



# Link Street<sup>™</sup> 88E6208/88E6218 Datasheet

SOHO Gateway SOC with ARM9E CPU, 10/100 Switch and PHYs

Part 1 of 3: Overview, Pinout, & Electrical Specifications

Doc. No. MV-S101300-01, Rev. A October 7, 2003

Palas direction of the control of th

MOVING FORWARD

FASTER®





| Status                                                                                                                                                                                                                  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| This document contains design specifications for initial product development. Specifications may change without notice. Contact Marvell Field Application Engineers for more information.                               |  |  |  |  |
| This document contains preliminary data, and a revision of this document will be published at a later date. Specifications may change without notice. Contact Marvell Field Application Engineers for more information. |  |  |  |  |
| This document contains specifications on a product that is in final release. Specifications may change without notice. Contact Marvell Field Application Engineers for more information.                                |  |  |  |  |
| e: Rev. A                                                                                                                                                                                                               |  |  |  |  |
| Technical Publication: 0.83                                                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                                                                                         |  |  |  |  |

### Disclaimer

This document provides preliminary information about the products described, and such information should not be used for purpose of final design. Visit the Marvell® web site at www.marvell.com for the latest information on Marvell products.

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document. Marvell makes no commitment either to update or to keep current the information contained in this document. Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use Marvell products in these types of equipment or applications. The user should contact Marvell to obtain the latest specifications before finalizing a product design. Marvell assumes no responsibility, either for use of these products or for any infringements of patents and trademarks, or other rights of third parties resulting from its use. No license is granted under any patents, patent rights, or trademarks of Marvell. These products may include one or more optional functions. The user has the choice of implementing any particular optional functions. Should the user choose to implement any of these optional functions, it is possible that the use could be subject to third party intellectual property rights. Marvell recommends that the user investigate whether third party intellectual property rights are relevant to the intended use of these products and obtain licenses as appropriate under relevant intellectual property rights. Marvell Comprises Marvell Technology Group Ltd. (MTGL) and its subsidiaries, Marvell International Ltd. (MILL), Marvell Semiconductor, Inc.

or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2; 2) not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2; if such direct product or software and direct products thereof are controlled for national security reasons by the EAR; and, 3) in the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant, not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons by the EAR, or is subject to controls under the U.S. Munitions List ("USML"). At all times hereunder, the recipient of any such information.

("USML"). At all times hereunder, the recipient of any such information.

Copyright © 2003. Marvell. All rights reserved. Marvell logo, Moving Forward Faster, Alaska, and GalNet are registered trademarks of Marvell. Discovery,

Copyright © 2003. Marvell. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, and GalNet are registered trademarks of Marvell. Discovery, Fastwriter, GalTis, Horizon, Libertas, Link Street, NetGX, PHY Advantage, Prestera, Raising The Technology Bar, UniMAC, Virtual Cable Tester, and Yukon are trademarks of Marvell. All other trademarks are the property of their respective owners.

Doc. No. MV-S101300-01, Rev. A

12qru965pi-fg1e32yu \* IJW Software New Zealand Ltd. \* UNDER NDA# 12109742



### **OVERVIEW**

STRICTLY PROHIBITED

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE

The Marvell<sup>®</sup> Link Street<sup>TM</sup> 88E6208/88E6218 devices are single-chip gateway routers, enabling the design of highly integrated gateways for multiple PCs to share a common broadband Internet connection with DSL or cable modem. Each Link Street device contains an ARM9E CPU, 8 kB data cache, 8 kB instruction cache, SDRAM/Flash memory controller, multi-port 10/100 Fast Ethernet switch and PHY transceivers. The Link Street 88E6218 also contains support for Quality of Service for prioritizing voice, video, and data traffic.

Two pin compatible devices exist in the product family:

The 88E6208 is targeted at the low cost but high performance market. Its pinout has been optimized to support a complete router on a 2 layer PCB using a single SDRAM and Flash.

The 88E6218 has a higher CPU clock speed to enhance the performance of software security functions for Virtual Private Networks; an additional MII port for connecting to other networking devices such as an external switch for port expansion; and features like QoS, Rate Limiting, and additional memory interface options.

### **FEATURES**

 Single-chip SOHO Gateway/Router CPU and Fast Ethernet QoS Switch with Patented Uni-MAC™ Architecture

### ROUTER/CPU FEATURES

- ARM9E 32-bit RISC CPU with DSP Instruction Extensions, @ 133MHz/150MHz, including onchip 8 kB Instruction Cache plus 8 kB Data Cache and 8 kB Data RAM (88E6218 only)
- Integrated SDRAM and Flash Memory Controller including support for memory-mapped peripherals including DSP
- SDRAM interface can be 16- or 32-bits (88E6218 only) wide, addressing up to 64 MB in 32-bit and 32 MB in 16-bit memory
- FLASH interface can be 8-, 16- or 32-bits (88E6218 only) wide, addressing up to 64 MB memory
- External Chip Select pins are supported (three in 88E6208, four in 88E6218)
- Internal IEEE 802.3 MAC, 200 Mbps full-duplex (100 Mbps in 88E6208), with optional address filtering and priority queueing under DMA control

### (Features continued on next page)





### Link Street™ 88E6208/88E6218 SOHO Gateway SOC with ARM9E CPU, 10/100 Switch and PHYs Part 1: Overview, Pinout, & Electrical Specifications

- MDC/MDIO master controller for Switch (external device register access available in 88E6218 only)
- Internal DMA controller (88E6218 only)
- Watchdog timer

STRICTLY PROHIBITED

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE

- UART Serial Port Interface for PC or POTS Modem & system debug
- JTAG interface for in-circuit testing and real-time in-circuit emulation, including setting breakpoints & watchpoints

### **ETHERNET SWITCH FEATURES**

- 7-Port QoS Fast Ethernet Switch with wirespeed non-blocking QoS switch core (6-Port non-QoS switch in 88E6208)
- 5 PHY Ports: Can be used as: C
  - 1 WAN Port: Copper TX or Fiber FX
  - 4 LAN Copper TX Ports
- 1 RMII/MII/SNI Port with up to 200 Mbps fullduplex operation, directly connects at full-speed to another network, such as another switch or Wireless LAN (88E6218 only)
- 1 internal UniMAC™ double-speed MII port, connects the switch to the CPU's MAC at 200 Mbps full-duplex (in 88E6218, 100 Mbps in 88E6208)

- Integrated Voice/Video/Data networking: full IEEE 802.1p, IPv4 DiffServ and IPv6 Traffic Class support with four (4) QoS priority queues per port, typically supporting Management, Voice, Video, and Data streams (88E6218 only)
- Port-Based VLANs, configurable in any combina-
- Per port Ingress Rate Limiting and Egress Rate Shaping (88E6218 only)
- On-chip packet buffer SRAM
- Supports up to 2K MAC addresses in multiple address databases
- Spanning Tree support: prevents bridge loops for complete plug-and-play
- Marvell PHYAdvantage™ DSP-based PHYs provide automatic MDI/MDIX detection and interface. enabling end-user connection of either Straight or Crossover RJ-45 cables
- Four MIB statistics counters per port for remoteoffice network management: TX Frame Count, RX Frame Count, # Collisions, # CRC Errors
- Low-power CMOS IC
- 216-Pin LQFP

The following table summarizes the feature differences between the pin compatible 88E6208 and 88E6218 devices.

| Feature                             | 88E6208                    | 88E6218                    |  |  |  |  |
|-------------------------------------|----------------------------|----------------------------|--|--|--|--|
| CPU                                 |                            |                            |  |  |  |  |
| Maximum CPU Speed                   | 133 MHz                    | 150 MHz                    |  |  |  |  |
| 8K Data Tightly-Coupled Memory SRAM | No                         | Yes                        |  |  |  |  |
| Internal DMA                        | No                         | Yes                        |  |  |  |  |
| External Memory Width               | 16-bits                    | 32-bits                    |  |  |  |  |
| Maximum Flash Size                  | 8 MB                       | 64 MB                      |  |  |  |  |
| External Chip Selects               | 3 - BootCSn,<br>M_CSn[1:0] | 4 - BootCSn,<br>M_CSn[2:0] |  |  |  |  |
| M_STATUS pin for Flash Memory       | No <sup>1</sup>            | Yes                        |  |  |  |  |
| Address Bus pins                    | M_A[21:0]                  | M_A[23:0]                  |  |  |  |  |
| UniMAC™ QoS                         | No                         | Yes - 4 Queues             |  |  |  |  |
| UniMAC DA Filter                    | No                         | Yes                        |  |  |  |  |
| SW                                  | ITCH CONTRACT              |                            |  |  |  |  |
| # of Switch Ports                   | 6                          | 7                          |  |  |  |  |
| External MII                        | No                         | Yes                        |  |  |  |  |
| Switch QoS                          | No                         | Yes - 4 Queues             |  |  |  |  |
| Ingress Rate Limiting               | No                         | Yes                        |  |  |  |  |
| Egress Rate Shaping                 | No                         | Yes                        |  |  |  |  |
| Max. UniMAC Speed                   | 100 Mbps FD                | 200 Mbps FD                |  |  |  |  |
| Embedded Memory                     | 0.5 Mb                     | 1 Mb                       |  |  |  |  |

<sup>1.</sup> A GPIO pin can be used instead.

Doc. No. MV-S101300-01, Rev. A Copyright © 2003 Marvell CONFIDENTIAL Page 4

# **Table of Contents**

| Pref               | ace                                 | \$ 6°                                                                                             | 11             |
|--------------------|-------------------------------------|---------------------------------------------------------------------------------------------------|----------------|
|                    |                                     | his Document                                                                                      |                |
|                    | Relate                              | d Documentation                                                                                   | 11             |
|                    | Docum                               | ent Conventions                                                                                   | 12             |
| SEC                | TION 1.                             | SIGNAL DESCRIPTION                                                                                | 13             |
| 1.1                | Pin Desc<br>1.1.1<br>1.1.2<br>1.1.3 | Pin Type Definitions                                                                              | 15<br>33       |
| SEC                | TION 2.                             | RESET AND INITIALIZATION                                                                          | 41             |
| SEC                | TION 3.                             | FUNCTIONAL DESCRIPTION                                                                            | 45             |
| 3.1<br><b>S</b> EC | 3.1.1<br>3.1.2<br>TION 4.           | UniMAC Speeds                                                                                     | 46<br>46       |
| 4.1                | Absolute                            | Maximum Ratings                                                                                   | 48             |
| 4.2                |                                     | ended Operating Conditions                                                                        |                |
| 4.3                |                                     | Powering Up and Powering Down                                                                     |                |
| 4.4                | Package<br>4.4.1                    | Thermal Data  Thermal Conditions for 216-pin LQFP Package                                         |                |
| 4.5                | <b>DC Elect</b> 4.5.1 4.5.2 4.5.3   | DC Power Characteristics                                                                          | 51<br>52       |
| 4.6                | 4.6.1<br>4.6.2<br>4.6.3<br>4.6.4    | Asynchronous Signals                                                                              | 55<br>55<br>56 |
|                    | 4.6.5<br>4.6.6<br>4.6.7             | SDRAM/Device Interface Timing  GPIO Timing  Switch Port 6 MII Rx Timing (PHY Mode) - 88E6218 Only | 60             |



## Link Street™ 88E6208/88E6218 SOHO Gateway SOC with ARM9E CPU, 10/100 Switch and PHYs Part 1: Overview, Pinout, & Electrical Specifications

| 6.1 | Ordering         | Part Numbers and Package Markings                                | 82 |
|-----|------------------|------------------------------------------------------------------|----|
| SEC | CTION 6.         | ORDER INFORMATION                                                | 82 |
| SEC | CTION 5.         | PACKAGE MECHANICAL DIMENSIONS                                    | 80 |
| 4.7 | IEEE AC          | Parameters                                                       | 79 |
|     | 4.6.24           | JTAG Timing                                                      |    |
|     | 4.6.23           | Two-Wire Serial Interface (TWSI) Timing                          |    |
|     | 4.6.22           | Switch Port 6 RMII Tx Timing - 88E6218 Only                      |    |
|     | 4.6.21           | Switch Port 6 RMII Rx Timing - 88E6218 Only                      |    |
|     | 4.6.20           | Switch Port 6 SNI Rising Edge Tx Timing - 88E6218 Only           |    |
|     | 4.6.19           | Switch Port 6 SNI Rising Edge Rx Timing - 88E6218 Only           |    |
|     | 4.6.18           | Switch Port 6 SNI Falling Edge Tx Timing - 88E6218 Only          | 72 |
|     | 4.6.17           | Switch Port 6 SNI Falling Edge Rx Timing - 88E6218 Only          |    |
|     | 4.6.16           | Switch Port 6 MII Tx Timing (MAC Mode) - 200 Mbps - 88E6218 Only |    |
|     | 4.6.15           | Switch Port 6 MII Rx Timing (MAC Mode) - 200 Mbps - 88E6218 Only |    |
|     | 4.6.14           | Switch Port 6 MII Tx Timing (PHY Mode) - 200 Mbps - 88E6218 Only |    |
|     | 4.6.13           | Switch Port 6 MII Rx Timing (PHY Mode) - 200 Mbps - 88E6218 Only |    |
|     | 4.6.11           | Switch Port 6 Clock Timing (MAC Mode) - 88E6218 Only             |    |
|     | 4.6.10<br>4.6.11 | Switch Port 6 MII Rx Timing (MAC Mode) - 88E6218 Only            |    |
|     | 4.6.9            | Switch Port 6 Clock Timing (MAC Mode) - 88E6218 Only             |    |
|     | 4.6.8            | Switch Port 6 MII Tx Timing (PHY Mode) - 88E6218 Only            |    |
|     | 400              | O VI D LONIET TO VICENTALLY CONTROLS OF                          | 00 |

# **List of Tables**

| Table 1:  | Document Conventions                                                   |    |
|-----------|------------------------------------------------------------------------|----|
| Table 2:  | Switch Network Interface                                               |    |
| Table 3:  | Switch PHY Configuration                                               |    |
| Table 4:  | Switch PHY Status LEDs                                                 |    |
| Table 5:  | Regulator, Reference & Clock                                           |    |
| Table 6:  | General Purpose I/O - JTAG & Debug                                     |    |
| Table 7:  | SDRAM, FLASH & Device Interface                                        | 22 |
| Table 8:  | Switch Port 6's Input MII - 88E6218 Only                               | 26 |
| Table 9:  | Switch Port 6's Output MII - 88E6218 Only                              | 27 |
| Table 10: | External SMI Register Access Interface - 88E6218 Only                  | 29 |
| Table 11: | Power & Ground                                                         | 30 |
| Table 12: | CPU Configuration Pins                                                 | 41 |
| Table 13: | Switch/CPU Interface Configuration Pins                                | 42 |
| Table 14: | Switch Configuration Pins                                              | 42 |
| Table 15: | PHY Configuration Pins                                                 | 44 |
| Table 16: | Marvell UniMAC Header Options                                          | 47 |
| Table 17: | Absolute Maximum Ratings                                               | 48 |
| Table 18: | Recommended Operating Conditions                                       | 49 |
| Table 19: | Thermal Conditions for 216-pin LQFP Package                            | 50 |
| Table 20: | DC Power Characteristics                                               | 51 |
| Table 21: | Digital Operating Conditions                                           | 52 |
| Table 22: | Internal Resistor Description                                          | 53 |
| Table 23: | IEEE DC Transceiver Parameters                                         | 54 |
| Table 24: | Reset and Configuration Timing                                         | 55 |
| Table 25: | Clock Timing when using a 25 MHz Oscillator                            | 56 |
| Table 26: | Serial Management Interface Timing                                     | 57 |
|           | SDRAM/Device Interface Timing                                          |    |
| Table 28: | GPIO Timing                                                            | 60 |
| Table 29: | Switch Port 6 MII Receive Timing (PHY Mode) - 88E6218 Only             | 61 |
| Table 30: | Switch Port 6 MII Transmit Timing (PHY Mode) - 88E6218 Only            | 62 |
| Table 31: | Switch Port 6 Clock Timing (MAC Mode) - 88E6218 Only                   | 63 |
| Table 32: | Switch Port 6 MII Receive Timing (MAC Mode) - 88E6218 Only             | 64 |
| Table 33: | Switch Port 6 MII Transmit Timing (MAC Mode) - 88E6218 Only            | 65 |
| Table 34: | Switch Port 6 Clock Timing - 200 Mbps (MAC Mode) - 88E6218 Only        | 66 |
| Table 35: | Switch Port 6 MII Receive Timing (PHY Mode) - 200 Mbps - 88E6218 Only  | 67 |
| Table 36: | Switch Port 6 MII Transmit Timing (PHY Mode) - 200 Mbps - 88E6218 Only | 68 |
| Table 37: | Switch Port 6 MII Receive Timing (MAC Mode) - 200 Mbps - 88E6218 Only  | 69 |
| Table 38: | Switch Port 6 MII Transmit Timing (MAC Mode) - 200 Mbps - 88E6218 Only | 70 |
| Table 39: | Switch Port 6 SNI Falling Edge Receive Timing - 88E6218 Only           | 71 |
| Table 40: | Switch Port 6 SNI Falling Edge Transmit Timing - 88E6218 Only          | 72 |
|           |                                                                        |    |

12qru965pi-fg1e32yu \* IJW Software New Zealand Ltd. \* UNDER NDA# 12109742



### Link Street™ 88E6208/88E6218 SOHO Gateway SOC with ARM9E CPU, 10/100 Switch and PHYs Part 1: Overview, Pinout, & Electrical Specifications

| Table 41: | Switch Port 6 SNI Rising Edge Receive Timing - 88E6218 Only  | 73 |
|-----------|--------------------------------------------------------------|----|
| Table 42: | Switch Port 6 SNI Rising Edge Transmit Timing - 88E6218 Only | 74 |
| Table 43: | Switch Port 6 RMII Receive Timing - 88E6218 Only             | 75 |
| Table 44: | Switch Port 6 RMII Transmit Timing - 88E6218 Only            | 76 |
| Table 45: | Two-Wire Serial Interface (TWSI) Timing                      | 77 |
| Table 46: | JTAG Timing                                                  | 78 |
| Table 47: | IEEE AC Parameters                                           | 79 |
|           | 134 Printing Resident                                        |    |

# **List of Figures**

| igure 1: 8  | 8E6208 216-Pin LQFP Package                                            | 13 |
|-------------|------------------------------------------------------------------------|----|
| igure 2: 8  | 8E6218 216-Pin LQFP Package                                            | 14 |
| igure 3: C  | CPU & Switch Interconnect4                                             | 15 |
| igure 4: R  | Reset and Configuration Timing                                         | 55 |
| igure 5: O  | Oscillator Clock Timing5                                               | 56 |
| igure 6: S  | Serial Management Interface Timing                                     | 57 |
| igure 7: F  | Flash/ROM Read Access                                                  | 59 |
| igure 8: F  | Flash/ROM Write Access5                                                | 59 |
| igure 9: P  | PHY Mode MII Receive Timing6                                           | 31 |
| igure 10: P | PHY Mode MII Transmit Timing6                                          | 32 |
| igure 11: M | MAC Clock Timing                                                       | 33 |
| igure 12: M | MAC Mode MII Receive Timing6                                           | 34 |
| igure 13: M | MAC Mode MII Transmit Timing6                                          | 35 |
| igure 14: N | MAC Clock Timing - 200 Mbps6                                           | 36 |
| igure 15: P | PHY Mode MII Receive Timing - 200 Mbps6                                | 37 |
| igure 16: P | PHY Mode MII Transmit Timing - 200 Mbps6                               | 38 |
| igure 17: M | MAC Mode MII Receive Timing - 200 Mbps                                 | 39 |
| igure 18: N | MAC Mode MII Transmit Timing - 200 Mbps7                               | 70 |
| igure 19: S | SNI Falling Edge Receive Timing                                        | 71 |
|             | SNI Falling Edge Transmit Timing                                       |    |
|             | SNI Rising Edge Receive Timing                                         |    |
|             | SNI Rising Edge Transmit Timing                                        |    |
| igure 23: P | PHY Mode RMII Receive Timing7                                          | 75 |
|             | PHY Mode RMII Transmit Timing7                                         |    |
| igure 25: T | wo-Wire Serial Interface Timing                                        | 77 |
|             | TAG Timing                                                             |    |
| igure 27: L | Link Street™ 88E6208/88E6218 216-pin LQFP Package with Exposed Die Pad | 30 |
| igure 28: S | Sample Ordering Part Number                                            | 32 |
|             | 8E6218 Package Marking and Pin 1 Location                              |    |
|             |                                                                        |    |





Doc. No. MV-S101300-01 Rev. A

# **Preface**

# **About this Document**

Part 1: Overview, Pinout, and Electrical Specifications provides a features list and overview describing the features in the 88E6208/88E6218. It also provides the pin description, pin map, and the electrical specifications. This volume is part of a three-volume set that describes the hardware features, the ARM9E CPU and peripheral interfaces and the switch core and PHYs of the 88E6208/88E6218.

The other two manuals in this set are:

- Part 2: CPU & Peripherals which provides a description of the CPU and each of the peripheral interfaces of the 88E6208/88E6218 and includes the related register tables.
- Part 3 Switch Core and PHYs which provides a description of the switch core and PHYs of the 88E6208/ 88E6218 and includes the related register tables.

In addition, Part 1 provides an overview to the complete three-volume set.

# **Related Documentation**

The following 88E6208/88E6218 documents relate to this manual.

- 88E6208/88E6218 Part 2: CPU Core and Peripherals, Document Number MV-S101300-02
- 88E6208/88E6218 Part 3: Switch Core and PHYs, Document Number MV-S101300-03

12qru965pi-fg1e32yu \* IJW Software New Zealand Ltd. \* UNDER NDA# 12109742



# **Document Conventions**

### **Table 1: Document Conventions**

| Table 1: Document              | our chaons                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Document Conventions           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| The following name and         | d usage conventions are used in this document:                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Signal Range                   | A signal name followed by a range enclosed in brackets represents a range of logically related signals. The first number in the range indicates the most significant bit (MSb) and the last number indicates the least significant bit (LSb).  Example: DB_Addr[12:0]                                                                                                                                                                                                          |  |  |  |  |
| Active Low Signals n           | A lower-case n symbol at the end of a signal name indicates that the signal's active state occurs when voltage is low.  Example: INTn                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| State Names                    | State names are indicated in <i>italic</i> font.  Example: <i>linkfail</i>                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Register Naming<br>Conventions | Register field names are indicated in courier blue font.  Example: RegInit  OR  Example: Global_Control <deven>, Where Global Control represents the register name, and <deven> represents the register field name.  Register field bits are enclosed in brackets.  Example: Field [1:0]  Register addresses are represented in hexadecimal format  Example: 0x0  Reserved: The contents of the register are reserved for internal use only or for future use.</deven></deven> |  |  |  |  |

# Section 1. Signal Description

Figure 1: 88E6208 216-Pin LQFP Package





Figure 2: 88E6218 216-Pin LQFP Package



# **Pin Description**

# **Pin Type Definitions**

| Pin Type | ype Definition        |  |  |  |  |
|----------|-----------------------|--|--|--|--|
| Н        | Input with hysteresis |  |  |  |  |
| I/O      | Input and output      |  |  |  |  |
| 1        | Input only            |  |  |  |  |
| 0        | Output only           |  |  |  |  |
| PU       | Internal pull-up      |  |  |  |  |
| PD       | Internal pull-down    |  |  |  |  |
| D        | Open drain output     |  |  |  |  |
| Z        | Tri-state output      |  |  |  |  |
| mA       | DC sink capability    |  |  |  |  |



Table 2: Switch Network Interface

| Table 2.                         | witch network | IIICIIIGG           | XY, KV                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------|---------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 216-<br>LQFP<br>Package<br>Pin # | Pin Name      | Pin<br>Type         | Description                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 37<br>35<br>23<br>21<br>10       | P[4:0]_RXP    | Typically<br>Input  | Receiver input – Positive. P[4:0]_RXP connects directly to the receiver magnetics. If the port is configured for 100BASE-FX mode (Port 0 only), RXP connects directly to the fiber-optic receiver's positive output. For lowest power, all unused port RXP pins should be tied to VSS. These pins can become outputs if Auto MDI/MDIX is enabled (See Part 3 of the 3 part 88E6208/88E6218 datasheet for details).            |
| 38<br>34<br>24<br>20<br>11       | P[4:0]_RXN    | Typically<br>Input  | Receiver input – Negative. P[4:0]_RXN connects directly to the receiver magnetics. If the port is configured for 100BASE-FX mode (Port 0 only), RXN connects directly to the fiber-optic receiver's negative output. For lowest power, all unused port RXN pins should be tied to VSS. These pins can become outputs if Auto MDI/MDIX is enabled (See Part 3 of the 3 part 88E6208/88E6218 datasheet for details).            |
| 41<br>31<br>28<br>17<br>14       | P[4:0]_TXP    | Typically<br>Output | Transmitter output – Positive. P[4:0]_TXP connects directly to the transmitter magnetics. If the port is configured for 100BASE-FX mode (Port 0 only), P0_TXP connects directly to the fiber-optic transmitter's positive input. For lowest power, all unused port TXP pins should be tied to VSS. These pins can become inputs if Auto MDI/MDIX is enabled (See Part 3 of the 3 part 88E6208/88E6218 datasheet for details). |
| 42<br>30<br>29<br>16<br>15       | P[4:0]_TXN    | Typically<br>Output | Transmitter output – Negative. P[4:0]_TXN connects directly to the transmitter magnetics. If the port is configured for 100BASE-FX mode (Port 0 only) P0_TXN connects directly to the fiber-optic transmitter's negative input. For lowest power, all unused port TXN pins should be tied to VSS. These pins can become inputs if Auto MDI/MDIX is enabled (See Part 3 of the 3 part 88E6208/88E6218 datasheet for details).  |
| 8                                | P0_SDET       | Input               | Signal Detect input. If Port 0 is configured for 100BASE-FX mode, P0_SDET indicates whether a signal is detected by the fiber-optic transceiver. A positive level indicates that a signal is detected.  If Port 0 is configured for 10/100BASE-T mode, P0_SDET is not used but it cannot be left floating since this pin does not contain internal resistors. An unused P0_SDET pin can be tied to VSS.                       |

Table 3: Switch PHY Configuration

| 216-<br>LQFP<br>Package<br>Pin # | Pin Name  | Pin<br>Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------|-----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 196                              | P0_CONFIG | Input       | Port 0 Configuration. The P0_CONFIG pin is used to set the default configuration for Port 0 by connecting the pin to other device pins as defined in Table 15, "PHY Configuration Pins," on page 44.  Ports 1, 2, 3 and 4 default configuration is Auto-Negotiation enabled. Any port's default configuration can be modified by accessing the PHY registers by a CPU. Fiber mode vs. copper mode cannot be configured in this way, however. Fiber vs. copper must be selected at Reset by using the P0_CONFIG pins.  The P0_CONFIG pin is configured after Reset and contains an internal pull down resistor so it can be left floating to select Auto-Negotiation. |
| 2                                | CONFIG_A  | Input       | Global Configuration A. This global configuration pin is used to set the default LED mode and Far End Fault Indication (FEFI) mode by connecting these pins to other device pins as defined in Table 15, "PHY Configuration Pins," on page 44.  The LED modes are defined in Part 3 of the 3 part 88E6208/88E6218 datasheet.  The CONFIG_A pin is configured after Reset. It contains an internal pull-up resistor so it can be left floating to select the VDDO options.                                                                                                                                                                                            |
| 3                                | CONFIG_B  | Input       | Global Configuration B. This global configuration pin is used to set the default mode for Auto-Crossover, the PHY driver type and Energy Detect by connecting these pins to other device pins as defined in Table 15, "PHY Configuration Pins," on page 44.  Auto crossover and Energy Detect are defined in Part 3 of the 3 part 88E6208/88E6218 datasheet.  The CONFIG_B pin is configured after Reset. It contains an internal pull-up resistor so it can be left floating to select the VDDO options.                                                                                                                                                            |



Table 4: Switch PHY Status LEDs

|                                  | Jwitch i i i Otal |             |                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------|-------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 216-<br>LQFP<br>Package<br>Pin # | Pin Name          | Pin<br>Type | Description                                                                                                                                                                                                                                                                                                                                                                                       |
| 215<br>211<br>207<br>204<br>200  | P[4:0]_LED2       | Output      | Parallel LED outputs – one for each port. This active low LED pin directly drives an LED in Parallel LED mode. It can be configured to display many options.  P[1:0]_LED2 can be used to configure certain parameters in the PHY. P[4:0]_LED2 are driven active low whenever RESETn is active low.  See Part 3 of the 3 part 88E6208/88E6218 datasheet for LED display and configuration options. |
| 214<br>210<br>206<br>203<br>199  | P[4:0]_LED1       | Output      | Parallel LED outputs – one for each port. This active low LED pin directly drives an LED in Parallel LED mode. It can be configured to display many options.  P[1:0]_LED1 can be used to configure certain parameters in the PHY. P[4:0]_LED1 are driven active low whenever RESETn is active low.  See Part 3 of the 3 part 88E6208/88E6218 datasheet for LED display and configuration options. |
| 213<br>209<br>205<br>201<br>198  | P[4:0]_LED0       | Output      | Parallel LED outputs – one for each port. This active low LED pin directly drives an LED in Parallel LED mode. It can be configured to display many options.  P[1:0]_LED0 can be used to configure certain parameters in the PHY. P[4:0]_LED0 are driven active low whenever RESETn is active low.  See Part 3 of the 3 part 88E6208/88E6218 datasheet for LED display and configuration options. |

Table 5: Regulator, Reference & Clock

| l able 5:                        | Regulator, Refere             | TICE & CIOCK                                          | XXV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------|-------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 216-<br>LQFP<br>Package<br>Pin # | Pin Name                      | Pin<br>Type                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7                                | RSET                          | Analog                                                | Resistor reference. A 2.0 k $\Omega$ 1% resistor is placed between the RSET and VSS. This resistor is used to set an internal bias reference current.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                | CONTROL_<br>15                | Analog                                                | Voltage control to external 1.5V regulator. This signal controls an external PNP transistor to generate the 1.5V power supply for the VDD and VDDAL pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6                                | CONTROL_<br>25                | Analog                                                | Voltage control to external 2.5V regulator. This signal controls an external PNP transistor to generate the 2.5V power supply for the VDDO and VDDAH pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 164                              | XTAL_IN                       | Input                                                 | 25 MHz system reference clock input provided from the board. The clock source can come from an external crystal or an external oscillator. This is the only clock required as it is used for the Switch, the PHYs, and the CPU. Refer to section 4.6.3 for XTAL_IN timing requirements.                                                                                                                                                                                                                                                                                                                                                                              |
| 165                              | XTAL_OUT                      | Output                                                | System reference clock output provided to the board. This output can only be used to drive an external crystal. It cannot be used to drive external logic. If an external oscillator is used this pin should be left unconnected.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 51                               | RESETn                        | Input                                                 | Hardware reset. Active low. The 88E6208/88E6218 is configured during reset. When RESETn is low all configuration pins become inputs and the value seen on these pins is latched on the rising edge of RESETn or some time after. Refer to section 4.6.2 of the AC Electrical Specifications for Reset and Configuration Timing details.                                                                                                                                                                                                                                                                                                                              |
| 59<br>58                         | CLKSEL[1:0]<br>(88E6208 only) | Typically<br>Output<br>Input Only<br>During<br>RESETn | CPU clock speed selection (for Rev. A and Rev. B of the 88E6208 only).  During normal operation these pins are outputs driving undefined data. During reset these pins become inputs and the value seen on these pins is latched on the rising edge of RESETn or some time after. See Table 13, "Switch/CPU Interface Configuration Pins," on page 42 for configuration information.  These pins become no connect (NC) on future revisions of the 88E6208, and the CPU clock speed selection will move to M_A[17:16]. To maintain compatibility of the 88E6208, board designs should support CPU clock speed selection on both the CLKSEL[1:0] and M_A[17:16] pins. |



Table 6: General Purpose I/O – JTAG & Debug

| Table 6.                                                                                              | Selleral Pulpose I/O - JTAG & Debug |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|-------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 216-<br>LQFP<br>Package<br>Pin #                                                                      | Pin Name                            | Pin<br>Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 152<br>153<br>155<br>156<br>157<br>158<br>159<br>160<br>161<br>168<br>170<br>171<br>172<br>173<br>174 | GPIO[15:0]                          | 1/0         | General Purpose I/O. These pins can be programmed to perform many functions besides I/O pins under software control. These include Serial EEPROM interface, Software controlled LEDs, LEDs for switch Port 5, Interrupt inputs to the CPU, and Watch Dog Reset output. Not all functions can be supported at one time. Refer to "Section 5 GPIO Interface", in Part 2 of the 3 part 88E6208/88E6218 datasheet for more information on which GPIO pins can perform a particular function.  GPIO[15:0] are tri-stated during RESETn and are internally pulled high so they can be left unconnected if not used. |  |
| 52                                                                                                    | UART_RX                             | Input       | UART Receive Input. This is the input to the device's general purpose UART. UART_RX is internally pulled high so it can be left unconnected if not used.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 53                                                                                                    | UART_TX                             | Output      | UART Transmit Output. This is the output from the device's general purpose UART.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 47                                                                                                    | тск                                 | Input       | JTAG test clock. TCK is internally pulled high so it can be left unconnected if not used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 46                                                                                                    | TDI                                 | Input       | JTAG test data input. TDI is internally pulled high so it can be left unconnected if not used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 49                                                                                                    | TDO                                 | Output      | JTAG test data output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 48                                                                                                    | TMS                                 | Input       | JTAG test mode select for the device's pins and for the PHY. TMS is internally pulled high so it can be left unconnected if not used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 45                                                                                                    | TMS_ARM                             | Input       | JTAG test mode select for the ARM Event Trace Manager. TMS_ARM is internally pulled high so it can be left unconnected if not used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

Table 6: General Purpose I/O – JTAG & Debug (Continued)

| 216-<br>LQFP<br>Package<br>Pin # | Pin Name | Pin<br>Type | Description                                                                                                                                                                                                                                                                                               |
|----------------------------------|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 44                               | TRSTn    | Input       | Active low JTAG Test Interface and ARM Event Trace Manager reset. TRSTn is internally pulled high.  If the JTAG Test Interface is not being used, TRSTn must be low:                                                                                                                                      |
|                                  |          | (KA)        | If the JTAG Test Interface will never be used, TRSTn can be tied to VSS.                                                                                                                                                                                                                                  |
|                                  | *        | SOJE        | - If the JTAG Test Interface will be used periodically (like for manufacturing testing or software debug), TRSTn can be pulled low to VSS using a 10 $k\Omega$ resistor.                                                                                                                                  |
| 176                              | RTCK     | Output      | Return Clock. When using the ARM's JTAG controller (for the ARM's Event Trace Manager), this output provides the return clock synchronization signal for off-chip debug device (for example Multi-ICE). The debug device issues a TCK signal that cannot not progress to next TCK until RTCK is received. |



Table 7: SDRAM, FLASH & Device Interface

| 216-<br>LQFP<br>Package<br>Pin # | Pin Name                   | Pin<br>Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------|----------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 110                              | M_CLK_OUT                  | Output      | Memory clock output. Connect this pin to the CLK (clock) pin on SDRAM memories and to the M_CLK_IN pin described below. The fre quency of this pin is the frequency of the CPU core and they run synchronously.                                                                                                                                                                                                                                    |
| 107                              | M_CLK_IN                   | Input       | Memory clock input. Connect this pin to the M_CLK_OUT pin described above. It is used to adjust the read timing when reading the data from the SDRAM memories.                                                                                                                                                                                                                                                                                     |
| 65                               | BOOTCSn                    | Output      | Boot chip select (typically FLASH), active low. Connect this pin to the boot FLASH memory CEn (chip enabled) pin.                                                                                                                                                                                                                                                                                                                                  |
| 56                               | M_CSn[2]<br>(88E6218 only) | Output      | SDRAM or device chip select, active low. Each chip select can be programmed by software to be an SDRAM type using multiplexed addresses or a non-multiplexed device like FLASH or some other                                                                                                                                                                                                                                                       |
| 57<br>85                         | M_CSn[1:0]                 | Output      | device. Each chip select has its own address space and can have inde pendent timing.                                                                                                                                                                                                                                                                                                                                                               |
| 66                               | M_STATUS<br>(88E6218 only) | Input       | Memory Status. This pin accepts Ready/Busy# status indication for FLASH memory devices so software can determine when the FLASH device is ready for the next write operation. The value on this pin is readable in the memory controller's Control and Status register.  88E6208 does not support the M_STATUS pin. A GPIO pin can be used instead.  M_STATUS contains a internal pull-up resistor so the pin can be left unconnected if not used. |
| 84                               | RASn/<br>OEn               | Output      | Row address strobe, active low. Connect this pin to RASn (row address strobe) on SDRAM memories and to OEn (output enable) on device (FLASH) memories.                                                                                                                                                                                                                                                                                             |
| 83                               | CASn/<br>WPn               | Output      | Column address strobe, active low. Connect this pin to CASn (column address strobe) on SDRAM memories and to WPn (write protect) on device (FLASH) memories.                                                                                                                                                                                                                                                                                       |
| 81                               | WEn                        | Output      | Write enable, active low. Connect this pin to WEn (write enable) on SDRAM and device (FLASH) memories.                                                                                                                                                                                                                                                                                                                                             |

Doc. No. MV-S101300-01, Rev. A

Table 7: SDRAM, FLASH & Device Interface (Continued)

| 216-<br>LQFP<br>Package<br>Pin #                                                | Pin Name                                                 | Pin<br>Type                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 106<br>105<br>90<br>104<br>102<br>101<br>99<br>98<br>97<br>96<br>94<br>93<br>91 | M_A[12:0]                                                | Typically<br>Output<br>Input only<br>during<br>RESETn | Memory Address. Connect these pin to the multiplexed address pins on SDRAM memories and to address 12:0 on device (FLASH) memories.  M_A[12:0] contain internal resistors (most are internal pull-ups, but some are internal pull-downs) that are used to configure the 88E6208/88E6218 during a hardware reset. When RESETn is asserted, these pins become inputs and the desired configuration value is latched at the rising edge of RESETn. See Table 12, "CPU Configuration Pins," on page 41 and Table 14, "Switch Configuration Pins," on page 42 for configuration information. |
| 88 87                                                                           | BA[1:0]/<br>M_A[14:13]                                   | Typically<br>Output<br>Input only<br>during<br>RESETn | Bank Select. Connect these pin to the bank select pins on SDRAM memories and to address 14:13 on device (FLASH) memories.  BA[1:0] contain internal resistors that are used to configure the 88E6208/88E6218 during a hardware reset. When RESETn is asserted, these pins become inputs and the desired configuration value is latched at the rising edge of RESETn. See Table 14, "Switch Configuration Pins," on page 42 for configuration information.                                                                                                                               |
| 139                                                                             | DQMn[3:2]/<br>M_A[17:16],<br>(DQMn[3:2]<br>88E6218 only) | Typically<br>Output<br>Input only<br>during<br>RESETn | Date byte enables, active low. Connect these pins to DQMn[3:2] (byte enables) on SDRAM memories and to address 17:16 on device (FLASH) memories.  For 88E6208, DQMn[3] becomes M_A[17], and DQMn[2] becomes M_A[16].  See Table 12, "CPU Configuration Pins," on page 41 for M_A[17] and M_A[16] details.                                                                                                                                                                                                                                                                               |
| 112<br>79                                                                       | DQMn[1:0]/<br>M_A[15],<br>BYTEn                          | Typically<br>Output                                   | Date byte enables, active low. Connect these pins to DQMn[1:0] (byte enables) on SDRAM memories and to address 15 on device (FLASH) memories.  For 88E6208/88E6218, DQMn[1] becomes M_A[15]. DQMn[0] becomes BYTEn which can be used to configure the (FLASH) device to word or byte mode.                                                                                                                                                                                                                                                                                              |



Table 7: SDRAM, FLASH & Device Interface (Continued)

| 216-<br>LQFP<br>Package<br>Pin #                                                                             | Pin Name                     | Pin<br>Type                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 58<br>59                                                                                                     | M_A[23:22]<br>(88E6218 only) | Typically<br>Output<br>Input only<br>during<br>RESETn | Memory address bits 23:22.  For 88E6218, connect M_A[23:22] to address 23:22 on device (FLASH) memories (these pins are not used for SDRAMs).  M_A[23:22] contain internal resistors that are used to configure the 88E6218 during a hardware reset. When RESETn is asserted, these pins become inputs and the desired configuration value is latched at the rising edge of RESETn. See Table 12, "CPU Configuration Pins," on page 41 for configuration information.                                  |
| 61<br>62<br>63<br>64                                                                                         | M_A[21:18]                   | Typically<br>Output<br>Input only<br>during<br>RESETn | Memory address bits 21:18.  For 88E6208/88E6218, connect M_A[21:18] to address 21:18 on device (FLASH) memories (these pins are not used for SDRAMs).  M_A[21:18] contain internal resistors that are used to configure the 88E6208/88E6218 during a hardware reset. When RESETn is asserted, these pins become inputs and the desired configuration value is latched at the rising edge of RESETn. See Table 13, "Switch/CPU Interface Configuration Pins," on page 42 for configuration information. |
| 150<br>149<br>147<br>146<br>144<br>143<br>141<br>140<br>136<br>134<br>131<br>130<br>129<br>128<br>126<br>125 | M_D[31:16]<br>(88E6218 only) | I/O                                                   | Memory data. For the 88E6218, these pins form the upper 16-bits of a 32-bit wide memory data bus used to connect the ARM CPU to external SDRAM, FLASH and/or other devices.  M_D[31:0] is used for 32-bit wide SDRAM or devices. Make sure the device width used is correctly configured in the memory controller's registers.                                                                                                                                                                         |

Table 7: SDRAM, FLASH & Device Interface (Continued)

| 216-<br>LQFP<br>Package<br>Pin #                                                                     | Pin Name  | Pin<br>Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------|-----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 113<br>114<br>116<br>117<br>119<br>121<br>122<br>123<br>78<br>76<br>75<br>74<br>73<br>71<br>69<br>67 | M_D[15:0] | NO SOLUTION | Memory data. For the 88E6218, these pins form the lower 16 bits of a 32-bit wide memory data bus used to connect the ARM CPU to external SDRAM, FLASH and/or other devices.  For the 88E6208, these pins form the complete 16-bit wide memory data bus used to connect the ARM CPU to external SDRAM, FLASH and/or other devices.  If the device (FLASH or other device) is 8-bits wide, connect it to M_D[7:0]. If the SDRAM or device is 16-bits wide, connect it to M_D[15:0]. |



Table 8: Switch Port 6's Input MII - 88E6218 Only

| Table 6. Switch For Comparison College Comp |             |             |                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------|-------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 216-<br>LQFP<br>Package<br>Pin #            | Pin Name    | Pin<br>Type | Description                                                                                                                                                                                                                                                                                                                                                                |
| 188                                         | P6_INCLK    | I/O         | Input Clock. P6_INCLK is a reference for P6_INDV and P6_IND[3:0]. The direction and speed of P6_INCLK is determined by P6_MODE[3:0] at the end of RESETn.                                                                                                                                                                                                                  |
|                                             |             | 14 N        | If the port is in PHY Mode, P6_INCLK is an output. In this mode the frequency of the clock will be 25 MHz if the port is in 100BASE-X mode, and 2.5 MHz if the port is in 10BASE-T mode and 50 MHz for 200BASE mode. P6_INCLK is not used in RMII mode.                                                                                                                    |
|                                             | 624         |             | If the port is in MAC Mode, P6_INCLK is an input. In this mode the frequency of the clock can be anywhere from DC to 25 MHz or 50 MHz although it should be 25 MHz for 100BASE-X mode and 2.5 MHz for 10BASE-T mode. 50 MHz is needed for 200BASE mode. P6_INCLK is not used in RMII mode.                                                                                 |
|                                             |             |             | P6_INCLK is tri-stated during RESETn and it is internally pulled high so the pin can be left unconnected if not used.                                                                                                                                                                                                                                                      |
| 189<br>190<br>191<br>192                    | P6_IND[3:0] | Input       | Input Data. P6_IND[3:0] receives the data nibble to be transmitted into the switch in 100BASE-X and 10BASE-T modes. P6_IND[3:0] is synchronous to P6_INCLK (or P6_OUTCLK in RMII mode). These pins are inputs regardless of the port's mode (i.e., PHY mode or MAC mode). Only P6_IND0 is used when SNI mode is selected. P6_IND[1:0] are used when RMII mode is selected. |
|                                             |             |             | P6_IND[3:0] are internally pulled high via resistor so the pins can be left unconnected when they are not used.                                                                                                                                                                                                                                                            |
| 193                                         | P6_INDV     | Input       | Input Data Valid. When P6_INDV is asserted high, data on P6_IND[3:0] is encoded and transmitted into the switch. P6_INDV must be synchronous to P6_INCLK (or P6_OUTCLK in RMII mode).                                                                                                                                                                                      |
|                                             |             |             | P6_INDV is internally pulled low via resistor so the pin can be left unconnected when it is not used.                                                                                                                                                                                                                                                                      |

Table 9: Switch Port 6's Output MII - 88E6218 Only

| Table 9.                         | 9. Switch Fort 6 S Output Mill - 86E0216 Only |                                        |                                                                                                                                                                                                                                                                                                                         |  |
|----------------------------------|-----------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 216-<br>LQFP<br>Package<br>Pin # | Pin Name                                      | Pin<br>Type                            | Description                                                                                                                                                                                                                                                                                                             |  |
| 187                              | P6_OUTCLK                                     | \ <u>\</u>                             | Output Clock. P6_OUTCLK is a reference for P6_OUTDV, P6_OUTD[3:0], and P6_INDV and P6_IND[1:0] in RMII mode. The direction and speed of P6_OUTCLK is determined by P6_MODE[3:0] at the end of RESETn.                                                                                                                   |  |
|                                  |                                               | Sign                                   | If the port is in PHY Mode, P6_OUTCLK is an output. In this mode the frequency of the clock will be 25 MHz if the port is in 100BASE-X mode, and 2.5 MHz if the port is in 10BASE-T mode and 50 MHz for 200BASE mode and RMII mode.                                                                                     |  |
|                                  |                                               |                                        | If the port is in MAC Mode, P6_OUTCLK is an input. In this mode the frequency of the clock can be anywhere from DC to 25MHz or 50 MHz although it should be 25 MHz for 100BASE-X mode and 2.5 MHz for 10BASE-T mode and 50 MHz for 200BASE mode. MAC mode RMII mode is not supported.                                   |  |
| ·                                |                                               |                                        | P6_OUTCLK is tri-stated during RESETn and it is internally pulled high so the pin can be left unconnected if not used.                                                                                                                                                                                                  |  |
| 179<br>180<br>182<br>184         | P6_OUTD[3:0]/<br>P6_MODE[3:0]                 | Normally Output Input only when RESETn | Output Data. Data transmitted from the switch is decoded and presented on P6_OUTD[3:0] pins synchronous to P6_OUTCLK. These pins are outputs regardless of the port's mode (i.e., PHY or MAC mode). Only P6_OUTD0 contains meaningful data when SNI mode is selected. P6_OUTD[1:0] are used when RMII mode is selected. |  |
|                                  |                                               | is low                                 | During RESETn these internally pulled high pins are tri-stated and used to latch in the desired operating mode for the port as described in Table 14.                                                                                                                                                                   |  |
| 186                              | P6_OUTDV/<br>DISABLE_P6                       | Output                                 | Output Data Valid. When P6_OUTDV is asserted high, data transmitted from the switch is decoded and presented on P6_OUTD[3:0]. P6_OUTDV is synchronous to P6_OUTCLK.                                                                                                                                                     |  |
|                                  |                                               |                                        | During RESETn this internally pulled high pin is tri-stated and used to latch in the enable value for switch Port 6. If this pin is high or left unconnected during RESETn Port 6 will be disabled. Use a 4.7 k $\Omega$ resistor to VSS to enable Port 6.                                                              |  |
|                                  |                                               |                                        | 19//>                                                                                                                                                                                                                                                                                                                   |  |



Table 9: Switch Port 6's Output MII - 88E6218 Only (Continued)

| 216-<br>LQFP<br>Package<br>Pin # | Pin Name | Pin<br>Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------|----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 177                              | P6_CRS   | 1/0         | Carrier Sense. After RESETn, P6_CRS becomes an output if PHY Mode is selected for this port. It remains an input if MAC Mode is selected. P6_CRS asserts (or is expected to be asserted) when the receive data path is non-idle. In half-duplex mode P6_CRS is also asserted (or is expected to be asserted) during transmission. P6_CRS is asynchronous to P6_OUTCLK and P6_INCLK.  P6_CRS is tri-stated during RESETn and it is internally pulled low so the pin can be left unconnected if not used.  |
| 178                              | P6_COL   | I/O         | Collision. After RESETn, P6_COL becomes an output if PHY Mode is selected for this port. It remains an input if MAC Mode is selected. P6_COL asserts (or is expected to be asserted) only in half-duplex mode when both the transmit and receive paths are non-idle. In full-duplex mode, P6_COL is always low (or it is ignored). P6_COL is asynchronous to P6_OUTCLK and P6_INCLK.  P6_COL is tri-stated during RESETn and it is internally pulled low so the pin can be left unconnected if not used. |

Table 10: External SMI Register Access Interface - 88E6218 Only

| 216-<br>LQFP<br>Package<br>Pin # | Pin Name | Pin<br>Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 195                              | MDC      | Output      | MDC is the management data clock reference for the serial management interface (SMI). A continuous clock stream is not generated.  MDC occurs only when an SMI operation is taking place. MDC's frequency is the CPU's core clock frequency divided by 64 (2.08 MHz @ 133 MHz CPU speed).  The SMI is used to access the registers in external devices like PHYs that could be connected to Port 6's MII.  MDC is internally pulled high via a resistor so it can be left floating when unused. |
| 194<br>2011/25                   | MDIO     | I/O         | MDIO is the management data. MDIO is used to transfer management data in and out of the device synchronously to MDC. This pin requires an external pull-up resistor in the range of 1.5 k $\Omega$ to 10 k $\Omega$ . The 88E6218 internal switch uses 16 of the 32 possible SMI port addresses. The 16 that are used are selectable using the M_A[3] configuration pin (see Table 14 for details).                                                                                             |



Table 11: Power & Ground

| Table 11: F                                                                                                                       | Power & Ground | 1           | A A A A                         |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|---------------------------------|
| 216-<br>LQFP<br>Package<br>Pin #                                                                                                  | Pin Name       | Pin<br>Type | Description                     |
| 50<br>60<br>68<br>77<br>80<br>86<br>95<br>103<br>111<br>115<br>124<br>132<br>133<br>142<br>151<br>166<br>169<br>183<br>202<br>212 | VDDO           | Power       | 3.3 volt Power to digital I/O.  |
| 9<br>22<br>36                                                                                                                     | VDDAH          | Power       | 2.5 volt Power to analog core.  |
| 12<br>19<br>25<br>33<br>39                                                                                                        | VDDAL          | Power       | 1.5 volt Power to analog core.  |
| 4<br>43<br>72<br>89<br>100<br>120<br>135<br>148<br>167<br>181<br>208                                                              | VDD            | Power       | 1.5 volt Power to digital core. |

Table 11: Power & Ground (Continued)

| 216-LQFP                                                                                                                                                                   |                                                                                                                                             |          |        |                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|----------------------------------------------------------------------|
| 13 18 26 27 32 40 54 55 70 82 92 108 109 118 127 137 145 154 162 163 185 197 216  Exposed VSS Ground Solder the exposed die pad to the PCB for best thermal and electrical | LQFP<br>Package                                                                                                                             | Pin Name |        | Description                                                          |
|                                                                                                                                                                            | 13<br>18<br>26<br>27<br>32<br>40<br>54<br>55<br>70<br>82<br>92<br>108<br>109<br>118<br>127<br>137<br>145<br>154<br>162<br>163<br>185<br>197 |          |        | Ground to digital I/O and core.                                      |
| Die Pad performance. Contact Marvell FAEs for information on PCB layout recommendations.                                                                                   | Exposed<br>Die Pad                                                                                                                          | VSS      | Ground | performance. Contact Marvell FAEs for information on PCB layout rec- |



Table 11: Power & Ground (Continued)

| Table II. I                                                                                                                                                                                                                                          | ower & oround | (           |                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|------------------------------------------------------------------------------------------|
| 216-<br>LQFP<br>Package<br>Pin #                                                                                                                                                                                                                     | Pin Name      | Pin<br>Type | Description                                                                              |
| 56<br>58<br>59<br>66<br>125<br>126<br>128<br>129<br>130<br>131<br>134<br>136<br>140<br>141<br>143<br>144<br>146<br>147<br>149<br>150<br>177<br>178<br>179<br>180<br>182<br>184<br>186<br>187<br>188<br>189<br>190<br>191<br>192<br>193<br>194<br>195 | NC NC         | No Connect  | 88E6208 Only. Do not connect these pins to anything. These pins are not to be connected. |



# Link Street™ 88E6208/88E6218 SOHO Gateway SOC with ARM9E CPU, 10/100 Switch and PHYs Part 1: Overview, Pinout, & Electrical Specifications

| Pin # | Pin Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pin # | Pin Name |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| 114   | M_D[14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 194   | NC       |
| 113   | M_D[15]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 195   | NC       |
| 56    | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 198   | P0_LED0  |
| 66    | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 199   | P0_LED1  |
| 125   | NC 🐧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200   | P0_LED2  |
| 126   | NC S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11    | P0_RXN   |
| 128   | NC ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10    | P0_RXP   |
| 129   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15    | P0_TXN   |
| 130   | NC NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14    | P0_TXP   |
| 131   | NC O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 201   | P1_LED0  |
| 134   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 203   | P1_LED1  |
| 136   | NC STATE OF THE ST | 204   | P1_LED2  |
| 140   | NC *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20    | P1_RXN   |
| 141   | NC SOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21    | P1_RXP   |
| 143   | NC S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16    | P1_TXN   |
| 144   | NC NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17    | P1_TXP   |
| 146   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 205   | P2_LED0  |
| 147   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 206   | P2_LED1  |
| 149   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 207   | P2_LED2  |
| 150   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24    | P2_RXN   |
| 177   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23    | P2_RXP   |
| 178   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29    | P2_TXN   |
| 179   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28    | P2_TXP   |
| 180   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 209   | P3_LED0  |
| 182   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 210   | P3_LED1  |
| 184   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 211   | P3_LED2  |
| 186   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34    | P3_RXN   |
| 187   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35    | P3_RXP   |
| 188   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30    | P3_TXN   |
| 189   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31    | P3_TXP   |
| 190   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 213   | P4_LED0  |
| 191   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 214   | P4_LED1  |
| 192   | NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 215   | P4_LED2  |
| 193   | NC 🐫                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38    | P4_RXN   |

12qru965pi-fg1e32yu \* IJW Software New Zealand Ltd. \* UNDER NDA# 12109742

|       |           | <b>10</b> |          |
|-------|-----------|-----------|----------|
| Pin # | Pin Name  | Pin#      | Pin Name |
| 37    | P4_RXP    | 19        | VDDAL    |
| 42    | P4_TXN    | 25        | VDDAL    |
| 41    | P4_TXP    | 33        | VDDAL    |
| 196   | P0_CONFIG | 39        | VDDAL    |
| 8     | P0_SDET   | 50        | VDDO     |
| 84    | RASn/OEn  | 60        | VDDO     |
| 51    | RESETn    | 68        | VDDO     |
| 7     | RSET      | 77        | VDDO     |
| 176   | RTCK      | 80        | VDDO     |
| 47    | TCK       | 86        | VDDO     |
| 46    | TDI       | 95        | VDDO     |
| 49    | TDO       | 103       | VDDO     |
| 48    | TMS       | 111       | VDDO     |
| 45    | TMS_ARM   | 115       | VDDO     |
| 44    | TRSTn     | 124       | VDDO     |
| 52    | UART_RX   | 132       | VDDO     |
| 53    | UART_TX   | 133       | VDDO     |
| 4     | VDD       | 142       | VDDO     |
| 43    | VDD       | 151       | VDDO     |
| 72    | VDD       | 166       | VDDO     |
| 89    | VDD       | 169       | VDDO     |
| 100   | VDD       | 183       | VDDO     |
| 120   | VDD       | 202       | VDDO     |
| 135   | VDD       | 212       | VDDO     |
| 148   | VDD       | 1         | VSS      |
| 167   | VDD       | 13        | VSS      |
| 181   | VDD       | 18        | VSS      |
| 208   | VDD       | 26        | VSS      |
| 9     | VDDAH     | 27        | VSS      |
| 22    | VDDAH     | 32        | VSS      |
| 36    | VDDAH     | 40        | VSS      |

Page 35



# Link Street™ 88E6208/88E6218 SOHO Gateway SOC with ARM9E CPU, 10/100 Switch and PHYs Part 1: Overview, Pinout, & Electrical Specifications

| Pin # | Pin Name | Pin # | Pin Name |
|-------|----------|-------|----------|
| 54    | VSS      | 154   | VSS      |
| 55    | VSS      | 162   | VSS      |
| 70    | VSS      | 163   | VSS      |
| 82    | vss      | 185   | VSS      |
| 92    | VSS      | 197   | VSS      |
| 109   | VSS      | 216   | VSS      |
| 118   | VSS      | 81    | WEn      |
| 127   | VSS      | 164   | XTAL_IN  |
| 137   | VSS      | 165   | XTAL_OUT |
| 145   | VSS      |       |          |



# 1.1.3 88E6218 216-Pin LQFP Pin Assignment List - Alphabetical by Signal Name

|       | griai Harric    | 20 V <sub>V</sub> |           |  |
|-------|-----------------|-------------------|-----------|--|
| Pin # | Pin Name        | Pin #             | Pin Name  |  |
| 87    | BA[0]/M_A[13]   | 97                | M_A[4]    |  |
| 88    | BA[1]/M_A[14]   | 98                | M_A[5]    |  |
| 65    | BOOTCSn         | 99                | M_A[6]    |  |
| 83    | CASn/WPn        | 101               | M_A[7]    |  |
| 2     | CONFIG_A        | 102               | M_A[8]    |  |
| 3     | CONFIG_B        | 104               | M_A[9]    |  |
| 5     | CONTROL_15      | 90                | M_A[10]   |  |
| 6     | CONTROL_25      | 105               | M_A[11]   |  |
| 79    | DQMn[0]/BYTEn   | 106               | M_A[12]   |  |
| 112   | DQMn[1]/M_A[15] | 64                | M_A[18]   |  |
| 138   | DQMn[2]/M_A[16] | 63                | M_A[19]   |  |
| 139   | DQMn[3]/M_A[17] | 62                | M_A[20]   |  |
|       | Exposed Die Pad | 61                | M_A[21]   |  |
| 175   | GPIO[0]         | 59                | M_A[22]   |  |
| 174   | GPIO[1]         | 58                | M_A[23]   |  |
| 173   | GPIO[2]         | 107               | M_CLK_IN  |  |
| 172   | GPIO[3]         | 110               | M_CLK_OUT |  |
| 171   | GPIO[4]         | 85                | M_CSn[0]  |  |
| 170   | GPIO[5]         | 57                | M_CSn[1]  |  |
| 168   | GPIO[6]         | 56                | M_CSn[2]  |  |
| 161   | GPIO[7]         | 67                | M_D[0]    |  |
| 160   | GPIO[8]         | 69                | M_D[1]    |  |
| 159   | GPIO[9]         | 71                | M_D[2]    |  |
| 158   | GPIO[10]        | 73                | M_D[3]    |  |
| 157   | GPIO[11]        | 74                | M_D[4]    |  |
| 156   | GPIO[12]        | 75                | M_D[5]    |  |
| 155   | GPIO[13]        | 76                | M_D[6]    |  |
| 153   | GPIO[14]        | 78                | M_D[7]    |  |
| 152   | GPIO[15]        | 123               | M_D[8]    |  |
| 91    | M_A[0]          | 122               | M_D[9]    |  |
| 93    | M_A[1]          | 121               | M_D[10]   |  |
| 94    | M_A[2]          | 119               | M_D[11]   |  |
| 96    | M_A[3]          | 117               | M_D[12]   |  |



| Pin #         Pin Name         Pin #         Pin Name           116         M_D[13]         20         P1_RXN           114         M_D[14]         21         P1_RXP           113         M_D[16]         16         P1_TXN           125         M_D[16]         17         P1_TXP           126         M_D[17]         205         P2_LED0           128         M_D[18]         206         P2_LED1           129         M_D[19]         207         P2_LED2           130         M_D[20]         24         P2_RXN           131         M_D[21]         23         P2_RXP           134         M_D[23]         28         P2_TXP           140         M_D[23]         28         P2_TXP           140         M_D[24]         209         P3_LED0           141         M_D[25]         210         P3_LED1           144         M_D[26]         211         P3_LED2           144         M_D[27]         34         P3_RXN           146         M_D[28]         35         P3_RXP           147         M_D[29]         30         P3_TXN           149         M_D[20]                                                            |       |          |       |           |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|-------|-----------|--|--|--|
| 114         M_D[14]         21         P1_RXP           113         M_D[15]         16         P1_TXN           125         M_D[16]         17         P1_TXP           126         M_D[17]         205         P2_LED0           128         M_D[18]         206         P2_LED1           129         M_D[19]         207         P2_LED2           130         M_D[20]         24         P2_RXP           131         M_D[21]         23         P2_RXP           134         M_D[22]         29         P2_TXN           136         M_D[23]         28         P2_TXP           140         M_D[24]         209         P3_LED0           141         M_D[25]         210         P3_LED1           143         M_D[26]         211         P3_LED2           144         M_D[27]         34         P3_RXN           146         M_D[28]         35         P3_RXP           147         M_D[29]         30         P3_TXN           149         M_D[31]         213         P4_LED0           66         M_STATUS         214         P4_LED1           195         MDC         215                                                        | Pin # | Pin Name | Pin # | Pin Name  |  |  |  |
| 113         M_D[15]         16         P1_TXN           125         M_D[16]         17         P1_TXP           126         M_D[17]         205         P2_LED0           128         M_D[18]         206         P2_LED1           129         M_D[19]         207         P2_LED2           130         M_D[20]         24         P2_RXN           131         M_D[21]         23         P2_RXP           134         M_D[22]         29         P2_TXN           136         M_D[23]         28         P2_TXP           140         M_D[24]         209         P3_LED0           141         M_D[25]         210         P3_LED1           143         M_D[26]         211         P3_LED2           144         M_D[26]         211         P3_RXP           144         M_D[27]         34         P3_RXP           147         M_D[29]         30         P3_TXN           149         M_D[30]         31         P3_TXP           150         M_D[31]         213         P4_LED0           66         M_STATUS         214         P4_LED1           194         MDIO         3                                                        | 116   | M_D[13]  | 20    | P1_RXN    |  |  |  |
| 125         M_D[16]         17         P1_TXP           126         M_D[17]         205         P2_LED0           128         M_D[18]         206         P2_LED1           129         M_D[19]         207         P2_LED2           130         M_D[20]         24         P2_RXN           131         M_D[21]         23         P2_RXP           134         M_D[22]         29         P2_TXN           136         M_D[23]         28         P2_TXP           140         M_D[24]         209         P3_LED0           141         M_D[25]         210         P3_LED1           141         M_D[26]         211         P3_LED2           144         M_D[27]         34         P3_RXP           144         M_D[27]         34         P3_RXP           147         M_D[28]         35         P3_RXP           147         M_D[29]         30         P3_TXN           149         M_D[30]         31         P3_TXP           150         M_D[31]         213         P4_LED0           66         M_STATUS         214         P4_LED1           195         MDC         215                                                        | 114   | M_D[14]  | 21    | P1_RXP    |  |  |  |
| 126         M_D[17]         206         P2_LED0           128         M_D[18]         206         P2_LED1           129         M_D[19]         207         P2_LED2           130         M_D[20]         24         P2_RXN           131         M_D[21]         23         P2_RXP           134         M_D[22]         29         P2_TXN           136         M_D[23]         28         P2_TXP           140         M_D[24]         209         P3_LED0           141         M_D[25]         210         P3_LED1           143         M_D[26]         211         P3_LED2           144         M_D[26]         211         P3_LED2           144         M_D[27]         34         P3_RXN           146         M_D[28]         35         P3_RXP           147         M_D[29]         30         P3_TXN           149         M_D[30]         31         P3_TXP           150         M_D[31]         213         P4_LED0           66         M_STATUS         214         P4_LED1           194         MDIO         38         P4_RXN           198         P0_LED0                                                                 | 113   | M_D[15]  | 16    | P1_TXN    |  |  |  |
| 128         M_D[18]         206         P2_LED1           129         M_D[19]         207         P2_LED2           130         M_D[20]         24         P2_RXN           131         M_D[21]         23         P2_RXP           134         M_D[22]         29         P2_TXN           136         M_D[23]         28         P2_TXP           140         M_D[24]         209         P3_LED0           141         M_D[25]         210         P3_LED1           143         M_D[26]         211         P3_LED2           144         M_D[26]         211         P3_LED2           144         M_D[27]         34         P3_RXN           146         M_D[28]         35         P3_RXP           147         M_D[29]         30         P3_TXN           149         M_D[30]         31         P3_TXP           150         M_D[31]         213         P4_LED0           66         M_STATUS         214         P4_LED1           195         MDC         215         P4_RXP           194         MDIO         38         P4_RXP           199         P0_LED1         42 <td>125</td> <td>M_D[16]</td> <td>17</td> <td>P1_TXP</td> | 125   | M_D[16]  | 17    | P1_TXP    |  |  |  |
| 129       M_D[19]       207       P2_LED2         130       M_D[20]       24       P2_RXN         131       M_D[21]       23       P2_RXP         134       M_D[22]       29       P2_TXN         136       M_D[23]       28       P2_TXP         140       M_D[24]       209       P3_LED0         141       M_D[25]       210       P3_LED1         143       M_D[26]       211       P3_LED2         144       M_D[27]       34       P3_RXN         146       M_D[28]       35       P3_RXP         147       M_D[29]       30       P3_TXN         149       M_D[30]       31       P3_TXP         150       M_D[31]       213       P4_LED0         66       M_STATUS       214       P4_LED1         195       MDC       215       P4_LED2         194       MDIO       38       P4_RXN         198       P0_LED0       37       P4_RXP         199       P0_LED1       42       P4_TXN         200       P0_LED2       41       P4_TXP         11       P0_RXP       8       P0_CONFIG <tr< td=""><td>126</td><td>M_D[17]</td><td>205</td><td>P2_LED0</td></tr<>                                                                           | 126   | M_D[17]  | 205   | P2_LED0   |  |  |  |
| 130         M_D[20]         24         P2_RXN           131         M_D[21]         23         P2_RXP           134         M_D[22]         29         P2_TXN           136         M_D[23]         28         P2_TXP           140         M_D[24]         209         P3_LED0           141         M_D[25]         210         P3_LED1           143         M_D[26]         211         P3_LED2           144         M_D[27]         34         P3_RXN           146         M_D[28]         35         P3_RXP           147         M_D[29]         30         P3_TXN           149         M_D[30]         31         P3_TXP           150         M_D[31]         213         P4_LED0           66         M_STATUS         214         P4_LED1           195         MDC         215         P4_LED2           194         MDIO         38         P4_RXN           198         P0_LED0         37         P4_RXP           199         P0_LED1         42         P4_TXN           10         P0_RXP         8         P0_CONFIG           10         P0_RXP         8                                                                   | 128   | M_D[18]  | 206   | P2_LED1   |  |  |  |
| 131         M_D[21]         23         P2_RXP           134         M_D[22]         29         P2_TXN           136         M_D[23]         28         P2_TXP           140         M_D[24]         209         P3_LED0           141         M_D[25]         210         P3_LED1           143         M_D[26]         211         P3_LED2           144         M_D[26]         34         P3_RXN           146         M_D[28]         35         P3_RXP           147         M_D[29]         30         P3_TXN           149         M_D[30]         31         P3_TXP           150         M_D[31]         213         P4_LED0           66         M_STATUS         214         P4_LED1           195         MDC         215         P4_LED2           194         MDIO         38         P4_RXN           198         P0_LED0         37         P4_RXP           199         P0_LED1         42         P4_TXN           200         P0_LED2         41         P4_TXP           11         P0_RXP         8         P0_SDET           15         P0_TXN         178                                                                   | 129   | M_D[19]  | 207   | P2_LED2   |  |  |  |
| 134       M_D[22]       29       P2_TXN         136       M_D[23]       28       P2_TXP         140       M_D[24]       209       P3_LED0         141       M_D[25]       210       P3_LED1         143       M_D[26]       211       P3_LED2         144       M_D[27]       34       P3_RXN         146       M_D[28]       35       P3_RXP         147       M_D[29]       30       P3_TXN         149       M_D[29]       30       P3_TXN         149       M_D[30]       31       P3_TXP         150       M_D[31]       213       P4_LED0         66       M_STATUS       214       P4_LED1         195       MDC       215       P4_LED2         194       MDIO       38       P4_RXN         198       P0_LED0       37       P4_RXP         199       P0_LED1       42       P4_TXN         200       P0_LED2       41       P4_TXP         11       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_COL         14       P0_TXP       177       P6_CRS                                                                                                                                                           | 130   | M_D[20]  | 24    | P2_RXN    |  |  |  |
| 136       M_D[23]       28       P2_TXP         140       M_D[24]       209       P3_LED0         141       M_D[25]       210       P3_LED1         143       M_D[26]       211       P3_LED2         144       M_D[27]       34       P3_RXN         146       M_D[28]       35       P3_RXP         147       M_D[29]       30       P3_TXN         149       M_D[30]       31       P3_TXP         150       M_D[31]       213       P4_LED0         66       M_STATUS       214       P4_LED1         195       MDC       215       P4_LED2         194       MDIO       38       P4_RXN         198       P0_LED0       37       P4_RXP         199       P0_LED1       42       P4_TXN         190       P0_LED2       41       P4_TXP         11       P0_RXN       196       P0_CONFIG         10       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_COL         14       P0_TXP       177       P6_CRS         201       P1_LED0       188       P6_IND[0] <td>131</td> <td>M_D[21]</td> <td>23</td> <td>P2_RXP</td>                                                                                           | 131   | M_D[21]  | 23    | P2_RXP    |  |  |  |
| 140       M_D[24]       209       P3_LED0         141       M_D[25]       210       P3_LED1         143       M_D[26]       211       P3_LED2         144       M_D[27]       34       P3_RXN         146       M_D[28]       35       P3_RXP         147       M_D[29]       30       P3_TXN         149       M_D[30]       31       P3_TXP         150       M_D[31]       213       P4_LED0         66       M_STATUS       214       P4_LED1         195       MDC       215       P4_LED2         194       MDIO       38       P4_RXN         198       P0_LED0       37       P4_RXP         199       P0_LED1       42       P4_TXN         200       P0_LED2       41       P4_TXP         11       P0_RXN       196       P0_CONFIG         10       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_COL         14       P0_TXP       177       P6_CRS         201       P1_LED0       188       P6_INCLK         203       P1_LED1       192       P6_IND[0] </td <td>134</td> <td>M_D[22]</td> <td>29</td> <td>P2_TXN</td>                                                                                   | 134   | M_D[22]  | 29    | P2_TXN    |  |  |  |
| 141       M_D[25]       210       P3_LED1         143       M_D[26]       211       P3_LED2         144       M_D[27]       34       P3_RXN         146       M_D[28]       35       P3_RXP         147       M_D[29]       30       P3_TXN         149       M_D[30]       31       P3_TXP         150       M_D[31]       213       P4_LED0         66       M_STATUS       214       P4_LED1         195       MDC       215       P4_LED2         194       MDIO       38       P4_RXN         198       P0_LED0       37       P4_RXP         199       P0_LED1       42       P4_TXN         200       P0_LED2       41       P4_TXP         11       P0_RXP       8       P0_CONFIG         10       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_COL         14       P0_TXP       177       P6_CRS         201       P1_LED0       188       P6_IND[0]                                                                                                                                                                                                                                                         | 136   | M_D[23]  | 28    | P2_TXP    |  |  |  |
| 143       M_D[26]       211       P3_LED2         144       M_D[27]       34       P3_RXN         146       M_D[28]       35       P3_RXP         147       M_D[29]       30       P3_TXN         149       M_D[30]       31       P3_TXP         150       M_D[31]       213       P4_LED0         66       M_STATUS       214       P4_LED1         195       MDC       215       P4_LED2         194       MDIO       38       P4_RXN         198       P0_LED0       37       P4_RXP         199       P0_LED1       42       P4_TXN         200       P0_LED2       41       P4_TXP         11       P0_RXN       196       P0_CONFIG         10       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_COL         14       P0_TXP       177       P6_CRS         201       P1_LED0       188       P6_INCLK         203       P1_LED1       192       P6_IND[0]                                                                                                                                                                                                                                                      | 140   | M_D[24]  | 209   | P3_LED0   |  |  |  |
| 144       M_D[27]       34       P3_RXN         146       M_D[28]       35       P3_RXP         147       M_D[29]       30       P3_TXN         149       M_D[30]       31       P3_TXP         150       M_D[31]       213       P4_LED0         66       M_STATUS       214       P4_LED1         195       MDC       215       P4_LED2         194       MDIO       38       P4_RXN         198       P0_LED0       37       P4_RXP         199       P0_LED1       42       P4_TXN         200       P0_LED2       41       P4_TXP         11       P0_RXN       196       P0_CONFIG         10       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_CCL         14       P0_TXP       177       P6_CRS         201       P1_LED0       188       P6_INCLK         203       P1_LED1       192       P6_IND[0]                                                                                                                                                                                                                                                                                                        | 141   | M_D[25]  | 210   | P3_LED1   |  |  |  |
| 146       M_D[28]       35       P3_RXP         147       M_D[29]       30       P3_TXN         149       M_D[30]       31       P3_TXP         150       M_D[31]       213       P4_LED0         66       M_STATUS       214       P4_LED1         195       MDC       215       P4_LED2         194       MDIO       38       P4_RXN         198       P0_LED0       37       P4_RXP         199       P0_LED1       42       P4_TXN         200       P0_LED2       41       P4_TXP         11       P0_RXN       196       P0_CONFIG         10       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_COL         14       P0_TXP       177       P6_CRS         201       P1_LED0       188       P6_INCLK         203       P1_LED1       192       P6_IND[0]                                                                                                                                                                                                                                                                                                                                                        | 143   | M_D[26]  | 211   | P3_LED2   |  |  |  |
| 147       M_D[29]       30       P3_TXN         149       M_D[30]       31       P3_TXP         150       M_D[31]       213       P4_LED0         66       M_STATUS       214       P4_LED1         195       MDC       215       P4_LED2         194       MDIO       38       P4_RXN         198       P0_LED0       37       P4_RXP         199       P0_LED1       42       P4_TXN         200       P0_LED2       41       P4_TXP         11       P0_RXN       196       P0_CONFIG         10       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_COL         14       P0_TXP       177       P6_CRS         201       P1_LED0       188       P6_INCLK         203       P1_LED1       192       P6_IND[0]                                                                                                                                                                                                                                                                                                                                                                                                        | 144   | M_D[27]  | 34    | P3_RXN    |  |  |  |
| 149       M_D[30]       31       P3_TXP         150       M_D[31]       213       P4_LED0         66       M_STATUS       214       P4_LED1         195       MDC       215       P4_LED2         194       MDIO       38       P4_RXN         198       P0_LED0       37       P4_RXP         199       P0_LED1       42       P4_TXN         200       P0_LED2       41       P4_TXP         11       P0_RXN       196       P0_CONFIG         10       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_COL         14       P0_TXP       177       P6_CRS         201       P1_LED0       188       P6_INCLK         203       P1_LED1       192       P6_IND[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 146   | M_D[28]  | 35    | P3_RXP    |  |  |  |
| 150       M_D[31]       213       P4_LED0         66       M_STATUS       214       P4_LED1         195       MDC       215       P4_LED2         194       MDIO       38       P4_RXN         198       P0_LED0       37       P4_RXP         199       P0_LED1       42       P4_TXN         200       P0_LED2       41       P4_TXP         11       P0_RXN       196       P0_CONFIG         10       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_COL         14       P0_TXP       177       P6_CRS         201       P1_LED0       188       P6_INCLK         203       P1_LED1       192       P6_IND[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 147   | M_D[29]  | 30    | P3_TXN    |  |  |  |
| 66       M_STATUS       214       P4_LED1         195       MDC       215       P4_LED2         194       MDIO       38       P4_RXN         198       P0_LED0       37       P4_RXP         199       P0_LED1       42       P4_TXN         200       P0_LED2       41       P4_TXP         11       P0_RXN       196       P0_CONFIG         10       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_COL         14       P0_TXP       177       P6_CRS         201       P1_LED0       188       P6_INCLK         203       P1_LED1       192       P6_IND[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 149   | M_D[30]  | 31    | P3_TXP    |  |  |  |
| 195         MDC         215         P4_LED2           194         MDIO         38         P4_RXN           198         P0_LED0         37         P4_RXP           199         P0_LED1         42         P4_TXN           200         P0_LED2         41         P4_TXP           11         P0_RXN         196         P0_CONFIG           10         P0_RXP         8         P0_SDET           15         P0_TXN         178         P6_COL           14         P0_TXP         177         P6_CRS           201         P1_LED0         188         P6_INCLK           203         P1_LED1         192         P6_IND[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150   | M_D[31]  | 213   | P4_LED0   |  |  |  |
| 194       MDIO       38       P4_RXN         198       P0_LED0       37       P4_RXP         199       P0_LED1       42       P4_TXN         200       P0_LED2       41       P4_TXP         11       P0_RXN       196       P0_CONFIG         10       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_COL         14       P0_TXP       177       P6_CRS         201       P1_LED0       188       P6_INCLK         203       P1_LED1       192       P6_IND[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66    | M_STATUS | 214   | P4_LED1   |  |  |  |
| 198       P0_LED0       37       P4_RXP         199       P0_LED1       42       P4_TXN         200       P0_LED2       41       P4_TXP         11       P0_RXN       196       P0_CONFIG         10       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_COL         14       P0_TXP       177       P6_CRS         201       P1_LED0       188       P6_INCLK         203       P1_LED1       192       P6_IND[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 195   | MDC      | 215   | P4_LED2   |  |  |  |
| 199       P0_LED1       42       P4_TXN         200       P0_LED2       41       P4_TXP         11       P0_RXN       196       P0_CONFIG         10       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_COL         14       P0_TXP       177       P6_CRS         201       P1_LED0       188       P6_INCLK         203       P1_LED1       192       P6_IND[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 194   | MDIO     | 38    | P4_RXN    |  |  |  |
| 200       P0_LED2       41       P4_TXP         11       P0_RXN       196       P0_CONFIG         10       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_COL         14       P0_TXP       177       P6_CRS         201       P1_LED0       188       P6_INCLK         203       P1_LED1       192       P6_IND[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 198   | P0_LED0  | 37    | P4_RXP    |  |  |  |
| 11       P0_RXN       196       P0_CONFIG         10       P0_RXP       8       P0_SDET         15       P0_TXN       178       P6_COL         14       P0_TXP       177       P6_CRS         201       P1_LED0       188       P6_INCLK         203       P1_LED1       192       P6_IND[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 199   | P0_LED1  | 42    | P4_TXN    |  |  |  |
| 10     P0_RXP     8     P0_SDET       15     P0_TXN     178     P6_COL       14     P0_TXP     177     P6_CRS       201     P1_LED0     188     P6_INCLK       203     P1_LED1     192     P6_IND[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200   | P0_LED2  | 41    | P4_TXP    |  |  |  |
| 15     P0_TXN     178     P6_COL       14     P0_TXP     177     P6_CRS       201     P1_LED0     188     P6_INCLK       203     P1_LED1     192     P6_IND[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11    | P0_RXN   | 196   | P0_CONFIG |  |  |  |
| 14     P0_TXP     177     P6_CRS       201     P1_LED0     188     P6_INCLK       203     P1_LED1     192     P6_IND[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10    | P0_RXP   | 8     | P0_SDET   |  |  |  |
| 201     P1_LED0       203     P1_LED1       188     P6_INCLK       192     P6_IND[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15    | P0_TXN   | 178   | P6_COL    |  |  |  |
| 203 P1_LED1 192 P6_IND[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14    | P0_TXP   | 177   | P6_CRS    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 201   | P1_LED0  | 188   | P6_INCLK  |  |  |  |
| 204 P1_LED2 191 P6_IND[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 203   | P1_LED1  | 192   | P6_IND[0] |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 204   | P1_LED2  | 191   | P6_IND[1] |  |  |  |

12qru965pi-fg1e32yu \* IJW Software New Zealand Ltd. \* UNDER NDA# 12109742

| Din # Din Name |                       |       |          |  |  |
|----------------|-----------------------|-------|----------|--|--|
| Pin #          | Pin Name              | Pin # | Pin Name |  |  |
| 190            | P6_IND[2]             | 9     | VDDAH    |  |  |
| 189            | P6_IND[3]             | 22    | VDDAH    |  |  |
| 193            | P6_INDV               | 36    | VDDAH    |  |  |
| 187            | P6_OUTCLK             | 12    | VDDAL    |  |  |
| 184            | P6_OUTD[0]/P6_MODE[0] | 19    | VDDAL    |  |  |
| 182            | P6_OUTD[1]/P6_MODE[1] | 25    | VDDAL    |  |  |
| 180            | P6_OUTD[2]/P6_MODE[2] | 33    | VDDAL    |  |  |
| 179            | P6_OUTD[3]/P6_MODE[3] | 39    | VDDAL    |  |  |
| 186            | P6_OUTDV/DISABLE_P6   | 50    | VDDO     |  |  |
| 84             | RASn/OEn              | 60    | VDDO     |  |  |
| 51             | RESETn                | 68    | VDDO     |  |  |
| 7              | RSET                  | 77    | VDDO     |  |  |
| 176            | RTCK                  | 80    | VDDO     |  |  |
| 47             | TCK                   | 86    | VDDO     |  |  |
| 46             | TDI                   | 95    | VDDO     |  |  |
| 49             | TDO                   | 103   | VDDO     |  |  |
| 48             | TMS                   | 111   | VDDO     |  |  |
| 45             | TMS_ARM               | 115   | VDDO     |  |  |
| 44             | TRSTn                 | 124   | VDDO     |  |  |
| 52             | UART_RX               | 132   | VDDO     |  |  |
| 53             | UART_TX               | 133   | VDDO     |  |  |
| 4              | VDD                   | 142   | VDDO     |  |  |
| 43             | VDD                   | 151   | VDDO     |  |  |
| 72             | VDD                   | 166   | VDDO     |  |  |
| 89             | VDD                   | 169   | VDDO     |  |  |
| 100            | VDD                   | 183   | VDDO     |  |  |
| 120            | VDD                   | 202   | VDDO     |  |  |
| 135            | VDD                   | 212   | VDDO     |  |  |
| 148            | VDD                   | 1,5   | VSS      |  |  |
| 167            | VDD                   | 13    | VSS      |  |  |
| 181            | VDD                   | 18    | VSS      |  |  |
| 208            | VDD                   | 27    | VSS      |  |  |
|                | (V)                   | •     |          |  |  |

|       |          | 10,   |          |
|-------|----------|-------|----------|
| Pin # | Pin Name | Pin # | Pin Name |
| 26    | VSS      | 137   | VSS      |
| 32    | VSS      | 145   | VSS      |
| 40    | vss      | 154   | VSS      |
| 54    | VSS      | 162   | VSS      |
| 55    | VSS      | 163   | VSS      |
| 70    | VSS      | 185   | VSS      |
| 82    | VSS      | 197   | VSS      |
| 92    | vss      | 216   | VSS      |
| 108   | vss      | 81    | WEn      |
| 109   | VSS      | 164   | XTAL_IN  |
| 118   | VSS      | 165   | XTAL_OUT |
| 127   | vss      |       |          |
|       | 624      |       |          |

# Section 2. Reset and Initialization

The 88E6208/88E6218 uses certain pins as configuration inputs to set parameters following a reset. The definition of these configuration pins changes after reset to their normal function. The following tables list and define the pins that affect the CPU, Switch/CPU interface, Switch, and PHY configuration. These pins require a 4.7 k $\Omega$  connection to VSS or VDDO to override the internal resistor's default.

Table 12: CPU Configuration Pins

| Pin                                                                                     | Configuration Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M_A[18]                                                                                 | Flash Boot Device Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                         | 1 = 8-bit boot device (default) 0 = 16-bit boot device NOTE: Internally pulled high to 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| {M_A[10],M_A[22],                                                                       | Core Frequency Selector (88E6218 only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| M_A[23]}                                                                                | 000 = Reserved for Internal Use only. 001 = 143 MHz (only if part is speed marked accordingly) 010 = 83 MHz 011 = 100 MHz 100 = 125 MHz 101 = 133 MHz (default) 110 = 150 MHz (only if part is speed marked accordingly) 111 = Reserved for internal use only NOTE: Internally pulled to 3'b101.                                                                                                                                                                                                                                                                                                                                                                                                       |
| {M_A[10],M_A[16],                                                                       | Core Frequency Selector (88E6208 only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| M_A[17]} (In future revisions) or  {M_A[10], CLKSEL[1], CLKSEL[0]} (In Rev A and Rev B) | 000 = Reserved for internal use only 001 = Reserved for internal use only 010 = 83 MHz 011 = 100 MHz 100 = 125 MHz 101 = 133 MHz (default) 110 = Reserved for internal use only 111 = Reserved for internal use only NOTE: Internally pulled to 3'b101. NOTE: In 88E6208 Rev A and Rev B, M_A[17:16] do not perform this function. Instead, this function is performed by the CLKSEL[1:0] pins. Future versions of the 88E6208 will not have the CLKSEL[1:0] pins. The M_A[17:16] pins will be used instead. Clock selection options should be done on both the CLKSEL[1:0] and the M_A[17:16] pins (at least as PCB stuffing options) to maintain compatibility with future revisions of the 88E6208. |
| M_A[7:6]                                                                                | PCB Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                         | User definable configuration bits that are readable as defined in Part 2 of the 3 part 88E6208/88E6218 datasheet.  NOTE: Internally pulled high to 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



Table 13: Switch/CPU Interface Configuration Pins

| Pin     | Configuration Function                                                                                                                                                                                                                   |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M_A[20] | Port 5 runs at 2.5 MHz MII                                                                                                                                                                                                               |
|         | 1 = Switch Port 5 runs at the rate determined by M_A[21] (default) 0 = Switch Port 5 runs at 2.5 MHz MII 10 Mbps PHY Mode, driving clocks to CPU's UniMAC NOTE: Internally pulled high 1.                                                |
| M_A[21] | Port 5 200BASE Mode (88E6218 only)                                                                                                                                                                                                       |
|         | 0 = Switch Port 5 runs in 25 MHz MII 100 Mbps PHY Mode, driving clocks to CPU's UniMAC (default) 1 = Switch Port 5 runs in 50 MHz MII 200 Mbps PHY Mode, driving clocks to CPU's UniMAC (88E6218 only) NOTE: Internally pulled low to 0. |

Table 14: Switch Configuration Pins

| Table 14. Owner | Solingulation i ins                                                                                                                                                                                                                                                                                                              |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin             | Configuration Function                                                                                                                                                                                                                                                                                                           |
| M_A[0]          | Switch Test Mode                                                                                                                                                                                                                                                                                                                 |
| "Salabara"      | 1 = Switch ports come up in the disabled port state - Software must enable the switch ports only after software is done configuring the switch (like defining the port based VLANs for firewall protection).  0 = Switch ports come up in the forwarding port state (for test purposes only)  NOTE: Internally pulled high to 1. |
| M_A[3]          | SMI Address                                                                                                                                                                                                                                                                                                                      |
|                 | 1 = Internal switch uses SMI Device addresses 0x10 to 0x1F (default) 0 = Internal switch uses SMI Device addresses 0x00 to 0x0F  NOTE: Internally pulled high to 1.                                                                                                                                                              |
| BA[1]/M_A[14]   | Full-Duplex Flow Control Disable                                                                                                                                                                                                                                                                                                 |
|                 | <ul> <li>1 = Disable full-duplex flow control as defined in the switch - This mode can be overridden on a port-by-port basis by using the port's Force Flow Control bit.</li> <li>0 = Enable full-duplex flow control on all full-duplex ports as defined in the switch</li> <li>NOTE: Internally pulled high to 1.</li> </ul>   |
| BA[0]/M_A[13]   | Half-Duplex Flow Control Disable                                                                                                                                                                                                                                                                                                 |
|                 | Disable half-duplex flow control on all half-duplex ports as defined in the switch - This mode can be overridden on a port-by-port basis by using the port's Force Flow Control bit.     D = Enable half-duplex flow control on all half-duplex ports as defined in the switch  NOTE: Internally pulled high to 1.               |

Table 14: Switch Configuration Pins (Continued)

| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Configuration Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Port 6 Configuration (88E6218 only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 0000 = PHY half-duplex SNI 10 Mbps Rising edge clock with collision active low 0001 = PHY half-duplex SNI 10 Mbps Rising edge clock with collision active high 0010 = PHY full-duplex SNI 10 Mbps Rising edge clock (collision is don't care) 0011 = MAC full-duplex MII 200 Mbps 50 MHz MII input clock mode 0100 = PHY half-duplex SNI 10 Mbps Falling edge clock with collision active low 0101 = PHY half-duplex SNI 10 Mbps Falling edge clock with collision active high 0110 = PHY full-duplex SNI 10 Mbps Falling edge clock (collision is don't care) 0111 = PHY full-duplex MII 200 Mbps 50 MHz MII output clock mode 1000 = MAC half-duplex MII 0 -100 Mbps DC to 25 MHz MII input clock mode 1001 = PHY half-duplex RMII 100 Mbps 50 MHz Reduced MII output clock mode 1010 = MAC full-duplex RMII 100 Mbps 50 MHz Reduced MII output clock mode 1011 = PHY full-duplex RMII 100 Mbps 2.5 MHz MII output clock mode 1100 = PHY half-duplex MII 10 Mbps 2.5 MHz MII output clock mode 1101 = PHY half-duplex MII 10 Mbps 2.5 MHz MII output clock mode 1110 = PHY full-duplex MII 10 Mbps 2.5 MHz MII output clock mode 1111 = PHY full-duplex MII 10 Mbps 2.5 MHz MII output clock mode 1111 = PHY full-duplex MII 10 Mbps 2.5 MHz MII output clock mode 1111 = PHY full-duplex MII 10 Mbps 2.5 MHz MII output clock mode 1111 = PHY full-duplex MII 10 Mbps 2.5 MHz MII output clock mode 1111 = PHY full-duplex MII 10 Mbps 2.5 MHz MII output clock mode (default)  NOTE: Internally pulled high to 1. |  |  |  |  |
| Port 6 Disable (88E6218 only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 1 = Disabled<br>0 = Enabled<br>NOTE: Internally pulled high to 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |



| Table 15: PHY Co | onfiguration Pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin              | Configuration Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONFIG_A         | Global Configuration A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | This global configuration pin is used to set the default LED mode and Far-End Fault Indication (FEFI) mode by connecting these pins to other device pins as follows:  VSS = LED Mode 0, FEFI disabled  P0_LED0 = LED Mode 0, FEFI enabled  P0_LED1 = LED Mode 1, FEFI enabled  P0_LED2 = LED Mode 1, FEFI enabled  P1_LED0 = LED Mode 2, FEFI disabled  P1_LED1 = LED Mode 2, FEFI enabled  P1_LED1 = LED Mode 3, FEFI enabled  P1_LED2 = LED Mode 3, FEFI disabled  VDD0 = LED Mode 3, FEFI enabled (default)  The FEFI and the LED modes are explained in Part 3 of the 3 part 88E6208/88E6218 datasheet.  NOTE: Internally pulled high to 1.                                                                                                                                                                                                                                                       |
| CONFIG_B         | Global Configuration B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Noting Spirit    | This global configuration pin is used to set the default mode for Auto-Crossover, the PHY driver type and Energy Detect by connecting these pins to other device pins as follows:  VSS = No Crossover, Backplane drivers, Energy Detect disabled  P0_LED0 = No Crossover, CAT 5 drivers, Energy Detect enabled  P0_LED1 = No Crossover, Backplane drivers, Energy Detect disabled  P0_LED2 = No Crossover, CAT 5 drivers, Energy Detect disabled  P1_LED0 = Auto Crossover, Backplane drivers, Energy Detect disabled  P1_LED1 = Auto Crossover, CAT 5 drivers, Energy Detect enabled  P1_LED2 = Auto Crossover, Backplane drivers, Energy Detect disabled  VDD0 = Auto Crossover, CAT 5 drivers, Energy Detect enabled (default)  Auto crossover, Back Plane vs. CAT 5 drivers, and Energy Detect are covered in Part 3 of the 3 part 88E6208/88E6218 datasheet.  NOTE: Internally pulled high to 1. |
| P0_CONFIG        | Port 0 Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | The P0_CONFIG pin is used to set the default configuration for Port 0 by connecting these pins to other device pins as follows:  VSS = Auto-Negotiation enabled (default)  P0_LED1 = Forced 10BASE-T half-duplex  P0_LED2 = Forced 10BASE-T full-duplex  P1_LED0 = Forced 100BASE-TX half-duplex  P1_LED1 = Forced 100BASE-TX full-duplex  P1_LED2 = Forced 100BASE-FX half-duplex  VDD0 = Forced 100BASE-FX full-duplex  Ports 1, 2, 3 and 4's default configuration is Auto-Negotiation enabled.  Any port's default configuration can be modified by accessing the PHY registers by a CPU.  However, fiber mode vs. copper mode cannot be configured in this way. Fiber vs. copper must be selected at Reset by using the P[0]_CONFIG pin.  NOTE: Internally pulled low to 0.                                                                                                                      |

# **Section 3. Functional Description**

The datasheet for the 88E6208/88E6218 has been separated along major functional block lines. This portion of the datasheet (Part 1) contains the common information about the part; its pinout, pinlist, electrical data, etc. The CPU along with its peripherals, including the CPU's Unified Media Access Controller (UniMAC<sup>TM</sup>), is covered in Part 2 of this datasheet. The Switch along with its PHYs and it's MAC to the CPU is covered in Part 3.

The 88E6208/88E6218 devices contain two major functional blocks, the CPU and the Switch. These two blocks are connected internally via a standard IEEE Ethernet MII with Ethernet MACs on both sides of the interface. This implementation is identical to previous 'multiple-chip' solutions, so the software architecture and programmer's interface are the same as earlier products, making the job of porting previous software easier.

The I/O registers in the Switch and in the PHYs are accessed in the same way as before. The CPU's UniMAC contains a SMI (Serial Management Interface) master block connected to the Switch and PHYs. The 88E6218 device supports an external 10/100/200 Mbps MII connected to Switch Port 6. In this device, the CPU's SMI master block not only connects to the internal Switch and PHYs, it also exits the 88E6218 device through the device's MDC/MDIO pins. An external SMI slave device can be connected to the 88E6218 device's MDC/MDIO pins as long as it uses unique SMI device addresses from the internal Switch and PHYs. The Switch and PHY's addresses can be configured by a pin at reset (see Section Section 2. "Reset and Initialization" on page 41).

The Switch's interrupt (which combines interrupts generated from the Switch and PHYs) is sent to the CPU's interrupt register. The IRQ interrupt sources are described in Part 2 of the 3 part 88E6208/88E6218 datasheet.

The UniMAC architecture provides an efficient networking interface between the ARM9E CPU and the 88E6208/88E6218 multi-port Ethernet switch fabric. The purpose of the UniMAC architecture is to enhance networking performance in the SOHO gateway/router application.

The UniMAC is an Ethernet MAC compatible with the IEEE 802.3 standard and contains a superset of features including extra speed and functionality. In the 88E6218, the UniMAC can operate up to double the standard clock rate, so the UniMAC runs up to 200 Mbps full-duplex (that is, 200 Mbps in both transmit and receive directions simultaneously providing a total bandwidth of 400 Mbps). In addition, the UniMAC contains multiple receive queues and multiple transmit queues (88E6218 only), which provides a higher level of routing performance by providing packet pre-queuing based upon its source and/or destination. In addition, the UniMAC accelerates Internet Protocol routing by aligning the incoming Internet Protocol data packet along a 32-bit boundary, which enables the CPU to handle packets more quickly and increases routing performance.

Figure 3: CPU & Switch Interconnect





## 3.1 UniMAC Interface Options

The UniMAC or MII between the CPU and the Switch works as any standard MII, but it also contains some optional improvements that can be used to accelerate routing performance.

#### 3.1.1 UniMAC Speeds

The UniMAC interface can run at 10/100 Mbps or 200 Mbps (88E6218 only) full-duplex. The interface's speed and mode is set by Port 5's configuration pins (see Table 13, "Switch/CPU Interface Configuration Pins," on page 42).

#### 3.1.2 Marvell Header Mode

Switch Port 5 can be set to prepend 2 bytes of data in front of each frame sent to the CPU and to remove these 2 bytes of data coming back from the CPU. This Marvell Header Mode is optional, but it can increase CPU routing performance greatly by aligning the IP data portion of the frames in the CPU's memory on 32-bit boundaries. On ingress to the CPU the Marvell Header contains information the CPU needs, like the switch's source port of the frame, its priority (88E6218 only), etc. On egress from the CPU, the CPU uses the Header to indicate the port based VLAN information of the frame so that frames sent to the LAN ports only go out the LAN ports and not out the WAN port (the header information is directly written to switch Port 5's Port Based VLAN Map register - Part 3). The Marvell Header supports the following features:

- Higher routing performance due to 32-bit IP data alignment
- The WAN port can be any port on the switch
- More than one WAN port can be used either as a hot backup or for link aggregation
- Any switch port can be a DMZ port or other port type

Refer to Part 3 of the 3 part 88E6208/88E6218 datasheet for more information on the format of the Marvell Header to and from the CPU.

The CPU's UniMAC can independently be set to process the Marvell Header or ignore it. If Switch Port 5 does not generate/use the Marvell Header then the CPU must not try to process it. If Switch Port 5 generates/uses Marvell Headers, the CPU's UniMAC can process it or ignore it.

Table 16 shows the valid options of the Switch and/or the CPU when in Marvell Header mode. Refer to Part 2 of the 3 part 88E6208/88E6218 datasheet for more information on the Marvell UniMAC settings.

Table 16: Marvell UniMAC Header Options

| Switch Port 5's<br>Header Insertion/<br>Removal (See Part 3) | CPU's UniMAC Receive<br>Queue Steering Header<br>Mode (See Part 2) | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Off                                                          | Disabled                                                           | <ul> <li>Classic MAC interface.</li> <li>Frame IP data is not 32-bit aligned in CPU memory.</li> <li>DA filtering supported (88E6218 only).</li> <li>CPU Receive Queue QoS steering determined by CPU's MAC processing (88E6218 only).</li> <li>Switch's Marvell Trailer mode must be used to determine source port of the frame and I/O register writes to Port 5's Port Based VLAN Map register is required when switching from WAN to LAN traffic.</li> </ul>                                                |
| Off                                                          | Any Mode Enabled                                                   | Do not use this option. Undefined results will occur.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| On O                     | Disabled                                                           | <ul> <li>Frame IP data becomes 32-bit aligned in CPU memory.</li> <li>DA filtering not supported.</li> <li>CPU Receive Queue QoS steering cannot be used.</li> <li>CPU can use the Marvell Header to determine source port of the frame and also use it to update Port 5's Port Based VLAN Map register on the fly without the need of I/O register writes.</li> </ul>                                                                                                                                          |
| On                                                           | Any Mode Enabled                                                   | <ul> <li>Frame IP data becomes 32-bit aligned in the CPU memory.</li> <li>DA filtering is supported (88E6218 only).</li> <li>CPU Receive Queue QoS steering determined by various bits in the Marvell Header.</li> <li>Which Header bits utilized are selectable by registers in the CPU's UniMAC.</li> <li>CPU can use the Marvell Header to determine source port of the frame and also use it to update Port 5's Port Based VLAN Map register on the fly without the need of I/O register writes.</li> </ul> |



# **Section 4. Electrical Specifications**

# 4.1 Absolute Maximum Ratings

#### Table 17: Absolute Maximum Ratings

**NOTE:** Stresses above those listed in Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

| Symbol               | Parameter                                                                 | Min  | Тур | Max                                                                          | Units   |
|----------------------|---------------------------------------------------------------------------|------|-----|------------------------------------------------------------------------------|---------|
| V <sub>DD(3.3)</sub> | Power Supply Voltage on V <sub>DDO</sub> with respect to V <sub>SS</sub>  | -0.5 | 3.3 | +3.6                                                                         | V       |
| V <sub>DD(2.5)</sub> | Power Supply Voltage on V <sub>DDAH</sub> with respect to V <sub>SS</sub> | -0.5 | 2.5 | +3.6 or<br>V <sub>DD(3.3)</sub><br>+0.5 <sup>1</sup><br>whichever<br>is less | V       |
| V <sub>DD(1.5)</sub> | Power Supply Voltage on $V_{DD}$ , or $V_{DDAL}$ with respect to $V_{SS}$ | -0.5 | 1.5 | +3.6 or<br>V <sub>DD(2,5)</sub><br>+0.5 <sup>2</sup><br>whichever<br>is less | 00 / A. |
| V <sub>PIN</sub>     | Voltage applied to any input pin with respect to Vss                      | -0.5 |     | +3.6 or<br>V <sub>DDO</sub><br>+0.5 <sup>3</sup><br>whichever<br>is less     | V       |
| T <sub>STORAGE</sub> | Storage temperature                                                       | -55  |     | +125 <sup>4</sup>                                                            | °C      |

- 1. V<sub>DD(2.5)</sub> must never be more than 0.5V greater than V<sub>DD(3.3)</sub> or damage will result. This implies that power must be applied to V<sub>DD(3.3)</sub> before or at the same time as V<sub>DD(2.5)</sub>.
- 2. V<sub>DD(1.5)</sub> must never be more than 0.5V greater than V<sub>DD(2.5)</sub> or damage will result. This implies that power must be applied to V<sub>DD(2.5)</sub> before or at the same time as V<sub>DD(1.5)</sub>.
- 3. VPIN must never be more than 0.5V greater than VDDO or damage will result.
- 4. 125°C is the re-bake temperature. For extended storage time greater than 24 hours, +85°C should be the maximum.

# 4.2 Recommended Operating Conditions

**Table 18: Recommended Operating Conditions** 

| Symbol               | Parameter                     | Condition                                          | Min   | Тур  | Max              | Units |
|----------------------|-------------------------------|----------------------------------------------------|-------|------|------------------|-------|
| V <sub>DD(3.3)</sub> | 3.3V power supply             | For pins V <sub>DDO</sub>                          | 3.135 | 3.3  | 3.465            | V     |
| V <sub>DD(2.5)</sub> | 2.5V power supply             | For pins V <sub>DDAH</sub>                         | 2.375 | 2.5  | 2.625            | V     |
| V <sub>DD(1.5)</sub> | 1.5V power supply             | For pins<br>V <sub>DD</sub> , V <sub>DDAL</sub>    | 1.425 | 1.5  | 1.575            | V     |
| T <sub>A</sub>       | Ambient operating temperature | 54                                                 | 0     |      | 70               | °C    |
| T <sub>J</sub>       | Maximum junction temperature  |                                                    |       |      | 125 <sup>1</sup> | °C    |
| RSET                 | Internal bias reference       | Resistor value placed between RSET- and RSET+ pins | 1980  | 2000 | 2020             | Ω     |

<sup>1.</sup> Refer to the white paper on TJ Thermal Calculations for more Information.

# 4.3 Notes on Powering Up and Powering Down

When turning on power, turn on the voltage power in the following sequence: The highest voltage power VDDO must be turned on first; then, turn on the next higher voltage power for the 88E6208/88E6218, etc.

This power-up sequence must be used due to a protection diode between the two power rails. These diodes leak current if the tie-high terminal becomes tie low by an improper turn-on sequence.

When powering down, first turn off the lowest voltage and then turn off the higher voltage.

Copyright © 2003 Marvell
October 7, 2003, Advanced



# 4.4 Package Thermal Data

## 4.4.1 Thermal Conditions for 216-pin LQFP Package

Table 19: Thermal Conditions for 216-pin LQFP Package

| Symbol          | Parameter                                                                                                                  | Condition                                                          | Min   | Тур      | Max  | Units |
|-----------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------|----------|------|-------|
| $\theta_{JA}$   | Thermal resistance <sup>1</sup> - junction to ambient of the 216-Pin                                                       | JEDEC 3 in. x 4.5 in. 4-<br>layer PCB with no air flow             |       | 20.5     |      | °C/W  |
|                 | LQFP package $\theta_{JA} = (T_J - T_A)/P$ P = Total Power Dissipation                                                     | JEDEC 3 in. x 4.5 in. 4-<br>layer PCB with 1 meter/sec<br>air flow |       | 17.6     |      | °C/W  |
|                 | T = Total T GWG! Bloodpailor                                                                                               | JEDEC 3 in. x 4.5 in. 4-<br>layer PCB with 2 meter/sec<br>air flow |       | 16.6     |      | °C/W  |
|                 |                                                                                                                            | JEDEC 3 in. x 4.5 in. 4-<br>layer PCB with 3 meter/sec<br>air flow |       | 16.1     |      | °C/W  |
| ΨЈТ             | Thermal characteristic parameter <sup>1</sup> - junction to top                                                            | JEDEC 3 in. x 4.5 in. 4-<br>layer PCB with no air flow             |       | 0.39     |      | °C/W  |
|                 | center of the 216-Pin LQFP package $\psi_{JT} = (T_J - T_{TOP})/P.$                                                        | JEDEC 3 in. x 4.5 in. 4-<br>layer PCB with 1 meter/sec<br>air flow |       |          |      | °C/W  |
| 201             | Ttop = Temperature on the top center of the package                                                                        | JEDEC 3 in. x 4.5 in. 4-<br>layer PCB with 2 meter/sec<br>air flow |       |          | 4800 | °C/W  |
| v. 6            |                                                                                                                            | JEDEC 3 in. x 4.5 in. 4-<br>layer PCB with 3 meter/sec<br>air flow |       | -        | 2 PA | °C/W  |
| θ <sub>JC</sub> | Thermal resistance <sup>1</sup> - junction to case of the 216-Pin LQFP package                                             | JEDEC with no air flow                                             | 6     | 7.8      |      | °C/W  |
|                 | $\theta_{JC} = (T_J - T_C)/P_{Top}$ $P_{Top} = Power Dissipation$ from the top of the package                              |                                                                    | 31/A/ | <b>S</b> |      |       |
| $\theta_{JB}$   | Thermal resistance <sup>1</sup> - junction to board of the 216-Pin LQFP package                                            | JEDEC with no air flow                                             |       | 12.7     |      | °C/W  |
|                 | $\theta_{JB} = (T_J - T_B)/P_{bottom}$ $P_{bottom} = power dissipation$ from the bottom of the package to the PCB surface. | Sold Stranger                                                      |       |          |      |       |

<sup>1.</sup> Refer to white paper on TJ Thermal Calculations for more information.

| Symbol               | Parameter                                  | Pins              | Condition                          | Min | Typ <sup>1</sup> | Max | Units |
|----------------------|--------------------------------------------|-------------------|------------------------------------|-----|------------------|-----|-------|
| I <sub>DD(3.3)</sub> | 3.3 volt Power to                          | V <sub>DDO</sub>  | CPU @ 133 MHz                      |     | 180              |     | mA    |
|                      | outputs                                    | 200               | CPU @ 150 MHz                      |     | 185              |     | mA    |
| I <sub>DD(2.5)</sub> | 2.5 volt <sup>2</sup> Power to analog core | V <sub>DDAH</sub> | No link on any port                |     | 135              |     | mA    |
|                      | 12                                         | 7,<br>2, 2,       | All ports 10 Mbps linked but idle  |     | 135              |     | mA    |
|                      | * 2                                        |                   | All ports 10 Mbps and active       |     | 425              |     | mA    |
|                      | 270                                        |                   | All ports 100 Mbps                 |     | 220              |     | mA    |
| I <sub>DD(1.5)</sub> | 1.5 volt Power to                          | V <sub>DDAL</sub> | No link on any port                |     | 0                |     | mA    |
|                      | analog core                                |                   | All ports 10 Mbps                  |     | 0                |     | mA    |
|                      | 1, C                                       |                   | All ports 100 Mbps                 |     | 30               | ×3  | mA    |
|                      | 1.5 volt Power to digital core w/CPU       | V <sub>DD</sub>   | No link on any port                |     | 100              | 201 | mA    |
| 2018                 | @ 133 MHz<br>Add 15 mA w/CPU               |                   | All ports 10 Mbps linked but idle  |     | 190              | 200 | mA    |
| 1.6.                 | @ 150 MHz                                  |                   | All ports 10 Mbps and active       |     | 195              |     | mA    |
|                      |                                            |                   | All ports 100 Mbps linked but idle | .0  | 240              |     | mA    |
|                      |                                            |                   | All ports 100 Mbps and active      |     | 260              |     | mA    |

Doc. No. MV-S101300-01 Rev. A



# 4.5.2 Digital Operating Conditions

#### **Table 21: Digital Operating Conditions**

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol           | Parameter                | Pins                    | Condition                                         | Min  | Тур                              | Max                   | Units |
|------------------|--------------------------|-------------------------|---------------------------------------------------|------|----------------------------------|-----------------------|-------|
| V <sub>IH</sub>  | High level input voltage | All pins                | 7 N                                               | 2.0  | .,,,,                            | V <sub>DDO</sub> +0.5 | V     |
|                  |                          | XTAL_IN                 | 40                                                | 1.4  |                                  |                       | V     |
| V <sub>IL</sub>  | Low level                | All pins                | 305                                               | -0.5 |                                  | 0.8                   | V     |
|                  | input voltage            | XTAL_IN                 | <b>(</b> )                                        |      |                                  | 0.6                   |       |
| V <sub>OH</sub>  | High level output        | LED pins <sup>1</sup>   | I <sub>OH</sub> = -8 mA<br>V <sub>DDO</sub> = Min | 2.4  |                                  |                       | V     |
|                  | voltage                  | XTAL_OUT                | I <sub>OH</sub> = -1 mA                           |      | V <sub>IH(XTAL_IN)</sub><br>+0.2 |                       | V     |
|                  |                          | All others              | I <sub>OH</sub> = -4 mA<br>V <sub>DDO</sub> = Min | 2.4  |                                  |                       | V     |
| V <sub>OL</sub>  | Low level                | LED pins <sup>1</sup>   | I <sub>OL</sub> = 8 mA                            |      |                                  | 0.4                   | V     |
|                  | output<br>voltage        | XTAL_OUT                | I <sub>OL</sub> = 1 mA                            |      | V <sub>IL(XTAL_IN)</sub><br>-0.2 |                       | V     |
|                  | , 6, 0                   | All others              | I <sub>OL</sub> = 4 mA                            |      |                                  | 0.4                   | V     |
| I <sub>ILK</sub> | Input leakage current    | With pull-up resistor   | 0 <v<sub>IN<v<sub>DD</v<sub></v<sub>              |      |                                  | + 10<br>- 50          | μА    |
| 201              | A.                       | With pull-down resistor | 0 <v<sub>IN<v<sub>DD</v<sub></v<sub>              |      |                                  | + 50                  | μА    |
|                  |                          | All others              | 0 <v<sub>IN<v<sub>DD</v<sub></v<sub>              |      |                                  | ±10v                  | μА    |
| C <sub>IN</sub>  | Input capacitance        | All pins                |                                                   |      |                                  | 5                     | pF    |

<sup>1.</sup> The LED pins are as follows: P4\_LED2[2:0], P3\_LED1[2:0], P2\_LED2[2:0], P1\_LED1[2:0], P0\_LED1[2:0]

Doc. No. MV-S101300-01 Rev. A

Table 22: Internal Resistor Description

| Pin #        | Pin Name   | Resistor           | Pin #                                                                                         | Pin Name                           | Resistor                      |
|--------------|------------|--------------------|-----------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|
| 2            | CONFIG_A   | Internal pull-up   | 66                                                                                            | M_STATUS                           | Internal pull-up              |
| 3            | CONFIG_B   | Internal pull-up   | 88, 87                                                                                        | BA[1:0]/<br>M_A[14:13]             | Internal pull-up              |
| 44           | TRSTn      | Internal pull-up   | 106, 105, 90,<br>104, 102, 101,<br>99, 98, 97, 96,<br>94, 93, 91                              | M_A[12:0]                          | Internal pull-up              |
| 45           | TMS_ARM    | Internal pull-up   | 139, 138, 112,<br>79                                                                          | DQMn[3:0]/<br>M_A[17:15],<br>BYTEn | Internal pull-up <sup>1</sup> |
| 46           | TDI JAHA   | Internal pull-up   | 152, 153, 155,<br>156, 157, 158,<br>159, 160, 161,<br>168, 170, 171,<br>172, 173, 174,<br>175 | GPIO[15:0]                         | Internal pull-up              |
| 47           | TCK        | Internal pull-up   | 177                                                                                           | P6_CRS                             | Internal pull-down            |
| 48           | TMS        | Internal pull-up   | 178                                                                                           | P6_COL                             | Internal pull-down            |
| 49           | TDO        | None               | 179, 180, 182,<br>184                                                                         | P6_OUTD[3:0]/<br>P6_MODE[3:0]      | Internal pull-up              |
| 51           | RESETn     | None               | 186                                                                                           | P6_OUTDV/<br>DISABLE_P6            | Internal pull-up              |
| 52           | UART_RX    | Internal pull-up   | 187                                                                                           | P6_OUTCLK                          | Internal pull-up              |
| 53           | UART_TX    | None               | 188                                                                                           | P6_INCLK                           | Internal pull-up              |
| 58 (88E6218) | M_A[23]    | Internal pull-up   | 189, 190,191,<br>192                                                                          | P6_IND[3:0]                        | Internal pull-up              |
| 58 (88E6208) | CLKSEL[0]  | Internal pull-up   | 193                                                                                           | P6_INDV                            | Internal pull-down            |
| 59 (88E6218) | M_A[22]    | Internal pull-down | 194                                                                                           | MDIO                               | Internal pull-up              |
| 59 (88E6208) | CLKSEL[1]  | Internal pull-down | 195                                                                                           | MDC                                | Internal pull-up              |
| 61           | M_A[21]    | Internal pull-down | 196                                                                                           | P0_CONFIG                          | Internal pull-down            |
| 62, 63, 64   | M_A[20:18] | Internal pull-up   | *                                                                                             |                                    |                               |

<sup>1.</sup> In future revisions, MA\_[16] will have an internal pull-down. See Table 12, "CPU Configuration Pins," on page 41 for M\_A[16] details.



### 4.5.3 IEEE DC Transceiver Parameters

#### Table 23: IEEE DC Transceiver Parameters

IEEE tests are typically based on templates and cannot simply be specified by a number. For an exact description of the template and the test conditions, refer to the IEEE specifications:

- -10BASE-T IEEE 802.3 Clause 14
- -100BASE-TX ANSI X3.263-1995

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

|                    |                                                  |                                | 01-1                 |                  |                  |       |                     |
|--------------------|--------------------------------------------------|--------------------------------|----------------------|------------------|------------------|-------|---------------------|
| Symbol             | Parameter                                        | Pins                           | Condition            | Min              | Тур              | Max   | Units               |
| V <sub>ODIFF</sub> | Absolute peak                                    | TXP/N[1:0]                     | 10BASE-T no cable    | 2.2              | 2.5              | 2.8   | V                   |
|                    | differential<br>output<br>voltage                | TXP/N[1:0]                     | 10BASE-T cable model | 585 <sup>1</sup> |                  |       | mV                  |
|                    | voltago                                          | TXP/N[0]                       | 100BASE-FX mode      | 0.4              | 0.8              | 1.2   | V                   |
|                    |                                                  | * TXP/N[1:0]                   | 100BASE-TX mode      | 0.950            | 1.0              | 1.05  | V                   |
|                    | Overshoot <sup>2</sup>                           | TXP/N[4:0]                     | 100BASE-TX mode      | 0                |                  | 5%    | V                   |
|                    | Amplitude<br>Symmetry<br>(positive/<br>negative) | TXP/N[1:0]                     | 100BASE-TX mode      | 0.98x            |                  | 1.02x | V+/V-               |
| V <sub>IDIFF</sub> | Peak<br>Differential                             | RXP/N[1:0]                     | 10BASE-T mode        | 585 <sup>3</sup> |                  |       | mV                  |
| 15                 | Input Voltage<br>accept level                    | RXP/N[0]<br>P[1:0]_SDET<br>P/N | 100BASE-FX mode      | 200              | 70               | 10°V  | mV                  |
|                    | Signal Detect<br>Assertion                       | RXP/N[1:0]                     | 100BASE-TX mode      | 1000             | 4604             | 9     | mV<br>peak-<br>peak |
|                    | Signal Detect<br>De-assertion                    | RXP/N[1:0]                     | 100BASE-TX mode      | 200              | 360 <sup>5</sup> |       | mV<br>peak-<br>peak |

<sup>1.</sup> IEEE 802.3 Clause 14, Figure 14.9 shows the template for the "far end" wave form. This template allows as little as 495 mV peak differential voltage at the far end receiver.

Doc. No. MV-S101300-01 Rev. A

<sup>2.</sup> ANSI X3.263-1995 Figure 9-1.

<sup>3.</sup> The input test is actually a template test. IEEE 802.3 Clause 14, Figure 14.17 shows the template for the receive wave form.

<sup>4.</sup> The ANSI TP-PMD specification requires that any received signal with peak-to-peak differential amplitude greater than 1000 mV should turn on signal detect (internal signal in 100BASE-TX mode). The 88E6208/88E6218 will accept signals typically with 460 mV peak-to-peak differential amplitude.

<sup>5.</sup> The ANSI TP-PMD specification requires that any received signal with peak-to-peak differential amplitude less than 200 mV should be de-assert signal detect (internal signal in 100BASE-TX mode). The 88E6208/88E6218 will reject signals typically with peak-to-peak differential amplitude less than 360 mV.

# 4.6 AC Electrical Specifications

## 4.6.1 Asynchronous Signals

The following are asynchronous signals:

- UART interface pins
- GPIO interface pins

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

### 4.6.2 Reset and Configuration Timing

Table 24: Reset and Configuration Timing

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified.)

| Symbol                | Parameter                                                | Condition | Min | Тур | Max | Units | Notes |
|-----------------------|----------------------------------------------------------|-----------|-----|-----|-----|-------|-------|
| T <sub>PU_RESET</sub> | Valid power to RESETn de-asserted                        |           | 10  |     |     | ms    |       |
| T <sub>SU_CLK</sub>   | Number of valid clock cycles prior to RESETn de-asserted |           | 10  |     |     | Clks  |       |
| T <sub>SU</sub>       | Configuration data valid prior to RESETn de-asserted     |           | 200 |     |     | ns    | 1     |
| T <sub>HD</sub>       | Configuration data valid after RESETn de-asserted        |           | 0   |     |     | ns    | 9.    |
| T <sub>CO</sub>       | Configuration output driven after RESETn de-asserted     |           | 40  |     |     | ns    | 2     |

<sup>1.</sup> When RESETn is low all configuration pins become inputs, and the value seen on these pins is latched on the rising edge of RESETn.

Figure 4: Reset and Configuration Timing



Copyright © 2003 Marvell

<sup>2.</sup> P6\_OUTD[3:0]/P6\_MODE[3:0], and P6\_OUTDV are normally outputs that are also used to configure the 88E6208/88E6218 during hardware reset. When reset is asserted, these pins become inputs and the desired device configuration is latched at the rising edge of PESETD



# 4.6.3 Clock Timing when using a 25 MHz Oscillator

Table 25: Clock Timing when using a 25 MHz Oscillator

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified.)

| Symbol         | Parameter         | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Min     | Тур | Max           | Units | Notes  |
|----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|---------------|-------|--------|
| T <sub>P</sub> | XTAL_IN period    | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -50 ppm | 40  | 40<br>+50 ppm | ns    | 25 MHz |
| T <sub>H</sub> | XTAL_IN high time | STORE OF THE STORE | 16      |     |               | ns    |        |
| TL             | XTAL_IN low time  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16      |     |               | ns    |        |
| T <sub>R</sub> | XTAL_IN rise      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     | 3             | ns    |        |
| T <sub>F</sub> | XTAL_IN fall      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     | 3             | ns    |        |

Figure 5: Oscillator Clock Timing



#### 4.6.4 Serial Management Interface Timing

Table 26: Serial Management Interface Timing

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol                | Parameter                       | Condition | Min | Тур | Max | Units | Notes |
|-----------------------|---------------------------------|-----------|-----|-----|-----|-------|-------|
| T <sub>DLY_MDIO</sub> | MDC to MDIO (Output) delay time | 1810      | 0   |     | 20  | ns    |       |
| T <sub>SU</sub>       | MDIO (Input) to MDC setup time  | 100       | 10  |     |     | ns    |       |
| T <sub>HD</sub>       | MDIO (Input) to MDC hold time   |           | 10  |     |     | ns    |       |

Figure 6: Serial Management Interface Timing





### 4.6.5 SDRAM/Device Interface Timing



#### Note

Proper design of the memory controller interface to SDRAM and Flash is required for high frequencies. Please contact Marvell<sup>®</sup> for design and layout guidelines.

Table 27: SDRAM/Device Interface Timing

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol           | Parameter         | Condition                                     | Min | Тур | Max     | Units | Notes |
|------------------|-------------------|-----------------------------------------------|-----|-----|---------|-------|-------|
| T <sub>CYC</sub> | M_SDCLK_OUT       | SDRAM clock output                            | 6.7 |     |         | ns    |       |
| T <sub>CYC</sub> | M_SDCLK_IN        | SDRAM clock input                             | 6.7 |     |         | ns    |       |
| T <sub>VAL</sub> | All SDRAM outputs | All SDRAM outputs time to Signal valid delay. | 2   |     | 5.4 - X | ns    | 1,2   |
| T <sub>SU</sub>  | All SDRAM inputs  | All SDRAM inputs – input setup time.          | 0.5 |     |         | ns    | 3     |
| T <sub>H</sub>   | All SDRAM inputs  | All SDRAM inputs – input hold time.           | 1   |     |         | ns    | 4.0   |

Relative to M\_SDCLK\_OUT

<sup>4.</sup> Relative to M\_ SDCLK\_IN



MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

#### Note

All timings assume internal M\_SDCLK\_OUT delay line programmed to 2 (refer to 88E6208/88E6218 RevB0 Release Notes).

<sup>2.</sup>  $\chi = 0.5*(7.5 - TCYC)$ 

<sup>3.</sup> Relative to M\_SDCLK\_IN

Figure 7: Flash/ROM Read Access



Figure 8: Flash/ROM Write Access





# 4.6.6 GPIO Timing

Table 28: GPIO Timing

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol                 | Parameter                     | Condition              | Min | Тур | Max | Units | Notes |  |
|------------------------|-------------------------------|------------------------|-----|-----|-----|-------|-------|--|
| I <sub>OH</sub>        | Switching current high        | VCC - 0.4              | 10  |     |     | mA    | 1, 2  |  |
| I <sub>OL</sub>        | Switching current low         | 0.4                    | 16  |     |     | mA    |       |  |
| T <sub>SLEW_RISE</sub> | Output rise slew              | 0.3VCC-<br>0.6VCC      | 1.5 |     |     | V/ns  |       |  |
| T <sub>SLEW_FALL</sub> | Output fall slew rate         | 0.6VCC-<br>0.3VCC      | 1.0 |     |     | V/ns  |       |  |
| TPLH                   | Output mode low to high delay | 50%~50%.<br>10 pF load | 1.0 |     | 3.0 | ns    |       |  |
| TPHL                   | Output mode high to low delay | 50%~50%.<br>10 pF load | 1.0 |     | 3.0 | ns    |       |  |

<sup>1.</sup> GPIO are operating in fast slew rate mode.

<sup>2.</sup> The rise/fall time of the input signal is 0.5 ns.

## 4.6.7 Switch Port 6 MII Rx Timing (PHY Mode) - 88E6218 Only

Table 29: Switch Port 6 MII Receive Timing (PHY Mode) - 88E6218 Only

In PHY mode, the P6\_INCLK pins are outputs.

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol                | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Condition    | Min | Тур | Max | Units | Notes      |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|-----|-----|-------|------------|
| T <sub>P_TX_CLK</sub> | P6_INCLK period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10BASE mode  |     | 400 |     | ns    | 1          |
|                       | i de la companya de l | 100BASE mode |     | 40  |     | ns    | 1          |
| T <sub>H_TX_CLK</sub> | P6_INCLK high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10BASE mode  | 160 | 200 | 240 | ns    |            |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100BASE mode | 16  | 20  | 24  | ns    |            |
| T <sub>L_TX_CLK</sub> | P6_INCLK low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10BASE mode  | 160 | 200 | 240 | ns    |            |
|                       | <b>6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100BASE mode | 16  | 20  | 24  | ns    | <b>7</b> 5 |
| T <sub>SU_TX</sub>    | MII inputs (P6_IND[3:0],<br>P6_INDV) valid prior to<br>P6_INCLK going high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 15  |     | 4   | ns    |            |
| T <sub>HD_TX</sub>    | MII inputs (P6_IND[3:0],<br>P6_INDV) valid after<br>P6_INCLK going high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 0   |     | 400 | ns    |            |

<sup>1. 2.5</sup> MHz for 10 Mbps or 25 MHz for 100 Mbps.

Figure 9: PHY Mode MII Receive Timing



NOTE: INCLK is the clock used to clock the input data. It is an output in this mode.

Copyright © 2003 Marvell



### 4.6.8 Switch Port 6 MII Tx Timing (PHY Mode) - 88E6218 Only

Table 30: Switch Port 6 MII Transmit Timing (PHY Mode) - 88E6218 Only

In PHY mode, the P6\_OUTCLK pin is an output.

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol                | Parameter                                                  | Condition       | Min | Тур | Max | Units | Notes |
|-----------------------|------------------------------------------------------------|-----------------|-----|-----|-----|-------|-------|
| T <sub>P_RX_CLK</sub> | P6_OUTCLK period                                           | 10BASE mode     |     | 400 |     | ns    | 1     |
|                       |                                                            | 100BASE<br>mode |     | 40  |     | ns    | 1     |
| T <sub>H_RX_CLK</sub> | P6_OUTCLK high                                             | 10BASE mode     | 160 | 200 | 240 | ns    |       |
|                       | TA TALLET.                                                 | 100BASE<br>mode | 16  | 20  | 24  | ns    |       |
| T <sub>L_RX_CLK</sub> | P6_OUTCLK low                                              | 10BASE mode     | 160 | 200 | 240 | ns    |       |
|                       |                                                            | 100BASE<br>mode | 16  | 20  | 24  | ns    | 777   |
| T <sub>CQ_MAX</sub>   | P6_OUTCLK to outputs (P6_OUTD[3:0], P6_OUTDV) valid        |                 |     |     | 25  | ns    | 0     |
| T <sub>CQ_MIN</sub>   | P6_OUTCLK to outputs<br>P6_OUTD[3:0],<br>P6_OUTDV) invalid |                 | 10  |     | 0   | ns    |       |

<sup>1. 2.5</sup> MHz for 10 Mbps or 25 MHz for 100 Mbps.

Figure 10: PHY Mode MII Transmit Timing



NOTE: OUTCLK is the clock used to clock the output data. It is an output in this mode.

Doc. No. MV-S101300-01 Rev. A

### 4.6.9 Switch Port 6 Clock Timing (MAC Mode) - 88E6218 Only

Table 31: Switch Port 6 Clock Timing (MAC Mode) - 88E6218 Only

In MAC mode, INCLK and OUTCLK are inputs.

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol         | Parameter         | Condition | Min | Тур           | Max              | Units | Notes           |
|----------------|-------------------|-----------|-----|---------------|------------------|-------|-----------------|
| T <sub>P</sub> | P6_INCLK period   | S. O. P.  | 0   | 4<br>or<br>40 | 40<br>+50<br>ppm | ns    | DC to<br>25 MHz |
| Тн             | P6_INCLKhigh time | 3         | 16  |               |                  | ns    |                 |
| TL             | P6_INCLK low time |           | 16  |               |                  | ns    |                 |
| $T_{R}$        | P6_INCLK rise     |           |     |               | 3                | ns    |                 |
| T <sub>F</sub> | P6_INCLK fall     |           |     |               | 3                | ns    |                 |

Figure 11: MAC Clock Timing





### 4.6.10 Switch Port 6 MII Rx Timing (MAC Mode) - 88E6218 Only

Table 32: Switch Port 6 MII Receive Timing (MAC Mode) - 88E6218 Only

In MAC mode, the P6\_INCLK pin is an input.

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol             | Parameter                                                                  | Condition       | Min | Тур | Max | Units | Notes |
|--------------------|----------------------------------------------------------------------------|-----------------|-----|-----|-----|-------|-------|
| T <sub>SU_RX</sub> | MII inputs (P6_IND[3:0],<br>P6_INDV) valid prior to<br>P6_INCLK going high | With 10 pF load | 10  |     |     | ns    |       |
| T <sub>HD_RX</sub> | MII inputs (P6_IND[3:0],<br>P6_INDV) valid after<br>P6_INCLK going high    | With 10 pF load | 10  |     |     | ns    |       |

Figure 12: MAC Mode MII Receive Timing



NOTE: INCLK is the clock used to clock the input data. It is an input in this mode.

Doc. No. MV-S101300-01 Rev. A

## 4.6.11 Switch Port 6 MII Tx Timing (MAC Mode) - 88E6218 Only

Table 33: Switch Port 6 MII Transmit Timing (MAC Mode) - 88E6218 Only

In MAC mode, the P6\_OUTCLK pin is an input.

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol              | Parameter                                             | Condition       | Min | Тур | Max | Units | Notes |
|---------------------|-------------------------------------------------------|-----------------|-----|-----|-----|-------|-------|
| T <sub>CQ_MAX</sub> | P6_OUTCLK to outputs (P6_OUTD[3:0], P6_OUTDV) valid   | With 10 pF load |     |     | 25  | ns    |       |
| T <sub>CQ_MIN</sub> | P6_OUTCLK to outputs (P6_OUTD[3:0], P6_OUTDV) invalid | With 1 0pF load | 0   |     |     | ns    |       |

Figure 13: MAC Mode MII Transmit Timing



NOTE: OUTCLK is the clock used to clock the output data. It is an input in this mode.



# 4.6.12 Switch Port 6 Clock Timing - 200 Mbps (MAC Mode) - 88E6218 Only

Table 34: Switch Port 6 Clock Timing - 200 Mbps (MAC Mode) - 88E6218 Only

In MAC mode, INCLK and OUTCLK are inputs.

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol         | Parameter          | Condition | Min          | Тур | Max           | Units | Notes           |
|----------------|--------------------|-----------|--------------|-----|---------------|-------|-----------------|
| T <sub>P</sub> | P6_INCLK period    | 210 P     | 20<br>-50ppm | 20  | 20<br>+50 ppm | ns    | DC to<br>25 MHz |
| T <sub>H</sub> | P6_INCLK high time |           | 8            |     |               | ns    |                 |
| TL             | P6_INCLK low time  |           | 8            |     |               | ns    |                 |
| T <sub>R</sub> | P6_INCLK rise      |           |              |     | 3             | ns    |                 |
| T <sub>F</sub> | P6_INCLK fall      |           |              |     | 3             | ns    | "9.             |

Figure 14: MAC Clock Timing - 200 Mbps



# 4.6.13 Switch Port 6 MII Rx Timing (PHY Mode) - 200 Mbps - 88E6218 Only

Table 35: Switch Port 6 MII Receive Timing (PHY Mode) - 200 Mbps - 88E6218 Only

In PHY mode, the P6\_INCLK pin is output.

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol                | Parameter                                                                   | Condition       | Min | Тур | Max | Units | Notes                                  |
|-----------------------|-----------------------------------------------------------------------------|-----------------|-----|-----|-----|-------|----------------------------------------|
| T <sub>P_TX_CLK</sub> | P6_INCLK period                                                             | 200BASE<br>mode |     | 20  |     | ns    |                                        |
| T <sub>H_TX_CLK</sub> | P6_INCLK high                                                               | 200BASE<br>mode | 8   | 10  | 12  | ns    |                                        |
| T <sub>L_TX_CLK</sub> | P6_INCLK low                                                                | 200BASE<br>mode | 8   | 10  | 12  | ns    |                                        |
| T <sub>SU_TX</sub>    | MII inputs (P6_IND[3:0],<br>P6_INDV) valid prior to<br>P6_INCLK going high. |                 | 13  |     |     | ns    |                                        |
| T <sub>HD_TX</sub>    | MII inputs (P6_IND[3:0],<br>P6_INDV) valid after<br>P6_INCLK going high.    |                 | 0   |     |     | ns    | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ |

Figure 15: PHY Mode MII Receive Timing - 200 Mbps



NOTE: INCLK is the clock used to clock the input data.
It is an output in this mode.



# 4.6.14 Switch Port 6 MII Tx Timing (PHY Mode) - 200 Mbps - 88E6218 Only

Table 36: Switch Port 6 MII Transmit Timing (PHY Mode) - 200 Mbps - 88E6218 Only

In PHY mode, the P6P[x]\_OUTCLK pin is are outputs.

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol                | Parameter                                                  | Condition       | Min | Тур | Max | Units | Notes |
|-----------------------|------------------------------------------------------------|-----------------|-----|-----|-----|-------|-------|
| T <sub>P_RX_CLK</sub> | P6_OUTCLK period                                           | 200BASE<br>mode |     | 20  |     | ns    |       |
| T <sub>H_RX_CLK</sub> | P6_OUTCLK high                                             | 200BASE<br>mode | 8   | 10  | 12  | ns    |       |
| T <sub>L_RX_CLK</sub> | P6_OUTCLK low                                              | 200BASE<br>mode | 8   | 10  | 12  | ns    |       |
| T <sub>CQ_MAX</sub>   | P6_OUTCLK to outputs<br>(P6_OUTD[3:0],<br>P6_OUTDV) valid  |                 |     |     | 15  | ns    |       |
| T <sub>CQ_MIN</sub>   | P6_OUTCLK to outputs<br>P6_OUTD[3:0],<br>P6_OUTDV) invalid |                 | 3   |     |     | ns    |       |

Figure 16: PHY Mode MII Transmit Timing - 200 Mbps



NOTE: OUTCLK is the clock used to clock the output data. It is an output in this mode.

Doc. No. MV-S101300-01 Rev. A

# 4.6.15 Switch Port 6 MII Rx Timing (MAC Mode) - 200 Mbps - 88E6218 Only

Table 37: Switch Port 6 MII Receive Timing (MAC Mode) - 200 Mbps - 88E6218 Only In MAC mode, the P6P[x]\_INCLK pin is are inputs.

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol             | Parameter                                                               | Condition       | Min | Тур | Max | Units | Notes |
|--------------------|-------------------------------------------------------------------------|-----------------|-----|-----|-----|-------|-------|
| T <sub>SU_RX</sub> | MII inputs (P6_IND[3:0], P6_INDV) valid prior to P6_INCLK going high    | With 10 pF load | 5   |     |     | ns    |       |
| T <sub>HD_RX</sub> | MII inputs (P6_IND[3:0],<br>P6_INDV) valid after<br>P6_INCLK going high | With 10 pF load | 3   |     |     | ns    |       |

Figure 17: MAC Mode MII Receive Timing - 200 Mbps





# 4.6.16 Switch Port 6 MII Tx Timing (MAC Mode) - 200 Mbps - 88E6218 Only

Table 38: Switch Port 6 MII Transmit Timing (MAC Mode) - 200 Mbps - 88E6218 Only In MAC mode, the P6\_OUTCLK pin is an input.

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol              | Parameter                                            | Condition       | Min | Тур | Max | Units | Notes |
|---------------------|------------------------------------------------------|-----------------|-----|-----|-----|-------|-------|
| T <sub>CQ_MAX</sub> | P6_OUTCLK to outputs (P6_OUTD[3:0], P6_OUTDV valid   | With 10 pF load |     |     | 7   | ns    |       |
| T <sub>CQ_MIN</sub> | P6_OUTCLK to outputs (P6_OUTD[3:0], P6_OUTDV invalid | With 10pF load  | 0   |     |     | ns    |       |

Figure 18: MAC Mode MII Transmit Timing - 200 Mbps



NOTE: OUTCLK is the clock used to clock the output data. It is an input in this mode.

Doc. No. MV-S101300-01 Rev. A

#### 4.6.17 Switch Port 6 SNI Falling Edge Rx Timing - 88E6218 Only

Switch Port 6 SNI Falling Edge Receive Timing - 88E6218 Only

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol                 | Parameter                                       | Condition | Min | Тур | Max | Units | Notes |
|------------------------|-------------------------------------------------|-----------|-----|-----|-----|-------|-------|
| T <sub>P_FRX_CLK</sub> | SNI falling edge INCLK period                   | 100       |     | 100 |     | ns    |       |
| T <sub>H_FRX_CLK</sub> | SNI falling edge INCLK high                     | 10BASE-T  | 35  | 50  | 65  | ns    |       |
| T <sub>L_FRX_CLK</sub> | SNI falling edge INCLK low                      | Mode      | 35  | 50  | 65  | ns    |       |
| T <sub>SU_FRX</sub>    | SNI receive data valid prior to INCLK going low | *         | 20  |     |     | ns    |       |
| T <sub>HD_FRX</sub>    | SNI receive data valid after INCLK going low    |           | 10  |     |     | ns    |       |

Figure 19: SNI Falling Edge Receive Timing



NOTE: INCLK is the clock used to clock the input data. It is an output in this mode.

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

Doc. No. MV-S101300-01 Rev. A



#### 4.6.18 Switch Port 6 SNI Falling Edge Tx Timing - 88E6218 Only

Table 40: Switch Port 6 SNI Falling Edge Transmit Timing - 88E6218 Only

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol                 | Parameter                                 | Condition | Min | Тур | Max | Units | Notes |
|------------------------|-------------------------------------------|-----------|-----|-----|-----|-------|-------|
| T <sub>P_FTX_CLK</sub> | SNI falling edge OUTCLK period            | 100       | 70  | 100 |     | ns    |       |
| T <sub>H_FTX_CLK</sub> | SNI falling edge OUTCLK high              | 10BASE-T  | 35  | 50  | 65  | ns    |       |
| T <sub>L_FTX_CLK</sub> | SNI falling edge OUTCLK low               | Mode      | 35  | 50  | 65  | ns    |       |
| T <sub>CQ_MXFTX</sub>  | SNI falling edge OUTCLK to output valid   |           |     |     | 20  | ns    |       |
| T <sub>CQ_MNFTX</sub>  | SNI falling edge OUTCLK to output invalid | 5         | 10  |     |     | ns    |       |

Figure 20: SNI Falling Edge Transmit Timing



NOTE: OUTCLK is the clock used to clock the output data. It is an output in this mode.

# 4.6.19 Switch Port 6 SNI Rising Edge Rx Timing - 88E6218 Only

Table 41: Switch Port 6 SNI Rising Edge Receive Timing - 88E6218 Only

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol                 | Parameter                                        | Condition        | Min | Тур | Max | Units | Notes |
|------------------------|--------------------------------------------------|------------------|-----|-----|-----|-------|-------|
| T <sub>P_RRX_CLK</sub> | SNI rising edge INCLK period                     | 10,0             |     | 100 |     | ns    |       |
| T <sub>H_RRX_CLK</sub> | SNI rising edge INCLK high                       | 10BASE-T<br>Mode | 35  | 50  | 65  | ns    |       |
| T <sub>L_RRX_CLK</sub> | SNI rising edge INCLK low                        | 2                | 35  | 50  | 65  | ns    |       |
| T <sub>SU_RRX</sub>    | SNI receive data valid prior to INCLK going high |                  | 20  |     |     | ns    |       |
| T <sub>HD_RRX</sub>    | SNI receive data valid after INCLK going high    |                  | 10  |     |     | ns    |       |

Figure 21: SNI Rising Edge Receive Timing



NOTE: INCLK is the clock used to clock the input data. It is an output in this mode.



## 4.6.20 Switch Port 6 SNI Rising Edge Tx Timing - 88E6218 Only

Table 42: Switch Port 6 SNI Rising Edge Transmit Timing - 88E6218 Only

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol                 | Parameter                     | Condition  | Min | Тур | Max | Units | Notes |
|------------------------|-------------------------------|------------|-----|-----|-----|-------|-------|
| T <sub>P_RTX_CLK</sub> | SNI rising edge OUTCLK period | 16.7       |     | 100 |     | ns    |       |
| T <sub>H_RTX_CLK</sub> | SNI rising edge OUTCLK high   | 10BASE-T   | 35  | 50  | 65  | ns    |       |
| T <sub>L_RTX_CLK</sub> | SNI rising edge OUTCLK low    | Mode       | 35  | 50  | 65  | ns    |       |
| T <sub>CQ_MXRTX</sub>  | OUTCLK to output valid        | <b>Q</b> ' |     |     | 20  | ns    |       |
| T <sub>CQ_MNRTX</sub>  | OUTCLK to output invalid      |            | 10  |     |     | ns    |       |

Figure 22: SNI Rising Edge Transmit Timing



NOTE: OUTCLK is the clock used to clock the output data. It is an output in this mode.

# 4.6.21 Switch Port 6 RMII Rx Timing - 88E6218 Only

Table 43: Switch Port 6 RMII Receive Timing - 88E6218 Only

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol                | Parameter                                                                | Condition       | Min | Тур | Max  | Units | Notes |
|-----------------------|--------------------------------------------------------------------------|-----------------|-----|-----|------|-------|-------|
| T <sub>P_TX_CLK</sub> | P[x]_INCLK period                                                        | 10BASE mode     |     |     |      | ns    | 1     |
|                       | Į.                                                                       | 100BASE<br>mode |     | 20  |      | ns    | 1     |
| T <sub>H_TX_CLK</sub> | P[x]_INCLK high                                                          | 10BASE mode     |     |     |      | ns    |       |
|                       |                                                                          | 100BASE<br>mode | 8   | 10  | 12   | ns    |       |
| T <sub>L_TX_CLK</sub> | P[x]_INCLK low                                                           | 10BASE mode     |     |     |      | ns    |       |
| 601                   | >0`                                                                      | 100BASE<br>mode | 8   | 10  | 12   | ns    | 9.    |
| T <sub>SU_TX</sub>    | MII inputs (P6_IND[1:0], P6_INDV) valid prior to P6_INCLK going high.    |                 | 7.5 |     | 1    | ns    |       |
| T <sub>HD_TX</sub>    | MII inputs (P6_IND[1:0],<br>P6_INDV) valid after<br>P6_INCLK going high. |                 | 0   |     | A TO | ns    |       |

<sup>1. 2.5</sup> MHz for 10 Mbps or 25 MHz for 100 Mbps.

Figure 23: PHY Mode RMII Receive Timing



NOTE: INCLK is the clock used to clock the input data. It is an output in this mode.

Copyright © 2003 Marvell



### 4.6.22 Switch Port 6 RMII Tx Timing - 88E6218 Only

Table 44: Switch Port 6 RMII Transmit Timing - 88E6218 Only

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol                | Parameter                                                  | Condition       | Min | Тур | Max  | Units | Notes           |
|-----------------------|------------------------------------------------------------|-----------------|-----|-----|------|-------|-----------------|
| T <sub>P_RX_CLK</sub> | P[x]_OUTCLK period                                         | 10BASE mode     |     |     |      | ns    | 1               |
|                       |                                                            | 100BASE<br>mode |     | 20  |      | ns    | 1               |
| T <sub>H_RX_CLK</sub> | P[x]_OUTCLK high                                           | 10BASE mode     |     |     |      | ns    |                 |
|                       | * Little L'                                                | 100BASE<br>mode | 8   | 10  | 12   | ns    |                 |
| T <sub>L_RX_CLK</sub> | P[x]_OUTCLK low                                            | 10BASE mode     |     |     |      | ns    |                 |
| Š                     |                                                            | 100BASE<br>mode | 8   | 10  | 12   | ns    | 9 1 6 5<br>7.9. |
| T <sub>CQ_MAX</sub>   | P6_OUTCLK to outputs<br>(P6_OUTD[1:0],<br>P6_OUTDV) valid  |                 |     |     | 12.5 | ns    |                 |
| T <sub>CQ_MIN</sub>   | P6_OUTCLK to outputs<br>P6_OUTD[1:0],<br>P6_OUTDV) invalid |                 | 0   |     | 4    | ns    |                 |

<sup>1. 2.5</sup> MHz for 10 Mbps or 25 MHz for 100 Mbps.

### Figure 24: PHY Mode RMII Transmit Timing



NOTE: OUTCLK is the clock used to clock the output data. It is an output in this mode.

Doc. No. MV-S101300-01 Rev. A

### 4.6.23 Two-Wire Serial Interface (TWSI) Timing

### Table 45: Two-Wire Serial Interface (TWSI) Timing

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified) SDA setup, hold, and output delay times are referenced to SCL rising edge.

| Symbol            | Parameter        | Condition    | Min | Тур | Max | Units |
|-------------------|------------------|--------------|-----|-----|-----|-------|
| T <sub>FREQ</sub> | SCL - TWSI Clock | Frequency    |     |     | 400 | kHz   |
| T <sub>CYC</sub>  | SCL - TWSI Clock | Clock Cycle  | 2.5 |     |     | μs    |
| T <sub>SU</sub>   | SDA - TWSI Data  | Setup        | 10  |     |     | ns    |
| T <sub>H</sub>    | SDA - TWSI Data  | Hold         | 5   |     |     | ns    |
| T <sub>VAL</sub>  | SDA - TWSI Data  | Output Delay | 1   |     | 15  | ns    |



MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

### Note

The Two-Wire Serial Interface features a programmable clock. The driver (or SW application) must set the clock speed for 100/400 kHz.

Figure 25: Two-Wire Serial Interface Timing





# 4.6.24 JTAG Timing

Table 46: JTAG Timing

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol               | Parameter                     | Condition  | Min | Тур | Max | Units |
|----------------------|-------------------------------|------------|-----|-----|-----|-------|
| T <sub>P_TCK</sub>   | TCK Period                    | 1600       | 100 |     |     | ns    |
| T <sub>H_TCK</sub>   | TCK High                      | 1 th       | 40  |     |     | ns    |
| T <sub>L_TCK</sub>   | TCK Low                       | 700k       | 40  |     |     | ns    |
| T <sub>SU_TDI</sub>  | TDI, TMS to TCK Setup<br>Time | 200        | 5   |     |     | ns    |
| T <sub>HD_TDI</sub>  | TDI, TMS to TCK Hold<br>Time  | STON STONE | 20  |     |     | ns    |
| T <sub>DLY_TDO</sub> | TCK to TDO Delay              |            | 1   |     | 15  | ns    |

Figure 26: JTAG Timing



# 4.7 IEEE AC Parameters

### Table 47: IEEE AC Parameters

IEEE tests are typically based on templates and cannot simply be specified by number. For an exact description of the templates and the test conditions, refer to the IEEE specifications:

- -10BASE-T IEEE 802.3 Clause 14-2000
- -100BASE-TX ANSI X3.263-1995
- -1000BASE-T IEEE 802.3ab Clause 40 Section 40.6.1.2 Figure 40-26 shows the template waveforms for transmitter electrical specifications.

(Over full range of values listed in the Recommended Operating Conditions unless otherwise specified)

| Symbol                                               | Parameter             | Pins       | Condition  | Min | Тур | Max              | Units                |
|------------------------------------------------------|-----------------------|------------|------------|-----|-----|------------------|----------------------|
| T <sub>RISE</sub>                                    | Rise time             | TXP/N[4:0] | 100BASE-TX | 3.0 | 4.0 | 5.0              | ns                   |
| T <sub>FALL</sub>                                    | Fall time             | TXP/N[4:0] | 100BASE-TX | 3.0 | 4.0 | 5.0              | ns                   |
| T <sub>RISE</sub> /<br>T <sub>FALL</sub><br>Symmetry | * ITAL                | TXP/N[4:0] | 100BASE-TX | 0   |     | 0.5              | ns                   |
| DCD                                                  | Duty cycle distortion | TXP/N[4:0] | 100BASE-TX | 0   |     | 0.5 <sup>1</sup> | ns,<br>peak-<br>peak |
| Transmit<br>Jitter                                   |                       | TXP/N[4:0] | 100BASE-TX | 0   |     | 1.4              | ns,<br>peak-<br>peak |

<sup>1.</sup> ANSI X3.263-1995 Figure 9-3.

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

Copyright © 2003 Marvell

Doc. No. MV-S101300-01 Rev. A

October 7, 2003, Advanced

Document Classification: Proprietary Information



# Section 5. Package Mechanical Dimensions

Figure 27: Link Street<sup>™</sup> 88E6208/88E6218 216-pin LQFP Package with Exposed Die Pad



| 79,            |          |               |       |  |  |  |
|----------------|----------|---------------|-------|--|--|--|
|                | Dim      | ension in     | mm    |  |  |  |
| Symbol         | Min      | Nom           | Max   |  |  |  |
| Α              | 0        |               | 1.60  |  |  |  |
| A <sub>1</sub> | 0.05     |               | 0.15  |  |  |  |
| A <sub>2</sub> | 1.35     | 1.40          | 1.45  |  |  |  |
| b              | 0.13     | 0.18          | 0.23  |  |  |  |
| b <sub>1</sub> | 0.13     | 0.16          | 0.19  |  |  |  |
| C              | 0.09     | 0.14          | 0.20  |  |  |  |
| c <sub>1</sub> | 0.09     | 0.12          | 0.16  |  |  |  |
| D              | 25.60    | 26.00         | 26.40 |  |  |  |
| D <sub>1</sub> |          | 24.00         |       |  |  |  |
| E              | 25.60    | 26.00         | 26.40 |  |  |  |
| E <sub>1</sub> |          | 24.00         |       |  |  |  |
| e              |          | 0.40 BSC      |       |  |  |  |
| L              | 0.45     | 0.60          | 0.75  |  |  |  |
| L <sub>1</sub> |          | 1.00 REF      |       |  |  |  |
| R <sub>1</sub> | 0.08     | 1             |       |  |  |  |
| R <sub>2</sub> | 0.08     |               |       |  |  |  |
| S              | 0.20     |               |       |  |  |  |
| P <sub>1</sub> | 8.64 BSC |               |       |  |  |  |
| P <sub>2</sub> | 8.64 BSC |               |       |  |  |  |
| θ              | 0°       | $3.5^{\circ}$ | 7°    |  |  |  |
| $\theta_1$     | 0°       |               | 3     |  |  |  |
| $\theta_2$     | 11°      | 12°           | 13°   |  |  |  |
| $\theta_3$     | 11°      | 12°           | 13°   |  |  |  |



MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE STRICTLY PROHIBITED

Note

- $\underline{\wedge}$  TO BE DETERMINED AT SEATING PLANE -C-.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. D1 AND E1 ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.
- EXACT SHAPE OF EACH CORNER IS OPTIONAL
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 mm AND 0.25 mm FROM THE LEAD TIP.
- $\stackrel{\wedge}{\mathbb{A}}$  A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 7. CONTROLLING DIMENSION: MILLIMETER.



STRICTLY PROHIBITED

MARVELL CONFIDENTIAL - UNAUTHORIZED DISTRIBUTION OR USE

# Section 6. Order Information

# 6.1 Ordering Part Numbers and Package Markings

Figure 28 shows the ordering part numbering scheme for the 88E6208/88E6218 devices. Contact Marvell FAEs or sales representatives for complete ordering information.

Figure 28: Sample Ordering Part Number



The standard ordering part numbers for the respective solutions are as follows:

- 88E6208-XX-LGO-C133
- 88E6218-XX-LGO-C133
- 88E6218-XX-LGO-C150





### MOVING FORWARD

FASTER®

\* UNDER NDA# 12109742

12qru965pi-fg1e32yu \* IJW Software New Zealand Ltd.

#### Marvell Semiconductor, Inc.

700 First Avenue Sunnyvale, CA 94089

Phone 408.222.2500 Fax 408.752.9028

www.marvell.com

### **US and Worldwide Offices**

### Marvell Semiconductor, Inc.

700 First Avenue Sunnyvale, CA 94089 Tel: 1.408.222.2500

Fax: 1.408.752.9028

### Marvell Asia Pte, Ltd.

151 Lorong Chuan, #02-05 New Tech Park Singapore 556741 Tel: 65.6756.1600 Fax: 65.6756.7600

### Marvell Japan K.K.

Shinjuku Center Bldg. 50F 1-25-1, Nishi-Shinjuku, Shinjuku-ku Tokyo 163-0650 Tel: 81.(0).3.5324.0355

Fax: 81.(0).3.5324.0354

### Marvell Semiconductor Israel, Ltd.

Moshay Manof D.N. Misgav 20184

Tel: 972.4.999.9555 Fax: 972.4.999.9574

### **Worldwide Sales Offices**

#### Western US Sales Office

#### Marvell

700 First Avenue Sunnyvale, CA 94089 Tel: 1.408.222.2500 Fax: 1.408.752.9028 Sales Fax: 1.408.752.9029

#### Central US Sales Office

#### Marvell

11709 Boulder Lane, Ste. #220 Austin, TX 78726 Tel: 1.512.336.1551 Fax: 1.512.336.1552

### Eastern US/Canada Sales Office

### Marvell

Parlee Office Park 1 Meeting House Road, Suite 1 Chelmsford, MA 01824 Tel: 978 250-0588 Fax: 978 250-0589

### **Europe Sales Office**

### Marvell

3 Clifton Court Corner Hall Hemel Hempstead Hertfordshire, HP3 9XY United Kingdom Tel: 44.(0).1442.211668 Fax: 44.(0).1442.211543

### Marvell

Fagerstagatan 4 163 08 Spanga Stockholm, Sweden Tel: 46.16.146348 Fax: 46.16.482425

### Marvell

5 Rue Poincare 56400 Le Bono France Tel: 33.297.579697 Fax: 33.297.578933

### Israel Sales Office

#### Marvell

Ofek Center Bldg. 2, Floor 2 Northern Industrial Zone LOD 71293 Israel Tel: 972.8.924.7555 Fax: 972.8.924.7554

### **China Sales Office**

### Marvell

5J, 1800 Zhong Shan West Road Shanghai, China 200233 Tel: 86.21.6440.1350 Fax: 86.21.6440.0799

### Japan Sales Office

### Marvell

Helios Kannai Bldg. 12F 3-21-2 Motohama-cho, Naka-ku Yokohama, Kanagawa Japan 231-0004 Tel: 81.45.222.8811 Fax: 81.45.222.8812

### Taiwan Sales Office

2Fl., No. 1, Alley 20, Lane 407 Ti-Ding Blvd., Nei Hu District Taipei, Taiwan 114, R. O. C Tel: (886-2).7720.5700 FAX: (886-2).7720.5707

For more information, visit our website at: www.marvell.com

