Ejemplo comparación de resultados predictores in sillico

Cambio de estudio PGF c.150C>T (chr14:74949519 C/T o NM_001207012.1: c.150C>T)

Exón 3 e intrones adyacentes:

El cambio se encuentra en la primera fila del exón 7 (la **c** en color granate).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

Donor splice s						Donor splice s	ites,	, direct	strano	i		
	pos 5'->3' 378 426	phase s 0 0	+	confidence 0.99 0.93	5' exon intron 3' CACCATGCAG^GTAGGTCCAT H CCACTAGAAG^GTACCTGGAG H		•	5'->3' 378 426	phase 0 0	strand + +	confidence 0.99 0.93	5' exon intron 3' CACCATGCAG^GTAGGTCCAT H CCACTAGAAG^GTACCTGGAG H
Donor splice s	ites, comple	ment str	and									
	134 0 + 0.18 GGGCTTCAAC 140 0 + 0.19 CAAGGGGCAC 161 0 + 0.44 CCTGACCCAC					Donor splice s	ites,	, comple	ment st	rand		
No donor si	ite predictio	ns above	thres	hold.		No december						
						No donor si	te pr	redictio	ns abov	/e thres	noia.	
	-		ina			Acceptor splice	0 511	es din	act str	and		
			trand	confidence	5' intron exon 3'	Acceptor Spile	C 21(.es, uii		anu		
					CCAGGTTTAG^GGCTTCAAGG		nos	5'->3'	nhase	strand	confidence	5' intron exon 3'
		0	+		GGGCTTCAAG^GGGCAGGTCT			134	0	+	0.17	GGGCTTCAAG^GGGCAGGTCT
	140	0	+	0.19	CAAGGGCAG^GTCTCTGCTG			140	0	+	0.19	CAAGGGGCAG^GTCTCTGCTG
	161	0	+	0.44	CCTGACCCAG^CCCCCTTGCT			161	0	+	0.43	CCTGACCCAG^CCCCCTTGCT
	180	1	+	1.00	TTCCTCGCAG^TGGTACCCTT H			180	1	+	1.00	TTCCTCGCAG^TGGTACCCTT H
	194	0	+	0.26	ACCCTTCCAG^GAAGTGTGGG			194	0	+	0.32	ACCCTTCCAG^GAAGTGTGGG
	198	1	+	0.07	TTCCAGGAAG^TGTGGGGCCG			198	1	+	0.18	TTCCAGGAAG^TGTGGGGCCG
Acceptor splic	e sites, com	plement	strand			Acceptor splice	e sit	tes, com	plement	strand		
pos 3'->5'	pos 5'->3'	phase s	trand	confidence	5' intron exon 3'	pos 3'->5'	2005	51-131	nhace	ctrand	confidence	5' intron exon 3'
430	128	2	-	0.97	CCCTCTCCAG^GTACCTTCTA	430	•	128	2	-	0.97	CCCTCTCCAG^GTACCTTCTA
419	139	1	-	0.42	TACCTTCTAG^TGGGCAGATT	419		139	1	-	0.42	TACCTTCTAG^TGGGCAGATT
412	146	_	-	0.19	TAGTGGGCAG^ATTCGGTGGC	412		146	2	-	0.19	TAGTGGGCAG^ATTCGGTGGC
391	167	2	-	0.30	CCCTGGGCAG^GGTATGGACC	391		167	2	-	0.19	CCCTGGGCAG^GGTATGGACC
320	238	0	-	0.15	ATCGCCGCAG^CAGCCGGTGC	331		107	2	-	0.50	CCCTGGGCAG GGTATGGACC

Se pierde uno de los sitios *acceptor* (en rojo) en la secuencia mutante. Este se encuentra por delante del exón, por lo que no participa en el *splicing* normal y perderlo no tendrá importancia. El resto de los sitios que se detectan son los mismos, aunque cambian las confianzas de cada uno de los sitios. La predicción que coincide con el *acceptor* del exón es la que tiene confianza 1 y es la única que se mantiene intacta en la secuencia mutante, por lo que es probable que no haya cambios en el *splicing*.

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for 10.42.3.123.573095.0:

Donor site predictions for 10.42.0.139.573107.0:

Start	End	Score	Exon Intron	Start	End	Score	Exon Intron
			catgcag gt aggtcc	371	385	0.98	catgcag gt aggtcc
419	433	0.87	ctagaag gt acctgg	419	433	0.87	ctagaag gt acctgg

Acceptor site predictions for 10.42.3.123.573095.0:

Acceptor site predictions for 10.42.0.139.573107.0:

Start	End	Score	Intron	Exon	Start	End	Score	Intron	Exon
160	200	0.96	agcccccttgc	ttcctcgc ag tggtacccttccaggaagtg	160	200	0.96	agcccccttgcttcctc	gc ag tggtacccttccaggaagtg
174	214	0.67	ctcgcagtggt	acccttcc ag gaagtgtggggccgcagcta	174	214	0.67	ctcgcagtggtaccctt	cc ag gaagtgtggggccgcagcta
506	546	0.56	ccagggcctct	tcttccta ag ccctccgatggctctgagcc	506	546	0.56	ccagggcctcttcttcc	ta ag ccctccgatggctctgagcc

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1)
agcta(c/t)tgccg	ctgccg	ttgccg	26235	50%

CRYP-SKIP

Parece que hay un sitio críptico de *splicing* dentro del propio exón, pero el cambio de interés (la primera **a** en minúsculas detrás de las mayúsculas, que indican el exón) no lo toma en consideración, por lo que no debe considerar que tenga algún efecto en el *splicing*.

Human Splicing Finder

Alteration of auxiliary sequences	Significa	ant alteration of ESE / ESS motifs ratio (-4)						
Algorithm/Matix		position	sequence					
ESE_ASF (ESE Site Broken)		chr14:74949519	CTGCCGG					
ESE_ASFB (ESE Site Broken)		chr14:74949519	CTGCCGG					
EIE (New ESE Site)		chr14:74949520	ATTGCC					
Sironi_motif3 (ESS Site Broken)		chr14:74949520	ACTGCCGG					
IIE (New ESS Site)		chr14:74949521	TATTGC					
IIE (New ESS Site)		chr14:74949522	CTATTG					
ESE_SRp40 (ESE Site Broken)		chr14:74949522	CTACTGC					
ESE_SC35 (ESE Site Broken)		chr14:74949524	AGCTACTG					

SVM-BPfinder

seq_id agez ss_dist bp_seq bp_scr y_cont ppt_off ppt_len ppt_scr svm_scr

Variant Effect Predictor tool

ENST00000238607.10:c.150C>T	14:74949519- A 74949519	synonymous_variant	PGF	ENSG00000119630 Transcript	ENST00000238607.10	protein_coding	3/7	485	150	50	Υ	TAC/TAT	-
ENST00000238607.10:c.150C>T	14:74949519- A 74949519	synonymous_variant	PGF	ENSG00000119630 Transcript	ENST00000405431.2	protein_coding	3/7	153	153	51	Υ	TAC/TAT	-
ENST00000238607.10:c.150C>T	14:74949519- 74949519	synonymous_variant	PGF	ENSG00000119630 Transcript	ENST00000553716.5	protein_coding	3/6	537	153	51	Υ	TAC/TAT	-
ENST00000238607.10:c.150C>T	14:74949519- A 74949519	non_coding_transcript_exon_variant	PGF	ENSG00000119630 Transcript	ENST00000555234.1	retained_intron	2/3	465	-	•	-	-	-
ENST00000238607.10:c.150C>T	14:74949519- 74949519	upstream_gene_variant	PGF	ENSG00000119630 Transcript	ENST00000555253.1	retained_intron	-	-	-	-	-	-	-
ENST00000238607.10:c.150C>T	14:74949519- A 74949519	synonymous_variant	PGF	ENSG00000119630 Transcript	ENST00000555567.6	protein_coding	3/7	508	153	51	Y	TAC/TAT	-
ENST00000238607.10:c.150C>T	14:74949519- 74949519 A	non_coding_transcript_exon_variant	PGF	ENSG00000119630 Transcript	ENST00000556939.5	retained_intron	3/4	508	-	-	-	-	-
ENST00000238607.10:c.150C>T	14:74949519- A 74949519	non_coding_transcript_exon_variant	PGF	ENSG00000119630 Transcript	ENST00000557748.5	retained_intron	2/5	366	-	-	-	-	-

ESEfinder

Solo se obtiene una predicción con puntuación positiva para 3'. Si se comparan las puntuaciones con las de la secuencia mutante, disminuyen muy poco, por lo que podría estar debilitando un sitio *acceptor*:

197 (-361)	AGTGTGGGGCCGCAGCTACTGCCGGGCGCT	-4.05130	197 (-361)	AGTGTGGGGCCGCAGCTACTGCCGGGCGCT	2.89210	197 (-361)	AGTGTGGGGCCGCAGCTACTGCCGGGCGCT	-4.05610	197 (-361)	AGTGTGGGGCCGCAGCTACTGCCGGGCGCT	2.77820
197 (-361)	AGTGTGGGGCCGCAGCTATTGCCGGGCGCT	-3.84770	197 (-361)	AGTGTGGGGCCGCAGCTATTGCCGGGCGCT	2.42800	19 (-361	AGTGTGGGGCCGCAGCTATTGCCGGGCGC	T -3.9370	1 (-36	97 AGTGTGGGGCCGCAGCTATTGCCGGGCGCT 1)	2.32980

En cuando a las ESE, la posición está entre 210 y 216 y no hay cambios destacables entre la secuecia WT (arriba) y la mutante (abajo):

		,	
206	210	206	210
(-352) CCGCAGC -1.10651	(-348) AGCTACT -2.88649	(-352) CCGCAGCT -4.21284	(-348) AGCTACT -3.01430
207	211	207	211
(-351) CGCAGCT 2.60677	(-347) GCTACTG -2.22486	(-351) CGCAGCTA 0.37743	(-347) GCTACTG -2.55576
208	212	208	212
(-350) GCAGCTA -4.05230	(-346) CTACTGC -0.43736	(-350) GCAGCTAC -4.30554	(-346) CTACTGC 4.56729
209	213	209	213
(-349) CAGCTAC -1.95879	(-345) TACTGCC -2.64433	(-349) CAGCTACT -3.18593	(-345) TACTGCC -4.42531
210	214	210	214
(-348) AGCTACT -4.26889	(-344) ACTGCCG -4.28616	(-348) AGCTACTG 3.99633	(-344) ACTGCCG 0.46059
211	215	211	215
(-347) GCTACTG -1.87050	(-343) CTGCCGG 3.74721	(-347) GCTACTGC -5.16068	(-343) CTGCCGG 1.30988
212	216	212	216
(-346) CTACTGC -2.56737	(-342) TGCCGGG 1.54498	(-346) CTACTGCC -1.81437	(-342) TGCCGGG 0.55274
213	217	213	217
(-345) TACTGCC -4.20076	GCCGGGC -1.52940	(-345) TACTGCCG 2.26820	(-341) GCCGGGC -3.69701
214	218	214	218
(-344) ACTGCCG -6.16466	(-340) CCGGGCG 0.32925	(-344) ACTGCCGG -2.92357	(-340)
215	219	215	219
(-343) CTGCCGG 3.50000	(-339) CGGGCGC 2.17372	(-343) CTGCCGGG -1.76742	(-339) CGGGCGC -1.76657
216	220	216	220
(-342) TGCCGGG 0.86693	(-338) GGGCGCT -0.06906	TGCCGGGC -1.99114	(-338) GGGCGCT -4.85220
206	210	206	210
(-352) CCGCAGC -1.10651	AGCTATT -2.78249	(-352) CCGCAGCT -4.21284	(-348) AGCTATT -4.73123
207	211	207	211
(-351) CGCAGCT 2.60677	(-347) GCTATTG -4.03665	(-351) CGCAGCTA 0.37743	(-347) GCTATTG -1.06451
208 GCAGCTA -4.05230	212	208	212
	CTATTGC -1.69211	(-350) GCAGCTAT -4.30554	(-346) CTATTGC 2.18266
209	213	209	213
(-349) CAGCTAT -0.10539	TATTGCC -4.71319	(-349) CAGCTATT -2.54149	(-345) TATTGCC -3.07704
210	214	210	214
(-348) AGCTATT -3.81118	(-344) ATTGCCG -4.03738	(-348) AGCTATTG 2.26731	(-344) ATTGCCG 0.14853
211	215	211	215
(-347) GCTATTG -4.39423	TTGCCGG 0.64216	(-347) GCTATTGC -5.91992	(-343) TTGCCGG 1.66657
212	216	212	216
(-346) CTATTGC -4.02469	(-342) TGCCGGG 1.54498	(-346) CTATTGCC -2.04521	(-342) TGCCGGG 0.55274
213	217	213	217
(-345) TATTGCC -6.51077	GCCGGGC -1.52940	(-345) TATTGCCG 1.69927	(-341) GCCGGGC -3.69701
214	218	214	218
(-344) ATTGCCG -5.56173	(-340) CCGGGCG 0.32925	(-344) ATTGCCGG -1.53517	(-340) CCGGGCG -1.22559
215	219	215	219
(-343) TTGCCGG 0.54952	(-339) CGGGCGC 2.17372	(-343) TTGCCGGG -1.78855	(-339) CGGGCGC -1.76657
216	220	216	220
TGCCGGG 0.86693	(-338) GGGCGCT -0.06906	TGCCGGGC -1.99114	(-338) GGGCGCT -4.85220

EX-SKIP

Seq	PESS (count)	FAS-ESS hex2 (count)	FAS-ESS hex3 (count)	IIE (count)	IIE (sum)	NI-ESS trusted (count)	NI-ESS all (sum)	PESE (count)	RESCUE -ESE (count)	EIE (count)	EIE (sum)	NI-ESE trusted (count)	NI-ESE all (sum)	ESS (total)	ESE (total)	ESS/ESE (ratio)
wt	0	4	2	36	539.1709	7	-12.9646	19	5	63	739.1964	67	95.7670	49	154	0.32
mut	0	4	2	38	563.5265	7	-13.9268	19	5	64	729.9196	66	94.0661	51	154	0.33

Allele mut has a higher chance of exon skipping than allele wt.

HOT-SKIP