SECTION 5.4 Solving Recurrence Relations— Generating Functions

SECOND ORDER NONHOMOGENEOUS LINEAR RECURRENCE RELATIONS

Example: an = 2an-1 - 1/3 (actually, this is first order)

Steps: 1) Solve qn=2qn-1 (general solution)

- 2) Find one particular solution pn to pn=2pn-1+n/3 guess: pn=mn+b
- 3 Add pn+qn
- 4) Solve for constants

SECOND ORDER NONHOMOGENEOUS LINEAR RECURRENCE RELATIONS

Example:
$$a_n = 2a_{n-1} - \frac{n}{3}$$
, $a_0 = 1$

② Guess:
$$p_n = mn+b$$
 Need to find m,b
 $mn+b = 2(m(n-1)+b) - n/3$
 $mn+b = 2mn-2m+2b-n/3$
 $mn+b = (2m-\frac{1}{3})n + (2b-2m)$
 $m = 2m-\frac{1}{3} \rightarrow m = \frac{1}{3}$
 $b = 2b-2m \rightarrow b = 2m = \frac{2}{3}$
So $p_n = \frac{n}{3} + \frac{2}{3}$
 $a_n = \frac{(2^n+n+2)}{3}$

3
$$a_n = p_n + q_n = c_1^n + n_1 + n_2 + n_3 + n_4 +$$

GENERATING FUNCTIONS

Sometimes counting problems, or recurrence relations can be solved using polynomials in a clever way.

Example: Find the number of solutions of a+b+c=10

where a is allowed to be 2,3, or 4
b is allowed to be 3,4, or 5
c is allowed to be 1,3, or 4

The answer is the coefficient of X^{10} in $(\chi^2 + \chi^3 + \chi^4)(\chi^3 + \chi^4 + \chi^5)(\chi + \chi^3 + \chi^4)$ e.g. $2+5+3 \longleftrightarrow \chi^2 \chi^5 \chi^3$

This problem can be solved with a computer algebra system.

GENERATING FUNCTIONS

The generating function for the sequence

is

$$Q_0 + Q_1 X + Q_2 X^2 + Q_3 X^3 + \cdots$$

For example

$$Q_{n}=1 \iff |,|,|,|,... \iff |+x+x^{2}+x^{3}+...$$

 $Q_{n}=n+1 \iff |,2,3,4,... \iff |+2x+3x^{2}+4x^{3}+...$
 $Q_{n}=n \iff 0,|,2,3,... \iff |x+2x^{2}+3x^{3}+...$

POWER SERIES

A generating function, as an object, is what is called a power series, that is, a formal sum Think "string"

$$Q_0 + Q_1 \times + Q_2 \times^2 + Q_3 \times^3 + \cdots$$

These can be added, subtracted, and multiplied: $f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$ $g(x) = b_0 + b_1 x + b_2 x^2 + \cdots$

$$f(x)+g(x) = (a_0+b_0)+(a_1+b_1)x+(a_2+b_2)x^2+\cdots$$

 $f(x)g(x) = a_0b_0+(a_1b_0)x+(a_0b_2+a_1b_1+a_2b_0)x^2+\cdots$

But we never plug in numbers for x, like with Taylor Series.

So generating functions should not be thought of as functions!

POWER SERIES

What about dividing?

Amozingly, yes! as long as ao # 0.

 $\frac{1}{f(x)}$ is the generating function so that $f(x) \cdot \frac{1}{f(x)} = 1$

Example: $f(x) = |+x+x^2+\cdots$

What is a power series that, when multiplied by f(x) gives 1?

 $(1-x)f(x) = 1 + 0x + 0x^{2} + \dots = 1 \longrightarrow f(x) = 1-x, \text{ or } f(x) = 1-x$

We say 1/-x is the generating function for $a_n=1$.

EXAMPLES OF GENERATING FUNCTIONS

$$\frac{1}{1-x} = [+x+x^2+\dots \iff a_n = 1]$$

$$\frac{1}{1+x} = [-x+x^2+\dots \iff a_n = (-1)^n$$

$$\frac{1}{1-ax} = [+bx+b^2x^2+\dots \iff a_n = b^n$$

$$\frac{1}{1-ax} = [+2x+3x^2+\dots \iff a_n = n+1]$$

$$\frac{1}{1-ax} = [+2x+3x^2+\dots \iff a_n = n+1]$$

* The other three follow from the first one by substitution &

What is the generating function for an=n?

$$a_n = n \iff x + 2x^2 + 3x^3 + \dots = \frac{x}{(1-x)^2}$$

What about an= -2n?

$$-2\times/(1-\times)^2$$

SOLVING RECURRENCE RELATIONS WITH GENERATING FUNCTIONS

Example: an = 2an-1, ao = 1

The generating function for an is:
$$f(x) = a_0 + a_1 \times + a_2 \times^2 + \cdots$$

Using an = 2an-1, and ao=1, we can rewrite each term of f(x):

$$Q_0 = 1$$
 $Q_1 X_1 = 2 Q_0 X$
 $Q_2 X_2 = 2 Q_1 X_2$
 $Q_3 X_4 = 2 Q_2 X_4$

Add up:
$$f(x) = 1 + 2x f(x)$$

Solve for $f(x)$:

$$f(x) = \frac{1}{1-2x} \iff an = 2^n$$

SOLVING RECURRENCE RELATIONS WITH GENERATING FUNCTIONS

Start with
$$f(x) = a_0 + a_1x + a_2x^2 + \cdots$$

Then $a_0 = 2$
 $a_1x = -x$
 $a_2x^2 = 2a_1x^2 - a_0x^2$
 $a_3x^3 = 2a_2x^3 - a_1x^3$
 \vdots
Add up: $f(x) = (2xf(x) + 2 - 5x) - x^2 f(x)$
 $\Rightarrow f(x) = \frac{2 - 5x}{(1 - 2x - x^2)} = \frac{2}{(1 - x^2)^2} - \frac{5x}{(1 - x^2)^2}$
 $\Rightarrow a_1 = 2(n+1) - 5n = -3n + 2$

PARTIAL FRACTIONS

Example: Rewrite $1-5x+6x^2$ as a sum of fractions where the denominator is linear.

$$\frac{1-x}{1-5x-6x^{2}} = \frac{1-x}{(1-3x)(1-2x)} = \frac{A}{1-3x} + \frac{B}{1-2x}$$

$$A = \frac{1-x}{1-2x} + \frac{B}{1-2x} + \frac{B}{1-2x}$$

$$A = \frac{1-x}{1-2x} + \frac{B}{1-2x} + \frac{B}{1-2x} + \frac{B}{1-2x}$$

$$X = \frac{1}{2} \longrightarrow B = -1$$

$$X = \frac{1}{3} \longrightarrow A = 2$$

$$\frac{1-x}{1-5x+6x^{2}} = \frac{2}{1-3x} - \frac{1}{1-2x}$$

SOLVING RECURRENCE RELATIONS WITH GENERATING FUNCTIONS AND PARTIAL FRACTIONS

Example: Solve
$$a_n = 5a_{n-1} - 6a_{n-2}$$
 $a_0 = 1, a_1 = 4$
 $f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$

$$\alpha_0 = 1$$

$$\alpha_1 X = 4 \times$$

$$\alpha_2 X^2 = 5 \alpha_1 X^2 - 6 \alpha_0 X^2$$

$$\alpha_3 X^3 = 5 \alpha_2 X^3 - 6 \alpha_1 X^3$$

$$\vdots$$

Add up:
$$f(x) = 5x f(x) - x + 1 - 6x^2 f(x)$$

 $f(x) = \frac{1 - x}{1 - 5x + 6x^2} = \frac{2}{1 - 3x} - \frac{1}{1 - 2x} \longrightarrow an = 2.3^n - 2^n$

SOLVING RECURRENCE RELATIONS WITH GENERATING FUNCTIONS AND PARTIAL FRACTIONS

$$a_0 = 0, a_1 = 1$$

As above, get:
$$f(x) = \frac{x}{1-x-x^2}$$

Partial fractions:
$$1-x-x^2=(1-ax)(1-bx)$$
 Note: $ab=-1$, $a+b=1$

$$f(x) = \frac{1/rs}{1-ax} - \frac{1/rs}{1-bx}$$

So
$$a_n = \frac{1}{v_5}(a^n - b^n)$$

$$a = \frac{1+v_5}{2}, b = \frac{1-v_5}{2}$$
Note: $ab = -1, a+b = 1$
 $a-b=v_5$

SOLVING RECURRENCE RELATIONS WITH GENERATING FUNCTIONS AND PARTIAL FRACTIONS

Example: $a_n = 2a_{n-1} - \frac{n}{3}$, $a_0 = 1$

Example: $a_n = a_{n-1} + n^2$ $a_0 = 0$ $a_n = 1^2 + \dots + n^2$

REALLY, WHY GENERATING FUNCTIONS?

QUESTION. How many ways to write a+b+c+d=6 where a is even, b is a multiple of 5, c is at most 4, and d is at most 1? (a,b,c,d nonneg integers) e.g. making a fruit basket

a 6 4 4 2 2 0 0 6 0 0 0 0 0 5 5 C 0 2 1 4 3 1 0 d 0 0 1 0 1 0 1

7 ways.

What about a+b+c+d=100 a+b+c+d=n?

REALLY, WHY GENERATING FUNCTIONS?

QUESTION. How many ways to write a+b+c+d=n where a is even, b is a multiple of 5, c is at most 4, and d is at most 1? (a,b,c,d nonneg integers)

$$A(x) = 1 + x^{2} + x^{4} + \dots = \frac{1}{1 - x^{2}}$$

$$B(x) = 1 + x^{5} + x^{10} + \dots = \frac{1}{1 - x^{5}}$$

$$C(x) = 1 + x + x^{2} + x^{3} + x^{4} = \frac{1 - x}{1 - x}$$

$$D(x) = 1 + x$$

As before, the answer is obtained by multiplying polynomials

$$A(x)B(x)C(x)D(x) = \frac{1}{1-x^2} \frac{1}{1-x^5} \frac{1-x^5}{1-x} \cdot 1+x$$

$$= \frac{1}{(1-x)^2} = 1+2x+3x^2+4x^3+\cdots$$

Final answer: n+1 ways!