Representing, Manipulating and Optimizing Reversible Circuits

Jacques Carette Amr Sabry

McMaster University

Indiana University

June 11, 2015

Reversible Computing

The "obvious" intersection between quantum computing and programming languages is reversible computing.

Representing Reversible Circuits

truth table, matrix, reed muller expansion, product of cycles, decision diagram, etc.

[any easy way to reproduce Figure 4 on p.7 of Saeedi and Markov? —JC] [important remark: these are all *Boolean* circuits! —JC]

Most important part: reversible circuits are equivalent to permutations.

A (Foundational) Syntactic Theory

Ideally, want a notation that

- is easy to write by programmers
- is easy to mechanically manipulate
- can be reasoned about
- can be optimized.

A (Foundational) Syntactic Theory

Ideally, want a notation that

- is easy to write by programmers
- is easy to mechanically manipulate
- can be reasoned about
- o can be optimized.

Start with a *foundational* syntactic theory on our way there:

- easy to explain
- clear operational rules
- fully justified by the semantics
- sound and complete reasoning
- sound and complete methods of optimization

Starting Point

data U : Set where ZERO : U

Typed isomorphisms. First, a universe of (finite) types

```
ONE : U

PLUS : U \rightarrow U \rightarrow U

TIMES : U \rightarrow U \rightarrow U

and its interpretation

[_] : U \rightarrow Set

[ ZERO ] = \bot

[ ONE ] = \top

[ PLUS t_1 t_2 ] = [ t_1 ] \uplus [ t_2 ]

[ TIMES t_1 t_2 ] = [ t_1 ] \lor [ t_2 ]
```

Equivalences and semirings

If we denote type equivalence by \simeq , then we can prove that

Theorem 1.

The collection of all types (Set) forms a commutative semiring (up to \simeq).

Equivalences and semirings

If we denote type equivalence by \simeq , then we can prove that

Theorem 1.

The collection of all types (Set) forms a commutative semiring (up to \simeq).

We also get

Theorem 2.

If $A \simeq \text{Fin} m$, $B \simeq \text{Fin} n$ and $A \simeq B$ then $m \equiv n$.

(whose *constructive* proof is quite subtle).

Theorem 3.

If $A \simeq \text{Fin} m$ and $B \simeq \text{Fin} n$, then the type of all equivalences $A \simeq B$ is equivalent to the type of all permutations Permn.

Equivalences and semirings II

Semiring structures abound. We can define them on:

- equivalences (disjoint union and cartesian product)
- permutations (disjoint union and tensor product)

Equivalences and semirings II

Semiring structures abound. We can define them on:

- equivalences (disjoint union and cartesian product)
- permutations (disjoint union and tensor product)

The point, of course, is that they are related:

Theorem 4.

The equivalence of Theorem 3 is an isomorphism between the semirings of equivalences of finite types, and of permutations.

A Calculus of Permutations

First conclusion: it might be useful to *reify* a certain set of equivalences as combinators. We choose the fundamental "proof rules" of semirings:

```
data \longleftrightarrow : U \to U \to Set where
     unite_{\perp} : \{t : U\} \rightarrow PLUS ZERO t \longleftrightarrow t
     \mathsf{uniti}_+ : \{t : \mathsf{U}\} \to t \longleftrightarrow \mathsf{PLUS} \; \mathsf{ZERO} \; t
     \mathsf{swap}_+ : \{t_1 \ t_2 : \mathsf{U}\} \to \mathsf{PLUS} \ t_1 \ t_2 \longleftrightarrow \mathsf{PLUS} \ t_2 \ t_1
     |\mathsf{assocl}|_+: \{t_1\ t_2\ t_3: \ \mathsf{U}\} \to \mathsf{PLUS}\ t_1\ (\mathsf{PLUS}\ t_2\ t_3) \longleftrightarrow \mathsf{PLUS}\ (\mathsf{PLUS}\ t_1\ t_2)\ t_3
     \mathsf{assocr}_+: \{t_1\ t_2\ t_3: \ \mathsf{U}\} \to \mathsf{PLUS}\ (\mathsf{PLUS}\ t_1\ t_2)\ t_3 \longleftrightarrow \mathsf{PLUS}\ t_1\ (\mathsf{PLUS}\ t_2\ t_3)
     unite* : \{t : U\} \rightarrow TIMES ONE t \longleftrightarrow t
     uniti* : \{t: U\} \rightarrow t \longleftrightarrow TIMES ONE t
     swap*: \{t_1 \ t_2 : U\} \rightarrow TIMES \ t_1 \ t_2 \longleftrightarrow TIMES \ t_2 \ t_1
     assocl★ : \{t_1 \ t_2 \ t_3 : U\} → TIMES t_1 (TIMES t_2 \ t_3) ←→ TIMES (TIMES t_1 \ t_2) t_3
     \mathsf{assocr} \star : \{ \mathsf{t_1} \ \mathsf{t_2} \ \mathsf{t_3} : \mathsf{U} \} \to \mathsf{TIMES} \ (\mathsf{TIMES} \ \mathsf{t_1} \ \mathsf{t_2}) \ \mathsf{t_3} \longleftrightarrow \mathsf{TIMES} \ \mathsf{t_1} \ (\mathsf{TIMES} \ \mathsf{t_2} \ \mathsf{t_3})
     absorbr : \{t: U\} \rightarrow TIMES ZERO t \longleftrightarrow ZERO
     absorbl : \{t: U\} \rightarrow TIMES \ t \ ZERO \longleftrightarrow ZERO
     factorzr : \{t : U\} \rightarrow ZERO \longleftrightarrow TIMES \ t \ ZERO
     factorzl : \{t: U\} \rightarrow ZERO \longleftrightarrow TIMES ZERO t
     dist : \{t_1 \ t_2 \ t_3 : U\} \rightarrow
          TIMES (PLUS t_1 t_2) t_3 \longleftrightarrow PLUS (TIMES t_1 t_3) (TIMES t_2 t_3)
     factor : \{t_1 \ t_2 \ t_3 : U\} \rightarrow
          PLUS (TIMES t_1 t_3) (TIMES t_2 t_3) \longleftrightarrow TIMES (PLUS t_1 t_2) t_3
     id \longleftrightarrow : \{t : U\} \to t \longleftrightarrow t
     \_\odot\_ : \{t_1 \ t_2 \ t_3 : \mathsf{U}\} \to (t_1 \longleftrightarrow t_2) \to (t_2 \longleftrightarrow t_3) \to (t_1 \longleftrightarrow t_3)
     \oplus : \{t_1 \ t_2 \ t_3 \ t_4 : \mathsf{U}\} \rightarrow
         (\overline{t_1} \longleftrightarrow t_3) \to (t_2 \longleftrightarrow t_4) \to (PLUS \ t_1 \ t_2 \longleftrightarrow PLUS \ t_3 \ t_4)
     \_\otimes\_ : {t_1 \ t_2 \ t_3 \ t_4 : \ U} \rightarrow
          (\overline{t_1} \longleftrightarrow t_3) \to (t_2 \longleftrightarrow t_4) \to (TIMES \ t_1 \ t_2 \longleftrightarrow TIMES \ t_3 \ t_4)
```

Example Circuit: Simple Negation

 $n_1:\,\mathsf{BOOL}\longleftrightarrow\mathsf{BOOL}$

 $n_1 = \mathsf{swap}_+$

Example Circuit: Not So Simple Negation


```
\begin{array}{ll} n_2: \mathsf{BOOL} \longleftrightarrow \mathsf{BOOL} \\ n_2 = & \mathsf{uniti} \star \odot \\ & \mathsf{swap} \star \odot \\ & \left( \mathsf{swap}_+ \otimes \mathsf{id} \longleftrightarrow \right) \odot \\ & \mathsf{swap} \star \odot \\ & \mathsf{unite} \star \end{array}
```

Reasoning about Example Circuits

Algebraic manipulation of one circuit to the other:

```
negEx : n_2 \Leftrightarrow n_1
negEx = uniti \star \odot (swap \star \odot ((swap_+ \otimes id \longleftrightarrow) \odot (swap \star \odot unite \star)))
            ⇔⟨ id⇔ ⊡ assoc⊙l ⟩
      uniti\star \odot ((swap \star \odot (swap_+ \otimes id \longleftrightarrow)) \odot (swap \star \odot unite \star))
            \Leftrightarrow \langle id \Leftrightarrow \boxdot (swapl \star \Leftrightarrow \boxdot id \Leftrightarrow) \rangle
      uniti \star \odot (((id \longleftrightarrow \otimes swap_+) \odot swap \star) \odot (swap \star \odot unite \star))
            \Leftrightarrow \langle id \Leftrightarrow \Box assoc \odot r \rangle
      uniti \star \odot ((id \longleftrightarrow \otimes swap_+) \odot (swap \star \odot (swap \star \odot unite \star)))
            \Leftrightarrow \langle id \Leftrightarrow \boxdot (id \Leftrightarrow \boxdot assoc \odot I) \rangle
      uniti \star \odot ((id \longleftrightarrow \otimes swap_+) \odot ((swap \star \odot swap \star) \odot unite \star))
            \Leftrightarrow \langle id \Leftrightarrow \boxdot (id \Leftrightarrow \boxdot (linv \odot l \boxdot id \Leftrightarrow)) \rangle
      uniti \star \odot ((id \longleftrightarrow \otimes swap_+) \odot (id \longleftrightarrow \odot unite \star))
            \Leftrightarrow \langle id \Leftrightarrow \boxdot (id \Leftrightarrow \boxdot idl \odot l) \rangle
      uniti \star \odot ((id \longleftrightarrow \otimes swap_+) \odot unite \star)
            ⇔⟨ assoc⊙| ⟩
      (uniti \star \odot (id \longleftrightarrow \otimes swap_+)) \odot unite \star
            \Leftrightarrow \langle \text{ unitil} \star \Leftrightarrow \boxdot \text{ id} \Leftrightarrow \rangle
                                                                                                      4 D > 4 B > 4 E > 4 E > 9 Q P
      (swap ⊢ ⊙ uniti*) ⊙ unite*
```

Reasoning about Example Circuits

foo

Original circuit:

Making grouping explicit:

By associativity:

By pre-post-swap:

By associativity:

By associativity:

By swap-swap:

By id-compose-left:

By associativity:

By swap-unit:

By associativity:

By unit-unit:

By id-unit-right:

Questions

- We don't want an ad hoc notation with ad hoc rewriting rules
- Notions of soundness; completeness; canonicity in some sense; what can we say?

1-paths vs. 2-paths

1-paths are between isomorphic types, e.g., A * B and B * A. List them all.

1-paths vs. 2-paths

2-paths are between 1-paths, e.g., %endcode

1-paths vs. 2-paths

