Date_01/03/2024 Expt. No		
Expt. Name Page No		
	EXPERIMENT - 5	
	Aim: leoform a comprehensive regression analysis using R, exploring various methods such as linear regression, multiple regression, le polynomial regression.	
	Introduction: The aim of this experiment is to perform a comprehensive regression malysis using R, exploring various regression methods including linear regression, multiple regression and polynomial regression. The goal is to understand the application of regression analysis in predicting 4 modelling relationships between variables.	
2:	R Statistical Software R Studio	
	determine of the Experiment: Regression analysis is a fundamental estatistical technique used in various fields for predicting solutionship by dependent is independent variables. Understanding diff regression methods helps in selecting the most suitable madel for a given dataset. This experiment is relevant for data analysis.	
1	relationships in their data.	
1	escription: The experiment involver loading a data set, exploring its structure & applying various regression techniques in R. The dataset may contain multiple variables, allowing the the exploration	
	of solutionships b/w them. facticipants will learn how to perform linear regression, multiple regression to polymonial regression linear regression, multiple regression to polymonial regression linear regression to polymonial regression	
	Teacher's Signature:	

Aim: - Perform a comprehensive regression analysis using R, exploring various methods such as linear regression, multiple regression, 4 polynomial regression.

```
Coefficients:

| Estimate Std. Error t value pr(x t) | (Intercept) 30.09886 | 1.63392 | 18.421 | 2e 16 | 2e 1
                           Signif. codes: 0 '**** 0.001 '**' 0.01 '** 0.05 '.' 0.1 '* 0.1
                                                                                                                                                                                                                                                                                                                                            Residual standard error: 3.863 on 30 degrees of freedom
Multiple R-squared: 0.6624. Adjusted R-squared: 0.5602
F-statistic: 43.46 on 1 and 30 GF p-raine: 1.788e-0
                                                                                                                                                                                                                                                                                                                                            Perform multiple regression
as Example: Predicting mpg based on multiple variables
smultiple, model = le(ming right) at a style tasts of the
summary Gooltiple mode;
  Im(formula + opg - hp + wt + cyl, data - otcars)
                                                                                                                                                                                                                                                                                                                                         Residuals:
Min 10 Median 30 Max
-8.9290 -1.5598 -0.5311 1.1850 5.8986
                                                                                                                                                                                                                                                                                                                                       The first transfer of the second seco
                                                                                                                                                                                                                                                                                                                                          Signif. codes: 0 ***** 0.001 *** 0.01 *** 0.05 * 1.01 ***
                                                                                                                                                                                                                                                                                                                                        Residual standard error: 2.512 on 28 degrees of freedom
Multiple R-squared: 0.8431, Adjusted R-squared: 0.8263
F-statistic: 50.17 on 3 and 28 DF p-value: 2.184e-13
  stduals:
Oin 10 Median 30 tox
127 2-1122 0-8854 1-3819 8-2360
   Multiple Regression
  formula = mog - bp + I(bp^2), data = micars)
   MAX 10 Median (0 Max 5512 -1 602 -0.69" 1 5500 8 1213
of code: 0 **** dont *** 0.01 *** 0.05 '. 0.1 ' * 1
```

dual standard error 3.0° on 29 degrees of freedom iple 2-squared: 0.561. Adjusted R-squared: 0.393 artistic 44.95 on 2 and 29 M., p-value: 1.301e-09

Horsepower

DateExpt. No		
Expt	Expt. NamePage No14	
	Flowchart / Prando code / Algorithm:	
1	Load the dataset into R.	
2.	Explore the dataset structure & characteristics.	
3.	Perform simple linear regression to analyze the relationship b/w	
	and dependent and one independent variable.	
4	Implement multiple regression to examine the infact of two	
Title and	of more independent veriables on the dependent variable.	
5.		
6.	blu variables.	
	Evaluate the performance of each regression model using appropriate metrics.	
7.	Visualize the regression results using plats & shorts.	
	Learning Outcome:	
- 8		
1-	Understanding the principles of linear regression, multiple regression	
	and polynomial regression.	
2.	Proficiency in implementing regression analysis using R. Interpretation of regression model output & evaluations of model performance.	
3.	Interpretation of organism moure	
-	Visualization skills for presenting regression results. Chain insights into selecting appropriate regression models for	
-	Visualization stills go planting appropriate regression models for	
5	hain insights into section 111	
+	different types of data.	
-		
-		
+		
+		
+		
-		
	Teacher's Signature:	

SCREENSHOTS:

```
1 # Load the dataset
     # View the structure of the dataset
      # Explore the first few rows of the dataset
10 # Load the scatterplot3d package
11 library(scatterplot3d)
12
 13 # Perform linear regression
     # Perrorm inear regression
# Example: Predicting mpg (miles per gallon) based on horsepower
linear_model <- lm(mpg ~ hp, data = mtcars)
14
16 summary(linear_model)
    # Perform multiple regression
 18
     # Example: Predicting mpg based on multiple variables multiple_model <- lm(mpg ~ hp + wt + cyl, data = mtcars)
 20
      summary(multiple_model)
# Perform polynomial regression
# Example: Predicting mpg based on a quadratic model with horsepower
polynomial_model <- lm(mpg ~ hp + I(hp^2), data = mtcars)
summary(polynomial_model)</pre>
     # Scatter plot with regression line (linear regression)
plot(mtcarsShp, main = "Linear Regression", xlab = "Horsepower", ylab = "Miles per Gallon")
abline(linear_model, col = "red")
 29
 31
 33
 # Scatter plot with regression plane (multiple regression)
scatterplot3d(mtcars$hp, mtcars$mt, mtcars$mpg, type = "h", main = "Multiple Regression", xlab = "Horsepower", ylab = "Weight", zlab = "Miles per Ga
# Scatter plot with regression curve (polynomial regression)
# Scatter.smooth(x = mtcars$hp, y = mtcars$mpg, main = "Polynomial Regression", xlab = "Horsepower", ylab = "Miles per Gallon")
> # Load the dataset
> data(mtcars)
> # View the structure of the dataset
 > str(mtcars)
 'data.frame':
                       32 obs. of 11 variables:
  $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
  $ cyl : num 6646868446 ...
  $ disp: num 160 160 108 258 360 ..
 $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
 $ wt : num  2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num  16.5 17 18.6 19.4 17 ...
 $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
$ am : num 1 1 1 0 0 0 0 0 0 0 ...
  $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
 $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
> # Explore the first few rows of the dataset
> head(mtcars)
                           mpg cyl disp hp drat wt qsec vs am
21.0 6 160 110 3.90 2.620 16.46 0 1
21.0 6 160 110 3.90 2.875 17.02 0 1
                                                               wt gsec vs am gear carb
                          21.0
Mazda RX4 Wag
                          21.0
                                                                                                 4
Datsun 710
                          22.8
                                    4 108 93 3.85 2.320 18.61
                                                                                                 1
                                   6 258 110 3.08 3.215 19.44 1 0
8 360 175 3.15 3.440 17.02 0 0
6 225 105 2.76 3.460 20.22 1 0
Hornet 4 Drive
                          21.4
                                                                                          3
                                                                                                 1
Hornet Sportabout 18.7
Valiant
                          18.1
> # Load the scatterplot3d package
> library(scatterplot3d)
> # Perform linear regression
> # Example: Predicting mpg (miles per gallon) based on horsepower
> linear_model <- lm(mpg ~ hp, data = mtcars)
> summary(linear_model)
lm(formula = mpg ~ hp, data = mtcars)
Residuals:
      Min
                  1Q Median
                                         30
                                                    Max
-5.7121 -2.1122 -0.8854 1.5819 8.2360
```

```
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                           1.63392 18.421 < 2e-16 ***
0.01012 -6.742 1.79e-07 ***
 (Intercept) 30.09886
              -0.06823
hp
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.863 on 30 degrees of freedom
Multiple R-squared: 0.6024, Adjusted R-squared: 0.5892
F-statistic: 45.46 on 1 and 30 DF, p-value: 1.788e-07
> # Perform multiple regression
> # Example: Predicting mpg based on multiple variables
> multiple_model <- lm(mpg ~ hp + wt + cyl, data = mtcars)
> summary(multiple_model)
lm(formula = mpg \sim hp + wt + cyl, data = mtcars)
Residuals:
               1Q Median
                                  30
    Min
                                          Max
 -3.9290 -1.5598 -0.5311 1.1850 5.8986
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                            1.78686 21.687 < 2e-16 ***
 (Intercept) 38.75179
                            0.01188 -1.519 0.140015
              -0.01804
hp
                            0.74058 -4.276 0.000199 ***
wt
              -3.16697
                            0.55092 -1.709 0.098480 .
cyl
              -0.94162
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.512 on 28 degrees of freedom
Multiple R-squared: 0.8431, Adjusted R-squared: 0.8263
F-statistic: 50.17 on 3 and 28 DF, p-value: 2.184e-11
> # Perform polynomial regression
> # Example: Predicting mpg based on a quadratic model with horsepower
> polynomial_model <- lm(mpg ~ hp + I(hp^2), data = mtcars)
> summary(polynomial_model)
lm(formula = mpg \sim hp + I(hp^2), data = mtcars)
Residuals:
Min 1Q Median 3Q Max
-4.5512 -1.6027 -0.6977 1.5509 8.7213
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.041e+01 2.741e+00 14.744 5.23e-15 ***
hp -2.133e-01 3.488e-02 -6.115 1.16e-06 ***
I(hp^2)
              4.208e-04 9.844e-05 4.275 0.000189 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.077 on 29 degrees of freedom
Multiple R-squared: 0.7561, Adjusted R-squared: 0.7393
F-statistic: 44.95 on 2 and 29 DF, p-value: 1.301e-09
                            Linear Regression
              0
           0
                       O
     30
Miles per Gallon
     25
                  000
     20
     15
                                                   0
                                                                0
     10
```

50

100

150

200

Horsepower

250

300

Multiple Regression

Horsepower

Polynomial Regression

