Computer experiment 1 (from Ch2, [Theodoridis 2009])

Notes: In the sequel, it is advisable to use the command

randn('seed',0)

before generating the data sets, in order to initialize the Gaussian random number generator to 0 (or any other fixed number). This is important for the reproducibility of the results.

Gaussian generator. Generate N I-dimensional vectors from a Gaussian distribution with mean m and covariance matrix S, using the mvnrnd MATLAB function.

Solution

Just type

mvnrnd(m,S,N)

1.

- a) Generate a data set X_1 of N=1,000 2-D vectors that stem from three equiprobable classes modeled by normal distribution with mean vectors $\boldsymbol{\mu}_1 = [1,1]^T$, $\boldsymbol{\mu}_2 = [8,12]^T$, $\boldsymbol{\mu}_3 = [1,16]^T$ and covariance matrices $\Sigma_1 = \Sigma_2 = \Sigma_3 = 4I$, where I is the 2×2 identity matrix.
- b) Apply the Bayesian, the Euclidean, and the Mahalanobis classifiers on X_1 .
- c) Compute the classification error for each classifier and draw your conclusions.

2.

- a) Generate a data set X_2 of N=1,000 2-D vectors that stem from three equiprobable classes modeled by normal distribution with mean vectors $\boldsymbol{\mu}_1 = [1,1]^T$, $\boldsymbol{\mu}_2 = [7,14]^T$, $\boldsymbol{\mu}_3 = [1,16]^T$ and covariance matrices $\Sigma_1 = \Sigma_2 = \Sigma_3 = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$.
- b) Apply the Bayesian, the Euclidean, and the Mahalanobis classifiers on X_2
- c) Compute the classification error for each classifier and draw your conclusions.

3.

a) Generate a data set X_3 of N=1,000 2-D vectors that stem from three equiprobable classes modeled by normal distribution with mean vectors $\mu_1 = [1,1]^T$, $\mu_2 = [6,8]^T$, $\mu_3 = [1,13]^T$ and covariance matrices $\Sigma_1 = \Sigma_2 = [1,13]^T$

 $\Sigma_3 = 6I$, where I is the 2×2 identity matrix.

- b) Apply the Bayesian, the Euclidean, and the Mahalanobis classifiers on X_3
- c) Compute the classification error for each classifier and draw your conclusions.

4.

- a) Generate a data set X_4 of N=1,000 2-D vectors that stem from three equiprobable classes modeled by normal distribution with mean vectors $\boldsymbol{\mu}_1 = [1,1]^T$, $\boldsymbol{\mu}_2 = [5,10]^T$, $\boldsymbol{\mu}_3 = [1,11]^T$ and covariance matrices $\Sigma_1 = \Sigma_2 = \Sigma_3 = \begin{bmatrix} 5 & 4 \\ 4 & 7 \end{bmatrix}$.
- b) Apply the Bayesian, the Euclidean, and the Mahalanobis classifiers on X_4
- c) Compute the classification error for each classifier and draw your conclusions.

5.

- a) Generate two data sets X_5 and X_5' of N=1,000 2-D vectors each that stem from three classes modeled by normal distributions with mean vectors $\mathbf{\mu}_1 = [1,1]^T$, $\mathbf{\mu}_2 = [4,4]^T$, $\mathbf{\mu}_3 = [1,8]^T$ and covariance matrices $\Sigma_1 = \Sigma_2 = \Sigma_3 = 2I$. In the generation of X_5 , the classes are assumed to be equiprobable, while in the generation of X_5' , the prior probabilities of the classes are given by $P_1 = 0.7$, $P_2 = 0.1$, $P_3 = 0.2$.
- b) Apply the Bayesian and the Euclidean, classifiers on both X_5 and X_5' .
- c) Compute the classification error for each classifier for both datasets and draw your conclusions.

6.

- Generate two data sets X_6 and X_6' of N=1,000 2-D vectors each that stem from three classes modeled by normal distributions with mean vectors $\mathbf{\mu}_1 = [1,1]^T$, $\mathbf{\mu}_2 = [7,7]^T$, $\mathbf{\mu}_3 = [1,15]^T$ and covariance matrices $\Sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 12 \end{bmatrix}$, $\Sigma_2 = \begin{bmatrix} 2 & 3 \\ 3 & 8 \end{bmatrix}$, $\Sigma_3 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$. In the generation of X_6 , the classes are assumed to be equiprobable, while in the generation of X_6' , the prior probabilities of the classes are given by $P_1 = 0.6$, $P_2 = 0.3$, $P_3 = 0.1$..
- b) Apply the Bayesian and the Euclidean, classifiers on both X_6 and X_6' .
- c) Compute the classification error for each classifier for both datasets and draw your conclusions.