MAT300 Spring 2021 Homework 6

John J Li

April 3, 2021

Problem 1

Let $S = \{(1,2), (2,1), (3,3), (1,3), (3,2)\}$ and $R = \{(1,2), (2,2), (3,1), (1,3), (3,3)\}$ be relations on $\{1,2,3\}$. Find:

(a) $S \circ R^{-1}$

Solution: $\{(2,2),(2,3),(2,1),(1,3),(1,2),(3,2),(3,3),(3,3),(3,2)\}$

(b) $R \circ (R \circ R)$

Solution: $\{(1,2),(2,2),(3,2),(3,1),(3,3),(1,2),(1,3),(1,1),(1,3),(3,2),(3,3)\}$

Problem 2

Let R, S be relations on A. Show:

(a) If
$$R \subseteq S$$
, then $R^{-1} \subseteq S^{-1}$

Proof. Let $R \subseteq S$ and suppose there is an arbitrary ordered pair $(x,y) \in R$ and $x,y \in A$. By definition of the subset, this means that there exists a $(x,y) \in S$ such that $(x,y) \in R = (x,y) \in S$. Inverting the ordered pairs would give $(y,x) \in R^{-1}$ and $(y,x) \in S^{-1}$ which shows $R^{-1} \subseteq S^{-1}$. \square

(b)
$$(R \cup S)^{-1} = R^{-1} \cup S^{-1}$$

Proof. 1) Suppose an arbitrary ordered pair $(x,y) \in (R \cup S)^{-1}$ and $x,y \in A$. Then $(y,x) \in R \cup S$ and so $(y,x) \in R \vee (y,x) \in S$. The inverse would be $(x,y) \in R^{-1} \vee (x,y) \in S^{-1}$ thus $(x,y) \in R^{-1} \cup S^{-1}$.

2) Suppose an arbitrary order pair $(x,y) \in R^{-1} \cup S^{-1}$ and so $(x,y) \in R^{-1} \vee (x,y) \in S^{-1}$ which can be rewritten as $(y,x) \in R \vee (y,x) \in S$. So that $(y,x) \in (R \cup S)$; inverting the ordered pair shows $(x,y) \in (R \cup S)^{-1}$.

Problem 3

Let R be a relation on A. Show that if R is transitive and symmetric, then so is R^{-1} :

Proof. Suppose R is transitive and symmetric, then $\forall_{x \in A} \forall_{y \in A} ((x, y) \in R \to (y, x) \in R)$ and $\forall_{x \in A} \forall_{y \in A} \forall_{z \in A} (((x, y) \in R \land (y, z) \in R) \to (x, z) \in R)$.

Then the inverse would be $\forall_{x \in A} \forall_{y \in A} ((y, x) \in R^{-1} \to (x, y) \in R^{-1})$ and $\forall_{x \in A} \forall_{y \in A} \forall_{z \in A} (((y, x) \in R^{-1} \land (z, y) \in R) \to (z, x) \in R^{-1})$. So it is seen that R^{-1} is also transitive and symmetric.

Problem 4

Let R be the following relation on \mathbb{Z} , aRb if $a-b \leq 10$. Check if R is reflexive, symmetric, antisymmetric, and transitive.

(a) R is reflexive.

Let $a \in \mathbb{Z}$. Then $a - a = 0 \le 10$. So aRa.

(b) R is not symmetric.

Let $a, b \in \mathbb{Z}$. And suppose aRb then there exists b - a > 10. Let (1, 12) = (a, b) then $1 - 12 = -11 \le 10$ but $12 - 1 = 11 \le 10$.

(c) R is not antisymmetric.

Let $a,b\in\mathbb{Z}$ and suppose $(aRb\wedge bRa)$ and consider (a,b)=(1,2) then indeed $1-2\leq 10\wedge 2-1\leq 10$ but $1\neq 2$.

(d) R is not transitive.

Let $a, b, c \in \mathbb{Z}$ and suppose $(aRb \land bRc)$. Consider a = 2, b = 1, c = -9, then indeed $2 - 1 \le 10 \land 1 - (-9) \le 10$ but $2 - (-9) = 11 \le 10$.

April 2021 2

Problem 5

Let R be a relation on $\mathbb{Z} \times \mathbb{Z}$ defined as (a,b)R(c,d) when $2|(a^2+c)$ and 3|(b-d). Check if R is reflexive, symmetric, antisymmetric, and transitive.

(a) R is reflexive

Let $(a, b) \in \mathbb{Z} \times \mathbb{Z}$. Then $b - b = 0 \cdot 3$; 3|(b - b). And proving $2|(a^2 + a)$:

Case 1: a is even

Let a = 2j where $j \in \mathbb{Z}$. Then $a^2 + a = 4j^2 + 2j = 2(2j^2 + j)$; $2|(a^2 + a)$.

Case 2: a is odd

Let a = 2j + 1 where $j \in \mathbb{Z}$. Then

$$a^{2} + a = (2j + 1)^{2} + 2j + 1$$

$$= (4j^{2} + 4j + 1) + 2j + 1$$

$$= 4j^{2} + 6j + 2$$

$$= 2(2j^{2} + 3j + 1)$$

So $2|(a^2+a)$ and 3|(b-b) as required.

(b) R is symmetric

Let $(a,b),(c,d) \in \mathbb{Z} \times \mathbb{Z}$. And suppose $a^2+c=2k$ and b-d=3j where $k,j \in \mathbb{Z}$. Then d-b=3(-j) and in proving $2|(c^2+a)$, let $a=\sqrt{2k-c}$:

Case 1: c is even

Let c = 2i where $i \in \mathbb{Z}$. Then:

$$c^{2} + a = c^{2} + \sqrt{2k - c}$$

$$= c^{4} + 2k - c$$

$$= 16i^{4} + 2k - 2i$$

$$= 2(8i^{4} + k - i)$$

Case 2: c is odd

Let c = 2i + 1 where $i \in \mathbb{Z}$. Then:

$$c^{2} + a = c^{2} + \sqrt{2k - c}$$

$$= c^{4} + 2k - c$$

$$= 16i^{4} + 32i^{3} + 24i^{2} + 8i + 1 + 2k - 2i - 1$$

$$= 16i^{4} + 32i^{3} + 24i^{2} + 6i + 2k$$

$$= 2(8i^{4} + 16i^{3} + 12i^{2} + 3i + k)$$

So 3|(d-b) and $2|(c^2+a)$ as required.

April 2021 3

(c) R is not antisymmetric

Let $(a, b), (c, d) \in \mathbb{Z} \times \mathbb{Z}$. And consider (a, b) = (1, 5) and (c, d) = (3, 2), then it is indeed true that (1, 5)R(1, 2) and (1, 2)R(1, 5) but $(3, 2) \neq (1, 5)$.

(d) R is transitive

Let $(a,b), (c,d), (e,f) \in \mathbb{Z} \times \mathbb{Z}$. And suppose (a,b)R(c,d) and (c,d)R(e,f), then $2|(a^2+c)$ and 3|(b-d) and $2|(c^2+e)$ and 3|(d-f).

Then b-d=3j and d-f=3k for some $j,k\in\mathbb{Z}$. Thus b-d+d-f=3j+3k, then b-f=3(j+k), so 3|(b-f) as required.

Then $a^2+c=2g$ and $c^2+e=2i$ for some $g, i \in \mathbb{Z}$. Then $c=\sqrt{2i-e}$ and so $a^2+\sqrt{2i-e}=2g$, which is the same as $a^4+2i-e=4g^2$. For $2|(a^2+c)$, both a and c have to be both even or both odd, the same is true for $2|(c^2+e)$. And since a^4 will be odd when a is odd and even when a is even, $a^4+2i-e=4g^2$ can be written as $a^2-e=2(2g^2-i)$ or $2|a^2-e$ as required.

Problem 6

Let R be a relation on $\mathbb{Z}^+ \times \mathbb{Z}^+$ defined as follows (x,y)R(z,w) if x|z and $y-w \geq 0$.

(a) Prove that R is a partial order but not a total order.

Proof. R is reflexive.

Let $(x,y),(z,w) \in \mathbb{Z}^+ \times \mathbb{Z}^+$. Then $x=1 \cdot x$ so x|x and $y-y=0 \geq 0$. So (x,y)R(x,y) as required.

R is transitive.

Let $(x,y),(z,w),(a,b)\in\mathbb{Z}^+\times\mathbb{Z}^+$. And suppose (x,y)R(z,w) and (z,w)R(a,b). So that

$$x|z$$

$$y - w \ge 0$$

$$z|a$$

$$w - b \ge 0$$

It is seen that $y-w+w-b \ge 0$. Which can be written as $y-b \ge 0$ which satisfies one half of the relation.

Consider $x|z=x\cdot k=z$ and $z|a=z\cdot j=a$ for some $k,j\in\mathbb{Z}^+$. Thus $a=x\cdot k\cdot j$ and so x|a. So (x,y)R(a,b) as required.

April 2021 4

R is antisymmetric

Let $(x,y),(z,w)\in\mathbb{Z}^+\times\mathbb{Z}^+$ and suppose (x,y)R(z,w) and (z,w)R(x,y). Thus $x\cdot k=z$ and $z\cdot j=x$ for some $k,j\in\mathbb{Z}^+$ and $y-w\geq 0$ and $w-y\geq 0$.

Then $z = j \cdot k \cdot z$ so $z \mid z$ and $x = j \cdot k \cdot x$ so $x \mid x$ so x = z. And $y - w + w - y \ge 0$ and $w - y + y - w \ge 0$ so y = w.

Thus (x, y) = (z, w) as required.

There exists an x and y such that $(x,y) \cancel{R}(z,w)$ and $(z,w) \cancel{R}(x,y)$

Consider (x,y)=(4,2) and (z,w)=(3,5) then it can be seen that $4\cdot j\neq 3$ for some $j\in\mathbb{Z}^+$ and $2-5\ngeq 0$. And $3\cdot k\neq 4$ for some $k\in\mathbb{Z}^+$.

Problem 7

Give an example of a partially ordered set which contains exactly one minimal element x such that x is not the smallest element.

Let set $G = \{(x,y) \mid (x=2 \land y=1) \lor (x=1 \land y \in \mathbb{N})\}$ and let relation $R = \{((x_1,y_1),(x_2,y_2)) \mid (x_1 > x_2 \land y_1 = y_2 = 1) \lor (x_1 = x_2 = 1 \land y_1 > y_2) \rightarrow (x_1,y_1) < (x_2,y_2)\}.$

April 2021 5