Homework III

Due: Oct. 18. (Sun) 23:59 PM

I. REMARK

- Reading materials: book (Foundations of Signal Processing, Ch 4 and Ch 5)
- Read not whole contents but the part only last class covered.
- · Use MATLAB and justify your answer.
- Be healthy!!

II. PROBLEM SET

1) Let finite discrete-time signal y_1 be

$$y_1[n] = \cos(2\pi f_0 t)|_{t=nT}, n = 0, 1, \dots, 99$$

where T=0.01 sec is the sampling interval and 1/T = f_s = 100 Hz is the sampling frequency. f_o =5 Hz is the frequency of the sinusoidal signal. Plot y_1 over t such that the unit for the horizontal axis is sec. Use the option "-." or "-o" for displaying both line and marker. Let Y_1 be the DFT of y_1 . Plot the magnitude $|Y_1|$ over angular frequency (rad/s). Also, plot $|Y_1|$ over frequency (Hz). Use 'fft' and 'fftshift'. The ranges of the frequencies must be

- angular frequency: $-\pi$ to π
- frequency: $-f_s/2$ to $f_s/2$
- 2) Let finite discrete-time signal y_2 be

$$y_2[n] = \begin{cases} \cos(2\pi f_o t)|_{t=nT}, & n = 0, 1, \dots, 50\\ \cos(2\pi f_1 t)|_{t=nT}, & n = 51, 52, \dots, 99 \end{cases}$$

where T=0.01 sec, f_o =5 Hz, and f_1 =25 Hz. Plot the signal and DFTs like problem 1).

3) The signal y_2 is given in problem 1). Downsampling by 3 is conducted as

$$y_3[n] = y_2[3n], n = 0, 1, \dots, 33$$

Plot the signal and DFTs like problem 1). Explain the spectrum changes between y_2 and y_3 .

4) The signal y_3 is given in problem 3). Upsampling by 3 is conducted as

$$y_4[n] = \begin{cases} y_3[n/3], & \text{if } n = 0, 3, 6 \dots, 99 \\ 0, & \text{else} \end{cases}$$

Plot the signal and DFTs like problem 1). Explain the spectrum changes between y_3 and y_4 .

5) The signal y_5 is given as

$$y_5[n] = \exp(2\pi j f_o t)|_{t=nT}, n = 0, 1, \dots, 99$$

Plot the signal and DFTs like problem 1). Explain the spectrum difference between y_1 and y_5 . Why is signal $|Y_1|$ symmetry, but signal $|Y_5|$ not symmetry?

6) The signal y_6 is given as

$$y_6[n] = (y_1 * y_5)[n], n = 0, 1, \dots, 99$$

where y_1 and y_5 are given in Problems 1) and 5), respectively. * denotes the circular convolution (N=100). Plot the signal and DFTs like problem 1). Explain the spectrum difference between y_6 and y_1 . What is the reason of the change?