

JUnitMe2.0: JUnit tests generation with Alloy and CodeModel

Auteurs : Salla DIAGNE Anis TELLO

 16^{th} December 2015

Table of contents

In	\mathbf{trod}	uction	4			
1	Tec	echnical work				
	1.1	Goal	5			
	1.2	Overview	5			
	1.3	Architecture & Design	5			
	1.4	Algorithm	6			
		1.4.1 Alloy to Java	6			
		1.4.2 Java to Alloy	6			
	1.5	Implementation	7			
	1.6	Utilisation	8			
2 E	Eva	raluation				
	2.1	Complexity	9			
	2.2	Performance	9			
	2.3	Ease of use	9			
	2.4	Limitations	9			
C	onclu	ısion	10			
R	éfére	nces	11			

Introduction

"Every program is guilty until proven innocent"

During the development phase, developers spend lots of time to write tests corresponding to code they have written in the program.

A program with high code coverage has been more thoroughly tested and has a lower chance of containing software bugs than a program with low code coverage.[1]

But what if developers didn't have to spend hours writing tests to have a good code coverage? What if there was a magic stick that can generate a bunch of unit tests?

Since Java is one of the most used programming languages in the world, we have decided to find a solution that would generate automatically Java unit tests. That would save time for developers, and would give the time and the energy to focus on working on business layer.

This project is an extended version of an application developed by Valentin Lefils and Quentin Marrecau [2] [3]. The first version of the application has treated the same problems we are facing, but only on small example of Java programs.

In this project, we present our tool: JUnitMe2.0. Our tool can generate automatically Java unit tests for any Java open source application. From a description of specification, our tool generate all instances that covere the data specifications, then generate the unit tests corresponding to these instances.

The rest of this report is organized as follows: Section 1.1 provides motivation and the goals of this work. Section 1.2 describes an overview of our tool: JUnitMe2.0. Section 1.4 describes the algorithms. Section 1.5 explains the implementation and the architecture, section 1.6 provides an example of a use case and expected results. Section 2.1 evaluates our tool from a complexity point of view. Section 2.2 evaluates our tool from a performance point of view. Section 2.3 evaluates the ease of use of our tool. Finally, Section 3. concludes this report.

DIAGNE, TELLO JUNITME2.0 PAGE 4

Chapter 1

Technical work

1.1 Goal

The goal of this tool is to generate a large amount of Java unit tests automatically so that we can achieve a good coverage of code with no time or effort spent. Therefore developers can focus on developing the business layer without worrying about testing the code they have written. Our tool can be used to verify that no bugs will occur when objects of the program interact with each other. In other words, our tool can verify that there no actual error exists for an application.

1.2 Overview

The main idea behind our project is to define the structure of a given Java program and to export collection of constraints that describes this structure. After analyzing these constraints, if it is possible, we generate all instances that satisfy the constraints.

By translating these instances to Java and then generating Java unit tests, we can obtain a good code coverage automatically.

1.3 Architecture & Design

UML

1.4 Algorithm

1.4.1 Alloy to Java

Generating Alloy source code

Base model The base model is a meta-model, It is the base of the generated java to Alloy program. It is composed of four parts: Types, methods, methods constraints and arguments of these methods.

Code generation To generate Alloy instances for an existing Java program we used Spoon. Spoon uses AST (Abstract syntax tree)[4] to browse the structure of a specified program. With informations collected in the AST, we are able to generate the code of Alloy program corresponding to the initial Java program. The generated code is then grafted to the base model. Result is a complet Alloy model inside the file FinalGen.als

1.4.2 Java to Alloy

Generating Java unit tests

Modelizing Alloy instances in Java Using Alloy Analyzer we execute the generated Alloy source code. Alloy Analyzer generates all possible instances. Each instance is a solution, we can obtain a solution using A4Solution object. A4Solution object has a method *satisfiable* to check if the solution is valid and a method *next* to go the next possible solution.

Generating tests In order To generate the code of Java unit tests we used CodeModel, which allows us to generate Java classes in a simple way.

We browse Java modelized solution and we generate the variables used to call methods and the variables passed as methods parameters.

For each solution we use the execution trace. Firstly, we initalize all the necessary types for the receiver method, then all the veriables that will be used in parameters.

1.5 Implementation

In order to realise our project we have used four different techonogies: Spoon, Alloy, Alloy Analyzer and CodeModel.

The main parts of our project is generating Alloy source code from a given Java program, then generating Alloy instances. Thereafter modelizing these instances in Java to, finally, convert these modelized instances to Java unit tests.

Spoon

In order to analyze and transform source code, we needed an efficient and powerful library. We have chosen Spoon, a high-quality open-source library created and maintained by INRIA (French Institute for Research in Computer Science and Automation (French: Institut national de recherche en informatique et en automatique)). Providing a complete and fine-grained JAVA metamodel, Spoon enables us to perform effortless treatments in differents parts of code. These treatments are performed by processors, which are able to browse, modify, or even add any program element (class, method, field, statements, expressions...).[5][6] Spoon can also be used on validation purpose, to ensure that your programs respect some programming conventions or guidelines, or for program transformation, by using a pure-JAVA template engine.[7]

Alloy

Alloy is a language for describing structures and a tool for exploring them. It has been used in a wide range of applications from finding holes in security mechanisms to designing telephone switching networks. An Alloy model is a collection of constraints that describes (implicitly) a set of structures, for example: all the possible security configurations of a web application, or all the possible topologies of a switching network. [8]

Alloy Analyzer

Alloy Analyzer, is a solver that takes the constraints of a model and finds structures that satisfy them. It can be used both to explore the model by generating sample structures, and to check properties of the model by generating counterexamples.[8]

CodeModel

CodeModel is a Java library for code generators; it provides a way to generate Java programs in a way much nicer than PrintStream.println(). With CodeModel, we can build the java source

code by first building AST (Abstract syntax tree)[4], then writing it out as text files that is Java source files.[9]

1.6 Utilisation

Chapter 2

Evaluation

- 2.1 Complexity
- 2.2 Performance
- 2.3 Ease of use
- 2.4 Limitations

Generic types

Lists

Tables

Conclusion

Using Spoon Java library to analyze and trasform source code, Alloy a language and tool for relational models, Alloy Analyzer a solver that takes the constraints of a model and finds structures that satisfy them and CodeModel a Java library for code generators we have succeeded in creating a tool capable of generating Java unit tests a given Java program. This tool can be extended in future to be able to treat a bigger variety of java program. Today's tool has been tested on ***** and it is able to generate Java unite tests that can achieve up to ***** of code coverage.

DIAGNE, TELLO JUNITME2.0 PAGE 10

Bibliography

- [1] Wikipedia. Code coverage. https://en.wikipedia.org/wiki/Code_coverage.
- [2] Valentin Lefils and Quentin Marrecau. Génération de tests junit avec alloy. http://static.monperrus.net/iagl/2014/rendu3-alloy-test-data-generation/ 01_Junit_Generation_Marrecau_Lefils/Rapport.pdf, 2015.
- [3] Valentin Lefils and Quentin Marrecau. Junitme (github). https://github.com/user4me/JunitMe.
- [4] Wikipedia. Abstract syntax tree. https://en.wikipedia.org/wiki/Abstract_syntax_tree.
- [5] INRIA. Spoon source code analysis and transformation for java. http://spoon.gforge.inria.fr/.
- [6] Martin Monperrus, Renaud Pawlak, Nicolas Petitprez, Carlos Noguera, and Lionel Seinturier. Spoon: A library for implementing analyses and transformations of java source code. https://hal.inria.fr/hal-01078532v2/document.
- [7] Spoon javasource. http://java-source.net/open-source/code-analyzers/spoon.
- [8] MIT. Alloy: Official website. http://alloy.mit.edu/alloy/.
- [9] SUN. Codemodel. https://codemodel.java.net/.

DIAGNE, TELLO JUNITME2.0 PAGE 11