La machine à brouillard du Plateau de Saclay serait-elle le seul artefact intemporel dans cet environnement métropolitain qui se cherche toujours? Projetons nous en 2100, dans cette banlieue sud parfois sordide de ce qui sera toujours Paris. Les bouleversements locaux ont bien eu lieu, mais pas de la façon attendue, le climat local étant toujours féru de ce fameux brouillard. Par contre, l'environnement urbain et la relation à la ville sont entièrement conditionnés par une grande proximité aux lignes de transport lourd : la disparition des moyens de transport thermiques, puis de l'ensemble des véhicules légers par échec technologiques des alternatives électriques, ont exacerbé le rôle des lignes de train ou de metro existantes. Les densités ont progressivement augmenté autour des gares pour produire d'impressionnants complexes de tours, tandis que les espaces péri-urbains se vidaient progressivement. Les infrastructures de transport sont quant à elles restées quasiment à l'identique après 2030, le peu de ressources disponibles étant dédié à leur entretien, et leur extension étant conjointement sortie rapidement des agendas politiques. Ce plateau est alors rempli de bâtiments à l'abandon, puisqu'il attend toujours ce tronçon du Grand Paris Express qui n'aura finalement jamais été réalisé. La nature reprend peu à peu ses droits.

Ce pitch pour film d'anticipation à petit budget a pour avantage de nous révéler l'existence de processus complexes intriqués à différentes échelles de temps et d'espace dans la fabrique des villes : le développement historique du réseau ferroviaire en région parisienne a conditionné les évolutions futures et le RER B a suivi l'ancienne Ligne de Sceaux, le plan de Delouvrier pour le développement régional et son execution partielle, sont des éléments d'explication de la structure du réseau parisien de transports en commun qui conditionne fortement le développement urbain dans notre scenario; les processus de relocalisation au sein de l'espace de la métropole, liés à une plus ou moins grande nécessité de proximité ou d'accessibilité selon les modes de transports utilisés, participent à l'évolution urbaine; dans le cas du plateau de Saclay des processus de planification spécifiques à différents niveaux jouent un rôle crucial dans la différentiation du territoire.

La liste pourrait être ainsi continuée indéfiniment, chaque approche apportant sa vision mature correspondant à un corpus de connaissances scientifiques dans des disciplines diverses comme la géographie, l'économie urbaine, les transports. Cette anecdote est suffisante pour faire ressentir la complexité des systèmes territoriaux que nous étudierons. Notre but ici est de se plonger dans cette complexité, et en particulier donner un point de vue original sur l'étude des relations entre réseaux de transport et territoires. Le choix de cette posi-

6 Introduction

tion sera largement discuté dans une partie thématique, nous nous concentrons à présent sur l'originalité du point de vue que nous allons prendre.

DE LA POSITION GÉNÉRALE

L'ambition de cette thèse est de ne pas avoir d'ambition a priori. Cette entrée en matière, rude en apparence, contient à différents niveaux les logiques sous-jacentes à notre processus de recherche. Au sens propre, nous nous plaçons tant que possible dans une démarche constructive et exploratoire, autant sur les plans théoriques et méthodologiques que thématique, mais encore proto-méthodologique (outils appliquant la méthode) : si des ambitions unidimensionnelles ou intégrées devaient émerger, elles seraient conditionnées par l'arbitraire choix d'un échantillon temporel parmi la continuité de la dynamique qui structure tout projet de recherche. Au sens structurel, l'auto-référence qui soulève une contradiction apparente met en exergue l'aspect central de la réflexivité dans notre démarche constructive, autant au sens de la récursivité des appareils théoriques, de celui de l'application des outils et méthodes développés au travail lui-même ou que de celui de la co-construction des différentes approches et des différents axes thématiques. Le processus de production de connaissance pourra ainsi être lu comme une métaphore des processus étudiés. Enfin, sur un plan plus enclin à l'interprétation, cela suggérera la volonté d'une position délicate liant une conscience politique dont la nécessité est intrinsèque aux sciences humaines (par exemple ici contre l'application technocratique des modèles, ou pour le développement d'outils luttant pour une science ouverte) à une rigueur d'objectivité plus propre aux autres champs abordés, position forçant à une prudence accrue.

CONTEXTE SCIENTIFIQUE: PARADIGMES DE LA COMPLEXITÉ

Pour une meilleure introduction du sujet, il est nécessaire d'insister sur le cadre scientifique dans lequel nous nous positionnons. Ce contexte est crucial à la fois pour comprendre les concepts épistémologiques implicites dans nos questions de recherche, et aussi pour être conscient de la variété de méthodes et outils utilisés. La science contemporaine prend progressivement le tournant de la complexité dans de nombreux champs que nous illustrerons par la suite, ce qui implique une mutation épistémologique pour abandonner le réductionnisme² strict qui a échoué dans la majorité de ses tentatives de

² De manière schématique, le réductionnisme consiste en la position épistémologique que les systèmes sont entièrement compréhensibles à partir des éléments fondamentaux les constituant et des lois régissant leur évolution. Les niveaux supérieurs n'ont ni autonomie ni pouvoirs causaux irréductibles.

synthèse [Anderson, 1972]. Arthur a rappelé récemment [Arthur, 2015] qu'une mutation des méthodes et paradigmes en était également un enjeu, de par la place grandissante prise par les approches computationnelles qui remplacent les résolutions purement analytiques généralement limitées en possibilités de modélisation et de résolution. La capture des *propriétés émergentes* par des modèles de systèmes complexes est une des façons d'interpréter la philosophie de ces approaches.

Ces considérations sont bien connues des Sciences Humaines et Sociales (qualitatives et quantitatives) pour lesquelles la complexité des agents et systèmes étudiés est une des justifications de leur existence : si les humains étaient effectivement des particules, on pourrait s'attendre à ce que la majorité des disciplines les prenant comme objet d'étude n'aient jamais émergé puisque la thermodynamique aurait alors résolu la majorité des problèmes sociaux³. Elles sont au contraire moins connues et acceptées en sciences "dures" comme la physique : [Laughlin, 2006] développe une vision de la physique à la même position de "frontière des connaissances" que d'autre champs plus récents qui pourrait sembler en être encore à leur genèse. La plupart des connaissances actuelles concernent des structures classiques simples, alors qu'un grand nombre de systèmes présentent des propriétés d'auto-organisation, au sens où les lois microscopiques ne sont pas suffisantes pour inférer les propriétés macroscopiques du système à moins que son évolution ne soit entièrement simulée (plus précisément cette vision peut être prise comme une définition de l'émergence sur laquelle nous reviendrons par la suite, or des propriétés auto-organisées sont par nature émergentes). Cela correspond au premier cauchemar du Démon de Laplace développé dans [Def-FUANT et al., 2015].

A la croisée de positionnements épistémologiques, de méthodes et de champs d'application, les *Sciences de la complexité* se concentrent sur l'importance de l'émergence et de l'auto-organisation dans la plupart des phénomènes réel, ce qui les place plus proche de la frontière des connaissances que ce que l'on peut penser pour des disciplines classiques (LAUGHLIN, op. cit.). Ces concepts ne sont pas récents et avaient déjà été mis en valeur par [Anderson, 1972]. On peut aussi interpréter la Cybernétique comme un précurseur des Sciences de la Complexité en la lisant comme un pont entre technologie et sciences cognitives [Wiener, 1948], et surtout en développant les notions de retroaction et de contrôle.

Plus tard, la Synergétique [HAKEN, 1980] a posé les bases d'approches théoriques des phénomènes collectifs en physique. Les causes possibles de la croissance récente du nombre de travaux se réclamant

³ Bien que cette affirmation soit elle-même discutable, les sciences physiques classiques ayant également échoué à prendre en compte l'irréversibilité et l'évolution de Systèmes Complexes Adaptatifs comme le souligne [Prigogine et Stengers, 1997].

d'approches complexes sont nombreuses. L'explosion de la puissance de calcul en est certainement une vu le rôle central que jouent les simulations numériques [VARENNE, 2010b]. Elles peuvent aussi être à chercher auprès de progrès en épistémologie : introduction de la notion de perspectivisme [GIERE, 2010c], reflexions plus fine autour de la nature des modèles [Varenne et Silberstein, 2013]4. Les potentialités théoriques et empiriques de telles approchent jouent nécessairement un rôle dans leur succès⁵, comme le confirme les domaines très variés d'application (voir [NEWMAN, 2011] pour une revue très générale), comme par exemple la Science de Réseaux [BARA-BASI, 2002]; les Neurosciences [Koch et Laurent, 1999]; les Sciences Humaines et Sociales, dont la Géographie [Manson, 2001][Pumain, 1997]; la Finance avec les approches écononophysiques [STANLEY et al., 1999]; l'Ecologie [Grimm et al., 2005]. La Feuille de Route des Systèmes Complexes [Bourgine, Chavalarias et al., 2009] propose une double lecture des travaux en Complexité : une approche horizontale faisant la connexion entre champs d'étude par des questions transversales sur les fondations théoriques de la complexité et des faits stylisés empiriques communs, et une approche verticale, dans le but de construire des disciplines intégrées et les modèles multi-scalaires hétérogènes correspondants. L'interdisciplinarité est ainsi cruciale pour notre contexte scientifique.

INTERDISCIPLINARITÉ

Il est important d'insister sur le rôle de l'interdisciplinarité dans la position de recherche prise ici. Il s'agit autant d'un travail en Géographie Théorique et Quantitative qu'en Modélisation de Systèmes Complexes, étant finalement les deux à la fois selon le point de vue que prendra le lecteur. En ce sens, nous le réclamons de la *Science des Systèmes Complexes* que nous tenterons de positionner comme discipline propre à travers cette implémentation précise⁶. Ce n'est pas sans risques d'être lu avec méfiance voir défiance par les tenants des disciplines classiques, comme des exemples récents de malentendus ou conflits ont récemment illustré [Dupuy et Benguigui, 2015]. Il faut se rappeler l'importance de la spirale vertueuse de Banos entre disciplinarité et interdisciplinarité [Banos, 2013]. Celle-ci doit nécessai-

⁴ Dans ce cadre, les progrès scientifiques et épistémologiques ne peuvent pas être dissociés et peuvent être vus comme étant en co-évolution, au sens d'une forte inter-dépendance et d'une adaptation mutuelle.

⁵ Même si l'adoption de nouvelles pratiques scientifiques peut par ailleurs être biaisé par l'imitation et le manque d'originalité [DIRK, 1999], ou de façon plus ambivalente, par des stratégies de positionnement indépendante des stratégies de connaissance, puisque le combat pour les fonds est un obstacle croissant à une recherche saine [Bollen et al., 2014].

⁶ Un niveau de lecture abstrait du travail dans son ensemble apportera des informations sur la production de connaissance elle-même, comme nous le développerons en 9.3.

rement impliquer différents agents scientifiques, et il est compliqué pour un agent de se positionner dans les deux branches; notre fond scientifique devra nous permettre de ne pas de nous positionner uniquement dans la *disciplinarité géographique* (même si celle-ci sera simultanément une composante cruciale) mais bien aussi dans celle des Systèmes Complexes (qui est interdisciplinaire, voir 3.3 pour contourner la contradiction apparente), et notre sensibilité scientifique et épistémologique nous pousse à faire de même.

L'évolution scientifique des sciences de la complexité, qui est vue par certains comme une révolution [Colander, 2003], ou même comme un nouveau type de science [Wolfram, 2002], pourrait affronter des difficultés intrinsèques dues aux comportements et a-priori des chercheurs en tant qu'être humains. Plus précisément, le besoin d'interdisciplinarité qui fait la force des Sciences de la Complexité pourrait devenir une de ses grandes faiblesses, puisque la structure fortement en silo de la science peut avoir des impacts négatifs sur les initiatives impliquant des disciplines variées. Nous n'évoquons pas les problèmes de sur-publication, quantification, competition, qui sont plus liés à des questions de Science Ouverte et de son éthique, tout aussi de grande importance mais d'une autre nature. Cette barrière qui nous hante et que nous pourrions ne pas surmonter, a pour plus évident symptôme des divergences culturelles disciplinaires, et les conflits d'opinion en résultant. Ce drame du malentendu scientifique est d'autant plus grave qu'il peut en effet détruire totalement certains progrès en interprétant comme une falsification des travaux qui traitent une question toute différente. L'exemple récent en économie d'un travail sur les inégalités liées aux hauts revenus présenté dans [AGHION et al., 2015], et dont les conclusions ont été commentées comme s'opposant aux thèses de [Piketty, 2013], est typique de ce schéma. Ce second se concentre sur la construction de bases de données propres sur le temps long pour les revenus et montre empiriquement une récente accélération des inégalités de revenus, son modèle visant à lier ce fait stylisé avec l'accumulation de capital a été critiqué comme trop simpliste. D'autre part, [AGHION et al., 2015] montrent par des analyses économétriques que s'il existe bien un lien de causalité de l'innovation vers les inégalités de haut salaires, l'innovation accroit cependant la mobilité sociale, étant donc également moteur de réduction des inégalités. D'où des conclusions divergentes sur le rôles des capitaux personnels dans une économie, notamment sur leur relation ambigüe à l'innovation. Mais des point de vue ou interprétations différentes ne signifient pas une incompatibilité scientifique, et on pourrait même imaginer rassembler ces deux approches dans un cadre et modèle unifié, produisant des interprétations possiblement similaires et potentiellement encore nouvelles. Une telle approche intégrée aura de grandes chances de contenir plus d'information (selon la façon dont le couplage est opéré) et être une avancée scientifique.

Cette expérience de pensée illustre les potentialités et la nécessité de l'interdisciplinarité. Dans une autre veine assez similaire, [Holmes et al., 2017] ré-analyse des données biologiques d'une expérience de 1943 qui prétendait confirmer l'hypothèse des processus d'évolution Darwiniens par rapport aux processus Lamarckiens, et montrent que les conclusions ne tiennent plus dans le contexte actuel d'analyse de données (avances énormes sur la théorie et les possibilités de traitement) et scientifique (avec d'autres nombreuses preuves de nos jours des processus Darwiniens) : c'est un bon exemple de malentendu sur le contexte, et la manière selon laquelle le cadre de travail à la fois technique et thématique influence fortement les conclusions scientifiques. Nous développons à présent divers exemples révélateurs de la manière dont des conflits entre disciplines peuvent être dommageables.

Comme déjà mentionné, Dupuy et Benguigui soulignent dans [Du-PUY et BENGUIGUI, 2015] le fait que dans le domaine de l'urbanisme, ont récemment éclaté des conflits ouverts entre les tenants classiques des disciplines et des nouveaux arrivants, en particulier les physiciens, même si leur entrée dans le domaine n'est pas nouvelle. La disponibilité de grand jeux de données d'un nouveau type (réseaux sociaux, données des nouvelles technologies de la communication) ont attiré l'attention d'un plus grand nombre sur des objets plus traditionnellement étudiés par les sciences humaines, puisque les méthodes analytiques et computationnelles de la physique statistique sont devenues applicables. Bien que ces travaux soient généralement présentés comme la construction d'une approche scientifique des villes, tout en discutant la nature scientifique des approches existantes, la nouveauté réelle des résultats obtenus et la non-légitimation des approches "classiques" sont discutables. Pour citer quelques exemples, [Barthelemy et al., 2013] conclut que Paris a subit une transition pendant la période d'Haussman et ses opérations de planification globale, qui sont des faits naturellement connus depuis longtemps en Histoire Urbaine et Géographie Urbaine. [CHEN, 2009] redécouvre que le modèle gravitaire est amélioré par l'introduction de décalages dans les interactions et dérive analytiquement l'expression d'une force d'interaction entre les villes, sans se placer dans un cadre théorique ou thématique. De tels exemples peuvent être multipliés, confirmant l'inconfort courant entre physiciens et géographes. Des bénéfices significatifs pourraient résulter d'une intégration raisonnée des disciplines [O'Sul-LIVAN et MANSON, 2015] mais la route semble être bien longue encore.

Des conflits similaires se rencontrent à l'interface des relations entre économie et géographie : comme le décrit [MARCHIONNI, 2004], la discipline de la géographique économique, traditionnellement proche de la géographie, a fortement critiqué à son émergence l'approche relativement récente *Nouvelle Economie Géographique*. Celle-ci provient de

l'économie et son but est la prise en compte de l'espace par les méthodes économiques classiques. Elles n'ont en fait pas les mêmes desseins et buts, et le conflit apparaît comme un malentendu complet vu d'un oeil extérieur. Par exemple, la Nouvelle Economie Géographique privilégiera des explications impliquant des processus économiques universels et indépendant des échelles, tandis que la Géographie Economique basera son argumentation sur les particularité locales et la contingence des processus. Les hypothèses épistémologiques sousjacentes sont également très différentes, comme par exemple la relation au réalisme, la première étant fondée sur un réalisme abstrait pas forcément concrètement réaliste (utilisation de processus abstraits), tandis que la deuxième sera plus pragmatique. La mesure dans laquelle ces deux approches sont complémentaires ou incompatible reste toutefois une question ouverte d'après [MARCHIONNI, 2004]. Des relations disciplinaires similaires seront rencontrées dans notre travail, comme entre la physique et la géographie. Nous développons par ailleurs en C.1 une exploration des liens entre économie et géographie du point de vue de la modélisation.

Des conflits disciplinaires peuvent aussi se manifester sous la forme d'un rejet de méthodes nouvelles par les courants dominants. Suivant Farmer [Farmer et Foley, 2009], l'échec opérationnel de la plupart des approches économiques classiques pourrait être compensé par un usage plus systématique de la modélisation et simulation basées agent. L'absence de résolution analytique qui est inévitable pour l'étude de la plupart des systèmes complexes adaptatifs semble rebuter la plupart des économistes. Or, [Barthelemy, 2016] insiste sur la déconnexion exacerbée entre une grande partie des modèles et théories économiques et les observations empiriques, du moins dans le domaine de l'économie urbaine. Celle-ci pourrait être un symptôme de la déconnexion disciplinaire évoquée ci-dessus. Toujours en économie, [Storper et Scott, 2009] propose aussi des changements de paradigmes par un retour à l'agent et une construction associée de théories evidence-based.

La finance quantitative peut être instructive pour notre propos et sujet, d'une part par les similarités de la cuisine interdisciplinaire avec notre domaine (rapport avec la physique et l'économie, champs plus ou moins "rigoureux", etc.). Dans ce domaine coexistent divers champs de recherche ayant très peu d'interactions entre eux. On peut considérer deux exemples. D'une part, les statistiques et l'économétrie sont extrêmement avancées en mathématiques théoriques, utilisant par exemple des méthodes de calcul stochastique et de théorie des probabilité pour obtenir des estimateurs très raffinés de paramètres pour un modèle donné (voir par exemple [Barndorff-Nielsen et al., 2011]). D'autre part, l'éconophysique a pour but d'étudier des faits stylisés empiriques et inférer les lois correspondantes pour tenter d'expliquer des phénomènes économiques, par exemple ceux liés

à la complexité des marchés financiers [STANLEY et al., 1999]. Ceux-ci incluent les cascades menant aux ruptures de marché, les propriétés fractales des signaux des actifs, la structure complexe des réseaux de corrélation. Chacun a ses avantages dans un contexte particulier et gagnerait à des interactions accrues entre les deux domaines.

Ces divers exemples pris au fil du vent sont de brèves illustrations du caractère crucial de l'interdisciplinarité et de sa difficulté à pratiquer. Sans presque exagérer, on pourrait imaginer l'ensemble des chercheurs se plaindre de mauvaises ou difficiles expériences d'interdisciplinarité, avec un retour largement positif lors des rares succès. Nous allons tenter par la suite d'emprunter ce chemin étroit, empruntant des idées, théories et méthodes de diverse disciplines, dans l'idéal de la construction d'une connaissance intégrée.

PARADIGMES DE LA COMPLEXITÉ EN GÉOGRAPHIE

Pour revenir à notre anecdote introductive, nous nous concentrons sur l'étude d'un objet thématique qui sera les systèmes territoriaux : à l'échelle microscopique, les agents peuvent bien être vus comme éléments constitutifs fondamentaux du territoire, qui émergera comme processus complexe à différentes échelles. Plus généralement, il s'agit par commencer de brosser une revue du rôle de la complexité en géographie. Les géographes sont naturellement familiers avec la complexité, puisque l'étude des interactions spatiales est l'un de leurs objets de prédilection. La variété de champs en géographie (géomorphologie, géographie physique, géographie environnementale, géographie humaine, géographie de la santé, etc. pour en nommer certains) a sûrement joué un rôle clé dans la constitution d'une pensée géographique subtile, qui considère des processus hétérogènes et multi-scalaires.

Pumain rappelle dans [Pumain, 2003] une histoire subjective de l'émergence des paradigmes de la complexité en géographie, que nous restituons ici. La cybernétique a produit des théories des systèmes comme celle utilisée pour les premiers modèles de dynamique des systèmes visant à simuler l'évolution de variables caractérisant un territoire, sous la forme d'équations différentielles couplées, comme [Chamussy et al., 1984] l'illustre pour un modèle couplant population, emplois et stock de logements. Plus tard, le glissement vers les concepts de criticalité auto-organisée et d'auto-organisation en physique ont conduit aux développements correspondants en géographie, comme [Sanders, 1992] qui témoigne de l'application des concepts de la synergétique aux dynamiques des systèmes urbains.

Enfin, les paradigmes actuels des systèmes complexes ont été introduits par plusieurs entrées relativement indépendantes. On peut nommer parmi celles-ci les concepts issus des fractales, les automates

cellulaires, le *Scaling*, et la Théorie Evolutive des Villes. Nous revoyons brièvement ces approches ci-dessous.

L'étude de la nature fractale de la forme urbaine a été introduite par [BATTY et LONGLEY, 1986], plus tard synthétisée par [BATTY et LONGLEY, 1994] et a eu de nombreuses applications jusqu'à des développements plus récents comme [Keersmaecker, Frankhauser et Thomas, 2003] pour l'analyse de la forme urbaine ou [Tannier et al., 2010] pour l'élaboration de planifications urbaines durables.

La Théorie du *Scaling* a par ailleurs été importée de la physique et de la biologie et des relations allométriques pour expliquer les lois d'échelle urbaine comme propriétés universelles liées au type d'activité : infrastructure et économies d'agglomération (scaling infralinéaire) ou résultante d'un processus d'interactions sociales (scaling supralinéaire), et suppose les villes comme versions à l'échelle l'une de l'autre [Bettencourt et al., 2007]. Nous n'utiliserons pas explicitement ces deux approches mais celles-ci restent sous-jacentes dans les paradigmes utilisés⁷.

Les automates cellulaires, introduits en géographie par Tobler [Coucleus, 1985], sont une autre entrée des approches complexes pour la modélisation urbaine. Batty en propose une synthèse jointe avec les modèles basés agents et les fractales dans [Batty, 2007]. Ce type de modèle prendra une place modeste mais non négligeable dans notre travail.

Une autre introduction de la complexité en géographie fut pour le cas des systèmes urbains à travers la théorie évolutive des villes de Pumain. Nous nous placerons plus particulièrement dans la lignée de celle-ci et la développons ainsi avec plus de détails. En interaction intime avec la modélisation dès ses débuts (le premier modèle Simpop décrit par [Sanders et al., 1997] rentre dans le cadre théorique de [Pumain, 1997]), cette théorie vise à comprendre les systèmes de villes comme des systèmes d'agents adaptatifs en co-évolution, aux interactions multiples, avec différents aspects mis en valeur comme l'importance de la diffusion des innovations.

La série des modèles Simpop [Pumain, 2012a] a été conçue pour tester différentes hypothèses de la théorie, comme par exemple le rôle des processus de diffusion de l'innovation dans l'organisation du système urbain. Ainsi, des régimes sous-jacent différents ont été mis en évidence pour les systèmes de ville en Europe et aux Etats-unis [Bretagnolle et Pumain, 2010a].

A d'autres échelles de temps et dans d'autres contextes, le modèle SimpopLocal [SCHMITT, 2014] a pour but d'étudier les conditions pour l'émergence de systèmes urbains hiérarchiques à partir d'établissements disparates. Un modèle minimal (au sens de paramètres nécessaires et suffisants) a été isolé grace à l'utilisation de calcul inten-

⁷ Par exemple, les lois d'échelles ont une place privilégiée dans l'application de la Théorie Evolutive [Pumain et al., 2006].

sif via le logiciel d'exploration de modèles OpenMole [SCHMITT et al., 2014], ce qui était un résultat impossible à atteindre de manière analytique pour un tel type de modèle complexe. Les progrès techniques d'OpenMole [Reuillon, Leclaire et Rey-Coyrehourcq, 2013] ont été menés simultanément avec les avances théoriques et empiriques.

Les avancées épistémologiques ont également été cruciales dans ce cadre, comme Rey le développe dans [Rey-Coyrehourcq, 2015], et de nouveaux concepts comme la modélisation incrémentale [Cottineau, Chapron et Reuillon, 2015] ont été découverts, avec de puissantes applications concrètes : [Cottineau, 2014] l'applique sur le système de villes soviétique et isole les processus socio-économiques dominants, par un test systématique des hypothèses thématiques et des fonctions d'implémentation. Des directions pour le développement de telles pratiques de Modélisation et Simulation en géographie quantitative ont récemment été introduits par Banos dans [Banos, 2013]. Il conclut par neuf principes⁸, parmi lesquels on peut citer l'importance de l'exploration intensive des modèles computationnels et l'importance du couplage de modèles hétérogènes, qui sont avec d'autre principes tel la reproductibilité au centre de l'étude des systèmes complexes géographiques selon le point de vue décrit précédemment. Nous nous positionnerons en grande partie dans l'héritage de cette ligne de recherche, travaillant de manière conjointe sur les aspects théoriques, empiriques, épistémologiques et de modélisation.

VILLES, SYSTÈMES DE VILLES, TERRITOIRES

Entrons à présent dans le vif du sujet pour construire progressivement la problématique précise qui s'inscrira dans le contexte global développé jusqu'ici. Nos objets géographiques élémentaires (au sens de précurseurs dans notre genèse théorique) sont la *Ville*, le *Système* de *Villes*, et le *Territoire*, que nous allons à présent définir.

Un élément central des systèmes socio-géographiques est l'objet Ville, sur lequel nous nous positionnons pour une cohérence épis-témologique propre. La question de la définition de la ville a fait couler beaucoup d'encre. [Robic, 1982] montre par exemple que Reynaud avait déjà conceptualisé la ville comme lieu central d'un espace géographique, permettant agrégation et échanges, théorie qui sera reformulée par Christaller comme Théorie des Lieux Centraux. Cette définition théorique est rejointe par la conception de Pumain qui considère la ville comme une entité spatiale clairement identifiable, constituée d'agents sociaux (élémentaires ou non) et d'artefacts techniques, et qui est l'incubateur du changement social et de l'innovation [Pumain, 2010]. Nous prendrons cette définition dans notre

⁸ Cela doit-il devenir les dix commandements? René Doursat soulignait l'absence du dernier commandement de Banos, l'essence intrinsèque de notre entreprise est peut être en partie liée à sa recherche.

travail. Il faut toutefois garder à l'esprit que la définition concrète d'une ville en terme d'entités géographiques et d'étendue spatiale est problématique : des définitions morphologiques (c'est à dire se basant sur la forme et la distribution du bâti), fonctionnelles (se basant sur l'utilisation des fonctions urbaines par les agents, par exemple par aire de déplacement domicile-travail dominant), administratives, etc., sont partiellement orthogonales et plus ou moins adaptées au problème étudié [Guérois et Paulus, 2002]. Récemment, un certain nombre d'études ont montré la forte sensibilité des lois d'échelles urbaines⁹ aux délimitations choisies pour l'estimation, pouvant entrainer une inversion des propriétés qualitatives attendues (voir par exemple [Arcaute et al., 2015]). Les variations des exposants estimés en fonction de paramètres de définition, comme effectué par [Cottineau et al., 2015], peut être interprété comme une propriété plus globale et une signature du système urbain.

Cela confirme la nécessité de considérer les villes dans leur système, et l'importance de la notion de *Système Urbain*¹⁰. Un système urbain peut être considéré comme un ensemble de villes en interaction, dont les dynamiques seront plus ou moins fortement couplées. [Berry, 1964] considère les villes comme "systèmes dans des systèmes de villes", appuyant sur le caractère multi-scalaire (au sens d'échelles emboîtées ayant un certain niveau d'autonomie) et nécessairement complexe, conception reprise et étendue par la Théorie Evolutive des Villes détaillée précedemment (voir aussi 9.2). Le terme de *Système de Villes* sera utilisé lorsque l'on pourra clairement identifier des villes comme sous-systèmes, et on parlera de Système Urbain de manière plus générale (une ville elle-même étant un système urbain).

Enfin, sous-jacente à la compréhension des dynamiques des systèmes urbains intervient la notion de *Territoire*. Polymorphe et correspondant à des visions multiples, celle-ci, que nous développerons en profondeur en 1.1, peut être définie de manière préliminaire simplement. Le territoire désigne alors la distribution spatiale des activités urbaines, des agents les exerçant ou les développant, et des artefacts techniques, dont l'infrastructure, les supportant, ainsi que la superstructure¹¹ qui leur est associée¹².

⁹ Les lois d'échelle consistent en une régularité statistique observable au sein d'un ensemble de ville, reliant par exemple une variable caractéristique Y_i à la population P_i sous la forme d'une loi puissance $Y_i = Y_0 \cdot (P_i/P_0)^{\alpha}$.

¹⁰ Concernant la définition d'un système, on pourra la prendre en toute généralité comme un ensemble d'éléments en interaction, présentant une certaine structure déterminée par celle-ci, et possédant un certain niveau d'autonomie avec son environnement. Il peut s'agir d'une autonomie majoritairement ontologique dans le cas d'un système ouvert, ou d'une autonomie réelle dans le cas d'un système fermé.

¹¹ Nous comprenons la superstructure au sens marxiste, c'est à dire la structure organisationnelle et l'ensemble des idées d'une société, incluant les structures politiques.

¹² Le lien entre le Territoire et la Ville, ou le Système de Ville, sera également creusé plus loin lors de la construction approfondie du concept.

RÉSEAUX, INTERACTIONS ET CO-ÉVOLUTION

Une caractéristique fondamentale des systèmes urbains et des territoires est leur inscription simultanée dans l'espace et le temps, qui transparaît dans leur dynamiques spatio-temporelles, à de multiples échelles. La notion de *processus* au sens de [*Hypergeo* 2017], c'est à dire l'enchainement dynamique de faits aux propriétés causales¹³, permet de capturer les relations entre composantes de ces dynamiques, et est ainsi une notion clé pour une compréhension partielle de ces systèmes. Toute compréhension partielle sera associée au choix d'échelles, qui doit être comprise ici au sens opérationnel (caractéristiques physiques), et d'une *ontologie* qui correspond à la spécification des objets réels étudiés¹⁴. Nous allons à présent spécifier ces concepts abstraits, en introduisant les *Réseaux*, leurs *Interactions* avec les territoires et leur approche par la *Co-évolution*.

Une ontologie particulière retiendra notre attention : au sein des territoires émergent des Réseaux Physiques, qui peuvent être compris selon [Dupuy, 1987] comme la matérialisation d'un ensemble de connexions potentielles entre agents du territoire. La question de l'implication de ces réseaux et de leur dynamique dans les dynamiques territoriales, qu'on peut synthétiser comme interactions entre réseaux et territoires, a fait l'objet d'abondants débats scientifiques et techniques, notamment dans le cas des réseaux de transport. Nous reviendrons sur la nature et le positionnement de ceux-ci aux Chapitres 1 et 2, mais nous pouvons d'ores et déjà prendre certaines de difficultés soulevées comme point de départ de notre questionnement. L'un des aspects récurrents est celui du mythe des effets structurants, consacré par [Offner, 1993] en critique d'une utilisation exagérée par les planificateurs et les politiques d'un concept scientifique dont les fondements empiriques sont encore discutés. La question fondamentale sous-jacente que nous reformulons est la suivante : dans quelle mesure est-il possible d'associer des dynamiques territoriales à une évolution de l'infrastructure de transport? On peut poser la question de manière réciproque, et même la

¹³ Nous prendrons la causalité au sens de causalité circulaire dans les systèmes complexes, qui considère des cycles d'entrainement entre phénomènes, ou des structures plus complexes. La causalité linéaire, c'est à dire un phénomène entrainant un autre, est un cas particulier idéalisé de celle-ci. Nous reviendrons en détail sur la notion de causalité et sur ses différentes approches par les géographes en Section 4.2

¹⁴ Plus précisément, nous utilisons la définition de [Livet et al., 2010a] qui couple l'approche ontologique du point de vue de la philosophie, c'est à dire "l'étude de ce qui peut exister", et celui de l'informatique qui consiste à définir les classes, les objets et leurs relations qui constituent la connaissance d'un domaine. Cet usage de la notion d'ontologie biaise naturellement notre recherche vers des paradigmes de modélisation, mais nous prenons la position (développée en détails plus loin) de comprendre toute construction scientifique comme un modèle, rendant la frontière entre théories et modèles moins pertinentes que pour des visions plus classiques. Toute théorie doit faire des choix sur les objets décrits, leur relations et les processus impliqués, et contient donc une ontologie dans ce sens.

généraliser : quels sont les processus capturant les interactions entre ces deux objets ?

Une approche permettant de poser différemment le problème est la notion de co-evolution, utilisée en Théorie Evolutive pour qualifier les processus fortement couplés¹⁵ d'évolution des villes comme utilisé par [Paulus, 2004], et appliqué aux relations entre réseaux et villes par [Bretagnolle, 2009a]¹⁶. Cette dernière distingue une phase "d'adaptation mutuelle" entre réseaux et villes, correspondant à une dynamique dans laquelle des effets causaux sont clairement attribuables à l'un sur le développement de l'autre (par exemple, les nouvelles lignes de transport répondent à une demande croissante induite par la croissance urbaine, ou inversement la croissance urbaine est favorisée par une nouvelle connectivité au réseau), de la phase de co-évolution, qu'elle définit comme une "interdépendance forte" (p. 150) dans laquelle les rétroactions jouent un rôle privilégié et "la dynamique du système de ville n'est plus contrainte par le développement des réseaux de transport" (p. 170). Ces boucles de rétroaction et cette interdépendance mutuelle, vus dans leur perspective dynamique, correspondent à des relations causales circulaires (au sens donné plus haut) difficiles à séparer. Nous prendrons comme définition préliminaire de la co-évolution entre deux composantes d'un système l'existence d'un couplage fort, correspondant généralement à des relations causales circulaires.

PROBLÉMATIQUE

Ce cadre permet de capturer un certain degré de complexité, mais reste cependant flou ou trop général dans sa caractérisation, à la fois théorique et empirique. Nous ferons ici le pari de mettre à l'épreuve et d'approfondir cette approche, pour éclaircir ses apports potentiels pour la compréhension des interactions entre réseaux et territoires. La clarification d'une part de ce qu'elle signifie et d'autre part de

¹⁵ On parlera de *couplage* de systèmes ou de processus pour désigner la constitution d'un système englobant les éléments couplés, par l'émergence de nouvelles interaction ou de nouveaux éléments. La définition de la nature et de la force d'un couplage est une question ouverte, et nous utiliserons la notion de manière intuitive, pour désigner un plus ou moins grand niveau d'interdépendance entre les sous-systèmes couplés.

^{16 [}PAULUS, 2004] transfère directement le concept biologique de co-évolution (qui consiste en une interdépendance forte entre deux espèces dans leurs trajectoires évolutives, et qui en fait correspond à l'existence d'une *niche écologique* constituée par les espèces comme nous le développerons plus loin en 9.2), et parle de villes qui "se concurrencent, s'imitent, coopèrent". Ce transfert reste flou (sur les échelles temporelles impliquées, le statut des objets qui co-évoluent) et finalement non exploré. Des trajectoires similaires ne peuvent suffire à exhiber des interdépendances fortes comme il affirme en conclusion, celles-ci pouvant être fortuites. De plus, le transfert de concepts entre disciplines est une opération pour laquelle prudence doit être de mise (nous illustrerons cela par l'étude interdisciplinaire de la morphogenèse, concept initialement biologique, en Chapitre 5).

son existence empirique sera un noeud gordien de notre démarche. Notre problématique générale se décompose alors en deux axes complémentaires :

- 1. Comment définir et/ou caractériser les processus de co-évolution entre réseaux de transports et territoires?
- 2. Comment modéliser ces processus, à quelles échelles et par quelles ontologies?

Le deuxième aspect découle de notre positionnement scientifique, qui postule l'utilisation de la modélisation, et plus particulièrement de la simulation de modèle, comme un instrument fondamental de connaissance des processus au sein des systèmes complexes.

ORGANISATION GÉNÉRALE

Nous proposons de répondre à la problématique ci-dessus par la stratégie suivante. Une première partie posera les fondations nécessaires, en précisant les définitions, concepts et objets étudiés, en dessinant le paysage scientifique gravitant autour de la question, et en raffinant le positionnement épistémologique. Cette partie est composée de trois chapitres :

- Un premier chapitre développe la question des interactions entre réseaux et territoires, d'un point de vue théorique mais aussi en les illustrant par des études de cas et des éléments de terrain. Il permet de situer la notion de co-évolution à la fois de manière concrète et abstraite.
- 2. Un deuxième chapitre se charge d'une manière similaire de clarifier le positionnement au regard de la modélisation de la coévolution. L'état de l'art est complété par une cartographie des disciplines scientifiques concernées et par une modélographie, c'est à une classification et décomposition systématique d'un corpus de modèles afin de comprendre les ontologies utilisées et de possibles déterminants de celles-ci.
- 3. Une troisième chapitre développe notre positionnement épistémologique, qui s'avère avoir une influence considérable sur les choix de modélisation qui seront opérés par la suite. Nous y développons les questions liées au pratiques de modélisation, de datamining et de calcul intensif, des questions de reproductibilité, et des considérations épistémologiques plus générales intrinsèques aux systèmes étudiés.

De ces analyses complémentaires se dégagent deux positionnements thématiques correspondant à deux échelles de modélisation, peu explorés pour notre question particulière : la Théorie Evolutive des Villes qui induit une modélisation macroscopique au niveau du système de ville, et la Morphogenèse Urbaine qui permet de considérer les liens entre forme et fonction à l'échelle mesoscopique. La deuxième partie s'attèlera donc à construire les briques élémentaires à partir de ces approches, qui serviront par la suite à la construction des modèles :

- 4. Le quatrième chapitre traite de différents aspects impliqués par la Théorie Evolutive. Le caractère non-stationnaire des processus dans l'espace est un élément crucial, que nous démontrons empiriquement dans une première section par l'étude des corrélations spatiales entre forme urbaine et topologie du réseau routier pour l'Europe et la Chine. Ensuite, la notion de causalité circulaire est explorée, et nous développons une méthode permettant d'isoler ce qu'on appelle des régimes de causalité, c'est à dire des configurations typiques d'interaction capturées par les motifs de corrélation retardée. Celle-ci est testée sur données synthétiques et données réelles dans le cas de l'Afrique du Sud, où l'on démontre un effet des politiques de segregation sur les interactions réseaux-territoires elle-mêmes. Cette première partie du chapitre complète de manière empirique la caractérisation de la co-évolution ébauchée en première partie. Enfin, nous construisons un modèle de système urbain basé sur les interactions entre villes, qui permet de démontrer indirectement l'existence d'effets de réseau, qui postule cependant un réseau fixe.
- 5. Le cinquième chapitre creusera la notion de *Morphogenèse*, en commençant par en proposer un point de vue cohérent au travers de différentes disciplines la mobilisant, afin d'en dégager une caractérisation se reposant sur l'émergence d'une architecture par relations causales circulaires entre forme et fonction. Cette précision sera cruciale dans la nature des modèles mis en place. Une deuxième section développe un modèle simple de croissance urbaine prenant en compte la distribution de la population seule, et capturant les forces contradictoires de concentration et de dispersion. Nous démontrons sa capacité à reproduire des formes urbaines existantes à partir des données de forme urbaine calculées précédemment. Il est ensuite couplé séquentiellement à un modèle de génération de réseau, ce qui permet d'exhiber un large spectre de corrélations potentiellement générées.

A ce stade, nous bâtissons dans la troisième partie sur les fondations et avec les briques élémentaires notre construction fondamentale, qui consiste en différents modèles (ou famille de modèles) de co-évolution, que nous différencions selon les deux approches considérées. Toujours dans une logique d'approches parallèles et complémentaires, nous élaborons les développements des deux chapitres précédents, dans deux chapitre modélisant la co-évolution :

- 6. Le sixième chapitre développe un modèle de co-évolution à l'échelle macroscopique. Dans un premier temps, nous explorons de manière systématique l'unique modèle analogue existant. Nous développons ensuite le modèle par extension du modèle d'interaction déjà introduit. Son exploration systématique révèle sa capacité à produire différents régimes de co-évolution, certains témoignant de causalités circulaires. Il est également calibré sur le système de villes français sur le temps long, sur données de population et de réseau ferroviaire, ce qui permet d'inférer des informations indirectes sur les processus impliqués.
- 7. Le septième chapitre s'intéresse aux modèles de morphogenèse urbaine capturant les processus de co-évolution. La question des heuristiques de génération de réseau est d'abord traitée, en comparant les potentialités de diverses méthodes. Dans une démarche de multi-modélisation, celles-ci sont ensuite intégrées dans une famille de modèle de morphogenèse, que l'on calibre sur les indicateurs de forme urbaine et de topologie de réseau, au premier ordre (valeurs des indicateurs) et au second ordre (matrices des corrélations). Nous ébauchons ensuite un modèle plus complexe, visant à intégrer les processus de gouvernance dans la croissance du réseau de transport. Celui-ci est exploré de manière préliminaire.

Après avoir démontré les capacités de nos deux approches à capturer certains aspects de la co-évolution et d'informer les processus correspondants, nous procédons à une ouverture dans une dernière partie :

- 8. Le huitième chapitre est consacré à une ouverture par des analyses empiriques, visant à explorer une possible extension des échelles et des ontologies. L'analyse des flux de traffic routier en Ile-de-France, correspondant à une échelle microscopique des interactions entre réseau et territoire, révèle une nature chaotique à ces échelles et questionne la pertinence de leur modélisation. L'analyse spatio-temporelle des prix du carburant aux Etats-Unis, qui capturent indirectement l'interaction entre le système socio-économique et le réseau routier, confirme d'une part l'existence d'échelles spatiales typiques et de régimes locaux d'interaction, et d'autre part la superposition de processus territoriaux bottom-up et de processus de gouvernance top-down.
- 9. Le neuvième et dernier chapitre consiste en une ouverture théorique et épistémologique. Nous esquissons une réconciliation théorique de la morphogenèse et de la théorie évolutive, dans laquelle la co-évolution est centrale. Ce développement pourrait

poser les bases d'une théorie et de modèles multi-échelle pour la co-évolution. Nous développons enfin dans une démarche réflexive un cadre de connaissance pour l'étude des systèmes complexes, à la fois produit et précurseur de l'ensemble de notre démarche.

Nous résumons cette organisation, ainsi que les dépendances directes ou indirectes entre les différents chapitres, dans l'encadré 1 ci-dessous.

* *

*

ENCADRÉ 1: **Organisation générale du mémoire.** Les flèches pleines donnent une dépendance directe (enchainement logique ou extensions), les flèches pointillées une dépendance indirecte (réutilisation de données ou de méthodes).

Première partie

FONDATIONS

Cette partie pose les fondations de notre démarche, en reconstruisant la question de manière théorique et par l'illustration de cas d'étude, puis en dressant un panorama scientifique de ses approches existantes en modélisation. Nous développons également notre positionnement épistémologique aux implications pratiques importantes.

Un voyage, la découverte d'une ville, de nouvelles rencontres, un partage d'idées : autant de processus qui impliquent une générativité cognitive et une interaction complexe entre nos representations, nos actions et l'environnement. La construction d'une connaissance scientifique n'échappe pas à ces règles. On pourrait alors voir dans l'objet étudié lui-même, prenons la ville et ses agents, une allégorie du processus de production de connaissance sur l'objet. Comme Romain Duris qui débarque dans l'Auberge Espagnole, et découvre ces rues inconnues que plus tard on aura parcouru cent fois, où on aura vécu mille choses : on débarque dans un monde de concepts, d'approches, de point de vues complémentaires sur des choses qui ne sont pas la même chose. Cette discrépance ontologique est finalement tout aussi présente dans nos représentations de l'espace urbain : Oven Street c'est un des centres de la connaissance pour le membre de Géocités; c'est le centre de Paris, donc de la France, donc du Monde pour le fier autochtone du 6ème; c'est le marché Saint-Germain et le shopping de luxe globalisé pour le touriste international; c'est un morceau d'histoire pour l'élève des Ponts pour qui cela évoque le temps des Saint-pères. Des objets, des concepts, compris et définis par de multiples disciplines et agents producteurs de connaissance : parle-t-on finalement vraiment de la même chose? Comment tirer parti de cette richesse de points de vue, comment intégrer la complexité permise par cette diversité? Apporter des éléments de réponse suppose une démarche constructive, générative et autant inclusive que possible. Les choix sont toujours plus éclairés si on a un aperçu d'un maximum d'alternatives. Le trader qui habite son loft en haut des mid-levels et travaille dans son building à deux pas entre deux rails, connait bien Hong-Kong, mais un seul parmi ses multiples visages, et il lui sera difficilement concevable qu'existe une misère à Kwoloon, dont les habitants ne conçoivent pas le Hong-Kong éphémère mais parfois cyclique des travailleurs temporaires du mainland, qui eux ne conçoivent pas les difficultés administratives et financières de migrants de Thaïlande ou d'Inde, l'ensemble étant encore moins concevable pour un étudiant parisien égaré. Mais c'est justement l'égarement qui à dose appropriée sera source d'une connaissance plus large : les fourmis établissent leurs optimisations extrêmement précises à partir d'une marche qu'on peut considérer comme aléatoire. Les algorithmes génétiques, mais encore plus les processus d'évolution biologiques ancrés dans le physique, reposent sur un subtil compromis entre ordre et désordre, entre signal et bruit, entre stabilités et perturbations. Se perdre pour mieux se retrouver fait l'essence et le charme du voyage, qu'il soit physique, conceptuel, social. Finalement, pas de comparaison possible entre une orientation au Caylar ou sur la montagne de Bange à un ennui rectiligne en forêt d'Orléans.

Cet intermède littéraire soulève des problèmes fondamentaux induits par une exigence d'interdisciplinarité et la volonté de construction d'une connaissance complexe intégrative. Dans un premier temps, la réflexivité et la mise en relation d'une perspective prise avec un certain nombre d'autres perspectives existantes est nécessaire pour la pertinence de celle-ci. Il s'agit donc de construire solidement les concepts et spécifier les références empiriques, afin de préciser la problématique et ses objectifs de manière endogène. D'autre part, le cadre épistémologique de la démarche se doit d'être précisé. Ci-dessus est finalement imagée une approche perspectiviste, qui est une position épistémologique particulière que nous préciserons ici. De plus, le statut des démonstrations est conditionné par la conception des méthodes et des outils, qui est particulière dans le cas des modèles de simulation.

Cette partie répond à ces contraintes, en posant les *fondations* nécessaires à la suite de notre démarche. En terrain relativement mouvant, celles-ci devront dans certains cas être particulièrement profondes pour une stabilité de l'édifice global : ce sera par exemple le cas de l'état de l'art qui mobilisera des techniques d'épistémologie quantitative. Nous rappelons qu'elle s'organise de la manière suivante :

- 1. Le premier chapitre construit les concepts et objets de manière théorique, et dégage un large éventail d'approches possibles aux interactions entre réseaux de transport et territoires.
- 2. Le second chapitre développe les différentes approches de modélisation des interactions entre réseaux et territoires. Il établit un état de l'art, structuré par une typologie établie précédemment. Il dresse ensuite le paysage scientifique des disciplines concernées, et cherche les caractéristiques des modèles propres à chaque discipline ainsi que des possible déterminants de celles-ci dans une modélographie.
- 3. Le troisième chapitre est relativement indépendant et précise nos positions épistémologiques. Il permet notamment de situer la complexité dans laquelle nous cherchons à nous placer, de spécifier ce qui peut être attendu d'une démarche de modélisation et de quelle façon, et de donner une définition plus large du concept de co-évolution.

* *

INTERACTIONS ENTRE RÉSEAUX ET TERRITOIRES

Pour mieux visualiser les notions de causalités circulaires dans les systèmes complexes, et pourquoi celles-ci peuvent conduire à des paradoxes en apparence, l'image fournie par DIDEROT dans [DIDEROT, 1965] est éclairante : "Si la question de la priorité de l'œuf sur la poule ou de la poule sur l'œuf vous embarrasse, c'est que vous supposez que les animaux ont été originairement ce qu'ils sont à présent". En voulant traiter naïvement des questions similaires induites par notre problématique introduite précédemment, les causalités au sein de systèmes complexes géographiques peuvent être présentées comme un problème "de poule et œuf" : si un effet semble causer l'autre et réciproquement, est-il possible et même pertinent de vouloir isoler les processus correspondants, s'ils font en fait partie d'un système plus large qui évolue à d'autres échelles? Une vision réductrice, qui consisterait à attribuer des rôles systématiques à l'une composante ou l'autre, s'oppose à l'idée suggérée par DIDEROT qui rejoint celle de co-évolution. L'un des enjeux est donc de dresser un aperçu des processus d'interactions entre réseaux et territoires, afin de préciser la définition de la co-évolution, ce qui sera fait à l'issue d'un travail similaire pour les approches par la modélisation, à la fin de la première partie.

Ce chapitre doit être lu comme la construction introduisant nos objets et positions d'étude, et sera complété par une revue de littérature exhaustive sur le sujet précis de la modélisation des interactions, qui fera l'objet du Chapitre 2. Dans une première section 1.1, nous préciserons l'approche prise de l'objet territoire, et dans quelle mesure celui-ci naturellement implique la considération des réseaux de transport pour la compréhension des dynamiques couplées. Cela permet de construire un cadre de lecture définissant les systèmes territoriaux, particulièrement adapté à notre approche par la co-évolution. Ces considérations abstraites seront illustrées par des cas d'étude empiriques dans la deuxième section 1.2, choisis très différents pour comprendre les enjeux d'universalité sous-jacents : la métropole du Grand Paris et le Delta de la rivière des Perles en Chine. Enfin, dans la troisième section 1.3, des éléments d'observation de terrain effectués en Chine préciseront et complexifient la construction de ce cadre théorique et empirique.

* *

Ce chapitre est entièrement inédit.

1.1 TERRITOIRES ET RÉSEAUX

Nous commençons par une construction plus précise des concepts mobilisés, qui permet de comprendre comment les concepts de territoire et de réseau sont rapidement en interdépendance forte, impliquant une importance ontologique des interactions entre les objets correspondants. Nous verrons que les territoires impliquent l'existence de réseaux, mais que réciproquement ceux-ci les influencent également. Un développement plus particulier sur les propriétés des réseaux de transport permet d'amener progressivement une vision précise de la *co-évolution*, que nous prendrons jusque là dans son sens préliminaire donné précédemment, c'est à dire l'existence de relations causales circulaires entre réseaux de transports et territoires.

1.1.1 Territoires et Réseaux, intimement liés dès leur définition

Territoires : une approche par les systèmes de villes

Le concept¹ de *Territoire*, que nous avons introduit précédemment par ceux de Ville et de Système de Ville, sera central à nos raisonnements et nécessite d'être approfondi et enrichi. En Ecologie Spatiale, un groupe d'agents ou plus généralement un écosystème occupe une certaine étendue spatiale [TILMAN et KAREIVA, 1997], qu'on peut identifier comme notion de territoire. Les territoires des sociétés humaines impliquent des dimensions supplémentaires, par exemple par l'importance de leur représentations sémiotiques². Celles-ci jouent un rôle significatif dans l'émergence des constructions sociétales, dont la genèse est profondément liée à celle des systèmes urbains. Selon [RAF-FESTIN, 1988], la Territorialité Humaine est "la conjonction d'un processus territorial avec un processus informationnel", ce qui implique que l'occupation physique et l'exploitation de l'espace par les sociétés humaines sont complémentaires des représentations (cognitives et matérielles) de ces processus territoriaux, qui influent en retour sur leur évolution.

En d'autres termes, à partir de l'instant où les constructions sociales déterminent la constitution des établissements humains, les structures sociales abstraites et concrètes joueront un rôle dans l'évolution des territoires, et ces deux objets seront intimement liés. Des exemples de tels liens se retrouvent à travers la propagation d'informations et de représentations, par des processus politiques, ou encore par la correspondance plus ou moins effective entre territoire vécu et territoire perçu. Un territoire est ainsi compris comme une structure

¹ Nous utiliserons le terme *concept* pour des connaissances construites, plutôt que celui de *notion*, qui suivant [RAFFESTIN, 1978] est plus proche d'une information empirique.

² c'est à dire des signes marquants les territoires et leur sens, mais aussi leur représentations, cartographiques par exemple

sociale organisée dans l'espace, qui comprend ses artefacts concrets et abstraits.

Cette approche du territoire rejoint la définition préliminaire que nous en avions prise, et vient alors la renforcer. L'approche de RAF-FESTIN insiste sur le rôle des villes comme lieu de pouvoir (au sens d'un lieu rassemblant des processus décisionnel et de contrôle socioéconomique) et de création de richesse au travers des échanges et interactions³ (sociaux, économiques). La ville n'a cependant pas d'existence sans son hinterland, ce qu'on interpréter comme le territoire d'une ville⁴. Cette correspondance permet de lire l'ensemble des territoires au prisme du système de villes, comme développé par la Théorie Evolutive des Villes [Pumain, 2010]. Celle-ci interprète les villes comme des systèmes complexes auto-organisés, qui agissent comme des médiateurs du changement social : par exemple, les cycles d'innovation s'initialisent au sein des villes et se propagent entre elles (voir C.3 pour une entrée empirique sur la notion d'innovation) : cela permet de comprendre le territoire comme un espace des flux, ce qui permettra d'introduire la notion de réseau comme nous le verrons plus loin. Les villes sont par ailleurs vues comme des agents compétitifs qui co-évoluent [Paulus, 2004], ce qui permet de préfigurer également l'importance de la co-évolution pour les dynamiques territoriales.

On a ainsi deux approches complémentaires du territoire qui nous permettent de considérer des territoires humains structurés par les systèmes de villes⁵.

³ Une interaction sera comprise dans son sens le plus général, comme une action réciproque de plusieurs entités l'une sur l'autre. Celle-ci peut être physique, informationnelle, transformer les entités, etc. Voir [Morin, 1976] pour une construction complète et complexe du concept, en lien intime avec celui d'organisation.

⁴ Même si une correspondance exacte entre territoires et villes n'est probablement qu'une simplification de la réalité, puisque les territoires peuvent s'entremêler à différentes échelles, selon différentes dimensions. Une lecture par lieux centraux de type Christaller [Banos et al., 2011] permet de se faire une image conceptuelle de cette correspondance. Des définitions fonctionnelles comme celles des aires urbaines de l'Insee, qui définit l'aire autour d'un pôle dépassant une taille critique (10000 emplois) par les communes dont un seuil minimal d'actifs travaillent dans le pôle (40%) - voir https://www.insee.fr/fr/metadonnees/definition/c2070, est une approche possible. La sensibilité des propriétés du système urbain à ces paramètres est testée par [Cottineau et al., 2015]. La définition de la ville est alors intimement liée à celle de ses territoires, et celle du système urbain à l'ensemble des territoires.

⁵ Ces visions complémentaires du territoire peuvent également être enrichies par une perspective historique. [DI MEO, 1998] procède à une analyse historique des différentes conceptions de l'espace (qui aboutissent entre autres à l'espace vécu, l'espace social et l'espace classique de la géographie) et montre comment leur combinaison forme ce que RAFFESTIN décrit comme territoires. [GIRAUT, 2008] rappelle les différents usages récents qui ont été faits de la notion de territoire, de la géographie culturelle où il a plus été utilisé par effet de mode, à la géopolitique où c'est un terme bien spécifique lié aux structures de gouvernance, en passant par des utilisations où il sert plus de concept, et dégage l'aspect interdisciplinaire d'un objet capturant une certaine complexité des systèmes étudiés.

Par ailleurs, un aspect central des établissements humains qui a une longue tradition d'étude en géographie, et qui est directement relié au concept de territoire, est celui des *réseaux*. Nous allons préciser leur définition et voir comment le passage de l'un à l'autre est intrinsèque aux approches que nous en prenons.

Définition des réseaux

Un réseau doit être compris au sens large d'une mise en relation entre entités d'un système, qui peuvent être vus comment relations abstraites, liens, interactions. [HAGGETT et CHORLEY, 1970] postule que l'existence d'un réseau est nécessairement liée à celle de flux⁶, et rappelle la représentation topologique sous forme de graphe de tout système géographique dans lequel circulent des flux entre des entités ou des lieux qui sont abstraits sous la forme de noeuds, reliés par des liens. Les liens du réseau disposent alors d'une capacité, qui traduit leur capacité à transporter les flux (qui peut également être définie de manière équivalence comme impédance). L'analyse topologique révèle déjà un certain nombre de propriétés du système, mais [HAGGETT et CHORLEY, 1970] précise l'importance de la spatialisation du réseau, incluse dans les propriétés de ses noeuds (localisation) et de ses liens (localisation, impédance), pour la compréhension des dynamiques dans le réseau (flux) ou du réseau lui-même (croissance du réseau). Cette spécificité a été rappelée par [Barthélemy, 2011] qui met en perspective les domaines empiriques concernés par les réseaux spatiaux, certains modèles de croissance de réseau, et certains modèles de processus dans les réseaux : par exemple, les structures topologiques, ou les processus de diffusion seront très contraints par le caractère spatial.

Pour approfondir le concept de réseau en appuyant sur sa forte interdépendance avec celui de Territoire, nous reprenons [Dupuy, 1987] qui propose des éléments pour une "théorie territoriale des réseaux" s'inspirant du cas concret d'un réseau de transport urbain. Cette théorie distingue les *réseaux réels*7 et les *réseaux virtuels*, eux-mêmes induits entre autre par la configuration territoriale. Les réseaux réels sont la matérialisation de réseaux virtuels. Plus précisément, un territoire est caractérisé par de fortes discontinuités spatio-temporelles induites par la distribution non-uniforme des agents et des ressources. Ces discontinuités induisent naturellement un réseau d'interactions potentielles entre les éléments du système territorial, notamment des agents et des ressources. [Dupuy, 1987] désigne ces interactions po-

⁶ On définit le flux comme un échange matériel (personnes, marchandises, matières premières) ou immatériel (information) entre deux entités.

⁷ Les réseaux réels contiennent une catégorie qu'on peut désigner comme réseaux concrets, matériels ou physiques - nous utiliserons ces termes de manière interchangeable par la suite, à laquelle les réseaux de transport appartiennent; d'autres catégories comme les réseaux sociaux sont également des réseaux réels sur lesquels nous ne nous attarderons pas.

tentielles comme *projets transactionnels*. Celles-ci induisent la notion de *potentiel d'interaction*, c'est à dire une propriété de l'espace dont les interactions dérivent⁸. Par exemple, de nos jours les actifs ont besoin d'accéder à la ressource qu'est l'emploi, et des échanges économiques s'effectuent entre les différents territoires qui peuvent être plus ou moins spécialisés dans les productions de différents types.

Des réseaux aux réseaux réels

Dans certains cas, un réseau potentiel peut se matérialiser en réseau réel. La question sous-jacente est alors de savoir si le champ de potentiel des territoires est en partie à l'origine de cette matérialisation, si celle-ci est totalement indépendante, ou si la dynamique des deux est fortement couplée, en d'autres termes en co-évolution. La matérialisation résultera généralement de la combinaison de contraintes économiques et géographiques avec des motifs de demande, de manière non-linéaire. Un tel processus est loin d'être immédiat, et conduit à de forts effets de non-stationnarité et de dépendance au chemin⁹: l'extension d'un réseau existant dépendra de la configuration précédente, et selon les échelles de temps impliquées, la logique et même la nature des opérateurs, c'est à dire des agents participant à sa production, peut avoir évolué.

Les exemples de trajectoires concrètes peuvent être très variées : [Kasraian, Maat et Wee, 2015] montre par exemple dans le cas de la Randstad sur le temps long, une première période pendant laquelle le réseau ferré s'est développé pour suivre le développement urbain, tandis que des effets inverses ont été constaté plus récemment. A une échelle urbaine sur le temps long, la dépendance au chemin est montrée pour Boston par [Block-Schachter, 2012] puisque l'environnement bâti et la distribution de la population apparaissent comme fortement dépendants des lignes de tramway antérieures même lorsqu'elles n'existent plus : la façon dont la ligne de transport change l'espace urbain s'opère dans les dynamiques immédiates mais aussi sur le temps long par des effets de renforcement ou à cause de l'inertie du bâti par exemple.

Ainsi, l'existence d'un territoire humain implique nécessairement la présence de réseaux d'interactions abstraites, et les réseaux concrets sont cruciaux pour transporter les individus et les ressources (incluant les réseaux de communication puisque l'information est une ressource essentielle [MORIN, 1976]), mais les processus d'établisse-

⁸ Etant donné tout champ vectoriel de classe \mathcal{C}^1 sur \mathbb{R}^3 , le théorème d'Helmoltz fournit un potentiel vecteur et un potentiel scalaire dont ce champ dérive par rotationnel et gradient. Cela justifie dans le cas particulier d'un tel point de vue formel le passage d'un champ d'interaction entre agents à un champ de potentiel.

⁹ La non-stationnarité spatiale consiste en la dépendance de la structure de covariance des processus à l'espace, tandis que la dépendance au chemin traduit le fait que les trajectoires prises par le passé influencent fortement les trajectoires actuelles du système.

ment de ceux-ci sont difficiles à identifier de manière générale. Notre choix ontologique de positionnement dans la théorie de Dupuy, donne une place privilégiée aux relations entre réseaux et territoires, puisqu'il induit dans la construction des objets même une imbrication complexe entre ceux-ci.

Le statut du réseau par rapport au territoire est d'autre part fortement conditionné par le contexte socio-économique et technologique. Selon DURANTON [DURANTON, 1999], un facteur influençant la forme des villes pré-industrielles était la performance des réseaux de transport. Les progrès technologiques, conduisant à une baisse des coûts de transport, ont induit un changement de régime, ce qui a mené à une prépondérance du marché foncier dans la formation des villes (et par conséquent un rôle des réseaux de transport qui déterminent les prix par l'accessibilité), et plus récemment à une importance croissante des réseaux de télécommunication ce qui a induit une "tyrannie de la proximité" puisque la présence physique n'est pas remplaçable par une communication virtuelle [Duranton, 1999].

Cette approche territoriale des réseaux semble naturelle en géographie, puisque les réseaux sont étudiés conjointement avec des objets géographiques qu'ils connectent, en opposition aux travaux théoriques sur les réseaux complexes qui les étudient de manière relativement déconnectée de leur fond thématique [Ducruet et Beauguitte, 2014].

Des réseaux qui façonnent les territoires?

Cependant les réseaux ne sont pas seulement une manifestation matérielle de processus territoriaux, mais jouent également leur rôle dans ces processus comme leur évolution peut influencer l'évolution des territoires en retour. Il emerge alors une difficulté intrinsèque : il n'est pas évident d'attribuer des mutations territoriales à une évolution du réseau et réciproquement la matérialisation d'un réseau à des dynamiques territoriales précises, et différents facteurs exogènes rentrent par ailleurs en compte, comme le prix de l'énergie ou les technologies existantes dans le cas de l'effet du réseau sur les territoires par exemple. Dans le cas des réseaux techniques, une autre désignation des réseaux concrets donnée dans [Offner et Pumain, 1996], de nombreux exemples de tels retroactions peuvent être mis en évidence : une accessibilité accrue peut être un facteur favorisant la croissance urbaine, ou bien l'interconnexion de différents réseaux de transport permet une extension significative de la portée des déplacements. A une plus petite échelle, des changements de l'accessibilité peuvent induire des relocalisations de différentes composantes urbaines. Ces retroactions des réseaux sur les territoires n'agissent pas nécessairement sur des composantes concretes : CLAVAL montre dans [CLAVAL, 1987] que les réseaux de transport et de communication contribuent à la représentation collective d'un territoire en agissant sur un sentiment d'appartenance, qui peut alors jouer un rôle crucial dans l'émergence d'une dynamique régionale fortement cohérente. Développons d'abord plus en détail les possibles influences des réseaux sur les territoires.

La confusion autour de possibles relations causales simples a nourri un débat scientifique encore actif aujourd'hui. La question sous-jacente repose sur des attributions plus ou moins déterministes d'impact d'infrastructures ou d'un nouveau mode de transport sur des transformations territoriales. On peut trouver des précurseurs de ce raisonnement dès les années 1920 : McKenzie, de l'école de Chicago, parle dans [Burgess, McKenzie et Wirth, 1925] des " modifications des formes du transport et de la communication comme facteurs déterminants des cycles de croissance et de déclin [des territoires]" (p. 69). Des méthodologies pour identifier ce qui est alors nommé effets structurants des réseaux de transport ont été développées pour la planification dans les années 1970 : [Bonnafous et Plassard, 1974] situe le concept d'effet structurant dans le cadre d'une logique d'utilisation de l'offre de transport comme outil d'aménagement (les alternatives étant le développement d'une offre pour répondre à une congestion du réseau, et le développement simultané d'une offre et d'un aménagement associé). Ces auteurs identifient du point de vue empirique des effets directs d'une nouvelle offre sur le comportement des agents, sur les flux de transport et des possibles inflexions sur les trajectoires socio-économiques des territoires concernés. [Bonnafous, Plassard et Soum, 1974] développe une méthode pour identifier de tels effets par modifications de la classe des communes dans une typologie établie a posteriori. Plus récemment, [Bonnafous, 2014] a proposé la mise en place d'observatoires permanents des territoires pour rendre plus robustes ce type d'analyse, en permettant un suivi continu de l'évolution des territoires les plus concernés par l'emprise d'une nouvelle infrastructure.

Selon [Offner, 1993] qui reprend des idées déjà évoquées par [Plassard, 1977] par exemple, il s'est par la suite développé un usage non raisonné et hors contexte de ces méthodes par les planificateurs et les politiques qui les mobilisaient généralement pour justifier des projets de transports de manière technocratique : justifiant d'un effet direct d'une nouvelle infrastructure sur le développement local (par exemple économique), les élus sont en mesure de demander des financements et de légitimer leur action auprès des contribuables. [Offner, 1993] insiste sur la nécessité d'un positionnement critique sur ces enjeux, rappelant qu'il n'existe pas de démonstration scientifique d'un effet qui serait systématique. Une édition spéciale de l'Espace Géographique sur ce débat [Offner et al., 2014] a rappelé d'une part que de telles croyances était encore largement présentes aujourd'hui dans les milieux opérationnels de la planification, ce qui peut s'expliquer par exemple par le besoin de justifier l'action publique, et

d'autre part qu'une compréhension scientifique des relations entre réseaux et territoires est encore en pleine construction.

Une illustration concrète d'actualité permet de se faire une image de cette instrumentalisation : les débats en juillet 2017 relatifs à l'ouverture des LGV Bretagne et Sud-Ouest ont montré toute l'ambiguïté des positions, des conceptions, des imaginaires à la fois des politiques mais aussi du public : inquiétude quant à la spéculation sur l'immobilier dans les quartiers de gare, questionnements des pratiques de mobilité quotidienne mais aussi sociale¹⁰. La complexité et la portée des sujets montrent bien la difficulté d'une compréhension systématique d'effets du transport sur les territoires.

Une vision intégrative : les Systèmes Territoriaux

Cet aperçu introductif, des territoires aux réseaux, nous permet ainsi de clarifier notre approche des systèmes territoriaux qui sera sous-jacente dans l'ensemble de la suite. Une prise en compte des diverses rétroactions potentielles des réseaux pour la compréhension des territoires est suggérée par un retour à la citation de Diderot ayant introduit le sujet devrait aider à ce point, au sens où il ne faut pas considérer le réseau ni les territoires comme des systèmes indépendants qui s'influenceraient soit l'une soit l'autre par des relations causales en sens unique, mais comme des composantes fortement couplées d'un système plus large, et donc étant en relations causales circulaires. Selon les composantes ainsi que l'échelle considérées, différentes manifestations de celles-ci pourront être observables, et il existera des cas où il y apparemment influence de l'une sur l'autre, d'autres où les influences sont simultanées, ou encore d'autres ou aucune relation n'est observable de manière significative.

Comme nous avons mis en exergue le rôle des réseaux dans de nombreux aspects des dynamiques territoriales, nous proposons une définition des systèmes territoriaux les incluant explicitement. Nous considérons un *Système Territorial* comme un *territoire humain qui contient* à la fois des réseaux d'interactions et des réseaux réels. Les réseaux réels, et plus particulièrement les réseaux concrets¹¹, sont une composante à part entière du système, jouant dans les processus d'évolution, au travers de multiples retroactions avec les autres composantes à plusieurs échelles spatiales et temporelles.

¹⁰ Voir par exemple http://www.liberation.fr/futurs/2017/07/02/
immobilier-plus-de-parisiens-comment-les-bordelais-voient-l-arrivee-de-la-lgv_
1580776, ou http://www.lemonde.fr/big-browser/article/2017/10/24/
a-bordeaux-une-fronde-anti-parisiens-depuis-l-ouverture-de-la-ligne-a-grande-vitesse_
5205282_4832693.html pour une réaction "à chaud" de divers acteurs locaux, témoignant d'un impact au minimum sur les représentations. Par exemple, les Bordelais
semblent craindre l'arrivée de Parisiens en recherche d'un logement moins cher et
de meilleurs conditions de vie, ce qui pourrait augmenter les prix au moins aux
environs de la gare.

¹¹ Qui comme nous l'avons vu précédemment sont des réseaux réels matérialisés.

Le réseau n'est pas nécessairement une composante en tant que telle du territoire, mais bien du Système Territorial en notre sens¹². Cette vision rejoint le positionnement de [Dupuy, 1985] qui introduit le territoire comme "produit d'une dialectique" entre composantes territoriales et réseaux. Notons le raccourci sémantique pour désigner les composantes du système territorial qui ne sont pas les réseaux et qui interagissent avec celui-ci, par le terme de territoire. Celles-ci dépendent des ontologies et des échelles considérées, comme nous le verrons par la suite, et peuvent aller des agents microscopiques aux villes elle-mêmes. Comme nous le verrons aussi par la suite (voir 2.1), il existe des paradigmes où ce raccourci n'est pas fait, comme dans le cas particulier des interactions entre transport et usage du sol ou les entités sont spécifiques. Mais il est fait si on reste à un cadre plus général, comme en témoigne l'un des ouvrages de référence sur le sujet [Offner et Pumain, 1996]¹³. Nous assumerons également ce raccourci de langage, en désignant par interactions entre réseaux et territoires ou co-évolution entre réseaux et territoires, les interactions ou la co-évolution entre les réseaux physiques et les composantes qu'ils relient, au sein d'un système territorial et donc d'un territoire.

1.1.2 Les réseaux de transport, catalyseurs privilégiés des interactions

Nous précisons à présent le cas particulier des réseaux de transport et développons des concepts spécifiques associés qui joueront un rôle prépondérant dans la précision de notre problématique.

Caractéristiques et spécificités des réseaux de transport

Centraux aux discussions déjà évoquées sur les effets structurants des réseaux, les réseaux de transports jouent un rôle significatif dans l'évolution des territoires, mais il n'est évidemment pas question de

¹² Ce choix ontologique n'est pas anodin et appuie la dialectique entre réseaux et territoires. Partant de l'époque lointaine où les réseaux physiques n'existaient pas, l'émergence d'un territoire humain, que nous supposons équivalent à un réseau d'interactions, induit la mise en place de la dialectique diachronique complexe entre réseaux physiques et territoires humains. On peut ainsi lire la genèse du système territorial comme une boucle morinienne [Morin, 1976], dans laquelle on entre par le territoire initial puis qui se boucle du réseau physique aux composantes territoriales pour former le système territorial (donc le territoire dans la majorité des cas) de la manière récursive suivante :

 $Territoire\ initial \rightarrow Territoire = Configuration\ territoriale \rightarrow R\acute{e}seau\ physique$

¹³ Lorsque [AMAR, 1985] propose un modèle conceptuel de morphogenèse des réseaux, il désigne les composantes territoriales par "Le Monde", ce qui n'apporte pas de solution au problème sémantique. Le parti pris de garder le territoire, au sein du territoire, suggère une récursivité, et donc une complexité dans la générativité du système [MORIN, 1976]. La mobilisation du concept de morphogenèse à partir du Chapitre 5 suggère que cette récursivité serait plus que fortuite, mais bien intrinsèque au problème.

leur attribuer des effets causaux déterministes. On parlera de manière générale de réseau de transport pour désigner l'entité fonctionnelle permettant un déplacement des agents et des ressources au sein et entre les territoires¹⁴. Même si d'autres types de réseaux sont également fortement impliqués dans l'évolution des systèmes territoriaux (voir par exemple les débats sur l'impact des réseaux de communication sur la localisation des activités économiques), les réseaux de transport conditionnent d'autres types de réseaux (logistique, échanges commerciaux, interactions sociales concrètes pour donner quelques exemples) et sont une entrée privilégiée en rapport aux motifs d'évolution territoriale, en particulier dans nos sociétés contemporaines pour lesquelles les réseaux de transport jouent un rôle privilégié [Bavoux et al., 2005]. Nous nous concentrerons ainsi par la suite uniquement sur les réseaux de transport.

Le développement du réseau français à grande vitesse est une illustration du rôle des réseaux de transport sur les politiques de développement territorial. Présenté comme une nouvelle ère de transport sur rail, il s'agit d'une planification au niveau de l'Etat de lignes totalement nouvelles et relativement indépendantes de par leur vitesse deux fois plus élevée, selon la lecture de [Zembri, 1997]. La grande vitesse a été défendue par les acteurs politiques entre autres comme central pour le développement. L'articulation faible de ces nouveaux réseaux avec le réseau classique et avec les territoires locaux est à présent observé comme une faiblesse structurelle [Zembri, 1997] (c'est à dire conséquence de la structure du réseau tel qu'il a été planifié dans le Schéma Directeur de 1990), et des impacts négatifs sur certains territoires, comme par la suppression de dessertes intermédiaires sur les lignes classiques empruntées par le TGV, qui contribue à un accroissement de l'effet tunnel¹⁵ ont été montrés [Zembri, 2008]. Une revue faite dans [Bazin et al., 2011] confirme qu'aucune conclusion générale sur des effets locaux d'une connection à une ligne à grande vitesse ne peut être tirée, bien que ce sésame garde une place conséquente dans les imaginaires des élus¹⁶. Le développement des différentes Lignes à Grande Vitesse s'inscrit dans des contextes territoriaux très différents, et il est dans tous les cas délicat d'interpréter des processus en les sortant de leur contexte : par exemple, les lignes LGV Nord et LGV Est s'inscrivent dans des échelles européennes plus vastes que

¹⁴ On désigne ainsi à la fois l'infrastructure, mais aussi ses conditions d'exploitation, le matériel roulant, les agents exploitants.

¹⁵ L'effet tunnel désigne le processus de télescopage du territoire traversé par une infrastructure, celle-ci n'étant utilisable à partir de celui-ci.

¹⁶ Mais des conclusions particulières existent dans certains cas : par exemple un effet positif de la LGV Sud-Est sur la fréquentation touristique de villes moyennes intermédiaires comme Montbard ou Beaune [Bonnafous, 1987]; ou le positionnement de Lille comme métropole européenne dans lequel les connexions LGV ont joué [GIBLIN-DELVALLET, 2004].

la LGV Bretagne ouverte en juillet 2017¹⁷. Les effets de l'ouverture d'une ligne peuvent s'étendre au delà des seuls territoires directement concernés : [L'Hostis, Leysens et Liu, 2014] montre par l'utilisation d'indicateurs issus de la *Time Geography*¹⁸ (mesurant une quantité de temps de travail disponible dans le cadre d'un aller-retour journalier) que la ligne Tours-Bordeaux a des répercussions potentielles dans le Nord et l'Est de la France. Ces exemples illustrent la manière dont les réseaux de transport peuvent avoir des effets à la fois directs et indirects, positifs ou négatifs, et à différentes échelles, ou bien aucun effet sur les dynamiques territoriales.

Des processus dépendant des échelles

La question des échelles temporelles et spatiale concernées a été jusqu'ici abordée de manière auxiliaire aux concepts introduits. Nous proposons à présent de les intégrer de manière structurelle à notre raisonnement, c'est à dire guidant le développements de nouveaux concepts. Ainsi, les concepts de Mobilité, d'Accessibilité¹⁹, puis de Dynamique structurelle sur le temps long, correspondent chacun à des échelles de temps et d'espace décroissantes : intra-urbain et journalier, métropolitain et décennal, régional (au sens large et flexible de la portée d'un système de villes) et centennal. La correspondance que nous postulons ici entre échelles de temps et échelles d'espace, loin d'être évidente, sera montrée lors du développement de chacun de ces concepts. Par contre, la prise en compte d'échelles multiples est importante, comme le montre [Rietveld, 1994] par une revue des approches économiques des interactions, qui appuie la différence entre l'intra-urbain et l'intra-régional : à grande échelle, différentes méthodes (modèles ou approches qualitatives) donnent des résultats très différents quant à l'impact du stock d'infrastructure, tandis qu'à petite échelle, l'impact positif du stock global sur la productivité est a priori non discutable.

Transports et Mobilité

La notion de mobilité et l'ensemble des approches associées, capturent en partie nos questionnements à grande échelle. Nous définirons la mobilité de manière générale comme un déplacement d'agents

¹⁷ La ligne LGV Nord relie Paris à Lille puis Calais (ouverte entièrement en 1997), et s'inscrit dans la liaison avec Londres, Bruxelles et Amsterdam. La LGV Est relie Paris à Strasbourg (ouverte partiellement en 2007, puis entièrement en 2016) et permet de desservir le Luxembourg et l'Allemagne. La LGV Bretagne, ouverte en 2017, est le tronçon de la LGV Ouest vers Rennes et sa desserte est uniquement bretonne [Zembri, 2010]

¹⁸ La *Time Geography*, introduite par le géographe suédois T. HÄGERSTRAND, s'intéresse majoritairement aux trajectoires des individus dans le temps et l'espace, et de leurs implications dans les interactions avec l'environnement [Chardonnel, 2007].

¹⁹ L'accessibilité, comme nous le verrons, se définit à plusieurs échelles, mais nous privilégierons ce terme pour les paysages d'accessibilité à l'échelle métropolitaine.

territoriaux dans l'espace et le temps. Elle relève des motifs d'utilisation des réseaux de transport. [Hall, 2005] introduit un cadre théorique permettant une typologie des pratiques de mobilité. En particulier, il montre une décroissance rapide de la fréquence des déplacements avec la portée spatiale et la durée, et donc que les motifs "micro-micro" (pour échelle temporelle journalière et échelle spatiale intra-urbaine), qu'on désigne par mobilité quotidienne, sont majoritaires. Cela ne signifie pas pour autant une absence de lien avec d'autres échelles : d'une part les motifs de mobilité sont très fortement conditionnés par la distribution des activités comme l'illustre [Lee et Holme, 2015], mais également corrélés à la structure sociale [Ca-MARERO et OLIVA, 2008], qui évoluent tous deux à des échelles de temps d'un ordre différent (supérieur à la dizaine d'année, donc au moins un ordre de grandeur de différence). Ainsi, infrastructure et superstructure déterminent pratiques de mobilité, donnant un rôle important aux réseaux de transports dans celles-ci.

Réciproquement, les motifs d'utilisation des réseaux de transport sont le produit des dynamiques de mobilité quotidiennes, et ceux-ci s'y adaptent, tout en induisant des relocalisations des actifs et emplois : il existe une co-évolution entre transports et composantes territoriales aux échelles microscopiques et mesoscopiques, qui sont un objet d'étude à part entière. Par exemple, [Fusco, 2004] révèle une influence²⁰ de la mobilité sur la structure urbaine, l'offre d'infrastructure et ses propriétés ayant cependant des effets simultanément sur la mobilité et sur la structure urbaine. Dans le cas des réseaux autoroutiers, [Faivre, 2003] rappelle la nécessité de construire un cadre d'analyse dépassant la logique des effets structurants sur le temps long, et montre également des interactions à petite échelle propres à la mobilité sur lesquelles des conclusions plus systématiques peuvent être établies, comme une évolution des pratiques de mobilité impliquant une utilisation différente du réseau de transport. Nous avons donc à grande échelle une première interdépendance forte entre réseaux de transports et territoires, une première échelle de co-évolution.

Enfin, il est important de garder à l'esprit la forte contingence des concepts mobilisés ici. La co-construction du concept de mobilité et des solutions techniques modélisant celle-ci dans un but opérationnel, a été illustrée par [Commenges, 2013b] pour le contexte français, qui révèle entre autre une application peu adaptée au contexte français de cadres et méthodes importés des Etats-Unis. Cette contingence signifie que le choix des concepts même dépend de déterminants plus larges que leur utilité directe, et suggère une inscription systémique globale dans le *Système Territorial*.

²⁰ Qui est interprétée comme causale au sens des réseaux Bayesiens.

Transports et Accessibilité

Le concept d'Accessibilité est fondamental pour notre question, puisqu'il se positionne à la croisée même des réseaux et des territoires. Basée sur la possibilité d'accéder un lieu par un réseau de transport (pouvant prendre en compte la vitesse, la difficulté de se déplacer), elle est généralement définie comme un potentiel d'interaction spatiale²¹ [Bavoux et al., 2005]. Elle a été introduite sous cette forme initialement par [Hansen, 1959], dans un but d'application à la planification. Diverses formulations et formalisations d'indicateurs correspondants ont été proposées. Il a été montré que celles-ci rentrent dans le même cadre théorique. En effet, [Weibull, 1976] développe une approche axiomatique de l'accessibilité, c'est à dire proposant de la caractériser à partir d'un nombre minimal d'hypothèses fondamentales (les axiomes). [MILLER, 1999] reprend ce cadre et montre qu'il englobe trois façons classiques de comprendre l'accessibilité. Celles-ci sont respectivement celle basée sur la *Time Geography* et les contraintes, celle sur les mesures d'utilité pour l'utilisateur, et celle sur un temps de trajet moyen. Les mesures correspondantes sont dérivées dans un cadre mathématique unifié, ce qui permet un lien à la fois théorique et opérationnel entre des approches du concept a priori différentes.

On peut voir dans un premier temps dans quelle mesure des motifs d'accessibilité induisent une évolution du réseau. Ce concept est souvent utilisé comme un outil de planification ou comme une variable explicative de localisation des agents par exemple, puisqu'il s'agit par exemple d'un bon indicateur pour la quantité de personnes affectées par un projet de transport.

Les débats récents sur la planification du *Grand Paris Express* [Man-GIN, 2013], cette nouvelle infrastructure de transport métropolitaine planifiée pour les vingts prochaines années, a révélé l'opposition entre une vision de l'accessibilité comme nécessaire pour désenclaver des territoires désavantagés, et une vision de l'accessibilité comme moteur du développement économique pour des zones déjà dynamiques, les deux n'étant pas forcément compatibles car correspondent à des corridors de transport différents. L'un était initialement porté par l'Etat dans la perspective des pôles de compétitivité, l'autre par la région dans une perspective d'équité territoriale. Ces deux logiques répondent bien sûr à des objectifs différents à plusieurs niveaux, et la solution choisie doit former un compromis. Nous reviendrons sur cet exemple précis du Grand Paris en détails par la suite.

Cet exemple permet de suggérer un effet des motifs de potentiels sur l'évolution du réseau : même si celui-ci passe par des structures sociales complexes (nous y reviendrons aussi en détail plus loin), il existe de nombreuses situations où une croissance du réseau de trans-

²¹ et souvent généralisée comme une *accessibilité fonctionnelle*, par exemple les emplois accessibles aux actifs d'un lieu. Les potentiels d'interaction spatiale s'exprimant dans les lois gravitaires peuvent aussi être compris de cette façon.

port (qui peut se manifester par une évolution topologique, c'est à dire l'ajout d'un lien, mais aussi une évolution des capacités des liens) est directement ou indirectement induite par une distribution d'accessibilité [Zhang et Levinson, 2007]. Ce phénomène peut concerner des modifications fondamentales du réseau comme des modifications mineures : [Rouleau, 1985] étudie l'évolution sur le temps long (de 1800 à 1980) des villages satellites à Paris qui ont été progressivement intégrés à son tissu urbain et montre à la fois une persistance de la trame viaire et parcellaire, mais aussi des évolutions locales répondant à des logiques de connectivité par exemple, tout en s'inscrivant dans un cadre d'évolution globale plus complexe (comme dans le cas d'Haussmann). Nous désignerons ce processus abstrait de réponse du réseau à une demande de connectivité par *rupture de potentiel*²².

Un autre processus significatif est l'impact d'une évolution de l'accessibilité par relocalisations sur les motifs d'utilisation du réseau, et particulièrement la congestion, induisant une modification de la capacité (flux pouvant être porté par les liens du réseau) : ce phénomène est montré dans le cas de Beijing par [YANG, 2006], qui révèle des modifications d'impédance (vitesse effective dans le réseau routier) allant jusqu'à 30%. Il peut être mis en correspondance avec les processus liés à la mobilité, même si on se situe ici plutôt dans des échelles meso-meso, c'est a dire une évolution du réseau et des relocalisations sur des temporalités de l'ordre de la dizaine d'année (le réseau étant plus lent, de l'ordre de la vingtaine d'années), et sur des échelles spatiales métropolitaines²³.

Réciproquement, une évolution du réseau implique une reconfiguration immédiate de la distribution spatiale des accessibilités (au sens de l'ensemble des approches existantes, puisque toutes mobilisent le réseau), et aussi potentiellement des transformations territoriales sur une plus longue durée : on rejoint finalement le débat des effets structurants que nous avons déjà commenté. On a déjà vu que l'accessibilité co-évolue²⁴ avec les pratiques de mobilité, ce qui suppose un effet à cette échelle. Concernant les relocalisations et la distribution des populations, il existe des cas où il est en effet possible d'attribuer à la croissance du réseau des dynamiques des territoires, que nous allons développer par la suite.

²² En analogie avec le phénomène de *dieletric breakdown*, ou décharge partielle, qui correspond au passage du courant dans un isolant quand la différence de potentiel électrique est trop grande.

²³ qui correspondent à des étendues spatiales de 100 à 200km, mais à diverse réalités urbaines. Une métropole sera une ville d'importance dans un système de villes à grande échelle, et sera vue avec son territoire fonctionnel (par exemple Paris et une grande partie de l'Île-de-France). L'émergence de nouvelles formes métropolitaines, comme les *Mega-city-regions* qui sont composés de métropoles de taille comparable, sur une faible étendue spatiale, et en très forte interaction, complique cette question de l'échelle. Nous reviendrons sur ces objets en 1.2.

²⁴ Le concept s'applique a priori a diverses échelles, ce qui sera confirmé par la définition plus précise que nous prendrons à la fin de cette première partie.

[Duranton et Turner, 2012] montrent ainsi à une échelle de temps moyenne de 20 ans pour les Etats-unis, par l'utilisation de variables instrumentales²⁵, que la croissance de l'accessibilité dans une ville cause une croissance de l'emploi. Sur une échelle temporelle similaire, mais à l'échelle spatiale du pays pour la Suède, [Jонансson, 1993] montre que l'accessibilité locale ("intra-régionale") et globale ("inter-régionale") explique la croissance de la production et la productivité des entreprises. [Kasraian et al., 2016] procède à une revue systématique des études empiriques des impacts à moyen terme des infrastructures de transport, et montre qu'une densification urbaine à proximité des nouvelles infrastructures est très probable, celle-ci étant résidentielle dans le cas d'une infrastructure ferroviaire et pour les emplois et l'activité industrielle et commerciale dans le cas d'une infrastructure routière²⁶. De même, on peut montrer des effets forts de la présence d'infrastructures pour des types particuliers d'usage du sol : [Nilsson et Smirnov, 2016] l'illustre par exemple pour les fast food dans deux villes aux Etats-Unis, en montrant statistiquement que l'accès à une infrastructure importante induit une agrégation spatiale des commerces.

Ces derniers exemples suggèrent l'existence potentielle d'effets de l'accessibilité, et donc du réseau, sur les dynamiques territoriales. Dans certain cas, les effets structurants sont ainsi présents. Mais ceuxci sont toujours liés au contexte précis ainsi qu'aux échelles. Cela nous permet de faire la transition vers les concepts liés aux dynamiques des systèmes urbains sur le temps long.

Transports et Systèmes Urbains

La troisième entrée conceptuelle sur les interactions entre réseaux et territoires, et qui sera particulièrement liée à l'idée de co-évolution, est celle par les systèmes urbains, à petite échelle spatiale et sur le temps long. Nous désignerons le concept par *Dynamique structurelle du système urbain*.

La Théorie Evolutive des Villes considère les systèmes de villes comme des systèmes de systèmes à de multiples échelles, du niveau microscopique intra-urbain, au niveau macroscopique du système entier, par le niveau mesoscopique de la ville [Pumain, 2008]. Ces systèmes sont complexes, dynamiques, et adaptatifs : leur composants co-évoluent et le système répond à des perturbations intérieures ou

²⁵ La méthode des variables instrumentales permet de dégager des relations causales entre une variable explicative et une variable expliquée. Le choix d'une troisième variable, appelée variable instrumentale, soit être fait tel que celle-ci n'influence que la variable explicative mais pas la variable expliquée, en quelque sorte un choc exogène.

²⁶ Les études revues couvrent majoritairement la seconde moitié du 20ème siècle et l'Europe, les Etats-Unis et l'Asie de l'Est. Il est donc important de garder à l'esprit que même relativement générales, les conclusions doivent toujours être contextualisées.

extérieures par des modifications de sa structure et de sa dynamique. Nous développerons longuement les multiples implications de cette approche tout au long de notre travail, et retenons ici les processus d'interactions entre villes. Ces interactions consistent en des échanges informationnels ou matériels, et la diffusion de l'innovation en est une composante cruciale [Pumain, 2010]. Elles sont nécessairement portées par les réseaux physiques, et plus particulièrement les réseaux de transport. On s'attend ainsi du point de vue théorique à une interdépendance forte entre villes et réseaux de transport à ces échelles, c'est à dire à une co-évolution.

Du point de vue empirique, celle-ci a déjà été mise en valeur : [Bretagnolle, 2009a] souligne une corrélation croissante dans le temps entre la hiérarchie urbaine et la hiérarchie de l'accessibilité temporelle pour le réseau ferroviaire français (a priori plus claire pour cette mesure que pour les mesures intégrées d'accessibilité soumises à l'autocorrélation comme nous le verrons en 4.2). Celle-ci est un marqueur de rétroactions positives entre le rang urbain et la centralité de réseau. Différents régimes dans le temps et l'espace ont été identifiés : pour l'évolution du réseau ferroviaire français, une première phase d'adaptation du réseau à la configuration urbaine existante a été suivie par une phase de co-évolution, au sens où les relations causales sont devenues difficiles à identifier. L'impact de la contraction de l'espace-temps par les réseaux sur le potentiel de croissance des villes avait déjà été montré pour l'Europe par des analyses exploratoires dans [Bretagnolle, Pumain et Rozenblat, 1998].

Les résultats de modélisation par [Bretagnolle et Pumain, 2010a], et plus particulièrement les paramétrisations différentes du modèle Simpop2²⁷, montrent que l'evolution du réseau ferroviaire aux Etatsunis a suivi une dynamique bien différente, sans diffusion hiérarchique, donnant forme localement à la croissance urbaine dans certains cas. Ce contexte particulier de conquête d'un espace vierge d'infrastructures implique un régime spécifique pour le système territorial. D'autres contextes révèlent des impacts différents du réseau à court et long terme : [BERGER et ENFLO, 2017] étudient l'impact de l'établissement du réseau ferroviaire suédois sur la croissance des populations urbaines, de 1800 à 2010, et trouvent un effet causal immédiat de la croissance de l'accessibilité sur la croissance de la population, suivi sur le temps long d'une forte inertie de la hiérarchie des populations. Dans chaque cas, on a bien existence de dynamiques structurelles sur le temps long, qui correspondent aux dynamiques lentes de la structure du système urbain, et témoignent en ce sens d'effets structurants sur le temps long comme le souligne [Pumain, 2014].

²⁷ La structure générique du modèle Simpop2 est la suivante [Pumain, 2008] : les villes sont caractérisées par leur population et leur richesse; produisent des biens selon leur profil économique; les interactions entre villes produisent des échanges, déterminés par les fonctions d'offre et demande; les populations évoluent selon la richesse après échanges.

Il s'agit bien de différencier ces derniers des effets structurants sujets des débats mentionnés précédemment. Au niveau du système urbain, il est pertinent de suivre globalement des trajectoires qui étaient possibles, et localement l'effet a nécessairement un aspect probabiliste. D'autre part, il faut mettre l'accent sur le rôle de la dépendance au chemin pour les trajectoires des systèmes urbains : par exemple la présence en France d'un système préalable de villes et de réseau (routes postales) a fortement influencé le développement du réseau ferré, ou comme [Berger et Enflo, 2017] l'a montré pour la Suède. De même, [Gargi Chaudhuri and Keith C Clarke, 2015] souligne l'importance des évènements historiques dans les dynamiques couplées du réseau routier et des territoires, choc historiques pouvant être vus comme exogènes et induisant des bifurcations du système qui accentuent l'effet de la dépendance au chemin. Ainsi, pour ces dynamiques de structure sur le temps long, des prévisions ne sont guère envisageables.

Cette troisième approche nous a permis de dégager un point de vue complémentaire de la co-évolution, à une autre échelle.

Des liens entre échelles suggérés par les Lois d'Échelle

Notre grille de lecture par échelles progressives, qui permet de dégager une assez bonne correspondance entre échelle spatiale et temporelle, ainsi que d'y associer les concepts adaptés, ne capture bien sûr pas l'ensemble des processus possibles : ceux qui seraient fondamentalement multi-échelles, par exemple en impliquant l'émergence de leur propre niveau intermédiaire, ne sont pas évoqués. Ceux-ci sont importants et nous y reviendrons ci-dessous. Dans un premier temps, nous proposons d'effectuer un lien conceptuel entre les échelles par l'intermédiaire des *lois d'échelles* (que nous comprenons au sens général donné en introduction). Ce lien permet en particulier de dépasser une lecture réductrice par cloisonnement d'échelle.

Les réseaux de transport sont par essence hiérarchiques, cette propriété dépendant des échelles dans lesquelles ils sont intégrés, et se manifestant par l'émergence de lois d'échelles pour leurs propriétés. Par exemple, [Louf, Roth et Barthelemy, 2014] montrent empiriquement des propriétés de loi d'échelle pour un nombre conséquent d'aires métropolitaines à travers la planète. Or les lois d'échelle révèlent la présence de hiérarchies dans un système, comme pour la hiérarchie de tailles dans les systèmes de villes exprimée par la loi de Zipf [Nitsch, 2005] ou d'autres lois d'échelles urbaines [Arcaute et al., 2013; Bettencourt et Lobo, 2015], ce qui suggère une structure particulière pour ces systèmes. On peut s'attendre à la retrouver dans les processus d'interaction eux-mêmes. La topologie du réseau de transport suit de telles lois pour la distribution de ses mesures locales comme la centralité [Samaniego et Moses, 2008], celles-ci étant directement liées au motifs d'accessibilité à différentes échelles. De plus,

Echelle	Echelle spatiale	Echelle temporelle	Concept	Référence
Micro	Intra-urbaine (10km)	Journalière (1j)	Mobilité	[Hall, 2005]
Meso	Métropolitaine (100km)	Décade (10ans)	Accessibilité	[Wegener et Fürst, 2004]
Macro	Régionale (500km)	Siècle (100ans)	Dynamique structurelle	[Pumain, 1997]

la topologie du réseau fait partie des facteurs induisant la hiérarchie d'usage, se retrouvant dans les externalités négatives de congestion, en relation avec la distribution spatiale de l'usage du sol [Tsekeris et Geroliminis, 2013]. Ainsi, la considération des lois d'échelles pour les réseaux de transport, et plus généralement pour les systèmes territoriaux, est dans un premier temps une signature de la complexité de ces systèmes, et permet dans un second temps un lien implicite entre les échelles.

Echelles : *synthèse*

Pour rappeler notre cadre de lecture par échelles, nous proposons le tableau suivant :

Les appellations ainsi que les ordres de grandeur des échelles temporelles et spatiales sont évidemment indicatifs, de même que les concepts clés qui sont en fait ceux qui nous ont permis d'entrer dans ces échelles. Nous donnons également des références illustrant des cadres conceptuels correspondant. Ce tableau nous sera toutefois utile pour garder à l'esprit les échelles typiques auxquelles nous ferons référence.

Processus : synthèse

A ce stade, nous pouvons d'ores et déjà proposer une synthèse préliminaire des processus d'interaction que nous avons introduit. Une typologie plus exhaustive sera possible à l'issue du chapitre.

Ainsi, des composantes territoriales peuvent agir sur les réseaux de transport par :

- Impact des motifs de mobilité sur les impédances et les capacités
- Rupture de potentiel, émergence de centralités
- Sélection hiérarchique de l'accessibilité
- Effets systémiques structurels et bifurcations

Réciproquement, des processus où les propriétés des réseaux agissent sur les territoires incluent :

• Relocalisations induite par des contraintes de mobilité

- Changement d'usage du sol du à une infrastructure de transport
- Motifs d'accessibilité induits par les réseaux, pouvant induire des relocalisations
- Interactions entre territoires portées par les réseaux, incluant l'effet tunnel lorsque celles-ci sont télescopées

Ces différents processus n'ont pas tous le même statut d'abstraction ni les mêmes échelles. Nous avons de plus volontairement occulté des processus déjà évoqués, au sein desquels le couplage est plus fort et pour lesquels la circularité est déjà présente dans l'ontologie, comme les processus liés à la planification. Nous allons détailler à présent ceux-ci, ce qui nous permettra par la suite de raffiner la liste ci-dessus et de la présenter sous forme de typologie après l'avoir enrichie par des études empiriques.

1.1.3 Des interactions à la co-évolution

A ce stade, nous avons identifié des processus d'interaction entre réseaux de transport et territoires jouant un rôle significatif dans la complexité des systèmes territoriaux. Dans le cadre de l'approche d'un système territorial par la définition donnée lors de la construction première des concepts, cette question peut être reformulée comme l'étude de systèmes territoriaux réticulaires, avec une emphase sur le rôle des systèmes de transports. On a vu que l'étendue des échelles spatiales et temporelles va de celle de la mobilité quotidienne (micromicro) à des processus sur le temps long dans les systèmes de villes (macro-macro), avec la possibilité de combinaisons intermédiaires. La précision des échelles particulièrement pertinentes fera l'objet de la majorité des préliminaires (Partie 1) et des fondations (Partie 2), jusqu'au Chapitre 5 qui conclura les fondations. Etendons à présent cette liste et donnons des exemples concrets précisant la complexité des interactions.

Importance du contexte géographique

La mise en contexte de notre question dans un cadre bien particulier révèle l'importance de la prise en compte du contexte géographique. L'exemple des territoires de montagne, où les contraintes de ressources et de déplacement sont fortes, montre la richesse des situations possibles lorsqu'un schéma générique est mis en contexte dans un cas particulier.

Par exemple, sur des territoires de montagne français comparables, [Berne, 2008] montre que les réactions à un même contexte d'évolution du réseau de transport peuvent mener à des dynamiques territoriales très diverses, certains trouvant de forts bénéfices de l'accessibi-

lité accrue, d'autres au contraire devenant plus fermés. Dans le même cadre, ces potentiels processus antagonistes sont examinés plus en détail par [Bernier, 2007], pour lesquels il propose un typologie basée sur le potentiel d'ouverture à la fois des dynamiques territoriales et des dynamiques des réseaux : par exemple, un territoire peut présenter de riches opportunités d'attractivité, par exemple des opportunités touristiques, tout en gardant une faible accessibilité. Réciproquement, il donne l'illustration des contraintes douanières pouvant freiner le potentiel d'ouverture d'une infrastructure performante.

En écho aux approches par systèmes de villes, [Torricelli, 2002] montre comment dans ce contexte il est possible de faire un lien entre nature des flux de transport et développement local du système urbain : les villes de montagne ont d'abord émergé comme point de passage sur les chemins de col, puis ont perdu de leur importance avec l'avènement des routes. L'arrivée du chemin de fer a pu les redynamiser, par le tourisme et l'industrie, et enfin l'autoroute a encore plus récemment induit une déstructuration par des effets de périurbanisation par exemple. Ainsi, les dynamiques structurelles sur le temps long sont particulières, en conséquence du contexte géographique.

Processus de planification

Comme nous l'avons déjà suggéré, les potentiels impacts des dynamiques territoriales sur les réseaux impliquent des processus à plusieurs niveaux. Ainsi, les projets d'infrastructure sont généralement planifiés²⁸, afin de répondre à certains objectifs fixés par des acteurs souvent institutionnels. Ces objets nous amènent progressivement vers le concept de gouvernance, mais prenons d'abord un instant pour illustrer des projets planifiés.

L'exemple de l'échec de planification de l'aéroport de Ciudad Real en Espagne montre que la réponse d'une infrastructure planifiée n'est pas systématique. Les explications à celui-ci découlent très probablement d'une combinaison complexe de multiples facteurs, difficiles à séparer. [Otamendi, Pastor et Garci, 2008] prédisait avant l'ouverture de l'aéroport une gestion complexe due à la dimension des flux attendus et propose un modèle approprié, or les ordres de grandeurs de flux effectifs étaient plus proches des milliers que des millions planifiés et l'aéroport a rapidement fermé. Il est compliqué de savoir la raison de l'échec, s'il s'agit de l'optimisme quand au polycentrisme régional (l'aéroport est à mi-chemin de Madrid et Séville), la non-réalisation de la gare sur la ligne à grande vitesse, ou des facteurs purement économiques.

²⁸ Nous parlerons de *planification* en général, urbaine, territoriale, d'un projet d'infrastructure, pour désigner la conception volontaire d'un projet et d'un plan par un acteur d'aménagement, dans le but de transformer l'espace selon certaines motivations propres à l'acteur et à ses interactions avec les autres acteurs.

[Heddebaut et Ernecq, 2016]²⁹ montrent pour l'impact des infrastructures sur le long terme, dans le cas du tunnel sous la Manche³⁰, par une analyse des investissements et des politiques dans le temps, que les effets effectivement constatés pour la région Nord-Pas-de-Calais comme un gain de centralité et de visibilité au niveau Européen, sont en fort décalage avec les discours justifiant le projet, et que le renouvellement des acteurs implique un non-accompagnement du projet sur le long terme, rendant son impact plus hasardeux : on rejoint l'idée défendue par Bretagnolle dans [Offner et al., 2014] selon laquelle des "effets de structure" effectivement existent mais que ceux-ci se manifestent sur le temps long en termes de dynamiques systémiques pour lesquelles une vision locale courte n'a que peu de sens. A l'échelle intra-urbaine, [FRITSCH, 2007] prend l'exemple du Tramway de Nantes pour montrer, par une étude localisée des transformations urbaines à proximité d'une nouvelle ligne, que les dynamiques de densification urbaine sont en décalage avec ce qu'en attendaient les élus et planificateurs, c'est à dire une association forte entre proximité à la ligne et densification.

Ces exemples confirment que la compréhension des effets des territoires sur les infrastructures impliquent la prise en compte de la notion de *gouvernance*.

Gouvernance

Le développement d'un réseau de transport nécessite des acteurs disposant à la fois des moyens concrets et économiques de mener à bien la construction, et d'autre part ayant la légitimité de mener ce développement. Il s'agit donc nécessairement d'acteurs de la superstructure sociale, pouvant être différents niveaux de pouvoirs publics, parfois associés à des acteurs privés. Le concept de *gouvernance*, que nous comprenons comme la gestion d'une organisation disposant de ressources communes dans des buts liés à l'intérêt de la communauté concernée (pouvant être définis de différentes façons, par exemple de manière *top-down* par les acteurs de gouvernance ou de manière *bottom-up* par consultation des agents concernés par la décision), est alors essentiel pour comprendre l'évolution des projets de transports et donc des réseaux de transport. Nous parlerons de *gouvernance territoriale* lorsque les décisions concernent directement ou indirectement des composantes de systèmes territoriaux.

Par exemple, [Offner, 2000] illustre les difficultés posées par la dérégulation de certains services publics en réseau quant aux compé-

²⁹ Le possible jeu de mot par le titre ambigu sur l'existence du "Tunnel effect" rappelle l'effet tunnel, qui réside en la non-interaction d'une infrastructure sur un territoire le traversant sans s'y arrêter.

³⁰ Mis en service en 1994 entre Calais en France et Folkestone au Royaume-uni, ce tunnel ferroviaire sous-marin de 50km permet une liaison physique entre l'Europe continentale et le Royaume-uni.

tences territoriales des autorités, et propose l'émergence d'une régulation locale pour un nouveau compromis entre réseaux et territoires.

Certains aspects de la gouvernance territoriale peuvent avoir un impact déterminant sur le développement des infrastructures de transport. Illustrons ceux-ci pour des cas particuliers d'application de *modèles urbains*³¹. [Deng et Liu, 2007] montre dans le cas des villes Chinoises que les nouvelles directives en terme de logement peuvent fortement détériorer la performance des infrastructures, et que des dispositions spécifiques doivent être prises pour anticiper ces externalités négatives. Celles-ci concernent notamment les dispositions en termes de *Transit Oriented Development* (TOD). Le TOD est une approche particulière de l'aménagement urbain visant à articuler développement de l'offre de transport en commun et développement urbain. Il s'agit en quelque sorte d'une co-évolution volontaire de la part des développeurs (autorités administratives et/ou de planification), dans laquelle l'articulation est pensée et planifiée. Nous reviendrons sur le TOD lors d'études empiriques par la suite.

Ces concepts ne sont pas nouveaux, puisqu'ils étaient implicites par exemple dans l'aménagement des villes nouvelles en Ile-de-France, sous une forme différente puisque celles-ci étaient également fortement zonées (c'est à dire planifiées en zones relativement cloisonnées et mono-fonctionnelles) et dépendantes de l'automobile pour certains quartiers [Ostrowetsky, 2004]. [L'Hostis, Soulas et Wulf-HORST, 2012] est un exemple de projet européen ayant exploré des mises en pratiques de paradigmes du TOD : des détails d'aménagement comme un réseau de qualité pour les modes actifs à courte portée sont cruciaux pour une concrétisation des principes. Par exemple, [L'Hostis, Soulas et Vulturescu, 2016] utilise une analyse multicritères³² pour comprendre les facteurs déterminants dans la sélection des stations de la ville planifiée, incluant densité urbaine et temps d'accès aux stations. [LIU et L'Hostis, 2014] montre que si certaines politiques de planification, en particulier en France, ne se réclament pas directement de cette approche, leurs caractéristiques sont très similaires comme le révèle le cas de Lille.

L'articulation entre transport et aménagement doit souvent être opérée de façon fortement couplée pour parvenir aux objectifs recherchés, d'autant plus que le projet est spécialisé : [LARROQUE, MARGAIRAZ et ZEMBRI, 2002] rappelle l'anecdote du metro SK de Noisy-le-Grand montre un cas de dépendance complète de la fonctionnalité du transport à l'aménagement local. Pour desservir un projet de com-

³¹ Au sens de la planification, c'est à dire de schémas conceptuels génériques permettant de guider une démarche de planification.

Dans le cadre de l'aide à la décision pour la planification des infrastructures de transport, l'analyse multi-critère est une alternative aux analyses coût-bénéfices (qui comparent des projets en agrégeant un coût généralisé) qui permet de prendre en compte de multiple dimensions, souvent contradictoires (par exemple coût de construction et robustesse pour un réseau), et obtenir des solutions optimales au sens de Pareto

plexe de bureau, une ligne spécifique avec une matériel roulant léger est construite pour faire le lien avec la gare RER de Mont-d'Est. Le projet immobilier avortera alors que la ligne est inaugurée en 1993, celle-ci sera d'abord entretenue régulièrement puis laissée a l'abandon sans jamais avoir été ouverte au public.

Ainsi, les processus de gouvernance, qui peuvent se décliner de plusieurs manières, comme ceux de planification, ou plus spécifiques de TOD, jouent un rôle important dans les interactions entre réseaux de transports et territoires. Ceux-ci s'ajoutent à notre panorama, étant d'un type particulier car impliquant leur propre niveau d'émergence et une forte autonomie.

Co-évolution des réseaux de transport et des territoires

Cette construction progressive nous a permis de souligner la complexité des interactions entre réseaux et territoires, ce qui suggère la pertinence de l'ontologie particulière de la *co-évolution* comme nous l'avons définie en introduction. [Levinson, 2011] souligne la difficulté de la compréhension de la co-évolution entre transport et usage du sol en termes de causalités circulaires, en partie à cause des différentes échelles de temps impliquées, mais aussi par l'hétérogénéité des composantes. [Offner, 1993] parle de congruence, qu'on peut comprendre comme une dynamique systémique impliquant des corrélations fortuites ou non, ce qui serait une vision préliminaire de la co-évolution.

La nécessité de dépasser les approches réductrices des effets structurants, tout en capturant la complexité des interactions entre réseaux et territoires par leur co-évolution, est confirmée par le cas des effets économiques des trains à grande vitesse : [Blanquart et Koning, 2017] procède à une revue à la fois théorique et empirique, incluant la littérature grise, des études de ce cas spécifiques, et conclut, au delà des retombées directes liées à la construction sur lesquelles il y a consensus, que les effets propres sur un temps plus longs paraissent aléatoires. Cela témoigne en fait de situation locales complexes, un grand nombre d'aspect conjoncturels entrant en jeu dans la production d'effets, qu'on ne peut alors pas attribuer seulement au transport. Cette revue confirme par ailleurs le décalage entre les discours politiques et techniques prévalant aux projets de transports et les analyses effectives a posteriori révélée par [Bazin et al., 2010]. [Bazin, Beckerich et Delaplace, 2007] procèdent d'autre part à une étude ciblée du marché immobilier à Reims en anticipation de l'arrivée du TGV Est. En procédant à une analyse diachronique pour chaque année entre 1999 et 2005, par quartier, des prix immobiliers et de la provenance des acheteurs (Franciliens ou locaux), ils concluent que seul des opérations très localisées pouvaient être directement reliées au TGV, l'ensemble du marché répondant à une dynamique globale indépendante.

Ainsi, notre aperçu constructif, large et voulu circulaire, des interactions entre réseaux de transports et territoires, confirme la pertinence de cette notion de *co-évolution* d'une part, mais suggère un approfondissement et une clarification de celle-ci. Nous nous appliquerons dans la section suivante à approfondir de manière empirique différents aspects abordés ici.

* *

*

1.2 DE PARIS À ZHUHAI

Nous développons dans cette section des cas d'étude géographique à l'échelle métropolitaine comme nous l'avons définie précédemment. Nous les choisissons très différents pour maximiser la diversité des processus potentiellement identifiables (puisque comme nous l'avons montré le contexte géographique est crucial). Il s'agit de la métropole du Grand Paris, et de la mega-région urbaine du Delta de la Rivière des Perles dans le sud de la Chine.

L'objectif de cette section est de spécifier, préciser, illustrer, enrichir, l'aperçu des processus de co-évolution que nous avons établi de manière générale. La géographie ne peut tirer de conclusion générales, dans les cas où celles-ci sont pertinentes, sans études de cas particuliers bien précis. Dans l'application d'un modèle générique à un ensemble de territoires, on cherchera les déviations au modèle, qu'il s'agira alors d'expliquer par des raisonnements géographiques, signifiant une forte implication avec le lieu en particulier. Notre démarche est similaire : si nous pouvons raccrocher nombre de concepts développés à un cas d'étude, ceux-ci seront nécessairement enrichis³³.

1.2.1 Le Grand Paris : histoire et enjeux

La région parisienne est une bonne illustration de la complexité des interactions entre réseaux de transports et territoires. La période temporelle pertinente pour notre question court de la fin du 19ème siècle à nos jours. Nous proposons, après une présentation brève du contexte, de rappeler l'histoire du développement des transports en Île-de-France, qui permet de révéler ses articulations avec l'urbanisme, en particulier les enjeux liés à la planification du réseau de transport. Nous traiterons ensuite le présent et le futur du Grand Paris, d'abord concernant l'émergence d'une nouvelle structure de gouvernance au niveau de la métropole, puis les projets de transport récents impliqués, mettant l'exemple au coeur de notre problématique. Nous ferons finalement une incursion plus détaillée dans une analyse empirique des relations entre variables territoriales et différentiels d'accessibilité pour les projets de transport, préfigurant certains des développements méthodologiques que nous mènerons par la suite.

Contexte

Le contexte spatial est l'échelle intermédiaire d'une région métropolitaine globalement monocentrique. Précisons cette structure spatiale. Si la métropole prise jusqu'à la moyenne couronne (c'est à dire l'étendue correspondant environ au noyau urbain central bâti de manière

³³ Et possiblement connectés par le transfert de la structure du système particulier à la structure de la connaissance.

continue) possède un certain niveau de polycentrisme³⁴, notamment grâce à l'effet des villes nouvelles, devenues d'importants pôles d'emplois locaux [Berroir et al., 2005].

Le rôle des différentes infrastructures de transport dans les différentes dynamiques économiques en Ile-de-France n'est pas trivial, comme le montre [Padeiro, 2013] qui cherche à expliquer statistiquement la croissance de l'emploi entre 1993 et 2008 dans les moyennes et petites communes franciliennes en fonction de la proximité à une infrastructure : les effets dépendent à la fois du mode (autoroute ou aéroport) mais aussi du secteur économique considéré. Réciproquement, les développements successifs des projets de transport, s'opèrent de manière généralement discontinue dans le temps. Comme nous le détaillerons par la suite, ils sont liés à des dynamiques de planification et des processus de gouvernance qu'il convient de comprendre de manière conjointe aux dynamiques territoriales. La métropole parisienne témoigne ainsi de relations complexes entre territoires et réseaux.

Réseau de Transport du Grand Paris

L'histoire du développement du réseau de transport de la métropole francilienne est rappelée dans [Larroque, Margairaz et Zembri, 2002]. La particularité centralisatrice française a conduit à une structure particulière du réseau ferré à l'échelle nationale, mais aussi à l'échelle régionale. La domination de Paris a en effet fortement marqué la structuration du réseau de transport au cours des différentes périodes historiques où il a subi des évolutions conséquentes. [Larroque, Margairaz et Zembri, 2002] décomposent la seconde moitié du vingtième siècle en trois périodes.

Avant 1975, la distribution de l'accessibilité des actifs aux emplois est clairement centralisée et le centre de Paris fortement congestionné. La mise en place du réseau RER entre 1975 et 1988 permet grâce à la construction conjointe des Villes Nouvelles une articulation entre transport et urbanisme et un certain niveau de polycentrisme. [Larroque, Margairaz et Zembri, 2002] rappellent toutefois que les réalisations dans cette période sont en décalage croissant avec la demande réelle de transport. La période qui suivra 1988 jusqu'à 2000, année marquée par l'alternance politique, consistera surtout en le renouvellement des acteurs et l'élaboration de nouvelles stratégies, comme en témoigne le Schéma Directeur de 1994. Les développements du réseau sur cette période n'induisent aucun changement majeur de la

³⁴ Le polycentrisme, en opposition au monocentrisme, signifie qu'il est possible d'identifier différents centres dans un système urbain. La façon de définir un centre dépendra de l'échelle et des phénomènes considérés : il peut s'agir par exemple de l'existence de différents pôles d'emplois de taille comparable à l'échelle intramétropolitaine. De la même façon que le concept est polymorphe, les façons de le mesurer quantitativement sont multiples et complémentaires [Servais et al., 2004].

distribution spatiale de l'accessibilité, malgré la réalisation de l'interconnexion centrale du RER D, de la ligne 14 et du RER E.

Les schémas directeurs successifs conduisent au SDRIF de 2013 [SDRIF, 2013]. Ceux-ci préfigurent le futur réseau du *Grand Paris Express*, dont un fort impact est attendu en termes de cohésion territoriale en favorisant les liaisons de banlieue à banlieue qui sont les plus problématique dans le réseau actuel. De plus, le schéma est volontairement intégré, par densification autour des gares et articulation des opérations d'aménagement et des nouvelles infrastructures. Cet aspect d'intégration des réseaux dans les territoires et des territoires par les réseaux se retrouve bien dans la communication publique de l'Autorité Organisatrice des Transports (ancien STIF, devenu Ile-de-France Mobilités)³⁵. On retrouve donc l'importance des processus de gouvernance dans l'articulation des réseaux de transport et des territoires dans l'exemple de l'Île-de-France au cours du temps.

D'autres processus déjà mentionnés se manifestent également, sous différentes formes. Par exemple, le rôle de la dépendance au chemin dans les trajectoires du système territorial est illustré par [LARROQUE, MARGAIRAZ et ZEMBRI, 2002] qui montre l'inertie due aux choix techniques successifs lorsque ceux-ci rencontrent un succès : le choix initial d'un réseau métropolitain intra-muros, la mise en place du réseau RER, la politique de tarification par zones de la carte orange à la fin des années 90, sont autant de décisions sur des domaines divers mais ayant chacune leur part significative dans les développements postérieurs possibles. Ces auteurs montrent également comment les décisions concernant le réseau de transport en commun peuvent induire, par mauvaise couverture ou performance du réseau de transport en commun, l'émergence de processus d'interactions où le couple usage de la voiture et périurbanisation³⁶ est favorisé, à l'image de l'automobile city décrite par [Newman et Kenworthy, 1996].

[Padeiro, 2009] rappelle que le prolongement des lignes de métro en proche banlieue a toujours été restreint, renforçant le rôle de la ville Paris dans les relations entre le territoire métropolitain et les réseaux. Par ailleurs, il montre que les polarisations urbaines (adaptation du bâti et de la composition socio-économique) autour des stations au delà du périphérique sont pour leur partie socio-économique

³⁵ Voir par exemple l'actualité du 4 octobre 2017 sur https://www.iledefrance-mobilites.fr/actualites/un-reseau-de-transports-qui-grandit/qui souligne que "Avec 29 km de réseau supplémentaires et l'ouverture de 28 points de desserte, les territoires se rapprochent", témoignant de l'importance de l'accessibilité pour les territoires, notion par ailleurs floue. Les mêmes orientations de discours se retrouvent pour les différents projets d'extension ou de construction de nouvelles lignes.

³⁶ Le périurbain fait partie des nouvelles formes d'urbanisation, et consiste en des territoires intermédiaires entre urbain et rural, bénéficiant d'une bonne accessibilité mais présentant un faible densité et des habitats individuels majoritairement.

des dynamiques antérieures qu'accompagne alors l'arrivée du métro : dans ce cas, il n'y a pas d'effet structurant à proprement parler.

Vers une gouvernance métropolitaine

Au contexte métropolitain décrit précédemment correspond une complexité de la structure de gouvernance. En particulier, les développements actuels, à la fois du réseau de transport et des projets d'aménagement, coincident avec l'émergence d'un nouveau niveau de gouvernance, intermédiaire entre communes et départements d'une part et Région et Etat d'autre part. On peut se demander dans quelle mesure cette émergence est reliée aux dynamiques d'interactions entre territoires, et comment celle-ci influera sur les interactions entre territoires et réseaux. [Gilli et Offner, 2009] proposent en 2009 un diagnostic de la situation institutionnelle de la région parisienne, et des pistes pour une approche couplée entre gouvernance et aménagement. Ils mettent en valeur la préfiguration de "l'instauration d'un acteur collectif métropolitain", qui correspond à la métropole du Grand Paris qui sera inaugurée 7 ans plus tard, puisque le conseil métropolitain est mis en place fin 2016.

La mise en place de ce nouveau niveau de gouvernance a été disséquée plus récemment toujours par [GILLI, 2014], où il la situe dans un contexte socio-économique et des autres niveaux de gouvernance (Etats, Region, intercommunalités) plus large. Cela lui permet de dresser un diagnostic territorial qui fournit des éléments explicatifs à son émergence : en perte de vitesse sur le plan de l'aménagement par rapport à ses dynamiques passées, mais aussi sur le plan social au vu d'inégalités socio-économiques locales très fortes, la métropole a besoin de se réinventer, et ce nouveau souffle se cristallise naturellement dans le Grand Paris, c'est à dire que, comme il conclut, "l'avenir de Paris est sa banlieue". Cette initiative se concrétise par la convergence d'une part des initiatives et du volontarisme des élus locaux, et d'autre part d'une redéfinition du rôle de l'Etat, voulue centralisatrice jusqu'en 2012 puis laissant la place libre à la gouvernance métropolitaine avec l'alternance politique en 2012. même si les projets lancés et les financements restent les mêmes dans les grandes lignes : le projet du Grand Paris Express est un compromis entre la solution voulue par l'Etat et celle poussée par la région. Suivant [Desjardins, 2016], si la structure de gouvernance métropolitaine est aujourd'hui toujours relativement impuissante, et si l'oubli de l'aspect social du développement métropolitain est toujours très présent, ces mutations témoignent toutefois d'un changement structurel profond dans l'organisation de la région. Nous détaillons à présent le projet de transport du Grand Paris Express.

FIGURE 1 : **Projets de transport successifs de la métropole du Grand Paris.** Nous montrons les deux alternatives du projet Arc Express porté par la région, et le Grand Paris Express (GPE) porté par l'état, et dont le tracé final résulte d'un compromis entre l'état et la région. Le Réseau du Grand Paris, précurseur du GPE, n'est pas montré ici pour des raisons de visibilité à cause de sa proximité avec celui-ci. Le fond de carte, donné pour indication, a pour source OpenStreetMap.

FIGURE 2 : Impact des lignes du GPE sur l'accessibilité temporelle. La carte donne, pour les département de la petite couronne et Paris (75, 92, 93, 94) les gains d'accessibilité temporelle, définie pour chaque Iris (unité statistique infra-communale élémentaire) comme le temps moyen de trajet en transport en commun vers l'ensemble des centroïdes des autres communes pondéré par la population de destination. Le gain est calculé comme la différence d'accessibilité avec et sans Grand Paris Express. Nous montrons le gain normalisé, c'est à dire centré (de moyenne nulle) et réduit (écart-type unitaire). En bleu, les lignes et nouvelles gare du GPE. On observe les gains les plus forts majoritairement à l'Est, en cohérence avec la littérature existante comme [Beaucire et Drevelle, 2013]. Les sillons territoriaux des lignes de RER (A à l'ouest, D et B au nord, B au sud) présentent des gains relativement faible car déjà très accessibles.

Projet du Grand Paris Express : vers un rééquilibrage des accessibilités ?

La région métropolitaine de Paris est en train de connaître de grandes mutations, avec la mise en place d'une gouvernance métropolitaine et de nouvelles infrastructures de transport. La construction d'un réseau de métro en rocade permettant des liaisons de banlieue à banlieue répond à un besoin ancien, et a mené à plusieurs propositions sur lesquelles se sont opposés l'Etat et la Région au tournant des années 2010 [DESJARDINS, 2010]. Le projet Arc Express [STIF, 2010], porté par la Région et plus axé sur une égalité des territoires, contrastait avec les propositions initiales de Réseau du Grand Paris visant à relier des "clusters d'excellence" en dépit d'un possible effet tunnel. La solution finalement adoptée (voir le dernier schéma directeur [SDRIF, 2013]) est un compromis et permet un rééquilibrage est-ouest de l'accessibilité [Beaucire et Drevelle, 2013]. La Fig. 1 cartographie les différents projets.

Les impacts immédiats d'une nouvelle infrastructure de transport en termes d'accessibilité, c'est-à-dire la transformation de la distribution spatiale des différentes accessibilités, concernent généralement des territoires bien plus larges que les zones où la ligne et ses stations sont implantées : les motifs d'accessibilité sont dus aux propriétés topologiques du réseau et celles-ci sont fortement discontinues en fonction de la structure du graphe. Illustrons le cas des lignes du Grand Paris Express et de leur impact direct sur l'accessibilité régionale. Nous cartographions en Fig. 2 les gains d'accessibilité temporelle permis par ce projet sur les départements métropolitains (75, 92, 93 et 94), avec le tracé le plus récent pour l'ensemble des lignes. L'accessibilité temporelle est calculée pour chaque Iris i de la manière suivante : avec les populations des communes P₁, t₀ un paramètre de durée typique d'un déplacement (que nous fixons à une heure [Za-HAVI et TALVITIE, 1980]), t_{ij} le temps de trajet en transports en commun entre le centroïde de i et celui de la commune j, nous prenons une moyenne pondérée définie comme

$$Z_{i} = \sum_{i} \left(\frac{P_{j}}{\sum_{k} P_{k}} \right) \cdot exp\left(-t_{ij}/t_{0} \right)$$

Cette expression permet de bien avoir un potentiel d'accessibilité, et la pondération par la population permet de ne pas biaiser l'indicateur par des trajets potentiellement négligeables en proportion des trajets totaux.

On observe, conformément à l'analyse de [Beaucire et Drevelle, 2013], un rééquilibrage des différentiels d'accessibilité entre Est et Ouest. A distance égale du centre, l'accessibilité est plus basse pour la Seine-Saint-Denis et le Val-de-Marne que pour les Hauts-de-Seine, c'est à dire que ces départements on potentiellement plus de difficultés pour accéder au reste de la métropole. La carte des gains

temporels moyens montre les gains plus grands également pour ces deux départements. Des communes socio-économiquement défavorisées comme Aulnay sont bénéficiaires des plus grands gains de temps. La ligne 16 permet en effet un désenclavement significatif du nord-est de la Seine-Saint-Denis [DESJARDINS, 2016]. La création de liaisons de banlieue à banlieue est un aspect majeur de ce désenclavement et est voulue comme un moteur de l'émergence de nouvelles centralités, vers une métropole toujours plus polycentrique, dans la lignée de la politique d'aménagement des villes nouvelles, pour ne plus parler de proche banlieue mais de quartiers faisant partie intégrante du Grand Paris. Les effets peuvent cependant être mitigés selon les zones : [L'HORTY et SARI, 2013] montrent que le Grand Paris Express induira un accès direct à un plus grand nombre d'emplois pour un nombre significatif de chômeurs en petite couronne, mais que les écarts avec la grande couronne seront accentués et qu'il existe des risques de décrochage de certaines communes lointaines mal desservies.

L'un des enjeux cruciaux pour la construction du Grand Paris est de veiller à ne pas obtenir une métropole à plusieurs vitesses, et de tirer parti de la connectivité accrue à plusieurs échelles (internationale, nationale, régionale, métropolitaine) pour réduire les inégalités territoriales plutôt que les accroitre³⁷. Le nouveau réseau semble contribuer à cette dynamique, sous condition d'un développement territorial coordonné, permettant la concrétisation des gains immédiats d'accessibilité en terme de transformation territoriale. Il n'existe pas de méthode pouvant prévoir celle-ci de manière déterministe comme nous l'avons déjà développé. Il est cependant possible d'analyser rétrospectivement de manière empirique les couplages entre variables territoriales et variables liées, pour essayer de mettre en valeur quantitativement les phénomènes de co-évolution. Nous proposons à présent d'illustrer cette démarche.

Lier dynamiques territoriales et construction du Grand Paris Express

L'un des enjeux de notre travail par la suite sera de clarifier empiriquement des situations dans lesquelles des dynamiques fortement couplées relevant de cette problématique pourront être mises en évidence puis à travers des modèles d'isoler des processus et des conditions permettant telle ou telle situation. Nous proposons d'approfondir l'illustration du GPE, tout en introduisant une approche possible pour lier dynamique territoriale et celle du nouveau réseau anticipé.

Des aspects très variés des territoires sont concernés par l'interaction avec les réseaux. Dans nos études précédentes, les aspects économiques et financiers du foncier et l'immobilier n'ont pas été considé-

³⁷ Rappelons qu'une inégale répartition des agents et des ressources générera des différences de potentiel plus grandes qu'une distribution uniforme, celles-ci pouvant alors être liées à l'évolution du réseau

Mode	Vitesse moyenne	
RER	60km.h ⁻¹	
Transilien	100km.h ⁻¹	
Metro	30km.h⁻¹	
Tramway	20km.h ⁻¹	

rés. Il s'agit cependant d'éléments cruciaux des dynamiques territoriales et sont étudiés de manière intensive dans des champs comme l'analyse territoriale ou l'économie urbaine : par exemple, [Номосіали, 2009] étudie les choix résidentiels des ménages pour comprendre les interactions entre usage du sol et transport. Nous proposons ici d'utiliser entre autres une base de données de transactions immobilières pour la région parisienne sur les 20 dernières années, avec une granularité temporelle de 2 ans et coordonnées spatiales exactes. [Guérois et Le Goix, 2009] l'utilise par exemple pour établir une typologie des dynamiques spatiales du marché immobilier parisien.

Cette étude plus précise peut être comprise comme une recherche de signes précurseurs de rupture de potentiels du réseau : en effet, si des dynamiques territoriales intrinsèques anticipent l'arrivée d'une nouvelle station de transports en commun, les implications seront bien différentes du cas où celle-ci conduit ces variables après sa construction. L'interprétation en termes "d'effets structurants" sera notamment très différente. Nous appliquons ici la méthode de causalités spatio-temporelles développée en 4.2. Nous proposons d'étudier les relations entre différentiel d'accessibilité pour chaque projet, et variables liées au foncier (transactions immobilières) et socio-économiques, afin de voir s'il est possible de capturer un lien entre les différentiels d'accessibilité et les différentiels de dynamisme territoriaux. En effet, les liens entre nouvelles lignes et évolution du foncier sont parfois remarquables [Damm et al., 1980].

Les données des transactions immobilières sont fournies par la base BIENS (Chambre des Notaires d'Ile de France, base propriétaire). Le nombre de transactions utilisables après nettoyage est de 862360, se répartissant sur l'ensemble des IRIS, pour une plage temporelle couvrant de 2003 à 2012 incluses. Les données par IRIS pour population et revenu (revenu médian et indice de Gini) proviennent de l'INSEE. Les données de réseau ont été vectorialisées à partir des cartes des projets (voir Fig. 1 pour les projets). Les temps de trajets sont calculés par transport en commun uniquement, avec des valeurs standard pour les vitesses moyennes des différents modes [Larroque, Margairaz et Zembri, 2002], que nous résumons dans le tableau suivant :

La matrice des temps est calculée depuis l'ensemble des centroïdes des IRIS vers l'ensemble des centroïdes des communes. Ceux-ci sont reliés au réseau par des connecteurs à la gare la plus proche, de vitesse 50km.h⁻¹ (trajet en voiture). Les analyses sont implémentées intégralement en langage R [R Core Team, 2015] et l'ensemble des données, du code source et des résultats sont disponibles sur un dépôt git ouvert³⁸.

Nous calculons pour chaque projet, le différentiel ΔT_i d'accessibilité temporelle de trajet à partir de chaque IRIS en comparaison à celui dans le réseau sans le projet, où accessibilité temporelle est définie par $T_i = \sum_i \exp -t_{ij}/t_0$ avec j communes, t_{ij} temps de trajet, et t₀ paramètre d'atténuation. Nous ne pondérons pas ici par la population des communes de destination contrairement à l'accessibilité Z_i utilisée précedemment, pour être certain de ne pas capturer d'autocorrélation pour la population ou de corrélations entre population et variables territoriales que nous étudions. A chaque projet est associée une date³⁹, correspondant environ à l'année d'annonce mature du projet, restant toutefois arbitraire car difficile d'une part à déterminer précisément, un projet n'émergeant pas d'un coup du jour au lendemain, et d'autre part pouvant correspondre à des réalités différentes d'apprentissage du projet par les différents agents économiques (nous faisons donc l'hypothèse réductrice mais nécessaire d'une diffusion sur la majorité des agents dans un temps inférieur à l'année).

Le lien entre différentiels d'accessibilité et variations des variables territoriales est effectué par l'étude des corrélations retardées. Cette méthode sera développée en détail en 4.2, mais nous n'avons pas besoin d'entrer dans les détails techniques ici. L'idée est la suivante : si deux variables présentent une forte corrélation avec un certain retard temporel, on a une notion faible de causalité, les variation de la variable précurseur pouvant être à l'origine de celles de la variable non-décalée dans le temps (on dit faible, car il est toujours possible que les corrélations soient fortuites bien sûr).

Nous étudions les corrélations retardées de ΔT_i avec les variations ΔY_i des variables socio-économiques suivantes : population, revenu médian, indice de Gini des revenus, prix moyen des transactions immobilières et montant moyen des crédits immobiliers. la corrélation est estimée en retardant l'accessibilité, c'est à dire en estimant $\rho \left[\Delta T_i(t-\tau), \Delta Y_i(t) \right]$. Un test de Fisher est effectué pour chaque estimation, et la valeur est fixée nulle si celui-ci n'est pas significatif (p < 0.05 de manière classique). L'étude avec accessibilité généralisées au sens de Hansen [Hansen, 1959] (pondérée par les populations à la destination, ou les populations à l'origine et les emplois à la destination) a également été menée mais moins intéressante car très peu

https://github.com/JusteRaimbault/CityNetwork/tree/master/Models/ SpatioTempCausality/GrandParis. Les données de la base BIENS ne peuvent être fournies pour raison de fermeture contractuelle de la base.

³⁸ A l'adresse

^{39 2006} pour Arc Express, 2008 pour le Réseau du Grand Paris, 2010 pour le Grand Paris Express

Figure 3 : Corrélations retardées empiriques entre différentiel d'accessibilité et variables territoriales. Les graphiques donnent la valeur de la correlation retardée $\rho(\tau)$ en fonction du retard τ , entre le différentiel d'accessibilité en temps de trajet moyen ΔT_i , pour chaque projet (en colonnes : Arc Express, Grand Paris Express (GPE), Réseau du Grand Paris (RGP)) et le différentiel des différentes variables socioeconomiques et de transactions immobilières ΔY_i (en lignes : valeur des crédits immobiliers (Crédit), Prix moyen des transactions immobilières (Prix), Revenu médian (Revenu), Indice de Gini des revenus (Gini), Population), pour différentes valeurs du paramètre d'atténuation t_0 . Les barres d'erreur donnent l'intervalle de confiance à 95%. Les lignes rouges pointillées aident à la lecture : elles permettent horizontalement de voir si les corrélations sont significatives, verticalement de voir la valeur du retard optimal. Par exemple, la lecture de la première ligne suggère que les projets anciens ont causé une baisse des crédits immobilier accordés dans les iris dont l'accessibilité a suivi une croissance positive, et que ces variables sont synchronisées pour le GPE.

sensible à la composante mobilité (réseau et atténuation) par rapport aux variables elle-mêmes, informe uniquement sur des relations entre celles-ci et n'est donc pas présentée ici.

Nous présentons en Fig. 3 les résultats pour l'ensemble des réseaux et variables. La lecture s'effectue de la façon suivante : pour une variable et un projet donnés, la courbe $\rho(\tau)$ peut présenter des maxima pour une valeur $\tau_m>0$ ou $\tau_m<0$. Cette corrélation maximale correspond à un retard donnant une "synchronisation maximale" entre les deux variables, et le signe du retard donne le sens de la causalité entre les deux variables.

Il est remarquable tout d'abord de noter l'existence d'effets significatifs (au sens de corrélations significative et d'un intervalle de confiance à 95% ne contenant pas 0) pour l'ensemble des variables. Des valeurs plus basses du paramètre t₀ donnent des corrélations plus fortes en valeur absolue, révélant une possible plus grande importance de l'accessibilité locale sur les dynamiques territoriales. Le comportement de la population montre un pic très détaché correspondant à 2008, laissant supposer un impact du plus vieux projet d'Arc Express sur la croissance de la population. Sous cette hypothèse, l'effet des autres projets serait alors fallacieux de par leur proximité dans les grands tronçons. Cela impliquerait d'ailleurs que les zones où ils diffèrent fondamentalement comme le Plateau de Saclay ne soient que très peu sensibles au projet de transport, confirmant l'aspect artificiel planifié du développement de ce territoire.

Concernant les revenus, on observe un comportement similaire mais négatif, ce qui impliquerait un appauvrissement lié à l'augmentation de l'accessibilité, mais qui semble toutefois s'accompagner d'une baisse des inégalités puisque le coefficient de Gini présente également une corrélation négative dans les retards positifs. Enfin, comme attendu les prix immobiliers sont tirés par l'arrivée potentielle des nouveaux réseaux, effet qui disparait à deux ans pour le Grand Paris Express, suggérant une bulle immobilière passagère dans les quartiers autour Nous démontrons ainsi l'existence de liens de correlations retardées complexes qu'on nomme causalités en ce sens, entre dynamiques territoriales et dynamiques anticipées des réseaux. Une compréhension plus fine des processus à l'oeuvre est au delà de la portée de cet étude préliminaire, car supposerait par exemple des études de terrain qualitatives ou des études de cas ciblées.

Cette étude suggère des effets potentiels de la modification d'accessibilité due au projets du Grand Paris, puisque certains effets révélés peuvent être liés à des politiques d'aménagement anticipant également le nouveau réseau. On suggère ainsi une existence réelle des processus d'effet du réseau sur les territoires, puisque la majorité des retards optimaux sont positifs.

1.2.2 Le Delta de la Rivière des Perles

Nous changeons à présent de région géographique, de structure urbaine, de période temporelle, pour évoquer un autre cas d'étude pertinent en Chine. La région parisienne étendue peut être lue comme un ensemble cohérent⁴⁰ : il s'agirait d'une *Mega-région urbaine*, concept que nous allons à présent définir et développer pour l'instance particulière du Delta de la Rivière des Perles.

Nouveaux régimes urbains et Mega-région urbaine

La notion de megalopolis a été introduite par [GOTTMANN, 1964] pour désigner l'émergence d'agglomérats urbains à une échelle non-existante auparavant. Elle est à l'origine du concept de *Mega-city Region* (MCR) consacré par [Hall et Pain, 2006]. Sur le cas Européen, ils dégagent des ensembles de métropoles fortement connectées par rapport aux flux de mobilité, aux connections entre entreprises, qui forment ce qu'il appellent des *Mega-city Region* polycentriques (par exemple la Randstad aux Pays-bas, le région Rhin-Ruhr en Allemagne). Les caractéristiques sont une certaine proximité géographique des centres, une forte intégration par les flux, et un certain niveau de polycentrisme. Il s'agit d'une forme urbaine inédite par le passé, dont l'émergence semble liée aux processus de globalisation.

Ce concept est toujours plus d'actualité avec l'apparition récente de nouveaux types d'urbanisation, notamment par l'urbanisation accélérée dans des pays à forte croissance économique et en mutation très rapide comme la Chine [Swerts et Denis, 2015].

Le second cas que nous développons ici rentre dans cette catégorie : le Delta de la Rivière des Perles (PRD) est une des illustrations classiques de la structure d'une MCR fortement polycentrique. Historiquement initialement composé de Guangzhou uniquement, le développement de Hong-Kong puis la mise en place des Zones Economiques Spéciales dans le cadre des politiques d'ouverture de Deng Xioaping, a conduit à un développement extrêmement rapide de Shenzhen, et dans une moindre mesure de Zhuhai . La province du Guangdong dans lequel le PRD se situe intégralement a actuellement le plus fort PIB régional de Chine, et la MCR regroupe une population d'environ 60 millions (les estimations fluctuant fortement selon la définition prise de la MCR et la prise en compte de la population flottante). Le phénomène de migration des campagnes est très présent dans la région et une ville comme Dongguan a par exemple basé son économie sur des manufactures employant ces travailleurs migrants.

C (CL): Le développement de Zhuhai a aussi été rapide, mais le modèle de développement adopté est different de celui de Shenzhen (dev. de l' industrie lourde interdi à Zhuhai) —> . Il faut que tu precise (dans une paranthèse qu'il s'agit de deux ZES)

^{40 [}GILLI, 2005] rappelle l'importance de l'hinterland du Bassin Parisien et l'importance de ne pas considérer l'hypercentre de manière isolée, et considérer ainsi la MCR qui inclut un certain nombre de centres urbains importants à une heure de Paris : Chartres, Orléans, Rouen, Reims et Lille grâce à la grande vitesse.

Gouvernance de la MCR

[YE, 2014] analyse les actions de gouvernance métropolitaine à l'échelle de centres de la MCR, et plus particulièrement comment les communes de Guangzhou et Foshan ont progressivement accru leur coopération pour former une zone métropolitaine intégrée, pouvant ainsi fortement influencer le développement des transports par exemple et permettant la mise en place d'un réseau connecté. Une forte tension entre des processus émergents par le bas, et un dirigisme d'état relativement fort en Chine, se répercutant de l'État central, au gouvernement provincial jusqu'aux gouvernements locaux, a permis la mise en place d'une telle structure. La compétition avec les autres villes de la MCR reste très forte, et la logique d'intégration (au sens d'articulation entre les différents centres, d'interactions et de flux entre ceux-ci) de la MCR est partiellement guidée par la région seulement. La nature particulière des ZES de Shenzhen et Zhuhai, liée aux relations privilégiées avec les Zones Administratives Spéciales de Hong-Kong et Macao, qui n'ont été réintégrées à la République Populaire qu'à la fin du millénaire et conservent un certain niveau d'indépendance en termes de gouvernance, complique encore les jeux d'acteurs au sein de la région. La question de la correspondance entre certains niveaux de gouvernance et des processus urbains est épineuse : [Liao et Gaudin, 2017] interprète les transferts progressifs des initiatives économiques du pouvoir central vers les autorités locales comme une forme de gouvernance multi-niveaux.

C (CL): Ajouter plus haut "Zone Economique Speciale" (ZES)

C: district panyu

Gouvernance des transports

Dans le cadre des transports pour la MCR, il n'existe pas d'autorité spécifique à cette échelle pour l'organisation des transports (mais bien des entités au niveau de l'Etat, de la Province et des Communes), et chaque commune gère indépendamment le réseau local, tandis que les connections entre villes sont assurées par le réseau de train national. Cela conduit à des situations particulières dans lesquelles des zones se retrouveront très enclavées, avec une hétérogénéité très forte localement. Ainsi, la pointe sud de la ville de Guangzhou qui sert d'accès direct à la mer, est plus proche géographiquement du centre de Zhongshan, mais un lien direct par transports en commun est difficile à envisager, alors que la zone est bien reliée au centre de Guangzhou par la ligne de métro. Une situation similaire s'observe au terminus de la ligne 11 de Shenzhen, pour le quartier limitrophe de Dongguan, ce dernier étant très peu accessible en transports en commun⁴¹. Cette situation serait cependant transitoire, étant donné les infrastructures déjà en construction et celles planifiées sur un plus

⁴¹ Voir la carte 4 pour les localisations, celle-ci donnant par ailleurs les accessibilités par réseau routier.

Table 1: Transports en commun dans le Delta de la Rivière des Perles. Nous donnons les populations en 2010 issues de [Guangdong Province, 2013]. Les kilométrages sont issus des différents documents de planification pour les metros de Guangzhou [Guangzhou Metro, 2016], Shenzhen [Shenzhen Planning Bureau, 2016] et Dongguan [Dongguan Metro, 2017] et pour le tramway de Zhuhai [Zhuhai Tramway, 2016]. Zhongshan n'est pas incluse car exploite un système de bus en site propre mais pas d'infrastructure lourde.

Ville	Population	Réseau 2016	Réseau 2030
Guangzhou - Foshan	18.9 Mio	390km	8ookm
Shenzhen	10.4Mio	286km	1124km
Dongguan	8.2Mio	38km	195km
Zhuhai (Tramway)	1.2Mio	10km	173km

long terme : le métro de Shenzhen, qui couvre aujourd'hui 285km, est planifié pour atteindre jusqu'à 30 lignes et une longueur d'environ 1100km⁴² en 2030 comme déclaré par le plan officiel de la ville [Shenzhen Planning Bureau, 2016]. Il est clair que ces développements suivent pour la majorité un développement urbain existant, une question cruciale est la volonté et la capacité à contenir l'étalement urbain et structurer les futurs développements autour de ce nouveau réseau, dans l'esprit d'une intégration volontaire entre urbanisme et transport de type Transit Oriented Development que nous avons introduit précédemment. Différents terminus seront connectés au metro de Dongguan, et de nouvelles lignes intercités structureront les déplacements de plus longue portée, ce qui fera du Delta dans un horizon temporel proche une MCR relativement bien intégrée en termes de transports en communs. Pour se donner une idée du développement du réseau dans les années à venir, la Table 1 donne la taille des réseaux planifiés dans les différentes villes d'ici 2030.

C (CL): D'où viennent ces chiffres? Je ne connait pas les chiffres exactes des autres villes mais je suis sure des chiffres de Zhuhai car j'ai récemment travaillé dessous. La population permanent de Zhuhai en 2010 selon les chiffre officielle était de : 1,562,530 (hukou pop.: 1,048,398; Pop. Flottante : 514,132) * www.stats-zh.gov.cn

Impact du Pont Zhuhai-Hong-Kong-Macao

Un projet majeur d'infrastructure de transport dans la région est le pont-tunnel fermant l'embouchure du Delta, reliant Zhuhai et Macao à Hong-Kong (HZMB). La longueur de la traversée est de 36.5km, ce qui en fait un ouvrage d'art exceptionnel [Hussain et al., 2011]. L'ouverture au traffic a été retardée de plusieurs années et est prévue finalement pour fin 2017⁴³. [Zhou, 2016] montre que les changements

⁴² A titre de comparaison, le réseau Transilien a une longueur avoisinant les 1300km en incluant les lignes RER, ce qui pourrait les rendre comparable, mais il faut garder à l'esprit que l'Ile-de-France a une surface de 12000km² contre 2000km² pour Shenzhen. Cela implique pour Shenzhen une densité de desserte bien plus haute, correspondant aux zones de fortes densité urbaine, si bien que le plan prévoit 70% de transit par métro à l'horizon 2030.

⁴³ voir http://www.hzmb.org/cn/default.asp

Figure 4 : Gain d'accessibilité permis par le HZMB dans le Delta de la Rivière des Perles, pour le territoire de Chine continentale. (*Gauche*) Accessibilité à la population Z_i ; (*Droite*) Gains normalisés d'accessibilité. La population de Hong-Kong est prise en compte dans les points de destination. Le réseau autoroutier (2017) est cartographié en bleu et le nouveau lien du pont en violet.

de motifs d'accessibilité attendus pour l'Ouest du Delta sont relativement forts, et ceux-ci peuvent potentiellement induire de fortes bifurcations dans les trajectoires des villes. La nécessité du projet est défendue par les différents porteurs du projet (Province du Guangdong, Région Administrative Spéciale de Hong-Kong, Région Administrative Spéciale de Macao) par des arguments de fort bénéfice économique dans le cadre des politiques d'ouverture, ainsi que par un bénéfice social pour l'Ouest notamment. Par exemple, Zhuhai se positionne comme un nouveau pivot entre Hong-Kong et l'ouest. L'équilibrage d'accessibilité, au sens de la diminution des inégalités spatiales d'accessibilité, s'opère cependant pour le mode routier uniquement, ce qui conduit à questionner ses impacts potentiels : d'une part l'accès à l'automobile reste réservé à une partie de la population seulement, d'autre part les effets négatifs de la congestion peuvent rapidement modérer les gains d'accessibilité. Ces gains d'accessibilité sont cartographiés suivant la même méthode que précédemment, et montrés avec l'accessibilité Z_i elle-même en Fig. 4.

Les impacts à moyen et long terme du pont sont ainsi difficiles à estimer. [Wu et al., 2012] trouve des motifs similaires à ceux que nous estimons, c'est à dire un bénéfice significatif pour Zhuhai (et Hong-Kong que nous n'avons pas pris en compte), ainsi que des effets immédiats de modification de traffic et des impacts économiques

liés au péage ou à l'accroissement du tourisme. Ils postulent surtout la position de Zhuhai-Macao comme un nouveau pivot dans la région. Si cela est vérifiable immédiatement en termes de centralité et d'accessibilité, il n'est pas dit que cette nouvelle position influence particulièrement la trajectoire socio-économique de Zhuhai. Un accompagnement politique particulier passant par une collaboration accrue entre Hong-Kong, Zhuhai et Macao sera importante [Zноu, 2016]. Des effets économiques immédiats sont attendus, comme une augmentation des résidents de Zhuhai travaillant à Hong-Kong (les habitants de Zhuhai sont les seuls de la région à bénéficier d'une carte spéciale leur permettant de se rendre régulièrement dans les Zones Administratives Spéciales⁴⁴), mais le contraire, comme des investissements de Hong-Kong vers l'ouest du Delta n'ont pas de raison d'être systématiques : le premier cas prolonge la dynamique déjà existante avec Macao, le second est à construire en grande partie. Ainsi, cet exemple est un cas typique de notre problématique générale.

Perspectives

Une piste d'exploration passant par la modélisation consiste à poser le problème différemment et de chercher comprendre la dynamique du système métropolitain de manière intégrée, c'est à dire comme un système territorial en notre sens, dans lequel le couplage fort entre territoire et réseau est opéré par une ontologie propre des entités de gouvernance. Celle-ci sera l'objet de la section ??.

Cette deuxième étude plus brève nous a permis de mettre en valeur une structure de gouvernance fondamentalement différente, mais la même idée d'un projet de transport considérable modifiant profondément les motifs d'accessibilité. Les attentes des acteurs quant aux mutations territoriales potentiellement induites sont comparables au sens qu'une forte attente est mise dans le projet.

1.2.3 Comparabilité des études de cas

Nous avons étudié ici deux cas de développement métropolitain et de projets d'infrastructures dans leurs cadres. La possibilité de transfert des modèles urbains (comme le TOD), au sens de l'applicabilité de cadres génériques à des contextes géographiques différents, est généralement délicate. La synthèse de conclusions empiriques issus de cas d'étude très éloignés l'est également.

La particularité Est-asiatique a déjà été montrée pour la structure économique, et comment celle-ci ne peut être interprétée de manière simple par une séparation des processus microscopiques et macroscopiques comme certaines lectures rapides et idéologiquement orientée ont pu le faire, comme la vision de la Banque Mondiale [Amsden,

⁴⁴ Source: sortie de terrain du 06/11/2016 avec C. Losavio (voir A.2).

1994]. La comparabilité de systèmes urbains est une question ouverte au centre des enjeux de la Théorie Evolutive Urbaine. Celle-ci est liée au caractère ergodique de ces systèmes : l'hypothèse d'ergodicité postule que la trajectoire d'une ville dans le temps capture l'ensemble des états urbains possibles, et ainsi que les différentes villes sont différentes manifestations du même processus stochastique à différentes périodes. Dans ce cas, un ensemble de villes permettrait de se faire une idée des trajectoires temporelles. Intuitivement ce n'est pas le cas, et les systèmes urbains seraient plutôt non-ergodiques [Pumain, 2012b]. Empiriquement, cette non-correspondance entre statistiques globales et dynamiques individuelles des villes est montrée pour des données de traffic par [Depersin et Barthelemy, 2017]. Ainsi il s'agira de rester prudent pour la généralisation des conclusions, autant empiriques que théoriques, ou issues de la modélisation.

* *

1.3 ELEMENTS DE TERRAIN

Cette section propose d'illustrer la problématique des interactions entre réseaux de transports et territoires, et plus particulièrement leur complexité et la diversité des situations possibles déjà perceptibles de manière qualitative (et également subjective dans un second temps) à l'échelle microscopique, par des exemples concrets de terrain. Le terrain géographique est le Delta de la Rivière des Perles en Chine, dans la province du Guangdong, que nous avons décrit ci-dessus, et plus particulièrement en grande partie la ville de Zhuhai. L'objectif est d'enrichir notre répertoire par des situations concrètes, de voir si celles-ci peuvent être associées aux processus génériques que nous avons déjà dégagé, ou si d'autres se manifestent aux échelles d'observation.

Nous assumons le terme de *Terrain géographique*, en toute conscience des débats épistémologiques que peuvent poser l'utilisation de celuici. En effet, on extrait des observations de lieux expérimentés, dans le cadre d'une problématique particulière [Retaillé, 2010]. Notre démarche appuiera aussi sur le rôle des représentations, souligné comme forme à part entière de terrain par [Lefort, 2012], lorsque nous prendrons une position subjective.

C (CL) : Tu devrais ajouter une note sur la definition de villes moyennes utilisée dans le projet (voir interview de Natacha sur le site de MEdium) Dans le cadre du projet européen Medium⁴⁵, visant à une approche interdisciplinaire de la soutenabilité pour les villes Chinoises en se concentrant sur les villes moyennes , cette ville a été choisie comme cas d'étude. Lorsque la source n'est pas explicitement précisée, les observations proviennent du travail de terrain, pour lequel des compterendus narratifs sont disponibles en Annexe A.2. Le protocole de selection des objets et des lieux, ainsi que le protocole d'observation, sont donnés aussi. Le format des compte-rendus narratifs est "à-lavolée" suivant les recommandations de [Goffman, 1989] pour la prise de notes en terrain d'immersion notamment, tandis que la position volontairement subjective rejoint [Ball, 1990] qui souligne l'importance de la réflexivité pour tirer des conclusions rigoureuses à partir d'observations qualitatives de terrain duquel le chercheur est partie intégrante⁴⁶.

⁴⁵ Le projet Medium, qui met en partenariat des université européennes et chinoise, s'intitule "New pathways for sustainable urban development in China's medium-sized cities. Il vise à étudier la soutenabilité selon un prisme interdisciplinaire et multidimensionnel, dans le cas de zones urbaines en forte croissance. Trois villes moyennes chinoise ont été choisies comme cas d'étude. Voir http://mediumcities-china.org/pour plus d'information.

⁴⁶ La considération du chercheur comme *sujet* en relation avec son objet d'étude n'implique pas dans notre cas de rétroaction du chercheur sur le système vu l'ampleur de celui-ci dans le cas d'un réseau de transport à l'échelle d'une ville, mais bien un conditionnement des observations par une subjectivité dont il s'agit de se détacher dans l'exploitation postérieure du matériau d'observation, mais qu'ignorer ne peut qu'augmenter les biais.

1.3.1 Développement d'un réseau de transport

L'objectif du travail de terrain est donc d'observer les multiples facettes et couches d'un système de transport public complexe et en mutation permanente, ses liens avec les opérations urbaines visibles, et dans quelle mesure ceux-ci témoignent de processus d'interaction entre réseaux et territoires. La portée des observations s'étend sur Zhuhai comme illustration des transports locaux mais aussi ponctuellement sur d'autres régions en Chine. Ces observations ont une logique propre en comparaison de la modélisation des réseaux de transport ou l'analyse de données, comme des études d'accessibilité ou des modèles d'interaction entre usage du sol et transport, qui seront menés par la suite. En effet, celles-ci échouent généralement à capturer des aspects à une grande échelle, souvent directement liés à l'utilisateur, qui peuvent devenir cruciaux au regard de l'utilisation effective du réseau. Par exemple, la multi-modalité⁴⁷ peut être rendue efficace en pratique par l'emergence de modes de transports auto-organisés informels, ou la mise en place de nouveaux modes comme le vélo en partage, ce qui résout le "problème du dernier kilomètre" [Liu, Jia et Cheng, 2012], qui semble être souvent négligé dans la planification de zones nouvellement développées en Chine. Au contraire, des détails pratiques comme la réservation des tickets ou les délais d'enregistrement à l'embarquement peuvent influencer considérablement les motifs d'usage.

Différents voyages sur le territoire Chinois ont été effectués pour observer les manifestations concrètes du développement du réseau à grande vitesse. Depuis 2008, la Chine a établi le plus grand réseau de HSR du monde à partir de zéro, qui a connu un grand succès et dont les lignes sont actuellement saturées. Celui-ci répond à des motifs de demande primaires en termes de taille de ville, montrant qu'il a été planifié de telle façon que le réseau réponde à des dynamiques territoriales. Son fort usage montre l'impact du réseau sur la mobilité, possible précurseur de mutations territoriales.

Pour montrer dans quelle mesure les territoires peuvent affecter le développement des réseaux de manière diverse, prenons un exemple particulier, lié au développement du tourisme, qui correspond à une dimension particulière qui a été prise en compte dans la planification. Ainsi, la ligne entre Guangzhou et Guiyang (axe nord-ouest précurseur de la future liaison directe Guangzhou-Chengdu) a vu la construction de stations spécifiques au développement du tourisme, comme Yangshuo dans le Guangxi, dont la fréquentation a alors for-

⁴⁷ La multi-modalité consiste en la combinaison de différents modes de transports : routier, train, métropolitain, tramway, bus, modes doux, etc., dans un motif de mobilité. Un système de transport multimodal consiste en la superposition des couches modales, et celles-ci peuvent plus ou moins bien s'articuler pour la production de trajets optimaux selon de multiples objectifs (coût, temps, coût généralisé, confort, etc.) qui eux-même dépendent de l'individu, du motif de déplacement.

tement augmenté. Un an après l'ouverture de la gare, le lien routier majeur avec la ville est toujours en construction, montrant que les différents réseaux réagissent différemment aux contraintes à différents niveaux. Un grand nombre de trains s'y arrêtent toutefois le week-end - plus d'un par heure, et sont remplis plus de deux semaines en avance. De nouveaux motifs de mobilité peuvent être induits par cette nouvelle offre, comme l'illustre l'interview d'une habitante de Guangzhou faite a Yangshuo, qui était venue pour un court week-end avec ses collègues, dans le cadre d'un voyage de "teambuilding" financé par sa startup en technologie de l'information. Ces nouvelles pratiques de mobilité sont montrées par une deuxième interview d'une habitante de Pékin rencontrée à Emeishan, envoyée par son entreprise de Design Industriel pour un court passage à Chengdu pour une formation dans une filiale locale. L'entreprise privilégie le train à grande vitesse, et celle-ci a récemment accru ses pratiques de mobilité pour ses salariés.

Une stratégie similaire peut s'observer concernant la desserte de destinations touristiques pour la ligne Chengdu-Emeishan. L'objectif principal de cette ligne est pour l'instant de desservir les destinations touristiques très fréquentée d'Emeishan et de Leshan. Cependant, le lien manquant entre Leshan et Guiyang est deja bien avancé dans sa construction et complétera le lien direct entre Guangzhou et Chengdu. Cela révèle des dynamiques diachroniques et complémentaires de développement du réseau en fonction des propriétés de territoires. Cette ligne fait partie du squelette structurant des "8+8" reformulées récemment par le gouvernement central⁴⁸, et les territoires traverses en attendent beaucoup comme le montre [LU et al., 2012] pour la ville de Yibin a mi-chemin entre Chengdu et Guiyang.

Nous observons également des mutations conjointes du réseau ferroviaire et de la ville Nous illustrons ainsi en Fig. 5 l'insertion du HSR dans ses territoires. Des effets directs du réseau sont liés au développement de quartiers totalement neufs aux alentours des nouvelles gares, parfois dans une démarche de type TOD - nous y reviendrons plus en détail. De plus, des effets indirects plus subtils sont suggérés par des indices comme la promotion des opérations par la publicité. Celle-ci montre les attentes socio-économiques envers le réseau et les agents locaux qui se doivent contribuer à son succès : les publicités vantant les mérites de la grande vitesse, et la vente d'appartement dans des opérations immobilières associées. Cette dynamique semble contribuer à la construction d'une "classe moyenne" et au rôle qu'elle doit jouer dans le dynamisme des territoires [Rocca, 2008]⁴⁹. L'inser-

⁴⁸ Il s'agit du plan général pour les futures lignes à grande vitesse, réactualisé récemment pour comprendre 8 parallèles nord-sud et 8 autres est-ouest, complétant les 4+4 déjà réalisées.

⁴⁹ Construction, comme le souligne JEAN-LOUIS ROCCA, autant concrète car relevant de certaines réalités objectives, qu'imaginaire dans les discours universitaires et politiques, qui construisent l'objet simultanément à son étude ou son utilisation.

tion des lignes dans les territoires semble dans certains cas forcée, comme le montre la gare de Yangshuo qui exploite l'opportunité du tourisme offerte par le passage de la ligne dans une zone très peu peuplée mais très attractive par ses paysages, ou les nouvelles opérations immobilières peu accessibles par leur prix à Zhuhai.

Enfin, il est important de noter que le développement du réseau répond simultanément à différents types de contexte territoriaux. Des branches à courte portée du nouveau réseau à grande vitesse, comme la ligne Guangzhou-Zhuhai, peuvent être vues comme à l'intermédiaire entre un service a longue distance et un transport régional de proximité, en fonction de la modularité des motifs de desserte. Cette ligne s'inscrit ainsi dans des interactions urbaines à longue portée (le service Zhuhai-Guiyang étant par exemple assuré) et dans des interactions au sein de la Mega-city Region, l'essentiel de la desserte étant des trains pour Guangzhou. A cela s'ajoute le réseau de train classique qui conserve un certain rôle dans les interactions territoriales : certaines connexions requièrent l'utilisation des deux réseaux et des transports urbains, comme la liaison entre Zhuhai et Hong-Kong expérimentée par voie terrestre seulement⁵⁰.

1.3.2 Implémentation du TOD : des illustrations contrastées

Le développement simultané du réseau de transport et de l'environnement urbain est directement observable sur le terrain. Le réseau urbain local et les opérations de développement immobilières sont planifiés en étroite conjonction avec le nouveau réseau de train : le tramway de Zhuhai, pour lequel une unique ligne est aujourd'hui ouverte et en phase de test, vise a participer à une approche par "Transit-oriented Development" (TOD) 51 du développement urbain qui vise à favoriser l'utilisation des transports publics et une ville avec moins d'automobiles, comme voulu par exemple par le Comité de Planification de la High-Tech Zone en charge du développement autour de la gare nord de Zhuhai. L'observation des alentours de la gare de Tangjia, également construite dans le même esprit, une certaine atmosphere de désertion et une organisation peu pratique peut mener au questionnement de l'efficacité de l'approche. Cela suggère également une certaine nature auto-prophétique du projet, comme suggéré par les publicités pour un nouvel immobilier à vendre, appuyant sur l'importance de la presence de la ligne ferroviaire. Toute une narration incitant les acteurs locaux et les individus à s'impli-

C (CL): Tu as cité auparavant -dans la partie que j'ai lu - le "TOD" mais par un lecteur comme moi - qui ne sais pas de quoi il s'agit il faudra (au moins que tu ne l'aies déjà fait dans une partie précédente de la thèse) préciser que tu parles du "Transit-oriented Development"

⁵⁰ À la suite du Typhoon Hato le 23/08/2017, les liaisons maritimes avec le centre de Hong-Kong et l'aéroport international ont été interrompues pour une grande partie du delta, et n'ont été rétablies pour Zhuhai que début novembre 2017.

⁵¹ Voir les travaux préliminaires de consultation pour la planification, comme par exemple https://wenku.baidu.com/view/b1526461ff00bed5b8f31d01.html pour le contexte du nouveau quartier de Xiaozhen, à l'ouest de Xiangzhou.

Figure 5 : Manifestations locales des mutations induites par le nouveau réseau à grande vitesse. (Haut Gauche)
Gare à grande vitesse de Tangjia, sur la commune de Zhuhai. La publicité monumentale pour une opération immobilière vante les mérites d'une proximité au réseau, qui est également utilisée comme un argument pour des prix plus élevés; (Haut Droite) Ligne à grande vitesse à Zhuhai, arrêt de bus déserté et projet immobilier en cours de réalisation dans une zone difficilement accessible : cette frange urbaine est en contact direct avec le milieu rural de l'autre côté de la ligne, et excentrée de la ville; (Bas Gauche) La gare de Yangshuo sur la ligne Guangzhou-Guiyang, dont la principale fonction est le développement de cette destination touristique qui base la majorité de son économie sur ce domaine; (Bas Droite) Publicité pour la grande vitesse dans le Sichuan, à la gare de l'aéroport international de Chengdu sur la ligne vers Leshan et Emeishan. Le train quitte la ville futuriste pour survoler la campagne, rappelant l'effet tunnel des territoires intermédiaires télescopés par la grande vitesse.

quer autour du TOD semble être utilisée par différents acteurs du développement.

D'autres observations de terrain, comme dans les Nouveaux Territoires (New Territories) à Hong-Kong, témoignent d'un TOD efficace et réalisant son objectif, avec une complémentarité entre transport lourd et tramway local léger, ainsi qu'une grande densité urbaine autour des gares. Ces observations rappellent la complexité des trajectoires urbaines couplées au développement du réseau, et qu'il s'agit d'être prudent avant de tirer toute conclusion générale a partir de cas particuliers. Nous résumons en Fig. 6 la comparaison des deux cas de TOD évoqués ci-dessus, sous forme de schéma synthétique des grandes lignes urbanistiques de chacune des zones. A Hong-Kong, les zones urbaines ont été planifiées conjointement avec la ligne du MTR (transport lourd) et les multiples lignes de tramway léger [Hui et Lam, 2005]. L'infrastructure du transport léger et l'organisation des missions permettent de rejoindre rapidement la gare la plus proche, distribuant une accessibilité très uniforme pour l'ensemble des quartiers du territoire. Au contraire à Zhuhai, le village de Tangjia est ancien, antérieur même à l'ensemble du reste de Zhuhai, qui s'est développé sans articulation particulière avec les infrastructures de transport. Le tracé du tramway, qui vient d'ouvrir, complète le tracé de la nouvelle ligne ferroviaire, dans un but de reorganisation du nord de Zhuhai, et en particulier la High-tech Zone qui s'étend de la gare du Nord (Zhuhai Bei) à Tangjia. Actuellement, l'organisation urbaine est fortement marquée par cette mise en place déphasée, puisque l'accessibilité en transport en commun est toujours relativement faible, les lignes de bus étant sujettes à une congestion croissante due à la forte augmentation du nombre d'automobiles. Par ailleurs, la mise en place du Tramway a été laborieuse, de par l'utilisation d'une technologie par troisième rail au sol importée d'Europe, et qui n'avait jamais été testée dans de telles conditions d'humidité⁵², ce qui a poussé à une remise en question du plan du réseau dans son ensemble.

Cet exemple de terrain nous démontre ainsi que (i) sous la même qualification existent des processus très différents, extrêmement dependants aux particularités géographiques, politiques, économiques; et que (ii) la mise en place d'un territoire fonctionnel en termes d'accessibilité nécessite une articulation fine qui semble résulter d'une approche de planification intégrée réalisée sur le temps long.

1.3.3 *Observation Flottante*

Nous proposons finalement d'ébaucher une entrée qualitative et subjective d'un certain type, pour suggérer une façon de compléter nos connaissances et mieux cerner les processus de manière concrète.

⁵² Source: communication personnelle avec Yinghao Li, juillet 2017.

Figure 6 : Analyse comparative de deux implémentations du TOD en PRD. A une échelle comparable, nous synthétisons la configuration urbaine de Yuenlong (元朗) et Tuenmun (屯门), Hong-Kong New Territories (香港,新界), à gauche, et de Xinwan, Xiangzhou, Zhuhai (珠海,香洲,新湾), à droite, qui contient la High-Tech zone de Zhuhai dans sa partie nord en particulier. Les configurations témoignent de dynamiques d'articulation différentes, et des temporalités de construction décalées, révélant ainsi diverses réalités sous la notion de TOD. Une première interprétation serait que celle-ci est efficace si la trajectoire du système territorial complet (aménagement urbain et réseau de transport) est infléchie tôt dans sa genèse, tandis qu'un système avec un certain niveau de maturité sera plus inerte. *Trad.*: 到香港 - vers Hong-Kong; 到广州 - vers Guangzhou; 到珠海 - vers Zhuhai.

L'entrée prise suit la méthode d'observation flottante, introduite à l'interface de l'anthropologie et la sociologie par [Pétonnet, 1982], avec l'ambition de fonder une anthropologie urbaine, au sens de l'étude des comportements humains au sein d'un environnement urbain. Il ne s'agit pas exactement de la même idée que l'anthropologie de l'espace de Choay [Choay, 2009] qui explore la direction inverse, c'est à dire le propre des sociétés humaines de façonner l'espace, et la capacité de construire un environnement bâti à différentes échelles par l'architecture et l'urbanisme. Notre contexte méthodologique est le suivant Répondant à un besoin de mouvement que le sédentaire éprouve facilement, le chercheur se place au centre du processus de production de connaissances, nous citons, en "rest[ant] en toute circonstance vacant et disponible, à ne pas mobiliser l'attention sur un objet précis, mais à la laisser flotter afin que les informations la pénètrent sans filtre, sans a priori, jusqu'à ce que des points de repère, des convergences, apparaissent et que l'on parvienne alors à découvrir des règles sous-jacentes". Cette méthode peut servir d'étude préliminaire pour fixer des protocoles et grilles précises d'entretien : elle est par exemple utilisée justement au sujet du transport par [Alba et Aguilar, 2012]. Nous nous en servons dans notre cas comme méthode d'extraction de faits stylisés, afin d'informer des exemples de processus d'interactions directement visibles.

Les mouvements pendulaires à échelle intra-métropolitaine MÉTHODE sont nécessairement vécus d'une façon particulière en comparaison à d'autres lieux géographiques et à d'autres échelles sur le même lieu. Et si une façon d'appréhender des faits stylisés particuliers était alors d'effectuer l'analogue d'une étude de perturbation sur le système, mais en prenant comme référentiel l'observateur lui-même? Il s'agirait de faire porter un choc sur une situation "d'équilibre", puis de se laisser flotter au gré du courant pour appréhender la réaction et certains mécanismes qu'il aurait été difficile de considérer en suivant sa routine. Une expérience naturelle causée par une perturbation des transports (qui en région francilienne est bien courante, dans tous les cas plus qu'en Chine) est un événement provoquant une expérience naturelle, au sens où le chercheur peut capturer des situations et réactions individuelles particulières. Notre méthodologie est relativement simple : déambuler dans les transports en commun, avec ou sans but et de manière ou non aléatoire, mais en essayant sur chaque trajet de maximiser les opportunités de mise en situation ou de capture d'évènement, typiquement en évitant un trajet de routine⁵³. La répétition de l'expérience visera également à maximiser la couverture spatiale, temporelle, de situation. Une production traçable est en théorie nécessaire à chaque itération, qu'il s'agisse de description factuelle, de

⁵³ Cette contrainte sera respectée dans notre cas pour le Guangdong, mais pas pour l'Île-de-France.

description perçue, de semi-synthèse. Celle-ci permet a posteriori de voir les stratifications successives du vécu et des expériences d'observation progressivement raffinées dans leur contexte, et de tracer ainsi la genèse des idées induites. Nous faisons le choix de retranscrire l'aspect subjectif, voir maximiser celui-ci dans les synthèses générales des observations, afin d'appuyer cet aspect en contraste avec la suite de notre travail qui sera relativement déconnecté du sujet menant la recherche, et en echo avec les recommandations de [Ball, 1990] pour la place de la subjectivité dans la recherche ethnographique de terrain.

De par le choix de la méthode, les résultats de cette sous-section portent majoritairement sur les transports. Les interactions avec les territoires seront perçues majoritairement dans les pratiques de mobilité observées.

Le ciel est gris et les visages fermés, ce Soleil du Nord n'a bien de lumière que le nom. L'initié ne saura s'y tromper et ressentira au fond de lui-même cette banale routine d'un aller-retour quotidien en RER. Il ne cherchera ni à maudire les planifications successives dont les stratifications temporelles ont laissé décanter cette organisation territoriale incongrue, ni à se prendre à rêver d'une trajectoire de vie alternative puisque choisir c'est un peu mourir et qu'il ne se sent pas une âme de Phoenix aujourd'hui. Peut être que la beauté de la ville est finalement dans ces tensions qui la façonnent à tous les niveaux et dans tous les domaines, ces paradoxes qui deviennent cadre de vie au point d'asséner quotidiennement une vérité. Cette philosophie de couloir de métro, le francilien en fait son cheval de bataille car après tout s'il vit en ville il doit bien la connaître. Encore un rail cassé sur le A, "tout cela est mal géré, et ce réseau est mal conçu" vocifère un utilisateur journalier, s'improvisant expert en planification; d'autres plus patients prennent leur mal en patience mais se présentent tout aussi connaisseurs d'une illusoire vision d'ensemble d'un territoire aux multiples visages. Ces usagers sont pourtant le système, de manière concrète à leur échelle d'espace et de temps, par induction et émergence aux échelles supérieures. La fourmi est supposée ne pas avoir conscience de l'intelligence collective dont elle est une des composantes fondamentales. Ils n'ont de la même manière que peu de perception de l'auto-désorganisation dont ils sont la source, peut-être la cause, et qui très sûrement subissent les désagréments de ses dynamiques. Se laisser flotter dans les transports franciliens est une expérience intemporelle. Presque thérapeutique parfois, quand l'un commence à perdre son optimisme quant à l'intérêt d'une vie urbaine, une excursion aléatoire en métro rappelle rapidement la richesse et la diversité qui sont un des plus grand succès des villes. C'est cette variété apparente de profils que le chercheur retiendra principalement de ces errements, et il gardera à l'esprit qu'il n'existe pas d'échelle où un traitement spécifique de chaque objet géographique n'est pas nécessaire : en quelque stations sur la ligne 4 le profil socio-économique des quartiers change profondément et souvent sans transition au moins trois fois, comme sur la ligne 13 nord où les motifs horaires soulignent d'autant plus de dures réalités socio-économiques qui sont en fait géographiques dans cet espace produit de la métropole. Lorsqu'il s'agit de modéliser, prendre en compte les limites de toute tentative de généralisation est d'autant plus cruciale comme chaque modèle est un équilibre fragile entre spécificité et généralité.

ENCADRÉ 2: Une expérience en observation flottante en région parisienne.

Le trajet sera long. La perturbation choisie est la simulation de l'événement malencontreux, " 的护照丢了,我得去法国的领事馆在广州 ", c'est à dire la perte de son passeport, qui oblige à prendre les transports pour se rendre au consulat. Celle-ci en Chine est assurément malencontreuse, puisque l'intégralité des trajets interurbains y est conditionnée. Traverser la mega-région urbaine du sud vers le nord pour rejoindre Guangzhou dans cette situation relève du défi. De bus urbain en bus urbain, des terminus plus ou moins bien articulés. Un village traditionnel factice est sorti de terre pour faire le bonheur des touristes, non loin de la maison natale de Zhongshan, peu crédible vu l'accessibilité. Des contrastes saisissants et un paysage très hétérogène, des enclaves de pauvreté dans des zones nouvellement prisées. Les relocalisations plus ou moins volontaires vers les franges façonnent un nouveau paysage d'inégalité géographique que l'on connait déjà bien en Europe. A l'image de cet embouteillage continu, la réinvention de la ville déjà bien avancée ici se doit de faire des choix cruciaux pour être l'exemple d'une trajectoire durable. Une résilience impressionnante des usagers à une perturbation majeure, une capacité d'auto-organisation locale rendant fonctionnels des aménagements qui auraient pu ne pas l'être : de Shenzhen, Baoan à Zhuhai, Tangjia ou à Zhongshan, Xiaolan, la flotte de moto-taxis informels sauve l'accessibilité locale, comme me le confirme Jingzi habitant le sud de Zhongshan et étudiant au nord de Zhuhai et pour qui le train est une solution de mobilité même pas envisagée. Du tramway au BRT, choix et compromis équivalents? Le premier étonne plus les nouveaux usagers. Peut être aussi un argument percutant pour valoriser le complexe spécialement conçu autour du terminus. Les choix locaux sont d'autant plus différentiables qu'il est difficile de passer d'une zone à l'autre. Bloqué non loin de Guangzhou, le pont est fermé, le métro est en face mais impossible de le rejoindre. Juste le temps pour se rabattre sur la gare de Xiaolan et retour à la case départ, défi bien loin d'être réalisé. Observer l'adaptabilité ne suffit pas à la développer? Des pratiques de mobilité très vite adaptées par les usagers : des trains à grande vitesse bondés en toute heure de la semaine, semble-t-il pour des motifs très divers. Un développement territorial apparent, des impacts à moyen terme qu'on peut parier non discutables. Si la structure est intégrée et flexible, discuter d'effets structurants devient une tautologie puisque la trajectoire du système urbain devient alors l'aspect plus ou moins contrôlable, selon les échelles de temps et d'espace.

ENCADRÉ 3: Une expérience en observation flottante, Guangdong, Zhuhai.

RÉSULTATS Nos séquences d'observation de terrain ont eu lieu d'une part en Chine, majoritairement dans le Guangdong à Zhuhai, lors de sessions dédiées. Les observations s'étendent entre le 10/10/2016 et le 23/01/2017 ainsi qu'entre le 08/06/2017 et le 01/09/2017. Le mode de transport majoritaire est le bus de ville, suivi par le train régional, puis le train à grande vitesse et le ferry; la portée des déplacements correspondent à celle des modes. Les compte-rendus détaillés, écrits à la volée de manière subjective et édités a posteriori le moins possible, comme expliqué précédemment, sont disponibles en Appendice A.2. Les observations pour la région parisienne sont quasiquotidiennes et non consignées; celles-ci ont eu lieu en plus grande partie sur la ligne 4 du métro et sur la ligne A du RER entre février 2016 et octobre 2016, sur la ligne R du Transilien et la ligne A du RER entre novembre 2016 et septembre 2017 puis entre février 2017 et mai

2017, puis sur la ligne 9 et la ligne 4 entre septembre 2017 et octobre 2017.

Les deux synthèses d'observation flottante pour chacune des régions, matériaux produit à partir des notes brutes, sont présentées dans les encadrés ci-dessus. Celles-ci illustrent entre autre par des exemples subjectifs certaines instances d'interactions entre réseaux et territoires, majoritairement aux échelles microscopique et mesoscopique, pour des processus touchant à la mobilité. La subjectivité et l'interprétation permet aussi d'extrapoler sur des processus à plus grande échelle, en terme d'accessibilité par exemple. Ceux-ci ne peuvent toutefois être pris plus que comme une illustration et introduction thématique. Par une prise de recul, nous proposons de lister certains enseignements qui peuvent être tirés de cette expérience à un niveau de synthèse élevé, en contraste avec l'aspect subjectif et spécifique du produit de l'experience. Ils sont les suivants :

- 1. La complexité du système de transport et en conséquence de son intégration avec l'urbanisme dans le système territorial, peut avoir des conséquences divergentes en termes de performance finale, et par exemple de soutenabilité. Dans le cas Chinois, l'auto-organisation et l'adaptabilité locale sont des atouts de la performance locale des nouvelles gares, tandis qu'en France la complexité semble être source de freins et finalement d'externalités négatives⁵⁴.
- 2. L'adaptabilité des territoires, dont l'une des composantes est par exemple la vitesse de mutation des pratiques de mobilité et reliée à l'adaptabilité, semble également très sensible aux particularités géographiques.
- 3. La question des échelles de temps et d'espace observables, ce qui conditionnera partiellement celles qu'on peut modéliser, est ambiguë dans l'observation, comme le témoigne l'observation conjointe de la mobilité et de manifestation de motifs d'accessibilité.
- 4. La comparabilité des cas et des situations géographiques est, dans notre cas, mais a priori plus généralement, un point épineux auquel il n'existe pas de solution idéale. Le compromis entre généralité et particularité est alors déterminant dans la construction d'une théorie et de modèles géographiques. Cette conclusion tirée sur des études empiriques devrait s'appliquer aussi aux modèles, mais dans quelle mesure il s'agit d'une question ouverte.

Ces considérations participeront à l'orientation des postures ontologiques et épistémologiques que nous prendrons par la suite.

⁵⁴ Cet effet étant par ailleurs nécessairement en interdépendance forte avec les propriétés culturelles, qui est en fait une composante fondamentale des territoires.

Table 2 : **Processus d'interaction entre réseaux et territoires.** Nous synthétisons les processus selon les échelles et selon la typologie de sens.

	Réseaux → Territoires	Territoires → Réseaux	Réseaux ↔ Territoires	
Micro	Motifs de mobilité	Congestion du réseau; Externalités négatives	Mobilité et structure sociale	
Meso	Relocalisations; Effets locaux des infrastructures	Rupture de potentiel	Planification métropolitaine; TOD	
Macro	Interactions entre villes; Effet tunnel	Différenciation hiérarchique de l'accessibilité	Planification à grande échelle; Dynamique structurelle; Bifurcations	

SYNTHÈSE DES PROCESSUS ÉTUDIÉS

Nous concluons ce chapitre introductif par une synthèse et une mise en perspective des processus d'interaction identifiés par l'analyse théorique, empirique et la littérature. Celle-ci permettra de situer les revues des entreprises de modélisation auxquelles nous procéderons dans le chapitre 2, puis pourra être comparée à celle que nous établirons dans le cas des modèles.

Une entrée par les échelles

Une première entrée pour synthétiser les processus abordés consiste à les considérer par échelle. On a vu qu'une lecture multi-échelle était pertinente, et que celle-ci permettait globalement de dégager des échelles spatiales et temporelles caractéristiques : microscopique, mesoscopique et macroscopique, avec une assez bonne correspondance des échelles spatiales et temporelles. Cette typologie est bien sûr réduite, puisqu'elle simplifie la classe des processus qui pourraient sortir de ces correspondances, par exemple une mobilité à grande échelle, ou une bifurcation du système urbain qui se manifeste rapidement. De même, les processus eux-même multi-échelle (la gouvernance du Grand Paris en est une bonne illustration, mobilisant des niveaux de gouvernance et des enjeux territoriaux à différentes échelles) sont pris en compte de manière simplifiée. L'axe complémentaire à celui des échelles se base sur les "effets et causes" : bien que nous restions toujours dans le cadre d'une causalité complexe comme présenté en introduction, on a mis en évidence des processus pour lequel il est possible d'identifier un précurseur parmi le réseau ou le territoire (nous les noterons alors $A \rightarrow B$), d'autres sont intrinsèquement complexes et contiennent déjà des causalités circulaires (par exemple dans le cas des processus de gouvernance), nous les noterons Réseaux \(\to\) Territoires. Le tableau de synthèse est alors donné en Table 2.

Une entrée par les acteurs

Une deuxième entrée privilégie le rôle des *acteurs*, c'est à dire des agents qui font le territoire. En effet, les problématique liées à la mobilité concernent les agents microscopiques, celles liées à l'accessibilité des acteurs urbains et économiques, celles liées à la planification des acteurs de gouvernance. Cet aspect peut être résumé par le schéma suivant :

Dans ce schéma, on identifie les acteurs territoriaux au sein du système territorial, qui se déclinent schématiquement sur deux échelles : les agents à l'échelles microscopique qui seront centraux pour les processus de mobilité, et les acteurs de gouvernance à des échelles supérieures, qui mènent les processus de gouvernance. Ils interagissent entre eux de manière complexe, et sont séparés ici conceptuellement par les pointillés d'autre aspects du territoire avec les quels ils sont aussi couplés fortement.

Cette entrée peut être mise en perspective avec le cadre conceptuel de [Le Nechet, 2010], qui étudie les liens entre forme urbaine et pratiques de mobilité dans des contextes métropolitains. Celui-ci comprend le système urbain comme un couplage fort entre système de localisation, système d'activités et système de transport, en précisant l'influence des agents demandeurs (agents micro-économiques) et des agents aménageurs (agents de gouvernance) sur chaque système. Le système de transport correspond à nos réseaux et les deux autres systèmes à un aspect des agents territoriaux, qui contiennent aussi les agents précisés dans ce cadre. Ce parallèle reste à nuancer lorsqu'on change d'échelle : à celle du système de villes, lorsque les agents sont les villes, le système de localisation n'a plus de sens : celui-ci est adapté à une échelle au plus métropolitaine, et surtout aux ontologies correspondantes.

Cette double entrée de lecture des processus d'interaction entre réseaux et territoires conditionnera d'une part la revue de littérature des modèles faite en Chapitre2, et sera d'autre part complétée et précisée à l'issue de celui-ci.

CONCLUSION DU CHAPITRE

Les territoires interagissent de manière complexe avec les réseaux, en particulier ceux de transport, comme montré par les nombreux exemples empiriques ou les constructions théoriques passés en revue. A différentes échelles temporelles typiques, l'année, la décennie et le siècle, correspondent des échelles spatiales : métropolitaine, régionale et système de villes, ainsi que des processus : mobilité, accessibilité et relocalisations, effets systémiques structurels et bifurcations. Les situations concrètes témoignent de réalités locales déclinés avec différentes nuances, et des processus portant ces processus abstraits avec différents rôles et interactions entre eux. Nous avons dans une première section clarifié cette notion d'interaction entre réseaux de transports et territoires en construisant un cadre théorique qui permet de les considérer comme des composantes du système territorial dans son ensemble. Nous avons alors suggéré une approche par la co-évolution pour tenir compte de cette complexité. Afin de mieux cerner ces notions sur des exemples géographiques concrets, nous avons développé en 1.2 deux cas d'étude métropolitain d'actualité, et souligné les certitudes en termes d'impact d'accessibilité pour des projets majeurs d'infrastructures qui s'accompagnent systématiquement d'incertitude en terme de trajectoire du système à plus long terme. Enfin, nous proposons en 1.3 une excursion par des éléments de terrain dans le Guangdong, Chine. A ce stade, ayant introduit l'objet d'étude thématique, nous proposons de nous intéresser plus particulièrement aux approches impliquant une modélisation, faisant le choix d'un rôle fondamental du modèle (sur lequel nous reviendrons plus en détails par la suite) dans la production de connaissance.

* *