Geometric deep learning with graphs: Linking the classification performance of Graph Convolutional Networks with the alignment of graphs and features

Yifan Qian ¹ Paul Expert ² Pietro Panzarasa ¹ Mauricio Barahona ²

¹School of Business and Management, Queen Mary University of London, London, UK

> ²Department of Mathematics, Imperial College London, London, UK

2nd UK Network Science Workshop University of Greenwich, London

26th October 2018

Imperial College London

Background

Graph Convolutional Networks (GCNs) (Kipf and Welling, 2017)

- a feature matrix $X \in \mathbb{R}^{N \times D}$.
- an adjacency matrix $A \in \mathbb{R}^{N \times N}$.
- a ground truth assignment matrix $Y \in R^{N \times C}$.

Motivation

Can additional information from the graph <u>always</u> be beneficial to the performance of GCN?

We consider three limit cases of GCN:

Motivation (continued)

Data sets	Nodes	Edges	Classes	Features
CORA	2,485	5,069	7	1,433
Wikipedia	20, 525	215,056	12	100

Cases	CORA	Wikipedia
GCN	$0.811\pm\ 0.005$	0.392 ± 0.010
No features	0.691 ± 0.006	0.254 ± 0.037
No graph	0.548 ± 0.014	0.450 ± 0.007
Complete graph	0.121 ± 0.066	O.O.M.

Information from the graph can potentially increase the performance of GCN (e.g., CORA), but this is not always the case (e.g., Wikipedia)!

Hypothesis and goal

• Hypothesis:

A certain degree of alignment among X, A and Y is needed to obtain good performance of GCN, and any degradation in the information content leads to worsened performance.

Goal:

Linking the classification performance of GCN with the alignment of X, A and Y.

Randomization: Testing the hypothesis on CORA

- Randomizing the graph (by rewiring edges while keeping the degree distribution unchanged).
- Randomizing the features (by swapping the feature vectors at random).

Quantifying the alignment among X, A and Y (ongoing work)

Proposing a synthetic measure of alignment based on graph diffusion distance (gdd).

- Building two graphs from X and Y.
- Computing graph diffusion distance: $d_{gdd}(X, A), d_{gdd}(X, Y)$ and $d_{gdd}(A, Y)$.
- A synthetic measure on the three pairwise distances.