2002级(非电类)高等数学(下)期中试卷

单项选择题(3'×4=12')

在以下级数或反常积分后的括号内填入活当的字母, 各字母的含义是: (A) 绝对收敛: (B) 条件收敛: (C) 发散: (D) 可能收敛, 可能发散。

- 1. $\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt[n]{\ln n}}$ (C); 2. 设 $\sum_{n=1}^{\infty} u_n$ 条件收敛,则 $\sum_{n=1}^{\infty} u_n^2$ (D);
- 3. $\sum_{n=0}^{\infty} \frac{n^3}{3} \sin \frac{n\pi}{3}$ (A); 4. 设P为任意实数,则 $\int_{0}^{+\infty} \frac{dx}{x^p}$ (C)。

二、单项选择题(4′×4=16′)

1. 设平面 π : 2x+7y+4z-1=0及直线 L_1 : x=3t, y=t+1, z=2t-3,

- (A) $\pi /\!\!/ L_1$; (B) $\pi \perp L_1$; (C) $\pi /\!\!/ L_2$; (D) $\pi \perp L_2$.
- 2. 曲线 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, z = 0绕 x 轴旋转而成的曲面方程为(A)

(A)
$$\frac{x^2}{a^2} + \frac{y^2 + z^2}{b^2} = 1$$
; (B) $\frac{x^2 + z^2}{a^2} + \frac{y^2}{b^2} = 1$; (C) $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$; (D) $z = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1$.

- 3. 设 \vec{a} ={-1, 2, -1}, \vec{b} ={1, -1, 2}, \vec{c} ={3, -4, 5},则(D)

- (A) $\vec{a} \perp \vec{b}$; (B) $\vec{b} \perp \vec{c}$; (C) $\vec{c} \perp \vec{a}$; (D) \vec{a} , \vec{b} , \vec{c} 共面。
- 4. 两非零向量 \vec{a} 及 \vec{b} 的方向角分别为α, β, γ 及α', β', γ', 则 $\cos(\vec{a},\vec{b})$ = (B)

 - (A) $\cos \alpha \cos \beta \cos \gamma + \cos \alpha' \cos \beta' \cos \gamma'$; (B) $\cos \alpha \cos \alpha' + \cos \beta \cos \beta' + \cos \gamma \cos \gamma'$;
 - (C) $\cos(\alpha + \alpha') + \cos(\beta + \beta') + \cos(\gamma + \gamma')$; (D) $\cos(\alpha \alpha') + \cos(\beta \beta') + \cos(\gamma \gamma')$.

三、填空题(4'×5=20')

1. $f(x)=3^x$ 在 $x_0=-1$ 处的泰勒级数及收敛域为

$$f(x)=3^x=\frac{1}{3}\sum_{n=0}^{\infty}\frac{(\ln 3)^n(x+1)^n}{n!}, x\in(-\infty,+\infty).$$

- 2. 级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n+1)!}$ 的和为 $\frac{1-\sin 1}{n}$
- 3. 级数 $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$ 的和函数及收敛域为 $S(x) = \frac{1}{2} \ln \frac{1+x}{1-x}$, $x \in (-1,1)$.
- 4. 曲面 $z=x^2+2y^2$ 的名称为<u>椭圆抛物面</u>,它与曲面 $z=6-2x^2-y^2$ 的交线在 xoy面上的投影曲线方程为 $\begin{cases} x^2+y^2=2, \\ z=0. \end{cases}$

四、计算题(6'×3=18')

1. 求点 P(3,-1,2) 到直线 L: x=1, y=3t+2, z=3t+4的距离 d。

解法 1: 直线 L 的方向向量 $\vec{a} = \{0,3,3\}$, $A(1,2,4) \in L$, $\overrightarrow{PA} = \{-2,3,2\}$,

$$\overrightarrow{PA} \times \overrightarrow{a} = \{3, 6, -6\}, \quad \left| \overrightarrow{PA} \times \overrightarrow{a} \right| = 9, \quad d = \frac{\left| \overrightarrow{PA} \times \overrightarrow{a} \right|}{\left| \overrightarrow{a} \right|} = \frac{9}{3\sqrt{2}} = \frac{3\sqrt{2}}{2}.$$

解法 2: 过点 P垂直于直线L的平面方程为 $0\cdot(x-3)+0\cdot(y+1)+3\cdot(z-2)=0$,

即 y+z-1=0,把直线L的方程代入平面方程得: 3t+2+3t+4-1=0, $t=-\frac{5}{6}$ 。

∴ 平面与直线
$$L$$
 的交点为 $B(1, -\frac{1}{2}, \frac{3}{2})$, $\overrightarrow{PB} = \{-2, \frac{1}{2}, -\frac{1}{2}\}$, $d = |\overrightarrow{PB}| = \frac{3\sqrt{2}}{2}$ 。

2. 求级数 $\sum_{n=1}^{\infty} \frac{1}{(x+n)(x+n+1)}$ 的和函数及收敛域。

解:
$$u_n = \frac{1}{(x+n)(x+n+1)} = \frac{1}{x+n} - \frac{1}{x+n+1}$$
,

东南大学学生会

Students' Union of Southeast University

$$\lim_{n \to \infty} S_n(x) = \lim_{n \to \infty} \left(\frac{1}{x+1} - \frac{1}{x+2} + \frac{1}{x+2} - \frac{1}{x+3} + \dots + \frac{1}{x+n} - \frac{1}{x+n+1} \right)$$

$$=\lim_{n\to\infty} \left(\frac{1}{x+1} - \frac{1}{x+n+1}\right) = \frac{1}{x+1}$$
,

$$\therefore \sum_{n=1}^{\infty} \frac{1}{(x+n)(x+n+1)}$$
的和函数为 $S(x) = \frac{1}{x+1}$,收敛域为除负整数外的一切实

数。

3. 求级数 $\sum_{n=1}^{\infty} (1 + \frac{1}{2} + \dots + \frac{1}{n}) x^n$ 的收敛域。

解:
$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$
, $\therefore \rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n+1}}{1 + \frac{1}{2} + \dots + \frac{1}{n}} = 1$, $\therefore R = \frac{1}{\rho} = 1$.

或
$$1 = \sqrt{\frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n}} \le \sqrt[n]{|a_n|} = \sqrt[n]{1 + \frac{1}{2} + \dots + \frac{1}{n}} \le \sqrt[n]{1 + 1 + \dots + 1} = \sqrt[n]{n}$$
, 面 $\lim_{n \to \infty} \sqrt[n]{n} = 1$,

故
$$\rho = \lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$$
, $\therefore R = 1$ 。

当|x|=1时, $: a_n \to +\infty (n \to \infty)$, ::级数在 $x=\pm 1$ 处发散,故收敛域为(-1, 1)。

五、计算题 (9'×3=27')

1. 已知直线 L过点P (4,2),且与两直线 L_1 : x-6=y+4=z+2 及 L_2 :

$$\frac{x-4}{5} = \frac{y+3}{2} = \frac{z}{1}$$

都相交,求L的方程。

解法 1: $M_1(6,-4,-2) \in L_1$, $\overrightarrow{PM_1} = \{3,-5,0\}$, L_1 的方向向量 $\overrightarrow{a_1} = \{1,1,1\}$,

$$\overrightarrow{PM}_1 \times \overrightarrow{a}_1 = \{3, -5, 0\} \times \{1, 1, 1\} = \{-5, -3, 8\},$$

:由点 P 与 L_1 所确定的平面为 π_1 : -5(x-3)-3(y-1)+8(z+2)=0,即 5x+3y-8z-34=0。

东南大学学生会

Students' Union of Southeast University

 L_5 的参数方程为 x=5t+4, y=2t-3, z=t, 代入平面 π_1 , 得 t=1,

 L_2 与 π_1 的交点为M(9,-1,1), $\overrightarrow{PM} = \{6,-2,3\}$,**.** L的方程为 $\frac{-3}{6} = \frac{y-1}{-2} = \frac{z+2}{3}$ 。

解法 2: $M_2(4,-3,0) \in L_2$, $\overrightarrow{PM_2} = \{1,-4,2\}$, L_2 的方向向量 $\overrightarrow{a_2} = \{5,2,1\}$,

$$\overrightarrow{PM_2} \times \overrightarrow{a_2} = \{-8, 9, 22\}$$

由点 P 与 L_2 所确定的平面为 π_2 : -8(x-3)+9(y-1)+22(z+2)=0, 8x-9y-22z-59=0

故交线
$$L$$
的方程为
$$\begin{cases} 5x+3y-8z-34=0\\ 8x-9y-22z-59=0 \end{cases}$$

解法 3: 设
$$L$$
的方程为 $\frac{x-3}{l} = \frac{y-1}{m} = \frac{z+2}{n}$,则 L 的方向向量 $\vec{a} = \{l, m, n\}$,
$$\vec{a} = \vec{a} = \vec{b} = \vec{b}$$

$$[\vec{a} \ \overrightarrow{a_2} \ \overrightarrow{PM_2}] = \begin{vmatrix} l & m & n \\ 5 & 2 & 1 \\ 1 & -4 & 2 \end{vmatrix} = 8l - 9m - 22n = 0 , \quad \therefore l = 2n , \quad m = -\frac{2}{3}n$$

:. L的方程为
$$\frac{x-3}{2n} = \frac{y-1}{2n} = \frac{z+2}{n}$$
,即 $\frac{x-3}{6} = \frac{y-1}{-2} = \frac{z+2}{3}$ 。

2. 将函数 $f(x) = \begin{cases} 1, \ 0 \le x < \frac{\pi}{2} \\ 0, \ \frac{\pi}{2} \le x \le \pi \end{cases}$ 展开成正弦级数,并写出该级数的和函数 S(x) 的表

达式。

解: 先将 f(x) 作奇式延拓,再作周期延拓,则 $a_n=0$ $(n=0,1,2,\cdots)$,

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \left[\int_0^{\frac{\pi}{2}} \sin nx dx + \int_{\frac{\pi}{2}}^{\pi} 0 \cdot \sin nx dx \right] = -\frac{2}{n\pi} \cos nx \Big|_0^{\frac{\pi}{2}} = \frac{2}{n\pi} (1 - \cos \frac{n\pi}{2}).$$

$$f(x) = \sum_{n=1}^{\infty} \frac{2}{n\pi} (1 - \cos \frac{n\pi}{2}) \sin nx, \ x \in (0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi] \circ S(x) = \begin{cases} f(x), \ x \in (0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi] \\ 0, \ x = 0, \\ \frac{1}{2}, \ x = \frac{\pi}{2}. \end{cases}$$

3. 常数 P取什么范围时,级数 $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n^p}$ 是(1)发散;(2)条件收敛;

(3) 绝对收敛。

分析: 设
$$u_n = (-1)^n \frac{\ln n}{n^p}$$
, $|u_n| = \frac{\ln n}{n^p}$ 。 当 $p \le 0$ 时,: $\lim_{n \to \infty} |u_n| = +\infty$, $\lim_{n \to \infty} u_n$ 发散。

当 p>0时, $\lim_{n\to\infty}|u_n|=0$ ⇒ $\lim_{n\to\infty}u_n=0$,但不能确定 $\sum_{n=1}^\infty u_n$ 是否收敛。为此用比较

判别法:
$$\lim_{n\to\infty}\frac{|u_n|}{n^r}=\lim_{n\to\infty}\frac{\ln n}{n^{p-r}}$$
, 显然, 当 $1< r< p$ 时, $\sum_{n=1}^{\infty}|u_n|$ 收敛, 从而 $\sum_{n=1}^{\infty}u_n$ 绝

对收敛。综上可知,要分 $p \le 0$,0 ,<math>p > 1 三种情况进行讨论。

解: 设
$$u_n = (-1)^n \frac{\ln n}{n^p}$$
, $|u_n| = \frac{\ln n}{n^p}$,

(1) 当
$$p \le 0$$
时, $\lim_{n \to \infty} |u_n| = \lim_{n \to \infty} \frac{\ln n}{n^p} = +\infty$, $\lim_{n \to \infty} u_n \ne 0$, $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n^p}$ 发散。

(2) 当p>1时,取r>0, 且满足1< r< p,则有

$$\lim_{n\to\infty}\frac{|u_n|}{\frac{1}{n^r}}=\lim_{n\to\infty}n^r\frac{\ln n}{n^p}=\lim_{n\to\infty}\frac{\ln n}{n^{p-r}}=0, \quad \overline{m}\sum_{n=1}^\infty\frac{1}{n^r}\,\,\underline{\mathbb{W}}\,\underline{\mathfrak{Y}},$$

$$\therefore \sum_{n=1}^{\infty} |u_n|$$
 收敛,故 $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n^p}$ 绝对收敛。

(3) 当0<*p*≤1时,

东南大学学生会

Students' Union of Southeast University

设
$$f(x) = \frac{\ln x}{x^p}$$
, $f'(x) = \frac{1 - p \ln x}{x^{p+1}}$, 当 x 充分大时, $f'(x) < 0$,

$$\therefore f(x) \downarrow$$
, 从而 $\{f(n)\} = \{\frac{\ln n}{n^p}\} \downarrow$, 且 $\lim_{n \to \infty} \frac{\ln n}{n^p} = 0$,

故由莱布尼兹判别法知 $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n^p}$ 条件收敛。

综上讨论可知, $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n^p}$ 当 $p \le 0$ 时发散; 当 0 时条件收敛; 当 <math>p > 1 时绝对收敛。

六. 证明题 (7')

设在区间 [0,a] 上 $u_{\circ}(x)$ 连续,且 $u_{n}(x)=\int_{0}^{x}u_{n-1}(t)dt,\ x\in[0,a],\ n=1,2,\cdots$

证明级数 $\sum_{n=0}^{\infty} u_n(x)$ 在 [0,a]上绝对收敛。

证明:
$$: u_{\circ}(x) \in C[0,a]$$
, $: \exists M > 0$, $\forall x \in [0,a]$, 有 $|u_{\circ}(x)| \leq M$,

$$|u_1(x)| = \left| \int_0^x u_\circ(t) dt \right| \le \int_0^x |u_\circ(t)| dt \le M \cdot \frac{x}{1!};$$

$$|u_2(x)| = \left| \int_0^x u_1(t)dt \right| \le \int_0^x |u_1(t)|dt \le \int_0^x M \cdot \frac{t}{1!}dt \le M \cdot \frac{x^2}{2!};$$

$$|u_3(x)| = \left| \int_0^x u_2(t)dt \right| \le \int_0^x |u_2(t)|dt \le \int_0^x M \cdot \frac{t^2}{2!}dt \le M \cdot \frac{x^3}{3!};$$

.

$$\therefore |u_n(x)| \le M \cdot \frac{x^n}{n!}$$
。 从而 $\forall x \in [0, a]$, 有 $|u_n(x)| \le M \cdot \frac{a^n}{n!}$,

$$\lim_{n\to\infty} \frac{\frac{a^{n+1}}{(n+1)!}}{\frac{a^n}{n!}} = \lim_{n\to\infty} \frac{a}{n+1} = 0 < 1, \quad \therefore \sum_{n=0}^{\infty} \frac{a^n}{n!} 收敛, \quad 从而 \sum_{n=0}^{\infty} \frac{Ma^n}{n!} 收敛,$$

由比较判别法知 $\sum_{n=0}^{\infty} |u_n(x)|$ 收敛,故 $\sum_{n=0}^{\infty} u_n(x)$ 在 [0,a] 上绝对收敛。

