

Electric Vehicles

Homework – DC Motor Drives

Contact: Dr. Eduard Muljadi

Problem 1 - A permanent-magnet dc motor with the following parameters:

 $K\phi = 0.5 \cdot Wb$ (in a permanent magnet motor, the flux cannot be changed)

The armature resistance is $R_A\coloneqq 0.25$ ohm ; The rated torque $T_{rated}\coloneqq 12$ $N\cdot m$; The rated speed: $\omega_m\coloneqq 3700\cdot rpm$

- a) Calculate the terminal voltage V_A , if the motor is required to deliver a torque of
- $T_{load\ 1} := 5 \cdot N \cdot m$ at a speed of $\omega_m := 1500 \cdot rpm$ (Answer: $V_A = 81.04 \text{ V}$)
- b) Compute the winding (copper) losses in the armature winding problem (a)
- c) Compute the input power and the efficiency of the motor for problem (a)

Problem 2 - A separately-excited dc motor with the following parameters:

The armature resistance is $R_A \coloneqq 0.45 \ \textit{ohm}$; The rated torque $T_{rated} \coloneqq 11 \ \textit{N} \cdot \textit{m}$; The rated speed: $\omega_{m_rated} \coloneqq 2000 \cdot \textit{rpm}$; Rated armature current $I_{A_rated} \coloneqq 20 \ \textit{A}$

- a) At rated flux calcute the $K\phi$ of this motor to get rated torque at rated armature current (Answer $K\phi$ = 0.55 Wb)
- b) At rated power and rated speed, the efficiency is computed to be Eff = 90% calculate the field winding loss (Answer $P_{field\ wdq}$ = 75.982 W)
- c) The motor is operated 120% rated speed, thus, the motor must be operated in flux weakening region (constant power region) because the voltage V_A has reached its maximum limit. Calulate the reduced flux for this operation (Answer $K\phi = 0.458$ Wb)
- d) Calculate the maximum torque you can get for problem (c) without overloading the motor?

DC-Motor Drive Capabilities

Problem 3

Describe the operation of the Separately excited Per unit DC Motor drives shown in this page. quantities Example V_{t1} , $I_{a1} > 1.0$ pu, $T_{em1} > 1.0$ pu, $P_{input1} < 1.0$ pu, Overload T_{em} , I_a , ϕ_f , I_f **Questions:** V_t, I_a 1.0 V_{t2} V_{t7} $I_{a_rated} R_{a_}^-$ 1.0 ω_{m1} Field-weakening or DC Constant torque region constant power region $(\phi_f = rated)$ (φ_f is decreased) Figure 13-5 Separately excited dc motor: (a) equivalent circuit; (b) continuous torque-speed capability.

(a)