Understanding the bias/variance tradeoff in ridge regression

Matthew Richey/Jaime Davila

4/13/2021

Introduction

##

3

<dbl>

> <dbl> <dbl> 2
0.630 -1.21
2 -0.276 -0.509
2 -0.284 3.35

We are interested in generating simulated data where we get to see the advantages of the ridge model over a simple linear regression. The simplest simulation we can get is by generating N points $(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)$, where the x_i are generated from a normal distribution with mean 0 and standard deviation 1. We will be generating the y_i by multiplying the x_i by b and then adding an error term (which we call ϵ). Our epsilon will also have a normal distribution with mean 0 and standard deviation σ .

One of the instances where ridge regression can outperform linear regression is in the case where the number of points in our dataset is very small. So for the sake of our simulation let's set N=3 (the number of observations), b=1 (the slope) and $\sigma=2$ (the standard deviation of our error term)

```
N <- 3
sig <- 2
b <- 1
```

And let's write a function build_sim which will create the simulated data according to our equation. We will be using this function many times later on, so we will add a column id that will allow us to label each different simulation

```
build_sim <- function(id){</pre>
  x1 \leftarrow rnorm(N, 0, 1)
  y \leftarrow b*x1+rnorm(N,0,sig)
  tibble(id,x1,y)
}
set.seed(12345)
(sim.tbl.1 <- build_sim(1))
## # A tibble: 3 x 3
##
         id
                 x1
                          У
##
     <dbl>
             <dbl> <dbl>
             0.586 -0.321
## 2
          1 0.709 1.92
          1 -0.109 -3.75
(sim.tbl.2 <- build_sim(2))</pre>
## # A tibble: 3 x 3
         id
                 x1
```

And let's plot our two simulated tables and their linear trends.

Notice how our trend lines look very different in these two instances. Notice that is partly due to the fact that we have a small number of points, so the slope estimates can change by a lot.

We would like to generate 20 simulation and plot all of them at the same time. In our first step we will create our 20 simulations by using the function map_dfr(). map_dfr(x,f) works by applying the function f for every element of x and then putting the results in dataframe. In particular it assumes that the results of f(x) are a dataframe (that's why the suffix _dfr in map_dfr)

```
(sim.tbl <- map_dfr(1:20, build_sim))</pre>
```

Finally we can show graphically the results of those simulations below. Notice how the slope varies according to each simulation

Let's also point out that if the number of points N increases we get a more uniform set of models

Before we continue our exercises, let's set up N equal to 3 again

```
N <- 3
```

1. Create a function calc_slope_lm() that creates a simulated dataset using the function build_sim() and returns a tibble with the id and the slope of the linear model with 0 intercept.

```
calc_slope_lm <- function(id) {
   tibble (id=id,x=slope)
}</pre>
```

2. Use map_dfr on calc_slope_lm() to create a table with the values of the slope for 100 simulations. Do a histogram of the slope and calculate its mean and standard deviation. We can define the bias as the mean of the slope minus the actual slope value (1). What is the bias of the simulated data?

Notice that the bias is small, however there is a quite a bit of variation.

3. Create a new simulated dataset by setting up N=10 and N=100. How does the slope histogram changed when compared with exercise 2?

Comparing linear regression and ridge

We would like to compare the estimated slope that we would get from our dataset using both ridge and linear models. In the glmnet implementation the ridge model needs to have at least two explanatory variables x_1 and x_2 so we will be modifying our simulation function to create an output of the form $b \cdot x_1 + b \cdot x_2 + \epsilon$. Our first step is to create a build_sim2d function as below

```
N <- 3
build_sim2d <- function(id){
    x1 <- rnorm(N,0,1)
    x2 <- rnorm(N,0,1)
    y <- b*x2+b*x1+rnorm(N,0,sig)

    tibble(id,x1,x2,y)
}
set.seed(123)
build_sim2d(1)</pre>
```

```
## # A tibble: 3 x 4
## id x1 x2 y
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 1 -0.560 0.0705 0.432
## 2 1 -0.230 0.129 -2.63
## 3 1 1.56 1.72 1.90
```

And we will be creating a calc_coefs function that outputs the estimates of the coefficients for a given model.

```
calc_coefs <- function(id, model) {</pre>
  # We generate a simulated dataset
  sim.tbl <- build_sim2d(id)</pre>
  # We create a workflow for our model and fit it on the simulated data
  recipe <- recipe(y ~ 0+x1+x2, data=sim.tbl) %>%
    step_normalize(all_predictors())
  wflow <- workflow() %>%
    add_recipe(recipe) %>%
    add model(model)
  fit <- fit(wflow, sim.tbl)</pre>
  # We pull the coefficients from x1 and x2 and put them in a tibble
  x1 <- tidy(fit) %>%
    filter(term=="x1") %>%
    pull(estimate)
  x2 <- tidy(fit) %>%
    filter(term=="x2") %>%
    pull(estimate)
  tibble (id=id,x1=x1,x2=x2)
```

Notice that using calc_coefs we can calculate the coefficients for a linear model as follows

```
lm.model <- linear_reg() %>%
    set_engine("lm")

calc_coefs(1,lm.model)
```

```
## # A tibble: 1 x 3
## id x1 x2
## <dbl> <dbl> <dbl> ## 1 0.658 4.25
```

Or we can calculate the coefficients for a ridge model with penalty equal to 1.

```
ridge.model <-
  linear_reg(mixture = 0, penalty=1) %>%
  set_mode("regression") %>%
  set_engine("glmnet")

calc_coefs(1,ridge.model)
```

```
## # A tibble: 1 x 3
## id x1 x2
## <dbl> <dbl> <dbl> <dbl> ## 1 1 -0.693 0.232
```

- 3. Use the functions map_dfr and calc_coefs to obtain the coefficients x1 and x2 from the linear model and from the ridge model with penalty 1 for 100 simulations. Do a histogram of the values of the coefficients for each type of model. Calculate the mean, bias and standard deviation. How do those values compare across models?
- 4. Use penalty values of 0.1, 1, 10, 100 and see what is the effect on the mean and standard deviation of the coefficients for x1 and x2 when using a ridge model.

The Bias-Variance Trade-off

Imagine a fixed prediction value $x_0 := (x_{0,1}, x_{0,2})$ \$ and an observed value $y_0 = f(x_0) + \epsilon$. And let $\hat{f}(x)$ be that value that our model predicts.

The bias-variance trade-off equation says:

$$E[(y_0 - \hat{f}(x_0))^2] = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon).$$

Let's look closely at each of these components.

- $E[(y_0 \hat{f}(x_0)^2]]$ is the expected (average) value $(y_0 \hat{f}(x_0))^2$. This a gauge of how close our prediction comes to the actual value. We also know this as the **Mean Squared Error (MSE)**.
- $\operatorname{Var}(\hat{f}(x_0))$ is the variance of the values $\hat{f}(x_0)$ generated from each training set. This is a gauge of how "wiggly" the prediction is as we build $\hat{f}(x)$ with different training data sets.
- Bias $(\hat{f}(x_0))$ is the expected value of $\hat{f}(x_0) f(x_0)$ over the training data, i.e., Bias $(\hat{f}(x_0)) = E[\hat{f}(x_0) f(x_0)]$. This is a gauge how the predicted values misses the actual value. Note that the bias could be zero but we still miss by a lot!
- σ^2 is the "noise'. The noise reflects all the influences that our $\hat{f}(x)$ misses. Generally, we assume that the noise has mean zero and $Var(\epsilon) = \sigma^2$.

Let's create a function calc_errors that calculates the mse, variance and bias for a given model.

```
calc_errors <- function(id, model) {
    # Simulate our testing/training dataset
    train.tbl <- build_sim2d(id)
    test.tbl <- build_sim2d(id)

# Create a workflow and fit using your training
    recipe <- recipe(y ~ 0+x1+x2, data=train.tbl)
    wflow <- workflow() %>%
        add_recipe(recipe) %>%
        add_model(model)
    fit <- fit(wflow, train.tbl)</pre>
```

```
# Calculate the predictions on the testing dataset
  predict.tbl <- augment(fit, test.tbl)</pre>
  # Calculate mse, var, bias and put everything on a tibble
 mse = mean((predict.tbl$y-predict.tbl$.pred)^2)
 var = mean(predict.tbl$.pred^2)
 bias = mean(predict.tbl$y-predict.tbl$.pred)^2
  tibble(mse=mse, var=var, bias=bias)
calc_errors(1,lm.model)
Let's calculate those parameters on the linear model
calc_errors(1,lm.model)
## # A tibble: 1 x 3
##
      mse var bias
     <dbl> <dbl> <dbl>
## 1 2.65 3.22 1.99
set.seed(12345)
errors.lm <- map_dfr(1:20, calc_errors, lm.model)</pre>
errors.lm %>%
 pivot_longer(1:3) %>%
 group_by(name) %>%
 summarize(mean = mean(value))
## # A tibble: 3 x 2
## name
          mean
     <chr> <dbl>
## 1 bias
           13.4
## 2 mse
           118.
## 3 var
And let's calculate those values on different ridge models with different penalties.
for (penalty in c(0.1,1,10,100,1000)){
 ridge.model <-
    linear_reg(mixture = 0, penalty=penalty) %>%
    set_mode("regression") %>%
    set_engine("glmnet")
  set.seed(12345)
  errors.ridge <- map_dfr(1:20, calc_errors, ridge.model)</pre>
  errors.tbl <- errors.ridge %>%
    pivot_longer(1:3) %>%
    group_by(name) %>%
    summarize(mean = mean(value))
 print(penalty)
 print(errors.tbl)
## [1] 0.1
```

A tibble: 3 x 2

```
##
     name
            mean
##
     <chr> <dbl>
            7.94
## 1 bias
## 2 mse
           20.7
## 3 var
           17.8
## [1] 1
## # A tibble: 3 x 2
##
     name
            mean
##
     <chr> <dbl>
## 1 bias
            4.53
## 2 mse
            9.93
## 3 var
            6.39
## [1] 10
## # A tibble: 3 x 2
##
     name
            mean
##
     <chr> <dbl>
## 1 bias
            2.99
## 2 mse
            6.71
## 3 var
            2.08
## [1] 100
## # A tibble: 3 x 2
     name
            mean
##
     <chr> <dbl>
## 1 bias
            3.12
## 2 mse
            6.69
## 3 var
            1.88
## [1] 1000
## # A tibble: 3 x 2
##
     name
            mean
##
     <chr> <dbl>
## 1 bias
            3.16
## 2 mse
            6.72
## 3 var
            1.89
```

Notice how although ridge it has more bias than linear regression, it also has less variation, which results in a smaller overall mse.