

General Sobolev Inequalities and Embeddings on Riemannian Manifolds

侯力广 521070910043 2024 .12

Introduction

Our goal in this report is to introduce embeddings of various Sobolev spaces into others. The crucial analytic tools here will be certain so-called "Sobolev inequalities".

Though Riemannian manifolds are natural extensions of Euclidean space, several important questions still puzzle mathematicians today.

Contents

- Background Materials
- Compact Manifolds without Boundary
- Complete Manifolds without Boundary
- 4 Compact Manifolds with Boundary

Sobolev Spaces on R^{n 1}

General Sobolev Inequalities (kp<n)

Let U be a bounded open subset of \mathbb{R}^n , with a C^1 boundary. Assume $u \in W^{k,p}(U)$.

(i) If $k < \frac{n}{p}$, then $u \in L^q(U)$, where

$$\frac{1}{q} = \frac{1}{p} - \frac{k}{n}.$$

We have in addition the estimate

$$||u||_{L^q(U)} \le C||u||_{W^{k,p}(U)}$$

the constant C depending only on k, p, n and U.

¹Evans, Lawrence C. Partial differential equations. Intersxcience Publishers, 1964.

Sobolev Spaces on R^{n 2}

General Sobolev Inequalities (kp>n)

(ii) If
$$k>\frac{n}{p},$$
 then $u\in C^{k-\left[\frac{n}{p}\right]-1,\gamma}(\bar{U})$, where

$$\gamma = \left\{ \begin{array}{l} \left[\frac{n}{p}\right] + 1 - \frac{n}{p}, \text{ if } \frac{n}{p} \text{ is not an integer} \\ \text{any positive number} < 1, \text{ if } \frac{n}{p} \text{ is an integer.} \end{array} \right.$$

We have in addition the estimate

$$||u||_{C^{k-\left[\frac{n}{\bar{p}}\right]-1,\gamma}(\bar{U})} \le C||u||_{W^{k,p}(U)}$$

the constant C depending only on k, p, n, γ and U.

²Evans, Lawrence C. Partial differential equations. Intersection Publishers, 1964.

Sobolev Spaces on R^{n 3}

Rellich-Kondrachov Compactness Theorem (Compactness)

Assume U is a bounded open subset of \mathbb{R}^n , and ∂U is C^1 . Suppose $1 \leq p < n$. Then

$$W^{1,p}(U)\subset\subset L^q(U)$$

for each
$$1 \leq q < p^*$$
 , where $1 \leq p < n, p^* = \frac{pn}{n-p}$

Before we start on Riemannian manifolds, we may ask:

- 1. ∂U is C^1 is an important assumption, what about manifolds without boundary?
- 2. can we find better embedded spaces which have more compactness properties?
- 3. how to generalize the Sobolev inequalities to Riemannian manifolds?

³Evans, Lawrence C. Partial differential equations. Intersxcience Publishers, 1964.

Sobolev Spaces on Rⁿ

Let Ω be some open subset of \mathbb{R}^n, k an integer, $p \geq 1$ real, and $u: \Omega \to \mathbb{R}$ a smooth, real-valued function. We define then the Sobolev spaces

$$H_k^p(\Omega) = \text{ the completion of } \{u \in C^\infty(\Omega), ||u||_{k,p} < +\infty\} \text{ for } ||\cdot||_{k,p}$$

$$W^{k,p}(\Omega) = \{u \in L^p(\Omega), \forall |\alpha| \le k, D_\alpha u \text{ exists and belongs to } L^p(\Omega)\}$$

[Meyers-Senin] For any Ω , any k, and any $p \geq 1, H_k^p(\Omega) = W^{k,p}(\Omega)$. 4

⁴Adams, R. A. *Sobolev spaces*. Academic Press, San Diego, 1978.

Sobolev Spaces on (M, g)⁵

Sobolev Spaces on (M,g)

Given (M,g) a smooth Riemannian manifold, k an integer, and $p\geq 1$ real, the Sobolev space $H_k^p(M)$ is the completion of $\mathcal{C}_k^p(M)$ with respect to $||\cdot||_{H_k^p}$, where

$$C_k^p(M) = \left\{ u \in C^{\infty}(M), \forall j = 0, \dots, k, \int_M \left| \nabla^j u \right|^p dv(g) < +\infty \right\}$$

When M is compact, one clearly has that $\mathcal{C}_k^p(M)=\mathcal{C}^\infty(M)$ for any k and any $p\geq 1$. For $u\in\mathcal{C}_k^p(M)$, set also

$$||u||_{H_k^p} = \sum_{j=0}^k \left(\int_M |\nabla^j u|^p dv(g) \right)^{1/p}$$

⁵Emmanuel Hebey. Nonlinear analysis on manifolds: Sobolev spaces and inequalities. 1999.

Compact Manifolds without Boundary 6

General Sobolev Inequalities on Compact Manifolds without Boundary

Let (M,g) be a smooth, compact Riemannian n-manifold. Let $p \geq 1$ be real and $0 \le m \le k$ be two integers.

Complete Manifolds without Boundary

(A1) If
$$1/q=1/p-(k-m)/n>0$$
, then $H_k^p(M)\subset H_m^q(M)$.

(A2) If
$$1/q=1/p-(k-m)/n<0$$
, then $H_k^p(M)\subset C^m(M)$.

where

Background Materials

$$||u||_{H^p_k} = \sum_{j=0}^k \left(\int_M \left| \nabla^j u \right|^p dv(g) \right)^{1/p} \text{ and } ||u||_{C^m} = \sum_{j=0}^m \max_{x \in M} \left| \left(\nabla^j u \right)(x) \right|$$

⁶Emmanuel Hebey. Nonlinear analysis on manifolds: Soboley spaces and inequalities, 1999.

Compact Manifolds without Boundary ⁷

General Sobolev Embeddings on Compact Manifolds without Boundary

Let (M,g) be a smooth, compact Riemannian n-manifold. Let $p\geq 1$ be real and $0\leq m< k$ be two integers.

(A1) For any real
$$q$$
 such that $1 \leq q < \frac{np}{(n-(k-m)p)}$, $H_k^p(M) \subset H_m^q(M)$.

Take k=1, m=0, for any p< n real and any $1\leq q<\frac{np}{n-p}$, $H_1^p(M)\subset\subset L^q(M)$.

(A2) Take
$$k=1, m=0$$
, for $p>n$ and for any $\lambda\in(0,1)$, such that $(1-\lambda)p>n$, $H_1^p(M)\subset\subset C^\lambda(M)$. Particularly, $H_1^p(M)\subset\subset C^0(M)$.

$$||u||_{C^{\lambda}} = \max_{x \in M} |u(x)| + \max_{x \neq y \in M} \frac{|u(y) - u(x)|}{d_g(x, y)^{\lambda}}$$

⁷Emmanuel Hebey. *Nonlinear analysis on manifolds: Sobolev spaces and inequalities.* 1999.

Complete Manifolds without Boundary 8

General Sobolev Inequalities on Complete Manifolds without Boundary

Let (M,g) be a smooth, complete Riemannian n-manifold with Ricci curvature bounded from below. Assume that

$$\inf_{x \in M} \operatorname{Vol}_g (B_x(1)) > 0$$

Complete Manifolds without Boundary

where $\operatorname{Vol}_{a}(B_{x}(1))$ stands for the volume of $B_{x}(1)$ with respect to g. Then the Sobolev embeddings in their first part (A1) are valid for (M, q). i.e.

(B1) If
$$1/q = 1/p - (k-m)/n > 0$$
, then $H_k^p(M) \subset H_m^q(M)$.

The assumption of Ricci curvature is satisfactory but not necessary. e.g. $H_1^p \subset L^q$

⁸Emmanuel Hebey. Nonlinear analysis on manifolds: Soboley spaces and inequalities, 1999.

Complete Manifolds without Boundary ⁹

General Sobolev Inequalities on Complete Manifolds without Boundary

Let (M,g) be a smooth, complete Riemannian n-manifold with Ricci curvature bounded from below and positive injectivity radius.

For $p \ge 1$ real and $0 \le m < k$ two integers,

(B2) If
$$1/q = 1/p - (k-m)/n < 0$$
, then $H_k^p(M) \subset C_B^m(M)$.

where $C_B^m(\Omega)$ consists of the functions $u \in C^m(\Omega)$ and $\nabla^j u$ is bounded on M for $0 \le |j| \le m$. Particularly, for $p \ge 1$ real and $\lambda \in (0,1)$ real, if $1/p \le (1-\lambda)/n$, then $H_1^p(M) \subset C_B^\lambda(M)$.

⁹Emmanuel Hebey. *Nonlinear analysis on manifolds: Sobolev spaces and inequalities.* 1999.

Compact Manifold with Boundary 10

Sobolev Inequalities on Compact Manifolds with Boundary

Let (M,g) be a smooth, compact, n-dimensional Riemannian manifold with boundary. For p < n real, set $p^* = np/(n-p)$. Then for any $q \in [1,p^*]$, $\boldsymbol{H_1^p(M)} \subset \boldsymbol{L^q(M)}$

Sobolev Embeddings on Compact Manifolds with Boundary

If $q \in [1, p^*)$, the embedding above is compact, i.e. $H^p_1(M) \subset \subset L^q(M)$.

¹⁰Emmanuel Hebey. Nonlinear analysis on manifolds: Sobolev spaces and inequalities. 1999.

Thank You

