

Determining The Parameters of Exoplanetary Candidates From Transit Timing Variations

Jack Lloyd-Walters FRAS

Supervised by: Stephen Futcher FCA FRAS, Dr. Hooshyar Assadullahi, Prof. Daniel Thomas

Presentation Outline

Useful Information

Why look for variations in transit timing?

What can we do with TTV?

Data collection

Analysis

Developments

Discussion

Useful Information

- How do we discover exoplanets?
 - Transit Photometry
 - Doppler Spectroscopy
 - Gravitational Microlensing
 - Direct Imaging

What are Transit Timing Variations?

Detecting exoplanets with thinbutten buying

ESA 2022

Rationale

What problem am I trying to solve?

Rationale

Methodology

Results

Discussion

Why look for variations in transit timing?

 Observing many stars for transits is easy

- Strong historical data
 - ~3800 Transiting planets
 - >100,000,000 Light curves

Confirmed planets in the NASA Exoplanet Archive

NASATFINE GRAPH 2022

NASA/MIT/TESS 2018

What can we do with TTV?

Verify the properties of known planets

Discover new orbiting bodies

Possible Orbits for Repier-19c as given by 11v analysis System Alaphation By analysis Ballard S. et al. 2011

Lloyd/Al/argteset/a2020217

Methodology

How am I going to solve the problem?

Rationale

Methodology

Results

Discussion

Data collection

Planetary light curve

• Ephemerides and TTV

HATS-46b timesettether and companion stars HAT-P-13b light curve, fit using HOPS Software

Lloyd-Walters J. 2022d-Walters J. Futcher S. 2022 Lloyd-Walters J. Futcher S. 2022

Analysis

Results

What did I achieve in trying to solve the problem?

Rationale

Methodology

Results

Discussion

Developments

- Analytical TTV Models
 - Arbitrarily many planets
 - Extensible

- Computational Pipeline
 - Fully Automatable
 - Self-Verifying

$$\delta_t = -rac{P_t}{2\pi a_t} \sum_{i}^{n} \left[a_i \mu_i \sin\left(rac{2\pi \left(t - t_{i,0}
ight)}{p_i}
ight)
ight]$$

Animation for TTV due to interior perturbation

Lloyd-Walters J. 2022

Discoveries—(wip slide)

- Take known TTV systems
- Apply the pipeline to the midtransit points
- Demonstrate that we can recover known exoplanetary parameters > Double check with the code which planet I used

Placeholder > Generate graphical output of the model + code working

Kepler-19b has a nice set of TTV Curves the code is working with

Discussion

What are the implications of the results for this problem? How can we progress further?

Rationale

Methodology

Results

Discussion

Discussion

- Quickly Generate TTV Curves
- Accurate to simulation
- Determine best fit parameters

- Develop additional models
- Search transit data for non-transiting planets

Example systems layout used in TTV model testing

Lloyd-Walters J. 2022

Conclusion

A Summary of the problem, results, and any future steps

Rationale

Methodology

Results

Discussion

- TTV can find and verify exoplanets
- Created analytical models for TTV
- Computational pipeline can search for TTV

- Additional models to be created
- Apply method to unknown systems

Thank you for your time!

References

ESA 2022, "Detecting exoplanets with transits", ESA Science Exploration, https://www.esa.int/Science Exploration/Space Science/Cheops/How to find an exoplanet. ESA 2022, "Detecting exoplanets with radial velocity", ESA Science Exploration, https://www.esa.int/Science Exploration/Space Science/Cheops/How to find an exoplanet. ESA 2022, "Detecting exoplanets with microlensing", ESA Science Exploration, https://www.esa.int/Science Exploration/Space Science/Cheops/How to find an exoplanet. ESA 2022, "Detecting exoplanets with direct imaging", ESA Science Exploration, https://www.esa.int/Science Exploration/Space Science/Cheops/How to find an exoplanet.

NASA/MIT/TESS 2018. "200 000 stars", https://solarsystem.nasa.gov/resources/890/tess-200000-stars/.

NASA 2022, "Exoplanetary Distance v. Orbital Period", Exoplanet Archive Filtergraph, https://filtergraph.com/4240706

Wang S. et al. 2017, "Updated Masses for the TRAPPIST-1 Planets", Astrophysics – Earth and Planetary Astrophysics, https://ui.adsabs.harvard.edu/abs/2017arXiv170404290W.

Ballard S. et al. 2011, "The Kepler-19 System: A Transiting 2.2 Re Planet and a Second Planet Detected via Transit Timing Variations", https://arxiv.org/abs/1109.1561

Agol E. et al. 2005, "On detecting terrestrial planets with timing of giant planet transits", https://doi.org/10.1111/j.1365-2966.2005.08922.x

Borkovitz T. et al. 2003, "On the detectability of long period perturbations in close hierarchical triple stellar systems", https://ui.adsabs.harvard.edu/link_gateway/2003A&A...398.1091B/doj:10.1051/0004-6361:20021688

Kokori A. et al. 2021, "ExoClock project: an open platform for monitoring the ephemerides of Ariel targets with contributions from the public", https://ui.adsabs.harvard.edu/abs/2021ExA...tmp..101K Kokori A. et al. 2022, "ExoClock Project. II. A Large-scale Integrated Study with 180 Updated Exoplanet Ephemerides", https://ui.adsabs.harvard.edu/abs/2022ApJS...258...40K

Virtanen P. et al. 2020, "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python", https://rdcu.be/b08Wh Foreman-Mackey D. et al. 2013, "emcee: The MCMC Hammer", https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F

Ginsburg A. et al. 2019, "astroquery: An Astronomical Web-querying Package in Python", http://adsabs.harvard.edu/abs/2019AJ....157...98G

Rein H. and Liu S. 2012. "REBOUND: an open-source multi-purpose N-body code for collisional dynamics", https://ui.adsabs.harvard.edu/abs/2012A&A...537A.128R
Tamayo D. et al. 2020, "REBOUNDx: a library for adding conservative and dissipative forces to otherwise symplectic N-body integrations", https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.2885T
Rein H. and Spiegel D.S. 2015, "IAS15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits", https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.2885T

Espinoza N. et al. 2019, "juliet: a versatile modelling tool for transiting and non-transiting exoplanetary systems", https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.2262E
Kreidberg L. 2015, "batman: BAsic Transit Model cAlculatioN in Python", https://ui.adsabs.harvard.edu/abs/2013MNRAS.435.2152K
Kipping D.M. 2013, "Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws', https://ui.adsabs.harvard.edu/abs/2013MNRAS.435.2152K
Espinoza N. 2018, "Efficient Joint Sampling of Impact Parameters and Transit Depths in Transiting Exoplanet Light Curves", https://ui.adsabs.harvard.edu/abs/2018RNAAS...2..209E
Foreman-Mackey D. et al. "Fast and scalable Gaussian process modeling with applications to astronomical time series", https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.3132S
Speagle J.S. 2020, "DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences", https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.3132S

The data, software, and diagrams underlying this project are available in GitHub at https://github.com/SK1Y101/TransitProject. The datasets were derived from sources in the public domain.