Fullerene in metal-organic framework: design of a novel material

Michel Côté

Département de physique

Regroupement québécois sur les matériaux de pointe (RQMP)

Université 💣

de Montréal

Outline:

- C₆₀ and its crystal
 - C₆₀ properties
 - Superconductivity in C60 solid
- Metal-organic-framework (MOF)
 - Structure
 - Applications
- A new compound: C₆₀ and MOF
 - Design of electronic structure

rganic framework

C₆₀ fullerene

Biosphere in Montreal

- name, *fullerenes* ou *buckyballs*, is in honor of the architect Buckminster Fuller
- discover in 1985; Nobel Prize in 1996 Curl, Kroto and Smalley

C₆₀ proprieties

- high symmetry; icosahedral
- formation energy = 8.4 eV/atom For comparison graphite/diamond = 8.8 eV/atom
- very stable

 Can be thrown at 100 000 km/h

 at a wall without breaking.
- can form a solid

Electronic structure of C₆₀

In order to make C_{60} a metal with a high electronic density of states, we want to had 3 electrons for each C_{60} , hence A_3C_{60} , where A is an alkali atom.

C₆₀ metal

- •C₆₀ crystals can be doped with alkali. A₃C₆₀ (A=K,Rb,Cs).
- $^{\bullet}T_{c} \sim 10 40 \text{ K linked}$ to the enlargement of the distance between the C_{60} (10 to 10.3 Å center to center).

Superconductivity

• effective attraction between electrons due to motion of atoms.

Transition Temperature

$$T_C \sim \theta_D e^{-\frac{1}{V_{elph}D}(\varepsilon_F)}$$

•The interaction responsible for the superconductivity in fullerenes is mediated via the intramolecular phonons

Electron-phonon coupling

Only intramolecular modes are responsible for the coupling

Ag mode

$$Vep \sim \sum_{\lambda} \frac{\left| \left\langle \psi_i \middle| \varepsilon_{\lambda} \cdot \delta V \middle| \psi_j \right\rangle \right|^2}{\omega_{\lambda}^2}$$

$$H_{\mathrm{u}}$$
 $\stackrel{\uparrow}{\longrightarrow}$ $\stackrel{\downarrow}{\longrightarrow}$ $\stackrel{\uparrow}{\longrightarrow}$ $\stackrel{\downarrow}{\longrightarrow}$

 C_{60}

Hg mode

Transition Temperature

$$T_C \sim \theta_D e^{-1/V_{elph}D(\varepsilon_F)}$$

- •The interaction responsible for the superconductivity in fullerenes is mediated via the intramolecular phonons
- When the lattice parameter changes, only the DOS at the Fermi level changes

$$D(\varepsilon_F) \sim \frac{1}{\text{Dispersion}} \sim \text{Lattice parameter}$$

Michel Côté, ICMR Summer School

Tc vs lattice parameter

Fig. 10.14. The relationship between T_c and the lattice parameter a_0 for $A_3 \, C_{60}$ (A: Li, Na, K, Rb, Cs and their binary alloys) superconductors. Open triangles and squares are from pressure experiments, and the dotted line represents the T_c - a_0 relationship expected from the simple BCS theory using the density of states due to LDA calculations. The *solid line* is a guide for the eyes. From [10.48]

Source: T. Ishiguro, K. Yamaji, G. Saito, "Organic Super-conductors"

-organic framework

Michel Côté, ICMR Summer School

Alkali atoms

Fr half-life = 22 minutes

Outline:

- C₆₀ and its crystal
 - C₆₀ properties
 - Superconductivity in C60 solid
- Metal-organic-framework (MOF)
 - Structure
 - Applications
- A new compound: C₆₀ and MOF
 - Design of electronic structure

vanic framework

Hydrogen storage

Fuel cell:

⇒ the problem of hydrogen storage

Present material capacity:

⇒ 2 to 4 % of their weight in hydrogen

DOE goal:

- ⇒ 6.5 % of their weight
- ⇒ 1.2 billion US\$ in research funding

Fullerene In metal-organic Design of a novel material

T.

nic framework

Metal-Organic Framework (MOF)

 $Zn_4O(BDC)_3$ BDC=1,4-benzenedicarboxylate

•4.5 weight % of H₂ at 78 K and 0.8 bar

•0.5% at RT and 10 bar

•1% at RT and 20 bar

Rosi et al., Science **300** (2003) Yaghi's group, Chemistry, Michigan University.

Outline:

- C₆₀ and its crystal
 - C₆₀ properties
 - Superconductivity in C60 solid
- Metal-organic-framework (MOF)
 - Structure
 - Applications
- A new compound: C₆₀ and MOF
 - Design of electronic structure

vanic framework

Material Design

Fullerene in metal-organic framework

Michel Côté, ICMR Summer School

organic framework

MOF-5C₆₀

- ∆E=0.87 eV
- •New cubic structure for C₆₀
- •Center to center distance of 12.9 Å between the C_{60}
- •Need to reduce the size of the organic linker 1,4-benzenedicarboxylic

organic framework

Material Design

- . ∆E=1.02 eV
- •Keep the simple cubic structure for the C₆₀
- •Center to center distance of 11.3 Å between the C_{60}
- •The organic acid 2-butynediodic in the synthesis of the MOF

Fullerene in metal-organic framework Michel Côté, ICMR Summer School

MOFC₄C₆₀ band structure

MOF - Simple Cubic (C = 11.42 Ang)

C60@MOF - Simple Cubic (C = 11.42 Ang)

-organic framework

Michel Côté, ICMR Summer School

Density of states

Solid FCC C₆₀: 15 states/eV/spin

A look at the charge density...

ullerene in metal-organic framework esign of a novel material

Michel Côté, ICMR Summer School

Conclusion:

- Electronic properties can be tailor with the combinaison of MOF and C60.
- Many new possibilities remain to be explore.
- The synthesis has started.

For more details see: PRL (95) 146403 (2005)

Members of the group

Postdocs who worked on this project:

Vladimir Timochevskii (McGill)

Sébastien Hamel (Livermore)

Present graduate students:

Paul Boulanger

Guillaume Dumont

Sébastien Langevin

Simon Pesant

Benjamin Tardif

ianic framework