Respostas da Segunda Lista Quinzenal

Daniel Alves de Lima

Exercício 1. A ideia da demonstração é relacionar os números $\sigma(i_1), ..., \sigma(i_n)$ com os $i_1 i_2, ..., i_n$ através de $\Delta(\sigma(i_1), ..., \sigma(i_n)) = -\Delta(i_1, ..., i_n)$ para determinar algo sobre a paridade das permutações.

Exercício 2. Questão 1: a) Dado $\sigma \in S_n$, pelo corolário 6.5 e usando a dica, temos $\sigma = (i_1j_1)(i_2j_2)...(i_rj_r) = (1i_1)(1j_1)(1i_1)(1i_2)(1j_2)(1i_2)...(1i_r)(1j_r)(1i_r)$ donde $\sigma \in (12), (13), ..., (1n) >$. Logo, $S_n = (12), (13), ..., (1n) >$ b) Podemos aplicar/iterar a identidade $(1j) = (1 \ j-1)(j-1 \ j)(1 \ j-1)$ várias vezes até obter (1j) como produto de elementos $(12), (23), ..., (j-1 \ j)$. Pela letra a), qualquer permutação pode ser escrita como produto de elementos da forma (1j), e que portanto, também pode ser escrita como produto de elementos $(12), (23), ..., (j-1 \ j)$, ou seja, $S_n = (12), (23), ..., (n-1 \ n) >$.

Questão 3: Primeiro, note que $\tau(i_1i_2,...,i_r)\tau^{-1} = \tau(i_1i_r)(i_1i_{r-1})...(i_1i_2)\tau^{-1} = (\tau(i_1i_r)\tau^{-1})(\tau(i_1i_{r-1})\tau^{-1})...(\tau(i_1i_2)\tau^{-1})$. Vamos determinar a forma de cada $\alpha_j = \tau(i_1i_j)\tau^{-1}$, $j \in \{2,3,...,r\}$. Podemos por $\alpha_j\tau = \tau(i_1i_j)$, e ver que se tivermos $k \neq i_1$ e $k \neq i_j$, então $\alpha_j\tau_{(k)} = \tau(i_1i_j)_{(k)} = \tau_{(k)}$. Ou seja, α_j manda $\tau_{(k)}$ em $\tau_{(k)}$. Também, tem-se $\alpha_j\tau_{(i_1)} = \tau(i_1i_j)_{(i_1)} = \tau_{(i_j)}$ e $\alpha_j\tau_{(i_j)} = \tau(i_1i_j)_{(i_j)} = \tau_{(i_1)}$, ou seja, α_j manda $\tau_{(i_1)}$ em $\tau_{(i_j)}$ e vice-versa. Portanto, α_j é um 2-ciclo da forma $\alpha_j = (\tau(i_1)\tau(i_j))$. Segue que, $\tau(i_1i_2,...,i_r)\tau^{-1} = (\tau(i_1)\tau(i_r))(\tau(i_1)\tau(i_{r-1}))...(\tau(i_1)\tau(i_2)) = (\tau(i_1)\tau(i_2)...\tau(i_r))$ é um r-ciclo da forma desejada.

Questão 4: a) Simplesmente, $\sigma_{k+1} = \tau \sigma_k \tau^{-1} = \tau^k \sigma_1 \tau^{-k} = \tau^k (12) \tau^{-k} = (\tau^k (1) \tau^k (2))$ para $1 \leq k \leq n-2$. Segue que, $\sigma_1 = (12)$, $\sigma_2 = (23)$, $\sigma_3 = (34)$,..., $\sigma_{n-1} = (n-1n)$. Portanto, como cada permutação de S_n é produto de elementos (12), (23),..., (n-1n), cada permutação também será produto de σ_1 e τ , ou seja, tem-se $S_n = \langle \sigma_1, \tau_1 \rangle$.

b) É só notar que (123...n) = (12)(23..n) e fazer argumento análogo ao de cima.

Questão 9: