

EXAMPLES

- Diapers and beer (legend?)
- Target pregnant teenager

EXAMPLES

Netflix Prize 2009

AmazonRecommendationEngine

EXAMPLES

Missing sensor data

COLLABORATIVE FILTERING

- 400,000 users17,000 moviesBut only a few ratings (1%)
- User aMovie iRating $Y_{ai} \in \mathbb{R}$ (e.g. 1-5)
- Training data is the incomplete matrix Y
- Goal is to predict unobserved ratings

COLLABORATIVE FILTERING

- Matrix or tensor completion problems
- Collaborative: cross-users
 Filtering: prediction

Dimensionality reduction

A tensor is a multidimensional array. e.g. $n \times m$ 2-tensor e.g. $p \times q \times r$ 3-tensor (2-tensor = matrix)

n users

m movies

5	5						5			
		3	5	1	3	4	4		4	
	4	2			2					
		5							5	
4	5							4		Y_{ai}
4							4			Iai
5		4	5	1	(4) ~			
	4									
5				4						
5						4				
		5				5		3		

SUPERVISED OR UNSUPERVISED

Supervised Learning (Treat Y_{ai} as responses)

• Given training data of the form $((a, i), Y_{ai})$, find a function $f: \{1, ..., n\} \times \{1, ..., m\} \to \mathbb{R}$.

Unsupervised Learning (Treat Y_{ai} as features)

• Given (incomplete) user ratings $Y_a \in \mathbb{R}^m$, find structure in the data to predict missing values.

Recommendation is a *task* for which you can use either supervised or unsupervised learning algorithms.

K-NEAREST NEIGHBORS

Main Idea.

- Find a few users b_1, \dots, b_k (neighbors) that are similar to user a
- Use information from users b_1 , ..., b_k to predict ratings of user a

CORRELATION COEFFICIENT

Cosine Similarity

$$\cos(x,y) = \frac{x^{\mathsf{T}}y}{\|x\| \|y\|}$$

Correlation Coefficient

$$corr(x, y) = cos(x - \bar{x}, y - \bar{y}) = \frac{(x - \bar{x})^{\mathsf{T}}(y - \bar{y})}{\|x - \bar{x}\| \|y - \bar{y}\|}$$

where \bar{x} , \bar{y} are the averages of the entries of x, y.

USER SIMILARITY

To compute the similarity between users a and b,

- 1. Find CR(a, b), the set of movies rated by both a and b.
- 2. Let Z_a , Z_b be the vector of ratings in CR(a,b) for each user.
- 3. Compute the correlation coefficient between Z_a and Z_b .

$$sim(a, b) = corr(Z_a, Z_b) \in [-1, 1]$$

WEIGHTED PREDICTION

Let \overline{Y}_b denote the average of movie ratings by a user b.

To predict the rating Y_{ai} of a user a for a movie i,

- 1. Rank users b who rated movie i according to value of sim(a, b).
- 2. Let kNN(a, i) be the set of highest k users.
- 3. Let $(Y_{ai} \overline{Y}_a)$ be weighted average of $(Y_{bi} \overline{Y}_b)$, $b \in kNN(a, i)$.
- 4. Let weight for $(Y_{bi} \overline{Y}_b)$ be proportional to sim(a, b).

ANTI-CORRELATED USERS

If $(Y_{bi} - \overline{Y}_b)$ is strongly anti-correlated with $(Y_{ai} - \overline{Y}_a)$, i.e.

$$sim(a,b) \ll 0,$$

then $-(Y_{bi} - \overline{Y}_b)$ is strongly correlated with $(Y_{ai} - \overline{Y}_a)$.

We should exploit this information because ratings are rare.

WEIGHTED PREDICTION

Let \overline{Y}_b denote the average of movie ratings by a user b.

To predict the rating Y_{ai} of a user a for a movie i,

- 1. Rank users b who rated movie i according to value of $|\sin(a,b)|$.
- 2. Let kNN(a, i) be the set of highest k users.
- 3. Let $(Y_{ai} \overline{Y}_a)$ be weighted average of $\pm (Y_{bi} \overline{Y}_b)$, $b \in kNN(a, i)$.
- 4. Let weight for $\pm (Y_{bi} \overline{Y}_b)$ be proportional to $|\sin(a, b)|$.

$$\widehat{Y}_{ai} - \overline{Y}_{a} = \frac{\sum_{b \in \text{kNN}(a,i)} \text{sim}(a,b)(Y_{bi} - \overline{Y}_{b})}{\sum_{b \in \text{kNN}(a,i)} |\text{sim}(a,b)|}$$

DISCUSSION

$$\widehat{Y}_{ai} - \overline{Y}_{a} = \frac{\sum_{b \in \text{kNN}(a,i)} \text{sim}(a,b) (Y_{bi} - \overline{Y}_{b})}{\sum_{b \in \text{kNN}(a,i)} |\text{sim}(a,b)|}$$

- Formula is not sensitive to the bias (mean) of each user, but it is sensitive to the spread (variance) of each user.
- There is no training loss, no training algorithm for kNN.

SUBSPACE LEARNING

 $k \ll m$ means k is much smaller than m

Main Idea.

- Completed rating vectors $\hat{Y}_1, ..., \hat{Y}_n \in \mathbb{R}^m$ lie in some k-dimensional subspace, $k \ll m$.
- i.e. there exists vectors $V_{:1}, ..., V_{:k} \in \mathbb{R}^m$ such that for all users a,

$$\hat{Y}_a = U_{a1} V_{:1} + U_{a2} V_{:2} + ... + U_{ak} V_{:k}$$

for some coefficients $U_{a1}, ..., U_{ak} \in \mathbb{R}$.

MATRIX FACTORIZATION

where $U_{:1}, ..., U_{:k}$ are the columns of $U \in \mathbb{R}^{n \times k}$, and $V_{:1}, ..., V_{:k}$ are the columns of $V \in \mathbb{R}^{m \times k}$.

MATRIX RANK

Definition.

A matrix $Y \in \mathbb{R}^{n \times m}$ is of rank-one if $Y = ab^{\top}$ for some non-zero vectors $a \in \mathbb{R}^n$, $b \in \mathbb{R}^m$.

Definition.

The rank of a matrix Y is the smallest number k of rank-one matrices required in the sum

$$Y = Y^{(1)} + \dots + Y^{(k)}$$
.

If $Y = UV^{\top}$ with $U \in \mathbb{R}^{n \times k}$, $V \in \mathbb{R}^{m \times k}$, i.e.

$$Y = UV^{\top} = U_{:1} V_{:1}^{\top} + U_{:2} V_{:2}^{\top} + \dots + U_{:k} V_{:k}^{\top}$$
,

then the rank Y is at most k.

LOW-RANK APPROXIMATION

Main Idea.

- Find low-rank complete matrix \hat{Y} that is closest to incomplete matrix Y.
- \hat{Y} is called a *low-rank* approximation of Y.

PREDICTION

For an unknown rating Y_{ai} of user a for movie i, we predict

$$\hat{Y}_{ai} = (UV^{\mathsf{T}})_{ai} = U_a^{\mathsf{T}} V_i$$

where U_a is the a-th row of U and V_i is the i-th row of V.

Compare this with

$$\hat{Y} = U_{:1} V_{:1}^{\mathsf{T}} + U_{:2} V_{:2}^{\mathsf{T}} + \dots + U_{:k} V_{:k}^{\mathsf{T}}$$

where $U_{:j}$ is the j-th column of U and $V_{:j}$ is the j-th column of V.

TRAINING LOSS

We regularize because there are infinitely many solutions $U' = cU, V' = c^{-1}V$

Apply squared loss to each observed rating Y_{ai} .

$$\mathcal{L}_{n,k,\lambda}(U,V;Y) = \sum_{(a,i)\in D} \frac{1}{2} (Y_{ai} - (UV^{\mathsf{T}})_{ai})^2 + \frac{\lambda}{2} ||U||^2 + \frac{\lambda}{2} ||V||^2$$
$$= \sum_{(a,i)\in D} \frac{1}{2} (Y_{ai} - U_a^{\mathsf{T}} V_i)^2 + \frac{\lambda}{2} \sum_{a} ||U_a||^2 + \frac{\lambda}{2} \sum_{i} ||V_i||^2$$

where D is the set of (a, i) where Y_{ai} is observed.

Definition. The *Frobenius* norm ||U|| of a matrix $U \in \mathbb{R}^{n \times k}$ is

$$||U|| = \sqrt{\sum_{a=1}^{n} \sum_{b=1}^{k} U_{ab}^{2}}.$$

ALTERNATING LEAST SQUARES

Coordinate Descent (optimization).

Repeat until convergence:

- 1. Fix V and minimize $\mathcal{L}_{n,k,\lambda}(U,V;Y)$ over U.
- 2. Fix U and minimize $\mathcal{L}_{n,k,\lambda}(U,V;Y)$ over V.

ALTERNATING LEAST SQUARES

- 1. Initialize $V_1, V_2, ..., V_m \in \mathbb{R}^k$ randomly.
- 2. Repeat until convergence:
 - a. For each user a, find U_a that minimizes

$$\sum_{i: (a,i) \in D} \frac{1}{2} (Y_{ai} - U_a^{\mathsf{T}} V_i)^2 + \frac{\lambda}{2} ||U_a||^2$$

b. For each movie i, find V_i that minimizes

$$\sum_{a: (a,i) \in D} \frac{1}{2} (Y_{ai} - U_a^{\mathsf{T}} V_i)^2 + \frac{\lambda}{2} ||V_i||^2$$

These are standard linear regression problems.

DISCUSSION

User Bias

Do we subtract the average ratings of each user?

Optimization.

- Like k-means, the algorithm converges to a local minimum.
- Perform multiple initializations, and pick best result.

Generalization.

• Use validation to pick right hyperparameters k and λ .

VALIDATION SET

Split the data into

- Test set S_* For evaluating, reporting performance at the end
- Training set S_n For training optimal parameters in a model
- Validation set S_{val} For model selection, e.g. picking k in k-means, picking λ in ridge regression. Acts as a proxy for test set.

VALIDATION LOSS

The validation error is the test loss applied to the validation set.

The *training error* is the test loss applied to the training set, and it may be different from the training loss used for optimization.

Example. Ridge Regression

Test loss/error
$$\mathcal{R}(\hat{\theta}; \mathcal{S}_*) = \frac{1}{n} \sum_{(x,y) \in \mathcal{S}_*} \frac{1}{2} (y - \hat{\theta}^{\mathsf{T}} x)^2$$

Validation loss/error
$$\mathcal{R}(\hat{\theta}; \mathcal{S}_{\text{val}}) = \frac{1}{n} \sum_{(x,y) \in \mathcal{S}_{\text{val}}} \frac{1}{2} (y - \hat{\theta}^{\mathsf{T}} x)^2$$

Training error
$$\mathcal{R}(\hat{\theta}; \mathcal{S}_n) = \frac{1}{n} \sum_{(x,y) \in \mathcal{S}_n} \frac{1}{2} (y - \hat{\theta}^{\mathsf{T}} x)^2$$

Training loss
$$\mathcal{L}_{n,\lambda}(\theta; \mathcal{S}_n) = \frac{1}{n} \sum_{\text{data } (x,y)} \frac{1}{2} (y - \theta^{\mathsf{T}} x)^2 + \frac{\lambda}{2} \|\theta\|^2$$

MODEL SELECTION

NETFLIX RESULTS

Plot each movie i according to first two coordinates of $V_i \in \mathbb{R}^k$, i.e. V_{i1} , V_{i2} .

NETFLIX RESULTS

Wining team Bellkor's Pragmatic Chaos essentially used a matrix factorization model with additional parameters for biases, user attributes and time dependencies.

SUMMARY

- Matrix Completion
 - Recommender Systems
 - Collaborative Filtering
- k-Nearest Neighbors
 - Correlation Coefficient
 - Weighted Prediction
- Matrix Factorization
 - Subspace Learning
 - Low-rank Approximation
 - Regularized Training Loss
 - Alternating Least Squares

INTENDED LEARNING OUTCOMES

Matrix Completion

- Recognize that the key problem in collaborative filtering is matrix completion. Give examples of collaborative filtering.
- Explain how dimensionality reduction helps matrix completion.

k-Nearest Neighbors

- Compute the user similarity using the correlation coefficient.
- Compute the k-nearest neighbors ranked by user similarity.
- Predict an unknown rating using weighted prediction.

INTENDED LEARNING OUTCOMES

Matrix Factorization

- Describe the relationship between subspace learning, low-rank approximation and matrix factorization.
- Write down the regularized training loss. Explain why regularization is necessary for matrix factorization.
- Describe the alternating least squares algorithm, and explain why it minimizes the training loss.
 Apply the algorithm in a recommendation problem.
- Describe how validation can be used to select suitable hyperparameters k and λ for good generalization.