Homework 4

Kevin Guillen

MATH 103A — Complex Analysis — Spring 2022

Problem 4.1 Prove that the function

$$f(z) = e^{-\theta} \cos(\ln r) + ie^{-\theta} \sin(\ln r)$$

is differentiable when r > 0 and $0 < \theta < 2\pi$, and find f'(z) in terms of f(z).

Proof. We can use Theorem 7.4 to show that this function is differentiable under the given conditions for r and θ . We first see that,

$$f(re^{i\theta}) = u(r,\theta) + i\nu(r,\theta)$$

where $u(r,\theta)=e^{-\theta}\cos(\ln r)$ and $v(r,\theta)=e^{-\theta}\sin(\ln r)$. Meaning we must show that both these functions' partial derivatives exist with respect to r and θ , are continuous, and the CR equations are satisfied. We see the partial derivatives are,

$$\begin{split} u_r &= -\frac{e^{-\theta} sin(\ln r)}{r} & \nu_r = \frac{e^{-\theta} cos(\ln r)}{r} \\ u_\theta &= -e^{-\theta} cos(\ln r) & \nu_\theta = -e^{-\theta} sin(\ln r) \end{split}$$

which we know are continuous when r > 0 and $\theta \in (0, 2\pi)$. We also have that $ru_r = v_\theta$ and $u_\theta = -rv_r$, meaning then that this function is differentiable when r > 0 and $\theta \in (0, 2\pi)$.

We know by Discussion 7.7 that $f'(re^{i\theta}) = e^{-i\theta}(u_r(r,\theta) + iv_r(r,\theta))$, applying this to what we have we get,

$$\begin{split} f'(z) &= f'(re^{i\theta}) = e^{-i\theta} \left(-\frac{e^{-\theta} \sin(\ln r)}{r} + i \frac{e^{-\theta} \cos(\ln r)}{r} \right) \\ &= \frac{e^{-i\theta}}{r} (-e^{-\theta} \sin(\ln r) + ie^{-\theta} \cos(\ln r)) \\ &= \frac{e^{-i\theta}}{r} (i^2 e^{-\theta} \sin(\ln r) + ie^{-\theta} \cos(\ln r)) \\ &= i \frac{e^{-i\theta}}{r} (ie^{-\theta} \sin(\ln r) + e^{-\theta} \cos(\ln r)) \\ &= i \frac{e^{-i\theta}}{r} f(re^{i\theta}) \\ &= i \frac{e^{-i\theta}}{r} f(z) \end{split}$$

as desired.

Problem 4.2 Let f = u + iv be a complex-valued function defined on an open set $G \subseteq \mathbb{C}$. Suppose that the first-order partial derivatives of Re f = u and Im f = v exist and are continuous on G.

(a) Recall that if z = x + iy, then

$$x = \frac{z + \overline{z}}{2}$$
 and $y = \frac{z - \overline{z}}{2i}$

Treat f = f(x,y) as a function in two real-variables, and *formally* apply the chain rule in Calculus to obtain the expressions

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)$$
 and $\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$

Solution. By chain rule we have $\frac{\partial f}{\partial z} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial z}$. Before manipulating this, we evaluate the following terms as,

$$\frac{\partial x}{\partial z} = \frac{1}{2} \qquad \qquad \frac{\partial y}{\partial z} = \frac{1}{2i}$$

now plugging in and doing some algebra to our original equation given to us by the chain rule we get,

$$\begin{split} \frac{\partial f}{\partial z} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial z} \\ &= \frac{\partial f}{\partial x} \frac{1}{2} + \frac{\partial f}{\partial y} \frac{1}{2i} \\ &= \frac{1}{2} \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{1}{i} \right) \\ &= \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \end{split}$$

as desired.

Again by chain rule we have $\frac{\partial f}{\partial \overline{z}} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \overline{z}}$. Like before we note that,

$$\frac{\partial x}{\partial \overline{z}} = \frac{1}{2} \qquad \qquad \frac{\partial y}{\partial \overline{z}} = -\frac{1}{2i}.$$

Finally plugging this into the equation given by the chain rule and doing some algebra we get,

$$\begin{split} \frac{\partial f}{\partial \overline{z}} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \overline{z}} \\ &= \frac{\partial f}{\partial x} \frac{1}{2} - \frac{\partial f}{\partial y} \frac{1}{2i} \\ &= \frac{1}{2} \left(\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \frac{1}{i} \right) \\ &= \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) \end{split}$$

as desired.

(b) Define $\frac{\partial f}{\partial x} \coloneqq \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$, and similarly for $\frac{\partial f}{\partial y}$. Prove that f is holomorphic on G if and only if $\frac{\partial f}{\partial \overline{z}} = 0$.

Proof. (\Leftarrow) First we will move in the reverse direction and assume that $\frac{\partial f}{\partial \overline{z}} = 0$. Recall though that we obtained the expression $\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$. Meaning we have,

$$0 = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$$

$$= \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y}$$

$$= \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} + i \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} \right)$$

$$0 = \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} + i \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)$$

which implies the following two equalities,

$$0 = \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}$$

$$0 = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}$$

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x}$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$v_y = u_x$$

$$u_y = -v_x$$

meaning we not only have that the first order partial derivatives exist, but also that the Cauchy-Riemann equations are satisfied, giving us that f is holomorphic as desired.

 (\Rightarrow) With the work we did in the reverse direction, we can easily prove the forward direction by following what we did in reverse order. We assume that f is holomorphic meaning the Cauchy-Riemann equations are satisfied giving us that,

$$v_{y} = u_{x} \qquad u_{y} = -v_{x}$$

$$0 = u_{x} - v_{y} \qquad 0 = v_{x} + u_{y}$$

$$0 = \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \qquad 0 = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}$$

Recall we defined the following $\frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ and similarly for $\frac{\partial f}{\partial y}$, plugging these into the expression we obtained for $\frac{\partial f}{\partial \overline{z}}$ from the previous part we have,

$$\begin{split} \frac{\partial f}{\partial \overline{z}} &= \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) \\ &= \frac{1}{2} \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} + i \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} \right) \right) \\ &= \frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} + i \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right) \end{split}$$

$$= \frac{1}{2} (0 + i0)$$

= 0.

Meaning if f is holomorphic then $\frac{\partial f}{\partial \overline{z}} = 0$. Thereby proving the desired statement.

(c) (i) If f is holomorphic on G, prove that $f'(z) = \frac{\partial f}{\partial z}$.

Proof. We assume f to be holomorphic meaning we have that the CR-equations are satisfied, and that its derivative is equal to $u_x + i v_x$. Recall our expression for $\frac{\partial f}{\partial z}$, and note

$$\begin{split} &\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \\ &= \frac{1}{2} \left(u_x + i v_x - i (u_y + i v_y) \right) \\ &= \frac{1}{2} \left(u_x + v_y + i (v_x - u_y) \right) \\ &= \frac{1}{2} \left(u_x + u_x + i (v_x + v_x) \right) \\ &= \frac{1}{2} \left(2 u_x + i (2 v_x) \right) \\ &= u_x + i v_x. \end{split}$$

Therefore if f is holomorphic on G, we have that $f'(z) = \frac{\partial f}{\partial z}$

(ii) The *Jacobian* of the function $(x,y) \mapsto (u(x,y),v(x,y))$ is the determinant of the matrix

$$\begin{pmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{pmatrix}$$

If f is holomorphic on G, prove that the Jacobian equals $|f'(z)|^2 \geqslant 0$.

Proof. First let us compute the Jacobian, which is just taking the determinant of the matrix above turns out to be

$$\frac{\partial u}{\partial x}\frac{\partial v}{\partial y} - \frac{\partial u}{\partial y}\frac{\partial v}{\partial x} = u_x v_y - u_y v_x.$$

Now recall that if f is holomorphic we have the derivative to be $f' = u_x + iv_x$ and the CR-equations to be satisfied, so let us compute $|f'|^2$,

$$|f'|^2 = |u_x + iv_x|^2 = u_x u_x + v_x v_x$$
 apply CR-equations

$$= u_x v_y - u_y v_x$$

which is equal to the computation for the Jacobian. Giving us that the Jacobian is equal to $|f'(z)|^2$, as desired.

Problem 4.3 Suppose f is entire, with real and imaginary parts u and v satisfying

$$u(x, y) v(x, y) = 3$$

for all z = x + iy. Show that f is constant.

Proof. Let us consider taking the partial derivatives of the product of u and v, meaning we'll take the derivatives with respect to x and to y using chain rule,

$$uv_{x} + u_{x}v = 0 (\star)$$

$$uv_{y} + u_{y}v = 0.$$

Using that the fact that f was entire, we know it satisfies the Cauchy-Riemann equations which let us turn the last equation to

$$uu_x - v_x v = 0$$
 (\spadesuit).

But because we know \star and \spadesuit are 0, we know the following,

$$(\spadesuit)u + (\star)v = 0$$
$$u^2u_x - v_xvu + v_xvu + u_xv^2 = 0$$
$$u_x(u^2 + v^2) = 0$$

giving us that u_x is equal to 0. For similar reason we know the following is true too,

$$(\star)u - (\spadesuit)v = 0$$
$$u^2v_x + u_xvu - uvu_x + v_xv^2 = 0$$
$$v_x(u^2 + v^2) = 0$$

giving us that v_x is equal to 0.

Now because f is entire we know its derivative exists and can be expressed as $f' = u_x + iv_x$, plugging in what we know though we have that f' = 0, meaning that f must be constant, as desired.

Problem 4.4 Prove that, if $G \subseteq \mathbb{C}$ is a domain and $f : G \to \mathbb{C}$ is a complex-valued function with f''(z) defined and equal to 0 for all $z \in G$, then f(z) = az + b for some $a, b \in \mathbb{C}$.

Proof. We apply Theorem 8.4 and see that because f''(z) = 0 we have that f'(z) must be constant, which we will express as f'(z) = a, where a is some constant. Now consider the function g(z) = f(z) - az. If we take the derivative of g we know it is,

$$g'(z) = f'(z) - \alpha$$

$$g'(z) = \alpha - \alpha$$

$$g'(z) = 0.$$

Applying Theorem 8.4 again, because g'(z) = 0 we have that g(z) = b where b is some constant. Now if we solve for f(z) in g(z) we get,

$$g(z) = f(z) + \alpha z$$

$$\alpha z + g(z) = f(z)$$

$$\alpha z + b = f(z).$$

We see then that f(z) = az + b for some $a, b \in \mathbb{C}$, as desired.

Problem 4.5 Find all solutions to the equation $e^{2z} - 2ie^z = 1$.

Proof. First let us rewrite our equation as,

$$e^{2z} - 2ie^{z} = 1$$
$$e^{2z} - 2ie^{z} - 1 = 0$$
$$(e^{z})^{2} - 2ie^{z} - 1 = 0$$

now let $u(z) = e^z$, which let's us rewrite our equation again,

$$u^2 - 2iu - 1 = 0.$$

Now recall from Homework 1 we derived a formula to obtain the solutions of this equations as $z = \frac{-b \pm \Delta^{1/2}}{2a}$ where $\Delta = b^2 - 4ac$. Solving for these we see that

$$\Delta = (-2i)^2 - 4(-1) = -4 + 4 = 0$$

giving us,

$$z = \frac{2i \pm 0}{2} = i.$$

Recall that $u(z) = e^z$ meaning we have that $e^z = i$ as the solutions. Using the definitions of the complex exponential function we have that,

$$e^z = i$$
$$e^x e^{iy} = e^{i\pi/2}$$

giving us that $e^x = 1$ which means that x = 0. We get that y is,

$$y = \arg i = \frac{\pi}{2} + 2k\pi$$

giving us the solutions to be $z=\mathfrak{i}\left(\frac{\pi}{2}+2k\pi\right)$ where $k\in\mathbb{Z}.$

Collaborators: Peers at section on Wednesday.