HN482732AG-20, HN482732AG-25, HN482732AG-30

4096-word × 8-bit U. V. Erasable and Programmable Read Only Memory

The HN482732A is a 4096-word by 8-bit erasable and electrically programmable ROM. This device is packaged in a 24 pin dual-in-line package with transparent lid.

The transparent lid on the package allow the memory content to be erased with ultraviolet light.

■ FEATURES

• Single Power Supply +5V ±5%

Simple Programming Program Voltage: +21V D.C
 Program with one 50ms Pulse

• Static..... No clocks Required

 Inputs and Outputs TTL Compatible During Both Read and Program Mode

Access Time HN482732AG-20 200ns (max)
 HN482732AG-25 250ns (max)

HN482732AG-30 300ns (max)

Absolute Max. Rating of Vpp Pin . . . 26.5V

● Low Stand-by Current 35mA (max)

Compatible with Intel 2732A

■ BLOCK DIAGRAM

(DG-24B)

■ PIN ARRANGEMENT

MODE SELECTION

Pir	ıs <u>C E</u>	OE /VPP	Vcc	Outputs
MODE	(18)	(20)	(24)	(9~11, 13~17)
Read	VIL	VIL	+5	Dout
Stand by	VIH	Don't Care	+5	High Z
Program	VIL	V_{PP}	+5	Din
Program Verify	VIL	VIL	+5	Dout
Program Inhibit	VIH	V _{PP}	+5	High Z

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit
Operating Temperature Range	Tope	0 to +70	c
Storage Temperature Range	T.t.s	-65 to +125	°C
All Input and Output Voltages*	Vin, Vout	-0.3 to +7	v
VPP Voltage *	OE/V _{PP}	-0.3 to 26.5	v
Vcc Voltage*	Vcc	-0.3 to +7	v

^{*} with respect to GND

■ READ OPERATION

• D.C. AND OPERATING CHARACTERISTICS (Ta=0 to 70°C, $V_{CC}=5V\pm5\%$, $V_{pp}=V_{cc}\pm0.6V$)

Parameter	Symbol	Test Conditions	min	typ	max	Unit
Input Leakage Current	Iμ	V _{IN} =5.25V	_	_	10	μA
Output Leakage Current	ILO	$V_{out} = 5.25 \text{V}$	_	_	10	μA
Vcc Current (Standby)	Iccı	$\overline{\text{CE}} = V_{IH}, \ \overline{\text{OE}} = V_{IL}$		_	35	mA
Vcc Current (Active)	Icc2	$\overline{OE} = \overline{CE} = V_{IL}$	_	_	150	mA
Input Low Voltage	VIL		-0.1	_	0.8	v
Input High Voltage	VIH		2.0	_	Vcc+1	v
Output Low Voltage	V _{OL}	IoL=2.1 mA	_	_	0.45	V
Output High Voltage	V on	$I_{OH} = -400 \mu\text{A}$	2.4	_	_	V

• AC CHARACTERISTICS (Ta=0 to 70°C, $V_{cc}=5V\pm5\%$, $V_{pp}=V_{cc}\pm0.6V$)

Parameter	Symbol	Test Conditions	HN482732AG -20		HN482732AG -25		HN482732AG-30		
	Symbol	lest Conditions	min	max	min	max	min	max	Unit
Address to Output Delay	tACC	$\overline{\text{CE}} = \overline{\text{OE}} = V_{IL}$		200	_	250	_	300	ns
CE to Output Delay	t _{CE}	$\overline{OE} = V_{IL}$	_	200	_	250	_	300	ns
OE to Output Delay	t _{OE}	$\overline{\text{CE}} = V_{IL}$	10	90	10	100	10	150	ns
OE High to Output Float	t _{DF}	$\overline{CE} = V_{IL}$	0	80	0	90	0	130	ns
Address to Output Hold	t on	$\overline{CE} = \overline{OE} = V_{IL}$	0		0	_	0	_	ns

• SWITCHING CHARACTERISTICS

Test Conditions

 Input Pulse Level:
 0.8V to 2.2V

 Input Rise and Fall Times:
 ≤ 20ns

 Output Load:
 1 TTL Gate + 100PF

Reference Level for Measuring Timing Inputs, 1V and 2V, Outputs; 0.8V and 2V

• CAPACITANCE $(T_a=25\,^{\circ}\text{C}, f=1\,\text{MHz})$

Parameter	Symbol	Test Conditions	min	typ	max	Unit
Input Capacitance (Except $\overline{\rm OE}/V_{PP}$)	C _{IN1}	$V_{IN}=0$ V	_	_	6	pF
OE /VPP Input Capacitance	CIN2	V _{IN} =0V	_	. —	20	pF
Output Capacitance	Cont	Vout = 0 V		_	12	pF

■ PROGRAMMING OPERATION

• DC PROGRAMMING CHARACTERISTICS ($T_a=25^{\circ}\text{C}\pm 5^{\circ}\text{C}$, $V_{CC}=5V\pm 5\%$, $V_{PP}=21V\pm 0.5V$)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Input Leakage Current	Iu	Vin-Vil or Vin	_	_	10	μA
Output Low Voltage During Verify	Vol	IoL-2.1mA	_		0.45	V
Output High Voltage During Verify	V _{OH}	Iон — — 400 ⊬A	2.4		_	V
Vcc Supply Current	Icc		_	_	150	mA
Input Low Level	VIL		-0.1	_	0.8	v
Input High Level (All Inputs Except OE/VPP)	V _{IH}		2.0		V _{cc} +1	V
V PP Supply Current	IPP	$\overline{\text{CE}} = V_{IL}, \ \overline{\text{OE}} = V_{PP}$			30	mA

• AC PROGRAMMING CHARACTERISTICS (Ta=25 °C ± 5 °C, $V_{CC}=5V\pm 5\%$, $V_{PP}=21V\pm 0.5V$)

Parameter	Symbol	Test Conditions	min	typ	max	Unit
Address Setup Time	tas		2		_	μs
OE Setup Time	toes		2	_		μs
Data Setup Time	tos		2	_		μs
Address Hold Time	t _{AH}		0		_	μs
OE Hold Time	t oeh		2	_	_	μs
Data Hold Time	t _{DH}		2		_	μs
Chip Enable to Output Float Delay*	tor		0	_	130	ns
Data Valid from CE	t _{DV}	$\overline{\text{CE}} = V_{IL}, \ \overline{\text{OE}} = V_{IL}$	_		1	μs
CE Pulse Width During Programming	t _{PW}		45	50	55	ms
OE Pulse Rise Time During Programming	t _{PRT}		50	_		ns
V _{PP} Recovery Time	t vr		2	_		μs

^{*} tor defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

• SWITCHING CHARACTERISTICS

Test Condition

Reference Level for Measuring Timing: Inputs 1V and 2V; Outputs 0.8V and 2V

● ERASE

Erasure of HN482732A is performed by exposure to ultraviolet light of 2537Å and all the output data are changed to "1" after this erasure procedure. The minimum integrated dose (i.e. UV intensity x exposure time) for erasure is 15W-sec/cm²

SUPPLY CURRENT vs. SUPPLY VOLTAGE

SUPPLY CURRENT vs. AMBIENT TEMPERATURE

ADDRESS ACCESS TIME vs. SUPPLY VOLTAGE

ADDRESS ACCESS TIME vs. AMBIENT TEMPERATURE

