Common Random Numbers in Discrete Event Simulation for Disease Modeling: A Statin Treatment Case Study

Hanxuan Yu¹, hanxuan.a.yu@vumc.org
John Graves¹, Shawn Garbett², Ashley A. Leech¹, Jinyi Zhu¹

Presented at the 45th Annual Meeting of the Society for Medical Decision Making, October 2023

¹Department of Health Policy, Vanderbilt University School of Medicine, Nashville, TN

²Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN

No conflicts of interest

Common Random Numbers (CRNs)

- To reduce the **stochastic noises** between simulation iterations
- Already been used in micro-simulation, but not in discrete event simulation

Discrete Event Simulation(DES)

Distribution for time-to-event analysis

How to generate random numbers in an exponential distribution

Inversion sampling

- Generate a uniform random number u in (0,1);
- $t = \ln(1-u)/(-\lambda)$, λ is the rate;
- u is the quantile.

Healthy-Sick-Death Example

Set seed, No CRN;

• In status quo, rHealthySick = 0.1.

Start of Simulation

rHealthySick = 0.1 rSickDeath = 0.2rSickHealthy = 0.05

rHealthyDeath = 0.03

Healthy-Sick-Death Example

- Set seed, No CRN;
- An intervention reduces rHealthySick to 0.08.

rHealthyDeath = 0.03 rHealthySick = 0.08 rSickDeath = 0.2 rSickHealthy = 0.05

Person 1, LE = 21 yrs Person 2, LE = 13 yrs	1 2 3 4	0.467 0.834 0.926
Person 2,	3	0.926
· —		
· —	4	0.527
LE = 13 yrs		0.527
	5	0.593
٩	6	0.959
	7	0.808
	8	0.393
Person 3	9	0.889
	10	0.295
Horizon		•••

21 yrs
22 yrs
87 yrs
9 yrs
4 yrs
64 yrs
55 yrs
6 yrs
11 yrs
7 yrs

Common Random Numbers(CRNs)

Status quo rHS = 0.1

Event Order	Person 1 (LE = 9 yrs)				Person 2 (LE = 17 yrs)				
	H -> S (r = 0.1)	H -> D (r = 0.03)	S -> H (r = 0.05)	S -> D (r = 0.2)	H -> S (r = 0.1)	H -> D (r = 0.03)	S -> H (r = 0.05)	S -> D (r = 0.2)	:
1	0.467 (6 yrs)	0.661 (36 yrs)	0.986	0.805	0.596 (9 yrs)	0.375 (23 yrs)	0.538	0.199	
2	0.834	0.305	0.965 (67 yrs)	0.475 (3 yrs)	0.913	0.085	0.701 (24 yrs)	0.814 (8 yrs)	
3	0.926	0.237	0.156	0.405	0.975	0.543	0.020	0.294	
4	0.527	0.737	0.960	0.675	0.770	0.325	0.757	0.279	

Intervention rHS = 0.08

	Event Order	Person 1 (LE = 11 yrs)				Person 2 (LE = 19 yrs)				
		H -> S (r = 0.08)	H -> D (r = 0.03)	S -> H (r = 0.05)	S -> D (r = 0.2)	H -> S (r = 0.08)	H -> D (r = 0.03)	S -> H (r = 0.05)	S -> D (r = 0.2)	
	1	0.467 (8 yrs)	0.661 (36 yrs)	0.986	0.805	0.596 (11 yrs)	0.375 (23 yrs)	0.538	0.199	
	2	0.834	0.305	0.965 (67 yrs)	0.475 (3 yrs)	0.913	0.085	0.701 (24 yrs)	0.814 (8 yrs)	
	3	0.926	0.237	0.156	0.405	0.975	0.543	0.020	0.294	
	4	0.527	0.737	0.960	0.675	0.770	0.325	0.757	0.279	

Common Random Numbers (CRNs)

Pros

Reduces stochastic noises

Helps counterfactuallike analysis or sensitivity analysis More evident effect of varying parameters, less trajectories for convergence

Cons

Programming complexity

Computational time from RN Generator

Case Study: Statin Treatment

- Cohort: US people aged 40~80 at the risk of atherosclerotic cardiovascular disease (ASCVD), populated with the National Health and Nutrition Examination Survey.
- Parameterization: Spahillari A., etc.
 (2020)
- Strategy: Use Statins / Not Use
- Outcome: Net Health Benefit(NHB)

Effect of CRNs on Model Outputs

• When running the one-way sensitivity analysis for the relative risk of ASCVD (where a lower RR leads to a higher incremental NHB), CRN reduced the stochastic noise.

Effect of CRNs on Model Outputs

• CRNs resulted in faster stabilization of the model-estimated iNHB around the true value with

smaller sample sizes.

Conclusions

- Reduce the noise around the true value;
- Enhance efficiency in computationally intensive tasks.
 - PSA, calibrations, VOI...

Thank You for Listening!

Email: hanxuan.a.yu@vumc.org

Twitter: @hanxuan_yu