python科学计算

- 1, Numpy提供对数组进行运算和操作的函数集。
- 2, SciPy在Numpy的基础之上添加了许多科学计算函数库。

例如:线性代数使用LAPACK库。

快速傅里叶变换, FFTPACK库。 常微分方程求解, ODEPACK库。

非线性方程组求解及其最小值求解,MINPACK库。

SymPy; 数学符号运算扩展库。

NumPy库

- 1, ndarray(数组)。
- 2, ufunc对数组进行处理的函数。
- 1,输入输出数组。
- 2, 获取或者更改数组形状。
- 3, 获得数组类型。
- 4, arange函数创建数组。(具有一定特征)
- 5, linspace(),指定初始值,终值,和元素个数创建数组。通过endpoint参数指定是否包含终值。
- 6, logspace().

7,zeros(),ones(),empty().

8,frombuffer(),fromstring,fromfile()等可以从字节序列或者文件创建数组。

- 9, fromfunction()第一个参数为计算每个数组元素的函数, 第二个为指定数组形状。
- 10, slice () 对象

ufunc运算

1, x=np.linspace(0,2*np.pi,10) y=np.sin(x)

У

注意:这里输出y是创建了一个新数组,如果想改变输出元素的存储位置,用out来指定。

2, math 库和NumPy各有优缺点。

import *为全部导入

import NumPy as np,导入,并选择合适的函数。

3,四则运算。

NumPy 为数组定义了各种数学运算操作符,因此计算两个数组相加可以简单地写为 a+b,而 np.add(a,b,a)则可以用 a+=b 表示。表 2-1 列出了数组的运算符及其对应的 ufunc 函数,注意除号"/"的意义根据是否激活_future__division 会有所不同。

表 2-1 数组的运算符及其对应的 ufunc 函数

运算符	对应的 ufunc 函数
y = x1 + x2	add(x1, x2 [, y])
y = x1 - x2	subtract(x1, x2 [, y])
y = x1 * x2	multiply (x1, x2 [, y])
y=x1/x2	divide (x1, x2 [, y]), 如果两个数组的元素为整数,那么用整数除法
y = x1/x2	true_divide (x1, x2 [, y]),总是返回精确的商
y = x1 // x2	floor_divide (x1, x2 [, y]),总是对返回值取整
y = -x	negative(x [,y])
y=x1**x2	power(x1, x2 [, y])
y=x1 % x2	remainder(x1, x2 [, y]),成 mod(x1, x2, [, y])

4, 布尔运算

每个比较运算符都与一个 ufunc 函数对应,下面是比较运算符与其 ufunc 函数的对照表:

表 2-2 比较运算符及其对应的 ufunc 函数

比较运算符	ufunc 函数
y=x1=x2	equal(x1, x2 [, y])
y = x1! = x2	not_equal(x1, x2 [, y])
y=x1 < x2	less(x1, x2, [, y])
y=x1 <= x2	less_equal(x1, x2, [, y])
y = x1 > x2	greater(x1, x2, [, y])
y = x1 >= x2	greater_equal(x1, x2, [, y])

- 5, frompyfunc()将一个计算单个元素的函数转换为ufunc()函数。
- 6, 广播。
- 7, ogrid产生二维坐标网格。

- 8, sum求和
- 9, mean求平均数。

10,std标准差。

- 11,var方差。
- 12, min,max最小最大值。
- 13, ptp最大最小之间的差。
- 14, median中值。

多项式函数

- 1, poly1d将系数实例化。
- 2, deriv()微分, integ()积分。
- 3, roots求解多元函数的根。
- 4, poly()将根转回系数。

分段函数

1,where () 和piecewise () 计算三角形波。

统计函数

- 1, unique()返回其参数数组中所有不同的值,并且按照从小到大的顺序排列。
- 2, histogram()返回两个一维数组,第一个是每个区间的统计结果,第二个数组长度为len(list)+1,每两个相邻数值构成一个统计区间。

线性代数

1, matrix对象, 创建的是矩阵。