द्येश ख्रुचे यात्रा

#05

2019/0/074 2588

(e) P=V- (H2.41425)(V-0.41426)
(A) L= AP (A5-0145P)
act)= 4860/11 bor (m/hos)
A(T)= 4800/11 2 7/12
6=0.0000 9 RTC = 36.23 cm3/mal
n. G(n) V-5
V= P+5-P (V-0.41426) (V+2.41426)
a. 514 (V-36.23) > 31
V=(2101.0 - 40501+(V-36.23)) CM3/m2)
DV=P = 2065 CM3 final
V=1899 (M3/m +1
50. PV=H2+C=
184-N/ -1525 -580°
$\frac{6)}{83.145} \frac{/8barxV}{83.145} = H - \frac{152.5}{V} + \frac{-5800}{V^2}$
V=2415.8 0 /mel x (1-152.5 -5800)
V=187 = 24/6cm2/mal
V=2249CM3/mol
Verza (m /m)
(b) T=641.1K P==220,55 tar W=0.345
Tr=0.8082 Pr=0.08161
B°=0,083 - 11.6 = -0.5103
B=0,139 - 0,192 =0,2816
BPC = 13+WB1 =-0.6075
n ic
8= 1-0.6075 0.08/61 =0.9387
0.804
V= 287 = 22 68 cm3 (mol
6) 1800 KPU, 250° QUY V=124.9003/2
MW=18.016 => 1= 124.9 x 18.016 = 2252 cm3/mel


```
3.57 T=364.8 P=42.48 bor W=0.152
       Tr=0.8653
       Pr=0.3166
      Vc=20000/med 2=0206
  1) Liquid = Viz (1-0.8653) 1
                        = 96.8 m2/max
    => 2892.7 mol
=> 2892.7 x 94 x 7000 = 127.1 kg
17) Vapor
To Pr 3° Z
   0.85 @.4 0.0661 -0.0268
    11 0-2 0.081 -0.01/5
   0.9 0-4 0.118 -0.1118
  = 2^{\circ} = 0.0661 + \frac{0.0234}{0.2} (0.8810 - 0.0661) + \frac{0.053}{0.05} (0.178 - 0.0661) 
     Z=-0.0268+0.0239 (-0.07/5+0.0268)+0.0/53 (-0.1118+0.0268)
      = -0.05804
  3=27W31 = 0.3711
  V= 287 = 617.01 (M/hal
    0.35 x0.2 x 1000000 = (13.5 mel
  13.5 × 49 = 4.99 kg
```

3.60
$$T_r = T_c = 0.001$$
 $P_r = 0.069$
 $B^0 = 0.083 - \frac{0.422}{T_r^{1.6}} = -0.661$
 $B^1 = 0.139 - \frac{0.102}{T_r^{9.2}} = -0.624$
 $V = \frac{RT}{P} \left(H \left(94WB^1 \right) R_{Pe}^{Tc} \right) = 9.4630 \times 10^3 \text{ (m/s)}$
 $\frac{16}{9.4630 \times 10^3} \times \frac{1000000000^3}{1003} = 1002.8000$
 $\frac{1}{9.4630 \times 10^3} \times \frac{1}{1000} = 98.08 \text{ kg}$
 $\frac{1}{9.4630 \times 10^3} \times \frac{1}{9.0000000000} = 98.08 \text{ kg}$

62. (b) T=293 Tc=260.9 Pc=49.9 W=0.434
M=4599 N=6.6937mel
V= 2.42 × 1000 CM3 = 358.5 cm/mal
T=1.123 P= P3- (17)
ra(1) = 3806436.2 bar Cm3/mol2
6=37.66 cm3/mu
: P= 49.128 bor
(d) T=293K Tc=3/2.2K Pc=49.0bar w=0.151
14=4541 N=5.925mal
V= 405.06 m/mel T= 0.9385 TG(T) = 621105.3 bor. cm/mye
b= 45.934 Ca3/mel
P=34.7996 Lar

3.66 V=0.4 m3 x 1/0 (m3 x 1kg = 26.7 m3/g [V=27.056Gm3/g 7=9800kpu V=26.4089m3/g P=10000kpa P= 9800+ 26.17-21.056 × 200 = 9910 KPQ 3.10 T=300k P=46ar Tz=415k P=175har Tc=908.1k Pc=>6.483ar W=0.181 Tn=0.1351 Pn=0.1096 TG=1017 PG=2.056 M=58.3/mel V=155.792 00/mel V=262, 100 mel Clas Vc = 262.7 = 2.483 V= 148. on Cor/mon x 589/mon = 2.552 cor/a morning glo

M.
$$T_{c} = \frac{43.6}{12.6} = 30.44 \text{ K}$$
 $P_{c} = 10.92 \text{ Jan}$
 $T_{r} = 0.294$
 $V(T_{r})^{0.5} = V T_{r} = 0.42 \text{ Mex}(0.821)^{1.7} = 6.6326$
 $S_{c} = \frac{S_{c}}{S_{c}} = 0.08664 \times \frac{0.294}{6.821} = 0.03/62$
 $S_{c} = 14.003/62 - 6.6326 \times 2(840.03/62) = 0.03/62$
 $S_{c} = 14.003/62 - 6.6326 \times 2(840.03/62) = 0.03/62$
 $S_{c} = 0.03/62 - 6.6326 \times 0.03/62 \times 2(840.03/62) = 0.0964$
 $S_{c} = 0.003/62 - 6.6326 \times 0.03/62 \times 2(840.03/62) = 0.0964$
 $S_{c} = 0.003/62 - 6.6326 \times 0.03/62 \times 2(840.03/62) = 0.0964$
 $S_{c} = 0.003/62 - 6.6326 \times 0.03/62 \times 2(840.03/62) = 0.0964$
 $S_{c} = 0.003/62 - 6.6326 \times 0.03/62 \times 2(840.03/62) = 0.0964$
 $S_{c} = 0.003/62 - 6.6326 \times 0.03/62 \times 2(840.03/62) = 0.0964$
 $S_{c} = 0.003/62 - 6.6326 \times 0.03/62 \times 2(840.03/62) = 0.0964$
 $S_{c} = 0.003/62 - 6.6326 \times 0.03/62 \times 2(840.03/62) = 0.0964$
 $S_{c} = 0.003/62 - 6.6326 \times 0.03/62 \times 2(840.03/62) = 0.0964$
 $S_{c} = 0.003/62 - 6.6326 \times 0.03/62 \times 2(840.03/62) = 0.0964$
 $S_{c} = 0.003/62 - 6.6326 \times 0.03/62 \times 2(840.03/62) = 0.0964$
 $S_{c} = 0.003/62 - 6.6326 \times 0.03/62 \times 2(840.03/62) = 0.0964$
 $S_{c} = 0.003/62 - 6.6326 \times 0.03/62 \times 2(840.03/62) = 0.0964$
 $S_{c} = 0.003/62 - 6.6326 \times 0.03/62 \times 2(840.03/62) = 0.0964$
 $S_{c} = 0.003/62 \times 2(840.03/62) = 0.03/62$
 $S_{c} = 0.003/62 \times 2(840.03/62) = 0.003/62$
 $S_{c} = 0.003/62 \times 2(840.03/62) = 0.003/62$
 $S_{c} = 0.003/62 \times 2(840.03$

3.95 $T_1 = 283k$ $P_1 = 6bar$ $T_2 = 3/3k$ $P_2 = ?$ dv = BdT-Kdp M(V) = BOT-KOP WV = (1.0038) P. 2 = 1.001 In(1.007)=0.00699=BOT-KOP 0.699×10==250×10 /k ×30k-45×106/bor×P ap=11.33 bar : R = 17.33 bar