Calcul algébrique élémentaire

1. Notation \sum

Si $(a_n)_{n\in\mathbb{N}}$ est une suite réelle ou complexes, on note, et $0\leqslant p\leqslant q$ deux entiers, on note

$$\sum_{k=p}^{q} a_k = a_p + a_{p+1} + \dots + a_q$$
 (il y a $q - p + 1$ termes)

Attention: la variable k est **muette** (i.e. n'apparait pas dans le résultat): on peut donc noter, si $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} a_k = \sum_{j=0}^{n} a_j = \sum_{i=0}^{n} a_i$$

Exemple 1:
$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n (2k-1) =$$

Exemple 2 : écriture décimale : tout entier naturel N s'écrit sous la forme

$$N = \sum_{k=0}^n a_k 10^k \;, \mathrm{avec} \; n \in \mathbb{N}, \, \mathrm{et} \; \forall k \in \llbracket 1, n
rbracket, \; a_k \in \llbracket 0, 9
rbracket$$

$$\textit{Remarque:} \text{ sommes altern\'ees: pour } n \in \mathbb{N}, \ \begin{cases} & \sum_{k=0}^n \left(-1\right)^k a_k = \\ & \sum_{k=0}^n \left(-1\right)^{k+1} a_k = \end{cases}$$

Identités remarquables: pour $n \in \mathbb{N}$,

$$\boxed{ \sum_{k=0}^{n} k = \frac{n (n+1)}{2} } \boxed{ \sum_{k=0}^{n} k^2 = \frac{n (n+1) (2n+1)}{6} } \boxed{ \sum_{k=0}^{n} k^3 = \left[\frac{n (n+1)}{2} \right]^2 }$$

2. Propriétés

(on fixe $n \in \mathbb{N}^*$)

a) Formule de récurrence :
$$\sum_{k=1}^{n+1} a_k = \left(\sum_{k=1}^n a_k\right) + a_{n+1}$$

Plus généralement, si $(\lambda, \mu) \in \mathbb{R}^2$ (ou \mathbb{C}^2),

Exemple: conjecturer et montrer une formule simplifiant $S_n = \sum_{k=1}^n (2k-1)$

b) Linéarité :
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$
 et $\forall \lambda \in \mathbb{R}$ (ou \mathbb{C})
$$\sum_{k=1}^{n} \lambda a_k = \lambda \sum_{k=1}^{n} a_k$$

$$\boxed{\sum_{k=1}^n (\lambda a_k + \mu b_k) = \lambda \sum_{k=1}^n a_k + \mu \sum_{k=1}^n b_k}$$

$$Pi\`eges: \sum_{k=1}^n 1 = \sum_{k=1}^n \lambda = \sum_{k=1}^n a_n =$$

PCSI Calcul algébrique

Remarque : on peut dériver ou intégrer une somme "terme à terme" : pour $f_0 \dots f_n$ dérivables sur [a,b]

$$\left[\left(\sum_{k=0}^{n} f_{k}\right)' = \sum_{k=0}^{n} f_{k}'\right] \quad \text{et} \quad \left[\int_{a}^{b} \left(\sum_{k=0}^{n} f_{k}\left(x\right)\right) dx = \sum_{k=0}^{n} \int_{a}^{b} f_{k}\left(x\right) dx\right]$$

Exemple: simplifier
$$\frac{d}{dx} \left(\sum_{k=1}^{n} e^{kx} \right)$$
 et $\int_{0}^{1} \left(\sum_{k=0}^{n} x^{k} \right) dx$

Changements d'indexation:

(i) Translations:
$$\sum_{k=1}^{n} a_k = \sum_{k=0}^{n-1} a_{k+1}$$
 ou $\sum_{k=1}^{n} a_k = \sum_{k=2}^{n+1} a_{k-1}$

Dans la pratique, on peut (ici dans la première) poser $\begin{cases} k' = k - 1 \\ k = k' + 1 \end{cases}$, ce qui donne $\sum_{k=1}^{n} a_k = \sum_{k'=0}^{n-1} a_{k'+1}$

(ii) Inversion de compteur :
$$\sum_{k=0}^{n} a_k = \sum_{k=0}^{n} a_{n-k}$$

Exemple: calcul de $S_n = \sum_{i=1}^n k_i$.

d) Télescopage:
$$\sum_{k=1}^{n} (a_k - a_{k-1}) = a_n - a_0$$
 ou $\sum_{k=1}^{n} (a_{k+1} - a_k) = a_{n+1} - a_1$

Une méthode de calcul de $\sum_{k \neq 1}^n b_k$ est donc de trouver une suite (a_k) telle que $\forall k \in \mathbb{N}^*, \ b_k = a_{k+1} - a_k$. **Exemple 1:** $S_n = \sum_{k=0}^n (2k+1)$: on remarque $\forall k \in \mathbb{N}, \ 2k+1 = (k+1)^2 - k^2$.

Exemple 1:
$$S_n = \sum_{k=0}^n (2k+1)$$
: on remarque $\forall k \in \mathbb{N}$, $2k+1 = (k+1)^2 - k^2$

Exemple 2:
$$S_n = \sum_{k=0}^n \frac{k}{(k+1)!}$$
: on utilise la ruse $k = k+1-1$

Séparation des termes d'indices pairs et impairs dans une somme : on cherche à écrire proprement

$$a_0 + a_1 + \dots + a_n = (a_0 + a_2 + \dots) + (a_1 + a_3 + \dots)$$

On peut écrire abusivement

$$\sum_{k=0}^n a_k = \sum_{p \text{ pair}} a_p + \sum_{q \text{ impair}} a_q = \sum_{0 \leqslant 2p \leqslant n} a_{2p} + \sum_{0 \leqslant 2q+1 \leqslant n} a_{2p+1}$$

Mais plus rigoureusement

$$\sum_{k=0}^{n} a_k = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} a_{2k} + \sum_{k=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} a_{2k+1}$$

2

où |x| désigne partie entière de x (voir plus loin)

Exemple 1:
$$\sum_{k=0}^{5} a_k = \sum_{k=0}^{2} a_{2k} + \sum_{k=0}^{2} a_{2k+1}$$
, et $\sum_{k=0}^{6} a_k = \sum_{k=0}^{3} a_{2k} + \sum_{k=0}^{2} a_{2k+1}$

Exemple 2:
$$\sum_{k=1}^{n} \frac{(-1)^k}{k} = \frac{1}{2} \sum_{k=0}^{\left \lfloor \frac{n}{2} \right \rfloor} \frac{1}{k} - \sum_{k=0}^{\left \lfloor \frac{n-1}{2} \right \rfloor} \frac{1}{2k+1}$$
.

3. Produits

a) Notation: on note pour $n \in \mathbb{N}^*$ et a_1, \ldots, a_n réels ou complexes:

$$\prod_{k=1}^{n} a_k = a_1 \times a_2 \times \dots \times a_n$$

b) Factorielle: si $n \in \mathbb{N}^*$, on note:

$$\boxed{n! = 1 \times 2 \times 3 \times \cdots \times n = \prod_{k=1}^{n} k \quad (\text{factorielle } n)}$$

Par convention, 0! = 1.

Exemples: 1! = 1; 2! = 2; 3! = 6; 4! = 24; 5! = 120; 6! = 720; ... $70! \approx 1, 2.10^{100}$

Formule de récurrence : $\forall n \in \mathbb{N}, \ (n+1)! = n! \times (n+1)$ (ou pour $n \in \mathbb{N}^*, n! = (n-1)! \times n$)

Remarque: si $0 \leqslant p \leqslant q$, on a $\frac{q!}{p!} = q (q-1) \dots (p+1) = \prod_{k=p+1}^q k$

c) Propriétés des produits (mêmes notations) :

$$\boxed{\prod_{k=1}^{n} a_k b_k = \left(\prod_{k=1}^{n} a_k\right) \left(\prod_{k=1}^{n} b_k\right)}$$

et

$$\forall p \in \mathbb{Z}, \quad \prod_{k=1}^{n} a_k^p = \left(\prod_{k=1}^{n} a_k\right)^p$$

Cas particuliers : si $\lambda \in \mathbb{R}$,

$$\prod_{k=1}^{n} \lambda a_k = \lambda^n \prod_{k=1}^{n} a_k$$
$$\prod_{k=1}^{n} \frac{1}{a_k} = \frac{1}{\prod_{k=1}^{n} a_k}$$

Remarque 1: formule de récurrence. $\forall n \in \mathbb{N}^*, \boxed{\prod_{k=1}^{n+1} a_k = \left(\prod_{k=1}^n a_k\right) \times a_{n+1}}$

Remarque 2 : on a le télescopage $\prod_{k=0}^{n} \frac{a_k}{a_{k+1}} = \frac{a_0}{a_{n+1}}$ (les a_i sont supposés non nuls)

4. Quelques extensions

a) Sommation sur un ensemble fini I: si $(a_i)_{i \in I}$ est une famille de réels ou de complexes indexée sur I, on note $\sum_{i \in I} a_i$ la somme de ses éléments.

Par exemple, pour
$$I=\llbracket p,q
rbracket$$
, $(p\leqslant q)$, on a $\sum_{i\in\llbracket p,q
rbracket}a_i=\sum_{i=p}^pa_i$. Mais aussi si $I=\{\clubsuit,\diamondsuit,\heartsuit,\spadesuit\}$,

$$\sum_{i \in I} a_i = a_{\clubsuit} + a_{\diamondsuit} + a_{\diamondsuit} + a_{\diamondsuit} + a_{\spadesuit}$$

Remarque: si $n \in \mathbb{N}$ et $p \in [[0, n]]$, on note abusivement $\sum_{i \neq p} a_i$ pour $\sum_{i \in [[0, n]] \setminus \{p\}} a_i$, i.e.

$$a_0 + \dots + a_{p-1} + a_{p+1} + \dots + a_n$$

b) Sommes doubles: on considère la famille à deux indices $(a_{ij})_{(i,j)\in [\![1,n]\!]\times [\![1,m]\!]}$. Alors

$$\sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij} \right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_{ij} \right) \stackrel{\text{notation}}{=} \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}$$

Interprétation sur le tableau (ou matrice) des a_{ij} .

Remarque: en fait, on peut écrire moins pompeusement

$$\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} = \sum_{(i,j) \in [[1,n]] \times [[1,m]]} a_{ij}$$

ou plus abusivement $\sum_{\substack{1 \leqslant i \leqslant n \\ 1 < i < m}} a_{ij}$. On rencontre même $\sum_{i=1}^n \sum_{j=1}^n a_{ij} = \sum_{1 \leqslant i,j \leqslant n} a_{ij}$.

Exemple 1: "variables séparées": supposons a_{ij} sous la forme $a_{i,j} = b_i c_j$. Alors

$$\boxed{\sum_{i=1}^{n} \sum_{j=1}^{m} b_i c_j = \left(\sum_{i=1}^{n} b_i\right) \left(\sum_{j=1}^{m} c_j\right)}$$

Exemple 2: sommes "triangulaires" (indexée sur $\left\{(i,j) \in \llbracket 1,n \rrbracket^2 \ / \ i \leqslant j \right\}$):

$$\sum_{1 \le i \le j \le n} a_{ij} = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{j} a_{ij}$$

- Point de vue "géométrique"
- Point de vue "algébrique". Attention, on ne peut pas permuter les sigmas ici!!

Exemple 3 : une identité remarquable :

$$\left| \left(\sum_{i=1}^{n} a_i \right)^2 = \sum_{i=1}^{n} a_i^2 + 2 \sum_{1 \le i < j \le n} a_i a_j \right|$$

- 5. Factorisation de $b^n a^n$
- Formule générale : soit $n \in \mathbb{N}^*$. Alors pour tous complexes a et b,

$$b^{n} - a^{n} = (b - a)(b^{n-1} + ab^{n-2} + a^{2}b^{n-3} + \dots + a^{n-2}b + a^{n-1})$$

soit

$$b^{n} - a^{n} = (b - a) \sum_{k=0}^{n-1} a^{k} b^{n-1-k}$$

 $b^2 - a^2 = (b - a)(b + a)$ $b^{3} - a^{3} = (b - a)(b + a)$ $b^{3} - a^{3} = (b - a)(b^{2} + ab + a^{2})$ $b^{4} - a^{4} = (b - a)(b^{3} + ab^{2} + a^{2}b + a^{3}) \quad etc.$ **Cas courants :** $b^3 - a^3 = (b - a)(b^2 + ab + a^2)$

Cas particulier: lorsque n est impair, on peut écrire: $b^n + a^n = b^n - (-a)^n$ et donc factoriser par (b+a). Par exemple:

$$\boxed{b^3 + a^3 = (b+a)(b^2 - ab + a^2)} \quad \heartsuit \heartsuit \heartsuit$$

Exemples: factoriser $x^6 - 64$ et $x^5 + 243$

b) Cas où a = 1: pour tout $x \in \mathbb{C}$, et $n \in \mathbb{N}^*$,

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + x^{n-3} + \dots + x + 1) = (x - 1)\sum_{k=0}^{n-1} x^{k}$$

On doit connaitre les cas courants

et le cas particulier, **pour** n **est impair** :

$$x^{n} + 1 = (x+1)(x^{n-1} - x^{n-2} + x^{n-3} - \dots - x + 1) = (x+1)\sum_{k=0}^{n-1} (-1)^{k} x^{k}$$

Sommes de puissances : soient $n \in \mathbb{N}$ et $x \in \mathbb{C}$. Alors

$$\begin{cases} \underline{\text{Si } x \neq 1}, \text{ alors } \sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x} \\ \underline{\text{Si } x = 1}, \text{ alors } \sum_{k=0}^{n} x^{k} = \sum_{k=0}^{n} 1 = n + 1 \end{cases}$$

$$\text{\it Cas particulier: } \text{si } x \neq -1, \sum_{k=0}^{n} (-1)^{k} x^{k} = 1 - x + x^{2} - \dots + (-1)^{n} x^{n} = \frac{1 - (-1)^{n+1} x^{n+1}}{1 + x}$$

Exemple: calculer $\sum_{k=0}^{n} \frac{1}{2^k}$ et $\sum_{k=0}^{n} (-1)^k 2^k$. Expliciter lorsque n=10

6. Inégalités et sommes

Soient $n \in \mathbb{N}$, et $a_1, \ldots, a_n, b_1, \ldots, b_n$ des réels.

a) Proposition: on suppose que
$$\forall k \in \llbracket 1, n \rrbracket$$
, $a_k \leqslant b_k$: alors $\sum_{k=1}^n a_k \leqslant \sum_{k=1}^n b_k$

Autrement dit, on peut sommer "terme à terme" n inégalités.

Attention 1 : veiller à ce que le domaine de validité des inégalités soit bien l'ensemble de sommation.

Attention 2 : ne surtout pas écrire d'équivalence ici. On écrit : "par somme" ou "par sommation".

Exemple: soit
$$u_n = \frac{1}{n^3} \sum_{k=1}^{n-1} \frac{k^4}{1+k^2}$$
. Montrer que $(u_n)_{n \in \mathbb{N}}$ est majorée.

b) <u>un encadrement utile</u>: la somme de n termes est majorée par n fois le plus grand d'entre eux et minorée par n fois le plus petit d'entre eux.

$$n \times \min(a_1, \dots, a_n) \leqslant \sum_{k=1}^n a_k \leqslant n \times \max(a_1, \dots, a_n)$$

Exemple: soit $u_n = \sum_{k=n+1}^{2n} \frac{1}{k} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$: montrer que $(u_n)_{n \in \mathbb{N}}$ est convergente.

c) <u>Généralisation de l'inégalité triangulaire</u> : $\left| \sum_{k=1}^{n} a_k \right| \leqslant \sum_{k=1}^{n} |a_k|$

Exemple: soit $\alpha \in \mathbb{R}$, et $u_n = \sum_{k=0}^n \frac{\sin(k\alpha) - \sin((k+1)\alpha)}{2^k}$. Montrer que $(u_n)_{n \in \mathbb{N}}$ est bornée.

6

d) Inégalités et produits : on suppose que $\forall k \in [[1,n]]$, $\mathbf{0} \leqslant a_k \leqslant b_k$: alors $\prod_{k=1}^n a_k \leqslant \prod_{k=1}^n b_k$

Exemple: montrer que $\forall n \in \mathbb{N}^*, \ \frac{n!}{n^n} \leqslant \frac{1}{n}$