FUNDAMENTOS TEÓRICOS DA COMPUTAÇÃO

--- LINGUAGENS NÃO REGULARES ---

Introdução

Encontrar uma cadeia ω para aplicar o LB algumas vezes requer um pouco de *criatividade*. Você pode ter que tentar vários candidatos para ω antes de descobrir um que funcione

Sugestão 1: tente membros de L que pareçam exibir mais a "essência" da não-regularidade

Sugestão 2: analise a própria definição da linguagem e veja as características da linguagem antes de definir a cadeia ω

Introdução

Relembramos que o lema do bombeamento é uma condição necessária, mas não suficiente, para a regularidade de uma linguagem

Se o lema <u>não é</u> satisfeito numa dada linguagem L, então L <u>não é</u> regular, mas se o lema <u>é satisfeito</u> para uma dada linguagem L, então <u>há chances</u> de L ser regular, mas não há nenhuma garantia, exceto, se gerar um AF ou ER ou GR

Apesar de <u>não ser comum</u> usar o Lema do Bombeamento para provar que uma linguagem é regular, entretanto, mostraremos <u>dois</u> <u>exemplos</u> de linguagens regulares, que mostramos que o **LB** é válido para elas mas, para provar efetivamente, também geramos os AFs para ambas

Considere a linguagem $L_1 = \{01^n 0 : n \ge 0\}$

Escolha $\omega=01^{p-1}0$, $p\geq 2$, neste caso, $|\omega|\geq p$. Lembrando que a escolha acima é a **única forma** de geração de $\omega\in L_1$. Também Assumimos que $\omega=\alpha\beta\gamma$, $\beta\neq\varepsilon$, $|\alpha\beta|\leq p$ e $\alpha\beta^i\gamma\in L$, $\forall i\geq 0$

Por quê $p \ge 2$?

Considere a linguagem $L_1 = \{01^n 0 : n \ge 0\}$

Escolha $\omega=01^{p-1}0$, $p\geq 2$, neste caso, $|\omega|\geq p$. Lembrando que a escolha acima é a **única forma** de geração de $\omega\in L_1$. Também Assumimos que $\omega=\alpha\beta\gamma$, $\beta\neq\varepsilon$, $|\alpha\beta|\leq p$ e $\alpha\beta^i\gamma\in L$, $\forall i\geq 0$

Por quê $p \ge 2$?

Porque é o menor comprimento de bombeamento que pode fazer com que as cadeas sejam bombeadas

Considere a linguagem $L_1 = \{01^n0: n \ge 0\}$

Escolha $\omega=01^{p-1}0$, $p\geq 2$, neste caso, $|\omega|\geq p$. Lembrando que a escolha acima é a única forma de geração de $\omega\in L_1$. Também Assumimos que $\omega=\alpha\beta\gamma$, $\beta\neq\varepsilon$, $|\alpha\beta|\leq p$ e $\alpha\beta^i\gamma\in L$, $\forall i\geq 0$

$$p = 2$$

$$0 \quad 1 \quad 0$$

$$\alpha \quad \beta^1 \quad \gamma$$

Considere a linguagem $L_1 = \{01^n0: n \ge 0\}$

Escolha $\omega=01^{p-1}0$, $p\geq 2$, neste caso, $|\omega|\geq p$. Lembrando que a escolha acima é a única forma de geração de $\omega\in L_1$. Também Assumimos que $\omega=\alpha\beta\gamma$, $\beta\neq\varepsilon$, $|\alpha\beta|\leq p$ e $\alpha\beta^i\gamma\in L$, $\forall i\geq 0$

Considere a linguagem $L_1 = \{01^n0: n \ge 0\}$

Escolha $\omega=01^{p-1}0$, $p\geq 2$, neste caso, $|\omega|\geq p$. Lembrando que a escolha acima é a única forma de geração de $\omega\in L_1$. Também Assumimos que $\omega=\alpha\beta\gamma$, $\beta\neq\varepsilon$, $|\alpha\beta|\leq p$ e $\alpha\beta^i\gamma\in L$, $\forall i\geq 0$

Considere a linguagem $L_1 = \{01^n0: n \ge 0\}$

Escolha $\omega=01^{p-1}0$, $p\geq 2$, neste caso, $|\omega|\geq p$. Lembrando que a escolha acima é a única forma de geração de $\omega\in L_1$. Também Assumimos que $\omega=\alpha\beta\gamma$, $\beta\neq \varepsilon$, $|\alpha\beta|\leq p$ e $\alpha\beta^i\gamma\in L$, $\forall i\geq 0$

Note que β é a subcadeia a ser bombeada, i.e., pode ser **removida** ou **repetida** arbitrariamente, ou seja, $\forall i$, $\alpha \beta^i \gamma \in L$ (**lema do bombeamento** satisfeito)

A satisfação do lema do bombeamento $extbf{não}$ prova que a linguagem L_1 é regular

Para provar, tem que gerar um AF ou ER ou GR

O AF acima prova que realmente a linguagem L_1 é regular Verificamos que a cadeia $0\underline{1}$ 0 é realmente bombeável em $L_{1,}$ ou seja, o "1" pode ser "**bombeado**" quantas vezes se queira, e a palavra obtida sempre pertencerá a L_1

```
Considere a linguagem L_2 = \{0(10)^n : n \ge 1\}
```

As cadeias válidas para L_2 são {**010**, 01010, 0101010, 0101010, 01010101010, ...} o valor mínimo de p é 3 (por quê?) Escolha $\omega = 0(10)^p$ Para que L_2 seja regular, temos que assumir que $\omega=\alpha\beta\gamma$, $\beta\neq\varepsilon$, $|\alpha\beta| \leq p \in \alpha\beta^l \gamma \in L_2, \forall i \geq 0$ Se dividirmos ω da seguinte forma: $\alpha = 0$; $\beta = 10$; $\gamma = (10)^{p-1}$, ω poderá ser bombeada ($\alpha\beta^i\gamma\in L_2, \forall i\geq 0$) Entretanto, para que $|\alpha\beta| \le p$ faz-se necessário que $p \ge 3$ que, neste caso, pelas características de L_2 , é o valor mínimo de p

Para
$$p=3$$
 e $i=0$, $\alpha \beta^0 \gamma = 01010 \in L_2$

Para
$$p=3$$
 e $i=1$, $\alpha\beta^1\gamma=0$ 101010 $\in L_2$

A satisfação do lema do bombeamento $extbf{não}$ prova que a linguagem L_2 é regular

Para provar, tem que gerar um AF ou ER ou GR

Olhando para o AFN acima, a cadeia "10" é bombeável em L_2 , ou seja, "10" pode ser "**repetido**" quantas vezes se queira, e a palavra obtida sempre pertencerá a L_2

Considere a linguagem $L_3 = \{0^n 1^n : n \ge 0\}$

Analisando a linguagem L_3 , escolha $\omega=0^p1^p$, onde p é o comprimento do bombeamento. Note que $|\omega|\geq p$

Assumimos que $\omega = \alpha \beta \gamma$, $\beta \neq \varepsilon$ e $\alpha \beta^i \gamma \in L$, $\forall i \geq 0$

Primeira possibilidade: $oldsymbol{eta}$ contém apenas Os

Ex: $\omega = 000111$, $\alpha = 0$, $\beta = 00$, $\gamma = 111$

Entretanto: $\alpha \beta^2 \gamma \notin L$ (0 00 00 111)

Primeira possibilidade: $oldsymbol{eta}$ contém apenas Os

Ex: $\omega = 000111$, $\alpha = 0$, $\beta = 00$, $\gamma = 111$

Entretanto: $\alpha \beta^2 \gamma \notin L$ (0 00 00 111)

Segunda possibilidade: $oldsymbol{eta}$ contém apenas 1s

Ex: $\omega = 000111$, $\alpha = 000$, $\beta = 11$, $\gamma = 1$

Entretanto: $\alpha \beta^2 \gamma \notin L$ (000 <u>11</u> <u>11</u> 1)

Primeira possibilidade: eta contém apenas Os

Ex: $\omega = 000111$, $\alpha = 0$, $\beta = 00$, $\gamma = 111$

Entretanto: $\alpha \beta^2 \gamma \notin L$ (0 00 00 111)

Segunda possibilidade: $oldsymbol{eta}$ contém apenas 1s

Ex: $\omega = 000111$, $\alpha = 000$, $\beta = 11$, $\gamma = 1$

Entretanto: $\alpha \beta^2 \gamma \notin L$ (000 11 11 1)

Terceira possibilidade: $oldsymbol{eta}$ contém 0s e 1s

Ex: $\omega = 000111$, $\alpha = 00$, $\beta = 01$, $\gamma = 11$

Entretanto: $\alpha \beta^2 \gamma \notin L$ (00 <u>01</u> <u>01</u> 11)

Primeira possibilidade: eta contém apenas Os

Ex: $\omega = 000111$, $\alpha = 0$, $\beta = 00$, $\gamma = 111$

Entretanto: $\alpha \beta^2 \gamma \notin L$ (0 00 00 111)

Segunda possibilidade: $oldsymbol{eta}$ contém apenas 1s

Ex: $\omega = 000111$, $\alpha = 000$, $\beta = 11$, $\gamma = 1$

Entretanto: $\alpha \beta^2 \gamma \notin L$ (000 <u>11</u> <u>11</u> 1)

Terceira possibilidade: β contém 0s e 1s

Ex: $\omega = 000111$, $\alpha = 00$, $\beta = 01$, $\gamma = 11$

Entretanto: $\alpha \beta^2 \gamma \notin L$ (00 <u>01</u> <u>01</u> <u>11</u>)

Que contradizem a suposição de que a linguagem é regular

Note que neste exemplo só usamos a regra 1 do Lema do Bombeamento. Poderíamos simplificar a análise das possibilidades 2 e 3 (mostradas anteriormente) aplicando somente a regra 3

Reanálise da segunda possibilidade: $oldsymbol{eta}$ contém apenas 1s

$$\omega = 000111$$
, $\alpha = 000$, $\beta = 11$, $\gamma = 1$, $p = 3$

Entretanto: $|\alpha\beta| \le p$ (5 \le 3)

Reanálise da terceira possibilidade: $oldsymbol{eta}$ contém 0s e 1s

$$\omega = 000111$$
, $\alpha = 00$, $\beta = 01$, $\gamma = 11$, $p = 3$

Entretanto: $|\alpha\beta| \le p \ (4 \le 3)$

Considere a linguagem $L_4 = \{0^i 1^j : i > j\}$

Por exemplo, a cadeia $\omega = \{0000111\}$ é aceita por L_4

Seja p a constante do lema e que $\omega = 0^{p+1}1^p \in L_4$

Como $|\omega| \ge p$, ω pode ser escrito como $\alpha\beta\gamma$ e $\alpha\beta^i\gamma \in L_4$, $\forall i \ge 0$

Note que as condições têm que ser válidas para $\forall i \geq 0$ e que $\beta \neq 0$

$$\varepsilon$$
 e $|\alpha\beta| \leq p$.

Note que β é a subcadeia a ser bombeada, i.e., pode ser **removida** ou **repetida** arbitrariamente, ou seja, para $\alpha\beta^0\gamma=000111\not\in L$ (**contradição**)
Note que a única forma de provar por contradição foi "bombear para baixo" (β^0)

Considere a linguagem $L_5=\{x\in\{0,1\}^*\,:x=x^R\}$, ou seja, x é um palíndromo

Seja p a constante do lema e que $\omega = 0^p 10^p \in L_5$ Como $|\omega| \geq p$, ω pode ser escrito como $\alpha\beta\gamma$ e $\alpha\beta^i\gamma \in L_5$, $\forall i \geq 0$ Note que as condições têm que ser válidas para $\forall i \geq 0$ e que $\beta \neq \varepsilon$ e $|\alpha\beta| \leq p$.

Note que β é a subcadeia a ser bombeada, i.e., pode ser **removida** ou **repetida** arbitrariamente, ou seja, para $\alpha\beta^2\gamma=00001000\notin L$ (**contradição**). Não esqueça que $|\alpha\beta|\leq p$

Considere a linguagem $L_6=\{\varphi\varphi:\ \varphi\in\{0,1\}^*\}$, ou seja é a mesma cadeia φ duplicada

Seja p a constante do lema e que $\omega=0^p10^p1\in L_6$ Como $|\omega|\geq p$, ω pode ser escrito como $\alpha\beta\gamma$ e $\alpha\beta^i\gamma\in L_6$, $\forall i\geq 0$ Note que as condições têm que ser válidas para $\forall i\geq 0$ e que $\beta\neq$ ε e $|\alpha\beta|\leq p$.

Note que: $|\alpha\beta| > p$

Note que β poderia ser bombeada caso $\alpha = \gamma = \varepsilon$. Entretanto, mesmo assim, **a regra 3 é** violada. Observe que escolhemos $\omega = 0^p 10^p 1 \in L_6$ como uma cadeia que exibe a "essência" da não-regularidade de L_6 , em vez da cadeia $0^p \in L_6$ mas que, neste caso, não serve para demonstrar a contradição

