Applied Advanced Optimisation iRAT 5

Zhao, Amor (CID: 02019680)

February 13, 2025

Question 1

Write a quadratic programme.

A quadratic programme:

$$\min \quad \frac{1}{2}x^{\top}Px + q^{\top}x + r
s.t. \quad Gx \le h
\quad Ax = b$$

where $P \in \mathbb{S}_+^n$, $G \in \mathbb{R}^{m \times n}$ and $A \in \mathbb{R}^{p \times n}$.

Question 2

Write a geometric programme in posynomial form. Explain why this problem is not convex. Hence, write the same problem in convex form.

A geometric programme:

min
$$f_0(x)$$

s.t. $f_i(x) \le 1$, $i = 1,..., m$
 $h_i(x) = 1$, $i = 1,..., p$

where f_0 , ..., f_m are posynomials and h_1 , ..., h_p are monomials, thus the programme is not convex.

We can introduce $y_i = \log x_i$ to rewrite the posynomials as monomials:

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}} = \sum_{k=1}^{K} e^{a_k^\top y + b_k}$$

where $a_k = (a_{1k}, \dots, a_{nk})$ and $b_k = \log c_k$.

The geometric programme can be rewritten as:

min
$$\sum_{k=1}^{K_0} e^{a_{0k}^{\top} y + b_{0k}}$$

s.t. $\sum_{k=1}^{K_i} e^{a_{ik}^{\top} y + b_{ik}} \le 1$, $i = 1, ..., m$
 $e^{g_i^{\top} y + h_i} = 1$, $i = 1, ..., p$

Take the logarithm of all the functions, we get the convex form:

min
$$\log \left(\sum_{k=1}^{K_0} e^{a_{0k}^{\mathsf{T}} y + b_{0k}} \right)$$

s.t. $\log \left(\sum_{k=1}^{K_i} e^{a_{ik}^{\mathsf{T}} y + b_{ik}} \right) \le 0, \quad i = 1, ..., m$
 $g_i^{\mathsf{T}} y + h_i = 0, \quad i = 1, ..., p$

Question 3

By varying λ in the scalarised problem, you will find different optimal points for the scalarised problem. Explain what these points are for the original convex vector optimisation problem if

- $\lambda >_{K*} 0$
- $\lambda \geqslant_{K_*} 0$

If $\lambda >_{K*} 0$, every solution of the scalarised problem is Pareto optimal for the original optimisation problem. However, if a Pareto optimal point lies on the boundary of the feasible region and thus is not strictly dominated by any other points, we cannot find it with this method.

If $\lambda \geq_{K*} 0$, we can find all Pareto optimal points. In this case, our solution includes the non-Pareto optimal points that lie on the boundary of the feasible region and are not strictly dominated by any other points.

Question 4

Define the conjugate function and use it to write the dual function of the problem

$$\begin{array}{ll}
\mathbf{min} & ||x|| \\
\mathbf{s.t.} & Ax = b
\end{array}$$

The conjugate function:

$$f^*(y) = \sup_{x \in \mathbf{dom} \ f} \left(y^\top x - f(x) \right) = \begin{cases} 0 & ||y||_* \le 1 \\ \infty & \text{otherwise.} \end{cases}$$

where $||y||_*$ is the dual norm.

The dual function:

$$g(\nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = -b^{\top} \nu - f_0^*(-A^{\top} \nu) = \begin{cases} -b^{\top} \nu & ||A^{\top} \nu||_* \le 1\\ \infty & \text{otherwise.} \end{cases}$$

Question 5

Define weak duality, and strong duality. Give conditions which guarantee strong duality for a convex optimisation problem.

Weak duality: the optimal value of the Lagrange dual problem d^* is always less than or equal to the optimal value of the primal problem p^* ($d^* \le p^*$).

Strong duality: the optimal value of the Lagrange dual problem d^* is equal to the optimal value of the primal problem p^* ($d^* = p^*$).

Strong duality holds if Slater's condition is satisfied: if there exists a feasible $x \in$ **int** \mathcal{D} such that the inequality constraints hold strictly, and the problem is convex.

Appendix

1. Write the epigraph form of a convex optimisation problem in standard form.

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1,..., m$
 $Ax = b$

2. Write a linear programme.

$$\begin{array}{ll}
\min & c^{\top} x \\
s.t. & Gx \leq h \\
& Ax = b
\end{array}$$

where $G \in \mathbb{R}^{m \times n}$ and $A \in \mathbb{R}^{p \times n}$.

3. Define a convex vector optimisation problem. Write its scalarised version.

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1,..., m$
 $Ax = b$

The scalarised version:

$$\min_{s.t.} \lambda^{\top} f(x)
s.t. \quad Ax = b
\lambda \ge 0$$

4. Define the dual function.

$$g(\nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$

3

Feedback

Question 1

Some students did not clearly define the matrix *P*, e.g. they did not say that this is a symmetric matrix or, for convex problems, that this is positive semidefinite.

Question 2

Some did not justify why the GP in posynomial form is not convex. Some gave the following incorrect reason: the domain is R_{++} . As R_{++} is a convex set, it has no impact on the convex status of the problem. The real reason is that monomials/posynomials are not convex functions (e.g. x^3) and that the equality constraints are not linear.

Question 3

Some did not explain that the first condition does not give all Pareto optimal points, while the second condition give all plus non-Pareto optimal points. The correct answer is given in the paragraph starting with "In summary" above Example 5.14

Question 4

Some gave the generic dual function instead of giving the one for the problem with the norm