dernière édition : 29 septembre 2019

ESPACES VECTORIELS NORMÉS ET CALCUL DIFFÉRENTIEL

(EVNCD)

Karine Beauchard

1A maths 2019, ENS de Rennes

Сна	PITRE 1 – ESPACES VECTORIELS NORMÉS	1	2.5 Fonctions convexes	10
	Normes		Chapitre 3 – Applications linéaires entre espaces vectoriels normés	13
1.3	Complétude	2	3.1 Norme subordonnée	
1.4	Espaces de Banach	3	3.2 Généralisation aux applications multilinéaires	14
1.5	Séries dans les espaces normés	4	Chapitre 4 – Différentielle	16
1.6	Algèbre de Banach et inversion	4	4.1 Différentiabilité	-
1.7	Théorème de point fixe	4	4.2 Différentielles partielles	
1.8	Intégrale de Riemann	5	4.3 Différentielle seconde	
Сна	PITRE 2 – FONCTIONS DE LA VARIABLE RÉELLE	6	4.4 Formules de Taylor	26
2.1	Dérivabilité	6	Chapitre 5 – Théorèmes d'inversion locale et des	
2.2	Théorème spécifique aux fonctions à valeurs réelles .	7	FONCTIONS IMPLICITES	27
2.3	Fonction à valeurs vectorielles	7	5.1 Théorème d'inversion locale	27
2.4	Dérivabilité et suite/série de fonctions	10	5.2 Théorème des fonctions implicites	28

Chapitre 1

Espaces vectoriels normés

1.1 Normes	1	1.4 Espaces de Banach	3
1.1.1 Définitions et exemples	1	1.5 Séries dans les espaces normés	4
1.1.2 Normes équivalentes	1	1.6 Algèbre de Banach et inversion	4
1.2 Théorème de Riesz	2	1.7 Théorème de point fixe	4
1.3 Complétude	2	1.8 Intégrale de Riemann	5
	_ •		

Dans tout le chapitre, le corps \mathbb{K} est \mathbb{R} ou \mathbb{C} . Soit E un \mathbb{K} -espace vectoriel.

1.1 Normes

1.1.1 Définitions et exemples

DÉFINITION 1.1.1. Une norme sur E est une application $N: E \to [0, +\infty[$ telle que

- 1. pour tout $x \in E$, on a $N(x) = 0 \Leftrightarrow x = 0$;
- 2. pour tous $x \in E$ et $\lambda \in \mathbb{K}$, on a $N(\lambda x) = |\lambda| N(x)$;
- 3. pour tous $x, y \in E$, on a $N(x+y) \leq N(x) + N(y)$
- \diamond Remarque. Une norme N est 1-lipschitzienne sur (E, N).
- ightharpoonup EXEMPLES. Sur \mathbb{R}^n , on pose $||x||_{\infty} = \max_{1 \leqslant k \leqslant n} |x_k|$ et $||x||_p = (\sum_{k=1}^n |x_k|^p)^{1/p}$ pour $1 \leqslant p < +\infty$.
 - Sur $\ell^{\infty}(\mathbb{N}, \mathbb{R})$, on pose $||x||_{\infty} = \sup_{k \in \mathbb{N}} |x_k|$.
 - Sur $\ell^p(\mathbb{N}, \mathbb{R})$, on pose $||x||_p = (\sum_{k=1}^n |x_k|^p)^{1/p}$.
 - Sur $\mathscr{C}^0([0,1],\mathbb{R})$, on pose $||f||_{\infty} = \max_{x \in [0,1]} |f(x)|$ et $||f||_p = (\int_{[0,1]} |f(x)|^p dx)^{1/p}$.

Alors ces expressions définissent des normes sur leurs espaces respectifs.

Preuve Montrons que $\| \|_p$ est une norme sur $\ell^p(\mathbb{N}, \mathbb{R})$ pour $1 . Les axiomes 1 et 2 sont triviaux. Montrons le troisième. Soit <math>p' \in]1, +\infty[$ tel que 1/p + 1/p' = 1.

• Inégalité de HÖLDER. Pour $x, y \in]0, +\infty[$, la concavité de logarithme donne

$$\ln xy = \frac{1}{p} \ln x^p + \frac{1}{p'} \ln y^{p'} \le \ln \left(\frac{1}{p} x^p + \frac{1}{p'} x^{p'} \right)$$

et la croissance de l'exponentielle donne

$$xy \leqslant \frac{1}{p}x^p + \frac{1}{p'}x^{p'}.$$

Soient $x = (x_n)_{n \in \mathbb{N}} \in \ell^p(\mathbb{N}, \mathbb{R})$ et $y = (y_n)_{n \in \mathbb{N}} \in \ell^{p'}(\mathbb{N}, \mathbb{R})$. D'après ce qui précède, on a

$$\sum_{n=0}^{\infty} \left| \frac{x_n}{\|x\|_p} \frac{y_n}{\|y\|_{p'}} \right| \leqslant \frac{1}{p} \sum_{n=0}^{\infty} \frac{\left|x_n\right|^p}{\|x\|_p^p} + \frac{1}{p'} \sum_{n=0}^{\infty} \frac{\left|y_n\right|^{p'}}{\|y_n\|_{p'}^{p'}} = \frac{1}{p} + \frac{1}{p'} = 1,$$

donc

$$\sum_{n=0}^{\infty} |x_n y_n| \le ||x||_p ||y||_{p'}.$$

• Inégalité de Minkowski. Soient $x=(x_n)_{n\in\mathbb{N}},y=(y_n)_{n\in\mathbb{N}}\in\ell^p(\mathbb{N},\mathbb{R}).$ On obtient alors

$$||x+y||_{p}^{p} = \sum_{n=0}^{\infty} |x_{n} + y_{n}|^{p} \leq \sum_{n=0}^{\infty} |x_{n} + y_{n}|^{p-1} |x_{n}| + \sum_{n=0}^{\infty} |x_{n} + y_{n}|^{p-1} |y_{n}|$$

$$\leq \left(\sum_{n=0}^{\infty} |x_{n} + y_{n}|^{(p-1)p'}\right)^{1/p'} \left[\left(\sum_{n=0}^{\infty} |x_{n}|^{p}\right)^{1/p} + \left(\sum_{n=0}^{\infty} |y_{n}|^{p}\right)^{1/p}\right]$$

$$\leq \left(\sum_{n=0}^{\infty} |x_{n} + y_{n}|^{p}\right)^{1-1/p} [||x||_{p} + ||y||_{p}]$$

$$\leq \frac{||x + y||_{p}^{p}}{||x + y||_{p}} (||x||_{p} + ||y||_{p}).$$

D'où l'inégalité et l'axiome 3.

1.1.2 Normes équivalentes

DÉFINITION 1.1.2. Deux normes N et \tilde{N} sur E sont dites équivalentes s'il existe $c_1, c_2 > 0$ tels que

$$\forall x \in E, \quad c_1 N(x) \leqslant \tilde{N}(x) \leqslant c_2 N(x).$$

Théorème 1.1.3. Sur un \mathbb{R} -espace vectoriel de dimension finie, toutes les normes sont équivalentes.

Preuve Quitte à choisir une base, on peut travailler sur \mathbb{R}^n . Il suffit de montrer que toute norme N sur \mathbb{R}^n est équivalentes à $\| \|_{\infty}$. En utilisant le théorème de BOLZANO-WEIERSTRASS sur \mathbb{R} et les produits cartésiens, on sait que les compacts de $(\mathbb{R}^n, \| \|_{\infty})$ sont les fermés bornés.

• Continuité de N. Montrons que N est continue sur $(\mathbb{R}^n, \| \cdot \|_{\infty})$. Pour $x, h \in \mathbb{R}^n$, on a

$$|N(x+h) - N(x)| \le N(h) = N\left(\sum_{k=1}^{n} h_k e_k\right) \le \sum_{k=1}^{n} |h_k| N(e_k) \le ||h||_{\infty} M \text{ avec } M := \sum_{k=1}^{n} N(e_k).$$

où (e_1,\ldots,e_n) est la base canonique de \mathbb{R}^n . Ainsi N est lipschitzienne, donc elle est continue sur $(\mathbb{R}^n,\|\ \|_{\infty})$

• Argument de compacité. L'ensemble $S := \{x \in \mathbb{R}^n, \|x\|_{\infty} = 1\}$ est compact dans $(\mathbb{R}^n, \|\|_{\infty})$. Comme N est continue et positive sur S, œon pose $c_1 := \min_S N > 0$. Pour $x \in \mathbb{R}^n \setminus \{0\}$, on a $N(x)/\|x\|_{\infty} = N(x/\|x\|_{\infty}) \ge c_1$, donc $c_1 \|x\|_{\infty} \le N(x) \le M \|x\|_{\infty}$. D'où l'équivalence

COROLLAIRE 1.1.4. Dans un R-espace vectoriel de dimension finie, les compacts sont les fermés bornés.

CONTRE-EXEMPLES. Les normes des espaces suivants ne sont pas toutes équivalentes.

- On a $\ell^1(\mathbb{N}, \mathbb{R})$ ⊂ $\ell^\infty(\mathbb{N}, \mathbb{R})$. Ainsi les normes $\| \|_1$ et $\| \|_\infty$ sont-elles équivalentes sur $\ell^1(\mathbb{N}, \mathbb{R})$? Pour $x = (x_n)_{n \in \mathbb{N}} \in \ell^1(\mathbb{N}, \mathbb{R})$, comme $x_n \to 0$, il existe $n_0 \in \mathbb{N}$ tel que $x_{n_0} = \|x\|_\infty$, donc $\|x\|_\infty \leq \|x\|_1$. Par l'absurde, supposons qu'il existe c > 0 tel que $\|x\|_1 \leq c \|x\|_\infty$ pour tout $x \in \ell^1(\mathbb{N}, \mathbb{R})$. En particulier, avec $x = (\mathbb{1}_{[0,N]}(k))_{k \in \mathbb{N}}$, on doit avoir $N + 1 \leq C$ pour tout $N \in \mathbb{N}$ ce qui est impossible. Donc les deux normes ne sont pas équivalentes.
- Sur $\mathscr{C}^0([0,1],\mathbb{R})$, les normes $\| \|_1$ et $\| \|_{\infty}$ sont-elles équivalentes? On a clairement $\| \|_1 \leq \| \|_{\infty}$. Par l'absurde, supposons qu'il existe c > 0 tel que $\| f \|_{\infty} \leq c \| f \|_{\infty}$ pour toute $f \in \mathscr{C}^0([0,1],\mathbb{R})$. En particulier, pour f_N en triangle (valant 1 en 1/2, 0 sur $[0,1/N] \cup [1-1/N,1[$ et affine ailleurs), on obtient $N \leq C/2$ pour tout $N \in \mathbb{N}^*$ ce qui est impossible.

1.2 Théorème de Riesz

RAPPEL. Le théorème de BOLZANO-WEIERSTRASS est équivalent à la propriété de BOREL-LEBESGUE qui dit que, de tout recouvrement par des ouverts, on peut extraire un recouvrement fini.

THÉORÈME 1.2.1 (RIESZ). Soit (E, || ||) un \mathbb{R} -espace vectoriel normé. La boule unité $\overline{B}_E(0, 1) = \{x \in E, ||x|| \leq 1\}$ est compacte si et seulement si E est de dimension finie.

Preuve Le sens réciproque est triviale. On suppose que $\overline{B}_E(0,1)$ est compacte. Du recouvrement

$$\overline{\mathrm{B}}_{E}(0,1) \subset \bigcup_{x \in \overline{\mathrm{B}}_{E}(0,1)} \mathrm{B}(x,\frac{1}{2}),$$

on peut en extraire un recouvrement fini, i. e. il existe $N\in\mathbb{N}$ et $x_1,\dots,x_N\in\overline{\mathcal{B}}_E(0,1)$ telss que

$$\overline{\mathbf{B}}_E(0,1) \subset \bigcup_{j=1}^N \mathbf{B}(x_j,\frac{1}{2}).$$

On pose $F = \operatorname{Vect}_{\mathbb{R}} \{x_1, \dots, x_n\}$. Montrons que E = F. Par l'absurde, supposons que $F \subsetneq E$. Soit $x \in E \setminus F$. Comme F est fermé, on a $\delta := \operatorname{d}(x, F) > 0$ et cette distance est atteinte, i. e. il existe $j \in F$ tel que $\|x - y\| = \delta$. Alors $(x - y)/\delta \in \operatorname{B}_E(0, 1)$, donc il existe $j \in [1, N]$ tel que $\|(x - y)/\delta - x_j\| < 1/2$. Finalement, on a $\|x - (y + \delta x_j)\| < \delta/2$ avec $y + \delta x_j \in F$ ce qui est impossible. Donc E = F est de dimension finie. \square

EXEMPLES. Donnons des suites bornées n'admettant pas de sous-suite convergente dans un espace vectoriel de dimension finie. On se place dans $E=\mathbb{R}[X]$. Pour $P=\sum_{k=0}^N a_k X^k \in E$, on pose $\|P\|_1=\sum_{k=0}^n |a_k|$. La suite $(X^n)_{n\in\mathbb{N}}$ est clairement bornée. Supposons qu'il existe une extraction φ telle que $(X^{\varphi(n)})$ converge dans $(E,\|\ \|_1)$. Alors $\|X^{\varphi(n+1)}-X^{\varphi(n)}\|_1\to 0$. Or pour tout $n\in\mathbb{N}$, comme $\varphi(n)<\varphi(n+1)$, on a $\|X^{\varphi(n+1)}-X^{\varphi(n)}\|_1=2$ ce qui est impossible.

1.3 Complétude

DÉFINITION 1.3.1 (suite de CAUCHY). Soient $(E, \| \|)$ un espace vectoriel normé et $(x_n)_{n \in \mathbb{N}}$ une suite de E. On dit que $(x_n)_{n \in \mathbb{N}}$ est une suite de CAUCHY si

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall p, q \geqslant n_0, \quad \|x_p - x_q\| < \varepsilon.$$

Propriété 1.3.2. 1. Une suite convergente est de Cauchy, donc elle est bornée.

- 2. Une suite de CAUCHY admettant une valeur d'adhérence converge.
- 3. L'image d'une suite de CAUCHY par une application uniformément continue est de CAUCHY.

Preuve 2. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de Cauchy admettant une valeur d'adhérence. Il existe une extraction φ telle que $(x_{\varphi(n)})_{n\in\mathbb{N}}$ converge vers $a\in E$. Par hypothèse, il existe $n_0\in\mathbb{N}$ tel que, pour tous $p,q\geqslant n_0$, on a $\|x_p-x_q\|<\varepsilon/2$ et, pour tout $n\geqslant n_0$, on a $\|x_{\varphi(n)}-a\|\leqslant\varepsilon/2$. Alors pour $n\geqslant n_0$, on a $\|x_n-a\|\leqslant\|x_n-x_{\varphi(n)}\|+\|x_{\varphi(n)}-a\|\leqslant\varepsilon/2+\varepsilon/2=\varepsilon$. D'où $x_n\to a$.

3. Soient $(x_n)_{n\in\mathbb{N}}$ une suite de CAUCHY et $f\colon E\to F$ uniformément continue. Soit $\varepsilon>0$. Par l'uniforme continuité de f, il existe $\eta>0$ tel que, pour tous $x,y\in E$ tels que $\|x-y\|_E<\eta$, on a $\|f(x)-f(y)\|_F<\varepsilon$. Par le critère de CAUCHY, il existe $n_0\in\mathbb{N}$ tel que, pour tous $p,q\geqslant n_0$, on a $\|x_p-x_q\|<\eta$. Alors pour tous $p,q\geqslant n_0$, on a $\|f(x_p)-f(x_q)\|<\varepsilon$, donc la suite $(f(x_n))_{n\in\mathbb{N}}$ est de CAUCHY.

CONTRE-EXEMPLE DU POINT 3. La suite $(x_n = 1/n)_{n \in \mathbb{N}^*}$ converge dans \mathbb{R} , donc elle est de CAUCHY dans $(\mathbb{R}, | \cdot |)$. Or $f: x \in \mathbb{R}^* \longmapsto 1/x \in \mathbb{R}$ est continue, mais $(f(x_n) = n)$ n'est pas de CAUCHY car elle n'est pas bornée.

DÉFINITION 1.3.3 (complétude). Une partie A de E est dite complète si toute suite de CAUCHY de A converge dans A.

Propriété 1.3.4. 1. La complétude est stable par intersection quelconque, union finie et produit cartésien.

- 2. Un compact est complet, donc fermé.
- 3. Dans une partie complète A, les sous-ensembles complets sont les sous-ensembles fermés.

1.4 Espaces de Banach

DÉFINITION 1.4.1. Un espace de BANACH est un espace vectoriel normé complet.

- \triangleright EXEMPLES. L'espace $\mathbb R$ est un espace de Banach, de même pour $\mathbb R^n$.
 - Les espaces $(\ell^p(\mathbb{N},\mathbb{R}), || ||_p)$ sont complets pour $p \in [1, +\infty]$.

Preuve Montrons le dernier point si $p \in [1, +\infty[$. Soit $(x^k)_{k \geqslant \mathbb{N}}$ une suite de CAUCHY de $(\ell^p(\mathbb{N}, \mathbb{R}), \| \|_p)$. Pour tout $k \in \mathbb{N}$, la suite $x^k = (x_n^k)_{n \in \mathbb{N}}$ vérifie $\sum_{n=0}^{\infty} |x_n^k|^p < +\infty$. Soit $\varepsilon > 0$. Il existe $k_0 \in \mathbb{N}$ tel que, pour tous $k, j \geqslant k_0$, on a $\|x^k - x^j\| < \varepsilon$. Montrons qu'il existe $y = (y_n)_{n \in \mathbb{N}} \in \ell^p(\mathbb{N}, \mathbb{R})$ telle que $\|x^k - y\| \to 0$.

- Convergence du terme général. Soit $n \in \mathbb{N}$. La suite $(x_n^k)_{k \in \mathbb{N}}$ est de Cauchy dans \mathbb{R} . En effet, pour tous $k, j \geqslant k_0$, on a $|x_k^n x_n^j| \leqslant ||x^k x^j||^p < \varepsilon$. Comme \mathbb{R} est complet, elle converge. On note $y_n \coloneqq \lim_{k \to +\infty} x_n^k$.
 Convergence de $(x^k)_{k \in \mathbb{N}}$ dans $\ell^p(\mathbb{N}, \mathbb{R})$. Montrons que $y = (y_n)_{n \in \mathbb{N}}$ appartient à $\ell^p(\mathbb{N}, \mathbb{R})$. Soient $k > k_0$ et
- Convergence de $(x^k)_{k\in\mathbb{N}}$ dans $\ell^p(\mathbb{N},\mathbb{R})$. Montrons que $y=(y_n)_{n\in\mathbb{N}}$ appartient à $\ell^p(\mathbb{N},\mathbb{R})$. Soient $k>k_0$ e $N\in\mathbb{N}$. Pour tous $j\geqslant k_0$, on a

$$\sum_{n=0}^N \lvert x_n^k - x_n^j \rvert^p \leqslant \sum_{n=0}^\infty \lvert x_n^k - x_n^j \rvert^p < \varepsilon.$$

En passant à la limite quand $j \to +\infty$ dans cette somme finie, on obtient $\sum_{n=0}^{N} \left| x_n^k - y_n \right|^p \leqslant \varepsilon$. Ceci est vrai pour tout $N \in \mathbb{N}$, donc la série $\sum \left| x_n^k - y_n \right|^p$ converge et sa somme est finie. Ceci montre que

- $-(x^k-y)_{k\in\mathbb{N}}\in\ell^p(\mathbb{N},\mathbb{R}),$ donc $y=(y-x^k)+x^k\in\ell^p(\mathbb{N},\mathbb{R})$ par la structure d'espace vectoriel;
- pour tout $k \ge k_0$, on a $||x^k y||_p < \varepsilon$, donc $||x^k y|| \to 0$.

EXEMPLE D'ESPACE VECTORIEL NORMÉ NON COMPLETS. Pour $P = \sum_{k=0}^n a_k X^k \in \mathbb{R}[X]$, on pose $\|P\|_{\infty} = \max_{1 \leq k \leq n} |a_k|$. On note $\mathscr{C}_{\mathbf{c}}(\mathbb{N}, \mathbb{R})$ l'espace des suites réels à support fini : on peut l'identifier à $\mathbb{R}[X]$ qu'on munit de $\|\ \|_{\infty}$. Montrons que cet espace vectoriel normé n'est pas complet. Pour $k \in \mathbb{N}$, on définit $x^k = (\frac{1}{n!}\mathbb{1}_{[0,k]}(n))_{n \in \mathbb{N}} \in \mathscr{C}_{\mathbf{c}}(\mathbb{N}, \mathbb{R})$. Montrons que $(x^k)_{k \in \mathbb{N}}$ est de Cauchy dans $(\mathscr{C}_{\mathbf{c}}(\mathbb{N}, \mathbb{R}), \|\ \|_{\infty})$. Pour k > j, on a

$$||x^k - x^j||_{\infty} = \max\left\{\frac{1}{n!}, n \in [j+1, k]\right\} = \frac{1}{(j+1)!}.$$

Pour $\varepsilon > 0$, on prend $k_0 \in \mathbb{N}$ pour que $1/k_0 < \varepsilon$ et alors, pour tous $k, j > k_0$, on a $||x^k - x^j||_{\infty} < \varepsilon$.

Montrons que $(x^k)_{k\in\mathbb{N}}$ ne converge pas dans $(\mathscr{C}_{\mathbf{c}}(\mathbb{N},\mathbb{R}),\|\ \|_{\infty})$. Comme $(\ell^{\infty}(\mathbb{N},\mathbb{R}),\|\ \|_{\infty})$ est complet, la suite $(x^k)_{k\in\mathbb{N}}$ converge dans $\ell^\infty(\mathbb{N},\mathbb{R})$ vers un certain $y=(y_n)_{n\in\mathbb{N}}$. En particulier, pour tout $n\in\mathbb{N}$, on a $x_k^n\to y_n$ quand $k \to +\infty$. Or $x_k^n = 1/n!$ pour $k \geqslant n$, donc $y_n = 1/n!$ pour tout $n \in \mathbb{N}$. Mais $y \notin \mathscr{C}_{c}(\mathbb{N}, \mathbb{R})$.

1.5 Séries dans les espaces normés

DÉFINITION 1.5.1. Soient (E, || ||) un espace vectoriel normé et $(x_n)_{n\in\mathbb{N}}$ une suite de E.

- La série $\sum x_n$ converge si la suite $(\sum_{k=0}^n u_k)_{n\in\mathbb{N}}$ converge. La série $\sum x_n$ converge absolument si la série $\sum_{n=0}^{\infty} \|x_n\| < +\infty$. La série $\sum x_n$ est de CAUCHY si la suite $(\sum_{k=0}^n u_k)_{n\in\mathbb{N}}$ est de CAUCHY.

Propriété 1.5.2. 1. Une série convergente est de Cauchy, donc son terme général tend vers 0.

- 2. Un espace vectoriel normé est complet si et seulement si toutes ses séries de CAUCHY convergent.
- 3. Dans un espace de BANACH, la convergence absolue implique la convergence.
- 4. Soient $(E, \| \|)$ un espace de Banach, $\sum x_n$ une série convergente absolument et $\sigma \colon \mathbb{N} \to \mathbb{N}$ une bijection. Alors la série $\sum x_{\sigma(k)}$ converge et $\sum_{k=0}^{\infty} x_{\sigma(k)} = \sum_{k=0}^{\infty} x_k$ qu'on note $\sum_{n \in \mathbb{N}} x_n$.

Preuve 3. Soit $(E, \| \|)$ un espace de Banach. Soit $\sum x_n$ une série convergente absolument. Montrons que $\sum x_n$ est de Cauchy. Soit $\varepsilon > 0$. Comme la série de nombre réel $\sum |x_n|$ converge, elle est de Cauchy, donc il existe $n_0 \in \mathbb{N}$ tel que, pour tout $q > p > n_0$, on ait $\sum_{n=p}^q \|\overline{x_n}\| < \varepsilon$. Pour $q > p > n_0$, on a alors $\|\sum_{n=p}^q x_n\| \leqslant \sum_{n=p}^q \|x_n\| < \varepsilon$. Donc la série est de CAUCHY.

4. Soit $K \in \mathbb{N}$. Comme σ est injective, on a

$$\sum_{k=0}^K \lVert x_{\sigma(k)}\rVert = \sum_{n \in \sigma(\llbracket 0, K \rrbracket)} x_n \leqslant \sum_{n \in \mathbb{N}} x_n < +\infty, \quad \text{donc} \quad \sum_{k=0}^\infty \lVert x_{\sigma(k)}\rVert < +\infty.$$

On note $L := \sum_{n=0}^{\infty} x_n \in E$. Soit $\varepsilon > 0$. Par hypothèse, il existe $N_0 \in \mathbb{N}$ tel que $||L - \sum_{n=0}^{N_0} x_n|| < \varepsilon$ et $\sum_{n>N_0} ||x_n|| < \varepsilon$. Notons $K_0 := \min \{K \in \mathbb{N}, \sigma(\llbracket 0, K \rrbracket) \supset \llbracket 0, N_0 \rrbracket \}$. Soit $K \geqslant K_0$. On a alors

$$\left\|L - \sum_{k=0}^{K} x_{\sigma(k)}\right\| = \left\|L - \sum_{n \in \sigma(\llbracket 0, K \rrbracket)} x_n \right\| \le \left\|L - \sum_{n=0}^{N_0} x_n \right\| + \left\|\sum_{n \in \sigma(\llbracket 0, K \rrbracket) \setminus \llbracket 0, N_0 \rrbracket} x_k \right\|$$

$$\le \frac{\varepsilon}{2} + \sum_{n > N_0} \|x_n\| < \varepsilon.$$

 \triangleright Exemple. Pour tout $y \in \mathbb{R}$, il existe $\sigma \colon \mathbb{N} \to \mathbb{N}$ telle que $\sum_{k=0}^{\infty} (-1)^{\sigma(k)}/k = y$.

Algèbre de Banach et inversion

DÉFINITION 1.6.1. Une algèbre normée est une algèbre $(X, +, \cdot)$ munie d'une norme $\| \cdot \|$ sous-multiplicative, i. e. pour tous $x, y \in X$, on a $||x \cdot y|| \le ||x|| ||y||$. Une algèbre de BANACH est une algèbre normée complète.

 \triangleright EXEMPLES. Les espaces $\mathbb R$ et $\mathbb C$ munis de $|\cdot|$ sont des algèbres de BANACH, l'espace $\mathscr M_n(\mathbb R)$ muni d'une norme subornée ou de la norme définie par $||A|| = \operatorname{tr}({}^{t}AA)$ en est une, l'espace $\mathscr{C}^{0}([0,1],\mathbb{R})$ muni de $|| ||_{\infty}$ en est une.

PROPRIÉTÉ 1.6.2. Soit $(X, +, \cdot, || ||)$ une algèbre de BANACH. L'ensemble Inv(X) des éléments inversibles de X pour \cdot est un ouvert de (X, || ||).

Preuve On note 1_X l'élément unité de l'algèbre X.

• Étape 1. Montrons que $B_X(1_X, 1) \subset Inv(X)$. Soit $h \in X$ tel que ||h|| < 1. Montrons que $1_X - h \in Inv(X)$. On a $||h^n|| \leq ||h||^n$, donc la série $\sum h^n$ converge absolument. Comme X est complet, la série $\sum h^n$ converge dans X et $\sum_{n=0}^{\infty} h^n$ est bien défini dans X. Pour tout $N \in \mathbb{N}$, on a

$$(1_X - h) \sum_{n=0}^{N} h^n = 1_X - h^{N+1}.$$

Or $||h^{N+1}|| = ||h||^{N+1} \to 0$. En passant à la limite quand $N \to +\infty$, on obtient que $(1_X - h) \sum_{n=0}^{\infty} h^n = 1_X$. Ainsi $1_X - h \in \text{Inv}(X)$ et $(1_X - h)^{-1} = \sum_{n=0}^{\infty} h^n$.

• Étape 2. Soit $a \in \text{Inv}(X)$. Montrons que $B_X(a, 1/\|a^{-1}\|) \subset \text{Inv}(X)$. Soit $h \in X$ tel que $\|h\| < \|a^{-1}\|$. L'élément $a+h=a(1_X+a^{-1}h)$ est inversible d'après l'étape 1 car $||a^{-1}h|| \leq ||a^{-1}|| ||h|| < 1$.

1.7 Théorème de point fixe

THÉORÈME 1.7.1 (du point fixe de BANACH). Soient (E, || ||) un espace vectoriel normé, $A \subset E$ complète et $f: A \to A$ contractante, i. e. il existe $k \in]0,1[$ tel que $||f(x) - f(y)|| \le k ||x - y||$ pour tous $x, y \in A$. Alors

- 1. il existe un unique $a \in A$ tel que f(a) = a,
- 2. pour tout $x_0 \in A$, la suite $(x_n)_{n \in \mathbb{N}}$ des itérés de x_0 par f converge vers a.
- 3. la convergence est géométrique, i. e. pour tout $n \in \mathbb{N}$, on a

$$||x_n - a|| \le \frac{k^n}{1 - k} ||x_1 - x_0||.$$

Preuve Commençons par montrer le point 2. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de A telle que $x_{n+1}=f(x_n)$ pour tout $n\in\mathbb{N}$. Montrons que $(x_n)_{n\in\mathbb{N}}$ est de CAUCHY dans $(A,\|\ \|)$. Pour tout $n\in\mathbb{N}^*$, on a $\|x_{n+1}-x_n\|=\|f(x_n)-x_n\|\leqslant k\|x_n-x_{n-1}\|$. Par récurrence, on montre que $\|x_{n+1}-x_n\|\leqslant k^n\|x_1-x_0\|$. Pour q>p, on a

$$||x_q - x_p|| \le ||x_q - x_{q-1}|| + \dots + ||x_{p+1} - x_p|| < (k^{q-1} + \dots + k^p) ||x_1 - x_0|| \le \frac{k^p}{1 - k} ||x_1 - x_0|| \to 0.$$
 (*)

Comme (A, || ||) est complète, la suite $(x_n)_{n \in \mathbb{N}}$ converge. On note a sa limite. Montrons le point 1. En passant à la limite quand $n \to +\infty$ dans $x_{n+1} = f(x_n)$, on obtient a = f(a).

Montrons l'unicité du point fixe. Soient $a, a' \in A$ tels que a = f(a) et a' = f'(a). Alors $||a - a'|| = ||f(a) - f(a')|| \le k ||a - a'||$ avec k < 1, donc a = a'.

On obtient l'estimation d'erreur géométrique (le point 3) en passant à la limite quand $q \to +\infty$ dans (*). \square

CONTRE-EXEMPLE. Sans la complétude de A, c'est faux. On prend A =]0,1[et $f: x \in A \longmapsto x/2 \in A$. Alors f est bien contractante, mais elle n'admet pas de point fixe. Sans la contraction stricte, c'est également faux. On prend $A = \mathbb{R}$ et $f: x \in \mathbb{R} \longmapsto \sqrt{1+x^2}$. Alors f est contractante, mais n'a pas de point fixe.

1.8 Intégrale de RIEMANN

DÉFINITION 1.8.1. Soient $a, b \in \mathbb{R}$ tels que a < b et $(E, \| \|)$ un espace de Banach. Soit $\varphi \in \mathscr{C}^0([a, b], E)$. L'intégrale de RIEMANN $\int_a^b \varphi(t) dt$ est définie comme la limite des sommes

$$\sum_{j=0}^{N-1} (x_{j+1} - x_j) \varphi(x_j),$$

dites de RIEMANN, où $a < x_0 < \cdots < x_N = b$ est une subdivision de [a, b] lorsque son pas

$$k := \max \{x_{i+1} - x_i, 0 \leqslant j \leqslant N - 1\}$$

tend vers 0.

Preuve Justifions que la limite existe. Soit $\varepsilon > 0$. Trouvons $\delta > 0$ tel que, pour toutes subdivisions $a = x_1 < \cdots < x_N = b$ et $a = y_1 < \cdots < y_P = b$ de pas inférieur strictement à δ , on a

$$\left| \sum_{j=0}^{N-1} (x_{j+1} - x_j) \varphi(x_j) - \sum_{k=0}^{P-1} (y_{k+1} - y_k) \varphi(y_j) \right| < \varepsilon.$$

Par le théorème de Heine, la fonction φ est uniformément continue sur [a,b], donc il existe $\delta > 0$ tel que, pour tous $\xi, \eta \in [a,b]$ vérifiant $|\xi - \eta| < \delta$, on ait $||\varphi(\xi) - \varphi(\eta)|| < \varepsilon$.

Soient x et y deux subdivisions de pas inférieur strictement à δ . On note z la subdivision de [a, b] obtenue par la réunion de x et y. On la note $a = z_0 < \cdots < z_Q = b$. En regroupant ensemble les z_k appartenant à une même intervalle $[x_i, x_{i+1}]$, on obtient

$$\left| \sum_{j=0}^{N-1} (x_{j+1} - x_j) \varphi(x_j) - \sum_{k=0}^{Q-1} (z_{k+1} - z_k) \varphi(z_j) \right| \leqslant \varepsilon(b - a).$$

De même, on a

$$\left| \sum_{j=0}^{P-1} (y_{j+1} - y_j) \varphi(y_j) - \sum_{k=0}^{Q-1} (z_{k+1} - z_k) \varphi(z_j) \right| \leqslant \varepsilon(b-a).$$

Finalement, par l'inégalité triangulaire, on obtient la condition de CAUCHY, donc la suite converge.

Chapitre 2

Fonctions de la variable réelle

2.1	Dérivabilité	6	2.5 Fonctions convexes	10
2.2	Théorème spécifique aux fonctions à valeurs réelles	7	2.5.1 Définitions et inégalité des pentes	10
2.3	Fonction à valeurs vectorielles	7	2.5.2 Régularité des fonctions convexes	11
2.4	Dérivabilité et suite/série de fonctions	10	2.5.3 Caractérisation de la convexité	12
			2.5.4 Convexité et optimisation	12
			•	

2.1 Dérivabilité

DÉFINITION 2.1.1. Soient I un intervalle ouvert de \mathbb{R} , (E, || ||) un espace vectoriel normé $f: I \to E$ et $a \in I$. La fonction f est dérivable (respectivement dérivable à gauche ou à droite) en a si les taux d'accroissement

$$\frac{f(x+h) - f(x)}{h}$$

ont une limite dans $(E, \|\ \|)$ quand $h \to 0$, i. e. il existe $L \in E$ tel que $\|f(x+h) - f(x) - hL\| = o_{h\to 0}(h)$ (respectivement quand $h \to 0^+$ ou $h \to 0^-$). On note f'(a) (respectivement $f'_{\rm d}(a)$ ou $f'_{\rm g}(a)$ cette limite).

▷ EXEMPLE. Soit $(x_n)_{n\in\mathbb{N}} \in \ell^2(\mathbb{N}, \mathbb{R})$. Pour tout t > 0, on a $(e^{-nt}x_n)_{n\in\mathbb{N}} \in \ell^2(\mathbb{N}, \mathbb{R})$. Ceci légitime la définition de l'application

$$T: \begin{vmatrix}]0, +\infty[\longrightarrow \ell^2(\mathbb{N}, \mathbb{R}), \\ t \longmapsto T(t) := (e^{-nt}x_n)_{n \in \mathbb{N}}. \end{vmatrix}$$

Montrons que T est dérivable sur $]0,+\infty[$. Soit t>0. Pour $h\in\mathbb{R}$ tel que t+h>0, on a

$$\frac{T(t+h) - T(t)}{h} = \left(\frac{e^{-nh} - 1}{h}e^{-nt}x_n\right)_{n \in \mathbb{N}}.$$

Comme t > 0, il existe $M \in \mathbb{R}$ tel que $|ne^{-nt}| \leq M$ pour tout $n \in \mathbb{N}$, donc $y := (-ne^{-nt}x_n)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N}, \mathbb{R})$. Montrons que les taux d'accroissement convergent vers y quand $h \to 0$ pour $|| \cdot ||_2$. On a

$$\left\| \frac{T(t+h) - T(t)}{h} - y \right\|_{2}^{2} = \sum_{n=0}^{\infty} \left| \left(\frac{e^{-nh} - 1}{h} + n \right) e^{-nt} x_{n} \right|^{2}.$$

L'inégalité de Taylor-Lagrange juste que, pour tout $x \in \mathbb{R}$,

$$|e^x - 1 - x| = \left| \int_0^x (x - t)e^t dt \right| \le \frac{|x|^2}{2}e^{|x|}.$$

On obtient ainsi

$$\left\| \frac{T(t+h) - T(t)}{h} - y \right\|_2^2 \leqslant \sum_{n=0}^{\infty} \left| \frac{1}{h} \frac{n^2 h^2}{2} e^{n|h|} e^{-nt} x_n \right|^2 \leqslant \frac{|h|^2}{4} \sum_{n=0}^{\infty} n^4 e^{-2n(t-|h|)} x_n^2.$$

Pour |h| < t/2, on a alors

$$\left\| \frac{T(t+h) - T(t)}{h} - y \right\|_{2}^{2} \le \frac{|h|^{2}}{4} \sum_{n=0}^{\infty} n^{4} e^{-2nt} |x_{n}|^{2} \xrightarrow[h \to 0]{} 0.$$

Donc elle est bien dérivable.

DÉFINITION 2.1.2. On dit que f est de classe \mathscr{C}^1 sur I si f est dérivable en tout point de I et f' est continue. En itérant, on définit les fonctions $f^{(n)}$ et les classes \mathscr{C}^n .

DÉFINITION 2.1.3. Soient $a, b \in \mathbb{R}$ tels que a < b, $(E, \| \|)$ un espace vectoriel normé et $n \in \mathbb{N}$. Une fonction $f: [a, b] \to E$ est de classe \mathscr{C}^n sur l'intervalle fermé [a, b] si f est la restriction à [a, b] d'une fonction de classe \mathscr{C}^n sur un intervalle ouvert de la forme $|a - \varepsilon, b + \varepsilon|$ avec $\varepsilon > 0$.

PROPRIÉTÉ 2.1.4. La fonction f est de classe \mathscr{C}^n si et seulement si $f \in \mathscr{C}^0([a,b],E) \cap \mathscr{C}^n(]a,b[,E)$ et $f^{(k)}(x)$ admet une limite quand $x \to a^+$ et $x \to b^-$ pour $k \in [1,n]$.

Preuve Le sens direct est évident. Réciproquement, on prolonge la fonction à droite de b par

$$\tilde{f}(x) = f(b) + \sum_{k=1}^{n} \frac{f^{(k)}(b^{-})}{k} (x - b)^{k}$$

et de même à gauche de a.

Propriété 2.1.5. 1. Une fonction de classe \mathscr{C}^1 est dérivable, donc continue.

- 2. Si $f: [a, b] \to \mathbb{R}$ est dérivable et croissante, alors $f' \ge 0$.
- 3. Si $c \in [a, b[$, f est dérivable en c et extrémale en c, alors f'(c) = 0.
- 4. Soient I un intervalle ouvert, $a \in I$, (E, || ||) une algèbre normé et $f, g: I \to E$ dérivables en a. Alors fg est dérivable en a et (fg)'(a) = f'(a)g(a) + f(a)g'(a).

2.2 Théorème spécifique aux fonctions à valeurs réelles

THÉORÈME 2.2.1 (ROLLE). Soient $a, b \in \mathbb{R}$ tels que a < b et $f: [a, b] \to \mathbb{R}$ continue sur [a, b] et dérivable sur [a, b] telle que f(a) = f(b). Alors il existe $c \in [a, b]$ tel que f'(c) = 0.

Preuve Si f est constante, alors tout $c \in]a,b[$ convient. On suppose que f n'est pas constante. Alors $\min_{[a,b]} f$ et $\max_{[a,b]} f$ différent de f(a) = f(b). On peut considérer que $\min_{[a,b]} f \neq f(a)$. Par continuité sur un compact, il existe $c \in [a,b]$ tel que $f(c) = \min_{[a,b]} f$. Alors $c \notin \{a,b\}$ car $f(c) = \min_{[a,b]} f \neq f(a) = f(b)$. On a donc $c \in]a,b[$ et f'(c) = 0.

Contre-exemple. Il faut que la fonction f soit à valeurs réelles. En effet, si on prend $f: t \in [0, 2\pi] \longmapsto e^{it} \in \mathbb{C}$, alors $f(0) = f(2\pi) = 0$ mais il n'existe pas $c \in]0, 2\pi[$ tel que $f'(c) = ie^{it} = 0$.

THÉORÈME 2.2.2 (des accroissements finis). Soient $a, b \in \mathbb{R}$ tel que a < b et $f \in \mathscr{C}^0([a, b], \mathbb{R})$ dérivable sur [a, b[. Alors il existe $c \in [a, b[$ tel que f(b) - f(a) = f'(c)(b - a).

Preuve On pose

$$K = \frac{f(b) - f(a)}{b - a}$$
 et ϕ :
$$\begin{vmatrix} [a, b] \longrightarrow \mathbb{R}, \\ t \longmapsto f(t) - f(a) - K(t - a). \end{vmatrix}$$

Alors ϕ est continue sur [a,b], dérivable sur [a,b] et $\phi(a)=\phi(b)=0$. Le théorème de Rolle donne l'existence de $c\in [a,b]$ tel que $\phi'(c)=0$, i. e. K=f'(c). D'où le théorème.

PROPOSITION 2.2.3 (caractérisation des fonctions monotones). Soient $a, b \in \mathbb{R}$ tels que a < b et $f:]a, b[\to \mathbb{R}$ dérivable.

- 1. La fonction f est croissante si et seulement si sa dérivée f' est positive.
- 2. Si f' > 0, alors la fonction f est strictement croissante.

PROPOSITION 2.2.4 (formule de TAYLOR-LAGRANGE). Soient $a, b \in \mathbb{R}$ tels que $a < b, n \in \mathbb{N}$ et $f \in \mathscr{C}^n([a, b], \mathbb{R})$ qui est n + 1 fois dérivable sur [a, b[. Alors il existe $c \in [a, b[$ tel que

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1}.$$

Preuve On pose

$$K := \frac{(n+1)!}{(b-a)^{n+1}} \left[f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} \right]$$

et

$$\phi : \left| [a, b] \longrightarrow \mathbb{R}, \atop t \longmapsto f(t) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b - a)^{k} - K \frac{f^{(n+1)}(c)}{(n+1)!} (b - a)^{n+1}. \right|$$

Alors ϕ est continue sur [a,b], dérivable sur]a,b[et $\phi(a)=\phi(b)=0$. Le théorème de ROLLE donne l'existence de $c\in]a,b[$ tel que $\phi'(c)=0$. Par récurrence sur $j\in [1,n+1]$, on construit $c_j\in]a,b[$ tel que $\phi^{(j)}(c_j)=0$: on applique le théorème de ROLLE à $\phi^{(j)}$ sur $]a,c_j[$ pour construire c_{j+1} . Alors le réel $c\coloneqq c_{n+1}$ vérifie

$$0 = \phi^{(n+1)}(c) = f^{(n+1)}(c) - K.$$

2.3 Fonction à valeurs vectorielles

PROPOSITION 2.3.1 (inégalité des accroissements finis). Soient $a, b \in \mathbb{R}$ tels que a < b, $(E, \| \|)$ un espace vectoriel normé, $f \in \mathscr{C}^0([a, b], E)$ et $\phi \in \mathscr{C}^0([a, b], \mathbb{R})$ dérivables à droite en tout $t \in]a, b[$ telles que $\|f'_{\mathbf{d}}(t)\| \leq \phi'_{\mathbf{d}}(t)$ pour tout $t \in]a, b[$. Alors $\|f(b) - f(a)\| \leq \phi(b) - \phi(a)$.

Preuve Soit $\varepsilon > 0$. On pose

$$A := \left\{ x \in [a, b], \forall t \in [a, b], \| f(t) - f(a) \| \leqslant \phi(t) - \phi(a) + \varepsilon(t - a) + \varepsilon \right\}.$$

Alors cet ensemble A contient un intervalle de la forme $[a, a + \delta[$ avec $\delta > 0$ par continuité en a des fonctions f et ϕ . De plus, c'est un intervalle [a, m[ou [a, m] où $m := \sup A \in]a, b]$. En fait, on a A = [a, m] par continuité des fonctions f et ϕ . Montrons que m = b.

• Étape 1. Montrons que, si $x \in A \cap]a, b[$, alors il existe $\eta > 0$ tel que $x + \eta \in A$. Soit $x \in A \cap]a, b[$. Par dérivabilité à droite des fonctions f et ϕ en x, il existe $\eta > 0$ tel que, pour tout $t \in [0, \eta]$, on ait

$$|f(x+t) - f(x) - tf'_{\mathbf{d}}(x)| \le \frac{\varepsilon}{2}t$$
 et $\phi(x+t) \ge \phi(x) + t\phi'_{\mathbf{d}}(x) - \frac{\varepsilon}{2}t$.

Alors pour $t \in [0, \eta]$, comme $x \in A$, on a

$$\begin{split} \|f(x+t) - f(a)\| &\leq \|f(a+t) - f(x)\| + \|f(x) - f(a)\| \\ &\leq t \|f_{\mathrm{d}}'(x)\| + \frac{\varepsilon}{2}t + \phi(x) - \phi(a) + \varepsilon(x-a) + \varepsilon \\ &\leq t \phi_{\mathrm{d}}'(x) + \phi(x) - \phi(a) + \varepsilon \left(x + \frac{t}{2} - a\right) + \varepsilon \\ &\leq \phi(x+t) - \phi(x) + \frac{\varepsilon}{2}t + \phi(x) - \phi(a) + \varepsilon \left(x + \frac{t}{2} - a\right) + \varepsilon \\ &\leq \phi(x+t) - \phi(a) + \varepsilon(x+t-a) + \varepsilon. \end{split}$$

Donc $x + \eta \in A$.

• Étape 2. On conclut. Par l'étape 1, on a montré que $m = b \in A$. En particulier, on a

$$||f(t) - f(a)|| \le \phi(b) - \phi(a) + \varepsilon(b - a) + \varepsilon$$

qui est vrai pour tout $\varepsilon > 0$. On en déduit le résultat en faisant $\varepsilon \to 0$.

COROLLAIRE 2.3.2. Soient $a, b \in \mathbb{R}$ tels que a < b, $(F, \| \|)$ un espace de BANACH et $\phi \in \mathscr{C}^0([a, b], F)$ de classe \mathscr{C}^1 par morceaux. Alors

$$\varphi(a) - \varphi(b) = \int_{a}^{b} \varphi'(t) dt.$$

Preuve Il suffit de le montrer pour une fonction ϕ de classe \mathscr{C}^1 sur [a,b]. S'il est n'est pas de classe \mathscr{C}^1 , on prend une subdivision. Soit $\varphi \in \mathscr{C}^1([a,b],F)$. Soit $\varepsilon > 0$. Comme φ' est continue sur [a,b], le théorème de Heine donne l'existence de $\delta > 0$ tel que

$$\forall x, y \in [a, b], \quad |x - y| < \delta \implies \|\varphi'(x) - \varphi'(y)\| < \varepsilon.$$

Soit $a = x_0 < \cdots < x_N = b$ une subdivision de [a, b]. On a

$$\left\| \varphi(b) - \varphi(a) - \sum_{j=0}^{N-1} (x_{j+1} - x_j) \varphi'(x_j) \right\| \leqslant \sum_{j=0}^{N-1} \left\| \varphi(x_{j+1}) - \varphi(x_j) - (x_{j+1} - x_j) \varphi'(x_j) \right\|.$$

Pour $j \in [0, N-1]$, on pose

$$f: \begin{vmatrix} [x_j, x_{j+1}] \longrightarrow F, \\ t \longmapsto \varphi(t) - (t - x_j)\varphi'(x_j) \end{vmatrix} \text{ et } \psi: \begin{vmatrix} [x_j, x_{j+1}] \longrightarrow \mathbb{R}, \\ t \longmapsto \varepsilon(t - x_j). \end{vmatrix}$$

Ces fonctions sont continues sur $[x_j, x_{j+1}]$ et dérivables sur $]x_j, x_{j+1}[$ et elles vérifient $||f'(t)|| = ||\varphi'(t) - \varphi(x_j)|| \le \varepsilon = \psi'(t)$ pour $t \in [x_j, x_{j+1}]$. L'inégalité des accroissements finis donne alors $||f(x_{j+1}) - f(x_j)|| \le \varepsilon (x_{j+1} - x_j)$. On obtient alors

$$\|\varphi(b) - \varphi(a) - \sum_{j=0}^{N-1} (x_{j+1} - x_j)\varphi'(x_j)\| \le \varepsilon \sum_{j=0}^{n-1} (x_{j+1} - x_j) = \varepsilon(b - a).$$

On passe à la limite sur la pas de la subdivision : on obtient

$$\left\| \varphi(b) - \varphi(a) - \int_a^b \varphi'(t) dt \right\| \leqslant \varepsilon(b - a).$$

Ceci étant vrai pour tout $\varepsilon > 0$, en faisant $\varepsilon \to 0$, on conclut.

PROPOSITION 2.3.3 (formule de TAYLOR-YOUNG). Soient I un intervalle ouvert de \mathbb{R} , $a \in I$, $n \in \mathbb{N}$, (F, || ||) un espace vectoriel normé, $f \in \mathscr{C}^n(I, F)$ qui est n + 1 fois dérivable en a. Alors

$$\left\| f(a+h) - \sum_{k=0}^{n+1} f^{(k)}(a) \frac{h^k}{k!} \right\| = o_{h\to 0}(h^{n+1}).$$
 (*)

♦ REMARQUE. Une fonction de classe \mathscr{C}^{n+1} qui est n+1 fois dérivable en $a \in I$ admet donc un développement limité à l'ordre n+1 en a. La réciproque est fausse. En effet, on pose $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} e^{-1/x^2} \sin e^{-1/x^2} & \text{si } x \neq 0, \\ 0 & \text{sinon.} \end{cases}$$

Alors pour tout $n \in \mathbb{N}$, on a $f(x) = o(x^n)$, donc cet fonction admet un développement limité à l'ordre n. De plus, elle est dérivable en 0 et f'(0) = 0, mais elle n'est pas de classe \mathscr{C}^1 car, pour $x \neq 0$, on a $f'(x) \nrightarrow 0$ quand $x \to 0$.

Preuve On montre la proposition par récurrence sur $n \in \mathbb{N}$. Pour $n \in \mathbb{N}$, on pose H(n) la propriété :

Si $f \in \mathcal{C}^n(I, F)$ est n + 1 fois dérivable en a, alors (*).

Pour n=0, c'est la définition de la dérivabilité de f en a. Soit $n\geqslant 1$. On suppose $\mathrm{H}(n-1)$. Soit $f\in\mathscr{C}^n(I,F)$. On applique la propriété $\mathrm{H}(n-1)$ à la fonction f': il existe $h_0>0$ tel que

$$\forall h \in [-h_0, h_0], \quad \left\| f'(a+h) - \sum_{k=0}^n f^{(k+1)}(a) \frac{h^k}{k!} \right\| \le \varepsilon |h|^n.$$

Soit $h \in [-h_0, h_0]$. Pour simplifier, on suppose que h > 0. On pose

$$G: \begin{vmatrix} [a, a+h] \longrightarrow F, \\ t \longmapsto f(t) - \sum_{k=0}^{n+1} f^{(k)}(a) \frac{h^k}{k!} & \text{et} \quad \phi : \\ t \longmapsto \varepsilon \frac{(t-a)^{n+1}}{n+1}. \end{vmatrix}$$

Alors ces fonctions vérifient l'inégalité des accroissements finis, donc $||G(a+h) - G(a)|| \le \phi(a+h) - \phi(a)$. On en conclut la propriété H(n).

PROPOSITION 2.3.4 (formule de TAYLOR avec reste intégral). Soient $a, b \in \mathbb{R}$ tels que $a < b, n \in \mathbb{N}$, (E, || ||) un espace de BANACH et $f \in \mathscr{C}^{n+1}([a,b],F)$. Alors

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt.$$

Preuve Par récurrence sur $n \in \mathbb{N}$.

APPLICATION. Soit $f \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ telle que f(0) = 0. On pose

$$g: \begin{vmatrix} \mathbb{R} \longrightarrow \mathbb{R}, \\ x \longmapsto \begin{cases} f(x)/x & \text{si } x \neq 0, \\ 0 & \text{sinon.} \end{cases}$$

Alors la fonction g est de classe \mathscr{C}^{∞} . Pour montrer cela, on utilise le fait que $f(x)/x = \int_0^1 f(xt) dt$ et on applique le théorème de dérivation sous l'intégrale.

PROPOSITION 2.3.5. Soient $a, b \in \mathbb{R}$ tels que a, b, (E, || ||) un espace vectoriel normé et $f \in \mathscr{C}^0([a, b], E)$ dérivable sur]a, b[. Si f'(x) admet une limite L quand $x \to a^+$ (resp. $x \to a^-$), alors f est dérivable à droite en a et $f'_d(a) = \lim_{x \to a^+} f'(x)$ (resp. dérivable à gauche en a).

Preuve Soit $\varepsilon > 0$. Par hypothèse, il existe $h_0 > 0$ tel que, pour tout $h \in [0, h_0]$, on ait $||f(a+h) - L|| < \varepsilon$. Soit $h \in [0, h_0]$. On applique l'inégalité des accroissements finis à la fonction

$$G: \begin{vmatrix} [a, a+h] \longrightarrow \mathbb{R}, \\ t \longmapsto f(t) - L(t-a) \end{vmatrix} \text{ et } \phi: \begin{vmatrix} [a, a+h] \longrightarrow \mathbb{R}, \\ t \longmapsto \varepsilon(t-a). \end{vmatrix}$$

Ces fonctions vérifient les hypothèses de l'inégalité des accroissements finis, donc

$$||f(a+h) - f(a) - Lh|| = ||G(a+h) - G(a)|| \le \phi(a+h) - \phi(a) = \varepsilon h.$$

Ainsi, on a

$$\left\| \frac{f(a+h) - f(a)}{h} - L \right\| \leqslant \varepsilon.$$

Fonctions de la variable réelle - Chapitre 2

2.4 Dérivabilité et suite/série de fonctions

PROPOSITION 2.4.1. Soient $a, b \in \mathbb{R}$ tels que a < b, (E, || ||) un espace de BANACH et $(f_n)_{n \in \mathbb{N}}$ une suite de $\mathscr{C}^1([a, b], E)$. Si

- il existe $x_0 \in]a,b[$ tel que la suite $(f_n(x_0))_{n\in\mathbb{N}}$ converge dans $(E,\|\ \|),$
- la suite $(f_n(x))_{n\in\mathbb{N}}$ converge dans (E, || ||), vers g(x), uniformément par rapport à $x \in]a, b[$, alors
- la suite $(f_n(x))_{n\in\mathbb{N}}$ converge dans $(E, \| \|)$ uniformément par rapport à $x \in]a, b[$ vers f(x),
- la fonction f est de classe \mathscr{C}^1 sur [a, b].

Preuve Notons

$$\alpha := \lim_{n \to +\infty} f_n(x_0) \in E$$
 et $f : \begin{vmatrix}]a, b[\longrightarrow E, \\ x \longmapsto \alpha + \int_{x_0}^x g(t) dt. \end{vmatrix}$

La fonction f est continue sur [a,b] car elle est limite uniforme d'une suite de fonctions continues, donc la fonction f est de classe \mathscr{C}^1 sur]a,b[. Soit $\varepsilon>0$. Il existe $n_0\in\mathbb{N}$ tel que, pour tout $n\geqslant n_0$, on ait

$$||f_n(x_0) - \alpha|| < \frac{\varepsilon}{2}$$
 et $||f'_n - g||_{\infty} < \frac{\varepsilon}{2}(b - a)$.

Pour tous $n \ge n_0$ et $x \in [a, b[$, on a

$$(f_n - f)(x) = f_n(x_0) - \alpha + \int_{x_0}^x (f'_n - g)(t) dt,$$

donc

$$||(f_n - f)(x)|| \le ||f_n(x_0) - \alpha|| + \int_{x_0}^x ||(f'_n - g)(t)|| \, \mathrm{d}t \le \frac{\varepsilon}{2} + (b - a) \frac{\varepsilon}{2(b - a)} \le \varepsilon.$$

♦ REMARQUE. La convergence uniforme de la suite $(f_n)_{n\in\mathbb{N}}$ vers la fonction f ne préserve pas la régularité \mathscr{C}^1 . En effet, il suffit de prendre $(f_n)_{n\in\mathbb{N}}$ définie par $f_n(x) = \sqrt{x^2 + 1/n}$. Alors les fonctions f_n sont de classe \mathscr{C}^{∞} et $||f_n - f||_{\infty} = 1/\sqrt{n} \to 0$, donc la suite $(f_n)_{n\in\mathbb{N}}$ converge vers la fonction || qui n'est pas de classe \mathscr{C}^1 .

2.5 Fonctions convexes

2.5.1 Définitions et inégalité des pentes

DÉFINITION 2.5.1. Soit I un intervalle de \mathbb{R} . Une fonction $f: I \to \mathbb{R}$ est convexe si

$$\forall x, y \in I, \ \forall \lambda \in [0, 1[, f((1 - \lambda)x + \lambda y) \leq \lambda f(x) + (1 - \lambda)f(y)].$$

Une fonction $f: I \to \mathbb{R}$ est strictement convexe si

$$\forall x, y \in I, \ \forall \lambda \in]0,1[, \quad f((1-\lambda)x + \lambda y) < \lambda f(x) + (1-\lambda)f(y).$$

- \triangleright EXEMPLES. Les applications affines sont convexes mais pas strictement convexe. La fonction $x \mapsto x^2$ est strictement convexe sur \mathbb{R} .
- ♦ REMARQUE. Par récurrence sur $n \ge 2$, on en déduit qu'une fonction $f: I \to \mathbb{R}$ est convexe si et seulement si $\forall x_1, \ldots, x_n \in I, \ \forall \lambda_1, \ldots, \lambda_n \in]0, 1[, \lambda_1 + \cdots + \lambda_n = 1 \implies f(\lambda_1 x_1 + \cdots + \lambda_n x_n) \le \lambda_1 f(x_1) + \cdots + \lambda_n f(x_n).$

Proposition 2.5.2 (inégalité des pentes). Soit $f: I \to \mathbb{R}$ convexe. Si $x, y, z \in I$ vérifient x < y < z, alors

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(x)}{z - x} \leqslant \frac{f(z) - f(y)}{z - y}.$$

Preuve On peut écrire y sous la forme de la combinaison convexe

$$y = \frac{z - y}{z - x}x + \frac{y - x}{z - x}z.$$

Par convexité de f, on a

$$f(y) \leqslant \frac{z-y}{z-x}f(x) + \frac{y-x}{z-x}f(z).$$

Montrons la première inégalité. On a alors

$$f(y) - f(x) \le \left(\frac{z - y}{z - x} - \frac{z - x}{z - x}\right) f(x) + \frac{y - x}{z - x} f(z) = \frac{y - x}{z - x} [f(z) - f(x)].$$

D'où la première inégalité. Montrons la seconde. On a alors

$$-\frac{z-y}{z-x}f(x) \leqslant -f(y) + \frac{y-x}{z-x}f(z),$$

donc

$$\frac{z-y}{z-x}[f(z)-f(x)] \leqslant \left[\frac{y-x}{z-x} + \frac{z-y}{z-x}\right]f(z) - f(y) = f(z) - f(y).$$

D'où la seconde inégalité.

 \diamond Remarque. Si f est strictement convexe, alors les inégalités sont strictes.

2.5.2 Régularité des fonctions convexes

PROPOSITION 2.5.3. Soient I un intervalle ouvert de \mathbb{R} et $f: I \to \mathbb{R}$ convexe. Alors

1. la fonction f est localement lipschitzienne, i. e. pour tous $a, b \in I$ tels que a < b, il existe L > 0 tel que

$$\forall x, y \in [a, b], \quad |f(x) - f(y)| < L |x - y|.$$

En particulier, elle est continue sur I;

- 2. la fonction f admet une dérivée à gauche $f'_{\mathbf{g}}(x)$ et à droite $f'_{\mathbf{d}}(x)$ en tout point $x \in I$;
- 3. pour tous $x, y \in I$ tel que x < y, on a $f'_{g}(x) \leqslant f'_{d}(x) \leqslant f'_{d}(y) \leqslant f'_{d}(y)$ et l'inégalité du milieu est stricte si la fonction f est strictement convexe;
- 4. l'ensemble D des points $x \in I$ où la fonction f n'est pas dérivable est fini ou dénombrable et la fonction f' est continue sur $I \setminus D$.

Preuve 1. Soient $a, b, a', b' \in I$ tels que a' < a < b < b'. Soient $x, y \in [a, b]$. En appliquant l'inégalité des trois pentes aux points (a', a, x), (a, x, y), (x, y, b) et (y, b, b'), on obtient en particulier

$$\frac{f(a) - f(a')}{a - a'} \leqslant \frac{f(y) - f(x)}{y - x} \leqslant \frac{f(b') - f(b)}{b - b'},$$

donc

$$\left|\frac{f(y)-f(x)}{y-x}\right|\leqslant L\coloneqq \max\left\{\left|\frac{f(a)-f(a')}{a-a'}\right|, \left|\frac{f(b)-f(b')}{b-b'}\right|\right\}.$$

2. Soient $x, x' \in I$ tels que x < x'. Pour $0 < t_1 < t_2$, on a

$$\frac{f(x) - f(x - t_2)}{t_2} \leqslant \frac{f(x) - f(x - t_1)}{t_1} \leqslant \frac{f(x') - f(x)}{x' - x}.$$

Les taux d'accroissements [f(x) - f(x-t)]/t croissent quand t décroît vers 0 et sont majorés, donc ils admettent une limite. Donc la fonction f admet une dérivée à gauche et à droite en x.

3. Soient $x, y \in I$ tels que x < y. Pour $h \in I$ assez petit, les réels x - h et y - h sont dans I et ils vérifient l'inégalité x + h < y - h, donc

$$\frac{f(x) - f(x-h)}{h} \leqslant \frac{f(x+h) - f(x)}{h} \leqslant \frac{f(y) - f(y-h)}{h} \leqslant \frac{f(y+h) - f(y)}{h}.$$

En passant à la limite quand $h \to 0$, on montre l'inégalité.

On suppose que f est strictement convexe. Soient $z, z', z'' \in I$ tels que x + h < z < z' < z'' < y - h. On a

$$\frac{f(x+h) - f(x)}{h} \leqslant \frac{f(z') - f(z)}{z' - z} < \frac{f(z'') - f(z')}{z'' - z} \leqslant \frac{f(y) - f(y-h)}{h}.$$

En passant à la limite quand $h \to 0$, on obtient l'inégalité stricte.

4. En fait, on a $D = \{x \in I, f'_{\rm g}(x) < f'_{\rm d}(x)\} \subset \tilde{D}$ où l'ensemble \tilde{D} est l'ensemble des points de discontinuité de la fonction monotone $f'_{\rm g}$ qui est fini ou dénombrable. En effet, pour tout $x \in \tilde{D}$, on a $f'_{\rm g}(x^-) < f'_{\rm g}(x^+)$, donc il existe $q_x \in \mathbb{Q} \cup [f'_{\rm g}(x^-), f'_{\rm g}(x^+)]$. Alors l'application

$$\sigma \colon \begin{vmatrix} \tilde{D} \longrightarrow \mathbb{Q}, \\ x \longmapsto q_x \end{vmatrix}$$

est injective car, si x < y, alors $f'_{\rm g}(x^-) < q_x < f'_{\rm g}(x^+) < f'_{\rm g}(y^-) < q_y < f'_{\rm g}(y^+)$, donc $\sigma(x) < \sigma(y)$. Or $\mathbb Q$ est dénombrable, donc \tilde{D} l'est, donc D l'est.

- \diamond Remarques. 1. La fonction $x \mapsto x^2$ est convexe sur \mathbb{R} mais pas globalement lipschitzienne, elle est seulement localement lipschitzienne.
 - 2. Si $f: [a,b] \to \mathbb{R}$ est convexe, alors elle est continue sur [a,b] mais pas forcément sur [a,b].

2.5.3 Caractérisation de la convexité

PROPOSITION 2.5.4. Soient $a, b \in \mathbb{R}$ tels que a < b et $f: [a, b] \to \mathbb{R}$.

- 1. Si f est dérivable sur [a, b[, alors les propositions suivantes sont équivalentes :
- (a) la fonction f est convexe;
- (b) la fonction f' est croissante;
- (c) la courbe de f est au-dessus de ses tangentes, i. e.

$$\forall x, y \in [a, b[, f(y) \geqslant f(x) + f'(x)(y - x). \tag{*}$$

- 2. Si f est deux fois dérivables sur a, b, alors les propositions suivantes sont équivalentes :
- (a) la fonction f est convexe;
- (b) la fonction f'' est positive sur]a, b[.
- 3. Si f est deux fois dérivable et f'' est strictement positive, alors f est strictement convexe.

Preuve Montrons uniquement le premier point. Si f est convexe, alors $f' = f'_g$ est croissante.

Supposons (b) et montrons (c). Soient $x, y \in]a, b[$. Dans un premier cas, on suppose que $y \in]x, b[$. La fonction f est continue sur [x, y] et dérivable sur]x, y[, donc le théorème des accroissements finis donne l'existence de $c \in]x, y[$ tel que

$$\frac{f(y) - f(x)}{y - x} = f'(c) \geqslant f'(x), \quad \text{donc} \quad f(y) \geqslant f(x) + f'(x)(y - x).$$

Dans un second cas, on suppose que $y \in]a, x[$. De même, il existe $c \in]y, x[$ tel que

$$\frac{f(y) - f(x)}{y - x} = f'(c) \leqslant f'(x), \quad \text{donc} \quad f(y) \geqslant f(x) + f'(x)(y - x).$$

Supposons (c) et montrons (a). Soient $x, y \in]a, b[$ et $\lambda \in [0, 1]$. En appliquant la relation (*), on obtient

$$f(x) \ge f(\lambda x + (1 - \lambda)y) + [x - (\lambda x + (1 - \lambda)x)]f'(\lambda x + (1 - \lambda)y)$$

= $f(\lambda x + (1 - \lambda)y) + (1 - \lambda)(x - y)f'(\lambda x + (1 - \lambda)y)$

et

$$f(y) \geqslant f(\lambda x + (1 - \lambda)y) + [y - (\lambda x + (1 - \lambda)x)]f'(\lambda x + (1 - \lambda)y)$$

= $f(\lambda x + (1 - \lambda)y) + \lambda(x - y)f'(\lambda x + (1 - \lambda)x).$

En multipliant par λ la première inégalité, par $1-\lambda$ la seconde et en les sommants, on obtient

$$\lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y).$$

- ▶ Exemple (inégalités de convexité). L'inégalité de HÖLDER se déduit à partir de la convexité de − ln.
- Pour $x \in [0, \pi/2]$, on a $\sin x \ge 2/\pi \times x$.

2.5.4 Convexité et optimisation

PROPOSITION 2.5.5. Soient $a, b \in \mathbb{R}$ tels que a < b et $f: [a, b] \to \mathbb{R}$.

- 1. Si f est convexe et dérivable sur a, b et $c \in a, b$, alors les propositions suivant sont équivalentes :
- (a) c est un minimum, i. e. $f(c) = \min_{[a,b[} f;$
- (b) c est un point critique, i. e. f'(c) = 0.
- 2. Si f est strictement convexe sur [a, b[, alors elle admet au plus un minimum sur [a, b[,

Preuve 1. Si c est minimum, alors c est un point critique (vrai même sans convexité). Réciproquement, si c est un point critiques, alors $f(x) \ge f(c) + f'(c)(x-a) = f(c)$ pour tout $x \in]a,b[$, donc c est un minimum.

2. On suppose que f est strictement convexe sur]a,b[. Soient $x_1,x_2 \in]a,b[$ tels que $f(x_1)=f(x_2)=\min_{]a,b[}f.$ Si $x_1 \neq x_2$, alors la stricte convexité de f donne

$$f\left(\frac{x_1+x_2}{2}\right) < \frac{1}{2}f(x_1) + \frac{1}{2}f(x_2) = \min_{|a|b|} f$$

ce qui est impossible.

Chapitre 3

Applications linéaires entre espaces vectoriels normés

3.1 Norme subordonnée

PROPOSITION 3.1.1. Soient $(E, || ||_E)$ et $(F, || ||_F)$ deux espaces vectoriels normés et $f: E \to F$ linéaire. Alors les propositions suivantes sont équivalentes :

- 1. la fonction f est continue;
- 2. la fonction f est continue en 0;
- 3. il existe M > 0, appelé réel de continuité, tel que $||f(x)||_F \le M ||x||_E$ pour tout $x \in E$. En particulier, si E est de dimension finie, alors toute application linéaire sur E est continue.

Preuve L'implication $1 \Rightarrow 2$ est triviale. On suppose 2. Montrons 3. Il existe r > 0 tel que

$$\forall x \in \overline{B}_E(0,r), \quad ||f(x)||_F = ||f(x) - f(0)|| \le 1.$$

Pour $x \in E \setminus \{0\}$, on a

$$||f(x)||_F = \left\| \frac{||x||_E}{r} f\left(\frac{rx}{||x||_E}\right) \right\|_F \leqslant \frac{||x||_E}{r},$$

donc M = 1/r convient.

On suppose 3. Montrons 1. Soit $x \in E$. Pour $h \in E$, on a

$$\left\|f(x+h)-f(x)\right\|_F=\left\|f(x)\right\|_F\leqslant M\left\|h\right\|_E\to 0$$

quand $||h||_E \to 0$. On peut supposer que $E = \mathbb{R}^n$. Soit $f \colon \mathbb{R}^n \to F$ linéaire. Montrons qu'il existe un réel de continuité M. Pour $x = \sum_{j=1}^n x_j e_j$ où (e_1, \dots, e_n) est une base de \mathbb{R}^n , on a

$$||f(x)||_F = \left\| \sum_{j=1}^n x_j f(e_j) \right\| \leqslant \sum_{j=1}^n |x_j| \, ||f(e_j)|| \leqslant C \, ||x||_1 \leqslant CC' \, ||x||_E$$

où $C \coloneqq \max_{1 \leqslant j \leqslant n} \|f(e_j)\|_F$ et C' > 0 est tel que $\| \ \|_1 \leqslant C' \| \ \|_E$.

Contre-exemple. Donnons un exemple d'application linéaire sur un espace de dimension infinie qui n'est pas continue. Soit $E = \mathbb{R}[X] = \mathbb{R}^{(\mathbb{N})}$ muni de $\| \cdot \|_{\infty}$. On pose

$$f: \begin{vmatrix} E \longrightarrow E, \\ (x_n)_{n \in \mathbb{N}} \longmapsto (nx_n)_{n \in \mathbb{N}}. \end{vmatrix}$$

Alors l'application f est linéaire mais pas continue car, si on note $e_n \coloneqq (0, \dots, 0, 1, 0, \dots)$, on a

$$\frac{\|f(e_n)\|_{\infty}}{\|e_n\|_{\infty}} = n \longrightarrow +\infty.$$

ightharpoonup Exemples. 1. On munit $\mathscr{C}^0([0,1],\mathbb{R})$ de $\|\ \|_{\infty}$. On considère l'application linéaire

$$L : \left| \mathcal{C}^{0}([0,1], \mathbb{R}) \longrightarrow \mathbb{R}, \right.$$

$$f \longmapsto \int_{0}^{1} (1 - 2t) f(t) \, \mathrm{d}t.$$

Montrons qu'elle est continue, i. e. il existe un réel de continuité. Soit $f \in \mathscr{C}^0([0,1],\mathbb{R})$. On a

$$|L(f)| \le M ||f||_{\infty}$$
 avec $M := \int_0^1 |1 - 2t| dt$.

2. On pose l'application linéaire

$$F: \begin{vmatrix} \mathscr{C}^0([0,2\pi],\mathbb{R}) \longrightarrow \ell^{\infty}(\mathbb{N},\mathbb{C}), \\ f \longmapsto (c_n(f))_{n \in \mathbb{N}} \end{vmatrix} \text{ avec } c_n(f) \coloneqq \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} dt, \quad n \in \mathbb{N}.$$

On munit $\mathscr{C}^0([0,2\pi],\mathbb{R})$ de $\| \|_1$ et $\ell^{\infty}(\mathbb{N},\mathbb{C})$ de $\| \|_{\infty}$. Montrons qu'elle est continue. Soit $f \in \mathscr{C}^0([0,2\pi],\mathbb{R})$. Pour tout $n \in \mathbb{N}$, on a $|c_n(f)| \leq M \|f\|_1$ avec $M := 1/2\pi$. Donc la fonction F est bien à valeurs dans $\ell^{\infty}(\mathbb{N},\mathbb{C})$ et $\|F(f)\|_{\infty} \leq M \|f\|_1$ pour tout $f \in \mathscr{C}^0([0,2\pi],\mathbb{R})$, donc elle est continue

DÉFINITION 3.1.2. Soient $(E, \| \|_E)$ et $(F, \| \|_F)$ deux espaces vectoriels normés. On note $\mathcal{L}(E, F)$ (resp. $\mathcal{L}_{c}(E, F)$) l'ensemble des applications linéaires de E dans F (resp. continue).

PROPOSITION 3.1.3. Soient $(E, || ||_E)$ et $(F, || ||_F)$ deux espaces vectoriels normés. Alors

1. si $f \in \mathcal{L}_{c}(E, F)$, alors les quatre réels suivants sont égaux :

$$\begin{split} \sup \left\{ \| f(x) \|_F \, , x \in E, \| x \|_E \leqslant 1 \right\}, & \sup \left\{ \| f(x) \|_F, x \in E, \| x \|_E = 1 \right\}, \\ \inf \left\{ M > 0, \forall x \in E, \| f(x) \|_E \leqslant M \, \| x \|_E \right\}, & \sup \left\{ \frac{\| f(x) \|_F}{\| x \|_E}, x \in E \setminus \{0\} \right\}. \end{split}$$

On note alors $||f||_{\mathscr{L}_{c}(E,F)}$ leur valeur commune.

- 2. le couple $(\mathscr{L}_{c}(E,F), \| \|_{\mathscr{L}_{c}(E,F)})$ est un espace normé;
- 3. si $(F, \| \|_F)$ est un espace de Banach, alors $(\mathscr{L}_{c}(E, F), \| \|_{\mathscr{L}_{c}(E, F)})$ est une algèbre de Banach;
- 4. si $f: E \to F$ et $g: F \to G$ sont linéaires, alors $||g \circ f||_{\mathscr{L}_{c}(E,G)} \leq ||g||_{\mathscr{L}_{c}(F,G)} ||f||_{\mathscr{L}_{c}(E,F)}$

Preuve Montrons uniquement le point 3. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de CAUCHY dans $\mathcal{L}_{c}(E,F)$. Pour tout $n\in\mathbb{N}$, l'application $f_n\colon E\to F$ est linéaire et continue. De plus, pour tout $\varepsilon>0$, il existe $n_0\in\mathbb{N}$ tel que

$$\forall p, q \geqslant n_0, \quad \|f_p - f_q\|_{\mathscr{L}_{\sigma}(E, F)} \leqslant \varepsilon, \quad i. \ e. \quad \forall x \in E, \quad \|f_p(x) - f_q(x)\|_E \leqslant \varepsilon \|x\|_E. \tag{*}$$

- Étape 1. On fait une convergence ponctuelle. Soit $x \in E \setminus \{0\}$. La suite $(f_n(x))_{n \in \mathbb{N}}$ est de CAUCHY dans $(F, \| \|)$ grâce à la relation précédente (*). Comme $(F, \| \|)$ est complet, cette suite converge : on note g(x) sa limite. On a construit une application $g: E \to F$ linéaire comme limite simple d'une suite de fonctions linéaires.
- Étape 2. Montrons que g est continue et que $\|g f_n\|_{\mathscr{L}_c(E,F)} \to 0$. Soient $\varepsilon > 0$, $n_0 \in \mathbb{N}$ comme dans (*) et $p \geqslant n_0$. Soit $x \in E$. Pour tout $q \in \mathbb{N}$ tel que $q \geqslant p$, on a $\|f_p(x) f_q(x)\|_F \leqslant \varepsilon \|x\|_F$, donc $\|f_p(x) g(x)\|_F \leqslant \varepsilon \|x\|_E$ en faisant $q \to +\infty$, donc la fonction $f_p g$ est continue et $\|f_p g\|_{\mathscr{L}_c(E,F)} \leqslant \varepsilon$. En particulier, la fonction $g = (g f_n) + f_n$ est continue et $\|g f_n\|_{\mathscr{L}_c(E,F)} \to 0$.

COROLLAIRE 3.1.4. Si E est un espace de BANACH, alors le groupe des isomorphismes bicontinus, i. e. continus de réciproque continue, de E, noté $\mathscr{G}_{c}(E)$, est un ouvert de $(\mathscr{L}_{c}(E), || ||_{\mathscr{L}_{c}(E)})$.

3.2 Généralisation aux applications multilinéaires

PROPOSITION 3.2.1. Soient $(E_1, || ||_{E_1}, ..., (E_n, || ||_{E_n})$ des espaces vectoriels normés. On munit $E := E_1 \times \cdots \times E_n$ de la norme $|| ||_E$ définie par

$$\|(x_1,\ldots,x_n)\|_E \coloneqq \max_{1 \le j \le n} \|x_j\|_{E_j}$$
.

Alors les propositions suivantes sont équivalentes :

- 1. la fonction f est continue,
- 2. la fonction f est continue en 0,
- 3. il existe M > 0 tel que, pour tout $(x_1, \dots, x_n) \in E$, on ait $||f(x_1, \dots, x_n)||_F \leqslant M ||x_1||_{E_1} \cdots ||x_n||_{E_n}$.
- Si les espaces E_j sont de dimension finie, toute application n-linéaire sur $E_1 \times \cdots \times E_n$ est continue.

Preuve Si f est continue, alors f l'est en 0. On suppose que f est continue en 0. Il existe $\delta > 0$ tel que, pour tout $x \in E$, on ait $\|x\|_E < \delta \Rightarrow \|f(x)\|_F \leqslant 1$. Pour $x = (x_1, \dots, x_n) \in (E_1 \setminus \{0\}) \times \dots \times (E_n \setminus \{0\})$, on a

$$||f(x)||_F = ||x_1||_{E_1} \cdots ||x_n||_{E_n} \left| |f\left(\frac{x_1}{||x_1||_{E_1}}, \dots, \frac{x_n}{||x_1||_{E_n}}\right) \right||_F \leqslant \delta^n \prod_{j=1}^n ||x_j||_{E_j}.$$

On suppose qu'il existe un tel réel de continuité M > 0. On montre le résultat pour n = 2. Soit $x = (x_1, x_2) \in E$. Pour $h = (h_1, h_2) \in E$, on a

$$\begin{split} \|f(x_1+h_2,x_2+h_2)-f(x_1,x_2)\|_F &= \|f(x_1,h_2)+f(h_1,x_2)+f(h_1,h_2)\|_F \\ &\leqslant M(\|x_1\|_{E_1}\|h_2\|_{E_2}+\|h_1\|_{E_1}\|x_2\|_{E_2}+\|h_1\|_{E_1}\|h_1\|_{E_2}) \\ &\leqslant M\|h\|_E \left[2\|x\|_E+\|h\|_E\right] \xrightarrow[\|h\|_E \to 0]{} 0. \end{split}$$

NOTATION. On note $\mathcal{L}_c(E_1,\ldots,E_n;F)$ l'ensemble des applications n-linéaires et continues de $E_1\times\cdots\times E_n$ dans F. On le muni de la norme définie par

$$||f||_{\mathcal{L}_{c}(E_{1},\ldots,E_{n};F)} = \inf\left\{M > 0, \forall x \coloneqq (x_{1},\ldots,x_{n}) \in E_{1} \times \cdots \times E_{n}, ||f(x)||_{F} \leqslant M ||x_{1}||_{E_{1}} \cdots ||x_{n}||_{E_{n}}\right\}.$$

Si l'espace $(F, || ||_F)$ est de BANACH, alors $(\mathcal{L}_c(E_1, \dots, E_n; F), || ||_{\mathcal{L}_c(E_1, \dots, E_n; F)})$ l'est également.

3.2. GÉNÉRALISATION AUX APPLICATIONS MULTILINÉAIRES

 \triangleright EXEMPLE. Soit $A \in \mathscr{M}_n(\mathbb{R})$. On pose

$$B: \begin{vmatrix} \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}, \\ (X, Y) \longmapsto {}^{\mathrm{t}} X A Y. \end{vmatrix}$$

 $B\colon \begin{vmatrix} \mathbb{R}^n\times\mathbb{R}^n \longrightarrow \mathbb{R}, \\ (X,Y) \longmapsto {}^{\mathrm{t}} XAY. \end{vmatrix}$ Alors l'application B est bilinéaire et continue et on montre que $\|B\|_{\mathscr{L}_{\mathrm{c}}(\mathbb{R}^n,\mathbb{R}^n;\mathbb{R})} = \sup{\{|\lambda|,\lambda\in\operatorname{Sp} A\}}.$

Chapitre 4

Différentielle

4.1 Différentiabilité		16	4.1.7 Différentiabilité et suite/série de fonctions	21
4.1.1	Définition	16	4.2 Différentielles partielles	22
4.1.2	Exemples	17	4.2.1 Différentielles partielles d'ordre 1	22
4.1.3	Propriétés	18	4.2.2 Différentielles partielles d'ordre 2	23
4.1.4	Théorème des fonctions composées	19	4.3 Différentielle seconde	25
4.1.5	Différentielle et inversion	20	4.4 Formules de Taylor	26
4.1.6	Inégalité des accroissements finis	20		

But. On veut généraliser la notion de dérivée des fonctions à une variables aux fonctions à plusieurs variables tout en préservant certaine propriété comme « dérivable implique continue ».

 \triangleright EXEMPLE. Il existe des fonctions $\mathbb{R}^2 \to \mathbb{R}$ dérivables par rapport aux deux variables en (0,0) mais qui ne sont pas continues. Pour $(x,y) \in \mathbb{R}^2$, on pose

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{sinon.} \end{cases}$$

Alors elle est dérivable par rapport aux deux variables en (0,0), mais elle n'est pas continue. En effet, soit $(a,b) \in \mathbb{R}^2 \setminus \{0\}$. Pour $t \in \mathbb{R}$, l'expression f(at,bt) = f(a,b) n'admet pas la même limite quand $t \to 0$ selon (a,b).

Par ailleurs, il existe des fonctions $\mathbb{R}^2 \to \mathbb{R}$ admettant une dérivée dans toutes les directions mais qui ne sont pas continues. Pour $(x, y) \in \mathbb{R}^2$, on pose

on pose
$$g(x,y) = \begin{cases} \frac{x^5}{(y-x^2) + x^3} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{sinon.} \end{cases}$$

Soit $(a, b) \in \mathbb{R}^2 \setminus \{0\}$. Pour tout $t \neq 0$, on a

$$\frac{g(at, bt) - g(0, 0)}{t} = \frac{a^5 t^2}{(bt - a^2 t)^2 + a^8 t^6} \longrightarrow \begin{cases} 0 & \text{si } b \neq 0, \\ -a & \text{sinon.} \end{cases}$$

Mais $g(x, x^2) = 1/x^3 \to 0 = g(0, 0)$ quand $x \to 0$.

4.1 Différentiabilité

4.1.1 Définition

DÉFINITION 4.1.1. Soient $(E, \| \|_E)$ et $(F, \| \|_F)$ deux espaces vectoriels normés, Ω un ouvert de $(E, \| \|_E)$, $a \in \Omega$ et $f : \Omega \to F$. On dit que la fonction f est différentiable en a s'il existe $L \in \mathscr{L}_{\mathbf{c}}(E, F)$ tel que

$$||f(a+h) - f(a) - L(h)||_E = o_{||h||_E \to 0}(||h||_E).$$
 (*)

Alors L est unique, appelée différentielle de f en a et noté df(a). Pour $h \in E$, on notera $L(h) = df(a) \cdot h$.

Preuve Montrons l'unicité de L. Soient $L_1, L_2 \in \mathcal{L}_c(E, F)$ vérifiant le relation (*). Soit $\varepsilon > 0$. Pour $i \in \{1, 2\}$, il existe $\delta_i > 0$ tel que

$$\forall h \in E, \quad \|h\|_E < \delta_i \implies \|f(a+h) - f(a) - L_i(h)\| \leqslant \varepsilon \|h\|_E.$$

Pour $h \in E$ tel que $||h||_E < \min \{\delta_1, \delta_2\}$, on a

$$\|(L_1 - L_2)(h)\|_F \le \|f(a+h) - f(a) - L_1(h)\|_F + \|f(a+h) - f(a) - L_2(h)\|_F \le 2\varepsilon \|h\|_2$$
.

Par la linéarité de $L_1 - L_2$, on obtient $||L_1 - L_2||_{\mathscr{L}_c(E,F)} \leq 2\varepsilon$. En faisait $\varepsilon \to 0$, on a $L_1 = L_2$.

DÉFINITION 4.1.2. On dit que la fonction f est différentiable sur Ω si elle est différentiable en tout $x \in \Omega$. La différentielle de f est l'application

$$df: \begin{vmatrix} \Omega \longrightarrow \mathscr{L}_{c}(E, F), \\ x \longmapsto df(x). \end{vmatrix}$$

On dit que la fonction f est de classe \mathscr{C}^1 sur Ω si df est continue de $(\Omega, || \cdot ||_E)$ dans $(\mathscr{L}_{c}(E, F), || \cdot ||_{\mathscr{L}_{c}(E, F)})$ sur Ω .

On itère ce procédé pour définir les fonctions de classe \mathscr{C}^k sur Ω . La différentielle seconde de f est l'application $d^2f := d(df) \colon \Omega \longrightarrow \mathscr{L}_c(E, \mathscr{L}_c(E, F)).$

♦ REMARQUE. Soient $f: \mathbb{R}^n \to \mathbb{R}$ différentiable et $a \in \mathbb{R}^n$. Alors l'application linéaire et continue $df(a): \mathbb{R}^n \to \mathbb{R}$ s'identifie à l'application $\nabla f(a)$ définie par $df(a) \cdot h = \langle \nabla f(a), h \rangle$ pour tout $h \in \mathbb{R}^n$. La différentielle seconde $d^2f(a): \mathbb{R}^n \to \mathbb{R}^n$ s'identifie à une matrice

$$d^2 f: \begin{vmatrix} \mathbb{R}^n \longrightarrow \mathscr{M}_n(\mathbb{R}), \\ x \longmapsto d^2 f(x) := \operatorname{Hess}(f)(x) \end{vmatrix}$$

où $\operatorname{Hess}(f)$ est la matrice hessienne de f (définie plus tard).

4.1.2 Exemples

a Exemples classiques

- Si f est constante sur Ω , alors df = 0.
- Si f est linéaire et continue, alors df(a) = f pour tout $a \in \Omega$.

b Différentielle d'un application n-linéaire continue

Soient $(E_1, || ||_{E_1})$, $(E_2, || ||_{E_2})$ et $(F, || ||_F)$ des espaces vectoriels normées et $f: E_1 \times E_2 \to F$ bilinéaire et continue. Soit $a = (a_1, a_2) \in E_1 \times E_2$. Alors l'application f est de classe \mathscr{C}^1 sur $E_1 \times E_2$ et sa différentielle vérifie

$$df(a_1, a_2) \cdot (h_1, h_2) = f(a_1, h_2) + f(h_1, a_2).$$

En effet, l'application

$$L \colon \begin{vmatrix} E_1 \times E_2 \longrightarrow F, \\ (h_1, h_2) \longmapsto f(a_1, h_2) + f(h_1, a_2) \end{vmatrix}$$

est linéaire et continue car, pour tout $h = (h_1, h_2) \in E_1 \times E_2$, on a

$$\|L(h)\|_F \leqslant M(\|a_1\|_{E_1} \|h_2\|_{E_2} + \|h_1\|_{E_1} \|a_2\|_{E_2}) \leqslant 2M \|a\|_E \|h\|_E \quad \text{avec} \quad M \coloneqq \|f\|_{\mathscr{L}_c(E_1, E_2; F)}.$$

Montrons que f est différentiable en a. Pour tout $h = (h_1, h_2) \in E_1 \times E_2$, on a

$$\|L(a_1 + h_2, a_2 + h_2) - L(a_1, a_2)\|_F = \|f(h_1, h_2)\|_F \leqslant M \|h_1\|_{E_1} \|h_2\|_{E_2} \leqslant M \|h\|_E^2 = o_{\|h\|_E \to 0} (\|h\|_E).$$

Donc la fonction f est différentiable en a et df(a) = L. Montrons que la différentielle est continue, i. e.

$$||df(a) - df(\tilde{a})||_{\mathscr{L}_c(E_1 \times E_2, F)} \xrightarrow{||a - \tilde{a}||_E \to 0} 0.$$

La formule explicite montre que $df(a + \lambda b) = df(a) + \lambda df(b)$, donc l'application df est linéaire. Or on a montré que $\|df(a)\|_{\mathcal{L}_{c}(E_{1}\times E_{2},F)} \leq 2M \|a\|_{E}$. Donc l'application df est continue, donc la fonction f est de classe \mathscr{C}^{1} .

Conséquence. On peut montrer de même qu'une application n-linéaire continue est de classe \mathscr{C}^1 . Si $(E, || ||_E)$ est une algèbre normé, alors l'application

$$P: \begin{vmatrix} E^n \longrightarrow E, \\ (x_1, \dots, x_n) \longmapsto x_1 \cdots x_r \end{vmatrix}$$

est de classe \mathscr{C}^1 . De même, si $(E,\langle\;,\;\rangle)$ est un espace préhilbertien, alors l'application

$$\varphi \colon \left| \begin{matrix} E \times E \longrightarrow \mathbb{R}, \\ (x, y) \longmapsto \langle x, y \rangle \end{matrix} \right|$$

est bilinéaire et continue, donc de classe \mathscr{C}^1 .

c Différentielle de l'inverse

Soit (E, || ||) une algèbre de BANACH. On pose

$$f : \begin{vmatrix} \operatorname{Inv} E \longrightarrow \operatorname{Inv} E, \\ x \longmapsto x^{-1}. \end{vmatrix}$$

Montrons que f est classe \mathscr{C}^1 . Soient $x \in \text{Inv } E$ et $h \in E$ tels que $||h|| < 1/||x^{-1}||$. On a

$$(x+h)^{-1} = (x(1+x^{-1}h))^{-1} = (1+x^{-1}h)^{-1}x^{-1} = \sum_{n=0}^{\infty} (-1)^n (x^{-1}h)^n x^{-1}.$$

Différentielle – Chapitre 4

4.1. DIFFÉRENTIABILITÉ

(cf. preuve de la propriété 1.6.2 pour l'inverse de $1 + x^{-1}h$). L'application

$$L \colon \begin{vmatrix} E \longrightarrow E, \\ h \longmapsto -x^{-1}hx^{-1} \end{vmatrix}$$

est continue car, pour tout $h \in E$, on a $||L(h)|| \le ||x^{-1}||^2 ||h||$. Montrons que l'application f est différentiable. Pour $h \in E$ tel que $||h|| < 1/2 ||x^{-1}||$, on a

$$||f(x+h) - f(x) - L(h)|| = \left\| \sum_{n=2}^{\infty} (-1)^n (x^{-1}h)^n x^{-1} \right\|$$

$$\leq \sum_{n=2}^{\infty} ||x^{-1}||^{n+1} ||h||^n$$

$$\leq \frac{(||x^{-1}|| ||h||)^2}{1 - ||x^{-1}|| ||h||} ||x^{-1}|| \leq 2||x^{-1}||^3 ||h||^2$$

Donc f est différentiable en x et df(x) = L. Montrons que la différentielle est continue. Pour tous $y, h \in E$, on a

$$\begin{aligned} \|(df(x) - df(y)) \cdot h\| &= \|-x^{-1}hx^{-1} + y^{-1}hy^{-1}\| \\ &= \|(x^{-1} - y^{-1})hx^{-1} + y^{-1}h(x^{-1} - y^{-1})\| \\ &\leq \|x^{-1} - y^{-1}\|(\|x^{-1}\| + \|y^{-1}\|)\|h\|, \end{aligned}$$

donc

$$||df(x) - df(y)||_{\mathscr{L}_c(E)} \le ||x^{-1} - y^{-1}||(||x^{-1}|| + ||y^{-1}||) \xrightarrow{||x - y|| \to 0} 0$$

par continuité de l'inverse, donc la différentielle est continue.

d Autre exemple

Soit $\varphi \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$. On pose

$$\Theta \colon \left| (\mathscr{C}^0([0,1], \mathbb{R}), \| \|_{\infty}) \longrightarrow \mathbb{R}, \right.$$

$$f \longmapsto \int_0^1 \varphi \circ f(t) \, \mathrm{d}t.$$

Montrons que Θ est différentiable. Soit $f\in \mathscr{C}^0([0,1],\mathbb{R}).$ L'application

$$L : \left| \mathcal{C}^{0}([0,1], \mathbb{R}) \longrightarrow \mathbb{R}, \right.$$

$$h \longmapsto \int_{0}^{1} \varphi'(f(t))h(t) dt$$

est linéaire et continue car, pour tout $h \in \mathcal{C}^0([0,1],\mathbb{R})$, on a

$$|L(h)| \leq ||h||_{\infty} \int_{0}^{1} |\varphi'(f(t))| dt.$$

Soit $\varepsilon > 0$. Trouvons $\delta > 0$ tel que

$$\forall h \in \mathscr{C}^{0}([0,1],\mathbb{R}), \quad \|h\|_{\infty} \leqslant \delta \quad \Longrightarrow \quad \left| \int_{0}^{1} \varphi(f(t) + h(t)) - \varphi(f(t)) - \varphi'(f(t))h(t) \, \mathrm{d}t \right| \leqslant \varepsilon \|h\|_{\infty}. \tag{*}$$

Notons $R := ||f||_{\infty}$. L'application φ' est continue sur [-(R+1), R+1], donc le théorème de Heine affirme que la fonction φ' est continûment uniforme sur ce segment, donc il existe $\delta \in]0,1[$ tel que

$$\forall x, y \in [-R-1, R+1], |x-y| < \delta \implies |\varphi'(x) - \varphi'(y)| < \varepsilon.$$

Alors pour tous $x \in [-R, R]$ et $h \in [-\delta, \delta]$, on a

$$|\varphi(x+h) - \varphi(x) - \varphi'(x)h| = \int_0^1 [\varphi'(x+th) - \varphi'(x)] dt \times h.$$

Soit $h \in \mathscr{C}^0([0,1], \mathbb{R})$ telle que $||h||_{\infty} < \delta$. Alors pour tout $t \in [0,1]$, on a $f(t) \in [-R,R]$ et $h(t) \in [-\delta,\delta]$, donc la relation précédente s'applique et

$$|\varphi(f(t)+h(t))-\varphi(f(t))-\varphi'(f(t))h(t)|<\varepsilon ||h||_{\infty}$$
.

En intégrant par rapport à t sur [0,1], on obtient la relation (*). Ceci montre que Θ est différentiable en f et que sa différentielle vérifie $d\Theta(f)=L$.

4.1.3 Propriétés

Proposition 4.1.3. 1. Une fonction différentiable en un point est continue en ce point.

2. Si f et g sont deux fonctions différentiables et $\lambda \in \mathbb{R}$, alors $\lambda f + g$ est différentiable et $d(\lambda f + g) = \lambda df + g$. L'ensemble des fonctions différentiables a donc une structure d'espace vectoriel.

3. Si $f: E \to F_1 \times \cdots \times F_n$ où F_1, \ldots, F_n sont des espaces vectoriels, alors la fonction f est différentiable en a si et seulement si les fonctions f_j sont différentiables en a. Dans ce cas, sa différentielle vérifie

$$df(a) \cdot h = (df_1(a) \cdot h, \dots, df_n(a) \cdot h).$$

De même avec la classe \mathscr{C}^1 .

DÉFINITION 4.1.4. Soient Ω un ouvert de $E, f: \Omega \to F, a \in \Omega$ et $v \in E$. On dit que f admet une dérivée en a dans la direction v si le rapport

$$\frac{f(a+tv)-f(a)}{t}$$

admet une limite dans $(F, || \cdot ||_F)$ quand $t \to 0$.

PROPOSITION 4.1.5. Si f est différentiable en a, alors elle admet une dérivée dans la direction v pour tout $v \in E$. La réciproque est fausse.

Preuve On suppose que f est différentiable en a. Soit $v \in E$. Alors

$$\left\| \frac{f(a+tv) - f(a)}{t} - df(a) \cdot v \right\|_{E} = o_{t\to 0}(1).$$

Donc f admet une dérivée dans la direction v.

4.1.4 Théorème des fonctions composées

THÉORÈME 4.1.6. Soient $(E, || ||_E)$, $(F, || ||_F)$ et $(G, || ||_G)$ des espaces vectoriels normés, Ω_E un ouvert de E, Ω_F un ouvert de F, $f: \Omega_E \to F$ telle que $f(\Omega_E) \subset \Omega_F$, $g: \Omega_F \to G$ et $a \in \Omega_E$.

1. Si f est différentiable en a et g est différentiable en f(a), alors $g \circ f$ est différentiable en a et

$$d(g \circ f)(a) = dg(f(a)) \circ df(a).$$

2. Si f et g sont de classe \mathscr{C}^1 , alors $g \circ f$ est classe \mathscr{C}^1 .

Preuve Montrons le point 1. Soit r > 0 tel que $B(0,r) \subset \Omega_E$. Il existe une fonction $\varepsilon_1 \colon B_E(0,r) \to F$ telle que

$$\forall h \in \mathcal{B}_E(0,r), \quad f(a+h) = f(a) + df(a) \cdot h + \|h\|_E \varepsilon_1(h) \qquad \text{et} \qquad \|\varepsilon_1(h)\|_F \xrightarrow{\|h\|_E \to 0} 0.$$

Il existe une fonction $\varepsilon_2 \colon B_F(0,r) \to G$ telle que

$$\forall k \in \mathcal{B}_F(0,r), \quad g(f(a)+k) = g(f(a)) + dg(f(a)) \cdot h + \|k\|_F \, \varepsilon_2(k) \quad \text{et} \quad \|\varepsilon_2(k)\|_G \xrightarrow{\|k\|_F \to 0} 0.$$

Soit $h \in \mathcal{B}_E(0,r) \setminus \{0\}$. Appliquons cela à $k = k(h) := f(a+h) - f(a) = df(a) \cdot h + ||h||_E \varepsilon_1(h)$. On a donc

$$g\circ f(a+h)=g\circ f(a)+dg(f(a))\cdot (df(a)\cdot h+\|h\|_{E}\,\varepsilon_{1}(h))+\|k(h)\|\,\varepsilon_{2}(k(h)),$$

donc

$$g \circ f(a+h) - g \circ f(a) - dg(f(a)) \cdot (df(a) \cdot h) \leqslant ||h||_E \left[||dg(f(a)) \cdot \varepsilon_1(h)||_G + \frac{k(h)}{||h||_E} \varepsilon_2(k(h)) \right].$$

Comme dg(f(a)) est continue, quand $h \to 0$, on a $\|dg(f(a)) \cdot \varepsilon_1(h)\|_G \to 0$. De plus, pour $\|h\|_E$ assez petit, quitte à réduire r, on a

$$\left\|k(h)\right\|_F \leqslant \left\|h\right\|_E \left[\left\|df(a)\right\|_{\mathscr{L}_c(E,F)} + \left\|\varepsilon_1(h)\right\|_F\right] \leqslant 2\left\|df(a)\right\|_{\mathscr{L}_c(E,F)} \left\|h\right\|_E,$$

donc

$$\left\|\frac{k(h)}{\|h\|_E}\varepsilon_2(k(h))\right\|_H\leqslant 2\left\|df(a)\right\|_{\mathscr{L}_{c}(E,F)}\left\|\varepsilon_2(k(h))\right\|_G\xrightarrow{\|h\|_E\to 0}0.$$

Finalement, on a

$$||g \circ f(a+h) - g \circ f(a) - dg(f(a)) \cdot (df(a) \cdot h)||_F = o_{||h||_E \to 0} (||h||_E).$$

D'où le résultat.
$$\Box$$

COROLLAIRE 4.1.7. Soient $(E, || \cdot ||_E)$ et $(F, || \cdot ||_F)$ deux espaces vectoriels normés, Ω un ouvert de $E, f: \Omega \to F$ et $x, y \in \Omega$ tels que $[x, y] \subset \Omega$. On pose

$$u: \begin{bmatrix} [0,1] \longrightarrow \mathbb{R}, \\ t \longmapsto f(x+t(y-x)). \end{bmatrix}$$

1. Si f est différentiable (resp. de classe \mathscr{C}^1) sur Ω , alors u est dérivable sur]0,1[(resp. de classe \mathscr{C}^1) et

$$\forall t \in]0,1[, u'(t) = df(x + t(y - x)) \cdot (y - x).$$

2. Si $(F, || \cdot ||_F)$ est complet et f est de classe \mathscr{C}^1 , alors

$$f(y) - f(x) = \int_0^1 df(x + t(y - x)) \cdot (y - x) dt.$$

4.1.5 Différentielle et inversion

THÉORÈME 4.1.8. Soient $(E, || ||_E)$ et $(F, || ||_F)$ des espaces de BANACH, Ω_E un ouvert de E, Ω_F un ouvert de F, $f: \Omega_E \to \Omega_F$ un homéomorphisme (i. e. une fonction bicontinue) et $a \in E$. Si f est différentiable en a et df(a) est bijective, alors f^{-1} est différentiable en b := f(a) et $df^{-1}(b) = df(a)^{-1}$.

Preuve On suppose que f est différentiable en a et que df(a) est bijective. On admet le théorème d'isomorphisme de Banach : pour une application linéaire continue et bijective entre deux espaces de Banach, son inverse est aussi continu. Notons $M := \|df(a)^{-1}\|_{\mathscr{L}_c(E,F)}$. On veut montrer que, pour y proche de b, on a

$$f^{-1}(y) - f^{-1}(b) - df(a)^{-1} \cdot (y - b) = ||y - b||_F \, \varepsilon(y) \quad \text{avec} \quad ||\varepsilon(y)||_F \xrightarrow{||y||_E \to 0} 0.$$

On sait que, pour x proche de a, on a

$$f(x) - f(a) - df(a) \cdot (x - a) = \|x - a\|_E \tilde{\varepsilon}(x) \text{ avec } \|\tilde{\varepsilon}(y)\|_F \xrightarrow{\|y\|_E \to 0} 0.$$

Pour y proche de a, on applique $-df(a)^{-1}$ à l'égalité précédente avec $x = f^{-1}(y)$ qui est proche de a par continuité de f^{-1} . On obtient alors

$$df(a)^{-1} \cdot (y-b) + f^{-1}(y) - a = ||f^{-1}(y) - a||_E df(a)^{-1} \cdot \tilde{\varepsilon}(f^{-1}(y)).$$

Pour $y \neq b$ proche de b, on a

$$\varepsilon(y) := \frac{\|f^{-1}(y) - a\|_E}{\|y - b\|_F} \|y - b\|_F df(a)^{-1} \cdot \tilde{\varepsilon}(f^{-1}(y)).$$

Or $df(a)^{-1} \cdot \tilde{\varepsilon}(f^{-1}(y))$ tend vers 0 dans $(E, || ||_E)$ quand $||y - b||_E \to 0$ par continuité de f^{-1} et de $df(a)^{-1}$. Il existe $\delta > 0$ tel que

$$\forall y \in \mathcal{B}_F(b,\delta), \quad \|df(a)^{-1} \cdot \tilde{\varepsilon}(f^{-1}(y))\|_E < \frac{1}{2}$$

par continuité de f^{-1} en b et de $df(a)^{-1}$. Comme

$$f^{-1}(y) - a = -df(a)^{-1} \cdot (y - b) + ||f^{-1}(y) - a||_E df(a)^{-1} \cdot \tilde{\varepsilon}(f^{-1}(y)),$$

un passage à la norme donne

$$||f^{-1}(y) - a||_E \le M ||y - b||_F + \frac{1}{2} ||f^{-1}(y) - a||_E \le 2M ||y - b||_F, \quad \text{donc} \quad \frac{||f^{-1}(y) - a||_E}{||y - b||_F} \le M.$$

Ceci montre que $\|\varepsilon(y)\|_E \to 0$ quand $\|y-b\|_F \to 0$. Donc la fonction f^{-1} est différentiable en b.

DÉFINITION 4.1.9. Soient $(E, || ||_E)$ et $(F, || ||_F)$ des espaces vectoriels normées, Ω_E un ouvert de E, Ω_F un ouvert de F. Une fonction $f: \Omega_E \to \Omega_F$ est un \mathscr{C}^1 -difféomorphisme de Ω_E sur Ω_F si

- la fonction f est bijective de Ω_E dans Ω_F ,
- la fonction f et sa réciproque sont de classe \mathscr{C}^1 .

COROLLAIRE 4.1.10. Si E et F sont des espaces de Banach, alors les propositions suivant sont équivalentes :

- 1. la fonction f est un \mathscr{C}^1 -difféomorphisme;
- 2. la fonction f est un homéomorphisme de classe \mathscr{C}^1 et, pour tout $x \in \Omega_E$, on a $df(x) \in \mathscr{Gl}_c(E,F)$.

4.1.6 Inégalité des accroissements finis

PROPOSITION 4.1.11. Soient $(E, || \|_E)$ et $(F, || \|_F)$ des espaces vectoriels normées, Ω un ouvert de $E, x, y \in \Omega$ tel que $[x, y] \subset \Omega$, $f \colon \Omega \to F$ différentiable sur Ω .

1. Alors

$$||f(y) - f(x)||_F \le ||y - x||_E \sup \{||df(z)||_{\mathscr{L}_c(E,F)}, z \in [x,y]\}.$$

2. Si E est de dimension finie et la fonction f est de classe \mathscr{C}^1 , alors la fonction f est localement lipschitzienne, i. e. pour toute boule $B \subset \Omega$, on a

$$\exists M > 0, \ \forall x, y \in B, \quad \|f(x) - f(y)\|_{F} \leq M \|x - y\|_{E}$$

Preuve 1. On note $M<+\infty$ cette borne supérieure. On applique l'inégalité des accroissements finis pour les fonctions de la variables réelles. On note

$$u\colon \begin{vmatrix} [0,1] \longrightarrow F, \\ t \longmapsto f(x+t(y-x)) \end{vmatrix} \text{ et } \phi\colon \begin{vmatrix} [0,1] \longrightarrow F, \\ t \longmapsto M \, \|y-x\|_E \, t.$$

Alors la fonction u est dérivable sur [0,1] et, pour tout $t \in [0,1]$, on a

$$||u'(t)||_E = ||df(x + t(y - x))(y - x)||_F \le M ||y - x||_E = \phi'(t).$$

L'inégalité des accroissements finis donne alors $||u(1) - u(0)|| \le \phi(1) - \phi(0)$. D'où l'inégalité voulue.

2. Soit $B \subset \Omega$ une boule. Comme E est de dimension finie, la partie \overline{B} est compacte. Par continuité de df, l'élément $M \coloneqq \sup \{ \|df(z)\|_{\mathscr{L}_{c}(E,F)}, z \in \overline{B} \}$ est fini et donc le point 1 permet de conclure. \square

PROPOSITION 4.1.12. Soient $(E, || \cdot ||_E)$ et $(F, || \cdot ||_F)$ des espaces vectoriels normées, Ω_E un ouvert connexe de E et $f: \Omega_E \to F$ différentiable sur Ω_E . Alors les propositions suivant sont équivalentes :

- 1. la fonction f est constante sur Ω_E ;
- 2. sa différentielle df est nulle sur Ω_E .

Preuve Le sens direct est évident. Réciproquement, on suppose que df = 0 sur Ω_E . Soit $a \in \Omega_E$. On pose b := f(a). L'ensemble $f^{-1}(\{b\})$ est non vide, fermé et ouvert (d'après l'inégalité des accroissements finis) dans Ω_E , donc $f^{-1}(\{b\}) = \Omega$ par connexité de Ω , donc la fonction f est constante sur Ω_E .

4.1.7 Différentiabilité et suite/série de fonctions

THÉORÈME 4.1.13. Soient $(E, || ||_E)$ et $(F, || ||_F)$ des espaces vectoriels normées, Ω un ouvert de E et $(f_n)_{n \in \mathbb{N}}$ une suite d'applications différentiable sur Ω telle que

- 1. la suite $(f_n(x))_{n\in\mathbb{N}}$ converge dans $(F, || ||_F)$ vers une limite $g(x) \in F$ pour tout $x \in \Omega$;
- 2. la suite $(df_n(x))_{n\in\mathbb{N}}$ converge dans $(\mathscr{L}_{c}(E,F), \| \|_{\mathscr{L}_{c}(E,F)})$ vers une limite $L(x) \in \mathscr{L}_{c}(E,F)$ uniformément par rapport à $x \in \Omega$.

Alors l'application g est différentiable sur Ω et, pour tout $x \in \Omega$, on a dg(x) = L(x). En particulier, si les applications f_n sont de classe \mathscr{C}^1 , alors g est de classe \mathscr{C}^1 .

Preuve Soient $x \in \Omega$ et $\varepsilon > 0$. Trouvons $\delta > 0$ tel que

$$\forall h \in E, \quad \|h\|_E < \delta \quad \Longrightarrow \quad \|g(x+h) - g(x) - L(x) \cdot h\|_F < \varepsilon \, \|h\|_E \, .$$

Soit $h \in E$. L'inégalité triangulaire donne

$$||g(x+h) - f(x) - L(x) \cdot h||_F \le ||(g - f_n)(x+h) - (g - f_n)(x)||_F + ||f_n(x+h) - f_n(x) - df(x) \cdot x||_F + ||(df_n(x) - L(x)) \cdot h||_F.$$

Par l'hypothèse 1, il existe $n_0 \in \mathbb{N}$ tel que

$$\forall n\geqslant n_0,\;\forall z\in\Omega,\quad \|df_{n_0}(z)-L(z)\|_{\mathscr{L}_{\mathrm{c}}(E,F)}<\varepsilon.$$

Alors pour $p \ge n_0$, on a $\|df_{n_0}(x) - df_p(x)\| < 2\varepsilon$. D'après l'inégalité des accroissements finis, on a

$$\|(f_{n_0} - f_p)(x+h) - (f_{n_0} - f_p)(x)\|_F \leqslant \|h\|_E \sup_{z \in [x,x+h]} \|d(f_{n_0} - f_p)(z)\|_{\mathscr{L}_c(E,F)} \leqslant 2\varepsilon \|h\|_E.$$

En faisait $p \to +\infty$, on trouve

$$||(f_{n_0} - g)(x+h) - (f_{n_0} - g)(x)||_F \le 2\varepsilon ||h||_E.$$

De plus, il existe $\delta > 0$ tel que

$$\forall h \in B(0, \delta), \quad \|f_{n_0}(x+h) - f_{n_0}(x) - df_{n_0}(x) \cdot x\|_F < \varepsilon \|h\|_E.$$

Finalement, si $h \in B(0, \delta)$ et $p \ge n_0$, on a

$$||g(x+h) - f(x) - L(x) \cdot h||_F \le 4\varepsilon.$$

Donc g est différentiable en x et dg(x) = L(x).

Différentielle – Chapitre 4

APPLICATION. Soit (E, || ||) une algèbre de BANACH sur \mathbb{R} . On pose

exp:
$$x \mapsto \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
.

Pour tout $n \in \mathbb{N}$, on note $f_n \colon x \in E \longmapsto \frac{x^n}{n!} \in E$. Alors pour tout $n \geqslant 2$, on a

$$\forall x, h \in E, \quad df_n(x) \cdot h = \frac{1}{n!} \sum_{k=0}^{n-1} x^k h x^{n-1-k}, \quad \text{donc} \quad ||df_n(x)||_{\mathcal{L}_c(E,F)} \leqslant \frac{||x||^{n-1}}{(n-1)!} \longrightarrow 0.$$

Soit R > 0. La série $\sum df_n(x)$ converge dans $\mathscr{L}_{c}(E)$ uniformément par rapport à $x \in \Omega := B_E(0, R)$. Donc le théorème précédent affirme que l'application exp est de classe \mathscr{C}^1 sur B(0, R). Ceci est valable pour tout R > 0, donc elle est de classe \mathscr{C}^1 sur E.

4.2 Différentielles partielles

Dans toute la suite, les espaces $(E_1, \| \|_{E_1}), \ldots, (E_n, \| \|_{E_n})$ et $(F, \| \|_F)$ sont des espaces vectoriels normés. On pose $E := E_1 \times \cdots \times E_n$. Soient Ω un ouvert de $E, a = (a_1, \ldots, a_n) \in \Omega$ et $f : \Omega \to F$.

4.2.1 Différentielles partielles d'ordre 1

DÉFINITION 4.2.1. On dit que la fonction f admet une différentielle par rapport à la variable x_j au point a si l'application

$$\begin{vmatrix} E_j \longrightarrow F, \\ x_j \longmapsto (f(a_1, \dots, a_{j-1}, a_{j+1}, \dots, a_n) \end{vmatrix}$$

est différentiable en a_j . On note sa différentielle

$$\frac{\partial f}{\partial x_j}(a) \in \mathcal{L}_{c}(E_j, F).$$

Proposition 4.2.2. Si f est différentiable en a, alors elle admet une différentielle par rapport à x_j en a et

$$\forall h_j \in E_j, \quad \frac{\partial f}{\partial x_j}(a) \cdot h_j = df(a)(\tilde{h}_j) \quad \text{avec} \quad \tilde{h}_j := (0, \dots, 0, h_j, 0 \dots, 0)$$

pour tout $j \in [1, n]$. Dans ce cas, pour tout $h = (h_1, \dots, h_n) \in E$, on a

$$df(a) \cdot h = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(a) \cdot h_j.$$

Théorème 4.2.3. Les propositions suivantes sont équivalentes :

- 1. la fonction f est de classe \mathscr{C}^1 sur Ω ,
- 2. la fonction f admet une différentielle partielle en x_i et la fonction $\partial f/\partial x_i$ est continue pour tout $j \in [1, n]$.

Preuve Le sens direct est évident. Réciproquement, on suppose 2. On se place uniquement dans le cas n=2. Montrons que f est différentiable sur Ω . Soit $a:=(a_1,a_2)\in\Omega$. L'application

$$L \colon \left| \begin{matrix} E \longrightarrow F, \\ (h_1, h_2) \longmapsto \frac{\partial f}{\partial x_1}(a) \cdot h_1 + \frac{\partial f}{\partial x_2}(a) \cdot h_2 \end{matrix} \right|$$

est bien linéaire et continue. Soit $\varepsilon > 0$. On cherche $\delta > 0$ tel que

$$\forall h \in \mathcal{B}_E(0,\delta), \quad \|f(a+h) - f(a) - L(h)\|_F \leqslant \varepsilon \|h\|_E.$$

Par hypothèse, il existe $\delta > 0$ tel que $B_E(a, \delta) \subset \Omega$ et, pour tout $b \in B_E(a, \delta)$, on ait

$$\left\| \frac{\partial f}{\partial x_j}(b) - \frac{\partial f}{\partial x_j}(a) \right\|_{\mathcal{L}_{\mathbf{c}}(E_j,F)} < \varepsilon, \quad \forall j \in \{1,2\}.$$

Soit $h := (h_1, h_2) \in B_E(0, \delta)$. On a

$$f(a+h) - f(a) - L(h) = \Delta_1(h) + \Delta_2(h)$$

avec

$$\begin{cases} \Delta_1(h) = f(a_1 + h_1, a_2 + h_2) - f(a_1, a_2 + h_2) - \frac{\partial f}{\partial x_1}(a) \cdot h_1, \\ \Delta_2(h) = f(a_1, a_2 + h_2) - f(a_1, a_2) - \frac{\partial f}{\partial x_2}(a) \cdot h_2. \end{cases}$$

On peut écrire

$$\Delta_1(h) = G_1(h_1) - G_1(0) \quad \text{avec} \quad G_1: \begin{vmatrix} \Omega_1 \subset E_1 \longrightarrow F, \\ h'_1 \longmapsto f(a_1 + h'_1, a_2 + h_2) - \frac{\partial f}{\partial x_1}(a) \cdot h'_1 \end{vmatrix}$$

et

$$\Delta_2(h) = G_2(h_2) - G_2(0) \quad \text{avec} \quad G_2 \colon \left| \begin{array}{c} \Omega_2 \subset E_2 \longrightarrow F, \\ \\ h_2' \longmapsto f(a_1, a_2 + h_2') - \frac{\partial f}{\partial x_2}(a) \cdot h_2'. \end{array} \right|$$

Pour $j \in \{1, 2\}$, l'inégalité des accroissements finis donne

$$\|\Delta_j(h)\|_F \le \|h_j\|_{E_j} \sup \{\|dG_j(h'_j)\|_{\mathscr{L}_{c}(E_j,F)}, h'_j \in [0,h_j]\}.$$

Pour $h_1' \in [0, h_1]$, le théorème des fonctions composées donne

$$||dG_1(h'_1)||_{\mathscr{L}_c(E_1,F)} = \left| \left| \frac{\partial f}{\partial x_1} (a_1 + h'_1, a_2 + h_2) - \frac{\partial f}{\partial x_1} (a_1, a_2) \right| \right|_{\mathscr{L}_c(E_1,F)} < \varepsilon.$$

De même, pour $h'_2 \in [0, h_2]$, on a

$$\|dG_2(h_2')\|_{\mathcal{L}_c(E_2,F)} = \left\|\frac{\partial f}{\partial x_2}(a_1,a_2+h_2') - \frac{\partial f}{\partial x_2}(a_1,a_2)\right\|_{\mathcal{L}_c(E_1,F)} < \varepsilon.$$

On a montré que $||f(a+h)-f(a)-L(h)||_{E} \le 2\varepsilon ||h||_{E}$. Donc la fonction f est différentiable et

$$df(a) \cdot h = \frac{\partial f}{\partial x_1}(a) \cdot h_1 + \frac{\partial f}{\partial x_2}(a) \cdot h_2.$$

Cette dernière formule montre que la fonction f est de classe \mathscr{C}^1 .

▷ EXEMPLE. On pose

$$f: \begin{vmatrix} \mathbb{R}^2 \longrightarrow \mathbb{R}, \\ (x,y) \longmapsto \begin{cases} \frac{x(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{sinon.} \end{cases}$$

Montrons que cette fonction est continue en 0 et qu'elle admet des dérivées partielles en 0, mais qu'elle n'est pas différentiable en 0. Pour tout $(x, y) \neq (0, 0)$, on a

$$||f(x,y)|| \le \frac{2||(x,y)||_2^3}{||(x,y)||_2^2} = 2||(x,y)||_2 \xrightarrow{(x,y)\to(0,0)} 0,$$

donc elle est continue en 0. Pour tout $x \in \mathbb{R}$, on a f(x,0) = x, donc elle admet une dérivée partielle en 0 par rapport à x et $\partial f/\partial x(0,0) = 1$. De même, pour tout $y \in \mathbb{R}$, on a f(0,y) = 0, donc elle admet une dérivée partielle en 0 par rapport à y et $\partial f/\partial y(0,0) = 0$. Par l'absurde, supposons qu'elle soit différentiable en 0. Alors pour tout $(h_1,h_2) \in \mathbb{R}^2$, on a $df(0,0)(h_1,h_2) = h_1$. Soit $(x,y) \in \mathbb{R}^2 \setminus \{0\}$. Alors

$$\varepsilon(x,y) := \frac{f(x,y) - f(0,0) - x}{\|(x,y)\|_2} = \frac{2yx^2}{(x^2 + y^2)^{3/2}} \xrightarrow{(x,y) \to (0,0)} 0.$$

Or pour tous $a, b, t \neq 0$, on a

$$\varepsilon(at, bt) = \frac{2ba^2}{(a^2 + b^2)^{3/2}} \longrightarrow 0$$

ce qui est impossible. Donc elle n'est pas différentiable en 0.

4.2.2 Différentielles partielles d'ordre 2

LEMME 4.2.4 (SCHWARZ). Soient $j, k \in [1, n]$. Si les fonctions

$$\frac{\partial^2 f}{\partial x_k \partial x_j} \quad \text{et} \quad \frac{\partial^2 f}{\partial x_j \partial x_k}$$

existent et sont continues sur Ω , alors elles sont égales.

 \diamond Remarque. On suppose que n=2. On a

$$\frac{\partial f}{\partial x_1}\colon \Omega\subset E\longrightarrow \mathscr{L}_{\mathrm{c}}(E_1,F),\quad \mathrm{donc}\quad \frac{\partial^2 f}{\partial x_2\partial x_1}\colon \Omega\subset E\longrightarrow \mathscr{L}_{\mathrm{c}}(E_2,\mathscr{L}_{\mathrm{c}}(E_1,F)).$$

De même, on a

$$\frac{\partial^2 f}{\partial x_1 \partial x_2} \colon \Omega \subset E \longrightarrow \mathscr{L}_{\mathsf{c}}(E_1, \mathscr{L}_{\mathsf{c}}(E_2, F)).$$

Il faut alors identifier ces deux espaces d'arrivé.

Proposition 4.2.5. L'application

$$J: \left| \begin{array}{c} \mathscr{L}_{\mathbf{c}}(E_1, E_2; F) \longrightarrow \mathscr{L}_{\mathbf{c}}(E_1, \mathscr{L}_{\mathbf{c}}(E_2, F)), \\ \alpha \longmapsto \left(\begin{vmatrix} E_1 \longrightarrow \mathscr{L}_{\mathbf{c}}(E_2, F), \\ x_1 \longmapsto \alpha(x_1, \cdot) \end{vmatrix} \right) \end{array} \right|$$

est une isométrie bijective. Elle permet d'identifier les espaces

$$\mathscr{L}_{c}(E_1, \mathscr{L}_{c}(E_2, F)), \quad \mathscr{L}_{c}(E_2, \mathscr{L}_{c}(E_1, F)) \quad \text{et} \quad \mathscr{L}_{c}(E_1, E_2; F).$$

Preuve Vérifions que l'application J est à valeurs dans $\mathscr{L}_{\mathbf{c}}(E_1,\mathscr{L}_{\mathbf{c}}(E_2,F))$. Soit $\alpha\colon E_1\times E_2\to E$ bilinéaire continue. Montrons que $J(\alpha)\subset\mathscr{L}_{\mathbf{c}}(E_1,\mathscr{L}_{\mathbf{c}}(E_2,F))$. Pour $x_1\in E_1$ et $x_2\in E_2$, on a

$$\|\alpha(x_1, x_2)\|_F \leq \|\alpha\|_{\mathscr{L}_c(E_1, E_2; F)} \|x_1\|_{E_1} \|x_2\|_{E_2}$$

done

$$\|\alpha(x_1,\cdot)\|_{\mathscr{L}_{c}(E_2,F)} \le \|\alpha\|_{\mathscr{L}_{c}(E_1,E_2;F)} \|x_1\|_{E_1}$$

donc

$$||J(\alpha)||_{\mathscr{L}_{c}(E_{1},\mathscr{L}_{c}(E_{2},F))} \leq ||\alpha||_{\mathscr{L}_{c}(E_{1},E_{2};F)}.$$

Montrons que l'application J est une isométrie. Soit $\alpha \in \mathscr{L}_{\mathbf{c}}(E_1, E_2; F)$. Il suffit de montrer que $||J(\alpha)|| \ge ||\alpha||$. Soit $\varepsilon > 0$. Il existe $x_1^* \in E_1$ et $x_2^* \in E_2$ tels que $||x_1^*||_{E_1} = ||x_2^*||_{E_2} = 1$ et

$$\|\alpha(x_1^*, x_2^*)\|_F \geqslant \|\alpha\|_{\mathscr{L}_{c}(E_1, E_2; F)} - \varepsilon.$$

Alors

$$||J(\alpha)||_{\mathscr{L}_{c}(E_{1},\mathscr{L}_{c}(E_{2},F))} \geqslant ||J(\alpha)(x_{1}^{*})||_{\mathscr{L}_{c}(E_{2},F)} = ||\alpha(x_{1}^{*},\cdot)||_{\mathscr{L}_{c}(E_{2},F)} \geqslant ||\alpha(x_{1}^{*},x_{2}^{*})|| \geqslant |\alpha| - \varepsilon.$$

On obtient l'inégalité en faisant $\varepsilon \to 0^+$. Ceci montre que $||J(\alpha)|| = ||\alpha||$. Montrons que l'application J est bijective. Il suffit de montrer qu'elle est surjective. Soit $\varphi \in \mathcal{L}_{c}(E_1, \mathcal{L}_{c}(E_2, F))$. On montre que l'application

$$\alpha : \begin{vmatrix} E \longrightarrow F, \\ (x_1, x_2) \longmapsto \varphi(x_1) \cdot x_2 \end{vmatrix}$$

convient, i. e. son image par J vaut φ .

Preuve du lemme On suppose toujours que n=2. Soient $a:=(a_1,a_2)\in\Omega$ et $\varepsilon>0$. Montrons que

$$\left|\frac{\partial^2 f}{\partial x_1 \partial x_2}(a) - \frac{\partial^2 f}{\partial x_2 \partial x_1}\right|_{\mathscr{L}_c(E_1, E_2; F)} < \varepsilon.$$

On pourra supposer que a=(0,0). Il existe $\delta>0$ tel que $B_E(0,\delta)\subset\Omega$ et, pour tout $b\in B_E(0,\delta)$, on ait

$$\left\|\frac{\partial^2 f}{\partial x_j \partial x_k}(b) - \frac{\partial^2 f}{\partial x_j \partial x_k}(b)\right\|_{\mathcal{L}_{\mathbf{c}}(E_1, E_2; F)} < \varepsilon, \qquad \forall j, k \in \left\{1, 2\right\}, \ \left\{j, k\right\} = \left\{1, 2\right\}.$$

Soit $u := (u_1, u_2) \in B_E(0, \delta)$. On a

$$\Delta(u) := f(u_1, u_2) - f(u_1, 0) - f(0, u_2) + f(0, 0) - \frac{\partial^2 f}{\partial x_1 \partial x_2}(0) \cdot (u_1, u_2)$$
$$= \varphi_{u_1}(u_2) - \varphi_{u_1}(0)$$

où on a noté

$$\varphi_{u_1}: \left| \begin{array}{c} \Omega_2 \subset E_2 \longrightarrow F, \\ t \longmapsto f(u_1, t) - f(0, t) - \frac{\partial^2 f}{\partial x_1 \partial x_2}(0) \cdot (u_1, t). \end{array} \right|$$

où Ω_2 est un ouvert de E_2 contenant $[0,u_2]$. D'après l'inégalité des accroissements finis, on a

$$\|\Delta(u)\|_F \leq \|u_2\|_{E_1} \sup \{\|d\varphi_{u_1}(t)\|_{\mathscr{L}_c(E_2,F)}, t \in [0,u_2]\}.$$

Soient $t \in [0, u_2]$ et $\tau \in E_2$. Le théorème des fonctions composées donne

$$d\varphi_{u_1}(t) \cdot \tau = \frac{\partial f}{\partial x_2}(u_1, t) \cdot \tau - \frac{\partial f}{\partial x_2}(0, t) \cdot \tau - \frac{\partial^2 f}{\partial x_1 \partial x_2}(0, 0) \cdot (u_1, \tau).$$

Alors

$$\|d\varphi_{u_1}(t)\cdot\tau\|_F = \|\theta_{t,\tau}(u_1) - \theta_{t,\tau}(0)\|_F$$

où on a noté

$$\theta_{t,\tau} : \left| \begin{array}{l} \Omega_1 \subset E_1 \longrightarrow F, \\ \\ s \longmapsto \frac{\partial f}{\partial x_2}(s,t) \cdot \tau - \frac{\partial^2 f}{\partial x_1 \partial x_2}(0,0) \cdot (s,\tau). \end{array} \right|$$

L'inégalité des accroissements finis donne alors

$$\|d\varphi_{u_1}(t)\cdot\tau\|_F \leq \|u_1\|_{E_1} \sup\{\|d\theta_{t,\tau}(s)\|_{\mathscr{L}_{c}(E_1,F)}, s\in[0,u_1]\}.$$

Pour $\sigma \in E_1$, on a

$$d\theta_{t,\tau}(s) \cdot \sigma = \frac{\partial^2 f}{\partial x_1 \partial x_2}(s,t) \cdot (\sigma,\tau) - \frac{\partial^2 f}{\partial x_1 \partial x_2}(0,0) \cdot (\sigma,\tau),$$

donc

$$\left\|d\theta_{t,\tau}(s)\cdot\sigma\right\|_F\leqslant \left\|\sigma\right\|_{E_1}\left\|\tau\right\|_{E_2}\varepsilon,\quad \text{donc}\quad \left\|d\theta_{t,\tau}(s)\right\|_{\mathscr{L}_{c}(E_1,F)}\leqslant \varepsilon\left\|\tau\right\|_{E_2}.$$

En remontant les inégalités, on a $\|d\varphi_{u_1}(t)\cdot\tau\|_F\leqslant \varepsilon\,\|u_1\|_{E_1}\,\|\tau\|_{E_2},\,\mathrm{donc}\,\,\|\Delta(u_1,u_2)\|_F\leqslant \varepsilon\,\|u_1\|_{E_1}\,\|u_2\|_{E_2}.$ D'où

$$\left\| f(u_1, u_2) - f(u_1, 0) - f(0, u_2) + f(0, 0) - \frac{\partial^2 f}{\partial x_1 \partial x_2}(0) \cdot (u_1, u_2) \right\|_{E} \leqslant \varepsilon \|u_1\|_{E_1} \|u_2\|_{E_2}.$$

De même, en échangeant les deux variables, on en déduit que

$$\left\| f(u_1, u_2) - f(u_1, 0) - f(0, u_2) + f(0, 0) - \frac{\partial^2 f}{\partial x_2 \partial x_1}(0) \cdot (u_1, u_2) \right\|_F \leqslant \varepsilon \|u_1\|_{E_1} \|u_2\|_{E_2}.$$

Par différence, on obtient que

$$\left\| \frac{\partial^2 f}{\partial x_1 \partial x_2}(0,0)(u_1,u_2) - \frac{\partial^2 f}{\partial x_2 \partial x_1}(0,0)(u_1,u_2) \right\|_F \leqslant 2\varepsilon \|u_1\|_{E_1} \|u_2\|_{E_2}$$

ce qui permet de conclure.

▷ Exemple. On pose

$$f: \left| \begin{array}{c} \mathbb{R}^2 \longrightarrow \mathbb{R}, \\ (x,y) \longmapsto \frac{xy(x^2 - y^2)}{x^2 + y^2}. \end{array} \right.$$

Montrons que ses dérivées croisées secondes existent et qu'elle n'est pas de classe \mathscr{C}^2 . Pour $(x,y) \neq (0,0)$, on a

$$\frac{\partial f}{\partial x}(x,y) = \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2}.$$

En remarquant que f(x,y) = -f(y,x), on en déduit $\partial f/\partial y(x,y)$. Pour $(x,y) \neq (0,0)$, on a

$$|f(x,y)| \le 2 ||(x,y)||_2^2 = o(||(x,y)||_2),$$

donc la fonction f est différentiable en 0 et df(0) = 0. De plus, pour tout $y \in \mathbb{R}$, on a

$$\frac{\partial f}{\partial x}(0,y) = -y$$
, donc $\frac{\partial^2 f}{\partial y \partial x}(0,y) = 1$.

D'après la remarque, on a

$$\frac{\partial^2 f}{\partial x \partial y}(0, y) = -1.$$

Donc, le lemme de Schwarz donne qu'une de ses deux dérivées partielles secondes n'est continue. Comme il y a invariance en échangeant x et y, aucune de ses deux dérivées partielles seconde n'est continue.

4.3 Différentielle seconde

DÉFINITION 4.3.1. On dit qu'une fonction $f: \Omega_E \to F$ admet une différentielle seconde en a si elle est différentielle sur un voisinage ouvert U de A dans $(\Omega_E, || \parallel_E)$ et l'application $df: U \subset E \to \mathscr{L}_c(E, F)$ est différentiable en a. On note alors $d^2f(a) \in \mathscr{L}_c(E, \mathscr{L}_c(E, F)) \simeq \mathscr{L}_c(E, E; F)$ la différentielle de df.

Proposition 4.3.2. L'application $df^2(a)$ est symétrique, i. e.

$$\forall h, h' \in E, \quad d^2 f(a) \cdot (h, h') = d^2 f(a) \cdot (h', h).$$

4.4 Formules de Taylor

PROPOSITION 4.4.1 (formule de TAYLOR-YOUNG). Soient $(E, || ||_E)$ et $(F, || ||_F)$ deux espaces vectoriels normés, Ω un ouvert de E, $a \in \Omega$ et $f: \Omega \to F$. Si f est n fois différentiable, alors

$$\left\| f(a+h) - \left(f(a) + df(a) \cdot h + \dots + \frac{1}{n!} d^n f(a) \cdot (h, \dots, n) \right) \right\|_F = o_{\|h\|_E \to 0} (\|h\|_E^n).$$

Preuve On montre cette formule par récurrence sur n et en utilisant l'inégalité des accroissements finis. \square

PROPOSITION 4.4.2 (formule de TAYLOR avec reste intégrale). Soient $(E, \| \|_E)$ un espace vectoriel normé, $(F, \| \|_F)$ un espace de BANACH, Ω un ouvert de $E, a, b \in \Omega$ tels que $[a, b] \subset \Omega$ et $f: \Omega \to F$ de classe \mathscr{C}^{n+1} . Alors

$$f(b) = f(a) + df(a) \cdot (b - a) + \dots + \frac{1}{n!} d^n f(a)(b - a, \dots, b - a) + R_{n,a,b}(f)$$

οù

$$R_{n,a,b}(f) := \int_0^1 \frac{(1-\theta)^n}{n!} d^{n+1} f(a+\theta(b-a)) \cdot \underbrace{(b-a,\ldots,b-a)}_{n+1 \text{ fois}} d\theta.$$

Chapitre 5

Théorèmes d'inversion locale et des fonctions implicites

5.1 Théorème d'inversion locale

THÉORÈME 5.1.1 (d'inversion locale). Soient $(E, || ||_E)$ et $(F, || ||_F)$ deux espaces de Banach, Ω un ouvert de E, $a \in \Omega$, $f \in \mathscr{C}^1(\Omega, F)$ telle que df(a) soit une bijection de E sur F. Alors la fonction f est un \mathscr{C}^1 -difféomorphisme local, i. e. il existe

- un voisinage ouvert V de a dans $(\Omega, || \cdot ||_E)$,
- un voisinage ouvert W de f(a) dans $(F, || \cdot ||_F)$

tels que la fonction f soit un \mathscr{C}^1 -difféomorphisme de V sur W. De plus, si f est de classe \mathscr{C}^k de Ω sur F, alors sa réciproque l'est également de W sur V.

Preuve Quitte à translater, on peut supposer que a=0 et f(a)=0. Par le théorème d'isomorphisme de BANACH, l'application $df(0)^{-1}$ est continue, donc on note

$$C := ||df(0)^{-1}||_{\mathscr{L}_{c}(E,F)} < +\infty.$$

Il existe $\delta > 0$ tel que $B_E(0, \delta) \subset \Omega$ et

$$\forall x \in B_E(0, \delta), \quad \|f(x) - f(0) - df(0) \cdot x\| < \frac{1}{2C} \|x\|_E \quad \text{et} \quad \|df(x) - df(0)\|_{\mathcal{L}_c(E, F)} < \frac{1}{2C}.$$

On pose $W := B_F(0, \delta/2C)$. Soit $y \in W$. Montrons qu'il existe un unique $x \in B_E(0, \delta)$ tel que f(x) = y. On pose

$$\varphi \colon \left| \overline{B}_E(0,\delta) \longrightarrow E, \right. \\ \left. x \longmapsto x - df(0)^{-1} \cdot (f(x) - y) = df(0)^{-1} \cdot [f(x) - f(0) - df(0) \cdot x - y]. \right.$$

La partie $\overline{B}_E(0,\delta)$ est complète car elle est fermée dans un espace de BANACH. On a $\varphi(\overline{B}_E(0,\delta)) \subset \overline{B}_E(0,\delta)$ car, pour $x \in \overline{B}_E(0,\delta)$, on a

$$\|\varphi(x)\|_{E} = C\left[\|f(x) - f(0) - df(0) \cdot x\|_{F} + \|y\|_{F}\right] \leqslant C\left[\frac{\|x\|_{E}}{2C} + \frac{\delta}{2C}\right] \leqslant \delta. \tag{*}$$

De plus, la fonction ϕ est 1/2-contractante car le théorème des fonctions composées donne

$$||d\varphi(x)||_{\mathscr{L}_{c}(E)} = ||df(0)^{-1} \circ [df(x) - df(0)]||_{\mathscr{L}_{c}(E)} \leqslant C \times \frac{1}{2C} = C.$$

D'après le théorème du point fixe de Banach, il existe un unique $x \in \overline{B}_E(0, \delta)$ tel que $\varphi(x) = x$, i. e. f(x) = y. L'argument de point fixe marcherait encore sur $\overline{B}_E(0, \delta')$ avec $\delta' := 2C \|y\|_F < \delta$ (cf. l'inégalité (*)).

On note $V := B_E(0, \delta) \cap f^{-1}(W)$. Alors la partie V est un voisinage de 0 dans $(\Omega, || \cdot ||_E)$ et la fonction f est une bijection de V sur W d'après ce qui précède. Montrons que $f^{-1}: W \to V$ est continue. Soient $y_1, y_2 \in W$. On note $x_1 := f^{-1}(y_1)$ et $x_2 := f^{-1}(y_2)$ qui sont dans $B_E(0, \delta)$, donc dans V. On a

$$||f^{-1}(y_1) - f^{-1}(y_2)||_E = ||df(0)^{-1} \cdot [f(x_1) - f(x_2) - df(0) \cdot (x_1 - x_2) - y_1 + y_2]||_E$$

$$\leqslant C \left[||y_1 - y_2||_F + \left\| \int_0^1 (df(x_2 + t(x_1 - x_2)) - df(0)) \cdot (x_1 - x_2) dt \right\|_F \right]$$

$$\leqslant C \left[||y_1 - y_2||_F + \frac{1}{2C} ||x_1 - x_2||_F \right].$$

En passant ce dernier membre à gauche de l'inégalité, on a $||x_1 - x_2||_E \le 2C ||y_1 - y_2||_F$. Ainsi la fonction f^{-1} est 2C-lipschitzienne sur W, donc il y est continue.

▷ Exemples. – On pose

$$f: \begin{vmatrix} \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \\ (x,y) \longmapsto (x^2 - y^2, 2xy). \end{vmatrix}$$

Au voisinage de quels points la fonction f est un \mathscr{C}^1 -difféomorphisme? Pour $(x,y) \in \mathbb{R}^2$, la matrice de df(x,y) dans la base canonique de \mathbb{R}^2 , i. e. sa jacobienne, est

$$\begin{pmatrix} 2x & -2y \\ 2y & 2x \end{pmatrix}$$

Théorèmes d'inversion locale et des fonctions implicites – Chapitre 5

de déterminant $2(x^2 + y^2)$ qui est nul si et seulement si x = y = 0. D'après le théorème d'inversion locale, la fonction f est un \mathscr{C}^1 -difféomorphisme local de \mathbb{R}^2 au voisinage de tout point $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Mais ce n'est pas un \mathscr{C}^1 -difféomorphisme global de \mathbb{R}^2 dans lui-même car elle n'est pas injective.

- Soit $A_0 \in \mathscr{S}_n(\mathbb{R}) \cap \mathrm{GL}_n(\mathbb{R})$. Montrons qu'il existe un voisinage ouvert W de A_0 dans $\mathscr{S}_r(\mathbb{R})$ tel que

$$\forall A \in W, \exists P \in \operatorname{GL}_n(\mathbb{R}), \quad A = {}^{\operatorname{t}}PA_0P.$$

Pour cela, on pose

$$\phi \colon \left| \begin{array}{c} \mathscr{M}_n(\mathbb{R}) \longrightarrow \mathscr{S}_n(\mathbb{R}), \\ A \longmapsto {}^{\mathrm{t}} M A_0 M. \end{array} \right.$$

C'est une application symétrique, de classe \mathscr{C}^1 car elle est bilinéaire. Pour tout $H \in \mathscr{M}_n(\mathbb{R})$, on a

$$d\phi(I_n) \cdot H = {}^{\mathrm{t}}HA_0 + A_0H.$$

En particulier, on a

$$\operatorname{Ker}[d\phi(I_n)] = \{ H \in \mathscr{M}_n(\mathbb{R}), A_0 H \in \mathscr{A}_n(\mathbb{R}) \} = A_0^{-1} \mathscr{A}_n(\mathbb{R})$$

qui est de dimension n(n-1)/2. Prenons $E := A_0^{-1} \mathscr{S}_n(\mathbb{R})$ et $F := \mathscr{S}_n(\mathbb{R})$. Alors l'application

$$\phi_{|E} \colon \left| \begin{matrix} E \longrightarrow F, \\ M \longmapsto {}^{\mathrm{t}} M A_0 M \end{matrix} \right|$$

est de classe \mathscr{C}^1 et la différentielle $d\phi_{|E}(I_n)$ est bijective de E sur F. En effet, elle est injective car $\operatorname{Ker}[d\phi_{|E}(I_n)] = \operatorname{Ker}[d\phi(I_n)] \cap E = \{0\}$ et l'égalité des dimensions de E et F permet de conclure qu'elle est bijective. D'après le théorème d'inversion locale, il existe un voisinage ouvert V de I_n dans E et un voisinage ouvert W de $A_0 = \phi_{|E}(I_n)$ dans F tels que la fonction ϕ soit un \mathscr{C}^1 -difféomorphisme de V sur W. Soit $A \in W$. En particulier, la matrice

$$M_A := \phi_{|E}^{-1}(A) \in A_0^{-1} \, \mathscr{S}_n(\mathbb{R})$$

satisfait ${}^tM_AA_0M_A=A.$ Pour conclure, on doit justifier que, pour A assez proche de A_0 dans $\mathscr{S}_n(\mathbb{R})$, la matrice M_A est inversible. Comme $\mathrm{GL}_n(\mathbb{R})$ est un ouvert et $\phi_{|E}^{-1}(A_0)=I_n\in\mathrm{GL}_n(\mathbb{R})$, il existe $\delta>0$ tel que

$$\forall A \in W \cap \mathcal{B}(A_0, \delta), \quad \phi_{|E}^{-1}(A) \in \mathrm{GL}_n(\mathbb{R}).$$

car la fonction $\phi_{|E}^{-1}$ est continue. Ce qui permet de conclure.

5.2 Théorème des fonctions implicites

Théorème 5.2.1. Soient $(E, \| \|_E)$, $(F, \| \|_F)$ et $(G, \| \|_G)$ trois espaces de Banach, Ω un ouvert de $E \times F$, $f \colon \Omega \to G$ de classe \mathscr{C}^1 et $(a,b) \in \Omega$ tel que f(a,b) = 0 et $\frac{\partial f}{\partial y}(a,b)$ soit bijective. Alors il existe

- un voisinage ouvert V de a dans $(E, || ||_E)$,
- un voisinage ouvert W de b dans $(F, || \cdot ||_F)$,
- une fonction $\varphi \colon V \to W$ de classe \mathscr{C}^1 ,

tels que

$$\{(x,y) \in V \times W, f(x,y) = 0\} = \{(x,\varphi(x)), x \in V\}.$$

De plus, si f est de classe \mathscr{C}^k de Ω sur G, alors φ l'est également du Ω sur G et

$$d\varphi(a) = -\frac{\partial f}{\partial y}(a,b)^{-1} \circ \frac{\partial f}{\partial x}(a,b).$$

Preuve L'application

$$g: \left| \begin{array}{c} \Omega \subset E \times F \longrightarrow E \times G, \\ (x,y) \longmapsto (x,f(x,y)) \end{array} \right|$$

est de classe \mathscr{C}^1 . Pour tout $(h_1, h_2) \in E \times F$, on a

$$dg(a,b)\cdot (h_1,h_2) = \left(h_1,\frac{\partial f}{\partial x}(a,b)\cdot h_1 + \frac{\partial f}{\partial y}(a,b)\cdot h_2\right).$$

Pour $(u_1, u_2) \in E \times G$, on a

$$\left[\forall (h_1, h_2) \in E \times F, \quad dg(a, b) \cdot (h_1, h_2) = (u_1, u_2)\right] \iff \begin{cases} h_1 = u_1, \\ h_2 = \frac{\partial f}{\partial y}(a, b)^{-1} \cdot \left[u_2 - \frac{\partial f}{\partial x}(a, b) \cdot u_1\right], \end{cases}$$

donc l'application dg(a,b) est une bijection de $E \times F$ sur $E \times G$. D'après le théorème d'inversion locale, il existe un voisinage ouvert $\Omega_{E \times F}$ de (a,b) dans $(\Omega, \| \|_{E \times F})$ et un voisinage ouvert $\Omega_{F \times G}$ de (a,0) dans $(F \times G, \| \|_{F \times G})$ tels que la fonction g soit un \mathscr{C}^1 -difféomorphisme de $\Omega_{E \times F}$ sur $\Omega_{F \times G}$. Soient V un voisinage ouvert de a dans $(E, \| \|_{E})$ et W un voisinage ouvert de b dans $(F, \| \|_{F})$ tels que b vert b constants b definition of b definition b definition

$$\{(x,y) \in V \times W, f(x,y) = 0\} = \{(x,y) \in V \times W, g(x,y) = (x,0)\}$$

$$= \{g^{-1}(x,0), x \in V\} \cap (V \times W)$$

$$= \{(x,\varphi(x)), x \in V\}.$$

▶ Exemple. On note

$$\mathscr{C} := \{ (x, y) \in \mathbb{R}^2, x^3 + y^3 - 3xy = 0 \}.$$

Cette courbe s'appelle le folium de DESCARTES. En quels points $(x,y) \in \mathbb{R}^2$ l'ensemble \mathscr{C} est-il localement le

FIGURE 5.1 – Représentation de la courbe \mathscr{C}

graphe d'une fonction φ ? On applique le théorème des fonctions implicites à la fonction

$$f: \begin{vmatrix} \mathbb{R}^2 \longrightarrow \mathbb{R}, \\ (x,y) \longmapsto x^3 + y^3 - 3xy \end{vmatrix}$$

qui est de classe \mathscr{C}^1 . Pour tout $(x,y) \in \mathbb{R}^2$, on a

$$\frac{\partial f}{\partial y}(x,y) = 3(y^2 - x),$$

donc

$$\left[(x,y)\in\mathscr{C}\quad\text{et}\quad\frac{\partial f}{\partial y}(x,y)=0\right]\quad\Longleftrightarrow\quad(x,y)\in I\coloneqq\{(0,0),(2^{1/3},2^{2/3})\}.$$

Pour $(a,b) \in \mathscr{C} \setminus I$, il existe deux voisinages ouverts U et V resp. de a et b dans \mathbb{R} et $\varphi \in \mathscr{C}^1(V,W)$ tels que

$$\mathscr{C} \cap W = \{(x, \varphi(x), x \in V\}.$$

Déterminons la tangente à $\mathscr C$ aux points $(a,b)\in I$. Celle-ci a pour équation $y=b+\varphi'(a)(x-a)$. Pour tout $x\in\mathbb R$ proche de a, on a $x^3+\varphi^3(x)-3x\varphi(x)=0$, donc $x^2+\varphi'(x)[\varphi(x)-x]-\varphi(x)=0$, donc

$$\varphi'(x) = \frac{\varphi(x) - x^2}{\varphi^2(x) - x}, \quad \text{donc} \quad \varphi'(a) = \frac{b - a^2}{b^2 - a}.$$