A survey on concentration inequalities

Martín Prado

November 2023

Universidad de los Andes - Bogotá Colombia

Contents

6	1	Introduction	1
7		1.1 Basic inequalities and theorems	1
8		1.2 Why bother?	2
9		1.2.1 Coin Tossings	
10		1.2.2 Central Limit Theorem	
11		1.3 Cantelli's inequality	
12	2	Exponential Inequalities	5
13		2.1 Uniform Law of Large Numbers	8
14	3	Application to Estimation of Data Dimension	13
15		3.1 Chernoff-Okamoto Inequality	13
16		3.2 The problem	14
17		3.3 Proofs	17
18	4	Applications to graph theory	20
19		4.1 The Azuma-Hoeffding Inequality	20
20		4.2 An Heuristic Algorithm for the Travelling Salesman Problem	22
21		4.3 Lipschitz Condition and Three Additional Examples	24
22	5	Applications to Vapnik–Chervonenkis theory	31
23		5.1 Sets with Polynomial Discrimination	31
24		5.2 Vapnik–Chervonenkis inequality	35
25		5.3 Estimation Error in Decision Functions	37

1 Introduction

1.1 Basic inequalities and theorems

Theorem 1.1 (Markov's inequality). For a random variable X with $\mathbf{P}\{X < 0\} = 0$ and t > 0, we have

$$\mathbf{P}\{X \ge t\} \le \frac{\mathbf{E}\,X}{t}.$$

27

31

33

35

37

☐ 42

Proof. In the first place, note that

$$X = X \cdot \mathbb{1}_{\{X \ge t\}} + X \cdot \mathbb{1}_{\{X < t\}}$$

$$\ge t \cdot \mathbb{1}_{\{X \ge t\}} + 0,$$

and thus,

$$\mathbf{E} X \ge t \cdot \mathbf{E} \, \mathbb{1}_{\{X \ge t\}} = t \cdot \mathbf{P}\{X \ge t\}.$$

Theorem 1.2 (Chebyshev's inequality). For t > 0, a random variable X with mean $\mu = \mathbf{E} X$ and variance $\sigma^2 = \mathbf{Var} X$, we have

$$\mathbf{P}\{|X-\mu| \ge t\} \le \frac{\sigma^2}{t^2}.$$

Proof. We apply Markov's inequality to the non-negative random variable $Y=|X-\mu|^2$ in order to obtain the desired result

$$\mathbf{P}\{|X - \mu| \ge t\} = \mathbf{P}\{|X - \mu|^2 \ge t^2\} \le \frac{\mathbf{E}\left[(X - \mu)^2\right]}{t^2} = \frac{\sigma^2}{t^2}.$$

1.2 Why bother?

The concentration inequalities are used to obtain information on how a random variable is distributed at some specific places of its domain. In the most common scenarios, these inequalities will be used to quantify how concentrated a random variable at its tails, for example,

$$\mathbf{P}\{|X - \mu| \ge t\} < f(t) << 1.$$

A concentration inequality is specially useful when this probability cannot be calculated at a low computational cost or estimated with high precision. The following will illustrate a case where using concentration inequalities achieves the best results.

1.2.1 Coin Tossings

48

59

63

64

67

A coin tossing game is fair if the chances of winning are equal to the chances of losing. We can verify from a sample of N games that the game is not rigged if the number of heads in the sample is not very distant from the average N/2. However, there's a chance that one may classify the coin as rigged, even when the coin is fair. By the Law of Large Numbers, we know that the larger the sample, the less likely it is to obtain a false positive. But let's ask ourselves how fast this probability converges to 0.

Let $S_N \sim \text{Bi}(N, 1/2)$ denote the number of heads in a fair coin tossing game. Then,

$$\mu = \mathbf{E} S_N = \frac{N}{2}, \qquad \sigma^2 = \mathbf{Var} S_N = \frac{N}{4}.$$

For a fixed $\varepsilon > 0$, we may classify a coin tossing game as rigged if, after N trials, the ratio of heads vs tails in the sample is greater than $[1 + \varepsilon : 1 - \varepsilon]$, or similarly,

$$S_N \ge \mu + \frac{\varepsilon}{2}N = \frac{1+\varepsilon}{2}N.$$

It's clear that calculating the exact probability of the previous event for any N, ε is a very demanding task computationally. The Chebyshev's inequality 1.2 gives us a "good-enough" result for this problem,

$$\mathbf{P}\left\{S_N \ge \mu + \frac{\varepsilon}{2}N\right\} \le \mathbf{P}\left\{|S_N - \mu| \ge \frac{\varepsilon}{2}N\right\} \le \sigma^2 \frac{4}{\varepsilon^2 N^2} = \frac{1}{\varepsilon^2 N}.$$

Therefore, the probability of bad events tends to 0 at least linearly with the number of games.

1.2.2 Central Limit Theorem

The proof of the following three theorems can be found in Boucheron et al. (2003)

Theorem 1.3. Let X_i be a i.i.d. sample. Let $S_N = \sum_{i=1}^N X_i$, with mean $\mu = \mathbf{E} S_N$ and variance $\sigma^2 = \mathbf{Var} S_N$. If

$$Z_N = \frac{S_N - N \cdot \mathbf{E} X_i}{\sqrt{N \cdot \mathbf{Var} X_i}} = \frac{S_N - \mu}{\sqrt{N}\sigma},$$

then,

$$Z_N \to Z \sim \mathcal{N}(0,1), \text{ in distribution.}$$

Theorem 1.4 (Tails of the Normal Distribution). Let $Z \sim \mathcal{N}(0,1)$, for t > 0 we have

$$\left(\frac{1}{t} - \frac{1}{t^3}\right) \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-t^2}{2}\right) \le \mathbf{P}\{Z \ge t\} \le \frac{1}{t} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-t^2}{2}\right).$$

With that in mind, we might naively assume that better bounds can be obtained by using the previous theorem. For a large enough N we can say that for the coin tossing,

$$Z_N = rac{S_N - N/2}{\sqrt{N/4}}$$
83

$$\implies \mathbf{P}\left\{S_N \ge \frac{1+\varepsilon}{2}N\right\} = \mathbf{P}\left\{Z_N \ge \varepsilon\sqrt{N}\right\} \sim \mathbf{P}\left\{Z \ge \varepsilon\sqrt{N}\right\}.$$

However, this raises the question of whether we can draw the following conclusion from Theorem 1.4:

$$\mathbf{P}\left\{S_N \ge \frac{1+\varepsilon}{2}N\right\} \le \frac{1}{\varepsilon\sqrt{N}} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-\varepsilon^2 \cdot N}{2}\right).$$

Unfortunately, the answer is no. The following theorem will show why.

Theorem 1.5 (Convergence Rate for Central Limit Theorem). For Z_N , Z in Theorem 1.3, we have:

$$|\mathbf{P}\{Z_N \ge t\} - \mathbf{P}\{Z \ge t\}| = O(\frac{1}{\sqrt{N}}).$$

Since the approximation error of the Central Limit Theorem is of greater order than the normal bounds, the previous results cannot be taken into account.

In the context of coin tossing, this may not matter at all because the linear bound obtained using Chebyshev's inequality indicates that the probability of wrongly classifying a fair coin as a rigged coin converges at least linearly to zero. Even the Central Limit Theorem shows, in a less precise way, this convergence. However, for some specific problems in statistics, these basic tools are not precise enough to solve them. The main objective of this project is to study different ideas that improve these bounds and show examples where they can be used.

1.3 Cantelli's inequality

We can start with a small modification of the Chebyshev's bound for the one-sided tails

Theorem 1.6 (Cantelli's Inequality). For t > 0, a random variable X with mean $\mu = \mathbf{E} X$ and variance $\sigma^2 = \mathbf{Var} X$, we have

$$\mathbf{P}\{X - \mu \ge t\} \le \frac{\sigma^2}{t^2 + \sigma^2}.$$

108 *Proof.* In the first place note that,

107

111

121

$$\mathbf{P}\{Y \ge s\} \le \mathbf{P}\{Y \ge s\} + \mathbf{P}\{Y \le s\} = \mathbf{P}\{|Y| \ge s\} = \mathbf{P}\{Y^2 \ge s^2\}. \tag{*}$$

Let u > 0, define $Y = X - \mu + u$ and s = t + u to obtain

$$\mathbf{P}\{X - \mu \ge t\} = \mathbf{P}\{X - \mu + u \ge t + u\} = \mathbf{P}\{Y \ge s\}.$$

We use (\star) and Markov's inequality (1.1) on Y^2 to conclude,

$$\mathbf{P}\{Y \ge s\} \stackrel{(\star)}{\le} \mathbf{P}\{Y^2 \ge s^2\} \stackrel{(1.1)}{\le} \frac{\mathbf{E}\left[(X - \mu + u)^2\right]}{(t + u)^2}.$$

114 By linearity of expectation,

115
$$\mathbf{E}[(X - \mu + u)^2] = \mathbf{E}[(X - \mu)^2] + 2u \cdot \underbrace{\mathbf{E}(X - \mu)}_{0} + E(u^2) = \sigma^2 + u^2.$$

Finally, we choose an optimal $u = \frac{\sigma^2}{t}$ to conclude

$$\mathbf{P}\{X - \mu \ge t\} \le \frac{\sigma^2 + u^2}{(t+u)^2} = \frac{\sigma^2 + \sigma^4/t^2}{(t+\sigma^2/t)^2} = \frac{\sigma^2(\frac{t^2 + \sigma^2}{t^2})}{\left(\frac{t^2 + \sigma^2}{t}\right)^2} = \frac{\sigma^2}{t^2 + \sigma^2}$$

118

On the other hand, the two-sided tail inequality, Cantelli's inequality is not always better than Chebyshev,

Corollary 1.6.1 (Two-sided Cantelli inequality).

$$\mathbf{P}\{|X - \mu| \ge t\} \le \frac{2\sigma^2}{t^2 + \sigma^2}.$$

In fact, this bound is only better than Chebyshev's $t^2 + \sigma^2 \leq 2t^2$, or equivalently, when $\sigma^2 \leq t^2$. However, in this case both formulas provide bounds greater than 1, and thus, are useless. Therefore, the conclusion is that, in general, Chebyshev's inequality is better for two-sided tails and Cantelli is for one-sided tails.

Exponential Inequalities

Even if we are satisfied with the linear convergence rate provided by Chebyshev's inequality or the improvement of one sided tails given by Cantelli's inequality, there is a simple but powerful modification we can make to Markov's inequality that will greatly improve both bounds. The following result will provide the main idea from which most of the exponential inequalities are derived.

Theorem 2.1 (MGF inequality). Let X_i be a finite sequence of independent random 132 variables and let $S_N := \sum_{i=1}^N a_i X_i$. Let $\lambda > 0$ the following inequality holds,

$$\mathbf{P}\left\{S_N \ge t\right\} \le e^{-\lambda t} \cdot \prod_{i=1}^N \mathbf{E} \, e^{\lambda a_i X_i}$$

126

130

131

133

138

142

145

Proof. Let $\lambda > 0$, using Markov's inequality (Theorem 1.1) we assert that since $x \mapsto e^{\lambda x}$ is a non-decreasing function, 136

$$\mathbf{P}\left\{S_{N} \ge t\right\} = \mathbf{P}\left\{e^{\lambda S_{N}} \ge e^{\lambda t}\right\} \le e^{-\lambda t} \cdot \mathbf{E} \exp\left(\lambda \sum_{i=1}^{N} a_{i} X_{i}\right).$$

Since X_i are independent, the MGF of S_N is the product of MGFs of each X_i :

$$\mathbf{E} \exp\left(\lambda \sum_{i=1}^{N} a_i X_i\right) = \prod_{i=1}^{N} \mathbf{E} e^{\lambda a_i X_i}$$
139

$$\implies \mathbf{P}\left\{S_N \ge t\right\} \le e^{-\lambda t} \cdot \prod_{i=1}^N \mathbf{E} \, e^{\lambda a_i X_i}.$$

The following two theorems are examples on how we can obtain even tighter bounds than the ones we've already studied. In particular, these theorems can be obtained from the previous theorem and are be considered to be corollaries by some authors.

Theorem 2.2 (Chernoff's inequality). Let $X_i \sim \text{Be}(p_i)$ be independent random vari-146 ables. Define $S_N = \sum_{i=1}^N X_i$ and let $\mu = \mathbf{E} S_N$. Then, for $t > \mu$, we have 147

$$\mathbf{P}\left\{S_N \ge t\right\} \le \left(\frac{\mu}{t}\right)^t e^{-\mu + t}.$$

Proof. In the first place, use Theorem 2.1 to assert that for a $\lambda > 0$ that

$$\mathbf{P}\left\{S_{N} \ge t\right\} \le e^{-\lambda t} \cdot \prod_{i=1}^{N} \mathbf{E} \, e^{\lambda X_{i}}$$

Now it is left to bound every X_i individually. Using the inequality $1+x \leq e^x$ we obtain

$$\mathbf{E} e^{\lambda X_i} = e^{\lambda} p_i + (1 - p_i) = 1 + (e^{\lambda} - 1) p_i \le \exp(e^{\lambda} - 1) e^{p_i}.$$

153 Finally, we plug this inequality on the equation to conclude that

$$e^{-\lambda t} \cdot \prod_{i=1}^{N} \mathbf{E} \, e^{\lambda X_i} \le e^{-\lambda t} \cdot \prod_{i=1}^{N} \exp((e^{\lambda} - 1)p_i) = e^{-\lambda t} \exp((e^{\lambda} - 1)\mu).$$

By using the substitution $\lambda = \ln(t/\mu)$ we obtain the desired result,

$$\mathbf{P}\left\{S_N \ge t\right\} \le \left(\frac{\mu}{t}\right)^t \exp\left(\frac{\mu t}{\mu} - \mu\right) = \left(\frac{\mu}{t}\right)^t e^{-\mu + t}.$$

157

Another exponential inequality that is derived using a similar technique is Hoeffding's inequality:

Theorem 2.3 (Hoeffding's inequality). Let X_1, \ldots, X_N be independent random variables, such that $X_i \in [a_i, b_i]$ for every $i = 1, \ldots, N$. Define $S_N = \sum_{i=1}^N X_i$ and let $\mu = \mathbf{E} S_N$. Then, for every t > 0, we have

$$\mathbf{P}\left\{S_N \ge \mu + t\right\} \le \exp\left(\frac{-2t^2}{\sum_i (a_i - b_i)^2}\right).$$

164 *Proof.* Since $x \mapsto e^x$ is a convex function, it follows that, for a random variable $X \in [a, b]$:

$$e^{\lambda X} \le \frac{e^{\lambda a}(b-X)}{b-a} + \frac{e^{\lambda b}(X-a)}{b-a}, \quad a \le b.$$

Next, take expectations on both hands of the equation to obtain:

$$\mathbf{E} e^{tX} \le \frac{(b - \mathbf{E} X) \cdot e^{\lambda a}}{b - a} - \frac{(\mathbf{E} X - a) \cdot e^{\lambda b}}{b - a}.$$

To simplify the expression, let $\alpha = (\mathbf{E} X - a)/(b - a)$, $\beta = (b - \mathbf{E} X)/(b - a)$ and $u = \lambda(b - a)$. Since $a < \mathbf{E} X < b$, it follows that α and β are positive. Also, note that,

$$\alpha + \beta = \frac{\mathbf{E} X - a}{b - a} + \frac{b - \mathbf{E} X}{b - a} = \frac{b - a}{b - a} = 1.$$

171 Now,

170

172

152

$$\ln \mathbf{E} e^{\lambda X} \le \ln(\beta e^{-\alpha u} + \alpha e^{\beta u}) = -\alpha u + \ln(\beta + \alpha e^{u}).$$

This function is differentiable with respect to u.

$$L(u) = -\alpha u + \ln(\beta + \alpha e^{u})$$

$$L'(u) = -\alpha + \frac{\alpha}{\alpha + \beta e^{-u}}$$

$$L''(u) = \frac{\alpha}{\alpha + \beta e^{-u}} \cdot \frac{\beta e^{-u}}{\alpha + \beta e^{-u}}.$$
174

173

178

180

Note that if $x = \frac{\alpha}{\alpha + \beta e^{-u}} \le 1$, then $L''(u) = x(1-x) \le \frac{1}{4}$. Remember that $\alpha + \beta = 1$.

Now, by expanding the Taylor series we obtain,

$$L(u) = L(0) + uL'(0) + \frac{1}{2}u^2L''(u)$$

$$= \ln(\beta + \alpha) + u\left(-\alpha + \frac{\alpha}{\alpha + \beta}\right) + \frac{1}{2}u^2L''(u)$$

$$= \frac{1}{2}u^2L''(u)$$

$$\leq \frac{1}{8}\lambda^2(b-a)^2.$$
(*)

Finally, use the inequality from Theorem 2.1 to conclude that

$$\mathbf{P}\{S_N - \mu \ge t\} \le e^{-\lambda t} \prod_{i=1}^N \mathbf{E} e^{\lambda X_i}$$

$$\le^{(\star)} e^{-\lambda t} \exp\left(\frac{1}{8} t^2 \sum_{i=1}^N (b_i - a_i)^2\right)$$
179

Corollary 2.3.1. Let X_1, \ldots, X_N be independent random Bernoulli variables such that $X_i \sim \text{Be}(p_i)$, then

$$\mathbf{P}\left\{\sum_{i=1}^{N}(X_i - p_i) \ge t\right\} \le \exp\left(\frac{-2t^2}{N}\right).$$

. 184

Returning to the coin tossing problem, we can now make a stronger assertion of the rate of convergence of a false negative classification using Hoeffding inequality: 186

$$\mathbf{P}\left\{S_N - \frac{N}{2} \ge \frac{\varepsilon}{2}N\right\} \le \exp\left(-\varepsilon^2 N\right).$$

2.1 Uniform Law of Large Numbers

For any probability measure P on the real line and $t \in \mathbb{R}$, define P_n as the empirical probability measure obtain from an independent sample X_1, \ldots, X_n of P, that is:

$$P_n(t) = P_n(-\infty, t) = n^{-1} \cdot \sum_{i=1}^n \mathbb{1}_{\{X_i < t\}}.$$

From the law of large numbers we know that for a fixed t, $P_n(t)$ converges to P(t) with probability 1. However we can formulate a stronger statement on this convergence.

The first application of concentration inequalities we are going to explore is the uniform law of large numbers, which states the following:

Theorem 2.4 (Glivenko-Cantelli Theorem). For P, P_n and $t \in \mathbb{R}$,

$$||P_n - P|| = \sup_{t \in \mathbb{O}} |P_n(t) - P(t)| \stackrel{p}{\longrightarrow} 0.$$

Proof. The proof, adapted from Pollard (2012), consists of 5 steps. At first instance, the author clarifies that we must stablish the condition of $t \in \mathbb{Q}$ to avoid problems with measurability. The author later proves that the theorem is true for any $t \in \mathbb{R}$, but for practical purposes, we will only prove it for rationals. Another remark the author makes is that this result from the real line can be later generalized for some classes of polynomials, and we will cover more about this in the final section.

204 First Symmetrization

191

197

208

216

218

In the first place, define P'_n as the empirical measure obtained from an independent but identical sample X'_1, \ldots, X'_n of P. Note that for any fixed t, $P_n(t)$ and $P'_n(t)$ are random variables derived from their respective samples which satisfy that

$$\mathbf{E} P_n(t) = \mathbf{E} P_n'(t) = P(t), \quad \mathbf{Var} P_n(t) = \mathbf{Var} P_n'(t) = \mathbf{Var} P(t).$$

We will bound the concentration of $||P_n - P'_n||$ first, which will later result in a bound for $||P_n - P||$ at the end of the following lemma.

For now, fix a value for $\varepsilon > 0$, and keep in mind that $Z = P_n - P$, $Z' = P'_n - P$, $\alpha = \frac{1}{2}\varepsilon$ and $\beta = \frac{1}{2}$. Also, for this case define $\mathscr{A} = \{(-\infty, t) : t \in \mathbb{R}\}$

Lemma 2.5. Let $\{Z(A)\}_{A\in\mathscr{A}}$ and $\{Z'(A)\}_{A\in\mathscr{A}}$ be independent and identical functions defined under the same collection of sets \mathscr{A} . Also, assume that there exist $\alpha, \beta > 0$ such that

$$\mathbf{P}\left\{\sup_{A\in\mathscr{A}}|Z(A)|\leq\alpha\right\}\geq\beta.$$

It follows that, for any $\varepsilon > 0$,

$$\mathbf{P}\left\{\sup_{A\in\mathscr{A}}|Z(A)|>\varepsilon\right\}\leq \beta^{-1}\mathbf{P}\left\{\sup_{A\in\mathscr{A}}|Z(A)-Z'(A)|>\varepsilon-\alpha\right\}.$$

Proof. Since Z, Z' are independent, it follows from the hypothesis that for any index $B \in \mathcal{A}$,

$$\mathbf{P}\{|Z'(B)| \le \alpha |Z\} = \mathbf{P}\{|Z'(B)| \le \alpha\} \ge \mathbf{P}\left\{\sup_{A \in \mathscr{A}} |Z'(A)| \le \alpha\right\} \ge \beta.$$

Now, fix $B \in \mathscr{A}$ such that $|Z(B)| > \varepsilon$ and use the previous inequality to conclude,

$$\beta \cdot \mathbf{P} \left\{ \sup_{A \in \mathscr{A}} |Z(A)| > \varepsilon \right\} \leq \mathbf{P} \{ |Z'(B)| \leq \alpha \} \cdot \mathbf{P} \{ |Z(B)| > \varepsilon \}$$

$$(Z, Z' \text{ are independent}) = \mathbf{P} \{ |Z'(B)| \leq \alpha, \ |Z(B)| > \varepsilon \}$$

$$\leq \mathbf{P} \{ |Z(B) - Z'(B)| > \varepsilon - \alpha \}$$

$$\leq \mathbf{P} \left\{ \sup_{A \in \mathscr{A}} |Z(A) - Z'(A)| > \varepsilon - \alpha \right\}.$$

224

228

230

231

232

233

234

Using Chevyshev's inequality (1.2) we know that the hypothesis is satisfied for the values of α and β we chose:

$$\forall t \in \mathbb{R} : \mathbf{P}\left\{|Z'(t)| \le \alpha\right\} = \mathbf{P}\{|P_n(t) - P(t)| \le \varepsilon\} \ge \frac{1}{2} = \beta, \quad \text{if } n \ge 8\varepsilon^{-2}.$$

Therefore, using the previous lemma, we conclude that

$$\mathbf{P}\{\|P_n - P\| > \varepsilon\} \le 2\mathbf{P}\{\|P_n - P_n'\| > \frac{1}{2}\varepsilon\}, \text{ if } n \ge 8\varepsilon^{-2}.$$
 (2.1.1) 229

Second Symmetrization

The following trick will allow us to stop considering all of the 2n from the previous symmetrization, and will help us to create a simpler random variable. We will initially prove the trick for unidimensional random variables, but in chapter 4, we will generalize this proof for any kind on set on \mathbb{R}^n .

Lemma 2.6. Let $\sigma_1, \ldots, \sigma_n$ be Rademacher random variables, that is $\mathbf{P}\{\sigma_i = 1\} = \mathbb{P}\{\sigma_i = -1\} = 1/2$. Let $Y_i = \mathbb{1}_{\{X_i \in A\}} - \mathbb{1}_{\{X_i \in A\}}$, and note that,

$$\mathbf{P}\{Y_i = x\} = \mathbf{P}\{\sigma_i Y_i = x\}, \quad x \in \{-1, 0, 1\}$$

Proof. In the first place, since X_i and X'_i are two independent and identical copies of the same distribution, the following equality holds:

$$\mathbf{P}\{Y_i = 1\} = \mathbf{P}\{X_i \in A\}\mathbf{P}\{X_i' \notin A\}$$

$$= \mathbf{P}\{X_i' \in A\}\mathbf{P}\{X_i \notin A\}$$

$$= \mathbf{P}\{Y_i = -1\}.$$
240

On the other hand, since σ_i is also independent of Y_i , it follows that

$$\mathbf{P}\{\sigma_{i}Y_{i} = 1\} = \mathbf{P}\{Y_{i} = 1, \sigma_{i} = 1\} + \mathbf{P}\{Y_{i} = -1, \sigma_{i} = -1\}$$

$$= \mathbf{P}\{Y_{i} = 1\}\mathbf{P}\{\sigma_{i} = 1\} + \mathbf{P}\{Y_{i} = -1\}\mathbf{P}\{\sigma_{i} = 1\}$$

$$= \frac{1}{2}\mathbf{P}\{Y_{i} = 1\} + \frac{1}{2}\mathbf{P}\{Y_{i} = 1\}$$

$$= \mathbf{P}\{Y_{i} = 1\} = \mathbf{P}\{Y_{i} = -1\} = \mathbf{P}\{\sigma_{i}Y_{i} = -1\}.$$

243 Thus,

247

$$P{\sigma_i Y_i = \pm 1} = P{Y_i = \pm 1}, P{\sigma_i Y_i = 0} = P{Y_i = 0}.$$

245

It follows that since $P_n - P'_n = n^{-1} \sum_{i \le n} Y_i$,

$$\mathbf{P}\{\|P_n - P_n'\| > \frac{1}{2}\varepsilon\} = \mathbf{P}\left\{\sup_{t \in \mathbb{Q}} \left| n^{-1} \sum_{i=1}^n \sigma_i Y_i \right| > \frac{1}{2}\varepsilon\right\}$$

$$\leq \mathbf{P}\left\{\sup_{t \in \mathbb{Q}} \left| n^{-1} \sum_{i=1}^n \sigma_i \mathbb{1}_{\{X_i < t\}} \right| > \frac{1}{4}\varepsilon\right\}$$

$$+ \mathbf{P}\left\{\sup_{t \in \mathbb{Q}} \left| n^{-1} \sum_{i=1}^n \sigma_i \mathbb{1}_{\{X_i' < t\}} \right| > \frac{1}{4}\varepsilon\right\}$$

$$(2.1.2)$$

where $P_n^{\circ} = n^{-1} \sum_{i \leq n} \sigma_i \mathbb{1}_{\{X_i < t\}}$. Then, from equations 2.1.1, 2.1.2 we conclude that for $n \geq 8\varepsilon^{-2}$,

 $\mathbf{P}\{\|P_n - P\| > \varepsilon\} \le 4\mathbf{P}\{\|P_n^{\circ}\| > \frac{1}{4}\varepsilon\}.$

253 Maximal Inequality

$$-\infty \leftarrow t_0 \qquad X_{(1)} \xrightarrow{t_1} X_{(2)} \xrightarrow{t_2} X_{(3)} \xrightarrow{t_3} \cdots \xrightarrow{t_{n-1}} X_{(n)} \xrightarrow{t_n} \infty$$

For any given sample $X=X_1,\ldots,X_n$, define $X_{(j)}$ as the j-th observation when we order the observations, and fix $t_j\in (X_{(j)},X_{(j+1)}]$ for every $j\leq n$ as the picture above shows. Note that if $t\in (X_{(j)},X_{(j+1)}]$, then $P_n^\circ(t)=P_n^\circ(t_j)$ because:

2 Exponential Inequalities

$$P_{n}^{\circ}(t) = n^{-1} \sum_{i=1}^{n} \sigma_{i} \mathbb{1}_{\{X_{i} < t\}}, \qquad t \in (X_{(j)}, X_{(j+1)}]$$

$$= n^{-1} \sum_{i=j+1}^{n} \sigma_{i} \mathbb{1}_{\{X_{(i)} < t\}} + n^{-1} \sum_{i=1}^{j} \sigma_{i} \mathbb{1}_{\{X_{(i)} < t\}}$$

$$= n^{-1} \sum_{i=j+1}^{n} \sigma_{i} \cdot 1 \qquad + \qquad 0$$

$$= P_{n}^{\circ}(t_{j}).$$
²⁵⁸

It follows that for some k, $||P_n^{\circ}|| = |P_n^{\circ}(t_k)|$, and thus,

$$\mathbf{P}\{\|P_n^{\circ}\| > \frac{1}{4}\varepsilon \mid X\} \leq \sum_{j=0}^{n} \max_{j} \mathbf{P}\{|P_n^{\circ}(t_j)| > \frac{1}{4}\varepsilon \mid X\}$$

$$\leq (n+1) \cdot \mathbf{P}\{|P_n^{\circ}(t_k)| > \frac{1}{4}\varepsilon \mid X\}.$$

$$(2.1.3) \quad {}_{260}$$

259

261

262

266

269

Exponential Bounds

Since for any given sample, $\sigma \mathbb{1}_{X_i < t} \in [-1, 1]$, we can use Hoeffding's Inequality 2.3 to obtain the following inequality

$$\mathbf{P}\{|P_n^{\circ}(A)| > \frac{1}{4}\varepsilon\} \le 2\exp\left(\frac{-2(n\varepsilon/4)^2}{4n}\right) = 2e^{-n\varepsilon^2/32}, \quad \forall A \in \mathscr{A}.$$

We use equation 2.1.3 to conclude

$$\mathbf{P}\{\|P_n^{\circ}\| > \frac{1}{4}\varepsilon \mid X\} \le 2(n+1)e^{-n\varepsilon^2/32}.$$
(2.1.4) 267

Integration 268

Finally, applying the formula $P\{A\} = \mathbf{E}_X[\mathbf{P}\{A|X\}]$, we conclude that

$$\mathbf{P}\{\|P_{n} - P\| > \varepsilon\} = \mathbf{E} \left[\mathbf{P}\{\|P_{n} - P\| > \varepsilon \mid X\}\right] \\
\leq \mathbf{E} \left[8(n+1)e^{-n\varepsilon^{2}/32}\right] \\
= 8(n+1)e^{-n\varepsilon^{2}/32} \tag{2.1.5}$$

The Borel-Cantelli states that if the probability of a sequence of events is summable, that is $\sum_{n=1}^{\infty} \mathbf{P}\{E_n\} < \infty$, then

$$\lim_{n} \mathbf{P}(E_n) \le \mathbf{P} \left\{ \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_n \right\} = 0.$$

2 Exponential Inequalities

Since the inequality we obtain through the previous steps is exponential, the probabilities of the events $E_n = \{\|P_n - P\| > \varepsilon\}$ are summable:

$$\sum_{n=1}^{\infty} \mathbf{P}\{\|P_n - P\| > \varepsilon\} < \infty.$$

279

277 Therefore, using the Borel-Cantelli lemma we conclude that

$$\mathbf{P}\{\|P_n - P\| > \varepsilon\} \to 0 \text{ with probability } 1.$$

In chapter 4 we will elaborate further on the details required to transform this powerful theorem in a more generalized version.

3 Application to Estimation of Data Dimension

3.1 Chernoff-Okamoto Inequality

Let X_i be a sample from the Bernoulli distribution Be(p). Define $X = \sum_{i=1}^{n} X_i$, and let $\lambda = np = \mathbf{E} X$. Note that for u > 0,

$$\mathbf{E} e^{uX} = \prod_{i} \mathbf{E} e^{uX_{i}} = ((1-p) + pe^{u})^{n},$$

$$\mathbf{E} e^{-uX} = \prod_{i} \mathbf{E} e^{-uX_{i}} = ((1-p) + pe^{-u})^{n}$$
(3.1.1) 28

282

283

284

288

290

292

294

By applying Markov's Inequality to e^{uX} , we can assert that

$$\mathbf{P}\{X \ge \lambda + t\} = \mathbf{P}\{e^{uX} \ge e^{u(\lambda + t)}\}$$

$$\le e^{-u(\lambda + t)} \cdot \mathbf{E} e^{uX}$$

$$= e^{-u(\lambda + t)} \cdot (1 - p + pe^{u})^{n}.$$
289

According to Janson (2002), the right hand equation is minimized when,

$$e^{u} = \frac{\lambda + t}{(n - \lambda - t)} \cdot \frac{1 - p}{p}.$$

Therefore, for $0 \le t \le n - \lambda$,

$$\mathbf{P}\{X \ge \lambda + t\} \le \left(\frac{\lambda}{\lambda + t}\right)^{\lambda + t} \left(\frac{n - \lambda}{n - \lambda - t}\right)^{n - \lambda - t} \tag{3.1.2}$$

However, a simpler expression is required for the following application.

Theorem 3.1. Let X be the random variable we defined at the start of this chapter. In particular, X is a random variable with the binomial distribution Bi(n,p) with $\lambda := np = \mathbf{E} X$, then for $t \geq 0$,

$$\mathbf{P}\{X \le \lambda - t\} \le \exp\left(-\frac{t^2}{2\lambda}\right) \tag{3.1.3}$$

Used in: Theorem 3.3

Proof. This proof was adapted from Appendix A.1.13 from Alon and Spencer (2016). The first step is to apply formula 3.1.1 301

$$\mathbf{P}\{X < \lambda - t\} = \mathbf{P}\{e^{-uX} < e^{-u(\lambda - t)}\}$$

$$\leq e^{u(\lambda - t)} \mathbf{E} e^{-uX}$$

$$= e^{u(\lambda - t)} e^{u\lambda} ((1 - p) + pe^{-u})^n$$

Then, use the inequality $1 + u \le e^u$ to conclude, 303

304
$$(1-p) + pe^{-u} = 1 + (e^{-u} - 1)p < e^{p(e^{-u} - 1)}$$
305
$$\Rightarrow ((1-p) + pe^{-u})^n \le e^{np(e^{-u} - 1)} = e^{\lambda(e^{-u} - 1)}$$

Combining everything, we obtain 307

302

308

312

315

316

317

318

319

320

321

322

323

324

325

$$\mathbf{P}\{X < \lambda - t\} \le e^{\lambda(e^{-u} - 1) + \lambda u - ut}$$

Now, we employ the following inequality obtained by the Taylor series expansion, 309

$$e^{-u} \le 1 - u + u^2/2.$$

after expanding, this results in 311

$$\mathbf{P}\{X < \lambda - t\} \le e^{\lambda u^2/2 - ut}$$

Finally, by replacing $u = t/\lambda$ we obtain the desired result: 313

$$\mathbf{P}\{X < \lambda - t\} \le e^{-t^2/2\lambda}$$

3.2 The problem

The article Díaz et al. (2019) explains how we can estimate the dimension d of a manifold M embedded on a Euclidean space of dimension m, say \mathbb{R}^m . First, we are going to introduce the method they used, and then, we will show how does the exponential inequalities can be used to prove two important results in the paper. The procedure starts with an example on a uniformly distributed sample on a d-sphere $\mathbb{S}^{d-1} \subset \mathbb{R}^d$, but will be later generalized for samples of any distribution on any manifold.

In the first place, let Z_1, \ldots, Z_k be a i.i.d. sample uniformly distributed on \mathbb{S}^{d-1} . Then, we have the following formula for the variance of the angles between $Z_i, Z_j, i \neq j$:

$$\beta_d := \mathbf{Var} \left(\arccos \langle Z_i, Z_j \rangle \right) = \begin{cases} \frac{\pi^2}{4} - 2 \sum_{j=1}^k (2j-1)^{-2}, & \text{if } d = 2k+1 \text{ is odd,} \\ \frac{\pi^2}{12} - 2 \sum_{j=1}^k (2j)^{-2}, & \text{if } d = 2k+2 \text{ is even.} \end{cases}$$
(3.2.1) 326

The previous formula for the angle variance is proven in Díaz et al. (2019). In order to give more insight on how we will be choosing an estimator d of the dimension of the sphere, consider the following theorem.

Theorem 3.2 (Bounds for β_d). For every d > 1,

$$\frac{1}{d} \le \beta_d \le \frac{1}{d-1}.$$

329

330

335

336

339

341

348 349

350

351

353

355

332

Knowing that for every d > 1, β_d is in the interval $\left[\frac{1}{d}, \frac{1}{d-1}\right]$, one can guess the dimension of the sphere by estimating β_d , and then, taking d from the lower bound of the interval where our estimator is. Since β_d is the variance of the angles in our sphere, our best choice for an estimator is the angle's sample variance,

$$U_k = {k \choose 2}^{-1} \sum_{i < j \le k} \left(\arccos \langle Z_i, Z_j \rangle - \frac{\pi^2}{2} \right)^2. \tag{3.2.2}$$

In Proposition 1. of Díaz et al. (2019) the authors prove that it's the Minimum Variance Unbiased Estimator for β_d on the unit sphere.

Furthermore, the authors also prove that this result can be generalized for any manifold with samples of any distribution. Let X_1, \ldots, X_n be a i.i.d. sample from a random distribution P on a manifold $M \subset \mathbb{R}^m$, and let $p \in M$ denote a point on the. For $C>0\in\mathbb{R}$, let $k=\lceil C\ln(n)\rceil$ and define $R(n)=L_{k+1}(p)$ as the distance between p and its (k+1)-nearest neighbor. W.L.O.G. assume that $p=0 \in M$ and that X_1, \ldots, X_k are the k-nearest neighbors of p. Additionally, for the following theorem to be true, we requiere that at any neighborhood of p, the probability in that neighborhood is greater than 0.

The following theorem uses a special inequality from Chernoff-Okamoto, and it's crucial in the idea behind this generalization.

Theorem 3.3 (Bound k-neighbors). For any sufficiently large C > 0, we have that, 352 there exists n_0 such that, with probability 1, for every $n \geq n_0$,

$$R(n) \le f_{p,P,C}(n) = O(\sqrt[d]{\ln(n)/n}),$$
 (3.2.3) 354

where the function $f_{p,P,C}$ is a deterministic function which depends on p, P and C.

356 .

The following theorem, although it does not require concentration inequalities, is important for connecting the idea of the previous theorem to the main frame. Let $\pi: R^m \to T_p M$ denote the orthogonal projection on the Tangent Space of M at p. Also, define $W_i := \pi(X_i)$ and then normalize,

$$Z_i := \frac{X_i}{\|X_i\|}, \quad \widehat{W}_i := \frac{W_i}{\|W_i\|}.$$
 (3.2.4)

Theorem 3.4 (Projection Distance Bounds). For any $i < j \le n$,

363 (i)
$$||X_i - \pi(X_i)|| = O(||\pi(X_i)||^2)$$
 (3.2.5)

364 (ii)
$$||Z_i - \widehat{W}_i|| = O(||\pi(X_i)||)$$
 (3.2.6)

365 (iii) The inner products (cosine of angles) can be bounded as it follows:

$$|\langle Z_i, Z_j \rangle - \langle \widehat{W}_i, \widehat{W}_j \rangle| \le Kr, \tag{3.2.7}$$

for a constant $K \in \mathbb{R}$, whenever $r \geq \max(\|\pi(X_i)\|, \|\pi(X_i)\|)$.

What follows is that if we know W_1, \ldots, W_k are behaved similar to a uniformly distributed sample on the sphere \mathbb{S}^d , then, Z_1, \ldots, Z_k (the normalized k-nearest neighbors of p) also behave like they are uniformly distributed on \mathbb{S}^d . The following theorem is made by combining the ideas of the previous theorems.

Theorem 3.5 (Projection's Angle Variance Statistic). For $k = O(\ln n)$, let

$$V_{k,n} = {k \choose 2}^{-1} \sum_{i < j \le k} \left(\arccos \left\langle \widehat{W}_i, \widehat{W}_j \right\rangle - \frac{\pi^2}{2} \right)^2, \tag{3.2.8}$$

and let $U_{k,n} = U_k$ from equation 3.2.2. The following statements hold

(i)
$$k|U_{k,n} - V_{k,n}| \stackrel{n \to \infty}{\longrightarrow} 0$$
, in probability. (3.2.9)

(ii) $\mathbf{E} |U_{k,n} - V_{k,n}| \stackrel{n \to \infty}{\longrightarrow} 0.$

361

367

369

370

371

372

379

380

381

382

384

This last theorem is as far as this document is planned to cover. However, the last result in the paper provides the main statement. It says that if we estimate β_d as we did with $U_{k,n}$ from 3.5, and then, extract \hat{d} from the interval where $U_{k,n}$ is located, it follows that,

Theorem 3.6 (Consistency). When $n \to \infty$,

$$\mathbf{P}\{\hat{d} \neq d\} \to 0.$$

3.3 Proofs

Proof Theorem 3.2: The even and the odd cases must be distinguished:

(1): When d = 2k + 2 is even: In the first place, remember that,

$$\lim_{k \to \infty} \sum_{j=1}^{k} j^{-2} = \frac{\pi^2}{6}.$$
 388

386

389

391

393

It follows from the equation 3.2.1 that

$$\beta_d = \frac{\pi^2}{12} - 2\sum_{j=1}^k (2j)^{-2} = \frac{\pi^2}{12} - \frac{1}{2}\sum_{j=1}^k j^{-2}$$
$$= \frac{1}{2}\sum_{j=k+1}^\infty j^{-2}.$$
390

Since $(j^{-2})_{j\in\mathbb{N}}$ is a monotonically decreasing sequence, it follows that

$$\frac{1}{d} = \frac{1}{2k+2} = \frac{1}{2} \int_{k+1}^{\infty} x^{-2} dx$$

$$\leq \beta_d \leq \frac{1}{2} \int_{k+1/2}^{\infty} x^{-2} dx$$

$$= \frac{1}{2k+1} = \frac{1}{d-1}.$$
392

(2): When d = 2k + 3 is odd: On the other hand, note that

$$\lim_{k \to \infty} \sum_{j=1}^{k} (2j-1)^{-2} = \lim_{k \to \infty} \sum_{j=1}^{2k-1} j^{-2} - \sum_{j=1}^{k-1} (2j)^{-2}$$

$$= \lim_{k \to \infty} \sum_{j=1}^{2k-1} j^{-2} - \frac{1}{4} \sum_{j=1}^{k-1} j^{-2}$$

$$= \frac{\pi^2}{6} - \frac{\pi^2}{24} = \frac{\pi^2}{8}$$
394

Hence,

$$\beta_d = \frac{\pi^2}{4} - 2\sum_{j=1}^k (2j-1)^{-2}$$

$$= 2\sum_{j=k+1}^\infty (2j-1)^{-2}.$$
396

3 Application to Estimation of Data Dimension

Using a similar argument we conclude that

$$\frac{1}{d} = \frac{1}{2k+1} = 2 \int_{k+1}^{\infty} (2x-1)^{-2} dx$$

$$\leq \beta_d \leq 2 \int_{k+1/2}^{\infty} (2x-1)^{-2} dx$$

$$= \frac{1}{2k+2} = \frac{1}{d-1}.$$

399

400 Proof Theorem 3.3: The volume of a d-sphere of radius r is equal to:

$$v_d r^d = \frac{\pi^{d/2}}{\Gamma(\frac{n}{2}+1)} r^d.$$

Where v_d is the volume of the unit d-sphere. For the assumptions we made on P and M around p=0, we can say that for any r>0, there's a percent (greater than 0) of the sample that is within a range r from p. This proportion is subordinated only by the volume of a d-sphere of radius r and a constant $\alpha:=\alpha(P)$ that depends on the distribution P:

$$\rho = \mathbf{P}\{X \in M : |X| < r\} \ge \alpha v_d r^d > 0.$$

We can now define a binomial process based on how many neighbors does p has within a range r. Let $N=N_r\sim \mathrm{Bi}(n,\rho)$ be the number of neighbors, using Theorem 3.1 with $\lambda=n\rho$ and $t=\frac{\lambda}{2}$ we obtain,

$$\mathbf{P}\{N \le \lambda - t\} = \mathbf{P}\{2N \le \lambda\} \le \exp(-\lambda/8).$$

Since $n(\alpha v_d r^d) \leq n\rho = \lambda$, it follows that, by choosing r(n) such that

$$r(n) = \left(\frac{C}{\alpha v_d} \cdot \frac{\ln n}{n}\right)^{1/d} = O(\sqrt[d]{\ln(n)/n}), \tag{*}$$

414 and thus,

397

398

407

411

$$C \ln n = n(\alpha v_d r(n)^d) \le \lambda,$$

416 we obtain:

$$P\{2N < C \ln n\} < \mathbf{P}\{2N < \lambda\},\$$

418 and,

417

421

$$\exp(-\lambda/8) \le \exp\left(\frac{-C\ln n}{8}\right) = n^{-C/8}.$$

420 Therefore,

$$P\{2N \le C \ln n\} \le n^{-C/8}.$$

3 Application to Estimation of Data Dimension

Finally, with this last expression we proved that if $k = \frac{C}{2} \ln n$, then the k-neighbors of p are contained in the ball of radius r(n) with a probability that converges exponentially to 1.

4 Applications to graph theory

4.1 The Azuma-Hoeffding Inequality

Definition 4.1. A sequence X_0, \ldots, X_n of random variables is consider a martingale if, for every $i \leq n$,

$$\mathbf{E}[X_{i+1}|X_i,\ldots,X_0] = X_i$$

A random graph G = G(n) is a graph that has n labeled vertices and produces an edge between 2 of them with a probability. Let v_1, \ldots, v_n denote the vertices of G and e_1, \ldots, e_m all of the $\binom{n}{2}$ potential edges that G can produce. Also, define each edge's indicator function as it follows,

$$\mathbb{1}_{e_k \in G} = \begin{cases} 1, & e_k \in G \\ 0, & \text{otherwise} \end{cases}$$

An edge exposure martingale is a sequence of random variables defined as the expected value of a function f(G) which depends on the information of the first j potential edges:

$$X_j = \mathbf{E}\left[f(G) \mid \mathbb{1}_{e_1 \in G}, \dots, \mathbb{1}_{e_j \in G}\right]$$

Since all of the graph information is contained in its edges, the sequence transitions from no information: $X_0 = E(f(G))$, to the true value of the function: $X_m = f(G)$.

Similarly, one can define a martingale which depends on how many vertices are revealed.

The vertex exposure martingale is defined as it follows,

$$X_i = \mathbf{E} [f(G) \mid \mathbb{1}_{\{v_k, v_i\} \in G}, \ k < j \le i]$$

The following inequality is to some extend an adapted version of Hoeffding inequality 2.3 for martingale random variables. If we stablish a limit for which a martingale varies from one step to another, the theorem then states that we can exponentially bound the tails of its distribution:

Theorem 4.1 (Azuma-Hoeffding inequality). Let X_0, \ldots, X_m be a martingale with $X_0 = 0$, and

$$|X_{i+1} - X_i| \le 1, \quad \forall i < m.$$

450 Then, for t > 0,

429

434

437

442

443

444

449

451

$$\mathbf{P}\{X_m > t\sqrt{m}\} < e^{-t^2/2}.$$

Proof. First, we must prove another inequality.

Lemma 4.2. Let Y_1, \ldots, Y_m be random variables such that $|Y_i| \le 1$ and $\mathbf{E} Y_i = 0$, and let $S_m = \sum_{i=1}^m Y_i$. Then, for $\lambda > 0$,

$$\mathbf{E}\left[e^{\lambda Y_i}\right] \leq e^{\lambda^2/2}.$$

456

461

463

464

466

468

As the picture above shows, h(x) is the line that passes through the points x=-1 and x=1 in the function $e^{\lambda x}$. Since $e^{\lambda x}$ is convex $(\lambda>0)$, it follows that $h(x)\geq e^{\lambda x}$ for $x\in[-1,1]$. Thus,

$$\mathbf{E}\left[e^{\lambda Y_i}\right] \leq \mathbf{E}\left[h(Y_i)\right]$$

$$(h \text{ is linear}) = h(\mathbf{E}|Y_i) = h(0)$$

$$= \frac{e^{\lambda} + e^{-\lambda}}{2} = \cosh \lambda.$$

Finally, $(2k)! \ge 2^k \cdot k!$, for every $k \in \mathbb{N}$. Thus,

$$\mathbf{E}\left[e^{\lambda Y_{i}}\right] \leq \cosh \lambda \ = \ \sum_{k=0}^{\infty} \frac{\lambda^{2k}}{(2k)!} \ \leq \ \sum_{k=0}^{\infty} \frac{\lambda^{2k}}{2^{k} \cdot k!} \ = \ e^{\lambda^{2}/2}.$$

Now, define $Y_i = X_i - X_{i-1}$. Then, by hypothesis, $|Y_i| \leq 1$ and

$$\mathbf{E}[Y_i|X_{i-1},\dots,X_0] = \mathbf{E}[X_i - X_{i-1}|X_{i-1},\dots,X_0] = X_i - X_i = 0.$$

Therefore, we can apply the previous inequality to assert,

$$\mathbf{E}\left[e^{\lambda Y_i}|X_{i-1},\dots,X_0\right] \le e^{\lambda^2/2}.\tag{\star}$$

Using the formula $E[XY] = E_X[XE[Y|X]]$ we assert that

$$\mathbf{E} e^{\lambda X_m} = \mathbf{E} \left[\prod_{i=1}^{m-1} e^{\lambda Y_i} \cdot \mathbf{E} \left[e^{\lambda Y_m} | X_{m-1}, \dots, X_0 \right] \right]$$

We repeat this process n times:

$$\mathbf{E} e^{\lambda X_{m}} = \mathbf{E} \prod_{i=1}^{m} e^{\lambda Y_{i}}$$

$$= \mathbf{E} \left[\prod_{i=1}^{m-1} e^{\lambda Y_{i}} \cdot \mathbf{E} \left[e^{\lambda Y_{m}} | X_{m-1}, \dots, X_{0} \right] \right] \overset{(\star)}{\leq} \mathbf{E} \left[\mathbf{E} \prod_{i=1}^{m-1} e^{\lambda Y_{i}} \right] e^{\lambda^{2}/2}$$

$$= \mathbf{E} \left[\prod_{i=1}^{m-2} e^{\lambda Y_{i}} \cdot \mathbf{E} \left[e^{\lambda Y_{m-1}} | X_{m-2}, \dots, X_{0} \right] \right] e^{\lambda^{2}/2} \overset{(\star)}{\leq} \mathbf{E} \left[\mathbf{E} \prod_{i=1}^{m-2} e^{\lambda Y_{i}} \right] e^{2\lambda^{2}/2}$$

$$= \vdots \qquad \leq \qquad \vdots$$

$$= \mathbf{E} \left[\mathbf{E} \left[e^{\lambda Y_{1}} | X_{0} \right] \right] e^{\lambda^{2}/2} \qquad \leq \qquad e^{m\lambda^{2}/2}$$

At last, by setting $\lambda = t/\sqrt{m}$ we obtain,

474

477

481

482

$$\mathbf{P}\{X_{m} > t\sqrt{m}\} = \mathbf{P}\{e^{\lambda X_{m}} > e^{\lambda t\sqrt{m}}\}$$

$$(Markov) \leq \mathbf{E}\left[e^{\lambda X_{m}}\right]e^{-\lambda t\sqrt{m}}$$

$$\stackrel{(*)}{\leq} e^{m\lambda^{2}/2} \cdot e^{-\lambda t\sqrt{m}}$$

$$(\lambda = t/\sqrt{m}) = e^{t^{2}/2}e^{-t^{2}} = e^{-t^{2}/2}.$$

Remark. We assumed that $X_0 = 0$ to lighten the notation. However, we can remove

this restriction by replacing X_m with $X_m - X_0$ in some crucial steps:

$$X_m - X_0 = \sum_{i=1}^n Y_i$$

$$\stackrel{(*)}{\Longrightarrow} \mathbf{E} e^{\lambda(X_m - X_0)} = \mathbf{E} \prod_{i=1}^m e^{\lambda Y_i} \le e^{m\lambda^2/2}$$

$$\stackrel{(\bullet)}{\Longrightarrow} \mathbf{P}\{X_m - X_0 > t\sqrt{m}\} \le e^{-t^2/2}$$

In the following section we are going to present an application of the Azuma-Hoeffding inequality to prove the convergence to the mean of a fast (but not effective) approximation algorithm for the *Travelling Salesman Problem*.

4.2 An Heuristic Algorithm for the Travelling Salesman Problem

Let $X_1, ..., X_N$ be a sample of N uniformly distributed points in a compact square $[0, L] \times [0, L]$. The algorithm divides this square in M stripes of width L/M each. Then,

it connects each of the points in each of the stripes vertically and connects the top-most of one stripe with the top-most of the next one (or viceversa as the image below shows).

In the paper Gzyl et al. (1990) the authors found that the optimal number of stripes is $M^* = \lfloor 0.58N^{1/2} \rfloor$. If t_N is the TSP solution distance for our sample and d_N is the algorithm's answer with the optimal M^* , then the error is asymptotically:

$$\frac{d_N - t_N}{t_N} \approx 0.23. \tag{490}$$

The result that we are going to show is that d_n is very concentrated around its mean. In order to prove this, some modifications must be made to the algorithm's trajectory. Let e_N be the distance of a new trajectory that satisfies the following conditions:

- For any empty stripe in the plane we sum the length of its diagonal $\sqrt{L^2 + L^2/M^2}$ and then it skips the empty stripe.
- When there are no empty stripes, $e_N = d_N$

Since the probability that any given stripe is empty converges exponentially to 0,

$$(1 - 1/M)^{N} = (1 - 0.58^{-1}N^{-1/2})^{N}$$

$$= ((1 - 1/M)^{M})^{0.58^{-1}N^{1/2}}$$

$$\sim \exp(-0.58^{-1}N^{1/2}).$$
⁴⁹⁸

Let $\mathcal{A}_i := \sigma\{X_1, \dots, X_i\}$ denote the sigma algebra corresponding to revealing the first i points, $\mathcal{A}_0 = \{\emptyset, [0, L]^2\}$. The expected value of the trajectory e_N given that we only know the positions of the first i points in the sample is $\mathbf{E}(e_N|\mathcal{A}_i)$. Define

$$Z_i = \mathbf{E}\left(e_N | \mathcal{A}_i\right) - \mathbf{E}\left(e_N | \mathcal{A}_{i-1}\right),\tag{502}$$

As the difference of this expectations when we reveal 1 more point. Note that since

$$\mathbf{E}\left(Z_{i}|\mathcal{A}_{i}\right) = \mathbf{E}\left(e_{N}|\mathcal{A}_{i},\mathcal{A}_{i}\right) - \mathbf{E}\left(e_{N}|\mathcal{A}_{i-1},A_{i}\right) = \mathbf{E}\left(e_{N}|\mathcal{A}_{i}\right) - \mathbf{E}\left(e_{N}|\mathcal{A}_{i}\right) = 0,$$

 Z_1, \ldots, Z_N is the difference sequence of a vertex exposure martingale.

Define $e_N^{[i]}$ as the distance of the trajectory when we remove the *i*-th point from the sample. Intuitively from the triangle inequality, we can obtain the following inequalities:

$$e_N^{[i]} \le e_N \le e_N^{[i]} + 2L/M,$$

meaning that revealing one point cannot increase more than 2 widths the distance of the trajectory. Thus,

$$||Z_i||_{\infty} = \sup_{X_1,...,X_N} ||\mathbf{E}(e_N|\mathcal{A}_i) - \mathbf{E}(e_N|\mathcal{A}_{i-1})|| \le 2L/M..$$
 (*)

On the other hand,

$$e_N - \mathbf{E} e_N = \mathbf{E} (e_N | \mathcal{A}_N) - \mathbf{E} (e_N | \mathcal{A}_0) = \sum_{i=1}^N Z_i.$$

514 Therefore, by the Azuma-Hoeffding inequality,

$$\mathbf{P}\{|e_N - \mathbf{E} e_N| > t\} \le 2 \exp\left(\frac{-t^2}{2} \sum_{i=1}^N \|Z_i\|_{\infty}^2\right).$$

516 Finally,

517

508

$$\sum_{i=1}^{N} \|Z_i\|_{\infty}^2 \le \frac{4NL^2}{M^2},$$

518 which implies that

$$\mathbf{P}\{|e_N - \mathbf{E} e_N| > t\} \le 2 \exp\left(\frac{-t^2}{2} \sum_{i=1}^N \frac{4NL^2}{M^2}\right) \sim e^{-t^2 KN},$$

for some $K \in \mathbb{R}^+$.

4.3 Lipschitz Condition and Three Additional Examples

Three examples from Alon and Spencer (2016) will be exposed to illustrate some ideas that can be associated with the main inequality of this chapter. Furthermore, the usefulness of the Azuma-Hoeffding inequality in the study of graphs and metric spaces can be used in a more general frame by defining the Lipschitz condition.

Let $\Omega = A^B$ be the set of all functions $g: B \to A$ for which a probability measure is assigned

$$\mathbf{P}\{g(b)=a\}=p(a,b),\quad \sum_{a\in A}p(a,b)=1.$$

All the values g(b) are mutually independent. Now, fix a chain of sets

$$\emptyset = B_0 \subset B_1 \subset \ldots \subset B_m = B, \quad \mathcal{B} = \{B_i\}_{i=0}^m$$

529

534

535

536

537

538

539

541

542

543

544

545

546

547

548

549

and let $L: A^B \to \mathbb{R}$ be a functional. The martingale sequence X_0, \ldots, X_m associated with L and \mathcal{B} is defined as it follows: For a fixed $h \in A^B$:

$$X_i(h) = \mathbf{E} \left[L(g) \mid g(b) = h(b), \ \forall b \in B_i \right].$$

What this means is that, given that we know the values in B_i of a function h, the martingale at the i-th step predicts the outcome of L(h) based only on this information. The following definition and theorem have the purpose to make our lives easier when talking about the 'boundness' of a martingale.

Definition 4.2. A functional L is said to satisfy the Lipschitz condition if for every i < m: Whenever two functions g, g' differ only in $B_{i+1} - B_i$,

$$|L(g) - L(g')| \le 1.$$

When we say that the outcome of L won't change by more than 1 unit from one revelation to another, it means that it has the Lipschitz condition. The following theorem will connect this idea to Azuma's inequality:

Theorem 4.3. The martingale associated with a functional L with the Lipschitz condition satisfies:

$$|X_{i+1}(g) - X_i(g)| \le 1, \quad \forall g \in A^B, \ \forall i < m.$$

Proof. The proof is adapted from Alon and Spencer (2016) chapter 7. In the original proof, the author skips many steps that I believe are not trivial. Thus, I decided to restructure the proof using the same notation they used in the source material:

Preliminaries 550

Our goal is to calculate $|X_{i+1}(h) - X_i(h)|$, so fix $h \in A^B$, $i \in \mathbb{N}$ and define

$$p_f^{(j)} = \mathbf{P}\{g = f \mid g(b) = h(b), \ \forall b \in B_j\}. \ \forall j \in \mathbb{N}.$$

Now, $\forall j \in \mathbb{N}$, define $H^{(j)} \subset A^B$ to be the set of functions f in which h(b) = f(b) for every $b \in B_j$. In notation,

$$H^{(j)} = \{ f \in A^B : h(b) = f(b), \ \forall b \in B_j \}.$$

Note that if $h' \notin H^{(j)}$ and g(b) = h(b) for every $b \in B_j$, then it would be imposible for g to be equal to h' because there would exist $b^* \in B_j$ such that $h'(b^*) \neq h(b^*) = g(b^*)$.

Thus, if $h' \notin H^{(j)}$, then $p_{h'}^{(j)} = 0$. This also implies that

$$\sum_{h' \in H^{(j)}} p_{h'}^{(j)} = 1$$
 559

Rewriting X_{i+1}

From now on, H without any index refers to $H^{(i+1)} =: H$

$$X_{i+1}(h) = \mathbf{E} [L(g) \mid g(b) = h(b), \ \forall b \in B_{i+1}].$$

$$= \sum_{h' \in A^B} L(h') \cdot \mathbf{P} \{g = h' \mid g(b) = h(b), \ \forall b \in B_{i+1}\}$$

$$= \sum_{h' \in H} L(h') \cdot p_{h'}^{(i+1)}$$

Rewriting X_i

562

565

568

Like the previous step,

$$X_i(h) = \sum_{f \in H^{(i)}} L(f) p_f^{(i)}$$

However, we want to write the sum of $X_i(h)$ in terms of $h' \in H$. Now, for $h' \in H$, let H[h'] be the set of h^* such that h^*, h' that can only differ in $B_{i+1} - B_i$. In notation,

$$H[h'] = \left\{ h^* : \frac{h^*(b) = h'(b), \ \forall b \in B - B_{i+1}}{h^*(b) = h'(b), \ \forall b \in B_i} \right\}$$

Also, define for $h^* \in H[h']$

$$q_{h^*} = \mathbf{P}\{g(b) = h^*(b), \ \forall b \in B_{i+1} \mid g(b) = h(b), \ \forall b \in B_i\}.$$

571 It follows from the definition of H[h'] and H that

If is the notation I'm going to use for the disjoint union. Note that if $h'_1 \neq h'_2 \in H$, then both must differ in some $b \in B - B_{i+1}$. Thus, the following unions are disjoint

Thus, we can make a partition of $X_i(h)$ iterating over H and H[h']:

$$\mathbf{E}\left[L(g) \mid g(b) = h(b), \ \forall b \in B_i\right] = \sum_{f \in H^{(i)}} L(f) p_f^{(i)}$$

$$= \sum_{h' \in H} \sum_{h^* \in H[h']} L(h^*) p_{h^*}^{(i)}$$
577

576

578

586

588

Finally, for $h' \in H$ and $h^* \in H[h']$,

$$p_{h^*}^{(i)} = \mathbf{P}\{g = h^* \mid g(b) = h(b), \ \forall b \in B_i\}$$

$$= \mathbf{P}\{g = h^* | g(b) = h^*(b), \ \forall b \in B_{i+1}\} \cdot \mathbf{P}\{g(b) = h^*(b), \ \forall b \in B_{i+1} | g(b) = h^*(b), \ \forall b \in B_i\}$$

$$= \mathbf{P}\{g = h' | g(b) = h(b), \ \forall b \in B_{i+1}\} \cdot q_{h^*}$$

$$= p_{h'}^{(i+1)} \cdot q_{h^*}$$

$$\implies X_i(h) = \sum_{h' \in H} \sum_{h^* \in H[h']} [L(h^*)q_{h^*}] \cdot p_{h'}^{(i+1)}$$
580
581

Bound for
$$|X_{i+1} - X_i|$$

Combine the results from the two previous sections. For the second line, remember that $\sum_{h^* \in H[h']} q_{h^*} = 1$

$$|X_{i+1}(h) - X_{i}(h)| = \left| \sum_{h' \in H} p_{h'}^{(i+1)} \left[L(h') - \sum_{h^* \in H[h']} L(h^*) q_{h^*} \right] \right|$$

$$= \left| \sum_{h' \in H} p_{h'}^{(i+1)} \sum_{h^* \in H[h']} q_{h^*} (L(h') - L(h^*)) \right|$$

$$\leq \sum_{h' \in H} p_{h'}^{(i+1)} \sum_{h^* \in H[h']} q_{h^*} |L(h') - L(h^*)|$$

$$\leq \sum_{h' \in H} p_{h'}^{(i+1)} \sum_{h^* \in H[h']} q_{h^*} |L(h') - L(h^*)|$$

By hypothesis, $|L(h') - L(h^*)| \le 1$. Thus,

$$|X_{i+1}(h) - X_i(h)| \le \sum_{h' \in H} p_{h'}^{(i+1)} \sum_{h^* \in H[h']} q_{h^*} = \sum_{h' \in H} p_{h'}^{(i+1)} = 1.$$

With this theorem, we can talk with more freedom about the boundness of a martingale. The following three examples will illustrate some uses for Azuma's inequality in conjunction with the previous theorem. 590

Example 1

Let $g \in [n]^n$ be a random vector (uniformly chosen) with n entries, in which every entry is in $[n] = \{1, ... n\}$. Define L(g) to be the amount of number that are not included in the vector,

$$L(g) = \#\{k : g_i \neq k, \ \forall i \in [n]\} = \sum_{k=1}^n \mathbb{1}_{k \notin g}$$

597 For example,

596

$$L(1, 3, 1, 6, 4, 3) = 2$$
. (because 2 and 5 are missing)

We can understand the process of choosing g as independently assigning a random number in each of its coordinates. Thus, for a number $k \in \{1, ..., n\}$, the probability that this number is not in any of the entries of the vector is

$$\mathbf{E} \, \mathbb{1}_{k \notin g} = \mathbf{P} \{ g_i \neq k, \ \forall i \} = \prod_{i=1}^n P \{ g_i \neq k \} = \left(1 - \frac{1}{n} \right)^n.$$

603 Hence,

602

604

606

611

614

$$\mathbf{E} L(g) = \sum_{k=1}^{n} \mathbf{P} \{ g_i \neq k, \ \forall i \} = n \left(1 - \frac{1}{n} \right)^n \sim \frac{n}{e}.$$

Now, define $B_i = \{1, ..., i\}$

$$\begin{array}{rcl} X_0(h) & = & \mathbf{E} \ L(g) \sim \frac{n}{e}, \\ X_1(h) & = & \mathbf{E} \ [L(g) \mid g_1 = h_1], \\ \vdots & = & \vdots \\ X_j(h) & = & \mathbf{E} \ [L(g) \mid g_i = h_i, \ \forall i \leq j], \\ \vdots & = & \vdots \\ X_n(h) & = & \mathbf{E} \ [L(g) \mid g_i = h_i, \ \forall i \leq n] = L(h). \end{array}$$

The value of L(g) can vary at most by 1 for each coordinate we reveal, so L(g) has the Lipschitz condition. Then, we use theorem 4.3 and Azuma-Hoeffding inequality to conclude that

$$\mathbf{P}\{|L(g) - \frac{n}{e}| > t\sqrt{n}\} < 2e^{-t^2/2}.$$

Example 2

Here's a case where using theorem 4.3 will give us worse results. Let $\sigma_1, \ldots, \sigma_n$ be Rademacher random variables, and v_1, \ldots, v_n fixed vectors in the closed unit ball. Define

$$X = \left| \sum_{i=1}^{n} \sigma_i v_i \right|.$$

The goal here is to find an exponential bound for the tail distribution of X. We create a martingale that exposes the value of σ_i one i at a time. Let $\sigma' = (\sigma'_1, \dots, \sigma'_n) \in \{-1, 1\}^n$, 616

$$X_{0}(\sigma') = \mathbf{E} \mid \sum_{i=1}^{n} \sigma_{i} v_{i} \mid X_{1}(\sigma') = \mathbf{E} \left[\mid \sum_{i=1}^{n} \sigma_{i} v_{i} \mid \mid \sigma_{1} = \sigma'_{1}\right]$$

$$\vdots = \vdots$$

$$X_{j}(\sigma') = \mathbf{E} \left[\mid \sum_{i=1}^{n} \sigma_{i} v_{i} \mid \mid \sigma_{i} = \sigma'_{i}, \ \forall i \leq j\right]$$

$$\vdots = \vdots$$

$$X_{n}(\sigma') = \mathbf{E} \left[\mid \sum_{i=1}^{n} \sigma_{i} v_{i} \mid \mid \sigma_{i} = \sigma'_{i}, \ \forall i \leq n\right] = X.$$

The value on one coordinate can alter X to a maximum of 2 units. Thus, we could apply theorem 4.3 to conclude that $|X_{i+1} - X_i| \leq 2$. However, note that if σ' , σ^* are two n-tuple that only differ on one coordinate, it follows from linearity of expectation that

$$X_i(\sigma') = \frac{1}{2}(X_{i+1}(\sigma^*) + X_{i+1}(\sigma'))$$
622

619

620

621

623

627

632

634

635

$$\implies X_i(\sigma') - X_{i+1}(\sigma') = \frac{1}{2}(X_{i+1}(\sigma^*) - X_{i+1}(\sigma'))$$
624

$$\implies |X_i(\sigma') - X_{i+1}(\sigma')| = \frac{1}{2}|X_{i+1}(\sigma^*) - X_{i+1}(\sigma')| \le 1.$$

Thus, we can apply now Azuma's inequality and conclude the following

$$\mathbf{P}\{X - EX > t\sqrt{n}\} < e^{-t^2/2},$$

$$\mathbf{P}\{X - EX < -t\sqrt{n}\} < e^{-t^2/2}.$$

Example 3

Let ρ denote the Hamming metric in the space $\{0,1\}^n$, that is

$$\rho(x,y) = \#\{i : x_i \neq y_i\}.$$

Let B(A, s) be the set $\{y : \exists x \in A, \ \rho(x) \leq s\}$. The following theorem holds,

Theorem 4.4. Let $\varepsilon, t > 0$ satisfy $\varepsilon = e^{-t^2/2}$. Then,

$$|A| \ge \varepsilon 2^n \implies |B(A, 2t\sqrt{n})| \ge (1 - \varepsilon)2^n.$$

Solution: Assign a probability space to $\{0,1\}^n$ where all the points have the same probability of being chosen at random. Let $X(y) = \min_{x \in A} \rho(x,y)$, then create a martingale X_0, \ldots, X_n based on the number of coordinates of $\{0,1\}^n$ exposed, that is,

$$X_j(y) = \mathbf{E}\left[\min_{x \in A} \rho(x, z) \mid z_i = y_i, \ \forall i \le j\right].$$

4 Applications to graph theory

In this case, note that if y, y' differ in just one coordinate, then

$$|X(y) - X(y')| \le 1.$$

 $_{643}$ So we can use Azuma's inequality to conclude that

$$\mathbf{P}\{X < \mathbf{E} X - t\sqrt{n}\} < e^{-\lambda^2/2} = \varepsilon$$

$$\mathbf{P}\{X > \mathbf{E} X + t\sqrt{n}\} < e^{-\lambda^2/2} = \varepsilon.$$

Finally, since $P\{X=0\}=|A|2^{-n}\geq \varepsilon$, it follows that $\mathbf{E}\,X\leq t\sqrt{n}$. Therefore,

$$\mathbf{P}\{X > 2t\sqrt{n}\} < \varepsilon,$$

and as a consequence,

$$|B(A, 2t\sqrt{n})| = 2^n \mathbf{P}\{X > 2t\sqrt{n}\} \ge 2^n (1 - \varepsilon).$$

5 Applications to Vapnik–Chervonenkis theory

5.1 Sets with Polynomial Discrimination

The version of the Glivenko-Cantelli inequality we showed on chapter 2 can be generalized in multiple ways. First, we have to make some modifications in the proof of this theorem to make it work not just on intervals of the real line. The idea is to extend this property to a specific class of sets for which the final inequality will still be satisfied:

$$\mathbf{P}\{\|P_n - P\| > \varepsilon\} \le p(n) \cdot e^{-n\varepsilon^2/32}, \text{ for a polynomial } p(n).$$
 (5.1.1)

651

652

653

654

656

657

659

660

662

667

669

671

Remember from chapter 2 that:

- X_i is a i.i.d. sample from a probability measure P.
- $P_n(A) = n^{-1} \sum \mathbb{1}_{X_i \in A}$ is the empirical measure given by n sample points.
- σ_i is a Rademacher random variable.

In chapter 2 we assumed that P is only defined on real intervals $(-\infty, t)$. Then, in the section maximal inequality, we strategically defined (n+1) different disjoint intervals when ordering the sample 665

$$A_0 = (-\infty, X_{(1)}], A_1 = (X_{(1)}, X_{(2)}], \dots, A_{n-1} = (X_{(n-1)}, X_{(n)}], A_n = (X_{(n)}, \infty].$$
 666

In each one of these intervals, we fixed a representative $t_j \in A_j$ so the function

$$P_n^{\circ}(B) = n^{-1} \sum_{i=1}^n \sigma_i \mathbb{1}_{X_i \in B},$$
668

reaches its supremum in one of the sets $B_k = (-\infty, t_k)$:

$$\implies \exists k \le n : \|P_n^{\circ}\| = |P_n^{\circ}(B_k)|.$$

Therefore, the (n+1) term appears in the equation 2.1.3.

Quadrants in \mathbb{R}^2

675

676

677

678

679

680

683

686

689

Now, imagine that instead of (n+1) intervals we take $(n+1)^2$ quadrants in the form $(-\infty, a_i) \times (-\infty, b_j) \subseteq \mathbb{R}^2$:

Let $A_{i,j} = (-\infty, a_i) \times (-\infty, b_j)$ be the quadrants described previously. In this example, we choose a_i and b_i in such way that the a_i 's separate the sample horizontally and b_j vertically (similar to how we did with the t_j 's in the 1-D case). Now, let $\mathscr{A}_n = \{A_{i,j}\}_{i,j \leq n}$, and let \mathscr{A} be the collection of all quadrants in \mathbb{R}^2 . We will see that even though $\mathscr{A}_n \subset \mathscr{A}$ is finite, it contains all of the information of P_n° .

Let X_j^i be the *i*-th coordinate of the point X_j , the formula for P_n° at a point $(x,y) \in \mathbb{R}^2$ is:

$$P_n^{\circ}(x,y) = P_n^{\circ}((-\infty,x) \times (-\infty,y)) = n^{-1} \sum_{k=1}^n \sigma_i \mathbb{1}_{X_k^1 < x} \cdot \mathbb{1}_{X_k^2 < y}$$

Then, because of the way we chose a_i and b_j , there exists i, j such that $x \in (a_{i-1}, a_i)$ and $y \in (b_{j-1}, b_j)$. Thus,

$$\forall k \le n: \begin{array}{l} \mathbbm{1}_{X_k^1 < x} = \mathbbm{1}_{X_k^1 < a_i} \\ \mathbbm{1}_{X_k^2 < y} = \mathbbm{1}_{X_k^2 < b_i} \end{array}.$$

It follows that all the relevant information of \mathscr{A} is contained in \mathscr{A}_n since $P_n^{\circ}(x,y) = P_n^{\circ}(a_i,b_j) = P_n(A_{i,j})$ for some $i,j \in \mathbb{N}$. Thus, there exist $k_1,k_2 \in \mathbb{N}$ such that

$$||P_n^{\circ}||_{\mathscr{A}} = \max_{A \in \mathscr{A}_n} |P_n^{\circ}(A)| = |P_n(A_{k_1,k_2})|.$$

Hence,

$$\mathbf{P}\{\|P_{n}^{\circ}\|_{\mathscr{A}} > \frac{1}{4}\varepsilon \mid X\} \leq \sum_{i,j \leq n} \mathbf{P}\{|P_{n}^{\circ}(A_{i,j})| > \frac{1}{4}\varepsilon \mid X\}
\leq (n+1)^{2} \cdot \mathbf{P}\{|P_{n}^{\circ}(A_{k_{1},k_{2}})| > \frac{1}{4}\varepsilon \mid X\}.$$
(5.1.2) 691

The rest of the steps in the proof of the Glivenko-Cantelli theorem (2.4) never depended on the fact that we used intervals (we will elaborate further in the next section). Therefore, the formula 5.1.1, should be changed to:

$$\mathbf{P}\{\|P_n - P\|_{\mathscr{A}} > \varepsilon\} \le (n+1)^2 \cdot e^{-n\varepsilon^2/32}$$
 (5.1.3) 695

$$\implies \mathbf{P}\{\|P_n - P\|_{\mathscr{A}} > \varepsilon\} \xrightarrow{p} 0.$$

697

699

700

701

702

706

707

718

Note that the reason why the uniform convergence worked in the previous example, was because the geometry of the collection \mathscr{A} allowed us to find a suitable sub-collection whose cardinality grows as polynomial of n. Otherwise, if we take, for instance, $\mathscr{A} = \mathcal{R}^2$ as the collection of all the open sets in \mathbb{R}^2 , then, there are at least 2^n different sets in \mathscr{A} because, since \mathcal{R}^2 is a metric space, we can always separate k of the sample points from the rest of the sample. Thus, the Glivenko-Cantelli inequality won't hold anymore:

$$\mathbf{P}\{\|P_n - P\|_{\mathbb{R}^2} > \varepsilon\} \le 2^n \cdot e^{-n\varepsilon^2/32} = e^{n(\log 2 - \varepsilon^2/32)},\tag{5.1.4}$$

which diverges to ∞ when $\varepsilon \leq \sqrt{\log 2^{32}}$. This will introduce us to the definition we're looking for.

Definition 5.1. A collection of sets \mathscr{A} of some space S is said to have a polynomial discrimination of degree v if there exists a polynomial $p(\cdot)$ such that:

- For any given n points $X_1, \ldots, X_n \in S$, there exists a sub-collection \mathcal{A}_n such that for any set $A \in \mathcal{A}$, there exists $B \in \mathcal{A}_n$ that satisfies $\mathbb{1}_{X_i \in A} = \mathbb{1}_{X_i \in B}$ for every $i \leq n$.
- The size of \mathscr{A}_n is at most p(n): $\#\mathscr{A}_n \leq p(n) = O(n^v)$.

An equivalent way to express this definition is to say that for any subspace $S_n = 712$ $\{X_1, \ldots, X_n\} \subset S$, there are at most p(n) different sets with the form $A \cap S_n$ for $A \in \mathscr{A}$:

$$\max_{X_1, \dots, X_n \in S} \#\{A \cap \{X_1, \dots, X_n\} \mid A \in \mathscr{A}\} \le p(n) \le 2^n$$

Remark. For any collection $\mathscr A$ and a sample X_1, \ldots, X_n there exists a sub-collection $\mathscr A_n$ such that

$$\#\mathscr{A}_n = \#\{A \cap \{X_1, \dots, X_n\} \le 2^n.$$

Define the equivalence relationship \simeq as it follows,

$$A \simeq B \iff \forall i \le n: \ \mathbb{1}_{X_i \in A} = \mathbb{1}_{X_i \in B},$$

vhich is in turn equivalent to

728

731

732

721
$$A \simeq B \iff \forall i \leq n: A \cap \{X_1, \dots, X_n\} = B \cap \{X_1, \dots, X_n\}.$$

This equivalence proves that both of the definitions are the same. Then, in order to construct \mathscr{A}_n take one representative in each of the $\#\{A \cap \{X_1, \ldots, X_n\}\}\$ different equivalence classes $[A]_{\sim}$, $A \in \mathscr{A}$.

Another important fact from the previous remark is that, for any collection \mathscr{A} , and any given sample X_1, \ldots, X_n , since for every set $A \in \mathscr{A}$ there exists a set $B \in \mathscr{A}_n$ such that $\mathbb{1}_{X_i \in A} = \mathbb{1}_{X_i \in B}$, $\forall i \leq n$ and $\#\mathscr{A}_n \leq 2^n$, it follows that $\|P_n^{\circ}\|_{\mathscr{A}}$ exists and,

$$\exists A^{\star} \in \mathscr{A}_n : \sup_{A \in \mathscr{A}} \|P_n^{\circ}(A)\| = \max_{B \in \mathscr{A}_n} |P_n^{\circ}(B)| = |P_n^{\circ}(A^{\star})|$$

Similar to the quadrants example in the equations 5.1.2 and 5.1.3, we conclude that if \mathscr{A} has a polynomial discrimination, then

$$\mathbf{P}\{\|P_{n}^{\circ}\| > \frac{1}{4}\varepsilon \mid X\} \leq \sum_{A \in \mathscr{A}_{n}} \mathbf{P}\{|P_{n}^{\circ}(A^{\star})| > \frac{1}{4}\varepsilon \mid X\}$$

$$= \#\mathscr{A}_{n} \cdot \mathbf{P}\{|P_{n}^{\circ}(A^{\star})| > \frac{1}{4}\varepsilon \mid X\} \cdot$$

$$\leq p(n) \cdot \mathbf{P}\{|P_{n}^{\circ}(A^{\star})| > \frac{1}{4}\varepsilon \mid X\}.$$

$$(5.1.5)$$

$$\Rightarrow \mathbf{P}\{\|P_n - P\|_{\mathscr{A}} > \varepsilon\} \le p(n) \cdot e^{-n\varepsilon^2/32}$$

$$\Rightarrow \mathbf{P}\{\|P_n - P\|_{\mathscr{A}} > \varepsilon\} \xrightarrow{p} 0.$$
(5.1.6)

It's clear that \mathbb{R}^2 doesn't have polynomial discrimination. Another example of a class of sets without discrimination degree is the collection of closed convex sets on $\mathbb{S}^1 \subset \mathbb{R}^2$. For every of the 2^n subsets of any n points on the sphere, we can find a convex polygon that captures k of the points and excludes the rest. We are going to show how this works for n=5:

Figure 5.1: All 32 unique subsets of 5 points on \mathbb{S}^1

5.2 Vapnik-Chervonenkis inequality

In the previous section we conclude that the uniform law of large numbers is satisfied for collections of sets with polynomial discrimination. 741

Definition 5.2. Let $N_{\mathscr{A}}(X_1,\ldots,X_n)$ be the number of different sets with the form $\{X_1,\ldots,X_n\}\cap A$ for $A\in\mathscr{A}$

$$N_{\mathscr{A}} = \#\{\{X_1, \dots, X_n\} \cap A \; ; \; A \in \mathscr{A}\}.$$

739

The n-th shatter coefficient of the collection $\mathscr A$ is the maximum of $N_{\mathscr A}$ over all possible 745 points in S:

$$s(\mathscr{A}, n) = \max_{X_1, \dots, X_n \in S} N_{\mathscr{A}}(X_1, \dots, X_n) \le 2^n.$$

Finally, the Vapnik–Chervonenkis dimension is defined as the largest integer k for which $s(\mathscr{A}, n) = 2^k$,

$$V_A = \operatorname*{argmax}_{k \in \mathbb{N}} \{ s(\mathscr{A}, k) = 2^k \} = \operatorname*{argmin}_{k \in \mathbb{N}} \{ s(\mathscr{A}, k) < 2^k \} - 1.$$

If $s(\mathscr{A}, n) = 2^n$ for every $n \in \mathbb{N}$ or equivalently if \mathscr{A} doesn't have polynomial discrimination, we say that $V_A = \infty$.

Theorem 5.1 (Vapnik-Chervonenkis inequality).

$$\mathbf{P}\{\|P_n - P\|_{\mathscr{A}} > \varepsilon\} \le 8s(\mathscr{A}, n) \cdot e^{-n\varepsilon^2/32}$$

Proof. Let's recapitulate everything we've done so far:

• First Symmetrization: Using lemma 2.5 and Chebyshev's inequality we concluded that for an identical independent copy of the empirical measure P'_n we have

$$\mathbf{P}\{\|P_n - P\|_{\mathscr{A}} > \varepsilon\} \le 2 \,\mathbf{P}\{\|P_n - P_n'\|_{\mathscr{A}} > \frac{1}{2}\varepsilon\}, \quad \text{for } n \ge \frac{8}{\varepsilon^2}.$$

• Second Symmetrization: We build another distribution $P_n^{\circ}(A) = n^{-1} \sum \sigma_i \mathbb{1}_{X_i \in A}$ and concluded from lemma 2.6 equation 2.1.2 that

$$\mathbf{P}\{\|P_n - P_n'\|_{\mathscr{A}} > \frac{1}{2}\varepsilon\} \le 2 \, \mathbf{P}\{\|P_n^{\circ}\|_{\mathscr{A}} > \frac{1}{4}\varepsilon\}$$

• Maximal Inequality: This was the step in which we had to be most careful. In the rest of the steps it never really mattered if we worked with intervals or any other class of sets on any space. In this step the task is, for any given a sample X_1, \ldots, X_n , to find a sub-collection $\mathscr{A}_n \subset \mathscr{A}$ such that

$$\#\mathscr{A}_n = \#\{\{X_1, \dots, X_n\} \cap A : A \in \mathscr{A}\} = N_{\mathscr{A}}(X_1, \dots, X_n).$$

We proved the existence of this set in the previous theorem. Then, it follows that for a given sample $X = X_1, \ldots, X_n$, the supremum of $|P_n^{\circ}|$ is reached in one of the sets $A^{\star} \in \mathscr{A}_n$. Thus,

$$\begin{aligned} \mathbf{P}\{\|P_n^{\circ}\|_{\mathscr{A}} > \frac{1}{4}\varepsilon|X\} &\leq \sum_{A \in \mathscr{A}_k} \mathbf{P}\{|P_n^{\circ}(A)| > \frac{1}{4}\varepsilon|X\} \\ &\leq N_{\mathscr{A}}(X)\mathbf{P}\{|P_n^{\circ}(A^{\star})| > \frac{1}{4}\varepsilon|X\} \end{aligned}$$

• Exponential Bound and integration: After we apply Hoeffding's inequality, we obtain

$$\mathbf{P}\{\|P_n^{\circ}\|_{\mathscr{A}} > \frac{1}{4}\varepsilon|X\} \le 2N_{\mathscr{A}}(X)e^{-n\varepsilon^2/32}.$$

Finally, the result of the last expected value is

$$\mathbf{P}\{\|P_n - P\|_{\mathscr{A}} > \varepsilon\} \le 8\mathbf{E}\left[N_{\mathscr{A}}(X)\right]e^{-n\varepsilon^2/32} \le 8s(\mathscr{A}, n) \cdot e^{-n\varepsilon^2/32}$$

The middle term in the last formula is valuable to make a stronger assessment about the condition for the uniform law of large numbers. If

$$\mathbf{P}\{\|P_n - P\|_{\mathscr{A}} > \varepsilon\} < 8\mathbf{E} \left[N_{\mathscr{A}}(X)\right] e^{-n\varepsilon^2/32},$$

According to Devroye et al. (2013), in order for $\mathbf{P}\{\|P_n - P\|_{\mathscr{A}} > \varepsilon\}$ to converge 780 to 0 by the Borel-Cantelli theorem, the following condition must be met so the series 781 $\sum_{n} 8\mathbf{E} [N_{\mathscr{A}}(X)] e^{-n\varepsilon^{2}/32}$ is summable:

$$\frac{\mathbf{E}\left[\log N_{\mathscr{A}}(X)\right]}{n} \to 0.$$

782

784

787

789

791

792

794

795

796

798

799

800

801

802

806

5.3 Estimation Error in Decision Functions

Let (X,Y) denote a pair of random variables that take values in $S \times \{0,1\}$. The behavior of this pair can be explained by two probability functions μ, η . While μ describes the distribution of X in its space:

$$\mu(A) = \mathbf{P}\{X \in A\},\tag{788}$$

 η describes which values of Y are more probable if X=x:

$$\eta(x) = \mathbf{P}\{Y = 1 | X = x\} = \mathbf{E}[Y | X = x].$$

A classifier or a decision function is any function tries to predict the value of Y on any given X:

$$\phi \in \mathscr{C}, \ \phi : S \mapsto \{0, 1\}.$$

There's of course a probability that a classifier fails to predict correctly the value of Y. Even the best possible classifier $\phi^*(\cdot) = [2\eta(\cdot) - 1]$ has a chance of making a mistake if $\eta(x) \neq 1$ or $\eta(x) \neq 0$. The probability of this event is called L:

$$L(\phi) = \mathbf{P}\{\phi(X) \neq Y\}.$$

The lowest possible error L^* for any classifier is called the Bayes error.

In reality, we know from little to nothing about L. We can only count on a number of observations $(X_1, Y_1), \ldots, (X_n, Y_n)$ to decide if a classifier works. From these observations we can create an empirical function that evaluates how well a classifier fits to the observations:

$$\widehat{L}_n(\phi) = n^{-1} \sum_{i=1}^n \mathbb{1}_{\phi(X_i) \neq Y_i}.$$

On the other hand, to optimize the computational cost, we might just consider a collection \mathscr{C} of classifiers instead of all the 2^X possible functions. Let ϕ_n^{\star} be the best classifier in \mathscr{C} according to \widehat{L}_n , that is

$$\phi_n^{\star} = \operatorname*{argmin}_{\phi \in \mathscr{C}} \{\widehat{L}_n(\phi)\}.$$

With all the tools we've built in this chapter, we can make powerful assertions about the convergence of the error of ϕ_n^{\star} .

Definition 5.3. Let $\mathscr C$ be a collection of decision functions $\phi: S \to \{0,1\}$. Define $\mathscr A$ as the following collection of sets:

$$\{\{\phi^{-1}(1)\times\{0\}\cup\{\phi^{-1}(0)\times\{1\}\}\}\}_{\phi\in\mathscr{C}}.$$

Define the n-shatter coefficient, and VC dimension of a classifier as

$$s(\mathscr{C},n)=s(\mathscr{A},n), \quad V_{\mathscr{C}}=V_{\mathscr{A}}.$$

Theorem 5.2. For any collection of classifiers \mathscr{C} and L, \widehat{L}_n as defined above,

$$\mathbf{P}\{\|\widehat{L}_n - L\|_{\mathscr{C}} > \varepsilon\} < 8s(\mathscr{C}, n)e^{-n\varepsilon^2/32}.$$

Proof. Apply theorem 5.1 on \mathscr{A} .

812

816

819

821

Theorem 5.3. For the empirically selected classifier $\phi_n^{\star} \in \mathscr{C}$,

$$L(\phi_n^{\star}) - \inf_{\phi \in \mathscr{C}} L(\phi) \le 2 \|\widehat{L}_n - L\|_{\mathscr{C}}.$$

Proof. Taken from Devroye et al. (2013) Lemma 8.2.

$$L(\phi_n^{\star}) - \inf_{\phi \in \mathscr{C}} L(\phi) = L(\phi_n^{\star}) - \widehat{L}_n(\phi_n^{\star}) + \widehat{L}_n(\phi_n^{\star}) - \inf_{\phi \in \mathscr{C}} L(\phi)$$

$$\leq |\widehat{L}_n(\phi_n^{\star}) - L(\phi_n^{\star})| + |\widehat{L}_n(\phi_n^{\star}) - \inf_{\phi \in \mathscr{C}} L(\phi)|$$

$$\leq \sup_{\phi \in \mathscr{C}} |\widehat{L}_n(\phi) - L(\phi)| + \sup_{\phi \in \mathscr{C}} |\widehat{L}_n(\phi) - L(\phi)|$$

$$= 2\|\widehat{L}_n - L\|_{\mathscr{C}}.$$

822

Therefore, we can conclude from the two previous theorems that

$$\mathbf{P}\{L(\phi_n^{\star}) - \inf_{\phi \in \mathscr{C}} L(\phi) > \varepsilon\} \le 8s(\mathscr{C}, n)e^{-n\varepsilon^2/128}.$$

This last formula says that if the shatter coefficient is small enough, then the estimation error

$$L(\phi_n^\star) - \inf_{\phi \in \mathscr{C}} L(\phi)$$

5 Applications to Vapnik-Chervonenkis theory

will converge almost surely to 0. Note though that this doesn't mean that the empirical error,

$$L(\phi_n^{\star}) - L^{\star}$$

will converge to 0, if the collection $\mathscr C$ is too small, then the approximation error,

$$\inf_{\phi \in \mathscr{C}} L(\phi) - L(\phi^{\star})$$
832

835

836

837

might not converge to 0 because we are under-fitting. On the other hand, if the collection $\mathscr C$ is too big, the approximation error will be small but, $s(\mathscr C,n)$ might be so big that we will have no guarantee that the estimation error will converge to 0. In conclusion, the challenge is to find a sweet spot for the size of the collection $\mathscr C$ so the empirical error can converge to 0:

$$\underbrace{L(\phi_n^{\star}) - L^{\star}}_{\text{emp. error}} = \left(\underbrace{L(\phi_n^{\star}) - \inf_{\phi \in \mathscr{C}} L(\phi)}_{\text{est. error}}\right) + \left(\underbrace{\inf_{\phi \in \mathscr{C}} L(\phi) - L^{\star}}_{\text{approx. error}}\right)$$
838

Bibliography

- Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2016.
- Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequalities.
 In Summer school on machine learning, pages 208–240. Springer, 2003.
- Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recognition, volume 31. Springer Science & Business Media, 2013.
- Mateo Díaz, Adolfo J Quiroz, and Mauricio Velasco. Local angles and dimension esti mation from data on manifolds. *Journal of Multivariate Analysis*, 173:229–247, 2019.
- H Gzyl, R Jiménez, and AJ Quiroz. The physicist's approach to the travelling salesman problem—ii. *Mathematical and Computer Modelling*, 13(7):45–48, 1990.
- Svante Janson. On concentration of probability. Contemporary combinatorics, 10(3): 1-9, 2002.
- David Pollard. Convergence of stochastic processes. Springer Science & Business Media,
 2012.