Imperial College London

The LLM Surgeon

Tycho F.A. van der Ouderaa, Markus Nagel, Mart van Baalen, Yuri M. Asano, Tijmen Blankevoort

In ICLR 2024

Qualcomm summer internship 2023

What is this talk about?

- Deploy LLMs within computational, environmental or device-specific constraints.
- We explore data-driven pruning of pretrained models.
- Propose KFAC curvature as scalable quadratic approximation for LLM pruning.

Main achievements

- First to achieve 20-30% structured (!) LLM pruning with performance loss.
- Achieve state-of-the-art results in unstructured and semi-structured pruning.

A tale of a loss surface

Alps view from Matterhorn Glacier Paradise. (source: Wikipedia)

A tale of a loss surface

Alps view from Matterhorn Glacier Paradise. (source: Wikipedia)

A tale of a loss surface

$$-\log q(\boldsymbol{\theta}) \approx -\log p(\mathcal{D}|\boldsymbol{\theta}^*) - (\boldsymbol{\theta} - \boldsymbol{\theta}^*)^T \nabla \mathcal{L}(\boldsymbol{\theta}^*) - \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}^*)^T \boldsymbol{H}_{\boldsymbol{\theta}^*}(\boldsymbol{\theta} - \boldsymbol{\theta}^*) + O(\mathfrak{Q}^4)$$
pretrained net 0 at optimum
Hessian/curvature
higher order terms

Constraint optimization problem

Solve the following quadratic constraint optimization problem (OBS: Hassibi & Stork, 1992)

s.t.
$$oldsymbol{e}_k^T \Delta oldsymbol{ heta} + oldsymbol{e}_k^T oldsymbol{ heta} = 0, orall k \in \mathcal{K}$$

General solution (in LLM context: Kurtic et al. (2022))

$$egin{aligned} \mathcal{L} &= rac{1}{2} (oldsymbol{E}_K oldsymbol{ heta}^*)^T \left(oldsymbol{E}_K oldsymbol{F}^{-1} oldsymbol{E}_K^T
ight)^{-1} oldsymbol{E}_K oldsymbol{ heta} \ \Delta oldsymbol{ heta} &= -oldsymbol{F}^{-1} oldsymbol{E}_K^T \left(oldsymbol{E}_K oldsymbol{F}^{-1} oldsymbol{E}_K^T
ight)^{-1} oldsymbol{E}_K oldsymbol{ heta} \end{aligned}$$

$$lacksquare$$
 $\Delta oldsymbol{ heta} = -oldsymbol{F}^{-1}oldsymbol{E}_K^T \left(oldsymbol{E}_Koldsymbol{F}^{-1}oldsymbol{E}_K^T
ight)^{-1}oldsymbol{E}_Koldsymbol{ heta}$

Better curvature

Back to the late 1980's...

Approximation

Implied pruning

Magnitude pruning

Optimal brain damage (OBD) (LeCun et al., 1989)

Optimal brain <u>surgeon</u> (OBS) (Hassibi & Stork, 1992)

Constrained optimization

One slide on the probabilistic perspective...

Actually loss is regularised: $-\log p(D \mid \theta) + \log p(\theta)$ by a log prior. Prior variance plays critical role in implementation as `damping' term.

- We perform a Laplace approximation of the likelihood or posterior.
- Interactions are correlations. We want to avoid mean-field assumption!

Method

Using surrogate loss:

remove least important weights and then

update remaining weights in closed-form!

Modern Hessian approximations

The Hessian of a 13 billion parameter LLM contains 1.69×10^2 0 elements!

13 billion

13 billion

Waaaayyy to big...

Kronecker-factors

The Kronecker product \otimes operates on two matrices of arbitrary size and results in a block matrix.

Nice way to write factorisations/decompositions for tensors.

Nothing more than a bit of reshuffling:

Often pops up in factorisations/decompositions of tensors. Keeps math clean.

Modern Hessian approximations

The Hessian of a 13 billion parameter LLM contains 1.69e+20 elements!

Waaaayyy to big...

What other people do...

Most pruning works ignore `layer-wise' interactions, BUT make it completely `local'.

A ₁ ⊗ I	0	0
0	A ₂ ⊗ I	0
0	0	A₃⊗ I

Ignores final loss.

(equivalent to summing local squared losses on output of each layer)

Modern Hessian approximations

$A_1 \otimes G_1$	0	0
0	A₂⊗G₂	0
0	0	A₃⊗G₃

Still quite big...

$$m{F}_{l} = \sum
olimits_{n=1}^{N} \mathbb{E} \Big[\underbrace{(m{g}_{l,n}m{g}_{l,n}^T) \otimes (m{a}_{l,n}m{a}_{l,n}^T)}_{RC imes RC} \Big]_{0}^{N}$$

Kronecker-factored approximation

The Kronecker product ⊗ operates on two matrices of arbitrary size and results in a block matrix.

Assume independent input and outputs (KFAC: Martens & Grosse, 2015)

$$\mathbb{E}[\boldsymbol{g}_{l,n}\boldsymbol{g}_{l,n}^T\otimes\boldsymbol{a}_{l,n}\boldsymbol{a}_{l,n}^T]\approx \mathbb{E}[\boldsymbol{g}_{l,n}\boldsymbol{g}_{l,n}^T]\otimes \mathbb{E}[\boldsymbol{a}_{l,n}\boldsymbol{a}_{l,n}^T]$$
Still quite big... Great!

Can be implemented using *hooks*:

During all forward and backward passes, hooks maintain aggregates of activations (aa^T) and gradients (gg^T). Aggregates can be moved to ram, if needed.

Modern Hessian approximations

Constraint optimization problem

Solve the following quadratic constraint optimization problem (OBS: Hassibi & Stork, 1992)

General solution (in LLM context: Kurtic et al. (2022))

$$egin{aligned} \mathcal{L} &= rac{1}{2} (oldsymbol{E}_K oldsymbol{ heta}^*)^T \left(oldsymbol{E}_K oldsymbol{F}^{-1} oldsymbol{E}_K^T
ight)^{-1} oldsymbol{E}_K oldsymbol{ heta} \ \Delta oldsymbol{ heta} &= -oldsymbol{F}^{-1} oldsymbol{E}_K^T \left(oldsymbol{E}_K oldsymbol{F}^{-1} oldsymbol{E}_K^T
ight)^{-1} oldsymbol{E}_K oldsymbol{ heta} \end{aligned}$$

$$lacksquare$$
 $\Deltaoldsymbol{ heta} = -oldsymbol{F}^{-1}oldsymbol{E}_K^T \left(oldsymbol{E}_Koldsymbol{F}^{-1}oldsymbol{E}_K^T
ight)^{-1}oldsymbol{E}_Koldsymbol{ heta}$

Paper provides derivations for all structures {unstructured, semi-structured, structured}

Example for structured pruning

1. Compute removal cost for each row and column

$$\mathcal{L}_r = \frac{1}{2} \frac{\boldsymbol{\theta}_r^T \boldsymbol{A} \boldsymbol{\theta}_r}{[\boldsymbol{G}^{-1}]_{rr}}, \quad \mathcal{L}_c = \frac{1}{2} \frac{\boldsymbol{\theta}_c^T \boldsymbol{G} \boldsymbol{\theta}_c}{[\boldsymbol{A}^{-1}]_{cc}}$$

- 2. Global thresholding by sorting all costs and selecting op X% for removal
- 3. Update remaining weights using correlated weight updates

$$\Delta \boldsymbol{W} = -\overline{\boldsymbol{W}}(\boldsymbol{E}_{C'}\boldsymbol{A}^{-1}\boldsymbol{E}_{C'}^T)^{-1}(\boldsymbol{A}^{-1}\boldsymbol{E}_{C'}^T)$$

$$\Delta \boldsymbol{W} = -\boldsymbol{G}^{-1}\boldsymbol{E}_{R'}^T(\boldsymbol{E}_{R'}\boldsymbol{G}^{-1}\boldsymbol{E}_{R'}^T)^{-1}\overline{\boldsymbol{W}}$$
(among new results)

Scales very well (in rows/cols, not in elements!)

4. Repeat for multiple shots

Pseudo code

```
Algorithm 1 LLM Surgeon (structured)
Input: initial weights \theta^0, target size \alpha, and data \mathcal{D}
  For shot t in [1, 2, ..., T]
      Compute: approximate curvature G, A from data \mathcal{D}
                                                                                                             ⊳ section 3.1
      Compute: costs per row/column \mathcal{L}_r, \mathcal{L}_c from G, A
                                                                                                             ⊳ section 3.2
      Compute: threshold \tau using \mathcal{L}_r and \mathcal{L}_c given target size \alpha_t
                                                                                                             ⊳ section 3.3
      Select: rows and columns to remove E_R, E_C based on \tau
                                                                                                             ⊳ section 3.3
      Compute: weight update \Delta \theta^{t-1} based on E_R, E_C and G, A
                                                                                                             ⊳ section 3.4
      Update: remaining weights \theta^t \leftarrow \theta^{t-1} + \Delta \theta^{t-1}
                                                                                                             ⊳ section 3.5
      Optionally: \theta^t \leftarrow \text{low-rank update}(\theta^t)
                                                                                                             ⊳ section 3.6
  Output: compressed weights \hat{\boldsymbol{\theta}} = \boldsymbol{\theta}^T
```

Can be interleaved with first-order LoRA corrections.

Useful trick: absorb in between to allow increase rank of sum of LoRA updates!

Results Interpolate model sizes

Results

Quantitative benchmark

Structured pruning results

Table 1: Structured compression of large language models on wikitext-2 data.

		Test performance (PPL)							
Method	Target size	OPT (125m)	OPT (1.3b)	OPT (2.7b)	OPT (6.7b)	Llama-v2 (7b)			
Baseline	100%	27.65	14.62	12.47	10.86	5.12			
Magnitude	90%	767.2	894.4	1229	3464	36746			
$oldsymbol{I} \otimes oldsymbol{I}$	80%	4685	(1278)	2788	16747	347960			
	70%	17970	(3098)	9255	17312	41373			
L-OBD	90%	33.3	20.76	17.69	27.20	14259			
$\operatorname{diag}(\boldsymbol{I}\otimes \boldsymbol{A})$	80%	94.14	1392	3236	7570	15630			
multi shot	70%	545.6	2147	7233	7628	21386			
K-OBD	90%	27.97	14.68	11.96	10.53	5.48			
$\operatorname{diag}(\boldsymbol{G}\otimes \boldsymbol{A})$	80%	29.89	15.63	12.47	11.28	9.14			
multi shot	70%	36.54	18.29	14.53	13.03	15.43			
	60%	47.54	24.65	18.09	16.21	28.03			
	50%	75.95	37.68	26.68	25.54	46.64			
LLM Surgeon (ours)	90%	28.29	14.73	12.00	10.82	5.43			
$G\otimes A$	80%	29.37	15.27	12.37	11.22	7.29			
within row/col cor. Δ	70%	32.46	16.60	13.16	11.83	10.85			
	60%	39.82	19.40	14.79	12.94	16.67			
	50%	51.48	23.81	18.01	15.38	25.62			
LLM Surgeon (ours)	90%	28.01	14.70	12.02	10.77	5.25			
$oldsymbol{G} \otimes oldsymbol{A}$	80%	28.73	15.12	12.27	11.02	6.18			
full cor. Δ	70%	31.82	16.24	12.92	11.64	7.83			
	60%	38.47	18.45	14.23	12.58	10.39			
	50%	49.78	22.95	17.15	14.90	15.38			

Unstructured pruning results

	Target		Test	st performance (PPL)			
Method	size	OPT (125m)	OPT (1.3b)	OPT (2.7b)	OPT (6.7b)	Llama-v2 (7b)	
Baseline	100%	27.65	14.62	12.47	10.86	5.12	
Magnitude	90%	27.62	14.69	12.60	10.88	5.18	
$I \otimes I$	80%	28.53	15.68	13.18	11.26	5.37	
	70%	52.88	140.2	15.22	12.22	6.03	
L-OBD	90%	29.70	16.24	14.44	13.43	6.09	
$\operatorname{diag}(\boldsymbol{I} \otimes \boldsymbol{A})$	80%	32.18	21.92	23.35	39.85	116.2	
single shot	70%	49.08	204.7	274.8	810.4	6549	
K-OBD	90%	27.64	14.62	12.09	36.89	5.13	
$G \otimes A$	80%	27.62	14.37	130220	39928	5.19	
single shot	70%	27.92	220.1	23097	19506	5.60	
	60%	29.24	13783	10331	33896	9.20	
	50%	34.43	7311	10495	91506	118.6	
SparseGPT	90%	27.93	14.69	12.00	10.86	5.49	
$I \otimes A$	80%	28.18	15.07	12.05	10.86	5.58	
	70%	28.93	22.77	12.17	10.89	5.71	
	60%	30.20	25.07	12.37	10.98	5.94	
	50%	33.17	26.77	12.88	11.92	6.51	
LLM Surgeon (ours)	90%	27.69	14.62	12.01	10.86	5.13	
$G_1 \otimes A_1$	80%	27.83	14.66	12.14	10.87	5.20	
full cor. Δ	70%	28.35	14.81	12.25	10.82	5.36	
multi shot	60%	28.98	14.91	12.28	10.83	5.66	
	50%	30.30	15.47	12.68	10.97	6.08	

Semi-structured (2:4) pruning results

		Target	Test performance (PPL)				
Method	$m{F}pprox$	size	OPT (125m)	OPT (1.3b)	OPT (2.7b)	OPT (6.7b)	
Baseline		100%	27.65	14.62	12.47	10.86	
Magnitude	$I \otimes I$	50%	342.04	379.57	1106.01	187.29	
L-OBD	$\operatorname{diag}(\boldsymbol{I} \otimes \boldsymbol{A})$	50%	87.26	44.92	41.40	27.36	
K-OBD	$\operatorname{diag}(\boldsymbol{G}\otimes \boldsymbol{A})$	50%	68.74	27.22	20.23	15.55	
SparseGPT	$I \otimes A$	50%	45.51	29.44	14.92	13.01	
LLM Surgeon (ours)	$G\otimes A$	50%	44.64	25.10	14.64	12.10	

Results

Task-specific compression

Can be used to project existing pretrained models to tailored smaller model.

	evaluation dataset				mask equivalence (%)			
target	EN	FR	DE	IT	EN	FR	DE	IT
Pretrained	27.66	22.54	24.32	27.66				
EN	47.46	172.9	181.1	169.1	1.00	0.74	0.70	0.72
FR	113.4	28.44	35.02	34.90	0.74	1.00	0.87	0.90
DE	142.1	35.15	27.49	38.49	0.70	0.87	1.00	0.87
IT	123.7	31.85	33.78	30.58	0.72	0.90	0.87	1.00

Results Analysing sparsification

THE LLM SURGEON

Tycho F.A. van der Ouderaa^{1*}, Markus Nagel², Mart van Baalen², Yuki M. Asano³, Tijmen Blankevoort² ¹Imperial College London, ²Qualcomm AI Research[†], ³QUVA Lab, University of Amsterdam

Qualcomm summer internship 2023

Tycho van der Ouderaa

Twitter/X: tychovdo

Email: tychovdo@gmail.com

Web: tychovdo.ai

Imperial College London

Beyond independent inputs and outputs

Nearest Kronecker product with Kronecker power iteration

```
Algorithm 4 Kronecker power method. Finds \widetilde{G}, \widetilde{A} nearest Kronecker product ||F - \widetilde{G} \otimes \widetilde{A}||_F.
Input: Initialise \tilde{\mathbf{g}}^0 = \mathbf{1}, \tilde{\mathbf{a}}^0 = \mathbf{1} (or using estimates of previous shot).
Input: Set iterations I (or I=1 if using estimates from previous shot)
Output: \widetilde{G}, \widetilde{A}
      for iteration i in [1, 2, ..., I] do
            \begin{array}{l} \textbf{Compute: } \widetilde{\boldsymbol{g}}^i = \frac{\mathcal{R}(\widetilde{\boldsymbol{F}})\widetilde{\boldsymbol{a}}^{i-1}}{||\mathcal{R}(\widetilde{\boldsymbol{F}})\widetilde{\boldsymbol{a}}^{i-1}||_2} \text{ , with } \mathcal{R}(\widetilde{\boldsymbol{F}})\widetilde{\boldsymbol{a}}^{i-1} = \frac{1}{N}\sum_{n=1}^{N}\boldsymbol{a}_n^T\widetilde{\boldsymbol{A}}^{i-1}\boldsymbol{a}_n\text{vec}(\boldsymbol{g}_n\boldsymbol{g}_n^T) \end{array}
             Compute: \widetilde{a}^i = \frac{\mathcal{R}(\widetilde{F})^T \widetilde{g}^i}{||\mathcal{R}(\widetilde{F})^T \widetilde{g}^i||_2}, with \mathcal{R}(\widetilde{F})^T \widetilde{g}^i = \frac{1}{N} \sum_{n=1}^N g_n^T \widetilde{G}^i g_n \text{vec}(a_n a_n^T)
              Compute: \sigma^i = ||\widetilde{\boldsymbol{a}}^i||_2
       end for
```


Classic KFAC (IAD)

Return: $\widetilde{G} = \sqrt{\sigma^i} \operatorname{mat}(\widetilde{g}), \widetilde{A} = \sqrt{\sigma^i} \operatorname{mat}(\widetilde{a}).$

rmse diag: 0.15

rmse: 0.11 rmse diag: 0.15

rmse diag: 0.14

rmse diag: 0.14