ML Refresher -Decision Trees

by Pranali Bose

What is it?

Versatile ML algorithm that can perform both classification and regression tasks.

It is a powerful algorithm capable of fitting complex datasets.

It is also a fundamental component of Random Forest, one of the most powerful ML algorithms available today.

Structure

Terminologies

- **Split**: Dividing a node into two or more sub-nodes based on a feature.
- Impurity: Measure of how mixed the classes are at a node.
- **Pruning**: Removing branches from the tree to prevent overfitting and improve generalization.
- Depth: Length of the longest path from the root node to a leaf node

Intuition Behind

- Feature Splitting: The algorithm selects the best feature to separate classes using metrics like Gini impurity.
- Recursive Partitioning:
 Splitting continues until a
 stopping criterion, such as
 maximum depth, is reached.

Feature Splitting?

One of the ways...

- **Step 1**: Calculate Gini Impurity for the nodes
- Step 2: Evaluate possible splits
- Step 3: Compare the Gini values and pick the least

Formulae

Gini = $\Sigma(p_i^2)$ Gini Impurity = 1 - Gini

Alternatively,

Entropy=- Σ (p log 2(p i)) Information Gain = 1 - Entropy

where p is the probability of class i

Example

Type	Color	Pet
Red	Cat	Yes
Red	Dog	No
Blue	Cat	Yes
Blue	Dog	Yes

Step 1: Calculate Gini Impurity for the Parent Node

• Total Instances: 4 (2 Yes, 2 No)

• Gini Parent =
$$1 - (p_{Yes}^2 + p_{No}^2) = 0.5$$

Step 2: Evaluate Possible Splits

Split by Color

Split by Type

Step 3: Compare Splits and Choose

Split	Gini Impurity
Color	0.5
Туре	0.25
No split	0.5

Conclusion:

The best split is by Type because it results in the lowest Gini impurity.

Hyperparameters

- max_depth: Maximum depth of the tree. Limiting the depth can help prevent overfitting
- min_samples_split: minimum number of samples required to split an internal node. Increasing this value can also reduce overfitting
- criterion: The function to measure the quality of a split
- class_weight: Weights associated with classes in the classification problem. It can help with imbalanced datasets

Pros and Cons

- No need for feature scaling
- Can handle both numerical and categorical data
- Flexible in modeling
 complex
 relationships

- Prone to
 overfitting if
 not properly
 managed
- Sensitive to small changes in the data

Ponder Upon

- What criteria can be used to determine the best split in a decision tree? Why does entropy have a negative sign?
- Describe the process of pruning in decision trees. Why is it important?
- What are the limitations of decision trees compared to ensemble methods like Random Forests?
- How do decision trees handle missing values during training?

Find this useful!

Let me know in the comments which topic would you like to see next:)

Follow for more...