Department of Mathematics MTL 601 (Probability and Statistics) Tutorial Sheet No. 3

- 1. Let $\{X_n\}$ be a sequence of random variables defined on the probability space $([0,\infty),\beta_1,P),\ P(\{0\})=0$.
 - (a) Define $X_n(s) = \frac{1}{s} \left(1 \frac{1}{n}\right)$, $s \in [0, \infty)$. Then show that $X_n \stackrel{a.s}{\to} X$, where $X(s) = \frac{1}{s}$, $s \in [0, \infty)$.
 - (b) Define $X_n(s) = \frac{1}{ns}$, $s \in [0, \infty)$. Then show that $X_n \stackrel{a.s}{\to} 0$.
 - (c) Let $P(I) = \int_I e^{-x} dx$. Define

$$X_n(s) = \begin{cases} 0, & \text{if } s \text{ is rational} \\ (-1)^n, & \text{if } s \text{ is irrational} \end{cases}$$

Then show that $\{X_n\}$ diverges almost surely.

- 2. Consider a sequence of random variables $\{X_n\}$ with $P(X_n=0)=1-\frac{1}{n^{\alpha}},\ P(X_n=\pm n)=\frac{1}{2n^{\alpha}}$. Determine the value of α for which the sequence obeys WLLN.
- 3. Consider a sequence of random variables $\{X_n\}$ with $E(X_n)=m$ and

$$Cov(X_i, X_j) = \begin{cases} \sigma^2, & i = j \\ a\sigma^2, & i = j \pm 1, \text{ where } |a| < 1, \ \sigma^2 > 0 \text{ are given contants} \\ 0, \text{ otherwise} \end{cases}$$

Show that WLLN holds for $\{X_n\}$.

- 4. Use CLT to show that $\lim_{n\to\infty} e^{-n} \sum_{i=0}^n \frac{n^i}{i!} = 0.5$
- 5. Consider a sequence of independent random variables $\{X_n\}$ such that

$$P(X_n = 0) = 1 - \frac{2}{n^3}, \ P(X_n = \pm n) = \frac{1}{n^3}, \ n > 1$$

Does the sequence $\{X_n\}$ obey CLT?

- 6. If $X_n \stackrel{p}{\to} 0$, then find the median of $X_n \to 0$ as $n \to \infty$.
- 7. Consider a sequence $\{X_n\}$ of identically distributed random variables with the property that $nP(|X_i| > n) \to 0$ as $n \to \infty$. Show that $\frac{1}{n} \max_{1 \le i \le n} X_i \stackrel{p}{\to} 0$
- 8. Suppose $|X_n X| \leq Y_n$, almost surely for some random variable X, then show that of $E(Y_n) \to 0$, then $E(X_n) \to E(X)$ and $X_n \xrightarrow{p} X$.
- 9. Show that $X_n \stackrel{2}{\to} X \implies E(X_n) \to E(X), \ E(X_n^2) \to E(X^2)$ as $n \to \infty$.
- 10. Let $\{X_i\}$ be a sequence of independent random variables, such that each X_i has mean 0 and variance 1. Show that

$$\sqrt{n} \frac{X_1 + X_2 + \dots + X_n}{X_1^2 + X_2^2 + \dots + X_n^2} \xrightarrow{l} Z \sim N(0, 1)$$

- 11. Does WLLN hold for the following sequences
 - (a) $P(X_k = \pm 2^k) = \frac{1}{2}$
 - **(b)** $P(X_k = \pm \frac{1}{k}) = \frac{1}{2}$
- 12. For what values of α , does the strong law of large numbers hold for the sequence $\{X_n\}$, where $P(X_k = \pm k^{\alpha}) = \frac{1}{2}, \ k = 1, 2, \dots$

1

13. Let $\{X_n\}$ be a sequence of independent random variables with the following probability distribution. In each case, does the Lindeberg Condition for CLT hold?

(a)
$$P(X_k = \pm \frac{1}{2^n}) = \frac{1}{2}$$

(b)
$$P(X_k = \pm \frac{1}{2^{n+1}}) = \frac{1}{2^{n+3}}, \ P(X_n = 0) = 1 - \frac{1}{2^{n+2}}$$

- 14. From an urn containing 10 identical balls numbered 0 through 9, n balls are drawn with replacement,
 - (a) What does the law of large number tell you about the appearance of 0's in n drawings.
 - (b) How many drawings must be made in order that with probability at least 0.95, the relative frequency of occurrence of 0's will be between 0.09 and 0.11?

