Introduction to Machine Learning

Practical Advice for Building Machine Learning Systems

Varun Chandola

May 10, 2020

Outline

Contents

1 Introduction 1

1 Introduction

From Theory to Practice

Problems that we can solve

- Given (\mathbf{X}, \mathbf{y}) , learn a model to predict y^* for a test \mathbf{x}^*
- $\bullet\,$ Or the unsupervised or RL variant
- Many tools at our disposal

Problems that we need to solve

- Predict outages in a massive data center
- Build an automated insulin pump
- Design a next generation space propulsion system

A General ML Pipeline

• Sometimes we need to go back to the problem definition itself

Debugging an ML Pipeline

- Is the pipeline **good**?
- $\bullet\,$ How do we define goodness?

Performance

- Cross-validation performance
- Generalizability

Costs

- Computing
- Data

Acceptance

• Fairness

2

- Interpretability
- Privacy preserving
- Ethical

How to measure goodness?

- \bullet Ideally we want the model to be ${\bf generalizable}$
- Two things that we need:
 - Good validation data (out of sample)
 - * Random sampling is not always enough
 - Robust evaluation metric
- What if we do not have enough validation data?
 - Get more data (manual work, Mechanical Turk, synthetic)
 - Test for stability

What do we do if the model is not good?

- Change the model
 - Make model more complex or simpler (??)
 - Incorporate domain knowledge
 - * e.g., physics inspired neural networks
 - Handle structural dependencies
- Change the data
 - Feature selection/reduction
 - Representation learning (embedding)
 - More data
- Change the problem
 - New problem formulation

Finally - Is the model useful?

- Domain interretation
- Stability of the model
- What do we if not useful?
 - Maybe solve a different (better) problem

Correlation is not causation

References