Hash Tables

Anna Baynes CSC 130

Dictionary Implementations So Far

	Unsorted linked list	Sorted Array	BST	AVL	Splay (amortized)
Insert					
Find					
Delete					

Hash Tables

Constant time accesses!

hash table

• A hash table is an array of some fixed size, usually a prime number.

()

• General idea:

hash function:

h(K)

• • •

key space (e.g., integers, strings)

TableSize −1

Example

- key space = integers
- TableSize = 10

• $h(K) = K \mod 10$

• **Insert**: 7, 18, 41, 94

)	
1	
2	
3	
4	
5	
5	
7	
3	
•	

Another Example

- key space = integers
- TableSize = 6

• $\mathbf{h}(K) = K \mod 6$

• **Insert**: 7, 18, 41, 34

Hash Functions

- 1. simple/fast to compute,
- 2. Avoid collisions
- 3. have keys distributed evenly among cells.

Perfect Hash function:

Sample Hash Functions:

- key space = strings
- $s = s_0 s_1 s_2 \dots s_{k-1}$
- 1. $h(s) = s_0 \mod TableSize$
- 2. $h(s) = \begin{pmatrix} \sum_{i=0}^{k-1} s_i \\ \sum_{i=0}^{k-1} s_i \end{pmatrix} \mod TableSize$
- 3. $h(s) = \left(\sum_{i=0}^{k-1} s_i \cdot 37^{-i}\right) \mod Table Size$

Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:

- 1. Separate Chaining
- 2. Open Addressing (linear probing, quadratic probing, double hashing)

0	
1	
2	
23456	
4	
5	
6	
7	
8	
9	

• Separate chaining: All keys that map to

the same hash value are kept in a list (or "bucket").

Analysis of find

• Defn: The load factor, λ , of a hash table is

the ratio: $\underline{N} \leftarrow \text{no. of elements}$

 $^{\rm M}$ \leftarrow table size

For separate chaining, λ = average # of elements in a bucket

• Unsuccessful find:

• Successful find:

How big should the hash table be?

• For Separate Chaining:

tableSize: Why Prime?

Suppose

data stored in hash table: 7160, 493, 60, 55, 321,900, 810

- tableSize = 10 data hashes to 0, 3, $\underline{0}$, 5, 1, $\underline{0}$, $\underline{0}$
- tableSize = 11 data hashes to 10, 9, 5, 0, 2, $\underline{9}$, 7

Real-life data tends to have a pattern

Being a multiple of 11 is usually *not* the pattern ©

Open Addressing

• Linear Probing: after checking spot h(k), try spot h(k)+1, if that is full, try h(k)+2, then h(k)+3, etc.

Terminology Alert!

"Open Hashing" "Closed Hashing"

equals

equals

Weiss "Separate Chaining" "Open Addressing"

Linear Probing

$$f(i) = i$$

• Probe sequence:

```
0^{th} probe = h(k) mod TableSize

1^{th} probe = (h(k) + 1) mod TableSize

2^{th} probe = (h(k) + 2) mod TableSize

....

i^{th} probe = (h(k) + i) mod TableSize
```

Linear Probing – Clustering

[R. Sedgewick]

Load Factor in Linear Probing

- For any $\lambda < 1$, linear probing will find an empty slot
- Expected # of probes (for large table sizes)
 - successful search: $\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)} \right)$
 - unsuccessful search: $\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)^2} \right)$
- Linear probing suffers from *primary clustering*
- Performance quickly degrades for $\lambda > 1/2$

Quadratic Probing

$$f(i) = i^2$$

Less likely to encounter Primary Clustering

• Probe sequence:

```
0^{th} probe = h(k) mod TableSize

1^{th} probe = (h(k) + 1) mod TableSize

2^{th} probe = (h(k) + 4) mod TableSize

3^{th} probe = (h(k) + 9) mod TableSize

...

i^{th} probe = (h(k) + i^2) mod TableSize
```

Quadratic Probing

0	
1	
2	
2 3	
4 5	
5	
6	
7	
8	
9	

Quadratic Probing Example 6) insert(40) insert(48) insert(5) insert(5)

$$6\%7 = 6$$

$$6\%7 = 6$$

$$76\%7 = 6$$

$$76\%7 = 6$$

$$76\%7 = 6$$

$$76\%7 = 6$$

4

40%7 = 5

$$48\%7 = 6$$

insert(55)

But... $\frac{insert(47)}{47\%7 = 5}$

Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

- If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in size/2 probes or fewer.
 - -show for all $0 \le i,j \le size/2$ and $i \ne j$ $(h(x) + i^2)$ mod $size \ne (h(x) + j^2)$ mod size
 - -by contradiction: suppose that for some $i \neq j$: $(h(x) + i^2) \mod size = (h(x) + j^2)$ mod size
 - \Rightarrow i² mod size = j² mod size

21

Quadratic Probing: Properties

• For any $\lambda < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger λ , quadratic probing may find a slot

- Quadratic probing does not suffer from *primary* clustering: keys hashing to the same *area* are not bad
- But what about keys that hash to the same *spot*?
 - Secondary Clustering!

Double Hashing

$$f(i) = i * g(k)$$
 where g is a second hash function

• Probe sequence:

```
0^{th} probe = h(k) mod TableSize

1^{th} probe = (h(k) + g(k)) mod TableSize

2^{th} probe = (h(k) + 2*g(k)) mod TableSize

3^{th} probe = (h(k) + 3*g(k)) mod TableSize

...

i^{th} probe = (h(k) + i*g(k)) mod TableSize
```

Double Hashing Example

 $h(k) = k \mod 7 \text{ and } g(k) = 5 - (k \mod 5)$

	76		93		40			47		10			55
0		0		0		()		0		()	
1		1		1		,		47	1	47		1	47
2		2	93	2	93	4	2	93	2	93		2	93
3		3		3			3		3	10	•	3	10
4		4		4		4	4		4		4	4	55
5		5		5	40	ļ	5	40	5	40	į	5	40
6	76	6	76	6	76	(6	76	6	76	(6	76
Probes	1		1		1			2		1			2

Resolving Collisions with Double Hashing


```
Hash Functions:

H(K) = K \mod M

H_2(K) = 1 + ((K/M) \mod (M-1))

M =
```

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13

3314743

Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - half full ($\lambda = 0.5$)
 - when an insertion fails
 - some other threshold
- Cost of rehashing?

Java hashCode() Method

- Class Object defines a hashCode method
 - Intent: returns a suitable hashcode for the object
 - Result is arbitrary int; must scale to fit a hash table (e.g. obj.hashCode() % nBuckets)
 - Used by collection classes like HashMap
- Classes should override with calculation appropriate for instances of the class
 - Calculation should involve semantically "significant" fields of objects

hashCode() and equals()

• To work right, particularly with collection classes like HashMap, hashCode() and equals() must obey this rule:

if a.equals(b) then it must be true that a.hashCode() == b.hashCode()

- Why?
- Reverse is not required

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity.

Collision resolution

Collision:

When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution

– Ideas?

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10

Thoughts on chaining

- Worst-case time for find?
 - Linear
 - But only with really bad luck or bad hash function
 - So not worth avoiding (e.g., with balanced trees at each bucket)
- Beyond asymptotic complexity, some "data-structure engineering" may be warranted
 - Linked list vs. array vs. chunked list (lists should be short!)

Time vs. space (constant factors only here)

More Rigorous Chaining Analysis

Definition: The load factor, 2)21, of a hash table is

$$\lambda = \frac{N}{TableSize}$$
 ²/₄ number of elements

Under chaining, the average number of elements per bucket is

So if some inserts are followed by *random* finds, then on average:

Each unsuccessful find compares against _____ items

•

More rigorous chaining analysis

Definition: The load factor, 2)21, of a hash table is

$$\lambda = \frac{N}{TableSize}$$
 ²/₄ number of elements

Under chaining, the average number of elements per bucket is 2)21

So if some inserts are followed by *random* finds, then on average:

• Each unsuccessful find compares against 2)21 items

•

So we like to keep 2/21 fairly low (e.g., 1 or 1.5 or 2) for chaining

```
0
Another simple idea: If h (key) is already full,
 - try (h(key) + 1) % TableSize. If full,
 - try (h(key) + 2) % TableSize. If full,
                                                 2
 - try (h(key) + 3) % TableSize. If full...
                                                 3
                                                 4
Example: insert 38, 19, 8, 109, 10
                                                 5
                                                 6
                                                 8
                                                        38
                                                 9
```

```
Another simple idea: If h (key) is already full,
                                                 0
  - try (h(key) + 1) % TableSize. If full,
  - try (h(key) + 2) % TableSize. If full,
                                                  2
  - try (h(key) + 3) % TableSize. If full...
                                                  3
                                                  4
 Example: insert 38, 19, 8, 109, 10
                                                  5
                                                  6
                                                         38
                                                  8
                                                  9
                                                         19
```

```
0
Another simple idea: If h (key) is already full,
 - try (h(key) + 1) % TableSize. If full,
 - try (h(key) + 2) % TableSize. If full,
                                                 2
 - try (h(key) + 3) % TableSize. If full...
                                                 3
                                                 4
Example: insert 38, 19, 8, 109, 10
                                                 5
                                                 6
                                                        38
                                                 8
                                                 9
                                                        19
```

```
0
Another simple idea: If h (key) is already full,
 - try (h(key) + 1) % TableSize. If full,
                                                        109
 - try (h(key) + 2) % TableSize. If full,
                                                 2
 - try (h(key) + 3) % TableSize. If full...
                                                 3
                                                 4
Example: insert 38, 19, 8, 109, 10
                                                 5
                                                 6
                                                        38
                                                 8
                                                 9
                                                        19
```

```
0
Another simple idea: If h (key) is already full,
 - try (h(key) + 1) % TableSize. If full,
                                                        109
 - try (h(key) + 2) % TableSize. If full,
                                                 2
                                                        10
 - try (h(key) + 3) % TableSize. If full...
                                                 3
                                                 4
Example: insert 38, 19, 8, 109, 10
                                                 5
                                                 6
                                                        38
                                                 8
                                                 9
                                                         19
```

Open addressing

This is one example of open addressing

In general, open addressing means resolving collisions by trying a sequence of other positions in the table.

Trying the next spot is called probing

- We just did linear probing
 - ith probe was (h(key) + i) % TableSize
- In general have some probe function f and use h(key) + f(i) % TableSize

Open addressing does poorly with high load factor 2)21

- So want larger tables
- Too many probes means no more O(1)

Terminology

We and the book use the terms

- "chaining" or "separate chaining"
- "open addressing"

Very confusingly,

- "open hashing" is a synonym for "chaining"
- "closed hashing" is a synonym for "open addressing"

(If it makes you feel any better, most trees in CS grow upside-down □)

Other operations

insert finds an open table position using a probe function

What about find?

- Must use same probe function to "retrace the trail" for the data
- Unsuccessful search when reach empty position

What about delete?

- Must use "lazy" deletion. Why?
 - Marker indicates "no data here, but don't stop probing"
- Note: delete with chaining is plain-old list-remove

(Primary) Clustering

It turns out linear probing is a *bad idea*, even though the probe function is quick to compute (which is a good thing)

Tends to produce clusters, which lead to long probing sequences

- Called primary clustering
- Saw this starting in our example

In a chart

- Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes "large table" but point remains)

• By comparison, chaining performance is linear in $2^{\overline{)21}}$ and has no trouble with $2^{\overline{)21}} > 1$

Quadratic probing

- We can avoid primary clustering by changing the probe function
 (h(key) + f(i)) % TableSize
- A common technique is quadratic probing:

$$f(i) = i^2$$

- So probe sequence is:
 - 0th probe: h(key) % TableSize
 - 1St probe: (h(key) + 1) % TableSize
 - 2nd probe: (h(key) + 4) % TableSize
 - 3rd probe: (h(key) + 9) % TableSize
 - •
 - ith probe: (h(key) + i²) % TableSize
- Intuition: Probes quickly "leave the neighborhood"

0	49
1	
2	58
234	
4	
5 6	
6	
7	
7 8 9	18
9	89

0	49
1	
2	58
2 3 4	79
4	
5	
6	
7	
8	18
9	89

(55 % 7 =

(47 % 7 =

TableSize = 7

55

6)

47

5)

TableSize = 7

TableSize = 7

TableSize = 7

From Bad News to Good News

Bad news:

 Quadratic probing can cycle through the same full indices, never terminating despite table not being full

Good news:

- If TableSize is prime and 2)21 < ½, then quadratic probing will find an empty slot in at most TableSize/2 probes
- So: If you keep $2^{1/2}$ < 1/2 and **TableSize** is *prime*, no need to detect cycles
- Proof in textbook
 - Also, slightly less detailed
 - Key fact: For prime \mathbf{T} and $\mathbf{0} < \mathbf{i}, \mathbf{j} < \mathbf{T}/2$ where $\mathbf{i} \stackrel{4}{4} \mathbf{j}$, $(\mathbf{k} + \mathbf{i}^2) % \mathbf{T} \stackrel{4}{4} (\mathbf{k} + \mathbf{j}^2) % \mathbf{T}$ (i.e., no index repeat)

Clustering reconsidered

- Quadratic probing does not suffer from primary clustering:
 no problem with keys initially hashing to the same neighborhood
- But it's no help if keys initially hash to the same index
 - Called secondary clustering
- Can avoid secondary clustering with a probe function that depends on the key: double hashing...

Double hashing

Idea:

- Given two good hash functions h and g, it is very unlikely that for some key, h(key) == g(key)
- So make the probe function f(i) = i*g(key)

Probe sequence:

```
0<sup>th</sup> probe: h(key) % TableSize
1<sup>st</sup> probe: (h(key) + g(key)) % TableSize
2<sup>nd</sup> probe: (h(key) + 2*g(key)) % TableSize
3<sup>rd</sup> probe: (h(key) + 3*g(key)) % TableSize
...
i<sup>th</sup> probe: (h(key) + i*g(key)) % TableSize
```

Detail: Make sure g (key) cannot be 0

Double-hashing analysis

- Intuition: Because each probe is "jumping" by g (key) each time, we "leave the neighborhood" and "go different places from other initial collisions"
- But we could still have a problem like in quadratic probing where we are not "safe" (infinite loop despite room in table)
 - It is known that this cannot happen in at least one case:
 - h(key) = key % p
 - g(key) = q (key % q)
 - 2 < q < p
 - p and q are prime

Charts

Where are we?

- Chaining is easy
 - find, delete proportional to load factor on average
 - insert can be constant if just push on front of list
- Open addressing uses probing, has clustering issues as table fills
 - Why use it:
 - Less memory allocation?
 - Easier data representation?
- Now:
 - Growing the table when it gets too full ("rehashing")
 - Relation between hashing/comparing and connection to Java

Rehashing

- As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything
- With chaining, we get to decide what "too full" means
 - Keep load factor reasonable (e.g., < 1)?</p>
 - Consider average or max size of non-empty chains?
- For open addressing, half-full is a good rule of thumb
- New table size
 - Twice-as-big is a good idea, except, uhm, that won't be prime!
 - So go about twice-as-big
 - Can have a list of prime numbers in your code since you won't grow more than 20-30 times

More on rehashing

- What if we copy all data to the same indices in the new table?
 - Will not work; we calculated the index based on TableSize
- Go through table, do standard insert for each into new table
 - Run-time?
 - O(n): Iterate through old table
- Resize is an O(n) operation, involving n calls to the hash function
 - Is there some way to avoid all those hash function calls?
 - Space/time tradeoff: Could store h (key) with each data item
 - Growing the table is still O(n); only helps by a constant factor

Equal Objects Must Hash the Same

- The Java library (and your project hash table) make a very important assumption that clients must satisfy...
- Object-oriented way of saying it:

```
If a.equals (b), then we must require
a.hashCode() == b.hashCode()
```

Function-object way of saying it:

```
lf c.compare(a,b) == 0, then we must require
h.hash(a) == h.hash(b)
```

Why is this essential?

Java bottom line

- Lots of Java libraries use hash tables, perhaps without your knowledge
- So: If you ever override equals, you need to override hashCode also in a consistent way
 - See CoreJava book, Chapter 5 for other "gotchas" with equals

By the way: comparison has rules too

We have not empahsized important "rules" about comparison for:

- All our dictionaries
- Sorting (next major topic)

Comparison must impose a consistent, total ordering:

For all a, b, and c,

- If compare (a,b) < 0, then compare (b,a) > 0
- If compare (a,b) == 0, then compare (b,a) == 0

Final word on hashing

- The hash table is one of the most important data structures
 - Supports only find, insert, and delete efficiently
- Important to use a good hash function
- Important to keep hash table at a good size
- What we skipped: Perfect hashing, universal hash functions, hopscotch hashing, cuckoo hashing
- Side-comment: hash functions have uses beyond hash tables
 - Examples: Cryptography, check-sums