Linear Optimization Problem Set

Alex Weinberg¹

Exercise 3

$$\begin{array}{ll} \text{maximize} & 4b+3j\\ \text{subject to} & 15b+10j \leq 1800\\ & 2b+2j \leq 300\\ & j \leq 200\\ & b,j \geq 0 \end{array}$$

Exercise 4

$$\begin{array}{ll} \text{maximize} & 2x_{AB} + 5x_{AD} + 5x_{BC} + 2x_{BD} + 7x_{BE} + 9x_{BF} + 2x_{CF} + 4x_{DE} + 3x_{EF} \\ \text{subject to} & x_{AB} + x_{AD} = 10 \\ & x_{BC} + x_{BD} + x_{BE} + x_{BF} - x_{AB} = 1 \\ & x_{CF} - x_{BC} = -2 \\ & x_{DE} - x_{AD} - x_{BD} = -3 \\ & x_{EF} - x_{BE} - x_{DE} = 4 \\ & - x_{BF} - x_{CF} - x_{EF} = -10 \\ & 0 \leq x_{AB}, x_{AD}, x_{BC}, x_{BD}, x_{BE}, x_{BF}, x_{CF}, x_{DE}, x_{EF} \leq 6 \\ \end{array}$$

Exercise 5

(i)

$$\begin{array}{ll} \text{maximize} & 3x_1+x_2\\ \text{subject to} & x_1+3x_2+w_1=15\\ & 2x_1+3x_2+w_2=18\\ & x_1-x_2+w_3=4\\ & x_1,x_2,w_1,w_2,w_3\geq 0 \end{array}$$

¹Thank you to Reiko for this beautiful Latex

Optimizer: (6,2)Optimum value: 20

(ii)

maximize
$$4x + 6y$$

subject to $-x + 3x_2 + w_1 = 11$
 $x + y + w_2 = 27$
 $2x + 5y + w_3 = 90$
 $x, y, w_1, w_2, w_3 \ge 0$

ζ	=			4x	+	6y
w_1	=	11	+	x	_	y
w_2	=	27	_	\boldsymbol{x}	_	y
w_3	=	90	_	2x	_	5y
ζ	=	66	+	10 <i>x</i>	_	$6w_1$
\overline{y}	=	11	+	x	_	$\overline{w_1}$
w_2	=	16	_	2x	+	w_1
w_3	=	35	_	7x	+	$5w_1$
ζ	=	116	+	$\frac{8}{7}w_1$	_	$\frac{10}{7}w_{3}$
\overline{y}	=	16	_	$\frac{2}{7}w_1$		$\frac{1}{7}w_{3}$
		10		7^{ω_1}		7^{ω_3}
w_2	=	6	_	$\frac{7}{7}w_1$	+	$\frac{7}{7}w_3$
w_2	=		- +	•	+	•
	= =	6	- + -	$\frac{3}{7}w_1$	+ -	$\frac{1}{7}w_{3}$
<u>x</u>	= = = =	6 5	- + - +	$\frac{\frac{3}{7}w_1}{\frac{5}{7}w_1}$	+	$\frac{\frac{2}{7}w_3}{\frac{1}{7}w_3}$
$\frac{x}{\zeta}$	= = = = =	6 5 132	- + - + -	$\frac{\frac{3}{7}w_1}{\frac{5}{7}w_1}$	+ - - - +	$\frac{\frac{1}{7}w_3}{\frac{1}{7}w_3}$

Optimizer: (15, 12) Optimum value: 132

Exercise 6

$$\begin{array}{ll} \text{maximize} & 4b + 3j \\ \text{subject to} & 15b + 10j + w_1 = 1800 \\ & 2b + 2j + w_2 = 300 \\ & j + w_3 = 200 \\ & b, j, w_1, w_2, w_3 \geq 0 \end{array}$$

ζ	=			4b	+	3j
w_1	=	1800	_	15b	_	10j
w_2	=	300	_	2b	_	2j
w_3	=	200	_	j		
ζ	=	450	+	b	_	$\frac{3}{2}w_2$
$\overline{w_1}$	=	300	_	5b	+	$5w_2$
j	=	150	_	b	_	$\frac{1}{2}w_2$
w_3	=	50	+	b	+	$\frac{1}{2}w_2$
ζ	=	510	_	$\frac{1}{5}w_1$	_	$\frac{1}{2}w_2$
\overline{b}	=	60	_	$\frac{1}{5}w_1$	+	w_2
j	=	90	+	$\frac{1}{5}w_1$	_	$\frac{3}{2}w_2$
w_3	=	110	_	$\frac{1}{5}w_1$	+	$\frac{3}{2}w_2$

Optimal choice: 60 GI Barb soldiers, 90 Joey dolls

Maximal profit: \$510

Exercise 7

(i)

maximize
$$x_1 + 2x_2$$

subject to $-4x_1 - 2x_2 + x_3 = -8$
 $-2x_1 + 3x_2 + x_4 = 6$
 $x_1 + x_5 = 3$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Auxiliary problem:

maximize
$$-x_0$$

subject to $-4x_1 - 2x_2 + x_3 - x_0 = -8$
 $-2x_1 + 3x_2 + x_4 - x_0 = 6$
 $x_1 + x_5 - x_0 = 3$
 $x_0, x_1, x_2, x_3, x_4, x_5 \ge 0$

Optimal point: (3,4) Optimal value: 11

(ii)

maximize
$$5x_1 + 2x_2$$

subject to $5x_1 + 3x_2 + x_3 = 15$
 $3x_1 + 5x_2 + x_4 = 15$
 $4x_1 - 3x_2 + x_5 = -12$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Auxiliary problem:

maximize
$$-x_0$$

subject to $5x_1 + 3x_2 + x_3 - x_0 = 15$
 $3x_1 + 5x_2 + x_4 - x_0 = 15$
 $4x_1 - 3x_2 + x_5 - x_0 = -12$
 $x_0, x_1, x_2, x_3, x_4, x_5 \ge 0$

The original problem has no feasible solutions.

(iii)

maximize
$$-3x_1 + x_2$$

subject to $x_2 + x_3 = 4$
 $-2x_1 + 3x_2 + x_4 = 6$
 $x_1, x_2, x_3, x_4 \ge 0$

Optimal point: (0,2)Optimal value: 2

Exercise 8

Give an example of a three-dimensional linear problem where the feasible region is closed and unbounded, but where the objective function still has a unique feasible maximizer.

maximize
$$-x-y-z$$

subject to $x, y, z \ge 0$

Maximizer: (0,0,0)

Exercise 9

Give an example of a three-dimensional linear problem where the feasible region is closed and unbounded and where the objective function has no maximizer.

maximize
$$x + y + z$$

subject to $x, y, z \ge 0$

Exercise 10

Give an example of a three-dimensional linear problem where the feasible region is empty.

maximize
$$x + y + z$$

subject to $x + y + z \le -1$
 $x, y, z > 0$

Exercise 11

Give an example of a three-dimensional linear problem where the feasible region is nonempty, closed, and bounded, but (0,0,0) is not feasible.

$$\begin{array}{ll} \text{maximize} & x+y+z\\ \text{subject to} & x+y+z \geq 1\\ & x+y+z \leq 4\\ & x,y,z \geq 0 \end{array}$$

Auxiliary problem:

$$\begin{array}{ll} \text{maximize} & -w \\ \text{subject to} & -x-y-z-w \leq -1 \\ & x+y+z-w \leq 4 \\ & x,y,z,w \geq 0 \end{array}$$

Exercise 12

maximize
$$10x_1 - 57x_2 - 9x_3 - 24x_4$$

subject to $0.5x_1 - 1.5x_2 - 0.5x_3 + x_4 + x_5 = 0$
 $0.5x_1 - 5.5x_2 - 2.5x_3 + 9x_4 + x_6 = 0$
 $x_1 + x_7 = 0$
 $x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$

Optimal point: (1,0,1,0) Optimum value: 1

Exercise 15

If $x \in \mathbb{R}^n$ is feasible for the primal and $y \in \mathbb{R}^m$ is feasible for the dual, then $c^T x \leq b^T y$. Proof:

Notice that

$$c^{T}x = x^{T}c$$

$$\leq x^{T}A^{T}y$$

$$= y^{T}Ax$$

$$\leq y^{T}b$$

$$= b^{T}y.$$

Exercise 17

For a linear optimization problem in standard form, the dual of the dual optimization problem is again the primal problem.

Proof:

Consider the primal problem:

with the dual problem:

minimize
$$b^T y$$

subject to $A^T y \succeq c$
 $y \succeq 0$

The dual in standard form becomes:

maximize
$$(-b^T)y$$

subject to $(-A)^T y \leq -c$
 $y \geq 0$

and the dual of the dual is:

minimize
$$(-c^T)\mathbf{x}$$

subject to $((-A)^T)^T x \succeq -b$
 $x \succ 0$

In standard form, this is:

which is the original primal problem.

Exercise 18

Primal:

maximize
$$x_1 + x_2$$

subject to $2x_1 + x_2 + w_1 = 3$
 $x_1 + 3x_2 + w_2 = 5$
 $2x_1 + 3x_2 + w_3 = 4$
 $x_1, x_2, w_1, w_2, w_3 \ge 0$

Optimal point: $(\frac{5}{4}, \frac{1}{2})$

Optimum value: $\frac{7}{4}$

Dual:

minimize
$$3y_1 + 5y_2 + 4y_3$$

subject to $2y_1 + y_2 + 2y_3 \ge 1$
 $y_1 + 3y_2 + 3y_3 \ge 1$
 $y_1 + 3y_2 + 3y_3 \ge 1$
 $y_1, y_2, y_3 \ge 0$

Dual in standard form:

maximize
$$-3y_1 - 5y_2 - 4y_3$$

subject to $-2y_1 - y_2 - 2y_3 + v_1 - v_0 = -1$
 $-y_1 - 3y_2 - 3y_3 + v_2 - v_0 = -1$
 $y_1, y_2, y_3, v_1, v_2 \ge 0$

Optimal point: $(\frac{1}{4}, 0, \frac{1}{4})$

Optimum value: $\frac{7}{4}$