ATTACHMENT B Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Original) A compound of general formula I:

wherein:

- R₁ denotes an alkyl, alkenyl or alkynyl chain, or a cycloalkyl or (cycloalkyl)alkyl group substituted by at least one
- COOH group, optionally esterified by an alkyl group comprising 2 to
 12 carbon atoms,
 - SO₃H group, optionally protected by a pentyl group,
- PO₃H₂ group, optionally substituted by a (-CH₂CH₂SCOR₅) group, with R₅
 representing a C₁-C₄ alkyl group, a phenyl or benzyl group, or
 - tetrazolyl group.
- R₂ denotes an alkyl chain, or an aryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl, (heteroaryl)alkyl group which may or may not be substituted by at least one OH, OR, SR', NH₂, NHR', guanidinyl, COOH or CONH₂ group, or a halogen atom selected from among F, Cl, Br or I with R' representing a straight-chain or branched C₁₋₄ alkyl group.
 - R₃ denotes a hydrogen atom or a methyl group,
 - R₄ denotes
- an alkyl chain, an aryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl, (heteroaryl)alkyl, heterocycloalkyl or (heterocycloalkyl)alkyl group substituted by at least one CONH₂, SO₃H, SO₂NH₂, PO₃H₂ or tetrazolyl group, with the groups SO₃H and PO₃H₂ optionally protected,

- a C₂₋₆ alkyl chain, an aryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl,
 (heteroaryl)alkyl, heterocycloalkyl or (heterocycloalkyl)alkyl group substituted by at least one CO₂H group optionally protected, or
- R₃ and R₄ may together constitute a 5- or 6-membered heterocyclic compound, substituted by at least one CO₂H, CONH₂, SO₃H, SO₂NH₂ or PO₃H₂ group with the groups CO₂H, SO₃H and PO₃H₂ optionally protected,
 - X denotes a group CONH or CH2NH,
- Z denotes a group OH, OCH₂-C₆H₅ or NR"R" wherein R" and R" independently of one another may denote a hydrogen atom or an alkyl, aryl or arylalkyl group, where R" and R" may constitute, together with the nitrogen atom, a 5- or 6-membered heterocycle possibly having a second heteroatom selected from among O, S and N, and
 - R denotes a hydrogen atom or a group of formula II

$$CH(R_1) - NH_2$$

| - S - CH - X - CH(R₂) - CON(R₃) - CH(R₄) - COZ

corresponding to the symmetric disulphide of the inhibitor wherein R_1 , R_2 , R_3 , R_4 , R_4 , R_5 , R_6 , R_8

and the derivatives thereof.

- 2. (Original) The compound according to claim 1, wherein :
- R₄ denotes an alkyl chain, an aryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl, (heteroaryl)alkyl, heterocycloalkyl or (heterocycloalkyl)alkyl group substituted by at least one CONH₂, SO₃H, SO₂NH₂, PO₃H₂ or tetrazolyl group, with the groups SO₃H and PO₃H₂ optionally being protected as described above, or
- R₄ constitutes with R₃ a 5- or 6-membered heterocyclic compound, substituted by at least one CO₂H, CONH₂, SO₃H, SO₂NH₂ or PO₃H₂ group with the groups CO₂H, SO₃H and PO₃H₂ optionally being protected.
- 3. (Original) The compound according to claim 1, wherein R₄ and R₃ together constitute a 5- or 6-membered, heterocyclic compound substituted by at least

||

one group CO₂H, CONH₂, SO₃H, SO₂NH₂ or PO₃H₂ with the groups CO₂H, SO₃H and PO₃H₂ optionally being protected.

- 4. (Original) The compound according to claim 1, wherein X denotes a CONH function.
- 5. (Original) The compound according to claim 1, wherein R₂ denotes an optionally substituted alkyl or arylalkyl chain.
- 6. (Original) The compound according to claim 1, which is selected from the group consisting in :

N-[[(2S,3R)- and (2R,3R)-3-amino-2-mercapto-5-sulphonate] pentanoyl]-L.Tyr-L.Sal-OH;

N-[[(2S,3R)- and (2R,3R)-3-amino-2-mercapto-5-sulphonate] pentanoyl]-L.Tyr-L.hSal-OH;

N-[[(2S,3R)- and (2R,3R)-3-amino-5-carboxy-2-mercapto] pentanoyl]-L.lle-L.(3R)(3-COOH)Pro-OH;

N-[[(2S,3R)- and (2R,3R)-3-amino-5-phosphonate-2-mercapto] pentanoyl]-L.lle-L.Glu-OH;

the N-[[2S,3R) and (2R,3R), 3-amino-2-mercapto-5-sulphonate] pentanoyl]-L.Ile-L.Sal-OH;

N-[[(2S,3R)- and (2R,3R)-3-amino-2-mercapto-5-sulphonate] pentanoyl]-L.lle-L.(3R)(3-COOH)Pro-OH;

N-[[(2S,3R)- and (2R,3R)-3-amino-2-mercapto-5-sulphonate] pentanoyl]-L.lle-L.(3S)(3-COOH)Pro-OH; and

N-[[(2S,3R)- and (2R,3R)-3-amino-2-mercapto-5-sulphonate] pentanoyl]-L.Ile-L.Glu-NH₂.

7. (Withdrawn) A process for preparing a compound of general formula !

$$R_1$$
 R_2 R_4 R_3 R_4 R_3 R_4

wherein

- R₁ denotes an alkyl, alkenyl or alkynyl chain, or a cycloalkyl or (cycloalkyl)alkyl group substituted by at least one
- COOH group, optionally esterified by an alkyl group comprising 2 to 12 carbon atoms,
 - SO₃H group, optionally protected by a pentyl group,
- PO₃H₂ group, optionally substituted by a (-CH₂CH₂SCOR₅) group, with R₅ representing a C₁-C₄ alkyl group, a phenyl or benzyl group, or
 - tetrazolyl group.
- R₂ denotes an alkyl chain, or an aryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl, (heteroaryl)alkyl group which may or may not be substituted by at least one OH, OR, SR', NH₂, NHR', guanidinyl, COOH or CONH₂ group, or a halogen atom selected from among F, Cl, Br or I with R' representing a straight-chain or branched C₁₋₄ alkyl group.
 - R₃ denotes a hydrogen atom or a methyl group,
 - R_₄ denotes
- an alkyl chain, an aryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl, (heteroaryl)alkyl, heterocycloalkyl or (heterocycloalkyl)alkyl group substituted by at least one CONH₂, SO₃H, SO₂NH₂, PO₃H₂ or tetrazolyl group, with the groups SO₃H and PO₃H₂ optionally protected,
- a C₂₋₆ alkyl chain, an aryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl,
 (heteroaryl)alkyl, heterocycloalkyl or (heterocycloalkyl)alkyl group substituted by at least one CO₂H group optionally protected, or
- R₃ and R₄ may together constitute a 5- or 6-membered heterocyclic compound, substituted by at least one CO₂H, CONH₂, SO₃H, SO₂NH₂ or PO₃H₂ group with the groups CO₂H, SO₃H and PO₃H₂ optionally protected,

- · X denotes a group CONH,
- Z denotes a group OH, OCH $_2$ -C $_6$ H $_5$ or NR"R" wherein R" and R" independently of one another may denote a hydrogen atom or an alkyl, aryl or arylalkyl group, where R" and R" may constitute, together with the nitrogen atom, a 5- or 6-membered heterocycle possibly having a second heteroatom selected from among O, S and N, and
 - R denotes a hydrogen atom or a group of formula II

$$\begin{array}{c} \text{CH}(R_1) \text{ - NH}_2 \\ \text{- S - CH - X - CH}(R_2) \text{ - CON}(R_3) \text{ - CH}(R_4) \text{ - COZ} \end{array}$$

Ш

corresponding to the symmetric disulphide of the inhibitor wherein R_1 , R_2 , R_3 , R_4 , X and Z are as hereinbefore defined,

which involves at least coupling an ester dipeptide of general formula III

$$R_3$$
 H_2 N-CH-CON-CH-COZ'
 P_2
 P_4

wherein

- P₂ and P₄ correspond to protected forms of R₂ and R₄,
- Z' denotes an OC(CH₃)₃, OCH₂-C₆H₅ or NR"R" group wherein R" and R" independently of one another may denote a hydrogen atom or an alkyl, aryl or arylalkyl group, while R" and R" may constitute, together with the nitrogen atom, a 5- or 6-membered heterocycle possibly having a second heteroatom selected from among O, S and N,

with a compound of general formula IV

$$\begin{array}{c} SY_2\\ |\\ Y_1 \text{ - NH - CH - CH - COOH}\\ |\\ P_1 \end{array}$$

IV

wherein:

- Y₁ denotes a protecting group
- Y₂ denotes a protecting group and
- P₁ denotes a protected form of R₁,
 under conditions suitable to produce compound V

$$SY_2$$
 R_3 Y_1 -NH-CH-CON+CH-COZ' P_1 P_2 P_4

and deprotecting it for obtaining said compound of general formula I.

- 8. (Withdrawn) The process according to claim 7, wherein the coupling reaction is carried out in an organic solvent in the presence of a coupling agent and a tertiary amine and at a temperature of the order of 20°C.
- 9. (Withdrawn) A process according to claim 7, wherein the two asymmetric carbons of the dipeptide ester of general formula III have an S configuration.
 - 10. (Withdrawn) A process for preparing a compound of general formula I

$$R_1$$
 R_2
 R_3
 R_4
 R_1
 R_2
 R_4

wherein:

- R₁ denotes an alkyl, alkenyl or alkynyl chain, or a cycloalkyl or (cycloalkyl)alkyl group substituted by at least one
- COOH group, optionally esterified by an alkyl group comprising 2 to 12 carbon atoms,
 - SO₃H group, optionally protected by a pentyl group,

- PO₃H₂ group, optionally substituted by a (-CH₂CH₂SCOR₅) group, with R₅ representing a C₁-C₄ alkyl group, a phenyl or benzyl group, or
 - tetrazolyl group.
- R₂ denotes an alkyl chain, or an aryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl, (heteroaryl)alkyl group which may or may not be substituted by at least one OH, OR, SR', NH₂, NHR', guanidinyl, COOH or CONH₂ group, or a halogen atom selected from among F, Cl, Br or I with R' representing a straight-chain or branched C₁₋₄ alkyl group.
 - R₃ denotes a hydrogen atom or a methyl group,
 - R₄ denotes
- an alkyl chain, an aryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl, (heteroaryl)alkyl, heterocycloalkyl or (heterocycloalkyl)alkyl group substituted by at least one CONH₂, SO₃H, SO₂NH₂, PO₃H₂ or tetrazolyl group, with the groups SO₃H and PO₃H₂ optionally protected,
- a C₂₋₆ alkyl chain, an aryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl,
 (heteroaryl)alkyl, heterocycloalkyl or (heterocycloalkyl)alkyl group substituted by at least one CO₂H group optionally protected, or
- R₃ and R₄ may together constitute a 5- or 6-membered heterocyclic compound, substituted by at least one CO₂H, CONH₂, SO₃H, SO₂NH₂ or PO₃H₂ group with the groups CO₂H, SO₃H and PO₃H₂ optionally protected,
 - X denotes a CH₂-NH group,
- Z denotes a group OH, OCH₂-C₆H₅ or NR"R" wherein R" and R" independently of one another may denote a hydrogen atom or an alkyl, aryl or arylalkyl group, where R" and R" may constitute, together with the nitrogen atom, a 5- or 6-membered heterocycle possibly having a second heteroatom selected from among O, S and N, and

• R denotes a hydrogen atom or a group of formula II

$$CH(R_1) - NH_2$$

- S - CH - X - CH(R₂) - CON(R₃) - CH(R₄) - COZ

11

corresponding to the symmetric disulphide of the inhibitor wherein R_1 , R_2 , R_3 , R_4 , X and Z are as hereinbefore defined,

which involves at least:

condensing a compound of general formula III

$$R_3$$
 H_2 N-CH-CON-CH-COZ'
 P_2
 P_4

wherein Z' denotes an OC(CH₃)₃, OCH₂-C₆H₅ or NR"R" group with R" and R" independently of one another may denoting a hydrogen atom or an alkyl, aryl or arylalkyl group, where R" and R" may, together with the nitrogen atom, constitute a 5- or 6-membered heterocycle possibly having a second heteroatom selected from among O, S and N,

with a compound of general formula VI,

wherein:

- Y₁ denotes a protecting group
- Y₂ denotes a protecting group and
- P₁ denotes a protected form of R₁,