CS 07540 Advanced Design and Analysis of Algorithms

Finals Week

• Final Exam

Overview

Most problems will be blocks of four True/False questions, such as

 \bigcirc FIND/SEARCH/GET in a BST with n nodes has runtime $O(\log(n))$.

with a few free response questions added. There will about 20 problems in total (the majority being blocks of four True/False). There will be no questions requiring you to program in Python or Java. However, standard algorithms we implemented in class or on homework may be asked for, such as

"Give a short description of an algorithm to find the minimum in a BST."

Focus Points

- General terms and asymptotic notation
 - ADT and data structures
 - \circ Meaning of O, Θ , Ω
- Heaps and Trees
 - Binary heaps as arrays and binary trees
 - Binary search tree structure

- Self-balancing trees and forests
 - Height-balanced trees
 - Red-Black tree structure
 - AVL tree structure
 - 2-3 trees structure
 - Weight/height-balanced trees
 - Scapegoat tree structure
 - Priority Queue
 - Binomial Heaps structure
 - Fibonacci Heaps structure

- Amortized Analysis and Lower Bounds
 - Run-time upper bounds for standard methods (Find, Insert, Delete)
 - Array
 - Dynamic array
 - BST (non-balanced!)
 - Scapegoat tree
 - 2-3 tree / Red-black tree
 - Run-time lower bound for comparison sort algorithms

- Algorithm Ideas
 - Binary search (in ordered array)
 - Search in BST (min/max)
 - Insertion Sort
 - Merge Sort
 - Heap Sort (with min or max heap)
 - Run-length Encoding
 - Huffman Trees
 - Predecessor/Successor in BST

- Runtime of Algorithms w/o Proof
 - Search in unordered array
 - Binary search (in ordered array)
 - Insertion Sort
 - Merge Sort
 - Heap Sort (with min or max heap)
 - FFT runtime (Fast Fourier Transform)
 - Fast/binary exponentiation