Inter (Part-I) 2018

Mathematics	Group-II	PAPER: I
Time: 30 Minutes	(OBJECTIVE TYPE)	Marks: 20

Note: Four possible answers, A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

1-1-
$$2 \sin\left(\frac{P+Q}{2}\right) \cos\left(\frac{P-Q}{2}\right) = ----$$

- (a) sin P + sin Q √ (b) sin P sin Q
- (c) cos P + cos Q (d) cos P cos Q
- With usual notation "Co = : 2-
 - (a) 1 V

(b) 0

(c) n

(d) 2

(a)
$$\sin^{-1}(A\sqrt{1-B^2}-B\sqrt{1-A^2})\sqrt{1-A^2}$$

(b)
$$\sin^{-1}(A\sqrt{1-B^2}+B\sqrt{1-A^2})$$

(c)
$$\cos^{-1}(A\sqrt{1-B^2}-B\sqrt{1-A^2})$$

(d)
$$\cos^{-1}(A\sqrt{1-B^2+B}\sqrt{1-A^2})$$

Values of trigonometric functions of the quadrantal angle 765° are same as of the angle:

(a) 30°

(b) 45° √

(c) 60°

(d) 90°

Solution of cot $\theta = \frac{1}{\sqrt{2}}$ in quadrant-III: 5-

(a) $\frac{5\pi}{4}$

(b) $\frac{7\pi}{6}$

(c) 4x V

(d) x

6-	The sum of coefficients in the binomial expans when $n = 4$ is:		
	(a) 1	(b) 8	
	(c) 16 √	(d) 32	
7-	With usual notation	on, the "circum-radius" R =:	
	(a) $\frac{\Delta}{s}$	(b) $\frac{abc}{4\Delta} \sqrt{}$	
	(c) $\frac{\Delta}{abc}$	(d) $\frac{s}{\Delta}$	
8-	Period of 3 sin 2x is:		
	(a) 6π	(b) 2π	
	(c) π √	(d) $\frac{\pi}{2}$	
9-	Which one is divisible by 2 for all positive integral values of n:		
	(a) $n^3 - n$	(b) $5^{n} - 1 \sqrt{}$	
	(c) $5^n - 2^n$	(d) $n^2 + n$	
	· · ·	$\tan\left(\frac{\beta-\gamma}{2}\right)$	
10-	In law of tangents	\ L /	
	له	$\tan\left(\frac{\beta+\gamma}{2}\right)$	
	(a) $\frac{a-b}{a+b}$	$(B + \gamma)$	
		$\tan\left(\frac{\beta+\gamma}{2}\right)$	
11-	(a) $\frac{a-b}{a+b}$ (c) $\frac{c-b}{c+b}$	$\tan\left(\frac{b+\gamma}{2}\right)$ (b) $\frac{c-a}{c+a}$	
	(a) $\frac{a-b}{a+b}$ (c) $\frac{c-b}{c+b}$	$\tan \left(\frac{b+\gamma}{2}\right)$ (b) $\frac{c-a}{c+a}$ (d) $\frac{b-c}{b+c}$ $\sqrt{}$ root of unity, then $\omega^2 = :$	
	(a) $\frac{a-b}{a+b}$ (c) $\frac{c-b}{c+b}$ If '\omega' be the cube	$\tan \left(\frac{b+\gamma}{2}\right)$ (b) $\frac{c-a}{c+a}$ (d) $\frac{b-c}{b+c}$ $\sqrt{}$ root of unity, then $\omega^2 = :$	
	(a) $\frac{a-b}{a+b}$ (c) $\frac{c-b}{c+b}$ If '\omega' be the cube (a) $\frac{-1-\sqrt{3}i}{2}$ (c) 1	$\tan \left(\frac{b+\gamma}{2}\right)$ $(b) \frac{c-a}{c+a}$ $(d) \frac{b-c}{b+c} \checkmark$ $root of unity, then \omega^2 = : (b) \frac{1-\sqrt{3}i}{2} (d) \frac{1+\sqrt{3}i}{2}$	
11-	(a) $\frac{a-b}{a+b}$ (c) $\frac{c-b}{c+b}$ If '\omega' be the cube (a) $\frac{-1-\sqrt{3}i}{2}$ (c) 1 Multiplicative inv (a) $\frac{3}{34} + \frac{5}{34}i$	tan $\left(\frac{b+\gamma}{2}\right)$ (b) $\frac{c-a}{c+a}$ (d) $\frac{b-c}{b+c}$ $\sqrt{}$ root of unity, then $\omega^2 = :$ (b) $\frac{1-\sqrt{3}i}{2}$ (d) $\frac{1+\sqrt{3}i}{2}$ erse of complex number $-3-5i$ is: (b) $\frac{-3}{34}-\frac{5}{34}i$	
11-	(a) $\frac{a-b}{a+b}$ (c) $\frac{c-b}{c+b}$ If '\omega' be the cube (a) $\frac{-1-\sqrt{3}i}{2}$ (c) 1 Multiplicative inv (a) $\frac{3}{34} + \frac{5}{34}i$	tan $(\frac{b+\gamma}{2})$ (b) $\frac{c-a}{c+a}$ (d) $\frac{b-c}{b+c}$ \checkmark root of unity, then $\omega^2 = :$ (b) $\frac{1-\sqrt{3}i}{2}$ (d) $\frac{1+\sqrt{3}i}{2}$ erse of complex number $-3-5i$ is:	

13-	Simplify form of $\frac{10!}{7!}$ is	Simplify form of $\frac{10!}{7!}$ is equal to:			
	(a) 720 √ (b) (c) 520 (d)) 620) 420			
14-	If matrix $\begin{bmatrix} x & 4 \\ 2 & 8 \end{bmatrix}$ is sin	gular, then x = :			
,	(a) 0 (b) -1			
15-	Geometric mean between				
	(a) 10 (b) (c) $\frac{32}{5}$ (c)) ± 8 √) 64			
16-	Roots of the equation $x^2 - 7x + 10 = 0$ are:				
	(a) (2, -5) (b) (c) (2, 5) √ (d)) (-2, 5)			
17-	Formula for the sum of n terms of A.P. (Arithmetic progression):				
	(a) $a_n = a_1 + (n-1)d$ (b)				
	(c) $s_n = \frac{a_1(1-r^n)}{1-r}$ (d)	$s = \frac{a_1}{1 - r}$			
18-) {4}			
) {4, 6}			
19-	Partial fractions of $\frac{1}{(x^2+1)(x-1)}$ are of the form:				
•		$\frac{A}{x+1} + \frac{B}{(x^2+1)} + \frac{C}{x-1}$			
	(c) $\frac{A}{x^2+1} + \frac{Bx+C}{x-1}$ (d)	$\frac{Ax+B}{x^2+1} + \frac{C}{x-1} $			
20-		A matrix A is said to be symmetric, if:			
		$) A^{t} = A \sqrt{}$			
	(c) $(\overline{A})^t = A$ (d	$(\bar{A})^t = -A$			