(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-252574

(P2000-252574A)

(43)公開日 平	4成12年9月14日(2000	. 9. 14)
-----------	-----------------	----------

(51) Int.Cl.7		識別記号	FΙ			テーマコード(参考)
H01S	3/23		H01S	3/23	Z	2H084
B 2 3 K	26/06		B 2 3 K	26/06	E	4 E 0 6 8
B41C	1/05		B41C	1/05		5 F O 7 2

審査請求 未請求 請求項の数2 〇1. (全 4 頁)

		田里明水	不開水 開水項V数2 OL (主 4 頁)
(21)出願番号	特願平 11-56142	(71)出願人	000003078
			株式会社東芝
(22)出顧日	平成11年3月3日(1999.3.3)		神奈川県川崎市幸区堀川町72番地
		(72)発明者	野沢 雅人
			東京都府中市東芝町1番地 株式会社東芝
			府中工場内
		(72)発明者	森賢一
			東京都府中市東芝町1番地 株式会社東芝
			府中工場内
		(74)代理人	100083806
			弁理士 三好 秀和 (外7名)
			最終頁に続く

(54) 【発明の名称】 レーザ光源装置

(57)【要約】

【課題】 本発明は、2種の異なった波長を持って色が 異なり、かつハイパワーの合成レーザビームを得て、用 途を幅広く拡大することを目的とする。

【解決手段】 波長の異なる第1、第2のレーザビーム 3,4を合成して2種の異なる波長を持つ1本の合成レ ーザビーム6を出射する合成手段5を有することを特徴 とする。

1

【特許請求の範囲】

【請求項1】 第1のレーザビームを発生する第1のレーザ発生装置と、前記第1のレーザビームの波長とは波長の異なる第2のレーザビームを発生する第2のレーザ発生装置と、前記第1、第2のレーザビームを合成して2種の異なる波長を持つ1本の合成レーザビームを出射する合成手段とを有することを特徴とするレーザ光源装置。

【請求項2】 第1のレーザビームを発生する第1のレーザ発生装置と、第2のレーザビームを発生する第2の 10レーザ発生装置と、前記第1、第2のレーザ発生装置の何れか一方のみの稼動時に、その出射レーザビームの出力を監視し、当該出力が一定値以下になったときには、前記第1、第2のレーザ発生装置の何れか他方を切替え駆動するモニタコントローラとを有することを特徴とするレーザ光源装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、レーザビームを幅広く利用することが可能なレーザ光源装置に関する。

[0002]

【従来の技術】従来のレーザ光源装置として、特開平9 -109353号公報に、2つのレーザビーム放射手段と、一方のレーザビーム放射手段の偏光面を回転させる複屈折手段と、他方のレーザビーム放射手段からのレーザビームと複屈折手段からのレーザビームとを合成する合成手段とを備え、レーザ強度を増加して、レーザ製版装置の製版速度を早めるようにしたレーザビーム合成装置が開示されている。

[0003]

【発明が解決しようとする課題】従来のレーザビーム合成装置は、2つのレーザビームを合成してレーザ強度を増加することのみを目的とし、レーザ製版装置の製版速度を早めるようにしている。しかしながら、レーザビームの強度とともに、その色についても変えることができれば、例えばレーザアートの分野等、幅広い分野での利用が期待できる。

【0004】本発明は、上記に鑑みてなされたもので、 2種の異なった波長を持って色が異なり、かつハイパワーの合成レーザビームを得ることができて、用途を幅広 40 く拡大することができ、また正常な出力での連続使用ができて、信頼性の高いレーザ光源装置を提供することを 目的とする。

[0005]

【課題を解決するための手段】上記課題を解決するため するモニタコントローラ10が配置されている。13は に、請求項1記載の発明は、第1のレーザビームを発生 する第1のレーザ発生装置と、前記第1のレーザビーム スイッチ、14は第2のレーザ発生装置12への供給電 源ライン、15は第2のレーザ発生装置12のドライバ である。この構造で、第1のレーザ発生装置11からの ムを合成して2種の異なる波長を持つ1本の合成レーザ 50 第1のレーザビーム12と第2のレーザ発生装置12から

ビームを出射する合成手段とを有することを要旨とする。この構成により、波長の異なる第1、第2のレーザビームを合成することで、2種の異なった波長を持って色が異なり、かつハイパワーの1本の合成レーザビームが得られる。

【0006】請求項2記載の発明は、第1のレーザビームを発生する第1のレーザ発生装置と、第2のレーザビームを発生する第2のレーザ発生装置と、前記第1、第2のレーザ発生装置の何れか一方のみの稼動時に、その出射レーザビームの出力を監視し、当該出力が一定値以下になったときには、前記第1、第2のレーザ発生装置の何れか他方を切替え駆動するモニタコントローラとを有することを要旨とする。この構成により、一方のレーザ発生装置が故障等で、その出射レーザビームの出力が一定値以下に低下したときには、自動的に他方のレーザ発生装置が駆動状態に切替わり、連続使用が可能となる。

[0007]

【発明の実施の形態】以下、本発明の実施の形態を図面 20 に基づいて説明する。

【0008】図1は、本発明の第1の実施の形態を示す 図である。第1のレーザ発生装置1と第2のレーザ発生 装置2が、合成手段としての偏光ビームスプリッタ5に 対し直角方向に配置されている。第1のレーザ発生装置 1は、波長 A1 で P 偏光の第1のレーザビーム3を発生 し、第2のレーザ発生装置2は、波長入2でS偏光の第 2のレーザビーム4を発生する。第1のレーザビーム3 は、偏光ビームスプリッタ5で直角方向に反射され、第 2のレーザビーム4は、偏光ビームスプリッタ5をその 30 まま透過する。つまり、波長の異なる第1のレーザビー ム3と第2のレーザビーム4は偏光ビームスプリッタ5 で合成され、2種類の異なった波長を持ち(λ1 + λ2)、かつ色の異なる1本の合成レーザビーム6にな る。また、偏光ビームスプリッタ5による減衰を除け ば、この構造で、1つのレーザ発生装置のパワーのほぼ 2倍のレーザパワーを得ることができる。

【0009】図2には、本発明の第2の実施の形態を示す。本実施の形態は、第1のレーザ発生装置11からの第1のレーザ発生装置12をバックアップ用に使用する構造である。第1のレーザ発生装置11と第2のレーザ発生装置12が、偏光ビームスプリッタ5に対し直角方向に配置され、第1のレーザ発生装置11の背面側には、第1のレーザ発生装置11の光モニタ出力9を監視するモニタコントローラ10が配置されている。13はモニタコントローラ10の出力でオン・オフ制御されるスイッチ、14は第2のレーザ発生装置12への供給電源ライン、15は第2のレーザ発生装置12のドライバである。この構造で、第1のレーザ発生装置11からの第1のと、ボデルスト第2のレーザ発生装置11からの

3

の第2のレーザビーム8とは、通常同一波長のものが用 いられるが、装置出力としてレーザパワーのみを問題に する場合は、異なった波長としてもよい。

【0010】そして、第1のレーザ発生装置11の光モ ニタ出力9をモニタコントローラ10で常に監視する。 この第1のレーザ発生装置11のみの稼動中に、もし、 第1のレーザ発生装置11に故障等が発生して光モニタ 出力9がある一定値以下(レーザパワーがダウンした ら)になったときには、モニタコントローラ10は、ス イッチ13をオン制御して、自動的に第2のレーザ発生 10 一定値以下になったときには、前記第1、第2のレーザ 装置12を駆動状態に切替える。これにより、第2のレ ーザ発生装置12から第2のレーザビーム8が発生し、 途切れることなくレーザ光源装置の機能を維持すること ができる。

【0011】図3には、本発明の第3の実施の形態を示 す。上記第1の実施の形態等の構成において、第1のレ ーザ発生装置1に回転機構16を接続し、第1のレーザ 発生装置1を回転させることで、第1のレーザビーム3 は、P偏光からS偏光に変化する。これにより、偏光ビ ームスプリッタ5による第1のレーザビーム3の反射光 20 量が減衰し、さらにレーザパワーの調整を行うことがで きる。

[0012]

【発明の効果】以上説明したように、請求項1記載の発 明によれば、第1のレーザビームを発生する第1のレー ザ発生装置と、前記第1のレーザビームの波長とは波長 の異なる第2のレーザビームを発生する第2のレーザ発 生装置と、前記第1、第2のレーザビームを合成して2 種の異なる波長を持つ1本の合成レーザビームを出射す

る合成手段とを具備させたため、2種の異なった波長を 持って色が異なり、かつハイパワーの1本の合成レーザ ビームが得られるので、レーザ光源装置の用途を幅広く 拡大することができる。

【0013】請求項2記載の発明によれば、第1のレー ザビームを発生する第1のレーザ発生装置と、第2のレ ーザビームを発生する第2のレーザ発生装置と、前記第 1、第2のレーザ発生装置の何れか一方のみの稼動時 に、その出射レーザビームの出力を監視し、当該出力が 発生装置の何れか他方を切替え駆動するモニタコントロ ーラとを具備させたため、一方のレーザ発生装置に故障 等が発生しても、正常な出力での連続使用が可能となっ て、装置の信頼性を高めることができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態であるレーザ光源装 置のブロック図である。

【図2】本発明の第2の実施の形態のブロック図であ

【図3】本発明の第3の実施の形態のブロック図であ

【符号の説明】

- 1,11 第1のレーザ発生装置
- 2.12 第2のレーザ発生装置
- 3,7 第1のレーザビーム
- 4.8 第2のレーザビーム
- 5 偏光ビームスプリッタ(合成手段)
- 6 合成レーザビーム
- 10 モニタコントローラ

【図1】

【図2】

フロントページの続き

Fターム(参考) 2H084 AA14 AE05

4E068 CA04 CB08 CD02 CD08

5F072 HH02 JJ05 KK15 MM04 MM07

YY20

DERWENT-ACC-NO: 2001-171804

DERWENT-WEEK: 200118

COPYRIGHT 2008 DERWENT INFORMATION LTD

TITLE: Laser light source, has polarizing beam splitter that

radiates synthesized laser beam by combining two laser beams of different wavelengths from corresponding laser

generators

INVENTOR: MORI K; NOZAWA M

PATENT-ASSIGNEE: TOSHIBA KK[TOKE]

PRIORITY-DATA: 1999JP-056142 (March 3, 1999)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE

JP 2000252574 A September 14, 2000 JA

APPLICATION-DATA:

 PUB-NO
 APPL-DESCRIPTOR
 APPL-NO
 APPL-DATE

 JP2000252574A
 N/A
 1999JP-056142
 March 3, 1999

INT-CL-CURRENT:

TYPE IPC DATE

CIPP B23K26/06 20060101
CIPS B23K26/073 20060101
CIPS B41C1/05 20060101
CIPS H01S3/23 20060101

ABSTRACTED-PUB-NO: JP 2000252574 A

BASIC-ABSTRACT:

NOVELTY - A pair of laser generators (1,2) generate laser beams with different wavelengths. A polarizing beam splitter (5) radiates a synthesized laser beam by combining the two laser beams output from the corresponding

laser generators.

USE - Laser light source.

ADVANTAGE - Reliability is increased and output is normal even if a failure occurs in one laser generator, thus high power laser beam is obtained.

DESCRIPTION OF DRAWING(S) - The figure shows the block diagram of laser light source.

Laser generators (1,2)

Polarizing beam splitter (5)

CHOSEN-DRAWING: Dwg.1/3

TITLE-TERMS: LASER LIGHT SOURCE BEAM SPLIT RADIATE COMBINATION TWO

WAVELENGTH CORRESPOND GENERATOR

DERWENT-CLASS: M23 P55 P74 V08

CPI-CODES: M23-D05;

EPI-CODES: V08-A03C; V08-A08;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: 2001-051546
Non-CPI Secondary Accession Numbers: 2001-124161