

BLM3620 Digital Signal Processing

Dr. Ali Can KARACA

ackaraca@yildiz.edu.tr

Yıldız Technical University – Computer Engineering

Lecture #4 – Sampling and Aliasing

- Sampling
- Principal of Aliasing
- Spectrum of a Discrete-Time Signal
- Over-Sampling & Under-Sampling
- Stroboscopic effect

Course Materials

Important Materials:

- James H. McClellan, R. W. Schafer, M. A. Yoder, DSP First Second Edition, Pearson, 2015.
- Lizhe Tan, Jean Jiang, *Digital Signal Processing: Fundamentals and Applications*, Third Edition, Academic Press, 2019.

Auxilary Materials:

- Prof. Sarp Ertürk, Sayısal İşaret İşleme, Birsen Yayınevi.
- Prof. Nizamettin Aydin, DSP Lecture Notes.
- J. G. Proakis, D. K. Manolakis, *Digital Signal Processing Fourth Edition*, Peason, 2014.
- J. K. Perin, Digital Signal Processing, Lecture Notes, Standford University, 2018.

Syllabus

Week	Lectures
1	Introduction to DSP and MATLAB
2	Sinuzoids and Complex Exponentials
3	Spectrum Representation
4	Sampling and Aliasing
5	Discrete Time Signal Properties and Convolution
6	Convolution and FIR Filters
7	Frequency Response of FIR Filters
8	Midterm Exam
9	Discrete Time Fourier Transform and Properties
10	Discrete Fourier Transform and Properties
11	Fast Fourier Transform and Windowing
12	z- Transforms
13	FIR Filter Design and Applications
14	IIR Filter Design and Applications
15	Final Exam

For more details -> Bologna page: http://www.bologna.yildiz.edu.tr/index.php?r=course/view&id=5730&aid=3

Remember: Analog & Digital Systems

ANALOG/ELECTRONIC:

Circuits: resistors, capacitors, op-amps

- DIGITAL/MICROPROCESSOR
 - Convert x(t) to numbers stored in memory

Sampling of Analog Signals

SAMPLING PROCESS

- Convert x(t) to numbers x[n]
- "n" is an integer index; x[n] is a sequence of values
- Think of "n" as the storage address in memory
- UNIFORM SAMPLING at t = nT_s
 - IDEAL: $x[n] = x(nT_s)$

Sampling of Analog Signals

- SAMPLING RATE (f_s)
 - $f_s = 1/T_s$
 - NUMBER of SAMPLES PER SECOND
 - $T_s = 125$ microsec $\rightarrow f_s = 8000$ samples/sec
 - UNITS of f_s ARE HERTZ: 8000 Hz
- UNIFORM SAMPLING at $t = nT_s = n/f_s$
 - IDEAL: $x[n] = x(nT_s) = x(n/f_s)$

$$f = 100 Hz$$

$$f_s = 2 \text{ kHz}$$

$$f_s = 500$$
Hz

Sampling Theorem

- HOW OFTEN DO WE NEED TO SAMPLE?
 - DEPENDS on FREQUENCY of SINUSOID
 - ANSWERED by SHANNON/NYQUIST Theorem
 - ALSO DEPENDS on "RECONSTRUCTION"

Shannon Sampling Theorem

A continuous-time signal x(t) with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$, if the samples are taken at a rate $f_s = 1/T_s$ that is greater than $2f_{\text{max}}$.

Nyquist Rate

- "Nyquist Rate" Sampling
 - f_s > <u>TWICE</u> the HIGHEST Frequency in x(t)
 - "Sampling above the Nyquist rate"

BANDLIMITED SIGNALS

- DEF: HIGHEST FREQUENCY COMPONENT in SPECTRUM of x(t) is finite
- NON-BANDLIMITED EXAMPLE
 - TRIANGLE WAVE is NOT BANDLIMITED

Discrete-Time Sinusoid

 Change x(t) into x[n]
 DERIVATION $x(t) = A\cos(\omega t + \varphi)$ $x[n] = x(nT_s) = A\cos(\omega nT_s + \varphi)$ $x[n] = A\cos((\omega T_s)n + \varphi)$ $x[n] = A\cos(\hat{\omega}n + \varphi)$ $\hat{\omega} = \omega T_s = \frac{\omega}{f_s}$ Define digital frequency

$$\hat{\omega} = \omega T_s = \frac{\omega}{f_s}$$
 DEFINE DIGITAL FREQUENCY

New Notion: Digital Frequency!

- $\hat{\omega}$ VARIES from 0 to 2π , as f varies from 0 to the sampling frequency
- UNITS are radians, **not** rad/sec
 - DIGITAL FREQUENCY is NORMALIZED

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s}$$

Spectrum of Digital Signal

$$x[n] = A\cos(2\pi(100)(n/1000) + \varphi)$$

100-Hz Cosine Wave: Sampled with $T_s = 1$ msec (1000 Hz)

600

400

(a) Spectrum of the 100 Hz Cosine Wave

Magnitude Name

Spectrum of Digital Signal

$$x[n] = A\cos(2\pi(100)(n/100) + \varphi)$$

The Rest of the Story

- Spectrum of x[n] has more than one line for each complex exponential
 - Called <u>ALIASING</u>
 - MANY SPECTRAL LINES
- SPECTRUM is PERIODIC with period = 2π
 - Because

$$A\cos(\hat{\omega}n+\varphi) = A\cos((\hat{\omega}+2\pi\ell)n+\varphi)$$

Example for clarification

Other Frequencies give the same

$$\hat{\omega}$$

$$x_1(t) = \cos(400\pi t)$$
 sampled at $f_s = 1000$ Hz
 $x_1[n] = \cos(400\pi \frac{n}{1000}) = \cos(0.4\pi n)$
 $x_2(t) = \cos(2400\pi t)$ sampled at $f_s = 1000$ Hz
 $x_2[n] = \cos(2400\pi \frac{n}{1000}) = \cos(2.4\pi n)$
 $x_2[n] = \cos(2.4\pi n) = \cos(0.4\pi n + 2\pi n) = \cos(0.4\pi n)$
 $\Rightarrow x_2[n] = x_1[n]$ 2400 $\pi - 400\pi = 2\pi(1000)$

GIVEN x[n], we CAN'T KNOW whether it came from a sinusoid at f_o or $(f_o + f_s)$ or $(f_o + 2f_s)$...

Digital Frequency Repeats for each Every 2pi

Other Frequencies give the same

If
$$x(t) = A\cos(2\pi(f + \ell f_s)t + \varphi)$$

$$t \leftarrow \frac{n}{f_s}$$

and we want :
$$x[n] = A\cos(\hat{\omega}n + \varphi)$$

then:
$$\hat{\omega} = \frac{2\pi (f + \ell f_s)}{f_s} = \frac{2\pi f}{f_s} + \frac{2\pi \ell f_s}{f_s}$$

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$

Normalized Frequency

DIGITAL FREQ AGAIN

Normalized Radian Frequency

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$
 Aliasing

$$\hat{\omega} = \omega T_{\scriptscriptstyle S} = \frac{2\pi f}{f_{\scriptscriptstyle S}} + 2\pi \ell \qquad \text{folded alias}$$

Example Spectrum-1

$$x[n] = A\cos(2\pi(100)(n/1000) + \varphi)$$

100-Hz Cosine Wave: Sampled with $T_s = 1 \text{ msec } (1000 \text{ Hz})$

Principal alias:

$$f = \frac{\hat{\omega}f_s}{2\pi} = 0.1(1000) = 100 \text{Hz}$$
$$x(t) = A\cos(2\pi 100t + \varphi)$$

Aliasing Example Spectrum-2

Principal alias is always between $-\pi \le \hat{\omega} \le \pi$

 $x[n] = A\cos(2\pi(100)(n/80) + \varphi)$

Principal alias:

$$f = \frac{\hat{\omega}f_s}{2\pi} = 0.25(80) = 20 \text{ Hz}$$
$$x(t) = A\cos(2\pi 20t + \varphi)$$

From the book (the same example, more clear)

Figure 4-9 Under-sampling a 100 Hz sinusoid at $f_s = 80$ samples/s.

- (a) Continuous-time spectrum;
- (b) time-domain plot, showing the samples x[n] as gray dots, the original signal x(t) as a continuous **orange** line, and the reconstructed signal y(t) as a dashed black line, which is a 20 Hz sinusoid passing through the same sample points; and
- (c) discrete-time spectrum plot, showing the positive and negative frequency components of the original sinusoid at $= \pm 2.5\pi$ rad, along with two sets of alias components.

FOLDING (a type of ALIASING)

EXAMPLE: 3 different x(t); same x[n]

$$f_s = 1000$$

$$\cos(2\pi(100)t) \to \cos[2\pi(0.1)n]$$

$$\cos(2\pi(1100)t) \to \cos[2\pi(1.1)n] = \cos[2\pi(0.1)n]$$

$$\cos(2\pi(900)t) \to \cos[2\pi(0.9)n]$$

$$= \cos[2\pi(0.9)n - 2\pi n] = \cos[2\pi(-0.1)n] = \cos[2\pi(0.1)n]$$

900 Hz "folds" to 100 Hz when f_s=1kHz

Example Folding Case

$$x[n] = A\cos(2\pi(100)(n/125) + \varphi)$$

Aug 2016

23

SPECTRUM Explanation of SAMPLING THEOREM

- How do we prevent aliasing?
- Guarantee original signal is principal alias:

$$\hat{\omega}_0 - 2\pi < -\hat{\omega}_0 \implies \hat{\omega}_0 < \pi$$

$$\hat{\omega}_0 = \frac{2\pi f_0}{f_s} < \pi \implies f_0 < \frac{f_s}{2}$$

Be Careful:

https://www.youtube.com/watch?v=qqvuQGY946q

Strobe Demo

https://dspfirst.gatech.edu/chapters/04 samplin/demos/strobe/index.html

https://dspfirst.gatech.edu/chapters/04 samplin/demos/synstrob/index.html

Digital to Analog Reconstruction

- Create continuous y(t) from y[n]
 - IDEAL D-to-A:
 - If you have formula for y[n]
 - Invert sampling ($t=nT_s$) by $n=f_st$
 - $y[n] = A\cos(0.2\pi n + \phi)$ with $f_s = 8000$ Hz
 - $y(t) = A\cos(0.2\pi(8000t) + \phi) = A\cos(2\pi(8000)t + \phi)$

Reconstruction

- RECONSTRUCT THE **SMOOTHEST** ONE
 - THE LOWEST FREQ, if y[n] = sinusoid

- CONVERT STREAM of NUMBERS to *x*(*t*)
- "CONNECT THE DOTS"
- INTERPOLATION

- CONVERT y[n] to y(t)
 - -y[k] should be the value of y(t) at $t = kT_s$
 - Make y(t) equal to y[k] for
 - kT_s -0.5 T_s < t < kT_s +0.5 T_s

STAIR-STEP APPROXIMATION

OVER-SAMPLING CASE

EASIER TO RECONSTRUCT

SPECTRUM (ALIASING CASE)

$$x[n] = A\cos(2\pi(100)(n/80) + \varphi)$$

Let's Analyze with MATLAB

https://dspfirst.gatech.edu/matlab/#con2dis

Example - 1

Suppose that the output of the D-to-C converter in the system above is found to be

$$y(t) = 2 + 10\cos(2\pi(150)t + \pi/3)$$

when the sampling rate is $f_s = 1/T_s = 400$ samples/second.

(a) Give an equation for x[n] in terms of cosine functions. Write your answer on the line below.

with no aliasing, going through a DIC converter is the inverse of going through the CID. Therefore, we can get xin I by passing you through a allo converter.

Answer:
$$x[n] = \frac{2 + 10 \cos(2\pi(150)n/400 + \pi/3)}{2 + 10 \cos(3n\pi/4 + \pi/3)}$$

(b) Determine two different input signals $x(t) = x_1(t)$ and $x(t) = x_2(t)$ that could have produced the given output of the D-to-C converter. All of the frequencies in your answers must be positive and less than 400 Hz. Write your answers for both inputs on the lines below.

Answer:
$$x_1(t) = \frac{2 + 10 \cos(2\pi(150) + 113)}{(100 \text{ aliasing})}$$

Answer:
$$x_2(t) = 2 + 10 \cos(2\pi(250) + -\pi/3)$$

we have folding in the second case:

Example-2

Suppose that the continuous-time input x(t) to the above system is given as

$$x(t) = \cos(14000\pi t) + \cos(2000\pi t) + \cos(1000\pi t).$$

- (a) What sampling rate is required such that no aliasing occurs for x(t)? $f_s = 14,000 \text{ Hz}$
- (c) Given that $x(t) = \cos(25000\pi t)$ and $f_s = 10000$ samples/second, write a simplified expression for the output y(t) in terms of cosine functions.

NOTE THAT ALLASING OCCURS.

$$x[n] = \cos\left(\frac{2500\pi n}{10000}\right) = \cos(0.5\pi n)$$

$$y(t) = \cos(0.5\pi t 10000) = \cos(5000\pi t)$$

Example-3

PROBLEM:

The "spectrum" diagram gives the frequency content of a signal.

(a) Draw a sketch of the spectrum of x(t) which is "cosine-times-sine"

$$x(t) = \cos(50\pi t) \sin(700\pi t)$$

Label the frequencies and complex amplitudes of each component.

(b) Determine the minimum sampling rate that can be used to sample x(t) without any aliasing.

$$x(t) = \cos(50\pi t) \sin(700\pi t)$$

(a)
$$x(t) = \left(\frac{1}{2}e^{jSORT} + \frac{1}{2}e^{jSORT}\right)\left(\frac{1}{2j}e^{j700RT} - \frac{1}{2j}e^{j700RT}\right)$$

 $= \frac{1}{4j}e^{j7SORT} + \frac{1}{4j}e^{j6SORT} - \frac{1}{4j}e^{-j6SORT} - \frac{1}{4j}e^{-j7SORT}$
SAME AS $\frac{1}{4}e^{-jR/2}$ t
SAME AS $\frac{1}{4}e^{+jR/2}$

(b) Sampling Thm says sample at a rate greater than two times the highest freg HIGHEST FREQ = 375 Hz => f ≥ 750 Hz.

Example-4

PROBLEM:

Consider the following system.

Suppose that the output of the C-to-D converter is

$$x[n] = 5 + 8\cos(0.4\pi n) + 4\cos(0.8\pi n + \pi/3)$$

when the sampling rate is $f_s = 1/T_s = 2000$ samples/second. Determine the output y(t) of the ideal D-to-C converter.

$$x[n] = 5 + 8\cos(0.4\pi n) + 4\cos(0.8\pi n + \pi/3)$$
 $x[n] = D/C$
 $y(t)$
 $y(t)$
 $y(t)$

For discrete to continuous, we replace "n"

with f_3t
 $y(t) = x[n] \Big|_{n=f_3t}$
 $y(t) = 5 + 8\cos(0.4\pi(2000)t) + 4\cos(0.8\pi(2000)t + \pi/3)$
 $y(t) = 5 + 8\cos(2\pi(400)t) + 4\cos(2\pi(800)t + \pi/3)$