Esame di Ricerca Operativa del 17/01/17

	(Cognome)		(Nome)		(Nume	ro di Matrico	ola)
Esercizio 1	. Completare la		la considerando il problema			are:	
		$\begin{cases} \min & -8 \ y_1 \\ -2 \ y_1 + y_2 \\ y_1 + 2 \ y_2 - y \ge 0 \end{cases}$	$-6 y_2 + 4 y_3 + 12 y_4 + 4 y_5 + y_3 + y_4 - 2 y_5 - y_6 = -3 - y_4 - y_5 - y_6 - y_7 = -4$	$x + 6 y_6 + 10 y_6$	7		
	Base Soluzion	ne di base			missibile si/no)	Degenere (si/no)	
{	x = 1, 2						
	$\{2, 3\} \mid y = \}$ Let Effettuare due	e iterazioni dell'	'algoritmo del simplesso dua	le per il proble	ema dell'es	sercizio 1.	
	Base	x	y	Indice entrante	R	apporti	Indic
1° iterazion	ie {1,7}						
2° iterazion	ne l						
variabili dec modello:	sisionali:		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
C=			COMANDI DI MATLAB				
c= A=			COMANDI DI MATLAB				

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(2,4)$ $(2,5)$				
(3,2) (4,6) (5,7)	(1,2)	x =		
(1,2) (2,5) (3,2)				
(5,4) (5,7) (7,6)	(6,5)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,3) (3,2) (3,5) (4,6) (6,5) (7,6)	
Archi di U	(2,4)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} & \min \ 5 \ x_1 + 10 \ x_2 \\ & 16 \ x_1 + 12 \ x_2 \ge 57 \\ & 9 \ x_1 + 17 \ x_2 \ge 56 \\ & x_1 \ge 0 \\ & x_2 \ge 0 \\ & x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 551 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	5	7	16	8	18	10	13
Volumi	335	128	298	95	254	146	151

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

· ·

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = (x_1 - 3)^2 + x_2^2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1 + x_2^2 + 1 \le 0, \quad x_1 - 4 \le 0}.$$

Soluzioni del sistem	Soluzioni del sistema LKT					Minimo	
x	λ	μ	globale	locale	globale	locale	
(3, 0)							
$(4, \ 0)$							
$\left(\frac{5}{2}, \frac{\sqrt{2}\sqrt{3}}{2}\right)$							
$\left(\frac{5}{2},\ -\frac{\sqrt{2}\sqrt{3}}{2}\right)$							
$\left(4,\sqrt{3}\right)$							
$\left(4, -\sqrt{3}\right)$							
(1, 0)							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min \ 4 \ x_1^2 - 2 \ x_1 \ x_2 + 4 \ x_2^2 + 9 \ x_1 - 7 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (-2, -4), (-2, -1), (5, 0) e (5, -2). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(5,-\frac{2}{3}\right)$						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min \ -8 \ y_1 - 6 \ y_2 + 4 \ y_3 + 12 \ y_4 + 4 \ y_5 + 6 \ y_6 + 10 \ y_7 \\ -2 \ y_1 + y_2 + y_3 + y_4 - 2 \ y_5 - y_6 = -3 \\ y_1 + 2 \ y_2 - y_4 - y_5 - y_6 - y_7 = -4 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile	
		(si/no)	(si/no)
$\{1, 2\}$	x = (2, -4)	SI	NO
$\{2, 3\}$	y = (0, -2, -1, 0, 0, 0, 0)	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{1, 7}	(-1, -10)	$\left(\frac{3}{2},\ 0,\ 0,\ 0,\ 0,\ \frac{11}{2}\right)$	5	$\frac{3}{2}, \frac{11}{4}$	1
2° iterazione	{5, 7}	(3, -10)	$\left(0,\ 0,\ 0,\ 0,\ \frac{3}{2},\ 0,\ \frac{5}{2}\right)$	4	$\frac{5}{3}$	7

Esercizio 3.

COMANDI DI MATLAB

c=[20;21;31;23;19;1000;34;27;24] b=[90 ; 55 ; 50] Aeq=[1 0 0 1 0 0 1 0 0;0 1 0 0 1 0 0 1 0; 0 0 1 0 0 1 0 0 1] beq=[80; 55; 75] lb=[0;0;0;0;0;0;0;0;0] ub=[]

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) (2,4) (2,5)				
(3,2) (4,6) (5,7)	(1,2)	x = (11, -6, 9, 5, -4, 0, 5, 0, 0, 0, 0)	NO	SI
(1,2) (2,5) (3,2)				
(5,4) (5,7) (7,6)	(6,5)	$\pi = (0, 9, -1, 16, 12, 23, 17)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione			
Archi di T	(1,3) (3,2) (3,5) (4,6) (6,5) (7,6)	(1,2) (1,3) (3,5) (4,6) (6,5) (7,6)			
Archi di U	(2,4)	(2,4)			
x	(0, 5, 10, 0, 3, 4, 6, 0, 0, 1, 0)	(3, 2, 10, 0, 0, 4, 6, 0, 0, 1, 0)			
π	(0, 14, 4, 0, 13, 9, 3)	(0, 9, 4, 0, 13, 9, 3)			
Arco entrante	(1,2)	(2,4)			
ϑ^+,ϑ^-	11 , 3	7,1			
Arco uscente	(3,2)	(6,5)			

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		iter	2	ite	r 3	iter 4		iter 5		iter 6		iter 7	
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		3		4	4	2		6		5		7	
nodo 2	14	1	7	3	7	3	7	3	7	3	7	3	7	3
nodo 3	3	1	3	1	3	1	3	1	3	1	3	1	3	1
nodo 4	3	1	3	1	3	1	3	1	3	1	3	1	3	1
nodo 5	$+\infty$	-1	21	3	21	3	14	2	14	2	14	2	14	2
nodo 6	$+\infty$	-1	$+\infty$	-1	8	4	8	4	8	4	8	4	8	4
nodo 7	$+\infty$	-1	20	3	20	3	20	3	18	6	18	6	18	6
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	2, 4,	5, 7	2, 5,	6, 7	5, 6	5, 7	5,	7	7	7	Q)

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	5	(0,5,0,0,0,5,0,0,0)	5
1 0 5 5	0	(0.5.0.0.0.5.0.0.0.0)	10
1 - 2 - 5 - 7	8	(8, 5, 0, 8, 0, 0, 5, 0, 0, 8, 0)	13
1 - 4 - 6 - 7	6	(8, 5, 6, 8, 0, 0, 5, 0, 6, 8, 6)	19

Taglio di capacità minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min & 5 \ x_1 + 10 \ x_2 \\ 16 \ x_1 + 12 \ x_2 \ge 57 \\ 9 \ x_1 + 17 \ x_2 \ge 56 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $\left(\frac{56}{9}, 0\right)$ $v_I(P) = 32$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = (7,0)

c) Calcolare un taglio di Gomory.

r = 1 $4x_1 + 8x_2 \ge 25$ r = 3 $2x_1 + 4x_2 \ge 13$

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 551 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	5	7	16	8	18	10	13
Volumi	335	128	298	95	254	146	151

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =
$$(0, 0, 0, 1, 1, 0, 1)$$
 $v_I(P) = 39$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0,0,0,1,1,\frac{51}{146},1\right)$$
 $v_S(P)=42$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = (x_1 - 3)^2 + x_2^2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1 + x_2^2 + 1 \le 0, \quad x_1 - 4 \le 0}.$$

Soluzioni del sistema LKT				Massimo		Minimo	
x	λ	μ	globale	locale	globale	locale	
(3, 0)	(0,0)		NO	NO	SI	SI	NO
$(4, \ 0)$	(0, -2)		NO	NO	NO	NO	SI
$\left(\frac{5}{2},\frac{\sqrt{2}\sqrt{3}}{2}\right)$	(-1,0)		NO	NO	NO	NO	SI
$\left(\frac{5}{2},\ -\frac{\sqrt{2}\sqrt{3}}{2}\right)$	(-1,0)		NO	NO	NO	NO	SI
$(4, \sqrt{3})$	(-1, -3)		SI	SI	NO	NO	NO
$\left(4, \ -\sqrt{3}\right)$	(-1, -3)		SI	SI	NO	NO	NO
$(1, \ 0)$	(-4,0)		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min 4 x_1^2 - 2x_1x_2 + 4x_2^2 + 9x_1 - 7x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (-2,-4), (-2,-1), (5,0) e (5,-2). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	atrice M Matrice H Direzione Max spostamento		Passo	Nuovo punto	
			possil			
$\left(5, -\frac{2}{3}\right)$	(1,0)	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$	$\left(0, \frac{67}{3}\right)$	$\frac{2}{67}$	$\frac{2}{67}$	(5,0)