

Inhaltsverzeichnis

	Autoau der Stoffe		4 4	Saure, Dasen und pri-wert (SW 1)	
	1.1	PSE - Periodensystem	2	4.1 Inhalt	
	1.2	Stoffe	2	4.2 Bedeutung	
	1.3	Aggregatzustand	2	4.3 Säure-Base GGW	
	1.4	Eselsbrücke	2		
	1.5	Isotope	2 5	Redox-Reaktionen	
	1.6	Kugelwolkenmodell	2	5.1 Definition	
	1.7	Schreibweisen von Lewis	2	5.2 Redox Reaktionsgleichung - Ablauf	
			- 1		
2	Stoff	klassen	2 6	(2::	
2	Stoff 2.1	Klassen Bindungen	2 6	Korrosion (SW 13 - 14) 6.1 Inhalt	
2	~	Bindungen	2 6 2 2	6.1 Inhalt	
2	2.1		2	6.1 Inhalt	
2	2.1 2.2	Bindungen	2 2 7	Anhang 7.1 praktische Anwendungen der Re-	
2	2.1 2.2 2.3	Bindungen	2 2 7	6.1 Inhalt	
3	2.1 2.2 2.3 2.4	Bindungen	2 2 7	Anhang 7.1 praktische Anwendungen der Re-	
-	2.1 2.2 2.3 2.4	Bindungen	2 7 2 7	6.1 Inhalt	

1 Aufbau der Stoffe

1.1 PSE - Periodensystem

- Protonen und Neutronen sind sog. Nukleonen, sie wird oftmals auch Massenzahl bezeichnet.
- Atommasse (Molmasse) [g/mol]

1.2 Stoffe

1.3 Aggregatzustand

Aggregatzustand Dispersionsmittel	Dispergierter Stoff	<u>Dispersitätsgrad</u> Heterogen Homogen		
gasförmig (g)	gasförmig (g)	-	Gasgemisch	
gasförmig (g)	flüssig (l)	Nebel	-	
gasförmig (g)	fest (s)	Rauch	-	
flüssig (l)	gasförmig (g)	wenig haltbarer Schaum	Gaslösung	
flüssig (l)	flüssig (l)	wenig haltbare Emulsion	Flüssigkeitslösung	
flüssig (l)	fest (s)	Suspension	feststofflösung	
fest (s)	gasförmig (g)	fester Schaum*		
fest (s)	flüssig (l)	brei		
fest (s)	fest (s)	Feststoffgemische	legierung zweier Metalle	
*(zB_Schaumstoff)				

1.4 Eselsbrücke

HONCIBrIF - "der Brief vom Onkel"

Die Buchstaben stellen dabei die Elemente des PSE dar, die in der Natur nur 2-atomig vorkommen.

Ausnahme: P_4 (Phosphor) und S_8 (Schwefel)

1.5 Isotope

Isotope sind Nuklide (=gleichen Atomsorte) mit der gleichen Ordnungszahl (=Protonen), **aber unterscheiden sich von der Anzahl Neutronen**. Die meisten <u>natürlichen Elemente haben ein oder paar stabile Isotope</u>, während andere Isotope vom gleichen Element <u>radioaktiv</u> sind (=instabil). Dann spricht man von $\alpha, \beta, \gamma - Zerfall$.

1.6 Kugelwolkenmodell

1.7 Schreibweisen von Lewis

- Der Atomrumpf wird durch das Atomsymbol der entsprechenden Atomsorte wiedergegeben.
- Eine einfach besetzte Kugelwolke der Valenzschale wird durch einen Punkt symbolisiert.
- Eine doppelt besetzte Kugelwolke der Valenzschale wird durch einen Strich symbolisiert.
- Punkte und Striche werden regelmässig rund um das Atomsymbol angeordnet.

Anzahl anhand der Hauptgruppen (1-8) im PSE bestimmbar

Beispiel:

Natrium (Na): 1. Hauptgruppe = 1 Ve Kohlenstoff (C): 4. Hauptgruppe = 4 Ve

Bestimmung der Nebengruppen komplizierter/unmöglich

-> nicht Prüfungsrelevant

2 Stoffklassen

Stoffklasse	Bindungstyp	Beispiel	Eigenschaften
Salze	Ionenbindung	NaCl, CaCl ₂	Spröde, hohe Schmelzpunkte, lö- sen sich oft gut in Wasser
Metalle	Metallbindung	Cu, Fe, Al	Leitfähig, glänzend
Molekulare Stoffe	Kovalente Bindung	H ₂ O, CO ₂ , CH ₄	niedrige Schmelz- und Siedepunkte, oft gasför- mig oder flüchtig

2.1 Bindungen

2.1.1 Elektronenpaar-Bindung

Dieser Bindungstyp existiert ausschließlich bei **Nichtmetall**-Atomenverbänden. Diese Atomverbände sind meist **Moleküle** (mit begrenzter Atom-Anzahl). **Beispiele:** H_2O , C_2H_6 (Ethan), C_2H_5OH (Ethanol), NH_3 (Ammoniak)

2.1.2 Metall-Bindung

Dieser Bindungstyp tritt auf, wenn ausschließlich **Metall**-Atome den Atomverband bilden. Dieser besteht aus einem **Metallgitter** aus "unendlich" vielen Atomen.

Beispiele: Pb (Blei), Cu (Kupfer), Ag (Silber), Na (Natrium), Mg (Magnesium), Pd (Palladium)

2.1.3 Ionen-Bindung

Dieser Bindungstyp entsteht immer, wenn **Nichtmetall**-Atome mit **Metall**-Atomen reagiert haben. Er hält die bei der Reaktion gebildeten Ionen in einem Gitter aus "unendlich" vielen Ionen zusammen (= **Ionengitter**).

Beispiele: Na⁺Cl⁻ (Natriumchlorid), Mg²⁺Cl₂⁻ (Magnesiumchlorid), K⁺I⁻ (Kaliumiodid)

2.2 Bindungswinkel

2.3 Metalle und Halbmetalle

ightarrow Metalle besitzen durch delokalisierte Elektronenwolken (VE) dh. freie Ladungsträger, dies führt zu gute Wärme- und el. Leitfähigkeit, Verformbarkeit

2.3.1 Leitfähigkeit bei Metallen

- nimmt mit steigender Temperatur ab
- die Bewegung der Atomrümpfe erhöht sich
- weniger Platz für die Elektronenbewegung

Beispiel Lithium:

Valenzband Vb nicht ganz gefüllt → Elektronen können sich im Band bewegen

Beispiel Bervllium:

 Valenzband komplett gefüllt, aber mit leerem Leitungsband überlappend → Elektronen können sich im Band bewegen

 \rightarrow Halbmetalle haben weder Elektronenwolken noch überlappende Energieniveaus, Nähe vom Valenz- und Leitungsband ermöglichen aber ein Überspringen

2.3.2 Leitfähigkeit bei Halbmetallen

- nimmt mit steigender Temperatur stark zu
- · die Elektronen springen viel zahlreicher auf das Leitungband über
- Platz f
 ür Elektronenbewegung im Leitungsband

2.4 Dotierung von Halbmetallen

Dotierung → Einbringen von Fremdatomen ins Atomgitter eines Halbleiters

• n-Halbleiter

z.B. einzelne As-Atome im Si-Gitter(1:10'000'000)

Ein *\tilde{ubersch\tilde{u}ssiges* Elektron pro As-Atom \in Leittngsband von Si \tilde{uberspringen und sich frei bewegen

• p-Halbleiter

z.B. einzelne B-Atome im Si-Gitter(1:1'000'000)

Ein *fehlendes* Elektron pro B-Atom ⇒ Leitfähigkeit: Elektronen aus dem vollen Valenzband von Si können in diese "Lücke" springen und sich frei bewegen

3 Ablauf chemischer Reaktionen (5-6)

3.1 Inhalt

- Thermochemie
- · Reaktionsgeschwindigkeit
- Katalysatoren

4 Säure, Basen und pH-Wert (sw 7)

4.1 Inhalt

- Definition
- Protolysen
- Säure-Base-Reihe GGW (lese beschreibung!)
- pH-Wert
- · neutralisation

4.2 Bedeutung

4.3 Säure-Base GGW

Bergab = GGW rechts: $HCl + H_2O \rightleftharpoons Cl^- + H_3O^+$ Bergauf = GGW links: $HS^- + H_2O \rightleftharpoons S^{2-} + H_3O^+$

5 Redox-Reaktionen

5.1 Definition

Oxidationsmittel (OM) der Stoff, der Elektronen aufnimmt

und **reduziert** wird $(+e^{-})$

Reduktionsmittel (RM) der Stoff, der die Elektronen abgibt

und **oxidiert** wird $(-e^-)$

5.2 Redox Reaktionsgleichung - Ablauf

1. Findet eine Reaktion überhaupt statt?

Man liest die Redoxreihe von links nach rechts.

Eine **oxidierte Form** reagiert mit einer **reduzierten Form**, die **unter ihr** in der Redoxreihe steht – das nennt man eine *Bergab-Stellung*.

2. Edukte kommen auf die linke Seite, Produkte auf die rechte Seite der Reaktionsgleichung.

- 3. Oxidationszahl nachsehen:
- Um zu erkennen, wie viele Elektronen ein Stoff abgibt oder aufnimmt
- Das zeigt, welche Valenzelektronen bindungsfähig sind (Ladungen).
- Das Elektronennegativere übernimmt die Elektronenladung (z. B. C bei einer C-H-Bindung)
- 4. Ausgleichen der Reaktionsgleichung (Elektronen-, Massen- und Ladungsausgleich).

Ox: Fe
$$\rightarrow$$
 Fe²⁺ + 2e \rightarrow

Re: $(e_2'' + 2e^- \rightarrow lCe^{-1})$

Fe₍₁₎ + $(l_{e(q)} + 2e^- \rightarrow Fe^{2+} + 2Ce^- + 2e^-)$

Fe₍₂₎ + $(l_{e(q)} + 2e^- \rightarrow Fe^{2+} + 2Ce^- + 2e^-)$

6 Korrosion (sw 13 - 14)

6.1 Inhalt

- · Korrosionstypen Metallkorrosion, elektrochemische Korrosion
- oxidschichten (passivierung)
- Korrosionsarten (Flächenkorrosion, Kontaktkorrosion, Lochfrass)
- Belüftungselemente
- · Passivatoren und Depassivatoren
- H2- und O2-Typ Korrosion

7 Anhang

7.1 praktische Anwendungen der Redox Reaktionen

7.1.1 Inhalt

- galvanische Zellen
- Batterien und Akkus
- Brennstoffzellen
- elektrolytische Verfahren

7.2 Flüssigkristalle

7.2.1 Definition

7.2.2 Molekülstruktur

7.2.3 TN-Zelle (Twisted Nematic)

