Lecture 18: Relations and Representing Relations

Jingjin Yu | Computer Science @ Rutgers

Outline

Copyrighted Material – Do Not Distribute

- Lecture 17 review
- Relations
 - Set operations over relations
 - Composition of relations
 - Representations
 - Matrix
 - Directed graph

► A repeating note: make sure you read the textbook

L17: Binary Relation

Copyrighted Material – Do Not Distribute

- ▶ **Def**ⁿ: Let A and B be sets. A **binary relation** from A to B is a subset of $A \times B$.
 - Notation: $R \subset A \times B$ is a set of relations. E.g. aRb means $(a,b) \in R$. This reads a is related to b by R. aRb means $(a,b) \notin R$. Sometimes relation is also written as $a \sim b$.
- Ex: A: US cities, B: US states

 Ex: A: US cities, B: US states

 Ciffy X States

Ex: $A = \{0; 1; 2\}; B = \{a; b\}, R = \{(0, a), (0, b), (1, a), (2, b)\}.$

R	а	b
0	×	×
1	×	
2		×

L17: Binary Rations on a Set

Copyrighted Material – Do Not Distribute

- ▶ **Def**ⁿ: A (binary) relation R on a set A is a relation from $A \rightarrow A$.
- **Ex**: A: students, R: "classmates"
- ▶ If |A| = n, how many possible relations R?
 - \triangleright Total # pairs: n^2
 - E.g., $A = \{1, 2\}$, pairs $P = \{(1,1), (1,2), (2,1), (2,2)\}$
 - \triangleright Any subset of P defines a relation, so total of 2^{n^2}
- Types of binary relations on a set
 - Reflexive
 - Symmetric, antisymmetric
 - Transitive

L17: Reflexivity – Symmetry – Transitivity

▶ **Def**ⁿ: A relation R on A is **reflexive** if $(a, a) \in R$ for all $a \in A$

Copyrighted Material – Do

- Ex: A: Cities, R: "Road between"
- ▶ **Def**ⁿ: A relation R on A is symmetric if $(a,b) \in R \leftrightarrow (b,a) \in R$ for all $a, b \in A$
 - ▶ Ex: R: Friendship
- ▶ **Def**ⁿ: A relation R on A is **antisymmetric** if $(a,b) \in R$ and $(b,a) \in R$ implies a=b for $a,b \in A$
 - Ex: R: Parent-of
- (a, b) ER, (b, a) &K ▶ **Def**ⁿ: A relation R on A is **transitive** if $(a, b) \in R$ and $(b, c) \in R$ implies that $(a, c) \in R$ (01/0), (0,0) -Xasc)
 - Ex: R: Ancestor-of

L17: One More Example

Copyrighted Material – Do Not Distribute

▶ Is the "divides" relation reflexive, symmetric, antisymmetric, transtive on positive integers?

9 (2,9), (48), m3 alb Reflectivity allowable as a show as a show a Note: what if we use integers instead of positive integers?

Set Operations over Relations

Copyrighted Material – Do Not Distribute

- Relations are sets so we can do union, intersection, difference over them.
 - $\mathbf{Ex}: A = \{1,2,3\}, B = \{1,2,3,4\}, R_1 = \{(1,1),(2,2),(3,3)\}, R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$
 - ▷ Compute $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 R_2$, $R_2 R_1$

Composition of Relations

Copyrighted Material – Do Not Distribute

▶ Given sets A, B, C and relations $R \subset A \times B$ and $S \subset B \times C$, the composition $S \circ R$ is

$$S \circ R = \{(a, c) \mid (a, b) \in R \text{ and } (b, c) \in S\}$$

- ▶ **Ex**: $A = \{1,2,3\}, B = \{1,2,3,4\}, C = \{0,1,2\}, R = \{(1,1), (1,4), (2,3), (3,1), (3,4)\}, S = \{(1,0), (2,0), (3,1), (3,2), (4,1)\}$
- ▶ To compute $S \circ R$ do it for each pair of $r \in R$, $s \in S$


```
Composition of Relations

Copyrighted Material – Do Not Distribute

Figure 1. Given sets A, B, C and relations R ⊂ A × B and S ⊂ B × C, the composition S ∘ R is

S ∘ R = \{(a,c) \mid (a,b) \in R \text{ and } (b,c) \in S\}
Figure 2. Ext. A = (1,2.3), B = (1,2.3,4), C = (0,1.2), R = ((1,1), (1.4), (2.3), (3.1), (3.4)), S = ((1,0), (2.0), (3.1), (3.2), (4.1))
For compute S ∘ R, do it for each pair of r ∈ R, s ∈ S (1,1), (1,0), C ≥ (1,0), C ≥ (1,0), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (2.1), (
```


Matrix Representation

Copyrighted Material – Do Not Distribute

Ex: $A = \{1,2,3\}, B = \{1,2\}, R = \{(2,1), (3,1), (3,2)\}$

Ex: $A = \{a, b, c, d\}, R = \{(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)\}$

Directed Graph (Digraph) Representation

Copyrighted Material – Do Not Distribute

Ex: $A = \{1,2,3,4\}, R = \{(1,1), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (4,1)\}$

