ECO394D Probability and Statistics Homework 3

Sibo Ding

Summer 2023

Problem 1

Part A

$$P(2 < X \le 4.5) = P(X = 3) = \frac{1}{10}$$

$$P(2 \le X < 4.5) = P(X = 2) + P(X = 3) = \frac{2}{10}$$

Part B

i. As
$$X \ge 0$$
, $P(X^2 \le 0.25) = P(X \le 0.5) = \frac{1}{2}$

ii. If
$$a < 0$$
, $P(X^2 \le a) = 0$
If $0 \le a \le 1$, $P(X^2 \le a) = P(X \le \sqrt{a}) = \sqrt{a}$
If $a > 1$, $P(X^2 \le a) = 1$

iii.
$$f(y) = \frac{d}{dy} \sqrt{y} = \frac{1}{2\sqrt{y}}$$
 for $0 \le y \le 1$
0 otherwise

iv.
$$E(Y) = \int_0^1 y f(y) \, dy$$

$$= \int_0^1 \frac{y}{2\sqrt{y}} dy$$
$$= \int_0^1 \frac{\sqrt{y}}{2} dy$$
$$= \left[\frac{1}{3}x^{\frac{3}{2}}\right]_0^1$$
$$= \frac{1}{3}$$

$$Var(Y) = \int_0^1 (y - \mu)^2 f(y) dy$$

$$= \int_0^1 \frac{\left(y - \frac{1}{3}\right)^2}{2\sqrt{y}} dy$$

$$= \int_0^1 \frac{1}{2} y^{\frac{3}{2}} - \frac{1}{3} y^{\frac{1}{2}} + \frac{1}{18} y^{-\frac{1}{2}} dy$$

$$= \left[\frac{1}{5} y^{\frac{5}{2}} - \frac{2}{9} y^{\frac{3}{2}} + \frac{1}{9} y^{\frac{1}{2}}\right]_0^1$$

$$= \frac{4}{45}$$

Problem 2

Part A

https://math.stackexchange.com/questions/620045/mean-and-variance-of-squared-gaussian-y-x2-where-x-sim-mathcaln0-sigma

Part B

Markov's calculation on expected speed is correct, but his calculation on expected time is wrong. The expected time is not "distance divided by expected speed". It is calculated from the time of each event, like below:

$$T_{walk} = \frac{2}{5}$$
 $T_{scooter} = \frac{2}{10}$
 $E(T) = 0.4 \times \frac{2}{5} + 0.6 \times \frac{2}{10} = 0.28$

Problem 3

$$X = F^{-1}(U)$$

 $P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x)$

because $P(U \le u) = u$, when U is uniform on [0,1]

https://en.wikipedia.org/wiki/Inverse_transform_sampling#Proof_of_correctness

Problem 4

Part A

Part B

Theoretical $E(\hat{p}_5)=0.5$, $sd(\hat{p}_5)=\sqrt{\frac{0.5\times(1-0.5)}{5}}=0.2236$ Simulated mean and sd of \hat{p}_5

[1] 0.49754

[1] 0.2257765

Comment: Standard deviation decreases as *N* increases.

Problem 5

https://en.wikipedia.org/wiki/Order_statistic