

Overview today's lecture

Control flow graphs

• intermediate representation

Overview

today's lecture

Control flow graphs

intermediate representation

Non-local optimizations

- dead code elimination
- constant & copy propagation
- common subexpression elimination

Overview

today's lecture

Control flow graphs

intermediate representation

Non-local optimizations

- dead code elimination
- constant & copy propagation
- common subexpression elimination

Data flow analyses

- liveness analysis
- reaching definitions
- available expressions

Overview

today's lecture

Control flow graphs

intermediate representation

Non-local optimizations

- dead code elimination
- constant & copy propagation
- common subexpression elimination

Data flow analyses

- liveness analysis
- reaching definitions
- available expressions

Optimizations (again)

Ī

Optimizations

Optimizing Compilers

optimization

Fully optimizing compiler

- Opt(P) produces smallest program with same I/O behavior
- smallest program for non-terminating programs without I/O: Loop = (L : goto L)
- solves halting problem: Opt(Q) = Loop iff Q halts

Optimizing compiler

- produces program with same I/O behavior
- that is smaller or faster

Full employment theorem for compiler writers

there is always a better optimizing compiler

Local vs Non-Local Optimizations

optimization

Local optimizations

- peephole optimization
- constant folding
- pattern match + rewrite

Non-local optimizations

- constant propagation
- dead-code elimination
- require information from different parts of program

Program Optimizations

optimization

Register allocation

keep non-overlapping temporaries in same register

Common-subexpression elimination

• if expression is computed more than once, eliminate one computation

Dead-code elimination

delete computation whose result will never be used

Constant folding

• if operands of expression are constant, do computation at compile-time

And many more possible optimizations

Dead Code Elimination

example

$$a \leftarrow \emptyset$$

$$b \leftarrow a + 1$$

$$c \leftarrow c + b$$

$$a \leftarrow 2 * b$$

$$return c$$

delete computation whose result will never be used

Dead Code Elimination

example

$$a \leftarrow \emptyset$$

$$b \leftarrow a + 1$$

$$c \leftarrow c + b$$

$$a \leftarrow 2 * b$$

$$return c$$

$$a \leftarrow 0$$
 $b \leftarrow a + 1$
 $c \leftarrow c + b$
return c

delete computation whose result will never be used

Constant Propagation

example

$$a \leftarrow \emptyset$$

$$b \leftarrow a + 1$$

$$c \leftarrow c + b$$

$$a \leftarrow 2 * b$$

$$return c$$

substitute reference to constant valued variable

Constant Propagation

example

$$a \leftarrow \emptyset$$

$$b \leftarrow a + 1$$

$$c \leftarrow c + b$$

$$a \leftarrow 2 * b$$

$$return c$$

$$a \leftarrow 0$$

$$b \leftarrow 0 + 1$$

$$c \leftarrow c + b$$

$$a \leftarrow 2 * b$$

$$return c$$

substitute reference to constant valued variable

Constant Propagation + Folding example

$$a \leftarrow 1$$

$$b \leftarrow a + 1$$

$$c \leftarrow c + b$$

$$a \leftarrow 2 * b$$

$$return c$$

Constant Propagation + Folding

$$a \leftarrow 1$$

$$b \leftarrow a + 1$$

$$c \leftarrow c + b$$

$$a \leftarrow 2 * b$$

$$return c$$

$$a \leftarrow 0$$

$$b \leftarrow 2$$

$$c \leftarrow c + 2$$

$$a \leftarrow 4$$

$$return c$$

Copy Propagation

$$a \leftarrow e$$
 $b \leftarrow a + 1$
 $c \leftarrow c + b$
 $a \leftarrow 2 * b$
 $return c$

Copy Propagation

$$a \leftarrow e$$

$$b \leftarrow a + 1$$

$$c \leftarrow c + b$$

$$a \leftarrow 2 * b$$

$$return c$$

$$a \leftarrow e$$

$$b \leftarrow e + 1$$

$$c \leftarrow c + b$$

$$a \leftarrow 2 * b$$

$$return c$$

Common Subexpression Elimination example

if expression is computed more than once, eliminate one computation

Common Subexpression Elimination example

$$x \leftarrow a + b$$

$$c \leftarrow x$$

$$d \leftarrow 1$$

$$e \leftarrow x$$

if expression is computed more than once, eliminate one computation

Intraprocedural Global Optimization

optimization

Terminology

- Intraprocedural: within a single procedure or function
- Global: spans all statements with procedure
- Interprocedural: operating on several procedures at once

Recipe

- Dataflow analysis: traverse flow graph, gather information
- Transformation: modify program using information from analysis

Intermediate Language

quadruples

Store

$$a \leftarrow b \oplus c$$

$$a \leftarrow b$$

Memory access

$$a \leftarrow M[b]$$

$$M[a] \leftarrow b$$

Functions

$$f(a_1, ..., a_n)$$

b $\leftarrow f(a_1, ..., a_n)$

Jumps

goto L

if $a \otimes b$

goto L₁

else

goto L₂

```
a \leftarrow 0
L1: b \leftarrow a + 1
     c \leftarrow c + b
     a \leftarrow 2 * b
     if a < N
         goto L1
     else
         goto L2
L2: return c
```


Liveness Analysis

Liveness Analysis

definition

Motivation: register allocation

- intermediate code with unbounded number of temporary variables
- map to bounded number of registers
- if two variables are not 'live' at the same time, store in same register

Liveness

a variable is live if it holds a value that may be needed in the future

Register Allocation

Register Allocation

Register Allocation

definitions

Def and **use**

- an assignment to a variable **defines** a variable
- an occurrence of a variable in an expression uses that variable
- def[x] = {n | n defines x}, def[n] = {x | n defines x}
- use[x] = $\{n \mid n \text{ uses } x\}$, use[n] = $\{x \mid n \text{ uses } x\}$

A variable is **live on an edge** if

- there is a directed path from that edge to a use of the variable
- that does not go through any def

A variable is live in/out at a node

- live-in: it is live on any of the in-edges of that node
- live-out: it is live on any of the out-edges of the node

terminology

Dataflow Analysis 22

formalization

$$in[n] = use[n] U (out[n] - def[n])$$

$$out[n] = U_{s \in succ[n]} in[s]$$

- 1. If a variable is used at node n, then it is live-in at n
- 2. If a variable is live-out but not defined at node n, it is live-in at n
- 3. If a variable is live-in at node n, then it is live-out at its predecessors

algorithm

```
for each n
   in[n] \leftarrow \{\} ; out[n] \leftarrow \{\}
repeat
   for each n
      in'[n] = in[n] ; out'[n] = out[n]
      in[n] = use[n] \cup (out[n] - def[n])
      for each s in succ[n]
          out[n] = out[n] u in[s]
until
   for all n: in[n] = in'[n] and out[n] = out'[n]
```


optimization

	u							
6	С							
5	а							
4	b							
3	bc							
2	а							
1								

optimization

	u	d						
6	С							
5	а							
4	b	a						
3	bc	С						
2	а	b						
1		а						

optimization

			1			
	u	d	0	i		
6	С			С		
5	a		С	ac		
4	b	а	ac	bc		
3	bc	С	bc	bc		
2	a	b	bc	ac		
1		а	ac	a		

optimization

				L	á	2	
	u	d	0	i	0	i	
6				С		С	
5	a b bc		С	ac	ac	ac	
4	b	а	ac	bc	ac	bc	
3	bc	С	bc	bc	bc	bc	
2	a	b	bc	ac	bc	ac	
1		а	ac	a	ac	С	

optimization

			1		2		3	
	u	d	0	i	0	i	0	i
6	С			С		С		С
5	а		С	ac	ac	ac	ac	ac
4	b	а	ac	bc	ac	bc	ac	bc
3	bc	С	bc	bc	bc	bc	bc	bc
	а							
				l				

gen & kill

	gen	
a ← b ⊕ c	{b,c}	
a ← b	{b}	
a ← M[b]	{b}	
M[a] ← b	{a,b}	
f(a ₁ ,, a _n)	{a ₁ ,,a _n }	
$a \leftarrow f(a_1,, a_n)$	{a ₁ ,,a _n }	
goto L		
if a ⊗ b	{a,b}	

gen & kill

	gen	kill
a ← b ⊕ c	{b,c}	{a}
a ← b	{b}	{a}
a ← M[b]	{b}	{a}
M[a] ← b	{a,b}	
f(a ₁ ,, a _n)	{a ₁ ,,a _n }	
$a \leftarrow f(a_1,, a_n)$	{a ₁ ,,a _n }	{a}
goto L		
if a ⊗ b	{a,b}	

$$in[n] = gen[n] \cup (out[n] - kill[n])$$

$$out[n] = U_{s \in succ[n]} in[s]$$

More Analyses

definition

Unambiguous definition of a

• a statement of the form $(d : a \leftarrow b \oplus c)$ or $(d : a \leftarrow M[x])$

Definition d reaches statement u if

- there is some path in control-flow graph from d to u
- that does not contain an unambiguous definition of a

Used in

constant propagation

example

gen & kill

	gen	
d: a ← b ⊕ c	{d}	
d: a ← b	{d}	
d: a ← M[b]	{d}	
M[a] ← b		
f(a ₁ ,, a _n)		
d: $a \leftarrow f(a_1,, a_n)$	{d}	
goto L		
if a ⊗ b		

defs(a): all definitions of a

gen & kill

	gen	kill
d: a ← b ⊕ c	{d}	defs(a)-{d}
d: a ← b	{d}	defs(a)-{d}
d: a ← M[b]	{d}	defs(a)-{d}
M[a] ← b		
f(a ₁ ,, a _n)		
d: $a \leftarrow f(a_1,, a_n)$	{d}	defs(a)-{d}
goto L		
if a ⊗ b		

defs(a): all definitions of a

formalisation

$$in[n] = U_{p \in pred[n]} out[p]$$

$$out[n] = gen[n] \cup (in[n] - kill[n])$$

definition

An expression (b ⊕ c) is available at node n if

- on every path from the entry node to node n
- (b ⊕ c) is computed at least once, and
- there are no definitions of b or c since most recent occurrence of (b

 c) on that path

Used in

common-subexpression elimination

Available Expressions example

gen & kill

	gen	
d: a ← b ⊕ c	{b⊕c}-kill	
d: a ← b		
d: a ← M[b]	{M[b]}-kill	
M[a] ← b		
f(a ₁ ,, a _n)		
d: $a \leftarrow f(a_1,, a_n)$		
goto L		
if a ⊗ b		

gen & kill

	gen	kill
d: a ← b ⊕ c	{b⊕c}-kill	exps(a)
d: a ← b		
d: a ← M[b]	{M[b]}-kill	exps(a)
M[a] ← b		exps(M[_])
f(a ₁ ,, a _n)		exps(M[_])
d: $a \leftarrow f(a_1,, a_n)$		exps(M[_]) u exps(a)
goto L		
if a ⊗ b		

formalisation

$$in[n] = \bigcap_{p \in pred[n]} out[p]$$

$$out[n] = gen[n] \cup (in[n] - kill[n])$$

Reaching Expressions

definition

An expression (s : a \leftarrow b \oplus c) reaches node n if

- there is a path from s to n
- that does not go through assignment to b or c
- or through any computation of (b ⊕ c)

Used in

common-subexpression elimination

V

Optimizations

Dead Code Elimination

example

$$a \leftarrow \emptyset$$

$$b \leftarrow a + 1$$

$$c \leftarrow c + b$$

$$a \leftarrow 2 * b$$

$$return c$$

$$a \leftarrow 0$$
 $b \leftarrow a + 1$
 $c \leftarrow c + b$
 $return c$

```
consider:
  (s : a \leftarrow b \oplus c) \text{ or } (s : a \leftarrow M[x])
  if a is not live-out at s
transform:
  remove s
```

Common Subexpression Elimination

example

$$x \leftarrow a + b$$
 $c \leftarrow x$
 $d \leftarrow 1$
 $e \leftarrow x$

consider:

```
(n : a \leftarrow b \oplus c) reaches (s : d \leftarrow b \oplus c)
path from n to s does not compute b ⊕ c or define b or c
e is a fresh variable
```

transform:

```
n : a \leftarrow b \oplus c
n' : e ← a
s : d ← e
```

Constant Propagation

example

$$a \leftarrow 0$$

$$b \leftarrow a + 1$$

$$c \leftarrow c + b$$

$$a \leftarrow 2 * b$$

$$return c$$

$$a \leftarrow 0$$

$$b \leftarrow 0 + 1$$

$$c \leftarrow c + b$$

$$a \leftarrow 2 * b$$

$$return c$$

```
consider: (d : a \leftarrow c) \& (n : e \leftarrow a \oplus b)
if c is constant
    & (d reaches n)
    & (no other def of a reaches n)
transform:
  (n : e \leftarrow a \oplus b) \Rightarrow (n : e \leftarrow c \oplus b)
```

Copy Propagation

example

$$a \leftarrow e$$

$$b \leftarrow a + 1$$

$$c \leftarrow c + b$$

$$a \leftarrow 2 * b$$

$$return c$$


```
a \leftarrow e
b \leftarrow e + 1
c \leftarrow c + b
a \leftarrow 2 * b
return c
```

```
consider: (d : a ← z) & (n : e ← a ⊕ b)
if z is a variable
    & (d reaches n)
    & (no other def of a reaches n)
    & (no def of z on path from d to n)
transform:
    (n : e ← a ⊕ b) => (n : e ← z ⊕ b)
```