Accuracy: 95.1% Confusion matrix:

[[1	16	0	0	0	0	0	0	0	0	0]	
1	0	94	0	0	0	0	0	1	0	0]	
[0	1	93	0	0	0	0	1	1	0]	
1	0	1	1	87	0	2	1	3	1	0]	
[0	1	0	0	85	0	0	0	0	7]	
1	0	1	0	2	0	113	1	0	0	1]	
[1	0	0	0	0	2	81	0	0	0]	
[0	1	0	0	1	1	0	93	0	1]	
[0	3	0	3	1	1	2	0	102	0]	
1	1	1	1	0	1	0	1	1	0	87]]	

Per-class pre	ecision	and recall:			
		precision	recall	f1-score	support
	0	0.98	1.00	0.99	116
	1	0.91	0.99	0.95	95
	2	0.98	0.97	0.97	96
	3	0.95	0.91	0.93	96
	4	0.97	0.91	0.94	93
	5	0.95	0.96	0.95	118
	6	0.94	0.96	0.95	84
	7	0.94	0.96	0.95	97
	8	0.98	0.91	0.94	112
	9	0.91	0.94	0.92	93
micro	avg	0.95	0.95	0.95	1000
macro	avg	0.95	0.95	0.95	1000
weighted	avg	0.95	0.95	0.95	1000

Extra Task:

I have tried different k values, range from 1 to 14:

```
1 neighbours selected, the accuracy of the model is 0.953 2 neighbours selected, the accuracy of the model is 0.94 3 neighbours selected, the accuracy of the model is 0.955 4 neighbours selected, the accuracy of the model is 0.953 5 neighbours selected, the accuracy of the model is 0.951 6 neighbours selected, the accuracy of the model is 0.952 7 neighbours selected, the accuracy of the model is 0.95 8 neighbours selected, the accuracy of the model is 0.951 9 neighbours selected, the accuracy of the model is 0.947 10 neighbours selected, the accuracy of the model is 0.946 11 neighbours selected, the accuracy of the model is 0.947 12 neighbours selected, the accuracy of the model is 0.945 13 neighbours selected, the accuracy of the model is 0.945 14 neighbours selected, the accuracy of the model is 0.945 14 neighbours selected, the accuracy of the model is 0.945
```

And I realize, that when k = 3, the model has the highest accuracy, the accuracy drops with larger k values selected, as it is likely to be affected by the outliers.