

Leibniz Universität Hannover

http://25.media.tumblr.com

Clemens Walther

http://25.media.tumblr.com

Alpha Zerfall

Georg Gamow http://de.wikipedia.org

 α Zerfall in der Nebelkammer

http://chambrebrouillard.wifeo.com/alpha.php

Alpha Strahler: Americium

Alpha Strahlung

Entdeckung

Leibniz
Universität
Hannover

1899 Ernest Rutherford entdeckt, dass Uran Minerale zwei verschiedene Strahlungsarten emittieren: er nennt sie α - and β -Strahlung. Sie unterscheidemn sich in ihrem Durchdringungsvermögen.

In den Folgejahren zeigt sich, dass alpha Teilchen massiv und positiv geladen sind

$$\frac{Z \cdot e}{m} = \frac{1}{40000} \cdot \frac{e}{m_0}$$

1909 direkter Beweis, dass $\alpha = {}^{4}\text{He}^{2+}$.

Wechselwirkung von α-Teilchen mit Materie

Vergleich von α, β, γ

Elearning: http://www.e-learning.chemie.fu-berlin.de/radiochemie/strahlungswirkung/reichweite/index.html/

Abbremsen massiver geladener Teilchen

Abbremsen massiver geladener Teilchen als Vielfachstreuung

$$ec{m{p}}_{\!\scriptscriptstyleoldsymbol{oldsymbol{ar{p}}}_{\!\scriptscriptstyleoldsymbol{ar{e}},lpha}}=ec{m{p}}_{\!\scriptscriptstylem{e}}$$

Impulserhaltung

$$\Delta E_{\alpha} = \frac{p_{\perp,\alpha}^2}{2 \cdot m_{\alpha}}$$
 $\Delta E_{\rm e} = \frac{p_{\rm e}^2}{2 \cdot m_{\rm e}} = \frac{2 \cdot m_{\alpha} \cdot \Delta E_{\alpha}}{2 \cdot m_{\rm e}}$

$$\Delta E_{\rm e} = \frac{m_{\alpha} \cdot \Delta E_{\alpha}}{m_{\alpha}} \Delta E_{\alpha} \approx 8000 \cdot \Delta E_{\alpha}$$

Impulserhaltung limitiert $\Delta E_{\rm e}$ und daher ist der maximale Energieverlust in einem Stoß 1/8000 der Energie des alpha-Teilchens

⇒ Die Bremsung schwerer Teilchen ist ein Vielfachstreuprozess.

$$-\frac{dE}{ds} = \frac{4\pi \cdot N^{\vee} z^{2}}{m_{e} v^{2}} \left(\frac{e^{2}}{4\pi \epsilon_{o}}\right)^{2} \cdot B$$

Bethe Bloch Gleichung

```
-\frac{dE}{ds} Bremsvermögen (stopping power)
```

z Kernladungszahl des schweren geladenen Teilchens

m_e Ruhemasse des Elektrons

V Geschwindigkeit des schweren Teilchens

N^V Anzahl der Kerne im Absorber pro cm³

B Bremszahl (atomic stopping number)

Z Kernladungszahl des Absorbers

mittleres Ionisationspotential des Absorbers

 C_k Korrektionsfaktor für E < 4 MeV, 0 < C_k < 1, Umladung

$$-\frac{dE}{ds} = \frac{4\pi \cdot N^{\vee} z^{2}}{m_{e} v^{2}} \left(\frac{e^{2}}{4\pi\epsilon_{o}}\right)^{2} \cdot B \qquad B = Z \cdot \left[\ln \frac{2m_{e} v^{2}}{I(1-\beta^{2})} - \frac{c_{k}}{Z}\right]$$

$$\beta = \frac{V}{c}$$
 $I = 11,5 \cdot Z \text{ (eV)}$ Bethe Bloch Gleichung

- dE Bremsvermögen (stopping power)
 - Kernladungszahl des schweren geladenen Teilchens 7
- Ruhemasse des Elektrons $m_{\rm e}$
- Geschwindigkeit des schweren Teilchens V
- N^{\vee} Anzahl der Kerne im Absorber pro cm³
- В Bremszahl (atomic stopping number)
- Z Kernladungszahl des Absorbers
- mittleres Ionisationspotential des Absorbers
- \boldsymbol{c}_k Korrektionsfaktor für E < 4 MeV, $0 < c_k < 1$, Umladung

$$n_e = Z \times N^V = Z \times \frac{N_L}{A} \rho$$

$$\frac{n}{\rho} = \frac{Z \times N_L}{A} \text{»const.}$$

$$n_e = Z \times N^V = Z \times \frac{N_L}{A} \rho$$

$$\frac{n}{\rho} = \frac{Z \times N_L}{A} \text{»const.}$$

$$Q = \frac{(dE/ds)_{A}}{(dE/ds)_{0}} = \frac{r_{0}dx_{0}}{r_{A}dx_{A}} = \frac{A_{0} \times Z_{A}}{A_{A} \times Z_{0}} \times \frac{\ln \frac{2m_{e}v^{2}}{I_{A}}}{\ln \frac{2m_{e}v^{2}}{I_{0}}}$$

Relatives Bremsvermögen

$$n_e = Z \times N^V = Z \times \frac{N_L}{A} \rho$$

$$\frac{n}{\rho} = \frac{Z \times N_L}{A} \gg const.$$

$$Q = \frac{(dE/ds)_{A}}{(dE/ds)_{0}} = \frac{r_{0}dx_{0}}{r_{A}dx_{A}} = \frac{A_{0} \times Z_{A}}{A_{A} \times Z_{0}} \times \frac{\ln \frac{2m_{e}v^{2}}{I_{A}}}{\ln \frac{2m_{e}v^{2}}{I_{0}}}$$

Relatives Bremsvermögen

$$\frac{R_{_A} \ in \ cm}{R_{_0} \ in \ cm} = \frac{\rho_{_0}}{\rho_{_A}} \sqrt{\frac{A_{_A}}{A_{_0}}}$$

Bragg-Kleemann-Regel

$$n_e = Z \times N^V = Z \times \frac{N_L}{A} \rho$$

$$\frac{n}{\rho} = \frac{Z \times N_L}{A} \gg \text{const.}$$

$$Q = \frac{(dE/ds)_{A}}{(dE/ds)_{0}} = \frac{r_{0}dx_{0}}{r_{A}dx_{A}} = \frac{A_{0} \times Z_{A}}{A_{A} \times Z_{0}} \times \frac{\ln \frac{2m_{e}v^{2}}{I_{A}}}{\ln \frac{2m_{e}v^{2}}{I_{0}}}$$

Relatives Bremsvermögen

$$\frac{R_A \text{ in cm}}{R_0 \text{ in cm}} = \frac{\rho_0}{\rho_A} \sqrt{\frac{A_A}{A_0}}$$

Bragg-Kleemann-Regel

$$R = \int_{E_0}^0 \frac{dE}{dE/dx}$$

Reichweite

Bremsvermögen verschiedener Teilchenarten

Bragg-Kurve für Alpha-Teilchen

Reichweite von Teilchen

"Straggling" von Energie und Reichweite

⊕ und a sind annähernd normal-verteilt.

 α straggling parameter

Reichweite von α -Teilchen in Luft

Reichweite von α -Teilchen in Luft

Reichweite von ¹H, ²H, ³H and ⁴He in Aluminium

Reichweiten und LET* verschiedener Strahlenarten in Luft und Wasser

*linear energy transfer

Radiation	Energy (MeV)	Maximum range		Average LET
		cm air	mm water	value in water (keV μm ⁻¹)
Electron	1	405	4.1	0.24
	3	1400	15	0.20
	10	4200	52	0.19
Proton	1	2.3	0.023	43
	3	14	0.014	21
	10	115	1.2	8.3
Deuteron	1	1.7		
	3	8.8	0.088	34
	10	68	0.72	14
Helium	1	0.57	0.0053	190
	3	1.7	0.017	180
	10	10.5	0.11	92
Fiss, fragment	100	2.5	0.025	3300

Stabilität gegen Alpha Zerfall

$$Q_{\alpha} = M(Z,A) - M(Z-2, A-4) - M(\alpha)$$

Wegen
$$M(Z,A) = Z \cdot m_p + (A - Z) \cdot m_n - BE(Z,A)$$

$$Q_{\alpha} = -BE(Z,A) + BE(Z-2, A-4) + BE(\alpha)$$

$$BE(\alpha) = 28,29599 \text{ MeV}$$

Aber: Das Energie – Halbwertszeit Rätsel

$$E_{\alpha}$$
 1,83 MeV (¹⁴⁴Nd) ← → 11,7 MeV (^{212m}Po)

 $T_{1/2}$ 10¹⁵ a ← → 10⁻⁶ s

Aber: die Coulomb Barriere ist viel höher, für U ~ 9 MeV. ???

1911 Geiger & Nuttall: Für die drei natürlichen Zerfallsreihen ergibt sich die empirische Beziehiung

$$\log \lambda_{\alpha} = a + b \cdot \log R$$
 and with Geiger's rule $R \cong const. \cdot v_{\alpha}^{3} \propto E^{1,5}$ $\Rightarrow \log \lambda_{\alpha} = a' + b' \cdot \log E_{\alpha}$

R: Reichweite

a verschieden für die drei Reihen

Geiger-Nuttall's Regel

$$\log \lambda_{\alpha} = a + b \cdot \log R$$

H. Geiger, Z. Physik 8 (1921) 45

Beziehung zwischen HWZ von gg-Nukliden und Energie der α -Teilchen

Coulomb Barrier und ein positiv geladenes Teilchen, das das "Unmögliche" versucht

Tunneling

Physik IV Clemens Walther Page 33

α-Zerfall als Tunneleffect

AO

Fig. 2.14 Schematic diagram of the crossing of the potential barrier. W. E. Burcham, Nuclear Physics, Longmans (1963).)

Die Coulomb Barriere

Gamow-Theorie des α -Zerfalls

.

 \mathcal{A}_0 Häufigkeit der Bildung eines α -Teilchens im Kern und Versuch "zu entkommen"

7 Wahrscheinlichkeit für Tunneln: Transmissionskoeffizient

Gamow-Theorie des α-Zerfalls

$$\lambda_{\alpha} [s^{-1}] = \lambda_0 [s^{-1}] \cdot T_{\alpha}$$

Häufigkeit der Bildung eines α -Teilchens im Kern und Versuch "zu entkommen"

Wahrscheinlichkeit für Tunneln: Transmissionskoeffizient

$$\lambda_0 \approx 10^{21} \text{ s}^{-1}$$

$$\Rightarrow T_{\alpha} \in [10^{-15} - 10^{-43}]$$
 da $T_{1/2,\alpha} \in [10^{-6} \text{ s} - 10^{15} \text{ a}]$

Die Tunnelwahrscheinlichkeit

$$T_{\alpha} = \exp(-G) = \exp\left\{-\frac{2}{\hbar} \int_{R}^{R_1} (2m_{\alpha} |E_{\alpha} - V_C|)^{1/2} dr\right\}$$

Die Tunnelwahrscheinlichkeit

$$T_{\alpha} = \exp(-G) = \exp\left\{-\frac{2}{\hbar} \int_{R}^{R_1} (2m_{\alpha} |E_{\alpha} - V_C|)^{1/2} dr\right\}$$
$$= \exp\left\{-2\frac{\sqrt{2m_{\alpha}}}{\hbar} \int_{R}^{R_1} \sqrt{\frac{Z \cdot z_{\alpha} \cdot e^2}{r} - E_{\alpha}} dr\right\}$$

Die Tunnelwahrscheinlichkeit

$$T_{\alpha} = \exp(-G) = \exp\left\{-\frac{2}{\hbar} \int_{R}^{R_1} (2m_{\alpha} |E_{\alpha} - V_C|)^{1/2} dr\right\}$$

$$= \exp \left\{ -2 \frac{\sqrt{2m_{\alpha}}}{\hbar} \int_{R}^{R_1} \sqrt{\frac{Z \cdot z_{\alpha} \cdot e^2}{r} - E_{\alpha}} \, dr \right\}$$

$$G = \frac{2}{\hbar} \sqrt{\frac{2m_{\alpha}}{E_{\alpha}}} \cdot Z \cdot z_{\alpha} \cdot e^{2} \cdot \gamma(x)$$
 G ist der Gamow faktor

mit
$$x = \frac{R}{R_1}$$
 und $\gamma(x) = \arccos \sqrt{x} - \sqrt{x(1-x)}$

α-Zerfallsenergien und Halbwertszeiten

Systematik der α -Zerfallsenergien

Zerfallsschema des g-g Kerns Po-210

Zerfallsschema des Pu-238 (Z=94)

Figure 7-6 Decay scheme of Pu²³⁸ showing alpha transitions starting from one level and ending in different levels. [From F. S. Stephens in (AS 60).]

Eine Komplikation

Gamow-Theorie funktioniert nur für g-g-Kerne, die aus ihrem Grundzustand zerfallen. Für andere Nuklide ist der α -Zerfall erschwert, d.h. sie haben längere Halbwertszeiten als erwartet.

Die Erklärung::

Vernachlässigung der Zentrifugalbarriere für $l \neq 0$ und der Kernstruktur in l_0 .

$$V = \frac{Z \cdot z \cdot e^{2}}{r} + \frac{I \cdot (I+1) \cdot \hbar^{2}}{2 \cdot m_{\alpha} \cdot r^{2}}$$
$$\lambda_{0} \Rightarrow \lambda = \lambda_{0} \cdot S$$

S ist ein spektroskopischer Faktor für Bildung and Koaleszenz des α Teilchens

Potentialbarriere mit Coulomb- und Zentrifugal-Anteil

Physik IV Clemens Walther Page 53

1-

Zerfallsschema des Bi-212 (β Zweig)

Figure 7-8 Level scheme and decay scheme of Po^{212} . E_{α} in MeV and E in keV. All intensities (in parentheses) relative to 100 Po^{212} ground-state transitions. [G. T. Emery and W. R. Kane, *Phys. Rev.*, 118, 755 (1960).]

AO

Zerfallsschema des Po-212 (vereinfacht)

Long-Range α-Teilchen

Die Energie des α -Zerfalls von einem angeregten Zustand des ²¹²Po ist so hoch, dass α -Zerfall mit γ -Zerfall konkurrieren kann

Man misst

$$\lambda_{\gamma} \approx 10^{12} \text{ s}^{-1}$$

$$\lambda_{\alpha} = 0.21 \cdot 10^7 \text{ s}^{-1}$$

$$\lambda_{\alpha} = 0.9 \cdot 10^8 \text{ s}^{-1}$$

$$\lambda_{\alpha} \approx 10^{10} \text{ s}^{-1}$$

$$\frac{\lambda_{\gamma}}{\lambda_{\alpha}} = \frac{N_{\gamma}}{N_{\text{longrange}\,\alpha}}$$

Grundzustand

727 keV angeregter Zustand

1,8 MeV angeregter Zustand

Messung von α -Strahlung

- Szintillationszähler ZnS
- Frisch Gitter Kammer
- Ionisationskammer (Diskriminierung von β-Teilchen sowie Spektroskopie möglich)
- Proportionalzähler (dünnes Fenster, nicht gasdicht, Diskriminierung von β-Teilchen möglich bei Benutzung verschiedener Plateaus Spektroskopie möglich
- \triangleright α -spectrometer: Prinzip eines Massenspektrometers
- Halbleiterspektrometrie Si, Si(Li)

Literatur

Philipsborn

Frisch Gitter Ionisationskammer

Abb. 65. "Frisch-grid"-Ionisationskammer, schematisch

α-Spektrum von U und Th mit Zerfallsprodukten gemessen mit einer Frisch Gitter Kammer

inc α-Spektrum gemessen mit einem Si-Detektor

Fig. 2.8 Spectrum of the alpha lines of the 224Ac family, obtained by means of solid-state detectors. (J. P. BRIAND and M. LEFORT, Phys. Let. 10, 90 (1964).)

Clemens Walther Page 62

α-Spektrum und Satelliten Peaks

Fig. 2.8 Spectrum of the alpha lines of the ²²⁴Ac family, obtained by means of solid-state detectors. (J. P. BRIAND and M. LEFORT, *Phys. Let.* 10, 90 (1964).)

Physik IV Clemens Walther Page 65

1-

Oberflächen Sperrschicht Detektor

Abb. 2.36. Aufbau eines Oberflächensperrschichtzählers.

Oberflächen Sperrschicht Detektor

Spektrometrie

Die Energieauflösung eines Spektrometers hängt ab von der kleinesten Energiemenge die von dem Partikel im Detektor abegeben werden kann

Ionisationsenergie im Gas Nal(TI)

~ 30 eV

Energie, um ein Elektron-Loch Paar zu generieren

Si

3,5 eV

Hängt nicht von der Teilchenart ab

Ge

2,94 eV

Auflösung für

α: 15 keV/5 MeV

~ 0,003

 γ : 2 keV/1,33 MeV ~ 0,002

Probleme bei α-Messungen

- Selbstabsorption in der Probe
- Absorption zwischen Quelle und Detektor
- Absorption im Material des Detektors
- Probendicke beeinflusst Auflösung

Aber trotzdem ...

... die gemessenen Energien sind zu niedrig

Warum?

Rückstoß (Recoil) bei α-Zerfall

$$E_{\alpha} = \frac{p_{\alpha}^2}{2m_{\alpha}}$$
 $E_{\text{Rückstoß Kern}} = \frac{p_{\alpha}^2}{2m_{A}}$

$$E_{
m R\ddot{u}ckstoß\ Kern} = rac{2m_{lpha}}{2m_{A}}E_{lpha} = rac{m_{lpha}}{m_{A}}E_{lpha} pprox rac{4}{A}E_{lpha}$$

Für A = 200 und $E_a = 5$ MeV ergibt sich $E_{\text{R\"uckstoß Kern}} = 100$ keV.

Rückstoß beim α- Zerfall

$$E_{\alpha} = \frac{p_{\alpha}^2}{2m_{\alpha}}$$
 $E_{\text{recoil nucleus}} = \frac{p_{\alpha}^2}{2m_{A}}$

$$E_{\text{recoil nucleus}} = \frac{2m_{\alpha}}{2m_{A}} E_{\alpha} = \frac{m_{\alpha}}{m_{A}} E_{\alpha} \approx \frac{4}{A} E_{\alpha}$$

Für A = 200 und $E_a = 5$ MeV ergibt sich $E_{\text{recoil nucleus}} = 100$ keV.

Geschwindigkeit relativistischer Teilchen

