CS 35L

Linux Basics

Slide Set 1.1

Lab 7 – Spring 2020

What's this class about?

"Fundamentals of commonly used **software tools** and **environments**, particularly **open-source** tools to be used in upper division computer science courses"

Course Information

- TA: Joe Halabi
 - joe.halabi@gmail.com
 - Office Hours TBD (will be posted on CCLE once finalized)
- Syllabus & Course Website
 - https://web.cs.ucla.edu/classes/spring20/cs35L/
- Questionsly for class discussions
 - Link found on CCLE
- No textbook; online material will be referred to extensively.
- Prerequisites: CS 31

Grading

- Assignments: 50% (equally weighted)
 - 9 regular assignments
 - Lab exercises (expected to be done in the lab)
 - Homework (expected to be done at home)
 - Generally due on Gradescope on Friday at 11:55 PM
 - 1 Presentation + Report (Assignment 10)
 - 10 minute presentation and research report
 - Topic from select CS news publications (listed on course website)
 - Will coordinate scheduling later in the quarter
- Final Exam: 50%
- All assignments are to be done individually, and then submitted on Gradescope

Lateness Penalty

- Lateness penalty: 2^N % deduction for being up to N days late
 - Presentation + Report assignment must be submitted on time
 - No submissions after last day of instruction

Syllabus

- 1. Introduction to Linux
- 2. SSH and its applications
- 3. Bash Shell Scripting
- 4. Modifying and Rewriting Software
- 5. C Programming and Debugging
- 6. Systems Call Programming and Debugging
- 7. Dynamic Linking
- 8. Basic Change Management
- 9. Change Management Exploration
- 10. Research Presentations

Introduction to Linux

Linux Distribution

• Distribution:

A Linux distribution (distro) is an operating system made from a software collection, which is based upon the Linux Kernel and software tools to automate the installation, configuration, upgrade, and removal of programs in a consistent manner.

• Example Distributions:

- CentOS
- Red Hat Enterprise Linux (RHEL)
- Fedora
- Ubuntu
- Debian
- OpenSUSE

Linux Distribution

- Linux Kernel: Open source software that facilitates the interaction between the hardware and the applications
- **GNU core:** Is the basic file, shell and text manipulation utilities. Contains tools such as cat (display), Is (list), rm (remove), etc.
- **X Server:** The display server for the X Windows systems. Allows interaction with keyboard, mouse and screen
- Graphical User Interface (GUI): Display environment

User vs. Kernel Space

- **User Space:** Space in memory allocated to the applications and Libraries. It allows the user and application to interact with the system.
 - The user space varies between the different Linux distributions.
- **Kernel Space:** Contains the system call Interface, the kernel sub-systems and the HW dependant code. Connects the user space to the HW (CPU, MEM, Networking, etc.).
 - The kernel is the same between the different distributions.

Kernel Sub-systems

Linux GUI (Desktops)

- Gnome, KDE, Unity, Cinnamon, Mate, XFCE, LXDE ...
- Range between simple, complex, resource intensive, resource light, etc.
- Basic desktop functionality: launching desktops, browsers, etc.
- Checking system resources, files, directories, etc.
- However! Heavy lifting in Linux is still done inside a terminal via a Command Line Interface (CLI)

Linux CLI

- Opening a Terminal:
 - > From Linux desktop Open terminal
 - > From MacOS Open terminal

Local Client (ssh client)

1- \$ ssh username@Inxsrv.seas.ucla.edu (uses TCP port 22)

2- pw: xxxx

Remote Server

- Opening a Terminal:
 - ➤ From Windows Open a terminal emulator (ex: PuTTY)

User Input

[username@Inxsrv.seas.ucla.edu ~]\$ Is

• Linux Shell: Is a command line interpreter that lives in the user space. It takes input from the user, acts on it, and sends the output to the display. The shell is also a programming language. Example shells are BASH (Born Again Shell)

• Linux Terminal: Is a program that lets you open a window so you can interact with the shell

The File System

```
# the root directory
               # user binaries (ls, pwd, etc.)
/bin
/boot
               # static boot files.
/dev
               # device files
/etc
               # configuration files
               # users home directories
/home
/lib
               # shared libraries
/mnt
               # temporary mount points
/opt
               # optional packages
/ proc
               # kernel and process files
```

```
/root # root user home directory
/run # application state files
/sbin # system administration libs
/srv # data for services
/tmp # temporary files
/usr # user binaries
/var # variable data files
```

Note: These are the basic directories, however you might see more directories depending on the specific Linux distribution

Moving Around in Linux

```
pwd
                 # print working directory
ls
                 # list directories/files
Cd <new location>
                 # change working directory
                 # current directory
                 # home directory
                 # root directory or separator
    cd -
                 # go back to last location
                 # go back one level up
    cd ..
mkdir
                 # make directory
rmdir
                 # remove an empty directory
cat
                 # concatenate and print files
                 # copy files
cp
echo
                 # write arguments to standard
                   output
```

mv # move files
 In # link files
 rm # remove directory entries
 chmod # change the file modes
 kill # terminate or signal processes
 ps # report process status

Note: You can hide files and directories by preceding them with a dot. Ex: .file1

- Is -a: show hidden files and directories
- ls –d : list only directories
- Is –I : show long listing + permission info
- Is -s: show size of each file in blocks
- Is –h: human readable form (in Byte/KB/MB...)

CLI History

- <up arrow>: previous command
- <tab>: auto-complete
- !!: replace with previous command
- ![str]: refer to previous command with str
- ^[str]: replace with command referred to as str

Absolute vs. Relative Path

Absolute path: Starts from the root directory

Relative path: Starts from the working directory

```
cd /home/myfiles
Working directory
```

cat file1

Relative path

Everything is a file

- In Linux everything is a file. If it is not a file, then it is a process
- Linux has 3 types of files:
 - ➤ Ordinary/Regular files
 - ➤ Special files
 - ➤ Directories

Ordinary files:

- > Text
- Data
- ➤ Program instructions
- ➤ Image files
- Compressed files
- > etc.

Special files:

- ➤ Block files: These are device files (/dev). They provide a buffered access to hw components.
- ➤ Character files: These are device files (/dev). They provide un-buffered access to hw components.
- > Symbolic link files: These are pointers to other files
- ➤ Pipes or named pipes: files that allow inter-process communication (IPC)
- ➤ Sockets: files that allow IPC between different environments
- **Directories:** files that store ordinary files or special files in a hierarchy, starting for the root (/) directory.

Processes

- An instance of a computer program in execution.
- Types of processes:
 - ➤ Foreground (interactive)
 - ➤ Background (non-interactive/automatic)
- Daemons:
 - ➤ Background processes
 - ➤ Usually started at boot time
 - Example: cron
 - ➤ Can schedule jobs to run periodically at certain times (cron jobs)
 - ➤ One use: Run backups every month

- Commands:
 - >ps (list processes that are running)
 - > kill
 - > Send signals to process (usually to kill)
 - ➤ kill [signal or option] PID...

Types of Accounts

Root User:

- ➤ Has privilege to all system resources
- > System level administration tasks

• Standard Users:

- > Unprivileged user account
- ➤ Provided login Shell
- ➤ Home directory
- ➤ "Viewing" for system configurations
- Can perform privileged actions via sudo (super-user-do) command (don't sudo on SEASnet servers!)
- ➤ Users are assigned to "Groups".

Files and Directory Permissions

```
ls - l
              sam 197609 47185920 Mar 22
                                            2018 boot2docker.iso
                                            2018 docker-compose.exe*
                                                 docker-machine.exe*
                             69694 Mar 22
                                            2018 docker-quickstart-terminal.ico
                                   Sep 17
File (-)
Directory (d)
                                                           Example: d rwx r-x r-x sam ... installers/
Soft link (I)
                   User (u)
                                          Other (o)
                              Group (g)
                                                                 Directory
                                                                 (installers)
                                                                                       Other: read
                                                                                              execute
                                                                   User: read

    Modifier Rights: read (r), write (w), execute (x)

                                                                         write

    Access Rights: user, group, other, all

                                                                         execute
                                                                        Group (sam:) read
```

execute

Change mode (chmod)

• Chmod changes the permissions (mode) of the file

Octal representation:

➤ chmod 777 file1 # changes the file1 permissions to rwx rwx rwx

Symbolic representation:

> chmod ug = rx file # changes the file1 user and group permissions to rx

Change mode (chmod) - Symbolic

Reference	Class	Description
u	user	Owner of the file
g	group	Users who are members of the group
0	other	Users who are not owner or member of group
а	all	u + g + o

Operator	Description		
+	Adds the specified modes to the specified classes		
-	Removes the specified modes from the specified classes		
=	The modes specified are to be made the exact modes of the specified classes		

Mode	Name	Description
r	read	Read a file or a list a directory's contents
W	write	Write to a file or directory
X	execute	Execute a file or recurse a directory tree

chmod [references] [operator] [modes],... file...

chmod uo=rw file1 (make user and others rw) chmod a-x file1 (remove execution from all) chmod u+r file1 (add read permission to user)

Special Modes:

- **s** setuid/setgid execute with permissions of the owner/group
- t sticky bit (for directories) only owners can rename/unlink files in directory

Change mode (chmod) - Octal

#	binary	Permission
7	111	rwx
6	110	rw-
5	101	r - x
4	100	r
3	011	- w x
2	010	- w -
1	001	x

chmod octal_number file...

Ex: chmod 777 file1 (make user: rwx, group, rwx, other: rwx) chmod 744 file1 (make user: rwx, group: r--, other: r--)

man pages

- man: Display manual page for a Linux command
- DESCRIPTION: man is the system's manual pager. Each page argument given to man is normally the name of a program, utility or function. The manual page associated with each of these arguments is then found and displayed.
- Hit "q" to quit the man pages.
- man [command name] (e.g. man ls, man pwd, man rmdir, etc.)
- man [section] [command name]
 - 1- User Commands
 - 2- System Calls
 - 3- C Library Functions
 - 4- Devices and Special Files
 - 5- File Formats and Conventions
 - 6- Games et. al.
 - 7- Miscellanea
 - 8- System Administration tools and Daemons

Note:

/keyword: forward slash followed by word to search for within man page

Linux Wildcards

Asterisk (*) – matches on one or more occurrences of a character

Question mark (?) – matches on a single occurrence of a character

Brackets ([]) – matches any occurrence of characters enclosed in brackets

Redirection

- > *file*: write stdout to a file (potentially overwriting)
- >> file: append stdout to a file
- < file: use contents of a file as stdin

"find" command

- find search for files in a directory hierarchy
 - find [starting-point] [expression]
 - > [starting-point] # is a directory tree rooted at starting-point
 - > [expression] # is a query specification to match on files and take action

[expression]

> -mtime

```
    -name # name of a file
    -type # type of a file (regular, directory, symbolic link, etc.)
    -user # owner of a file
    -perm # permission of a file
    -maxdepth # how many levels to search
```

last modified by day

"find" Examples

- find /bin –name 'm?'
 - Lists all the two letter files that start with m
 - > /bin/mv
 - → /bin/mt
- find /bin -type I -perm 'a=rwx'
 - > Lists all files of type soft link with u+g+o permissions as rwx

Other useful commands

```
    which <command> locate the binary of the command
    Ex: $ which Is /bin/Is
```

whatis <command> returns name section of man page

```
➤ Ex: $whatis IsIs (1) - list directory contentsIs (1p) - list directory contents
```

• whereis <command> locate the binary, source, and manual page files for the command

```
Ex: $whereis Is
    /bin/ls
    /usr/share/man/man1/ls.1.gz
    /usr/share/man/man1p/ls.1p.gz
```

Lookup the following commands

- touch change file timestamps
- cat concatenate files and print on the standard output
- head output the first part of files
- tail output the last part of files
- du estimate file space usage
- ps report a snapshot of the current processes
- kill send a signal to a process
- diff compare files line by line
- cmp compare two files byte by byte
- wc print newline, word, and byte counts for each file
- sort sort lines of text files
- find search for files in a directory hierarchy (careful !!)

How to connect to Linux Server

 Connect to your SEAS account from your PC/Mac

Services -> VPN

 Inxsrv.seas.ucla.edu (Inxsrv06, Inxsrv07, or Inxsrv09)

Connect to SEAS from OS X or Linux

Terminal

- \$ ssh <u>username@lnxsrv.seas.ucla.edu</u>
 - (lnxsrv06, lnxsrv07, or lnxsrv09)
 - username = SEAS username

Connect to SEAS from Windows

Putty

- Recommended
- Small and easy to use
- Host name: Inxsrv.seas.ucla.edu (Inxsrv06, Inxsrv07, or Inxsrv09)
- User name: your SEAS username
- Detailed setup steps:
 - www.seasnet.ucla.edu/Inxsrv

SCP

Secure Copy Protocol

- scp username@serveraddr:filepath destination-filename
- Copy the file "foobar.txt" from a remote host to the local host
- scp your_username@remotehost.edu:foobar.txt /some/local/directory
- Copy the file "foobar.txt" from the local host to a remote host
- scp foobar.txt your_username@remotehost.edu:/some/remote/directory

- On Windows: Putty comes with pscp (command prompt)
- http://www.hypexr.org/linux_scp_help.php

Assignment 1 - Lab

• ans1.txt for LABORATORY Section of assignment

```
John Smith
123456789
Assignment 1
Lab
```

- 1. Answer to question 1
- 2. Answer to question 2
- 3. Answer to question 3

. . . .

Assignment 1 - HW

• key1.txt for HOMEWORK Section of assignment

```
John Smith
123456789
Assignment 1
Homework
1. C-s H e l l o SPC W O R L D
2. C-s H T M L
3. C-p
4. M-x g o t o - l i n e Enter 1 2 3 Enter
```

Assignment 1 – Emacs Quickstart

- Start Emacs: type **emacs** in shell
- Create new file: C-x C-f *filename* (e.g. C-x C-f ans.txt)
- Save current file: C-x C-s
- Quit Emacs: C-x C-c

Note:

C: Ctrl

M: Alt or Meta

SPC: Space