Tarea 04

Matemáticas para las Ciencias Aplicadas II Facultad de Ciencias, UNAM

> Flores Morán Julieta Melina Zarco Romero José Antonio

> > 6 de mayo de 2024

1.

Verifique que la función $z=\ln\left[e^x+e^y\right]$ es una solución de las ecuaciónes diferenciales:

- $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$

2.

La energía cinética de un cuerpo de masa m y velocidad v es $K=\frac{1}{2}mv^2$. Demuestre que $K=\frac{\partial K}{\partial m}\frac{\partial^2 K}{\partial v^2}$

3.

Determine una ecuación del plano tangente a la función $z=xe^{xy}$ en el punto $(x_0,y_0)=(5,0).$

4.

Compruebe que la aproximación lineal en (0, 0).

$$\frac{2x+3}{4y+1} \approx 2x - 12y + 3$$

5.

Utilice la **regla de la cadena** para calcular $\frac{\partial z}{\partial s}$ y $\frac{\partial z}{\partial t}$. Dado que

$$z = \sin \theta \cos \phi, \ \theta = t^2, \ \phi = s^2 t$$

6.

Sea $z=x^4+x^2y$, con x=s+2tu, $y=stu^2$, utilice la **regla de la cadena** para calcular: $\frac{\partial z}{\partial s} \frac{\partial z}{\partial t} \frac{\partial z}{\partial u}$, donde s=4 t=2, u=1.

7.

Sea $f(x, y, z) = x^2yz - xyz^3$, P(2, -1, 1), $\hat{u} = \left(0, \frac{4}{5}, \frac{-3}{5}\right)$:

- Determine el **gradiente** de la función escalar f(x, y, z).
- \blacksquare Evalúe el **gradiente** en el punto P.
- Encuentre la razón de cambio de f(x, y, z) en el punto P en la dirección del vector \hat{u} .

8.

Determine la máxima razón de cambio de $f(x,y)=4y\sqrt{x}$ en el punto P(4,1) y la dirección en la cuál se presenta.

9.

Sea $f(x,y) = x^2 + xy + y^2 + y$. Calcule los valores **máximo** y **mínimo** locales, y punto(s) silla de la función.

10.

Sea $f(x,y) = x^2 + y^2 2x$, donde D es la región triángular cerrada con vértices A(2,O), B(O,2), C(0,-2).

Determine los valores máximos absolutos, valores mínimos absolutos de f(x, y) sobre el conjunto D.

11.

Encuentre tres números positivos cuya suma es 100 y cuyo producto es un máximo.

12.

Utilizando multiplicadores de Lagrange, encuentre los valores máximo y mínimo de la función sujeta a la restricción(es) dadas.

- $f(x,y) = x^2 + y^2$, sujeto a la restricción xy = 1.
- f(x,y) = xyz, sujeto a la restricción $x^2 + 2y^2 + 3z^2 = 6$.