

Grundlagen der Technischen Informatik 2 Sommersemester 25

Übungsblatt 2

Aufgabe 1: KV-Diagramme

- 1. Tragen Sie in ein KV-Diagramm die Standard-Indexierung (vgl. Vorlesung) ein. Die darzustellende Funktion soll 4 Eingänge haben. z.B. $f(x_0, x_1, x_2, x_3)$
- 2. Betrachten Sie die Funktionen f_1 und f_2 , die durch die folgenden Tabelle gegeben sind. Tragen Sie diese in zwei KV-Diagramme ein.
- 3. Kennzeichnen Sie im den KV-Diagrammen die Primimplikanten und leiten Sie die minimierten Funktionen $f_{1_{min}}$ und $f_{2_{min}}$ ab.

${\rm Index}\ i$	x_3	x_2	x_1	x_0	f_1	f_2
0	0	0	0	0	0	0
1	1	0	1	1	1	1
2	0	1	0	1	1	1
3	1	1	1	0	0	0
4	0	0	0	1	0	0
5	1	1	0	0	0	0
6	0	0	1	0	1	1
7	1	1	1	1	0	-

Index i	x_3	x_2	x_1	x_0	f_1	f_2
8	1	0	0	0	0	0
9	0	0	1	1	1	1
10	1	1	0	1	1	1
11	0	1	1	0	0	-
12	1	0	0	1	0	0
13	0	1	0	0	0	0
14	1	0	1	0	0	0
15	0	1	1	1	1	1

Aufgabe 2: Hazards

Gegeben sei die nachfolgende Logikschaltung aus drei Invertern, einem XOR-Gatter und einem T-Flipflop.

- 1. Zeichnen Sie zu der Schaltung ein Impulsdiagramm. Gehen Sie hierbei von folgenden Eigenschaften aus: Der Clock-Input des T-Flip-Flops sei eine positive Rechteckspannung mit einer Frequenz von 2 MHz. Die Laufzeitverzögerungen seien 100 ns pro Inverter und 50 ns pro XOR-Gatter. Elektrische Leitungen und Flip-Flops seien ohne Laufzeiten. Betrachten Sie im Impulsdiagramm folgenden Punkte:
 - (a) Clockeingang des T-Flip-Flops
 - (b) Q-Ausgang des T-Flip-Flops
 - (c) Jeweils die Punkte A, B, C hinter den Invertern
 - (d) Der Ausgang des XOR-Gatters Y

Aufgabe 3: Flip-Flops

- 1. Erklären Sie den Unterschied zwischen Flip-Flops ohne Zustandssteuerung und Flip-Flops mit Zustandssteuerung.
- 2. Gegeben sein ein taktgesteuerter T-Flip-Flop. Erstellen Sie eine Schaltung aus Logikgattern, die diesen zu einem JK-Flip-Flop erweitert.
- 3. Kann aus jedem Flip-Flop, durch Erweiterung, jeder andere gebaut werden?

Aufgabe 4: Schaltwerke

Abbildung 1: Gegeben sei der folgende Automat:

- 1. Um welche Art Automaten handelt es sich?
- 2. Wie viele Flip-Flops benötigen Sie mindestens, um diesen Automaten als Schaltwerk darzustellen, begründen Sie Ihre Antwort?
- 3. Erstellen Sie eine Ablauftabelle aus dem Automaten. Verwenden Sie zur Zustandsspeicherung T-Flip-Flops.
- 4. Finden Sie für den T-Eingang T_i jedes T-Flip-Flops eine Logikfunkion $f_i(q_0,...,q_n,x)$, die den Flip-Flop gemäß der Ablauftabelle steuert.
- 5. Zeichnen Sie nun das Schaltwerk gemäß der Ablauftabelle. Markieren Sie den Ein- und Ausgang.