

Université Mohammed Premier Ecole Nationale des Sciences Appliquées d'Al-Hoceima Département de Mathématiques et d'Informatique

d'analyse 4 Examen

25 juin 2018, durée: 2h.

CP2, Semestre 4. Année universitaire: 2017-2018.

Fouzia. MORADI N.B: il sera tenu compte de la rédaction et la clarté des réponses.

Exercice 1.: (7 points)

Soit la fonction $F:]1,+\infty[\to\mathbb{R}$ définie par :

$$F(x) = \int_{x}^{x^2} \frac{dt}{(lnt)^2}$$

1pt

1) Montrer que F est de classe C^1 sur $]1, +\infty[$.

2) Montrer que:

$$\forall x \in]1, +\infty[: F'(x) = \frac{x-2}{2(\ln x)^2}$$

1pt

1pt

1pt

3) Dresser le tableau de variations de F.

4) Déterminer $\lim_{x\to+\infty} F(x)$.

5) a) Montrer que: $\forall x > 1$: $0 < lnx \le x - 1$

 $\lim_{x\to 1^+} F(x) = +\infty.$ b) Montrer que:

6) Etablir la relation :

$$F(x) = \frac{x(2-x)}{2lnx} + \int_{x}^{x^2} \frac{dt}{lnt}$$

7) En déduire la valeur de :

$$\int_{2}^{4} \frac{1}{lnt} \left(\frac{1}{lnt} - 1 \right) dt$$

1pt

0,5pt

1pt

0,5pt

	Exercice 2 (7 points):
	Soit $(x,y) \in \mathbb{R}_+^* \times \mathbb{R}$ et $g(x,y) = \frac{\sin(xy)}{x} e^{-x}$
0,5pt	1) a) Calculer $\lim_{x\to 0^+} g(x,y)$
0,5pt	b) Montrer que: $\forall x \ge 1$: $ g(x,y) \le e^{-x}$
0,5pt	c) En déduire que la fonction : $x \mapsto g(x,y)$ est intégrable sur
0,501	[0,+∞[.
	2) Montrer que g est dérivable par rapport à y sur $\mathbb{R}_+^* \times \mathbb{R}$ et
1pt	calculer $\frac{\partial g}{\partial y}(x,y)$.
	3) Soit: $I(y) = \int_0^{+\infty} g(x, y) dx$
1pt	a) Montrer que l'est de classe C^1 sur \mathbb{R} .
1pt	b) Déterminer $I'(y)$.
	c) Par intégration par parties, montrer que :
1pt	$I'(y) = \frac{1}{1+v^2}$
	,
	d) En déduire que :
1pt	$\forall y \in \mathbb{R}: \int_0^{+\infty} \frac{\sin(xy)}{x} e^{-x} dx = Arctany$
	e) Calculer la valeur suivante :
	$\int_{-\infty}^{+\infty} \sin x $
0,5pt	$A = \int_0^{+\infty} \frac{\sin x}{x} e^{-x} dx$
	Exercice 3 : (6 points)
	1) Considérons le champ vectoriel:
1nt	1) Considérons le champ vectoriel:
1pt	1) Considérons le champ vectoriel: $ \vec{V}(x,y,z) = (yz^2, \qquad xz^2 + z, \qquad 2xyz + 2z + y) $ a) Déterminer $\overrightarrow{rot}\vec{V}$.
	1) Considérons le champ vectoriel: $\vec{V}(x,y,z) = (yz^2, xz^2 + z, 2xyz + 2z + y)$
1pt 2pt	1) Considérons le champ vectoriel: $ \vec{V}(x,y,z) = (yz^2, xz^2 + z, 2xyz + 2z + y) $ a) Déterminer \overrightarrow{rotV} . b) En déduire que \vec{V} dérive d'un potentiel et déterminer ses potentiels.
	1) Considérons le champ vectoriel: $ \vec{V}(x,y,z) = (yz^2, xz^2 + z, 2xyz + 2z + y) $ a) Déterminer \overrightarrow{rotV} . b) En déduire que \vec{V} dérive d'un potentiel et déterminer ses potentiels. c) Calculer la circulation de \vec{V} le long de l'hélice H paramétrée
2pt	1) Considérons le champ vectoriel: $\vec{V}(x,y,z) = (yz^2, xz^2 + z, 2xyz + 2z + y)$ a) Déterminer \overrightarrow{rotV} . b) En déduire que \vec{V} dérive d'un potentiel et déterminer ses potentiels. c) Calculer la circulation de \vec{V} le long de l'hélice H paramétrée par :
	1) Considérons le champ vectoriel: $\vec{V}(x,y,z) = (yz^2, xz^2 + z, 2xyz + 2z + y)$ a) Déterminer \overrightarrow{rotV} . b) En déduire que \vec{V} dérive d'un potentiel et déterminer ses potentiels. c) Calculer la circulation de \vec{V} le long de l'hélice H paramétrée par :
2pt	1) Considérons le champ vectoriel: $ \vec{V}(x,y,z) = (yz^2, xz^2 + z, 2xyz + 2z + y) $ a) Déterminer \overrightarrow{rotV} . b) En déduire que \vec{V} dérive d'un potentiel et déterminer ses potentiels. c) Calculer la circulation de \vec{V} le long de l'hélice H paramétrée
2pt	1) Considérons le champ vectoriel: $\vec{V}(x,y,z) = (yz^2, xz^2 + z, 2xyz + 2z + y)$ a) Déterminer \overrightarrow{rotV} . b) En déduire que \vec{V} dérive d'un potentiel et déterminer ses potentiels. c) Calculer la circulation de \vec{V} le long de l'hélice H paramétrée par :
2pt	1) Considérons le champ vectoriel: $\overrightarrow{V}(x,y,z) = (yz^2, xz^2 + z, 2xyz + 2z + y)$ a) Déterminer \overrightarrow{rotV} . b) En déduire que \overrightarrow{V} dérive d'un potentiel et déterminer ses potentiels. c) Calculer la circulation de \overrightarrow{V} le long de l'hélice H paramétrée par : $\begin{cases} x(t) = cost \\ y(t) = \sin t avec \ t \in \left[0, \frac{\pi}{4}\right] \end{cases}$
2pt	1) Considérons le champ vectoriel: $\vec{V}(x,y,z) = (yz^2, xz^2 + z, 2xyz + 2z + y)$ a) Déterminer \overrightarrow{rotV} . b) En déduire que \vec{V} dérive d'un potentiel et déterminer ses potentiels. c) Calculer la circulation de \vec{V} le long de l'hélice H paramétrée par :