Numerikus módszerek C

3. előadás: A GE alkalmazásai, a GE kicsit másképp

Krebsz Anna

ELTE IK

Tartalomjegyzék

- 1 A Gauss-elimináció alkalmazásai
- 2 Műveletigény
- 3 Alsó háromszögmátrixok és Gauss-elimináció
- 4 Háromszögmátrixokról
- 5 LU-felbontás Gauss-eliminációval

Tartalomjegyzék

- 1 A Gauss-elimináció alkalmazásai
- 2 Műveletigény
- 3 Alsó háromszögmátrixok és Gauss-elimináció
- 4 Háromszögmátrixokról
- 5 LU-felbontás Gauss-eliminációval

Gauss-elimináció: alkalmazások

- LER megoldása (láttuk példán is)
- Determináns meghatározása: mivel a GE lépései determináns tartók, ezért

$$\det(A) = \det(\Delta \mathsf{alak}) = \prod_{k=1}^n a_{kk}^{(k-1)}$$

Vigyázzunk : ha sort vagy oszlopot cserélünk, a determináns értéke változik.

 Több jobb oldallal (b) megoldás: lehet egyszerre, így a mátrixon csak egyszer eliminálunk.

$$[A|b_1|b_2|b_3] o \mathsf{GE} o \mathsf{visszahely} o [I|x_1|x_2|x_3]$$

Gauss-elimináció: alkalmazások

 Mátrix inverzének meghatározása az A · X = I mátrixegyenlet megoldását jelenti.

$$Ax_1 = e_1$$

 $A \cdot [x_1| \dots |x_n] = [e_1| \dots |e_n] \Leftrightarrow \dots$
 $Ax_n = e_n$

Visszavezettük az előző pontra. A GE-t kiterjesztett mátrixon hajtjuk végre

$$[A | I] \rightarrow GE \rightarrow visszahely \rightarrow [I | A^{-1}],$$

visszahelyettesítés után jobb oldalon kapjuk az inverz mátrixot. Sor csere esetén az inverz nem változik, oszlopcsere esetén változik (lásd gyak.).

Példa: mátrix determinánsának és inverzének számítása GE-val

Mi az előző példa mátrixának determinánsa és inverze?

$$\det(A) = \det(\Delta \mathsf{alak}) = \begin{vmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{vmatrix} = 2 \cdot 5 \cdot (-1) = -10$$

Gauss-elimináció: inverzre példa

Az elimináció:

1. lépés:

2. sor
$$\underbrace{-\left(\frac{-4}{2}\right)}_{+2} * 1.$$
 sor

3. sor
$$-\underbrace{\left(\frac{6}{2}\right)}_{3} * 1.$$
 sor

$$\begin{bmatrix} 2 & 0 & 3 & 1 & 0 & 0 \\ -4 & 5 & -2 & 0 & 1 & 0 \\ 6 & -5 & 4 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 3 & 1 & 0 & 0 \\ 0 & 5 & 4 & 2 & 1 & 0 \\ 0 & -5 & -5 & -3 & 0 & 1 \end{bmatrix} \rightarrow$$

Gauss-elimináció: példa

2. lépés:

3. sor
$$-\left(\frac{-5}{5}\right)$$
 * 2. sor

$$\begin{bmatrix} 2 & 0 & 3 & 1 & 0 & 0 \\ 0 & 5 & 4 & 2 & 1 & 0 \\ 0 & -5 & -5 & -3 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 3 & 1 & 0 & 0 \\ 0 & 5 & 4 & 2 & 1 & 0 \\ 0 & 0 & -1 & -1 & 1 & 1 \end{bmatrix} \rightarrow$$

Gauss-elimináció: példa

A visszahelyettesítés:

- 3. sor /(-1)
- 2. sor -4 * új 3. sor.
- 1. sor -3 * új 3. sor.

$$\begin{bmatrix} 2 & 0 & 3 & 1 & 0 & 0 \\ 0 & 5 & 4 & 2 & 1 & 0 \\ 0 & 0 & -1 & -1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 0 & -2 & 3 & 3 \\ 0 & 5 & 0 & -2 & 5 & 4 \\ 0 & 0 & 1 & 1 & -1 & -1 \end{bmatrix}$$

Gauss-elimináció: példa

1. sor /2.

$$\begin{bmatrix} 2 & 0 & 0 & | & -2 & 3 & 3 \\ 0 & 5 & 0 & | & -2 & 5 & 4 \\ 0 & 0 & 1 & | & 1 & -1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & -1 & \frac{3}{2} & \frac{3}{2} \\ 0 & 1 & 0 & | & -\frac{2}{5} & 1 & \frac{4}{5} \\ 0 & 0 & 1 & | & 1 & -1 & -1 \end{bmatrix} = [I|A^{-1}]$$

Az inverz a jobb oldalon álló mátrix.

Gauss-elimináció: megjegyzések

Megoldható-e egyáltalán a LER? Vizsgáljuk? Majd GE közben kiderül.

Megoldható, de mégsem tudjuk a GE-t végigcsinálni?

Előfordulhat... ->> sort cserélünk ->> nem változik a megoldás. Ha oszlopot cserélünk, akkor a megoldás komponensei a cserének megfelelően változnak.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot x = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Biztos és stabil megoldás a főelemkiválasztás.

Főelemkiválasztás

Definíció: részleges főelemkiválasztás

A k-adik lépésben válasszunk egy olyan m indexet, melyre $\left|a_{mk}^{(k-1)}\right|$ maximális $(m \in \{k, k+1, \ldots, n\})$, majd cseréljük ki a k-adik és m-edik sort.

Definíció: teljes főelemkiválasztás

A k-adik lépésben válasszunk egy olyan (m_1, m_2) indexpárt, melyre $\left|a_{m_1m_2}^{(k-1)}\right|$ maximális $(m_1, m_2 \in \{k, k+1, \ldots, n\})$, majd cseréljük ki a k-adik és m_1 -edik sort, valamint a k-adik és m_2 -edik oszlopot.

Tétel:

A GE elvégezhető sor és oszlopcsere nélkül

$$\Leftrightarrow a_{kk}^{(k-1)} \neq 0 \ (k = 1, 2, ..., n-1).$$

Biz.: trivi a rekurzióból.

Definíció: főminorok

Az A főminorai a

$$D_k = \det \left(\begin{bmatrix} a_{11} & \dots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \dots & a_{kk} \end{bmatrix} \right), \quad (k = 1, 2, \dots, n)$$

determinánsok. Ezek az A bal felső $k \times k$ -s részmátrixaimak determinánsai.

Tétel:

$$D_k \neq 0 \ (k = 1, 2, ..., n-1) \Leftrightarrow a_{kk}^{k-1} \neq 0 \ (k = 1, 2, ..., n-1).$$

Biz.: A GE átalakításai determináns tartók, ezért

$$D_k = a_{11} \cdot a_{22}^{(1)} \cdot \ldots \cdot a_{kk}^{(k-1)} = D_{k-1} \cdot a_{kk}^{(k-1)},$$

amiből az állítás adódik. A $D_n \neq 0$ illetve az $a_{nn}^{(n-1)} \neq 0$ feltétel nem szükséges a GE-hoz, csak a LER megoldhatóságához.

Megj.:

- Numerikus szempontból jobb, ha alkalmazunk főelemkiválasztást. Ezzel a GE-s hányadosaink pontosabbak lesznek.
- Determináns számításakor a cserékkel vigyázni kell!

Tartalomjegyzék

- 1 A Gauss-elimináció alkalmazásai
- 2 Műveletigény
- 3 Alsó háromszögmátrixok és Gauss-elimináció
- 4 Háromszögmátrixokról
- 5 LU-felbontás Gauss-eliminációval

A Gauss-elimináció műveletigénye

Tétel: A Gauss-elimináció műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Biz.: Rögzített k-ra: a k. lépés képletéből számolva

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}} \cdot a_{kj}^{(k-1)}$$
 $i = k+1, \ldots, n;$ $j = k+1, \ldots, n, n+1.$

$$(n-k)$$
 osztás, $(n-k)(n-k+1)$ szorzás és $(n-k)(n-k+1)$ összeadás kell.

Összesen
$$(n-k)(2(n-k)+3)$$
 művelet. $(n-k=:s)$

A Gauss-elimináció műveletigénye

$$\sum_{k=1}^{n-1} (n-k)(2(n-k)+3) = \sum_{s=1}^{n-1} s(2s+3) = 2\sum_{s=1}^{n-1} s^2 + 3\sum_{s=1}^{n-1} s =$$

$$= 2\frac{(n-1)n(2n-1)}{6} + 3\frac{(n-1)n}{2} = \frac{2}{3}n^3 + \mathcal{O}(n^2). \quad \Box$$

Definíció: $\mathcal{O}(n^2)$ függvény

Az f(n) függvényt $\mathcal{O}(n^2)$ -es nagyságrendűnek nevezzük, ha $\frac{f(n)}{n^2}$ korlátos minden $n \in \mathbb{N}$ -re.

A visszahelyettesítés műveletigénye

A felső háromszögmátrixú LER megoldásának műveletigénye.

Tétel: A visszahelyettesítés műveletigénye

$$n^2 + \mathcal{O}(n)$$

Biz.:

$$x_n = \frac{a_{nn+1}^{(n-1)}}{a_{nn}^{(n-1)}}, \quad x_i = \frac{1}{a_{ii}^{(i-1)}} \left(a_{in+1}^{(i-1)} - \sum_{j=i+1}^n a_{ij}^{(i-1)} \cdot x_j \right) \quad (i = n-1, \dots, 1).$$

Rögzített *i.* sorra 1 db osztás, (n-i) szorzás és (n-i) összeadás.

Összesen:
$$2(n-i)+1$$
 művelet $(n-i=:s)$.

$$1 + \sum_{s=1}^{n-1} (2s+1) = 1 + 2 \cdot \frac{n(n-1)}{2} + (n-1) = n^2 + \mathcal{O}(n). \quad \Box$$

Tartalomjegyzék

- 1 A Gauss-elimináció alkalmazásai
- 2 Műveletigény
- 3 Alsó háromszögmátrixok és Gauss-elimináció
- 4 Háromszögmátrixokról
- 5 LU-felbontás Gauss-eliminációval

Balról szorzás alsó háromszögmátrixokkal

Mi történik, ha az alábbi $L \in \mathbb{R}^{3 \times 3}$ mátrixszal megszorzunk egy $A \in \mathbb{R}^{3 \times 3}$ mátrixot balról?

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix}$$

Az 1. sor kétszeresét hozzáadjuk a 2. sorhoz.

Balról szorzás alsó háromszögmátrixokkal

Mi történik, ha az alábbi $L \in \mathbb{R}^{3 \times 3}$ mátrixszal megszorzunk egy $A \in \mathbb{R}^{3 \times 3}$ mátrixot balról?

$$\begin{bmatrix}
 1 & 0 & 0 \\
 2 & 1 & 0 \\
 -3 & 0 & 1
 \end{bmatrix}$$

Az 1. sor kétszeresét hozzáadjuk a 2. sorhoz, valamint az 1. sor háromszorosát levonjuk a 3. sorból. (\sim GE 1. lépése volt)

A Gauss-elimináció lépései mátrixszorzással

Írjuk fel a GE k-adik lépését ugyanilyen módszerrel! ($A \in \mathbb{R}^{n \times n}$)

(A zérus elemek nincsenek feltüntetve L_k -ban.)

Tehát ha
$$I_{ik}=\frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}} \quad (k=1,\ldots,n-1;\ i=k+1,\ldots,n),$$
akkor $L_k\cdot A^{(k-1)}=A^{(k)}$, vagyis megkaptuk a GE k -adik lépését.

Példa: GE az L_k mátrixokkal

Írjuk fel a Gauss-elimináció lépéseit mátrixszorzások segítségével a következő mátrix esetén (ua. mint az előző előadáson)!

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

Megoldás: 1. lépés

$$A^{(1)} = L_1 \cdot A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix}$$

2. lépés

$$A^{(2)} = L_2 \cdot A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} =: U$$

Tehát $A^{(2)} = L_2 \cdot L_1 \cdot A =: U$, a kapott felsőháromszög alakot U-val jelöljük.

Fejezzük ki A-t a képletből:

$$A = \underbrace{L_1^{-1} \cdot L_2^{-1}}_{=:L} \cdot U = L \cdot U.$$

Ezzel megkaptuk az A mátrix LU-felbontását. Ennek az elméletét tárgyaljuk a következőkben.

Tartalomjegyzék

- 1 A Gauss-elimináció alkalmazásai
- 2 Műveletigény
- 3 Alsó háromszögmátrixok és Gauss-elimináció
- 4 Háromszögmátrixokról
- 5 LU-felbontás Gauss-eliminációval

Definíció: alsó háromszögmátrix

Az $L \in \mathbb{R}^{n \times n}$ mátrixot alsó háromszögmátrixnak nevezzük, ha i < j esetén $l_{ij} = 0$. (A főátló felett csupa nulla.)

$$\mathcal{L} := \{ L \in \mathbb{R}^{n \times n} : I_{ij} = 0 (i < j) \},$$

$$\mathcal{L}_1 := \{ L \in \mathbb{R}^{n \times n} : I_{ij} = 0 (i < j), I_{ii} = 1 \}.$$

Definíció: felső háromszögmátrix

Az $U \in \mathbb{R}^{n \times n}$ mátrixot felső háromszögmátrixnak nevezzük, ha i > j esetén $u_{ii} = 0$. (A főátló alatt csupa nulla.)

$$\begin{aligned} \mathcal{U} &:= \{ \ U \in \mathbb{R}^{n \times n} \ : \ u_{ij} = 0 \ (i > j) \ \}, \\ \mathcal{U}_1 &:= \{ \ U \in \mathbb{R}^{n \times n} \ : \ u_{ij} = 0 \ (i > j), \ \ u_{ii} = 1 \ \}. \end{aligned}$$

Háromszögmátrixok halmazának zártsága

Állítás: háromszögmátrixról

- **1** Ha $L', L'' \in \mathcal{L}$, akkor $L' \cdot L'' \in \mathcal{L}$.
- **2** Ha $U', U'' \in \mathcal{U}$, akkor $U' \cdot U'' \in \mathcal{U}$.
- **3** Ha $L', L'' \in \mathcal{L}_1$, akkor $L' \cdot L'' \in \mathcal{L}_1$.
- **4** Ha $U', U'' \in \mathcal{U}_1$, akkor $U' \cdot U'' \in \mathcal{U}_1$.
- **6** Ha $L \in \mathcal{L}$ és $\exists L^{-1}$, akkor $L^{-1} \in \mathcal{L}$.
- **6** Ha $U \in \mathcal{U}$ és $\exists U^{-1}$, akkor $U^{-1} \in \mathcal{U}$.
- **7** Ha $L \in \mathcal{L}_1$, akkor $\exists L^{-1}$ és $L^{-1} \in \mathcal{L}_1$.
- 8 Ha $U \in \mathcal{U}_1$, akkor $\exists U^{-1}$ és $U^{-1} \in \mathcal{U}_1$.

Biz.: házi feladat (beadható).

Definíció: L_k

$$L_k := I - \ell_k e_k^{\top} \in \mathbb{R}^{n \times n}$$
, ahol $\ell_k \in \mathbb{R}^n$, $(\ell_k)_i = 0$ $(i \le k)$ és $e_k \in \mathbb{R}^n$ a k -adik egységvektor.

Állítás: Lk inverze

$$L_k^{-1} = I + \ell_k e_k^{\top}.$$

Biz.:

$$L_k \cdot L_k^{-1} = (I - \ell_k e_k^\top)(I + \ell_k e_k^\top) = I \underbrace{-\ell_k e_k^\top + \ell_k e_k^\top}_{0} - \ell_k \underbrace{e_k^\top \ell_k}_{0} e_k^\top = I. \quad \Box$$

Szemléletesen?

Az L_k mátrixokról

Hogyan szorzunk össze két ilyen mátrixot?

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$$

A bal oldali sorrendben "szépen" szorzódik. Általában is.

Állítás: Lk mátrixok szorzata

$$L_1^{-1} \cdot L_2^{-1} \cdots L_{n-1}^{-1} = I + \ell_1 e_1^\top + \ell_2 e_2^\top + \ldots + \ell_{n-1} e_{n-1}^\top.$$

Szemléletesen?

Biz.: Indukcióval.

$$\begin{split} L_1^{-1} \cdot L_2^{-1} &= (I + \ell_1 e_1^\top) (I + \ell_2 e_2^\top) = \\ &= I + \ell_1 e_1^\top + \ell_2 e_2^\top + \ell_1 \underbrace{(e_1^\top \ell_2)}_0 e_2^\top = \\ &= I + \ell_1 e_1^\top + \ell_2 e_2^\top \end{split}$$

• Tegyük fel, hogy $k+1 \le n-1$ és

$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} = I + \ell_1 e_1^\top + \ell_2 e_2^\top + \ldots + \ell_k e_k^\top.$$

•
$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} \cdot L_{k+1}^{-1} =$$

$$= (I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \dots + \ell_k e_k^{\top})(I + \ell_{k+1} e_{k+1}^{\top}) =$$

$$= I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \dots + \ell_k e_k^{\top} + \ell_{k+1} e_{k+1}^{\top} +$$

$$+ \underbrace{\ell_1 e_1^{\top} \ell_{k+1} e_{k+1}^{\top} + \dots + \ell_k e_k^{\top} \ell_{k+1} e_{k+1}^{\top}}_{\text{kiesnek}} =$$

$$= I + \ell_1 e_1^\top + \ell_2 e_2^\top + \ldots + \ell_k e_k^\top + \ell_{k+1} e_{k+1}^\top = \checkmark.$$

Tartalomjegyzék

- 1 A Gauss-elimináció alkalmazásai
- 2 Műveletigény
- 3 Alsó háromszögmátrixok és Gauss-elimináció
- 4 Háromszögmátrixokról
- **5** LU-felbontás Gauss-eliminációval

LU-felbontás

Definíció: LU-felbontás

Az A mátrix LU-felbontásának nevezzük az $L \cdot U$ szorzatot, ha

$$A = LU$$
, $L \in \mathcal{L}_1$, $U \in \mathcal{U}$.

LU-felbontás Gauss-eliminációval

A Gauss-eliminációt felírhatjuk alsó háromszögmátrixok segítségével:

$$L_{n-1}\cdots L_2\cdot L_1\cdot A=U,$$

majd az inverzekkel egyesével átszorozva:

$$A = \underbrace{L_1^{-1} \cdot L_2^{-1} \cdots L_{n-1}^{-1}}_{L} \cdot U = LU.$$

A fenti szorzat is alsó háromszögmátrix. Láttuk az előző tételből, hogy az L mátrix elemeit egy egységmátrixból kapjuk úgy, hogy minden oszlopba ez egyesek alá beletesszük a neki megfelelő ℓ_k vektor nem nulla elemeit (ezek a GE-s hányadosok). Tehát ennek előállításához nem kell több művelet, mint amit a GE-val végzünk.

Példa: LU-felbontás GE-val

Készítsük el a példamátrixunk LU-felbontását

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

- a részletezve az L_k mátrixokat, a számítás menetét,
- b majd "tömör" írásmóddal!

Megoldás: (a) 1. lépés

$$A^{(1)} = L_1 \cdot A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix}$$

 L_1^{-1} -et úgy kapjuk, hogy L_1 1. oszlopában az átló alatti elemeket (-1)-szeresére változtatjuk. Megfigyelhetjük, hogy ezek a tényleges GE-s hányadosok. Láttuk, hogy L meghatározáshoz csak ℓ_1 -re van szükségünk.

$$L_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

2. lépés

$$A^{(2)} = L_2 \cdot A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} =: U$$

 L_2^{-1} -et úgy kapjuk, hogy L_2 2. oszlopában az átló alatti elemeket (-1)-szeresére változtatjuk. Megfigyelhetjük, hogy ez a tényleges GE-s hányados. Láttuk, hogy L meghatározáshoz csak ℓ_2 -re van szükségünk.

$$L_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

Tehát
$$A^{(2)} = L_2 \cdot L_1 \cdot A =: U$$

Fejezzük ki A-t a képletből:

$$A = \underbrace{L_1^{-1} \cdot L_2^{-1}}_{=:L} \cdot U = L \cdot U.$$

Tehát $L=L_1^{-1}\cdot L_2^{-1}$. Az L_k mátixok szorzatára felírt tétel alapján ehhez nem kell mátrixot szoroznunk, csak az ℓ_k vektorokból kell összeraknunk L-et.

$$L = L_1^{-1} \cdot L_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix}$$

A kapott eredményt szorzással is ellenőrizhetjük.

(b) Tömör írásmódban: 1. lépés

A GE-s hányadosokat minden lépésben az eliminált pozíciókon tudjuk tárolni (éppen ennyi nulla van az oszlopban). Könnyen meg jegyezhető ezek képzése: az eliminálandó mátrix rész 1. oszlopában az első elemmel leosztjuk az alatta levőket. Ezzel minden a helyére került. Vonalakkal jelezzük, hogy itt már tárolásról is szó van. A jobb alsó 2×2 -es mátrix részen elvégezzük az eliminációt.

$$\begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 3 \\ \frac{-4}{2} & 5 & 4 \\ \frac{6}{2} & -5 & -5 \end{bmatrix} \rightarrow$$

2. lépés:

Ugyanúgy dolgozunk tovább, de most már csak a jobb alsó 2×2 -es mátrix részen, a többit változatlanul leírjuk.

$$\begin{bmatrix}
2 & 0 & 3 \\
-2 & 5 & 4 \\
3 & -5 & -5
\end{bmatrix}
\rightarrow
\begin{bmatrix}
2 & 0 & 3 \\
-2 & 5 & 4 \\
3 & -5 & -1
\end{bmatrix}$$

Olvassuk ki a keresett mátrixokat!

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} = L \cdot U$$

LU-felbontás Gauss-eliminációval

Tétel: *LU*-felbontás létezése

Ha a Gauss-elimináció végrehajtható sor és oszlopcsere nélkül (azaz $a_{kk}^{(k-1)} \neq 0 \ (k=1,\ldots,n-1)$), akkor az A mátrix LU-felbontása létezik.

Biz.: Ha a GE végrehajtható sor és oszlopcsere nélkül, akkor az L_k mátrixok felírhatók és L, U előállítható.

Megi.:

- $u_{kk} = a_{kk}^{(k-1)}$ és $D_k = a_{11} \cdot a_{22}^{(1)} \cdots a_{kk}^{(k-1)}$
- Ha van A-nak LU-felbontása, ahol U átlójában nem nullák állnak, akkor $u_{kk} = a_{kk}^{(k-1)} \neq 0$.
- $a_{nn}^{(n-1)} \neq 0 \Leftrightarrow \det(A) = D_n \neq 0.$
- Ha a GE végrehajtható, de $a_{nn}^{(n-1)} = 0$, akkor létezik LU-felbontás, de $\det(A) = \det(L) \cdot \det(U) = \det(U) = 0$ -ból $u_{nn} = 0$. Ebben az esetben a LER vagy nem oldható meg vagy nem egyértelműen.

LU-felbontás létezése és egyértelműsége

Tétel: LU-felbontás létezése és egyértelműsége (főminorokkal)

- Ha $D_k \neq 0$ (k = 1, ..., n 1), akkor létezik az A mátrix LU-felbontása és $u_{kk} \neq 0$ (k = 1, ..., n 1).
- Ha $det(A) \neq 0$, akkor a felbontás egyértelmű.

Biz.: létezés: az LU-felbontás létezése a GE-nál tanult tételünkből következik. $D_k \neq 0 \Leftrightarrow a_{kk}^{(k-1)} \neq 0$ a megadott indexekre, ezért a GE végrehajtható és az L, U mátrixok előállíthatóak.

Egyértelműség: indirekt tegyük fel, hogy az *A* invertálható mátrix *LU*-felbontása nem egyértelmű, azaz legalább két különböző felbontás létezik:

$$A=L_1\cdot U_1=L_2\cdot U_2.$$

LU-felbontás egyértelműsége

$$A=L_1\cdot U_1=L_2\cdot U_2.$$

Az egyenlőséget U_2^{-1} -zel jobbról, majd L_1^{-1} -zel balról szorozva kapjuk, hogy

$$U_1 \cdot U_2^{-1} = L_1^{-1} \cdot L_2.$$

A szóban forgó inverzek léteznek, hiszen $\det(A) = \det(L_i) \cdot \det(U_i) = \det(U_i) \neq 0$, i = 1, 2-re.

Az egyenlőség bal oldalán egy felső háromszögmátrix, jobb oldalán pedig egy 1 főátlójú alsó háromszögmátrix áll. Ez csak úgy lehet, ha az egységmátrixról van szó. Tehát

$$U_1 \cdot U_2^{-1} = I \implies U_1 = U_2,$$

 $L_1^{-1} \cdot L_2 = I \implies L_1 = L_2.$

Ellentmondásra jutottunk, vagyis az *LU*-felbontás egyértelmű.

LU-felbontás Gauss-eliminációval

L és U megadása GE-val

Az eddigieket összefoglalva felírhatjuk az A = LU felbontást:

$$L \in \mathcal{L}_1 ext{ és } l_{ij} = rac{a_{ij}^{(j-1)}}{a_{ii}^{(j-1)}} \, (i > j), \qquad U \in \mathcal{U} \quad ext{és} \quad u_{ij} = a_{ij}^{(i-1)} \, (i \leq j).$$

Miért jó az *LU*-felbontás?

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = LU felbontás.

Ekkor
$$Ax = L \cdot \underbrace{U \cdot x}_{y} = b$$
 helyett $(\frac{2}{3}n^{3} + \mathcal{O}(n^{2}))$

- lacktriangledown oldjuk meg az Ly=b alsó háromszögű, $(n^2+\mathcal{O}(n))$
- **2** majd az Ux = y felső háromszögű LER-t. $(n^2 + \mathcal{O}(n))$

Összehasonlításul: egy mátrix-vektor szorzás műveletigénye:

$$n\cdot(2n-1)=2n^2+\mathcal{O}(n).$$

Persze valamikor elő kell állítani az LU-felbontást. $(\frac{2}{3}n^3 + \mathcal{O}(n^2))$ Előnyös, ha sokszor ugyanaz A.

Példák Matlab-ban

- **1** Az LU-felbontás működése "kisebb" ($n \approx 7$) mátrixokra,
- **2** valamint "nagyobb" mátrixokra $(n \approx 50)$ színkóddal.
- 3 LER megoldása *LU*-felbontás segítségével.
- **4** Sok LER ($m \approx 10,100$) megoldása futási idejének összevetése nagyobb mátrixok ($n \approx 50,100,200$) esetén: GE-val valamint az LU-felbontás kihasználásával.