# ACH2047 – Economia para Computação Teoria do consumidor

# Profa. Dra. Izabela Sobiech Pellegrini 10/03/2020

Pindyck & Rubinfeld, cap. 3, Acemoglu et al., cap. 5, Krugman & Wells, cap. 10

#### **RESUMO**

- 3.1 Função de utilidade
- 3.2 Preferências do consumidor
- 3.3 Restrições orçamentárias
- 3.4 A escolha do consumidor
- 3.5 Demanda individual
- 3.6 Excedente do consumidor

# Comportamento do Consumidor

 teoria do comportamento do consumidor Descrição de como os consumidores alocam a renda, entre diferentes bens e serviços, procurando maximizar seu bem-estar.

O comportamento do consumidor é mais bem compreendido quando ele é examinado em três etapas distintas:

- 1. Preferências do consumidor
- 2. Restrições orçamentárias
- 3. Escolhas do consumidor

- utilidade (de um consumidor) Medida de satisfação derivada do consumo de bens e serviços. Unidade de mensuração util.
- cesta de consumo (ou pacote) A combinação de todos os bens e serviços consumidos por uma dada pessoa
- função de utilidade A utilidade total gerada pelo pacote de consumo de um indivíduo.

Exemplo – Utilidade de Cátia de consumo de refrigerante

| Quantidade de refrigerante | Utilidade total (utils) |
|----------------------------|-------------------------|
| 0                          | 0                       |
| 1                          | 15                      |
| 2                          | 28                      |
| 3                          | 39                      |
| 4                          | 48                      |
| 5                          | 55                      |
| 6                          | 60                      |
| 7                          | 63                      |
| 8                          | 64                      |
| 9                          | 63                      |

Exemplo – Utilidade de Cátia de consumo de refrigerante



## Princípio da utilidade marginal decrescente

• utilidade marginal A mudança na utilidade gerada por consumir uma unidade adicional de um bem ou serviço (ou uma pequena quantidade adicional de um bem ou serviço) (-> benefício marginal)

$$UM(x) = \Delta U(x)/\Delta x$$

ou para mudanças inifinitamente pequenas em x:

$$UM(x) = dU(x)/dx$$

 princípio da utilidade marginal decrescente A proposição de que cada unidade (ou quantidade pequena) sucessiva de um bem ou serviço consumida adiciona menos utilidade que a unidade anterior.

# Princípio da utilidade marginal decrescente

Exemplo – Utilidade de Cátia de consumo de refrigerante (cont.)

| Quantidade de refrigerante | Utilidade total (utils) | Utilidade marginal (UM) |
|----------------------------|-------------------------|-------------------------|
| 0                          | 0                       | -                       |
| 1                          | 15                      | 15                      |
| 2                          | 28                      | 13                      |
| 3                          | 39                      | 11                      |
| 4                          | 48                      | 9                       |
| 5                          | 55                      | 7                       |
| 6                          | 60                      | 5                       |
| 7                          | 63                      | 3                       |
| 8                          | 64                      | 1                       |
| 9                          | 63                      | -1                      |

## Princípio da utilidade marginal decrescente

Exemplo – Utilidade de Cátia de consumo de refrigerante (cont.)

# Curva de utilidade marginal



# Exemplo 3.7 Utilidade marginal e felicidade

Figura 3.21



Uma comparação dos níveis médios de felicidade entre diferentes classes econômicas nos Estados Unidos mostrou que a felicidade aumenta com a renda, mas a uma taxa decrescente.

## Cestas de consumo

| TABELA 3.1 Cestas de mercado alternativas |                              |                              |  |
|-------------------------------------------|------------------------------|------------------------------|--|
| Cesta de mercado                          | Unidades de alimentos<br>(A) | Unidades de vestuário<br>(V) |  |
| Α                                         | 1                            | 1                            |  |
| В                                         | 1                            | 4                            |  |
| С                                         | 4                            | 1                            |  |
| D                                         | 4                            | 4                            |  |
| E                                         | 2                            | 8                            |  |
| F                                         | 3                            | 3                            |  |

#### Cestas de consumo

Em geral o consumidor prefere ter quantidades maiores de todos os bens e serviços na sua cesta de consumo.

- todas as cestas abaixo e à esquerda da cesta F são piores para o consumidor.
- todas as cestas acima e à direita da cesta F são melhores para o consumidor.
- não é possível dizer se o consumidor prefere a cesta B ou F, ou cesta C ou F.





# Função de utilidade para mais que um bem ou serviço (multivariada)

Exemplo: **U(A,V)=2\*A**<sup>0,5\*</sup>**V**<sup>0,5</sup>



#### Cestas de consumo e nível de utilidade

$$U(A,V)=2*A^{0,5}*V^{0,5}$$

| Cestas de mercado alternativas |                       |                       |                       |
|--------------------------------|-----------------------|-----------------------|-----------------------|
| Cesta de mercado               | Unidades de alimentos | Unidades de vestuário | Nìvel de<br>utilidade |
| Α                              | 1                     | 1                     | 2                     |
| В                              | 1                     | 4                     | 4                     |
| С                              | 4                     | 1                     | 4                     |
| D                              | 4                     | 4                     | 8                     |
| E                              | 2                     | 8                     | 8                     |
| F                              | 3                     | 3                     | 6                     |

Função de utilidade para mais que um bem ou serviço (multivariada)

$$U(A,V)=2*A^{0,5}*V^{0,5}$$

Quais cestas de mercado dão um nível de utilidade igual a 2? E quais 8?

- curva de indiferença Curva que representa todas as combinações de cestas de mercado que fornecem o mesmo nível de satisfação para um consumidor.
- mapa das curvas de indiferença Uma coleção de curvas de indiferença que representa a função de utilidade inteira e cada curva de indiferença corresponde a um nível diferente de utilidade.



Função de utilidade para mais que um bem ou serviço (multivariada)

$$U(A,V)=2*A^{0,5}*V^{0,5}$$

Quais cestas de mercado dão um nível de utilidade igual a 2? E quais 8?

Equação da curva de indiferença que mostra todas as cestas de utilidade 2:

$$2=2*A^{0.5*}V^{0.5}$$
  $\Rightarrow$  **V=1/A**

E utilidade 8: 8=2\*A<sup>0,5</sup>\*V<sup>0,5</sup> =>**V=16/A** 



#### Propriedades gerais das curvas de indiferença

A função de utilidade e o mapa das curvas de indiferença representam as **preferências** do consumidor.

- 1. Curvas de indiferença *nunca se cruzam*.
- 2. Uma curva de indiferença *mais distante da origem* representam nível de *utilidade mais elevado*.
- 3. Curvas de indiferença têm inclinação para baixo.
- 4. Curvas de indiferença são convexas (formato da letra U).

## Curvas de indiferença nunca se cruzam.

#### Figura 3.4

As curvas de indiferença não podem se interceptar.

Se as curvas de indiferença U<sub>1</sub> e U<sub>2</sub> se interceptassem, uma das premissas da teoria do consumidor seria violada.

De acordo com o diagrama, o consumidor seria indiferente à cesta A, B ou D. Entretanto, B deveria ser preferível a D, pois B contém quantidades maiores de ambas as mercadorias.

Violação das premissas de transitividade e de que mais é sempre melhor do que menos. Vestuário (unidades por semana)



Alimento (unidades por semana)

#### Taxa marginal de substituição

 taxa marginal de substituição (TMS) Quantidade máxima de um bem que um consumidor está disposto a deixar de consumir para obter uma unidade adicional de um outro bem.

Figura 3.5

#### Taxa marginal de substituição

A TMS é medida pela magnitude da inclinação de uma curva de indiferença traçada para um. Na figura, a taxa marginal de substituição entre vestuário (V) e alimento (A) cai de 6 (entre A e B), para 4 (entre B e D), para 2 (entre D e E), até 1 (entre E e G).

Convexidade O declínio da TMS reflete a premissa de taxa marginal de substituição decrescente. Quando a TMS diminui ao longo da curva de indiferença, a curva é convexa.



#### Bens nocivos

 bens nocivos Mercadorias que os consumidores preferem em menor quantidade em vez de maior quantidade.
 (Propriedade 2 ou 3 das curvas de indiferença violada.)

## Substitutos perfeitos e complementos perfeitos

- substitutos perfeitos Dois bens são substitutos perfeitos quando a TMS de um pelo outro é uma constante.
- complementos perfeitos Dois bens são complementos perfeitos quando a TMS entre eles for infinita; nesse caso, as curvas de indiferença são ângulos retos.

(Propriedade 4 das curvas de indiferença violada.)

## Substitutos perfeitos e complementos perfeitos

Figura 3.6

#### Substitutos perfeitos e complementos perfeitos



Em (a), Bob classifica suco de maçã e suco de laranja como substitutos perfeitos; ele sempre é indiferente entre um copo de um ou de outro. Nesse exemplo a TMS é igual a 1.



Em **(b)**, Jane considera sapatos esquerdos e sapatos direitos complementos perfeitos. Um sapato esquerdo adicional não propicia aumento na satisfação, a menos que ela obtenha o sapato direito correspondente.

## Exemplo 3.1 Projeto de um novo automóvel (I)

Figura 3.7

#### Preferências por atributos de automóveis

As preferências relativas aos atributos de um automóvel podem ser descritas pelas curvas de indiferença. Cada curva mostra a combinação de potência e espaço interno que fornece a mesma satisfação.





Os proprietários de cupês Ford Mustang (a) estão dispostos a abrir mão de bastante espaço interno em troca de potência adicional.

O oposto vale para os proprietários do Ford Explorer (b). Eles preferem espaço interno a potência.

# Exercício 2

Trace curvas de indiferença que representem as seguintes preferências de um consumidor por duas mercadorias: hambúrguer e refrigerante. Indique a direção na qual a satisfação (ou a utilidade) da pessoa está crescendo.

- a. Joe tem curvas de indiferença convexas e não gosta nem de hambúrguer nem de refrigerante.
- b. Jane adora hambúrgueres e não gosta de refrigerantes. Se lhe servirem um refrigerante, é mais provável que ela o despeje no ralo em vez de bebê-lo.
- c. Bob adora hambúrgueres e não gosta de refrigerantes. Se lhe servirem um refrigerante, ele aceitará por educação.
- d. Molly adora hambúrgueres e refrigerantes, mas insiste em consumir exatamente um refrigerante para cada dois hambúrgueres que come.
- f. Para Mary, um hambúrguer extra proporciona o dobro de satisfação que um refrigerante extra.

ï

 restrições orçamentárias Restrições que os consumidores enfrentam como resultado do fato de suas rendas serem limitadas.

#### A linha de orçamento

 linha de orçamento Todas as combinações de bens para as quais o total de dinheiro gasto é igual à renda (I).

$$P_{A}A + P_{V}V = I \tag{3.1}$$

Exemplo: Renda: I=9,  $P_A$  = US\$ 1,  $P_V$  = US\$ 2.

| Cestas de mercado e a linha de orçamento |              |               |               |
|------------------------------------------|--------------|---------------|---------------|
| Cesta                                    | Alimento (A) | Vestuário (V) | Despesa total |
| G                                        | 0            | 4,5           | \$9           |
| Н                                        | 1            | 4             | \$9           |
| F                                        | 3            | 3             | \$9           |
| L                                        | 6            | 1,5           | \$9           |
| М                                        | 9            | 0             | \$9           |

# Linha de orçamento

Exemplo: Renda: I=9,  $P_A$  = US\$ 1,  $P_V$  = US\$ 2.



# Linha de orçamento

Exemplo: Renda: I=9,  $P_A$  = US\$ 1,  $P_V$  = US\$ 2.

Equação da linha de orçamento:

$$V = (I/P_{V}) - (P_{A}/P_{V})A$$
 (3.2)



# Efeitos das modificações na renda



## Efeitos das modificações nos preços

Mudança no preço Uma mudança no preço de um dos bens (com a renda inalterada) provoca uma rotação na linha de orçamento em torno de um intercepto.



A cesta de mercado maximizadora deverá satisfazer duas condições:

- 1. Deverá estar sobre a linha de orçamento.
- 2. Deverá dar ao consumidor sua combinação preferida de bens e serviços.



Os consumidores maximizam sua satisfação no ponto X\* no qual a linha de orçamento e a curva de indiferença são tangentes.

No ponto X\* (de maximização), a TMS entre os dois bens é igual à razão entre os preços (TMS=  $(P_A / P_V)$ ).

Escolha ótima: A\*=4,5, V\*=2,25, U(A\*,V\*)=6,346



## Exemplo 3.3 Projeto de um novo automóvel (II)

Figura 3.14

#### Escolha do consumidor por atributos dos automóveis



Os consumidores em **(a)** estão dispostos a abrir mão de uma considerável dose de espaço interno para obter algum desempenho adicional. Dada a restrição orçamentária, eles escolherão um automóvel em que a potência se destaque.

O oposto é válido para os consumidores em (b).

## Soluções de canto

 solução de canto Situação na qual a taxa marginal de substituição de um bem por outro, em uma cesta de mercado escolhida, não é igual à inclinação da linha de orçamento.

Figura 3.15

#### Uma solução de canto

O consumidor maximiza sua satisfação adquirindo apenas um dos dois bens.

Dada a linha de orçamento AB, o maior nível de satisfação é alcançado no ponto B na curva de indiferença U<sub>1</sub>, em que a TMS (de sorvete por iogurte congelado) é maior do que a razão entre os preços do sorvete e do iogurte congelado.



 princípio da igualdade marginal Princípio segundo o qual a utilidade é maximizada quando os consumidores igualam a utilidade marginal por unidade monetária gasta em cada um dos bens.

Para uma variação de quantidades ao longo da curva de indiferençá é válido que:

(Mudança na utilidade total por causa de menos consumo de vestuário)+ (Mudança na utilidade total por causa de maior consumo de alimentos) = 0

$$UM_{V}^{*}\Delta V + UM_{A}^{*} \Delta A = 0$$

$$\Leftrightarrow -(\Delta V/\Delta A) = (UM_{A} / UM_{V})$$

$$\Leftrightarrow TMS = (UM_{A} / UM_{V})$$
No ponto de escolha ótima: TMS=  $(P_{A} / P_{V})$ , então
$$UM_{A} / UM_{V} = P_{A} / P_{V}, \text{ ou}$$

$$UM_{A} / P_{A} = UM_{V} / P_{V}, (3.7)$$

No pacote do consumo ótimo:

$$UM_A / P_A = UM_V / P_V (3.7)$$

# Utilidade marginal por dólar gasto em um bem = Utilidade marginal por dólar gasto em um outro bem



No pacote do consumo ótimo:

$$UM_A / P_A = UM_V / P_V$$

- <⇒A=2V
- ⇔No pacote de consumo ótimo o consumidor troca 2 unidades de vestuário por uma unidade de alimentos.

Para achar a escolha ótima precisamos combinar essa informação com a linha de orçamento:

$$V = 4.5 - 0.5A$$
 $A = 2V$ 
 $=>$ 
 $V = 4.5 - V = 2.25$ 
 $=> A *= 4.5$ 

Quando a renda muda é necessário ajustar as quantidades dos dois bens no gráfico assim que toda a renda do consumidor esteja gasta.

Exemplo anterior com nova renda I=18:



#### **DEMANDA INDIVIDUAL**

Para traçar a curva de demanda individual de um bem precisamos achar cestas de consumo ótimas para preços diferentes desse bem.

Por exemplo,

$$P_A = 1, P_A' = 0,5, P_A'' = 2$$

- rotação da linha de orçamento
- muda o ponto de tangência com a curva de indiferença
- o máximo nível de utilidade do consumidor atingível geralmente muda
- as quantidades ótimas de todos os bens na cesta do consumo ótimo podem mudar (mas não precisam)

No nosso exemplo:

$$Z^*(2.25,2.25)$$

# **DEMANDA INDIVIDUAL**





## **EXCEDENTE DO CONSUMIDOR**

 excedente do consumidor Diferença entre o que um consumidor está disposto a pagar por certo bem e o que efetivamente paga.

#### Excedente do consumidor e demanda

#### Figura 4.14

#### Excedente do consumidor

O excedente do consumidor corresponde ao benefício total obtido pelo consumo de determinado produto, menos o custo total de sua aquisição. Nesta figura, o excedente do consumidor associado ao consumo de seis ingressos para um show (adquiridos ao preço unitário de US\$ 14) é dado pela área sombreada em laranja.



## **EXCEDENTE DO CONSUMIDOR**

#### Excedente do consumidor e demanda

#### Figura 4.15

#### Excedente do consumidor: caso geral

Para o mercado como um todo, o excedente do consumidor pode ser medido pela área abaixo da curva de demanda e acima da linha que representa o preço efetivo de aquisição do bem.

Na figura, o excedente do consumidor é dado pela área sombreada do triângulo, sendo igual a 1/2 × (US\$ 20 – US\$ 14) × 6.500 = US\$ 19.500.

Gasto efetivo = US\$14 x 6.500 = US\$ 91.000



# Exercício 6, cap. 10 Krugman & Wells

A tabela a seguir mostra a utilidade que Bernie obtém de CDs e cademos. O preço de um caderno é \$5, o preço de um CD é \$10, e Bernie tem \$50 de renda para gastar.

| Quantidade de cadernos | Utilidade dos cadernos | Quantidade de<br>CDs | Utilidade dos<br>CDs |
|------------------------|------------------------|----------------------|----------------------|
| 0                      | 0                      | 0                    | 0                    |
| 2                      | 70                     | 1                    | 80                   |
| 4                      | 130                    | 2                    | 150                  |
| 6                      | 180                    | 3                    | 210                  |
| 8                      | 220                    | 4                    | 260                  |
| 10                     | 250                    | 5                    | 300                  |

- a. Quais pacotes de consumo de cadernos e CDs Bernie pode consumir, se gasta toda a sua renda? Trace a linha do orçamento de Bernie, com CDs no eixo horizontal e cadernos no eixo vertical.
- b. Calcule a utilidade marginal de cada caderno e de cada CD. Em seguida, calcule a utilidade marginal por dólar gasto em cadernos e a utilidade marginal por dólar gasto em CDs.
- c. Trace um diagrama de utilidades marginais por dólar gasto dos dois bens. Use esse diagrama e a regra do consumo ótimo para prever qual pacote, de todos os pacotes na sua linha do orçamento, Bernie vai escolher.

# **Exercício 5**

Suponha que Bridget e Erin gastem sua renda em duas mercadorias, alimento, A, e vestuário, V. As preferências de Bridget são representadas pela função utilidade U(A,V) = 10AV, enquanto as de Erin são representadas pela função utilidade  $U(A,V) = 0.20A^2V^2$ .

- a. Colocando alimentos no eixo horizontal e vestuário no eixo vertical, identifique em um gráfico o conjunto de pontos que dão a Bridget o mesmo nível de utilidade que a cesta (10, 5). Em outro gráfico, faça o mesmo para Erin.
- b. Nesses mesmos gráficos, identifique o conjunto de cestas que dariam a Bridget e a Erin o mesmo nível de utilidade que a cesta (15, 8).
- c. Você acha que Bridget e Erin têm preferências iguais ou diferentes? Explique.

# **Exercício 14**

Connie tem uma renda mensal de US\$ 200, a qual ela divide entre duas mercadorias: carne e batatas.

- a. Suponha que o preço da carne seja de US\$ 4 por libra e o das batatas de US\$ 2 por libra. Desenhe a restrição orçamentária de Connie.
- b. Suponha também que a função utilidade de Connie seja expressa por meio da equação U(C,B) = 2C + B. Que combinação de carne e batatas ela deveria adquirir para que a utilidade fosse maximizada? (Dica: considere carne e batatas substitutos perfeitos.)
- c. O supermercado em que Connie faz compras oferece uma promoção especial. Se ela adquirir 20 libras de batatas (a US\$ 2 por libra), ganhará 10 libras adicionais. Essa promoção só é válida para as primeiras 20 libras de batata. Todas as batatas além das primeiras 20 libras (exceto as 10 libras de bônus) ainda custam US\$ 2 por libra. Desenhe a restrição orçamentária de Connie.
- d. Um surto de parasitas faz com que o preço das batatas suba para US\$ 4 por libra e o supermercado encerra a promoção. Que aspecto passaria a ter o diagrama de restrição orçamentária de Connie agora? Que combinação de carne e batatas maximizaria sua utilidade?