The Internal Language of Univalent Categories

Niels van der Weide

June 13, 2024

Type Theory and Category Theory

Internal Language Theorems

Theorem (Theorem 6.1 in Clairambault&Dybjer 2014¹)

We have a biequivalence betweeen the bicategories

- ► CwF[∑],=ext</sup>: democratic comprehension categories with extensional identity types and sigma types
- FinLim: finitely complete categories

This biequivalence can be extended to \prod -types and LCCCs

¹Clairambault, Pierre, and Peter Dybjer. "The biequivalence of locally cartesian closed categories and Martin-Löf type theories.

Internal Language Up To Isomorphism

Final sentence of the paper by Clairambault and Dybjer:

So we can ask whether Martin-Löf type theory with extensional identity types, ∑- and ∏-types is an internal language for lcccs?

And we can answer, yes, it is an internal language 'up to isomorphism'.

Internal Language Up To Isomorphism

Final sentence of the paper by Clairambault and Dybjer:

So we can ask whether Martin-Löf type theory with extensional identity types, ∑- and ∏-types is an internal language for lcccs?

And we can answer, yes, it is an internal language 'up to isomorphism'.

Category Theory in Univalent Foundations

Recall from 1 hour ago:

- ▶ In univalent foundations, there are two notions of category: univalent categories and strict categories
- We can thus consider internal language theorems for both notions of category
- For strict categories: we can follow Clairambault and Dybjer verbatim
- For univalent categories: this is more interesting and subtle

This Talk

Goal: what is the internal language of univalent categories?

Theorem

We have a biequivalence betweeen the bicategories

- ▶ DFLCompCat: univalent democratic comprehension categories that support unit types, equalizer types, binary product types, and strong ∑-types
- FinLim: univalent finitely complete categories

We can extend this biequivalence to

- ► ∏-types and LCCCs
- ▶ pretoposes, ∏-pretoposes
- elementary toposes

Note: the proof is formalized using UniMath

The Remainder

I will comment on two things in the proof

- ▶ Why do I use comprehension categories?
- ► How is univalence used in the proof?

Reject Discreteness

- In a CwF, we have a presheaf of types
- So: for every context Γ, we have a set of types in Γ
- However, in UF the type of sets is not a set: it is a groupoid
- We thus do not have a CwF where the types in the empty context are sets

Reject Discreteness

- In a CwF, we have a presheaf of types
- So: for every context Γ , we have a **set** of types in Γ
- However, in UF the type of sets is not a set: it is a groupoid
- ► We thus do not have a CwF where the types in the empty context are sets

Note:

- ► This is also the basis for the talk "Coherent Categories with Families" by Altenkirch and Kaposi
- One could use a different notion of set (iterative sets) and obtain a CwF of iterative sets ("The Category of Iterative Sets in Homotopy Type Theory and Univalent Foundations" by Gratzer, Gylterud, Mörtberg, Stenholm)

Accept Higher Categories

- We need to use higher categorical structure
- We want a pseudofunctor of type: for every context Γ, a category of types in Γ

How do we represent such pseudofunctors?

- Algebraic style: we have to deal with coherence manually
- Alternative: use universal properties and coherence comes for free
- So, we use fibrations and comprehension categories

Univalence

Definition

A category is **univalent** if the map sending identities x=y to isomorphisms $x\cong y$ is an equivalence of types.

Univalence

Definition

A category is **univalent** if the map sending identities x = y to isomorphisms $x \cong y$ is an equivalence of types.

Definition

A bicategory is univalent if

- ▶ the map sending identities x = y to adjoint equivalence $x \equiv y$ is an equivalence of types
- ▶ the map sending identities f = g to invertible 2-cells $f \cong g$ is an equivalence of types

Univalence

Definition

A category is **univalent** if the map sending identities x = y to isomorphisms $x \cong y$ is an equivalence of types.

Definition

A bicategory is univalent if

- ▶ the map sending identities x = y to adjoint equivalence $x \equiv y$ is an equivalence of types
- ▶ the map sending identities f = g to invertible 2-cells $f \cong g$ is an equivalence of types

We can show that all categories and bicategories in this talk are univalent

Univalence is nice

Univalence simplifies proofs of statements like

for all x and y and for all equivalences $e: x \cong y$, we have P(e)

By equivalence induction, we can assume that e is the identity

Univalence is nice

Univalence simplifies proofs of statements like

for all x and y and for all equivalences $e: x \cong y$, we have P(e)

By equivalence induction, we can assume that e is the identity We use this to:

- transport properties/structure along equivalences
- characterize adjoint equivalences, e.g.
 - to prove that pointwise pseudonatural adjoint equivalences are adjoint equivalences
 - to characterize adjoint equivalences of comprehension categories

Characterizing Adjoint Equivalences

Often we want to show that some pseudofunctor reflects adjoint equivalences

Characterizing Adjoint Equivalences

This works better if we use displayed bicategories

$$e: X \rightarrow_e y$$

By induction on e: we only have to consider morphisms over identities

And there's more

There are more interesting features of the proof

- usage of displayed biequivalence (see Bicategories in univalent foundations)
- ▶ local properties (based on Modular correspondence between dependent type theories and categories including pretopoi and topoi by Maietti)

Conclusion

- We gave versions of the theorem by Clairambault and Dybjer for univalent categories, and we extended it to toposes
- We used comprehension categories instead of CwFs, since we don't want the types to form a set
- Univalence also helped us to simplify parts of the proof (transporting structure/properties along equivalences, characterizing adjoint equivalences)
- ► The results in this talk are formalized: https://github.com/UniMath/UniMath/tree/master/ UniMath/Bicategories/ComprehensionCat