PROJET BDD

Partie 1 - Modélisation

MCD

MLD

Humain(ID_humain,nom,poste,date_recrutement)

Robot(<u>id_robot</u>,nom,modele,etat)

Action(id_action,description,date_debut,date_fin)

RapportIncidence(id_rapport,typeViolation,description,loiViole,#action_id_action)

ParticipationRobot(<u>#robot_id_robot,#action_id_action</u>)

ParticipationHumain((#robot_id_humain,#action_id_action)

Code

```
CREATE TABLE Robot (
ID INT PRIMARY KEY,
Nom VARCHAR(100),
Modele VARCHAR(50),
Etat ENUM('Actif', 'En Réparation', 'Décommissionné', 'Disparu')
);
GOT
```

```
CREATE TABLE Humain (
 ID INT PRIMARY KEY,
 Nom VARCHAR(100),
 Poste VARCHAR(100),
 Anciennete INT
);
CREATE TABLE Action (
 ID INT PRIMARY KEY,
 Description TEXT,
 DateDebut DATETIME,
 DateFin DATETIME
);
CREATE TABLE ParticipationRobot (
 RobotID INT,
 ActionID INT,
 PRIMARY KEY (RobotID, ActionID),
 FOREIGN KEY (RobotID) REFERENCES Robot(ID),
 FOREIGN KEY (ActionID) REFERENCES Action(ID)
);
CREATE TABLE Participation Humain (
 HumainID INT,
 ActionID INT,
 PRIMARY KEY (HumainID, ActionID),
 FOREIGN KEY (HumainID) REFERENCES Humain(ID),
 FOREIGN KEY (ActionID) REFERENCES Action(ID)
```

CREATE TABLE RapportIncidence (

ID INT PRIMARY KEY,

TypeViolation VARCHAR(50),

Description TEXT,

LoiViolee INT CHECK (LoiViolee IN (1, 2, 3)),

ActionID INT,

FOREIGN KEY (ActionID) REFERENCES Action(ID)

);

Partie 2 - Génération de données et ingestion

Partie généré par CHAT GPT

-- Insertion de robots

INSERT INTO Robot (ID, Nom, Modele, Etat)

VALUES

- (1, 'Alpha1', 'Explorateur-X', 'Actif'),
- (2, 'Beta2', 'Minage-Y', 'En Réparation'),

```
-- Insertion d'humains
INSERT INTO Humain (ID, Nom, Poste, Anciennete)
VALUES
(1, 'Alice', 'Ingénieur', 5),
(2, 'Bob', 'Technicien', 2),
(3, 'Claire', 'Superviseur', 7);
-- Insertion d'actions
INSERT INTO Action (ID, Description, DateDebut, DateFin)
VALUES
(1, 'Exploration site A', '2024-12-01 08:00:00', '2024-12-01 18:00:00'),
(2, 'Réparation générateur', '2024-12-01 10:00:00', '2024-12-01 15:00:00');
-- Participation des robots
INSERT INTO ParticipationRobot (RobotID, ActionID)
VALUES
(1, 1),
(2, 2);
-- Participation des humains
INSERT INTO ParticipationHumain (HumainID, ActionID)
VALUES
(1, 1),
(2, 2);
```

(3, 'Gamma3', 'Maintenance-Z', 'Disparu');

-- Insertion de rapports d'incidence

INSERT INTO RapportIncidence (ID, TypeViolation, Description, LoiViolee, ActionID)
VALUES

(1, 'Violation Loi 1', 'Robot n'a pas sauvé un humain en danger.', 1, 1);

Pour vérifier que le modèle de données est cohérent et garantit l'intégrité des données non conforme, on utilise :

INSERT INTO RapportIncidence (ID, TypeViolation, Description, LoiViolee, ActionID)

VALUES(2, 'Violation Loi 2', 'Non-respect des ordres humains.', 2, 99); -- Doit échouer

Partie 3 - Gestion des droits d'accès

1. Administrateur

L'administrateur a un accès complet, car c'est nécessaire pour gérer les opérations critiques sur la base.

2. Analyste

L'analyste a un accès en lecture seule sur les vues analytiques, car cela permet de limiter les droits et d'éviter toute modification accidentelle des données.

3. Technicien

Le technicien a un accès pour modifier l'état des robots, car cela est essentiel pour les tâches de maintenance liées à leur fonctionnement.

4. Superviseur éthique

Le superviseur éthique a un accès en lecture aux données des actions et des rapports d'incidence, car cela est indispensable pour analyser les conflits éthiques sans compromettre l'intégrité des données.

Création des utilisateurs -- Administrateur CREATE USER 'admin_user'@'%' IDENTIFIED BY 'secure_password_admin'; -- Analyste CREATE USER 'analyst_user'@'%' IDENTIFIED BY 'secure_password_analyst'; -- Technicien CREATE USER 'technician_user'@'%' IDENTIFIED BY 'secure_password_technician'; -- Superviseur éthique CREATE USER 'ethics_supervisor'@'%' IDENTIFIED BY 'secure_password_ethics'; Privileges: **Administrateur** GRANT ALL PRIVILEGES ON robot.* TO 'admin_user'@'%'; Analyste: D'abord créer la vue analytique: CREATE OR REPLACE VIEW Vue_Analyse_Actions AS SELECT R.Nom AS Robot_Nom,

COUNT(A.ID_Action) AS Nombre_Actions FROM Robot R LEFT JOIN Robot_Action RA

ON R.ID_Robot = RA.ID_Robot LEFT JOIN Action A ON RA.ID_Action = A.ID_Action GROUP BY R.Nom; Accorde l'accès en lecture uniquement à la vue GRANT SELECT ON robot. Vue_Analyse_Actions TO 'analyst_user'@'%'; Technicien: GRANT SELECT, UPDATE (Etat) ON robot.Robot TO 'technician_user'@'%'; Superviseur éthique: GRANT SELECT ON ColonisationAsimov. Action TO 'ethics_supervisor'@'%'; GRANT SELECT ON ColonisationAsimov.Rapport_Incidence TO 'ethics_supervisor'@'%'; L'analyste peut avoir accès à certaines informations du rapport d'incidence : CREATE OR REPLACE VIEW Vue_Rapport_Public AS SELECT ID_Rapport, Type_Loi, LEFT(Description, 100) AS Description_Tronquee Rapport_Incidence;

Partie 4 - Analyse des évènements

1. Humains les plus impliqués dans les rapports d'incidence

GRANT SELECT ON Robot. Vue_Rapport_Public TO 'analyst_user'@'%';

SELECT ID_Action, COUNT(*) AS nombre_incidences

```
FROM rapport_incidence

GROUP BY ID_Action

ORDER BY nombre_incidences DESC
```

2. Robots les plus impliqués dans les rapports d'incidence

SELECT r.Nom, r.Modele, COUNT(ri.ID_Rapport) AS Nombre_Incidents
FROM robot r

JOIN robot_action ra ON r.ID_Robot = ra.ID_Robot

JOIN rapport_incidence ri ON ra.ID_Action = ri.ID_Action

GROUP BY r.ID_Robot

ORDER BY Nombre_Incidents DESC;

3. Actions ayant mené au plus de rapports d'incidence

SELECT a.Nom_Action, COUNT(ri.ID_Rapport) AS Nombre_Incidents

FROM action a

JOIN rapport_incidence ri ON a.ID_Action = ri.ID_Action

GROUP BY a.ID_Action

ORDER BY Nombre_Incidents DESC;

4. Robots impliqués dans des incidents qui ont disparu

SELECT r.Nom, r.Modele

FROM robot r

JOIN robot_action ra ON r.ID_Robot = ra.ID_Robot

JOIN rapport_incidence ri ON ra.ID_Action = ri.ID_Action

WHERE r.Etat = 'Disparu'

GROUP BY r.ID_Robot;

Analyses perso :
a) Nombre total d'incidents par type de loi violée
SELECT Type_Loi, COUNT(ID_Rapport) AS Nombre_Incidents
FROM rapport_incidence
GROUP BY Type_Loi
ORDER BY Nombre_Incidents DESC;
b) Robots par état actuel
SELECT Etat, COUNT(ID_Robot) AS Nombre_Robots
FROM robot
GROUP BY Etat;
c) Moyenne d'ancienneté des humains impliqués dans des incidents
SELECT AVG(h.Anciennete) AS Anciennete_Moyenne
FROM humain h
JOIN humain_action ha ON h.ID_Humain = ha.ID_Humain
JOIN rapport_incidence ri ON ha.ID_Action = ri.ID_Action;
Partie 5
DROP VIEW Vue_Humains_Impliques;
DROP VIEW Vue_Robots_Impliques;
DROP VIEW Vue_Actions_Problematique;

DROP INDEX idx_participation_humain_id ON humain_action;

DROP INDEX idx_participation_robot_id ON robot_action;

DROP INDEX idx_action_id ON rapport_incidence;

-- Création des vues pour pré-calculer les résultats

CREATE VIEW Vue_Humains_Impliques AS

SELECT h.Nom AS robot_implice, COUNT(*) AS Nombre_Rapports

FROM Humain h

INNER JOIN humain_action ph ON h.ID_Humain = ph.ID_Humain

INNER JOIN action a ON a.ID_Action = ph.ID_Action

INNER JOIN rapport_incidence ri ON a.ID_Action = ri.ID_Action

GROUP BY h.Nom;

CREATE VIEW Vue_Robots_Impliques AS

SELECT r.Nom AS humain_implice, COUNT(*) AS Nombre_Rapports

FROM Robot r

INNER JOIN robot_action ra ON r.ID_Robot = ra.ID_Robot

INNER JOIN action a ON a.ID_Action = ra.ID_Action

INNER JOIN rapport_incidence ri ON a.ID_Action = ri.ID_Action

GROUP BY r.Nom;

CREATE VIEW Vue_Actions_Problematique AS

SELECT a.Nom_Action AS action_probleme, COUNT(*) AS Nombre_Rapports

FROM Action a

INNER JOIN Rapport_Incidence ri ON a.ID_Action = ri.ID_Action

GROUP BY a. Nom_Action;

SELECT * FROM Vue_Humains_Impliques;

SELECT h.Nom AS robot_implice, COUNT(*) AS Nombre_Rapports

FROM Humain h

INNER JOIN humain_action ph ON h.ID_Humain = ph.ID_Humain

INNER JOIN action a ON a.ID_Action = ph.ID_Action

INNER JOIN rapport_incidence ri ON a.ID_Action = ri.ID_Action

GROUP BY h.Nom;

SELECT * FROM Vue_Robots_Impliques;

SELECT * FROM Vue_Actions_Problematique;

-- Création des index pour accélérer les jointures

CREATE INDEX idx_participation_humain_id ON humain_action(ID_Humain);

CREATE INDEX idx_participation_robot_id ON robot_action(ID_Robot);

CREATE INDEX idx_action_id ON rapport_incidence(ID_Action);