

deer

human

Table of contents

01 Problem description

02 Black Box Model

03 XAI methods

Observations for improvement

Conclusion

Problem Description

Task: Distinguishing dogs between 120 dog breeds

Challenge: Black-box models may provide accurate predictions, but understanding the decision-making process is crucial. Some breeds strictly resemble to each other

Consequences: Misidentification can lead to misinformation or biases impacting animal care and adoption chances

dingo

Why do we make classification?

- Veterinary scenario
- Lost dog is found
- Studies on dog populations
- Dog shows and competitions
- Owner preferences for specific breeds
- For curious pet owners
- Educational tools

How do we make a decision?

Human	Model
Muzzle	?
Head and ear	?
Fur and haircut	?
Size	?
Color (for subbreeds)	?

Black-box

^{* &}lt;a href="https://www.kaggle.com/code/sadikaljarif/dog-breed-identification">https://www.kaggle.com/code/sadikaljarif/dog-breed-identification

Accuracy 67%

Why is it misclassified?

(hypothesis)

Difficult to take into account the size of dog (e.g. toy and standard poodle)

Difficulties with the age of dogs

Similar coloring in different breeds (keeshond and pomeranian)

• • •

XAI methods

LIME(Alexander)

SHAP (Hamid)

Prototype model
(Chris & Florian)

1.0 25 -50 -75 -100 -125 -150 -175 -200 -0 25 50 75 100 125 150 175 200

Grad-CAM

Saliency map and its extensions

(Eva & Yasmine)

They could have been investigated, but fate decreed otherwise

Concept based TREPAN Counterfactual Images

Prototype - PIPNet

- crashed during evaluation
- had bad accuracy
- but outputs decent prototypes and examples

-> no clear result in the end...

LIME

SHAP

SHAP

Saliency mapc

SmoothGrad

Integrated Gradient

Original - bedlington_terrier

Explanations for misclassified instances (SmoothGrad)

Explanations for misclassified instances (Integrated Gradient)

How do we make a decision?

Human	Model
Muzzle	Color
Head and ear	Head (Ear,Eye,Muzzle)
Fur and haircut	Background/Other Objects
Size	Shape
Color (for sub breeds)	Fur and haircut

Observations for improvement

- Work with dogs' sizes and fuzziness
 - e.g.: object detection and cropping beforehand
- Combine Subreeds (and subclassify separately)
- Collect more data for every breed
 - Augmentation
- More domain specific models
- Use other tools and information

Conclusions

- Quality of black-box model is relevant for the quality of explanations
- Prototype, CAV etc. are time consuming to create
- Saliency map works better in its extensions Integrated Gradient, SmoothGrad
- Gained some knowledge about dataset and model improvement

Thank you

