```
#multiple linear regression
#multiple number of independent variables
#one dependet variable
#eg predicting the sales of a shope for diff kind of products
#equation is
y=m1x1+m2x2+m3x3...mnxn+c
import numpy as np
import pandas as pd
df=pd.read_csv("/content/Advertising.csv")
```

	TV	Radio	Newspaper	Sales	1	ılı
0	230.1	37.8	69.2	22.1		
1	44.5	39.3	45.1	10.4		
2	17.2	45.9	69.3	12.0		
3	151.5	41.3	58.5	16.5		
4	180.8	10.8	58.4	17.9		
195	38.2	3.7	13.8	7.6		
196	94.2	4.9	8.1	14.0		
197	177.0	9.3	6.4	14.8		
198	283.6	42.0	66.2	25.5		
199	232.1	8.6	8.7	18.4		

200 rows × 4 columns

df.head()

	TV	Radio	Newspaper	Sales	1	ılı
0	230.1	37.8	69.2	22.1		
1	44.5	39.3	45.1	10.4		
2	17.2	45.9	69.3	12.0		
3	151.5	41.3	58.5	16.5		
4	180.8	10.8	58.4	17.9		

df.tail()

	TV	Radio	Newspaper	Sales	1	th
19	5 38.2	3.7	13.8	7.6		
19	6 94.2	4.9	8.1	14.0		
19	7 177.0	9.3	6.4	14.8		
19	8 283.6	42.0	66.2	25.5		
19	9 232.1	8.6	8.7	18.4		

df.columns

```
Index(['TV', 'Radio', 'Newspaper', 'Sales'], dtype='object')
```

df.isna().sum()

0 Radio 0 Newspaper 0 Sales dtype: int64

```
x=df.iloc[:,:-1]
y=df.iloc[:,-1]
```

#seaborn ====>visualization tool
import seaborn as sns
sns.regplot(x=df['TV'],y=y,color='red')

<Axes: xlabel='TV', ylabel='Sales'>

sns.regplot(x=df['Radio'],y=y,color='green')

<Axes: xlabel='Radio', ylabel='Sales'>

sns.regplot(x=df['Newspaper'],y=y,color='blue')

```
<Axes: xlabel='Newspaper', ylabel='Sales'>
```


from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=42) x_train

	TV	Radio	Newspaper	1	ılı
169	284.3	10.6	6.4		
97	184.9	21.0	22.0		
31	112.9	17.4	38.6		
12	23.8	35.1	65.9		
35	290.7	4.1	8.5		
106	25.0	11.0	29.7		
14	204.1	32.9	46.0		
92	217.7	33.5	59.0		
179	165.6	10.0	17.6		
102	280.2	10.1	21.4		

140 rows × 3 columns

```
from sklearn.linear_model import LinearRegression
model=LinearRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
y_pred
```

```
array([17.15991908, 20.53369503, 23.68914396, 9.5191455 , 21.60736836, 12.78101318, 21.08636345, 8.76054246, 17.11499951, 16.68789636, 8.97584663, 8.57645026, 18.33212325, 8.17863567, 12.64605571, 14.94486946, 8.34939536, 17.83858948, 11.12172174, 20.37740648, 20.9483297 , 13.04035779, 11.01360656, 22.51142595, 9.40369784, 7.98591291, 20.86943368, 13.77882255, 10.83407064, 8.00419229, 15.88597618, 10.7027424 , 20.9521718 , 10.84679243, 21.50720813, 21.07347295, 12.22673775, 22.85273767, 12.57698182, 6.54597206, 11.93411853, 15.23490068, 10.07411153, 9.52159696, 17.11786382, 7.28032677, 10.49404864, 15.24356754, 11.20742176, 11.78392665, 14.01472163, 14.59884572, 10.82722434, 9.55839415, 9.03749681, 12.51183313, 10.52551021, 25.01900824, 7.99334943, 15.73916263])
```

```
list(zip(x,model.coef_))
```

df1=pd.DataFrame({'actual value':y_test,'predicted values':y_pred})
df1

th

	actual value	predicted values	**
95	16.9	17.159919	
15	22.4	20.533695	
30	21.4	23.689144	
158	7.3	9.519146	
128	24.7	21.607368	
115	12.6	12.781013	
69	22.3	21.086363	
170	8.4	8.760542	
174	16.5	17.115000	
45	16.1	16.687896	
66	11.0	8.975847	
182	8.7	8.576450	
165	16.9	18.332123	
78	5.3	8.178636	
186	10.3	12.646056	
177	16.7	14.944869	
56	5.5	8.349395	
152	16.6	17.838589	
82	11.3	11.121722	
68	18.9	20.377406	
124	19.7	20.948330	
16	12.5	13.040358	
148	10.9	11.013607	
93	22.2	22.511426	
65	11.3	9.403698	
60	8.1	7.985913	
84	21.7	20.869434	
67	13.4	13.778823	
125	10.6	10.834071	
132	5.7	8.004192	
9	15.6	15.885976	
18	11.3	10.702742	
55	23.7	20.952172	
75	8.7	10.846792	
150	16.1	21.507208	
104	20.7	21.073473	
135	11.6	12.226738	
137	20.8	22.852738	
164	11.9	12.576982	
76	6.9	6.545972	
79	11.0	11.934119	
197	14.8	15.234901	
38	10.1	10.074112	
24	9.7	9.521597	
122	16.6	17.117864	
195	7.6	7.280327 com/drive/1IO15sY	MEO.A.O

```
. .___.
      29
                   10.5
                                10.494049
      19
                   14.6
                                15.243568
     143
                   10.4
                                11.207422
      86
                   12.0
                                11.783927
     114
                   14.6
                                14.014722
                                14.598846
     173
                   16.7
                    7.2
                                10.827224
      5
                    6.6
                                 9.558394
     126
     117
                    9.4
                                 9.037497
      73
                   11.0
                                12.511833
from sklearn.metrics import mean_absolute_error
print('mean absolute error is',mean_absolute_error(y_test,y_pred))
    mean absolute error is 1.1594875061090582
from sklearn.metrics import mean_absolute_percentage_error
print('percentage is',mean_absolute_percentage_error(y_test,y_pred))
    percentage is 0.10536440823029307
from sklearn.metrics import mean_squared_error
print("mean squared error is",mean_squared_error(y_test,y_pred))
    mean squared error is 2.541624036229147
z=mean_squared_error(y_test,y_pred)
print('root mean squared error is',np.sqrt(z))
    root mean squared error is 1.5942471691143587
from sklearn.metrics import r2_score
print('r12 score is',r2_score(y_test,y_pred))
    r12 score is 0.9091484341849799
```

Colab paid products - Cancel contracts here