V a.C.

Por volta de 400 a.C., os filósofos **Leucipo e Demócrito** formularam outra ideia, segundo a qual a matéria seria constituída de pequenas partículas que sempre existiram e que seriam indivisíveis: os átomos.

1808 - TEORIA ATÔMICA DE DALTON

- **1.** A matéria é constituída de pequenas partículas esféricas maciças e indivisíveis denominadas átomos.
- 2. Um conjunto de átomos com as mesmas massas e tamanhos apresenta as mesmas propriedades e constitui um elemento químico.
- **3.** Elementos químicos diferentes apresentam átomos com massas, tamanhos e propriedades diferentes.
- **4.** A combinação de átomos de elementos diferentes, numa proporção de números inteiros, origina substâncias diferentes.
- **5.** Os átomos não são criados nem destruídos: são simplesmente rearranjados, originando novas substâncias

1897 - Joseph John Thomson PARTÍCULAS SUBATÔMICAS

Experimento de descargas elétricas em vácuo carga positiva e negativa – descobridor do elétron

"O átomo é maciço e constituído por um fluido com carga elétrica positiva, no qual estão dispersos os elétrons".

Pudim de passas

Modelo Atômico de Thomson

Primeira década do sec XX

Observação	Conclusão
 a) A maior parte das partículas α atravessa- va a lâmina sem sofrer desvios. 	A maior parte do átomo deve ser vazio. Nesse espaço (eletrosfera) devem estar localizados os elétrons.
b) Poucas partículas α (1 em 20 000) não atravessavam a lâmina e voltavam.	Deve existir no átomo uma pequena região onde está concentrada sua massa (o núcleo).
c) Algumas partículas α sofriam desvios de trajetória ao atravessar a lâmina.	O núcleo do átomo deve ser positivo, o que provoca uma repulsão nas partículas α (positivas).

Modelo de Rutherford

1932 – Chadwick: descoberta dos nêutrons

Os nêutrons estão localizados no núcleo e apresentam massa muito próxima à dos prótons, mas não têm carga elétrica.

	Partícula	Massa relativa (u)	Carga relativa (uce)
Núcleo	Nêutrons	1	0
Nucleo	Prótons	1	+1
Eletrosfera	Elétrons	$\frac{1}{1836}\cong 0$	-1

Número atômico (Z): o número que indica a quantidade de prótons existentes no núcleo de um átomo.

$$Z = n^{\circ}$$
 de prótons

número de prótons é igual ao de elétrons.

Número de massa (A): a soma do número de prótons (p) com o número de nêutrons (n) presentes no núcleo de um átomo.

$$A = p + n$$

Ca
$$\begin{cases} Z = 20 \Rightarrow p = 20 & A = p + n \\ A = 40 & 40 = 20 + n & n = 20 \end{cases}$$

https://www.youtube.com/watch?v=AyeGCCMp_Uk

Elemento químico: é o conjunto formado por átomos de mesmo número atômico (Z).

$$\begin{array}{c} {}^{A}_{Z}X \quad ou \quad {}_{Z}X^{A} \\ \\ A=23 \\ Z=11 \end{array} \text{Na} \left\{ \begin{array}{c} p=11 \\ \\ n=A-Z \\ \\ n=12 \end{array} \right.$$

Íon: a espécie química que apresenta o número de prótons diferente do número de elétrons.

- íons positivos = **cátions**;
- íons negativos = **ânions**.

Íons positivos ou cátions

$$_{12}\mathrm{Mg} \xrightarrow{\mathrm{perde}\ 2\ \mathrm{e}^{-}} _{12}\mathrm{Mg}^{2+}$$

$$p = 12 \Rightarrow 12$$
 cargas positivas = +12
 $e = 12 \Rightarrow 12$ cargas negativas = -12
 $e = 12 \Rightarrow 12$ cargas negativas = 0

$$p = 12 \Rightarrow 12$$
 cargas positivas = +12
 $e = 10 \Rightarrow 10$ cargas negativas = -10
carga elétrica total = +2

Íons negativos ou ânions

$$_{9}F$$
 $\xrightarrow{ganha\ 1\ e^{-}}$ $_{9}F^{-}$
 $p = 9 \Rightarrow 9 \text{ cargas positivas } = +9$
 $e = 9 \Rightarrow 9 \text{ cargas negativas } = -9$
 $e = 10 \Rightarrow 10 \text{ cargas negativas } = -10$
 $e = 10 \Rightarrow 10 \text{ cargas negativas } = -10$

SEMELHANÇAS ATÔMICAS

Isótopos: são átomos que apresentam o mesmo número atômico (**Z**), por pertencerem ao mesmo elemento químico, mas diferentes números de massa (**A**).

Elementos	Carbono		Oxigênio			Potássio			
Representação	¹² C	¹³ 6C	¹⁴ C*	¹⁶ O	¹⁷ 0	¹⁸ O	³⁹ K	⁴⁰ K*	41 19
Abundância (%)	98,89	1,11	traços**	99,7	0,04	0,2	93,30	0,01	6,70

Isóbaros: são átomos que apresentam diferentes números atômicos (**Z**), mas mesmo número de massa (**A**).

$$\begin{array}{c}
 40 \\
 20 \\
 20
 \end{array}$$
Ca
$$\begin{cases}
 20 \\
 20 \\
 20
 \end{cases}$$
Ar
$$\begin{cases}
 18 \\
 18 \\
 22 \\
 n
 \end{cases}$$

Isótonos: são átomos que apresentam o mesmo número de nêutrons (**n**), mas diferentes números atômicos (**Z**) e de massa (**A**).

Isoeletrônicos: átomos e íons que apresentam a mesma quantidade de elétrons.

$$\begin{array}{c}
 23 \text{Na}^{+} \begin{cases}
 11 \text{ p} \\
 10 \text{ e} \\
 12 \text{ n}
\end{array}$$

$$\begin{array}{c}
 16 \text{O}^{2-} \begin{cases}
 8 \text{ p} \\
 10 \text{ e} \\
 8 \text{ n}
\end{array}$$

$$\begin{array}{c}
 20 \text{Ne} \begin{cases}
 10 \text{ p} \\
 10 \text{ e} \\
 10 \text{ n}
\end{cases}$$

O MODELO ATÔMICO DE BÖHR

Esse modelo baseia-se nos seguintes postulados:

- 1. Os elétrons descrevem órbitas circulares ao redor do núcleo.
- 2. Cada uma dessas órbitas tem energia constante (órbita estacionária). Os elétrons que estão situados em órbitas mais afastadas do núcleo apresentarão maior quantidade de energia.
- **3.** Quando um elétron absorve certa quantidade de energia, salta para uma órbita mais energética. Quando ele retorna à sua órbita original, libera a mesma quantidade de energia, na forma de onda eletromagnética (luz).

Essas órbitas foram denominadas **níveis de energia**. Hoje são conhecidos sete níveis de energia ou **camadas**, denominadas K, L, M, N, O, P e Q.

Assim como um sapo não pode saltar meio degrau, ou seja, números fracionários de degraus, um elétron, ao receber energia, só pode "saltar" um número inteiro de níveis.

diagrama de Linus Pauling

$$K n = 1$$

$$L n = 2$$

$$M n = 3$$

$$N n = 4$$

O
$$n = 5$$

$$P n = 6$$

$$Q n = 7$$

Subnível	S	р	d	f
Nº máximo de e⁻	2	6	10	14

DISTRIBUIÇÃO ELETRÔNICA POR SUBNÍVEL

número de prótons (Z) é igual ao número de elétrons

$$_{21}$$
Sc: $_{1}s^{2}_{2}s^{2}_{2}p^{6}_{3}s^{2}_{3}p^{6}_{4}s^{2}_{3}d^{1}_{3}$

Último subnível = camada de valência

Família ou grupo	Nº de elétrons na camada de valência	Distribuição eletrônica da camada de valência	Nome
(1) IA	1	ns ¹	metais alcalinos
(2) IIA	2	ns ²	metais alcalino-terrosos
(13) IIIA	3	ns² np¹	família do boro
(14) IVA	4	ns² np²	família do carbono
(15) VA	5	ns² np³	família do nitrogênio
(16) VIA	6	ns² np⁴	calcogênios
(17) VIIA	7	ns² np⁵	halogênios
(18) VIIIA ou 0	8	ns² np ⁶	gases nobres

Observação: Nessa configuração, n é igual ao número do nível de valência.

UNIDADE DE MASSA ATÔMICA (U)

Atualmente, nossa escala de massas atômicas está baseada no isótopo mais comum do carbono, com número de massa igual a 12 (¹²C), ao qual foi atribuída exatamente a massa de 12 unidades de massa atômica (u).

Unidade de massa atômica (u) é a massa de 1/12 do átomo de carbono com número de massa igual a 12 (¹²C).

- \bullet O $^{12}{\rm C}$ foi escolhido em 1962 e é usado atualmente em todos os países do mundo.
- 1 u = $1,66054 \cdot 10^{-24}$ g.

Usando a massa do carbono como base, foram calculadas as massas atômicas de outros elementos.

Massa atômica do ⁴ ₂ He	4,0030 u	4 u
Massa atômica do 19 F	18,9984 u	19 u
Massa atômica do ²⁷ Aℓ	26,9815 u	27 u

Cálculo da massa atômica do elemento:

Isótopos	Massa atômica	Constituição
²⁰ Ne	20,00 u	90,92%
²¹ Ne	21,00 u	0,26%
²² Ne	22,00 u	8,82%

$$20,00 \cdot 90,92 = 1818,4
21,00 \cdot 0,26 = 5,46
22,00 \cdot 8,82 = 194,04$$

$$\frac{2017,9}{100} = 20,179 \text{ u}$$

Massa molecular

E a soma das massas atômicas dos átomos que constituem as moléculas.

(massas atômicas:
$$H = 1 u O = 16 u C = 12 u$$
)

$$H_{2}O_{1}O_{2}$$
 $\frac{1}{1} = 2$

$$C_{5}H_{10} = 60 + 10 + 10 + 10$$

massa molecular do H_2O — MM = 18 u massa molecular do C_5H_{10} — MM = 70 u

Massa molar é a massa que contém $6,02 \cdot 10^{23}$ entidades. Sua unidade é grama mol $^{-1}$ (g/mol).

água (
$$H_2O$$
) $MM = 18$ u

6,02 · 10^{23} moléculas de H_2O

constituem

1 mol de moléculas de H_2O

Massa molar da $H_2O = 18$ g/mol

Massa atômica e molecular x número de mols

Em uma massa em gramas numericamente igual à **massa atômica**, para qualquer elemento, existem $6.02 \cdot 10^{23}$ átomos.

Em uma massa em gramas numericamente igual à **massa molecular** (**MM**), para qualquer substância molecular, existem $6.02 \cdot 10^{23}$ moléculas.

Em 201 g de mercúrio existem

Em 342 g de sacarose há

Em 18 g de água encontramos

Quantidade de substância (n)

Sabendo a massa molar, podemos calcular a quantidade de mol que existe em uma quantidade de gramas.

$$\mathbf{n} = \frac{\mathbf{m} (g)}{\mathbf{M} (g \operatorname{mol}^{-1})} \Rightarrow \mathbf{n} = \frac{\mathbf{m}}{\mathbf{M}} \operatorname{mol}$$

Considere um copo contendo 90 mL de água. Determine:

- a) nº de mol de moléculas de água; d) nº de átomos de hidrogênio;
- b) nº de moléculas de água;
 e) nº total de átomos.
- c) nº de átomos de oxigênio;

(Massas atômicas: H = 1,0; O = 16; $N = 6,0 \cdot 10^{23}$; $d_{H_2O} = 1,0$ g/mL)