2019-2020 学年第一学期《大学物理 11》(课内)期中试卷

(物联网学院 2018 级)

授课班号	学号	姓名
	· · ·	

题号		=					
赵 与		1	2	3	4	总分	审核
题分	40	15	15	15	15		
得分							

一、填空题(每空2分, 共40分)

1、(1) 一个半径为 R,均匀带有电量 Q 的导体球产生的电场,距离球

阅卷	得分

(2) 与一根带电线密度为 λ 的无限长直线距离为 d 处的电场强度大小 E=

V=____。(选取距带电线距离为b处为零电势点)

心 r 处的电场强度大小为: 当 r < R 时, $E = _____, V = _____$

2、两块"无限大"的均匀带电平行平板,其电荷面密度分别为- 2σ (σ >0) 及 σ ,如图所示,试写出各区域的电场强度 E。(规定水平向右为正方向)

I 区 E 的大小______; II区 E 的大小______;

Ⅲ区 *E* 的大小____。

" q_4 ")在闭合面上任意一点产生的电场强度的矢量和。

- 5、如图 $\overline{MN}=2R$,OCD 是以 N 为圆心 R 为半径的半圆弧,在 M 点有一电量为+q 的点电荷,N 点有一电量为-q 的点电荷,O 点电势为_____。现将一点电荷 Q 从 O 点沿半圆弧轨道 OCD 移到 D 点,则电场力作功为

- 6、由一半径为 R、均匀带有电量 Q 的圆环产生的电场空间中,在圆心的电场强度大小为 E=______,电势大小为 V=_____。
- 6、将带电量为Q,电容为C的电容器A,与带电量为2Q,电容也为C的电容器B 并联后(正极板与正极板相连,负极板与负极板相连),系统电场能量的增量为_____。

二、计算题(60分)

1、(15 分) 一带电细线弯成半径为 R 的半圆形,电荷线密度 λ ,如图 所示,求环心 O 处的电场强度。

阅卷	得分

2、(15 分) 半径为 R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为 ρ ,求空间电势分布。(取棒表面为零电势)

阅卷	得分

3、(15分)如图所示,两条无限长平行直导线相距为 r_0 ,均匀带有等量异号电荷,电荷线密度为 λ 。(1)求两导线构成的平面上,两导线之间任一点P的电场强度(设该点到左边导线的垂直距离为x);(2)求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力。

阅卷	得分

4、(15分) 如图,在一个半径为 R_1 的均匀带电球 A 外面套有一同心 金属球壳 B。已知球壳 B 的内外半径分别为 R_2 和 R_3 。设 A 球总电量 q, 球壳 B 的总电量为 Q。 求:

阅卷	得分

- (1) 求球壳 B 内、外表面上所带的电荷;
- (2) 空间中的电场分布;
- (3) 求半径在 R_2 之内的球壳中的电场能量。

