AC – Aprendizagem Computacional / Machine Learning

P4a – Perceptron

Jorge Henriques

jh@dei.uc.pt

Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia

- 1 Objectives
- 2 | Train a Perceptron (by hand)
- 3 | Train a perceptron (Automatically)
 - Datasets
- 4 Conclusions

Objectives – Network with one Layers of neurons

- Concepts
- Datasets/problems
 - Linearly separable
 - Not linearly separable

- Structures
 - Perceptron
 - Adaline
 - Sigmoidal activation

- Implement perceptron training rule

 By hand and automatically
- use of pseudo-inverse
- Implement Recursive Least squares

- 1 Objectives
- 2 | Train a Perceptron (by hand)
- 3 | Train a perceptron (Automatically)
 - Datasets
- 4 | Conclusions

- Train a perceptron network (one layer)
 - Define the structure (number of perceptrons)
 - Train the network (parameters w, b)

Training a perceptron network


```
If y1=1 AND y2=1 Y=?
If y1=1 AND y2=0 Y=?
```

- 1 Objectives
- 2 | Train a Perceptron (by hand)
- 3 | Train a perceptron (Automatically)
 - Datasets
- 4 | Conclusions

Datasets

- Dataset 1 linearly separable
- P4_data1.csv

- Dataset 2 non-linearly separable
- P4_data2.csv

Three algorithms

- 1 | Perceptron
 - Perceptron Training rule (on-line)
- 2 | Adaline
 - Pseudo-inverse (off-line)
- 3 | Sigmoidal
 - RLMSE (on-line)

DATA

• X={x1,x2}

```
0.8147 0.1270 0.6324 0.2785 0.9575 0.1576 0.9572 0.8003 0.4218 0.7922 0.9058 0.9134 0.0975 0.5469 0.9649 0.9706 0.4854 0.1419 0.9157 0.9595 (R=2,N=10)
```

•
$$x_0 = 0.8147$$
 $x_i =$

1 0 1 0 1 0 1 0 · (1,N=10)

1 | Perceptron learning rule (iterative)

• Activation function: hardlim

$$\theta = \begin{bmatrix} w & b \end{bmatrix} \quad z = \begin{bmatrix} x_i \\ 1 \end{bmatrix}$$

$$y = \text{hardlim}(\theta z)$$
(3,1)

(3,N)

$$W^{(new)} = W^{(old)} + E X^{T}$$
(1,2) (1,N) (N,2)

$$b^{(new)} = b^{(old)} + E I$$
(1,1)
(1,N)(N,1)

$$E = T - Y$$
 (1,N)
 $\theta^{(new)} = \theta^{(old)} + E Z^{T}$

(1,3)

(1,N)

(N,3)

- 1 Perceptron iterative learning rule
 - Linearly / nonlinearly separable ?

2 | Adaline – offline pseudoinverse

Activation function: purelin

$$\theta = \begin{bmatrix} w & b \end{bmatrix} \quad z = \begin{bmatrix} x_i \\ 1 \end{bmatrix} \\
y = \theta z$$
(3,1)

$$Z (3,N)$$

$$e = T - Y (1,N)$$

$$\theta = T \left[Z^T Z \right]^{-1} Z^T$$

$$(1,3)$$
 $(1,N)$ $(N,3)$ $(3,N)$ $(N,3)$

$$\theta = T Z^{+}$$
(1,N) (N,3)

2 Adaline - pseudoinverse

• Activation function: purelin

3 | Nonlinear – recursive least squares

• Activation function: sigmoidal

$$\theta = \begin{bmatrix} w & b \end{bmatrix} \quad z = \begin{bmatrix} X \\ 1 \end{bmatrix}$$

$$y = \log sig(\theta z)$$
(3,1)

$$W^{(new)} = W^{(old)} + \alpha \left(E \otimes F' \right) X^{T}$$
(1,2) (1,N) \otimes (1,N) (N,2)

$$b^{(new)} = b^{(old)} + (E \otimes F') I$$

$$(1,1) \qquad (1,N) \otimes (1,N) (N,1)$$

$$Z$$
 (3,N) α learning rate
$$e = T - Y$$
 (1,N)
$$\theta^{(new)} = \theta^{(old)} + \alpha (E \otimes F') Z^{T}$$
(1,3) (1,N) \otimes (1,N)(N,3)

3 | Nonlinear – RLS

- Learning rate, α ?
- Epochs?

- 1 Objectives
- 2 | Train a Perceptron (by hand)
- 3 | Train a perceptron (Automatically)
 - Datasets
- 4 Conclusions

4 | Conclusions

Structure

- 1 Implement perceptron + perceptron learning rule
 - Epochs?
- 2 | Implement Adaline + pseudo-inverse
 - Right, Left
- 3 | Implement nonlinear neuron + recursive least squares
 - Epochs ?
 - α Learning rate value ?

Dataset

- Linearly separable
- Not linearly separable

4 | Conclusions

Other ideas - 1 | Multiclass

- 4 classes
- Layer of two perceptrons
- P4_dataset3.csv
- [x1 x2 y1 y2]

4 | Conclusions

Other ideas – 2 | nonlinear function

Non-linear function

