

SPECIFICATION FOR APPROVAL

() Preliminary Specification
() Final Specification

Title 31.0" Real 4K2K TFT LCD

BUYER	General
MODEL	

SUPPLIER	LG Display Co., Ltd.
*MODEL	LM310UH1
SUFFIX	SLA1

^{*}When you obtain standard approval, please use the above model name without suffix

SIGNATURE DATE
confirmation with

your signature and comments.

APPROVED BY	SIGNATURE DATE
C.K. Lee / G.Manager	
REVIEWED BY	
H.S. Kim / Manager [C]	
Y.S. Chung / Manager [M]	
S.H. Han / Manager [O]	
T.H. Shin / Manager [P]	
PREPARED BY	
J.W. Lee / Engineer	
Product Engineering	g Dept.

LG Display Co., Ltd

Ver. 0.0_\(\triangle\) Aug., 02, 2013 1 / 33

Contents

No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE CONNECTIONS	9
3-3	LVDS CHARACTERISTICS	12
3-4	SIGNAL TIMING SPECIFICATIONS	15
3-5	SIGNAL TIMING WAVEFORMS	16
3-6	COLOR INPUT DATA REFERENCE	17
3-7	POWER SEQUENCE & DIP CONDITION FOR LCD MODULE	18
4	OPTICAL SPECIFICATIONS	20
5	MECHANICAL CHARACTERISTICS	26
6	RELIABLITY	29
7	INTERNATIONAL STANDARDS	30
7-1	SAFETY	30
7-2	ENVIRONMENT	30
8	PACKING	31
8-1	DESIGNATION OF LOT MARK	31
8-2	PACKING FORM	31
9	PRECAUTIONS	32

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description
0.0	Aug., 02, 2013	-	First Draft, Preliminary Specifications

1. General Description

LM310UH1 is a Color Active Matrix Liquid Crystal Display with a Light Emitting Diode (GB-r LED) backlight system without LED driver. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally black mode. It has a 31 inch diagonally measured active display area with 4K2K resolution (4096 horizontal by 2160 vertical pixel array) Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes.

Gray scale or the brightness of the sub-pixel color is determined with a 10-bit gray scale signal for each dot, thus, presenting a palette of more than 1.07Billion colors. It has been designed to apply the 10-bit 8port LVDS interface. It is intended to support displays where high brightness, super wide viewing angle, high color saturation, and high color are important.

[FIG. 1] Block diagram

General Features

Active Screen Size	31.0 inches(78.77cm) (Aspect ratio 17:9)
Outline Dimension	730.4(H) x 401.2(V) x 17.3(D) mm (Typ.)
Pixel Pitch	0.0567 mm x 0.1701 mm
Pixel Format	4096 horiz. By 2160 vert. Pixels RGB stripes arrangement
Color Depth	1.07 Billion colors, 10 Bit
Luminance, White	400 cd/m² (Center 1 Point, Typ.) (TBD)
Viewing Angle(CR>10)	View Angle Free (R/L 178(Typ.), U/D 178(Typ.))
Power Consumption	TBD
Weight	Тур : 4200g, Мах : 4410g
Display Operating Mode	Transmissive mode, normally black
Surface Treatment	Advanced Anti-glare treatment of the front polarizer

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Val	ues	- Units	Notes	
r didilielei	Syllibol	Min	Max			
Power Supply Input Voltage	V _{LCD}	-0.3	+12.0	Vdc	At 25 ℃	
Operating Temperature	T _{OP}	0	50	°C		
Storage Temperature	T _{ST}	-20	60	°C	1,2,3	
Operating Ambient Humidity	H _{OP}	10	90	%RH	1,2,3	
Storage Humidity	H _{ST}	10	90	%RH		
LCM Surface Temperature (Operation)	T _{Surface}	0	65	°C	1, 4	

Note: 1. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39 °C Max, and no condensation of water.

- 2. Maximum Storage Humidity is up to 40°C, 70% RH only for 4 corner light leakage Mura.
- 3. Storage condition is guaranteed under packing condition
- 4. LCM Surface Temperature should be Min. 0°C and Max. 65°C under the VLCD=10V, fV=60Hz, 25°C ambient Temp. no humidity control and LED string current is typical value.

FIG. 2 Temperature and relative humidity

3. Electrical Specifications

3-1. Electrical Characteristics

It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input power for the LED/Backlight, is typically generated by a LED Driver. The LED Driver is an external unit to the LCDs.

Table 2-1. ELECTRICAL CHARACTERISTICS

Parameter	Symbol		Values	Unit	Notes	
Parameter	Symbol	Min	Тур	Max	Onit	Notes
MODULE :						
Power Supply Input Voltage	VLCD		10		Vdc	
Permissive Power Input Ripple	VdRF			TBD	mV _{p-p}	
Davies County Insult County	ILCD	-	TBD		mA	1
Power Supply Input Current		-	TBD		mA	2
Dawer Canaumation	Pc TYP	-	TBD		Watt	1
Power Consumption	Pc MAX	-	TBD		Watt	2
Rush current	Irush	-		TBD	А	3

Note:

- 1. The specified current and power consumption are under the V_{LCD} =10.0V, 25 ± 2°C, f_V =60Hz condition whereas mosaic pattern(8 x 6) is displayed and f_V is the frame frequency.
- 2. The current is specified at the maximum current pattern.
- 3. The duration of rush current is about 2ms and rising time of power Input is 1ms(min.).

 \bullet **Permissive Power input ripple (**V_{LCD} =10.0V, 25°C, fv (frame frequency)=MAX condition**)**

White pattern

Black pattern

 \bullet Power consumption (V $_{LCD}$ =10V, 25°C, fV (frame frequency=60Hz condition)

Typical power Pattern

Maximum power Pattern

FIG. 3 Mosaic pattern & White Pattern for power consumption measurement

Table 2-2. LED Bar ELECTRICAL CHARACTERISTICS

Davamakar	Cumhal		Values	Unit	Notes	
Parameter	Symbol	Min.	Тур.	Max.	Onit	Notes
LED String Current	I_Green	-	(85)	(TBD)	mA	1 2 7
LED String Current	I_Blue	-	(55)	(TBD)	mA	1, 2, 7
Blue current Ratio	IB / IG	-	(64.7)	(66.6)	%	1,2,7,8
LED Chuing Voltage	Vs_Green	(TBD)	(66.0)	(TBD)	V	1 2 7
LED String Voltage	Vs_Blue	(TBD)	(64.9)	(TBD)	V	1, 3, 7
Power Consumption	PBar	-	(69.9)	(TBD)	Watt	1,4,6,7
LED Life Time	LED_LT	30,000			Hrs	5, 7

LED driver design guide

vour instrument.

- 1) The design of the LED driver must have specifications for the LED in LCD Assembly.
 - The performance of the LED in LCM, for example life time or brightness, is extremely influenced by the characteristics of the LED driver.
 - So all the parameters of an LED driver should be carefully designed and output current should be Constant current control. Please control feedback current of each string individually to compensate the current variation among the strings of LEDs.
 - When you design or order the LED driver, please make sure unwanted lighting caused by the mismatch of the LED and the LED driver (no lighting, flicker, etc) never occurs. When you confirm it, the LCD module should be operated in the same condition as installed in
- 2) LGD recommend that Dimming Control Signal (PWM Signal) is synchronized with Frame Frequency for Wavy Noise Free.
- 1. Specified values are for a single LED bar.
- 2. The specified current is defined as the input current for a single LED string with 100% duty cycle
- 3. The specified voltage is input LED string and Bar voltage at typical Current 100% duty current.
- 4. The specified power consumption is input LED bar power consumption at typical Current 100% duty current.
- 5. The life is determined as the time at which luminance of the LED is 50% compared to that of initial value at the typical LED current on condition of continuous operating at 25 \pm 2°C.
- 6. The power consumption shown above does not include loss of external driver.

The used LED bar current is the LED typical current.

The typical power consumption is calculated as

 $P_{Bar} = Vs(Typ.) \times (I \text{ green}(Typ.) + I \text{ blue}(Typ)) \times No. \text{ of strings.}$

The maximum power consumption is calculated as

 $P_{Bar} = Vs(Max.) \times (I_green(Typ.) + I_blue(Typ)) \times No. of strings$

- 7. LED operating DC Forward Current must not exceed LED Max Ratings at $25 \pm 2^{\circ}$ C
- ※ Green & Blue LED can be operated at 0~10mA current range, but LGD can not guarantee
 the optical performance at this low current level.
- 8. Blue current Ratio is calculated with IB(typ.)/IG(typ.) after 30min. aging time at 25 \pm 2°C. It means the Blue current portion comparing with Green current at 100% duty typical current.

3-2. Interface Connections

3-2-1. LCD Module

- LCD Connector(CN1): IS050-C51B-C39-A(UJU) or FI-RE51S-HF(JAE) or compatible. Refer to below and next Page table.

- Mating Connector : FI-RE51HL(JAE) or compatible

Table 3-1. MODULE CONNECTOR(CN1) PIN CONFIGURATION

No	Symbol	Description	П	No	Symbol	Description
1	GND	Ground	П	27	NC	No Connection
2	NC	No Connection	П	28	R2AN	SECOND LVDS Receiver Signal (A-)
3	NC	No Connection	П	29	R2AP	SECOND LVDS Receiver Signal (A+)
4	SDA	SDA	П	30	R2BN	SECOND LVDS Receiver Signal (B-)
5	SCL	SCL	П	31	R2BP	SECOND LVDS Receiver Signal (B+)
6	NC	No Connection	П	32	R2CN	SECOND LVDS Receiver Signal (C-)
7	Mstar	Input mode selection L : Normal mode, H : Dual mode		33	R2CP	SECOND LVDS Receiver Signal (C+)
8	ITLC	Interlace mode selection	П	34	GND	Ground
9	NC	No Connection (PWM OUT)		35	R2CLKN	SECOND LVDS Receiver Clock Signal(-)
10	NC	No Connection	П	36	R2CLKP	SECOND LVDS Receiver Clock Signal(+)
11	GND	Ground	П	37	GND	Ground
12	R1AN	FIRST LVDS Receiver Signal (A-)	П	38	R2DN	SECOND LVDS Receiver Signal (D-)
13	R1AP	FIRST LVDS Receiver Signal (A+)	П	39	R2DP	SECOND LVDS Receiver Signal (D+)
14	R1BN	FIRST LVDS Receiver Signal (B-)	П	40	R2EN	SECOND LVDS Receiver Signal (E-)
15	R1BP	FIRST LVDS Receiver Signal (B+)	П	41	R2EP	SECOND LVDS Receiver Signal (E+)
16	R1CN	FIRST LVDS Receiver Signal (C-)	П	42	Reserved	No connection or GND
17	R1CP	FIRST LVDS Receiver Signal (C+)	П	43	Reserved	No connection or GND
18	GND	Ground	П	44	GND	Ground
19	R1CLKN	FIRST LVDS Receiver Clock Signal(-)		45	GND	Ground (RBF)
20	R1CLKP	FIRST LVDS Receiver Clock Signal(+)	П	46	GND	Ground
21	GND	Ground	П	47	NC	No connection
22	R1DN	FIRST LVDS Receiver Signal (D-)	П	48	VLCD	Power Supply +10.0V
23	R1DP	FIRST LVDS Receiver Signal (D+)	\prod	49	VLCD	Power Supply +10.0V
24	R1EN	FIRST LVDS Receiver Signal (E-)	\prod	50	VLCD	Power Supply +10.0V
25	R1EP	FIRST LVDS Receiver Signal (E+)	П	51	VLCD	Power Supply +10.0V
26	Reserved	No connection or GND	П	-	-	-

Notes: 1. All GND(ground) pins should be connected together to the LCD module's metal frame.

- 2. All VLCD (power input) pins should be connected together.
- 3. All Input levels of LVDS signals are based on the EIA 644 Standard.
- 4. Always all LVDS signal and clock input should be 8 channels and synchronized.
- 5. ITLC is Interlace mode selection pin. (L : Normal Mode, H : Interlace Mode) If you don't use this pin, it should be connected to GND

- LCD Connector(CN2,3,4): IS050-C41B-C39-A(UJU) or FI-RE41S-HF(JAE) or compatible. Refer to below table.
- Mating Connector : FI-RE41HL(JAE) or compatible.

Table 3-2. MODULE CONNECTOR(CN2,3,4) PIN CONFIGURATION

No	Symbol	Description	No	Symbol	Description
1	NC	No connection (Reserved)	22	R3EN	THIRD LVDS Receiver Signal (E-)
2	NC	No connection	23	R3EP	THIRD LVDS Receiver Signal (E+)
3	NC	No connection	24	GND	Ground
4	NC	No connection	25	GND	Ground
5	NC	No connection	26	R4AN	FORTH LVDS Receiver Signal (A-)
6	NC	No connection	27	R4AP	FORTH LVDS Receiver Signal (A+)
7	NC	No connection	28	R4BN	FORTH LVDS Receiver Signal (B-)
8	NC	No connection	29	R4BP	FORTH LVDS Receiver Signal (B+)
9	GND	Ground	30	R4CN	FORTH LVDS Receiver Signal (C-)
10	R3AN	THIRD LVDS Receiver Signal (A-)	31	R4CP	FORTH LVDS Receiver Signal (C+)
11	R3AP	THIRD LVDS Receiver Signal (A+)	32	GND	Ground
12	R3BN	THIRD LVDS Receiver Signal (B-)	33	R4CLKN	FORTH LVDS Receiver Clock Signal(-)
13	R3BP	THIRD LVDS Receiver Signal (B+)	34	R4CLKP	FORTH LVDS Receiver Clock Signal(+)
14	R3CN	THIRD LVDS Receiver Signal (C-)	35	GND	Ground
15	R3CP	THIRD LVDS Receiver Signal (C+)	36	R4DN	FORTH LVDS Receiver Signal (D-)
16	GND	Ground	37	R4DP	FORTH LVDS Receiver Signal (D+)
17	R3CLKN	THIRD LVDS Receiver Clock Signal(-)	38	R4EN	FORTH LVDS Receiver Signal (E-)
18	R3CLKP	THIRD LVDS Receiver Clock Signal(+)	39	R4EP	FORTH LVDS Receiver Signal (E+)
19	GND	Ground	40	GND	Ground
20	R3DN	THIRD LVDS Receiver Signal (D-)	41	GND	Ground
21	R3DP	THIRD LVDS Receiver Signal (D+)	-		

Notes: 1. All GND(ground) pins should be connected together to the LCD module's metal frame. 2. LVDS pin (pin No. #22,23,38,39) are used for 10Bit(D) of the LCD module.

[CN1]
-Part/No.: IS050-C51B-C39-A(UJU)
FI-RE51S-HF(JAE)

- Mating connector : FI-RE51HL

(Manufactured by JAE)

[CN2,3,4]

-Part/No.: IS050-C41B-C39-A(UJU) FI-RE41S-HF(JAE)

- Mating connector : FI-RE41HL

(Manufactured by JAE)

3-2-2. Backlight Interface

- LED Connector: H401K-D12N-12B (Manufactured by E&T) and Equivalent

- Mating Connector: 4530K-F12N-01R (Manufactured by E&T) and Equivalent

Table 4. LED CONNECTOR PIN CONFIGULATION

Pin No.	Symbol	Description	Note
1	G_1-	Green LED channel 1 Cathode	
2	G_2-	Green LED channel 2 Cathode	
3	G_+	Green Common Anode	
4	B_+	Blue Common Anode	
5	B_1-	Blue LED channel 1 Cathode	
6	B_2-	Blue LED channel 2 Cathode	Loft/Dight Comp nin Mon
7	B_3-	Blue LED channel 3 Cathode	Left/Right Same pin Map
8	B_4-	Blue LED channel 4 Cathode	
9	B_+	Blue Common Anode	
10	G_+	Green Common Anode	
11	G_3-	Green LED channel 3 Cathode	
12	G_4-	Green LED channel 4 Cathode	

Notes: 1. Green Common Anode Pin. No. 3 & 10 must be connected electrically for stable operation.

2. Blue Common Anode Pin. No. 4 & 9 must be connected electrically for stable operation.

FIG 4. Backlight connector view

3-3. LVDS characteristics

3-3-1. DC Specification

Description	Symbol	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	200	600	mV	-
LVDS Common mode Voltage	V _{CM}	1.0	1.5	V	-
LVDS Input Voltage Range	V _{IN}	0.7	1.8	V	-
Change in common mode Voltage	ΔVсм	-	250	mV	-

3-3-2. AC Specification

Description	Symbol	Min	Max	Unit	Notes
LVDS Clock to Data Skew Margin	t _{SKEW}	- 300	+ 300	ps	
LVDS Clock to Clock Skew Margin	t _{SKEW_EO}	- 1/7	+ 1/7	T _{clk}	-

3-3-3. LVDS Data format

3-3-4. LVDS description

■ Normal (Single Screen, Pin # 7 of CN1 = Low)

```
LVDS Ch1: 1 \rightarrow 9 \rightarrow ... 2041 \rightarrow 2049 \rightarrow 2057 \rightarrow ... 4081 \rightarrow 4089

LVDS Ch2: 2 \rightarrow 10 \rightarrow ... 2042 \rightarrow 2050 \rightarrow 2058 \rightarrow ... 4082 \rightarrow 4090

LVDS Ch3: 3 \rightarrow 11 \rightarrow ... 2043 \rightarrow 2051 \rightarrow 2059 \rightarrow ... 4083 \rightarrow 4091

LVDS Ch4: 4 \rightarrow 12 \rightarrow ... 2044 \rightarrow 2052 \rightarrow 2060 \rightarrow ... 4084 \rightarrow 4092

LVDS Ch5: 5 \rightarrow 13 \rightarrow ... 2045 \rightarrow 2053 \rightarrow 2061 \rightarrow ... 4085 \rightarrow 4093

LVDS Ch6: 6 \rightarrow 14 \rightarrow ... 2046 \rightarrow 2054 \rightarrow 2062 \rightarrow ... 4086 \rightarrow 4094

LVDS Ch7: 7 \rightarrow 15 \rightarrow ... 2047 \rightarrow 2055 \rightarrow 2063 \rightarrow ... 4087 \rightarrow 4095

LVDS Ch8: 8 \rightarrow 16 \rightarrow ... 2048 \rightarrow 2056 \rightarrow 2064 \rightarrow ... 4088 \rightarrow 4096
```

■ Dual (Dual Screen, Pin # 7 of CN1 = High)

```
LVDS Ch1 : 1 \rightarrow 5 \rightarrow 9 \rightarrow 13 \rightarrow ... \rightarrow 2033 \rightarrow 2037 \rightarrow 2041 \rightarrow 2045 LVDS Ch2 : 2 \rightarrow 6 \rightarrow 10 \rightarrow 14 \rightarrow ... \rightarrow 2034 \rightarrow 2038 \rightarrow 2042 \rightarrow 2046 LVDS Ch3 : 3 \rightarrow 7 \rightarrow 11 \rightarrow 15 \rightarrow ... \rightarrow 2035 \rightarrow 2039 \rightarrow 2043 \rightarrow 2047 LVDS Ch4 : 4 \rightarrow 8 \rightarrow 12 \rightarrow 16 \rightarrow ... \rightarrow 2036 \rightarrow 2040 \rightarrow 2044 \rightarrow 2048 LVDS Ch5 : 2049 \rightarrow 2053 \rightarrow 2057 \rightarrow 2061 \rightarrow ... \rightarrow 4081 \rightarrow 4085 \rightarrow 4089 \rightarrow 4093 LVDS Ch6 : 2050 \rightarrow 2054 \rightarrow 2058 \rightarrow 2062 \rightarrow ... \rightarrow 4082 \rightarrow 4086 \rightarrow 4090 \rightarrow 4094 LVDS Ch7 : 2051 \rightarrow 2055 \rightarrow 2059 \rightarrow 2063 \rightarrow ... \rightarrow 4083 \rightarrow 4087 \rightarrow 4091 \rightarrow 4095 LVDS Ch8 : 2052 \rightarrow 2056 \rightarrow 2060 \rightarrow 2064 \rightarrow ... \rightarrow 4084 \rightarrow 4088 \rightarrow 4092 \rightarrow 4096
```


3-4. Signal Timing Specifications

This is signal timing required at the input of the TMDS transmitter. All of the interface signal timing should be satisfied with the following specifications for it's proper operation.

Table 5. TIMING TABLE

ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Period	tCLK	13.7	13.3	13.2	ns	Pixel frequency
DCLK	Frequency	-	73.2	75.3	75.7	MHz	: Typ.602.4MHz
	Period	tHP	568	576	576	tCLK	
	Horizontal Valid	tHV	512	512	512	+CI I	
	Horizontal Blank	tHB	56	64	64	tCLK	
Hsync	Frequency	fH	129.1	130.8	131.2	KHz	
	Width	tWH	16	16	16		
	Horizontal Back Porch	tHBP	32	32	32	tCLK	
	Horizontal Front Porch	tHFP	8	16	16		
	Period	tVP	2178	2180	2182	tHP	
	Vertical Valid	tVV	2160	2160	2160	tHP	
	Vertical Blank	tVB	18	20	22	tHP	
Vsync	Frequency	fV	59.2	60	60.2	Hz	
	Width	tWV	4	4	4		
	Vertical Back Porch	tVBP	7	8	9	tHP	
	Vertical Front Porch	tVFP	7	8	9		

Note:

- 1. DE Only mode operation. The input of Hsync & Vsync signal does not have an effect on LCD normal operation.
- 2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rates.
- 3. Horizontal period should be even.

3-5. Signal Timing Waveforms

3-6. Color Input Data Reference

The Brightness of each primary color(red,green,blue) is based on the 10-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 6. COLOR DATA REFERENCE

				Input	Color Data		
	Color		RED		GREEN		BLUE
		MSB	LSB	MSB	LSB	MSB	LSB
		R9 R8 R7	R6 R5 R4 R3 R2 R1 R0	G9 G8 G7 G	66 G5 G4 G3 G2 G1 G0	B9 B8 B7 B6	5 B5 B4 B3 B2 B1 B0
	Black	0 0 0	0 0 0 0 0 0	0000	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0
	Red (1023)	1 1 1	1 1 1 1 1 1 1	0000	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0
	Green (1023)	0 0 0	0 0 0 0 0 0 0	1111	1 1 1 1 1 1 1	0000	0 0 0 0 0 0
Basic	Blue (1023)	0 0 0	0 0 0 0 0 0 0	0000	0 0 0 0 0 0	1111	1 1 1 1 1 1
Color	Cyan	0 0 0	0 0 0 0 0 0 0	1 1 1 1	1 1 1 1 1 1 1	1 1 1 1	1 1 1 1 1 1
	Magenta	1 1 1	1 1 1 1 1 1 1	0000	0 0 0 0 0 0	1 1 1 1	1 1 1 1 1 1
	Yellow	1 1 1	1 1 1 1 1 1 1	111	1 1 1 1 1 1 1	0 0 0 0	0 0 0 0 0 0
	White	1 1 1	1 1 1 1 1 1 1	111:	1 1 1 1 1 1 1	1 1 1 1	1 1 1 1 1 1
	RED (000)	0 0 0	0 0 0 0 0 0 0	0000	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0
	RED (001)	0 0 0	0 0 0 0 0 0 1	0000	000000	0000	0 0 0 0 0 0
RED	ļ]			
	RED (1022)	1 1 1	1 1 1 1 1 1 0	0000	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0
	RED (1023)	1 1 1	1111111	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0
	GREEN (000)	0 0 0	0 0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0000	0 0 0 0 0 0
	GREEN (001)	0 0 0	0 0 0 0 0 0 0	0000	000001	0000	0 0 0 0 0 0
GREEN							
	GREEN (1022)	0 0 0	0 0 0 0 0 0 0	1 1 1 1	111110	0 0 0 0	0 0 0 0 0 0
	GREEN (1023)	0 0 0	0 0 0 0 0 0 0	1111	111111	0 0 0 0	0 0 0 0 0 0
	BLUE (000)	0 0 0	0 0 0 0 0 0 0	0000	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0
	BLUE (001)	0 0 0	0000000	0000	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 1
BLUE							
	BLUE (1022)	0 0 0	0 0 0 0 0 0 0	0000	0 0 0 0 0 0	1 1 1 1	1 1 1 1 1 0
	BLUE (1023)	0 0 0	0 0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	1 1 1 1	1 1 1 1 1 1

3-7. Power Sequence & Dip condition for LCD Module

3-7-1. Power Sequence

Table 7. Power Sequence

Dovometer		Values		Unito
Parameter	Min	Тур	Max	Units
T1	0.5	-	10	ms
T2	0.01	-	50	ms
T3	500	-	-	ms
T4	200	-	-	ms
T5	0.01	-	50	ms
T7	1000		-	ms
Т8	0.5	-	T2	ms
Т9	0		-	ms

Notes:

- 1. Please V_{LCD} power on only after connecting interface cable to LCD.
- 2. Please avoid floating state of interface signal at invalid period.
- 3. When the interface signal is invalid, be sure to pull down the power supply for LCD V_{LCD} to 0V.
- 4. LED power must be turn on after power supply for LCD an interface signal are valid.
- 5. If VLCD Power is Changed during on status, be sure to Pull down the LED Power on to 0V

3-7-2. VLCD Power Dip Condition

FIG.5 Power dip condition

1) Dip condition

$$8V \le V_{LCD} < 9.5V$$
, $t_d \le 20ms$

2)
$$V_{LCD}$$
< 8V

V_{LCD}-dip conditions should also follow the Power On/Off conditions for supply voltage.

4. Optical Specifications

Optical characteristics are determined after the unit has been 'ON' for approximately 30 minutes in a dark environment at $25\pm2^{\circ}$ C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 ° and aperture 1 degree.

FIG. 5 presents additional information concerning the measurement equipment and method.

FIG. 6 Optical Characteristic Measurement Equipment and Method

Table 8. OPTICAL CHARACTERISTICS (Ta=25 °C, V_{LCD}=10V, f_V=60Hz Dclk=602.4MHz) I_{OUT}=85(G), 55(B)mA)

Damana		Comple ed		Values		11	Natas
Parameter		Symbol	Min	Тур	Max	Units	Notes
Contrast Ratio		CR	600	1000	-		1
Surface Luminance,	white	L _{WH}	320	400	-	cd/m²	2
Luminance Variation		δ _{WHITE}	75	-	-	%	3
Response Time	Gray To Gray	T _{GTG_AVR}	-			ms	4
	RED	Rx		TBD			
		Ry]	TBD			
	GREEN	Gx	Тур -0.03	TBD	Тур		
Color Coordinates [CIE1931]		Gy		TBD			
(By PR650)	BLUE	Bx		TBD	+0.03		
		Ву]	TBD			
	WHITE	Wx		0.313			
		Wy]	0.329			
Calau Chift	Horizontal	$ heta_{ extsf{CST_H}}$	-	TBD	-	Danuar	_
Color Shift	Vertical	$\theta_{\text{CST_V}}$	-	TBD	-	Degree	5
Viewing Angle (CR>10)							
	Horizontal	θ_{H}	170	178	-	D	
General	Vertical	$\theta_{\sf V}$	170	178	-	Degree	6
Gray Scale		-		2.2			7

Notes:

1. Contrast ratio (CR) is defined mathematically as:

It is measured at center point (1)

- 2. **Surface luminance** is the luminance value at center 1 point (1) across the LCD surface 50cm from the surface with all pixels displaying white. For more information see Figure 7.
- 3. The variation in surface luminance , $\delta_{\text{ WHITE}}$ is defined as :

$$\delta_{\text{ WHITE}} = \begin{array}{c} \text{Minimum (P1,P2,, P9)} \\ \text{Maximum (P1,P2,, P9)} \end{array} x \ 100 \ (\%)$$

For more information see Figure 7.

Figure 7. Luminance measuring point

<Measuring point for luminance variation>

<Measuring point for surface luminance>

- 4. The **Gray to Gray response time** is defined as the following figure and shall be measured by switching the input signal for "Gray To Gray".
 - Gray step: 5 Step
 - TGTG_AVR is the total average time at rising time and falling time for "Gray To Gray".
 - By RD80S

Table 9. GTG Gray Table

Gray to Gr	Rising Time							
Gray to Gr	ау	G1023	G767	G511	G255	GO		
	G1023							
	G767							
Falling Time	G511							
_	G255							
	G0							

Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Gray(M)".

FIG. 6 Response Time

- 5. Color shift is the angle at which the average color difference for all Macbeth is lower than 0.02. For more information see FIG.9 (By EZ Contrast)
 - Color difference (Δu'v')

$$u' = \frac{4x}{-2x + 12y + 3} \qquad v' = \frac{9y}{-2x + 12y + 3} \qquad \Delta u'v' = \sqrt{(u'_1 - u'_2)^2 + (v'_1 - v'_2)^2}$$

$$Avg(\Delta u'v') = \frac{\displaystyle\sum_{i=1}^{24} (\Delta u'v')i}{24}$$
 u'1, v'1 : u'v' value at viewing angle direction u'2, v'2 : u'v' value at front (0=0) i : Macbeth chart number (Define 23 page)

- Pattern size: 25% Box size
- Viewing angle direction of color shift: Horizontal, Vertical

Color shift is defined as the following test pattern and color.

FIG. 7 Test Pattern

Average RGB values in Bruce RGB for Macbeth Chart

	Dark skin	Light skin	Blue sky	Foliage	Blue flower	Bluish green
R	395	827	343	311	519	459
G	227	571	451	411	475	799
В	183	495	647	187	743	715
	Orange	Purplish blue	Moderate red	Purple	Yellow green	Orange yellow
R	879	227	847	307	643	923
G	419	279	271	159	775	651
В	99	699	351	347	235	119
	Blue	Green	Red	Yellow	Magenta	cyan
R	107	291	791	967	831	143
G	131	595	111	851	251	507
В	583	263	151	147	607	691
	White	Neutral 8	Neutral 6.5	Neutral 5	Neutral 3.5	black
R	963	827	623	443	255	91
G	963	827	623	443	255	91
В	963	827	623	443	255	91

Aug., 02, 2013 23 / 33 Ver. 0.0_⊗

6. **Viewing angle** is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see Figure 8.

FIG. 8 Viewing angle

FIG. 9 Sample Luminance vs. gray scale (using a 256 bit gray scale)

$$L = aV^r + L_b$$

FIG. 10 Sample Log-log plot of luminance vs. gray scale

$$\log(L - L_b) = r \log(V) + \log(a)$$

Here the Parameter α and γ relate the signal level V to the luminance L. The GAMMA we calculate from the log-log representation (FIG. 10)

Table 10. Gray Scale Specification

Gray Level	Relative Luminance [%] (Typ.)
0	(0.10)
63	(0.30)
127	(1.08)
191	(2.50)
255	(4.71)
319	
383	
447	
511	
575	
639	
703	A 1)
767	(53.07)
831	(63.30)
895	(74.52)
959	(86.75)
1023	100

5. Mechanical Characteristics

The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	730.4mm			
Outline Dimension	Vertical	401.2mm			
	Depth	17.3 mm			
Bezel Area	Horizontal	16.9 mm			
Bezel Area	Vertical	16.9 mm			
Astino Dianton Anno	Horizontal	696.73mm			
Active Display Area	Vertical	367.42mm			
Weight	Typ: 4200g, Max: 4410g				
Surface Treatment	Advenced Anti-glare treatment of the front polarizer				

Notes: Please refer to a mechanic drawing in terms of tolerance at the next page.

<FRONT VIEW>

Preliminary

<REAR VIEW>

Notes
1. Unspecified tolerances are to be ±0.5mm.
2. Titl and partial disposition tolerance of display area are as following.

(1) Y-direction: | A-B | \(\) 1.4mm
(2) X-direction: | C-D | \(\) 1.4mm

Bezel Open

Active Area

3. Torque of User Hole(Mount): 3.0 -4.0kgf.cn 4-1.1/F Connector Specification(KNI): 15050-C51B-C39-AKUJU) or FI-RE51S-HFKJAE) 4-2.1/F Connector Specification(KNP): 15050-C41B-C39-AKUJU) or FI-RE41S-HFKJAE) 5. LED Connector Specification: HOIK-DIZH-IZBKEII 6. The CLT orne is seak is sensive, so please don't press the CDF area

6. Reliability

Environment test condition

No	Test Item	Condition
1	High temperature storage test	Ta= 60°C 240h
2	Low temperature storage test	Ta= -20°C 240h
3	High temperature operation test	Ta= 50°C 50%RH 240h
4	Low temperature operation test	Ta= 0°C 240h
5	Vibration test (non-operating)	Wave form: random Vibration level: 1.0G RMS Bandwidth: 10-300Hz Duration: X,Y,Z, 10 min One time each direction
6	Shock test (non-operating)	Shock level : 100Grms Waveform : half sine wave, 2ms Direction : $\pm \text{X}$, $\pm \text{Y}$, $\pm \text{Z}$ One time each direction
7	Altitude Operating Storage / Shipment	0 - 16,500 feet(5,000m) 0 - 40,000 feet(12,192m)

7. International Standards

7-1. Safety

- a) UL 60950-1, Underwriters Laboratories Inc.
 Information Technology Equipment Safety Part 1 : General Requirements.
- b) CAN/CSA C22.2 No.60950-1-07, Canadian Standards Association.
 Information Technology Equipment Safety Part 1: General Requirements.
- c) EN 60950-1, European Committee for Electrotechnical Standardization (CENELEC). Information Technology Equipment Safety Part 1 : General Requirements.
- d) IEC 60950-1, The International Electrotechnical Commission (IEC).
 Information Technology Equipment Safety Part 1 : General Requirements.

7-2. Environment

a) RoHS, Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

Α	В	С	D	Е	F	G	Н	I	J	К	L	М
---	---	---	---	---	---	---	---	---	---	---	---	---

A,B,C: SIZE(INCH) D: YEAR

E: MONTH $F \sim M$: SERIAL NO.

Note

1. YEAR

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Mark	Α	В	С	D	Е	F	G	Н	J	K

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

1) Package quantity in one box: 8-LCMs (1 Module is packed in 1 AL Bag)

b) Box Size: 840(L) X 365(W) X 525(H)

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.
- (10) As The IPS panel is sensitive & slim, please recommend the metal frame of the system supports the panel by the double side-mount.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200$ mV(Over and under shoot voltage)
- (2) Response time depends on the temperature. (In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In Higher temperature, it becomes lower.)

 And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw. (if not, it causes metallic foreign material and deal LCM a fatal blow)
- (9) Please do not set LCD on its edge.
- (10) When LCMs are used for public display defects such as Yogore, image sticking can not be guarantee.
- (11) LCMs cannot support "Interlaced Scan Method"

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.