

Informatyka

1.Algebra Relacji & SQL

Opracował: Maciej Penar

Spis treści

1. Zanim zaczniemy	3
Drzewo operatorów algebry relacji	3
Ściąga sql	
2. (5 pkt) Algebra relacji – część bardziej ćwiczeniowa	
3. (7 pkt) SQL	8
4 Kartkówka	q

1. Zanim zaczniemy

Zrelaksować się i przyswoić sobie teorię dot. Algebry relacji.

Materialy:

- Google: https://www.google.pl/search?q=algebra+relacji@oq=algebra+relacji
- Podstawowy kurs systemów baz danych, rozdział 2 oraz 5.2, J. Ullman, J. Widom

Oprogramowanie:

SQLite: https://www.sqlite.org/index.html

• SQLite (link 2):

https://github.com/mpenarprz/BazyDanychl4/tree/master/Laboratorium/tools

• GUI do SQLite: http://sqlitebrowser.org/

MS Access ?

DRZEWO OPERATORÓW ALGEBRY RELACJI

Jak komuś nie chce się otwierać książki "Podstawowy kurs systemów baz danych" to zamieszczam krótkie info o co chodzi z zapytaniami w "algebrze relacji" w **formie drzewa operatorów**. Trzeba znać operatory żeby zrozumieć o co tu chodzi.

Załóżmy relację np. Ziemniaki (Dojrzały, Rozmiar, Waga)

Niech atrybut **Dojrzały** opisuje czy ziemniak należący do relacji jest dojrzały lub nie (true/false). Z kolei atrybut **Rozmiar** niech ma zdefiniowaną dziedzinę {"Mały", "Średni", "Duży"} i opisuje jakościowo naszego ziemniaka. Atrybut **Waga** opisuje ilościowo ziemniaka. Prawidłowe wartości są większe od 0 (Waga >=0) – przyjmijmy że to waga gramach.

Załóżmy że instancja relacji Ziemniaki to np.:

Ziemniaki			
Dojrzały	Rozmiar	Waga	
True	Duży	180	
True	Średni	120	
True	Średni	160	
False	Mały	50	

Zastanówmy się nad znaczeniem operatorów algebry relacji – otóż wyznaczają one pewien **podzbiór** relacji nad którą operują.

I tak wyrażenie $\pi(Ziemniaki)_{Dojrzały}$ wyznacza podzbiór relacji Ziemniaki zawierający jedynie atrybut *Dojrzały*.

Instancja relacji: $\pi(Ziemniaki)_{Doirzaly}$ to:

$\pi(Ziemniaki)_{Dojrzaly}$		
Dojrzały		
True		
True		
True		
False		

Zapis w formie: $\pi(Ziemniaki)_{Dojrzały}$ nazywamy liniowym

Nas interesuje zapis w formie drzewa:

I czytamy go od góry do dołu, podążając lewą (na ogół) ścieżką. Czytamy: "Wykonujemy projekcję na atrybucie **Dojrzały** z relacji **Ziemniaki**"

Weźmy bardziej skomplikowane zapytanie np.

 $\pi(\delta(Ziemniaki)_{Waga>150})_{Dojrzały,Rozmiar}$ które wyznacza podzbiór relacji Ziemniaki zawierający jedynie atrybut *Dojrzały* oraz *Rozmiar*, w którym ziemniaki ważą 150g.

To zapis w formie drzewa przyjąłby postać:

Niektóre operatory są dwuargumentowe np. \cap , \cup , \bowtie co powoduje rozgałęzianie się drzewa. Weźmy ultra trudne zapytanie np. \bowtie ($Ziemniak\ A, Ziemniak\ B$) $_{A.Waga>B.Waga}$ które wybiera wszystkie pary ziemniaków których waga pierwszego jest większa od wagi drugiego.

Drzewo wygląda tak:

Ciekawostka: relacja wynikowa:

Ziemniaki					
A.Dojrzały	A.Rozmiar	A.Waga	B.Dojrzały	B.Rozmiar	B.Waga
True	Duży	180	True	Średni	160
True	Duży	180	True	Średni	120
True	Duży	180	False	Mały	50
True	Średni	160	True	Średni	120
True	Średni	160	False	Mały	50
True	Średni	120	False	Mały	50

ŚCIĄGA SQL

Ściąga DQL w SQL – w miarę uniwersalna. Wytłuszczoną czcionką zaznaczono słowa kluczowe.

Przykład	Co oznacza
SELECT	Pobiera wszystko z tabeli MY_TABLE
*	
FROM	
MY_TABLE	
SELECT	Pobiera wszystko z tabeli MY_TABLE, sortuje
*	po atrybucie ATT rosnąco
FROM	
MY_TABLE	
ORDER BY	
ATT	
ORDER BY	Sortowanie po kilku atrybutach. Specyfikacja
ATT ASC ,	sortowania rosnąco ASC, malejąco DESC.
ATT2 DESC	
SELECT TOP 10	Wybranie pierwszych 10 rekordów. Wynik
*	niedeterministyczny. To chyba że użyte z
FROM	ORDER BY.
MY_TABLE	
SELECT	Wybranie pierwszych 10 rekordów. Wynik
*	niedeterministyczny. To chyba że użyte z
FROM	ORDER BY.
MY_TABLE	
LIMIT 10	

SELECT DISTINCT	Pobiera wszystkie unikatowe rekordy z tabeli
* EDOM	MY_TABLE
FROM MY TABLE	
SELECT	Pobiera atrybuty MY ATTRIBUTE, który
MY_ATTRIBUTE AS A,	zostaje przemianowany na A, oraz atrybut
MY_ATTRIBUTE2	MY_ATTRIBUTE2 z tabeli MY_TABLE
FROM	WIT_ATTRIBUTEZ Z tabell WIT_TABLE
MY_TABLE SELECT	Debiere wezustke ze złaszenie nemiedzy
*	Pobiera wszystko ze złączenia pomiędzy tabelą MY_TABLE oraz YOUR_TABLE. Obu
FROM	tabelom nadano aliasy (odpowiednio
MY_TABLE AS TTT	TTT/KKK). Złączenie jest po warunku
_	równościowym na atrybucie ATT
INNER JOIN YOUR_TABLE AS KKK ON TTT.ATT = KKK.ATT	rownościowym na atrybucie ATT
INNER JOIN	Rodzaje złączeń w SQL
LEFT OUTER JOIN	
RIGHT OUTER JOIN	
FULL OUTER JOIN	
CROSS JOIN	
SELECT	Iloczyn kartezjański (CROSS JOIN) table
*	MY_TABLE, MY_TABLE2, MY_TABLE3
FROM	,,,
MY_TABLE,	
MY TABLE2,	
MY TABLE3	
SELECT	Opakowanie zapytania. W klauzuli FROM
*	można użyć zapytania.
FROM	mozna azyc zapytama.
([SQL]) ALIAS	
SELECT	Pobiera wszystkie atrybuty z odfiltrowanej
*	tabeli MY_TABLE. Filtrowanie zachodzi na
FROM	warunku A > 0.
MY TABLE	
WHERE	
A > 0	
WHERE	Łączenie warunków w klauzuli where –
[warunek]	logiczne AND
AND [warunek]	
WHERE	Łączenie warunków w klauzuli where –
[warunek]	logiczne OR
OR [warunek]	
NOT [warunek]	Negacja warunku
WHERE	Sprawdzenie czy atrybut ATT posiada wartość
ATT IN (1,2,3,10)	ze zbioru {1,2,3,10}
ATT IIV (1,2,3,10)	26 ZDIOLU (1,2,3,10)
WHERE	Sprawdzenie czy atrybut ATT posiada wartość
ATT IN ([SQL])	ze zbioru – dynamicznie wyliczony zbiór
WILEDE	Coroudzopio pienustości duscusiania
WHERE EVISTS (ISOLI)	Sprawdzenie niepustości dynamicznie
EXISTS ([SQL])	wyliczonego zbioru
WHERE	Sprawdzenie czy wartość atrybutu
MY_TEXT_ATTRIBUTE LIKE [wzorzec]	MY_TEXT_ATTRIBUTE pasuje do wzorca
? (czasem _) – dowolny znak (regexp: '.')	Specjalny znaki we wzorcach

% - dowolny ciąg znaków (regexp: '.'*)	
SELECT	Utworzenie grup po wartościach atrybutu ATT
ATT,	oraz wyliczenie agregacji typu COUNT.
	oraz wyliczenie agregacji typu COONT.
COUNT(*)	
FROM	
MY_TABLE	
GROUP BY	
ATT	
SELECT	Utworzenie grup po wartościach atrybutu ATT
ATT,	oraz wyliczenie agregacji typu COUNT. Do
COUNT(*)	agregacji wliczane są tylko rekordy
FROM	spełniające warunek A>0
MY_TABLE	
WHERE	
A > 0	
GROUP BY	
ATT	
COUNT	Podzaje funkcji zgregujacych w SOL
	Rodzaje funkcji agregujących w SQL –
SUM	podstawowe
MIN	
MAX	
AVG	
COUNT(*)	Wyjątkowa agregacja – ile jest wartości
AVG(WIEK)	Średnia wartość atrybutu WIEK
COUNT(DISTINCT WIEK)	Wyjątkowa agregacja – ile różnych wartości
·	znajduje się w grupie
SELECT	Utworzenie grup po wartościach atrybutu ATT
ATT,	oraz wyliczenie agregacji typu COUNT.
COUNT(*)	Odfiltrowanie tych grup dla których agregacja
FROM	AVG(TTT) osiąga wartość większą niż 10.
MY TABLE	AVG(111) osiąga wartość większą mz 10.
GROUP BY	
ATT	
HAVING	
AVG(TTT) > 10	
[SQL]	Suma wyników dwóch zapytań SQL.
UNION	Jako zbiór.
[SQL]	
[SQL]	Suma wyników dwóch zapytań SQL.
UNION ALL	Jako multizbiór.
[SQL]	
UNION	Możliwe operacje na zbiorach w SQL.
UNION ALL	
MINUS (EXCEPT)	
MINUS (EXCEPT) ALL	
INTERSECT	
INTERSECT	

2. (5 pkt) Algebra relacji – część bardziej ćwiczeniowa

1. (0.5 pkt) Co to za operatory:

π	δ	γ	ρ
σ	×	U	Λ

- 2. (0.5 pkt) Z czego składa się schemat relacji
- 3. Dana jest relacja **Osoba**(Imię, Nazwisko, Wiek, PESEL, Kolor Oczu, Włosy, Płeć) oraz **Zwierzę**(PESEL Właściciela, Gatunek, Nazwa, Wiek), napisać zapytania algebry relacji w formie drzewa operatorów:
 - a. (1 pkt) Wybrać imię i nazwisko osób których wiek jest większy niż 30 lat i kolor oczu jest niebieski
 - b. (1 pkt) Wybrać imię i nazwisko kobiet które posiadają zwierzę z gatunku Kot
 - c. (2 pkt) Ile jest zwierząt w relacji, w podziale na płeć właściciela którzy posiadają długie włosy oraz gatunek zwierzęcia

Chodzi o relację wynikową:

Płeć	Gatunek	Liczba osobników

3. (7 pkt) SQL

Otworzyć w SQLite bazę danych chinook.db (dostępne na repo) i napisać zapytania w formie wyrażeń SQL.

Zwrócić uwagę na FORMATOWANIE ZAPYTAŃ.

- 1. (0 pkt) Wyświetlić zawartość tabeli Customers (tzw. dump tabeli)
- 2. (0.5 pkt) Wyświetlić pierwsze alfabetycznie tytuły pierwszych 5 rekordów z tabeli albums
- 3. (0.5 pkt) Znaleźć kompozytora utworu ('tracks') o nazwie 'No Futuro'
- 4. (0.5 pkt) lle jest albumów?
- 5. (0.5 pkt) Znaleźć nazwy utworów oraz czasy trwania (w minutach) utworów które zajmują więcej niż 900000000 bajtów
- 6. (0.5 pkt) Wyświetlić albumy artysty 'Van Halen'
- 7. (0.5 pkt)Wyświetlić pierwsze alfabetycznie tytuły pierwszych 5 rekordów z tabeli albums kończący się '(Remastered)'
- 8. (0.5 pkt) Wyświetlić alfabetycznie nazwy albumów które posiadają utwory z gatunku 'Rock' oraz 'Metal
- 9. (0.5 pkt) lle jest utworów bez kompozytora?
- 10. (0.5 pkt) Ile jest kompozytorów (nie artystów)?
- 11. (0.5 pkt) Policzyć zestawienie ile utworów ma album. Na zestawieniu są wszystkie albumy?
- 12. (0.5 pkt) Policzyć ile jest utworów których autorem jest autor albumu do którego należą te utwory
- 13. (0.5 pkt) Wyświetlić nazwę albumu oraz tytuł najdłuższego utworu tego albumu
- 14. (0.5 pkt) Wyświetlić 10 rekordów. Po 5 najdłuższych płyt w gatunkach Pop oraz Electronica/Dance
- 15. (0.5 pkt) Wyświetlić wszystkie pary utworów z albumu 'Chemical Wedding' dla których pierwszy utwór z pary jest krótszy od drugiego utworu z pary

4. Kartkówka

- 1. Definicja Bazy Danych
- 2. Co to jest Relacyjna Baza Danych
- 3. Co to jest Relacja
- 4. Co to jest Związek (związek ≠ relacja)
- 5. Co to jest transakcja?
- 6. Rozwinięcie skrótu ACID
- 7. Proste zapytania w formie:
 - a. Wyrażeń SQL SELECT
 - b. Algebry relacji
- 8. Co robi dany operator algebry relacji?