Chapter 22: L² 和 hilbert 空间

Latest Update: 2025 年 1 月 1 日

Exercise #22. 1. $\exists (a-b)^2 \ge 0$, $\exists \exists (a+b)^2 \le 2a^2 + 2b^2$.

证明.

$$2a^{2} + 2b^{2} - (a+b)^{2} = a^{2} + b^{2} - 2ab = (a-b)^{2} \ge 0.$$

Exercise #22. 2. 设 $x, y \in \mathcal{H}$ 是 Hilbert 空间,满足 $\langle x, y \rangle = 0$. 证明勾股定理: $||x + y||^2 = ||x||^2 + ||y||^2$.

证明.

$$||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$
$$= ||x||^2 + 0 + 0 + ||y||^2 = ||x||^2 + ||y||^2.$$

Exercise #22. 3. 证明 \mathbb{R}^n 是 Hilbert 空间. 它的内积是点积,即若 $x=(x_1,...,x_n),y=(y_1,...,y_n)$,则 $\langle x,y\rangle=\sum_{i=1}^n x_iy_i$.

证明. 首先, 点积是内积.

- 1. 正定性: $\langle x, x \rangle = \sum_{i=1}^{n} x_i^2 \ge 0$,且 $\langle x, x \rangle = 0$ 当且仅当 $x = \mathbf{0}$.
- 2. (共轭) 对称性: $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} y_i x_i = \langle y, x \rangle$.
- 3. (共轭) 双线性: $\langle y + z, x \rangle = \sum_{i=1}^{n} (y_i + z_i) x_i = \sum_{i=1}^{n} y_i x_i + \sum_{i=1}^{n} z_i x_i = \langle y, x \rangle + \langle z, x \rangle.$

其次, \mathbb{R}^n 在内积诱导的距离下是完备的. 设 $X=(x_1,...,x_n),Y=(y_1,...,y_n),X,Y\in\mathbb{R}^n$. 则 $d(X,Y)=\|X-Y\|=\sqrt{\sum_{j=1}^n x_jy_j}$. 设 $\{X_k\}$ 是 \mathbb{R}^n 中的柯西列, 记 $X_k=(x_1^{(k)},...,x_n^{(k)})$,则对于任

意 $\epsilon>0$,存在 N 使得当 m,n>N 时,有 $|x_i^{(m)}-x_i^{(n)}|\leq \sqrt{\sum_{j=1}^n(x_j^{(m)}-x_j^{(n)})^2}<\epsilon, \forall i=1,...,n$. 因此, $\{x_i^{(k)}\}$ 是 $\mathbb R$ 中的柯西列,根据 $\mathbb R^1$ 的完备性收敛于 $x_i^*\in\mathbb R^1, \forall i=1,...,n$. 因此, $\{X_k\}$ 收敛于 $X^*=(x_1^*,...,x_n^*)\in\mathbb R^n$.

Exercise #22. 4. 设 \mathcal{L} 是 Hilbert 空间 \mathcal{H} 的线性子空间, Π 是投影到 \mathcal{L} 的算子. 证明 Πy 是 \mathcal{L} 中唯一的元素满足 $\langle \Pi y, z \rangle = \langle y, z \rangle, \forall z \in \mathcal{L}$.

证明. 对 y 应用正交分解定理, $y = \Pi y + y - \Pi y$, 其中 $\Pi y \in \mathcal{L}, y - \Pi y \in \mathcal{L}^{\perp}$. 对于任意 $z \in \mathcal{L}$, 有

$$\begin{split} \langle y,z\rangle &= \langle \Pi y + y - \Pi y,z\rangle = \langle \Pi y,z\rangle + \langle y - \Pi y,z\rangle \\ &= \langle \Pi y,z\rangle + 0 = \langle \Pi y,z\rangle. \end{split}$$

若还有另一个元素 $t \in \mathcal{L} \subset \mathcal{H}$, 使得

$$\langle t, z \rangle = \langle y, z \rangle, \forall z \in \mathcal{L},$$

由于 $t, \Pi y \in \mathcal{L}$, 则 $t - \Pi y \in \mathcal{L}$. 因此, 对 $\langle t - \Pi y, z \rangle, z \in \mathcal{L}$, 取 $z = t - \Pi y$,

$$\langle t - \Pi y, t - \Pi y \rangle = 0.$$

这表明 $t = \Pi y$, 即 Πy 是唯一的.