**Figure S1:**Downloaded and cleaned dataset D1, by host (A) and year (B-C).

| Alpha C | loVs  | Beta CoVs   |       |  |
|---------|-------|-------------|-------|--|
| Host    | Count | Host        | Count |  |
| Alpaca  | 1     | Antelope    | 4     |  |
| Bat     | 146   | Bat         | 199   |  |
| Camel   | 63    | Bison       | 1     |  |
| Canine  | 73    | Bovine      | 314   |  |
| Feline  | 368   | Buffalo     | 4     |  |
| Ferret  | 18    | Camel       | 383   |  |
| Fox     | 1     | Canine      | 19    |  |
| Human   | 509   | Chimp       | 7     |  |
| Hyena   | 1     | Civet       | 29    |  |
| Mink    | 5     | Deer        | 10    |  |
| Murine  | 10    | Equine      | 19    |  |
| Porcine | 3266  | Ferret      | 1     |  |
| Shrew   | 11    | Giraffe     | 5     |  |
|         |       | Hedgehog    | 11    |  |
|         |       | Human       | 2384  |  |
|         |       | MERS        | 8     |  |
|         |       | Monkey      | 2     |  |
|         |       | Murine      | 87    |  |
|         |       | Pangolin    | 11    |  |
|         |       | Porcine     | 28    |  |
|         |       | Rabbit      | 8     |  |
|         |       | Raccoon Dog | 3     |  |
|         |       | Tahr        | 2     |  |
|         |       | Waterbuck   | 6     |  |
|         |       | Yak         | 15    |  |
| Total   | 4472  | Total       | 3560  |  |



# Figure S2:

Maximum Likelihood (ML) phylogenetic trees from dataset D2 for whole genomes (A-B), and the Spike (C-D), Nucleocapsid (E-F), Membrane (G-H) and Envelope (A-J) proteins. Branches highlighted in blue represent the non-sHCoV sequences selected for the final analyses in addition to the seasonal human coronaviruses (sHCoVs) colored in red (NL63), green (229E), orange (OC43) and purple (HKU1). On these trees, CoVs from hosts other than the sHCoVs and those that share a MRCA as per the ML trees had been subsampled to  $\sim$  30-40 sequences per host-clade, i.e. if there were two porcine clades positioned on different parts of a tree then they were subsampled independently.









# Figure S3:

Estimates of the MRCA age for full genomes and four open reading frames (dataset D5) of the seasonal human coronavirus species. The black horizontal lines represent the dates of first isolation for 229E (1966), OC43 (1967), NL63 (2004) and HKU1 (2005). The star (\*) symbol shows the parents to the MRCAs of the sHCoVs. The WGS is missing data points for HKU1\_all (collective for both genotypes) and genotype B as sequences for genotype B were all removed in the generation of recombination-free WGS dataset D5.



#### Table S1:

Mean pairwise genetic distances for various CoV host-clades. The CoV host-clade sequences selected for this analysis were based on ML tree topologies in *Supplementary Figure 1*, selecting host-clades that were sister clades to the sHCoVs. However, when the isolates that shared a recent ancestor with humans, rather than one in the more distant past, were represented by a single sequence, the mean pairwise genetic distance could not be calculated on the single sequence. We also included CoVs from hosts not closely related to the sHCoVs for comparison. For each sHCoV species and ORF/WGS, the cells are colored from the highest (red) to the lowest (green) genetic distance.

| Genus    | Species | CoV               | WGS    | Spike  | Envelope | Membrane | Nucleocapsid |
|----------|---------|-------------------|--------|--------|----------|----------|--------------|
| AlphaCoV | 229E    | 229E              | 0.0048 | 0.0347 | 0.0040   | 0.0079   | 0.0121       |
|          |         | Camelid           | 0.0020 | 0.0056 | 0.0024   | 0.0015   | 0.0027       |
|          |         | Bat               | 0.0476 | 0.0521 | NA       | NA       | NA           |
|          | NL63    | NL63              | 0.0081 | 0.0362 | 0.0077   | 0.0082   | 0.0076       |
|          |         | Bat               | NA     | 0.5048 | NA       | NA       | NA           |
| BetaCoV  | OC43    | OC43              | 0.0076 | 0.0268 | 0.0085   | 0.0082   | 0.0077       |
|          |         | Bovine            | 0.0104 | 0.0247 | 0.0081   | 0.0120   | 0.0099       |
|          |         | Ungulate & Canine | 0.0157 | 0.0274 | 0.0091   | 0.0101   | 0.0116       |
|          |         | Equine            | 0.0087 | 0.0129 | 0.0128   | 0.0049   | 0.0075       |
|          |         | Rabbit            | 0.0051 | NA     | 0.0028   | 0.0019   | 0.0019       |
|          |         | Murine            | NA     | 0.1713 | NA       | NA       | 0.1377       |
|          | HKU1    | HKU1              | 0.0222 | 0.1040 | 0.0795   | 0.0176   | 0.0231       |
|          |         | Genotype B        | 0.0122 | 0.0120 | 0.0072   | 0.0039   | 0.0049       |
|          |         | Genotype A        | 0.0028 | 0.0049 | 0.0011   | 0.0020   | 0.0063       |
|          |         | Porcine           | 0.0134 | 0.0367 | 0.0127   | 0.0102   | 0.0148       |

|    | Murine                               | 0.1738   | 0.1424 | 0.0812 | 0.0311 | 0.0619 |
|----|--------------------------------------|----------|--------|--------|--------|--------|
| ΙГ | Key:<br>NA: Only a single sequence a | vailable |        |        |        |        |

# Table S2:

Test for positive selection in the emergence of sHCoV species from datasets D4 and D5. In bold are the host-jump branches where positive selection was inferred using the likelihood ratio test at a threshold of p $\leq$ 0.05. Also shown are  $\omega$  (ratio of nonsynonymous to synonymous substitutions) and the proportion of sites in each rate.

| ORF          | sHCoV species     | aBSREL                                                                       | BUSTED by sHCoV species                                                                   |
|--------------|-------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|              | 229E              | ω=0.23 (100%); p-value=1.0                                                   | ω1=0.03 (73.9%), ω2=0.72 (11.1%), ω3=2.54                                                 |
|              |                   |                                                                              | (14.9%); p-value=0.418                                                                    |
|              | NL63              | ω <sub>1</sub> =0.00 (62%), ω <sub>2</sub> =0.17 (29%), ω <sub>3</sub> =3850 | $\omega_1$ =0.01 (62.3%), $\omega_2$ =0.1 (37.1%), $\omega_3$ =1                          |
|              |                   | (9%); <i>p-value</i> =0.183                                                  | (0.7%); <i>p-value</i> =0.5                                                               |
|              | OC43              | ω1=0.51 (100%); p-value=1.0                                                  | $\omega_1$ =0.23 (26.6%), $\omega_2$ =0.37 (55.9%), $\omega_3$ =1                         |
| Spike        |                   |                                                                              | (17.5%); <i>p-value</i> =0.5                                                              |
| Эрікс        | HKU1_all          | $\omega_1$ =0.00 (70%), $\omega_2$ =0.31 (23%), $\omega_3$ =307              | $\omega_1$ =0.02 (85.3%), $\omega_2$ =0.19 (9.2%), $\omega_3$ =2.71                       |
|              |                   | (6.7%); p-value=0.074                                                        | (5.5%); <i>p-value</i> =0.249                                                             |
|              | HKU1 Genotype A   | $\omega_1$ =0.0468 (96%), $\omega_2$ =2.48 (4%); p-                          | $\omega_1$ =0.00 (78.1%), $\omega_2$ =0.28 (21.4%),                                       |
|              |                   | value=0.2825                                                                 | <i>∞</i> =12.15 (0.5%); <i>p-value</i> =0.329                                             |
|              | HKU1 Genotype B   | ω <sub>1</sub> =0.00 (87%), ω <sub>2</sub> =1.0 (13%); p-value=0.5           | $\omega_1$ =0.00 (79.2%), $\omega_2$ =0.33 (20.8%), $\omega_3$ =1.02                      |
|              |                   |                                                                              | (0.0%); p-value=0.5                                                                       |
|              | 229E              | ω=0.40 (100%); p-value=1.0                                                   | $\omega_1$ =0.00 (17.7%), $\omega_2$ =0.02 (64.1%), $\omega_3$ =1.14                      |
|              |                   |                                                                              | (18.2%); p-value=0.5                                                                      |
|              | NL63              | $\omega_1$ =0.05 (85%), $\omega_2$ =0.05 (1.7%), $\omega_3$ =62.6            | $\omega_1$ =0.02 (67.4%), $\omega_2$ =0.07 (21.1%), $\omega_3$ =2.55                      |
|              |                   | (14%); p-value=0.000                                                         | (11.5%); p-value=0.425                                                                    |
| Nucleocapsid | OC43              | ω <sub>1</sub> =0.23 (100%); p-value=1.0                                     | $\omega_1$ =0.00 (0%), $\omega_2$ =0.20 (100%), $\omega_3$ =1.11                          |
| rucicocapoia |                   |                                                                              | (0%); p-value=0.5                                                                         |
|              | HKU1_all          | $\omega_1$ =0.07 (90%), $\omega_2$ =3850 (10%); $p$ -                        | $\omega_1$ =0.00 (56.5%), $\omega_2$ =0.24 (39.9%), $\omega_3$ =4000                      |
|              |                   | value=0.008                                                                  | (3.6%); <i>p-value</i> =0.063                                                             |
|              | HKU1 Genotype A   | $\omega_1$ =0.351 (100%); <i>p-value</i> =1.0                                | $\omega_1$ =0.99 (36.6%), $\omega_2$ =1.00 (0%), $\omega_3$ =23.58                        |
|              |                   |                                                                              | (63.4%); p-value=0.254                                                                    |
|              | HKU1 Genotype B   | $\omega_1$ =0.00 (91%), $\omega_2$ =6.30 (8.6%); $p$ -                       | $\omega_1$ =0.00 (68.3%), $\omega_2$ =0.00 (16.6%), $\omega_3$ =3.72                      |
|              |                   | value=0.0305                                                                 | (15.1%); p-value=0.122                                                                    |
|              | 229E              | $\omega_1$ =0.09 (98%), $\omega_2$ =13.3 (2%); $p$ -                         | ω <sub>1</sub> =0.00 (75.1%), ω <sub>2</sub> =0.24 (21.9%), ω <sub>3</sub> =3.81          |
|              |                   | value=0.2112                                                                 | (2.9%); p-value=0.414                                                                     |
|              | NL63              | $\omega_1$ =0.00 (87%), $\omega_2$ =0.92 (13%); p-value=1.0                  | $\omega_1 = 0.00 \text{ (81.9\%)}, \ \omega_2 = 0.27 \text{ (18.1\%)}, \ \omega_3 = 1.00$ |
|              | 0.649             | 0.40 (4.000/)                                                                | (0%); p-value=0.5                                                                         |
| Membrane     | OC43              | ω <sub>1</sub> =0.43 (100%); p-value=1.0                                     | $\omega_1 = 0.36 (11.7\%), \ \omega_2 = 0.36 (87.9\%),$                                   |
|              | 1117114 11        | 0.20 (1000)                                                                  | ω <sub>3</sub> =999999171.60 (0.5%); p-value=0.168                                        |
|              | HKU1_all          | ω <sub>1</sub> =0.39 (100%); p-value=1.0                                     | $\omega_1$ =0.03 (40.6%), $\omega$ =0.08 (59.4%), $\omega$ =1.00                          |
|              | LIVIII Constant A | 0.0001(1000/), a malua 1.0                                                   | (0%); p-value=0.5                                                                         |
|              | HKU1 Genotype A   | ω=0.281 (100%); p-value=1.0                                                  | $\omega_1$ =0.00 (55.4%), $\omega_2$ =0.04 (30.2%), $\omega_3$ =1.52                      |
|              | LIVIII Construe P | ω=0.103 (100%); p-value=1.0                                                  | (14.4%); p-value=0.483                                                                    |
|              | HKU1 Genotype B   | ω1-0.103 (100 %), p-value-1.0                                                | $\omega_1$ =0.27 (77.5%), $\omega_2$ =0.28 (22.5%), $\omega_3$ =1.00 (0%); $p$ -value=0.5 |
|              | 229E              | ω=0.23 (100%); p-value=1.0                                                   | $\omega_1 = 0.23 (100\%), \ \omega_2 = 0.25 (0\%), \ \omega_3 = 1.00$                     |
|              | 22)L              | ω1-0.25 (100 /0), ρ-υμιας-1.0                                                | (0%); $p$ -value=0.5                                                                      |
|              | NL63              | ω <sub>1</sub> =0.09 (100%); p-value=1.0                                     | $\omega_1 = 0.03 (0\%), \ \omega_2 = 0.07 (100\%), \ \omega_3 = 1.11$                     |
|              | 11200             | 6.05 (10070), p outure 1.0                                                   | (0%); p-value=0.5                                                                         |
| Envelope     | OC43              | ω=0.78 (100%); p-value=1.0                                                   | $\omega_1 = 1.00 (0\%), \ \omega_2 = 1.00 (0\%), \ \omega_3 = 14.11$                      |
|              | 0010              | (10070), p outle 1.0                                                         | (100%); p-value=0.457                                                                     |
|              | HKU1_all          | ω=0.14 (100%); p-value=1.0                                                   | $\omega = 0.00 (33.9\%), \ \omega = 0.18 (66.2\%), \ \omega = 1.00$                       |
|              |                   | 222 222 (20070), y cuimo 1.0                                                 | (0%); p-value=0.5                                                                         |
| <u>-</u>     |                   |                                                                              | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                      |

| HKU1 Genotype A | ω <sub>1</sub> =0.53 (100%); <i>p-value</i> =1.0 | $\omega_1$ =0.28 (0%), $\omega_2$ =0.29 (100%), $\omega_3$ =1.00           |
|-----------------|--------------------------------------------------|----------------------------------------------------------------------------|
|                 | ,                                                | (0%); <i>p-value</i> =0.5                                                  |
| HKU1 Genotype B | <i>ω</i> 1=0.15 (100%); <i>p-value</i> =1.0      | ω <sub>1</sub> =1.00 (0%), ω <sub>2</sub> =1.00 (0%), ω <sub>3</sub> =3.14 |
|                 |                                                  | (100%); p-value=0.463                                                      |

#### Figure S4:

The number of inferred amino acid changes (AA) within sHCoV clades for AA positions in the envelope, membrane, nucleocapsid and spike proteins from datasets D4 and D5. At the top of each plot, the functional domains or regions of the respective proteins are shown; NTD=N-terminal domain, TM=transmembrane domain, CTD=C-terminal domain, RBD=receptor binding domain, LINK=central linker domain, LINK-Dimer=dimerization domain, S1 subunit, S2 subunit, FP=fusion peptide, IFP=internal fusion peptide, HR1=heptad repeat 1, and HR2=heptad repeat 2.





**Table S3:**A select amino acid changes occurring along the host-jump branches leading to the emergence of the sHCoVs

| Type of AA                        | ORF                                                                    |                  |              |             |  |  |  |
|-----------------------------------|------------------------------------------------------------------------|------------------|--------------|-------------|--|--|--|
| change along the host-jump branch | Spike                                                                  | Nucleocapsid     | Membrane     | Envelope    |  |  |  |
| Convergent                        | NL63 & HKU1 <sup>a</sup> :                                             | NL63 & 229E:     | -            | -           |  |  |  |
| changes to the same AA            | L/G1224F, V/C1228L                                                     | N/A402S          |              |             |  |  |  |
|                                   | NL63 & OC43:                                                           | NL63 & HKU1:     |              |             |  |  |  |
|                                   | V/T1142I                                                               | A/P182S, A/T241S |              |             |  |  |  |
|                                   | 229E & HKU1:                                                           |                  |              |             |  |  |  |
|                                   | I/D1153S                                                               |                  |              |             |  |  |  |
|                                   | HKU1 & OC43:                                                           |                  |              |             |  |  |  |
|                                   | N/Y489D, A/T497P                                                       |                  |              |             |  |  |  |
| Divergent                         | NL63 & 229E:                                                           | NL63 & 229E:     | NL63 & 229E: | 229E & HKU1 |  |  |  |
| changes to different AAs          | I769L/N, T1253M/I, I1153A/S                                            | E236S/D          | L82I/F       | V26I/F      |  |  |  |
| from the same AA                  | NL63, 229E & HKU1:                                                     | 229E & HKU1:     | 229E & HKU1: |             |  |  |  |
|                                   | D1170T/E/N                                                             | I127V/L          | E12D/Q       |             |  |  |  |
|                                   | NL63 & HKU1:                                                           |                  |              |             |  |  |  |
|                                   | T1116V/S, V1227L/F                                                     |                  |              |             |  |  |  |
|                                   | HKU1 & OC43:                                                           |                  |              |             |  |  |  |
|                                   | D1135L/Y, G1221A/C, D463.11S/N, Q490.7W/-, T8.21N/K, V8.27F/K, T680S/K |                  |              |             |  |  |  |
|                                   | HKU1, OC43 & HUMAN <sup>b</sup> :                                      |                  |              |             |  |  |  |
|                                   | D1181Y/V/E                                                             |                  |              |             |  |  |  |

|                                                | HKU1& HUMAN:<br>V105T/L                                                      |                            |                            |              |
|------------------------------------------------|------------------------------------------------------------------------------|----------------------------|----------------------------|--------------|
|                                                |                                                                              |                            |                            |              |
| Parallel changes<br>from-and-to the<br>same AA | NL63 & 229E:<br>A1009S, L1210I                                               |                            |                            |              |
| Same AA                                        | HKU1 & OC43:<br>N146K                                                        |                            |                            |              |
|                                                | HKU1 & HUMAN:                                                                |                            |                            |              |
|                                                | F8.6L <sup>c</sup>                                                           |                            |                            |              |
| Changes to AAs<br>observed in SARS-<br>CoV-2   | OC43:<br>N856K (Omicron)                                                     | HKU1:<br>E63D (Wuhan-Hu-1) | NL63:<br>L82I (Wuhan-Hu-1) | -            |
| COV-Z                                          | HKU1:<br>R969K (Omicron), E339D (Omicron), F371L (Omicron)                   |                            |                            |              |
|                                                | NL63:                                                                        |                            |                            |              |
| Canadatali                                     | P80A(Beta), T375S (Wuhan-Hu-1)                                               |                            |                            |              |
| Completely reversed AA                         | NL63 & HKU1:<br>I/V1225V/I                                                   | -                          | -                          | -            |
| changes                                        | N/D1165D/N                                                                   |                            |                            |              |
| Partially reversed                             | NL63 & HKU1:                                                                 | NL63 & 229E:               | NL63 & 229E:               | NL63 & HKU1: |
| AA changes                                     | S/N162Y/S, S/A271T/S, T/A629S/T, A/N776N/T, V/A817A/F, S/A975N/S, E/Q1154Q/H | D/S158S/N                  | V/I222I/F                  | L/I27F/L     |
|                                                | NL63 & HKU1 & OC43:                                                          | NL63 & HKU1:               |                            |              |
|                                                | I/S/T624T/-/S                                                                | E/D125Q/E                  |                            |              |
|                                                | 229E & HKU1:                                                                 | 229E & HKU1:               |                            |              |
|                                                | N/K641K/-                                                                    | D/E321V/D, S/L365-/S       |                            |              |
|                                                | HKU1 & OC43:                                                                 |                            |                            |              |
|                                                | K/I154N/K, K/T257I/K, V/I329I/K                                              |                            |                            |              |

| HKU1 & HUMAN: |  |  |
|---------------|--|--|
| S/G405R/S     |  |  |

#### Key:

<sup>&</sup>lt;sup>a</sup> Where there are two or more AAs, the order of the AAs follow the sHCoV species shown, i.e. for NL63 & HKU1 in L/G1224F represents NL63: L1224F and HKU1: in G1224F

<sup>&</sup>lt;sup>b</sup> A lone human CoV (FJ415324) that clusters with ungulate and canine CoVs

<sup>&</sup>lt;sup>c</sup> Where there was an AA insertion in the sHCoVs relative to the Wuhan-Hu-1 SARS-CoV-2 reference genome, we used the X.Y positional notation where X is the reference genome position and Y is the n<sup>th</sup> sHCoV AA insertion.