

Module IN3031 / INM378 Digital Signal Processing and Audio Programming

Johan Pauwels johan.pauwels@city.ac.uk based on slides by Tillman Weyde

Signal Correlation Fourier Transform

Dot Product

 The dot product (also called inner or scalar product) is the basic way of measuring the correlation (similarity) of two signals by adding their products at each sampled time

$$dot(x,y) = \sum_{t=0}^{N-1} x[t] \cdot y[t]$$

- The basic intuition: similar sample values x[t], y[t] give greater dot product
 - x[t] and y[t] big, same sign \rightarrow dot(x,y) big positive
 - x[t] and y[t] big, different sign \rightarrow dot(x,y) big negative
 - x[t] and y[t] small abs values $\rightarrow dot(x,y)$ small abs

Dot Product and Correlation

- The dot product between a signal and itself, the autocorrelation at lag 0, is the energy of the signal,
- The term correlation is used for different variants of similarity measures in several areas of mathematics and applications

Autocorrelation

 Autocorrelation measures the similarity of a signal with itself at a certain time or space lag

$$autocorr(x,k) = \sum_{t=0}^{N-1} x[t] \cdot x[t+k]$$

- The autocorrelation of a signal at lag 0 is the energy of the signal. Python: np.dot(x,x)
- Auto-Correlation is useful for detecting periodicities.
- Python: np.correlate(x,x)

Cross-Correlation

 Cross-correlation measures the similarity of two signals at a time lag k:

$$xcorr(x, y, k) = \sum_{t=0}^{N-1} x[t] \cdot y[t+k]$$

- The cross-correlation between a signal and itself is the auto-correlation
- Cross-Correlation is useful for measuring delays.
- Values outside the signal time range are assumed as 0.
- Python: np.correlate(x, y, mode='full') calculates the result for all values of k

Energy of Added Signals

- Example: Convert a stereo signal to mono by adding the two signals (possibly dividing by 2 to avoid clipping).
- The energy of the resulting signal depends on the correlation of the signal:

$$\sum (x[n] + y[n])^2 = \sum (x[n]^2 + 2 \cdot x[n] \cdot y[n] + y[n]^2)$$

= $\sum x[n]^2 + \sum y[n]^2 + 2 dot(x, y)$

- If x = y, we have $(2x[n])^2 = 4x[n]^2 + x[n]^2 + x[n]^2 + 2x[n] \cdot x[n]$
- if x = -y, it's $(x[n]-x[n])^2 = 0 = x[n]^2 + x[n]^2 2x[n] \cdot x[n]$ (total cancellation)

Cross-Covariance

- mean-removed cross correlation
- Is the same as correlation, but removes the mean (DC offset) of both signals before processing
- Example:
 - $-x = [10, 0, -10, 0, 10] \rightarrow mean(x) = 2$
 - Remove mean: y = x mean(x) (per sample)
 - -y = [8, -2, -12, -2, 8] -> mean(y) = 0

Correlation Coefficient

$$\sum (x[n] + y[n])^2 = \sum (x[n]^2 + 2x[n] \cdot y[n] + y[n]^2)$$

$$= \sum x[n]^2 + \sum y[n]^2 + 2 dot(x, y)$$

The **correlation coefficient** ρ (Greek letter 'rho') is the ratio of the correlation energy to the geometric mean of the mean-free signal energies: $\rho = \frac{dot(x,y)}{\sqrt{\sum x[n]^2 \cdot \sum y[n]^2}}$

$$\rho = 1 \text{ means } x = y \cdot z \ (z > 0)$$

$$\rho = -1 \text{ means } x = y \cdot z \ (z < 0)$$

Correlation Coefficient

- The correlation coefficient ρ measures the **similarity** of signals *x*, *y* **independent of scaling**.
- If both signals are mean-free (i.e. mean(s) = 0) and have the same energy:
 - $\rho = 1$ means x = y, correlation energy is equal to sum of energies of x and y, energy(x+y) = 4·energy(x)
 - $-\rho = -1$ means x = -y, correlation energy is the negative of the sum of energies of both signals, energy(x+y)=0
 - $\rho = 0$ means that signals are not correlated, i.e. energy(x+y) = energy(x) + energy(y)

Appraising Mono Compatibility

- Appraise the Mono compatibility of this stereo signal:
 - r = [2, 1, 0, -1, -2], I = [1, 2, 0, -2, -1]
- Correlation is 2 + 2 + 0 + 2 + 2 = 8
- r and I have mean 0 (DC free)
- Energy: (r) 4+1+0+1+4 = 10, (l) 1+4+0+4+1 = 10
- Corr. coefficient: $\rho = 8/ \text{ sqrt}(10.10) = 8/10 = 0.8$
- This indicates good mono compatibility (close to 1).

Frequency Analysis

Finding Frequency Components

For a periodic (i.e. repeating) function we can

- find signal components using dot product
- use sine functions as building blocks

Dot Product with a Sine

Dot product of a signal x with sine wave of frequency f, sf := sin(2*pi*f/Fs):

$$dot(x,sf) = \sum_{t=0}^{N-1} x[t] \cdot \sin[2*pi*f/FS*t]$$

- dot(x,sf) tells us how similar x is to sf
- Interpretation: how much of sf is contained in x

Which Frequencies to Try

We use frequencies depending on the period p
 (i.e. the time after which the signal repeats)

$$f_1 = 1/p$$

$$f_n = n/p$$

$$s_1 = \sin(2\pi f_1 t)$$

$$s_2 = \sin(2\pi f_2 t)$$

$$s_3 = \sin(2\pi f_3 t)$$

$$s_4 = \sin(2\pi f_4 t)$$

• • •

Correlations of Sines

Different sines in our series have zero correlation

$$dot(sf_1, sf_2) = \sum_{t=0}^{N-1} sf_1[t] \cdot sf_2[t] = 0$$
where $sf_1[t] = \sin[2 \cdot pi \cdot f_1 / Fs \cdot t]$
and $sf_2[t] = \sin[2 \cdot pi \cdot f_2 / Fs \cdot t]$ and $N = p \cdot Fs$

• so we are **separating frequencies** properly

Offsets on the Time Axis

Sine waves of same frequency but with offset on the time axis (sinusoids) can produce different correlations:

$$dot(sf[t],sf[t+k]) = \sum_{t=0}^{N-1} sf[t] \cdot sf[t+k]$$
where $0 < k < f/Fs$
and $sf[t] = \sin[2 \cdot pi \cdot f/FS \cdot t]$

If **offset** (in samples) k = 0.5 *f/Fs* (half cycle length) **correlation switches sign**

$$dot(sf[t], sf[t+.5 f/Fs]) = -dot(sf[t], sf[t])$$

because $sin(x) = -sin(x + \pi)$

Offsets on the Time Axis (2)

Sines at offsets 1/2 π and 3/2 π can be represented as

cosines:
$$\cos(x) = \sin(x + \pi/2)$$

 $-\cos(x) = \sin(x + 3\pi/2)$

Sine plus **cosine** (with suitable **a,b**) can represent any offset:

$$\forall \phi \exists a, b \quad such that$$

 $\sin(x+\phi)=a\sin(x)+b\cos(x)$

a,b can be determined by the dot product:

$$a = dot(f, sin) \cdot 2/N$$
, $b = dot(f, cos) \cdot 2/N$

Fourier Series (continuous)

Famous insight by Jean-Baptiste Joseph Fourier in 1822:
 Any periodic analogue signal with period p = 1/f is represented uniquely and unambiguously by an infinite series of sinusoids with frequencies kf:

$$x(t) = b_0$$

$$+ a_1 \sin(2\pi 1 f t) + b_1 \cos(2\pi 1 f t)$$

$$+ a_2 \sin(2\pi 2 f t) + b_1 \cos(2\pi 2 f t)$$

$$+ a_3 \sin(2\pi 3 f t) + b_3 \cos(2\pi 3 f t)$$

$$+ \dots = \sum_{k=0}^{\infty} a_k \sin(2\pi k t) + b_k \cos(2\pi k t)$$

Fourier Series (discrete)

 A sampled signal of length N can be represented uniquely and unambiguously by a finite series of sinusoids:

$$\begin{split} x[n] &= a_0 \\ &+ a_1 \cos(2\pi \frac{n}{N} + \phi_1) \\ &+ a_2 \cos(2\pi \frac{2n}{N} + \phi_2) \\ &+ \dots \\ &+ a_{N-1} \cos(2\pi \frac{(N-1)n}{N} + \phi_{N-1}) = \sum_{k=0}^{N-1} a_k \cos(2\pi \frac{kn}{N} + \phi_k) \end{split}$$

Frequency Spectrum

0.005

0.0

- The amplitude and phase distribution of a signal over frequencies is called its spectrum.
- We will see now how to calculate the spectrum.

0.2

0.1

0.3

0.4

0.5

Frequency Units

- As a sine or cosine function has a period of 2π (in radians units, 2π is 360°), expressing frequencies in radians is often convenient.
- analogue frequencies
 - standard f : cycles/sec (0 ... Fs/2)
 - angular $\Omega = 2\pi f$: radians/s (0 ... π Fs)
- (so-called) digital frequencies
 - -f/Fs: cycles/sample (0 ... 1/2)
 - angular: $\omega = 2\pi f/Fs$: radians/sample $(0...\pi)$

Complex Numbers

- To calculate a_k and ϕ_k efficiently, we need complex numbers
- Complex numbers: C
 - real and imaginary part (i, sometimes j)
 - -i is root of $-1:i^2=-1$
 - $-c = p + qi, c \in \mathbb{C}, p, q \in \mathbb{R}$
- Euler formula

$$e^{a+i\phi} = e^a(\cos\phi + i\sin\phi)$$

Trigonometric Functions and Complex Exponentials

Any complex number c can be represented as **magnitude a** and **angle** ϕ

$$c = p + qi = ae^{i\phi}$$

$$\Re(e^{i\phi}) = \cos\phi$$

$$\Im(e^{i\phi})=\sin\phi$$

Complex Fourier Series

Again, x is a signal of length N

$$x[n] = \sum_{k=0}^{N-1} c_k e^{i\frac{2\pi}{N}nk}$$

$$a_0 = c_0, a_k = 2|c_k|, \phi_k = angle c_k$$

- $e^{i\frac{-\infty}{N}nk}$ is complex sine(cosine) with freq k
- The magnitude a and phase Φ are now combined in the complex coefficients c_κ
- The set of $\mathbf{c}_{\mathbf{k}}$ is called the **spectrum** of \mathbf{x}

Discrete Fourier Transform

• By correlation with the complex sines we get the c_k (up to a normalisation factor) as X[k]

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-i\frac{2\pi}{N}nk}$$

- X is called the (complex) spectrum of signal x
- The **inverse transform** applies the Fourier series: $1 \sum_{N=1}^{N-1} +i \frac{2\pi}{N} nk$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+i\frac{2\pi}{N}nk}$$

Fourier Transform for the Mathematically Inclined

• We can **generalise** to continuous periodic functions $c_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) e^{-ik2\pi ft} dt$

And even do this for non-periodic functions by

increasing T
$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-i2\pi ft} dt$$

to infinity: $X: \mathbb{R} \to \mathbb{C}$

X is called the continuous Fourier Transform of x
 X contains positive and negative frequencies

Inverse Fourier Transform (still for the math buffs)

 Inverting the Fourier Transform leads to a generalised Fourier Series:

Fourier Series
$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{ik2\pi ft}$$

Inverse Fourier Transform
$$x(t) = \int_{-\infty}^{\infty} X(f)e^{i2\pi ft}dt$$

 X(f) gives the magnitude (absolute) and phase (angle) for every frequency in the continuum and is called the (continuous) spectrum of x(t).

Spectra of Digital Signals

- The frequencies k in the spectrum are relative to the length L of the signal,
 i.e. X[k] in the spectrum corresponds to k cycles over length L of the whole signal.
- Dividing k by length L gives the digital frequency (cycles per sample) fd = k/L
- Multiplying by the sampling frequency Fs
 gives the frequency f in Hertz: f = Fs · k / L

Real and Complex FT

- Complex FT elegant maths
 - spectra with positive/negative frequencies
 - symmetric around the y-axis (more later)
- Real FT
 - describes the whole process in real maths
 - a bit more messy, but less complex ;-)

Example Spectra

Discrete Fourier Transform of a single sinusoid:

 Phase = balance of Re and Im, depends on time-axis shift of x

Spectra 2

Fourier Transform of a single impulse:

One impulse contains all frequencies

Notation of the FT

- The **Fourier Transform** of a **signal** (function) is denoted by $(\mathcal{F}x)(f)$, often written as $\mathcal{F}(f)$, if clear in the context
- There is a special symbol → used for the FT,
 like this: x(t) → X(f)

or in short $\chi \hookrightarrow X$

Linearity of the FT

 The Fourier Transform is linear (invariant under addition and scalar multiplication):

$$F(x_1+cx_2)(f)=F(x_1)+cF(x_2)(f)$$

Using the transformation symbol, linearity can be written like this:

$$X_1 + c X_2 \longrightarrow X_1 + c X_2$$

Parseval's Theorem

 Parseval's theorem: the spectrum has the same energy as the signal:

$$\sum_{t} |(x(t))|^{2} = \frac{1}{N} \sum_{f} |((\mathcal{F}x)(f))|^{2}$$

or using the transformation symbol:

$$\sum_{t} |(x(t))|^2 = \frac{1}{N} \sum_{f} |(X(f))|^2, \text{ where } x \rightsquigarrow X$$

 The division by N is because we normalise only the inverse FT (see definition)

Symmetries of the FT

 Spectra of real signals (e.g. all measured signals) have several symmetry properties:

$$x(t)$$
: real then $\begin{vmatrix} |(X(f))| : even & arg(X(f)) : odd \\ \Re(X(f)) : even & \Im(X(f)) : odd \end{vmatrix}$

Even functions are **mirror**-symmetrical around the y-axis, **odd** functions are **point**-symmetrical around the origin.

 For real signals, half of the spectrum contains all information because of these symmetries.

Symmetries of the FT

- The magnitude (even function) is mirror-symmetrical
- The phase (odd function) is point-symmetrical

Time and Frequency

- Stretching the signal over time (c>1) compresses the spectrum over frequency and reduces magnitude $x(ct) \rightarrow \frac{1}{|c|} X(\frac{f}{c})$
- Shifting a signal over time leaves the frequencies unchanged but modifies phase

$$X(t-t_0) \hookrightarrow X(f)e^{i2\pi ft_0}$$

Fast Fourier Transform

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-i\frac{2\pi}{N}(n)k}$$

$$X[k] = \sum_{n=0}^{\frac{N}{2}-1} x[2n]e^{-i\frac{2\pi}{N}(2n)k} + \sum_{n=0}^{\frac{N}{2}-1} x[2n+1]e^{-i\frac{2\pi}{N}(2n+1)k}$$

$$X[k] = \sum_{n=0}^{\frac{N}{2}-1} x[2n]e^{-i\frac{2\pi}{N}(2n)k} + e^{-i\frac{2\pi}{N}k} \sum_{n=0}^{\frac{N}{2}-1} x[2n+1]e^{-i\frac{2\pi}{N}(2n)k}$$

$$X[k+\frac{N}{2}] = \sum_{n=0}^{\frac{N}{2}-1} x[2n]e^{-i\frac{2\pi}{N}(2n)k} - e^{-i\frac{2\pi}{N}k} \sum_{n=0}^{\frac{N}{2}-1} x[2n+1]e^{-i\frac{2\pi}{N}(2n)k}$$

FFT of even indices

'twiddle factor' FFT of odd indices

X[k] and X[k+N/2] **differ only** by the **sign** of the 'twiddle factor'. By recursively reducing the problem to halves, we can perform a complete FT in O(n log n)

Take-Home Messages

- Dot product (raw correlation) a form of signal similarity
- Fourier Transform
 - decomposes a signal using its correlation with sinusoids
 - sinusoid frequencies are integer multiples of 1/len(signal)
 - produces a spectrum with as many points as the signal
 - always has an inverse
 - is linear
- Points on the spectrum are complex numbers with
 - magnitude (~amplitude), and
 - phase (~angle, time-shift, balance of sine/cosine)
- Fast Fourier Transform (fft,ifft) is efficient O(n log n)

READING

Smith, S.: The Scientist and Engineer's Guide to DSP.

Chapter 8. http://www.dspguide.com/ch8.htm