MM temas 1 y 2

Ecuaciones en diferencias de primer orden

Una ecuación en diferencias de primer orden lineal es de la forma

$$x_{n+1} = \alpha x_n + \beta \quad \alpha, \beta \in \mathbb{C}$$

Resolución de ecuaciones en diferencias de primer orden

$$\beta = 0$$

Al ser una progresión geométrica la solución será $x_n = C\alpha^n$.

$$\beta \neq 0$$
 y $\alpha = 1$

Nos encontramos ante una progresión aritmética, así que la solución es $x_n = C + \beta_n$

$$\beta \neq 0$$
 y $\alpha \neq 1$

Buscamos primero lo que llamamos solución constante, la solución que tendría la ecuación si no dependiese de *n*.

$$x_* = \frac{\beta}{1 - \alpha}$$

A continuación escribimos la ecuación homogénea asociada.

$$z_{n+1} = \alpha z_n$$

cuya solución sería $z_n=C\alpha^n$ como ya hemos visto antes. Finalmente, la solución de la ecuación inicial será

$$x_n = x_* + z_n = \frac{\beta}{1 - \alpha} + C\alpha^n$$

Fórmula de Moivre

Si α es un número complejo,

$$\alpha^n = r^n(\cos(n\theta) + i\sin(n\theta))$$

Comportamiento asintótico de las soluciones

Dadas las soluciones $x_{n,n>0}$ de una ecuación en diferencias de primer orden,

- Si $|\alpha| < 1$, $x_n \rightarrow x_*$.
- Si $|\alpha| > 1$, x_n diverge.
- Si $|\alpha| = 1$, x_n oscila alrededor de x_* .

Sistemas dinámicos discretos

Puntos de equilibrio

Un número lpha se dice que es punto de equilibrio del SDD $\{I,f\}$ si

$$\alpha = f(\alpha) \ \alpha \in I.$$

Para hallar los puntos de equilibrio simplemente resolvemos la ecuación obtenida de la igualdad $\alpha=f(\alpha)$ y comprobamos si las soluciones pertenecen a I. Hay SDD que no tienen puntos de equilibrio, pero todo aquel en el que I sea cerrado y acotado tiene alguno.

Estabilidad asintótica

Si α es un punto de equilibrio de un SDD $\{I, f\}$ y $f \in C^1(I)$, entonces:

- Si $|f'(\alpha)| < 1$ entonces α es localmente asintóticamente estable.
- Si $|f'(\alpha)| > 1$ entonces α es inestable.

Si $f \in C^3(I)$ y $f'(\alpha) = 1$ entonces:

- Si $f''(\alpha) \neq 0$ entonces α es inestable.
- Si $f''(\alpha) = f'''(\alpha) < 0$ entonces α es localmente asintóticamente estable.
- Si $f''(\alpha) = 0$ y $f'''(\alpha) > 0$ entonces α es inestable.

Ciclos

Un ciclo de orden s o una órbita periódica de periodo s o un s-ciclo del SDD $\{I, f\}$ es un conjunto de puntos $\{\alpha_0, \alpha_1, \dots, \alpha_{s-1}\} \subset I$ distintos entre sí, verificando

$$\alpha_1 = f(\alpha_0), \alpha_2 = f(\alpha_1), \ldots, \alpha_{s-1} = f(\alpha_{s-2}), \alpha_0 = f(\alpha_{s-1})$$

S se llama s se llama periodo de la órbita u orden del ciclo.

Estabilidad de los ciclos

Supongamos $f:I\to I, f\in C^1(I)$ y que $\{\alpha_0,\alpha_1,\ldots,\alpha_{s-1}\}$ es un s-ciclo para el SDD $\{I,f\}$. Entonces:

- Si $|f'(\alpha_0)f'(\alpha_1)\dots f'(\alpha_{s-1})| < 1$ el ciclo es asintóticamente estable.
- Si $|f'(\alpha_0)f'(\alpha_1)\dots f'(\alpha_{s-1})| > 1$ el ciclo es inestable.

Ecuaciones en diferencias lineales de orden superior homogéneas

Dada la ecuación en diferencias lineal homogénea de orden k

$$x_{n+k} + a_{k-1}x_{n+k-1} + \ldots + a_1x_{n+1} + a_0x_n = 0 \ n \ge 0$$

Llamaremos polinomio característico al polinomio:

$$p(\lambda) = \lambda^k + a_{k-1}\lambda^{k-1} + \ldots + a_1\lambda + a_0$$

Sus raíces las llamamos raíces características.

Solución de las ecuaciones lineales en diferencias de orden superior homogéneas

Distinguiremos distintos casos según las raíces del polinomio característico.

k raíces distintas

La solución general vendrá dada por

$$x_n = c_1 \lambda_1^n + c_2 \lambda_2^n + \ldots + c_k \lambda_k^n, \quad c_1, c_2, \ldots c_k \in \mathbb{K}$$

Raíces complejas

Si el polinomio $p(\lambda)$ tiene una raíz compleja λ_* entonces $\overline{\lambda_*}$ también es raíz. Si r es el módulo y θ es el argumento de λ_* (y de $\overline{\lambda_*}$) entonces en la solución general escribiremos en su lugar $r^n cosn\theta$ y $r^n senn\theta$.

Raíces múltiples

Supongamos que el polinomio $p(\lambda)$ tiene r raíces características $\lambda_1,\lambda_2,\ldots,\lambda_r$ de multiplicidades m_1,m_2,\ldots,m_r respectivamente, siendo la suma de las multiplicidades el grado del polinomio. Entonces la solución general será de la forma

$$x_n = \sum_{i=1}^r \lambda_i^n \left(c_{i0} + a_{i1}n + a_{i2}n^2 + \ldots + a_{i,m_i-1}n^{m_i-1} \right)$$

Comportamiento asintótico de las soluciones

Sean $\lambda_1, \lambda_2, \dots, \lambda_s$ las raíces de $p(\lambda)$. Son equivalentes:

- Todas las soluciones de la ecuación lineal en diferencias homogénea verifican $\lim_{n\to\infty} x_n=0$.
- Las raíces verifican $m \dot{a} x_{i=1,...,s} |\lambda_i| < 1$.

El caso k=2

En el caso k=2 las raíces λ_1,λ_2 del polinomio $p(\lambda)=\lambda^2+a_1\lambda+a_0$ verifican $|\lambda_i|<1$ para i=1,2 si y solo si:

$$\begin{cases} p(1) = 1 + a_1 + a_0 > 0 \\ p(-1) = 1 - a_1 + a_0 > 0 \\ p(0) = a_0 < 1 \end{cases}$$

Ecuaciones en diferencias lineales de orden superior completas

Para resolver una ecuación de la forma

$$x_{n+k} + a_{k-1}x_{n+k-1} + \ldots + a_1x_{n+1} + a_0x_n = b(n) \ n \ge 0$$

seguimos los siguientes pasos:

- 1. Buscamos una solución de la ecuación en diferencias homogéna asociada.
- 2. Buscamos una solución particular de la ecuación dada. Dividimos el término b(n) en sumandos para aplicar el *principio de superposición*. En cada caso buscaremos una solución particular del mismo carácter que el término independiente, atendiendo a la siguiente tabla 1 :

$\frac{b(n)}{a^n}$	x_n^p
a ⁿ	c ₁ a ⁿ
n^k	$c_0 + c_1 n + \ldots + c_k n^k$
n ^k a ⁿ	$c_0 a^n + c_1 n a^n + \ldots + c_k n^k a^n$
senbn, cosbn	$c_1 sinbn + c_2 cosbn$
a ⁿ senbn, a ⁿ cosbn	$(c_1 senbn + c_2 cosbn)a^n$
a ⁿ n ^k senbn, a ⁿ n ^k cosbn	$(c_0 + c_1 n + \ldots + c_k n^k) a^n sen(bn)$
	$+(d_0+d_1n+\ldots d_kn^k)a^n\cos(bn)$

 Por último, la solución final es la suma de la solución de la ecuación homogénea más la solución particular de la completa (si teníamos varias, su suma).

¹Elaydi, An Introduction to Difference Equations p. 85