Model Selection & Regularization Lecture 7

Termeh Shafie

Recall: Linear Models and Least Squares

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon \qquad \qquad \text{RSS} = \sum_{i=1}^n (y_i - \hat{\beta}_0 - \sum_{j=1}^p \hat{\beta}_{j_1} x_{ij})^2$$

Model with all available predictor variables is commonly referred to as the full model

Issues:

- predictive accuracy
- · model interpretability

Solutions:

- select subset of predictors
- · consider extension to the least squares solution of full model

Part I - Variable Subset Selection

Model Selection Criteria: Validation by Prediction Error

Last week: how to use cross validation to choose a set of predictors by directly estimate prediction error using cross-validation techniques

e.g.
$$MSE = \frac{RSS}{n}$$

$$RMSE = \sqrt{\frac{RS}{n}}$$

$$R^2 = 1 - \frac{\text{RSS}}{\text{TSS}}$$

Now: indirectly estimating test performance using an approximation

Model Selection Criteria

Four ways to estimate test performance using an approximation

Full model has p predictors

RSS is the residual sum of squares for model with d predictors $\hat{\sigma}^2 = \text{RSS}_p/(n-p-1)$ is an estimate of the error variance for full model

1. Mallow's C_n criterion:

For a given model with d (out of the p available) predictors

$$C_p = \frac{1}{n} \left(\text{RSS} + 2d\hat{\sigma}^2 \right)$$

we are penalizing models of higher dimensionality (larger d, greater penalty) \implies choose the model which has **minimum** C_p

Model Selection Criteria

Four ways to estimate test performance using an approximation

Full model has p predictors

RSS is the residual sum of squares for model with d predictors $\hat{\sigma}^2 = \text{RSS}_p/(n-p-1)$ is an estimate of the error variance for full model

2. Akaike Information Criterion (AIC)

For linear models: equivalent to Mallow's C_n (proportional to)

$$AIC = \frac{1}{n\hat{\sigma}^2} \left(RSS + 2d\hat{\sigma}^2 \right)$$

we are penalizing models of higher dimensionality (larger d, greater penalty) \implies choose the model which has $\min AIC$

Model Selection Criteria

Four ways to estimate test performance using an approximation

Full model has p predictors

RSS is the residual sum of squares for model with d predictors $\hat{\sigma}^2 = \text{RSS}_p/(n-p-1)$ is an estimate of the error variance for full model

3. Bayesian Information Criterion (BIC)

For linear models: equivalent to Mallow's C_n (proportional to)

$$BIC = \frac{1}{n\hat{\sigma}^2} \left(RSS + \log(n) d\hat{\sigma}^2 \right)$$

we are penalizing models of higher dimensionality (larger d, greater penalty) \implies choose the model which has **minimum** BIC

Model Selection Criteria

Four ways to estimate test performance using an approximation

Full model has p predictors

RSS is the residual sum of squares for model with d predictors $\hat{\sigma}^2 = \text{RSS}_p/(n-p-1)$ is an estimate of the error variance for full model

4. Adjusted R-squared value

Adjust the regular R^2 by taking into account number of predictors

$$Adjusted-R^2 = 1 - \frac{RSS/(n-d-1)}{TSS/(n-1)}$$

 \implies choose the model which has maximum Adjusted- R^2

Model Selection Criteria

Four ways to estimate test performance using an approximation

Model Selection Criteria ...and compared to cross validation Organic Selection Criteria ...and compared to cross validation Organic Selection Criteria ...and compared to cross validation Number of Predictors Number of Predictors

Model Search Methods

Best Subset Selection

1. Let $\,M_0\,$ denote null model which contains no predictors. This model simply predicts the of the response for each observation.

2. For k = 1, 2, ..., p

Fit all $\binom{p}{k}$ models that contain exactly p predictors

• Pick the best among these $\binom{p}{k}$ models and call it M_k .

Here, best is defined as having the smallest RSS or largest R^2

3. Select a single best model from among M_0,M_1,\ldots,M_p using cross validated prediction error, C_p (AIC), BIC, or Adjusted- R^2

requires training 2^p models

Model Search Methods

Forward Stepwise Selection

1. Let M_0 denote null model which contains no predictors.

2. For k = 1, 2, ..., p - 1

ullet Consider all p-k models that augment the predictors in M_k with one additional predictor

ullet Choose the best among these p-k models and call it M_{k+1} . Here, best is defined as having the smallest RSS or largest R^2

3. Select a single best model from among M_0,M_1,\ldots,M_p using cross validated prediction error, C_p (AIC), BIC, or Adjusted- R^2

requires training $1 + \frac{p(p+1)}{2}$ models

 $\begin{aligned} & \textbf{Example} \\ & p = 3 \\ & \textbf{\textit{M}}_0 \text{ : intercept only (null)} \\ & C_1 \colon \left(\overrightarrow{X_1} \right) \quad \left(\overrightarrow{X_2} \right) \quad \left(\overrightarrow{X_3} \right) \\ & \text{lowest training RSS within } C_1 \\ & \longrightarrow M_1 \\ & C_2 \colon \left(\overrightarrow{X_1}, \overrightarrow{X_2} \right) \left(\overrightarrow{X_2}, \overrightarrow{X_3} \right) \\ & \text{lowest training RSS within } C_2 \\ & \longrightarrow M_2 \\ & \textbf{\textit{M}}_3 \text{ : full model with} \\ & (\overrightarrow{X_1} \quad (\overrightarrow{X_2} \quad (\overrightarrow{X_3}) \right) \end{aligned}$

Model Search Methods

Backward Stepwise Selection

1. Let M_n denote full model which all predictors.

- 2. For k = p, p 1, p 2,...,1
- ► Consider all k models that contain all but one of the predictors in M_k , for a total of k-1 predictors
- ullet Choose the best among these k models and call it M_{k-1} . Here, best is defined as having the smallest RSS or largest \mathbb{R}^2
- 3. Select a single best model from among $M_0, M_1, ..., M_p$ using cross validated prediction error, C_p (AIC), BIC, or Adjusted- R^2

requires training $1 + \frac{p(p+1)}{2}$ models

Example

lowest training RSS within C_1 $\implies M_2$

lowest training RSS within C_2 $\Longrightarrow M_1$

M₀: intercept only (null)

Model Search Methods Best Subset Selection validation approach based on 50 different seeds and storing number of predictors in selected model each time Best Subset Selection with validation

[plot is made based on the 'hitters' data se used in this week's practical in ISLR2]

Part II - Shrinkage

Shrinkage Methods

Before: Discrete model search methods

model fit + penalty on model dimensionality RSS

Now: Continuous model search method (also faster)

model fit + penalty on size of coefficients

this is called penalized or regularized regression

Ridge Regression

Least Squares produces estimates by minimizing

$$\mathrm{RSS} = \sum_{i=1}^n \, (y_i - \hat{\beta}_0 - \sum_{j=1}^p \hat{\beta}_{j_1} x_{ij})^2$$

Ridge regression instead minimizes

$$\underbrace{\sum_{j=1}^{n}(y_{i}-\hat{\beta}_{0}-\sum_{j=1}^{p}\hat{\beta}_{j_{1}}x_{ij})^{2}}_{\text{model fit}} + \lambda \underbrace{\sum_{j=1}^{p}\beta_{j}^{2}}_{\text{penalty}} = \text{RSS} + \lambda \sum_{j=1}^{p}\beta_{j}$$

where $\lambda \geq 0$ is the tuning parameter controlling trade off between model fit and size of coefficients $(\lambda \to \infty, \hat{\beta}_i \to 0)$

Ridge Regression

Regularization Paths

Ridge Regression

Advantage 1: Multicollinearity (a simulation study)

Ridge vs. Lasso Regression

- Both ridge and lasso are convex optimization
- The ridge solution exists in closed form
- Lasso does not have closed form solution, but very efficient optimization algorithms exist

When to choose which?

- When the actual data-generating mechanism is sparse lasso has the advantage
- When the actual data-generating mechanism is dense ridge has the advantage

Sparse mechanisms: Few predictors are relevant to the response → good setting for lasso regression

Dense mechanisms: A lot of predictors are relevant to the response → good setting for ridge regression

- · Also depends on:
- · Signal strength (the magnitude of the effects of the relevant variables)
- The correlation structure among predictors
- Sample size n vs. number of predictors p

Ridge vs. Lasso Regression

Ridge

- + Reduces Multicollinearity
- + Continuous Shrinking
- + Stable Solutions
- + Computationally Efficient
- No variable selection
- Interpretability
- Sensitive to scale

Lasso

- + Variable selection
- + Sparse models
- + Improves interpretability
- + Particularly useful for when p > n
- Collinearity issues
- Bias in coefficients (ℓ_1 penalty is harsher)
- Computationally intensive

λ Tuning

- K-fold Cross Validation
 - 1. Choose the number of folds K
 - 2. Split the data accordingly into training and testing sets.
 - 3. Define a grid of values for λ
 - 4. For each λ , calculate the validation MSE within each fold
 - 5. For each λ , calculate the overall cross-validation MSE
 - 6. Locate under which λ cross-validation MSE is minimized, i.e. minimum_cv λ
- Packages such as will glmnet do this automatically

Hybrid Approach: Elastic Nets

 λ_1 and λ_2 are regularization parameters controlling the strength of the penalties

- Helps stabilize the solution when predictors are correlated
- Shrinks some coefficients to zero, enabling feature selection
- Particularly useful for high-dimensional datasets with correlated predictors

Part III- Dimensionality Reduction

another strategy which aims to reduce dimensionality **before** applying LS create q transformed variables which are linear combinations of the original predictors (q < p) we return to this during our PCA lecture...

Part IV-Transformations: next week!

extensions to the regression model when the best straight line doesn't quite work!

This Week's Practical

Hands on discrete and continuous model search!

