Supervised Deep Learning with Auxiliary Networks

Junbo Zhang^{†,‡}, Guangjian Tian[‡], Yadong Mu[‡], Wei Fan[‡]

†School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China ‡Huawei Noah's Ark Lab, Hong Kong

August 24-27, 2014, New York, NY, USA

1 / 17

Motivations

Why Deep Learning?

To model high-level abstractions in data by using architectures composed of multiple non-linear transformations.

Y. Bengio, Learning Deep

Architectures for AI

J.B. Zhang et al. SUGAR 2 / 17

Deep Learning

Motivations

000

Why Deep Learning?

To model high-level abstractions in data by using architectures composed of multiple non-linear transformations.

Shallow Models

Deep Models

Y. Bengio, Learning Deep

Architectures for AI

J.B. Zhang et al. SUGAR KDD2014 2 / 17

Motivations

very high level representation: ... etc ... slightly higher level representation raw input vector representation: x=123

Y. Bengio, Learning Deep

Why Deep Learning?

To model high-level abstractions in data by using architectures composed of multiple non-linear transformations.

Success in Computer Vision

Computer vision

- Speech recognition: Android voice recognition (25% reduction) b
- Natural language processing: Machine translation, Matching short text

Architectures for AI J.B. Zhang et al. SUGAR KDD2014 2 / 17

^aTaigman et al., DeepFace: Closing the Gap to Human-Level Performance in Face Verification http://www.wired.com/2013/02/android-neural-network/

Existing Deep Learning Schemes

Manners

- Supervised
- Unsupervised
- Semi-supervised

J.B. Zhang et al. **SUGAR** KDD2014 3 / 17

Existing Deep Learning Schemes

Manners

Motivations

- Supervised
- Unsupervised
- Semi-supervised

Models

- AutoEncoders (AE)
- Restricted Boltzmann Machines (RBM)
- Convolutional Neural Networks
- Recurrent Neural Networks

3 / 17

 Motivations
 SUGAR
 Experiments
 Conclusions

 o ● o
 ooooo
 ooooo
 oo

Existing Deep Learning Schemes

Manners

- Supervised
- Unsupervised
- Semi-supervised

Models

- AutoEncoders (AE)
- Restricted Boltzmann Machines (RBM)
- Convolutional Neural Networks
- Recurrent Neural Networks

•

Deep Architecture (Layer-wise Pre-training)

Stacked Restricted Boltzmann Machines (RBM) ightarrow Deep Belief Network (DBN)

 ${\sf Stacked} \ {\sf Autoencoders:} \ {\sf Unsupervised} \ {\sf pre-training} \ + \ {\sf supervised} \ {\sf fine-turning}$

J.B. Zhang et al. SUGAR KDD2014 3 / 17

Problems & Shortcoming

- Sample-specific annotations are always required
- Ineffectively handle sparse side information

Side information

- More flexible: Similarity/dissimilarity constraints
- Greatly mitigates the workload of annotators

4 / 17

Main Network is used to reconstruct the input, i.e., the unsupervised autoencoder;

5 / 17

Main Network is used to reconstruct the input, *i.e.*, the unsupervised autoencoder; Auxiliary Network is used to regularize the learnt network by pairwise similarity or dissimilarity constraints, *i.e.*, the supvervised hashing learning;

J.B. Zhang et al. SUGAR KDD2014 5 / 17

Main Network is used to reconstruct the input, i.e., the unsupervised autoencoder;

Auxiliary Network is used to regularize the learnt network by pairwise similarity or dissimilarity constraints, *i.e.*, the supvervised hashing learning;

Bridge is used to connect *Main Network* and *Auxiliary Network* by enforcing the correlation of their parameters.

J.B. Zhang et al. SUGAR KDD2014 5 / 17

A sparsity-encouraging variant of autoencoder.

J.B. Zhang et al. SUGAR KDD2014 6 / 17

A sparsity-encouraging variant of autoencoder.

Encoder
$$z = f(x) = S_f(Wx + b)$$

6 / 17

A sparsity-encouraging variant of autoencoder.

Encoder
$$\mathbf{z} = f(\mathbf{x}) = S_f(\mathbf{W}\mathbf{x} + \mathbf{b})$$

Decoder $\hat{\mathbf{x}} = g(\mathbf{z}) = S_g(\mathbf{W}'\mathbf{z} + \mathbf{b}')$

6 / 17

A sparsity-encouraging variant of autoencoder.

Encoder
$$\mathbf{z} = f(\mathbf{x}) = S_f(\mathbf{W}\mathbf{x} + \mathbf{b})$$

Decoder $\hat{\mathbf{x}} = g(\mathbf{z}) = S_g(\mathbf{W}'\mathbf{z} + \mathbf{b}')$
Reconstruction Error $\mathcal{L}(\mathbf{x}, \hat{\mathbf{x}}) = \|\mathbf{x} - \hat{\mathbf{x}}\|^2$

6 / 17

A sparsity-encouraging variant of autoencoder.

Encoder
$$\mathbf{z} = f(\mathbf{x}) = S_f(\mathbf{W}\mathbf{x} + \mathbf{b})$$

Decoder $\widehat{\mathbf{x}} = g(\mathbf{z}) = S_g(\mathbf{W}'\mathbf{z} + \mathbf{b}')$
Reconstruction Error $\mathcal{L}(\mathbf{x}, \widehat{\mathbf{x}}) = \|\mathbf{x} - \widehat{\mathbf{x}}\|^2$
Objective $\underset{\phi}{\operatorname{arg min}} \sum_{\mathbf{x} \in \mathbf{X}} \mathcal{L}(\mathbf{x}, \widehat{\mathbf{x}}) + \lambda \|\mathbf{W}\|_{\ell_1}$
 $\phi = \{\mathbf{W}, \mathbf{b}, \mathbf{b}'\}, \ \mathbf{W}' = \mathbf{W}^T.$

6 / 17

A sparsity-encouraging variant of autoencoder.

Encoder
$$\mathbf{z} = f(\mathbf{x}) = S_f(\mathbf{W}\mathbf{x} + \mathbf{b})$$

Decoder $\widehat{\mathbf{x}} = g(\mathbf{z}) = S_g(\mathbf{W}'\mathbf{z} + \mathbf{b}')$
Reconstruction Error $\mathcal{L}(\mathbf{x}, \widehat{\mathbf{x}}) = \|\mathbf{x} - \widehat{\mathbf{x}}\|^2$
Objective $\arg\min_{\phi} \sum_{\mathbf{x} \in \mathbf{X}} \mathcal{L}(\mathbf{x}, \widehat{\mathbf{x}}) + \lambda \|\mathbf{W}\|_{\ell_1}$
 $\phi = \{\mathbf{W}, \mathbf{b}, \mathbf{b}'\}, \ \mathbf{W}' = \mathbf{W}^T.$

L1 Regularization: Preventing Overfitting

6 / 17

Hashing representation h = H(x) = sgn(Px + t)

SUGAR J.B. Zhang et al. KDD2014

Hashing representation h = H(x) = sgn(Px + t)

Original objective
$$\mathcal{J}(\mathbf{P}) = \sum_{k=1}^{K} \left\{ \frac{1}{|\mathcal{M}|} \sum_{(\mathbf{x}_i, \mathbf{x}_i) \in \mathcal{M}} h_k(\mathbf{x}_i) h_k(\mathbf{x}_j) - \frac{1}{|\mathcal{C}|} \sum_{(\mathbf{x}_i, \mathbf{x}_i) \in \mathcal{C}} h_k(\mathbf{x}_i) h_k(\mathbf{x}_j) \right\}$$

7 / 17

Hashing representation h = H(x) = sgn(Px + t)

Original objective
$$\mathcal{J}(\mathbf{P}) = \sum_{k=1}^{K} \left\{ \frac{1}{|\mathcal{M}|} \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{M}} h_k(\mathbf{x}_i) h_k(\mathbf{x}_j) - \frac{1}{|\mathcal{C}|} \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{C}} h_k(\mathbf{x}_i) h_k(\mathbf{x}_j) \right\}$$

Relaxations $H(X_I) = sgn(PX_I)$ is replaced by PX_I

$$\Omega_{ij} = egin{cases} 1 imes rac{1}{|\mathcal{M}|}, & (\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{M}, \ -1 imes rac{1}{|\mathcal{C}|}, & (\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{C}, \ 0, & ext{otherwise}. \end{cases}$$

J.B. Zhang et al. SUGAR KDD2014 7 / 17

Hashing representation h = H(x) = sgn(Px + t)

Original objective
$$\mathcal{J}(\mathbf{P}) = \sum_{k=1}^{K} \left\{ \frac{1}{|\mathcal{M}|} \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{M}} h_k(\mathbf{x}_i) h_k(\mathbf{x}_j) - \frac{1}{|\mathcal{C}|} \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{C}} h_k(\mathbf{x}_i) h_k(\mathbf{x}_j) \right\}$$

Relaxations $H(X_I) = sgn(PX_I)$ is replaced by PX_I

$$\Omega_{ij} = egin{cases} 1 imes rac{1}{|\mathcal{M}|}, & (\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{M}, \ -1 imes rac{1}{|\mathcal{C}|}, & (\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{C}, \ 0, & ext{otherwise}. \end{cases}$$

Relaxed objective

$$\begin{split} & \underset{\textbf{P}}{\text{arg max}} & & \frac{1}{2} \, \text{tr} \{ \textbf{P} \textbf{X}_{l} \boldsymbol{\Omega} \textbf{X}_{l}^{T} \textbf{P}^{T} \}, \\ & \text{subject to} & & \textbf{P} \textbf{P}^{T} = \textbf{I}. \end{split}$$

The balancing and pairwise decorrelation constraints can help generate good hash codes in which bits are independent and each bit maximizes the information by generating a balanced partition of the data. They are replaced by the orthogonality constraints.

J.B. Zhang et al. SUGAR KDD2014 7 / 17

Bridge: Mixed Objective

$$\begin{aligned} & \underset{\phi, \mathbf{P}}{\text{arg min}} & & \alpha \mathcal{J}_{AE}(\phi) + (1-\alpha)\mathcal{J}_{SH}(\mathbf{P}) + \frac{\epsilon}{2} \|\mathbf{P} - \mathbf{W}\|_F^2 + \lambda \|\mathbf{W}\|_{\ell_1} \\ & \text{subject to} & & \mathbf{PP}^T = \mathbf{I}. \end{aligned}$$

where ϵ is a correlation coefficient between **P** and **W**, λ is sparsity (L_1) penalty ratio, $\alpha \in [0,1]$ is a guiding coefficient, and linearly blends the following two objectives:

$$\mathcal{J}_{AE}(\phi) = \sum_{\mathbf{x} \in \mathbf{X}} \mathcal{L}(\mathbf{x}, \widehat{\mathbf{x}}) = \frac{1}{2} \sum_{\mathbf{x} \in \mathbf{X}} \|\mathbf{x} - \widehat{\mathbf{x}}\|^2, \\ \mathcal{J}_{SH}(\mathbf{P}) = -\frac{1}{2} \operatorname{tr} \{\mathbf{P} \mathbf{X}_l \mathbf{\Omega} \mathbf{X}_l^T \mathbf{P}^T \}.$$

J.B. Zhang et al. SUGAR KDD2014 8 / 17

Bridge: Mixed Objective

where ϵ is a correlation coefficient between **P** and **W**, λ is sparsity (L_1) penalty ratio, $\alpha \in [0,1]$ is a guiding coefficient, and linearly blends the following two objectives:

$$\mathcal{J}_{AE}(\phi) = \sum_{\mathbf{x} \in \mathbf{X}} \mathcal{L}(\mathbf{x}, \widehat{\mathbf{x}}) = \frac{1}{2} \sum_{\mathbf{x} \in \mathbf{X}} \|\mathbf{x} - \widehat{\mathbf{x}}\|^2, \\ \mathcal{J}_{SH}(\mathbf{P}) = -\frac{1}{2} \operatorname{tr} \{\mathbf{P} \mathbf{X}_l \mathbf{\Omega} \mathbf{X}_l^T \mathbf{P}^T \}.$$

Alternative Optimization with Stochastic Gradient Descent

• Fix ϕ , Update **P**

$$\mathbf{P} \leftarrow \mathbf{P} - \eta \frac{\partial \mathcal{J}}{\partial \mathbf{P}}$$

$$\mathbf{P} \leftarrow (\mathbf{PP}^{T})^{-\frac{1}{2}} \mathbf{P} \quad \text{(Orthogonal projection)}$$

• Fix **P**, Update ϕ

$$\phi \leftarrow \phi - \eta \frac{\partial \mathcal{J}}{\partial \phi}$$

J.B. Zhang et al. SUGAR KDD2014 8 / 17

Extensions: SUGAR with Various Autoencoder

SUGAR with Denoising Autoencoder

$$\arg\min_{\phi,\mathbf{P}} \qquad \alpha \mathcal{J}_{D\!A\!E}(\phi) + (1-\alpha)\mathcal{J}_{S\!H}(\mathbf{P}) + \frac{\epsilon}{2} \|\mathbf{P} - \mathbf{W}\|_F^2 + \lambda \|\mathbf{W}\|_{\ell_1}, \tag{1}$$

 $PP^T = I$ subject to

where $\mathcal{J}_{DAE}(\phi) = \sum_{\mathbf{x} \in \mathbf{X}} \mathbb{E}_{\widetilde{\mathbf{x}} \sim q(\widetilde{\mathbf{x}}|\mathbf{x})} \left| \mathcal{L}(\mathbf{x}, \widehat{\widetilde{\mathbf{x}}}) \right|$.

SUGAR with Contractive Autoencoder

$$\arg\min_{\phi,\mathbf{P}} \quad \alpha \mathcal{J}_{CAE}(\phi) + (1-\alpha)\mathcal{J}_{SH}(\mathbf{P}) + \frac{\epsilon}{2} \|\mathbf{P} - \mathbf{W}\|_F^2 + \lambda \|\mathbf{W}\|_{\ell_1}, \tag{2}$$

subject to
$$\mathbf{PP}^T = \mathbf{I}$$
.

where $\mathcal{J}_{CAE}(\phi) = \sum_{\mathbf{x} \in \mathbf{X}} (\mathcal{L}(\mathbf{x}, \widehat{\mathbf{x}}) + \mu || J_f(\mathbf{x}) ||_F^2).$

9 / 17

Deep SUGARs

J.B. Zhang et al. SUGAR KDD2014 10 / 17

 flotivations
 SUGAR
 Experiments
 Conclusions

 00
 0000●
 00000
 00

Deep SUGARs

Layer-wise Training

After training, the feedback decoding modules g and the encoder modules h with the corresponding classifier modules (all dashed lines) are discarded and the system is used to produce very compact representations by a feed-forward pass through the chain of encoders f.

Experiments: Datasets

- MNIST: well-known digit classification problem, http://yann.lecun.com/exdb/mnist
- Benchmark classification tasks: http://www.iro.umontreal.ca/~lisa/icml2007
 - Variations on MNIST
 - Discrimination between tall and wide rectangles
 - Recognition of convex sets

Table 1: Datasets

Data Set	Train	Valid.	Test	Class	
MNIST	50000	10000	10000	10	
Rectangles	1000	200	50000	2	
Rect _{Img}	10000	2000	50000	2	
Convex	7000	1000	50000	2	
MNIST _{Basic}	10000	2000	50000	10	
$MNIST_{Rot}$	10000	2000	50000	10	
$MNIST_{Rand}$	10000	2000	50000	10	
MNIST _{Img}	10000	2000	50000	10	
MNIST _{RotImg}	10000	2000	50000	10	

Baseline methods

- SVM
 - SVM-RBF: SVM with RBF kernels
 - SVM-Poly: SVM with polynomial kernels
- NNet: Feed-forward neural network
- GSM: Gated softmax classifier
- NonGSM: Non-factored gated softmax classifier
- SAA: Stacked Autoassociator Network
- RBM: Restricted Boltzmann Machine

12 / 17

Performance Evaluation: Shallow Architecture on MNIST

J.B. Zhang et al. SUGAR KDD2014 13 / 17

 Motivations
 SUGAR
 Experiments
 Conclusions

 000
 00000
 00000
 00

Performance Evaluation: Shallow Architecture on MNIST

13 / 17

 lotivations
 SUGAR
 Experiments
 Conclusions

 00
 00000
 0000
 00

Performance Evaluation: Shallow Architecture on MNIST

Performance Evaluation: Shallow Architecture

Guidance to Autoencoder Variants (DAE and CAE)

Figure 2: Guiding ability on autoencoder variants

J.B. Zhang et al. SUGAR KDD2014 14 / 17

 Motivations
 SUGAR
 Experiments
 Conclusions

 000
 00000
 0000●
 00

Deep Architecture on Benchmark Classification Tasks

Figure 3: Classification error rates

Dataset/Model:	SVM-RBF	SVM-Poly	NNet	GSM	NonGSM	SAA-3	RBM	SUGAR-3
Rectangles	02.15	02.15	07.16	0.83	0.56	02.41	04.71	03.49
Rect _{Img}	24.04	24.05	33.20	22.51	23.17	24.05	23.69	22.55
Convex	19.13	19.82	32.25	17.08	21.03	18.41	19.92	17.00
MNIST _{Basic}	03.03	03.69	04.69	03.70	03.98	03.46	03.94	03.47
MNIST _{Rot}	11.11	15.42	18.11	11.75	16.15	10.30	14.69	9.53
MNIST _{Rand}	14.58	16.62	20.04	10.48	11.89	11.28	09.80	11.40
MNIST _{Img}	22.61	24.01	27.41	23.65	22.07	23.00	16.15	20.65
MNIST _{RotImg}	55.18	56.41	62.16	55.82	55.16	51.93	52.21	49.40
Average	18.98	20.27	25.63	18.23	19.25	18.11	18.14	17.19

J.B. Zhang et al. SUGAR KDD2014 15 / 17

SUGAR Experiments Conclusions

Conclusions

Proposed model: SUGAR

- SUGAR incorporates both week supervision (pairwise constraints) or strong supervision (labeled) into Autoencoder framework
- It is demonstrated that both semi-supervised and supervised SUGAR is consistently more accurate than unsupervised autoencoder

Potential Application Areas

- 1 Handwriting Recognition
- 2 Domain Adaptation
- Telecommunication Data Mining
- Others
 - Multi-source data
 - Few Labeled data

Codes will be available at http://kdd2014.noahlab.com.hk/sugar.

J.B. Zhang et al. SUGAR KDD2014 16 / 17

Q & A Thanks