Learning to Discover Sparse Graphical Models

ICML 2017 (Belilovsky et al., 2017)

Eugene Belilovsky

INRIA

University of Paris-Saclay

Gael Varoquaux

Kyle Kastner

Matthew B. Blaschko

Presented by: Haluk Dogan

https://haluk.github.io/ hlk.dogan@gmail.com

Department of Computer Science University of Nebraska-Lincoln

February 11, 2019

Graphical Models

Geoffrey Hinton and Chris Stephenson

Learning to Discover Sparse Graphical Models

Eugene Belliwsky 123 Kyle Kastner 4 Gael Varoquaux 2 Matthew R. Blaschko 1

Judea Pearl

Graphical Models (cont'd)

American Angele and the second and t

n

Outline

- Introduction
 - Graphical Models
- 2 Learning the Estimator
- 3 Experiments
- 4 Conclusion

February 11, 2019

Preliminaries for Gaussian Graphical Models

- $lacksquare X = [X_1, X_2, \dots, X_p] \text{ and } X \sim N(\mu, \Sigma)$
- $p(X; \mu, \Sigma) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$
- lacksquare Mean $\mu \in \mathbb{R}^p$
- lacksquare Covariance matrix $oldsymbol{\Sigma} \in \mathbb{S}_{++}^p$
- lacksquare Precision matrix $\Theta = \Sigma^{-1}$

Belief Network¹

$\begin{bmatrix} 9 \\ 3 \\ 1 \end{bmatrix}$	A 3 9 3	$\begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$	$\begin{bmatrix} 8 \\ -3 \\ 1 \end{bmatrix}$	B -3 9 -3	$\begin{bmatrix} 1 \\ -3 \\ 8 \end{bmatrix}$
$\begin{bmatrix} 9 \\ 3 \\ 0 \end{bmatrix}$	C 3 9 3	$\begin{bmatrix} 0 \\ 3 \\ 9 \end{bmatrix}$	$\begin{bmatrix} 9 \\ -3 \\ 0 \end{bmatrix}$	$\begin{array}{c} {\sf D} \\ -3 \\ 10 \\ -3 \end{array}$	$\begin{bmatrix} 0 \\ -3 \\ 9 \end{bmatrix}$

^{1 &}quot;The Humble Gaussian Distribution" by David MacKay

Graphical Lasso

- $lackbox{f X}_{n imes p}$, $\mu=0^p$ and $oldsymbol{\Sigma}\in\mathbb{S}_{++}^p$
- lacksquare Our task is to estimate Σ
 - Challenging problem when $n \ll p$
 - Ordinary MLE does not exits
 - Poorly behaved
 - Regularization is needed (ℓ_1 norm)
 - Assumption: $\Theta = \Sigma^{-1}$ is sparse

Objective Function

$$f_{gl}(\hat{\Sigma}) = \arg\min_{\Theta \succeq 0} -\log|\Theta| + \text{Tr}(\hat{\Sigma}\Theta) + \lambda \|\Theta\|_1$$

Graphical Lasso (cont'd)

Why do we put sparsity constraint?

- lacksquare Σ is $p \times p$ matrix
- lacktriangle Estimating Σ requires $O(p^2)$ measurements
- Each observation $X_i \in \mathbb{R}^p$ provides p scalar values. O(p) is not enough to estimate Σ
- Sparse graphical model:
 - $|E| \ll O(p^2)$
 - Suppose each vertex (variable) is connected to at most $d \ll p$ other vertices, there are only O(dp) edges in the graph

Graphical Lasso (cont'd)

Alternative penalties:

- Fused graphical lasso, Group graphical lasso (Danaher et al., 2014)
- Elastic net penalty (combines ℓ_1 and ℓ_2) (Ryali et al., 2012)
- Mixed norm ℓ_{21} (Varoquaux et al., 2010)

Challenges:

- Novel surrogates for structured-sparsity assumptions on MRF structures
- Priors need to be formulated
- Regularization parameters are often unintuitive
 - Model selection becomes difficult

Proposed Approach

- Learn the estimator
 - Select a function from a large flexible function class by risk minimization for edge estimation
- Sampling from a distribution of graphs and empirical covariances with desired properties
- Polynomial function
 - Neural network
 - Function class is CNN

Learning the Estimator

- $\mathbf{X} \in \mathbb{R}^{n \times p}$
- lacksquare G=(V,E) be an undirected and unweighted graph
- $m{L}=\{0,1\}$ and $N_e=rac{p(p-1)}{2}$ the maximum possible edges
- $\hat{Y} = g_w(\mathbf{X})$ is an approximate structure discovery method
 - $\hat{\boldsymbol{\Sigma}}: g_w(\mathbf{X}) := f_w(\hat{\boldsymbol{\Sigma}})$
- $\blacksquare \text{ We want to minimize expected risk: } R(f) = \mathbb{E}_{(\hat{\Sigma},Y) \sim \mathbb{P}}[l(f(\hat{\Sigma}),Y)]$
 - lacksquare \mathbb{P} on $\mathbb{R}^{p imes p} imes \mathcal{L}^{N_e}$
 - $l: \mathcal{L}^{N_e} \times \mathcal{L}^{N_e} \to \mathbb{R}^+$ (0/1 loss function)

Learning the Estimator (cont'd)

- Distribution P may not be tractable:
- Empirical risk minimization:
 - lacksquare N samples $\{Y_k, \Sigma_k\}_{k=1}^N$ drawn from $\mathbb P$

 - $\hat{l}: \mathbb{R}^{N_e} imes \mathcal{L}^{N_e}$
 - 0/1 loss is not convex
 - $\sum_{i \neq j} \left(Y^{ij} \log(f_w^{ij}(\hat{\mathbf{\Sigma}})) + (1 Y^{ij}) \log(1 f_w^{ij}(\hat{\mathbf{\Sigma}})) \right).$

Algorithm 1 Training a GGM edge estimator

```
\begin{aligned} & \text{for } i \in \{1,..,N\} \text{ do} \\ & \text{Sample } G_i \sim \mathbb{P}(G) \\ & \text{Sample } \Theta_i \sim \mathbb{P}(\Theta|G = G_i) \\ & \mathbf{X}_i \leftarrow \{x_j \sim N(0,\Theta_i^{-1})\}_{j=1}^n \\ & \text{Construct } (Y_i, \hat{\boldsymbol{\Sigma}}_i) \text{ pair from } (G_i, \mathbf{X}_i) \\ & \text{end for} \\ & \text{Select Function Class } \mathcal{F} \text{ (e.g. CNN)} \\ & \text{Optimize: } \min_{f \in \mathcal{F}} \frac{1}{N} \sum_{k=1}^N \hat{l}(f(\hat{\boldsymbol{\Sigma}}_k), Y_k)) \end{aligned}
```


Neural Network Graph Estimator

- If the data is standardized, each entry of Σ corresponds to the correlation $ho_{i,j}$
- \blacksquare $d{\it th}{\it -order}$ partial correlation can be obtained from $(d-1){\it th}{\it -order}$ partial correlation

$$\rho(i, j | \mathbf{Z}) = \frac{\rho(i, j | \mathbf{Z} \setminus \{z_0\}) - \rho(i, z_0 | \mathbf{Z} \setminus \{z_0\}) \rho(j, z_0 | \mathbf{Z} \setminus \{z_0\})}{\sqrt{(1 - \rho^2(i, z_0 | \mathbf{Z} \setminus \{z_0\}) (1 - \rho^2(j, z_0 | \mathbf{Z} \setminus \{z_0\}))}}$$

$$\rho_{i, j | \mathbf{Z}} = (\rho_{i, j | \mathbf{Z} \setminus z_o} - \rho_{i, z_o | \mathbf{Z} \setminus z_o} \rho_{j, z_o | \mathbf{Z} \setminus z_o}) \frac{1}{D}$$

Using gradient descent, a neural network with only two layers can learn a polynomial function of degree d to arbitrary precision given sufficient hidden units (Andoni et al., 2014)

Neural Network Graph Estimator (cont'd)

 DP can yield polynomial computation time and require only low order polynomial computations

Experiments

Experimental Setup	Method	Prec@5%	AUC	CE
	Glasso	0.361 ± 0.011	0.624 ± 0.006	0.07
Gaussian	Glasso (optimal)	0.384 ± 0.011	0.639 ± 0.007	0.07
Random Graphs	BDGraph	0.441 ± 0.011	0.715 ± 0.007	0.28
(n = 35, p = 39)	DeepGraph-39	0.463 ± 0.009	0.738 ± 0.006	0.07
, ,,	DeepGraph-39+Perm 0.487 ± 0.010		0.740 ± 0.007	0.07
	Glasso	0.539 ± 0.014	0.696 ± 0.006	0.07
Gaussian	Glasso (optimal)	0.571 ± 0.011	0.704 ± 0.006	0.07
Random Graphs	BDGraph	0.648 ± 0.012	0.776 ± 0.007	0.16
(n = 100, p = 39)	DeepGraph-39	0.567 ± 0.009	0.759 ± 0.006	0.07
	DeepGraph-39+Perm	0.581 ± 0.008	0.771 ± 0.006	0.07
	Glasso	0.233 ± 0.010	0.566 ± 0.004	0.07
Gaussian	Glasso (optimal)	0.263 ± 0.010	0.578 ± 0.004	0.07
Random Graphs	BDGraph	0.261 ± 0.009	0.630 ± 0.007	0.41
(n = 15, p = 39)	DeepGraph-39	0.326 ± 0.009	0.664 ± 0.008	0.08
	DeepGraph-39+Perm	0.360 ± 0.010	0.672 ± 0.008	0.08
	Glasso	0.312 ± 0.012	0.605 ± 0.006	0.07
Laplace	Glasso (optimal)	0.337 ± 0.011	0.622 ± 0.006	0.07
Random Graphs	BDGraph	0.298 ± 0.009	0.687 ± 0.007	0.36
(n = 35, p = 39)	DeepGraph-39	0.415 ± 0.010	0.711 ± 0.007	0.07
	DeepGraph-39+Perm	0.445 ± 0.011	0.717 ± 0.007	0.07
	Glasso	0.387 ± 0.012	0.588 ± 0.004	0.11
Gaussian	Glasso (optimal)	0.453 ± 0.008	0.640 ± 0.004	0.11
Small-World Graphs	imall-World Graphs BDGraph		0.691 ± 0.003	0.17
(n=35,p=39)	DeepGraph-39	0.479 ± 0.007	0.709 ± 0.003	0.11
	DeepGraph-39+Perm	0.453 ± 0.007	0.712 ± 0.003	0.11
	DeepGraph-39+update	0.560 ± 0.008	0.821 ± 0.002	0.11
İ	DeepGraph-39+update+Perm	0.555 ± 0.007	0.805 ± 0.003	0.11

Experiments (cont'd)

Method	Prec@0.05%	Prec@5%	AUC	CE
random	0.052 ± 0.002	0.053 ± 0.000	0.500 ± 0.000	0.05
Glasso	0.156 ± 0.010	0.055 ± 0.001	0.501 ± 0.000	0.05
Glasso (optimal)	0.162 ± 0.010	0.055 ± 0.001	0.501 ± 0.000	0.05
DeepGraph-500	0.449 ± 0.018	0.109 ± 0.002	0.543 ± 0.002	0.06
DeepGraph-500+Perm	0.583 ± 0.018	0.116 ± 0.002	0.547 ± 0.002	0.06

	50 nodes (s)	500 nodes (s)
sklearn GraphLassoCV	4.81	554.7
BDgraph	42.13	N/A
DeepGraph	0.27	5.6

Experiments (cont'd)

Experiments (cont'd)

	Gene BRCA	Gene COAD	ABIDE Control	ABIDE Autistic
Graph Lasso	$0.25 \pm .003$	0.34 ± 0.004	$0.21 \pm .003$	$0.21\pm.003$
Ledoit-Wolfe	0.12 ± 0.002	0.15 ± 0.003	$0.13 \pm .003$	$0.13 \pm .003$
Bdgraph	0.07 ± 0.002	0.08 ± 0.002	N/A	N/A
DeepGraph	0.48 ± 0.004	0.57 ± 0.005	$0.23\pm.004$	$0.17 \pm .003$
DeepGraph +Permute	0.42 ± 0.003	0.52 ± 0.006	$0.19 \pm .004$	$0.14 \pm .004$

Questions

Questions?

References I

- Andoni, A., R. Panigrahy, G. Valiant, and L. Zhang (2014). Learning polynomials with neural networks. In *International Conference on Machine Learning*, pp. 1908–1916.
- Belilovsky, E., K. Kastner, G. Varoquaux, and M. B. Blaschko (2017). Learning to discover sparse graphical models. In *Proceedings of the 34th International Conference on Machine Learning-Volume 70*, pp. 440–448. JMLR. org.
- Danaher, P., P. Wang, and D. M. Witten (2014). The joint graphical lasso for inverse covariance estimation across multiple classes. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 76(2), 373–397.

References II

Ryali, S., T. Chen, K. Supekar, and V. Menon (2012). Estimation of functional connectivity in fmri data using stability selection-based sparse partial correlation with elastic net penalty. *NeuroImage* 59(4), 3852–3861.

Varoquaux, G., A. Gramfort, J.-B. Poline, and B. Thirion (2010). Brain covariance selection: better individual functional connectivity models using population prior. In *Advances in neural information processing systems*, pp. 2334–2342.

