Lista 2

Luís Felipe Ramos Ferreira

lframos.lf@gmail.com

• (4.5.1)

- R(3)

Inicialmente, note que a seguinte 2-coloração do K_5 não possui uma clique de tamanho 3 monocromática, portanto R(3) > 5.

Figure 1: K_5 2-colorido

No entanto, sabemos pelo fato 4.0.1 do livro que o toda 2-coloração do K_6 possui um triângulo monocromático, logo R(3)=6. A prova funciona da seguinte forma: seja v um vértice de K_6 . Pelo princípio

da casa dos pombos, das 5 arestas incidentes a v, ao menos 3 possuem a mesma cor. Vamos dizer que é a cor 1. Sejam x,y,z vizinhos de v com a aresta com cor 1. Se qualquer uma das arestas xy,xz,yz for da cor 1, temos um triângulo de cor 1. Caso contrário, o triângulo formado pelos vértices x,y,z é monocromático na outra cor, chamemos ela de 2. Logo, toda 2-coloração do K_6 possui um triângulo monocromático.

-R(3,4)

Inicialmente, vamos notar que R(3,4) é maior que 8, e isso pode ser notado pela 2-coloração do K_8 abaixo em que não existe uma clique de tamanho 3 azul e nem uma clique de tamanho 4 vermelha(Na imagem, o primeiro grafo tem apenas as arestas vermelhas e o segundo seri ao complemento do primeiro grafo, em que as arestas são azuis).

Figure 2: K_8 2-colorido

Vamos provar agora que $R(3,4) \leq 10$, em particular, mostrar que para um grafo completo de 10 vértices sempre teremos um triângulo vermelho ou uma clique de tamanho 4 azul. Depois, com uma pequena variação, mostraremos que $R(3,4) \leq 9$, o que conclui a prova. Seja A um vértice qualquer de um K_{10} 2-colorido com vermelho e azul. A possui nove vizinhos e das arestas que o conectam a seus vizinhos, sabemos que ao menos 6 são azuis ou ao menos 4 são vermelhas (isso porque no total precisamos ter 9 arestas, uma para cada vizinho). Suponhamos o caso em que A possui 4 arestas vermelhas o conectando a seus vizinhos. Se existir uma aresta vermelha entre esses vizinhos, então existe um triângulo vermelho no grafo. Caso contrário, todas as arestas entre os 4 vértices são azuis, logo existe uma clique de tamanho 4 de cor azul. Seja agora o caso em que Apossui 6 arestas de cor azul o conectando a seus vizinhos. Sabemos que R(3,3) = 6, logo, entre esses vizinhos, há um triângulo vermelhor ou azul. Se for vermelho, já perdemos, se for azul, note que ele forma uma clique de tamanho 4 azul junto com A. Logo, 10 é um limite superior para R(3,4).

Consideremos agora o caso do K_9 . Note que os argumentos usados anteriormente servem da mesma maneira, exceto pelo caso em que, para todo vértice A, exista exatamente 5 arestas azuis e 3 vermelhas saindo dele. Nesse caso, para cada vértice teremos três arestas vermelhas, e como são 9 vértices, temos 3*9=27. Como cada arestas é contada duas vezes, precisamos dividir por dois, obtendo assim um número $\frac{27}{2}$ (não inteiro) de arestas, o que é um absurdo. Logo, $R(3,4) \leq 9$

- R(4,4)

Sabemos pelo lema 4.1.3 do livro que, para todo $s, t \ge 2$, temos:

$$R(s,t) \le R(s-1,t) + R(s,t-1)$$

Logo, temos que $R(4,4) \leq R(3,4) + R(4,3) = 2*R(3,4) = 2*9 = 18$. Mostramos no exercício anterior que R(3,4) = 9. No entanto, vamos mostrar que existe uma 2-coloração de K_{17} tal que não existe uma clique de tamanho 4 nem vermelha nem azul, mostrando assim que R(4,4) = 18. A imagem abaixo, retirada deste site, apresenta tal grafo e sua coloração.

Figure 3: K_{17} arestas vermelhas

Figure 4: K_{17} arestas azuis

• (4.5.2)

$-R(K_3,C_4)$

Inicialmente, note que $R(K_3,C_4)>6$, uma vez que a 2-coloração do K_6 abaixo não contêm K_3 vermelho nem C_4 azul. Isso pois as arestas azuis formam um $2K_3$ e as arestas vermelhas foram um bipartido $K_{3,3}$.

Figure 5: K_6 2-colorido

Seja agora um K_7 2-colorido. Como R(3)=6, sabemos que deve existir nessa 2-coloração ou um K_3 vermelho ou um azul. Se for vermlho acabamos, então vamos assumir que é azul. Sejam $W=\{w_1,w_2,w_3\}$ os vértices desse K_3 azul e $V=\{v_1,v_2,v_3,v_4\}$ os vértices que sobraram no K_7 . Se V formar uma clique azul, temos um C_4 azul e acabamos. Logo vamos assumir que existe uma arestas vermelha

entre vértices de V. Sem perda de generalidade, vamos assumir que é entre v_1 e v_2 . Note também que para qualquer $v \in V$, se ele possuir duas ou mais arestas azuis indo para W, teríamos um C_4 azul formado por $\{v, w_1, w_2, w_3\}$, então assumimos que existe no máximo uma aresta azul dessa forma, o que implica em ao menos duas arestas vermelhas dessa forma. Note, no entanto, que v_1 e v_2 compartilham um vizinho $w \in W$ de tal modo que v_1w e v_2w são vermelhas, pelo princípio a casa dos pombos. Como v_1v_2 é vermlha, temos um K_3 vermelho. Logo, $R(K_3, C_4) = 7$, como queríamos demonstrar.

$- R(K_3, C_5)$

Primeiramente, vamos mostrar que $R(K_3, C_5) > 8$ ao mostrar uma 2-coloração de um K_8 tal que não existe um K_3 vermelho e nem um C_5 azul. Tal grafo esta na imagem abaixo. Note que as arestas azuis formam 2 K_4 , logo é impossível ter um C_5 azul. Como as arestas vermelhas formam um grafo bipartido, não há como existir um $K_3 = C_3$ vermelho.

Figure 6: K_8 2-colorido

Seja agora um K_9 com uma 2-coloração. Vamos lembrar que R(3,4)=9, como demonstramos no exercício anterior. Logo, como se trata de um K_9 , se não existisse um K_4 azul teríamos um K_3 vermelho e acabamos. Logo, vamos assumir agora que existe um K_4 azul na coloração. Sejam w_i para todo $i \in \{1,2,3,4\}$ os vértices nesse K_4 e v_j para todo $j \in \{1,2,3,4,5\}$ os outros vértices do grafo. Se todas as arestas entre qualquer dois vértices v_a e v_b for azul, temos um C_5 azul e acabamos, logo vamos assumir que existe ao menos uma aresta vermelha entre um v_a e um v_b . Vamos assumir sem perda de generalidade que se tratam de v_1 e v_2 .

Note também que se existirem duas arestas azuis saindo de algum v_j indo para o conjunto $\{w_1, w_2, w_3, w_4\}$, então existe um C_5 azul, logo podemos assumir a partir de agora que existem no máximo uma aresta azul nesse sentido, o que implica em existirem ao menos 3 arestas vermelhas nesse sentido. No entanto, isso quer dizer que v_1 e v_2 possuem um vizinho em comum w_i de modo que v_1w_i e v_2w_i são vermelhas. Como v_1v_2 também é vermelha, achamos um triângulo vermelho. Logo, $R(K_3, C_5) \leq 9$, o que implica, com o que sabemos de antes, em $R(K_3, C_5) = 9$, como queríamos demonstrar.

• (4.5.3)

Sabemos que R(3)=6, logo, sabemos que o K_5 não contêm K_3 monocromático, logo $\binom{5}{2}=10$ é um limite inferior para o maior número de arestas que um grafo pode ter e não possui K_3 monocromático. Também, sabemos que, como R(3)=6, se G possui uma clique de tamanho 6, com certeza existirá um K_3 monocromático em uma 2-coloração de suas arestas, logo um K_6 não pode aparecer em sua estrutura.

Poranto, queremos saber o maior número de arestas que um grafo com n vértices pode ter para que ele não possua K_6 como subgrafo, e esse é exatamente o extremal de n e K_6 , isto é, $ex(n,K_6)$, que é o número de arestas do grafo k-partido de n vértices. Pelo Teorema de Turán, sabemos que, se k divide n:

$$ex(n, K_{k+1}) = (1 - \frac{1}{k})\frac{n^2}{2}$$

$$ex(n, K_{5+1}) = (1 - \frac{1}{5})\frac{n^2}{2} = \frac{4}{5}\frac{n^2}{2} = \frac{2n^2}{5}$$

Se k não divide n, toda partição do grafo k-partido tem tamanho $\lfloor \frac{n}{k} \rfloor$ ou $\lceil \frac{n}{k} \rceil$, que possui um valor aproximadamente igual ao anterior, de $(1-\frac{1}{k})\frac{n^2}{2}$.

• (4.5.4)

Queremos mostrar que $R_r(3)$ $5^{\frac{r}{2}}$. Sabemos pelo teorema 4.1.6 do livro que $R_r(3) \geq 2^r$. Vamos demonstrar o teorema utilizando indução em r. Para os casos base, temos:

$$-r = 1$$
: $R_1(3) = 3 > 5^{\frac{1}{2}}$
 $-r = 2$: $R_2(3) = 6 > 5^{\frac{2}{2}} = 5$

Para o passo indutivo, considere o seguinte. Seja r>2 e considere que $R_{r-2}(3)>5^{\frac{r-2}{2}}=5^{\frac{r}{2}-1}$, ou seja, existe uma clique com ao menos $5^{\frac{r-2}{2}}$ vértices tal que qualquer (r-2)-coloração dela apresenta um triângulo monocromático. Partindo dessa premissa, queremos mostrar que $R_r(3)>5^{\frac{r}{2}}$, ou seja, existe uma r-coloração da clique de 5^r2 vértices tal que ela

não possui um triângulo monocromático. Seja então $G=K_{5\frac{r}{2}}$. Vamos particionar os vértices de G em 5 conjuntos disjuntos, denotados por $\{V_0,V_1,V_2,V_3,V_4\}$, de modo que o tamanho de cada V_i é igual, isto é, contêm $\frac{5^{\frac{r}{2}}}{5}=5^{\frac{r}{2}-1}=5^{\frac{r-2}{2}}$ vértices. Pela hipótese de indução, sabemos que cada V_i pode ser colorido com r-2 cores de modo que não seja criado um triângulo monocromático. Vamos colorir as arestas das partições com essas r-2 cores, sem criar um triângulo monocromático. Agora, sejam duas cores novas ainda não utilizadas, denotadas c_1 e c_2 . Vamos colorir as arestas faltantes (as arestas entre vértices de diferentes partições) da seguinte maneira. Para todo $i \in \{0,1,2,3,4\}$, iremos colocrir as arestas entre os vértices de V_i e $V_{(i+1)\%5}$ com a cor c_1 . O restante das arestas serão coloridas com a cor c_2 . Note que nenhum triângulo monocromático é criado com as cores c_1 e c_2 com essa coloração. Como não havia triângulo monocromático com as outras cores, não há nenhum triângulo monocromático no grafo. Logo, provamos que $R_r(3) > 5^{\frac{r}{2}}$, como queríamos demonstrar.

A imagem abaixo ilustra a coloração citada, onde c_1 é vermelho e c_2 é azul.

Figure 7: $R_r(3) > 5^{\frac{r}{2}}$

• (4.5.5)

Sabemos que R(t) é o menor n tal que toda 2-coloração de K_n contêm uma cópia monocromática de K_t . Logo, se pegarmos o K_n em que n=R(t), seu número de arestas é $\binom{n}{2}$. Obviamente temos que $\hat{r} \leq \binom{n}{2}$, pois K_n é um grafo tal que $K_n \to K_t$. CONTINUAR

• (4.5.6)

Seja G um grafo tal que |V(G)|=n. Vamos supor que exista em G um vértice v de modo que o grau de v em G é maior ou igual a R(s). Nesse

caso, os vizinhos de v teriam como subgrafo induzido ou uma clique de tamanho s ou um independente de tamanho s, que implicaria na existência de um $K_{1,s}$ com centro em v, o que é exatamente o estamos procurando. Vamos supor, portanto, que o grau de qualquer vértice v de G não excede R(s).

A ideia agora é particionar o grafo em k conjuntos de vértices $\{V_o, \ldots, V_k\}$, de modo que os conjuntos são construídos indutivamente da seguinte maneira:

- $-V_0$ contêm apenas um vértice v
- V_i contêm os vértices a distância i de v, formalmente denotado por $\mathcal{N}^i(v)$

Se $k \geq s$ haveria um caminho de tamanho s no grafo, portanto podemos assumir que k < s para todo v. Nesse ponto, é importante lembrar que o grau do grafo G é limitado para todo vértice, o que implica no fato de que o tamanho de cada V_i ser menor ou igual a $R(s)^i$. A partir disso, temos que $|V(G)| = \sum_{i=0}^k |V_i| \leq R(s)^s$, que é o valor que queríamos.

Isso implica no fato de que se um grafo tiver mais do que $R(s)^s$ vértices, ele com certeza terá um caminho de s vértices induzido, uma clique de tamanho s induzida ou uma estrela $K_{1,s}$ induzida, o que quer dizer que $C(s) \leq R(s)^s$, como queríamos demonstrar.

(4.5.7)

Inicialmente, vamos notar que existe um $N \in \mathbb{N}$ tal que a partir desse N o teorema vale para r, e esse N é chamado de número de Schur. Sabemos pelo teorema de Ramsey que $n = R_r(3)$ é um inteiro, que existe, tal que toda r-coloração de K_n contêm uma cópia monocromático de K_3 . Considere então o conjunto $\{1, \ldots, n\}$ e uma r-coloração dele.

Vamos colorir o K_n da seguinte maneira. Para cada aresta $v_iv_j \in V(K_n)$, colorimos ela com a cor c se |i-j| foi colorido com a cor c na r-coloração anterior dos inteiros de 1 até n. Pelo teorema de Ramsey, sabemos que essa coloração de K_n contêm um triângulo monocromático. Sejam v_a, v_b, v_c , com a>b>c os vértices queformam esse triângulo, e suponha que ele foi colorido com a cor c. Logo, a-b,b-c,a-c são valores coloridos com a mesma cor no particionamento dos inteiros de 1 até n. Note, no entanto, que a-b+b-c=a-c, ou seja, se tomarmos x=a-b, y=b-c e z=a-c, encontramos a tripla $\{x,y,z\}$, o que prova o teorema de Schur, como queríamos demonstrar.

• (4.5.8) OPCIONAL

• (4.5.9)

Seja \mathcal{X} uma 2-coloração arbitrária das arestas do K_n . Para cada triângulo no K_n (sabemos que existem $\binom{n}{3}$ no total), vamos colocá-los em três conjuntos diferentes A, V, C, sendo eles:

- $-\ A$: triângulos em que todas as arestas são azuis
- $-\ V$: triângulos em que todas as arestas são vermelhas
- $-\ C$: triângulos que contêm arestas com ambas as cores

• (4.5.10)

Não, essa afirmativa é falsa.