

Model Development Phase Template

Date	16 JULY 2024	
Team ID	SWTID1720075199	
Project Title	Early Prediction of Chronic Kidney Disease Using Machine Learning	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
mext is random forest
from sklearn.ensemble import RandomForestClassifier

rd_clf = RandomForestClassifier(criterion = 'entropy', max_depth = 11, max_features = 'auto', min_samples_leaf = 2, min_samples_split = 3, n_estimators = 130)
rd_clf.fit(X_train, y_train)

# accuracy score, confusion matrix and classification report of random forest

rd_clf_acc = accuracy_score(y_test, rd_clf.predict(X_test))

print(f"Training Accuracy of Random Forest Classifier is (accuracy_score(y_train, rd_clf.predict(X_train)))")

print(f"Test Accuracy of Random Forest Classifier is (rd_clf_acc) \n")

print(f"Confusion Matrix :- \n(confusion_matrix(y_test, rd_clf.predict(X_test)))\n")

print(f"Classification Report :- \n (classification_report(y_test, rd_clf.predict(X_test)))")
```



```
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

xgb = XGBClassifier(objective = 'binary:logistic', learning_rate = 0.5, max_depth = 5, n_estimators = 150)

xgb.fit(X_train, y_train)

# accuracy score, confusion matrix and classification report of xgboost

xgb_acc = accuracy_score(y_test, xgb.predict(X_test))

print(f"Training Accuracy of XgBoost is [accuracy_score(y_train, xgb.predict(X_train))]")

print(f"Test Accuracy of XgBoost is (xgb_acc) \n")

print(f"Confusion Matrix :- \n(confusion_matrix(y_test, xgb.predict(X_test)))\n")

print(f"Confusion Report :- \n (classification_report(y_test, xgb.predict(X_test)))")
```

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
Decision Tree	Classification Report:- precision recall f1-score support 8	94 %	Confusion Matrix :- [[68 4] [3 45]]
Random Forest	Classification Report :- precision recall f1-score support 0 0.96 0.94 0.95 72 1 0.92 0.94 0.93 48 accuracy 0.94 0.94 120 macro ang 0.94 0.94 0.94 120 weighted ang 0.94 0.94 0.99 120	97%	Confusion Matrix :- [[68 4] [3 45]]
Gradient Boosting	Classification Report :- precision recall f1-score support 0 0.99 1.00 0.99 72 1 1.00 0.98 0.99 48 accuracy 0.99 0.99 0.99 120 weighted avg 0.99 0.99 0.99 120	99%	Confusion Matrix :- [[72 0] [1 47]]