

Lecture 10: Analog Control System Design

ELEN 472: Introduction to Digital Control

Lingxiao Wang, Ph.D.

Assistant Professor of Electrical Engineering Louisiana Tech University

Introduction

 Purpose: This lecture reviews the design of analog controllers and prepares us for the digital controller design methods.

- Closed-loop Control System: control system with a feedback link.
 - The feedback link can monitor the actual output.
 - Based on the feedback measurements, the controller adjust its output to **control** the analog system outputs the desired response.

Root locus

- The **root locus** method provides a quick way of predicting the closed-loop behavior of a system based on its open-loop **poles** and **zeros**.
 - The method is based on the properties of the closed-loop characteristic equation:

$$1 + KL(s) = 0$$

• Where K is a design parameter and L(s) is the loop gain of the system.

- Varying the value of K, we can get different closed-loop poles.
- Plot all closed-loop poles together -> Root Locus Diagram

An Example

Consider the system with the transfer function

$$L(s) = \frac{1}{s(s+7)(s+11)}$$

- where *K* is the gain of the transfer function, and it is positive.
- The transfer function of the closed-loop system is

$$T(s) = \frac{KL(s)}{1 + KL(s)} = \frac{K}{s^3 + 18s^2 + 77s + K}$$

Thus, the characteristic equation is

$$q(s) = s^{\frac{1}{3}} + 18s^2 + 77s + K = 0$$

The constant K here affects the closed-loop poles' locations.

An Example

- To check the effect of K, let's assign a few values to K and then see how the locations of poles varies.
 - Let's vary *K* from 1 to 1000:

- This cross marks are locations of poles
- After completion:

Root locus Rules – Manually Generate Root Locus Diagram

- We can use the following rules for sketching root locus diagrams:
 - 1. The number of root locus branches is equal to the number of open-loop poles of L(s).
 - 2. The root locus branches start at the open-loop poles and end at the open-loop zeros or at infinity.
 - 3. The branches going to infinity asymptotically approach the straight lines defined by the angle:

$$\theta = \frac{(2q+1)180^{\circ}}{P-Z}, q = 0,1,2,...,P-Z-1$$

And the intercept:

$$\alpha = \frac{\sum Real\ Part\ of\ Poles\ -\ \sum Real\ Part\ of\ Zeros}{P-Z}$$

• P is the number of poles of L(s); Z is the number of zeros of L(s)

Root locus Rules – Manually Generate Root Locus Diagram

- 4. Find Breakaway/Break-in points:
 - Express K using L(s): $K = -\frac{1}{L(s)}$
 - Breakaway points (points of departure from the real axis) correspond to local maxima of K, i.e., $\frac{dK}{ds} = 0$
 - Break-in points (points of arrival at the real axis) correspond to local minima of K, i.e., $\frac{dK}{ds}=0$

Example Question

Example:

• Sketch the root locus plots for the loop gains $L(s) = \frac{1}{(s+1)(s+3)}$

Solution:

- Using rule 1, the function has two root locus branches; P=2, Z=0
- By rule 2, the branches start at -1 and -3 and go to infinity.
- Rule 3 gives the asymptote angles and intercept

$$\theta = \frac{(2q+1)180^{\circ}}{P-Z}, q$$

= 0,1,2, ..., $P-Z-1$

$$\theta_1 = \frac{180}{2} = 90; \, \theta_2 = \frac{540}{2} = 270$$

$$= \frac{\sum Real\ Part\ of\ Poles\ -\ \sum Real\ Part\ of\ Zeros}{P-Z} \qquad \alpha = \frac{-1-3}{2} = -2$$

- By rule 4, we can find the breakaway point:
 - First express real K using -1/L(s) as: K = -(s+1)(s+3)

$$\frac{dK}{ds} = \frac{d - (s+1)(s+3)}{ds} = -2s - 4$$

Example Question (Continued)

• Making
$$\frac{dK}{ds} = \frac{d - (s+1)(s+3)}{ds} = -2s - 4 = 0$$
, we have the local maximum:
$$-2s - 4 = 0$$

$$s = -2$$

• It can be easily shown that for any system with only two real axis poles, the breakaway point is midway between the two poles.

Practice Question

• Sketch the Root Locus Plots for the Loop Gain:

$$L(s) = \frac{s+5}{(s+1)(s+3)}$$

- Solution:
 - From rule 1, the root locus has two branches; P=2, Z=1
 - One branch ends up at the zero z=-5, and one branch ends up at infinite.
 - The branch ends up at infinite has the asymptote angle as:

$$\theta = \frac{(2q+1)180^{\circ}}{P-Z}, q$$

$$= 0.1.2, \dots, P-Z-1$$
 $\theta_1 = \frac{180}{1} = 180$

• From Rule 4, expressing K using $-\frac{1}{L(s)}$

$$K = -\frac{(\sigma+1)(\sigma+3)}{\sigma+5}$$

$$= -\frac{(\sigma+1+\sigma+3)(\sigma+5) - (\sigma+1)(\sigma+3)}{(\sigma+5)^2}$$

$$= -\frac{\sigma^2 + 10\sigma + 17}{(\sigma+5)^2}$$

$$= 0$$
Here $\sigma = s$

Practice Question (Continued)

$$\frac{dK}{d\sigma} = -\frac{(\sigma + 1 + \sigma + 3)(\sigma + 5) - (\sigma + 1)(\sigma + 3)}{(\sigma + 5)^2}$$

$$= -\frac{\sigma^2 + 10\sigma + 17}{(\sigma + 5)^2}$$

$$= 0$$

$$\sigma_b = -2.172 \text{ or } -7.828.$$

- The first value is a breakaway point since it lies between poles;
- The second value is the break-in point.

Root Locus Design

- This figure shows pole locations and the associated time functions.
 - Real poles are associated with an exponential time response that decays for LHP poles and increases for RHP poles.
 - The magnitude of the pole determines the rate of exponential change.
 - A pole at the origin is associated with a unit step.
 - The real part of the pole determines the rate of exponential change, and the imaginary part determines the frequency of oscillations.

Pole locations and the associated time responses.

Design specifications and the effect of gain variation

- The objective of control system design is to construct a system that has a desirable response to standard inputs.
 - A desirable transient response is one that is sufficiently fast without excessive oscillations.
 - A desirable steady-state response is one that follows the desired output with sufficient accuracy.
- In terms of the response to a unit step input, the transient response is characterized by the following criteria:
 - 1. Time constant τ . Time required to reach about 63% of the final value.
 - **2.** Rise time T_r . Time to go from 10% to 90% of the final value.
 - **3.** Percentage overshoot (PO).

$$PO = \frac{Peak\ value - Final\ value}{Final\ value} \times 100\%$$

- **4.** Peak time T_p . Time to first peak of an oscillatory response.
- **5.** Settling time T_s . Time after which the oscillatory response remains within a specified percentage (usually 2 percent) of the final value.

Design specifications and the effect of gain variation (Continued)

Consider the second-order system

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- where ζ is the damping ratio and ω_n is the undamped natural frequency.
- Then, the Percentage Overshoot (PO), Peak Time, and Settling Time and be presented as:

$$PO = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}} \times 100\%$$

$$T_p = \frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

$$T_s \approx \frac{4}{\zeta \omega_n}$$

Example

A position control system with the transfer function of the system is

$$G(s) = \frac{K}{s(s+p)}$$

- Design a proportional controller for the system to obtain
 - Peak time is less than 5 seconds

Solution

The root locus of the system is shown below:

- The root locus remains in the LHP for all *K* values.
- The closed-loop characteristic equation of the system is given by:

$$s(s+p) + K = s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$$

Equating Coefficients $p = 2\zeta\omega_n$ $K = \omega_n^2$

$$p = 2\zeta \omega_n \quad K = \omega_n^2$$

$$\varphi_n = \sqrt{K} \quad \zeta = \frac{p}{2\sqrt{K}}$$

$$\omega_n = \sqrt{K}$$
 $\zeta = \frac{p}{2\sqrt{K}}$ \longrightarrow $K = \omega_n^2$ And $K = \left(\frac{p}{2\zeta}\right)^2$

Example Solution

• For a second-order system, the peak time is

$$T_p = \frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

- Let $\omega_n = 1$, $\zeta = 0.5$, $T_P = 3.63 < 5$
- Thus, from $K = \omega_n^2$
 - K = 1
- From $K = \left(\frac{p}{2\zeta}\right)^2$
 - $K = \left(\frac{p}{1}\right)^2 = p^2$
- Choose the larger *K* (since we need to satisfy both conditions)

Proportional Control Pro and Con

- From the previous example, we can see some advantages and disadvantages of proportional control.
 - **Pro**: The design is simple, and this simplicity carries over to higher-order systems.
 - **Con**: The single free parameter available (i.e., *K*) limits the designer's choice to one design criterion.
- If more than one aspect of the system time response must be improved, a dynamic controller is needed.
 - We can add another control gain, such as the derivative control.

PD control

- Adding a zero to the loop gain improves the time response in the system.
 - Adding a zero to the loop gain can pull poles back into the LHD;

- Thus, adding a zero allows the use of higher gain values (K values) without **destabilizing** the system.
- Adding a zero is accomplished via adding s in the controller C(s):

$$C(s) = K_p + K_d s = K_d (s + a)$$

$$a = K_p / K_d$$
This is known as the **Proportional-Derivative** Controller.

PD control TF

• For a **PD controlled closed-loop system**, the transfer function is:

Example

 Design a PD controller for the loop gain to meet the following specifications:

 $G(s) = \frac{K}{s(s+p)}$

• Specified ζ and ω_n

Solution:

- The root locus of the PD-controlled system is shown as:
- This shows that the system gain can be increased with no fear of instability.
- With a PD controller the closed-loop characteristic equation is of the form

$$s^{2} + ps + K(s + a) = s^{2} + (p + K)s + Ka$$

= $s^{2} + 2\zeta\omega_{n}s + \omega_{n}^{2}$

Equating coefficients gives the equations

$$Ka = \omega_n^2 \quad p + K = 2\zeta\omega_n$$

Example Solution

$$Ka = \omega_n^2$$
 $p + K = 2\zeta\omega_n$

- Specified ζ and ω_n (i.e., ζ and ω_n are known)
 - In this case, solve for *K* and *a* gives:

$$K = 2\zeta\omega_n - p \quad a = \frac{\omega_n^2}{2\zeta\omega_n - p}$$

- If p = 4, $\zeta = 0.7$, $\omega_n = 10 \frac{rad}{s}$
- Then, K = 10 and a = 10.

PID controller

- Adding a zero (PD) may improve the transient response but does not increase the type number of the system.
- Adding a pole at the origin increases the type number
 - Increase type number of the system can decrease the steady-state error.
- With a **proportional-integral-derivative (PID) controller**, two zeros and a pole are added.
 - This both increases the type number and allows satisfactory reshaping of the root locus.
 - The transfer function of a PID controller is given by

$$C(s) = K_p + \frac{K_i}{s} + K_d s = K_d \frac{s^2 + 2\zeta \omega_n s + \omega_n^2}{s}$$
$$2\zeta \omega_n = K_p / K_d, \quad \omega_n^2 = K_i / K_d$$

Example

Design a PID Controller for an open loop TF:

$$G(s) = \frac{1}{s(s+1)(s+10)}$$

• To obtain **zero steady-state error** due to ramp input, a damping ratio of 0.7 and an undamped natural frequency of 4 rad/s.

Solution:

- Observing G(s), it is a type-1 system (one pole at origin).
 - For ramp input, type-1 system has non-zero steady-state error.
 - For type-2 systems, steady-state error for ramp input is 0.
 - How can we change G(s) into type-2 system?
- Multiple G(s) with a C(s) that can adding another pole at origin:
- A possible design of C(s) is

$$C(s) = 50 \frac{(s+1)(s+0.5)}{s}$$