

Modern Computer Algebra

Computer algebra systems are now ubiquitous in all areas of science and engineering. This highly successful textbook, widely regarded as the "bible of computer algebra", gives a thorough introduction to the algorithmic basis of the mathematical engine in computer algebra systems. Designed to accompany one- or two-semester courses for advanced undergraduate or graduate students in computer science or mathematics, its comprehensiveness and reliability has also made it an essential reference for professionals in the area.

Special features include: detailed study of algorithms including time analysis; implementation reports on several topics; complete proofs of the mathematical underpinnings; and a wide variety of applications (among others, in chemistry, coding theory, cryptography, computational logic, and the design of calendars and musical scales). A great deal of historical information and illustration enlivens the text

In this third edition, errors have been corrected and much of the Fast Euclidean Algorithm chapter has been renovated.

Joachim von zur Gathen has a PhD from Universität Zürich and has taught at the University of Toronto and the University of Paderborn. He is currently a professor at the Bonn–Aachen International Center for Information Technology (B-IT) and the Department of Computer Science at Universität Bonn.

Jürgen Gerhard has a PhD from Universität Paderborn. He is now Director of Research at Maplesoft in Canada, where he leads research collaborations with partners in Canada, France, Russia, Germany, the USA, and the UK, as well as a number of consulting projects for global players in the automotive industry.

Modern Computer Algebra Third Edition

JOACHIM VON ZUR GATHEN Bonn–Aachen International Center for Information Technology (B-IT)

> JÜRGEN GERHARD Maplesoft, Waterloo

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107039032

First and second editions © Cambridge University Press 1999, 2003 Third edition © Joachim von zur Gathen and Jürgen Gerhard 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1999 Second edition 2003 Third edition 2013 3rd printing 2014

Printed in the United Kingdom by CPI Group Ltd, Croydon CR0 4YY

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-03903-2 Hardback

Additional resources for this publication at http://cosec.bit.uni-bonn.de/science/mca

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To Dorothea, Rafaela, Désirée For endless patience

To Mercedes Cappuccino

Contents

	Intro	oduction	1
1	Cycl	ohexane, cryptography, codes, and computer algebra	11
	1.1	Cyclohexane conformations	11
	1.2	The RSA cryptosystem	16
	1.3	Distributed data structures	18
	1.4	Computer algebra systems	19
Ι	Euc	lid	23
2	Func	damental algorithms	29
	2.1	Representation and addition of numbers	29
	2.2	Representation and addition of polynomials	32
	2.3	Multiplication	34
	2.4	Division with remainder	37
		Notes	41
		Exercises	41
3	The	Euclidean Algorithm	45
	3.1	Euclidean domains	45
	3.2	The Extended Euclidean Algorithm	47
	3.3	Cost analysis for \mathbb{Z} and $F[x]$	51
	3.4	(Non-)Uniqueness of the gcd	55
		Notes	61
		Exercises	62
4	App	lications of the Euclidean Algorithm	69
	4.1	Modular arithmetic	69
	4.2	Modular inverses via Euclid	73
	4.3	Repeated squaring	75
	4.4	Modular inverses via Fermat	76

viii

Cambridge University Press 978-1-107-03903-2 - Modern Computer Algebra: Third Edition Joachim Von Zur Gathen and Jürgen Gerhard Frontmatter More information

	Niatas	
Appli	ication: Decoding BCH codes Notes	209 215
	Exercises	199
	Notes	197
6.13	Implementations	193
6.12	Pseudodivision and primitive Euclidean Algorithms	190
6.11	Modular Extended Euclidean Algorithms	183
6.10	Subresultants	178
6.9	Nonzero preservation and the gcd of several polynomials	
6.8	Application: intersecting plane curves	171
6.7	Small primes modular gcd algorithms	168
6.6	Mignotte's factor bound and a modular gcd algorithm in $\mathbb{Z}[x]$	164
6.5	Modular gcd algorithm in $F[x,y]$	161
6.4	Modular gcd algorithms	158
6.3	The resultant	152
6.2	Gauß' lemma	147
6.1	Coefficient growth in the Euclidean Algorithm	141
The r	resultant and gcd computation	141
	Exercises	132
		131
5.11	1	128
		124
		121
		118
		115
5.6	Hermite interpolation	113
5.5	Modular determinant computation	109
5.4	The Chinese Remainder Algorithm	104
5.3		103
5.2		101
5.1		100
Modi	ular algorithms and interpolation	97
	Exercises	91
		88
4.8		84
		83
		79
	• •	77
4.7		
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	4.6 Continued fractions and Diophantine approximation 4.7 Calendars 4.8 Musical scales Notes Exercises Modular algorithms and interpolation 5.1 Change of representation 5.2 Evaluation and interpolation 5.3 Application: Secret sharing 5.4 The Chinese Remainder Algorithm 5.5 Modular determinant computation 5.6 Hermite interpolation 5.7 Rational function reconstruction 5.8 Cauchy interpolation 5.9 Padé approximation 5.10 Rational number reconstruction 5.11 Partial fraction decomposition Notes Exercises

Contents

Contents ix

II	Nev	vton	217
8	Fast multiplication		
	8.1	Karatsuba's multiplication algorithm	. 222
	8.2	The Discrete Fourier Transform and the Fast Fourier Transform	
	8.3	Schönhage and Strassen's multiplication algorithm	
	8.4	Multiplication in $\mathbb{Z}[x]$ and $R[x,y]$	
		Notes	
		Exercises	
9	Newt	ton iteration	257
	9.1	Division with remainder using Newton iteration	. 257
	9.2	Generalized Taylor expansion and radix conversion	264
	9.3	Formal derivatives and Taylor expansion	265
	9.4	Solving polynomial equations via Newton iteration	. 267
	9.5	Computing integer roots	271
	9.6	Newton iteration, Julia sets, and fractals	273
	9.7	Implementations of fast arithmetic	. 278
		Notes	. 286
		Exercises	. 287
10	Fast polynomial evaluation and interpolation		
	10.1	Fast multipoint evaluation	295
	10.2	Fast interpolation	299
	10.3	Fast Chinese remaindering	301
		Notes	306
		Exercises	306
11	Fast 1	Euclidean Algorithm	313
	11.1	A fast Euclidean Algorithm for polynomials	313
	11.2	Subresultants via Euclid's algorithm	. 327
		Notes	. 332
		Exercises	. 332
12	Fast linear algebra		
	12.1	Strassen's matrix multiplication	. 335
	12.2	Application: fast modular composition of polynomials	. 338
	12.3	Linearly recurrent sequences	340
	12.4	Wiedemann's algorithm and black box linear algebra	346
		Notes	352
		Exercises	353

x Contents

13	Fouri	er Transform and image compression	359
	13.1	The Continuous and the Discrete Fourier Transform	359
	13.2	Audio and video compression	363
		Notes	368
		Exercises	368
III	Ga	աß	371
14	Facto	ring polynomials over finite fields	377
	14.1	Factorization of polynomials	377
	14.2	Distinct-degree factorization	380
	14.3	Equal-degree factorization: Cantor and Zassenhaus' algorithm .	382
	14.4	A complete factoring algorithm	389
	14.5	Application: root finding	392
	14.6	Squarefree factorization	393
	14.7	The iterated Frobenius algorithm	398
	14.8	Algorithms based on linear algebra	401
	14.9	Testing irreducibility and constructing irreducible polynomials .	406
	14.10	Cyclotomic polynomials and constructing BCH codes	412
		Notes	417
		Exercises	422
15	Hense	el lifting and factoring polynomials	433
	15.1	Factoring in $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$: the basic idea	433
	15.2	A factoring algorithm	
	15.3	Frobenius' and Chebotarev's density theorems	441
	15.4	Hensel lifting	444
	15.5	Multifactor Hensel lifting	450
	15.6	Factoring using Hensel lifting: Zassenhaus' algorithm	453
	15.7	Implementations	461
		Notes	465
		Exercises	467
16	Short	vectors in lattices	473
	16.1	Lattices	473
	16.2	Lenstra, Lenstra and Lovász' basis reduction algorithm	475
	16.3	Cost estimate for basis reduction	480
	16.4	From short vectors to factors	487
	16.5	A polynomial-time factoring algorithm for $\mathbb{Z}[x]$	489
	16.6	Factoring multivariate polynomials	493
		Notes	496
		Exercises	498

		Contents	xi
17	Appl	ications of basis reduction	503
	17.1	Breaking knapsack-type cryptosystems	503
	17.2	Pseudorandom numbers	
	17.3	Simultaneous Diophantine approximation	
	17.4	Disproof of Mertens' conjecture	
		Notes	
		Exercises	
IV	Fei	rmat	511
18	Prim	ality testing	517
	18.1	Multiplicative order of integers	517
	18.2	The Fermat test	519
	18.3	The strong pseudoprimality test	520
	18.4	Finding primes	
	18.5	The Solovay and Strassen test	529
	18.6	Primality tests for special numbers	530
		Notes	531
		Exercises	534
19	Facto	oring integers	541
	19.1	Factorization challenges	541
	19.2	Trial division	543
	19.3	Pollard's and Strassen's method	544
	19.4	Pollard's rho method	545
	19.5	Dixon's random squares method	549
	19.6	Pollard's $p-1$ method	557
	19.7	Lenstra's elliptic curve method	557
		Notes	567
		Exercises	569
20	Appl	ication: Public key cryptography	573
	20.1	Cryptosystems	
	20.2	The RSA cryptosystem	
	20.3	The Diffie–Hellman key exchange protocol	
	20.4	The ElGamal cryptosystem	
	20.5	Rabin's cryptosystem	579
	20.6	Elliptic curve systems	580
		Notes	580
		Exercises	580

xii Contents

V	Hilb	pert	585
21	Gröb	oner bases	591
	21.1	Polynomial ideals	591
	21.2	Monomial orders and multivariate division with remainder	595
	21.3	Monomial ideals and Hilbert's basis theorem	601
	21.4	Gröbner bases and S-polynomials	604
	21.5	Buchberger's algorithm	608
	21.6	Geometric applications	612
	21.7	The complexity of computing Gröbner bases	616
		Notes	617
		Exercises	619
22	Symb	polic integration	623
	22.1	Differential algebra	623
	22.2	Hermite's method	625
	22.3	The method of Lazard, Rioboo, Rothstein, and Trager	627
	22.4	Hyperexponential integration: Almkvist & Zeilberger's algorithm	632
		Notes	640
		Exercises	641
23	Symb	polic summation	645
	23.1	Polynomial summation	645
	23.2	Harmonic numbers	650
	23.3	Greatest factorial factorization	653
	23.4	Hypergeometric summation: Gosper's algorithm	658
		Notes	669
		Exercises	671
24	Appli	ications	677
	24.1	Gröbner proof systems	677
	24.2	Petri nets	679
	24.3	Proving identities and analysis of algorithms	681
	24.4	Cyclohexane revisited	685
		Notes	697
		Exercises	698
Δr	pend	iv	701
_	•		
25		amental concepts	703
	25.1	Groups	703
	25.2	Rings	705

	Contents	xiii
25.3	Polynomials and fields	708
25.4	Finite fields	711
25.5	Linear algebra	713
25.6	Finite probability spaces	717
25.7	"Big Oh" notation	720
25.8	Complexity theory	721
	Notes	724
Sourc	es of illustrations	725
Sourc	es of quotations	725
List o	f algorithms	730
List o	f figures and tables	732
Refer	ences	734
List o	f notation	768
Index	,	769

Keeping up to date

Addenda and corrigenda, comments, solutions to selected exercises, and ordering information can be found on the book's web page:

http://cosec.bit.uni-bonn.de/science/mca/

A Beggar's Book Out-worths a Noble's Blood. ¹
William Shakespeare (1613)

Some books are to be tasted, others to be swallowed, and some few to be chewed and digested.

Francis Bacon (1597)

Les plus grands analystes eux-mêmes ont bien rarement dédaigné de se tenir à la portée de la classe *moyenne* des lecteurs; elle est en effet la plus nombreuse, et celle qui a le plus à profiter dans leurs écrits.²

Anonymous referee (1825)

It is true, we have already a great many Books of *Algebra*, and one might even furnish a moderate Library purely with Authors on that Subject.

Isaac Newton (1728)

فحررت هذا الكتاب وجمعت فيه جميع ما يحتاج اليه الحاسب عمرزا عن اشباع ممل و اختصار مخل عنا

Ghiyāth al-Dīn Jamshīd bin Mascūd bin Maḥmūd al-Kāshī (1427)

 $^{^{1}\,}$ The sources for the quotations are given on pages 725–729.

² The greatest analysts [mathematicians] themselves have rarely shied away from keeping within the reach of the average class of readers; this is in fact the most numerous one, and the one that stands to profit most from their writing.

³ I wrote this book and compiled in it everything that is necessary for the computer, avoiding both boring verbosity and misleading brevity.