Coding Plan

Donglai Wei

2010.10.27

1. Attribute and indexing

- 1. First-Level DP (table assign): $log\{\frac{\Gamma(\gamma)}{\Gamma(m_{..}+\gamma)}\Pi_{k=1}^K[\Gamma(m_{.k})]\gamma^K\}$
- 2. Second-Level DP (customer assign): $\sum_{j=1}^{J} log\{ [\frac{\Gamma(\alpha)}{\Gamma(n_{j..}+\alpha)} \Pi_{k=1}^{K}(\Gamma(n_{j.k}))] \alpha^{m..} \}$
- 3. Likelihood: $\textstyle \sum_{k=1}^K \{log(\frac{\Gamma(W\lambda_0)}{\Gamma(n_{..k}+W\lambda_0)}) + \sum_{w=1}^W log(\frac{\Gamma(\lambda_0+n_{..k}^w)}{\Gamma(\lambda_0)})\}$

Though Teh's 2nd version code only has beta sampler which samples z_{ji} instead of t_{ji} , k_{jt} , we can still reuse his data structure by assuming that dishes can have at most one table in each restaurant.

2.Method

Structure	variable	ME_Package	Teh_Package
First-Level DP	1) concentration parameter γ	prior. γ	$hdp.dp{1}.\alpha$
	2) number of data $m_{}$	sum(mj)	$sum(hdp.dp{1}.classnd)$
	3) number of cluster K	length(classes)	$sum(hdp.dp{1}.classnt)$
	4) number of data in each cluster $m_{.k}$	classes.nt	$hdp.dp{1}.classnd$
Second-Level DP	1) concentration parameter α	prior. α	$hdp.dp\{j\}.\alpha$
	2) number of data n_{j}	N(j)	hdp.dp{j}.numdata
	3) number of cluster m_{j} .	mj(j)	$sum(hdp.dp{j}.classnt)$
	4) number of data in each cluster n_{jt} .	$tables{j}{t}.Nc$	$\mathrm{hdp.dp}\{j\}.\mathrm{classnd}(k_{jt})$
Likelihood	1) hyperparameter $lambda_0, W$	prior.phi,prior.W	hdp.base.hh,length(hdp.base.hh)
	2) Multinomial Distribution n_{k}^w	classesk.suff(w)	hdp.base.classqq(w,j)

Functions	MEPackage	TehPackage
Sampling	1) sample t_{ji} for reinitialization of restaurant	sample z_{ji}, β, m
	1) Local Moves	
Search Moves	2) Merge Moves	
	3) Decompose Moves	
	1) data manipulation (add/delete structure)	
Utilities	2) change of likelihood	adddatalik.marglikelihoods
	3) Graphic	