Introduction La couche liens La couche réseau La couche transport

## TCP/IP

Fabien Chhel

**UFR Sciences Angers** 

2013-2014

## Historique d'Internet

- internet : connexion de réseaux différents (internetworking)
- Internet : l'ensemble des internets suivant les protocoles TCP/IP
- Premiers développements sur l'intenet (année 70)
- de la DARPA (Defense Advanced Research Project Agency)
   nait :
  - ARPANET
  - Réseaux reliant (point-à-point) des sites de recherche pour
    - échanger des données et du courrier
    - partager des ressources
    - résistant aux attaques militaires
    - sans centre névralgique
    - sans connection
    - « au mieux »
- http://www.internetworldstats.com/

## Nombre de machines connectées à Internet



source http://www.zrakon.org/robert/internet

## Nombre de sites web



source http://www.zrakon.org/robert/internet



source http://www.zrakon.org/robert/internet

# Alors vint TCP/IP

- Premiers développements de réseaux à commutation de paquets (années 70)
- de la DARPA (Defense Advanced Research Project Agency)
  - autour des réseaux radio et de la communication satellite
  - autour des protocoles TCP/IP (Transmission Control Protocol/Internet Protocol)
- création de l'IRG (Internet Research Group) groupe de travail autour de TCP/IP
- TCP/IP est intègré dans le système UNIX de Berkeley
- création de l'ICCB (Internet Configuration Control Board)
   en 1979
- TCP/IP devient le standard dans ARPANET (Janvier 1983)
- la DCA (Defense Communication Agency) scinde ARPANET en deux
  - ARPANET pour la recherche (l'Internet actuel)
  - MILNET (Military network)

## Dompté la croissance

- création de l'IAB (*Internet Architecture Board*) qui coordonne et standardise les protocoles autour de TCP/IP.
- l'IAB est scindée en 4 entités :
  - IAB
  - IETF (Internet Engineering Task Force)
  - IESG (Internet Engineering Steering Group) l'état major de l'IETF
  - IRTF (Internet Research Task Force) regroupant les recherches sur le futur de l'Internet
- création de l'ISOC (Internet Society) en 1991 regroupant
  - I'IAB. I'IETF. I'IESG. I'IRTF
  - l'ICANN (Internet Corporation for Assigned Names and Numbers) qui gère l'adressage et les noms de domaine
  - le W3C (Wold Wide Web Consortium)

## The goal of the IETF is to make Internet work better

- l'IETF :
  - groupes de travail créés pour traiter des sujets spécifiques
  - définition des solutions techniques
- Les RFC (Request For Comments)
  - documents techniques définissant les standards de l'Internet
  - créé à partir d'Internet Draft, documents de travail des groupes d'IETF
  - publiés

#### Les services Internet

- Niveau application
  - World Wide Web (WWW)
  - Courrier électronique
  - Transferts de fichiers
  - Connexion et bureau à distance
- Niveau réseau
  - Service de transport de flux fiable
    - Indépendance vis-à-vis de la technologie de réseau
    - Interconnexion universelle
    - Accusés de réception de bout en bout
    - Standards de protocole d'application
  - Service de transmission de paquets sans connexion

# Besoins des applications

|                        | Perte de   | Débit (Contrainte de temps)    |
|------------------------|------------|--------------------------------|
|                        | données    |                                |
| Transfert de données   |            |                                |
| informatiques          | Interdite  | Au mieux (non)                 |
| Courrier               | Interdite  | Au mieux (non)                 |
| Web                    | Interdite  | Au mieux (non)                 |
| Audio/Vidéo            |            |                                |
| enregistrés            | Acceptable | Au mieux (non)                 |
| Audio/Vidéo            |            | 10Kbit/s < audio < 1Mbit/s     |
| temps réel             | Acceptable | 100Kbit/s < video < $5$ Mbit/s |
| Messagerie instantanée | Interdite  | Au mieux (faible)              |
| Peer 2 Peer            | Interdite  | Au mieux (non)                 |

### Connexion à Internet

- se connecter à Internet nécessite
  - un moyen physique : un raccordement (ligne téléphonique, câble, liaison satellite)
  - un moyen logique :
    - une adresse IP fournie par un Fournisseur d'accès internet (FAI)
    - un Système de noms de domaine (DNS)
- offre un débit
  - descendant (ou download) nombre de bits/sec de données téléchargeables sur l'internet
  - montant (ou upload) nombre de bits/sec de données expédiables sur l'internet

# Réseau Téléphonique Commuté (RTC)

- modem V90 ou V92 rattaché à une ligne télephonique
- débit descendant maximum : 56 kbit/sec
- débit montant maximum : 48 kbit/sec
- « Internet à bas débit »
- ligne téléphonique inutisable pendant la connexion à internet
- intérêt : il suffit d'une ligne téléphonique

# Réseau Téléphonique Commuté (RTC)



source Pr. Pascal Nicolas

# Numéris - Réseau Numérique à Intégration de Services (RNIS)

- adaptateur Numéris rattaché à une ligne télephonique
- débit garanti : 64 kbit/sec (ou 128 kbit/sec avec 2 canaux)
- plusieurs canaux de communication (voix, fax, images, données, etc)
- intérêt : il suffit d'une ligne téléphonique pouvant accueillir numéris

### **ADSL**

- Réseau de Raccordement Numérique Asymétrique (Asymmetric Digital Subscriber Line)
- modem ADSL (i.e. une « box ») rattaché à une ligne télephonique
- « Internet à haut débit »
- débit descendant minimum : 512 kbit/sec
- débit montant minimum : 128 kbit/sec
- débits non garantis et dépendant de la distance au centre téléphonique
- ligne téléphonique utisable pendant la connexion à internet
- possibilité de recevoir la télévision et le téléphone IP
- évolution en VDSL2 et ADSL2+

## **ADSL**



source Pr. Pascal Nicolas

## Câble

- réseau métropolitain câblé de télévision
- modem câble
- « Internet à haut débit »
- débit descendant minimum : 20 Mbit/sec
- débit montant minimum : 512 kbit/sec

### Câble



source Pr. Pascal Nicolas

#### **Fibre**

- réseau (métropolitain) voir internationnal (backbone)
- modem fibre/adsl ou liaison ethernet
- « Internet à très haut débit »
- débit montant/descendant minimum : 2 Gbit/sec
- PON: Passive Optical Network ou Point à Multipoint Passif
- P2P : Point à Point Passif

## Fibre



source Wikipédia

## Satellite (en monodirectionnel)

- réception (download) par satellite
- parabole de réception
- expédition (upload) via une liaison RTC
- modem rattaché à une ligne téléphonique
- temps de latence élévé dû à l'éloignement du satellite géostationnaire (36000km)

## Satellite (en monodirectionnel)



source Pr. Pascal Nicolas

# Satellite (en bidirectionnel)

- réception (download) par satellite
- parabole de réception
- expédition (upload) par satellite
- antenne d'émission
- temps de latence élévé dû à l'éloignement du satellite géostationnaire (36000km)
- coût très important

# Satellite (en bidirectionnel)



source Pr. Pascal Nicolas

# Liaison spécialisée

- Liaison loué
- liaison permanente
- débit disponible garanti
- adresse IP fixe
- hébergement de services professionnels

## Partage d'un accès Internet

- partage sur un « petit » réseau de l'accès à Internet
- passerelle possédant une adresse IP (publique)
- autres éléments (les « hôtes ») du réseau avec adresses IP privées
- 3 grands types de partage :
  - via de l'Ethernet filaire
  - via du WiFi
  - via du CPL
  - ou une combinaison des 3.

#### Ethernet filaire

- chaque hôte dispose d'une carte Ethernet (10 ou 100 Mbit/sec)
- passerelle reliée (via de la connection RJ45)
  - directement à chaque hôte
  - indirectement via un commutateur (switch) (ou un concentrateur (hub))

#### Ethernet filaire



source Pr. Pascal Nicolas

#### WiFi

- point d'accès et passerelle
- carte WiFi pour chaque hôte
- accès sécurisés
  - identification lors de la connexion
  - chiffrement des échanges
- débits : 11 Mbit/sec (802.11b) ou 54 Mbit/sec (802.11g)
- simplicité à l'installation
- fiabilité et performance en fonction des conditions d'utilisation

## WiFi



source Pr. Pascal Nicolas

# Courant porteur en ligne (CPL)

- utilisation du réseau électrique « indoor »
- réseau Ethernet sur le réseau électrique
- carte réseau Ethernet pour chaque hôte reliée via un adaptateur sur une prise de courant
- passerelle reliée via un adaptateur à une prise de courant
- utilisation d'un réseau préexistant

## Courant porteur en ligne (CPL)



source Pr. Pascal Nicolas

## Objectif des protocoles TCP/IP

 Assurer la transmission d'informations entre deux entités situées dans des réseaux locaux possiblement distincts.



source Pr. Pascal Nicolas

## Les 4 couches de TCP/IP

- couche application (les programmes utilisateurs)
- couche transport
  - TCP
  - UDP (User Datagram Protocol)
- couche réseau
  - IP
  - ICMP (Internet Control Message Protocol)
- couche de liens d'interface avec le matériel
  - pilote (*driver*) du système d'exploitation
  - carte d'interface entre l'hôte et le réseau
- Les couches « réseau » et « de liens » sont présentes sur tous les équipements tandis que les couches « application » et « transport » ne sont présentes que sur les hôtes (de « bout en bout »).



## Transmission d'informations en local

Un ordinateur A (client) interroge un ordinateur B (serveur) via l'application FTP (*File Transfert Protocol*)



## Interconnexion de réseaux hétérogènes

- Deux systèmes terminaux A et B
- A sur un réseau de type « bus Ethernet »
- ullet B sur un réseau de type  $\ll$  Token Ring  $\gg$
- un routeur entre A et B disposant
  - d'une carte et driver Ethernet
  - d'une carte et driver Token Ring
- une trame Ethernet et une trame Token Ring
- messages identiques (niveau applications)
- paquets identiques (niveau transport)
- datagrammes identiques dans le cas d'un seul routeur (niveau réseau)
- datagrammes possiblement différents dans le cas général













« routeur » : machine permettant l'acheminement d'un réseau à un autre réseau.

Réseaux - TCP/IP



















données utilisateur



application

























### Un exemple

Accèder à la page web

http://www.info.univ-angers.fr/~chhel/index.html



#### Niveau HTTP

- le navigateur demande au DNS l'adresse IP du serveur www.info.univ-angers.fr
- le DNS retourne 194.57.175.124
- le navigateur envoie la requète HTTP GET /~ chhel/index.html HTTP/1.1 Host: www.info.univ-angers.fr User-Agent : ...
- le serveur web répond HTTP/1.1 200 OK

</HTML>

```
Date: Wed, 31 Aug 2011 15:28:46 GMT Server: Apache/2.2.14 (Ubuntu) ... <hr/>
<
```

### Niveau HTTP



# Échange de messages HTTP



### Niveau TCP (et HTTP)



#### Niveau TCP

- Canal de communication socket (X.Y.Z.T :N, 194.57.175.124 :80)
- port 80 pour le serveur
- port N libre pour le client
- dialogue HTTP s'appuyant sur une connexion TCP
  - établissement de la connexion TCP
  - envoi du navigateur client au serveur de la requête HTTP (1 seul paquet suffit)
  - envoi du serveur au navigateur client de la réponse HTTP (plusieurs paquets)
  - fermeture de la connexion TCP

# Échange de paquets TCP (et de messages HTTP)



### Niveau IP (et TCP (et HTTP))



#### Niveau IP

- Chaque paquet TCP est encapsulé dans un datagramme IP
- chaque datagramme IP contient (en autres)
  - l'adresse IP de l'émetteur du datagramme IP
  - l'adresse IP du destinataire final du datagramme IP
- chaque datagramme IP va de routeur en routeur jusqu'à sa destination
- à chaque routeur, la table de routage indique
  - l'adresse IP du prochain routeur nécessaire connecté au même réseau que le routeur effectuant le routage
  - l'interface de sortie

#### Niveau liens

Dans le cas d'une connexion entre un client et un serveur sur le même réseau Ethernet

- Chaque datagramme IP est placé dans autant de trames Ethernet que nécessaires (par fragmentation)
- chaque trame Ethernet contient les adresses MAC (Medium Access Control) des cartes réseaux de l'émetteur et du destinataire



#### Couche de liens d'Internet

- réseau à commutation de circuit
  - mode connecté
  - une connection pour un circuit
  - débit garanti
  - réseau téléphonique
- réseau à commutation de paquets
  - mode non connecté
  - fragmentation des données et multiplexage
  - nombreuses communications sur une même ligne
  - pas de débit garanti
  - la plus grande part du réseau Internet

#### Distance versus débit

- réseaux étendus
  - WAN (Wide Area Network)
  - longue distance
  - faible débit (1,5Mbit/s à 2,4Gbit/s)
  - mise-en-œuvre de routeurs
- réseaux locaux
  - LAN (Local Area Network)
  - petite distance
  - haut débit (100Mbit/s à 10Gbit/s)
  - La technologie Ethernet
- Taille maximale pour une trame ou MTU (Maximum Transfert Unit)

# Caractéristiques des topologies de réseaux

| Topologie | Équipement | Insertion/retrait | Localisation | Mode de         |
|-----------|------------|-------------------|--------------|-----------------|
|           | critique   | d'hôtes           | des pannes   | transmission    |
| Bus       | Aucun      | Avec coupure      | Difficile    | Diffusion       |
| Étoile    | Équipement | Sans coupure      | Directe      | Diffusion (hub) |
|           | central    |                   |              | Point à point   |
|           |            |                   |              | (commutateur)   |
| Anneau    | Tous les   | Avec coupure      | Directe      | Diffusion       |
|           | hôtes      |                   |              |                 |

# Accès au support physique

- Centralisé (un hôte règle le « temps de parole ») / distribué
- Statique (intervalles réservés → gaspillage) / dynamique
- Déterministe (→ temps réel) / aléatoire
- Équitable / prioritaire
- Avec / sans contentions (collisions)

#### Les réseaux Ethernet

- Position hégémonique
- Xerox au début des années 1970
- Normalisé par l'IEEE vers 1980
- Premières et secondes générations : câble coaxial
- Générations suivantes :
  - câble type paire torsadée
  - 10Base-T (10Mbit/s)
  - 100Base-T (Fast Ethernet, 100Mbit/s)
  - 1000Base-T (Ethernet GigaBit, 1Gbit/s)

## Caractéristiques de l'Ethernet

- « Bus partagé » simulé sur une topologie en étoile
- « remise au mieux » : sans garanti de réception
- « diffusion » : tous les hôtes reçoivent l'ensemble des trames
- filtrage sur l'adresse Ethernet inclue dans la trame
- pas d'autorité de contrôle au bus : risque de collisions
- CSMA/CD (Carrier Sense Multiple Acces with Collision Detection):
  - accès simultanément au réseau
  - test d'activité par détection d'« onde porteuse » (carrier wave)
  - possibilité de transmissions simultanées
  - détection de collision par écoute d'éventuelles interférences
  - interruption de la transmission puis réémission aléatoire selon des fenêtres croissantes (× 2)

## Adresses physiques Ethernet

- notation hexadécimale doublement pointée de 6 mots de 8 bits
- adressage sur 48 bits (6  $\times$  2  $\times$  4 bits )
- adresse MAC (Media ACcess)
- adresse associée à une interface réseau
- espace des adresses MAC =

$$\left\{ \begin{array}{l} U:V:W:X:Y:Z \mid \\ 0 \leq U,V,W,X,Y,Z \leq FF \end{array} \right\}$$

- trois types d'adressage
  - unicast : désigne un interface unique
  - broadcast : désigne tous les interfaces (FF:FF:FF:FF:FF)
  - multicast : désigne un groupe d'interfaces

#### Trame Ethernet

| adresse de<br>destination | adresse<br>source | type     | données        | CRC      |
|---------------------------|-------------------|----------|----------------|----------|
| 6 octets                  | 6 octets          | 2 octets | 46-1500 octets | 4 octets |

- CRC (Cyclic Redundancy Check) : code de redondance pour le contrôle des données
- La trame est acceptée si le CRC est correct par rapport aux données.
- Le type différencie les trames :
  - datagramme IP
  - requète ou réponse ARP
  - protocole expérimental
  - etc.

# Équipements matériels d'un réseau Ethernet

- « Répeteur » : retransmission et amplification du signal
- « Concentrateur » (hub) : retransmission multiports
- « Pont » (bridge) : extension d'un réseau
- « Commutateur » (switch) : pont multiports

#### Pont et Commutateur



- Accès transparent pour les hôtes
- Filtre les trames
  - interdit le passage des trames non valides
  - défini deux segments : AB et CD
  - autorise le passage de trames d'un segment à l'autre
  - bloque les trames internes à AB qui sont alors visibles ni de C ni de D
- Améliore le débit du réseau
- Renforce la confidentialité
- Le « tout commuté » : chaque hôte est rélié directement à un port d'un commutateur ne recevant que les trames qui lui sont destinées

#### WiFi

- WIreless Fldelity
- mode « infrastructure » : un point d'accès (antenne émettrice/réceptrice) connecté à un réseau filaire
- mode « ad-hoc » : sans point d'accès (d'hôte à hôte)
- CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)
- Deux stations peuvent être trop loin l'une de l'autre pour s'entendre : possibilité de collisions
- Si une station veut émettre un petit message :
  - 1. elle explore le spectre des fréquences
  - 2. si une activité est détectée, elle attend
  - 3. sinon elle expédie les données et attend l'acquittement
  - 4. le récepteur reçoit les données et envoie un acquittement
  - 5. si elle recoit l'acquittement, elle clôt la transmission sinon elle réémet

#### WiFi

- Si une station veut émettre un volumieux message :
  - 1. elle explore le spectre des fréquences
  - 2. si une activité est détectée, elle attend
  - 3. sinon elle expédie un message RTS (Ready to Send) qui contient le volume de données et la vitesse de transmission
  - 4. le récepteur expédie un message CTS (Clear to Send)
  - (les autres stations vont être silencieuses pendant le temps de la transmission)
  - 5. elle expédie les données et attend un acquittement
  - 6. le récepteur reçoit les données et envoie un acquittement
  - 7. si elle reçoit l'acquittement, elle clôt la transmission sinon elle recommence le processus

#### La couche réseau

- Protocole IP (Internet Protocol)
- sans connexion (chaque datagramme est traité indépendamment des autres)
- non fiable (perte, inversion, duplication)
- remise « au mieux » (pas de perte sans nécessité)
- norme initiale IPv4
- « nouvelle » norme IPv6
- définition du protocole IP :
  - définition de l'adressage
  - définition du format du datagramme
  - définition de l'acheminement
  - définition de la gestion de la remise non fiable

# Adressage IP

- Réseau virtuel homogène masquant les réseaux physiques interconnectés
- identifiants universels pour communication universelle
- adressage logique : identification et localisation
- chaque interface réseau d'un matériel dispose d'une adresse IP (dynamique ou non)
- les routeurs ont une adresse IP pour chaque interface réseau

## (IPv4) Adressage IPv4

- Notation décimale pointée de 4 nombres (4 octets)
- adressage sur 32 bits
- espace des adresses IPv4 =  $\{X.Y.Z.T|0 \le X, Y, Z, T \le 255\}$
- l'adresse IP du serveur web du département informatique : 194.57.175.124
- paire identifiant réseau/identifiant hôte

#### (IPv4) Adressage avec classes



- Seules les classes A. B et C fournissent des adresses IP
- les bits de point fort détermine la classe
- grande efficacité pour le routage

## (IPv4) Adressage avec classes

| classe | adresses                    |  |  |  |  |  |
|--------|-----------------------------|--|--|--|--|--|
| А      | 0.0.0.0 à 127.255.255.255   |  |  |  |  |  |
| В      | 128.0.0.0 à 191.255.255.255 |  |  |  |  |  |
| С      | 192.0.0.0 à 223.255.255.255 |  |  |  |  |  |

- Au plus 127 réseaux de classe A (plus de 2<sup>16</sup> hôtes)
- 2<sup>14</sup> réseaux de classe B (entre 2<sup>8</sup> et 2<sup>16</sup> hôtes)
- 2<sup>21</sup> réseaux de classe C (entre 1 et 256 hôtes)

#### (IPv4) Adresses réservées

- 0.0.0.0 (par exemple, pour qu'un hôte demande son adresse)
- <id réseau nul>.<id d'hôte> (par exemple, pour qu'un hôte demande son adresse)
- <id réseau>.<id d'hôte nul> réseau lui-même
- <id réseau>.<id d'hôte avec tous les bits à 1> adresse de diffusion sur le réseau
- 255.255.255.255 adresse de diffusion sur le réseau (sans connaître l'identifiant du réseau)
- 127.Y.Z.T communication inter-processus sur un même hôte
- réseaux privés intranet
  - 10.0.0.0 à 10.255.255.255 (classe A)
  - 172.16.0.0 à 172.31.255.255 (classe B)
  - 192.168.0.0 à 192.168.255.255 (classe C)

# (IPv4) Les faiblesses de l'adressage IPv4 avec classes

- Pas pensé pour la croissance d'Internet
- plus assez d'identifiants réseau
- pénurie des adresses de classe B
- pas adapté aux réseaux de taille moyenne
  - pour un réseau de 500 hôtes
  - classe C trop petite
  - gaspillage en classe B
- avant de passer à IPv6
  - adressage en sous-réseaux
  - CIDR

#### (IPv4) Adressage en sous-réseaux

- Augmenter le nombre de préfixes réseaux
- l'identifiant hôte devient un identifiant local
- l'identifiant local comprend
  - des identifiants sous-réseaux
  - un identifiant hôte
- hiérarchie locale de réseaux

## (IPv4) Exemple d'adressage en sous-réseaux



## (IPv4) Adressage en sous-réseaux par masques

- accès aux sous-réseaux et identifiant hôte par masques
- les bits à 1 désigne l'identifiant réseau
- les bits à 0 désigne l'identifiant local
- un ET logique binaire les calculent

| adresse IP de classe B                             |  |  |  |  |  |  |
|----------------------------------------------------|--|--|--|--|--|--|
| 150.50.215.200 10010110.00110010.11010111.11001000 |  |  |  |  |  |  |
| masque (21 premiers bits à 1)                      |  |  |  |  |  |  |
| 255.255.248.0 11111111.1111111.11111000.00000000   |  |  |  |  |  |  |
| identifiant réseau                                 |  |  |  |  |  |  |
| 150.50.208.0 10010110.00110010.11010 000.00000000  |  |  |  |  |  |  |
| identifiant local                                  |  |  |  |  |  |  |
| 0.0.7.200 00000000.00000000.00000 111.11001000     |  |  |  |  |  |  |

#### (IPv4) Exemple d'adressage en sous-réseaux par masques



# (IPv4) Exemple d'adressage en sous-réseaux par masques

| adresse IP de classe B                          |                       |                 |  |  |  |
|-------------------------------------------------|-----------------------|-----------------|--|--|--|
| 150.50.64.2 10010110.00110010.01000000.00000010 |                       |                 |  |  |  |
| masque (18 premiers bits à 1)                   |                       |                 |  |  |  |
| 255.255.192.0                                   | 11111111.111111111.11 | 000000.00000000 |  |  |  |
| identifiant réseau                              |                       |                 |  |  |  |
| 150.50.64.0 10010110.00110010.01 000000.0000000 |                       |                 |  |  |  |
| identifiant local                               |                       |                 |  |  |  |
| 0.0.0.2 00000000.00000000.00 000000.00000010    |                       |                 |  |  |  |

#### (IPv4) CIDR

- Classless Inter Domain Routing
- Routage interdomaine sans classe
- adresse CIDR: X.Y.Z.T/m où m est un masque entier
- le masque désigne le nombre de bits constituant l'identifiant réseau
- la valeur du masque m fixe les m premiers bits à 1 et les 32-m derniers bits à 0
- avantages :
  - découper librement des blocs d'adresses sans classe
  - agréger des blocs d'adresses pour simplifier le routage
  - agréger des classes C pour pallier à la pénurie de classes B
- pour un réseau de *n* hôtes,
  - $2^{32-m} \ge n$ , m masque d'une classe suffisamment grande
  - des réseaux de classe insuffisamment grande mais de masques contigus (le sur-adressage)

- Fournisseur d'accès dispose d'un bloc CIDR 150.50.0.0/17
- $2^{32-17} 2 = 32766$  adresses possibles

| 150.50.0.0/1/                                  |                               |                  |  |  |  |  |
|------------------------------------------------|-------------------------------|------------------|--|--|--|--|
| 150.50.0.0 10010110.00110010.00000000.00000000 |                               |                  |  |  |  |  |
|                                                | masque (17 premiers bits à 1) |                  |  |  |  |  |
| 255.255.128.0                                  | 11111111.11111111.1           | 0000000.0000000  |  |  |  |  |
|                                                | adresse minimale attribuab    | le               |  |  |  |  |
| 150.50.0.1 10010110.00110010.0 0000000.0000000 |                               |                  |  |  |  |  |
| adresse maximale attribuable                   |                               |                  |  |  |  |  |
| 150.50.127.254                                 | 10010110.00110010.0           | 1111111.11111110 |  |  |  |  |

- Client de 2000 hôtes
- bloc CIDR 150.50.8\*x.0/21
- $2^{32-21}-2=2^{11}-2=2046$  adresses disponibles pour le client
- au choix :  $0 \le x \le 15 = 2^{32-(17+11)} 1 = 2^4 1$

#### Réseau client

| 150.50.8*x.0                  | 000.00000000                                       |                         |              |  |  |  |  |
|-------------------------------|----------------------------------------------------|-------------------------|--------------|--|--|--|--|
| masque (21 premiers bits à 1) |                                                    |                         |              |  |  |  |  |
| 255.255.248.0                 | 255.255.248.0 111111111.11111111.11111000.00000000 |                         |              |  |  |  |  |
| adresse minimale attribuable  |                                                    |                         |              |  |  |  |  |
| 150.50.8*x.1                  |                                                    | 10010110.00110010.0???? | 000.00000001 |  |  |  |  |
| adresse maximale attribuable  |                                                    |                         |              |  |  |  |  |
| 150.50.8*x+7.254              |                                                    | 10010110.00110010.0???? | 111.11111110 |  |  |  |  |

- Client de 2000 hôtes
- bloc CIDR 150.50.0.0/21
- $2^{32-21} 2 = 2046$  adresses disponibles pour le client
- x = 0

#### Réseau client

| 150.50.0.0                                        | 000.00000000                                      |  |  |  |  |  |  |
|---------------------------------------------------|---------------------------------------------------|--|--|--|--|--|--|
| masque (21 premiers bits à 1)                     |                                                   |  |  |  |  |  |  |
| 255.255.248.0                                     | 255.255.248.0 111111111.1111111.11111000.00000000 |  |  |  |  |  |  |
| adresse minimale attribuable                      |                                                   |  |  |  |  |  |  |
| 150.50.0.1                                        | 000.00000001                                      |  |  |  |  |  |  |
| adresse maximale attribuable                      |                                                   |  |  |  |  |  |  |
| 150.50.7.254   10010110.00110010.00000 111.111111 |                                                   |  |  |  |  |  |  |

- Client de 2000 hôtes
- bloc CIDR 150.50.120.0/21
- $2^{32-21} 2 = 2046$  adresses disponibles pour le client
- *x* = 15

#### Réseau client

| 150.50.120.0                                         | 10010110.00110010.01111 000.00000000 |  |  |  |  |  |  |
|------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|
|                                                      | masque (21 premiers bits à 1)        |  |  |  |  |  |  |
| 255.255.248.0                                        | 11111111.11111111.11111000.00000000  |  |  |  |  |  |  |
|                                                      | adresse minimale attribuable         |  |  |  |  |  |  |
| 150.50.120.1   10010110.00110010.01111   000.0000000 |                                      |  |  |  |  |  |  |
| adresse maximale attribuable                         |                                      |  |  |  |  |  |  |
| 150.50.127.254                                       | 10010110.00110010.01111 111.11111110 |  |  |  |  |  |  |

# (IPv4) Exemple d'adressage en sous-réseaux par masques CIDR



# (IPv4) Réseaux de classe C agrégés



Le 24<sup>ème</sup> bit distingue les deux sous-réseaux.

#### (IPv4) Traduction d'adresse réseau

- NAT (Network Address Translation)
- Accès transparent à Internet au niveau IP pour réseaux privés
- Traduction des adresses IP privées en adresses IP routables sur Internet
- Seuls les interfaces nécessitant une connexion avec Internet sont traduites
- Diminution du besoin d'adresses IP
- Seul le « routeur » NAT est connu d'Internet
- Table de traduction (statique ou dynamique) identifiant l'adresse IP du destinataire sur Internet à l'adresse IP source sur le réseau privé
- NAT multidomicilié pour accès concurrents
- Problème avec les protocoles manipulant les adresses IP

# (IPv4) Traduction d'adresse réseau avec traduction de port

- NAPT (Network Address Port Translation)
- Accès au même service sur un même serveur d'Internet par deux interfaces d'un réseau privé
- multiplexage sur le numéro du port
- Table pour le NAT

| Adresse |       |     |         |         |
|---------|-------|-----|---------|---------|
| Privée  | Privé | NAT | Serveur | Serveur |

## (IPv4) Traduction d'adresse réseau avec traduction de port

- Deux machines d'adresses privées 10.0.0.1 et 10.0.0.2 désirent par le même port privé P communiquer, via un NAT d'adresse G, avec un serveur web (port 80) d'adresse 197.57.175.124
- Pour les hôtes : (10.0.0.1 : P, 197.57.175.124 : 80) et (10.0.0.2 : P, 197.57.175.124 : 80)
- remplacement par le NAT : (G: P, 197.57.175.124: 80) et
   (G: P, 197.57.175.124: 80)
- remplacement par le NAPT :  $(G: P_1, 197.57.175.124: 80)$  et  $(G: P_2, 197.57.175.124: 80)$
- Table pour le NAPT

| Adresse  | Iresse Port Port |       | Adresse        | Port    |
|----------|------------------|-------|----------------|---------|
| Privée   | Privé            | NAPT  | Serveur        | Serveur |
| 10.0.0.1 | Р                | $P_1$ | 197.57.175.124 | 80      |
| 10.0.0.2 | P                | $P_2$ | 197.57.175.124 | 80      |

## (IPv6) Adressage IPv6

- Notation hexadécimale doublement pointée de 8 mots de 16 bits
- Adressage sur 128 bits (8  $\times$  4  $\times$  4 bits)
- Espace des adresses IPv6 =

$$\left\{ \begin{array}{l} [S:T:U:V:W:X:Y:Z] \mid \\ 0 \le S, T, U, V, W, X, Y, Z \le FFFF \end{array} \right\}$$

- :: que des 0
- Trois types d'adressage
  - unicast : désigne une interface unique
  - multicast : désigne un groupe d'interfaces
  - anycast : désigne une interface parmi un groupe d'interfaces
- Adressage hiérarchique
- Pour une interface, possibilité de plusieurs adresses IPv6
- Adresse à durée de vie limitée

## (IPv6) Adressage unicast

|   | 3 bits |   | 13 bits | 8 bits | 24 bits | 16 bits | 64 bits     |                 |
|---|--------|---|---------|--------|---------|---------|-------------|-----------------|
| 0 | 0      | ) | 1       | TLA    | réservé | NLA     | id. de site | id. d'interface |

- identifiant publique (48 bits)
  - [2000 ::]/3 identifiant les « adresses unicast globales de type plan agrégé »
  - unité d'agrégation haute (TLA : Top Level Aggregator)
  - partie réservée sur 8 bits réallouable entre TLA et NLA
  - unité d'agrégation basse (NLA : Next Level Aggregator)
- identifiant de site (SLA : Site Level Aggregator, 16 bits)
- identifiant d'interface (64 bits)

#### (IPv6) Identifiant d'interface

• Identifiant interface à partir d'un identificateur IEEE EUI-64

| <br>24 bits  | 40 bits         |
|--------------|-----------------|
| constructeur | numéro de série |

Identifiant interface à partir d'une adresse MAC IEEE 802



### (IPv6) Autres adresses unicast

Adresse IPv4 mappée (de IPv4 à IPv4)

| 80 bits | 16 bits | 32 bits      |
|---------|---------|--------------|
| 0       | FFFF    | adresse IPv4 |

• Adresse IPv4 compatible (de IPv6 à IPv6)

| 96 bits | 32 bits      |  |
|---------|--------------|--|
| 0       | adresse IPv4 |  |

## (IPv4) Datagramme IPv4



en-tête de 20 octets minimum

## (IPv4) En-tête d'un datagramme

- longueur d'en-tête sur 4 bits en nombre de mots de 32 bits (au minimum 5 pour 20 octets)
- type de service ou TOS (Type Of Service)
- longueur totale du datagramme en octets sur 16 bits
- identification, drapeaux et déplacement de fragment pour la fragmentation des datagrammes
- durée de vie ou TTL (*Time To Live*) indique le nombre maximum de routeurs que le datagramme peut traverser
- propocole identifie le protocole d'un niveau supérieur qui utilise le datagramme (6 pour TCP et 17 pour UDP)
- total de contrôle d'en-tête calculé à partir de l'entête permet d'en assurer son intégrité
- options (d'une taille quelconque) complétée jusqu'à 32 bits par du bourrage

## (IPv4) Fragmentation des datagrammes

- Réseaux à taille de trames différentes
- Datagramme trop volumineux pour une seule trame
- Fragmentation au routeur d'entrée sur un réseau de capacité moindre
- Défragmentation uniquement à destination
- Taille maximale pour une trame ou MTU (Maximum Transfert Unit)
- Taille des fragments la plus grande possible en restant multiple de 8 octets
- Chaque fragment est routé séparément

## (IPv4) En-tête d'un datagramme

- identification : numéro unique attribué à chaque datagramme initial
- offset : déplacement en multiple de 8 octets dans les données du datagramme initial
- drapeaux :
  - 1 bit (à 1) pour interdire de fragmenter
  - 1 bit « à suivre » pour indiquer que c'est un fragment mais pas le dernier (à 0 s'il est le dernier)



## (IPv4) Exemple pour un datagramme de 1300 octets



## (IPv6) Datagramme IPv6

- Champs alignés sur 64 bits
- Contrôle de somme effectué par le protocole de niveau transport
- Taille minimale des MTU de 1280 octets
- Options de IPv4 remplacées par des extensions en début des données
- Fragmentation par la source selon la découverte du plus petit MTU

## (IPv6) Datagramme



### (IPv6) En-tête Datagramme

- version sur 4 bits
- classe sur 8 bits :
  - DSCP (DiffServ Code Point) sur 6 bits
  - 2 bits non utilisés
- identificateur de flux : numéro de contexte pour le routage unique et généré par la source
- longueur des données : longueur des données (sans l'en-tête) en octets sur 16 bits (0 si supérieure à 65535)
- En-tête suivant sur 1 octet : identifie le protocole d'un niveau supérieur qui utilise le datagramme ou la première des extensions
- Nombre de sauts : indique le nombre maximum de routeurs que le datagramme peut traverser

## Gestion des erreurs : le protocole ICMP

- Internet Control Message Protocol
- Requis dans tous les routeurs
- Encapsulé dans un message IP
- Couche réseau
- Fournir des erreurs (et non fiabiliser IP) à
  - une couche IP d'un hôte
  - un protocole de la couche transport (TCP ou UDP)
  - un protocole applicatif
- Pas de message d'erreur en cas d'une erreur sur un message ICMP (éviter une « avalanche »)
- Fournir des informations sur l'état du réseau

## (IPv4) Message ICMP IPv4

| datagramme IP           |         |         |          |                                             |   |
|-------------------------|---------|---------|----------|---------------------------------------------|---|
| en-tête IP message ICMP |         |         |          |                                             |   |
| <                       | -       |         |          |                                             | > |
| en-tête IP              | type    | code    | checksum | contenu variable suivant le type de message |   |
| 20 octets               | 1 octet | 1 octet | 2 octets |                                             |   |

- type : nature du message envoyé
  - 8/0 : demande et réponse d'information
  - 3 : inaccessibilité
  - 4 : demande de régulation
  - 5 : modification de route (non optimale)
- code : contexte d'émission du message
- Début du datagramme ayant entrainé l'erreur

### (IPv6) ICMP IPv6

- Détection des erreurs
- Tests d'accessibilité
- Configuration automatique des hôtes
- Remplace le protocole ARP
- Gestion des groupes multicast
- Message limité à 1028 octets

### (IPv6) Message ICMP IPv6



- type:
  - ullet  $\leq 127$  : message d'erreur
  - ullet > 127 : message d'information
- code : contexte d'émission du message

#### (IPv6) Gestion des erreurs

- type = 1 : Destination inaccessible, code =
  - 0 : Aucune route vers la destination
  - 1 : La communication avec la destination est administrativement interdite
  - 2 : Hors de portée de l'adresse source
  - 3 : Adresse inaccessible
  - 4 : Numéro de port inaccessible
- type = 2 : Paquet trop volumineux
- type = 3 : Temps dépassé, code =
  - 0 : Limite du nombre de sauts atteinte
  - 1 : Temps de réassemblage dépassé
- type = 4 : Erreur de paramètre, code =
  - 0 : Champ d'en-tête erroné
  - 1 : Champ d'en-tête suivant non reconnu
  - 2 : Option non reconnue

## (IPv6) Informations sur le réseau

- 128 : Demande d'écho
- 129 : Réponse d'écho
- Découverte des voisins :
  - 133 : Sollicitation du routeur
  - 134 : Annonce du routeur
  - 135 : Sollicitation d'un voisin
  - 136 : Annonce d'un voisin
  - 137 : Redirection



# Mise en correspondance des adresses

- À partir de l'adresse IP obtenir une adresse physique
  - coder l'adresse physique dans l'adresse IP (IPv6)
  - rechercher dynamiquement par diffusion
- Délivrer un message pour un hôte ne connaissant que l'adresse
   IP d'un autre hôte sur un même réseau physique
- Une solution pour la recherche dynamique :
  - les protocoles ARP et RARP (IPv4)
  - ICMP (IPv6)

#### (IPv4) Protocole ARP

- Address Resolution Protocol
- Protocole adapté à différentes technologies réseaux
- Exemple dans le cas d'Ethernet et d'adresses IP



- type de trame : 0806 indiquant le protocole ARP
- adresse Ethernet de destination :
   FF:FF:FF:FF:FF:FF pour la diffusion sur le réseau

## (IPv4) Protocole ARP pour Ethernet/IP



- type de materiel : 1 indiquant un interface Ethernet
- type de protocole : 0800 indiquant le protocole IP
- taille mat. : 6 octets des adresses Ethernet
- taille prot. : 4 octets des adresses IP
- op : 1 pour une requête ARP et 2 pour une réponse ARP

### La recherche de l'adresse physique par diffusion

- L'hôte A recherche l'adresse physique d'un hôte B sur un même réseau physique à partir de l'adresse IP de B
  - A émet une requête en diffusion contenant son adresse physique et son adresse IP ainsi que l'adresse IP de B
  - Tous les hôtes du réseau (sauf A) mettent à jour leurs câches pour A
  - B reconnait son adresse IP et renvoie la trame Ethernet vers A avec son adresse physique
  - Tous les hôtes du réseau (sauf B) mettent à jour leurs câches pour B
- Le câche des associations d'adresses physiques et IP met en œuvre des temporisateurs pour conserver la validité des données

### Autoamorçage et autoconfiguration

- RARP (Reverse Adress Resolution Protocol)
  - protocole niveau liens
  - obtenir une adresse IP à partir d'une adresse matérielle
  - obtenir une adresse IP à partir d'un serveur
  - en diffusion sur le réseau
- BOOTP (BOOTstrap Protocol)
  - protocole niveau applicatif
  - obtenir une adresse IP à partir d'une adresse matérielle
  - obtenir une adresse IP statique à partir d'un serveur
  - maintien d'un fichier de correspondance entre les adresses matérielles et les adresses IP
  - démarrage des terminaux sans mémoire locale
  - basé sur le protocole UDP en diffusion
- DHCP (Dynamic Host Configuration Protocol)

#### (IPv4) DHCP

- protocole niveau applicatif
- obtenir une adresse IP dynamique à partir d'un serveur DHCP
- obtenir des adresses de serveurs de noms de domaines
- basé sur le protocole UDP en diffusion
- adapté aux connections ponctuelles et nomades
  - allocation fixée lors de la première connexion
  - allocation à durée limitée avec bail



• 67 : port UDP du serveur





• 68 : port UDP du client





• Acceptation de la proposition par le client





- Confirmation du bail par le serveur au client
- Réservation par le serveur de l'adresse IP pour le temps du bail

## Système de noms de domaines

- Nommage plus mnémotechnique que des adresses IP
- DNS (Domain Name System)
- correspondance entre nom de machine et numéro IP
- Espace de noms hiérarchisé (arborescent)
  - racine de nom vide
  - nom de chaque nœud de 63 caractères maximum
  - majuscules et minuscules indifférenciées
- une zone est un sous-arbre
- un nom de domaine est la concaténation du nom du nœud avec celui de ses ancêtres
- pas de sémantique nécessairement géographique

## Système de noms de domaines



- l'ICANN (Internet Corporation for Assigned Names and Numbers) qui gère l'adressage et les noms de domaine
- l'AFNIC (Association Française pour le Nommage Internet) assure la gestion pour le .fr

188

#### Résolution de nom

- Résolution de nom : mise en correspondance d'un nom avec une adresse IP
- Base de donnée distribuée sur les serveurs de noms
  - un serveur primaire
  - des serveurs secondaires en cas de panne
- serveur en mode non récursif ou itératif
  - renvoie l'adresse IP si le nom appartient au sous-domaine qu'il gère
  - renvoie l'adresse IP si le nom appartient à son cache
  - sinon le serveur indique au client un autre serveur de noms.
- serveur en mode récursif ou complet
  - renvoie l'adresse IP si le nom appartient au sous-domaine qu'il gère
  - renvoie l'adresse IP si le nom appartient à son cache
  - sinon le serveur interroge d'autres serveurs de noms et retransmettra la réponse



Le navigateur sur machine *nav.b.a* cherche à se connecter au serveur web *www.c.a.* 



Le navigateur transmet à son DNS *dns.b.a* une requète de résolution du nom *www.c.a*.



Le DNS *dns.b.a* ne connaissant pas *www.c.a* transmet la requète au DNS *dns.a*.



Le DNS *dns.a* ne connaissant pas *www.c.a* transmet au DNS *dns.b.a* l'adresse du DNS *dns.c.a*.



Le DNS *dns.b.a* transmet au DNS *dns.c.a* une requète de résolution du nom *www.c.a*.



Le DNS *dns.c.a* reconnait le nom *www.c.a*, mémorise l'adresse IP et le nom dans son cache et transmet l'adresse IP de *www.c.a* au DNS *dns.b.a*.



Le DNS *dns.b.a* mémorise l'adresse IP et le nom dans son cache et transmet l'adresse IP au navigateur de la machine *nav.b.a*.



La machine nav.b.a se connecte au serveur www.c.a.



Le navigateur sur la machine *nav.b.a* cherche à se connecter au serveur web *www.c.a.* 



Le navigateur transmet à son DNS *dns.b.a* une requète de résolution du nom *www.c.a*.



Le DNS *dns.b.a* ne connaissant pas *www.c.a* transmet la requète au DNS *dns.a*.



Le DNS *dns.a* ne connaissant pas *www.c.a* transmet la requète au DNS *dns.c.a*.



Le DNS *dns.c.a* reconnait le nom *www.c.a*, mémorise l'adresse IP et le nom dans son cache et transmet l'adresse IP au DNS *dns.a.* 



Le DNS *dns.a* mémorise l'adresse IP et le nom dans son cache et transmet l'adresse IP au DNS *dns.b.a.* 



Le DNS *dns.b.a* mémorise l'adresse IP et le nom dans son cache et transmet l'adresse IP au navigateur de la machine *nav.b.a*.



La machine nav.b.a se connecte au serveur www.c.a.

### Acheminement ou routage

- Choisir la manière de transmettre les datagrammes IP à travers divers réseaux interconnectés
- Routeur : ordinateur dédié à l'acheminement connecté à au moins deux réseaux
- Router : réémettre des datagrammes reçus par une interface vers une autre interface
- Table de routages : liste de quadruplets (Destination, Passerelle, Masque, Interface) :
  - Destination : identifiant d'un réseau (ou adresse IP d'un hôte)
  - Passerelle : adresse IP du prochain routeur
  - Masque : masque associé au réseau destination
  - Interface : interface (physique) de sortie
  - + un quadruplet par défaut

### Routage par sauts successifs > (next-hop routing)

- Conservation des données relatives aux réseaux :
  - Peu volumineux
  - Très efficace
- Une source de difficultés :
  - Ensemble d'un traffic pour une même direction emprunte (sauf incident) le même chemin
  - Seul le dernier routeur a connaissance de l'existence effective de l'hôte destination
  - Existence effectivement d'un chemin retour pour des communications bidirectionnelles
- Pas de modification de l'entête du datagramme (sauf pour le TTL et le checksum)

#### La remise d'un datagramme

- remise directe : d'un interface du réseau à l'interface final destinataire d'un même réseau
- remise indirecte : via (au moins) un routeur
- remise directe en Ethernet :
  - Mettre en correspondance l'adresse IP avec l'adresse physique
  - Encapsuler le datagramme dans une trame Ethernet
  - Emettre la trame sur le réseau
- Détection de la présence de deux hôtes sur un même réseau par comparaison des adresses IP (et des masques d'identifiants de réseau)
- Pour deux hôtes sur deux réseaux distincts : passage via un routeur

## Établissement d'une table de routage

- Statique
  - Configuration par défaut
  - Grâce à une redirection ICMP
- Dynamique
  - Protocoles entre routeurs
  - IGP (Interior Gateway Protocol) à l'intérieur des systèmes autonomes
    - RIP
    - SPF (Shortest Path First) : par état de liens
  - BGP (Border Gate Protocol) entre systèmes autonomes

#### **RIP**

- Routing Information Protocol
- Protocole à vecteur de distance (des distances entre routeurs et destinations)
- Métrique : nombre de sauts (entre 1 et 15, 16 pour l'infini)
- Encapsulation UDP
- À l'initialisation : requète en broadcast via tous les interfaces de l'hôte demandant les tables de routage des voisins
- Annonces régulières et pour une modification d'une métrique
- Une annonce :
  - adresse de destination
  - nouvelle métrique
  - prochain routeur
  - des informations de temporisation

### Bellman-Ford de plus court chemin

- Entrée inexistante dans la table et métrique finie alors entrée nouvelle :
  - adresse de destination
  - adresse du prochain routeur
  - métrique
  - temporisation armée
- Entrée présente mais ancienne métrique supérieure alors modification :
  - nouvelle métrique
  - adresse du nouveau prochain routeur
  - réinitialisation de la temporisation
- Entrée présente et émetteur de la réponse identique au prochain routeur alors modification :
  - nouvelle métrique
  - réinitialisation de la temporisation



### Exemple avec RIP pour le routeur R1



| destination | passerelle | métrique |  |
|-------------|------------|----------|--|
| А           | direct     | 1        |  |
| В           | direct     | 1        |  |
| C           | R2         | 2        |  |
| D           | R2         | 3        |  |
| E           | R2         | 4        |  |

## Exemple avec RIP pour le routeur R1

Annonces de R4

| destination | passerelle | métrique |
|-------------|------------|----------|
| С           | R3         | 2        |
| D           | direct     | 1        |
| E           | direct     | 1        |
| F           | R5         | 2        |

Nouvelle table pour R1

| destination | passerelle | métrique |
|-------------|------------|----------|
| А           | direct     | 1        |
| В           | direct     | 1        |
| C           | R2         | 2        |
| D           | R4         | 2        |
| E           | R4         | 2        |
| F           | R4         | 3        |

## Les protocoles UDP et TCP

- Couche transport
- Utilisent la couche réseau IP
- UDP (User Datagram Protocol): transport non fiable
- TCP (Transmission Control Protocol): transport fiable

#### Protocole UDP

- UDP (User Datagram Protocol)
- Couche transport
- Utilise la couche réseau IP
- Transport non fiable
  - Pas d'accusé de réception
  - Pas de gestion des pertes, duplications, inversions, retards
  - Pas de contrôle de flux
  - Pas de contrôle d'erreurs obligatoire
- Introduction des « ports » : chaque application utilisant UDP le fait via un port qui identifie l'application

### Datagramme UDP

|   | port UDP source | port UDP destination |   |
|---|-----------------|----------------------|---|
|   | longueur        | checksum             | ı |
| 1 | donnée          | rs                   | > |

- port UDP source sur 2 octets : identifie l'application source
- port UDP destination sur 2 octets : identifie l'application destinataire
- longueur sur 2 octets : taille de l'en-tête et des données
- checksum sur 2 octets : contrôle d'erreur (0 si non calculé)

### Pseudo-entête et données pour le contrôle d'erreurs



- Inutile sur un réseau très fiable
- Rajout des adresses IP de la source et de la destination en une pseudo en-tête (dialogue avec la couche IP)
- 1 octet de bourrage éventuel pour atteindre un alignement sur 16 bits

#### Protocole TCP

- TCP (Transmission Control Protocol)
- Couche transport
- Utilise la couche réseau IP
- Transport fiable
- Données non interprétées par TCP
- Service de flux d'octets « orienté connexion » :
  - Relation client/serveur
  - Établissement d'une connexion avant tout dialogue
  - Connexion bidirectionnelle simultanée (full duplex)
- Les 3 missions de TCP :
  - Établir une connexion
  - Transférer les données
  - Libérer une connexion

### Paquet TCP



## En-tête paquet TCP

- port TCP source sur 2 octets : identifie l'application source
- port TCP destination sur 2 octets : identifie l'application destinataire
- numéro de séquence : position dans le flux d'octets du premier octet de données du paquet
- numéro d'accusé de réception : position dans le flux d'octets du premier octet de données du prochain paquet attendu

## En-tête paquet TCP

- longueur d'en-tête sur 16 bits en multiples de 4 octets
- réservé : 6 bits réservés à un usage ultérieur
- bits de code :
  - URG : le pointeur d'urgence est valide
  - ACK : le numéro d'accusé de réception est valide
  - PSH : le paquet requiert un envoie immédiat
  - RST : réinitialiser la connexion
  - SYN : synchroniser les numéros de séquence pour initialiser la connexion
  - FIN : l'émetteur a atteint la fin de son flot de données

### En-tête paquet TCP

- taille de fenêtre : nombre d'octets que le récepteur est prêt à accepter
- checksum sur 2 octets : contrôle d'erreurs obligatoire avec pseudo en-tête
- pointeur d'urgence : décalage ajouté au numéro de séquence pour indiquer le dernier octet de données urgentes
- options
- bourrage : pour aligner sur 32 bits









188











# Fiabilité par accusé de réception



# Fiabilité par accusé de réception



188

## Fiabilité par accusé de réception



- Temporisateur pour réémettre les paquets
  - perdus
  - dont l'acquittement n'arrive pas (ou après expiration du temporisateur)













#### Fenêtre glissante

