El número π

David Tomás Montesdeoca Flores

23 de abril de 2014

Indice

Definición

Indice

Definición

 $oldsymbol{2}$ Historia del Cálculo del número π

Indice

- Definición
- 2 Historia del Cálculo del número π
- $oldsymbol{3}$ Algunas fórmulas que contienen el número π
 - Geometría
 - Análisis
 - Cálculo

Definición

El número π es la relación existente entre el diámetro de la circunferencia con su longitud. Es un número irracional de los más importantes usados en las ciencias matemáticas, como la física, las ingenierías y las propias matemáticas.

El valor que toma esta constante es aproximadamente:

$$\pi = 3,14159265358979323846...$$

Como hemos visto en prácticas anteriores, este se puede calcular mediante integración:

$$\int_0^1 \frac{4}{1+x^2} \, dx = 4(a \tan(1) - a \tan(0)) = \pi$$

El cálculo del número π a lo largo de la historia ha sido una ardua tarea para los cientificos que han llevado a cabo sus aproximaciones. Algunas de sus aproximaciones a lo largo de la historia más importantes han tenido lugar en:

• El Antiguo Egipto.

El cálculo del número π a lo largo de la historia ha sido una ardua tarea para los cientificos que han llevado a cabo sus aproximaciones. Algunas de sus aproximaciones a lo largo de la historia más importantes han tenido lugar en:

- El Antiguo Egipto.
- La Antigüedad Clásica (Grecia y Roma).

El cálculo del número π a lo largo de la historia ha sido una ardua tarea para los científicos que han llevado a cabo sus aproximaciones.

- Algunas de sus aproximaciones a lo largo de la historia más importantes han tenido lugar en:
 - El Antiguo Egipto.
 - La Antigüedad Clásica (Grecia y Roma).
 - Mesopotamia.

El cálculo del número π a lo largo de la historia ha sido una ardua tarea para los cientificos que han llevado a cabo sus aproximaciones.

- El Antiguo Egipto.
- La Antigüedad Clásica (Grecia y Roma).
- Mesopotamia.
- La India.

El cálculo del número π a lo largo de la historia ha sido una ardua tarea para los científicos que han llevado a cabo sus aproximaciones.

- El Antiguo Egipto.
- La Antigüedad Clásica (Grecia y Roma).
- Mesopotamia.
- La India.
- China.

El cálculo del número π a lo largo de la historia ha sido una ardua tarea para los cientificos que han llevado a cabo sus aproximaciones.

- El Antiguo Egipto.
- La Antigüedad Clásica (Grecia y Roma).
- Mesopotamia.
- La India.
- China.
- Europa.

El cálculo del número π a lo largo de la historia ha sido una ardua tarea para los cientificos que han llevado a cabo sus aproximaciones.

- El Antiguo Egipto.
- La Antigüedad Clásica (Grecia y Roma).
- Mesopotamia.
- La India.
- China.
- Europa.
- Persia.

El cálculo del número π a lo largo de la historia ha sido una ardua tarea para los cientificos que han llevado a cabo sus aproximaciones.

Algunas de sus aproximaciones a lo largo de la historia más importantes han tenido lugar en:

- El Antiguo Egipto.
- La Antigüedad Clásica (Grecia y Roma).
- Mesopotamia.
- La India.
- China.
- Europa.
- Persia.

En la época actual el mayor numero de decimales obtenido se llevó a cabo por Shigeru Kondo, obteniendo 10.000.000.000 cifras.

4 / 9

Tabla de decimales obtenidos

Año	Nombre	Ordenador	Número de decimales
1949	Reitwiesner	ENIAC	2.037
1959	Guilloud	IBM 704	16.167
1986	Bailey	CRAY-2	29.360.111
2011	Kondo		10.000.000.000.000

Geometría

• Longitud de la circunferencia.

- Longitud de la circunferencia.
- Área del círculo.

- Longitud de la circunferencia.
- Área del círculo.
- Área interior de la elipse.

- Longitud de la circunferencia.
- Área del círculo.
- Área interior de la elipse.
- Área del cono.

- Longitud de la circunferencia.
- Área del círculo.
- Área interior de la elipse.
- Área del cono.
- Área de la esfera.

Análisis

• Fórmula de Leibniz.

- Fórmula de Leibniz.
- Producto de Wallis.

- Fórmula de Leibniz.
- Producto de Wallis.
- Fórmula de Euler.

- Fórmula de Leibniz.
- Producto de Wallis.
- Fórmula de Euler.
- Fórmula de Stirling.

- Fórmula de Leibniz.
- Producto de Wallis.
- Fórmula de Euler.
- Fórmula de Stirling.
- Método de Montecarlo

Cálculo

• Área limitada por la astroide: $\frac{3}{8}\pi a^2$.

Cálculo

- Área limitada por la astroide: $\frac{3}{8}\pi a^2$.
- Área de la región comprendida por el eje X y un arco de la cicloide: $3\pi a^2$.

Bibliografía

 $es.wikipedia.org/wiki/Número_{-}\pi$

 $www.juegosdelogica.com/numero_\pi.htm$