Lecture 06 System Design

Structure Charts

- Program modules are represented by rectangular boxes
- Conventions: to describe the system operation, it specify the execution sequence and parameter passing

Some criteria are used for evaluation :

EX. C,D,E,F,G,H are the immediate subroutines of B.

Span of Control of module B is 6

Ideally span of control Not > 7

- 2. Fan_in: Total number of modules that call a particular module.
 - Ex. Fan_in of B is 1 and E is 2
 - Ideally structure chart should have high fan_in
- 3. Fan_out: Total number of modules which are called by a particular module
 - Ex. Fan_out of B is 2
- 4. Scope of Control: All the module which are call the children of a particular module
- 5. Scope of Effect: A decision consist of all the modules whose processing is conditional on the outcome of decision
 - Ex. Any change of B is effect of C, D & E

- Two types of Structure charts
 - 1. Transform centered Structure charts
 - Transaction centered Structure charts
- Transform centered Structure charts:
 - Received an input
 - Transformed by a sequence of operation
 - Gives outputs

Ex. If the function is $(\varphi 3(\varphi 2(\varphi 1(I)))) = out$

- Problem Out =A3(B3(A2(B2(A1(B1(I))))))
- Output = {T1(I), T2(I), T3(I)}

Problem Output =G2{T1(g1(I)), T2(g1(I)), T3(g1(I))}

Problems

 Calculate the payback period from the table and state whether the project is worthwhile or not, when the rate of interest in an investment account is 8 percent.

Year	System Cost(\$)	System Benefits (\$)
0	1,50,000	
1		70,000
2		50,000
3		80,000
4		30,000
5		20,000

Problems

1. Using COCOMO I

- Determine the Effort to develop of a Software product
- Determine the Duration to develop of a Software product
- Determine the Number of People engaged to develop of a Software product.
- Input of your program is Lines of Code and Effort Adjustment Factor.
- Also determine the type of project (i) Organic, (ii) Semidetached and (iii) Embedded.

Problems

- Using COCOMO II
 - Determine the Object Point to develop of a Software product
 - Determine the New Object Point to develop of a Software product
 - Determine the Effort to develop of a Software product
 - Determine the Number of People engaged to develop Software product, if Duration of development of the software is 5 years.
- If the software consist of 10 Screens, 4 Reports and 15 3GL Components. Assume component based development and 60% reuse is applied.