计算机组织与体系结构实习 Lab 1.2

实习目的

- 1. 通过本 lab,以 RISC-V ISA 的各类处理器为例,了解并掌握比较方法和思路。
- 2. 深刻理解性能公式,并改变指令系统、微结构等因素,利用公式分析可能产生的影响。
- 一. 阅读 2021 年 CF 论文《A Comparative Survey of Open-Source Application-Class RISC-V Processor Implementations》, 完成下述实验, 回答下列问题。
 - 1. 请根据文中给出的或网上查阅的资料,填写下表。

处理器名称	Rocket	ВООМ	CVA6	SHAKTI
支持的 ISA				
基本特性,比如顺序/乱				
序、流水级数等				
Git contribution (community				
activity)				
Google Scholar hits (academic				
impact)				
FPGA Boards (technology				
support)				
Tapeouts (technology support				
especially documents)				

- 2、本文选择应用级处理器作为比较对象,请解释什么是应用级处理器(Application-class processor),并说明这样选择的优点和不足。
- 3、请阐述文中对四个处理器进行比较时采用的思路和方法,并举例说明。

- 4、第五章中使用性能、面积和能效作为评价指标,对上述四个处理器进行 比较,得到结论。试回答:
- 1)对性能进行比较时,采用下图中参数作为评价指标,试一一解释。

DMIPS	CoreMark	SPEC17	Fmax [MHz]	Fmax [MHz]
per MHz	per MHz	IPC	XCVU9P	22FDX

- 2)对能效进行比较时,对比了功耗(power consumption)和能效(energy efficiency),通过论文或查阅资料,解释他们的异同。
- 3) 看下面的图表,尝试分析 BOOM 处理器的特点。

Core	DMIPS per MHz	CoreMark per MHz	SPEC 17 IPC	Fmax [MHz] XCVU9P	Fmax [MHz] 22FDX
Rocket	1.71	2.94	0.33	198	813
BOOM	3.87	6.25	0.50	88	943
CVA6	1.21	2.08	-	112	738
SHAKTI	1.70	2.84	0.23	136	685

Core	FPGA SoC static	FPGA SoC dynamic		ASIC Core dynamic	FPGA SoC MOp/J
Rocket	3080	1820	4.14	15.76	17.4
BOOM	3080	3030	26.37	139.03	31.7
CVA6	3080	1995	9.27	26.30	11.9
SHAKTI	3080	1660	24.20	23.81	17.5

二.分析下列指令系统、微结构等方面的变化,对程序中的指令数目、CPI、时钟周期以及整体性能的影响。如有影响,请在下表内写明提升(增加)或降低(减少)或不确定,并说明原因。如无影响,请写无影响并说明原因。

		程序中的指令数	CPI	时钟周期	整体性能
1	ISA 中增加一条 复杂指令				
2	减少处理器中的通用寄存器数量				
3	改善存储访问速度				
4	保持原有的 32 位 指令系统,并为 常用功能添加 16 位指令系统				
5	在 CISC 处理器的 微结构实现中, 将 CISC 指令先分 解成 RISC 类指令 (微操作),然后 再译码执行。				