

# Het gebruik van de normalen bij het bouwen van BSP acceleratiestructuren

**Thesisverdediging** 

Jesse Hoobergs KU Leuven

Juni 2019

Promotor:

Prof. dr. ir. Ph. Dutré

- **Overzicht** 
  - 1 Inleiding
  - $\bigcirc$  BSP bomen
  - $3BSP_{SWEEP}$
  - 4 Implementatie
  - 6 Resultaten
  - **6** Conclusie

## Outline

- 1 Inleiding

- Fysisch gebaseerd renderen
- ► Stralen volgen door een scene

- Fysisch gebaseerd renderen
- ► Stralen volgen door een scene



- Praktische aantallen:
  - 1 miljoen pixels
  - 1 miljoen driehoeken (mogelijks veel meer)
  - 100 stralen per pixel

- Praktische aantallen:
  - 1 miljoen pixels
  - 1 miljoen driehoeken (mogelijks veel meer)
  - 100 stralen per pixel

 $\implies 10^{14}$  straal-driehoekintersecties

- Praktische aantallen:
  - 1 miljoen pixels
  - 1 miljoen driehoeken (mogelijks veel meer)
  - 100 stralen per pixel
- $\implies 10^{14}$  straal-driehoekintersecties
- ⇒ Acceleratiestructuren

### **Acceleratiestructuren**

- Doel:
  - Totale rendertijd minimaliseren
  - Straal-driehoekintersecties te verminderen.

## 1 Acceleratiestructuren

- Doel:
  - Totale rendertijd minimaliseren
  - Straal-driehoekintersecties te verminderen
- Simpelste versie
  - Omhullende volume van scene (balk, bol, etc)
  - Test intersectie met omhullend volume
    - Intersectie: Test alle driehoeken
    - Geen intersectie: Test nul driehoeken
  - Recursief opdelen tot boomstructuur

## 1 Acceleratiestructuren

- Doel:
  - Totale rendertijd minimaliseren
  - Straal-driehoekintersecties te verminderen
- Simpelste versie
  - Omhullende volume van scene (balk, bol, etc)
  - Test intersectie met omhullend volume
    - Intersectie: Test alle driehoeken
    - Geen intersectie: Test nul driehoeken
  - Recursief opdelen tot boomstructuur
- Twee manieren van opdelen:
  - Volgens objecten
  - Volgens volume

## 1 Opdelen volgens object

- Driehoeken opgedeeld in disjuncte groepen
- Kindvolumes = omhullende volumes groepen
- Elke driehoek in exact één kindvolume
- Kindvolumes kunnen overlappen in de ruimte

# 1 Opdelen volgens object

- Driehoeken opgedeeld in disjuncte groepen
- Kindvolumes = omhullende volumes groepen
- Elke driehoek in exact één kindvolume
- Kindvolumes kunnen overlappen in de ruimte



## 1 Opdelen volgens ruimte

- Volume opgedeeld in disjuncte groepen
- Splitsing via splitsingsvlakken
- Elke driehoek in minstens één kindvolume
- Kindvolumes overlappen niet in de ruimte

# 1 Opdelen volgens ruimte

- Volume opgedeeld in disjuncte groepen
- Splitsing via splitsingsvlakken
- ► Elke driehoek in minstens één kindvolume
- Kindvolumes overlappen niet in de ruimte



## 1 BSP bomen

- Binary Space Partitioning bomen
- Delen volgens ruimte
- Delen steeds in 2 kindvolumes
- Splitsing via willekeurige vlakken in de ruimte
- ► *Kd* boom:
  - Enkel asgealigneerde vlakken
  - Computationele voordelen bij bouwen en renderen
  - Meest gebruikte BSP boom
- Algemene BSP boom:
  - Veel meer mogelijke splitsingsvlakken
  - Moeilijk om goede te vinden

## **Doel thesis**

- ► Algemene *BSP* boom
- Normalen van driehoeken
- Goede splitsingsvlakken
- $ightharpoonspin BSP_{SWEEP}$  boom

## Outline

- $\bigcirc$  BSP bomen

## 2 BSP bomen

- Bouwen
- Intersecteren
- ightharpoonup Bestaande BSP bomen

## **2** Bouwen BSP boom

- Wortelknoop
  - Volume = omhullende balk scene
  - Bevat alle driehoeken
- Splits in twee kindknopen
  - Splits het volume volgens een splitsingsvlak
  - Maak twee kindknopen, één voor elk volumedeel
  - Bepaal voor elke kindknoop de driehoeken
- Splits kindknopen recursief tot stopconditie

#### 2 Bouwen BSP boom



## 2 Intersecteren BSP boom

- Bepaal intersectie straal met wortelknoop:
  - geen intersectie: geen intersecterende driehoek
  - anders: doorkruis de wortelknoop
- Doorkruisen knoop
  - Inwendige knoop
    - Bepaal intersectie straal met splitsingsvlak
    - Bepaal de volgorde waarin de straal door de kindknopen gaat
    - Doorkruis de kindknopen in deze volgorde
  - Bladknoop
    - Bepaal voor elke driehoek de straal-driehoek intersectie

#### 2 Intersecteren BSP boom



### Kd boom

- Enkel asgealigneerde splitsingsvlakken
  - Volume elke knoop = asgealigneerde balk
  - Goedkoper doorkruisen inwendige knoop
  - Kunnen zich minder goed aanpassen aan scene

## Kd boom

- Enkel asgealigneerde splitsingsvlakken
  - Volume elke knoop = asgealigneerde balk
  - Goedkoper doorkruisen inwendige knoop
  - Kunnen zich minder goed aanpassen aan scene



- Bepaal kost na splitsen volgens vlak
- Kies beste splitsingsvlak of splits niet

- Bepaal kost na splitsen volgens vlak
- Kies beste splitsingsvlak of splits niet
- Surface Area heuristiek
  - Kans om kindknoop te doorkruisen is evenredig met oppervlakte
  - Kost knoop evenredig met aantal driehoeken
  - Na splitsing zijn beide kindknopen bladknopen
  - $\mathcal{K}_p = \frac{SA(l)}{SA(p)} * n_l * \mathcal{K}_i + \frac{SA(r)}{SA(p)} * n_r * \mathcal{K}_i + \mathcal{K}_d$
  - Kost om niet te splitsen:  $n_l * \mathcal{K}_i$

- Bepaal kost na splitsen volgens vlak
- Kies beste splitsingsvlak of splits niet
- Surface Area heuristiek
  - Kans om kindknoop te doorkruisen is evenredig met oppervlakte
  - Kost knoop evenredig met aantal driehoeken
  - Na splitsing zijn beide kindknopen bladknopen
  - $\mathcal{K}_p = \frac{SA(l)}{SA(p)} * n_l * \mathcal{K}_i + \frac{SA(r)}{SA(p)} * n_r * \mathcal{K}_i + \mathcal{K}_d$
  - Kost om niet te splitsen:  $n_l * \mathcal{K}_i$
- Alle asgealigneerde vlakken testen is onhaalbaar
  - ullet Havran: slechts 2n mogelijke splitsingsvlakken per richting
  - ullet SA kost stijgt/daalt monotoon tussen eindpunten driehoeken langs die richting
  - Enkel asgealigneerde vlakken door eindpunten testen

- SA kost berekenen
  - Aantal driehoeken in beide kindknopen nodig
  - Oppervlaktes beide kindknopen nodig

- ► SA kost berekenen
  - Aantal driehoeken in beide kindknopen nodig
  - Oppervlaktes beide kindknopen nodig
- Sweeping
  - Sorteer driehoeken volgens eindknopen langs as
  - 'Veeg' over de as en update  $n_l$  en  $n_r$



### $\mathbf{2}$ RBSP boom

- ► Enkel splitsingsrichtingen uit vaste verzameling van k richtingen
  - Volume elke knoop = k DOP
  - Duurder doorkruisen inwendige knoop
  - Kunnen niet alle niet-intersecterende driehoeken scheiden

## $\mathbf{2}$ RBSP boom

- ► Enkel splitsingsrichtingen uit vaste verzameling van k richtingen
  - Volume elke knoop = k DOP
  - Duurder doorkruisen inwendige knoop
  - Kunnen niet alle niet-intersecterende driehoeken scheiden



## 2 Praktisch

- Bepalen vaste verzameling splitsingsrichtingen
  - Belangrijk dat ze samen de eenheidsbol goed bedekken
- SA kost kan gebruikt worden, inclusief sweeping
- ▶ Oppervlakte k DOP berekenen is duurder
- lacktriangle Ten opzichte van Kd boom
  - Minder straal-driehoekintersecties
  - Tragere inwendige knoopdoorkruising
  - Tragere rendertijd

## 2 $BSP_{IZE}$ boom

- lacktriangle Enige bestaande algemene BSP boom bij rendering
- Geometrie-afhankelijke splitsingsvlakken
  - ullet De asgealigneerde vlakken van Kd boom
  - Vlak door elke driehoek
  - Drie vlakken door zijde driehoek en loodrecht op driehoek
- ▶ Volume elke knoop = convex veelvlak
- Sweeping
  - Mogelijk voor de Kd richtingen
  - Niet mogelijk voor de vier andere vlakken per driehoek
    - BVH hulpstructuur nodig om  $n_l$  en  $n_r$  efficiënt te berekenen
    - Tragere bouwtijd

# 2 $BSP_{IZE}^{Kd}$ boom

Optimalisatie

# 2 $BSP_{IZE}^{Kd}$ boom

- **Optimalisatie**
- Inwendige Kd knopen bevoordelen
  - Sneller te doorkruisen dan BSP knopen
  - Lagere doorkruiskost in SA kost dan inwendige BSP knopen

# 2 $BSP_{IZE}^{Kd}$ boom

- Optimalisatie
- lacktriangle Inwendige Kd knopen bevoordelen
  - ullet Sneller te doorkruisen dan BSP knopen
  - ullet Lagere doorkruiskost in SA kost dan inwendige BSP knopen
- Aanpassing SA heuristiek
  - Aparte  $\mathcal{K}_{d,Kd}$  en  $\mathcal{K}_{d,BSP}$

# 2 $BSP_{IZE}^{Kd}$ boom

- Optimalisatie
- lacktriangle Inwendige Kd knopen bevoordelen
  - ullet Sneller te doorkruisen dan BSP knopen
  - ullet Lagere doorkruiskost in SA kost dan inwendige BSP knopen
- Aanpassing SA heuristiek
  - Aparte  $\mathcal{K}_{d,Kd}$  en  $\mathcal{K}_{d,BSP}$
  - Rechtstreeks gebruiken in SA kost werkt niet
    - SA kost varieert lineair in aantal driehoeken
    - BSP knopen splitsen beter
    - Bijna enkel BSP knopen gebruikt

# 2 $BSP_{IZE}^{Kd}$ boom

- Optimalisatie
- Inwendige Kd knopen bevoordelen
  - ullet Sneller te doorkruisen dan BSP knopen
  - ullet Lagere doorkruiskost in SA kost dan inwendige BSP knopen
- ightharpoonup Aanpassing SA heuristiek
  - Aparte  $\mathcal{K}_{d,Kd}$  en  $\mathcal{K}_{d,BSP}$
  - Rechtstreeks gebruiken in SA kost werkt niet
    - SA kost varieert lineair in aantal driehoeken
    - BSP knopen splitsen beter
    - Bijna enkel BSP knopen gebruikt
  - ullet  $\mathcal{K}_{d,BSP}$  lineair afhankelijke van aantal driehoek
    - $\mathcal{K}_{d,BSP} = \alpha * \mathcal{K}_i * (n-1) + \mathcal{K}_{d,Kd}$
    - Beste splitsingsvlak zoeken
    - Indien niet gevonden, vaste  $\mathcal{K}_{d,BSP}$

#### 2 Vergelijking

- ightharpoonup Ten opzichte van Kd boom
  - Geen volledige sweeping mogelijk
  - Minder straal-driehoekintersecties
  - Gemiddeld lichtjes tragere inwendige knoopdoorkruising
  - Lichtjes snellere rendertijd

## 2 Vergelijking

- ► Ten opzichte van *Kd* boom
  - Geen volledige sweeping mogelijk
  - Minder straal-driehoekintersecties
  - Gemiddeld lichtjes tragere inwendige knoopdoorkruising
  - · Lichtjes snellere rendertijd
- ► Ten opzichte van RBSP boom
  - Duurdere bouwtijd
  - ullet Beide kunnen snelle Kd doorkruising gebruiken

## Vergelijking

- Aantal splitsingsvlakken per niveau
  - Kd: 6n
  - RBSP: 2kn
  - $BSP_{IZE}$ : 10n
- Totaal aantal verschillende geteste splitsingsvlakken
  - Kd: 6n
  - $\bullet$  RBSP: 2kn
  - $BSP_{IZE}$ : 10n
- Zelfs BSP<sub>IZE</sub> gebruikt niet volledige vrijheid

#### 2 Aantal splitsingsvlakken

ightharpoonup Zelfde splitsingsvlakken op elk niveau (bv  $BSP_{IZE}$ )



- Driehoeken die in het bovenste niveau niet gesplitst kunnen worden
  - Kunnen in geen enkel niveau van elkaar gesplitst worden

#### Outline

- 3  $BSP_{SWEEP}$

## 3 Concept

- ► Algemene *BSP* boom
- Geometrie-afhankelijke splitsingsrichtingen
  - In elke knoop k richtingen bepaald
  - Richtingen kunnen afhankelijk zijn van driehoeken in knoop
  - Sweeping over deze richtingen
  - Geen hulpstructuur nodig
- Drie ontwerpbeslissingen
  - Methode gebruikt om de k-richtingen te bepalen
  - Waarde van k
  - Kd richtingen altijd gebruiken of niet ?
- ightharpoonup RBSP boom is  $BSP_{SWEEP}$  boom met steeds zelfde richtingen

## 3 Bepalen k-richtingen

- $\triangleright$  BSP<sub>random</sub>
  - Willekeurige richtingen (uniform op hemisfeer)
  - Idee: met veel verschillende (mogelijks slechte) vlakken proberen te splitsen
  - ullet Kans op splitsing door willekeurige richting even groot als door Kd richting
- $\triangleright$   $BSP_{wn}$ 
  - Normalen van willekeurige driehoeken in de knoop
  - Idee: splitsen volgens oriëntatie driehoeken
  - Maakt gebruik van welke driehoeken samen in een knoop zitten
- $\triangleright$   $BSP_{cn}$ 
  - Clustercentra van normalen van de driehoeken in de knoop
  - Idee: splitsen volgens veelvoorkomende oriëntaties
  - Maakt gebruik van welke driehoeken samen in een knoop zitten

#### 3 Kd richtingen gebruiken?

- k richtingen genereren
  - $BSP_{random}$
  - $\bullet$   $BSP_{wn}$
  - $\bullet$   $BSP_{cn}$
- ▶ Kd richtingen en k-3 richtingen genereren
  - Kd richtingen behandelen als BSP richtingen
    - BSPrandom+
    - $BSP_{wn+}$
    - $BSP_{cn+}$
  - Kd richtingen apart behandelen
    - $BSP^{Kd}_{random+}$
    - $BSP_{wn+}^{Kd}$
    - $BSP_{nn}^{Kd}$

## 3 Aantal splitsingsvlakken

Andere splitsingsvlakken op elk niveau



- Driehoeken die in het bovenste niveau niet gesplitst kunnen worden
  - Kunnen op lagere niveaus misschien wel gesplitst worden
  - $\mathcal{O}(nlog(n))$  verschillende splitsingsvlakken ipv  $\mathcal{O}(n)$

#### Outline

- 4 Implementatie

#### 4 Implementatie

- Pbrt-v3 renderer
- Enkel op de CPU
- Bouwen is niet geparallelliseerd
- ► Geïmplementeerde *BSP* bomen:
  - Kd.
  - RBSP en  $RBSP^{Kd}$
  - $BSP_{IZE}$  en  $BSP_{IZE}^{Kd}$
  - $BSP_{random(+)}^{(Kd)}$ ,  $BSP_{wn(+)}^{(Kd)}$  en  $BSP_{cn(+)}^{(Kd)}$

#### Outline

- 6 Resultaten

#### 5 Scenes



(a) Killeroo Been scene



(b) Sponza scene



(c) Conference scene



(d) Museum scene

Killeroo: 33264 driehoekenSponza: 227309 driehoeken

Conference: 123651 driehoeken

Museum: 1462840 driehoeken

#### 5 Twee experimenten

- lacktriangle Afhankelijkheid van het aantal richtingen k bij  $BSP_{SWEEP}$ 
  - Eerste drie scenes zeven keer gerenderd
    - Voor elk k-waarde van 2 tem 10
    - Voor elk van de negen  $BSP_{SWEEP}$  bomen
  - Uitvoering met rendertijd = mediaan zeven rendertijden gebruikt als representatieve
- lacktriangle Vergelijking met de andere BSP bomen
  - Alle vier scenes zeven keer gerenderd
    - Voor elke besproken bestaande BSP boom
    - Voor  $BSP^{Kd}_{random+}$ ,  $BSP^{Kd}_{wn+}$ ,  $BSP^{Kd}_{cn+}$  met optimale k-waarde
  - Uitvoering met rendertijd = mediaan zeven rendertijden gebruikt als representatieve

#### 5 Afhankelijkheid van het aantal richtingen

- Bouwtijd
  - Twee ordegroottes groter dan bouwtijd Kd boom
  - Afhankelijkheid van k
    - $BSP_{random(+)}^{(Kd)}$  lineair -  $BSP_{wn(+)}^{(Kd)}$  en  $BSP_{cn(+)}^{(Kd)}$ : sublineair
  - ullet Op zelfde wijze afhankelijk van aantal driehoeken als Kd boom
  - Gebruik convex veelvlak is ongeveer 25 keer trager dan asgealigneerde balk

# 5 Afhankelijkheid van het aantal richtingen

- Aantal knopen
  - Stijgt met stijgende k, maar vlakt snel af
  - $BSP^{(Kd)}_{random(+)}$ : 1.8 2 keer zoveel knopen als Kd boom
  - $BSP_{wn(+)}^{(Kd)}$  en  $BSP_{cn(+)}^{(Kd)}$ : 1.2 1.3 keer zoveel knopen als Kd boom
- lacksquare Procentueel aantal Kd knopen
  - Daalt met stijgende k, maar vlakt snel af
  - $BSP_{random+}^{Kd}$ : 20% 35 %
  - $BSP_{wn+}^{Kd}$  en  $BSP_{cn+}^{Kd}$ : 30% 45 %
  - Afhankelijkheid van de diepte
    - Bovenste niveaus: bijna enkel Kd knopen
    - Onderste niveaus: bijna enkel BSP knopen

## 5 Rendertijd

- ▶  $BSP_{SWEEP}$  boom zonder Kd richtingen
  - Daalt sterk met stijgende k
  - ullet Enkel sneller dan Kd boom bij Killeroo Been scene
  - Daalt tot ongeveer 1.8 keer  $(BSP_{random})$  en 1.3 keer  $(BSP_{wn})$  en  $BSP_{cn}$  trager
- $lacktriangleright BSP_{SWEEP}$  boom met Kd richtingen als BSP richtingen
  - Daalt lichtjes met stijgende k en stijgt dan voor grotere k-waarden
  - ullet Bij minstens één k-waarde sneller dan Kd boom
  - $BSP_{random+}$  trager dan  $BSP_{wn+}$  en  $BSP_{cn+}$
- $lacktriangleright BSP_{SWEEP}$  boom met Kd richtingen apart behandeld
  - Daalt met stijgende k
  - ullet Bij elk k-waarde sneller dan Kd boom
    - $BSP_{wn+}^{Kd}$  en  $BSP_{cn+}^{Kd}$ : daalt al minstens 15% voor k = 4
  - $BSP^{Kd}_{random+}$  trager dan  $BSP^{Kd}_{wn+}$  en  $BSP^{Kd}_{cn+}$

## 5 Afhankelijkheid van het aantal richtingen

- Aantal intersecties
  - Verloop in functie van k zoals rendertijd
  - $BSP_{wn+}^{\dot{K}d}$  en  $BSP_{cn+}^{Kd}$ :
    - daling tot 40%
    - vlak vanaf een k-waarde van 5
  - $BSP_{random+}^{Kd}$ :
    - daling tot 40%
    - daalt trager maar monotoon in functie van k

#### 5 Afhankelijkheid van het aantal richtingen

- Aantal doorkruisingen
  - $BSP_{mn+}^{Kd}$  en  $BSP_{cn+}^{Kd}$ :
    - evenveel als Kd boom
    - onafhankelijk van k
  - $BSP_{random+}^{Kd}$ :
    - stijgt tot 10% meer dan Kd boom
    - stijgt traag en monotoon in functie van k
- Procentueel aantal Kd doorkruisingen
  - $BSP_{wn\perp}^{Kd}$  en  $BSP_{cn\perp}^{Kd}$ :
    - 85% 90%
    - vlak vanaf k-waarde van 5
  - $BSP_{random+}^{Kd}$ :
    - 80% 90%

    - daalt traag en monotoon in functie van k

## 5 Vergelijking bestaande bomen

- Nieuwe bomen
  - $BSP^{Kd}_{random+}$  met k = 10
  - $BSP_{wn+}^{Kd}$  met k = 6
  - $BSP_{cn+}^{Kd}$  met k = 6
  - $RBSP^{Kd}$  met k = 13
- Bestaande bomen
  - Kd
  - RBSP met k = 13
  - $\bullet$   $BSP_{IZE}$
  - $BSP_{IZE}^{Kd}$

#### Rendertijd en Bouwtijd 5

|                      |    | Killeroo Been |        | Sponza |        | Conference |        | Museum |        |
|----------------------|----|---------------|--------|--------|--------|------------|--------|--------|--------|
| Boom                 | k  | R             | В      | R      | В      | R          | В      | R      | В      |
| Kd                   |    | 100%          | 100%   | 100%   | 100%   | 100%       | 100%   | 100%   | 100%   |
| $BSP_{IZE}$          |    | 94.1%         | 21100% | 165%   | 35900% | 105%       | 26700% | 88.2%  | 90100% |
| $BSP_{IZE}^{Kd}$     |    | 95.0%         | 19600% | 109%   | 35300% | 92.5%      | 25600% | 84.7%  | 91800% |
| $BSP_{wn\perp}^{Kd}$ | 6  | 67.7%         | 11300% | 80.4%  | 9460%  | 78.6%      | 8650%  | 63.4%  | 11500% |
| $BSP_{cn+}^{Kd}$     | 6  | 67.8%         | 11700% | 80.3%  | 9740%  | 79.3%      | 8840%  | 65.9%  | 12100% |
| $BSP_{random+}^{Kd}$ | 10 | 80.2%         | 17800% | 85.5%  | 16100% | 87.1%      | 15400% | 78.4%  | 21800% |
| RBSP                 | 13 | 82.7%         | 25100% | 131%   | 23700% | 101%       | 22300% | 482%   | 25000% |
| $RBSP^{Kd}$          | 13 | 83.5%         | 25700% | 94.2%  | 23600% | 92.9%      | 22200% | 78.1%  | 24900% |

#### 5 Straal-driehoekintersecties

|                      |    | Killeroo Been |       | Sponza |       | Conference |       | Museum |       |
|----------------------|----|---------------|-------|--------|-------|------------|-------|--------|-------|
| Boom                 | k  | ZI            | SI    | ZI     | SI    | ZI         | SI    | ZI     | SI    |
| $\overline{Kd}$      |    | 100%          | 100%  | 100%   | 100%  | 100%       | 100%  | 100%   | 100%  |
| $BSP_{IZE}$          |    | 73.1%         | 72.7% | 390%   | 483%  | 128%       | 140%  | 73.1%  | 46.6% |
| $BSP_{IZE}^{Kd}$     |    | 76.2%         | 75.2% | 157%   | 142%  | 83.4%      | 81.9% | 57.5%  | 61.4% |
| $BSP_{wn\perp}^{Kd}$ | 6  | 19.0%         | 16.1% | 58.6%  | 54.3% | 47.1%      | 34.2% | 27.0%  | 40.2% |
| $BSP_{cn+}^{Kd}$     | 6  | 18.7%         | 16.4% | 59.3%  | 54.5% | 53.7%      | 41.3% | 28.5%  | 44.8% |
| $BSP_{random+}^{Kd}$ | 10 | 35.2%         | 35.8% | 49.9%  | 53.8% | 52.5%      | 52.0% | 36.8%  | 52.3% |
| RBSP                 | 13 | 44.3%         | 45.2% | 209%   | 239%  | 98.3%      | 111%  | 1380%  | 600%  |
| $RBSP^{Kd}$          | 13 | 42.4%         | 43.0% | 78.0%  | 75.8% | 73.3%      | 78.4% | 55.1%  | 33.1% |

# 5 False color afbeeldingen intersecties

 $ightharpoonup BSP_{wn+}^{Kd}$  vs Kd









#### 5 Inwendige knoopdoorkruisingen

|                      |                  | Killeroo Been |       | Sponza |       | Conference |       | Museum |       |
|----------------------|------------------|---------------|-------|--------|-------|------------|-------|--------|-------|
| Boom                 | $\boldsymbol{k}$ | ZD            | SD    | ZD     | SD    | ZD         | SD    | ZD     | SD    |
| Kd                   |                  | 100%          | 100%  | 100%   | 100%  | 100%       | 100%  | 100%   | 100%  |
| $BSP_{IZE}$          |                  | 97.3%         | 101%  | 130%   | 128%  | 117%       | 115%  | 109%   | 98.4% |
| $BSP_{IZE}^{Kd}$     |                  | 100%          | 102%  | 117%   | 109%  | 107%       | 107%  | 107%   | 103%  |
| $BSP_{wn\perp}^{Kd}$ | 6                | 83.2%         | 83.9% | 98.6%  | 99.6% | 96.7%      | 96.5% | 94.1%  | 90.6% |
| $BSP_{cn+}^{Kd}$     | 6                | 83.0%         | 85.0% | 98.6%  | 99.5% | 96.0%      | 97.0% | 95.0%  | 94.0% |
| $BSP_{random+}^{Kd}$ | 10               | 95.8%         | 99.1% | 108%   | 109%  | 108%       | 108%  | 106%   | 105%  |
| RBSP                 | 13               | 91.5%         | 96.1% | 141%   | 138%  | 125%       | 127%  | 109%   | 97.1% |
| $RBSP^{Kd}$          | 13               | 95.3%         | 98.1% | 117%   | 112%  | 110%       | 108%  | 105%   | 96.4% |

## 5 Kd knoopdoorkruisingen

|                                                                                      |                  | K                                              | Killeroo Be                                    | een                                            | Sponza                                   |                                                |                                       |  |
|--------------------------------------------------------------------------------------|------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------|------------------------------------------------|---------------------------------------|--|
| Boom                                                                                 | $\boldsymbol{k}$ | Kd                                             | ZD Kd                                          | SD Kd                                          | Kd                                       | ZD Kd                                          | SD Kd                                 |  |
| Kd                                                                                   |                  | 100%                                           | 100%                                           | 100%                                           | 100%                                     | 100%                                           | 100%                                  |  |
| $BSP_{IZE}$                                                                          |                  | 49.4%                                          | 0%                                             | 0%                                             | 50.9%                                    | 0%                                             | 0%                                    |  |
| $BSP_{IZE}^{Kd}$                                                                     |                  | 55.1%                                          | 88.3%                                          | 88.3%                                          | 55.6%                                    | 88.2%                                          | 90.9%                                 |  |
| $BSP_{wn+}^{Kd}$                                                                     | 6                | 29.5%                                          | 72.8%                                          | 72.3%                                          | 36.6%                                    | 88.8%                                          | 89.3%                                 |  |
| $BSP_{cn+}^{Kd}$                                                                     | 6                | 29.2%                                          | 72.8%                                          | 71.3%                                          | 36.5%                                    | 88.5%                                          | 89.0%                                 |  |
| $BSP_{random+}^{Kd}$                                                                 | 10               | 30.2%                                          | 74.6%                                          | 72.3%                                          | 34.5%                                    | 83.5%                                          | 84.9%                                 |  |
| RBSP                                                                                 | 13               | 22.0%                                          | 0%                                             | 0%                                             | 26.3%                                    | 0%                                             | 0%                                    |  |
| $RBSP^{Kd}$                                                                          | 13               | 29.8%                                          | 71.2%                                          | 70.9%                                          | 33.2%                                    | 77.9%                                          | 79.2%                                 |  |
|                                                                                      |                  |                                                | Conference                                     | 90                                             |                                          | Museum                                         |                                       |  |
|                                                                                      |                  |                                                | Comercia                                       |                                                |                                          | muscum                                         |                                       |  |
| Boom                                                                                 | k                | Kd                                             | ZD Kd                                          | SD Kd                                          | Kd                                       | ZD Kd                                          | SD Ka                                 |  |
| $\frac{\text{Boom}}{Kd}$                                                             | k                |                                                |                                                |                                                | Kd<br>100%                               |                                                | SD <i>Ka</i>                          |  |
|                                                                                      | k                | Kd                                             | ZD Kd                                          | SD Kd                                          |                                          | ZD Kd                                          |                                       |  |
| $Kd$ $BSP_{IZE}$                                                                     | k                | Kd 100%                                        | ZD <i>Kd</i> 100%                              | SD <i>Kd</i>                                   | 100%                                     | ZD <i>Kd</i> 100%                              | 100%                                  |  |
| $Kd$ $BSP_{IZE}$ $BSP_{IZE}^{Kd}$                                                    | 6                | Kd<br>100%<br>49.8%                            | ZD <i>Kd</i> 100% 0%                           | SD <i>Kd</i> 100% 0%                           | 100%<br>38.5%                            | ZD Kd<br>100%<br>0%                            | 100%<br>0%                            |  |
| $Kd$ $BSP_{IZE}$ $BSP_{IZE}^{Kd}$ $BSP_{wn+}^{Kd}$                                   |                  | Kd<br>100%<br>49.8%<br>58.4%                   | ZD Kd<br>100%<br>0%<br>89.7%                   | SD <i>Kd</i> 100% 0% 91.0%                     | 100%<br>38.5%<br>41.7%                   | ZD Kd<br>100%<br>0%<br>87.1%                   | 100%<br>0%<br>87.1%                   |  |
| $Kd$ $BSP_{IZE}$ $BSP_{IZE}^{Kd}$ $BSP_{un+}^{Kd}$ $BSP_{cn+}^{Kd}$ $BSP_{cn+}^{Kd}$ | 6                | Kd<br>100%<br>49.8%<br>58.4%<br>44.1%          | ZD Kd<br>100%<br>0%<br>89.7%<br>92.3%          | SD <i>Kd</i> 100% 0% 91.0% 92.6%               | 100%<br>38.5%<br>41.7%<br>32.0%          | ZD Kd<br>100%<br>0%<br>87.1%<br>88.8%          | 100%<br>0%<br>87.1%<br>87.3%          |  |
| $Kd$ $BSP_{IZE}$ $BSP_{IZE}^{Kd}$ $BSP_{wn+}^{Kd}$                                   | 6                | Kd<br>100%<br>49.8%<br>58.4%<br>44.1%<br>43.2% | ZD Kd<br>100%<br>0%<br>89.7%<br>92.3%<br>90.0% | SD Kd<br>100%<br>0%<br>91.0%<br>92.6%<br>90.8% | 100%<br>38.5%<br>41.7%<br>32.0%<br>30.5% | ZD Kd<br>100%<br>0%<br>87.1%<br>88.8%<br>87.1% | 100%<br>0%<br>87.1%<br>87.3%<br>86.8% |  |

- Outline

  - **6** Conclusie

#### 6 Conclusie

- $\triangleright$   $BSP_{SWEEP}$ 
  - ullet Nuttig en uitbreidbaar concept voor algemene BSP bomen
  - Lokale geometerie makkelijk in rekening te brengen
  - Beperkte bouwtijd door sweeping
- ightharpoonup Variant met snelle Kd richtingen is superieur
- $\triangleright BSP_{random+}^{Kd}$ 
  - In elke knoop andere splitsingsvlakken kiezen maakt de boom beter
- $ightharpoonup BSP^{Kd}_{wn+}$  en  $BSP^{Kd}_{cn+}$ 
  - Splitsingsvlakken afhankelijk van lokale geometrie (normalen) maken de boom nog beter
  - Vermindering rendertijd met meer dan 20%
  - Vermindering straal-driehoekintersecties met meer dan 40%
  - Clustering lijkt geen voordeel te bieden

## 6 Toekomstig onderzoek

- Verbeteren bouwtijd
- Bepalen beste aantal richtingen (per diepte)
- ► Bepalen betere richtingen
- Focus op splitsen in disjuncte delen ipv SA kost

