

Representação de Arranjos

Introdução

- □ Lembre-se que a memória é unidimensional e pode ser considerada como palavras numeradas de 1 até *m* (ou, alternativamente, de 0 a *m*-1)
- Assim, o objetivo é a representação de arranjos n dimensionais em uma memória unidimensional
 - n=1: vetor (arranjo unidimensional)
 - n=2: matriz (arranjo bidimensional)
 - n>2: arranjo (ou matriz) multidimensional

Introdução

- Dentre as várias representações vamos utilizar uma na qual a localização na memória de um elemento do arranjo arbitrário possa ser definida de modo eficiente, por exemplo A[i₁, i₂, ..., i_n]
- Isso é necessário, pois, em geral, os programas que utilizam arranjos podem fazer uso dos elementos dele em qualquer ordem, inclusive em ordem aleatória
- Além disso, para poder recuperar facilmente os elementos de um arranjo será também necessário ter condições para determinar a quantidade de espaço da memória a ser reservada para um arranjo em particular
- Assumindo que cada elemento de um arranjo necessita de apenas uma palavra da memória, a quantidade de palavras necessária corresponderá à quantidade de elementos dentro do arranjo

Número de Elementos

- Seja um arranjo n-dimensional declarado como $A[l_1:u_1, l_2:u_2, ..., l_n:u_n]$ (ou, equivalentemente $A[l_1..u_1, l_2..u_2, ..., l_n..u_n]$), onde $l_i:u_i$ ($l_i..u_i$) representam os limites inferior e superior de variação dos índices, respectivamente (1 $\leq n$)
- A quantidade dos elementos do arranjo A é:

$$\prod_{i=1}^{n} (u_i - l_i + 1)$$

- Por exemplo, dado o arranjo declarado como
 - A[4:5, 2:4, 1:2, 3:4]
 - temos um total de (5-4+1)*(4-2+1)*(2-1+1)*(4-3+1) = 2*3*2*2 = 24 elementos

Ordem de Armazenamento

- □Os arranjos podem ser armazenados por ordem de linhas ou por ordem de colunas
 - No armazenamento por linhas, todos os elementos da primeira linha são armazenados; a seguir todos os elementos da segunda linha e assim sucessivamente
 - No armazenamento por colunas, todos os elementos da primeira coluna são armazenados; a seguir todos os elementos da segunda coluna e assim por diante

Exemplo

■ No caso do arranjo bidimensional B[1:2, 1:4]

O armazenamento por linhas resultaria na seguinte disposição na memória:

B[1,1]	B[1,2]	B[1,3]	B[1,4]	B[2,1]	B[2,2]	B[2,3]	B[2,4]
10	20	30	40	50	60	70	80

☐ Esse mesmo arranjo se armazenado por colunas ficaria:

B[1,1]	B[2,1]	B[1,2]	B[2,2]	B[1,3]	B[2,3]	B[1,4]	B[2,4]
10	50	20	60	30	70	40	80

Armazenamento por Linhas

- □ O arranjo A[4:5, 2:4, 1:2, 3:4] armazenado por linhas tem seus elementos na seguinte ordem
 - A[4,2,1,3], A[4,2,1,4], A[4,2,2,3], A[4,2,2,4] seguidos de
 - A[4,3,1,3], A[4,3,1,4], A[4,3,2,3], A[4,3,2,4] seguidos de
 - A[4,4,1,3], A[4,4,1,4], A[4,4,2,3], A[4,4,2,4] seguidos de
 - A[5,2,1,3], A[5,2,1,4], A[5,2,2,3], A[5,2,2,4] seguidos de
 - A[5,3,1,3], A[5,3,1,4], A[5,3,2,3], A[5,3,2,4] seguidos de
 - A[5,4,1,3], A[5,4,1,4], A[5,4,2,3], A[5,4,2,4]
- Nota-se que o índice da direita move-se mais rápido
- □ De fato, se considerarmos os subscritos como números, observamos que eles aumentam: 4213, 4214, ..., 5423, 5424
- Assim, a ordem de armazenamento por linhas é também denominada ordem lexicográfica

Armazenamento por Linhas

- Do ponto de vista do compilador, o problema é como traduzir do nome A[i₁, i₂, ..., i_n] para a localização correta na memória
- Supondo que A[4,2,1,3] está armazenado na posição 100, então A[4,2,1,4] está na posição 101 e A[5,4,2,4] na posição 123
- De maneira geral podemos deduzir uma fórmula para o endereço de qualquer elemento usando apenas o endereço inicial do arranjo, mais as dimensões declaradas
- □ Sem perda de generalidade, vamos assumir que os limites inferiores são 1 em cada dimensão l_i
- □ Antes de encontrar a fórmula para o caso de um arranjo n-dimensional, veremos a representação de arranjos armazenados por linhas para 1, 2 e 3 dimensões

Arranjo Unidimensional

□Se A está declarado como A[1:u₁] (totalizando u₁ elementos) e assumindo uma palavra de memória por elemento, o arranjo pode ser representado na memória seqüencial da forma:

A[1]	A[2]	A[3]	•••	A[i]	•••	A[u ₁]
α	α+1	α+2	•••	α+i-1	•••	α+u ₁ -1

Se α é o endereço de A[1] então o endereço de um elemento arbitrário A[i] é α+(i-1)

Arranjo Bidimensional

- O arranjo A[1:u₁,1:u₂] pode ser interpretado como u₁ linhas: linha 1, linha 2, ..., linha u₁ sendo cada linha composta de u₂ elementos
- ☐ Essas linhas são representadas na memória como:

ou seja:

Arranjo Bidimensional

- Se α é o endereço de A[1,1] então o endereço de A[1,j] é α+(j-1)
- Como existem (i-1) linhas, todas de tamanho u₂, precedendo o primeiro elemento da i-ésima linha o endereço de A[i,j] é α+(i-1)*u₂+(j-1)

Arranjo Tridimensional

□ Arranjos tridimensionais A[1:u₁,1:u₂,1:u₃] podem ser interpretados como u₁ arranjos bidimensionais com dimensões u₂ x u₃

Arranjo Tridimensional

- Para localizar A[i,j,k] obtemos primeiro α+(i-1)*u₂*u₃ como o endereço para A[i,1,1], desde que haja (i-1) arranjos bidimensionais de tamanho u₂ x u₃ precedendo este elemento
- □Partindo disso e da fórmula para endereçamento de um arranjo bidimensional, temos que como endereço de A[i,j,k] é α+(i-1)*u₂*u₃+(j-1)*u₃+(k-1)

Arranjos Multidimensionais

- □A fórmula de endereçamento para qualquer elemento A[i₁,i₂,...,iո] em um arranjo n-dimensional, declarado como A[1:u₁, 1:u₂, ..., 1:un] pode ser conseguida facilmente
- Se α é o endereço para A[1,1,...,1] então $\alpha+(i_1-1)^*u_2^*u_3^*...^*u_n$ é o endereço para A[i_1 ,1,...,1]
- O endereço para A[i₁,i₂,1,...,1] será então α
 + (i₁-1)*u₂*u₃*...*u_n + (i₂-1)*u₃*u₄*...*u_n

Arranjos Multidimensionais

- Repetindo dessa maneira, o endereço para A[i₁,i₂,...,i_n] é
 - $\alpha + (i_1-1)^*u_2^*u_3^*...^*u_n$
 - $+ (i_2-1)^*u_3^*u_4^*...^*u_n$
 - \bullet + $(i_3 1)^* u_4^* u_5^* ... ^* u_n$
 - •
 - + $(i_{n-1} 1)*u_n$
 - + (i_n 1)

☐ Ou seja:

$$\alpha + \sum_{j=1}^{n} (i_j - 1) \times p_j$$

onde:

$$\begin{cases} p_j = \prod_{k=j+1}^n u_k & 1 \le j < n \\ p_n = 1 \end{cases}$$

Matrizes Esparsas

- Embora não exista uma definição precisa, uma matriz é esparsa quando ela tem muitas entradas iguais a zero (elementos nulos)
- □ Por exemplo, a matriz de ordem 5 ao lado possui um total de 25 elementos sendo que somente 7 (28%) são diferentes de zero

1 5	0	0	22	0
0	11	3	0	0
0	0	0	-6	0
91	0	0	0	0
0	0	28	0	0

Matrizes Esparsas

- Assim, o problema consiste em representar matrizes esparsas de forma a economizar memória, definindo o ADT Matriz Esparsa
- Seja A uma matriz com n linhas e m colunas, ou seja, A[1:n, 1:m] contendo k valores distintos de zero
- ☐ Uma forma de representação conhecida como Listas Cruzadas utiliza:
 - Um vetor de colunas C[1:m]
 - Um vetor de linhas R[1:n]
 - O elemento A[i,j] é representado por uma estrutura contendo:
 - ❖ i, j, Valor de A[i,j]
 - NextCol: ponteiro para a coluna do próximo elemento não nulo na linha i
 - NextRow: ponteiro para a linha do próximo elemento não nulo na coluna j
 - Ambos vetores C e R são do tipo ponteiro para a estrutura descrita acima

- □ Uma matriz esparsa armazenada como uma matriz bidimensional ocupa n*m palavras de memória
- □ Usando listas cruzadas, assumindo que a matriz esparsa armazena somente inteiros e que o espaço ocupado por ponteiros seja igual ao espaço ocupado por um inteiro (uma palavra), temos:
 - 5*k (linha, coluna, valor, NextRow, NextCol)
 - n palavras para vetor R
 - m palavras para vetor C
 - Espaço total: 5**k* + *n* + *m*

- □ Assim, em termos de espaço, há vantagem em armazenar uma matriz esparsa usando listas cruzadas se:
 - 5*k + n + m < n*m
- Ou seja, quando
 - k < ((n-1)*(m-1)-1))/5
- □ Como (n–1)*(m–1) é aproximadamente o tamanho da matriz original, em geral, há ganho em termos de espaço usando listas cruzadas quando um número inferior a 1/5 dos elementos da matriz forem não nulos
- ☐ Todavia, as operações sobre listas cruzadas podem ser mais lentas e complexas do que no caso bidimensional

Resumo

- ■Nesta apresentação foi fornecida a idéia básica de como os arranjos multidimensionais são representados na memória do computador que é unidimensional (linear)
- □ Adicionalmente, foi visto o conceito de matriz esparsa bem com uma forma de representação utilizando listas encadeadas