Etapa 2 – Arquitetura e Modelagem

Projeto: Sistema Embarcado de Identificação de Módulos Roubados via CAN

Autor: Arthur Franco Neto

2.1 Arquitetura do Sistema

O sistema será desenvolvido na plataforma **BitDogLab** (**Raspberry Pi Pico W**), integrando:

- MCP2515 (com transceiver CAN) para comunicação com o barramento CAN via SPI.
- **Display OLED 128x64** para interface visual.
- **LED RGB** para indicação de status.
- **Botões** para seleção de modos e interação.
- Buzzer para alertas sonoros.
- Bluetooth para interação com aplicativo móvel (App Inventor).
- Wi-Fi para sincronização com servidor remoto.

Dois modos operacionais serão implementados:

- Modo 1 Verificação Direta: consulta módulos no CAN e compara Identificações com whitelist.
- 2. **Modo 2 Verificação por VIN:** recebe VIN, obtém lista esperada de módulos e verifica se IDs obtidos correspondem.

Pinagem e Conexões

Componente / Função	Pinos GPIO Pico W	Interface
MCP2515 (CAN)	16 (SPIO_MISO)	SPI0
	17 (SPIO_CS)	
	18 (SPI0_SCK)	
	19 (SPI0_MOSI)	
	20 (RESET/INT)	Controle
Display OLED 128x64	14 (I ² C0_SDA)	I ² C0
	15 (I ² C0_SCL)	
Botão 1	5	Digital IN
Botão 2	6	Digital IN
Buzzer	10	PWM / OUT
LED RGB	11 (R)	PWM / OUT
	12 (G)	PWM / OUT
	13 (B)	PWM / OUT
Wi-Fi	Interno no Pico W	802.11b/g/n

2.3 Diagrama de Hardware

2.4 Blocos Funcionais

Aquisição de Dados CAN

 Responsabilidade: Receber informações dos módulos conectados ao barramento CAN via MCP2515.

• Funções principais:

- Envio de comandos de leitura para módulos específicos.
- Recepção de respostas dos módulos.
- Detecção de erros de comunicação CAN (timeout, CRC, ausência de resposta).

Processamento e Validação

- Responsabilidade: Interpretar e validar os dados recebidos dos módulos.
- Funções principais:
 - Validação de dados (checksum, consistência).
 - Conversão de informações para formato legível.
 - Identificação de falhas ou módulos não respondendo.

Interface do Usuário

- **Responsabilidade:** Exibir informações e alertas ao usuário.
- Funções principais:
 - Display OLED 128x64: status dos módulos e mensagens de erro.
 - LED RGB: indicações visuais (verde: OK, amarelo: aviso, vermelho: falha).
 - Buzzer: alertas sonoros para erros críticos.
 - Botões: navegação entre módulos e atualização manual de dados.

Comunicação Externa via Wi-Fi

- **Responsabilidade:** Sincronizar dados com servidor remoto.
- Funções principais:
 - Envio periódico de informações dos módulos.
 - Recebimento de confirmações ou comandos do servidor.
 - Notificação de erros críticos via Wi-Fi.

Fluxograma de Software – Sistema de Monitoramento de Módulos via CAN Início

- Inicialização do sistema
 - Configuração do MCP2515 (CAN)
 - Inicialização do Wi-Fi
 - Inicialização do Display OLED, LED RGB e Buzzer
 - Configuração dos botões

1. Aquisição de Dados CAN

- Envia comando de leitura para módulo específico
 → Se envio falhar → registra erro de comunicação
- Recebe resposta do módulo
 - → Se timeout/erro → registra falha no módulo
- Repete para todos os módulos conectados

2. Processamento e Validação

- Converte dados para formato legível
- Atualiza status interno do módulo (OK / Aviso / Falha)

3. Interface do Usuário

- Atualiza Display OLED com status dos módulos
- Atualiza LED RGB:
 - Verde: Todos os módulos OK
 - Amarelo: Aviso em algum módulo
 - Vermelho: Falha crítica
- Emite Buzzer se houver erro crítico
- Lê botões:
 - Navegação entre módulos
 - Atualização manual de dados

4. Comunicação Externa via Wi-Fi

- · Envia dados coletados para servidor
- Recebe confirmações ou comandos

• Notifica erros críticos via Wi-Fi

