EXERCICE N°1 Objectif Spé (Le corrigé)

On donne x la mesure d'un angle aigu. Démontrer les égalités suivantes :

1)
$$(\cos(x) + \sin(x))^2 = 1 + 2\sin(x)\cos(x)$$
 2) $(\cos(x))^2 - (\sin(x))^2 = 1 - 2(\sin(x))^2$

3)
$$1 + (\tan(x))^2 = \frac{1}{(\cos(x))^2}$$
 4) $1 + \frac{1}{(\tan(x))^2} = \frac{1}{(\sin(x))^2}$

Remarque n°1.

Très souvent, vous simplifierez ces écritures de la façon suivante :

1)
$$(\cos x + \sin x)^2 = 1 + 2\sin x \cos x$$
 2) $\cos^2 x - \sin^2 x = 1 - 2\sin^2 x$

3)
$$1 + \tan^2 x = \frac{1}{\cos^2 x}$$
 4) $1 + \frac{1}{\tan^2 x} = \frac{1}{\sin^2 x}$

Pour démontrer une égalité, on choisit un membre de départ, et, à l'aide du calcul littéral et des propriétés à notre disposition, on essaie d'aboutir à l'autre membre.

1)
$$(\underbrace{\cos(x) + \sin(x)}_{a})^{2} = \underbrace{(\cos(x))^{2} + 2\cos(x)\sin(x) + (\sin(x))^{2}}_{2ab} \qquad \text{(identit\'e remarquable)}$$

$$= \underbrace{(\cos(x))^{2} + (\sin(x))^{2} + 2\cos(x)\sin(x)}_{=1 \text{ (propri\'et\'e 2)}}$$

$$= 1 + 2\sin(x)\cos(x)$$

2)
$$(\cos(x))^{2} - (\sin(x))^{2} = (\cos(x))^{2} + 0 - (\sin(x))^{2} \qquad \text{astuce classique : on ajoute 0}$$

$$= (\cos(x))^{2} + (\sin(x))^{2} - (\sin(x))^{2} - (\sin(x))^{2} \qquad \text{mais sous une forme utile}$$

$$= (\cos(x))^{2} + (\sin(x))^{2} - (\sin(x))^{2} - (\sin(x))^{2}$$

$$= 1 - 2(\sin(x))^{2}$$

3)

$$1 + (\tan(x))^{2} =$$

$$= 1 + \left(\frac{\sin(x)}{\cos(x)}\right)^{2}$$

$$= 1 + \frac{(\sin(x))^{2}}{(\cos(x))^{2}}$$

$$= \frac{(\cos(x))^{2} + (\sin(x))^{2}}{(\cos(x))^{2}}$$

$$= \frac{1}{(\cos(x))^{2}}$$

4)
$$1 + \frac{1}{(\tan(x))^2} = 1 + \frac{1}{\left(\frac{\sin(x)}{\cos(x)}\right)^2} = 1 + \frac{1}{\frac{(\sin(x))^2}{(\cos(x))^2}} = 1 + \frac{(\cos(x))^2}{(\sin(x))^2} = \frac{(\sin(x))^2 + (\cos(x))^2}{(\sin(x))^2} = \frac{1}{(\sin(x))^2}$$

On aurait pu partir du membre de droite à chaque fois...

EXERCICE N°2 Valeurs remarquables part 1 (Le corrigé)

On considère un triangle OMH rectangle en H tel que $\widehat{MOH} = 60^{\circ}$ et $OH = \frac{1}{2}$. Soit I le symétrique de O par rapport à H.

1) Montrer que le triangle OMI est équilatéral.

Dans le triangle OMI.

- (MH) est la médiane issue de M.
- OMI est équilatéral, donc c'est aussi la médiatrice de [IO].

Ainsi (MH) est un axe de symétrie de ce triangle et le triangle MHO est rectangle en H.

 \rightarrow Nous aurons aussi besoin de MH. Nous déterminons cette longueur ici afin de faciliter la lecture des questions 2 et 3. (mais vous pouviez le faire directement dans les questions précitées)

Dans le triangle MOH ,rectangle en H.

Le théorème de Pythagore nous permet d'écrire :

$$MO^2 = HM^2 + HO^2$$

On en déduit que :

$$HM^2 = MO^2 - HO^2 = 1^2 - \left(\frac{1}{2}\right)^2 = \frac{3}{4}$$

Et comme HM est une longueur : $HM = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$

2) En déduire la valeur exacte de $\cos(60^\circ)$ puis de $\sin(60^\circ)$.

$$\cos(60^{\circ}) = \cos(\widehat{MOH}) = \frac{HO}{OM} = \frac{\frac{1}{2}}{1} = \frac{1}{2}$$

$$\sin(60^{\circ}) = \sin(\widehat{MOH}) = \frac{HM}{MO} = \frac{\frac{\sqrt{3}}{2}}{1} = \frac{\sqrt{3}}{2}$$

3) En déduire la valeur exacte de $\cos(30^{\circ})$ puis de $\sin(30^{\circ})$.

$$\cos(30^{\circ}) = \cos(\widehat{HMO}) = \frac{HM}{MO} = \frac{\frac{\sqrt{3}}{2}}{1} = \frac{\sqrt{3}}{2}$$

$$\sin(30^{\circ}) = \sin(\widehat{HMO}) = \frac{HO}{OM} = \frac{\frac{1}{2}}{1} = \frac{1}{2}$$

Pour la question 3), on pouvait aussi remarquer que le cosinus d'un angle aigu est égal au sinus de son angle complémentaire...

EXERCICE N°3 Valeurs remarquables part 2 (Le corrigé)

On considère un triangle OMH rectangle en H tel que $\widehat{MOH} = 45^{\circ}$ et OM = 1.

1) Montrer que le triangle OMH est également isocèle puis en déduire la valeur exacte de la longueur OH.

On considère le triangle *OMH* .

Dans un triangle, la somme des mesures des angles vaut 180°.

Donc $\widehat{OMH} = 180 - 90 - 45 = 45^{\circ}$

Le triangle *OMH* ayant deux angles de même mesure est bien isocèle.

2) En déduire la valeur exacte de $cos(45^{\circ})$ puis de $sin(45^{\circ})$

$$\cos(45^\circ) = \cos(\widehat{HMO}) = \frac{HM}{OM} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$\sin(45^\circ) = \sin(\widehat{HMO}) = \frac{OH}{OM} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

EXERCICE N°4 Tableau des valeurs remarquables de la trigonométrie. (Le corrigé)

En vous aidant des deux exercices précédents compléter le tableau et l'apprendre par cœur!

x	0°	30°	45°	60°	90°
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin(x)$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\tan(x)$	0	$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	« infini »