COT 6405 ANLYSIS OF ALGORITHMS

NP - Completeness

Computer & Electrical Engineering and Computer Science Dept. Florida Atlantic University

Spring 2017

Outline

- Polynomial time
- Polynomial-time verification
- NP-completeness and reducibility
- NP-completeness proofs
- NP-complete problems

Reference: CLRS ch 34

Overview

- Polynomial-time algorithms: for input size n, their worst-case RT = $O(n^k)$, for some const k
- Some problems can be solved with larger complexity ⇒superpolynomial time
- Others cannot be solved no matter how much time is allowed
 - Turing's Halting problem
- Problems solvable in:
 - polynomial time, are tractable or easy
 - superpolynomial time, are intractable or hard

NP-Complete problems

NP-Complete problems

- Nondeterministic polynomial time (NP) complete problems
- Status is unknown:
 - no polynomial-time algorithm discovered for any NP-complete problem
 - no formal proof that such an algorithm is impossible
- 3 classes of problems: P, NP, NPC
 - P is polynomial time
 - NP is nondeterministic polynomial
 - NPC is NP-Complete

NP class

- problems "verifiable" in polynomial time
 - if we are given a "certificate" of a solution, we can verify that the certificate is correct in time polynomial in the size of the input problem
 - example: Hamiltonian-Cycle problem
- Any problem in P is also in NP
 - for now it is believed that P ⊆ NP
 - open question: P ⊂ NP ?
 - open question since 1971: P ≠ NP ?

NPC class

- a problem is NPC if:
 - it is in NP
 - it is as "hard" as any other problem in NP
- if you prove a problem is NPC, then
 - you prove its intractability
 - approaches:
 - design approximation algorithms
 - solve a tractable, special case
- how most theoretical computer scientists view relationship among P,NP,NPC

NP

Optimization problems vs. decision problems

- Optimization problems
 - solutions have associated a value
 - e.g. finding shortest-path between u and v in an undirected graph G
- Decision problems
 - the answer is simply YES or NO (or "1" or "0")
 - we usually can cast an optimization problem to a related decision problem by imposing a bound on the value to be optimized
 - e.g. given a directed graph G, vertices u and v, and an integer k, does it exist a path from u to v consisting of at most k edges?
- Theory of NPC works on decision problems
- If a decision problem is hard, the corresponding optimization problem is hard as well

A formal language framework

- alphabet $\Sigma = \{0,1\}$
- set $\Sigma^* = \{\epsilon, 0, 1, 00, 11, 01, 10, 000, ...\}$ is the set of all binary strings
- a language L is a subset of Σ^*
- a decision problem Q can be represented as a language:
 L = {x∈ Σ*: Q(x) = 1}
- Example: decision problem PATH has the corresponding language:
 - PATH = $\{ \langle G, u, v, k \rangle : G = (V, E) \text{ is an undirected graph,}$ $u, v \in V, k \geq 0 \text{ is an integer, and there is a path}$ from u to v in G consisting of at most k edges $\}$

NP-completeness and reducibility

Reducibility definition:

 L_1 is **polynomial-time reducible** to L_2 , written $L_1 \le_p L_2$ if there exists a polynomial-time computable function $f: \{0,1\}^* \to \{0,1\}^*$ s.t. for all $x \in \{0,1\}^*$, $x \in L_1$ iff $f(x) \in L_2$.

- f is called the reduction function
- L₁ is not more than a polynomial factor harder than L₂

NP-completeness and reducibility

• Definition:

A language $L \subseteq \{0,1\}^*$ is **NP-complete** if

- 1. L ∈ NP
- 2. NP-hard: L' ≤_p L for every L'∈ NP
- Theorem:

If an NP-Complete language L is polynomial-time solvable, then P = NP.

Proof:

 $L \in NPC$, then for any $L' \in NP$, $L' \leq_p L \Rightarrow L' \in P$ $\Rightarrow NP \subseteq P \Rightarrow NP = P$

NP-completeness and reducibility

• Theorem:

Given a language L, if $L' \leq_p L$ for some $L' \in NP$ -complete, then L is NP-hard.

Proof:

$$\begin{array}{c} L' \in NP\text{-complete} \Rightarrow L'' \leq_p L' \text{ for any } L'' \in NP \\ L' \leq_p L \end{array} \right\} \Rightarrow$$

 \Rightarrow L" \leq_p L for any L" \in NP \Rightarrow L is NP-hard

A language $L \subseteq \{0,1\}^*$ is **NP-complete** if

- 1. L ∈ NP
- 2. NP-hard: L' ≤_p L for some L'∈ NP-Complete

NP-completeness proof

Method to prove that a language L is NP-complete:

- 1. prove $L \in NP$
- 2. select a known NP-complete language L'
- 3. describe an algorithm (called *reduction algorithm*) that computes a function f mapping every instance x of L' to an instance f(x) of L
- 4. prove that function f satisfies:

$$x \in L'$$
 iff $f(x) \in L$ for all $x \in \Sigma^*$

prove that the reduction algorithm runs in polynomial time

NP-completeness

- class P was introduced in 1964 by Cobham and independently in 1965 by Edmonds, who also:
 - introduced the class NP
 - conjectured that P ≠ NP
- 1971: notion of NP-completeness was proposed by Cook
 - he also showed that SAT and 3-SAT are NP-complete
- 1972: Karp introduced the reduction methodology
 - showed many problems are NP-complete: clique, vertex-cover (VC), hamiltonian-cycle (HC)
- ... since then thousands of problems have been proven to be NP-complete

NP-complete problems

Circuit-Satisfiability (CIRCUIT-SAT)

CIRCUIT-SAT: given a combinatorial-circuit composed of AND, OR, and NOT gates, is it satisfiable?

- a circuit is satisfiable if there is an assignment for which the output is 1

circuit is satisfiable

circuit is unsatisfiable

CIRCUIT-SAT

- for n inputs, checking all possible inputs take $\Omega(2^n)$
 - superpolynomial
- Theorem: The circuit-satisfiability problem is NP-complete.

SAT (boolean formula satisfiability)

A **boolean formula** ϕ is composed of:

- n boolean variables x₁, x₂, ..., x_n
- m boolean connectives: ∧ (AND), ∨ (OR), ¬(NOT),
 → (implication), ↔ (if and only if)
- parentheses

A **satisfying assignment** is a truth assignment that causes it to evaluate to 1.

Example: $\phi = (x_1 \land x_2) \lor (\neg x_1 \land x_3)$ satisfying assignment: $\langle x_1 = 0, x_2 = 0, x_3 = 1 \rangle$

SAT problem: given a boolean formula, is it satisfiable?

SAT

Solution in superpolynomial time:

- check every assignment for a satisfying assignment
- 2ⁿ possible assignments \Rightarrow RT = $\Omega(2^n)$

Theorem: SAT is NP-complete.

proof:

- SAT ∈ NP
- a certificate with a satisfying assignment can be verified in polynomial time
- verifying algorithm:
 - replace each variable with the corresponding value
 - evaluate expression
 - if it evaluates to 1, then the formula is satisfiable

SAT

- SAT is NP-hard
- show that CIRCUIT-SAT ≤_p SAT
- design a reduction algorithm that reduces any instance of circuit SAT to an instance of formula SAT in polynomial time

Reduction algorithm:

- assign a variable to each wire
- write a formula for each gate using the incident wires
- write the formula as a conjunction of clauses, describing the operation of each gate
- this alg is polynomial

Reduction algorithm, example

$$\phi = x_{10} \wedge (x_4 \leftrightarrow \neg x_3)$$

$$\wedge (x_5 \leftrightarrow (x_1 \lor x_2))$$

$$\wedge (x_6 \leftrightarrow \neg x_4)$$

$$\wedge (x_7 \leftrightarrow (x_1 \land x_2 \land x_4))$$

$$\wedge (x_8 \leftrightarrow (x_5 \lor x_6))$$

$$\wedge (x_9 \leftrightarrow (x_6 \lor x_7))$$

$$\wedge (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9)).$$

SAT

- circuit C is satisfiable iff φ is satisfiable
- if C is sat, then each wire has a well defined value and the output of the circuit is 1
 - assign similar values to the variables in
 - each clause of φ evaluates to 1 ⇒ conjunction of all evaluate to 1
- similarly, if φ has a satisfying assignment, then the corresponding circuit C evaluates to 1

3-CNF-SAT

- *literal* variable or its negation
- conjunctive normal form (CNF) a boolean formula expressed as an AND of clauses, and each clause is the OR of one or more literals
- 3-CNF if each clause has exactly three distinct literals

exp:
$$(x_1 \lor \neg x_1 \lor \neg x_2) \land (x_3 \lor x_2 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

3-CNF-SAT problem: given a boolean formula ϕ in 3-CNF, is it satisfiable?

3-CNF-SAT

Theorem: 3-CNF-SAT is NP-complete.

Proof:

- 3-CNF-SAT ∈ NP
- similar to SAT
- 3-CNF-SAT is NP-hard
- show that SAT ≤_p 3-CNF-SAT
- reduction algorithm has 3 steps:

Step 1:

- construct a "binary" parse tree for the input formula ϕ , where literals are leaves and connectives are internal nodes
- assign variables y to output of each internal node
- rewrite φ as a conjunction of clauses describing the operation of each node

Example, step 1

Original formula:

$$\phi = ((x_1 \rightarrow x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$$

$$\phi' = y_1 \wedge (y_1 \leftrightarrow (y_2 \wedge \neg x_2))$$

$$\wedge (y_2 \leftrightarrow (y_3 \vee y_4))$$

$$\wedge (y_3 \leftrightarrow (x_1 \rightarrow x_2))$$

$$\wedge (y_4 \leftrightarrow \neg y_5)$$

$$\wedge (y_5 \leftrightarrow (y_6 \vee x_4))$$

$$\wedge (y_6 \leftrightarrow (\neg x_1 \leftrightarrow x_3))$$

The requirement is not necessarily met:

each clause must be the OR of 3 literals

3-CNF-SAT

Step 2:

- convert each clause φ'_i into CNF
- construct the truth table for φ'_i
- build the formula for $\neg \phi'_i$ in DNF (an OR of ANDs) by taking the table entries that evaluate to 0
- use DeMorgan's laws to convert to the CNF φ"

$$\neg$$
(a \land b) = \neg a $\lor \neg$ b

$$\neg$$
(a \lor b) = \neg a $\land \neg$ b

Example, step 2

$$\phi'_1 = y_1 \leftrightarrow (y_2 \land \neg x_2)$$

<i>y</i> ₁	<i>y</i> ₂	x_2	$(y_1 \leftrightarrow (y_2 \land \neg x_2))$
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1 1 1 1 1 1
0	1	0	0
0	0	1	1
0	0	0	1

$$\neg \phi'_1 = (y_1 \land y_2 \land x_2) \lor (y_1 \land \neg y_2 \land x_2) \lor (y_1 \land \neg y_2 \land \neg x_2) \lor (\neg y_1 \land y_2 \land \neg x_2)$$

Applying the DeMorgan's laws:

$$\phi"_1 = (\neg y_1 \lor \neg y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor x_2)$$
$$\land (y_1 \lor \neg y_2 \lor x_2)$$

Requirement not necessarily met:

each clause must have exactly 3 literals

3-CNF-SAT

Step 3: for each clause C_i of ϕ ":

- if C_i has 3 distinct literals, then include C_i as a clause of φ"
- if C_i has 2 distinct literals, e.g. $C_i = (I_1 \lor I_2)$ then include $(I_1 \lor I_2 \lor p) \land (I_1 \lor I_2 \lor \neg p)$ as clauses of ϕ " regardless of the value of p, one clause becomes 1 and the other $(I_1 \lor I_2)$
- if C_i has 1 distinct literal, e.g. C_i = t, then include $(t \lor p \lor q) \land (t \lor p \lor \neg q) \land (t \lor \neg p \lor q) \land (t \lor \neg p \lor \neg q)$ as clauses of ϕ " regardless of the values of p and q, one clause becomes t and all other 3 become 1.

3-CNF-SAT

- 3-CNF formula ϕ " is satisfiable iff ϕ is satisfiable
- reduction algorithm is polynomial:
 - constructing φ' from φ introduces at most 1 variable and 1 clause per connective in φ
 - constructing φ" from φ' introduces at most 8 clauses in φ" from each clause in φ'
 - constructing $\phi"$ from $\phi"$ introduces at most 4 clauses into $\phi"$ for each clause in $\phi"$
- thus the size of the resulting formula ϕ " is polynomial in terms of the length of the original formula
- each step construction is accomplished in polynomial time

Other NP-complete problems

- The clique problem
- The vertex cover problem
- The traveling salesman problem

Graph coloring problem

History

- map coloring: color a map with minimum number of colors, s.t. neighboring regions use different colors
 - e.g. color the states of the US map or the countries on the globe
- in the 19th century, Francis Guthrie noticed that you could color a map of the counties of England with only 4 colors, and wondered whether the same was true for any map
- he asked his brother who passed the question to his mathematics teacher, and thus a famous mathematical problem was born: the Four-Color Conjecture

Map coloring, cont.

- after more than 100 years, the conjecture was finally proved in 1976 by Appel and Haken
- the proof was an induction on the number of regions, but the induction step involved nearly 2000 cases, and the verification had to be carried on by a computer
- finding a reasonably short, human-readable proof still remains open

Graph coloring problem

- polynomial algorithm to find whether a graph G is 2-colorable
- 3-coloring is NP-complete
- for k > 3, k-coloring is NP-complete

Reference on the graph coloring problem:

Kleinberg & Tardos ch 8.7

Graph Coloring Problem

• Optimization problem: Given an undirected graph G(V, E), we seek to assign a color to each vertex such that for any edge (u, v) ∈ E, u and v are assigned different colors. The objective is to color G using a *minimum* number of colors.

• If G has a k-coloring, then we say that G is a k-colorable graph.

3-colorable graph

 <u>Decision problem</u>: Given an undirected graph G and a value k, does G have a k-coloring?

2-Coloring problem

A graph G is 2-colorable iff G is bipartite

- -V is partitioned into two sets X and Y
- any edge (u,v) has one endpoint in X and the other in Y

• A graph G which is 2-colorable cannot contain an odd cycle

Breadth-First-Search (BFS)

CLRS page 595

 Given a graph G and a source vertex s ∈ V, discover all vertices reachable from s.

For each vertex v, keep the following fields:

- v.d distance (number of edges) on the shortest-path from s to v
- $v.\pi$ predecessor of v on the shortest-path from s to v
- v.color one of the following:
 - ❖ WHITE undiscovered
 - GRAY discovered but not finished
 - BLACK finished
 - Note that this "color" is not related to the 2-coloring problem

 Rule: discover all the vertices at distance k before discovering vertices at distance k+1

```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
         u.color = WHITE
   u.d = \infty
   u.\pi = NIL
 5 \quad s.color = GRAY
 6 \quad s.d = 0
 7 s.\pi = NIL
 8 \quad Q = \emptyset
                                          RT = \Theta(|V| + |E|)
   ENQUEUE(Q, s)
   while Q \neq \emptyset
10
       u = \text{DEQUEUE}(Q)
11
        for each v \in G.Adj[u]
12
             if v.color == WHITE
13
14
                 v.color = GRAY
15
                 v.d = u.d + 1
16
                 \nu.\pi = u
                 ENQUEUE(Q, \nu)
17
18
       u.color = BLACK
```


$$Q = s$$

$$Q = s r w$$

$$Q = s / w v$$

$$Q = \cancel{s} / \cancel{w} \lor t \lor x$$

$$Q = s / w / v / t \times u$$

$$Q = s / w / v / t / x / u y$$

BFS – computes the shortest-paths from s to all vertices v reachable from s

2-coloring algorithm

- start from a vertex s
- run BFS
- color s red, all nodes at distance 1 blue, all nodes at distance 2 red, ...so on
 - if the distance is an odd number: color = blue
 - if the distance is an even number: color = red
- scan all edges and check if both ends have received different colors
 - YES ⇒ graph is 2-colorable
 - NO ⇒ graph is NOT 2-colorable

$$RT = \Theta(|V| + |E|)$$

2-coloring algorithm, example

• The graph is NOT 2-colorable