Solution to Practice Final Examination

Instructor: Cholwich Nattee

1 Multi-Cycle Implementation

1. The control signals for the given sequence of instructions.

Cycle 1: Fetch rmmov %rax, 0x100(%rcx)

		,	• •				
nRegid	n Val C	regA	regB	regE	regM	aluA	aluB
1	1	XX	XX	00	00	XX	Х
aluF	setCnd	mAddr	mData	mRd	mWrt	newPC	vPWrt
XX	0	Х	Х	Х	0	XX	1
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pcWrt		
1	0	0	0	0	0		

Cycle 2: Decode

Cycle 2. D	ccoac						
nRegid	n Val C	regA	regB	regE	regM	aluA	aluB
Х	Х	10	10	00	00	XX	Χ
aluF	setCnd	mAddr	mData	mRd	mWrt	newPC	vPWrt
XX	0	Х	Х	Х	0	XX	0
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pc Wrt		
0	1	1	0	0	0		

Cycle 3: Execute

nRegid	n Val C	regA	regB	regE	regM	aluA	aluB
X	Х	XX	XX	00	00	10	1
aluF	setCnd	mAddr	mData	mRd	mWrt	newPC	vPWrt
00	0	Х	Х	Х	0	XX	0
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pc Wrt		
0	0	0	1	0	0		

Cycle 4: Memory

nRegid	nValC	regA	regB	regE	regM	aluA	aluB
Х	Х	XX	XX	00	00	XX	Х
aluF	setCnd	mAddr	mData	mRd	mWrt	newPC	vPWrt
XX	0	0	0	0	1	XX	0
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pc Wrt		
0	0	0	0	0	0		

Cycle 5: PC Update

nRegid	nValC	regA	regB	regE	regM	aluA	aluB
Х	Х	XX	XX	00	00	XX	Х
aluF	setCnd	mAddr	mData	mRd	m Wrt	newPC	vPWrt
XX	0	Х	Х	Х	0	00	0
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pc Wrt		
0	0	0	0	0	1		

nRegid	nValC	regA	reqB	reqE	regM	aluA	aluB
1	0	XX	XX	00	00	XX	X
aluF	setCnd	mAddr	mData	mRd	mWrt	newPC	vPWrt
XX	0	Х	Х	Х	0	XX	1
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pcWrt		
1	0	0	0	0	0		

Instructor: Cholwich Nattee

Cycle 7: Decode

nRegid	n Val C	regA	regB	regE	regM	aluA	aluB
Х	Х	10	10	00	00	XX	Х
aluF	setCnd	mAddr	mData	mRd	m Wrt	newPC	vPWrt
XX	0	Х	Х	Х	0	XX	0
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pc Wrt		
0	1	1	0	0	0		

Cycle 8: Execute

nRegid	n Val C	regA	regB	regE	regM	aluA	aluB
Х	Х	XX	XX	00	00	11	1
aluF	setCnd	mAddr	mData	mRd	m Wrt	newPC	vPWrt
00	1	Х	Х	Х	0	XX	0
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pcWrt		
0	0	0	1	0	0		

Cycle 9: Write Back

nRegid	n Val C	regA	regB	regE	regM	aluA	aluB
Х	Х	XX	XX	10	00	XX	Х
aluF	setCnd	mAddr	mData	mRd	mWrt	newPC	vPWrt
XX	0	Х	Х	Х	0	XX	0
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pcWrt		
0	0	0	0	0	0		

Cycle 10: PC Update

Cy 010 10. 1	Сераше						
nRegid	n Val C	regA	regB	regE	regM	aluA	aluB
Х	Х	XX	XX	00	00	XX	Х
aluF	setCnd	mAddr	mData	mRd	m Wrt	newPC	vPWrt
XX	0	Х	Х	Х	0	00	0
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pc Wrt		
0	0	0	0	0	1		

Cycle 11: Fetch push %rdx

Cycic 11.1	coon pusi	701 GX					
nRegid	n Val C	regA	regB	regE	regM	aluA	aluB
1	0	XX	XX	00	00	XX	Х
aluF	setCnd	mAddr	mData	mRd	mWrt	newPC	vPWrt
XX	0	Х	Х	Х	0	XX	1
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pcWrt		
1	0	0	0	0	0		

nRegid	n Val C	regA	regB	regE	regM	aluA	aluB
Х	Х	10	01	00	00	XX	Х
aluF	setCnd	mAddr	mData	mRd	m Wrt	newPC	vPWrt
XX	0	Х	Х	Х	0	XX	0
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pcWrt		
0	1	1	0	0	0		

Instructor: Cholwich Nattee

Cycle 13: Execute

nRegid	n Val C	regA	regB	regE	regM	aluA	aluB
Χ	Х	XX	XX	00	00	00	1
aluF	setCnd	mAddr	mData	mRd	mWrt	newPC	vPWrt
00	0	Х	Х	Х	0	XX	0
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pcWrt		
0	0	0	1	0	0		

Cycle 14: Memory

nRegid	nValC	regA	regB	regE	regM	aluA	aluB
Х	Х	XX	XX	00	00 00		Х
aluF	setCnd	mAddr	mData	mRd	mWrt	newPC	vPWrt
XX	0	0	0	0	1	XX	0
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pc Wrt		
0	0	0	0	0	0		

Cycle 15: Write Back

nRegid	n Val C	regA	regB	regE	regM	aluA	aluB	
Х	Х	XX	XX	01	00	XX	Х	
aluF	setCnd	mAddr	mData	mRd	m Wrt	newPC	vPWrt	
XX	0	Х	Х	Х	0	XX	0	
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pc Wrt			
0	0	0	0	0	0			

Cycle 16: PC Update

nRegid	n Val C	regA	regB	regE	regM	aluA	aluB
Х	Х	XX	XX	00	00	XX	Х
aluF	setCnd	mAddr	mData	mRd	mWrt	newPC	vPWrt
XX	0	Х	Х	Х	0	00	0
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pc Wrt		
0	0	0	0	0	1		

2. The control signal for $imrmov\ V$, rA (C|0|rA|F|V|)

Cycle 1: Fetch

0,010 1. 10	- J											
nRegid	n Val C	regA	regB	regE	regM	aluA	aluB					
1	1	XX	XX	00	00	XX	Х					
aluF	setCnd	mAddr	mData	mRd	m Wrt	newPC	vPWrt					
XX	0	Х	Х	Х	0	XX	1					
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pcWrt							
1	0	0	0	0	0							

Instructor: Cholwich Nattee

Cycle 2: Execute

nRegid	n Val C	regA	regB	regE	regM	aluA	aluB
Х	Х	XX	XX	00	00	10	0
aluF	setCnd	mAddr	mData	mRd	m Wrt	newPC	vPWrt
00	0	Х	Х	Х	0	XX	0
ir Wrt	vAWrt	vBWrt	vEWrt	vMWrt	pc Wrt		
0	0	0	1	0	0		

Cycle 3: Memory

nRegid	nValC	regA	regB	regE	regM	aluA	aluB
Х	Х	XX	XX	00	00	XX	Х
aluF	setCnd	mAddr	mData	mRd	mWrt	newPC	vPWrt
XX	0	0	Х	1	0	XX	0
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pc Wrt		
0	0	0	0	0	0		

Cycle 4: Write Back

nRegid	n Val C	regA	regB	regE	regM	aluA	aluB
Х	Х	XX	XX	00	10	XX	Х
aluF	setCnd	mAddr	mData	mRd $mWrt$		newPC	vPWrt
XX	0	Х	Х	Х	0	XX	0
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pc Wrt		
0	0	0	0	0	0		

Cycle 5: PC Update

nRegid	nValC	regA	regB	regE	regM	aluA	aluB
X	Х	XX	XX	00	00 00		Х
aluF	setCnd	mAddr	mData	mRd	m Wrt	newPC	vPWrt
XX	0	Х	Х	Х	0	00	0
irWrt	vAWrt	vBWrt	vEWrt	vMWrt	pcWrt		
0	0	0	0	0	1		

2 Pipelining

1. Show how the sequence of instructions be executed

```
1) rrmov %rax, %rbx
2) rrmov %rax, %rcx
3) rmmov %rbx, 4(%rdx)
4) mrmov 8(%rcx), %rdx
5) add %rdx, %rbx
6) irmov 5, %rax
7) add %rax, %rdx
```

Instructor: Cholwich Nattee

Inst	valA	valB	1	2	3	4	5	6	7	8	9	10	11	12
1			F	D	Е	M	W							
2				F	D	Е	M	W						
3	M_valE				F	D	Е	Μ	W					
4		M_valE				F	D	Е	M	W				
5	m_valM						F	X	D	Е	Μ	W		
6									F	D	Ε	M	W	
7	e_valE	W_valE								F	D	Е	M	W

2. Program 1 runs faster than Program 2. This is because the repetition structure in Program 1 was designed so that the condition for jge is *true* only in the last iteration. This conforms with the *Assume Branch Not Taken* technique to solve the control hazards.

```
irmov $10, %rsi
irmov $0, %rax
irmov $1, %rdi
L: cmp %rsi, %rax
jge E
add %rdi, %rax
jmp L
E: hlt
```

```
irmovl 10, %esi
irmovl 0, %eax
irmovl 1, %edi
L: addl %edi, %eax
cmpl %esi, %eax
jl L
hlt
```

3 Cache Memory

- 1. The hit rate is 75% when the block size is 16 bytes.
- 2. The hit rate is 93.70% when the block size is 64 bytes (16 integers) since there were $\lceil \frac{1000}{16} \rceil = 63$ misses in the cache access.

Instructor: Cholwich Nattee

4 Vector Processing

```
#include<stdio.h>
#include<stdlib.h>
#include<immintrin.h>
#include<x86intrin.h>
#include<math.h>
#define ALIGN __attribute__ ((aligned (32)))
int main() {
    int i, n;
    double ALIGN A[] = \{1,2,3,4\};
    double ALIGN B[] = \{4,4,4,4,4\};
    double ALIGN S[] = \{0,0,0,0\};
    double sum;
    __m256d a, b, s;
    printf("Enter n: ");
    scanf("%d", &n);
    a = _{mm256\_load\_pd(A)};
    b = _{mm256\_load\_pd(B)};
    s = _mm256_load_pd(S);
    for(i=0; i<n/4; i++) {
        s = _mm256_add_pd(s, a);
        a = _{mm256}add_{pd}(a, b);
    }
    s = _mm256\_add\_pd(s, _mm256\_permute2f128\_pd(s, s, 1));
    s = _mm256_add_pd(s, _mm256_permute_pd(s, 5));
    _mm256_store_pd(S, s);
    sum = S[0];
    for(i=n/4*4+1; i<=n; i++) {
        sum += i;
    }
```

```
printf("Sum = %.01f\n", sum);
return 1;
}
```