

LAB N° 0021 L

RAPPORTO DI PROVA N. 385556

Cliente

KAORI S.r.l.

Piazza Manfredi, 9 - 12045 FOSSANO (CN) - Italia

Oggetto*

pannello sottovuoto (VIP) denominato "VacuNEXT, spessore 20 mm"

Attività

resistenza termica e conduttività termica con il metodo della piastra calda con anello di guardia secondo la norma UNI EN 12667:2002

Risultati

Resistenza termica "R"	12,6 ^{+0,4} _{-0,4}	m² · K/W
Conduttività termica "λ"	0,00188 +0,00007 -0,00007	W/(m·K)

(*) secondo le dichiarazioni del cliente.

Bellaria-Igea Marina - Italia, 29 luglio 2021

L'Amministratore Delegato

Commessa:

89295

Provenienza dell'oggetto:

Identificazione dell'oggetto in accettazione:

2021/1904-1 del 16 luglio 2021

Data dell'attività:

Risultati

dal 16 luglio 2021 al 22 luglio 2021

Luogo dell'attività:

Istituto Giordano S.p.A. - Blocco 1 - Via Gioacchino Rossini, 2 - 47814 Bellaria-Igea Marina (RN) -Italia

IndicePaginaDescrizione dell'oggetto*2Riferimenti normativi2Apparecchiature2Modalità3

Il presente documento, è composto da n. 4 pagine e non può essere riprodotto parzialmente, estrapolando parti di interesse a discrezione del cliente, con il rischio di favorire una interpretazione non corretta dei risultati, fatto salvo quanto definito a livello contrattuale

I risultati si riferiscono solo all'oggetto in esame, così come ricevuto, e sono validi solo nelle condizioni in cui l'attività è stata effettuata.

L'originale del presente documento è costituito da un documento informatico firmato digitalmente ai sensi della Legislazione Italiana applicabile.

Responsabile Tecnico di Prova:

Dott. Ing. Paolo Ricci

Responsabile del Laboratorio di Trasmissione del Calore - Prove:

Dott. Ing. Paolo Ricci

Compilatore: Agostino Vasini **Revisore:** Dott. Ing. Paolo Ricci

Pagina 1 di 4

Descrizione dell'oggetto*

L'oggetto in esame è costituito da n. 2 pannelli in sottovuoto (VIP), aventi dimensioni 500 mm × 500 mm e spessore nominale 20 mm.

L'anima (core) è realizzata con fogli di fibra di vetro, agugliato, pressato e disidratato a caldo, tipo velo vetro, sovrapposti sino ad ottenere lo spessore richiesto, dimensione della fibra $(7 \div 12) \, \mu m$, colore bianco.

La fibra è totalmente inorganica con SiO₂ > 76 %, non sono presenti additivi o collanti organici.

All'interno del core è presente una piccola cartuccia di materiale disseccante.

Il core viene insacchettato sottovuoto mediante laminatrici a ciclo continuo e sottoposto a doppia termosigillatura. La composizione della pelle esterna è costituita da FIBER GALSS 105 g / PET 12 μm / AL 7 μm / PET 12 μm / PE 60 μm.

Fotografia dell'oggetto

Riferimenti normativi

Norma	Titolo
UNI EN 12667:2002	Prestazione termica dei materiali e dei prodotti per edilizia. Determinazione della resistenza termica con il metodo della piastra calda con anello di guardia e con il metodo del termoflussimetro. Prodotti con alta e media resistenza termica

Apparecchiature

Descrizione

Piastra calda con anello di guardia, avente configurazione simmetrica a doppia provetta, con sezioni frontali quadrate di dimensioni 517 mm \times 517 mm, giacitura verticale e dotata di sensori termometrici a resistenza Pt 100 Ω , annegati nelle superfici dell'apparecchiatura (n. 3 sensori su ciascuna superficie)

^(*) secondo le dichiarazioni del cliente, ad eccezione delle caratteristiche espressamente indicate come rilevate. Istituto Giordano declina ogni responsabilità sulle informazioni e sui dati forniti dal cliente che possono influenzare i risultati.

Modalità

Condizionamento delle provette

Le provette sono state condizionate in un ambiente a 23 °C di temperatura ed al 50 % di umidità relativa. Durata del condizionamento: 5 d.

Procedimento di prova

La prova è stata eseguita utilizzando la procedura interna di dettaglio PP002 nella revisione vigente alla data della prova e secondo le prescrizioni della norma UNI EN 12667.

La prova è stata eseguita alla temperatura media di prova di 10 °C.

La temperatura dell'ambiente contenente l'apparecchiatura è stata impostata al valore della temperatura media di prova, al fine di ridurre le perdite al contorno.

Dati rilevati sulle provette

Dimensioni medie delle provette	503 mm × 501 mm
Spessore medio della provetta A "d _A "	0,02382 m
Spessore medio della provetta B "d _B "	0,02360 m
Spessore medio delle provette al termine della prova "d"	0,02371 m
Volume delle provette "V"	0,01192 m³
Massa delle provette a inizio condizionamento "m ₁ "	3,91326 kg
Massa delle provette dopo il condizionamento "m ₃ "	3,91310 kg
Variazione di massa durante il condizionamento "Δm _c "	0,00 %
Massa areica delle provette condizionate	7,78 kg/m²
Massa delle provette alla fine della prova "m ₄ "	3,91334 kg
Variazione di massa delle provette durante la prova "Δm _w "	0,01 %
Pressione applicata sulle provette	1400 Pa
Modalità di misura dello spessore	Condizioni di prova
Modalità di misura della massa a fine prova	Condizioni di prova

Dati rilevati durante la prova

Data d'inizio della prova di conduttività termica e resistenza termica	21 luglio 2021
Durata totale della prova	23 h
Durata del regime stazionario	11 h
Intervallo di tempo considerato per la determinazione delle caratteristiche termiche	4 h
Area della superficie di misura "A"	0,06656 m²
Potenza fornita a regime al riscaldatore " Φ "	0,13 W
Densità di flusso termico attraverso le provette "q"	0,95 W/m²
Temperatura media a regime sul lato caldo "T ₁ "	16,00 °C
Temperatura media a regime sul lato freddo "T ₂ "	4,00 °C
Temperatura media a regime nell'ambiente di prova "Ta"	10,29 °C
Salto termico medio " Δ T" = T_1 - T_2	12,01 K

LAB N° 0021 L

Gradiente termico attraverso le provette = $\frac{T_1 - T_2}{d}$	506 K/m
Temperatura media di prova " T_m " = $\frac{T_1 + T_2}{2}$	10,00 °C

<u>Risultati</u>

Conduttanza termica "L" = 1/R e relativa incertezza estesa	0,079 +0,003 -0,003	W/(m² · K)
Resistenza termica "R" = $\frac{2A(T_1-T_2)}{\Phi}$ e relativa incertezza estesa	12,6 ^{+0,4} _{-0,4}	m² · K/W
Conduttività termica " λ " = $\frac{\Phi \cdot d}{2A(T_1-T_2)}$ e relativa incertezza estesa	0,00188 +0,00007 -0,00007	W/(m·K)
Livello di fiducia "p" dell'incertezza estesa	95 %	
Fattore di copertura "k _p " dell'incertezza estesa	2	

I risultati di prova sono stati determinati nelle seguenti condizioni:

Condizioni termoigrometriche delle provette	temperatura di riferimento 10 °C e contenuto di umidità
	all'equilibrio con aria a 23 °C ed umidità relativa del 50 %

Il Responsabile Tecnico di Prova (Dott. Ing. Paolo Ricci) Il Responsabile del Laboratorio di Trasmissione del Calore - Prove

(Dott. Ing. Paolo Ricci)