How is age correlated with metastasis, TP53

expression, and overall survival in colorectal cancer?

Christopher Kim, Pranav Pammidimukkala, Leon Zha

Introduction

Cancer Statistics, 2018

CA CANCER J CLIN 2018;00:00-00

Rebecca L. Siegel, MPH1*; Kimberly D. Miller, MPH2; Ahmedin Jemal, DVM, PhD 03

Background

The Cancer Genome Atlas

National Cancer Institute

at the National Institutes of Health

Background cont.

Metastasis

- Increasingly common among younger patients
- Incidences remained relatively constant among old patients

Age

- Primary cancer risk factor
- Duration of carcinogenesis, vulnerability of aging tissues to environmental carcinogens, and other bodily changes that favor the development and the growth of cancer

TP53

- Codes for p53, tumor suppressor protein
- ~ 50% of CRC patients
- Lower survival rates in patients receiving chemotherapy

Methods

Variable	Metastatic status		Age	
	Non-metastatic	Metastatic	Young	Old
Categorization	Stages I, II	Stages III, IV	50 >	50 ≤
# of patients	312	200	49	348

Methods cont.

Language	Plot type	Variables	Data source
R	Bar graphs	Age groups, metastatic status	TCGA clinical
	Kaplan-Meier	Age groups	TCGA clinical
	coOncoplot	Top 5 mutated genes, age groups	TCGA MAF
	Box plot	Age groups, TP53 counts	TCGA SumExp
	Lollipop plot	TP53 mutations, age groups	TCGA MAF
Python	Spearman correlation	Transcriptomics, proteomics of coOncoplot genes	СРТАС

Comparing the percentage and direct counts, respectively, among age category and metastatic status

Comparing TP53 counts between age

Determining differences in survival probability based on

age

Top 5 mutated genes among patients in the Young category

Top 5 mutated genes among patients in the Old category

Young Patients [48.98%; N = 49]

TP53: NM_000546

Old Patients [54.31%; N = 348]

- Missense_Mutation
 Frame_Shift_Ins
- Nonsense_Mutation
 In_Frame_Ins
- Splice_Site
 In_Frame_Del
- Frame_Shift_Del

Discussion

- Limitations
 - Selection bias
- Metastasis percentage greater in younger patients
 - Increase in anti-inflammaging factors (Pretzsch)
 - Diagnostic classification differences based on age (Yang)
 - Mucinous adenocarcinoma in old, Right-sided location cancer in young
- No significant difference in TP53 expression between age
 - More mutations in older patients

Discussion cont.

- Correlation of PIK3CA RNA with TP53 protein presence
 - PIK3CA responsible for cell growth and division
 - Suggests role in co-activity of both genes in CRC
 - Consistent with study on lung cancer, indicates correlation beyond CRC

Future Directions

- Higher percentage of metastatic patients in younger category
- Role of TP53 and PIK3CA co-expression
- TP53 post translational modifications from RNA to protein
- APC gene
- Proposed study
 - In-depth analysis of age and metastasis
 - Multiple datasets to reduce selection bias

References

- TCGA https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
- CPTAC https://proteomics.cancer.gov/programs/cptac
- Yang, L., Yang, X., He, W., Liu, S., Jiang, C., Xie, K., Peng, K., You, Y., Zhang, B., & Xia, L. (2018).
 Comparisons of metastatic patterns of colorectal cancer among patients by age group: a population-based study. Aging, 10(12), 4107–4119. https://doi.org/10.18632/aging.101700
- Hamada, T., Nowak, J. A., & Ogino, S. (2017). PIK3CA mutation and colorectal cancer precision medicine. Oncotarget, 8(14), 22305–22306. https://doi.org/10.18632/ oncotarget.15724
- VanderLaan, P. A., Rangachari, D., Mockus, S. M., Spotlow, V., Reddi, H. V., Malcolm, J., Huberman, M. S., Joseph, L. J., Kobayashi, S. S., & Costa, D. B. (2017). Mutations in TP53, PIK3CA, PTEN and other genes in EGFR mutated lung cancers: Correlation with clinical outcomes. Lung cancer (Amsterdam, Netherlands), 106, 17–21. https://doi.org/10.1016/j.lungcan.2017.01.011

Acknowledgements

- Kate, David, Nicole
- Dr. Remo Rohs, Dr. Peter Calabrese, Katie Boeck
- Dr. Jerry Lee
- Ellison Institute
- TCGA, CPTAC

Thank you!