

Cellphone Antenna Adjustment Report

Heyuan Xunwei Microwave Communication Technolory Co. Ltd.

RF Engineer: Wang Xinfeng Test Date: 2018.02.05

Catalog:

Test equipments

Project basic information

Project modification recording form

Antenna matching circuit

Active testing data

Suggestion of environment processiong and antenna optimization

Contact US

Test equipments:

integrated test instrument: CMW500

network analyzer: Agilent 5071B

3D dark room: SATIMO SG24

Project basic information

Customer name	Fortuneship
Project Name	KS907A
Cellphone type	bar
Main board Model	
Sub board Model	
Version	V5.0

Antenna matching circuit

Turning switch RF1 under the status of 2.2NH, switch to GSM900/850/WCMDA850/LTE-B5 and middle and high Frequency. Turning switch RF2 under the status of 2.2NH, switch to B12.

Three in one antenna matching circuit

GPS matching, start from the antenna feed point paralle connect 2.7NH, then series connect 1.2NH.

Active testing data

GSM 3D testing data (free zone)

Band	Channel	TRP	TIS (dark screen)
	1	26.45	
EGSM900	62	26.70	
	124	26.47	-102.51
	128	26.78	
GSM850	192	27.06	
	251	26.84	-102.64
	512	24.59	
DCS1800	699	24.85	
	885	24.92	-104.39
PCS1900	512	24.60	
	661	24.83	
	810	25.33	-104.24

WCDMA 3D testing data (free zone

)

Band	Channel	TRP	Channel	TIS (dark screen)
	4132	17.63	4357	
WCDMA850	4183	18.38	4408	
	4233	18.55	4458	-103.79
WCDMA1700	1312	17.21	1537	
	1413	17.07	1637	
	1513	17.50	1738	-104.80
WCDMA1900	9262	18.33	9662	
	9400	18.60	9800	
	9538	18.27	9938	-104.84

FDD 3D testing data(10M) (free zone)

Band	Channe I	TRP	TIS (dark screen)	Ва	Chann el	TRP	TIS (dark screen)
LTE O	18650	18.10		LTE O	19250	17.61	
LTE-2	18900	18.13		LTE-3	19575	17.80	
	19150	18.05	-93.87		19900	18.31	-93.92
	20000	17.60			20450	17.84	
LTE-4	20175	17.77		LTE-5	20525	18.19	
	20350	17.95	-93.49		20600	18.25	-92.49
	20800	17.79		LTE- 12	20800	16.59	
LTE-7	21100	18.91			21100	16.72	
	21400	18.12	-92.90	· -	21400	16.85	-92.73

GPS/WIFI active testing data

GPS	Max signal strength	satellite searching number	average position time	weather status
	43 (sometimes there were 4pcs over 40)	18	85	sunny
WIFI	strength of signal receiving while distance to WIFI router is 10M		strenth of signal re connect to netwo obsta	ork without any
	45		30)

Band	Channel	TRP	TIS
WIFI-B(sample 2)	1	12.13	
	7	12.88	
	13	12.19	-84.27

GPS testing data

stick conductive foam on sub pcba make sure grouding with the metal frame

stick electric conductivity fabric on LCD flex cable that can improve the GPS antenna performance, which means bright LCD interfere GPS.

stick electronic conductivity fabric on LCD to decrese the interference that bright LCD bring to low frequency

the flex cable here will leak the copper to grounding with metal frame

Speaker magnet steel stick electronic conductivity fabric to grounding with metal frame (motor also need do groundin processing)

heat release film minus 5~7mm, avoid GPS antenna

remove the heating release film on this area, increase antenna clearance

remove the heating release film on this area, make sure LCD rear frame grounding with metal frame

make sure LCD rear frame grounding which influence a lot to GPS

metal frame stick electronic conductivity foam to grounding LCD rear frame

Stick electronic conductivity foam on PCBA to grounding with LCD rear frame

stick electronic conductivity fabric on LCD rear frame to grouding PCBA.

stick electronic conductivity fabric on this area to grounding.

Contact US

Salac Sana Vianggui	Mo.: 15818512709
Sales: Song Xianggui	Mail: songxg@szcoe.com
DE Engineer Wong Vintena	Mo.: 15013576512
RF Engineer: Wang Xinfeng	Mail: wangxf@szcoe.com
Structure: Qiu Dazhong	Mo.: 13714901057 Mail: qiudz@szcoe.com

Thanks and best regards!