Лабораторная работа №4. Проектирование и применение цифровых КИХ-фильтров

- 1. Теоретические сведения
- 1.1 Основные термины и определения
- 1.2 Классификация цифровых фильтров
- 1.3 Методы расчета цифровых фильтров
- 1.4 Оконный метод
- 1.5 Частотно-избирательные фильтры
- 1.6 Дифференцирующий фильтр
- 1.7 Фильтр Гильберта
- 2. Основное задание
- 2.1 Синтез частотно-избирательных КИХ-фильтров оконным методом
- 2.2 Применение фильтра к сигналу
- 3. Дополнительные задания
- 4. Контрольные вопросы

1. Теоретические сведения

1.1 Основные термины и определения

Цифровые фильтры являются ключевыми компонентами в области цифровой обработки сигналов и используются для выполнения различных задач, таких как выделение сигналов определенной полосы частот, подавление шума и многого другого. Принципы работы цифровых фильтров основаны на математической обработке входных цифровых данных (сигналов) для получения желаемого выходного сигнала.

Цифровые фильтры являются дискретными системами и реализуются в программном или аппаратном обеспечении. Программная реализация может быть выполнена на процессорах общего назначения, цифровых сигнальных процессорах (DSP, Digital Signal Processors) или даже на FPGA (Field-Programmable Gate Arrays). Аппаратная реализация обеспечивает более высокую производительность за счет специализированного оборудования.

Дискретная система - это устройство или программа преобразования одного дискретного сигнала в другой по некоторому закону. У системы есть $\mathit{вхоd}$ и $\mathit{выхod}$ (рисунок 1). На вход поступает одна последовательность отсчетов (например, $\mathit{x}(k)$), в результате обработки сигнала системой на ее выходе формируется другая последовательность отсчетов (например, $\mathit{y}(k)$).

Рисунок 1 - Дискретная система

Принцип применения цифровых фильтров ко входному сигналу описывается *разностным уравнением*:

$$y(k) = b_0 x(k) + b_1 x(k-1) + \ldots + b_m x(k-m) - a_1 y(k-1) - a_2 y(k-2) - \ldots - a_n y(k-n),$$

где b_i и a_j - коэффициенты дискретного фильтра. Формула (1) также называется алгоритмом дискретной фильтрации.

Порядок фильтра - это максимальная используемая при расчетах задержка, то есть max(m,n).

На рисунке 2 приведен пример цифрового фильтра "скользящего" среднего. Для него коэффициенты b_0,\dots,b_3 равны 1/4. Остальные коэффициенты равны нулю. Порядок фильтра равен 3.

Рисунок 2 - Фильтр скользящего среднего

Импульсная характеристика фильтра — это ответ фильтра на входной сигнал, представляющий собой идеальный импульс дельта-функции. Дельта-функция (или единичный импульс) характеризуется значением ноль во всех точках, кроме начала координат, где её значение бесконечно, при этом интеграл от дельта-функции по всей области определения равен единице. В контексте дискретных сигналов дельта-функция представляется как последовательность, где первый элемент равен единице, а все последующие — нулю. Ниже приведен пример, в котором в качестве входного сигнала используется дельта-функция. Таким образом, продемонстрировано, что коэффициенты фильтра соответствуют его импульсной характеристике.

```
In [1]: import numpy as np import matplotlib.pyplot as plt from scipy.signal import lfilter, firwin

# Параметры фильтра numtaps = 29 # Количество коэффициентов (тапов) cutoff = 0.2 # Частота среза (доля от частоты Найквиста)

# Создание коэффициентов КИХ-фильтра coeffs = firwin(numtaps, cutoff)

# Создание дельта-функции (единичного импульса) impulse = np.zeros(100) # Длина вектора больше, чтобы увидеть всю реакцию impulse[0] = 1 # Первый элемент равен 1, остальные - нули

# Применение фильтра к дельта-функции response = lfilter(coeffs, 1.0, impulse)
```

```
# Визуализация
plt.figure(figsize=(16, 4))
plt.subplot(1,2,1)
plt.stem(coeffs)
plt.title('Коэффициенты КИХ-фильтра')
plt.xlabel('Номер отсчета')
plt.ylabel('Амплитуда')
plt.grid(True)

plt.subplot(1,2,2)
plt.stem(response)
plt.title('Импульсная характеристика КИХ-фильтра')
plt.xlabel('Номер отсчета')
plt.ylabel('Амплитуда')
plt.ylabel('Амплитуда')
plt.grid(True)
plt.show()
```


Ответ фильтра на такой сигнал показывает, как фильтр реагирует на внезапное кратковременное изменение входного сигнала и предоставляет полную информацию о характеристиках фильтра. Ведь любой входной сигнал можно представить как сумму сдвинутых и масштабированных импульсов, а выходной сигнал фильтра в этом случае будет являться суммой соответствующих сдвинутых и масштабированных импульсных характеристик. Таким образом, зная импульсную характеристику цифрового фильтра, можно точно предсказать его поведение для любого входного сигнала.

1.2 Классификация цифровых фильтров

Цифровые фильтры классифицируются на основе своей импульсной характеристики на два основных типа: фильтры с конечной импульсной характеристикой (КИХ, FIR - Finite Impulse Response) и фильтры с бесконечной импульсной характеристикой (БИХ, IIR - Infinite Impulse Response).

КИХ-фильтры характеризуются конечной длительностью импульсной характеристики. Это означает, что ответ фильтра на единичный импульс ограничен определенным числом ненулевых значений.

Разностное уравнение для КИХ-фильтра имеет вид:

$$y(k) = b_0 x(k) + b_1 x(k-1) + \dots + b_m x(k-m)$$
(2)

То есть значение любого отсчета выходного сигнала определяется взвешенной суммой предыдущих m отсчетов, где коэффициенты b_i - это веса. Простейшим примером КИХ-фильтра является фильтр скользящего среднего (рисунок 2).

Формула (2) описывает *свертку* входного сигнала с импульсной характеристикой фильтра. Понятие *свертки* уже вводилось в лабораторной работе №3. Формулу (2) можно описать, используя формулу свертки:

$$y(k) = b * x = \sum_{i=0}^{m} b(i) \cdot x(k-i).$$
 (3)

Важными свойствами КИХ-фильтров являются:

- **линейность**: линейная фазовая характеристика, что делает их идеальными для приложений, где важно сохранение формы сигнала;
- *устойчивость*: всегда устойчивы, поскольку их импульсная характеристика ограничена во времени;
- *симметрия*: могут быть симметричными или антисимметричными, что позволяет точно контролировать амплитудно-частотную характеристики.

КИХ-фильтры могут быть реализованы с использованием трех типов элементов:

- умножители на заданный коэффициент;
- сумматоры;
- блоки задержки.

Реализация КИХ-фильтров обычно требует больше вычислительных ресурсов по сравнению с БИХ-фильтрами из-за необходимости обработки большего числа коэффициентов. Поэтому важным критерием в проектировании цифровых устройств является размер импульсной характеристики фильтра (или порядок фильтра). От него напрямую зависит сложность системы и плотность ее вычислительных операций.

БИХ-фильтры характеризуются тем, что их импульсная характеристика теоретически продолжается бесконечно. Эти фильтры могут быть получены путем цифровой аппроксимации аналоговых фильтров. В отличие от КИХ-фильтров, БИХ-фильтры используют один или несколько своих выходов в качестве входа, то есть имеют обратную связь. Математически это означает то, что хотя бы один из коэффициентов a_j в формуле (1) ненулевой. Основные особенности БИХ-фильтров:

- могут иметь как линейную, так и нелинейную фазовую характеристику;
- потенциально могут быть неустойчивымии, что требует тщательного проектирования и анализа;
- обеспечивают более крутые переходы между полосами пропускания и заграждения по сравнению КИХ-фильтрами при использовании меньшего числа коэффициентов, что делает их более эффективными с точки зрения вычислительных ресурсов.

В качестве примеров БИХ-фильтров можно выделить *фильтры Баттерворта*, *фильтры Чебышева*, *фильтры Калмана*, *фильтры Бесселя*, *эллиптические фильтры*.
Простейшим примером БИХ-фильтра является аккумулятор (рисунок 3).

Рисунок 3 - Схема аккумулятора (БИХ-фильтр первого порядка)

1.3 Методы расчета цифровых фильтров

Под проектированием (или *синтезом*) цифрового фильтра понимается нахождение таких коэффициентов b_i и a_j разностного уравнения, при которых характеристики фильтра удовлетворяют заданным требованиям. Если речь идет о цифровой обработке сигналов, то данные требования связаны с частотными характеристиками фильтра: *амплитудно-частотная характеристика* (A4X) и A4X0 и A4X1 и A4X2 и A4X3 и A4X4 и A4X5 и A4X6 и A4X7 и A4X8 и A4X9 и A4X0 и A4X0 и A4X0 и A4X0 и A4X0 и A4X0 и A

Например, для проектирования *фильтра низких частот* (*ФНЧ*) необходимо задать требования к следующим его параметрам:

Рисунок 4 - Параметры, требуемые для проектирования ФНЧ

- ullet $f_{\scriptscriptstyle
 m I}$ частота дискретизации;
- f_{pass} частота *среза* (граница полосы пропускания);
- f_{stop} частота запирания (граница полосы задерживания);
- A_{pass} допустимая неравномерность AЧX в полосе пропускания (как правило задается в децибелах);
- A_{stop} требуемое подавление сигнала в полосе задерживания (как правило задается в децибелах).

Серые области на рисунке 4 демонстрируют допуски, в которые должна укладываться АЧХ фильтра в полосах пропускания и задерживания. Номинальное значение коэффициента передачи фильтра в полосе пропускания, как правило, равно единице (0 дБ).

На рисунке 5 показана схема классификации методов синтеза цифровых фильтров.

Рисунок 5 - Классификация методов синтеза цифровых фильтров

Главное разделение на две категории определяется тем, используется ли при расчете *аналоговый прототип*. Это физически реализуемая аналоговая цепь, на основе которой производится расчет дискретного фильтра, характеристики которого как-то связаны с характеритсиками прототипа.

Данная лабораторная работа связана с использованием *прямых* методов синтеза цифровых фильтров. Эти методы можно разделить на несколько категорий:

- *оптимальные методы*, когда для достижения заданных характеристик фильтра используется математическая задача оптимизации;
- *субоптимальные методы*, не дающие в точности оптимального решения, но позволяющие значительно упростить вычисления по сравнению с оптимальными методами.

1.4 Оконный метод

Этот метод синтеза цифровых фильтров является субоптимальным. Его главная ценность в том, что он дает простую процедуру, пригодную для синтеза любых КИХ-фильтров. Каких-либо ограничений по типам частотных характеристик здесь нет. Идея оконного метода заключается в том, что мы получаем бесконечную импульсную характеристику идеального фильтра, из которой выделяется фрагмент конечной длительности с помощью весовой функции, которая часто называется окном. Простое усечение отсчетов импуьсной характеристики соответствует использованию прямоугольного окна. Примеры наиболее часто используемых оконных функций изображены на рисунке 6.

Рисунок 6 - Примеры оконных функций, используемых при при синтезе цифровых фильтров оконным методом

```
In [2]:
        import numpy as np
        from scipy.signal import firwin2, freqz, windows
        import matplotlib.pyplot as plt
        # Требования:
        # спроектировать ФНЧ с частотой среза, равной 0.5*fн (fн - частота Найквиста), с частотой
        # Порядок фильтра Nf = 20
        # Параметры фильтра
        Nf = 20 + 1 # Количество коэффициентов фильтра (порядок фильтра + 1)
        # Для демонстрации эффекта использования оконных функций рассматриваются 2 примера:
        # - с использованием прямоугольного окна
        # - с использованием окна Хэмминга
        window_types = ['boxcar', 'boxcar', 'hamming']
        num_coefs = [1001, Nf, Nf]
        titles = ['Идеальная АЧХ ФНЧ', 'АЧХ ФНЧ без "взвешивания"', 'АЧХ ФНЧ с окном Хэмминга']
        for i in range(len(window_types)):
            # Создание FIR фильтра низких частот
            filter_coefs = firwin2(num_coefs[i], [0.0, 0.5, 1.0], [1.0, 1.0, 0.0], window=window_t
            # Анализ характеристик фильтра
            w, h = freqz(filter_coefs)
            # Визуализация амплитудной характеристики фильтра
            plt.figure(figsize=(16, 2))
            plt.subplot(1,3,1)
            plt.plot(w/np.pi, abs(h))
            plt.title(titles[i])
            plt.xlabel('Нормированная частота [f/fн]')
            plt.ylabel('Амплитуда')
            plt.grid(True)
            plt.subplot(1,3,2)
```

```
plt.plot(w/np.pi, 20 * np.log10(abs(h)))
plt.title(titles[i])
plt.xlabel('Нормированная частота [f/fн]')
plt.ylabel('Амплитуда (дБ)')
plt.grid(True)

# Визуализация импульсной характеристики фильтра
plt.subplot(1,3,3)
plt.stem(filter_coefs)
plt.title('Импульсная характеристика КИХ-фильтра низких частот')
plt.xlabel('Номер коэффициента')
plt.ylabel('Значение коэффициента')
plt.grid(True)

plt.show()
```


1.5 Частотно-избирательные фильтры

Частотно-избирательные фильтры — это фильтры, которые пропускают сигналы в определенном частотном диапазоне и подавляют сигналы вне этого диапазона. Основные типы частотно-избирательных фильтров:

- 1. **Фильтры низких частот (ФНЧ)**: пропускают сигналы с частотой ниже заданной граничной частоты и подавляют сигналы с частотой выше этой граничной частоты.
- 2. **Фильтры высоких частот (ФВЧ)**: пропускают сигналы с частотой выше заданной граничной частоты и подавляют сигналы с частотой ниже этой граничной частоты.
- 3. **Полосовые фильтры**: пропускают сигналы в определенном диапазоне частот между двумя граничными частотами и подавляют сигналы за пределами этого диапазона.
- 4. **Режекторные (полосно-заграждающие) фильтры**: подавляют сигналы в определенном диапазоне частот между двумя граничными частотами и пропускают сигналы за пределами этого диапазона.

Рисунок 7 - Идеальные амплитудно-частотные характеристики частотно-избирательных фильтров

1.6 Дифференцирующий фильтр

Дифференцирующий фильтр используется для дифференцирования сигналов. Данная задача встречается:

- при построении линейных и угловых скоростей движения разнообразных объектов;
- при создании корректирующих устройств в системах автоматического управления, системах стабилизации положения космических аппаратов и т.д.

Основная идея дифференцирующего фильтра заключается в том, чтобы придать большее значение высокочастотным компонентам входного сигнала по сравнению с низкочастотными. В идеальном случае, дифференцирующий фильтр реализует операцию первой производной. Идеальный дифференцирующий фильтр обладает частотной передаточной функцией вида:

$$H(\omega) = j\omega = \omega e^{j\frac{\pi}{2}},\tag{4}$$

где $\omega = 2\pi f$ - круговая частота. При этом, АЧХ и ФЧХ дифференцирующего фильтра определяются соотношениями:

$$A(\omega) = |\omega|; \Phi(\omega) = \left\{ egin{aligned} -rac{\pi}{2}, \omega < 0 \ 0, \omega = 0 \ rac{\pi}{2}, \omega > 0 \end{aligned}
ight. .$$

На рисунке 8 изображены идеальные частотные характеристики и импульсная характеристика дифференцирующего фильтра.

Рисунок 8 - Идеальные частотные характеристики и импульсная характеристика дифференцирующего фильтра

1.7 Фильтр Гильберта

При модуляции и анализе сигналов огромное прикладное значение имеет *преобразование Гильберта*. Оно используется в задачах, когда необходимо выполнить так называемое *ортогональное дополнение* сигнала. Пусть имеется сигнал s(t), **ортогональным дополнением сигнала** s(t) называется сигнал $s_{\text{орт}}(t)$ такой, что

$$\int\limits_{-\infty}^{+\infty} s(t) \cdot s_{ ext{opt}}(t) dt = 0.$$
 (6)

Получение из этого соотношения сигнала $s_{\rm opt}(t)$ и есть суть преобразования Гильберта. Опустив сложный математически вывод, отметим, что преобразование Гильберта есть результат свертки сигнала s(t) с функцией $h(t)=1/(\pi t)$. h(t) - ни что иное, как импульсная характеристика линейного фильтра, на выходе которого формируется ортогональное дополнение входного сигнала. Такой фильтр называется **фильтром Гильберта**. Частотная характеристика фильтра Гильберта описывается формулой:

$$H(\omega) = -j \cdot sign(\omega), sign(\omega) = \begin{cases} -1, \omega < 0 \\ 0, \omega = 0 \\ 1, \omega > 0 \end{cases}$$
 (7)

Импульсная характеристика фильтра Гильберта в дискретном виде описывается формулой:

$$h(k) = \frac{1}{\pi k} \cdot (1 - \cos(\pi k)). \tag{8}$$

Из формулы 8 видно, что при четном k импульсная характеристика фильтра Гильберта равна нулю, нечетном k: $h(k)=2/(\pi k)$.

Практическим примером ортогонального дополнения сигнала является квадратурная демодуляция (рассматривалась в лабораторной работе №3). Входной сигнал может быть

дополнен квадратурной составляющей (мнимой частью комплексного сигнала), которая ортогональна его синфазной составляющей.

На рисунке 9 изображены идеальные частотные характеристики и импульсная характеристика фильтра Гильберта.

Рисунок 9 - Идеальные частотные характеристики и импульсная характеристика фильтра Гильберта

Для более подробного изучения теории о преобразовании Гильберта с выводом формул и пояснений можно обратиться к источнику.

2. Основное задание

Таблица 1 - Варианты заданий

Номер по списку	Фильтр	fs	f_{pass}	f_{stop}	f_0	F_{pass}	F_{stop}	Окно	Порядок фильтра	Доп. задание
1,9,17,25	ФНЧ	720 Гц	150 Гц	220 Гц	-	-	-	tukey	16	1
2,10,18,26	ФВЧ	720 Гц	220 Гц	150 Гц	-	-	-	hann	18	2
3,11,19,27	Полосовой	720 Гц	-	-	150 Гц	100 Гц	170 Гц	hamming	20	3
4,12,20,28	Режекторный	720 Гц	-	-	150 Гц	170 Гц	100 Гц	blackman	22	4
5,13,21,29	ФНЧ	900 Гц	200 Гц	250 Гц	-	-	-	bartlett	24	1
6,14,22,30	ФВЧ	900 Гц	250 Гц	200 Гц	-	-	-	kaiser	26	2
7,15,23,31	Полосовой	900 Гц	-	-	200 Гц	160 Гц	240 Гц	tukey	30	3
8,16,24,32	Режекторный	900	-	-	200	240	160	hamming	32	4

Номер по списку	Фильтр	fs	f_{pass}	f_{stop}	f_0	F_{pass}	F_{stop}	Окно	Порядок фильтра	Доп. задание
		Гц			Гц	Гц	Гц			

2.1 Синтез частотно-избирательных КИХ-фильтров оконным методом

- 1. Сформировать идеальные частотные характеристики КИХ-фильтра, согласно параметрам по варианту. Количество отсчетов взять достаточно большим (N > 1000). Ниже приведены примеры частотных характеристик ФНЧ.
- 2. Получить идеальную импульсную характеристику фильтра, применив ОБПФ к идеальной частотной характеристике фильтра.
- 3. Сделать "усечение" идеальной импульсной характеристики до размера, равного порядку фильтра + 1. Это необходимо сделать таким образом, чтобы в импульсной характеристике остались значимые отсчеты: нулевой отсчет, order/2 отсчетов из отрицательной области и order/2 отсчетов из положительной области (подобно тому, как мы это делали в лабораторной работе N^2 в задании с комплексной гармонической вырезкой).
- 4. Построить частотные характеристики фильтра, соответствующие усеченной импульсной характеристике.
- 5. Применить оконную функцию к импульсной характеристике (взвешивание). Для этого усеенную импульсную характеристику необходимо поэлементно умножить на массив соответствующей оконной функции нужного размера. Изобразить на графике усеченную импульсную характеристику фильтра до и после взвешивания, а также саму оконную функцию.
- 6. Построить частотные характеристики фильтра, соответствующие усеченной взыешенной импульсной характеристике. Проанализировать результаты и сделать выводы.
- 7. Изучить возможности пакета *scipy.signal.firwin2* для задачи синтеза КИХ-фильтра оконным методом. Синтезировать фильтр, используя функцию *firwin2*.
- 8. Убедиться в идентичности результатов, полученных на этапах 6 и 7.

Рисунок 10 - Пример синтеза ФНЧ

2.2 Применение фильтра к сигналу

- 1. Сформировать сигнал, состоящий из двух гармоник разных амплитуд, как мы это делали в лабораторной работе №2. При этом, одна гармоника должна быть из области частот пропускания вашего КИХ-фильтра, а вторая из области частот запирания.
- 2. Применить разработанный фильтр к сигналу во временной области (исользуя свертку, *np.convolve()*).
- 3. Построить графики сигнала во временной и в частотной областях до и после применения фильтра. Проанализировать результаты и сделать выводы.

3. Дополнительные задания

- 1. Синтезировать *дифференцирующий фильтр* оконным методом одним из способов из задания 2.1. Проверить работу фильтра, применив его к сигналу.
- 2. Синтезировать *фильтр Гильберта* оконным методом одним из способов из задания 2.1. Проверить работу фильтра, применив его к сигналу.
- 3. Написать функцию, реализующую алгоритм свертки. Добиться идентичности результатов с функцией *np.convolve()*.
- 4. В задании 2.2 выполнить фильтрацию в частотной области, используя БПФ, ОДПФ их свойства. Убедиться в идентичности результатов при фильтрации во временной и в частотной областях.

4. Контрольные вопросы

- 1. Что такое динамическая система?
- 2. Что такое цифровой фильтр? Что такое КИХ-фильтр? БИХ-фильтр? В чем их преимущества и недостатки?
- 3. Что такое импульсная характеристика фильтра?
- 4. Что такое синтез цифрового фильтра? Как классифицируются методы синтеза цифровых фильтров?
- 5. Что такое разностное уравнение?
- 6. Что такое порядок фильтра?
- 7. В чем суть оконного метода?
- 8. Какие вы знаете частотно избирательные фильтры?
- 9. Какие идеальные частотные характеристики у фильтра Гильберта? В чем его физический смысл?
- 10. Какие идеальные частотные характеристики у дифференцирующего фильтра? В чем его физический смысл?
- 11. Каким образом можно применить фильтр к сигналу?
- 12. На какие характеристики обращают внимание при проектировании цифровых фильтров? Как устанавливаются требования к этим характеристикам?