Stat 331 Applied Linear Models – Assignment 1

You need to use the cover sheet provided in Learn. Due on Oct 1st (Wednesday) 12pm to the drop boxes located across the hall from MC 4065/4066.

1. Under the simple linear regression model, let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ denote the fitted value, and $r_i = y_i - \hat{y}_i$ denote the corresponding residual. We want to show that

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n r_i^2}{n-2}$$

is an unbiased estimator of σ^2 . Prove the following

- (a) Show that $cov(y_i, \hat{y}_i) = \sigma^2 \left[\frac{1}{n} + \frac{(x_i \bar{x})^2}{S_{xx}}\right]$ where $S_{xx} = \sum_{i=1}^n (x_i \bar{x})^2$.
- (b) Show that $E(r_i)=0$ and $V(r_i)=\sigma^2[1-\frac{1}{n}-\frac{(x_i-\bar{x})^2}{S_{xx}}]$.
- (c) Show that $E(\sum_{i=1}^{n} r_i^2) = (n-2)\sigma^2$.
- 2. In some cases, it may be more realistic to consider a simple linear regression model through the origin:

$$y_i = \beta x_i + \epsilon_i, i = 1, 2, \dots, n$$

where $\epsilon_i \sim N(0, \sigma^2)$.

- (a) Derive $\hat{\beta}$, the least squares estimator of β .
- (b) Show that $\hat{\beta}$ is an unbiased estimator of β and find an expression for $V(\hat{\beta})$.
- (c) Let $r_i = y_i \hat{y}_i$ denote the residual. (i) Show that $\sum_{i=1}^n r_i x_i = 0$; (ii) Is it true that $\sum_{i=1}^n r_i = 0$? why?
- 3. Use the "Copier" dataset (available on Learn). The Tri-City Office Equipment Corporation sells an imported copier on a franchise basis and performs preventive maintenance and repair service on this copier. The data have been collected from 45 recent calls on users to perform routine preventive maintenance service; for each call, x is the number of copiers serviced and y is the total number of minutes spent by the service person.
 - (a) Plot the data. Does a simple linear regression model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1, \dots, 45$$

seem appropriate? Explain.

- (b) What is the fitted regression line?
- (c) What is the estimated change in the mean service time when the number of copiers serviced increases by one?
- (d) Construct a 95% confidence interval for the slope and interpret.
- (e) Construct a t-test to determine whether or not there is a linear association between x and y here. Use 0.05 as the significance level. State the hypotheses, test statistic, p-value and conclusion.
- (f) Are your results in part (d) and part (e) consistent? Explain.
- (g) For a new call with 5 copiers serviced, what is the predicted total number of minutes spent by the service person? Construct a 95% prediction interval.