Instituto Superior de Engenharia de Lisboa

Licenciatura em Engenharia Informática e Multimédia

Comunicações e Processmento de Sinal

Exame 1^a Época do 1^o Semestre Lectivo 2016/17 - 02/02/2014

 $\mathbf{E}\mathbf{x} \ \mathbf{1}$

- 1. Considere um codificador PCM com quantificador MIDRISE, valor máximo de quantificação de 10V e 3bits por amostra. O sinal de entrada é o sinal $x(t) = 8cos(2\pi 100t)$ amostrado com frequência de amostragem fs = 16 kHz.
 - a) (1.0 val.) Calcule a SNR de quantificação e o débito binário.
 - c) (1.0 val.) Apresente as tabelas com os intervalos de quantificação e os níveis de decisão do quantificador.
 - d) (1.0 val.) Codifique as primeiras três amostras mantendo as condições da alínea anterior.
 - f) (1.5 val.) Dado o sinal x(t), sugira modificações ao quantificador para melhorar o seu desempenho (quantifique a melhoria).
 - g) (1.5 val.) Represente os espectros (em gráficos separados) do sinal x(t), do sinal amostrado $x_s(t)$ e do sinal reconstruído y(t). Admita que a reconstrução é efectuada por um filtro passa baixo ideal com frequência de corte $f_c = 4$ kHz. Apresente a expressão do sinal reconstruído y(t) à saída do filtro reconstrutor.
- 2. Considere um sistema de transmissão que usa o código de linha PNRZ, com débito binário de 1Mbps, potência no transmissor de 2W e um factor de roll-off de 0.5. O canal de comunicação é do tipo AWGN, com densidade espectral de potência de ruído de $N_0 = 2 \times 10^{-6}$ W/Hz e atenuação de 5 dB.
 - a) (1.0 val.) Represente a trama de bits [011110010]. Calcule a amplitude A do código.
 - b) (1.0 val.) Quais as vantagens e desvantagens face a outros códigos que conhece.
 - c) (1.5 val.) Calcule a probabilidade de erro de bit.
 - d) (1.0 val.) Considere que o canal tem uma largura de banda de 500kHz. Pode continuar a transmitir o mesmo sinal? Que opções tomaria se não pudesse transmitir o sinal nestas condições. Justifique a opção apresentando valores.
 - e) (1.5 val.) Desenhe o esquema do receptor.
 - f) (1.5 val.) Admita que usa adicionalmente um código linear sistemático H(7,4). Qual a trama enviada?
 - g) (1.5 val.) Admita que está nas condições da alínea anterior em modo de correcção FEC e que recebe o seguinte bloco no receptor: [01110000011101]. Quais são os valores dos bits de informação? O que pode concluir?
- 3. Considere um sistema de transmissão 8-PSK com um factor de roll-off de 0.35, usando uma potência de 5W. Sabe-se que o canal de comunicação (AWGN) é do tipo passa banda, cujo ruído tem uma densidade espectral de potência de $N_0/2 = 10^{-9}$ W/Hz e uma largura de banda disponível de 8 MHz. Pretende-se que o sistema no receptor tenha um BER igual ou inferior a 10^{-3} .
 - a) (1.0 val.) Represente a constelação no receptor indicando as coordenadas dos pontos da constelação.
 - b) (1.5 val.) Determine qual o débito binário máximo, por forma a garantir o BER pretendido no receptor.
 - c) (1.5 val.) Calcule a largura de banda ocupada pelo sinal transmitido.
 - d) (1.0 val.) Mantendo o mesmo modulador é possível aumentar o débito binário? Justifique.

Função complementar de erro

$$\frac{1}{2}\operatorname{erfc}(x) = \frac{1}{\sqrt{\pi}} \int_{x}^{\infty} e^{-\mu^{2}} d\mu$$

X	1/2 erfc(x)
0	5,000E-01
0,05	4.718E-01
0,1	4,438E-01
0,15	4,160E-01
0,2	3,886E-01
0,25	2610 - 01
0,3	3,357E-01
0,35	3,103E-01
0,4	2,858E-01
0,45	2,623E-01
0,5	2,398E-01
0,55	2,183E-01
0,6	1,981E-01
0,65	1,790E-01
0,7	1,611E-01
0,75	1.444E-01
0,8	1,289E-01
0,85	1,147E-01
0,9	1,015E-01
0,95	8,955E-02
1	7.865E-02
1,05	6,878E-02
1,1	5,990E-02
1,15	5,194E-02
1,2	4,484E-02
1.25	3.855E-02
1,3	3,300E-02
1,35	2,812E-02
1,4	2,386E-02
1,45	2,015E-02
1,5	1,695E-02
1,55	1,419E-02
1,6	1,183E-02
1,65	9,812E-03
1,7	8,105E-03
1,75	6,664E-03
1,8	5,455E-03
1,85	4,444E-03
1,9	3,605E-03
1,95	2,910E-03

Х	1/2 erfc(x)
2	2,339E-03
2,05	1.871E-03
2,1	1,490E-03
2,15	1,181E-03
2,2	9,314E-04
2,25	7 314F-04
2,25 2,3	5,716E-04
2,35	4,446E-04
2,4	3,443E-04
2.45	2,653E-04
2,5	2,035E-04
2.55	1,553E-04
2,6	1,180E-04
2.65	8,924E-05
2.7	6,717E-05
2.75	5,031E-05
2,8	3,751E-05
2,85	2,783E-05
2,9	2 055F-05
2,95	1,510E-05
3	1,105E-05
3,05	8,040E-06
3,1	5,824E-06
3,15	4,199E-06
3,2	3,013E-06
3.25	2,151E-06
3,3	1,529E-06
3.35	1.081E-06
3,4	7,610E-07
3,45	5,330E-07
3,5	3,715E-07
3,55	2,577E-07
3,6	1,779E-07
3.65	1,222E-07
3,7 3,75	8,358E-08
3,75	5,686E-08
3,8	3,850E-08
3,85	2,594E-08
3,9	1,740E-08
3,95	1,161E-08

х	1/2 erfc(x)
4	7,709E-09
4,05	5,094E-09
4,1	3,350E-09
4,15	2,192E-09
4,2	1,428E-09
4,25	9,253E-10
4,3	5,967E-10
4,35	3,830E-10
4,4	2,446E-10
4,45	1,554E-10
4,5	9,831E-11
4,55	6,187E-11
4,6	3,875E-11
4,65	2,415E-11
4,7	1,498E-11
4,75	9,243E-12
4,8	5,676E-12
4,85	3,469E-12
4,9	2,109E-12
4,95	1,277E-12
5	7,687E-13
5,05	4,606E-13
5,1	2,747E-13
5,15	1,630E-13
5,2	9,626E-14
5,25	5,657E-14
5,3	3,308E-14
5,35	1,926E-14
5,4	1,116E-14
5,45	6,439E-15
5,5	3,664E-15
5,55	2,109E-15
5,6	1,166E-15
5,65	6,661E-16
5,7	3,886E-16
5,75	2,220E-16
5,8	1,110E-16
5,85	5,551E-17
5,9	5,551E-17
5,95	0,000E+00