Lenguajes de Consulta

Base de Datos

Mónica Caniupán mcaniupan@ubiobio.cl

Universidad del Bío-Bío

2024

Lenguajes de Consulta

- Lenguajes especializados para consultar datos almacenados en una BD
- Nos concentraremos en dos lenguajes de consulta:
 - 1 Algebra Relacional (AR)
 - Compuesto de una colección de operadores relacionales
 - Lenguaje procedural, i.e., cada consulta expresada en AR describe paso a paso como computar la respuesta
 - 2 Cálculo Relacional (CR)
 - Lenguaje declarativo i.e., se especifica la respuesta deseada sin describir como obtenerla

Lenguajes de Consulta

- El resultado de una consulta es una relación
- Algunas veces, las consultas requieren la computación de resultados intermedios, los cuales también son relaciones
- Asumiremos que las relaciones intermedias heredan los nombres de atributos de las relaciones de donde provienen
- Si los atributos tienen el mismo nombre agregaremos un alías

Algebra Relacional

- Operadores básicos del algebra relacional:
 - Operadores Unarios:
 - Selección
 - Proyección
 - 2 Operadores Binarios:
 - Unión
 - Diferencia
 - Producto Cartesiano
- Cada operador del algebra acepta una o dos relaciones y retorna una relación

Selección

- Selecciona un subconjunto de tuplas que satisfacen la condición de selección
- La selección desde una relación R es:

$$\sigma_F(R)$$

donde R es la relación y F es una fórmula (condición)

■ En general, F es una combinación booleana de términos, i.e., una expresión con conectores lógicos ∧, ∨, de la forma:

donde * es uno de los operadores $<,>,\leqslant,\geqslant,=,\neq$

Ejemplo: Operador Selección

Dada la relación ALUMNOS:

	ALUMNOS		
ID	NOMBRE	DIRECCION	CIUDAD
11	pedro	rengo 292	concepcion
12	luis	maipu 333	chillan
13	juan	salas 254	concepcion
14	domingo	freire 331	concepcion
15	domingo	rengo 331	chillan

La consulta: "Seleccionar los alumnos que viven en Chillán" se expresa por:

$$\sigma_{ciudad='chillan'}(ALUMNOS)$$

La respuesta a la consulta es la relación:

ID	NOMBRE	DIRECCION	CIUDAD
12	luis	maipu 333	chillan
15	domingo	rengo 331	chillan

Proyección

- Permite extraer columnas de una relación, i.e., produce un subconjunto vertical de una relación
- El esquema de la relación resultante está determinado por los atributos proyectados
- La proyección de una relación R sobre los atributos A y B se denota por:

$$\Pi_{A,B}(R)$$

La proyección puede contener tuplas que son idénticas

Ejemplo: Operador Proyección

Dada la relación ALUMNOS:

ALUMNOS			
ID	NOMBRE	DIRECCION	CIUDAD
11	pedro	rengo 292	concepcion
12	luis	maipu 333	chillan
13	juan	salas 254	concepcion
14	domingo	freire 331	concepcion
15	domingo	rengo 331	chillan

■ La consulta: "Seleccionar el nombre de los alumnos" se expresa por:

 $\Pi_{NOMBRE}(ALUMNOS)$

La respuesta a la consulta es:

NOMBRE
pedro
luis
juan
domingo
domingo

Sub-consultas

- Dado que el resultado de una expresión en AR siempre es una relación, podemos usar expresiones en AR en lugar de relaciones
- Consideremos la relación ALUMNOS:

	ALUMNOS			
ID	NOMBRE	DIRECCION	CIUDAD	
11	pedro	rengo 292	concepcion	
12	luis	maipu 333	chillan	
13	juan	salas 254	concepcion	
14	domingo	freire 331	concepcion	
15	domingo	rengo 331	chillan	

■ La consulta: "Obtener el nombre de alumnos que viven en Chillán" se expresa por:

$$\Pi_{NOMBRE}(\sigma_{CIUDAD='chillan'}(ALUMNOS))$$

La respuesta a la consulta es:

NOMBRE
luis
domingo

Unión

■ La unión de dos relaciones R y S se denota por:

$R \cup S$

- Esta operación retorna el conjunto de tuplas que están en R, en S o en ambas
- R y S deben ser "unión compatible", i.e., deben tener la misma aridad y los atributos tomados de izquierda a derecha deben tener el mismo dominio
- El esquema resultante corresponde al esquema de R

Ejemplo: Operador Unión

Dadas las relaciones Alumnos Chillán (AChi) y Alumnos Concepción (ACon):

AChi		
ID	NOMBRE	
12	luis	

ACon		
ID	NOMBRE	
11	pedro	
13	juan	
14	domingo	

■ *Achi* ∪ *ACon* produce la relación:

ID	NOMBRE
12	luis
11	pedro
13	juan
14	domingo

Diferencia

■ La diferencia de dos relaciones *R* y *S* se denota por:

$$R-S$$

y retorna el conjunto de tuplas que están en R y no en S

- Las relaciones R y S deben ser "unión compatible"
- El esquema resultante corresponde al esquema de R
- La operación es asimétrica, i.e.,:

$$R-S \neq S-R$$

Ejemplo: Operador Diferencia

Dadas las relaciones Alumnos Chillán (AChi) y Alumnos Concepción (ACon):

AChi		
ID	NOMBRE	
12	luis	
11	pedro	

ACon		
ID	NOMBRE	
11	pedro	
13	juan	
14	domingo	

■ *AChi* – *ACon* produce la relación:

ID	NOMBRE
12	luis

■ *ACon* – *AChi* produce la relación:

ID	NOMBRE
13	juan
14	domingo

Producto Cruz o Producto Cartesiano

■ El producto cartesiano de dos relaciones *R* y *S* se denota por:

$$R \times S$$

Retorna una relación cuyo esquema contiene todos los atributos de R seguidos por todos los atributos de S (en el mismo orden en que ellos aparecen en R y S)

Ejemplo: Operador Producto Cartesiano

■ Dadas las relaciones AChi y CursosChi:

	AChi			
ID	ID NOMBRE			
12	12 luis			
13 pedro				

CursosChi			
ID	ID NOMBRE₋C		
1	1 <i>BD1</i>		
2 BD2			

■ AChi × CursosChi produce la relación:

ID	NOMBRE	ID	NOMBRE_C
12	luis	1	BD1
12	luis	2	BD2
13	pedro	1	BD1
13	pedro	2	BD2

Operadores no Básicos

- Los operadores no básicos pueden ser expresados en términos de operadores básicos
- Operadores no básicos:
 - Intersección
 - 2 Join (Reunión)
 - 3 División

Intersección

La intersección de dos relaciones se denota por:

 $R \cap S$

y retorna el conjunto de tuplas que están en ambas relaciones

- Ambas relaciones deben ser "unión compatible"
- El esquema resultante corresponde al esquema de R
- La intersección de dos relaciones se puede especificar en términos del operador Diferencia:

$$R\cap S=R-(R-S)$$

Ejemplo: Operador Intersección

 Dadas las relaciones Alumnos Chillán (AChi) y Alumnos Concepción (ACon):

AChi			
ID	ID NOMBRE		
11	pedro		
12	12 luis		
14	domingo		

ACon			
ID	ID NOMBRE		
11 pedro			
13 juan			
14 domingo			

■ *AChi* ∩ *ACon* produce la relación:

ID	NOMBRE
11	pedro
14	domingo

Join (Reunión)

- El Join es derivado del producto cartesiano
- Existen varias variantes de join, el más común es el θ-join, comúnmente llamado join y denotado por:

$$R\bowtie_F S$$

Donde F es la fórmula que especifica los atributos para ejecutar el join

■ El join de dos relaciones es equivalente a:

$$R \bowtie_F S = \sigma_F(R \times S)$$

Tipos de Join

- Equi-Join
 - Cuando la formula F en $R \bowtie_F S$ contiene solo igualdades
- Natural Join
 - Un join entre dos relaciones sobre un atributo con el mismo dominio
 - \blacksquare $R \bowtie_A S$, donde A es el atributo en común en las dos relaciones
 - El atributo A puede nombrarse de diferente forma en R y S

Ejemplo: Operador Join

■ Dadas las relaciones Inscritos (INS) y CursosChi (CUR):

INS		
NOMBRE	ID₋CURSO	NOTA
luis	1	80
luis	2	90
pedro	1	90

	CUR			
ID	ID NOMBRE_C			
1	1 <i>BD1</i>			
2	2 <i>BD2</i>			
3	SIA1			

■ *INS* ⋈_{ID_CURSO=ID} *CUR* produce la relación:

NOMBRE	ID₋CURSO	NOTA	ID	NOMBRE_C
luis	1	80	1	BD1
luis	2	90	2	BD2
pedro	1	90	1	BD1

Ejemplo: Operador Join

Dadas las relaciones Inscritos (INS) y CursosChi (CUR):

INS		
NOMBRE	ID₋CURSO	NOTA
luis	1	80
luis	2	90
pedro	1	90

CUR		
ID NOMBRE_C		
1	BD1	
2 BD2		
3	SIA1	

■ Muestre que $\sigma_{ID_CURSO=ID}(INS \times CUR)$ produce el mismo resultado que $INS \bowtie_{ID_CURSO=ID} CUR$

División

- Supongamos que tenemos dos relaciones A(x,y) y B(y) donde el dominio del atributo y en las relaciones A y B es el mismo
- La operación A/B retorna todos los valores de x, tales que para todo valor y en B existe una tupla $\langle x, y \rangle$ en A

Ejemplo: Operador División

■ Consideremos las relaciones A y B₁

Α	
sno	pno
s ₁	p_1
S ₁	p_2
<i>S</i> ₂	<i>p</i> ₁
s ₂	p_2
<i>s</i> ₃	p_2
S ₄	p_2
S ₄	<i>p</i> ₄

B ₁
pno
p_2

 \blacksquare A/B_1 produce la relación:

Ejemplo: Operador División

■ Consideremos las relaciones A y B₂

Α	
sno	pno
<i>s</i> ₁	<i>p</i> ₁
<i>S</i> ₁	p_2
<i>s</i> ₁	p_3
<i>s</i> ₁	p_4
<i>s</i> ₂	p_1
<i>s</i> ₂	p_2
<i>\$</i> 3	p_2
<i>S</i> ₄	p_2
<i>S</i> ₄	p_4

<i>B</i> ₂
pno
p_2
<i>p</i> ₄

■ A/B₂ produce la relación:

