SUPPORT FOR THE AMENDMENTS

Claims 1-12 were previously canceled.

Claim 16 has been canceled herein.

Claims 13, 18, and 22 have been amended.

Support for the amendment of Claims 13, 18, and 22 is provided by previously pending Claims 13, 16, 18, and 22, and the specification at page 2, lines 37-40, page 3, lines 2-4 and the Examples.

No new matter has been added by the present amendment.

REMARKS

Claims 13-15 and 17-29 are pending in the present application of which Claims 13, 14, 18, 20, 22, 24 and 26 are elected and subject to examination.

The rejections of:

- (a) Claims 13, 14, and 24 under 35 U.S.C. §103(a) over Schmidt et al (US 4,775,385) in view of Kuwabara et al (US 5,676,707),
- (b) Claims 16 and 22 under 35 U.S.C. §103(a) over Schmidt et al (US 4,775,385) in view of Kuwabara et al (US 5,676,707) and further in view of Buckman et al (US 4,054,542),
- (c) Claims 18 and 20 under 35 U.S.C. §103(a) over Schmidt et al (US 4,775,385) in view of Kuwabara et al (US 5,676,707) and further in view of Ohno et al (US 6,809,147), and
- (d) Claim 26 under 35 U.S.C. §103(a) over Schmidt et al (US 4,775,385) in view of Kuwabara et al (US 5,676,707) and further in view of Natoli et al (US 5,709,714), are respectfully traversed.

In Claim 13, the present invention provides a process for the treatment of leather, comprising:

- (a) applying at least one cationic or amphoteric aqueous treatment composition to leather by roll coating and/or roll application and/or spray application and subsequently
- (b) treating the leather with an anionic leather treatment composition in a drum, wherein the cationic or amphoteric aqueous treatment composition used in process step (a) is an epichlorohydrinamine polymer, the polymer having a weight average molar mass of from 1 10² to 2 10⁵ g/mol, wherein the concentration of the polymer in water ranges from 5 to 50% by weight based on water.

In Claim 13 above, the limitations of previously pending Claim 16 has been added.

Accordingly, the following rejections are believed to be moot:

- (a) Claims 13, 14, and 24 under 35 U.S.C. §103(a) over Schmidt et al (US 4,775,385) in view of Kuwabara et al (US 5,676,707),
- (c) Claims 18 and 20 under 35 U.S.C. §103(a) over Schmidt et al (US 4,775,385) in view of Kuwabara et al (US 5,676,707) and further in view of Ohno et al (US 6,809,147), and
- (d) Claim 26 under 35 U.S.C. §103(a) over Schmidt et al (US 4,775,385) in view of Kuwabara et al (US 5,676,707) and further in view of Natoli et al (US 5,709,714).

Accordingly, the only rejection that remains at issue is:

(b) Claims 16 and 22 under 35 U.S.C. §103(a) over Schmidt et al (US 4,775,385) in view of Kuwabara et al (US 5,676,707) and further in view of Buckman et al (US 4,054,542).

Schmidt et a1 disclose a process for dying leathers, water-soluble cationic polymers, suitable for that purpose, and process for their preparation. According to column 2, line 54 and following a process is disclosed, wherein leather is treated either before and/or during and/or after the dying with a polyamide-amine which is obtained by reacting polyacrylonitrile or acrylonitrile copolymers with one or more polyamines. After treatment of the leather with this cationic polymer mixture, the reaction product is treated with water or with a mixture of water and a water-mixable organic solvent.

Schmidt et al do not disclose the process according to presently pending Claim 13, because the feature that at least one cationic or amphoteric aqueous treatment composition is applied to leather by roll coating and/or roll application and/or spray application is missing in Schmidt et al. In addition, step (b) of the process according to claim 13, treating the leather with an anionic leather treatment composition in a drum, is missing, too. According to the Examiner, the skilled artisan would find the missing features of Schmidt et al in Kuwabara et al. (US 5,676,707).

Kuwabara et al disclose a leather coloring process comprising jetting ink onto a treated leather. According to column 3, line 55 and following, the leather treatment for leather coloring

according to Kuwabara et al, is applied on a leather to be colored with a liquid ink containing the coloring material. According to column 4, lines 6 to 15, the liquid in can be imparted to the leather by any method, including a method in which it is directly applied with a paint brush or the like, a method in which it is caused to adhere to only desired areas by using a stencil for textile printing, a method in which it is caused to adhere by jetting in the form of droplets though a jetting nozzle of a spray gun or the like, and a method in which it is caused to adhere by its jetting in the form of minute droplets to jetting nozzles of an in-jet printing head.

According to column 5, lines 29 to 61, the printing ink may contain a resin, i.e., starch, casein, gelatine, maleic anhydride resin, melamine 'esin, urea resin etc. According to example 1 in columns 10 and 11 of Kuwabara et al, the leather is treated with a solution (a) comprising polyvinylpyrrolidone and water, followed by treating with a solution (b) comprising styrene/acrylate copolymer in a water based emulsion, which is non-ionic.

Buckman et al disclose amine-epichlorohydrine polymeric compositions formed by reacting polymeric bis(3-chloro-2-hydroxypropyl)amines with tertiary amines, which are useful in paper making processes, in water purification processes, textiles, manufacturing processes and for the control of pests such as algae, bacteria and fungi (see Abstract).

The structure of these cationic, water-soluble amine-epichlorohydrine polymers according to Buckman et al is shown in column 2, lines 12 to 63. In addition, in column 5, lines 47 to 65, Buckman et al disclose a process for the preparation of paper or paperboard wherein an aqueous fluid containing cellulosic pulp and other paper-making ingredients are formed into a sheet on a Fourdrinier wire cloth, wherein one or more polymers according to Buckman et al are added to the aqueous fluid before the furnish contacts the Fourdrinier wire cloth. According to lines 57 to 65 of column 5 of Buckman et al, these polymers are added at concentrations ranging from 0.05 to 2 % based on the weight of the dry pulp. According to column 6, line 66, the

polymers according to Buckman et al can also advantageously be used in various operations used for the processing of cotton textiles.

The combination of Schmidt et al, Kuwabara et al. and Buckman et al, does not point in the direction of the process according to amended claim 13, which is a process for the treatment of leather, comprising steps (a) and (b), wherein in step (a) at least one cationic or amphoteric aqueous treatment composition is applied to leather by roll coating and/or roll application and/or spray application, followed by step (b) treating the leather with an anionic leather treatment composition in a drum, wherein in step (a) an epichlorohydrine amine polymer having a specific weight average molar mass is used in a high concentration of the polymer in water of 5 to 50 % by weight.

The advantages which can be obtained by the process of the claimed invention is clearly shown by the examples which are presented on pages 7 to 9 of the description of the present application.

In example 1, an epicblorohydrine-dimethylaminopropylamine/benzylamine polymer according to claim 13 is prepared. In example 2, the effect of the mentioned polymer for improving the fastness level without pigment is shown. According to lines 26 to 28 on page 7, the dying of the leather which is obtained from the process according to amended claim 13 of the present application is substantially more intense than in a comparative experiment without the use of the cationic assistant in the concentration, as claimed in amended claim 13.

In example 3, it is shown that the fastness level with pigment is also improved.

According to lines 3 to 7 of page 8, the dying of the leather is substantially more intense than the comparative experiment without the use of the novel compound. Likewise, the levelness of the leather is substantially increased. In particular, the light fastness is substantially improved in comparison with the blank test.

In example 4 it is shown that the surface can be modified with the process according to amended claim 13. According to lines 14 to 17 on page 8, after drying of the leather, the print of the engraving is clearly recognizable on the leather through a deeper color. The surface leathers can thus be easily modified individually by means of printing processes.

Examples 1 to 4 which are present in the description of the present application clearly show that the use of the specific polymer in the specific amount according to amended claim 13 of the presently amended set of claims gives rise to improved leathers.

Applicants submit that the claimed process and the aforementioned benefits flowing therefrom are not suggested or apparent in any way from the disclosures of Schmidt et al, Kuwabara et al and Buckman et al. Indeed, the skilled artisan would not take Buckman et al into account in order to improve a process for treating leather, because he or she would not find it reasonable that a process for treating of paper or paperboard according to Buckman et al can also be applied to a leather-treating process according to claim 13 of the present application.

Although it is mentioned in Buckman et al, that the polymers which are mentioned in this document can also be used for the treatment of cotton textiles, this does not suggest to use the polymers in leather-treating processes, because the surface of a cotton textile is completely different compared to a leather surface.

In addition, the skilled artisan would not discover from Buckman et al that the mentioned polymer shall be used in a very low amount of only 0.05 to 2 %, see column 5, lines 60 to 64 of Buckman et al. The skilled artisan would not discover, from this teaching, that in leather treatment processes, the mentioned polymers shall be used in high amounts of 5 to 50 %by weight.

In order to obtain the process according to amended claim 13 of the present application, the skilled artisan would have to combine Schmidt et al, Kuwabara et al and Buckman et al.

Further, he or she must take into account that a polymer which is suitable for treatments of paper

Application Serial No. 10/566,967

Response to Office Action mailed November 20, 2009

or paperboards according to Buckman et al can also be used in leather treatment, which would

not be found reasonable by the skilled artisan.

Further, the skilled artisan would also have to change the amount in which the polymer is

present in the treatment composition from a very low amount according to Buckman et al to high

amounts according to the present invention. This 5-step procedure to modify the cited art could

not be done the skilled artisan without inventiveness or without Applicants' disclosure. Either

way, this would not be sufficient to support an obviousness case. .

In view of the foregoing, the presently claimed invention is not disclosed or suggested by

the combined disclosures of Schmidt et al, Kuwabara et al and Buckman et al. Indeed, the

skilled artisan would not have any basis to combine the these references and even in so doing

would not obtain the presently claimed process. Further, as the Examiner recognizes, Natoli et

al and Ohno et al are unrelated to the subject matter of previously presented Claim 16, which is

now part of pending Claim 13. Thus, Applicants submit that the claimed invention would not be

obvious in view of the combined disclosures of Schmidt et al, Kuwabara et al, Buckman et al,

Natoli et al and Ohno et al.

Withdrawal of these grounds of rejection is requested.

Applicants submit that the present application is in condition for allowance. Early

notification to this effect is respectfully requested.

Respectfully submitted,

OBLON, SPIVAK, McCLELLAND,

MAIER & NEUSTADT, L.L.P.

Norman F. Oblon

Vincent K. Shier, Ph.D.

Registration No. 50,552

Customer Number

22850

(703) 413-3000 Fax #: (703)413-

Fax #: (703)413-2220

13