CHAPITRE 18: STRATÉGIE DE SYNTHÈSE ET SÉLECTIVITÉ

THÈME 3 : DÉFIS DU XXIème SIÈCLE

ACTIVITÉ 2 SYNTHÈSE D'UN AROME

A. ÉQUATION DE LA RÉACTION

- **1.** Cette réaction est une réaction de substitution.
- **2.** Fonction présentes : acide acétique (fonction acide carboxylique), alcool isoamylique (fonction alcool primaire) et acétate d'isoamyle (fonction ester).
- **3.** Noms des réactifs et des produits : acide éthanoïque, 3-méthylbutan-1-ol, éthanoate de 3-méthylbutyle et eau.

B. MODE OPÉRATOIRE

Synthèse

- **1.** L'APTS augmente la vitesse de la réaction.
- Le milieu réactionnel est chauffé pour augmenter la vitesse de la réaction. Ce montage permet de condenser les vapeurs issues du milieu réactionnel et de limiter les pertes.

Séparation

3. • Il faut regarder les solubilités dans l'eau des différentes espèces pour connaître la composition des phases :

<u>Phase aqueuse</u>: APTS, acide acétique, traces d'alcool et d'ester

<u>Phase organique</u>: alcool isoamylique, acétate d'isoamyle, traces d'eau et d'acide acétique

- La densité de l'ester (constituant majoritaire de la phase organique) est inférieure à 1, donc la phase organique est située au-dessus de la phase aqueuse. On peut verser une goutte d'eau dans l'ampoule à décanter et regarder si elle traverse la phase supérieure.
- **4.** $H_2O_1CO_2(aq) / HCO_3(aq) CH_3CO_2H(aq) / CH_3CO_2(aq)$ $CH_3CO_2H(aq) + HCO_3(aq) \xrightarrow{} CH_3CO_2(aq) + CO_2(g) + H_2O(l)$
 - En lavant la phase organique avec la solution saturée d'hydrogénocarbonate de sodium, l'acide acétique est

phase organique supérieure :
- ester
- un peu d'alcool n'ayant pas réagi
- traces d'acide éthanoïque
- traces d'eau

phase aqueuse inférieure :
- eau
- acide éthanoïque
- APTS
- ions Na+ et Cl- traces d'alcool et d'ester

transformé en ion carboxylate, beaucoup plus soluble dans la phase aqueuse que dans la phase organique. Cette étape permet donc de supprimer les dernières traces d'acide de la phase organique.

Purification

- **6.** La distillation est une méthode de purification de liquides fondée sur les différences de température d'ébullition des constituants d'un mélange. L'alcool est le premier à passer, donc la température à partir de laquelle on recueille du distillat est 128°C.
- **7.** Calcul des quantités de matière des réactifs :

alcool:
$$n_1 = \frac{m_1}{M_1} = \frac{\rho_1 \cdot V_1}{M_1} = \frac{0.810 \times 40.0}{88.1} = \underline{0.368 \text{mol}}$$

acide acétique :
$$n_2 = \frac{m_2}{M_2} = \frac{\rho_2.V_2}{M_2} = \frac{1,05 \times 50,0}{60,1} = \underline{0,874} = 0$$

Tous les coefficients stœchiométriques étant égaux à 1, la quantité d'ester théorique est de : $n_{th} = 0.368 \text{mol}$

Quantité d'ester obtenue :
$$n_{exp} = \frac{m_p}{M_{ester}} = \frac{30,0}{130,2} = \underline{0,230mol}$$

Rendement:
$$\eta = \frac{m_{exp}}{m_{th}} = \frac{0,230}{0,368} = 0,626 = \underline{62,6\%}$$

Caractérisation

- **8.** La bande intense vers 1740cm⁻¹ est caractéristique de la liaison C=O des esters.
- **9.** Il n'y a pas de bande entre 3200 et 3600cm⁻¹ qui implique l'absence de la liaison O–H. On peut donc conclure qu'il n'y a plus de trace d'alcool et d'acide carboxylique.
- **10.** Le spectre RMN fait bien apparaître 5 signaux et la multiplicité est en accord avec la règle des (n+1)-uplets.

On aurait pu effectuer une CCM en déposant le produit issu de la synthèse avec 2 autres dépôts (substances étalons : alcool isoamylique et ester).