Introduction to Biomechanics, Part II

Jonathan Lam

11/22/21

Contents

moment)

 \bullet Caveats

1	Inverse dynamics	1
2	Gait analysis	2
1	Inverse dynamics	
	• Combine motion and force plate measurements to estimate forces a joints	at
	• Essentially Newton's second law on body	
	• Treat body as linked together rigid points (big assumption)	
	• Also assume that we know the mass, moment of inertia of body segments	5 -
	Can measure using MRI/CT, is expensiveCadaveric studies	
	• Start at the foot	
	- $m_f a + f = F_{gr} + m_f g + F_{body}$ to solve for the force from the bod - Can solve for moment around the ankle	ly
	• Non-invasively estimate forces and moments in joints	
	• Good for predicting pathology (e.g., arthritis looking at knee adductio	n

- Extremely accurate force measurements, motion measurements, but inertial properties of the body are crazy inaccurate
 - * Also error propagation the farther you get from the force plate
- Only an estimate of the joint forces
- Only talks about net forces, not a specific muscle; at best qualitatively describe muscle
- Need a lot of space
- Expensive equipment
- Internal (from muscle forces) vs. external (from outside forces) torque (these are just equal and opposite)
- Best to record kinetics (force), kinematics (movement), EMG (muscle activity)
 - Still hard to model every muscle

2 Gait analysis

- A particular example of biomechanics
- Gait: a repetitious sequence of limb motions to move body forward
 - One limb is mobile source of support
 - Other limb advances to new support site
 - Limbs support roles
- Limb cycle: single sequence by one limb
 - Defined by initial contact with ground (i.e., **stride**)
- Stance phase when foot is on the ground, swing phase when foot in the air
 - Stance: 60%
 - Swing: 40%
 - Double support part (difference between running and walking)
- Stride from one contact to another contact on the same foot
- Step timing between two limbs

- Efficient gait will minimize COM motion
 - Walking speed and style
 - Knee flexion in stance, pelvic tilt, heel rise in terminal stance
- Use energy storage in tendons
- Use passive momentum of the body
 - Running is "controlled falling" (Marey)
- Measure efficiency using metabolic cart
- Measurements:
 - Joint angles: ankle, knee, hip
 - Joint forces/moments/power: inverse dynamics
 - Rates of change of everything
 - Muscle activation: timing, amount, frequency
- Measurement of ground reaction forces
 - Vertical ground reaction force
 - * F1 (onset of mid-stance), F2 (mid-stance valley), F3 (second peak, starting to push off)
 - Only a small amount of lateral (side-to-side) force; some anteriorposterior movement
- The ankle/foot is more complex than a single joint; can treat it more accurately as three joints
- What's interesting is the muscle activity right before landing a jump/other impact; see what the body does to accept the impact
- Other measurements:
 - Stride/step length/time
 - Center of pressure progression (look at the bottom of your shoes)
 - Rearfoot angle
 - Foot switches (put a switch into your shoes)
 - Pressure-sensitive insoles (similar to the above)
 - Instrumented walkway