Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models

Jacob Marott Sundram

University of Copenhagen

October 7, 2024

Idea

- **Goal:** Solve for the transition path of (possibly heterogeneous-agent) models in general equilibrium with aggregate shocks.
- Reiter method: Linearize and solve linear state space system.
- MIT shock method: Assume perfect foresight and solve non-linear sequence space system.
- These are the same for small shocks due to certainty equivalence!
- This paper: Solve linear sequence space system \Rightarrow Faster.

Setup

- Infinite horizon, discrete time: t = 0, 1, ...
- A model is nothing but a system of non-linear equations,

$$F_t(X,Z)=\mathbf{0}.$$

- $X = (X_0, X_1, ...)$ with $X_t = (X_t^1, ..., X_t^{n_x})'$ an $n_x \times 1$ vector of variables.
- $\mathbf{Z} = (Z_0, Z_1, \dots)$ with $\mathbf{Z}_t = (Z_t^1, \dots, Z_t^{n_z})'$ an $n_z \times 1$ vector of shocks.
- $X^i = (X_0^i, X_1^i, \dots)'$ and $Z^i = (Z_0^i, Z_1^i, \dots)'$ are sequences \Rightarrow We are representing the model in the sequence space (rather than the state space).

$$r_t^K = \alpha \Gamma_t K_t^{\alpha-1} L_t^{1-\alpha}$$
, (Firm FOC for capital)
 $w_t = (1-\alpha)\Gamma_t K_t^{\alpha} L_t^{-\alpha}$, (Firm FOC for labor)
 $r_t = r_t^K - \delta$, (Depreciation)
 $A_t = K_t$, (Asset supply)
 $A_t^{hh} + C_t^{hh} = (1+r_t)A_{t-1}^{hh} + w_t$, (Budget constraint)
 $(C_t^{hh})^{-\sigma} = \beta(1+r_{t+1})(C_{t+1}^{hh})^{-\sigma}$, (Euler equation)
 $A_t = A_t^{hh}$, (Asset market clearing)
 $L_t = 1$. (Labor market clearing)

Move all terms to left-hand side

(Firm FOC for capital)	=0,	$r_t^K - \alpha \Gamma_t K_t^{\alpha-1} L_t^{1-lpha}$
(Firm FOC for labor)	=0,	$w_t - (1-\alpha)\Gamma_t K_t^{\alpha} L_t^{-\alpha}$
(Depreciation)	=0,	$r_t - (r_t^K - \delta)$
(Asset supply)	=0,	$A_t - K_t$
(Budget constraint)	=0,	$A_t^{hh} + C_t^{hh} - \left[(1 + r_t) A_{t-1}^{hh} + w_t \right]$
(Euler equation)	=0,	$(C_t^{hh})^{-\sigma} - \beta(1+r_{t+1})(C_{t+1}^{hh})^{-\sigma}$
(Asset market clearing)	=0,	$A_t - A_t^{hh}$
(Labor market clearing)	= 0.	L_t-1

Stack as a vector

$$\begin{pmatrix} r_t^K - \alpha \Gamma_t K_t^{\alpha - 1} L_t^{1 - \alpha} \\ w_t - (1 - \alpha) \Gamma_t K_t^{\alpha} L_t^{-\alpha} \\ r_t - (r_t^K - \delta) \\ A_t - K_t \\ A_t^{hh} + C_t^{hh} - \left[(1 + r_t) A_{t-1}^{hh} + w_t \right] \\ (C_t^{hh})^{-\sigma} - \beta (1 + r_{t+1}) (C_{t+1}^{hh})^{-\sigma} \\ A_t - A_t^{hh} \\ L_t - 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow F_t(X, Z) = \mathbf{0}.$$

 $n_x = 8$ variables $X_t = (r_t^K, w_t, L_t, K_t, r_t, A_t, C_t^{hh}, A_t^{hh}), n_z = 1$ shocks $Z_t = (\Gamma_t)$.

Representation on a computer

- **Goal:** We want to solve the model on a computer.
- **Problem:** The time horizon is infinite.
- **Solution:** Truncate at some T, say T = 500.
- In this case, stack $F_t(X, Z)$ for t = 0, 1, ... to get

$$F(X,Z)=0.$$

- F(X, Z) has dimension $n_x \times T$.
- $X = (X_0, X_1, ...)$ has dimension $n_x \times T$.
- $X = (Z_0, Z_1, ...)$ has dimension $n_z \times T$.

Dimension reduction

- **Problem:** Many endogenous variables \Rightarrow Huge system of equations.
- **Solution:** Reduce dimension. Suppose F(X, Z) = 0 can be separated into

$$F_1(X, Z) = 0$$
 and $F_2(X, Z) = 0$,

where the second equation can be solved as a function of some smaller vector \mathbf{U} of $n_u < n_x$ unknowns: $\mathbf{X} = \mathbf{M}(\mathbf{U}, \mathbf{Z})$.

• Define then $H(U, Z) \equiv F_1(M(U, Z), Z)$ to get the reduced system:

$$H(U,Z)=0.$$

- In the Ramsey model, set $U_t = (K_t)$, i.e. $n_u = 1$.
- We then get X = M(U, Z) directly without any algebra.
- The target is then reduced to:

$$H_t(\boldsymbol{U},\boldsymbol{Z}) = A_t(K_t) - A_t^{hh}(\boldsymbol{X}(K_t)).$$

Solving for the transition path

- **Goal:** Transition path, *X*, given shocks, *Z*.
- Implicit function theorem on H(U, Z) = 0 gives

$$H_{U}dU + H_{Z}dZ = 0,$$

where A_B is short-hand for $\partial A/\partial B$ for any A,B.

• Solve for $d\mathbf{U}$ and then $d\mathbf{X}$ follows:

$$dU = -H_U^{-1}H_ZdZ,$$

$$dX = M_UdU + M_ZdZ = GdZ.$$

Sequence space Jacobians

- **Takeaway:** Finding the transition path amounts to finding *sequence space Jacobians* (H_U , H_Z , M_U , and M_Z).
- There are multiple ways of doing so:
 - 1. By hand.
 - 2. Composition of Jacobians of smaller blocks along directed acyclical graph.
 - 3. Automatic differentiation.
 - 4. Numerical differentiation.
- Either way, the transition paths are *linearized*. But we can also use Jacobians to get full *non-linear* transition path.

Non-linear transition paths: Idea

Input: Paths of shocks.

- 1. Guess on paths of n_u unknowns.
- 2. Get paths of all n_x endogenous variables using analytical solution.
- 3. Return paths for n_u targets.
- 4. If all targets = 0, the model is solved. Otherwise, return to 1.

We know shock:
$$\Gamma = (\Gamma_0, \Gamma_1, \dots)'$$
.

1. Guess on
$$K = (K_0, K_1, \dots)'$$
.

2. Get paths of all other endogenous variables for t = 0, 1, ..., T - 1:

$$L_{t} = 1$$
, $A_{t} = K_{t}$, $r_{t}^{K} = \alpha \Gamma_{t} K_{t}^{\alpha - 1} L_{t}^{1 - \alpha}$, $w_{t} = (1 - \alpha) \Gamma_{t} K_{t}^{\alpha} L_{t}^{-\alpha}$, $r_{t} = r_{t}^{K} - \delta$, $(C_{t}^{hh}) = \beta (1 + r_{t+1}) (C_{t+1}^{hh})^{-\sigma}$, backwards, $A_{t}^{hh} = (1 + r_{t}) A_{t-1}^{hh} + w_{t} - C_{t}^{hh}$, forwards.

- 3. Return $(A A^{hh}) = (A_0 A_0^{hh}, A_1 A_1^{hh}, \dots)'$.
- A decent starting guess is $K = (K_{ss}, K_{ss}, \dots)'$.
- **Problem:** In the presence of shocks, $A_t \neq A_t^{hh}$.
- How to update the guess for the next iteration?

Non-linear transition paths: Updating the guess

- We are trying to solve H(U, Z) = 0 for U with some fixed Z.
- First-order approximation in U around guess $U = U_g$:

$$H(U,Z) \approx H(U_g,Z) + H_U(U-U_g).$$

• Solve for *U*:

$$\mathbf{U} \approx \mathbf{U}_{\mathbf{g}} - \mathbf{H}_{\mathbf{U}}^{-1} \mathbf{H}(\mathbf{U}_{\mathbf{g}}, \mathbf{Z}).$$

• Use this as the next guess and repeat. Can use Broyden's method to speed up.

Linear vs. non-linear transition paths

(a) Consumption after shocks to Taylor rule

Heterogeneous agent models

- What about heterogeneous agent (HA) model?
- **Difference:** We do not know A_t^{hh} analytically.
- Solution: Write

$$A_t^{hh} = a_t' D_t,$$
 $D_{t+1} = \Lambda_t D_t.$

where a_t is the savings policy function, D_t is the distribution of households, and Λ_t is the transition matrix for the distribution.

- a_t and D_t can be found using standard methods.
- How to get H_U ? Can do it numerically. Fast way: Use DAG + fake news.

DAGs and blocks

- Directed acyclical graph (DAG): How shocks and unknowns propagate through the model to targets.
- Components:
 - Shocks (exogenous).
 - Unknowns (endogenous).
 - Blocks: Ordered partition of model that takes inputs and returns outputs.
- Key properties of blocks:
 - Each output is unique to a block.
 - The first block has only shocks and unknowns as inputs.
 - Later blocks only additionally take outputs of previous.

Example: HA-Ramsey

$$w, r^K = ext{Firm}(K),$$
 $A, r = ext{Mutual Fund}(K, r^K),$
 $A^{hh} = ext{HH}(r, w),$
 $A - A^{hh} = H(A, A^{hh}).$

Example: HA-Ramsey DAG

- **Notation:** $\mathcal{J}^{y,x}$ is the Jacobian of y w.r.t. x
- Chain rule along DAG:

$$H_{K} = \mathcal{J}^{A-A^{hh},K}$$

$$= \mathcal{J}^{A-A^{hh},A} \mathcal{J}^{A,K}$$

$$+ \mathcal{J}^{A-A^{hh},A^{hh}} \mathcal{J}^{A^{hh},r} \mathcal{J}^{r,r^{K}} \mathcal{J}^{r^{K},K}$$

$$+ \mathcal{J}^{A-A^{hh},A^{hh}} \mathcal{J}^{A^{hh},w} \mathcal{J}^{w,K}.$$

Jacobians of household problem

- How to get Jacobians of household problem, i.e. of $Y^{hh} = HH(i_1, ..., i_n)$?
- **Naive approach:** For each input *i* into HH block:
 - For each s = 0, 1, ..., T 1:
 - 1. Shock each input *i* in time *s* by small $\epsilon > 0$.
 - 2. Solve household problem backwards along transition path.
 - 3. Simulate households forward along transition path.
 - 4. Calculate column s, row t as

$$rac{\partial \mathcal{J}_t^{Y^{hh},i}}{\partial i_s} = rac{Y_t^{hh} - Y_{ss}^{hh}}{\epsilon}.$$

• This is very slow. **Solution:** Fake news algorithm.

Fake news algorithm: Goal

- Consider household block: $Y^{hh} = HH(i_1, ..., i_n)$.
- HA-Ramsey: $A^{hh} = HH(w, r)$.
- We are interested in HH Jacobian, for instance w.r.t. *r*:

$$\mathcal{J}\equiv rac{\partial A^{hh}}{\partial r}.$$

Fake news algorithm: Fake news matrix

• Define auxiliary *fake news matrix* \mathcal{F} by:

$$\mathcal{F}_{t,s} \equiv egin{cases} rac{\partial A_t^{hh}}{\partial r_s}, & ext{if } s = 0 ext{ or } t = 0 \ rac{\partial A_t^{hh}}{\partial r_s} - rac{\partial A_{t-1}^{hh}}{\partial r_{s-1}} & ext{else} \end{cases}.$$

- At time t = 0, there is a news shock that r changes in period s: $\mathcal{F}_{0,s} = \frac{\partial A_0^{hh}}{\partial r_s}$.
- At time t = 1, there is a news shock that r does not change after all:

$$\mathcal{F}_{1,s} = rac{\partial A_1^{hh}}{\partial r_s} - rac{\partial A_0^{hh}}{\partial r_{s-1}}.$$

Fake news algorithm: A trick

• Why is this useful? If we have \mathcal{F} , we we have \mathcal{J} :

$$\mathcal{F} = \begin{pmatrix} \mathcal{J}_{00} & \mathcal{J}_{01} & \mathcal{J}_{02} & \dots \\ \mathcal{J}_{10} & \mathcal{J}_{11} - \mathcal{J}_{00} & \mathcal{J}_{12} - \mathcal{J}_{01} & \dots \\ \mathcal{J}_{20} & \mathcal{J}_{21} - \mathcal{J}_{10} & \mathcal{J}_{22} - \mathcal{J}_{11} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \quad \Rightarrow \quad \mathcal{J} = \begin{pmatrix} \mathcal{J}_{00} & \mathcal{J}_{01} & \mathcal{J}_{02} & \dots \\ \mathcal{J}_{10} & \mathcal{J}_{11} & \mathcal{J}_{12} & \dots \\ \mathcal{J}_{20} & \mathcal{J}_{21} & \mathcal{J}_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

- This is only useful if it is easier to get \mathcal{F} than \mathcal{J} .
- It is! \mathcal{F} requires only a single backwards and forwards iteration.
- To see this, consider how to get \mathcal{F} , i.e. the Jacobian w.r.t. fake news shocks.

Fake news algorithm: Backwards iteration

- Claim: Only need a single backwards iteration.
- Why? Only time s t until perturbation matters:

$$a_t^s = egin{cases} a_{ss} & ext{if } t > s, \ a_{t+j}^{s+j} & ext{if } t \leq s \end{cases},$$

where a_t^s is the policy function at time t following a shock at time s.

- **Intuitively:** The response of the policy function at time t to a shock at s is the same as the response at time t + j to a shock s + j.
- This is really just using recursivity from the dynamic programming problem.

Fake news algorithm: Backwards iteration

- **Implication:** Only need a single backward iteration with s = T 1 to get all a_t^s .
- To see this, do backwards iteration with s = T 1 to get:

$$(a_0^{T-1}, a_1^{T-1}, \ldots, a_{T-1}^{T-1}).$$

• Then we get directly:

$$m{a}_t^s = egin{cases} m{a}_{ss} & ext{if } t > s, \ m{a}_{(T-1)-(s-t)}^{T-1} & ext{if } t \leq s. \end{cases}$$

for all t, s.

Fake news algorithm: Forwards iteration

- Claim: We only need one forwards iteration.
- To see this, note that at t = 0, the distribution is in steady state, $D_0^s = D_{ss}$. Thus, we get savings,

$$(A_0^{hh})^s = (a_0^s)' D_{ss}, \text{ for } s = 0, 1, \dots,$$

and resulting distribution, D_1^s .

• At t=1, policies are in steady state \Rightarrow The transition matrix for the distribution is the steady state one. Iterate forward *once* to get remaining distribution for $t=2,3,\ldots:D_t^s=\Lambda_{ss}D_{t-1}^s$.

Fake news algorithm: Finishing up

• We then get

$$(A_t^{hh})^s = (\boldsymbol{a}_t^s)' \boldsymbol{D}_t^s.$$

• Thus, we have savings at all points in time, t = 0, 1, ..., for all possible news shocks at time s = 0, 1, ... The entries of the fake news matrix are then

$$\mathcal{F}_{t,s} = \frac{(A_t^{hh})^s - A_{ss}^{hh}}{\epsilon},$$

where ϵ is the pertubation to r_s .

• As discussed before, $\mathcal J$ then follows from $\mathcal F$.

Simulation and estimation

- Once you have *G*, many things follow trivially.
- **Simulation:** Can simulate very long time series very fast.
- Moments: Can compute auto-covariances very fast.
- **Maximum likelihood:** Can evaluate likelihood very fast and therefore do maximum likelihood estimation fast.
- Bayesian estimation: Can do Bayesian estimation fast.

Summary

- To solve for transition paths, we need *sequence space Jacobians*.
- Auclert et. al (2021) introduce an efficient algorithm to do so.
- Central insights:
 - Compose Jacobians of blocks using the chain rule.
 - Exploit structure of dynamic programming problem (fake news algorithm).
- Everything follows: Linear IRFs, non-linear IRFs, simulation, estimation, etc.