en las ramas asociadas a la iteracion en cuestion que esta siendo optimizada.

El algoritmo se basa en la resolucion secuencial de problemas de minimizacion, uno por cada iteracion tenga el arbol que se acabará generando.

Importante:

Para esta exposicion teorica del algoritmo se va a usar como metrica principal la TEC , pero es facilmente extrapolable al caso en el que se usase el índice de Gini como metrica a optimizar.

4.5.2.1.1 Problema de la Iteración 1 Arbol con 1 iteración:

```
from IPython.display import Image
Image(filename='arbol liter.jpg', width = 400, height = 200)
```

La idea es, determinar las regiones R_{11} y R_{21} (es decir, j y s_1) del arbol con 1 iteracion tal que minimizan el error de entrenamiento global de dicho arbol con 1 iteracion.

Mas formalmente el problema planteado es:

• Si utilizamos la **TEC** como metrica de error a minimizar:

Figure 15: jpeg

$$\begin{aligned} & \underset{R_{11},R_{21}}{Min} \ \left(\ TEC_1 = TEC(R_{11}) + TEC(R_{21}) \ \right) \ = \\ & = \ \underset{R_{11},R_{21}}{Min} \ \left(\ \left(1 - f_{r_{R_{11}}^*,R_{11}} \right) \ + \ \left(1 - f_{r_{R_{21}}^*,R_{21}} \right) \ \right) \\ & = \ \underset{R_{11},R_{21}}{Min} \ \left(\ 1 - \frac{\# \left\{ i \ / \ x_i \in R_{11} \ y \ y_i = r_{R_{11}}^* \right\}}{\# \left\{ i \ / \ x_i \in R_{11} \right\}} \ + \ 1 - \frac{\# \left\{ i \ / \ x_i \in R_{21} \ y \ y_i = r_{R_{21}}^* \right\}}{\# \left\{ i \ / \ x_i \in R_{21} \right\}} \ \right) \\ & = \ \underset{j,s_1}{Min} \ \left(\ 1 - \frac{\# \left\{ i \ / \ x_i < s_1 \ y \ y_i = r_{R_{21}}^* \right\}}{\# \left\{ i \ / \ x_i < s_1 \right\}} \ + \ 1 - \frac{\# \left\{ i \ / \ x_i \geqslant s_1 \ y \ y_i = r_{R_{21}}^* \right\}}{\# \left\{ i \ / \ x_i \geqslant s_1 \right\}} \ \right) \end{aligned}$$

• Si utilizamos el **índice de Gini** como metrica de error a minimizar:

$$\begin{split} & \underset{R_{11},R_{21}}{Min} \quad \left(\, G_{1} = G_{R_{11}} + G_{R_{21}} \, \right) \, = \\ & = \, \underset{R_{11},R_{21}}{Min} \left\{ \, \, \sum_{r=0,1,\dots,c-1} f_{r,R_{11}} \cdot (1-f_{r,R_{11}}) \, + \, \sum_{r=0,1,\dots,c-1} f_{r,R_{21}} \cdot (1-f_{r,R_{21}}) \, \right\} \\ & = \, \underset{R_{11},R_{21}}{Min} \left\{ \, \, \sum_{r=0,1,\dots,c-1} \frac{\# \left\{ i \, / \, x_{i} \in R_{11} \, \, y \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{i} \in R_{11} \, \, y \, \, y_{i} = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{i} \in R_{11} \, \, y \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{i} \in R_{21} \, \, y \, \, y_{i} = r \right\}} \right) \right. \\ & + \, \sum_{r=0,1,\dots,c-1} \frac{\# \left\{ i \, / \, x_{i} \in R_{21} \, \, y \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{i} \in R_{21} \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{i} \in R_{21} \, \, y \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{i} \in R_{21} \right\}} \right) \right. \\ & = \, \underset{j,s_{1}}{Min} \left\{ \sum_{r=0,1,\dots,c-1} \frac{\# \left\{ i \, / \, x_{ij} < s_{1} \, \, y \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{ij} < s_{1} \, \, y \, \, y_{i} = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} < s_{1} \, \, y \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \right\}} \right) \right. \\ & + \, \sum_{r=0,1,\dots,c-1} \frac{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}} \right) \right. \\ & + \, \sum_{r=0,1,\dots,c-1} \frac{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}} \right) \right. \\ & + \, \sum_{r=0,1,\dots,c-1} \frac{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}} \right) \right. \\ & + \, \sum_{r=0,1,\dots,c-1} \frac{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}} \right) \right. \\ & + \, \sum_{r=0,1,\dots,c-1} \frac{\# \left\{ i \, / \, x_{ij} \geqslant s_{1} \, \, y \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{ij} \geqslant s$$

Notar que:

$$R_{11} = \{(v_1, ..., v_n)/v_j < s_1\} \Rightarrow [x_i \in R_{11} \Leftrightarrow x_{ij} < s_1] \Rightarrow \{i/x_i \in R_{11}\} = \{i/x_{ij} < s_1\}$$

$$R_{21} = \{(v_1, ..., v_n)/v_j \geqslant s_1\} \quad \Rightarrow \quad [x_i \in R_{21} \iff x_{ij} \geqslant s_1] \quad \Rightarrow \quad \{i/x_i \in R_{11}\} = \{i/x_{ij} \geqslant s_1\}$$

Notese que determinar R_{11} y R_{21} es equivalente a determinar el predictor X_j (es decir j) y el punto de corte s_1 asociados a la Iteración 1, ya que R_{11} y R_{21} quedan determinadas al fijar X_j y s_1

Notar también que:

Fijado (j, s_1) puede calcularse $r_{R_{11}}^*$ como solucion al problema de maximizacion:

$$M_{r}^{ax} (f_{r,R_{11}}) = M_{r}^{ax} \left(\frac{\# \{i / x_{i} \in R_{11} \ y \ y_{i} = r\}}{\# \{i / x_{i} \in R_{11}\}} \right) = M_{r}^{ax} \left(\frac{\# \{i / x_{ij} < s_{1} \ y \ y_{i} = r\}}{\# \{i / x_{ij} < s_{1}\}} \right)$$

Fijado (j, s_2) puede calcularse $r_{R_{21}}^*$ como solucion al problema de maximizacion:

$$M_{r}^{ax} (f_{r,R_{21}}) = M_{r}^{ax} \left(\frac{\# \{i / x_{i} \in R_{21} \ y \ y_{i} = r\}}{\# \{i / x_{i} \in R_{21}\}} \right) = M_{r}^{ax} \left(\frac{\# \{i / x_{ij} \geqslant s_{1} \ y \ y_{i} = r\}}{\# \{i / x_{ij} \geqslant s_{1}\}} \right)$$

Donde:

- $j \in \{1, 2, ..., p\}$
- Si X_i es cuantitativa:

Ordenamos las observaciones de X_j y quitamos repeticiones, obtenemos X_j^{order} , entonces:

$$s_1 \in \left\{ \frac{x_{(1)j} + x_{(2)j}}{2} , \frac{x_{(2)j} + x_{(3)j}}{2} , ..., \frac{x_{(n-1)j} + x_{(n)j}}{2} \right\}$$

Donde $x_{(i)j}$ ses la observación que ocupa la posición *i*-esima en X_i^{order}

• Si X_j es categorica con c categorias:

$$s_1 \in Rango(X_j) = \{0, 1, ..., c - 1\}$$

Notese que la eleccion de X_j determina el campo de variacion de s_1

- $TEC(R_{11})$ es el error de entrenamiento de la rama 1 de un arbol de clasificación con 1 iteracion
- $TEC(R_{21})$ es el error de entrenamiento de la rama 2 de un arbol de clasificación con 1 iteracion

Estos elementos no volveran a ser definidos en los sucesivos problemas de iteración para no pecar de ser repetitivo, puesto que pueden ser facilmente extrapolados a cualquier problema de iteración. Ademas las definiciones generales de estos elementos han sido expuestas ya anteriormente.

- Denotaremos por $\left(\,j^{*(i)}\,,\,s^{*(i)}\,\right)$ a una solucion del problema de la Iteracion i , para i=1,...,m-1

Arbol obtenido tras resolver el problema de la Iteración 1:

```
from IPython.display import Image
Image(filename='iter1.jpg', width = 400, height = 200)
```

- Si alguna de las ramas del arbol resultante de resolver el problema la iteración 1 tiene menos de k observaciones de train \Rightarrow se para el algoritmo
- Si todas las ramas tienen k o mas observaciones de train \Rightarrow el algoritmo continua, se pasa a resolver el problema de la iteracion siguiente, en este caso el de la iteracion 2

Notese que k será un hiperparametro del algoritmo.

4.5.2.1.2 Problema de la Iteracion 2 Arbol con 2 iteraciones tras resolver el problema anterior:

Figure 16: jpeg

```
from IPython.display import Image
Image(filename='arbol 2iter.jpg', width = 550, height = 300)
```


Figure 17: jpeg

Si estamos en este problema es porque ninguna rama del arbol resultante del problema de la Iteración 1 tiene menos de k observaciones

La idea es, determinar las regiones R_{12} , R_{22} y R_{32} del arbol con 2 iteraciones (es decir, j y s_2), considerando la solucion del problema de la iteracion 1 (arbol de arriba), que minimizan el error de entrenamiento global de dicho arbol.

Notese que R_{32} ya esta determinada tras la resolucion del problema anterior, por ello realmente solo hay que determinar las regiones R_{12} y R_{22} óptimas (a saber, j y s_2 óptimos)

Mas formalmente el problema planteado es:

• Si utilizamos la **TEC** como metrica de error a minimizar:

$$\min_{R_{12},R_{22},R_{32}} \left\{ TEC_2 = TEC(R_{12}) + TEC(R_{22}) + TEC(R_{32}) \right\} =$$

$$= \min_{R_{12},R_{22},R_{32}} \left\{ \left(1 - f_{r_{R_{12}}^*,R_{12}} \right) + \left(1 - f_{r_{R_{22}}^*,R_{22}} \right) + \left(1 - f_{r_{R_{32}}^*,R_{32}} \right) \right\}$$

$$= \min_{j,s_2} \left\{ 1 - \frac{\# \left\{ i \mid x_i \in R_{12} \text{ y } y_i = r_{R_{12}}^* \right\}}{\# \left\{ i \mid x_i \in R_{12} \right\}} + 1 - \frac{\# \left\{ i \mid x_i \in R_{22} \text{ y } y_i = r_{R_{22}}^* \right\}}{\# \left\{ i \mid x_i \in R_{22} \right\}} + 1 - \frac{\# \left\{ i \mid x_i \in R_{22} \right\}}{\# \left\{ i \mid x_i \in R_{22} \right\}} + 1 - \frac{\# \left\{ i \mid x_i \in R_{22} \right\}}{\# \left\{ i \mid x_i \in R_{22} \right\}}$$

$$= \min_{j,s_2} \left\{ 1 - \frac{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \text{ y } y_i = r_{R_{12}}^* \right\}}{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}} + 1 - \frac{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} > s_2 \right\}}{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}} + 1 - \frac{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} > s_2 \right\}}{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}} + 1 - \frac{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} > s_2 \right\}}{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}} + 1 - \frac{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} > s_2 \right\}}{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}} + 1 - \frac{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}}{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}} + 1 - \frac{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}}{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}} + 1 - \frac{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}}{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}} + 1 - \frac{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}}{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}} + 1 - \frac{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}}{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}} + 1 - \frac{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}}{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}} + 1 - \frac{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}}{\# \left\{ i \mid x_{ij^*(1)} < s^{*(1)} \text{ y } x_{ij} < s_2 \right\}} + 1 - \frac{\# \left\{ i \mid x_{ij} < s$$

• Si utilizamos el **índice de Gini** como metrica de error a minimizar:

 $= Min_{R_{12},R_{22}} \left\{ \left(1 - f_{r_{R_{12}}^*,R_{12}}\right) + \left(1 - f_{r_{R_{22}}^*,R_{22}}\right) \right\}$

$$\begin{split} \min_{R_{12},R_{22},R_{32}} \left\{ \; G_1 = G_{R_{12}} + G_{R_{22}} + G_{R_{32}} \right\} = \\ &= \min_{R_{12},R_{22},R_{32}} \left\{ \; \sum_{r=0,1,\dots,c-1} f_{r,R_{12}} \cdot (1-f_{r,R_{12}}) \; + \; \sum_{r=0,1,\dots,c-1} f_{r,R_{22}} \cdot (1-f_{r,R_{22}}) \; + \; \sum_{r=0,1,\dots,c-1} f_{r,R_{32}} \cdot (1-f_{r,R_{32}}) \; + \; \sum_{r=0,1,\dots,c-1} f_{r,R_{32}} \cdot (1-f_{r,R_{32}}) \; + \; \sum_{r=0,1,\dots,c-1} \frac{\# \left\{ i \, / \, x_i \in R_{12} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_i \in R_{12} \, y \, y_i = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_i \in R_{12} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_i \in R_{12} \right\}} \right) \\ &+ \sum_{r=0,1,\dots,c-1} \frac{\# \left\{ i \, / \, x_i \in R_{22} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_i \in R_{32} \, y \, y_i = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_i \in R_{22} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_i \in R_{32} \right\}} \right) \\ &+ \sum_{r=0,1,\dots,c-1} \frac{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_{ij} \in R_{32} \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_{ij} \in R_{32} \right\}} \right) \\ &+ \sum_{r=0,1,\dots,c-1} \frac{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}}{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij} \in R_{32} \, y \, y_i = r \right\}}{\# \left$$

$$= \min_{j,s_{2}} \left\{ \sum_{r=0,1,\dots,c-1} \frac{\# \left\{ i \, / \, x_{ij^{*(1)}} < s^{*(1)} \, \, \mathbf{y} \, \, x_{ij} < s_{2} \, \, \mathbf{y} \, \, y_{i} = r \right\}}{\# \left\{ i \, / \, x_{ij^{*(1)}} < s^{*(1)} \, \, \mathbf{y} \, \, x_{ij} < s_{2} \, \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij^{*(1)}} < s^{*(1)} \, \, \mathbf{y} \, \, x_{ij} < s_{2} \, \right\}}{\# \left\{ i \, / \, x_{ij^{*(1)}} < s^{*(1)} \, \, \mathbf{y} \, \, x_{ij} \geqslant s_{2} \, \, \mathbf{y} \, \, y_{i} = r \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij^{*(1)}} < s^{*(1)} \, \, \mathbf{y} \, \, x_{ij} \geqslant s_{2} \, \, \mathbf{y} \, \, y_{i} \right\}}{\# \left\{ i \, / \, x_{ij^{*(1)}} < s^{*(1)} \, \, \mathbf{y} \, \, x_{ij} \geqslant s_{2} \, \, \mathbf{y} \, \, \mathbf{y} \right\}} \cdot \left(1 - \frac{\# \left\{ i \, / \, x_{ij^{*(1)}} < s^{*(1)} \, \, \mathbf{y} \, \, x_{ij} \geqslant s_{2} \, \, \mathbf{y} \, \, \mathbf{y} \right\}}{\# \left\{ i \, / \, x_{ij^{*(1)}} < s^{*(1)} \, \, \mathbf{y} \, \, x_{ij} \geqslant s_{2} \, \, \mathbf{y} \, \, \mathbf{y} \right\}} \right)$$

 $+ \sum_{\substack{i,j \in \{1, j \neq (1) \} \\ \text{def}(i \mid x_{ij} \neq (1) \} \\ \text{def}(i \mid x_{ij} \neq (1) \}} \frac{\# \{i \mid x_{ij} \neq (1) \} \times \{i \mid x_{ij} \neq (1) \} \times \{i \mid x_{ij} \neq (1) \}}{\# \{i \mid x_{ij} \neq (1) \}}$

Notar que:

Fijado (j, s_2) puede calcularse $r_{R_{12}}^*$ como solucion al problema de maximizacion:

$$M_{r}^{ax} (f_{r,R_{12}}) = M_{r}^{ax} \left(\frac{\# \{i \mid x_{i} \in R_{12} \ y \ y_{i} = r\}}{\# \{i \mid x_{i} \in R_{12}\}} \right) = M_{r}^{ax} \left(\frac{\# \{i \mid x_{ij^{*(1)}} < s^{*(1)} \ y \ x_{ij} < s_{2} \ y \ y_{i} = r}{\# \{i \mid x_{ij^{*(1)}} < s^{*(1)} \ y \ x_{ij} < s_{2} \}} \right)$$

Fijado (j, s_2) puede calcularse $r_{R_{22}}^*$ como solucion al problema de maximizacion:

$$Max (f_{r,R_{22}}) = Max \left(\frac{\# \{i \mid x_i \in R_{22} \text{ y } y_i = r\}}{\# \{i \mid x_i \in R_{22}\}} \right) = Max \left(\frac{\# \{i \mid x_{ij^{*(1)}} < s^{*(1)} \text{ y } x_{ij} \geqslant s_2 \text{ y } y_i = r\}}{\# \{i \mid x_{ij^{*(1)}} < s^{*(1)} \text{ y } x_{ij} \geqslant s_2 \}} \right)$$

Notese que ninguna de las siguientes expresiones:

$$\left(1 - f_{r_{R_{32}}^*, R_{32}}\right)$$

$$\sum_{r=0,1,\dots,c-1} f_{r,R_{32}} \cdot (1 - f_{r,R_{32}})$$

dependen de (j, s_2) , por lo que puede sacarse de la funcion objetivo de sus respectivos problemas de minimizacion sin que esto altere la solucion del problema.

Arbol tras resolver el problema de la Iteración 2:

```
from IPython.display import Image
Image(filename='iter2.jpg', width = 940, height = 320)
```


Figure 18: jpeg

- Si alguna de las ramas tiene menos de k observaciones de train \Rightarrow se para el algoritmo
- Si todas las ramas tienen k o mas observaciones de train \Rightarrow el algoritmo continua, se pasa a resolver el problema de la iteracion siguiente, en este caso el de la iteracion 2

4.5.2.1.3 Problema de la Iteración 3: Arbol con 3 iteraciónes tras resolver el problema anterior:

```
from IPython.display import Image
Image(filename='arbol 3iter.jpg', width = 940, height = 320)
```


Figure 19: jpeg

Si estamos en este problema es porque ninguna rama del arbol resultante del problema de la Iteración 2 tiene menos de k observaciones

La idea es, determinar las regiones R_{13} , R_{23} , R_{33} y R_{43} del arbol con 3 iteraciones (es decir, j y s_3), considerando la solucion del problema de la iteracion 2 (arbol de arriba), que minimizan el error de entrenamiento global de dicho arbol.

Notese que R_{13} y R_{23} ya están determinadas tras la resolucion del problema anterior, por ello realmente solo hay que determinar las regiones R_{33} y R_{43} óptimas (a saber, j y s_3 óptimos)

Mas formalmente el problema se plantea como sigue:

 \bullet Usando TEC como métrica a optimizar

$$\underset{R_{13},R_{23},R_{33},R_{43}}{Min} \left\{ TEC_3 = TEC(R_{13}) + TEC(R_{23}) + TEC(R_{33}) + TEC(R_{43}) \right\} = \underset{R_{13},R_{23},R_{33},R_{43}}{Min} \left\{ \left(1 - f_{r_{R_1}^*} + f_{R_2}^* + f_{R_3}^* + f_{R_$$

$$= Min_{j,s_3} \left\{ 1 - \frac{\# \left\{ i \ / \ x_i \in R_{13} \ \ y \ y_i = r_{R_{13}}^* \right\}}{\# \left\{ i \ / \ x_i \in R_{12} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{23} \ \ y \ \ y_i = r_{R_{23}}^* \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{33} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{33} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{33} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{33} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{33} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{33} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{33} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{33} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{33} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{33} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{33} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{33} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{23} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{23} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{23} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{23} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{23} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{23} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{23} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{23} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{23} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \ / \ x_i \in R_{23} \ \ y \right\}}{\# \left\{ i \ / \ x_i \in R_{23} \right\}} \right. \\ \left. + 1 - \frac{\# \left\{ i \$$

Notar que:

Fijado (j, s_3) puede calcularse $r_{R_{33}}^*$ como solucion al problema de maximizacion:

Arbol tras resolver el problema de la Iteración 3

```
from IPython.display import Image
Image(filename='iter3.jpg', width = 900, height = 300)
```

Figure 20: jpeg

- Si alguna de las ramas tiene menos de k observaciones de train \Rightarrow se para el algoritmo
- Si todas las ramas tienen k o mas observaciones de train \Rightarrow el algoritmo continua, se pasa a resolver el problema de la iteracion siguiente, en este caso el de la iteracion 2

Siempre que no se cumpla la condicion de parada se seguiria haciendo crecer el arbol generando nuevas iteraciones.

No seguiremos exponiendo mas iteraciones del algoritmo, puesto que es facilmente extrapolable lo expuesto a cualquier iteracion superior.