欧拉定理

全 主讲人: 邓哲也

欧拉函数

设 n 是一个正整数。欧拉函数 Φ(n) 定义为不超过 n 且 与 n 互素的正整数的个数。

n	1	2	3	4	5	6	7	8	9	10	11	12
φ (n)	1	1	2	2	4	2	6	4	6	4	10	4

模n的既约剩余系

模 n 的既约剩余系是由φ(n) 个整数构成的集合,集合中的每个元素均与 n 互素,且任何两个元素模 n 不同余。

如 {1, 3, 5, 7} 就是模 8 的一个既约剩余系。

欧拉定理

设 m 是一个正整数,a 是一个整数且 (a, m) = 1, 那么 $a^{\Phi(m)} \equiv 1 \pmod{m}$

比如 a = 3, m = 8 3 * 1, 3 * 3, 3 * 5, 3 * 7 是模 8 的既约剩余系 $(3 * 1) * (3 * 3) * (3 * 5) * (3 * 7) \equiv 1 * 3 * 5 * 7 \pmod{8}$ 因为 (1 * 3 * 5 * 7, 8) = 1, 故 $3^4 \equiv 1 \pmod{8}$

欧拉定理

设 m 是一个正整数,a 是一个整数且 (a, m) = 1, 那么 $a^{\Phi(m)} \equiv 1 \pmod{m}$

由此可以得到求 a 模 m 的逆的方法。

 $a^{\phi (m)} \equiv 1 \pmod{m}$

 $a * a^{\phi (m)-1} \equiv 1 \pmod{m}$

a^{φ (m)-1} 就是 a 模 m 的逆。

欧拉定理求同余方程

```
对于同余方程 ax \equiv b \pmod{m} 两边同乘 a 的逆 a^{\phi (m)-1} ax \equiv a^{\phi (m)-1} b \pmod{m} 就可以得到 x \equiv a^{\phi (m)-1} b \pmod{m}
```

比如: 由 $\phi(10) = 4$,对于同余方程 $3x \equiv 7 \pmod{10}$ 解为 $x \equiv a^{\phi(m)-1} b \equiv 3^3 * 7 \equiv 9 \pmod{10}$

【定理1】如果 p 是素数,那么 ϕ (p) = p - 1。反之,如果 p 是一个正整数且满足 ϕ (p) = p - 1,那么 p 是素数。

证明显然。如果 p 不是素数,那肯定存在一个大于 1 小于 p 的因子。

【定理2】如果 p 是素数, a 是一个正整数, 那么φ(p^a) = p^a - p^{a-1}.

证明: 所有不超过 p^a ,且和 p 不互素的正整数就是那些不超过 p^a ,且能够被 p 整除的所有整数,即 kp (1 <= k <= p^{a-1}) 因为恰有 p^{a-1} 个这样的整数,所以 Φ (p^a) = p^a - p^{a-1} .

【定理3】设 m 和 n 是互素的正整数,那么 Φ (mn) = Φ (m) Φ (n)

第二行和第四行,每个元素都不和 4 互素。

剩下的两行,每个元素都和 4 互素,但各有 6 个数和 9 互素。

1	5	9	13	17	21	25)	29	33
2	6	10	14	18	22	26	30	34
3	7	(1)	15	19	23)	27	(31)	35)
4	8	12	16	20	24	28	32	36

【定理4】设 $n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$ 为正整数 n 的素数幂分解,那么:

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_k}\right)$$

证明只要对每个质因子单独考虑。

【定理5】设 n 为一个正整数,那么 $\sum_{d|n} \phi(d) = n$ 证明: 我们将从1到n的整数构成的集合分类。整数m如果与 n的最大公因子为d,则m属于 C_d 类。就是说,如果m属于 C_d , 那么(m, n)=d, 当且仅当(m/d, n/d)=1。所以, C_d 类中所含 整数的个数是所有不超过n/d且和n/d互素的正整数的个数。 从上面的分析,我们可以看到 C_d 类中存在 Φ (n/d)个整数。 因为我们将1到n的所有整数分成互不相交的类,且每个整 数只属于其中一个类。那么这些不同的类所含的所有整数 的个数之和就是n, 所以 $\sum_{d|n} \phi(d) = n$

下节课再见