

Introduction to Code Optimization

Instruction Scheduling

Outline

- Modern architectures
- Introduction to instruction scheduling
- List scheduling
- Resource constraints
- Scheduling across basic blocks
- Trace scheduling

Simple Machine Model

- Instructions are executed in sequence
 - Fetch, decode, execute, store results
 - One instruction at a time
- For branch instructions, start fetching from a different location if needed
 - Check branch condition
 - Next instruction may come from a new location given by the branch instruction

Simple Execution Model

• 5 Stage pipe-line

fetch	decode	execute	memory	writeback
-------	--------	---------	--------	-----------

- Fetch: get the next instruction
- Decode: figure-out what that instruction is
- Execute: Perform ALU operation
 - address calculation in a memory op
- Memory: Do the memory access in a mem. Op.
- Write Back: write the results back

Simple Execution Model

Simple Execution Model

time

Inst 1	IF	DE	EXE	MEM	WB					
Inst 2						IF	DE	EXE	MEM	W
Inst 1	IF	DE	EXE	MEM	WB					
Inst 2		IF	DE	EXE	MEM	WB				
Inst 3			IF	DE	EXE	MEM	WB			
Inst 4				IF	DE	EXE	MEM	WB		
Inst 5					IF	DE	EXE	MEM	WB	

Outline

- Modern architectures
- Introduction to instruction scheduling
- List scheduling
- Resource constraints
- Scheduling across basic blocks
- Trace scheduling

From a Simple Machine Model to a Real Machine Model

Many pipeline stages

Pentium	5
Pentium Pro	10
- Pentium IV (130nm)	20
- Pentium IV (90nm)	31
- Core 2 Duo	14

 Different instructions taking different amount of time to execute

 Hardware to stall the pipeline if an instruction uses a result that is not ready

Real Machine Model cont.

- Most modern processors have multiple cores
 - Will deal with multicores next week
- Each core has multiple execution units (superscalar)
 - If the instruction sequence is efficient, multiple operations will happen in the same cycles
 - Even more important to have the right instruction sequence

Instruction Scheduling

 Reorder instructions so that pipeline stalls are minimized

Constraints On Scheduling

- Data dependencies
- Control dependencies
- Resource Constraints

Data Dependency between Instructions

- If two instructions access the same variable, they can be dependent
- Kind of dependencies
 - True: write \rightarrow read
 - Anti: read \rightarrow write
 - Output: write \rightarrow write
- What to do if two instructions are dependent.
 - The order of execution cannot be reversed
 - Reduce the possibilities for scheduling

Computing Dependencies

- For basic blocks, compute dependencies by walking through the instructions
- Identifying register dependencies is simple
 - is it the same register?
- For memory accesses
 - simple: base + offset1 ?= base + offset2
 - data dependence analysis: a[2i] ?= a[2i+1]
 - interprocedural analysis: global ?= parameter
 - pointer alias analysis: p1→foo ?= p2→foo

- Using a dependence DAG, one per basic block
- Nodes are instructions, edges represent dependencies

- Using a dependence DAG, one per basic block
- Nodes are instructions, edges represent dependencies

```
1: r2 = *(r1 + 4)
```

$$2: r3 = *(r1 + 8)$$

$$3: r4 = r2 + r3$$

$$4: r5 = r2 - 1$$

- Using a dependence DAG, one per basic block
- Nodes are instructions, edges represent dependencies

$$1: r2 = *(r1 + 4)$$

$$2: r3 = *(r1 + 8)$$

$$3: r4 = r2 + r3$$

$$4: r5 = r2 - 1$$

- Using a dependence DAG, one per basic block
- Nodes are instructions, edges represent dependencies

1:
$$r2 = *(r1 + 4)$$

2: $r3 = *(r1 + 8)$
3: $r4 = r2 + r3$
4: $r5 = r2 - 1$

2

2

3

- Edge is labeled with Latency:
 - $-v(i \rightarrow j)$ = delay required between initiation times of i and j minus the execution time required by i

```
1: r2 = *(r1 + 4)
```

$$2: r3 = *(r2 + 4)$$

$$3: r4 = r2 + r3$$

$$4: r5 = r2 - 1$$

Another Example

```
1: r2 = *(r1 + 4)
```

$$2: *(r1 + 4) = r3$$

$$3: r3 = r2 + r3$$

$$4: r5 = r2 - 1$$

Another Example

```
1: r2 = *(r1 + 4)
```

$$2: *(r1 + 4) = r3$$

$$3: r3 = r2 + r3$$

$$4: r5 = r2 - 1$$

Control Dependencies and Resource Constraints

- For now, lets only worry about basic blocks
- For now, lets look at simple pipelines

```
1: lea var_a, %rax
2: add $4, %rax
3: inc %r11
4: mov 4(%rsp), %r10
5: add %r10, 8(%rsp)
6: and 16(%rsp), %rbx
7: imul %rax, %rbx
```

			Results In
1:	lea	var_a, %rax	1 cycle
		\$4, %rax	1 cycle
3:	inc	%r11	1 cycle
4:	mov	4(%rsp), %r10	3 cycles
5:	add	%r10, 8(%rsp)	
6:	and	16(%rsp), %rbx	4 cycles
7:	imul	%rax, %rbx	3 cycles

		Results In
1: lea	<pre>var_a, %rax</pre>	1 cycle
	\$4, %rax	1 cycle
3: inc	% r11	1 cycle
4: mov	4(%rsp), %r10	3 cycles
5: add	%r10, 8(%rsp)	
6: and	16(%rsp), %rbx	4 cycles
7: imul	%rax, %rbx	3 cycles

			Results In
1:	lea	<pre>var_a, %rax</pre>	1 cycle
		\$4, %rax	1 cycle
3:	inc	%r11	1 cycle
4:	mov	4(%rsp), %r10	3 cycles
5:	add	%r10, 8(%rsp)	
6:	and	16(%rsp), %rbx	4 cycles
7:	imul	%rax, %rbx	3 cycles

			Results In
1:	lea	var_a, %rax	1 cycle
		\$4, %rax	1 cycle
3:	inc	%r11	1 cycle
4:	mov	4(%rsp), %r10	3 cycles
5:	add	%r10, 8(%rsp)	
6:	and	16(%rsp), %rbx	4 cycles
7:	imul	%rax, %rbx	3 cycles

		Results In
1: lea	var_a, %rax	1 cycle
	\$4, %rax	1 cycle
3: inc	%r11	1 cycle
4: mov	4(%rsp), %r10	3 cycles
5: add	8r10, 8(%rsp)	
6: and	16(%rsp), %rbx	4 cycles
7: imu	l %rax, %rbx	3 cycles

			Results In
1:	lea	<pre>var_a, %rax</pre>	1 cycle
		\$4, %rax	1 cycle
3:	inc	%r11	1 cycle
4:	mov	4(%rsp), %r10	3 cycles
5:	add	%r10, 8(%rsp)	
6:	and	16(%rsp), %rbx	4 cycles
7:	imul	%rax, %rbx	3 cycles

			Results In
1:	lea	<pre>var_a, %rax</pre>	1 cycle
		\$4, %rax	1 cycle
3:	inc	%r11	1 cycle
4:	mov	4(%rsp), %r10	3 cycles
5:	add	%r10, 8(%rsp)	
6:	and	16(%rsp), %rbx	4 cycles
7:	imul	%rax, %rbx	3 cycles

			Results In
1:	lea	var_a, %rax	1 cycle
		\$4, %rax	1 cycle
3:	inc	%r11	1 cycle
4:	mov	4(%rsp), %r10	3 cycles
5:	add	%r10, 8(%rsp)	
6:	and	16(%rsp), %rbx	4 cycles
7:	imul	%rax, %rbx	3 cycles

		Results In
1: lea	var_a, %rax	1 cycle
	\$4, %rax	1 cycle
3: inc	% r11	1 cycle
4: mov	4(%rsp), %r10	3 cycles
5: add	%r10, 8(%rsp)	
6: and	16(%rsp), %rbx	4 cycles
7: imul	%rax, %rbx	3 cycles

		Results In
1: lea	var_a, %rax	1 cycle
	\$4, %rax	1 cycle
3: inc	% r11	1 cycle
4: mov	4(%rsp), %r10	3 cycles
5: add	%r10, 8(%rsp)	
6: and	16(%rsp), %rbx	4 cycles
7: imul	%rax, %rbx	3 cycles

			Results In
1:	lea	var_a, %rax	1 cycle
		\$4, %rax	1 cycle
3:	inc	%r11	1 cycle
4:	mov	4(%rsp), %r10	3 cycles
5:	add	%r10, 8(%rsp)	
6:	and	16(%rsp), %rbx	4 cycles
7:	imul	%rax, %rbx	3 cycles

		Results In
1: lea	<pre>var_a, %rax</pre>	1 cycle
	\$4, %rax	1 cycle
3: inc	% r11	1 cycle
4: mov	4(%rsp), %r10	3 cycles
5: add	%r10, 8(%rsp)	
6: and	16(%rsp), %rbx	4 cycles
7: imul	%rax, %rbx	3 cycles

		Results In
1: lea	var_a, %rax	1 cycle
	\$4, %rax	1 cycle
3: inc	% r11	1 cycle
4: mov	4(%rsp), %r10	3 cycles
5: add	%r10, 8(%rsp)	
6: and	16(%rsp), %rbx	4 cycles
7: imul	%rax, %rbx	3 cycles

		Results In
1: lea	<pre>var_a, %rax</pre>	1 cycle
	\$4, %rax	1 cycle
3: inc	% r11	1 cycle
4: mov	4(%rsp), %r10	3 cycles
5: add	%r10, 8(%rsp)	
6: and	16(%rsp), %rbx	4 cycles
7: imul	%rax, %rbx	3 cycles

		Results In
1: lea	var_a, %rax	1 cycle
	\$4, %rax	1 cycle
3: inc	%r11	1 cycle
4: mov	4(%rsp), %r10	3 cycles
5: add	%r10, 8(%rsp)	
6: and	16(%rsp), %rbx	4 cycles
7: imul	%rax, %rbx	3 cycles

			Re	esults In
1:	lea	<pre>var_a, %rax</pre>	1	cycle
		\$4, %rax	1	cycle
3:	inc	% r11	1	cycle
4: :	mov	4(%rsp), %r10	3	cycles
5:	add	%r10, 8(%rsp)		
6:	and	16(%rsp), %rbx	4	cycles
7:	imul	%rax, %rbx	3	cycles

			Re	esults In
1:	lea	<pre>var_a, %rax</pre>	1	cycle
		\$4, %rax	1	cycle
3:	inc	% r11	1	cycle
4: :	mov	4(%rsp), %r10	3	cycles
5:	add	%r10, 8(%rsp)		
6:	and	16(%rsp), %rbx	4	cycles
7:	imul	%rax, %rbx	3	cycles

		Results In
1: lea	var_a, %rax	1 cycle
	\$4, %rax	1 cycle
3: inc	% r11	1 cycle
4: mov	4(%rsp), %r10	3 cycles
5: add	%r10, 8(%rsp)	
6: and	16(%rsp), %rbx	4 cycles
7: imul	%rax, %rbx	3 cycles

1	2	3	4	st	st	5

		Results In
1: lea	<pre>var_a, %rax</pre>	1 cycle
	\$4, %rax	1 cycle
3: inc	% r11	1 cycle
4: mov	4(%rsp), %r10	3 cycles
5: add	%r10, 8(%rsp)	
6: and	16(%rsp), %rbx	4 cycles
7: imul	%rax, %rbx	3 cycles

		Results In
1: lea	<pre>var_a, %rax</pre>	1 cycle
	\$4, %rax	1 cycle
3: inc	% r11	1 cycle
4: mov	4(%rsp), %r10	3 cycles
5: add	%r10, 8(%rsp)	
6: and	16(%rsp), %rbx	4 cycles
7: imul	%rax, %rbx	3 cycles

			Results In
1:	lea	var_a, %rax	1 cycle
		\$4, %rax	1 cycle
3:	inc	%r11	1 cycle
4:	mov	4(%rsp), %r10	3 cycles
5:	add	%r10, 8(%rsp)	
6:	and	16(%rsp), %rbx	4 cycles
7:	imul	%rax, %rbx	3 cycles

1	2	3	4	st	st	5	6
---	---	---	---	----	----	---	---

		Results In
1: lea	var_a, %rax	1 cycle
	\$4, %rax	1 cycle
3: inc	% r11	1 cycle
4: mov	4(%rsp), %r10	3 cycles
5: add	%r10, 8(%rsp)	
6: and	16(%rsp), %rbx	4 cycles
7: imul	%rax, %rbx	3 cycles

1	2	3	4	st	st	5	6
---	---	---	---	----	----	---	---

			Results In
1:	lea	var_a, %rax	1 cycle
		\$4, %rax	1 cycle
3:	inc	%r11	1 cycle
4:	mov	4(%rsp), %r10	3 cycles
5:	add	%r10, 8(%rsp)	
6:	and	16(%rsp), %rbx	4 cycles
7:	imul	%rax, %rbx	3 cycles

1	2	3	4	st	st	5	6
---	---	---	---	----	----	---	---

			Results In
1: :	lea	<pre>var_a, %rax</pre>	1 cycle
		\$4, %rax	1 cycle
3: :	inc	%r11	1 cycle
4: r	mov	4(%rsp), %r10	3 cycles
5: 8	add	%r10, 8(%rsp)	
6: 8	and	16(%rsp), %rbx	4 cycles
7:	imul	%rax, %rbx	3 cycles

			Results In
1:	lea	<pre>var_a, %rax</pre>	1 cycle
		\$4, %rax	1 cycle
3:	inc	%r11	1 cycle
4:	mov	4(%rsp), %r10	3 cycles
5:	add	%r10, 8(%rsp)	
6:	and	16(%rsp), %rbx	4 cycles
7:	imul	%rax, %rbx	3 cycles

			Results In
1:	lea	<pre>var_a, %rax</pre>	1 cycle
		\$4, %rax	1 cycle
3:	inc	%r11	1 cycle
4:	mov	4(%rsp), %r10	3 cycles
5:	add	%r10, 8(%rsp)	
6:	and	16(%rsp), %rbx	4 cycles
7:	imul	%rax, %rbx	3 cycles

		Y									
1	2	3	4	st	st	5	6	st	st	st	7

		Results In
1: lea	var_a, %rax	1 cycle
	\$4, %rax	1 cycle
3: inc	% r11	1 cycle
4: mov	4(%rsp), %r10	3 cycles
5: add	%r10, 8(%rsp)	
6: and	16(%rsp), %rbx	4 cycles
7: imul	. %rax, %rbx	3 cycles

1 2 3 4 st st 5 6 st st 7	1	2	3	4	st	st	5	6	st	st	st	7
---------------------------	---	---	---	---	----	----	---	---	----	----	----	---

Outline

- Modern architectures
- Introduction to instruction scheduling
- List scheduling
- Resource constraints
- Scheduling across basic blocks
- Trace scheduling

List Scheduling Algorithm

- Idea
 - Do a topological sort of the dependence DAG
 - Consider when an instruction can be scheduled without causing a stall
 - Schedule the instruction if it causes no stall and all its predecessors are already scheduled
- Optimal list scheduling is NP-complete
 - Use heuristics when necessary

List Scheduling Algorithm

- Create a dependence DAG of a basic block
- Topological Sort
 - READY = nodes with no predecessors
 - Loop until READY is empty
 - Schedule each node in READY when no stalling
 - Update READY

Heuristics for selection

- Heuristics for selecting from the READY list
 - pick the node with the longest path to a leaf in the dependence graph
 - pick a node with most immediate successors
 - pick a node that can go to a less busy pipeline (in a superscalar)

Heuristics for selection

- pick the node with the longest path to a leaf in the dependence graph
- Algorithm (for node x)
 - If no successors $d_x = 0$
 - $-d_x = MAX(d_y + c_{xy})$ for all successors y of x
 - reverse breadth-first visitation order

Heuristics for selection

- pick a node with most immediate successors
- Algorithm (for node x):
 - $-f_x$ = number of successors of x

		Results In
1: lea	var_a, %rax	1 cycle
2: add	\$4, %rax	1 cycle
3: inc	%r11	1 cycle
4: mov	4(%rsp), %r10	3 cycles
5: add	%r10, 8(%rsp)	
6: and	16(%rsp), %rbx	4 cycles
7: imul	%rax, %rbx	3 cycles
8: mov	%rbx, 16(%rsp)	
9: lea	var b, %rax	

)d=5 f=1 d=0 f=0 d=3 f=1 $\overline{READY} = \{ \}$ d=0 f=0 d=4 f=1 d=7**f**=1 d=3 f=2 d=0 f=0 d=0 f=0

$$1, 3, 4, 6$$
READY = $\{6, 1, 4, 3\}$

 $READY = \{ 6, 1, 4, 3 \}$

d=3 f=1

d=0 f=0

d=0 f=0

)d=5 f=1 d=0 f=0 $READY = \{ 6, 1, 4, 3 \}$ d=4d=7f=1 **f**=1 d=3 f=2

d=3 f=1

d=0 f=0

d=0 f=0

READY = { 1, 4, 3 } $\begin{array}{c}
1 & d=5 \\
1 & f=1
\end{array}$ $\begin{array}{c}
d=0 \\
d=0
\end{array}$ $\begin{array}{c}
d=0 \\
f=0
\end{array}$ $\begin{array}{c}
d=7 \\
f=1
\end{array}$ $\begin{array}{c}
d=3 \\
f=2 \\
1
\end{array}$

$$READY = \{ 1, 4, 3 \}$$

d=5

d=3 f=1

d=0 f=0

d=0 f=0

d=0 f=0 f=1 $READY = \{ 1, 4, 3 \}$ d=4 f=1 d=7**f**=1 d=3 f=2

READY = { 2, 4, 3 }
$$\begin{array}{c}
1 & d=5 \\
f=1 & 3 & d=0 \\
4 & d=3 \\
6 & d=7 \\
f=1 & 5 & d=0
\end{array}$$

$$\begin{array}{c}
d=4 \\
f=1 & 5
\end{array}$$

$$\begin{array}{c}
d=3 \\
f=2 & 5
\end{array}$$

$$\begin{array}{c}
d=3 \\
f=2 & 1
\end{array}$$

d=0 f=0

$$READY = \{ 2, 4, 3 \}$$

$$READY = \{ 2, 4, 3 \}$$

6 | 1 | 2

READY =
$$\{7, 4, 3\}$$

READY =
$$\{7, 4, 3\}$$

READY =
$$\{7, 4, 3\}$$

$$READY = \{ 7, 4, 3 \}$$

$$READY = \{ 7, 4, 3 \}$$

6 | 1 | 2 | 4

READY =
$$\{7, 3, 5\}$$

6 1 2 4

READY =
$$\{7, 3, 5\}$$

6 | 1 | 2 | 4

READY =
$$\{7, 3, 5\}$$

READY =
$$\{7, 3, 5\}$$

6 1 2 4 7

6 1 2 4 7

$$READY = \{ 3, 5, 8, 9 \}$$

$$READY = \{ 3, 5, 8, 9 \}$$

6 1 2 4 7

$$READY = \{ 3, 5, 8, 9 \}$$

6 1 2 4 7 3

$$READY = \{ 5, 8, 9 \}$$

6 1 2 4 7 3

$$READY = \{ 5, 8, 9 \}$$

6 1 2 4 7 3

$$READY = \{ 5, 8, 9 \}$$

$$READY = \{ 5, 8, 9 \}$$

6

$$READY = \{ 8, 9 \}$$

5

8

d=5 f=1 d=0 f=0 d=3**f**=1 d=4 f=1 d=0 f=0 d=7**f**=1 d=3 f=2 d=0 f=0 d=0 f=0

$$READY = \{ 9 \}$$

6

 $READY = \{ 9 \}$

6 1 2 4 7 3 5 8

d=5 f=1 d=0 f=0 d=3**f**=1 d=0 f=0 d=4d=7f=1 **f**=1 d=3 f=2 d=0 f=0 d=0 f=0

 $READY = \{ 9 \}$

6 1 2 4 7 3 5 8 9

)d=5 f=1 d=0 f=0 d=3 f=1 d=4 f=1 d=0 f=0 d=7**f**=1 d=3 f=2 d=0 f=0 d=0 f=0

 $READY = \{ \}$

6 1 2 4 7 3 5 8 9

		Results In
1: lea	var_a, %rax	1 cycle
2: add	\$4, %rax	1 cycle
3: inc	% r11	1 cycle
4: mov	4(%rsp), %r10	3 cycles
5: add	%r10, 8(%rsp)	
6: and	16(%rsp), %rbx	4 cycles
7: imul	%rax, %rbx	3 cycles
8: mov	%rbx, 16(%rsp)	
9: lea	<pre>var_b, %rax</pre>	

6	1	2	4	7	3	5	8	9
---	---	---	---	---	---	---	---	---

		Results In						
1: lea	<pre>var_a, %rax</pre>	1 cycle						
2: add	\$4, %rax	1 cycle						
3: inc	% r11	1 cycle						
4: mov	4(%rsp), %r10	3 cycles						
5: add	%r10, 8(%rsp)							
6: and	16(%rsp), %rbx	4 cycles						
7: imul	%rax, %rbx	3 cycles						
8: mov	%rbx, 16(%rsp)							
9: lea var_b, %rax								
1 2	3 4 st st 5	6 st st st 7 8 9						
14 cycles vs								
6 1	2 4 7 3 5	8 9 9 cycles						

Outline

- Modern architectures
- Introduction to instruction scheduling
- List scheduling
- Resource constraints
- Scheduling across basic blocks
- Trace scheduling

Resource Constraints

- Modern machines have many resource constraints
- Superscalar architectures:
 - can run few parallel operations
 - But have constraints

Resource Constraints of a Superscalar Processor

• Example:

- One fully pipelined reg-to-reg unit
 - All integer operations taking one cycle

In parallel with

- One fully pipelined memory-to/from-reg unit
 - Data loads take two cycles
 - Data stores take one cycle

List Scheduling Algorithm with resource constraints

- Represent the superscalar architecture as multiple pipelines
 - Each pipeline represent some resource

List Scheduling Algorithm with resource constraints

- Represent the superscalar architecture as multiple pipelines
 - Each pipeline represent some resource
- Example
 - One single cycle reg-to-reg ALU unit
 - One two-cycle pipelined reg-to/from-memory unit

ALU				
MEM 1				
MEM 2				

List Scheduling Algorithm with resource constraints

- Create a dependence DAG of a basic block
- Topological Sort
 - READY = nodes with no predecessors
 - Loop until READY is empty
 - Let $n \in READY$ be the node with the highest priority
 - Schedule n in the earliest slot
 - that satisfies precedence + resource constraints
 - Update READY

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
3: inc %r11
4: mov 4(%rsp), %r10
5: mov %r10, 8(%rsp)
6: and $0x00ff, %rbx
7: imul %rax, %rbx
8: lea var_b, %rax
9: mov %rbx, 16(%rsp)
```

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
3: inc %r11
4: mov 4(%rsp), %r10
5: mov %r10, 8(%rsp)
6: and $0x00ff, %rbx
7: imul %rax, %rbx
8: lea var_b, %rax
9: mov %rbx, 16(%rsp)
```



```
1: lea var_a, %rax
2: add 4(%rsp), %rax
3: inc %r11
4: mov 4(%rsp), %r10
5: mov %r10, 8(%rsp)
6: and $0x00ff, %rbx
7: imul %rax, %rbx
8: lea var_b, %rax
9: mov %rbx, 16(%rsp)
```



```
1: lea var_a, %rax
2: add 4(%rsp), %rax
3: inc %r11
4: mov 4(%rsp), %r10
5: mov %r10, 8(%rsp)
6: and $0x00ff, %rbx
7: imul %rax, %rbx
8: lea var_b, %rax
9: mov %rbx, 16(%rsp)
```

$$READY = \{ 1, 6, 4, 3 \}$$


```
1: lea var_a, %rax
2: add 4(%rsp), %rax
3: inc %r11
4: mov 4(%rsp), %r10
5: mov %r10, 8(%rsp)
6: and $0x00ff, %rbx
7: imul %rax, %rbx
```

$$READY = \{ 1, 6, 4, 3 \}$$

ALUop				
MEM 1				
MEM 2				


```
1: lea var_a, %rax
2: add 4(%rsp), %rax
3: inc %r11
4: mov 4(%rsp), %r10
5: mov %r10, 8(%rsp)
6: and $0x00ff, %rbx
```

$$READY = \{ 1, 6, 4, 3 \}$$

ALUop				
MEM 1				
MEM 2				


```
1: lea var_a, %rax
2: add 4(%rsp), %rax
3: inc %r11
4: mov 4(%rsp), %r10
5: mov %r10, 8(%rsp)
6: and $0x00ff, %rbx
```

$$READY = \{ 1, 6, 4, 3 \}$$

ALUop	1			
MEM 1				
MEM 2				

1 d=4 f=1	$ \begin{array}{c} 3 \mathbf{d=0} \\ \mathbf{f=0} \end{array} $	$ \begin{array}{c} 4 \\ \mathbf{d} = 2 \\ \mathbf{f} = 1 \end{array} $
2 d=3 f=1	$ \begin{array}{c} \mathbf{d=2} \\ \mathbf{f=1} \end{array} $	$ \begin{array}{c} \mathbf{d} = 0 \\ 5 \mathbf{f} = 0 \end{array} $
7	1 d=1 f=2	
$ \begin{array}{c} \mathbf{d} = 0 \\ \mathbf{d} = 0 \end{array} $	$ \begin{array}{c} \mathbf{d} = 0 \\ \mathbf{d} = 0 \end{array} $	

```
1: lea var_a, %rax
```

$$READY = \{ 6, 4, 3 \} - 2$$

$ \begin{array}{c} d=4 \\ 1 \\ f=1 \end{array} $	$ \begin{array}{c} 3 \mathbf{d=0} \\ \mathbf{f=0} \end{array} $	2
	$ \begin{array}{c} \mathbf{d=2} \\ \mathbf{f=1} \end{array} $	5
2 7	$\mathbf{d=1}_{\mathbf{f=2}}^{1}$	
$ \begin{array}{c} 1 \\ \hline 8 \end{array} $ $ \begin{array}{c} \mathbf{d} = 0 \\ \mathbf{f} = 0 \end{array} $	$ \begin{array}{c} 1 \\ 9 \\ 1 \\ 1 \\ 1 \end{array} $	

ALUop	1			
MEM 1				
MEM 2				

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
3: inc %r11
```

$$READY = \{ 2, 6, 4, 3 \}$$

$\mathbf{READI} = \{2, 0, 4, 3\}$						<u></u>
ALUop	1					
MEM 1						
MEM 2						


```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 2, 6, 4, 3 \}$$

ALUop	1						
MEM 1							
MEM 2							

1 d=4 1 f=1		4 d= 2 f=
d=3 f=1	$ \begin{array}{c} \mathbf{d=2} \\ \mathbf{f=1} \end{array} $	$ \begin{array}{c} \mathbf{d} = \\ 5 \mathbf{f} = \\ \end{array} $
² 7	d=1 f=2	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 2, 6, 4, 3 \}$$

ALUop	1				
MEM 1		2			
MEM 2			2		

1 d=4 f=1		
d=3 f=1	$ \begin{array}{c} $	$ \begin{array}{c} $
7	1 d=1 f=2 1	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
3: inc %r11
```

$$READY = \{ 6, 4, 3 \}$$

ALUop	1				
MEM 1		2			
MEM 2			2		

$ \begin{array}{c} $		4 d= 2 f=
2 d=3 f=1	$ \begin{array}{c} $	$ \begin{array}{c} \mathbf{d} \\ \mathbf{f} \\ \mathbf{d} \end{array} $
7	1 d=1 f=2 1	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
3: inc %r11
```

$$READY = \{ 6, 4, 3 \}$$

ALUop	1				
MEM 1		2			
MEM 2			2		

$ \begin{array}{c} \mathbf{d} = 4 \\ 1 \mathbf{f} = 1 \end{array} $		$ \begin{array}{c} \mathbf{d} \\ \mathbf{d} \\ \mathbf{f} = 1 \end{array} $
2 d=3 f=1	6 d=2 f=1	$ \begin{array}{c} \mathbf{d} = 0 \\ 5 \mathbf{f} = 0 \end{array} $
2 7	$\begin{matrix} 1 \\ d=1 \\ f=2 \end{matrix}$	
$\frac{1}{2}$		

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 6, 4, 3 \}$$

ALUop	1	6			
MEM 1		2			
MEM 2			2		

$ \begin{array}{c} $		4 d:
$ \begin{array}{c} $	6 d=2 f=1	$ \begin{array}{c} \mathbf{d} \\ 5 \\ \mathbf{f} \\ \end{array} $
7	1 d=1 f=2	
$\frac{1}{8}$ $d=0$	9 d=8	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 4, 3 \} - 7$$

ALUop	1	6			
MEM 1		2			
MEM 2			2		

	$ \begin{array}{c} \mathbf{d} \\ \mathbf{d} \\ \mathbf{f} = 1 \end{array} $
$ \begin{array}{c} \mathbf{d} = 2 \\ \mathbf{f} = 1 \end{array} $	$ \begin{array}{c} \mathbf{d} = 0 \\ \mathbf{d} = 0 \end{array} $
d=1 f=2 1	
	$ \begin{array}{c} \mathbf{d=2} \\ \mathbf{f=1} \end{array} $

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 4, 7, 3 \}$$

ALUop	1	6			
MEM 1		2			
MEM 2			2		

$ \begin{array}{c} $		4 6 2
d=3 f=1	$ \begin{array}{c} $	$ \begin{array}{c} $
7	d=1 f=2	
$\mathbf{d} = 0$	$\mathbf{d} = 0$	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 4, 7, 3 \}$$

ALUop	1	6			
MEM 1		2			
MEM 2			2		

$ \begin{array}{c} $		4
$ \begin{array}{c} \mathbf{d} = 3 \\ \mathbf{f} = 1 \end{array} $	$ \begin{array}{c} \mathbf{d=2} \\ \mathbf{f=1} \end{array} $	5
7	1 d=1 f=2	
8 d=8	9 4=8	

d=2

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 4, 7, 3 \}$$

ALUop	1	6			
MEM 1	4	2			
MEM 2		4	2		

$ \begin{array}{c} $	$ \begin{array}{c} 3 \mathbf{d=0} \\ \mathbf{f=0} \end{array} $	4 d= 2 f=
2 d=3 f=1	$ \begin{array}{c} $	$ \begin{array}{c} $
7	d=1 f=2	
8 d=0 f=0	9 d=8	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 7, 3 \} -5$$

ALUop	1	6			
MEM 1	4	2			
MEM 2		4	2		

$ \begin{array}{c} $		$ \begin{array}{c} 4 \\ f = \\ 2 \end{array} $
	$ \begin{array}{c} \mathbf{d=2} \\ \mathbf{f=1} \end{array} $	$ \begin{array}{c} \mathbf{d} \\ \mathbf{d} \\ \mathbf{f} \\ \mathbf{d} \end{array} $
7	1 d=1 f=2	
$\frac{1}{8}$ $d=8$	9 d=8	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

READY =
$$\{7, 3, 5\}$$

ALUop	1	6			
MEM 1	4	2			
MEM 2		4	2		

$ \begin{array}{c} $	$ \begin{array}{c} 3 \mathbf{d=0} \\ \mathbf{f=0} \end{array} $	4 d= 2 f=
2 d=3 f=1	$ \begin{array}{c} $	$ \begin{array}{c} $
7	1 d=1 f=2	
$ \begin{array}{c} \mathbf{d} = 0 \\ \mathbf{d} = 0 \end{array} $	$ \begin{array}{c} \mathbf{d} = 0 \\ \mathbf{d} = 0 \end{array} $	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
3: inc %r11
```

READY =
$$\{7, 3, 5\}$$

ALUop	1	6			
MEM 1	4	2			
MEM 2		4	2		

$ \begin{array}{c} $		4
2 d=3 f=1	6 d=2 f=1	5
7	1 d=1 f=2	
1 8 d=8	9 d=8	

d=2

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
3: inc %r11
```

READY =
$$\{7, 3, 5\}$$

ALUop	1	6		7		
MEM 1	4	2				
MEM 2		4	2			

1 d=4 f=1		4
2 d=3 f=1	6 d=2 f=1	5
7	1 d=1 f=2	
$\mathbf{d} = 0$	$\mathbf{q} = 0$	

d=2

```
1: lea var_a, %rax
```

$$READY = \{ 3, 5 \} - 8, 9$$

$ \begin{array}{c} $		4
$ \begin{array}{c} \mathbf{d=3} \\ \mathbf{f=1} \end{array} $	6 d=2 f=1	5
2 7	1 d=1 f=2	
$ \begin{array}{c} \mathbf{d} = 0 \\ \mathbf{d} = 0 \end{array} $	9 d=0 f=0	

ALUop	1	6		7		
MEM 1	4	2				
MEM 2		4	2			

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 3, 5, 8, 9 \}$$

ALUop	1	6		7		
MEM 1	4	2				
MEM 2		4	2			

$ \begin{array}{c} $		4 d= 2 f=
$ \begin{array}{c} -1 \\ 2 \end{array} $ $ \begin{array}{c} d=3 \\ f=1 \end{array} $	$ \begin{array}{c} \mathbf{d=2} \\ \mathbf{f=1} \end{array} $	$ \begin{array}{c} \mathbf{d} = \\ 5 \mathbf{f} = \\ \end{array} $
7	1 d=1 f=2	
$\mathbf{q} = 0$	$\mathbf{q} = 0$	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 3, 5, 8, 9 \}$$

ALUop	1	6		7		
MEM 1	4	2				
MEM 2		4	2			

$ \begin{array}{c} \mathbf{d} = 4 \\ \mathbf{f} = 1 \end{array} $	$\begin{array}{c} 3 \mathbf{d=0} \\ \mathbf{f=0} \end{array}$	4 d= 2 f=
$ \begin{array}{c} d=3 \\ f=1 \end{array} $	$ \begin{array}{c} $	$ \begin{array}{c} $
7	d=1 f=2	
$ \begin{array}{c} $	g $d=0$	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 3, 5, 8, 9 \}$$

ALUop	1	6	3	7		
MEM 1	4	2				
MEM 2		4	2			

$ \begin{array}{c} $	$\begin{array}{c} 3 & \mathbf{d=0} \\ \mathbf{f=0} & \end{array}$	4 6
$ \begin{array}{c} \mathbf{d=3} \\ \mathbf{f=1} \end{array} $	$ \begin{array}{c} \mathbf{d=2} \\ \mathbf{f=1} \end{array} $	$ \begin{array}{c} $
2 7	1 d=1 f=2	
d=0	d=0	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 5, 8, 9 \}$$

ALUop	1	6	3	7		
MEM 1	4	2				
MEM 2		4	2			

0 = 4 $1 = 1$		4 d f
$ \begin{array}{c} \mathbf{d=3} \\ \mathbf{f=1} \end{array} $	$ \begin{array}{c} \mathbf{d=2} \\ \mathbf{f=1} \end{array} $	$ \begin{array}{c} $
7	1 d=1 f=2	
$\frac{1}{8}$ $d=0$	q = 0	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 5, 8, 9 \}$$

ALUop	1	6	3	7		
MEM 1	4	2				
MEM 2		4	2			

$ \begin{array}{c} $	$ \begin{array}{c} 3 \mathbf{d=0} \\ \mathbf{f=0} \end{array} $	4 d d
$ \begin{array}{c} $	$ \begin{array}{c} $	5 d
7	d=1 f=2	
8 d=8	9 4=8	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 5, 8, 9 \}$$

ALUop	1	6	3	7		
MEM 1	4	2	5			
MEM 2		4	2			

$ \begin{array}{c} $	$ \begin{array}{c} 3 \mathbf{d=0} \\ \mathbf{f=0} \end{array} $	4 d d
$ \begin{array}{c} \mathbf{d} = 3 \\ \mathbf{f} = 1 \end{array} $	$ \begin{array}{c} \mathbf{d=2} \\ \mathbf{f=1} \end{array} $	5 d
7	1 d=1 f=2	
$ \begin{array}{c} \mathbf{d} = 0 \\ \mathbf{d} = 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 8, 9 \}$$

ALUop	1	6	3	7		
MEM 1	4	2	5			
MEM 2		4	2			

$ \begin{array}{c} $	$ \begin{array}{c} 3 \mathbf{d=0} \\ \mathbf{f=0} \end{array} $	4 d= 2 f=
$ \begin{array}{c} d=3 \\ f=1 \end{array} $	$ \begin{array}{c} \mathbf{d=2} \\ \mathbf{f=1} \end{array} $	$ \begin{array}{c} $
7	1 d=1 f=2	
$ \begin{array}{c} 1 \\ 8 \end{array} $ $ \begin{array}{c} \mathbf{d} = 0 \\ \mathbf{f} = 0 \end{array} $	$ \begin{array}{c} 1 \\ 9 \\ 1 = 0 \end{array} $	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 8, 9 \}$$

ALUop	1	6	3	7		
MEM 1	4	2	5			
MEM 2		4	2			

$ \begin{array}{c} $	$ \begin{array}{c} 3 \mathbf{d=0} \\ \mathbf{f=0} \end{array} $	4 6
	$ \begin{array}{c} $	$\frac{1}{5}$ $\frac{d}{f}$
7	1 d=1 f=2	
8 d=0 f=0	$ \begin{array}{c} \mathbf{d} = 0 \\ \mathbf{d} = 0 \end{array} $	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 8, 9 \}$$

ALUop	1	6	3	7	8	
MEM 1	4	2	5			
MEM 2		4	2			

$ \begin{array}{c} -\\ 1\\ 1 \end{array} $ $ \begin{array}{c} d=4\\ f=1 \end{array} $		$\frac{4}{2}$ d
$ \begin{array}{c} d=3 \\ f=1 \end{array} $	$ \begin{array}{c} \mathbf{d=2} \\ \mathbf{f=1} \end{array} $	$\frac{1}{5}$ d
2 7	1 d=1 f=2	
8 d=0	$\frac{1}{9}$ $d=0$	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 9 \}$$

ALUop	1	6	3	7	8	
MEM 1	4	2	5			
MEM 2		4	2			

$ \begin{array}{c} $	$ \begin{array}{c} 3 \mathbf{d=0} \\ \mathbf{f=0} \end{array} $	$\frac{4}{2}$ d
$ \begin{array}{c} d=3 \\ f=1 \end{array} $	$ \begin{array}{c} d=2 \\ f=1 \end{array} $	$ \begin{array}{c} -1 \\ \hline 5 \end{array} $
7	1 d=1 f=2	
$ \begin{array}{c} \mathbf{d} = 0 \\ \mathbf{d} = 0 \end{array} $	$ \begin{array}{c} \mathbf{d} = 0 \\ \mathbf{d} = 0 \end{array} $	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
```

$$READY = \{ 9 \}$$

ALUop	1	6	3	7	8	
MEM 1	4	2	5			
MEM 2		4	2			

$ \begin{array}{c} $	$ \begin{array}{c} 3 \mathbf{d=0} \\ \mathbf{f=0} \end{array} $	$ \begin{array}{c} 4 \\ f=1 \end{array} $
2 d=3 f=1	6 d=2 f=1	$ \begin{array}{c} $
7	1 d=1 f=2	
$ \begin{array}{c} \mathbf{d} = 0 \\ \mathbf{d} = 0 \end{array} $	9 d=0 f=0	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
3: inc %r11
```

$$READY = \{ 9 \}$$

ALUop	1	6	3	7	8	
MEM 1	4	2	5		9	
MEM 2		4	2			

$ \begin{array}{c} $		4 d=2 f=1
d=3 f=1	6 d=2 f=1	$ \begin{array}{c} $
7	d=1 f=2	
$ \begin{array}{c} \mathbf{d} = 0 \\ \mathbf{d} = 0 \end{array} $	9 d=0 f=0	

```
1: lea var_a, %rax
2: add 4(%rsp), %rax
3: inc %r11
4: mov 4(%rsp), %r10
5: mov %r10, 8(%rsp)
6: and $0x00ff, %rbx
7: imul %rax, %rbx
8: lea var_b, %rax
9: mov %rbx, 16(%rsp)
```

1	3	
2	6	
2	7	
8	9	

$READY = \{ \}$

ALUop	1	6	3	7	8	
MEM 1	4	2	5		9	
MEM 2		4	2			

Outline

- Modern architectures
- Introduction to instruction scheduling
- List scheduling
- Resource constraints
- Scheduling across basic blocks
- Trace scheduling

Scheduling across basic blocks

- Number of instructions in a basic block is small
 - Cannot keep a multiple units with long pipelines busy by just scheduling within a basic block
- Need to handle control dependence
 - Scheduling constraints across basic blocks
 - Scheduling policy

Downward to adjacent basic block

Downward to adjacent basic block

Downward to adjacent basic block

• A path to B that does not execute A?

Upward to adjacent basic block

Upward to adjacent basic block

Upward to adjacent basic block

• A path from C that does not reach A?

Constraints in moving instructions across basic blocks

Constraints in moving instructions across basic blocks

```
if ( . . . )
    a = b op c
```

 Constraints in moving instructions across basic blocks

```
if ( . . . )

a = b op c
```

 Constraints in moving instructions across basic blocks

Constraints in moving instructions across basic blocks

```
If ( . . . )

d = *(a1)
```

 Constraints in moving instructions across basic blocks

```
If ( valid address? )
   d = *(a1)
```

Outline

- Modern architectures
- Introduction to instruction scheduling
- List scheduling
- Resource constraints
- Scheduling across basic blocks
- Trace scheduling

- Find the most common trace of basic blocks
 - Use profile information
- Combine the basic blocks in the trace and schedule them as one block
- Create clean-up code if the execution goes offtrace

Large Basic Blocks via Code Duplication

- Creating large extended basic blocks by duplication
- Schedule the larger blocks

Large Basic Blocks via Code Duplication

- Creating large extended basic blocks by duplication
- Schedule the larger blocks

Next

- Scheduling for loops
- Loop unrolling
- Software pipelining
- Interaction with register allocation
- Hardware vs. Compiler