

CSE211 – Formal Languages and Automata Theory

U1L13 – Regular Expressions Part 2

Dr. P. Saravanan

School of Computing SASTRA Deemed University

Agenda

- Recap of previous class
- Finding RE: Examples
- Applications of RE
- Regular Expression an Automata
- Defining language by RE
- Precedence of operators in RE
- Some equalities

- $01* = \{0, 01, 011, 0111, \ldots\}$
- $(01*)(01) = \{001, 0101, 01101, 011101, \dots\}$
- (0+1)*
- 4. (0+1)*01(0+1)*
- 5. ((0+1)(0+1)+(0+1)(0+1)(0+1))*
- 6. ((0+1)(0+1))*+((0+1)(0+1)(0+1))*
- 7. $(1+01+001)*(\epsilon+0+00)$

- Construct a RE over $\Sigma = \{0,1\}$ that represents
 - All strings that have two consecutive 0s.

$$(0+1)*00(0+1)*$$

• All strings except those with two consecutive 0s.

$$(1*01)*1* + (1*01)*1*0$$

All strings with an even number of 0s.

- Used as commands for finding strings in Web browsers or text-formatting systems (such as UNIX grep commands)
- Used as lexical analyzer generator (such Lex or Flex)
- A lexical analyzer breaks source programs into "tokens" (keywords, identifiers, signs, ...)

Regular Expression an Automata

Main theorem for regular languages

A language is regular if and only if it is the language of some DFA

Defining a Language by RE

- A regular expression (RE) E and its corresponding language L(E) are defined recursively in the following way ---
 - Constants ε and φ are RE's defining languages $\{ε\}$ and φ, respectively, which are expressed as $L(ε) = \{ε\}$, L(φ) = φ
 - If a is a symbol, then a is an RE defining the language $\{a\}$ which may be expressed as $L(a) = \{a\}$
 - A variable like L (capitalized and italic) represents any language.

SASTRA ERGIREBING-MANAGEMENT-LAW-SCENCES-HAUMANTES-EDUCATION DEEMED TO BE UNIVERSITY (U/S 3 OF THE UGC ACT. 1956)

Defining a Language by RE

- Given two RE's E and F, then we have the following more complicated RE's.
- Union
 - E + F is an RE such that L(E + F) = L(E)UL(F)
- Concatenation—
 - EF is an RE such that L(EF) = L(E)L(F)
- Closure
 - E^* is an RE such that $L(E^*) = (L(E))^*$
- Parenthesization
 - (E) is an RE such that L((E)) = L(E)

Defining a Language by RE

- An RE defining a language of strings of alternating 0's and 1's is one of the two below:
 - $(01)^* + (10)^* + 0(10)^* + 1(01)^*$
 - $(\varepsilon + 1)(01)^*(\varepsilon + 0)$

- Highest "*" (closure)
- Next "." (concatenation) (left to right)
- Last "+" (union) (left to right)
- Use parentheses anywhere to resolve ambiguity
- The following are three ways to interpret the RE 01* +
 1 if parentheses are not used:
 - \bullet ($\mathbf{0}(\mathbf{1}^*)$) + $\mathbf{1}$ by precedence above;
 - (01)* + 1 (another meaning);
 - $0(1^* + 1)$ (a third meaning).

Some equalities (R is an RE)

- $lacktriangledown \Phi R = R \Phi = \Phi \text{ (so } \Phi = annihilator \text{ for concatenation)};$
- $\phi + R = R + \phi = R$ (so $\phi = identity$ for union);
- $\varepsilon R = R \varepsilon = R$ (so $\varepsilon = identity$ for concatenation);
- $(\varepsilon + a)^* = a^* = (a + \varepsilon)^*$
- $(\varepsilon + a)a^* = (\varepsilon a^* + aa^*) = a^* + aa^* = a^*$
- $a^*(\varepsilon + a) = (a^* \varepsilon + a^* a) = a^* + a^* a = a^*$

RE Examples

(a+b)*	Set of strings of a's and b's of any length including the null string. So L = { ϵ , a, b, aa , ab , bb , ba, aaa}
(a+b)*abb	Set of strings of a's and b's ending with the string abb. So L = {abb, aabb, babb, aaabb, ababb,}
(11)*	Set consisting of even number of 1's including empty string, So L= {ε, 11, 1111, 111111,}
(aa)*(bb)*b	Set of strings consisting of even number of a's followed by odd number of b's, so L = {b, aab, aabbb, aabbbbb, aaaab, aaaabbb,}
(aa + ab + ba + bb)*	String of a's and b's of even length can be obtained by concatenating any combination of the strings aa, ab, ba and bb including null, so L = {aa, ab, ba, bb, aaab, aaba,}

FA's & RE's

Theorems:

- Every language defined by a DFA is also defined by an RE.
- Every language defined by an RE is also defined by an e-NFA.
- Relations of theorems

Equivalence Relations among DFA's, NFA's, e-NFA's, and RE's.

Construction of RE: Example

Construct a regular expression for this DFA:

Summary

- Applications of RE
- Regular Expression an Automata
- Defining language by RE
- Precedence of operators in RE
- Some equalities

- John E. Hopcroft, Rajeev Motwani and Jeffrey D.
 Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson, 3rd Edition, 2011.
- Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class:

DFA to RE Conversion THANK YOU.