LATEX TEMPLATE

XIAOXIANG ZHOU

Contents

1. Introduction	1
2. Examples	1
2.1. Theorem environment	1
References	3

1. Introduction

This is a document for beginning with ease. Sometimes I felt disturbed by the structures of the LATEX document. I don't know how to reset the arranges among paragraphs, and some environments crash with each other.

The structure of documents:

- (1) document class;
- (2) packages;
- (3) symbols, containing math operators and other symbols;
- (4) global settings;
- (5) blocks for special features;

2. Examples

2.1. Theorem environment.

Theorem 2.1 (see [2, Theorem 18.5.1]). ...

Setting 2.2. ...

Definition 2.3. ...

Lemma 2.4. ...

Proposition 2.5. ...

Corollary 2.6. ...

Conjecture 2.7. ...

Date: February 18, 2023.

1

M	M(1)	M(2)	M(3)	M(4)	M(5)	M(6)	OEIS
$\mathcal{C}\mathrm{om}$	1	1	1	1	1	1	
$\mathcal{A}_{\mathrm{SS}}$	1	2	6	24	120	720	
$\mathcal{L}\mathrm{ie}$	1	1	2	6	24	120	
$\mathcal{T}(E_{\mathcal{C}\mathrm{om}})$	1	1	3	15	105	945	A001147
$\mathcal{T}(E_{\mathcal{A}ss})$	1	2	12	120	1680	30240	A001813
$\mathcal{T}(E_{\mathcal{L}\mathrm{ie}})$	1	1	3	15	105	945	A001147
$R_{\mathcal{C}om}$	0	0	2	14	104	944	
$(R_{\mathcal{A}ss})$	0	0	6	96	1560	29520	
(R_{Ass})	0	0	1	9	81	825	
$\mathcal{E}\mathrm{nd}_{\mathbb{C}^k}$	k^2	$2k^2$	$3k^2$	$4k^2$	$5k^2$	$6k^2$	
\mathcal{C} om $\circ \mathcal{L}$ ie							
:							
<u> </u>							
				1			

Claim 2.8. ...

Example 2.9. ...

Exercise 2.10. ...

Fact 2.11. ...

Question 2.12. ...

Warning 2.13. ...

Black box. ...

Conventions and Notations. ...

Remark 2.14. ...

Remarks.

1. ...

2. ...

References

- [1] Jens Niklas Eberhardt. K-motives and Koszul duality. Bulletin of the London Mathematical Society, 54(6):2232–2253, 2022.
- $[2]\ {\rm Ravi\ Vakil}.$ The rising sea: Foundations of algebraic geometry. $preprint,\,2017.$

School of Mathematical Sciences, University of Bonn, Bonn, 53115, Germany, $Email\ address:$ email:xx352229@mail.ustc.edu.cn