Algebraic Number Theory

[all rings are commutative unless specified otherwise]

Joydip Ghosh

Personal note

January 21, 2024

Algebraic number, algebraic integer and number field

Algebraic Number

- ▶ Definition: Root of a polynomial over \mathbb{Z} .
- ightharpoonup Example: $\frac{3+\sqrt{-5}}{7}$
- Non-example: π

Algebraic Integer [set forms a ring denoted by \mathbb{A}]

- ightharpoonup Definition: Root of a monic polynomial over \mathbb{Z} .
- ightharpoonup Example: $2 + \sqrt{3}$
- Non-example: π , $\frac{3+\sqrt{-5}}{7}$

Number Field [set forms a field denoted by \mathbb{K}]

- ▶ Definition-1: Subfield of \mathbb{C} and a finite extension over \mathbb{Q} .
- ▶ Definition-2: $\mathbb{Q}[\alpha]$ for some algebraic number $\alpha \in \mathbb{C}$ [See primitive element theorem on slide 11].

Sets of number fields and number rings in \mathbb{C}

▶ Corresponding to every number field there is a number ring: $\mathbb{K} \mapsto \mathbb{K} \cap \mathbb{A}$.

Figure 1: Venn diagram for number rings and number fields.

Some number fields and corresponding number rings

- ▶ $\mathbb{Q}[\omega]$ is called a *Cyclotomic* field for $\omega = e^{\frac{2\pi i}{m}}$, a primitive m^{th} root of unity.
- ▶ $\mathbb{Q}[\sqrt{m}]$ is called a *Quadratic* field for $m \in \mathbb{Z}$, a square-free integer.
- ▶ The following table shows some number fields and their corresponding rings, where $m, a, b \in \mathbb{Z}$:

\mathbb{K}	$\mathbb{K}\cap\mathbb{A}$
\mathbb{C}	A
$\mathbb{Q}[\omega] \colon \omega = e^{\frac{2\pi i}{m}}$	$\mathbb{Z}[\omega]$
$\mathbb{Q}[\sqrt{m}]$	$a + b\sqrt{m} : m \not\equiv 1 \mod 4$ $\frac{a + b\sqrt{m}}{2} : a \equiv b \mod 2, m \equiv 1 \mod 4$
$\mathbb Q$	\mathbb{Z}

Table 1: Number fields and their corresponding number rings.

Basics of Ideals: Definitions

Ideal:

R is a commutative ring. $I \subseteq R$ is an *ideal* of R, if

- i. I is an additive subgroup of R
- ii. $rI \subseteq I, \forall r \in R$. [Equivalently, $ri \in I, \forall r \in R, \forall i \in I$]

Maximal Ideal:

I is a maximal ideal of R, if there is no *proper* ideal in between R and I.

Prime Ideal:

I is a prime ideal of R, if $ab \in I \Rightarrow a \in I$ or $b \in I \forall a, b \in R$.

Fact:

In a commutative ring, a maximal ideal is always prime.

Dedekind domain: Definition

Dedekind domain:

An integral domain, where all non-zero ideals factor uniquely into prime ideals.

Figure 2: Venn diagram for Dedekind domain and UFD.

Dedekind domain: Properties

- ► For any set of ideals in a Dedekind domain, 'lcm' and 'gcd' are naturally defined.
- ► All non-zero prime ideals are maximal.
- ▶ Every number ring is a Dedekind domain.
- ► Every ideal in a Dedekind domain is generated by at most two elements (one of them is arbitrary).

Ideal Arithmetic

Arithmetic operations between two ideals can be defined as follows:

Operation	Definition	R=PID	R=DD
$I \cap J$	$(\{k: k \in I \cap J\})$	$(\operatorname{lcm}(i,j))$	lcm(I,J)
IJ	$(\{ab:a\in I,b\in J\})$	(ij)	IJ
$I+J^{-1}$	$(\{a+b:a\in I,b\in J\})$	$(\gcd(i,j))$	gcd(I,J)
I:J	$\{a \in R : aJ \subset I\}$	$(\operatorname{lcm}(i,j)/j)$	_
$\sqrt[n]{I}$	$\{a\in R: a^n\in I\}$	_	_

Table 2: Arithmetic operations between two ideals.

 $^{^{1}}I + J = I \cup J$

Appendix

Selected topics from (commutative) abstract algebra

Embedding extension lemma

- ▶ Lemma: $[\mathbb{Q}[\alpha_1] : \mathbb{Q}] = n$ implies that there are exactly n embeddings of $\mathbb{Q}[\alpha_1]$ in \mathbb{C} .
 - Visual proof: Each embedding σ_k maps $\mathbb{Q}[\alpha_1]$ into $\mathbb{Q}[\alpha_k]$, as shown in the figure below, where each α_k is conjugate to α_1 . $[\mathbb{Q}[\alpha_1]:\mathbb{Q}]=n$ implies that that there are exactly n conjugates of α_1 .

Primitive element theorem

- ► Theorem: Basically, if α, β are algebraic over F, then $F[\alpha, \beta] = F[\alpha + c\beta]$ for some $c \in F$.
 - Visual proof: Define $c_{j,k} \equiv \frac{\alpha \alpha_j}{\beta_k \beta}$. So, $|\{c_{j,k}\}| < \infty$. Choose $c \in F \{c_{j,k}\} \Rightarrow \alpha + c\beta \neq \alpha_j + c\beta_k, \forall j, k$. So, $F[\alpha + c\beta] \subseteq F[\alpha, \beta]$ has $[F[\alpha, \beta] : F]$ embeddings in \mathbb{C} .

Galois theory

- ▶ Theorem: $f(x) \in F[x]$ splitting over K is solvable iff Gal(K/F) is solvable (i.e., it has a subnormal series with abelian factors).
 - Visualization: $f(x) = x^3 2$ with roots r_1, r_2 and r_3 .

