Boundary value problems

Martin van Sint Annaland, Edwin Zondervan, Ivo Roghair

m.v.sintannaland@tue.nl

Chemical Process Intensification, Process Systems Engineering, Eindhoven University of Technology

Today's outline

1 Solution techniques in Excel Solver and goal-seek

- 2 Boundary value problems
- 3 Shooting method Example

Today's outline

1 Solution techniques in Excel Solver and goal-seek

- 2 Boundary value problems
- Shooting method Example

Solver and goal-seek

Excel comes with a goal-seek and solver function. For Excel 2010:

- Install via Excel ⇒ File ⇒ Options ⇒ Add-Ins ⇒ Go (at the bottom) ⇒ Select solver add-in. You can now call the solver screen on the 'data' menu ('Oplosser' in Dutch)
- Select the goal-cell, and whether you want to minimize, maximize or set a certain value
- Enter the variable cells; Excel is going to change the values in these cells to get to the desired solution
- Specify the boundary conditions (e.g. to keep certain cells above zero)
- Click 'solve' (possibly after setting the advanced options).

Goal-Seek can be used to make the goal-cell to a specified value by changing another cell:

• Open Excel and type the following:

		В
1	×	3
2	f(x)	=-3*B1^2-5*B1+2
3		

- Go to Data ⇒ What-If Analysis ⇒ Goal Seek...
 - Set cell: B2
 - To value: 0
 - By changing cell: B1
- OK. You find a solution of 0.333....

Goal-Seek can be used to make the goal-cell to a specified value by changing another cell:

• Open Excel and type the following:

	А	В
1	X	3
2	f(x)	=-3*B1^2-5*B1+2
3		

Go to Data ⇒ What-If Analysis ⇒ Goal Seek...

• Set cell: B2

• To value: 0

• By changing cell: B1

• OK. You find a solution of 0.333....

Goal-Seek can be used to make the goal-cell to a specified value by changing another cell:

Open Excel and type the following:

	А	В
1	Х	3
2	f(x)	=-3*B1^2-5*B1+2
3		

- Go to Data ⇒ What-If Analysis ⇒ Goal Seek...
 - Set cell: B2
 - To value: 0
 - By changing cell: B1
- OK. You find a solution of 0.333....

Goal-Seek can be used to make the goal-cell to a specified value by changing another cell:

• Open Excel and type the following:

	А	В
1	x	3
2	f(x)	=-3*B1^2-5*B1+2
3		

Go to Data ⇒ What-If Analysis ⇒ Goal Seek...

Set cell: B2To value: 0

By changing cell: B1

OK. You find a solution of 0.333....

The solver is used to change the value in a goal-cell, by changing the values in 1 or more other cells while keeping boundary conditions:

• Use the following sheet:

	А	В	С
1		×	f(x)
2	×1	3	=2*B2*B3-B3+2
3	x2	4	=2*B3-4*B2-4

- Go to Data ⇒ Solver
 - Goalfunction: C1 (value of: 0)
 - Add boundary condition: C2 = 0
 - By changing cells: \$B\$1:\$B\$2 (you can just select the cells)
- Solve. You will find B1=0 and B2=2.

The solver is used to change the value in a goal-cell, by changing the values in 1 or more other cells while keeping boundary conditions:

• Use the following sheet:

	А	В	С
1		×	f(x)
2	×1	3	=2*B2*B3-B3+2
3	x2	4	=2*B3-4*B2-4

- Go to Data ⇒ Solver
 - Goalfunction: C1 (value of: 0)
 - Add boundary condition: C2 = 0
 - By changing cells: \$B\$1:\$B\$2 (you can just select the cells)
- Solve. You will find B1=0 and B2=2.

The solver is used to change the value in a goal-cell, by changing the values in 1 or more other cells while keeping boundary conditions:

Use the following sheet:

	А	В	С
1		×	f(x)
2	×1	3	=2*B2*B3-B3+2
3	x2	4	=2*B3-4*B2-4

- Go to Data ⇒ Solver
 - Goalfunction: C1 (value of: 0)
 - Add boundary condition: C2 = 0
 - By changing cells: \$B\$1:\$B\$2 (you can just select the cells)
- Solve. You will find B1=0 and B2=2.

The solver is used to change the value in a goal-cell, by changing the values in 1 or more other cells while keeping boundary conditions:

Use the following sheet:

	А	В	С
1		×	f(x)
2	×1	3	=2*B2*B3-B3+2
3	x2	4	=2*B3-4*B2-4

- Go to Data ⇒ Solver
 - Goalfunction: C1 (value of: 0)
 - Add boundary condition: C2 = 0
 - By changing cells: \$B\$1:\$B\$2 (you can just select the cells)
- Solve. You will find B1=0 and B2=2.

Use Excel functions to obtain the Antoine coefficients A, B and C for carbon monoxide following the equation:

$$\ln P = A - \frac{B}{T + C}$$

P [mmHg]	<i>T</i> [°C]
1	-222.0
5	-217.2
10	-215.0
20	-212.8
40	-210.0
60	-208.1
100	-205.7
200	-201.3
400	-196.3
760	-191.3

Use Excel functions to obtain the Antoine coefficients A, B and C for carbon monoxide following the equation:

$$\ln P = A - \frac{B}{T + C}$$

P [mmHg]	<i>T</i> [°C]
1	-222.0
5	-217.2
10	-215.0
20	-212.8
40	-210.0
60	-208.1
100	-205.7
200	-201.3
400	-196.3
760	-191.3

- Dedicate three separate cells for A, B and C. Give an initial guess
- Convert all values to proper units (hint: use e.g. =CONVERT(A2, "mmHg", "Pa"))

Use Excel functions to obtain the Antoine coefficients A, B and C for carbon monoxide following the equation:

$$\ln P = A - \frac{B}{T + C}$$

P [mmHg]	<i>T</i> [°C]
1	-222.0
5	-217.2
10	-215.0
20	-212.8
40	-210.0
60	-208.1
100	-205.7
200	-201.3
400	-196.3
760	-191.3

- Dedicate three separate cells for A, B and C. Give an initial guess
- Convert all values to proper units (hint: use e.g. =CONVERT(A2, "mmHg", "Pa"))
- 3 Compute In P_{exp} and In P_{corr}

Use Excel functions to obtain the Antoine coefficients A, B and C for carbon monoxide following the equation:

$$\ln P = A - \frac{B}{T + C}$$

P [mmHg]	<i>T</i> [°C]
1	-222.0
5	-217.2
10	-215.0
20	-212.8
40	-210.0
60	-208.1
100	-205.7
200	-201.3
400	-196.3
760	-191.3

- Dedicate three separate cells for A, B and C. Give an initial guess
- Convert all values to proper units (hint: use e.g. =CONVERT(A2, "mmHg", "Pa"))
- 3 Compute $\ln P_{\text{exp}}$ and $\ln P_{\text{corr}}$
- 4 Compute $(\ln P_{\rm exp} \ln P_{\rm corr})^2$, and sum this column

00000

Use Excel functions to obtain the Antoine coefficients A, B and C for carbon monoxide following the equation:

$$\ln P = A - \frac{B}{T + C}$$

P [mmHg]	<i>T</i> [°C]
1	-222.0
5	-217.2
10	-215.0
20	-212.8
40	-210.0
60	-208.1
100	-205.7
200	-201.3
400	-196.3
760	-191.3

- Dedicate three separate cells for A, B and C. Give an initial guess
- Convert all values to proper units (hint: use e.g. =CONVERT(A2, "mmHg", "Pa"))
- 3 Compute In P_{exp} and In P_{corr}
- 4 Compute (In P_{exp} In P_{corr})², and sum this column
- Start the solver, and minimize the sum by changing cells for A, B and C.

00000

Use Excel functions to obtain the Antoine coefficients A, B and C for carbon monoxide following the equation:

$$\ln P = A - \frac{B}{T + C}$$

P [mmHg]	<i>T</i> [°C]
1	-222.0
5	-217.2
10	-215.0
20	-212.8
40	-210.0
60	-208.1
100	-205.7
200	-201.3
400	-196.3
760	-191.3

- Dedicate three separate cells for A, B and C. Give an initial guess
- Convert all values to proper units (hint: use e.g. =CONVERT(A2, "mmHg", "Pa"))
- 3 Compute In P_{exp} and In P_{corr}
- 4 Compute (In P_{exp} In P_{corr})², and sum this column
- Start the solver, and minimize the sum by changing cells for A, B and C.

What is an ODE?

Algebraic equation:

$$f(y(x), x) = 0$$
 e.g. $-\ln(K_{eq}) = (1 - \zeta)$

First order ODE:

$$f\left(\frac{dy}{dx}(x), y(x), x\right) = 0$$
 e.g. $\frac{dc}{dt} = -kc^n$

Second order ODE:

$$f\left(\frac{d^2y}{dx^2}(x), \frac{dy}{dx}(x), y(x), x\right) = 0$$
 e.g. $\mathcal{D}\frac{d^2c}{dx^2} = -\frac{kc}{1 + Kc}$

About second order ODEs

Very often a second order ODE can be rewritten into a system of first order ODEs (whether it is handy depends on the boundary conditions!)

About second order ODEs

Very often a second order ODE can be rewritten into a system of first order ODEs (whether it is handy depends on the boundary conditions!)

In general

Consider the second order ODE:

$$\frac{d^2y}{dx^2} + q(x)\frac{dy}{dx} = r(x)$$

Now define and solve using z as a new variable:

$$\frac{dy}{dx} = z(x)$$

$$\frac{dz}{dx} = r(x) - q(x)z(x)$$

Importance of boundary conditions

The nature of boundary conditions determines the appropriate numerical method. Classification into 2 main categories:

Initial value problems (IVP)
 We know the values of all y_i at some starting position x_s, and it is desired to find the values of y_i at some final point x_f.

 Boundary value problems (BVP)
 Boundary conditions are specified at more than one x. Typically, some of the BC are specified at x_s and the remainder at x_f.

Shooting method

How to solve a BVP using the shooting method:

- Define the system of ODEs
- Provide an initial guess for the unknown boundary condition
- Solve the system and compare the resulting boundary condition to the expected value
- Adjust the guessed boundary value, and solve again. Repeat until convergence.
 - Of course, you can subtract the expected value from the computed value at the boundary, and use a non-linear root finding method

Consider a chemical reaction in a liquid film layer of thickness δ :

$$\mathcal{D} \frac{d^2c}{dx^2} = k_Rc \text{ with } egin{array}{c} c(x=0) = C_{A,i,L} = 1 \ c(x=\delta) = 0 \end{array} \qquad ext{(interface concentration)}$$

Question: compute the concentration profile in the film layer.

Consider a chemical reaction in a liquid film layer of thickness δ :

$$\mathcal{D} \frac{d^2c}{dx^2} = k_Rc$$
 with $c(x=0) = C_{A,i,L} = 1$ (interface concentration) $c(x=\delta) = 0$ (bulk concentration)

Question: compute the concentration profile in the film layer.

Step 1: Define the system of ODEs

This second-order ODE can be rewritten as a system of first-order ODEs, if we define the flux \boldsymbol{q} as:

$$q = -\mathcal{D}\frac{dc}{dx}$$

Now, we find:

$$\frac{dc}{dx} = -\frac{1}{\mathcal{D}}q$$

$$\frac{dq}{dx} = -k_R c$$

Consider a chemical reaction in a liquid film layer of thickness δ :

$$\mathcal{D}\frac{d^2c}{dx^2} = k_Rc \text{ with } \begin{cases} c(x=0) = C_{A,i,L} = 1 \\ c(x=\delta) = 0 \end{cases} \qquad \text{(interface concentration)}$$

Question: compute the concentration profile in the film layer.

Step 2: Set the boundary conditions

The boundary conditions for the concentrations at x=0 and $x=\delta$ are known.

The flux at the interface, however, is not known, and should be solved for.

$$\frac{dc}{dx} = -\frac{1}{\mathcal{D}}q$$

$$\frac{dq}{dx} = -k_R c$$

Solving the two first-order ODEs in Excel. First, the cells with constants:

	Α	В	С
1	CAiL	1	ml/m3
2	D	1e-8	m2/s
3	kR	10	1/s
4	delta	1e-4	m
5	N	100	
6	dx	=B4/B5	

Solving the two first-order ODEs in Excel. First, the cells with constants:

	Α	В	С
1	CAiL	1	ml/m3
2	D	1e-8	m2/s
3	kR	10	1/s
4	delta	1e-4	m
5	N	100	
6	dx	=B4/B5	

Now, we program the forward Euler (explicit) schemes for \boldsymbol{c} and \boldsymbol{q} below:

	А	В	С
10	x	С	q
11	0	=B1	10
12	=A11+\$B\$6	=B11+\$B\$6*(-1/\$B\$2*C11)	=C11+\$B\$6*(-\$B\$3*B11)
13	=A12+\$B\$6	=B12+\$B\$6*(-1/\$B\$2*C12)	=C12+\$B\$6*(-\$B\$3*B12)
111	=A110+\$B\$6	=B110+\$B\$6*(-1/\$B\$2*C110)	=C110+\$B\$6*(-\$B\$3*B110)

- We now have profiles for c and q as a function of position x.
- The concentration $c(x=\delta)$ depends (eventually) on the boundary condition at the interface q(x=0)
- We can use the solver to change q(x=0) such that the concentration at the bulk meets our requirement: $c(x=\delta)=0$

We first program the system of ODEs in a separate function:

```
\frac{dc}{dx} = -\frac{1}{D}q
\frac{dq}{dx} = -k_R c
function [dxdt] = BVPODE(t,x,ps)
dxdt(1) = -1/ps.D*x(2);
dxdt(2) = -ps.kR*x(1);
dxdt = dxdt';
return
```

We first program the system of ODEs in a separate function:

$$\begin{aligned} \frac{dc}{dx} &= -\frac{1}{\mathcal{D}}q \\ \frac{dq}{dx} &= -k_R c \\ \\ \text{function [dxdt] = BVPODE(t,x,ps)} \\ \text{dxdt(1) = -1/ps.D*x(2);} \\ \text{dxdt(2) = -ps.kR*x(1);} \\ \text{dxdt=dxdt';} \\ \text{return} \end{aligned}$$

Note that we pass a variable (type: struct) that contains required parameters: ps.

The ODE function is solved via ode45, after setting a number of initial and boundary conditions:

```
function f = RunBVP(bcq,ps)
[x,cq] = ode45(@BVPODE,[0 ps.delta],[1 bcq], [], ps);
f = cq(end,1) - 0;
plotyy(x,cq(:,1),x,cq(:,2));
return;
```

The ODE function is solved via ode45, after setting a number of initial and boundary conditions:

```
function f = RunBVP(bcq,ps)
[x,cq] = ode45(@BVPODE,[0 ps.delta],[1 bcq], [], ps);
f = cq(end,1) - 0;
plotyy(x,cq(:,1),x,cq(:,2));
return;
```

Note the following:

- We use the interval $0 \le x \le \delta$
- Boundary conditions are given as: c(x=0)=1 and q(x=0)= bcq, which is given as an argument to the function (i.e. changable from 'outside'!)
- The function returns f, the difference between the computed and desired concentration at $x = \delta$.

Finally, we should solve the system so that we obtain the right boundary condition q = bcq such that $c(x = \delta) = 0$. We can use the built-in function fzero to do this

```
% Parameter definition
ps.D=1e-8;
ps.kR=10;
ps.delta=1e-4;

% Solve for flux boundary condition (initial guess: 0)
opt = optimset('Display','iter');
flux = fzero(@RunBVP,0,opt,ps);
```

BVP example: analytical solution

Compare with the analytical solution:

$$q=k_L E_A C_{A,i,L}$$
 with $E_A=rac{Ha}{ anh Ha}$ (Enhancement factor) $Ha=rac{\sqrt{k_R \mathcal{D}}}{k_L}$ (Hatta number) $k_L=rac{\mathcal{D}}{\delta}$ (mass transfer coefficient)