Wanthum toti assoc. W. sequences x

their application II. (beyond reduced requence)

Today, of is of finite type; i.e Au. Bn. Ca. Dn+1 (1733) E61.0. Fa. G.

Azn-1, DnH, E_6 has non-trivial Dynkin diagram auto V S. \star C_{i} , V(i)=0 =0 i.e. I. V CD_4 CD_4 CD_{4} CD_{4} CD_{1} CD_{2} CD_{1} CD_{2} CD_{1} CD_{2} CD_{3} CD_{4} CD_{4} CD_{5} CD_{5}

RMA . Id is also Dynkin dia auto. Throughout this talk 6= V, V or id.

- · BCFG & En. do not have non-trivial Dynkin Sia. auto.
- · We will use A for Dyn dia of BCFG

· Coxeter etts x its generalization via 6.

of: f.d simple to alg with I=71...n?

Def [Coxeter etts of g] TEW Coxeter ett if T=Si,...Sin s.t ii,...in? = I.

Let 6 be a Dyn. dia auto on $\triangle g$. $I^6 = eet$ of 6-orbits of I= } \(\bar{\bar{\lambda}}_1 \dots \bar{\lambda}_r \rangle

Def [6-Coxeter ett] TOEWX(6) 6-Coxeter ett of T=5;...s, s.t. (1, 1, 1, ... ir) = I6.

Rmik If 6=id, 16-Coxeter elts) = 1 (oxeter elts? (and r=n)

Ex J=As · S, Ore Coxeter etts. . S,S,V, S,S,V, S,S,V, S,S,V are V-Coxeter etts.

· Beyond reduced sequences I.

Since of is of finite type, i=(i,i,...) \(\tau^{\mathbb{T}_{3}}\) count be reduced.

• Commutation moves: For segs $i, j \in \mathbb{I}^{\mathbb{Z}_{\geqslant 1}}$ j can be obtained from i by \mathfrak{Q}_{s} Commutation move $if \stackrel{\exists}{=} k \geqslant 1$ s.k $i_{k} = j_{k+1}$, $i_{k+1} = j_{k}$, $i_{k+1} = 0$ and $i_{s} = j_{s} \stackrel{\exists}{=} k \geqslant 1$.

• Infinite segs from $T: \text{ Let } 6\text{-Cox } \text{ elt } T6 = S_{j_1} \dots S_{j_r} 6 \text{ given. Define}$ $\mathbf{i} = (\lambda_i, \bar{\lambda}_k \dots) \in \mathbb{T}^{\mathbb{Z}_{\gg 1}} \quad \text{s.} \text{ for } 1 \leq k \leq r \quad \text{and} \quad \lambda_k = 6(\lambda_{k+r}) \quad \text{for } k > r.$

We get $[\Delta^6] = \{j \mid j \mid j \mid can be obtained from it via comm. moves \}.$

· Quantum affine algebras

IK = alg. closed field containing U ((g/m)).

 $U_q(\hat{g}):$ untwisted quantum affine alg corr to g. (Ex. g=B_n \longrightarrow \hat{g} = B_n^(D)). (W/o degree operator)

Note · $U_g(\hat{g})$ has a Hopf alg. str. and admits non-trivial f.d repins. • Index set of $\hat{g} = I_g \sqcup 101$.

For each (i.z) & Ix Kx, ! = simple llg(g)-module VIVI) a called a fundamental representation.

· Categories.

Cg: Category of f.d Integrable Ug(0)-modules.

Known = Skeleton monoidal subcategory Pg of Pg in the following sense: For every prime simple module $M \in \mathbb{Z}_g^*$, = $z \in \mathbb{R}^\times$ c. I. $M_z \in \mathbb{Z}_g^*$.

• $\widehat{\mathfrak{g}} \longleftrightarrow [\Delta, 6]$ Interesting correspondence.

 $A_n^{(1)} \longleftrightarrow [\Delta_{A_n}, id] \quad B_n^{(2)} \longleftrightarrow [\Delta_{A_{2n+1}}, V] \quad C_n^{(1)} \longleftrightarrow [\Delta_{D_{m+1}}, V]$

$D_n^{(i)} \leftrightarrow [\Delta_{D_n}, id] \to [\Delta_{E_{6,n,\ell}}, id] \to [E_{6,n,\ell}, id$

Rmk Every \triangle appearing in the arrest is of symmetric type even though \widehat{g} is not.

Also $(I_{\Delta})^6$ can be identified with I_{cg} in a canonical way. $(E_{X} \widehat{g} = B_{n}^{U}) \rightarrow \Delta = A_{2n-1} \ 6 = V \text{ on } \Delta_{A_{2n-1}}, \ I_{\Delta} = 1...2n-1 \ (I_{\Delta})^{V} = 1...n1)$.

· locally reduce seq

For each $\widehat{g} \leftrightarrow [\Delta, 6]$, we can take $i \in [\Delta^6]$ which is localled reduced: For each $k \in 72_{71}$ (i_k , i_{k+1} ... i_{k+l-1}) is a red. seq of when W_{Δ} ($l = l(w_0)$). \Rightarrow In this case, $i_{k+l} = i_k^*$ where $w_0(\alpha_i) = -\alpha_{i*}$.

prop [.. Hernandez-Leclerc, Fujita-0] For such i, we have an injective map

 $\phi_i: \mathbb{Z} \longrightarrow I_{\Delta} \times \mathbb{Z} \qquad k \longmapsto i_k, p_k$

S.X

- $P(k) = i_{R+L}^* P_{R+L} + 161h^{V}$ where h^{V} : dual Coxeter # of eq.
- ¬ (ν(ν̄_z)_(q)) | (λ,ρ) ∈ Im(φ;) | generales (g.)

We set $e_{\overline{g}} := Category genid by iV(\overline{w_{\overline{n}}})_{g^{-p}} | (\overline{n}, p) \in \phi_{\overline{i}}(\overline{n}, p)$

· Block decomposition of Eg

Recall β_k for $k \ge 1$. For loc. red. $i \in [\Delta^6]$, we set $\beta_k = w_o(\beta_{k+0})$ for 4 < 1.

We set $V_i(\beta_k) = V(\overline{w_{i_k}})_{q \neq k}$ and assign $wt_i(V_i(\beta_k)) = \beta_k^i$.

We fox i & [06] loc. red. one for a while.

Thm [Chari-Moura, Kashiwara-kim-O-Park ...]

(BEQA CALA] (block decomposition via QA not Qg!)

We cany simple module is homo with Qa.

· 8-character and (8,+)-character.

Thm [Frenkel-Reshetikhin] g-character map. 78(M) for a module M is called the 3×10^{-1} an 70%. alg. homo 100%

· K(8) ~ 7[[V(BR)] | K = Z]

WS K(Eg) IS comm. However MON & NOM for MINE Ego Th general!

· Quantum Grothendreck ting.

t: Indeterminate

Thm [Nakajima, Varanolo-Vasserot, Hernandez + x ...]

I t-quantization Kz(Eg) of Ng(K(Eg)) satisfying the following proporties:

1) Kx (Pg) is embedded into the quantum torus Xx genid by (Xx,p) (i.p) & (I)

$$\widehat{X}_{i,p}\widehat{X}_{i,p}^{-1} = \widehat{X}_{i,p}^{-1}\widehat{X}_{i,p}^{-1} = 1$$
 and $\widehat{X}_{i,p}\widehat{X}_{j,s} = t^{-N^{\delta}(R,L)}\widehat{X}_{j,s}\widehat{X}_{i,p} \longrightarrow *$

where $\phi_{i}^{-1}(i,p) = k \times \phi_{i}^{-1}(j,s) = \ell$.

② $K_{\pm}(\mathcal{E}_{\widehat{g}})|_{\underline{t}=1} = \chi_{\widehat{g}}(k(\mathcal{E}_{\widehat{g}}))$. We call $K_{\pm}(\mathcal{E}_{\widehat{g}})$ the quantum Grothendieck ring:

Rmt. We saw * two days ago.

· By taking "reduced part", we can obtain the same quantum torus Containing An(In(W)) of type A. (ADE!!)

· Categorification.

For a ≤ b · take a successive subseq [[a,b]=(ia,ian,...,ib) of i.

· Licabi : the category good by (V: (Bx) asksbi.

Let b-a+1 < L(wo) of woe Ws. ws [[a,b] & R(w) for some we Ws.

Thm [HL, KKKO, ...]

For a ≤ b with b-a+ < l(w), we have the following:

· K+ (P(10,10) 2 A/ (IN(w)) (2 K(Pw))

• \exists an exact monoidal ftor from $K(R^{\triangle}gmod)$ to $C_{\mathfrak{F}}^{ic,l}$ rending simples to simples. In particular, it sends $S_{\mathfrak{K}}^{i} \longrightarrow V_{:}(\beta_{l})$ $M^{i}[t,s] \longrightarrow W_{:}[t,s] \quad \text{in } C_{\widehat{\mathfrak{F}}}^{ic,l} \quad \text{for an i-box c-box c-b$

R-mattix, A-Tovariant. (Recall them for g. Hecke alg.).

(KTTTllov-ReshetTkhin module)

For simple, M,N & leg, 3 a non-zero Ugrop-module homo

 $lr_{M,N}: M \otimes N \longrightarrow N \otimes M.$

We call Irm, w the R-matrix.

Thm (Kashiwara-Kim-O-Park). For each simple $M.N \in \mathcal{C}_{\widehat{\mathfrak{q}}}$, we can associated a 7Z-7nvariant $\Lambda(M.N)$ determined by $Ir_{M.N}$.

(before 15 KSIST for grower Hecke obg)

prop (KKOP) For k < l,

 $\Lambda(V_i(\beta_\ell),V_i(\beta_k)) = N^i(\ell,k).$

For i \in [\triangle 6] loc. red, let $i_{\infty} = (\dots i_0, i_1, i_2 \dots)$ s.t. $i_k = i_{k+1}^*$ for k < 1. Then we can define $i_{\infty} = (\dots i_0, i_1, i_2 \dots)$ s.t. $i_k = i_{k+1}^*$ for k < 1.

Thm [KKOP] For commuting i-boxes [a,,b,], [as,b,] \subseteq [-00,00], W: [a,,b,] \@W: [as,b,] \@

If $a_{2}^{-} < a_{1} \le b_{1} < b_{2}^{+}$, we have

 $\wedge \left(W_{:} \Gamma \alpha_{:}, b_{:} \right) = - \left(\omega_{\Gamma \alpha_{:}, \alpha_{:} \right)} \overline{w_{r_{\alpha_{:}}}} - w_{\Gamma \alpha_{:}, b_{:} \right)} \overline{w_{r_{\alpha_{:}}}} - w_{\Gamma \alpha_{:}, b_{:} \right)$

Thm (kkop) The above results for if $E [\Delta^6]$ loc red can be generalized for any loc. red seq j (not necessionity in $[\Delta^6]$).

(motorian connectioning broad moves)

Rmy If j is loc. red but $\not\in [\Delta^6]$, $W_j[t,s]$ is not kR-module any hore!

d-invariant For simples M, N & Co, d (M, N) == 1 (N(M, N) + N(N, M)).

Thm (KKKO) M.N: Simple Ug(g)-modules s. I one of them is simple.

0 9(M'N)>0

(= same w/ g. Hedre algebra)

⊕ d(M,N)=0

→ M⊗N

N⊗M

Nomple.

3 hd(MON) is simple.

Thm (Nakajima, Hernandez (for i & [4]), KKOP for i)

Let j be a loc. red seq., and [9,6] be an j-box r.t $j_a=j_a=j$. Then we have a Short exact seq

 $0 \rightarrow \bigotimes \underset{k \in I_{\Delta}}{\text{M}} [\alpha^{+}(k), b^{-}(k)] \rightarrow \underset{k}{\text{M}} [\alpha^{+}, b] \otimes \underset{k}{\text{M}} [\alpha, b^{-}] \rightarrow \underset{k}{\text{M}} [\alpha, b] \otimes \underset{k}{\text{M}} [\alpha^{+}, b^{+}] \rightarrow 0.$

where D. @ are simples. This ses is known as T-system!

· Cluster X g. cluster alg. Str related to Eq.

Thm [Hemandez - Leclerc]

Let $i=(i_1,i_2...) \in [\Delta^6]$ associated with \widehat{g} . Then $K(\widehat{C}_{\widehat{g}}) \simeq A(\widehat{J}^{i_1} \simeq (\widehat{g}^{i_1})^{i_2} \times \widehat{J})$ as cluster algebra $[W_{i_1}[k_{min},k]] \longleftrightarrow \mathbb{Z}_k \Longrightarrow k \gg 1$. (not quantum)

Moreover they show that W:[a,b] appears as a cluster varzable for every i-box [a,b] ⊆ [1,∞] by using T-system as exchange relations.

Thm [Bittmann, FHOO]

 $K_{k}(\mathcal{C}_{g}) \simeq A_{g}(\mathcal{J}^{i} = (L^{i}, \mathcal{B}^{i}, 1\mathbb{Z}_{k}))$ as g. clutter algebra $W_{i}[K_{m\overline{i}n}, K] \longleftrightarrow \mathbb{Z}_{k}$

· Monoidal categorification of log.

From now on, let $i \in I^{72}$ (not 72/1) be a loc. red Seq (not necessarily related to $[\Delta^6]$).

[Thm] (Kashīwaz-Kīm-O-Park) Let }[ak.bk] kerz be a set of in-boxes.

We call ?[ak,bk]? an admissible chain of in-boxes it

. (a,) < a, < b, < (b,)+ for k< l

• $\coprod [a_{k}, b_{k}] = (-\infty, \infty).$

Then we have a monoidal seed

(B, W; [ak,bk]) KGTL)

S.L. Cg provides a monoidal categorification of a cluster algebra of stow-symmetype A(S) where $S = (B, \{[W, [a_k, b_k]]\})_{k \in TZ}$.

In particular, W: [a,b] appears

Moreover, they proved that (Λ, B) is compatible, when $\Lambda = (\Lambda_{k}e)$ and $\Lambda_{k}e := \Lambda(W; Ea_{k}, b_{k}), W; Ea_{k}, b_{e})$ &< 1.

Rmk · B is lift from B'.

· Computing B is not suggested in the paper.

Consequence. Every cluster monomial A(I) corresponds to a simple module in e_g^* (This is also proved by Q_{Th}).

The monoidcal codegorification than for Egiss

generalized into the quantum clutter algebra

Setting by FHOO; i.e., k_k(Eg) has a q. clutter

alg. structure & every q. cluster mono

corresponds to a (q.t)-character of a simple module.

Thm [Herandez-Leclerc, Fujita-Herrandez-D-DYA]

Let G_j , G_j with the same Δ (Ex. $A_{in}^{(1)}$, $B_n^{(1)}$ with Δ of type A_{ont}).

Then $K_{\pm}(e_{\widehat{g}}^{\circ}) \simeq K_{\pm}(e_{\widehat{g}}^{\circ})$ and their presentation is given as follows:

It is generated by $f_{i,m}^{\circ} \mid (i,m) \in I \times \mathbb{Z}^1$ subject to the following teletrons: $\frac{1-C_{ij}^{\circ}}{1-C_{ij}^{\circ}}(-1)^{-1}f_{i,m}^{\circ} f_{i,m}^{\circ} = 0 \quad \text{for } i \neq j.$ $f_{i,m}^{\circ} f_{j,p} = g_{i,m}^{\circ} f_{j,p} f_{i,m}^{\circ} \quad \text{for } p > m+1$ $f_{i,p}^{\circ} f_{j,p+1} = g_{i,p+1}^{\circ} f_{j,p+1}^{\circ} f_{i,p}^{\circ} + J_{ij}^{\circ} (1-g_{i,p}^{\circ})$

where (Ca) ... denote the finite Cartan matrix of Δ

Roughly, Every str. related to $C_{\mathfrak{F}}$ is Cstew) symmetric even in the case when $B_n^{(1)}$, $C_n^{(1)}$, $F_4^{(1)}$, $G_2^{(1)}$.

· Missing

We have ▲ 6f type BCFG, [E [▲] Compatible poir (N, B), N, T(L)...

For a while, let of be of type BCFGr.

· Quantum virtual Grothendreck 17ng

Thm [Kadriwura-O,Jang-Leo-O] = alg. $\mathbb{Z}[\mathfrak{g}^{+}]$ -subalg $K_{\mathfrak{g}}(\mathfrak{g})$ of a quantum torus $\mathbb{Z}[\mathfrak{g}^{+}]$, which is determined by $\mathbb{E}[A]$, satisfying the following proporties

€ Kg(5) has a g. cluster alg zo to Ag(Ji).

(non skew-symmetric any more !!)

(3) Kgloj) has a presentation as follows:

$$f_{i,m} f_{j,p} = 8^{(-i)^{p+m+1}} (u,di) f_{j,p} f_{i,m} \text{ for } p>m+1 - \otimes \hat{A}_{q}(m)$$

$$f_{i,p} f_{j,p+1} = 8^{(-i)^{p+m+1}} (u,di) f_{j,p+1} f_{i,p} + J_{ij} (1-8^{(dudi)})$$

where (Cij) ijcI denote the finite Cartan matrix of a

- Rmk For subseq it [06], [1], or loc. red teq, we can consider the successive subseq itable, w/ the sequence itable, we can generalize the results above to such sub-sequence.
- · Up to now. We used is set loc. reduced, reduced or commin eq. to loc. red. fequence, and of finite type. However, the quantum torus can be defined for an arbitrary seq i and of beyond finite type.
 - · Arbitrary seq but finite type.
- * Let $i = (\lambda_1, \lambda_2, \dots, \lambda_r)$ be an arbitrary seq of I of finite type. I.

 Then i can be understood as a "ned" expression of an element of the Braid group $B_a = \langle r_* | \lambda \in I \rangle$
 - For notation simplicity, let us write $K_g(J_x)$ for $K_{\pm}(\mathcal{C}_g^\circ)$ assoc by $[\Delta,\delta]$. Then for U_g of types $A \sim G$, $K_g(O_g)$ has a presentation (\mathcal{C}_g) , uniformly.

Thm [kkop for ADE of, Jang-Lee-O for BCTG of]

For each is I of finite type, \exists on auto T_i on $K_g(\sigma_j)$ given as follows: $T_i(f_{\overline{J},p}) = \left\{ \begin{array}{ccc} f_{\overline{J},p+J_i;\overline{j}} & & \text{if } C_{\overline{J}} \geqslant 0 \\ & & \\$

Moreover, ITi? satisfies the Braid relation of Bog.

Rmk • when $i \neq j$. $T_{\bar{x}} = \text{Lust}_{\bar{z}\bar{y}} \left(\text{Satto} \right) \text{'s braid group action } S_{\bar{x}}$ on (lg(9j)).

(up to constant)

• The action $\{S_{\vec{i}}\}$ used for the construction of PBW basis of $U_{\vec{i}}(\vec{q})$, $A_{\vec{i}}(\vec{l})$, $A_{\vec{i}}(\vec{l})$.

· Ag(In(w)) is generated by dual root vectors of I BiliER(w)?

(constructed by Sis.

Thm [0-Park]. For an arbitrary sequence $i = (i_1 ... i_5)$ of I type of, $\exists a$ subalgebra $J_0(b)$ of $K_2(0)$ by using the construction of its PBW -basis. Here b is an off of Braid group bog s.t $b = r_{i_1} ... r_{i_5}$.

Moreprecioly, define

Fi = Ti,...Tik (fix.0) = 15 kss.

and certain non-deg pairing

(,) on Kg(of) (generalising (,) * (,) *)

Then we have . Fx.Fe = I between x x e A FC LS formula.

• each PBW-basis P_i is orthogonal to C D for $r_j = b$. • $((x, y)) = (T_i(x), T_i(y))$.

Ultimate goal: For any i and of