Graph Theory Fall 2022

Assignment 6

- 1. Consider rooted trees with exactly 10^{12} non-parent vertices. Recall that we denote by ${\it H}$ the height of such a tree.
 - A. Find a tight lower bound for *H* among such trees.
 - B. Find a tight upper bound for *H* among such trees.
 - C. Find a tight lower bound for H among binary rooted trees with exactly 10^{12} non-parent vertices.
 - D. Find a tight lower bound for H among n-ary rooted trees with exactly 10^{12} non-parent vertices. Your formula should involve n.
- 2. Consider the binary rooted tree (T, r) each of whose vertices is a finite string over $\{0,1\}$. We construct our tree by the following rules:
 - The root is the vertex 0.
 - If v is a string that ends in a 0, then the left child of v is "v0" and the right child is "v1".
 - If v is a string that ends in a 1, then the only child of v is "v0".
 - A. Draw Levels 0 through 4 of this tree, with the vertices labeled appropriately.
 - B. Make a conjecture of how to compute the number of vertices at a given level.
- 3. Show that the graph below cannot be 3-colored:

4. Find the chromatic polynomial of the graph below:

