This Week

Monday

 Modeling and Solving Nonlinear Optimization Problems

Wednesday

Lab Exercise: Portfolio Optimization

Topics

 Why Some Problems are Harder to Solve than Others

ILPs from Week 6 Lab Exercise

Portfolio Optimization

A Problem Solving Framework

- 1. Define the Problem
- 2. Collect and Organize Data
- 3. Characterize Uncertainty and Data Relationships
- 4. Build an Evaluation Model
- 5. Formulate a Solution Approach
- 6. Evaluate Potential Solutions
 - 7. Recommend a Course of Action

"Hard" Optimization Problems

- While many types of business problems can be characterized using linear programming models, there are many others that have nonlinear properties and must be solved using different methods.
- Depending on the underlying structure of the model, these problems can be significantly harder to solve than linear programs:

Some Classes of "Hard" **Optimization Problems**

- Integer Linear Programming (ILP) Models
 - Variables are restricted to integer values instead of a continuous range of values.
 - e.g. x_1 ∈ {0,1,2, ...} instead of $x_1 \ge 0$.
- Nonlinear Programming (NLP) Models

Objective function and/or constraints have nonlinear terms.
 e.g., Minimize
$$\frac{100,000}{O}$$
 + 10Q or 4 x₁x₂ ≥ 100.

LPs are frequently used to approximate and/or to solve sub-problems of ILPs and NLPs.

Some Practical Applications

- ILP Applications
 - Box Packing
 - Workforce scheduling
 - Vehicle routing
 - Facility location selection
- NLP Applications
 - Inventory optimization
 - Workshop planning with uncertain attendance
- Portfolio optimization
 - Price-setting in elastic demand environments
 - Determining IRR for cash flow models over time

Box Packing

Recall from lab: Pack items into the <u>minimum number</u> of boxes without exceeding the box capacities:

Tota	l Boxes	Used:	6								
Packing Assignment Matrix											
	Weight (lbs)	Item	Α	В	С	D	E	F	G	Item Packed	
	1.2	1	0	0	1	0	0	0	0	1	
	2.3	2	0	0	0	1	0	0	0	1	
	3.8	3	0	0	0	0	0	1	0	1	
	3.3	4	0	0	0	0	0	1	0	1	
	1.1	5	0	0	1	0	0	0	0	1	
	3.8	6	0	0	0	0	0	0	1	1	
	2.3	7	0	0	1	0	0	0	0	1	
	0.2	8	0	0	0	0	0	0	1	1	
Items	0.8	9	0	0	1	0	0	0	0	1	
to be	3.2	10	1	0	0	0	0	0	0	1	
	3.1	11	0	0	0	0	0	0	1	1	
Packed	3.5	12	0	0	0	1	0	0	0	1	
	0.6	13	0	0	0	0	0	1	0	1	
	2.3	14	0	0	0	0	0	0	1	1	
	0.9	15	0	0	0	0	0	1	0	1	
	2.7	16	0	0	0	0	1	0	0	1	
	3.6	17	0	0	0	1	0	0	0	1	
	3.2	18	0	0	0	0	1	0	0	1	
	4.3	19	0	0	1	0	0	0	0	1	
	3.2	20	1	0	0	0	0	0	0	1	
	Box	Used	1	0	1	1	1	1	1		
	Current V		6.400	0.000	9.700	9.400	5.900	8.600	9.400		
	Maximun for I		10.0	10.0	10.0	10.0	10.0	10.0	10.0		
	% of Item	s in Box	10%	0%	25%	15%	10%	20%	20%	100%	=% of Items F

Problem Formulation

Let the *decision variable* x_{ij} indicate whether item i is placed in box j. Let the *decision variable* y_j indicate whether box j is in use. The problem then becomes:

```
Minimize \sum_{j=A}^{j} y_{j} (Total Boxed Used)
subject to :
                 \sum_{j=A}^{J} x_{ij} = 1 \qquad \text{for all items} \quad i \text{ (Item Assignment)}
                 \sum_{i=1}^{20} \frac{x_{ij}}{20} \le y_j \quad \text{for all boxes} \quad j \text{ (Box Usage )}
                 \sum_{i=1}^{n} w_i x_{ij} \le C_j \text{ for all boxes } j \text{ (Box Capacity)}
                 1 \geq x_{ij} \geq 0 and INTEGER for all i, j 1 \geq y_{j} \geq 0 and INTEGER for all j
```

Solving IPs With Excel Solver

Solver can be used to solve ILPs and NLPs in the same way it is used to solve LPs, provided the data are organized so that you have one cell representing each "piece" of the formulated problem:

An Optimal Integer Solution

Tota	l Boxes	Used:	5								
Packing	Assignme	nt Matrix				Boxes			This so		
	Weight (lbs)	Item	Α	В	С	D	E	F	G	Item Packed	constru
	1.2	1	0	0	0	0	1	0	0	1	
	2.3	2	0	0	0	0	1	0	0	1	After ru
	3.8 3.3	3	1	0	0	0	0	0	0	1	_
	1.1	5	0 1	1	0	0	0	0	0	1	based
	3.8	6	0	1	0	0	0	0	0	1	
	2.3	7	0	0	0	0	1	0	0	1	for sev
	0.2	8	0	1	0	0	0	0	0	1	my doc
Items	0.8	9	1	0	0	0	0	0	0	1	my des
to be	3.2	10	0	0	1	0	0	0	0	1	was ur
Packed	3.1	11	0	0	0	1	0	0	0	1	was ui
1 ackeu	3.5	12	0	0	0	1	0	0	0	1	5-box s
	0.6 2.3	13 14	0	0	0	0	1	0	0	1	
	0.9	15	0	0	0	0	1	0	0	1	NOT u
	2.7	16	0	1	0	0	0	0	0	1	
	3.6	17	0	0	1	0	0	0	0	1	for rela
	3.2	18		0	1	0	0	0	0	1	
	4.3	19	1	0	0	0	0	0	0	1	instand
	3.2 20		0	0	0	1	0	0	0	1	
	Вох	Used	1	1	1	1	1	0	0		
	Current V	10.000	10.000	10.000	9.800	9.600	0.000	0.000			
	Maximur for	_	10.0	10.0	10.0	10.0	10.0	10.0	10.0	_	
	% of Item	ns in Box	20%	20%	15%	15%	30%	0%	0%	100%	=% of Items Packed

This solution was constructed *manually*. After running simplexbased branch & bound for several minutes on my desktop PC, Solver was unable to find a 5-box solution. This is NOT uncommon, even for relatively small ILP instances (like this one).

An Optimal Relaxed Solution

(*y_j*s integer only)

Tota	l Boxes	Used:	5													
Packing Assignment Matrix				!		Boxes			!		After removing the					
	Weight (lbs)	Item	Α	В	С	D	Е	F	G	Item Packed	integer constraints on					
	1.2	1	0	0	0	1	0	0	0	1						
	2.3	2	0	0	1	0	0	0	0	1	the x_{ii} s and leaving the					
	3.8	3	0	0	0	0.7632	0.2368	0	0	1						
	3.3	4	0.9091	0	0.0909	0	0	0	0	1	<i>y_i</i> s as the only binary					
	1.1 3.8	5 6	0.0909	0.9091	0	0 1	0	0	0	1	<u> </u>					
	2.3	7	0	1	0	0	0	0	0	1	variables, Solver was					
	0.2	8	0	1	0	0	0	0	0	1	- ·					
Items	0.8	9	0	0	1	0	0	0	0	1	able to find a 5-box					
	3.2	10	0	1	0	0	0	0	0	1						
to be	3.1	11	0	0	1	0	0	0	0	1	solution to the relaxed					
Packed	3.5	12	0	0	1	0	0	0	0	1	problem aujoldy					
	0.6	13	0	1	0	0	0	0	0	1	problem quickly					
	2.3	14	0	0	0	0	1	0	0	1	(although it still did not					
	0.9	15	0	0	0	1	0	0	0	1	(although it still did not					
	2.7	16	0	0	0	0	0 1	0	0	1	recognize this solution					
	3.6 3.2	17 18	1	0	0	0	0	0	0	1	recognize this solution					
	4.3	19	0.721	0	0	0.279	0	0	0	1	as optimal).					
	3.2	20	0	0	0	0	1	0	0	1	ao optimal).					
	Box Used Current Weight of Box Maximum Weight for Box % of Items in Box		1	1	1	1	1	0	0							
			9.400	10.000	10.000	10.000	10.000	0.000	0.000							
			10.0	10.0	10.0	10.0	10.0	10.0	10.0							
			14%	30%	20%	20%	16%	0%	0%	100%	=% of Items Packed					

Workforce Scheduling

 Recall from lab: Construct a schedule that <u>minimizes</u> the total number of cashiers while adhering to the shift rules and meeting the minimum cashier requirements of each 4-hour time slot.

Shift Coverage

	Monday (M) Tuesday (T)			Wednesday (W)			Thursday (R)			Friday (F)			Saturday (S)			Sunday (N)					
9am-	·1pm	1pm-5pm	5pm-9pm	9am-1pm	1pm-5pm	5pm-9pm	9am-1pm	1pm-5pm	5pm-9pm	9am-1pm	1pm-5pm	5pm-9pm	9am-1pm	1pm-5pm	5pm-9pm	9am-1pm	1pm-5pm	5pm-9pm	9am-1pm	1pm-5pm	5pm-9pm
6	5	5	8	6	5	8	6	5	8	6	5	8	3	8	4	10	14	7	4	12	6

- The key to the problem is recognizing that there are 14 possible shift choices and, hence, 14 decision variables.
 - 7 "Morning" Schedules: 9am-5pm M-F, T-S, W-N...
 - 7 "Evening" Schedules: 1pm-9pm M-F, T-S, W-N...

Problem Formulation

 x_{ij} = The number of employees whose 5 - day work schedule begins on day i (i = M, T, ..., N) and covers shift time j, where j = 1 denotes 9am - 5pm and j = 2 denotes 1pm - 9pm.

Minimize
$$\sum_{i=M}^{N} \sum_{j=1}^{2} x_{ij}$$
 (Total Employees)

subject to:

$$\sum_{k=i-4}^{i} x_{k1} \ge N_{it} \ \forall i = M, ...N, t = 9am \ (Morning Staffing Needs)$$

$$\sum_{k=i-4}^{i} (x_{k1} + x_{k2}) \ge N_{it} \ \forall i = M, ...N, t = 1pm \ (Midday Staffing Needs)$$

$$\sum_{k=i-4}^{i} x_{k2} \ge N_{it} \ \forall i = M, ...N, t = 5pm \ (Evening Staffing Needs)$$

$$x_{ij} \ge 0 \ \text{and INTEGER}, \ \forall i = M, ...N, j = 1,2$$

Optimal Integer Solution

									Shift (Covera	<u>ige</u>										
	М	onday (M)	Tu	uesday	(T)	Wed	inesday	(W)	Th	ursday	(R)	F	riday (F	-)	Sa	turday	(S)	S	unday (l	N)
	9am-1pm	1pm-5pm	5pm-9pm	9am-1pm	1pm-5pm	5pm-9pm				9am-1pm	1pm-5pm	5pm-9pm	9am-1pm	1pm-5pm	5pm-9pm	9am-1pm	1pm-5pm	5pm-9pm			5pm-9pm
Total Needed:	6	5	8	6	5	8	6	5	8	6	5	8	3	8	4	10	14	7	4	12	6
Total Scheduled:	6	14	8	8	16	8	8	16	8	6	14	8	6	14	8	10	19	9	6	12	6

Number of Cashiers for each Shift Schedule

Morning M-F	0
Morning T-S	4
Morning W-N	0
Morning R-M	2
Morning F-T	0
Morning S-W	4
Morning N-R	0
Evening M-F	0
Evening T-S	2
Evening W-N	1
Evening R-M	1
Evening F-T	1
Evening S-W	2
Evening N-R	4
Total:	21

In contrast to Box Packing, Solver found this solution to the Shift Scheduling problem and recognized it as optimal almost instantly.

Note: This solution is *not* unique. There are multiple optimal solutions.

Portfolio Optimization

"October. This is one of the peculiarly dangerous months to speculate in stocks. The others are July, January, September, April, November, May, March, June, December, August and February."

— Mark Twain

Investment Risk and Return

- Risk The <u>potential for loss</u> due to variability.
- For individual securities (stocks, bonds, etc.), risk is measured by the <u>variance</u> or <u>standard deviation</u> of future returns.
- Let R_j = rate of return of security j over a specified time period.
- R_j is a random variable. We denote its mean and variance by $\mu_j = E[R_j]$ and $\sigma_j^2 = Var[R_j]$.

Security Selection

- Given a choice of a single security j from a set of securities, most rational investors would look for a security j with a large μ_i and a small σ_i (relative to μ_i).
- When investing in a <u>portfolio</u> of securities, usually we can do better than simply choosing securities based on their individual merits. That is, by carefully choosing securities that are not all strongly correlated, we can <u>reduce risk through diversification</u>.

Portfolio Rate of Return

• Suppose that among N securities j = 1,...N, we invest fraction w_j of our wealth in security j, so that:

$$W_1 + W_2 + ... + W_N = 1$$

Then our <u>portfolio rate of return</u>, R_P, is defined as:

$$R_P = \sum_{j=1}^{N} w_j R_j$$

R_P is a random variable with mean:

$$\mu_P = E[R_P] = E[\sum_{j=1}^N w_j R_j] = \sum_{j=1}^N w_j E[R_j] = \sum_{j=1}^N w_j \mu_j$$

Portfolio Variance

The variance of R_P is given by:

$$\sigma_P^2 = Var[R_P] = Var[\sum_{j=1}^N w_j R_j] = \sum_{i=1}^N \sum_{j=1}^N w_i w_j Cov(R_i, R_j)$$

• Since $Cov(R_i, R_j) = \rho_{ij}\sigma_i\sigma_j$, where ρ_{ij} denotes the **correlation** between R_i with R_j , we have:

$$\sigma_P^2 = \sum_{i=1}^N \sum_{j=1}^N w_i w_j \rho_{ij} \sigma_i \sigma_j$$

• Recall that $-1 \le \rho_{ii} \le 1$ for all i and j.

Example: Two Securities

$$(\sigma_1, \mu_1) = (5\%,6\%)$$
 $(\sigma_2, \mu_2) = (12\%,10\%)$ $\rho_{12} = 0.1$

Diversification

• When ρ_{12} < 1, the portfolio standard deviation σ_P satisfies:

$$\sigma_P < w_1 \sigma_1 + w_2 \sigma_2 \left(- - - \right).$$

Efficient Frontier

- A portfolio P is <u>efficient</u> if there is no other portfolio with a higher return AND a lower standard deviation.
- The <u>efficient frontier</u> is the set of efficient portfolios.

Portfolio Optimization

 Given a target average rate of return, TARR, <u>find the</u> <u>lowest-risk portfolio P that satisfies μ_P ≥ TARR</u>:

Minimize
$$\sqrt{\sum_{i=1}^{N}\sum_{j=1}^{N}w_{i}w_{j}\rho_{ij}\sigma_{i}\sigma_{j}}$$
 (i.e., σ_{P})

subject to:

$$\sum_{j=1}^{N} w_{j} \mu_{j} \geq TARR$$

$$\sum_{j=1}^{N} w_{j} = 1$$

$$w_{j} \geq 0 \quad \text{for all } j = 1,...N.$$

Portfolio Optimization

• OR, given a target maximum risk level, TRISK, find the highest-return portfolio P that satisfies $\sigma_P \leq TRISK$:

Maximize
$$\sum_{j=1}^{N} w_j \mu_j$$
 (i.e., μ_P)

subject to:

$$\sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \rho_{ij} \sigma_i \sigma_j} \leq TRISK$$

$$\sum_{j=1}^{N} w_j = 1$$

$$w_j \ge 0$$
 for all $j = 1,...N$.

