Beef Cattle Grazing as Added Value and Its "Clouded Future?"

Tim DelCurto; Range Beef Cattle Nutrition & Management, Eastern Oregon Agricultural Research Center, Oregon State University, Union

Forest Grazing in the Blue and Wallowa Mountains:

- ✓ Less the \$2 per AUM on public land
- ✓ Varies between \$10 and \$20 per AUM on private lands
- ✓ Need to apply appropriate stocking rate
- Stocking rate needs to be adjusted for topographical challenges

Examples:

OSU Hall Ranch 2000 acres 500 to 750 AUMs
- 2.6 to 4 acres per AUM
USDA Starkey Exp 22000 acres 2000 AUMs
- 11 acres per AUM

Laws that have Influenced Land Management:

- Multiple Use Act 1968:
 - Multiple Uses:
 - Domestic Livestock
 - Timber & Mining
 - Wildlife
 - Big game, T&E Species, and Predators
 - Vegetation
 - Recreation
 - Aesthetic/Preservation Values
- Federal Clean Water Act 1972
- Threatened & Endangered Species Act 1973

Beef Cattle Distribution on Western Rangelands

Abiotic Factors:

- Slope, Aspect, Soil Depth, Distance to Water,
 Distance to Fences, Shade/canopy, Temperature
- Cook, 1966; Sneft et al., 1985; Howery et al., 1996; Bailey et al., 1996

Biotic Factors:

- Grazing systems, water availability, strategic supplement placement,
- Cow age, breed, type, production stage, etc...
- Bailey et al., 2005; DelCurto et al., 2005, Parsons et al., 2003, Porath et al.,
 2002

Season of Use:

DelCurto et al., 2002; WSASAS

Parsons et al., 2003; REM

DelCurto et al., 2013; WSASAS

DelCurto et al., 2013; WSASAS

Offstream Water and Salting as Management Strategies for Decreasing Grazing Pressure on Riparian Areas

Cow/Calf Performance

	W	NW
Cow wt. gain (lbs)	64.32 ^a	38.88 ^b
Calf ADG (lbs)	2.22 ^a	1.91 ^b
Cow condition score change	.18	.09

^{*}values with different superscripts indicate significant differences p<.05

Water/Thermoregulation

Porath et al., 2002; Parsons et al., 2003; Morrison et al., 2004

Other Projects:

• Influence of Cow Age on Distribution and Resource Utilization on Mixed Conifer Forested Rangelands

-Walburger et al., 2009; REM

Bear Pasture Starkey Exp. Forest

Age Class 1 2 – 3 year olds

Age Class 4 ≥ 8 year olds

The effects of habitat on cattle distribution patterns

CHANGES IN FORAGE QUALITY OVER SEASON:

- Sled Springs Project
 - Three years of production estimates
 - Two years of diet quality
 - 2500 individual plant species sampled

Early-May, mid-June, early-August, and mid-September

SOLUTIONS TO LATE SEASON DISTRIBUTION PROBLEMS:

Management:

- Offstream Water
- Supplementation
- Vegetation keys
- Cow Factors:
 - Cow age, breed
 - Genetic correlation to ranging ability

OBSERVATIONS:

- "What's Good for the Cows is good for the Fish" ...
 Jimmy Eisner
- It is easy to develop "win-win" scenarios

Final Thoughts:

- Grazing can be "sustainable."
- Land Managers have to focus on distribution and vegetation use patterns.
- Ranchers and Land Managers have to be committed to sustainable grazing practices.
- Researchers have to identify & quantify management tools

Thank You! Questions?

