# VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.



#### LAB

## **REPORTON**

## **MACHINE LEARNING**

Submitted by

Imran Wadrali(1BM21CS077)

in partial fulfillment for the award of the degree of BACHELOR OF ENGINEERING in COMPUTER SCIENCE AND ENGINEERING



B. M. S. College of Engineering, Bull Temple Road, Bangalore 560019(March 2024 to June 2024)



# B. M. S. College of Engineering,

**Bull Temple Road, Bangalore 560019** 

(Affiliated To Visvesvaraya Technological University, Belgaum)

# Department of Computer Science and Engineering

#### **CERTIFICATE**

This is to certify that the Lab work entitled "MACHINE LEARNING" is carried out by Imran Wadrali (1BM21CS077) who is bonafide student of B.M.S. College of Engineering. It is in partial fulfillment for the award of Bachelor of Engineering in Computer Science and Engineering of the Visveswaraya Technological University, Belgaum during the year 2023-2024. The lab report has been approved as it satisfies the academic requirements in respect of Machine Learning Lab - (22CS3PCMAL) work prescribed for thesaid degree.

**Dr. K. Panimozhi**Assistant Professor
BMSCE, Bengaluru

**Dr. Jyothi S Nayak** Prof.& Head, Dept. of CSE BMSCE, Bengaluru

#### Index

| Sl.<br>No. | Experiment Title                                                                                                                                   | Page No. |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 110.       |                                                                                                                                                    |          |
| 1          | Write a python program to import and export data using Pandas library functions                                                                    | 4        |
| 2          | Demonstrate various data pre-processing techniques for a given dataset                                                                             | 7        |
| 3          | Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample.                                | 10       |
| 4          | Implement Linear and Multi-Linear Regression algorithm using appropriate dataset                                                                   | 14       |
| 5          | Build KNN Classification model for a given dataset.                                                                                                | 17       |
| 6          | Build Logistic Regression Model for a given dataset                                                                                                | 19       |
| 7          | Build Support vector machine model for a given dataset.                                                                                            | 22       |
| 8          | Build k-Means algorithm to cluster a set of data stored in a .CSV file.                                                                            | 25       |
| 9          | Implement Dimensionality reduction using Principle Component Analysis (PCA) method.                                                                | 27       |
| 10         | Build Artificial Neural Network model with back propagation on a given dataset                                                                     | 29       |
| 11         | <ul><li>a) Implement Random forest ensemble method on a given dataset.</li><li>b) Implement Boosting ensemble method on a given dataset.</li></ul> | 32       |

#### **Course outcomes:**

| CO1 | Apply machine learning techniques in computing systems                                         |
|-----|------------------------------------------------------------------------------------------------|
| CO2 | Evaluate the model using metrics                                                               |
| CO3 | Design a model using machine learning to solve a problem                                       |
| CO4 | Conduct experiments to solve real-world problems using appropriate machine learning techniques |

#### Lab 1

1) Write a python program to import and export data using Pandas library functions.

Algorithm (Observation book):



#### Code

```
import pandas as pd
df=pd.read_csv("/content/austinHousingData.csv")
df.head(5)
```

# Output:

|   | zpid       | city         | streetAddress            | zipcode | description                                                | latitude  | longitude  | propertyTaxRate | garageSpaces | hasAssociation |  |
|---|------------|--------------|--------------------------|---------|------------------------------------------------------------|-----------|------------|-----------------|--------------|----------------|--|
| 0 | 111373431  | pflugerville | 14424 Lake<br>Victor Dr  | 78660   | 14424 Lake<br>Victor Dr,<br>Pflugerville,<br>TX 78660 i    | 30.430632 | -97.663078 | 1.98            | 2            | True           |  |
| 1 | 120900430  | pflugerville | 1104 Strickling<br>Dr    | 78660   | Absolutely<br>GORGEOUS<br>4 Bedroom<br>home with 2<br>full | 30.432673 | -97.661697 | 1.98            | 2            | True           |  |
| 2 | 2084491383 | pflugerville | 1408 Fort<br>Dessau Rd   | 78660   | Under<br>construction -<br>estimated<br>completion in<br>A | 30.409748 | -97.639771 | 1.98            | 0            | True           |  |
| 3 | 120901374  | pflugerville | 1025 Strickling<br>Dr    | 78660   | Absolutely darling one story home in charming              | 30.432112 | -97.661659 | 1.98            | 2            | True           |  |
| 4 | 60134862   | pflugerville | 15005 Donna<br>Jane Loop | 78660   | Brimming<br>with appeal &<br>warm<br>livability!<br>Sleek  | 30.437368 | -97.656860 | 1.98            | 0            | True           |  |

5 rows × 47 columns

2) Use an appropriate dataset for building the decision tree (ID3) and apply this knowledge to classify a new sample.

Algorithm (Observation book):

| Algorithm (Observation book):                                   |
|-----------------------------------------------------------------|
| Late 2 DATE: EZ/WIZM                                            |
| Gin'y Uze an appropriate dataset for building the               |
| decision Lin (203) and apply this knowledge                     |
|                                                                 |
| TO3 dignosthm                                                   |
| IDB (Example, Target attitute, distribute)                      |
| marines au Laining example.                                     |
| Taget attibutes is the attribute to whom                        |
| reduce is to be predicted by the tree. Attibutes                |
| tested by learned decision true. Returns                        |
| examples.                                                       |
| examples. In may sich graces                                    |
| Create a Root node for tree                                     |
| Single mode true root, with labe =-1                            |
| + If all Examples are negative, Return single                   |
| node with label = -                                             |
| 4 Il Attributes is compty Return the node the                   |
| root, with label = most common value of                         |
| Tract attribute examples.                                       |
| Attended Read 11 Jan 19 19 19 19 19 19 19 19 19 19 19 19 19     |
| V A 1 Th. ATT. L. II TURN CATION                                |
| best . * classifice pramptes                                    |
| best « classifice examples  * The decision attribute for not ex |
| 1 A A A A A A A A A A A A A A A A A A A                         |
| - AAN TEN WEE TRACE                                             |
| Corresponding to best AN about                                  |
| corresponding to best AN about                                  |
|                                                                 |



```
Code:
import pandas as pd
from sklearn.tree import DecisionTreeClassifier, plot tree
import matplotlib.pyplot as plt
import math
df = pd.read_csv('/content/diabetes.csv')
def calculate_entropy(data, target_column):
  total_rows = len(data)
  target_values = data[target_column].unique()
  entropy = 0
  for value in target_values:
     # Calculate the proportion of instances with the current value
     value_count = len(data[data[target_column] == value])
    proportion = value count / total rows
     entropy -= proportion * math.log2(proportion)
  return entropy
entropy_outcome = calculate_entropy(df, 'Outcome')
print(f"Entropy of the dataset: {entropy_outcome}")
def calculate_entropy(data, target_column): # for each categorical variable
  total rows = len(data)
  target_values = data[target_column].unique()
  entropy = 0
  for value in target values:
     # Calculate the proportion of instances with the current value
     value count = len(data[data[target column] == value])
     proportion = value_count / total_rows
     entropy -= proportion * math.log2(proportion) if proportion != 0 else 0
  return entropy
def calculate_information_gain(data, feature, target_column):
  # Calculate weighted average entropy for the feature
  unique_values = data[feature].unique()
  weighted entropy = 0
  for value in unique values:
     subset = data[data[feature] == value]
     proportion = len(subset) / len(data)
     weighted_entropy += proportion * calculate_entropy(subset, target_column)
```

```
# Calculate information gain
  information_gain = entropy_outcome - weighted_entropy
  return information_gain
for column in df.columns[:-1]:
  entropy = calculate_entropy(df, column)
  information_gain = calculate_information_gain(df, column, 'Outcome')
  print(f"{column} - Entropy: {entropy:.3f}, Information Gain: {information_gain:.3f}")
# Feature selection for the first step in making decision tree
selected feature = 'DiabetesPedigreeFunction'
# Create a decision tree
clf = DecisionTreeClassifier(criterion='entropy', max_depth=1)
X = df[[selected_feature]]
y = df['Outcome']
clf.fit(X, y)
plt.figure(figsize=(8, 6))
plot_tree(clf, feature_names=[selected_feature], class_names=['0', '1'], filled=True,
rounded=True)
plt.show()
def id3(data, target_column, features):
  if len(data[target_column].unique()) == 1:
     return data[target_column].iloc[0]
  if len(features) == 0:
     return data[target_column].mode().iloc[0]
  best_feature = max(features, key=lambda x: calculate_information_gain(data, x,
target_column))
  tree = {best_feature: {}}
  features = [f for f in features if f != best_feature]
  for value in data[best_feature].unique():
     subset = data[data[best_feature] == value]
     tree[best_feature][value] = id3(subset, target_column, features)
  return tree
id3(df, 'Outcome', ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',
                                                                                    'Insulin',
'BMI', 'DiabetesPedigreeFunction', 'Age'])
```

| 글 |   | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | BMI  | DiabetesPedigreeFunction | Age | Outcome |     |
|---|---|-------------|---------|---------------|---------------|---------|------|--------------------------|-----|---------|-----|
|   | 0 |             | 148     | 72            | 35            |         | 33.6 | 0.627                    | 50  |         | 11. |
|   | 1 |             | 85      | 66            | 29            |         | 26.6 | 0.351                    | 31  |         |     |
|   | 2 | 8           | 183     | 64            |               |         | 23.3 | 0.672                    | 32  |         |     |
|   | 3 |             | 89      | 66            | 23            | 94      | 28.1 | 0.167                    | 21  |         |     |
|   | 4 |             | 137     | 40            | 35            | 168     | 43.1 | 2.288                    | 33  |         |     |
|   |   |             |         |               |               |         |      |                          |     |         |     |



Pregnancies - Entropy: 3.482, Information Gain: 0.062 Glucose - Entropy: 6.751, Information Gain: 0.304 BloodPressure - Entropy: 4.792, Information Gain: 0.059 SkinThickness - Entropy: 4.586, Information Gain: 0.082 Insulin - Entropy: 4.682, Information Gain: 0.277 BMI - Entropy: 7.594, Information Gain: 0.344 DiabetesPedigreeFunction - Entropy: 8.829, Information Gain: 0.651 Age - Entropy: 5.029, Information Gain: 0.141 3) Implement Linear and Multi-Linear Regression algorithm using appropriate dataset

Algorithm

| lgorithm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|          | Lob-3 PAGE NO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| TI.      | Implement Linear & Medlight Linear Regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 1 St     | algorithm using appropriate dataset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|          | and the same of th |     |
|          | * Linear Regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|          | 1. Import datored (2 features)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|          | 2. shore independent feature to 'x' 4 dependent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Y        | feature to y'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67  |
|          | 3. Extimate by & by coefficient using linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| 1        | Regression and any pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| AL-      | 4. Part regersion line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11  |
| 1        | 3. Print bo, by Ex predict the value of y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /   |
| 1        | for new value q x.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|          | 35 m 2357 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 1 *      | Multiple linear Regression ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|          | 1. Split dataset into training & testing set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| -        | 2. He can see multiple independent variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|          | 3. Create regression model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|          | regression = Linear Regression()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|          | 4. Fit train set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|          | S. Test model using test set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| -        | 6. Compare actual value of predicted value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|          | Eine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| *        | Build Main classification madel and alter t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|          | Build KNN classification model for given dotoset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | П   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н   |
|          | Define value of K and a distance meteric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1  |
| 3        | for given point, calculate distance between given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4   |
|          | point & every other point in delast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 3        | choose K closest points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 7        | The class I value of given point is majorityon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A   |
|          | that K soits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|          | that K points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |

```
import numpy as np
import matplotlib.pyplot as plt
```

```
[ ] def estimate_coef(x, y):
    # number of observations/points
    n = np.size(x)

# mean of x and y vector
    m_x = np.mean(x)
    m_y = np.mean(y)

# calculating cross-deviation and deviation about x

SS_xy = np.sum(y*x) - n*m_y*m_x

SS_xx = np.sum(x*x) - n*m_x*m_x

# calculating regression coefficients
b_1 = SS_xy / SS_xx
b_0 = m_y - b_1*m_x

return (b_0, b_1)
```

```
def plot_regression_line(x, y, b):
    # plotting the actual points as scatter plot
    plt.scatter(x, y, color = "m",
        marker = "o", s = 30)

# predicted response vector
    y_pred = b[0] + b[1]*x

# plotting the regression line
    plt.plot(x, y_pred, color = "g")

# putting labels
    plt.xlabel('x')
    plt.ylabel('y')
```

```
[ ] import pandas as pd
  def main():
     # observations / data
     df=pd.read_csv("Salary_dataset.csv")
     x = np.array(df['YearsExperience'])
     y = np.array(df['Salary'])

# estimating coefficients
     b = estimate_coef(x, y)
     plot_regression_line(x,y,b)
     print("Estimated coefficients:\nb_0 = {}\nb_1 = {}\".format(b[0],b[1]))
     x=int(input("Enter X value:"))
     y=b[0]+b[1]*x
     print(f"The predicted salary is:{y}\")
```

[ ] main()

## **OUTPUT:**

Estimated coefficients: b\_0 = 24848.203966523113 b\_1 = 9449.962321455092 Enter X value45 The predicted salary is:450096.5084320023



# b) Implement Multi-Linear Regression algorithm using appropriate dataset

```
Standardizes the input data using mean and standard deviation.
            X_train (numpy.ndarray): Training data.
X_test (numpy.ndarray): Testing data.
           Tuple of standardized training and testing data.
         # Calculate the mean and standard deviation using the training data
         mean = np.mean(X_train, axis=0)
std = np.std(X_train, axis=0)
         X_train = (X_train - mean) / std
X_test = (X_test - mean) / std
         return X_train, X_test
    X_train, X_test = standardize_data(X_train, X_test)
[7] X_train = np.expand_dims(X_train, axis=-1)
    X_test = np.expand_dims(X_test, axis=-1)
[8] class LinearRegression:
         Linear Regression Model with Gradient Descent
         Linear regression is a supervised machine learning algorithm used for modeling the relationship between a dependent variable (target) and one or more independent variables (features) by fitting a linear equation to the observed data.
         This class implements a linear regression model using gradient descent optimization for training. It provides methods for model initialization, training, prediction, and model persistence.
         Parameters:

learning_rate (float): The learning rate used in gradient descent.

convergence_tol (float, optional): The tolerance for convergence (stopping criterion). Defaults to 1e-6.
          Attributes:
[8]
                W (numpy.ndarray): Coefficients (weights) for the linear regression model.
                b (float): Intercept (bias) for the linear regression model.
                initialize_parameters(n_features): Initialize model parameters.
                 forward(X): Compute the forward pass of the linear regression model.
                compute_cost(predictions): Compute the mean squared error cost.
                 backward(predictions): Compute gradients for model parameters.
                fit(X, y, iterations, plot_cost=True): Fit the linear regression model to training data.
                predict(X): Predict target values for new input data.
                 save_model(filename=None): Save the trained model to a file using pickle.
                load model(filename): Load a trained model from a file using pickle.
           Examples:
                >>> from linear_regression import LinearRegression
                 >>> model = LinearRegression(learning_rate=0.01)
                 >>> model.fit(X_train, y_train, iterations=1000)
                >>> predictions = model.predict(X_test)
           def __init__(self, learning_rate, convergence_tol=1e-6):
                self.learning_rate = learning_rate
                self.convergence_tol = convergence_tol
                self.W = None
                self.b = None
           def initialize_parameters(self, n_features):
                Initialize model parameters.
                 <code>n_features</code> (int): The number of features in the input data.
                 self.W = np.random.randn(n_features) * 0.01
                 self.b = 0
           def forward(self, X):
                Compute the forward pass of the linear regression model.
                    X (numpy.ndarray): Input data of shape (m, n_features).
```

```
[8]
                  numpy.ndarray: Predictions of shape (m,).
                 return np.dot(X, self.W) + self.b
            def compute_cost(self, predictions):
                 Compute the mean squared error cost.
                      predictions (numpy.ndarray): Predictions of shape (m,).
                  float: Mean squared error cost.
                  m = len(predictions)
                 cost = np.sum(np.square(predictions - self.y)) / (2 * m)
return cost
            def backward(self, predictions):
                 Compute gradients for model parameters.
                       predictions (numpy.ndarray): Predictions of shape (m,).
                        numpy.ndarray: Gradient of W.
                  float: Gradient of b.
                  m = len(predictions)
            self.dW = np.dot(predictions - self.y, self.X) / m
self.db = np.sum(predictions - self.y) / m
def fit(self, X, y, iterations, plot_cost=True):
                  Fit the linear regression model to the training data.
                  Parameters:
                       ameters:

X (numpy.ndarray): Training input data of shape (m, n_features).

y (numpy.ndarray): Training labels of shape (m,).

iterations (int): The number of iterations for gradient descent.

plot_cost (bool, optional): Whether to plot the cost during training. Defaults to True.
[8]
                Raises:
                     AssertionError: If input data and labels are not NumPy arrays or have mismatched shapes.
                Plots:
                Plotly line chart showing cost vs. iteration (if plot_cost is True).
                assert isinstance(X, np.ndarray), "X must be a NumPy array" assert isinstance(y, np.ndarray), "y must be a NumPy array" assert X.shape[\theta] == y.shape[\theta], "X and y must have the same number of samples" assert iterations > \theta, "Iterations must be greater than \theta"
                self.X = X
                self.y = y
                self.initialize_parameters(X.shape[1])
                costs = []
                for i in range(iterations):
                     predictions = self.forward(X)
                      cost = self.compute_cost(predictions)
                      self.backward(predictions)
                      self.W -= self.learning_rate * self.dW
                      self.b -= self.learning_rate * self.db
                     costs.append(cost)
                      if i % 100 == 0:
                           print(f'Iteration: {i}, Cost: {cost}')
                     if i > 0 and abs(costs[-1] - costs[-2]) < self.convergence_tol: print(f'Converged after {i} iterations.')
                if plot_cost:
                      fig = px.line(y=costs, title="Cost vs Iteration", template="plotly_dark")
                      fig.update_layout(
                           title_font_color="#41BEE9",
                           xaxis=dict(color="#41BEE9", title="Iterations"),
yaxis=dict(color="#41BEE9", title="Cost")
                  fig.show()
```

```
fig.show()
                  def predict(self, X):
                           Predict target values for new input data.
                                   X (numpy.ndarray): Input data of shape (m, n_features).
                           Returns:
                            numpy.ndarray: Predicted target values of shape (m_{\star}).
                            return self.forward(X)
                  def save_model(self, filename=None):
                           Save the trained model to a file using pickle.
                           Parameters:
                            filename (str): The name of the file to save the model to. \hfill \hfi
                           model_data = {
                                      'learning rate': self.learning rate,
                                     'convergence_tol': self.convergence_tol,
                                     'W': self.W,
                                    'b': self.b
                            with open(filename, 'wb') as file:
                                    pickle.dump(model_data, file)
                  @classmethod
                  def load_model(cls, filename):
                           Load a trained model from a file using pickle.
                                   filename (str): The name of the file to load the model from.
                           with open(Tilename, wb ) as Tile;
                                  pickle.dump(model_data, file)
                 @classmethod
                  def load_model(cls, filename):
                           Load a trained model from a file using pickle.
                          Parameters:
                                  filename (str): The name of the file to load the model from.
                           LinearRegression: An instance of the LinearRegression class with loaded parameters.
                          with open(filename, 'rb') as file:
                                   model_data = pickle.load(file)
                          # Create a new instance of the class and initialize it with the loaded parameters
loaded_model = cls(model_data['learning_rate'], model_data['convergence_tol'])
                           loaded_model.W = model_data['W']
                           loaded_model.b = model_data['b']
                          return loaded_model
9] lr = LinearRegression(0.01)
        lr.fit(X_train, y_train, 10000)
        Iteration: 0, Cost: 1670.0184887161677
        Iteration: 100, Cost: 227.15535101517312
Iteration: 200, Cost: 33.84101696145528
         Iteration: 300, Cost: 7.9408253395546575
         Iteration: 400, Cost: 4.4707260872934835
         Iteration: 500, Cost: 4.005803317750673
        Iteration: 600, Cost: 3.943513116253261
        Iteration: 700, Cost: 3.9351674953098015
        Iteration: 800, Cost: 3.9340493517293096
Converged after 863 iterations.
```

4) Build KNN Classification model for a given dataset.



```
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn import datasets
iris = datasets.load_iris()

x = iris.data
y = iris.target

print('sepal-length', 'sepal-width', 'petal-length', 'petal-width')
print(x)
print(x)
print('class: 0 - Iris-Setosa, 1 - Iris-Versicolour, 2 - Iris-Virginica')
print(y)
```

```
In [5]:
    x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3)

#To Training the model and Nearest nighbors K=5
classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(x_train, y_train)

#to make predictions on our test data
    y_pred=classifier.predict(x_test)

print('Prediction -')

for i,test in enumerate(x_test):
    print(f'{test} - {y_pred[i]}')

# print('Confusion Matrix')

# print(confusion_matrix(y_test,y_pred))

# print('Accuracy Metrics')

# print(classification_report(y_test,y_pred))
```

#### Results:

```
Prediction -
[5.2 4.1 1.5 0.1] - 0
[5.5 2.3 4. 1.3] - 1
[6.7 3.1 4.7 1.5] - 1
[7. 3.2 4.7 1.4] - 1
[6.2 2.8 4.8 1.8] - 2
[5.7 2.8 4.5 1.3] - 1
[6. 3.4 4.5 1.6] - 1
[5.1 3.8 1.6 0.2] - 0
[5.5 2.5 4. 1.3] - 1
[4.8 3.1 1.6 0.2] - 0
[6.1 3. 4.9 1.8] - 2
[4.7 3.2 1.6 0.2] - 0
[5.6 2.9 3.6 1.3] - 1
[5.4 3.9 1.3 0.4] - 0
[5. 3.2 1.2 0.2] - 0
[6.1 2.9 4.7 1.4] - 1
[5. 3.4 1.5 0.2] - 0
[7.7 2.8 6.7 2. ] - 2
[4.6 3.2 1.4 0.2] - 0
[5.7 2.9 4.2 1.3] - 1
[4.6 3.6 1. 0.2] - 0
[6.8 2.8 4.8 1.4] - 1
[6.8 3.2 5.9 2.3] - 2
```

# 5) Build Logistic Regression Model for a given dataset

# Algorithm:

```
Together required libraries

Dingert required libraries

Dingert required libraries

Discontin dataset

Discontin dataset

Discontin dependent & independent sessiable.

I then split the data into a training

2t & Icating set

Dispas: (http://discontin.com/discontined/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/da
```



```
age
27
         4 23
               46
               45
               62
         1
               25
         11
              28
         25
              54
In [32]: from sklearn.linear_model import LogisticRegression
           model = LogisticRegression()
           model.fit(X_train, y_train)
           print(X_test)
           y_predicted = model.predict(X_test)
probab = model.predict_proba(X_test)
            score = model.score(X_test,y_test)
           print(y_predicted)
print("\nprobability: ")
print(probab)
           print("\naccuracy: ")
           print(score)
              age
27
         13
              29
               46
         23
              45
               52
               62
               25
         11
              28
              54
         25
         [0 0 1 1 1 1 0 0 1]
```

```
probability:
[[0.75147845 0.24852955]
[0.69994474 0.30009553]
[0.2044202 0.7975774]
[0.2261500 0.7738491]
[0.10537592 0.93462408]
[0.09315376 0.96884124]
[0.70674889 0.20325111]
[0.7264443 0.2735557]
[0.08328741 0.91671259]]

accuracy:
0.888888888888888888

In [33]: print(X_test)

age
12 27
13 29
4 46
23 45
3 52
8 62
1 25
11 28
25 54

In [38]: import math
def sigmoid(x):
    return 1 / (1 + math.exp(-x))

In [39]: def prediction_function(age):
    z = 0.042 * age - 1.53 # 0.04150133 ~ 0.042 and -1.52726963 ~ -1.53
    y = sigmoid(z)
    return y
```

```
In [40]:
          def insure(probability):
            if (probability > 0.5):
              print("The customer will get insurance.")
              print("The customer will not get insurance.")
          age = 35
          probability = prediction_function(age)
          print("Probability of buying insurance for age 35:", probability)
          insure(probability)
        Probability of buying insurance for age 35: 0.4850044983805899
        The customer will not get insurance.
In [41]:
          age = 43
          probability = prediction_function(age)
          print("Probability of buying insurance for age 43:", probability)
          insure(probability)
        Probability of buying insurance for age 43: 0.568565299077705
        The customer will get insurance.
```

#### Results:

```
Probability of buying insurance for age 35: 0.4850044983805899
The customer will not get insurance.

In [41]:

age = 43

probability = prediction_function(age)

print("Probability of buying insurance for age 43:", probability)

insure(probability)

Probability of buying insurance for age 43: 0.568565299077705
The customer will get insurance.
```

# 6) Build Support vector machine model for a given dataset

Algorithm:

|      | Lab-5 DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 7    | Implement Support Vector marking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|      | Algorithm: 1. Define Kernel Junction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| _    | naikly, a day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|      | I TO COMPANY TO DUDIENCED IN I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      | 3. Compute weight of bias  y. Identity the support vector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _ |
|      | DI MARE DACOUCHE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|      | in a set of the set of |   |
|      | to partial de de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - |
|      | Output: production molecularies tugted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + |
|      | model-fit (2-train, y-train)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|      | acodiction = mode . Redict (2 Tut)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 |
|      | accuracy (y-test, predictions)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | + |
|      | → 0·93013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | + |
|      | = 11 1 1 5 0 UTN = 7.1/44 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 |
|      | 7) model. predict ([-0.47069, -0.1604,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 |
| FILE | array (o).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |

```
In [5]:
      Iris Dataset - Sepal Length vs Sepal Width
                                                                                 2.00
       4.5
                                                                                 1.75
       4.0
                                                                                1.50
                                                                                1.25
    Sepal Width (cm)
       3.5
                                                                                Species
       3.0
                                                                                 0.75
                                                                                0.50
       2.5
                                                                                 0.25
       2.0
                                                                                 0.00
               4.5
                       5.0
                                                       7.0
                                                               7.5
                                                                       8.0
                                   Sepal Length (cm)
```

```
In [6]:
    # Splitting the dataset into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)

In [7]:
# Creating and training the SVM classifier
    svm_classifier = SVC(kernel='linear')
    svm_classifier.fit(X_train, y_train)
# Predicting the labels for the test set
    y_pred = svm_classifier.predict(X_test)
# Calculating the accuracy of the model
    accuracy = accuracy_score(y_test, y_pred)
    print("Accuracy of SVM Classifier:", accuracy)
```

# Results:

```
Accuracy of SVM Classifier: 1.0

In [8]: y_pred

Out[8]: array([1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0, 1, 2, 1, 1, 2, 0, 2, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 2, 1, 1, 0, 0])
```

**7**) Build k-Means algorithm to cluster a set of data stored in a .CSV file.

Algorithm: K-means clustering 5. Repeat Step 3, reasign the centroid. If any Acassignment go to step (9 else 3.5



8) Implement Dimensionality reduction using Principle Component Analysis (PCA) method.

Algorithm:

|      | Les Suits                                                | PAGE NO:                  |
|------|----------------------------------------------------------|---------------------------|
|      | (100)                                                    | DATE:                     |
|      |                                                          |                           |
| 27   | Principal component Analysis:                            |                           |
| -    | Principal component Analysis: Algorithm:                 | In Romana I               |
|      | D Calculate mean                                         | - tor-blanks -            |
|      | Carriage Mass                                            | mothin                    |
| Thal | a calculation y covariana                                | "and a di                 |
|      | 3) Eigen values of covar                                 | mounty                    |
| - 21 | 3) Eigen values of covariance  9) Computation of eigen-v | ictor ( Unit - light moon |
|      | 5) Computation of jikst pe                               | mupal components          |
|      | 6) 6                                                     | Livet Desprison           |
|      | 6) Geometric meaning 9                                   | b paper                   |
|      | Component                                                |                           |
| 4    | Souther at the rental                                    |                           |
| sils | Opput : of town as 120 and                               | 6. 18 Il an               |
|      | pea explained variance                                   | entio                     |
|      | Dra (Ci)lla co , va lo la la                             |                           |
|      | 150000000                                                | 0 - 10 0498               |
|      | anay ([0.9839448]                                        | 0.01620498                |
|      | anay ([0.9839448]                                        | 0.01620498                |
|      | anay ([0.9839448]                                        | 0.01620498                |
|      | anay ([0.9839448]                                        | 0.01620438                |
|      | anay ([0.9839448]                                        | 0.01620498                |
|      | anay ([0.9839448]                                        | 0.01620438                |

```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import pandas as pd
import numpy as np
iris = datasets.load_iris()
X = pd.DataFrame(iris.data, columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])
y = pd.DataFrame(iris.target, columns=['Targets'])
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
X_pca_df = pd.DataFrame(X_pca, columns=['PCA1', 'PCA2'])
X_pca_df['Targets'] = y.Targets
plt.figure(figsize=(14, 7))
colormap = np.array(['red', 'lime', 'black'])
plt.scatter(X_pca_df.PCA1, X_pca_df.PCA2, c=colormap[X_pca_df.Targets], s=40)
plt.title('PCA of Iris Dataset')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.show()
```

#### **Results:**



**9**) Build Artificial Neural Network model with back propagation on a given dataset

Algorithm:

|    | PAGE NO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Lab-6 DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| +  | deficial Naval natural with back propagation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | The state of the s |
|    | "carterale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | Algorithm sixed yoursen toom (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | Abouthor sincedil purcuren tropat (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1) | * Tribalize Parameters of star start 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6  | + Normalie if features modeix 'n'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | romatize de yaniant not too sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *  | Set hyper parameters no of crocks' of of my                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2) | roundige genameters modis 'n'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2  | Define dehistion fines or who tiles and ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | Adjust alchimation fine to adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3) | Training of the state of state of state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0) | Training network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | Ferward propagation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | + compute 1/P to hidden layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | of Re A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | (6) Achiration lune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4) | Training notwork  - Forward propagation  + compute if to hidden layer  - Add bics  - Apply Activation func  Backward propagation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | Backvard propagation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | compute uns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | * compute quadient 4 compute delta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | delta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5) | Update weights & biases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -  | (Da): ije (Co-6667 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | [0.333 0.551]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | [0:1 : 0:31]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -  | AND 11/7: [6.57] [051] [0.13]  Multired 11/7: [6.57] [0.13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | published off: [ [0. 8005(0).2] [0. 19]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### Results

```
Input:
[[0.66666667 1.
 [[0.66666667 1. ]
[0.33333333 0.55555556]
 [1.
                0.66666667]]
Actual output:
[[0.92]
[0.86]
[0.89]]
Predicted Output:
 [[0.80056875]
[0.79393831]
 [0.80112347]]
```

# **10**) Implement Random forest ensemble method on a given dataset.

Algorithm:

|    | PAGE NO: DATE:                                                 |
|----|----------------------------------------------------------------|
|    |                                                                |
| ŧ* | Random forest enumble mothed                                   |
|    | Algarthm:                                                      |
|    | 1) Import necessary libraries                                  |
|    | 1) Import necessary libraries<br>2) Load & inspect data        |
|    | 3) Depurer data In Inining & testing sample                    |
|    | 3) prepieces data for luning & desting simple                  |
|    | 1 we 60% for training.                                         |
|    | 17 Cathing the state of a unit of project                      |
|    | 4) Inividize random josest classics of biain it                |
|    | using fill method                                              |
|    | 5) Make predictions on test samples using method               |
|    | pudict stratuju not de                                         |
|    | 6) Evaluate the model                                          |
|    |                                                                |
|    | · · · · · · · · · · · · · · · · · · ·                          |
|    | Support: Accuracy = 0.97                                       |
|    |                                                                |
|    | Confusion madrin : [ [23 0 0                                   |
|    | Confusion matrix: [ [23 0 0                                    |
|    | Confusion matrix : [ 123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn import datasets
iris_data = datasets.load_iris()
X = pd.DataFrame(iris_data.data, columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])
y = pd.DataFrame(iris_data.target, columns=['Targets'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
rf_classifier.fit(X_train, y_train)
y_pred = rf_classifier.predict(X_test)
# Evaluate the classifier
accuracy = accuracy_score(y_test, y_pred)
# Print classification report
print("Classification Report:")
print(classification_report(y_test, y_pred))
# Print confusion matrix
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))
```

#### Results:

```
Accuracy: 0.98
Classification Report:
              precision
                           recall f1-score
                                               support
           0
                   1.00
                                                    23
                             1.00
                                       1.00
           1
                   0.95
                             1.00
                                       0.97
                                                    19
                             0.94
                                       0.97
           2
                   1.00
                                                    18
                                       0.98
                                                    60
    accuracy
                   0.98
                             0.98
                                       0.98
                                                    60
   macro avg
weighted avg
                   0.98
                             0.98
                                       0.98
                                                    60
Confusion Matrix:
[[23 0 0]
 [0190]
  0 1 17]]
```

# 11) Implement Boosting ensemble method on a given dataset.

# Algorithm

|   | PAGE NO: DATE:                                                                                                                                                                                                      |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ¥ | Boxting ensemble method                                                                                                                                                                                             |
|   | Algorithm:  J Import libraries                                                                                                                                                                                      |
|   | J Tongost libraries  J Load the dotaset  Data preprocusing involves deperations 9 pateurs                                                                                                                           |
|   | S) Tobalis adabout classic with specified no.                                                                                                                                                                       |
|   | 4) Optit dojaset to train samples  5) Initialize adaboost classifier with specified no.  9 estimator of base estimator  6) Train model using training data  7) Make predictions for test dample using trained model |
|   | 7) Make predictions for test dample rising trained model.                                                                                                                                                           |
|   |                                                                                                                                                                                                                     |
|   | Ought, malix accusely deale: 0233.                                                                                                                                                                                  |
|   |                                                                                                                                                                                                                     |
|   |                                                                                                                                                                                                                     |

```
In [4]:
                from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import AdaBoostClassifier
                from sklearn import metrics
from sklearn import datasets
  In [5]:
                import pandas as pd
import matplotlib.pyplot as plt
                from sklearn.model_selection import train_test_split
  In [6]:
                iris = datasets.load_iris()
                X = pd.DataFrame(iris.data, columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])
y = pd.DataFrame(iris.target, columns=['Targets'])
  In [7]:
               X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.4,random_state=42)
  In [9]:
                mylogregmodel = LogisticRegression()
In [10]: adabc = AdaBoostClassifier(n_estimators = 150, base_estimator = mylogregmodel, learning_rate = 1)
In [11]: model = adabc.fit(X_train, y_train)
            /usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().

y = column_or_ld(y, warn=True)
/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_base.py:166: FutureWarning: `base_estimator` was renamed to `estimator` in version 1.2 and will be removed in 1.4.
                warnings.warn(
In [12]: y_pred = model.predict(X_test)
In [13]: metrics.accuracy_score(y_test, y_pred)
```

#### Results:

Out[13]: 0.98333333333333333