Основни функции в R

- install.packages("package name"): инсталира нов пакет/ библиотека;
- library(package name): зарежда пакет/ библиотека;
- с(х,у...): създава вектор с елементи х, у и т.н.;
- х[]: индексира вектора х;
- x[x>0]: връща стойностите на вектора x, които отговарят на условието (в случая да са положителни);
- data.frame(): създава таблица тип 'data.frame';
- х[,2]: връща колона 2 на х, ако х е таблица;
- x[c(3,5),]: връща третия и пети ред на x, ако x е таблица;
- x[-1,]: премахва ред 1 на х, ако х е таблица;
- matrix(): създава матрица;
- x[1,2]: ако x е матрица или 'data.frame', избира елемента от ред 1 и колона 2;
- length(x): връща дължината на x;
- nrow(x), ncol(x): връща съответно броя на колоните или редовете на x;
- head(x), tail(x): връща съответно първите или последните 6 елемента на x;
- colnames(x), rownames(x): връща имената съответно на колоните и редовете на x;
- str(x): дава структурата на x;
- summary(x): връща обобщение на x, което е различно в зависимост какъв обект е x;
- sort(x): сортира елементите на x;
- order(x): връща индексите на сортираните елементи на x;

- min(x), max(x), mean(x), sd(x): дава съответно минималната, максималната, средната стойност или стандартното отклонение на x;
- cbind(x,y), rbind(x,y): съединява две таблици, съответно по колони и по редове.;
- round(x,n): закръгля числото x до n-тия знак след десетичната запетая;
- which(x=='value'): връща индекса на елементите на x, които отговарят на условието (в случая да са равни на value). Може да се задават различни видове условия;
- table(x): връща едномерна или многомерна таблица с честотно разпределение;
- prop.table(table(x),margin=1,2): връща едномерна или многомерна таблица с процентно разпределение;

```
• for шикъл:
 for (value in range) {
    statement
 }
• while цикъл:
 while (condition) {
    statement
 }
• оператор if:
 if (test_expression) {
    statement
    } elseif (test_expression) {
      statement
      } else {
        statement
        }
• Дефиниране на функции в R:
 function_name <- function(argument1, argument2, ...){</pre>
 statements
 return(object)
 }
```

Обработка на данни с dplyr/ tidyverse

- select: Избира подмножество от колони от данните dat1<-dat %>% select(var1,var5)
- arrange: подрежда наблюденията във възходящ или низходящ ред на зададена променлива

```
dat %>% arrange(var1)
```

- distinct: извежда стойностите на променливата без повторения dat %>% distinct(var1)
- slice: избира редове по тяхната позиция dat %>% slice(5000:5100)
- filter: Избира подмножество от наблюденията (по редовете), въз основа на определни критерии

```
dat %>% filter(var1=='value')
```

- mutate: Създава нови колони (с формули)
 dat %>% mutate(var1==var2/var3-5)
- group_by: променя аналитичната единица от цялата база данни на отделни групи
- summarise: представя данните обобщено dat %>% group_by(var) %>% summarise(mean=mean(var2))
- gather: преобразува таблицата в таблица само с две колони, едната съдържа имената на променливите (key), а другата - на техните стойности (value), като могат да се отделят променливи, които да не се преобразуват (в случая var1)

```
dat %>% gather("key", "value",-var1)
```

• spread: преобразува таблица, в която са премахнати колоните, съдържащи имената на променливите и на техните стойности и са представени като отделни колони

```
dat %>% spread(key, value)
```

Основни графики с ggplot2

• Точкова

```
ggplot(dat, aes(x=value1, y=value2)) + geom_point()
```

• Линия

```
ggplot(dat, aes(x=value1, y=value2)) + geom_line()
```

• Колони

```
Една върху друга:
```

```
ggplot(dat, aes(x=variable, y=value,fill=variable2)) + geom_bar(stat = "identity
Една до друга:
```

```
ggplot(dat, aes(x=variable, y=value,fill=variable2)) + geom_bar(stat = "identity
```

• Кръгова диаграма (piechart)

```
ggplot(dat, aes(x = "", y =value, fill=variable2)) +
geom_bar(stat = "identity")+
coord_polar("y")
```

• Боксплот

```
ggplot(dat, aes(x=1,y=value))+geom_boxplot()
```

• Хистограма

```
ggplot(dat, aes(value))+geom_histogram(bins=20,aes(y=..density..))
```

• Хистограма и емпирична плътност

```
ggplot(dat, aes(value))+
  geom_histogram(bins=20,aes(y=..density..))+
  geom_density(alpha=.2)
```

• Q-Q диаграма

```
ggplot(dat, aes(sample=value))+stat_qq()+ stat_qq_line()
```

• Олекотена тема на графиката: добавяме към кода +theme_light()

Разпределения

Разпределение	Функция на разпределение	Обратна функция на разпределение	Плътност	Извадка от съотв. разпр-е	Други аргументи на функциите
		Дискр	Дискретни разпределения		
Бернули	pbern(q,prob)	qbern(p,prob)	dbern(x,prob)	rbern(n,prob)	ргор: вероятност за успех
Биномно	pbinom(q,size,prob)	qbinom(p,size,prob)	dbinom(x,size,prob)	rbinom(n,size,prob)	size: брой опити
					ргор: вероятност за успех
Геометрично	pgeom(q,prob)	qgeom(p,prob)	dgeom(x,prob)	rgeom(n,prob)	ргор: вероятност за успех
Хипергеометрично	$\mathrm{phyper}(\mathrm{q,m,nn,k})$	$\mathrm{qhyper}(\mathrm{p,m,nn,k})$	dhyper(x,m,nn,k)	rhyper(n,m,nn,k)	m: брой на топките от желан цвят
					nn: брой на топките от другия цвят
					к: брой изтеглени топки
Поасоново	ppois(q, lambda)	qpois(p,lambda)	dpois(x,lambda)	rpois(n,lambda)	lambda: параметър на разпр-ето
Нормално	pnorm(q,mean,sd)	qnorm(p,mean,sd)	dnorm(x,mean,sd)	rnorm(n,mean,sd)	mean: средна стойност
					sd: стандартно отклонение
Равномерно	punif(q,a,b)	punif(q,a,b)	punif(q,a,b)	punif(q,a,b)	а: долна граница
					b: горна граница
Експоненциално	$\mathrm{pexp}(\mathrm{q,rate})$	qexp(p, rate)	dexp(x,rate)	rexp(n, rate)	rate: интензивност
Гамма	pgamma(q,shape,scale)	qgamma(p,shape,scale)	dgamma(x,shape,scale)	rgamma(n,shape,scale)	shape: парам. за форма
					scale: парам. за мащаб
χ^2	pchiq(q,df)	qchiq(p,df)	dchiq(x,df)	rchiq(n,df)	df: степени на свобода
t	$\operatorname{pt}(q,df)$	qt(p,df)	dt(x,df)	rt(n,df)	df: степени на свобода

Други полезни функции в R, свързани с разпределения:

- sample(x,size,replace=FALSE,prob=NULL): съставя извадка от x с размер size, със или без заместване, с еднаква или предварително определна вероятност за сбъдване на всеки изход.;
- kurtosis(X) от пакета 'e1071': пресмята ексцеса на разпределението;
- skewness(X) от пакета 'e1071': пресмята асиметрията на разпределението.

Проверка на хипотези

Полезни функции в R:

- shapiro.test(x): Прилага теста за нормалност на Шапиро и Уилк. H_0 : разпределението на данните се различава от нормалното, т.е. ако р-стойностите са под нивото на значимост (най-често 0.05), можем да твърдим, че разпределението на данните не е статистически значимо различно от нормалното.
- t.test(x,mu=mu0, alternative=''two.sided'', ''greater'' или ''less''): t-тест за една извадка от данни. H_0 : истинската средна стойност е mu0.
- prop.test(x,n,p): тест за вероятност за успех с нулева хипотеза, че вероятността за успех е р. С x е означен броят на успехите, а с n големината на извадката. И тук може да се използва аргумента "alternative".
- wilcox.test: (на англ. Wilcoxon-Mann—Whitney или Wilcoxon rank-sum test) е непараметричен тест с нулева хипотеза, че разпределенията на две групи са един и същи. Практически този тест е сходен на t-теста, но се използва, когато разпределението на случайната величина не е нормално.