Comparison Theorem

Yun Hao*

July 17, 2017

This is the note of my talk for the seminar "p-adic Hodge theory" at Freie Universität Berlin in the summer semester 2017.

Warning It is FULL OF TYPOS in [Olso9, \$13-14].

WARNING It is FULL OF MISTATES in my note as I did not fully understand these materials.

1 Statement of the Main Theorem

1.1. Notations and conventions.

V, k, Kcomplete discrete valuation ring V with residue field k and fraction field K. $W = W(k), K_0$ ring of Witt vectors of k, $W \subseteq V$, with fraction field K_0 . $\bar{V} \subseteq \bar{K}$ integral closure of V inside a fixed algebraic closure of K. smooth proper scheme. $D \subset X$ divisor with relative normal crossings. X^0 X - D. (X, M_X) the log scheme with log-structure M_X defined by D. (small) étale site, topos. $\mathrm{Et}(X),\,X_{\mathrm{\acute{e}t}}$ $Crys(X/?), X_{crys}$ the crystalline (-étale) site, topos. $\operatorname{Conv}(X/?), X_{\operatorname{conv}} \mid \operatorname{convergent} \text{ site, topos.}$ $\operatorname{MF}_X^{\nabla}(\Phi) \mid \operatorname{filtered} F\text{-isocrystals (satisfying Griffiths transersality)}^2$

1.2. What is our goal?. We are in the following situation.

The geometry we really want to understand is that X_K/K (or the open variety X_K^0). In our seminar, we focus on the case X_K has a good reduction. So we just start with a model X/V of X_K/K . The ultimate goal is to compare the algebraic de Rham cohomology $\mathrm{H}^*_{\mathrm{dR}}(X_K)$ of X_K/K and the etale cohomology $\mathrm{H}^*_{\mathrm{\acute{e}t}}(X_{\bar{K}})$ of $X_{\bar{K}}/\bar{K}$. We already have a comparison³ between $\mathrm{H}^*_{\mathrm{dR}}(X_K/K)$ and the crystalline cohomology $\mathrm{H}^*_{\mathrm{crys}}(X_k/W)$ of the special fibre X_k/k . Now we are trying to relate $\mathrm{H}^*_{\mathrm{crys}}(X_k/k)$ and $\mathrm{H}^*_{\mathrm{\acute{e}t}}(X_{\bar{K}}/K)$.

^{*}Updates see https://haoyun.github.io/files/17SS-SS-Comparison.pdf

¹This is just called the crystalline site in [Olsog, §14.1] and [Kat89, §5.2], which étale $U \to X$. But it is different form the usual crystalline site, which uses open $U \to X$. It is, in some sense, more reasonable to call it the *crystalline-étale site* (see e.g., [Kat90, Rmk 2.2.4.2]), compared with the so-called *lisse-étale* site. Some people also call it the etale-crystalline site, e.g., [Olso7, §1.3.2] and [BD, §7.10.18]. There are people call this topology the *étale topology on the crystalline site*, but this is not a good name, as a *site* is already equipped with a (pre-)topology by definition. Similarly, the convergent site should better be called the convergent-étale site, e.g., in [Shi02, p. 2.1.3], (a log version of) this is called the convergent site with respect to the étale topology.

²See [Fal89, §II] and [Tsu, §1] for more details. Here MF stands for "'modules filtrés", ∇ is a flat connection. Φ is a Frobenius lifting. See also [Olso9, §13.11].

³We have seen this last semester's seminar.

1.3. Roughly speaking, an isocrystal is a *crystal up to isogeney*, i.e., a (coherent) crystal in $\mathcal{K} := \emptyset \otimes \mathbb{Q}$ -modules, where \emptyset is the structure sheaf of the crystalline (resp. convergent) site, sending (U, T) to $\Gamma(T, \mathbb{O}_T)$. A F-crystal \mathcal{F} (resp. F-isocrystal) is an crystal (resp. isocrystal) with an isomorphism $\phi_{\mathcal{F}} : \sigma^* \mathcal{F} \to \mathcal{F}$, where σ is the Frobenius. On the convergent site, we will use the term *convergent* F-isocrystal.

Let X_k be the special fibre of X. It has an induced log structure M_{X_k} . Denote by $((X, M_{X_k})/W)_{\text{conv}}$ and $((X, M_{X_k})/W)_{\text{crys}}$ be the corresponding crystalline topos. Sometimes, we suppress in our nations the log structure. There is a natural morphism of sites 6 Conv $(X_k/V) \to \text{Conv}(X_k/W)$ hence a morphism of topoï

$$\pi: (X_k/V)_{\text{conv}} \to (X_k/W)_{\text{conv}}$$

For any isocrystal $\mathcal{F} \in (X_k/W)_{\text{conv}}$, the induced morphism on cohomology

$$H^*((X_k/W)_{conv}, \mathcal{F}) \to H^*((X_k/V)_{conv}, \pi^*\mathcal{F})$$

is an isomorphism.⁷

1.4. Theorem. Let \mathcal{L} be a *crystalline sheaf* associated to filtered module $(\mathcal{F}, \phi_{\mathcal{F}}, \operatorname{Fil}_{\mathscr{F}}) \in \operatorname{Obj}(\operatorname{MF}_X^{\nabla}(\Phi))$. 8 For any decomposition $D = E \cup F$, there is a map⁹

conv. coh. of the special fibre w/ cpt supp. along E étale coh. of the geom. generic fibre w/ partial cpt supp. along E $\boxed{H^*\big(((X_k,M_{X_k})/W)_{\operatorname{conv}},\mathcal{F}\otimes\mathcal{J}_E\big)\bigg|\otimes_{K_0}\tilde{B}_{\operatorname{crys}}(\bar{V})\stackrel{\alpha}{-----}}\boxed{H^*_{E,F}(X^0_{\bar{K},\operatorname{\acute{e}t}},\mathcal{L})\bigg|\otimes_{\mathbb{Q}_p}\tilde{B}_{\operatorname{crys}}(\bar{V})}$ (1)

is an isomorphism compatible with

- Frobenius action,
- · Galois action,
- cup product,
- Chern classes of vector bundles on X,
- filtration (strictly compatible).

2 Proof o. Construction, Frobenius, Galois action, cup-product

(These (should) have been discussed in Tanya's talk. For a reference, see [Olsog, \$13.17–13.20].)

As mention in the introduction part of [Olsog], the subtle part of the theory to construct a map (in either direction) between the two cohomology theories $H^*(X_{\bar{K}})$ and $H^*_{\text{crys}}(X_k)$. Once this is done, the other part is essentially formal.

3 Proof I. Compatible with Chern Classes

[Olsog, §14.1–14.5]

- The crystalline sheaf associated to the *trivial F-isocrystal* $\mathcal{K}_{X_k/W}$ is the \mathbb{Q}_p on $X_{K,\text{\'et}}^0$.
- Take $D = D \cup \emptyset$, i.e., E = D and $F = \emptyset$. So (1) simplifies to

$$\alpha: \boxed{ \operatorname{H}^*\left((X_k/W)_{\operatorname{conv}}, \mathcal{K}_{X_k/W}\right) } \otimes_K \tilde{B}_{\operatorname{crys}}(\bar{V}) \longrightarrow \boxed{ \operatorname{H}^*(X^0_{\bar{K}, \operatorname{\acute{e}t}}, \mathbb{Q}_{\not{p}}) } \otimes_{\mathbb{Q}_{\not{p}}} \tilde{B}_{\operatorname{crys}}(\bar{V})$$

⁴ Note that [Shio2, Prop 2.1.21] states that the categories of isocrystals are equivalent no matter whether we use the étale or Zariski topology, cf. footnote 1.

⁵The category of convergent isocrystals is a full subcategory of that of isocrystals, see [Ogu84, Thm. 0.7.2].

⁶Think about why is Spf $V \to \text{Spf } W$ is flat, so that the forgetful functor is well defined.

⁷In [Olso9, §13.1], the author refers to [Ogu84, Corollary 3.2]. But i did not find it relevant. A seemingly related result is [Ogu84, §2.21]. But that seems not enough to get this isomorphism. In Olsson's notes, sometimes $(X_k/V)_{\text{conv}}$ is used, and sometimes $(X_k/W)_{\text{conv}}$ is used. To be consistent throughout the note, I use $(X_k/W)_{\text{conv}}$ only. I think because of this isomorphism, nothing changes if we change to $(X_k/V)_{\text{conv}}$.

 $^{{}^8\}mathrm{So}\ \mathcal{L}$ is a smooth (lisse) \mathbb{Q}_p -sheaf on X_K , and \mathcal{F} is an F-isocrystal on X_k . Moreover, the sheaf \mathcal{J}_E is defined in [Olso9, §13.3].

⁹Recall that $H_{E,F}^i(X,\mathcal{F}) := \hat{H}^i((X-F), j_!\mathcal{F})$, see [Olso9, §8.12].

¹⁰This should follows from definition. But I did not think about it.

- For a vector bundle $\mathscr E$ over X, $\mathscr E$ pulls back to vector bundles on X_k and X_K , still denoted by $\mathscr E$. The *i*-th Chern class lives in $H^{2i}(-)$. More precisely,
 - $\begin{array}{ll} \text{ Crystalline: } \mathbf{H}^{2i}(X_k/W) \leadsto \boxed{\mathbf{H}^{2i}\left((X_k/W)_{\operatorname{conv}}, \mathcal{K}_{X_k/W}\right)}. \\ \text{ Étale: } \boxed{\mathbf{H}^{2i}\left(X_{\bar{K},\operatorname{\acute{e}t}}^0, \mathbb{Q}_p(i)\right)}. \end{array}$
- We first consider the first Chern Class of a line bundle.
 - Crystalline.

We have a short exact sequence

$$0 \to \mathcal{F} \to \mathcal{O}_{X_L/W} \to \mathcal{O}_{X_L} \to 0$$

of sheaves on $Crys(X_k/W)$, where

$$\begin{split} & \circlearrowleft_{X_k/W} : (U,T) \to \Gamma(T) \\ & \circlearrowleft_{X_k} : (U,T) \to \Gamma(U) \\ & \mathcal{F} : (U,T) \to \operatorname{Ker}(\Gamma(T) \to \Gamma(U)) \end{split}$$

This induces maps

$$0 \to 1 + \mathcal{F} \to \mathbb{O}^*_{X_k/W} \to \mathbb{O}^*_{X_k} \to 0$$

 \mathcal{F} is a divided power ideal hence there is a logarithm map (recalling that $n!x^{[n]} = x^n$)

$$\log: 1 + \mathcal{I} \to \mathfrak{G}_{X/W}, \qquad 1 + t \mapsto \sum_{m \geq 1} (-1)^{m-1} (m-1)! t^{[m]}$$

Then we have

$$\begin{split} \mathrm{H}^{1}(X, \mathbb{O}_{X}^{*}) & \to \mathrm{H}^{1}((X_{k}/W)_{\mathrm{crys}}, \mathbb{O}_{X_{k}}^{*}) \\ & \to \mathrm{H}^{2}((X_{k}/W)_{\mathrm{crys}}, 1 + \mathcal{F}) \\ & \to \mathrm{H}^{2}((X_{k}/W)_{\mathrm{crys}}, \mathbb{O}_{X_{k}/W}) \otimes \mathbb{Q} \\ & \simeq \mathrm{H}^{2}((X_{k}/W)_{\mathrm{conv}}, \mathcal{H}_{X_{k}/W}) \end{split}$$

We denote this map by c_1^{cr} .

Étale.

We have the Kummer exact sequence of sheaves on $\mathrm{Et}(X_K)$

$$0 \to \mu_{p^s} \to \mathbb{G}_m \xrightarrow{-p^s} \mathbb{G}_m \to 0.$$

This induces

$$\mathrm{H}^1(X_K,\mathbb{G}_m) \to \mathrm{H}^2(X_K,\mathbb{Z}_p(1)) \otimes \mathbb{Q}_p \simeq \mathrm{H}^2(X_K,\mathbb{Q}_p(1)).$$

We denote this map by $c_1^{\text{\'et}}$.

• Higher Chern classes can be expressed in terms of first Chern classes as follows. Suppose that $\mathscr E$ is locally free sheaf of rank r over X. Consider the projective bundle¹¹ $(\mathbb P(\mathscr E), \mathbb O(-1)) \to X$ associated to \mathscr{E} , i.e., $\mathbb{P}(\mathscr{E}) = \mathscr{P}roj(\mathrm{Sym}^{\bullet}\mathscr{E}^{\vee})$. Let $\xi \in \mathrm{H}^{2}(\mathbb{P}(\mathscr{E}))$ be the first Chern class of the tautological bundle. The cohomology ring $H^*(\mathbb{P}(\mathscr{E}))$ is a free $H^*(X)$ -module with basis $1, \xi, \xi^2, \ldots, \xi^{r-1}$. Hence there is a relation

$$\xi^r + c_1 \xi^{r-1} + \dots + c_r = 0 \in H^{2r}(\mathbb{P}(\mathscr{E}))$$

Then the *i*-th Chern class $c_i(\mathscr{E})$ of \mathscr{E} is the coefficient $c_i \in H^{2i}(X)$.

• So we are to prove that

$$H^{1}(X, \mathbb{O}_{X}^{*}) \xrightarrow{c_{1}^{\text{\'et}} \otimes \tilde{B}_{\text{crys}}} H^{2}(X_{\bar{K}, \text{\'et}}^{0}, \mathbb{Q}_{p}(1)) \otimes_{\mathbb{Q}_{p}} \tilde{B}_{\text{crys}}(\bar{V})
\downarrow_{c_{1}^{\text{cr}} \otimes \tilde{B}_{\text{crys}}} \downarrow_{\beta} (2)
H^{2}((X_{k}/W)_{\text{conv}}, \mathcal{K}_{X_{k}/W}) \otimes_{K_{0}} \tilde{B}_{\text{crys}}(\bar{V}) \xrightarrow{\alpha} H^{2}(X_{\bar{K}, \text{\'et}}^{0}, \mathbb{Q}_{p}) \otimes_{\mathbb{Q}_{p}} \tilde{B}_{\text{crys}}(\bar{V})$$

 $^{^{11}}$ The terminology differs in literatures. Some call it the projective bundle associate to $\mathscr{E}^{\vee}.$

Recall that, for each i, $\beta^{\otimes i}$ is the *isomorphism* $\beta^{\otimes i}: B_{\operatorname{crys}}(\bar{V})(i) \to B_{\operatorname{crys}}(\bar{V})$, or more precisely, the induced isomorphism on the further localization

$$\beta^{\otimes i}: \tilde{B}_{\operatorname{crys}}(\bar{V})(i) \to \tilde{B}_{\operatorname{crys}}(\bar{V}).$$

(This has been discussed in Drimiti's talk. For a reference, see [Olsog, (11.1.10)].)

3.1. Proposition. The diagram (2) commutes.

Proof The proof is based on computation. Since we didn't define it explicitly, so we omit the proof.

3.2. Corollary. For any vector bundle \mathscr{E} on X, we have

$$\alpha \left(c_i^{\operatorname{cr}(\mathcal{E})} \right) = \beta^{\otimes i} \left(c_i^{\operatorname{\acute{e}t}}(\mathcal{E}) \right)$$

4 Proof II. Behavior under Push-forward

[Olsog, §14.6–14.10]

In this section, we consider the behavior of α under pushforward.¹²

(1) For reasonable cohomology $H^*(X, -)$, and a (reasonable) sheaf $\mathscr F$ on X, a morphism $f: Y \to X$ induces a morphism $H^i(X, \mathscr F) \to H^i(Y, f^*\mathscr F)$. Then by some type of Poincare-Verdier duality, we get

$$f_*: \mathrm{H}^i(Y, f^*\mathcal{F}) \to \mathrm{H}^{2\delta+i}(X, \mathcal{F}),$$

where the RHS may have some twist.

- (2) We only consider a special case: Let $f: Y \hookrightarrow X$ be a closed embedding of smooth proper V-schemes of of relative codimension $\delta := \dim X \dim Y$. (Assume that Y meets D transversally.)¹³ Moreover, assume that the log structure on Y is induced by that of X. Set $E_Y := E \cap Y$ and $F_Y := Y \cap F$.
- (3) In our current setting, we have 14

$$f_*^{\operatorname{cr}}: \operatorname{H}^i\big((Y_k/W)_{\operatorname{conv}}, f^*\mathcal{F} \otimes \mathcal{J}_{E_Y}\big) \to \operatorname{H}^{2\delta+i}\big((X_k/W)_{\operatorname{conv}}, \mathcal{F} \otimes \mathcal{J}_E\big)$$

for the convergent cohomology and

$$f_*^{\text{\'et}}: \mathrm{H}^i_{E_Y,F_Y}(Y^0_{\bar{K},\text{\'et}},f^*\mathcal{L}) \to \mathrm{H}^{2\delta+i}_{E,F}(X^0_{\bar{K},\text{\'et}},\mathcal{L})(\delta)$$

for the étale cohomogoly.

(We have seen these in Marco's talk. For a reference, see [Olsog, §6.17, §8.20].)

(4) We expect α behaves well under push forward. That is, we are expecting a commutative diagram

$$H^{i}\left((Y_{k}/W)_{\text{conv}}, f^{*\mathcal{F}} \otimes \mathcal{J}_{E_{Y}}\right) \otimes_{K_{0}} \tilde{B}_{\text{crys}}(\bar{V}) \xrightarrow{\alpha} H^{i}_{E_{Y}, F_{Y}}(Y_{\bar{K}, \text{\'et}}^{0}, \mathcal{L}) \otimes_{\mathbb{Q}_{p}} \tilde{B}_{\text{crys}}(\bar{V})
\downarrow_{f^{\text{cr}}_{*}} \qquad \qquad \downarrow_{\beta^{\delta} \circ f^{\text{\'et}}_{*}} \tag{3}$$

$$H^{2\delta+i}\left((X_{k}/W)_{\text{conv}}, \mathcal{F} \otimes \mathcal{J}_{E}\right) \otimes_{K_{0}} \tilde{B}_{\text{crys}}(\bar{V}) \xrightarrow{\alpha} H^{2\delta+i}_{E,F}(X_{\bar{K}, \text{\'et}}^{0}, \mathcal{L}) \otimes_{\mathbb{Q}_{p}} \tilde{B}_{\text{crys}}(\bar{V})$$

4.1. Theorem. The diagram (3) commutes under above assumptions, i.e.,

$$\alpha \circ f_*^{\operatorname{cr}} = \beta^{\otimes \delta} \circ f_*^{\operatorname{\acute{e}t}} \circ \alpha$$

 $^{^{12}\}text{The map}~\alpha$ respect pullbacks (under mild assumptions) by definition. See also footnote 26.

¹³This assumption was in [Olsog, Thm. 8.21] and [Fal8g, p.63, V.b)].

¹⁴The twist is missing in [Olso9, (14.6.1) and §8.20] for convergent cohomology. Why? Besides, the superscript cr is a little bit misleading.

4.2. Proof. Strategy: Deformation to the normal cone. This should be standard, and is explained in [Ful98, Chapter V].

To simplify notations, write

$$\begin{split} & \mathbf{H}^*_{\operatorname{crys}}(X) \coloneqq \mathbf{H}^i \big((X_k/W)_{\operatorname{conv}}, \mathcal{F} \otimes \mathcal{J}_E \big) \\ & \mathbf{H}^*_{\operatorname{crys}}(Y) \coloneqq \mathbf{H}^i \big((Y_k/W)_{\operatorname{conv}}, f^* \mathcal{F} \otimes \mathcal{J}_E \big) \\ & \mathbf{H}^*_{\operatorname{\acute{e}t}}(X) \coloneqq \mathbf{H}^i_{E,F} \big(X^0_{\bar{K},\operatorname{\acute{e}t}}, \mathcal{L} \big) \\ & \mathbf{H}^*_{\operatorname{\acute{e}t}}(Y) \coloneqq \mathbf{H}^i_{E_Y,F_Y} \big(Y^0_{\bar{K} \operatorname{\acute{e}t}}, f^* \mathcal{L} \big) \end{split}$$

and so on.

Consider the blowing up of $X \times \mathbb{P}^1$ with centre $Y \times \{\infty\}$:

For each $t \in \mathbb{P}^1$, denote by Z_t the fibre of the projection $Z \to \mathbb{P}^1$ at $t \in \mathbb{P}^1$. Let $f_t : Y \to Z_t$ be the inclusion induced $f_t : Y \to Z_t$ be the induced $f_t : Y \to Z_t$ be th

$$Z_{\infty} = \pi^{-1}(X \times \{\infty\})$$

$$= \pi^{-1}(Y \times \{\infty\} \cup (X - Y) \times \{\infty\}))$$

$$= \pi^{-1}(Y \times \{\infty\}) \cup \overline{\pi^{-1}((X - Y) \times \{\infty\})})$$

$$= \left[E_{Y \times \{\infty\}}(X \times \mathbb{P}^{1})\right] \cup \left[\left(Bl_{Y} X \times \{\infty\}\right)\right]$$

$$=: Z'_{\infty} \cup Z''_{\infty},$$

and the following facts:16

- Z_{∞}' and Z_{∞}'' are irreducible components of Z_{∞} .
- $Z'_{\infty} \cap Z''_{\infty} = (E_Y X) \times \{\infty\}$, where $E_Y X$ is the exceptional divisor of the blow up of X with centre Y.
- The image of Y under $f_{\infty}: Y \to Z_{\infty}$ lies inside $Z'_{\infty} Z''_{\infty}$.
- The two exceptional divisors $Z'_{\infty} := \mathrm{E}_{Y \times \{\infty\}}(X \times \mathbb{P}^1)$ and $\mathrm{E}_Y X$ and are projective bundles (projectivization of the normal bundle) over Y, as $Y \hookrightarrow X$ is a regular embedding.

Let \bar{D} be the strict transform of $D \times \mathbb{P}^1$, i.e., $\bar{D} := \overline{\pi^{-1}(D \times \mathbb{P}^1 - Y \times \{\infty\})}$. Consider

Then for any \mathcal{L} on $Z_{\text{\'et}}$, ¹⁸ there is an exact sequence (see [Mil13, Prop. 8.15])

$$0 \to j_! j^* \mathcal{L} \to \mathcal{L} \to i_* i^* \mathcal{L} \to 0,$$

¹⁵Take the fibre of the \mathbb{P}^1 -morphism $\tilde{f}: Y \times \mathbb{P}^1 \to Z$ at $t \in \mathbb{P}^1$

 $^{^{16}\}mathrm{I}$ didn't check these facts.

¹⁷Should it be the strict transform of $D \times \{\infty\}$ or $D \times \mathbb{P}^1$?

¹⁸Should it be on $Z \setminus \bar{D}$?

hence¹⁹ an exact sequence

4.3. Lemma. The composition

$$\operatorname{H}^*_{\mathrm{cute{e}t}}ig(Z,Z_\inftyig) \stackrel{p}{\longrightarrow} \operatorname{H}^*_{\mathrm{cute{e}t}}(Z) \stackrel{j_0^*}{\longrightarrow} \operatorname{H}^*_{\mathrm{cute{e}t}}(Z_0)$$

is zero, where j_0^* is the pull-back map induced by $j_0: Z_0 \hookrightarrow Z$.

Proof. Note that 20

$$Z - (\overline{D} \cup Z_{\infty}) \cong (X - D) \times (\mathbb{P}^1 - \{\infty\}) \cong (X - D) \times \mathbb{A}^1$$

It follows from Künneth formula²¹ that

$$\mathrm{H}^*_{\mathrm{\acute{e}t}}(Z,Z_{\infty}) \cong \mathrm{H}^*_{\mathrm{\acute{e}t}}(X-D) \times \mathrm{H}^2_{\mathrm{\acute{e}t},\epsilon}(\mathbb{A}^1) \cong \mathrm{H}^{*-2}_{\mathrm{\acute{e}t}}(X-D)(1)$$

With this identification, the, the map p is given by the pushforward map

$$(j_0)_*: \mathrm{H}^{*-2}_{\acute{e}t}(X-D)(1) \to \mathrm{H}^*_{\acute{e}t}(Z)$$

So we reduce the problem to show that

$$j_0^*(j_0)_*: \mathrm{H}^{*-2}_{\mathrm{\acute{e}t}}(X-D)(1) \to \mathrm{H}^*_{\mathrm{\acute{e}t}}(X-D)$$

is zero. This follows from the self-intersection formula [SGA5, VII, Thm. 4.1], which shows that this map is given by the cup-product by the first Chern classes of the conormal bundle of Z_0 in Z, which is trivial.²² This finishes the proof of the claim.

4.4. Lemma. The Mayer-Vietoris sequence (see [Mil13, Thm. 10.8])²³ induces an exact sequence

$$\mathrm{H}^*_{\mathrm{\acute{e}t}}(Z,Z_\infty) \stackrel{p}{\longrightarrow} \mathrm{H}^*_{\mathrm{\acute{e}t}}(Z) \longrightarrow \mathrm{H}^*_{\mathrm{\acute{e}t}}(Z'_\infty) \oplus \mathrm{H}^*_{\mathrm{\acute{e}t}}(Z''_\infty)$$

Proof Recall that Z'_{∞} and $Z'_{\infty} \cap Z''_{\infty}$ are both projective bundles over Y. So the map

$$\operatorname{H}^*_{\operatorname{\acute{e}t}}(Z_{\infty}') \to \operatorname{H}^*_{\operatorname{\acute{e}t}}(Z_{\infty}' \cap Z_{\infty}'')$$

is surjective as both are generated over $H_{\text{\'et}}^*(Y)$ by the first Chern class of the tautological line bundle. This implies that

$$\mathrm{H}^*_{\mathrm{\acute{e}t}}(Z_\infty) o \mathrm{H}^*_{\mathrm{\acute{e}t}}(Z_\infty') \oplus \mathrm{H}^*_{\mathrm{\acute{e}t}}(Z_\infty'')$$

is injective. Hence the desired exact sequence.

4.5. We have the following commutative diagram:

¹⁹I didn't quite understand what are these cohomology groups. If there is no D, then everything is easier.
20 Should think about this: $Z - Z_{\infty} = \pi^{-1}(X \times (\mathbb{P}^1 - \{\infty\})) \cong X \times (\mathbb{P}^1 - \{\infty\})$, as the latter does not meet the centre of the blow up. Then $Z - (Z_{\infty} \cup \bar{D}) = (Z - Z_{\infty}) - \pi^{-1}(D - Y) = \cdots$.

 $^{^{22}\}mathrm{I}$ didn't check: what does the reference say and why is the Chern class trivial.

²³It reads $\cdots \rightarrow \mathrm{H}^i(X) \rightarrow \mathrm{H}^i(U_1) \oplus \mathrm{H}^i(U_2) \rightarrow \mathrm{H}^i(U_1 \cap U_2) \rightarrow \mathrm{H}^{i+1}(X) \rightarrow \cdots$, where $X = U_1 \cup U_2$ with U_i open.

In either theory, the composition

$$\mathrm{H}^*(Y) \xrightarrow{\mathrm{pr}_1^*} \mathrm{H}^*(Y \times \mathbb{P}^1) \xrightarrow{\tilde{f_*}} \mathrm{H}^*(Z) \xrightarrow{j_0^*} \mathrm{H}^*(Z_0) = \mathrm{H}^*(X)$$

equals to f_* .²⁴

With our simplified notations, the diagram (3) whose commutative we are going to show, now simplifies as²⁵

$$\begin{split} \mathbf{H}^*_{\mathrm{crys}}(Y) & \longrightarrow \mathbf{H}^*_{\mathrm{crys}}(Y \times \mathbb{P}^1) & \stackrel{\tilde{f}^{\mathrm{cr}}_*}{\longrightarrow} \mathbf{H}^*_{\mathrm{crys}}(Z) & \stackrel{f^*_0}{\longrightarrow} \mathbf{H}^*_{\mathrm{crys}}(Z_0) \cong \mathbf{H}^*_{\mathrm{crys}}(X) \\ \downarrow^{\alpha} & \downarrow^{\alpha} & \downarrow^{\alpha} & \downarrow^{\alpha} \\ \mathbf{H}^*_{\mathrm{\acute{e}t}}(Y) & \longrightarrow \mathbf{H}_{\mathrm{\acute{e}t}}(Y \times \mathbb{P}^1) & \stackrel{\tilde{f}^{\mathrm{\acute{e}t}}_*}{\longrightarrow} \mathbf{H}^*_{\mathrm{\acute{e}t}}(Z) & \stackrel{f^*_0}{\longrightarrow} \mathbf{H}^*_{\mathrm{\acute{e}t}}(Z_0) \cong \mathbf{H}^*_{\mathrm{\acute{e}t}}(X) \\ \downarrow & \downarrow \\ \mathbf{H}^*_{\mathrm{\acute{e}t}}(Z'_{\infty}) \oplus \mathbf{H}^*_{\mathrm{\acute{e}t}}(Z''_{\infty}) \end{split}$$

We need to show the left square in the above diagram commutes. We identify $a \in H^*(Y)$ with $\operatorname{pr}_1^*(a) \in H^*(Y \times \mathbb{P}^1)$ in either theory. So we are to show $\alpha(\tilde{f}_*^{\operatorname{cr}}(a))$ and $f_*^{\operatorname{\acute{e}t}}(\alpha(a))$ in $H_{\operatorname{\acute{e}t}}^*(Z)$ agrees. For this, we only need to show that their images in $H_{\operatorname{\acute{e}t}}^*(Z_\infty')$ and $H_{\operatorname{\acute{e}t}}^*(Z_\infty'')$ agree respectively.

Recall that Y does not lie in Z''_{∞} , so we reduce our problem to the case $f: Y \hookrightarrow Z'_{\infty}$, with Z'_{∞} a projective bundle over Y. In either theory, for any class $H^*(Y)$, $f_*(\beta) = f_*(f^*p^*\beta) = f_*(1) \cup p^*\beta$, where p is the projection of Z'_{∞} to Y.

It suffices²⁶ to consider the case $f_*(1)$. But in either theory, $f_*(1)$ is given by the Chern class of the conormal bundle. So we finish the proof.

4.6. Corollary. Denote by Tr^{cr} and Tr^{ét} the trace maps.²⁷ Then we have the following commutative diagram:

$$\begin{split} \mathrm{H}^{2d} \left((X_k/W)_{\mathrm{conv}}, \mathcal{K}_{X/V} \otimes \mathcal{J}_D \right) \otimes_{K_0} \tilde{B}_{\mathrm{crys}}(\bar{V}) & \xrightarrow{\mathrm{Tr^{cr}}} \tilde{B}_{\mathrm{crys}}(\bar{V}) \\ \downarrow^{\alpha} & \beta^{\otimes d} \uparrow \\ \mathrm{H}^{2d}_{c}(X^0_{\bar{K} \text{ \'et}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \tilde{B}(\bar{V}) & \xrightarrow{\mathrm{Tr^{\acute{et}}}} \tilde{B}(\bar{V})(d) \end{split}$$

In particular, the map

$$\alpha: \mathrm{H}^{2d}((X_k/W)_{\mathrm{conv}}, \mathcal{K} \otimes \mathcal{J}_D) \otimes_{K_0} \tilde{B}_{\mathrm{crys}}(\bar{V}) \to \mathrm{H}^{2d}_{\varepsilon}(X_{\bar{K}, \mathrm{\acute{e}t}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \tilde{B}_{\mathrm{crys}}(\bar{V})$$

is an isomorphism.

Proof It suffices to show this after making an extension of V when $X^0 \to \operatorname{Spec} V$ has a section. In this case, the corollary follows from observing that the trace map is characterized by the fact it sends the class of a point in X^0 to 1.

4.7. It follows that there is a unique map

$$\alpha^t: \mathrm{H}^*_{F,E}(X^0_{\bar{K},\operatorname{\acute{e}t}}, \mathcal{L}) \otimes_{\mathbb{Q}_p} \tilde{B}_{\operatorname{crys}}(\bar{V}) \to \mathrm{H}^*((X_k/W)_{\operatorname{conv}}, \mathcal{F} \otimes \mathcal{J}_F) \otimes_{K_0} \tilde{B}_{\operatorname{crys}}(\bar{V})$$

such that for any

$$\begin{split} &a \in \mathrm{H}^*\big((X_k/\mathcal{W})_{\mathrm{conv}}, \mathcal{F} \otimes \mathcal{J}_E\big), \\ &b \in \mathrm{H}^{2\delta-*}_{F,E}(X^0_{\bar{K},\operatorname{\acute{e}t}}, \mathcal{L}) \end{split}$$

it holds that

$$\operatorname{Tr}^{\operatorname{cr}}\left(\alpha^{t}(b)\cup a\right)=\beta^{\otimes\delta}\Big(\operatorname{Tr}^{\operatorname{\acute{e}t}}\left(b\cup\alpha(a)\right)\Big).$$

Then using the same trick as in [Olsog, §8.60–8.61], we conclude that α and α^t are both isomorphisms.

²⁴I didn't check this.

²⁵Take care that H*_{crvs} is that of the special fibre and H*_{ét} is that of the geometric generic fibre.

²⁶There are more to say here. The map α is compatible with cup product, this is mentioned in the beginning. That α is compatible with pullback is less obvious. But it is true. We have seen the way to deal with it in Marco's talk. See [Olsog, §8.21–§8.54].

²⁷In [Olsog, (14.9.1)], the \mathcal{H} in my diagram is M. But I don't know what is M. Maybe it is the \overline{M} introduced in §13.3 or the M in §8.57. As mentioned before, \mathbb{Q}_p is associated to $\mathcal{H}_{X/W}$, so I write $\mathcal{H}_{X/W}$ here. If you know what is M and M is not $\mathcal{H}_{X/W}$, please replace all $\mathcal{H}_{X/W}$ in the following by M.

5 Proof III. Strictly Compatible with Filtration

[Olsog, §14.11-14.12]

- (1) Let F be the filtration on $H^*(X_k/W, \mathcal{F} \otimes \mathcal{J}_E)$ and \hat{F} be that on $H^*(X_k/W, \mathcal{F}' \otimes \mathcal{J}_F)$, induced by that of \mathcal{F} , where \mathcal{F}' is the dual²⁸ of \mathcal{F} . Let G be the filtration on $H^*_{E,F}(X^0_{\bar{K},\acute{\operatorname{et}}}, \mathscr{L}) \otimes_{\mathbb{Q}_p} \tilde{B}_{\operatorname{crys}}(\bar{V})$ induced by that of $\tilde{B}_{\operatorname{crys}}(\bar{V})$.
- (2) It suffices to show

$$\mathscr{G}r_F^s \operatorname{H}^k(X_k/W, \mathcal{F} \otimes \mathcal{J}_E) \otimes_{K_0} \tilde{B}_{\operatorname{crys}}(\bar{V}) \to \mathscr{G}r_G^s \operatorname{H}^k_{E,F}(X_{\bar{K},\operatorname{\acute{e}t}}) \otimes_{\mathbb{Q}_b} \tilde{B}_{\operatorname{crys}}(\bar{V})$$

is an inclusion.

(3) To show this, it suffices to show that the filtration F^{\bullet} and its dual \hat{F}^{\bullet} gives a perfect pairing.

$$\mathscr{G}r_F^s \operatorname{H}^k \otimes \mathscr{G}r_{\hat{x}}^{-s} \operatorname{H}^{2\delta-k} \to \operatorname{H}^d(X, \Omega_X^d)$$

(4) Go to the associated de Rham complexes and use Poincaré duality to conclude the result.

References

- [BD] A. Beilinson and V. Drinfeld. "Quantization of Hitchin's Integrable system and Hecke eigensheaves". URL: http://www.math.uchicago.edu/~mitya/langlands/hitchin/BD-hitchin.pdf (cit. on p. 1).
- [Fal89] Gerd Faltings. "Crystalline cohomology and p-adic Galois-representations." English. In: Algebraic analysis, geometry, and number theory: proceedings of the JAMI inaugural conference, held at Baltimore, MD, USA, May 16-19, 1988. Baltimore: Johns Hopkins University Press, 1989, pp. 25-80. Zbl: 0805.14008 (cit. on pp. 1, 4).
- [Ful98] William Fulton. *Intersection theory. 2nd ed.* English. 2nd ed. Berlin: Springer, 1998, pp. xiii + 470. Zbl: 0885.14002 (cit. on p. 5).
- [Kat89] Kazuya Kato. "Logarithmic structures of Fontaine-Illusie." English. In: Algebraic analysis, geometry, and number theory: proceedings of the JAMI inaugural conference, held at Baltimore, MD, USA, May 16-19, 1988. Baltimore: Johns Hopkins University Press, 1989, pp. 191–224. Zbl: 0776.14004 (cit. on p. 1).
- [Kat90] Nicholas M. Katz. Exponential sums and differential equations. English. Princeton, NJ: Princeton University Press, 1990, pp. ix + 430. DOI: 10.1515/9781400882434. Zbl: 0731.14008 (cit. on p. 1).
- [Mil13] James S. Milne. Lectures on Etale Cohomology (v2.21). 2013. URL: http://www.jmilne.org/math/CourseNotes/LEC.pdf (cit. on pp. 5, 6).
- [Ogu84] Arthur Ogus. "F-isocrystals and de Rham cohomology. II: Convergent isocrystals." English. In: *Duke Math. J.* 51 (1984), pp. 765–850. DOI: 10.1215/S0012-7094-84-05136-6. Zbl: 0584.14008 (cit. on p. 2).
- [Olso7] Martin C. Olsson. *Crystalline cohomology of algebraic stacks and Hyodo-Kato cohomology.* English. Paris: Société Mathématique de France, 2007, p. 412. Zbl: 1199.14006 (cit. on p. 1).
- [Olso9] Martin C. Olsson. "On Faltings' method of almost étale extensions." English. In: Algebraic geometry, Seattle 2005. Proceedings of the 2005 Summer Research Institute, Seattle, WA, USA, July 25-August 12, 2005. Providence, RI: American Mathematical Society (AMS), 2009, pp. 811-936. Zbl: 1175.14012 (cit. on pp. 1, 2, 4, 7, 8).
- [SGA5] Cohomologie l-adique et fonctions L. Lecture Notes in Mathematics, Vol. 589. Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5), Edité par Luc Illusie. Springer-Verlag, Berlin-New York, 1977, pp. xii+484. MR: 0491704 (cit. on p. 6).
- [Shio2] Atsushi Shiho. "Crystalline fundamental groups. II: Log convergent cohomology and rigid cohomology." English. In: J. Math. Sci., Tokyo 9.1 (2002), pp. 1–163. Zbl: 1057.14025 (cit. on pp. 1, 2).
- [Tsu] Takeshi Tsuji. crystalline sheaves, syntomic cohomology and p-adic polylogarithms. notes of the seminar at Caltech on Feb. 20, 2001. URL: http://swc.math.arizona.edu/dls/DLSTsuji2.pdf (cit. on p. 1).

²⁸What's is the precise definition?