

Build Your Own OctopusDB: Blinktopus Edition

Ali Hashaam, Ali Memon, Guzel Mussilova, Pavlo Shevchenko Scientific Project: Databases for Multi-Dimensional Data, Genomics and Modern Hardware
July 10, 2017

Table of Contents

Motivation/Problem Statement

Background

Conceptual Idea and Implementation

Evaluation Setup and Results

Related Work

Conclusion and Future Work

Demonstration

1. Companies need to pick only specialized DBMSs, each tailored to their specific use-case.

- 1. Companies need to pick only specialized DBMSs, each tailored to their specific use-case.
 - ⇒ Need for *one size fits all system* (e.g. HTAP)

- 1. Companies need to pick only specialized DBMSs, each tailored to their specific use-case.
 - ⇒ Need for one size fits all system (e.g. HTAP)
- **2.** Support OLAP queries for analysis over real-time data (i.e., freshness).

- 1. Companies need to pick only specialized DBMSs, each tailored to their specific use-case.
 - \Rightarrow Need for one size fits all system (e.g. HTAP)
- Support OLAP queries for analysis over real-time data (i.e., freshness).
 - \Rightarrow Explore the techniques related to more interactive queries (e.g. *Approximate Query Processing*)

1. OctopusDB

1. OctopusDB

• uses logs as a primary storage;

1. OctopusDB

- uses logs as a primary storage;
- mimicks several types of systems (OLAP, OLTP, etc.) by representing them as *Storage Views*.

1. OctopusDB

- uses logs as a primary storage;
- mimicks several types of systems (OLAP, OLTP, etc.) by representing them as *Storage Views*.

2. BlinkDB

• successfully integrates AQP techniques into its architecture.

Figure 1: OctopusDB Architecture.

Which synopses to pick?

¹https://datasketches.github.io

Which synopses to pick?

- Equi-depth histograms
 - suitable for range queries;
 - simple to implement and interpret.

¹https://datasketches.github.io

Which synopses to pick?

- Equi-depth histograms
 - suitable for range queries;
 - simple to implement and interpret.
- Sketches
 - DISTINCT COUNT queries;
 - HyperLogLog;
 - DataSketches library by Yahoo! 1

¹https://datasketches.github.io

Machine

- CentOS Linux 7.1.1503
- Java SDK 8u131-b11-linux-x64
- 2 Intel(r) Xeon (TM) E5-2630 v3s CPU @ 3.2GHz processors (8 cores each) and 1024 GiB memory

Machine

- CentOS Linux 7.1.1503
- Java SDK 8u131-b11-linux-x64
- 2 Intel(r) Xeon (TM) E5-2630 v3s CPU @ 3.2GHz processors (8 cores each) and 1024 GiB memory

Benchmark Datasets

TPC-H datasets (Orders and Lineitems)

Machine

- CentOS Linux 7.1.1503
- Java SDK 8u131-b11-linux-x64
- 2 Intel(r) Xeon (TM) E5-2630 v3s CPU @ 3.2GHz processors (8 cores each) and 1024 GiB memory

Benchmark Datasets

TPC-H datasets (Orders and Lineitems)

Experiments

- 1. Average response time for a range query on the Orders table with various scaling factors and predicate selectivity.
- **2.** Average response time for a count-range query on the Orders table. Comparison with an equi-depth histogram.
- **3.** Average response time for a count distinct query on the Orders table. Comparison with a HLL sketch.

Results. Experiment 1

Results. Experiment 2

Results. Experiment 3

Challenges

Challenges

```
1111 Recult: LOS: 1.0700225803E10 ; ROM: 8.47225E7 ; COL: 3.1947372E7 !!!
```


Challenges

```
1111 Recult: LOS: 1.0700225803E10 ; ROM: 8.47225E7 ; COL: 3.1947372E7 !!!
```

5788,41 min = 96 hours = 4 days

1. Apache Samza

- logs as a primary storage;
- replicates logs on multiple nodes.

1. Apache Samza

- logs as a primary storage;
- replicates logs on multiple nodes.

2. Rodent Store

- represents data in the various physical layouts;
- provides DBAs a high-level interface to specify the data physical representation by means of storage algebra.

1. Apache Samza

- logs as a primary storage;
- replicates logs on multiple nodes.

2. Rodent Store

- represents data in the various physical layouts;
- provides DBAs a high-level interface to specify the data physical representation by means of storage algebra.

3. Snappy Data

- · AQP Support;
- uses numerous types of synopses (samples, sketches);
- user defines the level of accuracy and the number of column sets to approximate the results.

 Systems with adaptive layouts can be effectively combined with AQP techniques.

- Systems with adaptive layouts can be effectively combined with AQP techniques.
- OLAP queries can benefit from AQP techniques.

- Systems with adaptive layouts can be effectively combined with AQP techniques.
- OLAP queries can benefit from AQP techniques.
- Non-optimized central log as a primary storage is quite prohibitive.

 optimize centralized log (e.g. log replication, garbage collection);

- optimize centralized log (e.g. log replication, garbage collection);
- evaluate the efficiency of the concurrency control scheme of OctopusDB;

- optimize centralized log (e.g. log replication, garbage collection);
- evaluate the efficiency of the concurrency control scheme of OctopusDB;
- evaluate the memory footprint of histograms and sketches;

- optimize centralized log (e.g. log replication, garbage collection);
- evaluate the efficiency of the concurrency control scheme of OctopusDB;
- evaluate the memory footprint of histograms and sketches;
- extend Blinktopus architecture to support transactional model;

- optimize centralized log (e.g. log replication, garbage collection);
- evaluate the efficiency of the concurrency control scheme of OctopusDB;
- evaluate the memory footprint of histograms and sketches;
- extend Blinktopus architecture to support transactional model;
- extend query classes by implementing sample-based data synopses.

Demonstration

Thank you!

Questions? Recommendations? Remarks?