MA1100T Quick Notes

§1 Logic

1.1 Statement vs. Proposition vs. Predicate

- A **statement** is a sentence.
- A **proposition** is a statement that is either true or false, but not both.
- A **predicate** is an assignment of truth values to elements of some domain.

1.2 Implications

"On Wednesdays, we wear pink." – Mean Girls

Denoted as $p \to q$, if it is Wednesday today, then I should probably wear pink. If it is not Wednesday, it doesn't mean I cannot wear pink, so we have

$$\begin{array}{c|c|c} p & q & p \to q \\ \hline 0 & 1 & 1 \end{array}$$

Moreover, $p \to q \equiv \neg p \lor q$.

1.3 Logical Equivalence

- Two propositional formulas are **logically equivalence** if \forall assignment of truth values of propositions, they have the same truth value.
- Two propositional formulas are **not logically equivalence** if \exists assignment of truth values of propositions, they have different truth values.

1.4 If and only if

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$\begin{array}{c|ccc} p & q & p \leftrightarrow q \\ \hline 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}$$

1.4.1 Necessity and Sufficiency

- If $p \to q$ then p is **sufficient** for q.
- If $p \leftarrow q$ then p is **necessary** for q.

Example (SJTU Mathematics Contest 2023)

If α : "The equation of a hyperbola is $x^2 - y^2 = a^2$, a > 0" and β : "The asymptotes of this hyperbola form and angle of $\pi/2$ ".

α	β	α implies β ?	β implies α ?
1	1	True	False since $(x-1)^2 - y^2 = a^2$ also works
1	0	False since β is true	False since the angle equals $\pi/2$
0	1	True, consider $(x-1)^2 - y^2 = a^2$	False since $(x-1)^2 - y^2 = a^2$ also works
0	0	True, consider $x^2 - 4y^2 = a^2$ and $\theta = 52.13^{\circ}$	True, if $\theta \neq \pi/2$, the equation will not be $x^2 - y^2 = a^2$

As we can see, " α implies β " is tally to " $\alpha \to \beta$ " but " β implies α " does not tally to " $\beta \to \alpha$ " so for β , α is **sufficient** but not **necessary**.

1.5 Tautology & Contradiction

- If $F_1 \equiv F_2$, then $F_1 \leftrightarrow F_2$ is a **tautology**.
- If $F_1 \not\equiv F_2$, then $F_1 \leftrightarrow F_2$ is a **contradiction**.

1.6 Useful Denial

 F_2 is a **useful denial** of F_1 iff $F_1 \equiv \neg F_2$.

1.7 Boolean Algebra in Words

- $p \rightarrow q$: shown in §1.2
- $p \land \neg p$ is a contradiction: Nothing can be both true and false at the same time.
- $p \vee \neg p$ is a tautology: Something must either be true or false right?
- $\neg(P \lor Q) \equiv (\neg P) \land (\neg Q)$: Let say if I ask you: "Tea or coffee?". If you want tea but not coffee, then P is true and Q is false, negating lets you drink coffee but not tea, you only drank coffee in the end.
- $\neg(\forall x)(P(x)) \equiv (\exists x)(\neg P(x))$: I don't drink coffee every day, I drank tea on Wednesday.
- $\neg(\exists x)(P(x)) \equiv (\forall x)(\neg P(x))$: Haha you can't find me drinking coffee for all days I drank tea every day.

1.8 Boolean, Set Theory, Bitwise Operations, Logic Gates

Boolean	Set Theory	Bitwise	Logic Gates
$\neg p$	$\mathcal{P}^{\mathbb{C}}$ Complement	NOT $x = \left(2^{\lfloor \log_2 x \rfloor + 1} - 1\right) - x$ NOT 10110101 = 01001010	
$p \lor q$	$\mathcal{P} \cup \mathcal{Q}$ Union	101101 OR 011001 = 111101 101101 OR 011001 111101	
$p \wedge q$	$ \begin{array}{c} u \\ P \cap Q \end{array} $ Intersection	101101 AND 011001 = 001001 101101 AND 011001 001001	
$p \oplus q$	$\begin{array}{c c} u \\ \hline \mathcal{P} \bigtriangleup \mathcal{Q} \end{array}$ Symmetric Difference	101101 XOR 011001 = 110100 $ \frac{101101}{XOR 011001} \frac{XOR 011001}{110100} $	
$p \rightarrow q$	$\mathcal{P} \to \mathcal{Q}$ Implies	101101 THEN 011001 = 011011 101101 THEN 011001 011011	
$p \leftrightarrow q$	$\begin{array}{c} u \\ \mathcal{P} \leftrightarrow \mathcal{Q} \end{array}$ Equivalent	101101 XNOR 011001 = 001011 101101 XNOR 011001 001011	

1.9 More on Quantifiers

- The universal quantification $\forall x P(x)$ states that "for all x such that P(x) is true".
- The existential quantification $\exists x P(x)$ states that "there exists x such that P(x) is true".

1.9.1 Equivalent Formulae on Finite Sets

Let the domain of P(x) be a set with finite cardinality, assign the elements $x_1, x_2, x_3, \ldots, x_k$,

•
$$\forall x P(x) \equiv \bigwedge_{i=1}^{k} P(x_i)$$

•
$$\exists x P(x) \equiv \bigvee_{i=1}^{k} P(x_i)$$

By the inductive process, we can also deduce De Morgan's law.

$$\neg \left(\bigwedge_{i=1}^{k} P(x_i) \right) \equiv \bigvee_{i=1}^{k} (\neg P(x_i))$$

1.9.2 Quantifiers Overloading

Consider the following sentence

"Everyone who takes a break can have a snack."

Let \mathcal{P} be the set of people, and \mathcal{S} be the set of all snacks. We say that H(p,s) equals "person p had snack s". Consider the following formulae:

(a)
$$(\exists s)(\forall p)H(p,s)$$

In words, we have

"There exists a snack s (probably KitKat) such that every person p, p ate s."

It is an **all-to-one** situation here.

(b)

$$(\forall p)(\exists s)H(p,s)$$

In words, we have

"For all people p, there exists a snack s such that p ate s."

It is a **one-to-one** situation here.

Moreover, we can stack quantifiers.

- x is irrational: $(\forall p \in \mathbb{Z})(\forall q \in \mathbb{Z})(x \neq p/q) \equiv (\nexists (p,q) \in \mathbb{Z}^2)(x = p/q).$
- x is rational: $(\exists p \in \mathbb{Z})(\exists q \in \mathbb{Z})(x = p/q) \equiv \neg(\forall (p,q) \in \mathbb{Z}^2)(x \neq p/q)$.