

Richiami di Matematica Discreta: grafi e alberi Paolo Camurati

Grafi

- Definizione: G = (V,E)
 - V: insieme finito e non vuoto di vertici (contenenti dati semplici o composti)
 - E: insieme finito di archi, che definiscono una relazione binaria su V
- Grafi orientati/non orientati:
 - orientati: arco = coppia ordinata di vertici (u, v)
 ∈ E e u, v ∈ V
 - non orientati: arco = coppia non ordinata di vertici (u, v) ∈ E e u, v ∈ V

Grafi come modelli

Dominio	Vertice	Arco
comunicazioni	telefono, computer	fibra ottica, cavo
circuiti	porta, registro, processore	filo
meccanica	giunto	molla
finanza	azioni, monete	transazioni
trasporti	aeroporto, stazione	corridoio aereo, linea ferroviaria
giochi	posizione sulla scacchiera	mossa lecita
social networks	persona	amicizia
reti neurali	neurone	sinapsi
composti chimici	molecola	legame

Esempio: grafo orientato

NB: in alcuni contesti i cappi possono essere vietati.

Se il contesto ammette i cappi, ma il grafo ne è privo, esso si dice **SEMPLICE**.

Esempio: grafo non orientato

NB: in alcuni contesti i cappi possono essere vietati.

Se il contesto ammette i cappi, ma il grafo ne è privo, esso si dice **SEMPLICE**.

Incidenza e adiacenza

Arco (a, b):

- entrante (incidente) nel vertice b
- uscente da vertice a
- insistente sui vertici a e b

solo per archi orientati

Vertici a e b adiacenti:

$$\mathsf{a} \to \mathsf{b} \Leftrightarrow (\mathsf{a},\,\mathsf{b}) \in \mathsf{E}$$

Grado di un vertice

grafo non orientato:

degree(a) = numero di archi incidenti

grafo orientato:

- in_degree(a)=numero di archi entranti
- out_degree(a)=numero di archi uscenti
- degree(a)=in_degree(a) + out_degree(a).

Cammini e raggiungibilità

```
Cammino p: u \rightarrow_{p} u' in G=(V,E):

\exists (v_0, v_1, v_2, ..., v_k) \mid u = v_0, u' = v_k, \forall i = 1, 2, ..., k (v_{i-1}, v_i) \in E.
```

- k = lunghezza del cammino.
- u' è raggiungibile da u $\Leftrightarrow \exists p: u \rightarrow_p u'$
- cammino p semplice: $(v_0, v_1, v_2, ..., v_k) \in p$ distinti.

Esempio

Cicli

Ciclo = cammino in cui $v_0 = v_k$. Ciclo semplice = cammino semplice in cui $v_0 = v_k$. Cappio = ciclo di lunghezza 1. Un grafo senza cicli = aciclico.

Connessione nei grafi non orientati

Grafo non orientato connesso:

$$\forall v_i, v_j \in V$$
 $\exists p \quad v_i \rightarrow_p v_j$

Componente connessa: sottografo connesso massimale (= \mathbb{Z} sottoinsiemi per cui vale la proprietà che lo includono).

Grafo non orientato connesso: una sola componente connessa.

Connessione nei grafi orientati

Grafo orientato fortemente connesso:

$$\forall v_i, v_j \in V$$
 $\exists p, p' \ v_i \rightarrow_p v_j \ e \ v_j \rightarrow_{p'} v_i$

Componente fortemente connessa: sottografo fortemente connesso massimale.

Grafo orientato fortemente connesso: una sola componente fortemente connessa.

Esempio

Grafo completo K_{|V|}

Definizione:

$$\forall v_i, v_j \in V \quad \exists (v_i, v_j) \in E$$

Quanti archi?

l'ordine non conta

grafo completo non orientato:

|E| = numero di combinazioni di |V| elementi a 2 a 2

$$|E| = \frac{|V|!}{(|V|-2)!*2!} = \frac{|V|*(|V|-1)*(|V|-2)!}{(|V|-2)!*2!} = \frac{|V|*(|V|-1)}{2}$$

Quanti archi?

$$|E| = \frac{|V|!}{(|V|-2)!} = \frac{|V|*(|V|-1)*(|V|-2)!}{(|V|-2)!} = |V| * (|V|-1)$$

l'ordine conta

Grafi densi/sparsi

```
Dato grafo G = (V, E)  |V| = \text{cardinalità dell'insieme V}   |E| = \text{cardinalità dell'insieme E}   e \text{ il corrispondente grafo completo con } |V| \text{ vertici } K_{|V|}   |V| \text{ la densità: } d(G) = |E_G| / |E_K|   |V|^2   |V|^2   |V|^2   |V|^2   |V|^2
```

Grafo bipartito

Definizione:

Grafo non orientato in cui l'insieme V può essere partizionato in 2 sottoinsiemi V_1 e V_2 , tali per cui

$$\forall (v_i,v_j) \in E$$

Grafo pesato

 $\exists \text{ wt} : E \rightarrow R \cup \{-\infty, +\infty\} \mid \text{wt(u,v)} = \text{peso dell'arco (u, v)}$

Tipologie (visione a grafo)

Tipologie (visione a insieme)

Alberi non radicati (liberi)

Albero non radicato (o libero) = grafo non orientato,

connesso, aciclico

Foresta = grafo non orientato, aciclico

Proprietà

G = (V, E) grafo non orientato | E | archi, | V | nodi:

- G = albero non radicato
- ogni coppia di nodi connessa da un unico cammino semplice
- G connesso, la rimozione di un arco lo sconnette
- G connesso e | E | = | V | 1
- G aciclico e | E | = | V | 1
- G aciclico, l'aggiunta di un arco introduce un ciclo.

Alberi radicati

∃ nodo r detto radice

- che induce una relazione di parentela tra nodi:
 - y antenato di x se y appartiene al cammino da r a x. x discendente di y
 - antenato proprio se $x \neq y$
 - padre/figlio: nodi adiacenti
- radice: no padre
- foglie no figli

Esempio

r radice
y antenato proprio di x
x discendente proprio di y
a padre di b
b figlio di a

Proprietà di un albero T

- grado(T) = numero max di figli
- profondità(x) = lunghezza del cammino da r a x
- altezza(T) = profondità massima.

Rappresentazione di alberi

Rappresentazione di un nodo di un albero di grado(T) = k

puntatore al padre, chiave, k puntatori ai k figli

k puntatori ai k figli, eventualmente a NULL

Inefficiente in termini di spazio se solo pochi nodi hanno davvero grado k (spazio per tutti i k puntatori allocato, ma molti a NULL).

Valutazione:

- inefficiente in termini di spazio se solo pochi nodi hanno davvero grado k (spazio per tutti i k puntatori allocato, ma molti a NULL)
- efficiente in termini di tempo (da padre a figlio e viceversa con costo O(1))

Rappresentazione left-child right sibling

Rappresentazione di un nodo di un albero di grado(T) = k

 puntatore al padre, chiave, 1 puntatore al figlio sinistro, 1 puntatore al fratello a destra

al primo a sinistra dei figli

Valutazione:

- efficiente in termini di spazio: sempre solo 2 puntatori, indipendentemente dal grado dell'albero
- inefficiente in termini di tempo (da padre a figlio e viceversa con costo O(k)).

Albero binario

Definizione:

Albero di grado 2: ogni nodo ha 0, 1 o 2 figli

Definizione ricorsiva:

- Un albero binario T è:
 - insieme di nodi vuoto
 - una terna formata da radice, sottoalbero sinistro, sottoalbero destro.

Albero binario completamente bilanciato (pieno)

Due condizioni:

tutte le foglie hanno la stessa profondità

ogni nodo o è una foglia o ha 2 figli

h = 3 8 foglie 15 nodi

Albero binario completamente bilanciato (pieno) di altezza h:

- numero di foglie: 2^h
- numero di nodi: $\Sigma_{0 \le i \le h} 2^i = 2^{h+1} 1$

progressione geometrica finita di ragione 2

Albero binario completo (a sinistra)

Tutti i livelli sono completi (hanno tutti i nodi) eccetto l'ultimo che è riempito da sinistra a destra.

Dato un numero di nodi n esiste ed è unico l'albero completo (a sinistra).

Albero binario bilanciato (in altezza)

Un albero è bilanciato in altezza (in breve bilanciato) se e solo se, per ogni sottoalbero t radicato in un suo nodo, l'altezza del sottoalbero sinistro di t differisce di al più di 1 dall'altezza del sottoalbero destro di t.

Gli alberi completamente bilanciati (pieni) sono un sottoinsieme proprio degli alberi completi (a sinistra) che a loro volta sono un sottoinsieme proprio degli alberi bilanciati.

Albero binario bilanciato in nodi

Un albero binario è bilanciato in nodi se e solo se, per ogni sottoalbero t radicato in un suo nodo, il numero di nodi del sottoalbero sinistro di t differisce di al più di 1 dal numero di nodi del sottoalbero destro di t.

Sequenze lineari

 Insieme finito di elementi disposti consecutivamente in cui a ogni elemento è associato univocamente un indice

Sulle coppie di elementi è definita una relazione predecessore/successore:

$$a_{i+1} = succ(a_i) a_i = pred(a_{i+1})$$

Memorizzazione e accesso

Vettori o array:

- Modalità di memorizzazione: dati contigui in memoria
- Accesso diretto:
 - dato l'indice i, si accede all'elemento a_i senza dover scorrere la sequenza lineare
 - il costo dell'accesso non dipende dalla posizione dell'elemento nella sequenza lineare, quindi è O(1)

Liste:

- Modalità di memorizzazione: dati non contigui in memoria
- Accesso sequenziale:
 - dato l'indice i, si accede all'elemento a_i scorrendo la sequenza lineare a partire da uno dei suoi 2 estremi, solitamente quello di SX
 - il costo dell'accesso dipende dalla posizione dell'elemento nella sequenza lineare, quindi è O(n) nel caso peggiore

Operazioni sulle liste

- ricerca di un elemento il cui campo chiave di ricerca è uguale a una chiave data
- inserzione di un elemento:
 - in testa alla lista non ordinata
 - in coda alla lista non ordinata
 - nella posizione tale da garantire l'invarianza della proprietà di ordinamento per una lista ordinata
- **estrazione** di un elemento:
 - che si trova in testa alla lista non ordinata
 - che ha un campo con contenuto uguale a quello di una chiave di cancellazione (tale operazione richiede solitamente una ricerca preventiva dell'elemento da cancellare).

Collezioni di dati

Code generalizzate: collezioni di oggetti (dati) con operazioni principali:

- Insert: inserisci un nuovo oggetto nella collezione
- Search: ricerca se un oggetto è nella collezione
- Delete: cancella un oggetto della collezione

Altre operazioni:

- Inizializzare la coda generalizzata
- Conteggio oggetti (o verifica collezione vuota)
- Distruzione della coda generalizzata
- Copia della coda generalizzata

Criteri per operazione di Delete:

- cronologico:
 - estrazione dell'elemento inserito più recentemente
 - politica LIFO: Last-In First-Out
 - stack o pila
 - inserzione (push) ed estrazione (pop) dalla testa
 - estrazione dell'elemento inserito meno recentemente
 - politica FIFO: First-In First-Out
 - queue o coda
 - inserzione (enqueue) in coda (tail) ed estrazione (dequeue) dalla testa (head)
- priorità:
 - l'inserzione garantisce che, estraendo dalla testa, si ottenga il dato a priorità massima (o minima)
 - coda a priorità

contenuto:

- l'estrazione ritorna un contenuto secondo determinati criteri
- tabella di simboli (più avanti nel Corso).

Esempio: politica LIFO (pila-stack)

Esempio: FIFO (coda-queue)

dequeue

15

Esempio: coda a priorità

dato Rossi 15
campo campo (cognome) (priorità)

all'inizio

extract

Rossi 15

Riferimenti

- Grafi:
 - Cormen 5.4
 - Sedgewick Part 5 17.1
- Alberi:
 - Cormen 5.5
 - Sedgewick 5.4
- Liste, pile, code, code a priorità:
 - Cormen 10.1, 10.2, 6.5
 - Sedgewick 3.3, 4.2, 4.6, 9
- Code generalizzate:
 - Sedgewick 4.1