United International University School of Science and Engineering

Final Examination Trimester: Fall 2023

Course Title: Coordinate Geometry and Vector Analysis

Course Code: Math 2201 Marks: 40

Total Time: 2 hours

Answer all questions.

- 1. a) Consider, $F(x, y) = e^x \sin y i + e^x \cos y j$ [5]
 - i) Show that \mathbf{F} is a conservative vector field on the entire $\mathbf{x}\mathbf{y}$ -plane.
 - ii) Find the potential function $\phi(x, y)$.
 - iii) Find $\int_{(0,0)}^{(1,\frac{\pi}{2})} F. dr$ using ii)
 - b) Using Green's theorem find the value of $\oint_{c} F \cdot dr$ Where $F(x,y) = (25e^{3x} - y^{3})i + (5y^{3} + x^{3})j$ and C is the closed circle with parametric equations x = cost, and y = sint.
- 2. a) Evaluate $\int_c^c (x+y)dx + (-y-x)dy$ along the rectangle with vertices (0, 0), (0, 2), (2, 2) and (2, 0).
 - **b)** Evaluate the surface integral $\iint_{\sigma} 2xz \, ds$; σ is the part of the plane [5]

x + y + z = 2 that lies in the first octant.

3. a) Find the flux of the vector field $F(x, y, z) = x\mathbf{i} + y\mathbf{j} + 2z\mathbf{k}$ across σ , [5] where σ is the portion of the cone $\mathbf{z} = \sqrt{x^2 + y^2}$ between the planes $\mathbf{z} = \mathbf{1}$ and $\mathbf{z} = \mathbf{4}$, oriented upward unit normal.

Or

Use the Divergence Theorem to find the outward flux of the vector field $F(x, y, z) = x^3 i + y^3 j + z^3 k$ across the surface of the region that is enclosed by $z = 25 - x^2 - y^2$ and the plane z = 0.

b) Using double integral to find the area enclosed by the equations

[5]

$$-x + y = 2$$
, $x + y = 2$ and $y = 0$.

4. **a)** Use cylindrical coordinate to evaluate

[5]

$$\int_{-4}^{4} \int_{-\sqrt{16-x^2}}^{\sqrt{16-x^2}} \int_{0}^{16-x^2-y^2} (x^2+y^2) dz dy dx.$$

b) Find the volume of the sphere by using spherical coordinate system where the [5] radius of sphere is 3.

Or

Using triple integral find the volume of the solid bounded by the $x^2 + y^2 = 25$, xy - plane and z = 4.