ЛАБОРАТОРНАЯ РАБОТА №4 ФИЛЬТРАЦИЯ СИНУСОИДАЛЬНЫХ СИГНАЛОВ

ЦЕЛЬ И ЗАДАЧИ ЛАБОРАТОРНОЙ РАБОТЫ, ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ЕЁ ВЫПОЛНЕНИЯ

Целью выполнения лабораторной работы является формирование практических навыков выполнения фильтрации синусоидальных сигналов с различными значениями параметров.

Основными задачами выполнения лабораторной работы являются:

- 1. задать параметры синусоидальных сигнала;
- 2. выполнить фильтрацию трех синусоидальных сигналов с разными частотами, используя четыре вида фильтров (Баттерворта, <u>Чебышева 1 рода</u>, <u>Чебышева 2 рода</u>, эллиптического).

Результатами работы являются:

- коды программ;
- графики составляющих исходного сигнала;
- графики АЧХ фильтров;
- графики отфильтрованных сигналов;
- подготовленный отчет.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ РАЗНОВИДНОСТИ ФИЛЬТРОВ ФИЛЬТР БАТТЕРВОРТА

Функция передачи фильтра-прототипа Баттерворта не имеет нулей, а ее полюсы равномерно расположены на s-плоскости в левой половине окружности единичного радиуса. Формула для АЧХ фильтра Баттерворта:

$$K(\omega) = \frac{1}{\sqrt{1 + (\frac{\omega}{\omega_0})^{2n}}}$$

где ω_0 - частота среза (для фильтра-прототипа она равна 1 рад/с), n — порядок фильтра.

В MATLAB расчет аналогового фильтра-прототипа Баттерворта производится с помощью функции buttap:

[z, p, k] = buttap(n); где n — это порядок фильтра.

ФИЛЬТР ЧЕБЫШЕВА ПЕРВОГО РОДА

АЧХ фильтра Чебышева первого рода описывается следующим образом:

$$K(\omega) = \frac{1}{\sqrt{1 + \varepsilon^2 T_n^2(\omega/\omega_0)}}$$

Где ω_0 — частота среза, $T_n(x)$ — полином Чебышева n-го порядка, п — порядок фильтра, ϵ — параметр, определяющий величину пульсаций АЧХ в полосе пропускания.

В MATLAВ фильтр-прототип Чебышева первого рода рассчитывается с помощью функции cheblap:

$$[z, p, k] = cheb1ap(n, Rp)$$

Здесь n — порядок фильтра, Rp — уровень пульсаций в полосе пропускания.

ФИЛЬР ЧЕБЫШЕВА ВТОРОГО РОДА

Фильтры Чебышева второго рода называют инверсными фильтрами Чебышева. АЧХ фильтра Чебышева второго рода описывается следующим образом:

$$K(\omega) = \frac{1}{\sqrt{1 + \frac{\varepsilon^2}{T_n^2(\omega/\omega_0)}}}$$

Здесь ω_0 - частота среза, $T_n(x)$ — полином Чебышева n-го порядка, п — порядок фильтра, ϵ — параметр, определяющий величину пульсаций АЧХ в полосе задерживания.

В MATLAВ фильтр-прототип Чебышева второго рода рассчитывается с помощью функции cheb2ap

$$[z, p, k] = cheb2ap(n, Rs)$$

Здесь n — порядок фильтра, Rs — уровень пульсаций в полосе задерживания (в децибелах).

ЭЛЛИПТИЧЕСКИЙ ФИЛЬТР

Эллиптические фильтры (фильтры Кауэра; английские термины — elliptic filter, Cauer filter) в некотором смысле объединяют в себе свойства фильтров Чебышева первого и второго рода, поскольку АЧХ эллиптического фильтра имеет пульсации заданной величины как в полосе пропускания, так и в полосе задерживания. За счет этого удается обеспечить максимально возможную (при фиксированном порядке фильтра) крутизну ската АЧХ, то есть переходной зоны между полосами пропускания и задерживания.

АЧХ эллиптического фильтра описывается следующей формулой:

$$K(\omega) = \frac{1}{\sqrt{1 + \varepsilon^2 R_n^2(\omega/\omega_0, L)}}$$

Здесь ω_0 — частота среза, п — порядок фильтра, $R_n(...)$ — рациональная функция Чебышева n-го порядка, ϵ и L — параметры, определяющие величину пульсаций в полосах пропускания и задерживания.

В MATLAВ эллиптический фильтр-прототип рассчитывается с помощью функции ellipap:

[z, p, k] = ellipap(n, Rp, Rs)

Здесь п — порядок фильтра, Rp — уровень пульсаций в полосе пропускания, Rs — уровень пульсаций в полосе задерживания. Уровни пульсации указываются в децибелах.

ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

На выполнение лабораторной работы отводится 6 академических часа: 5 часов на выполнение и сдачу лабораторной работы и 1 час на подготовку отчета.

Порядок выполнения:

- 1. Изучить краткий теоретический материал.
- 2. Задать три синусоидальных сигнала (S_1 , S_2 , S_3) с разными частотами (частота каждого сигнала задана в таблице вариантов).
- 3. Используя четыре вида фильтров (Баттерворта, Чебышева 1 рода, Чебышева 2 рода, эллиптический) осуществить фильтрацию сигналов S_1+S_2 и $S_1+S_2+S_3$. Вид АЧХ фильтра и номер составляющих, подлежащих фильтрации, приведены в таблице вариантов.
- 4. Построить графики в одном графическом окне: каждую составляющую исходного сигнала (S_1 , S_2 , S_3), полный сигнал (S_1+S_2 или $S_1+S_2+S_3$), АЧХ фильтра, отфильтрованный сигнал.
- 5. Оформить отчет.
- 6. Защитить выполненную работу у преподавателя.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Для параметров фильтров следует принимать **приблизительно** следующие значения:

1. n (порядок фильтра) ≥ 4;

- 2. R_P (уровень пульсаций в полосе пропускания) $\leq 0,1$;
- 3. $R_{\rm S}$ (уровень пульсаций в полосе задерживания) ≥ 40 .

ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ

Nº	Значения частот			Вид фильтра и составляющие сигнала, подлежащие фильтрации для двух видов сигналов (верхняя строка для сигнала $S_1 + S_2$,			
				жин	няя строка д.	ля $S_1 + S_2 + S_3$	3)
	S_1	S_2	S_3	Баттерворт а	Чебышева 1 рода	Чебышева 2 рода	Эллипти ческий
1	25	40	60	ФНЧ, S_1	Φ ВЧ, S_2	$\Pi\Phi$, S_1	РФ, S ₂
				$\Pi\Phi, S_1 + S_2$	РФ, <i>S</i> ₁	Φ НЧ, S_1	Φ ВЧ, S_3
2	15	25	45	РФ, <i>S</i> ₁	ФНЧ, <i>S</i> ₁	ФВЧ, <i>S</i> ₂	$\Pi\Phi$, S_2
				ФВЧ,	ПФ,	РФ,	Φ НЧ, S_1
				$S_2 + S_3$	$S_2 + S_3$	$S_1 + S_2$	
3	50	70	90	$\Pi\Phi$, S_2	РФ, S_1	ФНЧ, S_1	Φ ВЧ, S_2
				ФНЧ,	ФВЧ, S ₃	ПФ,	РФ, <i>S</i> ₁
				$S_1 + S_2$		$S_2 + S_3$	
4	100	120	140	ФВЧ, S_2	$\Pi\Phi$, S_2	РФ, S_1	ФНЧ, S_1
				РФ, <i>S</i> ₁	ФНЧ,	ФВЧ,	$\Pi\Phi$, S_2
					$S_1 + S_2$	$S_2 + S_3$	
5	30	50	70	ФНЧ, S_1	$\Pi\Phi$, S_1	Φ ВЧ, S_3	РФ, S_1
				PФ, $S_1 + S_3$	ФВЧ, S ₃	$\Pi\Phi$, S_2	ФНЧ,
							$S_1 + S_2$
6	20	50	60	РФ, S_1	ФНЧ, S_1	$\Pi\Phi$, S_1	Φ ВЧ, S_2
				ФНЧ, S_1	РФ,	ФВЧ,	ПФ,
					$S_1 + S_3$	$S_2 + S_3$	$S_1 + S_2$
7	25	40	60	ФВЧ, S_2	РФ, S_1	ФНЧ, S_1	$\Pi\Phi$, S_2

				$\Pi\Phi$, S_2	ФНЧ,	РФ,	Φ ВЧ, S_3
				-	$S_1 + S_2$	$S_1 + S_3$	
8	15	25	45	$\Pi\Phi$, S_2	Φ ВЧ, S_2	РФ, <i>S</i> ₁	Φ НЧ, S_1
				Φ ВЧ, S_3	$\Pi\Phi$, S_2	ФНЧ,	РФ, <i>S</i> ₁
						$S_1 + S_2$	
9	30	50	70	ФНЧ, S_1	$\Pi\Phi, S_1$	РФ, S_2	Φ ВЧ, S_2
				РФ, $S_1 + S_3$	Φ ВЧ, S_3	$\Pi\Phi$, S_2	ФНЧ,
							$S_1 + S_2$
10	20	50	60	Φ ВЧ, S_2	ФНЧ, S_1	$\Pi\Phi$, S_2	РФ, S_2
				ФНЧ,	РФ,	Φ ВЧ, S_3	ПФ,
				$S_1 + S_2$	$S_1 + S_3$		$S_1 + S_2$
11	50	70	90	РФ, S_2	ФВЧ, S_2	ФНЧ, S_1	$ΠΦ, S_2$
				Π Ф, S_2	ФНЧ,	РФ, <i>S</i> ₁	Φ ВЧ, S_3
					$S_1 + S_2$		
12	100	120	140	Φ ВЧ, S_2	РФ, S_2	$\Pi\Phi$, S_1	ФНЧ, S_1
				ФНЧ,	ПФ,	ФВЧ,	РФ,
				$S_1 + S_2$	$S_1 + S_2$	$S_2 + S_3$	$S_1 + S_3$
13	30	50	70	ФНЧ, S_1	ФВЧ, S_2	$\Pi\Phi$, S_1	РФ, S_2
				$\Pi\Phi, \ S_1 + S_2$	РФ, <i>S</i> ₁	Φ НЧ, S_1	Φ ВЧ, S_3
14	20	50	60	РФ, <i>S</i> ₁	ФНЧ, <i>S</i> ₁	ФВЧ, S ₂	$\Pi\Phi$, S_2
				ФВЧ,	ПФ,	РФ,	ФНЧ, S_1
				$S_2 + S_3$	$S_2 + S_3$	$S_1 + S_2$	
15	25	40	60	$\Pi\Phi$, S_2	РФ, <i>S</i> ₁	Φ НЧ, S_1	Φ ВЧ, S_2
				ФНЧ,	ФВЧ, S ₃	ПФ,	РФ, <i>S</i> ₁
				$S_1 + S_2$		$S_2 + S_3$	
16	15	25	45	Φ ВЧ, S_2	$\Pi\Phi$, S_2	РФ, <i>S</i> ₁	ФНЧ, S_1
				РФ, <i>S</i> ₁	ФНЧ,	ФВЧ,	$\Pi\Phi$, S_2
					$S_1 + S_2$	$S_2 + S_3$	
17	50	70	90	ФНЧ, S_1	$\Pi\Phi$, S_1	Φ ВЧ, S_2	РФ, <i>S</i> ₁

				PΦ, $S_1 + S_3$	Φ ВЧ, S_3	$\Pi\Phi$, S_2	ФНЧ,
				1 3	3	_	$S_1 + S_2$
18	100	120	140	РФ, <i>S</i> ₁	ФНЧ, S_1	$\Pi\Phi$, S_1	Φ ВЧ, S_2
				ФНЧ, <i>S</i> ₁	РФ,	ФВЧ,	ПФ,
					$S_1 + S_3$	$S_2 + S_3$	$S_1 + S_2$
19	25	40	60	Φ ВЧ, S_2	РФ, <i>S</i> ₁	ФНЧ, <i>S</i> ₁	$\Pi\Phi$, S_2
				ПФ, S_2	ФНЧ,	РФ,	ФВЧ, S ₃
					$S_1 + S_2$	$S_1 + S_3$	
20	15	25	45	$ΠΦ$, S_2	ФВЧ, S_2	PФ, S_1	Φ НЧ, S_1
				Φ ВЧ, S_3	$\Pi\Phi$, S_2	ФНЧ,	РФ, <i>S</i> ₁
						$S_1 + S_2$	
21	50	70	90	ФНЧ, S_1	Π Φ, S ₁	РФ, <i>S</i> ₂	Φ ВЧ, S_2
				PФ, $S_1 + S_3$	ФВЧ, S ₃	$\Pi\Phi$, S_2	ФНЧ,
							$S_1 + S_2$
22	100	120	140	Φ ВЧ, S_2	ФНЧ, S_1	$\Pi\Phi$, S_2	РФ, <i>S</i> ₂
				ФНЧ,	РΦ,	Φ ВЧ, S_3	ПФ,
				$S_1 + S_2$	$S_1 + S_3$		$S_1 + S_2$
23	30	50	70	РФ, S_2	ФВЧ, S_2	ФНЧ, S_1	$ΠΦ, S_2$
				ПФ, S_2	ФНЧ,	РФ, S_1	Φ ВЧ, S_3
					$S_1 + S_2$		
24	20	50	60	Φ ВЧ, S_2	РФ, <i>S</i> ₂	$\Pi\Phi$, S_1	ФНЧ, S_1
				ФНЧ,	ПΦ,	ФВЧ,	РФ,
				$S_1 + S_2$	$S_1 + S_2$	$S_2 + S_3$	$S_1 + S_3$
25	25	40	60	Φ ВЧ, S_2	РФ, S_1	ФНЧ, S_1	$\Pi\Phi$, S_2
				ПФ, S_2	ФНЧ,	РΦ,	Φ ВЧ, S_3
					$S_1 + S_2$	$S_1 + S_3$	
26	15	25	45	$\Pi\Phi$, S_2	ФВЧ, S_2	РФ, <i>S</i> ₁	ФНЧ, S_1
				Φ ВЧ, S_3	$\Pi\Phi$, S_2	ФНЧ,	РФ, <i>S</i> ₁
						$S_1 + S_2$	
27	30	50	70	ФНЧ, S_1	$\Pi\Phi$, S_1	РФ, <i>S</i> ₂	Φ ВЧ, S_2

				РФ, $S_1 + S_3$	Φ ВЧ, S_3	$\Pi\Phi$, S_2	ФНЧ,
							$S_1 + S_2$
28	20	50	60	Φ ВЧ, S_2	ФНЧ, S_1	$\Pi\Phi$, S_2	РФ, S_2
				ФНЧ,	РФ,	Φ ВЧ, S_3	ПФ,
				$S_1 + S_2$	$S_1 + S_3$		$S_1 + S_2$
29	50	70	90	РФ, <i>S</i> ₂	ФВЧ, S_2	ФНЧ, <i>S</i> ₁	$\Pi\Phi$, S_2
				$\Pi\Phi$, S_2	ФНЧ,	РФ, S ₁	Φ ВЧ, S_3
					$S_1 + S_2$		
30	100	120	140	$\Pi\Phi$, S_2	РФ, <i>S</i> ₁	ФНЧ, <i>S</i> ₁	Φ ВЧ, S_2
				ФНЧ,	Φ ВЧ, S_3	ПФ,	РФ, <i>S</i> ₁
				$S_1 + S_2$		$S_2 + S_3$	

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

- 1. Перечислите параметры, которыми определяется фильтр Чебышева первого рода.
- 2. Опишите параметры, которыми характеризуется фильтр Чебышева второго рода.
- 3. Охарактеризуйте параметры эллиптического фильтра.
- 4. Составьте алгоритм построения фильтров, реализованных в ходе выполнения лабораторного исследования.

ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ

Номер варианта студенту выдается преподавателем. Отчет на защиту предоставляется в печатном виде.

Структура отчета (на отдельном листе(-ах)):

- титульный лист;
- цели и задачи работы;
- формулировка задания (вариант);
- код программы согласно заданию;
- графики согласно заданию;
- выводы.