E.N.S.E.M.

UNIVERSITE NANCY I

Année Universitaire 1984/1985

COMPLEMENTS DE CALCULS TENSORIELS

"LES COORDONNEES CURVILIGNES ORTHOGONALES"

H. LANCHON

Polycopié distribué cette année :

Pour les modules : Mathématiques Fondamentales

Mécanique des Solides Déformables

aux étudiants de D.E.A. de Mécanique

ETUDE DES COORDONNES CURVILIGNES ORTHOGONALES (sous forme d'un problème)

ETUDE DES COORDONNEES CURVILIGNES ORTHOGONALES.

Préliminaires : Soit M un point de l'espace Euclidien affine 3, il peut être repéré par x_1 , x_2 , x_3 coordonnées dans un trièdre cartésien fixe $(0, k_1, k_2, k_3)$ ou par trois paramètres x_1 , x_2 , x_3 (par exemple r, θ , x_3 en coordonnées cylindriques ou r, θ , ϕ en coordonnées aphériques) formant un système de coordonnées locales.

Les surfaces x_1 = constante, x_2 = constante, x_3 = constante se coupent deux à deux suivant les courbes appelées <u>lignes coordonnées</u> le long desquelles un seul paramètre varie,

En tout point de l'espace passent 3 lignes coordonnées; si ces lignes sont orthogonales entre elles en chaque point M, on dit que x_1 , x_2 , x_3 forment un système de coordonnées curvilignes orthogonales. A la différence avec les coordonnées cartésiennes, les lignes coordonnées ne sont plus ici de direction fixe.

A chaque point $M(x_1, x_2, x_3)$ de x_3^3 on associe le vecțeur : $M(x) = X_1(x)$ K_1 ; les vecteurs tangents aux lignes coordonnées en M sont alors : $\frac{\partial M}{\partial x_1}$, $\frac{\partial M}{\partial x_2}$, $\frac{\partial M}{\partial x_3}$.

Les conditions d'orthogonalité se traduisent par :

(1)
$$\frac{\partial \vec{m}}{\partial x_i} \cdot \frac{\partial \vec{m}}{\partial x_j} = K \delta_{ij}.$$

et l'on pose :

(2)
$$\dot{e}_{i} = \frac{\partial \vec{h}}{\partial x_{i}} / \left| \frac{\partial \vec{h}}{\partial x_{i}} \right|$$

(le trait sous l'indice i signifie qu'il n'y a pas sommation en i ou encore que les deux indices soulignés ne comptent qua pour un seu $m{1}$. Les vecteurs $\dot{e}_{m{1}}$ forment un trièdre local orthonormé :

(3)
$$e_{i} \cdot e_{j} = \delta_{ij},$$

et l'on suppose que les paramètres x_1 , x_2 , x_3 sont numérotés de telle sorte que ce repère soit direct.

I - ELEMENTS DE LONGUEUR, DE SURFACE ET DE VOLUME EN COOPDONNEES CURVILIONES ORTHO-COMALES.

a) En posant $h_i = \left| \frac{\partial v}{\partial x_i} \right|$ montrer dus l'élément de longueur de est donné par

(4)
$$d\epsilon^2 = |d\vec{h}|^2 = h_1^2 dx_1^2 + h_2^2 dx_2^2 + h_3^2 dx_3^2 = h_1^2 dx_1^2$$

b) Soit d σ un élément de surface de \mathcal{E}^3 décrite par deux paramètres α et β de telle sorte

(5)
$$\frac{\partial \vec{m}}{\partial \alpha} \wedge \frac{\partial \hat{n}}{\partial \dot{\alpha}} = \lambda \hat{n}$$

(n vecteur "normale unitaire" à la surface).

montrer alors que do est défini par

(6)
$$\frac{1}{h} d\sigma = h_2 h_3 dx_2 dx_3 = \frac{1}{h} + h_3 h_1 dx_3 dx_1 = \frac{1}{h} + h_1 h_2 dx_1 dx_2 = \frac{1}{h}$$

(ici il y a sommation en i, j, k; mais les deux indices i soulignés ne comptent que pour un seul, ainsi que les deux indices j soulignés).

On obtiendra (6) en notant que par définition

(7)
$$\vec{n} \cdot d\vec{n} = d\vec{n} \wedge d\vec{n}'$$

 \overrightarrow{dM} et \overrightarrow{dM} étant deux déplacements infinitésimaux de M le long respectivement des lignes α = constante et β = constante.

On pourra ainsi utiliser les identités

(8)
$$\dot{e}_{i} \wedge \dot{e}_{j} = \dot{e}_{ijk} \dot{e}_{k}$$
 et

(9)
$$dx_{j} dx_{j} = \frac{D(x_{j}, x_{j})}{D(\alpha, \beta)} d\alpha d\beta$$

 $\frac{D(x_1,x_j)}{D(\alpha,\beta)} \text{ étant le Jacobien de la transformation } \alpha,\beta \longrightarrow x_1(\alpha,\beta), x_j(\alpha,\beta)$

c) Montrer enfin que l'élément de volume est donné par .

II - CALCUL DES VECTEURS e,, ;

Si nous posons :

(11)
$$\dot{v}_{i,j} = \omega_{i,k}^{j} \dot{e}_{k}$$

a) Montrer que

(12) $\omega_{p} \stackrel{j}{q} = -\omega_{q} \stackrel{j}{p} \text{ et donc } \omega_{\underline{i}} \stackrel{j}{\underline{i}} = 0$

b) En notant que $\frac{3^2 \dot{\eta}}{\partial x_1 \partial x_j} = \frac{3^2 \dot{\eta}}{\partial x_1 \partial x_1}$ montrer que

(13) $\omega_{j} \frac{(i)}{i} = \frac{h_{i,j}}{h_{j}} \qquad \text{si} \quad i \neq j \quad \text{et}$

(14) $\omega_{i,k} = 0 \quad \text{si} \quad i \neq j \neq k$

III - EXPRESSION DES OPERATEURS CLASSIQUES.

a) Compte tenu de la définition

(15) $d\phi = \overline{\text{grad}} \cdot d\overline{M}$

montrer que

b) Comote tenu de la définition

(17)
$$d\vec{V} = \overrightarrow{grad} \vec{V}$$
, $d\vec{M}$

montrer que

(18)
$$\overline{\operatorname{gred}} \stackrel{?}{\overset{?}{\vee}} = T_{ij} \stackrel{?}{\overset{e}{\circ}} = \frac{1}{h_{\underline{j}}} \left(v_{\underline{i},\underline{j}} + v_{\underline{p}} \frac{\omega_{\underline{j}}}{p_{\underline{i}}} \right) \stackrel{?}{\overset{e}{\circ}} \stackrel{?}{\overset{e}{\circ}} = \frac{1}{h_{\underline{j}}}$$

c) Compte tenu de la définition

(19)
$$\operatorname{div} \overrightarrow{V} = \operatorname{trace} \overline{\operatorname{grad}} = T_{11}$$

montrer que

- d) Déduire de ce qui précède l'expression (21) de $\Delta \gamma$ en coordonnées curvilignes orthogonales.
 - e) in partant de la définition

montrer que

en déduire l'expression (24) de div $\overline{\overline{11}}$ puis l'expression (25) de Δ \overline{V} en coordonnées curvilignes orthogonales.

f) Montrer enfin que

(26)
$$\overrightarrow{rot} \overset{\downarrow}{\vee} = \Omega_{i} \overset{\downarrow}{e_{i}} = \epsilon_{ijk} \left\{ \frac{1}{h_{ij}h_{k}} \frac{\partial}{\partial x_{j}} (h_{k}v_{k}) \right\} \overset{\downarrow}{e_{i}}$$

On remarquera pour cola que $rot V = \mathbf{E} \begin{bmatrix} \hline \\ \hline \\ \hline \end{bmatrix} \begin{bmatrix} \hline \\ \hline \\ \hline \end{bmatrix} \begin{bmatrix} \hline \\ \hline \\ \hline \end{bmatrix}$

Éétant le tenseur alterné fondamental et l'indice T désignant l'opération transposition.

IV - APPLICATION AUX COORDONNEES CYLINDRIQUES.

- al calculer h₁, h₂, h₃
- b) donnez les expressions respectives des éléments de longueur, d'aire et de volume en coordonnées cylindriques,
- c) calcular les $\omega_{i}^{j}_{k}$
- d) déduire de a et c les expressions de grad \vec{V} , grad \vec{V} , div \vec{V} , $\Delta \phi$, rot \vec{V} et div $\vec{\Pi}$ en coordonnées cylindriques.

V - APPLICATION AUX COORDONNEES SPHERIQUES.

$$x_1 = r$$

 $x_2 = \theta$ $0 \le \theta \le \pi$
 $x_3 = \Psi$ $0 \le \varphi \le 2\pi$

mêmes questions a,b,c,d, que pour les coordonnées cylindriques.

Corrigé du problème 15

1 Elements de longueur, de surface et de volume

if est défini par la longueur du vecteur inféritesimal d'm'; amni $d\vec{n} = |d\vec{n}|$ $d\vec{n} = \frac{\vec{n}\vec{n}}{\vec{n}} d\vec{x}_i = |\frac{\vec{n}\vec{n}}{\vec{n}}| d\vec{x}_i \vec{e}_i = \vec{h}_i d\vec{x}_i \vec{e}_i = \vec{h}_i d\vec{x}_i \vec{e}_i$

(4)
$$ds^2 = |\overrightarrow{dm}|^2 = k_1^2 dx_1^2 + k_2^2 dx_2^2 + k_3^2 dx_3^2 = k_1^2 dx_1^2$$

l'élément de surface

C'est l'aux d'un paralle logramme élémentaine tangent à la surface au point considéré \underline{x} ; la surface comidérée elant arbitraire, si elle est dévilé par deux parameter d, 13, comidérant $d\vec{m}' = a cuoissement infinitesimal de M le long des coules d'= comtante$

di = hi pai da ei

d'élément de surface est alors donné fran.

m'do=dm'ndm'=hihy Dai Das dadseinej
soit, compte tenu de

einej'= Eighen

notom que, par exemple

$$\mathcal{E}_{i,j,1} \frac{\partial \alpha_i}{\partial \alpha_i} \frac{\partial \alpha_j}{\partial \alpha_j} = \frac{\partial \alpha_j}{\partial \alpha_i} \frac{\partial \alpha_j}{\partial \alpha_j} - \frac{\partial \alpha_j}{\partial \alpha_j} \frac{\partial \alpha_j}{\partial \alpha_i} = \frac{\mathcal{D}(\alpha_i, \alpha_j)}{\mathcal{D}(4, \beta_j)}$$

ce qui conduit à !

$$\overrightarrow{n} d\sigma = h_2 h_3 \frac{D(\alpha_1, \alpha_3)}{D(d, \beta)} ddd\beta \overrightarrow{e}_1 + h_3 h_4 \frac{D(\alpha_2, \alpha_1)}{D(d, \beta)} ddd\beta \overrightarrow{e}_2 + h_4 h_2 \frac{D(\alpha_1, \alpha_2)}{D(d, \beta)} ddd\beta \overrightarrow{e}_3$$

soit compte tenu de (9)

c) élément de volume

c'est le volume d'un fancille le jépede elementaine dont le cotés sont trois accioissements infinitisimaix pris le long de chaque lignest coordonnée d'au

$$dN = \left(\frac{\partial n}{\partial \alpha_{1}}, \frac{\partial m}{\partial \alpha_{2}}, \frac{\partial m}{\partial \alpha_{3}}\right) d\alpha_{1}, d\alpha_{2}, d\alpha_{3}$$

$$= h_{1} h_{2} h_{3} \left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right) d\alpha_{1} d\alpha_{2} d\alpha_{3}$$

$$= h_{1} h_{2} h_{3} \sum_{i,j,k} \delta_{i,j} \delta_{j,k} \delta_{i,j} \delta_{j,k} \delta_{j,k} d\alpha_{3} d\alpha_{3}$$

2. Calcul des vecteurs èix.

a) man poson
$$\vec{e}_{i,j} = \omega_i^3 \vec{e}_R = 0$$

 $\vec{e}_p \cdot \vec{e}_q = \delta_{pq}$ ce qui implique $\vec{e}_{p,j} \vec{e}_q + \vec{e}_p \cdot \vec{e}_{q,j} = 0$
soit $\omega_p^3 \vec{h} \delta_{hq} + \omega_q^3 \vec{h} \delta_{hp} = 0$
donc (12) $\omega_p^3 q = -\omega_q^3 p \implies \omega_p^3 p = 0$

b)
$$\frac{\partial^2 \vec{m}}{\partial x_i \partial x_j} = \frac{\partial^2 \vec{m}}{\partial x_j \partial x_i}$$
 enthaine $(h_i \vec{e}_i)_{,j} = (h_j \vec{e}_j)_{,i}$
soit $h_{i,j} \vec{e}_i + h_i \omega_i^{\ j} p \vec{e}_p = h_{j,i} \vec{e}_j + h_j \omega_j^{\ i} p \vec{e}_p$
pour $i = j$ on obtient som identité sans intérêt
pour $i \neq j$:

La projection sur èt donne;

$$h_{i,j} + h_i \omega_i^{j}_{i} = h_j \omega_j^{i}_{\underline{i}}$$

$$man \quad \omega_i^{j}_{\underline{i}} = 0 \quad dopnio(12)$$

$$d'ou \quad \omega_j^{i}_{\underline{i}} = \frac{h_{i,1}}{h_1} \quad pour \quad i \neq j$$

$$(13)$$

da projection sur \vec{e}_i nedonne [13] la projection sur $\vec{e}_i \neq \vec{e}_i \neq \vec{e}_j$ domme $h_i \omega_i \hat{f}_k = h_j \omega_j \hat{f}_k$

soit

$$\frac{\omega_i^{\frac{1}{2}}_{h}}{h_j} = \frac{\omega_s^{i}_{h}}{h_i}$$

mais, comilte tenin de (12)

$$\frac{\omega_{i}^{j} + \frac{1}{h_{j}} = -\frac{\omega_{k}^{j}}{h_{k}} = -\frac{\omega_{j}^{k}}{h_{k}} = \frac{\omega_{i}^{k}}{h_{k}}$$

et

$$\frac{\omega_3^{\frac{1}{h}}}{h_i} = -\frac{\omega_{h}^{\frac{1}{h}}}{h_i} = -\frac{\omega_{i}^{\frac{h}{h}}}{h_{h}}$$

aimi nécomainement

(14)
$$\omega_i^{\ j}_{R} = 0 \quad \text{si } i \neq j \neq k$$

3. Expression des opérateurs classiques

a)
$$\overline{g}_{1}$$
 \overline{g}_{2} \overline{g}_{3} \overline{g}_{4} $\overline{g}_{$

By
$$\frac{1}{2} \frac{1}{2} \frac$$

(20)
$$\frac{d_{1}v_{1}\vec{V}}{d_{1}v_{2}\vec{V}} = \frac{1}{h_{2}h_{3}} \left(\frac{12}{h_{2}h_{3}}\right) = T_{11}$$

$$\frac{d_{1}v_{2}\vec{V}}{d_{2}v_{3}} + \frac{1}{h_{2}} v_{2}v_{2} + \frac{1}{h_{3}} v_{3}v_{3} + \frac{1}{h_{2}h_{2}} \left[v_{2}h_{4}v_{4} + v_{4}h_{2}v_{3}\right] + \frac{1}{h_{2}h_{3}} \left[v_{3}h_{2}v_{3} + v_{3}h_{4}v_{3}\right] + \frac{1}{h_{3}h_{4}} \left[v_{3}h_{4}v_{3} + v_{3}h_{4}v_{3}\right] = t \quad \text{finalement}$$

$$\frac{1}{h_{3}h_{4}} \left[v_{4}h_{3}v_{4} + v_{3}h_{4}v_{3}\right] = t \quad \text{finalement}$$

$$\frac{1}{h_{3}h_{4}} \left[v_{4}h_{3}v_{4} + v_{3}h_{4}v_{3}\right] = t \quad \text{finalement}$$

d)
$$\Delta \varphi = \text{div grad} \varphi$$

comple tenn des relations (16) et (20)

(21)
$$\Delta \varphi = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial \alpha_1} (h_2 h_3 v_4) + \frac{\partial}{\partial \alpha_2} (h_3 h_4 v_2) + \frac{\partial}{\partial \alpha_3} (h_1 h_2 v_3) \right]$$

d'une part

d = |Tijle ei o ej + Tij wilk ek o ej + Tij wj k ei o ek) dre d anhe hart

122) dπ = grad π . dm = Sigh ha da ei e ej par adaptation des indices muels et identification, on obtient.

div T = Sijj ei soit donc.

ct comme

 $\Delta \vec{V} = \text{div } \text{grad } \vec{V}$ if sulfit de remplaces \vec{T} par $\vec{g} = \vec{A} \vec{V}$ dam (24); or les com/osantin de $\vec{g} = \vec{A} \vec{V}$ sont donnéer fan (18) a savoir $Tij = \frac{1}{R_1} \left(\vec{v}_{i,j} + \vec{v}_p \vec{w}_p^{\frac{1}{2}} \right) \quad d' \text{ ou}$

$$|\Delta \vec{V}| = \frac{1}{h_1} \left\{ \left[\vec{v}_{i,\underline{a}} + \vec{v}_p \omega_p^{\underline{a}_i} \right]_{,l} + \frac{1}{h_1} \left[\vec{v}_{k,\underline{b}} + \vec{v}_p \omega_p^{\underline{a}_k} \right] \omega_k^{\underline{a}_i} + \frac{1}{h_{\underline{a}_k}} \left[\vec{v}_{i,\underline{k}} + \vec{v}_p \omega_p^{\underline{b}_i} \right] \omega_k^{\underline{a}_j} \right\} \vec{e}_i^{\underline{a}_i}$$

f) RdV forom not
$$\hat{v} = \Omega_i \vec{e}_i$$
; on a alon.
 $\Omega_i = Eightage en forant Thy \vec{e}_k = \vec{e}_j = gradu$

poit encore:

si = { EightThy-Tyh; can la fartie symetrique de TT

donne une contribution mulle

$$\frac{d}{dt} \left[\frac{1}{2} \left(\frac{1}{2} \right) \right] = \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right$$

alon, en josant Sik = 1 hi ha (ha va), 1

on constate que la failie antisymetrique de TI = - la faitie antisymetrique de 5, d'où

4. Affication aux coordonnées cylindriques

$$\alpha_1 = \gamma$$
 $X_1 = \gamma \cos \theta$

$$\alpha_l = \theta$$
 $\chi_l = l \sin \theta$

$$\alpha_{i} = \lambda_{i}$$
 $\lambda_{j} = \alpha_{j}$

$$h_1 = \left| \frac{\partial M}{\partial \alpha_1} \right| = \left(\left| \frac{\partial X_1}{\partial x} \right|^2 + \left| \frac{\partial X_2}{\partial x} \right|^2 + \left| \frac{\partial X_3}{\partial \alpha_2} \right|^2 \right)^{1/2} = \left(\cos^2 \theta + \sin^2 \theta \right)^{1/2} = 1$$

$$h_1 = \left| \frac{\partial \vec{n}}{\partial \alpha_1} \right| = \left| \frac{\partial \vec{n}}{\partial \theta} \right| = \left(2^2 \sin^2 \theta + 2^2 \cos^2 \theta \right)^{1/2} = 2.$$

$$h_3 = \left| \frac{\partial M}{\partial x_3} \right| = 1 \quad \text{aim}$$

B) éléments de longuem: d'après (4) et (27)

$$(18) \qquad ds^2 = ds^2 + r^2 d\theta^2 + d\alpha_3^2.$$

element de sontace: d'après (6) et (27).

élement de volume: d'apris (10) et (27)

- c) calcul des with: d'apris (12) (13) (14) et (27).
- $(31) \begin{cases} \omega_{1}^{2} = \omega_{2}^{3} = \omega_{3}^{1} = \omega_{3}^{1} = -\omega_{1}^{3} = -\omega_{2}^{1} = -\omega_{2}^{1} = 0 \\ \omega_{1}^{2} = 1 = -\omega_{2}^{1} = \omega_{3}^{1} = \omega_{1}^{3} = \omega_{2}^{3} = \omega_{2}^{3} = \omega_{2}^{1} = 0 \end{cases}$ $(31) \begin{cases} \omega_{1}^{2} = 1 = -\omega_{2}^{1} = \omega_{1}^{3} = \omega_{1}^{3} = \omega_{2}^{3} = \omega_{2}^{3} = \omega_{2}^{1} = 0 \\ \text{tom the aution } \omega_{1}^{3} \neq \infty_{1}^{3} = \omega_{1}^{3} = \omega_{2}^{3} = \omega_{2}^{3} = \omega_{2}^{1} = 0 \end{cases}$
 - d) expenion des différents ofercleurs d'april (16) et (27)

(32)
$$\sqrt{\frac{2}{9}} = \frac{2}{9} = \frac{2}{9} = \frac{1}{2} + \frac{1}{2} = \frac{2}{9} = \frac{2}{9} = \frac{2}{9} = \frac{2}{9}$$

$$d' a min (18) el (27)$$

(33)
$$\frac{1}{\sqrt{2}} \left(\frac{\partial v_i}{\partial x} - \frac{1}{2} \left(\frac{\partial v_i}{\partial x} - v_i \right) - \frac{\partial v_i}{\partial \alpha_i} \right)$$

$$\frac{\partial v_i}{\partial x} \left(\frac{\partial v_i}{\partial x} - \frac{1}{2} \left(\frac{\partial v_i}{\partial x} + v_i \right) - \frac{\partial v_i}{\partial \alpha_i} \right)$$

$$\frac{\partial v_i}{\partial x} \left(\frac{\partial v_i}{\partial x} - \frac{1}{2} \left(\frac{\partial v_i}{\partial x} + v_i \right) - \frac{\partial v_i}{\partial \alpha_i} \right)$$

$$\frac{\partial v_i}{\partial x} \left(\frac{\partial v_i}{\partial x} - \frac{1}{2} \left(\frac{\partial v_i}{\partial x} + v_i \right) - \frac{\partial v_i}{\partial x} \right)$$

d'après (20) et (27) on mieux d'après la definition de divid

(34)
$$\operatorname{div} \vec{V} = 1$$
 hace $\operatorname{de} \overline{g_{1}} \operatorname{ad} \vec{V} = \frac{\partial v_1}{\partial z} + \frac{1}{2} \left(\frac{\partial v_2}{\partial \theta} + v_1 \right) + \frac{\partial v_3}{\partial x_3}$

(35)
$$\Delta \varphi = \frac{1}{2} \frac{\partial}{\partial x} \left(2 \frac{\partial \varphi}{\partial x} \right) + \frac{1}{2^2} \frac{\partial^2 \varphi}{\partial \theta^2} + \frac{\partial^2 \varphi}{\partial \alpha_3^2}.$$

(36)
$$1 \overrightarrow{Ol} = \frac{1}{2} \left[\frac{\partial v_3}{\partial \theta} - 2 \frac{\partial v_2}{\partial \alpha_3} \right] \overrightarrow{e_1} + \left(\frac{\partial v_1}{\partial \alpha_3} - \frac{\partial v_2}{\partial \theta} \right) \overrightarrow{e_2} + \frac{1}{2} \left[\frac{\partial}{\partial \alpha} (v_2) - \frac{\partial v_1}{\partial \theta} \right] \overrightarrow{e_3}$$

(37) din T
$$= \begin{cases} \frac{\partial T_{ii}}{\partial 2} + \frac{1}{2} \left[\frac{\partial T_{i2}}{\partial \theta} - T_{22} + T_{11} \right] + \frac{\partial T_{13}}{\partial \alpha_{3}} \right.$$

$$= \begin{cases} \frac{\partial T_{ii}}{\partial 2} + \frac{1}{2} \left[\frac{\partial T_{12}}{\partial \theta} + T_{12} + T_{21} \right] + \frac{\partial T_{23}}{\partial \alpha_{3}} \right.$$

$$= \begin{cases} \frac{\partial T_{31}}{\partial 2} + \frac{1}{2} \left[\frac{\partial T_{32}}{\partial \theta} + T_{31} \right] + \frac{\partial T_{33}}{\partial \alpha_{3}} \right.$$

$$= \begin{cases} \frac{\partial T_{31}}{\partial 2} + \frac{1}{2} \left[\frac{\partial T_{32}}{\partial \theta} + T_{31} \right] + \frac{\partial T_{33}}{\partial \alpha_{3}} \right.$$

el enfin en replasant dans la relation pecedenles Tij fai les comporantes donneis fai. (33) de grad v dans en ez, ez, es, ona.

(38)
$$\overrightarrow{\Delta V} = \begin{cases} \frac{\partial^2 V_1}{\partial 2^2} + \frac{1}{2^2} \left(\frac{\partial^2 V_1}{\partial 0^2} + \frac{\partial^2 V_1}{\partial 0} - V_1 \right) + \frac{1}{2} \frac{\partial^2 V_1}{\partial 2} + \frac{\partial^2 V_1}{\partial \alpha_j^2} \\ \frac{\partial^2 V_1}{\partial 2^2} + \frac{1}{2^2} \left(\frac{\partial^2 V_1}{\partial 0^2} + \frac{\partial^2 V_1}{\partial 0} - V_1 \right) + \frac{1}{2} \frac{\partial^2 V_1}{\partial 2} + \frac{\partial^2 V_1}{\partial \alpha_j^2} \\ \frac{\partial^2 V_1}{\partial 2^2} + \frac{1}{2^2} \frac{\partial^2 V_1}{\partial 0^2} + \frac{1}{2} \frac{\partial^2 V_1}{\partial 2} + \frac{\partial^2 V_1}{\partial 2} + \frac{\partial^2 V_1}{\partial 2} \\ \frac{\partial^2 V_2}{\partial 2^2} + \frac{1}{2^2} \frac{\partial^2 V_2}{\partial 0^2} + \frac{1}{2} \frac{\partial^2 V_2}{\partial 2} + \frac{\partial^2 V_1}{\partial 2} \\ \frac{\partial^2 V_1}{\partial 2^2} + \frac{1}{2^2} \frac{\partial^2 V_2}{\partial 0^2} + \frac{1}{2} \frac{\partial^2 V_2}{\partial 2} + \frac{\partial^2 V_2}{\partial 2} \\ \frac{\partial^2 V_1}{\partial 2^2} + \frac{1}{2^2} \frac{\partial^2 V_2}{\partial 0^2} + \frac{1}{2} \frac{\partial^2 V_2}{\partial 2^2} + \frac{\partial^2 V_2}{\partial 2^2} \\ \frac{\partial^2 V_1}{\partial 2^2} + \frac{1}{2^2} \frac{\partial^2 V_2}{\partial 0^2} + \frac{1}{2} \frac{\partial^2 V_2}{\partial 2^2} + \frac{\partial^2 V_2}{\partial 2^2} \\ \frac{\partial^2 V_1}{\partial 2^2} + \frac{1}{2^2} \frac{\partial^2 V_2}{\partial 0^2} + \frac{1}{2} \frac{\partial^2 V_2}{\partial 2^2} + \frac{\partial^2 V_2}{\partial 2^2} \\ \frac{\partial^2 V_2}{\partial 2^2} + \frac{1}{2^2} \frac{\partial^2 V_2}{\partial 0^2} + \frac{1}{2} \frac{\partial^2 V_2}{\partial 2^2} + \frac{\partial^2 V_2}{\partial 2^2} \\ \frac{\partial^2 V_2}{\partial 2^2} + \frac{1}{2^2} \frac{\partial^2 V_2}{\partial 0^2} + \frac{1}{2} \frac{\partial^2 V_2}{\partial 2^2} + \frac{\partial^2 V_2}{\partial 2^2} \\ \frac{\partial^2 V_2}{\partial 2^2} + \frac{1}{2^2} \frac{\partial^2 V_2}{\partial 0^2} + \frac{1}{2} \frac{\partial^2 V_2}{\partial 2^2} + \frac{\partial^2 V_2}{\partial 2^2} \\ \frac{\partial^2 V_2}{\partial 2^2} + \frac{\partial^2 V_2}{\partial 2^2} + \frac{\partial^2 V_2}{\partial 2^2} + \frac{\partial^2 V_2}{\partial 2^2} \\ \frac{\partial^2 V_2}{\partial 2^2} + \frac{\partial^2 V_2}{\partial 2^2} + \frac{\partial^2 V_2}{\partial 2^2} + \frac{\partial^2 V_2}{\partial 2^2} \\ \frac{\partial^2 V_2}{\partial 2^2} + \frac{\partial^2 V_2}{\partial 2^2} \\ \frac{\partial^2 V_2}{\partial 2^2} + \frac{\partial^$$

soil enior

$$\overrightarrow{\Delta V} = \begin{cases} \Delta v_1 - \frac{2}{2^1} \frac{\partial v_2}{\partial \theta} - \frac{v_1}{2^2} \\ \Delta v_2 + \frac{2}{2^2} \frac{\partial v_1}{\partial \theta} - \frac{v_1}{2^2} \\ \Delta v_3 \end{cases}$$

```
5. Application anx coordonnin spheriques
                                                                                                                                                                                                                                                                                                                                   0 £ 8 £ 1T
                                                                                                         X_4 = \lambda \sin \theta \cos \varphi
                                                                                                                                                                                                                                                                                                                                       0 & 4 & 211
                                                                                                                      X2 = A sin B sin q
                                                                                                                            x_3 = n\cos\theta
                                                                                                                                        a) calcul de hi, hi, his
                                                                                                                             \left|\frac{\partial n}{\partial \alpha_{+}}\right| = \left|\frac{\partial n}{\partial n}\right| = \left(\sin^{2}\theta\cos^{2}\theta + \sin^{2}\theta\sin^{2}\theta + \cos^{2}\theta\right)^{2} = 1
                                                                                                 |\frac{\partial \vec{H}}{\partial x}| = |\frac{\partial \vec{H}}{\partial x}| = |\frac{\partial \vec{H}}{\partial x}| = |\frac{\partial \vec{H}}{\partial x}| = |\frac{1}{2}\cos^2\theta\cos^2\theta + 2^2\cos^2\theta\sin^2\theta + 2^2\cos^2\theta + 2^2\cos^2\theta\sin^2\theta + 2^2\cos^2\theta + 2
                                                                                                                           \left|\frac{\partial \vec{n}}{\partial \alpha_3}\right| = \left|\frac{\partial \vec{m}}{\partial \phi}\right| = \left(n^2 n m^2 \theta \sin^2 \phi + n^2 \sin^2 \theta \cos^2 \phi\right)^2 = n \sin \theta
                                                                                                               h, = 1; h, = 2, h, = 2 sin &
                                     clement de longreur
                                                                                                       ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2
                                         clement de surface
                                                                                                        ndo = n'sino do dq e, + rsin o dq dr e, + rdrdo e,
                                            element de volume
                                               (42) dr = 12 sin 0 dr do dq.
                    c/ calcul des with
                                                 \omega_i d_{R} = 0 si i \neq j \neq k on si i = j = k.
                                                    \omega_{4}^{2} z = 1 = -\omega_{2}^{2} a; \omega_{4}^{3} z = \sin \theta = -\omega_{3}^{3} a.
                                                                                                                                                                                                                                                                                                                                                                                                                              (43)
                                                       \omega_{1}^{1} = 0 = -\omega_{1}^{1} 2; \omega_{2}^{3} = \cos \theta = -\omega_{3}^{3} 2.
                                                            ω31, =0 = - ω,13; ω32 = 0 = - ω,23
```

(44)
$$\overline{g}_{1} = \frac{\partial \psi}{\partial z} \vec{e}_{1} + \frac{\partial}{z} \frac{\partial \psi}{\partial \theta} \vec{e}_{2} + \frac{1}{2 \sin \theta} \frac{\partial \psi}{\partial \psi} \vec{e}_{3}$$

$$\frac{\partial v_{i}}{\partial z} = \frac{\partial v_{i}$$

[46)
$$\operatorname{din} \overrightarrow{V} = \frac{\partial v_i}{\partial n} + \frac{1}{2} \left(\frac{\partial v_i}{\partial \theta} + v_i \right) + \frac{1}{2 \sin \theta} \left(\frac{\partial v_j}{\partial \varphi} + v_i \sin \theta + v_i \cos \theta \right)$$

$$\Delta \psi = \frac{\partial^2 \psi}{\partial n^2} + \frac{1}{2} \left[\frac{\partial \psi}{\partial n} + \frac{1}{2} \frac{\partial^2 \psi}{\partial \theta^2} \right] + \frac{1}{n \sin \theta} \left[\frac{\partial \psi}{\partial n} \sin \theta + \frac{1}{2} \frac{\partial \psi}{\partial \theta} \cos \theta + \frac{1}{2 \sin \theta} \frac{\partial^2 \psi}{\partial \phi^2} \right]$$

$$(47) \quad \Delta \psi = \frac{\partial^2 \psi}{\partial 2^2} + \frac{9}{2} \frac{\partial \psi}{\partial 2} + \frac{1}{2^2} \frac{\partial^2 \psi}{\partial 0^2} + \frac{1}{2^2 t go} \frac{\partial \psi}{\partial 0} + \frac{1}{2^2 s in^2 o} \frac{\partial^2 \psi}{\partial \psi^2}$$

$$\frac{1}{2^{2} \sin \theta} \left[\frac{\partial}{\partial \theta} \left[2 \sin \theta \, v_{3} \right] - \frac{\partial}{\partial \varphi} \left(2 v_{2} \right) \right] \\
\frac{1}{2^{2} \sin \theta} \left[\frac{\partial}{\partial \theta} \left[2 \sin \theta \, v_{3} \right] - \frac{\partial}{\partial \varphi} \left(2 v_{2} \right) \right] \\
\frac{1}{2 \sin \theta} \left[\frac{\partial v_{1}}{\partial \varphi} - \frac{\partial}{\partial z} \left[2 \sin \theta \, v_{3} \right] \right] \\
\frac{1}{2} \left[\frac{\partial}{\partial z} \left(2 v_{2} \right) - \frac{\partial v_{1}}{\partial \theta} \right]$$

$$\frac{div \vec{\Pi}}{div \vec{\Pi}} = \begin{cases}
\frac{\partial T_{11}}{\partial 2} + \frac{1}{2} \left[\frac{\partial T_{12}}{\partial \theta} - T_{22} + T_{11} \right] + \frac{1}{2 \sin \theta} \left[\frac{\partial T_{13}}{\partial q} - \sin \theta T_{13} + \sin \theta T_{11} + \cos \theta T_{12} \right] \\
\frac{\partial T_{21}}{\partial 2} + \frac{1}{2} \left[\frac{\partial T_{22}}{\partial \theta} + T_{12} + T_{21} \right] + \frac{1}{2 \sin \theta} \left[\frac{\partial T_{23}}{\partial q} - \cos \theta T_{33} + \sin \theta T_{21} + \cos \theta T_{23} \right] \\
\frac{\partial T_{31}}{\partial 2} + \frac{1}{2} \left[\frac{\partial T_{32}}{\partial \theta} + T_{31} \right] + \frac{1}{2 \sin \theta} \left[\frac{\partial T_{33}}{\partial q} + \sin \theta T_{13} + \cos \theta T_{23} + \sin \theta T_{31} + \cos \theta T_{33} \right]$$

En remplesant dans cette expanion les Tij fou les composantés de grade données en (45), on obtient finalement

(50)
$$\overrightarrow{\Delta V} = \begin{cases} \Delta N_1 - \frac{2 N_1}{2^2} - \frac{2 \operatorname{col} q \theta}{2^2} N_2 - \frac{2}{2^2} \frac{\partial V_2}{\partial \theta} - \frac{2}{2^2 \operatorname{sin} \theta} \frac{\partial V_3}{\partial \varphi} \\ \Delta N_2 - \frac{N_2}{2 \sin^2 \theta} + \frac{2}{2^2} \frac{\partial V_1}{\partial \theta} - \frac{2}{2^2} \frac{\cos \theta}{2 \sin^2 \theta} \frac{\partial V_3}{\partial \varphi} \\ \Delta N_3 - \frac{N_3}{2^2 \sin^2 \theta} + \frac{2}{2^2 \sin^2 \theta} \frac{\partial V_1}{\partial \varphi} + \frac{2}{2^2} \frac{\cos \theta}{2 \sin^2 \theta} \frac{\partial V_2}{\partial \varphi} \end{cases}$$

d'eaire les equations de la mecanique des milieux continus en coordonners curvifignes orthogonales (en fartiaulier cylindiques et spheriques)