1.1-1.7

- -assembler: source assembly wode -> machine code
- Linker: combines individual files Produced by assembler into one exewtable
- MSB, LSB (most/least Significant bits) are as follows (1661+ num):

M6B

100101000111001011

1514

/neversing

bit "number"

La MSB above would be the bit that would correspond with the highest change in value of the number represented (215. bit,s)

Units of Data Site

MIL	SIZE (bytes)
	$2^{10} = 1024$ $2^{10} = 2^{10}$ $2^{10} = 2^{10}$ $2^{10} = 2^{10}$ $2^{10} = 1024$ $2^{10} = 2^{10}$

-Binary to Hex If you have binary 00010110 spilt It up:

000110110 base 2 . 00010110 .. 1 G base 10
base 16 . = 1614

1"x86" covers many 16,32,64 Bit processors. Started with Intel 8086, now on intel, Amo ..

2.1 - 2.3

Instruction Execution Cycle

- fetch instruction from Queve
- -> CPV decodes instruction from binary

-> CPU Gathers operands from memory

-> CPU executes instruction

-> cpu stores result.

- Simplified: Fetch, Decode, Execute

Cache: stored instructions that are more quickly accessed than memory.

Memory fatch process

- UPV places address of mem on the address bus

- RD (read pin, CPU) changed

- Walt 1 clock eyele (mem spd 7= (PU)

- Fetch data Bus - Operand

Flags in the EFLAGS register

-carry (CF): Unsigned overflow

- Overfrom (OF): SIgned overflow

- Sign (SF): result 18 negative

- Zero (ZF): result 16 Zero

-AUX. Carry (AC); Overflow from 0..3 to 0..4 or more (bits) of an 8 bit register.

- Parity Flag (PF): LSB result Even # of 1

Floating Point

-used to require afferent processor

-Uses registers ST(0).. ST(7)

Memory types (2.4) Bonust

- ROM: Hash once, permanent thereafter
- EPROM: UV erasible (slow), reprogrammable
- DRAM: Main memory, must be refreshed every 1ms (except if its ECC)
- SRAM: High speed cache memory usually built into CPU's
- VRAM: Ram for adisplay, dual ported for reads and refresh at the same time
- CMOS RAM: Where cmos (config) data is stored. Kept alive by a battery.

3.1 - 3.5

Assemble Link Execute Cycle

- -> Programmer creates ASCII text file called program_source-vode
- -> Assembler makes an object file from program - source - code
- Unker "Links" (copies) any linked or necessary ubrasies, and bundles them with the object file, creating an executable
- -> Loader loads the program into memory, pointing the cpu (by setting a register) at the starting

DUP() operator

- allocates multiples of a variable's space in the memory
- BYTE 20 DUP(0) = 20 bytes all 0's

- BYTE 4 DUP ("STACK") = "STACK" x4 = 20 64 tes

- BYTE 20 DUP (?) = 20 undefined bytes

x86 and little Endlanness

- x86 are Little Endiah!!!

- Little Endian of 0x12345678 15: offset | 0000 | 000 | 0002 | 0003 | 78 | 56 | 34 | 12 smallest byte is END

"Defining" *strff vsing the "=" | EQU - anywhere in the program, you | "="

Can do:

NAME = LValue> 10) base 10 is best

- Later, this is valid, and neater MOV eax, NAME ; settler than mov eax, walve>

INOTE: \$ 15 the wirent offset

List 517es List_name BYTE 10, 20, 30, 40 LIST_ SIZE = (\$ - LIST); Cool, hun?

INOTE . VEWY VEWY BAD: ust_name Bute 10,20,30,40

var_17 Byte 420

ust_size = (\$-ust); NOT ust 1

size.

- If using something larger than BYTE, Divide by the size multiple that type is above BYTE!

TEXTEQU

- name TEXTEQU LIEXT>
- can be used quite funnily ...