

EKSAMEN I KJ 2050, GRUNNKURS I ANALYTISK KJEMI (7,5 sp)

Fredag 5. juni 2009 kl. 9.00 – 13.00

Oppgavesettet er på to sider. Tillatte hjelpemidler: lommekalkulator.

Alle oppgaver skal besvares, men i oppgave 2 velges en av de to ENTEN / ELLER oppgavene.

Sensurfrist 26. juni 2009.

Kontaktpersoner under eksamen: Øyvind Mikkelsen (928 99 450)

Oppgave 1. (10p + 10p)

a. En saltsyreløsning (ca. 0,2 M) skal innstilles med standard NaOH-løsning (0,300 M) der det benyttes en egnet pH indikator for å fastlegge endepunktet. Beskriv viktig faktorer for å oppnå et godt resultat i denne titreringe, og beregn pH ved ekvivalentpunkt. Beregn også den feilen man får hvis pH verdien ved endepunktet avviker ± 1 pH enheter fra verdien ved ekvivalentpunktet.

b. Ovennevnte standard NaOH-løsning (0,300 M) har tatt opp noe CO_2 fra luften etter at den ble innstilt. Totalt karbonat antas å være i størrelsesorden 0,005 M. Beregn den feilen man får hvis det titreres til pH = 7 med den CO_2 holdige luten. Kommenter svaret.

DATA

$$CO_2 + H_2O = HCO_3^- + H^+$$
 $Ka_1 = 4,45 * 10^{-7}$
 $HCO_3^- = CO_3^{2-} + H^+$ $Ka_2 = 4,69 * 10^{-11}$

Oppgave 2. (7p + 8p)

ENTEN

a. Beskriv detaljert fremgangsmåte for iodometrisk titrering av kobber (Cu²⁺).

b. Det er også mulig å bestemme kobber ved hjelp av elektrogravimetri. Beskriv kort fremgangsmåte for dette illustrert med figur, og diskuter metoden mot den iodometrisk titreringen.

ELLER

Oppgave 2. (5p + 5p + 5p)

a. Hvilke egenskaper er ønskelig for fellingsproduktet i klassisk gravimetri, og forklar videre hvordan man kan gå frem for å oppnå et best mulig resultat.

- b. Medfelling kan være en feilkilde i gravimetri. Gjør rede for ulike typer av medfelling, hvordan disse kan påvirke resultatet og hvordan man kan gå frem for å få et bedre resultat.
- c) Gjør detaljert rede for hvordan man gravimetrisk kan bestemme klorid.

Oppgave 3. (10 + 5)

- a) Beskriv hvordan man kan bestemme jerninnhold i en prøve ved følgende teknikker;
 - spektrofotometrisk
 - gravimetrisk
 - redoks titrering
- b) Diskuter de ulike metodene med hensyn på interferenser og følsomhet.

Oppgave 4. (5p + 2.5p + 2.5p)

- a. Beskriv kort prinsippene som danner grunnlag for analytisk bruk av følgende fire teknikker; atomabsorpsjonspektrofotometri (AAS), ICP-MS, og stripping voltammetri.
- b. Lag en tabell som indikerer omtrentlig hvilken deteksjonsgrense de nevnte teknikkene har. Ta også med potensiometri i denne tabellen.
- c. Sett fra et miljøovervåkingsperspektiv, forklar fordeler ved å kombinere ICP-MS analyser utført på manuelle prøver brakt til laboratorier, med resultater fra kontinuerlige voltammetriske analyser (utført på stede).

Oppgave 5. (10p)

Kryss av for riktig eller uriktig påstand

	Riktig	Galt
Ved pH ≥ 10 blir Y ⁴⁻ hovedkomponenten i EDTA løsninger.		
Som titrand i komplekstitreringer egner flertakkete ligander seg best.		
DGT står for Diffusion Gradients in Thin films		
DGT er ikke en analyseteknikk i seg selv, men en form for prøvetaking.		
Ekvivalenspunkt er når mengde tilsatt titrand er kjemisk ekvivalent til mengde prøve (teoretisk punkt).		
Titrerfeil er det samme som standardavviket for en titrering.		
En primærstandard i titrering bør ha liten formelvekt.		
Sølvnitrat kan brukes for a bestemmelse anioner ved fellestitrering.		
I kromatografi benyttes anionbyttere til å skille metall komplekser på bakgrunn av deres stabilitet, mens organiske og uorganiske komplekser kan separeres ved kationbyttere.		
Ved specieringstudier kan kromatografiske metoder innvirke på specielikevektene og forrykke disse.		