#### MIE334 - Numerical Methods I

Lecture 28: Gauss Quadrature (C&C 22.4)

#### Gauss Quadrature: Basic Idea

 Trapezoid method fits a straight line to the end points of interval [a,b]

- What if we could find two points within [a,b] that work better?
  - Shifts line so overestimation is better balanced by underestimation





#### Gauss Quadrature: Definitions

Assume following form (2 pts):

$$I = \int_{a}^{b} f(x) \cong w_1 f(x_1) + w_2 f(x_2)$$

- Four unknowns:
  - Two locations  $(x_1,x_2)$
  - Two weights  $(w_1, w_2)$
  - Need four conditions/equations
- To simplify, assume integral goes from [-1, +1]
  - Will show later how transform back to [a, b]
  - $r \equiv$ reference coord system





# Gauss Quadrature: Finding Coords/Weights

$$I = \int_{-1}^{1} f(r)dr \cong w_1 f(r_1) + w_2 f(r_2)$$

• Start by assuming I can be calculated **exactly** for a **constant** function, f(r) = 1:

$$I = \int_{-1}^{1} (1) dr = [r]_{-1}^{1} = [1 - (-1)] = 2$$

$$I = w_{1}(1) + w_{2}(1) = w_{1} + w_{2} \qquad w_{1} + w_{2} = 2 \quad [EQ1]$$

• And also **exactly** for **linear** function, f(r) = r:

$$I = \int_{-1}^{1} (r) dr = \left[ \frac{r^2}{2} \right]_{-1}^{1} = \left[ \frac{1}{2} - \frac{1}{2} \right] = 0$$

$$I = w_1(r_1) + w_2(r_2)$$

$$w_1 x_1 + w_2 x_2 = 0 \quad [EQ2]$$

## Gauss Quadrature: Finding Coords/Weights

$$I = \int_{-1}^{1} f(r)dr \cong w_1 f(r_1) + w_2 f(r_2)$$

• ...also **exactly** for a **quadratic** function,  $f(r) = r^2$ :

$$I = \int_{-1}^{1} (r^2) dr = \left[ \frac{r^3}{3} \right]_{-1}^{1} = \left[ \frac{1}{3} - \frac{-1}{3} \right] = \frac{2}{3}$$

$$I = w_1(r_1^2) + w_2(r_2^2) = w_1 + w_2 \qquad w_1 r_1^2 + w_2 r_2^2 = \frac{2}{3} \text{ [EQ3]}$$

• and then **exactly** for a **cubic** function,  $f(r) = r^3$ :

$$I = \int_{-1}^{1} (r^3) dr = \left[ \frac{r^4}{4} \right]_{-1}^{1} = \left[ \frac{1}{4} - \frac{1}{4} \right] = 0$$

$$I = w_1(r_1^3) + w_2(r_2^3) = w_1 + w_2 \qquad w_1 r_1^3 + w_2 r_2^3 = 0 \quad \text{[EQ4]}$$

## Gauss Quadrature: Finding Coords/Weights

Now four (non-linear) equations, four unknowns:

$$w_1 + w_2 = 2$$
  $w_1 r_1 + w_2 r_2 = 0$   
 $w_1 r_1^2 + w_2 r_2^2 = \frac{2}{3}$   $w_1 r_1^3 + w_2 r_2^3 = 0$ 

Solving:

$$r_1 = -\frac{1}{\sqrt{3}} \cong -0.577350$$
  $w_1 = 1$   $r_2 = +\frac{1}{\sqrt{3}} \cong +0.577350$   $w_2 = 1$  Gauss points Gauss weights

Known as a two-point Gauss-Legendre formula:

$$I = \int_{-1}^{1} f(r)dr \cong w_1 f(r_1) + w_2 f(r_2) \cong f(-1/\sqrt{3}) + f(1/\sqrt{3})$$

#### Gauss Quadrature: Two-point formula

$$I \cong f(-1/\sqrt{3}) + f(1/\sqrt{3})$$

- Advantages:
  - Perfect accuracy for polynomials up to n=3!
  - Requires only two function evaluations
    - Compare to multipoint methods like TR, SR1/3, etc.
- Disadvantages:
  - Defined for interval [-1,1]
    - But can transform integrals that are [a,b]

#### Gauss Quadrature: Transformations

• Need to transform integral from  $x \in [a, b]$  to  $r \in [-1,1]$ :

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} [??]dr$$

• Consider simple linear transformation from  $x \rightarrow r$ :

$$x = c_0 + c_1 r$$

Plug in known coordinates:

$$a = c_0 + c_1(-1) = c_0 - c_1$$
  
 $b = c_0 + c_1(1) = c_0 + c_1$ 

• Solve for  $c_0$  and  $c_1$ :

$$c_0 = \frac{b+a}{2} \qquad c_1 = \frac{b-a}{2}$$

### Gauss Quadrature: Transformations

• So, transformation from  $x \rightarrow r$  is:

$$x = \left(\frac{b+a}{2}\right) + \left(\frac{b-a}{2}\right)r$$
 or  $x = \left(\frac{1-r}{2}\right)a + \left(\frac{1+r}{2}\right)b$   
Newton poly. form Lagrange poly. form

Don't forget to transform dx:

$$dx = \left(\frac{dx}{dr}\right)dr = \left(\frac{b-a}{2}\right)dr$$

Substitute into original integral:

$$I = \int_{a}^{b} f(x)dx = \int_{-1}^{1} [??]dr = \int_{-1}^{1} f(x(r)) \left(\frac{b-a}{2}\right) dr$$

And so, finally:

$$I = \left(\frac{b-a}{2}\right) \int_{-1}^{1} f(r) dr \cong \left[\frac{b-a}{2}\right] \left[f(x(-1/\sqrt{3})) + (x(1/\sqrt{3}))\right]$$

#### Gauss Quadrature: Example

$$I = \int_0^{0.8} [0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5] dx$$

■ Transform  $x \rightarrow r$ :

$$x = \left(\frac{b+a}{2}\right) + \left(\frac{b-a}{2}\right)r$$
$$= \left(\frac{0.8+0}{2}\right) + \left(\frac{0.8-0}{2}\right)r$$
$$= 0.4 + 0.4r$$



Two Gauss points, in x coordinates:

$$x_1 = x(r_1) = 0.4 + 0.4\left(-\frac{1}{\sqrt{3}}\right) = 0.1691$$
  
 $x_2 = x(r_2) = 0.4 + 0.4\left(+\frac{1}{\sqrt{3}}\right) = 0.6309$ 

### Gauss Quadrature: Example

$$I = \int_0^{0.8} [0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5] dx$$

• Evaluate f(x) at Gauss points:

$$f(x_1) = f(0.1691) = 1.292$$
  
 $f(x_2) = f(0.6309) = 3.265$ 

Evaluate Gauss formula:

$$I \cong \left(\frac{b-a}{2}\right) [f(x_1) + f(x_2)]$$
$$\cong \left(\frac{0.8-0}{2}\right) [1.292 + 3.265]$$

 $= (\frac{1}{2})[1.292 + 3.203]$   $\cong 1.823 \quad (\varepsilon_t = -11\%) \quad \textbf{note: overestimation}$ 



### Gauss Quadrature: Compared to TR

$$I = \int_0^{0.8} [0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5] dx$$

Trapezoid Rule (n=1)

$$f(0) = 0.2$$
 and  $f(0.8) = 0.232$ 

$$I \cong \left(\frac{0.8 - 0}{2}\right) (0.2 + 0.232)$$

$$\cong 0.1728 \ (\varepsilon_t = 89\%)$$



$$f(0.4) = 2.456$$

$$I \cong \left(\frac{0.8 - 0}{2}\right) (0.2 + (2)2.456 + 0.232)$$

$$\approx 1.069 (\varepsilon_t = 35\%)$$



#### Gauss Quadrature: General Formula

Can improve accuracy by using more Gauss points:

• 
$$I = \int_a^b f(x) \cong \sum_{i=1}^n w_i f(x_i)$$

• As before, points typically tabulated for  $r \in [-1,1]$ , so:

• 
$$I = \int_1^{-1} f(x(r)) \left(\frac{b-a}{2}\right) dr \cong \left(\frac{b-a}{2}\right) \sum_{i=1}^n w_i f(x(r_i))$$

 Point locations and weights can be derived by adding more constraints, i.e., exactness for higher polynomials

## Gauss Quadrature: Higher order points

| # of points, $n$ | Point locations, $r_i$                                   |           | Weights, $w_i$                  |          | Visualization    |
|------------------|----------------------------------------------------------|-----------|---------------------------------|----------|------------------|
| 1                | 0                                                        | 0         | 2                               | 2        |                  |
| 2                | $\pm \frac{1}{\sqrt{3}}$                                 | ±0.57735  | 1                               | 1        |                  |
| 3                | 0                                                        | 0         | $\frac{8}{9}$                   | 0.888889 |                  |
|                  | $\pm\sqrt{rac{3}{5}}$                                   | ±0.774597 | $\frac{5}{9}$                   | 0.55556  | •                |
| 4                | $\pm\sqrt{\tfrac{3}{7}-\tfrac{2}{7}\sqrt{\tfrac{6}{5}}}$ | ±0.339981 | $\frac{18+\sqrt{30}}{36}$       | 0.652145 |                  |
|                  | $\pm\sqrt{\tfrac{3}{7}+\tfrac{2}{7}\sqrt{\tfrac{6}{5}}}$ | ±0.861136 | $\frac{18 - \sqrt{30}}{36}$     | 0.347855 |                  |
| 5                | 0                                                        | 0         | $\frac{128}{225}$               | 0.568889 |                  |
|                  | $\pmrac{1}{3}\sqrt{5-2\sqrt{rac{10}{7}}}$              | ±0.538469 | $\frac{322 + 13\sqrt{70}}{900}$ | 0.478629 | <b>→ • • • •</b> |
|                  | $\pmrac{1}{3}\sqrt{5+2\sqrt{rac{10}{7}}}$              | ±0.90618  | $\frac{322 - 13\sqrt{70}}{900}$ | 0.236927 |                  |

exactly integrates polynomial up to 2n-1 (see also C&C Table 22.1)

$$E_t = \frac{2^{2n+1}[n!]^4}{(2n+1)[(2n)!]^3} f^{(2n)}(\xi)$$

#### Gauss Quadrature: Legendre polynomials

• Point **locations** are roots of Legendre polynomials,  $P_n(x)$ :



- $P_n(x)$  are exact solutions of Legendre ODE on [-1,1]  $(1-x^2)y''-2xy'+n(n+1)y=0$
- Derives from heat conduction PDE in spherical cords
  - MIE563...

#### Gauss Quadrature: Example

$$I = \int_0^{0.8} [0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5] dx$$

Three-point Gauss formula:

|          | i = 1 | i = 2         | i = 2         |
|----------|-------|---------------|---------------|
| $r_i$    | 0     | $-\sqrt{3/5}$ | $+\sqrt{3/5}$ |
| $x_i$    | 0.4   | 0.09016       | 0.7098        |
| $f(x_i)$ | 2.456 | 1.266         | 2.188         |
| $w_i$    | 8/9   | 5/9           | 5/9           |



Function values:

$$I \cong \left(\frac{b-a}{2}\right) \sum_{i=1}^{n} w_i f(x_i)$$

$$\cong \left(\frac{0.8-0}{2}\right) \left[\frac{8}{9}(2.456) + \frac{5}{9}(1.266) + \frac{5}{9}(2.188)\right] = \mathbf{1.638}$$

### Gauss Quadrature: Summary

- Ideal when you know f(x)
  - Not suitable for tabulated data, unlike TR or SR
- Generally requires fewer points (i.e., f(x) evaluations)
   compared to TR or SR
- Concept extends easily to 2D and 3D
  - Central to Finite Element Methods
  - Next lecture...