MCS2 Linear Algebra

October 2021

1 Questions

- 1. Find out whether the following are a vector spaces or not. If not, list all the axioms that fail to hold:
 - (a) The set of rational numbers with usual addition and multiplications
 - (b) The set of all skew symmetric $n \times n$ matrices with the usual matrix addition and scalar multiplication.
 - (c) The set of all upper triangular 2×2 matrices with the usual matrix addition and scalar multiplication.
- 2. Denote by R[0,1] the set of all continuous real valued functions with domain [0,1], i.e.,

 $R[0,1]\{allfunctions\ f:[0,1]\to R,\ such that\ f\ is continuous\}.$

Show that R[0,1] forms a vector space over R.

- 3. In the space R[0,1], define the vectors f,g, and h by f(x)=x, $g(x)=e^x$ and $h(x)=e^{-x}$ for $0 \le x \le 1$. Use the definition of linear independence to show that the functions f,g, and h are linearly independent.
- 4. Let V be a vector space of $n \times n (n \ge 2)$ matrices over an arbitrary field F. Which of the following sets of matrices A in V are subspaces of V?
 - (a) Set of all invertable matrices A.
 - (b) Set of all non-invertable matrices A.
 - (c) All A such that AB = BA for a fixed matrix B in V.
 - (d) All idempotent matrices A
- 5. Suppose V is a vector space of all functions $f: R \to R$. Which of the following sets of functions are subspaces of V?
 - (a) all continuous functions.
 - (b) f such that $f(x^2) = f(x)^2$.

(c)
$$f(3) = 1 + f(-5)$$

- 6. Let V and W be vector spaces over a field F. Let $Z = [(v, w), v \in V, w \in W]$. Prove that Z is a vector space over the field F with the operations: $(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$ and $c(v_1, w_1) = (cv_1, cw_1)$.
- 7. Let V be a vector space and let $S_1 \subseteq S_2 \subseteq V$. Show that if S_2 is linearly independent then S_1 is linearly independent.
- 8. Show that a subset W of a vector space V is a subspace of V if and only if span(W) = W.