1. Kateri izmed naslednjih naborov izjavnih veznikov so polni nabori?

(a) $\{\Rightarrow, \neg\}$

(d) $\{\vee, \wedge\}$

(b) $\{\Rightarrow, 0\}$

(e) $\{\Rightarrow, \land\}$

(c) $\{\Rightarrow, 1\}$

(f) $\{\Rightarrow, \not\Rightarrow\}$, kjer je $p \not\Rightarrow q \sim p \land \neg q$

2. Naj bo W trimestni veznik, definiran s predpisom $W(p,q,r) \equiv (p \vee q) \Rightarrow r$.

- (a) Kateri izmed naborov $\{W\}$, $\{W,1\}$, $\{W,0\}$, $\{W,\neg\}$ so polni?
- (b) Zaporedje izjavnih izrazov ${\cal B}_n$ je definirano rekurzivno z

$$B_0 = \neg p$$

$$B_1 = \neg q$$

$$B_n = W(p, q, B_{n-1} \wedge B_{n-2}).$$

Izračunaj B_{2023} .

3. Trimestni izjavni veznik D definiramo z naslednjim opisom

$$D(p,q,r) \equiv p \vee \neg (q \wedge r).$$

- (a) Ali lahko z veznikom *D* in tavtologijo 1 izraziš ekskluzivno disjunkcijo? Kako (na čim krajši način) oziroma zakaj ne?
- (b) Ali lahko z veznikom D in tavtologijo 1 izraziš implikacijo? Kako (na čim krajši način) oziroma zakaj ne?
- (c) Kateri izmed naborov

$$\{D\},\ \{D,1\},\ \{D,0\},\ \{D,\Leftrightarrow\},\ \{D,\veebar\},\ \{D,\lnot\}$$

so polni in kateri ne? Utemelji.

- 4. Kateri od naslednjih sklepov so pravilni? Pravilne sklepe tudi formalno dokaži s pravili sklepanja.
 - (a) $p \wedge r$, $q \wedge p \Rightarrow \neg r \models \neg q$,
 - (b) $p \vee q$, $\neg q \wedge r \Rightarrow \neg p \models q \vee r$,
 - (c) $p \Rightarrow q$, $r \Rightarrow s$, $p \lor r \models q \land s$,
 - (d) $p \Rightarrow q$, $p \lor s$, $q \Rightarrow r$, $s \Rightarrow t$, $\neg r \models t$,
 - (e) $p \Rightarrow q$, $p \land s$, $q \land r \Rightarrow t$, $s \Rightarrow r \models t$,

(f)
$$p \Leftrightarrow q, \neg p, \neg (q \Rightarrow r) \lor t, s \lor t \Rightarrow r \models r \land \neg p,$$

- 5. Preveri pravilnost sklepov s pomočjo dokaza s protislovjem (reductio ad absurdum).
 - (a) $(p \Rightarrow q) \land (r \Rightarrow s)$, $s \land q \Rightarrow t$, $\neg t \models \neg (p \land r)$,
 - (b) $p \lor q$, $p \Rightarrow r$, $q \Rightarrow s \models r \lor s$,
 - (c) $p \vee q$, $p \vee r$, $r \Rightarrow s$, $\neg (q \wedge s) \models p$,
 - (d) $p \Rightarrow r \land t, \ t \lor s \Rightarrow \neg q \models \neg (p \land q),$
 - (e) $p \Leftrightarrow q, \ r \vee s \Rightarrow p, \ s \vee t, \ \neg t \vee r \models q.$