quantum++ 0.1

Generated by Doxygen 1.8.7

Wed Nov 12 2014 18:50:27

Contents

1	Quantum++ - A C++11 quantum computing library				
2	Nam	nespace	Index		5
	2.1	Names	space List	t	5
3	Hier	archica	l Index		7
	3.1	Class	Hierarchy		7
4	Clas	ss Index			9
	4.1	Class	List		9
5	File	Index			11
	5.1	File Lis	st		11
6	Nam	nespace	Docume	entation	13
	6.1	qpp Na	amespace	Reference	13
		6.1.1	Typedef	Documentation	22
			6.1.1.1	bra	22
			6.1.1.2	cmat	22
			6.1.1.3	cplx	22
			6.1.1.4	dmat	23
			6.1.1.5	DynColVect	23
			6.1.1.6	DynMat	23
			6.1.1.7	DynRowVect	23
			6.1.1.8	ket	23
		6.1.2	Function	n Documentation	23
			6.1.2.1	absm	23
			6.1.2.2	abssq	23
			6.1.2.3	abssq	24
			6.1.2.4	adjoint	24
			6.1.2.5	anticomm	24
			6.1.2.6	apply	24
			6127	apply	25

iv CONTENTS

6.1.2.8	applyCTRL	25
6.1.2.9	applyCTRL	26
6.1.2.10	channel	26
6.1.2.11	channel	26
6.1.2.12	channel	26
6.1.2.13	choi	27
6.1.2.14	choi2kraus	27
6.1.2.15	comm	27
6.1.2.16	compperm	28
6.1.2.17	concurrence	28
6.1.2.18	conjugate	28
6.1.2.19	contfrac2x	28
6.1.2.20	contfrac2x	29
6.1.2.21	cosm	29
6.1.2.22	cwise	29
6.1.2.23	det	29
6.1.2.24	disp	30
6.1.2.25	disp	30
6.1.2.26	disp	30
6.1.2.27	disp	30
6.1.2.28	disp	31
6.1.2.29	entanglement	31
6.1.2.30	evals	31
6.1.2.31	evects	32
6.1.2.32	expm	32
6.1.2.33	funm	32
6.1.2.34	gcd	32
6.1.2.35	gcd	33
6.1.2.36	gconcurrence	33
6.1.2.37	grams	33
6.1.2.38	grams	33
6.1.2.39	grams	34
6.1.2.40	hevals	34
6.1.2.41	hevects	34
6.1.2.42	inverse	34
6.1.2.43	invperm	35
6.1.2.44	kron	35
6.1.2.45	kron	35
6.1.2.46	kron	35
6.1.2.47	kron	36

CONTENTS

6.1.2.48	kronpow	36
6.1.2.49	lcm	36
6.1.2.50	lcm	36
6.1.2.51	load	37
6.1.2.52	loadMATLABmatrix	37
6.1.2.53	loadMATLABmatrix	37
6.1.2.54	loadMATLABmatrix	38
6.1.2.55	logdet	38
6.1.2.56	logm	38
6.1.2.57	lognegativity	38
6.1.2.58	measure	39
6.1.2.59	measure	39
6.1.2.60	measure	40
6.1.2.61	measure	40
6.1.2.62	measure	40
6.1.2.63	measure	41
6.1.2.64	measure	41
6.1.2.65	measure	41
6.1.2.66	measure	42
6.1.2.67	mket	42
6.1.2.68	mket	42
6.1.2.69	mprj	43
6.1.2.70	mprj	43
6.1.2.71	multiidx2n	43
6.1.2.72	n2multiidx	43
6.1.2.73	negativity	44
6.1.2.74	norm	44
6.1.2.75	omega	44
6.1.2.76	operator"""_i	44
6.1.2.77	operator"""_i	45
6.1.2.78	powm	45
6.1.2.79	prj	45
6.1.2.80	prod	45
6.1.2.81	prod	45
6.1.2.82	ptrace	46
6.1.2.83	ptrace1	46
6.1.2.84	ptrace2	46
6.1.2.85	ptranspose	47
6.1.2.86	qmutualinfo	47
6.1.2.87	rand	47

vi CONTENTS

6.1.2.88 rand		 	 	 47
6.1.2.89 rand		 	 	 48
6.1.2.90 rand		 	 	 48
6.1.2.91 randH		 	 	 48
6.1.2.92 randint		 	 	 49
6.1.2.93 randket		 	 	 49
6.1.2.94 randkraus .		 	 	 49
6.1.2.95 randn		 	 	 49
6.1.2.96 randn		 	 	 50
6.1.2.97 randn		 	 	 50
6.1.2.98 randn		 	 	 50
6.1.2.99 randperm		 	 	 51
6.1.2.100 randrho		 	 	 51
6.1.2.101 randU		 	 	 51
6.1.2.102 randV		 	 	 51
6.1.2.103 renyi		 	 	 51
6.1.2.104 reshape		 	 	 52
6.1.2.105 rho2pure		 	 	 52
6.1.2.106 save		 	 	 52
6.1.2.107 saveMATLAB	smatrix	 	 	 53
6.1.2.108 saveMATLAB	smatrix	 	 	 53
6.1.2.109 saveMATLAB	smatrix	 	 	 53
6.1.2.110 schatten		 	 	 53
6.1.2.111 schmidtcoeff				53
6.1.2.112 schmidtprob		 	 	 54
6.1.2.113 schmidtU		 	 	 54
6.1.2.114 schmidtV		 	 	 54
6.1.2.115 shannon		 	 	 55
6.1.2.116 sinm		 	 	 55
6.1.2.117 spectralpowm	١	 	 	 55
6.1.2.118 sqrtm		 	 	 55
6.1.2.119 sum		 	 	 56
6.1.2.120 sum		 	 	 56
6.1.2.121 super		 	 	 56
6.1.2.122 svals		 	 	 56
6.1.2.123 svdU				57
6.1.2.124 svdV				57
6.1.2.125 syspermute				57
6.1.2.126 trace				57
6.1.2.127 transpose .		 	 	 58

CONTENTS vii

		6.1.2.128	tsallis	58
		6.1.2.129	x2contfrac	58
	6.1.3	Variable [Documentation	58
		6.1.3.1	chop	58
		6.1.3.2	codes	59
		6.1.3.3	ee	59
		6.1.3.4	eps	59
		6.1.3.5	$gt \ldots \ldots \ldots \ldots \ldots$	59
		6.1.3.6	infty	59
		6.1.3.7	init	59
		6.1.3.8	maxn	59
		6.1.3.9	pi	59
		6.1.3.10	rdevs	59
		6.1.3.11	st	59
6.2	qpp::ex	kperimenta	Namespace Reference	60
	6.2.1	Detailed I	Description	60
6.3	qpp::in	ternal Nam	nespace Reference	60
	6.3.1	Detailed I	Description	61
	6.3.2	Function	Documentation	61
		6.3.2.1	_check_col_vector	61
		6.3.2.2	_check_dims	61
		6.3.2.3	_check_dims_match_cvect	61
		6.3.2.4	_check_dims_match_mat	61
		6.3.2.5	_check_dims_match_rvect	61
		6.3.2.6	_check_eq_dims	61
		6.3.2.7	_check_nonzero_size	61
		6.3.2.8	_check_perm	61
		6.3.2.9	_check_row_vector	61
		6.3.2.10	_check_square_mat	61
		6.3.2.11	_check_subsys_match_dims	61
		6.3.2.12	_check_vector	61
		6.3.2.13	_kron2	61
		6.3.2.14	_multiidx2n	61
		6.3.2.15	_n2multiidx	61
		6.3.2.16	variadic_vector_emplace	61
		6.3.2.17	variadic_vector_emplace	61
Clas	s Docu	mentation		63
7.1			Reference	63
7.1	7.1.1		Description	64
	7 - 1 - 1	Dolaneu L		U-1

7

viii CONTENTS

	7.1.2	Member Enumeration Documentation
		7.1.2.1 Type
	7.1.3	Constructor & Destructor Documentation
		7.1.3.1 Codes
	7.1.4	Member Function Documentation
		7.1.4.1 codeword
	7.1.5	Friends And Related Function Documentation
		7.1.5.1 internal::Singleton < const Codes >
7.2	qpp::Ex	xception Class Reference
	7.2.1	Detailed Description
	7.2.2	Member Enumeration Documentation
		7.2.2.1 Type
	7.2.3	Constructor & Destructor Documentation
		7.2.3.1 Exception
		7.2.3.2 Exception
	7.2.4	Member Function Documentation
		7.2.4.1 _construct_exception_msg
		7.2.4.2 what
	7.2.5	Member Data Documentation
		7.2.5.1 _custom
		7.2.5.2 _msg
		7.2.5.3 _type
		7.2.5.4 _where
7.3	qpp::Ga	ates Class Reference
	7.3.1	Detailed Description
	7.3.2	Constructor & Destructor Documentation
		7.3.2.1 Gates
	7.3.3	Member Function Documentation
		7.3.3.1 CTRL
		7.3.3.2 expandout
		7.3.3.3 Fd
		7.3.3.4 ld
		7.3.3.5 Rn
		7.3.3.6 Xd
		7.3.3.7 Zd
	7.3.4	Friends And Related Function Documentation
		7.3.4.1 internal::Singleton < const Gates >
	7.3.5	Member Data Documentation
		7.3.5.1 CNOTab
		7.3.5.2 CNOTba

CONTENTS

		7.3.5.3	CZ	73
		7.3.5.4	FRED	73
		7.3.5.5	$H \ldots \ldots \ldots \ldots \ldots$	74
		7.3.5.6	ld2	74
		7.3.5.7	S	74
		7.3.5.8	SWAP	74
		7.3.5.9	$T \ldots \ldots \ldots \ldots \ldots$	74
		7.3.5.10	TOF	74
		7.3.5.11	$\boldsymbol{x} \ldots \ldots \ldots \ldots \ldots$	74
		7.3.5.12	$Y \ldots \ldots \ldots \ldots \ldots \ldots$	74
		7.3.5.13	$z \ldots \ldots \ldots \ldots \ldots$	74
7.4	qpp::In	it Class Re	eference	74
	7.4.1	Detailed I	Description	75
	7.4.2	Construc	tor & Destructor Documentation	76
		7.4.2.1	Init	76
		7.4.2.2	\sim Init	76
	7.4.3	Friends A	and Related Function Documentation	76
		7.4.3.1	${\it internal} :: Singleton < const \ Init > . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	76
7.5	qpp::in	ternal::ION	ManipEigen Class Reference	76
	7.5.1	Construc	tor & Destructor Documentation	76
		7.5.1.1	IOManipEigen	76
		7.5.1.2	IOManipEigen	76
	7.5.2	Friends A	and Related Function Documentation	76
		7.5.2.1	operator<<	77
	7.5.3	Member I	Data Documentation	77
		7.5.3.1	_A	77
		7.5.3.2	_chop	77
7.6	qpp::in	ternal::IOM	ManipPointer< PointerType > Class Template Reference	77
	7.6.1	Construc	tor & Destructor Documentation	78
		7.6.1.1	IOManipPointer	78
		7.6.1.2	IOManipPointer	78
	7.6.2	Member I	Function Documentation	78
		7.6.2.1	operator=	78
	7.6.3	Friends A	and Related Function Documentation	78
		7.6.3.1	operator<<	78
	7.6.4	Member I	Data Documentation	78
		7.6.4.1	_end	78
		7.6.4.2	$_n \dots \dots \dots \dots \dots \dots \dots \dots \dots $	78
		7.6.4.3	_p	78
		7.6.4.4	_separator	78

CONTENTS

		7.6.4.5 _start	78
7.7	qpp::int	ernal::IOManipRange < InputIterator > Class Template Reference	78
	7.7.1	Constructor & Destructor Documentation	79
		7.7.1.1 IOManipRange	79
	7.7.2	Friends And Related Function Documentation	79
		7.7.2.1 operator<< 8	30
	7.7.3	Member Data Documentation	30
		7.7.3.1 _end	30
		7.7.3.2 _first	30
		7.7.3.3 _last	30
		7.7.3.4 _separator	30
		7.7.3.5 _start	30
7.8	qpp::Ra	andomDevices Class Reference	30
	7.8.1	Detailed Description	31
	7.8.2	Constructor & Destructor Documentation	31
		7.8.2.1 RandomDevices	31
	7.8.3	Friends And Related Function Documentation	32
		7.8.3.1 internal::Singleton < RandomDevices >	32
	7.8.4	Member Data Documentation	32
		7.8.4.1 _rd	32
		7.8.4.2 _rng	32
7.9	qpp::int	rernal::Singleton< T > Class Template Reference	32
	7.9.1	Detailed Description	32
	7.9.2	Constructor & Destructor Documentation	33
		7.9.2.1 Singleton	33
		7.9.2.2 ~Singleton	33
		7.9.2.3 Singleton	33
	7.9.3	Member Function Documentation	33
		7.9.3.1 get_instance	33
		7.9.3.2 operator=	33
7.10	qpp::St	ates Class Reference	33
	7.10.1	Detailed Description	35
	7.10.2	Constructor & Destructor Documentation	35
		7.10.2.1 States	35
	7.10.3	Friends And Related Function Documentation	35
		7.10.3.1 internal::Singleton < const States >	35
	7.10.4	Member Data Documentation	35
		7.10.4.1 b00	35
		7.10.4.2 b01	35
		7.10.4.3 b10	36

CONTENTS xi

	7.10.4.4 b11	. 86
	7.10.4.5 GHZ	. 86
	7.10.4.6 pb00	. 86
	7.10.4.7 pb01	. 86
	7.10.4.8 pb10	. 86
	7.10.4.9 pb11	. 86
	7.10.4.10 pGHZ	. 86
	7.10.4.11 pW	. 86
	7.10.4.12 px0	. 86
	7.10.4.13 px1	. 86
	7.10.4.14 py0	. 86
	7.10.4.15 py1	. 87
	7.10.4.16 pz0	. 87
	7.10.4.17 pz1	. 87
	7.10.4.18 W	. 87
	7.10.4.19 x0	. 87
	7.10.4.20 x1	. 87
	7.10.4.21 y0	. 87
	7.10.4.22 y1	. 87
	7.10.4.23 z0	. 87
	7.10.4.24 z1	. 87
7.11	qpp::Timer Class Reference	. 87
	7.11.1 Detailed Description	. 88
	7.11.2 Constructor & Destructor Documentation	. 88
	7.11.2.1 Timer	. 88
	7.11.3 Member Function Documentation	. 88
	7.11.3.1 seconds	. 88
	7.11.3.2 tic	. 88
	7.11.3.3 toc	. 89
	7.11.4 Friends And Related Function Documentation	. 89
	7.11.4.1 operator <<	. 89
	7.11.5 Member Data Documentation	. 89
	7.11.5.1 _end	. 89
	7.11.5.2 _start	. 89
File	Documentation	91
8.1	include/classes/codes.h File Reference	
8.2	include/classes/exception.h File Reference	
8.3	include/classes/gates.h File Reference	
8.4	include/classes/init.h File Reference	
J. T	modes, stadeby, material to tribitation	. 55

8

xii CONTENTS

8.5	include/classes/random_devices.h File Reference	93
8.6	include/classes/singleton.h File Reference	94
8.7	include/classes/states.h File Reference	95
8.8	include/classes/timer.h File Reference	95
8.9	include/constants.h File Reference	96
8.10	include/entanglement.h File Reference	97
8.11	include/entropies.h File Reference	8
8.12	include/experimental/test.h File Reference	8
8.13	include/functions.h File Reference	9
8.14	include/internal/functions.h File Reference)2
8.15	include/input_output.h File Reference)3
8.16	include/instruments.h File Reference)4
8.17	include/internal/classes/iomanip.h File Reference)6
8.18	include/MATLAB/matlab.h File Reference)6
8.19	include/number_theory.h File Reference)7
8.20	include/operations.h File Reference	8(
8.21	include/qpp.h File Reference	0
8.22	include/random.h File Reference	1
8.23	include/types.h File Reference	2
8.24	mainpage.dox File Reference	3

Index

114

Quantum++ - A C++11 quantum computing library

```
Version
0.1

Author
Vlad Gheorghiu (vgheorgh@gmail.com)

Copyright
(c) 2013 - 2014 Vlad Gheorghiu (vgheorgh@gmail.com)
```

An example is worth more than one thousand words.

```
#include "gpp.h"
// #include "MATLAB/matlab.h" // support for MATLAB
using namespace qpp;
int main()
     // Qudit teleportation
          std::size\_t D = 3; // size of the system
         std::cout << std::endl << "**** Qudit teleportation, D = " << D << " ****" << std::endl; ket mes_AB = ket::Zero(D * D); // maximally entangled state resource
         for (std::size_t i = 0; i < D; i++)</pre>
              mes_AB += mket({i, i}, D);
          mes_AB /= std::sqrt((double) D);
          // circuit that measures in the qudit Bell basis
          cmat Bell_aA = adjoint(gt.CTRL(gt.Xd(D), \{0\}, \{1\}, 2, D) *
       kron(gt.Fd(D), gt.Id(D)));
          ket psi_a = randket(D); // random state as input on a
          std::cout << ">> Initial state: " << std::endl;
          std::cout << disp(psi_a) << std::endl;</pre>
          ket input_aAB = kron(psi_a, mes_AB); // joint input state aAB
          // output before measurement
         tet output_aAB = apply(input_aAB, Bell_aA, {0, 1}, D);
auto measured_aA = measure(output_aAB, gt.Id(D * D), {0, 1}, D); // measure on aA
          std::size_t m = std::get<0>(measured_aA); // measurement result
          auto midx = n2multiidx(m, \{D, D\});
         std::cout << ">> Alice's measurement result: ";
std::cout << m << " -> " << disp(midx, " ") << std::endl;
std::cout << ">> Alice's measurement probabilities: ";
         std::cout << disp(std::get<1> (measured_aA), ", ") << std::endl;
// conditional result on B before correction</pre>
          cmat output_m_B = std::get<2>(measured_aA)[m];
          cmat correction_B = powm(gt.Zd(D), midx[0]) * powm(
       adjoint(gt.Xd(D)), midx[1]); // correction operator
         // apply correction on B std::cout << ">>> Bob must apply the correction operator Z^* << midx[0] << " X^* << D - midx[1] <<
       std::endl;
          cmat rho_B = correction_B * output_m_B * adjoint(correction_B);
```

```
std::cout << ">> Bob's final state (after correction): " << std::endl;</pre>
     std::cout << disp(rho_B) << std::endl;
     // verification
     std::cout << ">> Norm difference: " << norm(rho_B - prj(psi_a)) << std::endl;</pre>
// Oudit dense coding
     std::size_t D = 3; // size of the system
     std::cout << std::endl << "**** Qudit dense coding, D = " << D << " ****" << std::endl; ket mes_AB = ket::Zero(D * D); // maximally entangled state resource
     for (std::size_t i = 0; i < D; i++)
  mes_AB += mket({i, i}, D);</pre>
     mes_AB /= std::sqrt((double) D);
     // circuit that measures in the qudit Bell basis
     cmat Bell_AB = adjoint(gt.CTRL(gt.Xd(D), \{0\}, \{1\}, 2, D) *
  kron(gt.Fd(D), gt.Id(D)));
// equal probabilities of choosing a message
     std::uniform_int_distribution<std::size_t> uid(0, D * D - 1);
     std::size_t m_A = uid(rdevs._rng); // sample, obtain the message index
     auto midx = n2multiidx(m_A, {D, D});

std::cout << ">> Alice sent: " << m_A << " -> ";

std::cout << disp(midx, " ") << std::endl;
     // Alice's operation
     cmat U_A = powm(gt.Zd(D), midx[0]) * powm(adjoint(
  gt.Xd(D)), midx[1]);
     // Alice encodes the message
     ket psi_AB = apply(mes_AB, U_A, {0}, D);
     // Bob measures the joint system in the qudit Bell basis
     psi_AB = apply(psi_AB, Bell_AB, {0, 1}, D);
auto measured = measure(psi_AB, gt.Id(D * D));
std::cout << ">> Bob's measurement probabilities: ";
     std::cout << disp(std::get<1>(measured), ", ") << std::endl;
     // Bob samples according to the measurement probabilities
     std::size_t m_B = std::get<0>(measured);
std::cout << ">> Bob received: ";
std::cout << m_B << " -> " << disp(n2multiidx(m_B, {D, D}), " ") << std::endl;</pre>
// Grover's search algorithm, we time it
     Timer t; // set a timer
     std::size_t n = 4; // number of qubits
     std::cout << std::endl << "**** Grover on n = " << n << " qubits ****" << std::endl;
     std::vector<std::size_t> dims(n, 2); // local dimensions
std::size_t N = std::pow(2, n); // number of elements in the database
std::cout << ">>> Database size: " << N << std::endl;</pre>
     // mark an element randomly
     std::uniform_int_distribution<std::size_t> uid(0, N - 1);
     std::size_t marked = uid(rdevs._rng);
std::cout << ">> Marked state: " << marked << " -> ";
     std::cout << disp(n2multiidx(marked, dims), " ") << std::endl;</pre>
     \texttt{ket psi} = \texttt{mket}(\texttt{n2multiidx}(\texttt{0, dims})); \ // \ \texttt{computational} \ |\texttt{0}^{\land} \texttt{otimes n}|
     psi = (kronpow(gt.H, n) * psi).eval(); // apply H^\otimes n, no aliasing
     cmat G = 2 * prj(psi) - gt.Id(N); // Diffusion operator
     // number of queries
     std::size_t nqueries = std::ceil(pi * std::sqrt(N) / 4.);
     std::cout << ">>> We run " << nqueries << " queries" << std::endl;
     for (std::size_t i = 0; i < nqueries; i++)</pre>
          psi(marked) = -psi(marked); // apply the oracle first, no aliasing psi = (G \star psi).eval(); // then the diffusion operator, no aliasing
     // we now measure the state in the computational basis
     auto measured = measure(psi, gt.Id(N));
    auto measured = measure(psi, gt.1d(N));
std::cout << ">> Probability of the marked state: " << std::get<1>(measured)[marked] << std::endl;
std::cout << ">> Probability of all results: ";
std::cout << disp(std::get<1>(measured), ", ") << std::endl;
std::cout << ">> Let's sample..." << std::endl;
     std::size_t result = std::get<0>(measured);
     if (result == marked)
          std::cout << ">> Hooray, we obtained the correct result: ";
     else
         std::cout << ">> Not there yet... we obtained: ";
     std::cout << result << " -> ";
     std::cout << disp(n2multiidx(result, dims), " ") << std::endl;
     // stop the timer and display it
     std::cout << ">> It took " << t.toc() << " seconds to simulate Grover on " << n << " qubits." <<
    std::endl;
}
// Entanglement
     std::cout << std::endl << "**** Entanglement ****" << std::endl;
     cmat rho = 0.2 * st.pb00 + 0.8 * st.pb11;
std::cout << ">> rho: " << std::endl;</pre>
     std::cout << disp(rho) << std::endl;
```

```
std::cout << ">> Concurrence of rho: " << concurrence(rho) << std::endl;
std::cout << ">> Negativity of rho: " << negativity(rho, {2, 2}) << std::endl;
std::cout << ">> Logarithimc negativity of rho: " << lognegativity(rho, {2, 2}) <<</pre>
  std::endl;
    ket psi = 0.8 * mket({0, 0}) + 0.6 * mket({1, 1});
     // apply some local random unitaries
    psi = kron(randU(2), randU(2)) * psi;
     std::cout << ">> psi: " << std::endl;
     std::cout << disp(psi) << std::endl;
    std::cout << disp(ps), << std::end1;
std::cout << ">> Entanglement of psi: " << entanglement (psi, {2, 2}) << std::end1;
std::cout << ">> Concurrence of psi: " << concurrence (prj(psi)) << std::end1;</pre>
    std::cout << ">> G-Concurrence of psi: " << gconcurrence(psi) << std::endl;
    std::cout << ">> Schmidt coefficients of psi: " << std::endl;
    std::cout << disp(schmidtcoeff(psi, {2, 2})) << std::endl;
std::cout << ">> Schmidt probabilities of psi: " << std::endl;</pre>
    std::cout << disp(schmidtprob(psi, {2, 2})) << std::endl;</pre>
    cmat U = schmidtU(psi, {2, 2});
cmat V = schmidtV(psi, {2, 2});
    std::cout << ">> Schmidt vectors on Alice's side: " << std::endl;
    std::cout << disp(U) << std::endl;</pre>
     std::cout << ">> Schmidt vectors on Bob's side: " << std::endl;
    std::cout << disp(V) << std::endl;</pre>
    \mathsf{std}::\mathsf{cout} \mathrel{<<} \mathsf{">>} \mathsf{State} \; \mathsf{psi} \; \mathsf{in} \; \mathsf{the} \; \mathsf{Schmidt} \; \mathsf{basis:} \; \mathsf{"} \mathrel{<<} \; \mathsf{std}::\mathsf{endl};
    std::cout << disp(adjoint(kron(U, V)) * psi) << std::endl;</pre>
     // reconstructed state
     ket psi_from_schmidt = schmidtcoeff(psi, {2, 2})(0) *
  kron(U.col(0), V.col(0))
              + schmidtcoeff(psi, {2, 2})(1) * kron(U.col(1), V.col(1));
     std::cout << ">> State psi reconstructed from the Schmidt decomposition: " << std::endl;
    std::cout << disp(psi_from_schmidt) << std::endl;</pre>
     // verification
    std::cout << ">> Norm difference: " << norm(psi - psi_from_schmidt) << std::endl;</pre>
// Quantum error correcting codes
     std::cout << std::endl << "**** Quantum error correcting codes ****" << std::endl;
     ket a0 = codes.codeword(Codes::Type::FIVE_QUBIT, 0);
     ket a1 = codes.codeword(Codes::Type::FIVE_QUBIT, 1);
     ket b0 = codes.codeword(Codes::Type::SEVEN_QUBIT_STEANE
  , 0);
    ket b1 = codes.codeword(Codes::Type::SEVEN OUBIT STEANE
  , 1);
    ket c0 = codes.codeword(Codes::Type::NINE_QUBIT_SHOR, 0
  );
    ket c1 = codes.codeword(Codes::Type::NINE_QUBIT_SHOR, 1
    std::cout << ">> [[5, 1, 3]] Five qubit code. ";
    std::cout << "Checking codeword orthogonality." << std::endl;
std::cout << ">>> |<0L|1L>| = ";
    std::cout << disp(adjoint(a0) * a1) << std::endl;</pre>
    std::cout << ">> [[7, 1, 3]] Seven qubit Steane code. ";
std::cout << "Checking codeword orthogonality." << std::endl;</pre>
    std::cout << ">> |<0L|1L>| = ";
std::cout << disp(adjoint (b0) * b1) << std::endl;
    std::cout << ">> [[9, 1, 3]] Nine qubit Shor code. ";
    std::cout << "Checking codeword orthogonality." << std::endl;</pre>
    std::cout << ">> |<0L|1L>| = ";
    std::cout << disp(adjoint(c0) * c1) << std::endl;</pre>
// Timing tests
    std::cout << std::endl << "**** Timing tests ****" << std::endl;
    std::size_t n = 12; // number of qubits
std::size_t N = std::pow(2, n);
    cmat randcmat = cmat::Random(N, N);
     std::cout << std::endl << "**** qpp::ptrace() timing ****" << std::endl;
    std::vector<std::size_t> subsys_ptrace = {0};
    std::cout << ">> Subsytem(s): ";
     std::cout << disp(subsys_ptrace, ", ") << std::endl;
     Timer t;
    ptrace(randcmat, subsys_ptrace, dims);
std::cout << ">>> It took " << t.toc() << " seconds." << std::endl;</pre>
    std::cout << std::endl << "**** qpp::ptranspose() timing ****" << std::endl;
     std::vector<std::size_t> subsys_ptranspose; // partially transpose n-1 subsystems
     for (std::size_t i = 0; i < n - 1; i++)
    subsys_ptranspose.push_back(i);
std::cout << ">> Subsytem(s): ";
    std::cout << disp(subsys_ptranspose, ", ") << std::endl;</pre>
```

Namespace Index

2.1	Names	pace	List
-	11411100	puoc	

Here	ic a	lict	of all	namespaces	with	hrief	descriptions
11010	10 0	ເມວເ	UI all	Hallicspaces	VVILII	וסווט	ucscriptions.

qpp	 13
qpp::experimental	 60
qpp::internal	 60

6 Namespace Index

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

sid::exception	
qpp::Exception	65
qpp::internal::IOManipEigen	76
qpp::internal::IOManipPointer< PointerType >	77
qpp::internal::IOManipRange< InputIterator >	78
$qpp::internal::Singleton < T > \dots \dots$	82
qpp::internal::Singleton < const Codes >	82
qpp::Codes	63
qpp::internal::Singleton< const Gates >	82
qpp::Gates	69
$qpp :: internal :: Singleton < const \; Init > \dots $	82
qpp::Init	74
qpp::internal::Singleton < const States >	82
qpp::States	83
qpp::internal::Singleton< RandomDevices >	82
qpp::RandomDevices	80
qpp::Timer	87

8 **Hierarchical Index**

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

qpp::Codes	
Const Singleton class that defines quantum error correcting codes	63
qpp::Exception	
Generates custom exceptions, used when validating function parameters	65
qpp::Gates	
Const Singleton class that implements most commonly used gates	69
qpp::Init	
Const Singleton class that performs additional initializations/cleanups	74
qpp::internal::IOManipEigen	76
qpp::internal::IOManipPointer< PointerType >	77
qpp::internal::IOManipRange< InputIterator >	78
qpp::RandomDevices	
Singeleton class that manages the source of randomness in the library	80
qpp::internal::Singleton < T >	
Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously	
recurring template pattern)	82
qpp::States	
Const Singleton class that implements most commonly used states	83
qpp::Timer	
Measures time	87

10 Class Index

File Index

5.1 File List

Here is a list of all files with brief descriptions:

include/constants.h
include/entanglement.h
include/entropies.h
include/functions.h
include/input_output.h
include/instruments.h
include/number_theory.h
include/operations.h
include/qpp.h
include/random.h
include/types.h
include/classes/codes.h
include/classes/exception.h
include/classes/gates.h
include/classes/init.h
include/classes/random_devices.h
include/classes/singleton.h
include/classes/states.h
include/classes/timer.h
include/experimental/test.h
include/internal/functions.h
include/internal/classes/iomanip.h
include/MATLAB/matlab h

12 File Index

Namespace Documentation

6.1 qpp Namespace Reference

Namespaces

- · experimental
- internal

Classes

· class Codes

const Singleton class that defines quantum error correcting codes

class Exception

Generates custom exceptions, used when validating function parameters.

class Gates

const Singleton class that implements most commonly used gates

· class Init

const Singleton class that performs additional initializations/cleanups

· class RandomDevices

Singeleton class that manages the source of randomness in the library.

class States

const Singleton class that implements most commonly used states

· class Timer

Measures time.

Typedefs

```
using cplx = std::complex< double >
```

Complex number in double precision.

```
• template<typename Scalar >
```

```
using DynMat = Eigen::Matrix < Scalar, Eigen::Dynamic, Eigen::Dynamic >
```

Dynamic Eigen matrix over the field specified by Scalar.

```
\bullet \ \ \text{template}{<} \text{typename Scalar} >
```

```
using DynColVect = Eigen::Matrix < Scalar, Eigen::Dynamic, 1 >
```

Dynamic Eigen column vector over the field specified by Scalar.

```
• template<typename Scalar >
```

```
using DynRowVect = Eigen::Matrix< Scalar, 1, Eigen::Dynamic >
```

Dynamic Eigen row vector over the field specified by Scalar.

using ket = DynColVect< cplx >

Complex (double precision) dynamic Eigen column vector.

• using bra = DynRowVect< cplx >

Complex (double precision) dynamic Eigen row vector.

using cmat = DynMat< cplx >

Complex (double precision) dynamic Eigen matrix.

using dmat = DynMat< double >

Real (double precision) dynamic Eigen matrix.

Functions

constexpr std::complex< double > operator""_i (unsigned long long int x)

User-defined literal for complex $i = \sqrt{-1}$ (integer overload)

constexpr std::complex< double > operator""_i (long double x)

User-defined literal for complex $i = \sqrt{-1}$ (real overload)

std::complex< double > omega (std::size t D)

D-th root of unity.

• template<typename Derived >

DynColVect< cplx > schmidtcoeff (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)

Schmidt coefficients of the bi-partite pure state A.

template<typename Derived >

cmat schmidtU (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)

Schmidt basis on Alice's side.

• template<typename Derived >

cmat schmidtV (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size t > &dims)

Schmidt basis on Bob's side.

• template<typename Derived >

Schmidt probabilities of the bi-partite pure state A.

• template<typename Derived >

double entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)

Entanglement of the bi-partite pure state A.

template<typename Derived >

double gconcurrence (const Eigen::MatrixBase< Derived > &A)

G-concurrence of the bi-partite pure state A.

• template<typename Derived >

double negativity (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)

Negativity of the bi-partite mixed state A.

• template<typename Derived >

double lognegativity (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)

Logarithmic negativity of the bi-partite mixed state A.

template<typename Derived >

double concurrence (const Eigen::MatrixBase< Derived > &A)

Wootters concurrence of the bi-partite qubit mixed state A.

template<typename Derived >

```
double shannon (const Eigen::MatrixBase< Derived > &A)
```

Shannon/von-Neumann entropy of the probability distribution/density matrix A.

template<typename Derived >

double renyi (const Eigen::MatrixBase< Derived > &A, double alpha)

```
Renyi- \alpha entropy of the probability distribution/density matrix A, for \alpha \geq 0.
• template<typename Derived >
  double tsallis (const Eigen::MatrixBase< Derived > &A, double alpha)
      Tsallis- \alpha entropy of the probability distribution/density matrix A, for \alpha > 0.
 \bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >
  double qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &subsysA,
  const std::vector< std::size_t > &subsysB, const std::vector< std::size_t > &dims)
      Quantum mutual information between 2 subsystems of a composite system.

    template<typename Derived >

  DynMat< typename Derived::Scalar > transpose (const Eigen::MatrixBase< Derived > &A)
      Transpose.

    template<typename Derived >

  DynMat< typename Derived::Scalar > conjugate (const Eigen::MatrixBase< Derived > &A)
      Complex conjugate.

    template<typename Derived >

  DynMat< typename Derived::Scalar > adjoint (const Eigen::MatrixBase< Derived > &A)
      Adjoint.
template<typename Derived >
  DynMat< typename Derived::Scalar > inverse (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  Derived::Scalar trace (const Eigen::MatrixBase< Derived > &A)
      Trace.

    template<typename Derived >

  Derived::Scalar det (const Eigen::MatrixBase < Derived > &A)
      Determinant.
template<typename Derived >
  Derived::Scalar logdet (const Eigen::MatrixBase< Derived > &A)
      Logarithm of the determinant.

    template<typename Derived >

  Derived::Scalar sum (const Eigen::MatrixBase< Derived > &A)
      Element-wise sum of A.
• template<typename Derived >
  Derived::Scalar prod (const Eigen::MatrixBase< Derived > &A)
      Element-wise product of A.
• template<typename Derived >
  double norm (const Eigen::MatrixBase< Derived > &A)
      Frobenius norm.

    template<typename Derived >

  DynColVect< cplx > evals (const Eigen::MatrixBase< Derived > &A)
      Eigenvalues.

    template<typename Derived >

  cmat evects (const Eigen::MatrixBase< Derived > &A)
      Eigenvectors.

    template<typename Derived >

  {\color{red} {\sf DynColVect}{<}}\ {\color{red} {\sf double}} > {\color{red} {\sf hevals}}\ ({\color{red} {\sf const}}\ {\color{red} {\sf Eigen}}{\color{red} {\sf :}}{\color{red} {\sf MatrixBase}{<}}\ {\color{red} {\sf Derived}} > {\color{red} \&{\sf A}})
      Hermitian eigenvalues.

    template<typename Derived >

  cmat hevects (const Eigen::MatrixBase< Derived > &A)
      Hermitian eigenvectors.

    template<typename Derived >

  DynColVect< double > svals (const Eigen::MatrixBase< Derived > &A)
      Singular values.
```

Kronecker product.

```
• template<typename Derived >
  cmat svdU (const Eigen::MatrixBase< Derived > &A)
     Left singular vectors.
• template<typename Derived >
  cmat svdV (const Eigen::MatrixBase< Derived > &A)
     Right singular vectors.
• template<typename Derived >
  cmat funm (const Eigen::MatrixBase< Derived > &A, cplx(*f)(const cplx &))
     Functional calculus f(A)

    template<typename Derived >

  cmat sqrtm (const Eigen::MatrixBase< Derived > &A)
     Matrix square root.

    template<typename Derived >

  cmat absm (const Eigen::MatrixBase< Derived > &A)
     Matrix absolut value.

    template<typename Derived >

  cmat expm (const Eigen::MatrixBase< Derived > &A)
     Matrix exponential.
• template<typename Derived >
  cmat logm (const Eigen::MatrixBase< Derived > &A)
     Matrix logarithm.

    template<typename Derived >

  cmat sinm (const Eigen::MatrixBase< Derived > &A)
     Matrix sin.
• template<typename Derived >
  cmat cosm (const Eigen::MatrixBase< Derived > &A)
     Matrix cos.
• template<typename Derived >
  cmat spectralpowm (const Eigen::MatrixBase< Derived > &A, const cplx z)
     Matrix power.
\bullet \ \ \text{template}{<} \text{typename Derived} >
  DynMat< typename Derived::Scalar > powm (const Eigen::MatrixBase< Derived > &A, std::size_t n)
     Matrix power.
• template<typename Derived >
  double schatten (const Eigen::MatrixBase< Derived > &A, std::size_t p)
     Schatten norm.
• template<typename OutputScalar , typename Derived >
  DynMat< OutputScalar > cwise (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const typename
  Derived::Scalar &))
     Functor.

    template<typename T >

  DynMat< typename T::Scalar > kron (const T &head)
     Kronecker product.
• template<typename T , typename... Args>
  DynMat< typename T::Scalar > kron (const T &head, const Args &...tail)
     Kronecker product.
template<typename Derived >
  DynMat< typename Derived::Scalar > kron (const std::vector< Derived > &As)
     Kronecker product.

    template<typename Derived >

  DynMat< typename Derived::Scalar > kron (const std::initializer_list< Derived > &As)
```

```
    template<typename Derived >

  DynMat< typename Derived::Scalar > kronpow (const Eigen::MatrixBase< Derived > &A, std::size_t n)
     Kronecker power.

    template<typename Derived >

  DynMat< typename Derived::Scalar > reshape (const Eigen::MatrixBase< Derived > &A, std::size t rows,
  std::size t cols)
     Reshape.

    template<typename Derived1, typename Derived2 >

  DynMat< typename Derived1::Scalar > comm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::←
  MatrixBase < Derived2 > &B)
     Commutator.

    template<typename Derived1 , typename Derived2 >

  DynMat< typename Derived1::Scalar > anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen ←
  ::MatrixBase< Derived2 > &B)
     Anti-commutator.

    template<typename Derived >

  DynMat< typename Derived::Scalar > prj (const Eigen::MatrixBase< Derived > &V)

    template<typename Derived >

  DynMat< typename Derived::Scalar > grams (const std::vector< Derived > &Vs)
     Gram-Schmidt orthogonalization.

    template<typename Derived >

  DynMat< typename Derived::Scalar > grams (const std::initializer_list< Derived > &Vs)
      Gram-Schmidt orthogonalization.
template<typename Derived >
  DynMat< typename Derived::Scalar > grams (const Eigen::MatrixBase< Derived > &A)
      Gram-Schmidt orthogonalization.
• std::vector< std::size_t > n2multiidx (std::size_t n, const std::vector< std::size_t > &dims)
     Non-negative integer index to multi-index.

    std::size_t multiidx2n (const std::vector < std::size_t > &midx, const std::vector < std::size_t > &dims)

     Multi-index to non-negative integer index.

    ket mket (const std::vector< std::size_t > &mask, const std::vector< std::size_t > &dims)

     Multi-partite qudit ket.

    ket mket (const std::vector< std::size_t > &mask, std::size_t d=2)

     Multi-partite qudit ket.

    cmat mprj (const std::vector < std::size_t > &mask, const std::vector < std::size_t > &dims)

     Projector onto multi-partite qudit ket.

    cmat mprj (const std::vector < std::size t > &mask, std::size t d=2)

     Projector onto multi-partite qudit ket.

    template<typename InputIterator >

  std::vector< double > abssq (InputIterator first, InputIterator last)
     Computes the absolut values squared of a range of complex numbers.

    template<typename Derived >

  std::vector< double > abssq (const Eigen::MatrixBase< Derived > &V)
      Computes the absolut values squared of a column vector.

    template<typename InputIterator >

  auto sum (InputIterator first, InputIterator last) -> typename InputIterator::value type
     Element-wise sum of a range.
• template<typename InputIterator >
  auto prod (InputIterator first, InputIterator last) -> typename InputIterator::value type
```

Element-wise product of a range.

• template<typename Derived >

```
DynColVect< typename
  Derived::Scalar > rho2pure (const Eigen::MatrixBase < Derived > &A)
     Finds the pure state representation of a matrix proportional to a projector onto a pure state.

    template<typename Derived >

  internal::IOManipEigen disp (const Eigen::MatrixBase< Derived > &A, double chop=qpp::chop)
      Eigen expression ostream manipulator.
• internal::IOManipEigen disp (cplx z, double chop=qpp::chop)
     Complex number ostream manipulator.
• template<typename InputIterator >
  internal::IOManipRange
  < InputIterator > disp (const InputIterator &first, const InputIterator &last, const std::string &separator, const
  std::string &start="[", const std::string &end="]")
     Range ostream manipulator.

    template<typename Container >

  internal::IOManipRange
  < typename
  Container::const_iterator > disp (const Container &c, const std::string &separator, const std::string &start="[",
  const std::string &end="]")
     Standard container ostream manipulator. The container must support std::begin(), std::end() and forward iteration.
 template<typename PointerType >
  internal::IOManipPointer
  < PointerType > disp (const PointerType *p, std::size t n, const std::string &separator, const std::string
  &start="[", const std::string &end="]")
      C-style pointer ostream manipulator.
• template<typename Derived >
  void save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)
     Saves Eigen expression to a binary file (internal format) in double precision.
• template<typename Derived >
  DynMat< typename Derived::Scalar > load (const std::string &fname)
     Loads Eigen matrix from a binary file (internal format) in double precision.

    template<typename Derived >

  std::tuple < std::size t,
  std::vector< double >
  , std::vector< cmat >> measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks,
  const std::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)
     Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

    template<typename Derived >

  std::tuple < std::size t,
  std::vector< double >
  , std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::initializer list< cmat
  > &Ks, const std::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)
     Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.
• template<typename Derived >
  std::tuple < std::size t,
  std::vector< double >
  , std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks,
  const std::vector< std::size_t > &subsys, const std::size_t d=2)
     Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.
• template<typename Derived >
  std::tuple < std::size t,
  std::vector< double >
  , std::vector< cmat >> measure (const Eigen::MatrixBase< Derived > &A, const std::initializer list< cmat
  > &Ks, const std::vector< std::size_t > &subsys, const std::size_t d=2)
     Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.
```

```
• template<typename Derived >
  std::tuple < std::size t,
  std::vector< double >
  , std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const cmat &U, const std↔
  ::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)
     Measures the part subsys of the multi-partite state A in the orthonormal basis specified by the unitary matrix U.

    template<typename Derived >

  std::tuple < std::size t.
  std::vector< double >
  , std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const cmat &U, const std↔
  ::vector< std::size_t > &subsys, const std::size_t d=2)
     Measures the part subsys of the multi-partite state A in the orthonormal basis specified by the unitary matrix U.

    template<typename Derived >

  std::tuple < std::size t,
  std::vector< double >
  , std::vector < cmat > > measure (const Eigen::MatrixBase < Derived > &A, const std::vector < cmat > &Ks)
     Measures the state A using the set of Kraus operators Ks.

    template<typename Derived >

  std::tuple < std::size t.
  std::vector< double >
  , std::vector< cmat >> measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat
  > &Ks)
     Measures the state A using the set of Kraus operators Ks.

    template<typename Derived >

  std::tuple < std::size t,
  std::vector< double >
  , std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const cmat &U)
     Measures the state A in the orthonormal basis specified by the unitary matrix U.
template<typename Derived >
  Derived loadMATLABmatrix (const std::string &mat file, const std::string &var name)
     Loads an Eigen dynamic matrix from a MATLAB .mat file, generic version.
template<>
  dmat loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
     Loads an Eigen dynamic matrix from a MATLAB .mat file, specialization for double matrices (qpp::dmat)
template<>
  cmat loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
     Loads an Eigen dynamic matrix from a MATLAB .mat file, specialization for complex matrices (qpp::cmat)

    template<typename Derived >

  void saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat file, const std↔
  ::string &var_name, const std::string &mode)
     Saves an Eigen dynamic matrix to a MATLAB .mat file, generic version.
• template<>
  void saveMATLABmatrix (const Eigen::MatrixBase < dmat > &A, const std::string &mat_file, const std::string
  &var name, const std::string &mode)
     Saves an Eigen dynamic matrix to a MATLAB .mat file, specialization for double matrices (qpp::dmat)
• template<>
  void saveMATLABmatrix (const Eigen::MatrixBase < cmat > &A, const std::string &mat_file, const std::string
  &var_name, const std::string &mode)
     Saves an Eigen dynamic matrix to a MATLAB .mat file, specialization for complex matrices (qpp::cmat)

    std::vector< int > x2contfrac (double x, std::size_t n, std::size_t cut=1e5)

     Simple continued fraction expansion.

    double contfrac2x (const std::vector< int > &cf, std::size t n)

      Real representation of a simple continued fraction.

    double contfrac2x (const std::vector< int > &cf)
```

Real representation of a simple continued fraction.

• std::size_t gcd (std::size_t m, std::size_t n)

Greatest common divisor of two non-negative integers.

std::size_t gcd (const std::vector< std::size_t > &ns)

Greatest common divisor of a list of non-negative integers.

• std::size_t lcm (std::size_t m, std::size_t n)

Least common multiple of two positive integers.

std::size_t lcm (const std::vector< std::size_t > &ns)

Least common multiple of a list of positive integers.

std::vector< std::size_t > invperm (const std::vector< std::size_t > &perm)

Inverse permutation.

std::vector< std::size_t > compperm (const std::vector< std::size_t > &perm, const std::vector< std::size_t > &sigma)

Compose permutations.

• template<typename Derived1 , typename Derived2 >

DynMat< typename Derived1::Scalar > applyCTRL (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< std::size_t > &ctrl, const std::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived1 , typename Derived2 >

DynMat< typename Derived1::Scalar > applyCTRL (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< std::size_t > &ctrl, const std::vector< std::size_t > &subsys, std::size_t d=2)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived1 , typename Derived2 >

DynMat< typename Derived1::Scalar > apply (const Eigen::MatrixBase< Derived1 > &state, const Eigen← ::MatrixBase< Derived2 > &A, const std::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived1 , typename Derived2 >

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

 $\bullet \ \ \mathsf{template}{<} \mathsf{typename} \ \mathsf{Derived} >$

cmat channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks)

Applies the channel specified by the set of Kraus operators Ks to the density matrix rho.

• template<typename Derived >

cmat channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks, const std::vector<
std::size t > &subsys, const std::vector< std::size t > &dims)

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix rho

template<typename Derived >

cmat channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks, const std::vector<
std::size_t > &subsys, std::size_t d=2)

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix rho.

cmat super (const std::vector< cmat > &Ks)

Superoperator matrix representation.

cmat choi (const std::vector< cmat > &Ks)

Choi matrix representation.

std::vector < cmat > choi2kraus (const cmat &A)

Extracts orthogonal Kraus operators from Choi matrix.

• template<typename Derived >

DynMat< typename Derived::Scalar > ptrace1 (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size t > &dims)

Partial trace.

template<typename Derived >

DynMat< typename Derived::Scalar > ptrace2 (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size t > &dims)

Partial trace.

template<typename Derived >

DynMat< typename Derived::Scalar > ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)

Partial trace.

• template<typename Derived >

Partial transpose.

• template<typename Derived >

DynMat< typename Derived::Scalar > syspermute (const Eigen::MatrixBase< Derived > &A, const std
::vector< std::size_t > &perm, const std::vector< std::size_t > &dims)

System permutation.

• template<typename Derived >

Derived rand (std::size_t rows, std::size_t cols, double a=0, double b=1)

Generates a random matrix with entries uniformly distributed in the interval [a, b)

template<>

dmat rand (std::size t rows, std::size t cols, double a, double b)

Generates a random real matrix with entries uniformly distributed in the interval [a, b), specialization for double matrices (qpp::dmat)

template<>

cmat rand (std::size_t rows, std::size_t cols, double a, double b)

Generates a random complex matrix with entries (both real and imaginary) uniformly distributed in the interval [a, b), specialization for complex matrices (qpp::cmat)

double rand (double a=0, double b=1)

Generates a random real number uniformly distributed in the interval [a, b)

• int randint (int a=std::numeric_limits< int >::min(), int b=std::numeric_limits< int >::max())

Generates a random integer (int) uniformly distributed in the interval [a, b].

• template<typename Derived >

Derived randn (std::size_t rows, std::size_t cols, double mean=0, double sigma=1)

Generates a random matrix with entries normally distributed in N(mean, sigma)

template<

dmat randn (std::size_t rows, std::size_t cols, double mean, double sigma)

Generates a random real matrix with entries normally distributed in N(mean, sigma), specialization for double matrices (qpp::dmat)

• template<>

cmat randn (std::size_t rows, std::size_t cols, double mean, double sigma)

Generates a random complex matrix with entries (both real and imaginary) normally distributed in N(mean, sigma), specialization for complex matrices (qpp::cmat)

• double randn (double mean=0, double sigma=1)

Generates a random real number (double) normally distributed in N(mean, sigma)

cmat randU (std::size_t D)

Generates a random unitary matrix.

cmat randV (std::size_t Din, std::size_t Dout)

Generates a random isometry matrix.

std::vector < cmat > randkraus (std::size_t N, std::size_t D)

Generates a set of random Kraus operators.

cmat randH (std::size_t D)

Generates a random Hermitian matrix.

ket randket (std::size_t D)

Generates a random normalized ket (pure state vector)

cmat randrho (std::size_t D)

Generates a random density matrix.

std::vector< std::size_t > randperm (std::size_t n)

Generates a random uniformly distributed permutation.

Variables

constexpr double chop = 1e-10

Used in qpp::disp() and qpp::displn() for setting to zero numbers that have their absolute value smaller than qpp::ct← ::chop.

• constexpr double eps = 1e-12

Used to decide whether a number or expression in double precision is zero or not.

constexpr std::size_t maxn = 64

Maximum number of qubits.

• constexpr double pi = 3.141592653589793238462643383279502884

π

constexpr double ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

constexpr std::size_t infty = -1

Used to denote infinity.

const Init & init = Init::get instance()

qpp::Init const Singleton

• const Codes & codes = Codes::get_instance()

qpp::Codes const Singleton

const Gates & gt = Gates::get_instance()

qpp::Gates const Singleton

• const States & st = States::get_instance()

qpp::States const Singleton

RandomDevices & rdevs = RandomDevices::get_instance()

qpp::RandomDevices Singleton

6.1.1 Typedef Documentation

6.1.1.1 using qpp::bra = typedef DynRowVect<cplx>

Complex (double precision) dynamic Eigen row vector.

6.1.1.2 using qpp::cmat = typedef DynMat<cplx>

Complex (double precision) dynamic Eigen matrix.

6.1.1.3 using qpp::cplx = typedef std::complex < double >

Complex number in double precision.

6.1.1.4 using qpp::dmat = typedef DynMat<double>

Real (double precision) dynamic Eigen matrix.

6.1.1.5 template < typename Scalar > using qpp::DynColVect = typedef Eigen::Matrix < Scalar, Eigen::Dynamic, 1>

Dynamic Eigen column vector over the field specified by Scalar.

Example:

```
auto colvect = DynColVect<float>(2); // type of colvect is Eigen::Matrix<float, Eigen::Dynamic, 1>
```

6.1.1.6 template<typename Scalar > using qpp::DynMat = typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>

Dynamic Eigen matrix over the field specified by Scalar.

Example:

```
auto mat = DynMat<float>(2,3); // type of mat is Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>
```

6.1.1.7 template < typename Scalar > using qpp::DynRowVect = typedef Eigen::Matrix < Scalar, 1, Eigen::Dynamic >

Dynamic Eigen row vector over the field specified by Scalar.

Example:

```
auto rowvect = DynRowVect<float>(3); // type of rowvect is Eigen::Matrix<float, 1, Eigen::Dynamic>
```

6.1.1.8 using qpp::ket = typedef DynColVect<cplx>

Complex (double precision) dynamic Eigen column vector.

6.1.2 Function Documentation

6.1.2.1 template<typename Derived > cmat qpp::absm (const Eigen::MatrixBase< Derived > & A)

Matrix absolut value.

Parameters

```
A | Eigen expression
```

Returns

Matrix absolut value of A

 $\textbf{6.1.2.2} \quad \textbf{template} < \textbf{typename Input Iterator} > \textbf{std::vector} < \textbf{double} > \textbf{qpp::abssq (Input Iterator \textit{first, Input Iterator last)} \\$

Computes the absolut values squared of a range of complex numbers.

Parameters

first	Iterator to the first element of the range
last	Iterator to the last element of the range

Returns

Real vector consisting of the range's absolut values squared

6.1.2.3 template<typename Derived > std::vector<double> qpp::abssq (const Eigen::MatrixBase< Derived > & V)

Computes the absolut values squared of a column vector.

Parameters

17	Figure averageing
V	Eigen expression
-	g

Returns

Real vector consisting of the absolut values squared

6.1.2.4 template<typename Derived > DynMat<typename Derived::Scalar> qpp::adjoint (const Eigen::MatrixBase< Derived > & A)

Adjoint.

Parameters

Α	Eigen expression

Returns

Adjoint (Hermitian conjugate) of A, as a dynamic matrix over the same scalar field as A

6.1.2.5 template<typename Derived1 , typename Derived2 > DynMat<typename Derived1::Scalar> qpp::anticomm (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

Anti-commutator.

Anti-commutator $\{A,B\} = AB + BA$. Both A and B must be Eigen expressions over the same scalar field.

Parameters

Α	Eigen expression
В	Eigen expression

Returns

Anti-commutator AB + BA, as a dynamic matrix over the same scalar field as A

6.1.2.6 template<typename Derived1 , typename Derived2 > DynMat<typename Derived1::Scalar> qpp::apply (const Eigen::MatrixBase< Derived1 > & state, const Eigen::MatrixBase< Derived2 > & A, const std::vector< std::size_t > & subsys, const std::vector< std::size_t > & dims)

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

Note

The dimension of the gate A must match the dimension of subsys

state	Eigen expression
Α	Eigen expression
subsys	Subsystem indexes where the gate A is applied
dims	Dimensions of the multi-partite system

Returns

Gate A applied to the part subsys of state

6.1.2.7 template<typename Derived1 , typename Derived2 > DynMat<typename Derived1::Scalar> qpp::apply (const Eigen::MatrixBase< Derived1 > & state, const Eigen::MatrixBase< Derived2 > & A, const std::vector< std::size_t > & subsys, std::size_t d = 2)

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

Note

The dimension of the gate A must match the dimension of subsys

Parameters

state	Eigen expression
Α	Eigen expression
subsys	Subsystem indexes where the gate A is applied
d	Subsystem dimensions

Returns

Gate A applied to the part subsys of state

6.1.2.8 template < typename Derived1 , typename Derived2 > DynMat < typename Derived1::Scalar > qpp::applyCTRL (const Eigen::MatrixBase < Derived2 > & A, const std::vector < std::size_t > & ctrl, const std::vector < std::size_t > & dims)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

Note

The dimension of the gate A must match the dimension of *subsys*. Also, all control subsystems in *ctrl* must have the same dimension.

Parameters

state	Eigen expression
Α	Eigen expression
ctrl	Control subsystem indexes
subsys	Subsystem indexes where the gate A is applied
dims	Dimensions of the multi-partite system

Returns

CTRL-A gate applied to the part subsys of state

6.1.2.9 template<typename Derived1 , typename Derived2 > DynMat<typename Derived1::Scalar> qpp::applyCTRL (const Eigen::MatrixBase< Derived1 > & state, const Eigen::MatrixBase< Derived2 > & A, const std::vector< std::size_t > & ctrl, const std::vector< std::size_t > & subsys, std::size_t d = 2)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

Note

The dimension of the gate A must match the dimension of subsys

Parameters

state	Eigen expression
Α	Eigen expression
ctrl	Control subsystem indexes
subsys	Subsystem indexes where the gate A is applied
d	Subsystem dimensions

Returns

CTRL-A gate applied to the part subsys of state

6.1.2.10 template < typename Derived > cmat qpp::channel (const Eigen::MatrixBase < Derived > & rho, const std::vector < cmat > & Ks)

Applies the channel specified by the set of Kraus operators Ks to the density matrix rho.

Parameters

rho	Eigen expression
Ks	Set of Kraus operators

Returns

Output density matrix after the action of the channel

6.1.2.11 template<typename Derived > cmat qpp::channel (const Eigen::MatrixBase< Derived > & rho, const std::vector< cmat > & Ks, const std::vector< std::size_t > & subsys, const std::vector< std::size_t > & dims)

Applies the channel specified by the set of Kraus operators *Ks* to the part *subsys* of the multi-partite density matrix *rho*.

Parameters

rho	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes where the Kraus operators Ks are applied
dims	Dimensions of the multi-partite system

Returns

Output density matrix after the action of the channel

6.1.2.12 template<typename Derived > cmat qpp::channel (const Eigen::MatrixBase< Derived > & rho, const std::vector< cmat > & Ks, const std::vector< std::size_t > & subsys, std::size_t d = 2)

Applies the channel specified by the set of Kraus operators *Ks* to the part *subsys* of the multi-partite density matrix *rho*.

rho	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes where the Kraus operators Ks are applied
d	Subsystem dimensions

Returns

Output density matrix after the action of the channel

6.1.2.13 cmat qpp::choi (const std::vector< cmat > & Ks)

Choi matrix representation.

Constructs the Choi matrix of the channel specified by the set of Kraus operators Ks in the standard operator basis $\{|i\rangle\langle j|\}$ ordered in lexicographical order, i.e. $|0\rangle\langle 0|$, $|0\rangle\langle 1|$ etc.

Note

The superoperator matrix S and the Choi matrix C are related by $S_{ab,mn} = C_{ma,nb}$

Parameters

Ks	Set of Kraus operators

Returns

Choi matrix representation

6.1.2.14 std::vector<cmat> qpp::choi2kraus (const cmat & A)

Extracts orthogonal Kraus operators from Choi matrix.

Extracts a set of orthogonal (under Hilbert-Schmidt operator norm) Kraus operators from the Choi representation *A* of the channel

Note

The Kraus operators satisfy $Tr(K_i^\dagger K_j) = \delta_{ij}$ for all i
eq j

Parameters

Α	Choi matrix

Returns

Set of Kraus operators

6.1.2.15 template < typename Derived1 , typename Derived2 > DynMat < typename Derived1::Scalar > qpp::comm (const Eigen::MatrixBase < Derived1 > & A, const Eigen::MatrixBase < Derived2 > & B)

Commutator.

Commutator [A,B] = AB - BA. Both A and B must be Eigen expressions over the same scalar field.

A	Eigen expression
В	Eigen expression

Returns

Commutator AB - BA, as a dynamic matrix over the same scalar field as A

6.1.2.16 std::vector < std::size_t > & perm, const std::vector < std::size_t > & perm, const std::vector < std::size_t > & sigma)

Compose permutations.

Parameters

perm	Permutation
sigma	Permutation

Returns

Composition of the permutations *perm* o *sigma* = perm(sigma)

6.1.2.17 template < typename Derived > double qpp::concurrence (const Eigen::MatrixBase < Derived > & A)

Wootters concurrence of the bi-partite qubit mixed state A.

Parameters

Α	Eigen expression

Returns

Wootters concurrence

6.1.2.18 template<typename Derived > DynMat<typename Derived::Scalar> qpp::conjugate (const Eigen::MatrixBase< Derived > & A)

Complex conjugate.

Parameters

Α	Eigen expression

Returns

Complex conjugate of A, as a dynamic matrix over the same scalar field as A

6.1.2.19 double qpp::contfrac2x (const std::vector < int > & cf, std::size_t n)

Real representation of a simple continued fraction.

cf	Integer vector containing the simple continued fraction expansion
n	Number of terms considered in the continued fraction expansion. If <i>n</i> is greater than the size
	of <i>cf</i> , then all terms in <i>cf</i> are considered.

Returns

Real representation of the simple continued fraction

6.1.2.20 double qpp::contfrac2x (const std::vector < int > & cf)

Real representation of a simple continued fraction.

Parameters

cf	Integer vector containing the simple continued fraction expansion

Returns

Real representation of the simple continued fraction

6.1.2.21 template < typename Derived > cmat qpp::cosm (const Eigen::MatrixBase < Derived > & A)

Matrix cos.

Parameters

Α	Eigen expression

Returns

Matrix cosine of A

6.1.2.22 template < typename OutputScalar , typename Derived > DynMat < OutputScalar > qpp::cwise (const Eigen::MatrixBase < Derived > & A, OutputScalar(*)(const typename Derived::Scalar &) f)

Functor.

Parameters

Α	Eigen expression
f	Pointer-to-function from scalars of A to OutputScalar

Returns

Component-wise f(A), as a dynamic matrix over the *OutputScalar* scalar field

6.1.2.23 template < typename Derived > Derived::Scalar qpp::det (const Eigen::MatrixBase < Derived > & A)

Determinant.

Α	Eigen expression
---	------------------

Returns

Determinant of A, as a scalar in the same scalar field as A. Returns $\pm \infty$ when the determinant overflows/underflows.

6.1.2.24 template < typename Derived > internal::IOManipEigen qpp::disp (const Eigen::MatrixBase < Derived > & A, double chop = qpp::chop)

Eigen expression ostream manipulator.

Parameters

Α	Eigen expression
chop	Set to zero the elements smaller in absolute value than <i>chop</i>

Returns

Instance of qpp::internal::internal::IOManipEigen

6.1.2.25 internal::IOManipEigen qpp::disp (cplx z, double chop = qpp::chop)

Complex number ostream manipulator.

Parameters

Z	Complex number (or any other type implicitly cast-able to std::complex <double>)</double>
chop	Set to zero the elements smaller in absolute value than <i>chop</i>

Returns

Instance of qpp::internal::internal::IOManipEigen

6.1.2.26 template < typename InputIterator > internal::IOManipRange < InputIterator > qpp::disp (const InputIterator & first, const InputIterator & last, const std::string & separator, const std::string & start = " [", const std::string & end = "] ")

Range ostream manipulator.

Parameters

first	Iterator to the first element of the range
last	Iterator to the last element of the range
separator	Separator
start	Left marking
end	Right marking

Returns

Instance of qpp::internal::internal::IOManipRange

Standard container ostream manipulator. The container must support std::begin(), std::end() and forward iteration.

X	Container
separator	Separator
start	Left marking
end	Right marking

Returns

Instance of qpp::internal::internal::IOManipRange

6.1.2.28 template<typename PointerType > internal::IOManipPointer<PointerType> qpp::disp (const PointerType * p, std::size_t n, const std::string & separator, const std::string & start = " [", const std::string & end = "] ")

C-style pointer ostream manipulator.

Parameters

X	Pointer to the first element
n	Number of elements to be displayed
separator	Separator
start	Left marking
end	Right marking

Returns

Instance of qpp::internal::internal::IOManipPointer

6.1.2.29 template < typename Derived > double qpp::entanglement (const Eigen::MatrixBase < Derived > & A, const std::vector < std::size_t > & dims)

Entanglement of the bi-partite pure state A.

Defined as the von-Neumann entropy of the reduced density matrix of one of the subsystems

See also

qpp::shannon()

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Entanglement, with the logarithm in base 2

6.1.2.30 template<typename Derived > DynColVect<cplx> qpp::evals (const Eigen::MatrixBase< Derived > & A)

Eigenvalues.

Α	Eigen expression
---	------------------

Returns

Eigenvalues of A, as a complex dynamic column vector

6.1.2.31 template<typename Derived > cmat qpp::evects (const Eigen::MatrixBase< Derived > & A)

Eigenvectors.

Parameters

Α	Eigen expression
---	------------------

Returns

Eigenvectors of A, as columns of a complex matrix

6.1.2.32 template < typename Derived > cmat qpp::expm (const Eigen::MatrixBase < Derived > & A)

Matrix exponential.

Parameters

Α	Eigen expression

Returns

Matrix exponential of A

6.1.2.33 template < typename Derived > cmat qpp::funm (const Eigen::MatrixBase < Derived > & A, cplx(*)(const cplx &) f)

Functional calculus f(A)

Parameters

Α	Eigen expression
f	Pointer-to-function from complex to complex

Returns

f(A)

6.1.2.34 std::size_t qpp::gcd (std::size_t m, std::size_t n)

Greatest common divisor of two non-negative integers.

Parameters

m	Non-negative integer

n Non-negative integer

Returns

Greatest common divisor of m and n

6.1.2.35 std::size_t qpp::gcd (const std::vector< std::size_t > & ns)

Greatest common divisor of a list of non-negative integers.

Parameters

ns List of non-negative integers

Returns

Greatest common divisor of all numbers in ns

6.1.2.36 template < typename Derived > double qpp::gconcurrence (const Eigen::MatrixBase < Derived > & A)

G-concurrence of the bi-partite pure state A.

Note

Both local dimensions must be equal

Uses qpp::logdet() to avoid overflows

See also

qpp::logdet()

Parameters

A Eigen expression	
--------------------	--

Returns

G-concurrence

6.1.2.37 template<typename Derived > DynMat<typename Derived::Scalar> qpp::grams (const std::vector< Derived > & Vs)

Gram-Schmidt orthogonalization.

Parameters

```
Vs std::vector of Eigen expressions as column vectors
```

Returns

Gram-Schmidt vectors of Vs as columns of a dynamic matrix over the same scalar field as its arguments

6.1.2.38 template<typename Derived > DynMat<typename Derived::Scalar> qpp::grams (const std::initializer_list< Derived > & Vs)

Gram-Schmidt orthogonalization.

Vs std::initializer_list of Eigen expressions as column vectors

Returns

Gram-Schmidt vectors of Vs as columns of a dynamic matrix over the same scalar field as its arguments

6.1.2.39 template<typename Derived > DynMat<typename Derived::Scalar> qpp::grams (const Eigen::MatrixBase< Derived > & A)

Gram-Schmidt orthogonalization.

Parameters

A Eigen expression, the input vectors are the columns of A

Returns

Gram-Schmidt vectors of the columns of A, as columns of a dynamic matrix over the same scalar field as A

6.1.2.40 template < typename Derived > DynColVect < double > qpp::hevals (const Eigen::MatrixBase < Derived > & A)

Hermitian eigenvalues.

Parameters

A Eigen expression

Returns

Eigenvalues of Hermitian A, as a real dynamic column vector

6.1.2.41 template < typename Derived > cmat qpp::hevects (const Eigen::MatrixBase < Derived > & A)

Hermitian eigenvectors.

Parameters

A | Eigen expression

Returns

Eigenvectors of Hermitian A, as columns of a complex matrix

6.1.2.42 template<typename Derived > DynMat<typename Derived::Scalar> qpp::inverse (const Eigen::MatrixBase< Derived > & A)

Inverse.

Parameters

Α	Eigen expression	n
---	------------------	---

Returns

Inverse of A, as a dynamic matrix over the same scalar field as A

6.1.2.43 std::vector<std::size_t> qpp::invperm (const std::vector< std::size_t > & perm)

Inverse permutation.

Parameters

perm	Permutation

Returns

Inverse of the permutation perm

6.1.2.44 template<typename T > DynMat<typename T::Scalar > qpp::kron (const T & head)

Kronecker product.

Used to stop the recursion for the variadic template version of qpp::kron())

Parameters

head	Eigen expression
------	------------------

Returns

Its argument head

6.1.2.45 template<typename T , typename... Args> DynMat<typename T::Scalar> qpp::kron (const T & head, const Args &... tail)

Kronecker product.

Parameters

head	Eigen expression
tail	Variadic Eigen expression (zero or more parameters)

Returns

Kronecker product of all input parameters, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

6.1.2.46 template < typename Derived > DynMat < typename Derived::Scalar > qpp::kron (const std::vector < Derived > & As)

Kronecker product.

As	std::vector of Eigen expressions
----	----------------------------------

Returns

Kronecker product of all elements in *As*, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

6.1.2.47 template < typename Derived > DynMat < typename Derived::Scalar > qpp::kron (const std::initializer_list < Derived > & As)

Kronecker product.

Parameters

As	std::initializer_list of Eigen expressions, such as {A1, A2,, Ak}

Returns

Kronecker product of all elements in As, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

6.1.2.48 template<typename Derived > DynMat<typename Derived::Scalar> qpp::kronpow (const Eigen::MatrixBase< Derived > & A, std::size_t n)

Kronecker power.

Parameters

ſ	Λ	Finan avagasing
	Α	Eigen expression
	n	Non-negative integer

Returns

Kronecker product of A with itself n times $A^{\otimes n}$, as a dynamic matrix over the same scalar field as A

6.1.2.49 std::size_t qpp::lcm (std::size_t m, std::size_t n)

Least common multiple of two positive integers.

Parameters

m	Positive integer
n	Positive integer

Returns

Least common multiple of m and n

6.1.2.50 std::size_t qpp::lcm (const std::vector< std::size_t > & ns)

Least common multiple of a list of positive integers.

ns	List of positive integers

Returns

Least common multiple of all numbers in ns

6.1.2.51 template < typename Derived > DynMat < typename Derived::Scalar > qpp::load (const std::string & fname)

Loads Eigen matrix from a binary file (internal format) in double precision.

The template parameter cannot be automatically deduced and must be explicitly provided, depending on the scalar field of the matrix that is being loaded.

Example:

```
// loads a previously saved Eigen dynamic complex matrix from "input.bin"
auto mat = load<cmat>("input.bin");
```

See also

qpp::loadMATLABmatrix()

Parameters

Α	Eigen expression
fname	Output file name

6.1.2.52 template < typename Derived > Derived qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)

Loads an Eigen dynamic matrix from a MATLAB .mat file, generic version.

This is the generic version that always throws *qpp::Exception::Type::UNDEFINED_TYPE*. It is specialized only for *qpp::dmat* and *qpp::cmat* (the only matrix types that can be loaded)

```
6.1.2.53 template<> dmat qpp::loadMATLABmatrix ( const std::string & mat_file, const std::string & var_name )
[inline]
```

Loads an Eigen dynamic matrix from a MATLAB .mat file, specialization for double matrices (qpp::dmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// loads a previously saved Eigen dynamic double matrix from the
MATLAB file "input.mat"
auto mat = loadMATLABmatrix<dmat>("input.mat");
```

Note

If var_name is a complex matrix, only the real part is loaded

mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be loaded

Returns

Eigen double dynamic matrix (qpp::dmat)

6.1.2.54 template<> cmat qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)
[inline]

Loads an Eigen dynamic matrix from a MATLAB .mat file, specialization for complex matrices (qpp::cmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// loads a previously saved Eigen dynamic complex matrix from the
MATLAB file "input.mat"
auto mat = loadMATLABmatrix<cmat>("input.mat");
```

Parameters

mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be loaded

Returns

Eigen complex dynamic matrix (qpp::cmat)

6.1.2.55 template<typename Derived > Derived::Scalar qpp::logdet (const Eigen::MatrixBase< Derived > & A)

Logarithm of the determinant.

Useful when the determinant overflows/underflows

Parameters

Α	Eigen expression

Returns

Logarithm of the determinant of A, as a scalar in the same scalar field as A

6.1.2.56 template < typename Derived > cmat qpp::logm (const Eigen::MatrixBase < Derived > & A)

Matrix logarithm.

Parameters

Α	Eigen expression

Returns

Matrix logarithm of A

6.1.2.57 template < typename Derived > double qpp::lognegativity (const Eigen::MatrixBase < Derived > & A, const std::vector < std::size_t > & dims)

Logarithmic negativity of the bi-partite mixed state A.

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Logarithmic negativity, with the logarithm in base 2

6.1.2.58 template < typename Derived > std::tuple < std::size_t, std::vector < double > , std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > & A, const std::vector < cmat > & Ks, const std::vector < std::size_t > & subsys, const std::vector < std::size_t > & dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

Note

The dimension of all Ks must match the dimension of subsys.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system

Returns

Tuple consisiting of the result of the measurement, the vector of outcome probabilities and the vector of postmeasurement normalized states

6.1.2.59 template < typename Derived > std::tuple < std::size_t, std::vector < double >, std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > & A, const std::initializer_list < cmat > & Ks, const std::vector < std::size_t > & subsys, const std::vector < std::size_t > & dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

Note

The dimension of all Ks must match the dimension of subsys.

Parameters

Α	Eigen expression
subsys	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system
Ks	Set of Kraus operators

Returns

Tuple consisiting of the result of the measurement, the vector of outcome probabilities and the vector of postmeasurement normalized states 6.1.2.60 template<typename Derived > std::tuple<std::size_t, std::vector<double>, std::vector<cmat> > qpp::measure (
 const Eigen::MatrixBase< Derived > & A, const std::vector< cmat > & Ks, const std::vector< std::size_t > &
 subsys, const std::size_t d = 2)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

Note

The dimension of all Ks must match the dimension of subsys.

Parameters

Α	Eigen expression
subsys	Subsystem indexes that are measured
d	Subsystem dimensions
Ks	Set of Kraus operators

Returns

Tuple consisiting of the result of the measurement, the vector of outcome probabilities and the vector of postmeasurement normalized states

6.1.2.61 template<typename Derived > std::tuple<std::size_t, std::vector<double>, std::vector<cmat> > qpp::measure (
 const Eigen::MatrixBase< Derived > & A, const std::initializer_list< cmat > & Ks, const std::vector< std::size_t >
 & subsys, const std::size_t d = 2)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

Note

The dimension of all Ks must match the dimension of subsys.

Parameters

Α	Eigen expression
subsys	Subsystem indexes that are measured
d	Subsystem dimensions
Ks	Set of Kraus operators

Returns

Tuple consisiting of the result of the measurement, the vector of outcome probabilities and the vector of postmeasurement normalized states

6.1.2.62 template < typename Derived > std::tuple < std::size_t, std::vector < double >, std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > & A, const cmat & U, const std::vector < std::size_t > & subsys, const std::vector < std::size_t > & dims)

Measures the part *subsys* of the multi-partite state A in the orthonormal basis specified by the unitary matrix U.

Note

The dimension of *U* must match the dimension of *subsys*.

A	Eigen expression
subsys	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system
U	Unitary matrix whose columns represent the measurement basis vectors

Returns

Tuple consisiting of the result of the measurement, the vector of outcome probabilities and the vector of postmeasurement normalized states

6.1.2.63 template < typename Derived > std::tuple < std::size_t, std::vector < double >, std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > & A, const cmat & U, const std::vector < std::size_t > & subsys, const std::size_t d = 2)

Measures the part subsys of the multi-partite state A in the orthonormal basis specified by the unitary matrix U.

Note

The dimension of *U* must match the dimension of *subsys*.

Parameters

Α	Eigen expression
subsys	Subsystem indexes that are measured
d	Subsystem dimensions
U	Unitary matrix whose columns represent the measurement basis vectors

Returns

Tuple consisiting of the result of the measurement, the vector of outcome probabilities and the vector of post-measurement normalized states

6.1.2.64 template < typename Derived > std::tuple < std::size_t, std::vector < double > , std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > & A, const std::vector < cmat > & Ks)

Measures the state A using the set of Kraus operators Ks.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators

Returns

Tuple consisiting of the result of the measurement, the vector of outcome probabilities and the vector of postmeasurement normalized states

Measures the state A using the set of Kraus operators Ks.

Α	Eigen expression
Ks	Set of Kraus operators

Returns

Tuple consisiting of the result of the measurement, the vector of outcome probabilities and the vector of postmeasurement normalized states

6.1.2.66 template < typename Derived > std::tuple < std::size_t, std::vector < double > , std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > & A, const cmat & U)

Measures the state A in the orthonormal basis specified by the unitary matrix U.

Parameters

Α	Eigen expression
U	Unitary matrix whose columns represent the measurement basis vectors

Returns

Tuple consisiting of the result of the measurement, the vector of outcome probabilities and the vector of postmeasurement normalized states

6.1.2.67 ket qpp::mket (const std::vector < std::size_t > & mask, const std::vector < std::size_t > & dims)

Multi-partite qudit ket.

Constructs the multi-partite qudit ket $|mask\rangle$, where mask is a std::vector of non-negative integers. Each element in mask has to be smaller than the corresponding element in dims.

Parameters

mask	std::vector of non-negative integers
dims	Dimensions of the multi-partite system

Returns

Multi-partite qudit state vector, as a complex dynamic column vector

6.1.2.68 ket qpp::mket (const std::vector < std::size_t > & mask, std::size_t d = 2)

Multi-partite qudit ket.

Constructs the multi-partite qudit ket $|mask\rangle$, all subsystem having equal dimension d. mask is a std::vector of non-negative integers, and each element in mask has to be strictly smaller than d.

Parameters

mask	std::vector of non-negative integers
d	Subsystem dimensions

Returns

Multi-partite qudit state vector, as a complex dynamic column vector

6.1.2.69 cmat qpp::mprj (const std::vector < std::size_t > & mask, const std::vector < std::size_t > & dims)

Projector onto multi-partite qudit ket.

Constructs the projector onto the multi-partite qudit ket $|mask\rangle$, where mask is a std::vector of non-negative integers. Each element in mask has to be smaller than the corresponding element in dims.

Parameters

mask	std::vector of non-negative integers
dims	Dimensions of the multi-partite system

Returns

Projector onto multi-partite qudit state vector, as a complex dynamic matrix

6.1.2.70 cmat qpp::mprj (const std::vector < std::size_t > & mask, std::size_t d = 2)

Projector onto multi-partite qudit ket.

Constructs the projector onto the multi-partite qudit ket $|mask\rangle$, all subsystem having equal dimension *d. mask* is a std::vector of non-negative integers, and each element in *mask* has to be strictly smaller than *d*.

Parameters

mask	std::vector of non-negative integers
d	Subsystem dimensions

Returns

Projector onto multi-partite qudit state vector, as a complex dynamic matrix

6.1.2.71 std::size_t qpp::multiidx2n (const std::vector< std::size_t > & midx, const std::vector< std::size_t > & dims)

Multi-index to non-negative integer index.

Uses standard lexicographical order, i.e. 00...0, 00...1 etc.

Parameters

midx	Multi-index
dims	Dimensions of the multi-partite system

Returns

Non-negative integer index

 $6.1.2.72 \quad \text{std::vector} < \text{std::size_t} > \text{qpp::n2multiidx} \ (\ \text{std::size_t} \ \textit{n, } \ \text{const std::vector} < \text{std::size_t} > \& \ \textit{dims} \)$

Non-negative integer index to multi-index.

Uses standard lexicographical order, i.e. 00...0, 00...1 etc.

Parameters

n	Non-negative integer index
dims	Dimensions of the multi-partite system

Returns

Multi-index of the same size as dims

6.1.2.73 template < typename Derived > double qpp::negativity (const Eigen::MatrixBase < Derived > & A, const std::vector < std::size_t > & dims)

Negativity of the bi-partite mixed state A.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Negativity

6.1.2.74 template < typename Derived > double qpp::norm (const Eigen::MatrixBase < Derived > & A)

Frobenius norm.

Parameters

	Α	Eigen expression	
--	---	------------------	--

Returns

Frobenius norm of A, as a real number

6.1.2.75 std::complex<double> qpp::omega (std::size_t D)

D-th root of unity.

Parameters

D	Non-negative integer
---	----------------------

Returns

D-th root of unity $\exp(2\pi i/D)$

6.1.2.76 constexpr std::complex<double> qpp::operator""_i (unsigned long long int x)

User-defined literal for complex $i = \sqrt{-1}$ (integer overload)

Example:

```
auto z = 4_i; // type of z is std::complex<double>
```

6.1.2.77 constexpr std::complex<double> qpp::operator""_i (long double x)

User-defined literal for complex $i = \sqrt{-1}$ (real overload)

Example:

```
auto z = 4.5_i; // type of z is std::complex<double>
```

6.1.2.78 template<typename Derived > DynMat<typename Derived::Scalar> qpp::powm (const Eigen::MatrixBase< Derived > & A, std::size_t n)

Matrix power.

Explicitly multiplies the matrix *A* with itself *n* times. By convention $A^0 = I$.

Parameters

Α	Eigen expression
n	Non-negative integer

Returns

Matrix power A^n , as a dynamic matrix over the same scalar field as A

6.1.2.79 template<typename Derived > DynMat<typename Derived::Scalar> qpp::prj (const Eigen::MatrixBase< Derived > & V)

Projector.

Normalized projector onto state vector

Parameters

V	Eigen expression

Returns

Projector onto the state vector V, or the matrix Zero if V has norm zero (i.e. smaller than qpp::eps), as a dynamic matrix over the same scalar field as A

6.1.2.80 template < typename Derived > Derived::Scalar qpp::prod (const Eigen::MatrixBase < Derived > & A)

Element-wise product of A.

Parameters

A Eigen expression

Returns

Element-wise product of A, as a scalar in the same scalar field as A

6.1.2.81 template<typename InputIterator > auto qpp::prod (InputIterator first, InputIterator last) -> typename InputIterator::value_type

Element-wise product of a range.

first	Iterator to the first element of the range
last	Iterator to the last element of the range

Returns

Element-wise product of the range, as a scalar in the same scalar field as the range

6.1.2.82 template<typename Derived > DynMat<typename Derived::Scalar> qpp::ptrace (const Eigen::MatrixBase < Derived > & A, const std::vector< std::size_t > & subsys, const std::vector< std::size_t > & dims)

Partial trace.

Partial trace of the multi-partite density matrix over a list of subsystems

Parameters

Α	Eigen expression
subsys	Subsystem indexes
dims	Dimensions of the multi-partite system

Returns

Partial trace $Tr_{subsys}(\cdot)$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field as A

6.1.2.83 template<typename Derived > DynMat<typename Derived::Scalar> qpp::ptrace1 (const Eigen::MatrixBase< Derived > & A, const std::vector< std::size_t > & dims)

Partial trace.

Partial trace of density matrix over the first subsystem in a bi-partite system

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system (must be a std::vector with 2 elements)

Returns

Partial trace $Tr_A(\cdot)$ over the first subsytem A in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field as A

6.1.2.84 template<typename Derived > DynMat<typename Derived::Scalar> qpp::ptrace2 (const Eigen::MatrixBase< Derived > & A, const std::vector< std::size_t > & dims)

Partial trace.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system (must be a std::vector with 2 elements)

Returns

Partial trace $Tr_B(\cdot)$ over the second subsystem B in a bi-partite system $A \otimes B$, as a dynamic matrix over the same scalar field as A

Partial transpose.

Partial transpose of the multi-partite density matrix over a list of subsystems

Parameters 4 6 1

Α	Eigen expression
subsys	Subsystem indexes
dims	Dimensions of the multi-partite system

Returns

Partial transpose $(\cdot)^{T_{subsys}}$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field as A

6.1.2.86 template<typename Derived > double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > & A, const std::vector< std::size_t > & subsysB, const std::vector< std::size_t > & dims)

Quantum mutual information between 2 subsystems of a composite system.

Parameters

Α	Eigen expression
subsysA	Indexes of the first subsystem
subsysB	Indexes of the second subsystem
dims	Dimensions of the multi-partite system

Returns

Mutual information between the 2 subsystems

6.1.2.87 template < typename Derived > Derived qpp::rand (std::size t rows, std::size t cols, double a = 0, double b = 1)

Generates a random matrix with entries uniformly distributed in the interval [a, b)

If complex, then both real and imaginary parts are uniformly distributed in [a, b)

This is the generic version that always throws *qpp::Exception::Type::UNDEFINED_TYPE*. It is specialized only for *qpp::dmat* and *qpp::cmat*

6.1.2.88 template<> dmat qpp::rand (std::size_t rows, std::size_t cols, double a, double b) [inline]

Generates a random real matrix with entries uniformly distributed in the interval [a, b), specialization for double matrices (*qpp::dmat*)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXd, with entries uniformly distributed in [-1,1) auto mat = rand<dmat>(3, 3, -1, 1);
```

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
а	Beginning of the interval, belongs to it
b	End of the interval, does not belong to it

Returns

Random real matrix

```
6.1.2.89 template<> cmat qpp::rand ( std::size_t rows, std::size_t cols, double a, double b ) [inline]
```

Generates a random complex matrix with entries (both real and imaginary) uniformly distributed in the interval [a, b), specialization for complex matrices (*qpp::cmat*)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXcd, with entries (both real and imaginary) uniformly distributed
    in [-1,1)
auto mat = rand<cmat>(3, 3, -1, 1);
```

Parameters

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
а	Beginning of the interval, belongs to it
b	End of the interval, does not belong to it

Returns

Random complex matrix

```
6.1.2.90 double qpp::rand ( double a = 0, double b = 1 )
```

Generates a random real number uniformly distributed in the interval [a, b)

Parameters

а	Beginning of the interval, belongs to it
b	End of the interval, does not belong to it

Returns

Random real number (double) uniformly distributed in the interval $[a,\,b)$

6.1.2.91 cmat qpp::randH (std::size_t D)

Generates a random Hermitian matrix.

Parameters

D Dimension of the Hilbert space

Returns

Random Hermitian matrix

Generates a random integer (int) uniformly distributed in the interval [a, b].

Parameters

а	Beginning of the interval, belongs to it
b	End of the interval, does not belong to it

Returns

Random integer (int) uniformly distributed in the interval [a, b]

```
6.1.2.93 ket qpp::randket ( std::size_t D )
```

Generates a random normalized ket (pure state vector)

Parameters

D	Dimension of the Hilbert space

Returns

Random normalized ket

```
6.1.2.94 std::vector<cmat> qpp::randkraus ( std::size_t N, std::size_t D )
```

Generates a set of random Kraus operators.

Note

The set of Kraus operators satisfy the closure condition $\sum_i K_i^{\dagger} K_i = I$

Parameters

N	Number of Kraus operators
D	Dimension of the Hilbert space

Returns

Set of \emph{N} Kraus operators satisfying the closure condition

```
6.1.2.95 template<typename Derived > Derived qpp::randn ( std::size_t rows, std::size_t cols, double mean = 0, double sigma = 1 )
```

Generates a random matrix with entries normally distributed in N(mean, sigma)

If complex, then both real and imaginary parts are normally distributed in N(mean, sigma)

This is the generic version that always throws *qpp::Exception::Type::UNDEFINED_TYPE*. It is specialized only for *qpp::dmat* and *qpp::cmat*

6.1.2.96 template <> dmat qpp::randn (std::size_t rows, std::size_t cols, double mean, double sigma) [inline]

Generates a random real matrix with entries normally distributed in N(mean, sigma), specialization for double matrices (*qpp::dmat*)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXd, with entries normally distributed in N(0,2) auto mat = randn<dmat>(3, 3, 0, 2);
```

Parameters

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
mean	Mean
sigma	Standard deviation

Returns

Random real matrix

```
6.1.2.97 template<> cmat qpp::randn ( std::size_t rows, std::size_t cols, double mean, double sigma ) [inline]
```

Generates a random complex matrix with entries (both real and imaginary) normally distributed in N(mean, sigma), specialization for complex matrices (*qpp::cmat*)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXcd, with entries (both real and imaginary) normally distributed in N(0,2) auto mat = randn<cmat>(3, 3, 0, 2);
```

Parameters

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
mean	Mean
sigma	Standard deviation

Returns

Random complex matrix

```
6.1.2.98 double qpp::randn ( double mean = 0, double sigma = 1 )
```

Generates a random real number (double) normally distributed in N(mean, sigma)

Parameters

mean	Mean
sigma	Standard deviation

Returns

Random real number normally distributed in N(mean, sigma)

6.1.2.99 std::vector<std::size_t> qpp::randperm (std::size_t n)

Generates a random uniformly distributed permutation.

Uses Knuth's shuffle method (as implemented by std::shuffle), so that all permutations are equally probable

Parameters

n Size of the permutation

Returns

Random permutation of size n

6.1.2.100 cmat qpp::randrho (std::size_t D)

Generates a random density matrix.

Parameters

D Dimension of the Hilbert space

Returns

Random density matrix

6.1.2.101 cmat qpp::randU (std::size_t D)

Generates a random unitary matrix.

Parameters

D	Dimension of the Hilbert space
---	--------------------------------

Returns

Random unitary

6.1.2.102 cmat qpp::randV (std::size_t Din, std::size_t Dout)

Generates a random isometry matrix.

Parameters

Din	Size of the input Hilbert space
Dout	Size of the output Hilbert space

Returns

Random isometry matrix

6.1.2.103 template < typename Derived > double qpp::renyi (const Eigen::MatrixBase < Derived > & A, double alpha)

Renyi- α entropy of the probability distribution/density matrix A, for $\alpha \geq 0$.

Α	Eigen expression, representing a probability distribution (real dynamic column vector) or a
	density matrix (complex dynamic matrix)
alpha	Non-negative real number, use qpp::infty for $\alpha = \infty$

Returns

Renyi- α entropy, with the logarithm in base 2

6.1.2.104 template<typename Derived > DynMat<typename Derived::Scalar> qpp::reshape (const Eigen::MatrixBase< Derived > & A, std::size_t rows, std::size_t cols)

Reshape.

Uses column-major order when reshaping (same as MATLAB)

Parameters

Α	Eigen expression
rows	Number of rows of the reshaped matrix
cols	Number of columns of the reshaped matrix

Returns

Reshaped matrix with rows rows and cols columns, as a dynamic matrix over the same scalar field as A

6.1.2.105 template<typename Derived > DynColVect<typename Derived::Scalar> qpp::rho2pure (const Eigen::MatrixBase< Derived > & A)

Finds the pure state representation of a matrix proportional to a projector onto a pure state.

Note

No purity check is done, the input state *A* must have rank one, otherwise the function returs the first non-zero eigenvector of *A*

Parameters

Α	Eigen expression, assumed to be proportional to a projector onto a pure state, i.e. A is
	assumed to have rank one

Returns

The unique non-zero eigenvector of A, as a dynamic column vector over the same scalar field as A

6.1.2.106 template < typename Derived > void qpp::save (const Eigen::MatrixBase < Derived > & A, const std::string & fname)

Saves Eigen expression to a binary file (internal format) in double precision.

See also

qpp::saveMATLABmatrix()

Α	Eigen expression
fname	Output file name

6.1.2.107 template<typename Derived > void qpp::saveMATLABmatrix (const Eigen::MatrixBase< Derived > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode)

Saves an Eigen dynamic matrix to a MATLAB .mat file, generic version.

This is the generic version that always throws *qpp::Exception::Type::UNDEFINED_TYPE*. It is specialized only for *qpp::dmat* and *qpp::cmat* (the only matrix types that can be saved)

6.1.2.108 template <> void qpp::saveMATLABmatrix (const Eigen::MatrixBase < dmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode) [inline]

Saves an Eigen dynamic matrix to a MATLAB .mat file, specialization for double matrices (qpp::dmat)

Parameters

Α	Eigen expression over the complex field
mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be saved
mode	Saving mode (append, overwrite etc.), see MATLAB's matOpen() documentation for details

6.1.2.109 template<> void qpp::saveMATLABmatrix (const Eigen::MatrixBase< cmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode) [inline]

Saves an Eigen dynamic matrix to a MATLAB .mat file, specialization for complex matrices (qpp::cmat)

Parameters

Α	Eigen expression over the complex field
mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be saved
mode	Saving mode (append, overwrite etc.), see MATLAB's matOpen() documentation for details

6.1.2.110 template<typename Derived > double qpp::schatten (const Eigen::MatrixBase< Derived > & A, std::size_t p)

Schatten norm.

Parameters

Α	Eigen expression
р	Integer, greater or equal to 1

Returns

Schatten-p norm of A, as a real number

6.1.2.111 template < typename Derived > DynColVect < cplx > qpp::schmidtcoeff (const Eigen::MatrixBase < Derived > & A, const std::vector < std::size_t > & dims)

Schmidt coefficients of the bi-partite pure state *A*.

Note

The sum of the squares of the Schmidt coefficients equals 1

See also

qpp::schmidtprob()

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Schmidt coefficients of A, as a complex dynamic column vector

6.1.2.112 template < typename Derived > DynColVect < double > qpp::schmidtprob (const Eigen::MatrixBase < Derived > & A, const std::vector < std::size_t > & dims)

Schmidt probabilities of the bi-partite pure state A.

Defined as the squares of the Schmidt coefficients. The sum of the Schmidt probabilities equals 1.

See also

qpp::schmidtcoeff()

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Schmidt probabilites of A, as a real dynamic column vector

6.1.2.113 template<typename Derived > cmat qpp::schmidtU (const Eigen::MatrixBase< Derived > & A, const std::vector< std::size t > & dims)

Schmidt basis on Alice's side.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Unitary matrix \boldsymbol{U} whose columns represent the Schmidt basis vectors on Alice's side.

6.1.2.114 template < typename Derived > cmat qpp::schmidtV (const Eigen::MatrixBase < Derived > & A, const std::vector < std::size_t > & dims)

Schmidt basis on Bob's side.

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Unitary matrix V whose columns represent the Schmidt basis vectors on Bob's side.

6.1.2.115 template < typename Derived > double qpp::shannon (const Eigen::MatrixBase < Derived > & A)

Shannon/von-Neumann entropy of the probability distribution/density matrix A.

Parameters

Α	Eigen expression, representing a probability distribution (real dynamic column vector) or a
	density matrix (complex dynamic matrix)

Returns

Shannon/von-Neumann entropy, with the logarithm in base 2

6.1.2.116 template < typename Derived > cmat qpp::sinm (const Eigen::MatrixBase < Derived > & A)

Matrix sin.

Parameters

Α	Eigen expression

Returns

Matrix sine of A

6.1.2.117 template < typename Derived > cmat qpp::spectralpowm (const Eigen::MatrixBase < Derived > & A, const cplx z)

Matrix power.

Uses the spectral decomposition of A to compute the matrix power. By convention $A^0 = I$.

Parameters

Α	Eigen expression
Z	Complex number

Returns

Matrix power A^z

6.1.2.118 template<typename Derived > cmat qpp::sqrtm (const Eigen::MatrixBase< Derived > & A)

Matrix square root.

Α	Eigen expression
---	------------------

Returns

Matrix square root of A

6.1.2.119 template < typename Derived > Derived::Scalar qpp::sum (const Eigen::MatrixBase < Derived > & A)

Element-wise sum of A.

Parameters

Α	Eigen expression

Returns

Element-wise sum of A, as a scalar in the same scalar field as A

6.1.2.120 template<typename InputIterator > auto qpp::sum (InputIterator first, InputIterator last) -> typename InputIterator::value_type

Element-wise sum of a range.

Parameters

first	Iterator to the first element of the range
last	Iterator to the last element of the range

Returns

Element-wise sum of the range, as a scalar in the same scalar field as the range

6.1.2.121 cmat qpp::super (const std::vector < cmat > & Ks)

Superoperator matrix representation.

Constructs the superoperator matrix of the channel specified by the set of Kraus operators Ks in the standard operator basis $\{|i\rangle\langle j|\}$ ordered in lexicographical order, i.e. $|0\rangle\langle 0|$, $|0\rangle\langle 1|$ etc.

Parameters

|--|

Returns

Superoperator matrix representation

6.1.2.122 template<typename Derived > DynColVect<double> qpp::svals (const Eigen::MatrixBase< Derived > & A)

Singular values.

Α	Eigen expression
---	------------------

Returns

Singular values of A, as a real dynamic column vector

6.1.2.123 template<typename Derived > cmat qpp::svdU (const Eigen::MatrixBase< Derived > & A)

Left singular vectors.

Parameters

Α	Eigen expression

Returns

Complex dynamic matrix, whose columns are the left singular vectors of A

6.1.2.124 template<typename Derived > cmat qpp::svdV (const Eigen::MatrixBase< Derived > & A)

Right singular vectors.

Parameters

Α	Eigen expression

Returns

Complex dynamic matrix, whose columns are the right singular vectors of A

6.1.2.125 template<typename Derived > DynMat<typename Derived::Scalar> qpp::syspermute (const Eigen::MatrixBase< Derived > & A, const std::vector< std::size_t > & perm, const std::vector< std::size_t > & dims)

System permutation.

Permutes the subsystems in a state vector or density matrix. The qubit perm[i] is permuted to the location i.

Parameters

Α	Eigen expression
perm	Permutation
dims	Dimensions of the multi-partite system

Returns

Permuted system, as a dynamic matrix over the same scalar field as A

6.1.2.126 template<typename Derived > Derived::Scalar qpp::trace (const Eigen::MatrixBase< Derived > & A)

Trace.

A	Eigen expression
/ ·	Ligen expression

Returns

Trace of A, as a scalar in the same scalar field as A

6.1.2.127 template<typename Derived > DynMat<typename Derived::Scalar> qpp::transpose (const Eigen::MatrixBase< Derived > & A)

Transpose.

Parameters

Α	Eigen expression

Returns

Transpose of A, as a dynamic matrix over the same scalar field as A

6.1.2.128 template < typename Derived > double qpp::tsallis (const Eigen::MatrixBase < Derived > & A, double alpha)

Tsallis- α entropy of the probability distribution/density matrix A, for $\alpha \geq 0$.

When $\alpha \to 1$ the Tsallis entropy converges to the Shannon/von-Neumann entropy, with the logarithm in base e

Α	Eigen expression, representing a probability distribution (real dynamic column vector) or a
	density matrix (complex dynamic matrix)
alpha	Non-negative real number

Returns

Renyi- α entropy, with the logarithm in base 2

6.1.2.129 std::vector<int> qpp::x2contfrac (double x, std::size_t n, std::size_t cut = 1e5)

Simple continued fraction expansion.

Parameters

X	Real number
n	Number of terms in the expansion
cut	Stop the expansion when the next term is greater than <i>cut</i>

Returns

Integer vector containing the simple continued fraction expansion of x. If there are m less than n terms in the expansion, a shorter vector with m components is returned.

6.1.3 Variable Documentation

6.1.3.1 constexpr double qpp::chop = 1e-10

Used in qpp::disp() and qpp::displn() for setting to zero numbers that have their absolute value smaller than qpp← ::ct::chop.

```
6.1.3.2 const Codes& qpp::codes = Codes::get_instance()
qpp::Codes const Singleton
Initializes the codes, see the class qpp::Codes
6.1.3.3 constexpr double qpp::ee = 2.718281828459045235360287471352662497
Base of natural logarithm, e.
6.1.3.4 constexpr double qpp::eps = 1e-12
Used to decide whether a number or expression in double precision is zero or not.
Example:
if(std::abs(x) < qpp::eps) // x is zero</pre>
6.1.3.5 const Gates& qpp::gt = Gates::get_instance()
qpp::Gates const Singleton
Initializes the gates, see the class qpp::Gates
6.1.3.6 constexpr std::size_t qpp::infty = -1
Used to denote infinity.
6.1.3.7 const Init& qpp::init = Init::get_instance()
qpp::Init const Singleton
Additional initializations/cleanups
6.1.3.8 constexpr std::size_t qpp::maxn = 64
Maximum number of qubits.
Used internally to allocate arrays on the stack (for speed reasons)
6.1.3.9 constexpr double qpp::pi = 3.141592653589793238462643383279502884
\pi
6.1.3.10 RandomDevices& qpp::rdevs = RandomDevices::get_instance()
qpp::RandomDevices Singleton
Initializes the random devices, see the class qpp::RandomDevices
6.1.3.11 const States& qpp::st = States::get_instance()
qpp::States const Singleton
Initializes the states, see the class qpp::States
```

6.2 qpp::experimental Namespace Reference

6.2.1 Detailed Description

Experimental/test functions/classes, do not use or modify these functions/classes

6.3 qpp::internal Namespace Reference

Classes

- class IOManipEigen
- · class IOManipPointer
- class IOManipRange
- class Singleton

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

Functions

- void _n2multiidx (std::size_t n, std::size_t numdims, const std::size_t *dims, std::size_t *result)
- std::size_t _multiidx2n (const std::size_t *midx, std::size_t numdims, const std::size_t *dims)
- template<typename Derived >

bool _check_square_mat (const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ \text{template}{<} \text{typename Derived} >$

bool <u>_check_vector</u> (const Eigen::MatrixBase< Derived > &A)

template<typename Derived >

bool check row vector (const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ \text{template}{<} \text{typename Derived} >$

bool check col vector (const Eigen::MatrixBase< Derived > &A)

- template<typename T >
 - bool <u>_check_nonzero_size</u> (const T &x)
- bool <u>_check_dims</u> (const std::vector < std::size_t > &dims)
- $\bullet \ \ \mathsf{template}{<}\mathsf{typename} \ \mathsf{Derived}>$

bool _check_dims_match_mat (const std::vector< std::size_t > &dims, const Eigen::MatrixBase< Derived > &A)

 $\bullet \ \ \text{template}{<} \text{typename Derived} >$

 $\label{local_bool} \begin{tabular}{ll} bool_check_dims_match_cvect (const std::vector < std::size_t > \&dims, const Eigen::MatrixBase < Derived > \&V) \end{tabular}$

• template<typename Derived >

bool _check_dims_match_rvect (const std::vector< std::size_t > &dims, const Eigen::MatrixBase< Derived > &V)

- bool check eq dims (const std::vector< std::size t > &dims, std::size t dim)
- bool _check_subsys_match_dims (const std::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)
- bool <u>_check_perm</u> (const std::vector< std::size_t > &perm)
- template<typename Derived1 , typename Derived2 >

 $\begin{tabular}{ll} DynMat &< typename Derived 1 :: Scalar > _kron 2 (const Eigen :: Matrix Base &< Derived 1 > \&A, const Eigen :: Watrix Base &< Derived 2 > \&B) \\ \end{tabular}$

• template<typename T >

void variadic vector emplace (std::vector< T > &)

template<typename T, typename First, typename... Args>
 void variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&...args)

6.3.1 Detailed Description

Internal implementation details, do not use/modify these functions/classes

- 6.3.2 Function Documentation
- 6.3.2.1 template < typename Derived > bool qpp::internal::_check_col_vector (const Eigen::MatrixBase < Derived > & A)
- 6.3.2.2 bool qpp::internal::_check_dims (const std::vector < std::size_t > & dims)
- 6.3.2.3 template<typename Derived > bool qpp::internal::_check_dims_match_cvect (const std::vector< std::size_t > & dims, const Eigen::MatrixBase< Derived > & V)
- 6.3.2.4 template<typename Derived > bool qpp::internal::_check_dims_match_mat (const std::vector< std::size_t > & dims, const Eigen::MatrixBase< Derived > & A)
- 6.3.2.5 template<typename Derived > bool qpp::internal::_check_dims_match_rvect (const std::vector< std::size_t > & dims, const Eigen::MatrixBase< Derived > & V)
- 6.3.2.6 bool qpp::internal::_check_eq_dims (const std::vector < std::size_t > & dims, std::size_t dim)
- 6.3.2.7 template<typename T > bool qpp::internal::_check_nonzero_size (const T & x)
- 6.3.2.8 bool gpp::internal::_check_perm (const std::vector < std::size_t > & perm)
- 6.3.2.9 template < typename Derived > bool qpp::internal::_check_row_vector (const Eigen::MatrixBase < Derived > & A)
- 6.3.2.10 template < typename Derived > bool qpp::internal::_check_square_mat (const Eigen::MatrixBase < Derived > & A)
- 6.3.2.11 bool qpp::internal::_check_subsys_match_dims (const std::vector< std::size_t > & subsys, const std::vector< std::size_t > & dims)
- 6.3.2.12 template < typename Derived > bool qpp::internal::_check_vector (const Eigen::MatrixBase < Derived > & A)
- 6.3.2.14 std::size_t qpp::internal::_multiidx2n (const std::size_t * midx, std::size_t numdims, const std::size_t * dims) [inline]
- 6.3.2.15 void qpp::internal::_n2multiidx (std::size_t n, std::size_t
- 6.3.2.16 template<typename T > void qpp::internal::variadic_vector_emplace (std::vector< T > &)
- $\begin{array}{ll} \textbf{6.3.2.17} & \textbf{template} \negthinspace < \negthinspace \textbf{typename} \ \textbf{T} \ , \ \textbf{typename...} \ \textbf{Args} \negthinspace > \negthinspace \textbf{void} \ \textbf{qpp::internal::variadic_vector_emplace} \ (\\ \textbf{std::vector} \negthinspace < \negthinspace \textbf{T} \negthinspace > \negthinspace \textbf{\&} \ \textit{v}, \ \textbf{First} \ \&\& \ \textit{first}, \ \textbf{Args} \ \&\&... \ \textit{args} \) \end{array}$

Namespace	Docume	ntation
Hairiespace	Docume	riitatioi

Chapter 7

Class Documentation

7.1 qpp::Codes Class Reference

const Singleton class that defines quantum error correcting codes

#include <codes.h>

Inheritance diagram for qpp::Codes:

Collaboration diagram for qpp::Codes:

Public Types

enum Type { Type::FIVE_QUBIT = 1, Type::SEVEN_QUBIT_STEANE, Type::NINE_QUBIT_SHOR }
 Code types, add more codes here if needed.

Public Member Functions

ket codeword (Type type, std::size_t i) const
 Returns the codeword of the specified code.

Private Member Functions

• Codes ()

Default constructor.

Friends

class internal::Singleton < const Codes >

Additional Inherited Members

7.1.1 Detailed Description

const Singleton class that defines quantum error correcting codes

7.1.2 Member Enumeration Documentation

```
7.1.2.1 enum qpp::Codes::Type [strong]
```

Code types, add more codes here if needed.

See also

```
qpp::Codes::codeword()
```

Enumerator

```
FIVE_QUBIT [[5,1,3]] qubit code
SEVEN_QUBIT_STEANE [[7,1,3]] Steane qubit code
NINE_QUBIT_SHOR [[9,1,3]] Shor qubit code
```

7.1.3 Constructor & Destructor Documentation

```
7.1.3.1 qpp::Codes::Codes( ) [inline],[private]
```

Default constructor.

7.1.4 Member Function Documentation

7.1.4.1 ket qpp::Codes::codeword (Type type, std::size_t i) const [inline]

Returns the codeword of the specified code.

Parameters

type	Code type, defined in the enum qpp::Codes::Types
i	Codeword index

Returns

i-th codeword of the code type

7.1.5 Friends And Related Function Documentation

7.1.5.1 friend class internal::Singleton< **const Codes** > [friend]

The documentation for this class was generated from the following file:

• include/classes/codes.h

7.2 qpp::Exception Class Reference

Generates custom exceptions, used when validating function parameters.

#include <exception.h>

Inheritance diagram for qpp::Exception:

Collaboration diagram for qpp::Exception:

Public Types

• enum Type {

Type::UNKNOWN_EXCEPTION = 1, Type::ZERO_SIZE, Type::MATRIX_NOT_SQUARE, Type::MATRIX_← NOT_CVECTOR,

Type::MATRIX_NOT_RVECTOR, Type::MATRIX_NOT_VECTOR, Type::MATRIX_NOT_SQUARE_OR_C↔ VECTOR, Type::MATRIX_NOT_SQUARE_OR_RVECTOR,

Type::MATRIX_NOT_SQUARE_OR_VECTOR, Type::MATRIX_MISMATCH_SUBSYS, Type::DIMS_INVA← LID, Type::DIMS_NOT_EQUAL,

Type::DIMS_MISMATCH_MATRIX, Type::DIMS_MISMATCH_CVECTOR, Type::DIMS_MISMATCH_RVE← CTOR, Type::DIMS MISMATCH VECTOR,

Type::SUBSYS_MISMATCH_DIMS, Type::NOT_QUBIT_GATE, Type::NOT_QUBIT_SUBSYS, Type::NOT← _BIPARTITE,

Type::NO_CODEWORD, Type::PERM_INVALID, Type::OUT_OF_RANGE, Type::TYPE_MISMATCH, Type::UNDEFINED_TYPE, Type::CUSTOM_EXCEPTION }

Exception types, add more exceptions here if needed.

Public Member Functions

• Exception (const std::string &where, const Type &type)

Constructs an exception.

• Exception (const std::string &where, const std::string &custom)

Constructs an exception.

• virtual const char * what () const noexceptoverride

Overrides std::exception::what()

Private Member Functions

• std::string _construct_exception_msg ()

Constructs the exception's description from its type.

Private Attributes

- · std::string _where
- std::string _msg
- Type _type
- std::string custom

7.2.1 Detailed Description

Generates custom exceptions, used when validating function parameters.

Customize this class if more exceptions are needed

7.2.2 Member Enumeration Documentation

7.2.2.1 enum qpp::Exception::Type [strong]

Exception types, add more exceptions here if needed.

See also

qpp:Exception::_construct_exception_msg()

Enumerator

UNKNOWN EXCEPTION UNKNOWN EXCEPTION. Unknown exception

ZERO_SIZE ZERO SIZE. Zero sized object, e.g. empty Eigen::Matrix or std::vector with no elements

MATRIX_NOT_SQUARE MATRIX_NOT_SQUARE. Eigen::Matrix is not square

MATRIX_NOT_CVECTOR MATRIX_NOT_CVECTOR. Eigen::Matrix is not a column vector

MATRIX_NOT_RVECTOR MATRIX NOT RVECTOR. Eigen::Matrix is not a row vector

MATRIX_NOT_VECTOR MATRIX_NOT_VECTOR. Eigen::Matrix is not a row/column vector

MATRIX_NOT_SQUARE_OR_CVECTOR MATRIX_NOT_SQUARE_OR_CVECTOR. Eigen::Matrix is not square nor a column vector

MATRIX_NOT_SQUARE_OR_RVECTOR MATRIX_NOT_SQUARE_OR_RVECTOR. Eigen::Matrix is not square nor a row vector

MATRIX_NOT_SQUARE_OR_VECTOR MATRIX_NOT_SQUARE_OR_VECTOR. Eigen::Matrix is not square nor a row/column vector

MATRIX_MISMATCH_SUBSYS MATRIX_MISMATCH_SUBSYS.

DIMS_INVALID DIMS_INVALID. Matrix size mismatch subsystem sizes (e.g. in qpp::apply(), or qpp← ::channel() std::vector<std::size_t> representing the dimensions has zero size or contains zeros

DIMS_NOT_EQUAL DIMS_NOT_EQUAL. std::vector<std::size_t> representing the dimensions contains non-equal elements

DIMS_MISMATCH_MATRIX DIMS_MISMATCH_MATRIX. Product of the dimenisons' std::vector<std↔ ::size t> is not equal to the number of rows of Eigen::Matrix (assumed to be square)

DIMS_MISMATCH_CVECTOR DIMS_MISMATCH_CVECTOR. Product of the dimenisons' std::vector<std↔ ::size_t> is not equal to the number of cols of Eigen::Matrix (assumed to be a column vector)

DIMS_MISMATCH_RVECTOR DIMS_MISMATCH_RVECTOR. Product of the dimenisons' std::vector<std↔ ::size_t> is not equal to the number of cols of Eigen::Matrix (assumed to be a row vector)

DIMS_MISMATCH_VECTOR DIMS_MISMATCH_VECTOR. Product of the dimenisons' std::vector<std↔ ::size_t> is not equal to the number of cols of Eigen::Matrix (assumed to be a row/column vector)

SUBSYS_MISMATCH_DIMS SUBSYS_MISMATCH_DIMS. std::vector<std::size_t> representing the subsystem labels has duplicatates, or has entries that are larger than the size of the std::vector<std::size_t> representing the dimensions

NOT_QUBIT_GATE NOT_QUBIT_GATE. Eigen::Matrix is not 2 x 2

NOT_QUBIT_SUBSYS NOT_QUBIT_SUBSYS. Subsystems are not 2-dimensional

NOT_BIPARTITE NOT_BIPARTITE. std::vector<std::size_t> representing the dimensions has size different from 2

NO_CODEWORD NO_CODEWORD. Codeword does not exist, thrown when calling qpp::Codes::codeword() with invalid i

PERM_INVALID PERM_INVALID. Invalid std::vector<std::size_t> permutation

OUT_OF_RANGE OUT OF RANGE. Parameter out of range

TYPE_MISMATCH TYPE_MISMATCH. Types do not match (i.e. Matrix<double> vs Matrix<cplx>)

UNDEFINED_TYPE UNDEFINED TYPE. Templated function not defined for this type

CUSTOM_EXCEPTION CUSTOM_EXCEPTION. Custom exception, user must provide a custom message

7.2.3 Constructor & Destructor Documentation

7.2.3.1 qpp::Exception::Exception (const std::string & where, const Type & type) [inline]

Constructs an exception.

Parameters

where	Text representing where the exception occured
type	Exception's type, see the strong enumeration qpp::Exception::Type

7.2.3.2 qpp::Exception::Exception (const std::string & where, const std::string & custom) [inline]

Constructs an exception.

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters

where	Text representing where the exception occured
custom	Exception's description

7.2.4 Member Function Documentation

7.2.4.1 std::string qpp::Exception::_construct_exception_msg() [inline], [private]

Constructs the exception's description from its type.

Must modify the code of this function if more exceptions are added

Returns

Exception's description

7.2.4.2 virtual const char* qpp::Exception::what() const [inline], [override], [virtual], [noexcept]

Overrides std::exception::what()

Returns

Exception's description

7.2.5 Member Data Documentation

```
7.2.5.1 std::string qpp::Exception::_custom [private]
```

7.2.5.2 std::string qpp::Exception::_msg [private]

7.2.5.3 Type qpp::Exception::_type [private]

7.2.5.4 std::string qpp::Exception::_where [private]

The documentation for this class was generated from the following file:

• include/classes/exception.h

7.3 qpp::Gates Class Reference

const Singleton class that implements most commonly used gates

#include <gates.h>

Inheritance diagram for qpp::Gates:

Collaboration diagram for qpp::Gates:

Public Member Functions

SWAP gate.

Toffoli gate.

Fredkin gate.

cmat TOF {cmat::Identity(8, 8)}

• cmat FRED {cmat::ldentity(8, 8)}

 cmat Rn (double theta, std::vector< double > n) const Rotation of theta about the 3-dimensional real unit vector n. cmat Zd (std::size_t D) const Generalized Z gate for qudits. cmat Fd (std::size_t D) const Fourier transform gate for qudits. cmat Xd (std::size_t D) const Generalized X gate for qudits. template<typename Derived = Eigen::MatrixXcd> Derived Id (std::size_t D) const Identity gate. • template<typename Derived > DynMat< typename Derived::Scalar > CTRL (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size t > &ctrl, const std::vector< std::size t > &subsys, std::size t n, std::size t d=2) const Generates the multi-partite multiple-controlled-A gate in matrix form. $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >$ $\label{eq:const_policy} \begin{tabular}{ll} DynMat < typename\ Derived :: Scalar > expandout\ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const\ Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (const Eigen::MatrixBase < Derived > \&A,\ std::size_t\ pos, \ (co$ const std::vector< std::size_t > &dims) const Expands out. **Public Attributes** cmat Id2 {cmat::Identity(2, 2)} Identity gate. cmat H {cmat::Zero(2, 2)} Hadamard gate. cmat X {cmat::Zero(2, 2)} Pauli Sigma-X gate. cmat Y {cmat::Zero(2, 2)} Pauli Sigma-Y gate. cmat Z {cmat::Zero(2, 2)} Pauli Sigma-Z gate. cmat S {cmat::Zero(2, 2)} S gate. cmat T {cmat::Zero(2, 2)} T gate. • cmat CNOTab {cmat::Identity(4, 4)} Controlled-NOT control target gate. cmat CZ {cmat::Identity(4, 4)} Controlled-Phase gate. cmat CNOTba {cmat::Zero(4, 4)} Controlled-NOT target control gate. cmat SWAP {cmat::Identity(4, 4)}

Private Member Functions

• Gates ()

Initializes the gates.

Friends

class internal::Singleton < const Gates >

Additional Inherited Members

7.3.1 Detailed Description

const Singleton class that implements most commonly used gates

7.3.2 Constructor & Destructor Documentation

```
7.3.2.1 qpp::Gates::Gates() [inline], [private]
```

Initializes the gates.

7.3.3 Member Function Documentation

7.3.3.1 template<typename Derived > DynMat<typename Derived::Scalar> qpp::Gates::CTRL (const Eigen::MatrixBase< Derived > & A, const std::vector< std::size_t > & ctrl, const std::vector< std::size_t > & subsys, std::size_t n, std::size_t d = 2) const [inline]

Generates the multi-partite multiple-controlled-A gate in matrix form.

Note

The dimension of the gate A must match the dimension of subsys

Parameters

Α	Eigen expression
ctrl	Control subsystem indexes
subsys	Subsystem indexes where the gate A is applied
n	Total number of subsystes
d	Subsystem dimensions

Returns

CTRL-A gate, as a matrix over the same scalar field as A

7.3.3.2 template<typename Derived > DynMat<typename Derived::Scalar> qpp::Gates::expandout (const Eigen::MatrixBase< Derived > & A, std::size_t pos, const std::vector< std::size_t > & dims) const [inline]

Expands out.

Expands out A as a matrix in a multi-partite system. Faster than using qpp::kron(I, I, ..., I, A, I, ..., I).

Parameters

Α	Eigen expression
pos	Position
dims	Dimensions of the multi-partite system

Returns

Tensor product $I \otimes \cdots \otimes I \otimes A \otimes I \otimes \cdots \otimes I$, with A on position pos, as a dynamic matrix over the same scalar field as A

7.3.3.3 cmat qpp::Gates::Fd (std::size_t D) const [inline]

Fourier transform gate for qudits.

Note

Defined as $F = \sum_{jk} \exp(2\pi i j k/D) |j\rangle\langle k|$

Parameters

D	Dimension of the Hilbert space

Returns

Fourier transform gate for qudits

7.3.3.4 template < typename Derived = Eigen::MatrixXcd > Derived qpp::Gates::Id (std::size_t D) const [inline] Identity gate.

Note

Can change the return type from complex matrix (default) by explicitly specifying the template parameter

Parameters

D	Dimension of the Hilbert space

Returns

Identity gate

7.3.3.5 cmat qpp::Gates::Rn (double theta, std::vector< double > n) const [inline]

Rotation of theta about the 3-dimensional real unit vector n.

Parameters

theta	Rotation angle
n	3-dimensional real unit vector

Returns

Rotation gate

7.3.3.6 cmat qpp::Gates::Xd (std::size_t D) const [inline]

Generalized X gate for qudits.

Note

```
Defined as X = \sum_j |j \oplus 1\rangle\langle j|
```

Parameters

```
D Dimension of the Hilbert space
```

Returns

Generalized X gate for qudits

7.3.3.7 cmat qpp::Gates::Zd (std::size_t D) const [inline]

Generalized Z gate for qudits.

Note

Defined as
$$Z = \sum_{j} \exp(2\pi i j/D) |j\rangle\langle j|$$

Parameters

```
D Dimension of the Hilbert space
```

Returns

Generalized Z gate for qudits

- 7.3.4 Friends And Related Function Documentation
- **7.3.4.1** friend class internal::Singleton < const Gates > [friend]
- 7.3.5 Member Data Documentation
- 7.3.5.1 cmat qpp::Gates::CNOTab {cmat::Identity(4, 4)}

Controlled-NOT control target gate.

7.3.5.2 cmat qpp::Gates::CNOTba {cmat::Zero(4, 4)}

Controlled-NOT target control gate.

7.3.5.3 cmat qpp::Gates::CZ {cmat::Identity(4, 4)}

Controlled-Phase gate.

7.3.5.4 cmat qpp::Gates::FRED {cmat::Identity(8, 8)}

Fredkin gate.

```
7.3.5.5 cmat qpp::Gates::H {cmat::Zero(2, 2)}
Hadamard gate.
7.3.5.6 cmat qpp::Gates::ld2 {cmat::ldentity(2, 2)}
Identity gate.
7.3.5.7 cmat qpp::Gates::S {cmat::Zero(2, 2)}
S gate.
7.3.5.8 cmat qpp::Gates::SWAP {cmat::Identity(4, 4)}
SWAP gate.
7.3.5.9 cmat qpp::Gates::T {cmat::Zero(2, 2)}
T gate.
7.3.5.10 cmat qpp::Gates::TOF {cmat::Identity(8, 8)}
Toffoli gate.
7.3.5.11 cmat qpp::Gates::X {cmat::Zero(2, 2)}
Pauli Sigma-X gate.
7.3.5.12 cmat qpp::Gates::Y {cmat::Zero(2, 2)}
Pauli Sigma-Y gate.
7.3.5.13 cmat qpp::Gates::Z {cmat::Zero(2, 2)}
Pauli Sigma-Z gate.
The documentation for this class was generated from the following file:
    • include/classes/gates.h
```

7.4 qpp::Init Class Reference

const Singleton class that performs additional initializations/cleanups

#include <init.h>

Inheritance diagram for qpp::Init:

Collaboration diagram for qpp::Init:

Public Member Functions

• Init ()

Additional initializations.

Private Member Functions

• ∼Init ()

Cleanups.

Friends

- class internal::Singleton < const Init >

Additional Inherited Members

7.4.1 Detailed Description

const Singleton class that performs additional initializations/cleanups

7.4.2 Constructor & Destructor Documentation

```
7.4.2.1 qpp::Init::Init() [inline]
```

Additional initializations.

```
7.4.2.2 qpp::Init::~Init() [inline], [private]
```

Cleanups.

7.4.3 Friends And Related Function Documentation

```
7.4.3.1 friend class internal::Singleton< const Init > [friend]
```

The documentation for this class was generated from the following file:

· include/classes/init.h

7.5 qpp::internal::IOManipEigen Class Reference

```
#include <iomanip.h>
```

Public Member Functions

- template<typename Derived >
 IOManipEigen (const Eigen::MatrixBase< Derived > &A, double chop=qpp::chop)
- IOManipEigen (const cplx z, double chop=qpp::chop)

Private Attributes

- cmat _A
- · double _chop

Friends

```
    template<typename charT, typename traits >
    std::basic_ostream< charT,
    traits > & operator<< (std::basic_ostream< charT, traits > &os, const IOManipEigen &rhs)
```

7.5.1 Constructor & Destructor Documentation

- 7.5.1.1 template<typename Derived > qpp::internal::IOManipEigen::IOManipEigen (const Eigen::MatrixBase< Derived > & A, double chop = qpp::chop) [inline], [explicit]
- 7.5.1.2 qpp::internal::IOManipEigen::IOManipEigen (const cplx z, double chop = qpp::chop) [inline], [explicit]

7.5.2 Friends And Related Function Documentation

- 7.5.2.1 template<typename charT, typename traits > std::basic_ostream<charT, traits>& operator<< (
 std::basic_ostream< charT, traits > & os, const IOManipEigen & rhs) [friend]
- 7.5.3 Member Data Documentation
- 7.5.3.1 cmat qpp::internal::IOManipEigen::_A [private]
- **7.5.3.2** double qpp::internal::IOManipEigen::_chop [private]

The documentation for this class was generated from the following file:

• include/internal/classes/iomanip.h

7.6 qpp::internal::IOManipPointer < PointerType > Class Template Reference

#include <iomanip.h>

Collaboration diagram for qpp::internal::IOManipPointer< PointerType >:

Public Member Functions

- IOManipPointer (const PointerType *p, const std::size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]")
- IOManipPointer (const IOManipPointer &)=default
- IOManipPointer & operator= (const IOManipPointer &)=default

Private Attributes

- const PointerType * p
- std::size_t _n

- std::string _separator
- std::string start
- · std::string _end

Friends

```
    template<typename charT, typename traits >
    std::basic_ostream< charT,
    traits > & operator<< (std::basic_ostream< charT, traits > &os, const IOManipPointer &rhs)
```

7.6.1 Constructor & Destructor Documentation

- 7.6.1.1 template < typename PointerType > qpp::internal::IOManipPointer < PointerType >::IOManipPointer (const PointerType * p, const std::string & separator, const std::string & start = " [", const std::string & end = "] ") [inline], [explicit]
- 7.6.1.2 template < typename PointerType > qpp::internal::IOManipPointer < PointerType >::IOManipPointer (const IOManipPointer < PointerType > &) [default]
- 7.6.2 Member Function Documentation
- 7.6.2.1 template<typename PointerType > IOManipPointer& qpp::internal::IOManipPointer< PointerType >::operator= (const IOManipPointer< PointerType > &) [default]
- 7.6.3 Friends And Related Function Documentation
- 7.6.3.1 template < typename PointerType > template < typename charT , typename traits > std::basic_ostream < charT, traits > & os, const IOManipPointer < PointerType > & rhs) [friend]
- 7.6.4 Member Data Documentation
- 7.6.4.1 template<typename PointerType > std::string qpp::internal::IOManipPointer< PointerType >::_end [private]
- 7.6.4.2 template<typename PointerType > std::size_t qpp::internal::IOManipPointer< PointerType >::_n [private]
- 7.6.4.3 template<typename PointerType > const PointerType* qpp::internal::IOManipPointer< PointerType >::_p [private]
- 7.6.4.4 template<typename PointerType > std::string qpp::internal::IOManipPointer< PointerType >::_separator [private]
- 7.6.4.5 template < typename PointerType > std::string qpp::internal::IOManipPointer < PointerType >::_start [private]

The documentation for this class was generated from the following file:

• include/internal/classes/iomanip.h

7.7 qpp::internal::IOManipRange < InputIterator > Class Template Reference

#include <iomanip.h>

Collaboration diagram for qpp::internal::IOManipRange< InputIterator >:

Public Member Functions

• IOManipRange (InputIterator first, InputIterator last, const std::string &separator, const std::string &start="[", const std::string &end="]")

Private Attributes

- · InputIterator_first
- InputIterator _last
- std::string _separator
- std::string _start
- std::string _end

Friends

```
    template<typename charT, typename traits >
    std::basic_ostream< charT,
    traits > & operator<< (std::basic_ostream< charT, traits > &os, const IOManipRange &rhs)
```

7.7.1 Constructor & Destructor Documentation

7.7.2 Friends And Related Function Documentation

7.7.2.1 template < typename InputIterator > template < typename charT , typename traits > std::basic_ostream < charT, traits > & os, const IOManipRange < InputIterator > & rhs) [friend]

7.7.3 Member Data Documentation

- 7.7.3.1 template<typename InputIterator > std::string qpp::internal::IOManipRange< InputIterator >::_end [private]
- 7.7.3.2 template<typename InputIterator > InputIterator qpp::internal::IOManipRange< InputIterator >::_first [private]
- 7.7.3.3 template<typename InputIterator > InputIterator qpp::internal::IOManipRange< InputIterator >::_last [private]
- 7.7.3.4 template<typename InputIterator > std::string qpp::internal::IOManipRange< InputIterator >::_separator [private]
- 7.7.3.5 template<typename InputIterator > std::string qpp::internal::IOManipRange< InputIterator >::_start [private]

The documentation for this class was generated from the following file:

• include/internal/classes/iomanip.h

7.8 qpp::RandomDevices Class Reference

Singeleton class that manages the source of randomness in the library.

#include <random_devices.h>

Inheritance diagram for qpp::RandomDevices:

Collaboration diagram for qpp::RandomDevices:

Public Attributes

std::mt19937 _rng

Mersenne twister random number generator engine.

Private Member Functions

· RandomDevices ()

Initializes and seeds the random number generators.

Private Attributes

std::random_device _rd
 used to seed std::mt19937 _rng

Friends

class internal::Singleton < RandomDevices >

Additional Inherited Members

7.8.1 Detailed Description

Singeleton class that manages the source of randomness in the library.

It consists of a wrapper around an std::mt19937 Mersenne twister random number generator engine and an std⇔ ::random_device engine. The latter is used to seed the Mersenne twister. The class also seeds the standard std::srand C number generator, as it is used by Eigen.

7.8.2 Constructor & Destructor Documentation

7.8.2.1 qpp::RandomDevices::RandomDevices() [inline], [private]

Initializes and seeds the random number generators.

7.8.3 Friends And Related Function Documentation

```
7.8.3.1 friend class internal::Singleton < RandomDevices > [friend]
```

7.8.4 Member Data Documentation

```
7.8.4.1 std::random_device qpp::RandomDevices::_rd [private]
used to seed std::mt19937 _rng
```

```
7.8.4.2 std::mt19937 qpp::RandomDevices::_rng
```

Mersenne twister random number generator engine.

The documentation for this class was generated from the following file:

• include/classes/random_devices.h

7.9 qpp::internal::Singleton < T > Class Template Reference

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

```
#include <singleton.h>
```

Static Public Member Functions

• static T & get_instance ()

Protected Member Functions

- Singleton ()=default
- virtual ∼Singleton ()
- Singleton (const Singleton &)=delete
- Singleton & operator= (const Singleton &)=delete

7.9.1 Detailed Description

```
template<typename T>class qpp::internal::Singleton< T>
```

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

To implement a singleton, derive your class from qpp::internal::Singleton, make qpp::internal::Singleton a friend of your class, then declare the constructor of your class as private. To get an instance, use the static member function qpp::internal::Singleton::get_instance(), which returns a reference to your newly created singleton (thread-safe in C++11).

Example:

```
class MySingleton: public qpp::internal::Singleton<MySingleton>{
         friend class qpp::internal::Singleton<MySingleton>;
public:
         // Declare all public members here
private:
         MySingleton()
```

```
{
      // Implement the constructor here
   }
};

MySingleton& mySingleton = MySingleton::get_instance(); // Get an instance
```

See also

Code of qpp::Codes, qpp::Gates, qpp::RandomDevices, qpp::States or qpp.h for real world examples of usage.

- 7.9.2 Constructor & Destructor Documentation
- **7.9.2.1** template<typename T> qpp::internal::Singleton< T>::Singleton() [protected], [default]
- 7.9.2.2 template<typename T> virtual qpp::internal::Singleton< T>::~Singleton() [inline], [protected], [virtual]
- 7.9.2.3 template<typename T> qpp::internal::Singleton < T >::Singleton (const Singleton < T > &) [protected], [delete]
- 7.9.3 Member Function Documentation
- 7.9.3.1 template < typename T > static T& qpp::internal::Singleton < T >::get_instance() [inline], [static]
- 7.9.3.2 template<typename T> Singleton& qpp::internal::Singleton< T>::operator=(const Singleton< T>&) [protected], [delete]

The documentation for this class was generated from the following file:

• include/classes/singleton.h

7.10 qpp::States Class Reference

const Singleton class that implements most commonly used states

```
#include <states.h>
```

Inheritance diagram for qpp::States:

Collaboration diagram for qpp::States:

Public Attributes

```
    ket x0 {ket::Zero(2)}
```

Pauli Sigma-X 0-eigenstate |+>

ket x1 {ket::Zero(2)}

Pauli Sigma-X 1-eigenstate |->

ket y0 {ket::Zero(2)}

Pauli Sigma-Y 0-eigenstate.

ket y1 {ket::Zero(2)}

Pauli Sigma-Y 1-eigenstate.

ket z0 {ket::Zero(2)}

Pauli Sigma-Z 0-eigenstate | 0>

ket z1 {ket::Zero(2)}

Pauli Sigma-Z 1-eigenstate | 1>

• cmat px0 {cmat::Zero(2, 2)}

Projector onto the Pauli Sigma-X 0-eigenstate |+><+|.

cmat px1 {cmat::Zero(2, 2)}

Projector onto the Pauli Sigma-X 1-eigenstate |-><-|.

cmat py0 {cmat::Zero(2, 2)}

Projector onto the Pauli Sigma-Y 0-eigenstate.

cmat py1 {cmat::Zero(2, 2)}

Projector onto the Pauli Sigma-Y 1-eigenstate.

cmat pz0 {cmat::Zero(2, 2)}

Projector onto the Pauli Sigma-Z 0-eigenstate |0><0|.

cmat pz1 {cmat::Zero(2, 2)}

Projector onto the Pauli Sigma-Z 1-eigenstate | 1><1|.

ket b00 {ket::Zero(4)}

Bell-00 state (following the convention in Nielsen and Chuang)

ket b01 {ket::Zero(4)}

Bell-01 state (following the convention in Nielsen and Chuang)

ket b10 {ket::Zero(4)}

Bell-10 state (following the convention in Nielsen and Chuang)

ket b11 {ket::Zero(4)}

Bell-11 state (following the convention in Nielsen and Chuang)

cmat pb00 {cmat::Zero(4, 4)}

Projector onto the Bell-00 state.

• cmat pb01 {cmat::Zero(4, 4)}

Projector onto the Bell-01 state.

cmat pb10 {cmat::Zero(4, 4)}

Projector onto the Bell-10 state.

cmat pb11 {cmat::Zero(4, 4)}

Projector onto the Bell-11 state.

ket GHZ {ket::Zero(8)}

GHZ state.

ket W {ket::Zero(8)}

W state.

cmat pGHZ {cmat::Zero(8, 8)}

Projector onto the GHZ state.

cmat pW {cmat::Zero(8, 8)}

Projector onto the W state.

Private Member Functions

• States ()

Friends

class internal::Singleton < const States >

Additional Inherited Members

7.10.1 Detailed Description

const Singleton class that implements most commonly used states

7.10.2 Constructor & Destructor Documentation

```
7.10.2.1 qpp::States::States() [inline], [private]
```

Initialize the states

7.10.3 Friends And Related Function Documentation

7.10.3.1 friend class internal::Singleton < const States > [friend]

7.10.4 Member Data Documentation

7.10.4.1 ket qpp::States::b00 {ket::Zero(4)}

Bell-00 state (following the convention in Nielsen and Chuang)

7.10.4.2 ket qpp::States::b01 {ket::Zero(4)}

Bell-01 state (following the convention in Nielsen and Chuang)

```
7.10.4.3 ket qpp::States::b10 {ket::Zero(4)}
Bell-10 state (following the convention in Nielsen and Chuang)
7.10.4.4 ket qpp::States::b11 {ket::Zero(4)}
Bell-11 state (following the convention in Nielsen and Chuang)
7.10.4.5 ket qpp::States::GHZ {ket::Zero(8)}
GHZ state.
7.10.4.6 cmat qpp::States::pb00 {cmat::Zero(4, 4)}
Projector onto the Bell-00 state.
7.10.4.7 cmat qpp::States::pb01 {cmat::Zero(4, 4)}
Projector onto the Bell-01 state.
7.10.4.8 cmat qpp::States::pb10 {cmat::Zero(4, 4)}
Projector onto the Bell-10 state.
7.10.4.9 cmat qpp::States::pb11 {cmat::Zero(4, 4)}
Projector onto the Bell-11 state.
7.10.4.10 cmat qpp::States::pGHZ {cmat::Zero(8, 8)}
Projector onto the GHZ state.
7.10.4.11 cmat qpp::States::pW {cmat::Zero(8, 8)}
Projector onto the W state.
7.10.4.12 cmat qpp::States::px0 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-X 0-eigenstate |+><+|.
7.10.4.13 cmat qpp::States::px1 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-X 1-eigenstate |-><-|.
7.10.4.14 cmat qpp::States::py0 {cmat::Zero(2, 2)}
```

Projector onto the Pauli Sigma-Y 0-eigenstate.

```
7.10.4.15 cmat qpp::States::py1 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Y 1-eigenstate.
7.10.4.16 cmat qpp::States::pz0 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Z 0-eigenstate |0><0|.
7.10.4.17 cmat qpp::States::pz1 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Z 1-eigenstate |1><1|.
7.10.4.18 ket qpp::States::W {ket::Zero(8)}
W state.
7.10.4.19 ket qpp::States::x0 {ket::Zero(2)}
Pauli Sigma-X 0-eigenstate |+>
7.10.4.20 ket qpp::States::x1 {ket::Zero(2)}
Pauli Sigma-X 1-eigenstate |->
7.10.4.21 ket qpp::States::y0 {ket::Zero(2)}
Pauli Sigma-Y 0-eigenstate.
7.10.4.22 ket qpp::States::y1 {ket::Zero(2)}
Pauli Sigma-Y 1-eigenstate.
7.10.4.23 ket qpp::States::z0 {ket::Zero(2)}
Pauli Sigma-Z 0-eigenstate |0>
7.10.4.24 ket qpp::States::z1 {ket::Zero(2)}
Pauli Sigma-Z 1-eigenstate |1>
The documentation for this class was generated from the following file:
    • include/classes/states.h
```

7.11 qpp::Timer Class Reference

Measures time.

```
#include <timer.h>
```

Public Member Functions

• Timer ()

Constructs an instance with the current time as the starting point.

void tic ()

Resets the chronometer.

• const Timer & toc ()

Stops the chronometer.

· double seconds () const

Time passed in seconds.

Protected Attributes

```
• std::chrono::steady_clock::time_point _start
```

```
• std::chrono::steady_clock::time_point _end
```

Friends

std::ostream & operator<< (std::ostream &os, const Timer &rhs)
 Overload for std::ostream operators.

7.11.1 Detailed Description

Measures time.

Uses a std::chrono::steady_clock. It is not affected by wall clock changes during runtime.

7.11.2 Constructor & Destructor Documentation

```
7.11.2.1 qpp::Timer::Timer() [inline]
```

Constructs an instance with the current time as the starting point.

7.11.3 Member Function Documentation

```
7.11.3.1 double qpp::Timer::seconds ( ) const [inline]
```

Time passed in seconds.

Returns

Number of seconds that passed between the instantiation/reset and invocation of qpp::Timer::toc()

```
7.11.3.2 void qpp::Timer::tic( ) [inline]
```

Resets the chronometer.

Resets the starting/ending point to the current time

7.11.3.3 const Timer& qpp::Timer::toc() [inline]

Stops the chronometer.

Set the current time as the ending point

Returns

Current instance

7.11.4 Friends And Related Function Documentation

7.11.4.1 std::ostream& operator<<(std::ostream & os, const Timer & rhs) [friend]

Overload for std::ostream operators.

Parameters

OS	Output stream
rhs	Timer instance

Returns

Writes to the output stream the number of seconds that passed between the instantiation/reset and invocation of qpp::Timer::toc().

7.11.5 Member Data Documentation

```
7.11.5.1 std::chrono::steady_clock::time_point qpp::Timer::_end [protected]
```

7.11.5.2 std::chrono::steady_clock::time_point qpp::Timer::_start [protected]

The documentation for this class was generated from the following file:

• include/classes/timer.h

Chapter 8

File Documentation

8.1 include/classes/codes.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

class qpp::Codes

const Singleton class that defines quantum error correcting codes

Namespaces

• qpp

92 File Documentation

8.2 include/classes/exception.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Exception

Generates custom exceptions, used when validating function parameters.

Namespaces

qpp

8.3 include/classes/gates.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Gates

const Singleton class that implements most commonly used gates

Namespaces

• qpp

8.4 include/classes/init.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::Init

const Singleton class that performs additional initializations/cleanups

Namespaces

• qpp

8.5 include/classes/random_devices.h File Reference

This graph shows which files directly or indirectly include this file:

94 File Documentation

Classes

class qpp::RandomDevices

Singeleton class that manages the source of randomness in the library.

Namespaces

qpp

8.6 include/classes/singleton.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

class qpp::internal::Singleton< T >

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

Namespaces

- qpp
- · qpp::internal

8.7 include/classes/states.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::States

const Singleton class that implements most commonly used states

Namespaces

• qpp

8.8 include/classes/timer.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Timer

Measures time.

96 File Documentation

Namespaces

qpp

8.9 include/constants.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

```
    constexpr std::complex < double > qpp::operator""_i (unsigned long long int x)
```

User-defined literal for complex $i = \sqrt{-1}$ (integer overload)

constexpr std::complex< double > qpp::operator""_i (long double x)

User-defined literal for complex $i = \sqrt{-1}$ (real overload)

std::complex < double > qpp::omega (std::size_t D)

D-th root of unity.

Variables

• constexpr double qpp::chop = 1e-10

Used in qpp::disp() and qpp::displn() for setting to zero numbers that have their absolute value smaller than qpp::ct← ::chop.

• constexpr double qpp::eps = 1e-12

Used to decide whether a number or expression in double precision is zero or not.

constexpr std::size_t qpp::maxn = 64

Maximum number of qubits.

• constexpr double qpp::pi = 3.141592653589793238462643383279502884

π

constexpr double qpp::ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

constexpr std::size_t qpp::infty = -1

Used to denote infinity.

8.10 include/entanglement.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

template<typename Derived >
 DynColVect< cplx > qpp::schmidtcoeff (const Eigen::MatrixBase< Derived > &A, const std::vector< std
 ::size_t > &dims)

Schmidt coefficients of the bi-partite pure state A.

template<typename Derived >
 cmat qpp::schmidtU (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)
 Schmidt basis on Alice's side.

template<typename Derived >
 cmat qpp::schmidtV (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)
 Schmidt basis on Bob's side.

template<typename Derived >

 $\label{lem:def:DynColVect} \mbox{DynColVect} < \mbox{double} > \mbox{qpp::schmidtprob} \mbox{ (const Eigen::MatrixBase} < \mbox{Derived} > \&\mbox{A, const std::vector} < \mbox{std} \\ :: \mbox{size} \ \ t > \&\mbox{dims})$

Schmidt probabilities of the bi-partite pure state A.

template<typename Derived >
 double qpp::entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)
 Entanglement of the bi-partite pure state A.

template<typename Derived >

double qpp::gconcurrence (const Eigen::MatrixBase Derived > &A)

G-concurrence of the bi-partite pure state A.

 $\bullet \ \ \text{template}{<} \text{typename Derived}>$

double qpp::negativity (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)

Negativity of the bi-partite mixed state A.

template<typename Derived >

double qpp::lognegativity (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &dims)

Logarithmic negativity of the bi-partite mixed state A.

template<typename Derived >

double qpp::concurrence (const Eigen::MatrixBase Derived > &A)

Wootters concurrence of the bi-partite qubit mixed state A.

8.11 include/entropies.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

template<typename Derived >
 double qpp::shannon (const Eigen::MatrixBase< Derived > &A)

Shannon/von-Neumann entropy of the probability distribution/density matrix A.

template<typename Derived >
 double qpp::renyi (const Eigen::MatrixBase< Derived > &A, double alpha)

Renyi- α entropy of the probability distribution/density matrix A, for $\alpha \geq 0$.

template<typename Derived >
 double qpp::tsallis (const Eigen::MatrixBase< Derived > &A, double alpha)

Tsallis- α entropy of the probability distribution/density matrix A, for $\alpha \geq 0$.

template<typename Derived >
 double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t >
 &subsysA, const std::vector< std::size_t > &subsysB, const std::vector< std::size_t > &dims)

Quantum mutual information between 2 subsystems of a composite system.

8.12 include/experimental/test.h File Reference

Namespaces

- qpp::experimental
- qpp

8.13 include/functions.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

```
    template<typename Derived >

  DynMat< typename Derived::Scalar > qpp::transpose (const Eigen::MatrixBase< Derived > &A)
      Transpose.

    template<typename Derived >

  DynMat< typename Derived::Scalar > qpp::conjugate (const Eigen::MatrixBase< Derived > &A)
      Complex conjugate.

    template<typename Derived >

  DynMat< typename Derived::Scalar > qpp::adjoint (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  DynMat< typename Derived::Scalar > qpp::inverse (const Eigen::MatrixBase< Derived > &A)
      Inverse.

    template<typename Derived >

  Derived::Scalar qpp::trace (const Eigen::MatrixBase< Derived > &A)
      Trace.

    template<typename Derived >

  Derived::Scalar <a href="mailto:qpp::det">qpp::det</a> (const Eigen::MatrixBase</a> Derived > &A)
      Determinant.

    template<typename Derived >

  Derived::Scalar qpp::logdet (const Eigen::MatrixBase< Derived > &A)
      Logarithm of the determinant.
template<typename Derived >
  Derived::Scalar <a href="mailto:qpp::sum">qpp::sum</a> (const Eigen::MatrixBase</a> Derived > &A)
      Element-wise sum of A.
• template<typename Derived >
  Derived::Scalar <a href="mailto:open:prod">open:prod</a> (const Eigen::MatrixBase</a> Derived > &A)
      Element-wise product of A.

    template<typename Derived >
```

double qpp::norm (const Eigen::MatrixBase< Derived > &A)

```
Frobenius norm.
• template<typename Derived >
  DynColVect< cplx > qpp::evals (const Eigen::MatrixBase< Derived > &A)
     Eigenvalues.

    template<typename Derived >

  cmat qpp::evects (const Eigen::MatrixBase< Derived > &A)
     Eigenvectors.
• template<typename Derived >
  DynColVect< double > qpp::hevals (const Eigen::MatrixBase< Derived > &A)
     Hermitian eigenvalues.

    template<typename Derived >

  cmat qpp::hevects (const Eigen::MatrixBase< Derived > &A)
     Hermitian eigenvectors.

    template<typename Derived >

  DynColVect< double > qpp::svals (const Eigen::MatrixBase< Derived > &A)
     Singular values.
template<typename Derived >
  cmat qpp::svdU (const Eigen::MatrixBase< Derived > &A)
     Left singular vectors.

    template<typename Derived >

  cmat qpp::svdV (const Eigen::MatrixBase< Derived > &A)
     Right singular vectors.

    template<typename Derived >

  cmat qpp::funm (const Eigen::MatrixBase< Derived > &A, cplx(*f)(const cplx &))
     Functional calculus f(A)
template<typename Derived >
  cmat qpp::sqrtm (const Eigen::MatrixBase< Derived > &A)
     Matrix square root.
• template<typename Derived >
  cmat qpp::absm (const Eigen::MatrixBase< Derived > &A)
     Matrix absolut value.

    template<typename Derived >

  cmat qpp::expm (const Eigen::MatrixBase< Derived > &A)
     Matrix exponential.

    template<typename Derived >

  cmat qpp::logm (const Eigen::MatrixBase< Derived > &A)
     Matrix logarithm.
• template<typename Derived >
  cmat qpp::sinm (const Eigen::MatrixBase< Derived > &A)
     Matrix sin.

    template<typename Derived >

  cmat qpp::cosm (const Eigen::MatrixBase< Derived > &A)
     Matrix cos.

    template<typename Derived >

  cmat qpp::spectralpowm (const Eigen::MatrixBase< Derived > &A, const cplx z)
     Matrix power.

    template<typename Derived >

  DynMat< typename Derived::Scalar > qpp::powm (const Eigen::MatrixBase< Derived > &A, std::size_t n)
     Matrix power.

    template<typename Derived >

  double qpp::schatten (const Eigen::MatrixBase< Derived > &A, std::size_t p)
     Schatten norm.
```

 template<typename OutputScalar , typename Derived > DynMat< OutputScalar > qpp::cwise (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const typename Derived::Scalar &)) Functor. template<typename T > DynMat< typename T::Scalar > qpp::kron (const T &head) Kronecker product. $\bullet \;\; template {<} typename \; T \; , \; typename... \; Args {>} \\$ DynMat< typename T::Scalar > qpp::kron (const T &head, const Args &...tail) Kronecker product. template<typename Derived > DynMat< typename Derived::Scalar > qpp::kron (const std::vector< Derived > &As) Kronecker product. template<typename Derived > DynMat< typename Derived::Scalar > qpp::kron (const std::initializer list< Derived > &As) Kronecker product. template<typename Derived > DynMat< typename Derived::Scalar > qpp::kronpow (const Eigen::MatrixBase< Derived > &A, std::size_t n) Kronecker power. template<typename Derived > DynMat< typename Derived::Scalar > qpp::reshape (const Eigen::MatrixBase< Derived > &A, std::size_t rows, std::size_t cols) Reshape. template<typename Derived1 , typename Derived2 > DynMat< typename Derived1::Scalar > qpp::comm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2 > &B) Commutator. template<typename Derived1 , typename Derived2 > DynMat< typename Derived1::Scalar > qpp::anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2 > &B) Anti-commutator. template<typename Derived > DynMat< typename Derived::Scalar > qpp::prj (const Eigen::MatrixBase< Derived > &V) Projector. template < typename Derived > DynMat< typename Derived::Scalar > qpp::grams (const std::vector< Derived > &Vs) Gram-Schmidt orthogonalization. template<typename Derived > DynMat< typename Derived::Scalar > qpp::grams (const std::initializer_list< Derived > &Vs) Gram-Schmidt orthogonalization. • template<typename Derived > DynMat< typename Derived::Scalar > qpp::grams (const Eigen::MatrixBase< Derived > &A) Gram-Schmidt orthogonalization. std::vector < std::size t > qpp::n2multiidx (std::size t n, const std::vector < std::size t > &dims) Non-negative integer index to multi-index. std::size t qpp::multiidx2n (const std::vector< std::size t > &midx, const std::vector< std::size t > &dims) Multi-index to non-negative integer index. ket qpp::mket (const std::vector< std::size_t > &mask, const std::vector< std::size_t > &dims) Multi-partite qudit ket. ket qpp::mket (const std::vector< std::size_t > &mask, std::size_t d=2) Multi-partite qudit ket. cmat qpp::mprj (const std::vector < std::size_t > &mask, const std::vector < std::size_t > &dims)

Projector onto multi-partite qudit ket.

cmat qpp::mprj (const std::vector< std::size_t > &mask, std::size_t d=2)

Projector onto multi-partite qudit ket.

• template<typename InputIterator >

std::vector< double > qpp::abssq (InputIterator first, InputIterator last)

Computes the absolut values squared of a range of complex numbers.

• template<typename Derived >

```
std::vector< double > qpp::abssq (const Eigen::MatrixBase< Derived > &V)
```

Computes the absolut values squared of a column vector.

• template<typename InputIterator >

auto qpp::sum (InputIterator first, InputIterator last) -> typename InputIterator::value_type

Element-wise sum of a range.

• template<typename InputIterator >

auto qpp::prod (InputIterator first, InputIterator last) -> typename InputIterator::value_type

Element-wise product of a range.

• template<typename Derived >

DynColVect< typename

 $\label{eq:const_equal} \mbox{Derived::Scalar} > \mbox{qpp::rho2pure (const Eigen::MatrixBase} < \mbox{Derived} > \&\mbox{A})$

Finds the pure state representation of a matrix proportional to a projector onto a pure state.

8.14 include/internal/functions.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

- · qpp::internal
- qpp

Functions

- void qpp::internal::_n2multiidx (std::size_t n, std::size_t numdims, const std::size_t *dims, std::size_t *result)
- std::size_t app::internal::_multiidx2n (const std::size_t *midx, std::size_t numdims, const std::size_t *dims)
- template < typename Derived >
 bool qpp::internal::_check_square_mat (const Eigen::MatrixBase < Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_vector (const Eigen::MatrixBase< Derived > &A)

- template<typename Derived >
 bool qpp::internal::_check_row_vector (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_col_vector (const Eigen::MatrixBase< Derived > &A)
- template<typename T >
 bool qpp::internal::_check_nonzero_size (const T &x)
- bool qpp::internal:: check dims (const std::vector< std::size t > &dims)
- template<typename Derived >
 bool qpp::internal::_check_dims_match_mat (const std::vector< std::size_t > &dims, const Eigen::Matrix
 Base< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_dims_match_cvect (const std::vector< std::size_t > &dims, const Eigen::Matrix
 Base< Derived > &V)
- template<typename Derived >
 bool qpp::internal::_check_dims_match_rvect (const std::vector< std::size_t > &dims, const Eigen::Matrix
 Base< Derived > &V)
- bool qpp::internal::_check_eq_dims (const std::vector < std::size_t > &dims, std::size_t dim)
- bool qpp::internal::_check_subsys_match_dims (const std::vector< std::size_t > &subsys, const std
 ::vector< std::size_t > &dims)
- bool qpp::internal::_check_perm (const std::vector< std::size_t > &perm)
- template<typename Derived1 , typename Derived2 >
 DynMat< typename Derived1::Scalar > qpp::internal::_kron2 (const Eigen::MatrixBase< Derived1 > &A,
 const Eigen::MatrixBase< Derived2 > &B)
- template<typename T >
 void qpp::internal::variadic_vector_emplace (std::vector< T > &)
- template<typename T, typename First, typename... Args>
 void qpp::internal::variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&...args)

8.15 include/input_output.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

template<typename Derived >
 internal::IOManipEigen qpp::disp (const Eigen::MatrixBase< Derived > &A, double chop=qpp::chop)

Eigen expression ostream manipulator.

• internal::IOManipEigen qpp::disp (cplx z, double chop=qpp::chop)

Complex number ostream manipulator.

• template<typename InputIterator >

internal::IOManipRange

< InputIterator > qpp::disp (const InputIterator &first, const InputIterator &last, const std::string &separator, const std::string &start="[", const std::string &end="]")

Range ostream manipulator.

• template<typename Container >

internal::IOManipRange

< typename

Container::const_iterator > qpp::disp (const Container &c, const std::string &separator, const std::string &start="[", const std::string &end="]")

Standard container ostream manipulator. The container must support std::begin(), std::end() and forward iteration.

• template<typename PointerType >

internal::IOManipPointer

< PointerType > qpp::disp (const PointerType *p, std::size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]")

C-style pointer ostream manipulator.

• template<typename Derived >

void qpp::save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)

Saves Eigen expression to a binary file (internal format) in double precision.

template<typename Derived >

DynMat< typename Derived::Scalar > qpp::load (const std::string &fname)

Loads Eigen matrix from a binary file (internal format) in double precision.

8.16 include/instruments.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

```
    template<typename Derived >

  std::tuple < std::size_t,
  std::vector< double >
  , std::vector< cmat >> qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat >
  &Ks, const std::vector< std::size t > &subsys, const std::vector< std::size t > &dims)
     Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.
• template<typename Derived >
  std::tuple < std::size_t,
  std::vector< double >
  , std::vector< cmat >> qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list<
  cmat > &Ks, const std::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)
     Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.
template<typename Derived >
  std::tuple < std::size t,
  std::vector< double >
  , std::vector< cmat >> qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat >
  &Ks, const std::vector < std::size t > &subsys, const std::size t = 2)
     Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.
• template<typename Derived >
  std::tuple < std::size_t,
  std::vector< double >
  , std::vector< cmat >> qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::initializer list<
  cmat > &Ks, const std::vector< std::size_t > &subsys, const std::size_t d=2)
     Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.
• template<typename Derived >
  std::tuple < std::size t,
  std::vector< double >
  , std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const cmat &U, const
  std::vector< std::size t > &subsys, const std::vector< std::size t > &dims)
     Measures the part subsys of the multi-partite state A in the orthonormal basis specified by the unitary matrix U.

    template<typename Derived >

  std::tuple < std::size_t,
  std::vector< double >
  , std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const cmat &U, const
  std::vector< std::size_t > &subsys, const std::size_t d=2)
     Measures the part subsys of the multi-partite state A in the orthonormal basis specified by the unitary matrix U.
• template<typename Derived >
  std::tuple < std::size t,
  std::vector< double >
  , std::vector< cmat >> qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat >
  &Ks)
     Measures the state A using the set of Kraus operators Ks.

    template<typename Derived >

  std::tuple < std::size t,
  std::vector< double >
  , std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > &A, const std::initializer list <
  cmat > &Ks)
     Measures the state A using the set of Kraus operators Ks.
• template<typename Derived >
  std::tuple < std::size t,
  std::vector< double >
  , std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const cmat &U)
     Measures the state A in the orthonormal basis specified by the unitary matrix U.
```

8.17 include/internal/classes/iomanip.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

- class qpp::internal::IOManipRange< InputIterator >
- class qpp::internal::IOManipPointer< PointerType >
- class qpp::internal::IOManipEigen

Namespaces

- qpp
- · qpp::internal

8.18 include/MATLAB/matlab.h File Reference

```
#include "mat.h"
#include "mex.h"
```

Namespaces

• qpp

Functions

- template < typename Derived >
 Derived qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
 Loads an Eigen dynamic matrix from a MATLAB .mat file, generic version.
- template<>
 dmat qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
 Loads an Eigen dynamic matrix from a MATLAB .mat file, specialization for double matrices (qpp::dmat)
- template<>
 cmat qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
 Loads an Eigen dynamic matrix from a MATLAB .mat file, specialization for complex matrices (qpp::cmat)

template<typename Derived >
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

Saves an Eigen dynamic matrix to a MATLAB .mat file, generic version.

template<>

void qpp::saveMATLABmatrix (const Eigen::MatrixBase< dmat > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

Saves an Eigen dynamic matrix to a MATLAB .mat file, specialization for double matrices (qpp::dmat)

template<>

void qpp::saveMATLABmatrix (const Eigen::MatrixBase< cmat > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

Saves an Eigen dynamic matrix to a MATLAB .mat file, specialization for complex matrices (qpp::cmat)

8.19 include/number_theory.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

- std::vector < int > qpp::x2contfrac (double x, std::size_t n, std::size_t cut=1e5)
 Simple continued fraction expansion.
- double qpp::contfrac2x (const std::vector< int > &cf, std::size t n)

Real representation of a simple continued fraction.

double qpp::contfrac2x (const std::vector< int > &cf)

Real representation of a simple continued fraction.

std::size_t qpp::gcd (std::size_t m, std::size_t n)

Greatest common divisor of two non-negative integers.

std::size t <u>qpp::gcd</u> (const std::vector < std::size t > &ns)

Greatest common divisor of a list of non-negative integers.

std::size_t qpp::lcm (std::size_t m, std::size_t n)

Least common multiple of two positive integers.

- std::size_t qpp::lcm (const std::vector< std::size_t > &ns)

Least common multiple of a list of positive integers.

- std::vector< std::size_t > qpp::invperm (const std::vector< std::size_t > &perm)
 Inverse permutation.
- std::vector< std::size_t > app::compperm (const std::vector< std::size_t > aperm, const std::vector< std::size_t

Compose permutations.

8.20 include/operations.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

template<typename Derived1 , typename Derived2 >
 DynMat< typename Derived1::Scalar > qpp::applyCTRL (const Eigen::MatrixBase< Derived1 > &state,
 const Eigen::MatrixBase< Derived2 > &A, const std::vector< std::size_t > &ctrl, const std::vector< std
 ::size_t > &subsys, const std::vector< std::size_t > &dims)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

template<typename Derived1 , typename Derived2 >
 DynMat< typename Derived1::Scalar > qpp::applyCTRL (const Eigen::MatrixBase< Derived1 > &state,
 const Eigen::MatrixBase< Derived2 > &A, const std::vector< std::size_t > &ctrl, const std::vector< std
 ::size_t > &subsys, std::size_t d=2)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

template<typename Derived1 , typename Derived2 >
 DynMat< typename Derived1::Scalar > qpp::apply (const Eigen::MatrixBase< Derived1 > &state, const
 Eigen::MatrixBase< Derived2 > &A, const std::vector< std::size_t > &subsys, const std::vector< std::size
 _t > &dims)

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

template<typename Derived1 , typename Derived2 >
 DynMat< typename Derived1::Scalar > qpp::apply (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< std::size_t > &subsys, std::size_t d=2)

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

template<typename Derived >
 cmat qpp::channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks)
 Applies the channel specified by the set of Kraus operators Ks to the density matrix rho.

template<typename Derived >
 cmat qpp::channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks, const std
 ::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix rho.

template<typename Derived >
 cmat qpp::channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks, const std
 ::vector< std::size t > &subsys, std::size t d=2)

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix rho

cmat qpp::super (const std::vector< cmat > &Ks)

Superoperator matrix representation.

cmat qpp::choi (const std::vector< cmat > &Ks)

Choi matrix representation.

std::vector< cmat > qpp::choi2kraus (const cmat &A)

Extracts orthogonal Kraus operators from Choi matrix.

• template<typename Derived >

DynMat< typename Derived::Scalar > qpp::ptrace1 (const Eigen::MatrixBase< Derived > &A, const std \leftarrow ::vector< std::size t > &dims)

Partial trace.

• template<typename Derived >

 $\label{lem:def:def:def:def:DynMat} \mbox{Derived::Scalar} > \mbox{qpp::ptrace2} \mbox{ (const Eigen::MatrixBase} < \mbox{Derived} > \&\mbox{A, const std} \\ \mbox{::vector} < \mbox{std::size_t} > \&\mbox{dims})$

Partial trace.

• template<typename Derived >

 $\label{lem:def:DynMat} \mbox{DynMat} < \mbox{typename Derived::Scalar} > \mbox{qpp::ptrace (const Eigen::MatrixBase} < \mbox{Derived} > \mbox{\&A, const std} :::vector < \mbox{std::size_t} > \mbox{\&dims})$

Partial trace.

template<typename Derived >

DynMat< typename Derived::Scalar > qpp::ptranspose (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &subsys, const std::vector< std::size_t > &dims)

Partial transpose.

• template<typename Derived >

DynMat< typename Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase< Derived > &A, const std::vector< std::size_t > &perm, const std::vector< std::size_t > &dims)

System permutation.

8.21 include/qpp.h File Reference

```
#include <algorithm>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <exception>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <limits>
#include <numeric>
#include <ostream>
#include <random>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
#include <Eigen/Dense>
#include <Eigen/SVD>
#include "constants.h"
#include "types.h"
#include "classes/exception.h"
#include "internal/classes/iomanip.h"
#include "input_output.h"
#include "classes/singleton.h"
#include "classes/init.h"
#include "internal/functions.h"
#include "functions.h"
#include "classes/codes.h"
#include "classes/gates.h"
#include "classes/states.h"
#include "classes/random_devices.h"
#include "operations.h"
#include "entropies.h"
#include "entanglement.h"
#include "random.h"
#include "classes/timer.h"
#include "instruments.h"
#include "number_theory.h"
```

Namespaces

• qpp

Variables

8.22 include/random.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

```
    template<typename Derived >
        Derived qpp::rand (std::size_t rows, std::size_t cols, double a=0, double b=1)
        Generates a random matrix with entries uniformly distributed in the interval [a, b)
    template<>
        dmat qpp::rand (std::size_t rows, std::size_t cols, double a, double b)
        Generates a random real matrix with entries uniformly distributed in the interval [a, b), specialization for double matrices (qpp::dmat)
    template<>
        cmat qpp::rand (std::size_t rows, std::size_t cols, double a, double b)
        Generates a random complex matrix with entries (both real and imaginary) uniformly distributed in the interval [a, b), specialization for complex matrices (qpp::cmat)
    double qpp::rand (double a=0, double b=1)
```

Generates a random real number uniformly distributed in the interval [a, b)

int qpp::randint (int a=std::numeric_limits< int >::min(), int b=std::numeric_limits< int >::max())

Generates a random integer (int) uniformly distributed in the interval [a, b].

• template<typename Derived >

Derived qpp::randn (std::size_t rows, std::size_t cols, double mean=0, double sigma=1)

Generates a random matrix with entries normally distributed in N(mean, sigma)

template<>

dmat qpp::randn (std::size_t rows, std::size_t cols, double mean, double sigma)

Generates a random real matrix with entries normally distributed in N(mean, sigma), specialization for double matrices (qpp::dmat)

template<>

cmat qpp::randn (std::size_t rows, std::size_t cols, double mean, double sigma)

Generates a random complex matrix with entries (both real and imaginary) normally distributed in N(mean, sigma), specialization for complex matrices (qpp::cmat)

• double qpp::randn (double mean=0, double sigma=1)

Generates a random real number (double) normally distributed in N(mean, sigma)

cmat qpp::randU (std::size_t D)

Generates a random unitary matrix.

cmat qpp::randV (std::size_t Din, std::size_t Dout)

Generates a random isometry matrix.

• std::vector< cmat > qpp::randkraus (std::size t N, std::size t D)

Generates a set of random Kraus operators.

cmat qpp::randH (std::size_t D)

Generates a random Hermitian matrix.

ket qpp::randket (std::size_t D)

Generates a random normalized ket (pure state vector)

cmat qpp::randrho (std::size t D)

Generates a random density matrix.

std::vector< std::size_t > qpp::randperm (std::size_t n)

Generates a random uniformly distributed permutation.

8.23 include/types.h File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Typedefs

```
using qpp::cplx = std::complex < double >
      Complex number in double precision.
template<typename Scalar >
  using <a href="mailto:qpp::DynMat">qpp::DynMat</a> = Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic >
     Dynamic Eigen matrix over the field specified by Scalar.
• template<typename Scalar >
  using qpp::DynColVect = Eigen::Matrix < Scalar, Eigen::Dynamic, 1 >
     Dynamic Eigen column vector over the field specified by Scalar.
\bullet \ \ \text{template}{<} \text{typename Scalar} >
  using qpp::DynRowVect = Eigen::Matrix< Scalar, 1, Eigen::Dynamic >
     Dynamic Eigen row vector over the field specified by Scalar.
using qpp::ket = DynColVect< cplx >
      Complex (double precision) dynamic Eigen column vector.
using qpp::bra = DynRowVect< cplx >
      Complex (double precision) dynamic Eigen row vector.
using qpp::cmat = DynMat< cplx >
      Complex (double precision) dynamic Eigen matrix.
using qpp::dmat = DynMat< double >
     Real (double precision) dynamic Eigen matrix.
```

8.24 mainpage.dox File Reference

Index

absm	qpp::Exception, 67
qpp, 23	DIMS_MISMATCH_RVECTOR
abssq	qpp::Exception, 67
qpp, 23, 24	DIMS_MISMATCH_VECTOR
adjoint	qpp::Exception, 67
qpp, 24	DIMS_NOT_EQUAL
anticomm	qpp::Exception, 67
qpp, 24	det
apply	qpp, 29
qpp, 24, 25	disp
	qpp, 30, 31
bra	dmat
qpp, 22	qpp, <mark>22</mark>
CUSTOM_EXCEPTION	ee
qpp::Exception, 68	qpp, 59
channel	entanglement
qpp, 26	qpp, 31
choi	eps
qpp, 27	qpp, 59
choi2kraus	evals
qpp, 27	qpp, 31
chop	evects
qpp, 58	qpp, 32
cmat	expm
qpp, 22	qpp, 32
codes	
qpp, 58	FIVE_QUBIT
comm	qpp::Codes, 64
qpp, 27	funm
compperm	qpp, <mark>32</mark>
qpp, 28	d
concurrence	gcd
qpp, 28	qpp, 32, 33
conjugate	gconcurrence
qpp, 28	qpp, 33
contfrac2x	grams
qpp, 28, 29	qpp, 33, 34
cosm	gt 50
qpp, 29	qpp, 59
cplx	hevals
qpp, 22	qpp, 34
cwise	hevects
qpp, 29	
د ا الم	qpp, 34
DIMS INVALID	infty
qpp::Exception, 67	qpp, 59
DIMS_MISMATCH_CVECTOR	init
qpp::Exception, 67	qpp, 59
DIMS MISMATCH MATRIX	inverse
···•·································	

INDEX 115

qpp, 34 invperm qpp, 35 ket qpp, 23	NOT_QUBIT_SUBSYS qpp::Exception, 68 negativity qpp, 44 norm qpp, 44
kron qpp, 35, 36 kronpow qpp, 36	OUT_OF_RANGE qpp::Exception, 68 omega qpp, 44
lcm qpp, 36 load qpp, 37	PERM_INVALID
logdet qpp, 38 logm qpp, 38	qpp, 59 powm qpp, 45 prj qpp, 45
lognegativity qpp, 38 MATRIX_MISMATCH_SUBSYS qpp::Exception, 67	prod qpp, 45 ptrace qpp, 46
MATRIX_NOT_CVECTOR	ptrace1 qpp, 46 ptrace2 qpp, 46
MATRIX_NOT_SQUARE qpp::Exception, 67 MATRIX_NOT_SQUARE_OR_CVECTOR qpp::Exception, 67	ptranspose qpp, 46 qmutualinfo
MATRIX_NOT_SQUARE_OR_RVECTOR	qpp, 47 qpp, 13 absm, 23 abssq, 23, 24
MATRIX_NOT_VECTOR	adjoint, 24 anticomm, 24 apply, 24, 25 bra, 22 channel, 26
measure qpp, 39–42 mket qpp, 42 mprj	choi, 27 choi2kraus, 27 chop, 58 cmat, 22
qpp, 42, 43 multiidx2n qpp, 43	codes, 58 comm, 27 compperm, 28 concurrence, 28
n2multiidx qpp, 43 NINE_QUBIT_SHOR qpp::Codes, 64	conjugate, 28 contfrac2x, 28, 29 cosm, 29 cplx, 22
NO_CODEWORD	cwise, 29 det, 29 disp, 30, 31 dmat, 22 ee, 59
qpp::Exception, 67	ee, 59 entanglement, 31

116 INDEX

eps, 59	spectralpowm, 55
evals, 31	sqrtm, 55
evects, 32	st, 59
expm, 32	sum, 56
funm, 32	super, 56
gcd, 32, 33	svals, 56
gconcurrence, 33	syspermute, 57
grams, 33, 34	trace, 57
gt, 59	transpose, 58
hevals, 34	tsallis, 58
hevects, 34	x2contfrac, 58
infty, 59	qpp::Codes
init, 59	FIVE_QUBIT, 64
inverse, 34	NINE_QUBIT_SHOR, 64
invperm, 35	SEVEN_QUBIT_STEANE, 64 qpp::Exception
ket, 23	CUSTOM_EXCEPTION, 68
kron, 35, 36	DIMS_INVALID, 67
kronpow, 36	DIMS_MISMATCH_CVECTOR, 67
lcm, 36	DIMS_MISMATCH_MATRIX, 67
load, 37	DIMS MISMATCH RVECTOR, 67
logdet, 38	DIMS MISMATCH VECTOR, 67
logm, 38	DIMS_NOT_EQUAL, 67
lognegativity, 38	MATRIX_MISMATCH_SUBSYS, 67
maxn, 59 measure, 39–42	MATRIX NOT CVECTOR, 67
mket, 42	MATRIX_NOT_RVECTOR, 67
mprj, 42, 43	MATRIX_NOT_SQUARE, 67
multiidx2n, 43	MATRIX_NOT_SQUARE_OR_CVECTOR, 67
n2multiidx, 43	MATRIX_NOT_SQUARE_OR_RVECTOR, 67
negativity, 44	MATRIX_NOT_SQUARE_OR_VECTOR, 67
norm, 44	MATRIX_NOT_VECTOR, 67
omega, 44	NO_CODEWORD, 68
pi, 59	NOT_BIPARTITE, 68
powm, 45	NOT_QUBIT_GATE, 67
prj, 45	NOT_QUBIT_SUBSYS, 68
prod, 45	OUT_OF_RANGE, 68
ptrace, 46	PERM_INVALID, 68
ptrace1, 46	SUBSYS_MISMATCH_DIMS, 67
ptrace2, 46	TYPE_MISMATCH, 68 UNDEFINED TYPE, 68
ptranspose, 46	UNKNOWN EXCEPTION, 67
qmutualinfo, 47	ZERO SIZE, 67
rand, 47, 48	22110_0122, 07
randint, 49	rand
randket, 49	qpp, 47, 48
randkraus, 49	randint
randn, 49, 50	qpp, 49
randperm, 50	randket
randrho, 51	qpp, 49
rdevs, 59	randkraus
renyi, 51	qpp, 49
reshape, 52	randn
rho2pure, 52	qpp, 49, 50
save, 52	randperm
schatten, 53	qpp, 50
schmidtooeff, 53	randrho
schmidtprob, 54	qpp, 51
shannon, 55	rdevs
sinm, 55	qpp, 59

```
renyi
    qpp, 51
reshape
    qpp, 52
rho2pure
    qpp, 52
SEVEN_QUBIT_STEANE
    qpp::Codes, 64
SUBSYS_MISMATCH_DIMS
    qpp::Exception, 67
save
    qpp, <mark>52</mark>
schatten
    qpp, 53
schmidtcoeff
    qpp, 53
schmidtprob
    qpp, 54
shannon
    qpp, 55
sinm
    qpp, 55
spectralpowm
    qpp, <mark>55</mark>
sqrtm
    qpp, 55
st
    qpp, 59
sum
    qpp, <mark>56</mark>
super
     qpp, 56
svals
    qpp, 56
syspermute
    qpp, 57
TYPE_MISMATCH
    qpp::Exception, 68
trace
    qpp, 57
transpose
    qpp, 58
tsallis
    qpp, 58
UNDEFINED_TYPE
    qpp::Exception, 68
UNKNOWN_EXCEPTION
    qpp::Exception, 67
x2contfrac
    qpp, 58
ZERO_SIZE
    qpp::Exception, 67
```