Neural Models of Response Selection for Bootstrapping Dialogue Systems

Matthew Henderson PolyAl

Creating Task-based Dialogue Systems

Convincing Application

solves a real problem

Meaningful Evaluation

can measure progress

Annotaated Data

is machinelearnable

how do we get a

baseline system?

intent classifiers slot-value recognisers response selection/generation

xskills xdomains xlanguages

reliance on annotated data?

how can we minimise

how can we scale better?

(skills, domains, languages...)

conversational response

by using large pre-trained

models that encapsulate

knowledge of

Pre-training in NLP

- recent trend to pre-train large models of language, then fine-tune BERT, ELMo, GPT etc.
- uses unlabelled text + unsupervised objective same idea as cbow, skip gram, skip thought etc.
- learns general representations of text, useful for downstream tasks

PolyAl Conversational Datasets

Reddit

3.7 billion comments from online discussions on many topics

727 million examples

OpenSubtitles

over 400 million lines of subtitles from movies and TV

316 million examples

AmazonQA

over 3.6 million product question-answer pairs

3.6 million examples

github.com/PolyAI-LDN/conversational-datasets

Public Conversational Datasets

	~ Turns	Annotations	
DSTC 2&3	10 ⁴	response, ASR, SLU	
MultiWoz	10 ⁵	response, NLU	
DSTC7 Reddit	10 ⁶	response, entities	
DSTC7 Ubuntu	10 ⁶	response	
PolyAl AmazonQA	10 ⁶	product, response	
PolyAl OpenSubtitles	10 ⁸	'response'	
PolyAl Reddit	10 ⁹	response	

Next word prediction

Masked word prediction

The launch of ■ 's second lunar mission has been ??? less than an hour before the scheduled blast- ■ , due to a ■ problem.

apple called halted celebrate passport

Response Selection

Any recommendations for short trips from Singapore?

It doesn't feel like July.
That type of music isn't really my cup of tea.

→ Bintan is just a quick ferry trip away.

You have to try the vegetarian Haggis!
I'd do a short trip to Paris.

. . .

Response Selection

- large conversational datasets
- representations encode conversational cues
- encodes full sentences
- directly applicable to retrieval-based dialogue

Language Modelling

- large text datasets
- representations encode word/phrase/sentence cues
- encodes words contextually
- maybe applicable to generation/scoring

a lot of the power of neural techniques is finding good embeddings / encodings

- so learn encoder model on large conversational data
- then use various tricks and small models on the learned vector space for domain specific tasks

Dual Encoders for Response Selection

dual encoder dot product model

- gmail smart reply
- universal sentence encoder

trained to give a high score for the response found in the data, low score for random responses

final score of an input and response is a dot-product of two vectors

network encodes a batch of inputs to vectors:

 $\boldsymbol{X}_1 \quad \boldsymbol{X}_2 \quad \dots \quad \boldsymbol{X}_N$

and responses to vectors:

 y_1 y_2 ... y_N

x_1, y_1	$\boldsymbol{x}_1.\boldsymbol{y}_2$	$\boldsymbol{x}_1,\boldsymbol{y}_3$	$\boldsymbol{x}_1,\boldsymbol{y}_4$	$\boldsymbol{x}_1.\boldsymbol{y}_5$
$\boldsymbol{x}_2.\boldsymbol{y}_1$	$\boldsymbol{x}_2.\boldsymbol{y}_2$	$\boldsymbol{x}_2,\boldsymbol{y}_3$	$\boldsymbol{x}_2.\boldsymbol{y}_4$	$\boldsymbol{x}_2.\boldsymbol{y}_5$
$\boldsymbol{x}_3.\boldsymbol{y}_1$	$\boldsymbol{x}_3.\boldsymbol{y}_2$	x_3,y_3	$\boldsymbol{x}_3.\boldsymbol{y}_4$	$\boldsymbol{x}_3.\boldsymbol{y}_5$
$x_4.y_1$	$\boldsymbol{x}_4.\boldsymbol{y}_2$	$\boldsymbol{x}_4.\boldsymbol{y}_3$	$\boldsymbol{x}_4.\boldsymbol{y}_4$	$\boldsymbol{x}_4.\boldsymbol{y}_5$
$\boldsymbol{x}_{5}, \boldsymbol{y}_{1}$	$\boldsymbol{x}_{5}.\boldsymbol{y}_{2}$	$\boldsymbol{x}_{5},\boldsymbol{y}_{3}$	$\boldsymbol{x}_5.\boldsymbol{y}_4$	$\boldsymbol{x}_5.\boldsymbol{y}_5$

the N x N matrix of all scores is a fast matrix product.

large improvement in 1 of 100 ranking accuracy over binary classification.

x_1, y_1	$\boldsymbol{x}_1.\boldsymbol{y}_2$	$\boldsymbol{x}_1, \boldsymbol{y}_3$	$\boldsymbol{x}_1.\boldsymbol{y}_4$	$\boldsymbol{x}_1.\boldsymbol{y}_5$
$\boldsymbol{x}_2, \boldsymbol{y}_1$	$\boldsymbol{x}_2.\boldsymbol{y}_2$	$\boldsymbol{x}_2.\boldsymbol{y}_3$	$\boldsymbol{x}_2.\boldsymbol{y}_4$	$\boldsymbol{x}_2.\boldsymbol{y}_5$
$\boldsymbol{x}_3.\boldsymbol{y}_1$	$\boldsymbol{x}_3.\boldsymbol{y}_2$	x_3y_3	$\boldsymbol{x}_3.\boldsymbol{y}_4$	$\boldsymbol{x}_3.\boldsymbol{y}_5$
$\boldsymbol{x}_{4},\boldsymbol{y}_{1}$	$\boldsymbol{x}_4.\boldsymbol{y}_2$	$\boldsymbol{x}_4.\boldsymbol{y}_3$	$\boldsymbol{x}_4.\boldsymbol{y}_4$	$\boldsymbol{x}_4.\boldsymbol{y}_5$
$\boldsymbol{x}_{5}.\boldsymbol{y}_{1}$	$\boldsymbol{x}_{5}, \boldsymbol{y}_{2}$	$\boldsymbol{x}_{5},\boldsymbol{y}_{3}$	$\boldsymbol{x}_5.\boldsymbol{y}_4$	$\boldsymbol{x}_5.\boldsymbol{y}_5$

$$m{x}_i = f(ext{input } i)$$
 $m{y}_j = g(ext{response } j)$
 $m{S}_{ij} = m{x}_i \cdot m{y}_j$
 $P(ext{response } j \mid ext{input } i) \propto e^{Sij}$
 $-\log P(ext{example } i) = - m{S}_{ii} + \log \Sigma_j e^{Sij}$
"dot product loss"

Precomputation for dot product model

the representations of the candidates Y can be precomputed

approximate nearest neighbor search can speed up the top N search

at inference, a user query has N words, there are M responses with N_R words each

- dot product model
 - O(N) to encode input to vector space
 - $O(\log M)$ to find top scoring response with approximate search
- general sequence model (e.g. BERT next sentence scoring)
 - $O(M(N + N_p))$ to score all responses
 - O(M) to find top response

1-of-100 accuracy

how often the correct response is ranked top vs 99 random

PolyAl Encoder

PolyAl Encoder

	reddit 1-of-100			
		accuracy		
	TF-IDF	26.70/		
keyword-based		26.7%		
,	BM25	27.6%		
	ELMo	19.3%		
MAP dot product models	BERT	24.5%		
	USE	40.8%		
	USE_QA	46.3%		
	BERT dot-product model	55.0%		
PolyAl Encoders	n-grams	61.3%		
i olyAl Elicodeis	subwords	68.2%		

PolyAl Encoder

resource-constrained optimization: pick the best model after training 18 hours on 12 GPUs

- fast ML engineering cycle, rapid progress
- we own the whole training pipeline
- training costs under \$100
- model runs fine on CPU
- final model is 40MB

reddit 1-ot-100 (progress over 3 weeks)

intent classification

Intent Classification

initiate-booking

can i make a booking can i reserve a table okay i want to book a table for tonight

cancel-booking

cancel it i don't want the table anymore

restart

let's start over forget this

Intent classification

- can train an MLP on top of encoding representation
- can jointly fine-tune the encoding parameters

- can treat similarity in encoding space as as a kernel
 - SVM (more interpretable, encoding-agnostic)

Intent Evaluation

		PolyAl Encoder			
		PolyAl QQ PolyAl SVM PolyAl ML			
Banking	Banking small		83.1%	81.8%	
	medium	82.5%	91.0%	90.4%	
	large	87.7%	93.1%	92.7%	
	e-commerce		94.1%	94.5%	
company FAQ		63.8%	64.5%	64.5%	

Intent Evaluation

	PolyAl Encoder							
		PolyAl QQ	PolyAl SVM	PolyAl MLP	USE QQ	USE FT	BERT FT	RASA FT
Banking	small	68.3%	83.1%	81.8%	67.3%	80.4%	80.4%	63.4%
	medium	82.5%	91.0%	90.4%	83.8%	89.8%	90.9%	84.0%
	large	87.7%	93.1%	92.7%	87.8%	92.2%	92.9%	89.2%
9	e-commerce	92.0%	94.1%	94.5%	90.5%	94.0%	94.4%	92.1%
cc	mpany FAQ	63.8%	64.5%	64.5%	55.8%	62.4%	65.0%	55.4%

Intent Evaluation

	PolyAl Encoder							
		PolyAl QQ	PolyAl SVM	PolyAl MLP	Twilio	MS Luis	IBM Watson	Dialogflow
Banking	small	68.3%	83.1%	81.8%	65.6%	69.0%	73.3%	79.6%
	medium	82.5%	91.0%	90.4%	83.7%	80.7%	87.0%	86.4%
	large	87.7%	93.1%	92.7%	89.6%	86.9%	90.6%	86.9%
	e-commerce	92.0%	94.1%	94.5%	91.3%	92.0%	92.1%	89.8%
co	ompany FAQ	63.8%	64.5%	64.5%	55.7%	55.1%	57.8%	53.2%

simple bot building

Simple bot building

quick prototyping of dialogues flows using the shared input response embedding space

Simple bot building

- fast prototyping / proof of concept

- system design interface is entirely text no need to train additional models
- flows can be guaranteed by adding text

restaurant search

DSTC 2 & 3

hello I am looking for a cheap place in the east

> inform(pricerange=cheap, area=east)

sure, what type of food?

> request(food)

i want gastropub food

> inform(food=gastropub)

there are no cheap places serving gastropub in the east.

> inform(name=none, area=east, pricerange=cheap)

how about any pricerange? and i need to know if they have wifi.

> inform(pricerange=dontcare) request(has_wifi)

The King's Arms is a nice place in the east of town serving gastropub food. It has wifi.

> offer(name="The King's Arms", area=east, food=gastropub, has_wifi=true)

DSTC 2 & 3

explicit semantics forces unnaturally constrained dialogues users need to know the ontology

- requires special annotated data, one specialised model per 'slot'

DSTC 2 & 3

- some slots are necessary

number of people, booking time, name

- some might not be

food, price range, has wifi, has vegetarian, has vegan, serves cocktails....

use all sentences in all reviews of all restaurants in a city
treat dialogue as an iterative search
perform search in implicit vector space learned by encoders

70 1 739

Found 2 Bars, Nightlife, Breakfast & Brunch, Seafood, Pubs... etc. places

i want a bar with good craft beer

BrewDog Edinburgh

Pubs, Bars, Pizza, Gastropubs, Burgers, Nightlife

The Beer Kitchen By Innis & Gunn

Breakfast & Brunch, Seafood, Bars, Nightlife

The Elephant House

Restaurant in Old Town. Brasseries, Coffee & Tea, Food, British, Sandwiches, Cafes, and Scottish

where did JK rowling write Harry Potter

• "After all, if JK Rowling was inspired maybe it can rub off?"

The Elephant House

Restaurant in Old Town. Brasseries, Coffee & Tea, Food, British, Sandwiches, Cafes, and Scottish

can i book a table for 2

What date and time?

Search procedure

encode user text with input encoder

if restart intent detected, restart

2. find potential answers in restaurant texts

hundreds of thousands of texts

- 3. convert scores into probabilities
- 4. constrain the set of active restaurants to those that make up the head of the distribution

Restaurant search

- entirely powered by a single model, trained on hundreds of millions of examples
- bootstrapped using only raw text representations- restaurants + reviews + facts
- allows more natural search, not bottlenecked by explicit semantics / ontology

Value Extraction

limit slots to obvious values that the system needs to extract

booking time & date, your name, number of people

value extraction can benefit from pre-trained representations

- see our blog post on Neural language understanding of people's names

Hello, Thank you for contacting The Haywain, I am a digital agent, how can I help?

do you have any veggie burgers?

Yes, we have a popular Vegan Burger with BBQ Soya for £11.49, and will be happy to help with your requirements.

nice. ok can i book a table for 2

What day would you like to book for?

for tomorrow at 6 in the evening

No problem, we have a table for you for 2 people, tomorrow at 06:00PM. Shall I book that for you?

Response Selection for Bootstrapping Dialogue

efficient task tailored to dialogue

smaller cheaper faster models

robust performance on downstream tasks

competitive intent classification

driven by paraphrase collection

powers conversational search

efficient search reduced dependency on strict ontology

