Estruturas de Dados - Quicksort

Aula passada

O que vimos:

Merge Sort

Complexidades:

Algoritmo	melhor caso	pior caso
Merge Sort	$O(n \log n)$	$O(n \log n)$

- Ordenação por comparação
- Assim como o Merge Sort, também faz ordenação por partes
- Também é um algoritmo de divisão e conquista
- Faz comparações com um certo elemento do vetor

- Ideia para ordenar:
 - caso tenhamos um vetor unitário, trivialmente ele já está ordenado
 - selecionar, aleatoriamente ou não, um elemento x do vetor
 - chamaremos esse elemento de pivô
 - particionar: reposicionar os elementos do vetor de modo que:
 - ullet os elementos menores que x tenham índice no vetor menor que o pivô
 - ullet os elementos maiores que x tenham índice no vetor maior que o pivô

- Ideia para ordenar (continuação):
 - resultado:
 - pivô x em uma certa posição no vetor
 - ullet todos os elementos menores que x em S estarão a esquerda do pivô
 - todos os elementos maiores que x em S estarão a direita do pivô
 - a partir disso, basta ordenarmos os dois lados
 - ordenamos o subvetor de menores e o subvetor de maiores
- Os passos listados são repetidos para a ordenação de cada subvetor
- Corretude: essa ideia funciona?

- Caso base da recursão:
 - vetor unitário: caso trivial onde o vetor é ordenado
- Chamadas recursivas:
 - divisão e conquista: consideramos que as chamadas recursivas ordenam os subproblemas com sucesso
- Particionamento do vetor:
 - separar os elementos do vetor em maiores ou menores que o pivô
 - este caso n\u00e3o pode ser resolvido com chamadas recursivas; se trata de um novo problema
 - caso seja resolvido corretamente, torna o algoritmo correto

Quick Sort: função Partition

- Função Partition:
 - recebe um vetor arbitrário S, seleciona um pivô x e reposiciona os elementos de S de modo que
 - elementos menores que x estarão a esquerda do pivô
 - elementos maiores que x estarão a direita do pivô
 - como fazer?

Quick Sort: função Partition

- Função Partition:
 - recebe um vetor arbitrário S, seleciona um pivô x e reposiciona os elementos de S de modo que
 - elementos menores que x estarão a esquerda do pivô
 - elementos maiores que x estarão a direita do pivô
 - ideia:
 - procurar um elemento a a partir da esquerda do vetor S, que seja maior que x
 - procurar um elemento b a partir da direita do vetor S, que seja menor que x
 - trocar a posição de a e b em S

Quick Sort: função Partition

```
Algoritmo: Partition(S, p, r)
  Entrada: vetor S, índices p \in r
  Saída: posição q do pivô em S
1 piv = S[p]
2 i = p
3 i = r
4 enquanto i \leq j faça
     enquanto S[i] \leq piv faça
      i = i + 1
    enquanto S[j] > piv faça
      j = j - 1
    se i < j então
     trocar S[i] com S[j]
10
11 S[p] = S[j]
12 S[j] = piv
13 retorne j
```

Quick Sort: algoritmo

```
Algoritmo: QuickSort(S, p, r)

Entrada: vetor S, indices p \in r

Saida: vetor S ordenado de p a r

1 se p < r então

2 | q = \text{Partition}(S, p, r)

3 | QuickSort(S, p, q - 1)

4 | QuickSort(S, q, q + 1, r)
```

Quick Sort: complexidade

- Complexidade do Quick Sort:
 - cada chamada para QuickSort passando um vetor de tamanho n inclui
 - ullet uma chamada para Partition, que tem complexidade O(n)
 - duas chamadas para QuickSort passando vetores de tamanho $\frac{n}{2}$
 - análise de complexidade: semelhante ao MergeSort
 - complexidade: O(n log n)
- Complexidade do QuickSort no melhor caso e caso médio:
 - duas chamadas para QuickSort passando vetores de tamanho médio igual a $\frac{n}{2}$
 - complexidade: $O(n \log n)$

Quick Sort: complexidade

- Complexidade do Quick Sort no pior caso:
 - pior caso: pivô selecionado em cada nível de recursão é sempre o maior (ou menor) elemento do vetor
 - ullet uma chamada para Partition, que tem complexidade O(n)
 - duas chamadas para QuickSort passando vetores de tamanho 0 (desprezada) e n-1
 - análise de complexidade: análoga ao BubbleSort ou InsertionSort
 - complexidade: $O(n^2)$

- Vantagens:
 - implementação relativamente simples (Partition é mais fácil de implementar do que Merge)
 - complexidade $O(n \log n)$ no caso médio
 - pouco uso de memória auxiliar
 - utiliza uma quantidade constante de variáveis auxiliares, seja qual for o tamanho n do vetor
 - método rápido (o laço interno é simples)
- Desvantagens:
 - não é estável
 - problema: seleção do pivô
 - pior caso: $O(n^2)$

Quick Sort: escolha do pivô

- Vimos que a escolha do pivô influencia na complexidade
 - um bom pivô resulta numa complexidade $O(n \log n)$
 - um mau pivô resulta numa complexidade $O(n^2)$
- Problema: qual elemento escolher como pivô?

Quick Sort: mediana de um vetor

- Problema: qual elemento escolher como pivô?
- Resposta direta: um elemento que "corte o vetor no meio"
- Resposta: mediana!
 - mediana de um vetor S: um elemento x tal que metade dos elementos sejam maiores ou iguais a x, e metade dos elementos sejam menores ou iguais a x
 - "divide o vetor no meio"
- ullet A princípio, considere um vetor ordenado S de tamanho n
 - se n é ímpar, x é o valor na posição $\frac{n+1}{2}$ de S
 - se n é par, x é a média dos valores nas posições $\frac{n}{2}$ e $\frac{n}{2}+1$

Quick Sort: mediana de um vetor

- ullet Para vetores ordenados, encontrar a mediana é O(1)
 - se o tamanho do vetor for ímpar, basta checar a posição do meio
 - se o tamanho do vetor for par, fazemos a média entre os valores nas duas posições do meio
- Problema: como calcular a mediana para um vetor S arbitrário?
- Solução simples: ordenar o vetor e calcular a mediana
 - ordenar: f(n) (complexidade do método de ordenação)
 - calcular a mediana: O(1)
 - complexidade: f(n)
- Conseguimos fazer melhor?
 - sim, mas não trabalharemos isso a fundo
 - porém, é importante saber um pouco sobre mediana