Package 'CSHShydRology'

March 12, 2019

Type Package
Title Canadian hydrological analyses
Version 1.0.0
Date 2018-07-31
Description A collection of user submitted functions to aid in the analysis of hydrological data.
License AGPL-3 file LICENSE
<pre>URL https://github.com/CSHS-hydRology/CSHShydRology</pre>
Depends R (>= 3.1)
Imports fields, Kendall, lubridate (>= 1.3), plotrix, timeDate
Suggests knitr, testthat
VignetteBuilder knitr
LazyData true
RoxygenNote 6.1.1
R topics documented:
CSHShydRology-package
axis_doy
Basic_data_manipulations-methods
booth_plot
cut_block
date_subset
doys
fdcurve

flow_raster_qa	11
flow_raster_trend	12
get_peaks	13
get_wscstation	15
HYDAT_list	16
hydrograph_plot	17
polar_plot	19
polar_plot_prep	20
read_ECDE_flows	22
regime_plot	22
slice	23
StatisticalHydrology-methods	24
sub_set_Years	25
Visualization-methods	26
W05AA008	26
wtr_yr	27
	28

CSHShydRology-package Functions for Canadian hydrological analyses

Description

Index

CSHShydRology is intended for the use of hydrologists, particularly those in Canada. It will contain functions which focus on the use of Canadian data sets, such as those from Environment Canada. The package will also contain functions which are suited to Canadian hydrology, such as the important cold-region hydrological processes. **CSHShydRology** will also contain functions which work with Canadian hydrological models, such as Raven, CRHM, Watflood, and MESH.

This packages has been developed with the assistance of the Canadian Society for Hydrological Sciences (CSHS) https://cwra.org/en/branches/affiliates/cshs-a which is an affiliated society of the Canadian Water Resources Association (CWRA) cwra.org.

The **CSHShydRology** will contain functions grouped into several themes, including:

Statistical hydrology trend detection, data screening, frequency analysis, regionalization

Basic data manipulations input/conversion/adapter functions, missing data infilling

Visualization data visualization, standardized plotting functions

Spatial hydrology basin delineation, landscape data analysis, working with GIS

Streamflow measurement analysis rating curve analysis, velocity profiles, naturalization

Network design/analysis homogeneity assessment

Ecohydrology fisheries and ecological analysis

Wrappers/unwrappers between other packages and CSHShydRology

axis_doy 3

References

To cite **CSHShydRology** in publications, use the command citation("CSHShydRology") to get the current version of the citation.

axis_doy

Generates the x axis for day of year

Description

Used by regime_plot. This code deals only with the axis adjustments. Day of water year needs to be done separately

Usage

```
axis_doy(wyear = 1)
```

Arguments

wyear

Month to begin water year. Use wyear = 1 for calendar year, wyear = 10 for October 1.

Author(s)

Paul Whitfield

Basic_data_manipulations-methods

Basic data manipulation functions

Description

These functions read in or convert values among formats

read_ECDE_flows Reads a file of WSC daily flows from ECDataExplorer
get_wscstation Reads station information from a data file produced by ECDE

binned_MannWhitney

Compares two time periods of data using Mann-Whitney test

Description

It bins data based upon a bin size, extracting data for two time periods and tests for change between two such periods. Result can be passed to polar_plot for visualization

Usage

```
binned_MannWhitney(mdata, step, range1, range2, ptest = 0.05,
   station_ID = "", station_name = "", variable = "discharge")
```

Arguments

mdata A data frame of hydrometric data. Must contain the variables Date and Flow.

An integer indicating the degree of smoothing eg. 1, 5, 11.

range1 The first and last year of first period, as c(first,last)

range2 The first and last year of second period as codec(first,last)

ptest The significance level. The default is 0.05.

station_ID Optional ID of station. station_name Optional name of station.

variable Name of variable. Default is 'discharge'

Value

Returns a list containing:

StationID ID of station

Station_Iname Name of station **bin_width** Smoothing time step

range1 range1 yearsrange2 range2 years

p_used p value used

fail TRUE if test failed due to missing values

bin_method method used for binning

test_method Mann-Whitney U

series a data frame containing:

period period numbers i.e. 1:365/step

period1 median values for each bin in period 1

period2 median values for each bin in period 2

mwu Mann Whitney U-statistic for each bin between the two periods

prob probability of U for each period

code significance codes for each bin

booth_plot 5

Author(s)

Paul Whitfield <paul.h.whitfield@gmail.com>

References

Whitfield, P.H., Cannon, A.J., 2000. Recent variations in climate and hydrology in Canada. Canadian Water Resources Journal 25: 19-65.

See Also

```
polar_plot polar_plot_prep
```

Examples

```
## Not run:
# fails due to missing data in both periods
range1 <- c(1960,1969)
range2 <- c(1990,1999)
b_MW <- binned_MannWhitney(W05AA008, step=5, range1, range2, ptest=0.05)
## End(Not run)

range1 <- c(1970,1979)
range2 <- c(1990,1999)
b_MW <- binned_MannWhitney(W05AA008, step = 5, range1, range2, ptest = 0.05, station_ID = "05AA008", station_name= "Crowsnest River at Frank")</pre>
```

booth_plot

Create a Booth plot of peaks over a threshold

Description

A Booth plot is a plot of peaks over threshold flood events with duration on the horizontal and either magnitude (default) or volume on the vertical axis

Usage

```
booth_plot(events, threshold, title, type = "mag", colour1 = 1,
  colour2 = 1)
```

Arguments

events A data frame of POT events from the function get_peaks

threshold The threshold used by get_peaks

title Plot title

type The plot type, either 'mag' (magnitude, the default) or 'vol' (volume)

6 cut_block

colour1	A vector of length 12 with line colours of rings or symbols. used by Booth.	Defaults to those
colour2	A vector of length 12 with fill colours of rings or symbols. used by Booth.	Defaults to those

References

Booth, E.G., Mount, J.F., Viers, J.H. 2006. Hydrologic Variability of the Cosumnes River Floodplain. San Francisco Estuary & Watershed Science 4:21.

Whitfield, P.H., and J.W. Pomeroy. 2016. Changes to flood peaks of a mountain river: implications for analysis of the 2013 flood in the Upper Bow River, Canada. Hydrological Processes 30:4657-73. doi: 10.1002/hyp.10957.

See Also

```
get_peaks
```

Examples

```
threshold <- 0.1 * max(W05AA008$Flow) # arbitrary threshold
peaks <- get_peaks(W05AA008, threshold)
events <- peaks$P0Tevents
booth_plot(events, threshold, title = "05AA008", type='mag')
booth_plot(events, threshold, title = "05AA008", type='vol')</pre>
```

cut_block

Cuts a block in time from a time series

Description

Allows the user to select a time period from a longer record. Could be used to get the same period of time from several stations for comparison.

Usage

```
cut_block(dataframe, st_date, end_date)
```

Arguments

dataframe A time series dataframe with a Date variable st_date Starting date as a string with the format 'Y/m/d' end_date Ending date as a string with the format 'Y/m/d'

Value

Returns a data frame with the same columns as the original data frame

date_subset 7

Author(s)

Paul Whitfield

Examples

```
subset <- cut_block(W05AA008, "2000/01/01", "2010/12/31")</pre>
```

date_subset

Subset date by String This function subsets a data frame by an specified date range, provided as a string by the prd argument. This function is meant to emulate the subsetting capability of the **xts** package.

Description

Subset date by String This function subsets a data frame by an specified date range, provided as a string by the prd argument. This function is meant to emulate the subsetting capability of the **xts** package.

Usage

```
date_subset(df, prd)
```

Arguments

df data frame of time series data; includes a variable called Date prd date range as string formatted as 'YYYY-MM-DD/YYYY-MM-DD'

Value

df subsetted data frame

Author(s)

Robert Chlumsky <rchlumsk@gmail.com>

```
{
dd <- seq.Date(as.Date("2010-10-01"), as.Date("2013-09-30"), by = 1)
x <- rnorm(length(dd))
y <- abs(rnorm(length(dd)))*2
df <- data.frame("Date" = dd,x,y)
prd <- "2011-10-01/2012-09-30"
summary(date_subset(df,prd))}</pre>
```

8 doys

doys

Days of year and water year

Description

Converts a vector of dates into a dataframe with date, doy, dowy, year

Usage

```
doys(Date, mon = 10)
```

Arguments

Date A vector of R dates.

mon The month starting the water year, default is 10 (October).

Value

Returns a dataframe with differently-formatted dates

Date original Date

year numeric calendar year

month numeric calendar month

doy numeric day of year

wyear numeric water year

dwy numeric day of water year

Author(s)

Paul Whitfield <paul.h.whitfield@gmail.com>

```
dd <- seq.Date(as.Date("2010-01-01"), as.Date("2018-01-01"), by = 1)
output <- doys(dd)
head(output)</pre>
```

fdcurve 9

fdcurve	Plot Flow Duration Curve

Description

A flow duration curve is a plot of flow magnitude against exceedance probability. The plot may contain the Gustard Curves or they can be omitted. The default is for curves to be plotted against probability, but an option is to plot against the normalized exceedance probability. In that case, the x axis represents a normal distribution.

Usage

```
fdcurve(flow, title = "", normal = FALSE, gust = TRUE)
```

Arguments

flow	Vector containing daily flows
title	The plot title
normal	If normal = TRUE then exceedance probability is normalized. Default is FALSE
gust	If TRUE (the default), adds the curves from Gustard et al 1992

Value

Plots the flow durations and returns a data frame containing the exceedance probabilty and flow

Author(s)

Paul Whitfield <paul.h.whitfield@gmail.com>

References

Gustard, A., A. Bullock, and J.M. Dixon. 1992. Low flow estimation in the United Kingdom. Institute of Hydrology, 292. Wallingford: Institute of Hydrology.

Vogel, R.M., and N.M. Fennessy. 1994. Flow-duration curves. I: New Interpretation and confidence intervals. Journal of Water Resources Planning and Management ASCE 120:485-504.

```
flow <- W05AA008$Flow
# plot with Gustard 1992 curves
test <- fdcurve(flow, title="Station", normal=FALSE, gust=TRUE)
# plot with normalized exceedance probability
test <- fdcurve(flow, title="Station", normal=TRUE, gust=FALSE)</pre>
```

10 flow_raster

flow_raster

Raster plot of streamflows

Description

Produces a raster plot: years x day of year, showing magnitude of flows. This produces a plot showing the flow data in colours, showing different context than in a hydrograph. High flows are in warm colours

Usage

```
flow_raster(dframe, title = "", rastercolours = c("lightblue", "cyan",
   "blue", "slateblue", "orange", "red"))
```

Arguments

dframe A data frame of hydrometric data. Must contain the variables Date and Flow.

title The (optional) title for the plot

rastercolours A vector of colours used for the raster plot. The default is c("lightblue", "cyan", "blue", "slateblue"

Value

No value is returned; a standard R graphic is created.

Author(s)

Paul Whitfield <paul.h.whitfield@gmail.com>

See Also

```
flow_raster_trend flow_raster_qa
```

```
flow_raster(W05AA008)
```

flow_raster_qa 11

flow_raster_qa

Raster plot of streamflows with WSC quality flags

Description

Produces a raster plot of years x day of year showing the flow data in grayscale overlain by the Water Survey of Canada quality flags. Colours are consistent with ECDataExplorer. Raster layout lets the use see the flags in a different context than in a hydrograph. The data flags are:

```
A (Partial) green
```

B (Below Ice) blue

D (Dry) yellow

E (Estimated) red

Usage

```
flow_raster_qa(dframe, title = "")
```

Arguments

dframe A data frame of WSC hydrometric data. Must contain the variables Date, Flow

and SYM which is the WSC data flag symbol.

title The (optional) title for the plot

Value

No value is returned; a standard R graphic is created.

Author(s)

Paul Whitfield <paul.h.whitfield@gmail.com>

See Also

```
flow_raster_trend flow_raster
```

```
flow_raster_qa(W05AA008, "Station W05AA008")
```

12 flow_raster_trend

flow_raster_trend	Raster plot and simple trends of observed streamflows	
flow_raster_trend	Raster plot and simple trends of observed streamflows	

Description

Creates a raster plot plus trend plots for day of year, and over time which may be binned by a number of days

Usage

```
flow_raster_trend(date, flow, step = 5, stationID = "", title = "",
  missing = FALSE, colours = c("lightblue", "cyan", "blue",
    "slateblue", "darkblue", "red"))
```

Arguments

date

flow	A numeric vector of daily streamflows
step	An integer indicating the degree of smoothing eg. 1, 5, 11.
stationID	Station ID number, e.g. "05BB001". This value is optional, but is included in the output to help you identify the results.
title	Title of the plot
missing	If FALSE years with missing data are excluded. If TRUE partial years are included.
colours	A vector of colours used for the raster plot. The default is c("lightblue", "cyan", "blue", "slateblu

A numeric vector of the date as an R date. Must be same length as the flow

Details

The plot contains four panels based upon binned data:

- 1. The annual maximum, minimum, and median dlow with a trend test number for each period: red arrows indicate decreases, blue arrows indicate increases.
- 2. The scale bar for the colours used in the raster plot,
- 3. The rasterplot with a colour for each period and each year where data exist, and
- 4. A time series plot of the minimum, median, and maximum annual bin values. If there is no trend (p > 0.05) the points are black. Decreasing trend are in red, increasing trends are in blue..

Value

```
a list containing:
```

```
stationID Station ID eg 05BB001missing How missing values were used FALSE=used, TRUE=removedstep number of days in a bin
```

get_peaks 13

```
periods number of periods in a year

period period numbers i.e. 1:365/step

bins values for each period in each year

med_period median for each period

max_period maximum for each period

min_period minimum for each period

tau_period Kendall's Tau for each period

prob_period probability of Tau for each period

year years spanning the data

median_year median bin for each year

max_year maximum bin for each year

min_year minimum bin for each year

tau_median_year value of tau and probability for median_year

tau_minimum_year value of tau and probability for min_year
```

Author(s)

Paul Whitfield <paul.h.whitfield@gmail.com>

See Also

```
flow_raster
```

Examples

```
mdoy <- doys(W05AA008$Date)
mplot <- flow_raster_trend(W05AA008$Date, W05AA008$Flow, step=5, station="05AA008")</pre>
```

get_peaks

Extracts peak flows over a threshold

Description

This function is development code being shared as is. It is expected that the user will be interested in the dataframe returned for POT analysis and for plotting (i.e. Booth_plots).

Usage

```
get_peaks(dataframe, threshold)
```

14 get_peaks

Arguments

dataframe a data frame of streamflow data containing columns named 'Date' and 'Flow' threshold a value for the threshold. Values above the threshold are tested for peaks.

Details

This function retrieves peaks greater than the prescribed threshold. It returns a dataframe of peak characteristics suitable for subsequent analysis.

The portion under development is the It also returns a list of the flows during an event with the values of the three preceding dates and three subsequnt dates.

Value

a list containing:

POTevents a dataframe contining details of the events

events a vector with the value 0 when the flow is below the threshold and 1 when above.

event_num a vector with the value 0 when the flow is below a threshold or the index of the events when the threshold was exceeded. i.e. 1,2,3, etc

st date start date of events

case a list of the flows in each individual event (see details for more information)

The POTevents dataframe contains five columns: st_date (starting date), max_date (date of maximum in the event), max (maximum discharge), volume (volume of the event), and duration (in days).

The case list contains the flows during an event and also for three preceding and subsequent days. The lists range from seven to n days in length.

References

Burn, D.H., Whitfield, P.H., Sharif, M., 2016. Identification of changes in floods and flood regimes in Canada using a peaks over threshold approach. Hydrological Processes, 39: 3303-3314. DOI:10.1002/hyp.10861

Whitfield, P.H., and J.W. Pomeroy. 2016. Changes to flood peaks of a mountain river: implications for analysis of the 2013 flood in the Upper Bow River, Canada. Hydrological Processes 30:4657-73. doi: 10.1002/hyp.10957.

See Also

booth_plot

```
threshold <- 0.9*max(W05AA008$Flow) # arbitrary threshold my_peaks <- get_peaks(W05AA008, threshold) str(my_peaks)
```

get_wscstation 15

Description

Reads station information from a data file produced by ECDE Retrieves station information for an individual Water Survey of Canada site, adds a text string at position 21 that combines key elements for a title.

Usage

```
get_wscstation(stnID, stn)
```

Arguments

stnID A Water Survey of Canada station number

stn a data frame of station information from ECDataExplorer. The data frame

'HYDAT_list' is supplied with this package.

Value

Returns a data frame with 21 variables

- Station StationID
- StationName Station Name
- HYDStatus Active or Discontinued
- Prov Province
- Latitude
- Longitude
- DrainageArea km2
- Years # of years with data
- From Start Year
- To End Year
- · Reg. Regulated
- Flow if TRUE/Yes
- Level if TRUE/Yes
- Sed if TRUE/Yes
- · OperSched Continuous or Seasonal
- RealTime if TRUE/Yes

16 HYDAT_list

- RHBN if TRUE/Yes is in the reference hydrologic basin network
- Region if TRUE/Yes is in the reference hydrologic basin network
- Datum if TRUE/Yes is in the reference hydrologic basin network
- Operator if TRUE/Yes is in the reference hydrologic basin network
- Station_Iname Added field combines ID,Name,Province and if RHBN an * is added

Author(s)

Paul Whitfield <paul.h.whitfield@gmail.com>

Examples

```
df <- HYDAT_list
s_info <- get_wscstation("05BB001", df)
title <- s_info[21]
print(title)</pre>
```

HYDAT_list

HYDAT_list

Description

A dataframe of station information, as extracted from the EC Data Explorer

Usage

HYDAT_list

Format

A dateframe with 7791 rows and 20 columns.

Source

Water Survey of Canada

Variables:

- Station StationID
- StationName Station Name
- · HYDStatus Active or Discontinued
- Prov Province
- Latitude
- Longitude
- DrainageArea km2

hydrograph_plot 17

- Years # of years with data
- From Start Year
- · To End Year
- · Reg. Regulated
- Flow if TRUE/Yes
- · Level if TRUE/Yes
- Sed if TRUE/Yes
- · OperSched Continuous or Seasonal
- RealTime if TRUE/Yes
- RHBN if TRUE/Yes is in the reference hydrologic basin network
- Region if TRUE/Yes is in the reference hydrologic basin network
- Datum if TRUE/Yes is in the reference hydrologic basin network
- Operator if TRUE/Yes is in the reference hydrologic basin network
- Station_Iname Added field combines ID,Name,Province and if RHBN an * is added

hydrograph_plot

Plot hydrographs

Description

Creates a hydrograph plot for simulated, observed, and inflow hydrograph series, including precipitation if provided. The secondary y axis will be used to plot the precip time series. The function assumes that the supplied time series have the same length and duration in time. If this is not true, then the defined period or period calculated from the first available flow series will be used to determine the plotting limits in time. If the data is take from output from the **Raven** model, this is not a concern. The supplied time series should be in **xts** format, which can be obtained directly by using the hyd.extract function in the package **RavenR**. Note that a plot title is purposely omitted in order to allow the automatic generation of plot titles.

Usage

```
hydrograph_plot(flows = NULL, precip = NULL, prd = NULL,
  winter_shading = FALSE, range_mult_flow = NULL,
  range_mult_precip = 1.5, flow_labels = NULL,
  ylabel = "Flow [m3/s]", precip_label = "Precipitation [mm]",
  leg_pos = NULL, leg_box = NULL, zero_axis = T,
  plot_mode = "base")
```

18 hydrograph_plot

Arguments

flows data frame of flows to plot

precip data frame of precipitation values to plot

prd period to use in plotting

winter_shading optionally adds a transparent cyan shading for the December 1st to March 31st

period in each year that is plotted. Default is FALSE.

range_mult_flow

range multiplier for max value in hydrograph. This is useful in preventing overlap if precip is also plotted. This value should not be less than 1.0, otherwise the

values will be cutoff in the plot.

range_mult_precip

range multiplier for max value in precipitation plot (default 1.5)

flow_labels string vector of labels for flow values

ylabel text label for y-axis of the plot (default 'Flow [m3/s]')

precip_label text label for precipitation y-axis (default 'Precipitation [mm]')

leg_pos string specifying legend placement on plot e.g. 'topleft', 'right', etc., and is

consistent with the legend function options. If NULL, the function will place the

legend left, if precip added, on the topleft otherwise).

leg_box boolean on whether to put legend in an opaque white box or not. If NULL (the

default), the function will automatically not use a white box and leave the back-

ground of the legend transparent.

zero_axis fixes the y axis to start exactly at zero (default TRUE). By default, R will plot the

values with a small buffer for presentation. Be warned that if this option is set to TRUE, the minimum value is set to zero without checking if any flow values are less than zero. This option should not be used for reservoir stage plotting,

since most reservoir stage is typically reported as an elevation.

plot_mode plot mode as 'base' or 'ggplot'. Currently only 'base' plot type is supported,

'ggplot' is under construction.

Value

Returns TRUE if the function is executed properly.

Author(s)

Robert Chlumsky <rchlumsk@gmail.com>

```
# example with synthetic random data
dd <- seq.Date(as.Date("2010-10-01"), as.Date("2013-09-30"),by = 1)
x <- abs(rnorm(length(dd)))
y <- abs(rnorm(length(dd))) * x
df <- data.frame("Date" = dd, x, y)
myprd <- "2011-10-01/2012-09-30"</pre>
```

polar_plot 19

```
precip <- data.frame("Date" = dd," precip" = abs(rnorm(length(dd))) * 10)

# basic hydrograph plot
hydrograph_plot(flows = df, winter_shading = FALSE)

# with different labels
hydrograph_plot(flows = df, winter_shading = FALSE, flow_labels = c("simulated", "observed"))

# with a few more options turned on
hydrograph_plot(flows = df, precip = precip)

# increase the plot ranges to separate flows and precip; add a legend box
hydrograph_plot(flows = df, precip = precip, range_mult_flow = 1.7,
range_mult_precip = 2, leg_box = TRUE)</pre>
```

polar_plot

Polar plot of daily streamflows

Description

Produces a polar plot similar to that used in *Whitfield and Cannon*, 2000. It uses output from the function binned_MannWhitney or a data structure created using the function polar_plot_prep.

Usage

```
polar_plot(bmw, lcol1 = c("black", "gray50"), lcol2 = c("black",
    "gray50"), lfill = c("yellow", "green"), lsig = c("red", "blue"))
```

Arguments

bmw	output from binned_MannWhitney
lcol1	line colour, default is c("black", "gray50")
lcol2	point colour, default is c("black", "gray50")
lfill	fill colour, default is c("yellow", "green")
lsig	significance symbol colour, default is ("red", "blue")

Value

No value is returned; a standard R graphic is created.

Author(s)

Paul Whitfield <paul.h.whitfield@gmail.com>

20 polar_plot_prep

References

Whitfield, P.H. and A.J. Cannon. 2000. Polar plotting of seasonal hydrologic and climatic data. Northwest Science 74: 76-80.

Whitfield, P.H., Cannon, A.J., 2000. Recent variations in climate and hydrology in Canada. Canadian Water Resources Journal 25: 19-65.

See Also

binned_MannWhitney polar_plot_prep

Examples

```
range1 <- c(1970,1979)
range2 <- c(1990,1999)
b_MW <- binned_MannWhitney(W05AA008, step = 5, range1, range2,
ptest = 0.05, station_ID = "05AA008", station_name = "Crowsnest River at Frank")
polar_plot(b_MW)</pre>
```

polar_plot_prep

Creates a data structure to be passed to polar_plot.

Description

Could be used to move data from a different type of analysis different to the binned_MannWhitney function which uses flows. The two series need to be of the same length and their length is related to the step size. For examples 73 periods links to 5 day periods.

Usage

```
polar_plot_prep(station, plot_title, step, x0, x1, stat, prob, test_s,
  variable = "discharge", bin_method = "unstated",
  test_method = "unstated", lline1 = "Period 1", lline2 = "Period 2",
  pvalue = 0.05)
```

Arguments

station	Typically a station number
plot_title	Polar plot title - usually a station name
step	The number of days binned
x0	Time series of length n for a single seasonal cycle
x1	Time series of length n for a single seasonal cycle
stat	Time series of length n for statistical test value for each bin
prob	Time series of length n of probability of test value
test_s	Vector with values of -1, 0, 1 for significance, -1 negative, 1 positive, 0 not significant

polar_plot_prep 21

variable Name of variable plotted. Default is "discharge"

bin_method Default is "unstated" test_method Default is "unstated"

11ine1 Names of first period, default is "Period 1"
11ine2 Names of second period, default is "Period 2"

pvalue Value of p used. Default is 0.05

Value

Returns a list containing:

StationID ID of station

Station_Iname Name of station

variable Name of variable

bin_width Smoothing time step

range1 range1 years

range2 range2 years

p_used p value used

fail TRUE if test failed due to missing values

bin_method method used for binning

test_method Mann-Whitney U

series a data frame containing:

period period numbers i.e. 1:365/step

period1 median values for each bin in period 1

period2 median values for each bin in period 2

mwu Mann Whitney U-statistic for each bin between the two periods

prob probability of U for each period

code significance codes for each bin

Author(s)

Paul Whitfield <paul.h.whitfield@gmail.com>

References

Whitfield, P.H. and A.J. Cannon. 2000. Polar plotting of seasonal hydrologic and climatic data. Northwest Science 74: 76-80.

Whitfield, P.H., Cannon, A.J., 2000. Recent variations in climate and hydrology in Canada. Canadian Water Resources Journal 25: 19-65.

See Also

binned_MannWhitney polar_plot

22 regime_plot

read_ECDE_flows	Reads a file of WSC daily flows from ECDataExplorer Reads in a file WSC daily flows as returned from the program ECDataExplorer, and
	omits the last 3 lines as these contain the data disclaimer.

Description

Reads a file of WSC daily flows from ECDataExplorer Reads in a file WSC daily flows as returned from the program ECDataExplorer, and omits the last 3 lines as these contain the data disclaimer.

Usage

```
read_ECDE_flows(filename)
```

Arguments

filename

Datafile retrieved from ECDataExplorer

Value

Returns a dataframe with the last three rows removed and the Date as Date

Author(s)

Paul Whitfield <paul.h.whitfield@gmail.com>

Examples

```
mfile <- system.file("extdata", "04JD005_Daily_Flow_ts.csv", package = "CSHShydRology")
mdata <- read_ECDE_flows(mfile)</pre>
```

regime_plot

Plots the regime of daily streamflows

Description

Produces a regime hydrograph similar to that in the reference. It shows the flow quantiles for each day of the year and the maximum and minimum. Parameters can be set to change colours and fix the y scale to allow plots of same scale to be produced.

Usage

```
regime_plot(date, flow, title = "", wyear = 1, colour = TRUE,
    mx = 1)
```

slice 23

Arguments

date	Vector of dates
flow	Vector of daily streamflows. Must be the same length as date
title	Text to be used as the graph title
wyear	Beginning month of water year. USe wyear = 10 for October water year, wyear = 1 for calendar year
colour	Logical. If TRUE plot is in colour, if FALSE plot is grayscale
mx	The maximum y value; if $mx = 1$ then maximum value of the flows is used to set the maximum y-axis value. The value of mx can be specified to produce a series of plots with the same scale.

Value

No value is returned; a standard R graphic is created.

Author(s)

Paul Whitfield

References

MacCulloch, G. and P. H. Whitfield (2012). Towards a Stream Classification System for the Canadian Prairie Provinces. Canadian Water Resources Journal 37: 311-332.

Examples

```
regime_plot(W05AA008$Date, W05AA008$Flow, title = "05AA008", colour = TRUE, wyear = 10)
```

slice

Converts doy or dwy into a factor that is used to bin data

Description

Whenever the number of bins does not divide in 365 evenly a message is printed showing the number of bins created and the number of days added to the last bin. Simply put, slice is used to convert doy into a factor which is a number of bins per year. A year can be converted into any number of bins; slice does it based upon a number of days. So when you send it am array of doy it slices that into bins of the desired width. For example, if the step is 5. They 365/5 gives 73 bins and becasue of leap years there might be one extra day added every four years to the final bin.

To illustrate: doy: 1 2 3 4 5 6 7 8 9 10 11 12 Bin: 1 1 1 1 1 2 2 2 2 2 3 3

Usage

```
slice(doy, step)
```

Arguments

doy A vector of the day of calendar year for the dataset

step Width of bin in days

Value

Returns a vector of bin numbers that is used as a factor for each day in the dataset prints a message indicating the handling of partial bins

Author(s)

Paul Whitfield <paul.h.whitfield@gmail.com>

See Also

binned_MannWhitney, raster_trend

Examples

```
doy <- c(1:365)
# first 30 days are 1, 31-60 are 2 etc
dice <- slice(doy, 30)
plot(doy, dice)</pre>
```

 ${\tt Statistical Hydrology-methods}$

Statistical analysis functions

Description

These functions perform statistical analyses

binned_MannWhitney Compares two time periods of data using Mann-Whitney test

fdcurve Finds flow exceedence probabilities

get_peaks Finds peak flows over a specified threshold

sub_set_Years 25

sub_set_Years

Helper function for selecting points for an axis so not all are necessary

Description

Sub-samples a vector every n places. Many times there are so many years the labels on the plot overlap. This function returns the position and label for the subset. The function can be used on any type of simple array.

Usage

```
sub_set_Years(years, n)
```

Arguments

```
years a vector of years
n sample size
```

Value

```
a list containing:
```

```
position array of axis positionslabel array of labels
```

Author(s)

Paul Whitfield <paul.h.whitfield@gmail.com>

```
myears <- c(1900:2045)
myears <- sub_set_Years(myears, 20)
myears

a <- LETTERS
my_alpha <- sub_set_Years(a, 5)
my_alpha</pre>
```

26 W05AA008

Visualization-methods Visualization functions

Description

These functions are primarily intended for graphing, although some analyses may also be done.

booth_plot Plot of peaks over a threshold

flow_raster Raster plot of streamflows

flow_raster_qa Raster plot of streamflows with WSC quality flags

flow_raster_trend Raster plot and simple trends of observed streamflows

hydrograph_plot Plots hydrographs and/or precipitation

polar_plot Polar plot of daily streamflows

regime_plot Plots the regime of daily streamflows

W05AA008

W05AA008

Description

A dataframe of Water Survey of Canada (WSC) daily flows for station W05AA008, CROWSNEST RIVER AT FRANK Alberta.

Usage

W05AA008

Format

A dateframe with 25252 rows and 5 columns spanning the period 1910-2013.

Source

Water Survey of Canada

Variables:

- ID StationID
- PARAMParameter 1=Flow, 2=Level
- DateR date
- FlowDaily flow in m³/s
- SYMWater Survey FLags A, B, D, E

wtr_yr

wtr_yr

Designation of the water year

Description

Display water year

Usage

```
wtr_yr(dates, start_month = 10)
```

Arguments

dates A vector of dates with actual year

start_month Month in which the year starts (defaults to October)

Value

Year starting in start_month

Source

http://stackoverflow.com/questions/27626533/r-create-function-to-add-water-year-column

```
date <- seq(as.Date("1910/1/1"), as.Date("1912/1/1"), "days")
wtr_yr_date <- wtr_yr(dates=date, start_month=10)
data.frame(wtr_yr_date,date)</pre>
```

Index

```
*Topic datasets
                                                 regime_plot, 22
    HYDAT_list, 16
                                                 slice, 23
    W05AA008, 26
                                                 Statistical Hydrology-methods, 24
*Topic data
                                                 sub_set_Years, 25
    date_subset, 7
*Topic date
                                                 {\tt Visualization-methods}, {\tt 26}
    date_subset, 7
*Topic hydrograph
                                                 W05AA008, 26
    hydrograph_plot, 17
                                                 wtr_yr, 27
*Topic plot
    hydrograph_plot, 17
*Topic subset
    date_subset, 7
axis\_doy, 3
Basic_data_manipulations-methods, 3
binned_MannWhitney, 4, 20, 21
booth_plot, 5, 14
CSHShydRology-package, 2
cut_block, 6
date_subset, 7
doys, 8
fdcurve, 9
flow_raster, 10, 11, 13
flow_raster_qa, 10, 11
flow_raster_trend, 10, 11, 12
get_peaks, 6, 13
get_wscstation, 15
HYDAT_list, 16
hydrograph_plot, 17
polar_plot, 5, 19, 21
polar_plot_prep, 5, 20, 20
read_ECDE_flows, 22
```