

Istituto Dalle Molle di studi sull'intelligenza artificiale

Algorithms and Data Structures

Addendum - Master Theorem and Recursive Functions

Matteo Salani

Decreasing Functions

When the size of the input is decremented by a constant.

$$T(n) = a \cdot T(n-b) + f(n)$$

- ightharpoonup a > 0: number of recursive calls
- \triangleright b > 0: decrement constant of the input size
- $ightharpoonup f(n) = O(n^k)$: computational complexity of non-recursive part

Cases:

- 1. If a = 1: $O(n^{k+1})$ or $O(n \cdot f(n))$
- 2. If a > 1: $O(n^k \cdot a^{\frac{n}{b}})$
- 3. If a < 1: $O(n^k)$

Examples

$$T(n) = T(n-1) + 1$$
: $O(n)$

$$T(n) = T(n-1) + n: O(n^2)$$

$$T(n) = T(n-1) + \log(n): O(n \cdot \log n)$$

$$T(n) = 2 \cdot T(n-1) + 1$$
: $O(2^n)$

$$T(n) = 2 \cdot T(n-3) + 1$$
: $O(2^{\frac{n}{3}})$

$$T(n) = 3 \cdot T(n-1) + 1$$
: $O(3^n)$

$$T(n) = 2 \cdot T(n-1) + n: O(n \cdot 2^n)$$

Dividing Functions

When the size of the input is divided by a constant.

$$T(n) = a \cdot T(n/b) + f(n)$$

- $ightharpoonup a \ge 1$: number of recursive calls
- ightharpoonup b > 1: dividing constant of the input size
- $ightharpoonup f(n) = O(n^k \log^p n)$: computational complexity of non-recursive part

Considering log_b a we have Cases and SubCases:

- 1. If $\log_b a > k$: $O(n^{\log_b a})$
- 2. If $\log_b a = k$:
 - ▶ a), if p > -1: $O(n^k \log^{p+1} n)$
 - ▶ b), if $p = -1 : O(n^k \log \log n)$
 - ▶ c), if $p < -1 : O(n^k)$
- 3. If $\log_b a < k$:
 - ightharpoonup a), if $p \ge 0$: $O(n^k \log^p n)$
 - **b**), if $p < 0 : O(n^k)$

Examples - Case 1

- T(n) = $2 \cdot T(n/2) + 1$ $a = 2, b = 2, f(n) = O(1) = O(n^0 \log^0 n) \to k = 0, p = 0$ $\log_2 2 = 1 > 0$ $O(n^1)$
- T(n) = $4 \cdot T(n/2) + n$ $\log_2 4 = 2, k = 1, p = 0$ $\log_2 4 = 2 > 1$ $O(n^2)$
- T(n) = $8 \cdot T(n/2) + n^2 \log n$ $\log_2 8 = 3, k = 2, p = 1$ $\log_2 8 = 3 > 2$ $O(n^3)$

Examples - Case 2

- $T(n) = 2 \cdot T(n/2) + n$ $\log_2 2 = 1, k = 1, p = 0$ $\log_2 2 = 1 = k, p > -1 \rightarrow \mathsf{SubCase} \ \mathsf{a}$ $O(n \log n)$
- ► $T(n) = 4 \cdot T(n/2) + n^2$ $\log_2 4 = 2, k = 2, p = 0$ $\log_2 4 = 2 = k, p > -1 \rightarrow \text{SubCase a}$ $O(n^2 \log n)$
- ► $T(n) = 8 \cdot T(n/2) + n^3 \log^5 n$ $\log_2 8 = 3, k = 3, p = 1$ $\log_2 8 = 3 = k, p > -1 \rightarrow \text{SubCase a}$ $O(n^2 \log^6 n)$

Examples - Case 2 and 3

Case 2:

- ► $T(n) = 2 \cdot T(n/2) + \frac{n}{\log n}$ $\log_2 2 = 1, k = 1, p = -1$ $\log_2 2 = 1 = k, p = -1 \rightarrow \text{SubCase b}$ $O(n \log \log n)$
- ► $T(n) = 4 \cdot T(n/2) + \frac{n^2}{\log^2 n}$ $\log_2 4 = 2, k = 2, p = -2$ $\log_2 4 = 2 = k, p < -1 \rightarrow \text{SubCase c}$ $O(n^2)$

Case 3:

►
$$T(n) = 4 \cdot T(n/2) + \frac{n^3}{\log n}$$

 $\log_2 4 = 2, k = 3, p = -1$
 $\log_2 4 = 2 < k, p < 0 \rightarrow \text{SubCase b}$
 $O(n^3)$