

wultiverse

Logistic Regression

М

Before we start...

- → Make sure you are comfortable
- → Have water and maybe a strong coffee handy
- → If you need a break... take it!
- → If you need a stretch please go ahead!
- → Please mute yourselves if you are not talking
- → Have your video on at all times

...and let's get started!

Session Outline...

Day 1

- → Intro
- → Data Life Cycle
- → Data Analytics Life Cycle
- → Communication and Dealing with Stakeholders
- → Project Briefs

Day 2

- → Data Types
- → Data Sources
- → Data Formats
- → Extract/Transform/Load (ETL)
- → Wrap Up and Assignment

...and then you are done!

In this session we will...

- → Define logistic regression
- → Explain how logistic regression works
- → Build a logistic regression model with categorical labels
- → Interpret coefficients from logistic regression
- → Compute performance metrics for classification models
- > Construct a confusion matrix to help us evaluate classification models

Multiverse Private and Confidential

multiverse

Linear Regression Warm Up

ииltiverse

Ш

Building a Model

```
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
logreg.fit(X,y)
```


Multiverse Private and Confidential

М

Building a Model

```
logreg.predict_proba(X)
array([[0.9939759 , 0.0060241 ],
       [0.99296771, 0.00703229],
       [0.98949363, 0.01050637],
       [0.98949363, 0.01050637],
       [0.98811597, 0.01188403],
       [0.98614074, 0.01385926],
       [0.98614074, 0.01385926],
       [0.98526292, 0.01473708],
       [0.9817376 , 0.0182624 ],
       [0.98117062, 0.01882938],
       [0.98058638, 0.01941362],
       [0.97806663, 0.02193337],
       [0.97738831, 0.02261169],
       [0.9752281 , 0.0247719 ],
       [0.9752281 , 0.0247719 ],
       [0.97367755, 0.02632245],
```


Multiverse Private and Confidential

Let's Practice

wultiverse

Comparison to other Models

M

Comparison

Advantages of logistic regression:

- → Highly interpretable (if you remember how).
- → Model training and prediction are fast.
- → No tuning is required (excluding regularisation).
- → Features don't need scaling.
- → Can perform well with a small number of observations.
- → Outputs well-calibrated predicted probabilities.

Disadvantages of logistic regression:

- → Presumes a linear relationship between the features.
- → Performance is (generally) not competitive with the best supervised learning methods.
- → Can't automatically learn feature interactions.

ииltiverse

Evaluating our model

Accuracy

$$Accuracy = \frac{total\ predicted\ correct}{total\ predicted}$$

0.8769230769230769

Baseline

М

Baseline

```
lr.score(X_test,y_test)
```

0.8769230769230769

glass['household'].value_counts(normalize=True).max()

0.7616822429906542

Multivoroo

Multiverse Private and Confidential

Predicted Dog

FALSE NEGATIVE

Predicted Cat

TRUE POSITIVE

FALSE POSITIVE

Predicted Failed MOT

FALSE NEGATIVE

TRUE NEGATIVE

Predicted Passed MOT

TRUE POSITIVE

FALSE POSITIVE

М

Confusion!

True Negative

False Negative

$$precision = \frac{True\ Positives}{True\ Positives + False\ Positives}$$

$$recall = \frac{True\ Positives}{True\ Positives + False\ Negatives}$$


```
from sklearn.model_selection import train_test_split

from sklearn.metrics import precision_score, recall_score, classification_report

y_pred=lr.predict(X_test)

print('Recall: ' + str(recall_score(y_test,y_pred)))
print('Precision: ' + str(precision_score(y_test,y_pred)))

Recall: 0.42857142857142855
Precision: 1.0
```


	precision	recall	f1-score	support
0	0.86	1.00	0.93	51
1	1.00	0.43	0.60	14
accuracy			0.88	65
macro avg	0.93	0.71	0.76	65
ighted avg	0.89	0.88	0.86	65

Multiverse Private and Confidentia

ииltiverse

Let's Practice

Summary

Logistic Regression

- → What kind of machine learning problems does logistical regression address?
- → What do the coefficients in logistic regression represent? How does the interpretation differ from ordinary least squares? How is it similar

The confusion matrix

- → How do true positive rate and false positive rate help explain accuracy?
- → Why might one classification metric be more import to tune than another? Give an example of business problem or project where this would be the case.

Practice

Quiz Time!

Thank you

Get in touch info@multiverse.io