Оглавление

		в анализ				
1.1	Элеме	ентарные сведения из логики и теории множеств				
	1.1.1	Высказывания, предикаты связки				
	1.1.2	Кванторы				
	1.1.3	Множества, равенство двух множеств, подмножества				
	1.1.4	Простейшие операции над множествами				
	1.1.5	Принцип двойственности				
	1.1.6	Понятие счётного множества				
.2	Теори	я вещественных чисел				
	1.2.1	Множество рациональных чисел и его свойства				
	1.2.2	Вещественные числа, основные свойства вещественных чисел				
	1.2.3	Промежутки и их виды				
	1.2.4	Основные леммы теории вещественных чисел				
.3		иченное множество, границы				
	1.3.1	Границы множества				
	1.3.2	Существование точной верхней границы у ограниченного сверху множества				
	1.3.3	Сечения в множестве рациональных чисел				
	1.3.4	Свойства sup и inf				
	1.3.4 $1.3.5$					
		Отделимость множеств, лемма о системе вложенных отрезков				
4	1.3.6	Лемма о последовательности стягивающихся отрезков				
.4		ажения, функции				
	1.4.1	Отображения, виды отображений и т. д				
J	$\frac{1.4.2}{2}$	Вещественные функции				
1.5 Предел последовательности						
	1.5.1	Последовательность элементов множества, числовая последовательность, определения предела				
		числовой последовательности и бесконечно малой последовательности				
	1.5.2	Единственность предела последовательности				
	1.5.3	Подпоследовательности, связь пределов последовательности и подпоследовательности				
	1.5.4	Лемма о двух милиционерах				
	1.5.5	Основные теоремы о пределах последовательности				
	1.5.6	Понятие бесконечно большой последовательности				
	1.5.7	Монотонные последовательности, критерий существования предела монотонной послед				
	1.5.8	Существование предела последовательности $(1+1/n)^n$, число e				
.6	Понят	чие предельной точки числового множества, теорема Больцано-Вейерштрасса, критерий Коши				
	1.6.1	Предельная точка множества				
	1.6.2	Теорема о последовательности, сходящейся к предельной точке				
	1.6.3	Теорема Больцано-Вейерштрасса				
	1.6.4	Критерий Коши				
1.7 Верхний и нижний пределы последовательности						
•	1.7.1	Понятие расширенной числовой прямой, понятие бесконечных пределов				
	1.7.2	Понятие частичных верхних и нижних пределов последовательности. Теорема о существовании				
	1.1.2	у каждой последовательности ее верхнего и нижнего предела				
	1.7.3	Характеристические свойства верхнего и нижнего предела последовательности				
	1.7.4	Критерий существования предела последовательности				
ΔТ	пество	нная функция вещественного аргумента				
ец .1		нная функция вещественного аргумента л вещественной функции вещественного аргумента				
. 1	преде 2.1.1	от вещественной функции вещественного аргумента				
	2.1.2	Определение предела функции по Гейне, примеры, эквивалентность определений				
	2.1.3	Обобщение понятия предела функции на расширенную числовую ось				
.2	Свойс	тва пределов функции и функций, имеющих предел				

		2.2.1	Свойства, связанные с неравенствами
		2.2.2	Свойства, связанные с арифметическими операциями
2	.3	Однос	торонние пределы функции
		2.3.1	Определение односторонних пределов, связь между существованием предела и односторонних
			пределов функции
		2.3.2	Теорема о существовании односторонних пределов у монотонной функции и её следствия
2	.4	Крите	рий Коши, замечательные пределы, бесконечно малые функции
		2.4.1	Критерий Коши существования предела функции
		2.4.2	Первый замечательный предел
		2.4.3	Второй замечательный предел
		2.4.4	Бесконечно малые функции и их классификация
2	1.5	Непре	рывные функции. Общие свойства
		2.5.1	Понятие непрерывности функции в точке
		2.5.2	Непрерывность функции на множестве
		2.5.3	Понятие колебания функции на множестве и в точке. Необходимое и достаточное условие непре-
			рывности функции в точке
		2.5.4	Односторонняя непрерывность
		2.5.5	Классификация точек разрыва
		2.5.6	Локальные свойства непрерывных функций
2	.6	Функц	ции, непрерывные на отрезке
		2.6.1	Теорема Больцано-Коши и следствия из неё
		2.6.2	Первая теорема Вейерштрасса
		2.6.3	Вторая теорема Вейерштрасса
		2.6.4	Понятие равномерной непрерывности функции. Теорема Кантора, следствия из неё
		2.6.5	Свойства монотонных функций. Теорема об обратной функции
		2.6.6	Непрерывность элементарных функций
3 (Осно	овы д	ифференциального исчисления
3	3.1	Дифф	еренциальное исчисление функции одной независимой переменной
		3.1.1	Определение производной и дифференциала, связь между этими понятиями
		3.1.2	Связь между понятиями дифференцируемости и непрерывности функций
		3.1.3	Дифференцирование и арифметические операции
		3.1.4	Теорема о производной сложной функции. Инвариантность формы первого дифференциала
		3.1.5	Теорема о производной обратной функции
		3.1.6	Производные основных элементарных функций. Доказательство
		3.1.6 3.1.7	Производные основных элементарных функций. Доказательство
		3.1.7	Касательная к кривой. Геометрический смысл производной и дифференциала
		3.1.7 3.1.8 3.1.9	Касательная к кривой. Геометрический смысл производной и дифференциала
3		3.1.7 3.1.8 3.1.9 3.1.10	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков
3	3.2	3.1.7 3.1.8 3.1.9 3.1.10	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков
3	5.2	3.1.7 3.1.8 3.1.9 3.1.10 Основ	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции
3	3.2	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма
3	3.2	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля
3	3.2	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее
	5.2	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши
	3.2	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши
	3.2	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму 3.3.1	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши ла Тейлора Формула Тейлора для многочлена
	3.2	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши ла Тейлора Формула Тейлора для многочлена Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы
	3.2	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму 3.3.1 3.3.2	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши ма Тейлора Формула Тейлора для многочлена Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора
	3.2	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму 3.3.1 3.3.2	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши ла Тейлора Формула Тейлора для многочлена Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора Локальная формула Тейлора
	3.3	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму 3.3.1 3.3.2	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши ла Тейлора Формула Тейлора для многочлена Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора Локальная формула Тейлора Формула Маклорена. Разложение по формуле Маклорена некоторых элементарных функций
3	3.2	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши ла Тейлора Формула Тейлора для многочлена Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора Локальная формула Тейлора Формула Маклорена. Разложение по формуле Маклорена некоторых элементарных функций Применение формулы Тейлора
3	3.2	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 Прави	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши гла Тейлора Формула Тейлора для многочлена Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора Локальная формула Тейлора Формула Маклорена. Разложение по формуле Маклорена некоторых элементарных функций Применение формулы Тейлора ло Лопиталя
3	3.3	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму 3.3.1 3.3.2 3.3.4 3.3.5 Прави 3.4.1	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши ла Тейлора Формула Тейлора для многочлена Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора Локальная формула Тейлора Формула Маклорена. Разложение по формуле Маклорена некоторых элементарных функций Применение формулы Тейлора ло Лопиталя Неопределённость. Виды неопределённостей
3	3.3	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 Прави 3.4.1 3.4.2	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши ла Тейлора Формула Тейлора для многочлена Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора. Локальная формула Тейлора Формула Маклорена. Разложение по формуле Маклорена некоторых элементарных функций Применение формулы Тейлора ло Лопиталя Неопределённость. Виды неопределённостей Теорема Лопиталя
3	3.3	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 Прави 3.4.1 3.4.2 3.4.3	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши ла Тейлора Формула Тейлора для многочлена Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора Локальная формула Тейлора Формула Маклорена. Разложение по формуле Маклорена некоторых элементарных функций Применение формулы Тейлора ло Лопиталя Неопределённость. Виды неопределённостей Теорема Лопиталя Применение правила Лопиталя
3	3.3	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 Прави 3.4.1 3.4.2 3.4.3 Приме	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциаль высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши ла Тейлора Формула Тейлора для многочлена Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора Локальная формула Тейлора Формула Маклорена. Разложение по формуле Маклорена некоторых элементарных функций Применение формулы Тейлора ло Лопиталя Неопределённость. Виды неопределённостей Теорема Лопиталя Применение правила Лопиталя
3	3.3	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 Прави 3.4.1 3.4.2 3.4.3 Приме 3.5.1	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши ла Тейлора Формула Тейлора для многочлена Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора Локальная формула Тейлора Формула Маклорена. Разложение по формуле Маклорена некоторых элементарных функций Применение формулы Тейлора ло Лопиталя Неопределённость. Виды неопределённостей Теорема Лопиталя Применение правила Лопиталя зенение дифференциального исчисления к исследованию функции одной переменной Монотонные функции
3	3.3	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 Прави 3.4.1 3.4.2 3.4.3 Приме 3.5.1 3.5.2	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши ла Тейлора Формула Тейлора для многочлена Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора Локальная формула Тейлора Формула Маклорена. Разложение по формуле Маклорена некоторых элементарных функций Применение формулы Тейлора ло Лопиталя Неопределённость. Виды неопределённостей Теорема Лопиталя Нение дифференциального исчисления к исследованию функции одной переменной Монотонные функции Экстремумы функций
3	3.3	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 Прави 3.4.1 3.4.2 3.4.3 Приме 3.5.1 3.5.2 3.5.3	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши ла Тейлора Формула Тейлора для многочлена Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора Локальная формула Тейлора Формула Маклорена. Разложение по формуле Маклорена некоторых элементарных функций Применение формулы Тейлора ло Лопиталя Неопределённость. Виды неопределённостей Теорема Лопиталя Применение правила Лопиталя нение дифференциального исчисления к исследованию функции одной переменной Монотонные функции Экстремумы функций Выпуклые функции
3	3.3	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму 3.3.1 3.3.2 3.3.4 3.3.5 Прави 3.4.1 3.4.2 3.4.3 Приме 3.5.1 3.5.2 3.5.3 3.5.4	Касательная к кривой. Геометрический смысл производной и дифференциала. Физический смысл производной и дифференциала. Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Ролля Теорема Коши ла Тейлора Формула Тейлора Формула Тейлора для многочлена Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора. Локальная формула Тейлора Формула Маклорена. Разложение по формуле Маклорена некоторых элементарных функций Применение формулы Тейлора ло Лопиталя Неопределённость. Виды неопределённостей Теорема Лопиталя Применение правила Лопиталя нение дифференциального исчисления к исследованию функции одной переменной Монотонные функции Экстремумы функций Выпуклые функции Точки перегиба
3	3.3	3.1.7 3.1.8 3.1.9 3.1.10 Основ 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Форму 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 Прави 3.4.1 3.4.2 3.4.3 Приме 3.5.1 3.5.2 3.5.3	Касательная к кривой. Геометрический смысл производной и дифференциала Физический смысл производной и дифференциала Односторонние и бесконечные производные Производные и дифференциалы высших порядков ные теоремы дифференциального исчисления Понятие о локальном экстремуме функции Теорема Ферма Теорема Ролля Теорема Лагранжа и следствия из нее Теорема Коши ла Тейлора Формула Тейлора для многочлена Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора Локальная формула Тейлора Формула Маклорена. Разложение по формуле Маклорена некоторых элементарных функций Применение формулы Тейлора ло Лопиталя Неопределённость. Виды неопределённостей Теорема Лопиталя Применение правила Лопиталя нение дифференциального исчисления к исследованию функции одной переменной Монотонные функции Экстремумы функций Выпуклые функции

	ирование вещественной функции одной вещественной переменной определённый интеграл
4.1	
4.1	
4.1	
4.1	
4.1	
4.1	1
4.1	
$\frac{4.1}{4.1}$	
4.1	
	10 Подстановки Эйлера
4.1	r rrrr
	12 Неберущиеся интегралы
	ределённый интеграл Римана
4.2	
4.2	
4.2	
4.2	
4.2	
4.2	
4.2	
4.2	
4.2	9 Свойства интеграла Римана
4.2	10 Первая теорема о среднем
4.2	11 Вторая теорема о среднем
4.2	12 Простейшие классы интегрируемых функций
4.2	13 Формула Ньютона-Лейбница
4.2	14 Формула интегрирования по частям для определённого интеграла
	15 Замена переменной в определенном интеграле
	16 Понятие о приближенных методах вычисления определённых интегралов
	иложения определённого интеграла
4.3	
4.3	
4.3	
4.3	
4.3	
4.3	
Скаляј	ные функции векторного аргумента
5.1 Ск	ылярные функции векторного аргумента
5.1	1 Пространство \mathbb{R}^n
5.1	2 Нормированное пространство \mathbb{R}^n
5.1	
	сходимости
5.1	
5.1	
	фференцирование скалярных функций векторного аргумента
5.2	
5.2	
0.2	ми дифференцируемости и непрерывности
5.2	
$\frac{5.2}{5.2}$	
0.4	ции по Фреше и Гато
5.2	
	± ± ±
5.2	
~ ~	частных производных и дифференцируемостью функции по Фреше и Гато
5.2	
5.2	
5.2	
5.2	
	11 Формула Тейлора для скалярной функции векторного аргумента
5.3 Ло	кальные экстремумы скалярных функций векторного аргумента

		5.3.1	Необходимое условие локального экстремума
		5.3.2	Достаточные условия локального экстремума
	5.4	Teoper	ма о неявной функции (теорема Юнга)
		5.4.1	Лемма о неявной функции
		5.4.2	Теорема Юнга
		5.4.3	Следствие о непрерывной дифференцируемости k -го порядка
		5.4.4	Теорема о неявной функции для скалярной функции векторного аргумента
6			е функции векторного аргумента
	6.1		л отображения из \mathbb{R}^n в \mathbb{R}^m
		6.1.1	Эквивалентность определений по Коши и по Гейне
		6.1.2	Эквивалентость покоординатной сходимости
		6.1.3	Предел линейной комбинации функций
		6.1.4	Повторные пределы
	6.2	_	рывность отображения из \mathbb{R}^n в \mathbb{R}^m
		6.2.1	Различные определения непрерывности
		6.2.2	Непрерывность координатных функций
		6.2.3	Ограниченность образа окрестности
		6.2.4	Непрерывность линейной комбинации функций
		6.2.5	Непрерывность сложного отображения
		6.2.6	Теорема Вейерштрасса
		6.2.7	Линейная связность образа
		6.2.8	Теорема Кантора
		$\frac{6.2.9}{}$	Открытость прообраза
	6.3		ные отображения из \mathbb{R}^n в \mathbb{R}^m
		6.3.1	Определение линейного отображения
		6.3.2	Норма линейного отображения
	6.4		еренцируемость отображения из \mathbb{R}^n в \mathbb{R}^m
		6.4.1	Определение производной Фреше
		6.4.2	Свойства производной
		6.4.3	Теорема о дифференцируемости сложного отображения
		6.4.4	Три следствия из теоремы о дифференцируемости сложного отображения
		$\frac{6.4.5}{-}$	Матрица Якоби. Якобиан
	6.5	_	цип сжимающих отображений
		6.5.1	Необходимые определения
		6.5.2	Принцип сжимающих отображений
		6.5.3	Оценка погрешности при использовании метода последовательных приближений
	6.6		ма о конечных приращениях
		6.6.1	Пример невозможности дословного переноса теорема Лагранжа со случая скалярной функции
			векторного аргумента
		6.6.2	Лемма о системе стягивающихся отрезков
	a =	6.6.3	Теорема о конечных приращениях
	6.7		е теоремы
		6.7.1	Теорема об обратном отображении
		6.7.2	Теорема о неявном отображении
		6.7.3	Условный экстремум
7	Ряд	т.т	91
•	7.1		вые ряды
	1.1	7.1.1	Основные понятия
		7.1.2	Геометрическая прогрессия
		7.1.2	Критерий Коши сходимости числового ряда
		7.1.3 $7.1.4$	
		7.1.4 $7.1.5$	
		7.1.6	Критерий сходимости положительного числового ряда
		7.1.0 $7.1.7$	
		7.1.7	Теоремы сравнения для положительных рядов 91 Признак Коши сходимости числового ряда 91
		7.1.8 $7.1.9$	
			Признак Даламбера сходимости числового ряда
		7.1.10	
			Признак Гаусса сходимости числового ряда
			Признак Дирихле сходимости знакопеременного ряда
			Признак Абеля сходимости знакопеременного ряда
		1.1.14	признак досли сходимости энаконеременного ряда

		7.1.15	Свойства абсолютно и неабсолютно сходящихся рядов	91
		7.1.16	Теорема Дирихле	91
		7.1.17	Теорема Римана	91
		7.1.18	Умножение рядов. Теорема Коши	91
			Понятие о бесконечном произведении	91
	7.2		циональные ряды	92
		7.2.1	Функциональная последовательность и функциональный ряд	92
		7.2.2	Поточеченая и равномерная сходимость функциональных последовательностей и функциональ-	
			ных рядов	92
		7.2.3	Критерий Коши поточечной сходимости функциональных последовательностей и функциональ-	
			ных рядов	92
		7.2.4	Критерий Коши равномерной сходимости функциональных последовательностей и функциональ-	
			ных рядов	92
		7.2.5	Признак сравнения Вейерштрасса	92
		7.2.6	Признак Дирихле	92
		7.2.7	Признак Абеля	92
		7.2.8	Основные теоремы о функциональных последовательностях и функциональных рядах. Теорема	
			о предельном переходе под знаком ряда	92
		7.2.9	Теорема о непрерывности предельной функции и о непрерывности суммы ряда	92
		7.2.10	Теорема Дини	92
		7.2.11	Теорема об интегрировании под знаком ряда	92
		7.2.12	Теорема о дифференцировании под знаком ряда	92
		7.2.13	Сходимость в среднем функциональных последовательностей	92
	7.3	Степе	нные ряды	92
		7.3.1	Теорема Абеля	92
		7.3.2	Теорема Коши-Адамара	92
		7.3.3	Свойства сумм степенного ряда	92
		7.3.4	Степенные ряды общего вида	92
		7.3.5	Ряды Тейлора	92
		7.3.6	Разложение в ряд Тейлора основных функций	92
3			щие конструкции интегрального исчисления	93
	8.1		ственные интегралы	93
		8.1.1	Несобственные интегралы по неограниченному промежутку	93
		8.1.2	Главное значение интеграла в смысле Коши	95
		8.1.3	Критерий Коши	96
		8.1.4	Критерий сходимости интеграла от неотрицательной функции	97
		8.1.5	Теоремы сравнения для интегралов от неотрицательных функций	98
		8.1.6	Абсолютно сходящиеся интегралы	98
		8.1.7	Признак Абеля	98
		8.1.8	Признак Дирихле	98
		8.1.9	Формула Ньютона-Лейбница. Интегрирование по частям. Замена переменной	98
		8.1.10	Интегралы от неограниченных функций	98

Глава 1

Введение в анализ

1.1	Элементарные	свеления і	из логики	и тео	рии мно	жеств
T • T	Onementaphible	сведении і	NO MOLNIKI	итсо	рии мшо	MOCID

- 1.1.1 Высказывания, предикаты связки
- 1.1.2 Кванторы
- 1.1.3 Множества, равенство двух множеств, подмножества
- 1.1.4 Простейшие операции над множествами
- 1.1.5 Принцип двойственности
- 1.1.6 Понятие счётного множества

. . .

- 1.2 Теория вещественных чисел
- 1.2.1 Множество рациональных чисел и его свойства
- 1.2.2 Вещественные числа, основные свойства вещественных чисел
- 1.2.3 Промежутки и их виды
- 1.2.4 Основные леммы теории вещественных чисел

. . .

- 1.3 Ограниченное множество, границы
- 1.3.1 Границы множества
- 1.3.2 Существование точной верхней границы у ограниченного сверху множества
- 1.3.3 Сечения в множестве рациональных чисел
- **1.3.4** Свойства sup и inf
- 1.3.5 Отделимость множеств, лемма о системе вложенных отрезков
- 1.3.6 Лемма о последовательности стягивающихся отрезков

. . .

- 1.4 Отображения, функции
- 1.4.1 Отображения, виды отображений и т. д.
- 1.4.2 Вещественные функции

. .

- 1.5 Предел последовательности
- 1.5.1 Последовательность элементов множества, числовая последовательность, определения предела числовой последовательности и бесконечно малой последовательности
- 1.5.2 Единственность предела последовательности
- 1.5.3 Подпоследовательности, связь пределов последовательности и подпоследовательности ности
- 1.5.4 Лемма о двух милиционерах
- 1.5.5 Основные теоремы о пределах последовательности
- 1.5.6 Понятие бесконечно большой последовательности
- 1.5.7 Монотонные последовательности, критерий существования предела монотонной послед
- 1.5.8 Существование предела последовательности $(1+1/n)^n$, число e

. . .

- 1.6 Понятие предельной точки числового множества, теорема Больцано-Вейерштрасса, критерий Коши
- 1.6.1 Предельная точка множества
- 1.6.2 Теорема о последовательности, сходящейся к предельной точке
- 1.6.3 Теорема Больцано-Вейерштрасса

Теорема.

Любое бесконечное ограниченное множество вещественных чисел имеет хотя бы одну предельную точку.

мнемоника. Название теоремы удобно запоминать по первым буквам прилагательных:

- «Бесконечное ограниченное множество вещественных чисел»
- «Больцано-Вейерштрасса»
- 1.6.4 Критерий Коши

. . .

- 1.7 Верхний и нижний пределы последовательности
- 1.7.1 Понятие расширенной числовой прямой, понятие бесконечных пределов
- 1.7.2 Понятие частичных верхних и нижних пределов последовательности. Теорема о существовании у каждой последовательности ее верхнего и нижнего предела
- 1.7.3 Характеристические свойства верхнего и нижнего предела последовательности Теорема.

Для того, чтобы число $a \in \mathbb{R}$ было верхним пределом последовательности $\{x_n\}$, необходимо и достаточно выполнения следующих двух условий:

$$1)\forall (\varepsilon > 0)\exists (n_0 \in \mathbb{N})\forall (n \geqslant n_0)[x_n < a + \varepsilon]$$

$$(2)\forall (\varepsilon > 0)\forall (m \in \mathbb{N})\exists (n \geqslant m)[x_n > a - \varepsilon]$$

Замечание.

Условие (1) означает, что количество членов последовательности, больших $a + \varepsilon$, конечно.

Условие (2) означает, что количество членов подпоследовательности, больших $a-\varepsilon$, бесконечно.

Аналогично формулируется характеристическое свойство нижнего предела:

Теорема.

Для того, чтобы число $a \in \mathbb{R}$ было нижним пределом последовательности $\{x_n\}$, необходимо и достаточно выполнения следующих двух условий:

$$1)\forall (\varepsilon > 0)\exists (n_0 \in \mathbb{N})\forall (n \geqslant n_0)[x_n > a - \varepsilon]$$

$$(2)\forall (\varepsilon > 0)\forall (m \in \mathbb{N})\exists (n \geqslant m)[x_n < a + \varepsilon]$$

Замечание.

Условие (1) означает, что количество членов последовательности, меньших $a-\varepsilon$, конечно.

Условие (2) означает, что количество членов подпоследовательности, меньших $a + \varepsilon$, бесконечно.

1.7.4 Критерий существования предела последовательности

Теорема.

Предел последовательности существует тогда и только тогда, когда верхний и нижний пределы это последовательности равны между собой.

В таком случае предел последовательности равен верхнему и нижнему её пределу.

T. e.

$$\exists \left(\lim x_n \in \overline{\mathbb{R}}\right) \Leftrightarrow \left(\underline{\lim} x_n = \overline{\lim} x_n\right)$$

$$\exists \left(\lim x_n \in \overline{\mathbb{R}} \right) \Rightarrow \underline{\lim} \, x_n = \overline{\lim} \, x_n = \lim x_n$$

Глава 2

Вещественная функция вещественного аргумента

- 2.1 Предел вещественной функции вещественного аргумента
- 2.1.1 Определение предела функции по Коши, примеры
- 2.1.2 Определение предела функции по Гейне, примеры, эквивалентность определений
- 2.1.3 Обобщение понятия предела функции на расширенную числовую ось
- 2.2 Свойства пределов функции и функций, имеющих предел
- 2.2.1 Свойства, связанные с неравенствами
- 2.2.2 Свойства, связанные с арифметическими операциями
- 2.3 Односторонние пределы функции
- 2.3.1 Определение односторонних пределов, связь между существованием предела и односторонних пределов функции
- 2.3.2 Теорема о существовании односторонних пределов у монотонной функции и её следствия

• •

. . .

- 2.4 Критерий Коши, замечательные пределы, бесконечно малые функции
- 2.4.1 Критерий Коши существования предела функции
- 2.4.2 Первый замечательный предел
- 2.4.3 Второй замечательный предел
- 2.4.4 Бесконечно малые функции и их классификация

. . .

2.5 Непрерывные функции. Общие свойства

2.5.1 Понятие непрерывности функции в точке

Определение непрерывности функиции в точке по Коши.

определение. Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, $x_0 \in X$. Функция f непрерывна в точке x_0 , если

$$\forall (\varepsilon > 0) \exists (\delta > 0) [|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon].$$

Или, что то же самое, но с применением окрестностей:

$$\forall (\varepsilon > 0) \exists (\delta > 0) [f(U_{\delta}(x_0) \cap X) \subset U_{\varepsilon}(f(x_0))]$$

Или, что то же самое:

$$\forall (\varepsilon > 0) \exists (\delta > 0) [f(U_{\delta,X}(x_0)) \subset U_{\varepsilon}(f(x_0))]$$

И, наконец, полностью перейдя в термины окрестностей:

$$\forall (U \in O(f(x_0))) \exists (V \in O_X(x_0)) [f(V) \subset U]$$

Замечание 1.

Вдумчивый читатель легко заметит, что это определение похоже на определение предела в точке, в котором проколотые окрестности заменены на непроколотые. Несколькими строками ниже мы рассмотрим вопрос о связи непрерывности функции, её предела и её значения в данной точке.

Замечание 2.

Если x_0 - изолированная точка множества X, то

$$\exists (U \in O(x_0))[U \cap X = \{x_0\}] \Rightarrow f(U) = \{f(x_0)\}],$$

т. е. найдётся окрестность точки x_0 , образом которой явялется единственная точка, и функция f в точке x_0 непрерывно. Однако никаких содержательных результатов этот случай не даёт, и потому в дальнейшем мы, как правило, будем рассматривать непрерывность функции, заданной на множестве точек, лишь в предельных точках этого множества.

Критерий непрерывности функции в точке.

Пусть $X\subset\mathbb{R}, f:X\to\mathbb{R}$, x_0 - предельная точка X . f непрерывна в x_0 тогда и только тогда, когда

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Следствие 1.

Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, x_0 - предельная точка X . f непрерывна в x_0 тогда и только тогда, когда знак предела и знак функции коммутируют, т. е.

$$\lim_{x \to x_0} f(x) = f(\lim_{x \to x_0} x)$$

Следствие 2.

Пусть $X\subset\mathbb{R},f:X\to\mathbb{R}$, x_0 - предельная точка X , f непрерывна в $x_0,\,\Delta y=f(x_0+\Delta x)-f(x_0).\,\Delta x\to 0$ тогда и только тогда, когда $\Delta y\to 0$

Определение непрерывности в точке по Гейне.

Пусть $X\subset \mathbb{R}, f:X\to \mathbb{R}$, x_0 - предельная точка X . f непрерывна в $x_0,$ если

$$\forall (\{x_n\} : x_n \in X \cap x_n \to x_0)[f(x_n) \to f(x_0)]$$

Обозначив $\Delta x = x_n - x_0$, $\Delta x = f(x_n) - f(x_0)$, можем сформулировать:

$$\Delta x \to 0 \Rightarrow \Delta y \to 0$$

2.5.2 Непрерывность функции на множестве

определение. Функция $f: X \to \mathbb{R}$ называется непрерывной на X, если она непрерывна во всех точках $x \in X$.

определение. Если функция $f: x \to \mathbb{R}$ не является непрерывной в точке $x_0 \in X$, то x_0 называется точкой разрыва функции f.

Замечание 1.

Так как все точки множества \mathbb{N} изолированны, то любая функция $f: \mathbb{N} \to \mathbb{R}$ непрерывна.

2.5.3 Понятие колебания функции на множестве и в точке. Необходимое и достаточное условие непрерывности функции в точке

определение. Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, $E \subset X$, $\alpha_E = \inf_E f(x)$, $\beta_E = \sup_E f(x)$. Тогда разность $\alpha_E - \beta_E$ называется колебанием функции f на множестве E:

$$\omega(f, E) = \alpha_E - \beta_E = \sup_E f(x) - \inf_E f(x)$$

Или, что то же самое,

$$\omega(f, E) = \sup_{a,b \in E} (f(a) - f(b))$$

Примеры.

$$\omega(x^2, [-2; 4]) = 16$$

 $\omega(\operatorname{sgn} x, [0; 4]) = 1$
 $\omega(\operatorname{sgn} x, (0; 4]) = 0$
 $\omega(\operatorname{sgn} x, [-1; 4]) = 2$

определение. Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, x_0 - предельная точка X . Величина $\lim_{\delta \to 0+} \omega(f, U_\delta(x_0))$ называется колебанием функции f в точке x_0 :

$$\omega(f, x_0) = \lim_{\delta \to 0+} \omega(f, U_{\delta}(x_0))$$

Теорема.

Пусть $f: X \to \mathbb{R}$. Функция f непрерывна в точке $x_0 \in X$ тогда и только тогда, когда $\omega(f, x_0) = 0$.

- 2.5.4 Односторонняя непрерывность
- 2.5.5 Классификация точек разрыва
- 2.5.6 Локальные свойства непрерывных функций

. . .

2.6 Функции, непрерывные на отрезке

2.6.1 Теорема Больцано-Коши и следствия из неё

Теорема.

Пусть $f:[a;b]\to\mathbb{R}$ и f непрерывна на [a;b], при этом $f(a)\cdot f(b)<0$, т. е. на концах отрезка [a;b] непрерывная на нём функция f принимает значения разного знака. Тогда $\exists (c\in(a;b))[f(c)=0]$, т. е. хотя бы в одной точке интервала (a;b) функция обращается в нуль.

Замечание.

Теорема Больцано-Коши не только утверждает существование точки, в которой функция обращается в нуль, но и фактически даёт способ её найти - методом половинного деления отрезка. Этот факт может быть применён при нахождении корня уравнения численными методами.

Следствие 1 (теорема о промежуточном значении).

Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, при этом f непрерывна на некотором промежутке $Y \subset X, \{a; b\} \subset Y, a < b$. Тогда $\forall (\gamma \text{ между } f(a) \text{ и } f(b)) \exists (c: c \in [a; b]) [f(c) = \gamma].$

Следствие 2.

Пусть $X\subset \mathbb{R}, f:X\to \mathbb{R}$, X - промежуток и f непрерывна на нём. Тогда f(X) - тоже промежуток.

2.6.2 Первая теорема Вейерштрасса

Теорема.

Функция, непрерывная на отрезке, ограничена на нём.

определение. Компактом (компактным множеством) называется такое множество X, что

$$\forall (\{x_n\} : x_n \in X) \exists (\{x_{n_k}\}) [\{x_{n_k}\} \to x_0 \in X],$$

т. е. в любой последовательности точек этого множества можно выделить подпоследовательность, сходящуюся к точке этого множества.

Замечание.

Конечный или бесконечный интервал (a;b), где $\{a;b\}\subset \overline{\mathbb{R}}$, не является компактом, т. к. любая подпоследовательность любой последовательности его точек, сходящейся к a или b, сходится к не принадлежащей интервалу точке a или b соответственно.

Полуинтервал также не является компактом. Предоставляем читателю доказать это самостоятельно.

Обобщение первой теоремы Вейерштрасса.

Функция, непрерывная на компакте, ограничена на нём.

Замечание.

Функция, определённая на некомпактном множестве, может быть на нём неограничена. Пример - тождественная функция f(x) = x на некомпактом множестве $(-\infty; +\infty)$.

2.6.3 Вторая теорема Вейерштрасса

Теорема.

Функция, непрерывная на компакте, достигает на нём точных верхней и нижней границ множества своих значений.

мнемоника. Эту теорему можно запоминать по начертанию цифры 2, разделив его на три части: горизонтальная черта снизу - отрезок, средняя часть - непрерывная функция, «завиток» сверху - точное верхнее значение.

Следствие.

Пусть $f:[a;b]\to\mathbb{R}$ и f непрерывна, $\alpha=\inf(f[a;b]),\ \beta=\sup(f[a;b]).$ Тогда f([a;b])=[f(a);f(b)].

2.6.4 Понятие равномерной непрерывности функции. Теорема Кантора, следствия из неё

Согласно определению непрерывности, $f:X\to R$ непрерывна, если $\forall (x_0\in X)\forall (\varepsilon>0)\exists (\delta>0)[0<|x-x_0|<\delta\Rightarrow |f(x)-f(x_0)|<\varepsilon]$

В общем случае δ зависит от ε и x_0 , т. е. $\delta = \delta(\varepsilon, x_0)$. Однако иногда δ зависит только от ε и не зависит от x_0 , т. е. $\delta = \delta(\varepsilon)$.

определение. f(x) равномерно непрерывна на X, если

$$\forall (\varepsilon > 0) \exists (\delta > 0) \forall (x_0 \in X) [0 < |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon]$$

Замечание 1.

Если f(x) равномерно непрерывна на X, то f(x) непрерывна на X. (Т. к. квантор общности \forall можно переносить вправо.)

Замечание 2.

Не всякая функция f, непрерывная на X, равномерно непрерывна на X. (Например: $f(x)=x^2, f:\mathbb{R}\to\mathbb{R}$.)

Теорема Кантора о равномерной непрерывности.

Пусть $X\subset \mathbb{R}, f:X\to \mathbb{R}$, X - компакт и f непрерывна на X. Тогда f равномерно непрерывна на X.

Следствие 1.

Если $f:[a;b]\to\mathbb{R}$ непрерывна на отрезке [a;b], то она равномерно непрерывна на этом отрезке.

Следствие 2.

Если $f:[a;b]\to\mathbb{R}$ непрерывна на отрезке [a;b], то

$$\forall (\varepsilon > 0) \exists (\delta > 0) \exists (a_1, b_1 : a < a_1 < b_1 < b, b_1 - a_1 < \delta) [\omega(f, [a_1, b_1] < \varepsilon],$$
 или, что то же самое,

$$\forall (\varepsilon > 0) \exists (\Delta \subset [a; b]) [\omega(f, \Delta) < \varepsilon]$$

т. е. найдётся подотрезок, на котором колебание функции меньше любого наперёд заданного.

Замечание.

2.6.5 Свойства монотонных функций. Теорема об обратной функции

Лемма 1.

Непрерывная функция, заданная на отрезке, инъективна в том и только том случае, когда она строго монотонна.

Лемма 2.

Пусть $X \subset \mathbb{R}$. Любая строго монотонная функция $f: X \to Y \subset \mathbb{R}$ обладает обратной функцией $f^{-1}: Y \to X$, причём обратная функция f^{-1} имеет тот же характер монотонности на Y, что и функция f на X.

Лемма 3.

Пусть $X\subset\mathbb{R}$. Монотонная функция $f:X\to\mathbb{R}$ может иметь разрывы только первого рода.

Следствие 1.

Если a - точка разрыва монотонной функции f, то по крайней мере один из пределов функции f слева или справа от a определён.

доказательство. Если a - точка разрыва, то она является предельной точкой множества X и, по лемме 3, точкой разрыва первого рода. Таким образом, точка a является по крайней мере правосторонней или левосторонней предельной для множества X, т. е. выполнено хотя бы одно из следующих условий:

$$f(a-0) = \lim_{x \to a-0} f(x)$$
$$f(a+0) = \lim_{x \to a+0} f(x)$$

Если a - двусторонняя предельная точка, то существуют и конечны оба односторонних предела.

Следствие 2.

Если a - точка разрыва монотонной функции f, то по крайней мере в одном из неравенств $f(a-0)\leqslant f(a)\leqslant f(a+0)$ - для неубывающей f или $f(a-0)\geqslant f(a)\geqslant f(a+0)$ - для невозрастающей f, имеет место знак строгого неравенства, т. е. f(a-0)< f(a+0) - для неубывающей f или f(a-0)>f(a+0) - для невозрастающей f, и в интервале, определённым этим строгим неравенством, нет ни одного значения функции. (Также говорят: интервал свободен от значений функции.)

Следствие 3.

Интервалы, свободные от значений монотонной функции, соответствующие разным точкам разрыва этой функции, не пересекаются.

Лемма 4. Критерий непрерывности монотонной функции.

Пусть даны отрезок $X=[a;b]\subset\mathbb{R}$ и монотонная функция $f:X\to\mathbb{R}$. f непрерывна в том и только том случае, когда f(X) - отрезок Y с концами f(a) и (b). $(f(a)\leqslant f(b)$ для неубывающей $f, f(a)\geqslant f(b)$ для невозрастающей f).

Доказательство.

необходимость. Т. к. f монотонна, то все её значения лежат между f(a) и f(b). Т. к. f непрерывна, то она принимает и все промежуточные значения. Следовательно, f(X) - отрезок.

достаточность. Предположим противное, т. е. что $\exists (c \in [a;b])$ - точка разрыва f. Тогда по следствию 2 леммы 3 один из интервалов: (f(c-0);f(c)) или (f(c);f(c+0)) - определён и не содержит значений f. С другой стороны, этот интервал содержится в Y, т. е. f принимает не все значения из $Y, f(X) \neq Y$. Получили противоречие.

Теорема.

Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$ и f строго монотонна. Тогда существует обратная функция $f^{-1}: Y \to X$, где Y = f(X), притом f^{-1} строго монотонна на Y и имеет тот же характер монотонности, что и f на X. Если, кроме того, X = [a; b] и f непрерывна на отрезке X, то f([a; b]) есть отрезок с концами f(a) и f(b) и f^{-1} непрерывна на нём.

2.6.6 Непрерывность элементарных функций

. . .

Глава 3

Основы дифференциального исчисления

- 3.1 Дифференциальное исчисление функции одной независимой переменной
- 3.1.1 Определение производной и дифференциала, связь между этими понятиями
- 3.1.2 Связь между понятиями дифференцируемости и непрерывности функций
- 3.1.3 Дифференцирование и арифметические операции
- 3.1.4 Теорема о производной сложной функции. Инвариантность формы первого дифференциала
- 3.1.5 Теорема о производной обратной функции
- 3.1.6 Производные основных элементарных функций. Доказательство
- 3.1.7 Касательная к кривой. Геометрический смысл производной и дифференциала
- 3.1.8 Физический смысл производной и дифференциала
- 3.1.9 Односторонние и бесконечные производные
- 3.1.10 Производные и дифференциалы высших порядков

. . .

3.2 Основные теоремы дифференциального исчисления

3.2.1 Понятие о локальном экстремуме функции

определение. Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, x_0 - предельная точка X . Точка x_0 называется точкой локального минимума, а значение в ней - локальным минимумом функции f, если

$$\exists (U(x_0)) \forall (x \in U(x_0) \cap X) [f(x) \geqslant f(x_0)]$$

определение. Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, x_0 - предельная точка X . Точка x_0 называется точкой локального максимума, а значение в ней - локальным максимумом функции f, если

$$\exists (U(x_0)) \forall (x \in U(x_0) \cap X) [f(x) \leqslant f(x_0)]$$

определение. Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, x_0 - предельная точка X. Точка x_0 называется точкой строгого локального минимума, а значение в ней - строгим локальным минимумом функции f, если

$$\exists (\mathring{U}(x_0)) \forall (x \in \mathring{U}(x_0) \cap X) [f(x) > f(x_0)]$$

определение. Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, x_0 - предельная точка X. Точка x_0 называется точкой строгого локального максимума, а значение в ней - строгим локальным максимумом функции f, если

$$\exists (\mathring{U}(x_0)) \forall (x \in \mathring{U}(x_0) \cap X) [f(x) < f(x_0)]$$

определение. Точками локального экстремума называются вместе точки локального минимума или максимума.

Определение. Локальными экстремумами называются вместе локальные минимумы или максимумы.

определение. Точками строгого локального экстремума называются вместе точки строгого локального минимума или максимума.

определение. Строгими локальными экстремумами называются вместе строгие локальные минимумы или максимумы.

определение. Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, x_0 - двусторонняя предельная точка X. Если x_0 - точка локального экстремума, то она называается точкой внутреннего локального экстремума.

3.2.2 Теорема Ферма

Теорема Ферма о производной в точке локального экстремума.

Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, f дифференцируема в точке внутреннего локального экстремума x_0 . Тогда $f'(x_0) = 0$.

мнемоника. Чтобы запомнить содержание теоремы по её названию, нужно представить себе первую букву в нём (но не заглавную) - латинскую букву в f. Тогда верхний и нижний "завитки" будут символизировать локальные экстремумы, а горизонтальная черта - горизонтальную касательную в точке, где производная равна нулю.

Замечание 1.

В невнутренней точке локального экстремума производная может, вообще говоря, быть не равной нулю. Пример: $f:[-1;1] \to \mathbb{R}$, невнутренний локальный максимум $x_0=1, \ f'(x_0)=2.$

Замечание 2.

Теорема Ферма необратима. Пример: $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3, f'(0) = 0,$ но f не имеет локальных экстремумов.

3.2.3 Теорема Ролля

Теорема.

Если $f:[a;b] \to \mathbb{R}$ такова, что

- 1) f непрерывна на [a; b];
- (a;b);
- 3) f(a) = f(b),

TO
$$\exists (c \in (a; b))[f'(c) = 0].$$

Замечание 1.

Геометрическая интерпретация теоремы: пусть кривая задана функцей y=f(x). Тогда между любыми двумя точками с равными ординатами, лежащими на данной кривой, найдётся такая точка, в которой касательная к данной кривой параллельна оси абсцисс.

Замечание 2.

Условие (1) избыточно: т. к. уже требуется, чтобы f была дифференцируема на (a;b), достаточно потребовать непрерывности f в a и b. Остальные условия существенны.

Следствие. Теорема о корнях производной.

Между любых двух корней дифференцируемой функции лежит корень её производной.

доказательство. Применим теорему Ролля к случаю, когда f(a) = f(b) = 0.

3.2.4 Теорема Лагранжа и следствия из нее

Теорема Лагранжа о промежуточном значении (о конечных приращениях).

Если $f:[a;b] \to \mathbb{R}$ такова, что

- 1) f непрерывна на [a; b];
- (a;b);

TO
$$\exists (c \in (a;b))[f(b) - f(a) = f'(c)(b-a)].$$

Замечание 1.

Равенство f(b)-f(a)=f'(c)(b-a) называют формулой Лагранжа или формулой конечных приращений.

Замечание 2.

Формулу Лагранжа можно записать и в другом виде, если положить $\theta = \frac{c-a}{b-a}$:

$$f(b) - f(a) = f'(a + \theta(b - a))(b - a)$$

Полагая x = a, h = b - a, имеем

$$f(x+h) - f(x) = f'(x+\theta h)h$$

Следствие 1.

Функция, имеющая на промежутке равную нулю производную, постоянная на нём.

Следствие 2.

Пусть на промежутке X определены и дифференцируемы две функции f и g, притом на концах промежутка, если они в него входят, f и g непрерывны. Если $\forall (x \in X)[f'(x) = g'(x)]$, то $\forall (x \in X)[f(x) - g(x) = const]$.

Следствие 3.

Функция, имеющая на промежутке ограниченную производную, равномерно непрерывна на нём.

Следствие 4.

Пусть $f:[a;b]\to\mathbb{R},\ f$ непрерывна, f дифференцируема на $(x_0;x_0+h)\subset [a;b]$. Тогда правая производная f в x_0 непрерывна.

3.2.5 Теорема Коши

Теорема Коши.

Пусть $f:[a;b] \to \mathbb{R}, g:[a;b] \to \mathbb{R}$, причём:

- 1) f и g непрерывны на [a;b];
- (a;b);
- $3) \nexists (x \in (a; b)) [g(x) = 0]$

Тогда

$$\exists (c \in (a;b)) \left[\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)} \right].$$

Замечание 1.

Теорема Коши не является следствием из теоремы Лагранжа; наоборот, теорема Лагранжа - частный случай теоремы Коши для g(x) = x.

Замечание 2.

Равенство $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}$ называют формулой конечных приращений Коши.

3.3 Формула Тейлора

- 3.3.1 Формула Тейлора для многочлена
- 3.3.2 Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора
- 3.3.3 Локальная формула Тейлора
- 3.3.4 Формула Маклорена. Разложение по формуле Маклорена некоторых элементарных функций
- 3.3.5 Применение формулы Тейлора

. . .

3.4 Правило Лопиталя

3.4.1 Неопределённость. Виды неопределённостей

Пусть даны две непрерывные на интервале (a;b) функции f(x) и g(x), где $\{a;b\}\subset\overline{\mathbb{R}}$. Неопределённостью типа $\left[\frac{0}{0}\right]$ в точке a называется предел

$$\lim_{x \to a+} \frac{f(x)}{g(x)}$$

в случае, когда

$$\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0$$

Аналогично определяются неопределённости вида $\left[\frac{\infty}{\infty}\right]$ и в точке b.

Другие виды неопределённостей сводятся к этим двум. Вообще говоря, неопределённость типа $\left[\frac{\infty}{\infty}\right]$ может быть сведена к типу $\left[\frac{0}{0}\right]$. Действительно, пусть

$$\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = \infty$$

тогда

$$\frac{f(x)}{g(x)} = \frac{\frac{1}{g(x)}}{\frac{1}{f(x)}}$$

Однако при раскрытии неопределённостей возникает необходимость рассматривать их отдельно.

Неопределённость-произведение сводится к неопределённостям-частным двумя способами:

$$[0 \cdot \infty] = \lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} \frac{f(x)}{\frac{1}{g(x)}} = \left[\frac{0}{0}\right]$$

$$[0 \cdot \infty] = \lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} \frac{g(x)}{\frac{1}{f(x)}} = \left[\frac{\infty}{\infty}\right]$$

Неопределённости-степени сводятся с неопределённостям-произведениям (а затем - к неопределённостям-частным) через равенство

$$f(x)^{g(x)} = e^{g(x) \cdot \ln f(x)}$$

Заметим, что это равенство, как и сам предел, имеет смысл лишь при f(x) > 0. Покажем, как раскрываются неопределённости-степени:

$$[\infty^{0}] = \lim_{x \to x_{0}} (f(x)^{g(x)}) = \lim_{x \to x_{0}} e^{g(x) \cdot \ln f(x)} = e^{\lim_{x \to x_{0}} (g(x) \cdot \ln f(x))} = e^{[\infty \cdot 0]}$$

$$[0^0] = \lim_{x \to x_0} (f(x)^{g(x)}) = \lim_{x \to x_0} e^{g(x) \cdot \ln f(x)} = e^{\lim_{x \to x_0} (g(x) \cdot \ln f(x))} = e^{-[0 \cdot \infty]}$$

$$[1^{\infty}] = \lim_{x \to x_0} (f(x)^{g(x)}) = \lim_{x \to x_0} e^{g(x) \cdot \ln f(x)} = e^{\lim_{x \to x_0} (g(x) \cdot \ln f(x))} = e^{[0 \cdot \infty]}$$

Наконец, рассмотри раскрытие неопределённости-разности:

$$[\infty-\infty] = \lim_{x\to x_0} (f(x)-g(x)) = \lim_{x\to x_0} \left(f(x)\cdot g(x)\left(\frac{1}{f(x)}-\frac{1}{g(x)}\right)\right) = [\infty\cdot 0]$$

Таким образом, раскрытие неопределённостей сведено к раскрытию неопределённостей-частных.

- 3.4.2 Теорема Лопиталя
- 3.4.3 Применение правила Лопиталя
- 3.5 Применение дифференциального исчисления к исследованию функции одной переменной

3.5.1 Монотонные функции

Теорема.

Пусть $X\subset \mathbb{R}, f:X\to \mathbb{R}$. Для того, чтобы функция f была неубывающей (невозрастающей) на X, необходимо и достаточно, чтобы $\forall (x\in X)[f'(x)\geqslant 0](f'(x)\leqslant 0]).$

доказательство. Докажем теорему для случая неубывающей функции. Доказательство для случая невозрастающей оставляем читателю ввиду его аналогичности.

необходимость. f - неубывающая функция. Возьмём x и $h \neq 0$ такие, что $x \in X, x + h \in X$.

Если h>0, то, так как f - неубывающая, $f(x+h)\geqslant f(x)$. Если h<0, то $f(x+h)\leqslant f(x)$. Значит,

$$\frac{f(x+h) - f(x)}{h} \geqslant 0$$

Переходя к пределу, имеем

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x) \geqslant 0$$

достаточность. $f'(x) \geqslant 0$. Пусть $\{x_1, x_2\} \subset X, x_1 < x_2$. Тогда на отрезке $[x_1, x_2]$ функция f дифференцируема. Применим теорему Лагранжа:

$$\exists (c \in [x_1, x_2])[f(x_2) - f(x_1) = f'(c)(x_2 - x_1)]$$

Но $f'(c)\geqslant 0$ и $x_2-x_1>0$. Значит, и $f(x_2)-f(x_1)\geqslant 0$, т. е. функция f - неубывающая.

Доказано.

Замечание

Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, $\forall (x \in X)[f'(x) > 0](f'(x) < 0])$. Рассуждениями, аналогичными рассуждениями в части доказательства достаточности условия предыдущей теоремы, можно показать, что в таком случае функция f – возрастающая (убывающая). Обратное, вообще говоря, неверно. Например, возрастающая функция $f(x) = x^3$ имеет в точке x = 0 нулевую производную: $f'(x) = (x^3)' = 3x^2, f'(0) = 0$.

Теорема

Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, f дифференцируема на X. Для того, чтобы f была возрастающей (убывающей), необходимо и достаточно, чтобы:

- 1) $\forall (x \in X)[f'(x) \geqslant 0]$
- 2) $\forall ([a;b] \subset X)[f'(x) \not\equiv 0]$, т. е. чтобы ни на каком отрезке внутри X f'(x) не обращалась в тождественный нуль.

доказательство. Докажем теорему для случая возрастающей функции. Доказательство для случая убывающей оставляем читателю ввиду его аналогичности.

необходимость. f(x) — возрастающая. Тогда в силу предыдущей теоремы выполнено первое условие. Установим, что второе условие также выполнено. Предположим противное, т. е. что $\exists ([a;b]\subset X) \forall (x\in [a;b])[f'(x)=0]$. Тогда f(x) на [a;b] постоянна, и f(a)=f(b), следовательно, f не является возрастающей. Получили противоречие.

достаточность. Так как $f'(x) \geqslant 0$, то по предыдущей теореме f – неубывающая, т. е. $\forall (x_1 \in X, x_2 \in X : x_1 < x_2)[f(x_2) \geqslant f(x_1)].$

Докажем теперь, что $f(x_2) > f(x_1)$. Предположим противное, т. е. что $\exists (x_1 \in X, x_2 \in X : x_1 < x_2)[f(x_2) = f(x_1)]$. Тогда $\forall (x \in [x_1; x_2])[f(x) = f(x_1) = f(x_2)]$, т. е. $\forall (x \in (x_1; x_2))[f'(x) = 0]$, что противоречит второму условию теоремы.

Доказано.

3.5.2 Экстремумы функций

Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, f непрерывна на X. Из теоремы Ферма вытекает, что точки локального экстремума следует искать среди корней производной и точек, принадлежащих X, в которых не существует конечная производная (т. е. производная не определена или бесконечна).

определение. Корни производной функции называются стационарными точками этой функции.

определение. Стационарные точки и точки, в которых не существует конечной производной, называются критическими точками первого рода или точками, подозрительными на экстремум.

Замечание

Условие f'(x) = 0, являясь необходимым условием внутреннего локального экстремума дифференцируемой функции, не является достаточным. Классический пример – функция $f(x) = x^3$ в точке x = 0 имеет нулевую производную, но не имеет экстремума.

определение. Говорят, что при переходе через x_0 производная функции f меняет знак с + на -, если

$$\exists (\delta > 0)(\forall (x \in (x_0 - \delta; x_0))[f'(x) > 0] \cap \forall (x \in (x_0; x_0 + \delta))[f'(x) < 0])$$

Определения смены знака производной с - на + и отсутствия смены знака производной аналогичны; сформулировать их оставляем читателю.

Теорема о смене знака производной

Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, x_0 - критическая точка первого рода функции f и функция f дифференцируема в любой внутренней точке X, кроме, быть может, точки x_0 .

Если при переходе через x_0 производная меняет знак c+ на -, то x_0- точка локального максимума f, если c- на +, то x_0- точка локального минимума f, а если смены знака нет, то в точке x_0 нет и экстремума.

доказательство. (Для случая смены знака с + на -; случай смены знака с - на + предоставляем читателю.) Возьмём $\forall (x \in U_{\delta}(x_0))$ и рассмотрим отрезок A с концами x и x_0 . По теореме Лагранжа

$$\exists (c \in A)[f(x) - f(x_0) = f'(c)(x - x_0)].$$

Если $x < x_0$, то $f'(c) > 0, x - x_0 < 0$, откуда $f(x) - f(x_0) < 0$. Если $x > x_0$, то $f'(c) < 0, x - x_0 > 0$, откуда $f(x) - f(x_0) < 0$. Имеем:

$$\exists (\delta > 0) \forall (x \in \mathring{U}_{\delta}(x_0)) [f(x) < f(x_0)].$$

Это в точности определение локального максимума.

доказательство. (Для случая постоянства знака производной.) Знак разности $f(x) - f(x_0)$ будет зависеть от знака разности $x - x_0$, т. е. положения точки x слева или справа от точки x_0 , следовательно, в x_0 экстремума нет.

Доказано.

Теорема

Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$ и функция f имеет в точке $x_0 \in X$ производные до n-ого порядка включительно, причём $f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0, \ f^{(n)}(x_0) \neq 0.$ Тогда:

- 1) Если n чётно, то в точке x_0 функция f имеет экстремум, причём если $f^{(n)}(x_0) < 0$, то это максимум, а если $f^{(n)}(x_0) > 0$, то минимум.
 - 2) Если n нечётно, то в x_0 экстремума функции f нет.

доказательство. (Для случая $f^{(n)}(x_0) > 0$; случай $f^{(n)}(x_0) < 0$ предоставляем читателю.)

Разложим f(x) по формуле Тейлора в x_0 с остаточным членом в форме Пеано:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o(|x - x_0|^n)$$

Так как $f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0)$ по условию теоремы, имеем:

$$f(x) = f(x_0) + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o(|x - x_0|^n)$$

$$f(x) - f(x_0) = \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o(|x - x_0|^n)$$

При x, достаточно близких к x_0 ,

$$\operatorname{sgn} (f(x) - f(x_0)) = \operatorname{sgn} (f^{(n)}(x_0)(x - x_0)^n).$$

Так как $f^{(n)}(x_0) > 0$, то

$$sgn (f(x) - f(x_0)) = sgn ((x - x_0)^n).$$

Если n чётно, то $\mathrm{sgn}\;((x-x_0)^n)=1,$ т. е. $f(x)-f(x_0)>0,$ что означает, что x_0 - точка минимума.

Если n нечётно, то из последнего равенства имеем

$$sgn (f(x) - f(x_0)) = sgn (x - x_0),$$

т. е. в любой сколь угодно малой окрестности x_0 разность $(x) - f(x_0)$ меняет знак, и экстремума функции нет.

Замечание

Для того, чтобы найти наибольшее (или наименьшее) значение непрерывной функции $f:[a;b] \to \mathbb{R}$, нужно найти её локальные максимумы (или минимумы) и сравнить значения функции в них со значениями функции на концах отрезка.

Впрочем, иногда просто вычисляют значения функции во всех критических точках.

3.5.3 Выпуклые функции

определение. Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$. f называется вогнутой (выпуклой вниз, вогнутой вверх) на X, если

$$\forall (x_1, x_2 \in X) \forall (\alpha \in [0; 1]) [f((1 - \alpha)x_1 + \alpha x_2) \leq (1 - \alpha)f(x_1) + \alpha f(x_2)]$$

Это определение, хотя, как мы увидим далее, весьма удобно для доказательств, может вызвать вполне объяснимое недоумение. Поясним его геометрический смысл.

Очевидно, что $\forall (x \in [x_1; x_2]) \exists (\alpha \in [0; 1])[x = (1 - \alpha)x_1 + \alpha x_2]$, то есть любую точку отрезка $[x_1; x_2]$ можно записать в том виде, которого требует определение.

Запишем теперь уравнение прямой (хорды графика функции), проходящей через точки $(x_1, f(x_1))$ и $(x_2, f(x_2))$:

$$\frac{y - f(x_1)}{f(x_2) - f(x_1)} = \frac{x - x_1}{x_2 - x_1}$$

Или, в явном виде:

$$y = f(x_1) + \frac{x - x_1}{x_2 - x_1} (f(x_2) - f(x_1))$$

С учётом равенства $x = (1 - \alpha)x_1 + \alpha x_2$ имеем:

$$y = f(x_1) + \frac{(1-\alpha)x_1 + \alpha x_2 - x_1}{x_2 - x_1} (f(x_2) - f(x_1)) = (1-\alpha)f(x_1) + \alpha f(x_2)$$

(приведение подобных, раскрытие скобок и прочую арифметику оставляем читателю). Мы получили в точности правую часть неравенства из определения. То есть определение можно понимать так: "Для любой точки значение функции лежит ниже хорды, стягивающей любой участок графика функции, содержащий эту точку.".

Если добавить в определение требование строго неравенства при $\alpha \in (0;1)$, то мы получим определение функции, строго выпуклой вниз. Аналогично формулируется определение функции, выпуклой вверх:

определение. Пусть $X\subset \mathbb{R}, f:X\to \mathbb{R}$. f называется выпуклой (выпуклой вверх, вогнутой вниз) на X, если

$$\forall (x_1, x_2 \in X) \forall (\alpha \in [0; 1]) [f((1 - \alpha)x_1 + \alpha x_2) \geqslant (1 - \alpha)f(x_1) + \alpha f(x_2)]$$

Аналогично же вводится строгость и даётся графическое истолкование. Два вышеизложенных определения называют определениями выпуклости функции через хорды; свяжем теперь характер выпуклости со знаком второй производной.

Теорема 3.5.1. Пусть функция f дважды дифференцируема на (a;b). Тогда для того, чтобы f была выпуклой вниз/вверх, необходимо и достаточно, чтобы

$$\forall (x \in (a;b))[f''(x) \ge 0] / [f''(x) \le 0]$$

доказываем для случая выпуклости вверх; случай выпуклости вниз оставляем читателю.

необходимость. Пусть функция f выпукла вверх. Предположим противное, т. е. что

$$\exists (x_0 \in (a; b)) [f''(x_0) < 0].$$

Возьмём $\forall (h: x_0 \pm h \in (a; b))$. Тогда из определения выпуклой функции при $\alpha = \frac{1}{2}, \ x = x_0, \ x_1 = x_0 - h, \ x_2 = x_0 + h$ имеем:

$$(f(x_0 + h) - f(x_0)) + (f(x_0 - h) - f(x_0)) \ge 0$$

Применим к каждой из этих разностей формулу Лагранжа:

$$(f(x_0+h)-f(x_0))+(f(x_0-h)-f(x_0)) = f'(x_0+\theta_1h)h+f'(x_0-\theta_2h)(-h) = h^2\left(\frac{f'(x_0+\theta_1h)-f'(x_0)}{\theta_1h} + \frac{f'(x_0-\theta_2h)-f'(x_0)}{-\theta_2h}\right) \geqslant 0 \quad (3.1)$$

Напомним, что в теореме Лагранжа $\theta_1, \theta_2 \in [0;1]$. Мы предполагали, что $f''(x_0) < 0$, тогда из определения второй производной

$$\exists (h \in (a; b)) \left[\frac{f'(x_0 + \theta_1 h) - f'(x_0)}{\theta_1 h} < 0 \cap \frac{f'(x_0 - \theta_2 h) - f'(x_0)}{-\theta_2 h} < 0 \right]$$

Получили противоречие с (3.1).

достаточность. Известно, что $\forall (x \in (a;b))[f''(x) \geqslant 0]$. Возьмём $\forall (x_1,x_2 \in (a;b): x_1 < x_2)$ и $\forall (x \in (x_1;x_2))$. Тогда $\exists (\alpha \in [0;1])[x = (1-\alpha)x_1 + \alpha x_2]$. Применим формулу Тейлора с остаточным членом в форме Лагранжа к точкам x_1 и x_2 :

$$f(x_1) = f(x) + f'(x)(x_1 - x) + \frac{f''(c_1)}{2!}(x_1 - x)^2$$

$$f(x_2) = f(x) + f'(x)(x_2 - x) + \frac{f''(c_2)}{2!}(x_2 - x)^2$$

Здесь, напомним, $c_1 \in [x_1; x], c_2 \in [x; x_2]$. Умножив первое равенство на $(1 - \alpha)$, а второе на α и сложив, имеем:

$$(1 - \alpha)f(x_1) + \alpha f(x_2) = f(x) + f'(x)(x_1 + \alpha x_1 - x + \alpha x + \alpha x_2 - \alpha x) + c,$$

где

$$c = \frac{f''(c_1)}{2}(x_1 - x)^2(1 - \alpha) + \frac{f''(c_2)}{2}(x_2 - x)^2\alpha$$

Легко видеть, что, раз $f''(x) \ge 0$, то и $c \ge 0$. Значит, с учётом того, что $x = (1 - \alpha)x_1 + \alpha x_2$,

$$(1 - \alpha)f(x_1) + \alpha f(x_2) = f(x) + f'(x)(-\alpha x_2 + \alpha x_2) + c$$

т. е.

$$(1 - \alpha)f(x_1) + \alpha f(x_2) \leqslant f(x)$$

Это и есть определение выпуклости. Доказано.

Теорема 3.5.2. Пусть $\forall (x \in (a;b)) \exists (f''(x))$. Для выпуклости вниз необходимо, а в случае непрерывности f''(x) и достаточно, чтобы график функции f лежал не ниже касательной к графику функции f, проведённой в точке $(x_0; f(x_0))$ для $\forall (x_0 \in (a;b))$.

Доказательство.

необходимость. Запишем уравнение касательной:

$$y_K = f(x_0) + f'(x_0)(x - x_0)$$

Обозначив y = f(x) и применив формулу Тейлора с остаточным членом в форме Лагранжа, имеем:

$$y - y_K = f(x) - f(x_0) - f'(x_0)(x - x_0) = f''(c)\frac{(x - x_0)^2}{2}$$

Здесь c лежит между x и x_0 . По теореме 3.5.1 $f''(c) \geqslant 0$, значит, $y \geqslant y_K$.

достаточность. Предположим противное, т. е. что f не выпукла вниз. Тогда по теореме $3.5.1 \; \exists (x_0 \in (a;b))[f''(x_0) < 0].$ Т. к. f'' непрерывна, то

$$\exists (\delta > 0) \forall (x \in U_{\delta}(x_0)[f''(x) < 0]$$

Ho $y - y_K = f''(c) \frac{(x-x_0)^2}{2}$, T. e.

$$\forall (x \in U_{\delta}(x_0))[y - y_K < 0],$$

т. е. график функции лежит ниже касательной. Получили противоречие. **Доказано.**Случай выпуклости вниз оставляем читателю.

3.5.4 Точки перегиба

определение. Пусть $X \subset \mathbb{R}, f: X \to \mathbb{R}$, f непрерывна на X. Точка $x_0 \in X$ называется точкой перегиба функции f, если при переходе через x_0 функция f меняет характер выпуклости.

Теорема 3.5.3. Пусть $X \subset \mathbb{R}, f : X \to \mathbb{R}$, x_0 - точка перегиба функции f и производная f''(x) непрерывна в точке x_0 . Тогда $f''(x_0) = 0$.

доказательство. Предположим противное, т. е. $f''(x) \neq 0$. НТО, положим f''(x) > 0. Запишем формулу Тейлора для f(x) с остаточным членом в форме Пеано:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + o(|x - x_0|^2)$$

Зная, что ордината касательной $y_K = f(x_0) + f'(x_0)(x-x_0)$ и положив y = f(x), получим

$$y - y_K = \frac{f''(x_0)}{2}(x - x_0)^2 + o(|x - x_0|^2)$$

Но выпуклость функции определяется знаком разности $y-y_K$. В нашем случае этот знак совпадает со знаком $\frac{f''(x_0)}{2}(x-x_0)^2+o(|x-x_0|^2)$, а в некоторой окрестности точки x_0 — со знаком $\frac{f''(x_0)}{2}(x-x_0)^2$, который постоянен. Следовательно, перемены характера выпуклости в точке x_0 нет. Пришли к противоречию.

Доказано.

Теорема 3.5.4. Пусть $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$, f(x) и f''(x) непрерывны в x_0 . Тогда для того, чтобы x_0 была точкой перегиба функции f, необходимо и достаточно, чтобы:

- 1) $f''(x_0) = 0$
- f''(x) меняла знак при переходе через x_0 .

Доказательство.

необходимость. Вытекает из теоремы 3.5.3, определения точки перегиба и теоремы 3.5.1.

достаточность. Вытекает из определения точки перегиба и теоремы 3.5.1.

3.5.5 Асимптоты кривых

Пусть L – кривая, заданная уравнением $y = f(x), x \in X, y \in Y$.

определение. Кривая L имеет бесконечные ветви, если по крайней мере одно из множеств X или Y является неограниченным.

Рассмотрим функцию $\rho(x)=\sqrt{x^2+f^2(x)},\ x\in X$. Для того, чтобы кривая L имела бесконечные ветви, необходимо и достаточно, чтобы ρ была неограниченна на X.

определение. Прямая $x=x_0$ называется вертикальной асимптотой кривой L, заданной уравнением y=f(x), если $f(x)\to\pm\infty$ при $x\to x_0\pm$, т. е. один из односторонних пределов функции бесконечен.

Горизонтальная асимптота – это частный случай наклонной.

определение. Пусть f задана на неограниченном промежутке X. Прямая y=kx+b называется наклонной асимптотой кривой y=f(x), если

$$\lim_{x \to +\infty} (f(x) - kx - b) = 0$$

ИЛИ

$$\lim_{x \to -\infty} (f(x) - kx - b) = 0$$

Иногда говорят об асимптоте на бесконечности, не указывая знак. Это означает, что асимптоты на $+\infty$ и $-\infty$ совпадают.

Чтобы выяснить, имеет ли кривая асимптоты и найти k и b, разделим равенство

$$f(x) - kx - b = o(x)$$

(на $\pm \infty$) на x. Получим

$$k = \frac{f(x)}{x} - \frac{b}{x} - o(x) = \frac{f(x)}{x} - o(x)$$
$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$

$$b = \lim_{x \to \pm \infty} (f(x) - kx)$$

Очевидно, что рассуждения верны и в обратную сторону, т. е. прямая y=kx+b будет асимптотой рассматриваемой кривой.

Замечание

При $\rho(x) \to \infty$, т. е. при удалении по бесконечной ветви кривой, расстояние d(M) от точки M кривой с координатами (x;f(x)) до асимптоты стремится к нулю.

Действительно, пусть $x=x_0$ – вертикальная асимптота. Тогда $d(M)=|x-x_0|$. Пусть теперь y=kx+b - наклонная асимптота. Опустим из точки M перпендикуляр MH на асимптоту и перпендикуляр MB на ось Ox и обозначим через A точку пересечения MB с асимптотой. Тогда треугольник AMH - прямоугольный, и катет MH=d(M) в нём меньше гипотенузы MA, стремящейся к нулю.

Отметим, что кривая может пересекать свою асимптоту.

3.5.6 Схема исследования функции

- 1. Находят область определения функции.
- 2. Проверяют функцию на чётность, нечётность и периодичность.

- 3. Находят точки пересечения графика функции с осями координат, если такие точки есть.
- 4. Исследуют функцию на непрерывность, определяют точки разрыва и их род.
- 5. Исследуют поведение функции при стремлении независимой переменной x к точкам разрыва и границам области определения функции, включая, если это необходимо, $\pm \infty$.
- 6. Находят асимптоты (вертикальные и наклонные) и точки пересечения графика функции с асимптотами.
- 7. Находят критические точки первого рода.
- 8. Находят экстремумы.
- 9. Определяют интервалы монотонности функции.
 - Предыдущие три пункта удобно осуществить с помощью первой производной, сведя результаты в таблицу, где в первой строке указываются значения аргумента x - интервалы и точки, во второй — знак производной f'(x), в третьей наклонной стрелкой вверх-вправо \nearrow или вниз-вправо \searrow указывается характер монотонности функции.
- 10. С помощью второй производной определяют промежутки выпуклости и точки перегиба. Здесь снова удобно составить таблицу, аналогичную предыдущей, но второй строкой внести знак второй производной f''(x), а поведение функции обозначать значками \cap и \cup .

Глава 4

Интегрирование вещественной функции одной вещественной переменной

4.1 Неопределённый интеграл

4.1.1 Первообразная и неопределенный интеграл

Основной задачей дифференциального исчисления является нахождение производной функции. Интегральное же исчисление решает обратную задачу — находит функцию по её производной. Например, если дан пройденный путь в каждый момент времени (зависимость пройденного пути от времени), а нужно найти скорость в каждый момент времени — это задача дифференциального исчисления; если дана скорость в каждый момент времени, а нужно найти путь — это задача интегрального.

Заметим, что интегрирование, в отличие от дифференцирования функции, является неоднозначной операцией.

определение. Функция F(x) называется первообразной функции f(x) на некотором промежутке $X \subset \mathbb{R},$ если F дифференцируема на этом промежутке и

$$\forall (x \in X)[F'(x) = f(x)]$$

пример. Пусть $f(x) = \sin 3x$. Тогда одна из первообразных $F(x) = \frac{-\cos 3x}{3}$. Свойство 1.

Если F(x) – первообразная функции f(x), то $\forall (C \in \mathbb{R})[F(x) + C$ – также первообразная f(x)].

доказательство.
$$F'(x)=f(x)$$

$$(F(x)+C)'=F'(x)+C'=F'(x)+0=F'(x)=f(x)$$
 Доказано.

Свойство 2.

Любые две первообразные $F_1(x)$ и $F_2(x)$ функции f(x) отличаются на постоянную.

доказательство. По определению $F_1'(x)=f(x),\,F_2'(x)=f(x).$ Докажем, что $F_1(x)-F_2(x)=const.$ Пусть $\phi(x)=F_1(x)-F_2(x).$ Тогда $\phi'(x)=f(x)-f(x)=0.$ Значит, $\phi(x)=const.$ т. е. $F_1(x)-F_2(x)=const.$

Доказано.

Таким образом, по производной можно восстановить функцию с точностью до постоянного слагаемого (его называют произвольной аддитивной постоянной и обозначают C).

определение. Совокупность всех первообразных функции f называется неопределённым интегралом функции f и обозначается $\int f(x)dx$.

 \int — знак интеграла. Введён в печать Яковом Бернулли в 1690 году. Значок \int произошёл от латинской буквы S — сокращения "summa", а название "интеграл" — от латинского слова "integro" — "восстанавливать, объединять".

В записи

$$\int f(x)dx$$

x, стоящая под знаком дифференциала d, называется переменной интегрирования;

f(x) называется подынтегральной функцией;

f(x)dx называется подынтегральным выражением.

Если известна одна из первообразных функции f(x), то, поскольку первообразные отличаются на постоянную, известна и вся совокупность первообразных, т. е. неопределённый интеграл.

Пример.

$$\int \sin 3x dx = -\frac{1}{3}\cos 3x + C$$

4.1.2 Свойства неопределенного интеграла

Свойство 1.

Производная непределённого интеграла равна подынтегральной функции:

$$\left(\int f(x)dx\right)' = f(x)$$
$$d\left(\int f(x)dx\right) = f(x)dx$$

Свойство 2.

Интеграл от производной функции равен этой функции с точностью до постоянной:

$$\int f'(x)dx = f(x) + C$$
$$\int df(x) = f(x) + C$$

Эти два свойства вытектают из определения.

Свойство 3.

Если функции f(x) и g(x) имеют первообразную на X, то их линейная комбинация тоже имеет первообразную на X и

$$\int (\alpha f(x) + \beta g(x))dx = \alpha \int f(x)dx + \beta \int g(x)dx$$

Доказать это равенство несложно – достаточно продифференцировать правую и левую часть. Таким образом, неопределённый интеграл линеен.

Замечание.

При последовательных преобразованиях выражения, содержащего неопределённые интегралы, произвольную аддитивную постоянную C, возникающую при взятии интеграла, пишут только в тех частях равенства, где нет других интегралов, и опускают в тех частях, где интегралы есть.

Замечание.

Знак интеграла \int никогда не используется отдельно от указания переменной интегрирования, например, dx.

Сформулируем также следующую теорему, которая будет доказана позже:

Теорема

Если функция непрерывна на промежутке, то она интегрируема на этом промежутке.

4.1.3 Таблица интегралов

Все приведённые равенства устанавливаются дифференцированием правой части и верны на общей области определения правой и левой частей.

Формулы, являющиеся следствием таблицы производных:

1.

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1$$

2.

$$\int \frac{dx}{x} = \ln|x| + C, x \neq 0$$

3.

$$\int a^x dx = \frac{a^x}{\ln a} + C$$

В частности,

$$\int e^x dx = e^x + C$$

4.

$$\int \sin x dx = -\cos x + C$$

5.

$$\int \cos x dx = \sin x + C$$

6.

$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$$

7.

$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C$$

8.

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$

Обобщение:

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

9.

$$\int \frac{dx}{1+x^2} = \arctan x + C$$

Обобщение:

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

10. "Логарифм длинный"

$$\int \frac{dx}{\sqrt{x^2 \pm 1}} = \ln|x + \sqrt{x^2 \pm 1}| + C$$

Обобщение:

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln|x + \sqrt{x^2 \pm a^2}| + C$$

11. "Логарифм высокий"

$$\int \frac{dx}{1-x^2} = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + C$$

Обобщение:

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

Напомним теперь читателю определение гиперболических функций. Вопрос об их интегрировании целесообразно рассмотреть ввиду того, что при интегрировании других функций часто используется т. наз. гиперболическая замена.

определение. Гиперболический синус

$$\operatorname{sh} x = \frac{e^x - e^{-x}}{2}$$

определение. Гиперболический косинус

$$\operatorname{ch} x = \frac{e^x + e^{-x}}{2}$$

определение. Гиперболический тангенс

$$th x = \frac{sh x}{ch x}$$

определение. Гиперболический котангенс

$$cth x = \frac{ch x}{sh x}$$

Продолжим таблицу интегралов:

12.

$$\int \sin x dx = \cot x + C$$

13.

$$\int \operatorname{ch} x dx = \operatorname{sh} x + C$$

14.

$$\int \frac{dx}{\cosh^2 x} = \tan x + C$$

15.

$$\int \frac{dx}{\sinh^2 x} = -\coth x + C$$

Замечание

При записи результатов интегрирования произвольные аддитивные постоянные объединяют:

$$\int (x^2 + \sin x + 2)dx = \frac{x^3}{3} - \cos x + 2x + C$$

4.1.4 Интегрирование по частям

Метод.

Пусть u(x) и v(x) на некотором промежутке X – диффернецируемые функции. Тогда

$$\int u(x) \cdot v'(x) dx = u(x) \cdot v(x) - \int v(x) \cdot u'(x) dx$$

Т. е., перейдя к дифференциалам функций,

$$\int udv = uv - \int vdu$$

доказательство. Нам известна формула дифференцирования произведения:

$$(u(x) \cdot v(x))' = u'(x)v(x) + v'(x)u(x)$$

Интегрируем её:

$$u(x) \cdot v(x)' = \int u'(x)v(x)dx + \int v'(x)u(x)dx$$

И переносим один из интегралов в левую часть:

$$u(x) \cdot v(x) - \int v(x) \cdot u'(x) dx = \int u(x) \cdot v'(x) dx$$

Доказано.

Замечание 1.

При использовании формулы интегрирования по частям подынтегральную функцию нужно представить в виде произведения одной функции на дифференциал другой. Делают так, чтобы интеграл $\int v du$ оказался проще, чем интеграл $\int u dv$. Иногда формулу интегрирования по частям приходится применять несколько раз.

Замечание 2.

Функция v по dv восстанавливается, вообще говоря, неоднозначно, с точностью до постоянного слагаемого. Его можно считать равным нулю.

доказательство. Пусть по дифференциалу dv нашлись функции v_0 и v_0+C . На левую часть, т. е. $\int u dv$, C не влияет, т. к. $d(v_0)=d(v_0+C)$. Рассмотрим правую часть:

$$u \cdot (v_0 + C) - \int (v_0 + C)du = uv_0 + uC - \int v_0 du - C \int du = uv_0 + uC - \int v_0 du - C \int u = uv_0 + uC - \int v_0 du - Cu = uv_0 - \int v_0 du$$

Доказано.

Замечание 3.

Интегрирование по частям особенно эффективно при интегрировании, если:

- а) $u(x) = P_n(x)$, т. е. многочлен от x, а $v'(x) \in \{e^x, \sin x, \cos x\}$
- 6) $u(x) \in \{\ln x, \arctan x\}, v'(x) = P_n(x)$

Пример.

$$\int x^{2}e^{x}dx = \int \left(\frac{x^{3}}{3}\right)'e^{x}dx =$$

$$= \left\langle \begin{array}{c} u = x^{2} \\ dv = e^{x}dx \end{array} \middle| \begin{array}{c} du = 2xdx \\ v = e^{x} \end{array} \right\rangle =$$

$$= x^{2}e^{x} - 2\int e^{x} \cdot x dx =$$

$$= \left\langle \begin{array}{c} u = x \\ dv = e^{x} dx \end{array} \middle| \begin{array}{c} du = dx \\ v = e^{x} \end{array} \right\rangle =$$

$$= x^{2}e^{x} - 2\left(e^{x} \cdot x - \int e^{x} dx\right) = x^{2}e^{x} - 2xe^{x} + 2e^{x} + C$$

4.1.5 Замена переменной

Теорема.

Пусть F – первообразная для f – непрерывной функции на промежутке T, т. е.

$$\int f(t)dt = F(t) + C$$

и на промежутке X задано $\varphi: X \to T$ – непрерывное дифференцируемое отображение.

Тогда на промежутке X

$$\int f(\varphi(x)) \cdot \varphi'(x) dx = F(\varphi(x)) + C$$

T. e.

$$\int f(\varphi(x)) \cdot d\varphi(x) = F(\varphi(x)) + C$$

Доказательство.

$$(F(\varphi(x)) + C)' = f(\varphi(x)) \cdot \varphi'(x)$$

Доказано.

Пример.

$$\int xe^{x^2}dx = \left\langle \begin{array}{c} t = x^2 \\ dt = 2xdx \end{array} \right\rangle = \frac{1}{2}\int e^tdt = \frac{1}{2}e^t + C = \frac{1}{2}e^{x^2} + C$$

Пример.

$$\int \cos^2 x \sin x dx = \left\langle \begin{array}{c} t = \sin x \\ dt = -\cos x \end{array} \right\rangle =$$
$$= -\int t^2 dt = -\frac{t^3}{3} + C = -\frac{\cos^3 x}{3} + C$$

Следствие.

Если
$$F'(x)=f(x)$$
 и $\{a;b\}\in\mathbb{R},$ то
$$\int f(ax+b)dx=\frac{1}{a}F(ax+b)+C$$

Пример.

$$\int \cos(7x+3)dx = -\frac{1}{7}\sin(7x+3) + C$$

Замечание 1.

Полезно помнить следующие интегралы:

$$\int \frac{g'(x)}{g(x)} dx = \left\langle \begin{array}{c} t = g(x) \\ dt = g'(x) dx \end{array} \right\rangle =$$

$$= \int \frac{dt}{t} = \ln|g(x)| + C$$

$$\int \frac{g'(x)}{\sqrt{g(x)}} dx = \left\langle \begin{array}{c} t = g(x) \\ dt = g'(x) dx \end{array} \right\rangle =$$

$$= \int \frac{dt}{\sqrt{t}} = 2\sqrt{g(x)} + C$$

Замечание 2.

Замену переменной под знаком неопределённого интеграла часто производят иначе: вместо того, чтобы принимать за новую переменную t некоторую функцию f(x), рассматривают x как дифференцируемую функцию от z, т. е. $x=\psi(z)$. Тогда

$$\int f(x)dx = \int f(\psi(x))\psi'(z)dz$$

Однако при применении этого метода нужно убедиться, что существует обратная функция $\psi^{-1}(x)=z$, позволяющая вернуться от z к исходной переменной x.

Пример.

$$\int \sqrt{1-x^2} dx = \left\langle \begin{array}{c} t = \sin z \\ |x| \leqslant 1; |z| \leqslant \frac{\pi}{2} \end{array} \right\rangle =$$

$$= \int \sqrt{1-\sin^2 z} \cos z dz =$$

$$= \int \frac{1+\cos 2z}{2} = \frac{1}{2} \int dz + \frac{1}{2} \cdot \frac{1}{2} \sin 2z + C =$$

$$= \frac{\arcsin x}{2} + \frac{\sin(2\arcsin x)}{4} + C = \frac{\arcsin x + x\sqrt{1-x^2}}{2} + C$$

4.1.6 Интегрирование элементарных дробей

Рассмотрим вопрос об интегрировании четырёх типов дробей, называемых элементарными.

определение. Элементарной дробью І типа называется дробь вида

$$\frac{a}{x+p} \tag{4.1}$$

Такая дробь интегрируется очевидным образом:

$$\int \frac{a}{x+p} dx = a \int \frac{d(x+p)}{x+p} = a \ln|x+p| + C$$

определение. Элементарной дробью II типа называется дробь вида

$$\frac{a}{(x+p)^n}, \ n \geqslant 2 \tag{4.2}$$

Такая дробь тоже легко интегрируется:

$$\int \frac{a}{(x+p)^n} dx = a \int \frac{d(x+p)}{(x+p)^n} = \frac{a}{1-n} (x+p)^{-n+1} + C$$

определение. Элементарной дробью III типа называется дробь вида

$$\frac{ax+b}{x^2+px+q}, \ D=p^2-4q<0 \tag{4.3}$$

Такая дробь интегрируется с помощью замены

$$t = x + \frac{p}{2}, dt = dx, \alpha^2 = \frac{-D}{4}, \beta = b - \frac{ap}{2}$$
 (4.4)

Имеем:

$$\int \frac{ax+b}{x^2+px+q} = \int \frac{a(x+\frac{p}{2})+b-\frac{ap}{2}}{x^2+2\frac{p}{2}+\frac{p^2}{4}+q-\frac{p^2}{4}}dx =$$

$$= \int \frac{at+\beta}{t^2+\alpha^2}dt = \frac{a}{2}\int \frac{d(t^2)}{t^2+\alpha^2}+\beta\int \frac{dt}{t^2+\alpha^2} =$$

$$= \frac{a}{2}\ln|t^2+\alpha^2|+\frac{\beta}{\alpha}\arctan\frac{t}{\alpha}+C$$

Возвращение к исходным переменной и параметрам предоставляем читателю.

определение. Элементарной дробью IV типа называется дробь вида

$$\frac{ax+b}{(x^2+px+q)^k}, \ D=p^2-4q<0, \ k\geqslant 2 \tag{4.5}$$

Такая дробь тоже интегрируется с помощью замены (которая, вообще говоря, часто применяется при интегрировании выражений, содержащих квадратный трёхчлен)

$$t = x + \frac{p}{2}, dt = dx, \alpha^2 = \frac{-D}{4}, \beta = b - \frac{ap}{2}$$
 (4.6)

Имеем:

$$\int \frac{ax+b}{(x^2+px+q)^k} = \int \frac{a\left(x+\frac{p}{2}\right)+b-\frac{ap}{2}}{\left(x^2+2\frac{p}{2}+\frac{p^2}{4}+q-\frac{p^2}{4}\right)^k} dx =$$

$$= \int \frac{at+\beta}{(t^2+\alpha^2)^k} dt = \frac{a}{2} \int \frac{d(t^2)}{(t^2+\alpha^2)^k} + \beta \int \frac{dt}{(t^2+\alpha^2)^k} =$$

$$= \frac{a}{2(1-k)} (t^2+\alpha^2)^{1-k} + \beta \int \frac{dt}{(t^2+\alpha^2)^k}$$

Рассмотрим теперь интеграл

$$J_k = \int \frac{dt}{(t^2 + \alpha^2)^k}$$

Преобразуем его:

$$J_{k} = \frac{1}{\alpha^{2}} \int \frac{t^{2} + \alpha^{2} - t^{2}}{(t^{2} + \alpha^{2})^{k}} dt =$$

$$= \frac{1}{\alpha^{2}} \int \frac{dt}{(t^{2} + \alpha^{2})^{k-1}} - \frac{1}{\alpha^{2}} \int \frac{t^{2}}{(t^{2} + \alpha^{2})^{k}} dt = \frac{1}{\alpha^{2}} J_{k-1} - \frac{1}{\alpha^{2}} \int \frac{t^{2}}{(t^{2} + \alpha^{2})^{k}} dt$$

Первое слагаемое вычисляется рекуррентно (помним, что J_1 – интеграл от элементарной дроби III типа), займёмся вторым слагаемым:

$$\int \frac{t^2}{(t^2 + \alpha^2)^k} dt = \frac{u = t}{dv = \frac{tdt}{(t^2 + \alpha^2)^k}} \left| v = \int \frac{tdt}{(t^2 + \alpha^2)^k} = \frac{1}{2} \int \frac{d(t^2)}{(t^2 + \alpha^2)^k} = \frac{1}{2} \cdot \frac{1}{1 - k} (t^2 + \alpha^2)^{1 - k} \right\rangle = \frac{t}{2} \cdot \frac{1}{1 - k} (t^2 + \alpha^2)^{1 - k} - \int \frac{1}{2} \cdot \frac{1}{1 - k} \cdot \frac{tdt}{(t^2 + \alpha^2)^{k - 1}}$$

Как вычисляется последний интеграл, мы уже знаем. Таким образом, интегрирование элементарной дроби IV типа со знаменателем степени k рекуррентно сводится к интегрированию элементарной дроби IV типа со знаменателем степени k-1, а, значит, на некотором шаге к интегрированию элементарной дроби III типа.

4.1.7 Интегрирование рациональных функций

Здесь и далее будем обозначать рациональные функции (они же рациональных дроби), т. е. частное двух многочленов, буквой R, иногда с некоторыми индексами и диакритиками, а сами многочлены – буквами P, Q, S, при этом нижний индекс, подобно курсу алгебры, отводится для указания наибольшей возможной степени многочлена. Обратим внимание на то, что некоторые термины и утверждения будут заимствоваться из курса алгебры без отдельного предупреждения.

Итак, рассмотрим вопрос об интегрировании рациональной дроби $R(x) = \frac{P(x)}{Q(x)}$. Если эта дробь неправильная, то её легко разложить на сумму многочлена и правильной дроби, которые затем интегрировать по отдельности. Рассмотрим вопрос об интегрировании правильной рациональной дроби $R(x) = \frac{P_m(x)}{Q_n(x)}$, где m < n.

Как известно, любой многочлен Q_n представим в виде

$$Q_n(x) = a_n(x-x_1)^{v_1} + \dots + (x-x_k)^{v_k} + (x^2 + p_{k+1}x + q_{k+1})^{v_{k+1}} + \dots + (x^2 + p_mx + q_m)^{v_m},$$
(4.7)

где $v_1 + \dots + v_k + 2(v_{k+1} + \dots + v_m) = n$.

Более того, в курсе алгебры доказывается теорема, что для рациональной дроби $R(x)=\frac{P_m(x)}{Q_n(x)}$ со знаменателем, представленным в виде (4.7), существует представление

$$R(x) = S(x) + \sum_{j=1}^{k} \sum_{l=1}^{v_j} \frac{a_{j,l}}{(x - x_j)^l} + \sum_{j=k+1}^{m} \sum_{l=1}^{v_j} \frac{b_{j,l}x + c_{j,l}}{(x^2 + p_j x + q_j)^l}$$

При этом $a_{j,l}$, $b_{j,l}$ и $c_{j,l}$ ищутся методом неопределённых коэффициентов: выписывается разложение правильной рациональной дроби на сумму элементарных дробей, элементарные дроби приводятся к общему знаменателю, коэффициенты при одинаковых степенях переменной интегрирования приравниваются. Возникает СЛУ, в которой число уравнений равно числу неизвестных. После её решения и определяются требуемые значения $a_{j,l},b_{j,l}$ и $c_{j,l}$.

Итак, разложение рациональной дроби позволяет нам сформулировать следующую (фактически, уже доказанную) теорему:

Теорема 4.1.1. Интеграл от любой рациональной функции выражается через рациональную функцию, логарифм и арктангенс.

4.1.8 Интегралы от тригонометрических выражений

Рассмотрим интегралы вида

$$\int R(\sin x, \cos x) dx$$

Универсальная тригонометрическая подстановка.

Пусть $t = \operatorname{tg} \frac{x}{2}$, тогда

$$x = 2 \operatorname{arctg} t, dx = \frac{2dt}{1 + t^2}$$
$$\sin x = \frac{2t}{1 + t^2}$$
$$\cos x = \frac{1 - t^2}{1 + t^2}$$

Таким образом, эта подстановка (известная читателю ещё из курса средней школы, где она применялась для решения тригонометрических уравнений) позволяет гарантированно рационализировать искомый интеграл:

$$\int R(\sin x, \cos x) dx = \int R(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}) \cdot \frac{2dt}{1+t^2} = \int R_1(t) dt$$

Пример.

$$\int \frac{dt}{3 + \cos x} = \langle t = \lg \frac{x}{2} \rangle = \int \left(\frac{2dt}{1 + t^2} \cdot \frac{1}{3 + \frac{1 - t^2}{1 + t^2}} \right) =$$

$$= 2 \int \frac{dt}{3t^2 + 3 + 1 - t^2} = \int \frac{dt}{t^2 + 2} = \frac{1}{\sqrt{2}} \operatorname{arctg} \frac{t}{\sqrt{2}} + C =$$

$$= \frac{1}{\sqrt{2}} \operatorname{arctg} \left(\frac{1}{\sqrt{2}} \cdot \lg \frac{x}{2} \right) + C$$

Однако неудобство этого метода заключается в том, что степень знаменателя рациональной функции R_1 получается сравнительно большой, поэтому применяются и другие, менее универсальные приёмы. Приём.

$$\int R(\sin x) \cdot \cos x dx = \left\langle \begin{array}{c} t = \sin x \\ dt = \cos x dx \end{array} \right\rangle = \int R(t) dt$$

Для $\int R(\cos x) \cdot \sin x dx$ - аналогично.

Приём.

$$\int R(\sin^2 x, \cos^2 x) dx = \left\langle \begin{array}{c} t = \operatorname{tg} x \\ x = \operatorname{arctg} t, dx = \frac{dt}{1+t^2} \\ \cos^2 x = \frac{1}{1+t^2} \end{array} \right\rangle = \int R_1(t^2) dt$$

$$\cos^2 x = \frac{t^2}{1+t^2}$$

Приём.

$$\int R(\sin^2 x, \cos^2 x) dx = \int R(\frac{1 - \cos 2x}{2}, \frac{1 + \cos 2x}{2}) dx = \int R_1(\cos 2x) dx$$

Замечание.

Кроме того, при интегрировании произведения тригонометрических функций от линейной функции от x удобно применить представление произведения тригонометрических функций в виде полусуммы.

Пример.

$$\int \sin(2x+3) \cdot \cos(3x+2) dx = \frac{1}{2} \int (\sin(2x+3+3x+2) \cdot \sin(2x+3-(3x+2)) dx = \dots$$

4.1.9 Интегралы от иррациональных выражений

Рассмотрим интегралы вида

$$\int R(x, y(x))dx$$

Чтобы свести такой интеграл к интегралу от рациональной функции, нужно найти подстановку x=x(t) такую, чтобы x(t) (а, значит, и x'(t)) и y(x(t)) были рациональными функциями от t:

$$\int R(x, y(x))dx = \int R(x(t), y(x(t)))x'(t)dt = \int R_1(t)dt$$

Рассмотрим сначала случай $y = \sqrt[n]{\frac{\alpha x + \beta}{\gamma x + \delta}}$. Пусть

$$t^n = \frac{\alpha x + \beta}{\gamma x + \delta}$$

Тогда

$$(\gamma x + \delta)t^n = \alpha x + \beta$$

Отсюда

$$(\gamma t^n - \alpha)x = \beta - \delta t^n$$

T. e.

$$x = \frac{\beta - \delta t^n}{\gamma t^n - \alpha} = R_x(t)$$

Интеграл рационализирован.

Пример.

$$\int \frac{\sqrt{x}}{1+x} dx = \left\langle \begin{array}{c} t = \sqrt{x} \\ x = t^2 \\ dx = 2t dt \end{array} \right\rangle = 2 \int \frac{t^2 dt}{1+t^2} =$$

$$= 2 \int \left(1 - \frac{1}{1+t^2}\right) dt = 2t - 2 \arctan t + C = 2\sqrt{x} - 2 \arctan \sqrt{x} + C$$

Обобщим теперь наш опыт на случай интеграла

$$\int R\left(x, \left(\frac{\alpha x + \beta}{\gamma x + \delta}\right)^{r_1}, ..., \left(\frac{\alpha x + \beta}{\gamma x + \delta}\right)^{r_k}\right) dx,$$

где $r_1,...,r_n\in\mathbb{Q}$. Тогда $r_i=\frac{p_i}{q_i}$. Пусть m - наименьшее общее кратное чисел $q_1,...,q_n$. Введём замену

$$t^m = \frac{\alpha x + \beta}{\gamma x + \delta}$$

Легко видеть, что в этом случае интеграл рационализируется.

Пример.

$$\int \frac{dx}{\sqrt{x} + \sqrt[3]{x}} = \int \frac{dx}{x^{\frac{3}{6}} + x^{\frac{2}{6}}} = \left\langle \begin{array}{c} x = t^{6}, & t = x^{\frac{1}{6}} \\ dx = 6t^{5}dt \end{array} \right\rangle = 6 \int \frac{t^{5}dt}{t^{3} + t^{2}} =$$

$$= 6 \int \frac{t^{3}}{t+1} dt = 6 \left(\int \frac{t^{3} + 1}{t+1} dt - \int \frac{1}{t+1} dt \right) =$$

$$= 6 \left(\int (t^{2} - t + 1) dt - \ln|t+1| \right) = 2t^{3} - 3t^{2} + 6t - \ln|t+1| + C =$$

$$= 2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} - \ln|\sqrt[6]{x} + 1| + C$$

4.1.10 Подстановки Эйлера

Перейдём теперь к вопросу об интегрировании функции

$$\int R(x, \sqrt{ax^2 + bx + c}) dx \tag{4.8}$$

Случай, когда a=0, фактически рассмотрен нами ранее и потому интереса не представляет. Введём стандартное обозначение дискриминанта: $D=b^2-4ac$. Рассмотрим теперь случаи, когда D=0. Если a<0, то функция определена лишь в одной точке, и говорить об интеграле нет смысла (т. к. интеграл определяется на промежутке). Если же a>0, то корень извлекается, и задача сводится к взятию интеграла вида $\int R(x,|x-x_0|)dx$, что не представляет особой сложности.

Пусть теперь a > 0, D > 0. Тогда

$$ax^{2} + bx + c = a\left(x + \frac{b}{2a}\right)^{2} + \left(c - \frac{b^{2}}{4a}\right) = a\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a}$$
 (4.9)

Положим теперь

$$au = \sqrt{a}\left(x + \frac{b}{2a}\right), \alpha^2 = \frac{D}{4a}, \text{ тогда } x = \frac{\tau}{\sqrt{a}} - \frac{b}{2a}, dx = \frac{1}{\sqrt{a}}d\tau$$
 (4.10)

Выражение (4.9) примет вид $\tau^2-\alpha^2$, а исследуемый интеграл (4.8) преобразуется в:

$$\int R\left(\frac{\tau}{\sqrt{a}} - \frac{b}{2a}, \sqrt{\tau^2 - \alpha^2}\right) \cdot \frac{1}{\sqrt{a}} d\tau$$

Теперь рассмотрим случай, когда $a>0,\ D<0$. Замена будет аналогична замене (4.10), за исключением того, что $\alpha^2=-\frac{D}{4a}$. Интеграл (4.8) примет вид

$$\int R\left(\frac{\tau}{\sqrt{a}} - \frac{b}{2a}, \sqrt{\tau^2 + \alpha^2}\right) \cdot \frac{1}{\sqrt{a}} d\tau$$

В случае, если $a<0,\,D>0,$ замена снова будет аналогична (4.10), за исключением того, что $\tau=\sqrt{a}\left(x+\frac{b}{2a}\right)$. Интеграл (4.8) примет вид

$$\int R\left(\frac{\tau}{\sqrt{a}} - \frac{b}{2a}, \sqrt{\tau^2 - \alpha^2}\right) \cdot \frac{1}{\sqrt{-a}} d\tau$$

 ${\rm II}$, наконец, если $D<0,\,a<0,\,$ то подынтегральная функция не имеет смысла.

Таким образом, задача отыскания интеграла (4.8) свелась к отысканию следующих интегралов (здесь $t=\frac{\tau}{\alpha}$, постоянные множители вынесены за знак интеграла):

$$\int \hat{R}(t, \sqrt{1 - t^2}) dt$$

$$\int \hat{R}(t, \sqrt{1 + t^2}) dt$$

$$\int \hat{R}(t, \sqrt{t^2 - 1}) dt$$

Проницательный читатель заметит, что в первых двух случаях можно применить гиперболическую замену, а в третьем - тригонометрическую, но существуют подстановки, позволяющие свести взятие этих интегралов непосредственно к интегрированию рациональной функции. Эти подстановки названы в честь первооткрывателя — Эйлера.

Для взятия интеграла вида

$$\int \hat{R}(t,\sqrt{t^2-1})dt$$

применяют замену

$$\sqrt{t^2 - 1} = u(t \pm 1)$$

ИЛИ

$$\sqrt{t^2 - 1} = \pm (t - u)$$

Для взятия интеграла вида

$$\int \hat{R}(t,\sqrt{t^2+1})dt$$

применяют замену

$$\sqrt{t^2 + 1} = tu \pm 1$$

ИЛИ

$$\sqrt{t^2 + 1} = \pm (t - u)$$

Для взятия интеграла вида

$$\int \hat{R}(t,\sqrt{1-t^2})dt$$

применяют замену

$$\sqrt{1-t^2} = u(1\pm t)$$

ИЛИ

$$\sqrt{1-t^2} = tu \pm 1$$

Поясним на примере последней, как они работают:

$$\sqrt{1 - t^2} = tu - 1$$

$$1 - t^2 = t^2u^2 - 2tu + 1$$

$$2tu = (1 + u^2)t^2$$

$$2u = (1 + u^2)t$$

$$t = \frac{2u}{(1 + u^2)}$$

$$\sqrt{1 - t^2} = tu - 1 = \frac{2u^2}{(1 + u^2)}$$

Дифференциал u'(t)du также будет рациональной функцией; выписать его предоставляем читателю. Таким образом, интеграл рационализировался.

4.1.11 Интегралы от дифференциальных биномов

определение. Дифференциальным биномом (или биномиальным дифференциалом) называется выражение вида

$$x^m(a+bx^n)^p dx$$

Рассмотрим вопрос об интегрировании дифференциального бинома, т. е. об отыскании интеграла вида

$$\int x^m (a+bx^n)^p dx \tag{4.11}$$

Сделаем замену $t=x^n$, тогда $x=t^{\frac{1}{n}},\ dx=\frac{1}{n}t^{\frac{1}{n}-1},\$ и

$$\int x^{m}(a+bx^{n})^{p}dx = \int t^{\frac{m}{n}}(a+bt)^{p} \cdot \frac{1}{n} \cdot t^{\frac{1}{n}-1}dt = \frac{1}{n} \int t^{\frac{m+1}{n}-1}(a+bt)^{p}dt$$

Положив $q = \frac{m+1}{n} - 1$, интеграл (4.11) мы представим в виде

$$\varphi(p,q) = \frac{1}{n} \int t^q (a+bt)^p$$

Теорема.

Если хотя бы одно из чисел p, q или p+q является целым, то интеграл $\varphi(p,q)$ рационализируется.

доказательство. 1. Пусть $p\in\mathbb{Z}$. Тогда $\varphi(p,q)=\int R(t,t^q)dt$. Интегралы такого вида уже были рассмотрены нами ранее.

- 2. Пусть $q \in \mathbb{Z}$. Тогда $\varphi(p,q) = \int R((a+bt)^p,t)dt$. Интегралы такого вида уже были рассмотрены нами ранее.
- 3. Пусть, наконец, $p+q \in \mathbb{Z}$. Тогда $\varphi(p,q) = \int R\left(\left(\frac{a+bt}{t}\right)^p, t^{p+q}\right) dt$. И снова получили интеграл уже изученного вида.

Доказано.

Пример.

$$\int x^2 \sqrt{x} (1 - x^2) dx = \left\langle \begin{array}{c} m = \frac{5}{2}, & n = 2, & p = 1 \in \mathbb{Z} \\ x = t^2, & dx = 2t dt \end{array} \right\rangle =$$
$$= \int t^5 (1 - t^4) 2t dt = 2 \int (t^6 - t^{10}) dt = \dots$$

Завершить вычисление интеграла предоставляем читателю самостоятельно.

Замечание.

Великий русский математик Пафнутий Львович Чебышев доказал, что в случае, когда условие доказанной теоремы не выполнено, интеграл не представим через элементарные функции, т. е. является неберущимся. О неберущихся интегралах читатель узнает буквально на следующей странице.

4.1.12 Неберущиеся интегралы

определение. Интеграл, не выражающийся через элементарные функции, называется неберущимся.

Примеры.

$$\int x^m (a+bx^n)^p dx$$
 если $q=\frac{m+1}{n}, p\notin \mathbb{Z}, q\notin \mathbb{Z}, p+q\notin \mathbb{Z}$
$$\int \frac{e^x}{x^n} dx$$

$$\int \frac{\cos x}{x^n} dx$$

$$\int \frac{e^{-x^2}}{x^n} dx$$

Часто в приложениях возникает интеграл вида $\int R(x, \sqrt{P_n(x)}) dx$. Случаи, когда n=1 или n=2, исследованы нами ранее. В случае $n\geqslant 3$, вообще говоря, такой интеграл может быть неберущимся.

С помощью неберущихся интегралов определяются некоторые новые классы трансцендентных функций. Например, эллиптическими интегралами I, II и III рода называются соответственно:

$$\int \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}}$$

$$\int \frac{x^2 dx}{\sqrt{(1-x^2)(1-k^2x^2)}} \int \frac{dx}{(1+hx^2)\sqrt{(1-x^2)(1-k^2x^2)}}$$

Здесь 0 < k < 1.

Неверно, однако, думать что только форма радикала определяет, будет ли данный интеграл неберущимся. Например, интеграл

$$\int \frac{xdx}{\sqrt{(1-x^2)(1-k^2x^2)}},$$

очень похожий на эллиптические интегралы первого и второго рода, может быть взят заменой $t=x^2, dt=2xdx$.

4.2 Определённый интеграл Римана

4.2.1 Задача о вычислении площади криволинейной трапеции

К понятию определённого интеграла привела задача о площади криволинейной трапеции.

определение. Криволинейной трапецией называется фигура на координатной плоскости, ограниченная осью абсцисс, некоторыми прямыми x=a и $x=b\ (a< b)$ и графиком некоторой непрерывной и неотрицательной на [a;b] функции f.

определение. Разбиением T отрезка [a;b] называется совокупность точек $x_0,...,x_n,$ таких, что

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$$

В дальнейшем, говоря о разбиениях, слова "на отрезке [a;b]" мы будем почти всегда опускать, предполагая, что этот отрезок нам известен.

определение. Если разбиение T состоит из точек $x_0, ..., x_n$, то эти точки называются точками деления разбиения T.

определение. Отрезки $[x_{j-1};x_j]$, где j=1...n, называются подотрезками разбиения T и обозначаются Δ_j , а их длины обозначаются $\Delta x_j=x_j-x_{j-1}$.

определение. Наибольшая из длин подотрезков разбиения T называется диаметром разбиения T и обозначается $d(T) = \max_j \Delta_j$

определение. Если на каждом подотрезке Δ_j разбиения T выбрать произвольную точку ξ_j , то разбиение T называется разбиением с отмеченными точками и обозначается (T,ξ) .

Чтобы найти площадь S_T криволинейной трапеции, на отрезке [a;b] строят некоторое разбиение (T,ξ) и затем суммируют площади прямоугольников с шириной Δ_j и высотой $f(\xi_j)$:

$$S_T \approx \sum_{j=1}^n f(\xi_j) \cdot \Delta x_j$$

Здесь n - количество подотрезков разбиения T.

Интуитивно ясно, что чем меньше диаметр разбиения, тем лучше приближена площадь трапеции. Строгое математическое доказательство этому будет дано ниже.

4.2.2 Определение определённого интеграла

Введём сначала несколько вспомогательных определений.

определение. Разбиение T_2 , получающееся из разбиения T_1 путём добавления новых точек деления, называется измельчением разбиения T_1 . Пишут $T_2 \supset T_1$.

Часто вместо сквозной нумерации точек измельчения используют двойную, т. е. на отрезке $[x_{j-1};x_j]$ точки нумеруются как $x_{j-1,0},...,x_{j-1,m}$. Заметим, что $x_{j-1,0}=x_{j-1}$, но $x_{j-1,m}< x_j=x_{j,0}$.

определение. Пусть даны два разбиения T_1 и T_2 . Их объединением $T=T_1\cup T_2$ называется разбиение, составленное как из точек T_1 , так и из точек T_2 .

Заметим, что в таком случае $T \supset T_1, T \supset T_2$.

определение. Пусть $f:[a;b]\to\mathbb{R}$ и (T,ξ) – некоторое разбиение отрезка [a;b] на n подотрезков. Интегральной суммой функции f с разбиением T называется сумма произведений значений функции f в выбранных точках ξ_i на длины соответствующих отрезков разбиения:

$$S(f, (T, \xi)) = \sum_{j=1}^{n} f(\xi_j) \Delta x_j$$

Определение 4.2.1. Функция f называется интегрируемой по Риману на отрезке [a;b], если

$$\exists (J \in \mathbb{R}) \forall (\varepsilon > 0) \exists (\delta > 0) \forall ((T, \xi) : d(T) < \delta) [|S(f, (T, \xi)) - J| < \varepsilon] \ \ (4.12)$$

Число J в этом случае называют определённым интегралом (или интегралом Римана) функции f на отрезке [a;b] и пишут:

$$J = \int_{a}^{b} f(x)dx$$

Здесь:

f(x) – подынтегральная функция

f(x)dx – подынтегральное выражение

[a;b] — промежуток интегрирования

а – нижний предел интегрирования

b – верхний предел интегрирования

Иногда определение (4.12) пишут так:

$$\int_{a}^{b} f(x)dx = \lim_{d(T)\to 0} S(f, (T, \xi))$$

Но следует иметь в виду, что запись предела здесь – символическая, а не буквальная. Заметим вскользь, что определение (4.12) можно записать в виде, очень похожем на определение предела функции по Коши:

$$\exists (J \in \mathbb{R}) \forall (\varepsilon > 0) \exists (\delta > 0) \forall ((T, \xi)) [d(T) < \delta \Rightarrow |S(f, (T, \xi)) - J| < \varepsilon]$$

Тот факт, что функция f является интегрируемой по Риману на отрезке [a;b], сокращённо записывают так:

$$f \in R[a;b]$$

4.2.3 Эквивалентное определение определённого интеграла

И снова начнём со вспомогательного определения:

определение. Последовательность разбиений $\{T_n\}$ отрезка [a;b] называется неограниченно измельчающейся, если

$$\lim_{n \to \infty} d(T_n) = 0$$

Проницательный читатель наверняка предположил, что раз существует определение определённого интеграла (4.12), аналогичное определению предела функции по Коши, то существует и определение, аналогичное определению предела по Гейне. Сформулируем его:

Определение 4.2.2. Пусть $f:[a;b] \to \mathbb{R}$. Функция f называется интегрируемой по Риману, если

$$\exists (J \in \mathbb{R}) \forall \left(\left\{ \left(T_n, \xi^{(n)} \right) \right\} \right) \left[\lim_{n \to \infty} d(T_n) = 0 \Rightarrow \lim_{n \to \infty} S\left(f, \left(T_n, \xi^{(n)} \right) \right) = J \right]$$
(4.13)

Теорема.

Определения (4.12) и (4.13) эквивалентны. Докажем сначала, что $(4.12) \Rightarrow (4.13)$

Доказательство. Пусть

$$J = \int_{a}^{b} f(x)dx$$

в смысле определения (4.12).

Зафиксируем любую бесконечно измельчающуюся последовательность разбиений $\{(T_n, \xi^{(n)})\}$. Тогда $d(T_n) \to 0$, и, следовательно,

$$\forall (\delta > 0) \exists (n_0 \in \mathbb{N}) \forall (n \geqslant n_0) [d(T_n) < \delta]$$
(4.14)

С другой стороны, по определению (4.12),

$$\forall (\varepsilon > 0) \exists (\delta > 0) \forall ((T, \xi)) [d(T) < \delta \Rightarrow |S(f, (T, \xi)) - J| < \varepsilon]$$

Зафиксировав ε и найдя из этого условия δ , с учётом (4.14) получим:

$$\forall (\varepsilon > 0) \exists (n_0 \in \mathbb{N}) \forall (n \geqslant n_0) [d(T_n) < \delta]$$

Следовательно,

$$\forall (\varepsilon > 0) \exists (n_0 \in \mathbb{N}) \forall (n \geqslant n_0) \left[\left| S\left(f, \left(T_n, \xi^{(n)}\right)\right) - J \right| < \varepsilon \right]$$

Из этого условия непосредственно следует, что $J=\int\limits_a^b f(x)dx$ в смысле определения (4.13)

Докажем теперь, что из выполнения определения (4.13) следует выполнение (4.12)

доказательство. Предположим противное: пусть определение (4.13) выполнено, а определение (4.12) - нет, т. е.

$$\exists (\varepsilon > 0) \forall (\delta > 0) \exists ((T, \xi)) [d(T) < \delta \cap |S(f, (T, \xi)) - J| \geqslant \varepsilon]$$

Зафиксируем найденное ε и будем брать δ из последовательности $\{\frac{1}{n}\}$. Тогда разбиения $(T_n, \xi^{(n)})$ образуют бесконечно измельчающуюся последовательность. Но эта последовательность не сходится к J, т. к.

$$\left| S\left(f, \left(T_n, \xi^{(n)}\right)\right) - J \right| \geqslant \varepsilon$$

Таким образом, определение (4.13) не выполнено. Получили противоречие, следовательно, наше допущение о том, что определение (4.12) не выполнено — неверно. Эквивалентность определений доказана.

Доказано.

4.2.4 Необходимое условие интегрируемости функции

Теорема 4.2.1. Если $f \in R[a;b]$, то f ограничена на [a;b].

доказательство. Идея доказательства заключается в том, что если функция неограничена, то при любом, сколь угодно мелком разбиении найдётся

подотрезок, на котором она неограничена, и, двигая по этому отрезку отмеченную точку, можно добиться сколь угодно большой разницы интегральных сумм.

Итак, строгое доказательство.

Так, строгое доказательство.
Так как
$$f \in R[a;b]$$
, то $\exists (J \in \mathbb{R}) \left[J = \int\limits_a^b f(x) dx \right]$.

Предположим противное: f неограничена на [a; b]. Рассмотрим некоторое разбиение (T, ξ) . Тогда $\exists (i)[f]$ неограничена на Δ_i , то есть

$$\exists (i) \forall (M > 0) \exists (\xi_M \in \Delta_i) [|f(\xi_M)| > M]$$

Обозначим

$$S_i = \sum_{j=1, j \neq i}^n f(\xi_j) \Delta x_j$$

Тогда

$$|S(f, (T, \xi))| = |S_i + f(\xi_i)\Delta x_i| \geqslant |f(\xi_i)\Delta x_i| - |S_i|$$

Положим теперь

$$M = \frac{|J| + 1 + |S_i|}{\Delta x_i}$$

Тогда

$$|S(f, (T, \xi))| \ge |J| + 1 + |S_i| - |S_i| = |J| + 1$$

То есть

$$|S(f, (T, \xi)) - J| \ge |S(f, (T, \xi))| - |J| \ge 1$$

А это означает, что для $\varepsilon = 1$ определение 4.2.1 не выполнено. Мы пришли к противоречию, следовательно, наше допущение неверно, и функция f ограничена на [a;b].

Доказано.

Замечание 4.2.1. Обратное неверное. Так, функция Дирихле ограничена на любом отрезке, но не интегрируема на нём.

4.2.5 Критерий Коши интегрируемости функции

Теорема 4.2.2. $f \in R[a;b] \Leftrightarrow$

$$\forall (\varepsilon > 0) \exists (\delta > 0) \forall ((T', \xi'), (T'', \xi'')) [d(T') < \delta, d(T'') < \delta \Rightarrow \Rightarrow |S(f, (T', \xi')) - S(T'', \xi'')| < \varepsilon] \quad (4.15)$$

необходимость. Идея доказательства: просто применить определение интеграла и свойства модуля.

Действительно, по определению определённого интеграла

$$\exists (J\in\mathbb{R}) \forall (\varepsilon>0) \exists (\delta>0) \forall ((T',\xi'): d(T')<\delta) [|S(f,(T',\xi'))-J|<\frac{\varepsilon}{2}]$$

$$\exists (J\in\mathbb{R}) \forall (\varepsilon>0) \exists (\delta>0) \forall ((T'',\xi''): d(T'')<\delta) [|S(f,(T'',\xi''))-J|<\frac{\varepsilon}{2}]$$
 Значит,

$$\begin{split} |S(f,(T',\xi')) - S(T'',\xi'')| &= |S(f,(T',\xi')) - J + J - S(T'',\xi'')| \leqslant \\ &\leqslant |S(f,(T',\xi')) - J| + |S(T'',\xi'') - J| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

Доказано.

достаточность. Рассмотрим неограниченно измельчающуюся последовательность разбиений $\{(T_n, \xi^{(n)})\}$. Так как $d(T) \to 0$, то

$$\forall (\varepsilon > 0) \exists (n_0 \in \mathbb{N}) \forall (n \geqslant n_0) [d(T_n) < \delta]$$

В силу условия (4.15)

$$\forall (n, p \geqslant n_0) \left[\left| S\left(f, \left(T_n, \xi^{(n)}\right)\right) - S\left(f, \left(T_p, \xi^{(p)}\right)\right) \right| < \varepsilon \right]$$

Таким образом, последовательность интегральных сумм $\{S\left(f,\left(T_{n},\xi^{(n)}\right)\right)\}$ – фундаментальная числовая последовательность и имеет некоторый предел, обозначим его J.

Казалось бы, на этом можно остановиться и считать критерий доказанным, но что, если различные последовательности разбиений дадут разные пределы? Докажем, что такого не произойдёт.

Нужно доказать, что

$$\forall (\varepsilon > 0) \exists (\delta > 0) \forall ((T, \xi)) [d(T) < \delta \Rightarrow |S(f, (T, \xi)) - J| < \varepsilon]$$

Зафиксируем ε . Найдём по нему δ из (4.15). Возьмём любое разбиение T, не принадлежащее выбранной последовательности, такое, что d(T) <

 δ . При достаточно большом n (то есть $n\geqslant n_0$) $d(T_n)<\delta$. Применяем условие (4.15):

$$\left| S\left(f, \left(T_n, \xi^{(n)} \right) \right) - S\left(f, \left(T, \xi \right) \right) \right| < \frac{\varepsilon}{2}$$

При достаточно большом n эти суммы отличаются на сколь угодно малую величину.

Доказано.

- 4.2.6Необходимое и достаточное условие интегрируемости
- 4.2.7Интегралы Дарбу
- 4.2.8Признак Дарбу существования интеграла
- Свойства интеграла Римана 4.2.9

Следующие два свойства фактически дополняют определение:

$$\int_{a}^{a} f(x)dx = 0 \tag{4.16}$$

$$\int_{a}^{a} f(x)dx = 0$$

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$
(4.16)

Ещё два свойства характеризуют интеграл как линейный оператор на пространстве интегрируемых функций. Аддитивность:

$$\int_{a}^{b} (f+g)(x)dx = \lim_{d(T)\to 0} S(f+g,(T,\xi)) =$$

$$= \lim_{d(T)\to 0} S(f,(T,\xi)) + \lim_{d(T)\to 0} S(g,(T,\xi)) = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx \quad (4.18)$$

Однородность (c – константа):

$$\int\limits_a^b (cf)(x)dx = \lim\limits_{d(T) \rightarrow 0} S(cf,(T,\xi)) = c \lim\limits_{d(T) \rightarrow 0} S(f,(T,\xi)) = c \int\limits_a^b f(x)dx$$

Предостережём читателя: столь же красивой формулы для интеграла от произведения функций нет.

Введём вспомогательное определение.

Определение 4.2.3. Сужением разбиения (T, ξ) , содержащего среди точек деления c и d, отрезка [a;b] на подотрезок $[c;d] \subset [a;b]$ называется разбиение (T_1, ξ) , точками деления которого являются точки деления T, лежащие на отрезке [c;d], а отмеченными точками – соответствующие отмеченные точки разбиения T.

Если функция интегрируема на отрезке, то она интегрируема и на любом подотрезке.

доказательство. Пусть $f \in R[a;b], [\alpha;\beta] \subset [a;b]$. Рассмотрим те разбиения, в которые входят точки α и β , и положим $a = \xi_1, \alpha = \xi_p, \beta = \xi_q, b = \xi_n$ Тогда по необходимому и достаточному условию интегрируемости

$$\forall (\varepsilon > 0) \exists (\delta > 0) \forall ((T, \xi) : d(T) < \delta) \left[\sum_{i=1}^{n} \omega(f, \Delta_i) \Delta x_i < \varepsilon \right]$$

Так как колебание функции на отрезке есть величина положительная, а 1 то

$$\sum_{i=p}^{q} \omega(f, \Delta_i) \Delta x_i < \sum_{i=1}^{n} \omega(f, \Delta_i) \Delta x_i < \varepsilon$$

Пусть T_1 — сужение разбиения T на отрезок $[\alpha, \beta]$. Но $\sum_{i=p}^q \omega(f, \Delta_i) \Delta x_i < \varepsilon$ — сумма колебаний функции f, соответствующая разбиению T_1 . Значит, выполнено необходимое и достаточное условие интегрируемости для функции f на отрезке [a;b].

Доказано.

Если функция интегрируема на отрезке, то этот отрезок можно разбить на две части, и сумма интегралов на частях будет равна интегралу на отрезке:

$$f \in R[a;b], c \in [a;b] \Rightarrow \int\limits_a^b f(x) dx = \int\limits_a^c f(x) dx + \int\limits_c^b f(x) dx$$

доказательство. Тот факт, что интегралы на подотрезках существуют, вытекает из предыдущего свойства.

Рассмотри теперь бесконечно измельчающуюся последовательность разбиений $\{(T_n, \xi^{(n)})\}$, таких, что c – одна из точек деления.

По определению 4.2.2

$${S(f,(T,\xi))} \rightarrow \int_a^b f(x)dx$$

Если мы обозначим через T'_n и T''_n сужения T_n на [a;c] и [c;b] соответственно, то получим

$$S(f, (T_n, \xi^{(n)})) = S(f, (T'_n, \xi'^{(n)})) + S(f, (T''_n, \xi''^{(n)})) \to \int_a^c f(x) dx + \int_c^b f(x) dx$$

Доказано.

Вернёмся теперь к вопросу об интегрировании произведения функций. Здесь имеет место лишь неконструктивное утверждение: произведение двух интегрируемых на отрезке функций интегрируемо на этом отрезке, т. е.

$$\{f,g\} \subset R[a;b] \Rightarrow (f \cdot g) \in R[a;b]$$

доказательство. Так как f и g интегрируемы на [a;b], то они ограничены на [a;b]. Значит,

$$\exists (M > 0) \forall (x \in [a; b]) [f(x) \leqslant M, g(x) \leqslant M]$$

Оценим теперь колебание произведения функций fg на Δ_i , положив $\{x',x''\}\subset [a;b]$:

$$|f(x')g(x') - f(x'')g(x'')| = |g(x')(f(x') - f(x'') + f(x'')(g(x') - g(x''))| \le \le |g(x')| \cdot |f(x') - f(x'')| + |f(x'')| \cdot |g(x') - g(x'')| \le M\omega(f, \Delta_i) + M\omega(g, \Delta_i)$$

Значит,

$$\sum_{i=1}^{n} M\omega(fg, \Delta_i)\Delta x_i \leqslant M \sum_{i=1}^{n} (\omega(f, \Delta_i) + \omega(g, \Delta_i)) \Delta x_i$$

Но выражение справа сколь угодно мало по необходимому и достаточному условию интегрируемости, значит, и выражение слева сколь угодно мало (сумма колебаний неотрицательна), значит, снова применив необходимое и достаточное условие интегрируемости, получим, что $(f \cdot g) \in R[a;b]$.

Доказано.

Введём теперь определение неотрицательной и неположительной части функций:

Определение 4.2.4.

$$f_{+}(x) = \begin{cases} f(x), & \text{если } f(x) > 0 \\ 0, & \text{если } f(x) \leqslant 0 \end{cases}$$

Определение 4.2.5.

$$f_{-}(x) = \begin{cases} f(x), & \text{если } f(x) < 0 \\ 0, & \text{если } f(x) \leqslant 0 \end{cases}$$

Легко убедиться, что

$$f_{+}(x) + f_{-}(x) = f(x)$$

$$f_{+}(x) - f_{-}(x) = |f(x)|$$

Неотрицательная и неположительная части интегрируемой функции интегрируемы, т. е.

$$f \in R[a;b] \Rightarrow \{f_+, f_-\} \in R[a;b]$$

доказательство. Заметим, что колебание неотрицательной (неположительной) части функции на некотором отрезке не превосходит колебания самой функции на данном отрезке. Пусть T - разбиение отрезка [a;b] и $\sum_{i=1}^n \omega(f,\Delta_i) < \varepsilon$. Тогда

$$\sum_{i=1}^{n} \omega(f_{+}, \Delta_{i}) \Delta x_{i} < \sum_{i=1}^{n} \omega(f_{+}, \Delta_{i}) \Delta x_{i} < \varepsilon$$

$$\sum_{i=1}^{n} \omega(f_{-}, \Delta_{i}) \Delta x_{i} < \sum_{i=1}^{n} \omega(f, \Delta_{i}) \Delta x_{i} < \varepsilon$$

Применив необходимое у достаточное условие интегрируемости функции, получим, что $\{f_+,f_-\}\in R[a;b]$

Как следствие, модуль интегрируемой функции сам является интегрируемым:

$$f \in R[a;b] \Rightarrow |f| \in R[a;b]$$

Обратное, однако, неверно. Пример – функция $f(x) = \frac{1}{2} - D(x)$, где D(x) – функция Дирихле.

Наконец, докажем следующее свойство:

$$\{f,g\} \subset R[a;b], \forall (x \in [a;b])[f(x) \leqslant g(x)] \Rightarrow \int\limits_a^b f(x) dx < \int\limits_a^b g(x) dx$$

доказательство. Интерграл есть предел интегральных сумм. Но, так как $f(x) \leqslant g(x)$, то

$$S(f,(T,\xi))\leqslant S(g,(T,\xi))$$

Переходя к пределу при $d(T) \to 0$, получим требумое неравенство.

Доказано.

Как следствие, интеграл любой непрерывной положительной функции положителен:

$$f(x) \in R[a;b], \forall (x \in [a;b])[f(x) > 0] \Rightarrow \int_a^b f(x)dx > 0$$

Более того,

$$f \in R[a;b] \Rightarrow \int_{a}^{b} f(x)dx \leqslant \int_{a}^{b} |f(x)|dx$$

4.2.10 Первая теорема о среднем

Теорема 4.2.3. Пусть $\{f,\varphi\}\subset R[a;b],\ \varphi$ сохраняет знак на $[a;b],\ m=\inf_{[a;b]}f(x),\ M=\sup_{[a;b]}f(x).$ Тогда

$$\exists (\mu \in [m; M]) \left[\int_a^b f(x) \varphi(x) dx = \mu \int_a^b \varphi(x) dx \right]$$

доказательство. Не теряя общности, будем доказывать для случая, когда $\varphi(x)$ положительна на [a;b]. (В противном случае – просто вынести минус единицу за знак интеграла.)

Так как

$$\forall (x \in [a; b]) [m \leqslant f(x) \leqslant M]$$

умножив на $\varphi(x)$, имеем

$$m\varphi(x) \leqslant f(x)\varphi(x) \leqslant M\varphi(x)$$

Интегрируем (помним свойства интеграла Римана!)

$$\int_{a}^{b} m\varphi(x)dx \leqslant \int_{a}^{b} f(x)\varphi(x)dx \leqslant \int_{a}^{b} M\varphi(x)$$

Если $\int\limits_a^b \varphi(x)dx=0$, то $\varphi(x)\equiv 0$ на [a;b], следовательно, $\int\limits_a^b \varphi(x)f(x)dx=0$ и μ можно брать любым.

В противном случае на $\int_{a}^{b} \varphi(x) f(x) dx$ можно разделить:

$$m \leqslant \frac{\int\limits_{a}^{b} \varphi(x)dx}{\int\limits_{a}^{b} \varphi(x)f(x)dx} \leqslant M$$

Условию теоремы удовлетворяет

$$\mu = \frac{\int_{a}^{b} \varphi(x)dx}{\int_{a}^{b} \varphi(x)f(x)dx}$$

Доказано.

Как следствие, если f непрерывна на [a;b], то, в силу теоремы о промежуточном значении,

$$\exists (\xi \in [a;b])[f(\xi) = \mu]$$

то есть

$$\exists (\xi \in [a;b]) \left[\int_{a}^{b} f(x)\varphi(x)dx = f(\xi) \int_{a}^{b} \varphi(x)dx \right]$$

Если пойти дальше и положить $\varphi(x) \equiv 1$, получим

$$\exists (\xi \in [a;b]) \left[\int_a^b f(x) dx = f(\xi)(b-a) \right]$$

4.2.11 Вторая теорема о среднем

Теорема 4.2.4. Пусть $\varphi:[a;b] \to \mathbb{R},\ \varphi$ монотонна, $f \in R[a;b]$. Тогда

$$\exists (\xi \in [a;b]) \left[\int_{a}^{b} f(x)\varphi(x)dx = \varphi(a) \int_{a}^{\xi} f(x)dx + \varphi(b) \int_{\xi}^{b} f(x)dx \right]$$

- 4.2.12 Простейшие классы интегрируемых функций
- 4.2.13 Формула Ньютона-Лейбница

4.2.14 Формула интегрирования по частям для определённого интеграла

Взятие определённого интеграла по частям применяют в тех же случаях, что и неопределённого. Сформулируем теорему, являющуюся следствием из формулы Ньютона-Лейбница.

Теорема 4.2.5. Пусть функции u и v непрерывно дифференцируемы на [a;b]. Тогда

$$\int_{a}^{b} (uv')(x)dx = (uv)(x)\Big|_{a}^{b} - \int_{a}^{b} (u'v)(x)dx$$

Доказательство.

$$(uv)'(x) = (u'v)(x) + (uv')(x)$$

Проинтегрировав на [a;b], получаем:

$$\int_{a}^{b} (uv)'(x)dx = \int_{a}^{b} (u'v)(x)dx + \int_{a}^{b} (uv')(x)dx$$

То есть

$$\int_{a}^{b} (uv)'(x)dx - \int_{a}^{b} (u'v)(x)dx = \int_{a}^{b} (uv')(x)dx$$

По формуле Ньютона-Лейбница

$$\int_{a}^{b} (uv)'(x)dx = (uv)(x)\Big|_{a}^{b}$$

Доказано.

4.2.15 Замена переменной в определенном интеграле

4.2.16 Понятие о приближенных методах вычисления определённых интегралов

В технических задачах вычислять определённый интеграл по формуле Ньютона-Лейбница или, тем более, по определению часто бывает очень сложно и не нужно: требуется только определённая точность. В этих случаях подынтегральную функцию заменяют функцией более простой, как правило, кусочно-непрерывной.

Пусть f — функция, которую надо численно проинтегрировать на [a;b], через g обозначим функцию, которой будем заменять f.

Метод первый — метод прямоуголника — фактически повторяет определение, но "идёт не до конца": строится разбиение T с точками деления $x_0, ..., x_n$; эти же точки принимаются за отмеченные на отрезках, левыми (правыми) концами которых они являются (одна точка, конечно, остаётся лишней). Таким образом, при методе прямоугольника функция g принимает вид (в случае правых концов):

$$g(x) = f(x_i), \text{ где } x_{i-1} < x \leqslant x_i$$

Метод трапеции предполагает замену функции на ломаную с вершинами $(x_i, f(x_i))$.

Однако на практике наиболее часто используется метод Симпсона, или метод парабол. Он основан на том, что неизвестные коэффициенты функции $g_i(x) = a_i x^2 + b_i x + c_i$ можно восстановить по трём точкам, принадлежащим грайику этой функции. Отрезок [a;b] разбивают на n=2m частей, а затем на отрезках $[x_{2i};x_{2i+2}]$ заменяют параболами, проходящими через точки $(x_{2i},f(x_{2i}),(x_{2i+1},f(x_{2i+1}),(x_{2i+2},f(x_{2i+2}).$

4.3 Приложения определённого интеграла

4.3.1 Аддитивная функция промежутка

определение. Пусть $F:[a;b]^2 o \mathbb{R}$. F называется аддитивной, если

$$\forall (\{\alpha, \beta, \gamma\} \subset [a; b])[F(\alpha, \beta) = F(\alpha, \gamma) + F(\gamma, \beta)] \tag{4.19}$$

Заметим, что аддитивной функцией промежутка такую функцию называют потому, что часто удобно считать (α, β) промежутком.

Замечание 4.3.1. $f(\alpha, \alpha) = 0$, так как $F(\alpha, \beta) = F(\alpha, \alpha) + F(\alpha, \beta)$. Аналогично доказывается, что $F(\beta, \alpha) = -F(\alpha, \beta)$.

Покажем теперь, что с аддитивной функцией можно связать некоторую обычную функцию. Это сделать очень легко – достаточно зафиксировать $\alpha=a$:

$$f(x) = F(a, x)$$

Тогда приращение $f(\beta) - f(\alpha)$ запишется в виде:

$$f(\beta) - f(\alpha) = F(\alpha, \beta) - F(\alpha, \alpha) = F(\alpha, \beta)$$

Найденная связь обратима: аддитивную функцию можно определить через разность приращений.

Пример 4.3.1. Пусть
$$F(x) = \int_{a}^{x} f(t)dt, f \in R[a;b]$$
 и

$$\forall (\{\alpha,\beta\}\subset [a;b])[\Phi(\alpha,\beta)=F(\beta)-F(\alpha)]$$

. Тогда
$$\Phi(\alpha,\beta)=\int\limits_a^\beta f(t)dt-\int\limits_a^\alpha f(t)dt=\int\limits_\alpha^\beta f(t)dt$$

Теорема 4.3.1. Пусть дана аддитивная функция промежутка [a;b] $F(\alpha,\beta)$, $\{\alpha,\beta\}\subset [a;b]$, и функция $f\in R[a;b]$ такая, что

$$\forall (\{\alpha, \beta\} \subset [a, b] : \alpha < \beta) [(\beta - \alpha) \inf_{[\alpha; \beta]} f(x) \leqslant F(\alpha, \beta) \leqslant (\beta - \alpha) \sup_{[\alpha; \beta]} f(x)]$$

$$(4.20)$$

Тогда
$$F(\alpha,\beta)=\int\limits_{lpha}^{eta}f(t)dt$$

доказательство. Возьмём разбиение T отрезка [a;b] и обозначим $m_i = \inf_{\Delta_i} f(x),$ $M_i = \sup_{\Delta_i} f(x)$ Тогда из (4.20) следует, что

$$m_i \Delta x_i \leqslant F(x_{i-1}, x_i) \leqslant M_i \Delta x_i$$

Суммируем:

$$\sum_{i=1}^{n} m_i \Delta x_i \leqslant \sum_{i=1}^{n} F(x_{i-1}, x_i) \leqslant \sum_{i=1}^{n} M_i \Delta x_i$$

Слева и справа в этом равенстве – нижняя и верхняя суммы Дарбу соответственно. Так как F – аддитивная функция промежутка, то

$$\sum_{i=1}^{n} F(x_{i-1}, x_i) = F(\alpha, \beta)$$

Отсюда немедленно следует, что

$$F(\alpha, \beta) = \int_{\alpha}^{\beta} f(t)dt$$

Доказано.

- 4.3.2 Длина параметризованной кривой
- 4.3.3 Площадь поверхности вращения
- 4.3.4 Площадь фигуры
- 4.3.5 Объём тела вращения
- 4.3.6 Понятие о несобственных интегралах

Подобно тому, как мы распространяли понятие предела на случай, когда в выражении участвует бесконечность, можно распространить и по-

нятие интеграла на бесконечные (неограниченные) криволинейные трапеции. Такие интегралы называют несобственными.

Определение 4.3.1. Пусть $y=f(x),\ f:[a;+\infty]\to\mathbb{R},\ \forall (b>a)[f\in R[a;b]].$ Если

$$\exists \lim_{b \to \infty} \int_{a}^{b} f(x)dx \neq \pm \infty \tag{4.21}$$

то говорят, что интеграл

$$\int_{a}^{+\infty} f(x)dx \tag{4.22}$$

сходится и равен пределу (4.21), в противном случае — что интеграл расходится. Интеграл по бесконечному промежутку называют несобственным интегралом первого рода.

Запись

$$\int_{a}^{+\infty} f(x)dx = \infty$$

не используют.

Пример 4.3.2.

$$\int_{0}^{+\infty} \frac{dx}{1+x^2} = \lim_{b \to +\infty} \int_{0}^{b} \frac{dx}{1+x^2} = \lim_{b \to +\infty} (\operatorname{arctg} b - \operatorname{arctg} 0) = \frac{\pi}{2}$$

Несобственный интеграл для $-\infty$ в качестве предела вводится аналогично.

Рассмотрим теперь другой тип несобственных интегралов — интегралы от неограниченных функций, называемые несобственными интегралами второго рода.

Определение 4.3.2. Пусть функция f неограниченно возрастает при стремлении справа к точке a:

$$\lim_{x \to a+} f(x) = \infty$$

И

$$\forall (\varepsilon > 0)[f \in R[a + \varepsilon; b]]$$

то полагают

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0+} \int_{a+\varepsilon}^{b} f(x)dx$$

если предел в правой части равенства существует. В противном случае говорят, что интеграл расходится.

Случай для стремления слева к правой границе определяется аналогично.

Определение 4.3.3. Точки $\pm \infty$ и точки, в которых подынтегральная функция неограниченно возрастает, если они принадлежат промежутку интегрирования, называются особенностями интеграла.

Если в интеграле несколько особенностей, то его разбивают на сумму интегралов, каждый из которых имеет не более одной особенности.

Определение 4.3.4. Несобственный интеграл

$$\int_{a}^{b} f(x)dx$$

(первого или второго рода) называется абсолютно сходящимся, если сходится интеграл

$$\int_{a}^{b} |f(x)| dx$$

Глава 5

Скалярные функции векторного аргумента

5.1 Скалярные функции векторного аргумента

5.1.1 Пространство \mathbb{R}^n

Определение 5.1.1. Пространство \mathbb{R}^n – множество упорядоченных наборов из n вещественных чисел:

$$x \in \mathbb{R}^n \Leftrightarrow x = (x^1, ..., x^n), \quad x^i \in \mathbb{R}, \quad i = 1, ..., n$$

Замечание 5.1.1. \mathbb{R}^n – линейное пространство. Оно более детально изучается в курсе линейной алгебры.

Замечание 5.1.2. Индекс (номер) координаты вектора пишется вверху, т. к. нижний индекс необходим в выкладках, содержащих последовательности. Как правило, такие обозначения не приводят к недоразумению и путанице с обозначением степени. Внимательный читатель заметит, что эти обозначения сходны с обозначениями тензорной алгебры; однако же растановкой индексов мы и ограничимся, а сокращённую запись суммы и другие соглашения заимствовать не будем.

Выпишем определения операций в \mathbb{R}^n – сложения и внешнего умножения:

$$\forall (x = (x^1, ..., x^n) \in \mathbb{R}^n, y = (y^1, ..., y^n) \in \mathbb{R}^n)[x + y = (x^1 + y^1, ..., x^n + y^n)]$$

$$\forall (\lambda \in \mathbb{R}) \forall (x = (x^1, ..., x^n) \in \mathbb{R}^n) [\lambda x = (\lambda x^1, ..., \lambda x^n)]$$

Нулевой вектор, как и скалярный нуль, и нулевой оператор, и т. д., будем обозначать символом 0. Опять же, в большинстве случаев к недоразумению такое обозначение не приводит.

Все выкладки будем давать в стандартном базисе e:

$$e_1 = (1, 0, ..., 0)$$

...

$$e_n = (0, ..., 0, 1)$$

Напомним также тот факт, что любой вектор разложим по базису:

$$\forall (x \in \mathbb{R}^n) \exists (\alpha_1, ..., \alpha_n \in \mathbb{R}) [x = \alpha_1 e_1 + ... + \alpha_n e_n]$$

Примеры пространств:

 $\mathbb{R}^1 = \mathbb{R}$

 \mathbb{R}^2 – точки плоскости.

 \mathbb{R}^3 – точки пространства.

5.1.2 Нормированное пространство \mathbb{R}^n

Определение 5.1.2. \mathbb{R}^n – нормировано, если каждому вектору $x \in \mathbb{R}^n$ сопоставлено вещественное число ||x||, так, что:

$$||x|| = 0 \Leftrightarrow x = 0 \tag{5.1}$$

$$\forall (\lambda \in \mathbb{R})[\|\lambda x\| = |\lambda| \|x\|] \tag{5.2}$$

$$\forall (y \in \mathbb{R}^n) [\|x + y\| \le \|x\| + \|y\|] \tag{5.3}$$

Эти три формулы называют аксиомами нормы. Заметим, что неотрицательность нормы нет необходимости вводить как аксиому:

$$2||x|| = ||x|| + |-1|||x|| = ||x|| + ||-x|| \geqslant ||x + (-x)|| = ||0|| = 0$$

Норма, вообще говоря, является скалярной функцией векторного аргумента, но определение такой функции будет дано далее.

Определение 5.1.3. Евклидовой нормой называют норму, введённую равенством

$$|x| = \sqrt{\sum_{i=1}^{n} (x^i)^2} \tag{5.4}$$

Евклидову норму обозначают не двойными вертикальными чертами, а одинарными. Пространство \mathbb{R}^n , в котором введена евклидова норма, называт евклидовым. В \mathbb{R}^1 евклидова норма – не что иное, как модуль.

Аксиома (5.3) приводит к неравенству Буняковского-Шварца:

$$\sum_{i=1}^{n} |a^{i}b^{i}| \leqslant \sqrt{\sum (a^{i})^{2}} + \sqrt{\sum (b^{i})^{2}}$$
 (5.5)

Заметим, однако, что это неравенство возможно доказать и без применения методов математического анализа или линейной алгебры.

Другим следствием аксиомы (5.3) является неравенство Коши - Миньковского:

$$\sqrt{\sum_{i=1}^{n} (x^i + y^i)^2} \leqslant \sqrt{\sum_{i=1}^{n} (x^i)^2} + \sqrt{\sum_{i=1}^{n} (y^i)^2}$$
 (5.6)

Заметим, что можно вводить и неевклидовы нормы, например:

$$||x^1, ..., x^n|| = \max_{1...n} x^i$$
 (5.7)

$$||x^1, ..., x^n|| = \sum_{i=1}^n x^i$$
 (5.8)

Определение 5.1.4. Две нормы $||x||_1$ и $||x||_2$ в \mathbb{R}^n называются эквивалентными, если

$$\exists (c_1 > 0, c_2 > 0) \forall (x \in \mathbb{R}^n) [c_1 || x ||_1 \leqslant || x ||_2 \leqslant c_2 || x ||_1]$$
 (5.9)

Примем пока без доказательств утверждение, что в конечномерных \mathbb{R}^n любые две нормы эквивалентны. Позже оно будет доказано.

Определение 5.1.5. Множество $G \subset \mathbb{R}^n$ – ограниченно, если

$$\exists (c > 0) \forall (x \in G) [\|x\| \leqslant c] \tag{5.10}$$

Определение 5.1.6. Функция $\rho(x,y)$, где $x \in \mathbb{R}^n$, $y \in \mathbb{R}^n$, называется метрикой, если выполнены следующие аксиомы (аксиомы метрики):

$$\rho(x,y) = 0 \Leftrightarrow x = y \tag{5.11}$$

$$\rho(x,y) = \rho(y,x) \tag{5.12}$$

$$\rho(x,y) \leqslant \rho(x,z) + \rho(z,y) \tag{5.13}$$

Заметим, что неотрицательность метрики следует из третьей аксиомы метрики при y=x.

Определение 5.1.7. Евклидово пространство, в котором введена метрика

$$\rho(x,y) = ||x - y|| \tag{5.14}$$

называют метрическим.

Заметим вскользь, что метрику можно ввести и без использования понятия нормы.

5.1.3 Последовательность в \mathbb{R}^n . Сходимость последовательностей. Эквивалентность покоординатной сходимости

Определение 5.1.8. Последовательностью в \mathbb{R}^n называется отображение $f: \mathbb{N} \to \mathbb{R}^n$.

Это означает, что $\forall (k \in \mathbb{N}) \exists (x_k \in \mathbb{R}^n) [f(k) = x_k].$

Пример 5.1.1.

$$\left\{ x_k = \left(\frac{1}{k}; k^2 + 1; 2^k; \frac{k}{3k+1} \right) \right\}$$

$$x_1 = \left(1; 2; 2; \frac{1}{4} \right)$$

$$x_2 = \left(\frac{1}{2}; 5; 4; \frac{2}{7} \right)$$

ит. д.

Определение 5.1.9. Пусть $\{x_k\}\subset \mathbb{R}^n$ - последовательность. Если

$$\exists (x_0 \in \mathbb{R}^n)[\{\|x_k - x_0\|\} \to 0]$$

(здесь $\{\|x_k - x_0\|\}$ – числовая последовательность), то говорят, что $\{x_k\}$ сходится к x_0 и пишут:

$$\{x_k\} \to x_0$$

ИЛИ

$$\lim x_k = x_0$$

ИЛИ

$$\lim_{k \to \infty} x_k = x_0$$

Иначе говоря,

$$\{x_k\} \to x_0 \Leftrightarrow \forall (\varepsilon > 0) \exists (k_0 \in \mathbb{N}) \forall (k > k_0) [||x_k - x_0|| < \varepsilon]$$

Легко доказать, что если две нормы эквивалентны, то сходимость по первой из этих норм равносильна сходимости по второй.

Теорема 5.1.1. Сходимость по норме эквивалентна покоординатной сходимости, т. е.

$$\{x_k\} \to x_0 \Leftrightarrow \forall (i \in \mathbb{Z} \cap [1; n])[x_k^i \to x_0^i]$$

доказательство. Так как все нормы эквивалентны, то докажем утверждение только для евклидовой нормы (5.4):

$$|x_k - x_0| = \sqrt{\sum_{i=1}^n (x_k^i - x_0^i)^2} \to 0 \Rightarrow \forall (i \in \mathbb{Z} \cap [1; n])[x_k^i - x_0^i \to 0]$$

Доказано.

Следствие 5.1.1.1.

$$\forall (\{x_k\} \to x_0 : \{x_k\} \subset \mathbb{R}^n, \{y_k\} \to y_0 : \{y_k\} \subset \mathbb{R}^n, \{\lambda_k\} \to \lambda_0 : \{\lambda_k\} \subset \mathbb{R}) \\ [\{x_k + y_k\} \to x_0 + y_0 \cap \{\lambda_k x_k\} \to \lambda_0 x_0]$$

Следствие 5.1.1.2. Некоторое множество $G \subset \mathbb{R}^n$ ограничено тогда и только тогда, когда ограничено множество, состоящее из вещественных чисел, являющихся координатами элементов G.

Теорема 5.1.2. *Больцано-Вейерштрасса для* \mathbb{R}^n Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

доказательство. Пусть $\{x_k\} \subset \mathbb{R}^n$ — последовательность. Выделим из неё сначала подпоследовательность $\{x_{k_1}\}$ так, что последовательность первых координат $\{x_{k_1}^1\}$ сходится; (это возможно по теореме Больцано-Вейерштр

для \mathbb{R} , так как множество значений первых координат ограничено) затем выделим из $\{x_{k_1}\}$ подпоследовательность $\{x_{k_2}\}$, такую, что последовательность вторых координат $\{x_{k_1}^2\}$ сходится. Продолжая действовать подобным образом, получим требуемую последовательность $\{x_{k_n}\}$, сходящуюся покоординатно. Доказано.

- 5.1.4 Замкнутые, открытые, компактные множества в \mathbb{R}^n
- 5.1.5 Функции многих переменных. Предел. Непрерывность

- 5.2 Дифференцирование скалярных функций векторного аргумента
- $\mathbf{5.2.1}$ Линейные функционалы в \mathbb{R}^n
- 5.2.2 Определение дифференциала скалярной функции векторного аргумента. Связь между понятиями дифференцируемости и непрерывности
- 5.2.3 Простейшие свойства операции дифференцирования
- 5.2.4 Определение производной по направлению. Связь между понятиями дифференцируемости функции по Фреше и Гато
- 5.2.5 Теорема Лагранжа
- 5.2.6 Частные производные скалярных функций векторного аргумента. Связь между существованием частных производных и дифференцируемостью функции по Фреше и Гато
- 5.2.7 Теорема о дифференцируемости сложной функции и следствие из неё
- 5.2.8 Инвариантность формы первого дифференциала
- 5.2.9 Частные производные высших порядков
- 5.2.10 Дифференциалы высших порядков
- 5.2.11 Формула Тейлора для скалярной функции векторного аргумента

Теорема 5.2.1. Пусть $f: E \to \mathbb{R}, E \subset \mathbb{R}^n, E$ открыто, f дифференцируема на E до (k+1)-го порядка включительно. Тогда

$$\forall (x \in E) \exists (r > 0) \forall (h \in \mathbb{R}^n : ||h|| < r) \exists (\theta = \theta(x, h), 0 < \theta < 1)$$

$$\left[f(x+h) = f(x) + df(x, h) + \frac{1}{2!} d^2 f(x, h) + \dots + \frac{1}{k!} d^k f(x, h) + \frac{1}{(k+1)!} d^{k+1} f(x+\theta h, h) = \right]$$

$$= f(x) + \sum_{i=1}^k \frac{1}{i!} d^i f(x, h) + \frac{1}{(k+1)!} d^{k+1} f(x+\theta h, h)$$
(5.15)

- 5.3 Локальные экстремумы скалярных функций векторного аргумента
- 5.3.1 Необходимое условие локального экстремума
- 5.3.2 Достаточные условия локального экстремума

Теорема 5.3.1. Пусть $A \subset \mathbb{R}^n$, $f: A \to \mathbb{R}$ и f дважды непрерывно дифференцируема в $x_0 \in A$, x_0 - стационарная точка f, второй дифференци-

ал f в точке x_0 , т. е. $d^2f(x_0,h)$ является невырожденной квадратичной формой. Тогда $d^2f(x_0,h)$ определяет наличие в точке x_0 локального экстремума, причём если d^2f — положительно определённая квадратичная форма (напомним, от h), то функция f имеет в точке x_0 локальный минимум, если d^2f — отрицательно определённая квадратичная форма, то функция f имеет в точке x_0 локальный максимум, если же d^2f — неопределённая квадратичная форма, то локального экстремума в точке x_0 у функции f нет.

доказательство. Доказано. ...

- 5.4 Теорема о неявной функции (теорема Юнга)
- 5.4.1 Лемма о неявной функции
- 5.4.2 Теорема Юнга
- 5.4.3 Следствие о непрерывной дифференцируемости k-го порядка
- 5.4.4 Теорема о неявной функции для скалярной функции векторного аргумента

Глава 6

Векторные функции векторного аргумента

6.1	Π редел отображения из \mathbb{R}^n в \mathbb{R}^m
6.1.1	Эквивалентность определений по Коши и по Гейне
6.1.2	Эквивалентость покоординатной сходимости
6.1.3	Предел линейной комбинации функций
6.1.4	Повторные пределы
6.2	Непрерывность отображения из \mathbb{R}^n в \mathbb{R}^m
6.2.1	Различные определения непрерывности
6.2.2	Непрерывность координатных функций
6.2.3	Ограниченность образа окрестности
6.2.4	Непрерывность линейной комбинации функций
6.2.5	Непрерывность сложного отображения
6.2.6	Теорема Вейерштрасса
6.2.7	Линейная связность образа
6.2.8	Теорема Кантора
6.2.9	Открытость прообраза

$\mathbf{6.3}$ Линейные отображения из \mathbb{R}^n в \mathbb{R}^m

6.3.1 Определение линейного отображения

Перед тем, как познакомить читателя с понятием производной векторной функции векторного аргумента, не лишним будет напомнить ему некоторые базовые сведения о линейных отображениях, изученные ранее в курсе алгебры.

Определение 6.3.1. Отображение $L: \mathbb{R}^n \to \mathbb{R}^m$ назывется линейным, если:

$$\forall (x, y \in \mathbb{R}^n) [L(x+y) = L(x) + L(y)] \tag{6.1}$$

$$\forall (x \in \mathbb{R}^n) \forall (\lambda \in \mathbb{R}) [L(\lambda x) = \lambda L(x)]$$
(6.2)

Свойства 6.1, называемое аддитивностью, и 6.2, называемое однородностью, иногда объединяют в свойство, называемое линейностью:

$$\forall (x, y \in \mathbb{R}^n) \forall (\lambda, \mu \in \mathbb{R}) [L(\lambda x + \mu y) = \lambda L(x) + \mu L(y)]$$
 (6.3)

По индукции легко установить, что для линейного отображения L верно следующее:

$$\forall (x_1, ..., x_n \in \mathbb{R}^n) \forall (\lambda_1, ..., \lambda_n \in \mathbb{R}) \left[L\left(\sum_{i=1}^n \lambda_i x_i\right) = \sum_{i=1}^n L(\lambda_i x_i) \right]$$
 (6.4)

Отдельно обратим внимание читателя на следующие утверждения:

Утверждение 6.3.1. Линейное отображение является непрерывным.

Утверждение 6.3.2. Если L_1 и L_2 — линейные отображения из \mathbb{R}^n в \mathbb{R}^m , то отображение $L: \mathbb{R}^n \to \mathbb{R}^m$, задаваемое формулой $L(x) = \lambda_1 L_1(x) + \lambda_2 L_2(x)$, где $\{\lambda_1, \lambda_2\} \subset \mathbb{R}$, также является линейным.

Утверждение 6.3.3. Суперпозиция линейных отображений есть линейное отображение.

Напомним, что в курсе алгебры вводилось понятие матрицы линейного отображения. Излагая дальнейший материал, будем считать, что в пространстве \mathbb{R}^n задан стандартный базис. Учитывая это, условимся сокращать для линейного отображения запись L(x) до Lx.

Утверждение 6.3.4. Матрица суперпозиции линейных отображений есть произведение матриц соответствующих линейных отображений, притом матрица внешнего отображения ставится слева (напомним, что произведение матриц некоммутативно).

Определение 6.3.2. Линейное отображение, действующее из \mathbb{R}^n в \mathbb{R} , называется линейным функционалом.

6.3.2 Норма линейного отображения

Из курса алгебры читателю известно, что линейные отображения из \mathbb{R}^n в \mathbb{R}^m образуют линейное пространство $L(\mathbb{R}^n,\mathbb{R}^m)$ размерности nm. Ввести норму на этом пространстве можно различными способами — например, как сумму элементов матрицы в некотором фиксированном базисе или как максимальный элемент такой матрицы. Подобное разнообразие широко используется, например, в курсе дифференциальных уравнений; напомним, что в конечномерном пространстве все нормы эквивалентны. Нам же было бы удобно условиться называть нормой некоторый фиксированный функционал, действующий из пространства линейных отображений в \mathbb{R} .

Рассмотрим функцию $n(L)=\sup_{|x|\leqslant 1}|L(x)|$, где $x\in\mathbb{R}^n,\,L:\mathbb{R}^n\to\mathbb{R}^m.$ Заметим, что $\phi(x)=|L(x)|$ — сккалярная функция векторного аргумента. Значит, на компакте, задаваемом неравенством $|x|\leqslant 1$, т. е. на замкнутом единичном шаре в \mathbb{R}^n , она ограничена и достигает своего супремума. Таким образом, мы можем назвать функцию n нормой. Итак, в дальнейшем будем считать, что

$$||L|| = \sup_{|x| \leqslant 1} |L(x)|$$

Утверждение 6.3.5. $\forall (x : |x| \leq 1)[|Lx| \leq ||L||]$ Следствие 6.3.5.1. $\forall (x \in \mathbb{R}^n)[|Lx| \leq ||L|| \cdot |x|]$

доказательство. Для x=0 утверждение очевидно. Для $x \neq 0$ имеем

$$|Lx| = \left| L\left(\frac{x}{|x|}\right) \cdot |x| \right| = |x| \cdot \left| L\left(\frac{x}{|x|}\right) \right| \leqslant |x| \cdot ||L||$$

Доказано.

. .

6.4 Дифференцируемость отображения из \mathbb{R}^n в \mathbb{R}^m

6.4.1 Определение производной Фреше

Определение 6.4.1. Пусть $A \subset \mathbb{R}^n$, x_0 — внутренняя точка $A, f: A \to \mathbb{R}^m$. Отображение f называется дифференцируемым по Фреше в точке A, если

$$\exists (L_{x_0} \in L(\mathbb{R}^n, \mathbb{R}^m)) \forall (h \in \mathbb{R}^n : x_0 + h \in A) [f(x_0 + h) - f(x_0) = L_{x_0}h + \omega(x_0, h), \omega(x_0, h) = o(\|h\|)]$$
 (6.5)

Определение 6.4.2. Введённое выше линейное отображение L_{x_0} называется производной по Фреше функции f в точке x_0 и обозначается $f'(x_0)$ или $Df(x_0)$. Иногда его также называют производным отображением или касательным отображением. Значение $f'(x_0)$ на элементе h называется дифференциалом функции f, соответствующим приращению h: $df(x_0,h) = f'(x_0)h$.

Определение 6.4.3. Функцию, дифференцируемую в каждой точке некоторого множества, называют дифференцируемой на этом множестве.

Замечание 6.4.1. В отличие от случая скалярной функции скалярного аргумента, функция и производная представляют собой объекты разной природы:

$$f(x) \in \mathbb{R}^m$$

 $f'(x) \in L(\mathbb{R}^n, \mathbb{R}^m)$

Иногда понятия дифференциала и производной не различают.

Определение 6.4.4. Введённая в определении 6.4.1 функцию $\omega(x_0,h)$ называется остатком приращения.

Пример 6.4.1. Если $f: A \to \mathbb{R}^m, \ f = const, \ \text{т. е. постоянно, то } \forall (x \in A)[f'(x) = 0].$

Пример 6.4.2. Если $f:A\to \mathbb{R}^m,\ f\in L(\mathbb{R}^n,\mathbb{R}^m),\ \text{т. е. линейно, то}\ \forall (x\in A)[f'(x)=f].$

Покажем теперь, как вычислять производную Фреше по определению, заодно убедив читателя, что это не вполне удобно.

Пример 6.4.3. $f: \mathbb{R}^2 \to \mathbb{R}^2$,ж

$$f(x^1, x^2) = \left(\frac{1}{2} \left((x^1)^2 - (x^2)^2 \right); x^1 x^2 \right)$$

Зафиксируем $h = (h^1, h^2)$. Выписываем приращение функции:

$$f(x+h) - f(x) =$$

$$= \left(\frac{1}{2}\left((x^{1} + h^{1})^{2} - (x^{2} + h^{2})^{2}\right); (x^{1} + h^{1})(x^{2} + h^{2})\right) - \left(\frac{1}{2}\left((x^{1})^{2} - (x^{2})^{2}\right); x^{1}x^{2}\right)$$

$$= (x^{1}h^{1} - x^{2}h^{2}; x^{1}h^{2} - x^{2}h^{1}) + \left(\frac{1}{2}\left((h^{1})^{2} + (h^{2})^{2}\right); h^{1}h^{2}\right)$$
(6.6)

Видно, что первое слагаемое линейно по h, второе — нет. Значит,

$$f'(x)(h^1, h^2) = (x^1h^1 - x^2h^2; x^1h^2 - x^2h^1) = \begin{pmatrix} x^1 & -x^2 \\ x^2 & x^1 \end{pmatrix} \begin{pmatrix} h^1 \\ h^2 \end{pmatrix}$$

Таким образом, производная имеет вид

$$f'(x) = \begin{pmatrix} x^1 & -x^2 \\ x^2 & x^1 \end{pmatrix}$$

- 6.4.2 Свойства производной
- 6.4.3 Теорема о дифференцируемости сложного отображения
- 6.4.4 Три следствия из теоремы о дифференцируемости сложного отображения
- 6.4.5 Матрица Якоби. Якобиан

6.5 Принцип сжимающих отображений

- 6.5.1 Необходимые определения
- 6.5.2 Принцип сжимающих отображений
- 6.5.3 Оценка погрешности при использовании метода последовательных приближений

. .

6.6 Теорема о конечных приращениях

6.6.1 Пример невозможности дословного переноса теорема Лагранжа со случая скалярной функции векторного аргумента

Продолжая перенос результатов, полученных при изучении векторной функции скалярного аргумента, на случай векторной функции векторного аргумента, рассмотрим теорему Лагранжа.

Теорема 6.6.1. Пусть $G \subset \mathbb{R}^n, G$ открыто, $f: G \to \mathbb{R}, f$ - дифференцируема на G. Тогда

$$\forall ([x; y] \subset G) \exists (\xi \in (x; y)) [f(x) - f(y) = f'(\xi)(x - y)]$$
 (6.7)

Покажем, что в форме равенства теорему Лагранжа перенести на случай $f: \mathbb{R}^n \to \mathbb{R}^m$ нельзя. Рассмотрим $f(x) = (\sin x; \cos x)$. Тогда $f'(x) = (\cos x; -\sin x)$. Выпишем опровергаемое утверждение для отрезка $[0; \frac{\pi}{2}]$:

$$(\sin 0; \cos 0) - (\sin \frac{\pi}{2}; \cos \frac{\pi}{2}) = (\cos \xi; -\sin \xi) \cdot \frac{\pi}{2}$$
 (6.8)

Распишем покоординатно:

$$\sin 0 - \sin \frac{\pi}{2} = \cos \xi \cdot \frac{\pi}{2}$$

$$\cos 0 - \cos \frac{\pi}{2} = -\sin \xi \cdot \frac{\pi}{2}$$

То есть:

$$0 - 1 = \cos \xi \cdot \frac{\pi}{2}$$
$$1 - 0 = -\sin \xi \cdot \frac{\pi}{2}$$

Отсюда имеем $\cos \xi = \sin \xi = -\frac{2}{\pi}$, то есть $\cos^2 \xi + \sin^2 \xi \neq 1$, что невозможно. Следовательно, ни при каком ξ равенство 6.8 выполнено быть не может.

- 6.6.2 Лемма о системе стягивающихся отрезков
- 6.6.3 Теорема о конечных приращениях

- 6.7 Другие теоремы
- 6.7.1 Теорема об обратном отображении
- 6.7.2 Теорема о неявном отображении
- 6.7.3 Условный экстремум

Глава 7

Ряды

7.1	Числовые ряды
7.1.1	Основные понятия
7.1.2	Геометрическая прогрессия
7.1.3	Критерий Коши сходимости числового ряда
7.1.4	Необходимое условие сходимости числового ряда
7.1.5	Критерий сходимости положительного числового ряда
7.1.6	Интегральный признак Коши сходимости числового ряда
7.1.7	Теоремы сравнения для положительных рядов
7.1.8	Признак Коши сходимости числового ряда
7.1.9	Признак Даламбера сходимости числового ряда
7.1.10	Признак Раабе сходимости числового ряда
7.1.11	Признак Гаусса сходимости числового ряда
7.1.12	Знакопеременные ряды. Признак Лейбница
7.1.13	Признак Дирихле сходимости знакопеременного ряда
7.1.14	Признак Абеля сходимости знакопеременного ряда
7.1.15	Свойства абсолютно и неабсолютно сходящихся рядов
7.1.16	Теорема Дирихле
7.1.17	Теорема Римана
7.1.18	Умножение рядов. Теорема Коши
7.1.19	Понятие о бесконечном произведении

95

7.2 Функциональные ряды

- 7.2.1 Функциональная последовательность и функциональный ряд
- 7.2.2 Поточеченая и равномерная сходимость функциональных последовательностей и функциональных рядов
- 7.2.3 Критерий Коши поточечной сходимости функциональных последовательностей и функциональных рядов
- 7.2.4 Критерий Коши равномерной сходимости функциональных последовательностей и функциональных рядов
- 7.2.5 Признак сравнения Вейерштрасса
- 7.2.6 Признак Дирихле
- 7.2.7 Признак Абеля
- 7.2.8 Основные теоремы о функциональных последовательностях и функциональных рядах. Теорема о предельном переходе под знаком ряда
- 7.2.9 Теорема о непрерывности предельной функции и о непрерывности суммы ряда
- 7.2.10 Теорема Дини
- 7.2.11 Теорема об интегрировании под знаком ряда
- 7.2.12 Теорема о дифференцировании под знаком ряда
- 7.2.13 Сходимость в среднем функциональных последовательностей

• • •

7.3 Степенные ряды

- 7.3.1 Теорема Абеля
- 7.3.2 Теорема Коши-Адамара
- 7.3.3 Свойства сумм степенного ряда
- 7.3.4 Степенные ряды общего вида
- 7.3.5 Ряды Тейлора
- 7.3.6 Разложение в ряд Тейлора основных функций

Глава 8

Обобщающие конструкции интегрального исчисления

8.1 Несобственные интегралы

8.1.1 Несобственные интегралы по неограниченному промежутку

Ранее мы рассматривали определённые интегралы от некоторой функции на некотором отрезке. Обобщим теперь понятие определённого интеграла на случай, когда один или оба из его пределов не конечны, т. е. равны $\pm \infty$.

Определение 8.1.1. Пусть $f:[a;+\infty)\to \mathbb{R},\ \forall (\xi\geqslant a)\big[f\in R[a;\xi]\big].$ Тогда запись

$$\int_{a}^{+\infty} f(x)dx \tag{8.1}$$

означает

$$\lim_{\xi \to +\infty} \int_{a}^{\xi} f(x)dx \tag{8.2}$$

и называется несобственным интегралом от функции f на промежутке $[a; +\infty)$. Упрощённо говоря,

$$\int_{a}^{+\infty} f(x)dx = \lim_{\xi \to +\infty} \int_{a}^{\xi} f(x)dx$$
 (8.3)

Определение 8.1.2. Если предел 8.2 существует и конечен, то говорят, что интеграл 8.1 сходится и называют данный предел значением данного интеграла, иначе (если предел 8.2 не существует или бесконечен) говорят, что этот интеграл расходится.

Замечание 8.1.1. Равенство 8.3 не является строгим определением и имеет смысл лишь тогда, когда $\forall (\xi \geqslant a) [f \in R[a;\xi]]$. Более того, знак равенства в этой формуле может соединять несуществующий предел и расходящийся интеграл. С учётом этих обстоятельств формула 8.3 носит большей частью мнемонический характер.

Аналогично даётся определение интеграла по промежутку, неограниченному слева.

Определение 8.1.3. Пусть $f: (-\infty; a] \to \mathbb{R}, \ \forall (\xi \leqslant a)[f \in R[\xi; a]].$ Тогда запись

$$\int_{-\infty}^{a} f(x)dx \tag{8.4}$$

означает

$$\int_{-\infty}^{a} f(x)dx \tag{8.4}$$

$$\lim_{\xi \to -\infty} \int_{\xi}^{a} f(x)dx \tag{8.5}$$

и называется несобственным интегралом от функции f на промежутке $(-\infty; a]$. Упрощённо говоря,

$$\int_{+\infty}^{a} f(x)dx = \lim_{\xi \to -\infty} \int_{\xi}^{a} f(x)dx$$
 (8.6)

Определение 8.1.4. Если предел 8.5 существует и конечен, то говорят, что интеграл 8.4 сходится и называют данный предел значением данного интеграла, иначе (если предел 8.5 не существует или бесконечен) говорят, что этот интеграл расходится.

Дадим теперь определение интеграла по всей числовой прямой:

Определение 8.1.5. Пусть $f: \mathbb{R} \to \mathbb{R}, \ \forall (\xi \in \mathbb{R}, \eta \in \mathbb{R}) [f \in R[\xi; \eta]]$. Тогда интеграл

$$\int_{-\infty}^{+\infty} f(x)dx \tag{8.7}$$

называют несобственным интегралом по всей числовой прямой.

Определение 8.1.6. Если $\exists (a \in \mathbb{R})$ такое, что оба интеграла 8.4 и 8.1 для данной функции сходятся, то интеграл 8.7 называют сходящимся и вычисляют по формуле

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{+\infty} f(x)dx$$
 (8.8)

В противном случае, т. е. если хотя бы один из интегралов 8.4 и 8.1 для данной функции расходится, интеграл 8.7 называют расходящимся.

Замечание 8.1.2. Предоставляем читателю доказать тот несложный факт, что корректность данных выше определения и формулы не зависит от выбора a.

8.1.2 Главное значение интеграла в смысле Коши

Зачастую бывает, что интеграл 8.8 расходится, так как расходятся оба его "слагаемых". Тем не менее, например, для $f(x) = \sin x$ и других нечётных функций, идеологически было бы верно каким-либо образом связать интеграл 8.7 с каким-либо числом.

Определение 8.1.7. Пусть $f: \mathbb{R} \to \mathbb{R}, \forall (\xi \in \mathbb{R}, \eta \in \mathbb{R}) [f \in R[\xi; \eta]]$. Пусть существует предел

$$\lim_{\xi \to +\infty} \int_{-\xi}^{\xi} f(x)dx \tag{8.9}$$

Тогда этот предел называют главным значением интеграла по числовой прямой в смысле Коши:

$$\lim_{\xi \to +\infty} \int_{-\xi}^{\xi} f(x)dx = v.p. \int_{-\infty}^{+\infty} f(x)dx$$
 (8.10)

Замечание 8.1.3. Мы потребовали существования предела 8.9, и поэтому нам не нужно делать оговорок о мнемоничности формулы, как в случае с формулами 8.3 и 8.6.

Замечание 8.1.4. Сокращение "v. p." происходит от французских слов "valeur principale", что и означает "главное значение" (но прилагательное стоит после существительного).

Замечание 8.1.5. Из определения 8.1.5 при a=0 вытекает, что если интеграл

$$\int_{-\infty}^{+\infty} f(x)dx$$

сходится, то

$$v.p. \int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{+\infty} f(x)dx$$

Обратно неверно (контрпример уже упоминался выше: $f(x) = \sin x$).

8.1.3 Критерий Коши

Теорема 8.1.1. (Критерий Коши для несобственного интеграла) Интеграл

$$\int_{a}^{+\infty} f(x)dx$$

сходится тогда и только тогда, когда

$$\forall (\varepsilon > 0) \exists (\xi_0 > a) \forall (\xi_1, \xi_2 : \xi_1 > \xi_0; \xi_2 > \xi_0) \left[\left| \int_{\xi_1}^{\xi_2} f(x) dx \right| < \varepsilon \right]$$

доказательство. Пусть $F(\xi)=\int\limits_a^\xi f(x)dx$. Тогда F — скалярная функция скалярного аргумента. Применяя для неё критерий Коши, имеем следу-

ющую цепочку эквивалентных преобразований:

$$\int_{a}^{+\infty} f(x)dx \quad \text{еходится} \Leftrightarrow$$

$$\exists \left(\lim_{\xi \to +\infty} \int_{a}^{\xi} f(x)dx \neq \pm \infty\right) \Leftrightarrow$$

$$\exists \left(\lim_{\xi \to +\infty} F(\xi) \neq \pm \infty\right) \Leftrightarrow$$

$$\forall (\varepsilon > 0) \exists (\xi_{0} > a) \forall (\xi_{1}, \xi_{2} : \xi_{1} > \xi_{0}; \xi_{2} > \xi_{0}) \left[\left|F(\xi_{1}) - F(\xi_{2})\right| < \varepsilon\right] \Leftrightarrow$$

$$\forall (\varepsilon > 0) \exists (\xi_{0} > a) \forall (\xi_{1}, \xi_{2} : \xi_{1} > \xi_{0}; \xi_{2} > \xi_{0}) \left[\left|\int_{a}^{\xi_{1}} f(x)dx - \int_{a}^{\xi_{2}} f(x)dx\right| < \varepsilon\right] \Leftrightarrow$$

$$\forall (\varepsilon > 0) \exists (\xi_{0} > a) \forall (\xi_{1}, \xi_{2} : \xi_{1} > \xi_{0}; \xi_{2} > \xi_{0}) \left[\left|\int_{\xi_{1}}^{\xi_{1}} f(x)dx\right| < \varepsilon\right] \quad (8.11)$$

Доказано.

8.1.4 Критерий сходимости интеграла от неотрицательной функции

Теорема 8.1.2. Пусть
$$f:[a;+\infty)\to\mathbb{R}$$
 и $\forall (\xi>a)\big[f(\xi)\geqslant 0\cap f\in R[a,\xi]\big],$ $F(\xi)=\int\limits_a^\xi f(x)dx.$ Тогда $\int\limits_a^{+\infty} f(x)dx$ сходится $\Leftrightarrow F(\xi)$ ограничена на $[a;+\infty).$

доказательство. Так как $f(x)\geqslant 0$, то $F(\xi)=\int\limits_a^\xi f(x)dx$ — неубывающая функция от ξ . Интеграл $\int\limits_a^\xi f(x)dx$ по определению сходится тогда и только тогда, когда функция $F(\xi)$ имеет конечный предел. Неубывающая функция имеет конечный предел тогда и только тогда, когда она ограничена сверху. Доказано.

- 8.1.5 Теоремы сравнения для интегралов от неотрицательных функций
- 8.1.6 Абсолютно сходящиеся интегралы
- 8.1.7 Признак Абеля
- 8.1.8 Признак Дирихле
- 8.1.9 Формула Ньютона-Лейбница. Интегрирование по частям. Замена переменной
- 8.1.10 Интегралы от неограниченных функций