2015年筑波大学天体形成研究会

(Nano-JASMINEと) Gaiaの現状と 北極星の謎

西亮一(新潟大学)

Nano-JASMINE計画

(もともと2011年打ち上げ予定)

超小型衛星を用いた日本初のスペースアストロメトリ *主鏡口径5cmの望遠鏡、約50cm立方、質量35kg 程度の衛星

- * HIPPARCOSと同程度の精度で全天サーベイzw-band (中心波長0.8ミクロン) 年周視差の誤差3mas@zw=7.5 固有運動の精度向上 (HIPPARCOS カタログと組み合わせ) ~0.1mas / year
- * HIPPARCOSでは見られなかったバルジ星(数千個)を含む、 z-bandの新しい絶対座標系カタログ
- *恒星の定期的なモニター: 恒星物理、変光星

2017年ESAで打ち上げ?

Gaiaについて

★Gaia:ESAの位置天文衛星

- -2013年12月打ち上げ
- -2014年7月19日より本観測
- -2022年に最終カタログ公開予定

可視光で全天サーベイ(20等級までの10億個) Gバンド(0.33 - 1.0µ), 6 mag < G < 20 mag

スマホアプリ Gaia Mission

* Gaiaは、明るい星が 測定できない

Nano-JASMINEが補完!
*最終的に2つのカタログを
マージしたアーカイブを作成予定

Gaia launch and orbit

(credit: EADS Astrium)

5 - 6 years of (almost) continuous observation

Lissajous orbit around L₂

~1 orbit correction per month

~1 month transfer orbit to L₂

 L_2 , a = 1.01 AU

Soyuz/Fregat launch from Kourou (French Guyana)

Earth-Moon barycentre, a = 1 AU

Sun Earth line

Nano-JASMINE & Gaia

- 2013年12月Gaia打上
- 2016年夏Gaiaファーストカタログ
- 2022年?Gaia最終カタログ
- 2015年後半以降Nano-JASMINE打上
- 2018年頃 Nano-JASMINEカタログ
- ⇒観測時期の優位性はない
- GaiaはG-band観測 G>6mag
- ⇒(肉眼で)夜空に見えているような星は観測されない。
- ⇒Nano-JASMINEで明るい星を観測すれば、Gaiaで観測出来ない星について独自性を発揮できる。 最終的には統合力タログを作成予定

小型JASMINEとGaia

• Gaiaは可視光

強い吸収(特に銀河中心方向)

小型JASMINEは近赤外線

銀河中心付近までよく観測できる

バルジの構造,力学,進化過程 中心の超巨大ブラックホールの進化

Gaia CU9 Plenary meeting

- 2015年9月21-23日(Barcelona)@バルセロナ大学
 - The DPAC CU9 is responsible for providing access to the Gaia data to the scientific community through the Gaia archive. (Validation, Visualization)
- Nano-JASMINEとのCollaboration
 データ解析(山田, 京大)
 サイエンス(西)(日本のGaia user としても)

バルセロナ大学からの眺め

Gaia カタログリリース予定

打ち上げ(L):2013年12月+経過月数

- L+22m positions, G-magnitudes, proper motions to Hipparcos stars, ecliptic pole data
- 2016年夏に 延期
- L+28m + first 5 parameter astrometric results, bright star radial velocities, integrated BP/RP photometry, (astrophysical parameters)
- L+40m + BP/RP data, some RVS spectra, astrophysical parameters, orbital solutions for short period binaries
- L+65m + variability, solar system objects

Gaia-DR1 contents

Official commitment

- \bullet (α, δ) for all well-behaved sources with acceptable formal errors
- Mean G-band magnitudes for the above sources
 - Internally calibrated magnitudes plus zero-point
- HTPM
- Any adequately calibrated EPSL data (Ecliptic Pole)

Proposed additions (see GAIA-CD-MN-LEI-AB-063 for details)

- 1. TGAS (supersedes HTPM)
- 2. Photometric science alerts (for archiving by CU9)
- SSO alerts (for archiving by CU9) (Solar System Objects)
- 4. Transit astrometry for known SSOs (plus *G*-band photometry)
- Radial velocities for bright stars
- 6. EPSL light curves for selected sources

No further proposals will be considered

AGIS-00

(Astrometric Global Iterative Solution)

- TOTAL NUMBER OF SOURCES : 2,594,804,418
- IGSL SOURCES CONVERGED: 963,235,695
- IGSL SOURCES NOT CONVERGED: 2,792,106
- NEW SOURCES CONVERGED: 1,539,680,874
- NEW SOURCES NOT_CONVERGED: 89,095,743

Gaia AOCS sky

The sky used by Gaia to keep the spin rate constant

Joint astrometric solution of *Hipparcos* and *Gaia*A recipe for the Hundred Thousand Proper Motions project

Daniel Michalik¹, Lennart Lindegren¹, David Hobbs¹, and Uwe Lammers²

HTPM A & Ap 2014

Table 2. Predicted uncertainties of the astrometric parameters of the *Hipparcos* stars. We compare the *Hipparcos* data alone (*Hip*) with a solution using only 12 months of *Gaia* data (*Gaia12*), and a joint solution of *Hipparcos* and *Gaia* data (HTPM). Case A and B refer to the optimistic and conservative scenarios, respectively, described in the text. The two rightmost columns give the predicted HTPM proper motion uncertainties in the two cases.

Mag.	Number	Position [µas]					Parallax [μas]				Proper motion [μas yr ⁻¹]						
		Hip	Hip 2015	Gaia 12		НТРМ		Hip	Gaia 12		HTPM		Hip	Gaia 12		нтрм	
				Α	В	A	В		Α	В	Α	В		A	В	Α	В
6–7	9381	367	10892	41	3 388	36	312	501	82	-	43	250°	458	207	-	14	27
7-8	23 679	497	14 434	41	2692	35	318	684	81	-	43	261ª	608	204	-	19	30
8-9	40729	682	19947	41	2369	35	330	939	77	-	43	271ª	840	197	-	26	35
9-10	27 913	936	27 629	40	2663	35	333	1284	77	-	43	274^{a}	1165	194	-	35	43
10-11	8 5 6 3	1403	41 352	42	5 2 4 0	36	343	1921	83	-	46	283°	1744	205	-	50	60
11-12	2 5 0 1	2 1 2 5	61 896	41	13 687	35	357	2882	78	-	47	291ª	2607	195	-	70	85
≥12	630	3 2 4 8	109 030	42	13 926	38	378	4291	80	-	51	295°	4578	209	-	94	134
all	113 396	753	22 148	41	2856	35	328	1033	79	-	44	271ª	932	199	-	29	38

Tycho-Gaia Astrometric Solution (TGAS)

HR diagram for non-Hipparcos subset (961 832 stars with 2MASS colours, $\varpi > 0$, $\sigma_{\varpi} < 1$ mas, $\varpi/\sigma_{\varpi} > 5$)

Tycho-Gaia Astrometric Solution (TGAS)

HR diagram for non-Hipparcos subset (481 147 stars with 2MASS colours, $\varpi > 0$, $\sigma_{\varpi} < 1$ mas, $\varpi/\sigma_{\varpi} > 10$)

Gaia の観測状況 (2014)

- Stray light
 暗い星の精度が低下
 Sun shield の edge の fibres
- Basic Angle VariationsSpinに同期して振動(1mas程度)
 - ー>カタログリリースの延期 どこまで精度低下をおさえられるか?

Fibres at sun-shield edges

Gaia の観測状況 (2014)

- Straylight
 暗い星の精度が低下
 Sun shield の edge の fibres
- Basic Angle Variations

 Oning Entry To Entry
 - Spinに同期して振動(1mas程度)
 - ー>カタログリリースの延期
 - どこまで精度低下をおさえられるか?
 - Monitor がよく機能?
 - 焦点面での差は小さい?

北極星の謎

まだ理解は全く不十分

Polaris: 最も近いセファイド (Wielen et al. 2000)

A+P: Spectroscopic binary (T = 29.59y)

B: $(\rho = 18^{\circ}, T = 50000y), C: (45^{\circ}), D: (80^{\circ})$

A: F5 lb supergiant, P = 3.97 day

The nearest and brightest classical Cepheid

$$\pi = 7.56 \pm 0.48$$
 mas

$$d = 132 \pm 8pc$$

 $MA = 4.3 \pm 1.1 Msun$

 $MP = 1.25 \pm 0.20 Msun$

Fig. 1. Astrometric orbit (prograde or retrograde) of the photo-center α UMi AP. The retrograde orbit is our preferred solution. For detail explanations see Sect. 3.2.4

奥山(新潟大学)による Polaris A + P の軌道運動の 予測計算と Nano-JASMINE 衛星の観測によるそれぞれの質量の決定可能性を示した図。

北極星の変光の変化など (Turner 2009)

振幅が減少一>最近復活?

北極星の変光の変化など(Turner 2009)

変光周期がどんどん変化 1年間に約4秒

Table 1

Mass estimates for Polaris

M/M_{\odot}	Pulsation Mode	Technique						
3.9 ± 2.9	FM	$\log g$ and PR relation (Turner & Burke 2002)						
6.6 ± 4.9	OT	$\log g$ and PR relation (Turner & Burke 2002)						
5.1 ± 0.5	$_{\rm FM}$	Cluster PM relation (Turner 1996)						
6.1 ± 0.6	OT	Cluster PM relation (Turner 1996)						
4.5 ± 1.8	OT?	Hipparcos π and orbit (Evans et al. 2008)						

モデルによって 質量が大きく 異なる

長い振動周期と速い 周期変化は基準振動で 1st crossing に対応

近距離(約100pc)を 示唆

進化モデルと変光周期 Fadeyev 2015

HIPPARCOS のデータ van Leewen 2013

距離は133pc (100pcはリジェクト)

振動は1st overtoneで 3rd crossing に対応

Figure 1. Co-added ACS HRC images of Polaris Aa, Ab taken with the F220W filter on 2005 August 2 (left) and 2006 August 13 (middle). The close companion Ab is detected at the lower left of the primary (at about a "7 o'clock" position). The images are 0'85 × 0'85 and the directions of north and east are indicated. The right-hand panel shows a co-added image of Polaris B from longer exposures taken during the 2006 observations, and scaled to the flux level of the Polaris Aa, Ab images. There is no artifact in the Polaris B PSF at the location of Ab.

Figure 2. Contour maps of the co-added images shown in Figure 1. The outermost contour intervals in each panel range from 0.001 to 0.010 of the peak flux in steps of 0.001, and thereafter are at levels of 0.02, 0.04, 0.08, 0.16, 0.32, and 0.64 of the peak flux. The contours again demonstrate the absence of any artifact at the location of the Ab companion.

Figure 3. Archival images of flux-calibration standard stars observed with the ACS/HRC in the F220W filter. The star names and dates of observation are listed in each panel. There is no artifact at the location of the Polaris Ab companion.

HSTによる 北極星A/P Evance et al. 2008

Aに対する Pの位置変化 を観測

FK5(地上観測)の固有運動

HIPPARCOS+Nano-JASMINEより正確な物理量(質量など)

Gaia衛星とJASMINE衛星の観測によって 天の川銀河の本当の姿を知る

構造(バルジ、腕、・・・) 中心の超巨大ブラックホール 中心までの距離 円盤の回転速度 円盤に対する太陽の運動速度 ダークマター(暗黒物質)分布 種々の天体の詳細な研究(北極星を含む)