Math 645: Homework 3

1. The spectral radius $\rho(A)$ of a $n \times n$ matrix A is defined as

$$\rho(A) = \max\{|\lambda|; \lambda \text{ eigenvalue of } A\}. \tag{1}$$

Let $A \in \mathcal{L}(\mathbf{R}^n)$. Show that for any norm on \mathbf{R}^n we have the inequality $\rho(A) \leq ||A||$, and that if A is symmetric we have the equality $||A||_2 = \rho(A)$.

2. Let

$$A = \begin{pmatrix} 0.999 & 1000 \\ 0 & 0.999 \end{pmatrix} \tag{2}$$

- (a) Compute the spectral radius of A as well as $||A||_1$, $||A||_2$, and $||A||_{\infty}$.
- (b) Find a norm on \mathbf{R}^n such that $||A|| \leq 1$.
- 3. Find 2 by 2 matrices A and B such that $e^{A+B} \neq e^A e^B$.
- 4. Show that if A(t) is antisymmetric, i.e., $A^T = -A$, then the resolvant of x' = A(t)x is orthogonal. *Hint:* Show that the scalar product of two solutions is constant.
- 5. Using the definition of the exponential matrix, compute the e^{tA} for the following matrices

(a)
$$A = \begin{pmatrix} 0 & 1 \\ -\kappa & 0 \end{pmatrix}$$
 with $\kappa > 0$.

(b)
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

(c)
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$

- 6. (**D'Alembert reduction method**). Consider the ODE x' = A(t)x where A(t) is a $n \times n$ matrix and assume that we a non-trivial solution x(t). Show that one can reduce the equation x' = A(t)x to the problem z' = B(t)z where $z \in \mathbf{R}^{n-1}$ and B(t) is a $(n-1) \times (n-1)$ matrix. *Hint:* Without loss of generality you may assume that $x_n(t) \neq 0$. Look for solutions of the form $y(t) = \phi(t)x(t) + z(t)$, where $\phi(t)$ is a scalar function and z has the form $z = (z_1, \dots, z_{n-1}, 0)^T$.
- 7. (a) Using the previous problem, compute the resolvent R(t,1) of

$$x' = \begin{pmatrix} \frac{1}{t} & -1\\ \frac{1}{t^2} & \frac{2}{t} \end{pmatrix} x, \tag{3}$$

using the fact that $x(t) = (t^2, -t)^T$ is a solution. *Hint:* The solution is

$$\begin{pmatrix} t^2(1-\log t) & -t^2\log t \\ t\log t & t(1+\log t) \end{pmatrix}$$
 (4)

(b) Compute the solution of

$$x' = \begin{pmatrix} \frac{1}{t} & -1\\ \frac{1}{t^2} & \frac{2}{t} \end{pmatrix} x + \begin{pmatrix} t\\ -t^2 \end{pmatrix}, \tag{5}$$

with initial condition $x(1) = (0,0)^T$.

8. Consider the system

$$x' = A(t)x, A(t) = \begin{pmatrix} t & 1 \\ 0 & 0 \end{pmatrix}. (6)$$

- (a) Show that A(t) does not commute with $\int_{t_0}^t A(s) ds$.
- (b) Compute the resolvent of (6).
- (c) Show that $R(t, t_0) \neq \exp\left(\int_{t_0}^t A(s) \, ds\right)$.
- 9. (a) Consider the damped harmonic oscillator $x'' + bx' + \kappa x = 0$ where $b, \kappa > 0$. Write is a first order system X = AX, where X = (x, x'). Compute the eigenvalues of A. Show that every solution tends to 0 as $t \to +\infty$.
 - (b) Consider now the forced damped harmonic oscillator $x'' + bx' + \kappa x = \cos(t)$, i.e. with a periodic forcing of period 2π . Show the system has a unique periodic solution of period 2π . Hint: Use the use the variation of constants formula to show that the existence of a periodic solution X(t) of period 2π with $X(0) = X_0$ reduce to the existence of a solution to the equation

$$X_0 = e^{2\pi A} X_0 + W (7)$$

for a suitable W. Show that this equation has a unique solution.

(c) Deduce from (a) and (b) that any solution tends the periodic solution as $t \to \infty$. Hint: Write an arbitrary solution with initial condition Y_0 using the variation of constants formula and compare it to the periodic solution found in (b).

Hint: There is no need to actually solve the linear equation here!