Multiclass Classification and Structured Prediction

He He (adapted from David Rosenberg's and Dan Roth's slides)

CDS, NYU

April 7, 2019

Contents

- Overview
- Reduction to Binary Classification
 - Recap: OvA and AvA
 - Error correcting output codes
- Linear Multiclass Predictors
 - Multiclass perceptron
 - Linear Multiclass SVM
 - Formulation through constraints on margin
 - Formulation through hinge loss
 - Is This Worth The Hassle Compared to One-vs-All?
- Introduction to Structured Prediction

He He (CDS, NYU) DS-GA 1003 April 7, 2019 2 / 50

Overview

Motivation

- So far, most algorithms we've learned are designed for binary classification.
- Many real-world problems have more than two classes.
- What are some potential issues when we have a large number of classes?

Motivation

u So far, most algorithms we've learned are designed for binary classification.

- So far, most algorithms we've learned are designed for binary classification.
 Many real-world problems have more than two classes.
- What are some potential issues when we have a large number of classes?

1. Which ones we've learned can handle more than 2 classes? Multinomial logistic regression, naive Bayes. Next, trees and random forests.

Motivation

- 2. Examples? Text classification, object recognition (ImageNet has more than 20k classes).
- 3. Class imbalance, computation cost for both training and testing, different cost of errors etc.

Today's lecture

- Recap: how to reduce multiclass classification to binary classification?
- How do we generalize binary classification algorithm to the multiclass setting?
- Beyond classification: learning to rank.
- Key idea: reduction.

Recay: how to reduce multiclass classification to binary classification?
Here do us generalize binary classification algorithm to the multiclass setting?
Byond classification learning to read.
You got an efaction.

- 1. What needs to be changed here? The loss function.
- 2. Think of binary classification or linear regression as black-box predictors and start from there.

Today's lecture

Reduction to Binary Classification

One-vs-All / One-vs-Rest

Setting

- Input space: χ
- Output space: $\mathcal{Y} = \{1, \dots, k\}$

Training

- Train k binary classifiers, one for each class: $h_1, \ldots, h_k : \mathcal{X} \to \mathbb{R}$.
- Classifier h_i distinguishes class i (+1) from the rest (-1).

Prediction

Majority vote:

$$h(x) = \arg\max_{i \in \{1, \dots, k\}} h_i(x)$$

7 / 50

Ties can be broken arbitrarily.

OvA: 3-class example

Consider a dataset with three classes:

Assumption: each class is linearly separable from the rest.

Idea case: only target class has positive score.

Train OvA classifiers:

DS-GA 1003

Reduction to Binary Classification
Recap: OvA and AvA
OvA: 3-class example

O.A. 3 class example

Consider a dataset with three classes

Assumption: such class is linearly separable from the last case only treps class has positive score.

Truin O.A classifiers

Truin O.A classifiers

What's a failure case for OvA?

OvA: 4-class non-separable example

Consider a dataset with four classes:

Cannot separate red points from the rest. Which classes might have low accuracy?

Train OvA classifiers:

DS-GA 1003

Reduction to Binary Classification
Recap: OvA and AvA
OvA: 4-class non-separable example

How can we fix this? Note that optimal linear classifiers exist in this example.

All vs All / One vs One / All pairs

Setting

- Input space: $\mathfrak X$
 - Output space: $\mathcal{Y} = \{1, \dots, k\}$

Training

- Train $\binom{k}{2}$ binary classifiers, one for each pair: $h_{ij}: \mathcal{X} \to \mathbf{R}$ for $i \in [1, k]$ and $j \in [i+1, k]$.
- Classifier h_{ij} distinguishes class i (+1) from class j (-1).

Prediction

• Majority vote (each class gets k-1 votes)

$$h(x) = \underset{i \in \{1, \dots, k\}}{\arg \max} \sum_{j \neq i} \underbrace{h_{ij}(x) \mathbb{I}\{i < j\}}_{\text{class } i \text{ is } +1} - \underbrace{h_{ji}(x) \mathbb{I}\{j < i\}}_{\text{class } i \text{ is } -1}$$

- Tournament
- Ties can be broken arbitrarily.

AvA: four-class example

Consider a dataset with four classes:

Assumption: each pair of classes are linearly separable. More expressive than OvA.

What's the decision region for the red class?

He He (CDS, NYU) DS-GA 1003 April 7, 2019 11 / 50

		OvA	AvA	
computation	train test	$O(kB_{train}(n)) \ O(kB_{train})$	$O(k^2 B_{\text{test}}(n/k)) \\ O(k^2 B_{\text{test}})$	
	train		small training set	
challenges	test	calibration / scale tie breaking		

Lack theoretical justification but simple to implement and works well in practice (when # classes is small).

Question: When would you prefer AvA / OvA?

He He (CDS, NYU) DS-GA 1003 April 7, 2019 12 / 50

If you're using SVM, would you prefer AvA or OvA to save computation?

Code word for labels

Using the reduction approach, can you train fewer than k binary classifiers?

Key idea: Encoding labels as binary codes.

OvA encoding:

class	h_1	h ₂	h ₃	h ₄
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	1

OvA uses k bits to encode each label, what's the minimal number of bits you can use?

Error correcting output codes (ECOC)

Example: 8 classes, 6-bit code

0
0
0
0
0
1
0
0

Training Binary classifier h_i :

- +1: classes whose *i*-th bit is 1
- -1: classes whose *i*-th bit is 0

Prediction Closest label in terms of Hamming distance.

h_1	h_2	h ₃	h ₄	h_5	h ₆
0	1	1	0	1	1

Code design Want good binary classifiers.

Error correcting output codes: summary

- Computationally more efficient than OvA (a special case of ECOC). Better for large k.
- Why not use the minimal number of bits $(\log_2 k)$?
 - If the minimum Hamming distance between any pair of code word is d, then it can correct $\left\lfloor \frac{d-1}{2} \right\rfloor$ errors.
 - In plain words, if rows are far from each other, ECOC is robust to errors.
- Trade-off between code distance and binary classification performance.
- Nice theoretical results [Allwein et al., 2000] (also incoporates AvA).

He He (CDS, NYU) DS-GA 1003 April 7, 2019 15 / 50

Reduction-based approaches:

- Reducing multiclass classification to binary classification: OvA, AvA, ECOC.
- Key is to design "natural" binary classification problems without large computation cost.

But,

- Unclear how to generalize to extremely large # of classes.
- ImageNet: >20k labels; Wikipedia: >1M categories.

Next, generalize previous algorithms to multiclass settings.

He He (CDS, NYU) DS-GA 1003 April 7, 2019 16 / 50

Reduction-based approaches.

* Reduction-based approaches.

* Reduction-based approaches.

* Reduction-based classification to binary classification: OAA, BAA, ECOC.

* Key is to design-stated binary classification problems without large competition cost.

But,

* Utclear how to generalize to entremely large girl classes.

* Inseptible: 250% block Wilspains: 21M categories.

Note, generalize protein appellments to middless settings.

What needs to be changed?

Linear Multiclass Predictors

- Base Hypothesis Space: $\mathcal{H} = \{h : \mathcal{X} \to \mathbf{R}\}$ (score functions).
- Multiclass Hypothesis Space (for k classes):

$$\mathcal{F} = \left\{ x \mapsto rg \max_{i} h_{i}(x) \mid h_{1}, \dots, h_{k} \in \mathcal{H} \right\}$$

- $h_i(x)$ scores how likely x is to be from class i.
- OvA objective: $h_i(x) > 0$ for x with label i and $h_i(x) < 0$ for x with all other labels.
- At test time, for (x, i) we only need

$$h_i(x) > h_j(x) \qquad \forall j \neq i.$$
 (1)

He He (CDS, NYU) DS-GA 1003 April 7, 2019 18 / 50

Multiclass perceptron

- Base linear predictors: $h_i(x) = w_i^T x \ (w \in \mathbb{R}^d)$.
- Multiclass perceptron:

```
Given a multiclass dataset \mathcal{D} = \{(x, y)\};
Initialize w \leftarrow 0:
for iter = 1, 2, \dots, T do
    for (x, v) \in \mathcal{D} do
         \hat{y} = \operatorname{arg\,max}_{v' \in \mathcal{Y}} w_{v'}^T x;
         if \hat{y} \neq y then // We've made a mistake
              w_v \leftarrow w_v + x; // Move the target-class scorer towards x
             w_{\hat{v}} \leftarrow w_{\hat{v}} - x; // Move the wrong-class scorer away from x
         end
    end
end
```

• (Geometric interpretation)

Side note: Linear Binary Classifier Review

- Input Space: $\mathfrak{X} = \mathbf{R}^d$
- Output Space: $\mathcal{Y} = \{-1, 1\}$
- Linear classifier score function:

$$f(x) = \langle w, x \rangle = w^T x$$

- Final classification prediction: sign(f(x))
- Geometrically, when are sign(f(x)) = +1 and sign(f(x)) = -1?

Side note: Linear Binary Classifier Review

Suppose ||w|| > 0 and ||x|| > 0:

$$f(x) = \langle w, x \rangle = ||w|| ||x|| \cos \theta$$

$$f(x) > 0 \iff \cos \theta > 0 \iff \theta \in (-90^{\circ}, 90^{\circ})$$

$$f(x) < 0 \iff \cos \theta < 0 \iff \theta \notin [-90^{\circ}, 90^{\circ}]$$

He He (CDS, NYU) DS-GA 1003

21 / 50

Rewrite the scoring function

- Remember that we want to scale to very large # of classes and reuse algorithms and analysis for binary classification
 - \implies a single weight vector is desired
- How to rewrite the equation such that we have one w instead of k?

$$w_i^T x = w^T \psi(x, i) \tag{2}$$

$$h_i(x) = h(x, i) \tag{3}$$

- Encode labels in the feature space.
- ullet Score for each label o score for the "compatibility" of a label and an input.

He He (CDS, NYU) DS-GA 1003 April 7, 2019 22 / 50

The Multivector Construction

How to construct the feature map ψ ?

• What if we stack w_i 's together (e.g., $x \in \mathbb{R}^2$, $y = \{1, 2, 3\}$)

$$w = \left(\underbrace{-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_1}, \underbrace{\frac{0, 1}{w_2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_3}\right)$$

• And then do the following: $\Psi: \mathbb{R}^2 \times \{1,2,3\} \to \mathbb{R}^6$ defined by

$$\Psi(x,1) := (x_1, x_2, 0, 0, 0, 0)$$

$$\Psi(x,2) := (0,0,x_1,x_2,0,0)$$

$$\Psi(x,3) := (0,0,0,0,x_1,x_2)$$

• Then $\langle w, \Psi(x,y) \rangle = \langle w_v, x \rangle$, which is what we want.

Multiclass perceptron using the multivector construction.

```
Given a multiclass dataset \mathcal{D} = \{(x, y)\};
Initialize w \leftarrow 0:
for iter = 1, 2, \dots, T do
      for (x, y) \in \mathcal{D} do
           \hat{y} = \operatorname{arg\,max}_{v' \in \mathcal{Y}} w^T \psi(x, y'); // Equivalent to \operatorname{arg\,max}_{v' \in \mathcal{Y}} w_{v'}^T x
           if \hat{v} \neq v then // We've made a mistake
            w \leftarrow w + \psi(x,y); // Move the scorer towards \psi(x,y)
w \leftarrow w - \psi(x,\hat{y}); // Move the scorer away from \psi(x,\hat{y})
            end
      end
end
```

Exercise: What is the base binary classification problem in multiclass perceptron?

DS-GA 1003

Linear Multiclass Predictors

Multiclass perceptron

Rewrite multiclass perceptron

```
Rewrite multiclass perceptron (and the multivester construction.) Given a multiclass dates of P(x,y). Initialize w = 0. (for ho = 1, \dots, T_0). The form ho = 1, \dots, T_0 of ho = 1, \dots, T_0. (if f = 1, \dots, T_0) f = m_0 m_{m_0 < y} \pi^{-1} p(x,y^-) is f = m_0 m_{m_0 < y} \pi^{-1} p(x,y^-) in Equivalent to \log m_{m_0 < y} \pi^{-1} p(x,y^-) if f \neq y then f / W^+ w under a matriclass \| f = w - w \psi(y,y) / f / Rev w that a contravancy from <math>\psi(x,y)  and f = w - \psi(x,y) / f / Rev that a correct vascing f(x,y) and f = w - \psi(x,y) / f / Rev that a correct vascing f(x,y) and f = w - \psi(x,y) / f / Rev that a correct vascing f(x,y) and f = w - \psi(x,y) / f / Rev that a correct vascing f(x,y) and f = w - \psi(x,y) / f / Rev that a correct vascing f(x,y) and f = w - \psi(x,y) / f / Rev that a correct vascing f(x,y) and f = w - \psi(x,y) / f / Rev that a correct vascing f(x,y) and f = w - \psi(x,y) / f / Rev that a correct vascing f(x,y) and f = w - \psi(x,y) / f / Rev that a correct vascing f(x,y) and f = w - \psi(x,y) / f / Rev that a correct vascing f(x,y) and f = w - \psi(x,y) / f / Rev that a correct vascing f(x,y) and f = w - \psi(x,y) / f / Rev the accordance f(x,y) and f = w - \psi(x,y) / f / Rev that a correct vascing f(x,y) and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev and f = w - \psi(x,y) / f / Rev an
```

Exercise: What is the base binary classification problem in multiclass perceptron?

```
w^{(}\varphi(x,i)-\varphi(x,j))>0.
```

Geometric interpretation

Feature templates

Toy NLP Example: Part-of-speech classification

- $\mathfrak{X} = \{ All \text{ possible words} \}$
- $y = \{NOUN, VERB, ADJECTIVE, ...\}.$
- Features of $x \in \mathcal{X}$: [The word itself], ENDS_IN_ly, ENDS_IN_ness, ...

How to construct the feature vector?

- Multivector construction: $w \in \mathbb{R}^{d \times k}$ —doesn't scale.
- Feature templates: directly design features for each class.

$$\Psi(x,y) = (\psi_1(x,y), \psi_2(x,y), \psi_3(x,y), \dots, \psi_d(x,y))$$
(4)

• Size can be bounded by d.

Feature templates

Sample training data:

The boy grabbed the apple and ran away quickly .

Feature templates:

$$\begin{array}{lll} \psi_1(x,y) &=& 1(x=\operatorname{apple}\,\operatorname{AND}\,y=\operatorname{NOUN})\\ \psi_2(x,y) &=& 1(x=\operatorname{run}\,\operatorname{AND}\,y=\operatorname{NOUN})\\ \psi_3(x,y) &=& 1(x=\operatorname{run}\,\operatorname{AND}\,y=\operatorname{VERB})\\ \psi_4(x,y) &=& 1(x\,\operatorname{ENDS_IN_ly}\,\operatorname{AND}\,y=\operatorname{ADVERB})\\ &\dots \end{array}$$

- E.g., $\Psi(x = \text{run}, y = \text{NOUN}) = (0, 1, 0, 0, ...)$
- After training, what's w_1, w_2, w_3, w_4 ?
- No need to include feature templates unseen in training data.

He He (CDS, NYU) DS-GA 1003 April 7, 2019 27 / 50

Feature templates: implementation

- Flexible, e.g., neighboring words, suffix/prefix.
- "Read off" features from the training data.
- Often sparse—efficient in practice, e.g., NLP problems.
- Can use a hash function: template $\rightarrow \{1, 2, ..., d\}$.

Review

Ingredients in multiclass classification:

- Scoring functions for each class (similar to ranking).
- Represent labels in the input space \implies single weight vector.

We've seen

- How to generalize the perceptron algorithm to multiclass setting.
- Very simple idea. Was popular in NLP for structured prediction (e.g., tagging, parsing).

Next,

- How to generalize SVM to the multiclass setting.
- Review question: Why might one prefer SVM / perceptron?

He He (CDS, NYU) DS-GA 1003 April 7, 2019 29 / 50

Uniqueness of solution, online learning / efficiency, inductive bias (margin)

Margin for Multiclass

Binary • Margin for $(x^{(n)}, y^{(n)})$:

$$y^{(n)}w^Tx^{(n)} \tag{5}$$

• Want margin to be large and positive ($w^T x^{(n)}$ has same sign as $y^{(n)}$)

Multiclass

• Class-specific margin for $(x^{(n)}, v^{(n)})$:

$$h(x^{(n)}, y^{(n)}) - h(x^{(n)}, y).$$
 (6)

- Difference between scores of the correct class and each other class
- Want margin to be large and positive for all $y \neq y^{(n)}$.

He He (CDS, NYU) **DS-GA 1003** April 7, 2019 30 / 50

Binary

$$\min_{w} \quad \frac{1}{2} \|w\|^2 \tag{7}$$

s.t.
$$\underbrace{y^{(n)}w^Tx^{(n)}}_{\text{margin}} \geqslant 1 \quad \forall (x^{(n)}, y^{(n)}) \in \mathcal{D}$$
 (8)

$$m_{n,y}(w) \stackrel{\text{def}}{=} \underbrace{\left\langle w, \Psi(x^{(n)}, y^{(n)}) \right\rangle}_{\text{score of correct class}} - \underbrace{\left\langle w, \Psi(x^{(n)}, y) \right\rangle}_{\text{score of other class}}$$
(9)

$$\min_{w} \quad \frac{1}{2} \|w\|^2 \tag{10}$$

s.t.
$$m_{n,y}(w) \ge 1 \quad \forall (x^{(n)}, y^{(n)}) \in \mathcal{D}, y \ne y^{(n)}$$
 (11)

Exercise: write the objective for the non-separable case

He He (CDS, NYU) DS-GA 1003 April 7, 2019 31 / 50

Recap: hingle loss for binary classification

• Hinge loss: a convex upperbound on the 0-1 loss

$$\ell_{\mathsf{hinge}}(y, \hat{y}) = \mathsf{max}(0, 1 - yh(x)) \tag{12}$$

He He (CDS, NYU) DS-GA 1003 April 7, 2019 32 / 50

Generalized hinge loss

• What's the zero-one loss for multiclass classification?

$$\Delta(y, y') = \mathbb{I}\left\{y = y'\right\} \tag{13}$$

- In general, can also have different cost for each class.
- Upper bound on $\Delta(y, y')$.

$$\hat{y} \stackrel{\text{def}}{=} h_{w}(x) = \underset{y' \in \mathcal{Y}}{\arg \max} \langle w, \Psi(x, y') \rangle$$
(14)

$$\Longrightarrow \langle w, \Psi(x, y) \rangle \leqslant \langle w, \Psi(x, \hat{y}) \rangle \tag{15}$$

$$\Longrightarrow \Delta(y,\hat{y}) \leqslant \Delta(y,\hat{y}) + \langle w, (\Psi(x,\hat{y}) - \Psi(x,y)) \rangle \qquad \text{When are they equal?} \tag{16}$$

Generalized hinge loss:

$$\ell_{\mathsf{hinge}}(y, \hat{y}) \stackrel{\text{def}}{=} \max_{y' \in \mathcal{Y}} \left(\Delta(y, y') + \left\langle w, \left(\Psi(x, y') - \Psi(x, y) \right) \right\rangle \right) \tag{17}$$

He He (CDS, NYU) DS-GA 1003 April 7, 2019 33 / 50

Multiclass SVM with Hinge Loss

• Recall the hinge loss formulation for binary SVM (without the bias term):

$$\min_{w \in \mathbf{R}^d} \frac{1}{2} ||w||^2 + C \sum_{n=1}^N \max \left(0, 1 - \underbrace{y^{(n)} w^T x^{(n)}}_{\text{margin}} \right).$$

• The multiclass objective:

$$\min_{w \in \mathbf{R}^d} \frac{1}{2} ||w||^2 + C \sum_{n=1}^N \max_{y' \in \mathcal{Y}} \left(\Delta(y, y') - \underbrace{\left\langle w, \left(\Psi(x, y) - \Psi(x, y') \right) \right\rangle}_{\text{margin}} \right)$$

- $\Delta(y, y')$ as target margin for each class.
- If margin $m_{n,y'}(w)$ meets or exceeds its target $\Delta(y^{(n)},y')$ $\forall y \in \mathcal{Y}$, then no loss on example n.

He He (CDS, NYU) DS-GA 1003 April 7, 2019 34 / 50

Recap: What Have We Got?

- Problem: Multiclass classification $\mathcal{Y} = \{1, ..., k\}$
- Solution 1: One-vs-All
 - Train k models: $h_1(x), \ldots, h_k(x) : \mathcal{X} \to \mathbf{R}$.
 - Predict with $\arg\max_{y\in\mathcal{Y}}h_y(x)$.
 - Gave simple example where this fails for linear classifiers
- Solution 2: Multiclass
 - Train one model: $h(x,y): \mathfrak{X} \times \mathcal{Y} \to \mathbf{R}$.
 - Prediction involves solving $\arg\max_{y \in \mathcal{Y}} h(x, y)$.

Does it work better in practice?

- Paper by Rifkin & Klautau: "In Defense of One-Vs-All Classification" (2004)
 - Extensive experiments, carefully done
 - albeit on relatively small UCI datasets
 - Suggests one-vs-all works just as well in practice
 - (or at least, the advantages claimed by earlier papers for multiclass methods were not compelling)
- Compared
 - many multiclass frameworks (including the one we discuss)
 - one-vs-all for SVMs with RBF kernel
 - one-vs-all for square loss with RBF kernel (for classification!)
- All performed roughly the same

He He (CDS, NYU) DS-GA 1003 April 7, 2019 36 / 50

Why Are We Bothering with Multiclass?

- The framework we have developed for multiclass
 - compatibility features / scoring functions
 - multiclass margin
 - target margin / multiclass loss
- Generalizes to situations where k is very large and one-vs-all is intractable.
- Key idea is that we can generalize across outputs y by using features of y.

He He (CDS, NYU) DS-GA 1003 April 7, 2019 37 / 50

Introduction to Structured Prediction

Example: Part-of-speech (POS) Tagging

• Given a sentence, give a part of speech tag for each word:

X	[START]	\underbrace{He}_{x_1}	eats x ₂	apples
У	[START]	Pronoun	Verb y ₂	Noun

- $\mathcal{V} = \{\text{all English words}\} \cup \{[\text{START}], "."\}$
- $X = V^n$, n = 1, 2, 3, ... [Word sequences of any length]
- $\mathcal{P} = \{START, Pronoun, Verb, Noun, Adjective\}$
- $y = \mathcal{P}^n$, n = 1, 2, 3, ...[Part of speech sequence of any length]

He He (CDS, NYU) DS-GA 1003 April 7, 2019 39 / 50

Multiclass Hypothesis Space

- Discrete output space: y(x)
 - Very large but has structure, e.g., linear chain (sequence labeling), tree (parsing)
 - Size depends on input x
- Base Hypothesis Space: $\mathcal{H} = \{h : \mathcal{X} \times \mathcal{Y} \to \mathbf{R}\}$
 - h(x,y) gives compatibility score between input x and output y
- Multiclass hypothesis space

$$\mathcal{F} = \left\{ x \mapsto \operatorname*{arg\,max}_{y \in \mathcal{Y}} h(x, y) \mid h \in \mathcal{H} \right\}$$

- Final prediction function is an $f \in \mathcal{F}$.
- For each $f \in \mathcal{F}$ there is an underlying compatibility score function $h \in \mathcal{H}$.

He He (CDS, NYU) DS-GA 1003 April 7, 2019 40 / 5

Structured Prediction

Part-of-speech tagging

Multiclass hypothesis space:

$$\mathcal{F} = \left\{ x \mapsto \underset{y \in \mathcal{Y}}{\arg \max} h(x, y) \mid h \in \mathcal{H} \right\}$$

$$h(x, y) = w^{T} \Psi(x, y)$$
(18)

- A special case of multiclass classification
- How to design the feature map Ψ ? What are the considerations?

He He (CDS, NYU) DS-GA 1003 April 7, 2019 41 / 50

contextual dependence, efficient argmax

Unary features

- A unary feature only depends on
 - the label at a single position, y_i , and x
- Example:

$$\begin{array}{lcl} \varphi_1(x,y_i) &=& 1(x_i=\mathsf{runs})1(y_i=\mathsf{Verb}) \\ \varphi_2(x,y_i) &=& 1(x_i=\mathsf{runs})1(y_i=\mathsf{Noun}) \\ \varphi_3(x,y_i) &=& 1(x_{i-1}=\mathsf{He})1(x_i=\mathsf{runs})1(y_i=\mathsf{Verb}) \end{array}$$

- A markov feature only depends on
 - two adjacent labels, y_{i-1} and y_i , and x
- Example:

$$\theta_1(x, y_{i-1}, y_i) = 1(y_{i-1} = \text{Pronoun})1(y_i = \text{Verb})$$

 $\theta_2(x, y_{i-1}, y_i) = 1(y_{i-1} = \text{Pronoun})1(y_i = \text{Noun})$

- Reminiscent of Markov models in the output space
- Possible to have higher-order features

Local Feature Vector and Compatibility Score

• At each position *i* in sequence, define the **local feature vector** (unary and markov):

$$\Psi_{i}(x, y_{i-1}, y_{i}) = (\phi_{1}(x, y_{i}), \phi_{2}(x, y_{i}), \dots, \\ \theta_{1}(x, y_{i-1}, y_{i}), \theta_{2}(x, y_{i-1}, y_{i}), \dots)$$

- And local compatibility score at position $i: \langle w, \Psi_i(x, y_{i-1}, y_i) \rangle$.
- The compatibility score for (x, y) is the sum of local compatibility scores:

$$\sum_{i} \langle w, \Psi_{i}(x, y_{i-1}, y_{i}) \rangle = \left\langle w, \sum_{i} \Psi_{i}(x, y_{i-1}, y_{i}) \right\rangle = \left\langle w, \Psi(x, y) \right\rangle, \tag{20}$$

where we define the sequence feature vector by

$$\Psi(x,y) = \sum_{i} \Psi_{i}(x,y_{i-1},y_{i}).$$
 decomposable

He He (CDS, NYU) DS-GA 1003 April 7, 2019 44 / 50

```
Given a dataset \mathcal{D} = \{(x, v)\}:
Initialize w \leftarrow 0:
for iter = 1, 2, ..., T do
      for (x, y) \in \mathcal{D} do
            \hat{y} = \operatorname{arg\,max}_{\mathbf{v}' \in \mathbf{Y}(\mathbf{x})} \mathbf{w}^T \psi(\mathbf{x}, \mathbf{y}');
            if \hat{y} \neq y then // We've made a mistake
             w \leftarrow w + \Psi(x,y); // Move the scorer towards \psi(x,y)
w \leftarrow w - \Psi(x,\hat{y}); // Move the scorer away from \psi(x,\hat{y})
             end
      end
end
```

Identical to the multiclass perceptron algorithm except the arg max is now over the structured output space y(x).

He He (CDS, NYU) DS-GA 1003 April 7, 2019 45 / 50

Structured hinge loss

• Recall the generalized hinge loss

$$\ell_{\mathsf{hinge}}(y, \hat{y}) \stackrel{\mathsf{def}}{=} \max_{y' \in \mathcal{Y}(x)} \left(\Delta(y, y') + \left\langle w, \left(\Psi(x, y') - \Psi(x, y) \right) \right\rangle \right) \tag{21}$$

- What is $\Delta(y, y')$ for two sequences?
- Hamming loss is common:

$$\Delta(y, y') = \frac{1}{L} \sum_{i=1}^{L} 1(y_i \neq y_i')$$

where L is the sequence length.

• Can generalize to the cost-sensitive version using $\delta(y_i, y_i')$

He He (CDS, NYU) DS-GA 1003 April 7, 2019 46 / 50

Structured SVM

Exercise:

- Write down the objective of structured SVM using the structured hinge loss.
- Stochastic sub-gradient descent for structured SVM (similar to HW3 P3)
- Compare with the structured perceptron algorithm

The argmax problem for sequences

Problem To compute predictions, we need to find $\arg\max_{y\in\mathcal{Y}(x)}\langle w,\Psi(x,y)\rangle$, and $|\mathcal{Y}(x)|$ is exponentially large.

Observation $\Psi(x,y)$ decomposes to $\sum_i \Psi_i(x,y)$.

Solution Dynamic programming (similar to the Viterbi algorithm)

What's the running time?

Figure by Daumé III. A course in machine learning. Figure 17.1.

The argmax problem in general

Efficient problem-specific algorithms:

problem	structure	algorithm
constituent parsing dependency parsing image segmentation	binary trees with context-free features spanning trees with edge features 2d with adjacent-pixel features	CYK Chu-Liu-Edmonds graph cuts

General algorithm:

• Integer linear programming (ILP)

$$\max_{z} a^{T} z$$
 s.t. linear constraints on z (22)

49 / 50

- z: indicator of substructures, e.g., $\mathbb{I}\{y_i = \text{article and } y_{i+1} = \text{noun}\}$
- constraints: z must correspond to a valid structure

He He (CDS, NYU) DS-GA 1003 April 7, 2019

Conclusion

Multiclass algorithms

- Reduce to binary classification, e.g., OvA, AvA, ECCO
 - Good enough for simple multiclass problems
- Generalize binary classification algorithms using multiclass loss
 - Useful for problems with extremely large output space, e.g., structured prediction
 - Related problems: ranking, multi-label classification