بسم الله الرحمن الرحيم

# نظریه علوم کامپیوتر

نظریه علوم کامپیوتر - بهار ۱۴۰۰ - ۱۴۰۱ - ۱۴۰۸ - جلسه شانزدهم: سلسلهراتب زمان Theory of computation - 002 - S16 - Time hierarchy

### **Contents**

### Last time:

- Log-space reducibility
- L = NL? question
- PATH is NL-complete
- 2SAT is NL-complete
- -NL = coNL
- **Today:** (Sipser §9.1)
- Time and Space Hierarchy Theorems

$$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE$$



The time and space hierarchy theorems show that if a TM is given more time (or space) then it can do more.\*

\* certain restrictions apply.

The time and space hierarchy theorems show that if a TM is given more time (or space) then it can do more.\*

\* certain restrictions apply.

#### For example:

$$\mathsf{TIME}(n^2) \subseteq \mathsf{TIME}(n^3) \quad [\subseteq \mathsf{means} \; \mathsf{proper} \; \mathsf{subset} \, ]$$

The time and space hierarchy theorems show that if a TM is given more time (or space) then it can do more.\*

\* certain restrictions apply.

#### For example:

The time and space hierarchy theorems show that if a TM is given more time (or space) then it can do more.\*

\* certain restrictions apply.

#### For example:

TIME
$$(n^2) \subseteq \text{TIME}(n^3)$$
 [  $\subseteq$  means proper subset ] SPACE $(n^2) \subseteq \text{SPACE}(n^3)$ 

**Theorem:** For any  $f: \mathbb{N} \to \mathbb{N}$  (where f satisfies a technical condition) there is a language A where A requires O(f(n)) space, i.e,

**Theorem:** For any  $f: \mathbb{N} \to \mathbb{N}$  (where f satisfies a technical condition) there is a language A where A requires O(f(n)) space, i.e, 1) A is decidable in O(f(n)) space, and

**Theorem:** For any  $f: \mathbb{N} \to \mathbb{N}$  (where f satisfies a technical condition) there is a language A where A requires O(f(n)) space, i.e,

- 1) A is decidable in O(f(n)) space, and
- 2) A is not decidable in o(f(n)) space

```
Theorem: For any f: \mathbb{N} \to \mathbb{N} (where f satisfies a technical condition) there is a language A where A requires O(f(n)) space, i.e,
```

- 1) A is decidable in Oig(f(n)ig) space, and
- 2) A is not decidable in o(f(n)) space

```
On other words, SPACE(o(f(n))) \subseteq SPACE(f(n))
```

**Notation:** SPACE  $(o(f(n))) = \{B \mid \text{ some TM } M \text{ decides } B \text{ in space } o(f(n))\}$ 

**Theorem:** For any  $f: \mathbb{N} \to \mathbb{N}$  (where f satisfies a technical condition) there is a language A where A requires O(f(n)) space, i.e,

- 1) A is decidable in O(f(n)) space, and
- 2) A is not decidable in o(f(n)) space

On other words,  $SPACE(o(f(n))) \subseteq SPACE(f(n))$ 

**Notation:** SPACE  $(o(f(n))) = \{B \mid \text{ some TM } M \text{ decides } B \text{ in space } o(f(n))\}$ 



**Theorem:** For any  $f: \mathbb{N} \to \mathbb{N}$  (where f satisfies a technical condition) there is a language A where A requires O(f(n)) space, i.e,

- 1) A is decidable in O(f(n)) space, and
- 2) A is not decidable in o(f(n)) space

On other words,  $SPACE(o(f(n))) \subseteq SPACE(f(n))$ 

**Notation:** SPACE  $\left(o(f(n))\right) = \{B \mid \text{ some TM } M \text{ decides } B \text{ in space } o\left(f(n)\right)\}$ 



**Proof outline: (Diagonalization)** 

**Theorem:** For any  $f: \mathbb{N} \to \mathbb{N}$  (where f satisfies a technical condition)

there is a language A where A requires  $O\big(f(n)\big)$  space, i.e,

- 1) A is decidable in Oig(f(n)ig) space, and
- 2) A is not decidable in o(f(n)) space

On other words,  $SPACE(o(f(n))) \subseteq SPACE(f(n))$ 

**Notation:** SPACE  $(o(f(n))) = \{B \mid \text{ some TM } M \text{ decides } B \text{ in space } o(f(n))\}$ 



**Proof outline: (Diagonalization)** 

Give TM  $\it D$  where

1) D runs in O(f(n)) space

**Theorem:** For any  $f: \mathbb{N} \to \mathbb{N}$  (where f satisfies a technical condition)

there is a language A where A requires  $O\big(f(n)\big)$  space, i.e,

- 1) A is decidable in O(f(n)) space, and
- 2)  $\overline{A}$  is not decidable in o(f(n)) space

On other words,  $SPACE(o(f(n))) \subseteq SPACE(f(n))$ 

**Notation:** SPACE  $(o(f(n))) = \{B \mid \text{ some TM } M \text{ decides } B \text{ in space } o(f(n))\}$ 



**Proof outline: (Diagonalization)** 

- 1) D runs in O(f(n)) space
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in o(f(n)) space.

**Theorem:** For any  $f: \mathbb{N} \to \mathbb{N}$  (where f satisfies a technical condition)

there is a language A where A requires  $O\big(f(n)\big)$  space, i.e,

- 1) A is decidable in O(f(n)) space, and
- 2)  $\overline{A}$  is not decidable in o(f(n)) space

On other words,  $SPACE(o(f(n))) \subseteq SPACE(f(n))$ 

**Notation:** SPACE  $\left(o(f(n))\right) = \{B \mid \text{ some TM } M \text{ decides } B \text{ in space } o\left(f(n)\right)\}$ 



**Proof outline: (Diagonalization)** 

- 1) D runs in O(f(n)) space
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in o(f(n)) space.

Let 
$$A = L(D)$$
.

**Theorem:** For any  $f: \mathbb{N} \to \mathbb{N}$  (where f satisfies a technical condition)

there is a language A where A requires  $O\big(f(n)\big)$  space, i.e,

- 1) A is decidable in O(f(n)) space, and
- 2) A is not decidable in o(f(n)) space

On other words,  $SPACE(o(f(n))) \subseteq SPACE(f(n))$ 

**Notation:** SPACE  $(o(f(n))) = \{B \mid \text{ some TM } M \text{ decides } B \text{ in space } o(f(n))\}$ 



#### **Proof outline: (Diagonalization)**

- 1) D runs in O(f(n)) space
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in o(f(n)) space.

Let 
$$A = L(D)$$
.

**Theorem:** For any  $f: \mathbb{N} \to \mathbb{N}$  (where f satisfies a technical condition)

there is a language A where A requires  $O\big(f(n)\big)$  space, i.e,

- 1) A is decidable in O(f(n)) space, and
- 2) A is not decidable in o(f(n)) space

On other words,  $SPACE(o(f(n))) \subseteq SPACE(f(n))$ 

**Notation:** SPACE  $(o(f(n))) = \{B \mid \text{ some TM } M \text{ decides } B \text{ in space } o(f(n))\}$ 



#### **Proof outline: (Diagonalization)**

- 1) D runs in O(f(n)) space
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in o(f(n)) space.

Let 
$$A = L(D)$$
.

**Theorem:** For any  $f: \mathbb{N} \to \mathbb{N}$  where f is time constructible there is a language A where A requires O(f(n)) time, i.e,

**Theorem:** For any  $f: \mathbb{N} \to \mathbb{N}$  where f is time constructible there is a language A where A requires O(f(n)) time, i.e,

- 1) A is decidable in O(f(n)) time, and
- 2) A is not decidable in  $o(f(n)/\log(f(n)))$  time

**Theorem:** For any  $f: \mathbb{N} \to \mathbb{N}$  where f is time constructible there is a language A where A requires O(f(n)) time, i.e,

- 1) A is decidable in O(f(n)) time, and
- 2) A is not decidable in  $o(f(n)/\log(f(n)))$  time

On other words, 
$$\mathsf{TIME}\!\left(o\!\left(\frac{f(n)}{\log\!\left(f(n)\right)}\right)\right) \subseteq \mathsf{TIME}\!\left(f(n)\right)$$

**Theorem:** For any  $f: \mathbb{N} \to \mathbb{N}$  where f is time constructible there is a language A where A requires O(f(n)) time, i.e,

- 1) A is decidable in O(f(n)) time, and
- 2) A is not decidable in  $o(f(n)/\log(f(n)))$  time

On other words, 
$$\mathsf{TIME}\!\left(o\!\left(\frac{f(n)}{\log \big(f(n)\big)}\right)\right) \subseteq \mathsf{TIME}\!\left(f(n)\right)$$

**Proof outline:** Give TM D where

- 1) D runs in O(f(n)) time
- 2) D ensures that L(D) 
  eq L(M) for every TM M that runs in  $o\Big(f(n)/\logig(f(n)ig)\Big)$  time .

Let 
$$A = L(D)$$
.

**Theorem:** For any  $f: \mathbb{N} \to \mathbb{N}$  where f is time constructible there is a language A where A requires O(f(n)) time, i.e,

- 1) A is decidable in O(f(n)) time, and
- 2) A is not decidable in  $o(f(n)/\log(f(n)))$  time

On other words, 
$$TIME\left(o\left(\frac{f(n)}{\log(f(n))}\right)\right) \subseteq TIME(f(n))$$

**Proof outline:** Give TM D where

- 1) D runs in O(f(n)) time
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in  $o\Big(f(n)/\log\Big(f(n)\Big)\Big)$  time .

Let 
$$A = L(D)$$
.

**Goal:** Exhibit 
$$A \in \mathsf{TIME} \big( f(n) \big)$$
 but  $A \not\in \mathsf{TIME} \bigg( o \Big( f(n) / \log \big( f(n) \big) \Big) \bigg)$ 

**Goal:** Exhibit 
$$A \in \mathsf{TIME} \big( f(n) \big)$$
 but  $A \notin \mathsf{TIME} \bigg( o \Big( f(n) / \log \big( f(n) \big) \Big) \bigg)$ 

- A = L(D) where
- 1) D runs in Oig(f(n)ig) time
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in  $o\Big(f(n)/\log\big(f(n)\big)\Big)$  time.

```
Goal: Exhibit A \in \mathsf{TIME} \big( f(n) \big) but A \notin \mathsf{TIME} \bigg( o \Big( f(n) / \log \big( f(n) \big) \Big) \bigg)
```

- A = L(D) where
- 1) D runs in O(f(n)) time
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in  $o\Big(f(n)/\log\big(f(n)\big)\Big)$  time.
- D = "On input w
- 1. Compute f(n).
- 2. If  $w \neq \langle M \rangle 10^*$  for some TM M, reject.
- 3. Simulate\* M on w for  $f(n)/\log(f(n))$  steps. Accept if M rejects, Reject if M accepts or hasn't halted."

**Goal:** Exhibit 
$$A \in \mathsf{TIME} \big( f(n) \big)$$
 but  $A \notin \mathsf{TIME} \bigg( o \Big( f(n) / \log \big( f(n) \big) \Big) \bigg)$ 

- A = L(D) where
- 1) D runs in O(f(n)) time
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in  $o\Big(f(n)/\log\big(f(n)\big)\Big)$  time.
- D = "On input w
- 1. Compute f(n).
- 2. If  $w \neq \langle M \rangle 10^*$  for some TM M, reject.
- 3. Simulate\* M on w for  $f(n)/\log(f(n))$  steps. Accept if M rejects, Reject if M accepts or hasn't halted."

For no M in TIME 
$$\left(o\left(f(n)/\log\left(f(n)\right)\right)\right)$$
, L(M) != L(D)

**Goal:** Exhibit 
$$A \in \mathsf{TIME} \big( f(n) \big)$$
 but  $A \notin \mathsf{TIME} \bigg( o \Big( f(n) / \log \Big( f(n) \Big) \Big) \bigg)$ 

- A = L(D) where
- 1) D runs in O(f(n)) time
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in  $o\Big(f(n)/\log\big(f(n)\big)\Big)$  time.
- D = "On input w
- 1. Compute f(n).
- 2. If  $w \neq \langle M \rangle 10^*$  for some TM M, reject.
- 3. Simulate\* M on w for  $f(n)/\log(f(n))$  steps. Accept if M rejects, Reject if M accepts or hasn't halted."

For no M in TIME 
$$\left(o\left(f(n)/\log\left(f(n)\right)\right)\right)$$
, L(M) != L(D)

Contradiction,  $M(< M > 10^k)$  runs in o(f/log f)

**Goal:** Exhibit  $A \in \mathsf{TIME} \big( f(n) \big)$  but  $A \notin \mathsf{TIME} \bigg( o \Big( f(n) / \log \Big( f(n) \Big) \Big) \bigg)$ 

- A = L(D) where
- 1) D runs in O(f(n)) time
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in  $o\Big(f(n)/\log\big(f(n)\big)\Big)$  time.
- D = "On input w
- 1. Compute f(n).
- 2. If  $w \neq \langle M \rangle 10^*$  for some TM M, reject.
- 3. Simulate\* M on w for  $f(n)/\log(f(n))$  steps. Accept if M rejects, Reject if M accepts or hasn't halted."

For no M in TIME 
$$\left(o\left(f(n)/\log\left(f(n)\right)\right)\right)$$
, L(M) != L(D)

Contradiction,  $M(<M>10^k)$  runs in o(f/log f) D(<M>1) rejects iff  $M(<M>10^k)$  accepts

**Goal:** Exhibit 
$$A \in \mathsf{TIME} \big( f(n) \big)$$
 but  $A \notin \mathsf{TIME} \bigg( o \Big( f(n) / \log \Big( f(n) \Big) \Big) \bigg)$ 

- A = L(D) where
- 1) D runs in Oig(f(n)ig) time
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in  $o\Big(f(n)/\log\big(f(n)\big)\Big)$  time.
- D = "On input w
- 1. Compute f(n).
- 2. If  $w \neq \langle M \rangle 10^*$  for some TM M, reject.
- 3. Simulate\* M on w for  $f(n)/\log(f(n))$  steps. Accept if M rejects, Reject if M accepts or hasn't halted."

For no M in TIME 
$$\left(o\left(f(n)/\log\left(f(n)\right)\right)\right)$$
, L(M) != L(D)

Contradiction,  $M(<M>10^k)$  runs in o(f/log f) D(<M>1) rejects iff  $M(<M>10^k)$  accepts

Why do we lose a factor of  $\log(f(n))$ ?

**Goal:** Exhibit 
$$A \in \mathsf{TIME} \big( f(n) \big)$$
 but  $A \notin \mathsf{TIME} \bigg( o \Big( f(n) / \log \big( f(n) \big) \Big) \bigg)$ 

- A = L(D) where
- 1) D runs in Oig(f(n)ig) time
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in  $o\Big(f(n)/\log\big(f(n)\big)\Big)$  time.
- D = "On input w
- 1. Compute f(n).
- 2. If  $w \neq \langle M \rangle 10^*$  for some TM M, reject.
- 3. Simulate\* M on w for  $f(n)/\log(f(n))$  steps. Accept if M rejects, Reject if M accepts or hasn't halted."

For no M in TIME 
$$\left(o\left(f(n)/\log\left(f(n)\right)\right)\right)$$
, L(M) != L(D)

Contradiction,  $M(<M>10^k)$  runs in o(f/log f) D(<M>1) rejects iff  $M(<M>10^k)$  accepts

Why do we lose a factor of  $\log(f(n))$ ?

D must halt within Oig(f(n)ig) time.

**Goal:** Exhibit 
$$A \in \mathsf{TIME} \big( f(n) \big)$$
 but  $A \not\in \mathsf{TIME} \bigg( o \Big( f(n) / \log \Big( f(n) \Big) \Big) \bigg)$ 

- A = L(D) where
- 1) D runs in O(f(n)) time
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in  $o\Big(f(n)/\log\big(f(n)\big)\Big)$  time.
- D = "On input w
- 1. Compute f(n).
- 2. If  $w \neq \langle M \rangle 10^*$  for some TM M, reject.
- 3. Simulate\* M on w for  $f(n)/\log(f(n))$  steps. Accept if M rejects, Reject if M accepts or hasn't halted."

For no M in TIME 
$$\left(o\left(f(n)/\log\left(f(n)\right)\right)\right)$$
, L(M) != L(D)

Contradiction,  $M(<M>10^k)$  runs in o(f/log f) D(<M>1) rejects iff  $M(<M>10^k)$  accepts

Why do we lose a factor of  $\log(f(n))$ ?

D must halt within Oig(f(n)ig) time.

To do so, D counts the number of steps it uses and stops if the limit is exceeded. The counter has size  $\log(f(n))$  and is stored on the tape.

**Goal:** Exhibit 
$$A \in \mathsf{TIME} \big( f(n) \big)$$
 but  $A \not\in \mathsf{TIME} \bigg( o \Big( f(n) / \log \Big( f(n) \Big) \Big) \bigg)$ 

- A = L(D) where
- 1) D runs in O(f(n)) time
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in  $o\Big(f(n)/\log\big(f(n)\big)\Big)$  time.
- D = "On input w
- 1. Compute f(n).
- 2. If  $w \neq \langle M \rangle 10^*$  for some TM M, reject.
- 3. Simulate\* M on w for  $f(n)/\log(f(n))$  steps. Accept if M rejects, Reject if M accepts or hasn't halted."

For no M in TIME 
$$\left(o\left(f(n)/\log\left(f(n)\right)\right)\right)$$
, L(M) != L(D)

Contradiction,  $M(<M>10^k)$  runs in o(f/log f) D(<M>1) rejects iff  $M(<M>10^k)$  accepts

Why do we lose a factor of  $\log(f(n))$ ?

D must halt within Oig(f(n)ig) time.

To do so, D counts the number of steps it uses and stops if the limit is exceeded. The counter has size  $\log(f(n))$  and is stored on the tape.

It must be kept near the current head location.

**Goal:** Exhibit 
$$A \in \mathsf{TIME} \big( f(n) \big)$$
 but  $A \notin \mathsf{TIME} \bigg( o \Big( f(n) / \log \Big( f(n) \Big) \Big) \bigg)$ 

- A = L(D) where
- 1) D runs in O(f(n)) time
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in  $o\Big(f(n)/\log\big(f(n)\big)\Big)$  time.
- D = "On input w
- 1. Compute f(n).
- 2. If  $w \neq \langle M \rangle 10^*$  for some TM M, reject.
- 3. Simulate\* M on w for  $f(n)/\log(f(n))$  steps. Accept if M rejects, Reject if M accepts or hasn't halted."

For no M in TIME 
$$\left(o\left(f(n)/\log\left(f(n)\right)\right)\right)$$
, L(M) != L(D)

Contradiction,  $M(<M>10^k)$  runs in o(f/log f) D(<M>1) rejects iff  $M(<M>10^k)$  accepts

### Why do we lose a factor of $\log(f(n))$ ?

D must halt within Oig(f(n)ig) time.

To do so, D counts the number of steps it uses and stops if the limit is exceeded. The counter has size  $\log(f(n))$  and is stored on the tape.

It must be kept near the current head location.

Cost of moving it adds a  $O\Big(\log ig(f(n)ig)\Big)$  overhead

factor. So to halt within  $O\big(f(n)\big)$  time, D stops when the counter reaches  $f(n)/\log\big(f(n)\big)$ .

**Goal:** Exhibit 
$$A \in \mathsf{TIME} \big( f(n) \big)$$
 but  $A \notin \mathsf{TIME} \bigg( o \Big( f(n) / \log \big( f(n) \big) \Big) \bigg)$ 

- A = L(D) where
- 1) D runs in O(f(n)) time
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in  $o\Big(f(n)/\log\big(f(n)\big)\Big)$  time.
- D = "On input w
- 1. Compute f(n).
- 2. If  $w \neq \langle M \rangle 10^*$  for some TM M, reject.
- 3. Simulate\* M on w for  $f(n)/\log(f(n))$  steps. Accept if M rejects, Reject if M accepts or hasn't halted."
- \*Note: D can simulate M with a  $\underline{\log}$  factor time overhead due to the step counter.

For no M in TIME 
$$\left(o\left(f(n)/\log\left(f(n)\right)\right)\right)$$
, L(M) != L(D)

Contradiction,  $M(<M>10^k)$  runs in o(f/log f) D(<M>1) rejects iff  $M(<M>10^k)$  accepts

### Why do we lose a factor of $\log(f(n))$ ?

D must halt within Oig(f(n)ig) time.

To do so, D counts the number of steps it uses and stops if the limit is exceeded. The counter has size  $\log(f(n))$  and is stored on the tape.

It must be kept near the current head location.

Cost of moving it adds a  $O\Big(\log \big(f(n)\big)\Big)$  overhead

factor. So to halt within  $O\big(f(n)\big)$  time, D stops when the counter reaches  $f(n)/\log\big(f(n)\big)$ .

# Time Hierarchy Theorem (2/2)

**Goal:** Exhibit 
$$A \in \mathsf{TIME} \big( f(n) \big)$$
 but  $A \notin \mathsf{TIME} \bigg( o \Big( f(n) / \log \big( f(n) \big) \Big) \bigg)$ 

- A = L(D) where
- 1) D runs in O(f(n)) time
- 2) D ensures that  $L(D) \neq L(M)$  for every TM M that runs in  $o\Big(f(n)/\log\big(f(n)\big)\Big)$  time.
- D = "On input w
- 1. Compute f(n).
- 2. If  $w \neq \langle M \rangle 10^*$  for some TM M, reject.
- 3. Simulate\* M on w for  $f(n)/\log(f(n))$  steps. Accept if M rejects, Reject if M accepts or hasn't halted."
- \*Note: D can simulate M with a  $\underline{\log}$  factor time overhead due to the step counter.

For no M in TIME 
$$\left(o\left(f(n)/\log\left(f(n)\right)\right)\right)$$
, L(M) != L(D)

Contradiction,  $M(<M>10^k)$  runs in o(f/log f) D(<M>1) rejects iff  $M(<M>10^k)$  accepts

### Why do we lose a factor of $\log(f(n))$ ?

D must halt within O(f(n)) time.

To do so, D counts the number of steps it uses and stops if the limit is exceeded. The counter has size  $\log(f(n))$  and is stored on the tape.

It must be kept near the current head location.

Cost of moving it adds a  $O\Big(\log\Big(f(n)\Big)\Big)$  overhead

factor. So to halt within O(f(n)) time, D stops when the counter reaches  $f(n)/\log(f(n))$ .

# Recap: Separating Complexity Classes

$$NL \subseteq SPACE(\log^2 n) \subseteq SPACE(n) \subseteq PSPACE$$

# Recap: Separating Complexity Classes

$$NL \subseteq SPACE(\log^2 n) \subseteq SPACE(n) \subseteq PSPACE$$

## Recap: Separating Complexity Classes

$$NL \subseteq SPACE \left( \log^2 n \right) \subseteq SPACE(n) \subseteq PSPACE$$

#### Check-in 21.3

Consider these two famous unsolved questions:

- 1. Does L = P?
- 2. Does P = PSPACE?

What do the hierarchy theorems tell us about these questions?

- a) Nothing
- b) At least one of these has answer "NO"
- c) At least one of these has answer "YES"

**Defn:** EXPTIME = 
$$\bigcup_{k} \text{TIME} \left( 2^{(n^k)} \right)$$

$$\text{EXPSPACE} = \bigcup_{k} \text{SPACE} \left( 2^{(n^k)} \right)$$

**Defn:** EXPTIME = 
$$\bigcup_{k} \text{TIME}(2^{(n^k)})$$
  
EXPSPACE =  $\bigcup_{k} \text{SPACE}(2^{(n^k)})$   
 $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq EXPSPACE$ 

Defn: EXPTIME = 
$$\bigcup_{k} \text{TIME}\left(2^{(n^k)}\right)$$

EXPSPACE =  $\bigcup_{k} \text{SPACE}\left(2^{(n^k)}\right)$  Time Hierarchy Theorem

$$\downarrow L \subseteq \text{NL} \subseteq P \subseteq \text{NP} \subseteq \text{PSPACE} \subseteq \text{EXPTIME} \subseteq \text{EXPSPACE}$$

Space Hierarchy Theorem

**Defn:** B is EXPTIME-complete if

- 1)  $B \in EXPTIME$
- 2) For all  $A \in \mathsf{EXPTIME}$ ,  $A \leq_{\mathsf{P}} B$

Defn: EXPTIME = 
$$\bigcup_{k} \text{TIME}\left(2^{(n^k)}\right)$$

EXPSPACE =  $\bigcup_{k} \text{SPACE}\left(2^{(n^k)}\right)$  Time Hierarchy Theorem

$$L \subseteq \text{NL} \subseteq P \subseteq \text{NP} \subseteq \text{PSPACE} \subseteq \text{EXPTIME} \subseteq \text{EXPSPACE}$$

Space Hierarchy Theorem

**Defn:** B is EXPTIME-complete if

- 1)  $B \in EXPTIME$
- 2) For all  $A \in \mathsf{EXPTIME}$ ,  $A \leq_{\mathsf{P}} B$

Same for **EXPSPACE-complete** 

**Defn:** B is EXPTIME-complete if

- 1)  $B \in EXPTIME$
- 2) For all  $A \in \mathsf{EXPTIME}$ ,  $A \leq_{\mathsf{P}} B$

Same for **EXPSPACE-complete** 

**Theorem:** If B is EXPTIME-complete then  $B \not\in P$ 

**Defn:** B is EXPTIME-complete if

- 1)  $B \in EXPTIME$
- 2) For all  $A \in \mathsf{EXPTIME}$ ,  $A \leq_{\mathsf{P}} B$

Same for <u>EXPSPACE-complete</u>

**Theorem:** If B is EXPTIME-complete then  $B \not\in P$ 

**Theorem:** If B is EXPSPACE-complete then  $B \notin PSPACE$  (and  $B \notin P$ )

intractable

**Defn:** B is EXPTIME-complete if

- 1)  $B \in EXPTIME$
- 2) For all  $A \in \mathsf{EXPTIME}$ ,  $A \leq_{\mathsf{P}} B$

Same for **EXPSPACE-complete** 

**Theorem:** If B is EXPTIME-complete then  $B \not\in P$ 

**Theorem:** If B is EXPSPACE-complete then  $B \not\in PSPACE$  (and  $B \not\in P$ )

**Defn:** EXPTIME = 
$$\bigcup_{k} \text{TIME} \left( 2^{(n^k)} \right)$$

EXPSPACE =  $\bigcup_{k} \text{SPACE} \left( 2^{(n^k)} \right)$  Time Hierarchy Theorem

$$L \subseteq \text{NL} \subseteq P \subseteq \text{NP} \subseteq \text{PSPACE} \subseteq \text{EXPTIME} \subseteq \text{EXPSPACE}$$

Space Hierarchy Theorem

**Defn:** B is EXPTIME-complete if

- 1)  $B \in EXPTIME$
- 2) For all  $A \in \mathsf{EXPTIME}$ ,  $A \leq_{\mathsf{P}} B$

Same for <u>EXPSPACE-complete</u>

**Theorem:** If B is EXPTIME-complete then  $B \not\in P$  intractable

**Theorem:** If B is EXPSPACE-complete then  $B \notin PSPACE$  (and  $B \notin P$ )

**Defn:**  $EQ_{\text{REX}\,\uparrow}=\left\{\langle R_1,R_2\rangle\,\middle|\,R_1\text{ and }R_2\text{ are equivalent regular expressions with exponentiation}\right\}$ 

**Defn:** EXPTIME = 
$$\bigcup_{k} \text{TIME}\left(2^{(n^k)}\right)$$

EXPSPACE =  $\bigcup_{k} \text{SPACE}\left(2^{(n^k)}\right)$  Time Hierarchy Theorem

$$L \subseteq \text{NL} \subseteq P \subseteq \text{NP} \subseteq \text{PSPACE} \subseteq \text{EXPTIME} \subseteq \text{EXPSPACE}$$

Space Hierarchy Theorem

**Defn:** B is EXPTIME-complete if

- 1)  $B \in EXPTIME$
- 2) For all  $A \in \mathsf{EXPTIME}$ ,  $A \leq_{\mathsf{P}} B$

Same for <u>EXPSPACE-complete</u>

**Theorem:** If B is EXPTIME-complete then  $B \notin P$ 

**Theorem:** If B is EXPSPACE-complete then  $B \notin PSPACE$  (and  $B \notin P$ )

**Defn:**  $EQ_{\text{REX}\,\uparrow}=\left\{\langle R_1,R_2
angle\ |\ R_1\ ext{and}\ R_2\ ext{are equivalent regular expressions with exponentiation}
ight\}$ 

**Notation:** If R is a regular expression write  $R^k$  to mean  $\widetilde{RR\cdots R}$  (exponent is written in binary).

**Defn:** EXPTIME = 
$$\bigcup_{k} \text{TIME}\left(2^{(n^k)}\right)$$

EXPSPACE =  $\bigcup_{k} \text{SPACE}\left(2^{(n^k)}\right)$  Time Hierarchy Theorem

$$L \subseteq \text{NL} \subseteq P \subseteq \text{NP} \subseteq \text{PSPACE} \subseteq \text{EXPTIME} \subseteq \text{EXPSPACE}$$

Space Hierarchy Theorem

**Defn:** B is EXPTIME-complete if

- 1)  $B \in EXPTIME$
- 2) For all  $A \in \mathsf{EXPTIME}$ ,  $A \leq_{\mathsf{P}} B$

Same for <u>EXPSPACE-complete</u>

**Theorem:** If B is EXPTIME-complete then  $B \notin P$ 

**Theorem:** If B is EXPSPACE-complete then  $B \notin PSPACE$  (and  $B \notin P$ )

**Defn:**  $EQ_{\text{REX}\,\uparrow}=\left\{\langle R_1,R_2
angle\ |\ R_1\ ext{and}\ R_2\ ext{are equivalent regular expressions with exponentiation}
ight\}$ 

**Notation:** If R is a regular expression write  $R^k$  to mean  $\widetilde{RR\cdots R}$  (exponent is written in binary).

**Defn:** EXPTIME = 
$$\bigcup_{k} \text{TIME} \left( 2^{(n^k)} \right)$$

EXPSPACE =  $\bigcup_{k} \text{SPACE} \left( 2^{(n^k)} \right)$  Time Hierarchy Theorem

$$L \subseteq \text{NL} \subseteq P \subseteq \text{NP} \subseteq \text{PSPACE} \subseteq \text{EXPTIME} \subseteq \text{EXPSPACE}$$

Space Hierarchy Theorem

**Defn:** B is EXPTIME-complete if

- 1)  $B \in EXPTIME$
- 2) For all  $A \in \mathsf{EXPTIME}$ ,  $A \leq_{\mathsf{P}} B$

Same for <u>EXPSPACE-complete</u>

**Theorem:** If B is EXPTIME-complete then  $B \notin P$ 

**Theorem:** If B is EXPSPACE-complete then  $B 
ot\in P$  PSPACE (and B 
otin P)

**Defn:**  $EQ_{\text{REX}} \uparrow = \{\langle R_1, R_2 \rangle \mid R_1 \text{ and } R_2 \text{ are equivalent regular expressions with exponentiation} \}$ 

**Notation:** If R is a regular expression write  $R^k$  to mean  $\widetilde{RR\cdots R}$  (exponent is written in binary).

Let A be any language.

**Defn:** A TM M with oracle for A, written  $M^A$ , is a TM equipped with a "black box" that can answer queries "is  $x \in A$ ?" for free.

Let A be any language.

**Defn:** A TM M with oracle for A, written  $M^A$ , is a TM equipped with a "black box" that can answer queries "is  $x \in A$ ?" for free.

**Example:** A TM with an oracle for SAT can decide all  $B \in \mathbb{NP}$  in polynomial time.

Let A be any language.

**Defn:** A TM M with oracle for A, written  $M^A$ , is a TM equipped with a "black box" that can answer queries "is  $x \in A$ ?" for free.

**Example:** A TM with an oracle for SAT can decide all  $B \in \mathbb{NP}$  in polynomial time.

**Defn:**  $\mathbf{P}^A = \{B \mid B \text{ is decidable in polynomial time with an oracle for } A\}$ 

Let A be any language.

**Defn:** A TM M with oracle for A, written  $M^A$ , is a TM equipped with a "black box" that can answer queries "is  $x \in A$ ?" for free.

**Example:** A TM with an oracle for SAT can decide all  $B \in \mathbb{NP}$  in polynomial time.

**Defn:**  $\mathbf{P}^A = \{B \mid B \text{ is decidable in polynomial time with an oracle for } A\}$ 

Thus NP  $\subseteq P^{SAT}$ 

Let A be any language.

**Defn:** A TM M with oracle for A, written  $M^A$ , is a TM equipped with a "black box" that can answer queries "is  $x \in A$ ?" for free.

**Example:** A TM with an oracle for SAT can decide all  $B \in \mathbb{NP}$  in polynomial time.

**Defn:**  $\mathbf{P}^A = \{B \mid B \text{ is decidable in polynomial time with an oracle for } A\}$ 

Thus NP  $\subseteq P^{SAT}$ 

 $NP = P^{SAT}$ ? Probably No because coNP  $\subseteq P^{SAT}$ 

Let A be any language.

**Defn:** A TM M with oracle for A, written  $M^A$ , is a TM equipped with a "black box" that can answer queries "is  $x \in A$ ?" for free.

**Example:** A TM with an oracle for SAT can decide all  $B \in \mathbb{NP}$  in polynomial time.

**Defn:**  $\mathbf{P}^A = \{B \mid B \text{ is decidable in polynomial time with an oracle for } A\}$ 

Thus NP  $\subseteq P^{SAT}$ 

 $NP = P^{SAT}$ ? Probably No because coNP  $\subseteq P^{SAT}$ 

**Defn:**  $NP^A = \{B \mid B \text{ is decidable in nondeterministic polynomial time with an oracle for } A\}$ 

Let A be any language.

**Defn:** A TM M with oracle for A, written  $M^A$ , is a TM equipped with a "black box" that can answer queries "is  $x \in A$ ?" for free.

**Example:** A TM with an oracle for SAT can decide all  $B \in \mathbb{NP}$  in polynomial time.

**Defn:**  $\mathbf{P}^A = \{B \mid B \text{ is decidable in polynomial time with an oracle for } A\}$ 

Thus NP  $\subseteq P^{SAT}$ 

 $NP = P^{SAT}$ ? Probably No because  $coNP \subseteq P^{SAT}$ 

**Defn:**  $\mathbf{NP}^A = \{B \mid B \text{ is decidable in nondeterministic polynomial time with an oracle for } A\}$ 

Recall MIN-FORMULA  $= \{ \langle \phi \rangle \, | \, \phi \text{ is a minimal Boolean formula } \}$ 

Let A be any language.

**Defn:** A TM M with oracle for A, written  $M^A$ , is a TM equipped with a "black box" that can answer queries "is  $x \in A$ ?" for free.

**Example:** A TM with an oracle for SAT can decide all  $B \in \mathbb{NP}$  in polynomial time.

**Defn:**  $\mathbf{P}^A = \{B \mid B \text{ is decidable in polynomial time with an oracle for } A\}$ 

Thus NP  $\subseteq P^{SAT}$ 

 $NP = P^{SAT}$ ? Probably No because coNP  $\subseteq P^{SAT}$ 

**Defn:**  $NP^A = \{B \mid B \text{ is decidable in nondeterministic polynomial time with an oracle for } A\}$ 

Recall MIN-FORMULA  $= \left\{ \langle \phi 
angle \, \middle| \, \phi \, \text{is a minimal Boolean formula} \, \right\}$ 

Example:  $\overline{\text{MIN-FORMULA}} \in \text{NP}^{SAT}$ 

Let A be any language.

**Defn:** A TM M with oracle for A, written  $M^A$ , is a TM equipped with a "black box" that can answer queries "is  $x \in A$ ?" for free.

**Example:** A TM with an oracle for SAT can decide all  $B \in \mathbb{NP}$  in polynomial time.

**Defn:**  $\mathbf{P}^A = \{B \mid B \text{ is decidable in polynomial time with an oracle for } A\}$ 

Thus NP  $\subseteq P^{SAT}$ 

 $NP = P^{SAT}$ ? Probably No because coNP  $\subseteq P^{SAT}$ 

**Defn:**  $NP^A = \{B \mid B \text{ is decidable in nondeterministic polynomial time with an oracle for } A\}$ 

Recall MIN-FORMULA  $= \{ \langle \phi \rangle \, \big| \, \phi$  is a minimal Boolean formula  $\}$ 

Example:  $\overline{\text{MIN-FORMULA}} \in \text{NP}^{SAT}$ 

"On input  $\langle \phi 
angle$ 

1. Guess shorter formula  $\psi$ 

Let A be any language.

**Defn:** A TM M with oracle for A, written  $M^A$ , is a TM equipped with a "black box" that can answer queries "is  $x \in A$ ?" for free.

**Example:** A TM with an oracle for SAT can decide all  $B \in \mathbb{NP}$  in polynomial time.

**Defn:**  $\mathbf{P}^A = \{B \mid B \text{ is decidable in polynomial time with an oracle for } A\}$ 

Thus NP  $\subseteq P^{SAT}$ 

 $NP = P^{SAT}$ ? Probably No because coNP  $\subseteq P^{SAT}$ 

**Defn:**  $NP^A = \{B \mid B \text{ is decidable in nondeterministic polynomial time with an oracle for } A\}$ 

Recall MIN-FORMULA  $= \{ \langle \phi \rangle \, \big| \, \phi$  is a minimal Boolean formula  $\}$ 

Example:  $\overline{\text{MIN-FORMULA}} \in \text{NP}^{SAT}$ 

"On input  $\langle \phi \rangle$ 

- 1. Guess shorter formula  $\psi$
- 2. Use SAT oracle to solve the coNP problem:  $\phi$  and  $\psi$  are equivalent

Let A be any language.

**Defn:** A TM M with oracle for A, written  $M^A$ , is a TM equipped with a "black box" that can answer queries "is  $x \in A$ ?" for free.

**Example:** A TM with an oracle for SAT can decide all  $B \in \mathbb{NP}$  in polynomial time.

**Defn:**  $\mathbf{P}^A = \{B \mid B \text{ is decidable in polynomial time with an oracle for } A\}$ 

Thus NP  $\subseteq P^{SAT}$ 

 $NP = P^{SAT}$ ? Probably No because coNP  $\subseteq P^{SAT}$ 

**Defn:**  $NP^A = \{B \mid B \text{ is decidable in nondeterministic polynomial time with an oracle for } A\}$ 

Recall MIN-FORMULA  $= \{ \langle \phi \rangle \, | \, \phi \text{ is a minimal Boolean formula } \}$ 

Example:  $\overline{\text{MIN-FORMULA}} \in \text{NP}^{SAT}$ 

"On input  $\langle \phi 
angle$ 

- 1. Guess shorter formula  $\psi$
- 2. Use SAT oracle to solve the coNP problem:  $\phi$  and  $\psi$  are equivalent
- 3. Accept if  $\phi$  and  $\psi$  are equivalent. Reject if not."

Let A be any language.

**Defn:** A TM M with oracle for A, written  $M^A$ , is a TM equipped with a "black box" that can answer queries "is  $x \in A$ ?" for free.

**Example:** A TM with an oracle for SAT can decide all  $B \in \mathbb{NP}$  in polynomial time.

**Defn:**  $\mathbf{P}^A = \{B \mid B \text{ is decidable in polynomial time with an oracle for } A\}$ 

Thus NP  $\subseteq P^{SAT}$ 

 $NP = P^{SAT}$ ? Probably No because coNP  $\subseteq P^{SAT}$ 

**Defn:**  $NP^A = \{B \mid B \text{ is decidable in nondeterministic polynomial time with an oracle for } A\}$ 

Recall MIN-FORMULA  $= \{ \langle \phi 
angle \mid \phi \text{ is a minimal Boolean formula } \}$ 

Example:  $\overline{\text{MIN-FORMULA}} \in \text{NP}^{SAT}$ 

"On input  $\langle \phi 
angle$ 

- 1. Guess shorter formula  $\psi$
- 2. Use SAT oracle to solve the coNP problem:  $\phi$  and  $\psi$  are equivalent
- 3. Accept if  $\phi$  and  $\psi$  are equivalent. Reject if not."

Theorem: There is an oracle A where  $P^A = NP^A$ 

Theorem: There is an oracle A where  $P^A = NP^A$ 

Proof: Let A = TQBF

Theorem: There is an oracle A where  $P^A = NP^A$ 

Proof: Let A = TQBF

 $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$ 

Theorem: There is an oracle A where  $P^A = NP^A$ 

Proof: Let A = TQBF

 $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$ 

Relevance to the P versus NP question

Theorem: There is an oracle A where  $P^A = NP^A$ 

Proof: Let A = TQBF

 $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$ 

### Relevance to the P versus NP question

**Recall:** We showed  $EQ_{\text{REX}\,\uparrow}\not\in$  PSPACE.

Theorem: There is an oracle A where  $P^A = NP^A$ 

Proof: Let A = TQBF

 $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$ 

### Relevance to the P versus NP question

**Recall:** We showed  $EQ_{\text{REX}} \uparrow \not\in \text{PSPACE}$ .

Could we show  $SAT \notin P$  using a similar method \\`\\`\\`\\`\.

Theorem: There is an oracle A where  $P^A = NP^A$ 

Proof: Let A = TQBF

 $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$ 

### Relevance to the P versus NP question

**Recall:** We showed  $EQ_{\text{REX}} \uparrow \not\in \text{PSPACE}.$ 

Could we show  $SAT \notin P$  using a similar method? NO.

Theorem: There is an oracle A where  $P^A = NP^A$ 

Proof: Let A = TQBF

 $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$ 

### Relevance to the P versus NP question

**Recall:** We showed  $EQ_{\text{REX} \uparrow} \notin PSPACE$ .

Could we show  $SAT \notin P$  using a similar method? NO.

**Reason:** Suppose YES.

Theorem: There is an oracle A where  $P^A = NP^A$ 

Proof: Let A = TQBF

 $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$ 

### Relevance to the P versus NP question

**Recall:** We showed  $EQ_{\text{REX}} \uparrow \not\in \text{PSPACE}.$ 

Could we show  $SAT \notin P$  using a similar method? NO.

**Reason:** Suppose YES.

The Hierarchy Theorems are proved by a diagonalization.

Theorem: There is an oracle A where  $P^A = NP^A$ 

Proof: Let A = TQBF

 $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$ 

### Relevance to the P versus NP question

**Recall:** We showed  $EQ_{\text{REX}} \uparrow \not\in \text{PSPACE}.$ 

Could we show  $SAT \notin P$  using a similar method? NO.

**Reason:** Suppose YES.

The Hierarchy Theorems are proved by a diagonalization.

In this diagonalization, the TM D simulates some TM M.

Theorem: There is an oracle A where  $P^A = NP^A$ 

Proof: Let A = TQBF

 $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$ 

### Relevance to the P versus NP question

**Recall:** We showed  $EQ_{\text{REX}} \uparrow \not\in \text{PSPACE}$ .

Could we show  $SAT \notin P$  using a similar method? NO.

**Reason:** Suppose YES.

The Hierarchy Theorems are proved by a diagonalization.

In this diagonalization, the TM D simulates some TM M.

If both TMs were oracle TMs  $D^A$  and  $M^A$  with the same oracle A, the simulation and the diagonalization would still work.

Theorem: There is an oracle A where  $P^A = NP^A$ 

Proof: Let A = TQBF

 $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$ 

### Relevance to the P versus NP question

**Recall:** We showed  $EQ_{\text{REX} \uparrow} \notin \text{PSPACE}$ .

Could we show  $SAT \notin P$  using a similar method? NO.

**Reason:** Suppose YES.

The Hierarchy Theorems are proved by a diagonalization. In this diagonalization, the TM D simulates some TM M.

If both TMs were oracle TMs  $D^A$  and  $M^A$  with the same oracle A, the simulation and the diagonalization would still work.

Therefore, if we could prove  $P \neq NP$  by a diagonalization,

we would also prove that  $P^A \neq NP^A$  for every oracle A.

Theorem: There is an oracle A where  $P^A = NP^A$ 

Proof: Let A = TQBF

 $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$ 

### Relevance to the P versus NP question

**Recall:** We showed  $EQ_{\text{REX} \uparrow} \notin \text{PSPACE}$ .

Could we show  $SAT \notin P$  using a similar method? NO.

**Reason:** Suppose YES.

The Hierarchy Theorems are proved by a diagonalization. In this diagonalization, the TM D simulates some TM M.

If both TMs were oracle TMs  ${\cal D}^A$  and  ${\cal M}^A$  with the same oracle A, the simulation and the diagonalization would still work.

Therefore, if we could prove  $P \neq NP$  by a diagonalization,

we would also prove that  $P^A \neq NP^A$  for every oracle A.

But that is false!

Theorem: There is an oracle A where  $P^A = NP^A$ 

Proof: Let A = TQBF

 $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$ 

### Relevance to the P versus NP question

**Recall:** We showed  $EQ_{\text{REX}} \uparrow \not\in \text{PSPACE}$ .

Could we show  $SAT \notin P$  using a similar method? NO.

Reason: Suppose YES.

The Hierarchy Theorems are proved by a diagonalization. In this diagonalization, the TM D simulates some TM M.

If both TMs were oracle TMs  $D^A$  and  $M^A$  with the same oracle A, the simulation and the diagonalization would still work.

Therefore, if we could prove  $P \neq NP$  by a diagonalization,

we would also prove that  $P^A \neq NP^A$  for every oracle A.

But that is false!

Theorem: There is an oracle A where  $P^A = NP^A$ 

Proof: Let A = TQBF

 $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$ 

### Relevance to the P versus NP question

**Recall:** We showed  $EQ_{\text{REX}} \uparrow \notin \text{PSPACE}$ .

Could we show  $SAT \notin P$  using a similar method? NO.

**Reason:** Suppose YES.

The Hierarchy Theorems are proved by a diagonalization. In this diagonalization, the TM D simulates some TM M.

If both TMs were oracle TMs  $D^A$  and  $M^A$  with the same oracle A, the simulation and the diagonalization would still work.

Therefore, if we could prove  $P \neq NP$  by a diagonalization,

we would also prove that  $P^A \neq NP^A$  for every oracle A.

But that is false!

#### Check-in 22.3

Which of these are known to be true? Check all that apply.

(a) 
$$P^{SAT} = P^{\overline{SAT}}$$

(b) 
$$NP^{SAT} = coNP^{SAT}$$

(c) MIN-FORMULA 
$$\in P^{TQBF}$$

(d) 
$$NP^{TQBF} = coNP^{TQBF}$$