Pt7

Sets

F : Farms
P : Facilities
T : Tankers

Data

- $Supply_f$ milk supply from each farm $f \in F$ (L)
- Distance f_p distance between farm $f \in F$ and processing facility $p \in P$ (km)
- $PMin_p$ minimum daily processing at processing facility $p \in P$ (L)
- $PMax_p$ maximum daily processing at processing facility $p \in P$ (L)
- $Maintenance_t$ daily cost of maintenance for tanker $t \in T$
- TRound cost of round trip travel (\$/km)
- DMax maximum number of kilometers a tanker can be used for each day (assuming an average speed of 60 km/h)

Variables

- W_{pt} binary assignment of tankers $t \in T$ to processing facilities $p \in P$
- X_{pft} binary assignment of farms $f \in F$ to processing facilities $p \in P$ and tankers $t \in T$

Objective function

$$\min\left(\sum_{p\in P}\sum_{f\in F}\sum_{t\in T}\left(X_{pft}\times Distance_{fp}\times TRound\right) + \sum_{p\in P}\sum_{t\in T}\left(W_{pt}\times Maintenance_{t}\right)\right)$$

Constraints

• Total milk processed at processing facility $p \in P$ cannnot exceed the processing capacity.

$$\sum_{f \in F} \sum_{t \in T} X_{pft} \times Supply_f \le PMax_p, \quad \forall p \in P$$

• Total milk processed at processing facility $p \in P$ must meet the minimal operational requirement.

$$\sum_{f \in F} \sum_{t \in T} X_{pft} \times Supply_f \ge PMin_p, \quad \forall p \in P$$

• Each tanker $t \in T$ for processing facility $p \in P$ cannot be operational for more than 10 hours (600km).

$$\sum_{f \in F} X_{pft} \times Distance_{fp} \times 2 \leq DMax, \quad \forall p \in P, \ t \in T$$

• If a tanker $t \in T$ is used, the binary tanker variable must be set.

$$X_{pft} = 1 \implies W_{pt} = 1, \quad \forall p \in P, \ t \in T, \ f \in F$$

• Tankers must be used in order, i.e., tanker 1 and then tanker 2 etc.,

$$W_{pt} = 1 \implies W_{p(t-1)} = 1, \quad \forall p \in P, \ t \in T, \ t > 0$$

• Each farm $f \in F$ must be assigned to exactly one processing facility and one tanker.

$$\sum_{p \in P} \sum_{t \in T} X_{pft} = 1, \quad \forall f \in F$$