

Building an Implicit Recommendation Engine

Sophie Watson @sophwats sophie@redhat.com

#SAISDS12

Building an Implicit Recommendation Engine

Sophie Watson @sophwats sophie@redhat.com

#SAISDS12

goodreads books

people to follow

Outline

Alternating Least Squares

Product A

5☆

5☆

5☆

Product B

3☆

3☆

3☆

Product C

5☆

3☆

?☆

Product A

5☆

5☆

5☆

Product B

3☆

3☆

3☆

Product C

5☆

3☆

4☆

Alternating Least Squares

	user 1	user 2	user 3	• • •	user N	
	1	4.5	?	•••	3	product 1
	?	3	3	•••	4	product 2
R =	5	3	?	•••	?	product 3
	:	÷	:	٠.	÷	:
	2	4	1	• • •	?	product M

Alternating Least Squares

	user 1	user 2	user 3	• • •	user N	
	1	4.5	3.8	•••	3	product 1
	3.2	3	3	•••	4	product 2
R =	5	3	3.4	• • •	3.1	product 3
	:	÷	:	٠.	:	:
	2	4	1	• • •	2.7	product M

Implicit Data

Song A

1 play

Implicit Data

Song A

1 play

Song B

0 plays

Implicit Data

Song A 1 play

Song B 0 plays

Song C 100 plays

Collaborative Filtering for Implicit Feedback Datasets

Yifan Hu AT&T Labs – Research Florham Park, NJ 07932 Yehuda Koren* Yahoo! Research Haifa 31905, Israel

Chris Volinsky AT&T Labs – Research Florham Park, NJ 07932

The aim:

$$p_{ui} \in (0, 1)$$
 preference

The recorded data:

 $p_{ui} \in (O, I)$ preference

recording

The recorded data:

$$p_{ui} \in (0,1)$$
 preference

Fui $\in \mathbb{R}$ recording

Confidence:

Pui
$$\in (0,1)$$
 preference

Tui $\in \mathbb{R}$ recording

Pui $= \begin{cases} 1 & \text{if } r_{\text{ui}} > 0 \\ 0 & \text{if } r_{\text{vi}} = 0 \end{cases}$

Confidence:

Pui
$$\in (0,1)$$
 preference

Tui $\in \mathbb{R}$ recording

Pui $= \begin{cases} 1 & \text{if } r_{\text{ui}} > 0 \\ 0 & \text{if } r_{\text{ui}} = 0 \end{cases}$

Minimisation:

Cui
$$\left(p_{ui} - \bigcup_{u} X_{i}^{T} \right)$$
 $p_{ui} = \left\{ \begin{array}{c} 1 & i \\ 0 & i \end{array} \right\}$

User vector

Item vector

$$Pui \in (O, I)$$
 preference

Item vector

What does Spark offer?

1 from pyspark.mllib.recommendation import ALS

Data

Lastfm dataset

17 million recordings / 360k users / 200k artists

```
['00000c289a1829a808ac09c00daf10bc3c4e223b',
'8bfac288-ccc5-448d-9573-c33ea2aa5c30',
'red',
'hot',
'chili',
'peppers',
'691'], — number of plays
```

Building the model

(user id, product id, recording)

Tuning Parameters

Rank

Rank

Lambda

1 model=ALS.trainImplicit(data_set, rank=5, lambda_=0.01, alpha = 1.0, iterations=5)

Minimisation:

Cui
$$\left(p_{ui} - \bigcup_{u} \chi_{i}^{\tau} \right)$$

+ $\lambda \left(\prod \bigcup \prod + \prod \chi \prod \right)$

Alpha

Alpha

1 model=ALS.trainImplicit(data_set, rank=5, lambda_=0.01, alpha_= 1.0, iterations=5)

Cui = 1 + XViirelates to scale of recording

Iterations

Making Predictions

```
1 model=ALS.trainImplicit(data_set, rank=5, lambda_=0.01, alpha = 1.0, iterations=5)
```

```
predictions = model.predictAll(zero_listens)
```

```
(user id, item id)
```



```
user1_listened.take(10)
user1_listened.map(lambda x:(x[1][1][1:])).take(10)
[['beirut', '609'],
 ['dredg', '605'],
 ['calexico', '562'],
 ['led', 'zeppelin', '456'],
 ['laura', 'marling', '401'],
 ['minus', 'the', 'bear', '377'],
 ['zion', 'i', '352'],
 ['bon', 'iver', '313'],
 ['xavier', 'rudd', '306'],
 ['passion', 'pit', '273']]
```

```
user1_pred=model.predictAll(user1_unlistened)
```

```
[['john', 'frusciante', '2140'],
['red', 'hot', 'chili', 'peppers', '1614'],
 ['waglewski', 'fisz', 'emade', '566'],
 ['coldplay', '461'],
 ['the', 'mars', 'volta', '402'],
['pj', 'harvey', '398'],
 ['muchy', '397'],
 ['maria', 'peszek', '373'],
 ['fisz', '305'],
 ['ataxia', '301']]
```


1 model=ALS.trainImplicit(data_set, rank=5, lambda_=0.01, alpha = 1.0, iterations=5)

predictions = model.predictAll(zero_listens)

1 model-ALS.trainImplicit(data_set, rank-5, lambda_-0.01, alpha = 1.0, iterations-5)

1 predictions = model.predictAll(sero listens)

Microservices

Microservices

Microservices

radanalytics.io

Contents

Introduction Architecture Installation Usage Expansion Videos

Recommendation engine service with Apache Spark

Introduction

Project Jiminy is a service based application that implements a simple recommendation system using collaborative filtering based on an alternating least squares methodology. That may sound complicated but through the source repositories and these instructions you will find that creating a recommendation engine is more straightforward than expected.

With these instructions you will learn how to deploy Jiminy with the MovieLens dataset by the GroupLens Research organization. This dataset represents a set of movies, users and their ratings of the movies. Although Jiminy uses this dataset as the starting point, you will see how easily the services can be modified to utilize your own datasets.

@sophwats sophie@redhat.com

Collaborative Filtering

Alternating Least Squares

