

MITx: 14.310x Data Analysis for Social Scientists

Helj

Bookmarks

- Module 1: The Basics of R and Introduction to the Course
- Entrance Survey
- Module 2: Fundamentals of Probability, Random Variables, Distributions, and Joint Distributions
- Module 3: Gathering and Collecting Data,
 Ethics, and Kernel
 Density Estimates
- Module 4: Joint,
 Marginal, and
 Conditional
 Distributions &
 Functions of Random
 Variable

Module 6: Special Distributions, the Sample Mean, the Central Limit Theorem, and Estimation > The Sample Mean, Central Limit Theorem, and Estimation > More on the Sample Mean - Quiz

More on the Sample Mean - Quiz

☐ Bookmark this page

Question 1

1/1 point (graded)

For an i.i.d. random sample, how does increasing the sample size affect the expectation of the sample mean?

- ullet a. Decreases the expectation of the sample mean
- b. Increases the expectation of the sample mean
- ullet c. No effect on the expectation of the sample mean ullet

Explanation

The expected value of a sample mean is $\mu(E(X_i))$. $E(X_i)$ will be determined by the shape of the distribution of the X's, which will not change as the sample size increases.

- Module 5: Moments of a Random Variable,
 Applications to Auctions,
 Intro to Regression
- ▼ Module 6: Special
 <u>Distributions, the</u>

 <u>Sample Mean, the</u>
 <u>Central Limit Theorem,</u>
 and Estimation

<u>Human Subjects and Special</u> Distributions

Finger Exercises due Nov 07, 2016 at 05:00 IST

The Sample Mean, Central Limit Theorem, and Estimation

Finger Exercises due Nov 07, 2016 at 05:00 IST

Module 6: Homework

Homework due Oct 31, 2016 at 05:00 IST

► <u>Exit Survey</u>

You have used 1 of 2 attempts

✓ Correct (1/1 point)

Question 2

1/1 point (graded)

For a population of size n from an i.i.d distribution with variance σ^2 , which of the following expressions is the variance of the sample mean?

- \circ a. $\frac{\sigma^2}{n^2}$
- O b. $\frac{\sigma}{n}$
- \circ c. σ^2

(A)

 \bullet d. $\frac{\sigma^2}{n}$

Explanation

D is the correct answer. Professor Ellison derives this result in the lecture slides. Here is a quick summary of that derivation:

By the definition of the sample mean, $Var(ar{X}) = Var(rac{1}{n}(\sum X_i))$

By properties of variance, $Var(rac{1}{n}(\sum X_i)) = rac{1}{n^2} \sum Var(X_i)$

Finally, it simplifies to $rac{1}{n^2}\sum \sigma^2=rac{\sigma^2}{n}$

Submit

You have used 1 of 2 attempts

✓ Correct (1/1 point)

Discussion

Topic: Module 6 / More on the Sample Mean - Quiz

Show Discussion

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

