Statistik I - Sitzung 10

Bernd Schlipphak

Institut für Politikwissenschaft

Sitzung 10

Statistik I - Sitzung 10

- Wiederholung und Weiterführung: Drittvariablenkontrolle
 - Wiederholung: Theoretische Einführung
 - Drittvariablenkontrolle: Multivariate Regression

Vorgriff - Multivariate Regression

 Die multivariate Regression enthält im Gegensatz zur bivariaten Regression mehr als eine unabhängige Variable.

$$y = \hat{y} + e = b_0 + b_1 * x_1 + b_2 * x_2 + b_3 * x_3 + \dots + e$$

- Dadurch soll für die Möglichkeit der gleichzeitigen Effekte zweier unabhängiger Variablen ODER für die Effekte durch dritte (Kontroll-)Variablen auf einen bivariaten Zusammenhang kontrolliert werden.
- Die multivariate Regression ist also EINE Möglichkeit der Drittvariablenkontrolle

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ©

3/14

Schlipphak (IfPol) Stat I - Sitzung 10 Sitzung 10

Die Drittvariablenkontrolle

- **Drittvariablenkontrolle** = Überprüfung des Einflusses einer Variablen auf einen bivariaten Zusammenhang
- Generell drei Modelle der und Begründungen für die Drittvariablenkontrolle
 - Grundlegend: Vorstellung von Multikausalität (Model 1)
 - Kontrolle: Vermeidung von **Scheinkausalität** (Model 2)
 - Einflussmediation: Kontrolle von Interaktionseffekten (Model 3)

Die multivariate Regression

 Eine multivariate Regression kontrolliert, ob unser Effekt zwischen zwei Variablen tatsächlich weiter auftritt, wenn wir andere Variablen mit in die Regressionsgleichung (d.h. in unser theoretisches Modell) aufnehmen

Die multivariate Regression

Die daraus entstehende multivariate Gleichung lautet dann:

$$y = b_0 + b_1 * x_1 + b_2 * x_2 + b_3 * x_3 + b_4 * x_4 + e$$

Die generelle multivariate Gleichung ist

$$y = b_0 + b_1 * x_1 + b_k * x_k + e$$
 mit $k = Anzahl der Variablen$

→ □ ト → □ ト → 三 ト → 三 → つへの

Die multivariate Regression

- Für die multivariate Regression gilt, dass die Herleitung und Interpretation des Determinationskoeffizienten R^2 und der Regressionskoeffizienten $b_1, b_2, b_3, ..., b_k$ gleich bleibt
- Zusätzlich gibt es aber
 - die standardisierten Regressionskoeffizienten (β oder Beta-Koeffizienten)
 - Probleme mit den Anwendungsvoraussetzungen der linearen Regression
 (⇒ Statistik II)

Standardisierte Regressionskoeffizienten

- In der multivariaten Regression unterscheidet man zwischen den unstandardisierten Regressionskoeffizienten $b_1, b_2, b_3, ..., b_k$ und den standardisierten Regressionskoeffizienten $\beta_1, \beta_2, \beta_3, ..., \beta_k$
- Die standardisierten Regressionskoeffizienten sind in ihrer Stärke untereinander vergleichbar
 - Uber die Standardisierung wird die Einflussstärke der Koeffizienten auf den Mittelwert = 0 und eine Standardabweichung = 1 standardisiert.
 - Das bedeutet: Hat eine Variable X_1 einen höheren (positiven ODER negativen) Koeffizienten (β_1) als die Variable X_2 , so übt Variable X_1 den stärkeren Einfluss auf die abhängige Variable (Y) aus $(X_1 > X_2$ weil $\beta_1 > \beta_2)$

◆ロト ◆昼 ト ◆ 差 ト → 差 → りへの

Standardisierte Regressionskoeffizienten

- ullet Die unstandardisierten Regressionskoeffizienten sind hingegen nicht direkt miteinander vergleichbar, drücken aber den Grad des individuellen Einflusses der Variable auf Y aus
 - Wenn b_1 für $X_1=$ 0.5, dann verändert sich Y für jede Einheit von X_1 um eine halbe (0.5) Einheit
 - Wenn b_1 für $X_1=$ 0.3, dann verändert sich Y für jede Einheit von X_1 um 0.3 Einheiten
 - Beispiel Beide Variablen weisen % als Einheit auf: Wenn b_1 für $X_1=0.3$, dann verändert sich Y für jeden 1%-Anstieg von X_1 um 0.3%

9/14

Schlipphak (IfPol) Stat I - Sitzung 10 Sitzung 10

Standardisierte Regressionskoeffizienten

- Geht es also in der Überprüfung eines theoretischen Arguments darum, die Stärke eines Einfluss einer bestimmten Variable zu überprüfen, so nutzt man den unstandardisierten Regressionskoeffizienten (=> X-Zentrierung)
- Will man hingegen herausfinden, in welcher Rangfolge eine abhängige Variable Y durch viele verschiedene Variablen erklärt wird, so nutzt man die standardisierten Regressionskoeffizienten (=> Y-Zentrierung)

Schlipphak (IfPol) Stat I - Sitzung 10 Sitzung 10 10 / 14

Ein Beispiel - Ausschnitt

Zufriedenheit mit Demokratie in D	b (unstandardisiert)	β (standardisiert)
Zufriedenheit mit eigenem Leben	.086	.082
Zufriedenheit mit Regierung	.335	.330
Wahrnehmung: Immigration gut für Wirtschaft	.091	.097
Religiosität	.049	.069
Hohe Bildung	.024	.006
Alter	.001	.024
Weiblich	032	007
Modellgüte (R^2)	49%	
Quelle: ESS 2012. Eigene Berechnung		

Ein Beispiel - Interpretation

- Die Variable "Wahrnehmung: Immigration gut für Wirtschaft" hat einen unstandardisierten Koeffizienten von .091. Der Effekt dieser Variable auf die AV beträgt also .091. Was bedeutet das?
 - Für jede Einheit, um die sich die X-Variable verändert, verändert sich der Y-Wert um .091 Einheiten
 - Y hat 11 Werte (von 0 bis 10), X hat ebenfalls 11 Werte (von 0 bis 10)
 - Für jeden Anstieg von X um einen Punkt auf einer elfstufigen Skala steigt Y um .091 Punkte auf einer elfstufigen Skala
 - Vergleicht man einen Befragten B1 mit dem X-Wert 0 (Minimum) mit einer Befragten B2 mit dem X-Wert 10 (Maximum), so weist B2 (im Durchschnitt) einen Y-Wert auf, der fast einen ganzen Skalenpunkt (.9) höher ist als jener von B1!

Schlipphak (IfPol) Stat I - Sitzung 10 Sitzung 10 12 / 14

Ein Beispiel - Interpretation

Ein Beispiel - Weiterführung

- In Statistik II lernen wir dann mehr darüber
 - worin sich standardisierte und unstandardisierte Koeffizienten unterscheiden
 - warum wir für die Interpretation unstandardisierter Koeffizienten mehr Informationen brauchen, als das für die standardisierten Koeffizienten gilt
 - wie sich standardisierte Koeffizienten berechnen lassen