Radiance Assimilation Status in WRF-Var

Zhiquan Liu

NCAR/MMM

Work supported by AFWA, NASA, NSF, KMA

Report at the 2nd CWG meeting
April 28 2008

Radiance Team

- Zhiquan Liu (Coordination, cloudy radiance)
- Tom Auligné (VarBC, AIRS)
- Hui-Chuan Liu (SSMIS etc.)
- Xin Zhang (software engineering aspects)
- Hui Shao (DATC extended tests)

NOTE: Some works on radiance in part-time.

Outline

- Components of radiance assimilation
- Recent Improvements with CRTM
- Radiance impact tests
- Cloudy radiance assimilation development using CRTM
- 4DVAR+Radiance Demonstration

Components of radiance assimilation in WRF-Var

- Data Ingestion
 - NCEP radiance BUFR data
 - AMSU-A/B, MHS, HIRS, AIRS
 - SSMIS from AFWA/NRL, UPP produced
- Radiative Transfer Model
 - Both CRTM_1.1 and RTTOV8_7
- Bias Correction
 - Scan bias and air-mass bias (Harris and Kelly, 2001)
 - Variational Bias Correction (Derber and Wu, 1998)
- Quality Control: AMSU/MHS, SSMIS, AIRS
- Thinning and Load balancing
- Observation error tuning (Desroziers & Ivanov, 2001)
- Monitoring tool

Work for 3DVAR/FGAT/4DVAR

Scan Bias (H&K, 2001)

- Scan Bias = d(limb) d(nadir)
 - d(.) is departure (omb or oma)
 - This is relative bias between limb and nadir

Scan bias statistics for SWA domain with 15 days data

CRTM Jacobian for SSMIS AMSU-like channels

Recent speed up of CRTM

Pre-release version (provided by Mark Liu) vs. the latest CRTM release

Overall Timing Summary (from WRF-Var tracing feature)

Routine Name	Calls	Elapsed Time (seconds)					Speed up			
	per PE	Average per PE	%	Minimum	Maximum	Total	%	Minimum	Maximum	64 PE
da crtm direct	103.0	0.51	0.2	0.3 on 5	0.8 on 8	16.53	16.6	0.1 on 56	0.4 on 7	32.63
da_crtm_direct	103.0	0.23	0.1	0.1 on 58	0.5 on 15	7.84	8.7	0.0 on 34	0.2 on 15	33.77

Forward model 2.2 times faster

da_crtm_tl	2162.0	15.06	7.3	7.4 on 57	25.9 on 8	474.11	477.2	3.5 on 26	12.5 on 8	31.48
da_crtm_tl	2162.0	8.76	4.6	4.3 on 26	16.7 on 15	277.02	306.0	2.1 on 26	8.4 on 15	31.61

Tangent Linear model 1.7 times faster

Adjoint model 1.67 times faster

DATC extended tests

- NCAR/DATC: Data Assimilation Testbed Center
 - Parallel with NCAR/DTC (Developmental Testbed Center), focus on tests for model part
- DATC Testbeds for radiance impact
 - East Asia
 - Atlantic
 - Antarctic

DATC: Antarctic Testbed

- 57L, 60km
- model top: 10mb
- Full cycling exp. for 14 days
 - 1 ~ 14 October 2006
- GTS: assimilate NCAR conventional obs
- GTS+AMSU-A (NCEP BUFR rad.)
 - NOAA-15/16/18, AMSU-A, ch. 4~9
 - Radiance used only over water
 - +-2h time window
 - Bias Correction (H&K, 2001)

36h forecast vs. Sound

Cloudy radiance Assimilation

- CRTM cloudy radiance Forward/TL/AD calculation interface implemented
 - Input: hydrometeors profiles and particle radius
- Particle size is diagnosed from cloud water content (Bauer, 2001)
- No hydrometeor control variables available in WRF-3DVAR, instead Total Water (Qt) as control variable, and a warm-rain process' TL/AD is used to partition Qt into cloud water and rain (Xiao et al., 2007) in 3DVAR
 - Warm-rain process limits the application
- Initial test with WSM3 microphysics scheme for hydrometeors forecast with a 4km resolution
 - Include cloud water/ice, rain/snow, no mixture phase

AMSU-B cloudy radiance calculation case

NOAA-17-AMSUB Tb along CloudSat path

4DVAR vs. 3DVAR

Forecast Time (hours)

Future plans

- Add more instruments
 - IASI, GOES platforms
- Tune the system for various testbeds
- Further developments for cloudy radiance assimilation and 4DVAR+radiance
- Explore ensemble-based radiance assimilation

