Problem 1 (6.21). (a) Let g be an integrable function on [0,1]. Show that there is a bounded measurable function f such that $||f|| \neq 0$

$$\int fg = \|g\|_1 \cdot \|f\|_{\infty} \,.$$

(b) Let g be a bounded measurable function. Show that for each $\varepsilon>0$, there is an integrable function f such that

$$\int fg \geq \left(\left\|g\right\|_{\infty} - \varepsilon\right) \left\|f\right\|_{1}.$$

- **Problem 2** (11.3). (a) Show that $\mu(E_1 \triangle E_2) = 0$ implies $\mu(E_1) = \mu(E_2)$ provided that $E_1, E_2 \in \mathcal{B}$.
 - (b) Not assigned.