SDSC3002 Finding Similar Items: Min Hashing

Yu Yang yuyang@cityu.edu.hk

Outline

Motivation Examples

Shingling

Min Hashing

Item Recommendation

"Genova" Linen Summer Blazer \$145.00

Shop similar items

Shop in other patterns

Near-Duplicate Docs Detection

- Online doc sharing system
- ► Remove near-duplicate docs
- ▶ Also used in text summarization, news recommendation, ...

Similarity as Kernel

N = size of training data

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} k(\mathbf{x}_{i}, \mathbf{x}) + b$$
weight (may be zero)

Gaussian kernel
$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-||\mathbf{x} - \mathbf{x}'||^2/2\sigma^2\right)$$

Radial Basis Function (RBF) SVM

$$f(\mathbf{x}) = \sum_{i}^{N} lpha_{i} y_{i} \exp\left(-||\mathbf{x} - \mathbf{x}_{i}||^{2}/2\sigma^{2}
ight) + b$$

The Major Challenge

- ▶ Problem: find all pairs of data points (x_i, x_j) such that $sim(x_i, x_j) \ge \theta$
- ▶ Brute force search: $O(n^2)$ time to enumerate all pairs
- ▶ Goal: only use O(n) time (compromising some accuracy)
 - Consider $n = 10^7$, $O(n^2) = 10^14$ takes more than a year if 10^6 comparisons per sec

Inspiration by Pattern Mining

- ► Recall the Hashing and Pruning technique
 - ▶ Put multiple patterns in one same bucket
 - Itemsets in infrequent patterns can be pruned

Hashing helps pruning!

Similarity of Sets

Given two sets A and B, Jaccard similarity is defined as

$$JS(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

- ► $A = \{0, 1, 2, 5, 6\}, B = \{0, 2, 3, 5, 7, 9\}, A \cap B = \{0, 2, 5\}, A \cup B = \{0, 1, 2, 3, 4, 5, 6, 7, 9\}, JS(A, B) = \frac{3}{9}$
- Properties of Jaccard similarity
 - ▶ Within the range [0, 1]
 - Convert to distance metrics: 1 JS(A, B) or $\sqrt{JS(A, A)^2 + JS(B, B)^2 2JS(A, B)}$
 - A valid kernel as the Jaccard Index Matrix is positive semi-definite

Essential Steps for Similar Docs

- ▶ **Shingling**: convert docs to sets (feature extraction)
- ► **Min Hashing**: convert large sets to short signature vectors preserving (approximate) similarity
- ► Locality Sensitive Hashing: only consider pairs of signatures likely to be from similar docs (candidate pairs)

The Big Picture

reflect their similarity

ument

Outline

Motivation Examples

Shingling

Min Hashing

Turning Docs to Sets

- Naive ideas
 - Document as set of words
 - Document as set of important words
- Ordering of words matters for Natural Languages

Shingles

- A *k*-shingle (*k*-gram) for a doc is a sequence of of *k* tokens appearing in the doc
 - Tokens: can be characters, words or even phrases, ...
 - Example: k=2; document D₁ = abcab Set of 2-shingles: S(D₁) = {ab, bc, ca}
 - Option: Shingles as a bag (multiset), count ab twice: S'(D₁) = {ab, bc, ca, ab}

Compressing Shingles

- ▶ We do not have to store the whole shingles
- ► Hash each shingle to an integer (4 bytes)
- ▶ Represent a doc by the set of hash values of its *k*-shingles
 - Then use Jaccard similarity as the similarity measure

```
Example: k=2; document D<sub>1</sub>= abcab
Set of 2-shingles: S(D<sub>1</sub>) = {ab, bc, ca}
Hash the singles: h(D<sub>1</sub>) = {1, 5, 7}
```

Assumption Behind the Framework

- Docs sharing lots of shingles have similar text, although the text appears in different orders
- Caveat: you must pick k large enough, otherwise most docs will have most shingles
 - k = 5 is okay for short docs
 - k = 10 is better for long docs
- Such modeling is not perfect
 - The computation does not have to be perfect

Outline

Motivation Examples

Shingling

Min Hashing

Encoding Sets as Bit Vectors

- Let *N* be the number of all possible *k*-shingles
- ► Convert a set of shingles to an *N*-dimensional bit vector
 - ► The *i*-th bit is 1 if the set contains the *i*-th *k*-shingle
- ► Interpret set intersection as bitwise AND, and set union as bitwise OR
- ightharpoonup Example: $C_1 = 10111, C_2 = 10011$

From Sets to Boolean Matrices

- ► Rows: elements (shingles)
- ► Columns: sets (docs)
- ► We usually have a sparse matrix

Element	$ S_1 $	S_2	S_3	S_4		/ 1	0	0	1.\
1	1	0	0	1		(1	0	1	0
2	1	0	1	0	represents matrix $M=$	0	1	1	0
3	0	1	1	0		0	1	1	1
4	0	0	1	1		1	0	1	0
5	1	0	0	0		(1	0	1	1
6	0	0	1	1		(0	U	1	1 /

From Columns to Signatures

- Can we further compress representations of docs?
- Key idea: hash each column C to a small signature h(C) such that
 - \blacktriangleright h(C) is small enough to fit in RAM
 - ▶ similarity of columns ≈ "similarity" of signatures
- ▶ Goal: find a hash function $h(\cdot)$ such that
 - ▶ If $JS(C_1, C_2)$ is high, then $h(C_1) = h(C_2)$ with high prob.
 - ▶ If $JS(C_1, C_2)$ is low, then $h(C_1) \neq h(C_2)$ with high prob.

Min Hashing

- Imagine the rows of the boolean matrix permuted under a random permutation π
- ▶ Define the hash function m(C) as the index of the **first** row (under π) where the column C has value 1
- ▶ Compare $m(C_1)$ and $m(C_2)$ to estimate their Jaccard similarity

Example

Step 1: Randomly permute the items (by permuting the rows of the matrix).

Element	S_1	S_2	S_3	S_4
2	1	0	1	0
5	1	0	0	0
6	0	0	1	1
1	1	0	0	1
4	0	0	1	1
3	0	1	1	0

Step 2: Record the first 1 in each column, using a map function m. That is, given a permutation, applied to a set S, the function m(S) records the element from S which appears earliest in this permutation.

$$m(S_1) = 2$$

 $m(S_2) = 3$
 $m(S_3) = 2$
 $m(S_4) = 6$

Step 3: Estimate the Jaccard similarity $JS(S_i, S_j)$ as

$$\hat{\mathsf{JS}}(S_i, S_j) = \begin{cases} 1 & m(S_i) = m(S_j) \\ 0 & \text{otherwise.} \end{cases}$$

Analysis of Min Hashing

- Three types of rows
 - Tx: there are x rows with 1 in both columns
 - Ty: there are y rows with 1 in one column and 0 in the other
 - Tz: there are z rows with 0 in both column
- Random permutation
 - ▶ Start from $\pi = [1, ..., n]$
 - Randomly select an index j in [i, i+1, ..., n] and swap $\pi[i]$ and $\pi[j]$ for the final $\pi[i]$
 - Rows of 0 can be ignored
- Every element in C becomes the min one with equal prob.
 - ▶ $m(S_1) = m(S_2)$ means among $|S_1 \cup S_2|$ rows, some row in $S_1 \cap S_2$ is picked as the min for both S_1 and S_2 , prob.= $JS(S_1, S_2)$
- \triangleright $E[\hat{JS}(S_1, S_2)] = E[I(m(S_1) = m(S_2))] = JS(S_1, S_2)$

Analysis of #Permutations

- ► To boost the estimation accuracy, we adopt *r* independent random permutations
 - ▶ The *i*-th random permutation results in $m_i(C)$ for each column C
 - $\hat{JS}(S_1, S_2) = \frac{1}{r} \sum_{i=1}^{r} \mathbf{I}(m_i(S_1) = m_i(S_2))$
- **▶** By **Chernoff bound**

$$\Pr\{|\hat{JS}(S_1, S_2) - JS(S_1, S_2)| \ge \epsilon\} \le 2e^{-2\epsilon^2 r}$$

Set $\epsilon = 0.05$, $\delta = 2e^{-2\epsilon^2 r} = 1\% \rightarrow r \approx 1060$

Fast Min Hashing Algorithm

- Generating r random permutations is costly: building the matrix, r permutations, ...
- ► Fast implementation
 - ▶ We pick r random hash functions $\{h_1, h_2, \ldots, h_r\}$ from a Hash family, where $h_i : \mathcal{V} \to [n']$ $(n' \ge n)$ and \mathcal{V} is the set of all possible elements
 - ▶ Initialize $m_1(S), m_2(S), \ldots, m_r(S)$ as ∞ for each S

```
Algorithm Min Hash on set S

for i \in S do

for j = 1 to r do

if (h_j(i) < m_j) then

m_j \leftarrow h_j(i)
```

We only scan the data once without explicitly storing the permutations

Random Hash Functions: Universal Hashing

- ▶ Choose a large prime $M > |\mathcal{V}|$
- $h_{cd}(a) = ca + d \pmod{M}$
- \vdash $H = \{h_{cd} | c, d = 0, 1, ..., M-1\}$
- ightharpoonup A random hash function is represented by a 3-tuple (c, d, M)

Acknowledgement

➤ Some of the contents originate from Jure Leskovec's slides for CS246 at Stanford