Pertemuan ke_1 PENGANTAR OTOMATA & TEORI BAHASA

Tim pengampu

2022

Referensi

- Firrar Utdirartatmo, Teori Bahasa dan Otomata, JJ Learning Yogyakarta, 2001
- Bambang Hariyanto, *Teori Bahasa, Otomata, dan Komputasi serta Terapannya*, Informatika Bandung, 2004
- Dean Kelley, Otomata dan Bahasa-bahasa Formal, PT. Prenhallindo, Jakarta, 1999
- pppps: Slide bukan referensi atau materi XD

Capaian Pembelajaran

Mahasiswa memahami konsep dan istilah yang umum digunakan dalam Teori Bahasa dan Otomata

Indikator

Mahasiswa mendapatkan:

- 1. penjelasan mengenai materi yang akan dipelajari selama satu semester.
- 2. Penjelasan tentang referensi yang digunakan
- 3. Penjelasan tentang aturan perkuliahan

MATERI PERTEMUAN

- Pengantar Otomata
- Pendahuluan
- Organisasi Materi
- Referensi
- Evaluasi

Apa itu Otomata?

- Otomata adalah MODEL
- Model dari sistem apapun yang akan kita komputasikan
 - "Model matematika yang memiliki fungsi dari komputer digital yaitu menerima input, menghasilkan output, bisa memiliki penyimpanan sementara dan mampu membuat keputusan dalam transformasi input ke output"

Tidak ada bidang apapun dalam teknologi informasi yang tidak terkait dengan teori 'dahsyat' ini.
Semua bentuk sistem, diskrit, kontinu, bahkan hybrid (gabungan event diskrit dan kontinu dalam satu sistem) dapat dimodelkan oleh teori ini.

PENDAHULUAN (1)

Komputasi menjadi isu penting karena mempelajari bagaimana kita dapat merancang mesin yang mampu melakukan proses-proses intelektual (yang mulanya hanya dapat dilakukan manusia)

Namun dalam merancang seringkali kita terkendala dengan berbagai macam batasan. Tetapi apakah benar jika batasan-batasan (yang dimiliki komputer) pada dasarnya disebabkan oleh kelemahan programmer (manusia)??? bukan batasan intrinsik yang dimiliki mesin/komputer ?!

Jika Ya, maka kita berharap agar batasan-batasan tersebut dapat terreduksi melalui pengembangan teori komputasi.

PENDAHULUAN (2)

Sub bidang apapun dalam ilmu informatika pasti memiliki 2 komponen :

- 1. Ide/gagasan dirupakan ke dalam bentuk MODEL KOMPUTASI
- Neuron Nets → Finite Automata
- Sistem Logika Formal → Proof Methods
- Sistem Tata Bahasa → Psycho-Linguistic:
- 1. Apakah arti bahasa itu?
- 2. Bagaimana manusia mengembangkan bahasa?
- 3. Bagaimana manusia memahami bahasa?
- 4. Bagaimana manusia mengajarkan bahasa ke anak-anaknya?
- 5. Bagaimana cara menyatakan gagasan ?
- 6. Bagaimana manusia membangun kalimat dari gagasan yang ada dalam pikirannya?
- 2. eknik rekayasa untuk mengimplementasikan model ke dalam sebuah bentuk sistem yang terkomputasi (programming/coding)

PENDAHULUAN (3)

- Noam Chomsky, > membuat model matematis untuk mendeskripsikan bahasa sekaligus menjawab pertanyaan ttg psycho-linguistic
 - membuat perangkat formal untuk memodelkan properti bahasa (disebut Grammar)

McCulloch & Pitts, merancang Finite Automata untuk memodelkan neuron nets

Stephen Kleene, menemukan model representasi lain dari automata melalui Regular Expression

Alan Turing,

menemukan model untuk mengidentifikasi apakah sebuah permasalahan dapat dikomputasi - Mesin Turing

PENDAHULUAN (4)

Model Komputasi Awal:

Model Komputasi Sekarang:

PENDAHULUAN (5)

Bagaimana proses komputasi untuk:

$$f(x) = x + x + x$$

PENDAHULUAN (6)

PENDAHULUAN (7)

3 model mesin komputasi yang akan kita pelajari dalam otomata :

1. Finite State Automata (FSA)

(sejauh ini) telah dimanfaatkan untuk merancang lexical analyzer, aplikasi editor teks, pengenalan pola, fault tolerant system, dll

2. Pushdown Automata (PDA)

(sejauh ini) telah dimanfaatkan untuk mengenali bahasa yang berstruktur context- free grammar, kamus data, query, script, parsing, dll

3. Turing Machine (TM)

mesin turing dapat dimanfaatkan untuk mengidentifikasi ketidakmungkinan penulisan sebuah program komputer. Sejauh ini kita dapat meyakini bahwa jika suatu persoalan tidak dapat dimodelkan oleh mesin turing, maka persoalan tersebut tidak akan mungkin dapat diselesaikan secara komputatif oleh mesin komputasi apapun!

ORGANISASI MATERI (1)

Minggu ke	Topik Bahasan	Materi Bahasan	Bentuk Perkuliahan	Referensi	Target Perkuliahan		
1	Pengantar Otomata dan Teori Bahasa	 Penjelasan singkat tentang Otomata serta contoh aplikasi automata pada kehidupan sehari- hari Bahasa dan Tatabahasa Formal 	Paparan		Pengetahuan		
2	Teori Bahasa & Operasi Matematis	Terminologi BahasaOperasi pada BahasaMetode Pendefinisian BahasaPenugasan	Paparan & Pengerjaan Tugas		Pemahaman		
3	Hirarki Chomsky dan Finite State Automata	 Hirarki Chomsky dan Contoh Finite State Automata (FSA) Jenis-jenis FSA dan Contoh Penugasan 	Paparan & Pengerjaan Tugas		Pemahaman		
4	Deterministic Finite State Automata (DFA) dan Non Deterministic Finite State Automata (NDFA)	 Pengertian DFA dan NDFA Konversi NDFA ke DFA Konversi RE ke NDFA Contoh dan Latihan Penugasan 	Paparan & Pengerjaan Tugas		Pemahaman		
5	Regular Expression	 Regular Expression DFA dan NFA Transition Graph Automata with Output Penugasan 	Paparan & Pengerjaan Tugas		Pemahaman		
6	Kleene's Theorem	Apa Itu Teorema Kleene ? Metode Pembuktian Penugasan	Paparan & Pengerjaan Tugas		Pemahaman		
7	Aturan Produksi dari FSA	Apa Itu Aturan Produksi? Equivalensi Grammar Regular (GR) ke FSA Penugasan	Paparan & Pengerjaan Tugas		Pemahaman		
8	UJIAN TENGAH SEMESTER (UTS)						

FAKULTAS ILMU KOMPUTER

ORGANISASI MATERI (2)

9	FSA dengan Output (Mesin Mealy dan Mesin Moore)	 Mesin Mealy Mesin Moore Contoh-contoh Ekuivalensi Meisn Mealy ke Mesin Moore Ekuivalensi Meisn Moore ke Mesin Mealy 	Paparan & Pengerjaan Tugas		Pengetahuan	
10	Tata bahasa bebas konteks /Contex Free Grammar (CFG)	 Pengertian CFG Contoh-contoh CFG Pohon sintaks Parsing Tree Ambigu 	Paparan & Pengerjaan Tugas		Pengetahuan	
11	Penyederhanaan Contex Free Grammar (CFG)	 Tujuan Penyerderhanaan Penghilangan Produksi Usesless Penghilangan Produksi Unit Penghilangan Produksi ε Penugasan 	Paparan & Pengerjaan Tugas		Pengetahuan	
12	Grammar & Normalisasinya	 Transformasi Context-Free Grammar Chomsky Normal Form Greibach Normal Form Penugasan 	Paparan		Pemahaman	
13	Pushdown Automata (PDA)	Komponen PDA Membentuk PDA dari CFG Lattihan Penugasan	Paparan & Pengerjaan Tugas		Pemahaman	
14	Turing Machine (TM)	Komponen Mesin Turing Penugasan	Paparan & Pengerjaan Tugas		Pemahaman	
15	Responsi	Pembahasan Tugas	Diskusi		Pemahaman	
16	UJIAN AKHIR SEMESTER (UAS)					

REFERENSI

REFERENSI – UTAMA

- Aho, Alfred V., Sethi, R., Ulman, J.D., Compilers: Principles, Techniques, and Tools, Addison-Wesley Publ. Company, Reading Massachusetts, 1986
- Cohen, Daniel I.A., *Introduction to Computer Theory*, John Wiley & Sons, 1990

REFERENSI – PENDUKUNG

- Hariyanto, Bambang, Teori Bahasa, Otomata, dan Komputasi serta Terapannya, Informatika, Bandung, 2004
- Kelly, Dean, Otomata Dan Bahasa-Bahasa Formal: Sebuah Pengantar, PT Prenhallindo, Jakarta, 1999
- Tremblay, Jean P., Sorenson, Paul G., *The Theory and Practice of Compiler Writing*, McGrawHill Book Company, New York, 1982
- Utdirartatmo, Firrar, Teori Bahasa Dan Otomata, J & J Learning, Yogyakarta, 2001
- Utdirartatmo Firrar, Teknik Kompilasi, J & J Learning, Yogyakarta, 2001

FAKULTAS ILMU KOMPUTER

PROGRAM STUDI

TEKNIK INFORMATIKA

Otomata dan teori Bahasa

EVALUASI

• UTS : 40%

• UAS : 40%

■ TUGAS : 20%