CoE202 Fundamentals of Artificial intelligence <Big Data Analysis and Machine Learning>

Reinforcement learning

Prof. Young-Gyu Yoon School of EE, KAIST

Contents

- Recap
 - Sequence prediction problem
 - Recurrent neural network
 - Training RNN
 - Advanced unit cells
- Overview of reinforcement learning (Maze example)
- Mathematical backgrounds
 - Random variable, random process
 - Markov process
 - Markov reward process, Markov decision process
 - Return and value function
- Optimal policy

Notations lookup (1)

$$P(X = 3) = 1/6$$

For a random variable X, the probability that its realization equals 3 is 1/6

$$P(S_t = s_t | S_{t-1} = s_{t-1})$$

State transition probability from s_{t-1} to s_t : the probability that a random process S_t at time t equals s_t given that it equals s_{t-1} at time t-1

$$p_{21} = P(S_t = 2|S_{t-1} = 1)$$

State transition probability from 1 to 2: the probability that a random process S_t , at time t equals 2 given that it equals 1 at time t-1

$$R(s) = E[r_t|S_t = s]$$

Reward function (of a state s) is defined as the expected value of immediate reward given that the current state equals s.

Notations lookup (2)

$$(S_t, A_t, R_t)$$

A tuple of S_t , A_t , R_t (state, action, reward). In mathematics, a tuple is a finite ordered list of elements.

$$\pi(a|s) = P(A_t = a|S_t = s)$$

Policy is defined as the probability to choose action as a, given the state s.

$$Q_{\pi}(s, a; \theta)$$

Value of state-action pair (s,a) for an MDP that follows a policy π that is parameterized by θ .

$$\pi^*(s) = \arg\max_{\pi} V^{\pi}(s)$$

The optimal policy is a policy that maximizes the value of a given sate.

$$Q_{\pi*}(s,a)$$

Value of state-action pair (s,a) for an MDP that follows the <u>optimal</u> policy π^*

Types of machine learning

- Supervised learning: <u>learning a function</u> that maps an input to an output based on example input-output pairs
- **Unsupervised learning**: <u>looking for previously undetected</u> <u>patterns in a data set</u> with no pre-existing labels and without human supervision
- Reinforcement learning: enabling an agent to learn in an interactive environment by trial and error using feedback from its own actions and experiences

Types of machine learning

- **Supervised learning**: "I'll give you some pairs of questions and answers. Learn from these pairs to be able to answer to other questions."
 - Regression
 - Classification
- **Unsupervised learning**: "I'll give you some unlabeled data. Try to find if there's any interesting structure or pattern in the data."
 - Clustering
 - Dimension reduction
- Reinforcement learning: "I cannot teach you what to do, but I can give scores to what you did. Based on the scores you got from what you did, learn what to do."

Reinforcement learning

 The goal of reinforcement learning is to derive an agent that takes actions in an environment that maximize the cumulative reward

$$(S_0, A_0, R_0), (S_1, A_1, R_1), (S_2, A_2, R_2), \cdots$$

Reinforcement learning

- Agent (game player): decides what action to make
- Environment (game): provide state to the agent, then takes actions from the agent, then provide next state and reward to the agent
 - The environment is typically modeled as Markov decision process (MDP) → we will talk about this later
- Reward (game score): is given to the agent (from the environment) and serves as a criterion for good/bad actions
 - Note that we want to maximize the <u>cumulative reward</u>, not the immediate reward
 - If we only care about the immediate reward, it would be basically the same as supervised learning
 - This delay is what makes RL interesting and difficult

Difficulty in reinforcement learning

Credit assignment problem

- If a "good" action always results in an immediate reward, learning would be very easy
 - In fact, this will be basically the same as supervised learning problem
- However, in most reinforcement learning problems, there is a non-deterministic time delay
- Moreover, what often determines the reward is a sequence of actions not just one action at one time point
- In other words, we do not know which action was responsible for a certain reward
- Then, how can we tell which was good and which was bad and how can we reinforce good actions?
- Basically, we need a framework to connect the rewards to the "past" actions
 - Information has to flow backwards (in time)

Goal

 We want to train an agent so that it can escape from the maze as soon as possible

Setting

- We are not going to "supervise" the agent in terms of what move it should make at each time point
- We will just give "scores" to the agent, and the agent is supposed to learn from the scores

- State: agent's current location (or the image itself which shows where the agent is)
- Action: up, down, left, right
- Reward: -(time taken)

Formulation

- State: an integer number between 0 and 28
- Action: an integer number between 0 and 3 (0:up, 1: down, 2: left, 3: right)
- Reward:
 - -1 at each time step
- The "agent"
 - a function f that takes current state as the input and calculates the best action

Sequence of events and decisions

- State $0 \rightarrow f \rightarrow$ Action $3 \rightarrow$ Reward -1, State 7
- State 7 \rightarrow f \rightarrow Action 3 \rightarrow Reward -1, State 8
- State 8 \rightarrow $f \rightarrow$ Action 0 \rightarrow Reward -1, State 1

0:up, 1: down, 2: left, 3: right

- Information flow (backward in time)
 - Through multiple experiences, we can learn that state 27 is a "good" state → we can assign high value to this state.
 - Moreover, we can learn that moving right at state 27 is a good combination.
 - → we can assign high value to this state action pair (s=27|a=right)
 - After that, we can learn state 26 can easily lead to state 27, which means state 26 is also good → we can assign high value to this state.
 - Again, we can learn that moving right at state 26 is a good combination.
 - → we can assign high value to this state action pair (s=26|a=right)
 - ...we can repeat this process
- By repeating this process, we can learn which state is good and which state/action pair is good

Random variable, process, notation

 Random variable: a variable whose values depend on outcomes of a random phenomenon

If X is a random variable from rolling a dice, P(X=3)=1/6

Random process: a time series of a random variable

e.g., accumulated sum of dice rolling

$$P(X_t = X_{t-1} + 3) = 1/6$$

 Upper case letters such as X or Y denote a random variable. Lower case letters like x or y denote the value of a random variable

Simply put,

Upper: random variable (not a number)
Lower: a real number (possible outcome)

$$P(X = x) = 1/6$$

• Markov process: a <u>memoryless</u> random process* whose future probabilities are determined by its most recent value

$$P(S_t = s_n | S_{t-1} = s_{t-1}, \dots, S_0 = s_0) = P(S_t = s_t | S_{t-1} = s_{t-1})$$

- "The future is independent of the past given the present"
- State transition probability matrix
 - Let's assume that there are 3 possible states

$$\begin{bmatrix} P(S_t = 0) \\ P(S_t = 1) \\ P(S_t = 2) \end{bmatrix} = \begin{bmatrix} p_{00} & p_{01} & p_{02} \\ p_{10} & p_{11} & p_{12} \\ p_{20} & p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} P(S_{t-1} = 0) \\ P(S_{t-1} = 1) \\ P(S_{t-1} = 2) \end{bmatrix}$$

Probability of next state being 2 given the current state 1 $p_{21} = P(S_t = 2|S_{t-1} = 1)$

Probability of next state being 2 given the current state 2

^{*}formal definition of random process is somewhat complicated...for now, let's just consider it as a random number that changes over time

If day-by-day weather change is a Markov process*

$$\begin{bmatrix} P(S_t = s) \\ P(S_t = r) \\ P(S_t = c) \end{bmatrix} = \begin{bmatrix} p_{ss} & p_{sr} & p_{sc} \\ p_{rs} & p_{rr} & p_{rc} \\ p_{cs} & p_{cr} & p_{cc} \end{bmatrix} \begin{bmatrix} P(S_{t-1} = s) \\ P(S_{t-1} = r) \\ P(S_{t-1} = c) \end{bmatrix}$$

Probability of tomorrow being cloud given that today is rainy

Probability of tomorrow being cloud given that today is cloudy

 Saying that something is a Markov process does not mean future is just independent of the past...it is independent of the past given the present

$$\begin{bmatrix} P(S_t = s) \\ P(S_t = r) \\ P(S_t = c) \end{bmatrix} = \begin{bmatrix} p_{ss} & p_{sr} & p_{sc} \\ p_{rs} & p_{rr} & p_{rc} \\ p_{cs} & p_{cr} & p_{cc} \end{bmatrix} \begin{bmatrix} P(S_{t-1} = s) \\ P(S_{t-1} = r) \\ P(S_{t-1} = c) \end{bmatrix}$$

$$\begin{bmatrix} P(S_{t-1} = s) \\ P(S_{t-1} = r) \\ P(S_{t-1} = c) \end{bmatrix} = \begin{bmatrix} p_{ss} & p_{sr} & p_{sc} \\ p_{rs} & p_{rr} & p_{rc} \\ p_{cs} & p_{cr} & p_{cc} \end{bmatrix} \begin{bmatrix} P(S_{t-2} = s) \\ P(S_{t-2} = r) \\ P(S_{t-2} = c) \end{bmatrix}$$

$$\begin{bmatrix} P(S_t = s) \\ P(S_t = r) \\ P(S_t = c) \end{bmatrix} = \begin{bmatrix} p_{ss} & p_{sr} & p_{sc} \\ p_{rs} & p_{rr} & p_{rc} \\ p_{cs} & p_{cr} & p_{cc} \end{bmatrix} \begin{bmatrix} p_{ss} & p_{sr} & p_{sc} \\ p_{rs} & p_{rr} & p_{rc} \\ p_{cs} & p_{cr} & p_{cc} \end{bmatrix} \begin{bmatrix} P(S_{t-2} = s) \\ P(S_{t-2} = r) \\ P(S_{t-2} = c) \end{bmatrix}$$

Let's assume the following weather transition matrix

$$\begin{bmatrix} p_{ss} & p_{sr} & p_{sc} \\ p_{rs} & p_{rr} & p_{rc} \\ p_{cs} & p_{cr} & p_{cc} \end{bmatrix} = \begin{bmatrix} 0.7 & 0.3 & 0.5 \\ 0.1 & 0.4 & 0.2 \\ 0.2 & 0.3 & 0.3 \end{bmatrix}$$

• If today is sunny ...tomorrow has 70% chance to be sunny, 10% chance to be rainy, and 20% chance to be cloudy

$$\begin{bmatrix}
P(S_t = s) \\
P(S_t = r) \\
P(S_t = c)
\end{bmatrix} = \begin{bmatrix}
0.7 & 0.3 & 0.5 \\
0.1 & 0.4 & 0.2 \\
0.2 & 0.3 & 0.3
\end{bmatrix} \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} = \begin{bmatrix}
0.7 \\
0.1 \\
0.2
\end{bmatrix}$$

What would be the weather after 10 years?

$$\begin{bmatrix}
P(S_t = s) \\
P(S_t = r) \\
P(S_t = c)
\end{bmatrix} = \begin{bmatrix}
p_{ss} & p_{sr} & p_{sc} \\
p_{rs} & p_{rr} & p_{rc} \\
p_{cs} & p_{cr} & p_{cc}
\end{bmatrix}^{3655} \begin{bmatrix}
P(S_{t-3650} = s) \\
P(S_{t-3650} = r) \\
P(S_{t-3650} = c)
\end{bmatrix}$$

• Is the predicted weather after 3650 days going to be different from the weather after 3659 days? Not really...hence

$$\begin{bmatrix} P(S_{3650} = s) \\ P(S_{3650} = r) \\ P(S_{3650} = c) \end{bmatrix} = \begin{bmatrix} p_{ss} & p_{sr} & p_{sc} \\ p_{rs} & p_{rr} & p_{rc} \\ p_{cs} & p_{cr} & p_{cc} \end{bmatrix} \begin{bmatrix} P(S_{t-3649} = s) \\ P(S_{t-3649} = r) \\ P(S_{t-3649} = c) \end{bmatrix}$$

$$\begin{bmatrix} P(S_{3650} = s) \\ P(S_{3650} = r) \\ P(S_{3650} = c) \end{bmatrix} \approx \begin{bmatrix} p_{ss} & p_{sr} & p_{sc} \\ p_{rs} & p_{rr} & p_{rc} \\ p_{cs} & p_{cr} & p_{cc} \end{bmatrix} \begin{bmatrix} P(S_{t-3650} = s) \\ P(S_{t-3650} = c) \\ P(S_{t-3650} = c) \end{bmatrix}$$

Weather after 10 years

$$\begin{bmatrix} P(S_{3650} = s) \\ P(S_{3650} = r) \\ P(S_{3650} = c) \end{bmatrix} \approx \begin{bmatrix} p_{ss} & p_{sr} & p_{sc} \\ p_{rs} & p_{rr} & p_{rc} \\ p_{cs} & p_{cr} & p_{cc} \end{bmatrix} \begin{bmatrix} P(S_{t-3650} = s) \\ P(S_{t-3650} = r) \\ P(S_{t-3650} = c) \end{bmatrix}$$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0.7 & 0.3 & 0.5 \\ 0.1 & 0.4 & 0.2 \\ 0.2 & 0.3 & 0.3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$X = PX \quad \bullet \quad P = \begin{bmatrix} 0.7 & 0.3 & 0.5 \\ 0.1 & 0.4 & 0.2 \\ 0.2 & 0.3 & 0.3 \end{bmatrix} \quad X = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Weather after 10 years

$$X = PX$$

$$(P - I)X = 0$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -0.3 & 0.3 & 0.5 \\ 0.1 & -0.6 & 0.2 \\ 0.2 & 0.3 & -0.7 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} + a + b + c = 1$$

Let's check if our assumption is correct

$$\begin{bmatrix} p_{ss} & p_{sr} & p_{sc} \\ p_{rs} & p_{rr} & p_{rc} \\ p_{cs} & p_{cr} & p_{cc} \end{bmatrix}^{3655} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.5806 \\ 0.1774 \\ 0.2419 \end{bmatrix}$$

$$\begin{bmatrix} p_{ss} & p_{sr} & p_{sc} \\ p_{rs} & p_{rr} & p_{rc} \\ p_{cs} & p_{cr} & p_{cc} \end{bmatrix}^{3655} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.5806 \\ 0.1774 \\ 0.2419 \end{bmatrix}$$

$$\begin{bmatrix} p_{ss} & p_{sr} & p_{sc} \\ p_{rs} & p_{rr} & p_{rc} \\ p_{cs} & p_{cr} & p_{cc} \end{bmatrix}^{3655} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.5806 \\ 0.1774 \\ 0.2419 \end{bmatrix}$$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0.5806 \\ 0.1774 \\ 0.2419 \end{bmatrix}$$

Markov process (again)

 Markov process is a sequence of random events that meets the Markov property

$$P(S_t = s_n | S_{t-1} = s_{t-1}, \dots, S_0 = s_0) = P(S_t = s_t | S_{t-1} = s_{t-1})$$

- To define a Markov process, we need
 - S: a set of states
 - P: state transition probability $P(S_t = s' | S_{t-1} = s)$

$$(S_0), (S_1), (S_2), (S_3), (S_4), \cdots$$

Markov reward process (MRP)

- Markov reward process:
 - is a Markov process with a reward received after each state transition

- To define a Markov reward process, we need
 - S: a set of states
 - P: state transition probability $P(S_t = s' | S_{t-1} = s)$
 - R: reward function
 - Discount factor

Reward may be stochastic

$$R(S_t = s) = E[r_t | S_t = s]$$

To quantify the value of future reward (compared to the immediate reward)

$$(S_0, R_0), (S_1, R_1), (S_2, R_2), \cdots$$

Return

- Horizon: number of time steps until the end of state transitions
- **Return**: discounted sum of reward from time step t to horizon

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$

- To incorporate "If it's a good thing, it's better to receive early"
- $\gamma = 0$: I don't care about future reward (YOLO?)
- $\gamma = I$: future reward is as good as immediate reward

Remember that reward and return are different!
We will also talk about 'value' which is basically expected return

State value function

 State value function (for a MRP): expected return from starting in state s

$$V(s) = E[G_t|S_t = s] = E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots | S_t = s]$$

$$= E[r_t|S_t = s] + \gamma E[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots | S_t = s]$$

$$= R(s) + \gamma V(G_{t+1}|S_t = s)$$

$$= R(s) + \gamma V(\text{next state}|S_t = s)$$

$$= R(s) + \gamma \sum_{s'} P(s'|s)V(s')$$

$$V(s) = R(s) + \gamma \sum_{s'} P(s'|s)V(s')$$

Bellman equation: value = present value + future value

State value function (for finite state MRP)

$$V(s) = R(s) + \gamma \sum_{s'} P(s'|s)V(s')$$

$$\begin{bmatrix} V(s_1) \\ V(s_2) \\ \vdots \\ V(s_N) \end{bmatrix} = \begin{bmatrix} R(s_1) \\ R(s_2) \\ \vdots \\ R(s_N) \end{bmatrix} + \begin{bmatrix} P_{11} & P_{21} & \cdots & P_{1N} \\ P_{21} & P_{22} & \cdots & P_{2N} \\ \vdots & \vdots & \cdots & \vdots \\ P_{N1} & P_{N2} & \cdots & P_{NN} \end{bmatrix} \begin{bmatrix} V(s_1) \\ V(s_2) \\ \vdots \\ V(s_N) \end{bmatrix}$$

$$V = R + \gamma PV$$
$$(I - \gamma P)V = R$$
$$V = (I - \gamma P)^{-1}R$$

Markov decision process (MDP)

Markov decision process:

- is a Markov reward process whose state transition probabilities and the reward depend on the present action
- To define a Markov decision process, we need
 - S: a set of states
 - A: a set of actions
 - P: state transition probability $P(S_t = s' | S_{t-1} = s, a_t = a)$
 - R: reward function
 - Discount factor

$$P(S_t = s' | S_{t-1} = s, a_t = a)$$

$$R(S_t = s, a_t = a) = E[r_t | S_t = s, a_t = a]$$

$$(S_0, A_0, R_0), (S_1, A_1, R_1), (S_2, A_2, R_2), \cdots$$

Policy in MDP

- MDP requires an actions at each state
- We can consider a function that tell us what to do at each state
 - Input: state
 - Output: probability to perform each action
- Policy:

$$\pi(a|s) = P(A_t = a|S_t = s)$$

$$(S_0, A_0, R_0), (S_1, A_1, R_1), (S_2, A_2, R_2), \cdots$$

Now, both actions and rewards depend on the policy π

Policy in MDP

• Policy:
$$\pi(a|s) = P(A_t = a|S_t = s)$$

$$(S_0, A_0, R_0), (S_1, A_1, R_1), (S_2, A_2, R_2), \cdots$$

both actions and rewards depend on the policy π

$$P^{\pi}(s'|s) = \sum_{a} \pi(a|s) P(s'|s, a)$$

$$R^{\pi}(s) = \sum_{a} \pi(a|s)R(s,a)$$

State value function of MDP

 State value function (for a MDP): expected return from starting in state s

$$V(s) = R(s) + \gamma \sum_{s'} P(s'|s)V(s')$$

In MDP, state value depends on π

$$V^{(n)}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

Immediate reward depends on action and hence on policy

Transition probability depends on action and hence on policy

Optimal policy in MDP

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

- Goal is to <u>maximize the expected return</u> by choosing a sequence of actions
- This is equivalent to finding a <u>policy that maximize the value</u> function
- Hence, we want to find the optimal policy such that

$$\pi^*(s) = \arg\max_{\pi} V^{\pi}(s)$$

Thus, one way of reinforcement learning is to <u>directly</u> find the optimal policy π^* (which means there are other ways, too)

Reinforcement learning

 The goal of reinforcement learning is to learn to generate the best sequence of actions for a given Markov decision process

Maze example (revisited)

Formulation

- State: an integer number between 0 and 28
- Action: an integer number between 0 and 3 (0:up, 1: down, 2: left, 3: right)
- Reward:
 - -1 at each time step
- The "agent"
 - a function f that takes current state as the input and calculates the best action

Maze example (revisited)

$$(S_0 = 0, A_0 = 3, R_0 = -1),$$

 $(S_1 = 7, A_1 = 3, R_1 = -1),$
 $(S_2 = 8, A_2 = 0, R_2 = -1),$
...
 $(S_k = 27, A_k = 3, R_k = -1)$

0:up, 1: down, 2: left, 3: right

The Agent

- ...is essentially a function
- It can be a policy function that determines the action probability given state (input: state, output: action probability)

$$\pi(a|s) = P(a_t = a|s_t = s)$$

- If we have a policy function, we can take action by following the action probability
- It can also be a **state action value function** (input: state & action, output: value) $Q(s,a) = E[G_t|S_t = s, A_t = a]$
 - If we have a value function, we can pick the action with the highest value for the given state (among all possible actions)
- It can also be something else ...
- Now, let's say our goal is to find either the policy that maximize the cumulative reward or find the state-action value function in the given environment

Bellman equation: "clue" for learning

$$V(s) = R(s) + \gamma \sum_{s'} P(s'|s)V(s')$$

Bellman equation (for MRP): value = present value + future value

$$Q_{\pi}(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s) Q_{\pi}(s', a')$$

Bellman equation (for MDP): value = present value + future value

If the policy π is optimal (i.e., $\pi = \pi^*$), the following equation holds

$$\sum_{s'} P(s'|s) Q_{\pi*}(s', a') = \max_{a'} Q_{\pi*}(s', a')$$

hence

$$Q_{\pi*}(s, a) = R(s, a) + \gamma \max_{a'} Q_{\pi*}(s', a')$$

Bellman equation: "clue" for learning

Now we know that the following equation should be met for optimal policy

$$Q_{\pi*}(s, a) = R(s, a) + \gamma \max_{a'} Q_{\pi*}(s', a')$$

$$Q_{\pi*}(s, a) - R(s, a) - \gamma \max_{a'} Q_{\pi*}(s', a') = 0$$

In other words, we can consider any deviation from this condition as an error

$$\epsilon = Q_{\pi}(s, a) - R(s, a) - \gamma \max_{a'} Q_{\pi}(s', a')$$

Updating the state-action value function (Q-function)

$$\epsilon = Q_{\pi}(s, a) - R(s, a) - \gamma \max_{a'} Q_{\pi}(s', a')$$

Let's subtract the error (after multiplying with a learning rate α)

$$Q_{\pi}(s,a) \leftarrow Q_{\pi}(s,a) - \alpha\epsilon$$

$$Q_{\pi}(s, a) \leftarrow Q_{\pi}(s, a) + \alpha (R(s, a) + \gamma \max_{a'} Q_{\pi}(s', a') - Q_{\pi}(s, a))$$

Repeating this update will give us more accurate Q-function!

Finding the Q-function

Ok, we have the equation for iterative updates. Are we done?

$$Q_{\pi}(s, a) \leftarrow Q_{\pi}(s, a) + \alpha (R(s, a) + \gamma \max_{a'} Q_{\pi}(s', a') - Q_{\pi}(s, a))$$

 The problem is that this Q-function takes both state and action as the input

$$Q: S \times A \to \mathcal{R}$$

- We have to update the value for all possible state-action combinations
 - → learning becomes infeasible when state-action space is large

Neural network as an agent

Neural network is a powerful method to approximate an arbitrary function

Deep Q-Network (DQN)

input: state & action

output: value of the state & action

state-action value function (Q-function)

- Instead of trying to find the true Q function (which is infeasible when state-action space is large), we may choose to find an approximated Q function
- Now, the problem has changed to finding a set of network parameters θ that approximates the true Q function

This is something we want to reduce

$$\epsilon = Q_{\pi}(s, a) - R(s, a) - \gamma \max_{a'} Q_{\pi}(s', a')$$

Q-function is now represented as a network (parameterized!)

$$\epsilon = Q_{\pi}(s, a; \theta) - R(s, a) - \gamma \max_{a'} Q_{\pi}(s', a'; \theta)$$

We can think of a loss function as follows

$$\mathcal{L}(\theta) = \frac{1}{2}\epsilon^2 = \frac{1}{2}(Q_{\pi}(s, a; \theta) - R(s, a) - \gamma \max_{a'} Q_{\pi}(s', a'; \theta))^2$$

How can we minimize it? Gradient descent?

Small modification before we go further

$$\mathcal{L}(\theta) = \frac{1}{2}\epsilon^2 = \frac{1}{2}(Q_{\pi}(s, a; \theta) - (R(s, a) + \gamma \max_{a'} Q_{\pi}(s', a'; \theta))^2$$
Our Q-function Target Q-function

 We will change the "target" part to be non-parametric component that we want our Q-function to match*

$$\mathcal{L}(\theta) = \frac{1}{2} (Q_{\pi}(s, a; \theta) - (R(s, a) + \gamma \max_{a'} Q_{\pi}(s', a'; \theta)))^2$$

This can be considered as parameters from earlier steps..

$$\nabla \mathcal{L}(\theta) = (Q_{\pi}(s, a; \theta) - (R(s, a) + \gamma \max_{a'} Q_{\pi}(s', a'; \theta^{-}))) \nabla Q_{\pi}(s, a; \theta)$$
$$\theta^{(k+1)} = \theta^{(k)} - \alpha \nabla \mathcal{L}(\theta^{(k)})$$

Q) Can we just directly minimize the following?

$$\mathcal{L}(\theta) = \frac{1}{2}\epsilon^2 = \frac{1}{2}(Q_{\pi}(s, a; \theta) - (R(s, a) + \gamma \max_{a'} Q_{\pi}(s', a'; \theta)))^2$$

...by calculating its true gradient

$$\nabla \mathcal{L}(\theta) = (Q_{\pi}(s, a; \theta) - (R(s, a) + \gamma \max_{a'} Q_{\pi}(s', a'; \theta)))(\nabla Q_{\pi}(s, a; \theta) - \gamma \nabla Q_{\pi}(s', a'; \theta))$$

...and then performing gradient descent update?

$$\theta^{(k+1)} = \theta^{(k)} - \alpha \nabla \mathcal{L}(\theta^{(k)})$$

- A) It works, but turns out to be slower than semi-gradient method*
 - Conceptually speaking, it is about whether we want to update only Q(s,a) using R+Q(s',a'), or both Q(s,a) and Q(s',a'). The short answer is, we may not want to update Q(s',a')

- Another way to interpret the algorithm
 - We want our approximated Q-function to be close to the true Q-function

$$\epsilon = Q_{\pi}(s, a; \theta) - Q_{true}(s, a)$$

Then we can define a loss function as follows

$$\mathcal{L}(\theta) = \frac{1}{2}\epsilon^2 = \frac{1}{2}(Q_{\pi}(s, a; \theta) - Q_{true}(s, a))^2$$

Then, calculate the gradient

$$\nabla \mathcal{L}(\theta) = (Q_{\pi}(s, a; \theta) - Q_{true}(s, a)) \nabla Q_{\pi}(s, a; \theta)$$

 Since we do not know the true Q-function, we may just use a target function (which is supposedly better than the current one)

$$\nabla \mathcal{L}(\theta) = (Q_{\pi}(s, a; \theta) - (R(s, a) + \gamma \max_{a'} Q_{\pi}(s', a'; \theta^{-}))) \nabla Q_{\pi}(s, a; \theta)$$

- Another way to interpret the algorithm
 - Temporal difference learning

$$\nabla \mathcal{L}(\theta) = \underbrace{\left(Q_{\pi}(s, a; \theta) - \left(R(s, a) + \gamma \max_{a'} Q_{\pi}(s', a'; \theta^{-})\right)\right)}_{\text{Our Q-function}} \nabla Q_{\pi}(s, a; \theta)$$
Target Q-function

- Our Q-function is from the newest parameters where the target Q-function uses old parameters. How can it be possibly any better?
 - It is from the "next state" which has actual reward in it (at least the present value is accurate)
 - Let's say today is Tuesday. It would be easier to predict the weather of Thursday, once we know the weather of Wednesday

Training DQN

- Ok, now we have the equation for the parameter update
- But, this is assuming that we have all training data

$$(S_0, A_0, R_0), (S_1, A_1, R_1), (S_2, A_2, R_2), \cdots$$

Training data in RL comes from "interacting with environment"

- We are still missing a few things to implement RL
 - Interacting with environment
 - Exploration strategy
 - ...and more

Interacting with environment

• So far, we have neglected the importance of interacting with the environment

 What we have discussed requires the following sequence (called episode)

$$(S_0, A_0, R_0), (S_1, A_1, R_1), (S_2, A_2, R_2), \cdots$$

 Our agent has to actually interact with the environment to generate the sequence

$$(S_0, A_0, R_0), (S_1, A_1, R_1), (S_2, A_2, R_2), \cdots$$
These can be obtained from the agent

Exploration: ε-greedy algorithm

- If the agent keeps choosing poor actions (which obviously occurs at the early stage of learning), how can we learn the good actions?
 - → Need to generate (at least some) actions that are different from the agent's choice
- **Simple solution**: with a probability ε, let the agent choose a random action (rather than the optimal action generated by Qnetwork) for the sake of generating data for training

Replay buffer

When we generate an episode ...

 Therefore, it is better to collect data from multiple episodes, shuffle them, and then use for training

DQN: putting things together

```
Initialize replay buffer
Initialize Q network with random weights \theta
Initialize target network (Q') with \theta = \theta
for episode in range(n episode):
               Initialize sequence s<sub>1</sub>
               for t in range(t max):
                              if random variable < \epsilon:
                                              select random action a_t
                               else:
                                              select a_t = argmax_a Q(s_t, a; \theta)
                              perform action a_t and take r_t and s_{t+1}
                              store transition (s_t, a_t, r_t, s_{t+1}) in buffer
                              sample random mini batch of transitions (s_k, a_k, r_k, s_{k+1}) from buffer
                               if episode terminates at step k+1:
                                              y_i = r_i
                               else:
                              y_j = r_j + \gamma \operatorname{argmax}_a Q(s_j, a; \theta)
Update \theta \leftarrow \theta - \alpha \nabla (y_j - Q(s_j, a_j; \theta))^2
                               Update \theta \leftarrow \theta @ every C steps
```

Summary

- Overview of reinforcement learning (Maze example)
 - Credit assignment problem
- Mathematical backgrounds
 - Random variable, random process
 - Markov process
 - Markov reward process, Markov decision process
 - Return and value function
- Q-function & Optimal policy
- Bellman equation
- Deep Q learning

References

- Lecture notes
 - Berkeley CS285
 - http://rail.eecs.berkeley.edu/deeprlcourse/
 - Stanford CS234
 - https://web.stanford.edu/class/cs234/