Week 3 – Data Link Layer

Assignment Project Exam Help

```
https://eduassistpro.github.io/
COMP nologies
Add WeChat edu_assist_pro
```

Lecturer: Ling Luo

Semester 2, 2021

The Data Link Layer in OSI and TCP/IP

Assignment Project Exam Help

https://eduassistpro.github.io/Network

Add WeChat edu_assist_pro

Physical

- Reliable, efficient communication of "frames" between two adjacent machines.
- Handles transmission errors and flow control.

Typical Implementation

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Functions of the Data Link Layer

- Functions of the data link layer:
 - 1. Provide a well-defined service interface to networks Project Exam Help
 - 2. Handling https://eduassistpro.github.io/
 - 3. Data flow
- Primary process:
 Add WeChat edu_assist_pro
- - Take packets from network layer, and encapsulate them into frames

Relation Between Packets and Frames

- Each frame contains a header, a payload and a trailer
- Link layer accepts packets from the network layer, and encapsulates them into frames that it sends using the physical layer; Projection is the physical layer; Projection is the physical layer;

https://eduassistpro.github.io/
Network

Add WeChat edu_assist_pro

Link

Virtual data path

Physical

Actual data path

Type of Services

- Connection-Oriented vs Connectionless: Whether a connection is setup before sending As in Connection is setup before
- Acknowle https://eduassistpro.gitwledged: Whether the receive to edu_assist sender an acknowledgement upon receiving the message

Services Provided to Network Layer

Transferring data from the network layer on source host to the network layer on destination host Project Exam Help

https://eduassistpro.github.io/

Services p

- Add WeChat edu_assist_pro

 Unacknowledged con s service
- Acknowledged connectionless service
- Acknowledged connection-oriented service

Unacknowledged Connectionless Service

- Source host transmits independent frames to recipient host with no acknowledgement
- No logical connection establishment or Assignment Project Exam Help release
- No lost fra https://eduassistpro.githubrip/(or left to higher levels//eChat edu_assist_pro
- Applications:
 - Ethernet LANs
 - Real-time traffic, e.g. voice

Acknowledged Connectionless Service

- Source host transmits independent frames to recipient host with acknowledgement
- No logicaticompetetionistablishment or release
 https://eduassistpro.github.io/
- Each frame is individu Add WeChat edu_assist_pro and retransmitted if lo rs
- Application: Wireless IEEE 802.11 WiFi

Acknowledged Connection-Oriented Service

- Source host transmits independent frames to recipient host after connection Assignment Project Exam Help establishm
- Connectio https://eduassistpro.github.ie/d
 (communicatelrateCant edu_assistf_pmessage)
- Frames are numbered, counted, acknowledged with logical order enforced
- Application: Unreliable links such as satellite channel

Framing (1)

- Framing: breaks raw bit stream into discrete units
- Physical layer provides no guarantee a raw stream of bits is error free near Project Exam Help
- The primary punttps://eduassistpro.grayideispme level of reliability ov I layer

 Add WeChat edu_assist_pro
- Checksums can be computed and embedded at the source, then computed and compared at the destination checksum = f(payload)

Framing (2)

- Methods:
 - Character (Byte) count
 - □ Flag bxtesgwithhrbytesptetffingm Help
 - Start and https://eduassistpro.github.io/
- Most data
 Add WeChat edu_assist_pro
 of character count an her method

Character Count

 Uses a field in the frame header to specify the number of characters in a frame

Assignment Project Exam Help

No error

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Case with error

Flag Bytes with Byte Stuffing

Each frame starts and ends with a special byte -"flag byte"

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Start and End Flags with Bit Stuffing

- Frames contain an arbitrary number of bits
- Each frame begins and ends with a special bit pattern01111110

Assignment Project Exam Help

https://eduassistpro.github.id/he original data

Add WeChat edu_assist_pro Sent data

Destuffing at receiver

Insert 0 after five ones (11111)

Error Control

- Adding check bits to ensure that a garbled message by the physical layer is not considered as the original message by the receiver
- Error Contr https://eduassistpro.github.io/
 - □ Detecting the erwe Chat edu_assisteme
 - Correcting the error

Error Detection and Correction (1)

- Physical media may be subject to errors
- Errors may occur randomly or in bursts

 - Single-bit error
 Assignment Project Exam Help
 Burst error: two or more bits have changed

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Bursts of errors are easier to detect but harder to resolve

Error Detection and Correction (2)

Resolution needs to occur before handing data to network layer

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- Key issues
 - Fast mechanism and low computational overhead
 - Minimum amount of extra bits sent with the data
 - Detection of different kinds of error

Example

- Repeat the bits, if a copy is different than the other, there is an error
 - 0 -> 000 and 1 -> 111
- What is the Younghead It Project Exam Help
- Given the 3 bit
 - How many erro https://eduassistpro.github.io/
 - □ How many errors can we ceiver goedu_assist_pro
 - What is the minimum number of n fail the algorithm?

Error Bounds – Hamming Distance

- A code turns **data** of *n* bits into **codewords** of *n*+*k* bits
- Hamming distance is the **minimum bit flips** to turn one
 - valid codeword into any other valid one.

 Example with 42 one of the project Example with 42 one of the project of the project
 - 000000000
 - https://eduassistpro.github.io/ Hamming d Add WeChat edu_assist_pro
- A code with Hamming distance:
 - $d+1 \rightarrow$ can detect up to d errors (e.g., 4 errors above)
 - $2d+1 \rightarrow$ can correct up to d errors (e.g., 2 errors above)

Error Bounds – Detection

Q: Why can a code with distance *d*+1 **detect** up to *d* errors?

- Errors are detected by receiving an invalid codeword, e.g. 00001 11111.
- If there are more than the represt the number of the codeword may odeword. https://eduassistpro.github.io/
- Can receiver detect wrechint edu_assist1pro
 The receiver cannot detect all 5-bit errors.

Error Bounds – Correction

Q: Why can a code with distance 2d+1 correct up to d errors?

- Errors are corrected by mapping a received invalid codeword tosthermeanestroptid codewbledpi.e., the one that can be rea
- If there are mo https://eduassistpro.github.io/codeword may heldlogerthat edu_assist_pdeword than the codeword that was sent

Example: Sending 000000000 with 2 flips might give 1100000000 which is closest to 000000000, correcting the error.

But with 3 flips 1110000000 might be received, which is closest to 1111100000, which is still an error