Den naturlige eksponentialfunktion

Eksponentialfunktionen som e^{kx}

Vi husker på, at en eksponentialfunktion er en funktion på formen

$$f(x) = b \cdot a^x$$
.

Målet er at omskrive dette til formen

$$f(x) = b \cdot e^{kx},$$

hvor $e \approx 2.7182$ er Eulers tal. Hvis vi har en eksponentialfunktion

$$f(x) = b \cdot a^x$$

så kan vi skrive

$$f(x) = b \cdot a^{x}$$

$$= b \cdot \left(e^{\ln(a)}\right)^{x}$$

$$= b \cdot e^{\ln(a) \cdot x}$$

$$= b \cdot e^{kx},$$

hvor $k = \ln(a)$. For at omskrive eksponentialfunktionen til formen

$$f(x) = b \cdot e^{kx},$$

er opgaven altså at bestemme $k = \ln(a)$, som gøres med Maple.

Eksempel 1.1. En eksponentialfunktion f er givet ved

$$f(x) = b \cdot 1.2^x.$$

For at omskrive den til formen

$$f(x) = b \cdot e^{kx},$$

så bestemmes ln(1.2) = 0.182, og vi kan omskrive eksponentialfunktionen til

$$f(x) = b \cdot e^{0.182x}$$

Nørre Gymnasium 1.m

Eksempel 1.2. En eksponentialfunktion q er givet ved

$$g(x) = 3 \cdot e^{-0.5x}.$$

Vi vil gerne omskrive den til formen

$$g(x) = 3 \cdot a^x.$$

Vi går derfor den omvendte vej og bestemmer $e^{-0.5}=0.606$. Eksponentialfunktionen g kan derfor skrives som

$$g(x) = 3 \cdot 0.606^x$$

Vi kan opsamle på de to eksempler. Kender vi en eksponentialfunktion på formen

$$f(x) = b \cdot a^x$$

og vil omskrive den til

$$f(x) = b \cdot e^{kx},$$

så findes k som $\ln(a) = k$.

Kender vi derimod en eksponentialfunktion på formen

$$g(x) = b \cdot e^{kx}$$

og vil omskrive den til formen

$$g(x) = b \cdot a^x,$$

så findes a som $a = e^k$.

Opgave 1

Omskriv følgende eksponentialfunktioner til formen

$$f(x) = b \cdot e^{kx}.$$

1)
$$f(x) = 1.7 \cdot 2^x$$

2)
$$f(x) = 10 \cdot 0.9^x$$

3)
$$f(x) = \sqrt{2} \cdot 1.79^x$$

4)
$$f(x) = 7 \cdot 0.2^x$$

5)
$$f(x) = 6 \cdot 10^x$$

6)
$$f(x) = 2.13 \cdot 7.389^x$$

Opgave 2

Omskriv følgende eksponentialfunktioner til formen

$$f(x) = b \cdot a^x$$

1)
$$f(x) = 2 \cdot e^{2x}$$

2)
$$f(x) = b \cdot e^{-2.3x}$$

1)
$$f(x) = 2 \cdot e^{2x}$$

3) $f(x) = 0.1 \cdot e^x$

4)
$$f(x) = 6 \cdot e^{10x}$$

Opgave 3

Prøv at tegne nogle af eksponentialfunktionerne på formen

$$f(x) = b \cdot e^{kx}$$

fra Opgave 1 og Opgave 2 i Maple.

- i) Kan du gennemskue, hvad der skal være opfyldt for k for at f er voksende?
- ii) Hvad skal gælde for at f er voksende?
- iii) Hvilken betydning har k for grafens forløb?