Recitations 10

[Definitions used today]

• Junge Economy, Welfare Theorems, Existence of Equilibrium

Question 1 [Piccione & Rubinstein, 2006]

Some results on jungle equilibrium.

- a) Define setting.
- b) Define feasible allocation and jungle equilibrium.
- c) Show that a jungle equilibrium exists.
- d) Let $a = (a_1, ..., a_n)$ and $b = (b_1, ..., b_n)$ be strictly positive vectors, and suppose that $a \cdot x > 0$ and $b \cdot x < 0$, for some vector $x = (x_1, ..., x_n)$. Show that there exists a vector $y = (y_1, ..., y_n)$ such that:
 - $y_k > 0$ for some k for which $x_k > 0$
 - $y_l < 0$ for some l for which $x_l < 0$
 - $y_h = 0$ for $h \neq kh \neq l$
 - $a \cdot y > 0$ and $b \cdot y < 0$
- e) Show that if a jungle is smooth then \hat{z} is the unique jungle equilibrium.
- f) Show that the allocation \hat{z} is efficient.
- g) Jungle equilibrium vs. competitive equilibrium: trading houses (with and without gold).
- h) Can a jungle allocation be supported by a vector of prices in competitive equilibrium?
- i) Suppose that the jungle is smooth. Show that in the exchange economy in which $w_i = \hat{z}_i, i \in \{1, ..., N\}$, there exists a sequence of price vectors p_n such that, for every agent i, the sequence of demands of agent i given p_n converges to z_i .
- j) Think about jungle equilibrium with production.

Question 2 [Very Easy Existence Theorem]

Let $Z: \bar{\Delta} \to \mathbb{R}^l$ is a continuous function that satisfies Walras' law $(\forall p \in \bar{\Delta}: p \cdot Z(p) = 0)$, then $\exists p^* \in \bar{\Delta}$ such that $Z(p^*) \leq 0$. Further, $Z(p^*) = 0$ only if $p^* \in \Delta$.

Question 3 [Easy Existence Theorem]

Let $Z: \Delta \to \mathbb{R}^l$ be a continuous function that is bouded from below, satisfying Walras' Law and the boundary condition: $p_n \to p \in \partial \Delta \Rightarrow ||Z(p_n)|| \to \infty$. Then $\exists p^* \in \Delta$ such that $Z(p^*) = 0$.