

Chapter 4.2 - FFT Twiddle Rotations and Frequency Bins — A Layman's Guide

1 Digital Samples and Sampling Interval

- · FFT works on N digital samples.
- ΔT = time between consecutive digital samples.
- **Fs** = $1/\Delta T \rightarrow$ sampling frequency.

Key:

- N → number of samples analyzed
- $\Delta T \rightarrow$ spacing between samples, determines frequency resolution
- Total FFT window duration = N * ΔT

2 Rotating Arrows and Twiddle Factor

- Each FFT bin k has a complex arrow that rotates.
- Rotation per sample is determined by the twiddle factor:

$$W^{kn} = e^{-j2\pi kn/N}$$

- Higher k → faster rotation → higher frequency.
- Each sample x[n] scales the arrow; summing all arrows → X[k].

Intuition:

- If the arrow rotation matches the signal frequency → arrows align → strong magnitude.
- If not → arrows cancel → small magnitude.

3 Frequency Comes from Rotation

• Frequency represented by bin k:

$$f = k/(N\cdot \Delta T) = k\cdot Fs/N$$

• Phase progression at sample n:

$$phase = 2\pi f n\Delta T$$

Takeaway:

- $k \rightarrow controls rotation speed \rightarrow higher k = faster rotation$
- n → sample position in the FFT
- $\Delta T \rightarrow$ determines how fast the phase rotates per sample

4 Complex Vector Sum

- X[k] = sum over n of x[n] * W^{kn}
- Magnitude → strength of that frequency
- Phase → timing offset

Tiny imaginary parts in Python output are floating-point noise.

5 Nyquist Limit

- Maximum frequency measurable = Fs / 2 → Nyquist frequency
- Bin N/2 → Nyquist frequency
- Bins above N/2 → mirrored negative frequencies (aliasing if signal exceeds Nyquist)

6 Summary of Variables

Concept	Symbol	Meaning
Digital samples	N	Number of measurements in FFT
Sample interval	ΔΤ	Time between consecutive digital samples
Sampling frequency	Fs	1 / ΔΤ

Concept	Symbol	Meaning
Bin index	k	Frequency being analyzed
Sample index	n	Digital sample position
Frequency	f	Actual frequency represented by bin k
Twiddle factor	W^kn	Rotating arrow for that bin/sample
FFT output	X[k]	Complex sum → magnitude & phase

∀ Head-First Insight:

- Each bin = a **frequency tuner**
- Arrow rotation = how k, n, and ΔT interact to detect that frequency
- FFT bins sum contributions of all samples \rightarrow magnitude and phase
- Maximum measurable frequency = Nyquist (Fs/2)