Lecture 1.3

Phylogenetic Data

Phylogenetic data

1. Data preparation

- Taxon and gene sampling
- Sequence alignment (if needed)
- Data filtering

2. Phylogenetic inference

- Model selection
- Estimation of tree
- Further analysis and interpretation

Phylogenetic data

Select data to optimise signal:noise

- Slowly evolving markers for deep evolutionary events
- Rapidly evolving markers for recent evolutionary events

Homoplasy

- Taxa share similarities that do not reflect evolutionary history
- Take advantage of existing resources

Data types

- Sequence data
 - Nucleotides
 - Amino acids
- Binary data (presence/absence of genomic features)
- Microsatellites (repeat numbers)
- Single-nucleotide polymorphisms (SNPs)
- Reduced-representation sequences

Morphological data

Morphological characters from extant and extinct taxa

Current Biology

Volume 25, Issue 19, 5 October 2015, Pages R922-R929

Review

Morphological Phylogenetics in the Genomic Age

Michael S.Y. Lee^{1, 2, ≜} · ™, Alessandro Palci^{1, 2}

Sequence data

Coding sequences

- Ribosomal RNA
- Protein-coding genes
- Non-coding sequences
 - Intergenic sites
 - Introns
- Amino acid sequences

Gaps and missing data

Delete sites with any missing data

- Potential loss of informative data
- Problematic in analyses of data supermatrices

Treat gaps as unresolved data

- Gap is simultaneously A, C, G, and T
- Most common approach

Treat gaps as a 5th (nucleotide) or 21st (amino acid) state

- Not appropriate when there are long gaps
- Code gaps as binary characters

Gaps and missing data

- Impact of missing data remains poorly understood
- Filter data according to chosen threshold of missing data

Mutational saturation

- Some sites can evolve very rapidly
 - 3rd codon positions
 - Loop regions in RNA
- Multiple hits can erode phylogenetic signal
- Various ways of testing for saturation (e.g. ISS DAMBE)

Saturated sites can be removed to improve signal:noise

Mutational saturation

Plot transitions and transversions

- Transitions occur more frequently than transversions
- Can plot in various ways

Xia's method (I_{ss})

- When sequences are fully saturated ($I_{SS} = 1$), expected base frequencies at each site are equal to the global frequencies
- Compare I_{SS} with critical value calculated via simulation

Partition-homogeneity test

- Unlinked loci can have different gene trees
- Test for phylogenetic congruence across markers
- Partition-homogeneity (incongruence length difference) test

High-Throughput Data

Mitochondrial genomes

- Maternally inherited
- Protein-coding genes (e.g., COI)
- RNA genes (e.g., 12S, 16S)
- Control region

Single-nucleotide polymorphisms

- Single sites sampled from throughout the genome
- More common in intraspecific (population) studies
- Issues to consider:
 - Recombination
 SNPs are usually unlinked so they are likely to have different (gene) trees
 - Ascertainment bias
 SNPs are selected for variability and this can mislead estimates of population sizes, rates, and other parameters

Reduced-representation sequences

- Markers identified by cutting genome with restriction enzymes
- Process creates binary data and short sequences
- Examples include RADseq and DArTseq
- Issues to consider:
 - Recombination
 Markers are usually unlinked so they are likely to have different (gene) trees
 - Missing data
 Typically a large proportion of missing data

Transcriptomes and exon capture

- Large panels of protein-coding loci
- Sequences are easier to align
- Good for inferring deep relationships

- Issues to consider:
 - Variability
 Might not be much variation at the population level
 - Selection
 Differences in selection will lead to rate differences across exons

Whole genome sequencing

- Typically NOT (yet) the entire genome
- Many challenges: Jarvis et al Science 2014 >400 years of computing using a single processor
- Issues to consider
 - Loci are single-copy?
 - Selectively neutral?
 - Loci have discordant gene trees?
 - Historical recombination?

Analysing Large Data Sets

Large data sets

- Calculation of likelihood is expensive
 - Speed up by grouping sites with identical patterns
 - Approximate likelihood calculation
 - Multithreading/parallelisation

48 taxa 8,295 genes Jarvis *et al.* (2014) *Science*

Large data sets

- Tree-space is extremely large
 - Efficient tree-searching heuristics

32,223 taxa7 genes

Zanne et al. (2014) Nature

Large data sets

- Analysis is computationally expensive
- Consider filtering the data
 - Phylogenetic signal
 - Mutational saturation
 - Missing data
 - Model fit

Useful references

