DatKom		Mert Saglam	406572
SS 2021	Übungsblatt 6	Parsa Bahadori	407004
27. Juni 2021	_	Thilo Metzlaff	406247

Aufgabe 6.1 5/5P

2/2P a) IP-Adressbereich: 137.226.40.0/22

Wir wandeln zunächst die Anzahl der Rechner in die nächstgrößte Zweierpotenz.

- LAN 1 für 400 Rechner 512 Adressen (9 Bit)
- LAN 2 für 120 Rechner 128 Adressen (7 Bit)
- LAN 3 für 130 Rechner 256 Adressen (8 Bit)
- LAN 4 für 31 Rechner 64 Adressen (6 Bit) wegen Netz- und Broadcastadresse

LAN	Subnetz	Erste IP-Adresse	Letzte IP-Adresse	# Adressen
1	137.226.40.0/23	137.226.[0010 1000].0 137.226.40.0	137.226.[0010 1001].255 137.226.41.255	512
2	137.226.42.0/25	137.226.42.[0000 0000] 137.226.42.0	137.226.42.[0111 1111] 137.226.42.127	128
3	137.226.43.0/24	137.226.[0010 1011].0 137.226.43.0	137.226.[0010 1011].255 137.226.43.255	256
4	137.226.42.128/26	137.226.42.[1000 0000] 137.226.42.128	137.226.42.[1011 1111] 137.226.42.191	64

b) 1.5/1.5P

IP-Adresse		
1		
3		
1		
)		
)		

c) 1.5/1.5P

- 134.130.53.56 nimmt Netzwerkkarte 2 (23 Bit Übereinstimmung)
- 134.130.57.17 nimmt Netzwerkkarte 3 (23 Bit Übereinstimmung)
- 134.130.64.170 nimmt Netzwerkkarte 8 (Kein Match bei anderen Netzwerkkarten)

Aufgabe 6.2 2/2P

a) 1.5/1.5P

Protokoll	IP-Adresse lokal	Port lokal	IP-Adresse global	Port global	IP-Adresse Ziel	Port Ziel
TCP	172.16.0.16	6937	134.135.17.12	6938	212.66.4.64	443
TCP	172.16.0.3	8532	134.135.17.12	8534	212.66.19.7	443
TCP	172.16.0.7	5543	134.135.17.12	5543	212.66.37.12	443

b) 0.5/0.5P

Damit man dauerhaft auf den NAS-Server zugreifen kann, muss man den NAT-Router folgendermaßen konfigurieren.

Die lokale IP-Adresse des NAS-Servers sowie der Port muss gespeichert werden und der lokale/globale Port darf **nicht** überschrieben werden.

Aufgabe 6.3 3/3P

Sender zu Router 1: Paket wird in 3 Pakete fragmentiert:

Router 1 zu Router 2:

Erstes Packet:

Zweites Packet:

Das dritte Packet wird unverändert weitergesendet.

Aufgabe 6.4 1.5/3P

a) 1/1P

b) 0.5/2P

Zunächst muss das Paket über R2 gesendet werden:

Request H2.EN1 137.226.3.56 137.226.3.33 - H2 erfragt MAC-Adresse von R2 Reply R2.EN1 137.226.3.33 H2.EN1 137.226.3.56 - R2 teilt H2 seine MAC-Adresse mit Data H2.EN1 R2.EN1 - Übertragung des Pakets von H2 an R2

Nun wird das Paket von R2 zu H1 gesendet:

Request R2.EN2 137.226.3.129 137.226.3.234 - R2 erfragt MAC-Adresse von H1 Reply H1.EN0 137.226.3.234 R2.EN2 137.226.3.129 - H1 teilt R2 seine MAC-Adresse mit Data R2.EN2 H1.EN0 - Übertragung des Pakets von R2 an H1

Die richtige Ausgabe wäre die für: H2.EN0 R1.En0 R1.EN1 R3.EN0 R3.EN1 R2.EN0 R2.EN2 H1.EN0

Demnach -1.5P

Aufgabe 6.5 2/2P

Dies ist kein echter Pfad. Der Router D sendet Pakete abwechselnd an Router E und G, es existier also kein Pfad zwischen E und H, die IPs werden trotzdem als "Pfad"gespeichert. Zudem sendet J keine Nachricht an den Sender, ist also "Blind" im Pfad.