

부유식 해양구조물 설계 개론

OpenFOAM-v2206과 olaFlow를 활용한 부유식 방파제 수치모의

2024020609 송양헌

Numerical Environment (Open FOAM)

Numerical environment

- Navier-stokes eq
- $\frac{\partial u}{\partial t} + (u \cdot \nabla) = -\frac{1}{\rho} \nabla p + \nu \nabla^2 u + f$

и	속도 벡터
ρ	유체 밀도
p	압력
ν	동점성계수
f	외부력

Turbulence model

- k − ε모델
- 난류 에너지(k)와 난류 소산율 (ε) 을 기반으로 난류 효과 모델링

interFoam solver

- 자유 수면(free surface flow)
- Water-air interaction(VOF method)

- Number of cells: 411,156
- Timestep size: adjustable depend on designated courant number(1.0)
- endTime: 10.0s

Piston wavemaker data

- H = 148.6 # Wave Height in m
- h = 66.1 # Water depth in mm
- T = 1.64

- Number of cells: 411,156
- Timestep size: adjustable depend on designated courant number(1.0)
- endTime: 10.0s

Boundary condition

- 부유체와 side wall은 wall condition
- Inlet: piston wave maker
- outlet: Velocity 에 대한 absorption layer

Case Number	Period (s)	Wave length (m)	Wave Height (m)
1	1.64	4.177	0.149
2	1.96	5.851	0.161
3	2.54	8.919	0.258
4	2.9	10.78	0.431
5	3.61	14.35	0.482

Density (kg/m^3)	683.33
Maxx (kg)	18603.7
lxx (kg· m²)	423622
lyy (kg· m²)	5771
lzz (kg· m²)	426293

Wave property

Structure property

Fig. 5. Arrangement of probes in the numerical simulation.

Table 3 Position of probe1 and probe 2.

Conditions	B/A	Δ1 (m)	Δx (m)
1	0.395	0.4	1.2
2	0.282	0.6	1.8
3	0.185	0.8	2.4
4	0.153	1.1	3.3
5	0.115	1.3	3.9

Wave measure location

OpenFOAM simulation

- $\frac{h}{\lambda} > 0.5$ 수심이 파장에 비해 충분히 깊은 경우
- 2. 천수파 (Shallow water wave)
 - $\frac{h}{\lambda}$ < 0.05 수심이 얕아 파장이 수심에 영향을 받는 경우
- 3. 중간 수심파 (Intermediate water wave)
 - $0.05 < \frac{h}{\lambda} < 0.5$ 천수와 심해 사이의 조건
- > 대상 해역이 천수지역이라는 가정 하에 Piston wavemaker 이용

Condition	Wavelength	h/λ	Wave Type
1	1 4.177 0.479		Intermediate Wave
2	5.851	0.342	Intermediate Wave
3	3 8.919 0.224 Inte		Intermediate Wave
4	10.784	0.186	Intermediate Wave
5	14.348	0.139	Intermediate Wave

Wavemaker Theory

1. Piston wavemaker

• 파랑 수조나 수치 시뮬레이션에서 수평 이동하는 평판(피스톤) 을 이용하여 수면파를 생성하는 방법 (Shallow water region)

2. 주요 변수

- H (Wave height): 생성된 파의 높이, 피스톤의 진폭 및 물의 깊이에 따라 결정됨
- T (Wave period): 파의 주기, 피스톤의 왕복 운동 주기로 정의됨
- H (Water depth): 수심
- L (Wave length): 파장, 분산 방정식을 통해 계산됨

Wavemaker Theory

분산방정식 (Dispersion eqation)

$$L = \frac{gT^2}{2\pi} \tanh(\frac{2\pi h}{L})$$

➤ Python code를 이용하여 openfoam 내 한쪽 벽의 boundary conditio을 정의하고, 생성된 코드의 .txt을 따라 움직이도록 설정

```
HoS = 4. * np.sinh(k*h)**2. / (np.sinh(2.*k*h) + 2.*k*h)
S = H/HoS
# Export
fid = open('wavemakerMovement.txt', 'w')
 fid.write('{0}\n'.format(t))
fid.write(');\n\n'.format( len(times) ))
fid.write('paddlePosition {0}(\n'.format( nPaddles ))
for i in range(0, nPaddles):
   fid.write('{0}(\n'.format( len(times) ))
   for t in times:
            x = 5/2 \cdot \text{np.cos(-w*t + np.pi/2. + phase0 + 2.*np.pi*coords[i]/L*np.sin(direction*np.pi/180.))}  fid.write('{0}\n'.format(x))
fid.write(')\n')
fid.write(');\n\n')
fid.write('paddleEta {0}(\n'.format( nPaddles ))
for i in range(0, nPaddles):
     L = L0
for i in range(0,100):
    Lnew = L0 * np.tanh(2.*np.pi/L*h)
    if(abs(Lnew-L)<0.001):
        L = Lnew
nPaddles = 1
bLims = [0., 5.]
L = dispersion(T, h)
k = 2.*np.pi/L
w = 2.*np.pi/T
times = np.linspace(t0, tEnd, round((tEnd-t0)/dt)+1)
coords = np.linspace(bLims[0], bLims[1], nPaddles+1)
coords = coords[:-1] + np.diff(coords)/2.
```

Python code moving region description

Geometry setup

Maximum Amplitude

- 1) 해석 도메인 내 Cell의 water 부분
- 2), 3) 해석 도메인 내 cellu물의 체적해 해당하는 부분을 속 cult = cult =

15

Result

(구조물이 없을 경우)

Result

구조물 전방 1.2m static pressure

구조물 후방 2.4m static pressure

약 9%의 감소율

Ansys Aqua 해석 결과와의 비교

- 단일 주기, 부유식 물체가 자유도를 갖지 않는 고정형으로 설정했음 (Ansys Aqua의 해석조건과 시행횟수에 있어 차이점이 있음)
- 1. Kt (Transmission Coefficient, 투과 계수): 구조물을 통과한 파랑의 에너지 비율
- 2. Kr (Reflection Coefficient, 반사계수: 구조물에 의해 반사된 파랑의 에너지 비율

<i>v</i> _	H_r
$K_r =$	$\overline{H_i}$
$K_t =$	H_t
κ_t –	$\overline{H_i}$

Hr: 구조물에서 반사된 파고

Hi: 구조물에서 입사한 파고

Ht: 구조물을 통과한 후의 파고

		aqwa	experiment	CFD	potential
	1.64	0.75	0.747178642	0.761051423	0.79346
	1.96	0.64	0.568744297	0.571062314	0.649716
Kt	2.54	0.56	0.411180938	0.411180938	0.51992
	2.9	0.27	0.174434109	0.202210579	0.225333
	3.61	0.195	0.034757013	0.04863421	0.074088

		aqwa	experiment	CFD	potential
	1.64	0.81	0.492958221	0.435956591	0.61553
	1.96	0.89	0.686425642	0.657921942	0.771937
Kr	2.54	1.03	0.731719983	0.734581893	0.862843
	2.9	1.04	0.836283556	0.810612916	0.981647
	3.61	1.08	0.88936737	0.86370827	1.011928

Wave Reduction Ratio

Wave Reduction Ratio

Kr

Ansys Aqua 해석 결과와의 비교

• 단일 주기, 부유식 물체가 자유도를 갖지 않는 고정형으로 설정했음 (Ansys Aqua의 해석조건과 시행횟수에 있어 차이점이 있음)

Wave Reduction Ratio

Kt (Transmission Coefficient, 투과 계수): 구조물을 통과한 파랑의 에너지 비율, 15초 동안의 모의 결과 파봉에서의 파고 평균

통과 전 입사파고(Hi)	통과 후 파고(Ht)
7.21313	4.80041

평균 감소율(Kt)이 0.33

Discussion?

- 1.64주기의 다른 값과 다르게 낮게 측정됨
- Side wall을 wall boundary condition으로 설정한 결과, 입사파가 양쪽 벽에 부딪혀 다시 돌아오는 현싱
- Wavemaker가 shallow water 조건에 의하여 심해(bottom)과 중간수심조건에서의 에너지까지 전달되어 정확하지 못함

CFD		
CI D	– Potential	
0.0 (%) 0.0 (%	3.5	4.5

Kt

		aqwa	experiment	CFD	potential
	1.64	0.75	0.747178642	0.761051423	0.79346
	1.96	0.64	0.568744297	0.571062314	0.649716
Kt	2.54	0.56	0.411180938	0.411180938	0.51992
	2.9	0.27	0.174434109	0.202210579	0.225333
	3.61	0.195	0.034757013	0.04863421	0.074088

구조물 2.4m 후방의 observation point

t=0.718044s 이후로 static pressure value 계산이 불안정해지는 현상

수치해와 해석해(Exact solution vs numerical solution)의 차 Pressure field의 tolerance을 만족하기 위한 iteration중 solver가 blow up 하는 현상

overInterDyMFoam

- 이동하고 겹치는 영역에서 fluid flow을 수치모의하기 위 한 openfoam solver
- Overset region(겹치는 영역)은 보간 영역(interpolation)을 통해 연결됨
- Hole: 설정되지 않은 구멍(빈 부분)을 통해 물체로 정의되며, 주변으로 유체가 흐르게 됨.
- Receptor: 겹치는 격자 간에 값을 수집하고 전달하는 영역

Openfoam tutorial 내의 floatingBody, Dambreak case

Future works

- 1. 동적 격자 기법(overset method)을 이용한 부유식 구조물 해석
 - Stability와 convergence issue를 소화해 낼 tolerance와 적절한 solver 조합
- 2. Mooring line을 고려한 6dof dynamic mesh method 도입
- 3. 부유식 구조물 주위의 높은 공간해상도 격자를 설정하여 자세한 fluid-structure interaction 모의

Thank you

https://github.com/songyangman/buoyantAss

수치모의에 사용된 openfoam 파일은 해당 링크를 통해 다운로드 가능합니다.

건축사회환경공학과 해안유체역학 연구실 송양헌