18PWCSE1698

Shah Raza

No: Date: Quiz #)	
Solution;	
j= 12.5 % = 0.125	
N= 12 P= 16580	
To Find F for 1st P we have to	
Shift it 6 years and - sox other we have	
to shift 2 years.	
Approach 1: $f_{A} = P(1+\tilde{z})^{N}$ $F_{A} = 16580(1+0.125)^{6}$	
$F_{A} = 16580(1+0.125)^{6}$	
$F_{a} = 16580 (1.125)^{6}$	
FA = 33607.66	
Approach 2:	
$\frac{F_{B} = P(1+i)^{1/2}}{F_{B} = 16580(1.125)^{2}}$	
FB = 16580 (1.125)	
FB = 20890.8	
$F_{A} = F_{A} + F_{R}$	
F = 33607.66 + 20890.8	
F 54,498.46 — (1)	

PA = F+2F(1+2) PA = F+ 3,125P (1) and (omparing 4.125 F = 54498.46 No:

Date: Quiz # 4

solution

$$A = 1658 \times 5 = 8290$$

 $2 = 12.5 \% = 0.125$
 $N = 6$

As
$$P = A(P/A, \hat{i}, N)$$

$$P_{q} = \begin{bmatrix} (1+2)^{N} - 1 \\ 2(1+2)^{N} \end{bmatrix}$$

$$P_q = \frac{(1+0.125)^6-1}{0.125(1+0.125)^6} \times 8290$$

$$P_{q} = \begin{bmatrix} 1.027 \\ \hline 0.2534 \end{bmatrix} \times 8290$$