Package 'ggmr'

October 13, 2022

Type Pa	ackare
• •	
	eneralized Gauss Markov Regression
Version	0.1.1
Date 20	019-09-20
Author	Hugo Gasca-Aragon
Maintai	iner Hugo Gasca-Aragon <hugo_gasca_aragon@hotmail.com></hugo_gasca_aragon@hotmail.com>
to to su	tion Implements the generalized Gauss Markov regression, this is useful when both predictor and response have uncertainty attached to them and also when covariance within the predictor, within the response and between the predictor and the response is present. Base on the realts pubshed in guide ISO/TS 28037 (2010) https://www.iso.org/standard/44473.html .
Depend	s stats (>= 3.4.0), MASS (>= 7.3), R (>= 3.4.0)
License	GPL (>= 2)
Encodin	ng UTF-8
NeedsC	ompilation no
Reposit	ory CRAN
Date/Pu	ablication 2019-09-30 11:50:02 UTC
R top	oics documented:
	ggmr
Index	5
ggmr	Solves the Generalized Gauss Markov Regression model

Description

Fits the linear model using covariance matrices on the predictor, the response and covariance matrix between predictor and response, according to ISO/TS 28037 (2010).

2 ggmr

Usage

```
ggmr(x, y, Ux = diag(0, length(x)),
Uy = diag(1, length(x)),
Uxy = diag(0, length(x)),
subset = rep(TRUE, length(x)),
tol = sqrt(.Machine$double.eps), max.iter = 100, alpha = 0.05,
coef.H0 = c(0, 1))
```

Arguments

X	numeric vector, the predictor values
у	numeric vector, the response values
Ux	numeric matrix, the variance matrix of the predictor
Uy	numeric matrix, the variance matrix of the response
Uxy	numeric matrix, the covariance matrix between predictor and the response
subset	a logical vector or a numeric vector with the position to be considered
tol	numeric, the maximum allowed error tolerance, tolerance is relative
max.iter	integer, the maximum number of allowed iterations
alpha	numeric, the significance level used on testing H0
coef.H0	the coefficients for hypothesis testing purposes

Value

a list with the following elements

estimated coefficients coefficients covariance matrix of the estimated coefficients cov estimated latent unobservable variables хi chisq.validation chi-squared statistic for model validation chisq.ht chi-squared statistic of the observed values for the hypothesis testing chisq.cri chi-squared critical value p.value probability of observing a validation statistic equal or larger then the sampled just by chance curr.iter current number of iterations used current relative tolerance curr.tol

Author(s)

Hugo Gasca-Aragon

Maintainer: Hugo Gasca-Aragon hotmail.com

ggmr 3

References

ISO/TS 28037 (2010). *Determination and Use of straight-line calibration functions* https://www.iso.org/standard/44473.html

See Also

lm, dwlm

Examples

```
require(MASS)
# Example ISO 28037 (2010) Section 6. table 6
d<- data.frame(</pre>
x=c(1.0, 2.0, 3.0, 4.0, 5.0, 6.0),
y=c(3.2, 4.3, 7.6, 8.6, 11.7, 12.8),
uy=c(0.5, 0.5, 0.5, 1.0, 1.0, 1.0)
)
# estimates
ggmr.res \leftarrow ggmr(d$x, d$y, Uy=diag(d$uy^2), coef.H0=c(0, 2), tol = 1e-10)
ggmr.res$coefficients
sqrt(diag(ggmr.res$cov))
ggmr.res$cov[1, 2]
ggmr.res$chisq.validation
ggmr.res$chisq.cri
# reference values
# coefficients = c(0.885, 2.057)
# se = c(0.530, 0.178)
\# cov = -0.082
# validation.stat = 4.131
# critical.value = 9.488
# lm() estimates the coefficients correctly but
# fails to reproduce the standard errors
summary(lm(y~x, data=d, weights=1/d$uy^2))
# coefficients = c(0.8852, 2.0570)
\# se = c(0.5383, 0.1808)
# Example ISO 28037 (2010) Section 7. table 10
d <- data.frame(</pre>
x = c(1.2, 1.9, 2.9, 4.0, 4.7, 5.9),
y = c(3.4, 4.4, 7.2, 8.5, 10.8, 13.5)
Ux = diag(c(0.2, 0.2, 0.2, 0.2, 0.2, 0.2))^2
Uy = diag(c(0.2, 0.2, 0.2, 0.4, 0.4, 0.4))^2
# estimates
ggmr.res \leftarrow ggmr(d$x, d$y, Ux, Uy, coef.H0=c(0, 2), tol = 1e-10)
ggmr.res$coefficients
sqrt(diag(ggmr.res$cov))
ggmr.res$cov[1, 2]
```

4 ggmr

```
ggmr.res$chisq.validation
ggmr.res$chisq.cri
# reference values
# coefficients = c(0.5788, 2.1597)
\# se = c(0.4764, 0.1355)
\# cov = -0.0577
# validation.stat = 2.743
# critical.value = 9.488
# Example ISO 28037 (2010) Section 10. table 25
d<- data.frame(</pre>
x=c(50.4, 99.0, 149.9, 200.4, 248.5, 299.7, 349.1),
y=c(52.3, 97.8, 149.7, 200.1, 250.4, 300.9, 349.2)
Ux<- matrix(c(
0.50, 0.00, 0.25, 0.00, 0.25, 0.00, 0.25,
 0.00, 1.25, 1.00, 0.00, 0.00, 1.00, 1.00,
 0.25, 1.00, 1.50, 0.00, 0.25, 1.00, 1.25,
 0.00, 0.00, 0.00, 1.25, 1.00, 1.00, 1.00,
 0.25, 0.00, 0.25, 1.00, 1.50, 1.00, 1.25,
 0.00, 1.00, 1.00, 1.00, 1.00, 2.25, 2.00,
0.25, 1.00, 1.25, 1.00, 1.25, 2.00, 2.50
), 7, 7)
Uy<- matrix(1.00, 7, 7) + diag(4.00, 7)
Uxy<- matrix(0, 7, 7)
# estimates
ggmr.res<- ggmr(d$x, d$y, Ux, Uy, Uxy)</pre>
ggmr.res$coefficients
sqrt(diag(ggmr.res$cov))
ggmr.res$cov[1, 2]
ggmr.res$chisq.validation
ggmr.res$chisq.cri
# reference values
# coefficients = c(0.3424, 1.0012)
\# se = c(2.0569, 0.0090)
\# cov = -0.0129
# validation.stat = 1.772
# critical.value = 11.070
```

Index

```
* ggmr
ggmr, 1
dwlm, 3
ggmr, 1
lm, 3
```