NUMERO d'ANONYMAT:

Examen 2I003

Jeudi 2 Juin 2016, 2 heures aucun document autorisé

tion 1 elez la définition du deg	$\operatorname{r\'e} d_G(x)$ nour	$r \in V$			
nez la deminition du deg	$a_{G}(x)$ pour	$x \in V$.			
estion 2					
ontrez par récurrence su	r le nombre m			on orienté $G = (V$	(E, E):
		$\sum_{x \in V} d_G(x)$	=2m.		
		$\overbrace{x \in V}$			

Question 3 Rappelez la définition de la composante connexe C_x de x pour $x \in V$.		
	uestion 4 ans cette question on suppose que tous les sommets de G sont de degré 1.	
	1. Démontrez que G a un nombre pair de sommets.	
	 Démontrez par l'absurde que C_x = 2 pour x ∈ V. Calculez le nombre de composantes connexes en fonction de n = V . 	

Question 5
Dans cette question on suppose que G est connexe, que $n \geq 3$ et que tous les sommets de G sont de degré égal à 2
On veut montrer que l'on peut construire une chaîne élémentaire x_1, x_2, \ldots, x_n telle que x_1 et x_n sont adjacents.
Soit x_1, x_2, \ldots, x_k une chaîne élémentaire de longueur maximale et x_{k+1} le deuxième sommet adjacent à x_k .
1. Montrez que x_{k+1} est l'un des sommets $x_1, x_2, \ldots, x_{k-2}$.
2. Montrez par l'absurde que $x_{k+1} = x_1$.
3. Montrez par l'absurde que $k = n$.
4. En déduire qu'il existe une chaîne élémentaire x_1, x_2, \dots, x_n telle que x_1 et x_n sont adjacents.

Exercice 2 - Gestion d'intervalles disjoints

Le but de cet exercice est d'étudier des structures de données pour stocker un ensemble d'intervalles fermés disjoints. Deux intervalles I = [I.min, I.max] et J = [J.min, J.max] sont disjoints si $I \cap J = \emptyset$. A titre d'exemple, $[5,7] \cap [7,10] = \{7\}$, ces deux intervalles ne sont donc pas disjoints. Par contre, $[5,7] \cap [8,10] = \emptyset$ et ces deux intervalles sont disjoints. Pour insérer un nouvel intervalle, il faut alors s'assurer qu'il n'intersecte pas un intervalle déja existant. Si c'est le cas, **on refuse l'insertion**.

déja existant. Si c'est le cas, on refuse l'insertion .	
Question 1 Ecrire la fonction IntersectionVide (I, J) qui retourne vrai si $I \cap J = \emptyset$. Quelle est sa complexité?	
Question 2 On suppose dans cette question uniquement que l'on utilise un tableau non trié T pour stocker les intervalles. Quelle est la complexité dans le meilleur et le pire des cas d'un algorithme qui insère (si c'est possible) un intervalle I dans T ? Justifiez votre réponse.	

Question 3

On suppose dans cette question uniquement que l'on utilise un tableau trié en ordre croissant T pour stocker les intervalles.

- 1. Quel est le tableau obtenu en effectuant les insertions successives des intervalles suivants : [12, 15], [5, 7], [8, 9], [27, 30], [6, 10], [20, 22] et [2, 4]?
- 2. Quelle est la complexité dans le pire des cas et le meilleur des cas de la fonction de recherche de la place éventuelle d'un intervalle *I* en utilisant une recherche séquentielle ? Justifiez votre réponse.
- 3. Quelle est la complexité dans le pire des cas et le meilleur des cas de la fonction de recherche de la place éventuelle d'un intervalle *I* en utilisant une recherche dichotomique ? Justifiez votre réponse.
- 4. Quelle est la complexité dans le pire des cas d'un algorithme qui insère (si c'est possible) un intervalle I dans T triée en utilisant la recherche dichotomique? Justifiez votre réponse.

Question 4

Par la suite on utilise les arbres d'intervalles qui constituent une extension des arbres binaires de recherche. Tout sommet T de l'arbre possède un champ <code>T.Int</code> correspondant à un intervalle dont les bornes sont notées <code>T.Int.min</code> et <code>T.Int.max</code>. La structure de l'arbre est alors un arbre binaire de recherche avec comme clefs les valeurs <code>T.Int.min</code>. Plus précisément :

- 1. Pour tout sommet T, pour tout élement Y du sous-arbre gauche de T, on a Y. Int.min<T. Int.min.
- 2. Pour tout sommet T, pour tout élement Y du sous-arbre droit de T, on a Y.Int.min>T.Int.min.
- 3. Tous les intervalles stockés dans l'arbre sont disjoints.

Vérifiez que l'arbre représenté est bien un arbre d'intervalles.

Question 5

On considère maintenant le programme suivant :

```
def ABRIcherche(I,T):
    if estABIvide(T):
        print "L_intervalle_pas_dans_l_arbre"
        return False
    print "Etude_de_l_intervalle_[", T.Int.min, T.Int.max, "]"
    if not IntersectionVide(I,T.Int):
        print "L_intervalle_intersecte_un_element_de_l_arbre"
        return True
    if I.max<T.Int.min:
        return ABRIcherche(I,T.gauche)
    return ABRIcherche(I,T.droit)</pre>
```

Exécutez deux fois la fonction pour l'arbre T de la question précédente et les intervalles I1 = [11, 12] et I2 = [14, 14].

Que fait cette fonction dans le cas général (pour tout arbre T et tout intervalle I)?

Que	estion 6
)én eut	nontrez par induction sur la structure de l'arbre la terminaison et la validité de la fonction ABRIcherche. Que
Dén eut	nontrez par induction sur la structure de l'arbre la terminaison et la validité de la fonction $ABRIcherche$. Que -on dire de l'intervalle I dans le dernier cas ?
Den eut	nontrez par induction sur la structure de l'arbre la terminaison et la validité de la fonction ABRIcherche. Que
Den eut	nontrez par induction sur la structure de l'arbre la terminaison et la validité de la fonction ABRIcherche. Que
Dem	nontrez par induction sur la structure de l'arbre la terminaison et la validité de la fonction ABRIcherche. Que
Dem	nontrez par induction sur la structure de l'arbre la terminaison et la validité de la fonction ABRIcherche. Que
Den	nontrez par induction sur la structure de l'arbre la terminaison et la validité de la fonction ABRIcherche. Que
Démoeut	nontrez par induction sur la structure de l'arbre la terminaison et la validité de la fonction ABRIcherche. Que
Dém	nontrez par induction sur la structure de l'arbre la terminaison et la validité de la fonction ABRIcherche. Que
Den	nontrez par induction sur la structure de l'arbre la terminaison et la validité de la fonction ABRIcherche. Que
Dén	nontrez par induction sur la structure de l'arbre la terminaison et la validité de la fonction ABRIcherche. Que
Den	nontrez par induction sur la structure de l'arbre la terminaison et la validité de la fonction ABRIcherche. Que
Den	nontrez par induction sur la structure de l'arbre la terminaison et la validité de la fonction ABRIcherche. Que
Den	nontrez par induction sur la structure de l'arbre la terminaison et la validité de la fonction ABRIcherche. Que

uestion 7 uelle est la complexité dans le meilleur et le pire des cas de la fonction ABRIcherche (I, T) ? Justifiez votre ponse.
uestion 8 onnez l'arbre obtenu en insérant successivement si possible les intervalles suivants de l'arbre d'intervalle de la estion 4 : [14, 14], [30, 35], [21, 23] et [28, 29].