"Software Engineering" Course a.a. 2018-2019

Template version 1.0 Deliverable #1

Lecturer: Prof. Henry Muccini (henry.muccini@univaq.it)

Dashboard Monitoraggio Ambientale

Date	03/12/2018
Deliverable	1
Team (Name)	5 Curly Brackets

Team Members			
Name & Surname	Matriculation Number	E-mail address	
Marco Ovidi	247986	marco.ovidi@student.univaq.it	
Matteo Di Paolo	243581	matteo.dipaolo@student.univaq.it	
Carlo Antonio Venditti	248254	carloantonio.venditti@student.univaq.it	
Dima Mhrez	247052	dima.mhrez@student.univq.it	
Andrea D'Angelo	248817	andrea.dangelo6@student.univaq.it	

Project Guidelines

[do not remove this page]

This page provides the Guidelines to be followed when preparing the report for the Software Engineering course. You have to submit the following information:

- This Report
- Diagrams (Use Case, Component Diagrams, Sequence Diagrams, Entity *Relationships Diagrams*)
- Effort Recording (Excel file)

Important:

- document risky/difficult/complex/highly discussed requirements
- document decisions taken by the team
- *iterate*: do not spend more than 1-2 full days for each iteration
- prioritize requirements, scenarios, users, etc. etc.

Project Rules and Evaluation Criteria

General information:

- This homework will cover the 80% of your final grade (20% will come from the oral examination).
- The complete and final version of this document shall be **not longer than 40 pages** (excluding this page and the Appendix).
- Groups composed of five students (preferably).

I expect the groups to submit their work through GitHub

Use the same file to document the various deliverable. Document in this file how Deliverable "i+1" improves over Deliverable "i".

Project evaluation:

Evaluation is not based on "quantity" but on "quality" where quality means:

- Completeness of delivered Diagrams
- (Semantic and syntactic) Correctness of the delivered Diagrams
- Quality of the design decisions taken
- Quality of the produced code

22

Table of Contents of this deliverable

Sommario

D.2 Statistics

A) Requirements Collection	
A.1 Functional requirements	5
A.2 Non Functional Requirements	14
A.3 Excluded Requirements	14
A.4 Assumptions	14
A.5 Prioritization	15
B) Software Architecture	
B.1 Static view of the system	16
B.2 Dynamic view of the system	17
C) Design Decisions	20
D) Effort Recording	
D.1 PERT Diagram	21

List of Challenging/Risky Requirements or Tasks

<In this section, you should describe using the table below the most challenging</p> or discussed or risky design tasks, requirements, or activities related to this project. Please describe when the risk arised, when and how it has been solved.>

Challenging Task	Date the task is identified	Date the challenge is resolved	Explanation on how the challenge has been managed
Identifying the right technologies	19/11	30/11	Testing performances on own computers or test servers.
Learning how to implement NetData efficiently	19/11	//	Studying a lot.
Using new DB technologies we're not familiar with	23/11	//	Studying a lot.

A. Requirements Collection

In this section, you should describe both the application features/functional requirements as well as the non functional ones. You shall also document constraints and rules, if they apply.

A.1 Functional Requirements

Unusual values must be shown with appropriate colours based on their priority

Values over the defined threshold must be shown explicitly

There are 3 types of manager

At least 150.000 signals per minute must be handled

Dashboard must show all sensors

Managers must be able to change the defined threshold values

The system must be able to detect sensors' failures and display a warning. If there are backup sensor for a measured property, the warning will have a lower priority

Different managers are given information with different levels of detail, based on a hierarchic relationship

The user must be able to select an area

A1.1 Use Case Diagrams

Figure 1 : Use Case Diagram

We identified two types of users, the managers and the admins. Managers access the dashboard for environmental monitoring while admins can change threshold values of sensors and add new managers.

A1.2 Tabular description of the most relevant use cases

USE CASE 1	Signal Reception			
Goal in Context	Signal	Signals from the sensors are received correctly.		
Preconditions	Sensor	Sensors are installed and the system is running.		
Success End Condition	Values	Values are received and processed.		
Primary actor	Sensor			
Trigger	No trigger			
DESCRIPTION	Step Action			
	1 Sensors send the detected values to the system.			
	2	The system correctly receives and process those values.		

RELATED INFORMATION	Signal Reception
Priority:	Very High
Performance	The system must be able to handle at least 150000 signals per minute.
Frequency	Every minute.
Superordinates	Signal Elaboration

USE CASE 2	Signal	Signal Elaboration		
Goal in Context	Under	Understand if the values are usual or above the threshold.		
Preconditions	Signal	Reception is working correctly.		
Success End Condition	The co	The correct values are sent to the client.		
Primary actor	Sensor	Sensor.		
Trigger	The sy	The system receives the data.		
DESCRIPTION	Step	Action		
	1	The system receives the data.		
	2	The sensor that sent the values is identified and its set threshold values are found.		
	3	The newly received values are compared to the thresholds.		
EXTENSIONS	Step			
	1a	Some values are over the threshold: Alert of values over the threshold.		

RELATED INFORMATION	Signal Elaboration
Priority:	Very high
Performance	Must be able to elaborate at least 150000 signals per minute.
Frequency	Every time a signal is received.
Superordinates	Storage

USE CASE 3	Alert of over-threshold values			
Goal in Context	Make	Make sure the Manager is alerted of the critical conditions		
Preconditions	Manaş	ger is logged in dashboard		
Success End Condition		Alert is given to manager in case of dangerous situations in a certain area		
Failed End Condition	_	System alerts Manager that it isn't able to detect dangerous situations		
Primary	Buildi	Building Manager, Area Manager, Urban Manager		
Trigger	A value over threshold is detected			
DESCRIPTION	Step Action			
	1	A value over threshold is detected		
	2	A warning is displayed		
SUB- VARIATIONS		Branching Action		
	1	One value type over threshold is shown ORANGE		
	2	Two value types over threshold are shown RED		
Priority:	Very High			
Frequency:	Every time that an unusual value is detected			

USE CASE 4	Storage			
Goal in Context	Signal	values are correctly stored.		
Preconditions	Values	s have been received and handled correctly.		
Success End Condition		The system will know the last known values from that sensor.		
Primary actor	Sensor			
Trigger	A signal is received.			
DESCRIPTION	Step	Action		
	1	The signal is received and handled.		
	2	The signal is stored to complete the story of the values of a certain sensor.		

RELATED INFORMATION	Storage
Priority:	High
Performance	Must be able to store at least 150000 signals per minute.
Frequency	Every time a signal is received.

USE CASE 5	Show	Show sensors' value		
Goal in Context	Systen	System shows sensors' value to the manager		
Preconditions	Manag	ger is logged in dashboard		
Success End Condition	The M	anager is correctly shown current sensors' value		
Failed End Condition	Error 1	Error message		
Primary	Building Manager, Area Manager, Urban Manager			
Trigger	Manager Login			
DESCRIPTION	Step Action			
	1	Manager logs in dashboard		
	2	System evaluates current sensors' value and label it with different colours considering the treshold value		
	3	System shows elaborated data to Manager		
EXTENSIONS	Step	Branching Action		
	1a	Values over the imposed threshold detected : Alert of threshold value		

USE CASE 6	Expand area view		
Goal in Context	Manager can see a section of the area of expertise in detail		
Preconditions	Manager is logged in and dashboard is showing data		
Success End Condition	Manager can evaluate detail detected from sensors of an area		
Failed End Condition	Manager can't focus on a particular area		
Primary	Manager		
Trigger	Manager select an area of interest		
DESCRIPTION	Step	Action	
	1	Manager logs in dashboard	
	2	System shows entire area sensors' value	
	3	Manager selects a section of area	
	4	System shows details of selected area	

USE CASE 7	Manage Sensors' Properties		
Goal in Context	Admin can be able to change threshold value fo each sensor		
Preconditions	Admin logged in dashboard		
Success End Condition	Admin have modified threshold values of sensors		
Failed End Condition	Error Message		
Primary	Admin		
Trigger	Admin clicks on settings panel in dashboard		
DESCRIPTION	Step	Action	
	1	Admin logs in dashboard	
	2	Admin opens setting panel	
	3	Admin selects a sensor	
	4	Admin change threshold value for the selected sensor	

RELATED INFORMATION	Manage sensor properties
II (I OIU(II II IOI)	

A.2 Non Functional Requirements

- 1) Availability. The system shall always work, with close to no downtime. It is extremely important that managers are able to check the status of the sensors at any given time
- 2) Reliability. The information the system provides need to be accurate, precise and correct, based on the values the sensors are sending.
- 3) Security. It is important nobody, beside the authorized users, are able to log in or edit parameters.
- 4) Scalability. The system must be able to grow efficiently with new sensors being placed.

A.3 Excluded Requirements

1) Emergency Management. The system does not provide any functionality to interact with emergencies (e.g., calling firefighters). It is only used to check the data the sensors are sending.

A.4 Assumptions

- 1) We assume the sensors are already in place and their positioning is reasonable. A sensor placed near a fireplace would probably show unusual values when there is no need to. We assume the maximum rate at which a sensor sends data being 1 every 5 seconds.
- 2) "Alert" and "Warning" have very different meanings in our system.

We have an alert when one type of parameter (e.g.: temperature) has a value that is over the threshold.

A warning is issued when two or more types of parameters are above the threshold, and the manager must be alerted immediately.

A.5 Prioritization

Here is the list of the *functional* requirements in priority order:

- 1. Unusual values must be shown with appropriate colours based on their priority
- 2. Values over the defined threshold must be shown explicitly
- 3. There are 3 types of manager
- 4. At least 150.000 signals per minute must be handled
- Dashboard must show all sensors
- 6. Managers must be able to change the defined threshold values
- 7. The system must be able to detect sensors' failures and display a warning. If there are backup sensor for a measured property, the warning will have a lower priority
- 8. Different managers are given information with different levels of detail, based on a hierarchic relationship
- 9. The user must be able to select an area

B. Software Architecture

<Report here both the static and the dynamic view of your system design, in terms of a Component Diagram, Class Diagrams and their related Sequence Diagrams >

B.1The static view of the system: Component Diagram

Figure 2: Component Diagram

An overview of the entire system, showing the interfaces used by the various network nodes to communicate and the importance of the decision to use netdata as a foundation for the system. The interactions are simplified to show the logical subdivision without too much technical details.

B.2 The dynamic view of the software architecture: Sequence **Diagram**

Figure 3: Sequence Diagram Sensors' data collection

This diagram shows the parallel data collection from the sensors, focusing on how the node.js asynchronously receives data from the sensors and makes this available to netdata.

The plugin stores in memory the last value received from each sensor (which is updated every time it gets a new value) and every 5 seconds netdata queries for a new value.

Figure 4 : Sequence Diagram Users request Data

The clients are dynamic web pages that interface with the netdata integrated web server. Communication between server and clients is done using HTTP.

Figure 5 : Sequence diagram warning/alert dispatcher

netdata has an integrated notification system that allows us to send alarm and warning not only to the web clients but also using email, irc or even Slack and Telegram (and many others). The notification system is modular and should work out of the box with minimal configuration from our side.

C. Design Decisions

1- netdata Usage

The netdata open sysm monitoring tool records and shows data efficiently and is visually appealing. It also satisfies all of our needs, so we chose to use it as the main part of our system.

2- Time Series Database

This choice was made in order to maximize efficiency, even though we're mostly knowledgeable about MySQL.

3- HTTP Protocol for the sensors

We tested HTTP request handling both locally and with remote servers with the tool Vegeta and a simple Rust HTTP server. The performance exceeded the requirements by far and we found no need to use a custom protocol. Using HTTP is easy and guarantees good enough performance.

4- Node.js for the netdata Plugin

We chose node js because it is JavaScript based and we all have some basic notions of JavaScript and are willing to learn more.

A simple API for netdata node js plugins exists and it should be very performant for asynchronous and not CPU-intensive workloads (as it is in our case). Anyway, more specific performance testing is needed.

5- Admin user

We also chose to insert an Administrator as a separate user from the managers, in order to keep the parameters control and edit permissions completely separated from the "normal" users of the system.

D. Effort Recording

Summary Statistics

Time Spent for LEARNING: 18.5 hours Time spent for Doing: 36.5 hours Total time spent: 55 hours

Time Partitioning

66.36% of the time spent on the project was spent on DOING. 33.64% of the time spent on the project was spent on LEARNING.

We need to stop working with "bursts" of efficiency and find a more consistent schedule and line of work.

From this diagram, and the PERT diagram, we notice how we overestimated the necessary time to make Sequence Diagrams and grossly underestimated the time necessary for the Requirements Discovery.

It is also true that the Requirements Discovery is biased by the Initial Planning we all participated in (15 person-hours), but the statement still stands and it's something we have to consider. The making of scenarios and the deep understanding of the requirements took more time than we initially considered.

SE course – Deliverables 2018-2019

Pictures' index

Figure 1 : Use Case Diagram6 Figure 2 : Component Diagram16

Figure 3 : Sequence Diagram Sensors' data collection17 Figure 4 : Sequence Diagram Users request Data18 Figure 5 : Seuqence diagram warning/alert dispatcher19