

Conic Bundles over the Real Projective Plane

Mattie Ji

Conic Bundles over the Real Projective Plane

Mattie Ji

Advisor: Lena Ji

June 30th, 2022

What are Conics?

Conic Bundles over the Real Projective Plane

Mattie Ji

In Ancient Greece, conics (or conic sections) are defined as the intersection of a cone and a plane, by "slicing" a cone in creative ways.

¹Figure taken from

https://en.wikipedia.org/wiki/File:Conic_Sections.svg

Affine Space

Conic Bundles over the Real Projective Plane

Mattie Ji

In Algebraic Geometry, our classical conic sections become part of affine spaces.

Definition

Let k be a field, $n \ge 0$ an integer, the **affine space** of dimension n is k^n , which we will denote as \mathbb{A}^n_k

Definition

An (affine) algebraic variety $V\subset \mathbb{A}^n_k$ is the set of common k-roots of a collection of polynomials $\{F_i\}_{i\in I}$ where $F_i\in k[x_1,...,x_n]$. We write V as

$$V = \mathbb{V}(\{F_i\}_{i \in I})$$

Example of Affine Algebraic Varieties

Conic Bundles over the Real Projective Plane

Mattie Ji

Example:

In the affine space \mathbb{A}^n_k

- $\mathbb{V}(0) = \mathbb{A}^n_k$, $\mathbb{V}(1) = 0$
- $V(x_1 a_1, ..., x_n a_n) = \{(a_1, ..., a_n)\}$
- Take $k=\mathbb{R}, n=2$, then the classical conic section C is the variety

$$C = \mathbb{V}(ax^2 + by^2 + c + dxy + ey + fx)$$

where $a, b, c, d, e, f \in \mathbb{R}$

Projective Space

Conic Bundles over the Real Projective Plane

Mattie Ji

The theory of affine varieties is great, but we can generalize conics with what's known as "projective spaces".

Definition

The set of 1-dimensional subspaces of \mathbb{A}^{n+1}_k is called the **projective space** of dimension n, denoted as \mathbb{P}^n_k . In other words, they are just the set of lines going through the origin in \mathbb{A}^{n+1}_k .

Notations:

- We will denote the line through 0 and $(a_0,...,a_n)$ as $[a_0:...:a_n]$ in \mathbb{P}^n_k .
- Sometimes we will denote \mathbb{P}^n_k as $\mathbb{P}^n_{k,[x_0,\dots,x_n]}$ to emphasize its coordinates.

Why Projective Spaces?

Conic Bundles over the Real Projective Plane

Mattie Ji

Q: Why do we want to study conics in projective spaces rather than affine spaces?

A: There are 2 reasons:

- Geometrically, projective spaces are a natural compactification of affine spaces.
- Algebraically, we can turn conic sections into a class of what's called "homogeneous polynomials", which is generally nicer to work with.

Embedding the Affine Plane

Conic Bundles over the Real Projective Plane

Mattie Ji

We can embed the affine plane \mathbb{A}^2_k into \mathbb{P}^2_k by identifying \mathbb{A}^2 with the subset $U_Z = \{[X:Y:Z] \in \mathbb{P}^2_k \mid Z \neq 0\}$ via:

$$\varphi_Z: U_Z \to \mathbb{A}^2_k, \ [X:Y:Z] \mapsto (\frac{X}{Z}, \frac{Y}{Z})$$

This gives the compactification $\mathbb{P}^2_k = \mathbb{A}^2_k \sqcup \mathbb{P}^1_k$

Homogeneous Polynomials

Conic Bundles over the Real Projective Plane

Mattie Ji

Definition

A polynomial $F \in k[x_0,...,x_n]$ is called **homogeneous of degree d** if it is a sum of degree d monomials.

For example, in $\mathbb{R}[x,y,z]$,

$$6x^5 + 7y^5 + \pi x^4y + 3x^2y^2z + 9z^5$$

is a homogeneous polynomial of degree 5.

Observation:

Let F be a homogeneous polynomial of degree d and $\lambda \in k$,

$$F(\lambda a_0, ..., \lambda a_n) = \lambda^d F(a_0, ..., a_n)$$

for all $(a_0, ..., a_n) \in k^{n+1}$. In particular, if $(a_0, ..., a_n)$ is a root of F, then so is $(\lambda a_0, ..., \lambda a_n)$.

Connection to Conics

Conic Bundles over the Real Projective Plane

Mattie Ji

Classically, conic sections have been considered as real roots of the polynomial

$$f(x,y) = ax^{2} + by^{2} + c + dxy + ey + fx \in \mathbb{R}[x,y]$$

With our embedding, we can homogenize f(x, y) into:

$$F(X,Y,Z) = aX^2 + bY^2 + cZ^2 + dXY + eYZ + fXZ$$

Then we note that on Z=1, F(X,Y,Z) becomes f(x,y). This is in fact a bijective correspondence.

Definition:

Let k be a field of characteristic $\neq 2$, a **plane conic** $C \subset \mathbb{P}^2_{[X:Y:Z],k}$ is the k-roots of a homogeneous polynomial of degree 2 in k[X,Y,Z].

Matrices and Conics

Conic Bundles over the Real Projective Plane

Mattie Ji

Take any homogenous polynomial of degree 2

$$F(X, Y, Z) := aX^2 + bY^2 + cZ^2 + dXY + eYZ + fXZ$$

We note that this polynomial has an associated symmetric matrix

$$M_F = \begin{bmatrix} a & \frac{d}{2} & \frac{f}{2} \\ \frac{d}{2} & b & \frac{e}{2} \\ \frac{f}{2} & \frac{e}{2} & c \end{bmatrix}$$

such that

$$F(X,Y,Z) = \begin{bmatrix} X & Y & Z \end{bmatrix} M_F \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

This also makes F(X,Y,Z) into what's called a **quadratic** form of 3 variables.

Smoothness of Conics

Conic Bundles over the Real Projective Plane

Mattie Ji

It turns out that the rank of the matrix M_F determines the geometry of the conic ${\cal C}.$

Fact:

Let \overline{k} be the algebraic closure of k,

- If M_F has rank 3, then C is a smooth conic
- If M_F has rank 2, then $C_{\overline{k}}$, by considering all \overline{k} -roots of F, is the union of two distinct lines meeting at a point.
- If M_F has rank 1, then $C_{\overline{k}}$ is a double line.

Conic Bundles over the Real Projective Plane

Mattie Ji

Let
$$k = \mathbb{R}$$
, $M_F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$, $F(X, Y, Z) = X^2 + Y^2 - Z^2$.

Then C is a smooth conic.

On the chart $(Z \neq 0)$,

Conic Bundles over the Real Projective Plane

Let
$$k = \mathbb{R}$$
, $M_F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $F(X, Y, Z) = X^2 - Y^2$.

Then C is the union of two lines meeting at the origin. On the chart $(Z \neq 0)$,

Example: $rank(M_F) = 1$

Conic Bundles over the Real Projective Plane

Mattie Ji

Let
$$k=\mathbb{R}$$
, $M_F=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $F(X,Y,Z)=X^2$.

Then C is a line, we say it's "double" because of the square. On the chart $(Z \neq 0)$,

Conic Bundles

Conic Bundles over the Real Projective Plane

Mattie Ji

Definition²:

A **conic bundle** is a morphism $\pi:X\to S$ between (smooth) varieties X,S such that the fiber of every point $p\in S$, defined as $\pi^{-1}(\{p\})$, is a conic, and the generic fiber is a smooth conic.

²We need a few more ideas in algebraic geometry to properly define conic bundles, but for the purpose of this talk we will adopt this more convenient definition

Conic Bundles

Conic Bundles over the Real Projective Plane

Mattie Ji

Example:

In our research, we are interested in the conic bundle $\pi: Y_{\tilde{\Delta}/\Delta} \to \mathbb{P}^2_{\mathbb{R},[u:v:w]}$ where:

• $Y_{\tilde{\Delta}/\Delta}$ is a variety defined by the equation:

$$z^{2} = Q_{1}(u, v, w)t_{0}^{2} + 2Q_{2}(u, v, w)t_{0}t_{1} + Q_{3}(u, v, w)t_{1}^{2}$$

- $Q_1,Q_2,Q_3\in\mathbb{R}[u,v,w]$ are homogenous polynomials of degree 2
- π is the standard projection

Why is π a conic bundle?

Conic Bundles over the Real Projective Plane

Mattie Ji

Intuitively, for a conic bundle $\pi:X\to S$, every point in S should correspond to some conic in X.

Example of Fibers for π :

Concretely, take the point $[1:2:3] \in \mathbb{P}^2_{\mathbb{R},[u:v:w]}$, then fiber of [1:2:3] is exactly the solutions satisfying:

$$z^2 = Q_1(1, 2, 3)t_0^2 + 2Q_2(1, 2, 3)t_0t_1 + Q_3(1, 2, 3)t_1^2$$

This forms a conic in $\mathbb{P}^2_{\mathbb{R},[t_0:t_1:z]}$.

Thus, $\pi: Y_{\tilde{\Delta}/\Delta} \to \mathbb{P}^2_{\mathbb{R},[u:v:w]}$ is an example of a **conic bundle**.

The Discriminant Curve

Conic Bundles over the Real Projective Plane

Mattie Ji

We would like to identify if a given fiber of π is smooth:

Smoothness Criterion

Given fixed $[u:v:w]\in \mathbb{P}^2_{\mathbb{R},[u:v:w]}$, we can rewrite its assoicated conic as:

$$0 = Q_1(u,v,w)t_0^2 + 2Q_2(u,v,w)t_0t_1 + Q_3(u,v,w)t_1^2 + (-1)z^2 \ (*)$$

This gives the symmetric matrix:

$$M = \begin{bmatrix} Q_1(u, v, w) & Q_2(u, v, w) & 0 \\ Q_2(u, v, w) & Q_3(u, v, w) & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

The conic (*) is smooth if and only if $det(M) \neq 0$.

The Discriminant Curve

Conic Bundles over the Real Projective Plane

Mattie Ji

Smoothness Criterion (Continued):

The curve defined by $\det(M) = 0$ is called the **discriminant** curve Δ :

$$\Delta = (Q_1 Q_3 - Q_2^2 = 0) \subset \mathbb{P}^2_{[u:v:w]}$$

Quartic Plane Curves

Conic Bundles over the Real Projective Plane

Mattie Ji

 $Q_1Q_3-Q_2^2$ is a degree 4 homogeneous real polynomial.

Definition

The roots of a degree 4 homogenous polynomial over $\mathbb{P}^2_{\mathbb{R}}$ is known as a **quartic**.

Theorem (Zeuthen, 1874)

Let Δ be a smooth quartic over \mathbb{R} , then $\Delta(\mathbb{R})$ can be classified into 1 of the 6 following topological types:

- No real points
- One oval
- 3 Two nested ovals
- 4 Two non-nested ovals
- 5 Three ovals
- 6 Four ovals

Example: Four Ovals

Conic Bundles over the Real Projective Plane

Mattie Ji

The homogeneous equation defines a smooth quartic whose real component has 4 ovals:

$$0 = \frac{509}{18}x^4 - \frac{6397}{114}x^2y^2 + \frac{2219}{76}y^4 - \frac{2203}{102}x^2z^2 + \frac{4011}{323}y^2z^2 + \frac{2123}{289}z^4$$

The real components on the chart $(z \neq 0)$

Example: Two Nested Ovals

Conic Bundles over the Real Projective Plane

Mattie Ji

This homogeneous equation defines a smooth quartic whose real component has 2 nested ovals:

$$0 = -3x^4 - \frac{7}{10}x^2y^2 - \frac{169}{400}y^4 + \frac{67}{6}x^2z^2 + \frac{949}{240}y^2z^2 - \frac{121}{576}z^4$$

The real components on the chart $(z \neq 0)$:

Connectedness

Conic Bundles over the Real Projective Plane

Mattie Ji

Remark:

Our work at this REU so far has been investigating the relationship between the topological type of $\Delta(\mathbb{R})$ and various properties of $Y_{\tilde{\Delta}/\Delta}(\mathbb{R})$

One interesting property we have been investigating so far is the question of connectedness.

Some Results So Far

Conic Bundles over the Real Projective Plane

Mattie Ji

Theorem

With the previous setup of $Y_{\tilde{\Delta}/\Delta}(\mathbb{R})$

- $Y_{\tilde{\Delta}/\Delta}(\mathbb{R})$ has at most 3 connected components
- If the topological type of $\Delta(\mathbb{R})$ is empty, 1 oval, or 4 ovals, then $Y_{\tilde{\Delta}/\Delta}(\mathbb{R})$ is connected
- If $Y_{\tilde{\Delta}/\Delta}(\mathbb{R})$ has 2 connected components, then $\Delta(\mathbb{R})$ is either 2 nested ovals or 2 non-nested ovals
- If $Y_{\tilde{\Delta}/\Delta}(\mathbb{R})$ has 3 connected components, then $\Delta(\mathbb{R})$ is 3 ovals

Proof.

Exercise:)