FVA on Vanilla Option

Ma, Chi

December 4, 2020

1 Summary

This document is to calculate the strike implied vol for forward volatility agreement (FVA) on vanilla option with replication method.

To replicate the forward contract, we long 1 call with expiry at Dec 17, 2021 and short $\frac{C(0,T_2)}{C(0,T_1)}$ call with expiry at Jun 18, 2021. $C(0,T_2)$, $C(0,T_1)$ stands for the call value with maturity T_2 and T_1 , respectively. The NPV when enter (Sep 29, 2020) is zero. See Section 2 for details.

Stirke volatility is X=16.10671%. The calculation is to get expected forward start implied vol by using implied total variance additive. The expected total implied variance is calculated by a strip of OTM options, which is similar to VIX/VSTOXX calculation. See Section 2 for details.

2 Methodology

2.1 Replication

To replicate a forward contract, which is zero payment when enter into, we use a self-financing portfolio as below. $C(0, T_2), C(0, T_1)$ stands for the call value with maturity T_2 and T_1 , respectively.

- long 1 call with expiry at T_2 (Dec 17, 2021), $cash = -C(0, T_2)$
- To finance the first trade, short selling $\frac{C(0,T_2)}{C(0,T_1)}$ unit call with expiry at T_1 (Jun 18, 2021), thus get the $cash = +C(0,T_2)$

The *Table 1* shows that asset and cash change of replicated portfolio is the same the forward.

The NPV(Net Present Value) at Sep 29, 2020 will be equal to $V_0 = C(0,T_2) - \frac{C(0,T_2)}{C(0,T_1)} * C(0,T_1) = 0$, which is consistent with entering a forward contact.

	t_0	T_1	T_2
Forward	0	$C(S_{T_1}, \sigma(T_1, T_2)) - C(S_{T_1}, X)$	$(S_{T_2} - K)^+$
long short	$-C(0,T_2) + C(0,T_2)$	$C(S_{T_1}, \sigma(T_1, T_2)) \ - rac{C(0, T_2)}{C(0, T_1)} (S_{T_1} - K)^+$	$(S_{T_2} - K)^+$

Table 1: Replicated Portfolio v.s Forward Contract

2.2 Forward-start Implied Variance

Define total implied variance from t_1 to t_2 :

$$W(t_1, t_2) = \int_{t_1}^{t_2} \sigma_{imp}^2(t) dt$$

Thus the total implied variance can additive. For our trade, we have:

$$W(0,T_2) = W(0,T_1) + W(T_1,T_2)$$

$$\mathbb{E}[W(0,T_2)] = \mathbb{E}[W(0,T_1)] + \mathbb{E}[W(T_1,T_2)]$$

Thus we have:

$$\mathbb{E}\left[\sigma_{imp}^{2}(T_{1}, T_{2})\right] = \frac{\mathbb{E}\left[W(0, T_{2})\right] - \mathbb{E}\left[W(0, T_{1})\right]}{T_{2} - T_{1}}$$

for $\mathbb{E}[W(0,T_2)]$ and $\mathbb{E}[W(0,T_1)]$, it can be replicated by a strip of weighted average of OTM options per Derman, Kamal, Kani, and Zou (1996)¹. The approximate is due to the accurate replication portfolio consists of infinite OTM option in continuous strike, but in practice this is not true.

$$\mathbb{E}\left[W(0,T)\right] \approx 2\sum_{i} \frac{\Delta K_{i}}{K_{i}^{2}} Q_{i}(K_{i}) - \left[\frac{F}{K_{0}} - 1\right]^{2}$$

 K_0 is the highest strike below underlying forward F, in our trade, F = 3350, and $K_0 = 3300$. $Q_i(K_i)$ is the OTM put and call option with strike $K_i < K_0$

2.3 Convexity Adjustment

Per Jensen's inequality, we have²:

$$X = \mathbb{E}\left[\sqrt{\sigma_{imp}^2(T_1, T_2)}\right] \le \sqrt{\mathbb{E}\left[\sigma_{imp}^2(T_1, T_2)\right]}$$

¹Similar to VIX/VSTOXX calculation (see Gatheral, J. Ref. [1] for derivation details).

 $^{^{2}}f(x) = \sqrt{x}$ is s concave function

We will use Heston model with Heston-Nandi parameters ($v_0 = 0.04, \bar{v} = 0.04, \lambda = 10.0, \eta = 1.0, \rho = -1$) to calculate convexity adjustment ([1]).

$$\mathbb{E}\left[\sqrt{W(0,T)}\right] = \frac{1}{2\sqrt{\pi}} \int_0^\infty \frac{1 - \mathbb{E}\left[e^{-\psi W(0,T)}\right]}{\psi^{3/2}} d\psi$$

$$\mathbb{E}\left[W(0,T)\right] = \frac{1 - e^{-\lambda T}}{\lambda} \left(v_0 - \bar{v}\right) + \bar{v}T$$

$$Convexity \ Adj. = \sqrt{\mathbb{E}\left[W(0,T)\right]} - \mathbb{E}\left[\sqrt{W(0,T)}\right]$$

$$X = \mathbb{E}\left[\sqrt{\sigma_{imp}^2(T_1, T_2)}\right] = \sqrt{\mathbb{E}\left[\sigma_{imp}^2(T_1, T_2)\right]} - \frac{Convexity \ Adj.}{\sqrt{T_2 - T_1}}$$

NOTE that the convexity adjustment is model dependent (based on Heston model and Heston-Nandi parameters).

In this case, the convexity adjustment is 0.04511077 (from R code) and final $X = 0.161067053 (\approx 16.11\%)$.

3 Discussion of Pricing Risk

The methodology used in this document is a model-free way (except for convexity adjustment), however, here are some concerns:

- The expected total implied variance is an infinite strip of weighted average of OTM options with all continuous strikes. In practice, we only have a finite number of strike prices listed per expiration. This may lead to pricing error. One way to solve is to use model-dependent way.
- One way of model-dependent solution is to fit the SVI model by using variance swap market quotes. But pricing will be also problematic. (e.g. extrapolation method for long-dated expiry)

4 Appendix: Convexity Adjustment

This section we report the convexity adjustment of total implied variance and volatility for different maturity. See Figure 1. The methodology refers to the [1] and R code is in submission folder.

References

- [1] Gatheral, J. (2006). The Volatility Surface: A Practitioner's Guide, New York: Wiley
- [2] Mohney, D., Bassman, H.(2013). The FVA: Forward Volatility Agreement

[3] Derman, E., I Kani, and J. Z. Zou (1996). The Local Volatility Surface: Unlocking the Information in Index Options Prices. Financial Analysts Journal, (July-August, 1996), pp. 25-36

Figure 1: Convexity Adjustment with Maturity ${\bf Adjustment.PNG}$

