Прізвище: Йовбак Ім'я: Андріанна Група: КНСП-11

Варіант: 2

Дата захисту: 29.10.2020

Кафедра: САПР

Дисципліна: Методи та засоби комп'ютерного навчання

Перевірив: Андрущак Н.А.

3BIT

до лабораторної роботи №2 на тему «Використання графічних модулів в Python»

Мета роботи: ознайомитися із можливостями мови програмування Python для графічного представлення та побудови фігур на основі модулів комп'ютерної графіки, використання графічних операторів, запис та читання з файлів.

Відповіді на контрольні запитання:

- 1. Для чого використовується графічний модуль graphics?
 - У Python графічний модуль graphics, який був розроблений Джоном Зелле, використовується для малювання та відображення примітивних графічних об'єктів на екрані.
- **2. Як підключити графічний модуль graphics?** Потрібно завантажити файл і покласти в ту директорію, де ми збираємося писати код своєї програми. Далі потрібно заімпортувати потрібні компоненти бібліотеки для нашої програми. За допомогою команди import * ми додаємо в програму всі елементи з графічного модуля graphics, які необхідні для розробки.
- 3. Властивості відображення графічних об'єктів? У Python графічний елемент, наприклад об'єкт класу Polygon, Circle чи Rectangle, має набір властивостей, які можна для нього задати. Основними та загальновідомими серед них ϵ методи: setFill('color'), setOutline('color'), setWidth(value), які встановлюють колір, використовуваний для заповнення об'єкта, колір, для малювання контуру об'єкта та ширину об'єкту в пікселях відповідно. Крім передачі напряму назви кольору в якості аргументу, можна визначити кольори, використовуючи метод color rgb, який вимагає три параметри: інтенсивність червоного, зеленого і синього кольору (від 0 до 255). Для текстових об'єктів застосовуються setFace(font), setSize(point), такі функції як setStyle(style), setTextColor(color), які встановлюють такі властивості тексту як шрифт, розмір шрифту, стиль та колір відповідно.
- **4.** Яким чином відбувається зчитування інформації з файлу? Навести приклад. Щоб зчитати дані з файлу у Python існує функція open(), аргументами якої є 2 параметри: назва файлу та режим, в якому ми хочемо відкрити цей файл (напр., 'r','w','a'). Функція повертає посилання на файл, яке ми зберігаємо для подальшого використання. Метод readline () зчитує рядок з текстового файлу. Функція eval перетворює його в число. Приклад (зчитування 5 елементів з текстового файлу):

5. Яким чином відбувається зчитування та вивід координат за допомогою мишки? Навести приклад. Коли користувач робить клік мишкою всередині вікна, розташування показника мишки в момент кліку записується для використання. Вікно має функцію під назвою getMouse, яка чекає, поки користувач не натисне у вікні, а потім повертає координати точки, де користувач натиснув. Надалі можна використовувати функції getX і getY, щоб дізнатися окремо координати X та Y відповідно. Приклад (наповнення масиву з 5 координатами точок, введених користувачем):

```
points = []
for i in range(5):
        points.append(win.getMouse())
        print(points[i])
```

- **6. Яка послідовність виводу графічних об'єктів?** Послідовність виводу графічних об'єктів залежить від команд заданих в програмі.
- 7. Що таке масив в Python? Як відбувається його ініціалізація. У Руthon масив реалізований у вигляді списку даних. Значення масиву (списку) вказуються всередині квадратних дужок, де перераховуються через кому. Елемент списку елемент можна викликати за індексом і привласнити йому нове значення. Щоб дізнатися довжину масиву можна скористаись функцією len(). (Думаю, що це питання потрапило в список контрольних питань випадково з попередньої лабораторної роботи, але відповідь все-таки сформулювала)
- 8. Навести приклад запису інформації в файл. Якщо ми хочемо записати щось в файл потрібно режим відкриття файлу в функції open() змінити з 'r'(read) на 'w'(write). Далі з допомогою функції write(text) відбувається запис в файл. Якщо файл не існує. То буже створений новий екземпляр з вказаним іменем. Після завершення роботи з файлом його потрбно закрити, використавши для того функцію close(). Приклад (запис у файл елементів з масиву):

```
file = open('elements.txt', 'w')
list = [1,2,3,4,5]
for i in range(5):
file.write(list[i])
```

Індивідуальне завдання:

Варіант 2.

Завдання 1.

1. Намалюйте простий світлофор в графічному вікні розмірами 200 пікселів в ширину і 200 пікселів у висоту. Три вогні повинні мати діаметр 50 пікселів кожен, і світлофор повинні бути в центрі графічного вікна.

2. Використовуючи цикл, намалювати кола, які дотикаються один до одного зовнішніми частиною кола та розміщені горизонтально. Радіус найбільшого кола 60 пікселів, кожного наступного на 10 менше.

Завдання 2.

Напишіть програму на Python, яка попросить користувача ввести 5 точок і тоді намалює оранжевий многокуник, який з'єднує ці точки. Запустіть програму натиском на 5 різних точок у вікні. Далі запустіть програму натиснувши на вікно, і спробуйте сформувати п'ятикутну зірку. Зверніть увагу як змінюється колір, коли лінії пересікають одна одну.

Завдання 3.

Спростити функцію update_board так щоб вам не потрібні були іf оператори для перемикання вогників. Для цього потрібно взяти значення вогників (0 або 1), додаючи 1, і виконати модуль 2 для цього значення, щоб отримати значення перемикання. Зверніть увагу, що якщо світло має значення 1, то (1+1)% 2=0 і, якщо світло має значення 0, то (0+1)% 2=1. В обох випадках ми отримуємо значення вогника. Ви все ж будете використовувати оператор іf щоб перевірити рядок і стовпець для сусідів.

Завдання 4.

Змініть цю програму, щоб вона мала ігрову зону 5х5, з номерами від 1 до 24 і однією порожньою клітинкою.

Код програми:

```
from graphics import *
```

TASK 1

```
def task_1():
    colors = ['red', 'yellow', 'green', 'blue', 'pink', 'orange']
# Part 1

def task_1_1():
    win = GraphWin('TASK 1.1', 200, 200)
    for i in range(3):
```

```
circle = Circle(Point(100, 50 * (i + 1)), 25)
     circle.setFill(colors[i])
     circle.setOutline('black')
     circle.setWidth(1)
     circle.draw(win)
  Rectangle(Point(75, 25), Point(125, 175)).draw(win)
  win.getMouse()
  win.close()
# Part 2
def task_1_2():
  win = GraphWin('TASK 1.2', 420, 120)
  d = 0
  for i in range(6):
     d += (60 - i * 10)
     circle = Circle(Point(d, 60), (60 - i * 10))
     circle.setFill(colors[i])
     circle.setOutline('black')
     circle.setWidth(1)
     circle.draw(win)
     d += (60 - i * 10)
  win.getMouse()
  win.close()
task_1_1()
task_1_2()
```

```
def task_2():
  win = GraphWin('TASK 2', 300, 300)
  win.setBackground('white')
  points = []
  for i in range(5):
     points.append(win.getMouse())
     print(points[i])
  polygon = Polygon(points)
  polygon.setFill('orange')
  polygon.draw(win)
  win.getMouse()
  win.close()
for i in range(2):
  task_2()
#TASK 3
def task_3():
  def initialize_board(filename):
     infile = open(filename, 'r')
     board = []
     for i in range(5):
       board.append([])
     for row in range(5):
       for col in range(5):
```

```
columnvalue = eval(infile.readline())
       board[row].append(columnvalue)
  return board
def draw_lines(window):
  s_x = 0
  s_y = 250
  for i in range(4):
    Line(Point(0, 50*(i+1)), Point(250, 50*(i+1))).draw(window)
    if i == 3:
       s_x = 250
       s_y = 0
    Line(Point(50*(i+1), s_x), Point(50*(i+1), s_y)).draw(window)
def display_lights(window, board):
  for row in range(5):
     for column in range(5):
       center = Point(column * 50 + 25, row * 50 + 25)
       circ = Circle(center, 25)
       if board[row][column] == 1:
         circ.setFill('lightpink')
       else:
         circ.setFill('white')
       circ.draw(window)
def update board(board, row, column):
  board[row][column] = (board[row][column] + 1) % 2
  if row > 0:
    board[row - 1][column] = (board[row - 1][column] + 1) \% 2
  if row < 4:
    board[row + 1][column] = (board[row + 1][column] + 1) \% 2
  if column > 0:
```

```
board[row][column - 1] = (board[row][column - 1] + 1) \% 2
  if column < 4:
    board[row][column + 1] = (board[row][column + 1] + 1) \% 2
def check_for_winner(board):
  sum = 0
  for row in range(5):
    for column in range(5):
       sum = sum + board[row][column]
  if sum == 0:
    return True
  else:
    return False
def clear(win):
  for item in win.items[:]:
    item.undraw()
  win.update()
def main():
  window = GraphWin('Lights Out', 250, 250)
  board = initialize_board('lights.txt')
  draw_lines(window)
  display_lights(window, board)
  game_over = False
  while not game_over:
    p = window.getMouse()
    column = p.getX() / 50
    row = p.getY() / 50
    update_board(board, int(row), int(column))
    display_lights(window, board)
    game_over = check_for_winner(board)
```

```
message = Text(Point(125, 125), 'GAME OVER')
    message.setSize(24)
    message.setTextColor('red')
    clear(window)
    message.draw(window)
    window.getMouse()
    window.close()
  main()
task_3()
#TASK4
def task_4():
  def initialize_board(filename):
    infile = open(filename, 'r')
    board = []
    for i in range(5):
       board.append([])
    for row in range(5):
       for col in range(5):
         columnvalue = eval(infile.readline())
         board[row].append(columnvalue)
    return board
  def display_numbers(window, board):
    for row in range(5):
       for col in range(5):
         square = Rectangle(Point(col * 50, row * 50), Point((col + 1) * 50, (row + 1) * 50))
```

```
square.setFill('snow')
       square.setOutline('maroon')
       square.draw(window)
       if board[row][col] != 0:
         center = Point(col * 50 + 25, row * 50 + 25)
         number = Text(center, board[row][col])
         number.setSize(24)
         number.setTextColor('crimson')
         number.draw(window)
def update_board(board, row, col):
  if row > 0 and board[row - 1][col] == 0:
    board[row - 1][col] = board[row][col]
    board[row][col] = 0
    return
  if row < 4 and board[row + 1][col] == 0:
    board[row + 1][col] = board[row][col]
    board[row][col] = 0
    return
  if col > 0 and board[row][col - 1] == 0:
     board[row][col - 1] = board[row][col]
    board[row][col] = 0
    return
  if col < 4 and board[row][col + 1] == 0:
    board[row][col + 1] = board[row][col]
    board[row][col] = 0
    return
def check_for_winner(board):
  num = 1
  row = 0
  col = 0
```

```
while num \leq 24:
    if board[row][col] == num:
       num = num + 1
       col = col + 1
       if col > 4:
         col = 0
         row = row + 1
    else:
       return False
  return True
def clear(win):
  for item in win.items[:]:
    item.undraw()
  win.update()
def main():
  window = GraphWin('GAME 25', 250, 250)
  board = initialize_board('game_25.txt')
  display_numbers(window, board)
  game_over = False
  while not game_over:
    p = window.getMouse()
    col = int(p.getX() / 50)
    row = int(p.getY() / 50)
    update_board(board, row, col)
    display_numbers(window, board)
    game_over = check_for_winner(board)
  message = Text(Point(125, 125), 'GAME OVER')
  message.setSize(24)
  message.setTextColor('red')
  clear(window)
```

message.draw(window)
window.getMouse()
window.close()
main()

task_4()

Результати виконання програми:

Завдання 1

Завдання 2

Завдання 3

Завдання 4

Аналіз результатів: В першому завданні стояла задача намалювати світлофор згідно з вказівками, які були описані в завданні. Для виконання цієї задачі було написано функцію task_1_1(), всередині якої була написана логіка побудови чотирикутника та відмалювання трьох вогнів світлофора, використавши цикл for. Для відображення відповідних кольорів був створений масив з назвами заливок для світлофору. Також в першому завданні стояла задача намалювати кола, які дотикаються одне до одного, використавши цикл. Для цього було створено функцію task_1_2(), в якій була описана логіка відмальовки кіл та знаходження їх центру та відповідного радіусу (кожен раз менше на 10). Весь код відведений для першого завдання був об'єднаний в функції task 1().

Задачею другого завдання було надати можливість користувачу ввести 5 точок кліком миші на полотні і, на основі цих даних, побудувати п'ятикутник. Також потрібно було повторно запустити програму і користувач має знов ввести точок, але на цей раз в такому порядку, щоб сформулювати зірку. Потрібно зазначити, що в умові завдання сказано звернути увагу на заливку зірки при перетині ліній (вона порожня). Перепробувавши різні варіанти і шукавши розв'язок в мережі Інтернет, я натрапила на цікаву інформацію:

«Also, the fill may look strange on some systems like Unix (unfilled in the center) but look completely filled other systems, like Windows» [3].

Маю припущення, що через те, що виконувана програма прикладу в завданні була запущена на операційній системі MacOS заповнення зірки є порожнім. Оскільки моя OC – Windows, то зірка виходить заповненою. Приклад:

В третьому завданні стояла задача спростити функцію update_board так, щоб іf оператори для перемикання вогників були не потрібні. Для цього було запропоновано використання модулю 2 (%2), що є дуже хорошим та цікавим рішенням. Код програми можна побачити в блоці «Код програми» (task_3()). Також в кінці гри, при перемозі користувача реалізовано вивід на полотно слів «GAME OVER».

Завдання 4 – розширення гри 15. В моєму завданні потрібно було її перетворити в гру 24. Для цього завдання була написана функція task_4(), в якій були згруповані та, відповідно до поставленої задачі, модифіковані всі потрібні функції. Також в кінці гри, при перемозі користувача реалізовано очищення полотна та вивід на полотно слів «GAME OVER».

Висновок: Під час виконання лабораторної роботи я ознайомилась з мовою програмування Руthon зі сторони графічного представлення та побудови фігур на основі модулів комп'ютерної графіки, використання графічних операторів, запис та читання з файлів. Для малювання та відображення примітивних графічних об'єктів на екрані був використаний графічний модуль graphics, який був розроблений Джоном Зелле. Він є зручним у використанні та легким в підключені. Також ознайомилась з тим, яким способом можна створити елементарні графічні фігури(многокутник, коло, чотирикутник, текст) та відобразити їх на полотні, дізналась їх основні властивості. Ознайомилась із взаємодією з користувачем(зчитування кліку мишки) та з роботою з файлами, зчитуванням та записом даних в них.

Перелік використаних посилань:

- 1. Андрущак Н.А. Методи та засоби комп'ютерного навчання: лабораторний практикум для студентів другого (магістреського) рівня вищої освіти Інституту комп'ютерних наук та інформаційних технологій. Львів: Видавництво Національного університету «Львівська політехніка», 2018. 125 с.
- 2. Руководство по программированию на Python: https://metanit.com/python/tutorial/
- 3. Python 3 Graphics (Drawing a star) Stack Overflow: https://stackoverflow.com/questions/26952838/python-3-graphics-drawing-a-star