

# UG485: Class 3 Isolated Flyback Evaluation Board for the Si3404

The Si3404 isolated flyback evaluation board is a reference design for a power supply in a Power over Ethernet (PoE) Powered Device (PD) application.

This Si3404-ISO-FB EVB provides simple and low-cost solution with different output voltages and power levels.

The Si3404-ISO-FB EVB board is shown below. The Si3404 IC integrates an IEEE 802.3af compatible PoE interface as well as a current control-based dc/dc converter.

The Si3404 PD integrates a detection circuit, classification circuit, dc/dc switch, hotswap switch, TVS overvoltage protection, dynamic soft-start circuit, cycle-by-cycle current limit, thermal shutdown, and inrush current protection.

The switching frequency is set to 220 kHz by installing R14 =  $88.7 \text{ k}\Omega$ .

### **KEY FEATURES**

- · IEEE 802.3af compliant
- · Very small application PCB surface
- High efficiency
- · High integration
- Low-profile 4 x 4 mm 20-pin QFN
- Integrated thermal shutdown protection
- · Low BOM Cost
- Integrated transient overvoltage protection
- · Equipped with off-the-shelf transformers



| Parameter                   | Condition                               | Specifications        |                |                 |
|-----------------------------|-----------------------------------------|-----------------------|----------------|-----------------|
| Ordering Part Number        | _                                       | Si3404FB3V3KIT        | Si3404FB5V3KIT | Si3404FB12V3KIT |
| PSE input voltage range     | Connector J2                            |                       | 37 V to 57 V   |                 |
| PoE Type/Class              | IEEE 802.3af                            |                       | Type 1/Class 3 |                 |
| Output Voltage / Current    | Connectors J1–J3                        | 3.3 V / 3.5 A         | 5 V / 2.5 A    | 12 V / 1 A      |
| Peak Efficiency, End-to-End | V <sub>IN</sub> = 50 V, Schottky Bridge | 80.68 %               | 83.11 %        | 85.27 %         |
| Peak Efficiency, End-to-End | V <sub>IN</sub> = 50 V, Silicon Bridge  | 80.13 % 82.60 % 84.71 |                | 84.71 %         |
| Switching frequency         | R <sub>FREQ</sub> (R14) = 88.7 kΩ       | 220 kHz               |                |                 |
| Conducted EMI               | EN55032, average detector               | Passed                |                |                 |
| Conducted EMI               | EN55032, peak detector                  | Passed                |                |                 |
| Radiated EMI                | EN55032 Class B                         |                       | Passed         |                 |

# **Table of Contents**

| 1. | Selector Guide                                                    | . 4  |
|----|-------------------------------------------------------------------|------|
| 2. | Powering Up the Si3404-ISO-FB Board                               | . 5  |
| 3. | Si3404-ISO-FB EVB: 3.3 V, Class 3 Configuration                   | . 6  |
|    | 3.1 Si3404-ISO-FB EVB Schematic: 3.3 V, Class 3, 15.4 W           | . 6  |
|    | 3.2 End-to-End EVB Efficiency                                     | . 7  |
|    | 3.3 Thermal Measurements                                          | . 8  |
|    | 3.4 Sifos PoE Compatibility Test Results                          | . 8  |
|    | 3.5 Adjustable EVB Current Limit                                  | . 9  |
|    | 3.6 Feedback Loop Phase and Gain Measurement Results (Bode Plots) | .10  |
|    | 3.7 Load Step Transient Measurement Results                       | .11  |
|    | 3.8 Output Voltage Ripple                                         | .12  |
|    | 3.9 Soft-Start Protection                                         | .12  |
|    | 3.10 Output Short Protection                                      | .13  |
|    | 3.11 Pulse Skipping at No-Load Condition                          | .14  |
|    | 3.12 Discontinuous (DCM) and Continuous (CCM) Conduction Modes    | .15  |
|    | 3.13 Radiated Emissions Measurement Results                       | .16  |
|    | 3.14 Conducted Emissions Measurement Results                      | .17  |
|    | 3.15 Bill of Materials                                            | .18  |
| 4. | Si3404-ISO-FB EVB: 5 V, Class 3 Configuration                     | . 21 |
|    | 4.1 Si3404-ISO-FB EVB Schematic: 5 V, Class 3, 15.4 W             | .21  |
|    | 4.2 End-to-End EVB Efficiency                                     | .22  |
|    | 4.3 Thermal Measurements                                          | .23  |
|    | 4.4 Sifos PoE Compatibility Test Results                          | .23  |
|    | 4.5 Adjustable EVB Current Limit                                  | .24  |
|    | 4.6 Feedback Loop Phase and Gain Measurement Results (Bode Plots) | .25  |
|    | 4.7 Load Step Transient Measurement Results                       | .26  |
|    | 4.8 Output Voltage Ripple                                         | .27  |
|    | 4.9 Soft-Start Protection                                         |      |
|    | 4.10 Output Short Protection                                      | .28  |
|    | 4.11 Pulse Skipping at No-Load Condition                          | .29  |
|    | 4.12 Discontinuous (DCM) and Continuous (CCM) Conduction Modes    | .30  |
|    | 4.13 Radiated Emissions Measurement Results                       | .31  |
|    | 4.14 Conducted Emissions Measurement Results                      | .32  |
|    | 4.15 Bill of Materials                                            | .33  |
| 5. | Si3404-ISO-FB EVB: 12 V. Class 3 Configuration                    | 36   |

|    | 5.1 Si3404-ISO-FB EVB Schematic: 12 V Class 3, 15.4W                     | .36  |
|----|--------------------------------------------------------------------------|------|
|    | 5.2 End-to-End EVB Efficiency                                            | .37  |
|    | 5.3 Thermal Measurements                                                 | .38  |
|    | 5.4 Sifos PoE Compatibility Test Results                                 | .38  |
|    | 5.5 Adjustable EVB Current Limit                                         | .39  |
|    | 5.6 Feedback Loop Phase and Gain Measurement Results (Bode Plots)        | .40  |
|    | 5.7 Load Step Transient Measurement Results                              | .41  |
|    | 5.8 Output Voltage Ripple                                                | .42  |
|    | 5.9 Soft-Start Protection                                                | .42  |
|    | 5.10 Output Short Protection                                             | .43  |
|    | 5.11 Pulse Skipping at No-Load Condition                                 | .44  |
|    | 5.12 Discontinuous (DCM) and Continuous (CCM) Conduction Modes           | .45  |
|    | 5.13 Radiated Emissions Measurement Results                              | .46  |
|    | 5.14 Conducted Emissions Measurement Results                             | .47  |
|    | 5.15 Bill of Materials                                                   | .48  |
| 6. | Tunable Switching Frequency                                              | . 51 |
| 7. | Board Layout                                                             | . 52 |
| 8. | Design and Layout Checklist                                              | . 54 |
|    | Complete 3.3 V Si3404 Isolated Flyback Sifos Compatibility Test Reports  |      |
|    |                                                                          |      |
|    | D. Complete 5 V Si3404 Isolated Flyback Sifos Compatibility Test Reports |      |
| 11 | Complete 12 V Si3404 Isolated Flyback Sifos Compatibility Test Reports   | . 71 |

### 1. Selector Guide

The output voltage of this isolated flyback evaluation board depends mainly on the turns ratio of the flyback transformer, with the adequate transformer it's possible to generate any kind of output voltage.

This user guide presents configurations for three different output voltages: 3.3 V, 5 V, and 12 V.

The efficiency of the EVB highly depends on the output voltage. Higher output voltage configurations tend to have higher efficiency, meanwhile, lower output voltage configurations have lower efficiency.



Figure 1.1. Si3404-ISO-FB EVB's End-to-End Efficiency of Different Configurations: 50 V Input

### Note:

The chart shows the end-to-end EVB efficiency, where voltage drop on the diode bridge is included and LEDs are removed.

The standard Si3404-ISO-FB EVB is shown on the cover page. This document includes complete schematics and measurement data for the three different output voltages below:

- Si3404-ISO-FB-3.3V-15.4W Class 3
- Si3404-ISO-FB-5.0V-15.4W Class 3
- Si3404-ISO-FB-12V-15.4W Class 3

The parts in red on the schematics represent the BOM differences between the three designs.

The boards are shipped with silicon type diode bridges installed. If higher efficiency is needed, those S1B diodes can be replaced with Schottky types, such as SS2150 parts. See Figure 1.1 for overall conversion efficiency results.

When Schottky bridge is used, to compensate the reverse leakage of the Schottky type diode bridges at high temperature, the recommended detection resistor should be adjusted to the values listed in the following table:

| External Diode Bridge | R <sub>DET</sub> |
|-----------------------|------------------|
| Silicon Type          | 24.3 kΩ          |
| Schottky Type         | 24.9 kΩ          |

Table 1.1. Recommended Detection Resistor Values

# 2. Powering Up the Si3404-ISO-FB Board

Ethernet data and power are applied to the board through the RJ45 connector (J2). The board itself has no Ethernet data transmission functionality, but, as a convenience, the Ethernet with secondary-side data is brought out to test points.

The design can be used in Gigabit (10/100/1000) systems as well by using PoE RJ45 Magjack, such as type L8BE-1G1T-BFH from Bel Fuse.

Power may be applied in the following ways:

- · Using any IEEE 802.3-2015-compliant, PoE-capable PSE, or
- · Using a laboratory power supply unit (PSU):
  - Connecting a dc source between blue/white-blue and brown/white-brown of the Ethernet cable (either polarity), (End-span) as shown below:



Figure 2.1. Endspan Connection using Laboratory Power Supply

Connecting a dc source between green/white-green and orange/white-orange of the Ethernet cable (either polarity), (Mid-span)
as shown below:



Figure 2.2. Midspan Connection using Laboratory Power Supply

# 3. Si3404-ISO-FB EVB: 3.3 V, Class 3 Configuration



# 3.1 Si3404-ISO-FB EVB Schematic: 3.3 V, Class 3, 15.4 W

The figure below shows the schematic of the Si3404-ISO-FB 3.3 V, Class 3 EVB. The parts in red in the schematic represent the BOM differences compared to the other output voltage variants of this EVB. The parts in gray are not installed on the EVB, but they have footprints.



Figure 3.1. Si3404-ISO-FB EVB Schematic: 3.3 V, Class 3 PD, 15.4 W

### 3.2 End-to-End EVB Efficiency

The end-to-end efficiency measurement data of the Si3404-ISO-FB 3.3V EVB is shown in the figures below. Efficiency was measured from PoE (RJ45 connector) input to the 3.3 V output. The efficiency was measured at three different input voltage levels, 39.9 V, 50 V and 57 V, with two input diode bridge configurations: silicon (S1B) and Schottky (SS2150).



Figure 3.2. Si3404-ISO-FB End-to-End Efficiency Chart with Silicon Type Input Bridge Diodes: Multiple Input Voltages, 3.3 V Output, Class 3



Figure 3.3. Si3404-ISO-FB End-to-End Efficiency Chart with Schottky Type Input Bridge Diodes: Multiple Input Voltages, 3.3 V Output, Class 3

Note: The charts show end-to-end EVB efficiency. The voltage drop of the diode bridge is included. The onboard LEDs are disabled.

### 3.3 Thermal Measurements

The Si3404-ISO-FB EVB's temperature was measured at maximum **input power – 13 W**. The Si3404-ISO-FB EVB is configured for 3.3 V output voltage and Class 3 power level. The following figure shows thermal images taken of the EVB board at maximum input power.

# Top Side of the PCB

### **Bottom Side of the PCB**



Figure 3.4. Thermal Measurements of the Si3404-ISO-FB EVB, 3.3 V, Class 3 PD

The following table lists the temperatures of the notable components across the board:

Table 3.1. Component Temperatures at Full Load

| Component                                                             | Temperature <sup>1</sup> |  |  |  |
|-----------------------------------------------------------------------|--------------------------|--|--|--|
| Si3404 – U1                                                           | 61.3 °C                  |  |  |  |
| Flyback Transformer – T1                                              | 47.9 °C                  |  |  |  |
| Secondary Side Diode – D1                                             | 66.8 °C                  |  |  |  |
| Secondary Side RC Snubber – C3-R4                                     | 59.6 °C                  |  |  |  |
| Diode Bridge – D5-D8, D10-D13                                         | 60.7 °C                  |  |  |  |
| Primary Side RCD Clamp – R3-C2-D3                                     | 49.3 °C                  |  |  |  |
| Note:                                                                 |                          |  |  |  |
| 1. The ambient temperature was 26 °C during the thermal measurements. |                          |  |  |  |

# 3.4 Sifos PoE Compatibility Test Results

The PDA-604A Powered Device Analyzer is a single-box comprehensive solution for testing IEEE 802.3at and IEEE 802.3bt PoE Powered Devices (PDs). The Si3404-ISO-FB 3.3 V EVB board has been successfully tested with the PDA-604A Powered Device Analyzer from Sifos Technologies.

Unlike the Si3406x family, the Si3404 does not incorporate the MPS feature. To prevent PSE shutdown, a minimal 10R load was applied to the Si3404-ISO-FB 3.3 V EVB's output during the Sifos tests.

See 9. Complete 3.3 V Si3404 Isolated Flyback Sifos Compatibility Test Reports for more information.

# 3.5 Adjustable EVB Current Limit

For additional safety, the Si3404 has an adjustable EVB current limit feature.

The Si3404 controller measures the voltage on the  $R_{SENSE}$  resistor (R8) through the ISNS pin. Care must be taken that this voltage goes below  $V_{SS}$ . When the voltage on R8 is  $V_{ISNS}$  = -270 mV (referenced to  $V_{SS}$ ), the internal current limit circuit restarts the PD to protect the application.

The EVB current limit for this Class 3 application can be calculated with the following formula:

$$R_{SENSE} = 0.62\Omega$$

$$I_{LIMIT} = \frac{270mV}{0.62\Omega} = 435mA$$

**Equation 3.1. EVB Class 3 Current Limit** 

# 3.6 Feedback Loop Phase and Gain Measurement Results (Bode Plots)

The Si3404 device integrates a current-mode-controlled switching mode power supply controller circuit. Therefore, the application is a closed-loop system. To guarantee stable output voltage of the power supply and to reduce the influence of the input voltage variations and load changes on the output voltage, the feedback loop should be stable.

To verify the stability of the loop, the gain and phase of the loop has been measured.



Figure 3.5. Si3404-ISO-FB EVB, 3.3 V, Class 3 PD Feedback Loop Measurement Results at Light Load

Table 3.2. Measured Loop Gain and Phase Margin at Light Load

|                         | Frequency | Gain      | Phase   |
|-------------------------|-----------|-----------|---------|
| Cursor 1 (Phase Margin) | 4.98 kHz  | 0 dB      | 71.46 ° |
| Cursor 2 (Gain Margin)  | 35.68 kHz | –19.05 dB | 0 °     |



Figure 3.6. Si3404-ISO-FB EVB, 3.3 V, Class 3 PD Feedback Loop Measurement Results at Full Load

Table 3.3. Measured Loop Gain and Phase Margin at Full Load

|                         | Frequency | Gain      | Phase   |
|-------------------------|-----------|-----------|---------|
| Cursor 1 (Phase Margin) | 6.58 kHz  | 0 dB      | 58.44 ° |
| Cursor 2 (Gain Margin)  | 28.62 kHz | -12.98 dB | 0 °     |

The following table sums up the circumstances of the feedback loop measurements.

Table 3.4. Feedback Loop Measurements Circumstances

| Measurement Name                        | Input Voltage | Output Load |
|-----------------------------------------|---------------|-------------|
| Feedback Loop Measurement at Light Load | 50 V          | 10 R        |
| Feedback Loop Measurement at Full Load  | 50 V          | 0.9375 R    |

### 3.7 Load Step Transient Measurement Results

The output of the Si3404-ISO-FB EVB board has been tested with a load step function to verify the converter's output dynamic response.



Figure 3.7. Si3404-ISO-FB EVB, 3.3 V, Class 3 PD Output Load Step Transient Test

The following table sums up the results of the load step measurement.

Table 3.5. Output Load Step Transient Results

|                        | From (Output Current) | To (Output Current) | Slew Rate (Output Current) | V <sub>OUT</sub> Change |
|------------------------|-----------------------|---------------------|----------------------------|-------------------------|
| Stepping up the load   | 0.35 A                | 3.15 A              | 2500 mA/μs                 | 3.3 V – 216 mV          |
| Stepping down the load | 3.15 A                | 0.35 A              | 2500 mA/µs                 | 3.3 V +184 mV           |

### 3.8 Output Voltage Ripple

The Si3404-ISO-FB EVB output voltage ripple has been measured under both No-Load and Heavy-Load conditions.

# No-Load V<sub>OUT</sub> Ripple = 13.4 mV

# Heavy-Load V<sub>OUT</sub> Ripple = 91 mV



Figure 3.8. Si3404-ISO-FB EVB, 3.3 V, Class 3 Output Voltage Ripple No Load (Left) and Heavy Load (Right) Conditions

### 3.9 Soft-Start Protection

The Si3404 device has an integrated dynamic soft-start protection mechanism to avoid stressing the components by the sudden current or voltage changes associated with the initial charging of the output capacitors.

The Si3404 intelligent adaptive soft-start mechanism does not require any external component to install. The controller continuously measures the input current of the PD and dynamically adjusts the internal I<sub>PEAK</sub> limit during soft-start, thus adjusting the output voltage ramp-up time as a function of the attached load.

The controller allows the output voltage to rise faster in no load (or light load) conditions. With a heavy load at the output, the controller slows down the output voltage ramp to avoid exceeding the desired regulated output voltage value.

No-Load Soft-Start 
$$t_{RISE} = 5.1 \text{ ms}$$

# Heavy-Load Soft-Start t<sub>RISE</sub> = 36.8 ms



Figure 3.9. Si3404-ISO-FB EVB, 3.3 V, Class 3 Output Voltage Soft-Start at Low Load (Left) and Heavy Load (Right) Conditions

# 3.10 Output Short Protection

The Si3404 has an integrated output short protection mechanism, which protects the IC and surrounding external components from overheating in case of an electrical short on the output.



Figure 3.10. Si3404-ISO-FB EVB, 3.3 V, Class 3 Output Short Circuit Protection

# 3.11 Pulse Skipping at No-Load Condition

The Si3404 device has an integrated pulse skipping mechanism to ensure ultra-low power consumption under light load conditions.

As the output load decreases, the controller starts to reduce the pulse-width of the PWM signal (switcher ON time). At some point, even the minimum width pulse will provide higher energy than the application requires, which could result in a loss of voltage regulation.

When the controller detects a light load condition (which requires less ON time than the minimum pulse width), the controller enters into pulse-skipping mode. This mode is shown in the following figure, which depicts the switching node of the integrated switching FET at a no-load condition.



Figure 3.11. Si3404-ISO-FB EVB, 3.3 V, Class 3 Pulse Skipping at No-load Condition: SWO Waveform

# 3.12 Discontinuous (DCM) and Continuous (CCM) Conduction Modes

At low load, the converter works in discontinuous conduction mode (DCM). At heavy load, the converter runs in continuous conduction mode (CCM). At low load, the SWO voltage waveform has a ringing waveform, which is typical for DCM operation.

Low-Load, DCM Heavy-Load, CCM



Figure 3.12. Si3404-ISO-FB EVB, 3.3 V, Class 3: SWO Waveform in Discontinuous Conduction Mode (DCM) at Low Load (Left), and in Continuous Conduction Mode (CCM) at Heavy Load (Right)

Similar voltage waveforms can be observed on the secondary side diode, D1. The voltage levels on the secondary side diode, D1, are much lower due to the transformer turns ratio; however, the discontinuous and continuous conduction mode characteristics are still present.

Low-Load, DCM

Heavy-Load, CCM



Figure 3.13. Si3404-ISO-FB EVB, 3.3 V, Class 3: Secondary Side Diode Voltage Waveform in Discontinuous Conduction Mode (DCM) at Low Load (Left), and in Continuous Conduction Mode (CCM) at Heavy Load (Right)

### 3.13 Radiated Emissions Measurement Results

Radiated emissions of the Si3404-ISO-FB, 3.3 V, Class 3 EVB board have been measured with 50 V input voltage and a full load connected to the output. The input power was 15 W in this case.

As shown below, the Si3404-ISO-FB, 3.3 V, Class 3 EVB is fully compliant with the international EN 55032 Class B emissions standard.



Figure 3.14. Si3404-ISO-FB EVB Radiated Emissions Measurements Results; 50 V Input, 3.3 V Output, 15 W Input Power

Table 3.6. Notable Peaks on The Radiated Emissions Chart

| Frequency  | Quasi Peak   | Limit     | Margin   | Polarization |
|------------|--------------|-----------|----------|--------------|
| 36.12 MHz  | 37.83 dBµV/m | 40 dBμV/m | 2.17 dB  | Vertical     |
| 75.15 MHz  | 20.49 dBμV/m | 40 dBμV/m | 19.51 dB | Vertical     |
| 85.26 MHz  | 13.57 dBµV/m | 40 dBμV/m | 26.43 dB | Vertical     |
| 195.00 MHz | 22.31 dBµV/m | 40 dBμV/m | 17.69 dB | Horizontal   |
| 196.35 MHz | 19.04 dBµV/m | 40 dBμV/m | 20.96 dB | Vertical     |
| 235.77 MHz | 30.10 dBμV/m | 47 dBμV/m | 16.90 dB | Horizontal   |
| 241.23 MHz | 31.24 dBµV/m | 47 dBμV/m | 15.76 dB | Horizontal   |

The EVB is measured at full load with peak detection in both vertical and horizontal polarizations. This is a relatively fast process that produces a red curve (vertical polarization) and a blue curve (horizontal polarization).

Next, specific frequencies are selected (red stars) for quasi-peak measurements. The board is measured again at those specific frequencies with a quasi-peak detector, which is a very slow but accurate measurement. The results of this quasi-peak detector measurement are the blue rhombuses.

The blue rhombuses represent the final result of the measurement process. To have passing results, the blue rhombuses should be below the highlighted EN 55032 Class B limit.

### 3.14 Conducted Emissions Measurement Results

The Si3404-ISO-FB, 3.3 V, Class 3 EVB board's conducted emissions have been measured by two different measurement methods to comply with the international EN 55032 standard. The EVB is supplied and measured on its PoE input port as shown in the following figure.



Figure 3.15. Conducted EMI Measurement Setup

The detector in the spectrum analyzer is set to:

- · Peak detector and
- · Average detector

Both results are shown in the following figure:



Figure 3.16. Si3404-ISO-FB EVB Conducted Emissions Measurements Results; 50 V Input, 3.3 V Output, 15 W Input Power

# 3.15 Bill of Materials

The following table is the BOM listing for the standard 3.3 V output evaluation board with option PoE Class 3.

Table 3.7. Si3404 Isolated Flyback 3.3 V Bill of Materials

| Reference                                    | Quantity | Description                                      | Manufacturer         | Manufacturer Part Number |
|----------------------------------------------|----------|--------------------------------------------------|----------------------|--------------------------|
| C1, C28                                      | 2        | Capacitor, 1 nF, 3000 V, ±10%, X7R, 1808         | Venkel               | C1808X7R302-102K         |
| C10                                          | 1        | Capacitor, 1000 μF, 6.3 V, ±20%,<br>AL, 8X11.5MM | Panasonic            | ECA0JM102                |
| C14                                          | 1        | Capacitor, 0.33 μF, 50 V, ±10%,<br>X7R, 0805     | Venkel               | C0805X7R500-334K         |
| C15                                          | 1        | Capacitor, 1 μF, 50 V, ±10%, X7R, 0805           | Samsung              | CL21B105KBFNNNE          |
| C2                                           | 1        | Capacitor, 0.01 μF, 100 V, ±10%,<br>X7R, 0805    | Venkel               | C0805X7R101-103K         |
| C20                                          | 1        | Capacitor, 0.1 μF, 100 V, ±10%,<br>X7R, 0805     | Venkel               | C0805X7R101-104K         |
| C21                                          | 1        | Capacitor, 0.1 μF, 16 V, ±10%, X7R, 0805         | Venkel               | C0805X7R160-104K         |
| C26                                          | 1        | Capacitor, 1.5 nF, 50 V, ±1%, C0G, 0805          | Venkel               | C0805C0G500-152F         |
| C27                                          | 1        | Capacitor, 15 nF, 16 V, ±10%, X7R, 0805          | Venkel               | C0805X7R160-153K         |
| C3                                           | 1        | Capacitor, 2.2 nF, 50 V, ±1%, C0G, 0805          | Venkel               | C0805C0G500-222F         |
| C4                                           | 1        | Capacitor, 12 μF, 100 V, ±20%, AL, 6.3X11.2MM    | Panasonic            | EEUFC2A120               |
| C5, C6                                       | 2        | Capacitor, 1 μF, 100 V, ±10%, X7R, 1210          | Venkel               | C1210X7R101-105K         |
| C7                                           | 1        | Capacitor, 0.01 μF, 100V, ±10%,<br>X7R, 0603     | Venkel               | C0603X7R101-103K         |
| C8                                           | 1        | Capacitor, 1 μF, 25V, ±10%, X5R, 0603            | Venkel               | C0603X5R250-105K         |
| C9                                           | 1        | Capacitor, 100 μF, 6.3V, ±10%, X5R, 1210         | Venkel               | C1210X5R6R3-107K         |
| D1                                           | 1        | Diode, Schottky, 45 V, 10 A, Power-<br>DI-5      | Diodes Inc.          | SDT10A45P5-7             |
| D2                                           | 1        | LED, Green, 0805                                 | Lite On, Inc.        | LTST-C170GKT             |
| D3, D5, D6, D7,<br>D8, D10, D11,<br>D12, D13 | 9        | Diode, Single, 100V, 1.0A, SMA                   | Fairchild            | S1B                      |
| D4                                           | 1        | Diode, Single, 100 V, 300 mA,<br>SOD123          | Diodes Inc.          | 1N4148W-7-F              |
| J1, J3                                       | 2        | Connector, Banana Jack,<br>Threaded uninsulated  | Abbatron HH<br>Smith | 101                      |
| J2                                           | 1        | Connector, RJ-45, MAGJACK, 1 Port<br>PoE         | Bel                  | SI-52003-F               |

| Reference                             | Quantity | Description                                                                                        | Manufacturer     | Manufacturer Part Number |
|---------------------------------------|----------|----------------------------------------------------------------------------------------------------|------------------|--------------------------|
| L1, L3                                | 2        | Ferrite Bead, 700 Ω @150MHZ,<br>0805                                                               | Wurth            | 742792040                |
| R10                                   | 1        | Resistor, 2 kΩ, 1/8 W, ±1%, Thick Film, 0805                                                       | Venkel           | CR0805-8W-2001F          |
| R11                                   | 1        | Resistor, 360 $\Omega$ , 1/8 W, ±1%, Thick Film, 0805                                              | Venkel           | CR0805-8W-3600F          |
| R12                                   | 1        | Resistor, 36.5 kΩ, 1/10 W, ±1%,<br>Thick Film, 0805                                                | Venkel           | CR0805-10W-3652F         |
| R14                                   | 1        | Resistor, 88.7 kΩ, 1/8 W, ±1%, Thick Film, 0805                                                    | Vishay           | CRCW080588K7FKEA         |
| R15                                   | 1        | Resistor, 24.3 kΩ, 1/8 W, ±1%, Thick Film, 0805                                                    | Vishay           | CRCW080524K3FKEA         |
| R17                                   | 1        | Resistor, 48.7 Ω, 1/8 W, ±1%, Thick Film, 0805                                                     | Vishay           | CRCW080548R7FKTA         |
| R18                                   | 1        | Resistor, 21.5 kΩ, 1/10 W, ±1%,<br>Thick Film, 0805                                                | Venkel           | CR0805-10W-2152F         |
| R2                                    | 1        | Resistor, 0 Ω, 6 A, Thick Film, 0805                                                               | Vishay Dale      | CRCW08050000Z0EAHP       |
| R3                                    | 1        | Resistor, 82 kΩ, 1/10 W, ±5%, Thick Film, 0805                                                     | Venkel           | CR0805-10W-823J          |
| R4                                    | 1        | Resistor, 5.6 Ω, 1/10 W, ±5%, Thick Film, 0805                                                     | Venkel           | CR0805-10W-5R6J          |
| R5                                    | 1        | Resistor, 475 Ω, 1/8 W, ±1%, Thick Film, 0805                                                      | Venkel           | CR0805-8W-4750FT         |
| R6, R13, R16                          | 3        | Resistor, 0 Ω, 2 A, Thick Film, 0805                                                               | Venkel           | CR0805-10W-000           |
| R7                                    | 1        | Resistor, 3 Ω, 1/8 W, ±1%, Thick Film, 0805                                                        | Venkel           | CR0805-8W-3R00FT         |
| R8                                    | 1        | Resistor, 0.62 Ohm, 1/8 W, ±1%,<br>Thick Film, 0805                                                | Yageo            | RL0805FR-070R62L         |
| R9                                    | 1        | Resistor, 10 Ω, 1/10 W, ±1%, Thick Film, 0805                                                      | Venkel           | CR0805-10W-10R0F         |
| T1                                    | 1        | Transformer, Flyback, PoE, 127 μH, 15 W, Aux winding, SMT                                          | Wurth Elektronik | 749119933                |
| TP1, TP2, TP8,<br>TP10, TP15,<br>TP16 | 6        | Testpoint, Black, 0.050" Loop, PTH                                                                 | Keystone         | 5001                     |
| U1                                    | 1        | IC, Fully-Integrated 802.3-Compliant<br>PoE PD Interface and Low-EMI<br>Switching Regulator, QFN20 | Silicon Labs     | Si3404-A-GM              |
| U2                                    | 1        | Photocoupler, 5000 Vrms<br>Isolation, 4-Pin SMD                                                    | Vishay           | FOD817A3SD               |
| U3                                    | 1        | IC, Adjustable Precision Shunt Reg-<br>ulator LV SOT-23 Voltage-Output<br>1.24 ~ 6 V               | TI               | TLV431BCDBZR             |
| Not Installed Con                     | nponents |                                                                                                    |                  |                          |
| C11, C12, C13                         | 3        | Capacitor, 100 μF, 6.3 V, ±10%,<br>X5R, 1210                                                       | Venkel           | C1210X5R6R3-107K         |

| Reference                                                     | Quantity | Description                                                       | Manufacturer | Manufacturer Part Number |
|---------------------------------------------------------------|----------|-------------------------------------------------------------------|--------------|--------------------------|
| C16, C17, C18,<br>C19, C22, C23,<br>C24, C25                  | 8        | Capacitor, 1nF, 100 V, ±10%, X7R, 0603                            | Venkel       | C0603X7R101-102K         |
| D9                                                            | 1        | Diode, Transient-voltage-suppression, Unidirectional, 58 V, 400 W | Littelfuse   | SMAJ58A                  |
| L2                                                            | 1        | Inductor, Power, Shielded, 0.16 µH, 31 A, SMD                     | Coilcraft    | XAL5030-161ME            |
| R1                                                            | 1        | Resistor, 1 k $\Omega$ , 1/10 W, ±1%, Thick Film, 0805            | Venkel       | CR0805-10W-1001F         |
| TP3, TP4, TP5,<br>TP6, TP7, TP9,<br>TP11, TP12,<br>TP13, TP14 | 10       | Testpoint, Black, 0.050" Loop, PTH                                | Keystone     | 5001                     |

# 4. Si3404-ISO-FB EVB: 5 V, Class 3 Configuration



# 4.1 Si3404-ISO-FB EVB Schematic: 5 V, Class 3, 15.4 W

The figure below shows the schematic of the Si3404-ISO-FB 5 V, Class 3 EVB. The parts in red in the schematic represent the BOM differences compared to the other output voltage variant of this EVB. The parts in gray are not installed on the EVB, but they have footprints.



Figure 4.1. Si3404-ISO-FB EVB Schematic: 5 V, Class 3 PD, 15.4 W

## 4.2 End-to-End EVB Efficiency

The end-to-end efficiency measurement data of the Si3404-ISO-FB 5V EVB is shown in the figures below. Efficiency was measured from PoE (RJ45 connector) input to the 5 V output. The efficiency was measured at three different input voltage levels, 39.9 V, 50 V and 57 V, with two input diode bridge configurations: silicon (S1B) and Schottky (SS2150).



Figure 4.2. Si3404-ISO-FB End-to-End Efficiency Chart with Silicon Type Input Bridge Diodes: Multiple Input Voltages, 5 V Output, Class 3



Figure 4.3. Si3404-ISO-FB End-to-End Efficiency Chart with Schottky Type Input Bridge Diodes: Multiple Input Voltages, 5 V Output, Class 3

Note: The charts show end-to-end EVB efficiency. The voltage drop of the diode bridge is included. LEDs are removed.

### 4.3 Thermal Measurements

The Si3404-ISO-FB EVB's temperature was measured at maximum **input power – 13 W**. The Si3404-ISO-FB EVB is configured for 5 V output voltage and Class 3 power level. The following figure shows the thermal images taken of the EVB board at maximum input power.

### Top Side of the PCB

## **Bottom Side of the PCB**



Figure 4.4. Thermal Measurements of the Si3404-ISO-FB EVB, 5 V, Class 3 PD

The following table lists the temperatures of the notable components across the board.

Table 4.1. Component Temperatures at Full Load

| Component                                          | Temperature <sup>1</sup> |
|----------------------------------------------------|--------------------------|
| Si3404 – U1                                        | 58.0 °C                  |
| Flyback Transformer – T1                           | 44.1 °C                  |
| Secondary Side Diode – D1                          | 54.4 °C                  |
| Secondary Side RC Snubber – C3–R4                  | 54.6 °C                  |
| Diode Bridge – D5–D8, D10–D13                      | 60.7 °C                  |
| Primary Side RCD Clamp – R3-C2-D3                  | 46.1 °C                  |
| Note:  1. The ambient temperature was 26 °C during | the theorem and          |

# 4.4 Sifos PoE Compatibility Test Results

The PDA-604A Powered Device Analyzer is a single-box comprehensive solution for testing IEEE 802.3at and IEEE 802.3bt PoE Powered Devices (PDs). The Si3404-ISO-FB 5 V EVB board has been successfully tested with the PDA-604A Powered Device Analyzer from Sifos Technologies.

Unlike the Si3406x family, the Si3404 does not incorporate the MPS feature. To prevent PSE shutdown, a minimal 20R load was applied to the Si3404-ISO-FB 5 V EVB's output during the Sifos tests.

See 10. Complete 5 V Si3404 Isolated Flyback Sifos Compatibility Test Reports for more information.

## 4.5 Adjustable EVB Current Limit

For additional safety, the Si3404 has an adjustable EVB current limit feature.

The Si3404 controller measures the voltage on the  $R_{SENSE}$  resistor (R8) through the ISNS pin. Care must be taken that this voltage goes below  $V_{SS}$ . When the voltage on R8 is  $V_{ISNS}$  = -270 mV (referenced to  $V_{SS}$ ), the internal current limit circuit restarts the PD to protect the application.

The EVB current limit for this Class 3 application can be calculated with the following formula:

$$R_{SENSE} = 0.62\Omega$$

$$I_{LIMIT} = \frac{270mV}{0.62\Omega} = 435mA$$

**Equation 4.1. EVB Class 3 Current Limit** 

# 4.6 Feedback Loop Phase and Gain Measurement Results (Bode Plots)

The Si3404 device integrates a current-mode-controlled switching mode power supply controller circuit. Therefore, the application is a closed-loop system. To guarantee stable output voltage of the power supply and to reduce the influence of the input voltage variations and load changes on the output voltage, the feedback loop should be stable.

To verify the stability of the loop, the gain and phase of the loop has been measured.



Figure 4.5. Si3404-ISO-FB EVB, 5 V, Class 3 PD Feedback Loop Measurement Results at Light Load

Table 4.2. Measured Loop Gain and Phase Margin at Light Load

|                         | Frequency | Gain      | Phase   |
|-------------------------|-----------|-----------|---------|
| Cursor 1 (Phase Margin) | 3.2 kHz   | 0 dB      | 55.88 ° |
| Cursor 2 (Gain Margin)  | 75.99 kHz | -28.29 dB | 0 °     |



Figure 4.6. Si3404-ISO-FB EVB, 5 V, Class 3 PD Feedback Loop Measurement Results at Full Load

Table 4.3. Measured Loop Gain and Phase Margin at Full Load

|                         | Frequency | Gain      | Phase   |
|-------------------------|-----------|-----------|---------|
| Cursor 1 (Phase Margin) | 6.31 kHz  | 0 dB      | 52.25 ° |
| Cursor 2 (Gain Margin)  | 39.9 kHz  | -16.09 dB | 0 °     |

The following table sums up the circumstances of the feedback loop measurements.

**Table 4.4. Feedback Loop Measurements Circumstances** 

| Measurement Name                        | Input Voltage | Output Load |
|-----------------------------------------|---------------|-------------|
| Feedback Loop Measurement at Light Load | 50 V          | 20 R        |
| Feedback Loop Measurement at Full Load  | 50 V          | 2 R         |

### 4.7 Load Step Transient Measurement Results

The output of the Si3404-ISO-FB EVB board has been tested with a load step function to verify the converter's output dynamic response.



Figure 4.7. Si3404-ISO-FB EVB, 5 V, Class 3 PD Output Load Step Transient Test

The following table sums up the results of the load step measurement.

Table 4.5. Output Load Step Transient Results

|                        | From (Output Current) |        | Slew Rate (Output Current) | V <sub>OUT</sub> Change |
|------------------------|-----------------------|--------|----------------------------|-------------------------|
| Stepping up the load   | 0.25 A                | 2.25 A | 2500 mA/μs                 | 5 V – 80 mV             |
| Stepping down the load | 2.25 A                | 0.25 A | 2500 mA/µs                 | 5 V + 84 mV             |

### 4.8 Output Voltage Ripple

The Si3404-ISO-FB EVB output voltage ripple has been measured under both No-Load and Heavy-Load conditions.

# No-Load V<sub>OUT</sub> Ripple = 14.4 mV

# Heavy-Load V<sub>OUT</sub> Ripple = 81 mV



Figure 4.8. Si3404-ISO-FB EVB, 5 V, Class 3 Output Voltage Ripple No Load (Left) and Heavy Load (Right) Conditions

### 4.9 Soft-Start Protection

The Si3404 device has an integrated dynamic soft-start protection mechanism to avoid stressing the components by the sudden current or voltage changes associated with the initial charging of the output capacitors.

The Si3404 intelligent adaptive soft-start mechanism does not require any external component to install. The controller continuously measures the input current of the PD and dynamically adjusts the internal I<sub>PEAK</sub> limit during soft-start, thus adjusting the output voltage ramp-up time as a function of the attached load.

The controller allows the output voltage to rise faster in no load (or light load) conditions. With a heavy load at the output, the controller slows down the output voltage ramp to avoid exceeding the desired regulated output voltage value.

No-Load Soft-Start  $t_{RISE} = 5.5 \text{ ms}$ 

# Heavy-Load Soft-Start t<sub>RISE</sub> = 37.9 ms



Figure 4.9. Si3404-ISO-FB EVB, 5 V, Class 3 Output Voltage Soft-Start at Low Load (Left) and Heavy Load (Right) Conditions

# 4.10 Output Short Protection

The Si3404 has an integrated output short protection mechanism, which protects the IC and surrounding external components from overheating in case of an electrical short on the output.



Figure 4.10. Si3404-ISO-FB EVB, 5 V, Class 3 Output Short Circuit Protection

# 4.11 Pulse Skipping at No-Load Condition

The Si3404 device has an integrated pulse skipping mechanism to ensure ultra-low power consumption under light load conditions.

As the output load decreases, the controller starts to reduce the pulse-width of the PWM signal (switcher ON time). At some point, even the minimum width pulse will provide higher energy than the application requires, which could result in a loss of voltage regulation.

When the controller detects a light load condition (which requires less ON time than the minimum pulse width), the controller enters into pulse-skipping mode. This mode is shown in the following figure, which depicts the switching node of the integrated switching FET at a no-load condition.



Figure 4.11. Si3404-ISO-FB EVB, 5 V, Class 3 Pulse Skipping at No-load Condition: SWO Waveform

# 4.12 Discontinuous (DCM) and Continuous (CCM) Conduction Modes

At low load, the converter works in discontinuous conduction mode (DCM). At heavy load, the converter runs in continuous conduction mode (CCM). At low load, the SWO voltage waveform has a ringing waveform, which is typical for DCM operation.

Low-Load, DCM Heavy-Load, CCM



Figure 4.12. Si3404-ISO-FB EVB, 5 V, Class 3: SWO Waveform in Discontinuous Conduction Mode (DCM) at Low Load (Left), and in Continuous Conduction Mode (CCM) at Heavy Load (Right)

Similar voltage waveforms can be observed on the secondary side diode, D1. The voltage levels on the secondary side diode, D1, are much lower due to the transformer turns ratio; however, the discontinuous and continuous conduction mode characteristics are still present.

Low-Load, DCM

Heavy-Load, CCM



Figure 4.13. Si3404-ISO-FB EVB, 5 V, Class 3: Secondary Side Diode Voltage Waveform in Discontinuous Conduction Mode (DCM) at Low Load (Left), and in Continuous Conduction Mode (CCM) at Heavy Load (Right)

### 4.13 Radiated Emissions Measurement Results

Radiated emissions of the Si3404-ISO-FB, 5 V, Class 3 EVB board have been measured with 50 V input voltage and a full load connected to the output. The input power is 15 W in this case.

As shown below, the Si3404-ISO-FB, 5 V, Class 3 EVB is fully compliant with the international EN 55032 Class B emissions standard.



Figure 4.14. Si3404-ISO-FB EVB Radiated Emissions Measurements Results; 50 V Input, 5 V Output, 15 W Input Power

Table 4.6. Notable Peaks on The Radiated Emissions Chart

| Frequency  | Quasi Peak   | Limit     | Margin   | Polarization |
|------------|--------------|-----------|----------|--------------|
| 36.75 MHz  | 37.31 dBμV/m | 40 dBμV/m | 2.69 dB  | Vertical     |
| 40.29 MHz  | 38.22 dBμV/m | 40 dBμV/m | 1.78 dB  | Vertical     |
| 75.75 MHz  | 29.10 dBμV/m | 40 dBμV/m | 10.90 dB | Vertical     |
| 82.38 MHz  | 22.04 dBµV/m | 40 dBμV/m | 17.96 dB | Vertical     |
| 197.34 MHz | 5.35 dBµV/m  | 40 dBμV/m | 34.65 dB | Vertical     |
| 240.51 MHz | 21.40 dBµV/m | 47 dBμV/m | 25.60 dB | Horizontal   |

The EVB is measured at full load with peak detection in both vertical and horizontal polarizations. This is a relatively fast process that produces a red curve (vertical polarization) and a blue curve (horizontal polarization).

Next, specific frequencies are selected (red stars) for quasi-peak measurements. The board is measured again at those specific frequencies with a quasi-peak detector, which is a very slow but accurate measurement. The results of this quasi-peak detector measurement are the blue rhombuses.

The blue rhombuses represent the final result of the measurement process. To have passing results, the blue rhombuses should be below the highlighted EN 55032 Class B limit.

### 4.14 Conducted Emissions Measurement Results

The Si3404-ISO-FB, 5 V, Class 3 EVB board's conducted emissions have been measured by two different measurement methods to comply with the international EN 55032 standard. The EVB is supplied and measured on its PoE input port as shown in the following figure.



Figure 4.15. Conducted EMI Measurement Setup

The detector in the spectrum analyzer is set to:

- · Peak detector and
- · Average detector

Both results are shown in the following figure:



Figure 4.16. Si3404-ISO-FB EVB Conducted Emissions Measurements Results; 50 V Input, 5 V Output, 15 W Input Power

# 4.15 Bill of Materials

The following table is the BOM listing for the standard 5 V output evaluation board with option PoE Class 3.

Table 4.7. Si3404 Isolated Flyback 5 V Bill of Materials

| Reference                                    | Quantity | Description                                             | Manufacturer         | Manufacturer Part Number |
|----------------------------------------------|----------|---------------------------------------------------------|----------------------|--------------------------|
| C1, C28                                      | 2        | Capacitor, 1 nF, 3000 V, ±10%, X7R, 1808                | Venkel               | C1808X7R302-102K         |
| C10                                          | 1        | Capacitor, 560 μF, 6.3 V, ±20%, AL, 8.0X11.5MM          | Panasonic            | EEUFM0J561               |
| C14                                          | 1        | Capacitor, 0.33 μF, 50 V, ±10%,<br>X7R, 0805            | Venkel               | C0805X7R500-334K         |
| C15                                          | 1        | Capacitor, 1 μF, 50 V, ±10%, X7R, 0805                  | Samsung              | CL21B105KBFNNNE          |
| C2                                           | 1        | Capacitor, 0.01 μF, 100 V, ±10%,<br>X7R, 0805           | Venkel               | C0805X7R101-103K         |
| C20                                          | 1        | Capacitor, 0.1 μF, 100 V, ±10%,<br>X7R, 0805            | Venkel               | C0805X7R101-104K         |
| C21                                          | 1        | Capacitor, 0.1 μF, 16 V, ±10%, X7R, 0805                | Venkel               | C0805X7R160-104K         |
| C3, C26                                      | 2        | Capacitor, 1.5 nF, 50 V, ±1%, C0G, 0805                 | Venkel               | C0805C0G500-152F         |
| C4                                           | 1        | Capacitor, 12 μF, 100 V, ±20%, AL, 6.3X11.2MM           | Panasonic            | EEUFC2A120               |
| C5, C6                                       | 2        | Capacitor, 1 μF, 100 V, ±10%, X7R, 1210                 | Venkel               | C1210X7R101-105K         |
| C7                                           | 1        | Capacitor, 0.01 μF, 100 V, ±10%,<br>X7R, 0603           | Venkel               | C0603X7R101-103K         |
| C8                                           | 1        | Capacitor, 1 μF, 25 V, ±10%, X5R, 0603                  | Venkel               | C0603X5R250-105K         |
| С9                                           | 1        | Capacitor, 100 μF, 6.3 V, ±10%,<br>X5R, 1210            | Venkel               | C1210X5R6R3-107K         |
| D1                                           | 1        | Diode, Schottky, 45 V, 10 A, Power-<br>DI-5             | Diodes Inc.          | SDT10A45P5-7             |
| D2                                           | 1        | LED, Green, 0805                                        | Lite On Inc.         | LTST-C170GKT             |
| D3, D5, D6, D7,<br>D8, D10, D11,<br>D12, D13 | 9        | Diode, Single, 100 V, 1.0 A, SMA                        | Fairchild            | S1B                      |
| D4                                           | 1        | Diode, Single, 100 V, 300 mA,<br>SOD123                 | Diodes Inc.          | 1N4148W-7-F              |
| J1 J3                                        | 2        | Connector, Banana Jack, Threaded uninsulated            | Abbatron HH<br>Smith | 101                      |
| J2                                           | 1        | Connector, RJ-45, MAGJACK, 1 Port<br>PoE                | Bel                  | SI-52003-F               |
| L1, L3                                       | 2        | Ferrite Bead, 700 Ω @150 MHZ,<br>0805                   | Wurth                | 742792040                |
| R10                                          | 1        | Resistor, 4.7 k $\Omega$ , 1/8 W, ±1%, Thick-Film, 0805 | Venkel               | CR0805-8W-4701F          |

| Reference                                    | Quantity | Description                                                                                    | Manufacturer     | Manufacturer Part Number |  |
|----------------------------------------------|----------|------------------------------------------------------------------------------------------------|------------------|--------------------------|--|
| R11                                          | 1        | Resistor, 750 $\Omega$ , 1/8 W, ±1%, Thick-Film, 0805                                          | Venkel           | CR0805-8W-7500FT         |  |
| R12                                          | 1        | Resistor, 36.5 kΩ, 1/10 W, ±1%,<br>ThickFilm, 0805                                             | Venkel           | CR0805-10W-3652F         |  |
| R14                                          | 1        | Resistor, 88.7 kΩ, 1/8 W, ±1%,<br>ThickFilm, 0805                                              | Vishay           | CRCW080588K7FKEA         |  |
| R15                                          | 1        | Resistor, 24.3 kΩ, 1/8 W, ±1%,<br>ThickFilm, 0805                                              | Vishay           | CRCW080524K3FKEA         |  |
| R17                                          | 1        | Resistor, 48.7 Ω, 1/8 W, ±1%, Thick-<br>Film, 0805                                             | Vishay           | CRCW080548R7FKTA         |  |
| R18                                          | 1        | Resistor, 12.1 kΩ, 1/10 W, ±1%, ThickFilm, 0805                                                | Venkel           | CR0805-10W-1212F         |  |
| R2                                           | 1        | Resistor, 0 Ω, 6A, ThickFilm, 0805                                                             | Vishay Dale      | CRCW08050000Z0EAHP       |  |
| R3                                           | 1        | Resistor, 82 kΩ, 1/10 W, ±5%, Thick-<br>Film, 0805                                             | Venkel           | CR0805-10W-823J          |  |
| R4                                           | 1        | Resistor, 8.2 Ω, 1/8W, ±1%, Thick-<br>Film, 0805                                               | Yageo            | RC0805FR-078R2L          |  |
| R5                                           | 1        | Resistor, 1 k $\Omega$ , 1/10 W, ±1%, Thick-Film, 0805                                         | Venkel           | CR0805-10W-1001F         |  |
| R6, R16                                      | 2        | Resistor, 0 Ω, 2 A, ThickFilm, 0805                                                            | Venkel           | CR0805-10W-000           |  |
| R7                                           | 1        | Resistor, 3 Ω, 1/8 W, ±1%, Thick-<br>Film, 0805                                                | Venkel           | CR0805-8W-3R00FT         |  |
| R8                                           | 1        | Resistor, 0.62 Ω, 1/8 W, ±1%, Thick-<br>Film, 0805                                             | Yageo            | RL0805FR-070R62L         |  |
| R9                                           | 1        | Resistor, 10 Ω, 1/10 W, ±1%, Thick-<br>Film, 0805                                              | Venkel           | CR0805-10W-10R0F         |  |
| T1                                           | 1        | Transformer, Flyback, PoE, 127 µH, 15 W, Aux winding, SMT                                      | Wurth Elektronik | 749119950                |  |
| TP1, TP2, TP8,<br>TP10, TP15,<br>TP16        | 6        | Testpoint, Black, 0.050" Loop, PTH                                                             | Keystone         | 5001                     |  |
| U1                                           | 1        | IC, Fully-Inetegrated 802.3-Compliant PoE PD Interface and Low-EMI Switching Regulator, QFN20  | Silicon Labs     | Si3404-A-GM              |  |
| U2                                           | 1        | Photocoupler, 5000 Vrms Isolation,<br>4-Pin SMD                                                | Vishay           | FOD817A3SD               |  |
| U3                                           | 1        | IC, Adjustable Precision Shunt Reg-<br>ulator Low Voltage SOT-23 Voltage-<br>Output 1.24 ~ 6 V | TI               | TLV431BCDBZR             |  |
| Not Installed Components                     |          |                                                                                                |                  |                          |  |
| C11, C12, C13                                | 3        | Capacitor, 100 μF, 6.3 V, ±10%, X5R, 1210                                                      | Venkel           | C1210X5R6R3-107K         |  |
| C16, C17, C18,<br>C19, C22, C23,<br>C24, C25 | 8        | Capacitor, 1 nF, 100 V, ±10%, X7R, 0603                                                        | Venkel           | C0603X7R101-102K         |  |
| C27                                          | 1        | Capacitor, 0.01 μF, 100 V, ±10%, X7R, 0805                                                     | Venkel           | C0805X7R101-103K         |  |

| Reference                                                     | Quantity | Description                                            | Manufacturer | Manufacturer Part Number |
|---------------------------------------------------------------|----------|--------------------------------------------------------|--------------|--------------------------|
| D9                                                            | 1        | Diode, TVS, Unidirectional, 58 V,<br>400 W             | Littelfuse   | SMAJ58A                  |
| L2                                                            | 1        | Inductor, Power, Shielded, 0.16 µH, 31 A, SMD          | Coilcraft    | XAL5030-161ME            |
| R1                                                            | 1        | Resistor, 1 k $\Omega$ , 1/10 W, ±1%, Thick Film, 0805 | Venkel       | CR0805-10W-1001F         |
| R13                                                           | 1        | Resistor, 0 Ω, 2 A, Thick Film, 0805                   | Venkel       | CR0805-10W-000           |
| TP3, TP4, TP5,<br>TP6, TP7, TP9,<br>TP11, TP12,<br>TP13, TP14 | 10       | Tespoint, Black, 0.050" Loop, PTH                      | Keystone     | 5001                     |

# 5. Si3404-ISO-FB EVB: 12 V, Class 3 Configuration



# 5.1 Si3404-ISO-FB EVB Schematic: 12 V Class 3, 15.4W

The figure below shows the schematic of the Si3404-ISO-FB 12 V, Class 3 EVB. The parts in red in the schematic represent the BOM differences compared to the other output voltage variant of this EVB. The parts in gray are not installed on the EVB, but they have footprints.



Figure 5.1. Si3404-ISO-FB EVB Schematic: 12 V, Class 3 PD, 15.4 W

#### 5.2 End-to-End EVB Efficiency

The end-to-end efficiency measurement data of the Si3404-ISO-FB 12V EVB is shown in the figures below. Efficiency was measured from PoE (RJ45 connector) input to the 12 V output. The efficiency was measured at three different input voltage levels, 39.9 V, 50 V and 57 V, with two input diode bridge configurations: silicon (S1B) and Schottky (SS2150).



Figure 5.2. Si3404-ISO-FB End-to-End Efficiency Chart with Silicon Type Input Bridge Diodes: Multiple Input Voltages, 12 V Output, Class 3



Figure 5.3. Si3404-ISO-FB End-to-End Efficiency Chart with Schottky Type Input Bridge Diodes: Multiple Input Voltages, 12 V Output, Class 3

Note: The charts show end-to-end EVB efficiency. The voltage drop of the diode bridge is included. LEDs are removed.

#### 5.3 Thermal Measurements

The Si3404-ISO-FB EVB's temperature was measured at maximum **input power – 13 W**. The Si3404-ISO-FB EVB is configured for 12 V output voltage and Class 3 power level. The following figure shows the thermal images taken of the EVB board at maximum input power.

## Top Side of the PCB

#### **Bottom Side of the PCB**



Figure 5.4. Thermal Measurements of the Si3404-ISO-FB EVB, 12 V, Class 3 PD

The following table lists the temperatures of the notable components across the board.

Table 5.1. Component Temperatures at Full Load

| Component                                                                  | Temperature <sup>1</sup> |  |  |  |  |  |
|----------------------------------------------------------------------------|--------------------------|--|--|--|--|--|
| Si3404 – U1                                                                | 57.1 °C                  |  |  |  |  |  |
| Flyback Transformer – T1                                                   | 39.3 °C                  |  |  |  |  |  |
| Secondary Side Diode – D1                                                  | 45.8 °C                  |  |  |  |  |  |
| Secondary Side RC Snubber – C3–R4                                          | 56.7 °C                  |  |  |  |  |  |
| Diode Bridge – D5–D8, D10–D13                                              | 59.3 °C                  |  |  |  |  |  |
| Primary Side RCD Clamp – R3-C2-D3                                          | 43.7 °C                  |  |  |  |  |  |
| Note:  1 The ambient temperature was 26 °C during the thermal measurements |                          |  |  |  |  |  |

<sup>1.</sup> The ambient temperature was 26 °C during the thermal measurements.

# 5.4 Sifos PoE Compatibility Test Results

The PDA-604A Powered Device Analyzer is a single-box comprehensive solution for testing IEEE 802.3at and IEEE 802.3bt PoE Powered Devices (PDs). The Si3404-ISO-FB 12 V EVB board has been successfully tested with the PDA-604A Powered Device Analyzer from Sifos Technologies.

Unlike the Si3406x family, the Si3404 does not incorporate the MPS feature. To prevent PSE shutdown, a minimal 50R load was applied to the Si3404-ISO-FB 12 V EVB's output during the Sifos tests.

See 11. Complete 12 V Si3404 Isolated Flyback Sifos Compatibility Test Reports for more information.

## 5.5 Adjustable EVB Current Limit

For additional safety, the Si3404 has an adjustable EVB current limit feature.

The Si3404 controller measures the voltage on the  $R_{SENSE}$  resistor (R8) through the ISNS pin. Care must be taken that this voltage goes below  $V_{SS}$ . When the voltage on R8 is  $V_{ISNS}$  = -270 mV (referenced to  $V_{SS}$ ), the internal current limit circuit restarts the PD to protect the application.

The EVB current limit for this Class 3 application can be calculated with the following formula:

$$R_{SENSE} = 0.62\Omega$$

$$I_{LIMIT} = \frac{270mV}{0.62\Omega} = 435mA$$

**Equation 5.1. EVB Class 3 Current Limit** 

#### 5.6 Feedback Loop Phase and Gain Measurement Results (Bode Plots)

The Si3404 device integrates a current-mode-controlled switching mode power supply controller circuit. Therefore, the application is a closed-loop system. To guarantee stable output voltage of the power supply and to reduce the influence of the input voltage variations and load changes on the output voltage, the feedback loop should be stable.

To verify the stability of the loop, the gain and phase of the loop has been measured.



Figure 5.5. Si3404-ISO-FB EVB, 12 V, Class 3 PD Feedback Loop Measurement Results at Light Load

Table 5.2. Measured Loop Gain and Phase Margin at Light Load

|                         | Frequency | Gain      | Phase   |
|-------------------------|-----------|-----------|---------|
| Cursor 1 (Phase Margin) | 2.34 kHz  | 0 dB      | 79.10 ° |
| Cursor 2 (Gain Margin)  | 74.24 kHz | –25.86 dB | 0 °     |



Figure 5.6. Si3404-ISO-FB EVB, 12 V, Class 3 PD Feedback Loop Measurement Results at Full Load

Table 5.3. Measured Loop Gain and Phase Margin at Full Load

|                         | Frequency | Gain      | Phase   |
|-------------------------|-----------|-----------|---------|
| Cursor 1 (Phase Margin) | 5.05 kHz  | 0 dB      | 80.65 ° |
| Cursor 2 (Gain Margin)  | 46.54 kHz | -14.57 dB | 0 °     |

The following table sums up the circumstances of the feedback loop measurements.

Table 5.4. Feedback Loop Measurements Circumstances

| Measurement Name                        | Input Voltage | Output Load |
|-----------------------------------------|---------------|-------------|
| Feedback Loop Measurement at Light Load | 50 V          | 100 R       |
| Feedback Loop Measurement at Full Load  | 50 V          | 11 R        |

#### 5.7 Load Step Transient Measurement Results

The output of the Si3404-ISO-FB EVB board has been tested with a load step function to verify the converter's output dynamic response.



Figure 5.7. Si3404-ISO-FB EVB, 12 V, Class 3 PD Output Load Step Transient Test

The following table sums up the results of the load step measurement.

Table 5.5. Output Load Step Transient Results

|                        | From (Output Current) | To (Output Current) | Slew Rate (Output Current) | V <sub>OUT</sub> Change |
|------------------------|-----------------------|---------------------|----------------------------|-------------------------|
| Stepping up the load   | 0.1 A                 | 1 A                 | 2500 mA/µs                 | 12 V – 116 mV           |
| Stepping down the load | 1 A                   | 0.1 A               | 2500 mA/µs                 | 12 V + 104 mV           |

#### 5.8 Output Voltage Ripple

The Si3404-ISO-FB EVB output voltage ripple has been measured in both no load and heavy load conditions.

## No-Load V<sub>OUT</sub> Ripple = 12.1 mV

## Heavy-Load V<sub>OUT</sub> Ripple = 123 mV



Figure 5.8. Si3404-ISO-FB EVB, 12 V, Class 3 Output Voltage Ripple No Load (Left) and Heavy Load (Right) Conditions

#### 5.9 Soft-Start Protection

The Si3404 device has an integrated dynamic soft-start protection mechanism to avoid stressing the components by the sudden current or voltage changes associated with the initial charging of the output capacitors.

The Si3404 intelligent adaptive soft-start mechanism does not require any external component to install. The controller continuously measures the input current of the PD and dynamically adjusts the internal I<sub>PEAK</sub> limit during soft-start, thus adjusting the output voltage ramp-up time as a function of the attached load.

The controller allows the output voltage to rise faster in no load (or light load) conditions. With a heavy load at the output, the controller slows down the output voltage ramp to avoid exceeding the desired regulated output voltage value.

# No-Load Soft-Start t<sub>RISE</sub> = 12.8 ms

# Heavy-Load Soft-Start t<sub>RISE</sub> = 38.8 ms



Figure 5.9. Si3404-ISO-FB EVB, 12 V, Class 3 Output Voltage Soft-Start at Low Load (Left) and Heavy Load (Right) Conditions

# 5.10 Output Short Protection

The Si3404 device has an integrated output short protection mechanism, which protects the IC itself and the surrounding external components from overheating in the case of electrical short on the output.



Figure 5.10. Si3404-ISO-FB EVB, 12 V, Class 3 Output Short Circuit Protection

### 5.11 Pulse Skipping at No-Load Condition

The Si3404 device has an integrated pulse skipping mechanism to ensure ultra-low power consumption under light load conditions.

As the output load decreases, the controller starts to reduce the pulse-width of the PWM signal (switcher ON time). At some point, even the minimum width pulse will provide higher energy than the application requires, which could result in a loss of voltage regulation.

When the controller detects a light load condition (which requires less ON time than the minimum pulse width), the controller enters into pulse-skipping mode. This mode is shown in the following figure, which depicts the switching node of the integrated switching FET at a no-load condition.



Figure 5.11. Si3404-ISO-FB EVB, 12 V, Class 3 Pulse Skipping at No-load Condition: SWO Waveform

## 5.12 Discontinuous (DCM) and Continuous (CCM) Conduction Modes

At low load, the converter works in discontinuous conduction mode (DCM). At heavy load, the converter runs in continuous conduction mode (CCM). At low load, the SWO voltage waveform has a ringing waveform, which is typical for DCM operation.

Low-Load, DCM Heavy-Load, CCM



Figure 5.12. Si3404-ISO-FB EVB, 12 V, Class 3: SWO Waveform in Discontinuous Conduction Mode (DCM) at Low Load (Left), and in Continuous Conduction Mode (CCM) at Heavy Load (Right)

Similar voltage waveforms can be observed on the secondary side diode, D1. The voltage levels on the secondary side diode, D1, are much lower due to the transformer turns ratio; however, the discontinuous and continuous conduction mode characteristics are still present.

Low-Load, DCM

Heavy-Load, CCM



Figure 5.13. Si3404-ISO-FB EVB, 12 V, Class 3: Secondary Side Diode Voltage Waveform in Discontinuous Conduction Mode (DCM) at Low Load (Left), and in Continuous Conduction Mode (CCM) at Heavy Load (Right)

## 5.13 Radiated Emissions Measurement Results

Radiated emissions of the Si3404-ISO-FB, 12 V, Class 3 EVB board have been measured with 50 V input voltage and a full load connected to the output. The input power is 15 W in this case.

As shown below, the Si3404-ISO-FB, 12 V, Class 3 EVB is fully compliant with the international EN 55032 Class B emissions standard.



Figure 5.14. Si3404-ISO-FB EVB Radiated Emissions Measurements Results; 50 V Input, 12 V Output, 15 W Input Power

Table 5.6. Notable Peaks on The Radiated Emissions Chart

| Frequency  | Quasi Peak   | Limit     | Margin   | Polarization |
|------------|--------------|-----------|----------|--------------|
| 35.99 MHz  | 36.81 dBµV/m | 40 dBμV/m | 3.19 dB  | Vertical     |
| 40.08 MHz  | 36.22 dBμV/m | 40 dBμV/m | 3.78 dB  | Vertical     |
| 74.19 MHz  | 17.84 dBµV/m | 40 dBμV/m | 22.16 dB | Vertical     |
| 85.26 MHz  | 15.39 dBµV/m | 40 dBμV/m | 24.61 dB | Vertical     |
| 216.93 MHz | 11.13 dBµV/m | 40 dBμV/m | 28.87 dB | Horizontal   |

The EVB is measured at full load with peak detection in both vertical and horizontal polarizations. This is a relatively fast process that produces a red curve (vertical polarization) and a blue curve (horizontal polarization).

Next, specific frequencies are selected (red stars) for quasi-peak measurements. The board is measured again at those specific frequencies with a quasi-peak detector, which is a very slow but accurate measurement. The results of this quasi-peak detector measurement are the blue rhombuses.

The blue rhombuses represent the final result of the measurement process. To have passing results, the blue rhombuses should be below the highlighted EN 55032 Class B limit.

#### 5.14 Conducted Emissions Measurement Results

The Si3404-ISO-FB, 12 V, Class 3 EVB board's conducted emissions have been measured by two different measurement methods to comply with the international EN 55032 standard. The EVB is supplied and measured on its PoE input port as shown in the following figure.



Figure 5.15. Conducted EMI Measurement Setup

The detector in the spectrum analyzer is set to:

- · Peak detector and
- · Average detector

Both results are shown in the following figure:



Figure 5.16. Si3404-ISO-FB EVB Conducted Emissions Measurements Results; 50 V Input, 12 V Output, 15 W Input Power

# 5.15 Bill of Materials

The following table is the BOM listing for the standard 12 V output evaluation board with option PoE Class 3.

Table 5.7. Si3404 Isolated Flyback 12 V Bill of Materials

| Reference                                    | Quantity | Description                                      | Manufacturer         | ManufacturerPN     |
|----------------------------------------------|----------|--------------------------------------------------|----------------------|--------------------|
| C1, C28                                      | 2        | Capacitor, 1 nF, 3000 V, ±10%, X7R, 1808         | Venkel               | C1808X7R302-102K   |
| C10                                          | 1        | Capacitor, 330 μF, 16 V, ±20%, AL, 8X11.5MM, PTH | Panasonic            | ECA-1CM331         |
| C14                                          | 1        | Capacitor, 0.33 μF, 50 V, ±10%,<br>X7R, 0805     | Venkel               | C0805X7R500-334K   |
| C15                                          | 1        | Capacitor, 1 μF, 50 V, ±10%, X7R, 0805           | Samsung              | CL21B105KBFNNNE    |
| C2                                           | 1        | Capacitor, 0.01 μF, 100 V, ±10%,<br>X7R, 0805    | Venkel               | C0805X7R101-103K   |
| C20                                          | 1        | Capacitor, 0.1 μF, 100 V, ±10%,<br>X7R, 0805     | Venkel               | C0805X7R101-104K   |
| C21                                          | 1        | Capacitor, 0.1 μF, 16 V, ±10%, X7R, 0805         | Venkel               | C0805X7R160-104K   |
| C26                                          | 1        | Capacitor, 1 nF, 50 V, ±1%, C0G, 0805            | Venkel               | C0805C0G500-102F   |
| C3                                           | 1        | Capacitor, 680pF, 100 V, ±1%, C0G, 0805          | Venkel               | C0805C0G101-681FNP |
| C4                                           | 1        | Capacitor, 12 μF, 100 V, ±20%, AL, 6.3X11.2MM    | Panasonic            | EEUFC2A120         |
| C5, C6                                       | 2        | Capacitor, 1 μF, 100 V, ±10%, X7R, 1210          | Venkel               | C1210X7R101-105K   |
| C7                                           | 1        | Capacitor, 0.01 μF, 100 V, ±10%,<br>X7R, 0603    | Venkel               | C0603X7R101-103K   |
| C8                                           | 1        | Capacitor, 1 μF, 25 V, ±10%, X5R, 0603           | Venkel               | C0603X5R250-105K   |
| С9                                           | 1        | Capacitor, 47 μF, 16 V, ±20%, X5R, 1210          | Venkel               | C1210X5R160-476MNE |
| D1                                           | 1        | Diode, Schottky, 100 V, 5 A, Power-<br>DI-5      | Diodes Inc.          | SDT5H100P5-7       |
| D2                                           | 1        | LED, Green, 0805                                 | LITE_ON INC          | LTST-C170GKT       |
| D3, D5, D6, D7,<br>D8, D10, D11,<br>D12, D13 | 9        | Diode, Single, 100 V, 1.0 A, SMA                 | Fairchild            | S1B                |
| D4                                           | 1        | Diode, Single, 100 V, 300 mA,<br>SOD123          | Diodes Inc.          | 1N4148W-7-F        |
| J1, J3                                       | 2        | Connector, Banana Jack, Threaded uninsulated     | ABBATRON HH<br>SMITH | 101                |
| J2                                           | 1        | Connector, RJ-45, Magjack, 1 Port<br>PoE         | Bel                  | SI-52003-F         |
| L1, L3                                       | 2        | Ferrite Bead, 700 Ω @150 MHz, 0805               | Wurth                | 742792040          |

| Reference                                    | Quantity | Description                                              | Manufacturer     | ManufacturerPN     |
|----------------------------------------------|----------|----------------------------------------------------------|------------------|--------------------|
| R10                                          | 1        | Resistor, 4.7 kΩ, 1/8 W, ±1%, Thick Film, 0805           | Venkel           | CR0805-8W-4701F    |
| R11                                          | 1        | Resistor, 825 Ω, 1/8 W, ±1%, Thick Film, 0805            | Venkel           | CR0805-8W-8250F    |
| R12                                          | 1        | Resistor, 105 kΩ, 1/8 W, ±1%, Thick Film, 0805           | Yageo            | RC0805FR-07105KL   |
| R14                                          | 1        | Resistor, 88.7 kΩ, 1/8 W, ±1%, Thick Film, 0805          | Vishay           | CRCW080588K7FKEA   |
| R15                                          | 1        | Resistor, 24.3 kΩ, 1/8 W, ±1%, Thick Film, 0805          | vishay           | CRCW080524K3FKEA   |
| R17                                          | 1        | Resistor, 48.7 Ω, 1/8W, ±1%, Thick Film, 0805            | vishay           | CRCW080548R7FKTA   |
| R18                                          | 1        | Resistor, 12.1 kΩ, 1/10W, ±1%,<br>Thick Film, 0805       | Venkel           | CR0805-10W-1212F   |
| R2                                           | 1        | Resistor, 0 Ω, 6 A, Thick Film, 0805                     | Vishay Dale      | CRCW08050000Z0EAHP |
| R3                                           | 1        | Resistor, 130 kΩ, 1/10W, ±5%, Thick Film, 0805           | Venkel           | CR0805-10W-134J    |
| R4                                           | 1        | Resistor, 18 Ω, 1/10 W, ±1%, Thick Film, 0805            | Venkel           | CR0805-10W-18R0F   |
| R5                                           | 1        | Resistor, 3.24 kΩ, 1/10 W, ±1%,<br>Thick Film, 0805      | Venkel           | CR0805-10W-3241F   |
| R6, R16                                      | 2        | Resistor, 0 Ω, 2 A, Thick Film, 0805                     | Venkel           | CR0805-10W-000     |
| R7                                           | 1        | Resistor, 3 Ω, 1/8W, ±1%, Thick Film, 0805               | Venkel           | CR0805-8W-3R00FT   |
| R8                                           | 1        | Resistor, 0.62 Ω, 1/8W, ±1%, Thick Film, 0805            | Yageo            | RL0805FR-070R62L   |
| R9                                           | 1        | Resistor, 10 Ω, 1/10W, ±1%, Thick Film, 0805             | Venkel           | CR0805-10W-10R0F   |
| T1                                           | 1        | Transformer, Flyback, PoE, 127 µH, 15W, Aux winding, SMT | Wurth Elektronik | 7491199112         |
| TP1, TP2, TP8,<br>TP10, TP15,<br>TP16        | 6        | Testpoint, Black, 0.050" Loop, PTH                       | Keystone         | 5001               |
| U1                                           | 1        |                                                          | SiLabs           | Si3404-A-GM        |
| U2                                           | 1        | Photocoupler, 5000 Vrms Isolation,<br>4-PIN SMD          | Vishay           | FOD817A3SD         |
| U3                                           | 1        | IC, ADJ PREC SHUNT REG LV,<br>1.24-16V, SOT23-3          | ON Semi          | TLV431ASN1T1G      |
| Not Installed Com                            | nponents |                                                          |                  |                    |
| C11, C12, C13                                | 3        | Capacitor, 100 μF, 6.3V, ±10%, X5R, 1210                 | Venkel           | C1210X5R6R3-107K   |
| C16, C17, C18,<br>C19, C22, C23,<br>C24, C25 | 8        | Capacitor, 1 nF, 100 V, ±10%, X7R, 0603                  | Venkel           | C0603X7R101-102K   |
| C27                                          | 1        | Capacitor, 0.01 μF, 100V, ±10%, X7R, 0805                | Venkel           | C0805X7R101-103K   |

| Reference                                                     | Quantity | Description                                            | Manufacturer | ManufacturerPN   |
|---------------------------------------------------------------|----------|--------------------------------------------------------|--------------|------------------|
| D9                                                            | 1        | Diode, TVS, Unidirectional, 58 V,<br>400 W             | Littelfuse   | SMAJ58A          |
| L2                                                            | 1        | Inductor, Power, Shielded, 0.16 µH, 31 A, SMD          | Coilcraft    | XAL5030-161ME    |
| R1                                                            | 1        | Resistor, 1 k $\Omega$ , 1/10 W, ±1%, Thick Film, 0805 | Venkel       | CR0805-10W-1001F |
| R13                                                           | 1        | Resistor, 0 Ω, 2 A, Thick Film, 0805                   | Venkel       | CR0805-10W-000   |
| TP3, TP4, TP5,<br>TP6, TP7, TP9,<br>TP11, TP12,<br>TP13, TP14 | 10       | Testpoint, Black, 0.050" Loop, PTH                     | Keystone     | 5001             |

# 6. Tunable Switching Frequency

The switching frequency of the oscillator is selected by choosing an external resistor ( $R_{FREQ}$ ) connected between the  $R_{FREQ}$  and VPOS pins. The following figure will aid in choosing the  $R_{FREQ}$  value to achieve the desired switching frequency.



Figure 6.1. Switching Frequency vs R<sub>FREQ</sub>

The selected switching frequency for these applications is 220 kHz, which is achieved by setting the  $R_{FREQ}$  resistor to 88.7 k $\Omega$ .

# 7. Board Layout



Figure 7.1. Top Silkscreen



Figure 7.2. Top Layer



Figure 7.3. Internal 1 (Layer 2)



Figure 7.4. Internal 2 (Layer 3)



Figure 7.5. Bottom Layer



Figure 7.6. Bottom Silkscreen

# 8. Design and Layout Checklist

The complete EVB design databases for the four configurations are located at <a href="www.silabs.com/power">www.silabs.com/power</a>. Silicon Labs strongly recommends using these EVB schematics and layout files as a starting point to ensure robust performance and avoid common mistakes in the schematic capture and PCB layout processes.

Below is a recommended design checklist that can assist in trouble-free development of robust PD designs.

Refer also to the Si3404 Data Sheet and "AN1130: Si3404/06x PoE-PD Controller Design Guide" when using the following checklist.

- 1. Design Planning Checklist:
  - a. Determine if your design requires an isolated or non-isolated topology. For more information, see AN1130: Si3404/06x PoE-PD Controller Design Guide.
  - b. Silicon Labs strongly recommends using the EVB schematics and layout files as a starting point as you begin integrating the Si3404-ISO-FB into your system design process.
  - c. Determine your load's power requirements (i.e., V<sub>OUT</sub> and I<sub>OUT</sub> consumed by the PD, including the typical expected transient surge conditions). In general, to achieve the highest overall efficiency performance of the Si3404-ISO-FB, choose the highest output voltage option used in your PD and then post regulate to the lower supply rails, if necessary.
  - d. Based on your required PD power level, select the appropriate class resistor RCLASS value by referring to AN1130: Si3404/06x PoE-PD Controller Design Guide.

### 2. General Design Checklist:

- a. Non-standard PoE injectors turns on the PD without detection and classification phases. In most cases, dV/dt is not controlled and could violate IEEE requirements. To ensure robustness with those injectors, please include a 3  $\Omega$  resistor in series with the 100 nF / 100 V detection capacitor.
- b. Silicon Labs recommends the inclusion of a minimum load (250 mW) to avoid the PSE port being disconnected by the PSE. If your load is not at least 250 mW, add a resistor load to dissipate at least 250 mW.

#### 3. Layout Guidelines:

- a. Make sure the VNEG pin of the Si3404 is connected to the backside of the QFN package with an adequate thermal plane.
- b. Keep the trace length from SWO to VSS as short as possible. Make all of the power (high current) traces as short, direct, and thick as possible. It is a good practice on a standard PCB board to make the traces an absolute minimum of 15 mils (0.381 mm) per ampere.
- c. Usually, one standard via handles 200 mA of current. If the trace needs to conduct a significant amount of current from one plane to the other, use multiple vias.
- d. Keep the circular area of the loop from the Switcher FET output to the inductor and returning from the input filter capacitors (C5–C7) to VSS as small a diameter as possible. Also, minimize the circular area of the loop from the output of the inductor to the Schottky diode and returning through the output filter capacitor back to the inductor as small as possible. If possible, keep the direction of current flow in these two loops the same.
- e. Keep the high-power traces as short as possible.
- f. Keep the feedback and loop stability components as far from the inductor and noisy power traces as possible.
- g. If the outputs have a ground plane or positive output plane, do not connect the high current carrying components and the filter capacitors through the plane. Connect them together, and then connect to the plane at a single point.

To help ensure first-pass success, contact our customer support by submitting a help ticket and uploading your schematics and layout files for review.

# 9. Complete 3.3 V Si3404 Isolated Flyback Sifos Compatibility Test Reports

Table 9.1. Si3404-ISO-FB EVB, 3.3 V, Class 3 PD Sifos PoE Compatibility Test Results, PSE Emulation: Alt A MDI

| Detection and Classification | PSE En | nulation | Pairs  | А      | Polarity | MDI      | Det_Cycles | 3    |
|------------------------------|--------|----------|--------|--------|----------|----------|------------|------|
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| Rdet                         | 24.35  | kΩ       | 24.35  | 24.35  | 24.35    | 23.70    | 26.30      | Р    |
| Rdet_final                   | 24.37  | kΩ       | 24.37  | 24.37  | 24.37    | 23.70    | 26.30      | Р    |
| Rdet_unpwr                   | >99.00 | kΩ       | 99.00  | 99.00  | 99.00    | <12.00   | >45.00     | Р    |
| Rdet_at_Vmin                 | 24.53  | kΩ       | 24.53  | 24.53  | 24.53    | 23.70    | 26.30      | Р    |
| Rdet_at_Vmax                 | 24.50  | kΩ       | 24.50  | 24.50  | 24.50    | 23.70    | 26.30      | Р    |
| Rdet_Voffset                 | 1.0    | VDC      | 1.0    | 1.0    | 1.0      | 0.0      | 1.9        | Р    |
| Cdet                         | 0.11   | μF       | 0.11   | 0.11   | 0.11     | 0.05     | 0.12       | Р    |
| Cdet_final                   | 0.11   | μF       | 0.11   | 0.11   | 0.11     | 0.05     | 0.12       | Р    |
| 1 Event Classification       | •      |          |        |        |          |          |            |      |
| Iclass                       | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| ClassNum                     | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass                       | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability               | 1      |          |        |        |          | 1        | 1          | Р    |
| Iclass_at_Vmin               | 28.7   | mA       | 28.7   | 28.7   | 28.7     | 26.0     | 30.0       | Р    |
| Iclass_at_Vmax               | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| 2 Event Classification       | •      |          |        |        |          |          |            |      |
| Iclass_event1                | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| Iclass_event2                | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| Markl                        | 1.74   | mA       | 1.74   | 1.74   | 1.74     | 0.25     | 4.00       | INFO |
| ClassNum2                    | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass_event1                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| Tclass_event2                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability_event1        | 1      |          |        |        |          | 1        | 1          | Р    |
| ClassStability_event2        | 1      |          |        |        |          | 1        | 1          | Р    |
| Power-Up / Down              |        |          |        |        |          |          |            |      |
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| InrushI_1                    | 160.4  | mA       | 160.4  | 160.4  | 160.4    | 0.0      | 400.0      | Р    |
| InrushI_2                    | -1.0   | mA       | -1.0   | -1.0   | -1.0     | 0.0      | 400.0      | NA   |
| Pmax_Tdelay                  | -1.0   | W        | -1.0   | -1.0   | -1.0     | 0.0      | 0.0        | NA   |
| Inrush_delayed               | 0      |          | 0      | 0      | _        | 0        | 0          | Р    |
| Von                          | 38.2   | VDC      | 38.2   | 38.2   | 38.2     | 30.0     | 42.0       | Р    |
| Voff                         | 33.9   | VDC      | 33.9   | 33.9   | 33.9     | 30.0     | 42.0       | Р    |
|                              |        |          |        |        |          |          |            |      |

| Vhyst                 | 4.3    | VDC      | 4.3     | 4.3  | 4.3      | 0.0      | 12.0      | Р    |
|-----------------------|--------|----------|---------|------|----------|----------|-----------|------|
| BackfeedV             | 0.1    | VDC      | 0.1     | 0.1  | 0.1      | 0.0      | 2.8       | Р    |
| ClassRecover          | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| SigRecoverTime        | 0.0    | s        | 0.0     | 0.0  | 0.0      | 0.0      | 30.0      | Р    |
| MDI Powered Type-1    | PSE En | nulation | On Time | 10 s | Off Time | 10 s     | Vport     | 48.0 |
| Parameter Cycle       | 1      | Units    | Min.    | Max. | Average  | Low Lim. | High Lim. | P/F  |
| MinI_1                | 16.0   | mA       | 16.0    | 16.0 | 16.0     | 0.0      | 299.5     | Р    |
| MaxI_1                | 17.5   | mA       | 17.5    | 17.5 | 17.5     | 10.0     | 299.5     | Р    |
| Vport_1               | 48.0   | VDC      | 48.0    | 48.0 | 48.0     | 37.0     | 57.0      | INFO |
| Ppeak_1               | 0.84   | W        | 0.84    | 0.84 | 0.84     | 0.0      | 14.4      | Р    |
| Pavg_1                | 0.79   | W        | 0.79    | 0.79 | 0.79     | 0.0      | 13.0      | Р    |
| MPSViolation_1        | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| TcutWindowViolation_1 | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| DutyCycleViolation_1  | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |

Table 9.2. Si3404-ISO-FB EVB, 3.3 V, Class 3 PD Sifos PoE Compatibility Test Results, PSE Emulation: Alt A MDI-X

| Detection and Classification | PSE Em | nulation | Pairs  | Α      | Polarity | MDI-X    | Det_Cycles | 3    |
|------------------------------|--------|----------|--------|--------|----------|----------|------------|------|
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| Rdet                         | 24.33  | kΩ       | 24.33  | 24.33  | 24.33    | 23.70    | 26.30      | Р    |
| Rdet_final                   | 24.40  | kΩ       | 24.40  | 24.40  | 24.40    | 23.70    | 26.30      | Р    |
| Rdet_unpwr                   | >99.00 | kΩ       | 99.00  | 99.00  | 99.00    | <12.00   | >45.00     | Р    |
| Rdet_at_Vmin                 | 24.67  | kΩ       | 24.67  | 24.67  | 24.67    | 23.70    | 26.30      | Р    |
| Rdet_at_Vmax                 | 24.60  | kΩ       | 24.60  | 24.60  | 24.60    | 23.70    | 26.30      | Р    |
| Rdet_Voffset                 | 1.0    | VDC      | 1.0    | 1.0    | 1.0      | 0.0      | 1.9        | Р    |
| Cdet                         | 0.11   | μF       | 0.11   | 0.11   | 0.11     | 0.05     | 0.12       | Р    |
| Cdet_final                   | 0.11   | μF       | 0.11   | 0.11   | 0.11     | 0.05     | 0.12       | Р    |
| 1 Event Classification       |        | •        |        |        | •        |          |            |      |
| Iclass                       | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| ClassNum                     | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass                       | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability               | 1      |          |        |        |          | 1        | 1          | Р    |
| Iclass_at_Vmin               | 28.8   | mA       | 28.8   | 28.8   | 28.8     | 26.0     | 30.0       | Р    |
| Iclass_at_Vmax               | 28.4   | mA       | 28.4   | 28.4   | 28.4     | 26.0     | 30.0       | Р    |
| 2 Event Classification       |        |          |        |        |          |          |            |      |
| Iclass_event1                | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| Iclass_event2                | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| Markl                        | 1.74   | mA       | 1.74   | 1.74   | 1.74     | 0.25     | 4.00       | INFO |
| ClassNum2                    | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass_event1                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| Tclass_event2                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability_event1        | 1      |          |        |        |          | 1        | 1          | Р    |
| ClassStability_event2        | 1      |          |        |        |          | 1        | 1          | Р    |
| Power-Up / Down              |        |          |        |        |          |          |            |      |
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| InrushI_1                    | 160.2  | mA       | 160.2  | 160.2  | 160.2    | 0.0      | 400.0      | Р    |
| InrushI_2                    | -1.0   | mA       | -1.0   | -1.0   | -1.0     | 0.0      | 400.0      | NA   |
| Pmax_Tdelay                  | -1.0   | W        | -1.0   | -1.0   | -1.0     | 0.0      | 0.0        | NA   |
| Inrush_delayed               | 0      |          | 0      | 0      | _        | 0        | 0          | Р    |
| Von                          | 38.2   | VDC      | 38.2   | 38.2   | 38.2     | 30.0     | 42.0       | Р    |
| Voff                         | 34.1   | VDC      | 34.1   | 34.1   | 34.1     | 30.0     | 42.0       | Р    |
| Vhyst                        | 4.1    | VDC      | 4.1    | 4.1    | 4.1      | 0.0      | 12.0       | Р    |
| BackfeedV                    | 0.0    | VDC      | 0.0    | 0.0    | 0.0      | 0.0      | 2.8        | Р    |

| ClassRecover          | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
|-----------------------|--------|----------|---------|------|----------|----------|-----------|------|
| SigRecoverTime        | 0.0    | s        | 0.0     | 0.0  | 0.0      | 0.0      | 30.0      | Р    |
| MDI Powered Type-1    | PSE En | nulation | On Time | 10 s | Off Time | 10 s     | Vport     | 48.0 |
| Parameter Cycle       | 1      | Units    | Min.    | Max. | Average  | Low Lim. | High Lim. | P/F  |
| MinI_1                | 15.9   | mA       | 15.9    | 15.9 | 15.9     | 0.0      | 298.9     | Р    |
| Maxl_1                | 17.7   | mA       | 17.7    | 17.7 | 17.7     | 10.0     | 298.9     | Р    |
| Vport_1               | 48.1   | VDC      | 48.1    | 48.1 | 48.1     | 37.0     | 57.0      | INFO |
| Ppeak_1               | 0.85   | W        | 0.85    | 0.85 | 0.85     | 0.0      | 14.4      | Р    |
| Pavg_1                | 0.78   | W        | 0.78    | 0.78 | 0.78     | 0.0      | 13.0      | Р    |
| MPSViolation_1        | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| TcutWindowViolation_1 | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| DutyCycleViolation_1  | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |

Table 9.3. Si3404-ISO-FB EVB, 3.3 V, Class 3 PD Sifos PoE Compatibility Test Results, PSE Emulation: Alt B MDI

| Detection and Classification | PSE Em | nulation | Pairs  | В      | Polarity | MDI      | Det_Cycles | 3    |
|------------------------------|--------|----------|--------|--------|----------|----------|------------|------|
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| Rdet                         | 24.33  | kΩ       | 24.33  | 24.33  | 24.33    | 23.70    | 26.30      | Р    |
| Rdet_final                   | 24.40  | kΩ       | 24.40  | 24.40  | 24.40    | 23.70    | 26.30      | Р    |
| Rdet_unpwr                   | >99.00 | kΩ       | 99.00  | 99.00  | 99.00    | <12.00   | >45.00     | Р    |
| Rdet_at_Vmin                 | 24.60  | kΩ       | 24.60  | 24.60  | 24.60    | 23.70    | 26.30      | Р    |
| Rdet_at_Vmax                 | 24.52  | kΩ       | 24.52  | 24.52  | 24.52    | 23.70    | 26.30      | Р    |
| Rdet_Voffset                 | 1.0    | VDC      | 1.0    | 1.0    | 1.0      | 0.0      | 1.9        | Р    |
| Cdet                         | 0.11   | μF       | 0.11   | 0.11   | 0.11     | 0.05     | 0.12       | Р    |
| Cdet_final                   | 0.11   | μF       | 0.11   | 0.11   | 0.11     | 0.05     | 0.12       | Р    |
| 1 Event Classification       |        |          | 1      |        |          |          |            |      |
| Iclass                       | 28.7   | mA       | 28.7   | 28.7   | 28.7     | 26.0     | 30.0       | Р    |
| ClassNum                     | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass                       | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability               | 1      |          |        |        |          | 1        | 1          | Р    |
| Iclass_at_Vmin               | 29.3   | mA       | 29.3   | 29.3   | 29.3     | 26.0     | 30.0       | Р    |
| Iclass_at_Vmax               | 28.6   | mA       | 28.6   | 28.6   | 28.6     | 26.0     | 30.0       | Р    |
| 2 Event Classification       |        |          |        |        |          |          |            |      |
| Iclass_event1                | 28.7   | mA       | 28.7   | 28.7   | 28.7     | 26.0     | 30.0       | Р    |
| Iclass_event2                | 28.7   | mA       | 28.7   | 28.7   | 28.7     | 26.0     | 30.0       | Р    |
| Markl                        | 1.81   | mA       | 1.81   | 1.81   | 1.81     | 0.25     | 4.00       | INFO |
| ClassNum2                    | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass_event1                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| Tclass_event2                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability_event1        | 1      |          |        |        |          | 1        | 1          | Р    |
| ClassStability_event2        | 1      |          |        |        |          | 1        | 1          | Р    |
| Power-Up / Down              |        |          |        |        |          |          |            |      |
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| InrushI_1                    | 160.1  | mA       | 160.1  | 160.1  | 160.1    | 0.0      | 400.0      | Р    |
| InrushI_2                    | -1.0   | mA       | -1.0   | -1.0   | -1.0     | 0.0      | 400.0      | NA   |
| Pmax_Tdelay                  | -1.0   | W        | -1.0   | -1.0   | -1.0     | 0.0      | 0.0        | NA   |
| Inrush_delayed               | 0      |          | 0      | 0      | _        | 0        | 0          | Р    |
| Von                          | 38.2   | VDC      | 38.2   | 38.2   | 38.2     | 30.0     | 42.0       | Р    |
| Voff                         | 34.0   | VDC      | 34.0   | 34.0   | 34.0     | 30.0     | 42.0       | Р    |
| Vhyst                        | 4.1    | VDC      | 4.1    | 4.1    | 4.1      | 0.0      | 12.0       | Р    |
| BackfeedV                    | 0.0    | VDC      | 0.0    | 0.0    | 0.0      | 0.0      | 2.8        | Р    |

| ClassRecover          | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
|-----------------------|--------|----------|---------|------|----------|----------|-----------|------|
| SigRecoverTime        | 0.0    | s        | 0.0     | 0.0  | 0.0      | 0.0      | 30.0      | Р    |
| MDI Powered Type-1    | PSE En | nulation | On Time | 10 s | Off Time | 10 s     | Vport     | 48.0 |
| Parameter Cycle       | 1      | Units    | Min.    | Max. | Average  | Low Lim. | High Lim. | P/F  |
| Minl_1                | 15.5   | mA       | 15.5    | 15.5 | 15.5     | 0.0      | 299.9     | Р    |
| MaxI_1                | 17.0   | mA       | 17.0    | 17.0 | 17.0     | 10.0     | 299.9     | Р    |
| Vport_1               | 48.0   | VDC      | 48.0    | 48.0 | 48.0     | 37.0     | 57.0      | INFO |
| Ppeak_1               | 0.82   | W        | 0.82    | 0.82 | 0.82     | 0.0      | 14.4      | Р    |
| Pavg_1                | 0.76   | W        | 0.76    | 0.76 | 0.76     | 0.0      | 13.0      | Р    |
| MPSViolation_1        | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| TcutWindowViolation_1 | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| DutyCycleViolation_1  | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |

Table 9.4. Si3404-ISO-FB EVB, 3.3 V, Class 3 PD Sifos PoE Compatibility Test Results, PSE Emulation: Alt B MDI-X

| Detection and Classification | PSE Em | nulation | Pairs  | В      | Polarity | MDI-X    | Det_Cycles | 3    |
|------------------------------|--------|----------|--------|--------|----------|----------|------------|------|
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| Rdet                         | 24.44  | kΩ       | 24.44  | 24.44  | 24.44    | 23.70    | 26.30      | Р    |
| Rdet_final                   | 24.44  | kΩ       | 24.44  | 24.44  | 24.44    | 23.70    | 26.30      | Р    |
| Rdet_unpwr                   | >99.00 | kΩ       | 99.00  | 99.00  | 99.00    | <12.00   | >45.00     | Р    |
| Rdet_at_Vmin                 | 24.69  | kΩ       | 24.69  | 24.69  | 24.69    | 23.70    | 26.30      | Р    |
| Rdet_at_Vmax                 | 24.59  | kΩ       | 24.59  | 24.59  | 24.59    | 23.70    | 26.30      | Р    |
| Rdet_Voffset                 | 1.0    | VDC      | 1.0    | 1.0    | 1.0      | 0.0      | 1.9        | Р    |
| Cdet                         | 0.11   | μF       | 0.11   | 0.11   | 0.11     | 0.05     | 0.12       | Р    |
| Cdet_final                   | 0.11   | μF       | 0.11   | 0.11   | 0.11     | 0.05     | 0.12       | Р    |
| 1 Event Classification       |        | •        |        |        | •        |          |            |      |
| Iclass                       | 28.7   | mA       | 28.7   | 28.7   | 28.7     | 26.0     | 30.0       | Р    |
| ClassNum                     | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass                       | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability               | 1      |          |        |        |          | 1        | 1          | Р    |
| Iclass_at_Vmin               | 28.9   | mA       | 28.9   | 28.9   | 28.9     | 26.0     | 30.0       | Р    |
| Iclass_at_Vmax               | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| 2 Event Classification       |        |          |        |        |          |          |            |      |
| lclass_event1                | 28.7   | mA       | 28.7   | 28.7   | 28.7     | 26.0     | 30.0       | Р    |
| Iclass_event2                | 28.7   | mA       | 28.7   | 28.7   | 28.7     | 26.0     | 30.0       | Р    |
| Markl                        | 1.82   | mA       | 1.82   | 1.82   | 1.82     | 0.25     | 4.00       | INFO |
| ClassNum2                    | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass_event1                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| Tclass_event2                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability_event1        | 1      |          |        |        |          | 1        | 1          | Р    |
| ClassStability_event2        | 1      |          |        |        |          | 1        | 1          | Р    |
| Power-Up / Down              |        |          |        |        |          |          |            |      |
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| InrushI_1                    | 160.1  | mA       | 160.1  | 160.1  | 160.1    | 0.0      | 400.0      | Р    |
| InrushI_2                    | -1.0   | mA       | -1.0   | -1.0   | -1.0     | 0.0      | 400.0      | NA   |
| Pmax_Tdelay                  | -1.0   | W        | -1.0   | -1.0   | -1.0     | 0.0      | 0.0        | NA   |
| Inrush_delayed               | 0      |          | 0      | 0      | _        | 0        | 0          | Р    |
| Von                          | 38.2   | VDC      | 38.2   | 38.2   | 38.2     | 30.0     | 42.0       | Р    |
| Voff                         | 34.1   | VDC      | 34.1   | 34.1   | 34.1     | 30.0     | 42.0       | Р    |
| Vhyst                        | 4.2    | VDC      | 4.2    | 4.2    | 4.2      | 0.0      | 12.0       | Р    |
| BackfeedV                    | 0.0    | VDC      | 0.0    | 0.0    | 0.0      | 0.0      | 2.8        | Р    |

| ClassRecover          | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
|-----------------------|--------|----------|---------|------|----------|----------|-----------|------|
| SigRecoverTime        | 0.0    | s        | 0.0     | 0.0  | 0.0      | 0.0      | 30.0      | Р    |
| MDI Powered Type-1    | PSE En | nulation | On Time | 10 s | Off Time | 10 s     | Vport     | 48.0 |
| Parameter Cycle       | 1      | Units    | Min.    | Max. | Average  | Low Lim. | High Lim. | P/F  |
| MinI_1                | 15.5   | mA       | 15.5    | 15.5 | 15.5     | 0.0      | 299.9     | Р    |
| MaxI_1                | 17.1   | mA       | 17.1    | 17.1 | 17.1     | 10.0     | 299.9     | Р    |
| Vport_1               | 48.1   | VDC      | 48.1    | 48.1 | 48.1     | 37.0     | 57.0      | INFO |
| Ppeak_1               | 0.82   | W        | 0.82    | 0.82 | 0.82     | 0.0      | 14.4      | Р    |
| Pavg_1                | 0.76   | W        | 0.76    | 0.76 | 0.76     | 0.0      | 13.0      | Р    |
| MPSViolation_1        | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| TcutWindowViolation_1 | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| DutyCycleViolation_1  | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |

# 10. Complete 5 V Si3404 Isolated Flyback Sifos Compatibility Test Reports

Table 10.1. Si3404-ISO-FB EVB, 5 V, Class 3 PD Sifos PoE Compatibility Test Results, PSE Emulation: Alt A MDI

| Detection and Classification | PSE En | nulation | Pairs  | А      | Polarity | MDI      | Det_Cycles | 3    |
|------------------------------|--------|----------|--------|--------|----------|----------|------------|------|
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| Rdet                         | 24.51  | kΩ       | 24.51  | 24.51  | 24.51    | 23.70    | 26.30      | Р    |
| Rdet_final                   | 24.51  | kΩ       | 24.51  | 24.51  | 24.51    | 23.70    | 26.30      | Р    |
| Rdet_unpwr                   | >99.00 | kΩ       | 99.00  | 99.00  | 99.00    | <12.00   | >45.00     | Р    |
| Rdet_at_Vmin                 | 24.66  | kΩ       | 24.66  | 24.66  | 24.66    | 23.70    | 26.30      | Р    |
| Rdet_at_Vmax                 | 24.57  | kΩ       | 24.57  | 24.57  | 24.57    | 23.70    | 26.30      | Р    |
| Rdet_Voffset                 | 1.0    | VDC      | 1.0    | 1.0    | 1.0      | 0.0      | 1.9        | Р    |
| Cdet                         | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| Cdet_final                   | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| 1 Event Classification       |        |          |        |        |          |          |            |      |
| Iclass                       | 28.3   | mA       | 28.3   | 28.3   | 28.3     | 26.0     | 30.0       | Р    |
| ClassNum                     | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass                       | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability               | 1      |          |        |        |          | 1        | 1          | Р    |
| Iclass_at_Vmin               | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| Iclass_at_Vmax               | 28.1   | mA       | 28.1   | 28.1   | 28.1     | 26.0     | 30.0       | Р    |
| 2 Event Classification       |        |          |        |        |          |          |            |      |
| lclass_event1                | 28.3   | mA       | 28.3   | 28.3   | 28.3     | 26.0     | 30.0       | Р    |
| Iclass_event2                | 28.3   | mA       | 28.3   | 28.3   | 28.3     | 26.0     | 30.0       | Р    |
| Markl                        | 1.72   | mA       | 1.72   | 1.72   | 1.72     | 0.25     | 4.00       | INFO |
| ClassNum2                    | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass_event1                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| Tclass_event2                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability_event1        | 1      |          |        |        |          | 1        | 1          | Р    |
| ClassStability_event2        | 1      |          |        |        |          | 1        | 1          | Р    |
| Power-Up / Down              |        |          |        |        |          |          |            |      |
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| InrushI_1                    | 157.8  | mA       | 157.8  | 157.8  | 157.8    | 0.0      | 400.0      | Р    |
| InrushI_2                    | -1.0   | mA       | -1.0   | -1.0   | -1.0     | 0.0      | 400.0      | NA   |
| Pmax_Tdelay                  | -1.0   | W        | -1.0   | -1.0   | -1.0     | 0.0      | 0.0        | NA   |
| Inrush_delayed               | 0      |          | 0      | 0      | _        | 0        | 0          | Р    |
| Von                          | 37.8   | VDC      | 37.8   | 37.8   | 37.8     | 30.0     | 42.0       | Р    |
| Voff                         | 33.8   | VDC      | 33.8   | 33.8   | 33.8     | 30.0     | 42.0       | Р    |

| Vhyst                 | 4.0    | VDC      | 4.0     | 4.0  | 4.0      | 0.0      | 12.0      | Р    |
|-----------------------|--------|----------|---------|------|----------|----------|-----------|------|
| BackfeedV             | 0.1    | VDC      | 0.1     | 0.1  | 0.1      | 0.0      | 2.8       | Р    |
| ClassRecover          | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| SigRecoverTime        | 0.0    | s        | 0.0     | 0.0  | 0.0      | 0.0      | 30.0      | Р    |
| MDI Powered Type-1    | PSE En | nulation | On Time | 10 s | Off Time | 10 s     | Vport     | 48.0 |
| Parameter Cycle       | 1      | Units    | Min.    | Max. | Average  | Low Lim. | High Lim. | P/F  |
| Minl_1                | 17.9   | mA       | 17.9    | 17.9 | 17.9     | 0.0      | 299.7     | Р    |
| MaxI_1                | 19.5   | mA       | 19.5    | 19.5 | 19.5     | 10.0     | 299.7     | Р    |
| Vport_1               | 48.0   | VDC      | 48.0    | 48.0 | 48.0     | 37.0     | 57.0      | INFO |
| Ppeak_1               | 0.94   | W        | 0.94    | 0.94 | 0.94     | 0.0      | 14.4      | Р    |
| Pavg_1                | 0.88   | W        | 0.88    | 0.88 | 0.88     | 0.0      | 13.0      | Р    |
| MPSViolation_1        | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| TcutWindowViolation_1 | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| DutyCycleViolation_1  | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |

Table 10.2. Si3404-ISO-FB EVB, 5 V, Class 3 PD Sifos PoE Compatibility Test Results, PSE Emulation: Alt A MDI-X

| Detection and Classification | PSE Em | nulation | Pairs  | Α      | Polarity | MDI-X    | Det_Cycles | 3    |
|------------------------------|--------|----------|--------|--------|----------|----------|------------|------|
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| Rdet                         | 24.51  | kΩ       | 24.51  | 24.51  | 24.51    | 23.70    | 26.30      | Р    |
| Rdet_final                   | 24.49  | kΩ       | 24.49  | 24.49  | 24.49    | 23.70    | 26.30      | Р    |
| Rdet_unpwr                   | >99.00 | kΩ       | 99.00  | 99.00  | 99.00    | <12.00   | >45.00     | Р    |
| Rdet_at_Vmin                 | 24.70  | kΩ       | 24.70  | 24.70  | 24.70    | 23.70    | 26.30      | Р    |
| Rdet_at_Vmax                 | 24.70  | kΩ       | 24.70  | 24.70  | 24.70    | 23.70    | 26.30      | Р    |
| Rdet_Voffset                 | 1.0    | VDC      | 1.0    | 1.0    | 1.0      | 0.0      | 1.9        | Р    |
| Cdet                         | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| Cdet_final                   | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| 1 Event Classification       |        |          |        |        |          |          |            |      |
| Iclass                       | 28.3   | mA       | 28.3   | 28.3   | 28.3     | 26.0     | 30.0       | Р    |
| ClassNum                     | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass                       | 0.0005 | S        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability               | 1      |          |        |        |          | 1        | 1          | Р    |
| Iclass_at_Vmin               | 28.6   | mA       | 28.6   | 28.6   | 28.6     | 26.0     | 30.0       | Р    |
| Iclass_at_Vmax               | 28.3   | mA       | 28.3   | 28.3   | 28.3     | 26.0     | 30.0       | Р    |
| 2 Event Classification       |        |          |        |        |          |          |            |      |
| Iclass_event1                | 28.3   | mA       | 28.3   | 28.3   | 28.3     | 26.0     | 30.0       | Р    |
| Iclass_event2                | 28.3   | mA       | 28.3   | 28.3   | 28.3     | 26.0     | 30.0       | Р    |
| Markl                        | 1.72   | mA       | 1.72   | 1.72   | 1.72     | 0.25     | 4.00       | INFO |
| ClassNum2                    | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass_event1                | 0.0005 | S        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| Tclass_event2                | 0.0005 | S        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability_event1        | 1      |          |        |        |          | 1        | 1          | Р    |
| ClassStability_event2        | 1      |          |        |        |          | 1        | 1          | Р    |
| Power-Up / Down              |        |          |        |        |          |          |            |      |
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| Inrushl_1                    | 156.9  | mA       | 156.9  | 156.9  | 156.9    | 0.0      | 400.0      | Р    |
| InrushI_2                    | -1.0   | mA       | -1.0   | -1.0   | -1.0     | 0.0      | 400.0      | NA   |
| Pmax_Tdelay                  | -1.0   | W        | -1.0   | -1.0   | -1.0     | 0.0      | 0.0        | NA   |
| Inrush_delayed               | 0      |          | 0      | 0      | _        | 0        | 0          | Р    |
| Von                          | 38.0   | VDC      | 38.0   | 38.0   | 38.0     | 30.0     | 42.0       | Р    |
| Voff                         | 33.8   | VDC      | 33.8   | 33.8   | 33.8     | 30.0     | 42.0       | Р    |
| Vhyst                        | 4.2    | VDC      | 4.2    | 4.2    | 4.2      | 0.0      | 12.0       | Р    |
| BackfeedV                    | 0.0    | VDC      | 0.0    | 0.0    | 0.0      | 0.0      | 2.8        | Р    |

| ClassRecover          | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
|-----------------------|--------|----------|---------|------|----------|----------|-----------|------|
| SigRecoverTime        | 0.0    | s        | 0.0     | 0.0  | 0.0      | 0.0      | 30.0      | Р    |
| MDI Powered Type-1    | PSE En | nulation | On Time | 10 s | Off Time | 10 s     | Vport     | 48.0 |
| Parameter Cycle       | 1      | Units    | Min.    | Max. | Average  | Low Lim. | High Lim. | P/F  |
| MinI_1                | 17.8   | mA       | 17.8    | 17.8 | 17.8     | 0.0      | 298.9     | Р    |
| MaxI_1                | 19.3   | mA       | 19.3    | 19.3 | 19.3     | 10.0     | 298.9     | Р    |
| Vport_1               | 48.2   | VDC      | 48.2    | 48.2 | 48.2     | 37.0     | 57.0      | INFO |
| Ppeak_1               | 0.93   | W        | 0.93    | 0.93 | 0.93     | 0.0      | 14.4      | Р    |
| Pavg_1                | 0.88   | W        | 0.88    | 0.88 | 0.88     | 0.0      | 13.0      | Р    |
| MPSViolation_1        | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| TcutWindowViolation_1 | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| DutyCycleViolation_1  | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |

Table 10.3. Si3404-ISO-FB EVB, 5 V, Class 3 PD Sifos PoE Compatibility Test Results, PSE Emulation: Alt B MDI

| Detection and Classification | PSE Em | nulation | Pairs  | В      | Polarity | MDI      | Det_Cycles | 3    |
|------------------------------|--------|----------|--------|--------|----------|----------|------------|------|
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| Rdet                         | 24.49  | kΩ       | 24.49  | 24.49  | 24.49    | 23.70    | 26.30      | Р    |
| Rdet_final                   | 24.44  | kΩ       | 24.44  | 24.44  | 24.44    | 23.70    | 26.30      | Р    |
| Rdet_unpwr                   | >99.00 | kΩ       | 99.00  | 99.00  | 99.00    | <12.00   | >45.00     | Р    |
| Rdet_at_Vmin                 | 24.76  | kΩ       | 24.76  | 24.76  | 24.76    | 23.70    | 26.30      | Р    |
| Rdet_at_Vmax                 | 24.64  | kΩ       | 24.64  | 24.64  | 24.64    | 23.70    | 26.30      | Р    |
| Rdet_Voffset                 | 1.0    | VDC      | 1.0    | 1.0    | 1.0      | 0.0      | 1.9        | Р    |
| Cdet                         | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| Cdet_final                   | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| 1 Event Classification       |        |          |        |        |          |          |            |      |
| Iclass                       | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| ClassNum                     | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass                       | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability               | 1      |          |        |        |          | 1        | 1          | Р    |
| Iclass_at_Vmin               | 28.4   | mA       | 28.4   | 28.4   | 28.4     | 26.0     | 30.0       | Р    |
| Iclass_at_Vmax               | 28.4   | mA       | 28.4   | 28.4   | 28.4     | 26.0     | 30.0       | Р    |
| 2 Event Classification       |        |          |        |        |          |          |            |      |
| Iclass_event1                | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| Iclass_event2                | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| Markl                        | 1.79   | mA       | 1.79   | 1.79   | 1.79     | 0.25     | 4.00       | INFO |
| ClassNum2                    | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass_event1                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| Tclass_event2                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability_event1        | 1      |          |        |        |          | 1        | 1          | Р    |
| ClassStability_event2        | 1      |          |        |        |          | 1        | 1          | Р    |
| Power-Up / Down              |        |          |        |        |          |          |            |      |
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| InrushI_1                    | 157.0  | mA       | 157.0  | 157.0  | 157.0    | 0.0      | 400.0      | Р    |
| InrushI_2                    | -1.0   | mA       | -1.0   | -1.0   | -1.0     | 0.0      | 400.0      | NA   |
| Pmax_Tdelay                  | -1.0   | W        | -1.0   | -1.0   | -1.0     | 0.0      | 0.0        | NA   |
| Inrush_delayed               | 0      |          | 0      | 0      | _        | 0        | 0          | Р    |
| Von                          | 37.9   | VDC      | 37.9   | 37.9   | 37.9     | 30.0     | 42.0       | Р    |
| Voff                         | 33.8   | VDC      | 33.8   | 33.8   | 33.8     | 30.0     | 42.0       | Р    |
| Vhyst                        | 4.1    | VDC      | 4.1    | 4.1    | 4.1      | 0.0      | 12.0       | Р    |
| BackfeedV                    | 0.1    | VDC      | 0.1    | 0.1    | 0.1      | 0.0      | 2.8        | Р    |

| ClassRecover          | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
|-----------------------|--------|----------|---------|------|----------|----------|-----------|------|
| SigRecoverTime        | 0.0    | s        | 0.0     | 0.0  | 0.0      | 0.0      | 30.0      | Р    |
| MDI Powered Type-1    | PSE En | nulation | On Time | 10 s | Off Time | 10 s     | Vport     | 48.0 |
| Parameter Cycle       | 1      | Units    | Min.    | Max. | Average  | Low Lim. | High Lim. | P/F  |
| MinI_1                | 17.4   | mA       | 17.4    | 17.4 | 17.4     | 0.0      | 299.9     | Р    |
| Maxl_1                | 18.9   | mA       | 18.9    | 18.9 | 18.9     | 10.0     | 299.9     | Р    |
| Vport_1               | 48.0   | VDC      | 48.0    | 48.0 | 48.0     | 37.0     | 57.0      | INFO |
| Ppeak_1               | 0.91   | W        | 0.91    | 0.91 | 0.91     | 0.0      | 14.4      | Р    |
| Pavg_1                | 0.86   | W        | 0.86    | 0.86 | 0.86     | 0.0      | 13.0      | Р    |
| MPSViolation_1        | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| TcutWindowViolation_1 | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| DutyCycleViolation_1  | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |

Table 10.4. Si3404-ISO-FB EVB, 5 V, Class 3 PD Sifos PoE Compatibility Test Results, PSE Emulation: Alt B MDI-X

| Detection and Classification | PSE Em | nulation | Pairs  | В      | Polarity | MDI-X    | Det_Cycles | 3    |
|------------------------------|--------|----------|--------|--------|----------|----------|------------|------|
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| Rdet                         | 24.46  | kΩ       | 24.46  | 24.46  | 24.46    | 23.70    | 26.30      | Р    |
| Rdet_final                   | 24.46  | kΩ       | 24.46  | 24.46  | 24.46    | 23.70    | 26.30      | Р    |
| Rdet_unpwr                   | >99.00 | kΩ       | 99.00  | 99.00  | 99.00    | <12.00   | >45.00     | Р    |
| Rdet_at_Vmin                 | 24.77  | kΩ       | 24.77  | 24.77  | 24.77    | 23.70    | 26.30      | Р    |
| Rdet_at_Vmax                 | 24.67  | kΩ       | 24.67  | 24.67  | 24.67    | 23.70    | 26.30      | Р    |
| Rdet_Voffset                 | 1.0    | VDC      | 1.0    | 1.0    | 1.0      | 0.0      | 1.9        | Р    |
| Cdet                         | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| Cdet_final                   | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| 1 Event Classification       |        |          |        |        |          |          |            |      |
| Iclass                       | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| ClassNum                     | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass                       | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability               | 1      |          |        |        |          | 1        | 1          | Р    |
| Iclass_at_Vmin               | 28.7   | mA       | 28.7   | 28.7   | 28.7     | 26.0     | 30.0       | Р    |
| Iclass_at_Vmax               | 28.3   | mA       | 28.3   | 28.3   | 28.3     | 26.0     | 30.0       | Р    |
| 2 Event Classification       |        |          |        |        |          |          |            |      |
| Iclass_event1                | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| Iclass_event2                | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| Markl                        | 1.80   | mA       | 1.80   | 1.80   | 1.80     | 0.25     | 4.00       | INFO |
| ClassNum2                    | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass_event1                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| Tclass_event2                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability_event1        | 1      |          |        |        |          | 1        | 1          | Р    |
| ClassStability_event2        | 1      |          |        |        |          | 1        | 1          | Р    |
| Power-Up / Down              |        |          |        |        |          |          |            |      |
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| InrushI_1                    | 157.0  | mA       | 157.0  | 157.0  | 157.0    | 0.0      | 400.0      | Р    |
| InrushI_2                    | -1.0   | mA       | -1.0   | -1.0   | -1.0     | 0.0      | 400.0      | NA   |
| Pmax_Tdelay                  | -1.0   | W        | -1.0   | -1.0   | -1.0     | 0.0      | 0.0        | NA   |
| Inrush_delayed               | 0      |          | 0      | 0      | _        | 0        | 0          | Р    |
| Von                          | 38.0   | VDC      | 38.0   | 38.0   | 38.0     | 30.0     | 42.0       | Р    |
| Voff                         | 33.8   | VDC      | 33.8   | 33.8   | 33.8     | 30.0     | 42.0       | Р    |
| Vhyst                        | 4.1    | VDC      | 4.1    | 4.1    | 4.1      | 0.0      | 12.0       | Р    |
| BackfeedV                    | 0.0    | VDC      | 0.0    | 0.0    | 0.0      | 0.0      | 2.8        | Р    |

| ClassRecover          | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
|-----------------------|--------|----------|---------|------|----------|----------|-----------|------|
| SigRecoverTime        | 0.0    | s        | 0.0     | 0.0  | 0.0      | 0.0      | 30.0      | Р    |
| MDI Powered Type-1    | PSE En | nulation | On Time | 10 s | Off Time | 10 s     | Vport     | 48.0 |
| Parameter Cycle       | 1      | Units    | Min.    | Max. | Average  | Low Lim. | High Lim. | P/F  |
| MinI_1                | 17.4   | mA       | 17.4    | 17.4 | 17.4     | 0.0      | 299.9     | Р    |
| MaxI_1                | 19.4   | mA       | 19.4    | 19.4 | 19.4     | 10.0     | 299.9     | Р    |
| Vport_1               | 48.0   | VDC      | 48.0    | 48.0 | 48.0     | 37.0     | 57.0      | INFO |
| Ppeak_1               | 0.93   | W        | 0.93    | 0.93 | 0.93     | 0.0      | 14.4      | Р    |
| Pavg_1                | 0.85   | W        | 0.85    | 0.85 | 0.85     | 0.0      | 13.0      | Р    |
| MPSViolation_1        | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| TcutWindowViolation_1 | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| DutyCycleViolation_1  | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |

# 11. Complete 12 V Si3404 Isolated Flyback Sifos Compatibility Test Reports

Table 11.1. Si3404-ISO-FB EVB, 12 V, Class 3 PD Sifos PoE Compatibility Test Results, PSE Emulation: Alt A MDI

| Detection and Classification | PSE En | nulation | Pairs  | Α      | Polarity | MDI      | Det_Cycles | 3    |
|------------------------------|--------|----------|--------|--------|----------|----------|------------|------|
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| Rdet                         | 24.49  | kΩ       | 24.49  | 24.49  | 24.49    | 23.70    | 26.30      | Р    |
| Rdet_final                   | 24.40  | kΩ       | 24.40  | 24.40  | 24.40    | 23.70    | 26.30      | Р    |
| Rdet_unpwr                   | >99.00 | kΩ       | 99.00  | 99.00  | 99.00    | <12.00   | >45.00     | Р    |
| Rdet_at_Vmin                 | 24.63  | kΩ       | 24.63  | 24.63  | 24.63    | 23.70    | 26.30      | Р    |
| Rdet_at_Vmax                 | 24.54  | kΩ       | 24.54  | 24.54  | 24.54    | 23.70    | 26.30      | Р    |
| Rdet_Voffset                 | 1.0    | VDC      | 1.0    | 1.0    | 1.0      | 0.0      | 1.9        | Р    |
| Cdet                         | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| Cdet_final                   | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| 1 Event Classification       |        | I        |        |        |          |          |            |      |
| Iclass                       | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| ClassNum                     | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass                       | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability               | 1      |          |        |        |          | 1        | 1          | Р    |
| Iclass_at_Vmin               | 29.0   | mA       | 29.0   | 29.0   | 29.0     | 26.0     | 30.0       | Р    |
| Iclass_at_Vmax               | 28.4   | mA       | 28.4   | 28.4   | 28.4     | 26.0     | 30.0       | Р    |
| 2 Event Classification       |        | •        |        |        |          |          |            |      |
| Iclass_event1                | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| Iclass_event2                | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| Markl                        | 1.74   | mA       | 1.74   | 1.74   | 1.74     | 0.25     | 4.00       | INFO |
| ClassNum2                    | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass_event1                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| Tclass_event2                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability_event1        | 1      |          |        |        |          | 1        | 1          | Р    |
| ClassStability_event2        | 1      |          |        |        |          | 1        | 1          | Р    |
| Power-Up / Down              |        |          |        |        |          |          |            |      |
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| InrushI_1                    | 157.0  | mA       | 157.0  | 157.0  | 157.0    | 0.0      | 400.0      | Р    |
| InrushI_2                    | -1.0   | mA       | -1.0   | -1.0   | -1.0     | 0.0      | 400.0      | NA   |
| Pmax_Tdelay                  | -1.0   | W        | -1.0   | -1.0   | -1.0     | 0.0      | 0.0        | NA   |
| Inrush_delayedVon            | 0      |          | 0      | 0      | _        | 0        | 0          | Р    |
| illiusii_uelayeuvoii         | 38.1   | VDC      | 38.1   | 38.1   | 38.1     | 30.0     | 42.0       | Р    |
| Voff                         | 34.2   | VDC      | 34.2   | 34.2   | 34.2     | 30.0     | 42.0       | Р    |

| Vhyst                 | 3.9    | VDC      | 3.9     | 3.9  | 3.9      | 0.0      | 12.0      | Р    |
|-----------------------|--------|----------|---------|------|----------|----------|-----------|------|
| BackfeedV             | 0.1    | VDC      | 0.1     | 0.1  | 0.1      | 0.0      | 2.8       | Р    |
| ClassRecover          | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| SigRecoverTime        | 0.0    | s        | 0.0     | 0.0  | 0.0      | 0.0      | 30.0      | Р    |
| MDI Powered Type-1    | PSE En | nulation | On Time | 10 s | Off Time | 10 s     | Vport     | 48.0 |
| Parameter Cycle       | 1      | Units    | Min.    | Max. | Average  | Low Lim. | High Lim. | P/F  |
| MinI_1                | 38.4   | mA       | 38.4    | 38.4 | 38.4     | 0.0      | 300.0     | Р    |
| MaxI_1                | 40.9   | mA       | 40.9    | 40.9 | 40.9     | 10.0     | 300.0     | Р    |
| Vport_1               | 47.9   | VDC      | 47.9    | 47.9 | 47.9     | 37.0     | 57.0      | INFO |
| Ppeak_1               | 1.96   | W        | 1.96    | 1.96 | 1.96     | 0.0      | 14.4      | Р    |
| Pavg_1                | 1.86   | W        | 1.86    | 1.86 | 1.86     | 0.0      | 13.0      | Р    |
| MPSViolation_1        | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| TcutWindowViolation_1 | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| DutyCycleViolation_1  | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |

Table 11.2. Si3404-ISO-FB EVB, 12 V, Class 3 PD Sifos PoE Compatibility Test Results, PSE Emulation: Alt A MDI-X

| Detection and Classification | PSE Em | nulation | Pairs  | Α      | Polarity | MDI-X    | Det_Cycles | 3    |
|------------------------------|--------|----------|--------|--------|----------|----------|------------|------|
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| Rdet                         | 24.37  | kΩ       | 24.37  | 24.37  | 24.37    | 23.70    | 26.30      | Р    |
| Rdet_final                   | 24.33  | kΩ       | 24.33  | 24.33  | 24.33    | 23.70    | 26.30      | Р    |
| Rdet_unpwr                   | >99.00 | kΩ       | 99.00  | 99.00  | 99.00    | <12.00   | >45.00     | Р    |
| Rdet_at_Vmin                 | 24.62  | kΩ       | 24.62  | 24.62  | 24.62    | 23.70    | 26.30      | Р    |
| Rdet_at_Vmax                 | 24.55  | kΩ       | 24.55  | 24.55  | 24.55    | 23.70    | 26.30      | Р    |
| Rdet_Voffset                 | 1.0    | VDC      | 1.0    | 1.0    | 1.0      | 0.0      | 1.9        | Р    |
| Cdet                         | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| Cdet_final                   | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| 1 Event Classification       |        |          |        |        |          |          |            |      |
| Iclass                       | 28.4   | mA       | 28.4   | 28.4   | 28.4     | 26.0     | 30.0       | Р    |
| ClassNum                     | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass                       | 0.0005 | S        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability               | 1      |          |        |        |          | 1        | 1          | Р    |
| Iclass_at_Vmin               | 28.6   | mA       | 28.6   | 28.6   | 28.6     | 26.0     | 30.0       | Р    |
| Iclass_at_Vmax               | 28.4   | mA       | 28.4   | 28.4   | 28.4     | 26.0     | 30.0       | Р    |
| 2 Event Classification       |        |          |        |        |          |          |            |      |
| Iclass_event1                | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| Iclass_event2                | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| Markl                        | 1.74   | mA       | 1.74   | 1.74   | 1.74     | 0.25     | 4.00       | INFO |
| ClassNum2                    | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass_event1                | 0.0005 | S        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| Tclass_event2                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability_event1        | 1      |          |        |        |          | 1        | 1          | Р    |
| ClassStability_event2        | 1      |          |        |        |          | 1        | 1          | Р    |
| Power-Up / Down              |        |          |        |        |          |          |            |      |
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| Inrushl_1                    | 156.2  | mA       | 156.2  | 156.2  | 156.2    | 0.0      | 400.0      | Р    |
| InrushI_2                    | -1.0   | mA       | -1.0   | -1.0   | -1.0     | 0.0      | 400.0      | NA   |
| Pmax_Tdelay                  | -1.0   | W        | -1.0   | -1.0   | -1.0     | 0.0      | 0.0        | NA   |
| Inrush_delayed               | 0      |          | 0      | 0      | _        | 0        | 0          | Р    |
| Von                          | 38.3   | VDC      | 38.3   | 38.3   | 38.3     | 30.0     | 42.0       | Р    |
| Voff                         | 34.4   | VDC      | 34.4   | 34.4   | 34.4     | 30.0     | 42.0       | Р    |
| Vhyst                        | 3.9    | VDC      | 3.9    | 3.9    | 3.9      | 0.0      | 12.0       | Р    |
| BackfeedV                    | 0.0    | VDC      | 0.0    | 0.0    | 0.0      | 0.0      | 2.8        | Р    |

| ClassRecover          | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
|-----------------------|--------|----------|---------|------|----------|----------|-----------|------|
| SigRecoverTime        | 0.0    | s        | 0.0     | 0.0  | 0.0      | 0.0      | 30.0      | Р    |
| MDI Powered Type-1    | PSE En | nulation | On Time | 10 s | Off Time | 10 s     | Vport     | 48.0 |
| Parameter Cycle       | 1      | Units    | Min.    | Max. | Average  | Low Lim. | High Lim. | P/F  |
| Minl_1                | 38.3   | mA       | 38.3    | 38.3 | 38.3     | 0.0      | 299.4     | Р    |
| MaxI_1                | 40.5   | mA       | 40.5    | 40.5 | 40.5     | 10.0     | 299.4     | Р    |
| Vport_1               | 48.0   | VDC      | 48.0    | 48.0 | 48.0     | 37.0     | 57.0      | INFO |
| Ppeak_1               | 1.94   | W        | 1.94    | 1.94 | 1.94     | 0.0      | 14.4      | Р    |
| Pavg_1                | 1.86   | W        | 1.86    | 1.86 | 1.86     | 0.0      | 13.0      | Р    |
| MPSViolation_1        | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| TcutWindowViolation_1 | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |
| DutyCycleViolation_1  | 0      |          | 0       | 0    | _        | 0        | 0         | Р    |

Table 11.3. Si3404-ISO-FB EVB, 12 V, Class 3 PD Sifos PoE Compatibility Test Results, PSE Emulation: Alt B MDI

| Detection and Classification | PSE Em | nulation | Pairs  | В      | Polarity | MDI      | Det_Cycles | 3    |
|------------------------------|--------|----------|--------|--------|----------|----------|------------|------|
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| Rdet                         | 24.42  | kΩ       | 24.42  | 24.42  | 24.42    | 23.70    | 26.30      | Р    |
| Rdet_final                   | 24.42  | kΩ       | 24.42  | 24.42  | 24.42    | 23.70    | 26.30      | Р    |
| Rdet_unpwr                   | >99.00 | kΩ       | 99.00  | 99.00  | 99.00    | <12.00   | >45.00     | Р    |
| Rdet_at_Vmin                 | 24.56  | kΩ       | 24.56  | 24.56  | 24.56    | 23.70    | 26.30      | Р    |
| Rdet_at_Vmax                 | 24.64  | kΩ       | 24.64  | 24.64  | 24.64    | 23.70    | 26.30      | Р    |
| Rdet_Voffset                 | 1.0    | VDC      | 1.0    | 1.0    | 1.0      | 0.0      | 1.9        | Р    |
| Cdet                         | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| Cdet_final                   | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| 1 Event Classification       |        | •        |        |        | •        |          |            |      |
| Iclass                       | 28.6   | mA       | 28.6   | 28.6   | 28.6     | 26.0     | 30.0       | Р    |
| ClassNum                     | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass                       | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability               | 1      |          |        |        |          | 1        | 1          | Р    |
| Iclass_at_Vmin               | 28.8   | mA       | 28.8   | 28.8   | 28.8     | 26.0     | 30.0       | Р    |
| Iclass_at_Vmax               | 28.4   | mA       | 28.4   | 28.4   | 28.4     | 26.0     | 30.0       | Р    |
| 2 Event Classification       |        |          |        |        |          |          |            |      |
| Iclass_event1                | 28.6   | mA       | 28.6   | 28.6   | 28.6     | 26.0     | 30.0       | Р    |
| Iclass_event2                | 28.6   | mA       | 28.6   | 28.6   | 28.6     | 26.0     | 30.0       | Р    |
| Markl                        | 1.81   | mA       | 1.81   | 1.81   | 1.81     | 0.25     | 4.00       | INFO |
| ClassNum2                    | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass_event1                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| Tclass_event2                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability_event1        | 1      |          |        |        |          | 1        | 1          | Р    |
| ClassStability_event2        | 1      |          |        |        |          | 1        | 1          | Р    |
| Power-Up / Down              |        |          |        |        |          |          |            |      |
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| InrushI_1                    | 156.5  | mA       | 156.5  | 156.5  | 156.5    | 0.0      | 400.0      | Р    |
| InrushI_2                    | -1.0   | mA       | -1.0   | -1.0   | -1.0     | 0.0      | 400.0      | NA   |
| Pmax_Tdelay                  | -1.0   | W        | -1.0   | -1.0   | -1.0     | 0.0      | 0.0        | NA   |
| Inrush_delayed               | 0      |          | 0      | 0      | _        | 0        | 0          | Р    |
| Von                          | 38.2   | VDC      | 38.2   | 38.2   | 38.2     | 30.0     | 42.0       | Р    |
| Voff                         | 34.3   | VDC      | 34.3   | 34.3   | 34.3     | 30.0     | 42.0       | Р    |
| Vhyst                        | 3.9    | VDC      | 3.9    | 3.9    | 3.9      | 0.0      | 12.0       | Р    |
| BackfeedV                    | 0.0    | VDC      | 0.0    | 0.0    | 0.0      | 0.0      | 2.8        | Р    |

| ClassRecover          | 0      |          | 0       | 0    | _        | 0        | 0         | Р   |
|-----------------------|--------|----------|---------|------|----------|----------|-----------|-----|
| SigRecoverTime        | 0.0    | s        | 0.0     | 0.0  | 0.0      | 0.0      | 30.0      | Р   |
| MDI Powered Type-1    | PSE En | nulation | On Time | 10 s | Off Time | 10 s     | Vport     | 48. |
| Parameter Cycle       | 1      | Units    | Min.    | Max. | Average  | Low Lim. | High Lim. | P/I |
| Minl_1                | 37.7   | mA       | 37.7    | 37.7 | 37.7     | 0.0      | 300.0     | Р   |
| MaxI_1                | 40.5   | mA       | 40.5    | 40.5 | 40.5     | 10.0     | 300.0     | Р   |
| Vport_1               | 47.8   | VDC      | 47.8    | 47.8 | 47.8     | 37.0     | 57.0      | INF |
| Ppeak_1               | 1.94   | W        | 1.94    | 1.94 | 1.94     | 0.0      | 14.4      | Р   |
| Pavg_1                | 1.84   | W        | 1.84    | 1.84 | 1.84     | 0.0      | 13.0      | Р   |
| MPSViolation_1        | 0      |          | 0       | 0    | _        | 0        | 0         | Р   |
| TcutWindowViolation_1 | 0      |          | 0       | 0    | _        | 0        | 0         | Р   |
| DutyCycleViolation_1  | 0      |          | 0       | 0    | _        | 0        | 0         | Р   |

Table 11.4. Si3404-ISO-FB EVB, 12 V, Class 3 PD Sifos PoE Compatibility Test Results, PSE Emulation: Alt B MDI-X

| Detection and Classification | PSE Em | nulation | Pairs  | В      | Polarity | MDI-X    | Det_Cycles | 3    |
|------------------------------|--------|----------|--------|--------|----------|----------|------------|------|
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| Rdet                         | 24.37  | kΩ       | 24.37  | 24.37  | 24.37    | 23.70    | 26.30      | Р    |
| Rdet_final                   | 24.37  | kΩ       | 24.37  | 24.37  | 24.37    | 23.70    | 26.30      | Р    |
| Rdet_unpwr                   | >99.00 | kΩ       | 99.00  | 99.00  | 99.00    | <12.00   | >45.00     | Р    |
| Rdet_at_Vmin                 | 24.58  | kΩ       | 24.58  | 24.58  | 24.58    | 23.70    | 26.30      | Р    |
| Rdet_at_Vmax                 | 24.57  | kΩ       | 24.57  | 24.57  | 24.57    | 23.70    | 26.30      | Р    |
| Rdet_Voffset                 | 1.0    | VDC      | 1.0    | 1.0    | 1.0      | 0.0      | 1.9        | Р    |
| Cdet                         | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| Cdet_final                   | 0.10   | μF       | 0.10   | 0.10   | 0.10     | 0.05     | 0.12       | Р    |
| 1 Event Classification       |        |          |        |        |          |          |            |      |
| Iclass                       | 28.6   | mA       | 28.6   | 28.6   | 28.6     | 26.0     | 30.0       | Р    |
| ClassNum                     | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass                       | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability               | 1      |          |        |        |          | 1        | 1          | Р    |
| Iclass_at_Vmin               | 28.4   | mA       | 28.4   | 28.4   | 28.4     | 26.0     | 30.0       | Р    |
| Iclass_at_Vmax               | 28.5   | mA       | 28.5   | 28.5   | 28.5     | 26.0     | 30.0       | Р    |
| 2 Event Classification       |        |          |        |        |          |          |            |      |
| Iclass_event1                | 28.6   | mA       | 28.6   | 28.6   | 28.6     | 26.0     | 30.0       | Р    |
| Iclass_event2                | 28.6   | mA       | 28.6   | 28.6   | 28.6     | 26.0     | 30.0       | Р    |
| Markl                        | 1.81   | mA       | 1.81   | 1.81   | 1.81     | 0.25     | 4.00       | INFO |
| ClassNum2                    | 3      |          | 3      | 3      | _        | 0        | 4          | Р    |
| Tclass_event1                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| Tclass_event2                | 0.0005 | s        | 0.0005 | 0.0005 | 0.0005   | 0.0005   | 0.0050     | Р    |
| ClassStability_event1        | 1      |          |        |        |          | 1        | 1          | Р    |
| ClassStability_event2        | 1      |          |        |        |          | 1        | 1          | Р    |
| Power-Up / Down              |        |          |        |        |          |          |            |      |
| Parameter Cycle              | 1      | Units    | Min.   | Max.   | Average  | Low Lim. | High Lim.  | P/F  |
| InrushI_1                    | 156.2  | mA       | 156.2  | 156.2  | 156.2    | 0.0      | 400.0      | Р    |
| InrushI_2                    | -1.0   | mA       | -1.0   | -1.0   | -1.0     | 0.0      | 400.0      | NA   |
| Pmax_Tdelay                  | -1.0   | W        | -1.0   | -1.0   | -1.0     | 0.0      | 0.0        | NA   |
| Inrush_delayed               | 0      |          | 0      | 0      | _        | 0        | 0          | Р    |
| Von                          | 38.2   | VDC      | 38.2   | 38.2   | 38.2     | 30.0     | 42.0       | Р    |
| Voff                         | 34.3   | VDC      | 34.3   | 34.3   | 34.3     | 30.0     | 42.0       | Р    |
| Vhyst                        | 3.9    | VDC      | 3.9    | 3.9    | 3.9      | 0.0      | 12.0       | Р    |
| BackfeedV                    | 0.0    | VDC      | 0.0    | 0.0    | 0.0      | 0.0      | 2.8        | Р    |

| ClassRecover          | 0      |          | 0       | 0    | _        | 0        | 0         | Р   |
|-----------------------|--------|----------|---------|------|----------|----------|-----------|-----|
| SigRecoverTime        | 0.0    | s        | 0.0     | 0.0  | 0.0      | 0.0      | 30.0      | Р   |
| MDI Powered Type-1    | PSE En | nulation | On Time | 10 s | Off Time | 10 s     | Vport     | 48. |
| Parameter Cycle       | 1      | Units    | Min.    | Max. | Average  | Low Lim. | High Lim. | P/I |
| Minl_1                | 37.7   | mA       | 37.7    | 37.7 | 37.7     | 0.0      | 300.0     | Р   |
| MaxI_1                | 40.5   | mA       | 40.5    | 40.5 | 40.5     | 10.0     | 300.0     | Р   |
| Vport_1               | 47.9   | VDC      | 47.9    | 47.9 | 47.9     | 37.0     | 57.0      | INF |
| Ppeak_1               | 1.94   | W        | 1.94    | 1.94 | 1.94     | 0.0      | 14.4      | Р   |
| Pavg_1                | 1.85   | W        | 1.85    | 1.85 | 1.85     | 0.0      | 13.0      | Р   |
| MPSViolation_1        | 0      |          | 0       | 0    | _        | 0        | 0         | Р   |
| TcutWindowViolation_1 | 0      |          | 0       | 0    | _        | 0        | 0         | Р   |
| DutyCycleViolation_1  | 0      |          | 0       | 0    | _        | 0        | 0         | Р   |





**IoT Portfolio** www.silabs.com/products



**Quality** www.silabs.com/quality



**Support & Community** www.silabs.com/community

#### Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class Ill devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it falls, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs p

#### Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.



Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

# Skyworks:

SI3404FB12V3KIT SI3404FB3V3KIT SI3404FB5V3KIT