

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Probabilidad Examen VII

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos José Juan Urrutia Milán

Granada, 2024-2025

Asignatura Probabilidad.

Curso Académico 2021-22.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Descripción Examen Extraordinario.

Fecha 15 de febrero de 2022.

Ejercicio 1. Sean X_1, X_2, \ldots, X_n variables aleatorias continuas e independientes, tales que $\exists E[X_i] \ \forall i = 1, \ldots, n$, con momento no centrado de orden dos finito. Justificar que:

- a) (0.5 puntos) $\exists Var(\sum_{i=1}^{n} a_i X_i) = \sum_{i=1}^{n} a_i^2 Var(X_i) \ \forall a_1, \dots, a_n \in \mathbb{R}.$
- b) (0.5 puntos) (X_1, \ldots, X_n) es un vector aleatorio continuo.

Ejercicio 2. Sea (X,Y) una variable aleatoria bidimensional con distribución uniforme en el recito

$$C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1 \quad x, y \geqslant 0\}$$

- a) (1.25 puntos) Calcular la función de distribución de probabilidad conjunta.
- b) (1.25 puntos) Calcular las funciones de densidad condicionadas.

Ejercicio 3. Sea considera (X,Y) la distribución uniforme en el cuadrado unidad.

- a) (1.25 puntos) Calcular la función de densidad de probabilidad de Z = (X + Y, X Y).
- b) (1.25 puntos) La función de densidad de proabbilidad conjunta del máximo y el mínimo.

Ejercicio 4. Dado un vector aleatorio con función generatriz de momentos

$$M_{X_1,X_2}(t_1,t_2) = \left(\frac{e^{t_1}}{2} + \frac{e^{t_2}}{4} + \frac{1}{4}\right)^5$$
 $t_1,t_2 \in \mathbb{R}$

Calcular la razón de correlación y el coeficiente de correlación lineal de las variables X_1 y X_2 .

Ejercicio 5. Dado el vector bidimensional (X, Y) con la siguiente función masa de probabilidad conjunta:

X Y	0	1	2
1	$^{1}/_{4}$	0	0
2	0	$^{1}/_{4}$	0
3	$^{1}/_{4}$	0	$^{1}\!/_{4}$

- a) (1.25 puntos) Obtener la mejor aproximación minimo-cuadrática a la variable Y conocidos valores de la variable X, así como calcular una medida de la bondad del ajuste.
- b) (1.25 puntos) Obtener las ecuaciones de la rectas de regresión de Y|X y X|Y y el error cuadrático medio.

Observación. A tener en cuenta:

- En el apartado 2.a se obtiene hasta 1 punto si las integrales se dejan indicadas y hasta 1.25 puntos si se obtienen sus primitivas de forma explícita.
- Si necesitara obtener la primitiva de la función $f(x) = \sqrt{1-x^2}$, realizar el cambio de variable unidimensional $x = \sin(t)$.