DEFINITION	
	Norm on a Linear Space Normed Space
	Functional Analysis
DEFINITION	
	Inner Product
	Functional Analysis
DEFINITION	
	Linear Transformation/Operator
	Functional Analysis

A real-valued function ||x|| defined on a linear space X, where $x \in X$, is said to be a norm on X if

Positivity $||x|| \ge 0$,

Triangle Inequality $||x+y|| \le ||x|| + ||y||$,

Homogeneity $||\alpha x|| = |\alpha| ||x||$, α an arbitrary scalar,

Positive Definiteness ||x|| = 0 if and only if x = 0,

where x and y are arbitrary points in X.

A linear/vector space with a norm is called a normed space.

Let X be a complex linear space. An *inner product* on X is a mapping that associates to each pair of vectors x, y a scalar, denoted (x, y), that satisfies the following properties:

Additivity (x + y, z) = (x, z) + (y, z),

Homogeneity $(\alpha x, y) = \alpha(x, y),$

Symmetry $(x, y) = \overline{(y, x)},$

Positive Definiteness (x, x) > 0, when $x \neq 0$.

A transformation L of (operator on) a linear space X into a linear space Y, where X and Y have the same scalar field, is said to be a *linear transformation* (operator) if

- 1. $L(\alpha x) = \alpha L(x), \forall x \in X \text{ and } \forall \text{ scalars } \alpha, \text{ and } \forall x \in X \text{ and } \exists x \in X$
- 2. $L(x_1 + x_2) = L(x_1) + L(x_2)$ for all $x_1, x_2 \in X$.