220A Homework 5

James Harbour

October 29, 2025

Problem 1

Define $\gamma(t) = e^{it}$ for $0 \le t \le 2\pi$ and find $\int_{\gamma} z^n dz$ for every integer $n \in \mathbb{Z}$.

Solution. Suppose first that $n \neq -1$. Note that $\gamma'(t) = ie^{it}$, so

$$\int_{\gamma} z^n dz = \int_0^{2\pi} (e^{it})^n i e^{it} dt = i \int_0^{2\pi} e^{it(n+1)} dt$$
$$= \frac{i}{i(n+1)} e^{it(n+1)} \Big|_0^{2\pi} = 0.$$

On the other hand, suppose that n = -1. Then

$$\int_{\gamma} \frac{1}{z} dz = \int_{0}^{2\pi} \frac{1}{e^{it}} i e^{it} dt = \int_{0}^{2\pi} i dt = 2\pi i.$$

Problem 2

Let $I(r) = \int_{\gamma} \frac{e^{iz}}{z} dz$ where $\gamma : [0, \pi] \to \mathbb{C}$ is defined by $\gamma(t) = re^{it}$. Show that $\lim_{r \to \infty} I(r) = 0$.

Proof. For $z \in \mathbb{C}$, observe that

$$|e^{iz}| = |e^{i(\operatorname{Re}(z) + i\operatorname{Im}(z))}| = |e^{i\operatorname{Re}(z)}| \cdot |e^{-\operatorname{Im}(z)}| = |e^{-\operatorname{Im}(z)}|.$$

Hence, for $z \in \gamma$, we have that $z = re^{it}$ for some $t \in [0, \pi]$, whence

$$|e^{iz}| = |e^{-\operatorname{Im}(z)}| = |e^{-r\sin(t)}|$$

Combining this with $z \in \gamma$ implying that |z| = r, we estimate

$$\left| \int_{\gamma} \frac{e^{iz}}{z} dz \right| \le \int_{\gamma} \left| \frac{e^{iz}}{z} \right| |dz| = \int_{\gamma} \frac{e^{-\operatorname{Im}(z)}}{r} |dz|$$
$$= \int_{0}^{\pi} e^{-r\sin(t)} dt.$$

As $x \mapsto \sin(x)$ is symmetric in $[0,\pi]$ about the line $x=\pi/2$, it follows that

$$\int_0^{\pi} e^{-r\sin(t)} dt = 2 \int_0^{\pi/2} e^{-r\sin(t)} dt.$$

On $[0, \pi/2]$, the function $x \mapsto \sin(x)$ is concave down, whence it lies entirely above the secant line between its endpoints, namely (0,0) and $(\pi/2,1)$. This line is given by $y = \frac{2}{\pi}x$, so for $x \in [0,\pi/2]$ we have $\sin(x) \ge \frac{2}{\pi}x$. Hence $e^{-r\sin(x)} \le e^{-r\cdot\frac{2}{\pi}x}$, so

$$I(r) = 2 \int_0^{\pi/2} e^{-r\sin(t)} dt \le 2 \int_0^{\pi/2} e^{-\frac{2r}{\pi}x} dt = 2\left(-\frac{\pi}{2r} \cdot e^{-r} + \frac{\pi}{2r} \cdot 1\right)$$
$$= \frac{\pi}{r} (1 - e^{-r}) \xrightarrow{r \to \infty} 0$$

as desired

Problem 3

Show that if F_1 and F_2 are primitives for $f: G \to \mathbb{C}$ and G is connected, then there is a constant c such that $F_1(z) = c + F_2(z)$ for each $z \in G$.

Proof. The question is not clear whether we assume G to be open (I believe so since we cannot define the derivatives of F_1 and F_2 otherwise, but such is Conway).

Suppose we are assuming G is open. Define $F: G \to \mathbb{C}$ by $F:= F_1 - F_2$. Then F is analytic as F_1 and F_2 are, and $F' = F'_1 - F'_2 = f - f = 0$ on all of G. Thus $F'^{(z)} = 0$ for all $z \in G$ where G is an open, connected set, whence by Proposition 2.10 in Conway, F is constant.

Thus there is some $c \in \mathbb{C}$ such that F = c, whence $F_1 = c + F_2$. TODO maybe see if G not open still works (idk how).

Problem 4

Prove the following analogue of Leibniz's rule. Let G be an open set and γ a rectifiable curve in \mathbb{C} . Suppose that $\varphi : \{\gamma\} \times G \to \mathbb{C}$ is a continuous function and define $g : G \to \mathbb{C}$ by

$$g(z) := \int_{\gamma} \varphi(w, z) dw.$$

Prove that g is continuous. If $\frac{\partial \varphi}{\partial z}$ exists for each $(w,z) \in \{\gamma\} \times G$ and is continuous, prove that g is analytic and

$$g'(z) = \int_{\gamma} \frac{\partial \varphi}{\partial z} (w, z) dw$$
.

Proof. As γ is a continuous function on a compact set (namely an interval), it follows that the trace $\{\gamma\} \subseteq \mathbb{C}$ is compact. Suppose that $(z_n)_{n=1}^{\infty}$ is a sequence in G, $z \in G$, and that $z_n \xrightarrow{n \to \infty} z$. Without loss of generality, assume that $z_n \in B_r(z)$ for all $n \in \mathbb{N}$ where r > 0 is chosen so that $\overline{B_r(z)} \subseteq B_{2r}(z) \subseteq G$.

As $\{\gamma\}$ is compact, it follows that $\{\gamma\} \times \overline{B_r(z)}$ is compact in the product topology. Thus $\varphi|_{\{\gamma\} \times \overline{B_r(z)}}$ is uniformly continuous. Fixing $\varepsilon > 0$, it follows that there is some $\delta > 0$ such that if $|w - w'| < \delta$ and $|u - u'| < \delta$ for some $w, w' \in \{\gamma\}$ and $\xi, \xi' \in \overline{B_r(z)}$, then

$$|\varphi(w,\xi) - \varphi(w',\xi')| < \frac{\varepsilon}{V(\gamma) + 1}.$$

Choose $N \in \mathbb{N}$ such that for all $n \geq N$, we have $|z - z_n| < \delta$. Then, for all $n \geq N$,

$$|g(z) - g(z_n)| \le \int_{\gamma} |\varphi(w, z) - \varphi(w, z_n)| \cdot |dz|$$

$$\le V(\gamma) \cdot \sup_{w \in \{\gamma\}} |\varphi(w, z) - \varphi(w, z_n)|$$

$$\le \frac{V(\gamma)}{V(\gamma) + 1} \varepsilon < \varepsilon.$$

Thus $g(z_n) \xrightarrow{n \to \infty} g(z)$, whence g is continuous.

Now suppose that $\frac{\partial \varphi}{\partial z}$ exists for each point in $\{\gamma\} \times G$ and is continuous. Fix $z_0 \in G$ and r > 0 small enough such that $\overline{B_r(z_0)} \subseteq G$. Then for 0 < |h| < r, we have

$$\frac{g(z_0 + h) - g(z_0)}{h} = \frac{1}{h} \int_{\gamma} (\varphi(w, z_0 + h) - \varphi(w, z_0)) dw$$

As $\frac{\partial \varphi}{\partial z}$ is continuous, it follows by compactness that $\frac{\partial \varphi}{\partial z}|_{\{\gamma\}\times\overline{B_r(z)}}$ is uniformly continuous. Fix $\varepsilon > 0$, and choose $0 < \delta < r$ such that if $|w - w'| < \delta$ and $|\xi - \xi'| < \delta$ for $w, w' \in \{\gamma\}$ and $\xi, \xi' \in \overline{B_r(z_0)}$, then

$$\left| \frac{\partial \varphi}{\partial z} \left(w, \xi \right) - \frac{\partial \varphi}{\partial z} \left(w', \xi' \right) \right| < \frac{\varepsilon}{V(\gamma) + 1}.$$

Note also that for fixed $w \in \{\gamma\}$, letting $\sigma_h := [z_0, z_0 + h]$ denote the line segment between the two points, we have that

$$\frac{1}{h} \int_{\sigma_h} \frac{\partial \varphi}{\partial z} (w, z_0) dz = \frac{\partial \varphi}{\partial z} (w, z_0)$$

as we are simply integrating a constant. On the other hand, we see that for fixed $w \in \{\gamma\}$,

$$\varphi(w, z_0 + h) - \varphi(w, z_0) = \int_{\sigma_h} \frac{\partial \varphi}{\partial z} (w, z) dz.$$

Then, we estimate for $0 < |h| < \delta < r$,

$$\left| \frac{g(z_0 + h) - g(z_0)}{h} - \int_{\gamma} \frac{\partial \varphi}{\partial z} (w, z_0) dw \right| = \left| \int_{\gamma} \frac{1}{h} \int_{\sigma_h} \frac{\partial \varphi}{\partial z} (w, z) dz dw - \int_{\gamma} \frac{1}{h} \int_{\sigma_h} \frac{\partial \varphi}{\partial z} (w, z_0) dz dw \right|$$

$$= \left| \frac{1}{h} \int_{\gamma} \int_{\sigma_h} \frac{\partial \varphi}{\partial z} (w, z) - \frac{\partial \varphi}{\partial z} (w, z_0) dz dw \right|$$

$$\leq \frac{1}{|h|} \int_{\gamma} \int_{\sigma_h} \left| \frac{\partial \varphi}{\partial z} (w, z) - \frac{\partial \varphi}{\partial z} (w, z_0) \right| |dz| |dw|$$

$$\leq \frac{1}{|h|} \int_{\gamma} \int_{\sigma_h} \frac{\varepsilon}{V(\gamma) + 1} |dz| |dw|$$

$$\leq \frac{1}{|h|} \cdot |h| \cdot \frac{V(\gamma)}{V(\gamma) + 1} \varepsilon < \varepsilon.$$

Thus g' exists at z_0 and is given by the desired expression. To see that g is analytic, it remains to show that g' is continuous on G. Let $(z_n)_{n=1}^{\infty}$ be a sequence in G and $z \in G$ such that $z_n \xrightarrow{n \to \infty} z$. Without loss of generality, assume there is some r > 0 such that $z_n \in B_r(z)$ for all $n \in \mathbb{N}$ and that $\overline{B_r(z)} \subseteq G$. Then by compactness $\frac{\partial \varphi}{\partial z}|_{\{\gamma\} \times \overline{B_r(z)}}$ is uniformly continuous, whence for $\varepsilon > 0$ there is some $0 < \delta < r$ such that

$$\left| \frac{\partial \varphi}{\partial z} \left(w, \xi \right) - \frac{\partial \varphi}{\partial z} \left(w, \xi' \right) \right| < \frac{\varepsilon}{V(\gamma) + 1}$$

for all $w \in \{\gamma\}$ and $\xi, \xi' \in \overline{B_r(z)}$ with $|\xi - \xi'| < \delta$. Choose $N \in \mathbb{N}$ such that for $n \geq N$ we have $|z_n - z| < \delta$. Then for $n \geq N$,

$$|g'(z_n) - g'(z)| \le V(\gamma) \cdot \sup_{w \in \{\gamma\}} \left| \frac{\partial \varphi}{\partial z} (w, z_n) - \frac{\partial \varphi}{\partial z} (w, z) \right| < \frac{V(\gamma)}{V(\gamma) + 1} \varepsilon < \varepsilon.$$

As $\varepsilon > 0$ was arbitrary, it follows that $g'(z_n) \xrightarrow{n \to \infty} g'(z)$, so g is analytic.

Problem 5

Suppose that γ is a piecewise smooth curve in \mathbb{C} and φ is defined and continuous on $\{\gamma\}$. Use the previous exercise to show that

$$g(z) := \int_{\gamma} \frac{\varphi(w)}{w - z} \, dw$$

is analytic on $\mathbb{C} \setminus \{\gamma\}$ and

$$g^{(n)}(z) = n! \int_{\gamma} \frac{\varphi(w)}{(w-z)^{n+1}} dw.$$

Proof.

Problem 6

(a): The following is Abel's Theorem. Let $\sum a_n(z-a)^n$ have radius of convergence 1 and suppose that $\sum a_n$ converges to A. Prove that

$$\lim_{r \to 1^{-}} \sum_{n=0}^{\infty} a_n r^n = A.$$

(b): Use Abel's Theorem to prove that $\log(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$

Problem 7

Use Corollary 2.13 to evaluate the following integrals:

(a):

$$\int_{\gamma} \frac{e^z - e^{-z}}{z^n} \, dz$$

where n is a positive integer and $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$.

(b):

$$\int_{\gamma} \frac{dz}{\left(z - \frac{1}{2}\right)^n}$$

where n is a positive integer and $\gamma(t) = \frac{1}{2} + e^{it}$, $0 \le t \le 2\pi$. (c):

$$\int_{\gamma} \frac{dz}{z^2 + 1}$$

where $\gamma(t) = 2e^{it}$, $0 \le t \le 2\pi$. Hint. Expand $(z^2 + 1)^{-1}$ by means of partial fractions.

 $\underline{(\mathbf{d})}$:

$$\int_{\gamma} \frac{\sin z}{z} \, dz$$

where $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$. (e):

$$\int_{\gamma} \frac{z^{1/m}}{(z-1)^n} \, dz$$

where $\gamma(t) = 1 + \frac{1}{2}e^{it}$, $0 \le t \le 2\pi$.