Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3211		К работе допущен	28.03.2024
Студент Болорболд	Аригуун	Работа выполнена	11.05.2024
Преподаватель Смирь	нов А. В.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №3.03

Определение удельного заряда электрона

Цель работы:

Определить удельный заряд электрона методом магнетрона.

Задачи, решаемые при выполнении работы:

- 1. Провести графики зависимости анодного тока I_a вакуумного диода от величины тока в соленоиде при различных значениях анодного напряжения.
- 2. Построить графики зависимостей I_a от B и определить по ним величины критический полей для каждого значения анодного напряжения.
- 3. По значениям критического поля найти величину удельного заряда электрона и оценить её погрешность.

Объект исследования

Анодный ток в соосном вакуумном диоде под действием магнитного поля соленоидной обмотки.

Метод экспериментального исследования

Измерение анодного тока при измерении тока на соленоиде при различном напряжении на аноде.

Рабочие формулы и исходные данные

• Радиус анода: $r_a = 3$ мм

Диаметр катушки: d = 37 мм

Длина катушки: l = 36 мм

• Число витков катушки: N = 1500

• Удельный заряд электрона:

$$\frac{e}{m} = \frac{8U}{B_c^2 r_a^2}, (1)$$

где:

U — анодное напряжение;

 $r = r_a$;

B — критическое значение магнитной индукции (только в таком случае траектория электронов будет касательной к аноду).

• Магнитное поле внутри соленоида конечной длины в СИ $\left(\mu_0\cong 1{,}256637\cdot 10^{-6}\frac{\mathrm{H}}{^{42}}\right)$:

$$B = \frac{\mu_0 IN}{\sqrt{d^2 + l^2}}$$
(2)

Измерительные приборы:

Nº	Наименование	Тип прибора	Используемый	Погрешность
			диапазон	прибора
1	Мультиметр в режиме	электронный	0 ÷ 10 A	0,005 A
	амперметра			
2	Мультиметр в режиме	электронный	0 ÷ 2 мА	0,05 мкА
	амперметра			

3	Вольтметр	электронный	9 ÷ 13 B	0,05 B

Схема установки:

Рис. 1.
Принципиальная
электрическая
схема
экспериментальной
установки

Результаты прямых измерений и их обработки

	Анодное сопротивление					
$\mathcal{N}_{\underline{0}}$	U =	8 B	$\mathbf{B} \qquad U = 10\mathbf{B}$		U = 12 B	
опыта	$I_{L,}$ MA	I_a , MA	I_L , MA	I_a , MA	I_L , MA	I_a , MA
1	0	0,2248	0	0,2521	0	0,3117
2	20	0,2247	20	0,2524	20	0,3115
3	40	0,2242	40	0,2521	40	0,3113
4	60	0,2245	60	0,252	60	0,3122
5	80	0,2246	80	0,2524	80	0,3122
6	100	0,2243	100	0,2523	100	0,3128
7	120	0,2246	120	0,2526	120	0,1328
8	140	0,2243	140	0,2528	140	0,3136
9	160	0,2234	160	0,2524	160	0,3139
10	180	0,2192	180	0,2492	180	0,3118
11	200	0,2133	200	0,2458	200	0,3066
12	220	0,1915	220	0,229	220	0,2903
13	240	0,1444	240	0,1709	240	0,2556
14	260	0,1173	260	0,1463	260	0,1983
15	280	0,0996	280	0,1188	280	0,1559
16	300	0,0862	300	0,1022	300	0,1337
17	320	0,0771	320	0,094	320	0,128
18	340	0,0671	340	0,0824	340	0,1126
19	360	0,06	360	0,0728	360	0,1014
20	380	0,0525	380	0,0643	380	0,0918
21	400	0,0476	400	0,0563	400	0,0822
22	420	0,0417	420	0,0526	420	0,074
23	440	0,0385	440	0,0475	440	0,0685
24	460	0,036	460	0,044	460	0,063
25	480	0,0335	480	0,0408	480	0,0573
26	500	0,0321	500	0,0375	500	0,0536
27	520	0,03	520	0,0356	520	0,0493

28	540	0,0283	540	0,0336	540	0,047
29	560	0,0269	560	0,0323	560	0,0445
30	580	0,0259	580	0,0309	580	0,0427
31	600	0,0244	600	0,0293	600	0,0407
32	620	0,0237	620	0,0283	620	0,0392

 \overline{T} аблица 1. Зависимость напряжения U_R от тока в соленоиде

NC.	i		1	3			
№ опыта	U_{ai} , B		8		10	12	
Olibila	В, мТл	I_{al} , MA	$\Delta I_{a1}/\Delta B$	I_{a2} , MA	$\Delta I_{a2}/\Delta B$	<i>I</i> _{a3} , MA	$\Delta I_{a3}/\Delta B$
1	0,00	0,2248	_	0,2521	_	0,3117	_
2	0,73	0,2247	-0,14	0,2524	0,41	0,3115	-0,27
3	1,46	0,2242	-0,69	0,2521	-0,41	0,3113	-0,27
4	2,19	0,2245	0,41	0,252	-0,14	0,3122	1,23
5	2,92	0,2246	0,14	0,2524	0,55	0,3122	0,00
6	3,65	0,2243	-0,41	0,2523	-0,14	0,3128	0,82
7	4,38	0,2246	0,41	0,2526	0,41	0,1328	0,00
8	5,11	0,2243	-0,41	0,2528	0,27	0,3136	1,10
9	5,84	0,2234	-1,23	0,2524	-0,55	0,3139	0,41
10	6,57	0,2192	-5,76	0,2492	-4,39	0,3118	-2,88
11	7,30	0,2133	-8,09	0,2458	-4,66	0,3066	-7,13
12	8,03	0,1915	-29,88	0,229	-23,02	0,2903	-22,34
13	8,76	0,1444	-64,55	0,1709	-79,62	0,2556	-47,55
14	9,49	0,1173	-37,14	0,1463	-33,71	0,1983	-78,53
15	10,22	0,0996	-24,26	0,1188	-37,69	0,1559	-58,11
16	10,95	0,0862	-18,36	0,1022	-22,75	0,1337	-30,42
17	11,67	0,0771	-12,47	0,094	-11,24	0,128	-7,81
18	12,40	0,0671	-13,70	0,0824	-15,90	0,1126	-21,10
19	13,13	0,06	-9,73	0,0728	-13,16	0,1014	-15,35
20	13,86	0,0525	-10,28	0,0643	-11,65	0,0918	-13,16
21	14,59	0,0476	-6,72	0,0563	-10,96	0,0822	-13,16
22	15,32	0,0417	-8,09	0,0526	-5,07	0,074	-11,24
23	16,05	0,0385	-4,39	0,0475	-6,99	0,0685	-7,54
24	16,78	0,036	-3,43	0,044	-4,80	0,063	-7,54
25	17,51	0,0335	-3,43	0,0408	-4,39	0,0573	-7,81
26	18,24	0,0321	-1,92	0,0375	-4,52	0,0536	-5,07
27	18,97	0,03	-2,88	0,0356	-2,60	0,0493	-5,89
28	19,70	0,0283	-2,33	0,0336	-2,74	0,047	-3,15
29	20,43	0,0269	-1,92	0,0323	-1,78	0,0445	-3,43
30	21,16	0,0259	-1,37	0,0309	-1,92	0,0427	-2,47
31	21,89	0,0244	-2,06	0,0293	-2,19	0,0407	-2,74
32	22,62	0,0237	-0,96	0,0283	-1,37	0,0392	-2,06

Таблица 2. Результаты прямых измерений токов на аноде и на соленоиде и дальнейших расчетов (в выделенных ячейках — значения максимального отношения изменения анодного тока к изменению магнитного поля и соответственные им значения тока на соленоиде)

Расчёт результатов косвенных измерений

По формуле (2) были рассчитаны значения *В* для каждого тока на соленоидной обмотке, данные внесены в Таблицу 1. Зависимости анодного тока от магнитного поля соленоида представлены на Рис. 2.

Для каждого из значений анодного напряжения было найдено отношение изменения тока на аноде к изменению магнитного поля. При максимальном значении $\left|\frac{\Delta I_a}{\Delta I_c}\right|$ будет наблюдаться скорейшее изменение I_a , а значит и B, связанного с ним. Таким образом найдены критические значения силы тока на соленоиде $I_{\rm kp} = \frac{I_{c2} + I_{c1}}{2}$ — т.е. взято среднее значение тока на отрезке, удовлетворяющему максимальному изменению ΔB . Для каждого из анодных напряжений и значений критических точек по формуле 2 было рассчитано критическое значение магнитной индукции:

$$U=8~{
m B:}\ I_{
m kp}=0$$
,23 A, $B_c=8$,4 мТл $U=10~{
m B:}\ I_{
m kp}=0$,23 A, $B_c=8$,4 мТл $U=12~{
m B:}\ I_{
m kp}=0$,25 A, $B_c=9$,13 мТл

Удельный заряд электронов для каждого из значений анодного напряжении и критического значения силы тока рассчитывался по формуле 1:

$$U=8$$
 В: $\frac{e}{m}=1,007\cdot 10^{11}$ Кл/кг $U=10$ В: $\frac{e}{m}=1,26\cdot 10^{11}$ Кл/кг $U=12$ В: $\frac{e}{m}=1,512\cdot 10^{11}$ Кл/кг

Среднее значение удельного заряда электрона:

$$\langle \frac{e}{m} \rangle = 1.26 \cdot 10^{11} \text{ Кл/кг}$$

Расчёт погрешностей измерений

Примем значения погрешностей:

 $\Delta r = 0.05 \, \text{мм}$

 $\Delta d = 0.5 \text{ MM}$

 $\Delta l = 0.5 \text{ MM}$

 $\Delta I_{\rm KD} = 0.02 \,\mathrm{A}$

Оценим погрешность удельного заряда электрона:

$$\Delta \frac{e}{m} = \frac{e}{m} \sqrt{\left(\frac{\Delta U}{U}\right)^2 + \left(2\frac{\Delta r}{r}\right)^2 + \left(2\frac{\Delta I_{\rm KP}}{I_{\rm KP}}\right)^2 + \left(2\frac{\Delta l}{l}\right)^2 + \left(2\frac{\Delta d}{d}\right)^2}$$

Вычислим для каждого из значений анодного напряжения и критического тока:

$$\begin{split} \left(\Delta \frac{e}{m}\right)_1 &= 1{,}007 \cdot 10^{11} \sqrt{\left(\frac{0{,}05}{8}\right)^2 + \left(\frac{0{,}05}{3}\right)^2 + \left(\frac{0{,}03}{0{,}23}\right)^2 + \left(2\frac{0{,}5}{37}\right)^2 + \left(2\frac{0{,}5}{36}\right)^2} \\ &= 0{,}13 \cdot 10^{11} \text{ Кл/кг} \\ \left(\Delta \frac{e}{m}\right)_2 &= 0{,}17 \cdot 10^{11} \text{ Кл/кг} \end{split}$$

$$\left(\Delta \frac{e}{m}\right)_3 = 0.207 \cdot 10^{11} \text{ Кл/кг}$$

Погрешность среднего значения:

$$\langle \Delta \frac{e}{m} \rangle \approx 0.17 \cdot 10^{11} \text{ K} \text{л/к} \text{г}$$

Графики

Puc. 2

Окончательные результаты:

Среднее значение удельного заряда электрона:

$$\frac{e}{m} = (1,26 \pm 0,17) \cdot 10^{11} \text{ K}\text{л/к}\text{г}$$

Табличное значение удельного заряда электрона:

$$\frac{e}{m_{\text{табл.}}} = 1,76 \cdot 10^{11} \text{ Кл/кг}$$

Выводы и анализ результатов работы:

В ходе работы был определен удельный заряд электрона методом магнетрона. При сравнении экспериментального значения с табличным заметно, что табличное значение не попадает в доверительный интервал. Такое расхождение возможно обусловлено упомянутым в методических указаниях влиянием облака заряда, накапливающегося в диоде. Заметно, что с увеличением напряжения на аноде растет и удельный заряд электрона, приближаясь к табличному значению. Следовательно, при больших значениях анодного напряжения влияние накапливающихся в диоде облака электронов уменьшается.