Generated on 2025-02-07 10:15:37 by gEcon version 1.2.1 (2023-01-18)

Model name: RSW

1 HIGHREGIME

1.1 Optimisation problem

$$\max_{p\!i\!H_t,y\!H_t,i\!H_t} U\!H_t = -0.5 \left(p\!i\!t\!H - p\!i\!t\!C\!B + p\!i\!H_t \right)^2 + \beta \left(p\!H\!\,\mathbf{E}_t \left[U\!H_{t+1} \right] + (1-p\!H) \,\mathbf{E}_t \left[U\!L_{t+1} \right] \right) - 0.5\kappa\theta^{-1}y\!H_t^{\ 2} \tag{1.1}$$

s.t.:

$$piH_{t-1} = \log etapi_{t-1} + \beta \left(pHpiH_t + piL_t (1 - pH) \right) + \kappa yH_{t-1} \quad \left(\lambda_t^{\text{HIGHREGIME}^1} \right)$$

$$(1.2)$$

$$yH_{t-1} = \log \log_{t-1} + pHyH_t - \sigma \left(iH_{t-1} - pHpiH_t - piL_t (1 - pH)\right) + yL_t (1 - pH) \quad \left(\lambda_t^{\text{HIGHREGIME}^2}\right)$$

$$\tag{1.3}$$

1.2 First order conditions

$$-ptH + ptCB - ptH_t + \beta pH\lambda_t^{\mathrm{HIGHREGIME}^1} - \beta pH\mathrm{E}_t \left[\lambda_{t+1}^{\mathrm{HIGHREGIME}^1}\right] + pH\sigma\lambda_t^{\mathrm{HIGHREGIME}^2} = 0 \quad (ptH_t) \tag{1.4}$$

$$pH\lambda_{t}^{\text{HIGHREGIME}^{2}} + \beta pH\left(\kappa E_{t} \left[\lambda_{t+1}^{\text{HIGHREGIME}^{1}}\right] - E_{t} \left[\lambda_{t+1}^{\text{HIGHREGIME}^{2}}\right]\right) - \kappa \theta^{-1} yH_{t} = 0 \quad (yH_{t})$$

$$(1.5)$$

$$-\beta p H \sigma \mathcal{E}_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^2} \right] = 0 \quad (iH_t)$$
 (1.6)

2 LOWREGIME

2.1 Optimisation problem

$$\max_{p\!i\!L_t, y\!L_t, i\!L_t} U\!L_t = -0.5 \left(-p\!i\!t\!C\!B + p\!i\!t\!L + p\!i\!L_t \right)^2 + \beta \left(p\!L\!E_t \left[U\!L_{t+1} \right] + (1 - p\!L) E_t \left[U\!H_{t+1} \right] \right) - 0.5\kappa\theta^{-1} y\!L_t^2$$

$$\tag{2.1}$$

s.t.

$$piL_{t-1} = \log etapi_{t-1} + \beta \left(pLpiL_t + piH_t \left(1 - pL \right) \right) + \kappa yL_{t-1} \quad \left(\lambda_t^{\text{LOWREGIME}^1} \right)$$
(2.2)

$$yL_{t-1} = \log \log_{t-1} + pLyL_t - \sigma \left(iL_{t-1} - pLpiL_t - piH_t \left(1 - pL\right)\right) + yH_t \left(1 - pL\right) \quad \left(\lambda_t^{\text{LOWREGIME}^2}\right)$$

$$(2.3)$$

2.2 First order conditions

$$\textit{pitCB} - \textit{pitL} - \textit{piL}_t + \beta \textit{pL}\lambda_t^{\text{LOWREGIME}^1} - \beta \textit{pLE}_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1} \right] + \textit{pL}\sigma\lambda_t^{\text{LOWREGIME}^2} = 0 \quad (\textit{piL}_t) \tag{2.4}$$

$$pL\lambda_t^{\text{LOWREGIME}^2} + \beta pL \left(\kappa E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1}\right] - E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2}\right]\right) - \kappa \theta^{-1} yL_t = 0 \quad (yL_t)$$
(2.5)

$$-\beta pL\sigma E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2} \right] = 0 \quad (iL_t)$$
 (2.6)

3 EXOG

3.1 Identities

$$e^{tapi_t} = e^{\epsilon_t^{\pi} + \phi \log e^{tapi_{t-1}}} \tag{3.1}$$

$$dag_t = e^{\epsilon_t^{\rm g} + phig\log dag_{t-1}} \tag{3.2}$$

4 Equilibrium relationships (after reduction)

$$-\operatorname{dispi}_{t} + e^{\epsilon_{t}^{\pi} + \phi \log \operatorname{dispi}_{t-1}} = 0 \tag{4.1}$$

$$-\operatorname{diag}_{t} + e^{\epsilon_{t}^{\mathrm{g}} + \operatorname{phiglog}\operatorname{diag}_{t-1}} = 0 \tag{4.2}$$

$$pH\lambda_t^{\text{HIGHREGIME}^2} + \beta pH\left(\kappa E_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^1}\right] - E_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^2}\right]\right) - \kappa \theta^{-1} yH_t = 0$$

$$(4.3)$$

$$pL\lambda_t^{\text{LOWREGIME}^2} + \beta pL\left(\kappa E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1}\right] - E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2}\right]\right) - \kappa \theta^{-1} yL_t = 0$$
(4.4)

$$-piH_{t-1} + \log etapi_{t-1} + \beta (pHpiH_t + piL_t (1 - pH)) + \kappa yH_{t-1} = 0$$
(4.5)

$$-piL_{t-1} + \log etapi_{t-1} + \beta (pLpiL_t + piH_t (1 - pL)) + \kappa yL_{t-1} = 0$$
(4.6)

$$UH_{t} + 0.5 \left(pitH - pitCB + piH_{t} \right)^{2} - \beta \left(pHE_{t} \left[UH_{t+1} \right] + (1 - pH) E_{t} \left[UL_{t+1} \right] \right) + 0.5 \kappa \theta^{-1} yH_{t}^{2} = 0$$

$$(4.7)$$

$$UL_{t} + 0.5\left(-pitCB + pitL + piL_{t}\right)^{2} - \beta\left(pLE_{t}\left[UL_{t+1}\right] + (1 - pL)E_{t}\left[UH_{t+1}\right]\right) + 0.5\kappa\theta^{-1}yL_{t}^{2} = 0$$

$$(4.8)$$

$$-yH_{t-1} + \log e \log_{t-1} + pHyH_t - \sigma (iH_{t-1} - pHpiH_t - piL_t (1 - pH)) + yL_t (1 - pH) = 0$$

$$(4.9)$$

$$-yL_{t-1} + \log \log_{t-1} + pLyL_t - \sigma (iL_{t-1} - pLpiL_t - piH_t (1 - pL)) + yH_t (1 - pL) = 0$$

$$(4.10)$$

$$-p\!i\!H + p\!i\!C\!B - p\!i\!H_t + \beta p\!H \lambda_t^{\mathrm{HIGHREGIME}^1} - \beta p\!H\!\mathrm{E}_t \left[\lambda_{t+1}^{\mathrm{HIGHREGIME}^1} \right] + p\!H \sigma \lambda_t^{\mathrm{HIGHREGIME}^2} = 0 \tag{4.11}$$

$$pi\!\!\!/\!\!\!/ CB - pi\!\!\!/\!\!\!/ L - pi\!\!\!/\!\!\!/ L_t + \beta p\!\!\!/ L \lambda_t^{\rm LOWREGIME^1} - \beta p\!\!\!/ L E_t \left[\lambda_{t+1}^{\rm LOWREGIME^1} \right] + p\!\!\!/ L \sigma \lambda_t^{\rm LOWREGIME^2} = 0 \tag{4.12}$$

$$-\beta p H \sigma \mathcal{E}_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^2} \right] = 0 \tag{4.13}$$

$$-\beta p L \sigma \mathcal{E}_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2} \right] = 0 \tag{4.14}$$

2

5 Steady state relationships (after reduction)

$$-dqp_{ss} + e^{\phi \log dqq_{ss}} = 0 \tag{5.1}$$

$$-dqp_{ss} + e^{phip \log dqp_{ss}} = 0 \tag{5.2}$$

$$pH\lambda_{ss}^{\text{HIGHREGIME}^2} + \beta pH \left(-\lambda_{ss}^{\text{HIGHREGIME}^2} + \kappa\lambda_{ss}^{\text{HIGHREGIME}^1}\right) - \kappa\theta^{-1}yH_{ss} = 0 \tag{5.3}$$

$$pL\lambda_{ss}^{\text{LOWREGIME}^2} + \beta pL \left(-\lambda_{ss}^{\text{LOWREGIME}^2} + \kappa\lambda_{ss}^{\text{LOWREGIME}^1}\right) - \kappa\theta^{-1}yL_{ss} = 0 \tag{5.4}$$

$$-piH_{ss} + \log dqp_{ss} + \beta (pHpiH_{ss} + piL_{ss}(1-pH)) + \kappa yH_{ss} = 0 \tag{5.5}$$

$$-piL_{ss} + \log dqp_{iss} + \beta (pLpiL_{ss} + pH_{ss}(1-pL)) + \kappa yL_{ss} = 0 \tag{5.6}$$

$$UH_{ss} + 0.5 (pitH - pitCB + piH_{ss})^2 - \beta (pHUH_{ss} + UL_{ss}(1-pH)) + 0.5\kappa\theta^{-1}yH_{ss}^2 = 0 \tag{5.7}$$

$$UL_{ss} + 0.5 (-pitCB + pitL + pL_{ss})^2 - \beta (pLUL_{ss} + UH_{ss}(1-pL)) + 0.5\kappa\theta^{-1}yL_{ss}^2 = 0 \tag{5.8}$$

$$-yH_{ss} + \log dq_{ss} + pHyH_{ss} - \sigma (iH_{ss} - pHpiH_{ss} - piL_{ss}(1-pH)) + yL_{ss}(1-pH) = 0 \tag{5.9}$$

$$-yL_{ss} + \log dq_{ss} + pLyL_{ss} - \sigma (iH_{ss} - pLpiL_{ss} - piH_{ss}(1-pL)) + yH_{ss}(1-pL) = 0 \tag{5.10}$$

$$-piH + pitCB - piH_{ss} + pH\sigma\lambda_{ss}^{\text{HIGHREGIME}^2} = 0 \tag{5.12}$$

$$-\beta pH\sigma\lambda_{ss}^{\text{HIGHREGIME}^2} = 0 \tag{5.13}$$

$$-\beta pH\sigma\lambda_{ss}^{\text{LOWREGIME}^2} = 0 \tag{5.14}$$

6 Parameter settings

ಬ

$$eta = 0.99$$
 (6.1)
 $\kappa = 0.2465$ (6.2)
 $\phi = 0.95$ (6.3)
 $phig = 0.99$ (6.4)
 $pitH = 0$ (6.5)
 $pitCB = 0$ (6.6)
 $pitL = 2$ (6.7)
 $pH = 0.99$ (6.8)
 $pL = 0.99$ (6.9)
 $\sigma = 1$ (6.10)
 $\theta = 6$ (6.11)

7 Steady-state values

	Steady-state value
etapi	1
etag	1
$i\!H$	-0.0224
iL	-1.9776
$\lambda^{ m HIGHREGIME^1}$	0.0137
$\lambda^{ m HIGHREGIME^2}$	0
$\lambda^{ ext{LOWREGIME}^1}$	-0.0275
$\lambda^{ ext{LOWREGIME}^2}$	0
piH	0
piL	-2
$y\!H$	0.0803
yL	-0.1615
UH	-0.0266
UL	-0.0402

8 The solution of the 1st order perturbation

Matrix P

	$etapi_{t-1}$	$etag_{t-1}$	$i\!H_{t-1}$	iL_{t-1}	$p\!i\!H_{t-1}$	$p\!i\!L_{t-1}$	yH_{t-1}	yL_{t-1}
$etapi_t$	/ 0.95	0	0	0	0	0	0	0 \
$etag_t$	0	0.99	0	0	0	0	0	0
$i\!H_t$	-581.3663	130.7957	-1.9645	1.9668	262.9418	-6.4295	-12.245	0.2885
$i\!L_t$	-6.5904	1.4827	3e - 04	-1.9645	-0.0364	5.9614	0.0016	-0.279
piH_t	-1.0101	0	0	0	1.0204	-0.0206	-0.0202	4e - 04
$p\!i\!L_t$	-0.5051	0	0	0	-0.0052	1.0204	1e - 04	-0.0203
yH_t	12.5752	-12.4495	0.2819	-0.2512	-12.7036	0.2566	1.2617	-0.0256
yL_t	6.256	-6.1935	-0.0014	12.3731	0.0638	-12.6397	-0.0063	1.2617

Matrix Q

Matrix R

	$etapi_{t-1}$	$etag_{t-1}$	iH_{t-1}	iL_{t-1}	piH_{t-1}	piL_{t-1}	yH_{t-1}	yL_{t-1}
$\lambda_t^{ ext{HIGHREGIME}^1}$	/-438.2639	37.009	-0.8469	1.5233	256.4894	-9.1521	-8.1131	0.3065
$\lambda_t^{ m HIGHREGIME^2}$	1.0038	-0.1323	0.003	-0.0047	-0.516	0.021	0.021	-8e - 04
$\lambda_t^{ ext{LOWREGIME}^1}$	-218.0308	18.4115	0.0086	-37.1681	-2.2765	255.2005	0.0759	-8.1131
$\lambda_t^{ m LOWREGIME^2}$	1.0038	-0.1323	-1e - 04	0.2663	0.0105	-1.0321	-4e - 04	0.0423
UH_t	5.5767	0.0054	0	-0.0109	-0.5135	0.0668	0.0102	-0.0022
UL_t	-9.4149	-0.0036	1e - 04	-2e - 04	-0.0256	1.3683	8e - 04	-0.0272

Matrix S

9 Model statistics

9.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
etapi	1	0.1303	0.017	Y
etag	1	0.1297	0.0168	Y
$i\!H$	-0.0224	34.9144	1219.0128	Y
iL	-1.9776	0.3958	0.1566	Y
$\lambda^{ m HIGHREGIME^1}$	0.0137	21.6778	469.9288	Y
$\lambda^{ m HIGHREGIME^2}$	0	0.0506	0.0026	N
$\lambda^{ ext{LOWREGIME}^1}$	-0.0275	10.7845	116.3044	Y
$\lambda^{ ext{LOWREGIME}^2}$	0	0.0506	0.0026	N
piH	0	0.0985	0.0097	N
$p\!i\!L$	-2	0.0492	0.0024	Y
$y\!H$	0.0803	8.6232	74.3602	Y
yL	-0.1615	4.29	18.4037	Y
UH	-0.0266	0.7264	0.5277	Y
UL	-0.0402	1.2362	1.5281	Y

9.2 Correlation matrix

	etapi	etag	$i\!H$	iL	$\lambda^{\mathrm{HIGHREGIME^1}}$	$\lambda^{ m HIGHREGIME^2}$	$\lambda^{\mathrm{LOWREGIME^1}}$	$\lambda^{ ext{LOWREGIME}^2}$	piH
etapi	1	0	-0.297	-0.297	-0.825	0.436	-0.825	0.436	-0.491
etag		1	0.166	0.166	0	0	0	0	0
$i\!H$			1	1	0.559	-0.964	0.559	-0.964	-0.318
$i\!L$				1	0.559	-0.964	0.559	-0.964	-0.318
$\lambda^{ m HIGHREGIME^1}$					1	-0.725	1	-0.725	0.567
$\lambda^{ m HIGHREGIME^2}$						1	-0.725	1	0.116
$\lambda^{ ext{LOWREGIME}^1}$							1	-0.725	0.567
$\lambda^{ m LOWREGIME^2}$								1	0.116
piH									1
$p\!i\!L$									
$y\!H$									
yL									
UH									
UL									

9.3 Cross correlations with the reference variable (iH)

	$\sigma[\cdot]$ rel. to $\sigma[iH]$	iH_{t-5}	iH_{t-4}	iH_{t-3}	H_{t-2}	iH_{t-1}	iH_t	iH_{t+1}	iH_{t+2}	iH_{t+3}	iH_{t+4}
$etapi_t$	0.004	0.097	0.129	0.174	0.255	0.438	-0.297	-0.25	-0.207	-0.166	-0.13
$etag_t$	0.004	0	0.021	0.047	0.08	0.119	0.166	0.119	0.08	0.047	0.021
$i\!H_t$	1	-0.027	-0.031	-0.041	-0.077	-0.193	1	-0.193	-0.077	-0.041	-0.031
$i\!L_t$	0.011	-0.027	-0.031	-0.041	-0.077	-0.193	1	-0.193	-0.077	-0.041	-0.031
$\lambda_t^{ ext{HIGHREGIME}^1}$	0.621	-0.077	-0.099	-0.132	-0.201	-0.38	0.559	0.464	0.149	0.042	0.003
$\lambda_t^{ m HIGHREGIME^2}$	0.001	0.04	0.05	0.07	0.12	0.265	-0.964	0.043	0.042	0.04	0.038
$\lambda_t^{ ext{LOWREGIME}^1}$	0.309	-0.077	-0.099	-0.132	-0.201	-0.38	0.559	0.464	0.149	0.042	0.003
$\lambda_t^{ ext{LOWREGIME}^2}$	0.001	0.04	0.05	0.07	0.12	0.265	-0.964	0.043	0.042	0.04	0.038
$p\!i\!H_t$	0.003	-0.045	-0.056	-0.07	-0.095	-0.154	-0.318	0.84	0.232	0.039	-0.022
$p\!i\!L_t$	0.001	-0.045	-0.056	-0.07	-0.095	-0.154	-0.318	0.84	0.232	0.039	-0.022
$y\!H_t$	0.247	-0.068	-0.091	-0.119	-0.161	-0.241	-0.437	0.543	0.269	0.162	0.109
yL_t	0.123	-0.068	-0.091	-0.119	-0.161	-0.241	-0.437	0.543	0.269	0.162	0.109
UH_t	0.021	0.097	0.128	0.173	0.252	0.433	-0.263	-0.299	-0.215	-0.164	-0.124
UL_t	0.035	-0.097	-0.129	-0.173	-0.253	-0.434	0.271	0.288	0.214	0.164	0.125

9.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
etapi	0.713	0.471	0.271	0.11	-0.016
etag	0.721	0.483	0.286	0.125	-0.003
$i\!H$	-0.193	-0.077	-0.041	-0.031	-0.027
iL	-0.193	-0.077	-0.041	-0.031	-0.027
$\lambda^{ m HIGHREGIME^1}$	0.51	0.081	-0.065	-0.117	-0.134
$\lambda^{ m HIGHREGIME^2}$	-0.074	-0.071	-0.066	-0.06	-0.054
$\lambda^{ ext{LOWREGIME}^1}$	0.51	0.081	-0.065	-0.117	-0.134
$\lambda^{ m LOWREGIME^2}$	-0.074	-0.071	-0.066	-0.06	-0.054
$p\!i\!H$	0.22	-0.024	-0.095	-0.11	-0.107
$p\!i\!L$	0.22	-0.024	-0.095	-0.11	-0.107
$y\!H$	0.504	0.261	0.116	0.017	-0.055
yL	0.504	0.261	0.116	0.017	-0.055
UH	0.731	0.453	0.248	0.091	-0.029
UL	0.728	0.456	0.253	0.095	-0.026

10 Impulse response functions

Figure 1: Impulse responses $(i\!H,i\!L,p\!i\!H,p\!i\!L,y\!H)$ to ϵ^π shock

Figure 2: Impulse response $(y\!L)$ to ϵ^π shock

Figure 3: Impulse responses $(i\!H,i\!L,p\!i\!H,p\!i\!L,y\!H)$ to $\epsilon^{\rm g}$ shock

Figure 4: Impulse response (yL) to $\epsilon^{\rm g}$ shock