

SYNOPSYS®

2023 Synopsys ARC AIoT Design Contest Project Proposal

應用於傳統工廠的智慧儀表讀數器

Smart Analog Gauge Reader Applied in Traditional Factory

指導教授: 張錫嘉 教授

隊員: 陳冠瑋、李家毓、鄭宇皓、蔡易昕

隊名: 綠洲泰坦 OASIS Titans

July 9, 2023

- Abstracts
- Challenge and Innovation
- Design and Reliability
- Test Result
- Overall Summary
- Reference

- Abstracts
- Challenge and Innovation
- Design and Reliability
- Test Result
- Overall Summary
- Reference

Abstract

Motivation

- Many traditional factories are still using analog gauges (e.g. pressure gauge, volt meter, ...)
- Replace the new machine with a digital reader → large-scale update, expensive
- Record gauge data and monitor by human inspectors → time-consuming, extra costs

Our Proposal

- Digitize the analog gauge without having to replace it
- Use ARC EM9D real-time monitor analog gauge
- Reduce labor costs and enhance management automation

- Abstracts
- Challenge and Innovation
- Design and Reliability
- Test Result
- Overall Summary
- Reference

Challenge

Data Collection and Model Selection

Dataset Collection

- Collect and annotate a sufficient number of data
- Different gauge styles and appearances
- Influence of lighting and noise

▲ Different Types of Analog Gauges

Model Selection

- Extraction and recognition of numbers → Large-scale detection and classification model
- Angle prediction for gauge pointer → Regression or multi-class classification problem

Computation and Storage Limitations

Model Deployment

- Deploy on the device with limited computational and memory resources → Model compression
- Maintain the model performance (e.g. accuracy, inference time, model size)

Challenge

- Traditional Computer Vision Methods Are Sensitive
 - Variations in lighting, background clutter, particular types of gauges
- Existing Dataset Lacks Realism
 - Inaccurate background representation
 - Without considering image distortion

High Precision Analog Gauge Reader Using Optical Flow and Computer Vision [1] (2022 IEEE International Conference on Electro Information Technology)

Real-time Multiple Analog Gauge Reader for an Autonomous Robot Application [2] (2022 International Joint Symposium on Artificial Intelligence and Nature Language Processing)

Real-time Analogue Gauge Transcription on Mobile Phone [3] 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)

Innovation - Analog Gauge Image Data Generator (1/4)

- Automatic Image Synthesis and Annotation
 - Gauge Images & Videos: Pressure Gauge Dataset (Source: Kaggle)
 - Background Images: Places Dataset engine_room (Source: MIT)
 - #Samples: 1009

Innovation - Analog Gauge Image Data Generator (2/4)

Data Augmentation

- Random Enhancement
 - Saturation
 - Brightness
 - Contrast
 - Sharpness
- Random Noise
 - Gaussian Noise
- Random Blur
 - Gaussian Blur

▲ Synthesis Images with Data Augmentation

Innovation - Analog Gauge Image Data Generator (3/4)

Fisheye Transform

- Simulate the effects of image distortion

- 1. Normalize pixel in the interval of [-1,1]
- 2. Cartesian to polar: $r = \sqrt{x^2 + y^2}$
- 3. Distortion: $x_d = \frac{x}{(1-dr^2)}$, $y_d = \frac{y}{(1-dr^2)}$ where d is the distortion coefficient
- 4. Polar to Cartesian: $x_u = \frac{w(x_d+1)}{2}$, $y_u = \frac{h(y_d+1)}{2}$

▲ Captured by HM0360 AoSTM VGA camera

▲ Captured by iPhone11 camera

▲ Captured by HM0360 AoSTM VGA camera (Distorted Image)

Innovation - Analog Gauge Image Data Generator (4/4)

Fisheye Transform for AoSTM VGA Camera

▲ W/o Fisheye Transform, Random Crop, and Padding

▲ W/ Fisheye Transform, Random Crop, and Padding

Innovation - Analog Gauge Calibration

- How to determine the number of output classes?
 - Limited by int8 quantization from 0~255 (unable to predict 0~360°)
 - Number of classes impacts the size of the output FC layer

Poor accuracy
Good precision

Trade-off Between Accuracy, Precision & Model Size

Poor accuracy Poor precision

Scaling = 8

Scaling (degree)	#Classes (output size)	FC Size (input size = 1024)	Output FC Weight Reduce (%)	
1	360	369 K	0.00	
2	180	185 K	49.87	
3	120	123 K	66.67	
4	90	92 K	75.07	
5	72	74 K	79.44	
6	60	62 K	79.95	

Better Precision

Poor Precision

- Abstracts
- Challenge and Innovation
- Design and Reliability
- Test Result
- Overall Summary
- Reference

System Architecture

Analog Gauge Reader

MobileNet V2

Model	#Param (M)	
MobileNetV2-base	2.34	
MobileNetV2-small	0.80	
MobileNetV2-tiny	0.35	
MobileNetV2-micro	0.21	

Memory region		Used Size	Region Size	%age Used
	<pre>ICCM0:</pre>	0 GB	64 KB	0.00%
	ICCM1:	307684 B	320 KB	93.90%
	SYSTEM0:	917932 B	957168 B	95.90%
'	DCCM:	104 KB	256 KB	40.62%
	XCCM:	32 KB	32 KB	100.00%
	YCCM:	32 KB	32 KB	100.00%

ReorderXML GenWholeImage Total image size= 782 KB(0xc38b0)

Gauge Reader Converter

$$angle = (360^{\circ} + pred \times scaling - initial angle) \% 360^{\circ}$$

$$value = \left(\frac{angle}{angle per scale}\right) \times value per scale$$

Post-Training Quantization

Reduce Memory Storage & Computational Resources

- Model Weights: fp32 → int8
- Steps:
 - 1. Train fp32 TF model (model.pb)
 - 2. Evaluation fp32 model on GPU
 - 3. Quantize the model weight
 - 4. Convert the fp32 model to int8 TFLM model (model.tflite)
 - 5. Evaluation int8 model on GPU
 - 6. Convert the TFLM model to C file (model.h)
 - 7. Inference on ARC EM9D

label: 45, pred: 45

label: 71, pred: 71

label: 55, pred: 55

▲ Inference using int8 TFLM model

fp32 TF model

@ NVIDIA GTX 2080 Ti

int8 TFLM model
@ Intel(R) Xeopn(R)
 CPU E5-2660 v4

TFmicro model

@ ARC EM9D AIoT DK

Test Accuracy: 83.70% Test Accuracy: 82.75%

- Abstracts
- Challenge and Innovation
- Design and Reliability
- Test Result
- Overall Summary
- Reference

Link

https://www.youtube.com/watch?v=Uo0q9bvPye8&t=44s&ab_channel=ChenBaker

Link

https://www.youtube.com/watch?v=cPMuLgIlY1I&ab_channel=ChenBaker

Link

https://www.youtube.com/watch?v=dGtSQWrOaJU&ab_channel=ChenBaker

Link

https://www.youtube.com/watch?v=Z6F6YlwSd7A&ab_channel=ChenBaker

Link

https://www.youtube.com/watch?v=5TH9fBItiWc&ab_channel=ChenBaker

- Abstracts
- Challenge and Innovation
- Design and Reliability
- Test Result
- Overall Summary
- Reference

Overall Summary

Real-time Analog Gauge Reader

- Data Generator Generate
 - Automatically generates and labels images to create a training dataset
 - Suitable for the real-world scenario

Analog Gauge Calibration

- Decide the number of categories
- Trade-offs between model size and accuracy

Model Compression

- Reduce the size of MobileNetV2
- Using int8 quantization to compress the model size

UI for Recording and Displaying Analog Gauge

- Abstracts
- Challenge and Innovation
- Design and Reliability
- Test Result
- Overall Summary
- Reference

Reference

- [1] Chavan, S., Yu, X., & Saniie, J. (2022, May). High Precision Analog Gauge Reader Using Optical Flow and Computer Vision. In 2022 IEEE International Conference on Electro Information Technology (eIT) (pp. 171-175). IEEE.
- [2] Trairattanapa, V., Phimsiri, S., Utintu, C., Cherdchusakulcha, R., Tosawadi, T., Thamwiwatthana, E., ... & Suttichaya, V. (2022, November). Real-time Multiple Analog Gauges Reader for an Autonomous Robot Application. In 2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP) (pp. 1-6). IEEE.
- [3] Howells, B., Charles, J., & Cipolla, R. (2021). Real-time analogue gauge transcription on mobile phone. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2369-2377).
- [4] Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531.
- [5] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
- [6] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510-4520).

SYNOPSYS®