Algorithmische Geometrie, SoSe 2005 Skriptmitschrift vom 27. April 2005

Britta Weber Steffen Galan

Polygraph tests are 20th-century witchcraft.

Sam Ervin

Konvexe Hüllen

Gegeben ist eine endliche Punktmenge S, berechne die konvexe Hülle CH(S), angegeben durch in Reihenfolge sortierte Kanten auf dem Rand (z.B. im Uhrzeigersinn).

Abbildung 1: Beispiel einer konvexen Hülle

Definition. Ein Punkt p einer konvexen Menge K heißt Extrempunkt von K, falls eine Gerade g existiert mit $g \cap K = \{p\}$.

Satz. Der Rand der konvexen Hülle einer endlichen Punktmenge S ist ein konvexes Polygon, dessen Ecken die Extrempunkte von CH(S) sind.

Beweis. Siehe Übung! ("... nicht ganz so leicht, wenn man es in allen Einzelheiten zeigen möchte." [Herr Alt]).

Satz. Gegeben sei ein einfaches Polygon mit den Ecken p_1, \ldots, p_n in dieser Reihenfolge. Dann kann CH(S), wobei $S = \{p_1, \ldots, p_n\}$, in $\mathcal{O}(n)$ Zeit bestimmt werden.

Beweis. p_l, p_r seien Punkte mit minimaler/maximaler x-Koordinate. Dann teilt $\overline{p_l p_r}$ die konvexe Hülle CH(S) in 2 Hälften.

Abbildung 2: $\overline{p_l p_r}$ teilt CH(S)

Es reicht, einen Algorithmus anzugeben, welcher den oberen Teil der konvexen Hülle berechnet, der untere Teil geht analog. Wir nummerieren um, so daß $p_l = p_1, p_2, \ldots, p_n = p_r$ in entsprechender Reihenfolge. Die Datenstruktur ist ein Stack, welcher die bisher gefundenen Kandidaten q_0, q_1, \ldots, q_t (letztes Element oben auf) für die Ecken der konvexen Hülle enthält.

```
Initialisierung:
q_0 := p_r, q_1 := p_l;
s := 2;
\mathbf{while} \ (q_0, q_1, p_s) \ \text{Linkskurve do } s := s + 1;
push \ p_s;
\mathbf{while} \ s < n \ \mathbf{do}
\mathbf{repeat} \ s := s + 1 \ \mathbf{until} \ p_s \ \text{links von oder auf} \ \overline{q_t q_0} \ \text{oder} \ p_s \ \text{links von} \ \overline{q_{t-1} q_t}
\mathbf{while} \ (q_{t-1}, q_t, p_s) \ \text{keine Rechtskurve do pop};
\mathbf{push} \ p_s;
```


Abbildung 3: nach ersten while-Schleifenende und nach einigen Iterationen

<u>Korrektheit:</u> Wir zeigen folgende Invarianten in der zweiten **while**-Schleife: q_0, \ldots, q_t ist Teilfolge von p_1, \ldots, p_n mit

- 1. $q_0 = p_r, q_1 = p_l(=p_1), t \ge 2, q_t = p_s$
- 2. q_0, q_1, \ldots, q_t ist ein konvexes Polygon
- 3. obere konvexe Hülle von S ist Teilfolge von $q_0, \ldots, q_t, p_{s+1}, \ldots, p_n$

Dies zeigt man durch Induktion über s, woran man sich üben darf.

<u>Laufzeit:</u> Jede Ecke von P wird bei der Initialisierung oder in Zeile 7 und 9 durchlaufen, in Zeile 8 möglicherweise ein zweites Mal. Für die Operationen brauchen wir jeweils Konstante Zeit, also $\mathcal{O}(n)$.

Satz. Gegeben sei $S \subset \mathbb{R}^2$, |S| = n, dann kann CH(S) in Zeit $\mathcal{O}(n \log n)$ berechnet werden.

Beweis. Algorithmus:

- sortiere S lexikographisch nach x- und y-Koordinaten, wir erhalten Folge p_1, \ldots, p_n
- p_1, \ldots, p_n bilden einen einfachen Polygonzug, wende Algorithmus von vorher an.

Abbildung 4: Beispiel zum Algorithmus

Das Sortieren geht in $\mathcal{O}(n \log n)$, der vorherige Algorithmus braucht $\mathcal{O}(n)$, also brauchen wir insgesamt $\mathcal{O}(n \log n)$.

Satz (untere Schranke). Die Konstruktion der konvexen Hülle einer Menge von n Punkten in der Ebene erfordert $\Omega(n \log n)$ Zeit.

2

П

[Modell: algebraischer Entscheidungsbaum]

(Vergleichen und arithmetische Operationen $+,\cdot,/,-$). Auch damit braucht man $\Omega(n\log n)$ Zeit zum Sortieren reeller Zahlen.

Wir zeigen: Wenn man die konvexe Hülle berechnen kann, so kann man auch mit $\mathcal{O}(n)$ zusätzlichen Aufwand n reelle Zahlen sortieren.

Gegeben sei die Folge x_1, \ldots, x_n reeller Zahlen. Betrachte die Punkte $S = \{(x_i, x_i^2) \mid i = 1, \ldots, n\}$.

Abbildung 5: Beispiel zum Algorithmus

Berechne CH(S). Seien $p_1 = (x_{i_1}, x_{i_1}^2), \ldots, p_n = (x_{i_n}, x_{i_n}^2)$ die vom Algorithmus gelieferten Eckpunkte der konvexen Hülle in Reihenfolge, die i_k liefern dann eine Umsortierung der vorherigen x_i , so daß die Folge x_{i_1}, \ldots, x_{i_n} dann die Form $x_{i_1} \geq x_{i_2} \ldots \geq x_{i_k} < x_{i_{k+1}} \geq \ldots \geq x_{i_n}$ hat. Die Stelle i_k finden geht in $\mathcal{O}(n)$, dann sind die $x_{i_{k+1}}, \ldots, x_{i_n}, x_{i_1}, \ldots, x_{i_k}$ eine absteigend sortierte Folge.

Schauen wir uns Ideen anderer, schneller konvexer-Hüllen-Algorithmen an. Im folgendem sei $S = \{p_1, \dots, p_n\}$.

Graham-Scan

- 1. Bestimme Schwerpunkt $p = \frac{1}{n} \sum_{i=1}^{n} p_i$ und Strahlen von p zu allen Punkten in S in linearer Zeit. Wir sehen p als Ursprung, rechne mit Polarkoordinaten der Punkte.
- 2. Sortiere Punkte bezüglich der Polarkoordinaten (lexikographisch: 1. Winkel, 2. Abstand). Es sei q_1, \ldots, q_n sei diese Ordnung (gegen Uhrzeigersinn). Brauchen $\mathcal{O}(n \log n)$.
- 3. Setze $r_1 := q_1, r_2 := q_2$. Durchlaufe die Folge, nimm q_i in CH(S) auf, solange r_{j-1}, r_j, q_i eine Linkskurve bilden. Falls dies nicht mehr der Fall ist, entferne r_j, r_{j-1}, \ldots , bis wieder eine Linkskurve entsteht. Brauchen $\mathcal{O}(n)$.