Università degli Studi di Bologna

Corso di Laurea in Informatica Esercitazione scritta di LINGUAGGI Teoria — 24 ottobre 2010

- 1. Dare la sintassi per le formule della logica del prim'ordine
- 2. Scrivere una funzione ricorsiva su F che ritorni true se nella formula non si usano mai quantificazioni universali e false altrimenti
- 3. Definire la semantica $[\cdot]^{A,\xi}$ (o valutazione $v(\cdot)^{A,\xi}$) della formula $\forall x.P$.
- 4. Quanti connettivi binari esistono (e perchè)?
- 5. Enunciare il teorema di deduzione sintattica per la logica proposizionale
- 6. Dimostrare il teorema di correttezza per la logica proposizionale, limitandosi ai casi relativi alla congiunzione
- 7. Quali delle seguenti proposizioni sono logicamente equivalenti?
 - a) $P(x) \wedge \forall x. Q(x)$
- e) $\forall x. \exists y. R(x,y)$
- b) $P(y) \wedge \forall x. Q(x)$
- f) $\forall x. \forall y. R(x,y)$
- c) $P(x) \wedge \forall y. Q(y)$
- g) $\forall y. \forall x. R(x,y)$
- d) $P(y) \wedge \forall y. Q(y)$
- h) $\exists x. \forall y. R(x,y)$
- 8. Calcolare il numero massimo e minimo di implicanti primi essenziali in una mappa di Karnaugh su 3 variabli.
- 9. Dimostrare, per induzione su F, che se F non contiene negazioni e implicazioni allora $F \Vdash F[\top/A]$