Solutions to CS511 Homework 09

Nicholas Ikechukwu - U71641768

November 14, 2024

Exercise 1. [LCS, page 159-160]: Exercise 2.2.3. Do both part (a), on page 159, and part (b), on page 160.

Analysis of First-Order Formulas

Part (a): Valid and Invalid Formulas in Predicate Logic

Given: m is a constant, f is a function symbol with one argument, and S and B are two predicate symbols, each with two arguments.

Valid Formulas with Parse Trees

i. S(m,x) is a valid formula:

ii. B(m, f(m)) is a valid formula:

vi. $(B(x,y) \to (\exists z S(z,y)))$ is a valid formula:

vii. $(S(x,y) \to S(y,f(f(x))))$ is a valid formula:

Invalid Formulas with Reasons

iii. f(m) is not a formula because:

- It is a term, not a formula
- No predicate symbol is applied

iv. B(B(m, x), y) is not a formula because:

- ullet B is a predicate symbol, not a function symbol
- ullet Cannot use predicate B as argument to another predicate
- **v.** S(B(m), z) is not a formula because:
- B(m) is invalid as B requires two arguments
- Cannot use predicate as argument

viii. $(B(x) \to B(B(x)))$ is not a formula because:

- B requires two arguments but given only one
- \bullet Cannot use predicate B as argument

Part (b)

Let c and d be constants, f a function symbol with one argument, g a function symbol with two arguments, h a function symbol with three arguments, and P and Q are predicate symbols with three arguments.

Valid Formulas with Parse Trees

i. $\forall x P(f(d), h(g(c, x), d, y))$ is a valid formula:

iii. $\forall x Q(g(h(x,f(d),x),g(x,x)),h(x,x,x),c)$ is a valid formula:

vi. Q(c, d, c) is a valid formula:

Invalid Formulas with Reasons

- ii. $\forall x P(f(d), h(P(x, y), d, y))$ is not a formula because:
 - \bullet Cannot use predicate P as argument to function h
 - Predicates can only appear as atomic formulas
 - iv. $\exists z (Q(z,z,z) \to P(z))$ is not a formula because:
 - ullet P requires three arguments but given only one
 - \bullet Arity mismatch for predicate P
 - **v.** $\forall x \forall y (g(x,y) \rightarrow P(x,y,x))$ is not a formula because:
 - g(x,y) is a term, not a formula
 - \bullet Cannot use \to with a term on left side
 - Only atomic formulas can be connected by logical operators

Exercise 2.

Part 1: [LCS, page 160]: Exercise 2.3.2.

2.3.2. Formula Interpretation

The formula $\exists x \exists y (\neg(x=y) \land (\forall z ((z=x) \lor (z=y))))$ specifies:

"There exist x and y, such that there is no x that equals y and for all z, z either equals x or y".

in essense:

"There exist exactly two distinct elements in the model."

This is because:

- $\exists x \exists y (\neg(x=y))$ states there are at least two different elements
- $\forall z ((z=x) \lor (z=y))$ states every element must be equal to either x or y
- Together, they specify that there are exactly two distinct elements

Part 2: [LCS, page 160]: Exercise 2.3.3, modified as follows. Change part (c) to read "at least three distinct elements".

2.3.3. Predicate Logic Sentences

(a) Exactly three distinct elements:

$$\exists x \exists y \exists z (\neg(x=y) \land \neg(y=z) \land \neg(x=z) \land \forall w ((w=x) \lor (w=y) \lor (w=z)))$$

(b) At most three distinct elements:

$$\forall x \forall y \forall w \forall z ((w = x) \lor (w = y) \lor (w = z))$$

(c) At least three distinct elements:

$$\exists x \exists y \exists z (\neg(x=y) \land \neg(y=z) \land \neg(x=z))$$

Explanations:

- For "exactly three": We state there exist three distinct elements AND every element must be one of these three
- For "at most three": We state that any fourth element must be equal to one of three elements
- For "at least three": We state there exist three elements that are all different from each other

PROBLEM 1 Open EML.Chapter 6.pdf. Do part Exercise 99 on page 61.

Interpretation of PL in FOL, II (Solution)

Let $\Sigma' \stackrel{\text{def}}{=} \{f, g_1, g_2, g_3, c_1, c_2\}$ where:

- f corresponds to \neg (unary)
- g_1 corresponds to \wedge (binary)
- g_2 corresponds to \vee (binary)
- g_3 corresponds to \rightarrow (binary)
- c_1 corresponds to \perp (constant)
- c_2 corresponds to \top (constant)

To define the two-element structure up to isomorphism, we construct ψ as follows:

$$\psi \stackrel{\text{def}}{=} \exists x \exists y (\neg (x \approx y) \land \forall z (z \approx x \lor z \approx y)) \land \\ \forall x \forall y (\\ (x \approx c_1 \lor x \approx c_2) \land \\ \neg (c_1 \approx c_2) \land \\ (f(c_1) \approx c_2 \land f(c_2) \approx c_1) \land \\ (g_1(c_1, c_1) \approx c_1 \land g_1(c_1, c_2) \approx c_1 \land \\ g_1(c_2, c_1) \approx c_1 \land g_1(c_2, c_2) \approx c_2) \land \\ (g_2(c_1, c_1) \approx c_1 \land g_2(c_1, c_2) \approx c_2 \land \\ g_2(c_2, c_1) \approx c_2 \land g_2(c_2, c_2) \approx c_2) \land \\ (g_3(c_1, c_1) \approx c_2 \land g_3(c_1, c_2) \approx c_2 \land \\ g_3(c_2, c_1) \approx c_1 \land g_3(c_2, c_2) \approx c_2))$$

For any propositional formula ϕ , we construct ϕ' as:

$$\phi' \stackrel{\mathrm{def}}{=} \phi \wedge \psi$$

Proof of Correctness:

- The sentence ψ ensures:
 - Exactly two distinct elements (c_1 and c_2 representing false and true)
 - The truth tables for negation (f), conjunction (g_1) , disjunction (g_2) , and implication (g_3)
 - The constants false (c_1) and true (c_2)
- If ϕ is valid in PL, then it evaluates to true under all truth assignments

- The sentence ψ ensures that any model of ϕ' is isomorphic to the two-element Boolean algebra
- Therefore, ϕ is valid in PL if and only if ϕ' is valid in FOL

ON LEAN-4

Solutions in one file at: https://github.com/nich-ikech/CS511-hw-macbeth/blob/main/cs511HwSolutions/hw09/hw09_nicholas_ikechukwu.lean

Exercise 3. Two closely related parts, which you have to do in Lean:

Solutions

 $\label{lem:https://github.com/nich-ikech/CS511-hw-macbeth/blob/main/cs511HwSolutions/hw09/hw09_nicholas_ikechukwu.lean$

Exercise 4. From Macbeth's book

PROBLEM 2. From Macbeth's book

Solution

 $\label{lem:https://github.com/nich-ikech/CS511-hw-macbeth/blob/main/cs511HwSolutions/hw09/hw09_nicholas_ikechukwu.lean$