

Лекция 3

•••

ExpressML

Повторение

Математическая модель нейрона

Feed-Forward Networks

Функция потерь

1 = paenped., deperce nz nparbdonododus

Chain Rule, Обратное распространение ошибки

$$f(g(x)) \frac{\partial f(g(x))}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x}.$$

$$\frac{\partial f}{\partial x} \frac{\partial f}{\partial$$

Градиентный спуск

Herep:

$$v^{+1} = v \cdot \delta + (1 - \delta) \cdot \theta f$$

 $x^{+1} = x - \lambda \cdot v^{+1}$

Adam!

$$m^{+1} = m \cdot \beta_{2} + (1 - \beta_{2}) \cdot ||\bar{v}f||_{2}$$
 EMA
 $v^{+1} = v \beta_{1} + (1 - \beta_{1}) \bar{v}f$
 $x^{+1} = x - \lambda \cdot \frac{v+1}{m+1}$

$$\begin{cases} x_1 \\ x_2 \\ x_3 \\ 2 \end{cases} = x_1^2 + x_2^2 + x_3^2$$

PProp.

$$x^{+1} = x = 2.63$$
 $x^{+2} = x = 2.63$
 $x^{+1} = x$

Нестеровский градиентный спуск

Проблемы сигмоидных нейронных сетей

Проблема инициализации весов

Проблема затухания градиента (сигмоида)

$$\frac{\partial L}{\partial x} = 6_{4} \cdot 6_{3} \cdot 6_{2} \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3} \cdot 6_{2} \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3} \cdot 6_{2} \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3} \cdot 6_{2} \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3} \cdot 6_{2} \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3} \cdot 6_{2} \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3} \cdot 6_{2}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{2}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{2}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{2}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{2}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{2}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{2}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{2}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{2}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{2}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{2}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{2}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{2}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{2}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{3}' \cdot 6_{2}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{3}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{3}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{3}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{3}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{3}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{3}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} = \frac{\partial L}{\partial x} \cdot 6_{3}' \cdot 6_{3}' = \frac{\partial L}{\partial x} = \frac{\partial L}{$$

ReLU, ELU - artubagu

Exponential Linear Un.t

$$ELL(x) = \begin{cases} x & \text{if } x > 0 \\ e^{tx} & \text{cid } x < 0 \end{cases} C = -1$$

Проблема переобучения

- 1) Ywens war & # napa nerpol
- 2) Drop-Out perynafuj-a

Регуляризация

Проблема центровки и нормировки

Danner mado yentolo

Батч-нормализация

Sary

Sary

$$\frac{1}{x} = \frac{1}{x} + (1-x)\mu^{\frac{1}{2}}$$

Sary

 $\frac{1}{x} = \frac{1}{x} + (1-x)\mu^{\frac{1}{2}}$

Sary

 $\frac{1}{x} = \frac{1}{x} - \frac{1}{\mu} \cdot C_{1} + C_{2}$

Cogynaemne hapamethn

Свертночные Нейронные Сети

Сверточный слой

Pooling слой (Average, Max, Min)

LeNet архитектура (1998)

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

AlexNet архитектура