Жадный алгоритм и матроиды

Александр Безносиков

МФТИ (НИУ)

11 марта 2020

Content

- Определения
 - Матроид
 - Жадный алгоритм
- 2 Жадный алгоритм для матроидов
 - Теорема (Радо-Эдмондса)
 - Вывод из теоремы
 - Примеры
- 3 Нематроиды и жадный алгоритм
 - Коммивояжёр
 - Рюкзак
 - Раскраска графов (хроматическое число)

Матроид

Definition

Матроид – пара (X,I), где X – конечное множество, называемое носителем матроида, а I – некоторое множество подмножеств X, называемое семейством независимых множеств, то есть $I2^X$. При этом должны выполняться следующие условия:

- $\circ \varnothing \in I.$
- Если $A \in I$ и $B \subset A$, то $B \in I$.
- Если $A, B \in I$ и мощность A больше мощности B, то существует $x \in A \backslash B$ такой, что $B \cup \{x\} \in I$.

Жадный алгоритм

Definition

Жадный алгоритм — алгоритм, заключающийся в принятии локально оптимальных решений на каждом этапе, допуская, что конечное решение также окажется оптимальным.

Теорема (Радо-Эдмондса)

Theorem

На носителе матроида $M = \langle X, I \rangle$ задана весовая функция $\omega: X \to \mathbb{R}$. Пусть $A \in I$ – множество минимального веса среди независимых подмножеств X мощности k. Возъмем $x: A \cup x \in I, \ x \notin A, \ \omega(x)$ – минимальна.

Тогда $A \cup x$ – множество минимального веса среди независимых подмножеств X мощности k+1.

Доказательство

- Рассмотрим $B \in I$ множество минимального веса среди независимых подмножеств X мощности k+1.
- Из определения матроида: $\exists y \in B \setminus A : A \cup y \in I$.
- Тогда верны два неравенства:

$$\omega(A \cup y) = \omega(A) + \omega(y) \geqslant \omega(B) \Rightarrow \omega(A) \geqslant \omega(B) - \omega(y),$$
$$\omega(B \setminus y) = \omega(B) - \omega(y) \geqslant \omega(A).$$

• Заметим, что величина $\omega(A)$ с двух сторон ограничивает величину $\omega(B) - \omega(y)$. Значит, эти величины равны:

$$\omega(A) = \omega(B) - \omega(y) \Rightarrow \omega(A) + \omega(y) = \omega(B).$$

Доказательство

• Следовательно,

$$\omega(A \cup y) = \omega(A) + \omega(y) = \omega(B).$$

• Таким образом получаем, что если объединить множество A с x — минимальным из таких, что $A \cup x \in I$, — то получим множество минимального веса среди независимых подмножеств X мощности k+1.

Вывод из теоремы

Corollary

Пусть на носителе матроида $M=\langle X,I \rangle$ задана весовая функция $\omega:X\to\mathbb{R}$. Для любого $A\subset X$ выполнено: $\omega(A)=\sum_{x\in A}\omega(x)$. Тогда база минимального веса матроида M ищется жадно.

Примеры

Примером задачи, которая решается с помощью жадного алгоритма, является поиск остовного дерева. Остовное дерево — это база в графовом матроиде (X=E,I) состоит из всех ацикличных множеств ребер). Данная задача решается с помощью алгоритма Краскала. Код данного алгоритма совпадает с псевдокодом алгоритма поиска базы минимального веса, который был приведен выше.

Коммивояжёр

модели на графе, то есть, используя вершины и ребра между ними. Таким образом, вершины графа соответствуют городам, а рёбра (i,j) между вершинами i и j- пути сообщения между этими городами. Каждому ребру (i,j) можно сопоставить критерий выгодности маршрута $c_{ij} \geq 0$, который можно понимать как, например, расстояние между городами, время или стоимость поездки.

• Проблему коммивояжёра можно представить в виде

 Найти гамильтонов цикл максимального (минимального) веса.

Коммивояжёр

Рюкзак

- Пусть имеется набор предметов, каждый из которых имеет два параметра вес и ценность. Также имеется рюкзак определённой вместимости. Задача заключается в том, чтобы собрать рюкзак с максимальной ценностью предметов внутри.
- Математически задача формулируется следующим образом: имеется n грузов. Для каждого i-го груза определён его вес $w_i > 0$ и ценность $v_i > 0$, $i = 1, 2, \ldots, n$. Ограничение суммарного веса предметов в рюкзаке задаётся грузоподъёмностью W. Необходимо

$$\min \sum_{i=1}^{n} v_i x_i$$

с ограничениями

$$\sum_{i=1}^{n} w_i x_i \le W, \quad x_i = 0, 1.$$

Рюкзак

- Пусть имеется рюкзак вместимостью W. И два груза: первый весом 1 и ценой 2, а второй весом и ценой W.
- Жадный алгоритм выберет самый дорогой по удельной стоимости груз и положит его в рюкзак. Это худшее решение.

Раскраска графов

Раскраска графов

Корона (полный двудольный граф $K_{n,n}$ с удалёнными рёбрами совершенного паросочетания)

