D. 芽芽與新公車

Description

資芽鎮共有 N 個公車站,從 1 號站到 N 號站依序位於一條直線上。目前鎮內共有 M 輛公車,其中第 i 輛公車會行駛於 L_i 到 R_i 之間的每個車站。

市長芽芽發現從 1 號站到 N 號站要轉搭許多公車才能抵達,因此想要最小化往來這兩站之間的轉乘次數。透過去年課徵的稅務,芽芽可以建造一條行經 K 個車站的公車路線。具體來說,芽芽可以建造一條新的公車路線,使其行駛於 x 到 x+K 之間的每個車站,其中 $1 \le x \le N-K$ 。

請問在選擇最佳 x 的情況下,從 1 號站到 N 號站最少需要搭幾班公車?

Input

第一行為二個正整數 N, M, K,分別代表車站數量、公車數量和新公車的行駛長度。接下來 M 行,每行為兩個正整數 L_i, R_i ,代表第 i 輛公車能行駛的車站區間。各變數範圍如下:

- $1 \le K < N \le 10^6$
- $1 \le M \le 2 \times 10^5$
- $1 \le L_i < R_i \le N$

Output

請輸出一個正整數,代表在建設新公車路線後,從 1 號站到 N 號站最少需要搭幾 班公車。如果無論如何都無法抵達,請輸出 -1。

Sample 1

Input	Output
8 4 2	3
1 4	
2 5	
5 7	
6 8	

Sample 2

Input	Output
10 5 3	3
1 4	
3 7	
2 5	
8 10	
9 10	

Sample 3

Input	Output
6 3 1	-1
1 3	
2 3	
5 6	

配分

在一個子任務的「測試資料範圍」的敘述中,如果存在沒有提到範圍的變數,則此 變數的範圍為 Input 所描述的範圍。

子任務編號	子任務配分	測試資料範圍
1	0%	範例測資
2	20%	$N, M \leq 100$
3	20%	$N, M \leq 2000$
4	30%	$N \le 2000$
5	30%	無額外限制

Hints

範例測試一的公車圖如下,若在 $4 \subseteq 6$ 之間新增一條公車路線,則可以在使用三輛公車從 1 號站到達 8 號站。

範例測試二的公車圖如下。

