Human Activity Recognition using Deep Learning techniques

Attila-Balázs Kis & Shunyi Deng

Institute for Parallel and Distributed Systems

University of Stuttgart

18.07.2022

Motivation

- Human Activity Recognition (HAR)
 - □ active research field, signal data;
 - □ target: classify activity based on sensory input;
 - highly mobile environment.
- Human Activities and Postural Transitions Dataset (HAPT)
 - preprocessed dataset, multitude of features;
 - □ 12 classes, slightly unbalanced.
- Our solution
 - □ deep learning: neural networks;
 - research alternatives, find best solution;
 - □ understand network behavior, use to our advantage.

Methodology

Neural Networks

Neural Network Layers

Solution technical details

Training & Evaluation

Process

Results

Future work

Methodology

Neural Networks

Neural Network Layers

Solution technical details

Training & Evaluation

Process

Results

Future work

Neural Networks

- subset of machine learning, at heart of deep learning
- regression / classification
- lacktriangledown iterative process of forward + backward propagation = "learning" (optimization)
- multitude of powerful layers, developed for different purposes
- regularization has powerful tools

Neural Network Layers

Fully Connected Layer:

- Theory
 - every node connected to every node of previous layer;
 - map inputs to different spaces, utilized for output shaping.
- Application
 - build baseline (FC), together with non-linear activation (tanh);
 - alter node number, decrease because of overfit concerns (FCs).

Figure: Fully connected layer

Neural Network Layers

Recurrent Layer:

- Theory
 - use previous & current inputs to produce output;
 - very powerful modern architectures, focusing on learning & forgetting optimally.

Application

- utilize LSTM architecture, 2 stacked layers;
- let first linear layer to reshape input to lower space, since high amount of parameters;
- □ *very important* sequence length.

Figure: Recurrent layer

Neural Network Layers

Convolutional Layer:

- Theory
 - apply n-dimensional kernel over n-dimensional input to create convoluted output;
 - highly utilized in computer vision (2D), signal processing task alternative (1D).
- Application
 - use Conv1d as input layer, feeding output to recurrent layer;
 - important parameter kernel size, layer applies multiple kernels over input.

Figure: Recurrent layer

Solution technical details

The task presented required a great set of iterations in the *training & evaluation* together with the model understanding processes.

In the following list we will present the technical decisions taken in order to achieve the best possible result:

- use data sequencing for recurrent networks with one-by-one sliding;
- evaluate model output many-to-many manner;
- train for 150 epochs, *1e-4 learning rate*;
- use Adam optimizer, for it's proven speed and performance;
- use CrossEntropyLoss, advantageous for classification;
- use Early Stopping regularization in order to avoid overfitting.

Methodology

Neural Networks

Neural Network Layers

Solution technical details

Training & Evaluation

Process

Results

Future work

Process

Figure: (FC) Early Stopping limiting overfitting

Figure: Accuracy plots over training

Process

Figure: Recurrent layer states

Figure: Conv layer weights

Results

Model Name	Acc	F1	AUC	#params	Comment
FC	91.96	91.95	91.01	146,956	baseline model
FCs	92.78	92.76	91.02	36,748	smaller hidden size
RNN_LSTM_sl1	91.49	91.42	88.15	1,199,628	sl = sequence length
RNN_LSTM_sl5	95.44	95.42	94.30	1,199,628	
RNN_LSTM_sl20	97.23	97.21	94.97	1,199,628	
CRNN_LSTM_sl5	95.82	95.78	94.07	1,486,860	C = convolutional
CRNN_LSTM_sl20	96.34	96.30	95.43	1,486,860	

Methodology

Neural Networks

Neural Network Layers

Solution technical details

Training & Evaluation

Process

Results

Future work

Future work

Data

- use less features from preprocessed data;
- use raw signal data: preprocessing can combat unbalanced dataset manner.

Network research

- □ replace LSTM with GRU (hypothesis: not noticable enhancement);
- □ powerful alternative to recurrent layers: transformers;
- skip connections;
- □ different optimizer & learning rate schedulers;
- □ create new metric containing network size (mobile use-case).

Methodology

Neural Networks

Neural Network Layers

Solution technical details

Training & Evaluation

Process

Results

Future work

- successfully tackled HAR task on given HAPT dataset
- developed baseline and incrementally enhanced it
- researched and worked with different neural network layers
- achieved maximum test accuracy of 97%