SC-635 Advanced Topics in Mobile Robotics

Experiment Module: Control of Differential Drive in ROS

January 24, 2020

Systems and Control Engineering Indian Institute of Technology Bombay

Overview

1. Gazebo: getting started

2. Turtlebot Operation

Recapitulation

- ▶ Topics
- Nodes
- Messages
- Launch File
- Passing arguments to nodes from launch file

Gazebo simulation environment

Features:

- Separate open source project that aims at making robot simulation easy
- ▶ 3D simulation
- Rigid body dynamics
- Open Dynamics, Bullet, Dart Engine
- Well integrated with ROS

find more information at

http://gazebosim.org/

Snapshot

Running Gazebo

- ► Need the package *gazebo_ros*
- Installed as a part of ros-kinetic-desktop-full
- Execute following command to bring up the simulator gui
 - \$ rosrun gazebo_ros gazebo -verbose
- **>** ...

Running Gazebo

- ► Need the package *gazebo_ros*
- Installed as a part of ros-kinetic-desktop-full
- Execute following command to bring up the simulator gui
 - \$ rosrun gazebo_ros gazebo -verbose
- ▶ Mostly, the above command won't work the first few times

Snapshot

```
vivek@vivek-VirtualBox: ~/ros files/catkin ws
                                                                                  File Edit View Search Terminal Tabs Help
vivek@vivek-Vi... × roscore http://... × vivek@vivek-Vi... × vivek@vivek-Vi... × vivek@vivek-Vi...
 WARN1 [1579713716.814624055]: No ROS master - start roscore to continue...
        [1579713717.317691822]: No ROS master - start roscore to continue...
        \lceil 1579713717.818703970 
ceil: No ROS master - start roscore to continue...
        [1579713718.325010294]: No ROS master - start roscore to continue...
        [1579713718.830823638]: No ROS master - start roscore to continue...
        [1579713719.331299576]: No ROS master - start roscore to continue...
        [1579713719.850933864]: Finished loading Gazebo ROS API Plugin.
 INFO | [1579713719.853089482]: waitForService: Service [/gazebo/set physics pro
perties has not been advertised, waiting...
vivek@vivek-VirtualBox:~/ros files/catkin ws$ rosrun gazebo ros gazebo --verbose
Gazebo multi-robot simulator, version 7.0.0
Copyright (C) 2012-2016 Open Source Robotics Foundation.
Released under the Apache 2 License.
http://gazebosim.org
```

Running Gazebo

- ► Need the package gazebo_ros
- Installed as a part of the full desktop installation
- Execute following command to bring gazebo into action
 \$ rosrun gazebo_ros gazebo -verbose
- ▶ Mostly, the above command won't work in the first go
- Stop the process and Run again! untill ...

Snapshot

```
    vivek@vivek-VirtualBox: ~/ros files/catkin ws

                                                                                           File Edit View Search Terminal Tabs Help
vivek@vivek-VirtualBox: ~/ros_fil... × roscore http://vivek-VirtualBox:11... × vivek@vivek-VirtualBox: ~/ros_fil... ×
vivek@vivek-VirtualBox:~/ros_files/catkin_ws$ rosrun gazebo_ros gazebo --verbose
Gazebo multi-robot simulator, version 7.0.0
Copyright (C) 2012-2016 Open Source Robotics Foundation.
Released under the Apache 2 License.
http://gazebosim.org
[ INFO] [1579714106.146692986]: Finished loading Gazebo ROS API Plugin.
[Msg] Waiting for master.
[ INFO] [1579714106.148207108]: waitForService: Service [/qazebo/set physics properties] has
not been advertised, waiting...
[Msq] Connected to gazebo master @ http://127.0.0.1:11345
[Msg] Publicized address: 10.0.2.15
[ INFO] [1579714106.632505605]: waitForService: Service [/gazebo/set physics properties] is
now available.
[ INFO] [1579714106.749042682]: Physics dynamic reconfigure ready.
```

Running the turtlebot

- ► Example gazebo environment with turtlebot
 - \$ roslaunch turtlebot_gazebo turtlebot_world.launch

Snapshot

Zoomed In

Turtlebot topics

Launching the turtlebot_world simulation environment brings up varius nodes. Use command **\$ rostopic list** to see.

Some of the nodes are

- **...**
- /camera/rgb/camera_info
- /camera/rgb/image_raw
- **...**
- /cmd_vel_mux/input/navi
- /cmd_vel_mux/input/teleop
- **.**..
- ▶ /odom
- ▶ /scan

Controlling turtlebot

Turtlebot can be controlled by publishing a *geometry_msgs/Twist* message to either of these topics:

- /cmd_vel_mux/input/navi
- /cmd_vel_mux/input/teleop

From commandline: \$ rostopic pub

rostopic pub -r 10 /cmd_vel_mux/input/navi geometry_msgs/Twist "linear:

x: 0.3

y: 0.0

z: 0.0

angular:

x: 0.0

y: 0.0

z: 0.2"

Controlling turtlebot from script

Need to publish *geometry_msgs/Twist* messages.

```
#!/usr/bin/env python
   import rospy
   from geometry_msgs.msg import Twist
4
5
   def control_loop():
6
       pub = rospy.Publisher('/cmd_vel_mux/input/navi',
       Twist, queue_size=10)
7
        rospy.init_node('turtlebot_controller')
8
        rate = rospy.Rate(1)
9
        velocity_msg = Twist()
10
        velocity_msg.linear.x = 0.2
11
        velocity_msg.angular.z = 0.2
12
       while not rospy.is_shutdown():
13
            pub.publish (velocity_msg)
14
            rate.sleep()
15
    if __name__ == '__main__':
16
17
       try:
18
            control_loop()
19
       except rospy. ROSInterruptException:
20
            pass
```

Getting position of turtlebot

The /odom topic provides nav_msgs/Odometry message A single instance of the Odometry message looks like :

```
header:
1
       seq: 326038
       stamp:
         secs: 3260
         nsecs: 480000000
       frame id: "odom"
     child_frame_id: "base_footprint"
     pose:
       pose:
10
         position:
11
           x · 0 206763016474
12
           y: -0.00754505523484
13
           7 . 0 0
14
         orientation:
15
           x: 0.0
16
           v: -0.0
17
           z· 0.0549024539071
18
           w: -0.998491722827
19
       covariance: [...]
20
     twist .
21
       twist:
22
         linear:
23
           x: -6.6322219357e-06
24
           v: 0.0
25
           z: 0.0
26
         angular:
27
           x: 0.0
28
29
           z: -5.59266047396e-05
30
       covariance: [...]
```

Quaternion to Euler angle

The orientation is encoded in **quaternion** format in the Odometry message.

Need to convert the quaternion into euler angles for computing control law.

The following snippet does the conversion:

```
from tf.transformations import euler_from_quaternion

def quat2euler(x,y,z,w):
    quat = [x,y,z,w]
    return euler_from_quaternion(quat)
```

A node to log the position data

```
#!/usr/bin/env python
  import rospy
   from nav_msgs.msg import Odometry
4
   from quat2euler import quat2euler
5
6
   def callback(data):
       x = data.pose.pose.orientation.x;
8
       y = data.pose.pose.orientation.y;
9
       z = data.pose.pose.orientation.z;
10
       w = data.pose.pose.orientation.w;
11
       pose = [data.pose.pose.position.x, data.pose.pose.
       position.y, quat2euler(x,y,z,w)[2]]
12
        print("Robot_pose_is_:_{:0.3f}_{:0.3f}_{:0.2f}".
       format(pose[0], pose[1], pose[2]))
13
14
   def logger():
15
       rospy.init_node('Log_odom')
16
       rospy. Subscriber ('/odom', Odometry, callback)
17
       rospy.spin()
18
   if __name__ == '__main__':
19
20
        logger()
```

Project download

The project to log odometry data and control the *turtlebot* is available as a zip file at:

http://bit.ly/2tdpControllerBasic

Assignment

A) Write a python script to generate waypoints (x,y) and plot them:

$$x = A \cos(at)$$

 $y = A \sin(bt)$

with
$$A = 3$$
, $B = 3$, $a=1$, $b=2$

B) Write a node that uses the waypoint generation code and use waypoints as target/goal point and the robots current location (from /odom) as start point. Calculate following error terms

 E_{pos} : Euclidean distance

 E_{θ} : Difference between current heading and desired heading

C) Extend the node to apply proportional control taught in class to drive the robot along those waypoints. Plot the robot trajectory (superimposed onto waypoints)

Guidelines:

Comment your code. Keep separation between part A, B and C (use different functions with meaningful names OR use blank lines to create a visual separation)

Template code

A basic template for testing your code is available at http://bit.ly/2tdpTemplateA2

Thank you