International Rectifier

IRF7606PbF

HEXFET® Power MOSFET

- Generation V Technology
- Ultra Low On-Resistance
- P-Channel MOSFET
- Very Small SOIC Package
- Low Profile (<1.1mm)
- Available in Tape & Reel
- Fast Switching
- Lead-Free

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The new Micro8 package, with half the footprint area of the standard SO-8, provides the smallest footprint available in an SOIC outline. This makes the Micro8 an ideal device for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro8 will allow it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	-30	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-3.6	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-2.9	A
I _{DM}	Pulsed Drain Current①	-29	7
P _D @T _A = 25°C	Maximum Power Dissipation 4	1.8	W
P _D @T _A = 70°C	Maximum Power Dissipation 4	1.1	W
	Linear Derating Factor	14	mW/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
V_{GSM}	Gate-to-Source Voltage Single Pulse tp<10µS	30	V
dv/dt	Peak Diode Recovery dv/dt ②	-5.0	V/ns
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C
	Soldering Temperature, for 10 seconds	240 (1.6mm from case)	

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient @	70	°C/W

All Micro8 Data Sheets reflect improved Thermal Resistance, Power and Current -Handling Ratings- effective only for product marked with Date Code 505 or later .

1

IRF7606PbF

International

TOR Rectifier

Electrical Characteristics @ T_{.I} = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.024		V/°C	Reference to 25°C, I _D = -1mA
Book)	Static Drain-to-Source On-Resistance		0.075	0.09	Ω	V _{GS} = - 10V, I _D = -2.4A ③
R _{DS(on)}	Statio Brain to Godine Chi recoldance		0.130	0.15	1 52	$V_{GS} = -4.5V, I_D = -1.2A$ ③
V _{GS(th)}	Gate Threshold Voltage	-1.0			V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
9fs	Forward Transconductance	2.3			S	$V_{DS} = -10V, I_{D} = -1.2A$
1	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -24V, V_{GS} = 0V$
IDSS	Diam-to-Source Leakage Current			-25	μA	$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	$V_{GS} = -20V$
IGSS	Gate-to-Source Reverse Leakage			100	1114	$V_{GS} = 20V$
Qg	Total Gate Charge		20	30		I _D = -2.4A
Q _{gs}	Gate-to-Source Charge		2.1	3.1	nC	$V_{DS} = -24V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		7.6	11	Ī	V_{GS} = -10V, See Fig. 9 ③
t _{d(on)}	Turn-On Delay Time		13			$V_{DD} = -10V$
t _r	Rise Time		20		ns	$I_D = -2.4A$
t _{d(off)}	Turn-Off Delay Time		43		1113	$R_G = 6.0\Omega$
t _f	Fall Time		39			$R_D = 4.0\Omega$ ③
C _{iss}	Input Capacitance		520			$V_{GS} = 0V$
Coss	Output Capacitance		300		pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance		140			f = 1.0MHz, See Fig. 8

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			4.0		MOSFET symbol
	(Body Diode)			-1.8	_	showing the
I _{SM}	Pulsed Source Current			00	A	integral reverse
	(Body Diode) ①			-29		p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C$, $I_S = -2.4A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		43	64	ns	T _J = 25°C, I _F = -2.4A
Q _{rr}	Reverse Recovery Charge		50	76	nC	di/dt = -100A/µs ③

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 10)
- ③ Pulse width \leq 300µs; duty cycle \leq 2%.
- $\begin{tabular}{ll} \textcircled{2} & I_{SD} \le -2.4A, \ di/dt \le -130A/\mu s, \ V_{DD} \le V_{(BR)DSS}, \\ & T_J \le 150 \ensuremath{^{\circ}C} \ensuremath{C} \ensuremath{C} \ensuremath{D}$
- 4 Surface mounted on FR-4 board, t \leq 10sec.

International TOR Rectifier

IRF7606PbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

www.irf.com 3

O.2 VGS = -4.5V VGS = -10V VGS = -10V VGS = -10V JCD , Drain Current (A)

Fig 5. Normalized On-Resistance Vs. Temperature

Fig 6. Typical On-Resistance Vs. Drain Current

Fig 7. Typical On-Resistance Vs. Gate Voltage

IRF7606PbF

Fig 8. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 9. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

www.irf.com 5

Micro8 Package Outline

Dimensions are shown in milimeters (inches)

Micro8 Part Marking Information

EXAMPLE: THIS IS AN IRF7501

WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

WW = (27-52) IF PRECEDED BY A LETTER

YEAR	Υ	WORK WEEK	W
2001	1	01	Α
2002	2	02	В
2003	3	03	С
2004	4	04	D
2005	5	1	1
2006	6		
2007	7		
2008	8	1	1
2009	9	7	1
2010	0	24	Χ
		25	Υ
		26	Z

YEAR	Υ	WORK WEEK	W
2001	Α	27	Α
2002	В	28	В
2003	С	29	С
2004	D	30	D
2005	Е	1	1
2006	F		
2007	G		
2008	Н	1	1
2009	J	7	1
2010	K	50	Χ
		51	Υ
		52	Z

6 www.irf.com

International IOR Rectifier

IRF7606PbF

Micro8 Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. OUTLINE CONFORMS TO EIA-481 & EIA-541.
- 2. CONTROLLING DIMENSION: MILLIMETER.

- 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.05/04

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

IRF7606TRPBF