S.C.No.—2009203

B.Sc. (Hons.) EXAMINATION, 2024

(Main)

(Second Semester)

MATHEMATICS

BHM123

Vector Calculus

Time: 3 Hours Maximum Marks: 60

Note: Attempt *Five* questions in all. Q. No. 1 is compulsory. All questions carry equal marks.

कुल **पाँच** प्रश्नों के उत्तर दीजिए । प्रश्न संख्या 1 अनिवार्य है । सभी प्रश्नों के अंक समान हैं ।

1. (a) Show that : $\hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2\vec{a}$

(3-524-21/16)H-2009203(TR)

P.T.O.

दिखाइए कि:

$$\hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2\vec{a}$$

(b) Given $\vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{c} = \hat{i} + 3\hat{j} - \hat{k}$. Find the reciprocal triads $\vec{a}', \vec{b}', \vec{c}'$ and verify that :

$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} \begin{bmatrix} \vec{a}' & \vec{b}' & \vec{c}' \end{bmatrix} = 1$$

दिया गये है $\vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} + \hat{j} - \hat{k}$ तथा $\vec{c} = \hat{i} + 3\hat{j} - \hat{k}$ । व्युत्क्रम त्रिक $\vec{a}', \vec{b}', \vec{c}'$ ज्ञात कीजिए और सत्यापित कीजिए कि :

$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} \begin{bmatrix} \vec{a}' & \vec{b}' & \vec{c}' \end{bmatrix} = 1$$

2. (a) The necessary and sufficient condition for the vector function \vec{f} of a scalar variable t to have constant direction is

$$\vec{f} \times \frac{d\vec{f}}{dt} = 0.$$

एक अदिश चर t के सिदश फलन \vec{f} की दिशा स्थिर रहने के लिए आवश्यक और पर्याप्त शर्त $\vec{f} \times \frac{d\vec{f}}{dt} = 0 \quad \vec{\xi} \quad \mathbf{I}$

(b) Show that if $\vec{a}, \vec{b}, \vec{c}$ are constant vectors, then $\vec{r} = \vec{a}t^2 + b^2t + \vec{c}$ is the path of a particle moving with constant acceleration.

दिखाइए कि यदि $\vec{a}, \vec{b}, \vec{c}$ स्थिर सिदश हैं, तो $\vec{r} = \vec{a}t^2 + b^2t + \vec{c}$ स्थिर त्वरण के साथ गितमान कण का पथ है ।

3. (a) If $r = |\vec{r}|$, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ prove that:

$$\nabla f(r) \times \vec{r} = \vec{0}$$

यदि $r=|\vec{r}|$, जहाँ $\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}$ है तो सिद्ध कीजिए कि :

$$\nabla f(r) \times \vec{r} = \vec{0}$$

(b) Find the constants a and b so that the surface $ax^2 - byz = (a+2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1, -1, 2).

स्थिरांक a और b ज्ञात कीजिए तािक सतह $ax^2 - byz = (a+2)x$ बिंदु (1, -1, 2) पर सतह $4x^2y + z^3 = 4$ के लिए लम्बकोणीय हो।

4. (a) Show that :

6

$$\operatorname{div}\left[\frac{f(r)\vec{r}}{r}\right] = \frac{1}{r^2} \frac{d}{dr} \left(r^2 f(r)\right)$$

दिखाइए कि:

$$\operatorname{div}\left[\frac{f(r)\vec{r}}{r}\right] = \frac{1}{r^2} \frac{d}{dr} \left(r^2 f(r)\right)$$

(b) If \vec{a} is a constant vector, find $\operatorname{curl}(\vec{r} \times \vec{a})$.

यदि \vec{a} एक स्थिर वेक्टर है, तो $\mathrm{curl}(\vec{r} \times \vec{a})$ ज्ञात कीजिए ।

- 5. (a) Transform the function $\vec{f} = \rho \hat{e}_{\rho} + \rho \hat{e}_{\phi}$ from cylindrical to Cartesian co-ordinates. 6 फंक्शन $\vec{f} = \rho \hat{e}_{\rho} + \rho \hat{e}_{\phi}$ को बेलनाकार से कार्तीय निर्देशांक में बदलिए ।
 - (b) Express the vector $x\hat{i} + 2y\hat{j} + yz\hat{k}$ in spherical coordinates. 6 वेक्टर $x\hat{i} + 2y\hat{j} + yz\hat{k}$ को गोलाकार निर्देशांक में व्यक्त कीजिए ।
- 6. (a)Express the velocity \vec{v} and acceleration \vec{a} of a particle in cylindrical co-ordinates.एक कण के वेग \vec{v} और त्वरण \vec{a} कोबेलनाकार निर्देशांक में व्यक्त कीजिए ।
 - (b) If ρ , ϕ , z are cylindrical co-ordinates, show that $\nabla \phi$ and $\nabla \log \rho$ are solenoid.

यदि ρ, φ, z बेलनाकार निर्देशांक हैं, तो दिखाइए कि ∇φ और ∇logρ परिनालिका हैं।

- 7. (a) If $\vec{A} = 2xy\hat{i} + (x^2 y^2)\hat{j}$, evaluate the line integral of \vec{A} from the point (0, 0) to (1, 1) along the curve $y^2 = x$. 6 यदि $\vec{A} = 2xy\hat{i} + (x^2 y^2)\hat{j}$, बक्र $y^2 = x$ के अनुदिश बिंदु (0, 0) से (1, 1) तक \vec{A} की रेखा अभिन्न का मान ज्ञात कीजिए ।
 - (b) Evaluate $\iint_{S} \vec{f} \cdot \hat{n} dS, \quad \text{where}$

 $\vec{f} = y\hat{i} + 2x\hat{j} - z\hat{k}$ and S is surface of the plane in the first octant cut off by the plane z = 4.

 $\iint_{S} \vec{f} \cdot \hat{n} dS$, का मान ज्ञात कीजिए जहाँ

 $\vec{f} = y\hat{i} + 2x\hat{j} - z\hat{k}$ और S विमान z = 4 द्वारा काटे गए पहले अष्टक में विमान की सतह है ।

8. (a) Show that:

$$\oint_C \phi \nabla \psi . d\vec{r} = - \oint_C \psi \nabla \phi . d\vec{r}$$

दिखाओं कि:

$$\oint\limits_{C} \phi \nabla \psi . d\vec{r} = - \oint\limits_{C} \psi \nabla \phi . d\vec{r}$$

- (b) Evaluate by Green's theorem $\oint (\cos x \sin y xy) dx + \sin x \cos y dy.$ where C is the circle $x^2 + y^2 = 1$. 6 ग्रीन के प्रमेय $\oint (\cos x \sin y xy) dx + \sin x \cos y dy.$ द्वारा मूल्यांकन कीजिए जहाँ C वृत्त $x^2 + y^2 = 1$ है ।
- (a) Define reciprocal system of vectors. 2
 वैक्टर की पारस्परिक प्रणाली को परिभाषित
 कीजिए ।
 - (b) Show that $\operatorname{div} \vec{f}$ is zero if \vec{f} is constant. 2 दिखाइए कि यदि \vec{f} स्थिरांक है तो $\operatorname{div} \vec{f}$ शून्य है ।

6

- (d) Define circulation of \vec{f} around the curve. $\bf 2$ वक्र के चारों ओर \vec{f} के परिसंचरण को परिभाषित कीजिए ।
- (e) Show that : $\oint_{C} \vec{r} . d\vec{r} = 0$

दिखाइए कि:

$$\oint_{C} \vec{r} \cdot d\vec{r} = 0$$

(f) State Green's theorem.