MATH4302, Algebra II, HKU

Jiang-Hua Lu

The University of Hong Kong

Thursday March 18, 2022

Outline

Today:

1 §2.1. Finite field extensions

Review:

- Degree of a field extension: Given $K \subset L$, regard L as a vector space over K, and define
 - [L:K] = dimension of L as a vector space over K.
- Finite extensions: $[L:K] < \infty$.
- Tower Theorem: For $\underline{K \subset M \subset L}$, a tower of fields, [L:K] = [L:M][M:K].
- If $p(x) \in K[x]$ is irreducible, then $\overline{x} \in L$ is a root of $L = K[x]/\langle p(x) \rangle$ in L.
 - is an extension of K of degree equal to $n = \deg(p(x))$. Note: p(x) has no roof in K.
- Given a field extension $K \subset L$ and subset S of L, define for otherwise K(S) = the smallest subfield of L containing S and K. In the smallest subfield of L containing S and K.

When $S = \{a\}$, K(a) is called a simple extension of K. (a) is called a simple extension of K.

Review continued: Let $K \subset L$ be an extension (e.g. $\mathbb{Q} \subset \mathbb{C}$).

• Algebraic elements: An element $a \in L$ is algebraic over K if

$$E_a: K[x] \longrightarrow L, f(x) \longmapsto f(a)$$

has a non-zero kernel $I(a) = \{f(x) \in K[x] : f(a) = 0\}$. In this case, the minimal nomic generator p(x) of I(a) is called the minimal polynomials of a over K, and

a over
$$K$$
, and
$$E_a: K[x]/\langle p(x)\rangle \longrightarrow K[a] = K(a)$$

$$(K(a) : K) = O(a)$$

$$(\times A) = O(a)$$

is an isomorphism of fields.

- An element $a \in L$ is algebraic over K iff $[K(a) : K] < \infty$.
- If $a \in L$ is not algebraic over K, say that a is transcendental over K. In this case K(a) = K(x) is an ∞ ent. If K

Adjoining finitely many algebraic elements:

For a field extension
$$K \to L$$
, define the subring of L generated by $a_1, \ldots, a_n \in L$ over K as
$$= \sum_{i=1}^n (A_{k_1, \ldots, k_n}) A_i + A_i +$$

Main Proposition. If $a_1, a_2, \dots a_n$ are all algebraic over K, then KIX) CK, [X] **1** $K(a_1, a_2, \dots, a_n)$ is a finite extension of K; K1 = K/9,1

2 $K(a_1, a_2, \dots, a_n) \stackrel{?}{=} K[a_1, a_2, \dots, a_n] \subset L$. Proof. Let $K_0 = K$ and for $1 \le i \le n$, let

$$\underbrace{K_{i}}_{i} = K(a_{1}, \dots, a_{i}) = \underbrace{K_{i-1}(a_{i})}_{i} \quad \underbrace{K_{3}}_{i} = \underbrace{K_{2}(Q_{3})}_{i}$$
• Then we have a tower of field extensions
$$\underbrace{K \subset K_{1} \subset K_{2}}_{i} \subset \underbrace{(K_{n}) \subset L}_{i} \quad \underbrace{K_{n} = K(Q_{1}, \dots, Q_{n})}_{i}$$

- Each a_i , being algebraic over K, is also algebraic over K_{i-1} . $k(x) \subset k(x)$
- Thus each K_i is a finite extension of K_{i-1} .

By the Tower Theorem,
$$K_n$$
 is a finite extension over K . Moreover,
$$K_n = K_{n-1}[a_n] = K_{n-2}[a_{n-1}][a_n] = K_{n-2}[a_{n-1}, a_n] = \cdots$$

$$= K[a_1, \dots, a_{n-1}, a_n]. \quad K_{n-1} = K_{n-2}[a_{n-1}]$$

$$K_n = K_{n-1}(a_n) = K_{n-1}[a_n]$$
Q.E.D.

6/12

Q.E.D.

ach => 1, a, a2 ---Consequences of the Main Proposition: is linearly dependent.

Recall that very element in a finite extension L of K is algebraic over K. Theorem. An extension L of K is finite iff there exist $a_1, a_2, \dots, a_n \in L$ which are algebraic over K such that $L = K(a_1, a_2, \dots, a_n)$.

Proof. If L= Kla, -an), where a, -an are applicate over K, then Main proposition => /L: K/ < >>

Conversely, assume that [L: K] < 00 Induction on [L:k] of [L: K]=1, then L=K, nothing to prove. Assume statement holds for [L: K]≤m-1. Now for 1L: K = m ? Choose any a, EL/K, so kch $|L: k(a)| |k(a): k| = m = |L: k(a)| \leq \frac{m}{2} \leq m-1$

He By includion,
$$\exists a_2, \neg a_n \in \mathbb{R} L$$
 st.

 $L = K(a_1) (a_2, \neg a_n) = K(a_1, \neg a_n)$

Method $I: Since | L: K| < a_0, \exists a basis$
 $a_1, a_2, \neg a_n \text{ of } L \text{ over } K$.

Let $L' = K(a_1, \neg a_n)$. Then $L' \subset L$
 $L \subset L' = L' = L$
 $k_1a_1 + - k_na_n \in L'$

Very important examples.

monic

For any $f \in \mathbb{Q}[x]$, let a_1, \ldots, a_n be all the roots of f in \mathbb{C} . Then

- $\mathbb{Q}[a_1, a_2, \dots, a_n]$ is a finite extension of \mathbb{Q} ;
- Every element in $L = \mathbb{Q}[a_1, a_2, \dots, a_n]$ is algebraic over \mathbb{Q} ;
- The field L is called the splitting field of f in \mathbb{C} .

we have

$$f(x) = \underbrace{(x-a_1)(x-a_2) - (x-a_n)}_{L[x]}$$

splits into linear factors.

