## **Homotopic Policy Mirror Descent**

Policy Convergence, Implicit Regularization, and Improved Sample Complexity

### Yan Li

Georgia Institute of Technology

Joint work with Tuo Zhao, Guanghui (George) Lan
ICCOPT 2022

### Markov decision process



## Key elements:

- $\circ$   $\mathcal{S}$ : state space, finite
- $\bullet$   $\mathcal{A}$ : action space, finite
- P: transition kernel
- $\gamma$ : discount factor
- c: costs

### Markov decision process



### Key elements:

- S: state space, finite
- $\bullet$  A: action space, finite
- P: transition kernel
- $\gamma$ : discount factor
- c: costs

• Planning in  $\mathcal{M}(\mathcal{S}, \mathcal{A}, \mathbb{P}, \gamma, c, h)$ :

$$\min_{\pi} V^{\pi}(s) \coloneqq \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^{t} c(s_{t}, a_{t}) \middle| s_{0} = s \right], \quad \forall s \in \mathcal{S}$$

## A Conceptual Recap on Policy Gradient Methods



ullet Q-function table:  $Q^{\pi} \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}$  defined as

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^{t} \left( c(s_{t}, a_{t}) \right) \middle| s_{0} = s, a_{0} = a \right]$$

### A Conceptual Recap on Policy Gradient Methods



Single-objective:

$$f(\pi) = \sum_{s \in \mathcal{S}} \nu^*(s) V^{\pi}(s)$$

\* nonconvex

ullet Q-function table:  $Q^{\pi} \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}$  defined as

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^{t} \left( c(s_{t}, a_{t}) \right) \middle| s_{0} = s, a_{0} = a \right]$$

### A Conceptual Recap on Policy Gradient Methods



ullet Q-function table:  $Q^{\pi} \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}$  defined as

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^{t} \left( c(s_{t}, a_{t}) \right) \middle| s_{0} = s, a_{0} = a \right]$$

Single-objective:

$$f(\pi) = \sum_{s \in \mathcal{S}} \nu^*(s) V^{\pi}(s)$$

- \* nonconvex
- Policy evaluation:
  - \* matrix inversion / fixed point iter.
  - \* TD / simulator
- Policy improvement:
  - \* policy gradient
  - \* natural policy gradient

### Recent developments on Policy Gradient

- Possibly even earlier ..
- Even-Dar, Kakade, Mansour '09:  $\mathcal{O}(1/\sqrt{T})$  regret of NPG
- Agarwal, Kakade, Lee, Mahajan '19:  $\mathcal{O}(1/T)$  of NPG
  - technique inspired by Even-Dar, Kakade, Mansour '09
- Cen, Cheng, Chen, Wei, Chi '20: linear convergence of NPG for entropy regularized MDPs
- Lan '21: (approximate) policy mirror descent
  - linear convergence of NPG/PMD for entropy regularized MDPs
  - linear convergence of APMD for standard MDPs
  - linear convergence of stochastic variants and optimal sample complexity
- Khodadadian, Jhunjhunwala, Varma, Maguluri '21: linear convergence of NPG with adaptive stepsize for standard MDPs

### More recently ..

• Xiao '22: linear convergence of NPG/PMD with increasing stepsize

And many more ...

- Empirically, PG converges superlinearly at later stage:
  - With algorithmic-dependent assumptions: Khodadadian et al. '21, Xiao '22.
  - General arguments still missing.

- Empirically, PG converges superlinearly at later stage:
  - With algorithmic-dependent assumptions: Khodadadian et al. '21, Xiao '22.
  - General arguments still missing.
- No clear understanding on the policy convergence:

- Empirically, PG converges superlinearly at later stage:
  - With algorithmic-dependent assumptions: Khodadadian et al. '21, Xiao '22.
  - General arguments still missing.
- No clear understanding on the policy convergence:
  - Value convergence only implies subsequence convergence of policies.

- Empirically, PG converges superlinearly at later stage:
  - With algorithmic-dependent assumptions: Khodadadian et al. '21, Xiao '22.
  - General arguments still missing.
- No clear understanding on the policy convergence:
  - Value convergence only implies subsequence convergence of policies.
  - Does  $\{\pi_k\}$  even converge at all?

- Empirically, PG converges superlinearly at later stage:
  - With algorithmic-dependent assumptions: Khodadadian et al. '21, Xiao '22.
  - General arguments still missing.
- No clear understanding on the policy convergence:
  - Value convergence only implies subsequence convergence of policies.
  - Does  $\{\pi_k\}$  even converge at all?
  - There can be infinitely many optimal stochastic polices.

- Empirically, PG converges superlinearly at later stage:
  - With algorithmic-dependent assumptions: Khodadadian et al. '21, Xiao '22.
  - General arguments still missing.
- No clear understanding on the policy convergence:
  - Value convergence only implies subsequence convergence of policies.
  - Does  $\{\pi_k\}$  even converge at all?
  - There can be infinitely many optimal stochastic polices.

$$\forall s \in \mathcal{S}, \operatorname{supp}(\pi(\cdot|s)) \subset \underset{a \in \mathcal{A}}{\operatorname{Argmin}} Q^*(s, a) := \mathcal{A}^*(s)$$

$$\downarrow \downarrow$$

$$\pi \in \Pi^*$$

### An Empirical Preview with GridWorld



- Two-phase convergence? [Fig. (a), (b)]
  - Linear → Something even faster (perhaps superlinear)
- Implicit exploration? [Fig. (c)]
  - Probability strictly greater than 0 for any  $a \in \mathcal{A}^*(s)$ .

- Homotopic Policy Mirror Descent, and its Local Acceleration
  - Method
  - Global linear convergence
  - Local super-linear convergence
- Policy Convergence
  - With Kullback-Leibler divergence
  - Generalization to decomposable Bregman divergences
- Improved Sample Complexity
- Conclusion

Part I: HPMD and its Local Acceleration

Homotopic Policy Mirror Descent, and its Local Acceleration

# **Homotopic Policy Mirror Descent**

Idea: diminishing entropy regularization in policy updates

Homotopic Policy Mirror Descent, and its Local Acceleration

0000000

## Idea: diminishing entropy regularization in policy updates

## Algorithm The homotopic policy mirror descent (HPMD) method

**Input:** Initial policy  $\pi_0$ , and stepsizes  $\{\eta_k\}_{k\geq 0}$ for k = 0, 1, ... do Update policy:

$$\pi_{k+1}(\cdot|s) = \operatorname*{argmin}_{p(\cdot|s) \in \Delta_{|\mathcal{A}|}} \eta_k \left[ \langle Q^{\pi_k}(s,\cdot), p(\cdot|s) \rangle - \tau_k \mathrm{Ent}(p) \right] + D^p_{\pi_k}(s)$$

Homotopic Policy Mirror Descent, and its Local Acceleration

0000000

### Idea: diminishing entropy regularization in policy updates

## Algorithm The homotopic policy mirror descent (HPMD) method

**Input:** Initial policy  $\pi_0$ , and stepsizes  $\{\eta_k\}_{k\geq 0}$ for k = 0, 1, ... do Update policy:

$$\pi_{k+1}(\cdot|s) = \operatorname*{argmin}_{p(\cdot|s) \in \Delta_{|\mathcal{A}|}} \eta_k \left[ \langle Q^{\pi_k}(s,\cdot), p(\cdot|s) \rangle - \tau_k \mathrm{Ent}(p) \right] + D^p_{\pi_k}(s)$$

- $D_{\pi'}^{\pi}(s) := \mathrm{KL}(\pi(\cdot|s) \| \pi'(\cdot|s))$
- $\operatorname{Ent}(q) := -\sum_i q_i \log q_i$

# Homotopic Policy Mirror Descent

Homotopic Policy Mirror Descent, and its Local Acceleration

00000000

## Idea: diminishing entropy regularization in policy updates

## Algorithm The homotopic policy mirror descent (HPMD) method

**Input:** Initial policy  $\pi_0$ , and stepsizes  $\{\eta_k\}_{k\geq 0}$ for k = 0, 1, ... do Update policy:

$$\pi_{k+1}(\cdot|s) = \underset{p(\cdot|s) \in \Delta_{|\mathcal{A}|}}{\operatorname{argmin}} \ \eta_k \left[ \langle Q^{\pi_k}(s,\cdot), p(\cdot|s) \rangle - \tau_k \mathrm{Ent}(p) \right] + D^p_{\pi_k}(s)$$

- $D_{\pi'}^{\pi}(s) := \mathrm{KL}(\pi(\cdot|s) \| \pi'(\cdot|s))$
- $\operatorname{Ent}(q) := -\sum_{i} q_{i} \log q_{i}$
- Natural policy gradient (a.k.a. policy mirror descent) when  $\tau_k = 0$ .

# Homotopic Policy Mirror Descent

Homotopic Policy Mirror Descent, and its Local Acceleration

# Idea: diminishing entropy regularization in policy updates

## Algorithm The homotopic policy mirror descent (HPMD) method

**Input:** Initial policy  $\pi_0$ , and stepsizes  $\{\eta_k\}_{k\geq 0}$ for k = 0, 1, ... do Update policy:

$$\pi_{k+1}(\cdot|s) = \underset{p(\cdot|s) \in \Delta_{|\mathcal{A}|}}{\operatorname{argmin}} \ \eta_k \left[ \langle Q^{\pi_k}(s,\cdot), p(\cdot|s) \rangle - \tau_k \mathrm{Ent}(p) \right] + D^p_{\pi_k}(s)$$

- $D_{\pi'}^{\pi}(s) := \mathrm{KL}(\pi(\cdot|s) \| \pi'(\cdot|s))$
- $\operatorname{Ent}(q) := -\sum_{i} q_{i} \log q_{i}$
- Natural policy gradient (a.k.a. policy mirror descent) when  $\tau_k = 0$ .
- Still solves the original MDP  $(\tau_k \to 0)$

# Homotopic Policy Mirror Descent, and its Local Acceleration **Global Linear Convergence**

00000000

## Theorem (Li, Zhao, Lan '22)

By choosing  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ , then for any iteration  $k \ge 1$ ,

$$f(\pi_k) - f(\pi^*) \le \gamma^k \left( f(\pi_0) - f(\pi^*) + \frac{4 \log |\mathcal{A}|}{1 - \gamma} \right).$$



Figure: Avg Optimality Gap.

# **Global Linear Convergence**

Homotopic Policy Mirror Descent, and its Local Acceleration

00000000

### Theorem (Li, Zhao, Lan '22)

By choosing  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ , then for any iteration  $k \ge 1$ ,

$$f(\pi_k) - f(\pi^*) \le \gamma^k \left( f(\pi_0) - f(\pi^*) + \frac{4\log|\mathcal{A}|}{1-\gamma} \right).$$



Figure: Avg Optimality Gap.

- Simplification to APMD (Lan '21).
  - · regularization only in the update.

# Homotopic Policy Mirror Descent, and its Local Acceleration **Global Linear Convergence**

00000000

## Theorem (Li, Zhao, Lan '22)

By choosing  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ , then for any iteration k > 1,

$$f(\pi_k) - f(\pi^*) \le \gamma^k \left( f(\pi_0) - f(\pi^*) + \frac{4\log|\mathcal{A}|}{1-\gamma} \right).$$



Figure: Avg Optimality Gap.

- Simplification to APMD (Lan '21).
- regularization only in the update.
- Simple exponential stepsize scaling.

# **Global Linear Convergence**

Homotopic Policy Mirror Descent, and its Local Acceleration

00000000

## Theorem (Li, Zhao, Lan '22)

By choosing  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ , then for any iteration k > 1,

$$f(\pi_k) - f(\pi^*) \le \gamma^k \left( f(\pi_0) - f(\pi^*) + \frac{4\log|\mathcal{A}|}{1-\gamma} \right).$$



Figure: Avg Optimality Gap.

- Simplification to APMD (Lan '21). · regularization only in the update.
- Simple exponential stepsize scaling.
- $\mathcal{O}(\log k/k)$  rate with constant  $\eta_k$  and  $\tau_k = 1/k$ .

# **Conceptual Preview**

00000000

Homotopic Policy Mirror Descent, and its Local Acceleration

### Interactions between Value and Policy Convergence



# **Local Superlinear Convergence - Policy**

### Theorem (Li, Zhao, Lan '22)

Suppose  $\Delta^*(\mathcal{M}) < \infty$ , then with  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ ,

$$\operatorname{dist}_{\ell_1}(\pi_k, \Pi^*) = \mathcal{O}\left(\exp\left(-\frac{\Delta^*(\mathcal{M})}{2}\gamma^{-2k-1}\right)\right),$$

for any iteration  $k \geq K_1 = \mathcal{O}\left(\log_{\alpha} \Delta^*(\mathcal{M})\right)$ .

# **Local Superlinear Convergence - Policy**

### Theorem (Li, Zhao, Lan '22)

Suppose  $\Delta^*(\mathcal{M}) < \infty$ , then with  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ ,

$$\operatorname{dist}_{\ell_1}(\pi_k, \Pi^*) = \mathcal{O}\left(\exp\left(-\frac{\Delta^*(\mathcal{M})}{2}\gamma^{-2k-1}\right)\right),$$

for any iteration  $k \geq K_1 = \mathcal{O}\left(\log_{\gamma} \Delta^*(\mathcal{M})\right)$ .

• 
$$\|\pi - \pi'\|_1 := \max_{s \in \mathcal{S}} \|\pi(\cdot|s) - \pi'(\cdot|s)\|_1$$
.

# **Local Superlinear Convergence - Policy**

### Theorem (Li, Zhao, Lan '22)

00000000

Suppose  $\Delta^*(\mathcal{M}) < \infty$ , then with  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ ,

$$\operatorname{dist}_{\ell_1}(\pi_k, \Pi^*) = \mathcal{O}\left(\exp\left(-\frac{\Delta^*(\mathcal{M})}{2}\gamma^{-2k-1}\right)\right),$$

for any iteration  $k \geq K_1 = \mathcal{O}\left(\log_{\gamma} \Delta^*(\mathcal{M})\right)$ .

- $\|\pi \pi'\|_1 := \max_{s \in \mathcal{S}} \|\pi(\cdot|s) \pi'(\cdot|s)\|_1$ .
- - Hardness of MDP
- $\Delta^*(\mathcal{M}) = \infty \Rightarrow \text{Any policy is optimal.}$

00000000

Homotopic Policy Mirror Descent, and its Local Acceleration

# What happens when $Q^*(s,i) < Q^*(s,j)$ ?

\* Notation shorthand:  $z_i^k = \log \pi_k(i|s)$ ,  $Q_i^k = Q^{\pi_k}(s,i)$ .

00000000

# What happens when $Q^*(s,i) < Q^*(s,j)$ ?

- \* Notation shorthand:  $z_i^k = \log \pi_k(i|s)$ ,  $Q_i^k = Q^{\pi_k}(s,i)$ .
- ★ Look at the logit space:

Homotopic Policy Mirror Descent, and its Local Acceleration

00000000

## What happens when $Q^*(s,i) < Q^*(s,j)$ ?

- \* Notation shorthand:  $z_i^k = \log \pi_k(i|s), Q_i^k = Q^{\pi_k}(s,i).$
- \* Look at the logit space:

Homotopic Policy Mirror Descent, and its Local Acceleration

$$z_i^{k+1} - z_j^{k+1} = \underbrace{\gamma^{k+1}(z_i^0 - z_j^0)}_{\text{initialization does not matter}} - \sum_{t=0}^k \underbrace{\gamma^{k+1-t}\eta_t(Q_i^t - Q_j^t)}_{\text{Only recent history matters}}.$$

\* What happens in recent history?

00000000

## What happens when $Q^*(s,i) < Q^*(s,j)$ ?

- \* Notation shorthand:  $z_i^k = \log \pi_k(i|s), Q_i^k = Q^{\pi_k}(s,i).$
- \* Look at the logit space:

Homotopic Policy Mirror Descent, and its Local Acceleration

$$z_i^{k+1} - z_j^{k+1} = \underbrace{\gamma^{k+1}(z_i^0 - z_j^0)}_{\text{initialization does not matter}} - \sum_{t=0}^k \underbrace{\gamma^{k+1-t}\eta_t(Q_i^t - Q_j^t)}_{\text{Only recent history matters}}.$$

\* What happens in recent history?

$$\underbrace{Q_i^t - Q_j^t \leq (Q^*(s,i) - Q^*(s,j))/2, t \geq K}_{\text{implied by linear convergence}}$$

00000000

## What happens when $Q^*(s,i) < Q^*(s,j)$ ?

- \* Notation shorthand:  $z_i^k = \log \pi_k(i|s), Q_i^k = Q^{\pi_k}(s,i).$
- \* Look at the logit space:

Homotopic Policy Mirror Descent, and its Local Acceleration

$$z_i^{k+1} - z_j^{k+1} = \underbrace{\gamma^{k+1}(z_i^0 - z_j^0)}_{\text{initialization does not matter}} - \sum_{t=0}^k \underbrace{\gamma^{k+1-t}\eta_t(Q_i^t - Q_j^t)}_{\text{Only recent history matters}}.$$

\* What happens in recent history?

$$\underbrace{Q_i^t - Q_j^t \le (Q^*(s, i) - Q^*(s, j))/2, t \ge K}_{t = t, t = t, t = t}$$

implied by linear convergence

\* Recent history amplified by  $\{\eta_t\}$ :

$$z_i^{k+1} - z_j^{k+1} \geq \underbrace{-\frac{2C\gamma^2}{(1-\gamma^3)(1-\gamma)}}_{\text{old history}} + \underbrace{\frac{\gamma^{-2k-1}}{2}\left[Q^*(s,j) - Q^*(s,i)\right]}_{\text{recent history}}, \ k \geq K$$

00000000

## What happens when $Q^*(s,i) < Q^*(s,j)$ ?

- \* Notation shorthand:  $z_i^k = \log \pi_k(i|s), Q_i^k = Q^{\pi_k}(s,i).$
- \* Look at the logit space:

Homotopic Policy Mirror Descent, and its Local Acceleration

$$z_i^{k+1} - z_j^{k+1} = \underbrace{\gamma^{k+1}(z_i^0 - z_j^0)}_{\text{initialization does not matter}} - \sum_{t=0}^k \underbrace{\gamma^{k+1-t}\eta_t(Q_i^t - Q_j^t)}_{\text{Only recent history matters}}.$$

\* What happens in recent history?

$$\underbrace{Q_i^t - Q_j^t \le (Q^*(s, i) - Q^*(s, j))/2, t \ge K}_{t = 0, t = 0}$$

implied by linear convergence

\* Recent history amplified by  $\{\eta_t\}$ :

$$z_i^{k+1} - z_j^{k+1} \geq \underbrace{-\frac{2C\gamma^2}{(1-\gamma^3)(1-\gamma)}}_{\text{old history}} + \underbrace{\frac{\gamma^{-2k-1}}{2}\left[Q^*(s,j) - Q^*(s,i)\right]}_{\text{recent history}}, \ k \geq K$$

$$\pi_k(j|s) = \mathcal{O}(\exp(-\gamma^{-2k}))$$

### Interactions between Value and Policy Convergence



Homotopic Policy Mirror Descent, and its Local Acceleration

00000000

# **Local Superlinear Convergence - Value**

### Theorem (Li, Zhao, Lan '22)

Suppose  $\Delta^*(\mathcal{M}) < \infty$ , then with  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ ,

$$f(\pi_k) - \inf_{\pi \in \Pi} f(\pi) = \mathcal{O}\left(\exp\left(-\frac{\Delta^*(\mathcal{M})}{2}\gamma^{-2k-1}\right)\right)$$

for any iteration  $k > K_1$ .

# **Local Superlinear Convergence - Value**

### Theorem (Li, Zhao, Lan '22)

Suppose  $\Delta^*(\mathcal{M})<\infty$ , then with  $1+\eta_k\tau_k=1/\gamma$  and  $\eta_k=\gamma^{-2(k+1)}$ ,

$$f(\pi_k) - \inf_{\pi \in \Pi} f(\pi) = \mathcal{O}\left(\exp\left(-\frac{\Delta^*(\mathcal{M})}{2}\gamma^{-2k-1}\right)\right)$$

for any iteration  $k \geq K_1$ .

• One-line proof by performance difference lemma.



Part II: Policy Convergence in HPMD

# Policy Convergence with KL-divergence

### Theorem (Li, Zhao, Lan '22)

Suppose 
$$\Delta^*(\mathcal{M}) < \infty$$
, then with  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ ,

$$\lim_{k\to\infty}\pi_k(a|s)=\pi_U^*(a|s)\coloneqq\begin{cases} 1/\left|\mathcal{A}^*(s)\right|, & a\in\mathcal{A}^*(s),\\ 0, & a\notin\mathcal{A}^*(s).\end{cases}$$

### Theorem (Li, Zhao, Lan '22)

Suppose  $\Delta^*(\mathcal{M}) < \infty$ , then with  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ ,

$$\lim_{k\to\infty} \pi_k(a|s) = \pi_U^*(a|s) \coloneqq \begin{cases} 1/\left|\mathcal{A}^*(s)\right|, & a\in\mathcal{A}^*(s), \\ 0, & a\notin\mathcal{A}^*(s). \end{cases}$$

- First policy convergence result for PG methods
  - Intuition: Entropy encourages exploration.

### Theorem (Li, Zhao, Lan '22)

Suppose  $\Delta^*(\mathcal{M}) < \infty$ , then with  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ ,

$$\lim_{k \to \infty} \pi_k(a|s) = \pi_U^*(a|s) \coloneqq \begin{cases} 1/|\mathcal{A}^*(s)|, & a \in \mathcal{A}^*(s), \\ 0, & a \notin \mathcal{A}^*(s). \end{cases}$$

- First policy convergence result for PG methods
  - Intuition: Entropy encourages exploration.
- Implicit regularization: HPMD still solves the unregularized MDP.



### Theorem (Li, Zhao, Lan '22)

Suppose  $\Delta^*(\mathcal{M}) < \infty$ , then with  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ ,

$$\lim_{k \to \infty} \pi_k(a|s) = \pi_U^*(a|s) := \begin{cases} 1/|\mathcal{A}^*(s)|, & a \in \mathcal{A}^*(s), \\ 0, & a \notin \mathcal{A}^*(s). \end{cases}$$

- First policy convergence result for PG methods
  - Intuition: Entropy encourages exploration.
- Implicit regularization: HPMD still solves the unregularized MDP.



\* General Scenario: Holds for constant stepsize HPMD ( $\eta_k = \eta$ ,  $\tau_k = 1/k$ ).

What happens when  $Q^*(s,i) = Q^*(s,j)$ ?

## What happens when $Q^*(s,i) = Q^*(s,j)$ ?

- \* Notation shorthand:  $z_i^k = \log \pi_k(i|s)$ ,  $Q_i^k = Q^{\pi_k}(s,i)$ .
- \* Look at the logit space:

$$z_i^{k+1} - z_j^{k+1} = \underbrace{\gamma^{k+1}(z_i^0 - z_j^0)}_{\text{initialization does not matter}} - \sum_{t=0}^k \underbrace{\gamma^{k+1-t}\eta_t(Q_i^t - Q_j^t)}_{\text{Only recent history matters}}.$$

\* What happens in recent history?

## What happens when $Q^*(s,i) = Q^*(s,j)$ ?

- \* Notation shorthand:  $z_i^k = \log \pi_k(i|s)$ ,  $Q_i^k = Q^{\pi_k}(s,i)$ .
- \* Look at the logit space:

$$z_i^{k+1} - z_j^{k+1} = \underbrace{\gamma^{k+1}(z_i^0 - z_j^0)}_{\text{initialization does not matter}} - \sum_{t=0}^k \underbrace{\gamma^{k+1-t}\eta_t(Q_i^t - Q_j^t)}_{\text{Only recent history matters}}.$$

\* What happens in recent history?

$$\left| Q_i^t - Q_j^t \right| \le \left| Q_i^t - Q_i^* \right| + \left| Q_j^* - Q_j^t \right| = \mathcal{O}\left( \exp(-\gamma^{-2t}) \right), \ t \ge K'$$

implied by local sup. linear convergence

## What happens when $Q^*(s,i) = Q^*(s,j)$ ?

- \* Notation shorthand:  $z_i^k = \log \pi_k(i|s)$ ,  $Q_i^k = Q^{\pi_k}(s,i)$ .
- \* Look at the logit space:

$$z_i^{k+1} - z_j^{k+1} = \underbrace{\gamma^{k+1}(z_i^0 - z_j^0)}_{\text{initialization does not matter}} - \sum_{t=0}^k \underbrace{\gamma^{k+1-t}\eta_t(Q_i^t - Q_j^t)}_{\text{Only recent history matters}}.$$

\* What happens in recent history?

$$|Q_i^t - Q_j^t| \le |Q_i^t - Q_i^*| + |Q_j^* - Q_j^t| = \mathcal{O}\left(\exp(-\gamma^{-2t})\right), \ t \ge K'$$

implied by local sup. linear convergence

 $\star$  Recent history tampered by  $\{\eta_t\}$ ?

### What happens when $Q^*(s,i) = Q^*(s,j)$ ?

- \* Notation shorthand:  $z_i^k = \log \pi_k(i|s)$ ,  $Q_i^k = Q^{\pi_k}(s,i)$ .
- \* Look at the logit space:

$$z_i^{k+1} - z_j^{k+1} = \underbrace{\gamma^{k+1}(z_i^0 - z_j^0)}_{\text{initialization does not matter}} - \sum_{t=0}^k \underbrace{\gamma^{k+1-t}\eta_t(Q_i^t - Q_j^t)}_{\text{Only recent history matters}}.$$

\* What happens in recent history?

$$\left| Q_i^t - Q_j^t \right| \le \left| Q_i^t - Q_i^* \right| + \left| Q_j^* - Q_j^t \right| = \mathcal{O}\left( \exp(-\gamma^{-2t}) \right), \ t \ge K'$$

implied by local sup. linear convergence

\* Recent history tampered by  $\{\eta_t\}$ ?

$$\left|z_i^{k+1} - z_j^{k+1}\right| = \underbrace{\mathcal{O}(\gamma^k)}_{\text{initialization}} + \underbrace{\mathcal{O}(\gamma^k \cdot M)}_{\text{old history}} + \underbrace{\mathcal{O}(\gamma^k)}_{\text{recent history}}, \ \forall k \geq K'$$

### What happens when $Q^*(s,i) = Q^*(s,j)$ ?

- \* Notation shorthand:  $z_i^k = \log \pi_k(i|s)$ ,  $Q_i^k = Q^{\pi_k}(s,i)$ .
- \* Look at the logit space:

$$z_i^{k+1} - z_j^{k+1} = \underbrace{\gamma^{k+1}(z_i^0 - z_j^0)}_{\text{initialization does not matter}} - \sum_{t=0}^k \underbrace{\gamma^{k+1-t}\eta_t(Q_i^t - Q_j^t)}_{\text{Only recent history matters}}.$$

\* What happens in recent history?

$$\left| Q_i^t - Q_j^t \right| \le \left| Q_i^t - Q_i^* \right| + \left| Q_j^* - Q_j^t \right| = \mathcal{O}\left( \exp(-\gamma^{-2t}) \right), \ t \ge K'$$

implied by local sup. linear convergence

\* Recent history tampered by  $\{\eta_t\}$ ?

$$\left|z_i^{k+1} - z_j^{k+1}\right| = \underbrace{\mathcal{O}(\gamma^k)}_{\text{initialization}} + \underbrace{\mathcal{O}(\gamma^k \cdot M)}_{\text{old history}} + \underbrace{\mathcal{O}(\gamma^k)}_{\text{recent history}}, \ \forall k \geq K'$$

$$\pi_k(j|s)/\pi_k(i|s) \to 1$$

### **HPMD** with Decomposable Divergence

$$\pi_{k+1}(\cdot|s) = \underset{p(\cdot|s) \in \Delta_{|A|}}{\operatorname{argmin}} \, \eta_k \left[ \langle Q^{\pi_k}(s,\cdot), p(\cdot|s) \rangle + \tau_k w(p) \right] + D^p_{\pi_k}(s), \, \forall s \in \mathcal{S}.$$

### **HPMD** with Decomposable Divergence

$$\pi_{k+1}(\cdot|s) = \operatorname*{argmin}_{p(\cdot|s) \in \Delta_{|\mathcal{A}|}} \eta_k \left[ \langle Q^{\pi_k}(s,\cdot), p(\cdot|s) \rangle + \tau_k w(p) \right] + D^p_{\pi_k}(s), \ \forall s \in \mathcal{S}.$$

- $D_{\pi'}^{\pi}(s)$  Bregman divergence indued by w.
- Separable w:  $w(p) = \sum_{i=1}^{|\mathcal{A}|} v(p_i)$ ,  $v : \mathbb{R} \to \mathbb{R}$  is strictly convex,  $dom(v) \supset \mathbb{R}_+$ , differentiable inside dom(v).

### Theorem (Li, Zhao, Lan '22)

Suppose  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ , and

- **1** Growth condition:  $\lim_{x\to\infty} v(x)/x = \infty$ ;
- 2 Light-tail conjugate:  $\lim_{x\to\infty} \nabla \widehat{v}^*(-x)x = 0$ ,  $\widehat{v}$  is the restriction of v on  $\mathbb{R}_{+}$ .

Then for any initial policy  $\pi_0$  satisfying  $\pi_0(a|s) > 0$  for all  $(s, a) \in \mathcal{S} \times \mathcal{A}$ ,

$$\lim_{k\to\infty} \pi_k(a|s) = \pi_U^*(a|s), \ \forall (s,a) \in \mathcal{S} \times \mathcal{A}.$$

### Theorem (Li, Zhao, Lan '22)

Suppose  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ , and

- **1** Growth condition:  $\lim_{x\to\infty} v(x)/x = \infty$ ;
- 2 Light-tail conjugate:  $\lim_{x\to\infty} \nabla \widehat{v}^*(-x)x = 0$ ,  $\widehat{v}$  is the restriction of v on  $\mathbb{R}_{+}$ .

Then for any initial policy  $\pi_0$  satisfying  $\pi_0(a|s) > 0$  for all  $(s, a) \in \mathcal{S} \times \mathcal{A}$ ,

$$\lim_{k \to \infty} \pi_k(a|s) = \pi_U^*(a|s), \ \forall (s, a) \in \mathcal{S} \times \mathcal{A}.$$

Furthermore, if  $\partial v(0) \neq \infty$ , then the above claim holds with any  $\pi_0$ .

Includes KL-divergence as a special case.

### Theorem (Li, Zhao, Lan '22)

Suppose  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ , and

- **1** Growth condition:  $\lim_{x\to\infty} v(x)/x = \infty$ ;
- 2 Light-tail conjugate:  $\lim_{x\to\infty} \nabla \widehat{v}^*(-x)x = 0$ ,  $\widehat{v}$  is the restriction of v on  $\mathbb{R}_{+}$ .

Then for any initial policy  $\pi_0$  satisfying  $\pi_0(a|s) > 0$  for all  $(s,a) \in \mathcal{S} \times \mathcal{A}$ ,

$$\lim_{k\to\infty} \pi_k(a|s) = \pi_U^*(a|s), \ \forall (s,a) \in \mathcal{S} \times \mathcal{A}.$$

- Includes KL-divergence as a special case.
- Both conditions satisfied by many common regularizers: p-th power of  $\ell_p$ -norm (p>1), Tsallis entropy.

### Theorem (Li, Zhao, Lan '22)

Suppose  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ , and

- **1** Growth condition:  $\lim_{x\to\infty} v(x)/x = \infty$ ;
- 2 Light-tail conjugate:  $\lim_{x\to\infty} \nabla \widehat{v}^*(-x)x = 0$ ,  $\widehat{v}$  is the restriction of v on  $\mathbb{R}_{+}$ .

Then for any initial policy  $\pi_0$  satisfying  $\pi_0(a|s) > 0$  for all  $(s,a) \in \mathcal{S} \times \mathcal{A}$ ,

$$\lim_{k \to \infty} \pi_k(a|s) = \pi_U^*(a|s), \ \forall (s, a) \in \mathcal{S} \times \mathcal{A}.$$

- Includes KL-divergence as a special case.
- Both conditions satisfied by many common regularizers: p-th power of  $\ell_p$ -norm (p>1), Tsallis entropy.
- Condition 1 can be removed with additional care.

### Theorem (Li, Zhao, Lan '22)

Suppose  $1 + \eta_k \tau_k = 1/\gamma$  and  $\eta_k = \gamma^{-2(k+1)}$ , and

- **1** Growth condition:  $\lim_{x\to\infty} v(x)/x = \infty$ ;
- **2** Light-tail conjugate:  $\lim_{x\to\infty} \nabla \hat{v}^*(-x)x = 0$ ,  $\hat{v}$  is the restriction of v on  $\mathbb{R}_{+}$ .

Then for any initial policy  $\pi_0$  satisfying  $\pi_0(a|s) > 0$  for all  $(s,a) \in \mathcal{S} \times \mathcal{A}$ ,

$$\lim_{k \to \infty} \pi_k(a|s) = \pi_U^*(a|s), \ \forall (s, a) \in \mathcal{S} \times \mathcal{A}.$$

- Includes KL-divergence as a special case.
- Both conditions satisfied by many common regularizers: p-th power of  $\ell_p$ -norm (p>1), Tsallis entropy.
- Condition 1 can be removed with additional care.
- The same limiting policy as KL? Why?

# **Understanding the Limiting Policy**

### **Revisiting HPMD Update**

$$\pi_{k+1}(\cdot|s) = \operatorname*{argmin}_{p(\cdot|s) \in \Delta_{|\mathcal{A}|}} \eta_k \left[ \langle Q^{\pi_k}(s,\cdot), p(\cdot|s) \rangle + \tau_k w(p) \right] + D^p_{\pi_k}(s), \ \forall s \in \mathcal{S}.$$

$$\min_{\pi \in \Pi} \sum_{s \in \mathcal{S}} w(\pi(\cdot|s)), \text{s.t. } f(\pi) \leq f(\pi'), \forall \pi' \in \Pi.$$

### **Revisiting HPMD Update**

$$\pi_{k+1}(\cdot|s) = \operatorname*{argmin}_{p(\cdot|s) \in \Delta_{|\mathcal{A}|}} \eta_k \left[ \langle Q^{\pi_k}(s,\cdot), p(\cdot|s) \rangle + \tau_k w(p) \right] + D^p_{\pi_k}(s), \ \forall s \in \mathcal{S}.$$

$$\min_{\pi \in \Pi} \sum_{s \in \mathcal{S}} w(\pi(\cdot|s)), \text{s.t. } f(\pi) \leq f(\pi'), \forall \pi' \in \Pi.$$

- Constraint:  $\pi$  is optimal.
- Objective: minimize the complexity of  $\pi$ , measured by w.
- Minimizer(s)?

### **Revisiting HPMD Update**

$$\pi_{k+1}(\cdot|s) = \operatorname*{argmin}_{p(\cdot|s) \in \Delta_{|\mathcal{A}|}} \eta_k \left[ \langle Q^{\pi_k}(s,\cdot), p(\cdot|s) \rangle + \tau_k w(p) \right] + D^p_{\pi_k}(s), \ \forall s \in \mathcal{S}.$$

$$\min_{\pi \in \Pi} \sum_{s \in \mathcal{S}} w(\pi(\cdot|s)), \text{s.t. } f(\pi) \leq f(\pi'), \forall \pi' \in \Pi.$$

- Constraint:  $\pi$  is optimal.
- Objective: minimize the complexity of  $\pi$ , measured by w.
- Minimizer(s)?
  - Unique minimizer  $=\pi_U^*$  if w is decomposable and strictly convex.

### **Revisiting HPMD Update**

$$\pi_{k+1}(\cdot|s) = \operatorname*{argmin}_{p(\cdot|s) \in \Delta_{|\mathcal{A}|}} \eta_k \left[ \langle Q^{\pi_k}(s,\cdot), p(\cdot|s) \rangle + \tau_k w(p) \right] + D^p_{\pi_k}(s), \ \forall s \in \mathcal{S}.$$

$$\min_{\pi \in \Pi} \sum_{s \in \mathcal{S}} w(\pi(\cdot|s)), \text{s.t. } f(\pi) \leq f(\pi'), \forall \pi' \in \Pi.$$

- Constraint:  $\pi$  is optimal.
- Objective: minimize the complexity of  $\pi$ , measured by w.
- Minimizer(s)?
  - Unique minimizer  $=\pi_U^*$  if w is decomposable and strictly convex.
- Analogous to homotopy methods (regularization path) in statistics (separable linear classification, Rosset et al. '04)

# Specialization to Common Regularizers

### Corollary (p-th power of $\ell_p$ -norm)

For any  $p \in (1, \infty)$ , let  $v(x) = |x|^p$ , then for any  $\pi_0$ , we have

- $\bullet$   $\lim_{k\to\infty} \pi_k = \pi_U^*$ .
- There exists K > 0 such that  $f(\pi_k) = \inf_{\pi \in \Pi} f(\pi)$ ,  $\forall k \geq K$ .

### Corollary (Negative Tsallis entropy)

- $\bullet$   $\lim_{k\to\infty} \pi_k = \pi_U^*$ .
- There exists K>0 such that  $f(\pi_k)=\inf_{\pi\in\Pi}f(\pi), \forall k\geq K$ .

# Specialization to Common Regularizers

### Corollary (p-th power of $\ell_p$ -norm)

For any  $p \in (1, \infty)$ , let  $v(x) = |x|^p$ , then for any  $\pi_0$ , we have

- $\bullet$   $\lim_{k\to\infty} \pi_k = \pi_U^*$ .
- There exists K > 0 such that  $f(\pi_k) = \inf_{\pi \in \Pi} f(\pi)$ ,  $\forall k \geq K$ .

### Corollary (Negative Tsallis entropy)

- $\bullet$   $\lim_{k\to\infty} \pi_k = \pi_U^*$ .
- There exists K>0 such that  $f(\pi_k)=\inf_{\pi\in\Pi}f(\pi), \forall k\geq K$ .

# Specialization to Common Regularizers

### Corollary (p-th power of $\ell_p$ -norm)

For any  $p \in (1, \infty)$ , let  $v(x) = |x|^p$ , then for any  $\pi_0$ , we have

- $\bullet$   $\lim_{k\to\infty} \pi_k = \pi_U^*$ .
- There exists K > 0 such that  $f(\pi_k) = \inf_{\pi \in \Pi} f(\pi)$ ,  $\forall k \geq K$ .

### Corollary (Negative Tsallis entropy)

- $\bullet$   $\lim_{k\to\infty} \pi_k = \pi_U^*$ .
- There exists K>0 such that  $f(\pi_k)=\inf_{\pi\in\Pi}f(\pi), \forall k\geq K$ .
- The first finite-time convergence of PG methods.

### Corollary (p-th power of $\ell_p$ -norm)

For any  $p \in (1, \infty)$ , let  $v(x) = |x|^p$ , then for any  $\pi_0$ , we have

- $\bullet$   $\lim_{k\to\infty} \pi_k = \pi_U^*$ .
- There exists K > 0 such that  $f(\pi_k) = \inf_{\pi \in \Pi} f(\pi)$ ,  $\forall k \geq K$ .

### Corollary (Negative Tsallis entropy)

- $\bullet$   $\lim_{k\to\infty} \pi_k = \pi_U^*$ .
- There exists K>0 such that  $f(\pi_k)=\inf_{\pi\in\Pi}f(\pi), \forall k\geq K$ .
- The first finite-time convergence of PG methods.
- Policy moves towards  $\pi_U^*$  even  $\pi_k$  is already optimal.

Part III: Improved Sample Complexity of Stochastic HPMD

### The Stochastic HPMD

### **Unknown Environment:** obtaining exact $Q^{\pi}$ can be impractical



### **Unknown Environment:** obtaining exact $Q^{\pi}$ can be impractical



### **Independent Trajectories:**

$$\begin{split} \xi_k &= \{\zeta_k^i(s,a), s \in \mathcal{S}, a \in \mathcal{A}, i \in [M_k]\} \\ \zeta_k^i(s,a) &= \{(s_0^i = s, a_0^i = a), \dots, (s_{T_k-1}^i, a_{T_k-1}^i)\} \\ & \quad \quad \ \ \, \Downarrow \ \, \text{(Monte-Carlo)} \\ Q^{\pi_k, \xi_k}(s,a) &= \frac{1}{M_k} \sum_{i=1}^{M_k} \sum_{t=0}^{T_k-1} \gamma^t c(s_t^i, a_t^i) \end{split}$$

Improved Sample Complexity

0000

### **Unknown Environment:** obtaining exact $Q^{\pi}$ can be impractical



### **Independent Trajectories:**

$$\begin{split} \xi_k &= \{\zeta_k^i(s,a), s \in \mathcal{S}, a \in \mathcal{A}, i \in [M_k]\} \\ \zeta_k^i(s,a) &= \{(s_0^i = s, a_0^i = a), \dots, (s_{T_k-1}^i, a_{T_k-1}^i)\} \\ & \quad \quad \ \ \, \downarrow \ \, \text{(Monte-Carlo)} \\ Q^{\pi_k, \xi_k}(s,a) &= \frac{1}{M_k} \sum_{i=1}^{M_k} \sum_{t=0}^{T_k-1} \gamma^t c(s_t^i, a_t^i) \end{split}$$

Improved Sample Complexity

0000

Policy update: replace  $Q^{\pi}$  with sample estimate  $Q^{\pi,\xi}$ 

### Conditions on the Noisy Estimate

$$\begin{split} \mathbb{E}_{\xi_k} Q^{\pi_k,\xi_k} &= \overline{Q}^{\pi_k} \\ \|\overline{Q}^{\pi_k} - Q^{\pi_k}\|_{\infty} &\leq \varepsilon_k = \widetilde{\mathcal{O}}(\gamma^{T_k}), \quad \text{[bias]} \\ \mathbb{E} \|Q^{\pi_k,\xi_k} - Q^{\pi_k}\|_{\infty}^2 &\leq \sigma_k^2 = \widetilde{\mathcal{O}}(1/M_k), \quad \text{[variance]} \end{split}$$

### **Conditions on the Noisy Estimate**

$$\begin{split} \mathbb{E}_{\xi_k} Q^{\pi_k,\xi_k} &= \overline{Q}^{\pi_k} \\ \|\overline{Q}^{\pi_k} - Q^{\pi_k}\|_{\infty} &\leq \varepsilon_k = \widetilde{\mathcal{O}}(\gamma^{T_k}), \quad \text{[bias]} \\ \mathbb{E} \|Q^{\pi_k,\xi_k} - Q^{\pi_k}\|_{\infty}^2 &\leq \sigma_k^2 = \widetilde{\mathcal{O}}(1/M_k), \quad \text{[variance]} \end{split}$$

### Theorem (Li, Zhao, Lan '22)

Take 
$$1 + \eta_k \tau_k = 1/\gamma$$
 and  $\eta_k = \gamma^{-(k+1)/2} \sqrt{\log |\mathcal{A}|}$ . If

$$\sigma_k = \gamma^{(k+1)/2}, \ \varepsilon_k = \gamma^{3(k+1)/4}$$

then

$$\mathbb{E}\left[f(\pi_k) - f(\pi^*)\right] \le \gamma^{k/2} \frac{6\sqrt{\log|\mathcal{A}|} + C}{(1-\gamma)(1-\gamma^{1/2})\gamma}, \ \forall k \ge 1.$$

### Conditions on the Noisy Estimate

$$\begin{split} \mathbb{E}_{\xi_k} Q^{\pi_k,\xi_k} &= \overline{Q}^{\pi_k} \\ \|\overline{Q}^{\pi_k} - Q^{\pi_k}\|_{\infty} &\leq \varepsilon_k = \widetilde{\mathcal{O}}(\gamma^{T_k}), \quad \text{[bias]} \\ \mathbb{E}\|Q^{\pi_k,\xi_k} - Q^{\pi_k}\|_{\infty}^2 &\leq \sigma_k^2 = \widetilde{\mathcal{O}}(1/M_k), \quad \text{[variance]} \end{split}$$

### Theorem (Li, Zhao, Lan '22)

Take 
$$1 + \eta_k \tau_k = 1/\gamma$$
 and  $\eta_k = \gamma^{-(k+1)/2} \sqrt{\log |\mathcal{A}|}$ . If

$$\sigma_k = \gamma^{(k+1)/2}, \ \varepsilon_k = \gamma^{3(k+1)/4},$$

then

$$\mathbb{E}\left[f(\pi_k) - f(\pi^*)\right] \le \gamma^{k/2} \frac{6\sqrt{\log|A|} + C}{(1-\gamma)(1-\gamma^{1/2})\gamma}, \ \forall k \ge 1.$$

 $\widetilde{\mathcal{O}}(|\mathcal{S}|\,|\mathcal{A}|\,/\epsilon^2)$  sam-

Improved Sample Complexity

0000

#### Theorem (Li, Zhao, Lan '22)

There exists  $\epsilon_0$ , such that if  $\epsilon < \epsilon_0$ , then SHPMD outputs  $\pi_{k(\epsilon)}$  satisfying  $f(\pi_{k(\epsilon)}) - f(\pi^*) \leq \epsilon$  with probability  $p(\epsilon)$ , where

$$\begin{aligned} \epsilon_0 &= \mathcal{O}(\Delta^*(\mathcal{M})^3) \\ k(\epsilon) &= \mathcal{O}\big(\underbrace{\log_{\gamma}\left(\epsilon_0\right)}_{\textit{linear convergence}} + \underbrace{\log_{\gamma}\left(\frac{\Delta^*(\mathcal{M})\sqrt{\log|\mathcal{A}|}}{\log(C_{\eta}^{\eta}|\mathcal{A}|/\epsilon(1-\gamma))}\right)}_{\textit{local sup. linear}} \big) \end{aligned}$$

$$p(\epsilon) \ge 1 - \gamma^{k(\epsilon)/6} / (1 - \gamma^{1/4})$$

The number of samples are bounded by

$$\widetilde{\mathcal{O}}(|\mathcal{S}||\mathcal{A}|(1+\log^2(1/\epsilon))/\epsilon_0^2)$$

Improved Sample Complexity

0000

#### Theorem (Li, Zhao, Lan '22)

There exists  $\epsilon_0$ , such that if  $\epsilon < \epsilon_0$ , then SHPMD outputs  $\pi_{k(\epsilon)}$  satisfying  $f(\pi_{k(\epsilon)}) - f(\pi^*) \le \epsilon$  with probability  $p(\epsilon)$ , where

$$\begin{aligned} \epsilon_0 &= \mathcal{O}(\Delta^*(\mathcal{M})^3) \\ k(\epsilon) &= \mathcal{O}\Big(\underbrace{\log_{\gamma}\left(\epsilon_0\right)}_{\text{linear convergence}} + \underbrace{\log_{\gamma}\left(\frac{\Delta^*(\mathcal{M})\sqrt{\log|\mathcal{A}|}}{\log(C_{\gamma}^n|\mathcal{A}|/\epsilon(1-\gamma))}\right)}_{\text{local sup. linear}} \Big) \end{aligned}$$

$$p(\epsilon) \ge 1 - \gamma^{k(\epsilon)/6} / (1 - \gamma^{1/4})$$

The number of samples are bounded by

$$\widetilde{\mathcal{O}}(|\mathcal{S}||\mathcal{A}|(1+\log^2(1/\epsilon))/\epsilon_0^2)$$

The sample complexity grows logarithmically after a threshold.

# Improved Sample Complexity with High Prob.

#### Theorem (Li, Zhao, Lan '22)

There exists  $\epsilon_0$ , such that if  $\epsilon < \epsilon_0$ , then SHPMD outputs  $\pi_{k(\epsilon)}$  satisfying  $f(\pi_{k(\epsilon)}) - f(\pi^*) \le \epsilon$  with probability  $p(\epsilon)$ , where

$$\begin{aligned} \epsilon_0 &= \mathcal{O}(\Delta^*(\mathcal{M})^3) \\ k(\epsilon) &= \mathcal{O}\big(\underbrace{\log_{\gamma}\left(\epsilon_0\right)}_{\textit{linear convergence}} + \underbrace{\log_{\gamma}\left(\frac{\Delta^*(\mathcal{M})\sqrt{\log|\mathcal{A}|}}{\log(C_{\gamma}^{n}|\mathcal{A}|/\epsilon(1-\gamma))}\right)}_{\textit{local sup. linear}} \big) \end{aligned}$$

$$p(\epsilon) \ge 1 - \gamma^{k(\epsilon)/6} / (1 - \gamma^{1/4})$$

The number of samples are bounded by

$$\widetilde{\mathcal{O}}(|\mathcal{S}||\mathcal{A}|(1+\log^2(1/\epsilon))/\epsilon_0^2)$$

- The sample complexity grows logarithmically after a threshold.
- Local acceleration carries to the stochastic setting, but, only with high probability.

• HPMD (KL-divergence): global linear and local superlinear convergence.

- HPMD (KL-divergence): global linear and local superlinear convergence.
- Characterizes the last-iterate convergence of the policy.
  - With exponentially increasing stepsize linear convergence.
  - With constant stepsize sublinear convergence.

- HPMD (KL-divergence): global linear and local superlinear convergence.
- Characterizes the last-iterate convergence of the policy.
  - With exponentially increasing stepsize linear convergence.
  - With constant stepsize sublinear convergence.
- Generalization to common divergences.
  - Policy convergence.
  - Finite-time exact value convergence.

- HPMD (KL-divergence): global linear and local superlinear convergence.
- Characterizes the last-iterate convergence of the policy.
  - With exponentially increasing stepsize linear convergence.
  - With constant stepsize sublinear convergence.
- Generalization to common divergences.
  - Policy convergence.
  - Finite-time exact value convergence.
- Improved sample complexity for the stochastic variant.

### Presentation based on Preprint

 Li, Y., Zhao, T. and Lan, G., 2022. Homotopic Policy Mirror Descent: Policy Convergence, Implicit Regularization, and Improved Sample Complexity. arXiv preprint arXiv:2201.09457.