PRÁCTICO 1

Grupos.

- (1) Decir en cada caso si (G,*) es un grupo o no y, en caso afirmativo, si es abeliano o no.
 - (a) $G = \mathbb{R}_{>0}$, con $a * b = a^b$.
 - (b) $G = \mathbb{Z} \times \mathbb{Z}$, con $(m, n) * (r, s) = (m + (-1)^n r, n + s)$.
 - (c) $G = \mathcal{P}(X)$ (partes de X), con $A * B = A \cup B$.
 - (d) $G = \mathcal{P}(X)$, con $A * B = A \cap B$.
- (2) Probar que los siguientes conjuntos son grupos con la operación natural. Identificar la identidad y describir el inverso de cada elemento.
 - (a) $S^1 = \{ z \in \mathbb{C} : |z| = 1 \}.$
 - (b) El grupo especial lineal, $SL(n, \mathbb{R}) = \{A \in M_n(\mathbb{R}) : \det(A) = 1\}.$
 - (c) El grupo de unidades de \mathbb{Z}_n , $\mathcal{U}_n = \{a \in \mathbb{Z}_n : (a, n) = 1\}$.
 - (d) El grupo de raíces n-ésimas de la unidad, $\mathbb{G}_n = \{w \in \mathbb{C} : w^n = 1\}.$
 - (e) El grupo de todas las raíces de la unidad, $\mathbb{G}_{\infty} = \bigcup_{n \in \mathbb{N}} \mathbb{G}_n$.
- (3) (a) Sea G un semigrupo. Probar que G es un grupo si y sólo si las ecuaciones ya = b y ax = b tienen solución en G, para todo $a, b \in G$.
 - (b) Sea G un semigrupo finito. Si vale la ley cancelativa a ambos lados (es decir, ac = bc $\Rightarrow a = b$ y $ca = cb \Rightarrow a = b$), entonces G es un grupo. ¿Y si G es infinito?
- (4) Probar que $(\mathbb{Z}_p^{\times},\cdot)$ es grupo si y sólo si p es primo.
- (5) Dar las tablas de multiplicar de \mathbb{Z}_4 y de $\mathbb{Z}_2 \times \mathbb{Z}_2$. ¿Son la misma tabla?
- (6) Sea D_4 el conjunto de las transformaciones rígidas del plano que dejan fijo al cuadrado del plano \mathbb{R}^2 centrado en el origen. Dar la tabla de multiplicar de D_4 . ¿Es D_4 un grupo abeliano?
- (7) Escribir la tabla de multiplicar y dar el orden de $GL(2, \mathbb{Z}_2)$. Hacer lo mismo para $SL(2, \mathbb{Z}_2)$. ¿Qué puede decir sobre estos dos grupos? Calcular el orden de los grupos $GL(2, \mathbb{Z}_3)$, $GL(2, \mathbb{Z}_4)$, $SL(2, \mathbb{Z}_3)$ y $SL(2, \mathbb{Z}_4)$.
- (8) Suponer que la siguiente tabla es la tabla de multiplicar de un grupo de orden 5. Completar los espacios en blanco.

- (9) Determinar si en un grupo las siguientes afirmaciones son verdaderas o falsas.
 - (a) $a = a^{-1} \Leftrightarrow a^2 = e$.

- (b) $a^m = a^n \Rightarrow n = m$.
- (c) $(ab)^{-1} = a^{-1}b^{-1} \Rightarrow ab = ba$.
- (10) Probar que si G es un grupo donde se satisface la ecuación $a^2 = e$ (elemento identidad) para todo $a \in G$, entonces G es abeliano.
- (11) Sea G un grupo finito de orden par. Mostrar que existe $a \in G$, $a \neq e$, tal que $a^2 = e$.
- (12) Sea G un grupo. Probar que las siguientes afirmaciones son equivalentes.
 - (a) G es abeliano.
 - (b) $(ab)^2 = a^2b^2, \forall a, b \in G.$
 - (c) $(ab)^{-1} = a^{-1}b^{-1}, \forall a, b \in G.$
 - (d) $(ab)^n = a^n b^n$, $\forall n \in \mathbb{Z}, \forall a, b \in G$.
 - (e) $(ab)^n = a^n b^n$, $\forall a, b \in G$, para tres enteros consecutivos.
- (13) Sea p un número primo. Definimos

$$R_p:=\left\{\tfrac{a}{b}\in\mathbb{Q}\,:\, (b,p)=1\right\}, \qquad R^p:=\left\{\tfrac{a}{b}\in\mathbb{Q}\,:\, b=p^i, \text{ con } i\geq 0\right\}.$$

Mostrar que R_p y R^p son grupos abelianos con la suma de \mathbb{Q} .

(14) Sea G un grupo, y sean $a, b \in G$, $r \in \mathbb{N}$. Probar que si $b a b^{-1} = a^r$, entonces $b^j a b^{-j} = a^{r^j}$, para todo $j \in \mathbb{N}$.

EJERCICIOS ADICIONALES

- (15) Sea A una figura del plano, esto es, un subconjunto del plano. Sea G el conjunto de transformaciones rígidas T del plano que preservan a A, es decir, tales que T(A) = A.
 - (a) Probar que G con la composición es un grupo.
 - (b) Dar ejemplos en los que este grupo es trivial, finito e infinito.
 - (c) Dar ejemplos en los que G es abeliano y otros en los que G no es abeliano.
 - (d) Si $A = A_n$, polígono regular de n lados, G es el grupo diedral D_n .
 - (e) Describir D_n , distinguiendo los casos n par y n impar.
- (16) Sean X un conjunto no vacío y (G,*) un grupo. Definamos $F(X,G):=\{f:X\to G\}$, el conjunto de todas las funciones de X en G, y consideremos en F(X,G) la operación \bullet definida por $(f\bullet g)(x)=f(x)*g(x)$. Mostrar que $(F(X,G),\bullet)$ es un grupo. Más aún, si G es abeliano, entonces si F(X,G) también lo es.
- (17) Sea G un grupo abeliano finito y sea $SG = \sum_{q \in G} g$.
 - (a) Probar que $SG = \sum_{g \in G : 2g = 0} g$.
 - (b) Calcular SG para $G = \mathbb{Z}_n$.
 - (c) Calcular SG para $G = \mathbb{G}_n$.

Considere la situación en el caso no abeliano para los grupos S_3 y D_4 .