Abgabe Algebra I, Blatt 09

Studierende(r): Weerts, Steffen, steffen.weerts@uni-oldenburg.de

Aufgabe 9.1

- (a) Fehlt.
- (b) (i) Sei $f_1 = t^4 5 \in \mathbb{Q}[t]$. Es gilt:

$$f_1 = t^4 - 5$$

$$= (t^2 + \sqrt{5})(t^2 - \sqrt{5})$$

$$= (t + \sqrt[4]{5}i)(t - \sqrt[4]{5}i)(t + \sqrt[4]{5})(t - \sqrt[4]{5})$$

Da $\pm \sqrt[4]{5}$, $\pm \sqrt[4]{5}i \in \mathbb{Q}(\sqrt[4]{5},i)$, zerfällt f_q über $\mathbb{Q}(\sqrt[4]{5},i)$.

Zu zeigen:
$$\begin{split} & [\mathbb{Q}(\sqrt[4]{5},i):\mathbb{Q}(\sqrt[4]{5})] = 2. \\ & \operatorname{Da} f_{i,\mathbb{Q}(\sqrt[4]{5})} = t^2 + 1, \text{ ist } [\mathbb{Q}(\sqrt[4]{5},i):\mathbb{Q}(\sqrt[4]{5})] = \deg(f_{i,\mathbb{Q}(\sqrt[4]{5})}) = 2. \end{split}$$

Zu zeigen: $[\mathbb{Q}(\sqrt[4]{5}):\mathbb{Q}]=4$. Angenommen, $\deg(f_{\sqrt[4]{5},\mathbb{Q}})=1$. Es gilt:

$$f_{\sqrt[4]{5},\mathbb{Q}}(\sqrt[4]{5}) = \sqrt[4]{5} + a_0 \stackrel{!}{=} 0$$

$$\implies a_0 = -\sqrt[4]{5} \notin \mathbb{Q}$$

$$\implies \deg(f_{\sqrt[4]{5},\mathbb{Q}}) \neq 1.$$

Angenommen, $\deg(f_{\sqrt[4]{5},\mathbb{Q}}) = 2$. Es gilt:

$$f_{\sqrt[4]{5},\mathbb{Q}}(\sqrt[4]{5}) = \sqrt[4]{5}^2 + a_1\sqrt[4]{5} + a_0 \stackrel{!}{=} 0$$

$$\implies a_0 = -\sqrt{5} - a_1\sqrt[4]{5} \notin \mathbb{Q} \quad \forall a_1 \in \mathbb{Q}$$

$$\implies \deg(f_{\sqrt[4]{5},\mathbb{Q}}) \neq 2.$$

Angenommen, $\deg(f_{\sqrt[4]{5},\mathbb{Q}}) = 3$. Es gilt:

$$f_{\sqrt[4]{5},\mathbb{Q}}(\sqrt[4]{5}) = \sqrt[4]{5}^3 + a_2\sqrt[4]{5}^2 + a_1\sqrt[4]{5} + a_0$$

$$= \sqrt{5}\sqrt[4]{5} + a_2\sqrt{5} + a_1\sqrt[4]{5} + a_0 \stackrel{!}{=} 0$$

$$\implies a_0 = -\sqrt{5}\sqrt[4]{5} - a_2\sqrt{5} - a_1\sqrt[4]{5} \notin \mathbb{Q} \quad \forall a_1, a_2 \in \mathbb{Q}$$

$$\implies \deg(f_{\sqrt[4]{5},\mathbb{Q}}) \neq 3.$$

Angenommen, $\deg(f_{\sqrt[4]{5},\mathbb{Q}}) = 4$. Es gilt:

$$\begin{split} f_{\sqrt[4]{5},\mathbb{Q}}(\sqrt[4]{5}) &= \sqrt[4]{5}^4 + a_3\sqrt[4]{5}^3 + a_2\sqrt[4]{5}^2 + a_1\sqrt[4]{5} + a_0 \\ &= 5 + a_3\sqrt{5}\sqrt[4]{5} + a_2\sqrt{5} + a_1\sqrt[4]{5} + a_0 \stackrel{!}{=} 0 \\ \Longrightarrow a_0 &= -5 - a_3\sqrt{5}\sqrt[4]{5} - a_2\sqrt{5} - a_1\sqrt[4]{5} \in \mathbb{Q} \text{ für } a_1 = a_2 = a_3 = 0 \\ \Longrightarrow f_{\sqrt[4]{5},\mathbb{Q}} &= t^4 - 5 \\ \Longrightarrow [\mathbb{Q}(\sqrt[4]{5}):\mathbb{Q}] &= \deg(f_{\sqrt[4]{5},\mathbb{Q}}) = 4. \end{split}$$

Insgesamt ergibt sich:

$$[\mathbb{Q}(\sqrt[4]{5}, i) : \mathbb{Q}] = [\mathbb{Q}(\sqrt[4]{5}, i) : \mathbb{Q}(\sqrt[4]{5})] \cdot [\mathbb{Q}(\sqrt[4]{5}) : \mathbb{Q}] = 2 \cdot 4 = 8.$$

(ii) Sei $f_2 = t^4 + 1$. Es gilt:

$$f_2 = t^4 + 1$$

= $(t^2 + i)(t^2 - i)$
= $(t + i\sqrt{i})(t - i\sqrt{i})(t + \sqrt{i})(t - \sqrt{i}).$

Da $\sqrt{i}, i\sqrt{i} \notin \mathbb{Q}$, zerfällt f_2 nicht über \mathbb{Q} , jedoch über $\mathbb{Q}(i, \sqrt{i})$, denn $\sqrt{i}, i\sqrt{i}$ sind die Nullstellen von f_2 in $\mathbb{Q}(i, \sqrt{i})$.

Zu zeigen: $[\mathbb{Q}(i) : \mathbb{Q}] = 2$. Es gilt:

$$f_{i,\mathbb{Q}} = t^2 + 1.$$

 $\implies [\mathbb{Q}(i) : \mathbb{Q}] = \deg(f_{i,\mathbb{Q}}) = 2.$

Zu zeigen: $[\mathbb{Q}(i, \sqrt{i}) : \mathbb{Q}(i)] = 2$. Angenommen, $\deg(f_{\sqrt{i},\mathbb{Q}(i)}) = 1$. Es gilt:

$$f_{\sqrt{i},\mathbb{Q}(i)}(\sqrt{i}) = \sqrt{i} + a_0 \stackrel{!}{=} 0$$

$$\implies a_0 = -\sqrt{i} \notin \mathbb{Q}(i)$$

$$\implies \deg(f_{\sqrt{i},\mathbb{Q}(i)}) \neq 1.$$

Angenommen, $deg(f_{\sqrt{i},\mathbb{Q}(i)}) = 2$. Es gilt:

$$f_{\sqrt{i},\mathbb{Q}(i)}(\sqrt{i}) = \sqrt{i}^2 + a_1\sqrt{i} + a_0$$

$$= i + a_1\sqrt{i} + a_0 \stackrel{!}{=} 0$$

$$\implies a_0 = -i - a_1\sqrt{i}$$

$$\implies (a_0 \in \mathbb{Q}(i) \iff a_1 = 0)$$

$$\implies f_{\sqrt{i},\mathbb{Q}(i)} = t^2 - i$$

$$\implies [\mathbb{Q}(i,\sqrt{i}) : \mathbb{Q}(i)] = \deg(f_{\sqrt{i},\mathbb{Q}(i)}) = 2.$$

Insgesamt ergibt sich:

$$[\mathbb{Q}(i,\sqrt{i}):\mathbb{Q}] = [\mathbb{Q}(i,\sqrt{i}):\mathbb{Q}(i)] \cdot [\mathbb{Q}(i):\mathbb{Q}] = 2 \cdot 2 = 4.$$

(c) (i) Sei $K:=\mathbb{Q}\subseteq\mathbb{Q}(i)=:L$ Körpererweiterung, $f=t^2+1\in K[t], n:=\deg(f)=2.$ Es gilt:

$$f = t^{2} + 1$$

$$= t^{2} - i^{2}$$

$$= (t + i)(t - i).$$

Außerdem gilt:

 $t+i, t-i \in L[t] \implies f$ zerfällt über L, aber nicht über K, da $i \notin K$.

Zu zeigen: [L:K]=2.

Da $i \notin \mathbb{Q}$ ist, muss der Grad des Minimalpolymoms von i größer als 1 sein. Da $i^2 + 1 = 0$, ist f das Minimalpolynom von i über \mathbb{Q} . Es gilt:

$$[L:K] = \deg(f) = 2.$$

- (ii) Fehlt.
- (iii) Fehlt.

Aufgabe 9.2

(a) Sei $f := t^4 + t^3 + 2t^2 + 1 \in \mathbb{Z}_3[t]$. Zu zeigen: $f = (t+1) \cdot (t^3 + 2t + 1)$ ist eine Zerlegung von f in irreduzible Polynome über \mathbb{Z}_3 .

Es gilt:

$$f = t^{4} + t^{3} + 2t^{2} + 1$$

= $t^{4} + t^{3} + 2t^{2} + 2t + t + 1$
= $(t+1)(t^{3} + 2t + 1)$.

Zu zeigen: t+1 irreduzibel über \mathbb{Z}_3 .

Es gilt:

 \mathbb{Z}_3 Körper und $\deg(t+1)=1$ $\stackrel{5.1.2}{\Longrightarrow}$ t+1 irreduzibel über \mathbb{Z}_3 .

Zu zeigen: $h := t^3 + 2t + 1$ irreduzibel über \mathbb{Z}_3 .

Angenommen, h sei reduzibel über \mathbb{Z}_3 . Da \mathbb{Z}_3 Körper ist und $\deg(h) = 3$ hat h nach Beobachtung 5.1.6 eine Nullstelle in \mathbb{Z}_3 . Es gilt:

$$h(0) = 0^{3} + 2 \cdot 0 + 1 = 1 \neq 0,$$

$$h(1) = 1^{3} + 2 \cdot 1 + 1 = 1 \neq 0,$$

$$h(2) = 2^{3} + 2 \cdot 2 + 1 = 1 \neq 0.$$

Dies steht im Widerspruch zu Beobachtung 5.1.6, weshalb h nicht reduzibel über \mathbb{Z}_3 sein kann.

Insgesamt ergibt sich, dass $f = (t+1) \cdot (t^3 + 2t + 1)$ eine Zerlegung von f in irreduzible Polynome über \mathbb{Z}_3 ist.

- (b) Fehlt.
- (c) Fehlt.

Aufgabe 9.3

Sei $R := \mathbb{Z}_6$ und $M := R \times R$.

Zu zeigen: X := ((2,4)) linear unabhängig.

Es gilt:

$$0 \neq 3 \in R$$

 $\implies 3 \cdot (2,4) = (3 \cdot 2, 3 \cdot 4) = (0,0)$
 $\implies ((2,4))$ ist eine linear abhängige Familie.

korrigiert von