Bootstrapping of variance

2019-11-18

Data generation

CDF of the death time and censor time

$$S(T \ge x, C \ge y) = \begin{cases} e^{-\theta x} e^{-(e^{\theta y} - 1)\left((\theta x - \theta y)^2 + 1\right)} & x \ge y \\ e^{-\theta x} e^{-(e^{\theta y} - 1)} & x < y \end{cases}$$

And

$$S_{T}(t) = P(T > t) = P(T > t, C > 0) = e^{-\theta t} e^{-(e^{\theta 0} - 1)\left((t - 0)^{2} + 1\right)} = e^{-\theta t}$$

$$f_{T}(t) = \frac{\partial}{\partial t}(1 - S_{T}(t)) = \frac{\partial}{\partial t}(1 - e^{-\theta t}) = \theta e^{-\theta t}$$

$$S_{x}(t) = P(T > t, C > t) = e^{-\theta t} e^{-(e^{\theta t} - 1)} = e^{-e^{\theta t} - \theta t + 1}$$

$$f_{x}(t) = \frac{\partial}{\partial t}(1 - S_{x}(t)) = 1 - e^{-e^{\theta t} - \theta t + 1} = \theta(1 + e^{\theta t})e^{-e^{\theta t} - \theta t + 1}$$

$$\psi(t) = \int_{t}^{\infty} f(t, c)dc = \int_{t}^{\infty} \theta^{2} e^{-e^{\theta c} + \theta c - \theta t + 1} dc = \theta e^{-e^{\theta t} - \theta t + 1}$$

Therefore, the m() function is:

$$m(t) = \frac{\lambda_F(t)}{\lambda_H(t)} = \frac{f_T(t)}{S_T(t)} / \frac{f_X(t)}{S_X(t)} = \frac{\theta e^{-\theta t}}{e^{-\theta t}} / \frac{\theta (1 + e^{\theta t}) e^{-e^{\theta t} - \theta t + 1}}{e^{-e^{\theta t} - \theta t + 1}} = \frac{1}{1 + e^{\theta t}}$$

And for the $\rho()$ function,

$$\rho = \frac{f(t)/\psi(t) - 1}{S(t)/S_x(t) - 1} = \frac{\theta e^{-\theta t}/(\theta e^{-e^{\theta t} - \theta t + 1}) - 1}{e^{-\theta t}/e^{-e^{\theta t} - \theta t + 1} - 1} = 1$$

PDF of the death time and censor time

$$f_{T,C}(x,y) = \begin{cases} ((2\theta^{2}x - 2\theta^{2}y)(1 - e^{\theta y}) - \theta)((2\theta^{2}y - 2\theta^{2}x)(1 - e^{\theta y}) - \theta(\theta^{2}y^{2} - 2\theta^{2}xy + \theta^{2}x^{2} + 1)e^{\theta y}) \times \\ e^{(\theta^{2}y^{2} - 2\theta^{2}xy + \theta^{2}x^{2} + 1)(1 - e^{\theta y}) - \theta x} \\ + (\theta(2\theta^{2}y - 2\theta^{2}x)e^{\theta y} - 2\theta^{2}(1 - e^{\theta y}))e^{(\theta^{2}y^{2} - 2\theta^{2}xy + \theta^{2}x^{2} + 1)(1 - e^{\theta y}) - \theta x} & x \ge y \\ \theta^{2}e^{-e^{\theta y} + \theta y - \theta x + 1} & x < y \end{cases}$$

Data generation, check margnial

For example, when theta = 1,

• Histogram of T estimation

The red line is the true density of T

- Histogram of C estimation

The red line is the true density of ${\cal C}$

Settings:

 $\theta = 0.8, 1, 1.5, 2, 5$

Results

Estimation of θ by logistic regression

	0.8	1	1.5	2	5
Estimated theta	0.2109	0.6887	1.5115	2.0562	5.1313

Estimation of m() by logistic regression

Plug in the estimated $\hat{\theta}$ to get the estimated $\hat{m}(t)$. Calculate the mean absolute difference between true m(t) and $\hat{m}(t)$.

	0.8	1	1.5	2	5
- $ hat m(t) - m(t) $	0.0598	0.0268	0.0088	0.0086	0.0086

Estimation of S(t) with true m(t)

	KM	new m()	Dikta1	Dikta2
0.8	0.0532	0.0635	0.0640	0.0643
1	0.0308	0.0342	0.0346	0.0350
1.5	0.0148	0.0118	0.0120	0.0120
2	0.0139	0.0122	0.0124	0.0123
5	0.0143	0.0155	0.0170	0.0168

Estimation of S(t) with logistic regression estimated m(t)

	KM	new m()	Dikta1	Dikta2
0.8	0.0532	0.0648	0.0654	0.0658
1	0.0308	0.0351	0.0357	0.0361
1.5	0.0148	0.0123	0.0126	0.0127
2	0.0139	0.0130	0.0133	0.0132
5	0.0143	0.0159	0.0173	0.0172

Variances of the quantiles of S(t)

Let's look at the variance of the estimation: S(t) at the '10th', '20th', '50th', '125th', '250th', '325th', '400th' out of 500 subjects.

The following table shows the fraction of standard deviation of new methods over Kaplan Meier estiamter: $\frac{v}{v_{km}}$.

- 1. Estimated by $\lambda_F(t) = m(t)\lambda_H(t)$ $(\frac{v}{v_{km}})$
- ## Warning in rep(linesep, length.out = nrow(x) 2): 'x' is NULL so the
- ## result will be NULL

	With true m()					Logistic estimated m()					
	0.8	1	1.5	2	5	0.8	1	1.5	2	5	
10th	0.0499	0.0436	0.0332	0.0421	0.0624	0.0503	0.0437	0.0334	0.0422	0.0623	
$20 \mathrm{th}$	0.0749	0.0595	0.0402	0.0489	0.0883	0.0760	0.0602	0.0406	0.0494	0.0883	
50th	0.1301	0.1103	0.0693	0.0759	0.1304	0.1350	0.1130	0.0710	0.0777	0.1312	
$125 \mathrm{th}$	0.2358	0.2032	0.1282	0.1337	0.2026	0.2576	0.2155	0.1384	0.1512	0.2138	
$250 \mathrm{th}$	0.4663	0.4262	0.2936	0.2994	0.4047	0.5331	0.4645	0.3183	0.3429	0.4381	
$325 \mathrm{th}$	0.6493	0.5570	0.4527	0.4816	0.5953	0.7473	0.6055	0.4885	0.5407	0.6401	
$400 \mathrm{th}$	0.8087	0.7945	0.6155	0.7220	0.7499	0.9142	0.8580	0.6595	0.7944	0.7922	

2. Estimated by Dikta's 1st formula $\left(\frac{v}{v_{km}}\right)$

Warning in rep(linesep, length.out = nrow(x) - 2): 'x' is NULL so the ## result will be NULL

	With true m()					Logistic estimated m()				
	0.8	1	1.5	2	5	0.8	1	1.5	2	5
10th	0.0500	0.0385	0.0194	0.0198	0.0285	0.0505	0.0387	0.0197	0.0201	0.0289
20 th	0.0683	0.0550	0.0276	0.0278	0.0395	0.0694	0.0556	0.0283	0.0288	0.0407
$50 \mathrm{th}$	0.1232	0.1013	0.0513	0.0514	0.0688	0.1284	0.1043	0.0534	0.0549	0.0720
$125 \mathrm{th}$	0.2324	0.2000	0.1135	0.1064	0.1479	0.2554	0.2130	0.1211	0.1193	0.1573
$250 \mathrm{th}$	0.4668	0.4237	0.2868	0.2851	0.3517	0.5355	0.4621	0.3089	0.3161	0.3673
$325 \mathrm{th}$	0.6496	0.5555	0.4499	0.4720	0.5493	0.7503	0.6046	0.4800	0.5159	0.5701
$400 \mathrm{th}$	0.8116	0.7937	0.6137	0.7156	0.7088	0.9198	0.8584	0.6518	0.7692	0.7266

3. Estimated by Dikta's 2nd formula $(\frac{v}{v_{km}})$

Warning in rep(linesep, length.out = nrow(x) - 2): 'x' is NULL so the

result will be NULL

		W	ith true n	n()		Logistic estimated m()					
	0.8	1	1.5	2	5	0.8	1	1.5	2	5	
10th	0.0501	0.0385	0.0194	0.0198	0.0285	0.0505	0.0387	0.0197	0.0201	0.0289	
$20 \mathrm{th}$	0.0683	0.0550	0.0276	0.0278	0.0395	0.0695	0.0556	0.0283	0.0288	0.0407	
$50 \mathrm{th}$	0.1233	0.1014	0.0514	0.0515	0.0688	0.1286	0.1044	0.0535	0.0549	0.0721	
$125 \mathrm{th}$	0.2326	0.2002	0.1136	0.1065	0.1480	0.2557	0.2132	0.1212	0.1194	0.1575	
$250 \mathrm{th}$	0.4674	0.4241	0.2870	0.2852	0.3519	0.5360	0.4625	0.3090	0.3163	0.3676	
$325 \mathrm{th}$	0.6504	0.5560	0.4501	0.4722	0.5497	0.7512	0.6052	0.4802	0.5161	0.5705	
$400 \mathrm{th}$	0.8147	0.7951	0.6140	0.7160	0.7096	0.9227	0.8599	0.6521	0.7696	0.7274	

Plots of the variances

