Higher Category Theory

Assignment 11

Exercise 1

Proof. (1) Objects in A/F are natural transformations $t \colon \mathbb{k}_a \to F$, that is elements $t \in Fa$ for some $a \in A$, while morphisms $f \colon t \to t'$ are natural transformations $f^* \colon \mathbb{k}_a \to \mathbb{k}_{a'}$ such that the triangle

commutes, or equivalently morphisms $f: a \to a'$ in A with F(f)(t') = t by Yoneda (we will be abusing the notation by referring to the induced morphisms in the slice category by the same names as the original ones).

After fixing an object t in A/F, we get the functor $\Pi_F \colon (A/F)/t \to A/a$, $(f \colon u \to t) \mapsto (f \colon b \to a)$.

We start by proving that it is a bijection on objects, for which we fix a $f: b \to a$ in A/a and try to construct an object $g: u \to t$ in (A/F)/t mapped to it while proving its uniqueness. Remember that this object is induced by a natural transformation between representable presheaves $\mathcal{L}_b \to \mathcal{L}_a$, for which we simply take $f_*: \mathcal{L}_b \to \mathcal{L}_a$, coming from $f: b \to a$ in A. Our previous description tells us that this is indeed the desired map. For uniqueness, remember that the Yoneda embedding is fully faithful and therefore there is a bijection between natural transformation amongst representable presheaves and morphisms in A.

Observe that Π_F is naturally faithful since distinct parallel morphisms f, f' are given by definition by distinct morphisms f, f' in A/F, which are themselves induced by distinct natural transformations between representable presheaves coming from distinct morphisms in A. The images of f, f' under Π_F are precisely the morphisms in A/ainduced by these morphisms in A and are therefore distinct by construction. For fullness, consider two objects $g: u \to t, h: v \to t$ in (A/F)/t and a morphism $f: g \to h$ in A/a induced by $f: c = \text{dom } h \to b = \text{dom } g$. We simply have to prove that f induces a morphism $g \to h$ in (A/F)/t. To do this, consider the diagram

and observe that

$$v \cdot f_* = t \cdot g_* \cdot f_*$$
$$= t \cdot h_*$$
$$= u$$

proving that f does define a morphism $u \to v$ in A/F. Since $h = g \cdot f$, we can conclude that f does define the desired morphism $h \to g$ and, under π_F , it is mapped to f itself, proving fullness.

(2) Consider a natural transformation $\alpha \colon F \Rightarrow G$. We can define a functor $\psi(\alpha) \colon A/F \to A/G$ (here called ϕ for brevity) as $(t \colon \mathcal{L}_a \Rightarrow F) \mapsto (\alpha_a(t) = \alpha \cdot t \colon \mathcal{L}_a \Rightarrow G)$ on objects, $f \mapsto f$ on morphisms. It truly is a functor since it is well defined and identities and compositions are trivially preserved. Also, we see that dom $t = \text{dom } \alpha_a(t)$, which since ϕ is an identity on morphisms implies that $\pi_G \cdot \phi = \pi_F$. We only have to prove that this is a bijection.

We will do this by constructing a natural transformation $\beta(\phi) \colon F \Rightarrow G$ (here called α for brevity) from a functor $\phi \colon A/F \to A/G$ such that $\pi_G \cdot \phi = \pi_F$. To do this, consider an object a in A and an element $t \in Fa$. This corresponds to a natural transformation $t \colon \mathcal{L}_a \Rightarrow F$ which under phi is sent to another natural transformation $\phi(t) \colon \mathcal{L}_b \Rightarrow A/G$. Observe that

$$b = \pi_G(\phi(t))$$

$$= \pi_F(t)$$

$$= a,$$

$$\pi_G(\phi(f)) = \pi_F(f)$$

$$= f,$$

where f denotes a morphism in A and the corresponding ones in A/F and A/G. This means that the domains of the objects in the slices are preserved by ϕ and so are the morphisms, allowing us to set $\alpha_a(t) = \phi(t)$.

We only still have to check for naturality and for this first we take a morphism $f: a \to b$ in A and observe that $f: t \to u$ in A/F is sent to $f: \phi(t) \to \phi(u)$, giving us the diagrams

from which we derive

$$(\alpha_b \cdot Ff)(t) = \alpha_b(Ff(t))$$

$$= \phi(Ff(t))$$

$$= \phi(t \cdot f_*)$$

$$= \phi(t) \cdot f_*$$

$$= Gf(\phi(t))$$

$$= Gf(\alpha_a(t))$$

$$= (Gf \cdot \alpha_a)(t)$$

We are left with checking that these associations are inverse to one another.

Fix then $\alpha \colon F \Rightarrow G$ and pick $t \in Fa$. We have

$$(\beta_a(\psi(\alpha)))(t) = (\psi(\alpha))(t)$$
$$= \alpha \cdot t$$
$$= \alpha_a(t)$$

which gives us $\beta \cdot \psi = \text{id}$. Also, fixing a functor $\phi \colon A/F \Rrightarrow A/G$ and picking an object $t \in Fa$ and a morphism $f \colon t \to u$, we see that

$$(\psi(\beta(\phi)))(t) = \beta(\phi)_a \cdot t$$

$$= (\beta(\phi)_a)(t)$$

$$= \phi(t), (\psi(\beta(\phi)))(f) = f$$

$$= \phi(f),$$

proving that $\psi \cdot \beta = \text{id}$ and therefore the thesis.