МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 22483— 2012

ЖИЛЫ ТОКОПРОВОДЯЩИЕ ДЛЯ КАБЕЛЕЙ, ПРОВОДОВ И ШНУРОВ

(IEC 60228: 2004, MOD)

Издание официальное

Москва Стандартинформ 2014

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0–92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2–2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научноисследовательский, проектно-конструкторский и технологический институт кабельной промышленности» (ОАО «ВНИИКП»)
- 2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 046 «Кабельные изделия»
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 42-2012 от 15 ноября 2012 г., приложение № 22.1)

За принятие стандарта проголосовали:

Краткое наименование страны по МК (ISO 3166) 004–97	Код страны по МК (ISO 3166) 004–97	Сокращенное наименование национального органа по стандартизации
Беларусь	BÝ	Госстандарт Беларуси
Киргизия	KG	Кыргызстандарт
Узбеки стан	UZ	Узгосстандарт
Россия	RU	Росстандарт

4 Настоящий стандарт модифицирован по отношению к международному стандарту IEC 60228: 2004 Conductors of insulated cables (Токопроводящие жилы изолированных кабелей) путем изменения содержания отдельных структурных элементов и внесения дополнительных положений. Дополнительные положения и измененные фразы, слова, показатели и/или их значения выделены в тексте полужирным курсивом. Разъяснение причин внесения дополнительных положений и изменения фраз, слов, показателей и/или их значений приведено во введении.

Международный стандарт IEC 60228:2004 разработан техническим комитетом TC 20 «Электрические кабели» Международной электротехнической комиссии (IEC).

Перевод с английского языка (en).

Официальный экземпляр международного стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, имеется в Федеральном агентстве по техническому регулированию и метрологии.

Степень соответствия — модифицированная (МОD).

Наименование настоящего стандарта изменено относительно наименования международного стандарта в связи с особенностями классификации кабельной продукции в странах СНГ.

5 Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. № 1269-ст межгосударственный стандарт ГОСТ 22483–2012 (IEC 60228:2004) введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

6 B3AMEH FOCT 22483-77

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2014

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Введение

IEC 60228:2004 устанавливает требования к номинальному сечению токопроводящих жил электрических кабелей, проводов и шнуров широкого диапазона типов, включая требования к числу и диаметру проволок и значению электрического сопротивления.

IEC 60228:2004 устанавливает требования к конструкции жил только для силовых кабелей и шнуров (см. раздел 1), поэтому содержит только классы жил 1, 2, 5 и 6. В настоящее время в странах СНГ разработано большое количество кабельных изделий с жилами классов 3 и 4, поэтому настоящий стандарт дополнен этими классами и из раздела 1 исключено слово «силовых».

Требования к токопроводящим жилам электрических кабелей, проводов и шнуров в настоящем стандарте полностью соответствуют установленным в IEC 60228:2004. При этом в настоящем стандарте расширены требования IEC 60228:2004 на все группы кабельных изделий, также сохранены диапазоны сечений жил по классам; для класса 1 сохранено изготовление жил из алюминия и возможность изготовления многопроволочных жил наряду с однопроволочными.

Размеры жил, приведенные в настоящем стандарте, установлены в метрической системе. В настоящее время Канада для указания размеров и параметров жил использует американские системы AWG (American Wire Gauge) и kcmil (kilo circular mils) для больших размеров, как показано ниже. Применение в Канаде этого размерного ряда предписано национальными нормами для электроустановок. В стандартах IEC на кабельные изделия нет кабелей, проводов и шнуров с жилами в системе AWG/kcmil.

	AV	VG		kemil			
Размер жилы	Номинальное сечение жилы, мм²	Размер жилы	Номинальное сечение жилы, мм²	Размер жилы	Номинальное сечение жилы, мм ²	Размер жилы	Номинальное сечение жилы, мм²
_	_	_	_	250	127	750	380
_	_	_	_	300	152	800	405
20	0,519	4	21,2	350	177	900	456
18	0,823	3	26,7	400	203	1000	507
16	1,31	2	33,6	450	228	1200	608
14	2,08	1	42,4	500	253	1250	633
12	3,31	1/0	53,5	550	279	1500	760
10	5,26	2/0	67,4	600	304	1750	887
8	8,37	3/0	85,0	650	329	2000	1010
6	13,3	4/0	107	700	355	_	_

Поправка к ГОСТ 22483—2012 (IEC 60228:2004) Жилы токопроводящие для кабелей, проводов и шнуров

В каком месте	Напечатано	Должно быть
Титульный лист, первая страница стандарта С.1. Наименование стандарта	ГОСТ 22483—2012 ТОКОПРОВОДЯЩИЕ ДЛЯ КАБЕ- ЛЕЙ, ПРОВОДОВ И ШНУРОВ	ГОСТ 22483—2012 (IEC 60228:2004) ЖИЛЫ ТОКОПРОВОДЯЩИЕ ДЛЯ КАБЕЛЕЙ, ПРОВОДОВ И ШНУРОВ

(ИУС № 2 2015 г.)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ТОКОПРОВОДЯЩИЕ ДЛЯ КАБЕЛЕЙ, ПРОВОДОВ И ШНУРОВ

Conductors for cables, wires and cords

Дата введения — 2014—01—01

1 Область применения

Настоящий стандарт устанавливает номинальные сечения до 2500 мм² токопроводящих жил (далее — жилы) электрических кабелей, проводов и шнуров широкого диапазона типов; включены также требования в части числа и диаметра проволок и значений электрического сопротивления. Настоящий стандарт распространяется на однопрово-лочные и многопроволочные жилы из меди, алюминия и алюминиевого сплава, предназначенные для кабельных изделий стационарной прокладки, и гибкие медные жилы.

Настоящий стандарт не распространяется на жилы кабелей связи, радиочастотных кабелей, неизолированных и обмоточных проводов.

Применение настоящего стандарта для специальных типов кабелей и проводов (на рабочую температуру 120°С и выше, особо гибкие, малоиндуктивные, импульсные, зажигания, грузонесущие, геофизические, судовые герметизированные, сигнализации и блокировки и др. узкоцелевого назначения) устанавливают в стандартах или технических условиях на эти типы кабелей и проводов.

Если не указано иное в особом пункте договора, настоящий стандарт распространяется на жилы готовых кабельных изделий, а не на отдельные жилы или жилы, поставляемые по кооперации для изготовления кабельных изделий.

В настоящий стандарт включены справочные приложения, в которых дана дополнительная информация в части поправочных температурных коэффициентов, используемых при измерении электрического сопротивления (приложение В), и предельных размеров круглых жил (приложение С).

2 Термины и определения

- В настоящем стандарте применены следующие термины с соответствующими определениями.
- 2.1 металлическое покрытие (metal-coated): Поверхностный слой соответствующего металла, такого как олово или сплав на основе олова.
- 2.2 номинальное сечение (nominal cross-sectional area): Значение, идентифицирующее определенный размер жилы, но не подлежащее проверке непосредственным измерением.

П р и м е ч а н и е — Для каждого конкретного размера жилы установлено требование по максимальному значению электрического сопротивления. Фактическое сечение жил может отличаться от номинального при соответствии электрического сопротивления требованиям настоящего стандарта.

3 Классификация

Жилы подразделены на шесть классов 1—6:

- класс 1 однопроволочные и многопроволочные (для больших сечений) жилы;
- класс 2 многопроволочные жилы;
- класс 3 многопроволочные гибкие жилы с гибкостью более чем гибкость жил класса 2;
- класс 4 многопроволочные гибкие жилы с гибкостью более чем гибкость жил класса 3;
 - класс 5 гибкие жилы;
 - класс 6 гибкие жилы с гибкостью более чем гибкость жил класса 5.

FOCT 22483—2012

Жилы классов 1 и 2 предназначены для кабельных изделий стационарной прокладки. Жилы классов 3, 4, 5 и 6 предназначены для гибких кабельных изделий, но их можно также использовать для кабельных изделий стационарной прокладки.

4 Материалы

4.1 Введение

Жилы должны состоять из одного из следующих материалов:

- из отожженной меди с металлическим покрытием или без него;
- из апюминия или апюминиевого сплава.

4.2 Однопроволочные алюминиевые жилы

Однопроволочные круглые и фасонные алюминиевые жилы должны быть изготовлены из алюминия, который обеспечивает прочность при разрыве готовой жилы в пределах, указанных в таблице 1.

Таблица 1 – Прочность при разрыве готовой жилы

Номинальное сечение,	Прочность при разрыве,			
MM ²	_ Н/мм²			
10 и 16	110–165			
25 и 35	60–130			
50	60–110			
70 и более 60–90				
Примечание – Приведенные значения не распространяются на жилы из алюминиевого сплава.				

4.3 Многопроволочные алюминиевые жилы

Многопроволочные круглые и фасонные алюминиевые жилы должны быть изготовлены из алюминия, который обеспечивает прочность при разрыве отдельных проволок в пределах, указанных в таблице 2.

Таблица 2 – Прочность при разрыве отдельных проволок

Номинальное сечение, мм ²	Прочность при разрыве, Н/мм ²
10	До 200 включ.
16 и более	125–205

Примечания

5 Однопроволочные и многопроволочные жилы

Жилы не должны иметь заусенцев, режущих кромок и выпучивания отдельных проволок.

5.1 Однопроволочные и многопроволочные (для больших сечений) жилы (класс 1)

5.1.1 Конструкция

- а) Для однопроволочных *и многопроволочных (для больших сечений)* жил (класс 1) используют один из материалов, приведенных в разделе 4.
- b) Однопроволочные медные жилы должны быть круглыми. **Допускается для многожильных** кабелей и проводов применение фасонных однопроволочных медных жил сечением 25–50 мм².

Примечание — Однопроволочные медные жилы номинальным сечением не менее **70 мм²** предназначены для специальных типов кабелей, например с минеральной изоляцией, но не для кабелей общего применения.

¹ Приведенные значения не распространяются на жилы из алюминиевого сплава.

² Указанные значения проверяют только на проволоках до скрутки жилы, но не на проволоках, отобранных от скрученной жилы.

с) Однопроволочные жилы из алюминия и алюминиевого сплава с номинальным сечением до 35 мм² включительно должны быть круглыми. Жилы большего сечения должны быть круглыми для одножильных кабелей и проводов и могут быть круглыми или фасонными для многожильных кабелей и проводов.

Допускается для многожильных кабелей и проводов применение фасонных однопроволочных жил из алюминия и алюминиевого сплава сечением 25 и 35 мм².

5.1.2 Электрическое сопротивление

Электрическое сопротивление жилы при температуре 20 °C, определенное в соответствии с разделом 7, должно быть не более значения, указанного в таблице 3.

Таблица 3 - Однопроволочные и многопроволочные (для больших сечений) жилы класса 1

для одножильных и многожильных кабелей и проводов

Наминалина		ное число	Электрическое	сопротивление 1 км жиль	ы при температуре 20 °C,
Номинальное	проволе	<i>ок жилы</i> □	Marian in suran	Ом, не более	Mayer to the country
сечение, мм ²	Cu	AI	круппые жиль	из отожженной меди	Круглые или фа-сонные жилы из алюминия или
IVIIVI	Cu	~'	без покрытия	с металлическим по- крытием	алюминиевого сплава ^с
0.02	4		F00.0	<u> </u>	азпоминиевого стыава
0,03	1	_	588,0	617,3	_
0,05	1	_	<i>347,9</i>	365,3	_
0,08	1	_	225,3	238,8	_
0,12	1	_	130,8	138,6	_
0,20	1	_	88,8	90,4	_
0,35	1	_	50,7	51,8	_
0,50	1	_	36,0	36,7	_
0,75	1	_	24,5	24,8	_
1,0	1	_	18,1	18,2	– _
1,5	1	1	12,1	12,2	18,1 ^a
2,5	1	1 1	7,41	7,56	12,1 ^a
4	1	1 1	4,61	4,70	7,41 ^a
6	1	1	3,08	3,11	5,11 ^a
10	1	1 1	1,83	1,84	3,08 ^a
16	1	1 1	1,15	1,16	1,91 ^a
25	1	1 1	0,727	-	1,20 ^a
35	1	1 1	0,524	_	0,868 ^a
50	1	1 1	0,387	_	0,641
70	1	1 1	0,268 ^b	_	0,443
95	1	1 1	0,193 ^b	_	0,320 ^d
120	1	1 1	0,153 ^b	_	0,253 ^d
150	1	1 1	0,124 ^b	_	0,206 ^d
185	1 <i>или 35</i>	1 1	0,101 b	_	0,164 ^d
240	1 <i>или 35</i>	1 1	0,0775 ^b	_	0,125 ^d
300	1 <i>или 35</i>	1 1	0,0620 ^b	_	0,100 ^d
400	1 <i>или</i> 35	1 или 35	0,0465 b	_	0,0778
500	35	1 или 35	0,0366	_	0,0605
625, 630	59	1 или 59	0,0283	_	0,0469
800	59	1 или 59	0,0221	_	0,0367
1000	59	1 или 59	0,0176	_	0,0291
1200	_	1		_	0,0247

^а Алюминиевые жилы с номинальным сечением до 35 мм² включительно только круглые; см. перечисление с) 5.1.1.

^b См. примечание к перечислению b) 5.1.1.

^с См. примечание к 5.1.2.

^d Для одножильных кабелей могут быть объединены четыре секторные части жилы для образования круглой жилы. Максимальное электрическое сопротивление образованной жилы должно быть равно 25 % значения для каждого из четырех секторных частей жилы.

Примечание — Для однопроволочных жил из алюминиевого сплава, имеющих то же номинальное сечение, что и алюминиевые жилы, значение электрического сопротивления, указанное в таблице 3, должно быть умножено на коэффициент 1,162, если иное не установлено в соглашении между изготовителем и заказчиком.

5.2 Многопроволочные круглые неуплотненные жилы (класс 2)

5.2.1 Конструкция

- а) Для многопроволочных круглых неуплотненных жил (класс 2) используют один из материалов, приведенных в разделе 4.
- b) Номинальное сечение многопроволочных жил из алюминия или алюминиевого сплава силовых кабелей должно быть не менее 10 мм².
 - с) Все проволоки каждой жилы должны иметь один и тот же номинальный диаметр.
 - d) Число проволок каждой жилы должно быть не менее числа проволок, указанного в таблице 4.

Т а б л и ц а 4 – Многопроволочные жилы класса 2 для одножильных и многожильных кабелей и проводов

Минимальное число проволок жилы				илы	Электрическое сопротивление 1 км жилы при тем- пературе 20 °C, Ом, не более			
круі	глой	кругло	й уплот-	doac	онной			
				l '				Жила из алюми-
						Проволока без	Проволока с ме-	ния или алюми-
Cu	Al	Cu	Al	Cu	Al	покрытия	таллическим по-	ниевого сплава ^с
							крытием	
7	_	_	_	_	_	36.0		i <u> </u>
	_	_	_	_	_			_
	_	_	_	_	_			_
	7	6	_	_	_			22,7
			_	_	_			12,4
	_		_	_	_			7,41
-	_		_	_	_			5,11
			6	_	_			3,08
-								1,91
				6	_			1,20
								0,868
								1 '
								0,641
								0,443
								0,320
	1							0,253
	1			1		'	· · · · · · · · · · · · · · · · · · ·	0,206
				1			,	0,164
	ı					,	,	0,125
						,		0,100
	1					,		0,0778
	ı			53		0,0366		0,0605
91	91			53	53	0,0283	0,0286	0,0469
91	91	53	53	_	_	0,0221	0,0224	0,0367
91	91	53	53		_	0,0176	0,0177	0,0291
D .					0,0151	0,0151	0,0247	
b			0,0129	0,0129	0,0212			
			b			0,0113	0,0113	0,0186
b			0,0101	0,0101	0,0165			
b					0,0090	,	0,0149	
b						0,0072	0,0127	
	Си 7 7 7 7 7 7 7 7 7 7 7 7 9 19 19 37 37 37 61 61 61 91 91	круглой Cu Al 7 — 7 — 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	круглой круглой Cu AI Cu 7 — — 7 — — 7 7 6 37 37 18	Круглой Уплот- Круглой уплот Круглой уплот- Круглой уплот- Круглой уплот Круглой уплот	круглой круглой уплот- ненной Cu Al Cu Al Cu 7 — — — — — — — — — — — — — — — — — —	круглой круглой уплот- ненной фасонной 7 — — — — 7 — — — — — 7 —	круглой круглой уплот- ненной фасонной Жила из отот покрытия 7 — — — — 36,0 7 — — — — 24,5 7 — — — — 18,1 7 7 6 — — — 12,1 7 7 6 — — — 7,41 — — 12,1 — — 7,41 — — — 18,1 — — — 12,1 — — — 18,1 — — — 18,1 — — — 18,1 — — — 18,1 — — — 18,1 —	Круглой уплот-

^а Эти сечения не являются предпочтительными. Для специального применения допускаются другие непредпочтительные сечения жил, но на них действие настоящего стандарта не распространяется.

5.2.2 Электрическое сопротивление

Электрическое сопротивление жилы при температуре 20 °C, определенное в соответствии с разделом 7, должно быть не более значения, указанного в таблице 4.

^b Минимальное число проволок для этих сечений не нормировано. Жилы этих сечений могут быть — сформированы из четырех, пяти или шести одинаковых секторов.

^с Для многопроволочных жил из алюминиевого сплава, имеющих то же номинальное сечение, что и алюминиевые жилы, значение электрического сопротивления должно быть согласовано между изготовителем и заказчиком, ес*ли оно не установлено в стандартах или технических условиях на кабельные изделия.*

5.3 Многопроволочные круглые уплотненные жилы и многопроволочные фасонные жилы (класс 2)

5.3.1 Конструкция

- а) Для многопроволочных круглых уплотненных жил и многопроволочных фасонных жил (класс 2) используют один из материалов, приведенных в разделе 4. Номинальное сечение многопроволочных круглых уплотненных жил из алюминия или алюминиевого сплава должно быть не менее 10 мм². Номинальное сечение многопроволочных фасонных жил из меди, алюминия или алюминиевого сплава должно быть не менее 25 мм².
- b) Соотношение между значениями диаметров двух различных проволок одной жилы должно быть не более двух.
- с) Число проволок каждой жилы должно быть не менее числа проволок, указанного *в таблице 4*.

П р и м е ч а н и е — Это требование распространяется на жилы, изготовленные из круглых проволок до уплотнения, и не распространяется на жилы, скрученные из предварительно профилированных проволок.

d) В уплотненных жилах допускается обрыв или пропуск проволок при соответствии электрического сопротивления жил требованиям настоящего стандарта.

5.3.2 Электрическое сопротивление

Электрическое сопротивление жилы при температуре 20 °C, определенное в соответствии с разделом 7, должно быть не более значения, указанного в таблице 4.

6 Гибкие жилы (классы 3-6)

6.1 Конструкция

- а) Гибкие медные жилы *(классы 3*–6) должны быть из отожженной меди с металлическим покрытием или без него.
 - b) Все проволоки каждой жилы должны иметь один и тот же номинальный диаметр.
 - с) Диаметр проволок жилы должен быть не более значения, указанного в таблицах 5-8.
- d) Допускается обрыв или пропуск проволок в жилах при соответствии электрического сопротивления жил требованиям настоящего стандарта.
- е) Жилы не должны иметь заусенцев, режущих кромок и выпучивания отдельных проволок.

6.2 Электрическое сопротивление

Электрическое сопротивление жилы при температуре 20 °C, определенное в соответствии с разделом 7, должно быть не более значения, указанного в *таблицах 5–8*.

Электрическое сопротивление многожильных кабельных изделий с жилами классов 4—6, скрученных с кратностью шагов менее 10 диаметров по скрутке, должно быть указано в стандартах или технических условиях на кабельные изделия.

7 Проверка соответствия требованиям разделов 5 и 6

Соответствие требованиям 5.1.1, 5.2.1, 5.3.1 и 6.1 проверяют на готовом *кабельном изделии* внешним осмотром и измерениями.

Соответствие требованиям по электрическому сопротивлению по 5.1.2, 5.2.2, 5.3.2 и 6.2 проверяют измерением, проведенным в соответствии с приложением А с корректировкой температуры с помощью коэффициентов таблицы А.1.

Таблица 5— Многопроволочные круглые жилы класса 3 для одножильных и многожильных кабелей и проводов

	Диаметр про-	Электрическое сопротивление 1 км жилы при температуре 20°C, Ом, не более					
Номинальное сечение, мм²	волок жилы,	Жила из ог	Wu us s				
мм, не более	Проволока без покрытия	Проволока с метал- лическим покрытием	Жила из алюминия или алюминиевого сплава ⁶				
0,50	0,33	39,6	40,7	_			
0,75	0,38	25,5	26,0	_			
1,0	0,43	21,8	22,3	_			
1,5	0,53	14,0	14,3	23,4			
2,5	0,69	7,49	7,63	12,5			
4	0,87	4,79	4,88	8,00			
6	0,65	3,11	3,17	5,20			
10	0,82	1,99	2,03	3,33			
16	0,65	1,21	1,24	2,02			
25	0,82	0,809	0,824	1,35			
35	0,69	0,551	0,562	0,921			
50	0,69	0,394	0,402	0,658			
70	0,69	0,277	0,283	0,470			
95	0,82	0,203	0,207	0,338			
120	0,79	0,158	0,161	0,264			
150	0,87	0,130	0,132	0,211			
185	0,87	0,105	0,107	0,175			
240	0,87	0,0798	0,0814	0,134			
300	0,87	0,0654	0,0666	0,109			
400	0,87	0,0499	0,0509	0,0835			
500	0,87	0,0393	0,0401	0,0657			

^а Для многопроволочных жил из алюминиевого сплава, имеющих то же номинальное сечение, что и алюминиевые жилы, значение электрического сопротивления должно быть согласовано между изготовителем и заказчиком, если оно не установлено в стандартах или технических условиях на кабельные изделия.

Таблица 6 – Многопроволочные круглые медные жилы класса 4 для одножильных и многожильных кабелей, проводов и шнуров

Ном инальное сечение,	Диаметр проволок	Электрическое сопротивление 1 км жилы при температуре 20 °C, Ом, не более			
MM ²	жилы, мм, не более	Проволока без покры- тия	Проволока с металли ческим покрытием		
0,05	0,11	366,6	383,7		
0,08	0,13	247,5	254,6		
0,12	0,16	165,3	170,3		
0,20	0,21	89,1	91,7		
0,35	0,27	57,0	58,7		
0,50	0,31	40,5	41,7		
0,75	0,31	25,2	25,9		
1,0	0,31	19,8	20,4		
1,5	0,41	13,2	13,6		
2,5	0,43	8,05	8,20		
4	0,53	4,89	4,99		
6	0,53	3,28	3,35		
10	0,53	2,00	2,04		
16	0,53	1,21	1,24		
25	0,53	0,776	0,792		
<i>35</i>	0,59	0,547	0,558		
50	0,59	0,393	0,401		
<i>70</i>	0,59	0,281	0,286		
95	0,59	0,201	0,205		
120	0,69	0,162	0,165		
150	0,69	0,129	0,132		

Окончание таблицы 6

Номинальное сечение,	Диаметр проволок	Электрическое сопротивление 1 км жилы при температуре 20 °C, Ом, не более			
MM ²	жилы, мм, не более	Проволока без покры-	Проволока с металли-		
		тия	ческим покрытием		
150	0,69	0,129	0,132		
185	0,69	0,104	0,106		
240	0,69	0,0808	0,0824		
300	0,69	0,0649	0,0661		
400	0,69	0,0484	0,0493		

Таблица 7 – Гибкие круглые медные жилы класса 5 для одножильных и многожильных кабелей,

Номинальное сечение,	Диаметр проволок жилы,		ен <mark>ие 1 км жилы при темп</mark> е- Ом, не более
MM ²	мм, не более	Проволока без покрытия	Проволока с металличе- ским покрытием
0,03	0,09	572,7	599,5
0,05	0,09	400,9	419,6
0,08	0,11	256,6	268,6
0,12	0,11	171,0	179,0
0,20	0,13	108,3	113,4
0,35	0,16	58,3	60,0
0,50	0,21	39,0	40,1
0,75	0,21	26,0	26,7
1,0	0,21	19,5	20,0
1,5	0,26	13,3	13,7
2,5	0,26	7,98	8,21
4	0,31	4,95	5,09
6	0,31	3,30	3,39
10	0,41	1,91	1,95
16	0,41	1,21	1,24
25	0,41	0,780	0,795
35	0,41	0,554	0,565
50	0,41	0,386	0,393
70	0,51	0,272	0,277
95	0,51	0,206	0,210
120	0,51	0,161	0,164
150	0,51	0,129	0,132
85	0,51	0,106	0,108
240	0,51	0,0801	0,0817
300	0,51	0,0641	0,0654
100	0,51	0,0486	0,0495
500	0,61	0,0384	0,0391
6 25 , 630	0,61	0,0287	0,0292

FOCT 22483—2012

Таблица 8 – Гибкие круглые медные жилы класса 6 для одножильных и многожильных кабелей,

проводов и шнуров

проводов и шнуров			
Номинальное сечение,	Диаметр проволок жилы,		ение 1 км жилы при темпе- Ом, не более
MM ²	мм, не более	Проволока без покрытия	Проволока с металличе- ским покрытием
0.02	0.06	660.0	<u> </u>
0,03	0,06	669,8	671,5
0,05	0,06	396,9	397,9
0,08	0,06	267,9	268,6
0,12	0,09	174,4	174,8
0,20	0,11	113,1	113,4
0,35	0,11	59,5	59,6
0,50	0,16	39,0	40,1
0,75	0,16	26,0	26,7
1,0	0,16	19,5	20,0
1,5	0,16	13,3	13,7
2,5	0,16	7,98	8,21
4	0,16	4,95	5,09
6	0,21	3,30	3,39
10	0,21	1,91	1,95
16	0,21	1,21	1,24
25	0,21	0,780	0,795
35	0,21	0,554	0,565
50	0,31	0,386	0,393
70	0,31	0,272	0,277
95	0,31	0,206	0,210
120	0,31	0,161	0,164
150	0,31	0,129	0,132
185	0,41	0,106	0,108
240	0,41	0,0801	0,0817
300	0,41	0,0641	0,0654
	1 0,41	0,0041	0,0004

Приложение А (обязательное)

Измерение электрического сопротивления

Кабельное изделие выдерживают в испытательном помещении достаточно длительное время, чтобы жила достигла температуры, при которой можно точно определить электрическое сопротивление с использованием установленных поправочных коэффициентов.

Электрическое сопротивление постоянному току жилы (жил) измеряют или на строительной длине кабельного изделия, или на образце кабельного изделия длиной не менее 1 м при температуре окружающей среды, при этом регистрируют температуру, при которой проведено измерение. Измеренное электрическое сопротивление корректируют с помощью поправочных коэффициентов, указанных в таблице А.1.

Электрическое сопротивление на 1 км длины кабельного изделия рассчитывают на основе длины готового кабельного изделия, а не длины отдельных изолированных жил или проволок.

При необходимости корректировка, которую надо выполнить для приведения значения электрического сопротивления R к 20 $^{\circ}$ C и длине 1 км, может быть проведена с использованием следующей формулы

$$R_{20} = R_{\rm t} \, k_{\rm t} \, \frac{1000}{L} \,, \tag{A.1}$$

где R_{20} – электрическое сопротивление 1 км жилы при 20 °C, Ом;

Rt - измеренное электрическое сопротивление жилы, Ом;

 $k_{\rm t}$ – поправочный температурный коэффициент, указанный в таблице A.1;

L – длина кабельного изделия, м.

Т а б л и ц а A.1 – Поправочный температурный коэффициент $k_{\rm t}$ для приведения электрического сопротивления, измеренного при t °C, к 20 °C

Температура жилы при измерении °C	Поправочный темпера- турный коэффициент $k_{ m t}$ для всех классов жил	Температура жилы при измерении °C	Поправочный темпера- турный коэффициент <i>k</i> _t для всех классов жил
0	1,087	21	0,996
1	1,082	22	0,992
2	1,078	23	0,988
3	1,073	24	0,984
4	1,068	25	0,980
5	1,064	26	0,977
6	1,059	27	0,973
7	1,055	28	0,969
8	1,050	29	0,965
9	1,046	30	0,962
10	1,042	31	0,958
11	1,037	32	0,954
12	1,033	33	0,951
13	1,029	34	0,947
14	1,025	35	0,943
15	1,020	36	0,940
16	1,016	37	0,936
17	1,012	38	0,933
18	1,008	39	0,929
<u>1</u> 9	1,004	40	0,926
20	1,000		

П р и м е ч а н и е — Значения поправочного температурного коэффициента k_t основаны на значении температурного коэффициента сопротивления, равного 0,004 K^{-1} при температуре 20 °C.

Значения поправочного температурного коэффициента, указанные в таблице А.1, являются приблизительными, но они дают значения для практического использования, достоверность которых согласуется с достоверностью, которую обычно можно получить при измерениях температуры и длины кабельных изделий.

Метод получения более точных значений поправочного температурного коэффициента для меди и алюминия приведен в приложении В. Но эти значения не следует принимать в качестве требования при испытаниях, проводимых по настоящему стандарту для проверки электрического сопротивления.

Приложение В (справочное)

Точные формулы для определения поправочных температурных коэффициентов

а) Жилы из отожженной меди с металлическим покрытием или без него

$$k_{t,Cu} = \frac{254.5}{234.5+t} = \frac{1}{1+0.00393(t-20)}$$
 (B.1)

b) Алюминиевые жилы

$$k_{t,AI} = \frac{248}{228+t} = \frac{1}{1+0,00403(t-20)}$$
 (B.2)

Примечание – В части жил из алюминиевого сплава следует обратиться к изготовителю.

В приведенных формулах t обозначает температуру жилы во время измерения в градусах Цельсия.

Приложение С (справочное)

Руководство по предельным размерам круглых жил

С.1 Назначение

Настоящее приложение является руководством для изготовителей кабелей и кабельной арматуры для обеспечения совместимости размеров арматуры и жил. Приведены предельные размеры следующих типов жил, на которые распространяется настоящий стандарт:

- а) круглые однопроволочные жилы (класс 1) из меди, алюминия и алюминиевого сплава;
- b) круглые и круглые уплотненные многопроволочные жилы (класс 2) из меди, алюминия и алюминиевого сплава:
 - с) гибкие медные жилы (классы 3, 4, 5 и 6).

С.2 Предельные размеры для круглых медных жил

Диаметр круглых медных жил не должен превышать значений, указанных в таблице С.1.

Таблица С.1 – Максимальный диаметр круглых медных однопроволочных, многопроволочных неуплотненных и гибких жил

Номинальное	Максимальный диаметр жил, мм				
сечение,	однопро-	многопро-	многопро-	многопро-	гибких
MM ²	во лочных	волочных	волочных	волочных	(классы 5 и 6)
IVIIVI	(класс 1)	(класс 2)	(класс 3)	(класс 4)	
0,05	_	=	=	0,35	-
0,08	_	_	_	0,42	_
0,12	_	_	_	0,55	_
0,20	_	_	-	0,65	_
0,35	_	-	_	0,9	_
0,5	0,9	1,1	1,1	1,1	1,1
0,75	1,0	1,2	1,3	1,3	1,3
1,0	1,2	1,4	1,5	1,5 1,8 2,5	1,5
1,5 2,5	1,5 1,9	1,7	1,8	1,8	1,8
2,5	1,9	2,2	2,4	2,5	2,4
4	2,4	2,7	2,8	3,0	3,0
6	2,9	3,3	3,9	4,0	3,9
10	3,7	4,2 5,3	4,7	5,0	5,1
16	4,6	5,3	6,1	6,1	6,3
25°	5,7	6,6	7,8	7,8	7,8
35 ^a	6,7	7,9	9,1	9,1	9,2
50 ^a	7,8	9,1	11,6	11,6	11,0
70 ^a	9,4	11,0	13,7	13,7	13,1
95 ^a	11,0	12,9	15,0	15,0	15,1
120 ^a	12,4	14,5	17,1	17,2	17,0
150 ^a	13,8	16,2	18,9	19,0	19,0
185	15,4	18,0	20,0	22,0	21,0
240	17,6	20,6	23,0	28,3	24,0
300	19,8	23,1	26,2	34,5	27,0
400	22,2	26,1	34,8	47,2	31,0
500	_	29,2	43,5	-	35,0
625 , 630	_	33,2	_	_	39,0
800	_	37,6	_	_	_
1000	_	42,2	_	_	l –

^а См. перечисление b) 5.1.1.

П р и м е ч а н и е — Значения, приведенные для гибких жил, установлены так, чтобы их можно было применять одновременно для жил классов 5 и 6.

Если требуется минимальный диаметр для круглых медных жил класса 1, можно воспользоваться значениями минимального диаметра для круглых однопро-волочных жил из алюминия или алюминиевого сплава, указанными в таблице C.2.

FOCT 22483—2012

Таблица С.2 – Минимальный и максимальный диаметры круглых однопроволочных жил из алюминия и алюминиевого сллава

Номинальное сече- ние,мм ²	Диаметр круглых однопроволочных жил (класс 1) из алюминия и алюминиевого сплава, мм			
	минимальный	максимальный		
10	3,4	3,7		
16	4,1	4,6		
25	5,2	5,7		
35	6,1	6,7		
50	7,2	7,8		
70	8,7	9,4		
95	10,3	11,0		
120	11,6	12,4		
150	12,9	13,8		
185	14,5	15,4		
240	16,7	17,6		
300	18,8	19,8		
400	21,2	22,2		
500	24,0	25,1		
625, 630	27,3	28,4		
800	30,9	32,1		
1000	34,8	36,0		
1200	37,8	39,0		

С.3 Предельные размеры для круглых многопроволочных уплотненных жил из меди, алюминия и алюминиевого сплава

Диаметр круглых многопроволочных уплотненных жил из меди, алюминия и алюминиевого сплава не должен превышать максимальные значения и быть менее минимальных значений, указанных в таблице С.3.

Таблица С.3 — Минимальный и максимальный диаметры круглых многопроволочных уплотненных жил из меди, алюминия и алюминиевого сплава

Номинально <u>е</u> сечение,	Диаметр круглых многопроволочных уплотненных жил (класс 2		
MM ²	минимальный	максимальный	
10	3,6	4,0	
16	4,6	5,2	
25	5,6	6,5	
3 5	6,6	7,5	
50	7,7	8,6	
70	9,3	10,2	
95	11,0	12,0	
120	12,3	13,5	
150	13,7	15,0	
185	15,3	16,8	
240	17,6	19,2	
300	19,7	21,6	
400	22,3	24,6	
500	25,3	27,6	
625	28,6	32,4	
630	28,7	32,5	

Примечания

В исключительных случаях, когда жилы неуплотненные, устанавливают, что диаметр круглых многопроволочных жил из алюминия или алюминиевого сплава не должен превышать соответствующие значения, приведенные в таблице С.1 для медных жил класса 2.

С.4 Предельные размеры круглых однопроволочных алюминиевых жил

Диаметр круглых однопроволочных жил из алюминия и алюминиевого сплава не должен превышать максимальные значения и быть менее минимальных значений, указанных в таблице С.2.

¹ Предельные размеры алюминиевых жил сечением более 630 мм² не приведены, так как не установлена универсальная технология уплотнения.

² Значения для медных уплотненных жил в диапазоне номинальных сечений 1,5-6,0 мм² не приведены.

УДК 621.315.2:006.354

MKC 29.060.01

Ключевые слова: токопроводящие медные, алюминиевые, из алюминиевого сплава, для кабелей, проводов и шнуров жилы; основные параметры

Подписано в печать 01.10.2014. Формат 60х84 $^{1}/_{8}$. Усл. печ. л. 2,33. Тираж 97 экз. Зак. 3863

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ» 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru

22483-201