A számításelmélet alapjai I. (Kilencedik gyakorlat)

Dr. Lázár Katalin Anna

Eötvös Loránd Tudományegyetem, Informatikai Kar 1117 Budapest, Pázmány Péter sétány 1/C. e-mail: lazarkati@elte.hu

2024. április 16.

Tematika

- A CYK algoritmus.
- Bar-Hillel vagy pumpáló lemma.

Példa 1

Tekintsük a $G = (\{S, A, B, X, Y, Z\}, \{a, b\}, P, S)$ grammatikát, ahol $P = \{S \rightarrow AY, Y \rightarrow XB, X \rightarrow BA, X \rightarrow ZA, Z \rightarrow BX, A \rightarrow a, B \rightarrow b\}!$ Döntsük el, benne van-e a grammatika által generált nyelvben az abbaab szó?

Példa 1

Megjegyzés

Bármely környezetfüggetlen grammatika és $w \in T^*$ esetében el tudjuk dönteni, hogy $w \in L(G)$ teljesül-e vagy sem.

A CYK (Cocke-Younger-Kasami) algoritmus:

- 1 Legyen G = (N, T, P, S) Chomsky normálformájú grammatika.
- 2 Kitöltünk egy háromszög alakú táblázatot, amelyben a sorok az $a_1 ldots a_n$ szót reprezentálják.
- 3 A táblázat $x_{i,j}$ eleme azon A nemterminálisokat tartalmazza, amelyekre $A \Longrightarrow^* a_i \dots a_j$ teljesül.

Példa 1

Megjegyzés

- 4 Az első sorban (alulról-felfelé) x_{ii} minden olyan A nemterminálist tartalmaz, amelyre $A \rightarrow a_i \in P$ teljesül.
- 5 A (j-i+1)-edik sorban levő x_{ij} -t a következőképpen számítjuk ki. Az x_{ij} minden olyan A nemterminálist tartalmaz, amelyre $A \Longrightarrow^* a_i \dots a_j$ teljesül. Ennek megfelelően minden olyan A nemterminálist tartalmazni fog, amelyre $A \to BC \in P$ fennáll, ahol $B \in x_{ik}$ és $C \in x_{k+1i}$, ahol $i \le k < j$.
- 6 $w = a_1 \dots a_n \in L(G)$, akkor és csak akkor, ha $S \in x_{1n}$.

Példa 1

A feladat megoldása: $S \in x_{16}$, tehát $abbaab \in L(G)$.

S					
Ø	Y				
Ø	X	Ø			
Ø	Ζ	Ø	Ø		
Ø	Ø	X	Ø	Ø	
Α	В	В	Α	Α	В
а	Ь	Ь	а	а	Ь

Példa 2

Tekintsük a $G = (\{S, A, B, C, D\}, \{a, b, c\}, P, S)$ grammatikát, ahol $P = \{S \rightarrow AB, A \rightarrow CA, A \rightarrow SS, B \rightarrow CD, A \rightarrow b, D \rightarrow a, C \rightarrow c, C \rightarrow b\}$. Döntsük el, benne van-e a grammatika által generált nyelvben az *abcacb* és a *bbcbba* szó?

Példa 2

 $S \notin x_{16}$, tehát $abcacb \notin L(G)$.

Ø					
Ø	Ø				
Ø	Ø	Ø			
Ø	S	Ø	Ø		
Ø	Ø	В	Ø	Α	
D	A, C	С	D	С	A, C
а	b	С	а	С	b

Példa 2

 $S \in x_{16}$, tehát $bbcbba \in L(G)$.

S					
Α	S				
Α	Α	S			
Ø	Α	Α	S		
Α	Ø	Α	Α	В	
A, C	A, C	С	<i>A</i> , <i>C</i>	A, C	D
b	b	С	Ь	b	а

Lemma 1

Minden L környezetfüggetlen nyelvhez meg tudunk adni két természetes számot, p-t és q-t úgy, hogy minden olyan szó L-ben, amely hosszabb, mint p, uvxyz alakú, ahol $|vxy| \le q$, $vy \ne \varepsilon$, és minden uv $^ixy^iz$ szó is benne van az L nyelvben minden $i \ge 0$ egész számra $(u, v, x, y, z \in T^*)$.

Példa 3

Bizonyítsuk be, hogy az alábbi nyelvek nem környezetfüggetlenek!

•
$$L_1 = \{a^n b^m a^n \mid n \geq m\}.$$

•
$$L_2 = \{ww \mid w \in \{a, b\}^*\}.$$

•
$$L_3 = \{a^{n^2} \mid n \ge 1\}.$$

Példa 3

Legyen p tetszőleges természetes szám, $w=a^pb^pa^p\in L_1$, amelyre $|w|\geq p$. Ekkor $\forall u,v,x,y,z\in\{a,b\}^*$ esetén, amelyre w=uvxyz, $|vxy|\leq p$, |vy|>0, ha $|vy|_b\neq 0$, akkor $uv^2xy^2z\notin L_1$, egyébként $(|vy|_b=0)\ uxz\notin L_1$.

Példa 3

A nyelvre nem teljesül a pumpáló lemma. Legyen p tetszőleges természetes szám, $w=a^pb^pa^pb^p\in L_2$, amelyre $|w|\geq p$. Ekkor $\forall u,v,x,y,z\in\{a,b\}^*$ esetén, amelyre w=uvxyz, $|vxy|\leq p$, |vy|>0, $uxz\notin L_2$.

Példa 3

A nyelvre nem teljesül a pumpáló lemma. Legyen p tetszőleges természetes szám, $w=a^{p^2}\in L_2$, amelyre $|w|\geq p$. Ekkor $\forall u,v,x,y,z\in\{a\}^*$ esetén, amelyre w=uvxyz, $|vxy|\leq p$, |vy|>0, $uv^2xy^2z\notin L_3$, mivel $|w|=p^2<|uv^2xy^2z|\leq p^2+p<(p+1)^2=p^2+2p+1$.

Példa 4

Bizonyítsuk be, hogy az $L = \{w \mid w \in \{a, b, c\}^*, |w|_a = |w|_b = |w|_c\}$ nyelv nem környezetfüggetlen!

Példa 4

• 1. megoldás (Bar-Hillel vagy pumpáló lemma segítségével:) Legyen p tetszőleges természetes szám, $w=a^pb^pc^p\in L$, amelyre $|w|\geq p$. Ekkor $\forall u,v,x,y,z\in \{a,b,c\}^*$ esetén, amelyre $w=uvxyz,|vxy|\leq p$, |vy|>0, $uxz\notin L$, mivel vy $\{a,b,c\}$ -ből legalább egy betűt nem tartalmaz, vagyis a nyelv nem teljesíti a Bar-Hillel vagy pumpáló lemma feltételeit, tehát nem környezetfüggetlen.

Példa 4

• 2. megoldás (a környezetfüggetlen nyelvek zártak a reguláris nyelvvel való metszetre): Legyen $L_1 = \{a^n b^n c^n \mid n \geq 0\}$. Tudjuk, hogy L_1 nem környezetfüggetlen nyelv. Mivel $L \cap \{a\}^* \{b\}^* \{c\}^* = L_1$ és $\{a\}^* \{b\}^* \{c\}^*$ reguláris, ezért L nem környezetfüggetlen nyelv.

Példa 5

Bizonyítsuk be, hogy az

- $L_1 = \{a^i b^{2i} c^j \mid i, j \ge 0\}$ nyelv környezetfüggetlen!
- $L_2 = \{a^i b^j c^{2j} \mid i, j \ge 0\}$ nyelv környezetfüggetlen!
- $L = L_1 \cap L_2$ nyelv nem környezetfüggetlen!

Példa 5

- Legyen $G_1 = (\{S, X, C\}, \{a, b, c\}, P_1, S)$, ahol $P_1 = \{S \to XC, X \to aXbb, X \to \varepsilon, C \to cC, C \to \varepsilon\}$. Ekkor $L(G_1) = L_1$.
- Legyen $G_2 = (\{S, A, X\}, \{a, b, c\}, P_2, S)$, ahol $P_2 = \{S \rightarrow AX, X \rightarrow bXcc, X \rightarrow \varepsilon, A \rightarrow aA, A \rightarrow \varepsilon\}$. Ekkor $L(G_2) = L_2$.
- Az $L=L_1\cap L_2=\{a^ib^{2i}c^{4i}\mid i\geq 0\}$ nyelvre nem teljesül a környezetfüggetlen nyelvek pumpáló lemmája. Legyen p tetszőleges természetes szám, $w=a^pb^{2p}c^{4p}\in L$. Ekkor $|w|\geq p$ és $\forall u,v,x,y,z\in \{a,b,c\}^*$ esetén, amelyre $w=uvxyz,|vxy|\leq p,|vy|>0, uxz\notin L$, mivel a vy szóban legfeljebb kétféle betű szerepelhet $\{a,b,c\}$ -ből.