

Research Centre for Integrated Transport Innovation (rCITI)

Let us take you there

A simple crowdsourced delay based traffic control

Professor Vinayak V. Dixit IAG Chair for Risk in Smart Cities Director, rCITI Director TRACSIab

Email: v.dixit@unsw.edu.au

In collaboration with: Divya Nair, Sai Chand, Michael Levin and David Rey

Support by: Govt. of India, Indonesia and Junckit Systems LLP

Multicity Traffic conditions

Spatial Heterogeneity

Network Stability

Individual Intersection

Theorem: Given a fixed cycle time, a green time that ensures clearance of queues is

$$g_i^* = \frac{(T_i/\mu_i)}{\sum_j (T_j/\mu_j)} (C - L)$$
. This policy is stable only if $\lambda_i \leq \frac{(C - L)}{\sum_j (T_j/\mu_j)}$

Max Pressure Term: $P_i = T_i/\mu_i$

Literature on Max Pressure

study	weight	pressure	proved stable
Wongpiromsarn et al. (17)	$w_{ij} = x_i(t) - x_j(t)$	$w_{ij}(t)\xi_i(p,\mathcal{L}_i,\mathcal{L}_i,z_i(t))$	Y
Varaiya (15)	$w_{ij} = x_{ij} - \sum_{k \in \Gamma_i^+} x_{jk} p_{jk}$	$Q_{ij}w_{ij}S_{ij}$	Y
Xiao et al. (19)	/	$P_{ij}(t) = \frac{\alpha_{ij} \left[\sum_{(i',j') \in \mathcal{L}_{ij}^{(\text{in})}} x_{i'j'}(t) \right]}{Q_{ij}} x_{ij}(t)$	Y
Gregoire et al. (2)	$w_{ij}(t) = \min(x_{ij}(t)/Q_{ij}, 1) \max(P_i(t) - P_j(t), 0)$		N
<i>Le et al.</i> (6)	$w_{ij} = x_{ij} - \sum_{k \in \Gamma_i^+} x_{jk} p_{jk}$	/	Y
Gregoire et al. (3)	$w_{ij} = \max(P_i(t) - P_j(t), 0)$	$P_i(x_i) = \min\left(1, \frac{\frac{x_i}{Q_\infty} + \left(2 - \frac{x_i}{Q_\infty}\right) \left(\frac{x_i}{Q_i}\right)^m}{1 + \left(\frac{x_i}{Q_i}\right)^{m-1}}\right)$	Y
Pumir et al. (11)	$w_{ij} = x_{ij} - \sum_{k \in \Gamma^+} x_{jk} p_{jk}$	$Q_{ij}w_{ij}S_{ij}$	Y
Zaidi et al. (20)	$w_{ij}(t) = \max\{x_i(t) - x_j(t), 0\}$	$w_{ij}(t)S_{ij}(t)$	N
<i>Le et al.</i> (7)	$w_{\psi}(t) = \sum_{i \in \Gamma_{i}^{-}} \psi_{i}(x_{i}(t) - \sum_{j \in \Gamma_{i}^{+}} \bar{\theta}_{ij}(t)x_{j}(t))$	1	Y
Hsieh et al. (4)	$w_{ij} = x_{ij} - \sum_{k \in \Gamma_i^+} x_{jk} p_{jk}$	$Q_{ij}w_{ij}S_{ij} \\$	Y
Wu et al. (18)	$w_{ij}(t) \triangleq T_{ij}(t)$	$\gamma_{ij}w_{ij}(t)S_{ij}$	Y
Li and Jabari (8)	$w_{ij}(t) = f(l_i, l_j, c_{ij}, \pi_{ij}, \delta_{ij}, \theta_j)$	$w_{ij}(t)\mathbb{E}^{ ho(t)}q_{ij}(p)$	Y
Rey and Levin (12)	$w_{ij} = x_{ij} - \sum_{k \in \Gamma_i^+} x_{jk} p_{jk}$	$w_i(t)y_i(t)$	Y
Lioris et al. (9)	$w_{ij} = x_{ij} - \sum_{k \in \Gamma_i^+} x_{jk} p_{jk}$	$Q_{ij}w_{ij}S_{ij}$	N
Kouvelas et al. (5)	/	$P_i(t) = \left[\frac{x_i(t)}{x_{i,\max}} - \sum_{j \in O_n} \frac{\beta_{ij} x_j(t)}{x_{j,\max}} S_n(t) \right] Q_i, i \in I_n$	N

Network Max Pressure

$$x_{ij}(t+1) = x_{ij}(t) - y_{ij}(t) + \sum_{h \in \Gamma_i^-} y_{hi}(t) p_{ij}(t)$$
$$x_{ij}(t+1) = x_{ij}(t) - y_{ij}(t) + d_i(t) p_{ij}(t)$$

$$y_{ij}(t) = \min \left\{ Q_{ij} s_{ij}(t), x_{ij}(t) \right\}$$

$$w_{ij}(t) = \tau_{ij}(t) - \sum_{k \in \Gamma_i^+} \tau_{jk}(t) p_{jk}(t)$$

$$S^{\star}(t) = \underset{S_n \in \mathcal{S}_n}{\operatorname{arg max}} \left\{ \sum_{(i,j)} Q_{ij} w_{ij}(t) s_{ij}(t) \right\}$$

$$orall i\in\mathcal{L}_{ ext{int}},h\in\Gamma_i^-,j\in\Gamma_i^+$$
 $\forall i\in\mathcal{L}_{ ext{entry}},j\in\Gamma_i^+$ Flow Propagation

Weights

pressure

Travel Time Function

Total Travel Time:

$$\mathbf{T}_{ij}(t) = \sum_{\tau=1}^{\infty} \tau x_{ij}^{\tau}(t)$$

Monotonic

Average Travel Time:

$$\tau_{ij}(t) = \frac{\sum_{\tau=1}^{\infty} \tau x_{ij}^{\tau}(t)}{x_{ij}(t)}$$

Non-Monotonic

$$x_{ij}^{3}(t) = 2$$

$$\Rightarrow w_{ij}(t) = \frac{3x^{2}}{2} = 3$$

$$\sum_{j} y_{ij}(t+1) = 1$$

$$\sum_{i} y_{ji}(t+1) = 2$$

$$x_{ij}^{3}(t+1) = 2$$

 $\Rightarrow w_{ij}(t+1) = \frac{1 \times 2 + 1 \times 4}{3} = 2$

Travel Time:

$$w_{ij}(t) = \frac{x_{ij}(t)}{Q_{ij}(t)}$$

Monotonic

Simulation Results

THANK YOU!

