IX. Měření modulu pružnosti v tahu

Měření modulu E z protažení drátu

Působí-li na drát délky l_0 a průřezu S síla F, potom v oboru pružné deformace je prodloužení drátu Δl dáno výrazem

$$\Delta l = \frac{1}{E} \frac{l_0 F}{S} \,, \tag{1}$$

kde E je modul pružnosti v tahu, který udává poměr mezi napětím σ

$$\sigma = \frac{F}{S} \tag{2}$$

a relativním prodloužením (deformací) ε

$$\varepsilon = \frac{\Delta l}{l_0} \ . \tag{3}$$

Z rovnic (1), (2) a (3) plyne

$$E = \frac{\sigma}{\varepsilon} = \frac{l_0 F}{\Lambda l \cdot S} \ . \tag{4}$$

Zařízení pro měření modulu pružnosti v tahu z protažení drátu je znázorněno na obr. 1. Výsledkem měření je stanovení modulu pružnosti v tahu výpočtem z rovnice (4). K tomu je třeba změřit průměr drátu d, délku drátu l₀, pomocí závaží kladených na misku působit na drát známou silou F a měřit příslušná prodloužení Délka drátu $l_0 \approx 1 \,\mathrm{m}$, průměr drátu $d \approx 0.5 \text{ mm}$. K počátečnímu vyrovnání a vypnutí drátu slouží závaží hmotnosti m=1 kg, pro vlastní měření jsou připravena závaží hmotnosti $m = 0.1 \, \text{kg}$.

Obr. 1: Měření protažení drátu

Prodloužení drátu se měří zrcátkovou metodou. Drát je proto na jednom konci veden přes kladku poloměru r k misce, na kterou se kladou závaží. V ose kladky je upevněno zrcátko Z. Protažení drátu se tímto způsobem převádí na pootočení zrcátka. Úhel pootočení zrcátka $\Delta \alpha$ souvisí s prodloužení drátu vztahem

$$r\Delta\alpha = \Delta l \tag{5}$$

a měří se metodou zrcátka a stupnice. Rovnoměrně osvětlená svislá stupnice je umístěna ve vzdálenosti L od zrcátka tak, aby bylo možné dalekohledem pozorovat obraz stupnice v zrcátku. Při

rovnovážné poloze zrcátka je v dalekohledu vidět dílek stupnice n_0 , po otočení zrcátka a úhel $\Delta \alpha$ dílek stupnice n. Pro vzdálenost $n-n_0$ platí

$$tg(2\Delta\alpha) = \frac{n - n_0}{L} \ . \tag{6}$$

Vzhledem k velikosti úhlu pootočení zrcátka lze užít pro výpočet $\Delta \alpha$ přibližného vzorce

$$\Delta \alpha \approx \frac{n - n_0}{2L} \ . \tag{7}$$

Měření modulu E z průhybu trámku

Modul pružnosti v tahu lze určovat i metodami nepřímými např. z velikosti průhybu ohýbaných tyčí. Mezi tyto metody patří i metoda měření E z průhybu trámku *obdélníkového* průřezu podepřeného dvěma břity ve vzdálenosti l (viz obr. 2). Při zatížení trámku uprostřed silou F se trámek prohne tak, že v působišti síly vznikne průhyb y, pro který platí

Obr. 2: Průhyb trámku

$$y = \frac{Fl^3}{48EI_p} , \qquad (8)$$

kde I_p je plošný moment setrvačnosti průřezové plochy tyče vzhledem k vodorovné ose, kolmé k délce trámku a procházející těžištěm.

Pro obdélníkový průřez trámku výšky b, šířky a lze I_p vyjádřit vztahem

$$I_p = \frac{ab^3}{12} \ . \tag{9}$$

Po dosazení z (9) do (8) dostaneme výchozí vztah pro určení modulu E touto metodou

$$E = \frac{Fl^3}{4yab^3} \ . \tag{10}$$

Průhyb trámku měříme objektivovým mikrometrem, pro měření ostatních délek jsou připraveny pásové měřítko, posuvné měřítko a mikrometr ($l \approx 5 \cdot 10^{-1}$ m, $a \approx 12 \cdot 10^{-3}$ m, $b \approx 2 \cdot 10^{-3}$ m).

Literatura:

- [1] J. Brož a kol.: Základy fyzikálních měření I. SPN, Praha 1967, kap. 2.3, st. 2.3.1, čl. 2.3.1.1.
- [2] J. Brož a kol.: Základy fyzikálních měření I. SPN, Praha 1983, kap. 2.3, st. 2.3.1, čl. 2.3.1.1.
- [3] Z. Horák, F. Krupka: Fyzika, SNTL, Praha 1981, kap. 2.6.1, 2.6.2