Introduction

Original plan

Reduce kernel size in first convolutional layer Introduce instance normalization Implement attention layer Independent unbalanced dataset

Roadblocks

Obtaining access to ADNI dataset Format of the MRIs in ADNI

Implementing attention layer using parent paper's pre-existing syntax structure

New plan

Split the Kaggle dataset to use as an independent dataset Modify the syntax to implement the attention layer

MRI Scans (Deput) Convolutional Block 1 Convolutional Block 2 Convolutional Block 2 Convolutional Block 3 Convolutional Block 3 Convolutional Block 4 Local Annual Block 4 Convolutional Block 4 Local Annual Block 4 Depute Block Depute Block Depute Block Local Convolutional Block 5 Depute Block Local Convolutional Block 5 Depute Block Local Convolutional Block 5 Local Convolutional Block 6 Depute Block Local Convolutional Block 6 Depute Block Local Convolutional Block 6 Depute Block Local Convolutional Block 6 Local Convolutional Block 6 Depute Block Local Convolutional Block 6 Local Convolutional Block 6 Local Convolutional Block 6 Local Convolutional Block 6 Local Convolutional Block 7 Local Convolut

RecallNET Novelty

- Small kernel size within the first convolutional layer
- Instance normalization within the convolutional blocks
- Attention layer after the convolutional blocks
- Introduction of an independent, unbalanced dataset
- Ablation study to observe the impact of the attention layer

Findings

- RecallNET represents the state-ofthe-art model for AD classification focused on early detection
 - Performed better than baseline models on both unbalanced and balanced test data sets
- Ablation study on the addition of an attention layer
 - Found that it decreased evaluation metrics across both models