# Metropolis Hastings Sampling for Bayesian Inference

Simon Wood, University of Edinburgh, U.K.

## **Bayesian Inference**

- Suppose we have data y and parameters of a model for the data  $\theta$ .
- Suppose that we *treat the parameters as random* and describe our beliefs/knowledge about  $\theta$ , *prior* to observing  $\mathbf{y}$ , by p.d.f.  $\pi(\theta)$ .
- ▶ Denoting densities by  $\pi(\cdot)$ , recall that from basic conditional probability the joint density of  $\mathbf{y}$  and  $\boldsymbol{\theta}$  can be written

$$\pi(\mathbf{y}, \boldsymbol{\theta}) = \pi(\mathbf{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta}) = \pi(\boldsymbol{\theta}|\mathbf{y})\pi(\mathbf{y})$$

Re-arranging gives Bayes theorem

$$\pi(\boldsymbol{\theta}|\mathbf{y}) = \pi(\mathbf{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})/\pi(\mathbf{y})$$

The *posterior* density on the left describes our knowledge about  $\theta$  after having observed  $\mathbf{y}$ . Notice that  $\pi(\mathbf{y}|\theta)$  is the likelihood.

# Simulating from the posterior, $\pi(\theta|\mathbf{y})$

- For most interesting models there is no closed form for  $\pi(\theta|\mathbf{y})$ .
- Even evaluating  $\pi(\boldsymbol{\theta}|\mathbf{y})$  is usually impractical as

$$\pi(\mathbf{y}) = \int \pi(\mathbf{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})d\boldsymbol{\theta}$$

is usually intractable.

- ▶ But it turns out that we can simulate samples from  $\pi(\theta|\mathbf{y})$ , in a way that only requires evaluation of  $\pi(\mathbf{y}|\theta)\pi(\theta)$  (at the observed  $\mathbf{y}$ ), thereby bypassing  $\pi(\mathbf{y})$ .
- ▶ We simulate sequences of random vectors  $\theta_1, \theta_2, \theta_3, \ldots$  so that:
  - 1.  $\pi(\boldsymbol{\theta}_i|\boldsymbol{\theta}_{i-1},\boldsymbol{\theta}_{i-2},\ldots) = P(\boldsymbol{\theta}_i|\boldsymbol{\theta}_{i-1})$  (Markov property).
  - 2.  $\boldsymbol{\theta}_i \sim \pi(\boldsymbol{\theta}|\mathbf{y})$ .

This is known as Markov Chain Monte Carlo (MCMC).

# The condition for MCMC to work: Reversibility

A Markov chain, with transition kernel  $P(\theta_i|\theta_{i-1})$ , will generate from  $\pi(\theta|\mathbf{y})$  if it satisfies the reversibility condition

$$P(\boldsymbol{\theta}_i|\boldsymbol{\theta}_{i-1})\pi(\boldsymbol{\theta}_{i-1}|\mathbf{y}) = P(\boldsymbol{\theta}_{i-1}|\boldsymbol{\theta}_i)\pi(\boldsymbol{\theta}_i|\mathbf{y})$$

Why? If  $\theta_{i-1} \sim \pi(\theta|\mathbf{y})$  then LHS is joint density of  $\theta_i$ ,  $\theta_{i-1}$  from the chain. Integrating out  $\theta_{i-1}$  we get the marginal for  $\theta_i$ 

$$\int P(\boldsymbol{\theta}_i|\boldsymbol{\theta}_{i-1})\pi(\boldsymbol{\theta}_{i-1}|\mathbf{y})d\boldsymbol{\theta}_{i-1} = \int P(\boldsymbol{\theta}_{i-1}|\boldsymbol{\theta}_i)\pi(\boldsymbol{\theta}_i|\mathbf{y})d\boldsymbol{\theta}_{i-1} = \pi(\boldsymbol{\theta}_i|\mathbf{y})$$

- i.e.  $\theta_i \sim \pi(\boldsymbol{\theta}|\mathbf{y})$ .
- So given reversibility, if  $\theta_1$  is not impossible under  $\pi(\theta|\mathbf{y})$  then  $\theta_i \sim \pi(\theta|\mathbf{y})$  for  $i \geq 1$ .

# Constructing a reversible $P(\theta_i|\theta_{i-1})$ : Metropolis Hastings

- We can construct an appropriate P, based on making a random proposal for  $\theta_i$  and then accepting or rejecting the proposal with an appropriately tuned probability.
- Let  $q(\theta_i|\theta_{i-1})$  be a *proposal* distribution, chosen for convenience. e.g.  $\theta_i \sim N(\theta_{i-1}, \mathbf{I}\sigma_{\theta}^2)$  for some  $\sigma_{\theta}^2$ .
- Metropolis Hastings iterates the following two steps, starting from some  $\theta_0$  and i = 1...
  - 1. Generate a proposal  $\theta'_i \sim q(\theta_i | \theta_{i-1})$ .
  - 2. Accept and set  $\theta_i = \theta'_i$  with probability

$$\alpha = \min \left\{ 1, \frac{\pi(\mathbf{y}|\boldsymbol{\theta}_i')\pi(\boldsymbol{\theta}_i')q(\boldsymbol{\theta}_{i-1}|\boldsymbol{\theta}_i')}{\pi(\mathbf{y}|\boldsymbol{\theta}_{i-1})\pi(\boldsymbol{\theta}_{i-1})q(\boldsymbol{\theta}_i'|\boldsymbol{\theta}_{i-1})} \right\}$$

otherwise set  $\theta_i = \theta_{i-1}$ . Increment *i* by 1.

# Why Metropolis Hastings works in theory

- Let's compress notation writing  $\Pi(\theta)$  for  $\pi(\theta|\mathbf{y}) \propto \pi(\mathbf{y}|\theta)\pi(\theta)$  (y is fixed, after all).
- ▶ So the MH acceptance probability for  $\theta'$  in place of  $\theta$  is

$$\alpha(\boldsymbol{\theta}', \boldsymbol{\theta}) = \min \left\{ 1, \frac{\Pi(\boldsymbol{\theta}')q(\boldsymbol{\theta}|\boldsymbol{\theta}')}{\Pi(\boldsymbol{\theta})q(\boldsymbol{\theta}'|\boldsymbol{\theta})} \right\}$$

▶  $P(\theta'|\theta) = q(\theta'|\theta)\alpha(\theta',\theta)$  so for  $\theta \neq \theta'$ 

$$\Pi(\boldsymbol{\theta})P(\boldsymbol{\theta}'|\boldsymbol{\theta}) = \Pi(\boldsymbol{\theta})q(\boldsymbol{\theta}'|\boldsymbol{\theta})\min\left\{1, \frac{\Pi(\boldsymbol{\theta}')q(\boldsymbol{\theta}|\boldsymbol{\theta}')}{\Pi(\boldsymbol{\theta})q(\boldsymbol{\theta}'|\boldsymbol{\theta})}\right\}$$
$$= \min\{\Pi(\boldsymbol{\theta})q(\boldsymbol{\theta}'|\boldsymbol{\theta}), \Pi(\boldsymbol{\theta}')q(\boldsymbol{\theta}|\boldsymbol{\theta}')\} = \Pi(\boldsymbol{\theta}')P(\boldsymbol{\theta}|\boldsymbol{\theta}')$$

(last equality by symmetry) — reversibility! Trivial if  $\theta = \theta'$ .

## Making Metropolis Hastings work in practice

- The chain output will be correlated. It may take a long time to reach the high probability region of  $\pi(\theta|\mathbf{y})$  from a poor  $\theta_0$ .
- ➤ So we usually have to discard some initial portion of the simulation (burn in).
- The proposal distribution will make a big difference to how rapidly the chain explores  $\pi(\theta|\mathbf{y})$ 
  - Large ambitious proposals will result in frequent rejection, and the chain remaining stuck for many steps.
  - ➤ Small over cautious proposals will lead to high acceptance, but slow movement as each step is small.
- ▶ It is necessary to examine chain output to see how quickly the sampler is exploring  $\pi(\theta|\mathbf{y})$  (how well it is *mixing*), and to tune the proposal if necessary.
- Output must also be checked for convergence to the high probability region of  $\pi(\theta|\mathbf{y})$ .

#### An example

- Consider the nhtemp supplied with base R, giving annual mean temperatures,  $T_i$ , in New Haven over several years.
- ➤ Suppose we want to model the data using a heavy tailed distribution, and adopt the model

$$(T_i - \mu)/\sigma \sim_{\text{i.i.d.}} t_{\nu}$$

where  $\mu$ ,  $\sigma$  and  $\nu$  are parameters. If  $f_{\nu}$  is the p.d.f. of a  $t_{\nu}$  distribution then the p.d.f. for  $T_i$  is  $f(t) = f_{\nu}((t - \mu)/\sigma)/\sigma$ 

► The log likelihood for this model can be coded:

```
11 <- function(theta,temp) {
  mu <- theta[1];sig <- exp(theta[2])
  df = 1 + exp(theta[3])
  sum(dt((temp-mu)/sig,df=df,log=TRUE) - log(sig))
}</pre>
```

#### **Priors and Proposals**

- ► To complete the model, we need priors for the parameters.
- Let's use improper uniform priors for  $\theta_1 = \mu$  and  $\theta_2 = \log(\sigma)$ .
  - ▶ Note: these parts of the prior cancel in the MH acceptance ratio.
- ▶  $\nu$  becomes somewhat unidentifiable if it is too high, so for convenience, let's assume a prior  $\log \nu = \theta_3 \sim N(3, 2^2)$ .
- Now the Bayesian model is complete, we need to pick a proposal distribution to form the basis for an MH sampler.
- Let's use the *random walk* proposal  $\theta'_i \sim N(\theta_{i-1}, \mathbf{D})$ , where **D** is diagonal, and we will need to tune its elements.
  - Note that for this proposal  $q(\theta_i'|\theta_{i-1}) = q(\theta_{i-1}|\theta_i')$ , so q cancels in MH acceptance ratio.
- ► Remember that the proposal does not change the posterior, but will affect how quickly the chain explores the posterior.

## MH sampler code

```
ns < -10000; th < -matrix(0,3,ns)
th[,1] \leftarrow c(mean(nhtemp), log(sd(nhtemp)), log(6))
llth <- ll(th[,1],nhtemp) ## initial log likelihood</pre>
lprior.th <- dnorm(th[3,1],mean=3,sd=2,log=TRUE)</pre>
p.sd <- c(.5,.1,1.2) ## proposal SD (tuned)
accept <- 0 ## acceptance counter
for (i in 2:ns) { ## MH sampler loop
  thp \leftarrow th[,i-1] + rnorm(3)*p.sd ## proposal
  lprior.p <- dnorm(thp[3], mean=3, sd=2, log=TRUE)</pre>
  llp <- ll(thp,nhtemp) ## log lik of proposal
  if (runif(1) < exp(llp + lprior.p - llth - lprior.th)) {</pre>
    th[,i] <- thp;llth <- llp;lprior.th <- lprior.p
    accept <- accept + 1
  } else { ## reject
    th[,i] \leftarrow th[,i-1]
accept/ns ## about 1/4 is ideal
```

# Checking the chains

```
par(mfrow=c(3,1),mar=c(4,4,1,1))
plot(th[1,],type="1")
plot(th[2,],type="1")
plot(th[3,],type="1")
```



...quick convergence, but mixing fairly slow.

## Chain correlation and marginal posteriors

```
par(mfrow=c(2,3))
acf(th[1,]);acf(th[2,]);acf(th[3,]);
hist(th[1,]);hist(exp(th[2,]));hist(th[3,]);
```



... standard deviation and degrees of freedom quite highly correlated.

## CIs, posterior means etc.

```
> pm <- rowMeans(th) ## posterior mean
> ## transform to original scale...
> pm[2:3] <- exp(pm[2:3])
> pm[3] <- pm[3] + 1
> names(pm) <- c("mu", "sig", "df")</pre>
> pm
       mu sig df
51.175612 1.176176 27.191217
>
> ## 95% Credible Intervals...
> ci <- apply(th,1,quantile,prob=c(.025,.975))</pre>
> ci[,2:3] <- exp(ci[,2:3]) ; ci[,3] <- ci[,3]+1
> colnames(ci) <- c("mu", "sig", "df")</pre>
> ci
               sia
                                df
            mii
2.5% 50.85020 0.893452 3.09977
97.5% 51.48983 1.484936 1766.29037
```