

INSTITUTO TECNOLÓGICO DE CULIACÁN

INGENIERÍA EN SISTEMA COMPUTACIONALES

TAREA

Paradigmas de la inteligencia artificial

NOMBRE DE LA MATERIA:

Inteligencia Artificial

ALUMNOS:

Cruz Méndez Eymardh Sahid

Cardenas Quiñonez Angel

NOMBRE DEL DOCENTE:

Zuriel Dathan Mora Felix

Enfoque simbólico (o basado en reglas)

Descripción: Este paradigma se basa en la representación del conocimiento mediante símbolos y reglas lógicas. Utiliza la lógica formal para resolver problemas.

Ejemplo práctico:

Sistemas expertos: Un sistema experto en diagnóstico médico, como MYCIN, que utiliza reglas lógicas para identificar enfermedades basándose en síntomas y datos del paciente.

Descripción: MYCIN fue diseñado en los años 70 para diagnosticar infecciones bacterianas y recomendar tratamientos con antibióticos.

Aplicación del paradigma: El sistema utiliza una base de conocimiento con reglas del tipo "SI (síntoma X) ENTONCES (enfermedad Y)".

Beneficios: Es transparente y explicable, ya que las decisiones se basan en reglas claras.

Limitaciones: No puede aprender de nuevos datos y requiere una actualización manual de las reglas.

Enfoque conexionista (redes neuronales)

Descripción: Este paradigma se inspira en el funcionamiento del cerebro humano, utilizando redes neuronales artificiales para aprender patrones a partir de datos.

Ejemplo práctico:

Reconocimiento de imágenes: Google Photos utiliza redes neuronales convolucionales (CNN) para identificar y clasificar imágenes.

Descripción: Google Photos puede reconocer rostros, objetos y escenas en fotografías.

Aplicación del paradigma: Las CNN procesan imágenes en capas, extrayendo características como bordes, formas y texturas.

Beneficios: Alta precisión en tareas de reconocimiento y capacidad de aprender de grandes volúmenes de datos.

Limitaciones: Requiere grandes cantidades de datos y poder computacional; es una "caja negra" (difícil de interpretar).

Enfoque bioinspirado

Descripción: Este paradigma se basa en la imitación de procesos biológicos o naturales, como la evolución o el comportamiento de colonias.

Ejemplo práctico:

Algoritmos genéticos: Optimización de rutas de entrega en logística, inspirado en la selección natural.

Descripción: Empresas como UPS utilizan algoritmos genéticos para planificar rutas eficientes.

Aplicación del paradigma: Los algoritmos evolucionan soluciones mediante mutación, cruce y selección.

Beneficios: Encuentra soluciones óptimas en problemas complejos.

Limitaciones: Puede ser lento y no garantiza la solución óptima en todos los casos.

Enfoque probabilístico

Descripción: Este paradigma utiliza modelos estadísticos para manejar la incertidumbre y tomar decisiones basadas en probabilidades.

Ejemplo práctico:

Filtros de spam: Gmail utiliza modelos probabilísticos (como Naive Bayes) para clasificar correos como spam o no spam.

Descripción: El sistema analiza la probabilidad de que un correo sea spam basándose en palabras clave y patrones.

Aplicación del paradigma: Se calcula la probabilidad condicional de que un correo sea spam dado su contenido.

Beneficios: Efectivo para manejar incertidumbre y datos incompletos.

Limitaciones: Depende de la calidad de los datos y puede ser engañado con técnicas avanzadas de spam.

Enfoque computacional (basado en optimización)

Descripción: Este paradigma se centra en resolver problemas mediante técnicas de optimización matemática.

Ejemplo práctico:

Planificación de horarios: Universidades usan algoritmos de optimización para crear horarios de clases sin conflictos.

Descripción: Se optimizan variables como aulas, profesores y estudiantes para maximizar la eficiencia.

Aplicación del paradigma: Se utilizan técnicas como la programación lineal o entera.

Beneficios: Soluciones eficientes y precisas para problemas complejos.

Limitaciones: Puede ser computacionalmente costoso para problemas muy grandes.

Elección de dos paradigmas para profundizar

Vamos a elegir **Enfoque simbólico** y **Enfoque conexionista** para investigar ejemplos adicionales.

Enfoque simbólico (ejemplo adicional)

Ejemplo: Asistentes virtuales basados en reglas (como los primeros chatbots).

Descripción: Chatbots como ELIZA (1960) simulaban una conversación mediante reglas predefinidas.

Aplicación del paradigma: ELIZA usaba patrones de entrada y respuestas predefinidas para interactuar con usuarios.

Beneficios: Simple y fácil de implementar para tareas específicas.

Limitaciones: No entiende el contexto ni aprende de interacciones.

Enfoque conexionista (ejemplo adicional)

Ejemplo: Traducción automática (Google Translate).

Descripción: Google Translate utiliza redes neuronales profundas para traducir texto entre idiomas.

Aplicación del paradigma: Las redes neuronales procesan secuencias de palabras y aprenden patrones de traducción.

Beneficios: Traducciones más fluidas y precisas que los métodos anteriores. **Limitaciones**: Dificultad para traducir idiomas con pocos datos disponibles.

El aprendizaje automático sigue un flujo de trabajo estructurado que incluye las siguientes etapas:

Adquisición de datos

Descripción: Recopilación de datos relevantes para el problema que se quiere resolver.

Ejemplo: Si se quiere predecir el precio de una casa, se recopilan datos como tamaño, ubicación, número de habitaciones, etc.

Importancia: La calidad y cantidad de los datos son cruciales para el éxito del modelo.

Preprocesamiento de datos

Descripción: Preparación y limpieza de los datos para que sean útiles en el entrenamiento.

Actividades:

Eliminación de datos duplicados o incompletos.

Normalización (escalar datos a un rango común).

Codificación de variables categóricas (por ejemplo, convertir "sí" y "no" en 1 y 0).

Ejemplo: Convertir texto en vectores numéricos para que un modelo de NLP (procesamiento de lenguaje natural) pueda procesarlo.

Entrenamiento del modelo

Descripción: Uso de algoritmos de aprendizaje automático para encontrar patrones en los datos.

Pasos:

Selección del algoritmo (por ejemplo, regresión lineal, redes neuronales, etc.).

División de los datos en conjuntos de entrenamiento y prueba.

Ajuste de parámetros del modelo.

Ejemplo: Entrenar una red neuronal para reconocer dígitos escritos a mano usando el conjunto de datos MNIST.

Evaluación del modelo

Descripción: Medición del rendimiento del modelo utilizando métricas específicas.

Métricas comunes:

Precisión, recall, F1-score (para clasificación).

Error cuadrático medio (para regresión).

Ejemplo: Evaluar un modelo de clasificación de spam calculando su precisión en un conjunto de datos de prueba.

Implementación del modelo

Descripción: Despliegue del modelo en un entorno real para hacer predicciones.

Actividades:

Integración del modelo en aplicaciones o sistemas.

Monitoreo del rendimiento en tiempo real.

Ejemplo: Implementar un modelo de recomendación en una plataforma de streaming como Netflix.

Componentes del modelo cognitivo humano

El modelo cognitivo describe cómo los humanos procesan la información. Sus componentes principales son:

Percepción

Descripción: Captación de información del entorno a través de los sentidos.

Similitud con ML: Similar a la **adquisición de datos** en ML, donde se recopilan datos del entorno

Atención

Descripción: Filtrado de la información relevante para enfocarse en lo importante.

Similitud con ML: Similar al **preprocesamiento de datos**, donde se seleccionan y limpian los datos relevantes.

Memoria

Descripción: Almacenamiento y recuperación de información.

Similitud con ML: Similar al **entrenamiento del modelo**, donde se almacenan patrones aprendidos en los parámetros del modelo.

Razonamiento

Descripción: Procesamiento de información para resolver problemas o tomar decisiones.

Similitud con ML: Similar a la **evaluación del modelo**, donde se aplica el modelo para hacer predicciones o clasificaciones.

Aprendizaje

Descripción: Adquisición de nuevos conocimientos o habilidades a través de la experiencia.

Similitud con ML: Similar al **entrenamiento del modelo**, donde el modelo mejora su rendimiento con más datos.

Similitudes y diferencias entre el modelo cognitivo y el aprendizaje automático

Similitudes:

Adquisición de datos vs. Percepción:

Ambos implican la recopilación de información del entorno.

Preprocesamiento de datos vs. Atención:

Ambos filtran y preparan la información para su uso posterior.

Entrenamiento del modelo vs. Aprendizaje:

Ambos implican la adquisición de conocimiento a partir de la experiencia (datos en ML, experiencias en humanos).

Evaluación del modelo vs. Razonamiento:

Ambos implican la aplicación del conocimiento para resolver problemas o tomar decisiones.

Diferencias:

Naturaleza de los procesos:

El modelo cognitivo es biológico y subjetivo, mientras que el aprendizaje automático es computacional y objetivo.

Flexibilidad:

Los humanos pueden generalizar y adaptarse a situaciones nuevas con facilidad, mientras que los modelos de ML requieren grandes cantidades de datos y ajustes para generalizar.

Interpretabilidad:

Los procesos cognitivos humanos son interpretables (sabemos por qué tomamos una decisión), mientras que muchos modelos de ML son "cajas negras" (difíciles de interpretar).

Creatividad:

Los humanos pueden ser creativos y pensar "fuera de la caja", mientras que los modelos de ML solo pueden trabajar dentro de los límites de sus datos y algoritmos.