Pixie

Preference in Implicit and Explicit Comparisons

Amanul Haque Vaibhav Garg Hui Guo Munindar P. Singh

Department of Computer Science

NC STATE UNIVERSITY

Table of contents

1. Motivation

2. Dataset

3. Experiments and Results

4. Conclusion

Motivation —

"Beats the pants off Pandora!"

Dataset

A comparison can be,

- · Explicit
- · Implicit

A preferred entity can be,

- · Current app
- · Other app
- · None

Pixie Comparative Sentences

```
**
"United is better than American airlines."
```

"Bye Uber, hello Lyft!"

"Beats the pants off Pandora!"

Pixie Comparative Sentences (Annotated)

App reviewed: United
Comparison: Explicit
Preferred entity: Current

App reviewed: **Uber**Comparison: **Explicit**Preferred entity: **Other**

*
"Bye **Uber**, hello **Lyft**!"

"Beats the pants off Pandora!"

App reviewed: Spotify
Comparison: Implicit
Preferred entity: Current

	Comparis		
Preferred Entity	Implicit	Explicit	Total
CURRENT	1910	2097	4007
OTHER	2199	1069	3268
None	758	857	1615
Total	4867	4023	8890

Given a sentence,

$$s = (w_1, w_2, w_3, ..., w_n)$$

that contains either an explicit or an implicit comparison between two entities, our goal is to identify the preferred entity.

- · Limited app pairs restrict generalizability
- · Mask compared entity mentions
 - · current_app, and
 - · other_app

	Original sentence	Masked sentence
1	CNN should leave journalism to the pros at Fox news.	<pre><current_app> should leave journalism to the pros at <other_app>.</other_app></current_app></pre>
2	This is a great game just like Temple run	<pre><current_app> is a great game just like <other_app></other_app></current_app></pre>

Experiments and Results

Experiments

- · Traditional machine learning approaches
 - · SVM, Random Forest, AdaBoost
- · Transformer-based approaches
 - · BERT, ALBERT, DeBERTa, and XLNET
- Prior work
 - · ED-GAT 1 (SOTA)

Haque et al. Pixie 10

¹Nianzu Ma, Sahisnu Mazumder, Hao Wang, and Bing Liu. 2020. Entity-aware dependency-based deep graph attention network for comparative preference classification. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 5782–5788.

Approach	Model	WEIGHTED AVERAGE			
		Precision	Recall	F1-score	
Prior Work	ED-GAT	74.44	73.68	73.99	
Traditional ML	AdaBoost Random Forest SVM	63.80 68.97 72.19	64.62 68.62 73.00	64.07 66.72 71.86	
Transformer- Based	BERT DeBERTa ALBERT XLNet	79.26 83.15 81.87 80.67	79.70 83.63 81.89 81.33	79.37 83.34 81.88 80.77	

- Group sentences based on preferred entity and compare user ratings
- The results are consistent with the user ratings

Data	Preferred Entity			
	Current	None	Other	
Entire Pixie dataset	4.656	3.321	1.993	Ground truth
Test set	4.665	3.292	1.945	Ground truth
Test set	4.608	3.139	1.991	Model predictions

Cross Dataset Performance

- Pixie vs. CompSent-19²
- $\boldsymbol{\cdot}$ CompSent-19 is the largest existing dataset for preference classification

Fine-tune	Test	Precision	Recall	F1-score	Accuracy
CompSent-19	Pixie	65.46	59.89	59.23	59.89
Pixie	CompSent-19	65.19	65.00	63.31	65.00

Haque et al. Pixie 13

²Alexander Panchenko, Alexander Bondarenko, Mirco Franzek, Matthias Hagen, and Chris Biemann. 2019. Categorizing comparative sentences. In Proceedings of the 6th Workshop on Argument Mining, pages 136–145, Florence, Italy. Association for Computational Linguistics.

Conclusion

- Pixie is the largest annotated dataset for preference classification
- · Pixie includes overlooked comparative sentences, such as
 - Indirect comparisons
 - Implicit comparisons
- Pixie provides better coverage for comparative sentences
- · Pixie annotations are consistent with the user ratings
- Models fine-tuned on Pixie outperform the SOTA (ED-GAT)

Thank you!

Please send your feedback/queries to ahaque2@ncsu.edu Project Repository: https://github.com/ahaque2/Pixie