

Foundations of Machine Learning (CS 725)

FALL 2024

Lecture 3:

- Basis Functions and Gradient Descent

Instructor: Preethi Jyothi

Linear Regression: Linear Functions

Fitting a plane to 3D points in \mathbb{R}^3 , (x, f(x))

Linear Regression

Consider a set of predictor (*independent*) variables $x_1, ..., x_d$ corresponding to an outcome (*dependent*) variable y. Regression is the problem of estimating y as a function of $x_1, ..., x_d$. In *Linear Regression*, the relationship between y and $x_1, ..., x_d$ uses a linear model, that is it is linear in its parameters:

Question

Let w be the solution you obtain by optimizing the standard least-squares objective for linear regression. What solution would you obtain if each of the input features (not the labels) are multiplied by a factor of 25 before estimating the regression weights? Pick the correct option.

Linear Regression: Overview of the Pipeline

