Limit: Level 3- Tutorial Problems

- 1. $\lim_{n \to \infty} (1 \frac{1}{n^2})^n =$
 - (1) 1
 - (2) $e^{\frac{-1}{2}}$
 - $(3) e^{-2}$
 - $(4) e^{-1}$
- 2. Which of the following are true?

 - (1) $(1 + \frac{1}{n})^{n+1} \to e \text{ as } n \to \infty$ (2) $(1 + \frac{1}{n+1})^n \to e \text{ as } n \to \infty$
 - (3) $\left(1 + \frac{1}{n}\right)^{n^2} \to e \text{ as } n \to \infty$ (4) $\left(1 + \frac{1}{n^2}\right)^n \to e \text{ as } n \to \infty$
- 3. Which of the following are true?
 - (1) $\lim_{x \to \infty} \frac{\log x}{x^{\frac{1}{2}}} = 0$ and $\lim_{x \to \infty} \frac{\log x}{x} = \infty$

 - $(2) \lim_{x \to \infty} \frac{\log x}{\frac{1}{x^{\frac{1}{2}}}} = \infty \text{ and } \lim_{x \to \infty} \frac{\log x}{x} = 0$ $(3) \lim_{x \to \infty} \frac{\log x}{\frac{1}{x^{\frac{1}{2}}}} = 0 \text{ and } \lim_{x \to \infty} \frac{\log x}{x} = 0$ $(4) \lim_{x \to \infty} \frac{\log x}{x^{\frac{1}{2}}} = 0 \text{ and } \lim_{x \to \infty} \frac{\log x}{x} \text{ does not exist.}$
- 4. $\lim_{x \to 0} \frac{1}{x} \int_{r}^{2x} e^{-t^2} dt$
 - (1) does not exist
 - (2) is infinite
 - (3) exist and equal to 1
 - (4) exist and equal to 0
- then $\lim_{x \to \frac{1}{2}} f(x) =$
 - $(1) \frac{1}{2}$
 - $(2) \ 2$
 - (3) 1
 - (4) does not exist
- 6. Suppose (x) = x [x] where [x] denotes the greatest integer less than or equal to x, then $\lim_{n \to 0} \frac{(x) + (2x) + \dots + (nx)}{n^2}$ is
 - A) x B) x/2
- C) x/3
- D) x/4

- 7. $\lim_{x \to \infty} x \left(\log(1 + \frac{x}{2}) \log \frac{x}{2} \right)$ is:
 - (1) 0
 - (2) 1
 - (3) 2
 - (4) None of these