Prof. Dr. J.W. Kolar Basisprüfung D-ITET

| Aufgabe Nr. | Thema              | Punkte max. | Punkte | Visum 1 | Visum 2 |
|-------------|--------------------|-------------|--------|---------|---------|
| NuS I-4     | Magnetischer Kreis | 20          |        |         |         |
| Name:       |                    | ETH-Nr.:    |        | _       |         |

## Aufgabe NuS I-4: Magnetischer Kreis und Induktivität

Gegeben sei die Anordnung einer Induktivität, welche gemäss **Fig. 4.1** aus einer Wicklung mit Windungszahl N auf einem dreischenkligen Kern besteht. Die Schenkel **1** und **2** des Kerns weisen je einen Luftspalt mit den Spaltbreiten  $\delta_1$  bzw.  $\delta_2$  auf. Alle Querschnittsflächen des Kerns sind gleich gross und besitzen die Abmessungen a=5 mm und b=12 mm. Sie dürfen von einer relativen Permeabilität  $\mu_r \to \infty$  des Kernmaterials ausgehen.



Fig. 4.1: Wicklung auf dreischenkligem Kern.

- Zeichnen Sie das zugehörige Reluktanzmodell der Anordnung in Fig. 4.1 und berechnen Sie die darin enthaltenen magnetischen Widerstände.

  (8 Pkt.)
- b) Wie gross kann die Windungszahl N der Induktivität maximal gewählt werden, damit für die magnetische Flussdichte noch folgendes gilt:  $B < B_{sat}$ . (8 Pkt.)
- c) Berechnen Sie die Induktivität L der Anordnung für das in b) berechnete  $N_{\text{max}}$ . (2 Pkt.)
- d) Was passiert (qualitativ), wenn die Spaltbreite  $\delta_1$  halbiert wird ( $N = N_{max}$ )? (2 Pkt.)