Math 711 Study Guide

Dr. Sarah Raynor

April 29, 2012

1 Metric Spaces

1.1 Definition of a Metric Space and Basic Examples

Definition 1.1. A **metric space** is a pair (X, d) where X is a set and $d: X \times X \to \mathbb{R}^+$ is a function with the following properties:

(ia)
$$d(x, y) \ge 0$$
 $\forall x, y \in X$

(ib)
$$d(x, y) = d(y, x)$$
 $\forall x, y \in X$

(ii)
$$d(x,y) = 0 \iff x = y$$

(iii)
$$d(x, z) \le d(x, y) + d(y, z)$$
 $\forall x, y, z \in X$

The function d is called a **metric**, and it is common to refer to "the metric space X", when the definition of d is already understood.

Example 1.1. (Metrics on \mathbb{R} and \mathbb{R}^n)

- 1. The space \mathbb{R} is a metric space with metric d(x,y) = |y-x|.
- 2. The space \mathbb{R}^n is a metric space with metric

$$d_1(x,y) = \sum_{i=1}^n |y_i - x_i|.$$

3. The space \mathbb{R}^n is a metric space with metric

$$d_2(x,y) = ||y - x|| := \sqrt{\sum_{i=1}^n |y_i - x_i|^2}.$$

4. The space \mathbb{R}^n is a metric space with metric

$$d_{\infty}(x,y) = \max_{i=1..n} |y_i - x_i|.$$

5. For p with $1 \leq p < \infty$, the space \mathbb{R}^n is a metric space with the metric

$$d_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}$$

6. The space \mathbb{R} is a metric space with the **discrete metric**

$$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}.$$

Proposition 1.1. (Inequalities)

1. (Young's Inequality): If p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$ and a, b > 0, then

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q.$$

2. (Hölder's Inequality): If p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}}.$$

3. (Minkowski's Inequality): If p > 1 then

$$\left(\sum_{1}^{2}|x_{i}+y_{i}|^{p}\right)^{\frac{1}{p}} \leq \left(\sum_{1}^{2}|x_{i}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{1}^{2}|y_{i}|^{p}\right)^{\frac{1}{p}}.$$

4. (Generalized Hölder's Inequality): If $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$, and $x, y, z \in \mathbb{R}^n$, then

$$\sum_{1}^{n} |x_{i}y_{i}z_{i}| \leq \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_{i}|^{q}\right)^{\frac{1}{q}} \left(\sum_{i=1}^{n} |z_{i}|^{r}\right)^{\frac{1}{r}}$$

1.2 Basic Topological Definitions in a Metric Space

Definition 1.2. (Topology): Suppose that X is a set. A collection \mathcal{U} of subsets of X is called a **topology** on X if

- 1. X and \emptyset are elements of \mathcal{U} .
- 2. Whenever $U_i \in \mathcal{U}$ for $i = 1 \dots n$, then $\bigcap_{i=1}^n U_i \in \mathcal{U}$.
- 3. For any index set A, if $U_{\alpha} \in \mathcal{U}$ for every $\alpha \in A$, then $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{U}$.

If \mathcal{U} is a topology on X, then the elements of \mathcal{U} are called the **open** sets of X.

Definition 1.3. (The Metric Topology): Let (X, d) be a metric space.

- 1. (Open Ball): For $x \in X$ and $\epsilon > 0$, the set $B_{\epsilon}(x) := \{y \in X : d(y, x) < \epsilon\}$ is called the open ball of radius ϵ centered at x.
- 2. (Open Set): A set $U \subset X$ is called **open** if, for every $x \in U$, $\exists \epsilon > 0$ such that $B_{\epsilon}(x) \subset U$.
- 3. (Closed Set): A set $C \subset X$ is called closed if its complement is open in X.
- 4. (Metric Topology): The collection of open sets in a metric space X, as defined above, form a topology on X. This topology is called the **metric topology** on X, or, to be more specific, the **topology induced by the metric** d **on the set** X.

Definition 1.4. (Sequences in Metric Spaces)

- 1. (Sequence): A sequence in a space X is a function from \mathbb{N} to X.
- 2. (Convergent Sequence): A sequence (x_n) in a metric space (X, d) converges if there is an $x \in X$ such that $d(x_n, x) \to 0$. That is, given any $\epsilon > 0$ there is an N > 0 such that $d(x_n, x) < \epsilon$ for all n > N.
- 3. (Bounded Sequence) A sequence in a metric space X is bounded if there exists an open ball B in X such that $x_n \in B$ for all n
- 4. (Cauchy Sequence): A sequence (x_n) in a metric space (X, d) is Cauchy if given any $\epsilon > 0$ there is an N > 0 such that $d(x_n, x_m) < \epsilon \ \forall n, m > N$.
- 5. (Complete Metric Space): A metric space is complete if every Cauchy sequence in the metric space converges (to an object within the metric space).

Example 1.2. (Complete/Not Complete Metric Spaces)

- 1. The metric space \mathbb{Q} is not complete.
- 2. The metric spaces \mathbb{R} and \mathbb{R}^n are complete with the usual Euclidean metric.
- 3. The set (0,1) is not complete w.r.t the standard metric.

Proposition 1.2. (More Properties of Sequences) Let x_n be a sequence in a metric space (X, d).

- 1. If x_n converges in X then x_n is Cauchy.
- 2. If x_n is Cauchy, then x_n is bounded.

Definition 1.5. (Limit/Accumulation Point):

1. (Version 1) Let X be a metric space and let S be a subset of X. We say that $x \in X$ is an accumulation point or limit point of S if, $\forall \epsilon > 0$, $\exists s \in S$ such that $s \neq x$ and $d(s, x) < \epsilon$.

2. (Version 2) Let X be a metric space and let S be a subset of X. We say that $x \in X$ is an **accumulation point** of S if there is a sequence (s_n) of elements of S, none of which equals x, such that $s_n \to x$.

Definition 1.6. (Dense Subset)

- 1. (Version 1): A set C in a metric space X is dense in X if for every $x \in X$ there is a sequence $(c_n) \subset C$ such that $\lim(c_n) = x$.
- 2. (Version 2): A set C is dense in X if given any $x \in X$ and any $\epsilon > 0$ there is a $c \in C$ such that $d(x,c) < \epsilon$.

Example 1.3. (Examples of Dense Subsets of Metric Spaces):

- 1. The set \mathbb{Q} is dense in \mathbb{R} .
- 2. The set of all *n*-tuples of rational numbers is dense in \mathbb{R}^n .
- 3. The set of polynomials is dense in C([0,1])
- 4. Every metric space is isometric to a dense subset of a complete metric
- 5. The set of eventually zero sequences is dense in l^2 space (its completion).

Proposition 1.3. (Limit Point Properties)

- 1. (Closed Sets) A set C in a metric space X is closed if and only if it contains all of its accumulation points.
- 2. (Dense Subsets) A set C is dense in a metric space X if and only if every element of X is an accumulation point of C.

Corollary 1.1. (Closed inherits Completeness) A closed subset of a complete metric space is complete.

Theorem 1.1. (Bolzano-Weierstrass Theorem)

- 1. (Version 1) Every bounded sequence in \mathbb{R}^n has a convergent subsequence.
- 2. (Version 2): Every bounded, infinite subset of \mathbb{R}^n has an accumulation point.

Definition 1.7. (Compactness)

- 1. (Open Cover): Let $K \subset X$. A collection \mathcal{O} of open sets in X is an open cover of K if every point $x \in K$ is in some $U \in \mathcal{O}$.
- 2. (Compact): A set K in the metric space X is compact if every open cover of K has a finite subcover.
- 3. (Sequentially Compact): A set K in the metric space X is sequentially compact if every sequence in K has a subsequence that converges to an element in K.

- 4. (Equivalence of Sequential/Open Cover Compactness): If X is a metric space, then $K \subset X$ is compact if and only if K is sequentially compact.
- 5. (General Topological Spaces) If X is a general topological space (not necessarily a metric space), then we can only say that sequential compactness implies compactness, but not the converse.

Definition 1.8. (Continuity at a point):

- 1. (Sequential continuity): Suppose that X, Y are metric spaces and $f: X \to Y$. Then f is continuous at a point $x_0 \in X$ if given any sequence (x_n) such that $x_n \to x_0$ in X, we have $f(x_n) \to f(x_0)$ in Y.
- 2. **(Epsilon-delta continuity):** Suppose that X, Y are metric spaces and $f: X \to Y$. Then f is **continuous** at a point $x_0 \in X$ if given any $\epsilon > 0$ there is a $\delta > 0$ such that if $d_X(x, x_0) < \delta$ then $d_Y(f(x), f(x_0)) < \epsilon$.

Definition 1.9. (Continuity on a domain):

- 1. (Continuity on X) Suppose that X, Y are metric spaces and $f: X \to Y$. Then f is continuous on X if f is continuous at x for all $x \in X$.
- 2. (Inverse Image) Suppose that X, Y are sets and $f: X \to Y$. Let $U \subset Y$. Then the inverse image of U under f is $f^{-1}(U) := \{x \in X | f(x) \in U\}$.
- 3. (Open-Set Definition) Suppose that X, Y are metric spaces and $f: X \to Y$. Then f is continuous on X if and only if, for every $U \subset Y$ open, $f^{-1}(U)$ is open in X.

Example 1.4. (Discontinuous Functions):

1. (Continuous at only one point): The function $f: \mathbb{R} \to \mathbb{R}$ given by:

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \\ x & \text{if } x \notin \mathbb{Q} \end{cases}$$

is only continuous at x=0.

2. (Discontinuous Everywhere): The function $f: \mathbb{R} \to \mathbb{R}$ given by:

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \\ 1 & \text{if } x \notin \mathbb{Q} \end{cases}$$

is not continuous anywhere.

Theorem 1.2. (Extreme Value Theorem)

- 1. (Continuous Image of Compact Sets) Let X, Y be metric spaces and $f: X \to Y$ be continuous. If X is a compact space, then f(X) is compact.
- 2. (Corollary: Extreme Value Theorem) If X is a compact metric space and $f: X \to \mathbb{R}$ is continuous then f is bounded and attains its minimum and maximum values on X.

1.3 Definition of a Normed Linear Space

Definition 1.10. (Real Vector Space): A set X equipped with two operations $+: X \times X \to X$ (vector addition) and $\cdot: \mathbb{R} \times X \to X$ (scalar multiplication) is called a **real** vector space or **real linear space** if the following properties are satisfied:

- 1. $\forall u, v, w \in X, u + (v + w) = (u + v) + w,$
- 2. $\forall u, v \in X, u + v = v + u$,
- 3. $\exists 0 \in X \text{ such that } v + 0 = v \ \forall v \in X$,
- 4. For every $v \in X$, there exists an element $-v \in X$, called the additive inverse of v, such that v + (-v) = 0,
- 5. $\forall a \in \mathbb{R}, \forall u, v \in X, a(u+v) = au + av,$
- 6. $\forall a, b \in \mathbb{R}, \forall v \in X, (a+b)v = av + bv,$
- 7. $\forall a, b \in \mathbb{R}, \forall v \in X, a(bv) = (ab)v$, and
- 8. 1v = v.

Definition 1.11. (Norm on a Real Vector Space): If X is a real vector space and $\|\cdot\|:X\to\mathbb{R}^+$ satisfies

- (ia) $||x|| \ge 0$ for all $x \in X$
- (ib) ||x|| = 0 if and only if x = 0.
- (ii) $\|\alpha x\| = |\alpha| \|x\|$ for all $x \in X$ and all $\alpha \in \mathbb{R}$
- (iii) (Triangle Inequality) $||x+y|| \le ||x|| + ||y||$ for all $x, y \in X$

then $(X, \|\cdot\|)$ is called a **normed linear space**, and $\|\cdot\|$ is called the **norm** on X.

Definition 1.12. (Banach Spaces) A Banach space is a complete normed linear space.

Example 1.5. (Examples of Banach Spaces):

- 1. \mathbb{R}^n is a Banach space with respect to any l^p norm (including l^{∞}).
- 2. The set of bounded real sequences is a Banach space with respect to the uniform norm.
- 3. The space l^2 is a Banach space w.r.t the l^2 norm.
- 4. The space C([0,1]) is a Banach space w.r.t to the uniform norm.
- 5. The space $C^1([0,1])$ is a Banach space w.r.t to the norm given by:

$$||f|| = ||f||_{\infty} + ||f'||_{\infty}$$

Definition 1.13. (Inner Product Space) An inner product on a real vector space X is a function that takes each ordered pair (u, v) of elements of X to a number $\langle u, v \rangle \in \mathbb{R}$ such that \langle , \rangle has the following properties:

- (ia) (Positivity) $\langle v, v \rangle \geq 0$ for all $v \in X$
- (ib) (Definiteness) $\langle v, v \rangle = 0$ if and only if v = 0.
- (ii) (Homogeneity) $\langle au, v \rangle = a \langle u, v \rangle = \langle u, av \rangle$ for all $u, v \in X$ and all $a \in \mathbb{R}$
- (iiia) (Additivity) $\langle u+w,v\rangle=\langle u,v\rangle+\langle w,v\rangle$ for all $u,v,w\in X$
- (iiib) (Additivity) $\langle u, v + w \rangle = \langle u, v \rangle + \langle uw \rangle$ for all $u, v, w \in X$
- (iv) (Symmetry) $\langle u, v \rangle = \langle v, u \rangle$ for all $u, v \in X$

An inner-product space is a real vector space X with an inner product defined on it.

Definition 1.14. (Norms induced by an Inner Product) If V is an inner product space, then $(V, \|\cdot\|)$ is a normed linear space with $\|x\| = \sqrt{\langle x, x \rangle}$.

Theorem 1.3. (Metrics Induced by Norms) If $(X, ||\cdot||)$ is a normed linear space, then (X, d) is a metric space with d(x, y) = ||x - y||.

Definition 1.15. (Hilbert Space) A complete inner-product space is called a Hilbert Space.

Example 1.6. (Hilbert Spaces)

- 1. The space l^2 is a Hilbert space. It is the only l^p space that is also an inner-product space.
- 2. \mathbb{R}^n is a Hilbert space with the dot product (or Euclidean inner product). This induces the Euclidean norm, Euclidean metric, etc.
- 3. The space L^2 is a Hilbert space with \langle , \rangle given by:

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx$$

Example 1.7. (Metric Spaces that are Not Normed Linear Spaces):

- 1. Let $(X, \|\cdot\|)$ be a normed linear space and d be the metric induced by $\|\cdot\|$. If W is not a subspace of X, then (W, d) is not a normed linear space.
- 2. Any set can be equipped with discrete metric. For example, let $X = \{1, 2, 3\}$ with the metric

$$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}.$$

Definition 1.16. (Equivalent Norms on a Normed Linear Space):

- 1. (Equivalent Norms): Suppose that X is a normed linear space with respect to two different metrics, $\|\cdot\|_1$ and $\|\cdot\|_2$. We say that $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if there exist positive constants c and C such that, for every $x \in X$, $c\|\cdot\|_1 \le \|\cdot\|_2 \le C\|\cdot\|_1$.
- 2. (Topological Properties): Two equivalent norms generate the same topology. That is, if U is open with respect to the topology induced by the first norm, then U is open with respect to the topology induced by the second norm, and vice versa.
- 3. (Equivalence Relation): Suppose that X is a vector space, and let \mathcal{N} be the collection of all norms on X. Then, norm equivalence as defined above is an equivalence relation on \mathcal{N} .

Example 1.8. (Equivalent and Non-Equivalent Norms):

1. The space $C^1([0,1])$ with the sup-norm $||f||_{\infty}$ and the norm given by

$$||f|| = ||f||_{\infty} + ||f'||_{\infty}$$

- 2. The space C([0,1]) with norms $||f||_1 = \int_0^1 |f| dx$ and $||f||_{\infty} = \sup\{|f(x)| : x \in [0,1]\}$
- 3. The space l^2 with norms $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$
- 4. All of the l^p norms on \mathbb{R}^n , $1 \leq p \leq \infty$ are equivalent.
- 5. In a finite-dimensional space, all norms are equivalent.

Proposition 1.4. (Adding Two Norms) If $\|\cdot\|_1$ and $\|\cdot\|_2$ are both norms on a given space X, then $\|\cdot\|_1 + \|\cdot\|_2$ is also a norm on X.

2 Important Examples of Metric Spaces

2.1 The standard metric on \mathbb{R}

Theorem 2.1. (Properties of \mathbb{R}):

- 1. (Normed Vector Space): \mathbb{R} is a vector space and the function $|\cdot|: \mathbb{R} \to \mathbb{R}^+$ is a norm on \mathbb{R} . This is generally called the **standard norm** on \mathbb{R} , and it induces the **standard metric** on \mathbb{R} , which in turn induces the standard topology on \mathbb{R} .
- 2. (Bolzano-Weierstrass Property): Every bounded sequence in \mathbb{R} has a convergent subsequence.
- 3. (Completeness): \mathbb{R} is a complete metric space with respect to the metric induced by the standard norm on \mathbb{R} . \mathbb{R} is a Banach space.
- 4. (Heine-Borel Property): A subset K of \mathbb{R} (equipped with the standard topology) is compact if and only if it is both closed and bounded.
- 5. (Nested Interval Property): If $(I_n)_{n=1}^{\infty}$ is a sequence of nonempty, closed, bounded intervals in \mathbb{R} so that, for each n, $I_n \supset I_{n+1}$, then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

6. (Dense Subset): \mathbb{Q} is dense in \mathbb{R} .

Definition 2.1. (Convergence of Sequences of Functions):

- 1. (Point-wise convergence) Let $K \subset \mathbb{R}$. Suppose that $f_n : K \to \mathbb{R}$ is a function for each n, and that $f : K \to \mathbb{R}$ is another function. We say that $f_n \to f$ point-wise or f_n converges (point-wise) to f if, $\forall x \in K$, $\forall \epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $\forall n > N \mid f_n(x) f(x) \mid < \epsilon$.
- 2. (Uniform convergence) Let $K \subset \mathbb{R}$. Suppose that $f_n : K \to \mathbb{R}$ is a function for each n, and that $f : K \to \mathbb{R}$ is another function. We say that $f_n \to f$ uniformly or f_n converges uniformly to f if $\forall \epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $\forall n > N$, $\forall x \in K$, $|f_n(x) f(x)| < \epsilon$.

Proposition 2.1. (Uniform limit of continuous functions). If each of the f_n is continuous on K and $f_n \to f$ uniformly, then f is continuous.

Corollary 2.1. (Discontinuous Limit) Let f_n be a sequence of continuous functions on K. If f_n converges pointwise to a discontinuous function f, then f_n cannot converge uniformly to f.

Example 2.1. (Sequences of Functions)

- 1. Let $f_n:[0,1]\to\mathbb{R}$ be given by $f_n(x)=x^n$. Each f_n is continuous, however f_n converges point-wise to a discontinuous function.
- 2. The sequence of functions g_n on [0,1] defined by:

$$g_n(x) = \begin{cases} (2x)^n & \text{if } x \le \frac{1}{2} \\ 1 & \text{if } x \ge \frac{1}{2} \end{cases}$$

converges point-wise to discontinuous function.

3. Define $h_n:[0,1]\to\mathbb{R}$ by

$$h_n(x) = \frac{1}{1 + n^2 x^2}$$

 h_n converges point-wise to a discontinuous function

4. Define $f_n:[0,1]\to\mathbb{R}$ by

$$f_n(x) = \frac{1}{n}\sin(nx)$$

then $f_n \to 0$ uniformly on [0, 1].

5. Define $f_n:[0,1]\to\mathbb{R}$ by

$$f_n(x) = \frac{x}{1 + nx^2}$$

then $f_n \to 0$ uniformly on [0,1].

2.2 Generalizing to \mathbb{R}^n

Theorem 2.2. (Properties of \mathbb{R}^n)

- 1. (Normed Linear Space) \mathbb{R}^n is a vector space and the function $\|\cdot\|_2 : \mathbb{R}^n \to \mathbb{R}^+$ is a norm on \mathbb{R}^n . This is generally called the **standard or Euclidean norm** on \mathbb{R}^n , and it induces the **standard or Euclidean metric** on \mathbb{R}^n , which in turn induces the standard topology on \mathbb{R}^n .
- 2. (Convergence) A sequence (x_k) in \mathbb{R}^n converges to x in \mathbb{R}^n if and only if its components (x_{ki}) converge to x_i in \mathbb{R} for each i = 1, ..., n.
- 3. (Bolzano-Weierstrass Property) Every bounded sequence in \mathbb{R}^n has a convergent subsequence.
- 4. (Completeness) \mathbb{R}^n is a complete metric space with respect to the metric induced by the standard norm on \mathbb{R}^n .
- 5. (Heine-Borel Property) A subset K of \mathbb{R}^n is compact if and only if it is both closed and bounded.
- 6. (Dense Subset) \mathbb{Q}^n is dense in \mathbb{R}^n .

2.3 The space of sequences l^2

Definition 2.2. The space l^2 is defined as

$$l^2 := \{(x_n) : \mathbb{N} \to \mathbb{R} | \sum_{n=1}^{\infty} x_n^2 < +\infty \}.$$

This is the space of all sequences of real numbers which are square-summable. The elements of this space are themselves sequences.

Theorem 2.3. (Properties of l^2)

- 1. (Linear Space) The space l^2 is a real vector space with zero vector $0 = (0, 0, 0, \cdots)$, vector addition defined by $(x_n) + (y_n) := (x_n + y_n)$ and scalar multiplication defined by $(\alpha x_n) := \alpha(x_n)$.
- 2. (Inner Product) The function \langle , \rangle given by

$$\langle (x_n), (y_n) \rangle = \sum_{n=1}^{\infty} x_n y_n$$

for all $(x_n), (y_n) \in l^2$ is an inner product on l^2 .

3. (Norm) For $(x_n) \in l^2$, we define the l^2 -norm of (x_n) as

$$\|(x_n)\|_2 := \left(\sum_{n=1}^{\infty} x_n^2\right)^{\frac{1}{2}}.$$

10

- 4. (Completeness) The normed linear space l^2 is complete. That is, l^2 is a Banach space.
- 5. (Infinite-dimensional) l^2 has no finite basis.
- 6. (No Bolzano-Weierstass Property) There exists bounded sequences in l^2 with no convergent subsequence.
- 7. (No Heine-Borel Property) There exists closed and bounded subsets of l^2 that are not compact.

Example 2.2. (Examples/Counterexamples)

- 1. (Bounded, but no Convergent Subsequence) Define the element $e^k \in l^2$ by $e_n^k = 1$ if k = n and 0 otherwise. Notice that (e^k) is a bounded sequence in l^2 because $||e^k||_2 = 1$ for each k. However, if $k \neq j$ then $d_2(e^k, e^j) = \sqrt{2}$. Therefore this sequence cannot have a convergent subsequence.
- 2. (Closed & Bounded, but not Compact) Define $K := \{x \in l^2 : ||x||_2 \le 1\}$ to be the closed unit ball in l^2 . Then K is clearly bounded, and it is also closed. However, it fails to be sequentially compact. For example, the sequence $(e^k)_{k=1}^{\infty}$ defined above is contained in K but has no convergent subsequence.
- 3. (A Compact Subset of l^2) We define the Hilbert cube C to be the collection of sequences of real numbers (x_n) so that, $\forall n \in \mathbb{N}, -\frac{1}{n} \leq x_n \leq \frac{1}{n}$.

2.4 The vector space of continuous functions: C[0,1]

Definition 2.3. The space C([0,1]) is defined as follows:

$$C([0,1]) := \{f : [0,1] \to \mathbb{R} : f \text{ is continuous}\}.$$

C([0,1]) is a real vector space.

Definition 2.4. (Equipping C([0,1]) with the sup-norm (L^{∞}))

- 1. **(The Sup-Norm)** Let $\|\cdot\| : C([0,1]) \to \mathbb{R}$ be given by $\|f\| := \sup\{|f(x)| : x \in [0,1]\}$. Then $(C[0,1], \|\cdot\|)$ is a normed linear space.
- 2. (Cauchy Sequences) We say that a sequence of functions is uniformly Cauchy if, for all $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n, m > N$ and $\forall x \in [0, 1], |f_n(x) f_m(x)| < \epsilon$.
- 3. (Uniform Convergence) Any uniformly Cauchy sequence of functions converges uniformly.
- 4. (Completeness) The space C([0,1]) is complete w.r.t. the uniform norm. Therefore, $(C([0,1]), \|\cdot\|_{\infty})$ is a Banach space.
- 5. (No Bolzano-Weierstrass Property)

Definition 2.5. (Equipping C([0,1]) with the L^2 -norm)

- 1. (Integrability on C([0,1])): All continuous functions are Riemann integrable.
- 2. (Vanishing Property): If $F : [0,1] \to \mathbb{R}$ is continuous and nonnegative, and $\int_0^1 F(x)dx = 0$, then $F \equiv 0$ on [0,1].
- 3. (L²-norm) For $f \in C([0,1])$, define the L²-norm of f as

$$||f||_2 := \left(\int_0^1 |f(x)|^2 dx\right)^{\frac{1}{2}}$$

4. (Hölder's Inequality) For every $f, g \in C([0,1])$,

$$\left| \int_0^1 f(x)g(x)dx \right| \le ||f||_2 ||g||_2.$$

- 5. (Incompleteness) C([0,1]) is not complete with respect to the $\|\cdot\|_2$ -norm topology.
- 6. (No Bolzano-Weierstrass Property)

Example 2.3. (Examples/Counterexamples in C([0,1]))

1. (L²-Cauchy, Not Convergent): Consider the sequence of functions $(f_n)_{n=1}^{\infty}$, where f_n is given by

$$f_n(x) := \begin{cases} (2x)^n & x \le \frac{1}{2} \\ 1 & x \ge \frac{1}{2} \end{cases}.$$

This is an L^2 -Cauchy sequence of elements of C([0,1]), but it does not converge to any element of C([0,1]).

2.

Definition 2.6. (Sequences in C([0,1]))

- 1. (Uniform Boundedness) A set of functions $F \subset C([0,1])$ is uniformly bounded if there is an M > 0 such that, for all $f \in F$, for all $x \in [0,1]$, $|f(x)| \leq M$.
- 2. (Equicontinuity) A set of functions $F \subset C([0,1])$ is equicontinuous at the point $x_0 \in [0,1]$ if given any $\epsilon > 0$ there is a $\delta > 0$ such that if $|x x_0| < \delta$ then $|f(x) f(x_0)| < \epsilon \ \forall f \in F$. We say that F is equicontinuous on [0,1] if F is equicontinuous at every point in [0,1].

Theorem 2.4. (Arzela-Ascoli): Suppose that (f_n) is a uniformly bounded sequence of equicontinuous functions in C([0,1]). Then there exists a subsequence of (f_n) which converges in the L^{∞} -norm.

Corollary 2.2. (Compactness) If $K \subset C([0,1])$ is bounded, closed and equicontinuous, then K is compact.

Definition 2.7. (Precompact) If a set has the property that every sequence in the set has a convergent subsequence (but whose limit is not necessarily in the set itself), then we call that set **precompact**.

Example 2.4. Precompact Sets

- 1. Bounded and equicontinuous sets in C[0,1] are precompact.
- 2. Bounded sets in \mathbb{R}^n are precompact.
- 3. If you add closedness to precompactness then you get compactness.

Corollary 2.3. (Uniformly Bounded Derivatives & Precompactness) If $K \subset C([0,1])$ is a set of uniformly bounded, differentiable functions, and if there is an M > 0 such that $|f'(x)| \leq M$ for all $x \in [0,1]$ and all $f \in K$, then K is precompact in C([0,1]).

Example 2.5. (Equicontinuous, Uniformly Bounded, etc.)

2.5 The space of continuously differentiable functions: $C^1([0,1])$

Our next example is a modification of C([0,1]) allowing for the function to be differentiable:

Definition 2.8. The space $C^1([0,1])$ is defined as follows:

$$C^{1}([0,1]) := \{f : [0,1] \to \mathbb{R} : f \text{ is differentiable on } [0,1] \text{ and } \frac{df}{dx} \in C([0,1])\},$$

Definition 2.9. (Equipping $C^1([0,1])$ with a norm)

- 1. (Real Vector Space) $C^1([0,1])$ is a real vector space.
- 2. (Norm) $C^1([0,1])$ is a normed linear space with the norm defined by:

$$||f|| = ||f||_{\infty} + ||f'||_{\infty}$$

3. (Metrizable) Let $d: C^1([0,1]) \times C^1([0,1]) \to \mathbb{R}$ be given by

$$d(f,g) = ||f - g||_{\infty} + ||f' - g'||_{\infty}$$

- . Then $(C^1([0,1]),d)$ is a metric space, d is the metric induced by $\|\cdot\|$
- 4. (Completeness) $C^1([0,1])$ is complete with respect to d. $C^1([0,1])$ is therefore a Banach space.

Lemma 2.1. Suppose that f is a continuously differentiable function on [0,1], and $\sup_{x\in[0,1]}|f'(x)|=M$. Then, for all $x,y\in[0,1], |f(x)-f(y)|\leq M|x-y|$.

Definition 2.10. ($C^1([0,1])$ with the $W^{1,2}$ -norm) For $f \in C^1([0,1])$, define the $W^{1,2}$ -norm of f as

$$||f||_{1,2} := \left(\int_0^1 |f(x)|^2 dx + \int_0^1 |f'(x)|^2 dx \right)^{\frac{1}{2}}.$$
 (1)

1. (Not Complete) $C^1([0,1])$ is not complete with respect to the $W^{1,2}$ -norm.

3 Several Important Constructions in Metric Spaces

4 The Completion of a Metric Space

Theorem 4.1. (Existence of the Completion \tilde{X}) Let (X,d) be a metric space. Then there exists a complete metric space (\tilde{X},\tilde{d}) , called the **completion** of X, and a natural embedding $i:X\to \tilde{X}$ such that $\forall x,y\in X,\ \tilde{d}(i(x),i(y))=d(x,y)$. Moreover, i(X) is dense in \tilde{X} .

Definition 4.1. (Properties of \tilde{X})

- 1. (Equivalence of Cauchy sequences) Suppose that (p_n) and (q_n) are both Cauchy sequences in X. Then we say that (p_n) is equivalent to (q_n) , denoted $(p_n) \sim (q_n)$, if $\lim_{n\to\infty} d(p_n, q_n) = 0$.
- 2. (Equivalence Relation) Define Y to be the collection of all Cauchy sequences in X, then the relation \sim is an equivalence relation on the set Y.
- 3. (\tilde{X} as a Quotient) Define \tilde{X} to be the quotient of Y by the equivalence relation \sim defined above.
- 4. (The Metric on \tilde{X}) The function $\tilde{d}: \tilde{X} \times \tilde{X} \to \mathbb{R}$ given by

$$\tilde{d}([(p_n)],[(q_n)]) = \lim_{n \to \infty} d(p_n,q_n)$$

is a metric on \tilde{X} .

- 5. (Completeness of \tilde{X}) The metric space (\tilde{X}, \tilde{d}) is complete.
- 6. (Isometry) Let $i: X \to \tilde{X}$ be given by $i(x) = [(x, x, \dots, x, \dots)]$. Then i is an isometry. That is, for every $x, y \in X$, $\tilde{d}(i(x), i(y)) = d(x, y)$.
- 7. (i(X) is dense in \tilde{X}) Every metric space X can be isometrically embedded into its completion. This embedding is dense in \tilde{X} .
- 8. (The Completion of a Complete space) A space X is isometric to \tilde{X} if and only if X is complete.

4.1 The L^p and l^p Spaces

Definition 4.2. (The L^p spaces)

1. The space $L^2([0,1])$ is the completion of C([0,1]) with respect to the metric induced by L^2 -norm:

$$||f||_2 := \left(\int_0^1 |f(x)|^2 dx\right)^{\frac{1}{2}}$$

2. ((Completion of C([0,1]))) The space $L^p([0,1])$ is the completion of C([0,1]) with respect to the metric induced by the L^p -norms:

$$||f||_p = \left(\int_0^1 |f(x)|^p dx\right)^{\frac{1}{p}}.$$
 (2)

- 3. (Completion Metric) $||[(f_n)]||_p := \left(\lim_{n\to\infty} \int_0^1 |f_n(x)|^p dx\right)^{\frac{1}{p}}$ is a norm on $L^p([0,1])$ which generates the metric defined through the completion.
- 4. (Hölder's Inequality) Suppose that p>1 and $\frac{1}{p}+\frac{1}{q}=1$. Let $f\in L^p([0,1])$ and $g\in L^q([0,1])$. Then

$$\int_0^1 |f(x)g(x)| dx \le ||f||_p ||g||_q.$$

5. (Relation of L^p and L^q) Suppose that $1 \leq p < q < \infty$. Then $L^q([0,1]) \subset L^p([0,1])$ and if $f \in L^q([0,1])$, then $||f||_p \leq ||f||_q$.

Definition 4.3. (The l^p spaces)

1. The space l^p is defined as $\{(x_n)_{n=1}^{\infty}|\sum_{n=1}^{\infty}|x_n|^p<+\infty\}$, and equipped with the norm:

$$||(x_n)||_p = (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}}.$$

- 2. (Banach Space) The space $(l^p, ||\cdot||_p)$ is a Banach space.
- 3. (Relation between l^p and l^q) If $1 \le p < q < \infty$, then $l^p \subset l^q$.

Remark 4.1. $(L^p([0,1])$ and $L^p(\mathbb{R}))$ Suppose that p < q. We can construct functions that are in L^p but not L^q and vice versa. Therefore there is no containment result like the ones above. This is because the examples from $L^p([0,1])$ and the examples from l^p are both in play (if defined carefully).

Example 4.1. (Elements of L^p and l^p)

1. (In L^2 but not C([0,1])) Recall the L^2 -Cauchy sequence f_n :

$$f_n(x) := \begin{cases} (2x)^n & x \le \frac{1}{2} \\ 1 & x \ge \frac{1}{2} \end{cases}$$

This sequence converges in L^2 to the function f given by:

$$f(x) := \begin{cases} 0 & x \le \frac{1}{2} \\ 1 & x \ge \frac{1}{2} \end{cases}$$

2. Piece-wise continuous functions are elements of L^2

- 3. (In L^p but not L^q) Suppose $1 \le p < q$, then for α with $\frac{1}{q} < \alpha < \frac{1}{p}$ the function $f(x) = x^{-\alpha}$ is in L^p but not L^q .
- 4. (In l^q but not l^p) Suppose $1 \le p < q$, then for α with $\frac{1}{q} < \frac{1}{\alpha} < \frac{1}{p}$ the sequence (x_n) given by:

$$x_n = n^{-1/\alpha}$$

is in l^q but not l^p .

4.2 The Space $W^{1,2}$

Definition 4.4. (The Space $W^{1,2}$)

1. (The $W^{1,2}$ -norm) Recall that the $W^{1,2}$ -norm on C([0,1]) is given by:

$$||f||_{1,2} := \left(\int_0^1 |f(x)|^2 dx + \int_0^1 |f'(x)|^2 dx\right)^{\frac{1}{2}}$$

2. (The Space $W^{1,2}$) Define

$$W^{1,2}([0,1]) := \text{ the completion of } C^1([0,1]) \text{ with respect to } \| \cdot \|_{W^{1,2}}.$$

- What kind of functions can be in $W^{1,2}$? Functions with bounded derivatives.
- Can a function in $W^{1,2}$ be discontinuous? No, every element is continuous
- ullet Can a function in $W^{1,2}$ have a discontinuous derivative? Yes, but no jump discontinuities
- Can a function in $W^{1,2}$ have a cusp? Yes
- How continuous does a function in $W^{1,2}$ have to be?
- How does this compare to $W^{1,p}$?
- What happens if we require more derivatives?
- What happens if we change our domain from [0,1] to \mathbb{R} ?

5 The Contraction Mapping Principle

Definition 5.1. (Contracting Mappings)

- 1. (Fixed Points) A point $x \in X$ is called a fixed point of a function $f: X \to X$ if f(x) = x.
- 2. (Contraction Mapping) A function $f: X \to X$ is called a contraction mapping if there exists a constant r with $0 \le r < 1$ such that for all $x, y \in X$

$$d(f(x), f(y)) \le r \ d(x, y).$$

3. (Continuity) A contraction mapping on X is clearly continuous on X.

Theorem 5.1 (Contraction Mapping Theorem). Let f be a contraction mapping on a complete nonempty metric space, X. Then f has a unique fixed point.

Corollary 5.1. Let f be a contraction mapping on a complete nonempty metric space X. If x_0 is any point of X, and $x_{n+1} = f(x_n)$ for $n \ge 0$ then the sequence $\{x_n\}$ converges to the fixed point of f.

5.1 Existence and Uniqueness for Solutions to Differential Equations

Definition 5.2. (Ordinary Differential Equations)

1. (Initial Value Problems) The general initial value problem (IVP), can be stated as

$$(IVP): y'(t) = f(y), y(0) = y_0.$$
 (3)

- 2. (Lipschitz Continuous) $f:[a,b] \to \mathbb{R}$ is Lipschitz continuous if there is a k > 0 so that, $\forall x, y \in [a,b], |f(x) f(y)| \le k|x-y|$.
- 3. (Uniformly Lipschitz Continuous) $f:[a,b] \times \mathbb{R} \to \mathbb{R}$ is uniformly Lipschitz continuous if there is a k > 0 so that, $\forall t \in [a,b], \forall x,y \in \mathbb{R}, |f(t,x) f(t,y)| \le k|x-y|$.

Theorem 5.2. (Existence and Uniqueness of Solutions to IVPs) If f is uniformly Lipschitz continuous on an open rectangle containing $(0, y_0)$, then there is an $\epsilon > 0$ and a differentiable function $y \in C^1([0, \epsilon])$ such that y is the unique solution of (3) on $[0, \epsilon]$.

Example 5.1. (Examples of Initial Value Problems)

1. (Has unique solution)

$$y'(t) = (y(t))^2, y(0) = 2.$$

2. (No unique solution)

$$y'(t) = (y(t))^{\frac{1}{2}}, y(0) = 0,$$

6 Function Approximation

Remark 6.1. (Niceness Hierarchy)

- 1. Being infinitely differentiable is nice.
- 2. Being analytic, *i.e.* a power series, is nicer.
- 3. Being a polynomial is perhaps the nicest.
- 4. Every function in C([0,1]) can be approximated to any degree of accuracy by a polynomial

Example 6.1. (Function Approximation) Suppose that we are trying to approximate the discontinuous function

$$f(x) = \begin{cases} 0 & 0 \le x < \frac{1}{2} \\ 1 & \frac{1}{2} \le x \le 1 \end{cases}$$

1. (A L^2 -Cauchy in C([0,1]) that $\to f$.)

$$f_n(x) = \begin{cases} (2x)^n & 0 \le x < \frac{1}{2} \\ 1 & \frac{1}{2} \le x \le 1 \end{cases}.$$

2. (Approximation by Piecewise-Linear Function) A sequence of functions that averages f(x) over over the interval $\left[x - \frac{1}{n}, x + \frac{1}{n}\right]$:

$$g_n(x) = \begin{cases} 0 & 0 \le x < \frac{1}{2} - \frac{1}{n} \\ \frac{n}{2}(x - \frac{1}{2} + \frac{1}{n}) & \frac{1}{2} - \frac{1}{n} \le x < \frac{1}{2} + \frac{1}{n} \\ 1 & \frac{1}{2} + \frac{1}{n} \le x \le 1 \end{cases}$$

Definition 6.1. (Averaging Kernels)

1. (The Average of a Function) Recall from your calculus experience that the average of a function f(x) over an interval [a, b] is given by

$$\frac{1}{b-a}\int_a^b f(x)dx.$$

2. (The Average of a Function on $[x - \frac{1}{n}, x + \frac{1}{n}]$) we can rewrite our formula for $g_n(x)$ from the previous example as:

$$g_n(x) = \frac{n}{2} \int_{x-\frac{1}{x}}^{x+\frac{1}{n}} f(y) dy.$$

3. (The Indicator Function) The indicator function of a set S, denoted by $\chi_S(x)$ is given by:

$$\chi_S(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$$

4. (Rewriting the g_n) We can rewrite g_n again as:

$$\frac{n}{2} \int_{x-\frac{1}{n}}^{x+\frac{1}{n}} f(y) dy = \frac{n}{2} \int_{-\infty}^{\infty} \chi_{[x-\frac{1}{n},x+\frac{1}{n}]} f(y) dy
= \frac{n}{2} \int_{-\infty}^{\infty} \chi_{[-\frac{1}{n},\frac{1}{n}]} (y-x) f(y) dy
= \int_{-\infty}^{\infty} K_n(y-x) f(y) dy,$$

where $K_n(y) := \frac{n}{2} \chi_{[-\frac{1}{n}, \frac{1}{n}]}$

5. (The Convolution Kernel K_n) The K_n is often called the *mollifier* or the *convolution kernel*.

18

The key properties that we abstract from the process above are that

Definition 6.2. (Mollification) A sequence of functions (K_n) are called mollifiers if:

(Nonnegativity): $K_n \geq 0$,

(Unit Area): $\int_{-\infty}^{\infty} K_n(y) dy = 1$, and

(Concentration): $K_n(y)$ concentrates at 0, *i.e.* given any $\delta > 0$, we have

$$\lim_{n \to \infty} \left(\int_{-\infty}^{-\delta} K_n(y) dy + \int_{\delta}^{\infty} K_n(y) dy \right) = 0.$$

Remark 6.2. We will use the formula

$$f_n(x) := (f * K_n)(x) = \int_{-\infty}^{\infty} f(y)K_n(x - y)dy,$$

to create a sequence of approximations.

6.1 Convolution and Mollification

Definition 6.3. (Convolution and Mollifiers)

(Convolution) Suppose that f, g are functions. The convolution of f and g is defined to be

 $f * g(x) := \int_{-\infty}^{\infty} f(y)g(x - y)dy,$

as long as this integral is well-defined.

- **2.** (Integrable) We say that a function $f: \mathbb{R} \to \mathbb{R}$ is integrable if $\int_{-\infty}^{\infty} f(x) dx$ is well-defined and finite.
- 3. (Compact Support) A function $g: \mathbb{R} \to \mathbb{R}$ is called **compactly supported** if $\exists M > 0$ such that g(x) = 0 for every x such that |x| > M.

Lemma 6.1. (Properties of the Convolution) The convolution of f and g satisfies the following properties:

- 1. (Commutativity) f * g(x) = q * f(x).
- 2. (Boundedness) If f is integrable, g is bounded, and the convolution is well-defined, then f * g is bounded.
- 3. (Uniform Continuity) If f is integrable and g is continuous and compactly supported, then f * g is uniformly continuous.
- 4. (Differentiability) If f is integrable and g is continuously differentiable and compactly supported, then f * g is differentiable and (f * g)' = f * (g').

5. (Young's Inequality) If f and g are both integrable functions, then f * g is also integrable, and

$$\int_{-\infty}^{\infty} |f * g(x)| dx \le \left(\int_{-\infty}^{\infty} |f(x)| dx \right) \left(\int_{-\infty}^{\infty} |g(x)| dx \right).$$

Note that the last part of this lemma can be applied repeatedly to obtain higher levels of differentiability for f * g if g is smooth.

Lemma 6.2. (Uniform Convergence) Suppose that f is a bounded, integrable function on \mathbb{R} , and that S is a compact subset of \mathbb{R} on which f is continuous. Then, if K_n is a sequence of convolution kernels satisfying Definition 6.2, the functions $f_n := f * K_n$ converge to f uniformly on S.

6.2 The Weierstrass Approximation Theorem

Theorem 6.1. (Weierstrass Approximation Theorem)

- 1. (Version 1) The set of polynomials is dense in C[0,1].
- 2. (Version 2) Let $f \in C([0,1])$. Then there is a sequence of polynomials (f_n) on [0,1] so that $f_n \to f$ uniformly on [0,1].

Lemma 6.3. (Choosing Mollifiers) Define

$$q_n(x) = \begin{cases} (1 - \frac{x^2}{4})^n & -2 \le x \le 2\\ 0 & |x| > 2 \end{cases},$$

and $c_n := \int_{-\infty}^{\infty} q_n(x) dx$. Then let $p_n(x) = \frac{1}{c_n} q_n(x)$. The (p_n) form a sequence of convolution kernels satisfying the required conditions for mollifiers.

7 Calculus in Normed Vector Spaces

8 Differentiability

8.1 Review of Differentiability on \mathbb{R}^n

Proposition 8.1. (Review of Derivatives)

- 1. (Derivatives of functions on \mathbb{R}) A function $f: \mathbb{R} \to \mathbb{R}$ is differentiable at $x_0 \in \mathbb{R}$ if $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ exists. If so, we define $f'(x_0) = \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$.
- 2. (Little-o) The "little o" notation $o(x-x_0)$ represents an error term with the property that $\lim_{x\to x_0} \frac{o(x-x_0)}{(x-x_0)} = 0$.
- 3. (Alternate definition of derivatives) A function $f: \mathbb{R} \to \mathbb{R}$ is differentiable at x_0 if and only if there is a real number L such that $f(x) = f(x_0) + L(x x_0) + o(x x_0)$. If the number L exists, then we say that L is the derivative of f at x_0 and we write $L = f'(x_0)$.

- 4. (Real-valued functions of n variables) A function $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at \vec{x}_0 if there is a vector $\vec{L} \in \mathbb{R}^n$ such that $f(\vec{x}) = f(\vec{x}_0) + \vec{L} \cdot (\vec{x} \vec{x}_0) + o(\|\vec{x} \vec{x}_0\|)$. If f is differentiable at x_0 , then the function $L(\vec{x}) = f(\vec{x}_0) + \vec{L} \cdot (\vec{x} \vec{x}_0)$ is called the local linear approximation or tangent plane approximation to f at \vec{x}_0 .
- 5. (Directional Derivatives) Let $f : \mathbb{R}^n \to \mathbb{R}$, then the directional derivative of f at $\vec{x_0}$ in the direction of \vec{u} , denoted $D_{\vec{u}}(\vec{x_0})$ is given by:

$$D_{\vec{u}}(\vec{x_0}) = \lim_{h \to 0} \frac{f(\vec{x_0} + h\vec{u}) - f(\vec{x_0})}{h}$$

6. (Partial Derivatives) Let $f: \mathbb{R}^n \to \mathbb{R}$, then the **ith partial derivative** of f at $\vec{x_0}$, denoted $D_i(\vec{x_0})$ or $\frac{\partial f}{\partial x_i}(\vec{x_0})$ is given by:

$$D_i(\vec{x_0}) = \frac{\partial f}{\partial x_i}(\vec{x_0}) = \lim_{h \to 0} \frac{f(\vec{x_0} + h\vec{e_i}) - f(\vec{x_0})}{h}$$

Example 8.1. (Differentiable and Nondifferentiable Functions)

- 1. (Not Differentiable) On \mathbb{R}^2 , the functions f(x,y) = |(|x| |y|)| |x| |y| and $g(x,y) = \frac{3x^2y}{x^2+y^2}$ are not differentiable at (0,0) even though $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial g}{\partial x}$, and $\frac{\partial g}{\partial y}$ all exist (and equal 0) at (0,0).
- 2. (Not Differentiable) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be given by:

$$f(x) = \begin{cases} 0 & \text{if } x = 0 \text{ or } y = 0 \text{ or } z = 0\\ 1 & \text{otherwise} \end{cases}$$

then at (0,0,0), $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} = 0$, but f is not differentiable at x_0 since it is not continuous at (0,0,0).

3. (Differentiable) Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be linear, then we have:

$$\lim_{h \to 0} \frac{|f(x+h) - f(x) - f(h)|}{|h|} = \lim_{h \to 0} \frac{|f(x) + f(h) - f(x) - f(h)|}{|h|} = 0$$

thus f is differentiable with Df(x) = f.

4. **(Differentiable)** Let $g: \mathbb{R}^3 \to \mathbb{R}^3$ be given by $g(x, y, z) = (e^x, e^y, e^z)$ then for each $(a, b, c) \in \mathbb{R}^3$, Df(a, b, c) is given by:

$$Df(a,b,c) = \begin{bmatrix} e^a & 0 & 0\\ 0 & e^b & 0\\ 0 & 0 & e^c \end{bmatrix}$$

21

8.2 Linear Operators on Normed Linear Spaces

Definition 8.1. (Linear Operators) Let X, Y be normed linear spaces. $L: X \to Y$ is a linear operator if

- 1. L(cx) = cL(x) for all $c \in \mathbb{R}$ and all $x \in X$.
- 2. $L(x_1 + x_2) = L(x_1) + L(x_2)$ for all $x_1, x_2 \in X$.

Definition 8.2. (Bounded Linear Operator) Suppose that $L: X \to Y$ is a linear operator as in the previous definition. We say that L is a bounded linear operator if there is a constant c > 0 such that $||Lx||_Y \le c||x||_X$ for all $x \in X$.

Lemma 8.1. (Bounded Operators)

- 1. A linear operator $L: X \to Y$ is bounded if and only if $||L||_{op} := \sup\{||L(x)||_Y : x \in X, ||x||_X = 1\} < +\infty$. If so, then, $\forall x \in X, ||Lx||_Y \le ||L||_{op}||x||_X$.
- 2. If $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear operator, then it is a bounded linear operator.
- 3. A linear operator $L: X \to Y$ is continuous on X if and only if it is bounded.
- 4. A linear operator is continuous at every point in its domain if and only if it is continuous at 0.

Theorem 8.1. Let $\mathcal{B}(X,Y)$ be the set of all bounded linear operators from X to Y. Then $(\mathcal{B}(X,Y),||\cdot||_{op})$ is a normed linear space. If Y is complete, then $\mathcal{B}(X,Y)$ is also complete (and therefore a Banach space).

Example 8.2. (Linear operators)

- 1. (Not Continuous) Let $X = Y = C^{\infty}([0,1]) =$ the space of all infinitely differentiable functions on [0,1]. Equip X with the L^2 norm. Then let $L: X \to Y$ be given by $L(f) = \frac{df}{dx}$. Then L is linear but not continuous.
- 2. (Not Continuous) Let $X = C^1([0,1])$, and Y = C([0,1]) and equip **both** X and Y with the sup-norm. Then let $L: X \to Y$ be given by $L(f) = \frac{df}{dx}$. Then L is linear but not continuous.
- 3. (Differentiation vs Integration) Let $X = C^1([0,1])$, and Y = C([0,1]) and equip both X and Y with the sup-norm. Let $L: X \to Y$ be given by $L(f) = \frac{df}{dx}$ and let $Q: Y \to X$ be given by $Q(f) = \int_0^x f(t)dt$. Both Q and L are linear but not inverses of each other: L(Q(f)) = f but Q(L(f)) = f + C.

8.3 Fréchet Differentiation

Definition 8.3. (Differentiable and Fréchet Differentiable) Let X, Y be normed linear spaces, and let $F: X \to Y$. We say that F is differentiable at $x_0 \in X$ if there is a linear operator $L: X \to Y$ such that $F(x) = F(x_0) + L(x - x_0) + o(x - x_0)$. If such an L exists, then we say the L is the derivative of F at x_0 and write $L = DF(x_0)$. If $L \in \mathcal{B}(X,Y)$, then we say that F is **Fréchet differentiable** at x_0 .

Proposition 8.2. (Properties of Derivatives)

- 1. (Uniqueness) Derivatives are unique.
- 2. (Sums) Suppose that $F, G : X \to Y$ are both differentiable at $x_0 \in X$. Then F+G is differentiable at x_0 with $D(F+G)(x_0) = DF(x_0) + DG(x_0)$.
- 3. (Product Rule) Suppose that $F: X \to Y$ and $f: X \to \mathbb{R}$ are both Fréchet differentiable at x_0 . Then $fF: X \to Y$ is also Fréchet differentiable at x_0 with $D(fF)(x_0) = f(x_0)DF(x_0) + F(x_0)Df(x_0)$.
- 4. (Lipschitz Continuity) If $F: X \to Y$ is differentiable at x_0 , then F is Lipschitz continuous at x_0 . That is, $\exists M > 0$ and $\exists \delta > 0$ so that if $||x x_0||_X < \delta$, then $||F(x) F(x_0)||_Y \le M||x x_0||_X$.
- 5. (Chain Rule) Suppose that $F: X \to Y$ is differentiable at x_0 and that $G: Y \to Z$ is differentiable at $F(x_0)$. Then $G \circ F: X \to Z$ is differentiable at x_0 with

$$D(G \circ F)(x_0) = DG(F(x_0)) \cdot DF(x_0).$$

6. (Quotient Rule) Suppose that $F: X \to Y$ is Fréchet differentiable at x_0 and that $f: X \to \mathbb{R}$ is Fréchet differentiable at x_0 and $f(x_0) \neq 0$. Then $\frac{F}{f}: X \to Y$ is differentiable at x_0 and, for $h \in X$,

$$D\frac{F}{f}(x_0)(h) = \frac{f(x_0)DF(x_0)(h) - Df(x_0)(h)F(x_0)}{f(x_0)^2}.$$

Example 8.3. Let $f: \mathbb{R} \to \mathbb{R}$ be a twice-continuously differentiable function so that f'' is bounded. Then the functional $F: L^2([0,1]) \to \mathbb{R}$ given by $F(u) = \int_0^1 f(u(x)) dx$ is Fréchet differentiable with derivative $DF(u)[h] = \int_0^1 f'(u(x))h(x)dx$.

Example 8.4. Consider $F: L^2([0,1]) \to \mathbb{R}: F(u) = \int_0^1 u^2$. Then F is Fréchet differentiable, and for f in $L^2([0,1]), DF(f)$ is the linear functional from $L^2([0,1])$ to \mathbb{R} given by $DF(f)[h] = \int_0^1 2f(t)h(t)dt \ \forall h \in L^2([0,1])$.

8.4 Taylor's Theorem

Definition 8.4. (Taylor Expansion/Taylor Polynomial) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a k+1 times continuously differentiable function for some $k \geq 1$. Let $x_0 \in \mathbb{R}$, then the **Taylor expansion** of f at x_0 is given by:

$$P_k(x) = \sum_{n=0}^k \frac{f^{(n)}}{n!} (x - x_0)^n$$

Theorem 8.2. (Taylor's Theorem) Let f be C^k in a neighborhood of x_0 . Then $f - P_k = o(\|x - x_0\|^k)$ as $x \to x_0$.

Theorem 8.3. [Taylor's Theorem with Remainder] Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a k+1 times continuously differentiable function for $k \geq 1$. Let $x_0 \in \mathbb{R}$ and let $P_k(x) = \sum_{i=0}^k \frac{f^{(i)}}{i!} (x-x_0)^i$ be the kth Taylor polynomial for f centered at x_0 . Then, for any $x \in \mathbb{R}$,

$$f(x) - P_k(x) = \int_{x_0}^x \frac{f^{k+1}(t)}{k!} (x-t)^k dt.$$

Corollary 8.1. Under the hypotheses of Theorem 8.3, there is some $c \in [x_0, x]$ such that

$$|f(x) - \sum_{i=0}^{k} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i| \le \frac{|f^{k+1}(c)|}{(k+1)!} |x - x_0|^{k+1}.$$

8.5 A Detour into \mathbb{R}^n

Lemma 8.2. (The Jacobian Matrix) If $F: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at x_0 , then $DF(x_0)$ can be represented by a Jacobian matrix $\left[\frac{\partial F_i}{\partial x_j}\right]$:

$$DF(x_0) = \begin{bmatrix} \nabla F_1(x_0) \\ \vdots \\ \nabla F_m(x_0) \end{bmatrix} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1}(x_0) & \cdots & \frac{\partial F_1}{\partial x_m}(x_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1}(x_0) & \cdots & \frac{\partial F_m}{\partial x_m}(x_0) \end{bmatrix}$$

Theorem 8.4. (Mean Value Theorem): Assume that $f: X \to \mathbb{R}$ is differentiable. Given any $x_1, x_2 \in X$ there is a $c \in (0,1)$ such that $f(x_2) - f(x_1) = Df(x_1 + c(x_2 - x_1))(x_2 - x_1)$.

Theorem 8.5. (Continuous Partial Derivatives) If the first partial derivatives of $f: \mathbb{R}^n \to \mathbb{R}^m$ exist and are continuous on a neighborhood of x_0 , then f is differentiable at x_0 .

Definition 8.5. (Difference Quotient) Define the difference quotient $D_{i,h}f_k(\vec{x})$ by:

$$D_{i,h}f_k(\vec{x}) = \frac{f_k(\vec{x_0} + h\vec{e_i}) - f(\vec{x_0})}{h}$$

Note that if we take $h \to 0$, $D_{i,h}f_k(\vec{x}) \to D_i f_k(\vec{x})$.

Theorem 8.6. (Equality of Mixed Partials) If the second partial derivatives of f: $\mathbb{R}^n \to \mathbb{R}^m$ exist and are continuous on a neighborhood of x_0 , then $\frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x_0)$.

Theorem 8.7. (Mean Value Inequality:) Assume that $f: X \to Y$ is Fréchet differentiable. Given any $x_1, x_2 \in X$, set $M := \sup\{||Df(x_1 + t(x_2 - x_1))||_{op} : 0 \le t \le 1\}$. Then

$$||f(x_2) - f(x_1)||_Y \le M||x_2 - x_1||_X$$

Example 8.5. Consider the function $\vec{f}: \mathbb{R} \to \mathbb{R}^2$ given by $f(t) = \langle \cos(t), \sin(t) \rangle$. Does the mean value theorem hold for $x_1 = 0$ and $x_2 = 2\pi$?

Example 8.6. Give an example of a continuously differentiable function from \mathbb{R}^2 to itself and points \vec{x}_1, \vec{x}_2 for which the mean value theorem is not satisfied. Compute the Jacobian matrix of your example function. Demonstrate that the mean value inequality is satisfied.

9 The Inverse and Implicit Function Theorems

Proposition 9.1. (Inverse Functions in $C^1(\mathbb{R})$) Assume that $f \in C^1(\mathbb{R})$ and $x_0 \in \mathbb{R}$ with $f'(x_0) \neq 0$. Then there is an interval containing x_0 such that f is invertible from that interval to its image. Further, the inverse f^{-1} is continuously differentiable.

Definition 9.1. Suppose that $f: X \to Y$. We say that $f \in C^1(X;Y)$, or f is C^1 , if, $\forall x \in X$, f is Fréchet differentiable at x, and, moreover, Df(x) is continuous as a function of x. That is, $\forall x_0 \in X$, $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\|x - x_0\|_X < \delta$ implies that $\|Df(x) - Df(x_0)\|_{oper} < \epsilon$.

Theorem 9.1. Inverse Function Theorem: Assume that X and Y are Banach spaces and that $f \in C^1(X;Y)$. Suppose $x_0 \in X$. If $Df(x_0)$ is invertible, then there are neighborhoods U of x_0 and V of $y_0 = f(x_0)$ such that $f: U \to V$ is an invertible function with $f^{-1} \in C^1(V;U)$.

Theorem 9.2. Let $F: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ be continuously differentiable and suppose that $D_{\vec{x}}F(\vec{x}_0,\lambda_0)$ is an invertible map in $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^n)$. Then there is an $\epsilon > 0$ and a C^1 function $\vec{x}: (\lambda_0 - \epsilon, \lambda_0 + \epsilon) \to \mathbb{R}^n$ such that $F(\vec{x}(\lambda), \lambda) = F(\vec{x}_0, \lambda_0)$ for all $\lambda \in (\lambda_0 - \epsilon, \lambda_0 + \epsilon)$.