GPS module:

- A GPS module uses a receiver chip, antenna, and CPU to receive signals from satellites and calculate a location
- The module uses a process called trilateration to calculate its position by measuring the distance to satellites using radio signals.
 - 1. Trilateration: Trilateration is a mathematical technique that uses distance measurements to determine the location of a point of interest
 - 2. Trilateration uses the distance from at least three known points to calculate the position of a target. The distance is calculated using the rate and time, where distance = rate × time.

•

• GPS Module we are using is neo 6M

Pin#	NAME			NAME	Pin‡
01	3.3v DC Power		DC Power 5v		02
03	GPIO02 (SDA1, I2C)	00	D	C Power 5v	04
05	GPI003 (SCL1, I2C)	00		Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14		08
09	Ground	00	(RXI	D0) GPIO15	
11	GPIO17 (GPIO_GEN0)	00	BITCLOCK GEN1) GPIO18		12
13	GPIO27 (GPIO_GEN2)	00	Ground		14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23		16
17	3.3v DC Power	00	(GPIO_GEI	N5) GPIO24	18
19	GPIO10 (SPI_MOSI)	00		Ground	20
21 5	GPIO09 (SPI_MISO)	00	(GPIO_GEI	N6) GPIO25	22
23	GPIO11 (SPI_CLK)	00	(SPI_CE0_N) GPIO08		24
25 Ground		00	(SPI_CE1_N) GPIO07		26
27	27 ID_SD (I2C ID EEPROM)		(I2C ID EEPROM) ID_SC		28
29	GPIO05	00	Ground		30
31	GPIO06	00	GPIO12		32
33	GPIO13	00	Ground		34
35	GPIO19 LRCLOCK	00		GPIO16	36
37	GPIO26	00	DATA IN	GPIO20	38
39	Ground	00	DATA OUT	GPIO21	40

CONNECTION OF GPS MODULE TO RPI:

Neo-6M RPI VCC to Pin 1, which is 3.3v TX to Pin 10, which is RX (GPIO15) RX to Pin 8, Which is TX (GPIO14) Gnd to Pin 6, which is Gnd

https://youtu.be/N8fH0nc9v9Q?si=BzO-nrT-kkRCt1ke

MQTT PROTOCOL

Hardware Specifications

- Raspberry Pi 4 Model B / Raspberry Pi 3 Model B+'
- Micro SD Card (min 8 GB)
- 5V adapter (with a recommended current rating of 2.5A or more)

Installing Mosquitto MQTT Broker on Raspberry Pi:

To set up an MQTT broker on Raspberry Pi, follow these steps:

Open a new terminal window and install Mosquitto dependencies.

```
sudo apt install mosquitto mosquitto-clients'
```

• To check if the mosquito is running

```
sudo systemctl status mosquito
```

https://youtu.be/pPKrVwBNeNc?si=LK1Jlbwyl2doScml