Methodology, Ethics and Practice of Data Privacy Course Exercise #1

March 13 2020

1. Given the following private table:

Name	Age	Gender	Nationality	Salary	Condition
Ann	35	F	Japanese	40K	Viral Infection
Bluce	27	${ m M}$	American	38K	Flu
Cary	41	\mathbf{F}	India	45K	Heart Disease
Dick	32	${ m M}$	Korean	38K	Flu
Eshwar	52	\mathbf{M}	Japanese	61K	Heart Disease
Fox	22	\mathbf{M}	American	22K	Flu
Gary	36	\mathbf{M}	India	34K	Flu
Helen	26	F	Chinese	26K	Cancer
Irene	18	\mathbf{F}	American	16K	Viral Infection
Jean	25	F	Korean	38K	Cancer
Ken	38	${ m M}$	American	55K	Viral Infection
Lewis	47	\mathbf{M}	American	64K	Heart Disease
Martin	24	\mathbf{M}	American	37K	Viral Infection

Table 1: Private table.

Please answer the following questions:

- (a) Given the health condition as the sensitive attribute, please name the quasi-identifier attributes.
- (b) Let the valid range of age be $\{0, \cdots, 120\}$. Given the health condition as the sensitive attribute, design a cell-level generalization solution to achieve k-Anonymity, where k=4. Please give the generalization hierarchies, released table and calculation of the loss metric (LM) of your solution.
- (c) Please design a k-anonymization algorithm to optimize the loss metric.

2. Suppose that private information x is a number between 0 and 1000. This number is chosen as a random variable X such that 0 is 1%-likely whereas any non-zero is only about 0.1%-likely:

$$P[X = 0] = 0.01, P[X = k] = 0.00099, k = 1 \cdots 1000 \tag{1}$$

Suppose we want to randomize such a number by replacing it with a new random number y = R(x) that retains some information about the original number x. Here are three possible methods to do it:

- (a) Given x, let $R_1(x)$ be x with 20% probability, and some other number (chosen uniformly at random in $\{0, \dots, 1000\}$) with 80% probability.
- (b) Given x, let $R_2(x)$ be $(x + \delta) mod 1001$, where δ is chosen uniformly at random in $\{-100 \cdots 100\}$.
- (c) Given x, let $R_3(x)$ be $R_2(x)$ with 50% probability, and a uniformly random number in $\{0, \dots, 1000\}$ otherwise.

Please answer the following questions:

- (a) Compute prior and posterior probabilities of two properties of x: 1) X=0; 2) $x \in \{200, \dots, 800\}$ using the above three methods respectively.
- (b) Which method is better? Why?
- 3. $[(\alpha, \beta)$ -Privacy] Let R be an algorithm that takes as input $u \in D_U$ and outputs $v \in D_V$. R is said to allow an upward (α, β) -privacy breach with respect to a predicate ϕ if for some probability distribution f,

$$\exists u \in D_U, \exists v \in D_V \text{ s.t. } P_f(\Phi(u)) \le \alpha \text{ and } P_f(\Phi(u)|R(u) = v) \ge \beta$$
 (2)

Similarly, R is said to allow a downward (α, β) -privacy breach with respect to a predicate Φ if for some probability distribution f,

$$\exists u \in D_U, \exists v \in D_V \text{ s.t. } P_f(\Phi(u)) > \alpha \text{ and } P_f(\Phi(u)|R(u) = v) < \beta$$
 (3)

R is said to satisfy (α, β) -privacy if it does not allow any (α, β) -privacy breach for any predicate Φ . The necessary and sufficient conditions for R to satisfy (α, β) -privacy for any prior distribution and any property ϕ : γ -amplifying

$$\forall v \in D_V, \forall u_1, u_2 \in D_U, \frac{P(R(u_1) = v)}{P(R(u_2) = v)} \le \gamma \tag{4}$$

(a) Let R be an algorithm that is γ -amplifying. Please proof that R does not permit an (α, β) -privacy breach for any adversarial prior distribution if

$$\gamma \le \frac{\beta}{\alpha} \frac{1 - \alpha}{1 - \beta}.\tag{5}$$