Линейное программирование и симплекс-метод

Семинар

Оптимизация для всех! ЦУ

Линейное программирование. Общие формы

Для некоторых векторов $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ и матрицы

 $A \in \mathbb{R}^{m \times n}$

 Базовая форма задачи линейного программирования:

$$\min_{x \in \mathbb{R}^n} c^\top x \tag{LP.Basic}$$
 s.t. $Ax \leq b$

• Стандартная форма задачи линейного программирования:

$$\min_{x \in \mathbb{R}^n} c^\top x \tag{LP.Standard}$$
 s.t. $Ax = b$
$$x_i \geq 0, \ i = 1, \dots, n$$

Рис. 1: Иллюстрация задачи линейного программирования.

Линейное программирование

Рис. 2: Основные понятия симплекс-метода.

Рис. 3: Изменение базиса симплекс-метода.

і Основные понятия симплекс-метода

- ullet Базис B является подмножеством n (целых) чисел между 1 и m, таких что $\mathrm{rank} A_B = n$. Обратите внимание, что мы можем связать подматрицу A_B и соответствующую правую часть b_B с базисом B.
 - Также мы можем получить точку пересечения всех этих гиперплоскостей из базиса: $x_{B}=A_{B}^{-1}b_{B}$. Если $Ax_B \leq b$, то базис B является допустимым.
- Базис B является оптимальным, если x_B является оптимумом LP.Basic.

Рис. 4: Основные понятия симплекс-метода.

Рис. 5: Изменение базиса симплекс-метода.

і Интуиция симплекс-метода

- Алгоритм симплекс-метода последовательно перемещается по рёбрам многогранника, в каждой вершине выбирая ребро, которое обеспечивает наибольшее уменьшение величины $c^{\top}x$
- Процесс либо завершается в некоторой вершине, либо уходит по неограниченному ребру, что означает неограниченность задачи снизу ($-\infty$ оптимум)

Рис. 6: Основные понятия симплекс-метода.

 $f \to \min$ \mathcal{L} она имеет оптимальное решение.

Рис. 7: Изменение базиса симплекс-метода.

- 🥊 Существование решения стандартной задачи линейного программирования
 - 1. Если стандартная задача линейного программирования имеет непустое допустимое множество, то существует по крайней мере одна допустимая точка базиса
 - 2. Если стандартная задача линейного программирования имеет решения, то по крайней мере одно из таких решений является оптимальной точкой базиса.
 - 3. Если стандартная задача линейного программирования является допустимой и ограниченной, то

Рис. 8: Основные понятия симплекс-метода.

Рис. 9: Изменение базиса симплекс-метода.

Теорема об оптимуме в вершине

Пусть λ_B будут координатами нашего вектора c в базисе B:

$$\lambda_B^\top A_B = c^\top \leftrightarrow \lambda_B^\top = c^\top A_B^{-1}$$

Если все компоненты λ_B неотрицательны и B является допустимым, то B является оптимальным.

♥ ೧ 0

Примеры задач линейного программирования. Производственные планы

Предположим, вы думаете о том, чтобы начать бизнес по производству Продукта X.

Давайте найдем максимальную недельную прибыль для вашего бизнеса в &Production Plan Problem.

Узлы представляют собой маршрутизаторы, рёбра представляют собой каналы связи; каждому узлу соответствует пропускная способность — узел 1 может общаться с узлом 2 до 6 Мбит/с, узел 2 может общаться с узлом 4 до 2 Мбит/с и т.д.

Узлы представляют собой маршрутизаторы, рёбра представляют собой каналы связи; каждому узлу соответствует пропускная способность — узел 1 может общаться с узлом 2 до 6 Мбит/с, узел 2 может общаться с узлом 4 до 2 Мбит/с и т.д.

Вопрос:

- Сеть узлов и рёбер представляет собой каналы связи, каждый с указанной пропускной способностью.
- Пример: Может ли узел 1 (источник) общаться с узлом 6 (сток) на 6 Мбит/с? 12 Мбит/с? Какова максимальная скорость?

Узлы представляют собой маршрутизаторы, рёбра представляют собой каналы связи; каждому узлу соответствует пропускная способность — узел 1 может общаться с узлом 2 до 6 Мбит/с, узел 2 может общаться с узлом 4 до 2 Мбит/с и т.д.

Вопрос:

- Сеть узлов и рёбер представляет собой каналы связи, каждый с указанной пропускной способностью.
- Пример: Может ли узел 1 (источник) общаться с узлом 6 (сток) на 6 Мбит/с? 12 Мбит/с? Какова максимальная скорость?

Матрица пропускных способностей:

$$C = \begin{bmatrix} 0 & 6 & 0 & 0 & 6 & 0 \\ 0 & 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 7 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 5 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Узлы представляют собой маршрутизаторы, рёбра представляют собой каналы связи; каждому узлу соответствует пропускная способность — узел 1 может общаться с узлом 2 до 6 Мбит/с, узел 2 может общаться с узлом 4 до 2 Мбит/с и т.д.

Вопрос:

- Сеть узлов и рёбер представляет собой каналы связи, каждый с указанной пропускной способностью.
- Пример: Может ли узел 1 (источник) общаться с узлом 6 (сток) на 6 Мбит/с? 12 Мбит/с? Какова максимальная скорость?

Матрица пропускных способностей:

$$C = \begin{bmatrix} 0 & 6 & 0 & 0 & 6 & 0 \\ 0 & 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 7 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 5 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Матрица потоков: X[i,j] представляет собой поток от узла i к узлу j.

каждому узлу соответствует пропускная способность — узел 1 может общаться с узлом 2 до 6 Мбит/с, узел 2 может общаться с узлом 4 до 2 Мбит/с и т.д.

Узлы представляют собой маршрутизаторы, рёбра представляют собой каналы связи;

Вопрос:

- Сеть узлов и рёбер представляет собой каналы связи, каждый с указанной пропускной способностью.
 Пример: Может ли узел 1 (источник) общаться с узлом 6
- Пример: Может ли узел 1 (источник) общаться с узлом (сток) на 6 Мбит/с? 12 Мбит/с? Какова максимальная скорость?

Матрица пропускных способностей:

$$C = \begin{bmatrix} 0 & 6 & 0 & 0 & 6 & 0 \\ 0 & 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 7 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 5 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 Матрица потоков: X[i,j] представляет собой поток от узла i к узлу j.

Ограничения:

$$0 \le X$$
 $X \le C$

Сохранение потока: $\sum_{i=2}^{N} X(i,j) = \sum_{k=1}^{N-1} X(k,i), \; i=2,\dots,N-1$

Данная настройка, когда все, что производится источником, будет идти в сток. Поток сети просто сумма всего, что выходит из источника:

$$\sum_{i=2}^{N} X(1,i) \tag{Поток}$$

Данная настройка, когда все, что производится источником, будет идти в сток. Поток сети просто сумма всего, что выходит из источника:

максимизировать $\langle X,S
angle$

при ограничениях $-X \leq 0$

$$X \leq C$$

$$\langle X, L_n \rangle = 0, \; n = 2, \dots, N-1,$$
 (Задача о максимальном потоке)

 L_n состоит из одного столбца (n) единиц (кроме последней строки) минус одна строка (также n) единиц (кроме первого столбца).

$$S = \begin{bmatrix} 0 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \quad L_2 = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & -1 & \cdots & -1 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

 $[\]sum_{i=2}^{N} X(1,i) \tag{Поток}$

Пример задачи о минимальном разрезе

Разрез сети разделяет вершины на два множества: одно содержит источник (мы называем это множество \mathcal{S}), и одно содержит сток. Пропускная способность разреза — это общая величина рёбер, выходящих из \mathcal{S} — мы разделяем множества, «отрезая поток» по этим рёбрам.

Рёбра в разрезе: $1 \to 2, 4 \to 6$, и $5 \to 6$. Пропускная способность этого разреза: 6+3+2=11.

Рёбра в разрезе: $2 \to 3, 4 \to 6$, и $5 \to 6$. Пропускная способность этого разреза: 2+3+2=7.

Примеры задач линейного программирования. Различные приложения

Посмотрите на различные практические приложения задач линейного программирования и симплекс-метода в Related Collab Notebook.

