FONCTIONS POLYNOMIALES DU SECOND DEGRÉ E01

EXERCICE N°1 J'ai compris les jeux et je maîtrise les notations

On note f la fonction carré, c'est à dire $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{cases}$ et on note

 C_f sa courbe représentative dans un repère orthonormé (O, I, J) . On donne le point A(1,5; 2,25) .

- 1) Vérifiez que $A \in C_f$. 2) On pose $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto f(x) 3 \end{cases}$ et C_g sa courbe $\frac{1}{4}$

représentative.

Déterminez g(1,5) en vous aidant du point A.

3) On pose $h: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto f(x+2) \end{cases}$ et C_h sa courbe représentative.

Déterminez h(-0.5) en vous aidant du point A

EXERCICE N°2 Autour de la forme développée réduite

Parmi les fonctions suivantes, précisez, en justifiant, lesquelles sont des fonctions polynomiales du second degré.

1)
$$f_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (x+3)^2 - 5 \end{cases}$$

2)
$$f_2: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 2(x+7) - 5 \end{cases}$$

1)
$$f_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (x+3)^2 - 5 \end{cases}$$
 2) $f_2: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 2(x+7) - 5 \end{cases}$ 3) $h_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (4x-3)(2x+7) \end{cases}$

- 4) La fonction g définie pour tout réel x par $g(x) = 2(x-7)^2+1$.
- 5) La fonction h_2 définie pour tout $x \in \mathbb{R}$ par : $h_2(x) = (4x^2 + 8)(2 5x)$
- $h_3: \begin{cases} \mathbb{R} \to \mathbb{R} \\ (2x+1)(7-15x)+(1+6x)(5x-3) \end{cases}$

EXERCICE N°3 Autour de la forme développée réduite, je travaille l'abstraction

Deux définitions :

Soient f et g définies toutes les deux pour tout $x \in \mathbb{R}$.

- On appelle somme de f et g et on note f+g la fonction définie pour tout $x \in \mathbb{R}$ par : (f+g)(x) = f(x)+g(x)
- On appelle produit de f et g et on note fg la fonction définie pour tout $x \in \mathbb{R}$ par : (fg)(x) = f(x)g(x)
- 1) Montrer que la somme de deux fonctions affines ne pas être une fonction polynomiale du second degré.
- 2) Déterminer une condition nécessaire et suffisante pour que le produit de deux fonctions affines soit une fonction polynomiale du second degré.

EXERCICE N°4 La méthode de complétion du carré

Le principe

- 1) Soit a un nombre réel. Démontrez que, pour tout $x \in \mathbb{R}$, $x^2 + 2ax = (x+a)^2 a^2$
- **Application** 2) À l'aide de l'égalité que vous venez de démontrer, déterminer la forme canonique des trinômes suivants:
- **2.b)** $x^2 + 7x 8$ **2.c)** $x^2 3x + 6$ **2.d)** $x^2 + bx + 5$ 2.a) $x^2 + 4x + 7$ où $b \in \mathbb{R}$
- 3) Adaptez la méthode pour déterminer la forme canonique des trinômes suivants
- 3.a) $3x^2-5x+8$
- 3.b) $6x^2 + 7x 2$
- 3.c) $-4x^2+3x-7$

FONCTIONS POLYNOMIALES DU SECOND DEGRÉ E01

EXERCICE N°1 J'ai compris les jeux et je maîtrise les notations

On note f la fonction carré, c'est à dire $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{cases}$ et on note

 C_f sa courbe représentative dans un repère orthonormé (O, I, J) . On donne le point A(1,5; 2,25) .

- 1) Vérifiez que $A \in C_f$. 2) On pose $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto f(x) 3 \end{cases}$ et C_g sa courbe $\frac{1}{4}$

représentative.

Déterminez g(1,5) en vous aidant du point A.

3) On pose $h: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto f(x+2) \end{cases}$ et C_h sa courbe représentative.

Déterminez h(-0.5) en vous aidant du point A

EXERCICE N°2 Autour de la forme développée réduite

Parmi les fonctions suivantes, précisez, en justifiant, lesquelles sont des fonctions polynomiales du second degré.

1)
$$f_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (x+3)^2 - 5 \end{cases}$$

$$2) f_2: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 2(x+7) - 5 \end{cases}$$

1)
$$f_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (x+3)^2 - 5 \end{cases}$$
 2) $f_2: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 2(x+7) - 5 \end{cases}$ 3) $h_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (4x-3)(2x+7) \end{cases}$

- 4) La fonction g définie pour tout réel x par $g(x) = 2(x-7)^2+1$.
- 5) La fonction h_2 définie pour tout $x \in \mathbb{R}$ par : $h_2(x) = (4x^2 + 8)(2 5x)$

6)
$$h_3: \begin{cases} \mathbb{R} \to \mathbb{R} \\ (2x+1)(7-15x)+(1+6x)(5x-3) \end{cases}$$

EXERCICE N°3 Autour de la forme développée réduite, je travaillel'abstraction

Deux définitions :

Soient f et g définies toutes les deux pour tout $x \in \mathbb{R}$.

- On appelle somme de f et g et on note f+g la fonction définie pour tout $x \in \mathbb{R}$ par : (f+g)(x) = f(x)+g(x)
- On appelle produit de f et g et on note fg la fonction définie pour tout $x \in \mathbb{R}$ par : (fg)(x) = f(x)g(x)
- 1) Montrer que la somme de deux fonctions affines ne pas être une fonction polynomiale du second degré.
- 2) Déterminer une condition nécessaire et suffisante pour que le produit de deux fonctions affines soit une fonction polynomiale du second degré.

EXERCICE N°4 La méthode de complétion du carré

Le principe

- 1) Soit a un nombre réel. Démontrez que, pour tout $x \in \mathbb{R}$, $x^2 + 2ax = (x+a)^2 a^2$
- **Application** 2) À l'aide de l'égalité que vous venez de démontrer, déterminer la forme canonique des trinômes suivants:
- **2.b)** $x^2 + 7x 8$ **2.c)** $x^2 3x + 6$ **2.d)** $x^2 + bx + 5$ 2.a) $x^2 + 4x + 7$ où $b \in \mathbb{R}$
- 3) Adaptez la méthode pour déterminer la forme canonique des trinômes suivants
- 3.a) $3x^2-5x+8$
- 3.b) $6x^2 + 7x 2$
- 3.c) $-4x^2+3x-7$