\mathbf{Index}

A	
Abelian groups	vol.1:p.24
Adjoint operators	vol.1: pp.43 - 44,87,103
J	vol.3: pp.134 - 135
Adjugate matrix	vol.2: pp.120 - 121
Affine spaces	vol.1: p.93
Asymptotically stable	vol.2:p.76
	vol.3: pp.82 - 84
	vol.4:p.7
Attracting fixed point	vol.2:p.76
•	vol.3: pp.83 - 84
Attractiveness	vol.3: p.83
Autonomous systems	vol.1:p.7
B	•
Basin boundary	vol.2: p.89
Basin of attraction	vol.2:p.89
Basis	vol.2: pp.125 - 127
Bifurcation	vol.1: pp.11 - 12,63 - 64
	vol.4: pp.12 - 13
Bifurcation (fold)	vol.4: pp.12 - 13
Bifurcation (transcritical)	vol.4:pp.12-15
Bifurcation diagram	vol.4: pp.12, 15-17
Body velocity	vol.1:p.38
C	
Carrying capacity	vol.4:p.9
Causal systems	vol.2:p.152
	vol.3: pp.3-4
Cayley-hamilton theorem	vol.2: pp.139 - 140
	vol.3: pp.121 - 122
Centers (equilibrium point)	vol.4:p.22
Centroid of area	vol.1: pp.4-6
Characteristic equation	vol.2: pp.77, 138 - 139
	vol.3:p.37
Column space	vol.2: pp.133 - 134
Complex conjugate transpose	vol.3: pp.40 - 44
Condition number (of a matrix)	vol.3: pp.61 - 62
Connection vector field	vol.1: pp.118 - 119
Conservative system	vol.2: pp.89 - 91, 103
Conservative vector fields	vol.1: pp.145 - 146
Conserved quantity	vol.2: p.90
Constraint, holonomic	vol.1: pp.76 - 77
Constraint, nonholonomic	vol.1: pp.110 - 117, 135 - 136
Contour	vol.2: pp.91 - 92
Controllability	vol.3: p.132
Controllability gramian	vol.3: p.135

Convolution	vol.3: pp.2-4
Convolution (discrete)	vol.3: pp.14, 17
Coordinate transformation matrix	vol.2: pp.128 - 129
	vol.4: pp.18, 20
Coordinate vector	vol.2: pp.126 - 127
Corange	vol.2: pp.51 - 54
Corank	vol.2: pp.51 - 54 vol.2: pp.51 - 54
Cotangent bundle	vol.1: p.126
Cotangent space	vol.1: p.126
Cotangent vector	vol.1: pp.127 - 130
Cramer's rule	vol.2: p.121
Cross product	vol.1: pp.1-2
Curl (vector)	vol.1:p.145
Curvature (constraint)	vol.1: pp.144 - 145
D	
Dead zone nonlinearity	vol.2:p.151
Deficient matrix	vol.2: pp.140 - 141
Degenerate matrix	vol.2: p.139
Degrees of freedom	vol.1: p.17
Detectable	vol.3: pp.145 - 146, 149
Determinant	vol.2: pp.78 - 81,115 - 119
Diagonal coordinate form	vol.3: pp.38 - 46
Diagonalization	vol.2: pp.142 - 144
	vol.3: p.46
Diffeomorphic	vol.1: p.20
Differential-algebraic equations	vol.2: pp.41 - 44,47 - 48
Differential-algebraic equations, differentiation index	vol.2: pp.47 - 48
Differential-algebraic equations, model consistency	vol.2: p.44
Differential-algebraic equations, regularity	vol.2:p.45
Differential-algebraic equations, solution	vol.2:p.44
Dimension (of a vector space)	vol.2: pp.125 - 126
Direct product of two sets	vol.1: p.20
Direct sum	vol.1:p.20
Direct sum of two sets	vol.1 : p.125
Directional linearity	vol.1: p.126 vol.1: p.106
•	•
Distribution (allowable velocities)	vol.1: pp.112, 148 - 150
Dot product	vol.2: pp.134 - 135
	vol.3:p.41
E	
Eigenspace	vol.2: p.140
Eigenvalue	vol.2: pp.77, 138 - 145
	vol.3: pp.36 - 45, 56 - 59
Eigenvector	vol.2: pp.76 - 77, 138 - 145
	vol.3: pp.36 - 45
Eigenvector (left)	vol.3: pp.50 - 51
Elementary row operators	vol.2: p.107
Embedding	vol.1: p.96
Finouding	υσι.1 . p.30

	Equilibrium point	vol.3: pp.1, 5-10, 79-84
		vol.4: pp.3 - 4
	Equivalent vectors w.r.t. functions	vol.1: pp.100 - 101
	Euler-lagrange equation	vol.1: p.136
	Existence and uniqueness theorem	vol.1: pp.11, 13
	·	vol.2: p.82
	Exponential map	vol.1: pp.48 - 51, 103 - 104
	External forces	vol.1:p.1
F		•
	Finite escape time	vol.4: pp.9 - 10
	Focus node	vol.4:p.22
	Fold bifurcation	vol.4: pp.12 - 13
	Force couple	vol.1:p.2
	Force couple system	vol.1:p.3
	Forward euler integration	vol.2: p.148
	Forward kinematics	vol.1: pp.78, 83 - 84
	Frequency response	vol.3: pp.98, 105
	Frobenius norm	vol.3: pp.62, 102 - 117
	Fundamental vector field (infinitesimal generators)	vol.1: pp.99 - 100
G	•	
	Gait generation	vol.1: p.124
	Gaussian elimination	vol.2: p.104
	Generalized coordinates	vol.1: p.78
	Geodesics	vol.1: pp.44 - 46, 51, 96 - 99
	Globally asymptotically stable	vol.3:p.93
	Gradient vector field	vol.1: pp.129 - 130
	Gram schmidt orthogonality procedure	vol.2:p.137
	Group	vol.1: pp.21, 94 - 95
	Group invariant vectors	vol.1: p.100
	Group, left/right action	vol.1: pp.24 - 29, 33, 80, 96, 137
	Group, symmetry	vol.1: pp.108 - 109, 137
H		
	$ m H_{\infty}$ norm	vol.3: pp.108 - 119
	Hartman grobman theorem	vol.4: pp.23 - 24
	Hartman-grobman theorem	vol.2:p.88
	Hermitian matrix	vol.3: p.107
	Heteroclinic trajectory	vol.2: p.94
	Holonomic constraint	vol.1: pp.76 - 77
	Homeomorphic	vol.1:p.19
		vol.2:p.88
		vol.4:p.23
	Homogeneity	vol.3:p.1
	Homogeneous equations	vol.2:p.105
	Hurwitz matrix	vol.3: pp.94 - 96
	Hyperbolic equilibrium point	vol.4: pp.22 - 24
	Hyperbolic fixed point	vol.2:pp.87-88
	Hysteresis	vol.1: pp.66, 70-71

	vol.2:p.42
I	
Idempotent	vol.2:p.37
Image (algebra)	vol.1:p.124
Impulse response	vol.3: pp.19 - 20, 29 - 30, 36
Index theory	vol.2: pp.98 - 101
Induced norm	vol.3: pp.103 - 104
Infinity norm	vol.3: pp.100 - 101
Inner product	vol.2: pp.134 - 135
	vol.3:p.41
Internal forces	vol.1:p.1
Intersection (spaces)	vol.2: pp.130 - 131
Invariance	vol.1:p.139
Isocline	vol.2:pp.74,84
Isomorphic	vol.1:p.22
J	
Jacobi-liouville formula	vol.3:p.27
Jacobian	vol.1: pp.84 - 86
	vol.2:p.85
Jordan blocks	vol.3: pp.46 - 50, 56 - 59, 77 - 78
K	
K-step observability matrix	vol.3: pp.138 - 139
Kalman rank test	vol.3:p.136
Kernel	vol.1: pp.124 - 125
Kinematic locomotion	vol.1: pp.105 - 107
L	
L1 norm	vol.3: pp.100 - 101
L2 induced gain of a system	vol.3:p.108
L2 norm	vol.3: pp.100 - 101
Lagrangian	vol.2:p.45
Lagrangian multipliers	vol.2: pp.45 - 46
	vol.3:p.126
Laplace transform	vol.2:p.147
	vol.3: pp.29 - 33
Liapunov fixed point	vol.2:p.76
Lie algebra	vol.1: pp.41, 98-100, 103, 151-152
Lie bracket	vol.1: pp.148 - 150
	vol.2:p.1
Lie groups	vol.1: pp.21, 96-99
Lifted actions	vol.1: pp.31 - 42, 52 - 54, 85, 137 - 138
Limit cycle	vol.3:p.82
	vol.4: pp.10-12
Linear combination	vol.2:p.124
Linear equations	vol.2:p.104
Linear independence	vol.2: pp.124 - 125
Linear time invariance	vol.2:p.152
	vol.3: pp.8 - 9, 17

Linear transformation	vol.2: pp.131 - 133
Linearity	vol.3:p.15
Linearity (mapping)	vol.1: pp.106 - 107
Linearity (systems)	vol.2: p.152
	vol.3:p.1
Linearization at a fixed point	vol.1: pp.10-11
	vol.2: pp.84 - 85
	vol.3: pp.1, 7-10
	vol.4: pp.5 - 8, 23 - 24
Local connection	vol.1: pp.114 - 117, 120, 122 - 123, 130, 142
Locomotion	vol.1: p.104
Logistic equation	vol.4:p.9
Lorenz attractor	vol.4:p.12
Lotka-volterra model of competition	vol.2:p.88
Lyapunov functions	vol.3: pp.85 - 96, 117 - 119, 124 - 126
M	
Manifolds	vol.1: pp.17 - 19,93
Manifolds, accessible	vol.1: pp.76-78
Manifolds, c^k -differentiable	vol.1:p.20
Manifolds, curvature	vol.1:p.93
Manifolds, stable	vol.2:p.89
Manifolds, topology	vol.1:p.93
Marginally stable	vol.3:pp.53,56
Markov parameters	vol.3:p.20
Matrix cofactor	vol.2: pp.111, 118 - 120
Matrix determinant	vol.2: pp.115 - 119
Matrix exponentiation	vol.3: pp.26 - 27, 36
Matrix inverse	vol.2: pp.110 - 115
Matrix minor	vol.2:p.111
Matrix operations	vol.2:p.106
Matthew equation	vol.3:p.27
Memoryless systems	vol.2:p.152
	vol.3:p.4
Minimum energy input	vol.3: pp.127 - 129, 133 - 136
Modal contributions of initial conditions	vol.3: pp.41 - 45, 51
Modal decomposition	vol.3: pp.35 - 45, 51
Model consistency	vol.2:p.44
Model uncertainty	vol.3: pp.109 - 115
Modular addition	vol.1:p.21
Momentum	vol.1: pp.138 - 140
Monotonic function	vol.1:p.13
Multiplicative calculus	vol.1: pp.34 - 38, 46 - 47
N	
Negative semidefinite matrix	vol.3:p.93
Neumann series	vol.3:p.22
Neutrally stable	vol.2:p.76
Nilpotent matrix	vol.3:p.35

Node	vol.4:p.21
Noether's theorem	vol.1: pp.131 - 134
Noncommutativity	vol.1:p.147
Nonconservativity	vol.1: pp.145 - 147
Nonholonomic constraint	vol.1: pp.110 - 117, 135 - 136
Normal matrix	vol.3: pp.36 - 46
Nullcline	vol.2 : p.84
	_
Nullity	vol.2: p.134
Nullspace	vol.2: pp.132 - 134
0	
Observability	vol.3: pp.136 - 139
Observer based controller	vol.3: pp.148 - 149
One-form	vol.1: pp.125, 127-129
Optimal frame	vol.1:p.83
Orthogonal compliment	vol.2: pp.137 - 138
Orthogonal set	vol.2:p.135
Orthonormal	vol.2: pp.135 - 136
Orthonormal basis	vol.2:p.136
Outer product	vol.2:p.136
Output feedback design	vol.3:p.147
Overdetermined system	vol.2: pp.19, 41
P	000.2 · pp.10, 11
P norm	and 2 and 100 109
	vol.3: pp.100 - 102
Parallel linkage mechanisms	vol.3: pp.59 - 60
Pbh test	vol.3: p.136
Pendulum	vol.4: pp.7-8
Pfaffian constraint	vol.1: pp.111 - 117
Phase (angle)	vol.2:p.61
Phase coordinate form	vol.3:p.6
Phase drift	vol.2:p.68
Phase lock	vol.2:p.67
Phase portrait	vol.1:pp.7-9
	vol.2:pp.74,83
	vol.3:p.35
	vol.4: pp.5, 17-19
Pitchfork bifurcation	vol.4: pp.12, 15-17
Poles (transfer function)	vol.2:p.147
,	vol.3: pp.58 - 59
Position trajectory	vol.1: p.105
Positive definite matrix	vol.3: p.87
Positive invariant set	vol.4 : p.21
	_
Positive semidefinite matrix	vol.3: p.125
Potentials	vol.1: p.17
Power spectral density	vol.3: pp.116 - 119
Preimage (algebra)	vol.1: p.124
Principally kinematic system	vol.1:p.139
Principle minors	vol.3:p.88

Principle of least action		vol.1: pp.131 - 133
Projection operator	011	vol.1: pp.131 - 133 vol.2: p.37
Q		voi.2 . p.31
Quadratic programmin	a o	vol.3: pp.125 - 126
R	ıg	voi.s. pp.125 - 120
Radially unbounded		vol.3:p.89
Range (matrix)		vol.2: pp.132 - 133
Range of entrainment		vol.2: pp.68 - 69
Rank		vol.2: pp.51, 53 - 54, 132 - 134
Reachability		vol.3: pp.120 - 126, 130, 132
Reachability gramian		vol.3: pp.124 - 129, 133 - 135
Reaction force		vol.1:p.4
Realization theory		vol.2: p.149
Reconstruction equation	on	vol.1: pp.114 - 123, 138
Region of attraction		vol.4:p.15
Regular control proble	em	vol.2:p.45
Resolvent		vol.3: pp.17 - 18, 30, 36
Resonance		vol.3:p.50
Reversible system		vol.2:pp.92-95
Rigid body		vol.1:p.23
Rigid body, left lifted	action	vol.1:pp.38-41
Rigid body, right lifted	daction	vol.1:pp.41-43
Routh-hurwitz criterio	n	vol.3: pp.77 - 80
Row echelon form		vol.2:p.107
Row space		vol.2:p.134
Runge-kutta method		vol.2:p.83
S		
Saddle connection		vol.2:p.94
Saddle node		vol.4:pp.19-21
Semidirect product of	two sets	vol.1:p.24
Separatrix		vol.2: p.89
Shape trajectory		vol.1: p.105
Shift operator		vol.3: pp.1 - 2
Signal norms		vol.3: pp.96 - 104
Similar matrices		vol.2: p.142
Singular matrix		vol.2: pp.41 - 42, 51, 110, 122
Singular value decomp	oosition	vol.3: pp.104 - 110, 128 - 129
Singular vectors		vol.3 : p.106
Sink node		vol.4: pp.19,21
Small-gain theorem	lechnois servations	vol.3: pp.109 - 114
Solution, differential-a Source node	igeoraic equations	vol.2: p.44
		vol.4: pp.19, 21 vol.2: pp.124 - 125
Span Spatial valuaity		
Spatial velocity Special euclidean grou	n	vol.1: pp.43, 85 vol.1: p.23
opeciai euciidean grou	P	vol.1: p.25 vol.2: pp.1 - 2
Special orthogonal gro	so(n)	vol.2: pp.1 - 2 vol.1: p.22
opeciai ormogonai gro	ταρ, <i>συ(π)</i>	000.1 · p.22

	and 2 a mm 1
Ct. b::1:t	vol.2: pp.1-2
Stability	vol.3: pp.80 - 84
Stabilizable	vol.4: p.5
Stable	vol.3: pp.141 - 143,149
Stable	vol.2: p.76
	vol.3: pp.53 - 59, 91 - 94
Ct. t tim at an annual lan	vol.4:p.5
State estimator controller State feedback controller	vol.3: pp.144 - 147
	vol.3: pp.140 - 144 vol.2: pp.147 - 150
State space model	
State transition matrix	vol.3: p.5
	vol.3: pp.11 - 13
State vector	$vol.2: pp.147 - 149 \\ vol.3: p.5$
Ctuain anagar	vol.3: p.5 = vol.2: pp.5 = 7
Strain energy Structural stability	vol.2: pp.3 = i $vol.2: p.88$
Subcritical pitchfork bifurcation	vol.4: p.17
Subspace Subspace	vol.4: p.17 vol.2: pp.129 - 130
Sum (spaces)	vol.2: pp.129 = 130 vol.2: pp.130 - 131
Supercritical pitchfork bifurcation	vol.4: pp.15 - 16
Superposition Superposition	vol.4: pp.13 - 10 vol.3: pp.1, 13
Supremum	vol.3: pp.1, 13 vol.3: p.98
Symmetric matrix	vol.3 : p.38 vol.2 : p.144
Symmetric matrix	vol.3: pp.86 - 96
Symmetry	vol.1: pp.108 - 109, 131
System norms	vol.3: pp.99 - 120
T	001.9 . pp.00 120
Tangent spaces	vol.1: pp.29 - 30
Taylor series expansion	vol.3: pp.7 - 8
Taylor sories orpanision	vol.4: p.6
Tensor product	vol.1: p.20
Time invariance	vol.2: p.152
	vol.3: pp.1 - 4
Time-reversal symmetry	vol.2: pp.92 - 93
Toeplitx matrix	vol.3:p.3
Trace	vol.2: pp.78 - 80
Traction	vol.3: pp.60 - 61
Transcritical bifurcation	vol.4: pp.12 - 15
Transfer function	vol.2: pp.146 - 147, 150
	vol.3: pp.18 - 20, 36, 52
Transmission	vol.3:p.61
U	
Underactuated robotic mechanisms	vol.3: pp.59-77
Underactuated system	vol.1:p.104
Underdetermined system	vol.2:pp.19,41
Unitary diagonal coordinate transformation	vol.3: pp.38 - 43,50
Unstable	vol.2:p.76

V	
Van der pol oscillator	vol.4:pp.11-12
Variance amplication	vol.3:p.117
Variations of constants formula	vol.3:pp.24,54
Varignon's theorem	vol.1:p.1
Vector field	vol.1: pp.30-31
	vol.2:p.74
Vector mapping	vol.2:p.127
Vector space	vol.2: pp.122 - 123
Vertical space	vol.1:p.125
Virtual work	vol.3:pp.63-64
W	
White-in-time gaussian processes	vol.3: pp.115 - 119
Work (mechanical)	vol.1:p.145
Z	
Z-transform	vol.3:pp.14-22
Zero set	vol.1: pp.76, 110-111
Zeros (transfer function)	vol.2:p.147