Code Concatenation

Bence Sooki-Toth

Aalto University

December 10, 2024

Outline

- Problem Statement
- Methods
 - Implementation of Steane code
 - Logical error rates for Steane code
- Results
 - Qubit and Operation growth
 - Steane encoding circuit
 - Concatenated Steane encoding circuit
 - Logical error rates for Steane code
 - Concatenated Steane code syndrome extraction circuit
- Conclusion

Introduction

Problem statement

Problem

The Threshold Theorem theoretically enables Quantum Error Correction, and the multiple concatenation of codes formulates the theorem itself. Compiling the quantum circuits results after code concatenation is challenging because: a) there will be many qubits involved in the final circuit; b) each code used within the concatenation might have its own supported gate set (logical operators)

Methods

Methods

Implementation of Steane code

- Oreate Blogs required to encode the Steane code
- Create a Bloq to encode the Steane code in Qualtran
- Enable concatenation of the Steane code with itself
- Oraw diagrams for the level of concatenations
 - Plot qubits and operation growth

Methods

Logical error rates for Steane code

- Convert Bloqs to stim circuits
- 2 Extend circuit with syndrome extraction
- 3 Add noise and detectors to the circuit
- Decode circuit via pymatching
- Plot logical error rates

Figure: Qubit and Operation growth

Figure: Musical score representation Figure: Bloq graph representation

Figure: Concatenated Steane code graph representation

Figure: Steane code encoding and syndrome extraction circuit

Figure: Steane code logical error rate

Figure: Concatenated Steane code syndrome extraction circuit

Conclusion

Conclusion

Figure: Logical error rates of [[7,1,3]] and [[49,1,9]]