Structural Estimation 3: Simulated Method of Moments and Indirect Inference

Christine Braun

Last Time

- Last time we talked about GMM
 - we had closed for solutions to moments
 - this is rarely the case
- Today:
 - Simulated Method of Moments (SMM)
 - Indirect Inference

- Same notation as GMM
- Y_t : n-dimensional vector of observations
 - t does not have to mean time, could be people
 - unemployment, wages, duration, observables characteristics, ect..
- θ_0 : vector of true parameters
- $g(Y_t, \theta)$: a vector valued function of data and parameters
 - such that $E[g(Y_t, \theta_0)] = 0$

Basic idea is the same:

$$E[g(Y_t,\theta)] \to \frac{1}{T} \sum_{t=1}^{T} g(Y_t,\theta)$$

Last time we had

$$g(Y_i, \theta) = \begin{bmatrix} u_i - \frac{\delta}{\delta + \lambda[1 - F(w_R; \mu, \sigma)]} \\ tu_i - \frac{1}{\lambda[1 - F(w_R; \mu, \sigma)]} \\ te_i - \frac{1}{\delta} \\ w_i - E[w; \mu, \sigma] \\ w_i^2 - E[w^2; \mu, \sigma] \end{bmatrix}$$

• What do we do if we don't have a closed for $E[w^2; \mu, \sigma]$ or any other moment?

• We will replace g with an estimate \hat{g}

$$E[g(Y_t,\theta)] \to \frac{1}{T} \sum_{t=1}^{I} g(Y_t,\theta) \to \frac{1}{T} \sum_{t=1}^{I} \hat{g}(Y_t,\theta)$$

• For a given θ we simulate $\{\hat{Y}_s\} = \{\hat{u}_s, \hat{t}u_s, \hat{t}e_s, \hat{w}_s\}$, then

$$\hat{g}(Y_{i}, \theta) = \begin{bmatrix} u_{i} - N_{s}^{-1} \sum_{s} \hat{u}_{s} \\ tu_{i} - N_{s}^{-1} \sum_{s} \hat{t}u_{s} \\ te_{i} - N_{s}^{-1} \sum_{s} \hat{t}e_{s} \\ w_{i} - N_{s}^{-1} \sum_{s} \hat{w}_{s} \\ w_{i}^{2} - N_{s}^{-1} \sum_{s} \hat{w}_{s}^{2} \end{bmatrix}$$

where N_s is the number of obs. in the simulated data.

• The SMM estimate of θ_0 is

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \left(\frac{1}{T} \sum_{t=1}^{T} \hat{g}(Y_t, \theta) \right)' W \left(\frac{1}{T} \sum_{t=1}^{T} \hat{g}(Y_t, \theta) \right)$$

where W is the weighting matrix.

• The asymptotic distribution of SMM Estimator is

$$\sqrt{n}(\hat{\theta} - \theta_0) \rightarrow N(0, (J'WJ)^{-1}J'W\Omega WJ(J'WJ)^{-1})$$

- $J = E[\nabla_{\theta} g(Y_t, \theta)]$: jacobian of g
- $\Omega = E[g(Y_t, \theta_0)g(Y_t, \theta_0)']$
- If we have $W = \Omega^{-1}$

$$\sqrt{n}(\hat{\theta}-\theta_0) \rightarrow N(0, (J'\Omega J)^{-1})$$

- The general procedure is the same
 - 1. choose a weighting matrix
 - 2. estimate
 - 3. calculated $\hat{W} = \hat{\Omega}^{-1}$
 - 4. estimate
 - 5. repeat if necessary
- What's New: we need to simulate data

Model

- We will still use the simple search model
- We still have the same identification problem
 - $\hat{w}_R = \min_i w_i$
 - and set *r* = 0.05
- Parameters to estimate: λ , δ , μ , σ
- Moments to match:
 - 1. unemployment rate
 - 2. unemployment duration
 - 3. employment duration
 - 4. first moment of wages
 - 5. second moment of wages

Simulating Data

- What data do we need to simulate?
 - unemployment dummy
 - unemployment duration
 - wages
 - employment duration
- We will simulate the model in steady state
- How many observations should we simulate?
 - no perfect answer
 - I usually do the same as in the observed data
- Very Important Note: you must set a seed so that each simulation is creased with the same random numbers. $rng(\cdot)$

Simulating Data: Unemployment \hat{u}_s

The steady state unemployment rate is

$$urate = rac{\delta}{\delta + \lambda [1 - F(w_R)]} \in [0, 1]$$

- The probability of an individual being unemployed
- Simulation
 - N_s draws from $udraw_s \sim Unif[0,1]$
 - Then create unemployment dummy

$$\hat{u}_s = egin{cases} 1 & \textit{udraw}_s < \textit{urate} \\ 0 & \textit{udraw}_s \geq \textit{urate} \end{cases}$$

• check $N_s^{-1} \sum \hat{u}_s \approx urate$

Simulating Data: Unemployment duration \hat{tu}_s

• Unemployment duration follows an exponential dist.

$$G(tu) = 1 - \exp(-\lambda[1 - F(w_R)]tu)$$

• **Note:** in matlab all functions of the exponential dist. use as an input the mean rather than the rate

$$mean = \frac{1}{\lambda[1 - F(w_R)]}$$

- Simulation 1
 - N_s draws from tudraw_s $\sim Unif[0,1]$
 - $\hat{tu}_s = expinv(tudraw_s, 1/(\lambda[1 F(w_R)]))$
- or Simulation 2
 - N_s draws from $\hat{tu}_s = exprnd(1/(\lambda[1 F(w_R)]))$
- check $N_s^{-1} \sum \hat{tu}_s \approx 1/(\lambda[1-F(w_R)])$

Simulating Data: Employment duration \hat{te}_s

• Employment duration follows an exponential dist.

$$G(te) = 1 - \exp(-\delta te)$$

- Simulation 1
 - N_s draws from $tedraw_s \sim Unif[0,1]$
 - $\hat{te}_s = expinv(tedraw_s, 1/\delta)$
- or Simulation 2
 - N_s draws from $\hat{te}_s = exprnd(1/\delta)$
- check $N_s^{-1} \sum \hat{te}_s \approx 1/\delta$

Simulating Data: Wage \hat{w}_s

- Wage offer distribution: $F(w) \sim \ln N(\mu, \sigma)$
- Accepted wage distribution

$$F^{A}(w) = \frac{f(w)}{1 - F(w_{R})}$$

- We need to simulate from the accepted wage distribution
- Simulation
 - N_s draws from $wdraw_s \sim Unif[F(w_R), 1]$
 - $\hat{w}_s = logniv(wdraw_s, \mu, \sigma)$
- check

$$N_s^{-1} \sum \hat{w}_s \approx \exp\left(\mu + \frac{\sigma^2}{2}\right) \frac{\Phi\left(\frac{\mu + \sigma^2 - \ln(w_R)}{\sigma}\right)}{1 - \Phi\left(\frac{\ln(w_R) - \mu}{\sigma}\right)}$$

Matlab Estimation

- using data4.csv
- File 1: SE4_main
 - first we will work on simulating data, part 1
 - then estimate
- File 2: simulate_data.m
 - inputs?
 - outputs ?
- File 3: g_function_sim.m
 - inputs ?
 - outputs ?
- File 4: SMM.m
 - inputs ?
 - outputs ?

Matlab Estimation: Part 1 Answer

- guess = [1, 1, 0.5, 0.5]
- rng(7890)
- $n_s = 10000$

Moment	Theoretical	Simulated Data
unemp. rate	0.9686	0.9680
unemp. dur.	154.3150	154.1840
emp. dur.	5.0000	4.7410
E[w]	10.5764	10.6417

Matlab Estimation: Part 2 & 3 Answer

	SMM $W = \hat{\Omega}^{-1}$		$\overline{SMM \ W = I/mean(data)}$	
Parameter	Estimate	Std. Err.	Estimate	Std. Err.
λ	0.2883	0.0112	0.2879	0.0112
δ	0.0216	0.0002	0.0216	0.0002
μ	2.2058	0.0196	2.2066	0.0195
σ	0.4021	0.0088	0.4018	0.0088

$$\hat{b} = 0.5670$$

SMM and Indirect Inference

- Indirect Inference: a simulation-based method for estimating parameters
 - useful when the likelihood function or moments are not analytically tractable or difficult to evaluate
 - example: models with latent variables
- Auxiliary Model: aspects of the data that can be calculated in the observed and simulated data
- Main Idea: Minimize the distance between the auxiliary model of the observed data and the simulated data
- SMM is a special case of Indirect Inference
 - · auxiliary model: moments of the data

Indirect Inference

- Other examples of an auxiliary model
 - the likelihood function
 - coefficients from regressions
 - impulse response functions
 - coefficient of interest from an RCT
 - quantile regressions