Zur Vereinfachung der Schreibweise vereinbaren wir für eine Menge $X\subseteq D$ und ein Element $a\in D$ die folgenden Kurzschreibweisen:

1.
$$X \le a \iff \forall x \in X : x \le a$$
,

$$2. \ a \le X \iff \forall x \in X : a \le x.$$

Definition 1 (Infimum, vollständige Ordnung) Es sei $\langle D, \leq \rangle$ eine lineare Ordnung. Eine Menge $X \subseteq D$ ist *nach unten beschränkt*, falls es ein $u \in D$ gibt, so dass

$$u \leq X$$
.

Ein $i \in D$ ist das *Infimum* einer Menge X, wenn i die größte untere Schranke von X ist, wenn also

$$i \leq X$$
 und $\forall u \in D : u \leq X \rightarrow u \leq i$

gilt. In diesem Fall schreiben wir

$$i = \inf(X)$$
.

Eine lineare Ordnung $\langle D, \leq \rangle$ ist eine *vollständige* Ordnung, wenn jede nicht-leere Menge $X \subseteq D$, die nach unten beschränkt ist, ein Infimum hat.

Definition 2 (Supremum) Es sei $\langle D, \leq \rangle$ eine lineare Ordnung. Eine Menge $X \subseteq D$ ist *nach oben beschränkt*, falls es ein $o \in D$ gibt, so dass

$$X \leq o$$
.

Ein $s \in D$ ist das Supremum einer Menge X, wenn s die kleinste obere Schranke von X ist, wenn also

$$X \le s$$
 und $\forall o \in D : X \le o \rightarrow s \le o$

gilt. In diesem Fall schreiben wir

$$i = \sup(X)$$
.

Aufgabe 1: Es sei $\langle D, \leq \rangle$ eine vollständige Ordnung. Die Menge $X \subseteq D$ sei nicht leer und nach oben beschränkt. Zeigen Sie, dass X dann ein Supremum besitzt.

Lösung: Wir definieren nun O als die Menge der oberen Schranken von X:

$$O := \{ o \in D \mid X \le o \}.$$

Da X nach oben beschränkt ist, ist O sicher nicht leer. Da X nicht leer ist, gibt es ein $x_0 \in X$ und dann gilt

$$x_0 \leq O$$
.

Folglich ist die Menge O durch x_0 nach unten beschränkt. Da O außerdem nicht leer ist, hat O dann ein Infimum, denn $\langle D, \leq \rangle$ ist eine vollständige Ordnung. Wir definieren

$$s := \inf(O)$$
.

Wir werden zeigen, dass auch

$$s = \sup(X)$$

gilt. Dazu sind zwei Bedingungen nachzuweisen.

1. Wir zeigen: s ist eine obere Schranke von X. Dazu ist $X \leq s$ nachzuweisen.

Sei also $x \in X$. Zu zeigen ist $x \leq s$. Wir führen diesen Nachweis indirekt und nehmen s < x an. Aus s < x und $s = \inf(O)$ folgt, dass x keine untere Schranke von O sein kann, denn s ist ja die größte untere Schranke von O. Wir haben also

$$\neg (x \leq O).$$

Folglich existiert ein $o \in O$ mit o < x. Da für alle $o \in O$ nach Definition der Menge O als der Menge der oberen Schranken von X die Ungleichung

$$x \le o$$

gilt, haben wir einen Widerspruch zu der Annahme s < x und folglich muss $x \leq s$ gelten.

2. Wir zeigen: s ist die kleinste obere Schranke von X.

Wir nehmen an, dass o eine weitere obere Schranke von X ist. Wir müssen $s \leq o$ zeigen. Dann gilt offenbar $o \in O$. Da s als das Infimum von O definiert ist, folgt ist, gilt $s \leq O$ und daraus folgt sofort $s \leq o$.