Decision Under Uncertainty

States, Actions and Policies

Guillaume.Lozenguez

@imt-nord-europe.fr

Acting over a dynamic system: the agent

Rarely deterministic, Mostly uncertain

Rational Agent

"I act, therefore I am."

- My actions have an effect over the world **AND** I have the choice.
- ► AI: Model the effect **AND** explore the choices

Deliberativ Architecture - BDI:

- ▶ *Believe*: refers to the knowledge of the agent
- Desire: agent's goals (classically states to reach)
- ▶ *Intention*: succession of actions to perform oriented toward the goals

Acting over a system: formally

Markov Chain (Andreï Markov 1856-1922)

A tuple: $\langle States\ (S),\ Transitions\ (T) \rangle$

- > States: set of configurations defining the studied system
- ▶ **Transitions**: Describe the possible evolution of the system state

$$T:S imes S o [0,1] \ T(s_t,\,s_{t+1})=P(s_{t+1}|s_t)$$

Vocabulary Parrenthesis: Hidden Markov Chain

> The system state is not directly observable.

Acting over a system: formally

Impact of the actions

> Actions: finite set of possible actions to perform

Updated Transition function:

The probabilistic evolution depends on the performed action.

 $T(s^t,\ a,\ s^{t+1})$ return the probability to reach s^{t+1} by doing a from s^t :

$$T(s^t,\ a,\ s^{t+1}) = P(s^{t+1}|s^t,a)$$

Multi-Variable Systems

State and Action space:

> Cartesian product over State and Action variables

Multi-variable Transition function:

The probabilistic evolution depends on the performed action.

$$T:S imes A imes S o [0,1] \qquad T\left(egin{bmatrix}x_1\x_2\x_n\end{bmatrix}, egin{bmatrix}a_1\a_2\x_n\end{bmatrix}, egin{bmatrix}x'_1\x'_2\x'_n\end{bmatrix}
ight)\in [0,1]$$

Model of 421: States and actions

States:

- The value of each die's face ($d_n \in [1,6]$) and the re-roll number ($h \in [2,0]$)
- So: **168** states (56 combinations over a horizon of 3).

Actions:

- The choice of roll again each die: [roll, keep]
- so **8** actions (2^3)

Action Example:

By choosing to "roll-*keep*-roll" in state: "6-4-3 (2)" to expect a "4-2-1 (1)"

Model of 421: Transition function with 421-game

► Transitions:

 All reachable states by rolling some dice with the probability to reach them.

$$T\left(egin{bmatrix} d_1 \ d_2 \ d_3 \ h \end{bmatrix}, egin{bmatrix} a_1 \ a_2 \ a_3 \end{bmatrix}, egin{bmatrix} d'_1 \ d'_2 \ d'_3 \ h' \end{bmatrix}
ight) \in [0,1] \quad ext{example: } T\left(egin{bmatrix} 6 \ 5 \ 1 \ 2 \end{bmatrix}, egin{bmatrix} r \ r \ k \end{bmatrix}, egin{bmatrix} 4 \ 4 \ 1 \ 1 \end{bmatrix}
ight) = 1/36$$

Model of 421: Transition function with 421-game

Transitions Example:

Choosing to "roll-*keep*-roll" from "6-4-3 (2)" implies 21 reachable states:

P()	=	[0, 1]	P()	=	[0, 1]
4 -1-1 (1)	=	1/36	•••		
4 -2-1 (1)	=	1/18	6- 4 -4	=	1/18
4 -2-2 (1)	=	1/36	6-5-4	=	1/18
•••			6-6-4	=	1/36

Choosing: building a policy of actions

 $ightharpoonup a policy (\pi)$: a function returning the action to perform Considering the current state of the system:

$$\pi:S o A$$

 $\pi(s)$: the action to perform in s

Choosing: building a policy of actions

Example of policy:

"Always target a 4-2-1": keeping only one 4, one 2 and one 1

S	$\pi^{421}(s)$	s	$\pi^{421}(s)$
1 -1-1	<i>keep</i> -roll-roll	•••	
<i>2-1-</i> 1	<i>keep-keep</i> -roll	4-2-1	keep-keep-keep
3- 1 -1	roll- <i>keep</i> -roll	•••	
4-1-1	keep-keep-roll	6-6-5	roll-roll
•••		6-6-6	roll-roll

(Invariant over the horizon h)

Automatize Decision Making

Choose an action in a given context (state):

- ightharpoonup Evaluate tuples $\langle s, a \rangle$
- Selects the best action:

$$\pi^*(a) = rg \max_{a \in A} \left(\mathit{Eval}(s,a)
ight)$$

Evaluation in Game Theory

Can be done a posteriori, with a lot of data:

 $ightharpoonup Eval(s,a) = ext{the probability of winning if doing } a ext{ in } s.$

$$\mathit{Eval}(s,a) = P(\mathit{win} \mid \pi(s) = a)$$

But also depends on all the future actions...

Can be done a posteriori, with a lot of *good* data...

(AlphaGo mars 2016 wins 4-1 the best professional player *Lee Sedol*)

Evaluation in 4-2-1

What is the optimal choices?

► For example, from 6-1-1 (2): roll-keep-keep or roll-roll-keep?

Scores in 421-game

Over the final combination (horizon = 0):

$$score(4-2-1) = 800$$

 $score(1-1-1) = 700$
 $score(x-1-1) = 400 + x$
 $score(x-x-x) = 300 + x$
 $score((x+2)-(x+1)-x) = 202 + x$
 $score(2-2-1) = 0$
 $score(x-x-y) = 100 + x$
 $score(y-x-x) = 100 + y$

Evaluation in 4-2-1

What is the optimal choices?

ightharpoonup For example, from 6-1-1 (2): roll-keep-keep or roll-roll-keep?

Requires to evaluate the possible final combinations after 2 roll-agains...

▶ It clearly depends on the horizon:

With an infinite costless roll-agains it is always preferable to target the **4-2-1**

Exercices, compute a policy

Basic learning process:

- Record a player experience (trace)
- ightharpoonup Compute average values for tuples $\langle s, a \rangle$
- Use those values to select the actions.

But depends on the initial player behavior...

Make it iterative:

▶ Use your new player to create new data *and* learn again...