

Capacitance

A capacitor stores energy in the form of an electric field that is established by the opposite charges on the two plates.

The energy of a charged capacitor is given by the equation

$$W = \frac{1}{2}CV^2$$

where

W = the energy in joules

C = the capacitance in farads

V = the voltage in volts

008/2 Circuits \$ Devices 2 (ELTR-200)

Capacitance

The capacitance of a capacitor depends on three physical characteristics.

$$C = 8.85 \times 10^{-12} \,\text{F/m} \left(\frac{\varepsilon_r A}{d} \right)$$

C is directly proportional to

the relative dielectric constant

and the plate area.

C is inversely proportional to

the **distance** between the plates

Capacitor types

Mica capacitors are small with high working voltage.

008/2 Circuits \$ Devices 2 (ELTR-200

Mica

Capacitance

Find the capacitance of a circular 4.0 cm diameter sensor immersed in oil if the plates are separated by 0.25 mm.

$$C = 8.85 \times 10^{-12} \,\text{F/m} \left(\frac{\varepsilon_r A}{d}\right) \qquad \left(\varepsilon_r = 4.0 \text{ for oil}\right)$$

The plate area is $A = \pi r^2 = \pi (0.02 \text{ m}^2) = 1.26 \times 10^{-3} \text{ m}^2$

The distance between the plates is 0.25×10^{-3} m

$$C = 8.85 \times 10^{-12} \text{F/m} \left(\frac{(4.0)(1.26 \times 10^{-3} \text{ m}^2)}{0.25 \times 10^{-3} \text{ m}} \right) = 178 \text{ pF}$$

The **working voltage** is the voltage limit that cannot be exceeded.

Capacitive reactance: Parallel

When capacitors are in parallel, the total reactance is the reciprocal of the sum of the reciprocals of the individual reactances. That is,

$$X_{C(tot)} = \frac{1}{\frac{1}{X_{C1}} + \frac{1}{X_{C2}} + \frac{1}{X_{C3}} + \dots + \frac{1}{X_{Cn}}}$$

If the three 0.033 μF capacitors from the last example are placed in parallel with the 2.5 kHz ac source, what is the total reactance?

Solution: The reactance of each capacitor is 1.93 k Ω

$$X_{C(tot)} = \frac{1}{\frac{1}{X_{C1}} + \frac{1}{X_{C2}} + \frac{1}{X_{C3}}} = \frac{1}{\frac{1}{1.93 \text{ k}\Omega} + \frac{1}{1.93 \text{ k}\Omega} + \frac{1}{1.93 \text{ k}\Omega}} = 643 \Omega$$

Capacitive Voltage Divider

Two capacitors in series are commonly used as a capacitive voltage divider. The capacitors split the output voltage in proportion to their reactance (and inversely proportional to their capacitance).

Example What is the output voltage for the capacitive voltage divider?

Solution:
$$X_{C1} = \frac{1}{2\pi f C_1} = \frac{1}{2\pi (33 \text{ kHz})(1000 \text{ pF})} = 4.82 \text{ k}\Omega$$

 $X_{C2} = \frac{1}{2\pi f C_2} = \frac{1}{2\pi (33 \text{ kHz})(0.01 \text{ \mu F})} = 482 \Omega$

$$X_{C2} = \frac{1}{2\pi f C_2} = \frac{1}{2\pi (33 \text{ kHz})(0.01 \text{ }\mu\text{F})} = 482 \text{ }\Omega$$

$$X_{C(tot)} = X_{C1} + X_{C2}$$

=
$$4.82 \text{ k}\Omega + 482 \Omega = 5.30 \text{ k}\Omega$$

$$V_{out} = \left(\frac{X_{C2}}{X_{C(tot)}}\right) V_s = \left(\frac{482 \Omega}{5.30 \text{ k}\Omega}\right) 1.0 \text{ V} = 91 \text{ m}^3$$

 $= 4.82 \text{ k}\Omega + 482 \Omega = 5.30 \text{ k}\Omega$ $V_{out} = \left(\frac{X_{C2}}{X_{C(tot)}}\right) V_s = \left(\frac{482 \Omega}{5.30 \text{ k}\Omega}\right) 1.0 \text{ V} = 91 \text{ mV}$

Capacitive Voltage Divider

Instead of using a ratio of reactances in the capacitor voltage divider equation, you can use a ratio of the total series capacitance to the output capacitance (multiplied by the input voltage). The result is the same. For the problem presented in the last slide,

$$C_{\text{(tot)}} = \frac{C_1 C_2}{C_1 + C_2} = \frac{(1000 \text{ pF})(0.01 \text{ }\mu\text{F})}{1000 \text{ pF} + 0.01 \text{ }\mu\text{F}} = 909 \text{ pF}$$

$$V_{out} = \left(\frac{C_{(tot)}}{C_2}\right) V_s = \left(\frac{909 \text{ pF}}{0.01 \text{ μF}}\right) 1.0 \text{ V} = 91 \text{ mV}$$

Capacitive phase shift

 $I = \frac{Q}{t}$ $i = \frac{dQ}{dt} = C\frac{dV}{dt} = C\frac{d(V_0 \cdot \sin(t))}{dt} = CV_0 \cos(t)$

When a sine wave is applied to a capacitor, there is a phase shift between voltage and current such that current always leads the voltage by 90°.

T008/2 Circuits \$ Devices 2 (ELTR-200

T008/2 Circuits \$ Devices 2 (ELTR-200)

Inductive reactance is the opposition to ac by an inductor. The equation for inductive reactance is $X_L = 2\pi fL$ The reactance of a 33 μ H inductor when a frequency of 550 kHz is applied is 114 Ω

SCHOOL OF ELECTRICAL AND ELECTRONIC ENGINEERING

Power in an inductor

True Power: Ideally, inductors do not dissipate power. However, a small amount of power is dissipated in winding resistance given by the equation:

$$P_{\text{true}} = (I_{\text{rms}})^2 R_{\text{W}}$$

Reactive Power: Reactive power is a measure of the rate at which the inductor stores and returns energy. One form of the reactive power equation is:

$$P_r = V_{rms} I_{rms}$$

The unit for reactive power is the VAR.

DT008/2 Circuits \$ Devices 2 (ELTR-200)

53

SCHOOL OF ELECTRICAL ANI ELECTRONIC ENGINEERING

Q of a coil - Figure of merit

In real Inductors the winding resistance appears as a resistance in series with the ideal inductor; it is referred to as DCR (DC resistance) or R_W .

This resistance dissipates some of the reactive energy.

The **quality factor** (\mathbf{Q}) of a coil is given by the ratio of reactive power to true power.

$$Q = \frac{I^2 X_L}{I^2 R_W}$$

For a series circuit, I cancels, leaving

$$Q = \frac{2\pi f L}{R_W}$$

DT008/2 Circuits \$ Devices 2 (ELTR-200

55

