=1	
·	
Notas de física 1	
Notas de lisica I	
Claudia Giribet	
Departamento de Física,	
Facultad_de_Ciencias_Exactas_y_Naturales,	
Universidad de Buenos Aires.	
E-mail: first@one.univ	

nd	lice_general	
		
Cin	emática	
1.1	Sistema_de_referencia_y_sitema_de_coordenadas	
	Grados de libertad y vínculos	
	Movimiento unidimensional rectilíneo	
	1	

${ m Cap\'itulo_1}$

Cinemática

La cinemática es la rama de la mecánica que estudia los movimientos sin tener en cuenta las causas que los producen. Desde su punto de vista es netamente descriptivo.

Comencemos por definir lo que es movimiento. Se dice que un objeto está en movimiento cuando cambia su posición en el tiempo. De igual forma, si su posición no cambia con el tiempo, se dice que está en reposo. Vamos a ver que tanto el concepto de movimiento como el de reposo son conceptos absolutos.

Por_ejemplo, supongamos_que_en_una_estación_hay_un_tren_esperando_a_arrancar. Un pasajero se encuentra asomado a la ventanilla, despidiéndose de alguien en el andén. En ese momento, el hombre en el andén observa que el pasajero del tren está en reposo (i.e. no se mueve) respecto de él. Otro pasajero, que se encuentra sentado junto_al_primero,_también_observa_que_este_se_encuentra_en_reposo_respecto_de_él. Es_decir, la_descripción_del_estado_de_movimiento_del_primer_pasajero_es_la_misma tanto_para_el_hombre_del_andén,_como_para_el_segundo_pasajero._Ahora_el_tren_se pone_en_marcha._El_hombre_del_andén_observa_que_su_amigo_en_el_tren_se_aleja_de él_(i.e._cambia_su_posición_en_el_tiempo_respecto_de_él);_y,_por_lo_tanto,_razona_que su_amigo_está_en_movimiento_y_él_está_en_reposo._Sin_embargo,_para_el_segundo pasajero,_el_estado_de_movimiento_del_primer_pasajero_no_ha_variado_y_si_varia_el del hombre del andén. Entonces el hombre en el andén se esta moviendo respecto de ambos pasajeros. £Quién tiene razón? Tanto el peatón como el segundo pasajero, lo único que ha cambiado es el punto de vista del observador. La moraleja es que para referir a un sistema en movimiento hace falta un observador o sistema de referencia. El_peatón_define_al_anden_como_su_sistema_de_referencia,_el_andén_está_en_reposo respecto_de_él,_por_lo_tanto,_cualquier_objeto_que_cambie_su_posición_respecto_del andén_estará_en_movimiento_respecto_de_este._El_segundo_pasajero_define_como_sus sistema_de_referencia_al_tren_y, por_lo_tanto,_el_peatón_esta_en_movimiento_respecto de él. Ninguno de los dos sistemas es absoluto, puede decirse que uno está en reposo y el otro en movimiento pero solo hablando en forma relativa (i.e. en reposo o en

movimiento_respecto_de_él)._Aunque_pareciera_natural_elegir_el_andén_como_sistema en reposo, observen que este se encuentra moviéndose con la Tierra respecto del Sol, que_el_Sol_se_encuentra_moviéndose_respecto_de_las_estrellas_y_así_se_podría_seguir.. Consecuencia Cuando se habla de un sistema en movimiento, siempre hay que referirlo_a_algún_sistema_de_referencia. Sistema_de_referencia_y_sitema_de_coordenadas_ 1.1Vamos_a_analizar_como_se_especifica_la_posición_de_un_objeto._Si_el_objeto_es extenso_(por_ejemplo,_el_triángulo_de_la_Fig._1.1)_el_observador_O_puede_elegir_ a) Un punto del objeto, y ver a que distancia, dirección y sentido se haya respecto de él. Si elige el punto A, lo anterior se puede representar con el vector que va desde O hasta A. La variación de la posición de A nos va a estar mostrando como se traslada todo el cuerpo pues A se traslada y todo el cuerpo lo acompaña. En_este_caso, estamos_ante_un_movimiento_de_traslación. b) Si_el_objeto_esta_girando, lo_anterior_no_basta_y_hay_que_dar_la_orientación_del objeto, por ejemplo, como varia la posición de B respecto de A. En este caso. estamos ante un movimiento de rotación. Si_el_objeto_se_puede_considerar_puntual, no_tiene_sentido hablar de su orientación, o sea no se puede hablar de rotación, entonces, el movimiento más general de un objeto puntual es una traslación. Igualmente, si se trata de un objeto_extenso_trasladándose_solo_basta_conocer_el_movimiento_de_un_punto_para_conocer_el_de_todos,_lo_podemos considerar puntual. Un ejemplo de esto último es un tren circulando_por_una_vía. Objeto_puntual__Es_aquel_cuyas_dimensiones_son_des-Figura_1.1 preciables frente a las distancias típicas del problema. Por ejemplo, un avión en vuelo para un observador en tierra. De acuerdo a (a), la posición se conoce si se conoce el segmento_orientado_desde_el_punto_de_referencia_O_al_punto_A,_al_cual_llamaremos vector posición de A. Como el movimiento se realiza en el espacio, conviene plantear un_sistema_de_coordenadas_para_poder_describir_este_vector_posición.

Notar que sistema de referencia no es igual a sistema de coordenadas.

Sistema de referencia Sistema al cual se refiere el movimiento.

Sistema de coordenadas Se adosa al sistema de referencia para describir el movimiento.

Ejemplo 1.1: Por ejemplo, en la Fig. 1.2 tenemos que $\vec{r_A}$ da la posición de A desde el sistema de referencia O y $\vec{r_A}''$ da la posición de A desde el sistema de referencia O^{I} . Entonces estamos cambiando de sistema de referencia.

En_la_Fig._1.3_tenemos_el_sistema_de_referencia_O_el_cual_tiene_dos_sistemas_de coordenadas_adosados_a_él,_(x,y,z)_y_ (x^{p},y^{p},z^{p}) ._El_vector_ $\overrightarrow{r_{A}}$ es_el_mismo_pero_cambia_su_descripción._Para_el_primer_sistema_de_coordenadas_tenemos_que_ $\overrightarrow{r_{A}}(t)$ _= $(x_{A}(t),y_{A}(t),z_{A}(t))$ mientras_que_para_el_segundo_sistema_de_coordenadas_es_ $\overrightarrow{r_{A}}(t)$ = $(x_{A}^{p}(t),y_{A}^{p}(t),z_{A}^{p}(t))$.

Supongamos_un_sistema_A_(Fig.1.4)_en_movimiento_respecto_del_observador_O. El_vector_posición_sigue_a_A_en_su_movimiento._Su_extremo_describe_la_curva_que_A describe_en_el_espacio. Esa curva_se_denomina_trayectoria_y_caracteriza_al_movimiento.

Figura_1.4

Para estudiar el movimiento de traslación nos interesa conocer:

La trayectoria (curva que describe en el espacio).

Magnitudes_físicas_que_lo_describen.

Relaciones_entre_las_magnitudes.

1.2 Grados_de libertad_y_vínculos

La_trayectoria_siempre_es_una_curva_en_el_espacio,_sin_embargo,_se_observa_que no es exactamente lo mismo describir el movimiento de:

- 1. Una mosca moviéndose libremente en la habitación.
- 2. Una mosca moviéndose sobre una mesa.
- 3. Una mosca moviéndose sobre un hilo tenso.

En_(1)_se_necesitan_tres_ejes_coordenados_para_describir_el_movimiento,_mientras que_en_(2)_bastan_solo_dos_y_en_(3)_solo_uno._____

Se_dice_que_un_sistema_tiene_ $n_grados_de_libertad_si_se_requieren_n_parámetros$ independientes_para_fijar_su_posición. Cada_grado_de_libertad_corresponde_a_una posibilidad_de_movimiento. En_el_caso_de_la_traslación_el_movimiento_puede_tener hasta_3_grados_de_libertad._ \pounds Cuando_se_tienen_menos?_Cuando_hay_condiciones materiales_que_limitan_el_movimiento_(vínculos). Ejemplo:_una_hormiga_se_mueve sobre_la_superficie_de_una_piedra. Esa_superficie_esta_caracterizada_por_ $z_=_f(x,y)$. Entonces_tengo_2_parámetros_independientes_ (x_e_y) ,_o_sea,_2_grados_de_libertad.

1.3 Movimiento unidimensional rectilíneo

En_el_espacio,_basta_con_trabajar_con_un_eje_cartesiano._Si_la_trayectoria_es_una recta_(Fig._1.5),_entonces_hacemos_coincidir_el_eje_de_coordenadas_con_la_trayectoria. Con_este_sistema_de_coordenadas_nuestro_vector_posición_es $\overline{F}(t) = x(t)\overline{x}$.

Podemos representar (Fig. 1.6) cómo varía x(t). Esta va a ser nuestra curva paramétrica u horaria de la trayectoria.

- 4 -

$$\langle \overline{v}_{x} \rangle_{-} = \frac{\Delta x}{\Delta t} \widehat{x} = \frac{x(t_{-} + \Delta t)_{-} - x(t)}{\Delta t} \widehat{x}$$

 $A_{esa_rapidez_media_se_la_llama_velocidad_media.$

Si_queremos_saber_la_rapidez_con_que_cambia_instante_a_instante,_afinamos_la medición tomando un Δt cada vez más chico.

$$\frac{\lim_{\Delta t \to 0} |x(t_- + \Delta t)_- - x(t)|}{\Delta t} | \widehat{x}| = \frac{|dx(t)|}{dt} | \widehat{x}| = \widehat{x}(t) | \widehat{x}| = v_{x}(t) | \widehat{x}|$$

 $v_x(t)$ _se_llama_la_velocidad_instant'anea_(o_velocidad_a_secas)_en_la_dirección_x._Observemos_que_su_valor_es_igual_a_la_pendiente_de_la_recta_tangente_a_la_curva_horaria en_cada_punto._

Veamos sus características:

La_velocidad_es_un_vector._En_general_vamos_a_ver_que_

$$\vec{v}(t) = \frac{d\vec{r}(t)}{dt}$$

En_nuestro_caso_(movimiento_unidimensional)

$$\vec{v}(t) = \frac{dx(t)}{dt}\hat{x}$$

donde \mathbb{Z} marca la dirección del movimiento, dt es la rapidez con que cambia la coordenada y dx es el sentido del movimiento.

$$egin{aligned} ar{ar{v}} = & egin{aligned} ar{ar{v}}(t_- + \Delta t)_- - ar{ar{v}}(t) \\ \hline ar{v} = & ar{ar{\omega}t} \\ \hline \Delta t & \Delta t \end{aligned}$$

Entonces \vec{v} es_paralelo_a $\Delta \vec{r}$ y $\Delta \vec{r}$ es_tangente_a_la_curva_cuando_ $\Delta t \rightarrow 0$.

 $\mathbf{Ejemplo_1.2:}$ Supongamos_que_x(t)_varia_segun_la_Fig.1.8

De la curva vemos que (observando el valor de la pendiente en cada punto)

Figura_1.7

Figura_1.8

	$v_{A},v_{B}>_{0},_v_{A}>_{v_{B}}$	L
_		
	$v_C = 0$	L
	$v_{D}, v_{E} < 0, v_{E} > v_{D} $	

En_nuestro_caso_(movimiento_unidimensional).

$$\vec{a}_x(t) = \vec{v}_x \hat{x} = \vec{x}\hat{x}$$

Ejemplo_1.3:_	Supongam	os_que_ $x(t)$ _	varia_segun	la_Fig	Por_analogía	_con_lo_a
erior_podemos.	_ver_que_la_a	celeración_es	_tangente_a_	la_curva	$v(t)$ _en_cada	_punto

Bibliografía	
[1] Author Title I Abbrew well (ween) no	
[1]_Author,_Title,_JAbbrevvol_(year)_pg	
[2] Author, Title, arxiv:1234.5678.	
[3] Author, Title, Publisher (year).	
-1-	