Chapitre 20 : Approximation de l'optique géométrique

I Structure du champ électromagnétique dans l'approximation de l'optique géométrique

A) Hypothèses de travail

1) Propagation dans le milieu

On suppose le milieu:

- linéaire
- isotrope
- non forcément homogène
- transparent

Ainsi, ε_r , μ_r dépendent de \vec{r} , ω .

Donc n peut dépendre de \vec{r} et ω .

2) Champ électromagnétique

• Amplitude et phase :

En régime sinusoïdal, $\vec{E} = \vec{E}(\vec{r})e^{i(\varphi(\vec{r})-\omega t)}$, $\vec{B} = \vec{B}(\vec{r})e^{i(\varphi(\vec{r})-\omega t)}$

- Phase : $\phi = \varphi(\vec{r}) - \omega t = \phi(\vec{r}, t)$

Déphasage : $\varphi(\vec{r})$.

(pour une onde se propageant selon la direction \vec{k} , on a $\varphi(\vec{r}) = \vec{k} \cdot \vec{r}$)

Surfaces d'onde : ce sont les surfaces telles que $\phi(\vec{r},t_0)$ = cte , c'est-à-dire $\phi(\vec{r})$ = cte .

La normale aux surfaces d'onde est alors $\vec{\nabla} \varphi$.

Vitesse de phase : $d\phi = 0$, donc $\nabla \varphi \cdot d\vec{r} - \omega \cdot dt = 0$ (ou $d\varphi - \omega \cdot dt = 0$)

(Si
$$\phi = \vec{k} \cdot \vec{r} - \omega t$$
, on a $\vec{k} \cdot d\vec{r} - \omega dt = 0$)

Distance caractéristique de variation de la phase : longueur d'onde $\,\lambda\,$.

- Amplitude :

 $\vec{\underline{B}}(\vec{r})$, $\vec{\underline{E}}(\vec{r})$, variant avec une distance caractéristique D_{E} , D_{B} ($D_{E} \sim D_{B}$)

• Approximation de l'optique géométrique :

$$D_E, D_B >> \lambda$$

B) Structure locale d'onde plane

1) Equations de Maxwell-Faraday et Maxwell-Ampère

• Rigoureuse:

$$\vec{\nabla} \wedge \vec{E} = -\frac{\partial \vec{B}}{\partial t}, \text{ donc } \vec{\nabla} \wedge \underline{\vec{E}} + i \vec{\nabla} \varphi(\vec{r}) \wedge \underline{\vec{E}} = i \omega \underline{\vec{B}}$$

Et
$$\vec{\nabla} \wedge \vec{B} = \mu_0 (\vec{j} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t})$$

Donc dans un isolant $(\vec{j}_{libre} = \vec{0})$: $\vec{\nabla} \wedge \underline{\vec{B}} + i\vec{\nabla}\varphi(\vec{r}) \wedge \underline{\vec{B}} = -\frac{i\omega}{c^2}\underbrace{\varepsilon_r \mu_r}_{\underline{\mu}^2}\underline{\vec{E}}$

• Approchées :

On a
$$\left| \vec{\nabla} \wedge \vec{E} \right| \sim \frac{E}{D_E}$$
, $\left| \vec{\nabla} \wedge \vec{B} \right| \sim \frac{B}{D_B}$, $\left| \vec{\nabla} \varphi \right| \sim \frac{2\pi}{\lambda}$

Donc
$$\vec{\nabla} \varphi(\vec{r}) \wedge \underline{\vec{E}} = \omega \cdot \underline{\vec{B}}$$

Et
$$\vec{\nabla} \varphi(\vec{r}) \wedge \underline{\vec{B}} = -\frac{\omega}{c^2} \varepsilon_r \underline{\vec{E}}$$

On a la même chose pour les deux autres équations de Maxwell, c'est-à-dire qu'on remplace \vec{k} par $\vec{\nabla} \varphi$ dans les équations en onde plane

2) Vecteur d'onde

- Définition : on pose $\vec{k} = \vec{\nabla} \varphi$. Ainsi, $d\varphi = \vec{k} \cdot d\vec{r}$
- Propriétés :

 \vec{k} dépend de \vec{r}

 \vec{k} est normal aux surfaces d'ondes

Longueur d'onde :
$$\lambda = \frac{2\pi}{|k|}$$

$$\varphi_2 - \varphi_1 = \int_1^2 \vec{\nabla} \varphi \cdot d\vec{r} = \int_1^2 \vec{k} \cdot d\vec{r}$$

3) Structure locale de l'onde

• On a localement $\vec{k} \wedge \underline{\vec{E}} = \omega \underline{\vec{B}}$, $\vec{k} \wedge \underline{\vec{B}} = -n^2 \frac{\omega}{c^2} \underline{\vec{E}}$ et pareil pour les autres.

Donc \vec{k} , $\vec{\underline{E}}$, $\vec{\underline{B}}$ forment un trièdre directe (localement)

• Pour \vec{r} proche de \vec{r}_0 ,

$$\varphi(\vec{r}) = \varphi(\vec{r}_0) + \vec{\nabla} \varphi(\vec{r}_0) \cdot (\vec{r} - \vec{r}_0)$$
$$= \varphi_0 + \vec{k}_0 \cdot (\vec{r} - \vec{r}_0)$$

Et
$$\underline{\vec{E}}(\vec{r}) \approx \underline{\vec{E}}(\vec{r}_0)$$

Donc
$$\vec{E}(\vec{r},t) = \underbrace{\vec{E}(\vec{r}_0)e^{i(\varphi_0 - \vec{k}_0 \cdot \vec{r}_0)}}_{\text{cte}} e^{i(\vec{k}_0 \cdot \vec{r} - \omega \cdot t)}$$

L'onde est donc localement plane.

4) Relation locale de dispersion

$$k^2 = n^2 \frac{\omega^2}{c^2}$$
, soit $k = n \frac{\omega}{c}$

C) Limite de validité de l'optique géométrique

• Onde écrantée :

On a une forte variation de l'amplitude sur une distance de l'ordre de λ .

• Onde sphérique :

On a par conservation de l'énergie $\underline{\vec{E}}(\vec{r}) \xrightarrow[r \to 0]{} +\infty$

- Variation de n sur une distance de l'ordre de λ .
- Si on a un milieu fortement absorbant.

II Interprétation ondulatoire des notions de l'optique géométrique

A) Rayon lumineux

1) En optique géométrique

Postulat de l'optique géométrique : la lumière se propage selon des courbes géométriques indépendantes (c'est-à-dire que la variation de l'une n'influe pas une autre), appelées rayons lumineux.

2) En optique ondulatoire

• Propagation de l'énergie :

$$\vec{\pi} = \frac{1}{\mu_0} \vec{E} \wedge \vec{B}$$

L'approximation de l'optique géométrique correspond à $\vec{\pi} / / \vec{k} = \vec{\nabla} \varphi$

• Trajectoires de l'énergie :

Le long des lignes de champ de \vec{k} , c'est-à-dire les courbes normales aux surfaces d'ondes.

Exemple:

Onde plane:

Rayon lumineux

Onde sphérique:

Ainsi, le trajet lumineux correspond à la trajectoire de l'énergie.

B) Chemin optique (trajet optique)

1) En optique géométrique

• Postulat:

Il existe $n(\vec{r})$ appelé indice (caractéristique phénoménologique)

Chemin optique de A à B: $L_{AB} = \int_{A}^{B} n ds$

2) Interprétation ondulatoire

On a
$$n = \frac{c}{v_{\varphi}}$$
, et $v_{\varphi} = \frac{ds}{dt}$

Donc
$$L_{AB} = \int_{A}^{B} c dt = c(t_B - t_A)$$

C'est donc la distance que la lumière aurait parcourue dans le vide dans le même temps.

3) Relation avec le déphasage

On a
$$\varphi_B - \varphi_A = \int_A^B d\varphi = \int_A^B \vec{k} \cdot d\vec{r} = \int_A^B k dr = \int_A^B \frac{n\omega}{c} dr = \frac{\omega}{c} L_{AB}$$

Donc
$$\frac{\varphi_B - \varphi_A}{2\pi} = \frac{L_{AB}}{\lambda_0}$$

4) Principe de Fermat

• Enoncé:

Le trajet effectif suivi par la lumière pour aller d'un point A à un point B est le trajet optique stationnaire de tous les trajets de A à B (pas forcément minimal).

• Remarque:

En optique ondulatoire, cela signifie que l'onde interfère destructivement avec elle-même sur tous les chemins sauf le trajet optique.

C) Objet et image

1) Point objet

• En optique géométrique :

• En optique ondulatoire : on a une onde sphérique divergente.

(L'approximation de l'optique géométrique n'est plus valable au voisinage du point)

2) Point image

3) Stigmatisme

• En optique géométrique :

Un instrument optique donné est stigmatique pour (A, B) si tout rayon partant de A passe aussi par B.

Remarque:

Un miroir plan est rigoureusement stigmatique pour n'importe quel point.

Un miroir parabolique ne l'est qu'au foyer (rigoureusement aussi)

Les lentilles sont approximativement stigmatiques

• En optique ondulatoire :

Cela signifie qu'une onde sphérique est transformée par l'instrument en une onde sphérique.

• Corollaire:

On a donc le même déphasage pour tous les rayons, et la lumière met le même temps pour aller d'un point à l'autre

4) Réalité, virtualité

- Définition :
- Pour l'objet :

Il est dit réel si le faisceau incident est divergent

Il est dit virtuel s'il est convergent.

- Pour l'image:

Elle est dite réelle si le faisceau émergent est convergent

Elle est dite virtuelle s'il est divergent

- Propriétés :
- On peut créer un objet réel avec une source lumineuse mais pas un objet virtuel ; pour un objet virtuel, il faut un instrument d'optique en amont.
- On peut former une image réelle sur un écran. Pour voir une image virtuelle, il faut un instrument d'optique en aval pour former l'image réelle.
- Une image réelle peut servir soit d'objet réel, soit d'objet virtuel :

- Une image virtuelle ne peut servir que d'objet réel :

5) Exemple

• Miroir plan :

- Il est rigoureusement stigmatique
- Si l'objet est réel, l'image est virtuelle et vice-versa.
- Il transforme une onde sphérique en onde sphérique

(On a de plus un chemin optique $L_{AB} = 0 ...$)

- Lentilles minces:
- Convergentes:
- (1) Stigmatisme approché:

Physiquement, la lentille convergente rabat les rayons vers l'axe.

(2) Foyers:

Foyer objet:

C'est le point tel que quand les rayons sortent, ils sont parallèles à l'axe.

Foyer image:

C'est le point où convergent les rayons lorsqu'ils arrivent parallèles à l'axe.

- Divergentes:

La lentille a pour effet d'écarter les rayons de l'axe.

Foyers:

- Formules de conjugaison :

(1) Descartes:

 $\frac{1}{\overline{SA_2}} - \frac{1}{\overline{SA_1}} = \text{cte}$, où S est le centre de la lentille, et A_1 , A_2 sont les points

objet et image (peu importe l'ordre)

On peut calculer la constante à l'aide des valeurs aux foyers.

(2) Newton:

$$\overline{F_1 A_1} \cdot \overline{F_2 A_2} = \overline{F_1 S} \cdot \overline{F_2 S}$$

- Une lentille divergente est une lentille à bords épais ; une lentille convergente est à bords minces.