Meeting the Challenge of Our Time Pathways to a Clean Energy Future for the Northwest

An Economy Wide Deep Decarbonization Pathways Study 2019

Cascadia Conversation Agenda | 12.18.2019

- Clean Energy Transition Institute
- Deep Decarbonization Pathways Study
- Key Findings
- Implementation Opportunities and Challenges
 - Building Integration with the Grid
 - Grid-Scale Storage
 - Transportation Electrification
 - Jet Fuel & Marine Fuel

Clean Energy Transition Institute

Independent, nonpartisan Northwest research and analysis nonprofit organization with a mission to accelerate the transition to a clean energy economy. Provide information and convene stakeholders.

- Identifying deep decarbonization strategies
- Analytics, data, best practices
- Nonpartisan information clearinghouse
- Convenings to facilitate solutions

Why a Northwest Deep Decarbonization Study?

Common set of assumptions to inform decisions about how the clean energy transition could unfold over the coming decades

- Unbiased, analytical baseline for the region
- Variety of pathways to lower carbon emissions
- Surface trade-offs, challenges, and practical implications of achieving midcentury targets
- Broaden conversations about actions needed

Key Study Questions Posed

- How does the energy sector need to transform in the most technologically and economically efficient way?
- How does electricity generation need to be decarbonized to achieve economy-wide carbon reduction goals?
- What if we can't achieve high electrification rates?
- What is the most cost-effective use for biomass? What if biomass estimates are wrong?
- What would increased electricity grid transmission between the NW and CA yield?

Scope: Northwest Regional Energy Sector

- > Scope: WA, OR, ID, MT
- > All Energy Sectors Represented:
 - Residential and commercial buildings
 - Industry
 - Transportation
 - Electricity generation

Evaluating holistically provides an understanding of cross-sectoral impacts and trade-offs

Study Emissions Target

86% reduction in energy-related CO₂ below 1990 levels by 2050

- Applied to each Northwest state independently
- Consistent with economy-wide reduction of 80% below 1990 levels by 2050
- Allows for reductions below 80% for nonenergy CO₂ and non-CO₂ GHG emissions, where mitigation feasibility is less understood relative to energy

Northwest Deep Decarbonization Target

Five Decarbonization Strategies Deployed

Clean Electricity
96% Clean by 2050

Doubles from 23% to 55%

1/2 fuel; 1/2 sequestered

CO₂ Emissions Decrease by State & Fossil Fuel Type

NW CO₂ Emissions Decrease by Sector

All sectors contribute to reduction in Northwest CO2 emissions, with decreases ranging from 95 to 73%.

2020: 165 MMT CO₂

2050: 21 MMT CO₂

Buildings: Deep Efficiency & Electrification

 Building energy intensity declines by 30% for commercial and 60% for residential sector from 2020 to 2050

Building Energy Intensity (2020=1.0)

Electricity: 96% Carbon Free

Generation increases 53%, with fossil fuel use at 4%, emissions decline by 86%.

Transportation: Massive Shift to Electric Vehicles

By 2050:

- Cars, SUVs, and light trucks fully electrified
- Medium and heavy-duty trucks partially electrified
- Results in a 60% reduction in final transportation sector energy demand from light, medium, and heavy-duty vehicles

Fuels: Decarbonized Diesel, Jet, and Pipeline Gas

By 2050:

- Diesel and jet fuel fully decarbonized, primarily using biofuels
- 25% of pipeline fuels partially decarbonized
- Synthetic fuels play a key role

Estimated Net Cost to Achieve Target Roughly 1% of GDP

- Cumulative costs of decarbonizing the energy system in the Central Case are 9.5% higher than the capital and operating expenses of the Business as Usual energy system
- Represents roughly 1% of region's GDP
- Does not include benefits from avoiding climate change, reducing air pollution, improved health

Alternative Pathway Results

100% Clean Electricity Grid

Limited Electrification & Efficiency

No New Gas Plants for Electricity

Limited Biomass for Liquid Fuels

Increased NW-CA Transmission

- Easier with economy-wide approach; electric fuels achieves additional 4%
- Enormous supply/cost implications; scale of facilities prohibitive; imports likely
- More energy storage & renewables for reliability; approximately double the cost
- Similar energy system impacts to the No New Gas, though not as costly
- Saves \$11.1B; avoid development of low-quality renewables in CA & in NW

Electricity Resources All Cases in 2050

Annual Net Energy System Costs, Six Cases

Key Findings: Deep Decarbonization Achievable

- > Electricity generation must be ~96% clean
- A highly efficient built environment powered by clean electricity
- Aggressive vehicle electrification powered largely by clean electricity
- Thermal generation (natural gas) important for reliability but operates at low capacity factor in 2050
- Significant cost savings if the Northwest and California grids are better integrated
- > Biomass allocated to replace jet and diesel fuel
- > Electric fuels play an important role

Equity and Implementation Implications

- Deep Decarbonization Implementation Challenges:
 - Implementing widespread transportation electrification
 - Limiting natural gas in buildings, transport, and the grid
 - Achieving deep energy efficiency
 - Grid storage, grid readiness
 - Improving/expanding Northwest-California grid integration
 - Assessing actual biomass in the Northwest
 - Determining the role power-to-X, electrolysis, direct air capture in the Northwest
- Equity implications must be examined and addressed

Institute Next Steps

- Additional Runs of the Model
 - Run model with updated cost & technology data
 - Assumptions about hydroelectricity, nuclear availability, coal plant retirements, natural gas pricing and carbon intensity.
- Develop Policy, Innovation, Investment & Equity Frameworks to Accelerate Deep Decarbonization
 - Role of Natural Gas in Buildings, Transport, Grid
 - Transportation Electrification
 - Northwest-California Grid Integration
- Project: Building Decarbonization with an Equity Focus

partisan Northwest research and analysis nonprofit organization dedicated to **accelerating the clean**energy transition in the Northwest.

The Clean Energy Transition Institute's Role is to:

- Conduct Research and Analysis
- Serve as an Information Clearinghouse
- Provide Stakeholder Convening

FEATURED REPORT

Meeting the Challenge of Our Time: Pathways to a Clean Energy Future for the Northwest is the first economy-wide analysis to examine decarbonization pathways mapped to the Northwest's economic and institutional realities.

LEARN MORE >

