Instituto Tecnológico de Aeronáutica - ITA Controle para Sistemas Computacionais - CMC-12

Aluno: Bernardo Hoffmann da Silva

Relatório do Laboratório 2 - Projeto de Sistema de Controle para Robô Seguidor de Linha

Inicialização frontal

Inicialmente, foi implementado apenas o controle frontal, no qual o robô seguidor de linha se move até um ponto e para nele. A figura 1 mostra um gráfico de posição por tempo, a fim de simular esse controle implementado.

Figura 1: Gráfico da simulação da movimentação no eixo x do robô seguidor de linha por controlador proporcional.

Na teoria, a movimentação do robô é dada pela equação (1).

$$v = K_x (x_R - x)$$

$$\dot{x} + K_x x = K_x x_R$$

$$x = e^{-Kxt} + x_R$$
(1)

Logo, temos que se o tempo tende ao infinito, tem-se que o resultado esperado é tal que não há erro em regime. Dessa forma, nota-se que a teoria se confirma na simulação realizada.

$$\lim_{x \to \inf} x = x_R$$

Inicialização Lateral

Após a inicialização frontal, realizou-se a inicialização lateral, de forma linear e não-linear. As figuras de 2 a 7 representam simulações feitas com os simuladores em ambos os controladores (linear e não). São comparados os valores da posição e do ângulo ψ no decorrer do tempo.

Figura 2: Gráfico da posição pelo tempo, para simuladores lineares e não lineares e uma posição inicial de 0.1.

Figura 3: Gráfico de ângulo pelo tempo, para simuladores lineares e não lineares e uma posição inicial de 0.1.

Figura 4: Gráfico da posição pelo tempo, para simuladores lineares e não lineares e uma posição inicial de 0.3.

Figura 5: Gráfico de ângulo pelo tempo, para simuladores lineares e não lineares e uma posição inicial de 0.3.

Figura 6: Gráfico da posição pelo tempo, para simuladores lineares e não lineares e uma posição inicial de 0.5.

Figura 7: Gráfico de ângulo pelo tempo, para simuladores lineares e não lineares e uma posição inicial de 0.5.

Nota-se a linearização do parâmetro ψ não causa problemas para o controlador. Apesar da dinâmica não ser mais corretamente linear, o controlador ainda tem o resultado esperado. Percebe-se que a tendência da posição e do ângulo, em todos os casos, convergem para o valor esperado. É possível mencionar que para o modelo não-linear, caso o ângulo seja maior que $\frac{\pi}{2}$, tem-se que $\cos(\psi) < 0$. Isso faria com que a velocidade do robô se torne negativa. Um método heurístico de corrigir isso seria restringir ψ_r para valores menores que $\frac{\pi}{2}$. Na simulação, foi utilizado $\psi_{r,max} = 80^{\circ}$. Por isso, em algumas curvas de ângulo não linear ocorre uma limitação de ψ . Para certas posições de y_o próximas de y_R , a curva do modelo linear e não linear são muito próximas. Conforme a posição inicial se distancia da referência, os modelos apresentam maiores diferenças, apesar do resultado final ser o mesmo.

Controlador completo

Por fim, foi implementado o controlador completo, para um robô que se move nos eixos X e Y até o ponto determinado. Foram feitas simulações, apresentadas na figura 8 e na figura 9. Para essas simulações, as posições de referência foram alteradas de forma a verificar o comportamento do controlador para cada uma dessas situações.

Figura 8: Gráfico de posição para simuladores completos, com diferentes posições de referência no eixo Y e o robô se movendo com velocidade negativa no eixo X.

Figura 9: Gráfico de posição para simuladores completos, com diferentes posições de referência no eixo Y e o robô se movendo com velocidade positiva no eixo X.

Percebe-se que o comportamento foi de acordo com o esperado para o controlador proporcional em malha fechada utilizado. Nota-se que a não linearidade do sistema, com a presença da função seno e cosseno, não interferiu no resultado esperado para o controlador. Algumas correções heurísticas foram implementadas em conjunto com o código, como o

limitador de ψ rodas do robô.	explicado	na	inicialização	lateral	e	também	um	limitador	da	velocidade	das