Computing in Tropical Geometry

Marta Panizzut

Computational Geometry - University of Nottingham

Overview of topics

 Lecture 1: Tropical polynomials, curves, dual subdivisions.

Lecture 2: Intersections of tropical curves, fields with valuation, tropicalization, tropical varieties.

Lecture 3: A tropical count of real bitangents to plane quartic curves.

Practical Session 1: Tropical curves in Oscar.

Practical Session 2: Tropical quartic curves and their bitangents in polymake.

References:

- Joswig, Essentials of Tropical Combinatorics, Graduate Studies in Mathematics, AMS, 2021.
- Maclagan and Sturmfels, Introduction to Tropical Geometry, Graduate Studies in Mathematics, AMS, 2015.

Degree

A tropical plane curve T(F) has degree d if it is defined by a polynomial $F(X,Y)=\bigoplus_{u\in S}a_uX^{u_1}Y^{u_2}$ such that

Newt(
$$F$$
) = conv($(0,0),(d,0),(0,d)$).

T(F) has d unbounded rays (with multiplicities) in each direction (1,0), (0,1) and (-1,-1). If T(F) is smooth, then these rays are exactly d.

Tropical plane curves

- o Two general lines meet in one point.
- Two general points lie on a unique line.
- o A general line and quadric meet in two points.
- Two general quadrics meet in four points.
- Five general points lie on a unique quadric.

Transversal intersection

Two tropical curves Γ_1 and Γ_2 intersect transversally if every point $\mathbf{p} \in \Gamma_1 \cap \Gamma_2$ lies in the relative interior of a unique edge e_1 of Γ_1 and a unique edge e_2 of Γ_2 .

The multiplicity of **p** equals

$$(w_{e_1}w_{e_2})|u_1v_2-u_2v_1|$$

where (u_1, u_2) and (v_1, v_2) are primitive direction vectors of e_1 and e_2 , (and w_{e_1} and w_{e_2} their weights).

Stable intersection

Suppose that Γ_1 and Γ_2 do not intersect transversally. The stable intersection of Γ_1 and Γ_2 is the the limit as ϵ goes to zero of the intersection of Γ_1 and $\epsilon \nu + \Gamma_2$ for a generic vector ν . This does not depend on the choice of ν .

Multiplicities add up when points collide.

Bezout's Theorem

Theorem

Any two tropical curves of degrees c and d in \mathbb{R}^2 intersect in cd points.

Valuation

Let K be a field.

A valuation on K is a function val : $K \to \mathbb{R} \cup \{\infty\}$ satisfying the following axioms:

- $ightharpoonup val(a) = \infty$ if and only if a = 0;
- ightharpoonup val(ab) = val(a) + val(b); and
- ▶ $val(a + b) \ge min\{val(a), val(b)\}$ for all $a, b \in K$.

The ring

$$R = \{c \in K \mid \mathsf{val}(c) \ge 0\}$$

has a unique maximal ideal

$$\mathcal{M}_K = \{c \in K \,|\, \mathsf{val}(c) > 0\}.$$

The residue field is $\mathbb{k} = R/\mathcal{M}_K$.

Examples

Trivial valuation

$$val(a) = 0$$
 for all $a \in K^*$.

p-adic valuation

 $K = \mathbb{Q}$, $q = p^k a/b$, where $a, b \in \mathbb{Z}$ and p does not divide a or b.

$$\mathsf{val}_p: \quad \mathbb{Q}^* \quad \to \quad \mathbb{R}$$
 $q = p^k a/b \quad \mapsto \quad k$

Puiseux series with complex coefficients $\mathbb{C}\{\{t\}\}\$

$$c(t) = c_1 t^{a_1} + c_2 t^{a_2} + c_3 t^{a_3} + \cdots$$

where c_i are complex numbers and $a_1 < a_2 < a_3 < \dots$ are rational numbers that have a common denominator.

$$\mathsf{val}: \quad \mathbb{C}\{\!\!\{t\}\!\!\}^* \quad \rightarrow \quad \mathbb{R} \\ c(t) \quad \mapsto \quad a_1$$

Tropicalization

Given a polynomial $f(x_1, x_2) = \sum_{\mathbf{u} \in S} c_{\mathbf{u}} x_1^{u_1} x_2^{u_2}$ with coefficients in a valued field K, its tropicalization is

$$\mathsf{trop}(f)(X_1,X_2) = \bigoplus_{\mathsf{u} \in S} \mathsf{val}(c_\mathsf{u}) \odot X_1^{u_1} \odot X_2^{u_2}.$$

Theorem (Kapranov 90s)

Let K be an algebraically closed field with a nontrivial valuation, let $f = \sum_{\mathbf{u} \in S} c_{\mathbf{u}} x_1^{u_1} x_2^{u_2}$ be a polynomial in $K[x_1^{\pm}, x_2^{\pm}]$. The following subsets of \mathbb{R}^2 coincide:

- $\blacktriangleright \ \ \textit{the closure of trop}(V(f)) = \big\{ \big(\textit{val}(y_1), \textit{val}(y_2)\big) \,|\, (y_1, y_2) \in V(f) \subset (\mathsf{K}^\times)^2 \big\}.$
- tropical curve T(trop(f)).

Smoothness

Tropically smooth implies smooth.

Proposition

Let $f = \sum_{u \in S} c_u x_1^{u_1} x_2^{u_2}$ be a polynomial in $K[x_1^{\pm}, x_2^{\pm}]$. Let S(trop(F)) be the subdivision induced by the coefficients $\text{val}(c_u)$ of trop(f) on Newt(trop(f)).

If $S(\operatorname{trop}(f))$ is a unimodular triangulations (= $\operatorname{trop}(f)$ is tropically smooth), then $V(f) \subset (T^{\times})^n$ is a smooth curve.

Tropicalizing intersections

- Let f and g be polynomials in K[x, y]. If $\mathbf{x} \in V(f) \cap V(g)$, then $\operatorname{val}(\mathbf{x}) \in \operatorname{trop}(V(f)) \cap \operatorname{trop}(V(g))$.
- $\begin{array}{l} \circ \ \ K=\mathbb{C}\{\!\{t\!\}\!\}, \ f=x+y+1 \ \text{and} \ g=x+2y. \\ \text{Then} \ \ V(f)\cap V(g)=(-2,1) \ \text{and} \ \text{val}(-2,1)=(0,0). \\ \text{However trop}(V(f))\cap \text{trop}(V(g))=\{(x_1,x_2)\in\mathbb{R}^2: x_1=x_2\leq 0\}. \end{array}$
- Let f and g be such that $\operatorname{trop}(V(f))$ and $\operatorname{trop}(V(g))$ intersect transversally at \mathbf{w} . Then there exists $x \in V(f) \cap V(g)$ such that $\operatorname{val}(\mathbf{x}) = \mathbf{w}$.

Tropical variety

Let I be an ideal in $K[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ and X = V(I) be its variety in the algebraic torus $(K^*)^n$. The tropicalization of X is

$$\operatorname{trop}(X) = \bigcap_{f \in I} \operatorname{trop}(V(f)) = \bigcap_{f \in I} \operatorname{T}(\operatorname{trop}(f)) \subseteq \mathbb{R}^n.$$

Remark: It is not sufficient to take intersections over a generating set of I. But we can make the intersection finite by computing a tropical basis.

How to compute them?

Given a polynomial f and a point \mathbf{w} in \mathbb{R}^n , we can define the initial form of f with respect to \mathbf{w} (taking into account the valuation).

$$f = t^2 x^2 + t^2 y^2 + t xy + t x + t y + t^2 \in \mathbb{C}\{\{t\}\}[x^{\pm}, y^{\pm}].$$

$$\mathbf{w} = (0, 2), \text{ in}_{\mathbf{w}}(f) = x \qquad \mathbf{w} = (2, 1), \text{ in}_{\mathbf{w}}(f) = y + 1$$

For generic $\mathbf{w} \in \mathbb{R}^n$ we have $\mathrm{in}_{\mathbf{w}}(f)$ is a monomial.

Tropical Geometry cares about non-generic w:

$$\{\mathbf{w} \in \mathbb{R}^n \mid \text{in}_{\mathbf{w}}(f) \neq \text{monomial}\}.$$

Remark: Taking the initial ideal $in_w(I)$ of I gives a flat family over the valuation ring R of K. The general fiber is isomorphic to I and the special to $in_w(I)$.

What are tropical varieties?

Theorem (Fundamental Theorem of Tropical Geometry)

Let K be an algebraically closed field with a nontrivial valuation, let I be an ideal in $K[x_1^{\pm}, x_2^{\pm}, \dots, x_n^{\pm}]$, and let X = V(I) its variety in $(K^*)^n$. The following three subsets of \mathbb{R}^n coincide:

- ▶ the closure of $\{(val(y_1), \ldots, val(y_n)) | (y_1, \ldots, y_n) \in X\}$.
- $\qquad \qquad \{ \mathbf{w} \in \mathbb{R}^n \, | \, in_{\mathbf{w}}(I) \neq \langle 1 \rangle \}.$
- tropical zeros of tropicalization of polynomials in the ideal 1.

Theorem (Structure Theorem)

Let X be an irreducible subvariety of dimension d in the algebraic torus $(K^*)^n$. The tropical variety trop(X) is the support of a pure polyhedral complex of dimension n.

Thank you!