Laboratorium Technologii Sieciowych

Temat:

Badanie topologi grafów sieciowych uwzględniając przypływ pakietów.

1.Wstęp

1.1 Cele pracy

Celem pracy jest badanie topologi sieci pod wpływem zadanych macierzy natężeń. W pierwszej kolejności przyjrzyjmy się samej topologi. Następnie będziemy badać średnie opóźnienie pakietu. Na koniec zajmiemy się określeniem niezawodności sieci pod wpływem zadanych parametrów.

2. Propozycja topologi sieci

Określmy funkcje przepustowości 'c' jako maksymalna ilość bitów, którą można wprowadzić do kanału komunikacyjnego w ciągu sekundy.

Określmy funkcje przepływu 'a' jako faktyczną liczbę pakietów, które wprowadza się do węzła komunikacyjnego.

2.1 Propozycja

Mamy Graf G=<V,E>, gdzie |V| = 10, |E| < 20.

Dla zadanej macierzy natężeń N:

Topologia grafu wygląda następująco:

```
 G = ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], \\ [\{1,2\}, \{2,3\}, \{3,4\}, \{4,5\}, \{5,6\}, \{6,7\}, \{7,8\}, \{8,9\}, \{9,10\}, \{1,10\}, \{1,3\}, \{3,5\}, \{5,7\}, \{2,4\}, \{4,6\}, \{6,8\}, \{1,8\}])
```

Dla poszczególnych kanałów komunikacyjnych wartości prezentują się następująco:

```
1 - 2 Przeplyw: 12000 \text{ c(v)} = 170000 \text{ a(v)} = 8
2 - 3 Przeplyw: 12000 \text{ c(v)} = 170000 \text{ a(v)} = 8
3 - 4 Przeplyw: 12000 \text{ c(v)} = 170000 \text{ a(v)} = 8
4 - 5 Przeplyw: 19500 \text{ c(v)} = 170000 \text{ a(v)} = 13
5 - 6 Przeplyw: 7500 \text{ c(v)} = 170000 \text{ a(v)} = 5
6 - 7 Przeplyw: 16500 \text{ c(v)} = 170000 \text{ a(v)} = 11
7 - 8 Przeplyw: 4500 \text{ c(v)} = 170000 \text{ a(v)} = 3
8 - 9 Przeplyw: 0 c(v) = 170000 a(v) = 0
9 - 10 Przeplyw: 1500 \text{ c(v)} = 170000 \text{ a(v)} = 1
1 - 10 Przeplyw: 1500 \text{ c(v)} = 190000 \text{ a(v)} = 1
1 - 3 Przeplyw: 12000 \text{ c(v)} = 117000 \text{ a(v)} = 8
3 - 5 Przeplyw: 22500 \text{ c(v)} = 117000 \text{ a(v)} = 15
5 - 7 Przeplyw: 19500 \text{ c(v)} = 117000 \text{ a(v)} = 13
2 - 4 Przeplyw: 24000 \text{ c(v)} = 170000 \text{ a(v)} = 16
4 - 6 Przeplyw: 24000 \text{ c(v)} = 170000 \text{ a(v)} = 16
6 - 8 Przeplyw: 6000 \text{ c(v)} = 170000 \text{ a(v)} = 4
1 - 8 Przeplyw: 10500 \text{ c(v)} = 170000 \text{ a(v)} = 7
```

2.2 Testowanie propozycji

Tutaj skupimy się na średnim opóźnieniu pakietu danym wzorem

$$T = \frac{1}{G} * \sum_{e} \left(\frac{a(e)}{\frac{c(e)}{m} - a(e)} \right)$$

Gdzie: 'G' – suma wszystkich elementów macierzy natężeń, 'm' - średnia wielkość pakietu w bitach.

Dla macierzy natężeń N:

Output: Srednie opoznienie pakietu : 0.017288494854991232

Dla macierzy natężeń N:

Output: Srednie opoznienie pakietu : 0.021216267048914612

2.3 Zastosowanie metody Monte Carlo do badanie niezawodnośći sieci.

Niech miarą niezawodności sieci będzie prawdopodobieństwo tego, że w dowolnym nierozspójniona sieć zachowuje T < T_max. Prawdopodobieństwo nieuszkodzenia każdej krawędzi podawane jest jako input. Tak samo jak maksymalna wartość opóźnienia.

Macierz N powinna się znajdować w pliku o nazwie 'Dane.txt' zapisanym w katalogu projektu programu.

Macierz N:

Input: 0.9 0.017

Output: Badanie niezawodności sieci ...

Ilosc sukcesow: 87
Ilosc rozspojnien: 14

Ilosc przekroczonych opoznien: 899
Niezawodnosc sieci wynosi: 8.7 %

Dla zmienionych danych:

Macierz N:

Input: 0.9 0.017

Output: Badanie niezawodności sieci ...

Ilosc sukcesow: 748
Ilosc rozspojnien: 13

Ilosc przekroczonych opoznien: 239
Niezawodnosc sieci wynosi: 74.8 %

Wnioski: Wraz ze wzrostem ilości pakietów przesyłanych po naszej sieci rośnie średnie opóźnienie pakietu.