BEE-C202

SEMESTER EXAMINATION- MAY 2024 CLASS: B.TECH SEMESTER: II BASIC ELECTRICAL ENGINEERING

Sma.	BASIC ELECTRICAL ENGINEERING 3 hours		x. Marks: 70
Note:	Question Paper is divided into two sections: A and B. Attempt both the	section	ns as per given
	instructions.	co	BL
	SECTION-A (SHORT ANSWER TYPE QUESTIONS)	CO	
nstru	etions: Answer any five questions in about 150 words each. Each question		
	$(5 \times 6 = 30 \text{ Marks})$		
Q-1	Determine the current in 5 Ω resistor (Fig.1) using mesh analysis (Matrix	4	Evaluation L1 &
`	method)	Parket .	Analysis L3
	$\frac{10 \text{ V}}{+}$		
	$+$ i_1 $\geq 20 \Omega$ i_2 $\geq 3 \Omega$		
	-\sv 1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		
	2Ω		
	Α 2Ω		
	+1- 5Ω		
	12 V		Street
	∩1A		
	20		22172
			Table 2
	$\frac{1+}{7}$ $\frac{1}{8}1\Omega$ $\binom{2}{1}3A$		
	4V-		
	Fig.1		
Q'-2	Find the current in 1- Ω resistor using Thevenin,s Theorem (Fig.2)	4	Evaluation L1 &
Q-3	Derive the expression for resonance frequency in R-L-C series circuit.	2	Analysis L3 Analysis L3
-	Derive the expression for relation between Line voltage- Phase voltage Line	2	Analysis L3
	current and Phase current in star connection		
	Give the comparison between magnetic circuit and electrical circuit	3	Companies I
	Explain the working principle of transformer		Comparison L5
5 33		2	Knowledge L6
Q-7	Explain Open Circuit (O.C) test of the transformer	1 & 3	Application L4 & Knowledge L6
			- Itage De

Q-8 Derive the E.M.F. equation of DC generator

Q-9 Describe the magnetization characteristics of D.C generator

1&2 Knowledge L6

Q-10 Describe the working principle of PMMC

SECTION-B (LONG ANSWER TYPE QUESTIONS)

2 Evaluation L1

Knowledge L6

CO BL

Instructions: Answer any four questions in detail. Each question carries 10 marks. $(4 \times 10 = Marks)$

- Q-1 State and prove the Maximum Power Transfer theorem

 1 & 2 Application L4 & Knowledge L6
- Q-2 A series resistance of 20 Ω, an inductance of 0.2 H and a capacitance of 100 4

 μF are connected in series across 220 V, 50 Hz mains. Determine the following (i) Impedance (ii) Current voltage across R. L and C

 (iii) Power factor
- Q-3 Derive the expression for line voltage and phase volte in star connection 2 Evaluation L1 & Knowledge L6
- Q-4 Explain the construction of transformer and derive the E.M.F equation of 1&2 transformer.
- Q-5 A 4-pole, wave wound armature has 720 conductors and is rotated at 1000 4 Analysis L3 rev/min. If the useful flux is 20mwb, calculate the generated voltage.
- Q-6 Explain the working principle and slip torque characteristics of three-phase 1&2 Knowledge L6& Application L4 induction motor.
- Q-7 Explain double revolving field theory to explain the working of induction 1&2 Knowledge L6 motor
- Q-8 Explain the measurement of three-phase power by two wattmeter methods. 1&2 Knowledge L6

***** 1 4 62-8×6 62-8

2 /