Security reduction of FO transform and variations

Ganyu (Bruce) Xu

University of Waterloo

April, 2024

Inputs:

- ▶ Public-key encryption scheme: (KeyGen, E^{asym}, D^{asym})
- ► Symmetric cipher (E^{sym}, D^{sym})
- ▶ Key-derivation function 1 $G: \{0,1\}^* \to \mathcal{K}^{\mathsf{sym}}$
- ▶ Hash function $H: \{0,1\}^* \to \mathsf{Coin}^{\mathsf{asym}}$

Hybrid scheme's key generation is identical to the PKE's

¹This is also a hash function and follows the random oracle assumption

FO 1999 routines

Algorithm 1: E^{hy}

```
Input: \mathsf{pk}^{\mathsf{hy}}, m \in \mathcal{M}^{\mathsf{sym}}
Output: (e \in \mathcal{C}^{\mathsf{asym}}, c \in \mathcal{C}^{\mathsf{sym}})
\sigma \overset{\$}{\leftarrow} \mathcal{M}^{\mathsf{asym}};
a \leftarrow G(\sigma), c \leftarrow E_a^{\mathsf{sym}}(m);
// PKE encryption accepts r
as a seed
r \leftarrow H(c, \sigma), e \leftarrow E^{\mathsf{asym}}(\mathsf{pk}, \sigma, r);
return (e, c);
```

Algorithm 2: Dhy

```
Input: pk, sk, (e, c)
\hat{\sigma} \leftarrow D^{asym}(sk, e);
\hat{r} \leftarrow H(c, \hat{\sigma});
\hat{c} \leftarrow E^{asym}(pk, \hat{\sigma}, \hat{r});
if \hat{c} \neq c then
| \text{ return } \bot;
end
\hat{a} \leftarrow G(\sigma);
\hat{m} \leftarrow D^{sym}_{\hat{a}}(c);
return \hat{m};
```

Security result

Under the random oracle assumption, for every IND-CCA adversary against the hybrid scheme with advantage $\epsilon_{\rm IND-CCA}^{\rm hy}$, there exists an OW-CPA adversary against the underlying PKE with advantage $\epsilon_{\rm OW-CPA}^{\rm asym}$ and an IND-CPA adversary against the underlying symmetric ciphert with advantage $\epsilon_{\rm IND-CPA}^{\rm sym}$ such that

$$\epsilon_{\mathsf{IND-CCA}}^{\mathsf{hy}} \leq q_{D} 2^{-\gamma} + q_{H} \epsilon_{\mathsf{OW-CPA}}^{\mathsf{asym}} + \epsilon_{\mathsf{IND-CPA}}^{\mathsf{sym}}$$

Proof overview:

- lacktriangle Use ${\cal A}^{
 m asym}_{
 m OW-CPA}$ and ${\cal A}^{
 m sym}_{
 m IND-CPA}$ to simulate the IND-CCA game
- Simulate decryption oracle without using secret key

To simulate $\mathcal{O}^D(e,c)$ without secret key:

Algorithm 3: Hybrid encryption E^{hy}

```
Input: \mathsf{pk}^{\mathsf{hy}}, m \in \mathcal{M}^{\mathsf{sym}}

Output: (e \in \mathcal{C}^{\mathsf{asym}}, c \in \mathcal{C}^{\mathsf{sym}})

\sigma \overset{\$}{\leftarrow} \mathcal{M}^{\mathsf{asym}};

a \leftarrow G(\sigma), c \leftarrow E_a^{\mathsf{sym}}(m);

// PKE encryption accepts r as a seed r \leftarrow H(c, \sigma), e \leftarrow E^{\mathsf{asym}}(\mathsf{pk}, \sigma, r);

return (e, c);
```

Decryption oracle without secret key

```
Algorithm 4: \mathcal{O}_1^D: decryption oracle without sk
Input: The query (\tilde{e}, \tilde{c})
foreach (\sigma, c, r) in H's tape do
     if c = \tilde{c} then
        a \leftarrow G(\sigma); \\ m \leftarrow D_a^{\mathsf{sym}}(\tilde{c});
          return m;
     end
end
return ⊥;
```

Challenge encryption with truly random key/coin

Algorithm 5: Challenge encryption E_*^{hy}

```
Input: \mathsf{pk}^\mathsf{hy}, m \in \mathcal{M}^\mathsf{sym}
Output: (e \in \mathcal{C}^\mathsf{asym}, c \in \mathcal{C}^\mathsf{sym})
\sigma \overset{\$}{\leftarrow} \mathcal{M}^\mathsf{asym};
a \overset{\$}{\leftarrow} \mathcal{K}^\mathsf{sym}, c \leftarrow E_a^\mathsf{sym}(m);
// PKE encryption accepts r as a seed r \overset{\$}{\leftarrow} \mathsf{Coin}, e \leftarrow E^\mathsf{asym}(\mathsf{pk}, \sigma, r);
return (e, c);
```

Game 0: IND-CCA game

Algorithm 6: Vanilla IND-CCA game

```
 \begin{aligned} & (\mathsf{pk},\mathsf{sk}) \overset{\$}{\leftarrow} \mathsf{KeyGen}(); \\ & (m_0,m_1) \overset{\$}{\leftarrow} \mathcal{A}_{\mathsf{IND-CCA}}^{\mathsf{hy}}(\mathsf{pk},\mathcal{O}^D); \\ & b \overset{\$}{\leftarrow} \{0,1\}; \\ & c^* \leftarrow E^{\mathsf{hy}}(\mathsf{pk},m_b); \\ & \hat{b} \overset{\$}{\leftarrow} \mathcal{A}_{\mathsf{IND-CCA}}^{\mathsf{hy}}(\mathsf{pk},\mathcal{O}^D,c^*); \\ & \mathsf{Adversary wins if } \hat{b} = b; \end{aligned}
```

Game 1: modify the decryption oracle

Algorithm 7: Game 1

```
(pk, sk) \stackrel{\$}{\leftarrow} KeyGen();
(m_0, m_1) \stackrel{\$}{\leftarrow} \mathcal{A}_{IND-CCA}^{hy}(pk, \mathcal{O}_1^D);
b \stackrel{\$}{\leftarrow} \{0, 1\};
c^* \leftarrow E^{hy}(pk, m_b);
\hat{b} \stackrel{\$}{\leftarrow} \mathcal{A}_{IND-CCA}^{hy}(pk, \mathcal{O}_1^D, c^*);
Adversary wins if \hat{b} = b:
```

Loss of security when \mathcal{A} queries \mathcal{O}^D with valid ciphertexts built without querying H at least once

$$\epsilon_0 - \epsilon_1 \le q_D 2^{-\gamma}$$

Game 2: use true randomness in challenge encryption

Algorithm 8: Game 2

```
 \begin{array}{l} (\mathsf{pk},\mathsf{sk}) \overset{\$}{\leftarrow} \mathsf{KeyGen}(); \\ (m_0,m_1) \overset{\$}{\leftarrow} \mathcal{A}^{\mathsf{hy}}_{\mathsf{IND-CCA}}(\mathsf{pk},\mathcal{O}^D_1); \\ b \overset{\$}{\leftarrow} \{0,1\}; \\ c^* \leftarrow \mathcal{E}^{\mathsf{hy}}_*(\mathsf{pk},m_b); \\ \hat{b} \overset{\$}{\leftarrow} \mathcal{A}^{\mathsf{hy}}_{\mathsf{IND-CCA}}(\mathsf{pk},\mathcal{O}^D_1,c^*); \\ \mathsf{Adversary wins if } \hat{b} = b; \end{array}
```

Loss of security when ${\mathcal A}$ queries either ${\mathcal G}$ or ${\mathcal H}$ with σ^*

$$\epsilon_1 - \epsilon_2 \le P[\mathsf{QUERY}^*]$$

Simulate game 2 with IND-CPA adversary

Algorithm 9: Symmetric cipher IND-CPA game $(E^{\text{sym}}, D^{\text{sym}})$

```
a^* \stackrel{\$}{\leftarrow} \mathcal{K}^{\text{sym}}
(pk, sk) \stackrel{\$}{\leftarrow} KevGen^{hy}();
(m_0, m_1) \stackrel{\$}{\leftarrow} \mathcal{A}_{\text{IND}}^{\text{hy}} CCA}(\text{pk}, \mathcal{O}_1^D);
b \stackrel{\$}{\leftarrow} \{0, 1\}:
c^* \leftarrow E_{2^*}^{\text{sym}}(m_b);
\sigma^* \stackrel{\$}{\leftarrow} \mathcal{M}^{\mathsf{asym}} \cdot r^* \stackrel{\$}{\leftarrow} \mathsf{Coin} :
e^* \leftarrow E^{\mathsf{asym}}(\mathsf{pk}, \sigma^*, r^*);
\hat{b} \stackrel{\$}{\leftarrow} \mathcal{A}_{\text{IND, CCA}}^{\text{hy}}(\text{pk}, \mathcal{O}_1^D, (e^*, c^*));
\mathcal{A}_{\mathsf{IND-CPA}}^{\mathsf{sym}} wins if \hat{b} = b
```

 $\mathcal{A}_{\mathsf{IND-CPA}}^{\mathsf{sym}}$ perfectly simulates game 2 and wins iff $\mathcal{A}_{\mathsf{IND-CCA}}^{\mathsf{hy}}$ wins

$$\epsilon_2 = \epsilon_{\mathsf{IND-CPA}}^{\mathsf{sym}}$$

Simulate game 2 with OW-CPA adversary

Algorithm 10: OW-CPA game against (E^{asym}, D^{asym})

```
\begin{split} &(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{KeyGen^{asym}}(); \\ &\sigma^* \stackrel{\$}{\leftarrow} \mathcal{M}^{asym}; \ e^* \stackrel{\$}{\leftarrow} E^{asym}(\mathsf{pk},\sigma^*) \ / / \ \text{truly random coin}; \\ &(m_0,m_1) \stackrel{\$}{\leftarrow} \mathcal{A}^{\mathsf{hy}}_{\mathsf{IND-CCA}}(\mathsf{pk},\mathcal{O}^D_1); \\ &a^* \stackrel{\$}{\leftarrow} \mathcal{K}^{\mathsf{sym}}; \ b \stackrel{\$}{\leftarrow} \{0,1\}; \ c^* \leftarrow E^{\mathsf{sym}}_{a^*}(m_b); \\ &\mathcal{A}^{\mathsf{hy}}_{\mathsf{IND-CCA}}(\mathsf{pk},\mathcal{O}^D_1,(e^*,c^*)) \ / / \ \text{discard the output}; \\ &\mathsf{Sample a random} \ \sigma \ \mathsf{from the tape of} \ H \ \mathsf{or} \ G; \\ &\mathcal{A}^{\mathsf{asym}}_{\mathsf{OW-CPA}} \ \mathsf{wins if} \ \sigma = \sigma^* \end{split}
```

 $\mathcal{A}_{\text{OW-CPA}}^{\text{asym}}$ wins if $\mathcal{A}_{\text{IND-CCA}}^{\text{hy}}$ queried on σ^* (aka QUERY*) and the randomly chosen σ is the correct one:

$$\epsilon_{\mathsf{OW}\text{-}\mathsf{CPA}}^{\mathsf{asym}} = P[\mathsf{QUERY}^*] \cdot \frac{1}{q_H}$$

FO 1999, recap

$$\epsilon_{\mathsf{IND-CCA}}^{\mathsf{hy}} \leq q_{D} 2^{-\gamma} + \textcolor{red}{q_{H}} \epsilon_{\mathsf{OW-CPA}}^{\mathsf{asym}} + \epsilon_{\mathsf{IND-CPA}}^{\mathsf{sym}}$$

- ► But it's not a KEM?
- ► Non-tight security

Hofheinz, Hovelmanns, Kiltz, 2017

"A modular analysis of the Fujisaki-Okamoto transformation"

- ► Tighter security
- ► No need for SKE
- ► IND-CCA KEM
- Used by Kyber and McEliece

Modularity

The transformation happens in two steps

- 1. OW-CPA/IND-CPA PKE to OW-PCVA PKE
- 2. OW-PCVA PKE to IND-CCA KEM

What is PCVA?

In addition to CPA, the adversary can access two more oracles:

- ▶ Plaintext checking oracle (PCO) takes a pair of (m, c) and check if they are valid encryption/decryption of each other
- ► Ciphertext validation oracle (CVO) takes a ciphertext *c* and checks if it is a valid ciphertext

Vanilla PCO, CVO

The vanilla implementations use the secret key to run the decryption routine

```
Algorithm 11: \mathcal{O}^{CVO}
Input: \tilde{c}
\hat{m} \leftarrow D(\mathsf{sk}, c);
if \hat{m} = \bot then
     return ⊥;
end
if E(pk, \hat{m}) \neq \tilde{c} then
     return ⊥:
end
return 1;
```

```
Algorithm 12: \mathcal{O}^{\mathsf{PCO}}
Input: (\tilde{m}, \tilde{c})
if D(sk, \tilde{c}) \neq \tilde{m} then
\mid \text{ return } \bot;
end
if E(pk, \tilde{m}) \neq \tilde{c} then
\mid \text{ return } \bot;
end
return \bot;
```

The OW-PCVA transformation (E^T, D^T)

Inputs:

- ► A PKE (*E*, *D*)
- ► A hash function *G*

Algorithm 13: E^T

```
Input: pk, m

r \leftarrow G(m);

c \leftarrow E(pk, m, r);

return c;
```

Algorithm 14: D^T

```
Input: sk, pk, c
\hat{m} \leftarrow D(\text{sk}, c);
\hat{r} \leftarrow G(\hat{m});
if E(pk, \hat{m}, \hat{r}) \neq c then
\mid \text{ return } \bot;
end
return \hat{m};
```

OW-PCVA security of (E^T, D^T)

Theorem

For every OW-PCVA adversary against the T-transformation (E^T, D^T) with advantage $\epsilon_{\text{OW-PCVA}}^T$ there exists an IND-CPA adversary against the underlying PKE (E, D) with advantage $\epsilon_{\text{IND-CPA}}$ such that

$$\epsilon_{\mathsf{OW-PCVA}}^{T} \leq q_V 2^{-\gamma} + q_H \delta + \frac{1}{|\mathcal{M}|} + 3\epsilon_{\mathsf{IND-CPA}}$$

OW-PCVA proof overview

Similar strategy to the FO 1999 proof:

- Modify PCO and CVO so that they don't use secret key
- Simulate OW-PCVA game using an IND-CPA adversary

Modified PCO

Instead of checking both encryption and decryption, check only encryption

```
Algorithm 15: \mathcal{O}^{\mathsf{PCO}}
Input: (\tilde{m}, \tilde{c})
if E(pk, \tilde{m}) \neq \tilde{c} then

| return \perp;
end
if D(sk, \tilde{c}) \neq \tilde{m} then

| return \perp;
end
return \perp;
```

```
Algorithm 16: \mathcal{O}_1^{\mathsf{PCO}}
Input: (\tilde{m}, \tilde{c})
if E(pk, \tilde{m}) \neq \tilde{c} then

| return \bot;
end
return 1;
```

Modified CVO

Instead of running the decryption routine, check the hash oracle G

```
Algorithm 17: \mathcal{O}^{\text{CVO}}
Input: \tilde{c}
\hat{m} \leftarrow D(sk, \tilde{c});
if \hat{m} = \bot then
      return \perp;
end
if E(pk, \hat{m}) \neq \tilde{c} then
      return \perp;
end
return 1;
```

```
Algorithm 18: \mathcal{O}_1^{\text{CVO}}
Input: \tilde{c}
if \exists (m,r) \in G \text{ s.t. } E(pk,m) = \tilde{c} \text{ then } | \text{return } 1;
end
return \bot
```

Game 0: OW-PCVA game

Algorithm 19: Game 0

```
 \begin{aligned} & (\mathsf{pk},\mathsf{sk}) \overset{\$}{\leftarrow} \mathsf{KeyGen}(); \\ & m^* \overset{\$}{\leftarrow} \mathcal{M}; \ c^* \leftarrow E^T(\mathsf{pk},m^*); \\ & \hat{m} \leftarrow \mathcal{A}_{\mathsf{OW-PCVA}}^\mathsf{T}(\mathsf{pk},c^*,\mathcal{O}^{\mathsf{PCO}},\mathcal{O}^{\mathsf{CVO}}); \\ & \mathcal{A}_{\mathsf{OW-PCVA}}^\mathsf{T} \ \text{wins if} \ \hat{m} = m^* \end{aligned}
```

Game 1: modify the PCO

Algorithm 20: Game 0

```
 \begin{aligned} & (\mathsf{pk},\mathsf{sk}) \overset{\$}{\leftarrow} \mathsf{KeyGen}(); \\ & m^* \overset{\$}{\leftarrow} \mathcal{M}; \ c^* \leftarrow E^T(\mathsf{pk},m^*); \\ & \hat{m} \leftarrow \mathcal{A}_{\mathsf{OW-PCVA}}^\mathsf{T}(\mathsf{pk},c^*, \underset{1}{\mathcal{O}_{\mathsf{1}}^{\mathsf{PCO}}}, \mathcal{O}^{\mathsf{CVO}}); \\ & \mathcal{A}_{\mathsf{OW-PCVA}}^\mathsf{T} \ \text{wins if} \ \hat{m} = m^* \end{aligned}
```

Remark

Loss of tightness when decryption error ² happens:

$$\epsilon_0 - \epsilon_1 \le q_G \delta$$

²A PKE is δ-correct if for some fixed keypair and a randomly sampled m, $P[D(\mathsf{sk}, E(\mathsf{pk}, m)) \neq m] \leq \delta$

Game 2: modify the CVO

Algorithm 21: Game 0

```
\begin{split} & (\mathsf{pk},\mathsf{sk}) \overset{\$}{\leftarrow} \mathsf{KeyGen}(); \\ & m^* \overset{\$}{\leftarrow} \mathcal{M}; \ c^* \leftarrow E^T(\mathsf{pk},m^*); \\ & \hat{m} \leftarrow \mathcal{A}_{\mathsf{OW-PCVA}}^\mathsf{T}(\mathsf{pk},c^*,\mathcal{O}_1^{\mathsf{PCO}},\mathcal{O}_1^{\mathsf{CVO}}); \\ & \mathcal{A}_{\mathsf{OW-PCVA}}^T \text{ wins if } \hat{m} = m^* \end{split}
```

Remark

Loss of tightness when ${\mathcal A}$ queried some \widetilde{c} without querying G

$$\epsilon_1 - \epsilon_2 \le q_V 2^{-\gamma}$$

Game 3: use a truly random coin

Algorithm 22: Game 0

```
(pk, sk) \stackrel{\$}{\leftarrow} KeyGen();

m^* \stackrel{\$}{\leftarrow} \mathcal{M}; r^* \stackrel{\$}{\leftarrow} \text{Coin}; c^* \leftarrow E(\text{pk}, m^*, r^*);

\hat{m} \leftarrow \mathcal{A}_{\text{OW-PCVA}}^{\text{T}}(\text{pk}, c^*, \mathcal{O}_1^{\text{PCO}}, \mathcal{O}_1^{\text{CVO}});

\mathcal{A}_{\text{OW-CPA}} wins if \hat{m} = m^*
```

Remark

Loss of tightness when $\mathcal A$ queries $\mathcal G$ on m^*

$$\epsilon_2 - \epsilon_3 \le P[\mathsf{QUERY}^*]$$

Simulate game 3 with OW-CPA adversary

Game 3 can be perfectly simulated by an OW-CPA adversary against the underlying PKE (E, D):

$$\epsilon_3 = \epsilon_{\text{OW-CPA}}$$

The OW-CPA advantage can be directly translated into IND-CPA advantage with the following "well-known results":

Theorem

For every IND-CPA adversary with advantage $\epsilon_{\text{IND-CPA}}$ there exists an OW-CPA adversary with advantage $\epsilon_{\text{OW-CPA}}$ such that

$$\epsilon_{\mathsf{OW} ext{-}\mathsf{CPA}} = rac{1}{|\mathcal{M}|} + \epsilon_{\mathsf{IND} ext{-}\mathsf{CPA}}$$

Simulate game 3 with IND-CPA adversary

We can build $\mathcal{A}_{\mathsf{IND-CPA}}$ that:

- ightharpoonup Sample random m_0, m_1
- \triangleright Check the hash function tape for matching m_b

Algorithm 23: IND-CPA game against (E, D)

```
\begin{split} &(\mathsf{pk},\mathsf{sk}) \overset{\$}{\leftarrow} \mathsf{KeyGen}(); \\ &(m_0,m_1) \overset{\$}{\sim} \mathcal{M}^a; \\ &b \overset{\$}{\leftarrow} \{0,1\}; \ c^* = E(\mathsf{pk},m_b); \\ &\hat{m} \leftarrow \mathcal{A}_{\mathsf{OW-PCVA}}^T(\mathsf{pk},c^*,\mathcal{O}_1^{\mathsf{PCO}},\mathcal{O}_1^{\mathsf{CVO}}); \\ &\hat{b} \leftarrow \mathsf{CheckTape}(); \\ &\mathcal{A}_{\mathsf{IND-CPA}} \ \mathsf{wins} \ \mathsf{if} \ \hat{b} = b; \end{split}
```

 $^{^{}a}$ We omit nuance about sampling m_{0}, m_{1} randomly while making sure that they are distinct

CheckTape()

If $\exists (m,r) \in G$ such that $m=m_0$ or $m=m_1$, then set $\hat{b}=0$ or $\hat{b}=1$ accordingly.

If no such record exists, return a blind guess $\hat{b} \xleftarrow{\$} \{0,1\}$

$$P[\hat{b} = b] = P[\mathsf{QUERY}^*] + (1 - P[\mathsf{QUERY}^*])\frac{1}{2}$$

Which implies

$$\epsilon_{\mathsf{IND-CPA}} = \frac{1}{2}P[\mathsf{QUERY}^*]$$

IND-CCA KEM

	explicit rejection	implicit rejection
PKE is IND-CPA	U^{\perp}	U [⊥]
PKE is OW-CPA	U_m^{\perp}	$U_m^{\underline{\gamma}}$

Table: KEM transformations

U^{\perp} implementation

H is another hash function

Algorithm 24: U^{\perp} Encap Input: pk $m \stackrel{\$}{\leftarrow} \mathcal{M};$ $c \leftarrow E^{T}(\text{pk}, m);$ $K \leftarrow H(m, c);$ return (c, K);

```
Algorithm 25: U^{\perp} Decap
Input: sk, c
Output: Shared secret
m \leftarrow D^{T}(sk, c);
if m = \bot then
\mid return \bot;
end
return H(m, c);
```

U^{\perp} security

For every IND-CCA adversary against U^{\perp} with advantage $\epsilon_{\text{IND-CCA}}^{U^{\perp}}$, there exists an OW-PCVA adversary against (E^T, D^T) with advantage $\epsilon_{\text{OW-PCVA}}^T$ such that

$$\epsilon_{\mathsf{IND-CCA}}^{U^{\perp}} \leq \epsilon_{\mathsf{OW-PCVA}}^{T}$$

Simulate decapsulation oracle

Goal

If the query \tilde{c} is a valid ciphertext that decrypts to \tilde{m} , \mathcal{O}^D should return $H(\tilde{m}, \tilde{c})$

Strategy

- ▶ Make both H and \mathcal{O}^D stateful
- Use PCO and CVO to "decrypt" and check integrity

Patched hash and decap oracle

 \mathcal{O}_1^D keeps track of past queries (\tilde{c},\tilde{K})

```
Algorithm 26: H<sub>1</sub>
Input: (\tilde{m}, \tilde{c})
if \exists (\tilde{m}, \tilde{c}, K) \in H_1 then
       return \tilde{K}:
end
\tilde{K} \stackrel{\$}{\leftarrow} \{0,1\}^*;
if \mathcal{O}^{PCO}(\tilde{m},\tilde{c}) \neq \bot then
      Append (\tilde{c}, \tilde{K}) to \mathcal{O}^D
end
return \tilde{K}:
```

```
Algorithm 27: \mathcal{O}_1^D
Input: \tilde{c}
if (\tilde{c}, \tilde{K}) \in \mathcal{O}_1^D then
       return \tilde{K}:
end
if \mathcal{O}^{CVO}(\tilde{c}) = \bot then
       return \perp;
end
\tilde{K} \stackrel{\$}{\leftarrow} \{0,1\}^*;
Append (\tilde{c}, \tilde{K}) to \mathcal{O}^D;
return \tilde{K}:
```

Patched oracles behave exactly like their vanilla counterparts

Game 0: KEM IND-CCA

Algorithm 28: Game 0: KEM IND-CCA

```
 \begin{aligned} & (\mathsf{pk},\mathsf{sk}) \overset{\$}{\leftarrow} \mathsf{KeyGen}(); \\ & (c^*, K_0) \overset{\$}{\leftarrow} E^{U^{\perp}}(\mathsf{pk}); \ K_1 \overset{\$}{\leftarrow} \{0, 1\}^*; \\ & b \overset{\$}{\leftarrow} \{0, 1\}; \ K^* \leftarrow K_b; \\ & \hat{b} \overset{\$}{\leftarrow} \mathcal{A}_{\mathsf{IND-CCA}}^{U^{\perp}}(\mathsf{pk}, c^*, K^*, \mathcal{O}^D, H); \\ & \mathcal{A}_{\mathsf{IND-CCA}}^{U^{\perp}} \ \mathsf{wins} \ \mathsf{if} \ \hat{b} = b \end{aligned}
```

Game 1: Use patched oracles

Algorithm 29: Game 1: with patched oracles

```
 \begin{aligned} & (\mathsf{pk},\mathsf{sk}) \overset{\$}{\leftarrow} \mathsf{KeyGen}(); \\ & (c^*, \mathcal{K}_0) \overset{\$}{\leftarrow} E^{U^{\perp}}(\mathsf{pk}); \ \mathcal{K}_1 \overset{\$}{\leftarrow} \{0,1\}^*; \\ & b \overset{\$}{\leftarrow} \{0,1\}; \ \mathcal{K}^* \leftarrow \mathcal{K}_b; \\ & \hat{b} \overset{\$}{\leftarrow} \mathcal{A}_{\mathsf{IND-CCA}}^{U^{\perp}}(\mathsf{pk}, c^*, \mathcal{K}^*, \mathcal{O}_1^D, \mathcal{H}_1); \\ & \mathcal{A}_{\mathsf{IND-CCA}}^{U^{\perp}} \ \mathsf{wins} \ \text{if} \ \hat{b} = b \end{aligned}
```

Remark

There is no difference between game 0 and game 1

$$\epsilon_0 = \epsilon_1$$

Game 2: Use truly random K^*

Algorithm 30: Game 2: unwinnable game

```
 \begin{aligned} &(\mathsf{pk},\mathsf{sk}) \overset{\$}{\leftarrow} \mathsf{KeyGen}(); \\ &(c^*, K_0) \overset{\$}{\leftarrow} E^{U^{\perp}}(\mathsf{pk}); \\ &K^* \overset{\$}{\leftarrow} \{0, 1\}^*; \\ &b \overset{\$}{\leftarrow} \{0, 1\}; \\ &\hat{b} \overset{\$}{\leftarrow} \mathcal{A}_{\mathsf{IND-CCA}}^{U^{\perp}}(\mathsf{pk}, c^*, K^*, \mathcal{O}_1^D, \mathcal{H}_1); \\ &\mathcal{A}_{\mathsf{IND-CCA}}^{U^{\perp}} \text{ wins if } \hat{b} = b \end{aligned}
```

Remark

Game 2 and game 1 diverge when $\mathcal{A}_{\mathsf{IND-CCA}}$ queries H on (m^*, c^*)

$$\epsilon_1 - \epsilon_2 \le P[\mathsf{QUERY}^*]$$

Also, game 2 is unwinnable: $\epsilon_2 = 0$

Simulate game 2 with OW-PCVA adversary

Algorithm 31: OW-PCVA game

```
\begin{split} &(\mathsf{pk},\mathsf{sk}) \overset{\$}{\leftarrow} \mathsf{KeyGen}(); \\ &m^* \overset{\$}{\leftarrow} \mathcal{M}; \ c^* \leftarrow E^T(\mathsf{pk},m^*); \\ &K^* \overset{\$}{\leftarrow} \{0,1\}^*; \\ &\hat{b} \leftarrow \mathcal{A}_{\mathsf{IND-CCA}}^{U^{\perp}}(\mathsf{pk},c^*,K^*,\mathcal{O}_1^D,\mathcal{H}_1); \\ &\hat{m} \leftarrow \mathsf{CheckTape}(); \\ &\mathcal{A}_{\mathsf{OW-PCVA}}^T \ \mathsf{wins} \ \mathsf{if} \ \hat{m} = m^* \end{split}
```

Remark

 $\mathcal{A}_{\mathsf{OW-PCVA}}^{\mathsf{T}}$ wins if $\mathcal{A}_{\mathsf{IND-CCA}}^{\mathsf{U}^\perp}$ queries on m^*

$$P[QUERY^*] = \epsilon_{OW-PCVA}^T$$