ESP 32

Microcontroller

- ▶ไมโครคอนโทรลเลอร์หรือระบบคอมพิวเตอร์ขนาดเล็ก ประกอบด้วย
 - 🕨 หน่วยประมวลผลซีพียู (CPU)
 - ▶หน่วยความจำ (Memory)
 - อินพุตเอาต์พุตพอร์ต (I/O Port) ประเภทต่าง ๆ
 - ■ปัจจุบันยังประกอบด้วยการสื่อสาร แบบต่าง ๆ เช่น บลูทูธ หรือ ไวไฟ (WIFI) เป็นต้น

บอร์ดที่ใช้

- **ESP 32**
 - ซีพียูใช้สถาปัตยกรรม Tensilica LX6 แบบ 2 แกน สัญญาณนาฬิกา 240 MHz
 - มีแรมในตัว 512KB
 - รองรับการเชื่อมต่อรอมภายนอกสูงสุด 16MB
 - WiFi มาตรฐาน 802.11 b/g/n 2.4 GHz ส่ง ได้สูงสุด 150 Mbps
 - ▶ Bluetooth เวอร์ชัน 4.2 (BLE)

โมดูล ESP32

บอร์ดที่ใช้

ADC0

ขาต่าง ๆ ของ ESP32

- ► GPIO จำนวน 32 ช่อง
- ► รองรับ PWM ทุกช่อง
- ► รองรับ ADC จำนวน 12 ช่อง
- > รองรับ DAC จำนวน 2 ช่อง
- รองรับ SPI จำนวน 3 ช่อง
- ► รองรับ I2C จำนวน 2 ช่อง
- รองรับ UART จำนวน 3 ช่อง

GPIO

- General Purpose Input/Output (GPIO)
 - เป็นขาที่ต่อตรงไปยังส่วนของโปรเซลเซอร์แต่ละขาของอุปกรณ์
 - สามารถกำหนดได้อย่างอิสระเป็นอินพุทและเอาท์พุต

PWM

▶ Pulse Width Modulation (PWM) ใช้กำเนิด

สัญญาณ PWM ประกอบด้วยสองส่วนหลัก

- ▶ Duty Cycle
- ความถึ
- สำหรับเปิดปิดไฟ หรือเปิดปิดปั้มน้ำ เป็นต้น

ADC

Analog to Digital Conversion (ADC) เป็นการใช้เพื่อแปลงสัญญาณอนาลอกไป เป็นดิจิทัล

สำหรับรับค่าจากเซ็นเซอร์ดิน เป็นต้น

DAC

Digital to Analog Conversion (DAC) แปลงสัญญาณจากดิจิทัลไปเป็นอนาลอก ไม่นิยม เท่าที่ควร เนื่องจากจะเกิดการลดทอนสัญญาณ

การสื่อสาร SPI

Serial Peripheral Interface (SPI) เป็นการสื่อสารแบบซิงโครนัสระยะใกล้ เช่น การสื่อสาร

ระหว่างโปรเซสเซอร์กับอุปกรณ์รอบข้าง

การสื่อสาร I2C

Inter-Integrated Circuit (I2C) เป็นการสื่อสารรูปแบบบัสสัญญาณ โดยอุปกรณ์ทุกตัวจะ เชื่อมบนบัส

การสื่อสาร UART

Universal Asynchronous ReceiverTransmitter (UART) เป็นช่อง ทางการสื่อสารแบบอะซิงโครนัสแบบอนุกรม

