## Отчетполабораторнойработе№2 «Применение многослойной нейронной сети для аппроксимации функций»

| Студента Головкова группы <u>Б21-205</u> | <ul><li>Дата сдачи:_13.0</li></ul> | 4.2024   |  |
|------------------------------------------|------------------------------------|----------|--|
| Ведущий преподаватель:                   | оценка:                            | подпись: |  |
|                                          |                                    |          |  |

Вариант№\_6\_

*Цель работы* :изучение математической модели многослойной нейронной сети и решение с её помощью задачи аппроксимации функций.

## 1. Подготовка данных

| Аппроксимируемая функция | Число  | Число   | Диапазон изменения |
|--------------------------|--------|---------|--------------------|
|                          | входов | выходов | аргументов         |
| ln(x)*sin(20x)           | 1      | 1       | [0.1;3]            |

Формирование обучающей, валидационной и тестовой выборок:

|               | Обучающая | Валидационна<br>я | Тестовая | Всего |
|---------------|-----------|-------------------|----------|-------|
| %             | 60        | 30                | 10       | 100   |
| Объём выборки | 120       | 60                | 20       | 200   |

График аппроксимируемой функции:



Предобработка данных:

|               | Метод      | Параметры<br>метода | Формула расчёта           |
|---------------|------------|---------------------|---------------------------|
| Предобработка | Добавление | scale=0.05,         | $x+\xi_x\sim N(0,0.0025)$ |
| входов        | шума       | size=200            |                           |
| Предобработка | Добавление | scale=0.01,         | $y+\xi_y\sim N(0,0.0001)$ |
| выходов       | шума       | size=200            |                           |

## 2. Обучение и тестирование нейронной сети с одним скрытым слоем

Параметры архитектуры сети:

| Число<br>входов | Число<br>выходов | Число нейронов<br>в скрытом слое | Функция активации нейронов скрытого слоя | Функция<br>активации<br>выходного нейрона |
|-----------------|------------------|----------------------------------|------------------------------------------|-------------------------------------------|
| 1               | 1                | 256                              | ReLU                                     | Linear<br>y=h                             |

Схема нейронной сети:

```
Sequential(
(0):Linear(in_features=1,out_features=256,bias=True)
(1):ReLU()
(2):Linear(in_features=256,out_features=1,bias=True)
)
```

Параметры обучения:

| Метод обучения | Скорость<br>обученияα | Режим обучения | Функция потерь |
|----------------|-----------------------|----------------|----------------|
| GD             | 0.01                  | Stochastic     | Quadraticloss  |

| Метод инициализации сети: Xavierinitialization                           |
|--------------------------------------------------------------------------|
| Критерий обучения : $E(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \sigma)^2$ |
| Критерий останова:epoch=1000                                             |
|                                                                          |

Зависимость выхода y(x) сети от входа сети(изобразить три графика: до обучения, после обучения и график аппроксимируемой функции)



Зависимость выходов  $y_k(x)$  нейронов скрытого слоя от входа сети (изобразить на одном графике):



Зависимость ошибки сети  $E(\tau)$  на обучающей, валидационной и тестовой выборках от времени обучения:



Отметить на графике начало переобучения (если наблюдается)





Показатели качества обученной нейросетевой модели:

|                  | Обучающая | Валидационная | Тестовая |
|------------------|-----------|---------------|----------|
| Макс.абс. ошибка | 0.9553    | 1.0966        | 0.9020   |
| С.к.о. ошибки    | 0.1984    | 0.2621        | 0.2049   |
| RMSE             | 0.4454    | 0.5119        | 0.4527   |

Обученная нейросетевая модель *не обладает* способностью к генерализации данных. Для улучшения качества аппроксимации требуется использовать *сеть с большим числом слоев, увеличить размер выборкидо* 5000, изменить критерий останова.

## 3. Улучшение качества аппроксимации

Параметры архитектуры сети:

| Число<br>входов | Число<br>выходов | Число нейронов<br>в скрытом слое | Функция активации<br>нейронов скрытого | Функция<br>активации |
|-----------------|------------------|----------------------------------|----------------------------------------|----------------------|
| Бледев          | Бытедев          | 128 x128x                        | слоя                                   | выходного нейрона    |
|                 |                  | 128 x128x<br>128                 | tanhxtanhxtanh x<br>tanh x relu        | Linear<br>y=h        |

Параметры обучения:

| Метод обучения | Скорость<br>обученияα | Режим обучения | Функция потерь |
|----------------|-----------------------|----------------|----------------|
| GD             | 0.0001                | Stochastic     | Quadraticloss  |

Метод инициализации сети: \_\_\_\_\_Xavier initialization\_\_\_\_\_

Критерий останова: \_\_\_\_\_\_epoch=4200

|                      | 110F      | казатели качест | ва обученной |
|----------------------|-----------|-----------------|--------------|
| нейросетевой молели: | Обучающая | Валидационная   | Тестовая     |
| Макс.абс. ошибка     | 1.0264    | 0.7548          | 0.7473       |
| С.к.о. ошибок        | 0.0508    | 0.0499          | 0.0503       |
| RMSE                 | 0.2255    | 0.2235          | 0.2246       |

Выводы: Для аппроксимации данной функции потребовалось увеличить количество слоев до 5 и количество эпох обучениядо4200иувеличитьв25 раз выборку, так как иначе сама функция имеет слишком много изгибов на

малых расстояниях. Явно можно сделать вывод, что на таком результате можно не останавливаться, так как модель все еще способна обучать

(переобучение недостигнуто). Однако на базовой модели с 1 слоем было замечено переобучение модели на ~350 эпохе