Mixture of Gaussians

CS229: Machine Learning Carlos Guestrin Stanford University

©2021 Carlos Guestrin

Failure modes of k-means

different shaped/oriented clusters

(One) bad case for k-means

- Clusters may overlap
- Some clusters may be "wider" than others

©2021 Carlos Guestrin CS229: Machine Learning

Gaussians in *m* Dimensions

$$P(\mathbf{x}) = \frac{1}{(2\pi)^{m/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right]$$

Suppose You Have a Gaussian For Each Class

$$\frac{1}{(2\pi)^{m/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)\right]$$

Gaussian Bayes Classifier

• You have a Gaussian over **x** for each class y=i:

$$\frac{1}{(2\pi)^{m/2}} \exp\left[-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)\right]$$

- But you need probability of class y=i given x:
- Thank you Bayes Rule!!

$$P(y = i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid y = i)P(y = i)}{p(\mathbf{x})}$$

Learning modelyear, mpg ---> maker

$$\Sigma = \left(\begin{array}{cccc} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1m} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1m} & \sigma_{2m} & \cdots & \sigma_m^2 \end{array} \right)$$

General: *O*(*m*²) parameters

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1m} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1m} & \sigma_{2m} & \cdots & \sigma_m^2 \end{pmatrix}$$

Aligned: *O(m)* parameters

$$\Sigma = \left(\begin{array}{ccccccc} \sigma_1^2 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \sigma_2^2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \sigma_3^2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma_{m-1}^2 & 0 \\ 0 & 0 & 0 & \cdots & 0 & \sigma_m^2 \end{array} \right)$$

Aligned: *O(m)* parameters

$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \sigma_2^2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \sigma_3^2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma_{m-1}^2 & 0 \\ 0 & 0 & 0 & \cdots & 0 & \sigma_m^2 \end{bmatrix}$$

Spherical: *O(1)* cov parameters

Spherical: *O(1)* cov parameters

$$\Sigma = \begin{pmatrix} \sigma^2 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \sigma^2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \sigma^2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma^2 & 0 \\ 0 & 0 & 0 & \cdots & 0 & \sigma^2 \end{pmatrix}$$

Clustering our Observations

• Imagine we have an assignment of each x^i to a Gaussian

Density as Mixture of Gaussians

Approximate with density with a mixture of Gaussians

The General GMM assumption

- There are k components
- Component i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i

Each data point is generated according to the following recipe:

- Pick a component at random: Choose component i with probability P(y=i)
- 2. Datapoint $\sim N(\mu_i, \Sigma_i)$

Density Estimation

• Estimate a density based on $x^1,...,x^N$

Density as Mixture of Gaussians

Approximate density with a mixture of Gaussians

Summary of GMM Components

$$x^i \in \mathbb{R}^d, \quad i = 1, 2, \dots, N$$

• Hidden cluster labels
$$z_i \in \{1,2,\ldots,K\}, \quad i=1,2,\ldots,N$$

$$\mu_k \in \mathbb{R}^d, \quad k = 1, 2, \dots, K$$

$$\Sigma_k \in \mathbb{R}^{d \times d}, \quad k = 1, 2, \dots, K$$

• Hidden mixture probabilities

$$\pi_k, \quad \sum_{k=1}^K \pi_k = 1$$

Gaussian mixture marginal and conditional likelihood:

$$p(x^i|\pi,\mu,\Sigma) = \sum_{z^i=1}^K \pi_{z^i} \; p(x^i|z^i,\mu,\Sigma)$$
 $p(x^i|z^i,\mu,\Sigma) = \mathcal{N}(x^i|\mu_{z^i},\Sigma_{z^i})$ ©2021 Carlos Guestrin