(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-27215

(43)公開日 平成6年(1994)2月4日

(51) Int.Cl.⁵
G 0 1 S 5/14

識別記号 庁内整理番号 4240-5 J

FΙ

技術表示箇所

審査請求 未請求 請求項の数1(全 8 頁)

(21)出願番号 特願平4-180861

(22)出願日 平成4年(1992)7月8日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 満永 雄二

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 小鍜治 明 (外2名)

(54) 【発明の名称】 携帯型GPS受信機

(57)【要約】

【目的】 位置測位の収束演算を発振することなく安定 して行う。

【構成】 測位開始時には前回測位結果位置を測位演算のための初期位置に設定し、選択した衛星が視野外にある場合は他の衛星を捕捉するとともに、捕捉した複数の衛星の中から受信電力の最も大きい衛星の番号を初期位置設定手段12cはこの最大受信電力の衛星の位置から初期位置を算出し、そこで得た初期位置をメモリ手段13に出力し、初期位置変更を行う。到来電波強度が最大であればその衛星が最も天頂方向に近い位置にある事が予測されるので、その衛星位置と地球中心とを結んだ線と地球表面との交点が実際の測位点に最も近いものとし、その交点を初期位置とする。

【効果】 上記構成により、位置測位の逐次近似計算による収束演算を発振することなく安定して行うとともに収束演算回数を削減することができる。

1

【特許請求の範囲】

【請求項1】 GPS衛星からの電波信号を復調して電 波伝搬時間を測定すると共に航法データを受ける航法デ ータ受信手段と、該受信手段で得られた電波伝搬時間と 航法データをもとに初期位置からの逐次近似計算により 現在位置を測定する測位手段と、前記航法データ受信手 段から得られる全衛星軌道概略情報と前記測位手段から 得られる測位結果を蓄積するメモリ手段と、時計手段 と、現在の位置が初期位置と仮定して前記メモリ手段の アルマナックと前記時計手段の時刻から飛来衛星を予測 10 して捕捉衛星を選択する衛星選択手段とを備え、測位結 果を次回測位計算の初期値とし、さらに予測捕捉衛星を 捕捉できない場合には他の衛星を捕捉するように構成 し、他の衛星を捕捉した場合には捕捉衛星の中の測位点 の天頂方向に最も近い位置にある捕捉衛星と地球の中心 を結んだ線と地球表面の交点近辺の位置に初期位置を更 新する初期位置設定手段とを備えたことを特徴とする携 帯型GPS受信機。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、GPS衛星を利用して 位置測定を行なう単独測位GPS受信機、特に電源オフ の状態で移動を行なう頻度の高い携帯型GPS受信機に 関するものである。

[0002]

【従来の技術】従来から、GPS衛星からの電波を単独 で受信して現在位置を測定する単独測位型のGPS受信 機は知られており、利用の拡大および小型化技術の進展 に伴い携帯型のGPS受信機が出現している。

【0003】図3は従来のGPS受信機のブロック図で 30 あり、図4は従来のGPS受信機の動作概要を示すフロ ーチャートである。

【0004】図3において、11は変調された複数の衛 星からの電波信号を復調し衛星位置情報と電波伝搬時間 および全衛星軌道概略情報(以下アルマナックと呼ぶ) を演算装置12へ出力する航法データ受信手段である。

【0005】12は演算装置で、12aは航法データ受 信手段11から入力される複数の衛星位置位置情報と電 波伝搬時間をもとに初期位置からの逐次近似計算で現在 位置を測定し、結果をメモリ手段13と表示装置15へ 40 出力する測位手段、12bは航法データ受信手段11か ら入力されるアルマナックをメモリ手段13へ出力する と共に、測位開始時にアルマナックをメモリ手段13か ら時刻データを時計手段14から入力し、現在位置が初 期位置または前回測位結果位置と仮定して衛星選択を行 なう衛星選択手段である。

【0006】13は測位結果やアルマナック等を記憶す るメモリ手段、14はバックアップ電源により停電時も 時刻を計測し、測位開始時に衛星飛来予測を行なう為の 入力される測位結果等をCRT等に表示する表示装置で ある。

【0007】次に、従来の動作を説明する。衛星選択手 段12 bは、測位開始時に時計手段14から概略の時刻 データを読みだし、メモリ手段13から全衛星の軌道概 略情報であるアルマナックと初期位置または初期位置と して用いる前回測位結果を読みだし、初期位置での時計 手段14で示される時刻における衛星飛来予測を行な い、位置計測に使用するための3個または4個以上の衛 星の番号を航法データ受信手段11に通知し、衛星捕捉 動作開始を指示する(ステップ201)。

【0008】航法データ受信手段11は衛星選択手段1 2 b により指示される衛星について順次捕捉動作を開始 する。捕捉不可能の場合は衛星切替え要求を衛星選択手 段12bに出力し、衛星選択手段12bはアルマナック に従い別衛星を選択してその衛星番号を航法データ受信 手段11に出力する(ステップ202, 203)。

【0009】衛星を捕捉し、その衛星の電波を受信する と、航法データ受信手段11はスペクトラム拡散変調さ 20 れた衛星電波を復調することにより同期した受信信号の 位相から電波伝搬時間を測定し、またその受信電波に乗 せられた信号から送信時刻および衛星位置の衛星情報を 抽出して測位手段12aへ出力する。

【0010】測位手段12aは、航法データ受信手段1 1から入力される電波伝搬時間・電波送信時刻・衛星位 置情報に基づき、後述する収束演算によって現在位置を 計測する。そしてその測位結果を表示装置15に出力表 示するとともに、メモリ手段13に出力し記憶する(ス テップ204)。

【0011】ここでGPSによる測位の原理は次の通り である。電波の送信点と受信点に完全に同期した時計が あって、送信信号がその時計で制御されていたとする と、受信点でその受信のタイミングを測定すれば送受信 点間の電波の伝搬時間を求めることができ、それに光速 度を乗ずれば送受信点間の距離を求めることができる。 またGPS衛星はその衛星自体の位置を受信側にて計算 によって求める為の位置情報を送信している。

【0012】従って、その電波の伝搬時間を受信点で測 定して距離を求めれば、衛星を中心とした一定距離の球 面上に測定点は位置することになる。またその中心とな る衛星の位置はそのデータとその時の受信電波に乗せら れた衛星位置情報に基づいて求められる。そしてそれぞ れ位置が異なった3つの衛星について行えば、3つの各 衛星を中心とする3つの球面の交点として測定位置を求 めることができる。

【0013】しかしこのように3つの衛星のみからの電 波を受信して3つの球面の交点を求めようとするなら、 受信点の時計を衛星の時計に正確に同期させる必要があ る。現実には受信点の時計を衛星の時計に同期させるこ 概略時刻を出力する時計手段、15は演算装置12から 50 とは技術的に問題があるうえ、受信機を安価にするうえ 3

でも不利である。

【0014】この問題を解決するために、受信する衛星 の数を1個増加させる。すなわち受信点では4つの衛星 の信号を受信して3方向の座標と衛星・受信機間の時計 誤差の4つを未知数とする連立方程式を解くことによ り、受信点の位置を求めることができる。また測定点の 高さが既知の場合は3個の衛星からの信号受信で位置を 求めることもできる。

【0015】しかし、移動衛星であるGPS衛星が視野 から消える時やビル等の障害物によって電波が遮断され 10 る。 る時の受信衛星の切り替えをスムーズに行うために、通 常は受信機は予備の衛星信号受信回路を持ち、同時に5 個以上の衛星からの電波を受信できる構成にする。

$$r_i = c (t_{oi} + \delta t)$$

$$= \{ (x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2 \}^{1/2} + c \delta t$$

【0019】ここにcは光速、toiは真の電波伝搬時 間、 δ t は受信機の時計のずれである。

[0020] CCTX0, yo, zo, δ t \geq λ t \geq λ の数が未知数であるため、4つの衛星(i=1, 2) 3, 4) について4元連立方程式を立てれば、位置を計 測することができる。

【0021】しかしながら、上式には未知数の2乗や平 方根があって線形ではないので簡単に解くことができな い。そこで実際には以下のような位置の推定値を真の位 置に収束させる方法が一般的に行われている。

【0022】即ち、まず、位置の推定値を(xe, y e , z e)とし、時計のずれの推定値を δ t e とし、各 推定値と真の値との誤差を Δx , Δy , Δz 並びに $\Delta t \%$

$$r_i = r_s + \Delta r_i$$

$$= \{ (x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2 \}^{1/2} + c \delta t_0$$

【0026】ここに、Δri は推定距離と実測距離との 差であるのでこの値を求めることができる。

【0027】ここで、(数2)を(数1)に代入してテ ーラー展開して2次以降の微少項を省略し、更に(数★

★3)を代入して整理すると次の(数4)を得る(導出に ついては省略する)。

[0028]

【数4】

$$\Delta r_{\perp} = (x_{\bullet} - x_{\perp}) / (r_{\bullet} - c \delta t_{\bullet}) \Delta x$$

$$+(z_{\bullet}-z_{\bullet})/(r_{\bullet}-c\delta t_{\bullet})\Delta z+c\Delta t$$

【0029】(数4)は推定値の誤差Δx、Δy、Δz に、推定位置から衛星方向を向いた単位ベクトルの各方 向余弦をそれぞれ乗じて成分毎の値を求め、この合成値 に、推定時間誤差Δtに光速を乗じた値を加え合わせれ ば、推定距離 r。 と実測距離 r1 の差 Δ r1 に等しくな ることを示している。(数4)に基づいて4つのiにつ いて1次の4元連立方程式を立てることにより推定位置 の誤差 Δx 、 Δy 、 Δz 並びに推定時間誤差 Δt を求め ることができる。

【0030】そのあと、求められた各誤差を推定値に加 50 うに従来のGPS受信機の測位位置計算方法では、演算

 $+ (y_0 - y_1) / (r_0 - c \delta t_0) \Delta y$ え、これを新たな推定値とし、誤差が所定の微少値に収

東するまで繰返しの演算を行い真の位置と時計誤差を求 める。これが従来よりの収束演算方式である。 【0031】ここで、高さが既知の場合は(数4)の△ z が既知であり、3個の衛星を使用した1次の3元連立 方程式を立てることにより位置を計測することができ

[0032]

る。

【発明が解決しようとする課題】しかしながら、このよ

*【0016】今、図5に示すように、地球中心を原点と し地球自転軸に沿って北方向を正方向とする2軸、グリ ニッジ子午面と赤道面との交点方向にx軸をとる3次元 右手系直交座標系を考え、測定点の座標を {xo, y o, zo}とし、衛星の位置を {xi, yi, zi}と する。iは衛星を特定する番号を示すものとする。

【0017】航法データ受信手段1により測定した i番 衛星からの電波伝搬時間を ti とすれば、実測距離 ri はピタゴラスの定理によって次の(数1)で表わされ

[0018]

【数1】

※とすれば真の値との関係は次の(数2)のようになる。 [0023]

【数2】

 $x = x + \Delta x$

 $y = y + \Delta y$

 $z = z + \Delta z$

 $\delta t = \delta t + \Delta t$

【0024】また、推定距離をreとすると次の(数 3) のようになる。

[0025]

【数3】

5

を行う場合の推定位置(この推定位置を初期値として演算を開始する)をいかに決めるかが課題である。例えば一旦測位を中断し、長い距離を移動した後で再び測位を開始したような場合に、実際の測定位置と推定位置が大きくずれてしまう事となり、このように実際の測定位置と推定位置が大きくずれていた場合には位置計算結果が収束せず、システムが発振状態におちいることがあるという問題点があった。

[0033]

【課題を解決するための手段】本発明は上記課題を解決 10 するもので、まずは前回測位した時の測位位置における衛星飛来予測を行い、その予測結果に基づいて衛星を決めて捕捉を試み、衛星電波を捕捉できた場合は前回測位結果を初期位置として収束演算を行うように構成し、前記衛星飛来予測によって衛星電波を捕捉できない場合は、新規に別の衛星を探索して衛星電波捕捉を試み、別の衛星の捕捉に成功した場合にはこの捕捉衛星と地球中心と結んだ線と地球表面との交点近辺に測位初期位置を変更する初期位置設定手段を設けたものである。

[0034]

【作用】本発明は上記した構成により、衛星飛来予測によって衛星電波を捕捉できない場合に、前回測位位置から大きく移動しているものとみなすので、初期位置変更の処理をいち早く開始する事が出来るとともに、その変更位置を、捕捉衛星と地球中心とを結んだ線と地球表面との交点近辺としたので、収束演算を安定して行う事が出来る。

[0035]

【実施例】以下本発明における携帯型GPS受信機の一 実施例について、図を参照しながら説明する。

【0036】図1は本発明の一実施例における携帯型G PS受信機のブロック図であり、図2は本発明の一実施 例の動作概要を示したフローチャートである。

【0037】図1において、11は変調された複数の衛星からの電波信号を復調し、衛星位置情報と電波伝搬時間およびアルマナックを演算装置12へ出力する航法データ受信手段である。12は演算装置であり、12 aは航法データ受信手段11から入力される複数の衛星位置位置情報と電波伝搬時間をもとに初期位置からの逐次近似計算で現在位置を測定し、結果をメモリ手段13と表40示装置15へ出力する測位手段である。

【0038】12bは衛星選択手段、13は測位結果やアルマナック等を記憶するメモリ手段である。衛星選択手段12bは主に次のような処理を行う。すなわち、航法データ受信手段11から入力されるアルマナックをメモリ手段13へ出力する。また測位開始時にアルマナックをメモリ手段13から読み出し、時計手段14から時刻データを受け、現在位置が初期位置であると仮定して衛星選択を行ない、選択衛星番号を航法データ受信手段11に出力する。衛星排現が不可能であって航法データ

受信手段11から別衛星要求信号が入力された場合は、 次の衛星を選択し、衛星番号を航法データ受信手段11 に出力すると共に初期位置変更要求を初期位置設定手段 12cへ出力する。

【0039】初期位置設定手段12cは主に次のような処理を行う。すなわち、測位開始時に前回測位結果位置を測位演算のための初期位置に設定し、衛星選択手段12bから初期位置変更要求が入力された場合は航法データ受信手段11から入力される衛星位置情報から衛星位置と地球中心とを結んだ線と地球表面との交点を計算し、初期位置をこの計算によって得られた位置データに変更設定する。

【0040】14はバックアップ電源により停電時も時刻を計測し、測位開始時に衛星飛来予測を行なう為の概略時刻を出力する時計手段、15は演算装置12から入力される測位結果等をCRT等に表示する表示装置である。

【0041】次に本実施例の携帯型GPS受信機の動作を詳細に説明する。初期位置設定手段12cは、測位開始時にメモリ手段13から前回測位結果位置を読みだし、測位演算のための初期位置としてメモリ手段13に出力記憶する(ステップ101)。

【0042】次に衛星選択手段12bは、時計手段4から概略の時刻データを読みだし、メモリ手段13から全衛星の軌道概略情報であるアルマナックと初期位置を読みだし、初期位置での時計手段14で示される時刻における衛星飛来予測を行なう。この衛星飛来予測の結果より、位置計測に適すると予測される3個または4個以上の衛星の番号を航法データ受信手段11に通知し、衛星30 捕捉動作を開始させる(ステップ102)。

【0043】航法データ受信手段11は、衛星選択手段12bにより指示された衛星の捕捉動作を行ない、捕捉不可能な衛星がある場合は別衛星選択要求を衛星選択手段12bに要求する(ステップ103)。衛星選択手段12bはアルマナックに従い別衛星を選択し、航法データ受信手段11に衛星番号を通知する(ステップ104)とともに、選択した衛星が初期位置から視野内にあるかを判定する(ステップ105)。

【0044】選択した衛星が視野外にある場合は初期位置変更を初期位置設定手段12cに出力する。航法データ受信手段11はスペクトラム拡散変調された衛星電波を復調することにより同期した受信信号の位相から電波伝搬時間を測定するとともに、受信電波から送信時刻および衛星位置の衛星情報を抽出し、測位手段12aへ出力するとともに、受信電力の最も大きい衛星の番号を初期位置設定手段12cに出力する。

クをメモリ手段13から読み出し、時計手段14から時 【0045】次に初期位置設定手段12cは、衛星選択 刻データを受け、現在位置が初期位置であると仮定して 手段12bから初期位置変更要求が入力されている場合 衛星選択を行ない、選択衛星番号を航法データ受信手段 のみ、航法データ受信手段11により指示される最大受 11に出力する。衛星捕捉が不可能であって航法データ 50 信電力の衛星の位置から得た初期位置をメモリ手段13

に出力し変更する(ステップ106)。

【0046】ここで初期位置の変更を最大受信電力の衛 星の位置に従って行う理由は、衛星が測位点の天頂方向 にある時がその衛星までの距離が最も短かく、また伝搬 損失が最も小さいことからその衛星からの到来電波強度 が最大となる事が予測されるからである。つまり、到来 電波強度が最大であればその衛星が最も天頂方向に近い 位置にある事が予測されるので、その衛星位置と地球中 心とを結んだ線と地球表面との交点が実際の測位点に最 も近いと思われるからである。

【0047】また最近主流の平面型マイクロストリップ アンテナの指向特性は天頂方向の受信電波強度が最大に なるので、この事からも到来電波強度が最大であればそ の衛星が最も天頂方向に近い位置にある事が予測され

【0048】測位手段12aは航法データ受信手段11 から入力される電波伝搬時間・電波送信時刻・衛星位置 情報から、従来例で示した収束演算によって現在位置を 計測し、その測位結果を表示装置15に出力表示し、ま たこの測位結果をメモリ手段13に出力し、記憶させる 20 12a 測位手段 (ステップ107)。

[0049]

【発明の効果】以上のように本発明は、前回測位位置に おける衛星飛来予測を行い視野外の衛星を捕捉した場合 に、受信最大電力の衛星を天頂とする位置に測位計算の 初期位置を変更する初期位置設定手段を設けた構成によ

り、位置測位の逐次近似計算による収束演算を発振する ことなく安定して行うとともに収束演算回数を削減する ことができる。従って、例えば電源断の状態で装置を大 きく移動させたような場合や、記憶している初期位置が 失われた場合でも、安定して測位位置収束演算を行うこ とができ、かつ初期位置と測位位置との誤差が小さいこ とにより収束演算を短時間で行うことができるものであ

【図面の簡単な説明】

- 【図1】本発明における携帯型GPS受信機の一実施例 10 のブロック図
 - 【図2】同実施例の動作概要を示したフローチャート図
 - 【図3】従来のGPS受信機のブロック図
 - 【図4】従来のGPS受信機の動作概要を示すフローチ
 - 【図5】 GPSによる位置測定を説明するための説明図 【符号の説明】
 - 11 航法データ受信手段
 - 12 演算装置
 - - 12b 衛星選択手段
 - 12c 初期位置設定手段
 - 13 メモリ手段
 - 14 時計手段
 - 15 表示装置

[図4] [図5] 測位開始 衛星(x1, y1, z1) 201 前回測位位置で 時刻とアルマナック 测定点(x0,\y0, z0) を読み出し衛星を選択 202 203 衛星を捕捉 |別衛星を選択 204 測位演算 結果表示・記憶 終了

【図1】

【図2】

【図3】

