전산천문학 HW2 Solution

April 8, 2020

```
[1]: import numpy as np import matplotlib.pyplot as plt
```

1. Machine Epsilon (ϵ)

1) 첫번째 방법

```
[2]: def epsilon_loop(datatype):
    epsilon = datatype(1)
    while datatype(1)+datatype(epsilon) != datatype(1):
        epsilon_last = epsilon
        epsilon = datatype(epsilon) / datatype(2)
    return epsilon_last

print (epsilon_loop(np.float16))
print (epsilon_loop(np.float32))
print (epsilon_loop(float))
```

- 0.000977
- 1.1920929e-07
- 2.220446049250313e-16

2) 두번째 방법

```
[3]: def epsilon_np(datatype):
    return np.finfo(datatype).eps

[4]: print (epsilon_np(np.float16))
    print (epsilon_np(np.float32))
    print (epsilon_np(np.float))
```

- 0.000977
- 1.1920929e-07
- 2.220446049250313e-16

2. Golden Mean ϕ

(a)

```
[5]: gm=0.5*(pow(5.,0.5)-1.)
   phi_mul=np.zeros(51)
   phi_mul[0]=1.
   for n in range(1,51):
       phi_mul[n]=gm*phi_mul[n-1]
   print (phi_mul)
   [1.00000000e+00 6.18033989e-01 3.81966011e-01 2.36067977e-01
    1.45898034e-01 9.01699437e-02 5.57280900e-02 3.44418537e-02
    2.12862363e-02 1.31556175e-02 8.13061876e-03 5.02499874e-03
    3.10562002e-03 1.91937873e-03 1.18624129e-03 7.33137436e-04
    4.53103854e-04 2.80033582e-04 1.73070272e-04 1.06963310e-04
    6.61069614e-05 4.08563490e-05 2.52506123e-05 1.56057367e-05
    9.64487568e-06 5.96086099e-06 3.68401469e-06 2.27684629e-06
    1.40716840e-06 8.69677897e-07 5.37490500e-07 3.32187398e-07
    2.05303102e-07 1.26884295e-07 7.84188071e-08 4.84654881e-08
    2.99533190e-08 1.85121692e-08 1.14411498e-08 7.07101942e-09
    4.37013034e-09 2.70088908e-09 1.66924125e-09 1.03164783e-09
    6.37593424e-10 3.94054407e-10 2.43539017e-10 1.50515390e-10
    9.30236269e-11 5.74917632e-11 3.55318637e-11]
[6]: plt.figure()
   plt.scatter(np.arange(0,51),phi_mul)
   plt.xlim(0,50)
   plt.ylim(1.0e-11,1.0)
   plt.yscale('log')
```


(b)

 ϕ 는 다음과 같은 방정식의 해에 해당한다.

$$\phi^2 + \phi - 1 = 0 \tag{1}$$

그러므로,

$$\phi^{n+1} = \phi^{n-1} - \phi^n \tag{2}$$

```
[7]: phi_add=np.zeros(51)
    phi_add[0],phi_add[1]=1.,gm

for n in range(2,51):
        phi_add[n]=phi_add[n-2]-phi_add[n-1]

print (phi_add)
```

```
[ 1.00000000e+00 6.18033989e-01 3.81966011e-01 2.36067977e-01 1.45898034e-01 9.01699437e-02 5.57280900e-02 3.44418537e-02 2.12862363e-02 1.31556175e-02 8.13061876e-03 5.02499874e-03 3.10562002e-03 1.91937873e-03 1.18624129e-03 7.33137436e-04 4.53103854e-04 2.80033582e-04 1.73070272e-04 1.06963311e-04 6.61069610e-05 4.08563496e-05 2.52506114e-05 1.56057382e-05 9.64487316e-06 5.96086506e-06 3.68400810e-06 2.27685696e-06 1.40715113e-06 8.69705831e-07 5.37445302e-07 3.32260528e-07
```

```
2.05184774e-07 1.27075754e-07 7.81090197e-08 4.89667347e-08 2.91422850e-08 1.98244496e-08 9.31783539e-09 1.05066142e-08 -1.18877885e-09 1.16953931e-08 -1.28841720e-08 2.45795650e-08 -3.74637370e-08 6.20433021e-08 -9.95070391e-08 1.61550341e-07 -2.61057380e-07 4.22607721e-07 -6.83665101e-07]
```

```
[8]: plt.figure()
  plt.scatter(np.arange(0,51),phi_mul)
  plt.scatter(np.arange(0,51),phi_add)
  plt.xlim(0,50)
  plt.ylim(1.0e-11,1.0)
  plt.yscale('log')
```


(c)

 ϕ^n 의 오차를 ϵ_n 이라 하고, $\tilde{\phi}^n=\phi^n+\epsilon_n$ 이라 놓자. 이 식을 문제의 식 (2)에 대입하면,

$$\phi^{n+1} + \epsilon_{n+1} = \phi^{n-1} + \epsilon_{n-1} - (\phi^n + \epsilon_n)$$

이다. 따라서 오차는

$$\epsilon_{n+1} = \epsilon_{n-1} - \epsilon_n$$

라는 식을 만족한다.

위 식을 풀기 위하여 오차가 $\epsilon_n = Ar^n$ 과 같이 공비 r의 등비수열로 주어진다고 가정하자(A는 상수). 이를 위 식에 대입하면

$$r^{n+1} + r^n - r^{n-1} = 0,$$

즉,

$$r^2 + r - 1 = 0$$

을 얻는다. 위 식의 근은

$$r_{\pm} = \frac{-1 \pm \sqrt{5}}{2}$$

이므로

$$\epsilon_n = Ar_+^n + Br_-^n$$

로 적을 수 있다. 여기서 A와 B는 상수인데, $\epsilon_0=A+B$ 는 machine epsilon ϵ 정도의 값을 가지므로 $A\sim B\sim \epsilon\sim 10^{-16}$ 으로 놓을 수 있다. $|r_-|>1$ 이므로 n이 커지면서 오차가 기하급수적으로 증가한다. 문제에서 $r_+=\phi$ 이므로 ϕ^n 의 상대오차는

$$\frac{|\epsilon_n|}{\phi^n} = A + B \left| \frac{r_-}{r_+} \right|^n \sim \epsilon \left(\frac{\sqrt{5} + 1}{\sqrt{5} - 1} \right)^n \sim 10^{-16} \times 2.618^n$$

으로 주어진다. 따라서

$$n \simeq \frac{16}{\log_{10} 2.618} \simeq 38$$

에서 상대오차가 1을 초과한다.

3. Planck Function

$$B_{\lambda} = \frac{2hc^{2}/\lambda^{5}}{e^{hc/\lambda kT} - 1}$$

$$\frac{dB_{\lambda}}{d\lambda} = \frac{2hc^{2}}{\lambda^{6}(e^{hc/\lambda kT} - 1)} \left[-5 + \frac{hc}{\lambda kT} \frac{e^{hc/\lambda kT}}{e^{hc/\lambda kT} - 1} \right]$$
(3)

[9]: h,k,c=6.626e-34,1.381e-23,2.998e8

def B(1,T):
 return (2.*h*pow(c,2.)*pow(1,-5.))/(np.exp(h*c/(l*k*T))-1.)

(a) Wien's Displacement Law

 $x = hc/\lambda kT$ 로 정의하면, $dB_{\lambda}/d\lambda = 0$ 는 다음과 같이 쓸 수 있다.

$$xe^x - 5e^x + 5 = 0 \tag{4}$$

[10]: def wien(x):

f=x*np.exp(x)-5.*np.exp(x)+5.
df=x*np.exp(x)-4.*np.exp(x)
return f,df

Newton Method 사용

TOL=1.e-6

```
x=5.
err=1
loop=0
while(err>TOL):
    loop += 1
    f,df=wien(x)
    err=abs(f/df)
    x = x - f/df
    print ("N={:2d} f={:.5e} df={:.5e}".format(loop,f,df,err))
print (x)
```

0.002897077657184466

(b) $B_{\lambda} = 1.0 \times 10^{13}$ at $T = 10^4 K$

$$B_{\lambda} = \frac{2hc^2/\lambda^5}{e^{hc/\lambda kT} - 1} \tag{5}$$

(a)와 같이 x를 정의하면 위 식을 다음과 같이 정의할 수 있다.

$$\frac{2x^5}{e^x - 1} = B_\lambda \frac{h^4 c^3}{(kT)^5} \tag{6}$$

```
[12]: T = 1.0e4
B_ref = 1.0e13
RHS = B_ref/(pow(k*T,5.)*pow(h,-4.)*pow(c,-3.))
print (RHS) # B_lambda=1.0e13일때 우변의 값!
```

1.0340278091358226

```
[13]: def g(x):
    return 2.*pow(x,5.)-RHS*(np.exp(x)-1.)
def dg(x):
    return 10.*pow(x,4.)-RHS*np.exp(x)
```

```
[14]: # Newton Method 小용
x1 = 3.
TOL, err, loop = 1.e-5, 1,0
```

```
while(err > TOL):
        loop += 1
        g1, dg1 = g(x1), dg(x1)
        err = abs(g1/dg1)
        x1 = x1 - g1/dg1
        print ("N={:2d} f={:.5e} df={:.5e} err={:.5e}".format(loop,g1,dg1,err))
    w1=(h*c)/(x1*k*T)
    print ("wavelength 1 : {:.4e} m, B_1 : {:.4e} J s-1 m-3".format(w1,B(w1,T)))
    N=1 f=4.66265e+02 df=7.89231e+02 err=5.90784e-01
    N=2 f=1.51864e+02 df=3.25398e+02 err=4.66703e-01
    N= 3 f=4.91363e+01 df=1.35169e+02 err=3.63518e-01
    N= 4 f=1.56495e+01 df=5.71466e+01 err=2.73849e-01
    N=5 f=4.79431e+00 df=2.52022e+01 err=1.90234e-01
    N= 6 f=1.32632e+00 df=1.22982e+01 err=1.07847e-01
    N=7 f=2.74981e-01 df=7.45493e+00 err=3.68858e-02
    N= 8 f=2.48905e-02 df=6.13130e+00 err=4.05958e-03
    N=9 f=2.77280e-04 df=5.99500e+00 err=4.62520e-05
    N=10 f=3.56738e-08 df=5.99345e+00 err=5.95213e-09
    wavelength 1 : 1.4889e-06 m, B_1 : 1.0000e+13 J s-1 m-3
[15]: x2 = 15.
    TOL, err, loop = 1.e-5, 1, 0
    while(err > TOL):
        loop += 1
        g2, dg2 = g(x2), dg(x2)
        err = abs(g2/dg2)
        x2 = x2 - g2/dg2
        print ("N={:2d} f={:.5e} df={:.5e} err={:.5e}".format(loop,g2,dg2,err))
    w2=(h*c)/(x2*k*T)
    print ("wavelength 2 : \{:.4e\} m, B_2 : \{:.4e\} J s-1 m-3".format(w2,B(w2,T)))
    N=1 f=-1.86150e+06 df=-2.87400e+06 err=6.47704e-01
    N=2 f=-5.50732e+05 df=-1.34439e+06 err=4.09652e-01
    N=3 f=-1.20415e+05 df=-7.96307e+05 err=1.51217e-01
    N=4 f=-1.15470e+04 df=-6.47649e+05 err=1.78291e-02
    N=5 f=-1.42831e+02 df=-6.31679e+05 err=2.26114e-04
    N=6 f=-2.26748e-02 df=-6.31478e+05 err=3.59074e-08
    wavelength 2 : 1.0444e-07 m, B_2 : 1.0000e+13 J s-1 m-3
```

4. Kepler's Equation

```
[16]: def KeplerEq(y,x,eps):
    f = y-eps*np.sin(y)-x # 해를 구하고자 하는 방정식 (Kepler's Equation)
    df = 1.-eps*np.cos(y) # Kepler's Equation을 y에 대해서 미분
    return f, df
```

```
e = 0.9
    xlist = np.linspace(0.,np.pi,30) # 0<= x <= pi 구간에 대해 30등분
    ylist = np.array([]) # 방정식의 해를 작성할 Array
    print (xlist)
    ГО.
               0.10833078 0.21666156 0.32499234 0.43332312 0.54165391
     0.64998469 0.75831547 0.86664625 0.97497703 1.08330781 1.19163859
     1.29996937 1.40830016 1.51663094 1.62496172 1.7332925 1.84162328
     1.94995406 2.05828484 2.16661562 2.2749464 2.38327719 2.49160797
     2.59993875 2.70826953 2.81660031 2.92493109 3.03326187 3.14159265]
[17]: TOL = 1.0e-10
    y_guess = 1. # y를 구하는 데 사용할 예측값
    for x_i in xlist:
        y_i = y_guess # 이전 Step에서 구한 y값을 초기값으로 사용
        err = 1.
        loop = 0
        while (err > TOL):
            loop += 1
            f, df = KeplerEq(y_i,x_i,e)
            err = abs(f/df)
            y_i = y_i - f/df
            progress = [loop, y_i, f, err]
        y_guess = y_i # 구한 해를 다음 step에서 초기값으로 사용
        ylist = np.append(ylist,y_i) # 구한 해를 ylist에 넣음
[18]: table = np.column_stack([xlist,ylist]) # x를 1열, y를 2열에 배치함.
    print (np.array_str(table,precision=5,suppress_small=True))
    ГГΟ.
             0.
     [0.10833 0.66047]
     [0.21666 0.94734]
     [0.32499 1.14441]
     [0.43332 1.30069]
     [0.54165 1.43314]
     [0.64998 1.54979]
     [0.75832 1.65512]
     [0.86665 1.75192]
     [0.97498 1.84207]
     [1.08331 1.92686]
     [1.19164 2.00726]
     [1.29997 2.08402]
     [1.4083 2.1577]
```

[1.51663 2.22875]

- [1.62496 2.29756]
- [1.73329 2.36443]
- [1.84162 2.42962]
- [1.94995 2.49336]
- [2.05828 2.55583]
- [2.16662 2.61722]
- [2.27495 2.67766]
- [2.38328 2.7373]
- [2.49161 2.79626]
- [2.59994 2.85465]
- [2.70827 2.91258]
- [2.8166 2.97015]
- [2.92493 3.02744]
- [3.03326 3.08456]
- [3.14159 3.14159]]