MATH 307 Assignment #14 Due any time, any year

For each problem, include the statement of the problem. Leave a blank line. At the beginning of the next line, write **Solution** or **Proof** – as appropriate.

- 1. Suppose $T \in \mathcal{L}(\mathbf{C}^4)$ is such that the eigenvalues of T are 3, 5 8. Prove that $(T 3I)^2(T 5I)^2(T 8I)^2 = 0$.
- 2. Give an example of an operator on \mathbb{C}^4 whose characteristic polynomial equals $(z-1)(z-5)^3$ and whose minimal polynomial equals $(z-1)(z-5)^2$.
- 3. Suppose V is a complex vector space. Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that the characteristic polynomial of P is $z^m(1-z)^n$, where $m = \dim P$ and $n = \dim \operatorname{range} P$.
- 4. Suppose $T \in \mathcal{L}(V)$ has minimal polynomial $2 3z + z^2 5z^3 + 7z^4 + 6z^5$. Find the minimal polynomial of T^{-1} .
- 5. Suppose $T \in \mathcal{L}(V)$ is invertible. Prove that there exists a polynomial $p \in \mathcal{P}(\mathbf{F})$ such that $T^{-1} = p(T)$.
- 6. Suppose V is an inner product space and $T \in \mathcal{L}(V)$ is normal. Prove that the minimal polynomial of T has no repeated zeros.
- 7. Suppose $N \in \mathcal{L}(V)$ is nilpotent. Prove that the minimal polynomial of N is z^{m+1} , where m is the length of the longest consecutive string of 1's that appears on the line directly above the diagonal in the matrix of N with respect to any Jordan basis for N.
- 8. Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V that is a Jordan basis for T. Describe the matrix of T^2 with respect to this basis.
- 9. Suppose $p, q \in \mathcal{P}(\mathbf{C})$ are monic polynomials with the same zeros and q is a polynomial multiple of p. Prove that there exists $T \in \mathcal{L}(\mathbf{C}^{\deg q})$ such that the characteristic polynomial of T is q and the minimal polynomial of T is p.