SWEBOK Guide V3 & Software Engineering **Economics**

SWEBOK Guide

15 Knowledge Areas in V3

- Requirements
- Design
- Construction
- Testing
- Maintenance
- Configuration management
- Engineering management
- Engineering process
- Methods
- Quality
- Professional practice
- Engineering economics
- Computing foundations
- Mathematical foundations
- Engineering foundations

SWEBOK Guide V3: Changes

- 10 years of industry advancement
 - Recognize Agile development
 - New methods and tools

- ...

- Increase emphasis on software security
- Align with CSDA/CSDP knowledge areas
- Consolidated List of References

Certified Software Development Associate (CSDA)

- Entry level certification
 - No prerequisites
 - Equivalent of 4-year Software
 Engineering undergraduate degree
- No recertification needed

Certified Software Development Professional (CSDP)

- Mid-career level certification
 - Education requirement
 - Bachelor's degree
 - CSDA
 - Post-baccalaureate-level teaching experience, or
 - IEEE full membership
 - Experience requirement
 - Advanced degree in software engineering and at least two years experience, or
 - At least four years experience
- Recertification every 3 years

Business on Purpose

Why are companies in business?

Because it's fun? Educational? A way to have a positive impact on society?

Companies are in business to make a profit for the owners

Where does the money come from?

Where Does the Money Go?

Gross Revenue

Operating Income

Net Income Before Taxes

Net Income After Taxes

Retained Earnings

Peoplesoft, 2003

Gross Revenue

Operating Income \$117M (5.2%)

Net Income Before Taxes \$139M (6.1%)

Net Income After Taxes \$85M (3.8%)

Retained Earnings \$85M (3.8%)

Harsh Realities

- 23% of software projects fail to deliver any working software at all
- Of projects that do deliver, they average
 - 63% late
 - 45% over budget
 - 67% of features and functions
- 40% of commercial applications of computers have been uneconomical

The Cost of Bad Decisions

- Poor software project performance can almost always be traced to bad decisions either by customer, project team, or both
 - Which projects to do
 - Not getting good requirements
 - Not giving good requirements
 - Using inappropriate technology
 - Choosing wrong design or architecture
 - Not giving project team adequate resources
 - Not planning and/or managing project
 - Not paying attention to quality

Economics: the Science of Choice

"... software economics has often been misconceived as the means of estimating the cost of programming projects. But economics is primarily a science of choice, and software economics should provide methods and models for analyzing the choices that software projects must make."

Business Decision-making Process

society

Categories of Cash-Flow

- Initial investment
 - One-time, non-recurring costs associated with starting up proposal
- Operating and maintenance costs
 - Recurring costs after proposal is started, that continue through retirement
- Sales income
 - Direct income generated by proposal
- Cost avoidance
 - Profit from reduced costs instead of more sales
- Salvage value
 - Recoverable value in assets at end

Alpine Payroll Processing Example

Year	Initial	Staffing	New sales	Upgrade	Maintenance	Training	Net cash
	investment	cost	income	income	income	income	flow
0	-\$250	\$0	\$0	\$0	\$0	\$0	-\$250
1		-2025	750	8	12	24	-1231
2		-2025	1650	45	46	64	-220
3		-675	1500	73	78	64	1040
4		-675	1350	88	96	64	922
5		-675	1200	120	128	64	837
6		-675	1050	138	151	64	727
7		-675	900	75	167	40	507

Cash-Flow Diagram

Time is Money

Given amount of money at one time doesn't have same value as identical amount of money at a different time

Compound Interest

Present Worth, PW(i)

Year	Net cash-flow	Present-worth factor	Equivalent value
<u> </u>	at end of year	(P/F,10%,n)	at end of year 0
0	-\$250K	1.0000	-\$250K
1	-1231K	0.9346	-1150K
2	-220K	0.8734	-192K
3	1040K	0.8163	849K
4	922K	0.7629	703K
5	836K	0.7130	596K
6	727K	0.6663	484K
7	507K	0.6228	316K

PW(7%) \$1356K

Outline of Return on Software

- Part I: Introduction and Foundations
 - Proposals, cash flow, decision process, interest, equivalence, present worth, future worth, annual equivalent, internal rate of return, (discounted) payback period, ...
- Part II: Making For-profit Business Decisions
 - Alternatives, economic life, planning horizon, replacement, retirement
- Part III: Advanced For-profit Decision Techniques
 - Inflation, depreciation, accounting, income taxes
- Part IV: Making Decisions in Government and Non-profit Organizations
 - Benefit-cost analysis, cost-effectiveness analysis
- Part V: Present Economy
 - Break-even, optimization
- Part VI: Estimation, Risk, and Uncertainty
 - Estimation techniques, ranges of estimates, sensitivity analysis, expected value, Monte Carlo, decision trees, laplace, maximin, maximax, Hurwicz, minimax regret
- Part VII: Multiple Attribute Decisions
 - Value, measurement, dominance, satisficing, lexicography, non-dimensional scaling, additive weighting, analytic hierarchy process
- Part VIII: Summary

Key Points

- In the end it's all about making choices
 - Software professionals are faced with choices every day
 - Even apparently innocuous choices can have a noticeable effect on the organization's financial health
- As professionals, we need to make responsible choices
 - Choices that make sense both technically and to the organization

... software economics has often been misconceived as the means of estimating the cost of programming projects. But economics is primarily a science of choice, and software economics should provide methods and models for analyzing the choices that software projects must make. [Levy87]

 Using economic methods and models, software technical decisions can be aligned with goals of organization

References

- [Kidder81] Tracy Kidder, The Soul of a New Machine, Little, Brown & Co, 1981
- [Levy87] Leon Levy, Taming the Tiger Software Engineering and Software Economics, Springer Verlag, 1987
- [Standish01] _____, CHAOS Chronicles, The Standish Group, West Yarmouth, MA, 2001
- [Tockey05] Steve Tockey, Return on Software, Addison Wesley, 2005

Contact Information

Steve Tockey, MSE, CSDP Chair, IEEE-CS PAB Certification Committee

Principal Consultant Construx Software 10900 NE 8th St, #1350 Bellevue, WA 98004 USA

SteveT@Construx.com

