CS 320: Concepts of Programming Languages Lecture 3: OCaml Functions

Ankush Das

Nathan Mull

Sep 10, 2024

Office Hours

- Nathan Mull
 - ▶ Tue, 6:30pm 8pm: CGS 323
 - ▶ Wed, 6:30pm 8pm: CGS 311
 - ▶ Thu, 6:30pm 8pm: CGS 311
- Ankush Das (Wed, 11am 1pm: CDS 1001)
- Qiancheng (Robin) Fu (Fri, 2:15pm 4:15pm: PSY B33)
- June wunder (Thu, 2pm 4pm: CDS 1001)
- Zach Casey (Mon, 2pm 4pm: CGS 113)

Installation Issues?

- Are you still facing installation issues?
- Please see the note about GitHub Codespaces from Instructor Nathan Mull on Piazza
- Windows Users? You can try installing Ubuntu alongside Windows by creating necessary partitions on your disk
- ➤ Some helpful links: https://www.tecmint.com/install-ubuntu-alongside-with-windows-dual-boot/
 https://ubuntu.com/tutorials/install-ubuntu-desktop#I-overview
- Can run OCaml in the browser: https://ocaml.org/play

Goals for Today's Lecture

- Writing and Compiling OCaml Code Files
- If Expressions
- Anonymous Functions
- Function Definitions with Pattern Matching
- Function Applications
- Polymorphism

OCaml Code Files

- So far, we have written all our programs in UTop; you will lose all your work when you close UTop
- To save your work, OCaml programs can also be written in files with a ".ml" extension (e.g., lec3.ml)
- Compile this program using ocamle lec3.ml
- This will create an a.out file which can then be executed using . /a.out
- You can also compile to a specific output file using ocamlc lec3.ml -o lec3

Loading Files in UTop

- Instead of compiling files directly, you can also load them in Top
- Use the following command in UTop: #use "lec3.ml";;
- Interact with the code, i.e., call functions, assign variables, etc. Assume that all functions in the file are now in scope.
- Close UTop using Control-D or #quit;;

If Expressions

- Before we delve into today's abstraction (i.e., functions), let's do another abstraction, namely if expressions
- As always, we will define it formally
 - > Syntax: if <expr> then <expr> else <expr>
 - Type System: for expression if e then e₁ else e₂
 - e must have type bool
 - ightharpoonup e₁ and e₂ must have the same type, say τ
 - Then the expression has type τ

Formal Typing Rule for If Expression

$$\frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \ e \ \mathsf{then} \ e_1 \ \mathsf{else} \ e_2 : \tau}$$

- First premise: e has type bool
- Second premise: e_1 has type τ
- Third premise: e_2 has same type τ
- Conclusion: if-expression has same type τ

How do we determine the type of an expression? Build derivation tree let x = true in if x then 3 else 4

How do we determine the type of an expression? Build derivation tree let x = true in if x then 3 else 4

 \cdot | let x = true in if x then 3 else 4

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \mathsf{let} \ x = e_1 \mathsf{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \ e \mathsf{ then } e_1 \mathsf{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then 3 else 4

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \mathsf{let} \ x = e_1 \mathsf{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \ e \mathsf{ then } e_1 \mathsf{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then 3 else 4

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \mathsf{let} \ x = e_1 \mathsf{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \ e \mathsf{ then } e_1 \mathsf{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then 3 else 4

· ⊢ true : bool

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'}$$

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \mathsf{let} \ x = e_1 \mathsf{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \ e \mathsf{ then } e_1 \mathsf{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then 3 else 4

```
\cdot + true : bool \{x : bool\} + if x \in S then 3 else 4 : int
```

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \mathsf{let} \ x = e_1 \; \mathsf{in} \; e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \; e \; \mathsf{then} \; e_1 \; \mathsf{else} \; e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then 3 else 4

```
\cdot + true : bool \{x : bool\} + if x \in \{x : bool\} then 3 else 4 : int
```

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \mathsf{let} \ x = e_1 \; \mathsf{in} \; e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \; e \; \mathsf{then} \; e_1 \; \mathsf{else} \; e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then 3 else 4

```
\{x : bool\} \vdash x : bool
\{x : bool\} \vdash \text{if } x \text{ then } 3 \text{ else } 4 : \text{int}
```

 \cdot | let x = true in if x then 3 else 4 : int

· ⊢ true : bool

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \mathsf{let} \ x = e_1 \; \mathsf{in} \; e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \; e \; \mathsf{then} \; e_1 \; \mathsf{else} \; e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then 3 else 4

```
\frac{\{x:\mathsf{bool}\} \vdash x:\mathsf{bool}\}}{\{x:\mathsf{bool}\} \vdash \mathsf{if}\,\, x\,\,\mathsf{then}\,\, 3\,\,\mathsf{else}\,\, 4:\mathsf{int}}
```

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \text{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then 3 else 4

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \mathsf{let} \ x = e_1 \mathsf{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \ e \mathsf{ then } e_1 \mathsf{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if y then 3 else 4

How do we determine the type of an expression? Build derivation tree let x = true in if y then 3 else 4

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \text{bool}}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if y then 3 else 4

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \text{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if y then 3 else 4

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \text{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if y then 3 else 4

· ⊢ true : bool

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'}$$

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \mathsf{let} \ x = e_1 \mathsf{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \ e \mathsf{ then } e_1 \mathsf{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if y then 3 else 4

 \cdot + true : bool $\{x : bool\}$ + if $y \in \{x : bool\}$

 \cdot | let x = true in if y then 3 else 4: int

 $\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \mathsf{let} \ x = e_1 \; \mathsf{in} \; e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \; e \; \mathsf{then} \; e_1 \; \mathsf{else} \; e_2 : \tau}$

How do we determine the type of an expression? Build derivation tree let x = true in if y then 3 else 4

```
\cdot + true : bool \{x : bool\} + if y \in \{x : bool\} then 3 else \{x : bool\}
```

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \text{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if y then 3 else 4

```
\{x : bool\} \vdash y : bool
\{x : bool\} \vdash \text{if } y \text{ then } 3 \text{ else } 4 : \text{int}
```

 \cdot | let x = true in if y then 3 else 4: int

· ⊢ true : bool

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \text{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if y then 3 else 4

```
\{x: \mathsf{bool}\} \vdash y: \mathsf{bool} \quad \{x: \mathsf{bool}\} \vdash 3: \mathsf{int}
 \cdot \vdash \mathsf{true} : \mathsf{bool} \quad \{x: \mathsf{bool}\} \vdash \mathsf{if} \; y \; \mathsf{then} \; 3 \; \mathsf{else} \; 4: \mathsf{int}
```

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \mathsf{let} \ x = e_1 \; \mathsf{in} \; e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \; e \; \mathsf{then} \; e_1 \; \mathsf{else} \; e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if y then 3 else 4

```
\frac{\{x:\mathsf{bool}\} \vdash y:\mathsf{bool} \qquad \{x:\mathsf{bool}\} \vdash 3:\mathsf{int} \qquad \{x:\mathsf{bool}\} \vdash 4:\mathsf{int}}{\{x:\mathsf{bool}\} \vdash \mathsf{if} \ y \ \mathsf{then} \ 3 \ \mathsf{else} \ 4:\mathsf{int}}
```

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \mathsf{let} \ x = e_1 \mathsf{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \ e \mathsf{ then } e_1 \mathsf{ else } e_2 : \tau}$$

▶ How do we determine the type of an expression? Build derivation tree

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \mathsf{let} \ x = e_1 \ \mathsf{in} \ e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \ e \ \mathsf{then} \ e_1 \ \mathsf{else} \ e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then x else 4

How do we determine the type of an expression? Build derivation tree let x = true in if x then x else 4

 \cdot | let x = true in if x then x else 4

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \text{bool}}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then x else 4

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \text{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then x else 4

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \mathsf{let} \ x = e_1 \mathsf{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \ e \mathsf{ then } e_1 \mathsf{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then x else 4

· ⊢ true : bool

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \text{bool}}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then x else 4

```
\cdot F true : bool \{x : bool\} \vdash if x then x else 4 : int
```

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \text{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then x else 4

```
\cdot + true : bool \{x : bool\} \vdash if x then x else 4 : int
```

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \text{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then x else 4

```
\{x : bool\} \vdash x : bool
\{x : bool\} \vdash \text{if } x \text{ then } x \text{ else } 4 : \text{int}
```

· ⊢ true : bool

 \cdot | let x = true in if x then x else 4 : int

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \text{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then x else 4

```
\{x : bool\} \vdash x : bool\} \vdash x : int
\{x : bool\} \vdash if x then x else 4 : int
```

 \cdot | let x = true in if x then x else 4 : int

· ⊢ true : bool

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \text{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree let x = true in if x then x else 4

```
\frac{\{x:\mathsf{bool}\} \vdash x:\mathsf{bool}\} \vdash x:\mathsf{bool}\} \vdash x:\mathsf{int}}{\{x:\mathsf{bool}\} \vdash \mathsf{if}} \frac{\{x:\mathsf{bool}\} \vdash \mathsf{int}}{x\;\mathsf{then}} \frac{\{x:\mathsf{bool
```

 \cdot | let x = true in if x then x else 4: int

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \text{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$$

How do we determine the type of an expression? Build derivation tree

```
let x = true in
if x then x else 4
```

This expression has type bool but an expression was expected of type int

```
\{x : bool\} \vdash x : bool\} \vdash x : int \{x : bool\} \vdash 4 : int \{x : bool\} \vdash f then f else f int
```

· ⊢ true : bool

 \cdot | let x = true in if x then x else 4: int

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma, x : \tau \vdash e_2 : \tau'}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'} \qquad \frac{\Gamma \vdash e : \text{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau}$$

What Happens if They Have Different Types? 12

$$\frac{\Gamma \vdash e : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau_1 \qquad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \mathsf{if} \ e \ \mathsf{then} \ e_1 \ \mathsf{else} \ e_2 : ?}$$

- What if e_1 has type τ_1 and e_2 has same type τ_2 ?
- Depending on the value of e, the let-expression has different types
- But type needs to be determined at compile-time, not runtime, hence this is not possible!
- This violates an important theorem called preservation (Yes! PLs have to satisfy important mathematical theorems!!)

Semantics of If Expressions

- Semantics: for expression if e then e₁ else e₂
- As always, we will define it formally
 - If e evaluates to true
 - Then we evaluate e_1 . If e_1 evaluates to v_1 , then the expression evaluates to v_1
 - Dtherwise, if e evaluates to false
 - Then we evaluate e_2 . If e_2 evaluates to v_2 , then the expression evaluates to v_2

Formal Semantics Rule for If Expressions

Two rules (true case and false case)

$$\frac{e \Downarrow \mathsf{true}}{\mathsf{if} \ e \mathsf{then} \ e_1 \mathsf{else} \ e_2 \Downarrow v_1}$$

$$\frac{e \Downarrow \mathsf{false}}{\mathsf{if} \ e \mathsf{then} \ e_1 \ \mathsf{else} \ e_2 \Downarrow v_2}$$

Goals for Today's Lecture

- Writing and Compiling OCaml Code Files
- If Expressions
- Anonymous Functions
- Function Definitions
- Function Applications
- Polymorphism

Anonymous Functions

- Recall how we defined functions: let f x = e
- We can define the same function using the fun-expression
- let f = fun x -> e
- e.g., let f x = x + 2 can also be written as let f = fun x -> x + 2
- Why define it this way? Because not every function needs a name; we can define anonymous (no-name) functions

Anonymous Functions

Suppose we define a simple function and immediately apply it

```
• let f x = x + 2 in
let y = f 3 ...
```

This can instead be written as let y = (fun x -> x + 2) 3

 We will cover more examples of anonymous functions later when we do higher-order programming

Pattern Matching

- Recall factorial function from the last lecture
- We can define factorial as follows also:
- let rec factorial n =
 match n with
 | 0 -> 1
 | n -> n * factorial (n-1)

Pattern matching is quite powerful and expressive as we will see in the upcoming lectures! It can be used against booleans, integers, floats, etc.

More Pattern Matching

We can pattern match on multiple arguments also:

```
let and x y =
match x, y with
| true, true -> true
| true, false -> false
| false, true -> false
| false, false -> false
```

We can even use wildcards (_) in patterns:

```
let and x y =
match x, y with
| true, true -> true
| _, _ -> false
```

Formal Typing Rule for Function Definitions

$$\frac{\Gamma, x : \tau \vdash e_1 : \tau_1 \qquad \Gamma, f : \tau \to \tau_1 \vdash e_2 : \tau_2}{\Gamma \vdash \mathsf{let} \ f \ x = e_1 \ \mathsf{in} \ e_2 : \tau_2}$$

- We assume x has type τ and use that to infer the type of e_1 , say τ_1
- Then, we know f has type τ -> τ_1
- ▶ Then, we add the type of **f** to scope by adding it to context **T** and infer the type of **e**₂ to be τ_2
- This can be extended to functions with multiple arguments (Homework)

Let's Do An Example

- let f x = x + 1
- Assume x has some type τ
- In function body, x is added using the '+' operator, so $\tau = int$
- And the function returns an integer
- ▶ Therefore, f : int -> int
- Homework: Please do the typing derivation

Another Example

```
let and x y =
match x, y with
| true, true -> true
| _, _ -> false
```

- Assume x has some type τ_1 and y has some type τ_2
- In function body, x and y are matched with bools, so $\tau_1 = \tau_2 = \text{bool}$
- And the function returns bool in all branches
- Therefore, and: bool -> bool -> bool
- Homework: Please do the typing derivation

Function Applications

- let rec factorial n =
 if n = 0 then 1 else n * factorial (n-1)
- Suppose we have expression: f e, i.e., function f is applied to expression e
- Suppose the type of f is τ -> τ_1
- What should be the type of e? It has to τ ; anything else would be a type error
- Then, f e : τ_1

Typing Rule for Function Applications

$$\frac{\Gamma \vdash f : \tau \to \tau_1 \qquad \Gamma \vdash e : \tau}{\Gamma \vdash f e : \tau_1}$$

- First premise: f has type τ -> τ_1
- Second premise: e has type τ
- Conclusion: f e has type τ_1

- let rec factorial n =
 if n = 0. then 1 else n * factorial (n -. 1.)
- let rec factorial n =
 if n = 0 then 1. else n * factorial (n 1)
- let rec factorial n =
 if n = 0 then 1. else n *. factorial (n 1)
- let rec factorial n =
 if n = 0. then 1. else n * factorial (n -. 1)
- let rec factorial n =
 if n = 0. then 1. else n *. factorial (n -. 1.)

```
let rec factorial n =
if n = 0. then 1 else n * factorial (n -. 1.)
```


- let rec factorial n =
 if n = 0 then 1. else n * factorial (n 1)
- let rec factorial n =
 if n = 0 then 1. else n *. factorial (n 1)
- let rec factorial n =
 if n = 0. then 1. else n * factorial (n -. 1)
- let rec factorial n =
 if n = 0. then 1. else n *. factorial (n -. 1.)

let rec factorial n =
if n = 0. then 1 else n * factorial (n -. 1.)

let rec factorial n =
if n = 0 then 1. else n * factorial (n - 1)

- let rec factorial n =
 if n = 0 then 1. else n *. factorial (n 1)
- let rec factorial n =
 if n = 0. then 1. else n * factorial (n -. 1)
- let rec factorial n =
 if n = 0. then 1. else n *. factorial (n -. 1.)

let rec factorial n =
if n = 0. then 1 else n * factorial (n -. 1.)

let rec factorial n =
if n = 0 then 1. else n * factorial (n - 1)

let rec factorial n =
if n = 0 then 1. else n *. factorial (n - 1)

- let rec factorial n =
 if n = 0. then 1. else n * factorial (n -. 1)
- > let rec factorial n =
 if n = 0. then 1. else n *. factorial (n -. 1.)

let rec factorial n =
if n = 0. then 1 else n * factorial (n -. 1.)

let rec factorial n =
if n = 0 then 1. else n * factorial (n - 1)

let rec factorial n =
if n = 0 then 1. else n *. factorial (n - 1)

let rec factorial n =
if n = 0. then 1. else n * factorial (n -. 1)

> let rec factorial n =
if n = 0. then 1. else n *. factorial (n -. 1.)

let rec factorial n = if n = 0. then 1 else n * factorial (n - . 1.)

let rec factorial n = if n = 0 then 1. else n * factorial (n - 1)

let rec factorial n = if n = 0 then 1. else n *. factorial (n - 1)

let rec factorial n = if n = 0. then 1. else n * factorial (n - . 1)

let rec factorial n = if n = 0. then 1. else n *. factorial (n - . 1.)

Evaluating Function Applications

- let rec factorial n =
 if n = 0 then 1 else n * factorial (n-1)
- Let's compute: factorial 2
- Idea: Apply substitution; in the above case, substitute 2 for function body of factorial
- And keep doing it until the expression becomes a value

Evaluating 2!

let rec factorial n =
if n = 0 then 1 else n * factorial (n-1)

if n = 0 then 1 else n * factorial (n-1) factorial 2 = [2/n]if n = 0 then 1 else n * factorial (n-1) = if 2 = 0 then 1 else 2 * factorial (2-1) = 2 * factorial 1 = 2 * [1/n]if n = 0 then 1 else n * factorial (n-1)= 2 * if 1 = 0 then 1 else 1 * factorial 0= 2 * 1 * factorial 0 = 2 * 1 * [0/n]if n = 0 then 1 else n * factorial (n-1)= 2 * 1 * if 0 = 0 then 1 else 0 * factorial -1= 2 * 1 * 1 2

Semantics Rule for Function Applications

$$\frac{e \Downarrow v \qquad \text{let } f \; x = e' \qquad [v/x]e' \Downarrow v'}{f \; e \Downarrow v'}$$

- First premise: evaluate argument e to value v
- Second premise: find the definition of f suppose it is defined with parameter x and body e
- Third premise: substitute v for x e and evaluate it to v'
- Conclusion: f e evaluates to v'

factorial 2

factorial 2 ↓ 2

$$\frac{e \Downarrow v \qquad \text{let } f \; x = e' \qquad [v/x]e' \Downarrow v'}{f \; e \Downarrow v'} \qquad \frac{e_1 \Downarrow v_1 \qquad e_2 \Downarrow v_2 \qquad v = v_1 \times v_2}{e_1 \times e_2 \Downarrow v}$$

$$e \Downarrow \text{false} \qquad e_2 \Downarrow v_2$$

factorial 2 ↓ 2

$$\frac{e \Downarrow \mathsf{false}}{\mathsf{if} \ e \mathsf{then} \ e_1 \ \mathsf{else} \ e_2 \Downarrow v_2}$$

 $2 \downarrow \!\!\downarrow 2$

factorial 2 ↓ 2

$$\frac{e \Downarrow v \qquad \text{let } f \; x = e' \qquad [v/x]e' \Downarrow v'}{f \; e \Downarrow v'} \qquad \frac{e_1 \Downarrow v_1 \qquad e_2 \Downarrow v_2 \qquad v = v_1 \times v_2}{e_1 \times e_2 \Downarrow v}$$

$$\frac{e \Downarrow \mathsf{false}}{\mathsf{if}\ e \mathsf{then}\ e_1 \; \mathsf{else}\ e_2 \Downarrow v_2}$$

if 2 = 0 then 1 else 2 * factorial
$$(2-1) \downarrow 2$$

$$2 \downarrow 2$$

$$[2/n] \text{if } n = 0 \text{ then 1 else } n * \text{ factorial } (n-1) \downarrow 2$$

$$e \downarrow v \qquad \text{let } f x = e' \qquad [v/x]e' \downarrow v' \qquad e_1 \downarrow v_1 \qquad e_2 \downarrow v_2 \qquad v = v_1 \times v_2$$

$$f e \downarrow v' \qquad e \downarrow \text{ false} \qquad e_2 \downarrow v_2$$

```
2 * factorial (2-1) \downarrow 2
if 2 = 0 \text{ then } 1 \text{ else } 2 * factorial (2-1) \downarrow 2
2 \downarrow 2
[2/n] \text{ if } n = 0 \text{ then } 1 \text{ else } n * factorial (n-1) \downarrow 2
factorial 2 \downarrow 2
e \downarrow v \qquad \text{let } f x = e' \qquad [v/x]e' \downarrow v' \qquad e_1 \lor v_2 \qquad v = v_1 \lor v_2
f e \downarrow v' \qquad e \downarrow \text{ false} \qquad e_2 \downarrow v_2 \qquad v = v_1 \lor v_2
```

$$2 \Downarrow 2$$

$$2 * factorial (2-1) \Downarrow 2$$

$$2 \Downarrow 2$$

$$2 \parallel 2$$

$$2$$

	2	2	factorial (2 − 1) ↓ 1		
	$2 = 0 \Downarrow false$ $2 * factorial (2 - 1) \Downarrow 2$				
	if $2 = 0$ then 1 else $2 * factorial (2 - 1) \downarrow 2$				
2	$[2/n]$ if $n = 0$ then 1 else $n *$ factorial $(n - 1) \downarrow 2$				
factorial 2 ↓ 2					
$e \Downarrow v$	$let\; f\; x = e'$	$[v/x]e' \Downarrow v'$	$e_1 \Downarrow v_1$	$e_2 \Downarrow v_2$	$v = v_1 \times v_2$
	$f e \psi v'$		$e_1 \times e_2 \downarrow v$		
		$e \Downarrow false$	$e_2 \Downarrow v_2$		
if e then e_1 else $e_2 \Downarrow v_2$					

$$\underbrace{ \begin{array}{c} \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 * \text{factorial } (1-1) \Downarrow 1 \\ \hline 2 - 1 \Downarrow 1 & \boxed{[1/n] \text{if } n = 0 \text{ then } 1 \text{ else } n * \text{factorial } (n-1) \Downarrow 2 \\ \hline 2 & \boxed{\text{factorial } (2-1) \Downarrow 1} \\ \hline 2 = 0 \Downarrow \text{false} & 2 * \text{factorial } (2-1) \Downarrow 2 \\ \hline & \text{if } 2 = 0 \text{ then } 1 \text{ else } 2 * \text{factorial } (2-1) \Downarrow 2 \\ \hline 2 \Downarrow 2 & \boxed{[2/n] \text{if } n = 0 \text{ then } 1 \text{ else } n * \text{factorial } (n-1) \Downarrow 2 \\ \hline & \boxed{\text{factorial } 2 \Downarrow 2} \\ \hline & e \Downarrow v & \text{let } f x = e' & [v/x]e' \Downarrow v' & e_1 \Downarrow v_1 & e_2 \Downarrow v_2 & v = v_1 \times v_2 \\ \hline & f e \Downarrow v' & e_1 \times e_2 \Downarrow v \\ \hline & e \Downarrow \text{false} & e_2 \Downarrow v_2 \\ \hline \end{array}$$

$$\underbrace{ \begin{array}{c} \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 * \text{ factorial } (1-1) \Downarrow 1 \\ 2 = 0 \Downarrow \text{ false} \\ \\ 2 \Downarrow 2 \\ \hline \\ \text{ factorial } (2-1) \Downarrow 1 \\ \hline \\ 2 = 0 \text{ then } 1 \text{ else } n * \text{ factorial } (n-1) \Downarrow 2 \\ \hline \\ \text{ if } 2 = 0 \text{ then } 1 \text{ else } 2 * \text{ factorial } (2-1) \Downarrow 2 \\ \hline \\ 2 \Downarrow 2 \\ \hline \\ \text{ if } 2 = 0 \text{ then } 1 \text{ else } 2 * \text{ factorial } (2-1) \Downarrow 2 \\ \hline \\ 2 \Downarrow 2 \\ \hline \\ \text{ factorial } 2 \Downarrow 2 \\ \hline \\ \text$$

$$\begin{array}{c} 1 = 0 \Downarrow \text{ false} \\ \hline if 1 = 0 \text{ then 1 else 1} * \text{ factorial } (1-1) \Downarrow 1 \\ \hline 2 - 1 \Downarrow 1 \\ \hline \\ 2 = 0 \Downarrow \text{ false} \\ \hline \\ 2 = 0 \Downarrow \text{ false} \\ \hline \\ 2 = 0 \text{ then 1 else } n * \text{ factorial } (2-1) \Downarrow 1 \\ \hline \\ 2 = 0 \text{ then 1 else 2} * \text{ factorial } (2-1) \Downarrow 2 \\ \hline \\ 2 \Downarrow 2 \\ \hline \\ if 2 = 0 \text{ then 1 else 2} * \text{ factorial } (2-1) \Downarrow 2 \\ \hline \\ 2 \Downarrow 2 \\ \hline \\ [2/n] \text{ if } n = 0 \text{ then 1 else } n * \text{ factorial } (n-1) \Downarrow 2 \\ \hline \\ factorial 2 \Downarrow 2 \\ \hline \\ e \Downarrow v \quad \text{ let } f x = e' \quad [v/x]e' \Downarrow v' \\ \hline \\ f e \Downarrow v' \quad e \Downarrow \text{ false } e_2 \Downarrow v_2 \quad v = v_1 \times v_2 \\ \hline \\ e_1 \times e_2 \Downarrow v \\ \hline \\ e_1 \times e_2 \Downarrow v \\ \hline \end{array}$$

One Final Note On Evaluation

Recall the factorial function on floats

```
let rec factorial n = 0. then 1. else n *. factorial (n - . 1.)
```

What happens if we call

```
factorial 1.5
= 1.5 * factorial 0.5
= 1.5 * 0.5 * factorial -0.5
= 1.5 * 0.5 * -0.5 * factorial -1.5
= 1.5 * 0.5 * -0.5 * -1.5 * factorial -2.5
= ...
```

This will continue forever!

Another Example of Weird Evaluation

-) let x = 2 / 0
- Try this in UTop!
- What will x evaluate to?
- We know that division by 0 is impossible!
- In OCaml, this raises an exception called Exception: Division_by_zero.

Outcome of Semantics

- Therefore, semantics has 3 outcomes:
 - Value: The expression evaluates to a value (most examples)
 - Exception: The evaluation raises an exception (e.g., stack overflow, division by 0)
 - Infinite Loop: The evaluation keeps going forever! (e.g., factorial)
- You should try all of these in UTop!

Partial Function Applications

- Suppose we have a function f : int -> int -> int
 let f x y = x + y
- We can apply this function partially by defining:
 let g = f 2
- Now g becomes a function g : int -> int with the definition let g y = 2 + y
- > Simply a result of substitution: 2 for x in the definition of f

Advantages of Partial Application

- Helps us define functions compactly promoting reuse
- Suppose we have a function pow : int -> int -> int
 let pow x y =
 if y = 0 then 1 else x * pow x (y-1)
- Suppose we want to define a power of 2 function. We can just do let pow2 = pow 2
- Suppose we want to define a power of 3 function. We can just do
 let pow3 = pow 3
- We can do this for any value of x

Can You Infer the Type?

- Take this function for example let f x = x
- What should be the type of f?
- ▶ Should it be int -> int? Or bool -> bool? Or something else?
- Technically, it can be any type $\alpha \rightarrow \alpha$ for any type α
- These functions are called polymorphic functions (similar to generics in Java, etc.)
- These functions are defined for all types and can be used at any type.

Polymorphic Functions

- This identity function can be applied to any argument let f x = x
- In OCaml, type is written as 'a -> 'a ('a is a polymorphic variable)

```
f 3 = 3
f true = true
f "cs320" = "cs320"
```

- In fact, they only need to be defined once and can be called with different types without defining them individually for each type
- This makes them powerful! They are crucial for data structures like stacks, queues, trees that can store arbitrary data

More on Polymorphism

What should be the type of this function?
let f x y =

```
if x = y then "Equal" else "Unequal"
```

- The type of f: $\alpha \rightarrow \alpha \rightarrow string$
- What about this function? should be hat should be the type of f let $g \times y = x$
- The type of g : α -> β -> string

Conclusions

- Compiling OCaml Code Files using ocamlc and #use
- Rules for Syntax, Typing, and Semantics for If Expressions
- Anonymous Functions using fun abstraction
- Pattern Matching using match abstraction
- Rules for Syntax, Typing, and Semantics for Function Applications
- Partial Function Applications
- Polymorphism