

CLAIMS

What is claimed is:

- 1 2. The method of claim 1 wherein said first and said additional frequencies are
2 related by an expression of the form:

3

$$nf \cdot \delta f = \frac{2}{TE} = \frac{1}{TE/2}$$

4 where nf is the number of frequencies, δf is a separation of frequencies and TE is
5 an interecho spacing.

6

- 1 3. The method of claim 1 wherein said first and said additional frequencies are
2 related by an expression of the form:

3

$$nf \cdot \delta f = \frac{1}{TE}$$

4 where nf is the number of frequencies, δf is a separation of frequencies and TE is
5 an interecho spacing.

6

- 1 4. The method of claim 1 wherein a phase of said non-formation signals resulting
2 from said first pulse sequence and phases of non-formation signals resulting from
3 said additional pulse sequences are substantially evenly distributed around a unit
4 circle.

5

- 1 5. The method of claim 1 wherein at least one of said first pulse sequence and said
2 additional pulse sequences each comprise a CPMG sequence.

3

- 1 6. The method of claim 5 wherein said first and said additional frequencies are
2 related by an expression of the form:

3
$$nf \cdot \delta f = \frac{2}{TE} = \frac{1}{TE/2}$$

4 where nf is the number of frequencies, δf is a separation of frequencies and TE is
5 an interecho spacing.

6

- 1 7. The method of claim 5 wherein said first and said additional frequencies are
2 related by an expression of the form:

3
$$nf \cdot \delta f = \frac{1}{TE}$$

4 where nf is the number of frequencies, δf is a separation of frequencies and TE is
5 an interecho spacing.

6

- 1 8. The method of claim 1 wherein at least one of said first pulse sequence and said
2 additional pulse sequences comprises a modified CPMG sequence having a
3 refocusing pulse with a tipping angle of less than 180°.

4

- 1 9. The method of claim 8 wherein said first and said additional frequencies are
2 related by an expression of the form:

3
$$nf \cdot \delta f = \frac{2}{TE} = \frac{1}{TE/2}$$

4 where nf is the number of frequencies, δf is a separation of frequencies and TE is
5 an interecho spacing.

6

- 1 10. The method of claim 8 wherein said first and said additional frequencies are
2 related by an expression of the form:

3
$$nf \cdot \delta f = \frac{1}{TE}$$

4 where nf is the number of frequencies, δf is a separation of frequencies and TE is
5 an interecho spacing.

6

7

1 11. The method of claim 1 wherein determining the value of said property of interest
2 further comprises summing said first and said additional measured signals.

3

1 12. The method of claim 1 wherein said first and said additional signals have a signal
2 loss of less than 0.8% relative to a signal that would be obtained at a nominal
3 frequency corresponding to said first and said additional frequencies.

4

1 13. The method of claim 1 wherein the property of interest is at least one of (i) a T_2
2 distribution, (ii) a T_1 distribution, (iii) a porosity, (iv) a bound fluid volume, and
3 (v) a bound volume irreducible.

4

1 14. The method of claim 1 wherein said first and said plurality of additional
2 frequencies are discretely sampled and wherein determining said value of said
3 parameter of interest further comprises forming a weighted summation of said
4 measurements at said first and said additional frequencies.

5

6

1 15. The method of claim 14 wherein said forming of said weighted summation further
2 comprises minimizing a noise in an echo measurements.

3

1 16. A Nuclear Magnetic Resonance (NMR) apparatus for use in a borehole in
2 proximity to an earth formation comprising:

3 (a) a magnet for producing a static field in a region of said earth formation,
4 said magnet aligning nuclear spins in said region substantially parallel to a
5 direction of said static field;
6 (b) a transmitter for applying radio-frequency pulse sequences at each of at
7 least three different frequencies;
8 (c) a receiver for receiving at least three signals resulting from said at least
9 three pulse sequences, said at least three signals comprising the results of
0 interactions with the earth formation and with a non-formation; and
1 (d) a processor for determining from said at least three received signals a
2 value corresponding to a property of interest of said earth formation, said
3 value substantially unaffected by the interactions with said non-formation.

14

1 17. The apparatus of claim 16 wherein said at least three frequencies are related by an
2 expression of the form:

$$3 \qquad \qquad \qquad nf \cdot \delta f = \frac{2}{TE} = \frac{1}{TE/2}$$

where nf is the number of frequencies, δf is a separation of frequencies and TE is an interecho spacing.

6

- 1 18. The apparatus of claim 16, wherein at least three frequencies are related by an
2 expression of the form:

$$nf \cdot \delta f = \frac{1}{TE}$$

where nf is the number of frequencies, δf is a separation of frequencies and TE is a interecho spacing.

- 1 19. The apparatus of claim 16, wherein phases of said non-formation signals resulting
2 from said at least three pulse sequences are substantially evenly distributed
3 around a unit circle.

- 1 20. The apparatus of claim 16 wherein at least one of said three pulse sequences
2 comprises a CPMG sequence.

- 1 21. The apparatus of claim 20 wherein said at least three frequencies are related by an
2 expression of the form:

$$nf \cdot \delta f = \frac{2}{TE} = \frac{1}{TE/2}$$

where nf is the number of frequencies, δf is a separation of frequencies and TE is an interecho spacing.

- 1 22. The apparatus of claim 20, wherein at least three frequencies are related by an
2 expression of the form:

$$nf \cdot \delta f = \frac{1}{TE}$$

4 where nf is the number of frequencies, δf is a separation of frequencies and TE is a
5 interecho spacing.

6

1 22. The apparatus of claim 16 wherein at least one of said at least three pulse
2 sequences comprises a modified CPMG sequence having a refocusing pulse with
3 a tipping angle less than 180°.

1 24. The apparatus of claim 23 wherein said at least three frequencies are related by an
2 expression of the form:

3

$$nf \cdot \delta f = \frac{2}{TE} = \frac{1}{TE/2}$$

4 where nf is the number of frequencies, δf is a separation of frequencies and TE is
5 an interecho spacing.

6

1 25. The apparatus of claim 23, wherein at least three frequencies are related by an
2 expression of the form:

3

$$nf \cdot \delta f = \frac{1}{TE}$$

4 where nf is the number of frequencies, δf is a separation of frequencies and TE is a
5 interecho spacing.

6

1 26. The apparatus of claim 16 wherein said processor determines said value by
2 summing said at least three received signals.

- 1 27. A system for estimating a property of interest of an earth formation comprising:
- 2 (a) a logging tool including a magnet for producing a static field in a region of
- 3 said earth formation, said magnet aligning nuclear spins in said region
- 4 substantially parallel to a direction of said static field;
- 5 (b) a transmitter on said logging tool for applying radio frequency pulse
- 6 sequences at each of at least three frequencies;
- 7 (c) a receiver on said logging tool for receiving signals resulting from
- 8 interaction of said at least three pulse sequences with said earth formation,
- 9 said signals indicative of a property of said earth formation, said signals
- 10 including non-formation signals resulting from an excitation pulse and a
- 11 refocusing pulse in said at least three pulse sequences;
- 12 (d) a conveyance device for conveying said logging tool into a borehole in
- 13 said earth formation;
- 14 (e) a processor in electrical communication with the transmitter and the
- 15 receiver, said processor programmed to perform steps for determining
- 16 from said at least three received signals a value of a property of said earth
- 17 formation, said determined value of said property substantially unaffected
- 18 by said non-formation signals.

19

1 28. The system of claim 27 wherein said conveyance device comprises a wireline.

2

1 29. The system of claim 27 wherein said conveyance device comprises a drillstring.

2

1 30. The system of claim 27 wherein said conveyance device comprises coiled tubing.

1 31. The system of claim 27 wherein said processor is programmed to select the at
2 least three frequencies according to an expression of the form:

3

$$nf \cdot \delta f = \frac{2}{TE} = \frac{1}{TE/2}$$

4 where nf is the number of frequencies, δf is a separation of frequencies and TE is
5 an interecho spacing.

6

1 32. The system of claim 27 wherein said processor is at a surface location.

2

1 33. The system of claim 27 wherein said processor is at a downhole location.

2

1 34. The system of claim 27 wherein the processor is programmed to instruct the
2 transmitter to transmit at least one of said at least three pulse sequences as a
3 CPMG sequence.

4

1 35. The system of claim 27 wherein the processor is programmed to instruct the
2 transmitter to transmit at least one of said at least three pulse sequences as a
3 modified CPMG sequence having a refocusing pulse with a tipping angle less
4 than 180°.

5

1 36. The system of claim 27 wherein said processor is programmed to determine said
2 value by summing said at least three received signals.

3

1 37. The system of claim 27 wherein said property is at least one of (i) a T_2
2 distribution, (ii) a T_1 distribution, (iii) a porosity, (iv) a bound fluid volume,
3 and, (v) a bound volume irreducible.

4

1 38. The system of claim 27 wherein said processor is at a surface location

2

1 39. The system of claim 27 wherein said processor is at a downhole location.

2