Introduction to Convolutional Neural Network

2019 - 2020 - 2021

Ando Ki, Ph.D. adki@future-ds.com

Table of contents

- CNN
- CNN: convolution
- CNN: pooling
- CNN abstraction
- CNN examples

Copyright (c) Ando Ki

CNN

CNN: Convolutional Neural Network

- CNN is a neural network that uses convolution in place of general matrix multiplication in at least one of their layers.
- General form of CNN (Convolutional Neural Network) for image classification
 - ► Feature extraction
 - Convolution
 - Pooling (sub-sampling)
 - Classification
 - Regression

Copyright (c) Ando K

CN

CNN: convolution

Convolution is a matrix multiplication

It can be seen as a feature extractor

https://adeshpande3.github.io/adeshpande3.github.io/A-Begi nner's-Guide-To-Understanding-Convolutional-Neural-Netwo rks/

Copyright (c) Ando Ki

CNN

How to choose filters

- With CNN/ConvNet the goal is to learn the filters; you don't actually design these filters (or kernels). They will be learned during training as long as the training converges.
- Initializing the these filter parameters with good defaults before starting the training is key to convergence especially in very deep networks.
- Convolution filters can be initialized in one of the following ways.
 - ▶ 1. Randomly assigning weights for the different filters.
 - 2. Handcrafting the weights of the different filters to detect specific features during convolution.
 - ▶ 3. Learning filter weights using unsupervised training schemes.

Copyright (c) Ando Ki

CNI

Deep learning: Learning Hierarchical Representations

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Copyright (c) Ando Ki

CNN

Table of contents

- Convolution by matrix multiplication
- Fully connected layer by convolution
- Convolution for multi-channel
- Convolution and deconvolution
- Standard convolution
- Separable convolution: spatially separable
- Separable convolution: depthwise separable

Copyright (c) Ando Ki

CNN

13

Convolution 2D

torch.nn.Conv2d(in_channels=n,
out_channels=m, kernel_size=k,
stride=s, padding=p)

Note that there are nxm filters (kernels)

http://sharetechnote.com/html/Python_PyTorch_nn_conv2D_01.html

Copyright (c) Ando Ki

CNN

Fully connected layer by convolution (2/2)

Convolution with 1x1 kernels

Fully connected layer

Or, we can concatenate the inputs into 1×1 images with 4 channels and then use 2 kernels (remember, each kernel then also has 4 channels)

conv = torch.nn.Conv2d(in_channels=4, out_channels=2, kernel_size=(1, 1))

conv.weight.data = weights.view(2, 4, 1, 1) conv.bias.data = bias torch.relu(conv(inputs.view(1, 4, 1, 1)))

Convright (c) Ando K

CNN

1

Convolution for multi-channel

- 2D convolution
 - single and multi-channel

- 3D convolution
 - ▶ single and multi-channel

Copyright (c) Ando Ki

CNV

Convolution and deconvolution

- Standard convolution (discrete convolution)
 - ▶ to extract feature map

- Standard deconvolution
 - known as transposed convolution
 - ▶ to reconstruct original image
 - ▶ a reverse operation of convolution

Copyright (c) Ando H

CNN

21

Dilated convolution (atrous convolutions)

- Similar with deconvolution used in real-time segmentation
- smaller kernel for wider view
- not reverse operation (i.e, not reconstruction of original image)

Copyright (c) Ando Ki

CNN

Separable convolution: spatially separable

- standard convolution
 - ► multiplications
 - **○** K*K * W*W

kernel divided

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \times \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

spatially separable convolution

- multiplications
 - - 2/K ratio comparing to standard convolution

$$\begin{bmatrix} 3 & 6 & 9 \\ 4 & 8 & 12 \\ 5 & 10 & 15 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

Although spatially separable convolutions save cost, it is rarely used in deep learning. One of the main reason is that <u>not all kernels can be divided into two, smaller kernels</u>.

ppyright (c) Ando Ki

Separable convolution: depthwise separable

Copyright (c) Ando Ki CNN

Separable convolution: depthwise separable

- Standard convolution
 - uses kernels of a number of output channels
- Depth wise separable
 - Depthwise convolution: filtering stageuses kernels of a number of input channels
 - ▶ Pointwise convolution: combining state
 - uses kernels of a number of output channels

Copyright (c) Ando Ki

CNIN