Home Work of Week 2

Deadline: 9:00am, November 5(Wednesday), 2014

- 1. Prove the following extensions of the Chernoff bound. Let $X = \sum_{i=1}^{n} X_i$, where the X_i are independent 0-1 random variables. Let $\mu = E[X]$. Choose any μ_L and μ_H such that $\mu_L \leq \mu \leq \mu_H$. Then, for any $\delta > 0$, $Pr(X \geq (1 + \delta)\mu_H) \leq (\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}})^{\mu_H}$.
 - Similarly, for any $0 < \delta < 1$, $Pr(X \le (1 \delta)\mu_L) \le (\frac{e^{-\delta}}{(1 \delta)^{(1 \delta)}})^{\mu_L}$.
- 2. Consider a collection $X_1, ... X_n$ of n independent integers chosen uniformly from the set $\{0,1,2\}$. Let $X = \sum_{i=1}^n X_i$ and $0 < \delta < 1$. Derive a Chernoff bound for $Pr(X \ge (1+\delta)n)$ and $Pr(X \le (1-\delta)n)$.
- 3. Let $X_1,...X_n$ be independent Poisson trials such that $Pr(X_i = 1) = p_i$ and let $a_1,...a_n$ be real numbers in [0,1]. let $X = \sum_{i=1}^n a_i X_i$ and $\mu = E[X]$. Then the following Chernoff bound holds: for any $\delta > 0$, $Pr(X \ge (1+\delta)\mu) \le (\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}})^{\mu}$. Also prove a similar bound for the probability $Pr(X \le (1-\delta)\mu)$ for any $0 < \delta < 1$.
- 4. Recall that a function f is said to be convex if, for any x_1, x_2 and for $0 \le \lambda \le 1$, $f(\lambda x_1 + (1 \lambda)x_2) \le \lambda f(x_1) + (1 \lambda)f(x_2)$.
 - Let Z be a random variable that takes on a finite set of values in [0,1], and let p = E[Z]. Define the Bernoulli random variable X by Pr(X = 1) = p and Pr(X = 0) = 1 p. Show that $E[f(Z)] \leq E[f(X)]$ for any convex function f.
 - Use the fact that $f(x) = e^{tx}$ is convex for any fixed $t \ge 0$ to obtain a Chernoff-like bound for Z.
- 5. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_1s_2s_is_{20}$, where s_i is 1 if the i^{th} trial gets Head, and otherwise is 0.