Solving the 'many variables' problem in MICE with supervised principal component regression

In one sentence

Using supervised principal component regression as a univariate imputation model in MICE is a great way to solve the many-variables imputation problem.

Expert imputation model specification

- Remove constants and collinear variables.
- Evaluate connection between variables in the data.
- Apply a correlation-threshold selection.
- Extra: use total scores for item scales.
- Extra: use single measurement in longitudinal data.

Large data with missing values (-)

Esther	3	_	4	6	7	6	2	2	5	4	9	8
Anton	_	_	3	1	8	3	7	10	8	10	3	7
Leonie	_	7	-	4	5	9	3	6	9	10	9	2
Joran	1	4	4	-	9	1	5	5	3	1	9	8
• • •												
Mihai	_	8	_	4	10	6	2	9	2	5	2	10

 x_1 x_2 x_3 x_4 ... w_{141} w_{142} w_{143} w_{144} ... $z_{(p-3)}$ $z_{(p-2)}$ $z_{(p-1)}$ z_p

Automatic imputation model specification

- MICE with Principal component regression (MI-PCR)
- MICE with Association-threshold supervised principal component regression (MI-SPCR)
- MICE with Principal covariates regression (MI-PCovR)
- MICE with Partial least square (MI-PLSR)

Percent relative bias 10 latent variables ■ PRB < 10 ■ PRB > 10

Figure: The percent relative bias (Y-axis) for the correlation coefficient between x_1 and x_2 , obtained after imputing the missing values with the four PCR-based imputation methods (grid rows), is reported as a function of the number of components used (X-axis).

Confidence interval coverage

Figure: The confidence interval coverage for the correlation coefficient between x_1 and x_2 , obtained after imputing the missing values with the four PCR-based imputation methods (grid rows), is reported as a function of the number of components used (X-axis).

Project summary and code

Play with the Shiny app

More research like this

