

National Forensic Sciences University, Goa MTECH AIDS

Mathematical and Computational Foundation for AI CTMSAIDS SI P1

Monday, 14-10-2024

240347007003

Timing: 11:00 to 12:30 PM

I Semester

Max mark: 50

1. Attempt any Four questions

(a) Find a basis for the eigenspace corresponding to each listed eigenvalue for the following matrices:

$$A = \begin{pmatrix} 5 & 0 \\ 2 & 1 \end{pmatrix}$$
 Eigenvalues: $\lambda = 1, 5$ (5)

(b) Find a basis for the eigenspace corresponding to each listed eigenvalue for the following matrices:

$$A = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix} \text{ Eigenvalue: } \lambda = 4 \tag{5}$$

(c)

$$A = \begin{pmatrix} 3 & 2 \\ 3 & 8 \end{pmatrix}$$

Determine whether $\lambda=2$ is an eigenvalue of the matrix A. Explain your reasoning and show any necessary calculations to support your answer.

- (d) Define Linear Independence. Provide one suitable example.
- (e) Write a brief over view of Simple Linear Regression.

(5)

(5)

(5)

2. Attempt all questions

(b) Given the vectors:

(a) Write a short note on PCA and their applications.

CA and their applications. (5)

$$\mathbf{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$

Compute the following quantities: $(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{u}}) \mathbf{u}$

(c) Solve the following system of linear equations using the row echelon method:

$$2x + 3y - z = 1$$
$$4x + y + z = 5$$
$$-2x + 2y + 3z = 7$$

3. Attempt any one questions

(a) Determine which sets of vectors are orthogonal.

(8)

$$\mathbf{u_1} = \begin{pmatrix} -1\\4\\3 \end{pmatrix}, \quad \mathbf{u_2} = \begin{pmatrix} 5\\2\\1 \end{pmatrix}, \quad \mathbf{u_3} = \begin{pmatrix} 3\\-4\\-7 \end{pmatrix}$$

(b) Using Gram-Schmidt process how do you convert a set of linearly independent vectors into an orthonormal set. Write the Process of it and with one example.

(8)

4. Attempt any one questions

(a) Define Orthogonal Matrices and key properties. Give one example.

(7)

(b) Verify the parallelogram law for vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n :

(7)

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$$

Best wishes