

Lab Report – 02

EEE -1103 (Electrical Circuit Lab)

Submitted By: S	Submitted To:
------------------------	----------------------

MD. Marsadul Islam Abdullah Al Shiam

Roll: 09 Lecturer

Dept. of CSE Dept. of CSE

1st Year Sheikh Hasina University

1st Semester Netrokona

Department of Computer Science & Engineering

Sheikh Hasina University Netrokona-2400, Bangladesh

Experiment No.2:

Name of the Exp: Finding the current of the following circuit.

Objective: To find the total current of the given circuit in fig.1 using Ohm's law theoretically and experimentally for the given circuit.

Fig.1

Theory: In this experiment we are using the well-known Ohm's law. Ohm's law states that "the current through a resistor is directly proportional to the voltage across the two points"

That is,
$$I = \frac{V}{R}$$

Apparatus:

- 1. DC power supply
- 2. Resistors
- 3. Digital multi meter
- 4. Bread board
- 5. Connection wire

Procedure:

- 1. Check the values of the resistor using multi-meter (ohm section of multi-meter). Record the values in Table -1.
- 2. Give the connection as per the circuit diagram shown in Fig.1.
- 3. Set a particular value in DC power supply.
- 4. Measure the current in the circuit and record their values in Table -2.
- 5. Sum up the voltmeter readings i.e., voltage drops that should be equal to applied voltage.
- 6. Repeat the same for different voltages if needed.
- 7. Verify Ohm's law for each set of data.

Model Calculation: (For theoretical and measured value)

Theoretical:

Here,
$$V=4.5V$$
 , $R_1=9\Omega$, $R_2=6\Omega$, $R_3=1\Omega$, $R_4=3\Omega$, $R_5=3\Omega$

we need to find, I = ?

Step 1: at first, we need to simplify the circuit. We can do that by merging all the resistance let's start that with R_3 and R_4

 \rightarrow since R_3 and R_4 in series so,

$$R_3 + R_4 = 1\Omega + 3\Omega = 4\Omega$$

 \rightarrow Now R_2 and $R_{(3+4)}$ are in parallel so,

$$\frac{1}{R_2} + \frac{1}{R_{(3+4)}} = \frac{1}{6\Omega} + \frac{1}{4\Omega} = \frac{4+6}{6\times 4} = \frac{6\times 4}{4+6} = 2.4\Omega$$

 \rightarrow Now R_1 , $R_{(2+3+4)}$ and R_5 are in series so,

$$R_1 + R_{(2+3+4)} + R_5 = 9\Omega + 2.4\Omega + 3\Omega = 14.4\Omega$$

Here we've found the total resistance, R_T = 14.4 Ω

Now we can come in the main calculation of determining the current which is,

$$I = \frac{V}{R_T} = \frac{4.5}{14.4} = 0.3125A$$

Measured:

Fig 2.

We find that the measured value for current flowing through is

$$I = 312.50mA = 0.3125A$$

Result:

The result for theoretical and measured value is given below:

Table 1:

Resistors	R_1	R_2	R_3	R_4	R_5
Ohm meter reading	9Ω	6Ω	1Ω	3Ω	3Ω

Table 2:

Serial No.	V(v)	I(A)		
1		TV	MV	
	4.5	0.3125	0.3125	

The theoretical and measured value for this circuit is the same so we can say the main current through the circuit is, I = 0.3125A

Precautions:

- 1. Check for proper connections before switching ON the power supply.
- 2. Take care of the reading the apparatus.
- 3. The terminal of the resistance should be properly connected.