Lecture 234 Breadth-First Search

Breadth-first search (outline)

- 1. The single source shortest-paths problem for unweighted graph
- 2. The Breadth-first search algorithm
- 3. The correctness proof
- 4. The running time of BFS algorithm

Note: We only introduce BFS for undirected graphs.
 But it also works for directed graphs.

Shortest paths

Example: There are three simple paths (distinct vertices) from source s to b: $\langle s, b \rangle$, $\langle s, a, b \rangle$, $\langle s, e, d, b \rangle$ of length 1, 2, 3, respectively.

So the shortest path (a path containing the smallest number of edges) from s to b is $\langle s, b \rangle$.

The shortest paths from s to other vertices a, e, d, c are:

$$\langle s, a \rangle$$
, $\langle s, e \rangle$, $\langle s, e, d \rangle$, $\langle s, b, c \rangle$.

There are two shortest paths from *s* to *d*.

The shortest-paths problem

- Distance $\delta(s, v)$: The length of the shortest path from s to v. For example $\delta(s, c)=2$.
- The problem:
 - Input: A graph G = (V, E) and a source vertex $s \in V$
 - Question: A shortest path from s to each vertex $v \in V$ and the distance $\delta(s, v)$.

The Breadth-First Search

- The idea of the BFS:
 - Each time, search as many vertices as possible.
 - Visit the vertices as follows:
 - 1. Visit all vertices at distance 1
 - 2. Visit all vertices at distance 2
 - 3. Visit all vertices at distance 3
 - 4.
- Initially, *s* is made GRAY, others are colored WHITE.
- After a gray vertex is processed, its color is changed to black, and the color of all white neighbors is changed to gray.
- Gray vertices are kept in a queue Q.

The Breadth-First Search (more details)

- G is given by its adjacency-lists.
- Initialization:
 - First Part: lines 1-4
 - Second Part: lines 5 9
- Main Part: lines 10 − 18

- Enqueue(Q, v): add a vertex v
 to the end of the queue Q
- Dequeue(Q): Extract the first vertex in the queue Q

```
BFS(G, s)
  for each vertex u \in V[G] - \{s\}
       do u.color<--WHITE
           u.d<--∞
           u.\pi < --NIL
   s.color<--GRAY
6 s.d < --0
7 s.\pi<--NIL
8 Q<--φ
9 ENQUEUE(Q, s)
10 while Q≠¢
      do u<--DEQUEUE(Q)
11
         for each v \in Adi[u]
12
            do if v.color=WHITE
13
               then v.color<--GRAY
14
                    v.d < --u.d + 1
15
16
                    v.\pi < --u
17
                    ENQUEUE(Q, v)
18
          u.color<--BLACK
```

What does the BFS do?

- Given a graph G = (V, E), the BFS returns:
 - *v.d*, proved to be the shortest distance from *s* to *v*
 - $v.\pi$, the predecessor of v in the search, which can be used to derive a shortest path from s to vertex v.
- BFS actually returns a **shortest path tree** in which the unique simple path from *s* to node *v* is a shortest path from *s* to *v* in the original graph.
- In addition to the two arrays v.d and $v.\pi$, BFS also uses another array v.color, which has three possible values:
 - WHITE: represented "undiscovered" vertices;
 - GRAY: represented "discovered" but not "processed" vertices;
 - BLACK: represented "processed" vertices.

Example of Breadth-First Search

source vertex: s

Initialization

vertex u	S	a	b	c	d	e	$\underline{\mathbf{f}}$
color	G	W	W	W	W	W	W
d	0	∞	∞	∞	∞	∞	∞
π	NIL	NIL	NIL	NIL	NIL	NIL	NIL

Q = <s>
(put s into Q (discovered),
mark s gray (unprocessed))

- While loop, first iteration
 - Dequeue s from Q. Find Adj[s]=<b, e>

a

W

 ∞

NIL

- Mark b,e as "G"
- Update b.d, e.d, b. π , e. π
- Put b, e into Q
- Mark s as "B"

vertex u s

color

d

• Q=<b, e>

- While loop, second iteration
 - Dequeue b from Q, find Adj[b]=<s, a, c, f>
 - Mark a, c, f as "G",
 - Update a.d, c.d, f.d, a. π , c. π ,f. π
 - Put a, c, f into Q
 - Mark b as "B"
- Q=<e, a, c, f>

vertex u	S	a	b	c	d	e	f
color	В	G	В	G	W	G	G
d	0	2	1	2	∞	1	2
π	NIL	b	S	b	NIL	S	b

- While loop, third iteration
 - Dequeue e from Q, find Adj[e]=<s, a, d, f>
 - Mark d as "G", mark e as "B"
 - Update d.d, d. π ,
 - Put d into Q
- $Q=\langle a,c,f,d\rangle$

vertex u	S	a	b	c	d	e	f
color	В	G	В	G	G	В	G
d	0	2	1	2	2	1	2
π	NIL	<u>b</u>	S	<u>b</u>	e	S_	b

• While loop, fourth iteration

Dequeue a from Q, find Adj[a]=<b, e>

mark a as "B"

• Q=<c, f, d>

vertex u	S	a	b	C	d	e	<u>f</u>
color	В	В	В	G	G	В	G
d	0	2	1	2	2	1	2
π	NIL	b	S	b	e	S	b

• While loop, fifth iteration

Dequeue c from Q, find Adj[c]=<b, d>

mark c as "B"

• Q=<f, d>

vertex u	S	a	b	c	d	e	f
color	В	В	В	В	G	В	G
d	0	2	1	2	2	1	2
π	NIL	b_	S	b_	e	S	b

• While loop, sixth iteration

Dequeue f from Q, find Adj[f]=<b,e>

mark f as "B"

• Q=<d>

vertex u	S	a	b	c	d	e	<u>f</u>
color	В	В	В	В	G	В	В
d	0	2	1	2	2	1	2
π	NIL	b	S	b	e	S	b

• While loop, seventh iteration

Dequeque d from Q, find Adj[d]=<c,e>

mark d as "B"

• Q is empty

vertex u	S	a	b	c	d	e	f
color	В	В	В	В	В	В	В
d	0	2	1	2	2	1	2
π	NIL	b	S	b_	<u>e</u>	S	b

- While loop, eighth iteration
- Since Q is empty, stop

vertex u	S	a	b	C	d	e	f
color	В	В	В	В	В	В	В
d	0	2	1	2	2	1	2
π	NIL	b_	S	b	e	S	b

What does BFS produce

- BFS creates a prodecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$, where
 - $V_{\pi} = \{ u \in V | u.\pi \neq NIL \} \cup \{ s \}$
 - $E_{\pi} = \{(u.\pi, u) | \text{ where } u.\pi \text{ is computed in the BFS(G, s) calls} \}$
 - prodecessor subgraph is a tree since it is connect and $|E_{\pi}|=|V_{\pi}|-1$

The red edges form a tree //note there are |V|-1 edges

Our Goal

- Shortest-path distance $\delta(s, v)$:
 - the minimum number of edges in any path from vertex s to vertex v; if there is no path from s to v, then $\delta(s, v) = \infty$.
- Shortest path:
 - A path of length $\delta(s, v)$: $s \to v$.

Recall what does the BFS return?

• The BFS returns:

- *v.d*, proved to be the shortest distance from *s* to *v*
- $v.\pi$, the predecessor of v in the search, which can be used to derive a shortest path from s to vertex v.

• What we need to prove:

- $\bullet \quad \delta(s, v) = v.d$
- $s \rightarrow v = s \rightarrow v.\pi + (v.\pi, v)$

An Important Property

• Lemma 22.1: Let G=(V, E) be a directed or undirected graph, and let $s \in V$ be an arbitrary vertex. Then, for any edge $(u, v) \in E$, $\delta(s, v) \leq \delta(s, u) + 1$.

• Proof:

- If *u* is reachable from *s*, then so is *v*. In this case, the shortest path from *s* to *v* can not be longer than the shortest path from *s* to *u* followed by the edge (*u*, *v*) and thus the inequality holds.
- If *u* is not reachable from *s*, then $\delta(s, u) = \infty$, and the inequality holds.

A Property of the BFS

• Lemma 22.2:

- Let G=(V, E) be a directed or undirected graph, and suppose that BFS is run on G from a given source vertex $s \in V$.
- Then upon termination, for each vertex $v \in V$, the value v.d computed by BFS satisfies $v.d \ge \delta(s, v)$.

Proof of Lemma 22.2(1)

- We use induction on the number of ENQUEUE operations. Our inductive hypothesis is that $v.d \ge \delta(s, v)$ for all $v \in V$.
- The basis of the induction is the situation immediately after enqueuing s in line 9 of BFS. The inductive hypothesis holds here, because $s.d=0=\delta(s,s)$ and $v.d=\infty \geq \delta(s,v), v \in V \{s\}.$
- For the inductive step, consider a white vertex v that is discovered during the search from a vertex u.

Proof of Lemma 22.2(2)

• We obtain

```
v.d = u.d + 1 \text{ (line 15)}

\geq \delta(s, u) + 1 \text{ (inductive hypothesis)}

\geq \delta(s, v) \text{ (Lemma 22.1)}
```

- Vertex ν is then enqueued, and it is never enqueued again because it is also grayed and the **then** clause of lines 14—17 is executed only once for white vertices.
- Thus, the value of *v.d* never changes again, and the inductive hypothesis is maintained.

A property of the Queue

• Lemma 22.3:

- Suppose that during the execution of BFS on a graph G=(V, E), the queue $Q=\langle v_1, v_2, ..., v_r \rangle$, where v_1 is the head of Q and v_r is the tail.
- Then $v_r.d \le v_1.d + 1$ and $v_i.d \le v_{i+1}.d$, for $1 \le i \le r-1$.

Proof of Lemma 22.3(1)

- The proof is by induction on the number of queue operations. Initially, when the queue contains only *s*, the lemma certainly holds.
- For the inductive step, we must prove that the lemma holds after both dequeuing and enqueuing a vertex. If the head v_1 of the queue is dequeued, v_2 becomes the new head. (If the queue becomes empty, then the lemma holds vacuously.)
- By the inductive hypothesis, $v_1.d \le v_2.d$, $v_r.d \le v_1.d+1 \le v_2.d+1$, $v_i.d \le v_{i+1}.d$, $2 \le i \le r-1$.
- Thus, the lemma follows with v_2 as the head.

Proof of Lemma 22.3(2)

- In order to understand what happens upon enqueuing a vertex, we need to examine the code more closely. When we enqueue a vertex v in line 17 of BFS, it becomes v_{r+1} . At that time, we have already removed vertex u, whose adjacency list is currently being scanned, from the queue Q.
- By the inductive hypothesis, the new head v_1 has $v_1.d \ge u.d$. Thus, $v_{r+1}.d = v.d = u.d + 1 \le v_1.d + 1$.
- From the inductive hypothesis, we also have $v_r.d \le u.d + 1$, or from line 15 we have $v_r.d = u.d + 1$, and so $v_r.d \le u.d + 1 = v.d = d[v_{r+1}]$.
- The remaining inequalities are unaffected. Thus, the lemma follows when ν is enqueued.

Lemma 22.3中文证明思路

• Proof:

- 对入队和出队操作次数进行归纳证明。我们证明入队或出队操作之后,引理总成立。
- 当Q=<*s*>时, 引理中的性质成立。
- v_1 出队, v_2 成为队首。则依据归纳假设 $d[v_1] \leq d[v_2], d[v_r] \leq d[v_1] + 1 \leq d[v_2] + 1, d[v_i] \leq d[v_{i+1}], 2 \leq i \leq r-1.$
- v入队,成为队尾 v_{r+1} 。之前存在u出队,此时算法正在搜索u的邻接链表,发现白色顶点v。

```
d[v_1] \ge d[u] , d[v_r] \le d[u]+1 (归纳假设) 
 d[v_{r+1}] = d[v] = d[u]+1 (算法第15行) 
 d[v_{r+1}] = d[u]+1 \le d[v_1]+1 ; d[v_r] \le d[u]+1 = d[v_{r+1}] 。
```

A Corollary (推论)

- **Corollary 22.4:**
- Suppose that vertices v_i and v_j are enqueued during the execution of BFS, and that v_i is enqueued before v_i .
- Then $v_i.d \le v_j.d$ at the time that v_j is enqueued.
- v_i 先于 v_k 入队,则 $d[v_i] \le d[v_k]$ (先入队的距离小)
- **Proof:** Immediate from Lemma 22.3 and the property that each vertex receives a finite *d* value at most once during the course of BFS.

Correctness of BFS (Theorem 22.5)

- Let G=(V, E) be a directed or undirected graph, and suppose that BFS is run on G from a given source vertex $s \in V$.
- Then, during its execution, BFS discovers every vertex $v \in V$ that is reachable from the source s, and upon termination, $v.d = \delta(s, v)$, for all $v \in V$.
- Moreover, for any vertex $v \neq s$ that is reachable from s, one of the shortest paths from s to v is a shortest path from s to $v.\pi$ followed by the edge $(v.\pi,v)$.

Proof of Theorem 22.5(1)

- Assume, for the purpose of contradiction, that some vertex receives a d value not equal to its shortest-path distance. Let v be the vertex with minimum $\delta(s, v)$, that receives such an incorrect d value; clearly $v \neq s$. By Lemma 22.2, $v.d \geq \delta(s, v)$, and thus we have that $v.d > \delta(s, v)$. Vertex v must be reachable from s, for if it is not, then $\delta(s, v) = \infty \geq v.d$.
- Let u be the vertex immediately preceding v on a shortest path from s to v, so that $\delta(s, v) = \delta(s, u) + 1$. Because $\delta(s, u) < \delta(s, v)$, and because of how we chose v, we have $u.d = \delta(s, u)$.
- Putting these properties together, we have $v.d > \delta(s, v) = \delta(s, u) + 1 = u.d + 1$ ----- (22.1).

Proof of Theorem 22.5(2)

- Now consider the time when BFS chooses to dequeue vertex u from Q in line 11. At this time, vertex v is either white, gray, or black. We shall show that in each of these cases, we derive a contradiction to inequality (22.1).
- If v is white, then line 15 sets v.d = u.d + 1, contradicting inequality (22.1).
- If v is black, then it was already removed from the queue and, by Corollary 22.4, we have $v.d \le u.d$, a contradiction.
- If v is gray, then it was painted gray upon dequeuing some vertex w, which was removed from Q earlier than u and for which : v.d = w.d+1. By Corollary 22.4, $w.d \le u.d$, and so we have: $v.d \le u.d+1$, once again, a contradiction.

Proof of Theorem 22.5(3)

- Thus we conclude that : $v.d = \delta(s, v)$, for all $v \in V$. All vertices reachable from s must be discovered, for otherwise, they would have $\infty = v.d \ge \delta(s, v)$.
- To conclude the proof of the theorem, observe that if $v \cdot \pi = u$, then $v \cdot d = u \cdot d + 1$.
- Thus, we can obtain a shortest path from s to v by taking a shortest path from s to $v.\pi$: and then traversing the edge $(v.\pi,v)$.

Correctness of BFS中文版(1)

- 定理22.5: $\delta(s, v) = d[v]$ $s \rightarrow v = s \rightarrow \pi[v] + (\pi[v], v)$
- 证明: (part 1)
 - 反证法。假设存在一些顶点,它们的d[]值不等于最短路径距离。设v是这些顶点中,最短路径距离最小的。($v \neq s$)
 - $d[v] \ge \delta(s, v)$ (引理22.2),因此 $d[v] > \delta(s, v)$ 。v和s之间必然存在一条最短路径 $s \to v$,否则 $\delta(s, v) = \infty \ge d[v]$ 。设u是这条最短路径上v的前驱,即 $s \to u v$ 。因此, $\delta(s, v) = \delta(s, u) + 1$ 。这意味着 $\delta(s, u) < \delta(s, v)$,根据v的选择方式, $d[u] = \delta(s, u)$ $d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$ 。
 - 接下来分析当u出队时,v可能的三种颜色: W,G,B。 我们证明每一种情况下,上式都不可能成立。

Correctness of BFS中文版(2)

- 定理22.5: $\delta(s, v) = d[v]$ $s \to v = s \to \pi[v] + (\pi[v], v)$
- 证明: (part 2)
 - v是白色的, d[v] = d[u] +1。(算法15行)
 - v是黑色的, v已经出队, $d[v] \le d[u]$ 。(推论22.4)
 - v是灰色的, v在顶点w的邻接链表里, w先于u出队. $d[v] = d[w] + 1, d[w] \le d[u], 从而 d[v] \le d[u] + 1.$
 - 综上,假设的v是不可能存在的。因此 $d[v] = \delta(s, v)$.
 - 所有s不可达的顶点的d[]值都是 ∞ 。

(part 3)

• 如果 $\pi[v]=u$,则d[v]=d[u]+1, $s \to u+(u,v)$ 是s到v的最短路径。

Predecessor subgraph

- BFS creates a predecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$, where
 - $V_{\pi} = \{u \in V | u.\pi \neq NIL\} \cup \{s\}$
 - $E_{\pi} = \{(u.\pi, u) | \text{ where } u.\pi \text{ is computed in the BFS(G, s) calls} \}$
- The predecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ is a breadth-first tree if
 - V_{π} consists of vertices reachable from s.
 - For all $v \in V_{\pi}$, there is a unique simple path form s to v in G_{π} that is also a shortest path from s to v in G.
- The edges in E_{π} are called tree edges (树边)。

Breadth-first Tree (Lemma 22.6)

• When applied to a directed or undirected graph G = (V, E), procedure BFS constructs π , so that the predecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$, is a breadth-first tree.

Proof of Lemma 22.6

- Line 16 of BFS sets $v.\pi=u$ if and only if $(u, v) \in E$ and $\delta(s, v) < \infty$ that is, if v is reachable from s— and thus V_{π} consists of the vertices in V reachable from s.
- Since G_{π} forms a tree, it contains a unique simple path from s to each vertex in V_{π} .
- By applying Theorem 22.5 inductively, we conclude that every such path is a shortest path in G.

Example of Breadth-first Tree

Question:

How do you construct a shorted path from s to any vertex by using the following table?

	b		c 2
a 2	S 0	f 2	
ortest			d 2
<u> </u>	\mathbf{e}_1		

vertex u	S	a	b	c	d	e	<u>f</u>
color	В	В	В	В	В	В	В
d	0	2	1	2	2	1	2
π	NIL	b	S	b	e	S	b

The Answer

```
PRINT_PATH(G,s,v)
1 if v=s
2 then print s
3 else if v. π=NIL;
4 then print "no path from"s "to" v;
5 else PRINT_PATH(G,s, v. π)
6 print v
```

BFS for disconnected graph

- We can modify BFS so that it returns a forest.
- More specifically, if the original graph is composed of connected components C_1 , $C_2, ..., C_k$, then BFS will return a tree corresponding to each C_i .

BFS for disconnected graph

BFS_GENERAL(G)

- 1 for each vertex $u \in V$
- 2 $u.color \leftarrow WHITE$;
- 3 $u.d \leftarrow \infty$;
- 4 $u.\pi \leftarrow NIL$;
- 5 for each vertex $u \in V$
- 6 if $u.d = \infty$
- 7 then BFS(G, u);

Analysis of the Breadth-First Search Algorithm

- We assume that it takes one unit time to test the color of a vertex, or to update the color of a vertex, or to compute v.d = u.d + 1, or to set $v.\pi = u$, or to en-queue, or to dequeue.
- The following analysis is valid for connected graphs.
 - The initialization requires O(V) time units.
 - In the while loop, each vertex *u* is en-queued and de-queued exactly once. So, each adjacency list Adj[u] is scanned exactly once after u is de-queued. So scanning the adjacency lists needs time *O*(*E*).
- Total time is: T(V, E) = O(V+E).

Conclusion

- Content
 - BFS: algorithm, proof of its correctness, cases, analysis of its time complexity
- Homework
 - 22.2-2 and 22.2-8

Nest Class

- The DFS algorithm
- The time complexity of DFS algorithm
- Properties of the DFS algorithm