```
In [6]: import numpy as np
import scipy.stats as st
import statsmodels.datasets
import matplotlib.pyplot as plt
import pandas as pd
from math import log,sqrt
%matplotlib inline

lamda1 = 4
randomlist = []
for x in range(0,40):
    i = np.random.uniform()
    randomlist.append({i,(log(1-i))/-lamda1})

random_df = pd.DataFrame(randomlist, columns=['ri','xi'])
random_df
```

Out[6]:

	ri	хi	
0	0.077369	0.020131	
1	0.400035	0.127721	
2	0.394302	0.125343	
3	0.979911	0.976891	
4	0.401402	0.128291	
5	0.042507	0.010859	
6	0.240309	0.068711	
7	0.223109	0.063114	
8	0.036212	0.009221	
9	0.545641	0.197217	
10	0.259003	0.074940	
11	0.096397	0.025341	
12	0.050970	0.013079	
13	0.309747	0.092674	
14	0.290643	0.085849	
15	0.646604	0.260041	
16	0.645787	0.259464	
17	0.424885	0.138296	
18	0.791549	0.392012	
19	0.366248	0.114025	
20	0.944259	0.721759	
21	0.534874	0.191362	
22	0.873547	0.516971	
23	0.650333	0.262693	
24	0.350351	0.107831	
25	0.319391	0.096192	
26	0.768246	0.365520	
27	0.872284	0.514486	
28	0.039264	0.010014	
29	0.814116	0.420658	
30	0.316775	0.095233	
31	0.944670	0.723609	
32	0.745966	0.342572	
33	0.019765	0.004991	
34	0.489044	0.167868	

```
ri
                           χi
         35 0.179289 0.049396
         36 0.328243 0.099465
         37 0.612752 0.237172
         38 0.766562 0.363709
         39 0.319405 0.096197
In [7]:
        # random df = random df.sort values(by=['xi'])
         # random df.tail()
In [8]: limits list = []
        n = len(random_df.index)
        k = round(sqrt(n))
         nhigh = random_df['xi'].max()
         nlow = random_df['xi'].min()
         range1 = nhigh - nlow
        w = range1 / k
         #limites inferiores y superiores
         xlimite = nlow
         for x in range(0,k):
            if x == 0:
                 linf = nlow
                 lsup = nlow + w
             else:
                 linf = xlimite
                 lsup = xlimite + w
             xlimite = xlimite + w
             limits_list.append([linf,lsup])
         limits_list = np.around(limits_list, decimals=4)
         limits_df = pd.DataFrame(limits_list, columns=['linf','lsup'])
```

```
In [9]: frecuencies list = []
         ii = 0
         for index1, irow in limits df.iterrows():
             for index2, jrow in random df.iterrows():
                 if index1 == 0:
                     if jrow['xi'] >= irow['linf'] and jrow['xi'] <= irow['lsup'] :</pre>
                         i = i+1
                 else:
                     if jrow['xi'] > irow['linf'] and jrow['xi'] <= irow['lsup'] :</pre>
                         i = i+1
             #print(irow['linf'], irow['lsup'],jrow['xi'])
             ii = ii+i
             frecuencies list.append([irow['linf'], irow['lsup'],i,ii/n,(i/n)*100,ii,(i
         i/n)*100])
         frecuencies df = pd.DataFrame(frecuencies list, columns=['linf','lsup','fabsol
         uta','frelativa','fporcentual','Facumulada','Facmporcentual'])
         frecuencies df
```

Out[9]:

	linf	Isup	fabsoluta	frelativa	fporcentual	Facumulada	Facmporcentual
0	0.0050	0.1670	22	0.550	55.0	22	55.0
1	0.1670	0.3290	7	0.725	17.5	29	72.5
2	0.3290	0.4909	5	0.850	12.5	34	85.0
3	0.4909	0.6529	2	0.900	5.0	36	90.0
4	0.6529	0.8149	2	0.950	5.0	38	95.0
5	0.8149	0.9769	1	0.975	2.5	39	97.5

Out[10]: Text(0, 0.5, 'valor')

