Himpunan

Definisi

- Himpunan (*set*) adalah kumpulan objek-objek yang *berbeda*.
- Objek di dalam himpunan disebut elemen, unsur, atau anggota.
- HMTI adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa mahasiswa. Tiap mahasiswa berbeda satu sama lain.

Satu <i>set</i> hu	iiui (- CSal	uan K	

Cara Penyajian Himpunan

1. <u>Enumerasi</u>

Setiap anggota himpunan didaftarkan secara rinci.

Contoh 1.

- Himpunan empat bilangan asli pertama: $A = \{1, 2, 3, 4\}$.
- Himpunan lima bilangan genap positif pertama: $B = \{4, 6, 8, 10\}$.
- $C = \{\text{kucing}, a, \text{Amir}, 10, \text{paku}\}$
- $R = \{ a, b, \{a, b, c\}, \{a, c\} \}$
- $C = \{a, \{a\}, \{\{a\}\}\}\}$
- $-K = \{ \{ \} \}$
- Himpunan 100 buah bilangan asli pertama: {1, 2, ..., 100 }
- Himpunan bilangan bulat ditulis sebagai {..., -2, -1, 0, 1, 2, ...}.

Keanggotaan

 $x \in A : x$ merupakan anggota himpunan A;

 $x \notin A : x$ bukan merupakan anggota himpunan A.

- Contoh 2.
- Misalkan: $A = \{1, 2, 3, 4\}, R = \{a, b, \{a, b, c\}, \{a, c\}\}$
- $\bullet \qquad K = \{\{\}\}$
- maka

$$3 \in A$$

$${a,b,c} \in R$$

$$c \notin R$$

$$\{\} \in K$$

Contoh 3. Bila
$$P_1 = \{a, b\},$$

$$P_2 = \{\{a, b\}\},$$

$$P_3 = \{\{\{a, b\}\}\},$$

maka

$$a \in P_1$$

$$a \notin P_2$$

$$P_1 \in P_2$$

$$P_1 \notin P_3$$

$$P_2 \in P_3$$

2. <u>Simbol-simbol Baku</u>

P = himpunan bilangan bulat positif = { 1, 2, 3, ... }
N = himpunan bilangan alami (natural) = { 1, 2, ... }
Z = himpunan bilangan bulat = { ..., -2, -1, 0, 1, 2, ... }
Q = himpunan bilangan rasional
R = himpunan bilangan riil
C = himpunan bilangan kompleks

Himpunan yang universal: **semesta**, disimbolkan dengan U.

Contoh: Misalkan $U = \{1, 2, 3, 4, 5\}$ dan A adalah himpunan bagian dari U, dengan $A = \{1, 3, 5\}$.

3. Notasi Pembentuk Himpunan

4. <u>Diagram Venn</u>

Contoh 5.

Misalkan U =
$$\{1, 2, ..., 7, 8\}$$
,
 $A = \{1, 2, 3, 5\} \text{ dan } B = \{2, 5, 6, 8\}.$

Diagram Venn:

Kardinalitas

Jumlah elemen di dalam A disebut **kardinal** dari himpunan A. Notasi: n(A) atau A

Contoh 6.

- (i) $B = \{ x \mid x \text{ merupakan bilangan prima lebih kecil dari } 20 \}$, atau $B = \{2, 3, 5, 7, 11, 13, 17, 19 \}$ maka |B| = 8
- (ii) $T = \{ \text{kucing, } a, \text{Amir, } 10, \text{ paku} \}, \text{ maka } |T| = 5$
- (iii) $A = \{a, \{a\}, \{\{a\}\}\}$, maka |A| = 3

Himpunan kosong (null set)

- Himpunan dengan kardinal = 0 disebut himpunan kosong (*null set*).
- Notasi : Ø atau {}

Contoh 7.

- (i) $E = \{ x \mid x < x \}$, maka n(E) = 0
- (ii) $P = \{ \text{ orang Indonesia yang pernah ke bulan } \}$, maka n(P) = 0
- (iii) $A = \{x \mid x \text{ adalah akar persamaan kuadrat } x^2 + 1 = 0 \}, n(A) = 0$
- himpunan {{ }} dapat juga ditulis sebagai {∅}
- himpunan $\{\{\}, \{\{\}\}\}\$ dapat juga ditulis sebagai $\{\emptyset, \{\emptyset\}\}\$
- {Ø} bukan himpunan kosong karena ia memuat satu elemen yaitu himpunan kosong.

Himpunan Bagian (Subset)

- Himpunan *A* dikatakan himpunan bagian dari himpunan *B* jika dan hanya jika setiap elemen *A* merupakan elemen dari *B*.
- Dalam hal ini, B dikatakan superset dari A.
- Notasi: $A \subset B$
- Diagram Venn:

Contoh 8.

- (i) $\{1, 2, 3\} \subseteq \{1, 2, 3, 4, 5\}$
- (ii) $\{1, 2, 3\} \subseteq \{1, 2, 3\}$
- (iii) $N \subseteq Z \subseteq R \subseteq C$
- (iv) Jika $A = \{ (x, y) | x + y < 4, x \ge, y \ge 0 \}$ dan $B = \{ (x, y) | 2x + y < 4, x \ge 0 \text{ dan } y \ge 0 \}$, maka $B \subseteq A$.

TEOREMA 1. Untuk sembarang himpunan *A* berlaku hal-hal sebagai berikut:

- (a) A adalah himpunan bagian dari A itu sendiri (yaitu, $A \subseteq A$).
- (b) Himpunan kosong merupakan himp. bagian dari $A (\emptyset \subseteq A)$.
- (c) Jika $A \subseteq B$ dan $B \subseteq C$, maka $A \subseteq C$

• $\varnothing \subseteq A$ dan $A \subseteq A$, maka \varnothing dan A disebut himpunan bagian tak sebenarnya (*improper subset*) dari himpunan A.

Contoh: $A = \{1, 2, 3\}$, maka $\{1, 2, 3\}$ dan \emptyset adalah improper subset dari A.

- $A \subseteq B$ berbeda dengan $A \subset B$
 - (i) $A \subset B : A$ adalah himpunan bagian dari B tetapi $A \neq B$. A adalah himpunan bagian sebenarnya (*proper subset*) dari B. Contoh: $\{1\}$ dan $\{2, 3\}$ adalah *proper subset* dari $\{1, 2, 3\}$
 - (ii) $A \subseteq B$: digunakan untuk menyatakan bahwa A adalah himpunan bagian (subset) dari B yang memungkinkan A = B.

• Latihan

Misalkan $A = \{1, 2, 3\}$ dan $B = \{1, 2, 3, 4, 5\}$. Tentukan semua kemungkinan himpunan C sedemikian sehingga $A \subset C$ dan $C \subset B$, yaitu A adalah *proper subset* dari C dan C adalah *proper subset* dari C.

Jawaban:

C harus mengandung semua elemen $A = \{1, 2, 3\}$ dan sekurang-kurangnya satu elemen dari B.

Dengan demikian, $C = \{1, 2, 3, 4\}$ atau $C = \{1, 2, 3, 5\}$.

C tidak boleh memuat 4 dan 5 sekaligus karena C adalah proper subset dari B.

Himpunan yang Sama

- A = B jika dan hanya jika setiap elemen A merupakan elemen B dan sebaliknya setiap elemen B merupakan elemen A.
- A = B jika A adalah himpunan bagian dari B dan B adalah himpunan bagian dari A. Jika tidak demikian, maka $A \neq B$.
- Notasi : $A = B \leftrightarrow A \subseteq B \operatorname{dan} B \subseteq A$

Contoh 9.

- (i) Jika $A = \{ 0, 1 \} \text{ dan } B = \{ x \mid x (x 1) = 0 \}, \text{ maka } A = B$
- (ii) Jika $A = \{3, 5, 8, 5\}$ dan $B = \{5, 3, 8\}$, maka A = B
- (iii) Jika $A = \{3, 5, 8, 5\}$ dan $B = \{3, 8\}$, maka $A \neq B$

Untuk tiga buah himpunan, A, B, dan C berlaku aksioma berikut:

- (a) A = A, B = B, dan C = C
- (b) jika A = B, maka B = A
- (c) jika A = B dan B = C, maka A = C

Himpunan yang Ekivalen

- Himpunan A dikatakan ekivalen dengan himpunan B jika dan hanya jika kardinal dari kedua himpunan tersebut sama.
- Notasi : $A \sim B \leftrightarrow |A| = |B|$

Contoh 10.

Misalkan $A = \{ 1, 3, 5, 7 \}$ dan $B = \{ a, b, c, d \}$, maka $A \sim B$ sebab |A| = |B| = 4

Himpunan Saling Lepas

- Dua himpunan A dan B dikatakan saling lepas (*disjoint*) jika keduanya tidak memiliki elemen yang sama.
- Notasi : *A* // *B*
- Diagram Venn:

Contoh 11.

21

Himpunan Kuasa

- Himpunan kuasa (*power set*) dari himpunan *A* adalah suatu himpunan yang elemennya merupakan semua himpunan bagian dari *A*, termasuk himpunan kosong dan himpunan *A* sendiri.
- Notasi : P(A) atau 2^A
- Jika |A| = m, maka |P(A)| = 2m.

Contoh 12.

Jika $A = \{ 1, 2 \}$, maka $P(A) = \{ \emptyset, \{ 1 \}, \{ 2 \}, \{ 1, 2 \} \}$

Contoh 13.

Himpunan kuasa dari himpunan kosong adalah $P(\emptyset) = {\emptyset}$, dan himpunan kuasa dari himpunan ${\emptyset}$ adalah $P({\emptyset}) = {\emptyset}$, ${\emptyset}$.

Operasi Terhadap Himpunan

1. Irisan (intersection)

• Notasi : $A \cap B = \{ x \mid x \in A \text{ dan } x \in B \}$

Contoh 14.

- (i) Jika $A = \{2, 4, 6, 8, 10\}$ dan $B = \{4, 10, 14, 18\}$, maka $A \cap B = \{4, 10\}$
- (ii) Jika $A = \{ 3, 5, 9 \}$ dan $B = \{ -2, 6 \}$, maka $A \cap B = \emptyset$. Artinya: A // B

2. Gabungan (union)

• Notasi : $A \cup B = \{ x \mid x \in A \text{ atau } x \in B \}$

Contoh 15.

- (i) Jika $A = \{ 2, 5, 8 \}$ dan $B = \{ 7, 5, 22 \}$, maka $A \cup B = \{ 2, 5, 7, 8, 22 \}$
- (ii) $A \cup \emptyset = A$

3. Komplemen (complement)

• Notasi : $\overline{A} = \{ x \mid x \in U, x \notin A \}$

Contoh 16.

Misalkan $U = \{ 1, 2, 3, ..., 9 \},$

- (i) jika $A = \{1, 3, 7, 9\}$, maka $\overline{A} = \{2, 4, 6, 8\}$
- (ii) jika $A = \{ x \mid x/2 \in P, x < 9 \}$, maka $\overline{A} = \{ 1, 3, 5, 7, 9 \}$

Contoh 17. Misalkan:

A = himpunan semua mobil buatan dalam negeri

B = himpunan semua mobil impor

C = himpunan semua mobil yang dibuat sebelum tahun 1990

D = himpunan semua mobil yang nilai jualnya kurang dari Rp 100 juta

E = himpunan semua mobil milik mahasiswa universitas tertentu

- (i) "mobil mahasiswa di universitas ini produksi dalam negeri atau diimpor dari luar negeri" $\rightarrow (E \cap A) \cup (E \cap B)$ atau $E \cap (A \cup B)$
- (ii) "semua mobil produksi dalam negeri yang dibuat sebelum tahun 1990 yang nilai jualnya kurang dari Rp 100 juta" $\rightarrow A \cap C \cap D$
- (iii) "semua mobil impor buatan setelah tahun 1990 mempunyai nilai jual lebih dari Rp 100 juta" $\rightarrow \overline{C} \cap \overline{D} \cap B$

4. Selisih (difference)

• Notasi : $A - B = \{ x \mid x \in A \text{ dan } x \notin B \} = A \cap \overline{B}$

Contoh 18.

- (i) Jika $A = \{ 1, 2, 3, ..., 10 \}$ dan $B = \{ 2, 4, 6, 8, 10 \}$, maka $A B = \{ 1, 3, 5, 7, 9 \}$ dan $B A = \emptyset$
- (ii) $\{1, 3, 5\} \{1, 2, 3\} = \{5\}$, tetapi $\{1, 2, 3\} \{1, 3, 5\} = \{2\}$

5. Beda Setangkup (Symmetric Difference)

• Notasi: $A \oplus B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A)$

Contoh 19.

Jika $A = \{ 2, 4, 6 \}$ dan $B = \{ 2, 3, 5 \}$, maka $A \oplus B = \{ 3, 4, 5, 6 \}$

Contoh 20. Misalkan

- U = himpunan mahasiswa
- P = himpunan mahasiswa yang nilai ujian UTS di atas 80
- Q = himpunan mahasiswa yang nilain ujian UAS di atas 80

Seorang mahasiswa mendapat nilai A jika nilai UTS dan nilai UAS keduanya di atas 80, mendapat nilai B jika salah satu ujian di atas 80, dan mendapat nilai C jika kedua ujian di bawah 80.

- (i) "Semua mahasiswa yang mendapat nilai A": $P \cap Q$
- (ii) "Semua mahasiswa yang mendapat nilai B" : $P \oplus Q$
- (iii) "Ssemua mahasiswa yang mendapat nilai C": $U (P \cup Q)$

TEOREMA 2. Beda setangkup memenuhi sifat-sifat berikut:

(a) $A \oplus B = B \oplus A$

(hukum komutatif)

(b) $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

(hukum asosiatif)

6. Perkalian Kartesian (cartesian product)

• Notasi: $A \times B = \{(a, b) \mid a \in A \text{ dan } b \in B \}$

Contoh 20.

- (i) Misalkan $C = \{ 1, 2, 3 \}$, dan $D = \{ a, b \}$, maka $C \times D = \{ (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) \}$
- (ii) Misalkan A = B = himpunan semua bilangan riil, maka $A \times B$ = himpunan semua titik di bidang datar

Catatan:

- 1. Jika A dan B merupakan himpunan berhingga, maka: $|A \times B| = |A| \cdot |B|$.
- $2. (a, b) \neq (b, a).$
- 3. $A \times B \neq B \times A$ dengan syarat A atau B tidak kosong.

Pada Contoh 20(i) di atas,
$$C = \{ 1, 2, 3 \}$$
, dan $D = \{ a, b \}$, $D \times C = \{ (a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) \}$ $C \times D = \{ (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) \}$ $D \times C \neq C \times D$.

4. Jika $A = \emptyset$ atau $B = \emptyset$, maka $A \times B = B \times A = \emptyset$

Contoh 21. Misalkan

- $A = \text{himpunan makanan} = \{ s = \text{soto}, g = \text{gado-gado}, n = \text{nasi goreng}, m = \text{mie rebus} \}$
- $B = \text{himpunan minuman} = \{ c = \text{coca-cola}, t = \text{teh}, d = \text{es} \\ \text{dawet} \}$

Berapa banyak kombinasi makanan dan minuman yang dapat disusun dari kedua himpunan di atas?

Jawab:

 $|A \times B| = |A| \cdot |B| = 4 \cdot 3 = 12$ kombinasi dan minuman, yaitu $\{(s, c), (s, t), (s, d), (g, c), (g, t), (g, d), (n, c), (n, t), (n, d), (m, c), (m, t), (m, d)\}.$

Contoh 21. Daftarkan semua anggota himpunan berikut:

(a) $P(\emptyset)$ (b) $\emptyset \times P(\emptyset)$ (c) $\{\emptyset\} \times P(\emptyset)$ (d) $P(P(\{3\}))$

Penyelesaian:

- (a) $P(\emptyset) = {\emptyset}$
- (b) $\emptyset \times P(\emptyset) = \emptyset$ (ket: jika $A = \emptyset$ atau $B = \emptyset$ maka $A \times B = \emptyset$)
- (c) $\{\emptyset\} \times P(\emptyset) = \{\emptyset\} \times \{\emptyset\} = \{(\emptyset,\emptyset)\}$
- (d) $P(P(\{3\})) = P(\{\emptyset, \{3\}\}) = \{\emptyset, \{\emptyset\}, \{\{3\}\}, \{\emptyset, \{3\}\}\}\}$

Latihan

Misalkan A adalah himpunan. Periksalah apakah setiap pernyataan di bawah ini benar atau salah dan jika salah, bagaimana seharusnya:

- (a) $A \cap P(A) = P(A)$ (b) $\{A\} \cup P(A) = P(A)$ (c) A P(A) = A(d) $\{A\} \in P(A)$ (e) $A \subseteq P(A)$

- (a) salah, seharusnya $A \cap P(A) = \emptyset$
- (b) benar
- (c) benar
- (d) salah, seharusnya $\{A\} \subseteq P(A)$
- (e) salah, seharusnya $A \in P(A)$

Hukum-hukum Himpunan

- Disebut juga sifat-sifat (properties) himpunan
- Disebut juga hukum aljabar himpunan

1. Hukum identitas:	2. Hukum <i>null</i> /dominasi:		
$A \cup \emptyset = A$	$A \cap \emptyset = \emptyset$		
$-A \cap U = A$	$A \cup U = U$		
3. Hukum_komplemen:	4. Hukum idempoten:		
$A \cup \overline{A} = U$	$A \cup A = A$		
$A \cap \overline{A} = \emptyset$	$A \cap A = A$		

$$\overline{(\overline{A})} = A$$

6. Hukum penyerapan (absorpsi):

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

7. Hukum komutatif:

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

8. Hukum asosiatif:

$$-A \cup (B \cup C) = (A \cup B)$$

$$\cup C$$

$$-A \cap (B \cap C) = (A \cap B)$$
$$\cap C$$

9. Hukum distributif:

$$-A \cup (B \cap C) = (A \cup$$

$$B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

10. Hukum De Morgan:

$$_{-}\overline{A\cap B}=\overline{A}\cup\overline{B}$$

$$- \overline{A \cup B} = \overline{A} \cap \overline{B}$$

11. Hukum 0/1

$$-\overline{\varnothing}=U$$

$$-\overline{U}=\emptyset$$