```
In [1]: %load ext autoreload
         %autoreload 2
In [42]: from src import algorithms, types, utils
         from plotly import graph_objects as go
         import numpy as np
         import copy
         import collections
         from tqdm.notebook import tqdm
         2D
 In [3]: EPS = 1e-3
         ITERS = 50
In [4]: functions = [
             types.QuadraticFunction(np.array([[1, 2], [2, 5]]), np.array([0, 0]), 0)
             types.QuadraticFunction(np.array([[10, 3], [-2, 1]]), np.array([10, -1])
             types.QuadraticFunction(np.array([[1, -0.2], [-0.2, 1]]), np.array([-0.2
         algos = [
                 'constant0.1',
                 algorithms.ConstantGradientDescent('random', alpha=0.1, random_scale
                 'golden search',
                 algorithms.GoldenSearchGradientDescent('random', 5, EPS, random_scal
             ),
 In [5]: for f_id, f in enumerate(functions):
             for algo name, algo in algos:
                 metrics, fig = utils.run(f, f_id, algo, algo_name, ITERS)
                 fig.show()
             Function 1, Algo: constant0.1, Steps: 160.60 ± 31.88
             Function evaluations: 0.00 \pm 0.00
             Gradient calculations: 159.60 ± 31.88
                 15
                 10
```


Function 1, Algo: golden search, Steps: 38.10 ± 17.05 Function evaluations: 742.00 ± 340.99 Gradient calculations: 37.10 ± 17.05

Function 2, Algo: constant0.1, Steps: 10001.00 \pm 0.00 Function evaluations: 0.00 \pm 0.00

Function 2, Algo: golden search, Steps: 35.20 ± 10.57

Function evaluations: 684.00 ± 211.47 Gradient calculations: 34.20 ± 10.57

Function 3, Algo: constant0.1, Steps: 44.24 ± 7.98

Function evaluations: 0.00 ± 0.00 Gradient calculations: 43.24 ± 7.98

Function 3, Algo: golden search, Steps: 6.08 \pm 1.11

Function evaluations: 101.60 ± 22.21 Gradient calculations: 5.08 ± 1.11

Сходимость градиентного спуска с постоянным шагом alpha = 0.1

Будем считать, что алгоритм сошелся, если расстояние между старой и новой точкой меньше epsilon

Для первой функции требуется в среднем **160** итераций, для третьей – **44**. Но вторая функция не успевает сходиться за $10\,000$ итераций, так как она слабо обусловленна. Градиент по координате X больше на несколько порядков чем по координате Y. Поэтому алгоритм "мечется" между двумя точками и константный шаг α не позволяет ему быстро выйти из этой зоны. Самый простой способ бороться с такой несходимостью это со временем уменьшать шаг α . Например, после каждой итерации домножать α на 0.999

У первой функции большая зона около точки (0;0) с маленьким значением градиента, что как раз сильно замедляет сходимость алгоритма

Также на всех успешных запусках мы видим $f(x_{k+1}) < f(x_k), \lim_{x o \infty} f'(x_k) o 0$

Сравнение константного шага и одномерной оптимизации

Для градиентного спуска с константным шагом не требуется вычисление функции. Однако это необходимо для одномерной оптимизации:

Optimization
742 ± 340
684 ± 211
102 ± 22

Можно уменьшить количество вычислений следующим образом:

На каждом шаге мы минимизируем $\phi(lpha) = f(x_k + lpha imes d_k), lpha > 0$

Заметим, что при $lpha=\epsilon,\phi'(lpha)<0$, а при достаточно большом lpha: $\phi'(lpha)>0$, причем в нашем случае $\phi'(lpha)$ возрастает. Тогда мы можем найти с помощью бинарного поиска найти $\phi'(lpha)=0$, что уменьшит количество итераций оптимизации в $\log_{\frac{1+\sqrt{5}}{2}}2pprox 1.44$.

Количество же вычислений градиентов (итераций алгоритма) в случае одномерной оптимизации уменьшается примерно в 6.4 раз:

Constant	Optimization
160 ± 32	38 ± 17
10 000 ± 0	34 ± 11
43 ± 8	5 ± 1.1

Зависимость от начальной точки

Было запущено 50 градиентных спусков с различными начальными точками. Все они сошлись к минимуму вне зависимости от начального положения. Судя по таблице выше значения std составляет $\approx 30\%$ от среднего

Scaling

Попробуем исправить алгоритм с константным шагом в случае слабо обусловленной функции. Для этого воспользуемся домножением каждой компоненты на константу.

```
Function 2, Algo: constant0.1 scale, Steps: 93.80 \pm 15.55 Function evaluations: 0.00 \pm 0.00 Gradient calculations: 92.80 \pm 15.55
```


Function 2, Algo: golden search scale, Steps: 10.46 \pm 3.36 Function evaluations: 189.20 \pm 67.20 Gradient calculations: 9.46 \pm 3.36

Видим, что алгоритм с константным шагом теперь сходится за 94 итерации в среднем. Также алгоритм с оптимизацией на каждом шагу сходится за количество итераций в среднем в 3 раза меньше.

N-d functions

0%|

Посмотрим зависимость количества итераций T(n,k) от размерности и числа обусловленности

```
In [44]: ns = [2 ** x for x in range(3, 11)]
         ks = [2 ** x for x in range(3, 11)]
         fig = go.Figure()
         for n in tqdm(ns):
             iters = []
             for k in tqdm(ks, leave=False):
                 iter_sum = 0
                 iter cnt = 0
                 for it in range(10):
                      f = types.QuadraticFunction.generate_random(n, k)
                      cur_algo = copy.deepcopy(algos[1][1])
                      cur_algo.optimize(f)
                      iter_sum += len(cur_algo.history_points)
                      iter_cnt += 1
                 iters.append(iter_sum / iter_cnt)
             fig.add_trace(go.Scatter(x=ks, y=iters, name=f'{n=}'))
         fig.show()
                         | 0/8 [00:00<?, ?it/s]
           0%|
           0%|
                         | 0/8 [00:00<?, ?it/s]
           0%|
                         | 0/8 [00:00<?, ?it/s]
                         | 0/8 [00:00<?, ?it/s]
           0%|
                         | 0/8 [00:00<?, ?it/s]
           0%|
                         | 0/8 [00:00<?, ?it/s]
           0%|
           0%|
                         | 0/8 [00:00<?, ?it/s]
                         | 0/8 [00:00<?, ?it/s]
           0%|
```

| 0/8 [00:00<?, ?it/s]

По результатам эксперимента можно сделать следующие выводы:

- 1. Видим, что для разных значений k Видим, что с ростом размерности n число итераций T(n,k) увеличивается незначительно, и, скорее, это влияние погрешности. В эксперименте для больших n число итераций должно практически быть одинаковым
- 2. С увеличением числа обусловленности увеличивается количество итераций. На самом деле должна быть линейная зависимость, но на графике ее трудно заметить. Необходимо запустить больше экспериментов для различных значений k.

Выводы

- 1. Градиентный спуск с констатным шагом иногда может не сходиться из-за слишком большого значения α . Чтобы автоматически это исправить, можно со временем уменьшать значения α .
- 2. Градиентный спуск с одномерной оптимизацией требует в несколько раз меньше итераций. В свою очередь это уменьшает количество подсчета градиента функции, но увеличивает количество вычислений самой функции

- 3. Градиентный спуск сходится несмотря на начальное положение. Однако, слишком далекая начальная точка может увеличить необходимое количество итераций в несколько раз.
- 4. Scaling помогает в случае плохо обусловленных функций и уменьшает количество итераций в несколько раз.
- 5. Количество итераций растет линейно от числа обусловленности и остается неизменным от размерности функции

Для простых задач оптимизации, я бы выбрал алгоритм градиентного спуска с констатным шагом. Важно сразу подумать, необходимо ли добавить scaling. В случае проблем сходимости можно перебрать различные значения α . Более универсальным решением будет динамическое изменение α на каждом шаге.

In []: