Mechanics Equations

November 20, 2016

Version 5.1	$U_q = mg\Delta h$
Units:	$U_G = \frac{-Gm_1m_2}{R}$
$Joule J = kg m^2/s^2$	$U_e = \frac{1}{2}k\Delta x^2$
Newton $N = kg m/s^2$	$\Sigma E_f - \Sigma E_o = \Sigma W_{NC}$
Pascal $Pa = N/m^2$	$\vec{p} = m\vec{v}$
Watt $W = J/s$	$\Sigma \vec{p_0} = \Sigma \vec{p_f}$
1 J = 1 N m	$ec{J}=\Deltaec{p}$
Some Metric Prefixes:	$\vec{J} = \int \vec{F}(t)dt$
$kilo k = 10^3$	$x_{CM} = \sum m_i x_i$
centi $c = 10^{-2}$	Power $P = W/t$
$mili m = 10^{-3}$	Angular Quantities:
micro $\mu = 10^{-6}$	$R\theta = d$
nano n = 10^{-9}	$R\omega = v_t$
pico p = 10^{-12}	$R\alpha = a_t$
Constant Acceleration:	Constant Angular Acceleration:
$v(t) = v_0 + at$	$\omega(t) = \omega_0 + \alpha t$
$x(t) = x_0 + v_0 t + \frac{1}{2}at^2$	$\theta(t) = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$
$v(t)^2 = v_0^2 + 2a(x(t) - x_0)$	$\omega(t)^2 = \omega_0^2 + 2\alpha(\bar{\theta}(t) - \theta_0)$
Forces:	Torque, Angular Momentum:
$\sum_{\vec{r}} \vec{F} = m\vec{a}$	$\tau = rF\sin(\theta) = rF_{\perp} = r_{\perp}F$
$\vec{F_{12}} = -\vec{F_{21}}$	$ec{ au} = ec{r} imes ec{F}$
$F_{f(k)} = \mu_k F_N$	$I = \Sigma m_i r_i^2$
$F_{f(s)} \le \mu_s F_N$	$I_{new} = I_{cm} + mh^2$
$F_g = mg$	$I = \int r^2 dm$
$F_G = \frac{Gm_1m_2}{R^2}$	$\Sigma \tau = I\alpha$
$\vec{F_e} = -k\Delta \vec{x}$	$L = I\omega = rp\sin\theta$
$G = 6.67 \times 10^{-11} \text{N m}^2/\text{kg}^2$	$ec{L}=ec{r} imesec{p}=Iec{\omega}$
$g = 9.8 \text{m/s}^2$	$\Sigma ec{L_0} = \Sigma ec{L_f}$
$a_c = v^2/R = \omega^2 R$	$E_{krot} = \frac{1}{2}I\omega^2$
$\sum ec{F} = rac{dec{p}}{dt}$	$T=1/\bar{f}$
Work, Energy and Momentum:	$\omega = 2\pi f$
$W = Fd\cos(\theta)$	$v = \frac{2\pi r}{T}$
$W = Fd_{\parallel} = F_{\parallel}d$	Pressure/Fluids:
$W = \int \vec{F}(t)dt$	$1 \text{ atm} = 1.013 \times 10^5 \text{ Pa}$
$W = \vec{F} \cdot \vec{d}$	1 torr = 1 mm Hg
$E_k = \frac{1}{2}mv^2$	760 torr = 1 atm
$\Sigma W = \Delta E_k$	$1 \text{ bar} = 10^5 \text{ Pa}$

$$\begin{split} \rho &= m/V \\ P &= F/A \\ P(d) &= P_0 + \rho g d \\ P &= 1/2 \rho v^2 + \rho g h = \text{const} \\ A_1 v_1 &= A_2 v_2 \\ F_B &= \rho_{fluid} V_{disp} g \\ \text{Oscillations:} \\ x(t) &= A \sin(2\pi t/T) \text{ or } \\ x(t) &= A \cos(2\pi t/T) \\ T_s &= 2\pi \sqrt{\frac{l}{k}} \\ T_p &= 2\pi \sqrt{\frac{l}{g}} \\ \text{Waves:} \\ y(x,t) &= A \sin(kx \pm \omega t) \text{ or } \\ x(t) &= A \cos(kx \pm \omega t) \\ T &= 1/f = 2\pi/\omega \\ k &= 2\pi/\lambda \text{ and } \omega = 2\pi f = 2\pi/T \\ v &= f\lambda \\ \text{Sound:} \\ v_{sound} &= 343 \text{ m/s} \\ \beta &= 10 \log_{10}(I/I_0) \\ I_0 &= 1 \times 10^{-12} \text{W/m}^2 \\ f' &= \frac{f_0}{1\pm \frac{v_0}{k}} \\ f' &= f_0(1 \pm \frac{v_0}{v}) \\ f_b &= |f_1 - f_2| \\ \text{Temperature:} \\ T(K) &= T(C) + 273.15 \text{ K} \\ \Delta L &= \alpha L_0 \Delta T \\ L &= L_0(1 + \alpha \Delta T) \\ PV &= nRT \\ PV &= Nk_BT \\ PV &= Nk_BT \\ E_k &= E_{Kavy} = \frac{1}{2}mv^2 = \frac{3}{2}k_BT \\ \frac{1}{2}mv^2_x &= \frac{1}{2}k_BT \\ R &= 8.315 \text{ J/mol K} = 1.99 \text{ cal/mol K} = 0.0821 \\ \text{atm liter/mol K} \\ k_B &= 1.38 \times 10^{-23} \text{J/K} \\ N_A &= 6.022 \times 10^{23} \\ R &= N_A k_B \\ N &= nN_A \\ \text{Heat:} \\ Q &= cm\Delta T = C\Delta T \\ Q &= Lm \\ 0 &= \Delta Q_1 + \Delta Q_2 \\ \text{Thermodynamics:} \\ \Delta U &= Q - W \\ W &= P\Delta V \\ W &= P P(V) dV \\ \Delta S &= Q/T \\ \end{split}$$

 $\Delta S = \int Q(T)/T dT$ Trig: $\sin \theta = \text{opp/hyp}$ $\cos \theta = \frac{\text{adj/hyp}}{}$ $\tan \theta = \frac{\text{opp}}{\text{adj}}$ Quadratic: Given: $ax^2 + bx + c = 0$ Then: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2c}$ Areas, Volumes: Sphere: Volume = $4/3\pi r^3$, Area = $4\pi r^2$ Cylindar: Volume = $\pi r^2 h$, Area = $2\pi r h + 2\pi r^2$ Area = πr^2 , circumfrence = $2\pi r$ Moments of Inertia Passing Through Center of Mass: Thin Disk Perpendicular to Plane $I = \frac{1}{2}mr^2$ Sphere $I = \frac{2}{5}mr^2$ Thin Rod Perpendicular to Length: $I = \frac{1}{12}mL^2$ Thin Plate Perpendicular to Plane: $I = \frac{1}{12}m(w^2 + L^2)$