

FORMAÇÃO INTELIGÊNCIA ARTIFICIAL E MACHINE LEARNING

REINFORCEMENT LEARNING
INTRODUÇÃO

Prof. Fernando Amaral –Todos os Diretos Reservados

Aprender com Ambiente

- Como deve agir um agente de IA, em um ambiente, a fim de solucionar um problema?
- > Proposta:
 - Método de tentativas com acertos e erros
 - > Recompensas por acertos
- ➤ Markov decision process
 - \triangleright A cada etapa um agente em um estado S_1 , escolhe uma ação A
 - \triangleright O agente muda de estado S_2 e recebe uma recompensa R
- ➤Q learning
 - > Decide qual a melhor ação com base em uma função e a avaliação da interação com o ambiente

Jogo "Quente ou Frio"

 S_1 - Estado Atual

 S_2 - Novo Estado

A – Ação: Mudança de Estado

R - Recompensa

Jogo "Quente ou Frio"

S_1	A	S_2	R
S3	Para Direita	S5	Frio
S5	Para Baixo	S6	Frio
S3	Para Direita	S3	Frio
S3	Para Baixo	S4	Quente
S4	Para Esquerda	S2	Quente

 S_1 - Estado Atual

 S_2 - Novo Estado A - Ação

R - Recompensa

Objetivo do Reinforcement Learning

Linguagem Computacional

S_1	Α	S_2	R
S2	С	S1	10
S2	D	S4	-1
S4	С	S3	-1
S4	Е	S2	-1
S3	В	S4	-1
S3	D	S5	-1
S5	Е	S3	-1
S 5	В	S6	-1
S6	С	S5	-1
S_N	C,B,E,D	S_N	-1

Diferença da Classificação

- Não há dados de treino com uma classe
- ➤ O aprendizado se da na tentativa e erro do agente e pelo sistema de recompensas

Etapas para Aprendizado

ReinforcementLearning: Grid World

➤ Pacote do MIT


```
function (state, action)
  next state <- state
  if (state == state("s1") && action == "down")
    next state <- state("s2")</pre>
  if (state == state("s2") && action == "up")
    next state <- state("s1")</pre>
  if (state == state("s2") && action == "right")
    next state <- state("s3")</pre>
  if (state == state("s3") && action == "left")
    next state <- state("s2")</pre>
  if (state == state("s3") && action == "up")
    next state <- state("s4")</pre>
  if (next_state == state("s4") && state != state("s4")) {
    reward <- 10
  else {
    reward <- -1
  out <- list(NextState = next state, Reward = reward)
  return(out)
```


sampleExperience

	State	Action	Reward	NextState
1	s 3	up	10	s 4
2	s 1	up	-1	s 1
3	s 1	down	-1	s 2
4	s 1	up	-1	s 1
5	s4	left	-1	s 4
6	s4	left	-1	s 4
7	s 1	down	-1	s 2
8	s 1	right	-1	s 1
9	s 3	left	-1	s 2
10	s4	left	-1	s 4
11	s4	left	-1	s 4
12	s 4	up	-1	s 4
13	s 1	up	-1	s 1
14	s 2	right	-1	s 3
15	s 1	up	-1	s 1
16	s 1	up	-1	s 1
17	s 1	up	-1	s1
18	s 2	up	-1	s 1

Aprender através do "reforço"


```
State-Action function O
        right
                               down
                                          left
                      up
s1 -0.6978541 -0.6564206 0.7572454 -0.7049049
s2 3.5781631 -0.6999091 0.7383973 0.7646410
   3.5910362 9.1588341 3.5826810 0.7490790
s4 -1.8577368 -1.8663151 -1.8468374 -1.8485593
Policy
     31
                                       Polices
 "down" "right"
                   "up"
                         "down"
Reward (last iteration)
[1] -274
```

