UMMTO, FGEI, Département Automatique, Année Universitaire: 2019-2020

Spécialité: Master 2 Académique, Options: AS et AII.

Module : Automatique Avancée, Travaux dirigés.

Exo 1. Le comportement dynamique d'un système est décrit par le modèle mathématique suivant :

$$\dot{x}_1(t) = a x_1(t) + b x_2(t) + u(t)$$

$$\dot{x}_2(t) = c x_1(t)$$

avec a = 2, $b = e^{-t}$ et 1 < c < 2.

- 1. donner le type de chaque paramètre du système,
- 2. préciser la *classe* du système.

Exo 2. Le comportement dynamique d'un système physique non linéaire est décrit par l'équation d'état suivante :

$$\dot{x}(t) = -x^3(t), \quad x(0) = x_0 \neq 0$$
 (1)

- 1. donner le type du système du point de vue paramètres,
- 2. montrer qu'on peut le mettre sous forme d'un système linéaire à paramètres variants,
- 3. tirer une conclusion sur la stabilité du système en se basant sur le modèle obtenu en 2.

Exo 3. Le modèle mathématique d'un système à paramètres incertains est de la forme :

$$G(s) = \frac{e^{-\tau s}}{\alpha \beta s + \alpha + \beta}$$

avec $1 \le \tau \le 2$, $2 \le \alpha \le 4$ et $1 \le \beta \le 3$.

1. mettre le modèle sous la forme,

$$G(s) = \frac{e^{-[\tau_{\min}, \tau_{\max}] s}}{[a_{1_{\min}}, a_{1_{\max}}] s + [a_{0_{\min}}, a_{0_{\max}}]}$$

- **2.** proposer un modèle nominal $G_n(s)$.
- **Exo 4.** Soit le système dynamique à paramètres a et b variables dans le temps

$$G(s) = \frac{Y(s)}{U(s)} = \frac{a}{s+b}, \quad a \neq 0 \text{ et } b \neq 0$$
(2)

on désire concevoir une commande adaptative *indirecte* pour commander le système. La stratégie de commande est basée sur une correction du type PI discret dont le réglage est réalisé par placement de pôles. La période d'échantillonnage $T_e = 1$ et la sortie désirée $y^d(t) = 1$. La fonction de transfert du correcteur PI continu est

$$C(s) = \frac{U(s)}{E(s)} = k_c \left(1 + \frac{1}{T_i s} \right), \quad T_i \neq 0$$
(3)

où $E(s) = Y^d(s) - Y(s)$ (erreur de poursuite).

1. en utilisant la différence arrière (méthode d'Euler), déterminer l'équivalent discret $C_d(z)$ du correcteur continu C(s),

- 2. déterminer la fonction de transfert discrète $H_{bo}(z)$ du système à commander muni d'un bloqueur d'ordre 0,
- 3. calculer la fonction de transfert du système en boucle fermée $H_{\rm bf}(z)$,
- 4. on désire imposer, en boucle fermée, les pôles $z_1 = 0, 25 + 0, 25j$ et $z_2 = 0, 25 0, 25j$, donner les expressions des paramètres du correcteur θ_c en fonction des paramètres du modèle θ (la relation $\theta_c = F(\theta)$),
- 5. pour estimer les paramètres du modèle, on utilise la méthode des moindres carrés récursifs, donner l'algorithme de cette méthode d'estimation paramétrique en ligne,
- 6. donner l'équation de récurrence régissant la dynamique du système en boucle ouverte $H_{\text{bo}}(z)$,
- 7. les mesures relevées sont résumées dans le Tableau 1, déterminer l'estimé des paramètres du système $\hat{\theta}_0$ et les paramètres du correcteur $C_d(z)$ à k=0,

k	-4	-3	-2	-1	0
u(k)	1	1	1	1	?
y(k)	0	0,75	1,25	1,50	1,70

Table 1 – Mesures entrée-sortie.

- 8. calculer la commande u(0), c'est-à-dire à appliquer au système à k=0,
- 9. sachant que y(1) = 2, déduire l'estimé des paramètres du système $\hat{\theta}_1$ en utilisant l'algorithme des moindres carrés récursifs,
- 10. donner les nouveaux paramètres du correcteur et la nouvelle commande u(1).
- **Exo 5.** Soit le système dynamique du second ordre, à deux paramètres a et b variables dans le temps, suivant :

$$\ddot{y}(t) = -a\,\dot{y}(t) - b\,y(t) + u(t) \tag{4}$$

où y(t) et u(t) sont respectivement la sortie et la commande du système.

On désire concevoir une commande adaptative *directe*, à base d'un retour d'état, pour imposer à la sortie y(t) une trajectoire $y_m(t)$ définie par le modèle de référence suivant :

$$\ddot{y}_m(t) = -2\,\dot{y}_m(t) - y_m(t) + r(t) \tag{5}$$

où $y_m(t)$ et r(t) sont respectivement la sortie de référence et la consigne désirée.

Pour concevoir la stratégie de commande adaptative *directe*, on propose d'utiliser les deux méthodes suivantes :

- méthode de la fonction de Lyapounov,
- méthode du *gradient* (règle **MIT**).
- 1. donner l'expression de la loi de commande u(t),
- 2. on suppose que les paramètres a et b sont constants, déterminer les estimés \hat{a} et \hat{b} des paramètres a et b en fonction des paramètres θ_m du modèle de référence et les paramètres θ_c de la loi de commande u(t).

I) Application de la méthode de la fonction de Lyapounov

- 1. donner le modèle du système en boucle fermée lorsque les paramètres a et b sont variables dans le temps,
- 2. déduire l'équation différentielle caractérisant la dynamique de l'erreur de poursuite :

$$e(t) = y(t) - y_m(t), \tag{6}$$

en fonction de l'erreur de poursuite e(t) de sa dérivée $\dot{e}(t)$ et $\tilde{\theta}_c(t)$,

- 3. proposer une fonction de Lyapounov $V(e(t), \dot{e}(t))$ permettant de déterminer les adaptations des paramètres de la loi de commande $\theta_c(t)$,
- 4. déduire les adaptions qui garantissent la convergence des différentes erreurs (stabilité en boucle fermée),
- 5. donner le schéma de simulation de la stratégie de commande.

II) Application de la méthode du gradient (règle MIT)

1. déterminer le vecteur des fonctions de sensibilité

$$\nabla_{\theta_c} y(t) \tag{7}$$

- 2. déduire les filtres de sensibilité,
- 3. écrire les équations des adaptions des paramètres θ_c du correcteur,
- 4. donner le schéma de simulation de la stratégie de commande.

Exo 6. Considérons le système non linéaire suivant :

$$\dot{x}(t) = a x(t) + b \left[u(t) + f(x(t)) \right]$$
$$x(0) = x_0$$

où f est une non linéarité incertaine qu'on peut écrire sous la forme

$$f(x(t)) = \sum_{i=1}^{p} \theta_i \, \phi_i(x(t)) = \theta^T \, \phi(x(t))$$

οù

$$\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_p \end{bmatrix}, \quad \phi(x(t)) = \begin{bmatrix} \phi_1(x(t)) \\ \phi_2(x(t)) \\ \vdots \\ \phi_p(x(t)) \end{bmatrix}$$

Les paramètres θ_i $(i=1,\ldots,p)$ sont constants mais *inconnus*. Les fonctions de base $\phi_i(x(t))$ $(i=1,\ldots,p)$ sont bornées et *connues*. Les paramètres du système a et b sont *inconnus* et le *signe* du paramètre b est *connu*.

On considère le modèle de référence suivant :

$$\dot{x}_m(t) = a_m x_m(t) + b_m r(t), \quad a_m < 0$$

où r(t) est le signal de commande de référence supposé borné.

- 1. donner l'expression de la commande u(t) qui permet d'imposer en boucle fermée le comportement dynamique du modèle de référence,
- 2. en utilisant la méthode directe de Lyapunov, déterminer les lois d'adaptation des paramètres de la loi de commande u(t).

Exo 7. On désire concevoir une commande à modèle de référence pour le système dynamique suivant :

$$G(s) = \frac{y(s)}{u(s)} = \frac{2s+4}{s^2+s-6} \tag{8}$$

pour assurer en boucle fermée le comportement dynamique de la fonction de transfert suivante :

$$G_m(s) = \frac{y_m(s)}{y^d(s)} = \frac{s+1}{s^2 + 2s + 2} \tag{9}$$

- 1. donner le degré relatif du système G(s),
- 2. donner l'expression générale de la commande u(s) en précisant le vecteur des paramètres du correcteur θ_c ,
- 3. déterminer les paramètres du correcteur θ_c ,
- 4. en supposant que le gain du système est positif, donner les lois d'adaptation des paramètres du correcteur θ_c lorsque les paramètres θ du système G(s) sont variables dans le temps,
- 5. donner le schéma de simulation de la commande à modèle de référence adaptative.

Partie II: Commande prédictive

Exo 1. Soit le système dynamique suivant :

$$\frac{dx(t)}{dt} = -ax(t) + u(t) \tag{10}$$

$$x(0) = x_0 \tag{11}$$

La commande u(t) est soumise à la contrainte suivante :

$$0 \le u(t) \le u_{max} \tag{12}$$

L'objectif consiste à concevoir la commande u(t) qui permet d'assurer la trajectoire désirée $x^d(t)$ et une réponse apériodique (sans dépassement).

- 1. formuler mathématiquement le problème de commande optimale à résoudre,
- 2. mettre le problème de commande optimale sous forme d'un problème d'optimisation statique (les variables de décision sont constantes),
- 3. classer le problème d'optimisation statique obtenu en 2 et proposer la méthode de résolution appropriée.

Exo 2. Le comportement dynamique d'un système est décrit par la fonction de transfert suivante

$$G(z) = \frac{z^{-1}}{1 - 0.5 z^{-1}}$$

1. montrer que l'évolution de la sortie y(k) du système est décrite par une équation aux différences de la forme

$$y(k) = 0.5 y(k-1) + u(k-1)$$

2. sachant que y(0) = 0, calculer les quatre premières valeurs de la réponse y(k) (pour k allant de 1 à 4) pour une entrée du type échelon unité

$$u(k) = \begin{cases} 0 & k < 0 \\ 1 & k \ge 0 \end{cases}$$

3. donner la matrice dynamique pour un horizon de prédiction $N_p = 4$ et un horizon de commande $N_u = 3$.

Exo 3. Soit le système discret suivant :

$$G(z^{-1}) = \frac{0,632 \, z^{-1}}{1 - 0,368 \, z^{-1}} \tag{13}$$

- 1. donner l'expression de la sortie y(k) pour une entrée u(k) du type échelon unité,
- 2. donner la matrice dynamique pour un horizon de prédiction $N_p = 3$ et un horizon de commande $N_c = 2$,
- 3. calculer les deux premières commandes à appliquer au système dans le cas d'une poursuite de consigne du type échelon unité avec un minimum d'effort (l'erreur de poursuite et l'effort ne sont pas pénalisés).
- **Exo 4.** On désire concevoir une commande prédictive généralisée (GPC) pour le système dynamique suivant :

$$(1-0.8z^{-1})$$
 $y_m(t) = (0.4+0.6z^{-1})$ $u(t-1)$

Donner l'expression de la commande u(t) pour le cas d'un horizon de commande $N_p = 3$ et d'un horizon de commande $N_u = 0$. Les matrices de pondérations sont :

$$Q = I_{3\times3}$$
 et $R = 0, 8I_{3\times3}$

Partie III: Commande optimale

Exo 1. Soit les deux problèmes de commande optimale suivants

Problème 1 : Soit le système mécanique de la Figure 1. Initialement (à t = 0), les longueurs des ressorts k_1 et k_2 sont respectivement l et l/2. Les trois masses ont la même largeur a. On désire déterminer la force f à appliquer, pour déplacer les trois masses, tout en maintenant une distance minimale entre les deux masses m_1 et m_2 . Le transfert doit se faire en minimisant l'énergie mise en œuvre. Pour garantir un bon fonctionnement, la distance entre les deux masses m_2 et m_3 doit être supérieure à l/2.

FIGURE 1 – Système mécanique.

Problème 2 : Pour le circuit électrique de la Figure 2, on désire déterminer la commande optimale $I^*(t)$ permettant de transférer le système d'un état initial à un état final, à l'instant $t_f = 5\,\mathrm{s}$, caractérisé par une tension aux bornes de la capacité C de 1 V et un courant de 0 A dans l'inductance L tout en minimisant l'énergie mise en ouvre. Initialement, on suppose que le condensateur est déchargé. A l'instant $t = 0\,\mathrm{s}$, on ferme l'interrupteur T. Pour protéger les éléments du circuit, on doit éviter des courants I(t) qui dépassent la valeur tolérée $1,5\,\mathrm{A}$.

FIGURE 2 – Circuit électrique.

- 1. Formuler mathématiquement ces deux problèmes de commande.
- 2. Pour chaque problème, on demande de préciser
 - Le type du problème de commande optimale;
 - La nature de l'état final;
 - La nature de l'horizon de commande;
 - Le type des contraintes.

Exo 2. Soit le problème de commande optimale suivant :

$$\min_{u(t)}J(u(t))=\int_0^1\left[t\,u(t)+u^2(t)\right]\,dt$$
 sujet à :
$$\dot{x}(t)=u(t)$$

$$x(0)=1$$

$$x(1)=1$$

- 1. Mettre le problème de commande optimale sous forme d'un problème de calcul des variations,
- 2. Donner l'équation d'Euler-Lagrange associée au problème et les conditions aux limites,
- **3.** Déduire la loi de commande optimale $u^*(t)$.
- 4. Résoudre le problème en utilisant la méthode de Lagrange.

Exo 3. Donner les conditions d'optimalité correspondante au problème de calcul des variations formulé comme suit

$$J(x(t)) = \frac{1}{2} \int_0^2 [\ddot{x}(t)]^2 dt$$
 sujet à :
$$x(0) = 1, \quad \dot{x}(0) = 1$$

$$x(2) = 0, \quad \dot{x}(2) = 0$$

Exo 4. En utilisant la méthode du *principe du minimum*, déterminer la loi de commande optimale pour le problème formulé comme suit :

$$\min_{u(t)}J(u(t))=x(1)+\int_0^1\left[\,x^2(t)+\frac{1}{4}\,u^2(t)\,\right]\,dt$$
 sujet à :
$$\dot{x}(t)=u(t)$$

$$x(0)=0$$

Exo 5. Montrer, en utilisant le principe du minimum, que problème de commande optimale suivant

$$J(u(t)) = \int_0^1 \left[x^2(t) + u^2(t) \right] \, dt$$
 Sujet à :
$$\dot{x}(t) = u(t)$$

$$x(0) = 1$$

admet comme solution

$$u^*(t) = -\frac{\sinh(1-t)}{\cosh(1)}$$

Indication:

- $\ddot{x}(t) x(t) = 0 \Rightarrow x(t) = c_1 \cosh(t) + c_2 \sinh(t)$;
- $\cosh(0) = 1$ et $\sinh(0) = 0$;
- $(\cosh(t))' = \sinh(t)$ et $(\sinh(t))' = \cosh(t)$;
- $\sinh(a-b) = \sinh(a) \cosh(b) \cosh(a) \sinh(b)$.

Exo 6. Déterminer la commande optimale pour le système de second ordre suivant :

$$\dot{x}_1(t) = x_2(t)$$
$$\dot{x}_2(t) = u(t)$$

qui minimise le critère

$$J(u(t)) = \frac{1}{2} \int_{0}^{+\infty} \left[x_1^2(t) + u^2(t) \right] dt$$

en utilisant l'équation de Riccati.

Exo 7. Soit le problème de commande optimale suivant

$$\min_{u(t)}J(u(t))=\frac{1}{2}\int_0^{+\infty}\left[x^2(t)+u^2(t)\right]dt$$
 sujet à :
$$\ddot{x}(t)=-\dot{x}(t)+u(t)$$

En utilisant l'équation de **Riccati**, exprimer la commande optimale en fonction des variables x(t), $\dot{x}(t)$ et t.

Exo 8. On désire résoudre, en utilisant l'équation fonctionnelle de Bellman, le problème suivant :

$$\min_{u(t)} J(u(t)) = \int_{t_0}^{t_f} \left[x(t) + u^2(t) \right] \, dt$$
 sujet à :
$$\dot{x}(t) = x(t) + u(t) + 1$$

$$x(t_0) = 4$$

$$x(t_f) = 0$$

$$|u(t)| \leq 7$$

Déterminer numériquement la commande optimale $u^*(t)$ permettant de réaliser ce transfert en deux étapes. Pour le processus de discrétisation, on considère les quantums $\Delta x(t) = \Delta u(t) = 1$ pour les grandeurs x(t) et u(t). Pour la période d'échantillonnage, on prend $\Delta t = 1$.