# 124. Procedura testowania hipotez – etapy, statystyka testowa i obszar krytyczny, błąd pierwszego i drugiego rodzaju, poziom istotności testu, test istotności dla średniej, test zgodności chi-kwadrat

Weryfikacja hipotez statystycznych odbywa się za pomocą testu statystycznego w oparciu o realizację próby losowej.

**Test statystyczny** (df) to reguła, która przyporządkowuje każdej realizacji próby losowej jedną z dwóch decyzji dotyczącej hipotezy (albo przyjąć albo odrzucić).

H<sub>0</sub> - hipoteza zerowa

H₁ – hipoteza alternatywna

Test statystyczny wykorzystuje statystykę testowa:

$$T_n = h(X_n - X_a)$$

Statystyka testowa powinna być tak dobrana by  $T_n$  określało prawidłowość lub nieprawidłowość hipotezy.

<u>Obszar krytyczny</u> ( $K_0$ )- zbiór tych wartości elementów statystyki testowej dla których *odrzuca się* hipotezę.

Obszar przyjęć (K<sub>1</sub>)- zb. tych wart. elem. stat. testowej dla których *przyjmuje się* hipotezę

## Rodzaje błędów:

- pierwszego rodzaju- odrzucamy hipotezę gdy jest prawdziwa
- drugiego rodzaju- przyjmujemy hipotezę gdy jest fałszywa

#### Poziom istotności testu

- $P(T_n \in K_0 \mid H_0) = \alpha$  to prawdopodobieństwo błędu 1szego rodzaju
- $P(T_n \in K_+ | H_+) = \beta$  to prawdopodobieństwo błędu 2giego rodzaju

Założenie: statystyka testowa musi mieć znany rozkład

Nie można zbudować takiego testu, który jednocześnie zminimalizowałby α i β

**Testy istotności (df)** to szczególny przypadek testów w których weryfikuje się tylko jedną hipotezę zerową (nie stawiamy innych hipotez). Konsekwencja: Nie posługujemy się prawdopodobieństwem  $\beta$ , tylko wykorzystujemy poziom istotności testu  $\alpha$ .

Tok postępowania posługując się testem istotności:

- 1. Mając postawioną hipotezę H<sub>0</sub>
- 2. buduje się T<sub>n</sub> i wyznacza się jej rozkład, przy założeniu, że H<sub>0</sub> jest prawdziwa
- 3. Wybór poziomu istotności testu  $\alpha$  (im przyjmuje się mniejszy poziom istotności w teście tym trudniej jest odrzucić hipotezę  $H_0$ ; najczęściej przyjmuje się  $\alpha$ =0,05, a mniejsze wartości przyjmuje się w wyjątkowo ważnych badaniach, np. medycznych)

- 4. Wyznacza się obszar krytyczny K<sub>0</sub>
- 5. Losujemy próbę  $t_n = h(x_1, ..., x_n)$
- 6. Na podstawie próby obliczamy wartość statystyki testowej
- 7. Jeśli  $t_n \in K_0$  to  $H_0$  odrzucamy na poziomie istotności  $\alpha$ .

Jeśli  $t_n \notin K_0$  to stwierdzamy brak podstaw do przyjęcia  $H_0$ .

# Test istotności dla wartości średniej

model 1. (omawiany na wykładzie) Populacja generalna ma rozkład normalny N(m, δ), przy czym odchylenie standardowe δ populacji jest znane. Należy na podstawie wyników próby losowej nelementowej sprawdzić hipotezę  $H_0$ :  $m=m_0$  (gdzie  $m_0$  jest konkretną wartością hipotetyczną średniej) wobec hipotezy alternatywnej  $H_1$ :  $m \neq m_0$ .

Na podstawie wyników próby oblicza się wartość statystyki x, tj. średniej z próby, a następnie wartość zmiennej normalnej standaryzowanej U, wg wzoru:  $U = \frac{1}{x} - m_0 \sqrt{n}$ 

Z tablicy rozkładu N(0,1) wyznacza się następnie taką wartość krytyczną  $u_{\alpha}$ , by dla założonego z góry małego prawdopodobieństwa  $\alpha$  (poziomu istotności) zachodziła równość  $P\{U | \geq u_{\alpha}\} = \alpha$  (rys)



rysunek Dwustronny obszar krytyczny

Zbiór wartości U określony nierównością  $|U| \ge u_{\alpha}$  jest obszarem krytycznym tego testu, tzn. gdy z próby otrzymamy taką wartość u, że  $|u| \ge u_{\alpha}$ , to hipotezę  $H_0$  odrzucamy. Gdy zaś  $|u| < u_{\alpha}$  to nie ma podstaw do odrzucenia hipotezy  $H_0$ .

$$U_{\mathit{kryt}} = U \bigg( 1 - \frac{\alpha}{2} \bigg) \text{ kwanty rozkładu normalnego standardowego (0,1) rzędu } \bigg( 1 - \frac{\alpha}{2} \bigg)$$

$$K_0 = \left(-\infty, -u\left(1 - \frac{\alpha}{2}\right)\right) \cup \left(u\left(1 - \frac{\alpha}{2}\right), +\infty\right)$$

Powyższy test z tzw. dwustronnym obszarem krytycznym stosujemy jedynie dla takiego przypadku hipotezy alternatywnej, w której występuje nierówność m $\neq$  m $_0$ . Gdy hipoteza alternatywna ma postać H $_1$ : m< m $_0$ , to stosujemy testy istotności z tzw. lewostronnym obszarem krytycznym określonym nierównością  $U \leq u_{\alpha}$ . Dla hipotezy alternatywnej postaci H $_1$ : m> m $_0$ , stosujemy test ist. z tzw. prawostronnym obszarem krytycznym określonym nierównością  $U \geq u_{\alpha}$ .

#### model 2.

Populacja generalna ma rozkład normalny N(m,  $\delta$ ), przy czym odchylenie standardowe  $\delta$  populacji jest *nie znane*.

Weryfikacja hipotezy  $H_0$  w oparciu o **małe**, n-elementowe próby losowe. (Wzór do obliczania-odwołuję do literatury.)

**model 3.** Populacja generalna ma rozkład normalny  $N(m, \delta)$  lub dowolny inny rozkład o średniej wartości m i o skończonej, ale *nieznanej wartości wariancji*  $\delta^2$ .

Na podstawie dużej próby losowej (n co najmniej rzędu kilku dziesiątków) z tej populacji należy zweryfikować hipotezę H<sub>0</sub>. Test istotności jest analogiczny jak w modelu 1, z tą różnicą, że zamiast wartości δ przyjmuje się wyznaczoną z dużej próby wartość s.

#### Test zgodności Chi-kwadrat

- najczęściej stosowany test nieparametryczny.
- służy on do weryfikowania hipotezy, że obserwowana cecha X w zbiorowości generalnej ma określony typ rozkładu, np. dwumianowy, Poissona, normalny itd. Może to być typ rozkładu skokowego lub ciągłego.
- statystyka, jakiej używa się przy weryfikacji hipotezy o zgodności próby wyników z rozkładem populacji, ma rozkład asymptotyczny χ²

Test zgodności chi-kwadrat stosuje się:

- gdy dane pochodzą z dużej n-elementowej próby wyznaczonej w sposób niezależny
- gdy dane są przedstawione w postaci szeregu rozdzielczego o r przedziałach klasowych, o liczebnościach przedziałów n, ..., n spełniających warunek

$$n_1 + n_2 + ... + n_r = n$$
. Na ogół przyjmuje się, że  $n_i > 5$ ,  $i = 1, 2, ..., r$ 

gdy rozkład hipotetyczny może być zarówno rozkładem typu ciągłego, jak i skokowego.

## Postać statystyki sprawdzającej hipotezy H0:

$$\chi^2 = \sum_{i=1}^r \frac{(ni - npi)^2}{npi}$$

gdzie:

- pi prawdopodobieństwo, że cecha X przyjmuje wartość należącą do i-tego przedziału klasowego
- npi liczba jednostek, które powinny znaleźć się w i-tym przedziale przy założeniu, że cecha ma rozkład zgodny z hipotezą (*liczebność hipotetyczna*)

statystyka ta ma rozkład  $\chi^2$  o k=(r-s-1) </div> gdzie:

- k ilość stopni swobody
- s liczba parametrów do wyznaczenia na podstawie próby
- r liczba przedziałów klasowych

X<sup>2</sup>oznacza wartość empiryczną statystyki

Statystka ta stanowi rozbieżność pomiędzy rozkładem empirycznym a teoretycznym, co oznacza  $\dot{z}$ e zbyt duże wartości  $\dot{\chi}^2$ powodują odrzucenie hipotezy zerowej.

# Postać zbioru krytycznego:

# Literatura

- 1. wykłady 3.12.2008r. oraz 10.12.2008r.
- 2. "Statystyka matematyczna modele i zadania" Jerzy Greń, Wyd. VII, Warszawa 1982 PWN
- 3. <a href="http://mfiles.pl/pl/index.php/Test\_zgodno%C5%9Bci\_chi-kwadrat">http://mfiles.pl/pl/index.php/Test\_zgodno%C5%9Bci\_chi-kwadrat</a> dostęp 29.12.2010r.