SILVER OAK COLLEGE OF ENGINEERING & TECHNOLOGY ADITYA SILVER OAK INSTITUTE OF TECHNOLOGY

BE - SEMESTER-I • MID SEMESTER-I EXAMINATION - WINTER 2018

SUBJECT: MATHS I (3110014) (ALL REANCH)

3003E01. WATTIS-1 (3110014) (ALL BIXAROTT)		
DA	TE: 03-10-2018 TIME:02:00 pm to 03:45 pm TOTAL MARKS:4	10
Instru	2. Figures to the right indicate full marks. 3. Assume suitable data if required.	
Q.1 (a)	Give Answer with most suitable/correct option.	[05]
(i)	The value of $\lim_{x \to \pi} \frac{\sin x}{\pi - x}$ is (a) 0 (b) 1 (c) π (d) -1	
	(a) 0 (b) 1 $\frac{\pi}{(c)}$ (d) -1	
(ii)	If $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ then rank of matrix A is	
	(a) 0 (b) 1 (c) 2 (d) None of these	
(iii)	A stionary point (a,b) is said to be a Saddle point if at (a,b)	
(iv)	(a) $rt-s^{-}>0$ (b) $rt-s^{-}<0$ (c) $rt-s^{-}=0$ (d) $rt-s^{-}\geq0$ If $\emptyset=$ xyz, then the value of $ \nabla \emptyset $ at point $(1,2,-1)$ is	
(1V)	(a) 0 (b) 1 (c) 2 (d) 3	
(v)		
	Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ then the Eigen values of A^2 are	
	(a) 1.3 (b) 0.2 (c) 1.9 (d) 0.4	
(b)	Solve the following system using Gauss-Jordan method:	[05]
(~)	$x_1 + x_2 + 2x_3 - 5x_4 = 3$	[00]
	$2x_1 + 5x_2 - x_3 - 9x_4 = -3$	
	$2x_1 + x_2 - x_3 + 3x_4 = -11$	
	$x_1 - 3x_2 + 2x_3 + 7x_4 = -5$	
Q.2 (a)	(1) Evaluate $\lim_{x\to 0} \left[\frac{1}{x^2} - \frac{1}{\sin^2 x} \right]$	[03]
	[A SHI A]	[00]
	(2) Find the equations of the Tangent plane and Normal line to $2vz^2 - 3vv - 4v - 7$	[03]

the surface 2xz - 3xy - 4x = / at (1, -1, 2).

(b) Find the Eigen values and Eigen vectors of the matrix

$$A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$
 [05]

(c) Find the inverse of matrix
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$$
 using Gauss Jordan Method. [04]

Q.2 (a) (1) Find
$$\lim_{x \to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{3x}}$$
 [03] (2) If $u = f(x - y, y - z, z - x)$ $u = f(x - y, y - z, z - x)$, then Show that

(2) If
$$u = f(x - y, y - z, z - x)$$
 $u = f(x - y, y - z, z - x)$, then Show that
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$$
[03]

(b) For which value of and μ the following system have

(i) no solution (ii) unique solution (iii) an infinite no. of solution
$$x+y+z=6$$
, $x+2y+3z=10, x+2y+\lambda z=\mu$ [05]

- (c) Find the numbers $x, y \land z$ such that xy + yz + zx wyz = 8 & xy + yz + zx is maximum subject to constrain xyz = 8 using the Lagrange's method of undetermined multipliers. [04]
- Q.3 (a)
 (1) Solve the following system by Gaussian elimination:

$$x+y+z=6$$
,
 $x+2y+3z=14$,
 $2x+4y+7z=30$.

(2) Find the directional derivative of the function $\phi = 4xz^3 - 3x^2y^2z$

at the point (2,-1,2) in the direction of $2\hat{i}+3\hat{j}+6\hat{k}$. [03]

- (b) Find the Extreme values of the function $x^3 + 3x y^2 3x^2 3y^2 + 7$. [05]
- (c) If $u = r^m$, prove that $u_{xx} + u_{yy} + u_{zz} = m(m+1)r^{m-2}$, where $r^2 = x^2 + y^2 + z^2$. [04]

OR

Q.3 (a) (1) By considering different paths of approach, show that the function

$$f(x,y) = \frac{x^4 - y^2}{x^4 + y^2}$$
 has no limit as $(x,y) \to (0,0)$ [03]

(2) Using partial differentiation find $\frac{dy}{dx}\frac{dy}{dx}$ for $\cos x^y = x^{\sin y}$ [03]

(b) If
$$u = \tan^{-1} \left(\frac{y}{x} \right)$$
, then show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ [05]

(c) Convert the following matrix in to Reduced Row Echelon form and hence find the Rank of a matrix.

$$A = \begin{bmatrix} 1 & 3 & 2 & 2 \\ 1 & 2 & 1 & 3 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 8 \end{bmatrix}.$$
 [04]