1.3

Ecuații omogene (în sensul lui Euler) și reductibile la acestea

O funcție $f: D \to \mathbb{R}$ $(D \subset \mathbb{R}^2 \text{ con})$ se numește funcție **omogenă de grad** n dacă $f(tx, ty) = t^n f(x, y)$, pentru orice $(x, y) \in D$ și t > 0.

O ecuație diferențială de forma y' = f(x, y) se numește **omogenă (în sensul lui Euler)** dacă f este o funcție omogenă de grad zero.

O astfel de ecuație poate fi scrisă întot deauna sub forma $y' = \varphi\left(\frac{y}{x}\right), \ x \neq 0.$

Pentru rezolvarea acestei ecuații se face substituția $u = \frac{y}{x}$. De aici, y = ux, y' = xu' + u și ecuația omogenă se reduce la ecuația cu variabile separabile: $xu' = \varphi(u) - u$.

Exemplul 1.3.1 Să se integreze ecuația $y'(x^2 - y^2) = 4xy$.

Rezolvare: Avem $y' = \frac{4xy}{x^2 - y^2}$, de unde $y' = \frac{4\frac{y}{x}}{1 - \left(\frac{y}{x}\right)^2}$. Facem substituţia $u = \frac{y}{x}$

și obținem $\frac{u'(1-u^2)}{u^3+3u}=\frac{1}{r}$, de unde, prin integrare directă rezultă

$$\ln \frac{u}{(u^2+3)^2} = \ln C x^3, \text{ adică } \frac{u}{(u^2+3)^2} = C x^3.$$

 \checkmark

Revenind la funcția necunoscută y, obținem soluția scrisă în formă implicită: $y = C(y^2 + 3x^2)^2$.

O ecuație diferențială de forma $y'=\frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}$, cu $a_i,b_i,c_i\in\mathbb{R}$ se poate transforma într-o ecuație omogenă printr-o schimbare de variabilă. Se disting două cazuri:

cazuri:
a) Dacă $\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0$, se fac schimbările de variabile $x = u + x_0$ şi $y = v + y_0$,

a) Daca $\Delta = \begin{vmatrix} a_2 & b_2 \end{vmatrix} \neq 0$, se fac schimbarile de variabile $x = u + x_0$ şi $y = v + y_0$, unde (x_0, y_0) este soluția (unică) a sistemului $\begin{cases} a_1x + b_1y + c_1 = 0 \\ a_2x + b_2y + c_2 = 0 \end{cases}$. Se obține astfel

o ecuație cu funcția necunoscută v și variabila independentă u.

b) Dacă $\Delta = 0$, se face schimbarea de funcție $z = a_1x + b_1y$, ecuația se reduce la o ecuație cu variabile separabile, cu necunoscuta z.

Rezolvare:
$$\Delta = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2 \neq 0$$
. Sistemul $\begin{cases} x+y-1=0 \\ x-y-1=0 \end{cases}$ are soluția $x_0 = 1, \ y_0 = 0$, deci facem substituțiile $u = x - 1, \ v = y$, după care obținem noua ecuație diferențială $v' = \frac{u+v}{u-v}$, omogenă.

Avem $v'=\frac{1+\frac{v}{u}}{1-\frac{v}{u}}$ și facem o nouă substituție $z=\frac{v}{u}$, cu v'=z'u+z, găsind

$$z'\frac{1-z}{1+z^2} = \frac{1}{u}, \text{ care are soluția } Cu^2(1+z^2) = e^{2\arctan z}. \text{ De aici, revenind la variabilele inițiale, găsim } C(u^2+v^2) = e^{\arctan \frac{v}{u}} \text{ și în final } C\left[(x-1)^2+y^2\right] = e^{2\arctan \frac{v}{x-1}}.$$

Exemplul 1.3.3 Să se integreze ecuația
$$y' \cdot \frac{3x - 6y + 2}{-x + 2y + 1} = 1$$
.

Rezolvare: Avem
$$\Delta = \begin{vmatrix} 3 & -6 \\ -1 & 2 \end{vmatrix} = 0$$
, prin urmare facem substituția $u = -x + 2y$, de unde $y' = \frac{u'+1}{2}$. Înlocuind în ecuația inițială se găsește $u' \cdot \frac{-3u+2}{5u} = 1$, care este o ecuație cu variabile separabile având soluția generală $-3u + 2 \ln |u| = 5x + C$, de unde soluția ecuației inițiale: $\ln |-x+2y| = x + 3y + C$, $C \in \mathbb{R}$.

Exerciții propuse

🖎 1.3.1 Să se determine soluția generală pentru următoarele ecuații:

i).
$$y' = \frac{y}{x} + \text{ctg} \frac{3y}{x}$$
 vii). $\frac{y - 2x}{2y^2 - 3xy}y' = \frac{1}{x}$

ii).
$$y' = e^{\frac{y}{x}} + \frac{y}{x}$$
 viii). $xy' = y(\ln y - \ln x)$ iii). $xy' = y + \sqrt{y^2 - x^2}$

iv).
$$x^2 - y^2 + 2xyy' = 0$$

 x). $xyy' = x\sqrt{x^2 + y^2} + y^2$

v).
$$x^2y' = y^2 - 3xy + 4x^2$$
 xi). $x\left(y + \sqrt{x^2 + y^2}\right) dy = y^2 dx$ vi). $\frac{x - y}{x^2 + y^2}y' - \frac{y}{2x^2} = 0$ xii). $xy' = y + x\cos^2\frac{y}{2}$

🕯 1.3.2 Să se determine soluția generală pentru următoarele ecuații:

i).
$$y' = \frac{2y - 6}{3x - y}$$

ii).
$$y' = -\frac{x+y-2}{x-y+4}$$

iii).
$$y' = \frac{1 - 5x - 5y}{x + y + 1}$$

iv).
$$\frac{y'}{2} = \left(\frac{y-1}{x+y-2}\right)^2$$

$$v). \ \frac{y}{2} = \left(\frac{y-1}{x+y-2}\right)$$

v).
$$(x-3y+1) dx - (2x-6y+3) dy = 0$$

vi). $(x-2y+5) dx + (2x-y+4) dy = 0$

Indicații și răspunsuri

[1.3.1] i)
$$\cos \frac{3y}{x} = \frac{C}{x^3}$$
; ii) $y = -x \ln \left| \ln \frac{C}{x} \right|$; iii) $y^3 + 3x^2y = C$; iv) $y^2 = Cx - x^2$; v) $e^{\frac{x}{2x-y}} = Cx$; vi) $y^2 + 2xy - x^2 = Cxy^2$; vii) $\frac{y^2}{x(y-x)} = Cx$; viii) $\ln \frac{y}{x} = Cx + 1$;

ix) $C^2x^2 - 2Cy + 1 = 0$; x) $e^{\sqrt{1 + \frac{y^2}{x^2}}} = Cx$; xi) Schimbând rolul variabilelor obţinem

 $x'y^2 = x(y + \sqrt{x^2 + y^2})$, apoi făcând substituția $\frac{x}{y} = u$ se găsește $y^2 + y\sqrt{x^2 + y^2} = x$

Cx; **xii**) tg $\frac{y}{z} = \ln Cx$.

1.3.2 i)
$$(y-x-2)^2 = C(y-3)^3$$
; ii) $y^2 - 2xy - x^2 + 4x - 8y = C$; iii) $5x + y + \frac{3}{2} \ln|2x + 2y - 1| = C$; iv) $\ln|y - 1| + 2 \arctan \frac{y-1}{x-1} = C$; v) $x - 2y + \ln|x - 3y| = C$; vi) $x - y + 3 = C(x + y - 1)^3$.