RECITATION 6

Comparing Several Multivariate Population Mean (MANOVA)

Assume that we have g populations and would like to compare these,

$$Pop1=X_{11}, X_{1,n}$$

..

$$Pop \ g=X_{g1}, \dots X_{g,n}$$

The MANOVA model can be written as

$$X_{lj} = \mu + \tau_l + \epsilon_{lj}$$
 for $l = 1, ..., g$ and $j = 1, 2, ..., n_l$

where

$$\epsilon_{lj} N_p(0,\Sigma)$$

 $\sum_{l=1}^{g} n_l \, \tau_l = 0$ where τ_l indicates treatment effect.

MANOVA model has the following assumptions

- The data from all groups have common variance covariance matrix.
- The subjects are drawn from independent samples.
- The data follows multivariate normal distribution.

In MANOVA, we test the following hypothesis

 $H_0 = \tau_1 = \tau_2 = \ldots = \tau_g = 0$ (No treatment effect) vs $H_1 = \text{At least one differs}$.

The standard MANOVA table can be arranges as follow

MANOVA Table for Comparing Population Mean Vectors

	<u> </u>	
Source of variation	Matrix of sum of squares and cross products (SSP)	Degrees of freedom (d.f.)
Treatment	$\mathbf{B} = \sum_{\ell=1}^{g} n_{\ell} (\bar{\mathbf{x}}_{\ell} - \bar{\mathbf{x}}) (\bar{\mathbf{x}}_{\ell} - \bar{\mathbf{x}})'$	g - 1
Residual (Error)	$\mathbf{W} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell})'$	$\sum_{\ell=1}^g n_\ell - g$
Total (corrected for the mean)	$\mathbf{B} + \mathbf{W} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}})'$	$\sum_{\ell=1}^g n_\ell - 1$

To make a final decision about the null hypothesis, we'll use

$$\Lambda^* = \frac{|\mathbf{W}|}{|\mathbf{B} + \mathbf{W}|} = \frac{\left| \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell})' \right|}{\left| \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}})' \right|}$$

Reject H_0 if Λ^* is too small (i.e close to 0)

Fail to reject H_0 if Λ^* is too large. (i.e close to 1)

The quantity $\Lambda^* = |\mathbf{W}|/|\mathbf{B} + \mathbf{W}|$, proposed originally by Wilks, corresponds to the equivalent form of the F-test of H_0 : no treatment effects in the univariate case. Wilks' lambda has the virtue of being convenient and related to the likelihood ratio criterion. The exact distribution of Λ^* can be derived for the special cases. For other cases and large sample sizes, a modification of Λ^* due to Bartlett can be used to test H_0 .

Multivariate Linear Regression Model

Consider the problem of modelling the relationship between m responses.

 $(Y_1, ..., Y_m)$ and set the predictors $(Z_1, ..., Z_m)$

The multivariate linear regression model is

$$\mathbf{Y} = \mathbf{Z}_{(n \times m)} + \mathbf{E}_{(n \times (r+1))((r+1) \times m)} + \mathbf{E}_{(n \times m)}$$

with

$$E(\mathbf{\varepsilon}_{(i)}) = \mathbf{0}$$
 and $Cov(\mathbf{\varepsilon}_{(i)}, \mathbf{\varepsilon}_{(k)}) = \sigma_{ik} \mathbf{I}$ $i, k = 1, 2, ..., m$

The m observations on the j th trial have covariance matrix $\Sigma = \{\sigma_{ik}\}$, but observations from different trials are uncorrelated. Here β and σ_{ik} are unknown parameters; the design matrix \mathbf{Z} has j th row $[z_{j0}, z_{j1}, ..., z_{jr}]$ In matrix notation, the design matrix is

$$\mathbf{Z}_{(n\times(r+1))} = \begin{bmatrix} z_{10} & z_{11} & \cdots & z_{1r} \\ z_{20} & z_{21} & \cdots & z_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ z_{n0} & z_{n1} & \cdots & z_{nn} \end{bmatrix}$$

The other quantities are,

$$\mathbf{Y}_{(n \times m)} = \begin{bmatrix}
Y_{11} & Y_{12} & \cdots & Y_{1m} \\
Y_{21} & Y_{22} & \cdots & Y_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
Y_{n1} & Y_{n2} & \cdots & Y_{nm}
\end{bmatrix} = [\mathbf{Y}_{(1)} \mid \mathbf{Y}_{(2)} \mid \cdots \mid \mathbf{Y}_{(m)}]$$

$$\boldsymbol{\beta}_{((r+1) \times m)} = \begin{bmatrix}
\beta_{01} & \beta_{02} & \cdots & \beta_{0m} \\
\beta_{11} & \beta_{12} & \cdots & \beta_{1m} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{r1} & \beta_{r2} & \cdots & \beta_{rm}
\end{bmatrix} = [\boldsymbol{\beta}_{(1)} \mid \boldsymbol{\beta}_{(2)} \mid \cdots \mid \boldsymbol{\beta}_{(m)}]$$

$$\boldsymbol{\varepsilon}_{(n \times m)} = \begin{bmatrix}
\varepsilon_{11} & \varepsilon_{12} & \cdots & \varepsilon_{1m} \\
\varepsilon_{21} & \varepsilon_{22} & \cdots & \varepsilon_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
\varepsilon_{n1} & \varepsilon_{n2} & \cdots & \varepsilon_{nm}
\end{bmatrix} = [\boldsymbol{\varepsilon}_{(1)} \mid \boldsymbol{\varepsilon}_{(2)} \mid \cdots \mid \boldsymbol{\varepsilon}_{(m)}]$$

$$= \begin{bmatrix}
\varepsilon_{1}' \\
\vdots \\
\varepsilon_{2}' \\
\vdots \\
\varepsilon_{n}'
\end{bmatrix}$$

The least square estimation of coefficient matrix is

$$\widehat{\boldsymbol{\beta}} = \begin{bmatrix} \widehat{\boldsymbol{\beta}}_{(1)} : \widehat{\boldsymbol{\beta}}_{(2)} & \cdots & \widehat{\boldsymbol{\beta}}_{(m)} \end{bmatrix} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}' \begin{bmatrix} \mathbf{Y}_{(1)} & \mathbf{Y}_{(2)} : \cdots : \mathbf{Y}_{(m)} \end{bmatrix}$$

or

$$\widehat{\boldsymbol{\beta}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}$$

Properties of Estimators

- $E(\hat{\beta}) = \beta$
- $Cov(\hat{\beta}_{(i)}, \hat{\beta}_{(k)}) = \sigma_{ik}(\mathbf{Z}'\mathbf{Z})^{-1}$
- $Cov(\hat{\beta}_{(i)}, \hat{\epsilon}_{(k)}) = 0$

Recall

In simple linear regression, we have one X and one Y.

In multiple linear regression, we have more than one X and one Y.

In multivariate linear regression, we have more than one Y

QUESTIONS

1. Observations on two responses are collected for three treatments. The observation vector $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ are;

Treatment 1:
$$\begin{bmatrix} 6 \\ 7 \end{bmatrix}$$
, $\begin{bmatrix} 5 \\ 9 \end{bmatrix}$, $\begin{bmatrix} 8 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 4 \\ 9 \end{bmatrix}$, $\begin{bmatrix} 7 \\ 9 \end{bmatrix}$

Treatment 2: $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$

Treatment 3: $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$

- a) Test if there is any significant difference between treatments. State your assumptions for this
- b) If you found a significant treatment effect, find out which treatment this difference is due to
- **2.** Consider the following data on one predictor variable and two responses:

Z_1	-2	-1	0	1	2
<i>Y</i> ₁	5	3	4	2	1
Y ₂	-3	-1	-1	2	3

- a) Determine the least squares estimates of the parameters in the straight line regression model.
- **b)** Caculate the matrices of fitted values \hat{Y} and residuals $\hat{\varepsilon}$ with Y:[$y_1:y_2$]. Verify the sum of squares and cross products decompositon. $Y'Y = \hat{Y}' \hat{Y} + \hat{\epsilon}' \hat{\epsilon}$

STAT 467/ Pecitotion 6 Anomer Key

1) One way MANOVA.

Group
$$\pm \text{ of obs}$$
 Somple mean Vectors Sample Cov Matrix \overline{X}
 $U = +r+ \perp$ $N_1 = 5$ $\overline{X}_1 = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$ $S_1 = \begin{bmatrix} 2.5 \\ -1.7 \end{bmatrix}$
 $U_2 = +r+ \perp$ $N_2 = 3$
 $U_3 = +r+ \perp$ $N_3 = 4$
 $U_4 = +r+ \perp$ $N_3 = 4$
 $U_4 = +r+ \perp$ $N_4 = 4$
 $U_5 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ $U_5 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ $U_6 = \begin{bmatrix} 2$

$$B+W= \begin{bmatrix} 34 & 35.01 \\ 35.01 & 101.99 \end{bmatrix}$$
 $N=\frac{|W|}{|B+W|} = \frac{155.0799}{42481.7599} = 0.036 \Rightarrow Reject the since it's close to 0.$

John Hot Menterland

b) Simultoneous CP for tot effect

$$722-732 = 4-2) \pm 3.25 \sqrt{\left(\frac{1}{3} + \frac{1}{4}\right)\left(\frac{17.99}{12-3}\right)}$$

 $2 \pm 3.25 \left(1.08\right)$
 $\left(-1.51, 5,51\right) \times$

$$\frac{y}{mxn} = \frac{2}{(nx(r+1))} \frac{\beta}{(cr+1)xm} + \frac{\xi}{nxm}$$

$$y = \begin{bmatrix} 5 & -3 \\ 3 & -1 \\ 4 & -1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix}$$

$$2 = \begin{bmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$$

$$E = \begin{bmatrix} E_{11} & E_{12} \\ \vdots \\ E_{51} & E_{52} \end{bmatrix}$$

$$E = \begin{bmatrix} B_{01} & B_{02} \\ \vdots \\ E_{51} & E_{52} \end{bmatrix}$$

$$\beta = (2^{1}2)^{-1}2^{1}y = \begin{bmatrix} 3 & 0 \\ -09 & 1.5 \end{bmatrix}$$

$$\frac{3}{2} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} -09 \\ 1.5 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 10 \end{bmatrix} = \begin{bmatrix} 0.2 & 0 \\ 0 & 0.1 \end{bmatrix}$$

$$\frac{2}{9} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & -1 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 5 & -3 \\ 3 & -1 \\ 4 & -1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 15 & 0 \\ -9 & 15 \end{bmatrix}$$

$$\hat{J} = \begin{bmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ -0.9 & 1.5 \end{bmatrix} = \begin{bmatrix} 4-8 & -3.0 \\ 3.9 & -1.5 \\ 3 & 0 \\ 2-1 & 1.5 \\ -1.2 & 3.0 \end{bmatrix}$$

The residual mountain

$$\hat{z} = y - \hat{y} = \begin{bmatrix} 0.2 & 0 \\ -0.9 & 0.5 \\ 1 & -1 \\ 0.1 & 0.5 \\ -0.2 & 0 \end{bmatrix}$$

The residual matrix
$$\hat{z} = y - \hat{y} = \begin{bmatrix} 0.2 & 0 \\ -0.9 & 0.5 \end{bmatrix} \qquad \begin{bmatrix} 55 & -15 \\ -15 & 24 \end{bmatrix} = \begin{bmatrix} 53.1 & -13.5 \\ -15 & 1.5 \end{bmatrix} + \begin{bmatrix} 1.3 & -1.5 \\ -1.5 & 1.5 \end{bmatrix}$$