Superpixel

30. November 2016

1 Einleitung

- Superpxiel: Menge von n Pixeln $S_i = \{t_1, \ldots, t_n\}$, wobei $t_i \in \{1, \ldots, N\}$ jeweils einen Pixel beschreibt und die Menge von S_i räumlich verbunden ist
- Menge von Superpixeln: $S = \{S_1, \dots, S_m\}$, sodass $S_i \cap S_j = \emptyset$ für alle i, j und $\cup_i S_i = \bigcup_j t_j$
- Nachbarschaft: $(S_i, S_j) \in \mathcal{N}$, wenn S_i und S_j räumlich verbunden sind
- Vorteile:
 - Superpixel bieten eine Möglichkeit, die Größe des Problems zu minimieren
 - CNNs auf Bildern sind rauschend
 - große Netze auf Bildern mit Megapixeln rechnen langsam
- Nachteil: Superpixel haben einen bestimmten Fehlergrad
- ⇒ finde den besten Ausgleich zwischen Größe und Fehlergrad

2 Lernen von Superpixeln

- SuperCNN: anstatt eines Bilders wird eine Sequenz von Superpixeln in das CNN gefüttert
- <u>Problem:</u> kontextbezogene Informationen gehen verloren (Methoden wie Superpixel Lattices adressieren dieses Problem, opfern aber Genauigkeit)
- \Rightarrow zwei Kernel sollen Information wiederherstellen:
 - 1. Spatial Kernel: beschreibt Einzigartigkeit der Farben
 - 2. Range Kernel: beschreibt Farbverteilung
- zusätzlich: Multiscale Strukur des Netzes mit Shared Weights
- SuperCNN berechnet für individuelles Bild in etwa genauso lange wie klassische CNNs auf Bildern (0.45s)

• Vorteile:

- benötigt weniger Trainingsdaten
- Trainingsdaten werden generalisierter genutzt ⇒ Netz fällt es leichter, für unbekannte Bilder Gemeinsamkeiten zu erkennen
- gleiche oder bessere Performance

3 Umwandlung in eine Graph-Repräsentation

- jeder Superpixel bildet einen Knoten im Graphen
- es existiert eine Kante zwischen den Knoten, wenn die entsprechenden Superpixel benachbart sind oder die Distanz zwischen Superpixeln unter eine Schranke ϵ fällt (müsste aber durch die Distanz der Kanten abgedenkt sein im CNN auf Graphen)

• Knotenattribute:

- Farbe (Mean, Range?, Absolute difference?)
- Schwerpunkt/Position
- Größe, d.h. Anzahl Pixel (prozentual?)
- Ausdehnunng/Form \Rightarrow z.B. über vereinfachten Polygonzug
- minimales gedrehtes Hüllrechteck (Winkel?)

• Kantenattribute:

- Distanz zu den Schwerpunkten der Superpixel (Euklid, L1, (x,y)-Differenz)
- Farbunterschied (als abs für ungerichtete Graphen)