DATA VISUALIZATION WITH PYTHON LAB				
Course Code: CSL48	Credits: 0:0:1			
Pre – requisites: Nil	Contact Hours: 14			
Course Coordinator:				

Course Contents

WEEK	LECTURE	QUIZ
1.	Course Introduction, Deep dive into lists, sets, dictionaries, and tuples; Time complexity analysis. Control Structures	
2.	Functional Programming in Python: Introduction to functions, lambda, map, filter, reduce, and decorators, Higher-order functions.	Quiz 1
3.	Classes, objects, inheritance, and polymorphism, Encapsulation, abstraction	
4.	Regular Expressions: Introduction to regex, pattern matching, and practical applications. Error Handling & Exceptions, Iterators & Generators	
5.	Python Modules & Packages, Working with Files	Quiz 2
6.	Introduction to NumPy	
7.	Introduction to Pandas	
8.	Data Cleaning & Transformation with Pandas	Quiz 3
9.	Advanced Pandas - I	
10.	Advanced Pandas- II	
11.	Matplotlib & Seaborn	Quiz 4
12.	Introduction to Ploty	
13.	Data Cleaning and Visualization Project	

Note: Each Lab Session is of two hours duration/week

Suggested Learning Resources

Reference Books/ Web Links:

- 1. Mark Lutz: Learning Python, 5th Edition, Orielly Publications 2013. ISBN 978-1-4493-5573-9
- John Zelle: Python Programming: An Introduction to Computer Science, 2nd Edition. 2009 ISBN 978-1-8879- 0299-1
- 3. Paul Barry, Head First Python, O'Reilly Publication, 2nd Edition 2016. ISBN 978-1-4919-1953-8

4. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython by WesMcKinny, O'Reilly Media, 2nd Edition2017. ISBN 978-9-3521-3641-4

Course Outcomes (COs):

At the end of the course, the students will be able to:

- 1. Apply Python programming concepts, including data structures, control structures, functional programming, and object-oriented principles, to develop efficient computational solutions. (PO-1, PO-2, PO-3, PO-5, PSO-2, PSO-3)
- 2. Utilize NumPy and Pandas for efficient data handling, cleaning, transformation, and analysis to solve real-world data science problems. (PO-1, PO-2, PO-3, PO-5 PSO-2, PSO-3)
- 3. Design and develop interactive data visualization solutions using Matplotlib, Seaborn, and Plotly to effectively communicate data-driven insights. (PO-1, PO-2, PO-3, PO-5 PSO-2, PSO-3)

Course Assessment and Evaluation:

Continuous Internal Evaluation (CIE): 50 Marks						
Assessment Tools	Marks	Course Outcomes addressed				
Lab Test	20	CO1, CO2, CO3				
Project – Data Cleaning and Dashboard	10	CO1, CO2, CO3				
Weekly Evaluation-Lab Record + Quiz (Q1+Q2+Q3+Q4)	20	-				
The Final CIE out of 50 Marks = Marks of Lab Record (10M) + Average Marks of 4 Quiz(10M)+ Marks scored in Lab Test(10) + Marks Scored in Project(10)						
Semester End Examination (SEE)						
Course End Examination (One full question from the Lab Question Bank, Programs will be coded using Python and executed)	50	CO1, CO2, CO3				

Laboratory Plan:

- 1. Students must **submit weekly lab records** with completed exercises. Late submissions of lab records will result in **deductions in marks**.
- 2. 4 quizzes will be conducted throughout the semester. Quizzes will cover theoretical & coding concepts from previous weeks.