Statistical Data Analysis

Dr. Jana de Wiljes

15. Dezember 2021

Universität Potsdam

Generalized Linear Models

Setting:
$$y_i = x_i^{\top} \beta + \epsilon, \quad i = 1, \dots, n$$

Up till now:

- $\epsilon \sim \mathcal{N}(0, \sigma^2)$
- $y_i \sim \mathcal{N}(\mu_i, \sigma^2)$,
- $\mu = x_i^{\top} \beta, i = 1, ..., n$
- $\mu_i = \mathbb{E}[y_i|x_i]$

Assumtion:

$$f(y_i|x_i,\theta_i,\phi,w_i) = \exp\left(\frac{y_i\theta_i - b(\theta_i)}{\phi} + c(y_i,\phi,w_i)\right)$$
(1)

where

- ullet $heta_i$ is the natural parameter of the family,
- \bullet ϕ is scale or dispersion parameter,
- $b(\cdot) c(\cdot) a(\cdot)$ are specific functions corresponding to the type of the family

How does the normal distribution fit in the picture?

$$f(y_i|x_i,\theta_i,\phi) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-(y_i - \mu)^2/2\sigma^2\right)$$
$$= \exp\left(\frac{y_i\mu - \mu^2/2}{\sigma^2} - (y_i^2/\sigma^2 + \log(2\pi\sigma^2))/2\right)$$

i.e.,

- $\theta_i = \mu$
- $a(\phi) = \sigma^2$
- $b(\theta_i) = \theta_i^2/2$
- $c(\cdot) = -\frac{1}{2}(y_i^2/\sigma^2 + \log(2\pi\sigma^2))$

Mean and Variance?

Mean and Variance?

Link mean to linear predictor

Naughty or nice?

Elves need system to determine if child naughty or nice

Idea:

- Blood measurements of
 - 1. Serontonixi
 - 2. Oximontiuous
- observation of a test group of kids for a year to identify label:
 - 1. naughty
 - 2. nice

Logistic regression

Logistic regression

Different variations

Notation	$Normal \ N(\mu_i,\sigma^2)$	Poisson $Pois(\mu_i)$	Binomial $Bin(n_i, \pi_i)$	Gamma $G(\mu_i, \nu)$
Range of y_i	$(-\infty,\infty)$	$[0,\infty)$	$[0,n_i]$	$(0,\infty)$
Dispersion, ϕ	σ^2	1	$1/n_i$	$ u^{-1}$
Cumulant: $b(\theta_i)$	$\theta_i^2/2$	$\exp(\theta_i)$	$\log(1 + e^{\theta_i})$	$-\log(-\theta_i)$
Mean function, $\mu(\theta_i)$	$ heta_i$	$\exp(\theta_i)$	$1/(1+e^{-\theta_i})$	$-1/\theta_i$
Canonical link: $\theta(\mu_i)$	identify	\log	logit	reciprocal
Variance function, $V(\mu_i)$	1	μ	$\mu(1-\mu)$	μ^2

Naughty or nice?

Support vector machine

Support vector machine

