PART 4

1. NO PATH

3.

PART 5

Priority Queue		Binary Heap	
SIZE	TIME	SIZE	TIME
100	0.001673	100	0.008945
100	0.003256	100	0.004461
100	0.003418	100	0.010407
100	0.003341	100	0.009097
100	0.001593	100	0.015003
AVERAGE	0.0026562	AVERAGE	0.0095826
DIFFERENCE	PQ is 0.277x faster (0.00692 seconds)		
Priority Queue		Binary Heap	
SIZE	TIME	SIZE	TIME
1000	0.120491	1000	0.041702
1000	0.128539	1000	0.042485

1000	0.129306	1000	0.048553	
1000	0.10106	1000	0.034864	
1000	0.114837	1000	0.03375	
AVERAGE	0.1188466	AVERAGE	0.0402708	
DIFFERENCE	BinHeap is 2.95x faster (.07857 seconds)			
Priority	Priority Queue		ary Heap	
SIZE	TIME	SIZE	TIME	
10000	9.97225	10000	0.527928	
10000	10.409571	10000	0.585677	
10000	9.73637	10000	0.594184	
10000	10.106268	10000	0.534486	
10000	8.994015	10000	0.523188	
AVERAGE	9.8436948	AVERAGE	0.5530926	
DIFFERENCE	BinHeap is 17.79x faster (9.2906 seconds)			
Priority	Priority Queue		Binary Heap	
SIZE	TIME	SIZE	TIME	
100000	1568.46985	100000	7.10398	
100000	1505.0307	100000	7.007127	
100000	1513.728572	100000	8.522945	
100000	1339.595443	100000	7.654832	
100000	1393.932858	100000	7.610557	
AVERAGE	1464.151485	AVERAGE	7.5798882	
DIFFERENCE BinHeap is 193.1626755x faster (1456.57 seconds)				

Binary Heap				
SIZE	TIME			
1000000	60.32			
1000000	56.476671			
1000000	57.425179			
1000000	56.925			
1000000	59.38257			
AVERAGE	58.105884			

PRIORITY QUEUE

BINARY HEAP

Priority Queu	AVG. Time	
100	NA~	0.0026562
1000	44.7X longer	0.1188466
10000	82.826x longer	9.843694
100000	148.74x longer	1464.151485
1000000	~275x longer	402641.6584

apprx(148.74)).

ESTIMATE FOR P. Queue on 1,000,000 nodes:402,641 seconds

I got this by calculating how much longer it takes to compute the next power of 10. For example to compute 10^2 it takes .0026562 seconds. To calculate 10^3 , it takes .1188466 seconds, which takes 44.7x longer to compute. As displayed in the data above, for every power of 10 increase, the time factor it takes to calculate approximately doubles. I.e (44.7 * 2 =apprx(82.826), 82.826 * 2 =

Because the factor increase appears to be slightly less than 2, I did not approximate 1 million nodes at 296x longer. I made an estimate of where it would more likely be closer to.