

shutterstsck*

• Creating a COVID-19 vaccine analysis program would typically involve data analysis and visualization. Below are examples of Python code snippets using popular libraries like NumPy, Pandas, and Matplotlib to get you started.

1.Data Retrieval:

You can fetch COVID-19 vaccine data from sources like the CDC or WHO, or use publicly available datasets. Here's an example using Pandas to read a CSV file:

 import pandas as pd# Read vaccine data from a CSV filevaccine_data = pd.read_csv('vaccine_data.csv')

2.Data Exploration:

You might want to explore the dataset by checking for missing values, data types, and basic statistics:

```
# Check for missing values
missing_values =
vaccine_data.isnull().sum()
# Get basic statistics
summary_stats = vaccine_data.describe()
```

3.Data Visualization:

Visualize vaccine distribution or coverage using Matplotlib or another plotting library: import matplotlib.pyplot as plt

```
# Plot vaccine coverage over time plt.figure(figsize=(10, 6)) plt.plot(vaccine_data['Date'], vaccine_data['Coverage']) plt.xlabel('Date')plt.ylabel('Vaccine Coverage (%)')plt.title('COVID-19 Vaccine Coverage Over Time')plt.show()
```

4.Data Analysis:

You can perform specific analyses, like calculating the average vaccine coverage or identifying regions with lower coverage:

```
# Calculate average vaccine
coverage
avg coverage =
vaccine data['Coverage'].mean()
# Find regions with lower coverage
low_coverage_regions =
vaccine_data[vaccine_data['Coverage'] < 50]</pre>
```

• 5. Machine Learning (Optional):

If you have enough data, you can build predictive models. Here's a simple linear regression example using scikit-learn:

from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression

- # Split the data into training and testing sets
- X = vaccine_data[['Population']]
- y = vaccine_data['Coverage']
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
- # Create and train a linear
- regression model
- model = LinearRegression()model.fit(X_train, y_train)

 Relation between Total Vaccinations and Total Vaccinations per Hundred:

```
fig = px.scatter(new_df,x =

'total_vaccinations',y='total_vaccinations_per_hundred',

size='total_vaccinations', hover_name = 'country',size_max

= 50, title="Total vs Total vaccinations per hundred grouped

by Vaccines", color_discrete_sequence =

px.colors.qualitative.Bold) fig.show()
```

Total vs Total vaccinations per hundred grouped by Vaccines

 What is the number of total vaccinations & daily vaccinations according to countries?

```
data =
new_df[['country','total_vaccinations']].nlargest(2)
5, 'total vaccinations') fig = px.bar(data, x =
'country',y = 'total vaccinations',title="Number of
total vaccinations according to countries",)
fig.show()
```

Number of total vaccinations according to countries

data =
 new_df[['country', 'daily_vaccinations']].nlargest(25, 'daily_vaccinations') fig = px.bar(data, x = 'country', y =
 'daily_vaccinations', title="Number of daily vaccinations according to countries",) fig.show()

Daily Vaccinations per Countries:

```
fig = go.Choropleth(locations =
new df["country"],locationmode = 'country names', z
= new df['daily vaccinations'], text=
new df['country'],colorbar = dict(title= "Daily
Vaccinations")) data = [fig] layout = go.Layout(title =
'Daily Vaccinations per Countries') fig = dict(data =
data, layout = layout) iplot(fig)
```

Daily Vaccinations per Countries

• The conclusions from the available data up to that point indicated that COVID-19 vaccines:

1.Are effective in preventing COVID-19 infection.

2. Significantly reduce the risk of severe illness, hospitalization, and death.

 3.Contribute to herd immunity, slowing the spread of the virus.

• 2. Have demonstrated safety profiles, with side effects typically being mild and temporary.

• 3. May require booster shots for ongoing protection due to the emergence of new variants.