Introduction to LLL "Cryptography"

Di Santi Giovanni

May 25, 2021

Contents

1	Introduction to Lattices			
	1.1	Vector Spaces		
	1.2	Lattices		
2	LLI			
	2.1	Purpose		
		Algorithm		
3	App	lications		
	3.1	Attack Knapsack		
	3.2	Attack RSA		

Chapter 1

Introduction to Lattices

1.1 Vector Spaces

Definition 1.1.1 Vector space.

A vector space V is a subset of \mathbb{R}^m which is closed under finite vector addition and scalar multiplication, with the property that

$$a_1v_1 + a_2v_2 \in V$$
 for all $v_1, v_2 \in V$ and all $a_1, a_2 \in \mathbb{R}$

Definition 1.1.2 Linear Combinations

Let $v_1, v_2, \ldots, v_k \in V$. A linear combination of $v_1, v_2, \ldots, v_k \in V$ is any vector of the form

$$\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k$$
 with $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$

Definition 1.1.3 Lineaer Independece

A set of vectors $v_1, v_2, \ldots, v_k \in V$ is linearly independent if the the only way to get

$$a_1v_1 + a_2v_2 + \dots + a_kv_k = 0$$

is to have $a_1 = a_2 = \cdots = a_k = 0$.

Definition 1.1.4 Bases

Taken a set of linearly independent vectors $x = (v_1, \ldots, v_n) \in V$ we say that x is a basis of V if $\forall w \in V$ we can write

$$w = a_1v_1 + a_2v_2 + \dots + a_nv_n$$

Definition 1.1.5 Vector's length

The vector's length or Euclidean norm of $v = (x_1, x_2, \dots, x_m)$ is

$$||v|| = \sqrt{x_1^2 + x_2^2 + \dots + x_m^2}$$

Definition 1.1.6 Dot Product

Let $v, w \in V \subset \mathbb{R}^m$ and $v = (x_1, x_2, \dots, x_m), w = (y_1, y_2, \dots, y_m)$, the dot product of v and m is

$$v \cdot m = x_1 y_1 + x_2 y_2 + \dots + x_m y_m$$
or
$$v \cdot m = ||v|| ||w|| \cos \theta$$

where θ is the angle between v and w if we place the starting points of the vectors at the origin O.

Geometrically speaking $v \cdot m$ is the length of w projected to v multiplied by the length of v as shown in 1.1

Definition 1.1.7 Ortoghonal Basis

An ortoghonal basis for a vector space V is a basis v_1, \ldots, v_m with the property that

$$v_i \cdot v_j = 0$$
 for all $i \neq j$

1.2 Lattices

Figure 1.1: Dot Product By 3Blue1Brown

Chapter 2

LLL

- 2.1 Purpose
- 2.2 Algorithm

Chapter 3

Applications

- 3.1 Attack Knapsack
- 3.2 Attack RSA

End of Paper

 gg^2

Bibliography