Math 5110 Applied Linear Algebra

He Wang

he.wang@northeastern.edu

Eigenvalues and Eigenspaces

Question 1. An $n \times n$ matrix A is called nilpotent if there exists an integer k such that $A^k = 0$. Find all possible eigenvalues of A.

Suppose λ is an eigenvalue of A. Then $A\vec{v} = \lambda \vec{v}$ for a nonzero \vec{v} . Then $A^k\vec{v} = \lambda^k\vec{v}$. On the other side, $A^k\vec{v} = 0$. So, $\lambda^k\vec{v} = 0$ for a non-zero \vec{v} . So, $\lambda^k = 0$. So $\lambda = 0$.

Question 2. Let $A \in \mathbb{R}^{2 \times 2}$ defined by

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

where $a, b, c \in \mathbb{R}$. (Notice that A is symmetric, that is, $A^T = A$.)

- (1) Prove that A has only real eigenvalues.
- (2) Under what conditions on a, b, c does A have a multiple eigenvalue?

$$(1) \det(A - \lambda I) = \begin{vmatrix} a - \lambda & b \\ b & c - \lambda \end{vmatrix} = (a - \lambda)(c - \lambda) - b^2 = \lambda^2 - (a + c)\lambda + ac - b^2.$$

By quadratic polynomial, $\Delta := (a+c)^2 - 4(ac-b^2) = (a-c)^2 + b^2 \ge 0$. So, A only has real eigenvalues.

(We will see that any symmetric matrix only has real eigenvalues. But the proof is much harder.)

(2) A only has a multiple eigenvalue if and only if $\Delta = 0$. That is a = c and b = 0.

Question 3. Let $A \in \mathbb{F}^{n \times n}$ be an invertible matrix. Show that every eigenvector of A is also an eigenvector of A^{-1} . What is the relationship between the eigenvalues of A and A^{-1} ?

Suppose $A\vec{v} = k\vec{v}$. (Here $k \neq 0$, since A is invertible and \vec{v} is not zero vector.) Then $A^{-1}A\vec{v} = A^{-1}k\vec{v}$. That is $A^{-1}\vec{v} = \frac{1}{k}\vec{v}$.

So, \vec{v} is an eigenvector of A^{-1} corresponding to eigenvalue $\frac{1}{k}$

Question 4. Suppose that A is a square matrix with real entries and real eigenvalues. Prove that every eigenvalue of A has an associated real eigenvector.

Let c be an eigenvalue of A. The eigenvectors associated with c are the non-trivial solutions of the linear system $(A - cl)\vec{x} = 0$. Since A and c are real, this system has non-trivial real solutions.