entonces A también es similar a

$$J_2 = \begin{pmatrix} 3 & 1 & 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix} \qquad y \qquad J_3 = \begin{pmatrix} 4 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$

y a otras tres matrices de Jordan. Es decir, los bloques de Jordan reales permanecen iguales pero el orden en el que están escritos puede cambiar.

Definición 8.6.1

Forma canónica de Jordan

La matriz J en el teorema 8.6.1 se denomina la forma canónica de Jordan de A.

Ahora se verá el procedimiento para calcular la forma canónica de Jordan de cualquier matriz de 2×2 . Si A tiene dos vectores característicos linealmente independientes, ya sabemos qué hacer. Por lo tanto, el único caso de interés ocurre cuando A tiene sólo un vector característico A de multiplicidad algebraica 2 y multiplicidad geométrica 1. Es decir, se supone que A tiene un único vector característico independiente v₁ correspondiente a λ . Esto es, cualquier vector que no es un múltiplo de \mathbf{v}_1 no es un vector característico.

Si A es diagonalizable, entonces $J = D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$, donde λ_1 , $\lambda_2, \ldots, \lambda_n$ son los valores característicos (no necesariamente distintos) de A. Cada elemento en la diagonal es una matriz de bloques de Jordan de $1 \times I$.

Teorema 8.6.2

Suponga que A la matriz de 2×2 tiene un valor característico λ de multiplicidad algebraica 2 y multiplicidad geométrica 1. Sea \mathbf{v}_1 un vector característico correspondiente a λ . Entonces existe un vector v₂ que satisface la ecuación

$$(A - \lambda I)\mathbf{v}_2 = \mathbf{v}_1 \tag{8.6.4}$$

Demostración

Sea $x \in \mathbb{C}^2$ un vector fijo que no es múltiplo de v_1 , de manera que x no es un vector característico de A. Primero se demuestra que

$$\mathbf{w} = (A - \lambda I)\mathbf{x} \tag{8.6.5}$$

es un vector característico de A. Esto es, debe demostrarse que $\mathbf{w} = c\mathbf{v}_1$ para alguna constante c. Como $\mathbf{w} \in \mathbb{C}^2$ y \mathbf{v}_1 y \mathbf{x} son linealmente independientes, existen constantes c_1 y c_2 tales que

$$\mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{x} \tag{8.6.6}$$

Para demostrar que w es un vector característico de A debe comprobarse que $c_2 = 0$. De (8.6.5) y (8.6.6) se deduce que