Def'n. A sequence X = (xn) is

a Cauchy sequence if

for all E>O, there exists a

number H(E) in N so that

if n, m > H(E), then

1xn-xm1 2 8

Even though the definition does not mention a limit x.

Still, the numbers Xn and Xm
get closer as n, m -> ou

Lemma. If a sequence approaches

a limit x, then the sequence
(xn) is Cauchy

Proof of Lemma. If x = lim (xn)

then given E>0, there is a

natural number K(E/2) such that

if $n \ge K(\xi/2)$, then $|x_n-x| \ge \frac{\xi}{2}$.

Thus, if $H(E) = K(E_{I2})$ and if

n, m > H(E), then we have

 $|x_n-x_m|=|(x_n-x)+(x-x_m)|$

 $\leq |x_n-x|+|x_m-x|<\frac{\xi}{2}+\frac{\xi}{2}=\xi.$

Since E>O is arbitrary,

it follows that (xn) is a

Cauchy sequence

Lemma. A Cauchy sequence is bounded.

Pf. Let X = (xn) be Cauchy, and set E= 1. If H = H(1),

sen if n 2 H, then

 $|x_n - x_H| < 1$. By the

Triangle Inequality, we have

1xn1 = [xk + (xn-xk)]

≤ |XK| + 1

If we set

 $M = \max \left\{ |x_{i1}, 1x_{21}, \dots | x_{K-1}, \frac{1}{K-1}, \frac{1}{K-1}, \frac{1}{K-1} \right\}$

then it follows that

Ixn1 & M, for all n.

Cauchy Convergence Thm.

A sequence X= (xn) is convergent if it is a Cauchy sequence.

We already showed that if

X is convergent, then it is

Cauchy. To prove the other direction, Suppose X is Cauchy.

We showed above that X is

therefore bounded. By the

Bolzano-Weierstrass theorem.

there exists a subsequence

 $X' = \{x_{n_k}\} \text{ of } X \text{ that}$

converges to a number x*.

We will show that lim xn = x*.

Since $X = (x_n)$ is a Couchy sequence, given $\xi > 0$, there is a natural number $H(\xi/2)$.

Juch that if $n, m \ge H(\xi/2)$, then $|x_n - x_m| < \xi$.

Since the subsequence

there is a natural number

 $K \ge H(\mathcal{E}_{/2})$ belonging to the set $\{n_1, n_2, ...\}$ such that

Since K & H(E/2), it follows

from () with m = K that

Therefore, if n > H(E/2),

we have

$$|x_{n}-x^{*}| = |(x_{n}-x_{K})+(x_{K}-x^{*})|$$

$$\leq |x_{n}-x_{K}|+|x_{K}-x^{*}|$$

$$\leq |x_{n}-x_{K}|+|x_{K}-x^{*}|$$

$$\leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}.$$

Since E > 0 is arbitrary, we obtain that $\lim_{n \to \infty} (x_n) = x^*$.

Ex. The polynomial equation $X^3 - 5x + 1 = 0 \quad \text{has a root}$ $\Lambda \quad \text{with } 0 < \Lambda < 1.$

We define an iteration

Procedure to define a

Sequence (x_n) that

approaches the root 11.

We define X, to be any number with 0 < X, 21.

and we define

$$X_n^3 - 5X_{n+1} + 1 = 0$$
,

or
$$X_{n+1} = \frac{1}{5}(X_n^3 + 1)$$
.

We can estimate | (xn+2 - xn+1)|

=
$$\frac{1}{5}(x_{n+1}^3+1)-\frac{1}{5}(x_n^3+1)$$

$$=\frac{1}{5} \left[x_{n+1}^3 - x_n^3 \right]$$

$$\leq \frac{3}{5} | \times_{n+1} - \times_n |$$

We're using the fact that

if $0 \le x_1 \le 1$, then x_n also

satisfies $0 \le x_n \le 1$ for

all n = 1, 2, ... (by induction)

Hence the sum with 3 terms is in [0,3].

The above sequence satisfies

$$|x_{n+1} - x_n| \le \frac{3}{5} |x_n - x_{n-1}|$$

$$\leq \left(\frac{3}{5}\right)^2 \left| x_{n-1} - x_{n-2} \right| \leq \dots$$

$$\leq \left(\frac{3}{5}\right)^{n-1} | x_2 - x_1 |$$
, for all $n \geq 1$.

The error difference shrinks

geometrically as no w

The sequence is called

a contractive sequence.

because

Thm. Every contractive sequence is a Cauchy sequence.

From 1 1 we obtain

More generally, we obtain

$$|X_m - X_m| \leq |X_m - X_{m-1}| + |X_{m-1} - X_{m_2}| +$$

$$\leq \left(C^{m-2} + C^{m-1} + ... + C^{n-1} \right) |x_2 - x_1|$$

$$= C^{n-1} \left(\frac{1-C^{m-n}}{1-C} \right) |x_2-x_{11}|$$

which shows (xn) is Cauchy.

We're using the formula

Back to the proof, we let

m -100, and we get

$$|x^*-x_n| \leq \frac{C^{n-1}}{1-C} |x_2-x_1|,$$