Lab 4 Set 1 – (Bayes theorem and Bayesian Classifier)

Objective: Finding probability by applying Bayes theorem and applying Bayesian Classifier on dataset for finding probability of an event and accuracy of model.

Question-1: (20 Minutes)

1 Mark

A patient goes to see a doctor. The doctor performs a test with 99 percent reliability--that is, 99 percent of people who are sick test positive and 99 percent of the healthy people test negative. The doctor knows that only 1 percent of the people in the country are sick.

(a) If the patient tests positive, what are the chances the patient is sick?

The intuitive answer is 99 percent, but the correct answer is 50 percent...."

posterior = (likelihood * prior) / evidence

	_		
10000 people			
Diseased	Not Diseased		
99	99	198	P(B)
1	9,801	9,802	
100	9,900	10,000	
P(A)			
P(A)	100/10000	0.01	
P(B)	198/10000	0.0198	
P(B/A)=P(A^B)/P(A)	(99/10000)*(0.01)	0.99	
P(A/B)			
	Diseased 99 1 100 P(A) P(B) P(B/A)=P(A^B)/P(A)	Diseased Not Diseased 99 99 1 9,801 100 9,900 P(A) 100/10000 P(B) 198/10000 P(B/A)=P(A^B)/P(A) (99/10000)*(0.01)	Diseased Not Diseased 99 99 198 1 9,801 9,802 100 9,900 10,000 P(A) 100/10000 0.01 P(B) 198/10000 0.0198 P(B/A)=P(A^B)/P(A) (99/10000)*(0.01) 0.99

 $P(A \mid B) = (0.99 \times 0.01) / 0.0198 = 0.50 = 50\%.$

```
1  TESTpos = 99
2  TESTneg = 99
3  TESTndandneg = 1
4  totalcase = 10000
5  #totalp = 100
6  TESTndandneg = totalcase - (TESTpos + TESTneg+TESTndandneg)
7  A = TESTpos/totalcase
8  B = (TESTpos+TESTneg)/totalcase
9  prob_b_a = (TESTpos/totalcase)/A
10  prob_a_b = (prob_b_a*A)/B
11  print(prob_a_b*100,"%")
```

50.0 %

Question-2: (20 Minutes)

1 Mark

Three identical boxes contain red and white balls. The first box contains 3 red and 2 white balls, the second box has 4 red and 5 white balls, and the third box has 2 red and 4 white balls. A box is chosen very randomly and a ball is drawn from it. If the ball that is drawn out is red.

(a) What will be the probability that the second box is chosen?

```
#fist box
                              P(A_2) = \frac{P(A_2) \cdot P(\frac{x}{A_2})}{P(A_1) \cdot P(\frac{x}{A}) + P(A_2) \cdot P(\frac{x}{A})}
a = 3 \# 3 \text{ red balls}
b = 2 # 2white balls
#second box
c = 4 \# 4red balls
                                                + p(A3) ' P(X)
d = 5 \# 5white balls
#third box
e = 2 \# 2 red balls
f = 4 \# 4white balls
                                         4 x 45 2 (3) =
b1 = 1/3
b2 = 1/3
b3 = 1/3
# red/total
x b1 = a/(a+b)
x b2 = c/(c+d)
x b3 = e/(e+f)
s = b2*x b2
ss = (b1*(x b1))+(b2*(x b2))+(b3*(x b3))
pa2_x = s/ss
print<mark>(</mark>pa2 x)
```

0.32258064516129037

Question-1: Write programs for followings questions with the help of below tabular data(save this tabular data with "Position_Salaries.csv" name in your system.

- (a) Draw line of best fit using Polynomial Regression approach/classifier using 2 and 3 degrees.
- (b) Find RMSE and R2 score

Data

	Position	Level	Salary
0	Business Analyst	1	45000
1	Junior Consultant	2	50000
2	Senior Consultant	3	60000
3	Manager	4	80000
4	Country Manager	5	110000
5	Region Manager	6	150000
6	Partner	7	200000
7	Senior Partner	8	300000
8	C-level	9	500000
9	CEO	10	1000000

Position	Level	Salary
Business Analyst	1	45000
Junior Consultant	2	50000
Senior Consultant	3	60000
Manager	4	80000
Country Manager	5	110000
Region Manager	6	150000
Partner	7	200000
Senior Partner	8	300000
C-level	9	500000
CEO	10	1000000

