

COMPORTAMIENTO DE COMPRESOR RECÍPROCO

Fernando Alcaíno Molina.

Profesores:

Cristóbal Galleguillos Ketterer.

Tomás Herrera Muñoz.

- Objetivo general. Analizar el comportamiento del compresor recíproco sometido a distintas condiciones de operación.
- 2. Fórmulas

$$V = 8,62 * \alpha * S * T_a * \sqrt{\frac{H}{T * P_a}}$$

ESTANQUE DE BAJA PRESIÓN

Donde:

V: Capacidad, caudal de aire libre $[m^3/h]$ α = 0,600 coeficiente de caudal del diafragma

S: sección del orificio del diafragma en [cm²], el diámetro del orificio

es de 22 [mm]

Ta: temperatura absoluta de aspiración del compresor [K]
T: Temperatura absoluta del estanque de baja presión [K]

H: presión en el manómetro diferencial [cmagua]

Pa: presión barométrica [cm_{agua}]

Cilindrada:

$$Cl = \frac{1}{4} * \pi * D_{CBP}^2 * L$$

Cl: Cilindrada [m³]

D_{CBP:} Diámetro cilindro de baja presión [m]

L: Carrera [m]

Desplazamiento:

$$Dl = Cl * n$$

Dl: n: Desplazamiento por minuto [m³/min] Velocidad rotacional [rpm]

Rendimiento volumétrico real:

$$\eta_{\rm r} = \frac{\rm V}{60*\rm Dl}*100$$

Rendimiento volumétrico convencional:

$$\eta_{VC} = \left(1 - C\left(r^{\left(\frac{1}{k}\right)} - 1\right)\right) * 100$$

C:

Porcentaje de espacio muerto [-]

$$C = \frac{\text{Volumen espacio Muerto}_{CBP}}{Cl}$$

Rendimiento volumétrico convencional indicado:

$$\eta_{VCI} = \frac{l_{Capacidad}}{l_{Cl}} * 100$$

Presión media Indicada:

$$Pmi = \frac{A_{DICXP}}{L_{DICXp}} * K_{Resorte CXP} [kp/cm^{2}]$$

ADICXP: Área diagrama indicado del cilindro que corresponda [cm²]
LDICXP: Largo diagrama indicado del cilindro que corresponda [cm]

KDICXP: Constante resorte indicador de diagramas del cilindro que

corresponda. [¿?]

Potencia Indicada:

$$Ni_{CXP} = \frac{Pmi_{CXP} * A_{CXP} * L * n * 9,80665}{60 * 1000} [kW]$$

Acxp L Área del cilindro que corresponda [cm²] Carrera del compresor [m]

Corriente media:

$$I = \frac{I_1 + I_2 + I_3}{3} [A]$$

Potencia eléctrica:

$$N_{Elec} = W_1 + W_2 [kW]$$

Caudal de agua:

$$V_{agua} = \frac{10}{\tau} * 60 \text{ [l/min]}$$

Calor transferido:

$$Q = \rho * V_{agua} * c * (t_s - t_E) \text{ [kcal/min]}$$

 ρ Densidad del agua [kg/m³]

c Calor específico del agua [kcal/kg] o [J/kg]

3. Datos.

A Continuación, se presentan los datos obtenidos durante el ensayo.

	Compresor					Estanque de Agua de refrigeración			Motor Eléctrico									
	Presión	resión Velocid Temperatura		baja presión		Tempe	eratura	tiempo	Tensión	Co	orrient	es	Pote	encia				
	Pd	n	tecbp	tsebp	tecap	tecap	tebp	ΔΡ	tea	tsa	10 l	V	I1	12	13	W1	W2	Patm.
	[kp/cm2]	[rpm]	[°C]	[°C]	[°C]	[°C]	[°C]	[mmca]	[°C]	[°C]	[s]	[V]	[A]	[A]	[A]	[kW]	[kW]	[mmHg]
1	7,0	499,3	23	48	27	89	39	514	18	26,5	78	375	17,2	15,9	16	6,53	3,28	760,1
2	6,0	498,7	23	49	27	87	40	544	18,5	26,5	75	375	16,5	15,3	15,4	6,53	3,06	760,1
3	4,9	500,8	23	49	27	77	41	532	18,5	26,5	77	376	15,2	13,9	13,8	5,73	2,7	760,1
4	3,9	503,0	23	50	27	67	40	552	18,5	26,5	76	376	14,1	13,2	13,1	5,33	2,6	760,1
5	2,8	503,4	24	56	27	56	39	562	18,5	26,5	76	376	13,2	12,6	12,1	5	2,4	760,1
6	1,8	505,2	24	56	27	42	37	576	18,5	26,5	74	376	11,9	11,4	11	4,69	2,12	760,1
7	1,0	507,0	23	54	27	31	39	584	18,5	26,5	77	376	10,4	9,9	9,5	4,1	1,64	760,1

4. Tablas de Valores calculados.

Pd	CI	DI	V	ηVR	ηVC
kp/cm²	m³	m³	m³/h	%	%
7	0,002950741	1,47330493	73,47798	83,1214892	90,12547
6	0,002950741	1,47153449	75,47102	85,4788212	91,17414
4,9	0,002950741	1,47773104	74,51504	84,0421767	88,8394
3,9	0,002950741	1,48422267	76,02393	85,3689627	91,48009
2,8	0,002950741	1,48540297	77,09186	86,4993783	89,92942
1,8	0,002950741	1,4907143	78,29753	87,5391637	92,60479
1	0,002950741	1,49602564	78,32169	87,2552895	91,36373

η VCI	PMICBP	PMICAP	ADICBP	ADICAP	NiCBP	
%	kp/cm²	kp/cm²	cm²	cm²	kW	
84,36326	4,718181818	5,05909091	5,19	5,565	3,14626927	
86,35491	4,460909091	4,64727273	4,907	5,112	2,97113504	
85,24314	4,503636364	4,06363636	4,954	4,47	3,01222416	
86,21558	4,293636364	3,37181818	4,723	3,709	2,88438279	
87,02962	4,448181818	2,42181818	4,893	2,664	2,99057978	
88,34349	4,314545455	1,28545455	4,746	1,414	2,91110614	
88,31671	4,004545455	0,46090909	4,405	0,507	2,7115701	

NiCAP	Ni	I	Nelec	Vagua	Q	
kW	kW	A	kW	1/min	kcal/min	
2,58954023	5,7358095	16,3666667	9,81	7,69230769	65,3846154	
2,37588897	5,347024005	15,7333333	9,59	8	64	
2,08625683	5,098480985	14,3	8,43	7,79220779	62,3376623	
1,73868435	4,623067142	13,4666667	7,93	7,89473684	63,1578947	
1,24980817	4,240387944	12,6333333	7,4	7,89473684	63,1578947	
0,66574617	3,576852316	11,4333333	6,81	8,10810811	64,8648649	
0,23955864	2,951128748	9,93333333	5,74	7,79220779	62,3376623	

5.1. Graficar el rendimiento volumétrico real, convencional, convencional indicado y la capacidad, en función de la presión de descarga.

Gráfico 1. Rendimientos y capacidad.

5.1.1. ¿La forma de las curvas es la correcta?

Dentro de ciertos márgenes, las representaciones de las curvas son las correctas tanto en su forma como posición en la que se encuentran en el gráfico.

Dentro de estas podemos mencionar a la curva de rendimiento real que es correcta, tanto en su forma y posición, ya que ésta en comparación al resto va a tomar valores inferiores de rendimiento producto de factores que se mencionará más adelante.

5.1.2 ¿Los valores del rendimiento volumétrico real están en el rango que le corresponde?

Los valores de rendimiento volumétrico real tienden a ser cercanos a un 80% y los datos obtenidos anteriormente arrojan rendimientos que oscilan entre un 82 y 88% por lo que, aunque estén un poco por sobre el valor de 80%, podemos decir que están dentro del rango que corresponde.

5.1.3 ¿Cómo explica las diferencias entre el rendimiento volumétrico real y los otros rendimientos?

En el rendimiento volumétrico real se consideran factores que en el resto como es el volumen del espacio muerto y además se consideran más pérdidas es por esto que en relación al resto, el rendimiento volumétrico real es el más bajo.

5.2 Graficar la temperatura de aspiración y descarga de cada cilindro, en función de la presión de descarga.

Gráfico 2. Temperaturas de aspiración y descargas de cilindro.

5.2.1 ¿La posición relativa de las curvas es la correcta? Si es necesario explique.

La posición relativa de las curvas sí es la correcta dado que las curvas de salida presentan un posición por sobre las de entrada, esto es producto de que las temperaturas de salida o descarga van a ser mayores a las de entrada o aspiración.

5.2.2 ¿Los valores están en el rango que le corresponde?

Los valores, tanto para entrada y salida, son los correctos. En el caso del CAP las temperaturas de salida son mayores con respecto a las de entrada producto de la compresión. En el caso del CBP la de entrada también es menor a la de salida y, en esta curva de salida, la temperatura tienda a mantenerse o bajar ligeramente su temperatura producto de un intercambiador de calor.

5.3 Graficar la potencia indicada de cada cilindro y total; la potencia y la corriente eléctrica, en función de la presión de descarga.

Gráfico 3. potencia indicada de cada cilindro y total, potencia y la corriente eléctrica.

5.3.1 ¿La posición relativa de las curvas es la correcta? Si es necesario explique.

La posición relativas de las curvas si son las correctas. Primero podemos ver que curva de corriente con la de potencia, las cuales tienen el mismo comportamiento creciente esto es debido a que a mayor potencia será necesario una mayor cantidad de intensidad de corriente.

En cuanto a la potencia indicada CBP, se podría decir que se mantiene constante, aunque realmente crece muy poco y para la CAP, esta aumenta progresivamente.

5.3.2 ¿Los valores están en el rango que le corresponde?

Los valores se encuentran dentro del rango que les corresponde tanto en su posición relativa como comportamiento creciente.

5.4. Graficar la temperatura de entrada y salida del agua de refrigeración; el caudal de agua; el calor total de la refrigeración del compresor, en función de la presión de descarga.

Gráfico 4. Temperaturas, caudal y Q refrigerante.

5.4.1 ¿La posición relativa de las curvas es la correcta? Si es necesario explique.

Las posiciones relativas de las curvas son las correctas. Primero podemos observar que las temperaturas de entrada, salida y el caudal del agua se mantienes constantes como se pueden apreciar en la gráfica.

5.4.2 ¿Los valores están en el rango que le corresponde?

Los valores están dentro del rango esperado. Se tiene que las temperaturas de entrada son menores a las de salida, que es lo que se espera. Para el caso del caudal, este se mantiene constante al igual que las curvas de temperatura de entrada y salida. Finalmente, la curva de calor parece la menos constante en comparación al resto, pero aún tiene un comportamiento que está dentro de lo esperable.

5.5 Graficar la relación de compresión de cada cilindro, en función de la presión de descarga.

Gráfico 5. Relación de compresión.

5.5.1 ¿La posición relativa de las curvas es la correcta? Si es necesario explique.

Sí, la posición relativa de las curvas es la correcta. Primero podemos observar la relación de compresión del CAP es creciente y tiene valores mayores al CBP, esto producto del régimen de trabajo mayor al aumentar la presión de descarga. Respecto a CBP, se observa por lo general que tiene un comportamiento constante o que aumenta en poca medida esto es producto de que el ingreso de aire tiende a ser a presión atmosférica.

5.5.2 ¿Los valores están en el rango que le corresponde?

Los valores obtenido no están dentro del rango que corresponde. Por lo general la relación de compresión teórica para este tipo de compresor a una presión de descarga de 7 [bar] corresponde un valor de compresión cercana a 3, en este ensayo se obtuvo un valor un tanto superior a 5, lo que está por sobre lo esperado. Probablemente el motivo de esto puede ser un error de factor humano al momento de realizar las mediciones correspondientes.