Ch 14 - Problem Set 1

Calculus 3

Section 1: Functions of Several Variables

- 3. Let $g(x,y) = x^2 \ln(x+y)$
- (a) Evaluate g(3,1).
- (b) Find and sketch the domain of g.
- (c) Find the range of g.

Solution

7 - 15 (odd)

Find and sketch the domain of the function.

7.
$$f(x,y) = \sqrt{x-2} + \sqrt{y-1}$$

Solution

9.
$$q(x,y) = \sqrt{x} + \sqrt{4 - 4x^2 - y^2}$$

Solution

11.
$$g(x,y) = \frac{x-y}{x+y}$$

Solution

13.
$$p(x,y) = \frac{\sqrt{xy}}{x+1}$$

Solution

15.
$$f(x, y, z) = \sqrt{4 - x^2} + \sqrt{9 - y^2} + \sqrt{1 - z^2}$$

Solution

17. A model for the surface area of a human body is given by the function

$$S = f(w, h) = 0.1091w^{0.425}h^{0.725}$$

where w is the weight (in pounds), h is the height (in inches), and S is measured in square feet.

- (a) Find f(160,70) and interpret it.
- (b) What is your own surface area?

Solution

Sketch the graph of the function

23.
$$f(x,y) = y$$

Solution

25.
$$f(x,y) = 10 - 4x - 5y$$

Solution

27.
$$f(x,y) = \sin x$$

Solution

29.
$$f(x,y) = x^2 + 4y^2 + 1$$

Solution

31.
$$f(x,y) = \sqrt{4-4x^2-y^2}$$

32. Match the function with its graph (labeled I-VI). Give reasons for your choices.

(a)
$$f(x,y) = \frac{1}{1+x^2+y^2}$$
 (b) $f(x,y) = \frac{1}{1+x^2y^2}$

(**b**)
$$f(x,y) = \frac{1}{1+x^2y^2}$$

(c)
$$f(x,y) = \ln(x^2 + y^2)$$

(c)
$$f(x,y) = \ln(x^2 + y^2)$$
 (d) $f(x,y) = \cos\sqrt{x^2 + y^2}$

(e)
$$f(x,y) = |xy|$$

$$(\mathbf{f}) \ f(x,y) = \cos(xy)$$

Solution

33. A contour map for a function f is shown. Use it to estimate the values of f(-3,3) and f(3,-2). What can you say about the shape of the graph?

Solution

45, 47 & 51

Draw a contour map of the function showing several level curves.

45.
$$f(x,y) = x^2 + y^2$$

Solution

47.
$$f(x,y) = x^2 + y^2$$

Solution

51.
$$f(x,y) = x^2 + y^2$$

Solution

53. Sketch both a contour map and a graph of the given function and compare them.

$$f(x,y) = x^2 + 9y^2$$

Solution

61 - 66

Match the function (a) with its graph (labeled A–F below) and (b) with its contour map (labeled I–VI). Give reasons for your choices.

61.
$$z = \sin(xy)$$

Solution

62.
$$z = e^x \cos y$$

Solution

63.
$$z = \sin(x - y)$$

Solution

$$64. \ z = \sin x - \sin y$$

Solution

65.
$$z = (1 - x^2)(1 - y^2)$$

Solution

66.
$$z = \frac{x - y}{1 + x^2 + y^2}$$

67. Describe the level surfaces of the function.

$$f(x, y, z) = 2y - z + 1$$

Section 2: Limits and Continuity

5 - 11 (odd)

Find the limit

5.
$$\lim_{(x,y)\to(3,2)}(x^2y^3-4y^2)$$

7. $\lim_{(x,y)\to(-3,1)} \frac{x^2y-xy^3}{x-y-2}$

Solution

9. $\lim_{(x,y)\to(\pi,\pi/2)} y \sin(x-y)$

Solution

Solution

11. $\lim_{(x,y)\to(1,1)} \left(\frac{x^2y^3-x^3y^2}{x^2-y^2}\right)$

Solution

13 - 17 (odd)

Show that the limit does not exist

13.
$$\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2+y^2}$$

Solution

15.
$$\lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{x^2+y^2}$$

Solution

17.
$$\lim_{(x,y)\to(0,0)} \frac{y^2 \sin^2 x}{x^4 + y^4}$$

Solution

19 - 25 (odd)

Find the limit, if it exists, or show that the limit does not exist.

19.
$$\lim_{(x,y)\to(-1,-2)}(x^2y-xy^2+3)^3$$

Solution

21.
$$\lim_{(x,y)\to(2,3)} \frac{3x-2y}{4x^2-y^2}$$

Solution

23.
$$\lim_{(x,y)\to(0,0)} \frac{xy^2\cos y}{x^2+y^4}$$

Solution

25.
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1}$$

31 & 33

Use the Squeeze Theorem to find the limit.

31.
$$\lim_{(x,y)\to(0,0)} xy\sin\frac{1}{x^2+y^2}$$

Solution

33.
$$\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^4+y^4}$$

Solution

41, 43 & 45

Determine the set of points at which the function is continuous.

41.
$$F(x,y) = \frac{xy}{1 + e^{x-y}}$$

Solution

43.
$$F(x,y) = \frac{1+x^2+y^2}{1-x^2-y^2}$$

Solution

45.
$$G(x,y) = \sqrt{x} + \sqrt{1 - x^2 - y^2}$$