Misura della caratteristica I-V di due diodi a giunzione p-n

Giada Martini Lorenzo Calandra Buonaura

Turno 3 - 17 Novembre 2022

1 Scopo della prova

Lo scopo della prova è lo studio delle caratteristiche I-V di due diodi a semiconduttore, uno al silicio (Si) e uno al germanio (Ge). Dopo aver verificato la corretta calibrazione di multimetro e oscilloscopio, sono stati raccolti diversi valori di I e V; dall'analisi dei grafici ottenuti sono stati calcolati i due parametri fondamentali della caratteristica I-V, ossia la corrente inversa I_0 e il prodotto η V_T , dove η è il fattore di idealità e V_T è l'equivalente in tensione della temperatura. Infine i valori ottenuti sono stati confrontati coi valori attesi.

2 Schema del circuito

Figura 1: Circuito per calibrazione.

Figura 2: Circuito con diodo inserito.

In Fig.1 possiamo vedere il circuito usato per la calibrazione di oscilloscopio e multimetro durante la prima fase dell'esperienza; in questa fase l'oscilloscopio viene collegato nel punto C del circuito. In Fig.2, invece, è stato inserito il diodo (prima Si e poi Ge) fra un capo del multimetro e il GND e in più l'oscilloscopio viene collegato nel punto D: in questo modo è possibile misurare contemporaneamente i valori di corrente e tensione per poi andare a studiare la caratteristica I-V del diodo.

3 Strumenti e materiali utilizzati

Per l'esperienza sono stati utilizzati i seguenti strumenti e materiali:

- Alimentatore di bassa tensione, per fornire il valore del ground di riferiemento e la differenza di potenziale di +5V.
- Multimetro digitale, per misurare i valori di corrente.
- Oscilloscopio, per misurare i valori di tensione.
- Potenziometro da 1 k Ω , in modo da fornire un valore di tensione variabile (fissato con una resistenza pari a R = 500 Ω).
- Diodi a giunzione p-n: AAZ15/OA47 Germanio, 1N914A/1N4446/1N4148 Silicio.

4 Analisi dati

4.1 Calibrazione (multimetro ed oscilloscopio)

$V_{oscill.}(mV)$	$\sigma_{oscill.}(mV)$	$V_{mult.}(mV)$	$\sigma_{mult.}(mV)$	mV/Div	Range(V)
50	1.87	49	0.2	10	3.200
80	3.16	78	0.3	20	3.200
100	3.64	98	0.4	20	3.200
150	6.75	147	0.5	50	3.200
200	7.83	196	0.7	50	3.200
300	13.46	297	1.0	100	3.200
400	15.63	395	1.3	100	3.200
500	18.03	494	1.6	100	3.200
600	26.91	592	1.9	200	3.200
800	31.24	786	2.5	200	3.200

Tabella 1: Misure di tensione per la calibrazione di multimetro ed oscilloscopio

In Tab.1 sono riportati i valori di tensione misurati con oscilloscopio e multimetro per la calibrazione dei due strumenti; sono anche riportati gli errori (per il calcolo vedi Appendice 6.2) e il fondo scala utilizzato per ogni misura. Come si può vedere l'errore associato al multimetro risulta trascurabile rispetto a quello associato all'oscilloscopio.

Figura 3: Fit lineare per la calibrazione.

In Fig.3 possiamo vedere un grafico che ha sull'asse x i valori di tensione misurati con il multimetro e sull'asse y i valori di tensione misurati contemporaneamente con l'oscilloscopio; in rosso è riportato il fit lineare (y=mx+q) per vedere la corretta calibrazione. I valori ottenuti utilizzando ROOT (riportati anche in figura) sono $m=0.9862\pm0.01885$ e $q=-0.5009\pm2.092$, compatibili con i valori di corretta calibrazione (ossia m=1 e q=0).

4.2 Caratteristica I-V dei diodi (Si e Ge)

$V_{oscill.}(mV)$	$\sigma_{oscill.}(mV)$	$I_{mult.}(mA)$	$\sigma_{mult.}(mA)$	mV/Div	Range(mA)
300	13.46	0.02	0.02	100	32.00
500	18.03	0.07	0.02	100	32.00
560	19.56	0.19	0.02	100	32.00
600	26.91	0.31	0.02	200	32.00
640	27.73	0.64	0.03	200	32.00
660	28.15	0.90	0.03	200	32.00
680	28.57	1.33	0.04	200	32.00
700	29.00	1.95	0.05	200	32.00
720	29.44	2.73	0.06	200	32.00
760	30.33	5.54	0.10	200	32.00
460	17.05	0.04	0.02	100	32.00
520	18.54	0.12	0.02	100	32.00
620	27.32	0.45	0.03	200	32.00
650	27.94	0.70	0.03	200	32.00
800	31.24	10.04	0.17	200	32.00
420	16.09	0.03	0.02	100	32.00
480	17.54	0.06	0.02	100	32.00

Tabella 2: Valori di tensione e corrente misurati per il diodo al silicio.

In Tab.2 e in Tab.3 sono riportati i valori di tensione (misurati con l'oscilloscopio) e corrente (misurati con il multimetro) con relativi errori e fondo-scala per i due diodi, rispettivamente al silicio e al germanio. Per il calcolo degli errori vedere Appendice 6.2.

Figura 4: Grafico di confronto fra le curve caratteristiche I-V dei due diodi utilizzati.

In Fig.4 possiamo osservare i dati plottati in un grafico: si può notare subito l'andamento esponenziale delle caratteristiche I-V dei due diodi (vedi Appendice 6.1).

$V_{oscill.}(mV)$	$\sigma_{oscill.}(mV)$	$I_{mult.}(mA)$	$\sigma_{mult.}(mA)$	mV/Div	Range(mA)
20	2.15	0.02	0.02	20	32.00
64	2.82	0.02	0.02	20	32.00
100	5.85	0.05	0.02	50	32.00
150	6.75	0.11	0.02	50	32.00
180	7.38	0.18	0.02	50	32.00
200	7.83	0.30	0.02	50	32.00
220	8.30	0.43	0.03	50	32.00
240	8.78	0.63	0.03	50	32.00
260	12.69	0.83	0.03	100	32.00
280	13.07	1.22	0.04	100	32.00
300	13.46	1.76	0.05	100	32.00
290	13.26	1.46	0.04	100	32.00
310	13.67	2.12	0.05	100	32.00
320	13.87	2.41	0.06	100	32.00
340	14.29	3.25	0.07	100	32.00
370	14.95	5.05	0.10	100	32.00
75	5.51	0.03	0.02	50	32.00
130	6.36	0.07	0.02	50	32.00

Tabella 3: Valori di tensione e corrente misurati per il diodo al germanio

Inoltre i valori della tensione di soglia (dopo la quale l'andamento esponenziale prevale) risultano essere qualitativamente compatibili con i valori attesi, rispettivamente di $0.2~\rm V$ per il germanio e di $0.6~\rm V$ per il silicio.

Figura 5: Caratteristica I-V del diodo al silicio con fit lineare.

Figura 6: Caratteristica I-V del diodo al germanio con fit lineare

In Fig.5 e in Fig.6 vediamo i dati per i due diodi delle misure di corrente e tensione effettuate; è stato eseguito un fit con la funzione, riportata in Appendice 6.1, tenendo I_0 e ηV_T come parametri liberi, tramite ROOT (con minimizzazione del Chi Quadro).

Il tutto è stato messo poi in scala semilogaritmica per rendere più evidente il fit nella parte lineare del grafico (che altrimenti risulta schiacciata su I = 0, come si vede in Fig.4).

5 Risultati finali e conclusioni

Dalle le caratteristiche I-V dei due diodi, ci aspettiamo che il silicio abbia una valore di corrente inversa dell'ordine del nA e un prodotto ηV_T vicino a 50mV poiché $\eta=2$. Dal fit si ottengo i seguenti valori: $I_0=(2.827\pm 2.393)\cdot 10^{-8}A$ e $\eta V_T=(63.35\pm 5.66)mV$. La corrente I_0 risulta essere in accordo con l'ordine di grandezza atteso, mentre si ha che ηV_T risulta essere leggermente sovrastimato.

Per quanto riguarda il germanio, ci aspettiamo che il valore della corrente inversa sia dell'ordine del μA e il prodotto ηV_T vicino a 26mV (a temperatura ambiente T=300K) poiché $\eta=1$. Dal fit si ottengo i seguenti valori: $I_0=(8.10\pm 2.53)\cdot 10^{-6}A$ e $\eta V_T=(55.57\pm 4.20)mV$. Anche in questo caso il valore di I_0 è compatibile con i valori attesi, tuttavia il valore di ηV_T in questo caso è altamente sovrastimato, in quanto quello ottenuto dal fit risulta essere il doppio di quello aspettato.

6 Appendice

6.1 Caratteristica I-V di un diodo

La relazione tra corrente (totale) e tensione per un diodo è definita caratteristica del diodo stesso e segue la relazione:

$$I(V) = I_0(e^{\frac{V}{\eta V_T}} - 1) \tag{1}$$

dove I_0 è definita corrente inversa di saturazione, V è la tensione applicata, η è un parametro in funzione del tipo di semiconduttore che si considera ($\eta = 1$ per il Ge e $\eta = 2$ per il Si) e V_T è l'equivalente in volt della temperatura.

6.2 Calcolo degli errori

6.2.1 Oscilloscopio

L'errore da associare ad una misura effettuata con l'oscilloscopio può essere:

- 1. $\sigma = \sqrt{(\sigma_L)^2 + (\sigma_Z)^2 + (\sigma_C)^2}$ nel caso in cui gli errori siano tutti indipendenti;
- 2. $\sigma = \sqrt{(\sigma_L + \sigma_Z)^2 + (\sigma_C)^2}$ nel caso in cui σ_L e σ_Z siano dipendenti.

dove σ_L è l'errore sulla lettura, σ_Z è l'errore sullo zero e σ_C è l'errore del costruttore. Per quanto riguarda il caso in esame si è utilizzata la prima relazione in quanto errori indipendenti.

L'errore del costruttore è fisso e pari 3% quindi $\sigma_C = misura \cdot 0.03$.

Abbiamo invece calcolato σ_L e σ_Z secondo la relazione:

$$\sigma = \frac{fondoscala}{5} \cdot (\#tacchetteapprezzabili)$$

NB: Come si può vedere dai dati riportati in Tab. 2 e in Tab. 3 gli errori sullo zero risultano sempre essere trascurabili, dal momento che viene fatto con un fondo scala molto più piccolo di quelli utilizzati per le altre misure.

6.2.2 Multimetro

Gli errori associati alle misure effettuate con il multimetro digitale sono indicati dal costruttore sul libretto delle specifiche e dipendono dal range scelto, nel nostro caso (per i range si faccia riferimento ai dati in Tab 1, Tab. 2 e in Tab. 3) sono pari a:

- 0.3% + 1 digit, per le misure di tensione;
- 1.5% + 2 digit, per le misure di corrente.