강의 개요:

담당 교수: 정인상

연구실: 연구관 303호

연락 방법 전화: 02-760-4301/ 이메일: insang@hansung.ac.kr

강의 홈페이지: 블랙보드 강의

참고 교재:

- 오픈 소스 소프트웨어로 실습하는 소프트웨어공학(정인상교수, 생능, 2017)
- 소프트웨어공학의 소개 (한혁수 교수, 홍능과학출판사)
- 소프트웨어 공학 (윤청교수)
- 소프트에어 공학론 (최은만 교수저, 정익사)
- 실무자를 위한 소프트웨어 공학(김수동 교수저, 에드텍)
- 소프트웨어 공학 (lan Sommerville 저, 우치수•김갑수•이명재 역, 홍릉과학출판사)
- 소프트웨어 공학 (Rogers Pressman 저, 유해영 역, 사이텍미디어)
- Software Engineering with JAVA (Stephen R. Shach)
- 객체지향 소프트웨어 공학 Object-oriented & classical software eng., 6th Edition, Stephen
 R. Schach, McGraw-Hill Korea, 유해영

주의할 점: 레포트 제출일자 절대 엄수(기간이 지난 레포트는 절대 받지 않음)

레포트 카피 발견시: 0점 처리 및 학점에 불이익

성적 산출 총점=중간(35)+기말(35)+레포트(20)+출석(미달시 F)

소프트웨어 개발의 현실

교과목 개요

- 소프트웨어에 대한 요구와 관심이 점점 높아가고 있는 추세와 함께 소프트웨어를 개발하는 방법론에 관한 연구도 점점 증가
- 적은 비용으로 품질이 좋은 소프트웨어를 만들기 위하여 여러 방법론들 이 제시되고 있으며 실제 현장에서 적용
- 소프트웨어공학에서 주로 다루는 내용은 소프트웨어를 개발하고 유지 보수하는 기술들이 며 이를 토대로 현장에서 체계적으로 소프트웨어를 개발하기 위한 방법론을 습득하는데 기반이 되는 매우 중요한 학문

학습 목표

- 소프트웨어 생명 주기 개념을 이해
- 애자일 프로세스 개념 이해
- UML 모델링 기법 개념 이해
- 설계 원칙
- 소프트웨어 테스트 개념을 이해 및 적용 능력 함양

2021 소프트웨어공학 강의계획서

주	수업내용	비고
1	- 강의 소개	
	- 오픈 소스 소프트웨어	
	- 오픈소스 라이선스	
	- 폭포수 모델	
2	- 애자일 프로세스	
	- 스크럼	
3	- 객체지향 모델링 기법: UML	
	- 유스케이스 다이어그램	
4	- 클래스 다이어그램	
	- 시퀀스 다이어그램	
	- 패키지 다이어그램	
5	- 소프트웨어 설계 원칙	
	- 응집도와 결합도	
6	- 소프트웨어 아키텍처	
	- 계층 아키텍처	
	- MSA	
7	SOLID	
	● SRP	
	● OCP	
	● LSP	
	● ISP	
	● DIP	
8	- 중간시험	4/24
9	- 소프트웨어 복잡도 (순환복잡도)	
10	- 설계 패턴	
11	- 소프트웨어 테스팅 소개	
	● 소프트웨어 테스트 중요성	
	● 테스트 기본 원리	
	● 테스트 한계	
	● 테스트 오라클	
12	- 단위 테스트 설계	
	- JUnit 프레임워크 소개	
13	- 명세 기반 테스팅	
	● 테스트 케이스 설계 방법 소개	

	● ISO29119 소개	
	● 블랙박스 테스트 소개	
	● 동등 분할 방식	
	● 경계값 분석 방식	
	● 페어와이즈 테스트를 포함한 조합 테스트 소	
	개	
14	- 구조 기반 테스팅	
	●화이트 박스 테스트	
	● 커버리지 개념 소개	
	● 제어흐름그래프 소개	
	● 블록 커버리지 소개	
	● 분기 커버리지 소개	
15	기말 시험	6/12

수업을 진행하면서 수업 일정에는 약간의 변동 사항이 있을 수 있음