ЛЕКЦИЯ № 4.

Частотная модуляция (ЧМ).

Временная и спектральная диаграммы сигнала ЧМ

При ЧМ частота ВЧ колебания (несущей) изменяется в соответствии с НЧ модулирующим сигналом.

$$\omega_{\text{чм}}(t) = \omega_0 + \Delta \omega U_{\text{нч}}(t),$$
где (4.1)

 $\omega_{\text{чм}}(t)$ - частота ЧМ сигнала;

 ω_0 - среднее значение несущей частоты;

 $U_{\text{\tiny HЧ}}(t)$ -модулирующий сигнал;

 $\Delta \omega$ -девиация частоты, т.е. максимальное отклонение частоты от среднего значения.

Если модулирующий сигнал гармонический, т.е.

 $U_{HH} = \cos\Omega t$,

to $\omega_{\text{ym}}(t) = \omega_0 + \Delta\omega cos\Omega t$

а выражение для ЧМ сигнала имеет вид:

$$U_{_{\mathit{UM}}}(t) = U_{_{\mathit{m}}} \cos \underbrace{\varphi_{_{\mathit{UM}}}(t)}_{_{\mathit{dpa3a}}}$$

$$\varphi_{\text{MM}}(t) = \int_{0}^{t} \omega_{\text{MM}}(t)dt = \int_{0}^{t} (\omega_{0} + \Delta\omega\cos\Omega t)dt = \omega_{0}t + \frac{\Delta\omega}{\Omega}\sin\Omega t$$

$$U_{\text{\tiny MM}}(t) = U_{\text{\tiny m}} \cos(\omega_0 t + \frac{\Delta \omega}{\Omega} \sin \Omega t)$$

$$\frac{\Delta\omega}{\Omega} = M_{\text{\tiny H}} - \text{индекс ЧМ}. \tag{4.2}$$

$$U_{\text{\tiny MM}}(t) = U_{\text{\tiny m}} cos(\omega_0 t + M_{\text{\tiny M}} \sin \Omega t)$$

Временная диаграмма модулирующего сигнала имеет вид:

Временная диаграмма соответствующего ЧМ сигнала принимает вид:

Как видно из рис.4.2, там, где модулирующий сигнал больше, там и частота ЧМ сигнала больше, а период колебаний меньше.

$$\omega_{\text{HM}}(t) = \omega_0 + \Delta\omega\cos\Omega t$$

$$\omega_{\text{max}} = \omega_0 + \Delta \omega$$

$$\omega_{\min} = \omega_0 - \Delta \omega$$

Амплитуда при ЧМ постоянна, меняется только частота.

Для получения спектра ЧМ сигнала разложим $U_{\text{чм}}(t)$ в ряд Фурье.

$$\begin{split} &U_m\mathfrak{T}_1(M_{\scriptscriptstyle H})cos(\omega_0\Omega)t + U_m\mathfrak{T}_2(M_{\scriptscriptstyle H})cos(\omega_0 + 2\Omega)t + U_m\mathfrak{T}_2(M_{\scriptscriptstyle H})cos(\omega_02\Omega)t + U_m\mathfrak{T}_3(M_{\scriptscriptstyle H})^*cos(\omega_0 + 3\Omega)t - U_m\mathfrak{T}_3(M_{\scriptscriptstyle H})cos(\omega_0 - 3\Omega)t + \dots \end{split}$$

 $\mathfrak{T}_k(M_{\scriptscriptstyle ext{\tiny $ \Psi$}})$ - функция Бесселя к-ого порядка.

Вид спектра зависит от $M_{\rm ч.}$

Спектр ЧМ сигнала при M_{4} <<1 (т.е. порядка 0,1; 0,05;...)

Рис.4.3.

При $M_{\rm q}$ <<1 спектр ЧМ сигнала похож на спектр АМ сигнала (несущая, 2 боковых), но для ЧМ этот спектр приближенный. Все остальные боковые тоже есть, но они очень малы.

Спектр ЧМ сигнала при M_ч>1 выглядит так (Мч=5):

Полоса частот сигнала ЧМ.

Ширина спектра при Мч>>1 не зависит от модулирующей частоты. Это широкополосный сигнал.

Формирование ЧМ сигнала.

ЧМ сигнал может быть получен с помощью частотного модулятора. Частотный модулятор состоит из автогенератора и элемента с помощью которого изменяется частота автогенерации.

Автогенератор - генератор с самовозбуждением, т.е. усилитель, охваченный цепью положительной обратной связи (колебания с выхода поступают на вход, поддерживая возникшие колебания).

Для LRC - генератора цепью обратной связи может быть катушка обратной связи.

Элементом, управляющим частотой генератора, в этом случае является варикап (емкость p-n перехода, которая зависит от приложенного напряжения).

Для RC - генератора цепью обратной связи является цепочка RC.

В качестве резистора R используются сопротивления транзисторов, зависящие от приложенного напряжения. Частота генерации RC генератора определяется выражением:

$$\omega_{\Gamma} = \frac{1}{RC} \tag{4.3}$$

В соответствии с модулирующим НЧ сигналом меняется R, следовательно, меняется частота генерации генератора.

Статическая модуляционная характеристика (СМХ).

Основной характеристикой частотного модулятора является статическая модуляционная характеристика (СМХ).

Статической Модуляционной Характеристикой частотного модулятора называется зависимость частоты генерируемых колебаний от напряжения смещения E:

$$\omega_c = f(E)$$

Пусть нам известна зависимость сопротивления R в цепи обратной связи частотно-модулируемого генератора от напряжения смещения E:

- 1. Задаемся каким-то смещением Е', по графику находим R'.
- 2. Определяем частоту генерации:

$$\omega_{\Gamma}^{\prime} = \frac{1}{R^{\prime}C}$$

3. Задаемся смещением Е", находим R", находим ω_{r} ", и т.д. Стандартная СМХ для частотного модулятора имеет вид:

Выбор рабочего режима по СМХ.

- 1. Выбираем на глаз линейный участок на СМХ.
- 2. Определяем границы рабочего участка: ω_{rmax} , ω_{rmin} , E_{max} , E_{min} .
- 3. Выбираем рабочую точку в середине рабочего участка. Определяем ω_0 и $E_{p.т.}$ для рабочей точки.
- 4. Определяем максимальную амплитуду модулирующего (Н.Ч.) сигнала:

$$U_{\rm m} \cong \frac{E_{\rm max} - E_{\rm min}}{2} \approx E_{\rm max} - E_{\rm p.t.}$$

5. Определяем максимально-допустимую девиацию частоты:

$$\Delta\omega_{\max} \cong \frac{\omega_{_{\Gamma}\max} - \omega_{_{\Gamma}\min}}{2} \approx \omega_{_{\Gamma}\max} - \omega_{_{0}}$$

6. Определяем максимально допустимый индекс неискаженной ЧМ.

$$M_{\text{ч max}} = \frac{\Delta \omega_{\text{max}}}{\Omega}, M_{\text{ч max}} = \frac{\Delta f_{\text{max}}(\Gamma \mu)}{F(\Gamma \mu)}$$

Детектирование сигналов ЧМ.

Назначение частотного детектора (ЧД) состоит в том, чтобы из ВЧ модулированного ЧМ сигнала получить НЧ модулирующий сигнал.

ЧД преобразует ЧМ сигнал в амплитудно - частотно модулированный (АЧМ), который детектируется с помощью амплитудного детектора. Наиболее

распространенная схема ЧД - ЧД с расстроенными контурами. Его принципиальная схема имеет вид:

Контура расстроены относительно средней частоты ЧМ сигнала ω_0 . Например: $\omega_1 > \omega_0$, $\omega_2 < \omega_0$.

Если частота ЧМ сигнала больше ω_0 [$\omega_{\text{чм}}(t) > \omega_0$], то она ближе к ω_1 , чем к ω_2 , т.е. напряжение (его амплитуда) на верхнем контуре (на входе Д1) больше чем напряжение на выходе нижнего контура (на входе Д2). Напряжение в точке 1 будет больше чем в точке 2.

Если [$\omega_{\text{чм}}$ (t) < ω_0], т.е. ближе к ω_2 то, так же рассуждая, получим, что напряжение в точке 2 будет больше чем в точке 1. Полярность напряжения на выходе $U_{\text{нч}}(t)$ меняется на противоположную.

Основная характеристика - статическая характеристика детектора. Это зависимость постоянной составляющей тока в нагрузке детектора I_0 от частоты входного сигнала.

$$I_0 = \phi(\omega)$$
 или $I_0 = \phi(f)$

Стандартный вид СХД следующий:

Расчет рабочего режима по СХД.

Выбираем линейный участок.

Определяем $\omega_{max.}$, ω_{min} , $I_{max.}$, $I_{min.}$

Выбираем рабочую точку в середине линейного участка характеристики.

Определяем ω_0 , $I_{00} \cong 0$.

Определяем допустимую девиацию частоты $\Delta\omega_{\text{max}} = (\omega_{\text{max}} - \omega_{\text{min}})/2$.

Определяем максимально допустимый индекс $M_{^{_{\text{H}}}}$ входного ЧМ сигнала для неискаженного детектирования $M_{^{_{\text{H}}}}$ макс = $\Delta \omega_{\text{max}}/\Omega$, где Ω - модулирующая низкая частота.

Рассчитаем амплитуды первых четырех гармоник и коэффициент нелинейных искажений полезного сигнала. Для расчета вводим обозначения:

$$I_{1} = \frac{I_{\text{max}} - I_{\text{min}} + I_{01} - I_{02}}{3}$$

$$I_{2} = \frac{I_{\text{max}} + I_{\text{min}} - 2I_{00}}{4}$$

$$I_{3} = \frac{I_{\text{max}} - I_{\text{min}} - 2(I_{01} - I_{02})}{6}$$

$$I_{4} = \frac{I_{\text{max}} + I_{\text{min}} - 4(I_{01} + I_{02}) + 6I_{00}}{12}$$

$$K_{\Gamma} = \frac{\sqrt{I_{2}^{2} + I_{3}^{2} + I_{4}^{2}}}{I_{1}}$$

Фазовая модуляция (ФМ). Сравнение ФМ и ЧМ

При ФМ фаза ВЧ несущего колебания изменяется в соответствии с НЧ модулирующим сигналом.

$$\phi_{\Phi M}(t) = \phi_0 + \Delta \phi U_{HY}(t) = \phi_0 + M_{\phi} U_{HY}(t),$$
(4.4)

где $\phi_{\Phi M}(t)$ - фаза ΦM сигнала, ϕ_0 - начальная фаза, M_{φ} - индекс фазовой модуляции.

 $\Delta \phi = \phi_{\text{макс}}$ - $\phi_0 = \phi_0$ - $\phi_{\text{мин}}$ - максимальное отклонение фазы сигнала от начального значения (девиация фазы).Для ΦM :

$$\Delta \varphi = M_{\varphi}. \tag{4.5}$$

Фазомодулированный сигнал можно представить в виде:

$$U_{\varphi_{M}}(t)=U_{m}\cos[\omega_{0}t+\phi_{0}+M_{\varphi}\,U_{_{H^{4}}}\!(t)]=/\,U_{_{H^{4}}}\!(t)=cos\Omega t/=$$

 $U_m cos[\omega_0 t + \phi_0 + M_{\varphi} cos \Omega t]$, где $\omega_0 t$ - текущая фаза.

Временные и частотные параметры ФМ сигнала похожи, в первом приближении, на временные и частотные параметры ЧМ сигнала, однако имеется много различий. Наиболее ярко эти различия проявляются, если модулирующий сигнал - двоичный (1,0).

Модулирующий двоичный сигнал.

Ширина спектра сигнала ФМ равна:

$$\Pi_{\Phi M} \cong 2\Omega(M_{\Phi} + 1) \tag{4.6}$$

При M_{Φ} <<1 спектр ФМ сигнала напоминает спектр сигнала ЧМ и АМ. Сигнал ФМ можно сформировать с помощью частотного модулятора. Но на входе частотного модулятора включают дифференцирующее устройство (при аналоговой модуляции). Детектирование сигнала ФМ осуществляется с помощью частотного детектора, но на его выходе включают интегратор. Структурная схема фазового модема имеет вид:

Рис.4.11

На выходе дифференцирующего устройства имеем:

$$U_{\text{диф}}(t) = \frac{dU_{_{H^{\prime}}}(t)}{dt} \tag{4.7}$$

Частотный модулятор изменяет частоту в соответствии с $U_{\text{ди} \varphi}(t)$: $\omega_{\text{чм}}(t) = \omega_0 + \Delta \omega U_{\text{ди} \varphi}(t)$

Фаза выходного сигнала

$$\phi_{\text{BbIX}}(t) = \int_{0}^{t} (\omega_{0} + \Delta\omega U_{\partial u\phi}(t))dt = \omega_{0}t + \Delta\omega U_{_{H^{\mathcal{H}}}}(t) = \varphi_{\phi_{M}}(t)$$

Фаза выходного сигнала меняется в соответствии с $U_{HY}(t)$. Частотный детектор реагирует на частоту, т.е. на выходе ЧД:

$$U_{\rm \tiny GBIX.40} = A \frac{d \phi_{\rm \tiny dM}(t)}{dt} = \omega_0 + \Delta \omega \frac{d U_{\rm \tiny H4}}{dt}$$

На выходе интегратора : $\mathbf{U}_{\text{вых инт}} = \int\limits_0^t U_{\text{вых инт}} dt = \omega_0 \mathbf{t} + \Delta \omega \mathbf{U}_{\text{нч}}(\mathbf{t}) \Rightarrow \mathbf{U}_{\text{нч}}(\mathbf{t})$

Фазовый (синхронный) детектор (ФД).

Синхронный детектор (фазовый детектор) позволяет осуществить высококачественное детектирование сигналов AM, ЧМ и ФМ ; он обеспечивает наилучшее выделение сигнала на фоне помех. Структурная схема ФД имеет вид:

Рис.4.12.

Сигнал (AM, ЧМ, ФМ): $Uc(t) = U_m(t)cos[\omega_0 t + \phi_{\text{чм}}(t) + \phi_{\phi_M}(t) + \phi_0]$

Опорное напряжение: $U_{on}(t) = U_{m} cos(\omega_{0} t + \varphi_{0})$.

У синхронного детектора два входа. На первый вход подается модулированный сигнал, а на второй вход опорное напряжение. Частота опорного напряжения равна центральной частоте сигнала ω_0 - (синхронность), а фаза равна начальной фазе сигнала φ_0 - (синфазность).

Простейшая принципиальная схема ФД имеет вид:

Напряжение на выходе СД равно интегралу от произведения сигнала на опорное напряжение:

$$U_{\text{вых}}(t) = \frac{1}{T} \int_{0}^{T} U_{c}(t) U_{O\Pi}(t) dt$$

Пусть на входе АМ сигнал:

$$U_c(t) = U_{a\text{\tiny M}}(t) = U(t)cos(\omega_0 t + \phi_0)$$

$$U_{Bblx}(t) = \frac{1}{T} \int_{0}^{T} U(t) \cos(\omega_0 t + \varphi_0) U_m \cos(\omega_0 t + \varphi_0) dt =$$

$$=\frac{U_mU(t)}{T}\int\limits_0^T\frac{1}{2}+\frac{1}{2}\cos(2\omega_0t+2\varphi_0)dt=\frac{U_mU(t)}{2}\quad -\quad \text{получили}\qquad \text{модулирующий}$$

сигнал без искажений (U(t) - практически постоянно на интервале T).