

Ayudantía 1

Problema 1

La integral

$$\int_0^\infty \frac{1}{\sqrt{x} \, (1+x)} \, dx$$

es impropia por dos razones: el integrando tiene una asíntota vertical en x=0 y el intervalo de integración es no acotado. Resuélvala separándola en dos integrales, una en el intervalo [0,a] y otra en el intervalo $[a,\infty)$ $(a\in(0,\infty))$.

Problema 2

Demuestre que si a > -1 y b > a + 1, entonces la siguiente integral converge:

$$\int_0^\infty \frac{x^a}{1+x^b} \ dx$$

Problema 3

Encuentre el valor de la constante C para la cual la integral converge. Evalúe la integral para el valor de C.

$$\int_0^\infty \left(\frac{1}{\sqrt{x^2 + 4}} - \frac{C}{x + 2} \right)$$

Problema 4

Determine para qué valores de $\alpha \in \mathbb{R}$ la integral $\int_0^\infty t e^{-\alpha t} dt$ es convergente, en tal caso determine el valor.

Problema 5

Use el criterio de comparación para determinar si la siguiente integral converge o diverge

$$\int_0^\infty \frac{x}{x^3 + 1} dx.$$

Problema 6

Considere la función $f(x) = \frac{\sin x}{x}$.

1. Muestre que $\int_0^\infty f(x) dx$ es convergente.

Hint: Integre por partes, utilizando $1 - \cos x$ como antiderivada para $\sin x$.

2. **Propuesto:** Utilice lo anterior para mostrar que $\int_0^\infty \sin(x^2) dx$ es convergente.

Problema 7**

Considere la superficie de revolución en \mathbb{R}^3 descrita por la ecuación

$$x^2 + y^2 = \frac{1}{z^2}, \quad z \ge 1.$$

Calcule su área y el volumen que encierra. A esta superficie se le conoce como cuerno de Gabriel o la trompeta de Torricelli. ¿Cómo pintaría el interior de esta figura?

Problema 8**

Sea $\alpha > 0$. Muestre que la siguiente integral impropia no converge:

$$\int_{-\infty}^{\infty} \frac{\alpha x}{\pi(\alpha^2 + x^2)} \ dx.$$

Más aún, muestre que si f y g son funciones crecientes, que no se anula, y tal que $\lim_{t\to\infty} f(t) = \lim_{t\to\infty} g(t) = \infty$, entonces el límite

$$\lim_{t \to \infty} \int_{-q(t)}^{f(t)} \frac{\alpha x}{\pi(\alpha^2 + x^2)} \ dx,$$

de existir, puede ser cualquier número real, $-\infty$, o ∞ , dependiendo de f y g. ¿En qué caso es 0?

1 Problemas Propuestos

Problema Propuesto 1

Encuentre el valor de la constante C para la cual la integral converge. Evalúe la integral para el valor de C.

$$\int_0^\infty \left(\frac{x}{x^2 + 1} - \frac{C}{3x + 1} \right)$$

Problema Propuesto 2

Use el criterio de comparación para determinar si las siguientes integrales convergen o divergen

(a)
$$\int_0^1 \frac{\sec^2(x)}{x\sqrt{x}} dx.$$

(b)
$$\int_0^\infty \frac{\arctan(x)}{2 + e^x} \ dx.$$

Problema Propuesto 3

Evalúe la integral

$$\int_0^\infty x^n e^{-x} \ dx$$

para n=1,2, y 3. Conjeture el valor de la integral cuando n es un entero positivo arbitrario. **Propuesto: Demuestre su conjetura ocupando inducción.**