

Adjacency Matrix

$$a_{ij} = \begin{cases} m_{ij}, & \text{if } \{v_i, v_j\} \text{ is an edge with multiplicity } m_{ij} \\ 0, & \text{otherwise} \end{cases}$$

What is the sum of the entries in a row of the adjacency matrix for an undirected graph? For a directed graph?

What is the sum of the entries in a column of the adjacency matrix for an undirected graph? For a directed graph?

Q17. Draw undirected graph using the adjacency matrix.

$$a\begin{bmatrix} 1 & 3 & 2 \\ 3 & 0 & 4 \\ 2 & 4 & 0 \end{bmatrix}$$

Q18. Draw directed graph using the adjacency matrix.

Q18. Draw directed graph using the adjacency matrix.

Γ1	1	1	0]
0	0	1	0 0 0 0
1	0	1	0
1	1	1	0

Incidence Matrix

Let G = (V, E) be an undirected graph. Suppose that $v_1, v_2, ..., v_n$ are the vertices and $e_1, e_2, ..., e_m$ be the edges of G. Then the incidence matrix w.r.t to this ordering of V and E is the $n \times m$ matrix $M = [m_{ij}]$, where

What is the sum of the entries in a row of the incidence matrix for an undirected graph? $= deg - \gamma o \cdot d loo s$

What is the sum of the entries in a column of the incidence matrix for an undirected graph?

Isomorphism of Graph

The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are *isomorphic* if there exists a one-to-one and onto function f from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 . Such a function f is called

to-one and onto function f from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 . Such a function f is called an *isomorphism*.* Two simple graphs that are not isomorphic are called *nonisomorphic*.

Write no of vertices, no of edges, degree sephence and adjacency list for both