

Active Learning Strategies for Weakly-Supervised Object Detection

Huy V. Vo^{1,2}, Oriane Siméoni², Spyros Gidaris², Andrei Bursuc², Patrick Pérez² and Jean Ponce^{1,3}

¹Inria and DI/ENS (ENS-PSL, CNRS, Inria)

²Valeo.ai

³Center for Data Science, New York University

INTRODUCTION

► **Goal**: Boosting the performance of weakly-supervised object detectors (WSODs) with a few carefully selected fully-annotated images.

Motivations:

- WSODs require only image tags annotation for training.
- But achieve lower performances than fully- supervised object detectors.
- We want to narrow the gap between weakly- and fully-supervised object detectors.
- WSODs suffer some well-known confusions. Addressing them will make the detectors more effective.

CONTRIBUTIONS

- We introduce a new approach to object detection that combines weakly-supervised and active learning.
- ► We introduce **BiB**, an active selection strategy that is tailored to address the limitations of weakly-supervised object detectors.
- ► BiB demonstrates a better detection performance/annotation cost trade-off than both weakly- and fully-supervised object detection.

References: [6] Biffi et al., ECCV'20; [7] Bilen et al., CVPR'16; [24] Everingham et al.; [29] Gao et al., ICCV'19; [32] Girshick et al., ICCV'15; [38] Huang et al., NeurIPS'20; [47] Lin et al., ECCV'14; [49] Pan et al., IJCAI'19; [54] Ren et al., NeurIPS'15; [55] Ren et al., CVPR'20; [69] Tang et al., CVPR'17; [80] Zeng et al., ICCV'19.

Acknowledgments: This work was supported in part by the Inria/NYU collaboration, the Louis Vuitton/ENS chair on artificial intelligence and the French government under management of Agence Nationale de la Recherche as part of the "Investissements d'avenir" program, reference ANR19-P3IA-0001 (PRAIRIE 3IA Institute). It was performed using HPC resources from GENCI-IDRIS (Grant 2021-AD011013055). Huy V. Vo was supported in part by a Valeo/Prairie CIFRE PhD Fellowship.

DISCOVER PROBABLE WSODs MISTAKES

Typical confusions of WSODs:

predictions focusing only on discriminative object parts or grouping instances of objects.

Box-in-box (BiB) pairs of regions: pairs of predictions of the same class s.t. one is "contained" in the other.

OVERALL APPROACH

Active learning pipeline:

- ► Train a weakly-supervised object detector.
- // Active learning loop
- Repeat
 - Select images to fully label.
 - Ask human annotators to draw bounding boxes around objects in them.
 - Fine-tune the weakly-supervised object detector with all annotation.

BiB selection:

- Find BiB pairs in all images.
- kmeans++ intialization
- Repeat until enough images are selected:
 - Compute the distance between BiB pairs in selected images and those in other images.
 - Pick a BiB pair with probability proportional to its distance to the pairs in selected images.
 - Select the image containing the chosen pair.

EXPERIMENTAL RESULTS

- **Datasets**: COCO2014 [47], VOC07 [24],
- **Evaluation Metrics**: Average precision (AP50 and AP).
- Comparison of active learning strategies

Results (AP50) on VOC07 (left) and COCO (right) dataset

Examples of improved detections:

Comparison to the state of the art:

Setting	Method	VOC07	COCO	
Setting	Method	AP50	AP50	AP
Fully supervised	Fast RCNN [32]	66.9	38.6	18.9
Fully supervised	Faster RCNN [54]	69.9	41.5	21.2
	WSDDN [7]	34.8	-	_
	OICR [69]	41.2	-	-
WSOD	C-MIDN [29]	52.6	21.4	9.6
VV30D	WSOD2 [80]	53.6	22.7	10.8
	MIST-CDB [55]	54.9	24.3	11.4
	CASD [38]	56.8	26.4	12.8
	BCNet [49]	57.1	_	_
Weak & few	OAM [6]	59.7	31.2	14.9
strong (10-shot)	Ours (u-rand)	60.2	32.7	16.4
	Ours (BiB)	62.9	34.1	17.2

Ablation study on VOC07:

DifS	K selection		Number of images annotated					
	im.	reg.	BiB	50	100	150	200	250
				56.3 ± 0.4	58.0 ± 0.5	58.9 ± 0.4	60.0 ± 0.3	$60.5\pm\text{0.4}$
\checkmark				56.5 ± 0.4	58.4 ± 0.4	59.3 ± 0.7	$60.2\pm\text{0.4}$	61.1 ± 0.5
\checkmark	√			57.1 ± 0.4	58.3 ± 0.5	59.3 ± 0.6	59.8 ± 0.4	$60.3\pm\text{0.4}$
\checkmark		\checkmark		$\textbf{58.4}\ \pm\ \textbf{0.4}$	60.2 ± 0.4	61.5 ± 0.6	62.6 ± 0.4	$\textbf{63.4}\ \pm\ \textbf{0.3}$
			\checkmark	57.9 ± 0.7	$60.1\pm\text{0.4}$	61.2 ± 0.5	62.1 ± 0.5	62.6 ± 0.4
\checkmark			\checkmark	$\textbf{58.5}\ \pm\ \textbf{0.8}$	$\textbf{60.8}\pm\textbf{0.5}$	$\textbf{61.9}\ \pm\ \textbf{0.4}$	$\textbf{62.9}\pm \textbf{0.5}$	$\textbf{63.5}\ \pm\ \textbf{0.4}$