1 準備:幾何学

定義 1. Let X be a set. A topology on X is a collection of subsets of X, such that:

- (1) the empty set ϕ and the set X are open;
- (2) the union of an arbitrary collection of open sets is open;
- (3) the intersection of a finite number of open sets is open.

問題 2. X の部分集合族 O を用いて、上記の位相空間の定義を書き直せ.

定義 3. 位相空間 M が次の条件 (1),(2) を満足する時, M を m dimensional topological manifold という.

- (1) M is Hausdorff space.
- (2) For $\forall p \in M$ m 次元座標近傍 (U,φ) が存在する.

定義 4. Given any C^k manifold M, of dimension n, with $k \ge 1$, for any $p \in M$, a tangent vector to M at p is any equivalence class of C^1 curves through p on M, modulo the equivalence relation defined in below.

$$\gamma_1: (-\epsilon_1, \epsilon_1) \to M \gamma_2: (-\epsilon_2, \epsilon_2) \to M$$
 are equivalent $\Leftrightarrow^\exists (U, \varphi)$ s.t $\frac{d(\varphi \circ \gamma_1)}{dt}(0) = \frac{d(\varphi \circ \gamma_2)}{dt}(0)$ (1) 次に逆写像定理が重要となる.

定理 5. M,N を C^r 級多様体, $f:M\to N$ を C^r 級写像とする. $(df)_p:T_p(M)\stackrel{\sim}{\longrightarrow} T_{f(p)}N$ なら, $p\in^\exists U,f(p)\in^\exists V$ s.t $f|U:U\stackrel{\sim}{\longrightarrow} V$.

2 取り組み

今回の量子カーネル SVM について、どのようなことが背景にあって、問題点、改善の方法と検討結果について考察していく予定である.

1. SVM

何を解くか。どう解くか。

2. カーネル SVM

既存研究の問題点の調査.

カーネルを用いることの利点

課題

3. 量子カーネル SVM

何を解く問題か。

どう解くか。

4. 自然勾配法

何を解く方法か、どう解く方法か。

課題は何か

5. 量子カーネル SVM への適用

2.1 SVM:サポートベクターマシンについて

2.1.1 パーセプトロン

2.1.2 SVM の概略

分類問題を解くアルゴリズムとして、SVM(Support Vector Machine) があげられる. SVM は,パーセプトロンの拡張であり、マージンを最適化することを目的とする. ここでマージンを最適化(ここではマージンの最適化はマージンの最大化を意味することにする.)するとは,それぞれのクラスに属する点群のうち,直線に一番近い点と直線の距離を考え,その距離を最大化することである.

簡単のため、2次元の時の点 (x_0, y_0) と直線 $y = a \cdot x + w_0$ の距離について述べる.

$$\frac{\|a \cdot x_0 - y_0 + w_0\|}{\sqrt{a^2 + 1}} \tag{2}$$

ここで、 $\mathbf{w} := (a, -1), \mathbf{x}_0 := (x_0, y_0)$ とした時、

$$\frac{\|w_0 + \mathbf{w} \cdot \mathbf{x}_0\|}{\|\mathbf{w}\|} \tag{3}$$

2.1.3 研究: Karush-Kuhn-Tucker 条件について

*参考文献:機械学習のエッセンス pp260

2.2 コーディング

2.2.1 文献

- pp76 から:達人データサイエンティストによる理論と実践:Python 機械学習プログラミング.
- 機械学習のエッセンス.