

(11)Publication number:

10-149771

(43)Date of publication of application: 02.06.1998

(51)Int.CI.

H01J 11/00

(21)Application number : 08-306703

(71)Applicant: HITACHI LTD

(22)Date of filing:

18.11.1996

(72)Inventor: YATSUDA NORIO

ISHIGAKI MASAHARU

OSAWA ATSUO KAWANO KANJI KATO YOSHIHIRO SUZUKI SHIGEAKI KAWAI MICHIFUMI MURASE TOMOHIKO

(54) PLASMA DISPLAY PANEL AND MANUFACTURE THEREOF

(57)Abstract:

PROBLEM TO BE SOLVED: To suppress crosstalk, improve the brightness, and improve the manufacturing process of a color plasma display panel.

SOLUTION: Crosstalk is suppressed by forming diaphragms 1 to partition and separate discharge gas space to respective picture elements into a square shape structure. Moreover, a retaining electrode is constituted of one Y-electrode which generates electric discharge at the time of addressing and the other Xelectrode to form a pair of the Y-electrode and both end parts of the Y electrode and the X-electrode of every picture element are arranged in the peripheral part of the diaphragms 1 transversely crossing the direction of the address electrode 2 and the hole area is widened. Furthermore, the X-electrode composes one electrode covering two picture elements along the direction of the address electrode and the arrangement of the retaining is made to be Y-X-Y- Y-X-Y. Respective processes for manufacturing this plasma display panel comprising

vacuum evacuation, gas sealing, close adhesion of one insulating substrate to another insulating substrate, aging by electric discharge, and sealing both insulating substrates are carried out in a container which can be evacuated to vacuum.

LEGAL STATUS

[Date of request for examination]

09.10.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

This Page Blank (uspto)

application converted registration]
[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

This Page Blank (uspto)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-149771

(43)公開日 平成10年(1998)6月2日

(51)Int.Cl.⁴
H 0 1 J 11/00

識別配号

H01J 11/00

FΙ

C

審査請求 未請求 請求項の数10 OL (全 8 頁)

(21)出願番号

特顧平8-306703

(22)出顧日

平成8年(1996)11月18日

(71) 出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72) 発明者 谷津田 則夫

東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所家電・情報メディア事

業部内

(72) 発明者 石垣 正治

東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所家電・情報メディア事

業部内

(74)代理人 弁理士 武 攝次郎

最終頁に続く

(54) 【発明の名称】 プラズマディスプレイパネル及びその製造方法・

(57)【要約】

【課題】 カラープラズマデイスプレイパネルにおける クロストークの改善と輝度向上及び製造プロセスの改良 を図ること。

【解決手段】 放電ガス空間を画素毎に区切り分離する 隔壁を口の字型構造とすることによって、クロストーク の改善を図り、また、前記維持電極が、アドレス時に放電する一方のY電極と、前記Y電極と対をなす他方のX電極とから構成され、前記画素毎の前記Y電極とX電極の端部を、前記アドレス電極方向に対して横断する隔壁の近傍に配置して開口率を拡大すること。更に、X電極はアドレス電極方向に沿う2画素に亘って1つの電極を構成し、前記維持電極の配列が、Y-X-Y-Y-X-Yとすること。また、真空排気、ガス封入、前記一の絶縁基板と他の絶縁基板の密着、放電によるエージング、前記両絶縁基板のシール、からなる各工程を真空に排気可能な容器の中で行うこと。

【特許請求の範囲】

【請求項1】 維持放電を行わせる電極を有する一の絶 縁基板と、アドレス時に放電を行わせるアドレス電極を 有する他の絶縁基板と、前記一の絶縁基板と他の絶縁基 板との間に形成される放電ガス空間と、からなるプラズ マディスプレイパネルであって、

前記放電ガス空間を画素毎に区切って分離するロの字型 隔壁を前記他の絶縁基板に設けることを特徴とするプラ ズマディスプレイパネル。

【請求項2】 請求項1に記載のプラズマディスプレイ パネルにおいて、

前記アドレス電極方向に対して横断する隔壁の部分に封 入ガス拡散のための切り欠き部を設けることを特徴とす るプラズマディスプレイパネル。

【請求項3】 請求項1または2に記載のプラズマディ スプレイパネルにおいて、

前記維持電極が、アドレス時に放電する一方のY電極 と、前記Y電極と対をなす他方のX電極とから構成さ ħ.

前記画素毎の前記Y電極とX電極の端部を、前記アドレ ス電極方向に対して横断する隔壁の近傍に配置して開口 率を拡大することを特徴とするプラズマディスプレイバ ネル。

【請求項4】 請求項1、2または3に記載のプラズマ ディスプレイパネルにおいて、

前記維持電極が、アドレス時に放電する一方のY電極 と、前記Y電極と対をなす他方のX電極とから構成さ ħ.

前記X電極はアドレス電極方向に沿う2画素に亘って1 つの電極を構成し、

前記維持電極の配列が、Y電極-X電極-Y電極-Y電 極-X電極-Y電極となることを特徴とするプラズマデ イスプレイパネル。

【請求項5】 維持放電を行わせる電極を有する一の絶 縁基板と、アドレス時に放電を行わせるアドレス電極を 有する他の絶縁基板と、前記一の絶縁基板と他の絶縁基 板との間に形成される放電ガス空間と、から構成され、 前記放電ガス空間を画素毎に区切って分離するロの字型 隔壁を前記他の絶縁基板に設けるプララズマディスプレ イパネルの製造方法において、

真空排気工程、ガス封入工程、前記一の絶縁基板と他の 絶縁基板の密着工程、放電によるエージング工程、前記 両絶縁基板のシール工程、からなる各工程を真空に排気 可能な容器の中で行うことを特徴とするプラズマディス プレイパネルの製造方法。

【請求項6】 維持放電を行わせる電極を有する一の絶 縁基板と、アドレス時に放電を行わせるアドレス電極を 有する他の絶縁基板と、前記一の絶縁基板と他の絶縁基 板との間に形成される放電ガス空間と、から構成され、

隔壁を前記他の絶縁基板に設けるプララズマディスプレ イパネルの製造方法において、

前記一の絶縁基板と他の絶縁基板とをシール材を介在さ せて位置合わせする工程、

シール材を加熱し溶融して前記ロの字型隔壁と前記一の 絶縁基板との間に排気のための隙間を形成する工程、 シール材を一旦、冷却し固化し、この状態で真空排気 し、ガス封入する工程、

シール材を再度加熱し溶融して前記ロの字型隔壁と前記 一の絶縁基板とを密着し、排気管を封止切る工程。とか らなることを特徴とするプラズマディスプレイパネルの 製造方法。

【請求項7】 請求項6に記載のプラズマディスプレイ パネルの製造方法において、

前記ガス封入する工程で、ガス封入した際に放電による エージングを行うことを特徴とするプラズマディスプレ イパネルの製造方法。

【請求項8】 請求項1ないし4のいずれか1つの請求 項に記載のプラズマデイスプレイパネルにおいて、

前記一の絶縁基板と他の絶縁基板に、前記両絶縁基板の 貼り合わせ時の位置合わせマークを設けることを特徴と するカラープラズマディスプレイバネル。

【請求項9】 請求項1ないし4のいずれか1つの請求 項に記載のプラズマディスプレイパネルにおいて、 前記ロの字型隔壁が、前記一の絶縁基板と他の絶縁基板

とは別体の部品から構成されることを特徴とするプラズ マデイスプレイパネル。 【請求項10】 前記請求項5に記載のプラズマディス

プレイパネルの製造方法によって製造されたプラズマデ ィスプレイパネルであって、前記パネルに排気穴または 排気管を有しないことを特徴とするプラズマディスプレ イパネル。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、コンピュータ端末 や壁掛けテレビ等に用いられる、カラープラズマディス プレイパネルの構造及び製造方法に関するものである。 [0002]

【従来の技術】図9に従来のカラープラズマディスプレ イパネルの構造を示す。2はアドレス電極(A電極). 3, 4, 5は赤(R)、緑(G)、青(B)の蛍光体、 6は背面ガラス基板、7は維持電極を構成する透明電極 (X電極とY電極)、8はバス電極、9は誘電体層、1 0はMg O保護膜、11は前面ガラス基板、をそれぞれ 示し、放電ガス空間を区切り分離する陽壁23の形状 は、図9に示すように、アドレス電極2方向に沿ったレ ール形状のストライプ型隔壁23となっていた。

【0003】図9に示す構造のディスプレイにおいて は、まず、アドレス電極2とY電極の間の電圧印加で種 前記放電ガス空間を画素毎に区切って分離する口の字型、50 火を形成し、この状態でX電極とY電極とで放電させて

表示を行うものである。

[0004]

【発明が解決しようとする課題】上述したような従来のレール形状の隔壁構造23では、アドレス電極2方向に沿った画素(X電極とY電極とアドレス電極とで構成するR. G. B毎の単位)と画素との間で不要な放電が生じてクロストークが発生し易く、また、図9に示したような、同一基板上にある電極間で維持放電を行わせる面放電型のカラープラズマディスプレイパネルの場合では、上記クロストークが発生しないように、隣接する維 10 持電極間(図9の例における7 X 1 と 7 Y 2 との間隔)の距離をある程度確保しなければならず、したがって、プラズマディスプレイパネルの開口率(図2の説明で詳述する)が小となり、高輝度が得られないという欠点があった。

【0005】さらに、従来のレール形状の隔壁を有するフラズマディスプレイパネルの製造方法においては、パネル内の排気・ガス導入のための排気管が最終的にパネルに取り付けられた状態で構成されていた。この排気管は、パネルから突起した構造となっているため、パネル 20の取り扱いの際に誤って損傷してしまうと、パネル内に外部の空気が入り込んしまうこととなる(一般的には放電ガス圧は大気圧よりも低い)。また、1~4本の排気管でパネル内を排気するため、排気管部と他の部分で放電特性が異なる等の問題があった。

【0006】本発明は上記した従来の欠点に鑑み、クロストークが生じにくく、かつ、高輝度が確保可能な、さらに、パネル全面に渡り均一な放電特性を有するカラープラズマディスプレイパネルを提供することを目的とするものである。

[0007]

【課題を解決するための手段】上記した課題を解決する ために、本発明は次のような構成を採用する。

【0008】維持放電を行わせる電極を有する一の絶縁基板と、アドレス時に放電を行わせるアドレス電極を有する他の絶縁基板と、前記一の絶縁基板と他の絶縁基板との間に形成される放電ガス空間と、からなるプラズマディスプレイパネルであって、 前記放電ガス空間を画素毎に区切って分離するロの字型隔壁を前記他の絶縁基板に設けるプラズマディスプレイパネル。

【0009】また、前記維持電極が、アドレス時に放電する一方のY電極と、前記Y電極と対をなす他方のX電極とから構成され、前記X電極はアドレス電極方向に沿う2画素に亘って1つの電極を構成し、前記維持電極の配列が、Y電極-X電極-Y電極-Y電極-X電極-Y電極となるプラズマデイスプレイパネル。

【0010】更に、プラズマディスプレイパネルを効率 よく製造するために、組立工程を真空容器内で行う製造 方法。

[0011]

【発明の実施の形態】以下、本発明の実施形態について 図面を用いて詳細に説明する。

【0012】図1は、同一基板上にある電極間で維持放電を行わせる面放電型のカラープラズマディスプレイパネルに実施した例のパネル構造を示す要部斜視図である。

【0013】図1において、1は低融点の鉛ガラスよりなるロの字型の隔壁、2は銀よりなるアドレス電極、3~5は赤、緑、青の各蛍光体、6はソーダガラスよりなる背面ガラス基板、7Y1、7X1、7Y2、7X2は維持電極を構成するITOよりなる透明電極(7Y1のY電極と7X1のX電極とで1画素の維持電極を構成する)、8Y1、8X1、8Y2、8X2は透明電極7Y1、7X1、7Y2、7X2の電圧降下を補償するCr/Cu/Crよりなるバス電極、9は低融点の透明な鉛ガラスよりなる誘電体層、10はMgO保護膜、11はソーダガラスよりなる前面ガラス基板である。ここにおいて、1画素とは図1において口の字型隔壁1に囲まれた単位放電ガス空間またはセル空間を云う。

【0014】図2は、図1の前面ガラス基板の電極構成と背面ガラス基板の隔壁(画素)の位置関係を説明する平面図である。図1と同一部分には、同一符号を用いているので符号に対応する構成要素の説明は省略する。

【0015】R1 \sim R3, G1 \sim G3, B1 \sim B3はそれぞれ、赤、緑、青の各画素を示しており、例えば、白を表示する場合は、R1, G1, B1を同時に維持放電させる。

【0016】図1および図2の構造は、図9の従来例のレール形状の隔壁23に代えて口の字型隔壁として改善を加えたものであるが、X電極(7X1)とY電極(7Y1)の配置については、図9の従来構造と同様な配置としたものであって、これらの図示構造は本発明の特徴を説明するための基礎となる構成を示したものである。【0017】図1および図2からわかるように、アドレス電極2方向に沿った画素(例えばR1とR2)は、口の字型隔壁1で完全に仕切られている。従って、従来問題となっていた、例えば、R1の画素を維持放電させて、R2の画素は維持放電させないつもりでも、R1の画素が維持放電した際に電荷がR2に移動し、R2が間違って維持放電してしまうということは生じない。

【0018】図7は、図1の口の字型隔壁1のアドレス電極方向の空間を仕切る隔壁の1部を切り欠いたものである。この切り欠き部24の大きさは20μm×20μm程度である。これは、セル空間のガス圧がパネル製造の際に不均一になることを防止するための、ガス移動・拡散孔である。切り欠き部24の大きさが小さいため、ガスの移動は可能でも電荷の移動はほとんど生じない。従って、パネル製造上、必要あればこの切り欠き部24を設けることは、製造歩留り向上に有効である。

50 【0019】図1および図2における維持電極の配列

は、透明電極7 Y 1・バス電極8 Y 1 - 透明電極7 X 1 ・バス電極8X1-透明電極7Y2・バス電極8Y2-透明電極7X2・バス電極8X2-透明電極7Y3・バ ス電極8Y3-透明電極7X3・バス電極8X3となっ ている。

【0020】プラズマディスプレイパネルにおける輝度 は画素の開口率が大きい程高くなる。図2において、a -b-c-dで示す部分が画素の開口部である(維持電 極の7Y3と7X3とは透明部を形成している)。ここ において、開口率とは、単位のロの字型隔壁1の中心線 10 で囲まれた面積に対する前記開口部の割合である。

【0021】従来例の構造のものはクロストーク防止の ため、隣接する電極間隔(例えば7×1-7×2)をあ る程度(1画素の長手方向の約3分の1程度)確保する 必要があり、開口率は30%程度であった。図2の維持 電極は従来例の配置関係を示しその開口状態を示してい

【0022】図3は、本発明の特徴を示した、維持電極 の配置状態を図示しており、図3のa-b-c-dで示 すように、隣接する維持電極の間隔(例えば7 X 1-7 Y2)を極限まで狭くしても、アドレス電極方向を横断 する隔壁の構造により、クロストークは生じなく、更 に、開口率を約2倍にすることができるものである。し たがって、輝度も従来の2倍にすることができる。この ような、従来例には無い特有の効果は、ロの字型隔壁の 構造を採用することとともに、維持電極の配置構造に工 夫を加えることに依って達成されるものである。

【0023】ところで、図3に示すようなX電極とY電 極は、それぞれが交互にアドレス電極方向に対して横断 するように配置されており、即ち、 Y1-X1-Y2-X2-Y3-X3のように電極配置され、通常、X電極 は共通電極とされ、Y電極はそれぞれ独立電極とされて いるものである。そして、図3に示すように隣接する電 極の間隔(例えばX1電極とY2電極の間)を狭くした 場合、それらの電極間の静電容量が大きくなることによ り、X電極とY電極に印加する電圧を大きくせざるを得 ないという不都合な場合が生じる。

【0024】そこで、本発明の実施形態は、図4に示す ように、維持電極のX電極とY電極の配列状態を変更し て隣接電極間の静電容量を小さくしようとするものであ 40 り、その詳細を次に説明する。

【0025】図4は本発明の電極配列を説明する平面図 である。図3と比較して説明すると、図3では維持電極 のX, Yの配列がY1-X1-Y2-X2-Y3-X3 であったのに対し、図4では、原理的に云えば、Y1-X1-X2-Y2-Y3-X3であり、ここにおいて、 X1とX2は共通電極とすると1つのX電極(X1.

2) としてまとめることができ、同様にX3とX4も共 通電極X3,4とすることができる。したがって、図4 の維持電極の配列は、Y1−X1,2−Y2−Y3−X 50 り前面ガラス基板11と背面ガラス基板6を450℃に

3, 4としている。即ち、維持電極の配列は、透明電極 7Y1・バス電極8Y1-透明電極7X1, 2・バス電 極8 X 1、2 - 透明電極7 Y 2・バス電極8 Y 2 - 透明 電極7Y3・バス電極8Y3-透明電極7X3・バス電 極8X3となっている。

【0026】図4のY-X-Y-Y-Xの電極配列は、 X電極が共通構造となっているために、図3のY-X-Y-X-Y-Xの電極配列に比べて、更に大きな開口率 を得ることができ、輝度も向上することができるととも に、隣接電極間を狭めたことによる静電容量増加も小さ く抑えるととができる。

【0027】以上説明したようなディスプレイパネルに おいて、実際の製造工程で有用な具体的構造として、前 記一の絶縁基板と他の絶縁基板に、前記両絶縁基板の貼 り合わせ時の位置合わせマークを設けることが効果的で ある。また、前記ロの字型隔壁が、前記一の絶縁基板と 他の絶縁基板とは別体の部品から構成されてもよいので あって、例えば、前記隔壁を単体のメッシュ形状のもの として、これを前記他の絶縁基板に設置した後にこれに 蛍光体を形成することもできるのである。

【0028】図5および図6は、本発明のディスプレイ パネルの組立て製造プロセスに真空封止装置を用いた場 合の概略図である。

【0029】図5において、6は蛍光体まで形成された 背面ガラス基板、11はMgO保護膜まで形成された前 面ガラス基板、12はロの字型隔壁の外周部に設けられ た有機成分を含まないシール材、13は真空容器、14 はヒータ18及びトルクモータ19からなる前面ガラス 基板11の保持台、20はヒータ18からなる背面ガラ ス基板6の保持台、15は真空ポンプ、21は排気バル ブ、16はNe-Xe等からなる封入ガス源、22はガ ス導入バルブ、17は前面ガラス基板11の維持電極と 背面ガラス基板6のアドレス電極に接続されたエージン グ回路である。

【0030】図5は、前面ガラス基板11と背面ガラス 基板6を保持台14と20にセットし、ヒータ18で前 面ガラス基板11と背面ガラス基板6を350℃まで加 熱しながら、排気バルブ21を開き、高真空に排気して いる状態を示している。

【0031】図6は、排気バルブ21を閉じ、封入ガス 源のバルブ22を開け、Ne-Xeからなる混合ガスを 400Torr導入し、その後、トルクモータ19を駆 動し、保持台14を下方に移動し、前面ガラス基板11 と背面ガラス基板6を密着させた状態を示している。と の状態でエージング回路17を駆動し、維持電極のX-Y電極間と、維持電極とアドレス電極間で放電させ、エ ージングを行う。

【0032】この排気ーガス導入ーエージングの工程を 数回繰返した後、ガスを導入した状態でヒータ18によ 7

加熱し、シール材12を溶融させ、シールを行なう。この時、トルクモータ19により、予め最適化された荷重を加えることで前面ガラス基板11と背面ガラス基板6の密着性の向上を図っている。

【0033】図8は、図5の真空封止装置を用いずに、 従来の製造設備を用いて、本発明のロ字型隔壁のパネル を組立てる製造工程図である。

【0034】従来のレール形状の隔壁を備えたディスプレイパネルの製造設備は、真空ポンプ15と封入ガス源16と1つの排気管25を用いて、前面ガラス板11と 10前記隔壁とを突き合わせた状態に設定して、放電ガス空間に対して排気とガス封入を行うものである。この際、排気管は背面ガラス基板の外周部に設け、排気管の先端は複数のレール形状溝のいずれとも連通しているため、1つの排気管を設けるのみで済むのである。

【0035】(a)は、前面ガラス基板11と背面ガラス基板6をシール材12を介して位置合わせした状態を示している。

【0036】(b)は、シール材12を加熱・溶融する工程であり、この時、加熱温度と基板に加える荷重を制 20 御することで、ロの字型隔壁1の頂上と前面ガラス基板 11との間に、いずれの隔壁にも連通するように、排気のための隙間を設けている。シール材の外周にスペーサー24をかませることによっても前記隙間の形成は可能である。

【0037】(c)は、シール材12を一旦、冷却・固化させ、排気バルブ21を開き、高真空に排気し、次いで、排気バルブ21を閉じ、ガス導入バルブ22を開け、ガス封入する工程である。冷却は350℃まで加熱炉の温度を下げ、この状態でパネル内の排気を3時間行 30なった。その後、Ne-Xeからなる混合ガスを400 Torr導入した。

【0038】(d)はその後、シール材12を再度加熱・溶融し、基板に加える荷重を制御し、または、スペーサー24を除去し、ロの字型隔壁1の頂上と前面ガラス基板11を密着させ、シール材12を冷却・固化し、排気管25を封止切る工程を示している。

【0039】(e)は(c)のガス封入の後、エージング回路17により電極にバルス電圧を加え、放電を発生させてエージングする工程である。この(c)と(e) 40の工程(排気・ガス封入・エージング)を1〜数回繰返した後、(d)工程で排気管を封止切った。(d)工程の前に、(e)工程導入の必要性有無はバネル構成部材の材料、プロセスに応じて判断すれば良い。

[0040]

【発明の効果】以上述べたように、本発明によれば、ロの字型の陽壁で1画素毎に完全に仕切るため、クロストークのない高性能の画質が得られ、更に、維持電極の配

置構成を改善し、開口率を向上させることで輝度の大幅 な向上が図れる。

【0041】また、真空容器内でプラズマディスプレイパネルを組立てることにより、ロの字型構造のカラープラズマデイスプレイパネルが精度・効率良く、得ることができる。また、従来の製造設備を用いても製作可能な製造プロセスを得ることができる。

【図面の簡単な説明】

- 【図1】本発明のバネル構造を示す要部斜視図である。
- 【図2】本発明の口の字型隔壁と電極配列を示す平面図である。
- 【図3】本発明のロの字型隔壁と改善された電極配列を 示す平面図である。
- 【図4】本発明の維持電極配列を示す平面図である。
- 【図5】本発明の真空容器内製造プロセスを示す真空封 止装置概略図である。
- 【図6】本発明の真空容器内製造プロセスを示す真空封 止装置概略図である。
- 【図7】本発明のパネル構造を示す要部斜視図である。
- 【図8】本発明のロの字型隔壁を従来製造設備で製造する場合の工程図である。
 - 【図9】従来のパネル構造を示す要部斜視図である。 【符号の説明】
 - 1 ロの字型隔壁
 - 2 アドレス電極
 - 3 蛍光体(赤)
 - 4 蛍光体(緑)
 - 5 蛍光体(骨)
 - 6 背面ガラス基板
- 7 透明電極
 - 8 バス電極
 - 9 誘電体層
 - 10 MgO保護膜
 - 11 前面ガラス基板
 - 12 シール材
 - 13 真空容器
 - 14 前面ガラス基板保持台
 - 15 真空ポンプ
 - 16 封入ガス源
- 17 エージング回路
 - 18 ヒータ
- 19 トルクモータ
- 20 背面ガラス基板保持台
- 21 排気バルブ
- 22 ガス導入バルブ
- 23 ストライプ型隔壁
- 24 スペーサー
- 25 排気管

【図2】

[図3]

【図3】

【図4】

【図5】

【図6】

[図6]

【図7】:

【図8】

【図9】

フロントページの続き

(72)発明者 大沢 敦夫

東京都千代田区神田駿河台四丁目 6番地 株式会社日立製作所家電・情報メディア事 業部内

(72)発明者 川野 寛治

東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所家電・情報メディア事 業部内

(72)発明者 加藤 義弘

東京都干代田区神田駿河台四丁目6番地 株式会社日立製作所家電・情報メディア事 業部内 (72)発明者 鈴木 重明

東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所家電・情報メディア事 業部内

(72)発明者 河合 通文

東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所家電・情報メディア事 業部内

(72)発明者 村瀬 友彦

東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所家電・情報メディア事 業部内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

D	efects in the images include but are not limited to the items checked:
	BLACK BORDERS
	M IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	FADED TEXT OR DRAWING
	BLURRED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
	COLOR OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)