Project 3

Anna Stray Rongve Knut Magnus Aasrud Amund Midtgard Raniseth

October 21, 2019

Abstract

This report adresses different numerical methods for solving a six-dimensional integral. The integral of interest is the energy between to electrons in a helium atom repelling eachother, due to the Coloumb interaction. We assume that the wave function for each electron can be modelled like the single-particle wave function of an electron in the hydrogen atom. Solving this integral is done using Gaussian-Quadrature with Legendre and Laguerre polynomials, as well as two approaches to the Monte Carlo method of integration. The standard deviation of these solutions are also calculated. In addition to this, every procedure is timed for comparison.

1 Introduction

Development in methods for solving integrals have been important in order to solve problems with an increasing degree of complexety. Guassian quadrature is a good example which is a method first developed by Jacobi in 1676. The first version gave exact results for algebraic polynomials of negree n-1 or less. The "new" Guassian version has a significant increase in accuaracy with exact results for polynomials of degree 2n-1 or less due to free choise of weights.

Gauss-Legendre and Gauss-Laguerre are two types of Gaussian quadrature which in this report will be compared in accuracy and speed for a multidimensional integral describing the energy of electrons in a Helium atom. In addition, two approaches to the Monte Carlo method of integration are implemented and compared as well. Parallelization will also be done to the program running the Monte Carlo integration.

Some theory is first presented, followed by our results and accompanying discussions.

2 Theory

2.1 Wavefunction of Helium

The single-particle wave function of an electron i in the 1s state is given in terms of a dimensionless variable (the wave function is not normalized) as

$$\psi_{1s}(\mathbf{r}_i) = e^{-\alpha r_i}$$

Where the electron position \mathbf{r}_i is

$$\mathbf{r}_i = x_i \mathbf{e}_x + y_i \mathbf{e}_y + z_i \mathbf{e}_z$$

and its distance from the origin r_i is

$$r_i = \sqrt{x_i^2 + y_i^2 + z_i^2}$$

 α is a parameter set to 2, which corresponds to the carge of the Helium atom, Z=2.

For our system with two electrons, we have the product of the two 1s wave functions defined as

$$\Psi(\mathbf{r}_1, \mathbf{r}_2) = e^{-\alpha(r_1 + r_2)}$$

This leads to the integral which will be solved nummerically with the different methods mentioned earlier. The value of the integral corresponds to the expectation value of the energy between the two electrons repelling each other due to Columb interactions.

$$\left\langle \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} \right\rangle = \int_{\infty}^{\infty} d\mathbf{r}_1 d\mathbf{r}_2 e^{-2\alpha(r_1 + r_2)} \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} \tag{1}$$

This is the integration that will be performed numerically in multiple ways in this paper. The analytical result is $5\pi/16^2$.

2.2 Gaussian Quadrature

The main idea of Gaussian quadrature is to integrate over a set of points x_i not equally spaced with weights w_i , which are calculated in /code/Gauss-Quadrature/src/gauleg.cpp. The weights are found through orthogonal polynomials(Laguerre and Legendre polynomials) in a set interval. The points x_i are chosen in a optimal sense and lie in the interval.

The intgral is approximated as

$$\int_{a}^{b} W(x)f(x) \approx \sum_{i=1}^{n} \omega_{i}f(x_{i})$$

For a more detalled derivation and explanation of Gaussian quadrature see [1].

2.2.1 Gauss-Legendre

Using Gauss-Legendre quadrature with Legendre polynomials will make it possible to solve the integral numerically. The first step is to change the integration limits from $-\infty$ and ∞ to $-\lambda$ and λ . The λ 's are found by inserting it for r_i in the expression $e^{-\alpha r_i}$ because $r_i \approx \lambda$ when $e^{-\alpha r_i} \approx 0$. From figure 1, $\lambda \in [-5, 5]$ is therefor a good approximation for the integration limits.

Figure 1: Plot of wavefunction in one dimension

The weights and mesh points are computed using /code/Gauss-Quadrature/src/gauleg.cpp. Eventually ending up with a sixdimensional integral, where all six integration limits are the same.

$$\int_a^b \int_a^b \int_a^b \int_a^b \int_a^b \int_a^b e^{-x} f(x) dx \approx \sum_{i=1}^n w_i f(x_i)$$

2.2.2 Improved Gauss-Quadrature- Laguerre

Gauss-Legendre quadrature gets the job done, but it is unstable and unsatisfactory. By changing to spherical coordinates and replacing Legendre- with Laguerre polynomials an improvement in accuracy is expected. The Laguerre

polynomials are defined for $x \in [0, \infty)$, and in spherical coordinates:

$$d\mathbf{r}_1 d\mathbf{r}_2 = r_1^2 dr_1 r_2^2 dr_2 d\cos(\theta_1) d\cos(\theta_2) d\phi_1 d\phi_2 \tag{2}$$

with

$$\frac{1}{r_{12}} = \frac{1}{\sqrt{r_1^2 + r_2^2 - 2r_1r_2cos(\beta)}}\tag{3}$$

and

$$cos(\beta) = cos(\theta_1)cos(\theta_2) + sin(\theta_1)sin(\theta_2)cos(\phi_1 - \phi_2)$$
(4)

For numerical integration, the deployment of the following relation is nessecary:

$$\int_0^\infty e^{-x} f(x) dx \approx \sum_{i=1}^n w_i f(x_i)$$

where x_i is the *i*-th root of the Laguerre polynomial $L_n(x)$ and the weight w_i is given by

$$w_i = \frac{x_i}{(n+1)^2 [L_{n+1}(x_i)]^2}$$

The Laguerre polynomials are defined by Rodrigues formula:

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} \left(e^{-x} x^n \right) = \frac{1}{n!} \left(\frac{d}{dx} - 1 \right)^n x^n$$

or the recursive relation:

$$L_0(x) = 1$$

$$L_1(x) = 1 - x$$

$$L_{n+1}(x) = \frac{(2n+1-x)L_n(x) - nL_{n-1}(x)}{n+1}$$

2.2.1

2.3 Monte Carlo

2.3.1 Generalized

Monte Carlo integration is based on the idea of finding the mean of a function in a domain by sampling random function values. This mean multiplied by the volume of the domain will be an approximation of the integral.

Say we have an integral I of $f(\mathbf{x})$ we want to find:

$$I = \int_D f(\mathbf{x}) d\mathbf{x}$$

where \mathbf{x} is in the domain D. This integral can be approximated by using random numbers distributed on D by the probability distribution function (PDF) $p(\mathbf{x})$. Discretizing, the approximated integral now becomes

$$I \approx \langle I \rangle = \frac{1}{N} \sum_{i=0}^{N} \frac{f(\mathbf{x}_i)}{p(\mathbf{x}_i)},$$
 (5)

where N is the number of sampled values.

2.3.2 Naïve approach (uniform PDF)

To solve our six-dimensional integral, we first take the naïve approach and distribute our randomly chosen variables on the uniform distribution

$$\theta(x) = \begin{cases} \frac{1}{b-a}, & \text{for } x \in [a, b], \\ 0 & \text{else} \end{cases}$$

and keep our variables \mathbf{r}_1 and \mathbf{r}_2 in cartesian coordinates. Putting the uniform distribution into (5), we get the naïve approximation of an integral:

$$\langle I \rangle = \frac{V}{N} \sum_{i=0}^{N} f(\mathbf{x}_i). \tag{6}$$

Here V is the integration volume (for d dimensions in cartesian coordinates $V = (b-a)^d$, with b and a being the integration limits for each dimension). Going back to our original integral (1), our approximation of it using this method is

$$\langle I \rangle = \frac{(b-a)^2}{N} \sum_{i=0}^{N} e^{-2\alpha(r_{1,i}+r_{2,i})} \frac{1}{|\mathbf{r}_{1,i}-\mathbf{r}_{2,i}|},$$
 (7)

with $\mathbf{r}_{1/2,i}$ being randomly chosen vectors and $b=a=\infty$, or our approximation of infinity, namely $\lambda=5$ (see section 2.2.1).

2.3.3 Importance sampling (exponential distribution)

As mentioned in section 2.2.1, our integrand quickly goes to zero. This means that inserting bigger approximations for infinity, λ , requires a greater number of sampling points, since we are not sure if the random numbers will give us the significant values of the integrand.

A sensible way around this is to distribute the randomly chosen variables on a probability distribution matching the function we're integrating. The quite obvious choice here is the exponential distribution $\lambda e^{-\lambda x}$. Inserting it into the general Monte Carlo integral approximation (equation (5)), together with the integrand we are finding the integral of, we get

$$\langle I \rangle = \frac{1}{N} \sum_{i=0}^{N} \frac{e^{-2\alpha(r_{1,i} + r_{2,i})}}{\lambda e^{-\lambda(r_{1,i} + r_{2,i})}} \frac{1}{|\mathbf{r}_{1,i} - \mathbf{r}_{2,i}|} = \frac{1}{4N} \sum_{i=0}^{N} \frac{1}{|\mathbf{r}_{1,i} - \mathbf{r}_{2,i}|}.$$

Here we put $\lambda = 4$, since $\alpha = 2$. This distribution does however not apply well with negative numbers, and thus we have to change into spherical coordinates. With the results from equations (2), (3) and (4), our approximated integral now reads:

$$\langle I \rangle = \frac{\pi^4}{4N} \sum_{i=0}^{N} \frac{r_1^2 r_2^2}{\sqrt{r_1^2 + r_2^2 - 2r_1 r_2 \cos \theta_1 \cos \theta_2 + \sqrt{1 - \cos \theta_1^2} \sqrt{1 - \cos \theta_2^2} \cos(\phi_1 - \phi_2)}}.$$
(8)

2.4 Standard deviation

The variance of our function mean value is given as

$$\sigma_f^2 = \frac{1}{N} \sum_{i=0}^{N} (f(\mathbf{x}_i) - \langle f \rangle)^2 = \langle f^2 \rangle - \langle f \rangle^2,$$

and thus the variance of the approximated integral is

$$\sigma_I^2 = \frac{V^2}{N^2} \sum_{i=0}^N \sigma_f^2 = \frac{V^2 \sigma_f^2}{N}.$$

The standard deviation of our Monte Carlo integration is the square root of the variance, so

$$STD = \sigma_I = \frac{V\sigma_f}{\sqrt{N}}.$$
 (9)

2.5 Paralellization

To run the computations faster, openMP will be used to paralellize the code. This shares the workload across multiple processor threads and results in a

substantional decrease in time spent for the same amount of operations. Some important remarks when doing Monte-Carlo integration in paralell is:

- Create a random number generator in earch thread.
- Keep the summations private for each thread.
- Sum the private summations from each thread together after the calculations are completed.

By doing this we avoid having the threads wait for the random number generator and writing to the same memory, thereby achieving optimal speedup.

The code is commented in for example /code/Monte-Carlo/src/naiveMC.cpp.

3 Results

3.1 Gauss-Legendre

Solving our integral with Legandre polynomials gives unstable results for $N \in [-5, 5]$ as seen in the table below. Though when choosing N = 27 and a = -2.9 and b = 2.9 our results are precise with 3 leading digits after the decimal point.

Legandre				
N	Value	Error		
11	0.297447	0.104681		
15	0.315863	0.123098		
21	0.268075	0.075310		
25	0.240135	0.047370		
27	0.229623	0.036858		

Table 1: Fill me in!

Laguerre				
N	Value	Error		
11	0.183021	0.009743		
15	0.193285	0.000520		
21	0.194807	0.002050		
25	0.194804	0.002030		
27	0.194795	0.002029		

Table 2: Fill me in!

3.2 Paralellization

Our paralellization results was achieved using a quad core Intel Core i5-8250U processor with 6MB cache at $1.6\mathrm{GHz}$ base clock, which boosted to $3.4\mathrm{GHz}$ during testing. Thermal throttling was avoided. The memory was $4\mathrm{GB}$ $1866\mathrm{MHz}$ LPDDR3 soldered on board. See table 3

We also ran this test on an octa-core processor with memory of 8GB 1866MHz, and achieved no noticable speedup compared to the abovementioned computer. See table 4

For runtime imputs the number of samples was set to 10^8 , with an approximation of infity of $\lambda = 5$.

Compile flags	-O3 -fopenMP	-O3	-fopenmp	no optimization
Naive MC	12s	31s	71s	173s
Improved MC	15s	38s	79s	200s

Table 3: Shows the time spent on the same calculations with different compile parameters on a quad core processor. $(N=10^8,\lambda=5)$

Compile flags	-O3 -fopenMP
Naive MC	12s
Improved MC	15s

Table 4: Shows the time spent on the Monte-Carlo calculations on an octa-core system. $(N=10^8,\lambda=5)$

4 Discussion

4.1 Paralellization

From table 3 it is easy to understand the impact of correct optimization. Not only was the paralellization of the code a big time-saver but also the vectorization flag (-O3) made a really dramatic impact.

Both from no optimization, to paralellization, and from vectorization to vectorization and paralellization, the time spent is halved. However, this was paralellized over four cores, so shouldn't the time be one fourth of the original? The bottleneck is probably memory speed, as we ran the same calculations on a octacore processor with more capacity, but same frequency RAM, and achieved the same results.

This means that further improvements on the paralellization can be done by using faster memory, or changeing the code to access memory less frequent.

5 Conclusion

this is a reference to intro: 1

References

[1] Morten Hjorth-jensen. Computational Physics Lectures: Introduction to Monte Carlo methods. 2019.