10. წესიერი მრავალკუთხედები. წრეწირის სიგრძე. წრის ფართობი. წრეწირში ჩახაზული და მასზე შემოხაზული ფიგურები

- წესიერ n-კუთხედში ყველა გვერდი და კუთხე ტოლია
- ullet n-კუთხედში კუთხეთა ჯამია $180^\circ(n-2)$
- ullet წესიერი n-კუთხედის თითოეული კუთხე ტოლია $lpha_n=rac{180^\circ(n-2)}{n}$
- ullet წესიერი ${
 m n}$ -კუთხედის კუთხეების რაოდენობაა $oldsymbol{n}=rac{360^\circ}{180-lpha_n}$
- ullet წესიერი n -კუთხედის გარე კუთხე $\dfrac{360^\circ}{n}$ ია.

დიაგონალთა რაოდენობა წესიერ n კუთხედში

$$\frac{n(n-3)}{2}$$

წრეწირის სიგრძე

•
$$2R = d$$

•
$$\frac{\mathcal{L}}{d} = \pi$$
 because $\pi = \frac{22}{7}$

•
$$\mathcal{L} = \pi d = 2\pi R$$

 π =3.14...

lpha გრადუსიანი რკალის სიგრძე

$$\ell = 2\pi R \cdot \frac{\alpha}{360^{\circ}}$$

წრეწირის ფართობი

$$S = \pi R^2$$

სექტორის ფართობი

$$S_{byd\mathcal{O}m\mathcal{O}O} = \pi R^2 \, \cdot \frac{\alpha}{360^\circ}$$

$$\textit{sligg} \quad \textit{S}_{\textit{biddinfin}} = \frac{1}{2} \cdot \textit{R} \cdot \textit{L}$$

სეგმენტის ფართობი

$$S_{bjj\partial j\delta \delta o} = S_{bjj\delta o \delta o} \pm S_{\Delta}$$

სამკუთხედზე შემოხაზული და სამკუთხედში ჩახაზული წრეწირები

მართკუთხა სამკუთხედზე შემოხაზული და მართკუთხა სამკუთხედში ჩახაზული წრეწირები

წესიერ სამკუთხედზე შემოხაზული და წესიერ სამკუთხედში ჩახაზული წრეწირები

ოთხკუთხედზე წრეწირი....

- 1) შემოიხაზება თუ $\emph{BC}+\emph{AD}=\emph{AB}+\emph{CD}$
- 2) ჩაიხაზება თუ $\angle A+\angle \emph{C}=\angle B+\angle D=180^\circ$

წესიერ \mathbf{n} -კუთხედზე შემოხაზული და წესიერ \mathbf{n} -კუთხედში ჩახაზული წრეწირები

$$R = \frac{a}{2sin\frac{180^0}{n}}$$

$$r = \frac{a}{2tg \frac{180^0}{n}}$$

$$a_{n\left(\textit{Bidinbis} \textit{Because}\right)} = 2R \cdot sin\frac{180^{\circ}}{n} \qquad \quad a_{n\left(\textit{Bidinbis} \textit{Because}\right)} = 2R \cdot tg\frac{180^{\circ}}{n}$$

$$a_{n(\beta \cup b \cup b \cup \mathcal{O}(\mathcal{O}))} = 2R \cdot tg \frac{180^{\circ}}{n}$$

წესიერი \mathbf{n} -კუთხედის ფართობის ფორმულა

$$S_n = \frac{n}{2} \cdot R^2 \cdot \sin \frac{360^\circ}{n}$$

ან

მრავალკუთხედი დავჭრათ n ტოლ ტოლფერდა სამკუთხედად.

მიღებულ OAB სამკუთხედში $OA=OB=R_{\mathrm{მემოb.}}$, ხოლო OC სიმაღლე არის $r_{\mathrm{Bab.}}$ და $\angle AOB=rac{360}{n}$.

მრავალკუთხედის ფართობის მოსაძებნად მიღებული *OAB* სამკუთხედის ფართობი უნდა გავამრავლოთ n-ზე.

დიაგონალები წესიერ ექვსკუთხედში

- დიდი დიაგონალი = 2m
- *მცირე დიაგონალი* = $\sqrt{3}m$

ტოლფერდა ტრაპეციაში ჩახაზული წრეწირი

$$2AB = a + b$$

$$AB=\frac{a+b}{2}$$

$$r=\frac{h}{2}=\frac{\sqrt{ab}}{2}$$

რომბში ჩახაზული წრეწირი

$$r = \frac{a \cdot sina}{2}$$

$$r = \frac{d_1 \cdot d_2}{4a} = \frac{d_1 \cdot d_2}{2 \cdot \sqrt{{d_1}^2 \cdot {d_2}^2}}$$

დიაგონალები რომბში

დიდი დიაგონალი =
$$\sqrt{3}m$$

მცირე დიაგოწალი =
$$m$$