IDENTIFYING PNEUMONIA FROM X-RAY IMAGES

Hogan Byun hoganbyun@gmail.com

GOAL

Create a model that can classify whether a person has pneumonia using chest x-rays

IDENTIFYING PNEUMONIA

THE PROCESS - OSEMN

THE DATA

Obtained on Kaggle (originally from Kermany et al.):

https://www.kaggle.com/andrewmv d/pediatric-pneumonia-chest-xray

Total of 5,856 chest x-rays (4,273 Pneumonia, 1,583 Healthy)

THE MODEL

Convolutional Neural Network:

Training

Accuracy: 89.18% Loss: .8408

Used to help model learn and improve

Validation

Accuracy: 90.91% Loss: .7220

Used to test model accuracy at every model version

Test

Accuracy: 87.20% Loss: .7364

Used to verify model accuracy after model is complete

THE MODEL

7 layers total

As layers progress, more abstract patterns are recognized

FUTURE WORK

IMPROVE MODEL

Model could have better results.

Overfitting needs to be addressed

■ EXPAND TO OTHER DISEASES

Generalized or specific

DIFFERENTIATE PNEUMONIA

Creating a model that recognizes bacterial and viral pneumonia

FUTURE WORK

Ideally want training and validation curves to be as close as possible

Issue: Convergence very early in modeling, which leads to possibly skipping over the actual best weights

hoganbyun@gmail.com 410 236 4663

THANK YOU!

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik