1. Introduction to Harmonic Mean

The **Harmonic Mean (HM)** is a measure of central tendency that is useful when dealing with **rates**, **ratios**, **and time-based problems**. It is calculated as the reciprocal of the arithmetic mean of reciprocals of a given set of numbers.

2. Formula for Harmonic Mean

For n values $x_1, x_2, x_3, ..., x_n$, the harmonic mean (HM) is given by:

$$HM = \frac{n}{\sum \frac{1}{x_i}}$$

Where:

- n = number of observations
- x_i = individual values

3. Calculation of Harmonic Mean

Case 1: Ungrouped Data (Individual Values)

For a dataset $x_1, x_2, ..., x_n$:

$$HM = \frac{n}{\sum \frac{1}{x_i}}$$

Example 1: Find the HM of 4, 5, and 6.

$$HM = \frac{3}{\left(\frac{1}{4} + \frac{1}{5} + \frac{1}{6}\right)}$$

$$= \frac{3}{(0.25 + 0.2 + 0.1667)}$$

$$= \frac{3}{0.6167} = 4.87$$

Case 2: Grouped Data (Frequency Distribution)

For a frequency distribution:

$$HM = \frac{\sum f_i}{\sum \frac{f_i}{x_i}}$$

Where:

- f_i = frequency of class
- x_i = midpoint of class interval

Example 2: Frequency Distribution

Class Interval	Midpoint (x)	Frequency (f)
10 - 20	15	3
20 - 30	25	5
30 - 40	35	4
40 - 50	45	2

Steps to Calculate HM:

- 1. Compute $\frac{f}{x}$ for each class.
- 2. Sum $\sum \frac{f}{x}$.
- 3. Compute $HM = \frac{\sum f}{\sum \frac{f}{x}}$.

Х	f	$\frac{f}{x}$
15	3	0.200
25	5	0.200
35	4	0.114
45	2	0.044
Σ f = 14		$\Sigma \frac{f}{x} = 0.558$

$$HM = \frac{14}{0.558} = 25.09$$

4. Properties of Harmonic Mean

- Always Positive: HM is always a positive value.
- Influenced by Small Values: HM is highly affected by small values in the dataset.
- Reciprocal Relationship: The HM of a dataset is the reciprocal of the arithmetic mean of the reciprocals of the dataset.
- Suitable for Rates & Ratios: HM is the best mean for cases involving speed, efficiency, and density.

5. Merits of Harmonic Mean

- Best for Rates & Ratios: HM is widely used in problems involving speed, time, and work.
- All Values are Considered: It considers every value in the dataset, unlike the mode or median.
- Less Impact of Large Values: Unlike the arithmetic mean, HM reduces the effect of large values.

6. Demerits of Harmonic Mean

- **Cannot Handle Zero or Negative Values**: Since it involves reciprocals, HM is **undefined if any value** is zero.
- **➢ Difficult to Compute**: Compared to arithmetic mean, HM requires more complex calculations.
- X Highly Affected by Small Values: Even a single small value in the dataset significantly lowers HM.

7. Applications of Harmonic Mean

- **Speed & Distance Problems –** Used in average speed calculations when distances are constant.
- Finance & Investment Used in financial ratios, interest rates, and stock price indices.
- Work & Time Problems Applied in problems involving work efficiency and productivity.
- Physics & Engineering Used in resistance in parallel circuits and fluid mechanics.

8. More Example Problems on Harmonic Mean

Example 3: Speed Calculation

A person travels 60 km at 30 km/h and another 60 km at 40 km/h. Find the average speed. Solution:

$$HM = \frac{2}{\left(\frac{1}{30} + \frac{1}{40}\right)}$$
$$= \frac{2}{(0.0333 + 0.025)}$$
$$= \frac{2}{0.0583} = 34.29$$

Thus, average speed \approx 34.29 km/h.

Example 4: Work Efficiency Calculation

Two workers A and B can complete a job in 10 hours and 15 hours respectively. What is their average work rate?

Solution:

$$HM = \frac{2}{\left(\frac{1}{10} + \frac{1}{15}\right)}$$
$$= \frac{2}{(0.1 + 0.0667)}$$
$$= \frac{2}{0.1667} = 12$$

Thus, the average work efficiency is 12 hours.

9. Conclusion

- Harmonic Mean is useful when dealing with rates and ratios.
- It is best suited for speed, time, and work problems.
- It is highly affected by small values but reduces the impact of large values.
- Not defined for zero or negative values.
- Commonly used in physics, finance, and statistics.