Formulario Fisica Tecnica - Giulio De Pasquale

30 giugno 2015

1 Termodinamica

1.1 Unità di Misura

Energia Interna $U = [J], \bar{u} = [\frac{J}{Kq}];$

Calore $Q = [J], \bar{q} = \left[\frac{J}{Kg}\right];$

Potenza Termica $\dot{Q} = \left[\frac{J}{s}\right] = [W];$

Lavoro $L = [J], \bar{l} = [\frac{J}{Kg}];$

Potenza Meccanica $\dot{L} = \left[\frac{J}{s}\right] = [W];$

Entalpia $H = [J], \, \bar{h} = [\frac{J}{Kq}];$

Entropia $S = \begin{bmatrix} \frac{J}{{}^{\circ}K} \end{bmatrix}, \ \bar{s} = \begin{bmatrix} \frac{J}{Kg \cdot {}^{\circ}K} \end{bmatrix};$

Temperatura $T = [{}^{\circ}K];$

Pressione P = [Pa];

Volume $V = [m^3], \, \bar{v} = [\frac{m^3}{Kq}];$

Massa m = [Kg];

Densità $\rho = \left[\frac{Kg}{m^3}\right];$

Velocità $w = \left[\frac{m}{s}\right];$

Costante Universale dei Gas $R = [\frac{J}{{}^{\circ}\text{K} \cdot kmol}], \, R^* = \frac{R}{M} = [\frac{J}{Kg \cdot {}^{\circ}\text{K}}];$

Calore Specifico $c = \left[\frac{J}{Kg \cdot {}^{\circ}K}\right];$

Massa Molare $M = \left[\frac{Kg}{kmol}\right];$

Portata Massica $\dot{m} = \left[\frac{Kg}{s}\right];$

Portata Volumetrica $\dot{V} = \dot{m}\bar{v} = \left[\frac{m^3}{s}\right];$

1.2 Conversioni

1.2.1 Pressione

- 1 ata = 98066, 5 Pa;
- $1 \, bar = 10^5 \, Pa;$
- 1 atm = 101325 Pa;

1.2.2 Calore

• $1 \, cal = 4,184 \, J;$

1.3 Masse Molari

- H = 1;
- He = 4;
- C = 12;
- $N = 14, N_2 = 28;$
- $O = 16, O_2 = 32;$

1.4 Generale e Proprietà Gas

Da tenere sempre presente che

 $P\bar{v} = R^*T$

riscrivibile come

$$PV = nRT$$

Inoltre, il ${\cal I}$ principio della termodinamica impone che

$$\Delta U = \overleftarrow{Q} - \overrightarrow{L}$$

Tipologia Gas	c_v	c_p
Monoatomico	$\frac{3}{2}R^*$	$\frac{5}{2}R^*$
Biatomico / Politatomico Lineare	$\frac{5}{2}R^*$	$\frac{7}{2}R^*$
Poliatomico Non Lineare	$\frac{6}{2}R^*$	$\frac{8}{2}R^*$

- $R = 8314, 4 \frac{J}{\text{°K} \cdot kmol};$
- $n = \frac{m}{M}$ dove n = numero di moli;
- $c_p c_v = R^*$, la relazione di Mayer;
- $\dot{V} = \dot{m}\bar{v}$ con $\dot{V} =$ portata volumetrica;

1.5 Calore, Energia Interna, Entalpia ed Entropia

1.5.1 Calore

- $Q = mc_x \Delta T \text{ con } c_x = cost;$
- $Q = mc_v \Delta T \text{ con } V = cost;$
- $Q = mc_p \Delta T \text{ con } P = cost;$
- $Q = T\Delta S \text{ con } T = cost;$
- $\dot{Q} = \dot{m}c_{materiale}\Delta T$;

1.5.2 Energia Interna

- $d\bar{u} = c_v dT$, se gas perfetto;
- $d\bar{u} = Tds Pd\bar{v}$;

1.5.3 Entalpia

- H = U + PV;
- $d\bar{h} = c_p dT$, se gas perfetto;
- $d\bar{h} = Tds + \bar{v}dP$;
- $d\bar{h} = \delta q + \bar{v}dP$;

1.5.4 Entropia

- $ds = \frac{\delta q}{T}$, nel caso di un processo reversibile;
- $\Delta S = \Delta S_{\overleftarrow{Q}} + \Delta S_{irr};$
- $ds = c_v \frac{dT}{T} + R^* \frac{d\overline{v}}{\overline{v}} \Rightarrow \Delta S = c_v ln(\frac{T_2}{T_1}) + R^* ln(\frac{V_2}{V_1});$
- $ds = c_p \frac{dT}{T} R^* \frac{dP}{P} \Rightarrow \Delta S = c_p ln(\frac{T_2}{T_1}) R^* ln(\frac{P_2}{P_1});$
- $ds = c_p \frac{d\overline{v}}{\overline{v}} + c_v \frac{dP}{P} \Rightarrow \Delta S = c_p ln(\frac{V_2}{V_1}) + c_v ln(\frac{P_2}{P_1});$
- $\Delta S \ge 0$ se il sistema è isolato;

1.5.5 Liquidi

- $c_{H_20} = 4186 \frac{J}{kg \cdot {}^{\circ}\text{K}};$
- $\bullet \ c = c_v = c_p;$
- $du = \delta q = cdT$;
- $ds = c \frac{dT}{T}$;
- v = cost;
- $\Delta h = c\Delta T + v\Delta P$:

1.6 Trasformazioni Politropiche

Trasformazione	$n = \frac{c_x - c_p}{c_x - c_v}$	l	
Isocora $(V = cost)$	$n \pm \infty$	0	
Isoterma $(T = cost)$	n = 1	$\begin{cases} R^*Tln(\frac{V_2}{V_1}) \\ -R^*Tln(\frac{P_2}{P_1}) \end{cases}$	$\begin{cases} I \\ - \end{cases}$
Isobara $(P = cost)$	n = 0	$P\Delta V$	
Isoentropica / Adiabatica ($ds=0$) oppure ($Q=0$)	$n = \frac{c_p}{c_v}$	$-c_v\Delta T$	
Politropica generica	$\frac{c_x - c_p}{c_x - c_v}$	$(c_x - c_p)\Delta T$	

- $P\bar{v}^n = cost;$
- $T\bar{v}^{n-1} = cost;$
- $\bullet \ PT^{\frac{n}{1-n}} = cost;$

1.7 Rendimenti

- $\eta_{confronto} = \frac{\eta_{serb-reale}}{\eta_{serb-ideale}};$
- $\eta_{II_P} = \frac{\eta_{reale}}{\eta_{ideale}} = \frac{L_{reale}}{L_{ideale}};$

1.8 Sistemi Bifase

1.8.1 Generale

- Le transizioni di fase avvengono con P = costante e T = costante;
- $\begin{cases} \begin{cases} x = \frac{v v_l}{v_v v_l}; & con \ x = titolo, \ v = propriet\`{a} \ estensiva \\ v_{lv} = v_v v_l \\ v = v_l + xv_{lv}; \\ h = h_l + xh_{lv}; \\ s = s_l + xs_{lv}; \\ u = u_l + xu_{lv}; \end{cases}$
- $dh = d\overleftarrow{q}$;

1.8.2 Liquidi sottoraffreddati

- $h \cong h_{l@T}$;
- $s \cong s_{l@T}$;

1.9 Sistemi Aperti

1.9.1 Generale

- $\dot{m} = \rho w \Omega$ con $\Omega = sezione$;
- $\frac{dE}{dt} = \overleftarrow{m}[(\overleftarrow{h} \overrightarrow{h}) + g(\overleftarrow{z} \overrightarrow{z}) + \frac{\overleftarrow{w}^2 \overrightarrow{w}^2}{2}] + \overleftarrow{Q} \overrightarrow{L} \text{ con } z = altezza e g = accelerazione gravitazionale;}$
- $\frac{dS}{dt} = \overleftarrow{m}(\overleftarrow{s} \overrightarrow{s}) + \overrightarrow{S}_{Q} + \overrightarrow{S}_{irr};$
- $\frac{dm}{dt} = \overleftarrow{m} \overrightarrow{m};$

1.9.2 Macchina Aperta

Dispositivo adiabatico atto a scambiare lavoro per il quale si ipotizzano trascurabili le variazioni di energia potenziale e cinetica tra le sezioni di ingresso e di uscita.

- $\dot{\overline{m}}(\overleftarrow{h} \overrightarrow{h}) \overrightarrow{L} = 0;$
- $\overleftarrow{m}(\overleftarrow{s} \overrightarrow{s}) + \dot{S}_{irr} = 0;$

1.9.3 Turbina

$$-\eta_{isT} = \frac{\overrightarrow{L}_{reale}}{\overrightarrow{L}_{ideale}} = \frac{(h_1 - h_{2'})}{(h_1 - h_2)} \text{ con } \eta_{is} = \text{rendimento isoentropico};$$

1.9.4 Compressore / Pompa di Calore

$$- \eta_{isC} = \frac{\overrightarrow{L}_{ideale}}{\overrightarrow{L}_{reale}} = \frac{(h_1 - h_2)}{(h_1 - h_{2'})};$$

1.9.5 Scambiatore di Calore

Gli scambiatori sono sistemi aperti stazionari che operano senza scambio di lavoro per i quali si ipotizzano trascurabili le variazioni di energia potenziale e cinetica tra le sezioni di ingresso e di uscita.

- $\dot{\overline{m}}(\overleftarrow{h} \overrightarrow{h}) + \overleftarrow{\dot{Q}} = 0;$
- $\overleftarrow{m}(\overleftarrow{s} \overrightarrow{s}) + \dot{S}_{\overleftarrow{Q}} + \dot{S}_{irr} = 0;$
- $\bullet \stackrel{\longleftarrow}{\dot{Q}} = \stackrel{\longrightarrow}{\dot{Q}}$

1.9.6 Diffusore $(w \downarrow)$ e Ugello $(w \uparrow)$

I diffusori e gli ugelli sono sistemi aperti stazionari che operano senza scambio di lavoro né calore per i quali si ipotizzano trascurabili le variazioni di energia potenziale tra le sezioni di ingresso e di uscita.

- $[(\overleftarrow{h} \overrightarrow{h}) + \frac{\overleftarrow{w}^2 \overrightarrow{w}^2}{2}] = 0;$
- $\overleftarrow{m}(\overleftarrow{s} \overrightarrow{s}) + \dot{S}_{irr} = 0;$

1.9.7 Valvola di Laminazione

Le valvole di laminazione sono sistemi aperti stazionari che operano senza scambio di lavoro nè calore per i quali si ipotizzano trascurabili le variazioni di energia potenziale e cinetica tra le sezioni di ingresso e di uscita.

 $\bullet \ (\overleftarrow{h} - \overrightarrow{h}) = 0;$

3

• $\dot{\overline{m}}(\overleftarrow{s} - \overrightarrow{s}) + \dot{S}_{irr} = 0;$

1.10 Macchine Motrici a gas (\overrightarrow{L})

Converte energia termica in lavoro.

1.10.1 Generale

- $\eta_{reale} = 1 \frac{T_F}{T_C} \frac{T_F \cdot S_{irr}}{Q_C}$
- $\eta_{rev} = 1 \frac{T_F}{T_C}$;
- $\Delta S_{irr} = -\frac{\overleftarrow{Q}}{T_{C/F}} + \frac{\overrightarrow{Q}}{T_{C/F}}$ dove Q è riferito alla macchina e $T_{C/F}$ è la temperatura associata al Q corrispondente;

1.11 Macchine Operatrici a gas (\overleftarrow{L})

Trasferisce energia termica da uno o più serbatoi di calore a temperatura inferiore a uno o più serbatoi di calore a temperatura superiore.

• $\Delta S_{irr} = -\frac{\overleftarrow{Q}}{T_{C/F}} + \frac{\overrightarrow{Q}}{T_{C/F}}$ dove Q è riferito alla macchina e $T_{C/F}$ è la temperatura associata al Q corrispondente;

1.11.1 Macchine frigorifere

- $L_{rev} = Q_F(\frac{T_C}{T_F} 1) = \frac{Q_F}{\varepsilon};$
- $L_{reale} = L_{rev} + T_C S_{irr};$
- $\bullet \ \varepsilon_f = \frac{Q_F}{L} = \frac{T_F}{T_C T_F + \frac{T_C T_F S_{irr}}{\overleftarrow{\Diamond}}} \ ;$
- $\varepsilon_{f_{rev}} = \frac{T_F}{T_C T_F};$

1.11.2 Macchine calorifere (pompe di calore)

- $L_{rev} = Q_C(1 \frac{T_F}{T_C}) = \frac{Q_C}{\varepsilon};$
- $L_{reale} = L_{rev} + T_F S_{irr};$
- $\varepsilon_{pdc} = \frac{Q_C}{L} = \frac{\overrightarrow{Q} + L}{L} = \varepsilon_f + 1 = \frac{T_C}{T_C T_F + \frac{T_C T_F S_{irr}}{\overleftarrow{D}}};$

•
$$\varepsilon_{pdc_{rev}} = \frac{T_C}{T_C - T_F}$$
;

2 Cicli

L'indice n nei seguenti cicli è l'indice per una trasformazione isoentropica. Quindi $n = \frac{c_p}{c_n}$.

2.1 Cicli simmetrici

Per i cicli simmetrici valgono le seguenti proprietà:

$$\bar{v}_1\bar{v}_3 = \bar{v}_2\bar{v}_4$$

$$P_1P_3 = P_2P_4$$

$$T_1T_3 = T_2T_4$$

2.2 Carnot

2.2.1 Generale

•
$$\eta_{rev} = 1 - \frac{T_1}{T_3}$$
;

2.2.2 Carnot a Gas

Il ciclo di Carnot è costituito da due isoentropiche e due isoterme.

Fig.1. P-V and T-S diagrams of Carnot Cycle

- $S_{irr} = -\frac{\overleftarrow{Q}}{T_C} + \frac{\overrightarrow{Q}}{T_F};$
- $\Delta S = \frac{\overleftarrow{Q}}{T_2} = \frac{\overrightarrow{Q}}{T_1};$

2.2.3 Carnot a Vapore

2.2.4 Carnot inverso a vapore

2.3 Joule-Brayton

Il ciclo Joule-Brayton è un ciclo simmetrico ed un sistema aperto costituito da due isoentropiche e due isobare.

- $\bullet \ \overleftarrow{Q} = \dot{m}(h_3 h_2) = \dot{m}c_p(T_3 T_2);$
- $\overrightarrow{Q} = \dot{m}(h_4 h_1) = \dot{m}c_p(T_4 T_1);$
- $l = c_p(T_3 T_4) c_p(T_2 T_1) = c_pT_3(1 \frac{T_4}{T_2}) c_pT_1(\frac{T_2}{T_1} 1);$
- $\eta_{JB} = 1 \frac{T_1}{T_2}$;
- $r = \frac{P_2}{P_1}$ con r = rapporto di compressione;
- $r_{pmin} = 1;$
- $r_{pmax} = (\frac{T_3}{T_1})^{\frac{n}{n-1}};$

Affinché si possa operare una rigenerazione bisogna che la temperatura di fine espansione sia maggiore della temperatura di fine compressione.

2.4 Diesel

Il ciclo Diesel è costituito da due isoentropiche, una isocora ed una isobara.

- $\eta_D = 1 \frac{c_v T_1(\frac{T_4}{T_1} 1)}{c_p T_2(\frac{T_3}{T_2} 1)};$
- $\eta = 1 \frac{T_4 T_1}{n(T_3 T_2)};$

- $\eta = 1 \frac{1}{r^{n-1}} \cdot \left[\frac{z^n 1}{n(z-1)} \right];$
- $z = \frac{V_3}{V_2}$, rapporto di combustione;

2.5 Otto

Ciclo simmetrico costituito da due isoentropiche e due isocore.

- $\overleftarrow{Q} = u_3 u_2 = c_v(T_3 T_2);$
- $\overrightarrow{Q} = u_4 u_1 = c_v(T_4 T_1);$
- $l = c_v(T_3 T_4) c_v(T_2 T_1) = c_vT_3(1 \frac{1}{r_{vol}^{n-1}}) c_vT_1(r_{vol}^{n-1} 1) = c_vT_3(1 \frac{T_4}{T_3}) c_vT_1(\frac{T_2}{T_1} 1);$
- $\eta = 1 \frac{T_1}{T_2} = 1 r_{vol}^{1-n}$;
- $r_{vol} = \frac{V_1}{V_2}$;

2.6 Rankine

2.6.1 Rankine Semplice

L'acqua entra nella pompa (1) come liquido saturo. Entra in caldaia, a P = cost, (2) come liquido sottoraffreddato ed esce come vapore surriscaldato in (3). Il vapore surriscaldato entra in turbina (3) e si espande isoentropicamente; la pressione e la temperatura scendono sino ad arrivare in (4) dove si trova una miscela satura di liquido e vapore ad elevato titolo. Il vapore entra nel condensatore (4) e viene condensato a P = cost uscendo come liquido saturo.

- $(1) \to (2) \ \Delta S = 0;$
- $(2) \rightarrow (3) P = cost;$
- $(3) \to (4) \ \Delta S = 0;$
- $(4) \rightarrow (1)$ P = cost, T = cost;

2.6.2 Rankine con surriscaldamento

In aggiunta alle fasi di un ciclo Rankine semplice si ha un'espansione isoentropica in una turbina ad alta pressione $(3 \to 4)$, un surriscaldamento $(4 \to 5)$ ed un'espansione isoentropica in una turbina a bassa pressione $(5 \to 6)$:

•
$$(1) \to (2) \ \Delta S = 0;$$

•
$$(2) \rightarrow (3)$$
 $P = cost;$

•
$$(3) \to (4) \ \Delta S = 0;$$

•
$$(4) \rightarrow (5)$$
 $P = cost;$

•
$$(5) \to (6) \ \Delta S = 0;$$

•
$$(6) \rightarrow (1)$$
 $P = cost$, $T = cost$;

2.6.3 Rankine Inverso

3 Trasmissione del Calore

3.1 Unità di Misura

Flusso Termico Areico $\Phi = \dot{q} = \frac{\dot{Q}}{A}$;

Conducibilità Termica $k = \left[\frac{W}{m \cdot {}^{\circ}K}\right];$

Coefficiente Scambio Termico Convettivo $h = \left[\frac{W}{m^2 \cdot {}^{\circ} \mathbf{K}}\right];$

Vettore Flusso di Calore $\vec{q} = \left[\frac{W}{m^2}\right]$;

Viscosità $\mu = [Pl];$

Diametro o Lunghezza Caratteristica D = [m];

Resistenza $R = \frac{{}^{\circ}K \cdot m^2}{W}$ oppure $R = \frac{{}^{\circ}K}{W}$;

3.2 Conduzione

3.2.1 Unità di Misura

Potenza Generata su Unità di Volume $\sigma = \left[\frac{W}{m^3}\right]$;

3.2.2 Generale

•
$$\dot{Q} = -\frac{1}{R_{forma}} \Delta T$$
;

•
$$\dot{Q} = -kA\frac{dT}{dr}$$
;

•
$$\dot{Q} = cost;$$

3.2.3 Coordinate Cartesiane

Forma	Φ	Φ T	
Parete piana infinita	$\sigma x - Ak$	$-\frac{\sigma}{2k} + Ax + B$	/
Lastra piana monostrato senza generazione di potenza	$\frac{\Delta T}{R_{TOT} \cdot A}$	$\frac{T_2 - T_1}{s}x + T_1$	$\frac{\Delta}{R_t}$

3.2.4 Coordinate Cilindriche

Tipologia Cilindro	Φ	$\dot{q}_{perunit\grave{a}dilung}$	Q
Pieno o cavo di altezza infinita	/	/	/
Indefinito con generazione di potenza	$\frac{\sigma}{2}r - \frac{k}{r}C$	/	/
Pieno con generazione di potenza	$rac{\sigma}{2}r$	$\pi r^2 \sigma$	$V\sigma$
Cavo senza generazione di potenza	$k \frac{(T_i - T_e)}{\ln(\frac{R_e}{R_i})} \cdot \frac{1}{r}$	$\frac{2\pi k}{\ln(\frac{R_e}{R_i})} \cdot (T_i - T_e)$	$k \frac{T_i - T_e}{\ln(\frac{R_e}{R_i})} \cdot 2\pi L$

3.2.5 Coordinate Sferiche

Forma Sfera	T		
Piena o cava	$-\frac{\sigma}{6k}r^2 + \frac{A}{r} + B$		

3.3 Convezione

• $\dot{Q}_{CONV} = hA(T_s - T_f)$ con T_s = temperatura del solido e T_f = temperatura del fluido;

3.3.1 Raggio Critico di Isolamento

• $\dot{Q}_{MAX}(\frac{d\dot{Q}}{dr^2}) = 0 \Rightarrow r_{cr} = \frac{k_{isolante}}{b}$;

3.3.2 Convezione Forzata

• $Nu = \frac{hD}{k}$, numero di Nusselt;

• $Re = \frac{\rho w D}{\mu}$, numero di Reynolds;

• $Pr = \frac{c_p \mu}{k}$, numero di Prandtl;

• $Pe = Re \cdot Pr = \frac{wD}{a}$, numero di Peclet;

3.3.3 Convezione Naturale

Attorno ad un cilindro

• $Gr = \frac{\rho^2 g \beta \Delta T D^3}{\mu^2}$, numero di Grashoff;

• $Ra = Gr \cdot Pr = \frac{g\beta\Delta TD^3}{av}$, numero di Rayleigh;

3.3.4 Proprietà dei numeri adimensionali

Ove presenti, se $Re > Re_{CRIT}$, $Pr_{MIN} < Pr < Pr_{MAX}$, $Ra > Ra_{CRIT}$ il moto è Costante Solare $I_S = 1353 \frac{W}{m^2}$; turbolento.

 $Re < 2 \cdot 10^5$

In un condotto circolare in condizioni di moto turbolento si ha: $n = \begin{cases} 0.3 & se il fluido si star affreddando \\ 0.4 & se il fluido si star is caldando \end{cases}$

Irraggiamento

3.4.1 Unità di Misura

Potenza Radiante $E = \left[\frac{W}{m^2}\right]$;

Lunghezza d'Onda $\lambda = [\mu m];$

Emissività $\varepsilon \in [0,1] \subseteq \mathbb{R}$;

Radiosità $J = \left[\frac{W}{m^2}\right];$

Radiazione Incidente $I = \left[\frac{W}{m^2}\right]$;

3.4.2 Costanti

Costante di Stefan-Boltzmann $\sigma = 5.67 \cdot 10^{-8} \left[\frac{W}{m^2 \cdot ^{\circ} \text{K}} \right];$

 $Re > 2 \cdot 10^5 \bullet F_{i \to i} \neq F_{i \to i}$, se e solo se $A_i \neq A_i$;

	Forma	Nu con moto laminare	3.4.3 Generale Nu con moto turbolento $\dot{Q}_{IRR} = \varepsilon \sigma A(T_s)^4 \text{ con } \varepsilon = \text{emissività}$	Re_{CRIT}	Pr	CRIT	Ra_{CRIT}
	Attorno ad un cilindro	$\begin{cases} 3.66 & se T_{parete} = cost \\ 4.36 & se h(T_{parete} - T_{\infty}) = cost \end{cases}$	• $E_n = \epsilon \sigma T^4$, potere emissivo di un corp	,		$\operatorname{ra} T;$	/
			$C \cdot Re^{m} \cdot Pr^{\frac{1}{3}} \bullet (\lambda \cdot T)_{max \ potenza} = 2897, 8 \ [\mu m \cdot {}^{\circ}K]; $		/	/	
•	In un condotto circolare	/	/		0,7	160	/
	in un condotto circolare	$0.034.4$ $Re^{0 extbf{II}}$ for the $d_{\mu_P}^{ extbf{i}}$ vista				16700	/
	Parete piana verticale	$0.59 \cdot Ra^{0.25}$	Il fattore di vista tra una superficie i e una «Frazi Ω h 1 0 de Ω a 0 r 2 3 $\mathrm{diazione}$ emessa dalla su	$ \frac{1}{1} $ superficie i	$j \text{ si ir} \\ \text{ch} \notin \text{in}$	$rac{{ m dica}\; F_{i-}}{{ m cide/ dire}}$	j e si definise ttanlente sull
	Lungo una lastra piana	$0,664 \cdot Re^{\frac{1}{2}} \cdot Pr^{\frac{1}{3}}$ sse $Pr \ge 0,6$	superficie j». $(F \in \mathbb{R}; 0 \le F \le 1)$ $0,037 \cdot Re^{\frac{4}{5}} \cdot Pr^{\frac{1}{3}}$ Esg. $0,6 \le Pr \le 60$ e $5 \cdot 10^5 \le Re \le 10^7$	$5 \cdot 10^5$	/	/	/

			• $F_{i \to j} = 0$, le superfici $i \in j$ non sono in vista tra loro;
	Tipo di moto	Condizione di regime laminare	Condizione di regime turbolento $F_{i \to j} = 1$, la superficie j circonda completamente la i , per cui tutta la radiazione
	In un condotto	Re < 2000	Re > 2500 emessa da i è intercettata da j ;
•	Lungo una lastra piana	$Re < 5 \cdot 10^5$	Valgono le seguenti regole: $Re > 5 \cdot 10^5$
			$\bullet F_{i \to j} = F_{j \to i}, \text{ se e solo se } A_i = A_j;$

 $\bullet \ A_i F_{i \to j} = A_j F_{j \to i};$

 $\bullet \ \sum_{j=1}^n F_{i\to j} = 1;$

• $F_{A_{12}\to 3} \cdot (A_1 + A_2) = F_{A_1\to A_3} \cdot A_1 + F_{A_2\to A_3} \cdot A_2;$

3.4.5 Coefficienti di assorbimento, riflessione e trasmissione

Assorbimento $\alpha = \frac{I_{ass}}{I}$;

Riflessione $\rho = \frac{I_{rifl}}{I}$;

Trasmissione $\tau = \frac{I_{tr}}{I}$;

Sussistono inoltre le seguenti relazioni:

• $\alpha + \rho + \tau = 1$, per superfici trasparenti;

• $\alpha + \rho = 1$, per superfici opache;

• $\alpha = \varepsilon$ quando la differenza di temperatura tra due corpi $\Delta T < 100$ °K;

3.4.6 Convenzioni per lo scambio termico tra superfici

 $q_{1\rightarrow 2}$ Potenza termica per unità di superficie emessa dalla superficie 1 che incide sulla superficie 2;

 q_{1-2} Potenza termica per unità di superficie emessa dalla superficie 1 che viene assorbita dalla superficie 2;

 $q_{1,2}$ Potenza termica netta per unità di superficie scambiata tra la superficie 1 e la superficie 2;

Inoltre valgono anche:

 $\bullet \ q_{1-2} = \alpha \cdot q_{1 \to 2};$

• $q_{1,2} = q_{1-2} - q_{2-1} = -q_{2,1};$

3.4.7 Scambio termico tra superfici

Genericamente vale:

• $\dot{Q}_{1,2} = A_1 F_{12} \sigma_0 (T_1^4 - T_2^4);$

In caso di superfici piane parallele indefinite si ha:

Tipologia	Superficie 1	Superficie 2	$q_{1,2}$
Nera - Nera	Nera	Nera	$\sigma_0(T_1^4 - T_2^4)$
Nera - Grigia	Nera	Grigia	$\epsilon_2 \sigma_0 (T_1^4 - T_2^4)$
Grigia - Grigia	Grigia	Grigia	$\frac{\sigma_0(T_1^4 - T_2^4)}{\frac{1}{\epsilon_1} + \frac{1}{\epsilon_2} - 1}$

Per una superficie grigia opaca:

$$\bullet \begin{cases}
J_i = E_i + \rho I_i = \epsilon_i E_{in} + (1 - \epsilon_i) I_i; & \epsilon = \alpha, \ \alpha + \rho = 1; \\
\dot{Q}_i = A_i (J_i - I_i);
\end{cases}$$

Per superfici grigie formanti una cavità:

$$\bullet \ \dot{Q}_{1,2} = \frac{\sigma_0(T_1^4 - T_2^4)}{\frac{1 - \epsilon_1}{\epsilon_1 A_1} + \frac{1}{A_1 F_{12}} + \frac{1 - \epsilon_2}{\epsilon_2 A_2}};$$