

SEMINARIO MODELIZACIÓN DE NICHO ECOLÓGICO

María Ángeles Pérez m.angeles582@gmail.com

Descripción simplificada de un sistema físico real, en la que aparecen algunas de sus propiedades (Joly 1988)

Ningún modelo existente en el mundo real puede ser representado por un modelo simple (Box 1976)

All models are wrong, but some are useful

- Versión manejable de un sistema complejo
- Comprender procesos del sistema
- Generar y testar hipótesis
- Gestión y planes de conservación
- Predicción y extrapolación en nuevos escenarios espaciales y temporales

• Estadísticos vs teóricos

Tipos

Estadísticos vs teóricos

Simples vs complejos

Tipos

Estadísticos vs teóricos

• Simples vs complejos

Tipos • Estáticos vs dinámicos

Estadísticos vs teóricos

Simples vs complejos

Tipos • Estáticos vs dinámicos

• Correlativos vs mecanicistas

 El nicho es una región del hiperespacio n-dimensional que representa el conjunto de situaciones ambientales en las que una especie puede sobrevivir y reproducirse (Hutchinson, 1957)

- La probabilidad de persistencia varía en diferentes partes del nicho
- Concepto de exclusión competitiva
- Momento específico en el tiempo

Environmental axis 1

 El nicho es una región del hiperespacio n-dimensional que representa el conjunto de situaciones ambientales en las que una especie puede sobrevivir y reproducirse (Hutchinson, 1957)

- Concepto de exclusión competitiva
- Momento específico en el tiempo

Environmental axis 1

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2010, 1, 330-342

doi: 10.1111/j.2041-210X.2010.00036.x

The art of modelling range-shifting species

Jane Elith^{1*}, Michael Kearney² and Steven Phillips³

Data and Model	Current	Future
1 Mechanistic		
10 Weights Abs mechanistic GAM		
11 Weights Abs reacbable GAM + mechanistic vars		

Ideally...

Relación causal conocida

Species Distribution Models?

Envelope Models?

Habitat Suitability Models?

Realized niche?

Fundamental niche?

Datos de presencia

Presence-only

Alta disponibilidad (GBIF)

No permiten calcular probabilidad de presencia

No tienen en cuenta el sesgo en el muestreo

Presence/absence

Datos de mayor calidad

Tienen en cuenta el sesgo en el muestreo

Permiten calcular probabilidad de presencia

Baja disponibilidad

Detectabilidad – Falsas ausencias

Datos de presencia

Presence/pseudoabsence

Fáciles de generar

Útiles en árboles de regresión

Presence/background

Hace menos asunciones

Pueden solapar con las presencias

Asunciones ecológicas discutibles

No son ausencias reales

No tienen en cuenta el sesgo en el muestreo

Problemas con árboles de regresión

Deben ponderarse en modelos estadísticos

Extensión

Tipos

Disponibilidad

Criterios de selección

Variables ambientales

1 x 1 km 10 x 10 km

Variables ambientales

- Afectar a la distribución de la especie
- Características esenciales:

 Mapas raster para GIS
 - Misma extensión y resolución
- Resolución espacial acorde a datos de presencia Autocorrelación espacial
- Jerarquía de influencia (clima vs topografia)
- Criterios de selección: correlación VIF

Tipo	Dataset	Sitio web	
Clima	WORLDCLIM	/I http://www.worldclim.org/	
Topografía	SRTM	http://www2.jpl.nasa.gov/srtm/	
NDVI	GIMMS	http://glcf.umd.edu/data/gimms/	
Vegetación	MODIS VCF	http://glcf.umd.edu/data/vcf/	
Huella humana	Human Footprint	http://sedac.ciesin.columbia.edu	
Usos del suelo	GLOBCOVER	http://www.edenextdata.com	

Variables ambientales

Diferentes proyecciones por algoritmo

Diferentes proyecciones por algoritmo

Diferentes ajuste por algoritmo

Predictive accuracy (AUC)

Evaluación

- Basados en falsos positivos y negativos
- Informan sobre la capacidad de ajuste del modelo para las condiciones de calibrado
- Valores equivalentes de adecuación no implican proyecciones geográficas similares
- No dicen nada sobre la capacidad de predecir en nuevos escenarios
- Muchos dependen de la extensión de estudio

		Observed		
		Present	Absent	Sum
Α	Present	TP (true positive)	FP (false positive)	Total predicted present
	Absent	FN (false negative)	TN (true negative)	Total predicted absent
	Sum	Total observed present	Total observed absent	Total number observations

Fielding AH y Bell JF 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models.

Environmental Conservation 24(1), 38-49

Interpretación

Depende de los objetivos, los datos utilizados, los algoritmos utilizados...

Species turnover

Climate change threats to plant diversity in Europe Thuiller et al. 2005

Comparación de modelos

Interpretación

Asunción de equilibrio

Hutchinson (1957):

"Una especie está en equilibrio con el clima si aparece en todas las áreas climáticamente apropiadas y está ausente de todas las que no lo son"

Habitats adecuados pueden no ser ocupados por:

- Perturbaciones recientes que hayan erradicado la especie
- Si la especie está todavía expandiéndose hacia áreas recientemente disponibles
- Limitaciones en la capacidad de colonización: migración, fragmentación de hábitat, densidad de población...

Asunción conservadurismo de nicho

Inmutabilidad del nicho en el tiempo

Tendencia de especies relacionadas a tener nichos similares

Testar niche shifts:

- calibrar el modelo con datos actuales y proyectar a escenarios pasados
- calibrar con datos de peloregistros y proyectar al presente

Dinámica poblacional

- Implicaciones sobre los registros de presencia
- ¿Siempre una presencia es un hábitat adecuado?
- ¿Siempre una ausencia es un hábitat inadecuado?
- Tasas demográficas influyen en la capacidad de colonización

Tasas de migración

- Particular relevancia en mapas de distribución para conservación o especies invasoras
- Datos desconocidos para la mayoría de las especies
- Cuando se incluyen en los estudios suele ser como total o nula dispersión
- Proyecciones de cambio climático más realistas

Variables ambientales exclusivamente climáticas

- No considera variables ambientales de otra naturaleza ni interacciones bióticas
- Escaso poder predictivo a escala local
- Considerable incertidumbre en las predicciones

So, use SDM with caution

