Lecture 2

Memory Card with 8 Chips

- Each chip is 16 M x 1 b (16 mega bits)
- Card total is 16 M x 8 b (16 mega byte)
- We can install several memory card modules on the main board of computer.

DATA BUS / ADDRESS BUS / CONTROL BUS

Example: 3-to-8 Decoder

- There are 3 inputs, and $2^3 = 8$ output lines.
- Depending on the inputs, <u>only one of the output lines will be 1</u>, all other output lines will be 0.

Truth Table for 3-to-8 Decoder

Only one output line is selected at a time.

IN	IPU1	ΓS			(DUT	PUT	S		
A ₂	$\mathbf{A_1}$	\mathbf{A}_{0}	L ₇	L_6	L_5	L_4	L ₃	L_2	L ₁	L_0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Multiplexer, Demultiplexer, Decoder

MULTIPLEXER

Only one of the Inputs is selected, and it is forwarded to the output.

DEMULTIPLEXER

Only one of the Outputs is selected, and the input is forwarded to it.

If Input is constantly "1", this is a DECODER.

Simplest Example: 1-to-2 line decoder

A is the address and D is the selected lines.

$$D_0$$
 is NOT A. $(D_0 = A')$
 D_1 is A $(D_1 = A)$

Truth Table

Α	D_1	D_0
0	0	1
1	1	0

Some Terminology

• **COMBINATIONAL CIRCUIT**

· Outputs depend only on the current inputs.

SEQUENTIAL CIRCUIT

- Outputs depend both on the inputs and the state of circuit (previous outputs).
- Memory units must be Sequential circuits.
- FLIP-FLOP is a memory unit that is triggered by a clock signal.
- **LATCH** is a memory unit that is <u>not</u> triggered by a clock signal.
 - The value of latch can be changed whenever the latch is enabled.
- **CACHE** is a memory faster than RAM.
 - · Stores frequently used instructions and data.
 - Primary cache (Level1): Located within the CPU.
 - Secondary cache (Level2): Located near the CPU.

Example Metrics of Memory

Memory Type	Capacity	Access Time
Registers in CPU	1 KB	1 ns
Caches in CPU	1 MB	10 ns
Main Memory (RAM)	10 GB	100 ns
Hard Disk Drive	1 TB	10 ms

Metrics used for Memory

1 Byte = 8 bits (Binary DigiT)

Unit	Name	Synonym	Real Value (base 2)	Approximate Value (base 10)
1 KB	Kilo	Thousand	2 ¹⁰ = 1024	10 ³ = 1000
1 MB	Mega	Million	2 ²⁰	10 ⁶
1 GB	Giga	Billion	2 ³⁰	10 ⁹
1 TB	Tera	Trillion	2 ⁴⁰	10 ¹²

Metrics used for CPU speed

<u>Hertz</u> (clock rate) is the unit of frequency measurement. It represents number of clock cycles (of periodic pulse wave) <u>per second</u>.

Frequncy Unit	Unit name	Synonym	Hertz Value
1 KHz	Kilo	Thousand	10 ³
1 MHz	Mega	Million	10 ⁶
1 GHz	Giga	Billion	10 ⁹
1 THz	Tera	Trillion	10 ¹²

Time Unit	Unit name	Synonym	Seconds Value
1 ms	Mili	One thousandth of a second.	10 ⁻³
1 μs	Micro	One millionth	10 ⁻⁶
1 ns	Nano	One billionth	10 -9
1 ps	Pico	One trillionth	10 ⁻¹²

Example: CPU Clock Period

Assume the CPU clock frequency is 100 MHz.

QUESTION: Find the pulse wave period in terms of nano seconds.

Period (seconds) =
$$\frac{1}{Frequency}$$

= $\frac{1}{100*10^6}$ = 10^{-8} seconds
= 10^{-8} seconds * 10^9 nanoseconds/second
= 10 nanoseconds

SRAM versus DRAM

Memory Type	Number of bits in a chip	Speed	Where used
SRAM (Static)	8	Fast	Cache
DRAM (Dynamic)	1	Slow	Main memory

Lecture 3

	MEMORY CHIP		ODER ECT	CHIP S	ELECT		LOC	ATION S	SELECTI	ON WIT	THIN A C	CHIP	
	CHIP	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A_6	A_5	A_4	A_3	A ₂	$\mathbf{A_1}$	A_0
		0	0	0	0	0	0	0	0	0	0	0	0
	MEMORY 1	0	0	0	0	0	0	0	0	0	0	0	1
S	WEWORT	0	0	0	0	• • • •	• • •		• • •	• • •	• • • •		
S		0	0	0	0	1	1	1	1	1	1	1	1
Memory Address Map		0	0	0	1	0	0	0	0	0	0	0	0
<u> </u>	MEMORY 2	0	0	0	1	0	0	0	0	0	0	0	1
7 Q	WIEWOKI 2	0	0	0	1	• • • •	• • •	• • • •	• • • •	• • • •	• • • •		
<u> </u>		0	0	0	1	1	1	1	1	1	1	1	1
$\leq \geq$		0	0	1	0	0	0	0	0	0	0	0	0
\circ	MEMORY 3	0	0	1	0	0	0	0	0	0	0	0	1
	WILITION 3	0	0	1	0	• • • •	• • •	• • •	• • • •	• • • •	• • • •		
Je		0	0	1	0	1	1	1	1	1	1	1	1
		0	0	1	1	0	0	0	0	0	0	0	0
	MEMORY 4	0	0	1	1	0	0	0	0	0	0	0	1
	WIEWOKI 4	0	0	1	1	• • • •	• • •	• • •	• • • •	• • • •	• • • •		
		0	0	1	1	1	1	1	1	1	1	1	1

	Memory Address Map (Binary and Hexadecimal)																							
CHIP	SMALLEST ADDRESS BIGGEST ADDRESS																							
C	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	\mathbf{A}_{0}	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A_6	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀
M1	0	0	0	0	0	0	0	0	0	0	0	0	0 0 0 0 1 1 1 1 1 1						1					
M2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
М3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1
M4	4 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1																							
GAP	0	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1

- Total possible capacity is 2¹² = 4 KB
- Addressable capacity is 1 KB.
- The last 3 KB is unused gap space.
- Addresses 400 thru FFF are undefined (unaccessable)!

СНІР	SMALLEST ADDRESS (A ₁₁ – A ₀)	BIGGEST ADDRESS (A ₁₁ – A ₀)	CAPACITY
M1	000	0 F F	256 B
M2	100	1 F F	256 B
M3	200	2 F F	256 B
M4	300	3 F F	256 B
GAP	400	FFF	3 KB

Example 2: Memory Design with different chips

■ Total addressable capacity is = (1 KB * 2) + (512 B * 2) = 3 KB

Memory Address Map (Binary and Hexadecimal)

CHIP		SMALLEST ADDRESS											BIGGEST ADDRESS											
СНІР	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀
M1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
M2	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1
M3	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1	1	1	1
M4	1	0	1	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1
EMPTY	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1

- Total possible capacity is 2¹² = 4 KB
- Addressable capacity is 3 KB.
- The last 1 KB is unused gap space.

СНІР	SMALLEST ADDRESS (A ₁₁ – A ₀)	BIGGEST ADDRESS (A ₁₁ – A ₀)	CAPACITY
M1	000	3 F F	1 KB
M2	400	7 F F	1 KB
M3	800	9 F F	512 B
M4	A 0 0	BFF	512 B
GAP	C 0 0	FFF	1 KB

Memory Address Map (Binary and Hexadecimal)																								
CHIP	SMALLEST ADDRESS								BIGGEST ADDRESS															
Cilii					A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		
M1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
M2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1
M3	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1	1	1
M4	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	1	1	1	1	1
EMPTY 0 1 0 0 0 0					0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1		
l ■ Tot	Total possible capacity is						Cł	НP		SMA		「ADD – A₀)	RESS	S BIGGEST ADDRESS (A ₁₁ – A ₀)				5	CAPACITY					
1	$^{2} = 4$		0 00	рион	., .			GAP			000				0 F F				1 x 256 B					
l				.,				M1			100				1 F F				256 B					
Ad	ldres	sable	cap	acity	/ IS 1	KB.		M2				200				2 F F				256 B				
• То	tal u	nuse	d ga	ap sp	ace	= 12		GAP			300				3 F F				1 x 256 B					
		3 = 3						Ν	/ 13		400				4 F F				256 B					
(IR	KKEG	BULA	KLY	SPA	ACEL) !)		G.	AP		500					7 F F				3 x 256 B				
								N	14			8 (0 0				8 F F				256	В		
								G	AP			9 (0 0			FFF				7 x 256 B				

Calculation of unused (gaps) address bytes

Smallest	Biggest	Count of
Address	Address	Bytes
000	0 F F	256

Smallest	Biggest	Count of
Address	Address	Bytes
300	3 F F	256

Smallest Address	Biggest Address	Count of Bytes
500	5 F F	256
600	6 F F	256
700	7 F F	256

Smallest Address	Biggest Address	Count of Bytes
900	9 F F	256
A 0 0	AFF	256
B 0 0	BFF	256
C 0 0	CFF	256
D 0 0	DFF	256
E 0 0	EFF	256
F 0 0	FFF	256

Total unused gap space 12 x 256 B = 3 KB

Disadvantage of not using a decoder

- If an address decoder is not used, utilization of address bus will be ineffective.
- The possible addresses of memory with a 12-bit Address Bus is $2^{12} = 4$ KB.
- Without using a decoder, 4 bits are used for chip selection, 8 bits are used for location selection within chips.
- Therefore addressable memory is 4 x 2⁸ = 1 KB.
- The unused gap 3 KB is a waste of space capacity.

Mirroring Problem

- If a decoder is not used, or decoder is used but a decoder selection circuit (group selection) is not used, there is a possibility of mirroring.
- If an invalid address (in gap) is used by programmer, more than one memory chip can be selected at the same time. (This is known as Mirroring problem.)
- For example: The Adress F00 will select all of the 4 memory chips.
 (In fact, any FXX address will always select all chips at the same time.)
- Mirroring causes system deadlock.

Example Adress	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀
F 0 0	1	1	1	1	0	0	0	0	0	0	0	0

SELECTED CHIPS	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀
M1	0	0	0	1	0	0	0	0	0	0	0	0
M2	0	0	1	0	0	0	0	0	0	0	0	0
M3	0	1	0	0	0	0	0	0	0	0	0	0
M4	1	0	0	0	0	0	0	0	0	0	0	0

Solving the Mirroring Problem with AND Gates

- Normally, an address decoder should be preferred for chip selections.
- This is just an example of alternative solution.

Lecture 4

Sequential Processing

Sequential processing works on one instruction at a time

Pipelined Processing

- Latency elapsed time from start to completion of a particular task
- Throughput how many tasks can be completed per unit of time
- · Pipelining only improves throughput
 - Each job still takes 4 cycles to complete
- · Analogy: Factory assembly line