methods@manchester

What is Structural Equation Modelling?

Nick Shryane

Institute for Social Change University of Manchester

Topics

- Where SEM fits in the families of statistical models
- Causality
 - SEM is useful for representing causal models, but can't demonstrate causality on its own
- Useful applications:
 - measurement error, missing data, mediation models, group differences

History

- Structural Equation Modelling
 - Was cobbled together out of
 - Regression
 - Path Analysis (Wright, 1921)
 - Confirmatory Factor Analysis (Jöreskog, 1969)

Families of Statistical Models

History

- Structural Equation Modelling
 - Used to be known as:
 - Covariance Structure Modelling
 - Covariance Structure Analysis
 - Causal Modelling

We observe a correlation between two variables. Why?

1. X causes Y?

3. Reciprocal causation?

2. Y causes X?

We observe a correlation between two variables. Why?

4. A third, unmeasured variable?

Whichever is 'true', there will be a whole causal chain of mechanisms between the supposed cause and effect variables.

Causal statement:

Eating sugary foods causes tooth decay

If the causal statement is true, then there must be a causal mechanism...

If the causal statement is true, then there must be a causal mechanism...

Regression Models

$$y = x_1b_1 + x_2b_2 + e$$

Regression is not well suited to describing these causal sequences

Regression Models

$$y = x_1b_1 + x_2b_2 + x_3b_3 + e$$

Adding new explanatory variables makes the model more comprehensive and complicated...

Regression Models

...but doesn't easily admit causal sequences or unmeasured causes

Path Models

$$z = xb_1 + e_1$$
$$y = zb_2 + e_2$$

(z predicted by x)

(y predicted by z)

Path models allow us to fit chains of conditional relationships (here a **mediation** hypotheses, i.e. that z mediates the relationship between x and y)

Path Models

- Regression analysis does x affect/predict y?
- Path/mediation analysis how/why does x affect/predict y? Via the action of some intervening variable Z?
- Brushing your teeth (x) reduces tooth decay (y) by removing bacteria (z)
 - Measuring and testing mediators can help in evaluating a causal hypothesis

Variables may be correlated due to the action of unobserved influences.

Sometimes these are confounding variables, but many constructs of interest are not directly observed (or even observable)

Unobserved Construct	Observed Measures			
Social Capital	Bowling club membership			
	Local newspaper reading			
Ethnic prejudice	Housing segregation			
	Ethnic intermarriage			

Correlations may not be due to causal relations among the observed variables at all, but due to these unmeasured, latent influences - factors

	y_I	y_2	y_3	\mathcal{Y}_4
y_I	1.0			
y_2	0.6	1.0		
<i>y</i> ₃	0.7	0.6	1.0	
\mathcal{Y}_{4}	0.5	0.6	0.8	1.0

The observed correlations may due to each observed measure sharing an unobserved component (F)

$$y_1 = F + e_1$$
$$y_2 = F + e_2$$
$$y_3 = F + e_3$$
$$y_4 = F + e_4$$

1	F	e1	e2	e3	e4	у1	у2	y3	у4
2	1.2	-0.4	0.2	-1.5	-1.4	0.8	1.4	-0.3	-0.2
3	3.3	0.8	-0.2	-0.1	0.9	4.1	3.1	3.2	4.2
4	2.2	0.8	-1.8	0.0	1.5	3.0	0.4	2.2	3.7
5	1.3	0.6	-1.9	0.3	1.0	1.9	-0.6	1.6	2.3
6	1.5	-0.9	0.1	1.6	1.0	0.6	1.6	3.1	2.5
7	1.6	-1.5	1.0	0.5	-0.4	0.1	2.6	2.1	1.2
8	2.2	1.5	1.2	-0.7	0.7	3.7	3.4	1.5	2.9
9	2.1	-0.6	0.7	0.1	0.2	1.5	2.8	2.2	2.3
10	0.7	0.3	0.2	-0.4	1.5	1.0	0.9	0.3	2.2
11	1.9	0.5	-1.3	0.2	-0.1	2.4	0.6	2.1	1.8

Hypothesised Factor Model

Observed data

The full factor model allows the strength of relationship between F and the observed 'indicators' y to vary – different loadings (λ).

$$y_1 = F\lambda_1 + e_1$$
$$y_2 = F\lambda_2 + e_2$$
$$y_3 = F\lambda_3 + e_3$$
$$y_4 = F\lambda_4 + e_4$$

The full Structural Equation model is a combination of some or all of these elements:

- Regression model
- Path model
- Factor model

Model Fit

- Often the goal of the analysis is to assess the plausibility of the model as a whole
- Some aspects of plausibility are nothing to do with statistics
 - If I claim $X \rightarrow Y$, does that make sense? Does eating turkey cause Christmas...?
- Plausibility is often assessed by the ability of the model to reproduce or 'account for' the observed variances and covariances.

Model Fit

- Many indices have been suggested to assess global model fit to the observed data, e.g.
 - Comparative Fit Index (CFI; Bentler, 1990)
 - Root Mean Square Error of Approximation (RMSEA; Brown & Cudeck, 1993; Steiger, 1990)
- These suggest whether the model is statistically plausible, not whether it is 'true'

Causality again

- Ultimately, the SEM is a **hypothesis**, which is either supported or not by the data
 - Poor model fit
 - Some aspect of the model (structural/measurement) is not a plausible description of the 'data-generating mechanism'
 - Good model fit
 - The model is a plausible, candidate explanation
 - But so might be lots of equivalent or alternative models:
 - MacCallum, R. C., Wegener, D. T., Uchino, B. N. et al. (1993).
 The problem of equivalent models in applications of covariance structure analysis. Psychological Bulletin, 114(1), 185-199.

Equivalent Models

• These two models would give identical fit

• A well fitting model does not, on it's own, mean that the causal hypothesis is true

Applications: Covariate Measurement Error

- Standard regression analysis assumes covariates/ predictors are measured without error
- Effects are biased (weaker); more error, greater bias
- With multiple indicators you can build a factor model to 'measure' your construct, excluding error

Applications: Covariate Measurement Error

(This model suitable for multicolinearity too)

Applications: Correlated outcomes with missing data

• Three highly correlated observed outcomes (y) but with lots of missing data in each

Individuals with just one non-missing y measure can still be included

(if we make certain assumptions about the missing data)

3-item scale

Hypothesis:
Item 3 is sexbiased

Can test for
Differential Item
Functioning
(DIF)

Model 1:
All item loadings
constrained to be
equal across
groups

$$\lambda f_1 = \lambda m_1$$

$$\lambda f_2 = \lambda m_2$$

$$\lambda f_3 = \lambda m_3$$

Model 2: Item 3 loading can be different across groups

$$\lambda f_1 = \lambda m_1
\lambda f_2 = \lambda m_2
\lambda f_3 \neq \lambda m_3$$

Does Model 2 fit the data significantly better than Model 12 If so, Item 3 is sex-biased (its 'meaning' is different between the groups)

Application: Mediation Model

Test of partial/full mediation

Model 1: Fit full model

Model 2: Fit model with

path b₃ fixed to zero

Does Model 2 fit significantly worse than Model 1? (Likelihood ratio test.)

Features / Limitations

- Need large-ish sample size, depending upon the strength of relationships
 - (E.g. simple factor model with strong loadings, N>200; complicated multilevel SEM with weak loadings, N>5000)

Features / Limitations

- You need to think carefully about your theory
 - Each arrow is a hypothesis
 - The absence of an arrow is a hypothesis
 - It's easy to specify models, harder to interpret them
 - Where to stop? Tempting to always try and add a bit more

Features / Limitations

- Good model fit statistics DO NOT IMPLY THAT YOUR CAUSAL SEM MODEL IS TRUE!!!! Just that it may not be false.
 - Can you defend the assumptions underlying your model (E.g. Cross-sectional survey data? Why should one item predict another and not vice-versa?)
 - Have you considered equivalent models? (Different but statistically indistinguishable ones.)
 - Have you compared your model with alternative but similar model variations?

SEM software

AMOS

Nice graphical interface (GUI); works with SPSS;
 available on campus network

Mplus

- Unparalleled range of models; expensive (but student version available); syntax, not GUI

• R

- At least two libraries: OpenMX, sem; R is free!

Further SEM

- ISC / CCSR 1-day course
 - "Introduction to SEM using Mplus"
 - March 22nd 2010. Book here:
 http://www.ccsr.ac.uk/courses/sem/

- Introductory Text
 - Kline (2004). Principles and Practice of SEM

