Ciercicios de Álgebra Lineal.

De los siguientes problemas, 1 al 13, determina si el conjunto dado es una base para el espacio vectorial al que se refiere.

1. En
$$P_{1}$$
: $1 - x^{2}$, x

2. En
$$P_2$$
: $-3x$, $1 + x^2$, $x^2 - 5$

3. En
$$P_x$$
: $-2x$, $x + 3x^2$, $x + 2$

4. En
$$P_3$$
: $x^2 - 1$, $x^2 - 2$, $x^2 - 3$

5. En
$$P_3$$
: 1, 1 + x, 1 + x^2 , 1 + x^3

6. En
$$P_3$$
: $1 + x$, $2 + x^2$, $3 + x^3$, 1

7. En
$$P_3$$
: 3, $x^3 - 4x + 6$, x^2

8. En
$$M_{22}$$
: $\begin{pmatrix} 3 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 3 & 2 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} -5 & 1 \\ 0 & 6 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & -7 \end{pmatrix}$

9. En
$$M_{22}$$
: $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$, donde $abcd \neq 0$

10. En
$$M_{22}$$
: $\begin{pmatrix} -1 & 0 \\ 3 & 1 \end{pmatrix}$, $\begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}$, $\begin{pmatrix} -6 & 1 \\ 5 & 8 \end{pmatrix}$, $\begin{pmatrix} 7 & -2 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

11.
$$H = \{(x, y) \in \mathbb{R}^2 : x - y = 0\}; (1, 1), (4, 4)$$

12.
$$H = \{(x, y) \in \mathbb{R}^2: x + y = 0\}; (1, -1)$$

13.
$$H = \{(x, y) \in \mathbb{R}^2: x + y = 0\}; (1, -1), (-3, 3)$$

14. Encuentre una base en \mathbb{R}^3 para el conjunto de vectores en el plano 2x - y - z = 0.

15. Encuentre una base en \mathbb{R}^3 para el conjunto de vectores en el plano 3x - 2y + z = 0.

16. Encuentre una base en \mathbb{R}^3 para el conjunto de vectores en la recta x/2 = y/3 - z/4 = 0.

17. Encuentre una base en \mathbb{R}^3 para el conjunto de vectores en la recta x=3t, y=-2t, z=4t.

18. Demuestre que los únicos subespacios propios en ℝ² son rectas que pasan por el origen.

En los siguientes problemas encuentra el rango y la nulidad de cada una de las matrices.

1.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

2.
$$\begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 0 \end{pmatrix}$$
 3. $\begin{pmatrix} 1 & -2 & 1 \\ 2 & -1 & 3 \end{pmatrix}$

3.
$$\begin{pmatrix} 1 & -2 & 1 \\ 2 & -1 & 3 \end{pmatrix}$$

4.
$$\begin{pmatrix} -1 & 3 & 2 \\ 2 & -6 & -4 \end{pmatrix}$$

$$\mathbf{5.} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 4 \\ -1 & 0 & 4 \end{pmatrix}$$

5.
$$\begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 4 \\ -1 & 0 & 4 \end{pmatrix}$$
 6. $\begin{pmatrix} 1 & -2 & 3 \\ 2 & 4 & 5 \\ 1 & 6 & 2 \end{pmatrix}$

7.
$$\begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 4 \\ 5 & -1 & 8 \end{pmatrix}$$

8.
$$\begin{pmatrix} -1 & 2 & 1 \\ 2 & -4 & -2 \\ -3 & 6 & 3 \end{pmatrix}$$

7.
$$\begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 4 \\ 5 & -1 & 8 \end{pmatrix}$$
 8. $\begin{pmatrix} -1 & 2 & 1 \\ 2 & -4 & -2 \\ -3 & 6 & 3 \end{pmatrix}$ 9. $\begin{pmatrix} 1 & -1 & 2 & 3 \\ 0 & 1 & 4 & 3 \\ 1 & 0 & 6 & 6 \end{pmatrix}$

10.
$$\begin{pmatrix} 1 & -1 & 2 & 3 \\ 0 & 1 & 4 & 3 \\ 1 & 0 & 6 & 5 \end{pmatrix}$$
 11. $\begin{pmatrix} 0 & 4 & 2 & 0 \\ 0 & 0 & 1 & 6 \\ 1 & 0 & -1 & 2 \end{pmatrix}$ **12.** $\begin{pmatrix} 2 & 3 \\ -1 & 1 \\ 4 & 7 \end{pmatrix}$

11.
$$\begin{pmatrix} 0 & 4 & 2 & 0 \\ 0 & 0 & 1 & 6 \\ 1 & 0 & -1 & 2 \end{pmatrix}$$

12.
$$\begin{pmatrix} 2 & 3 \\ -1 & 1 \\ 4 & 7 \end{pmatrix}$$

13.
$$\begin{pmatrix} 1 & -1 & 2 & 3 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

13.
$$\begin{pmatrix} 1 & -1 & 2 & 3 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 14.
$$\begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
 15.
$$\begin{pmatrix} 1 & -1 & 2 & 1 \\ -1 & 0 & 1 & 2 \\ 1 & -2 & 5 & 4 \\ 2 & -1 & 1 & -1 \end{pmatrix}$$

15.
$$\begin{pmatrix} 1 & -1 & 2 & 1 \\ -1 & 0 & 1 & 2 \\ 1 & -2 & 5 & 4 \\ 2 & -1 & 1 & -1 \end{pmatrix}$$

16.
$$\begin{pmatrix}
1 & -1 & 2 & 3 \\
-2 & 2 & -4 & -6 \\
2 & -2 & 4 & 6 \\
3 & -3 & 6 & 9
\end{pmatrix}$$
17.
$$\begin{pmatrix}
-1 & -1 & 0 & 0 \\
0 & 0 & 2 & 3 \\
4 & 0 & -2 & 1 \\
3 & -1 & 0 & 4
\end{pmatrix}$$
18.
$$\begin{pmatrix}
3 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 6
\end{pmatrix}$$

17.
$$\begin{pmatrix} -1 & -1 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 4 & 0 & -2 & 1 \\ 3 & -1 & 0 & 4 \end{pmatrix}$$

$$\mathbf{18.} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

$$\mathbf{19.} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 2 \\ 1 & 2 & 4 \end{pmatrix}$$

19.
$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 2 \\ 1 & 2 & 4 \end{pmatrix}$$
 20.
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 6 \end{pmatrix}$$

En los problemas del 1 al 7 escribe $\binom{x}{y} \in \mathbb{R}^2$ en términos de la base dada.

1.
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

2.
$$\begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$

1.
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 2. $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ 3. $\begin{pmatrix} -2 \\ -3 \end{pmatrix}$, $\begin{pmatrix} -3 \\ -2 \end{pmatrix}$ 4. $\begin{pmatrix} 5 \\ 7 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$

4.
$$\binom{5}{7}$$
, $\binom{3}{-4}$

5.
$$\begin{pmatrix} -1 \\ -2 \end{pmatrix}$$
, $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$

$$6. \binom{2}{-1}, \binom{-2}{5}$$

5.
$$\begin{pmatrix} -1 \\ -2 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
 6. $\begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ 5 \end{pmatrix}$ 7. $\begin{pmatrix} a \\ c \end{pmatrix}, \begin{pmatrix} b \\ d \end{pmatrix}$, donde $ad - bc \neq 0$

En los problemas del 8 al 14 escribe $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$ en términos de la base dada.

$$\mathbf{8.} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\mathbf{9.} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

10.
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

8.
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 9. $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ **10.** $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ **11.** $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

12.
$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

13.
$$\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ 4 \\ 5 \end{pmatrix}, \begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix}$$

12.
$$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
 13. $\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ 4 \\ 5 \end{pmatrix}, \begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix}$ **14.** $\begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} b \\ d \\ 0 \end{pmatrix}, \begin{pmatrix} c \\ e \\ f \end{pmatrix}$, donde $adf \neq 0$

De los problemas siguientes, construye una base ortonormal para el espacio o subespacio vectorial dado.

1. En
$$\mathbb{R}^2$$
, comenzando con los vectores básicos $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

2.
$$H = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}.$$

3.
$$H = \{(x, y) \in \mathbb{R}^2 : x - y = 0\}.$$

4.
$$H = \{(x, y) \in \mathbb{R}^2 : ax + by = 0\}.$$

5. En
$$\mathbb{R}^2$$
, comenzando con $\binom{a}{b}$, $\binom{c}{d}$, donde $ad - bc \neq 0$.

6.
$$\pi = \{(x, y, z): 2x - y - z = 0\}$$

7.
$$\pi = \{(x, y, z): 3x - 2y + 6z = 0\}$$

8.
$$\pi = \{(x, y, z) \in \mathbb{R}^3: x + 2y + 3z = 0\}$$
 9. $L = \{(x, y, z): x/2 = y/3 = z/4\}$

9.
$$L = \{(x, y, z): x/2 = y/3 = z/4\}$$

10.
$$L = \{(x, y, z): x = 3t, y = -2t, z = t; t \text{ real}\}$$

11.
$$L = \{(x, y, z) \in \mathbb{R}^3 : x = t, y = 2t, z = -2t; t \in \mathbb{R}\}$$

12.
$$H = \{(x, y, z, w) \in \mathbb{R}^4: 2x - y + 3z - w = 0\}$$

13.
$$\pi = \{(x, y, z): ax + by + cz = 0\}, \text{ donde } abc \neq 0$$

14.
$$L = \{(x, y, z): x/a = yb = z/c\}, \text{ donde } abc \neq 0$$

15.
$$H = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5: 2x_1 - 3x_2 + x_3 + 4x_4 - x_5 = 0\}$$

16.
$$H = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5: x_1 + 2x_2 - 2x_3 - x_4 - x_5 = 0\}$$

17. H es el espacio de soluciones de

$$x - 3y + z = 0$$
$$-2x + 2y - 3z = 0$$

$$4x - 8y + 5z = 0$$