En un espacio vectorial V se cumplen las siguientes propiedades:

- 1. $\{v\}$ linealmente dependiente $\iff v = 0$
- 2. $\mathbf{0} \in A \subset V \Longrightarrow A$ es linealmente dependiente
- 3. $\{\mathbf{u}, \mathbf{v}\}\$ linealmente dependiente $\iff \mathbf{u} = \lambda \mathbf{v}\$ (son proporcionales)
- 4. A linealmente independiente y $B \subset A \Longrightarrow B$ es linealmente independiente
- 5. A linealmente dependiente y $A\subset B\Longrightarrow B$ es linealmente dependiente
- 6. A linealmente dependiente \iff Existe $\mathbf{v} \in A$ que es combinación lineal de $A \setminus \{\mathbf{v}\}$
- 7. A linealmente independiente \iff No existe $\mathbf{v} \in A$ que sea combinación lineal de $A \setminus \{\mathbf{v}\}$

Interpretación geométrica de subespacios

Sean $V = \mathbb{R}^n$ y $S \subset \mathbb{R}^n$ es un subespacio vectorial.

- 1. Si dim S = 0, $S = \{0\}$ es un **punto** (el origen).
- 2. Si dim $S=1, S=L(\{\mathbf{u}\})$ es la **recta** que pasa por el origen con vector de dirección \mathbf{u} .
- 3. Si dim $S=2,\,S=L(\{\mathbf{u},\mathbf{v}\})$ es el **plano** que pasa por el origen con vectores de dirección \mathbf{u} y \mathbf{v} .
- 4. Si $2 < k = \dim S < n-1$, S es un k-plano que pasa por el origen.
- 5. Si dim S = n 1, S es un hiperplano que pasa por el origen.
- 6. Si dim S = n, $S = \mathbb{R}^n$ es todo el espacio.

Suma directa de subespacios

Si S y T son dos subespacios vectoriales, de un mismo espacio vectorial V, se dice que S+T es suma directa de los subespacios S y T, que se representa por $S \oplus T$, si es única la expresión de cada vector de la suma como un vector de S más otro de T.

La suma de
$$S$$
 y T es directa \iff $S \cap T = \{0\}$

Subespacios suplementarios

Dos subespacios S y T de un espacio vectorial V se llaman **suplementarios** si $V = S \oplus T$. Si $S \oplus T = U \subsetneq V$, se dice que S y T son suplementarios en U.

Si
$$V = S \oplus T$$
, entonces dim $V = \dim S + \dim T$. Además,

$$\left\{\begin{array}{l} \{\mathbf{v}_1,\ldots,\mathbf{v}_r\} \ \text{base de } S \\ \{\mathbf{v}_{r+1},\ldots,\mathbf{v}_n\} \ \text{base de } T \end{array}\right. \Longrightarrow \{\mathbf{v}_1,\ldots,\mathbf{v}_r,\mathbf{v}_{r+1},\ldots,\mathbf{v}_n\} \ \text{base de } V$$

y también:

$$\left\{\begin{array}{l} \{\mathbf{v}_1,\ldots,\mathbf{v}_r\} \ \ \text{base de } S \\ \{\mathbf{v}_1,\ldots,\mathbf{v}_r,\mathbf{v}_{r+1},\ldots,\mathbf{v}_n\} \ \ \text{base de } V \end{array}\right. \Longrightarrow L\left(\{\mathbf{v}_{r+1},\ldots,\mathbf{v}_n\}\right) \ \ \text{es suplementario de } S$$