Chapter 5 Exercises Solutions

Question	Answer
5.1	It is possible to rule out the invalid transition scenario through meta-
J. 1	modeling. By defining the relationship between states and transitions within
	a Machine object, the meta-model enforces a structure that disallows
F 0	transitions crossing machine boundaries.
5.3	First-Order Formula for the Meta-Model in Figure 5.1
	1. Parent Constraint:
	$\forall x (\text{Person}(x) \rightarrow \text{count}(\{y: \text{Parent}(y, x)\}) \le 2$
	Verification of the Two Rightmost Instances in Figure 5.2
	The provided instances:
	 Alice, Bob, and E cycle: Each has no more than two parents.
	 D and C mutual parent-child relationship: Each has no more
	than two parents.
	Both instances adhere to the constraints specified in the first-order formula.
5.4	$\forall x,y,s$ (Transition(s,x) \land Transition(s,y) $\land x$!=
	$y \rightarrow \exists l1, l2(InputLabel(x, l1) \land InputLabel(y, l2) \land l1 = l2))$
5.5	Base Case (Path Length 1):
	 If s1 = sn, the equation trivially holds (direct successor).
	Inductive Case (Path Length k+1):
	Assume the equation holds for k-length paths.
	 If successor*(s1, sn), there exists a path with intermediate state s2:
	o successor(s1, s2)
	o successor*(s2, sn) (path length k)
	By induction hypothesis, the equation holds for the sub-path (s2, sn):
	(s2 = sn) V ∃s3. successor(s2, s3) Λ successor*(s3, sn)
	 Combining: We get the original equation for the k+1 path length.
	Something, the get the enginer equation for the K. I path tength
	By induction, successor*(s1, sn) ≡ true implies the equation for all path
	lengths, proving it satisfies the definition of the transitive closure.
5.16.a	inv[Person] {getChild.size <= 2 }
J. 10.a	Ecore Feature to Use: Upper Bound of a Reference
	Reference: children
	Type: Person
	Containment: True
5.16.b	 Multiplicity: 02 (meaning 0 to 2 children are allowed) invariant: self.name.notEmpty().
5.16.0	
	Ecore Feature to Use: EAttribute Properties
	Attribute: name Trans. 50things
	Type: EString
	Additional Specification: Use an OCL invariant in the model:
	name.notEmpty()

Chapter 5 Exercises Solutions