Data analysis for heart disease prediction present with the Cleveland dataset

Student: Yen-Hsing Li

Date: 2017/1/17

Outline

- Analysis software
- The dataset
- Processed with missing value
- Entropy
- Predict
- Conclusion

Analysis software

- Using Python for data analysis
- Sklearn support data splitting used for predicting
- ☐ More flexible compared to R
- ☐ Currently used for research

- In this program, it has several functions and goal
- ☐ Missing value processing
- ☐ Entropy counting :evaluate entropy for each dimension and the whole dataset
- ☐ the confusion matrix
- Goal: trying to get more relative and lesser columns for predicting heart disease.

The dataset

 This database contains 76 attributes, but all published experiments refer to using a subset of 14 of them.

 Expected to find the most related dimension subsets for predicting heart disease.

Attribute Information:

```
Only 14 attributes used:
1. #3 (age)
2. #4 (sex)
3. #9 (cp)
4. #10 (trestbps)
5. #12 (chol)
6. #16 (fbs)
7. #19 (restecg)
8. #32 (thalach)
9. #38 (exang)
10. #40 (oldpeak)
11. #41 (slope)
12. #44 (ca)
13. #51 (thal)
14. #58 (num) (the predicted attribute)
```


The dataset

age	sex	ср	trestbps	chol	fbs	restecg
63	1	1	145	233	1	2
67	1	4	160	286	0	2
67	1	4	120	229	0	2

thalach	exang	oldpeak	slope	ca	thal	num
150	0	2.3	3	0	6	0
108	1	1.5	2	3	3	2
129	1	2.6	2	2	7	1

Processed with missing value

- In this dataset, it has roughly 6 missing values in the 12 and the 13 column.
- Replaced with the means along the axis.

```
def processlosevalue(data):
    for i in range(len(data)):
        for j in range(len(data[i])):
            if(data[i][j]=="?"):
                data[i][j] = np.nan
    np.asarray(data)

imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
    imp.fit(data)
    y = imp.transform(data)
    return np.array(y,"int")
```


Entropy

 We use entropy to represent the average information obtained from a single sample X.

$$H(X) = \sum_{i=1}^{q} p_i I(p_i) = \sum_{i=1}^{q} p_i \log_2 \frac{1}{p_i} = -\sum_{i=1}^{q} p_i \log_2 p_i$$

- Low entropy means X is from varied distribution, and so the values sampled from it would be more predictable.
- For Cleveland dataset, there are 13 columns, the last column is target (0 to 4). We counted each target value's entropy, and trying to get the uncertainty of the information.

Entropy

• From the figure shown above, we obtain that the [2,6,7,9,11,13] columns have low entropy (lower than 1)

```
def entropy(mdict,count):
    m_entropy = 0
    for r in mdict:
        pk = mdict[r] / count
        m_entropy += -(pk * np.log(pk))
    print('m_entropy',m_entropy)
```

```
dimemsion 0 entropy 3.49734794908
dimemsion 1 entropy 0.685692588448
dimemsion 2 entropy 1.28021214464
dimemsion 3 entropy 3.11511024824
dimemsion 4 entropy 4.51644317792
dimemsion 5 entropy 0.405405991789
dimemsion 6 entropy 0.712397960422
dimemsion 7 entropy 3.99966452563
dimemsion 8 entropy 0.405405991789
dimemsion 9 entropy 0.771456497085
dimemsion 10 entropy 0.802313014536
dimemsion 11 entropy 0.640911469562
dimemsion 12 entropy 0.642743968904
candidate [1, 5, 6, 8, 9, 10, 11, 12]
```

```
dimemsion 0 entropy 3.03519729678 dimemsion 1 entropy 0.500402423538 dimemsion 2 entropy 0.567260893626 dimemsion 3 entropy 2.91637206583 dimemsion 4 entropy 3.51573965117 dimemsion 5 entropy 0.537544412474 dimemsion 6 entropy 0.760439096594 dimemsion 7 entropy 3.3573060099 dimemsion 8 entropy 0.642912439666 dimemsion 9 entropy 1.6623041931 dimemsion 10 entropy 0.839032681321 dimemsion 11 entropy 1.31920358024 dimemsion 12 entropy 0.582425687196 candidate [1, 2, 5, 6, 8, 10, 12]
```


Predict

- Using Naive Bayes classifier and decision tree
- Taking the [2,6,7,9,11,13] columns for analyzing

Naive Bayes classifier

decision tree

```
diagonal sum:56
confusion_matrix:
[[35 0 1 0 15]
  [ 5 0 0 0 12]
  [ 1 0 2 1 8]
  [ 1 0 1 1 12]
  [ 0 0 0 1 3]]
```

```
diagonal sum:49
confusion_matrix:
[[28 14 6 4 0]
[ 3 5 5 3 0]
[ 4 3 0 1 0]
[ 3 3 5 5 0]
[ 1 0 4 2 0]]
```

- The 1~4 classify attribute is easy to be misclassified
- Replace with all 1(> 50% diameter narrowing)

Predict

Naive Bayes classifier

```
[[76 75 74 75 78]
[78 79 77 72 66]
[67 73 77 71 72]
[70 66 71 72 74]
[67 71 70 72 74]
[69 70 75 68 71]
[71 72 66 73 73]
[73 71 78 74 71]
[73 70 69 76 68]
[73 70 72 74 77]]
d_list length =50
max relative index = 6 diagonal_sum = 79
72.28
```

```
[[48 12]
[13 26]]
diagonal sum:74
```

decision tree

```
[[83 81 82 82 79]
[75 83 79 80 78]
[77 86 76 84 77]
[82 80 81 83 75]
[79 86 82 79 79]
[81 88 86 79 83]
[80 76 77 82 79]
[81 90 83 82 78]
[72 81 84 77 75]
[83 80 80 72 86]]
d_list length =50
max relative index = 36 diagonal_sum = 90
80.46
```

```
[[48 6]
[13 32]]
diagonal sum:80
```


Predict

- Compared to original analyzing[1~13columns], it's about 5% drop on predicting probability(quite a lot).
- Consider of missing value handling.
- Deleting rows which have missing values.

Naive Bayes classifier

```
[[73 74 71 78 72]
[77 80 79 78 75]
[74 74 78 83 80]
[78 77 78 77 77]
[75 86 81 78 82]
[77 77 80 75 80]
[78 73 73 75 80]
[69 77 78 69 83]
[78 79 74 79 82]
[73 80 80 82 73]]
d_list length =50
max relative index = 21 diagonal_sum = 86
77.18
```

72.28%>>>77.18%

conclusion

- Missing value is a significant issue for data analyzing, can't just replace it with simple function.
- Can use entropy for reducing the amount of the data that have to be processed.

✓ Future work:

- 1.get more precise method for missing value.
- 2.compare more dataset and classify method.

