Universidade de Aveiro

DEPARTAMENTO DE ELECTRÓNICA, TELECOMUNICAÇÕES E INFORMÁTICA

Introdução à Arquitetura de Computadores (2018/2019)

Teste Prático 1 – 21 de Março de 2019 – Duração: 55m

Notas Importantes:

Justifique todas as suas respostas.

O teste é individual e sem consulta. Não é permitida a utilização de calculadora.

Nome:	Nº Mec.
None.	in iviec.

Grupo I

- 1. Considere o número 84 escrito na base 10.
 - a. Represente-o na <u>base 2</u>, na <u>base 8</u> e na <u>base 16</u>.

$$84/2 \rightarrow 42/2 + 21/2 \rightarrow 10/2 \rightarrow 5/2 \rightarrow 2/2 \rightarrow 1/2$$
 Bimánio: 10101002
 $84/8 \rightarrow 10/8 \rightarrow 1/8$ Octal: 1248
 4 2 1
Hexadecimal: 54_{16}

b. Determine a representação de -84 em sinal e módulo com 8 bits.

```
84:010101002 -84:1010101002
```

c. Determine a representação de -84 em complemento para 2 com 8 bits.

```
84:01010 100 L

101010 11 - 84:0 = 101011 00 L

101011 00
```

2a. Considerando os números seguintes representados <u>sem sinal</u>, com 8 bits, efetue a soma e indique se o resultado é representável em 8 bits.

```
010100112+100101012=11101000

E representavel em 8 bits

+ 100101012

+ 100101012
```

2b. Considerando os números da questão anterior representados em <u>complemento para 2 com 8 bits</u> indique se ocorreu *overflow*.

Não oconneu overflow uma vez que se trata de uma adição de um número positivo e megativo.

1a	1b	1c	2a	2b	3	4	5	6a	6b	6c	6d	7a	7b	8
2	0.5	1	1	1	1	1	2	1	1.5	2	1	1	1	3

3. Efectue a multiplicação em binário dos seguintes números:

4. Converta o número seguinte para binário tendo o cuidado de manter aproximadamente a precisão da representação original:

Grupo II

5. Usando os teoremas da Álgebra de Boole, simplifique a expressão seguinte (justifique cada passo):

$$Y = \bar{A}B + C + AB\bar{C}$$

$$\widetilde{A}B + C + AB\widetilde{C}$$

$$= \widetilde{A}B + (C + AB) \cdot (C + C)$$

$$= \widetilde{A}B + (C + AB)$$

$$= B(\widetilde{A} + A) + C$$

$$= B + C$$

6. Considere a tabela de verdade seguinte onde a função lógica G é expressa em função das entradas A, B e C.

Α	В	С	G
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

1 a	1b	1c	2a	2b	3	4	5	6a	6b	6c	6d	7a	7b	8
2	0.5	1	1	1	1	1	2	1	1.5	2	1	1	1	3

a) Represente a função G na primeira forma canónica, isto é, como uma soma de mintermos.

b) Usando um mapa de Karnaugh, determine uma expressão simplificada para a função G.

c) Desenhe o circuito lógico que implementa a expressão obtida na alínea anterior. (Caso não tenha respondido à alínea anterior considere a expressão $G = \bar{A}\bar{C} + \bar{A}B + AB\bar{C}$)

d) Represente a função G na forma NAND-NAND.

$$\overline{A}B + B\overline{C} + \overline{A}\overline{C} = \overline{\overline{A}B + B\overline{C} + \overline{A}\overline{C}} = \overline{(\overline{A}B) \cdot (\overline{B}\overline{C}) \cdot (\overline{\overline{A}\overline{C}})}$$

7. Considere o circuito lógico da figura seguinte:

7a) Escreva a equação algébrica que o descreve:

1a	1b	1c	2a	2b	3	4	5	6a	6b	6c	6d	7a	7b	8
2	0.5	1	1	1	1	1	2	1	1.5	2	1	1	1	3

7b) Redesenhe o circuito usando portas AND, OR e NOT.

1a

2

1b

0.5

1c

1

2a

1

2b

1

3

1

8. Projete um circuito detetor de diferenças, de modo que a saída I seja 1, sempre que as entradas A e B sejam diferentes e 0 nos restantes casos. Considere entradas de dois bits A_1A_0 e B_1B_0 .

5

1

6a

1

6b

1.5

6c

6d

1

7a

1

7b

1

8

3