

Eco Domes on Mars

Engineering self-sustaining habitats for humanity's next frontier

A Living Bubble on an Alien World

Creating an eco dome on Mars means building a miniature Earth system within a hostile environment. These sophisticated structures must provide everything humans need: breathable air, drinkable water, nutritious food, and protection from extreme cold and deadly radiation.

An eco dome isn't just shelter-it's a self-contained ecosystem that transforms Martian resources into life support, serving as humanity's first step towards permanent settlement beyond Earth.

Engineering the Structure

Geodesic Architecture

Lightweight geodesic design distributes stress evenly, withstanding Mars dust storms whilst maintaining internal pressure at Earth-like levels of 101 kPa.

Advanced Materials

Transparent aluminium or ETFE panels allow crucial sunlight penetration. Regolith-based concrete produced via 3D printing uses local Martian soil.

Modular Expansion

Interconnected modules for living, research, and hydroponics connect via airlocks. The colony starts small, then expands as resources arrive.

Creating a Breathable Atmosphere

Oxygen Generation

- Electrolysis splits water into oxygen and hydrogen
- Algae-based bioreactors provide biological production
- Plant photosynthesis supplements atmospheric oxygen

Carbon Dioxide Management

- Solid amine filters scrub exhaled CO₂
- Metal-organic framework filters for advanced capture
- Plants absorb CO₂ for photosynthesis, completing the cycle

Automated sensors continuously monitor oxygen, carbon dioxide, temperature, humidity, and pressure levels, adjusting systems dynamically to maintain optimal conditions.

Shielding Against Mars' Deadly Environment

Radiation Protection

Galactic cosmic rays and solar energetic particles pose constant danger. 2-3 metres of regolith cover reduces radiation to near-Earth levels. Water layers provide hydrogen-rich shielding whilst serving as drinking water storage.

Temperature Control

Mars averages –60°C with swings exceeding 70°C between day and night. Double-layer walls with aerogel insulation, phase-change materials storing daytime heat, and active heating systems maintain comfortable 18 - 24°C interior temperatures.

Structural Resilience

Anchored foundations prevent shifting during dust storms. Flexible base layers absorb thermal expansion and contraction. Emergency radiation shelters provide protection during extreme solar events.

Powering Life on Mars

Grow lights & habitat ops

Plant growth and systems

Nuclear reactor

Continuous baseline power

Life support systems

Air, water, thermal control

Mars Habitat Power Flow

Solar panels

Daylight supplemental power

Regenerative fuel cells

Long-term energy cycling

Battery storage

Short-term energy buffering

Generation

Nuclear fission reactors provide continuous baseline power, independent of dust storms or Martian night. Solar photovoltaic arrays supplement during daylight hours.

Storage

Regenerative fuel cells cycle hydrogen and oxygen for longduration storage. Battery banks deliver immediate power for emergencies and system start-up.

Distribution

Power control units prioritise critical life support systems, followed by grow lights, thermal management, and crew operations.

Closing the Water and Life Support Loop

Water Extraction

Mining Martian ice deposits and atmospheric condensation

Reclamation

Dehumidifiers capture moisture for recycling

Purification

Multi-stage filtration and distillation to drinking water standards

Human Use

Drinking, hygiene, food preparation, and breathing moisture

Plant Transpiration

Plants release water vapour during photosynthesis

Maintaining 40-60% relative humidity optimises both plant growth and human comfort. Near-zero water loss makes the system sustainable for years between resupply missions.

Growing Food in Martian Greenhouses

Hydroponics & Aeroponics

Plants grow in nutrient-rich water or mist without soil. Potatoes, wheat, lettuce, beans, and peas thrive in controlled conditions with precise nutrient delivery.

Algae Cultivation

Spirulina and other microalgae grow rapidly in bioreactors, providing protein-rich food whilst generating oxygen and consuming carbon dioxide from crew respiration.

Optimised Lighting

High-intensity LED grow lights deliver specific wavelengths for photosynthesis. These represent the dome's largest energy consumer but are essential for year-round crop production.

Martian regolith can be treated to remove toxic perchlorates, then enriched with Earth microbes to create fertile growing medium as an alternative to hydroponics.

Applications Beyond Survival

Research Hub

Study Martian geology, atmosphere, and astrobiology whilst testing closed-ecosystem technologies applicable to Earth's sustainability challenges.

Biodiversity Vault

Preserve Earth plants, microbes, and genetic material as an off-world backup for planetary biodiversity—a living library for humanity's biological heritage.

Technology Transfer

Innovations in recycling, energy efficiency, and sustainable food production benefit Earth's resource management and environmental restoration efforts.

Terraforming Prototype

Serves as proof-of-concept for larger settlements. Lessons learnt scale up to city-sized habitats and eventual planetary transformation.

Training Ground

Earth-based simulations prepare astronauts for closedenvironment living. Digital twins test systems before Mars deployment.

Cultural Landmark

Future tourism destination and symbol of human achievement. Martian parks, museums, and art installations inspire generations.

Building Humanity's Future

An eco dome on Mars represents far more than engineering excellenceit's humanity's commitment to becoming a multi-planetary species. These self-sustaining habitats demonstrate that we can thrive beyond Earth whilst developing technologies to heal our home planet.

From structural resilience to closed-loop life support, from radiation shielding to sustainable agriculture, every system works in harmony to create a living bubble on an alien world.

The challenge is immense. The opportunity is limitless. The time to begin is now.