Math Foundations of ML, Fall 2022

Homework #6

Due Monday November 14, at 5:00pm ET

As stated in the syllabus, unauthorized use of previous semester course materials is strictly prohibited in this course.

1. Suppose that two random variables (X,Y) have joint pdf $f_{X,Y}(x,y)$. Find an expression for the pdf $f_Z(z)$ where Z = X + Y. You can start by realizing that

$$F_Z(u|X = \beta) = P(Z \le u|X = \beta) = P(Y \le u - \beta|X = \beta).$$

You can combine the expressions above by integrating over β , and see that the resulting expression corresponds to an integral of $f_{X,Y}(x,y)$ over a half plane. From this, you can get the pdf for Z by applying the Fundamental Theorem of Calculus. How does your expression simplify if X and Y are independent? (Convolution!)

Solution.

Since Z = X + Y, we have

$$F_{Z}(z) = \int_{-\infty}^{\infty} F_{Z}(z|X=\beta) f_{X}(\beta) d\beta$$

$$= \int_{-\infty}^{\infty} P(Z \le z|X=\beta) f_{X}(\beta) d\beta$$

$$= \int_{-\infty}^{\infty} P(Y \le z - \beta|X=\beta) f_{X}(\beta) d\beta$$

$$= \int_{-\infty}^{\infty} F_{Y}(z - \beta|X=\beta) f_{X}(\beta) d\beta.$$

and thus

$$f_Z(z) = \frac{d}{dz} F_Z(z) = \frac{d}{dz} \int_{-\infty}^{\infty} F_Y(z - \beta | X = \beta) f_X(\beta) d\beta$$

$$= \int_{-\infty}^{\infty} \frac{d}{dz} F_Y(z - \beta | X = \beta) f_X(\beta) d\beta$$

$$= \int_{-\infty}^{\infty} f_Y(z - \beta | X = \beta) f_X(\beta) d\beta$$

$$= \int_{-\infty}^{\infty} f_{X,Y}(\beta, z - \beta) d\beta.$$

If X and Y are independent,

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X,Y}(\beta, z - \beta) d\beta = \int_{-\infty}^{\infty} f_X(\beta) f_Y(z - \beta) d\beta,$$

which is the convolution of the PDFs of X and Y.

2. Let X_1, X_2, \ldots be independent uniform random variables,

$$X_n \sim \text{Uniform}(-1/2, 1/2), \quad \text{meaning} \quad f_X(x) = \begin{cases} 1, & -1/2 \le x \le 1/2 \\ 0, & \text{otherwise.} \end{cases}$$

(a) What is the density function for $Y = X_1 + X_2 + X_3$? (If you compute this correctly, you will meet an old friend.) Solution.

We know that adding independent random variables is equivalent to convolving their PDFs. We realize $b_0(x) = f_X(x)$ is the 0th order B-spline, so $Y = X_1 + X_2 + X_3$ will have a PDF $f_Y(y) = (b_0 * b_0 * b_0)(y) = b_2(y)$, which is explicitly given below:

$$f_Y(y) = \begin{cases} (y+3/2)^2/2, & -3/2 \le y \le -1/2 \\ -y^2 + 3/4, & -1/2 \le y \le 1/2 \\ (y-3/2)^2/2, & 1/2 \le y \le 3/2 \\ 0, & |y| > 3/2 \end{cases}$$

(b) The moment generating function of a random variable is

$$\varphi_X(t) = \mathrm{E}\left[e^{tX}\right].$$

It is a fact that if $\varphi_X(t) = \varphi_W(t)$ for all t, then X and W have the same distribution. It is a fact that if $G \sim \text{Normal}(0, \sigma^2)$, then $\varphi_G(t) = e^{\sigma^2 t^2/2}$. Let

$$Y_N = \frac{1}{\sqrt{N}} \sum_{n=1}^N X_n.$$

Find an expression for $\varphi_{Y_N}(t)$. Plot $\varphi_{Y_N}(t)$ and $\varphi_G(t)$ for $\sigma^2 = \text{var}(Y) = \text{var}(X_n) = 1/12$ on the same set of axes for N = 1, 2, 5, 10 and $0 \le t \le 5$. What might you conclude about Y_N as $N \to \infty$? (Bonus question: argue rigorously that $\varphi_{Y_N}(t) \to \varphi_G(t)$ for all t.) Solution.

We first derive the MGF of X:

$$\varphi_X(t) = \mathbf{E} \left[e^{tX} \right]$$

$$= \int_{-1/2}^{1/2} e^{tx} dx$$

$$= \frac{1}{t} \left(e^{\frac{t}{2}} - e^{-\frac{t}{2}} \right)$$

$$= \frac{2}{t} \left(\frac{e^{\frac{t}{2}} - e^{-\frac{t}{2}}}{2} \right)$$

$$= \frac{2}{t} \sinh \frac{t}{2}.$$

Then we derive the MGF of Y_N :

$$\varphi_{Y_N}(t) = \mathbf{E} \left[e^{tY_N} \right]$$

$$= \mathbf{E} \left[e^{\frac{t}{\sqrt{N}} \sum_{n=1}^{N} X_n} \right]$$

$$= \mathbf{E} \left[\prod_{n=1}^{N} e^{\frac{t}{\sqrt{N}} X_n} \right]$$

$$= \prod_{n=1}^{N} \mathbf{E} \left[e^{\frac{t}{\sqrt{N}} X_n} \right]$$

$$= \mathbf{E} \left[e^{\frac{t}{\sqrt{N}} X} \right]^N$$

$$= \left(\phi_X \left(\frac{t}{\sqrt{N}} \right) \right)^N$$

$$= \left(\frac{2\sqrt{N}}{t} \sinh \frac{t}{2\sqrt{N}} \right)^N.$$

Please see "P2.ipynb" for the code and Figure 1 for the plot of each ϕ_{Y_N} and ϕ_G . From the plot we can conclude that $\varphi_{Y_N} \to \varphi_G$ as $N \to \infty$.

Figure 1: Plots of ϕ_{Y_N} and ϕ_G

Indeed, we can prove that $\varphi_{Y_N} \to \varphi_G$ as $N \to \infty$ rigorously. Since the Taylor expansion of sinh function is

$$\sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!},$$

then we have

$$\frac{1}{x} \cdot \sinh(x) = 1 + \frac{x^2}{3!} + \frac{x^4}{5!} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n+1)!}.$$

Thus, we have

$$\lim_{N \to \infty} \varphi_{Y_N}(t) = \lim_{N \to \infty} \left(\frac{2\sqrt{N}}{t} \sinh \frac{t}{2\sqrt{N}} \right)^N$$

$$= \lim_{N \to \infty} \left(1 + \frac{\left(\frac{t}{2\sqrt{N}}\right)^2}{3!} \right)^N \qquad \text{(Removed higher-order terms)}$$

$$= \lim_{N \to \infty} \left(1 + \frac{t^2}{24N} \right)^N$$

$$= \lim_{N \to \infty} \left(1 + \frac{1}{\frac{24N}{t^2}} \right)^{\frac{24N}{t^2} \cdot \frac{t^2}{24}}$$

$$= e^{\frac{t^2}{24}} = \varphi_G(t).$$

(c) It is a fact that if $\phi(z)$ is a monotonically increasing function, then for any random variable Z,

$$P(Z > u) = P(\phi(Z) > \phi(u)).$$

Use $\phi(z) = e^{tz}$ and the Markov inequality to derive a bound on $P(Z_N > u)$, where

$$Z_N = \frac{1}{N} \sum_{n=1}^{N} X_n.$$

For the special case of t = 4u/N, compare this bound, as a function of u, to that obtained using the Chebsyshev inequality.

Solution.

We first derive the MGF of Z_N :

$$\phi_{Z_N}(t) = \mathbf{E} \left[e^{tZ_N} \right]$$

$$= \mathbf{E} \left[e^{\frac{t}{N} \sum_{n=1}^{N} X_n} \right]$$

$$= \mathbf{E} \left[\prod_{n=1}^{N} e^{\frac{t}{N} X_n} \right]$$

$$= \prod_{n=1}^{N} \mathbf{E} \left[e^{\frac{t}{N} X_n} \right]$$

$$= \mathbf{E} \left[e^{\frac{t}{N} X} \right]^N$$

$$= \left(\phi_X \left(\frac{t}{N} \right) \right)^N$$

$$= \left(\frac{2N}{t} \sinh \frac{t}{2N} \right)^N$$

Then we derive the general Markov bound on Z_N :

$$P(Z_N > u) \le \frac{1}{e^{tu}} E\left[e^{tZ_N}\right]$$
$$= e^{-tu} \left(\frac{2N}{t} \sinh \frac{t}{2N}\right)^N$$

Choosing t = 4u/N yields:

$$P(Z_N > u) \le e^{-\frac{4u^2}{N}} \left(\frac{N^2}{2u} \sinh \frac{2u}{N^2}\right)^N$$

We now derive the Chebyshev bound on Z_N :

$$P(|Z_N| > u) \le \frac{\operatorname{var}[Z_N]}{u^2}$$

$$= \frac{\operatorname{var}\left[\frac{1}{N}\sum_{n=1}^{N} X_n\right]}{u^2}$$

$$= \frac{\sum_{n=1}^{N} \operatorname{var}[X_n]}{N^2 u^2}$$

$$= \frac{1}{12Nu^2}$$

Apply the fact that Z_N is symmetrically distributed across the origin to get our final, tighter bound:

$$P(Z_N > u) = \frac{1}{2} P(|Z_N| > u)$$

$$\leq \frac{1}{24Nu^2}$$

Please see "P2.ipynb" for the code and Figure 2 for the comparisons of the two bounds. When N is small, we see that the Markov bound is tighter bound for all u small and large enough. However, as N increases, the Markov bound loosens while the Chebyshev bound is tighter for all u large enough.

3. Let Z_1, \ldots, Z_N be a sequence of independent Gaussian random variables with mean 0 and variance 1. You observe the random vector X in \mathbb{R}^N that is generated through the autoregressive process

$$X_k = \begin{cases} Z_1, & k = 1\\ aX_{k-1} + Z_k, & k > 1. \end{cases}$$

Given X = x, find the MLE for $a \in \mathbb{R}$. (Hint: Conditional independence.) (Further hint: The conditional independence structure makes this a Markov process, meaning that we can factor the distribution for $X \in \mathbb{R}^N$ as

$$f_X(\mathbf{x}) = f_{X_1}(x_1) f_{X_2}(x_2|x_1) f_{X_3}(x_3|x_2) \cdots f_{X_N}(x_N|x_{N-1}).$$

5

)

Figure 2: Comparisons of Markov and Chebyshev bounds for different N.

Solution.

Note that

$$f_{X_1}(x_1) \sim N(0,1),$$

and

$$f_{X_k}(x_k|x_{k-1}) \sim N(ax_{k-1}, 1)$$
, for all $k > 1$.

Thus,

$$\widehat{a}_{mle} = \underset{a \in \mathbb{R}}{\arg \max} \, \ell(a; x_1, \dots, x_N)$$

$$= \underset{a \in \mathbb{R}}{\arg \max} - \frac{N}{2} \log(2\pi) - \frac{1}{2} x_1^2 - \frac{1}{2} \sum_{k=2}^{N} (x_k - a x_{k-1})^2$$

Taking the 1st derivative of ℓ with respect to a and setting it equal to 0, we get

$$\widehat{a}_{mle} = \frac{\sum_{k=2}^{N} x_k x_{k-1}}{\sum_{k=2}^{N} x_{k-1}^2}.$$

Now taking the 2nd derivative of ℓ with respect to a, we have

$$\ell''(a; x_1, \dots, x_N) = -\sum_{k=2}^{N} x_{k-1}^2 \le 0.$$

Thus, we can conclude that $\widehat{a}_{mle} = \arg \max_{a \in \mathbb{R}} \ell(a; x_1, \dots, x_N)$.

4. Let X be a Gaussian random vector taking values in \mathbb{R}^N , let E be a Gaussian random vector taking values in \mathbb{R}^M , and let \mathbf{A} be a $M \times N$ matrix. We have

$$X \sim \text{Normal}(\mathbf{0}, \mathbf{R}_x), \quad E \sim \text{Normal}(\mathbf{0}, \mathbf{R}_e), \quad X, E \text{ independent.}$$

We will make observation of the random vector

$$Y = AX + E.$$

(a) From the lecture notes, it is clear that Y is a Gaussian random vector in \mathbb{R}^M and that $\mathrm{E}[Y] = \mathbf{0}$. Find the covariance matrix for the Gaussian random vector $\begin{bmatrix} X \\ Y \end{bmatrix}$ that takes values in \mathbb{R}^{N+M} .

Solution.

Since

$$R_{xy} = \mathrm{E}[XY^{\mathrm{T}}] = \mathrm{E}[X(\mathbf{A}X + E)^{\mathrm{T}}] = \mathrm{E}[XX^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}] = R_x\mathbf{A}^{\mathrm{T}},$$

and

$$R_y = E[YY^{\mathrm{T}}] = E[(\mathbf{A}X + E)(\mathbf{A}X + E)^{\mathrm{T}}]$$

= $\mathbf{A}E[XX^{\mathrm{T}}]\mathbf{A}^{\mathrm{T}} + E[EE^{\mathrm{T}}] = \mathbf{A}R_x\mathbf{A}^{\mathrm{T}} + R_e,$

then we have

$$cov\left(\begin{bmatrix} X \\ Y \end{bmatrix}\right) = \begin{bmatrix} \mathrm{E}[XX^{\mathrm{T}}] & \mathrm{E}[XY^{\mathrm{T}}] \\ \mathrm{E}[YX^{\mathrm{T}}] & \mathrm{E}[YY^{\mathrm{T}}] \end{bmatrix} = \begin{bmatrix} R_x & R_x \mathbf{A}^{\mathrm{T}} \\ \mathbf{A}R_x & \mathbf{A}R_x \mathbf{A}^{\mathrm{T}} + R_e \end{bmatrix}.$$

(b) Suppose we observe Y = y. What is the minimum mean-square error estimate of X given Y = y?

Solution.

In this problem, X is hidden, and Y is observed. We can write the MMSE of X given Y=y as

$$\hat{\boldsymbol{x}}_{MMSE} = R_{yx}^{\mathrm{T}} R_y^{-1} y$$

$$= (\boldsymbol{A} R_x)^{\mathrm{T}} (\boldsymbol{A} R_x \boldsymbol{A}^{\mathrm{T}} + R_e)^{-1} y$$

$$= R_x \boldsymbol{A}^{\mathrm{T}} (\boldsymbol{A} R_x \boldsymbol{A}^{\mathrm{T}} + R_e)^{-1} y.$$

(c) Suppose $\mathbf{R}_x = \sigma_x^2 \mathbf{I}$ and $\mathbf{R}_e = \sigma_e^2 \mathbf{I}$. In this case, your MMSE estimator should look familiar, and you should see immediately that $\hat{\mathbf{x}}_{MMSE}$ is in the row space of \mathbf{A} . What are the $\hat{\alpha}_n$ is the expression below?

$$\hat{x}_{MMSE} = \sum_{n=1}^{N} \alpha_n v_n$$
, where the v_n are the right singular vectors of A .

Solution.

$$\begin{split} \hat{\boldsymbol{x}}_{MMSE} &= R_x \boldsymbol{A}^{\mathrm{T}} (\boldsymbol{A} R_x \boldsymbol{A}^{\mathrm{T}} + R_e)^{-1} \boldsymbol{y} \\ &= \sigma_x^2 \boldsymbol{A}^{\mathrm{T}} (\sigma_x^2 \boldsymbol{A} \boldsymbol{A}^{\mathrm{T}} + \sigma_e^2 \mathbf{I})^{-1} \boldsymbol{y} \\ &= \sigma_x^2 \boldsymbol{V} \boldsymbol{\Sigma}^{\mathrm{T}} \boldsymbol{U}^{\mathrm{T}} (\sigma_x^2 \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}} \boldsymbol{V} \boldsymbol{\Sigma}^{\mathrm{T}} \boldsymbol{U}^{\mathrm{T}} + \sigma_e^2 \mathbf{I})^{-1} \boldsymbol{y} \\ &= \boldsymbol{V} \boldsymbol{\Sigma}^{\mathrm{T}} \boldsymbol{U}^{\mathrm{T}} \left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\mathrm{T}} \boldsymbol{U}^{\mathrm{T}} + \frac{\sigma_e^2}{\sigma_x^2} \mathbf{I} \right)^{-1} \boldsymbol{y} \\ &= \boldsymbol{V} \boldsymbol{\Sigma}^{\mathrm{T}} \boldsymbol{U}^{\mathrm{T}} \left(\boldsymbol{U} \left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\mathrm{T}} + \frac{\sigma_e^2}{\sigma_x^2} \mathbf{I} \right) \boldsymbol{U}^{\mathrm{T}} \right)^{-1} \boldsymbol{y} \\ &= \boldsymbol{V} \boldsymbol{\Sigma}^{\mathrm{T}} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{U} \left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\mathrm{T}} + \frac{\sigma_e^2}{\sigma_x^2} \mathbf{I} \right)^{-1} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{y} \\ &= \boldsymbol{V} \boldsymbol{\Sigma}^{\mathrm{T}} \left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\mathrm{T}} + \frac{\sigma_e^2}{\sigma_x^2} \mathbf{I} \right)^{-1} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{y} \\ &= \sum_{n=1}^{R} \frac{\sigma_n}{\sigma_n^2} \langle \boldsymbol{U}_n, \boldsymbol{y} \rangle \boldsymbol{v}_n \end{split}$$

where σ_n denotes the n_{th} largest singular value of \boldsymbol{A} and \boldsymbol{U}_n the corresponding left singular vector.

Therefore,
$$\alpha_n = \frac{\sigma_n}{\sigma_n^2 + \frac{\sigma_e^2}{\sigma_n^2}} \langle \boldsymbol{U}_n, \boldsymbol{y} \rangle$$
 for $1 \le n \le R$, and $\alpha_n = 0$ for all $R < n \le N$.

(d) Take \mathbf{R}_x and \mathbf{R}_e as in part (c), and assume that \mathbf{A} has full column rank. What is MSE $\mathrm{E}[\|\hat{\mathbf{x}}_{MMSE} - X\|_2^2]$ of the MMSE estimate $\hat{\mathbf{x}}_{MMSE}$? Solution.

$$\begin{split} & \mathbf{E}[\|\hat{\boldsymbol{x}}_{MMSE} - \boldsymbol{X}\|_{2}^{2}] = trace\left(\boldsymbol{R}_{x} - \boldsymbol{R}_{yx}^{\mathrm{T}}\boldsymbol{R}_{y}^{-1}\boldsymbol{R}_{yx}\right) \\ & = \sigma_{x}^{2}\operatorname{trace}\left(\mathbf{I} - \boldsymbol{A}^{\mathrm{T}}\left(\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}} + \frac{\sigma_{e}^{2}}{\sigma_{x}^{2}}\mathbf{I}\right)^{-1}\boldsymbol{A}\right) \\ & = \sigma_{x}^{2}\operatorname{trace}\left(\mathbf{I} - \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}}\left(\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}} + \frac{\sigma_{e}^{2}}{\sigma_{x}^{2}}\mathbf{I}\right)^{-1}\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}\right) \\ & = \sigma_{x}^{2}\operatorname{trace}\left(\mathbf{I} - \boldsymbol{V}\boldsymbol{\Sigma}\left(\boldsymbol{\Sigma}^{2} + \frac{\sigma_{e}^{2}}{\sigma_{x}^{2}}\mathbf{I}\right)^{-1}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}\right) \\ & = \sigma_{x}^{2}\operatorname{trace}\left(\mathbf{I}\right) - \sigma_{x}^{2}\operatorname{trace}\left(\left(\boldsymbol{\Sigma}^{2} + \frac{\sigma_{e}^{2}}{\sigma_{x}^{2}}\mathbf{I}\right)^{-1}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}\boldsymbol{\Sigma}\right) \\ & = N\sigma_{x}^{2} - \sigma_{x}^{2}\operatorname{trace}\left(\left(\boldsymbol{\Sigma}^{2} + \frac{\sigma_{e}^{2}}{\sigma_{x}^{2}}\mathbf{I}\right)^{-1}\boldsymbol{\Sigma}^{2}\right) \\ & = N\sigma_{x}^{2} - \sigma_{x}^{2}\sum_{n=1}^{N}\frac{\sigma_{n}^{2}}{\sigma_{n}^{2} + \frac{\sigma_{e}^{2}}{\sigma_{x}^{2}}} \end{split}$$

where we make use of the identities $\operatorname{trace}(\boldsymbol{P}+\boldsymbol{Q})=\operatorname{trace}(\boldsymbol{P})+\operatorname{trace}(\boldsymbol{Q})$ and $\operatorname{trace}(\boldsymbol{P}\boldsymbol{Q})=\operatorname{trace}(\boldsymbol{Q}\boldsymbol{P})$ if both $\boldsymbol{P}\boldsymbol{Q}$ and $\boldsymbol{Q}\boldsymbol{P}$ exist.

5. Let \mathbf{A} be an $M \times N$ matrix with full column rank. Let E be a Gaussian random vector in \mathbb{R}^M with mean $\mathbf{0}$ and covariance \mathbf{R}_e . Suppose we observe

$$Y = \mathbf{A}\boldsymbol{\theta}_0 + E,$$

where $\boldsymbol{\theta}_0 \in \mathbb{R}^N$ is unknown.

(a) What is the distribution of Y and how does it depend on θ_0 ? Solution.

Y is a Gaussian random vector in \mathbb{R}^M :

$$Y \sim N(\boldsymbol{A}\boldsymbol{\theta}_0, \boldsymbol{R}_e).$$

The mean of Y depends on θ_0 .

(b) Find a closed form expression for the maximum likelihood estimate of θ_0 . (In this case, we are working from a single sample of a random vector.)

Solution

The maximum likelihood estimate of θ_0 can be found as follows:

$$\begin{split} \widehat{\boldsymbol{\theta}}_0 &= \operatorname*{arg\ max}_{\boldsymbol{\theta}_0 \in \mathbb{R}^N} L(\boldsymbol{\theta}_0; \boldsymbol{y}) \\ &= \operatorname*{arg\ max}_{\boldsymbol{\theta}_0 \in \mathbb{R}^N} \ell(\boldsymbol{\theta}_0; \boldsymbol{y}) \\ &= \operatorname*{arg\ max}_{\boldsymbol{\theta}_0 \in \mathbb{R}^N} \log((2\pi)^{-M/2} (\det \boldsymbol{R}_e)^{-1/2} \exp(-(\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta}_0)^T \boldsymbol{R}_e^{-1} (\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta}_0)/2)) \\ &= \operatorname*{arg\ max}_{\boldsymbol{\theta}_0 \in \mathbb{R}^N} - \frac{M}{2} \log(2\pi) + \frac{1}{2} log(\det \boldsymbol{R}_e^{-1}) - \frac{1}{2} (\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta}_0)^T \boldsymbol{R}_e^{-1} (\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta}_0) \\ &= \operatorname*{arg\ max}_{\boldsymbol{\theta}_0 \in \mathbb{R}^N} - \frac{1}{2} (\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta}_0)^T \boldsymbol{R}_e^{-1} (\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta}_0) \\ &= \operatorname*{arg\ min}_{\boldsymbol{\theta}_0 \in \mathbb{R}^N} \|\boldsymbol{R}_e^{-1/2} (\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta}_0)\|_2^2. \end{split}$$

This can be solved as a least-squares problem

$$\operatorname*{arg\ min}_{\boldsymbol{\theta}_0 \in \mathbb{R}^N} \|(\boldsymbol{b} - \boldsymbol{H}\boldsymbol{\theta}_0)\|_2^2$$

with
$$\boldsymbol{b} = \boldsymbol{R}_e^{-1/2} \boldsymbol{y}$$
 and $\boldsymbol{H} = \boldsymbol{R}_e^{-1/2} \boldsymbol{A}$. Thus

$$\widehat{\boldsymbol{\theta}}_0 = (\boldsymbol{H}^T \boldsymbol{H})^{-1} \boldsymbol{H}^T \boldsymbol{b} = (\boldsymbol{A}^T \boldsymbol{R}_e^{-1} \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{R}_e^{-1} \boldsymbol{y}.$$

- (c) What is the distribution of the MLE estimator $\hat{\Theta}$? Is $\hat{\Theta}$ unbiased? Solution.
 - $\hat{\mathbf{\Theta}}$ is a Gaussian random vector in \mathbb{R}^N with mean

$$\begin{split} \mathbf{E}[\hat{\mathbf{\Theta}}] &= \mathbf{E}[(\boldsymbol{A}^T \boldsymbol{R}_e^{-1} \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{R}_e^{-1} Y] \\ &= \mathbf{E}[(\boldsymbol{A}^T \boldsymbol{R}_e^{-1} \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{R}_e^{-1} (\boldsymbol{A} \boldsymbol{\theta}_0 + E)] \\ &= \mathbf{E}[(\boldsymbol{A}^T \boldsymbol{R}_e^{-1} \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{R}_e^{-1} \boldsymbol{A} \boldsymbol{\theta}_0 + (\boldsymbol{A}^T \boldsymbol{R}_e^{-1} \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{R}_e^{-1} E] \\ &= \mathbf{E}[(\boldsymbol{A}^T \boldsymbol{R}_e^{-1} \boldsymbol{A})^{-1} (\boldsymbol{A}^T \boldsymbol{R}_e^{-1} \boldsymbol{A}) \boldsymbol{\theta}_0 + (\boldsymbol{A}^T \boldsymbol{R}_e^{-1} \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{R}_e^{-1} E] \\ &= \mathbf{E}[\boldsymbol{\theta}_0] + (\boldsymbol{A}^T \boldsymbol{R}_e^{-1} \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{R}^{-1} \mathbf{E}[E] \\ &= \boldsymbol{\theta}_0. \end{split}$$

Let
$$\hat{\boldsymbol{\Theta}} = \boldsymbol{S}Y$$
 where $\boldsymbol{S} = (\boldsymbol{A}^T\boldsymbol{R}_e^{-1}\boldsymbol{A})^{-1}\boldsymbol{A}^T\boldsymbol{R}_e^{-1}$, then we have

$$\begin{split} Var[\hat{\mathbf{\Theta}}] &= Var[\mathbf{S}Y] \\ &= \mathbf{S}Var[Y]\mathbf{S}^{T} \\ &= \mathbf{S}\mathbf{R}_{e}\mathbf{S}^{T} \\ &= (\mathbf{A}^{T}\mathbf{R}_{e}^{-1}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{R}_{e}^{-1}\mathbf{R}_{e}((\mathbf{A}^{T}\mathbf{R}_{e}^{-1}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{R}_{e}^{-1})^{T} \\ &= (\mathbf{A}^{T}\mathbf{R}_{e}^{-1}\mathbf{A})^{-1}\mathbf{A}^{T}(\mathbf{R}_{e}^{-1})^{T}\mathbf{A}((\mathbf{A}^{T}\mathbf{R}_{e}^{-1}\mathbf{A})^{-1})^{T} \\ &= (\mathbf{A}^{T}\mathbf{R}_{e}^{-1}\mathbf{A})^{-1}(\mathbf{A}^{T}\mathbf{R}_{e}^{-1}\mathbf{A})((\mathbf{A}^{T}\mathbf{R}_{e}^{-1}\mathbf{A})^{T})^{-1} \\ &= (\mathbf{A}^{T}\mathbf{R}_{e}^{-1}\mathbf{A})^{-1}(\mathbf{A}^{T}\mathbf{R}_{e}^{-1}\mathbf{A})(\mathbf{A}^{T}\mathbf{R}_{e}^{-1}\mathbf{A})^{-1} \\ &= (\mathbf{A}^{T}\mathbf{R}_{e}^{-1}\mathbf{A})^{-1}. \end{split}$$

Thus, we have

$$\hat{\boldsymbol{\Theta}} \sim \mathrm{N}(\boldsymbol{\theta}_0, (\boldsymbol{A}^T \boldsymbol{R}_e^{-1} \boldsymbol{A})^{-1}).$$

 $\hat{\mathbf{\Theta}}$ is unbiased since $\mathbf{E}[\hat{\mathbf{\Theta}}] = \boldsymbol{\theta}_0$.

(d) What is the MSE of the MLE, $E[\|\hat{\boldsymbol{\Theta}} - \boldsymbol{\theta}_0\|_2^2]$? Solution.

$$\begin{split} MSE(\hat{\mathbf{\Theta}}) &= \mathrm{E}[\|\hat{\mathbf{\Theta}} - \boldsymbol{\theta}_0\|_2^2] \\ &= trace(\boldsymbol{R}) + \|\mathrm{E}[\hat{\mathbf{\Theta}}] - \boldsymbol{\theta}_0\|_2^2 \\ &= trace((\boldsymbol{A}^T \boldsymbol{R}_e^{-1} \boldsymbol{A})^{-1}). \end{split}$$

(e) Compute the Fisher information matrix $J(\theta_0)$ and verify that the MLE meets the Cramer-Rao lower bound.

Solution.

The Fisher information matrix $J(\theta_0)$ is computed as below:

$$\begin{split} \boldsymbol{s}(\boldsymbol{\theta}_0; \boldsymbol{y}) &= \nabla_{\boldsymbol{\theta}_0} \ell(\boldsymbol{\theta}_0; \boldsymbol{y}) \\ &= \nabla_{\boldsymbol{\theta}_0} (-\frac{1}{2} (\boldsymbol{y} - \boldsymbol{A} \boldsymbol{\theta}_0)^T \boldsymbol{R}_e^{-1} (\boldsymbol{y} - \boldsymbol{A} \boldsymbol{\theta}_0)) \\ &= \boldsymbol{A}^T \boldsymbol{R}_e^{-1} (\boldsymbol{y} - \boldsymbol{A} \boldsymbol{\theta}_0), \end{split}$$

$$egin{aligned} oldsymbol{J}(oldsymbol{ heta}_0) &= \mathrm{E}[oldsymbol{s}(oldsymbol{ heta}_0; oldsymbol{y}) oldsymbol{s}(oldsymbol{ heta}_0; oldsymbol{y}) oldsymbol{s}(oldsymbol{ heta}_0)^T] oldsymbol{R}_e^{-1} oldsymbol{A} \ &= oldsymbol{A}^T oldsymbol{R}_e^{-1} oldsymbol{A}. \end{aligned}$$

Since

$$trace(\boldsymbol{J}(\boldsymbol{\theta}_0)^{-1}) = trace((\boldsymbol{A}^T\boldsymbol{R}_e^{-1}\boldsymbol{A})^{-1}) = MSE(\hat{\boldsymbol{\Theta}}_{mle}),$$

the MLE meets the Cramer-Rao lower bound.

(f) Defend the following statement: The MLE is the best unbiased estimator of θ_0 . Solution.

The Cramer-Rao lower bound is the minimum mean squared error any unbiased estimator can achieve. Here, MLE is the best unbiased estimator of θ_0 since it meets the lower bound.

6. A Cauchy random variable with "location parameter" ν has a density function

$$f_X(x;\nu) = \frac{1}{\pi(1 + (x - \nu)^2)}, \quad x \in \mathbb{R}.$$
 (1)

Despite its simple definition, this is a strange animal. First of all, its mean is not defined, as the integral $\int x/(1+x^2) dx$ is not absolutely convergent. It is also easy to see that the variance is infinite. But as you can see (especially if you sketch it), the density is symmetric around ν , and ν is certainly the median.

Let $X_1, X_2, ..., X_N$ be iid Cauchy random variables distributed as in (1). From observed data $X_1 = x_1, ..., X_N = x_N$, we will compare three estimators: the sample mean

$$\hat{\nu}_{mn} = \frac{1}{N} \sum_{n=1}^{N} x_n,$$

the sample median

$$\hat{\nu}_{md} = \begin{cases} x_{((N+1)/2)}, & \text{N odd,} \\ \frac{x_{(N/2)} + x_{(N/2+1)}}{2}, & \text{N even,} \end{cases}$$

where $x_{(i)}$ is the *i*th largest value in $\{x_1, \ldots, x_N\}$, and the MLE

$$\hat{\nu}_{mle} = \arg\max_{\nu} L(\nu; x_1, \dots, x_N) = \arg\max_{\nu} \sum_{n=1}^{N} \ell(\nu; x_n)$$

where $\ell(\nu; x_n) = \log f_X(x_n; \nu)$.

(a) One particular draw of data for N=50 is variable x in the file hw06p6a.mat. Plot the log likelihood function, and report the MLE for ν . Your MLE will of course be approximate, but make sure yours is accurate to within 10^{-2} to the true MLE. I will give you a hint here and tell you that the true value of ν is somewhere in the interval [0,5]. Solution.

The MLE for ν is $\hat{\nu}_{mle} = 1.4743$. Please see "P6.ipynb" for the code and Figure 3 for the plot of the log likelihood function.

Figure 3: Plot of the log likelihood function.

(b) The file hw06p6b.mat contains a matrix X. This is an $N \times Q$ matrix, where N=50 and Q=1000; each entry is an independent Cauchy random variable with $\nu_0=3$. Treating each column of X as a single draw of the data for N=50, compute the sample mean, sample median, and MLE for each column. From these, report the empirical mean squared error (by averaging $(\hat{\nu}-\nu_0)^2$ over all Q trials) for each of the three estimators.

 $MSE(\hat{\nu}_{mn}) = 1411.1503$, $MSE(\hat{\nu}_{md}) = 0.0501$ and $MSE(\hat{\nu}_{mle}) = 0.0404$. Please see "P6.ipynb" for the code.

(c) Find an integral expression for the expected log likelihood function $e(\nu) = \mathbb{E}[\ell(\nu;X)]$ when X has Cauchy density $f_X(x;\nu_0)$ as in (1). Your expression should have the form

$$e(\nu) = \int_{-\infty}^{\infty}$$
(something that depends on x, ν, ν_0) dx .

Compute $e(\nu)$ for $\nu_0 = 3$ for 250 equally spaced values of ν between 0 and 5. You can do this using numerical integration (the integral function in MATLAB or scipy.integrate.quad in Python). Make a plot of $e(\nu) = \mathrm{E}[\ell(\nu; X)]$. Solution.

$$e(\nu) = \int_{-\infty}^{\infty} \ell(\nu; x) f_X(x; \nu_0) dx = \int_{-\infty}^{\infty} \log(f_X(\nu; x)) f_X(x; \nu_0) dx.$$

Please see "P6.ipynb" for the code and Figure 4 for the plot of the expected log likelihood function.

Figure 4: Plot of the expected log likelihood function.

(d) Plot, overlayed on the same axes, the (renormalized) log likelihood functions $\frac{1}{N}\sum_{n=1}^{N}\ell(\nu;x_n)$ as a function of $\nu\in[0,5]$ for each of the first 10 columns of X from part (b). On top of this, plot $e(\nu)=\mathrm{E}[\ell(\nu;X)]$ from part (c) as a dotted line.

Solution.

Solution.

Please see "P6.ipynb" for the code and Figure 5 for the plot of the (renormalized) log likelihood functions.

Figure 5: Plot of the (renormalized) log likelihood functions.