Optimal Control

MPC Basics: Numerical Optimization Sequential Quadratic Programming

Erchao Rong

Sun Yat-sun University

2024-04-19

1. Reference

Reference

Numerical Optimization in Robotics by Wang et al.

Convex Optimization by Boyd et al.

Convex Optimization by Ryan et al.

https://www.stat.cmu.edu/~ryantibs/convexopt/

2. Convex optimization

Convex optimization

convex optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

- ightharpoonup variable $x \in \mathbf{R}^n$
- equality constraints are linear
- $ightharpoonup f_0, \ldots, f_m$ are **convex**: for $\theta \in [0, 1]$,

$$f_i(\theta x + (1 - \theta)y) \le \theta f_i(x) + (1 - \theta)f_i(y)$$

i.e., f_i have nonnegative (upward) curvature

Convex Optimization Boyd and Vandenberghe 1.11

Convex set

line segment between x_1 and x_2 : all points of form $x = \theta x_1 + (1 - \theta)x_2$, with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C$$
, $0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$

examples (one convex, two nonconvex sets)

Convex Optimization Boyd and Vandenberghe 2.3

Convex combination and convex hull

convex combination of $x_1,..., x_k$: any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i \ge 0$

convex hull conv S: set of all convex combinations of points in S

Convex Optimization

Boyd and Vandenberghe

Hyperplanes&halfspaces

Operations perserves convexity

2. Convex optimization

1. Intersection

the intersection of (any number of) convex sets is convex

2. Affine mappings

if
$$f: \mathbb{R}^n \to \mathbb{R}^m$$
 is affine: $f(x) = Ax + b$, $A \in \mathbb{R}^{\{m \times n\}}$ and $b \in \mathbb{R}^{\{m\}}$

- 3. scaling, translation
- 4. a projection onto some coordinates: $\{x|(x,y)\in S\}$
- 5. Solution set of linear matrix inequality:

$$\{x|x_1A_1+\ldots+x_nA_n+B<0\}$$
 with $A_i\in S^p$ and $B\in S^p$

Epigraph and sublevel set

- ▶ α -sublevel set of $f: \mathbf{R}^n \to \mathbf{R}$ is $C_{\alpha} = \{x \in \mathbf{dom} f \mid f(x) \leq \alpha\}$
- sublevel sets of convex functions are convex sets (but converse is false)
- ▶ epigraph of $f : \mathbb{R}^n \to \mathbb{R}$ is epi $f = \{(x, t) \in \mathbb{R}^{n+1} \mid x \in \text{dom} f, f(x) \le t\}$

ightharpoonup f is convex if and only if epif is a convex set

Showing a function is convex

methods for establishing convexity of a function f

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \geq 0$
 - recommended only for very simple functions
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

you'll mostly use methods 2 and 3

Convex Optimization Boyd and Vandenberghe 3.18

Proper cones

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)

examples

- ▶ nonnegative orthant $K = \mathbf{R}_{+}^{n} = \{x \in \mathbf{R}^{n} \mid x_{i} \geq 0, i = 1, ..., n\}$
- positive semidefinite cone $K = \mathbf{S}_{+}^{n}$
- ightharpoonup nonnegative polynomials on [0, 1]:

$$K = \{x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1]\}$$

Convex Optimization Boyd and Vandenberghe 2.19

Generalized inequality

(nonstrict and strict) **generalized inequality** defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \qquad x <_K y \iff y - x \in \mathbf{int} K$$

- examples
 - componentwise inequality $(K = \mathbf{R}_{+}^{n})$: $x \leq_{\mathbf{R}_{+}^{n}} y \iff x_{i} \leq y_{i}, \quad i = 1, \ldots, n$
 - matrix inequality $(K = \mathbf{S}_{+}^{n})$: $X \leq_{\mathbf{S}_{+}^{n}} Y \iff Y X$ positive semidefinite these two types are so common that we drop the subscript in \leq_K
- ightharpoonup many properties of \leq_K are similar to \leq on \mathbf{R} , e.g.,

$$x \leq_K y$$
, $u \leq_K v \implies x + u \leq_K y + v$

Convex Optimization Boyd and Vandenberghe 2.20

3. Unconstrained Optimization

igoplus Given current point x_k and a direction p_k , how we move to the new iterate x_{k+1} .

1. Line Search

- Exact
- Inexact
 - Backtracking line serach (Armijo rule)

$$f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k p_k^T \nabla f(x_k)$$

- Wolfe conditions (Curvature condition) $[0 < c_1 < c_2 < 1]$
 - 1. Weak wolfe condition: $-p_k^T \nabla f(x_k + \alpha_k p_k) \leq -c_2 p_k^T \nabla f(x_k)$
 - 2. Strong wolfe condition:

$$|p_k^T \nabla f(x_k + \alpha_k p_k)| \le c_2 |p_k^T \nabla f(x_k)|$$

2. Trust Region

the information about f is used to construct a model m_k whose behavior near the current point x_k is similar to that of f.

 $\min_p m_k(x_k+p)$ where x_k+p lies inside the trust region. Typically, $m_k(x_k+p)=f_kp^T\nabla f_k+\tfrac12p^TB_kp.$

1. Gradient descent:

$$x^k = x^{k-1} - \alpha \nabla f(x^{k-1})$$

2. Proximal Gradient descent:

$$x^+ = \arg\min_y f(x) + \nabla f(x)^T (y-x) + \tfrac{1}{2t} \; \|y-x\|_2^2$$

3. Others

First Order Method

3. Unconstrained Optimization

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Motivation

3. Unconstrained Optimization

Example

The magenta curves are the level curves of the quadratic approximation at $oldsymbol{x}_0$

The brown curves are the level curves of the quadratic approximation at x_1

Second Order Method

3. Unconstrained Optimization

- 1. Wewtion
- 3. **(a) LBFGS**
- 4. Gaussian-Newtion