

a)
$$a(t) = v'(t)$$

= $60(0-0.7^{t} | n(0.7))$
= $-60(0.7)^{t} | n(0.7)$

d)
$$-60(0.7)^{\frac{1}{5}} \ln(6.7) = 3$$

 $(6.7)^{\frac{1}{5}} = \frac{-3}{60 \ln(6.7)}$
 $t \ln(0.7) = \ln\left(\frac{-1}{20 \ln(6.7)}\right)$
 $t = 5.55$

b)
$$a(2) = -60(0.7)^2 \ln (0.7)$$

= (0.5 m/s^2)

(e)
$$P^{1}(t) = 1200(2^{-6})(\ln 2)(-1)$$

= $-1200(2^{-6})\ln 2$
>(1) = 600 $P^{1}(1) \doteq -4/6$ people/week

a)
$$s'(t) = -(1sin(3t) \cdot 3$$

= -33 sin (3t)

· · · particle switches direction @ t= = For the Anot

- (b) The particle changes detection 和七三子,望,下,暖,…
 - (c) alt = -33 (0)(3t) (3) =-99 (05(34) a(+)=0 when (08/34)=0 3+c至,至,~~ t= [] = [] ...

·V(音)=-33, v(量)=+33,... .. may velocity is 33

$$f(x) = f_{aax}$$
$$= (f_{aax})^{-1}$$

$$f'(x) = -\frac{1}{3} \operatorname{cos}^{2} (\operatorname{sec}^{2} x)$$

$$= -\frac{1}{3} \operatorname{cos}^{2} x \cdot \frac{1}{3} \operatorname{cos}^{2} x$$

$$= -\frac{1}{3} \operatorname{cos}^{2} x$$

$$= -\frac{1}{3} \operatorname{cos}^{2} x$$

$$Y = \int \frac{\tan x}{1 + \tan x}$$

$$= \frac{\sec^2 x}{2 \sqrt{\tan x}}$$

) tanx 70 for y to be diff
Let tanx = 0

$$x = 0, \pi, 2\pi, \dots$$

and tan is undifficial if
 $x = \overline{x}, \overline{x}, \overline{x}, \dots$