Lecture 8: Statistical decision making: hypothesis testing

IST5573

統計方法 Statistical methods

2016/11/2

統計推論 (Statistical inference)

- 統計推論:根據樣本(sample)得到的証據, 對母體(population)所要探討性狀或問題作 下結論。
- 樣本不是母體,所以根據樣本所的結論帶 有不確定性(uncertainty)。
- 不確定性可以抽樣誤差(sampling error)及 機率(probability)加以量化。

Two methods of inferences

Estimation

- 1. point estimation: an estimator of a population parameter. E.g., $\bar{x} \rightarrow \mu$.
- 2. interval estimation: a point estimate plus an interval that expresses the uncertainty and variability associated with the estimate. E.g., confidence interval.
- Hypothesis testing: given the observed data, do we reject or accept a pre-specified null hypothesis in favor of an alternative?

Gene expression dataset: samplexprs.csv

- van't Veer et al. (2002)
 (http://www.nature.com/nature/journal/v415/
 n6871/full/415530a.html)
- 78 breast cancer patients, where 44 patients in good prognosis group and 34 in poor prognosis group

id	age	metastases	followup	ERp	J00129	Contig29982_RC	Contig42854	Contig42
FG80	52	0	7.35	100	-0.795	-0.387	0.199	-0.2
SF58	50		1.15	0	-0.509	0.459	-0.257	-0.0
DE72	54	0	12.12	100	-0.961	-0.631	0.037	-0.1
DE65	40	0	6.25	0	-0.749	0.699	-0.346	0.03
HG87	53	0	5.18	0	-0.426	-0.406	-0.355	0.42
HG88	37	I	1.09	100	-0.566	-0.596	-0.352	-0.3

Variable	Description
id	An unique identification number
age	Age at diagnosis of breast cancer (year)
metastases	0=good prognosis group, I=poor prognosis group
followup	Follow-up time (year)
ERp	ER-α expression level
J00129	log ₁₀ gene expression intensity ratios
Contig29982_RC	log ₁₀ gene expression intensity ratios

Hypothesis testing for continuous random variables

One-sample t-test

- Compare the mean of the sample to a given number
- Perform t-test for testing whether or not the population mean of \log_{10} gene expression intensity ratios on gene J00129 (μ_{J00129}) is equal to -0.5.
- Ho: $\mu_{J00129} = -0.5$ Ha: $\mu_{J00129} \neq -0.5$ (RMD example 8.2)

Two-sample t-test

- Compare the mean of the first sample minus the mean of the second sample to a given number, where two samples are independent
- Perform t-test for testing whether or not the difference of population mean log₁₀ expression intensity ratios on gene J00129 between good and poor prognosis groups is equal to 0.
- Ho: $\mu_G = \mu_P$ Ha: $\mu_G \neq \mu_P$ (RMD_example 8.3)

Notes on two-sample t-test

- Only be used if the variances of the two samples are assumed to be equal.
- When this assumption is not true, the test used is called Welch's t-test.
- These tests are applied when the statistical units underlying the two samples being compared are non-overlapping (i.e., independent).

F-test for equal variance

- Test whether the variances of the two samples are equal
- Perform F-test for testing whether or not the variance of log₁₀ expression intensity ratios on gene J00129 for the good prognosis group is equal to the variance for the poor prognosis group.
- Ho : $\sigma_G = \sigma_P$ Ha : $\sigma_G \neq \sigma_P$ (RMD_example 8.3)

ANOVA

- Compare the means among more than two samples, where all samples are independent
- ANOVA for testing the equality of population mean log₁₀ expression intensity ratios on gene J00129 among 11 ERp groups (0, 5, 10, 30, 40, 50, 60, 70, 80, 90, 100)
- Ho: $\mu_0 = \mu_5 = \mu_{10} = \mu_{30} = \mu_{40} = \mu_{50}$ = $\mu_{60} = \mu_{70} = \mu_{80} = \mu_{90} = \mu_{100}$ Ha: not Ho (RMD example 8.4)

Paired t-test

- Compare the difference between two responses measured on the same statistical unit to a given number
- Perform paired t-test for testing whether or not the difference of the log₁₀ expression intensity ratio on gene J00129 and the one on Contig29982_RC from the same individual is equal to 0.
- Ho: $\mu_{J00129} = \mu_{Contig29982_RC}$ Ha: $\mu_{J00129} \neq \mu_{Contig29982_RC}$ (RMD_example 8.5)

Notes on paired t-test

 Here, the two samples under comparison are not independent. They are from the same unit, and are correlated.

Notes on above t-tests

- Data are assumed to be normally distributed
- Or, the sample size needs to be large enough

Measures of association and hypothesis testing for categorical data

Binomial test

- Compare the population proportion to a specified number.
- Perform a test for testing whether or not the population proportion of ER negative (p) is equal to 0.4.

• Ho: p = 0.4 Ha: $p \neq 0.4$ (RMD_example 8.6)

Prospective study (cohort study 世代研究)

metastases (outcome)

ERs (risk)	poor (I)	good (0)	total	
+(1)	21	35	56	
- (0)	13	9	22	(1 FD. > 10
total	34	44	78	ERS= $\begin{cases} 1, & ERp > 10 \\ 0, & ERp \le 10 \end{cases}$

- Start with
 - 56 ERs postive patients
 - 22 ERs negative patients
- After a period of time, identify the numbers of patients who are poor or good groups.

Question: Does ER positive reduce the likelihood of poor prognosis?

Poor prognosis rates

ERs		
+	21/56 = 0.375	
-	13/22 = 0.591	
Total	34/78 = 0.436	

calculate a risk ratio or "relative risk"

$$RR = \frac{Pr(poor|ERs+)}{Pr(poor|ERs-)} = \frac{p_1}{p_2}$$

 p_1 can be estimated by 21/56

 p_2 can be estimated by 13/22

estimate of RR =
$$\widehat{RR} = \frac{21/56}{13/22} = 0.635$$

37 percent reduction in poor prognosis!

- $\begin{cases} RR = 1 \rightarrow \text{no association} \\ RR > 1 \rightarrow \text{positive association} \\ RR < 1 \rightarrow \text{negative association} \end{cases}$
- hypothesis testing:

$$\begin{cases} \text{Ho: RR} = 1 \\ \text{Ha: RR} \neq 1 \end{cases} \rightarrow \begin{cases} \text{Ho: } p_1 = p_2 \\ \text{Ha: } p_1 \neq p_2 \end{cases}$$

RMD_example 8.7

x^2 test / Fisher's exact test

metastases

ERs	poor (I)	good (0)	total
+(1)	21 (a)	35 (b)	56
- (0)	13 (c)	9 (d)	22
total	34	44	78

- Whether "metastases" is independent of "ERs", test the association between "metastases" and "ERs"
 - 1. x^2 test if $a, b, c, d \ge 5$
 - 2. Fisher's exact test if any a, b, c, d < 5

- Perform a x^2 test for testing whether or not the difference of the population proportions of being poor prognosis between ERs+ (p_1) and ERs- (p_2) is equal to 0.
- Ho: $p_1 = p_2$ Ha: $p_1 \neq p_2$
- If p < 0.05 (significant), the risk of poor prognosis for patients with ER positive as compared to patients with ER negative is 0.635. In other word, there is a possible 37% reduction in being poor prognosis when ER positive.
- RMD_example 8.8

Retrospective study (case-control study 病例對照研究)

metastases

ERs	poor (I)	good (0)	total
+(1)	21 (a)	35 (b)	56
- (0)	13 (c)	9 (d)	22
total	34	44	78

- If, in fact, start with
 - 34 cases (poor prognosis)
 - 44 controls (good prognosis)
- Then, see how many cases with ER positive and how many controls with ER positive

- In case-control study, we cannot estimate Pr(poor|ERs+), therefore, we cannot estimate RR.
- The odds of poor prognosis for ER positive is $\frac{p_1}{1-p_1}$. The odds of poor prognosis for ER negative is $\frac{p_2}{1-p_2}$.

The odds ratio = OR =
$$\frac{p_1/(1-p_1)}{p_2/(1-p_2)}$$
.

• The odds ratio can be estimated by

$$\widehat{OR} = \frac{ad}{bc} = \frac{21 \times 9}{35 \times 13} = 0.415$$

- The estimate of OR is good for both cohort and case-control study.
- When the prevalence Pr(poor) is small, the odds ratio is approximately equal to the relative risk₂₄

- $\begin{cases} OR = 1 \rightarrow \text{no association} \\ OR > 1 \rightarrow \text{positive association} \\ OR < 1 \rightarrow \text{negative association} \end{cases}$
- hypothesis testing:

$$\begin{cases} \text{Ho: OR} = 1 \\ \text{Ha: OR} \neq 1 \end{cases} \rightarrow \begin{cases} \text{Ho: } p_1 = p_2 \\ \text{Ha: } p_1 \neq p_2 \end{cases}$$

- RMD_example 8.7
- Use x^2 test / Fisher's exact test for hypothesis testing
- If p < 0.05 (significant), there is a possible 60% reduction in the odds of being poor prognosis when ER positive.

Matched-pair study

- Samples are not independent.
- Matched pairs (e.g., case-control pair matched on age).

ERS 0 1 1 0 0 0 0 1 0 0		poor	good
0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1	ERs	0	
		I	I
		0	0
			0
0 I 0 I 0 I 0 I 1 I 0 I 1		ĺ	I
0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1			I
0 1 1 0 1 1 0 1 1 1 1 0 1 1 1		0	I
0 1 1 0 1 1 0 1 1 1 1 0 1 1 1		0	I
		0	
0 I I			
			-
		•	
0			
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-
0 I I I I I I I I I I I I I I I O I O I			
		-	
0 I O I			
0 I 0 I 0 I			
0 I 0 I		0	
0 I		0	
		0	
		I	l I

Example: 34 poor prognosis (cases) match the first 34 good prognosis (controls) on age

 The data are displayed in a different type of table

controls (good)

		ERs+	ERs-	total
cases	ERs+	17 (a)	4 (b)	21
(poor)	ERs-	II (c)	2 (d)	13
	total	28	6	

a, d: concordant pairs = same exposureb, c: discordant pairs = different exposure

- The concordant pairs give us no information about differences. We focus on the discordant pairs.
- The estimated odds ratio of being poor prognosis for ERs+ versus ERs- is

$$\widehat{OR} = \frac{b}{c} = \frac{4}{11} = 0.363$$

McNemar's test

controls (good)

			, _ ,	
		ERs+	ERs-	total
cases	ERs+	17 (a)	4 (b)	21
(poor)	ERs-	II (c)	2 (d)	13
	total	28	6	

- "cases" and "controls" are not independent-use McNemar's test to test the association
- Matched case-control study, and "paired" study

 Perform a McNemar's test for testing if there is association between prognosis and ER status?

Ho: no association
Ha: have association

- If p < 0.05 (significant), conclude that there appears to be reduced risk of being poor prognosis for ER positive.
- RMD_example 8.9

Measure of agreement

Example:

- 1. 2 physicians diagnose the same patients. Do physicians agree on diagnosis?
- 2. Expression of J00129 and Contig29982_RC on the same patient. Do expressions of two genes agree?

Expression agreement:

Contig29982_RC > -0.5

		yes	no	total
J00129 > -0.5	yes	21	6	27
	no	30	21	51
	total	51	27	78

Question: Is there agreement? How much?

- I. Hypothesis test:
 - Ho: no agreement between J00129 and Contig29982_RC
 - → use McNemar's test
- 2. The proportion of agreement = $\frac{21+21}{78}$ = 53.8% disadvantage:
 - very strongly influenced by the distribution of positive and negative
 - it's possible that there will be a high agreement by chance alone

3. Kappa coefficient: measure of agreement excluding by chance alone

$$\kappa = \frac{p_0 - p_e}{1 - p_e},$$

where p_0 is the observed proportion of agreement, and p_e is the proportion expected by chance.

- R can calculate κ
- some guidelines:

```
0.8 \le \kappa: almost perfect agreement 0.6 \le \kappa < 0.8: substantial agreement 0.4 \le \kappa < 0.6: moderate agreement 0.2 \le \kappa < 0.4: fair agreement 0 \le \kappa < 0.2: slight agreement \kappa < 0: agreement is same as random
```

Cohen's kappa test

- Ho: $\kappa = 0$ Ha: $\kappa \neq 0$
- If not significant, the extent of agreement is same as random.
- RMD_example 8.10

age ≤ 40 metastases

ERs	

	poor	good	total
+	10	5	15
-	4	2	6
total	14	7	21

When there are more than one table

age > 40 metastases

ERs

	poor	good	total
+	11	30	41
_	9	7	16
total	20	37	57

Confounding

POTENTIAL CONFOUNDER:

→ associated

E=ERs (risk)

M=metastases (outcome)

A=age (confounder)

NOT A POTENTIAL CONFOUNDER:

Mantel-Haenszel test

- If the population is stratified (by "age"), we then use Mantel-Haenszel test to test the association between "metastases" and "ERs".
- Under Mantel-Haenszel test, we assume that the odds ratio between "metastases" and "ERs" for "age ≤ 40 " is the same as the odds ratio for "age > 40".

Mantel-Haenszel test (cont'd)

- We can use Breslow-Day test for homogeneity of the odds ratios.
- Use Mantel-Haenszel odds ratio (relative risk) to estimate the common odds ratio (relative risk).
- RMD_example 8.11

Nonparametric statistical methods

Nonparametric statistical methods

- A family of probability distributions that can be described by a few parameters is a parametric family.
- Parametric statistical procedures can be used when the sampling distribution is normal or approximately normal.
- A family of probability distributions is nonparametric if it cannot be easily described by a few parameters.

Use of nonparametric methods

- Nonparametric statistical procedures can be used when:
 - sample size(s) are small
 - assumptions of parametric testing procedures cannot be met
- Pro and con of nonparametric methods:
 - pro: insensitive to weird observations (outliers)
 - con: only looking at sign and rank → lose information, less powerful.

Nonparametric versus Parametric

Type of test	Nonparametric	Parametric
one sample test	sign test	one-sample t-test
paired data	Wilcoxon signed-rank test	paired t-test
two sample test	Wilcoxon rank-sum test (Mann-Whitney test)	two-sample t-test

RMD_example 8.12

Sign test

- Use for one-sample test
- Test whether or not the population mean of \log_{10} gene expression intensity ratios on gene J00129 (μ_{J00129}) is equal to -0.5.
- Ho: $\mu_{J00129} = -0.5$ Ha: $\mu_{J00129} \neq -0.5$
- It depends on the sign of the differences between observations and given number; not on their actual magnitude

Wilcoxon signed-rank test

- Use for paired data
- Test whether or not the difference of the log₁₀ expression intensity ratio on gene J00129 and the one on Contig29982_RC from the same individual is equal to 0.
- Ho : $\mu_{J00129} = \mu_{Contig29982_RC}$ Ha : $\mu_{J00129} \neq \mu_{Contig29982_RC}$
- Replaces the observed paired differences with ranks

Wilcoxon rank-sum test

- Related to the Mann-Whitney test
- Used with two independent samples
- Test whether or not the difference of population mean log₁₀ expression intensity ratios on gene J00129 between good and poor prognosis groups is equal to 0.
- Ho: $\mu_G = \mu_P$ Ha: $\mu_G \neq \mu_P$
- The two samples are combined and observations are ranked.

Kruskal-Wallis test

- More than 2 samples
- Test the equality of population mean log₁₀ expression intensity ratios on gene J00129 among 11 ERp groups (0, 5, 10, 30, 40, 50, 60, 70, 80, 90, 100)
- Ho : $\mu_0 = \mu_5 = \mu_{10} = \mu_{30} = \mu_{40} = \mu_{50}$ = $\mu_{60} = \mu_{70} = \mu_{80} = \mu_{90} = \mu_{100}$ Ha : not Ho

Summary

- Nonparametric statistical methods provide an alternative to parametric methods when the parametric assumptions cannot be met.
- The use of a nonparametric method does not require knowledge of the underlying population distribution(s) or the Central Limit Theorem.
- A nonparametric test result is usually more conservative than a parametric test result.
- Nonparametric methods are often used with laboratory studies and small sample sizes.

Computational methods

Permutation test

- Permutation method can be an extension from any powerful testing methods.
- The null distribution is calculated by randomly permuting the class labels.
- We can the estimate the p-value of a test.
- The method is more robust (model-free) than t-test and more efficient than Wilcoxon test.

Disadvantage:

- The resampling nature of the method makes it slow.
- The tail distribution is difficult to obtain for small replications. e.g. If 2 samples in good prognosis and 3 samples in poor prognosis, there're totally 5!/(2!×3!)=10 permutations. The p-value has no enough precision.

Permutation test: simple example

$$T = \frac{75 - 103.5}{\sqrt{\frac{18}{2} + \frac{4.5}{2}}} = -8.50$$

What's the null distribution of T?

If X and Y have the same distribution, then T should have the same probability of all the possible permutations.

$$(78, 72)(102, 105) \Rightarrow T = ?$$

 $(78, 102)(72, 105) \Rightarrow T = ?$
 $(78, 105)(72, 102) \Rightarrow T = ?$
 $(72, 102)(78, 105) \Rightarrow T = ?$
 $(72, 105)(78, 102) \Rightarrow T = ?$
 $(102, 105)(78, 72) \Rightarrow T = ?$

So p-value of the observed data is 2/6=0.33. Not significant

Permutation test

- Details in R:
 - Permutation Test Rstudio
 - (https://www.youtube.com/watch?v=nq3zC4dt6gc)
- And many others

Bootstrap

- Bootstrap methods are a class of nonparametric Monte Carlo methods that estimate the distribution of a population by resampling.
- Resampling methods treat an observed sample as a finite population, and random samples are generated (resampled) from it to estimate population characteristics and make inferences about the sampled population.
- Bootstrap methods are often used when the distribution of the target population is not specified; the sample is the only information available.

Bootstrap

- The bootstrap can estimate the standard error of the estimator of interest.
- Details in R:

Quick-R: Bootstrapping (http://www.statmethods.net/advstats/bootstrapping.html)

And many others