Permit Number 4381and PSDTX3

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No.	Source Name (2)	Air Contaminant Name (3)	Emission Rates (10)		
(1)			lbs/hour (4)	TPY (4)	
1	Unit 1 Boiler	NOx	1856 (6) (7)	7227 (6)	
		со	8524 (6)	31735 (6)	
		voc	19	82	
		SO ₂	6187.2 (7)	27100.0	
		PM	154.68 (7)	677.50	
		PM ₁₀	154.68 (7)	677.50	
		PM _{2.5}	154.68 (7)	677.50	
		PM/PM ₁₀ /PM _{2.5} (MSS)	880	-	
		Hg	<0.01	0.027	
3	Unit 3 Boiler	NOx	1856 (6) (7)	7227 (6)	
		со	8524 (6)	31735 (6)	
		voc	19	82	
		SO ₂ (5)	5771 (7)	25277	
		PM (5)	154.68 (7)	677.50	
		PM ₁₀	154.68 (7)	677.50	
		PM _{2.5}	154.68 (7)	677.50	
		PM/PM ₁₀ /PM _{2.5} (MSS)	880	-	
		Hg	<0.01	0.027	
19	No. 1 Ash Silo Telescopic Chute (9)	РМ	0.1	0.1	
21	No. 3 Ash Silo	PM	0.1	0.1	

	Telescopic Chute (9)			
17	Fly Ash Landfill (9)	PM	1.74	7.6
23A V	Unit 1A Byproduct Vacuum Exhauster	PM	0.16	0.70
	(8)	PM ₁₀	0.16	0.70
		PM _{2.5}	0.16	0.70
23B	Unit 1B Byproduct Vacuum Exhauster	PM	0.16	0.70
	(8)	PM ₁₀	0.16	0.70
		PM _{2.5}	0.16	0.70
24	Unit 1 Byproduct Storage Silo	PM	0.16	0.72
	Storage Sho	PM ₁₀	0.16	0.72
		PM _{2.5}	0.16	0.72
25	Unit 1 Ventilation Fan-Byproduct	PM	0.03	0.15
	Storage Silo Equipment Level	PM ₁₀	0.03	0.15
	Ventilation	PM _{2.5}	0.03	0.15
	Unit 3A Byproduct Vacuum Exhauster	PM	0.16	0.70
	(8)	PM ₁₀	0.16	0.70
		PM _{2.5}	0.16	0.70
26B	Unit 3B Byproduct Vacuum Exhauster	PM	0.16	0.70
	(8)	PM ₁₀	0.16	0.70
		PM _{2.5}	0.16	0.70
27	Unit 3 Byproduct Storage Silo	PM	0.16	0.72
	Storage Cho	PM ₁₀	0.16	0.72
		PM _{2.5}	0.16	0.72
28	Unit 3 Ventilation Fan-Byproduct	PM	0.011	0.05
	Storage Silo Equipment Level	PM ₁₀	0.011	0.05

		PM _{2.5}	0.011	0.05
FE-02A	Fugitive Emissions from Wet Truck	PM	0.011	0.05
	Loading at Unit 1 Byproduct Storage	PM ₁₀	0.011	0.05
	Silo (8)	PM _{2.5}	0.011	0.05
FE-02B	Fugitive Emissions from Wet Truck	PM	0.011	0.05
	Loading at Unit 1 Byproduct Storage	PM ₁₀	0.011	0.05
	Silo (spare) (8)	PM _{2.5}	0.011	0.05
FE-03A	Fugitive Emissions from Wet Truck	PM	0.011	0.05
	Loading at Unit 3 Byproduct Storage	PM ₁₀	0.011	0.05
	Silo (8)	PM _{2.5}	0.011	0.05
FE-03B	Fugitive Emissions from Wet Truck	PM	0.011	0.05
	Loading at Unit 3 Byproduct Storage	PM ₁₀	0.011	0.05
	Silo (spare) (8)	PM _{2.5}	0.011	0.05
FE-04	Fly Ash/Byproduct Landfill	РМ	0.265	0.5
		PM ₁₀	0.265	0.5
		PM _{2.5}	0.265	0.5
FE-05	Fugitive Emissions from Dry Telescopic	PM	0.011	0.05
	Chute Unit 1	PM ₁₀	0.011	0.05
		PM _{2.5}	0.011	0.05
FE-06	Fugitive Emissions from Dry Telescopic	PM	0.011	0.05
	Chute Unit 3	PM ₁₀	0.011	0.05
		PM _{2.5}	0.011	0.05
29A	Unit 1A PAC Storage Silo A Bin	РМ	0.11	0.23
	Vent	PM ₁₀	0.11	0.23
		PM _{2.5}	0.11	0.23

Stora	Unit 1B PAC Storage Silo B Bin	РМ	0.11	0.23
	Vent (8)	PM ₁₀	0.11	0.23
		PM _{2.5}	0.11	0.23
30A	Unit 3B PAC Storage Silo A Bin Vent (8)	РМ	0.11	0.23
		PM ₁₀	0.11	0.23
		PM _{2.5}	0.11	0.23
St	Unit 3B PAC Storage Silo B Bin Vent (8)	РМ	0.11	0.23
		PM ₁₀	0.11	0.23
		PM _{2.5}	0.11	0.23
MSS-FUG	MSS Fugitives	VOC	125.50	4.80
		PM/PM ₁₀ /PM _{2.5}	4.69	4.84
		NO _x	<0.1	<0.1
		СО	<0.1	<0.1
	SO ₂	<0.1	<0.1	

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 - NO_x total oxides of nitrogen
 - SO₂ sulfur dioxide
 - PM total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}
 - CO carbon monoxide
 - Hg mercury
- (4) Planned maintenance, startup, and shutdown (MSS) lbs/hour emissions for all pollutants are authorized even if not specifically identified as MSS. During any clock hour that includes one or more minutes of planned MSS, that pollutant's maximum hourly emission rate shall apply during that clock hour. Compliance with annual emission limits (tons per year) is based on a 12 month rolling period. Annual emission rates for each source include planned MSS emissions.
- (5) Boiler SO₂ and PM emissions originally authorized under PSD by letter from EPA dated November 9, 1976, which have been supplanted by this permit.
- (6) Emission rates authorized under pollution control standard permits listed in Special Condition No. 32 3.
- (7) Hourly NO_x emissions are based upon a 30-day rolling average. Hourly SO_2 and PM emissions are based upon a 3-hour rolling average.
- (8) Units A & B for the corresponding EPNs do not operate simultaneously.
- (9) Fugitive emissions are an estimate only and should not be considered as a maximum allowable emission rate.

Permit Number	4381	and	PSD1	⁻ X3
Page 5				

(10) Unsubstituted and unbiased data when available is used to make a compliance determi
--

Date:	April 29, 2019