Álgebra Universal e Categorias

3º teste

durac	ão:	1h45min _	

- 1. (a) Sejam ${\bf C}$ uma categoria e $f:A\to B$ um morfismo de ${\bf C}$. Mostre que se f é um morfismo invertível à direita, então f é um epimorfismo.
 - (b) Dê exemplo de uma categoria na qual nem todo o epimorfismo é invertível à direita.
- 2. Sejam \mathbf{C} uma categoria e T_1 , T_2 objetos de \mathbf{C} . Mostre que se T_1 e T_2 são objetos terminais, então T_1 e T_2 são isomorfos.
- 3. Sejam A, B, P objetos de uma categoria \mathbf{C} tais que $\hom_{\mathbf{C}}(A,B) \neq \emptyset$ e $p_A: P \to A$ e $p_B: P \to B$ são morfismos de \mathbf{C} . Mostre que se $(P,(p_A,p_B))$ é um produto de A e B, então p_A é invertível à direita.
- 4. Sejam A e B conjuntos, $f:A\to B$ e $g:A\to B$ funções, $I=\{a\in A: f(a)=g(a)\}$ e $i:I\to A$ a função definida por i(x)=x, para todo $x\in I$. Mostre que, na categoria **Set**, (I,i) é um igualizador de f e g.
- 5. Sejam \mathbf{C} uma categoria e $f:A\to B$ um morfismo em \mathbf{C} . Mostre que se f é um epimorfismo, então $(B,(\mathrm{id}_B,\mathrm{id}_B))$ é uma soma amalgamada de (f,f).
- 6. (a) Seja $F = (F_{Ob}, F_{hom})$ o funtor de **Set** em **Set**, onde $F_{Ob} : \operatorname{Obj}(\mathbf{Set}) \to \operatorname{Obj}(\mathbf{Set})$ é a função que a cada objeto X de **Set** associa o conjunto $F_{Ob}(X) = \{1,2\}$ e $F_{hom} : \operatorname{Mor}(\mathbf{Set}) \to \operatorname{Mor}(\mathbf{Set})$ é a função que a cada **Set**-morfismo $f : X \to Y$ associa o morfismo $F_{hom}(f) = \operatorname{id}_{\{1,2\}}$. Diga, justificando, se:
 - i. o funtor F é fiel e se é pleno.
 - ii. o funtor F reflete morfismos invertíveis à esquerda.
 - (b) Sejam \mathbf{C} e \mathbf{D} categorias e F um funtor de \mathbf{C} em \mathbf{D} . Mostre que se F é um funtor fiel e pleno, então F reflete morfismos invertíveis à esquerda.