Computing Galois Groups Arising From Automorphic Forms

Universiteit Leiden

Université Paris-Saclay

Edward Coto Mora Advised by Gaëtan Chenevier

ALGANT MASTER
Academic Year 2019/2020

Section I

Analize the compatible system of p-adic representations of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ which arise from certain cuspidal automorphic representations Π of $GL_{2n+1}(\mathbb{A})$.

Section I

Analize the compatible system of p-adic representations of $Gal(\bar{\mathbb{Q}}/\mathbb{Q})$ which arise from certain cuspidal automorphic representations Π of $GL_{2n+1}(\mathbb{A})$.

$$\Pi = \bigotimes_{
ho}' \Pi_{
ho}$$

Section I

Analize the compatible system of p-adic representations of $Gal(\bar{\mathbb{Q}}/\mathbb{Q})$ which arise from certain cuspidal automorphic representations Π of $GL_{2n+1}(\mathbb{A})$.

$$\Pi = \bigotimes_{
ho}' \Pi_{
ho}$$

(St) - There exists a finite place s.t. Π_q is the Steinberg representation, and Π_p is unramified for all $p \neq q \longrightarrow$ Satake parameter's: ϕ_p .

2

Section I

Analize the compatible system of p-adic representations of $Gal(\bar{\mathbb{Q}}/\mathbb{Q})$ which arise from certain cuspidal automorphic representations Π of $GL_{2n+1}(\mathbb{A})$.

$$\Pi = \bigotimes_{
ho}' \Pi_{
ho}$$

- (St) There exists a finite place s.t. Π_q is the Steinberg representation, and Π_p is unramified for all $p \neq q \longrightarrow$ Satake parameter's: ϕ_p .
- (Coh) The infinitesimal character of Π_{∞} is the infinitesimal character of the trivial representation of $GL_{2n+1}(\mathbb{R})$

Section I

Analize the compatible system of p-adic representations of $Gal(\bar{\mathbb{Q}}/\mathbb{Q})$ which arise from certain cuspidal automorphic representations Π of $GL_{2n+1}(\mathbb{A})$.

$$\Pi = \bigotimes_{
ho}' \Pi_{
ho}$$

- (St) There exists a finite place s.t. Π_q is the Steinberg representation, and Π_p is unramified for all $p \neq q \longrightarrow$ Satake parameter's: ϕ_p .
- (Coh) The infinitesimal character of Π_{∞} is the infinitesimal character of the trivial representation of $GL_{2n+1}(\mathbb{R})$
 - $R_l(x)$ the characteristic polynomial of ϕ_{Π_l} factors as $R_l(x) = P_l(x)(x-1)$, with $P_l(x)$ palindromic in $\mathbb{Z}[\frac{1}{l}][x]$.

Theorem

There exists a compatible system of p-adic representations

$$\rho_p: Gal(\bar{\mathbb{Q}}/\mathbb{Q}) \to GL_{2n+1}(\mathbb{Q}_p)$$

such that for all $p \neq q$ the image of ρ_p is contained in a split orthogonal group $SO_{2n+1}(\mathbb{Q}_p)$.

3

Section II

Examine an example of an automorphic representations π which was constructed on an anisotropic form of G_2 .

Section II

Examine an example of an automorphic representations π which was constructed on an anisotropic form of G_2 .

(Gross, Savin) π lifts to an automorphic representation σ of Sp_6 .

4

Section II

Examine an example of an automorphic representations π which was constructed on an anisotropic form of G_2 .

(Gross, Savin) π lifts to an automorphic representation σ of Sp_6 . (Arthur) σ lifts to an automorphic representation of Π . This lift is cuspidal, and satisfies the (St) condition.

4

Section II

Examine an example of an automorphic representations π which was constructed on an anisotropic form of G_2 .

(Gross, Savin) π lifts to an automorphic representation σ of Sp_6 . (Arthur) σ lifts to an automorphic representation of Π . This lift is cuspidal, and satisfies the (St) condition.

Proposition

The splitting fields of $P_2(x)$ and $P_3(x)$, the characteristic polynomials associated to the corresponding Satake parameters π_2, π_3 , have the Galois group isomorphic to D_6 and are algebraically independent.

Section III

We further analyze the Galois representations that arise from Π , the automorphic representation which lifts from π .

Section III

We further analyze the Galois representations that arise from Π , the automorphic representation which lifts from π .

Theorem

There exists a compatible system of p-adic representations

$$\rho_p: Gal(\bar{\mathbb{Q}}/\mathbb{Q}) \to GL_7(\mathbb{Q}_p)$$

such that for all $p \neq 5$ the Zariski closure of the image is $G_2(\mathbb{Q}_p)$.

5

Section III

We further analyze the Galois representations that arise from Π , the automorphic representation which lifts from π .

Theorem

There exists a compatible system of p-adic representations

$$\rho_p: \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_7(\mathbb{Q}_p)$$

such that for all $p \neq 5$ the Zariski closure of the image is $G_2(\mathbb{Q}_p)$.

Theorem (Kay Magaard, Gordan Savin)

There is a set of primes S of density 1, such that for all $p \in S$, there exists an extension of \mathbb{Q} with $G_2(p)$ as its Galois group which ramifies only at 5 and p.

5

Suppose that Π is cuspidal automorphic representations of $GL_{2n+1}(\mathbb{A})$ such that:

$$\Pi = \bigotimes_{
ho}' \Pi_{
ho}$$

Suppose that Π is cuspidal automorphic representations of $GL_{2n+1}(\mathbb{A})$ such that:

$$\Pi = \bigotimes_{
ho}' \Pi_{
ho}$$

- (St) There exists a finite place s.t. Π_q is the Steinberg representation, and Π_p is unramified for all $p \neq q \longrightarrow$ Satake parameter's: ϕ_{Π_p} .
- (Coh) The infinitesimal character of Π_∞ is the infinitesimal character of the trivial representation of $GL_m(\mathbb{R})$

Suppose that Π is cuspidal automorphic representations of $GL_{2n+1}(\mathbb{A})$ such that:

$$\Pi = \bigotimes_{
ho}' \Pi_{
ho}$$

- (St) There exists a finite place s.t. Π_q is the Steinberg representation, and Π_p is unramified for all $p \neq q \longrightarrow$ Satake parameter's: ϕ_{Π_p} .
- (Coh) The infinitesimal character of Π_∞ is the infinitesimal character of the trivial representation of $GL_m(\mathbb{R})$
 - $R_l(x)$ the characteristic polynomial of ϕ_{Π_l} factors as $R_l(x) = P_l(x)(x-1)$, with $P_l(x)$ palindromic in $\mathbb{Z}[\frac{1}{l}][x]$.

(In particular Π is self dual.)

The work of Harris-Taylor and Taylor-Yoshida yields:

For every prime p there exists a semisimple continuous representation

$$\rho_p: \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_{2n+1}(\bar{\mathbb{Q}}_p)$$

such that:

- ρ_p is unramified at all primes $l \neq p, q$.
- $R_l(x)$ is the characteristic polynomial of $\rho_p(Fr_l)$.
- For all $p \neq q$ the representation ρ_p is irreducible.

Proposition

If $p \neq q$ then ρ_p is defined over \mathbb{Q}_p .

$$\rho_p^{\mathbb{Q}}: \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_{2n+1}(\mathbb{Q}_p)$$

Proposition

If $p \neq q$ then ρ_p is defined over \mathbb{Q}_p .

$$\rho_p^{\mathbb{Q}}: Gal(\bar{\mathbb{Q}}/\mathbb{Q}) \to GL_{2n+1}(\mathbb{Q}_p)$$

Outline of the proof.

· Let Γ be the image of ρ_p and consider the algebra $A = \mathbb{Q}_p[\Gamma] \subset M_m(\bar{\mathbb{Q}}_p)$.

Proposition

If $p \neq q$ then ρ_p is defined over \mathbb{Q}_p .

$$\rho_p^{\mathbb{Q}}: Gal(\bar{\mathbb{Q}}/\mathbb{Q}) \to GL_{2n+1}(\mathbb{Q}_p)$$

- · Let Γ be the image of ρ_p and consider the algebra $A = \mathbb{Q}_p[\Gamma] \subset M_m(\bar{\mathbb{Q}}_p)$.
- A is simple. So $A \cong M_r(D)$ for some division algebra D. Observe $A \otimes \bar{\mathbb{Q}} = M_m(\bar{\mathbb{Q}}_p)$,

Proposition

If $p \neq q$ then ρ_p is defined over \mathbb{Q}_p .

$$\rho_p^{\mathbb{Q}}: Gal(\bar{\mathbb{Q}}/\mathbb{Q}) \to GL_{2n+1}(\mathbb{Q}_p)$$

- Let Γ be the image of ρ_p and consider the algebra $A = \mathbb{Q}_p[\Gamma] \subset M_m(\bar{\mathbb{Q}}_p)$.
- A is simple. So $A \cong M_r(D)$ for some division algebra D. Observe $A \otimes \bar{\mathbb{Q}} = M_m(\bar{\mathbb{Q}_p})$,
- $trd(\rho_p(Fr_l)) \in \mathbb{Q}$ for $l \neq p$ implies D is a central simple algebra over \mathbb{Q}_p .

Proposition

If $p \neq q$ then ρ_p is defined over \mathbb{Q}_p .

$$\rho_p^{\mathbb{Q}}: Gal(\bar{\mathbb{Q}}/\mathbb{Q}) \to GL_{2n+1}(\mathbb{Q}_p)$$

- Let Γ be the image of ρ_p and consider the algebra $A = \mathbb{Q}_p[\Gamma] \subset M_m(\bar{\mathbb{Q}}_p)$.
- A is simple. So $A \cong M_r(D)$ for some division algebra D. Observe $A \otimes \bar{\mathbb{Q}} = M_m(\bar{\mathbb{Q}_p})$,
- $trd(\rho_p(Fr_l)) \in \mathbb{Q}$ for $l \neq p$ implies D is a central simple algebra over \mathbb{Q}_p .
- D^r is a sum of the two eigenspaces for $\rho_p(c)$. And $Tr(\rho_p(c)) = \pm 1$.

Proposition

If $p \neq q$ then ρ_p is defined over \mathbb{Q}_p .

$$\rho_p^{\mathbb{Q}}: Gal(\bar{\mathbb{Q}}/\mathbb{Q}) \to GL_{2n+1}(\mathbb{Q}_p)$$

- Let Γ be the image of ρ_p and consider the algebra $A = \mathbb{Q}_p[\Gamma] \subset M_m(\bar{\mathbb{Q}}_p)$.
- A is simple. So $A \cong M_r(D)$ for some division algebra D. Observe $A \otimes \bar{\mathbb{Q}} = M_m(\bar{\mathbb{Q}_p})$,
- $trd(\rho_p(Fr_l)) \in \mathbb{Q}$ for $l \neq p$ implies D is a central simple algebra over \mathbb{Q}_p .
- D^r is a sum of the two eigenspaces for $\rho_p(c)$. And $Tr(\rho_p(c))=\pm 1$.
- $D = \mathbb{Q}_p$ and m = r, thus $A \cong M_m(\mathbb{Q}_p)$.

Proposition

If $p \neq q$ then the image of ρ_p is contained in a split orthogonal group $SO_{2n+1}(\mathbb{Q}_p)$.

Proposition

If $p \neq q$ then the image of ρ_p is contained in a split orthogonal group $SO_{2n+1}(\mathbb{Q}_p)$.

Outline of the proof.

• ρ_p is self dual and irreducible, thus it has an unique (up to scalar multiple) invariant non-degenerate bilinear form.

Proposition

If $p \neq q$ then the image of ρ_p is contained in a split orthogonal group $SO_{2n+1}(\mathbb{Q}_p)$.

- ρ_p is self dual and irreducible, thus it has an unique (up to scalar multiple) invariant non-degenerate bilinear form.
- Since m is odd, the form has to be orthogonal.

Proposition

If $p \neq q$ then the image of ρ_p is contained in a split orthogonal group $SO_{2n+1}(\mathbb{Q}_p)$.

- ρ_p is self dual and irreducible, thus it has an unique (up to scalar multiple) invariant non-degenerate bilinear form.
- Since m is odd, the form has to be orthogonal.
- Since ρ_p is defined over \mathbb{Q}_p , the orthogonal form can be re-scaled so that it is also defined over \mathbb{Q}_p .

Proposition

If $p \neq q$ then the image of ρ_p is contained in a split orthogonal group $SO_{2n+1}(\mathbb{Q}_p)$.

- ρ_p is self dual and irreducible, thus it has an unique (up to scalar multiple) invariant non-degenerate bilinear form.
- Since m is odd, the form has to be orthogonal.
- Since ρ_p is defined over \mathbb{Q}_p , the orthogonal form can be re-scaled so that it is also defined over \mathbb{Q}_p .
- Finally since the determinant of $\rho_p(Fr_l) = 1$ for all primes $l \neq p, q$ and these elements are dense in the image the image is contained in $SO_{2n+1}(\mathbb{Q}_p)$.

Proposition

If $p \neq q$ then the image of ρ_p is contained in a split orthogonal group $SO_{2n+1}(\mathbb{Q}_p)$.

- ρ_p is self dual and irreducible, thus it has an unique (up to scalar multiple) invariant non-degenerate bilinear form.
- · Since *m* is odd, the form has to be orthogonal.
- Since ρ_p is defined over \mathbb{Q}_p , the orthogonal form can be re-scaled so that it is also defined over \mathbb{Q}_p .
- Finally since the determinant of $\rho_p(Fr_l) = 1$ for all primes $l \neq p, q$ and these elements are dense in the image the image is contained in $SO_{2n+1}(\mathbb{Q}_p)$.
- There are two isomorphism classes of odd orthogonal groups over \mathbb{Q}_p , but only the split isomorphism class contains the regular unipotent conjugacy

Let G be the unique form over \mathbb{Q} , of the exceptional Lie group of type G_2 such that $G(\mathbb{R})$ is compact and $G(\mathbb{Q}_p)$ is split for all primes p.

Let G be the unique form over \mathbb{Q} , of the exceptional Lie group of type G_2 such that $G(\mathbb{R})$ is compact and $G(\mathbb{Q}_p)$ is split for all primes p.

Savin and Gross proved the existence of an automorphic representation π of $G(\mathbb{A})$ satisfying:

- (i) $\pi_{\infty} \cong \mathbb{C}$
- (ii) π_5 is the Steinberg Representation
- (iii) π_l is unramified for all primes $l \neq 5$.

The characteristic polynomial $R_l(x)$ of the Satake parameter $s_l \in G_2(\mathbb{C})$ of π_l , acting on the 7-dimensional representation has coefficients in $\mathbb{Z}[\frac{1}{l}]$.

Moreover π lifts to an automorphic representation σ on $Sp_6(\mathbb{A})$

Lansky and Pollack have calculated the polynomial $R_l(x)$ for l=2 and 3:

$$R_2(x) = x^7 + \frac{1}{4}x^6 - x^5 - \frac{13}{16}x^4 + \frac{13}{16}x^3 + x^2 - \frac{1}{4}x - 1$$

$$R_3(x) = x^7 + \frac{29}{3^3}x^6 - \frac{175}{3^5}x^5 - \frac{1099}{3^6}x^4 + \frac{1099}{3^6}x^3 + \frac{175}{3^5}x^2 - \frac{29}{3^3}x - 1$$

Lansky and Pollack have calculated the polynomial $R_l(x)$ for l=2 and 3:

$$R_2(x) = x^7 + \frac{1}{4}x^6 - x^5 - \frac{13}{16}x^4 + \frac{13}{16}x^3 + x^2 - \frac{1}{4}x - 1$$

$$R_3(x) = x^7 + \frac{29}{3^3}x^6 - \frac{175}{3^5}x^5 - \frac{1099}{3^6}x^4 + \frac{1099}{3^6}x^3 + \frac{175}{3^5}x^2 - \frac{29}{3^3}x - 1$$

After factoring $R_l(x) = P_l(X)(x-1)$, the two palindromic polynomials $P_l(x)$ are reduced to:

$$Q_2(y) = y^3 + \frac{5}{4}y^2 - \frac{11}{4}y - \frac{49}{16}$$
$$Q_3(y) = y^3 - \frac{2}{3^3}y^2 - \frac{572}{3^5}y - \frac{520}{3^6}$$

Proposition

The local components π_2 and π_3 are tempered. The splitting fields of $P_2(x)$ and $P_3(x)$ have the Galois group isomorphic to D_6 and are algebraically independent.

Proposition

The local components π_2 and π_3 are tempered. The splitting fields of $P_2(x)$ and $P_3(x)$ have the Galois group isomorphic to D_6 and are algebraically independent.

Outline of the proof.

• $\Delta_l > 0$ so the polynomials $Q_l(y)$ have 3 real roots each.

Section II - Automorphic representation of $G_2(\mathbb{A})$

Proposition

The local components π_2 and π_3 are tempered. The splitting fields of $P_2(x)$ and $P_3(x)$ have the Galois group isomorphic to D_6 and are algebraically independent.

Outline of the proof.

- $\Delta_l > 0$ so the polynomials $Q_l(y)$ have 3 real roots each.
- Moreover the roots are in the segment (-2,2).

Section II - Automorphic representation of $G_2(\mathbb{A})$

Proposition

The local components π_2 and π_3 are tempered. The splitting fields of $P_2(x)$ and $P_3(x)$ have the Galois group isomorphic to D_6 and are algebraically independent.

Outline of the proof.

- $\Delta_l > 0$ so the polynomials $Q_l(y)$ have 3 real roots each.
- Moreover the roots are in the segment (-2, 2).
- The roots of Q(y) lie in the interval (-2,2) if and only if, the roots of P(x) are pairs of complex conjugates on the unit circle.

Section II - Automorphic representation of $G_2(\mathbb{A})$

Proposition

The local components π_2 and π_3 are tempered. The splitting fields of $P_2(x)$ and $P_3(x)$ have the Galois group isomorphic to D_6 and are algebraically independent.

Outline of the proof.

- $\Delta_l > 0$ so the polynomials $Q_l(y)$ have 3 real roots each.
- Moreover the roots are in the segment (-2, 2).
- The roots of Q(y) lie in the interval (-2,2) if and only if, the roots of P(x) are pairs of complex conjugates on the unit circle.
- Since Δ_2 and Δ_3 are not rational squares, it follows that the Galois group of $Q_2(y)$ and $Q_3(y)$ is S_3 .

Section II - Lift of π to σ on $Sp_6(\mathbb{A})$

Savin and Gross has also shown that π lifts to a cuspidal automorphic representation σ on $Sp_6(\mathbb{A})$ satisfying:

- (1) σ_{∞} is a holomorphic discrete series representation.
- (2) σ_5 is the Steinberg representation.
- (3) σ_l is an unramified representation, a lift from $G_2(\mathbb{Q}_l)$, for $l \neq 5$.
- (4) σ_2 and σ_3 are tempered with Satake parameters given by $R_2(x)$ and $R_3(x)$.

Section II - Lift of σ to Π on $GL_{2n+1}(\mathbb{A})$

Proposition (Arthur)

Let σ be a cuspidal automorphic representation on Sp_{2n} , such that σ_q is the Steinberg representation for a prime q. Then σ lifts to Π an automorphic representation of GL_{2n+1} .

Section II - Lift of σ to Π on $GL_{2n+1}(\mathbb{A})$

Proposition (Arthur)

Let σ be a cuspidal automorphic representation on Sp_{2n} , such that σ_q is the Steinberg representation for a prime q. Then σ lifts to Π an automorphic representation of GL_{2n+1} .

- Then Π_q is the Steinberg Representation.
- Π is cuspidal.
- Moreover Π is a functorial lift of σ .

So far we have achieve the following:

Theorem

There exists a compatible system of p-adic representations

$$\rho_p: \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_7(\mathbb{Q}_p)$$

such that for all $p \neq q$ the image of ρ_p is contained in a split orthogonal group $SO_7(\mathbb{Q}_p)$.

For $l \neq q$, let E_l denote the splitting field of $P_l(x)$.

We know $Gal(E_3/\mathbb{Q}) \cong D_6$.

For $l \neq q$, let E_l denote the splitting field of $P_l(x)$.

We know $Gal(E_3/\mathbb{Q}) \cong D_6$.

Corollary

Let G be the Zarisky closure of the image of ρ_p . Then $G(\mathbb{Q}_p) = G_2(\mathbb{Q}_p)$ for all primes $p \neq q, 3$.

For $l \neq q$, let E_l denote the splitting field of $P_l(x)$.

We know $Gal(E_3/\mathbb{Q}) \cong D_6$.

Corollary

Let G be the Zarisky closure of the image of ρ_p . Then $G(\mathbb{Q}_p) = G_2(\mathbb{Q}_p)$ for all primes $p \neq q, 3$.

Outline of the Proof.

• *G* is a reductive group.

For $l \neq q$, let E_l denote the splitting field of $P_l(x)$.

We know $Gal(E_3/\mathbb{Q}) \cong D_6$.

Corollary

Let G be the Zarisky closure of the image of ρ_p . Then $G(\mathbb{Q}_p) = G_2(\mathbb{Q}_p)$ for all primes $p \neq q, 3$.

Outline of the Proof.

- G is a reductive group.
- Π locally lift from G_2 implies a condition on the coefficients of $Q_l(x)$ of the form $a^2 = c^2 + 2b + 4$. Thus the rank of G is at most 2.

For $l \neq q$, let E_l denote the splitting field of $P_l(x)$.

We know $Gal(E_3/\mathbb{Q}) \cong D_6$.

Corollary

Let G be the Zarisky closure of the image of ρ_p . Then $G(\mathbb{Q}_p) = G_2(\mathbb{Q}_p)$ for all primes $p \neq q, 3$.

Outline of the Proof.

- G is a reductive group.
- Π locally lift from G_2 implies a condition on the coefficients of $Q_l(x)$ of the form $a^2 = c^2 + 2b + 4$. Thus the rank of G is at most 2.
- The connected component G^0 of 1 contains the regular unipotent class.

• Thus G^0 is either $G_2(\mathbb{Q}_p)$ or $PGL_2(\mathbb{Q}_p)$.

- Thus G^0 is either $G_2(\mathbb{Q}_p)$ or $PGL_2(\mathbb{Q}_p)$.
- These two groups are self-normalizing in $SO_7(\mathbb{Q}_p)$, implies $G(\mathbb{Q}_p) \cong G_2(\mathbb{Q}_1)$ or $PGL_2(\mathbb{Q}_p) \cong G_2(\mathbb{Q}_1)$.

- Thus G^0 is either $G_2(\mathbb{Q}_p)$ or $PGL_2(\mathbb{Q}_p)$.
- These two groups are self-normalizing in $SO_7(\mathbb{Q}_p)$, implies $G(\mathbb{Q}_p) \cong G_2(\mathbb{Q}_1)$ or $PGL_2(\mathbb{Q}_p) \cong G_2(\mathbb{Q}_1)$.
- Now if the latter happens, for every $l \neq p, q$, the roots of $P_l(x)$ are z^i , where $-3 \leq i \leq 3$, for some $z \in \mathbb{C}^{\times}$.

We get the following:

We get the following:

Theorem

There exists a compatible system of p-adic representations

$$\rho_p: \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_7(\mathbb{Q}_p)$$

such that for all $p \neq 5$ the Zariski closure of the image is $G_2(\mathbb{Q}_p)$.

We get the following:

Theorem

There exists a compatible system of p-adic representations

$$\rho_p: \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_7(\mathbb{Q}_p)$$

such that for all $p \neq 5$ the Zariski closure of the image is $G_2(\mathbb{Q}_p)$.

We want:

Theorem

There exists an extension of \mathbb{Q} with $G_2(p)$ as the Galois group, ramified at 5 and p only, for a set of primes p of density 1.

Section III - Auxiliary Theorems

Theorem (Larsen:)

 $G_2(p)$ appears as a quotient of the image for a set of primes p of density one.

Theorem

There exists an extension of \mathbb{Q} with $G_2(p)$ as the Galois group, ramified at 5 and p only, for a set of primes p of density 1.

Section III - Another Path to the proof

Theorem

There exists an infinite sequence of primes l_1, l_2, \ldots such that $Gal(E_{l_j}/\mathbb{Q}) \cong D_6$ and the fields E_j are linearly independent, i.e. the composite of any n of them has degree 12^n

Section III - Auxiliary Theorems

Theorem

Let C_1, \ldots, C_n be semi-simple, regular, conjugacy classes in $G_2(\mathbb{Q})$. Assume that the Galois groups of the splitting fields E_{C_i} of the characteristic polynomials $P_{C_i}(x)$ are all isomorphic to the dihedral group D_6 and that they are linearly independent, i.e. the composite of all these fields has degree 12^n . Assume that for almost all primes p we are given $g_i \in C_i(\mathbb{Q}_p), i=1,\ldots,n$, and a maximal compact subgroup U_p in $G_2(\mathbb{Q}_p)$ containing g_i . Then, for a set of primes of density at least

$$1 - 2(\frac{5}{6})^n + 4(\frac{4}{6})^n$$

the group U_p is hyperspecial and the projections of g_i generate the reductive quotient of U_p isomorphic to $G_2(p)$.