Departamento de Matemática

Universidade do Minho

Tópicos de Matemática

 3° teste – 15 dez 2023

duração: duas horas

Lic. em Ciências de Computação - 1º ano

Proposta de resolução

Grupo I. Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente:

1. Dado um conjunto A, para todas as funções f e g de A em A, se $g \circ f$ é injetiva, então f e g são injetivas.

V□ F⊠

- 2. Dados A e B conjuntos e f função de A em B, para todos os subconjuntos X e Y de A, $f(X\cap Y)=f(X)\cap f(Y)$ $\bigvee \Box \ \ \mathsf{F}\boxtimes A$
- 3. Se θ é uma relação de equivalência num conjunto A e $a,b\in A$, então $[a]_{\theta}$ e $[b]_{\theta}$ têm o mesmo número de elementos.

V□ F⊠

- 4. O conjunto $\{\{\{1\},\{2\}\},\{3\},\{\{4,5\}\}\}$ é uma partição de $B=\{\{1\},\{2\},\{3\},\{4\},\{5\}\}$. V \square F \boxtimes
- 5. Para $A=\{2,3,4\}$ e $B=\{1,2\}$, $\omega_{\{1,4\}}\cup\omega_{\{2,3\}}$ é uma relação de equivalência em $A\cup B$. $V\boxtimes \mathsf{F}\square$
- 6. Se R é uma relação de ordem parcial num conjunto A e $a,b,c\in A$ são tais que $(c,b),(a,c),(b,a)\in R$, então a=b=c. V \boxtimes F \square
- 7. Para qualquer c.p.o. (A, \leq) e qualquer subconjunto não vazio X de A, se X admite um elemento maximal, então $A \setminus X$ admite um elemento minimal. $V \square F \boxtimes$
- 8. Para quaisquer c.p.o.'s A e B e qualquer função isótona $f:A\to B$, se $x,y\in A$ são tais que f(x)||f(y), então x||y. $V\boxtimes F\square$

Grupo II. Considere o conjunto $A = \{1, 2, 3, 4, 5, 6\}$. Dê exemplo, ou justifique que não existe, de:

- 1. uma relação binária cujo fecho de equivalência é $\theta=\omega_{\{1,2,3\}}\cup\omega_{\{4,5\}}\cup\omega_{\{6\}}$ em A; Seja $R=\{(1,2),(1,3),(4,5)\}$. Então, R é uma relação binária em A cujo fecho de equivalência é θ
- 2. uma função f de A em A injetiva mas não sobrejetiva;

Não existe. Como A é um conjunto finito, qualquer função $f:A\to A$ é injetiva se e só se é sobrejetiva.

3. uma função f de A em $A\times A$ tal que $f^\leftarrow(f^\rightarrow(X))=X$, para todo $X\subseteq A$;

Basta considerar uma função injetiva, como, por exemplo,

$$f: A \rightarrow A \times A$$

 $x \mapsto (x, x)$

4. uma relação de ordem parcial \leq em A tal que 1, 2 e 3 são os únicos elementos maximais de A e 4 e 6 são os únicos elementos minimais de A.

 $\leq = \{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(6,5),(6,3),\\ (6,2),(6,1),(4,5),(4,3),(4,2),(4,1),(5,3),(5,2),(5,1)\}, \text{ que pode ser representado pelo diagrama de Hasse}$

Grupo III. Sejam A um conjunto não vazio, $a \in A$ e ρ a relação binária definida em $\mathcal{P}(A)$ por

$$X \rho Y \Leftrightarrow X \setminus \{a\} = Y \setminus \{a\}$$
 $(X, Y \subseteq A)$.

- 1. Mostre que ρ é uma relação de equivalência em $\mathcal{P}(A)$.
 - A relação binária ρ é reflexiva pois, para todo $X \in \mathcal{P}(A)$, $X \rho X$, uma vez que $X \setminus \{a\}$ = $X \setminus \{a\}$;
 - A relação binária ρ é simétrica pois, para todos $X,Y\in\mathcal{P}(A)$,

$$X \rho Y \Leftrightarrow X \setminus \{a\} = Y \setminus \{a\} \Leftrightarrow Y \setminus \{a\} = X \setminus \{a\} \Leftrightarrow Y \rho X;$$

• A relação binária ρ é transitiva pois, para todos $X,Y,Z\in\mathcal{P}(A)$,

$$X \rho Y \wedge Y \rho Z \Leftrightarrow X \setminus \{a\} = Y \setminus \{a\} \wedge Y \setminus \{a\} = Z \setminus \{a\}$$

 $\Rightarrow X \setminus \{a\} = Z \setminus \{a\}$
 $\Leftrightarrow X \rho Z.$

Estamos em condições de concluir que ρ é uma relação de equivalência.

2. Determine as classes $[\emptyset]_{\rho}$ e $[A]_{\rho}$.

Seja $X \in \mathcal{P}(A)$. Então,

•
$$X \rho \emptyset \Leftrightarrow X \setminus \{a\} = \emptyset \setminus \{a\} \Leftrightarrow X \setminus \{a\} = \emptyset \Leftrightarrow X = \emptyset \lor X = \{a\}$$
. Logo,

$$[\emptyset]_{\rho} = \{\emptyset, \{a\}\};$$

•
$$X \rho A \Leftrightarrow X \backslash \{a\} = A \backslash \{a\} \Leftrightarrow X = A \vee X = A \backslash \{a\}$$
. Logo,

$$[A]_{\rho} = \{A, A \setminus \{a\}\}.$$

3. Considere a função $f: A \to \mathcal{P}(A)/\rho$ definida por $f(x) = [\{x\}]_{\rho}$, para todo $x \in A$. Mostre que se f é sobrejetiva então A tem, no máximo, 2 elementos.

Suponhamos que A tem pelo menos 3 elementos. Então, como $[A]_{\rho}=\{A,A\backslash\{a\}\}$, podemos concluir que nenhum dos dois elementos desta classe é um conjunto singular (A tem pelo menos 3 elementos e $A\backslash\{a\}$ tem pelo menos 2 elementos). Assim, pela definição de f, podemos concluir que $[A]_{\rho}$ não é imagem por f de qualquer elemento de A. Logo, a função não é sobrejetiva.

4. Para $A = \{1, 2, 3\}$ e a = 2, indique o conjunto quociente definido por ρ .

Se $A = \{1, 2, 3\}$ então $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, A\}$. Para determinarmos o conjunto quociente, começamos por identificar as classes dos 8 elementos de $\mathcal{P}(A)$:

•
$$[\emptyset]_{\rho} = \{\emptyset, \{2\}\} = [\{2\}]_{\rho}$$
; (visto em 2.)

- $[A]_{\rho} = \{A, \{1,3\}\} = [\{1,3\}]_{\rho}$; (visto em 2.)
- $[\{1\}]_{\rho} = \{X \in \mathcal{P}(A) : X \setminus \{2\} = \{1\} \setminus \{2\}\} = \{\{1\}, \{1, 2\}\} = [\{1, 2\}]_{\rho};$
- $[\{3\}]_{\rho} = \{X \in \mathcal{P}(A) : X \setminus \{2\} = \{3\} \setminus \{2\}\} = \{\{3\}, \{3, 2\}\} = [\{3, 2\}]_{\rho};$

Logo,

$$\mathcal{P}(A)/\rho = \{\{\emptyset, \{2\}\}, \{A, \{1, 3\}\}, \{\{1\}, \{1, 2\}\}, \{\{3\}, \{3, 2\}\}\}\}.$$

Grupo IV. Considere o c.p.o. (A, \leq) definido pelo diagrama de Hasse apresentado. Indique, caso exista:

1. Maj $\{2, 5, 8, 10\}$;

$$\mathsf{Maj}\left\{2,5,8,10\right\} = \emptyset.$$

2. $\inf\{2, 8\}$:

 $\inf\{2,8\}$ não existe pois não existe o máximo do conjunto $\min{\{4,5,11\}}.$

3. $\inf \emptyset \in \sup \emptyset$;

Nem $\inf\emptyset$ nem $\sup\emptyset$ existem pois A não tem máximo nem mínimo.

- 4. Um subconjunto X de A com cinco elementos maximais; $X = \{10, 3, 2, 1, 8\}.$
- 5. Um subconjunto X de A com 6 elementos que é um reticulado para a ordem parcial induzida pela ordem do c.p.o. A;

$$X = \{5, 3, 7, 9, 6, 8\}.$$

6. Um subconjunto X de A tal que $\operatorname{Maj} X = \operatorname{Min} X$.

 $X=\emptyset$ (Maj $X=\operatorname{Min} X=A$) ou qualquer conjunto X tal que $1,2\in X$ (Maj $X=\operatorname{Min} X=\emptyset$).

