Operating System Overview

3431

Agenda

- Assignment 1 is out
- Today's lecture
 - Continue systems overview
 - OS jargon and computing environment
 - OS overview
 - Key abstractions
 - Structure
 - Operation
 - Textbook reading: 1.4-1.8, 2.3-2.10

OS Goals

- Provide an environment for applications to run
 - Allow users to use applications
 - **→** Convenience
- Provide the resources needed
 - Allow applications to use computer resources
 - **→** Efficiency
- Support interactivity
 - Allow users and application to interact
 - → Ability to evolve

Question: How to achieve these goals?

OS Roles

- OS is a resource allocator
 - Provide abstractions through which computer resources are accessed
 - Manages all resources (Processor, Memory, I/O devices, etc...)
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer
 - Protects hardware, software, and users from each other

The Three Key Abstractions

- **Process** → CPU
 - Instance of a program
 - Associated with a space
 - May have 0 or more files open for access
- Memory (Address) Space → RAM
 - The range of memory locations that a process can access
 - Each location is uniquely identified by an address
 - Each location may be read from, written to, or executed
- File -> Secondary storage, Network, and Peripheral Devices
 - A stream of data 1001001001101010110101010101010101
 - Identified by a name in the OS's file system or a file descriptor

Process

- A process can be defined as:
 - A program in execution.
 - It is a unit of work within the system.
 - Program is a passive entity, process is an active entity.
- Process needs resources to accomplish its task
 - CPU, memory, I/O, files
 - Initialization data
- Process termination requires reclaim of any reusable resources

Components of a Process

- Three components
 - An **executable** program
 - The associated data needed by the program (variables, work space, buffers, etc.)
 - The process state
 - Execution context of the program

- The execution context
 - Is the internal data by which the OS is able to supervise and control the process
 - Includes the contents of the various process registers
 - Includes information such as the priority of the process and whether the process is waiting for the completion of a particular I/O event

Process Management

- The entire state of the process at any instant is contained in its context
- New features can be designed and incorporated into the OS by expanding the context to include any new information needed to support the feature

Process Management

- Single-threaded process has one program counter specifying location of next instruction to execute
 - Process executes instructions sequentially, one at a time, until completion
- Multi-threaded process has one program counter per thread
- Typically system has many processes, some user, some operating system running concurrently on one or more CPUs
 - Concurrency by multiplexing the CPUs among the processes / threads

Process Management Activities

The operating system is responsible for the following activities in connection with process management:

- Creating and deleting both user and system processes
- Suspending and resuming processes
- Providing mechanisms for process synchronization
- Providing mechanisms for process communication
- Providing mechanisms for deadlock handling

Memory Management

- Principle storage management responsibilities of the OS
 - Process Isolation
 - Automatic allocation and management
 - Protection and access control
 - Long-term storage

Virtual Memory

- A facility that allows programs to address memory from a logical point of view, without regard to the amount of main memory physically available
- Conceived to meet the requirement of having multiple user jobs reside in main memory concurrently

Paging

- Allows processes to be comprised of a number of fixed-size blocks, called pages
- Program references a word by means of a virtual address, consisting of a page number and an offset within the page
- Each page of a process may be located anywhere in main memory
- The paging system provides for a dynamic mapping between the virtual address used in the program and a real address (or physical address) in main memory

Scheduling and Resource Management

- Key responsibility of the OS:
 - Manage the various resources available to it
 - Schedule their use by the various active processes
- Any resource allocation and scheduling policy must consider three factors: Fairness, Efficiency, and Responsiveness

Files

- OS provides uniform, logical view of information storage
 - Abstracts physical properties to logical storage unit file
 - Each medium is controlled by device (i.e., disk drive, tape drive)
 - Varying properties include access speed, capacity, data-transfer rate, access method (sequential or random)

File-System Management

- Files usually organized into directories
- Access control on most systems to determine who can access what
 - Information protection and security
- OS activities include
 - Creating and deleting files and directories
 - Primitives to manipulate files and dirs
 - Mapping files onto secondary storage
 - Backup files onto stable (non-volatile) storage media

OS Structure

- OS are amongst the most complex pieces of software ever developed
- Design and implementation of OS not "solved", but some approaches have proven successful
 - Start by defining goals and specifications
 - Affected by choice of hardware and type of system
- User goals and System goals
 - User goals
 - convenient to use, easy to learn, reliable, safe and fast
 - System goals
 - easy to design, implement and maintain, flexible, reliable, error-free, and efficient

The Layered Approach

- With modularity, layers are selected such that each uses functions (operations) and services of only lower-level layers
- Allows separation between
 - Policy
 - What needs to be done
 - Mechanism
 - How it is done

