Performing Classification Using Multiple Techniques

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

scikit-learn support for classification models

Discriminant Analysis

Stochastic Gradient Descent

Support Vector Machines

Nearest Neighbors

Decision Trees

Naive Bayes

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality reduction

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality reduction

LDA and QDA Classifiers

A Question of Dimensionality

Pop quiz: Do we really need two dimensions to represent this data?

Bad Choice of Dimensions

If we choose our axes (dimensions) poorly then we do need two dimensions

Good Choice of Dimensions

If we choose our axes (dimensions) well then one dimension is sufficient

Objective: Find the "best" directions to represent this data

Start by "projecting" the data onto a line in some direction

Start by "projecting" the data onto a line in some direction

The greater the distances between these projections, the "better" the direction

Bad Projection

A projection where the distances are minimized is a bad one - information is lost

Good Projection

A projection where the distances are maximised is a good one - information is preserved

The direction along which this variance is maximised is the first principal component of the original data

Find the next best direction, the second principal component, which must be at right angles to the first

Find the next best direction, the second principal component, which must be at right angles to the first

Principal Components at Right Angles

Directions at right angles help express the most variation with the smallest number of directions

Intuition Behind PCA

The variances are clearly smaller along this second principal component than along the first

Intuition Behind PCA

In general, there are as many principal components as there are dimensions in the original data

Intuition Behind PCA

Re-orient the data along these new axes

Linear Discriminant Analysis (LDA) is similar to PCA - it uses the same underlying idea of projecting points onto different axes

LDA chooses axis to maximize distance between points of different categories

Choosing Axes for Ternary Classification

Choosing Axes for Ternary Classification

PCA vs. LDA

Quadratic Discriminant Analysis

Variant of LDA that is better suited to cases where X-variables corresponding to different y-labels have different covariances

Covariance

Measures relationship between two variables, specifically whether greater values of one variable correspond to greater values in the other.

QDA vs. LDA

LDA works fine when X-variables share uniform covariances (independent of Y)

QDA vs. LDA

LDA fails when covariances of X are a function of value of Y

QDA correctly separates such points

Demo

Linear Discriminant Analysis for classification

Demo

Quadratic Discriminant Analysis for classification

SGD Classifiers

Logistic Regression Cost Function

Cross entropy measures how well the estimated probabilities match actual labels

"Gradient Descent"

"Training" the Algorithm

Start Somewhere

"Gradient Descent"

Stochastic Gradient Descent iteratively converges to the best model

Demo

Stochastic Gradient Descent classifier

Support Vector Classifiers (SVC)

Data in One Dimension

Unidimensional data points can be represented using a line, such as a number line

Data in One Dimension

Unidimensional can also be separated, or classified, using a point

Data in Two Dimensions

Bidimensional data points can be represented using a plane, and classified using a line

Support Vector Machines

SVM classifiers find the hyperplane that best separates points in a hypercube

Data in N Dimensions

N-dimensional data can be represented in a hypercube, and classified using a hyperplane

Hard Margin Classification

Ideally, data is linearly separable - hard decision boundary

Hard Margin Classification

The nearest instances on either side of the boundary are called the support vectors

Hard Margin Classification

SVM finds the widest street between the nearest points on either side

Soft Margin Classification

Hard margin classifiers are sensitive to outliers...

Soft Margin Classification

...and require perfectly linear separability in data

Soft Margin Classification

Soft margin classifiers allow some violations of the decision boundary

Soft Margin Classification

Soft margin classifiers allow some violations of the decision boundary

Non-separable Data

Smart transformations resolve surprisingly many such cases

SVM classification can be extended to almost any data using something called the kernel trick

Nonlinear SVM

Original Data

Not linearly separable

Square of original data

Now linearly separable!

Classify review as positive or negative based on length of review, and time when posted

Actually, we need three dimensions to visualize decision boundary correctly

Actually, we need three dimensions to visualize decision boundary correctly

Actually, we need three dimensions to visualize decision boundary correctly

Actually, we need three dimensions to visualize decision boundary correctly

Decision plane separates points based on whether $W_1x_1 + W_2x_2 + b = < > 0$

Decision plane separates points based on whether $W_1x_1 + W_2x_2 + b = < > 0$

Decision plane separates points based on whether $W_1x_1 + W_2x_2 + b = < > 0$

If $W_1x_1 + W_2x_2 + b > 0$ y_{predicted} = Positive

If $W_1x_1 + W_2x_2 + b \le 0$ y_{predicted} = Negative

Find the "best" values of

 W_1 , W_2 , b

Such that

SVM finds the widest street between the nearest points on either side

But "best" must also avoid or minimize outliers (by penalizing them during the optimization)

But "best" must also avoid or minimize outliers (by penalizing them during the optimization)

Calculate the magnitude of the margin violation for each point on the wrong side of the boundary

Multiply this magnitude of margin violation by a penalty factor C

Penalize each outlier using hyperparameter C

Very large values of C ~ hard margin classification Very small values of C ~ soft margin classification

Don't need to know precise math Understand that "best" decision boundary

Don't need to know precise math Understand that "best" decision boundary

- seeks to maximize width of street

Don't need to know precise math Understand that "best" decision boundary

- seeks to maximize width of street
- seeks to minimize margin violations

Don't need to know precise math Understand that "best" decision

Understand that "best" decision boundary

- seeks to maximize width of street
- seeks to minimize margin violations

These two objectives are in conflict with each other

Demo

Classification using Support Vector Machines

Nearest Neighbors Classifiers

Nearest Neighbors Classification uses training data to find what is most similar to the current sample

Nearest Neighbors Classification

Uses the entire training dataset as a model

Nearest Neighbors Classification

Each element in training data has an associated label

Predictions for a new sample involves figuring out which element in the training data it is similar to

The nearest neighbor

How do we calculate neighbors of a sample?

Distance measures

Euclidean distance, Hamming distance, Manhattandistance

K-nearest-neighbors Classification Radius Neighbors Classification

Voting among K nearest neighbors

Voting among all neighbors within radius

K-nearest-neighbors

Radius Neighbors

Demo

Classification using Nearest Neighbors

Decision Trees for Classification

Jockey or Basketball Player?

Jockeys

Tend to be light to meet horse carrying limits

Basketball Players

Tend to be tall, strong and heavy

Jockey or Basketball Player?

Intuitively know

Jockeys tend to be light

And not very tall

Basketball players tend to be tall

And also quite heavy

Decision trees set up a tree structure on training data which helps make decisions based on rules

Fit Knowledge into Rules

Decision Based on Weight

Decision Based on Height

Fit Knowledge into Rules

Fit Knowledge into Rules

Decision Tree

Fit knowledge into rules

Each rule involves a threshold

Decision Tree

Order of decision variables matters

Rules and order found using ML

Decision Tree

"CART"

<u>Classification And</u> <u>Regression Tree</u>

Decision Trees for Classification

Decision Trees for Classification

Traverse tree to find right node

Return most frequent label of all training data points in that node

Demo

Classification using Decision Trees

Naive Bayes' for Classification Problems

Swoosh as a Binary Classification Problem

Classify a person who jogs past you on the street

A Priori Probabilities

ItemsOccurenceRunners9Police officers1Total10

Observation 1: Today is the city marathon, more runners than police officers out on the streets

A Priori Probabilities

P(Police Officer) = 1/10

These are *a priori* probabilities: before anything specific about the person is known

Conditional Probabilities

Observation 2: Specific items appear more often with one category than with the other

Conditional Probabilities

Item	Occurrences with Police Officers	Occurrences with Runners
Handcuffs	6	0
Running Shoes	2	8
Gun	9	0
Badge	8	0
Walkie-Talkie	8	3

Upon Closer Examination

The person that zipped past carried these two items

Applying Bayes' Theorem

P(Runner/ = Handcuffs,Badge)

 Probability that a person carrying handcuffs and a badge is a runner

Step 1: Find probability that this person is a runner

Applying Bayes' Theorem

P(Police Officer/ = Handcuffs, Badge) ha

= Probability that a person carrying handcuffs and a badge is a police officer

Step 2: Find probability that this person is a police officer

Applying Bayes' Theorem

```
P(Police Officer/
Handcuffs,Badge)

and

P(Runner/
Handcuffs,Badge) =
```

Step 3: Pick the label with the higher probability

Jogger Is a Police Officer

```
P(Police Officer/ > P(Runner/ Handcuffs,Badge) =
```

Jogger Is a Marathon Runner

```
P(Police Officer/ P(Runner/ Handcuffs,Badge) =
```

Naive Bayes' makes naive (strong) assumptions about independence of features

Demo

Classification using Naive Bayes

Summary

scikit-learn support for classification models

Discriminant Analysis

Stochastic Gradient Descent

Support Vector Machines

Nearest Neighbors

Decision Trees

Naive Bayes