

UNIVERSIDAD DE CONCEPCIÓN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

A QUASI-PERIODIC HDG METHOD FOR THE HELMHOLTZ EQUATION IN HETEROGENEOUS DOMAINS

AUTOR

Ignacio Sebastian Ruminot Aburto

Tesis presentada a la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Concepción para optar al título profesional de Ingeniero Civil Matemático

Profesores Guía: Dr. Manuel E. Solano Dr. Patrick Vega.

Septiembre de 2024, Concepción, Chile.

A QUASI-PERIODIC HDG METHOD FOR THE HELMHOLTZ EQUATION IN HETEROGENEOUS DOMAINS COMISIÓN EVALUADORA Dr. Ma-

nuel E. Solano [Profesor guía] CI^2MA y Departamento de Ingeniería Matemática, Universidad de Concepción, Chile. Dr. Patrick Vega [Profesor guía] Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Chile. **FECHA DE DEFENSA:**.

Agradecimientos

AQUÍ VAN LOS AGRADECIMIENTOS

Índice general

A	gradecimientos	3	
Ín	Índice de figuras Abstract		
Al			
Re	esumen	9	
1.	Introducción	11	
2.	Un método HDG aplicado a la ecuación de Helmholtz. 2.1. Preliminares y dominio computacional		
3.	Implementación Computacional.	15	

ÍNDICE GENERAL 6

Índice de figuras

2.1.	Representación de las	particiones	14
------	-----------------------	-------------	----

Abstract

Resumen

ÍNDICE DE FIGURAS

Capítulo 1

Introducción

Capítulo 2

Un método HDG aplicado a la ecuación de Helmholtz.

2.1. Preliminares y dominio computacional.

Para realizar el estudio del método HDG aplicado a la formulación (AQUI FALTA), es necesario definir la notación a utilizar. Primero se define

$$(\cdot,\cdot)_{\mathcal{T}_h} := \sum_{K \in \mathcal{T}_h} (\cdot,\cdot)_K \quad , \quad \langle \cdot,\cdot \rangle_{\partial \mathcal{T}_h} := \sum_{K \in \mathcal{T}_h} \langle \cdot,\cdot \rangle_{\partial K} \quad , \quad \langle \cdot,\cdot \rangle_{\partial \mathcal{T}_h \backslash \Gamma} := \sum_{e \in \mathcal{E}_h} \langle \cdot,\cdot \rangle_e.$$

Donde $(\cdot, \cdot)_K$, $\langle \cdot, \cdot \rangle_{\partial K}$ y $\langle \cdot, \cdot \rangle_e$ es el producto interior estandar de L2 sobre el elemento K, su frontera ∂K y lado e, respectivamente. Sea $\{\mathcal{T}_h\}_{h>0}$ una familia de triangulaciones SHAPE-REGULAR de Ω , formada por triángulos K cuyos lados se denominan e, donde el diametro se denota por h_K y n es el vector normal exterior. También, sean $\partial \mathcal{T}_h := \{\partial K : K \in \mathcal{T}_h\}$ y $\mathcal{E}_h := \mathcal{E}_o \cup \mathcal{E}_t \cup \mathcal{E}_b \cup \mathcal{E}_l \cup \mathcal{E}_r$, donde \mathcal{E}_o , \mathcal{E}_t , \mathcal{E}_b , \mathcal{E}_l , \mathcal{E}_r denotan los lados interiores, de frontera superior, inferior, izquierda y derecha, respectivamente.

Como el dominio es quasi-periódico, la partición \mathcal{E}_l induce una nueva partición sobre sobre la frontera derecha Γ_r , que denotamos por \mathcal{F}_r . Del mismo modo, \mathcal{E}_r induce una nueva partición sobresla frontera izquierda Γ_l que denotamos \mathcal{F}_l .

En otras palabras, sean $\mathcal{N}_l := \{(0, y_0), \dots, (0, y_{N_l})\}$ el conjunto de nodos de la partición \mathcal{E}_l con $y_0 < y_1 < \dots < y_{N_l}$ y $\mathcal{N}_r := \{(L, z_0), \dots, (L, z_{N_r})\}$ el conjunto de nodos de la partición \mathcal{E}_r con $z_0 < z_1 < \dots < z_{N_r}$. Una manera de poder hacer coincidir la cantidad de nodos en ambas nuevas particiones inducidas es considerar el conjunto $\{w_j\}_{j=0}^N$ formado por la unión de $\{y_j\}_{j=0}^{N_l}$ y $\{z_j\}_{j=0}^{N_r}$ excluyendo repeticiones tal que $w_0 < w_1 < \dots < w_N$. Así, las particiones inducidas se definen de la forma $\mathcal{F}_l := \{(0, w_0), \dots, (0, w_N)\}$ y $\mathcal{F}_r := \{(L, w_0), \dots, (L, w_N)\}$ de las fronteras Γ_l y Γ_r respectivamente.

- (a) En rojo los nodos de \mathcal{E}_l y en azul los nodos de \mathcal{E}_r .
- (b) En rojo los nodos de \mathcal{F}_l y en azul los nodos de \mathcal{F}_r .

Figura 2.1: Representación de las particiones.

Dado un elemento $K \in \mathcal{T}_h$, un lado $e \in \mathcal{E}_h$ y un entero no negativo k, $\mathcal{P}_k(K)$ y $\mathcal{P}_k(e)$ denotan los espacios de polinomios de grado menor o igual a k sobre K y e respectivamente. También se define $\mathbf{P}_k := [\mathcal{P}_k(K)]^d$. Luego, para $* \in \{l, r\}$, denotamos $P_{\mathcal{F}_*}^{k,\mathcal{F}}$ a la proyección ortogonal $L^2(\Gamma_*)$ sobre $\mathcal{P}_{k,\mathcal{F}}(\mathcal{F}_*)$.

2.2. El esquema HDG.

Introducimos los siguientes espacios discretos asociados a la triangulación \mathcal{T}_h

$$\begin{split} \boldsymbol{V}_{h} &:= \left\{ \boldsymbol{v} \in \boldsymbol{L}^{2} \left(\mathcal{T}_{h} \right) : \boldsymbol{v} |_{K} \in \boldsymbol{P}_{k} \left(K \right) \quad \forall K \in \mathcal{T}_{h} \right\}, \\ W_{h} &:= \left(w \in L^{2} \left(\mathcal{T}_{h} \right) : \left. w \right|_{K} \in \mathcal{P}_{k} \left(K \right) \quad \forall K \in \mathcal{T}_{h} \right), \\ M_{h} &:= \left\{ \mu \in L^{2} \left(\mathcal{E}_{h} \right) : \left. \mu \right|_{e} \in \mathcal{P}_{k} \left(e \right) \quad \forall e \in \mathcal{E}_{h} \right\}, \\ M_{h}^{qp} &:= \left\{ \mu \in M_{h} : P_{\mathcal{F}_{l}}^{k_{\mathcal{F}}} \left(\mu |_{\mathcal{E}_{l}} \right) = e^{i\alpha L} P_{\mathcal{F}_{r}}^{k_{\mathcal{F}}} \left(\mu |_{\mathcal{E}_{r}} \right) \right\}. \end{split}$$

Capítulo 3

Implementación Computacional.

hola