ENS1161 Computer Fundamentals Module 9 Operating Systems

ENS1161 Computer Fundamentals

Moving forward..

- Last module:
 - I/O Software and communication
 - I/O modes
- Focus of this module:
 - Operating Systems

ENS1161 COMPUTER FUNDAMENTALS

Module Objectives

On completion of this module, students should be able to:

- Explain the role of the operating system in a computer system.
- List the main components of an operating system and describe their function and key operating principles.
- List and briefly describe the different types of operating systems.

ENS1161 COMPUTER FUNDAMENTALS

Introduction

Module Scope

- The role of operating systems
- Functions / components of an Operating System
- Types of Operating System

How a Computer System Works (recap - Module 1)

- A processor needs a set of instructions
 - tells it what operations to perform on what data
- Instructions (programs) are stored in memory
 - Using only processors predefined instruction set (Module 2)
- ▶ The microprocessor:
 - fetches an instruction from memory
 - decodes it, and
 - executes the specified operation
- ▶ Sequence of fetch, decode and execute continues indefinitely
 - Until powered off

ENS1161 COMPUTER FUNDAMENTALS

FETCH instruction

DECODE

EXECUTE nstruction

Types of software (recap Module 1)

- 2 broad categories:
 - Operating system
 - Main function is to control the hardware and enable other software to interface with the hardware
 - Also acts as 'control program' for other applications
 - · e.g. Windows, macOS, Linux, Android
 - Application software
 - · Designed to perform a certain type of function
 - E.g. wordprocessor, browser, spreadsheet, etc.

Using computing devices (recap Module 5)

- There are a wide variety of computing devices
 - From embedded systems in appliances, to mobile phones and laptops to desktop computers and servers.

Operating Systems – interface and control

We use these devices though a wide variety of applications (apps)

School of Engineering

ENS1161 COMPUTER FUNDAMENTALS

What is an Operating System?

- Many definitions:
 - "Programs, implemented in software or firmware, that make the hardware usable" (Deitel, 1984)
 - Set of programs designed to coordinate the activities of a computer so that the most efficient use is made of its resources
 - Interface between the computer and the user
 - Software that manages the hardware and supplies services to application programs
- Essentially the software that controls the hardware and other software
 - The 'boss' software!

Why is an Operating System needed?

- The primary functions of an operating systems are:
 - Controlling and managing hardware
 - Covered in Module 8
 - Providing an interface
 - Application Hardware interface
 - User Interface
 - Facilitating the running of software tasks
 - Allocation / management of resources
 - Processor, memory, secondary storage, I/O devices

School of Engineering

ENS1161 COMPUTER FUNDAMENTALS

Role of OS in I/O interfacing (recap Module 8)

Role of OS in software interfacing

Key purpose of Operating Systems

- To 'abstract away' low level hardware details
- Apps and users do not need to worry about details of actual hardware and how to manage that
- They use the OS, which has various parts to handle these tasks
 - E.g. memory management, file management, I/O management

Functions / components of an OS

Functions / components of an OS

Some terminology

- Program
 - A set of instructions that can be run
 - · E.g. a program file on a disk
- Process
 - an instance of a program that is running in memory
 - Has its memory space, code, data, and other resources such as stack allocated by OS
- Thread
 - part of a process that can be executed independently

ENS1161 Computer Fundamentals

Process Management

- Part of OS that controls which process gets to run on the processor and for how long
- Processes are kept in queues based on their status
- Scheduler will decide which process runs
 - Many different schemes to decide this
- Process may run until allocated time run out
 - Will go back to ready queue to allow other processes to run
- May be blocked because have to wait for some resource
 - E.g. waiting for I/O device to respond
- Interrupts often used to let OS know when an event process was waiting for has occurred
 - E.g. device ready

Ready queue Ready Timeout/Yield Running

Event Blocked

Wait queue

Event wait

Image: MrDrBob, 2010

School of Engineering

Question 1

Why are blocked processes kept in a separate queue?

- Because the blocked processes need to communicate with the a. I/O devices.
- Because blocked processes are kicked out of the main memory b.
- So that the scheduler does not need to consider them when c. working out which process runs next.
- So that the blocked processes can rest. d.

School of Engineering

Web Address: pollev.com/ens1161

ENS1161 COMPUTER FUNDAMENTALS

Process Management

- Process management also includes tasks like:
 - Allowing new processes to start
 - Ensuring new processes get allocated required resources
 - Keeping track of processes (process ID)
 - Keeping track of process status
 - Managing inter-process communication (IPC)
 - Ensuring resources get released when a process is completed
 - Managing resource conflicts
 - E.g. deadlock situation
 - 2 processes can't continue because each needs a resource held by the other in order to proceed

School of Engineering

Functions / components of an OS

Memory Management

- To ensure that processes are allocated memory as required
 - Finite amount of physical memory
 - Lack of memory can stop process from running
 - There are different allocation schemes
 - · Beyond the scope of this unit
 - Will only look at virtual memory

New request enter to system and placed After completing free their memory

Image: Prabhudev Irabashetti https://www.researchgate.net/figure/Memory-Allocation Problem fig1 265166374

Other functions:

- Translating addresses in processes to physical addresses in RAM
- Ensuring that processes cannot access memory belonging to other processes
- Managing shared memory

Virtual Memory

- Uses virtual (logical) addresses that don't correspond to physical memory locations
 - Memory Management Unit does translation of virtual to physical address
- Memory broken into blocks called pages
- If needed more RAM space, some pages copied (swapped out) to a secondary storage area known as swap space
- Pages swapped in (back to RAM) when required
- Advantage: Overcomes physical RAM space limitations
- Disadvantage: Swapping in/out takes time, and page translation also adds some overhead

School of Engineering

ENS1161 COMPUTER FUNDAMENTALS

Functions / components of an OS

File and Disk Management

- File: named collection of data, normally resides in secondary storage
 - Some OS have an extension after last dot to indicate type of file
 - · UNIX, DOS, Windows

File and Disk Management

- File Attributes
 - File size, Writeable / Read Only, etc.
- File System
 - Manages physical storage of data on secondary storage drives
 - Maps logical file structure to physical storage
 - A single file may be distributed over many blocks on a physical drive
 - · Refer Module 6
- Different OS may have different (incompatible) file systems End 0 1 2 3 3 4 5 6 7 7 8 9 1 10 2 11 Allocation table entry 12 13 14 15 contains next block number Example: File 16 7 17 18 19 Allocation Table 20 21 21 22 23 24 25 26 27 28 29 30 31 https://commons.wikimedia.org/wi _example.jpg School of Engineering **ENS1161** Computer Fundamentals

File and Disk Management

File System also manages:

- App / user requests for file open, save, etc.
 - Apps use system calls run special OS functions
 - Users do this via utilities (e.g. File Manager app) or user interface (UI)
- Access control (permissions) to files
 - Can a user / app a read a file, write to it, delete it, etc.
 - Linked to Security function of OS

Disk management includes:

- Partitioning: Dividing a physical drive into multiple logical drives
- Spanned volumes: Combining multiple partitions / hard drives into a single logical drive

School of Engineering

ENS1161 Computer Fundamentals

Functions / components of an OS

School of Engineering

User Interface (UI)

- Part of the operating system that allows a user to enter and receive information
- 1. Text User Interface (TUI)
 - Also know as Command Line interface or shell
 - Requires user to know commands and parameters
 - Text-based output
 - Mainly in older OS

dir - command for directory listing

Command prompt

and cursor for entry

School of Engineering

User Interface (UI)

- 2. Graphical User Interface (GUI)
 - Uses icons and menus
 - Pointing device used as main interface tool (e.g. mouse)

Requires more memory for graphical information

Most modern OS have GUI

- Common components:
 - Start menu
 - Taskbar
 - Desktop
 - Shortcuts and icons

Start menu

Shortcuts

and icons

Desktop

School of Engineering

Taskbar ENS1161 COMPUTER FUNDAMENTALS

User Interface (UI)

3. Natural User Interface (NUI)

- Uses more intuitive, natural human behaviour to interface
- Newer OS, technology still developing for some types
- Touchscreen
 - Most common used by tablets, smartphones, some laptops
- Voice commands and response
 - · E.g. Siri, Alexa
- Gesture recognition
- Gaze-tracking
- Brain-machine interfaces

School of Engineering

ENS1161 COMPUTER FUNDAMENTALS

Functions / components of an OS

System Security

- Security must consider external environment of the system, and protect it from:
 - unauthorized access
 - malicious modification or destruction
 - accidental introduction of inconsistency
- User protection
 - Authentication, user roles, permission settings / access control
- Malicious process (malware) protection
 - Deliberately look for OS security weaknesses and exploit them
 - Lot harder to protect against
 - Often use special (3rd party) utilities to help with protection

School of Engineering

ENS1161 Computer Fundamentals

Performance and Error Handling

- System performance monitor
 - Collects and reports key system performance indicators
 - Allows administrators to check how system is performing
 - Allows identification of bottlenecks or device issues

Performance and Error Handling

Error Handling

- Handles exceptions that may occur
 - Could be process related
 - Most commonly hardware related
- Often handled via interrupts
- Errors captured and logged for troubleshooting
- System should handle (resolve) the exceptions
- Otherwise should degrade gracefully
 - Maintain partial functioning even if parts inoperative
 - No catastrophic failure
 - E.g. controlled shutdown instead of just hanging

School of Engineering

ENS1161 Computer Fundamentals

Functions / components of an OS

School of Engineering

ENS1161 COMPUTER FUNDAMENTALS

Types of Operating Systems

- There are different ways of classifying operating systems
 - based on the type of computers they manage and how they are used
- Following are some types of operating systems
 - These are NOT mutually exclusive
 - An operating system may fall under 2 or more types

Simple Batch OS

- multiprocessing of batch programs
- few facilities for interaction or multi-access
- generally use some form of JCL (job control language)
 - E.g. Early data processing systems, not used much now

School of Engineering

ENS1161 COMPUTER FUNDAMENTALS

Types of Operating Systems

Multi-access and timesharing OS

multiple users (and processes)

Single-tasking OS

- single-user, one program at a time
 - E.g. early PCs running DOS

Time Sharing System

Multitasking OS

- more than one process at a time
- processor switches rapidly between processes
 - E.g. modern personal device OS Windows, MacOS, Android

ENS1161 COMPUTER FUNDAMENTALS

Types of Operating Systems

Multiprocessing OS

more than one CPU, more than one process per CPU

Virtual Machine(VM)

makes single machine look like multiple machines

Distributed OS

- manages a group of distinct computers, makes them appear to be a single computer
 - More in Modules 10/11

ENS1161 Computer Fundamentals

Types of Operating Systems

Real-time OS

- capable of handling processes / requests in real time
- Use for time-critical control systems
 - · E.g. control of equipment like aircraft

Network OS

- Run on servers
- Gives server ability to manage data, users, network traffic, etc
 - More in Module 10

Mobile OS

- Designed to run on portable devices like tablets, phones, etc.
 - E.g. Android, iOS

Virtual Machines (VM)

- VM software creates multiple virtual machines on the one physical machine
 - Examples of VM software are VirtualBox and VMware
- Each VM can have its own OS as well as virtual hardware
- A hypervisor ensures each VM has access to the resources that it requires
 - also known as virtual machine monitor- VMM
- VMs are often used for:
 - Trying new OS
 - Testing apps in different environments
 - Running old apps that need specific settings or environments

https://oer.gitlab.io/oer-on-oerinfrastructure/Docker.html#/sec-title-slide

School of Engineering

ENS1161 Computer Fundamentals

Module Objectives

On completion of this module, students should be able to:

- Explain the role of the operating system in a computer system.
- List the main components of an operating system and describe their function and key operating principles.
- List and briefly describe the different types of operating systems.

