

CS 372 Lecture #38

Ethernet

- framing delimiters
- byte stuffing
- CSMA/CD

Note: Many of the lecture slides are based on presentations that accompany *Computer Networking: A Top Down Approach*, 6th edition, by Jim Kurose & Keith Ross, Addison-Wesley, 2013.

Frames, delimiters

- Frame (<u>hardware frame</u>) denotes a packet with a specific format on a specific hardware technology
- Each hardware technology defines standard delimiters (start/ end) to indicate the beginning and end of the frame
- Can be used to detect transmission problems:
 - Missing end indicates sending computer crashed
 - Missing start indicates receiving computer missed beginning of message
 - Bad frame is discarded

	Complete Ethernet delimited frame (physical layer)					
	Ethernet frame (link layer)					
			IP datagram (network layer)			
			TCP segment (transport layer)			
soh	Frame header	IP header	TCP/UDP header	data (application layer)	crc	eot

Defining the delimiter standard

- Can choose unused data values for delimiters
 - If data is limited to printable ASCII, can use non-printable characters (control codes), e.g.
 - "start of header" (soh, ASCII character #1)
 - "end of text" (eot, ASCII character #4)
- Source computer
 - encapsulates a hardware frame between delimiters
- Destination computer
 - interprets/discards soh
 - manages hardware frame
 - interprets/discards eot

	Complete Ethernet delimited frame (physical layer)						
	Ethernet frame (link layer)						
		IP datagram (network layer)					
			TCP segment (transport layer)				
soh	Frame header	IP header	TCP/UDP header	data (application layer)	crc	eot	

Transmitting arbitrary data

- Transmission might have no unused characters available for delimiters
 - E.G., transmitting binary data, such as graphics files
- If soh (01) and eot (04) are used inside the data, they will be misinterpreted as delimiters
- Sender and receiver must agree on encoding special characters for unambiguous transmission

Byte Stuffing

- Choose a third "special" character
 - e.g., esc(27)
- soh(01) and eot(04) still delimit the frame
- Whenever one of the delimiters or the third special character appear in the actual data ...
 - special character is also "stuffed" into the data
 - the character is replaced per byte-stuffing protocol

Byte-stuffing example

Character in data	Characters sent
soh (01)	esc x (27 120)
eot (04)	esc y (27 121)
esc (27)	esc z (27 122)

Frame

Ethernet CSMA/CD algorithm

- 1. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel idle
 - starts frame transmission
 - If NIC senses channel busy
 - waits until channel idle, then transmits
- 3. If NIC transmits entire frame without detecting another transmission
 - NIC is done with frame
 - If NIC detects another transmission while transmitting
 - collision: aborts and sends jam signal
 - after aborting, NIC enters exponential backoff:

Ethernet's CSMA/CD (more)

Exponential backoff:

- adaptive retransmission attempts to estimate current load
- heavy load: random wait will be longer
- after mth collision, NIC chooses K at random from {0,1,2,...,2^m-1}.
 - NIC waits K·512 bit times*
 - returns to Step 2

Choosing random K:

- •first collision: choose K from {0,1}; delay is K· 512 bit times*
- •after second collision: choose K from {0,1,2,3}...
- •after ten collisions, choose K from {0,1,2,3,4,...,1023}
- •etc.

- *Bit time: time to transmit one bit
 - 0.0001 ms for 10 Mbps Ethernet
 - for K=1023, wait time is about 52 ms

Summary

Lecture #38

- Ethernet
 - legacy, durable, still most popular
 - frame (link layer), delimiters (physical layer)
 - byte-stuffing
 - CSMA/CD
 - exponential backoff

	Complete Ethernet delimited frame (physical layer)					
	Ethernet frame (link layer)					
			IP datagram (network layer)			
			TCP segment (transport layer)			
soh	Frame header	IP header	TCP/UDP header	data (application layer)	crc	eot