IP CORE MANUAL

100G Ethernet Address Filter IP

px_100ge_addr_filter

Pentek, Inc.
One Park Way
Upper Saddle River, NJ 07458
(201) 818–5900
http://www.pentek.com/

Copyright © 2019

Rev: 1.0 – October 21, 2019

Manual Revision History

<u>Date</u>	Version		<u>Comments</u>
10/21/19	1.0	Initial Release	

Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Pentek products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Pentek hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Pentek shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in conjunction with, the Materials (including your use of Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage and loss was reasonably foreseeable or Pentek had been advised of the possibility of the same. Pentek assumes no obligation to correct any error contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the materials without prior written consent. Certain products are subject to the terms and conditions of Pentek's limited warranty, please refer to Pentek's Ordering and Warranty information which can be viewed at http://www.pentek.com/ contact/customerinfo.cfm; IP cores may be subject to warranty and support terms contained in a license issued to you by Pentek. Pentek products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for the use of Pentek products in such critical applications.

Copyright

Copyright © 2019, Pentek, Inc. All Rights Reserved. Contents of this publication may not be reproduced in any form without written permission.

Trademarks

Pentek, Jade, and Navigator are trademarks or registered trademarks of Pentek, Inc.

ARM and AMBA are registered trademarks of ARM Limited. PCI, PCI Express, PCIe, and PCI–SIG are trademarks or registered trademarks of PCI–SIG. Xilinx, Kintex UltraScale, Vivado, and Platform Cable USB are registered trademarks of Xilinx Inc., of San Jose, CA.

Table of Contents

		Page
	IP Facts	
	Description	5
	Features	
	Table 1–1: IP Facts Table	
	Chapter 1: Overview	
1.1	Functional Description	7
	Figure 1–1: 100G Ethernet Address Filter Core Block Diagram	
1.2	Applications	
1.3	System Requirements	
1.4	Licensing and Ordering Information	
1.5	Contacting Technical Support	
1.6	Documentation	
2.1	Chapter 2: General Product Specifications Standards	9
2.2	Performance	
	2.2.1 Maximum Frequencies	
2.3	Resource Utilization	
	Table 2-1: Resource Usage and Availability	9
2.4	Limitations and Unsupported Features	
2.5	Generic Parameters	10
	Chapter 3: Port Descriptions	
3.1	AXI4-Stream Core Interfaces	11
	3.1.1 AXI4-Stream Input Data Bus	11
	Table 3-1: AXI4-Stream Input Data Bus Port Descriptions	
	3.1.2 AXI4-Stream Output Data Bus	
	Table 3-2: AXI4-Stream Output Data Bus Port Descriptions	
3.2	I/O Signals	
	Table 3–3: I/O Port Descriptions	13

Table of Contents

		Page
	Chapter 4: Designing with the Core	
4.1	General Design Guidelines	15
4.2	Clocking	
4.3	Resets	
4.4	Interrupts	15
4.5	Interface Operation	
4.6	Programming Sequence	
4.7	Timing Diagrams	
	Chapter 5: Design Flow Steps	
5.1	Pentek IP Catalog	17
	Figure 5-1: 100G Ethernet Address Filter Core in Pentek IP Catalog	
	Figure 5-2: 100G Ethernet Address Filter Core IP Symbol	18
5.2	User Parameters	
5.3	Generating Output	18
5.4	Constraining the Core	19
5.5	Simulation	
5.6	Synthesis and Implementation	19

IP Facts

Description

Pentek's NavigatorTM 100G Ethernet Address Filter Core examines the 100G Ethernet packets in an incoming AXI4–Stream to determine whether the destination MAC and IP addresses match the addresses provided at the IP and MAC address inputs to the core. If the addresses match, the core passes the packets to the outgoing AXI4–Stream, if not the packets are dropped.

This core complies with the ARM® AMBA® AXI4 Specification. This user manual defines the hardware interface, software interface, and parameterization options for the 100G Ethernet Address Filter Core.

Features

- Filters out all 100G Ethernet packets that are not destined for the provided MAC and IP addresses
- Fully AXI4–compliant interfaces
- This core is only for use with the AXI4– Stream based 100G Ethernet MAC cores (Vivado 2019.1 and later)

Table 1-1:	P Facts Table	
Core Specifics		
Supported Design Family ^a	Ultrascale+	
Supported User Interfaces	AXI4-Stream	
Resources	See Table 2-1	
Provided with the Cor	e	
Design Files	VHDL	
Example Design	Not Provided	
Test Bench	VHDL	
Constraints File	Not Provided ^b	
Simulation Model	VHDL	
Supported S/W Driver	N/A	
Tested Design Flows		
Design Entry	Vivado [®] Design Suite 2019.1 or later	
Simulation	Vivado VSim	
Synthesis	Vivado Synthesis	
Support		
Provided by Pentek fpg	asupport@pentek.com	

a.For a complete list of supported devices, see the *Vivado Design Suite Release Notes*.

b.Clock constraints can be applied at the top level module of the user design.

Page 6

This page is intentionally blank

Chapter 1: Overview

1.1 Functional Description

The 100G Ethernet Address Filter Core parses the 100G Ethernet packets in an incoming AXI4–Stream looking for packets with destination IP and MAC addresses that match those provided at the respective inputs to the core. Packets with matching addresses will be passed to the outgoing AXI4–Stream, all other packets are dropped.

NOTE: This core is only compatible with the AXI4–Stream version of the Xilinx 100G Ethernet Media Access Controller (MAC), which was first released with the 2019.1 version of Vivado.

Figure 1–1 is a top–level block diagram of the Pentek100G Ethernet Address Filter Core. The modules within the block diagram are explained in the later sections of this manual.

Figure 1–1: 100G Ethernet Address Filter Core Block Diagram

- AXI4-Stream Interfaces: The 100G Ethernet Address Filter Core has two AXI4-Stream Interfaces. At the input, a 512-bit AXI4-Stream Slave Interface is used to receive the AXI4-Stream to be parsed. At the output there is a 512-bit AXI4-Stream Master which contains only 100G Ethernet packets destined for the addresses set at the mac_address and ip_address inputs. For more details about the AXI4-Stream Interfaces refer to Section 3.1.
- ☐ IP/MAC Address Filter: This module scans the incoming data stream looking for 100G Ethernet packets that are destined for the addresses set at the mac_address and ip_address inputs. Packets that meet this criterion are passed to the AXI4–Stream Master output, all other packets are dropped.

1.2 Applications

The 100G Ethernet Address Filter Core can be incorporated into an UltraScale+ FPGA to filter 100G Ethernet packets in an AXI4–Stream by their destination IP and MAC addresses. The target IP and MAC addresses for the filter are set at the mac_address and ip_address inputs. Any packets destined for these addresses are passed to the AXI4–Stream Master output, while all other packets are dropped.

1.3 System Requirements

For a list of system requirements, see the Vivado Design Suite Release Notes.

1.4 Licensing and Ordering Information

This core is included with all Pentek Navigator FPGA Design Kits for Pentek Jade series board products. Contact Pentek for Licensing and Ordering Information (www.pentek.com).

1.5 Contacting Technical Support

Technical Support for Pentek's Navigator FPGA Design Kits is available via e-mail (fpgasupport@pentek.com) or by phone (201–818–5900 ext. 238, 9 am to 5 pm EST).

1.6 Documentation

This user manual is the main document for this IP core. The following documents provide supplemental material:

- 1) Vivado Design Suite User Guide: Designing with IP
- 2) Vivado Design Suite User Guide: Programming and Debugging
- 3) ARM AMBA AXI4 Protocol Version 2.0 Specification http://www.arm.com/products/system-ip/amba-specifications.php
- 4) Pentek IP Core Conventions Guide and Example Labs Guide (807.48111)

Chapter 2: General Product Specifications

2.1 Standards

The 100G Ethernet Address Filter Core has interfaces that comply with the *ARM AMBA AXI4–Stream Protocol Specification*.

2.2 Performance

The performance of the 100G Ethernet Address Filter Core is limited by the FPGA logic speed. The values presented in this section should be used as an estimation guideline. Actual performance can vary.

2.2.1 Maximum Frequencies

The 100G Ethernet Address Filter Core has a single incoming clock signal. The AXI4–Stream clock (s axis aclk) has a maximum frequency of 500 MHz.

2.3 Resource Utilization

The resource utilization of the 100G Ethernet Address Filter Core is shown in Table 2–1. Resources have been estimated for the Virtex UltraScale+ XCVU3P –1 speed grade device. These values were generated using the Vivado Design Suite.

Table 2–1: Resource Usage and Availability			
Resource	# Used		
LUTs	50		
Flip-Flops	688		

NOTE: Actual utilization may vary based on the user design in which the 100G Ethernet Address Filter Core is incorporated.

2.4 Limitations and Unsupported Features

• This core is only for use with the AXI4–Stream based 100G Ethernet MAC cores (Vivado 2019.1 and later).

2.5 Generic Parameters

This section is not applicable to this IP core.

Chapter 3: Port Descriptions

This chapter provides details about the port descriptions for the following interface types:

- AXI4-Stream Core Interfaces
- I/O Signals

3.1 AXI4-Stream Core Interfaces

The 100G Ethernet Address Filter Core has the following AXI4–Stream Interfaces, which are used to transfer data streams.

- At the input, a 512-bit AXI4-Stream Slave Interface (**s_axis**) is used to receive the 100ge data packets to be parsed.
- A 512-bit AXI4-Stream Master Interface (m_axis) is used to pass 100G Ethernet packets destined for the addresses set at the mac_address and ip_address inputs out of the core. All other packets are dropped.

3.1.1 AXI4-Stream Input Data Bus

Table 3–1 defines the ports in the 100G Ethernet Address Filter Core's AXI4–Stream Input Data Bus Interface. This interface is an AXI4–Stream Slave Interface that is associated with **s_axis_aclk**. See the *AMBA AXI4 Specification* for more details on operation of the AXI4–Stream interfaces.

	Table 3-1: AXI4-Stream Input Data Bus Port Descriptions				
Port	Direction	Width	Description		
s_axis_aclk	Input	1	Clock: This is the clock for both the input and the output AXI4–Stream interfaces, as well as the filter logic.		
s_axis_aresetn	Input	1	Reset: Active LOW reset for the core.		
s_axis_tvalid	Input	1	Data Valid: The user design asserts this signal whenever there is valid data on s_axis_ tdata.		
s_axis_tdata	Input	512	AXI4-Stream Input Data Bus: This is the input data bus for the core.		
s_axis_tuser	Input	1	AXI4-Stream User Sideband Interface: Sideband signal from the local 100GE MAC. Equivalent to the tx_errin signal on the MAC. 1 = indicates a bad packet 0 = indicates a good packet		

Table 3-1: AXI4-Stream Input Data Bus Port Descriptions (Continued)			
Port	Direction	Width	Description
s_axis_tkeep	Input	64	TKEEP Indication for the AXI4–Stream Input Data: The assertion of bit i of this bus during a transfer indicates that dword i (in this case a dword is 8 bits) of the s_axis_tdata bus contains valid data.
s_axis_tlast	Input	1	TLAST Indication AXI4–Stream Input Data: The user design asserts this signal in the last cycle of a data transfer to indicate the end of the packet.

3.1.2 AXI4-Stream Output Data Bus

Table 3–2 defines the ports in the 100G Ethernet Address Filter Core's AXI4–Stream Output Data Bus Interface. This interface is an AXI4–Stream Master Interface that is associated with <code>s_axis_aclk</code>. See the *AMBA AXI4 Specification* for more details on operation of the AXI4–Stream interfaces.

	Table 3-2:	AXI4-	Stream Output Data Bus Port Descriptions
Port	Direction	Width	Description
m_axis_tvalid	Output	1	Data Valid: The 100G Ethernet Address Filter Core asserts this signal whenever there is valid data on m_axis_tdata.
m_axis_tready	Input	1	Input Data Ready: This is an input ready signal to the core. When asserted, this signal indicates that the user logic is ready to accept data. Data is transferred across the interface when both <code>m_axis_tvalid</code> and <code>m_axis_tready</code> are High in the same cycle. If the user application deasserts the ready signal when <code>m_axis_tvalid</code> is High, the core maintains the data on the bus and keeps the valid signal asserted until the user application has asserted the ready signal.
m_axis_tdata	Output	512	AXI4–Stream Output Data Bus: This is the output data bus for the 100G Ethernet Address Filter Core.
m_axis_tuser	Output	1	AXI4-Stream User Sideband Interface: Sideband signal passed—through from the local 100GE MAC. Equivalent to the tx_errin signal on the MAC. 1 = indicates a bad packet 0 = indicates a good packet

Table 3-2: AXI4-Stream Output Data Bus Port Descriptions (Continued)				
Port	Direction	Width	Description	
m_axis_tkeep	Output	64	TKEEP Indication for the AXI4-Stream Output Data: The assertion of bit i of this bus during a transfer indicates that dword i (in this case a dword is 8 bits) of the m_axis_tdata bus contains valid data.	
m_axis_tlast	Output	1	TLAST Indication AXI4–Stream Output Data: The 100G Ethernet Address Filter Core asserts this signal in the last cycle of a data transfer to indicate the end of the packet.	

3.2 I/O Signals

The top-level I/O ports for the 100G Ethernet Address Filter Core are defined in Table 3–3.

Table 3-3: I/O Port Descriptions				
Port/Signal Name	Туре	Direction	Description	
ip_address	std_logic_ vector[31: 0]	Input	Local IP Address: This input represents the IP address which the filter will use when parsing the incoming packets.	
mac_address	std_logic_ vector[47: 0]	Input	Local MAC Address: This input represents the MAC address which the filter will use when parsing the incoming packets.	

Page 14

This page is intentionally blank

Chapter 4: Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the 100G Ethernet Address Filter Core.

NOTE: The chapter dedicated to register space is not included in this manual because there are no user–accessible registers in this core.

4.1 General Design Guidelines

The 100G Ethernet Address Filter Core provides the required logic to scan the AXI4–Stream Slave's incoming data stream, looking for 100G Ethernet packets that are destined for the addresses set at the mac_address and ip_address inputs. Packets that meet this criterion are passed to the AXI4–Stream Master output, all other packets are dropped.

4.2 Clocking

Main Clock: s axis aclk

This clock is used to clock all the ports and logic in the 100G Ethernet Address Filter Core.

4.3 Resets

Main reset: s axis aresetn

This is an active low synchronous reset associated with **s_axis_aclk**. When this reset is asserted, all logic in the 100G Ethernet Address Filter Core is reset.

4.4 Interrupts

This core does not have interrupts.

4.5 Interface Operation

Input Data Bus: This 512–bit AXI4–Stream Slave Interface is used to receive AXI4–
Streams from the local 100GE MAC. This interface is associated with s_axis_aclk. For
more details about this interface, refer to Section 3.1.1.

☐ Output Data Bus: This 512-bit Interface is the AXI4-Stream Master Interface which passes the filtered packets out of the core. This interface is also associated with s_axis_aclk. For more details about this interface, refer to Section 3.1.2.

4.6 Programming Sequence

This section briefly describes the programming sequence for the 100GE ARP Response Core.

- 1) Remove the reset.
- 1) When valid 100G Ethernet packets are available at the AXI4–Stream Slave input, look for packets whose destination IP and MAC addresses match the addresses set on the ip_address and mac_address inputs on the AXI4–Stream Master output.

4.7 Timing Diagrams

This section is not applicable to this core.

Chapter 5: Design Flow Steps

5.1 Pentek IP Catalog

This chapter describes customization and generation of the Pentek 100G Ethernet Address Filter Core. It also includes simulation, synthesis, and implementation steps that are specific to this IP core. This core can be generated from the Vivado IP Catalog when the Pentek IP Repository has been installed. It will appear in the IP Catalog list as px_100ge_addr_filter_v1_0 as shown in Figure 5–1.

IP Catalog ? _ D Z X Cores Interfaces ø Search: Q-^1 AXI4 Name Status VLNV License px_2ch_dec2fir_v1_0 AXI4, AXI4-Stream Production Included pentek.com:px_ip:px_2ch_dec2fir:1.0 px_8ch_channelizer_ddc_v1_1 AXI4, AXI4-Stream Production Included pentek.com:px_ip:px_8ch_channelizer_ddc: px 100ge addr filter v1 0 AXI4-Stream Production Included pentek.com:px ip:px 100ge addr filter:1.0 px_100ge_arp_resp_v1_0 AXI4, AXI4-Stream Included Production pentek.com:px_ip:px_100ge_arp_resp:1.0 px_100ge_rx_udp2axis_v1_0 AXI4, AXI4-Stream Production Included pentek.com:px_ip:px_100ge_rx_udp2axis:1. Details px_100ge_addr_filter_v1_0 Name: 1.0 (Rev. 3) Version: Interfaces: AXI4-Stream Description: Filter AXIS RX traffic from 100GE by MAC and IP address Status: Production License: Included Pentek, Inc. Vendor: VLNV: pentek.com:px_ip:px_100ge_addr_filter:1.0

Figure 5–1: 100G Ethernet Address Filter Core in Pentek IP Catalog

5.1 Pentek IP Catalog (continued)

When you select the **px_100ge_addr_filter_v1_0** core, a screen appears that shows the core's symbol and the core's parameters (see Figure 5–2). The core's symbol is the box on the left side.

Figure 5-2: 100G Ethernet Address Filter Core IP Symbol

5.2 User Parameters

This section is not applicable to this IP core.

5.3 Generating Output

For more details about generating and using IP in the Vivado Design Suite, refer to the *Vivado Design Suite User Guide – Designing with IP*.

5.4 Constraining the Core

This section contains information about constraining the core in Vivado Design Suite.

Required Constraints

The XDC constraints are not provided with this core. The necessary constraints can be applied in the top level module of the user design.

Device, Package, and Speed Grade Selections

This IP works for the Ultrascale+ family of FPGAs.

Clock Frequencies

The AXI4–Stream input clock (s_axis_aclk) of the 100G Ethernet Address Filter Core can take clock frequencies up to 500MHz.

Clock Management

This section is not applicable for this IP core.

Clock Placement

This section is not applicable for this IP core.

Banking and Placement

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

I/O Standard and Placement

This section is not applicable for this IP core.

5.5 Simulation

This section is not applicable to this core.

5.6 Synthesis and Implementation

For details about synthesis and implementation see the *Vivado Design Suite User Guide – Designing with IP*.

Page 20

This page is intentionally blank