

# Machine Learning Report



**INSTRUCTOR:** 

## Ms. Hameeza Ahmed

#### **Group Members**

SYED UMAIR HASAN

MUHAMMAD FAHAD ALAM

CS-18070

CS-18075

3rd Year, CIS

3rd Year, CIS

# Rice Type Classification

## A Description of Dataset

#### Problem of Interest

The data in the dataset was extracted from two kinds of rice, 'Gonen', 'Jasmine'. Our task is to train a model which will classify the type of rice, whether it is 'Gonen' or 'Jasmine'.

#### Data Source

The data was taken from the Kaggle website.

## A Detailed explanation of the data attributes

### Data issues and description

The dataset contains 18185 rows and 12 columns. All attributes are numeric variables and they are listed below:

- id
- Area
- MajorAxisLength
- MinorAxisLength
- Eccentricity
- ConvexArea
- EquivDiameter
- Extent
- Perimeter
- Roundness
- AspectRation
- Class

Fortunately, this dataset contains no missing values, there are no categorical features and the dataset is also well balanced. However, it contains some features which have outliers.

## Data Preprocessing / Wrangling

#### Data Cleaning

As the dataset contains outliers in some of the features, therefore those outliers were removed by first calculating the interquartile range and then finding the upper and lower range. Any value which is out of that range is considered as an outlier and then removed.

#### **Data Reduction**

The 'Id' column was removed from the dataset as it was irrelevant. The 'Class' column was also dropped from the dataset as it was a target variable.

### Data Editing

Many of the columns were not normalized in the dataset therefore, all the input columns were passed through a standard scaler to normalize the data.

## Basic statistics of attributes

## Description of Numerical Attributes

|       | Area         | MajorAxisLength | MinorAxisLength | Eccentricity | ConvexArea   | EquivDiameter | Extent       | Perimeter    | Roundness    | AspectRation |
|-------|--------------|-----------------|-----------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|
| count | 17597.000000 | 17597.000000    | 17597.000000    | 17597.000000 | 17597.000000 | 17597.000000  | 17597.000000 | 17597.000000 | 17597.000000 | 17597.000000 |
| mean  | 7111.463772  | 152.978496      | 59.961723       | 0.917226     | 7301.974086  | 94.689501     | 0.615732     | 353.964315   | 0.706197     | 2.615482     |
| std   | 1412.424549  | 9.926544        | 10.004501       | 0.027213     | 1445.997988  | 9.407461      | 0.104490     | 25.733769    | 0.065566     | 0.424586     |
| min   | 3698.000000  | 124.110890      | 36.177914       | 0.819338     | 3883.000000  | 68.618072     | 0.383239     | 280.060000   | 0.474142     | 1.744254     |
| 25%   | 6018.000000  | 146.610657      | 51.456124       | 0.892386     | 6180.000000  | 87.534882     | 0.536760     | 335.976000   | 0.650238     | 2.215959     |
| 50%   | 6709.000000  | 154.289429      | 55.917314       | 0.925461     | 6892.000000  | 92.423829     | 0.600259     | 354.276000   | 0.697445     | 2.639618     |
| 75%   | 8464.000000  | 160.280519      | 70.225361       | 0.941634     | 8687.000000  | 103.810883    | 0.694617     | 373.589000   | 0.768167     | 2.970556     |
| max   | 10210.000000 | 180.332508      | 82.550762       | 0.966774     | 10659.000000 | 114.016559    | 0.886137     | 429.919000   | 0.854461     | 3.911845     |

## Data visualization

#### The distribution of the attributes

The bar graph shows that there are no missing values in dataset.



# Checking whether dataset is balanced or not The figure below shows that the dataset is balanced.



#### **Correlation Matrix**



## Box Plot before Outliers detection

The figure below confirms that some features contain outliers.



# Box Plot after removing Outliers Now the outliers have been removed.



## Histogram of all Features



### Classification:

In machine learning, classification refers to a predictive modeling problem where a class label is predicted for a given example of input data. We have to select the input and output of the models.

#### Input:

As we have seen the correlation of the attributes of the dataset. Therefore, following attributes were taken as input:

- Area
- MajorAxisLength
- MinorAxisLenoth
- Eccentricity
- ConvexArea
- EquivDiameter
- Extent
- Perimeter
- Roundness
- AspectRation

We would use Degree Trunc, Distance, Section and Height as the input to the classification model.

## Output:

'Class' is the target variable in our dataset.

- Jasmine 1
- Gonen 0

#### Model

We have split our data 30% and 70% for testing and training respectively. We applied Classification with Input Provided above and predicted Output.

We have used the following classification models:

#### 1. Logistic Regression

The logistic model is used to model the probability of a certain class or event existing such as pass/fail, win/lose, alive/dead or healthy/sick.

#### 2. Naive Bayes Classifier

A Naive Bayes classifier is a probabilistic machine learning model that's used for classification tasks. The crux of the classifier is based on the Bayes theorem.

#### 3. KNeighborsClassifier

KNeighborsClassifier is based on the k nearest neighbors of a sample, which has to be classified. The number 'k' is an integer value specified by the user. This is the most frequently used classifier of both algorithms.

#### **Evaluation of Models**

The following table shows the list of performance metrics of these models against the training data is as follows

|             | Logistic        | Naive Bayes     | K-Neighbors     |  |
|-------------|-----------------|-----------------|-----------------|--|
|             | Regression      | Classifier      | Classifier      |  |
| ACCURACY    | 99.14           | 98.90           | 98.86           |  |
| RECALL RATE | Class 0 - 0.99  | Class 0 - 0.98  | Class 0 - 0.98  |  |
|             | Class 1 - 1.00  | Class 1 - 1.00  | Class 1 - 0.99  |  |
| PRECISION   | Class 0 - 0.99  | Class 0 - 1.00  | Class 0 - 0.99  |  |
|             | Class 1 - 0.99  | Class 1 - 0.98  | Class 1 - 0.99  |  |
| FPR         | Class 0 - 0.004 | Class 0 - 0.002 | Class 0 - 0.007 |  |
|             | Class 1 - 0.013 | Class 1 - 0.021 | Class 1 - 0.015 |  |
| AUC         | 1.00            | 1.00            | 0.99            |  |

It is quite evident from the table that all models are correctly classifying the type of rice as accuracy is quite high along with high value of AUC. Logistic Regression is the most accurate.

### Logistic Regression



## Naive Bayes Classifier



#### KNeighborsClassifier



## Leave One Out Cross Validation

The accuracy score of LOOCV on all 3 models is 1.00. Which means all three models are generalized and working well on unseen data.

## Conclusion

Conclusively, we get to know that the dataset was quite clean, and all of the features were relevant except for the 'id'. The models used were classifying the rice type accurately with high precision and low false positive rate.