

Monte Carlo radiation transfer and computational physics

Lewis McMillan

Im959@st-andrews.ac.uk

Supervisors:

Dr. K. Wood

Prof. C.T.A. Brown

github.com/lewisfish

Monte Carlo Radiation Transfer

http://www.atomicarchive.com

www.kevinbenson.com

T. Robitallie SAMCSS 2015

Start Launch Photon **Move Photon** Hit Boundary? Fresnel reflect or transmit? Yes Absorb or Scatter Photon Dead? Yes No Last Photon? No Finish

Monte Carlo Radiation Transfer

Uses random numbers and interaction probabilities to simulate photon propagation

Voxel Model

Voxel Model

5 layer skin model

- 5 layer skin model
- Various absorbers:
 Blood, Melanin,
 Bilirubin, water, fat...

$$\mu_a^{layer} = 2.3 \sum_i C_i \mathcal{E}_i + \sum_j f_{v.j} \mu_{a.j}$$

5 layer skin model

- 5 layer skin model
- Various absorbers: Blood,
 Melanin, Bilirubin, water, fat...
- Various fluorophores: NADH, FAD, Riboflavin, Tyrosine...

Fresnel Reflections/Refractions

Model this at voxel boundaries

$$R_s = \left| \frac{n_1 cos\theta_i - n_2 cos\theta_t}{n_1 cos\theta_i + n_2 cos\theta_t} \right|^2$$

$$R_t = \left| \frac{n_1 cos\theta_t - n_2 cos\theta_i}{n_1 cos\theta_t + n_2 cos\theta_i} \right|^2$$

$$R = \frac{1}{2}(R_s + R_p)$$

Motivation

- Cardiovascular disease one of the largest causes of death
- Traditional factors do not fully explain incidence of disease
- Research towards novel biomarkers

Autofluorescence

 No literature values for concentration of fluorophores

Genetic Algorithms

 $=Xrln\$=o^{O=})FOkiV$

Genetic Algorithms

- Determine depth of fluorescence
- Use GA + experimental images
- Tumor location, diseased organs...

metamouse.com

- Triangular meshes
- Can form smooth surfaces with enough triangles
- Used in Movie and video game industries

- Photon propagates in (nx, ny, nz) direction
- In voxel model calculate distance to edge of current voxel
- In triangular mesh calculate
 T_{triangle} distance to triangle

 If T₁ + T₂ > T_{triangle} then hits triangle else continues as normal

 If T₁ + T₂ > T_{triangle} then hits triangle else continues as normal

- If t₁ + t₂ > t_{triangle} then hits triangle else continues as normal
- Hits triangle, change optical properties continue...

Adaptive meshes

Adaptive meshes

Level 0 axis x

Level 0 axis x

Level 1 axis y

Rahman et al. Lasers in surgery (2009)

J. Cummings et al. Applied Optics (1993)

V. Maden, ukdermatologist.co.uk

$$\frac{\partial u}{\partial t} = \alpha \nabla^2 u + S$$

$$S = -hA(T_{\infty} - T) - \sigma \varepsilon A(T_{\infty}^4 - T^4) + \dot{q}$$
Convective Radiative Laser Heat

$$U_{x} = r_{x}(T_{i-1,j,k}^{n} - 2T_{i,j,k}^{n} + T_{i+1,j,k}^{n})$$
 $U_{y} = r_{y}(T_{i,j-1,k}^{n} - 2T_{i,j,k}^{n} + T_{i,j+1,k}^{n})$
 $U_{z} = r_{z}(T_{i,j,k-1}^{n} - 2T_{i,j,k}^{n} + T_{i,j,k+1}^{n})$
 $T_{i,j,k}^{n+1} = T_{i,j,k}^{n} + U_{x} + U_{y} + U_{z}$
 $T_{i,j,0}^{n+1} = U_{x}|_{k=0} + U_{y}|_{k=0} + r_{z}(2T_{i,j,1}^{n} + 2\gamma - 2\beta T_{i,j,0}^{n} + \eta(T_{\infty}^{4} - T_{i,j,0}^{4}))$
 $\gamma = \frac{\Delta_{x}h}{\kappa}t_{\infty}$
 $\eta = \sigma \varepsilon A\beta$
 $\beta = 1 + \frac{\Delta_{x}h}{\kappa}$
 $r_{p} = \frac{\alpha_{p}\Delta_{t}}{\Delta_{p}}$

Modelling Tissue Ablation

$$\Omega(t) = \int_{t_0}^{t_f} A e^{\left(-\frac{\Delta E}{RT}\right)dT}$$

- Arrhenius damage model
- Taken from chemistry
- Used widely in literature for tissue damage

Code & Cake

- Any Questions?
- Future talks

