GNU Radio Companion

GNU Radio es un software libre y abierto que consta de herramientas para el procesamiento digital de señales que permiten implementar sistemas de comunicaciones.

El sitio de Internet del proyecto es: https://www.gnuradio.org/

Esta plataforma es ampliamente utilizado para simulación de sistemas de comunicaciones. Pero también dispone de la capacidad de integrar radios definidas por software y por lo tanto implementar sistemas de comunicaciones.

sea ampliamente usado para investigación, docencia, industria y también por radioaficionados.

Las ventajas previamente descriptas hacen que

Options

Title: Test Author: lac068

Output Language: Python Generate Options: QT GUI Variable

Id: samp rate Value: 32k

Waveform Generators

- Constant Source
- Noise Source
- Signal Source (e.g. Sine, Square, Saw Tooth)

Modulators

- AM Demod
- Continuous Phase Modulation
- WBFM Receive / NBFM Receive
- PSK Mod / Demod
- GFSK Mod / Demod
- GMSK Mod / Demod
- QAM Mod / Demod

Instrumentation (i.e., GUIs)

- Constellation Sink
- Frequency Sink
- Histogram Sink
- Number SinkTime Sink
- Waterfall Sink

Channel Models

- Channel Model
- Fading Model
- Dynamic Channel Model
- Frequency Selective Fading Model

- Band Pass / Reject Filter / Low / High Pass Filter - IIR Filter - Generic Filterbank - Hilbert - Decimating FIR Filter - Root Raised Cosine Filter - FFT Filter **Fourier Analysis** - FFT / Log Power FFT - Goertzel (Resamplers) / Fractional Resampler / Polyphase Arbitrary Resampler / Rational Resampler (Synchronizers) - Clock Recovery MM / Correlate and Sync - Costas Loop - FLL Band-Edge / PLL Freq Det / PN Correlator / Polyphase Clock

Filters

Sync

La modularidad de los bloques de GNU Radio permiten implementar sistemas de comunicaciones de una forma muy ágil.

Asimismo por ser de código abierto existe gran variedad de códigos y librerías generadas por la comunidad disponibles.

Los bloques y librerías pueden ser creados y editados en C++ y/o Python.

De esta forma hay desde bloques aptos para implementar sistemas de comunicaciones clásicos como AM, FM, PSK, FSK y QAM, hasta más complejos como OFDM.

También existen librerías para aplicaciones y protocolos específicos. Algunos son:

- Televisión digital.

 Comunicaciones satelitales
- Comunicaciones satelitales.
- Telefonía celular.
- ADS-B.
- AIS.

Tipos de variables

Los bloques de GNU Radio son aptos para distintos tipos de variables, dependiendo de su naturaleza. Los tipos de variables que dispone de el entorno son:

- Complex (8 bytes).
- Float (4 byte floating point).
- Int (4 byte integer).
- Short (2 byte integer).
- Byte (1 byte of data)

Uso de bloques

Fuente negra en el título del bloque: Correcto

Fuente roja en el título del bloque: Hay un error

Bloque sombreado en amarillo: Bloque con By-pass.

Creación de un proyecto

Cuando se crea un nuevo proyecto, se deben configurar dos bloques: el "Options" y el de una variable que se denomina "samp_rate" (sample rate).

Options

Title: Not titled yet

Author: lac068

Output Language: Python

Generate Options: QT GUI

Variable

Id: samp_rate

Bloque Options

Options

Title: Not titled yet

Author: lac068

Output Language: Python

Generate Options: QT GUI

- El bloque Options contiene opciones de configuración inicial. Se pueden configurar los siguientes parámetros
- ID: Nombre único asignado a cada bloque
- Title: Titulo del proyecto
- Author: Autor del proyecto
- Description: Descripción del proyecto
- Canvas Size: Tamaño del área de trabajo
- Generate Options: Formato de salida del modo grafico.
- Run: Forma de inicio de la ejecución del proyecto
- Max Number of Output: Máximo número de salidas
- Realtime Scheduling: Activar/desactivar programación en tiempo real.

Bloque variable

Variable

Id: samp_rate

Uso de bloques

Fuente negra en el título del bloque: Correcto

Fuente roja en el título del bloque: Hay un error

Bloque sombreado en amarillo: Bloque con By-pass.

Ejemplo básico

Options

Title: Ejemplo-1 **Author:** Alejandro

Output Language: Python

Generate Options: QT GUI

Variable

Id: samp_rate

Ejemplo básico

Options

Title: Ejemplo-1 **Author:** Alejandro

Output Language: Python

Generate Options: QT GUI

Variable

Id: samp_rate

Value: 32k

Datos tipo FLOAT

Throttle

Sample Rate: 32k

Signal Source

Sample Rate: 32k

Waveform: Cosine

Frequency: 1k Amplitude: 1

Offset: 0

Initial Phase (Radians): 0

QT GUI Sink

Name:

FFT Size: 1.024k

Center Frequency (Hz): 0

Bandwidth (Hz): 32k

Update Rate: 10

Options

Title: Ejemplo-1 **Author:** Alejandro

Output Language: Python

Generate Options: QT GUI

Bloque THROTTLE

Este bloque se suele usar a la salida de generadores de señales que no estén implementadas en hardware.

Se utiliza para limitar la tasa de generación demuestras. De lo contrario, el uso del CPU se eleva y el GNU podría fallar.

Variable

Id: samp rate

Options

Title: Ejemplo-1 **Author:** Alejandro

Output Language: Python

Generate Options: QT GUI

Variable

Id: samp_rate

Value: 32k

Graficador de señales

Signal Source

Sample Rate: 32k

Waveform: Cosine

Frequency: 1k

Amplitude: 1

Offset: 0

Initial Phase (Radians): 0

Throttle

Sample Rate: 32k

Name:

FFT Size: 1.024k

Center Frequency (Hz): 0

QT GUI Sink

Bandwidth (Hz): 32k

Update Rate: 10

