Критерий Лебега

Опр: 1. Множество $E \subset \mathbb{R}$ называется множеством меры ноль по Лебегу, если: $\forall \varepsilon > 0$, \exists не более чем счетный набор интервалов (или отрезков) $\{I_n\}$ таких, что:

- (1) Множество E покрыто этими интервалами: $E \subset \bigcup_{n} I_{n}$;
- (2) Сумма длин этих интервалов меньше ε : $\sum_{n} |\mathbf{I}_{n}| < \varepsilon$;

Опр: 2. Если некоторое свойство имеет место для всех точек, кроме множества меры ноль, то говорят, что это свойство выполняется почти всюду.

Теорема 1. (**Критерий Лебега**) f - интегрируема по Риману на отрезке $[a,b] \Leftrightarrow f$ - ограничена на отрезке [a,b] и f почти всюду непрерывна на отрезке [a,b].

Rm: 1. Проще говоря, функция интегрируема тогда и только тогда, когда функция ограничена, а множество точек разрыва является множеством меры ноль по Лебегу.

- \square Рассматриваем только ограниченную функцию f.
- (\Rightarrow) Пусть f интегрируема на [a,b], тогда выполняется критерий Дарбу:

$$\forall \varepsilon > 0, \ \exists \, \mathbb{T} \colon \sum_{k} \omega(f, \Delta_k) \cdot |\Delta_k| < \varepsilon$$

<u>Напоминание про непрерывность</u>: $\omega(f,a) = \lim_{\delta \to 0+} \omega(f,\mathcal{U}_{\delta}(a))$ - это колебание функции f в точке a. Мы знаем, что f - непрерывна в точке $a \Leftrightarrow \omega(f,a) = 0$. Множество точек разрыва замкнуто и равно:

$$\bigcup_{n} \left\{ x \colon \omega(f, x) \ge \frac{1}{n} \right\}$$

Таким образом, достаточно показать, что $\forall n \in \mathbb{N}$ множество

$$E_n = \left\{ x \colon \omega(f, x) \ge \frac{1}{n} \right\}$$

является множеством меры ноль по Лебегу, поскольку счетное объединение множества меры ноль будет также множеством меры ноль (см. свойство 3 на прошлой лекции). Фиксируем n и рассмотрим множество E_n . Пусть $\varepsilon > 0$, тогда $\exists \mathbb{T}$ - разбиение отрезка [a,b] на отрезки Δ_k :

$$\sum_{k} \omega(f, \Delta_k) \cdot |\Delta_k| < \varepsilon$$

Пусть $\Delta_k \cap E_n \neq \emptyset$, то есть $\exists a \in E_n \colon a \in \Delta_k$, тогда возможно несколько исходов:

(1) a лежит внутри Δ_k , тогда по определению колебания в точке верно:

$$\omega(f, \Delta_k) = \sup_{x, y \in \Delta_k} |f(x) - f(y)| \ge \omega(f, \mathcal{U}_{\delta}(a)) = \sup_{x, y \in \mathcal{U}_{\delta}(a)} |f(x) - f(y)| \Rightarrow \omega(f, \Delta_k) \ge \omega(f, a) \ge \frac{1}{n}$$

(2) $a \in \Delta_k \cap \Delta_{k+1}$ или $a \in \Delta_k \cap \Delta_{k-1}$. Рассмотрим случай $a \in \Delta_k \cap \Delta_{k+1}$. Хотя бы для одного из отрезков Δ_k , Δ_{k+1} колебание не будет маленьким:

$$\omega(f, \Delta_k) \ge \frac{1}{3n} \vee \omega(f, \Delta_{k+1}) \ge \frac{1}{3n}$$

На обоих отрезках колебание не может оказаться маленьким, иначе получим противоречие:

$$\omega(f, \Delta_k) < \frac{1}{3n} \wedge \omega(f, \Delta_{k+1}) < \frac{1}{3n} \Rightarrow \omega(f, a) \le \frac{2}{3n}$$

Почему это так? Пусть $x, y \in \mathcal{U}_{\delta}(a)$, тогда рассмотрим разность функции f в этих точках:

$$|f(x) - f(y)| \le |f(x) - f(a)| + |f(y) - f(a)| \le \omega(f, \Delta_k) + \omega(f, \Delta_{k+1}), \ x \in \Delta_k, \ y \in \Delta_{k+1}$$
$$|f(x) - f(y)| \le \omega(f, \Delta_k), \ x, y \in \Delta_k$$
$$|f(x) - f(y)| \le \omega(f, \Delta_{k+1}), \ x, y \in \Delta_{k+1}$$

Таким образом, если каждое колебание маленькое, то верно следующее:

$$|f(x) - f(y)| \le \frac{2}{3n} \Rightarrow \omega(f, a) \le \frac{2}{3n} < \frac{1}{n}$$

Получили противоречие с тем, что $a \in E_n$. Значит, хотя бы на одном из отрезков колебание не меньше, чем $\frac{1}{3n}$.

Итог: если возьмем объединение отрезков на которых колебание больше, чем $\frac{1}{3n}$, то оно заведомо будет содержать E_n :

$$I = \left\{ k \colon \omega(f, \Delta_k) \ge \frac{1}{3n} \right\}, E_n \subset \bigcup_{k \in I} \Delta_k$$

Рассмотрим следующую сумму:

$$\sum_{k \in \mathcal{I}} |\Delta_k| = 3n \sum_{k \in \mathcal{I}} \frac{1}{3n} |\Delta_k| \le 3n \sum_{k \in \mathcal{I}} \omega(f, \Delta_k) \cdot |\Delta_k| \le 3n \sum_k \omega(f, \Delta_k) \cdot |\Delta_k| < 3n\varepsilon$$

Поскольку $\varepsilon > 0$ - произвольное, то мы накрыли множество E_n конечным набором отрезков, сумму длин которых можно сделать сколь угодно маленькой. Следовательно, E_n - множество меры ноль.

 (\Leftarrow) Пусть f - ограничена на [a,b] и почти всюду непрерывна на [a,b]. Будем проверять критерий Дарбу:

$$\forall \varepsilon > 0, \ \exists \, \mathbb{T} \colon \sum_{k} \omega(f, \Delta_k) \cdot |\Delta_k| < \varepsilon$$

Но перед этим, вспомним лемму из прошлой лекции:

Лемма 1. Если $[a,b]\subset\bigcup_n \mathrm{I}_n$, где I_n - интервалы, то верно следующее:

$$b-a \le \sum_{n} |\mathbf{I}_n \cap [a,b]| \le \sum_{n} |\mathbf{I}_n|$$

и докажем новую лемму:

Лемма 2. Пусть I - ограниченный промежуток (интервал, отрезок, полуинтервал) и $J_1, \dots J_M$ - промежутки, причем $\forall k, m, J_k$ и J_m либо не пересекаются, либо пересекаются по концам ($\forall k, m, \mathring{J}_k \cap \mathring{J}_m = \varnothing$). Тогда верно следующее:

$$\bigcup_{k=1}^{M} J_k \subset I \Rightarrow \sum_{k=1}^{M} |J_k| \le |I|$$

Рис. 1: Набор промежутков внутри ограниченного промежутка.

□ Докажем по индукции:

База: $M=1\Rightarrow J_1\subset I\Rightarrow |J_1|\leq |I|$, поскольку $J_1=|\gamma,\delta|\subset I=|\alpha,\beta|\Rightarrow \alpha\leq \gamma\leq \delta\leq \beta\Rightarrow \delta-\gamma\leq \beta-\alpha$.

<u>Шаг</u>: Пусть доказано для M, докажем для M+1. Будем считать, что $J_k =]\alpha_k, \beta_k[$, $I =]\alpha, \beta[$. Перенумеровывая, если нужно, J_k будем считать, что $\alpha_{M+1} = \max_k \alpha_k$ и автоматически получим $\beta_{M+1} = \max_k \beta_k$. Таким образом, берем самый правый промежуток. По построению:

$$\bigcup_{k=1}^{M} J_k \subset]\alpha, \alpha_{M+1}[\Rightarrow \sum_{k=1}^{M} |J_k| \le \alpha_{M+1} - \alpha$$

где последнее неравенство выполненно по предположению индукции. Добавим к нему длину последнего промежутка J_{M+1} :

$$\sum_{k=1}^{M} |\mathbf{J}_k| + (\beta_{M+1} - \alpha_{M+1}) = \sum_{k=1}^{M+1} |\mathbf{J}_k| \le \alpha_{M+1} - \alpha + (\beta_{M+1} - \alpha_{M+1}) = \beta_{M+1} - \alpha \le \beta - \alpha = |\mathbf{I}|$$

Таким образом, получили требуемое по индукции.

Пусть E - множество точек разрыва. Так как по условию E это множество меры ноль, то верно:

$$\forall \varepsilon > 0, \ \exists \{I_j\} : \ \sum_{i} |I_j| < \varepsilon, \ E \subset \bigcup_{i} I_j$$

Если точка $x \notin E$, то f непрерывна в ней $\Rightarrow \exists \mathcal{U}_{\delta_x}(x) \colon \omega(f, \mathcal{U}_{3\delta_x}(x)) < \varepsilon$, то есть δ_x выбрано так, чтобы в утроенной окрестности колебание было меньше, чем ε (это можно сделать из-за непрерывности). Тогда будет верно:

$$[a,b] \subset \bigcup_{j} I_{j} \bigcup_{x \notin E} \mathcal{U}_{\delta_{x}}$$

Но это всё - открытые множества \Rightarrow мы можем выбрать конечное подпокрытие, поскольку отрезок [a,b] это компакт:

$$\mathcal{U}_{\delta_1}, \dots, \mathcal{U}_{\delta_M}, \mathrm{I}_1, \dots, \mathrm{I}_N \Rightarrow [a,b] \subset \bigcup_{j=1}^N \mathrm{I}_j \bigcup_{i=1}^M \mathcal{U}_{\delta_i}$$

Выберем $\delta = \min\{\delta_1, \dots, \delta_M\}$ и разбиение \mathbb{T} с масштабом $\lambda(\mathbb{T}) < \delta$. Будем рассматривать следующую сумму:

$$\sum_{k} \omega\left(f, \Delta_{k}\right) \cdot |\Delta_{k}|$$

Понятно, что есть два типа точек в этой сумме:

- 1) точки, которые попадают в окрестности \mathcal{U}_{δ_i} (тут маленькие колебания);
- 2) точки, которые закрыты интервалами I_i (тут маленькая длина интервалов);

Рассмотрим множество отрезков Δ_k , которые пересекаются с множествами \mathcal{U}_{δ_i} и которые не имеют с ними общих точек. Обозначим их как K и R соответственно:

$$K = \left\{ k \colon \Delta_k \cap \bigcup_{i=1}^M \mathcal{U}_{\delta_i} \neq \varnothing \right\}, \ R = \left\{ k \colon \Delta_k \cap \bigcup_{i=1}^M \mathcal{U}_{\delta_i} = \varnothing \right\}$$

Разделим рассматриваемую сумму на две соответствующие части:

$$\sum_{k} \omega\left(f, \Delta_{k}\right) \cdot |\Delta_{k}| = \sum_{k \in K} \omega\left(f, \Delta_{k}\right) \cdot |\Delta_{k}| + \sum_{k \in R} \omega\left(f, \Delta_{k}\right) \cdot |\Delta_{k}|$$

Рассмотрим случай, когда $\Delta_k \cap \mathcal{U}_{\delta_i} \neq \emptyset$. Пусть $\mathcal{U}_{\delta_i} = (a_i - \delta_i, a_i + \delta_i)$, где a_i - середина окрестности \mathcal{U}_{δ_i} .

Рис. 2: Пересечение Δ_k с \mathcal{U}_{δ_i} не пусто.

Тогда $\Delta_k \subset \mathcal{U}_{3\delta_i}$, поскольку от любой точки отрезка Δ_k до a_i расстояние не больше, чем δ_i и длина отрезка Δ_k не больше, чем $\delta < \delta_i$. Таким образом, получим:

$$\Delta_k \subset \mathcal{U}_{3\delta_i} \Rightarrow \omega(f, \Delta_k) < \varepsilon \Rightarrow \sum_{k \in \mathcal{K}} \omega(f, \Delta_k) \cdot |\Delta_k| < \varepsilon \cdot \sum_{k \in \mathcal{K}} |\Delta_k| \le \varepsilon (b - a)$$

Рассмотрим случай, когда $\Delta_k \cap \mathcal{U}_{\delta_i} = \emptyset$. Поскольку весь отрезок [a,b] покрыт конечным набором окрестностей \mathcal{U}_{δ_i} и интервалов I_j ; то такие Δ_k содержатся в объединении интервалов I_j :

$$\Delta_k \subset \bigcup_{j=1}^N \mathrm{I}_j$$

В противном случае, была бы точка отрезка, которая ничем не закрыта \Rightarrow противоречие с построением конечного покрытия. Пусть $\overline{M} = \sup_{[a,b]} |f|$, распишем вторую сумму:

$$\sum_{k \in \mathbb{R}} \omega(f, \Delta_k) \cdot |\Delta_k| \le 2\overline{M} \cdot \sum_{k \in \mathbb{R}} |\Delta_k| \le 2\overline{M} \cdot \sum_{k \in \mathbb{R}} |\Delta_k|, \ P = \left\{ k \colon \Delta_k \subset \bigcup_{j=1}^N \mathcal{I}_j \right\}$$

Поскольку отрезок Δ_k закрыт интервалами, то можем применить первую лемму:

$$2\overline{M} \cdot \sum_{k \in \mathcal{P}} |\Delta_k| \leq 2\overline{M} \cdot \sum_{k \in \mathcal{P}} \sum_{j=1}^N |\Delta_k \cap \mathcal{I}_j| \leq 2\overline{M} \sum_k \sum_{j=1}^N |\Delta_k \cap \mathcal{I}_j| = 2\overline{M} \sum_{j=1}^N \left(\sum_k |\Delta_k \cap \mathcal{I}_j| \right)$$

Заметим, что $\forall k, \Delta_k \cap I_j$ - это промежутки в интервале I_j и они могут пересекаться только концами. Тогда применяя вторую лемму к суммам внутри скобок и вспоминая, что I_j накрывают множество меры ноль, получим:

$$2\overline{M}\sum_{j=1}^{N} \left(\sum_{k} |\Delta_{k} \cap I_{j}|\right) \leq 2\overline{M}\sum_{j=1}^{N} |I_{j}| < 2\overline{M}\varepsilon$$

Итог:

$$\sum_{k} \omega\left(f, \Delta_{k}\right) \cdot |\Delta_{k}| = \sum_{k \in \mathcal{K}} \omega\left(f, \Delta_{k}\right) \cdot |\Delta_{k}| + \sum_{k \in \mathcal{R}} \omega\left(f, \Delta_{k}\right) \cdot |\Delta_{k}| \le \varepsilon(b - a) + 2\overline{M}\varepsilon = \varepsilon(b - a + 2\overline{M})$$

где $(b-a+2\overline{M})$ - это константа, а $\varepsilon>0$ могли взять сколь угодно маленьким \Rightarrow критерий Дарбу выполнен \Rightarrow функция f интегрируема на [a,b].

Следствия критерия Лебега

Следствие 1. Пусть f интегрируема по Риману на отрезке [a,b] и функция φ - непрерывна на [m,M], где $m=\inf_{[a,b]}f$, $M=\sup_{[a,b]}f$. Тогда $\varphi(f(x))$ интегрируема по Риману на отрезке [a,b].

 \square Функция φ - непрерывна на отрезке [m,M] \Rightarrow ограничена $\Rightarrow \varphi(f)$ - ограничена. Если f - непрерывна в точке $x \in [a,b]$, то $\varphi(f)$ - непрерывна в точке $x \in [a,b]$, как композиция непрерывных функций. Подмножества точек разрыва больше не станет $\Rightarrow \varphi(f)$ почти всюду непрерывна.

Пример: Если f - интегрируема, то |f| - интегрируема и верно следующее:

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

Содержательно, $|f| = \varphi(f)$ - непрерывная функция, где $\varphi(t) = |t|$. Оценка интеграла справделива из монотонности: $-|f| \le f \le |f|$ \Rightarrow интегрируем и получаем оценку, написанную выше.

Следствие 2. Если f и g интегрируемы по Риману на [a,b], то $f \cdot g$ - интегрируема по Риману на [a,b].

 \square Произведение ограниченных фукнций - ограниченная функция. Множество точек разрыва функции f и g - это множество меры ноль, их объединение будет также множеством меры ноль. В точках непрерывности f и g произведение $f \cdot g$ будет также непрерывным $\Rightarrow f \cdot g$ непрерывно почти всюду \Rightarrow интегрируемо по критерию Лебега.

Теорема 2. (**Теорема о среднем**) Пусть f и g - интегрируемы на $[a,b], g \ge 0$, точная верхняя и нижняя грани функции f равны: $m = \inf_{[a,b]} f$, $M = \sup_{[a,b]} f$. Тогда:

$$\exists \mu \in [m, M] \colon \int_{a}^{b} f(x) \cdot g(x) dx = \mu \int_{a}^{b} g(x) dx$$

Более того, если f - непрерывная, то $\mu = f(c)$, где $c \in [a,b]$.

 \square Из интегрируемости f и g получаем интегрируемость $f \cdot g$ и применяем первую теорему о среднем для интегралов (см. лекцию 23).

Следствие 3.

- 1) Если f интегрируема на [a,b] и отрезок $[c,d] \subset [a,b]$, то f интегрируема на [c,d];
- 2) Если f интегрируема на [a, c] и [c, b], то f интегрируема на [a, b];
- 1) Функция ограниченная на [a,b] будет ограниченной на любом подотрезке.

Множество точек разрыва f на [a,b] - это множество меры ноль, а множество точек разрыва на [c,d] будет подмножеством этого множества меры ноль $\Rightarrow f$ непрерывна на [c,d] почти всюду.

Применяем критерий Лебега и получаем требуемое;

2) Если f интегрируема на [a, c] и $[c, b] \Rightarrow$ ограничена на обоих отрезках, тогда возьмем самое большое ограничение и получим ограниченность на [a, b].

На обоих отрезках функция f почти всюду непрерывна, объединение множеств меры ноль этих отрезков будет множеством меры ноль. Если f была непрерывной в точке c на одном отрезке, то и на другом она будет непрерывной в точке c, поскольку функция одна и та же.

Применяем критерий Лебега и получаем требуемое;

Следствие 4. Пусть f интегрируема по Риману на [a,b] и $f \ge 0$. Если $\int\limits_a^b f(x) dx = 0$, то f = 0 п.в.

 \square Докажем, что f=0 во всех точках непрерывности (т.е. $f\neq 0$ только на множестве меры ноль). Пусть f(c)>0 и c - точка непрерывности функции f (не равная a или b, на множество меры ноль это не скажется), тогда по теореме об отделимости:

$$\exists \, \Delta \subset [a,b] \colon c \in \Delta, \, c \neq a \land c \neq b, \, f(x) \geq \frac{f(c)}{2}, \, \forall x \in \Delta$$

Заметим, что $|\Delta|>0$, поскольку длина отрезка - положительная величина и выполняется следующее:

$$f(x) \ge \frac{f(c)}{2} \cdot \mathbb{I}_{\Delta}(x), \, \forall x \in [a, b]$$

Следовательно, интегрируя неравенство, по свойству монотонности мы получим:

$$\int_{a}^{b} f(x)dx \ge \frac{f(c)}{2} \cdot |\Delta| > 0$$

Получили противоречие с тем, что интеграл на всем отрезке равен $0 \Rightarrow f$ принимает значение 0 во всех точках непрерывности, то есть f = 0 почти всюду.

Следствие 5.

1) Пусть функции f и g интегрируемы по Риману на [a,b] и f=g почти всюду. Тогда:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} g(x)dx$$

2) Если функция f интегрируема по Риману на [a,b] и g=f всюду, кроме конечного числа точек, то функция g - интегрируема на [a,b] и справедливо следующее:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} g(x)dx$$

- **Rm: 2.** Стоит обратить внимание, что если не требовать, чтобы функция g была интегрируемой в первой части следствия, то из f = g п.в. не следует, что g интегрируема. Например, функция Дирихле совпадает с 0 п.в., 0 интегрируемая, а функция Дирихле нет (она почти всюду разрывна).
 - 1) Рассмотрим Римановы суммы:

$$\sum_{i} f(\xi_i) \cdot |\Delta_i|, \sum_{i} g(\xi_i) \cdot |\Delta_i|$$

Всегда можно выбрать ξ_i : $f(\xi_i) = g(\xi_i)$, поскольку Δ_i не является множеством меры ноль: иначе, если бы во всех его точках f и g отличались, то Δ_i был бы подмножеством множества, где $f \neq g$, то есть множества меры ноль, что невозможно. Тогда:

$$\sum_{i} f(\xi_i) \cdot |\Delta_i| = \sum_{i} g(\xi_i) \cdot |\Delta_i|$$

Переходя к пределам, получим равенство интегралов;

2) Добавили не более, чем конечное число точек разрыва \Rightarrow функция осталась почти всюду непрерывной \Rightarrow верно по критерию Лебега и первому пункту;