1 1 Proposed Algorithm

```
Algorithm 1: DEGAA: Offline Training Paradigm
Data. S = \bigcup_{i=1}^{n} S_i, T = \bigcup_{j=1}^{m} T_j, D = S \cup T
Step 1: Domain Embedding Extraction
Input. Number of sampled domains N_t, Number of support points N_s and query points N_q
Initialize. Feature Extractor G(\mathbf{x}; \psi) initialized with pre-trained ImageNet weights
for t = 1 \text{ To } N \text{ do}
     D_t \leftarrow \text{RANDOMLY SAMPLE}(D, N_t);
                                                                                                    // sample N_t domains
     for d in D_t do
      S_d, S_q \leftarrow \text{Randomly Sample}(D_d, N_s), \text{Randomly Sample}(D_d, N_a);
     \hat{\mu}_{D_t} \leftarrow \text{KME}(S_d, G(\mathbf{x}; \psi)) ;
     J_{\psi} \leftarrow \text{Prototypical Loss}(\hat{\mu}_{D_t}, S_t, G(\mathbf{x}; \psi));
                                                                                                           // Following [1]
     \psi \leftarrow \text{SGD}(J(t), \psi);
Output. d_e \leftarrow \text{KME}(D, G(\mathbf{x}; \psi));
Step 2: Warm - Up
Input. Domain Embedding d_e, source images and labels (\mathbf{x}_i^{S_i}, y_i^{S_i})_{i=1}^{p_i} \in (S_i)_{i=1}^n, training
 images (\mathbf{x}_{i}^{\widehat{S}}, y_{i}^{\widehat{S}})_{i=1}^{n'} \in \widehat{S} \subset S
Initialize. Feature Extractor F(\mathbf{x}; \psi) initialized with pre-trained ImageNet weights
     J_{\theta} \leftarrow \text{CROSS Entropy}(y_{i}^{\widehat{S}}, F(\text{Concat}(\mathbf{x}_{i}^{\widehat{S}}, d_{e}))); // Supervised training
     \theta \leftarrow \text{SGD}(J(t), \theta);
end
Step 3: Compute Centroids
for i = 1 To n do
     for i = 1 To p_i do
        \mathcal{T} \leftarrow F(\text{CONCAT}(\mathbf{x}_i^{S_i}, d_e); \theta) ;
     end
end
\mathcal{C} \leftarrow \text{Centroids}(\mathcal{T});
                                              // Per - class centroid from source feature maps
Step 4: Pseudo - Labelling and Adaptation Stage
Input. Domain Embedding d_e, trained backbone F(\mathbf{x}; \theta), number of episodes per batch K,
 batch for K episodes (\mathbf{x}_i^{S_K}, y_i^{S_K})_{i=1}^{n'} \in S_K \subset S, (\mathbf{x}_j^{T_K})_{j=1}^{m'} \in T_K \subset T, target loss weight \lambda
for t = 1 \text{ To } N" do
     S_K, T_K \leftarrow \text{RANDOMLY SAMPLE}(S, n'), \text{RANDOMLY SAMPLE}(T, m');
     for k = 1 To K do
          for j = 1 To m' do
                D_t' \leftarrow F(	ext{Concat}(\mathbf{x}_i^{T_K}, d_e); 	heta) \, ; \,\,\,\,\, // \,\,\, 	ext{Concatenated feature maps(target)}
          \begin{array}{ll} D_k', D_u' \leftarrow \operatorname{LOF}(D_t') \; ; & \text{$//$ Known classes $D_k'$ and unknown $D_u'$} \\ Y_{pseudo} \leftarrow \operatorname{Knn}(D_k', \mathcal{C}) \; ; & \text{$//$ Assign nearest centroid class} \\ \mathbf{for} \; i = 1 \; To \; n' \; \mathbf{do} \end{array}
                D_s' \leftarrow F(\text{CONCAT}(\mathbf{x}_i^{S_K}, d_e); \theta); // Concatenated feature maps(source)
              Y_s \leftarrow y_i^{S_K};
           \hat{Y_s}, \hat{Y_t} \leftarrow 	extsf{SOFTMAX}(	extsf{GAA}(D_s', D_k')) \, ; \, 	extsf{//} 	extsf{Source} \, 	ext{ and target labels using GAA}
           J_{\theta} \leftarrow \text{Cross Entropy}(\widehat{Y}_s, Y_s) + \lambda \text{Cross Entropy}(\widehat{Y}_t, Y_{pseudo});
          \theta \leftarrow \text{SGD}(J(t), \theta);
     end
end
```

3 2 Dataset Details

- Office31: The Office31 dataset [2] contains 31 object categories in three domains: Amazon, DSLR and Webcam. The object categories include everyday objects such as keyboards, laptops and file cabinets. Amazon Domain contains 2817 images captured against clean background and at a unified scale. The DSLR domain contains 498 high resolutions images while the WebCam contains 795 low resolutions images.
- OfficeHome: The OfficeHome dataset [3] contains images in 4 different domains consisting of 65 object categories found typically in Office and Home settings. Total 15,500 images are present with images in each class vary between 70 images to a maximum of 99 images.
- **VisDA-2017:** This large scale dataset [4] contains over 280,000 images across 12 categories. The training images are generated from the same object under different conditions while the validations images are sourced from MSCOCO.
- **DomainNet:** The DomainNet dataset [5] contains over half a million images in 6 different domains, each consisting of 345 categories of objects. The domains include clipart, real world photos, sketches, infograph, QuickDraw and paintings

18 3 Tables

Following previous works **OS** indicates normalized accuracy for all the classes including the unknown as one class and **OS*** shows normalized accuracy only on known classes.

Table 1: Classification Accuracy (%) of open set domain adaptation tasks on Office-31 (ResNet-50)

Method	$\mathbf{A} \rightarrow \mathbf{W}$		$\mathbf{D} \rightarrow \mathbf{W}$		W→D		$A{ ightarrow} D$		D→A		W→A		Avg	
	OS	OS*	OS	OS*	OS	OS*	OS	OS*	OS	OS*	OS	OS*	OS	OS*
ResNet [6]	82.5	82.7	85.2	85.5	94.1	94.3	96.6	97.0	71.6	71.5	75.5	75.2	84.2	84.4
ATI- λ [7]	87.4	88.9	84.3	86.6	93.6	95.3	96.5	98.7	78.0	79.6	80.4	81.4	86.7	88.4
OSBP [8]	86.5	87.6	88.6	89.2	97.0	96.5	97.9	98.7	88.9	90.6	85.8	84.9	90.8	91.3
STA [9]	89.5	92.1	93.7	96.1	97.5	96.5	99.5	99.6	89.1	93.5	87.9	87.4	92.9	94.1
JPOT [10]	92.8	92.2	95.2	96.0	98.1	96.2	99.5	98.6	93.0	94.1	88.9	88.4	94.6	94.3
Ours								-						

Table 2: Classification accuracy (%) of open set domain adaptation tasks on Office-Home (ResNet-50)

Method	Ar→Cl	Pr→Cl	Rw→Cl	Ar→Pr	Cl→Pr	$Rw \rightarrow Pr$	Cl→Ar	Pr→Ar	$Rw{ ightarrow}Ar$	Ar→Rw	Cl→Rw	$Pr \rightarrow Rw$	Avg.
ResNet [6]	53.4	52.7	51.9	69.3	61.8	74.1	61.4	64.0	70.0	78.7	71.0	74.9	65.3
ATI- λ [7]	55.2	52.6	53.5	69.1	63.5	74.1	61.7	64.5	70.7	79.2	72.9	75.8	66.1
OSBP [8]	56.7	51.5	49.2	67.5	65.5	74.0	62.5	64.8	69.3	80.6	74.7	71.5	65.7
STA [9]	58.1	53.1	54.4	71.6	69.3	81.9	63.4	65.2	74.9	85.0	75.8	80.8	69.5
JPOT [10]	59.6	54.2	54.6	72.3	70.1	82.1	62.9	68.3	75.1	84.8	77.4	81.2	70.2
PGL [11]	61.6	58.4	65.0	77.1	72.0	83.0	68.8	72.2	78.6	85.9	82.8	82.6	74.0
Ours							-						

Table 3: Classification accuracy (%) of open set domain adaptation tasks on VisDA-2017 (VGGNet)

Method	Bic	Bus	Car	Mot	Tra	Tru	UNK	OS	OS*
AATI- λ [7]	46.2	57.5	56.9	79.1	81.6	32.7	65.0	59.9	59.0
OSBP [8]	51.1	67.1	42.8	84.2	81.8	28.0	85.1	62.9	59.2
STA [9]	52.4	69.6	59.9	87.8	86.5	27.2	84.1	66.8	63.9
PGL [11]	93.5	93.8	75.7	98.8	96.2	38.5	68.6	80.7	82.8
Ours					-				

Table 4: Classification accuracy (%) of Multi Source Open Set domain adaptation tasks on Office-31.

Method	$AD{\rightarrow}W$		AW	\rightarrow D	WD	\rightarrow A	Avg	
Wethod	OS	OS*	OS	OS*	OS	OS*	OS	OS*
MOSDANET [12]	99.0	98.2	99.4	98.3	81.0	79.3	93.1	91.9
Ours					-			

Table 5: Comparison with the state-of-the-art methods on the DomainNet dataset.

Method	$R \rightarrow S$	$R \rightarrow C$	$R{ ightarrow}I$	$R{\rightarrow}P$	$P \rightarrow S$	$P \rightarrow R$	P→C	$P \rightarrow I$	Avg
CGCT [13]	48.9	60.3	26.9	57.1	43.4	58.8	48.5	21.7	45.7
D-CGCT [13]	48.4	59.6	25.3	55.6	45.3	58.2	51.0	21.7	45.6
DCC [14]	43.1	-	-	50.25	43.66	56.90	-	-	48.5
Ours					-				

1 References

22

23

24

- [1] Abhimanyu Dubey, Vignesh Ramanathan, Alex Pentland, and Dhruv Mahajan. Adaptive methods for real-world domain generalization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 14340–14349, 2021.
- 25 [2] Piotr Koniusz, Yusuf Tas, and Fatih Porikli. Domain adaptation by mixture of alignments of second- or higher-order scatter tensors. *CoRR*, abs/1611.08195, 2016.
- [3] Mohammad Mahfujur Rahman, Clinton Fookes, Mahsa Baktashmotlagh, and Sridha Sridharan.
 Multi-component image translation for deep domain generalization. *CoRR*, abs/1812.08974,
 2018.
- 30 [4] Shuhao Cui, Shuhui Wang, Junbao Zhuo, Chi Su, Qingming Huang, and Qi Tian. Gradually vanishing bridge for adversarial domain adaptation. *CoRR*, abs/2003.13183, 2020.
- [5] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learning? *CoRR*, abs/2008.11687, 2020.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.
- [7] Pau Panareda Busto and Juergen Gall. Open set domain adaptation. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, Oct 2017.
- [8] Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada. Open set domain adaptation by backpropagation. In *Proceedings of the European Conference on Computer Vision* (ECCV), pages 153–168, 2018.
- [9] Hong Liu, Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Qiang Yang. Separate to adapt: Open set domain adaptation via progressive separation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2019.
- 45 [10] Renjun Xu, Pelen Liu, Yin Zhang, Fang Cai, Jindong Wang, Shuoying Liang, Heting Ying, and 46 Jianwei Yin. Joint partial optimal transport for open set domain adaptation. In *IJCAI*, pages 47 2540–2546, 2020.
- Yadan Luo, Zijian Wang, Zi Huang, and Mahsa Baktashmotlagh. Progressive graph learning
 for open-set domain adaptation. In *International Conference on Machine Learning*, pages
 6468–6478. PMLR, 2020.
- 51 [12] S. Rakshit, Dipesh Tamboli, Pragati Shuddhodhan Meshram, Biplab Banerjee, G. Roig, and S. Chaudhuri. Multi-source open-set deep adversarial domain adaptation. In *ECCV*, 2020.

- [13] Subhankar Roy, Evgeny Krivosheev, Zhun Zhong, Nicu Sebe, and Elisa Ricci. Curriculum graph
 co-teaching for multi-target domain adaptation. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pages 5351–5360, 2021.
- [14] Guangrui Li, Guoliang Kang, Yi Zhu, Yunchao Wei, and Yi Yang. Domain consensus clustering
 for universal domain adaptation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 9757–9766, June 2021.