Multiple Regression (Hands-on)

Dr. Alex Marsella

2024-03-01

A few things to note about multiple regression

 $Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \epsilon$ where k is the number of X variables.

- As you add additional X variables to a model, R-squared will always rise.
 - Adjusted R-squared will only rise if the new variable you added has a statistically significant relationship to Y.
 - Regular R-squared doesn't care about that, so it always increases as you add more variables.
- Interpreting individual variables in multiple regression is done "controlling for the other variables in the model".
 - We interpret the coefficient on X_1 , "controlling for" or "holding constant" all other X_k in the model.
 - Calculus interpretation: Partial derivative of Y with respect to (whichever) X. Treats all other variables as constants.

Iris Data

I think I can try to predict Petal Length as a function of Sepal Length AND Sepal Width.

I theorize a relationship: $PetalLength = \beta_0 + \beta_1 SepalLength + \beta_2 SepalWidth + \epsilon$

iris

Remember what our output tells us: $PredictedPetalLength = \hat{\beta}_0 + \hat{\beta}_1 SepalLength + \hat{\beta}_2 SepalWidth$ So then $PredictedPetalLength = -2.25 + 1.776 \times SepalLength - 1.339 \times SepalWidth$

Recall:

- We have a sample of 150 Irises, and from that, we can estimate β_1 with our estimate of the slope of the regression line: the sample estimator $\hat{\beta}_1$
- For those who took Calculus and not statistics, $\hat{\beta}_k$ is the derivative of Y with respect to X_k .
 - $-\ Predicted Petal Length = \hat{\beta_0} + \hat{\beta_1} Sepal Length + \hat{\beta_2} Sepal Width$
 - How much does predicted petal length change as Sepal Length increases by 1, holding Sepal Width constant (controlling for Sepal Width)?
 - * $\frac{\delta \hat{Y}}{\delta SepalLength} = \hat{\beta}_1$
 - How much does predicted petal length change as Sepal **Width** increases by 1, holding Sepal Length constant (controlling for Sepal Length)?
 - * $\frac{\delta \hat{Y}}{\delta SepalWidth} = \hat{\beta}_2$

Motor Trend Car Road Tests

mtcars regression

Medical Costs

Info contained here: https://www.kaggle.com/datasets/mirichoi0218/insurance?resource=download

insurance

Exercise: Student Performance

- https://www.kaggle.com/datasets/nikhil7280/student-performance-multiple-linear-regression
- 1. Estimate the following multiple regression models.
 - 1. $Performance = \beta_0 + \beta_1 HoursStudied + \beta_2 PreviousScores + \epsilon$
 - 2. $Performance = \beta_0 + \beta_1 HoursStudied + \beta_2 PreviousScores + \beta_3 ExtraCurriculars + \epsilon$
 - 3. $Performance = \beta_0 + \beta_1 HoursStudied + \beta_2 PreviousScores + \beta_3 ExtraCurriculars + \beta_4 SleepHours + \beta_5 SampleQuestions + \epsilon$
- 2. For each of the three, interpret, in literal terms (referencing the variables)
 - 1. For the first model, interpret the regression coefficients.
 - 2. Compare the adjusted r-squared across models, does it increase or decrease as you add more variables? What does it mean?
 - 3. Interpret the F statistic for each model.
 - 4. For the third model, predict Performance score given:
 - Hours Studied = 7, Previous Score = 85, Extracurriculars = Yes, Sleephours = 8, Sample Questions = 2
 - Treat any insignificant coefficient as if it were equal to 0, since we failed to reject the null that $\beta_k = 0$ for that X_k .