

Plant Seedling Classification

AIML course - Computer Vision

Azin Faghihi

Role: Data Scientist

March 2025

Contents / Agenda

- Executive Summary
- Business Problem Overview and Solution Approach
- EDA Results
- Data Preprocessing
- Model Performance Summary
- Conclusion
- Appendix

Executive Summary

Insights:

 Based on our observation, we observe that lowering the optimizer's learning rate, adding batch normalization, doing data augmentation, lowering the number of convolution layers and dense layers could help improve the performance of our model and also reduce overfitting.

Recommendations:

- Training multiple models.
- Trying different combinations of convolution, max-pooling, dense, and dropout layers.
- Try different ways of augmenting the data.
- Explore different parameters on learning rate reduction.

- Figuring out the patterns where the models make the wrong prediction.
- Try different ways of regularization.
- Conduct more investigation on individual classes.
- Investigate how steps per epochs affects the training.

Business Problem Overview and Solution Approach

Problem Overview:

• In the problem hand, we have around 5K BRG images of plant seedlings and their labels. There are 12 categories of seedlings. We are tasked to identify them using **Convolutional Neural Network** (CNN).

Solution Approach:

- We first conduct **exploratory data analysis (EDA)** such as viewing the images and investigating the distribution of our classes.
- We also conduct some pre-processing on the images such as size reduction, converting colors (BRG to RGB).
- We will then pre-process the data to prepare it for modeling. This would involve rescaling they
 data, binary encoding of the labels and splitting the data into train, validation and test.
- We will train two CNN models with different selection of the parameters such as number/kinds of layers, normalization, and data augmentation.

Business Problem Overview and Solution Approach *continued*

Solution Approach (continued):

- After training the two models, we compare their performance using **performance metrics** such as accuracy, recall, precision, and f1-score. We also make sure that our selected model is not suffering from overfitting by investigating the **loss** values.
- After conducting the comparison, we select our final model and run the model prediction on the test set.
- We also visualize the **confusion matrix** to better understand our model performance.

Data

- There are originally 4,750 **images**, each of dimensions 128x128.
- We are also provided with 4,750 labels corresponding to the images.
- There are 12 classes in the labels.

Data - Taking a Look at the Original Images

• Below, we see a sample image from each existing class.

Images from Each Class (BGR, 128x128)

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Great Learning

Target Distribution

- Below, we see the distribution (in %) of the **12 labels**.
- About 14% of the labels belong to the Loose Silky-Bent plant.

Conversion: BGR -> RGB

The original images are in BGR color and in data preprocessing are converted to RGB.

Images from Each Class (RGB, 128x128)

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Great Learning

Resizing: Reduction

The images are resized from 128x128 to 64x64 to reduce the computational cost.

Images from Each Class (RGB, 64x64)

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Data Preprocessing - Preparation for Modeling

Train-Validation-Test Split

- The data is split to 3 parts: **Train** (80%), **Validation** (10%), and **Test** (10%)
- Here's the summary table for the data.

	# Observations	Height	wiath	# Channels	Mın	Max	Color
images							
Original	4,750	128	128	3	0	255	BGR
Converted Colors	4,750	128	128	3	0	255	RGB
Resized	4,750	64	64	3	0	255	RGB
Train	3,799	64	64	3	0	255	RGB
Validation	476	64	64	3	0	254	RGB
Test	475	64	64	3	0	255	RGB

Data Preprocessing - Preparation for Modeling

Encoding the Target Class

• In order to do **multi-class classification** we binarize the labels similar to one-hot encoding. The table below summarizes the dimensions of the target variable.

	# Rows	# Columns
target		
Original	4,750	1
Train	3,799	1
Train (Encoded)	3,799	12
Validation	476	1
Validation (Encoded)	476	12
Test	475	1
Test (Encoded)	475	12

Max Color

Data Preprocessing - Preparation for Modeling

Data Normalization

- The original images have values between **0-255**. We scale the data to **standardize** the images to have values between **0-1**.
- The following table shows the min and max value of the data for the normalized data.

Observations Height Width # Channels Min

images Original 4.750 128 128 255 **BGR** 0 **Converted Colors** 4.750 128 128 255 **RGB** 64 255 Resized 4.750 64 0 RGB Train 3,799 64 64 255 **RGB** 3 0 Train (Normalized) **RGB** 3.799 64 64 3 0 **Validation** 476 64 64 3 0 254 RGB Validation (Normalized) 0 0.996 RGB 476 64 64 Test **RGB** 475 64 64 3 255 **Test (Normalized)** 475 64 64 3 0 RGB

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Great Learning

Summary

• Here's the pre-processing demonstrated using a sample image.

Image #1000: Shepherds Purse

G Great Learning

Model Parameters

We have trained two models on this data. Here are the model parameters.

	Model 1	Model 2		Model 1	
# Trainable Params	128,828	151,612	Activation (Dense)	relu, softmax	
Epochs	30	30	Activation (Conv)	relu, relu, relu	
Batch Size	32	64	Optimizer	adam	
gmentation (Rotation)	0	20	Learning Rate	0.001	
arning Rate Reduction		ReduceLROnPlateau	Regularization	Dropout(0.3)	
Steps per Epoch	119	59	Train Loss	1.152	
# Conv2D Layers	3	2	Validation Loss	1.104	
MaxPooling2D Layers	3	2	Train Accuracy	0.568	
# Dropout Layers	1	1	Validation Accuracy	0.679	
Normalization Layer		batch normalization	Test Loss	1.096	
# Neurons (Dense)	16, 12	16, 12	Test Accuracy	0.667	
# Filters (Conv)	128, 64, 32	64, 32	Elapsed Time (s)	64.02	

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Great Learning

Parameter Differences

The table below demonstrates the differences between the parameters of the two models.

	Model 1	Model 2	
Parameter Comparison			
# Trainable Params	128,828	151,612	Model 2 has more parameters to train.
Batch Size	32	64	Model 2 has a higher batch size.
Augmentation (Rotation)	0	20	The image for training Model 2 are rotated.
Learning Rate Reduction		ReduceLROnPlateau	Model 2 is trained with learning rate reduction.
Steps per Epoch	119	59	Model 2 has a lower number of steps per epoch.
# Conv2D Layers	3	2	
# MaxPooling2D Layers	3	2	
Normalization Layer		batch normalization	Model 2 uses batch normalization.
# Filters (Conv)	128, 64, 32	64, 32	
Activation (Conv)	relu, relu, relu	relu, relu	
Learning Rate	0.001	0.0001	Model 2 optimizer uses a lower learning rate.
Elapsed Time (s)	64.02	95.33	Model 2 takes longer to train.

Loss & Accuracy

- The loss and accuracy versus the number of epochs is demonstrated here.
- The curves are smoother for Model 1 however the loss approaches a lower number in Model 2.

Great Learning

Confusion Matrix - Test Data

Here are the classification matrices for the two models.

Predicted Labels

Great Learning

Confusion Matrix (Normalized) - Test Data

Here are the classification matrices (normalized) for the two models.

Great Learning

Performance Matrix - Test Data

Here are the classification reports for the two models.

Classification Domest (Test Date) Model 1

	Classificati	on Report	(Test Data)	- Model 1		Classificati	on Report	(Test Data)	- Model 2
	precision	recall	f1-score	support		precision	recall	f1-score	support
Black-grass	0.000	0.000	0.000	26	Black-grass	0.265	0.346	0.300	26
Charlock	0.681	0.821	0.744	39	Charlock	0.838	0.795	0.816	39
Cleavers	0.667	0.414	0.511	29	Cleavers	0.585	0.828	0.686	29
Common Chickweed	0.791	0.869	0.828	61	Common Chickweed	0.883	0.869	0.876	61
Common wheat	0.000	0.000	0.000	22	Common wheat	0.412	0.318	0.359	22
Fat Hen	0.590	0.750	0.661	48	Fat Hen	0.862	0.521	0.649	48
Loose Silky-bent	0.574	0.954	0.717	65	Loose Silky-bent	0.561	0.492	0.525	65
Maize	0.857	0.545	0.667	22	Maize	0.640	0.727	0.681	22
Scentless Mayweed	0.576	0.731	0.644	52	Scentless Mayweed	0.613	0.885	0.724	52
Shepherds Purse	0.533	0.348	0.421	23	Shepherds Purse	0.750	0.391	0.514	23
Small-flowered Cranesbill	0.886	0.780	0.830	50	Small-flowered Cranesbill	0.808	0.840	0.824	50
Sugar beet	0.735	0.658	0.694	38	Sugar beet	0.778	0.737	0.757	38
accuracy			0.667		accuracy			0.678	
macro avg	0.574	0.572	0.560	475	macro avg	0.666	0.646	0.643	475
weighted avg	0.617	0.667	0.628	475	weighted avg	0.696	0.678	0.675	475

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Performance Values - Precision, Recall, f1-score

Model 1

- The **precision** values for Model 2 is greater than that of Model expect for Cleavers, Loose Silky-bent, Maize, and Small-flowered Cranesbill.
- The **recall** values for Model 2 is greater than that of Model expect for Charlock, Fat Hen, and Loose Silky-bent.
- The **f1-score** values for Model 2 is greater than that of Model expect for Fat Hen, Loose Silky-bent, and Small-flowered Cranes.

Model Comparison - Choosing the final model

- We choose **Model 2** to be our final model since it has a higher train and validation **accuracy** and less absolute loss difference which shows that it has **less overfitting**.
- Model 2 has in higher values for f1-score, precision, and recall for most categories as seen in the previous slide.

	Model 1	Model 2	
Train Loss	1.1517	0.9008	
Validation Loss	1.1043	0.901	
Train Accuracy	0.568	0.688	Model 2 has a higher train accuracy.
Validation Accuracy	0.679	0.71	Model 2 has a higher validation accuracy.
I Train Loss - Validation Loss I	0.0474	0.0002	Model 2 has a smaller absolute loss difference.
Test Loss	1.096	0.94	
Test Accuracy	0.667	0.678	

Visualizing the Prediction

Below you see the samples of correct and wrong predictions.

Image 3116

Correct Prediction

Pred: Small-flowered Cranesbill

Image 437

Image 3596

Image 3190

Wrong Prediction

Image 988

Image 458

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Conclusion

Our observation is that lowering the optimizer's learning rate, adding batch normalization, doing data augmentation, lowering the number of convolution layers and dense layers could help improve the performance of our model and also reduce overfitting.

APPENDIX

Happy Learning!

