Data Analysis: Statistical Modeling and Computation in Applications

<u>Help</u>

sandipan_dey ~

Course Pro

< Previous</pre>

Progress

<u>Dates</u>

Discussion

Resources

Next >

□ Bookmark this page

Exercises due Nov 10, 2021 17:29 IST Completed

Linear process

Start of transcript. Skip to the end.

Prof Jegelka: Next, we will look at some relations

between autoregressive models and moving average models.

And this actually will also close some

that we left in the previous lectures.

So to start with, let's remind ourselves

of autoregressive and moving

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u> <u>Download Text (.txt) file</u>

The moving average model and the autoregressive model can be related to each other with the concept **Linear Process**. Linear process models can be written as the following:

$$X_t = \sum_{j=-\infty}^\infty \psi_j W_{t-j}$$

for the process to be well-defined, $\sum_j \|\psi_j\| < \infty$

A linear process is called causal, if ψ_j =0 whenever j<0. This is to say that the value of X_t only depends on the information from the past, not the future.

A linear process model is weakly stationary. We can check this by calculating the expectation and the auto covariance:

$$\mathbf{E}\left[X_{t}
ight]=0$$

and

$$\gamma_{X}\left(t,t+h
ight)=\sum_{i=-\infty}^{\infty}\psi_{i}\psi_{i+h}\sigma_{w}^{2}$$

which only depends on the length of the gap $m{h}$

Moving average model as a linear process model

2/2 points (graded)

Think about a moving average model of order $q\,X_t=MA\left(q
ight)$ as a special form of linear process model.

True	
○ False	
\bigcirc Depends on $oldsymbol{q}$	
✓	
X_t causal?	
True	
○ False	
$igcup$ Depends on $oldsymbol{q}$	
✓	
olution:	
Moving average model is a special form of linear process model. Since all linear process model tationary, therefore MA(q) is weakly stationary regardless of $m{q}$.	ls are weakly
	fore MA(a) is causa
	(-)
Submit You have used 1 of 1 attempt	(-1)
Submit You have used 1 of 1 attempt	
Submit You have used 1 of 1 attempt Answers are displayed within the problem	Hide Discussion
Submit You have used 1 of 1 attempt Answers are displayed within the problem Discussion	Hide Discussion
Submit You have used 1 of 1 attempt Answers are displayed within the problem Viscussion pic: Module 4: Time Series:Introduction to Time Series Analysis 3 / 7. Linear process	
Submit You have used 1 of 1 attempt Answers are displayed within the problem VISCUSSION Pic: Module 4: Time Series:Introduction to Time Series Analysis 3 / 7. Linear process	Hide Discussion
Submit You have used 1 of 1 attempt Answers are displayed within the problem iscussion pic: Module 4: Time Series:Introduction to Time Series Analysis 3 / 7. Linear process All Posts I don't understand why the sum of the absolute value of psi has to be	Hide Discussion Add a Pos
Submit You have used 1 of 1 attempt Answers are displayed within the problem SCUSSION Pic: Module 4: Time Series:Introduction to Time Series Analysis 3 / 7. Linear process	Hide Discussion Add a Pos
Submit You have used 1 of 1 attempt Answers are displayed within the problem iscussion pic: Module 4: Time Series:Introduction to Time Series Analysis 3 / 7. Linear process < All Posts I don't understand why the sum of the absolute value of psi has to be finite	Hide Discussion Add a Pos
Submit You have used 1 of 1 attempt Answers are displayed within the problem iscussion pic: Module 4: Time Series:Introduction to Time Series Analysis 3 / 7. Linear process All Posts I don't understand why the sum of the absolute value of psi has to be finite question posted about a month ago by sa abbasi	Hide Discussion Add a Pos
Submit You have used 1 of 1 attempt Answers are displayed within the problem Siscussion pic: Module 4: Time Series:Introduction to Time Series Analysis 3 / 7. Linear process All Posts I don't understand why the sum of the absolute value of psi has to be finite question posted about a month ago by sa_abbasi The professor glossed over this a bit. Can someone please explain the math.	Hide Discussion Add a Pos
Submit You have used 1 of 1 attempt Answers are displayed within the problem Discussion pic: Module 4: Time Series:Introduction to Time Series Analysis 3 / 7. Linear process All Posts I don't understand why the sum of the absolute value of psi has to be finite question posted about a month ago by sa abbasi The professor glossed over this a bit. Can someone please explain the math.	Hide Discussion Add a Pos
Submit You have used 1 of 1 attempt Answers are displayed within the problem Discussion Opic: Module 4: Time Series:Introduction to Time Series Analysis 3 / 7. Linear process All Posts I don't understand why the sum of the absolute value of psi has to be finite question posted about a month ago by sa_abbasi The professor glossed over this a bit. Can someone please explain the math.	Hide Discussion Add a Pos
Submit You have used 1 of 1 attempt Answers are displayed within the problem Discussion Opic: Module 4: Time Series:Introduction to Time Series Analysis 3 / 7. Linear process All Posts I don't understand why the sum of the absolute value of psi has to be finite question posted about a month ago by sa_abbasi The professor glossed over this a bit. Can someone please explain the math.	Hide Discussion Add a Pos

Previous

Next >

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>