Accelerating the Kernel-Independent Fast Multipole Method

Srinath Kailasa

A thesis submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Physics University College London July 4, 2020

Declaration

I, Srinath Kailasa, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.

Abstract

The Fast Multipole Method (FMM) is a numerical method to accelerate the solution of the 'n-body' problem, which appears in numerous contexts in science and engineering, for example in solving for gravitational or electrostatic potentials. It does so by approximating the Green's function of the system with analytic infinite series expansions (the origin of the 'multipole' in its name), and coalescing the effect of distinct distant sources together so as to reduce the number of computations. The analytic expansions of the original Fast Multipole Method depend on the Green's function of the system in question (Helmholtz, Laplace etc.), and in practice a new implementations must be written for a given system.

The Kernel-Independent Fast Multipole Method (KIFMM), first presented by Ying et al. [Lex04], is a similar approach that replaces the analytic series expansions with a continuous distribution of so called 'equivalent density' supported at discrete points on a box enclosing a set of particles. These equivalent densities are found by matching the potential they generate to those generated by the original sources at another surface in the far field. Usefully, this approach doesn't require multipole expansions of the Green's functions of a system, and therefore can be programmed in an agnostic way, hence the origin of it's name.

This thesis presents a Python implementation of the KIFMM, with investigations made into both mathematical and computational techniques for the acceleration of the algorithm. Python is chosen as it has emerged as a standard for scientific and data intensive computing in recent years, with a huge increase in usage and a well supported ecosystem of libraries and tools available for accelerating numerical codes. The wider context of this thesis is an ongoing collaboration with the ExaFMM Project [Rio11] to produce a Pythonic implementation of the KIFMM that can compete in terms of performance with a C++ equivalent. This thesis presents a systematic performance analysis of a naive implementation of the KIFMM algorithm, before proceeding to examine and implement acceleration techniques. The speed and accuracy of the implementation is tested for some simple Green's functions, and it concludes with a discussion on future avenues for investigation.

Contents

1	Intr	Introduction														•							
	1.1 Overview of the Analytic FMM																						
		1.1.1	Mo	tiva	atio	n.																	
		1.1.2	Alg	orit	thm	ıstı	ruc	tur	е.														
			Ana																				
	1.2	.2 Overview of the Kernel-Independent FMM																					
		1.2.1	Mo	tiva	atio	n.																	. (
		1.2.3	Ana	alys	sis																		. ,
_	Q .		_		. •		_																
2	Stra	ategy fo						_															4
	2.1	Bottlen	ıeck	Ar	aly	sis																	. 4
	2.2	Space-F	Filli	ng	Cur	ves																	. 4
	2.3	Operate	or (Cacl	hing	g.																	. 4
	2.4	SVD Compression																					
3	Experiments & Results														Ę								
	-	Section						·															
4	Conclusion												7										
	4.1	Section	ı 1 .					•															. ,
\mathbf{A}	App	Appendix													8								
	Δ 1	Section	٠ 1																				9

Introduction

- 1.1 Overview of the Analytic FMM
- 1.1.1 Motivation
- 1.1.2 Algorithm structure
- 1.1.3 Analysis
- 1.2 Overview of the Kernel-Independent FMM
- 1.2.1 Motivation
- 1.2.2 Algorithm structure
- 1.2.3 Analysis

Strategy for Practical Implementation

- 2.1 Bottleneck Analysis
- 2.2 Space-Filling Curves
- 2.3 Operator Caching
- 2.4 SVD Compression

Experiments & Results

3.1 Section 1

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula. Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam

vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula. å

Conclusion

4.1 Section 1

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Appendix

A.1 Section 1

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Bibliography

- [Lex04] Denis Zorin Lexing Ying George Biros. "A kernel-independent adaptive fast multipole algorithm in two and three dimensions". In: *Journal of Computational Physics* 196.2 (2004), pp. 591–626. DOI: http://dx.doi.org/10.1016/j.jcp.2003.11.021.
- [Rio11] Lorena A. Barba Rio Yokota. *ExaFMM User's Manual.* 2011. URL: http://www.bu.edu/exafmm/files/2011/06/ExaFMM-UserManual1.pdf.