Aula 6: Circuitos Integrados e Portas lógicas

Circuitos Integrados

Em eletrônica, um **circuito integrado** (também conhecido como **CI**, **microchip** ou **chip**) é um circuito eletrônico miniaturizado (composto principalmente por dispositivos semicondutores) sobre um substrato fino de material semicondutor. Os circuitos integrados são usados em quase todos os equipamentos eletrônicos usados hoje e revolucionaram o mundo da eletrônica.

Figura 1: Exemplo de um Circuito Integrado.

A **integração** de um grande número de pequenos transistores em um chip pequeno foi uma enorme melhoria sobre o manual de montagem de circuitos com componentes eletrônicos discretos. A capacidade do circuito integrado de produção em massa, a confiabilidade e a construção de bloco de abordagem para projeto de circuito assegurou a rápida adaptação de circuitos integrados padronizados no lugar de desenhos utilizando transístores pequenos.

Abreviação	Denominação	Número de Transistores
SSI	Small Scale Integration	10
MSI	Medium Scale Integration	100
LSI	Large Scale Integration	1000
VLSI	Very Large Scale Integration	10000-100000
ULSI	Ultra Large Scale Integration	100000-1000000
SLSI	Super Large Scale Integration	1000000-10000000

Tabela 1: Escala de integração de circuitos integrados.

Portas Lógicas

Em 1854, o matemático britânico George Boole (1815 - 1864), através da obra intitulada *Uma Investigação Sobre as Leis do Pensamento*, apresentou um sistema matemático de análise lógica conhecido como **álgebra de Boole**. No início da era da eletrônica, todos os problemas eram resolvidos por sistemas analógicos, isto é, **sistemas lineares**.

Apenas em 1938, o engenheiro americano Claude Shannon utilizou as teorias da álgebra de Boole para a solução de problemas de circuitos de telefonia com **relés** (server para ligar ou desligar dispositivos), tendo publicado um trabalho denominado *Symbolic Analysis of Relay and Switching*, praticamente introduzindo na área tecnológica o campo da eletrônica digital. Esse ramo da eletrônica emprega em seus sistemas um pequeno grupo de circuitos básicos padronizados conhecidos como **Portas Lógicas**.

Um computador é constituído de elementos eletrônicos, como resistores, capacitores e principalmente transistores. Nesses computadores, os **transistores** são, em geral, componentes de determinados circuitos eletrônicos que precisam armazenar os sinais binários e realizar certos tipos de **operações** com eles.

Esses circuitos, chamados de **circuitos digitais**, são formados por pequenos elementos capazes de manipular grandezas apenas binárias. Os pequenos elementos referidos são conhecidos como **portas lógicas**, *por permitirem ou não a passagem desses sinais*.

Assim, circuitos lógicos são montados a partir da combinação de uma unidade básica construtiva denominada porta lógica, a qual é obtida mediante a combinação de transistores e dispositivos semicondutores auxiliares. Portanto, a porta lógica é a base para a construção de qualquer sistema digital (ex.: o microprocessador). Em geral, os circuitos lógicos são agrupados e embutidos em um **Circuito Integrado** (CI). Esses dispositivos implementam uma determinada função com o objetivo de cumprir uma tarefa específica.

Figura 2: Configuração interna de alguns circuitos integrados.

Portas lógicas são encontradas desde o nível de integração em **Ultra Larga Escala** (ULSI) ou **Super Larga Escala** (SLSI) – utilizadas em microprocessadores – até o nível de integração existente em circuitos digitais mais simples, desempenhando funções mais básicas (ex.: comparações, somas, multiplicações).

Dessa forma, o projeto de circuitos digitais e a análise de seu comportamento em um computador podem ser realizados por meio da aplicação de conceitos e regras estabelecidas por uma disciplina conhecida como Álgebra de Chaveamentos, a qual é um ramo da Álgebra de Boole ou **Álgebra Booleana**. Semelhante à álgebra tradicional (estudada no ensino médio), torna-se necessário definir símbolos matemáticos e gráficos para representar as operações lógicas e seus operadores.

Figura 3: Esquema de circuito integrado e exemplo de um hardware de circuito.

Uma operação lógica qualquer (ex.: soma ou multiplicação de dígitos binários) sempre irá resultar em dois valores possíveis: 0 (falso) ou 1 (verdadeiro). Assim, pode-se predefinir todos os possíveis resultados de uma operação lógica, de acordo com os possíveis valores de entrada. Para representar tais possibilidades, utiliza-se de uma forma de organizá-las chamada **Tabela Verdade**. Dessa forma, cada operação lógica possui sua própria tabela verdade.

Exercícios

- 1. O que é um Circuito Integrado e qual a sua função?
- 2. O que é uma Porta Lógica e qual a sua função?
- 3. Qual o nível de escala de integração de circuitos é utilizado atualmente?
- 4. O que é Álgebra Booleana, onde ela é aplicada?
- 5. Como é organizado os resultados de uma operação lógica?