Decimal Expansions of Real Numbers

We are typically introduced to decimals in elementary mathematics; for many in grade-school they become a working *definition* of the real numbers. Strictly speaking, the decimals must be given a formal meaning in terms of the real numbers.

Definition. A *decimal* $d_0.d_1d_2d_3\cdots$ is an infinite series of the form

$$\sum_{n=0}^{\infty} d_n \, 10^{-n} \text{ where } d_0 \in \mathbb{Z} \text{ and } \forall n \in \mathbb{N}, \, d_n \in \{0, 1, 2, \dots, 9\}$$

Let x be a non-negative real number. Define sequences $(d_n)_{n=0}^{\infty}$ and $(R_n)_{n=0}^{\infty}$ as follows:¹

$$d_0 = \lfloor x \rfloor$$
 $R_0 = x - d_0$
 $\forall n \in \mathbb{N}_0: d_{n+1} = \lfloor 10R_n \rfloor, R_{n+1} = 10R_n - d_{n+1}$

The *decimal expansion* of x is the decimal $D(x) := d_0.d_1d_2d_3\cdots$. If x < 0, first find the decimal expansion of |x| = -x, then change the sign of d_0 .

Examples

1. Let $x = \frac{27}{20}$. We compute:

n	0 1		2	3	4	
d_n	$\left\lfloor \frac{27}{20} \right\rfloor = 1$	$\left\lfloor \frac{70}{20} \right\rfloor = 3$	$\left\lfloor \frac{10}{2} \right\rfloor = 5$	$\lfloor 0 \rfloor = 0$	0	
R_n	$\frac{7}{20}$	$\frac{1}{2}$	0	0	0	

Both sequences continue with zeros forever: we obtain the terminating decimal $D(\frac{27}{20}) = 1.35$.

2. Let $x = \frac{1}{3}$. We have

n	0	1	2	3	
d_n	$\left\lfloor \frac{1}{3} \right\rfloor = 0$	$\left\lfloor \frac{10}{3} \right\rfloor = 3$	$\left\lfloor \frac{10}{3} \right\rfloor = 3$	$\left\lfloor \frac{10}{3} \right\rfloor = 3$	
R_n	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	

By induction, all $R_n = \frac{1}{3}$ and we recover the periodic decimal $D(\frac{1}{3}) = 0.33333 \cdots$.

3. If $x = \frac{1}{7}$, we obtain

Since $R_6 = R_0$, both sequences will now repeat: $R_{n+6} = R_n$ and $d_{n+6} = d_n$. We recover the *period-six* decimal $D(\frac{1}{7}) = 0.142857142857 \cdots$.

¹Recall the *floor* function: $\lfloor x \rfloor = \max\{n \in \mathbb{Z} : n \le x\}$.

In the main result, we check that the decimal expansion is well-defined and that it behaves as expected. We also give two well-known properties of decimal representations.

Theorem. Let $x \in \mathbb{R}$ have decimal expansion $D(x) = \sum_{n=0}^{\infty} d_n 10^{-n}$.

- (a) Every decimal (infinite series) converges.
- (b) Each $d_n \in \{0, 1, 2, ..., 9\}$ whenever $n \ge 1$.
- (c) x = D(x).
- (d) The sequence (d_n) is eventually periodic if and only if $x \in \mathbb{Q}$.
- (e) x equals a unique decimal, except when D(x) is terminating, in which case there are exactly two decimal representations:

$$x = D(x) = \sum_{n=0}^{m} d_n \, 10^{-n} = \sum_{n=0}^{m-1} d_n \, 10^{-n} + (d_m - 1)10^{-m} + 9 \sum_{n=m+1}^{\infty} 10^{-n}$$

Otherwise said, we subtract 1 from the final term of (d_n) and insert an infinite string of 9's.

Examples

- 1. Part (d) explains why so many people consider memorizing the digits (decimal expansion) of π to be interesting: since π is irrational, the pattern never repeats.
- 2. We explicitly evaluate a period-three decimal:

$$3.1279279279279 \cdots = \frac{31}{10} + \frac{279}{10000} \sum_{n=0}^{\infty} 1000^{-n} = \frac{31}{10} + \frac{279}{10000} \cdot \frac{1}{1 - \frac{1}{1000}}$$
$$= \frac{31}{10} + \frac{279}{9990} = \frac{1736}{555}$$

3. Here are two examples of part (e):

$$1 = 0.99999 \cdots$$
 $27.164 = 27.1639999 \cdots$

Questions

- 1. Compute the decimal expansions of $\frac{32}{13}$
- 2. Prove all parts of the Theorem. Here are some hints:
 - (a) Use a series test...
 - (b) Prove by induction: it should be obvious that $0 \le R_0 < 1$, etc.
 - (c) Let $E_n = x \sum_{k=0}^n d_k 10^{-k}$. Prove by induction that $R_n = 10^n E_n$ and conclude that $E_n \to 0$.

(d) A decimal is eventually periodic with period r if

$$d_0.d_1\cdots d_m d_{m+1}\cdots d_{m+r} d_{m+1}\cdots d_{m+r}\cdots = \sum_{k=0}^m d_k \, 10^{-k} + \left(\sum_{j=1}^r d_{m+j} \, 10^{-m-j}\right) \sum_{l=0}^\infty 10^{-rl}$$

Convince yourself this is a rational number. For the converse, suppose that $x = \frac{p}{q}$ is a rational number in lowest terms where $q \in \mathbb{N}$, and observe that there are only *finitely many* possible values for the remainders:

$$R_n = \frac{a}{q}$$
 where $a \in \{0, 1, ..., q - 1\}$

- (e) Suppose that $d_0.d_1d_2\cdots = c_0.c_1c_2\cdots$ but where $(d_n) \neq (c_n)$. WLOG there is a minimal m such that $c_m < d_m \ldots$
- (a) Can you find a simple way to describe all the real numbers x for which D(x) is terminating? Prove your assertion.
 (Hint: what form can the denominator of R_n take if x = p/q?)
 - (b) Given a rational number $x = \frac{p}{q}$ in lowest terms and with $q \in \mathbb{N}$, what is the *largest* possible period of D(x)? Explain.
- 4. Similar analyses can be done for other representations of real numbers. For instance, by replacing 10 with 3 in the definition, one could consider the *ternary* expansion of a real number

$$T(x) = [t_0.t_1t_2\cdots]_3 = \sum_{n=0}^{\infty} t_n 3^{-n}$$
 where $t_n \in \{0,1,2\}$ whenever $n \ge 1$

For example, $\frac{1}{3} = [0.1]_3$ and $[0.12]_3 = \frac{1}{3} + \frac{2}{3^2} = \frac{5}{9}$.

- (a) Compute $[0.02020202\cdots]_3$ and find the ternary representation of $\frac{1}{2}$ and $\frac{1}{5}$.
- (b) Read over the Theorem. How can we modify its statements for ternary representations?
- (c) Describe all real numbers *x* whose ternary representation is terminating. More generally, describe all real numbers *x* whose *n*-ary (base *n*) representation is terminating.

The major take-away from this discussion is that there is *nothing special* about representing real numbers using decimals. Computers typically use base 2, 8 or 16; the ancient Babylonians used base 60. We only like decimals because they're familiar, and because we're blessed with 10 fingers...

Solutions

1. If $x = \frac{32}{13}$, we obtain

n	0	1	2	3	4	5	6	7	
d_n	$\left\lfloor \frac{32}{13} \right\rfloor = 2$	$\left\lfloor \frac{60}{13} \right floor = 4$	$\left\lfloor \frac{80}{13} \right\rfloor = 6$	$\left\lfloor \frac{20}{13} \right\rfloor = 1$	$\left\lfloor \frac{70}{13} \right\rfloor = 5$	$\left\lfloor \frac{50}{13} \right\rfloor = 3$	$\left\lfloor \frac{110}{13} \right\rfloor = 8$	$\left\lfloor \frac{60}{13} \right\rfloor = 4$	
R_n	$\frac{6}{13}$	$\frac{8}{13}$	$\frac{2}{13}$	$\frac{7}{13}$	5 13	11 13	$\frac{6}{13}$	$\frac{8}{13}$	

The process repeats and we obtain $D(\frac{32}{13}) = 2.461538461538 \cdots$

- 2. (a) This is trivial by the comparison test, since $d_n 10^{-n} \le 9 \cdot 10^{-n}$.
 - (b) Formally this requires induction. Informally, it is clear that $0 \le R_0 < 1$, whence $d_1 = \lfloor 10R_0 \rfloor$ is an integer $0 \le d_0 \le 9$. Now iterate.
 - (c) Following the hint, let $E_n = x \sum_{k=0}^n d_k 10^{-k}$. We prove by induction that $R_n = 10^n E_n$.

The base case is obvious, since $R_0 = x - d_0 = 10^0 E_0$. For the induction step, fix $n \in \mathbb{N}_0$ and assume $R_n = 10^n E_n$. Then

$$R_{n+1} = 10R_n - d_{n+1} = 10^{n+1}E_n - d_{n+1}$$

$$= 10^{n+1}x - \sum_{k=0}^n d_k 10^{n-k} - d_{n+1}$$

$$= 10^{n+1} \left(x - \sum_{k=0}^{n+1} d_k 10^{-k} \right) = 10^{n+1}E_{n+1}$$

But now $E_n = \frac{1}{10^n} R_n \to 0$, since $0 \le R_n < 1$ for all n.

(d) Following the hint, since $\sum_{l=0}^{\infty} 10^{-rl} = \frac{1}{1-10^{-r}} \in \mathbb{Q}$, we see that

$$d_0.d_1\cdots d_m d_{m+1}\cdots d_{m+r} d_{m+1}\cdots d_{m+r}\cdots = \sum_{k=0}^m d_k 10^{-k} + \left(\sum_{j=1}^r d_{m+j} 10^{-m-j}\right) \sum_{l=0}^\infty 10^{-rl}$$

is rational.

Conversely, suppose that $x = \frac{p}{q}$ is a rational number in lowest terms where $q \in \mathbb{N}$. At each stage of the algorithm, one is subtracting an integer after multiplying by 10. The result is that the denominator of R_n is always a divisor of q. It follows that

$$R_n = \frac{a}{q}$$
 where $a \in \{0, 1, \dots, q - 1\}$

For $n \in \{0, 1, ..., q\}$ there are only q possible remainders: at least one remainder must appear twice; $R_i = R_j$ where $0 \le i < j \le q$. Suppose r = j - i. It follows that

$$\forall k \geq i, d_{k+r} = d_k$$

whence the decimal is eventually periodic.

(e) That the two series are equal is easy to check via the geometric series formula:

$$9\sum_{n=m+1}^{\infty} 10^{-n} = \frac{9 \cdot 10^{-m-1}}{1 - 1/10} = 10^{-m}$$

Now suppose that two different decimals are equal: that is

$$\sum_{n=0}^{\infty} d_n \, 10^{-n} = \sum_{n=0}^{\infty} c_n \, 10^{-n}$$

Suppose $m \in \mathbb{N}_0$ is minimal such that $c_m \neq d_m$ and assume WLOG that $c_m < d_m$. Then

$$(d_m - c_m)10^{-m} + \sum_{n=m+1}^{\infty} d_n 10^{-n} = \sum_{n=m+1}^{\infty} c_n 10^{-n}$$
$$\implies (d_m - c_m) + \sum_{n=1}^{\infty} d_{n+m} 10^{-n} = \sum_{n=1}^{\infty} c_{n+m} 10^{-n}$$

Consider the left and right sides of this equation:

Left Side Since $d_m > c_m$, this is greater than or equal to 1 with equality if and only if all $d_{n+m} = 0$.

Right Side Since $9\sum_{n=1}^{\infty} 10^{-n} = 1$, the right side is *less than or equal to* 1 with equality if and only if *all* $c_{n+m} = 9$.

We conclude that $d_m = c_m + 1$, and that

$$\forall n > m$$
, $d_n = 0$, $c_n = 9$

3. (a) D(x) terminates if and only if $x = \frac{p}{2^a 5^b}$ is rational in lowest terms. Thus, for example, $x = \frac{193}{250} = \frac{193}{2 \cdot 5^2}$ has a terminating decimal, namely 0.772. Here is a proof.

By the Theorem, we know that all possible candidates for a terminating decimal have to be rational. Thus we assume $x = \frac{p}{q}$ is rational in lowest terms. Observe that

$$R_0 = \frac{p}{q} - d_0 = \frac{p - d_0 q}{q}$$

is a fraction with denominator q. Similarly,

$$R_1 = 10R_0 - \lfloor 10R_0 \rfloor$$

is $10R_0$ minus an integer: it is therefore a fraction whose denominator is either q, $\frac{1}{5}q$ or $\frac{1}{10}q$. Repeating this process, we see that R_n is a fraction with denominator

$$q_n = \frac{1}{2^a 5^b} q$$
 where $a, b \in \mathbb{N}_0$

D(x) terminates if and only if some $q_n = 1$ (then $R_n = \frac{0}{1} = 0$). This clearly happens if and only if x has the form described above.

(b) Think back to the proof. If $x = \frac{p}{q}$ is in lowest terms, then in the first q+1 remainders, one remainder has to be repeated, so the seemingly largest period is q (if $R_0 = R_q$). However, if any remainder is ever zero, the period is 1. Thus the longest possible period will be q-1, which will happen if the remainders $R_0, R_1, \ldots, R_{q-2}$ are distinct and non-zero, and we have $R_{q-1} = R_0$. The example with $\frac{1}{7}$ (period 6) shows this. Similarly,

$$\frac{1}{23} = 0.04347826086956521739130434782609 \cdots$$

has period 22.

4. (a)
$$[0.02020202\cdots]_3 = \frac{2}{3^2}[1.010101\cdots]_3 = \frac{2}{9}\sum_{n=0}^{\infty} 3^{-2n} = \frac{2}{9(1-\frac{1}{9})} = \frac{1}{4}$$
.

Following the algorithm,

We could also have done this by multiplying the expression for $\frac{1}{4}$ by 2...

Now for $\frac{1}{5}$:

n	0	1	2	3	4	
d_n	$\left\lfloor \frac{1}{5} \right\rfloor = 0$	$\left\lfloor \frac{3}{5} \right\rfloor = 0$	$\left\lfloor \frac{9}{5} \right\rfloor = 1$	$\left\lfloor \frac{12}{5} \right\rfloor = 2$	$\left\lfloor \frac{6}{5} \right\rfloor = 1$	
R_n	<u>1</u> 5	3 5	$\frac{4}{5}$	2 5	1 5	

from which we see that the ternary representation repeats:

$$\frac{1}{5} = [0.012101210121 \cdots]_3$$

(b) The theorem goes through almost unchanged: every ternary expression converges, each $t_n \in \{0,1,2\}$ whenever $n \ge 1$, x = T(x), rational number have eventual periodicity of (t_n) . Finally, terminating ternary expressions have a secondary representation: e.g.

$$[1.2012]_3 = [1.20112222222 \cdots]_3$$

where the final non-zero term is reduced by 1 and an infinite string of 2's added.

(c) Suppose $n = p_1^{\mu_1} \cdots p_k^{\mu_k}$ is the unique prime factorization of n. The real numbers x whose n-ary representation terminates are precisely those rational numbers whose (lowest-term) denominators are divisible by no other primes than p_1, \ldots, p_n . For example, base $60 = 2^2 \cdot 3 \cdot 5$, the representation of $\frac{1001}{450}$ will terminate, but $\frac{1}{7}$ will not. In case you are curious...

$$\frac{1001}{450} = [2;13,28]_{60} = 2 + \frac{13}{60} + \frac{28}{60^2}, \qquad \frac{1}{7} = [0;8,34,17,8,34,17,\ldots]_{60}$$

6