

Universidade Federal de Pelotas

Centro de Desenvolvimento Tecnológico Bacharelado em Ciência da Computação Engenharia de Computação

Arquitetura e Organização de Computadores I Aula 4

Arquitetura do MIPS: formatos de instrução, registradores, modos de endereçamento.
MIPS monociclo: regime de clock, construção do bloco operativo.

Prof. Guilherme Corrêa gcorrea@inf.ufpel.edu.br

Registradores

- 32 registradores de propósito geral de 32 bits
 - **\$0, \$1, ..., \$31**
 - operações inteiras
 - endereçamento
- \$0 tem sempre valor 0

Tipos de Dados

- Sempre 32 bits na parte teórica da disciplina;
- Outros tamanhos são suportados e serão usados na parte prática:
 - bytes
 - meias-palavras de 16 bits
 - palavras de 32 bits

Modos de Endereçamento

- Acessos à memória devem ser alinhados
 - Dados de 32 bits precisam iniciar em endereços múltiplos de 4
- Modo registrador
 - Para instruções aritméticas e lógicas: dado está em registrador

Modos de Endereçamento

- Modo base e deslocamento
 - Para instruções load e store
 - Base é um registrador inteiro de 32 bits
 - Deslocamento de 16 bits contido na própria instrução
- Modo relativo ao PC
 - Para instruções de branch condicional
 - Endereço é a soma do PC com deslocamento contido na instrução
 - Deslocamento é dado em palavras e precisa ser multiplicado por 4

Modos de Endereçamento

Modo absoluto

- Para instruções de desvio incondicional
- Instrução tem campo com endereço de palavra com 26 bits
- Endereço de byte obtido com dois bits menos significativos iguais a 0
- 4 bits mais significativos obtidos do PC
- Só permite desvios dentro de uma área de 256 Mbytes

Instruções Suportadas na Parte Teórica da Disciplina

• Instruções de referência à memória (tipo I):

```
Load word (lw) e store word (sw)
```

• Instruções aritméticas e lógicas (tipo R):

```
(add, sub, and, or)
```

• Instruções de salto:

Branch on equal (beq) e jump (j)

Instruções

- Todas as instruções têm 32 bits
- Todas têm opcode de 6 bits
- O modo de endereçamento é codificado juntamente com o opcode

- Instruções formato R: add, sub, or, and
 - Opcode = 0
 - "funct" define a operação a ser feita pela ALU
 - "shamt" (shift amount) é usado em instruções de deslocamento

Simbólico (exemplo): add \$s1,\$s2,\$s3 ($\$s1 \leftarrow \$s2 + \$s3$)

- Instruções formato I: load word (lw) e store word (sw)
 - load word (lw): opcode = 35
 - store word (sw): opcode = 43

Simbólico

```
lw $s1, deslocam($s2) ($s1 \leftarrow Mem[$s2 + deslocam])
sw $s1, deslocam($s2) (Mem[$s2 + deslocam] \leftarrow $s1)
```

- Instrução formato I: Desvio Condicional beq: branch on equal
 - Opcode = 4
 - Campo deslocamento usado para calcular o endereço-alvo
 - Se o conteúdo do registrador cujo endereço está no campo rs for igual ao conteúdo do registrador cujo endereço está em rt, então salta para a posição endereço+PC+4

Simbólico

beq \$s1, \$s2, deslocam (if (\$s1== \$s2) then PC←PC+4+deslocam)

- Instrução formato J: Desvio Incondicional j: jump
 - Opcode = 2
 - Campo deslocamento usado para calcular o endereço-alvo

Simbólico

j endereço (PC←endereço)

Princípios do Projeto Eficiente

"Faça o caso comum executar mais rápido"

"A simplicidade favorece a regularidade"

Regime de Clock (Temporização)

Iremos supor que:

- Cada registrador possui um sinal de carga particular que é ativado com lógica direta
- Os registradores são "disparados" pela borda ascendente do relógio
- No desenho ao lado, quando CK=↑, se carga R1=1, então R1←entradas

Todos lembram do comportamento de um registrador?

Como implementar um registrador a partir de um Flip-Flop D?

Regime de Clock (Temporização)

Condições para o Correto Funcionamento do Bloco Combinacional

- Quais são as característcas de um bloco combinacional?
- Quando as entradas de um bloco combinacional podem ser alteradas sem que haja inconsistência nos resultados de saída?

Regime de Clock (Temporização)

Condições para o Correto Funcionamento do Bloco Combinacional

O atraso crítico do bloco combinacional deve ser menor que o período do relógio!

Regime de Clock (Temporização)

Temporização para o Correto Funcionamento do Bloco Comb.

Bloco Operativo Monociclo

Nesta primeira implementação iremos considerar que:

- Qualquer instrução é executada em um único ciclo de relógio
- O período do relógio será longo o suficiente para acomodar qualquer instrução
 - Na verdade, o período do relógio será função da instrução mais demorada

Bloco Operativo Monociclo

Elementos Necessários Para a Busca da Instrução:

- A memória onde estão armazenadas as instruções
- O contador de programa (PC) para armazenar o endereço da instrução
- Um somador para calcular o endereço da próxima instrução

Bloco Operativo Monociclo

- O contador de programa contém o endereço da instrução em execução
- O endereço da próxima instrução é obtido pela soma de 4 posições ao contador de programa
- A instrução lida é usada por outras porções do bloco operativo

Bloco Operativo Monociclo

Elementos Necessários para Execução de Instruções tipo R:

- Um banco de registradores para armazenar os operandos e o resultado das operações
- Uma Unidade Lógica/Aritmética (ULA) que será utilizada para realizar as operações

Bloco Operativo Monociclo

- A instrução (fornecida pelo hardware de busca de instruções) contém o endereço de três registradores
- Dois destes registradores são lidos e passados para a ULA realizar a operação
- O resultado é armazenado em um terceiro registrador
- O controle da ULA determina a operação que será realizada (a partir do campo FNCT da instrução)

Bloco Operativo Monociclo

Elementos Necessários para Executar lw e sw

- Uma memória de dados
- Um módulo de extensão de sinal
- Um banco de registradores (já mostrado)

Bloco Operativo Monociclo

Combinando os Elementos para uma Escrita na Memória (sw)

• O endereço de escrita é obtido pela soma de um registrador de base (registrador 1) com um deslocamento de 16 bits estendido para 32 bits

O registrador 2 é escrito na memória

Bloco Operativo Monociclo

Combinando os Elementos para uma Leitura da Memória (lw)

O processo de leitura é semelhante ao de escrita

A diferença básica é a existência de um caminho para escrever o valor

Bloco Operativo Monociclo

Elementos Necessários Implementar um Branch on Equal

Comparar dois registradores usando a ULA para fazer uma subtração

Se ocorrer desvio, o endereço de desvio é PC+4+deslocamento

O deslocamento contido na instrução deve ser estendido para 32 bits (pois está em 16 bits)

 A multiplicação por 4 [25-21] 5 é necessária, pois a [20-16] 32 instrução memória de instruções utiliza 4 bytes para cada instrução

 A vantagem é permitir o acesso a 2¹⁸ endereços (16 bits da instrução + 2 de deslocamento)

Computação UFPel Arquitetura e Organização de Computadores I

Slide 26

16

Reg a ser

Reg a ser lido #2

Reg a ser

escrito

Dado de escrita

lido #1

Prof. Guilherme Corrêa

Compondo o Bloco Operativo Monociclo

- Nesta versão de bloco operativo qualquer instrução executa em um ciclo de relógio
- Isto significa que o período do relógio deverá ser suficientemente longo para acomodar a instrução mais demorada
- Durante a execução de uma instrução qualquer, cada unidade funcional só pode ser usada uma única vez
- Por isso necessitamos de uma memória de instruções e outra de dados
- Ao combinarmos as porções de bloco operativo vistas anteriormente, veremos que muitas unidades funcionais podem ser compartilhadas

Compondo o Bloco Operativo Monociclo

Recursos para executar instruções lw ou sw

- Para sw, campo Rt (bits 20-16) designam registrador cujo conteúdo será escrito na memória de dados
- Para **lw**, Rt (bits 20-16) designam registrador que será carregado com valor lido da memória de dados

Compondo o Bloco Operativo Monociclo

Combinando os recursos para executar instruções tipo R ou instruções lw e sw...

- Para lw, o endereço do registrador a ser escrito está no campo Rt (bits 20-16)
- Para **instruções tipo R**, o endereço do registrador a ser escrito está no campo Rd (bits 15-11)

Compondo o Bloco Operativo Monociclo

Acrescentando os Recursos para a Busca da Instrução e o Cálculo do Próximo Endereço (exceto em desvios)

Compondo o Bloco Operativo Monociclo

Acrescentando os Recursos para Executar Desvio

Condicional (Branch on equal)

Bloco Operativo Monociclo

Estimativa da Frequência Máxima de Funcionamento

- ao final de cada ciclo de relógio o PC é carregado com um novo valor
- mudança no valor do PC se propaga através de uma grande lógica combinacional
 - memória de instruções => banco de registradores => ULA => memória de dados => banco de registradores
- período do ciclo de relógio deve ser maior do que máximo atraso de propagação através desta lógica combinacional

Bloco Operativo Monociclo

Exemplo de Cálculo

supondo os seguintes atrasos:

- memórias: 4 ns - ULA: 2 ns

banco de registradores: 1 ns
 somadores: 1 ns

demais componentes: atraso desprezível

instrução	busca	Lê registradores	Cálculo na ULA	Acessa memória de dados	Escreve em registrador	Total
add, sub, and, or	4ns	1ns	2ns		1ns	8ns
beq	4ns	1ns	2ns			7ns
sw	4ns	1ns	2ns	4ns		11ns
lw	4ns	1ns	2ns	4ns	1ns	12ns

período do ciclo de relógio deve ser maior do que 12 ns (cerca de 83 MHz)

Bibliografia recomendada

• PATTERSON, David A.; HENESSY, John L. **Organização e Projeto de Computadores: a interface hardware/software**. 2ª.ed. Rio de Janeiro: LTC, 2000.