ESC195: Cheat Sheet

0. General:

$$ln(a \cdot b) = ln(a) + ln(b)$$
$$ln(\frac{a}{b}) = ln(a) - ln(b)$$

Tips for Finite Series:

If the series is finite and you wanna manipulate it:

$$\sum_{i=1}^{n} a_n = \sum_{i=0}^{n-1} a_{n+1}$$

1. Trigonometric Identities:

1.1 Pythagorean Theorem Identities:

$$sin^{2}\theta + cos^{2}\theta = 1$$
$$tan^{2}\theta + 1 = sec^{2}\theta$$
$$1 + cot^{2}\theta = csc^{2}\theta$$

1.5 Double-Angle Identities:

$$\sin 2x = 2\sin x \cos x \text{ or } \frac{1}{2}\sin 2x = \sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x |\cos 2x| = 2\cos^2 x - 1 |\cos 2x| = 1 - 2\sin^2 x$$

1.6 Half-Angle Identities:

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$
$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

1.7 Product Identities:

$$\sin x \cos y = \frac{1}{2} \left[\sin(x - y) + \sin(x + y) \right]$$
$$\cos x \cos y = \frac{1}{2} \left[\cos(x - y) + \cos(x + y) \right]$$

$$\sin x \sin y = \frac{1}{2} \left[\cos(x - y) - \cos(x + y) \right]$$

2. Hyperbolic Functions:

2.1 Definition of Hyperbolic Functions:

$$\sinh x = \frac{e^{x} - e^{-x}}{2} \mid \operatorname{csch} x = \frac{1}{\sinh x}$$

$$\cosh x = \frac{e^{x} + e^{-x}}{2} \mid \operatorname{sech} x = \frac{1}{\cosh x}$$

$$\tanh x = \frac{\sinh x}{\cosh x} \mid \operatorname{coth} x = \frac{\cosh x}{\sinh x}$$

2.2 Hyperbolic Identities:

$$sinh(-x) = -sinh(x)$$

$$cosh^{2}(x) - sinh^{2}(x) = 1$$

$$sinh(x + y) = sinh(x)cosh(y) + sinh(y)cosh(x)$$

$$cosh(x + y) = cosh(x)cosh(y) + sinh(x)sinh(y)$$

2.3 Hyperbolic Derivatives:

$$\frac{d}{dx}\left(\sinh(x)\right) = \cosh(x) \mid \frac{d}{dx}\left(\operatorname{csch}(x)\right) = -\operatorname{csch}(x)\operatorname{coth}(x)$$

$$\frac{d}{dx}\left(\cosh(x)\right) = \sinh(x) \mid \frac{d}{dx}\left(\operatorname{sech}(x)\right) = -\operatorname{sech}(x)\operatorname{tanh}(x)$$

$$\frac{d}{dx}\left(\tanh(x)\right) = \operatorname{sech}^{2}(x) \mid \frac{d}{dx}\left(\operatorname{coth}(x)\right) = -\operatorname{csch}^{2}(x)$$

2.4 Inverse Hyperbolic Functions:

$$sinh^{-1}(x) = ln(x + \sqrt{x^2 + 1}), x \in R$$

$$cosh^{-1}(x) = ln(x + \sqrt{x^2 - 1}), x \ge 1$$

$$tanh^{-1}(x) = \frac{1}{2}ln(\frac{1+x}{1-x}), -1 < x < 1$$

3. L'Hôpital's Rule:

Transform to $\frac{0}{0}$ or $\frac{\infty}{\infty}$ to use L'Hôpital's Rule:

Indeterminate form	Conditions	Transformation to $0/0$	Transformation to ∞/∞
0 0	$\lim_{x o c} f(x) = 0, \ \lim_{x o c} g(x) = 0$	_	$\lim_{x o c}rac{f(x)}{g(x)}=\lim_{x o c}rac{1/g(x)}{1/f(x)}$
<u>∞</u> ∞	$\lim_{x \to c} f(x) = \infty, \ \lim_{x \to c} g(x) = \infty$	$\lim_{x o c}rac{f(x)}{g(x)}=\lim_{x o c}rac{1/g(x)}{1/f(x)}$	_
$0\cdot\infty$	$\lim_{x o c}f(x)=0,\ \lim_{x o c}g(x)=\infty$	$\lim_{x o c}f(x)g(x)=\lim_{x o c}rac{f(x)}{1/g(x)}$	$\lim_{x o c}f(x)g(x)=\lim_{x o c}rac{g(x)}{1/f(x)}$
$\infty - \infty$	$\lim_{x o c} f(x) = \infty, \ \lim_{x o c} g(x) = \infty$	$\lim_{x o c}(f(x)-g(x))=\lim_{x o c}rac{1/g(x)-1/f(x)}{1/(f(x)g(x))}$	$\lim_{x o c}(f(x)-g(x))=\ln\lim_{x o c}rac{e^{f(x)}}{e^{g(x)}}$
00	$\lim_{x\to c} f(x) = 0^+, \lim_{x\to c} g(x) = 0$	$\lim_{x o c} f(x)^{g(x)} = \exp \lim_{x o c} rac{g(x)}{1/\ln f(x)}$	$\lim_{x o c}f(x)^{g(x)}=\exp\lim_{x o c}rac{\ln f(x)}{1/g(x)}$
1^{∞}	$\lim_{x o c}f(x)=1,\ \lim_{x o c}g(x)=\infty$	$\lim_{x o c} f(x)^{g(x)} = \exp \lim_{x o c} \frac{\ln f(x)}{1/g(x)}$	$\lim_{x\to c} f(x)^{g(x)} = \exp\lim_{x\to c} \frac{g(x)}{1/\ln f(x)}$
∞^0	$\lim_{x \to c} f(x) = \infty, \ \lim_{x \to c} g(x) = 0$	$\lim_{x o c}f(x)^{g(x)}=\exp\lim_{x o c}rac{g(x)}{1/\ln f(x)}$	$\lim_{x o c}f(x)^{g(x)}= \exp\lim_{x o c}rac{\ln f(x)}{1/g(x)}$

4. Evaluation Techniques for Limits:

- **Continuous Function** \rightarrow Plug in the a, where $x \rightarrow a$
- Continuous Functions and Composition \rightarrow f(x) is continuous at b and $\lim_{x \to a} g(x) = b$ then $\lim_{x \to a} f(g(x)) = f(b)$
- Factor and cancel
- Rationalize numerator/denominator
- Combine rational expressions
- **L'Hospital's Rule** \to If $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ or $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\pm \infty}{\pm \infty}$ then take the derivative of f(x) and g(x) and plug in a.
- **Polynomials at Infinity** $\to \lim_{x \to \pm \infty} \frac{p(x)}{q(x)}$. Factor largest power of x in q(x) out of both p(x) and q(x) then use the **property:** $\lim_{x \to +\infty} \frac{1}{x^r} = 0$
- Piecewise Function → Compute the two one sided limits and see if they
 equal each other.

5. Techniques of Integration:

5.1 Symmetry:

Odd: If f is odd on [-a, a] then $\int_{-a}^{a} f(x)dx = 0$ Even: If f is even on [-a, a] then $\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$

5.2 Completing the Square:

$$ax^{2} + bx + c \rightarrow a(x + d)^{2} + e$$

 $d = \frac{b}{2a} \mid e = c - \frac{b^{2}}{4a}$

5.4 Useful Common Integrals and Derivatives (*+C*):

$$\frac{d}{dx}(x) = 1$$

$$\frac{d}{dx}(\cos x) = -\csc x \cot x$$

$$\frac{d}{dx}(a^{x}) = a^{x} \ln(a)$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cot x) = -\csc^{2} x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^{2}}}$$

$$\frac{d}{dx}(\ln(x)) = \frac{1}{x}, \quad x > 0$$

$$\frac{d}{dx}(\sin^{-1} x) = \sec^{2} x$$

$$\frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1 - x^{2}}}$$

$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}, \quad x \neq 0$$

$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{1 + x^{2}}$$

$$\frac{d}{dx}(\log_{a}(x)) = \frac{1}{x \ln a}, \quad x > 0$$

$$\int k \, dx = k \, x + c$$

$$\int x^{n} \, dx = \frac{1}{n+1}x^{n+1} + c, \quad n \neq -1$$

$$\int \sin u \, du = \sin u + c$$

$$\int \sin u \, du = -\cos u + c$$

$$\int \sin u \, du = -\cos u + c$$

$$\int \frac{1}{a^{2} + u^{2}} \, du = \frac{1}{a} \tan^{-1}(\frac{u}{a}) + c$$

$$\int \ln u \, du = u \ln(u) - u + c$$

$$\int \csc u \, du = -\cot u + c$$

$$\int \csc^{2} u \, du = -\cot u + c$$

$$\int u\sin(u)du = \sin(u) - u\cos(u) + C$$

$$\int u\cos(u)du = \cos(u) + u\sin(u) + C$$

$$\int u^2\sin(u)du = 2u\sin(u) - (u^2 - 2)\cos(u) + C$$

$$\int u^2\cos(u)du = 2u\cos(u) + (u^2 - 2)\sin(u) + C$$

$$\int \sin^n x = \frac{-1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x dx$$

$$\int \cos^{n} x = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x dx$$

5.5 Integration Using Trigonometric Identities:

Strategy for Evaluating $\int \sin^m x \cos^n x dx$

- a. If the power of cos is odd, save one cos factor and use $sin^2x + cos^2x = 1$, then substitute.
- b. If the power of sine is odd, save one sine factor and use $sin^2x + cos^2x = 1$, then substitute.
- c. If powers of both sine and cosine are even, use half-angle identities.

Strategy for Evaluating $\int tan^m x sec^n x dx$

- d. If the power of sec is even, save a factor of sec^2x and use $tan^2x + 1 = sec^2x$, then substitute.
- e. If the power of tangent is odd, save a factor of secxtanx and use $tan^2x + 1 = sec^2x$, then substitute.

Strategy for Evaluating $\int cot^m(x)csc^n(x)dx$

If the power of cotangent is odd, save a factor of *cotxcscx*, and use Pythagorean Identity, then substitute u = cscx

5.6 Improper Integrals:

Tips:

- Be extremely careful if there is a discontinuity in between the bounds, then you have to separate it.
 - $\circ \quad \mathbf{Eg.} \int_{-1}^{3} \frac{dx}{x^2} \neq \left[\frac{-1}{x} \right]_{-1}^{3}. \text{ The integrals equals } \int_{-1}^{0} \frac{dx}{x^2} \& \int_{0}^{3} \frac{dx}{x^2}$
- Know what the graphs look like

Important Example:

$$\int_{a}^{\infty} \frac{dx}{x^{p}} = \lim_{b \to \infty} \int_{a}^{b} \frac{dx}{x^{p}} = \lim_{b \to \infty} \left[\frac{1}{1-p} b^{-p+1} - \frac{a^{-p+1}}{1-p} \right]$$

- $\frac{a^{1-p}}{1-p}$ for p > 1 converges
- Diverges for p < 1

Comparison Test:

Let f, g be continuous functions and $0 \le f(x) \le g(x)$ where $x \in [a, \infty)$,.

- If $\int_{a}^{\infty} g(x)dx$ converges, so does $\int_{a}^{\infty} f(x)dx$ If $\int_{a}^{\infty} f(x)dx$ diverges, so does $\int_{a}^{\infty} g(x)dx$

6. Applications of Integration:

6.1 Arc Length of a Curve:

$$s = \int_{a}^{b} \sqrt{1 + \left[\frac{dy}{dx}\right]^2} dx$$

- 6.2 Surface Area of a Surface of Revolution:
- 6.2.1 X-Axis:

$$A = \int_{a}^{b} 2\pi f(x) \sqrt{1 + \left[\frac{dy}{dx}\right]^{2}} dx$$
$$A = \int_{a}^{b} 2\pi y \sqrt{1 + \left[\frac{dx}{dy}\right]^{2}} dy$$

6.2.2 Y-Axis:

$$A = \int_{a}^{b} 2\pi f(y) \sqrt{1 + \left[\frac{dx}{dy}\right]^{2}} dy$$
$$A = \int_{a}^{b} 2\pi x \sqrt{1 + \left[\frac{dy}{dx}\right]^{2}} dx$$

6.3 Force a Fluid Exerts on the Flat Wall of a Container:

$$F = \rho g \int_{a}^{b} h(y) L(y) dy$$

6.4 Moment of R about the y-axis and x-axis respectively:

$$M_{y} = \rho \int_{a}^{b} x f(x) dx$$
 and $M_{x} = \rho \int_{a}^{b} \frac{1}{2} [f(x)]^{2} dx$

6.5 Centroid of a Curve:

$$\overline{x} = \frac{1}{A} \int_{a}^{b} x f(x) dx$$

$$\overline{y} = \frac{1}{2A} \int_{a}^{b} (f(x))^{2} dx$$

6.6 Centroid of Two Curves:

$$\bar{x} = \frac{1}{A} \int_{a}^{b} x [f(x) - g(x)] dx$$

$$\bar{y} = \frac{1}{2A} \int_{a}^{b} [(f(x))^{2} - (g(x))^{2}] dx$$

6.7 Volume of Revolution using Pappus's Centroid Theorem:

$$V = 2\pi RA$$

Where R $(\overline{x} \text{ or } \overline{y})$ is the distance from the centroid to the axis of rotation and A is the area of the rotated region.

6.8 Surface Area of a Surface of Revolution:

$$A = 2\pi Rd$$

Where d is the arclength of the curve, and R $(\overline{x} \text{ or } \overline{y})$ is the distance from the centroid to the axis of rotation.

7. Parametric Equations

7.1 Derivative of Parametric Equations:

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} if \frac{dx}{dt} \neq 0$$

- When $\frac{dy}{dt} = 0$, there is a horizontal tangent.
- When $\frac{dx}{dt} = 0$, there is a vertical tangent.

7.2 Second Derivative of Parametric Equations:

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}$$

7.3 Area of Parametric Equations:

If x = x(t) and y = y(t), $t_1 \le t \le t_{2}$, then

$$A = \int_{t_1}^{t_2} y(t)x'(t)dt$$

Def'n: A curve is traversed in the +ve sense as t increases, if the enclosed area is on the left (CWW).

7.4 Arc Length

If a curve C is described by the parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where f' and g' are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β , then the length of C is

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

7.5 Relation to Motion and Velocity:

$$s(t) = \int_{\alpha}^{t} \sqrt{\left(\frac{dx}{du}\right)^{2} + \left(\frac{dy}{du}\right)^{2}} du = distance \ travelled$$

$$\frac{ds}{dt} = \sqrt{\left(\frac{dx}{du}\right)^{2} + \left(\frac{dy}{du}\right)^{2}} = speed$$

7.6 Surface Area

X-Axis:

$$S = \int_{\alpha}^{\beta} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Y-Axis:

$$S = \int_{\alpha}^{\beta} 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

7.7 Graphing Parametric Curves:

- 1. Try converting to a cartesian equation and plot it normally (if it makes it easier)
- 2. Check for potential vertical tangents by setting x'(t) = 0
- 3. Check for potential horizontal tangents by setting y'(t) = 0
- 4. Find x and y intercepts by setting x(t) = y(t) = 0 and then using the t value you get for the other coordinate.
- 5. Look for periodicity in either x, y, or both.
- 6. Find the coordinate and the slope $\frac{dy}{dx}$ at t=0 and at the endpoint $t=t_f$

7.8 Common Parametric Curves:

Cycloid:

$$x(\theta) = a(\theta - sin\theta) \mid y(\theta) = a(1 - cos\theta)$$

8. Polar Curves:

8.1 Relationship between Polar and Cartesian Coordinates:

$$x = r\cos\theta, y = r\sin\theta$$

 $r^2 = x^2 + y^2, \tan\theta = \frac{y}{x}$

• Be careful about the quadrant by making sure θ is correct.

8.2 Symmetry:

1. Symmetry About X-Axis

$$r(-\theta) = r(\theta)$$

2. Symmetry About Y-Axis

$$r(\pi - \theta) = r(\theta)$$

3. Symmetry About Origin

$$r(\pi + \theta) = r(\theta)$$

8.3 Intersection of Polar Curves:

Tips:

- Draw a picture
- Watch out for intersection of 0
- Watch out for intersections that are two times.
- 90/number with theta.

8.4 Tangents in Polar Coordinates:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

- When $\frac{dy}{d\theta} = 0$, horizontal tangent.
- When $\frac{dy}{d\theta} = 0$, vertical tangent.

8.5 Common Polar Curves:

Types	How to Graph
Circles $r = acos\theta$ $r = asin\theta$ $r=1$	 a < 0 indicates that the circle will directed towards the negative x or y-axis cosθ → x-axis, while sinθ → y-axis a is the diameter For graphs with just a number, it indicates the radius not the diameter
Limacons $r = a \pm bsin\theta$ $r = a \pm bcos\theta$	 + → oriented towards positive axis - → oriented towards negative axis cosθ → x-axis, while sinθ → y-axis Plot two x and y intercepts. a indicates the intercepts that are the same b − a is the closer intercept b + a is the farther intercept
Roses	 acosnθ → The first leaf is on the x-axis. Even = 2n leaves Odd = n leaves a is the length of leaf cosθ → 0 for first leaf, ^{2π}/_n for interval (n is number of leaves) sinθ → ^π/_{2n} for first leaf, ^{2π}/_n for interval (n is number of leaves)
Lemniscates $r^{2} = a^{2}cos^{2}\theta$ $r^{2} = a^{2}sin^{2}\theta$	 cosθ → x-axis, while sinθ → angled between the x and y axis. a indicates left and right bounds.
General	 To find where r=0, just set the equation to 0 so you can know the angles Think of r and theta as a vector with theta being the direction and r being the magnitude.

8.6 Area of a Polar Region

$$A = \int_{a}^{b} \frac{1}{2} \left[r(\theta) \right]^{2} d\theta$$

8.7 Area Between Polar Curves:

$$A = \frac{1}{2} \int_{\alpha}^{\beta} [r_1^2 - r_2^2] d\theta$$

- Be careful because it has to be an outer function (r_1) and inner function (r_2) , not the addition of two areas.
- Whichever curve is closer to the origin is r₂.

8.8 Arc Length of a Curve with Polar Equation:

$$L = \int_{a}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

9. Theorems:

9.1 Cauchy's Mean Value Theorem:

Suppose that the functions f and g are continuous on [a, b] and differentiable on (a,b), and $g'(x) \neq 0$ for all x in (a,b). Then there is a number c in (a,b) such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

10. Sequences:

10.1.1 Definition of Limit of a Sequence:

If $\lim_{n\to\infty} a_n = L$ exists, then the sequence **converges**. Otherwise, the sequence **diverges**.

10.1.2 Precise Definition of Limit of a Sequence:

A sequence of $\{a_n\}$ has the **limit** L and we write

$$\lim_{n\to\infty} a_n = L$$

iff for every $\varepsilon > 0$, there exists an integer N such that if n > N then $|a_n - L| < \varepsilon$

10.2 Definition $\{a_n\}$ is (monotonic):

- Increasing iff $a_n < a_{n+1}$
- Non-decreasing $a_n \le a_{n+1}$
- Decreasing $a_n > a_{n+1}$
- Non-decreasing $a_n \ge a_{n+1}$

10.3 Definition of Bounded Sequence:

A sequence $\{a_n\}$ is **bounded above** if there is a number M such that

$$a_n \leq M$$
 for all $n \geq 1$

A sequence is **bounded below** if there is a number m such that

$$m \le a_n for all n \ge 1$$

If a sequence is bounded above and below, then it is called a **bounded sequence**.

10.4 Definition of Convergent & Divergent:

If a sequence has a limit it is said to be **convergent** otherwise **divergent**.

- 1) If a sequence is convergent, it is bounded.
- 2) If a sequence is unbounded, it is divergent.
- 3) A bounded sequence is not necessarily convergent.

10.5 Theorem for Sequences

10.5.1 Theorem:

If
$$\lim_{n\to\infty} |a_n| = 0$$
, then $\lim_{n\to\infty} a_n = 0$.

10.5.2 Monotonic Sequence Theorem (for large n):

Every bounded, monotonic sequence is convergent. A bounded non-decreasing sequence converges to its least upper bound. A bounded non-increasing sequence converges to its greatest lower bound.

10.5.3 Properties of Sequences

Given
$$\lim_{n \to \infty} a_n = L$$
, $\lim_{n \to \infty} b_n = M$

1)
$$\lim_{n \to \infty} (a_n + b_n) = L + M$$

2)
$$\lim_{n\to\infty} \alpha a_n = \alpha L, \alpha \in R$$

3)
$$\lim_{n \to \infty} a_n \cdot b_n = L \cdot M$$

4)
$$\lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{M}, b \neq 0, M \neq 0$$

$$5) \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{M}$$

10.5.4 Pinching Theorem for Sequences

If for large n,
$$a_n \le b_n \le c_n$$
 and if $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} c_n = L$ then $\lim_{n \to \infty} b_n = L$

10.5.5 Theorem

Given
$$\lim_{n \to \infty} c_n = c$$
. If f is continuous at c, then: $\lim_{n \to \infty} f(c_n) = f(c)$

10.6 Important Limits:

1. For
$$x > 0$$
, $\lim_{n \to \infty} x^{\frac{1}{n}} = 1$

2. If
$$|x| < 1$$
 then $\lim_{n \to \infty} x^n = 0$

3.
$$\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0, \ \alpha>0$$

4. a)
$$\lim_{n\to\infty} \frac{x^n}{n!} = 0$$
, $x \in R$

b)
$$\lim_{n\to\infty} \frac{n!}{n^n} = 0$$

$$5. \lim_{n \to \infty} \frac{\ln n}{n} = 0$$

$$6. \lim_{n\to\infty} n^{\frac{1}{n}} = 1$$

$$7. \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$$

11. Series:

11.1 Partial Sum:

Given a series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots$ Let s_n denote its nth partial sum:

$$s_n = \sum_{i=1}^n a_i = a_1 + ... + a_n$$

If the sequence $\{s_n\}$ is convergent and $\lim_{n\to\infty} s_n = s$ exists as a real number, then

the series $\sum a_n$ is called **convergent** and we write

$$\sum_{n=1}^{\infty} a_n = s$$

The number s is called the **sum** of the series.

If the sequence $\{s_n\}$ is divergent, then the series is called **divergent**.

11.2 Types of Series:

11.2.1 Geometric Series

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 = \frac{a}{1-r}$$

- |r| < 1 converges
- $|r| \ge 1$ diverges

11.2.2 P-series

$$\sum_{k=1}^{\infty} \frac{1}{k^p}$$

- p > 1 converges
- 0 divergent
- p=1 is the **harmonic series**

11.2.3 Binomial Series

If k is any real number and |x| < 1, then

$$(1 + x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \dots$$

Where
$$(\frac{k}{n}) = \frac{k(k-1)(k-2)...(k-n+1)}{n!}$$
, $n = 1, 2,..., k$

11.3 Absolutely Convergent & Conditionally Convergent

If $\sum |a_n|$ converges, then $\sum a_n$ is **absolutely convergent.**

If $\sum a_n$ converges, but $\sum |a_n|$ does not, then $\sum a_n$ is **conditionally convergent.**

11.4 Theorems for Series

11.4.1 Theorem:

If
$$\sum_{k=0}^{\infty} a_k = L$$
 and $\sum_{k=0}^{\infty} b_k = M$ then $\sum_{k=0}^{\infty} (a_k + b_k) = L + M$
If $\sum_{k=0}^{\infty} a_k = L$ then $\sum_{k=0}^{\infty} \alpha a_k = \alpha L$, $\alpha \in R$

11.4.2 Theorem:

$$\sum_{n=0}^{\infty} a_n \text{ converges iff } \sum_{n=j}^{\infty} a_n \text{ converges, } j =+ \text{ ve integer.}$$

$$\sum_{n=j}^{\infty} a_n = L - (a_0 + a_1 + a_2 + \ldots + a_{j-1})$$

11.4.3 Theorem:

If
$$\sum_{n=0}^{\infty} a_n$$
 converges, then $\lim_{n \to \infty} a_n = 0$

11.4.4 Theorem:

If $\sum |a_n|$ converges, then $\sum a_n$ converges.

11.5 Estimates:

Estimate	Info
----------	------

Remainder Estimate for IT	Suppose $f(k) = a_k$, where f is a continuous, positive, decreasing	
	function for $x \ge n$ and $\sum a_n$ is convergent. If $R_n = s - s_{n'}$ then	
	$\int_{n+1}^{\infty} f(x)dx \le R_n \le \int_{n}^{\infty} f(x)dx$	
	Lower and Upper Bound:	
	$s_n + \int_{n+1}^{\infty} f(x)dx \le s \le s_n + \int_{n}^{\infty} f(x)dx$	
AS Estimate Theorem	If $s = \sum (-1)^{n-1} b_{n'}$ where $b_n > 0$, is the sum of an alternating	
	series that satisfies	
	1) $b_{n+1} \le b_n$	
	$\lim_{n \to \infty} b_n = 0$	
	$n \to \infty$ "Then,	
	$ R_n = s - s_n \le b_{n+1}$	

11.6 Convergence Tests

Test	Formula/Conditions
Divergence Test	If $\lim_{n \to \infty} a_n \neq 0$, $\sum_{n=0}^{\infty} a_n$ diverges.
Integral Test	If f is continuous, decreasing, and +ve on $[k, \infty]$, then: $\sum_{n=k}^{\infty} f(n)$ converges iff $\int_{k}^{\infty} f(x)dx$ converges
DCT	Given $\sum a_{n'} \sum b_{n}$; $a_{n} > 0$, $b_{n} > 0$

	1) If $\sum b_n$ is converged, and if $a_n \le b_n$ for all n sufficiently large, then
	$\sum a_n$ converges.
	2) If $\sum b_n$ is divergent, and if $a_n \ge b_n$ for all n sufficiently large, then $\sum a_n$ diverges
LCT	Given $\sum a_{n'} \sum b_{n'} a_n > 0$, $b_n > 0$
	1) If $\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$ then both series converge or diverge.
	2) If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and if $\sum b_n$ converges, then $\sum a_n$ diverges.
	3) If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and if $\sum b_n$ diverges, then $\sum a_n$ diverges
AST	Let $\{a_n\}$ be a sequence of +ve numbers
	If $a_{n+1} < a_n$ (decreasing) for all n and $\lim_{n \to \infty} a_n = 0$, then $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ converges.
Ratio Test	Given $\sum a_{n'}$, $a_n \ge 0$. If $(a_n)^{\frac{1}{n}} \to p$ as $n \to \infty$, then:
	1) If $p < 1$ then $\sum a_n$ converges
	2) If $p > 1$ then $\sum a_n$ diverges
	3) If $p = 1$ inconclusive
Root Test	Given $\sum a_{n'} a_n > 0$. If $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = \lambda$ then

- 1) If $\lambda < 1 \sum a_n$ converges
- 2) If $\lambda > 1 \sum a_n$ diverges
- 3) If $\lambda = 1$ inconclusive

11.7 Power Series

11.7.1 Definition of Power Series:

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots$$

11.7.2 Theorem for Power Series Convergence

For a power series $\sum_{n=0}^{\infty} c_n(x-a)^n$, there are 3 possibilities wrt convergence:

- 1. The series converges only when x = a
- 2. The series converges for all x
- 3. The series converges in some interval |x a| < R
 - R = radius of convergence
 - Intervals of Convergence (Test endpoints)

11.7.3 Representation of Functions as Power Series:

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots = \frac{1}{1-x} = f(x) \text{ for } |x| < 1$$

11.7.4 Theorem: Term by Term Differentiation & Integration:

Consider the power series $\sum c_n(x-a)^n w/R = R_0 > 0$, then

$$f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + ... = \sum_{n=0}^{\infty} c_n(x - a)^n$$

is differentiable (and therefore continuous) on $(a - R_0, a + R_0)$, and:

$$\frac{d}{dx} \left[\sum_{n=0}^{\infty} c_n (x - a)^n \right] = \sum_{n=0}^{\infty} \frac{d}{dx} \left[c_n (x - a)^n \right]$$
$$\int \left[\sum_{n=0}^{\infty} c_n (x - a)^n \right] = \sum_{n=0}^{\infty} \int c_n (x - a)^n dx$$

11.7.5 Multiplication and Division of Power Series

Multiplication:

- Take each term in one series and multiply it by every term in the other series.
- Then adding like terms together

Example:
$$\frac{e^x}{1-x} = (1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ...)(1 + x + x^2 + x^3 + ...)$$

• We are going to multiply **each term** in the geometric series by **every term** in **e**^x.

1: = 1 +
$$x + \frac{x^2}{2} + \frac{x^3}{6} + \dots$$

 x : + $x + x^2 + \frac{x^3}{2} + \dots$
 x^2 : + $x^2 + x^3 + \dots$
 x^3 : + $x^3 + \dots$
= 1 + $2x + \frac{5}{2}x^2 + \frac{16}{6}x^3 + \dots$

Division:

• Use long division with the expanded form of each series.

Example:
$$tanx = \frac{sinx}{cosx} = \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots}{1 - \frac{x^2}{2} + \frac{x^4}{4!} + \dots}$$

11.6 Taylor and Maclaurin Series

11.6.1 Theorem:

If f(x) has a power series representation about a:

$$f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n, |x-a| < R$$

then the coefficients of the series are

$$c_n = \frac{f^{(n)}(a)}{n!}$$

Taylor Series of f about a:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n = f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots$$

Maclaurin Series:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \dots$$

11.6.2 Theorem:

If
$$f(x) = T_n(x) + R_n(x)$$
 and

$$\lim_{n \to \infty} R_n(x) = 0$$

for |x - a| < R then f is equal to the sum of its Taylor series on |x - a| < R.

11.6.3 Taylor's Inequality:

If $|f^{(n+1)}(x)| \le M$ for $|x - a| \le d$, then the remainder $R_n(x)$ of the Taylor series satisfies the inequality

$$|R_n(x)| \le M \frac{|x-a|^{n+1}}{(n+1)!}$$
for $|x-a| \le d$

11.6.4 Taylor's Theorem:

Given that f has n+1 continuous derivatives on an open interval I containing a, then for all $x \in I$:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)^2}{2!} + \dots + \frac{f^{(n)}(a)(x - a)^n}{n!} + R_n(x)$$

Where
$$R_n(x) = \int_{a}^{x} f^{(n+1)}(t)(x-t)^n dt$$

11.6.5 Error Estimation:

- 1. Alternating series $|R_n(x)| < |a_{n+1}|$
- 2. Taylor's formula $|R_n| < \left| \frac{M(x-a)^{n+1}}{(n+1)!} \right|$

11.6.6 Important Maclaurin Series and Their Radii of Convergence:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

$$R = 1$$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$
 $R = \infty$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$R = \infty$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

$$R = \infty$$

$$\tan^{-1}x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

$$R = 1$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

$$R = 1$$

$$(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \cdots \qquad R = 1$$

11.7.0 Fourier Series

11.7.1 Definition of Fourier Series

If f is a piecewise continuous function on [-L, L]. Then the **Fourier series** of f is the series

$$a_0 + \sum_{n=1}^{\infty} (a_n cos(\frac{n\pi x}{L}) + b_n sin(\frac{n\pi x}{L}))$$

Where

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$

And, for n≥1,

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \mid b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx$$

- If f(x) is odd, then $a_n = 0$
- If f(x) is even, then $b_n = 0$

11.7.2 Fourier Convergence Theorem:

If f is a periodic function with period 2π and f and f' are piecewise continuous on $[-\pi,\pi]$, then the Fourier series is convergent. The sum of the Fourier series is equal to f(x) at all numbers x where f is continuous. At the numbers x where f is discontinuous, the sum of the Fourier series is the average of the right and left limits, that is

$$\frac{1}{2}[f(x^{+}) + f(x^{-})]$$

12. Vectors and the Geometry of Space

12.1 Vector Equation:

$$r = r_0 + tv$$

12.2 Parametric Equations for a Line

$$x = x_0 + at$$
$$y = y_0 + bt$$
$$z = z_0 + ct$$

12.3 Symmetric Equation for a Line:

$$t = \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

• Note: If any of a, b and/or c = 0, then $x = x_0$, $y = y_0$, $z = z_0$ separate from the symmetric equations.

12.3 Scalar Equation of the Plane:

$$ax + by + cz + d =$$
where $d = -(ax_0 + by_0 + cz_0)$

- $\hat{n} = (a, b, c)$
- $P_0(x_0, y_0, z_0)$ is a point in the plane.

12.4 Distance:

Between any point $P_1(x_1, y_1, z_1)$ in space and a plane given by

$$ax + by + cz + d = 0$$

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

12.4 Quadric Surfaces Steps

- 1) Domain/Range
- 2) Intercepts w/ coordinate axes
- 3) Traces intersection with coordinate planes
- 4) Sections intersection with other planes
- 5) Centre
- 6) Symmetry

7) Bounded/Unbounded

12.5 Projections - Curves of Intersections

C:
$$(x, y, z)$$
 s.t. $z = f(x, y)$ and $z = g(x, y)$

$$(x, y, z): f(x, y) = g(x, y)$$

$$\Rightarrow$$
 vertical cylinder

$$(x, y, z = 0)$$
: $f(x, y) = g(x, y)$

 \Rightarrow projection

12.6 Graphs of Quadric Surfaces:

Surface	Equation	Surface	Equation
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ All traces are ellipses. If $a = b = c$, the ellipsoid is a sphere.	Cone	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces in the planes $x = k$ and $y = k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.
Elliptic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.	Hyperboloid of One Sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Horizontal traces are ellipses. Vertical traces are hyperbolas. The axis of symmetry corresponds to the variable whose coefficient is negative.
Hyperbolic Paraboloid y	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Horizontal traces are hyperbolas. Vertical traces are parabolas. The case where $c < 0$ is illustrated.	Hyperboloid of Two Sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Horizontal traces in $z = k$ are ellipses if $k > c$ or $k < -c$. Vertical traces are hyperbolas. The two minus signs indicate two sheets.

12.6.1 Graphs of Common 2D Shapes and Equations

Types:	Graphs:
Hyperbola $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \text{ (Hor. Trans. Axis)}$ $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1 \text{ (Ver. Trans Axis)}$	(a, 0) (a, 0) (0, -a)
Ellipses $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	(h-a,k) $(h,k-b)$ $(h,k-b)$ x
Circle $(x - h)^2 + (y - k)^2 = r^2$	$(x-h)^2 + (y-k)^2 = r^2$ (h,k) r $huw.mathwarehouse.com$

13. Vector Functions

13.1 Limits

Given
$$\overline{f}(t) \to \overline{L}$$
, $\overline{g}(t) \to \overline{M}$, $u(t) \to A$ as $t \to t_0$

Then:

1)
$$\overline{f}(t) + \overline{g}(t) \rightarrow \overline{L} + \overline{M}$$

2)
$$\alpha \overline{f}(t) \rightarrow \alpha \overline{L}$$

3)
$$u(t) \cdot \overline{f}(t) \rightarrow A \cdot \overline{L}$$

4)
$$\overline{f}(t) \cdot \overline{g}(t) \to \overline{L} \cdot \overline{M}$$

5)
$$\overline{f}(t) \times \overline{g}(t) \to \overline{L} \times \overline{M}$$

Note: $\overline{f}(t)$ is continuous at t_0 if $\lim_{t \to t_0} \overline{f}(t) = \overline{f}(t_0)$

13.2 Differentiable Formulas:

3 Theorem Suppose \mathbf{u} and \mathbf{v} are differentiable vector functions, c is a scalar, and f is a real-valued function. Then

1.
$$\frac{d}{dt}[\mathbf{u}(t) + \mathbf{v}(t)] = \mathbf{u}'(t) + \mathbf{v}'(t)$$

$$2. \frac{d}{dt}[c\mathbf{u}(t)] = c\mathbf{u}'(t)$$

3.
$$\frac{d}{dt}[f(t)\mathbf{u}(t)] = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t)$$

4.
$$\frac{d}{dt}[\mathbf{u}(t)\cdot\mathbf{v}(t)] = \mathbf{u}'(t)\cdot\mathbf{v}(t) + \mathbf{u}(t)\cdot\mathbf{v}'(t)$$

5.
$$\frac{d}{dt}[\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$$

6.
$$\frac{d}{dt}[\mathbf{u}(f(t))] = f'(t)\mathbf{u}'(f(t))$$
 (Chain Rule)

13.3 Theorem:

If |r(t)| = c (a constant), then r'(t) is orthogonal to r(t) for all t.

13.4 Arc Length of a Vector Function

Suppose the curve has the vector equation $r(t) = \langle f(t), g(t), h(t) \rangle$, $a \le t \le b$, or, equivalently, the parametric equations x = f(t), y = g(t), z = h(t), where f', g', h' are continuous. If the curve is traversed exactly once as t increases from a to b, then the length is

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2} + [h'(t)]^{2}} dt$$

$$L = \int_{a}^{b} \sqrt{\left[\frac{dx}{dt}\right]^{2} + \left[\frac{dy}{dt}\right]^{2} + \left[\frac{dz}{dt}\right]^{2}} dt$$

$$L = \int_{a}^{b} |r'(t)| dt$$

13.5 Parameterizing a Curve with Respect to Arc Length:

Solve for t as a function of arc length: t = t(s). Then the curve can be **re-parameterized** in terms of s by substituting for t: r(t) = r(t(s)).

13.6 Curvature for 2-D space curves (How quickly the curve changes):

$$\kappa = \left| \frac{d\phi}{ds} \right| = \frac{|\overline{T}'(t)|}{|\overline{r}'(t)|} = \frac{\frac{|\underline{d^2 y}|}{dx^2}}{(1 + (\frac{dy}{dx})^2)^{\frac{3}{2}}} = \frac{|x'y'' - y'x''|}{[(x')^2 + (y')^2]^{\frac{3}{2}}}$$

13.7 Radius of Curvature:

The circle that best describes how C behaves near P

$$\rho = \frac{1}{\kappa}$$

13.8 Curvature for 3-D space curves:

$$\kappa = |\frac{d\bar{r}}{ds}| = ||\frac{\bar{r}'(t)}{\bar{r}'(t)}|| = \frac{||\bar{r}'(t) \times \bar{r}''(t)||}{||\bar{r}'(t)||^3}$$

13.9 Unit Tangent:

$$T(t) = \frac{\bar{r}'(t)}{||\bar{r}'(t)||}$$

13.10 Unit Normal:

$$\overline{N}(t) = \frac{\overline{T}'(t)}{||\overline{T}'(t)||}$$

13.11 Binormal Vector:

$$\overline{B}(t) = \overline{T} \times \overline{N}$$

• Helps to find the **osculating plane** which best contains a curve at a given point.

13.12 Normal Plane:

Normal vector is T

13.13 Osculating Plane

The plane that comes closest to containing the part of the curve near the point P.

• Normal vector is B

13.14 Physics

13.14.1 Newton's 2nd Law of Motion

$$\overline{F}(t) = m\overline{r}''(t) = \overline{p}'(t)$$

13.14.2 Parametric Equation of Projectile Motion:

$$x = (v_0 \cos \alpha)t$$
 and $y = (v_0 \sin \alpha)t - \frac{1}{2}gt^2$

13.14.3 Angular Momentum:

$$\overline{L} = \overline{r} \times \overline{p} = m\overline{r} \times \overline{v}$$
$$||\overline{L}|| = mrv$$

13.14.4 Definition of Torque:

$$\bar{\tau} = \bar{r} \times \bar{F}$$

13.14.5 Definition of Central Force:

 \overline{F} is a central force if $\overline{F}(t)$ is always parallel to \overline{r} .

13.14.6 Acceleration:

$$\overline{a} = a_T \widehat{T} + a_N \widehat{N}$$

$$a_T = \frac{r'(t) \cdot r''(t)}{|r'(t)|}$$

$$a_N = \frac{|r'(t) \times r''(t)|}{|r'(t)|}$$

14. Partial Derivatives

14.1 Level Curves:

The **level curves** of a function f of two variables are the curves with equations

$$f(x,y) = k$$

Where k is a constant (in the range of f).

14.2 Multivariable Limits and Continuity:

14.2.0 Tips for Multivariable Limits:

- ALWAYS TRY DIRECT SUBSTITUTION FIRST
- DRAW A PICTURE SECOND
- Multiply by conjugate
- Find different paths to find the limit to not exist.
- Squeeze theorem (need to be tightly bound)

14.2.1 Definition of the Limit of a Function of 2 Variables:

Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b).

$$\lim_{(x,y)\to(a,b)} f(x,y) = L \text{ iff for each } \varepsilon > 0, \exists \ a \ \delta > 0 \text{ such that if } (x,y) \in D \text{ and }$$

$$0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta \text{ then } |f(x,y) - L| < \varepsilon$$

14.2.2 Definition of the Limit of a Function of Several Variables:

Let f be a function whose domain includes the region arbitrarily close to, but not necessarily including \bar{x}_0 .

$$\lim_{\overline{x} \to \overline{x}_0} f(\overline{x}) = L \text{ iff for each } \varepsilon > 0, \exists a \delta > 0 \text{ s.t. if } 0 < ||\overline{x} - \overline{x}_0|| < \delta \text{ then}$$

$$|f(\overline{x}) - L| < \varepsilon$$

14.2.3 Showing That a Limit Does Not Exist:

If $f(x, y) \to L_1$ as $(x, y) \to (a, b)$ along a path C_1 and $f(x, y) \to L_2$ as $(x, y) \to (a, b)$ along a path C_2 , where $L_1 \neq L_2$, then

$$\lim_{(x,y)\to(a,b)} f(x,y) \text{ does not exist.}$$

14.2.4 Delta-Epsilon Steps

General Steps:

Prove
$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

1. Starting:

Given
$$\varepsilon > 0$$
, there exists $a \delta > 0$ s. t. $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$, then $|f(x,y) - L| < \varepsilon$,

- 2. Manipulate the ε equation to make it simpler and then see how you can manipulate delta to get epsilon.
- 3. Then write delta in terms of epsilon.
- 4. **Final:** Given $\varepsilon > 0$, choose $\delta = ?$, then when $0 < |x c| < \delta$, we have proved that $|f(x) L| < \varepsilon$, therefore
- 5. Starting from the delta equation, go to the epsilon equation to check your answer.

14.2.5 Continuity

If
$$\lim_{\bar{x} \to \bar{x}_0} f(\bar{x}) = f(\bar{x}_0)$$
, then f is continuous at \bar{x}_0 .

$$\Rightarrow \lim_{x \to x_0} f(x, y_0) = f(x_0, y_0) \text{ and } \lim_{y \to y_0} f(x_0, y) = f(x_0, y_0)$$

14.2.6 Theorem: The Continuity of Composite Functions:

If g is continuous $\overline{x}_{0'}$ and f is continuous at the number $g(\overline{x}_{0})$, then $f(g(\overline{x}_{0}))$ is continuous at \overline{x}_{0} .

14.3 Partial Derivatives:

14.3.1 Definition of Partial Derivatives of f(x,y,z):

$$f_{x} = \lim_{h \to 0} \frac{f(x+h,y,z) - f(x,y,z)}{h}$$

$$f_{y} = \lim_{h \to 0} \frac{f(x,y+h,z) - f(x,y,z)}{h}$$

$$f_{z} = \lim_{h \to 0} \frac{f(x,y,z+h) - f(x,y,z)}{h}$$

14.3.2 Finding Partial Derivatives:

Rule for Finding Partial Derivatives of z = f(x, y)

- 1. To find f_x , regard y as a constant and differentiate f(x, y) with respect to x.
- **2.** To find f_y , regard x as a constant and differentiate f(x, y) with respect to y.

14.3.3 Clairaut's Theorem:

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$$

On every open set on which f and its partials $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$ are continuous.

 \Rightarrow Three variables:

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} ; \frac{\partial^2 f}{\partial z \partial y} = \frac{\partial^2 f}{\partial y \partial z} ; \frac{\partial^2 f}{\partial x \partial z} = \frac{\partial^2 f}{\partial z \partial x}$$

14.4 Tangent Planes and Linear Approximations:

14.4.1 Linearization:

The equation for a tangent plane at the point (a, b, f(a, b)) represents the linearization of f at that point:

$$L(x, y) = f(a, b) + f_{x}(a, b)(x - a) + f_{y}(a, b)(y - b)$$

14.4.2 Theorem:

If the partial derivatives f_x and f_y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b)

14.4.3 Total Differential Equation:

For z = f(x, y), the total differential, dz, in terms of the independent differentials dx and dy is:

$$dz = \nabla f(x, y) \cdot \langle dx, dy \rangle$$

14.4.4 Equation for Tangent Line to Curve f(x,y)=C at (x_0,y_0) :

$$\nabla f(x_0, y_0) \cdot (x - x_0, y - y_0) = 0$$

• Gradient is perpendicular to tangent line

14.4.7 Equation of Tangent Plane to Level Surfaces:

Since $\nabla f(\hat{x})$ is perpendicular to the level surface at \hat{x}_0 . If f(x, y, z) = C, then the tangent plane to the level surfaces at \hat{x}_0 is

$$\nabla f(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0$$

If
$$f(x, y) = z$$
, then $f(x, y, z) = 0 = f(x, y) - z$. Therefore $\nabla f = \langle f_{x'}, f_{y'}, -1 \rangle$:
 $\nabla f(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0$

• Gradient is normal to the tangent plane.

14.4.8 Equation of Normal Line:

If
$$\hat{r}(q) = \hat{x}_0 + \nabla f(\hat{x}_0)t$$
 where $\hat{x}_0 = (x_0, y_0, z_0)$

$$x = x_0 + tf_x$$
$$y = y_0 + tf_y$$
$$z = z_0 + tf_z$$

• Normal line is parallel to the gradient.

14.5 Chain Rule:

14.5.1 Chain Rule:

Suppose that u is a differentiable function of the n variables $x_1, x_2, ..., x_n$ and each x_j is a differentiable function of the m variables $t_1, t_2, ..., t_m$. Then u is a function of $t_1, t_2, ..., t_m$ and

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

For each i = 1, 2, ..., m.

• Tree diagrams can help

14.5.2 Implicit Differentiation:

Suppose F(x, y) = 0 defines y implicitly as a differentiable function of x.

$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

• You can manipulate the equation to move everything to one side.

Suppose z is given implicitly as a function z = f(x, y) by an equation of the form F(x, y, z) = 0.

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
 and $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

14.6 Directional Derivatives and the Gradient Vector:

14.6.1 Definition of Differentiability:

f is differentiable at \hat{x} iff there exists a vector $\nabla f(\hat{x})$ such that:

$$f(\hat{x} + \hat{h}) - f(\hat{x}) = \nabla f(\hat{x}) \cdot \hat{h} + o(\hat{h})$$

$$g(\hat{h}) = o(\hat{h})$$
 if $\lim_{\hat{h} \to \hat{0}} \frac{g(\hat{h})}{|h|} = 0$ then $\nabla f(\hat{x})$ exists.

- $g(\hat{h})$ goes to 0 quicker than $||\hat{h}||$, therefore it's called $o(\hat{h})$.
 - You have to get $g(\hat{h})$ into a form that is a vector.

14.6.2 Definition of Gradient for Three Variables:

The **gradient** of f is the vector function ∇f defined by

$$\nabla f(x, y, z) = \langle f_{x'}, f_{y'}, f_{z} \rangle$$

14.6.3 Theorem for Directional Derivative for Three Variables:

If f is a differentiable function, then f has a directional derivative at \hat{x}_0 in the direction of any unit vector \hat{u} and

$$D_{\widehat{y}}f(\widehat{x}_0) = \nabla f(\widehat{x}_0) \cdot \widehat{u}$$

• $||\hat{u}||$ has magnitude of 1.

14.6.4 Theorem:

Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\hat{u}}f(\hat{x})$ is

$$|\nabla f(\hat{x})|$$

and it occurs when \hat{u} has the same direction as the gradient vector $\nabla f(\hat{x})$

14.6.5 Properties of the Gradient Vector:

Let f be a differentiable function of two or three variables and suppose that $\nabla f(x) \neq \hat{0}$.

- The directional derivative of f at \hat{x} in the direction of a unit vector \hat{u} is given by $D_{u}f(\hat{x}) = \nabla f(\hat{x}) \cdot \hat{u}$
- $\nabla f(\hat{x})$ points in the direction of maximum rate of increase of f at \hat{x} , and that maximum rate of change is $|\nabla f(\hat{x})|$.
- $\nabla f(x)$ is perpendicular to the level curve or level surface of f through \hat{x} .

14.7 Maximum and Minimum Values:

14.7.1 Definition of Local Maximum and Minimum:

f has a local maximum at \hat{x}_0 iff $f(\hat{x}_0) \ge f(\hat{x})$ for \hat{x} in some neighbourhood of \hat{x}_0 . f has a local minimum at \hat{x}_0 iff $f(\hat{x}_0) \le f(\hat{x})$ for \hat{x} in some neighbourhood of \hat{x}_0 .

14.7.2 Theorem:

If f has a local extreme value at \hat{x}_{0} , then $\nabla f(\hat{x}_{0}) = \hat{0}$ or $\nabla f(\hat{x}_{0})$ DNE.

14.7.3 Definitions of Critical Points, Stationary Points, and Saddle Points:

- Points where $\nabla f = \hat{0}$ or DNE are called critical points.
- Points where $\nabla f = \hat{0}$ are called stationary points.
- Stationary points which are not local extrema are called saddle points.

14.7.4 Second Derivative Test:

For f(x, y) with continuous 2nd order partials, and $\nabla f(x_0, y_0) = \hat{0}$, then (x_0, y_0) is a critical point:

$$D(x_{0}, y_{0}) = f_{xx}(x_{0}, y_{0}) f_{yy}(x_{0}, y_{0}) - [f_{xy}(x_{0}, y_{0})]^{2}$$

- 1) If D < 0, then (x_0, y_0) is called a saddle point.
- 2) If D > 0, $f_{xx}(x_0, y_0) > 0$, then (x_0, y_0) is a local minimum.
- 3) If D > 0, $f_{xx}(x_0, y_0) < 0$, then (x_0, y_0) is a local maximum.
- 4) If D = 0, then inconclusive.

14.7.5 Theorem:

If f is continuous on a bounded, closed set, then f takes on both an absolute minimum and an absolute maximum on that set.

14.7.6 Process for Finding Minimums and Maximums:

- **9** To find the absolute maximum and minimum values of a continuous function f on a closed, bounded set D:
- **1.** Find the values of f at the critical points of f in D.
- **2.** Find the extreme values of f on the boundary of D.
- **3.** The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.
- Use single variable optimization when looking at the boundaries by subbing in the bound into f and doing the derivative and finding the max or min.

14.8 Lagrange Multipliers:

- You still have to determine if its a maximum or minimum
- You don't have to find λ . At the bare minimum, you must find x_0, y_0, z_0 .
- When you have to do the bounds to check, just do single variable optimization.

14.8.2 Lagrange Multipliers for Three Variables

To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k [assuming that these extreme values exist and $\nabla g \neq 0$ on the surface g(x, y, z) = k]:

- 1. Find all values of x, y, z, and λ such that
 - 1. Constraint: g(x, y, z) = k
 - 2. $f_x(x, y, z) = \lambda g_x(x, y, z)$
 - 3. $f_{y}(x, y, z) = \lambda g_{y}(x, y, z)$
 - 4. $f_z(x, y, z) = \lambda g_z(x, y, z)$
- 2. Evaluate f at all the points (x,y,z) that result from step 1. The largest of these values is the maximum value of f; the smallest is the minimum value of f.

14.8.3 Lagrange Multipliers for Two Constraints

To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k and h(x, y, z) = c

$$1. \ g(\hat{x}_0) = k$$

2.
$$h(\hat{x}_0) = c$$

3.
$$f_{x}(\hat{x}_{0}) = \lambda g_{x}(\hat{x}_{0}) + \mu h_{x}(\hat{x}_{0})$$

4.
$$f_{y}(\hat{x}_{0}) = \lambda g_{y}(\hat{x}_{0}) + \mu h_{y}(\hat{x}_{0})$$

5.
$$f_z(\hat{x}_0) = \lambda g_z(\hat{x}_0) + \mu h_z(\hat{x}_0)$$

14.9.1 Theorem:

Let f_x and f_y be functions of two variables, each continuously differentiable. The linear combination: $f_x\hat{i} + f_y\hat{j}$ is a gradient iff

$$f_{xy} = f_{yx}$$
.

Let $f_{x'}f_{y'}$ and f_{z} be functions of three variables, each continuously differentiable.

The linear combination: $f_x \hat{i} + f_y \hat{j} + f_z \hat{k}$ is a gradient iff,

$$f_{xy} = f_{yx}$$
 and $f_{xz} = f_{zx}$ and $f_{yz} = f_{zy}$

14.9.2 Finding the Function From its Gradient.

- 1. Make sure thats its a gradient
- 2. Take the integral of each partial derivative treating all the other variables as constants (i.e. if $f_x \Rightarrow f(x, y)$ then y and z is a constant so add $+ \varphi(y, z)$)
- 3. Combine all the terms that appear **ONCE**.
- 4. Add constant integration.

14.10 Theorem:

If, in the closed rectangle $x \in [a, b]$ and $y \in [c, d]$, the function f(x, y) has a continuous derivative with respect to x, then for $x \in [a, b]$:

$$\frac{\partial F}{\partial x} = \frac{\partial}{\partial x} \int_{c}^{d} f(x, y) dy = \int_{c}^{d} \frac{\partial f}{\partial x} dy$$

14.11 Theorem:

If

$$A(t) = \int_{x_1(t)}^{x_2(t)} f(x) dx, \ f(x) \ge 0$$

Then

$$\frac{dA}{dt} = f(x_2) \frac{dx_2}{dt} - f(x_1) \frac{dx_1}{dt}$$

14.12 Theorem: Leibnitz's Rule:

Given a region R in the x-y plane in which the functions $\phi_1(x)$ and $\phi_2(x)$ have continuous derivatives with respect to x, and in which f(x, y) is continuously

differentiable. If
$$F(x) = \int_{y=\phi_1(x)}^{y=\phi_2(x)} f(x,y)dy$$
 then

$$\frac{\partial F}{\partial x} = \int_{\Phi_1(x)}^{\Phi_2(x)} \frac{\partial f}{\partial x} dy + f(x, y = \Phi_2(x)) \frac{d\Phi_2}{dx} - f(x, y = \Phi_1(x)) \frac{d\Phi_1}{dx}$$