浙江水学

本科实验报告

课程名称:		数字逻辑设计
姓	名:	沈一芃
学	院:	计算机学院
	系:	计算机系
专	业:	计算机科学与技术
学	号:	3220101827
指导教师:		马德

2023年10月31日

浙江大学实验报告

课程名称: 数字逻辑设计	实验类型: _ ISE 电路设计
实验项目名称: 7段数码管显示译码器设	设计与应用
学生姓名: <u>沈一芃</u> 专业: <u>计算机科学</u>	
同组学生姓名: <u>无</u>	指导老师: <u>马德</u>
实验地点: 东 4 509	实验日期: 2023 年 10 月 31 日

一、 实验目的和要求:

- 掌握七数码管显示原理
- 掌握七段码显示译码设计
- 进一步熟悉 Xilinx ISE 环境及 SWORD 实验平台

二、实验内容和原理

- 1. 实验内容:
- 原理图设计实现显示译码 MyMC14495 模块
- 用 MyMC14495 模块实现数码管显示

2. 实验原理:

• 7+1 个 LED 构成的数字显示器件: 7 段 LED 显示数字的一段,另为小数点

- 共阴(阳)控制: LED 的正极(负极)连在一起,另一端作为点亮的控制
 - 共阳:正极连在一起,负极=0,点亮
 - 共阴:负极连在一起,正极=1,点亮

• MC14495 的初始真值表与化简过程:

1 套

三、 主要仪器设备

实验设备:

- 装有 Xilinx ISE 14.7 的计算机 1台
- SWORD 开发板

四、操作方法与实验步骤

- 1. 原理图设计实现显示译码 MyMC14495 模块
- 建立工程 MC14495 SCH
- 建立名为 MC14495 的 schematic 源文件
- 原理图方式进行设计

• 建立测试波形文件 MC14495_sim.tbw 并进行仿真激励输入。在 simulation 视图中选择 simulate behavioral model,并验证正确性:

• 通过 Create Schematic Symbol 生成 D_74LS138 模块的逻辑符号图文件,后缀. sym。

2. 用 MyMC14495 模块实现数码管显示

- 新建工程 DispNum, 新建 Schematic 源文件 DispNum. sch
- 复制 MC14495. sym 和. sch 文件到工程目录
- 根据原理图进行设计,可直接调用 MC14495 模块。
- 建立约束文件,生成执行文件。
- 下载 bit 文件至 sword 板,根据真值表进行功能验证。

五、 实验数据记录和处理

• 用 MyMC14495 模块实现数码管显示

实验截图如下:

六、 实验结果与分析

1.	验证 MvMC14495 椹	块数码管显示设计功能
т.	JUL MILLING THE TOO 15	沙双时日业小女们为配

0000	0	1000	8
0001	1	1001	9
0010	2	1010	A
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

显示正确。设计正确。

七、讨论、心得

本次实验我掌握了七数码管显示原理和七段码显示译码设计。我也进一步熟悉了 Xilinx ISE 环境及 SWORD 实验平台。在理解了 MyMC14495 译码器的工作原理,并仿照真值表和卡诺图流程进行化简后,我根据原理图设计实现显示了译码MyMC14495 模块。本次实验的电路设计较为复杂。我在仿真中检查出了电路错误,并根据 e 管显示错误,在电路图中追查 e 管电路,发现了一处连接错误。这个过程让我真正体会到仿真的意义。

在设计 MC14495 后,我使用 MyMC14495 译码器模块设计了数码管显示电路。 看到通过 4 位按钮拨动实现 0-f 的输出,心里还是很有成就感的。

总得来看,通过了解、设计、使用 MC14495 七段码显示译码和七数码管,我对数字逻辑设计有了更深入的理解,也更加熟悉了 Xilinx ISE 环境及 SWORD 实验平台的使用,这将使我在未来的实验中更加得心应手。