Wahrscheiulichkeitstheorie

Ubung 3

```
Leunox Heimauu: 3776050
```

Nikita Emauuel John Feher: 3793479

Nataliia Kotsiuba: 3738 575

Aufgabez

(a)
$$con(X',2) = E(X,2) - E(X)E(2)$$

$$\infty (X'A) := E((X - E(X))(A - E(A))$$

$$\Rightarrow$$
 E(x·E(x))= E(x) E(x)

$$\rightarrow E(x, E(x)) = E(x) \cdot E(x)$$

$$= (x - E(x))(A - E(A)) = E(XA) - E(X \cdot E(A)) - E(E(X) \cdot A) + E(E(X) \cdot E(A)) =$$

$$\Rightarrow E(E(x) \cdot E(x)) =$$

$$= E(X3) - E(X)E(3) - E(X)E(3) + E(X)E(3) =$$

$$= E(XX) - E(X)E(X)$$

$$= E(X)E(A)$$

$$\bigcirc \quad \cos(\chi,\chi) = \text{Var}(\chi)$$

$$\omega(X,X) = E((X-E(X))(X-E(X))$$

$$D_{\alpha}(X-E(X))(X-E(X))=(X-E(X))^{2}$$
 and

and
$$Var(X) = (X - E(X))^2$$

$$\Rightarrow$$
 $\omega (X,X) = Uar(X)$

ων
$$(aX + b, cY + cL) = E(((aX + b) - E(aX + b))((cY + d) - E(cY + cL)))$$

Da
$$E(\alpha X + b) = \alpha E(x) + b$$
 and $E(cY + d) = cE(Y) + d$

$$\infty (\alpha X + b, c Y + d) = E((\alpha X + b - (\alpha E(X) + b))(c Y + d - (c E(Y) + d))) =$$

$$= E((\alpha x + b - \alpha E(x) - b)((3 + d - cE(3) - d)) =$$

$$= E((\alpha X - \alpha E(X))(cY - cE(Y))) =$$

$$= E (ac(X-E(X))(A-E(A))) = acE((X-E(X))(A-E(A)))$$

(d) Sind X, y mabbaugige ZV, so gilt cov (X, y) =0 Falls X und Y mabhangig sind, so gilt E(XA) = E(X)E(A)Wirsetzeu das indie Def. der Kovariauzein: $\infty (X'A) = E(XA) - E(X)E(A) = E(X)E(A) - E(X)E(A) = 0$ Aufgabe 2 max(a,b) = K, wo a,b Ergebuisse vou deu zwei Würfelu 6×6=36 - Mögliche Kourbinationen aus 2 Würfelwürfen #Anzall der guustigen Fallen = 2K-1 L, Szeuario #2: b=k, a < K Lo Szevario #1: a=K, b≤K b = 1, ... K Q = 1, ... K Lo Szenario #3: a=b=K $P(X=K) = \frac{2k-1}{36}$ $E(X) = \sum_{k=1}^{8} k \cdot P(X=K) = 1 \cdot \frac{1}{36} + 2 \cdot \frac{3}{36} + 3 \cdot \frac{5}{36} + 4 \cdot \frac{7}{36} + 5 \cdot \frac{9}{36} + 6 \cdot \frac{11}{36} =$ X+3=Z,+Z2 => aus deu Hinweis (P) Lineari tat Augenzahl des ersten und zweiten Wurfs Esgilt $X+Y=Z_1+Z_2$. Daraus folgt $E(X+Y)=E(Z_1+Z_2)=E(Z_1)+E(Z_1)$ Da Zi und Zz unabhängig und gleich verteilt sind, gilt: $E(Z_1) = E(Z_2)$ · Erwartungswert. vou Zz. {1,2.3,4,5,6} $E(Z_1) = \frac{1}{6}(1+2+3+4+5+6) = \frac{21}{6} = 3.5 = E(Z_2)$ => $E(z_1) + E(z_2) = 7 = E(X) + E(Y) = E(X+Y)$ Im ersteu Teil a) wurde $E(X) = \frac{161}{36}$ berechnet E(X) + E(Y) = 7

$$= > E(Y) = 7 - E(X) = 7 - \frac{161}{36} = \frac{91}{36}$$

(C)

$$E(3X^2 - 3)$$

 $E(X^2) = \sum_{K=1}^{6} K^2 \cdot P(X=K) = \frac{1}{2}$

$$= 1^{2} \frac{1}{36} + 2^{2} \frac{3}{36} + 3^{2} \frac{5}{36} + 4^{2} \frac{7}{36} + 5^{2} \frac{9}{36} + 6^{2} \frac{11}{36} = \frac{791}{36}$$

$$3E(X_s - \lambda) = 3(E(X_s) - E(\lambda)) = \frac{18}{1141}$$

$$E(X+Y) = E(X) + E(Y) = \frac{161}{36} + \frac{91}{36} = \frac{252}{36} = 7$$

E(X 7)

$$= \sum_{x \in X} E(XX) = con(X'X) + E(X)E(X)$$

$$con(X'X) = E(X'X) - E(X)E(X)$$

Aufgabe 3

@ Berechneu der Raudwahr-keiteu:

X:

•
$$P(X=1) = P(w=1) + P(w=3) + P(w=5) = \frac{1}{8} + \frac{1}{4} + \frac{1}{8} = \frac{1}{2}$$

•
$$P(X=2) = P(w=2) + P(w=4) + P(w=6) = \frac{1}{8} + \frac{1}{8} + \frac{1}{4} = \frac{1}{2}$$

9:

•
$$P(Y=1) = P(w=1) + P(w=2) = \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$$

•
$$P(y=2) = P(w=3) + P(w=6) = \frac{2}{2}$$

•
$$P(y=3) = P(w=4) + P(w=5) = \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$$

2:

•
$$P(Z=-3) = P(w=6) = \frac{1}{4}$$

•
$$P(Z=-2) = P(\omega=5) = \frac{1}{8}$$

•
$$P(Z=1) = P(\omega=2) = \frac{1}{8}$$

•
$$P(z=2) = P(w=4) = \frac{1}{8}$$

•
$$P(Z=3) = P(\omega=3) = \frac{2}{4}$$

•
$$P(z=-1) = P(w=1) = \frac{2}{8}$$

3 X	1 3	5 7	
2	सीम	1/4	,
. 3	. 3 .	1/8.	

₹ X	. 2	2	
-3	0	1/4	
-2	1 8	O	
1	0	O 4100 7100	
2	0		·
3	1 4	0	
-1	1/8	0	

5 >		•	٠
-3	. 0	414	٠
$\frac{-3}{-2}$	0	0	
1	1 8	0	
2	0	0	•
3	0	0 217	
-1	1 8	0	

Twei Zufallsvariablen stud mabhängig, wenn für alle möglichen Werte x und y gibt:

$$P(X=x \text{ und } Y=y) = P(X=x) \cdot P(Y=y)$$

für P(X und Y)

$$P(X=1,Y=1) = \frac{8}{1} = P(X=1) \cdot P(Y=1) = \frac{1}{2} \cdot \frac{1}{4}$$

$$P(x=1,y=2) = \frac{1}{4} = P(x=1) - P(y=2) = \frac{1}{2} \cdot \frac{1}{2} \lor$$

$$P(X=1, Y=3) = \frac{1}{2} = P(X=1) \cdot P(Y=3) = \frac{1}{2} \cdot \frac{1}{2} \checkmark$$

Nach deu Berechnungen sind die anderen Zufallsvariablen wicht makhängig!

$$E(X) = \sum_{w \neq 0} X(w) P(w) = 1 \cdot \frac{1}{8} + 2 \cdot \frac{1}{8} + 1 \cdot \frac{1}{4} + 2 \cdot \frac{1}{8} + 1 \cdot \frac{1}{8} + 2 \cdot \frac{1}{8} = 1.5$$

$$E(y) = 1 \cdot \frac{1}{8} + 1 \cdot \frac{1}{8} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + 3 \cdot \frac{1}{8} + 2 \cdot \frac{1}{4} = 2$$

$$E(Z) = -1 \cdot \frac{1}{8} + 1 \cdot \frac{1}{8} + 3 \cdot \frac{1}{4} + 2 \cdot \frac{1}{8} + (-2) \cdot \frac{1}{8} + (-3) \cdot \frac{1}{4} = 0$$

$$E(XY) = \sum_{w \in \Omega} \chi(w) Y(w) P(w) = 1 \cdot 1 \cdot \frac{1}{8} + 2 \cdot 1 \cdot \frac{1}{8} + 1 \cdot 2 \cdot \frac{1}{4} + 2 \cdot 3 \cdot \frac{1}{8} + 1 \cdot 3 \cdot \frac{1}{8} + 2 \cdot 2 \cdot \frac{1}{4} = 2.75$$

$$E(XZ) = 1 \cdot (-1) \cdot \frac{1}{8} + 2 \cdot 1 \cdot \frac{1}{8} + 1 \cdot 3 \cdot \frac{1}{4} + 2 \cdot 2 \cdot \frac{1}{8} + 1 \cdot (-2) \cdot \frac{1}{8} + 2 \cdot (-3) \cdot \frac{1}{4} = -\frac{3}{8}$$

$$E(YZ) = 1 \cdot (-1) \cdot \frac{1}{8} + 1 \cdot 1 \cdot \frac{1}{8} + 2 \cdot 3 \cdot \frac{1}{4} + 3 \cdot 2 \cdot \frac{1}{8} + 3 \cdot (-2) \cdot \frac{1}{8} + 2 \cdot (-3) \cdot \frac{1}{4} = 0$$

Aufgabe 4:

2.2 φ(X) und ψ(y) sind mabhaugig

dabei ist
$$\phi^{-1}(A) = \{x \in R : \phi(x) \in A\}$$
 Dies gilt analog. Für $\psi(y)$

2. Die Unabhäupigkeit von X und y lässt sich wie folgt schreiben:

$$P(X \in \Phi^{-1}(A) \text{ and } Y \in \Psi^{-1}(B)) = P(X \in \Phi^{-1}(A)) \cdot P(Y \in \Psi^{-1}(B))$$

uach der in 1. Jest gestellten Aquivalenz.

3. Die Wahrscheinlichkeitswerte von $P(X \in \Phi'(A))$ und $P(Y \in \psi''(B))$ entsprechen per Desinition deuen von $P(\varphi(X) \in A)$ und $P(\psi(Y) \in B)$

Setzeu wir olies in olie Gleichung der Unabhäupipkeit ein erhalten wir:

$$P(\phi(x) \in A \text{ und } \psi(J) \in B) = P(\phi(x) \in A) \cdot P(\psi(J) \in B)$$

Also sind $\phi(x)$ und $\psi(y)$ unabhäugig.

Index der Kommentare

- 4.1 bitte explizit Gegenbeispiel angeben
- 4.2 X und Y unabhängig -> $E(X^*Y)=E(X)^*E(Y)$