Stochastic Processes 9. Martingale Convergence results I

Peter Pfaffelhuber

November 24, 2024

Maximum Inequality

▶ Lemma 14.25: I countable, $\mathcal{X} = (X_t)_{t \in I}$ sub-martingale,

 $\lambda > 0$. Then

$$\lambda \mathbf{P}[\sup_{s \le t} X_s \ge \lambda] \le \mathbf{E}[X_t, \sup_{s \le t} X_s \ge \lambda] \le \mathbf{E}[|X_t|, \sup_{s \le t} X_s \ge \lambda].$$

Set

$$T = t \wedge T_{[\lambda;\infty)}$$
.

According to the Optional Sampling Theorem,

$$\mathbf{E}[X_t] \ge \mathbf{E}[X_T] = \mathbf{E}[X_T; \sup_{s \le t} X_s \ge \lambda] + \mathbf{E}[X_T; \sup_{s \le t} X_s < \lambda]$$
$$\ge \lambda \mathbf{P}[\sup_{s \le t} X_s \ge \lambda] + \mathbf{E}[X_t; \sup_{s \le t} X_s < \lambda].$$

Doob's L^p inequality

- Proposition 14.26: I countable, \mathcal{X} martingale or positive sub-martingale.
 - 1. For $p \ge 1$ and $\lambda > 0$ $\lambda^p \mathbf{P}[\sup_{s \le t} |X_s| \ge \lambda] \le \mathbf{E}[|X_t|^p]$.
 - $2. \ \text{For} \ p>1 \ \text{is} \ \mathbf{E}[|X_t|^p] \leq \mathbf{E}[\sup_{s \leq t} |X_s|^p] \leq \left(\frac{p}{p-1}\right)^p \mathbf{E}[|X_t|^p].$
- ▶ 1. Assumption follows from Lemma 14.25; 2. For K > 0,

$$\begin{split} \mathbf{E}[\sup_{s \leq t} (|X_s| \wedge K)^p] &= \mathbf{E}\Big[\int_0^{\sup_{s \leq t} |X_s| \wedge K} p \lambda^{p-1} d\lambda\Big] \\ &= \mathbf{E}\Big[\int_0^K p \lambda^{p-1} \mathbf{1}_{\{\lambda < \sup_{s \leq t} |X_s|\}} d\lambda\Big] = \int_0^K p \lambda^{p-1} \mathbf{P}(\sup_{s \leq t} |X_s| \geq \lambda) d\lambda \\ &\leq \int_0^K p \lambda^{p-2} \mathbf{E}[|X_t|, \sup_{s \leq t} |X_s| \geq \lambda] d\lambda = \frac{p}{p-1} \mathbf{E}[|X_t| (\sup_{s \leq t} |X_s| \wedge K)^{p-1} \\ &\leq \frac{p}{p-1} \mathbf{E}[\sup_{s \leq t} (|X_s| \wedge K)^p]^{(p-1)/p} \cdot \mathbf{E}[|X_t|^p]^{1/p}. \end{split}$$

Upcrossings

▶ Definition 14.27: *I* countable, \mathcal{X} process, a < b. Define

$$0 =: \, T_0 < S_1 < \, T_1 < S_2 < \, T_2 < ... \, \, \text{by}$$

$$S_k := \inf\{t \geq T_{k-1} : X_t \leq a\}, \quad T_k := \inf\{t \geq S_k : X_t \geq b\}$$

and the number of upcrossings between a and b up to time t

$$U_{a,b}^t := \sup\{k : T_k \le t\}$$

Upcrossing lemma

▶ Lemma 14.28: I countable, \mathcal{X} sub-martingale. Then

$$\mathbf{E}[U_{a,b}^t] \leq \frac{\mathbf{E}[(X_t - a)^+]}{b - a}.$$

Wlog $\mathcal{X} \geq 0$ and a = 0. Define $\mathcal{H} = (H_t)_{t \in I}$ predvisible by

$$H_t := \sum_{k \geq 1} \mathbf{1}_{\{S_k < t \leq T_k\}}.$$

Given $T_k < \infty$, $X_{T_k} - X_{S_k} \ge b$ is obvious. Furthermore,

$$(\mathcal{H} \cdot \mathcal{X})_{T_k} = \sum_{i=1}^k \sum_{s=S_i+1}^{T_i} (X_s - X_{s-1}) = \sum_{i=1}^k (X_{T_i} - X_{S_i}) \ge kb$$

and

$$\mathbf{E}[X_t] \ge \mathbf{E}[X_t - X_0] = \mathbf{E}[(\mathcal{H} \cdot \mathcal{X})_t + ((1 - \mathcal{H}) \cdot \mathcal{X})_t]$$

$$\ge \mathbf{E}[(\mathcal{H} \cdot \mathcal{X})_t] \ge b\mathbf{E}[U_0^t]_b.$$

First martingale convergence Theorem

Theorem 14.29: $I=\mathbb{N}_0$, $\mathcal{F}_{\infty}=\sigma(\bigcup_{t\in I}\mathcal{F}_t)$, \mathcal{X} submartingale with $\sup_{t\in I}\mathbf{E}[X_t^+]<\infty$. Then there exists $X_\infty\in L^1$ with $X_t\xrightarrow{t\to\infty}_{as}X_\infty$.

Since
$$P(U_{a,b}^t < \infty) = 1$$
 for all a, b, t ,

$$N:=\bigcup_{\substack{a< b\\ a,b\in\mathbb{Q}}}\{\sup_{t\in I}U^t_{a,b}=\infty\}$$
 is a null set.

Furthermore, on N^c $X_{\infty} := \liminf_{t \to \infty} X_t = \limsup_{t \to \infty} X_t$ and, according to Fatou's lemma,

$$\mathbf{E}[X_{\infty}^{+}] \leq \sup_{t \in I} \mathbf{E}[X_{t}^{+}] < \infty,$$

$$\begin{aligned} \mathbf{E}[X_{\infty}^{-}] &\leq \liminf_{t \to \infty} \mathbf{E}[X_{t}^{-}] = \liminf_{t \to \infty} \left(\mathbf{E}[X_{t}^{+}] - \mathbf{E}[X_{t}] \right) \\ &\leq \sup_{t \in I} \mathbf{E}[X_{t}^{+}] - \mathbf{E}[X_{0}] < \infty. \end{aligned}$$

Martingale convergence Theorem for positive supermartingales

▶ Corollary 14.30: $I = \mathbb{N}_0$, $\mathcal{F}_{\infty} = \sigma(\bigcup_{t \in I} \mathcal{F}_t)$, $\mathcal{X} = (X_t)_{t \in I}$ non-negative super martingale. Then there is $X_{\infty} \in L^1$ with $\mathbf{E}[X_u] \leq \mathbf{E}[X_0]$ and $X_t \xrightarrow{t \to u}_{as} X_{\infty}$.

Theorem 13.30, applied to $-\mathcal{X}$ yields X_{∞} . Using Fatou's lemma,

$$\mathbf{E}[X_u] \leq \liminf_{t \to u} \mathbf{E}[X_t] \leq \mathbf{E}[X_0].$$

Example 4: Branching Process

► $I = \{0, 1, 2, ...\}, X_i^{(t)}$ takes values in $\{0, 1, 2, ...\}, \mu = \mathbf{E}[X_i^{(t)}].$ Set $Z_0 = k$ and

$$Z_{t+1} = \sum_{i=1}^{Z_t} X_i^{(t)}.$$

- ▶ $\mathcal{Z} = (Z_t)_{t \in I}$ martingale $\iff \mu = 1$. More generally, $(Z_t/\mu^t)_{t=0,1,2,...}$ is a martingale.
- ▶ $\mu=1$: According to Corollary 3.31, $Z_t \xrightarrow{t \to \infty} 0$. More generally, there is Z_{∞} with $Z_t/\mu^t \xrightarrow{t \to \infty} Z_{\infty}$.

Second martingale convergence theorem

▶ Theorem 14.32: $I = \mathbb{N}_0$, $\mathcal{F}_{\infty} = \sigma(\bigcup_{\sqcup \in \mathcal{I}} \mathcal{F}_{\sqcup})$ and \mathcal{X} submartingale.

The following are equivalent

- 1. \mathcal{X} is uniformly integrable.
- 2. There exists X_{∞} such that $(X_t)_{t \in I \cup \{\infty\}}$ is a submartingale.
- 3. There exists X_{∞} such that $X_t \xrightarrow{t \to u}_{as,L^1} X_{\infty}$.
- $2. \Rightarrow 1.$ ok; $1. \Rightarrow 3.$ ok; $3. \Rightarrow 2.:$ Due to the L^{1} convergence according to Theorem 12.2.3 ,

$$\mathbf{E}[|\mathbf{E}[X_t|\mathcal{F}_s] - \mathbf{E}[X_{\infty}|\mathcal{F}_s]|] \xrightarrow{t \to \infty} 0$$
 and thus for $A \in \mathcal{F}_s$

$$\mathsf{E}[\mathsf{E}[X_{\infty}|\mathcal{F}_s];A] = \lim_{t \to \infty} \mathsf{E}[\mathsf{E}[X_t|\mathcal{F}_s];A] \ge \mathsf{E}[X_s;A],$$

i.e. $\mathbf{E}[X_{\infty}|\mathcal{F}_s] \geq X_s$ almost surely.

L^p -bounded martingales

▶ Theorem 14.33: $I = \mathbb{N}_0$, $\mathcal{F}_{\infty} = \sigma(\bigcup_{t \in I} \mathcal{F}_t)$, p > 1 and \mathcal{X} an L^p -bounded martingale. Then there exists $X_{\infty} \in L^p$ with $X_t \xrightarrow{t \uparrow u}_{as, L^p} X_{\infty}$. Furthermore, $(|X_t|^p)_{t \in I}$ is uniformly integrable.

Proof: \mathcal{X} ui, so there exists X_{∞} with $X_t \xrightarrow{t \to \infty}_{as, L^1} X_{\infty}$. Using Doob's inequality,

$$\begin{split} \mathbf{E}[\sup_{t \in I} |X_t|^p] &= \lim_{t \to \infty} \mathbf{E}[\sup_{s \le t} |X_s|^p] \le \lim_{t \uparrow u} \left(\frac{p}{p-1}\right)^p \mathbf{E}[|X_t|^p] < \infty. \end{split}$$
 Thus, $(|X_t|^p)_{t \in I}$ is ui and L^p -convergence follows.

Branching processes

 $ightharpoonup \mathcal{Z}$ branching process with $Z_0=k$ and \mathcal{Y} , $Y_t=Z_t/\mu^t$. Then

$$\langle \mathcal{Y} \rangle_{t} = \sum_{s=1}^{t} \frac{1}{\mu^{2s}} \mathbf{E} \left[\left(\sum_{i=1}^{Z_{s-1}} X_{i}^{(s-1)} - \mu Z_{s-1} \right)^{2} | \mathcal{F}_{s-1} \right]$$

$$= \sum_{s=1}^{t} \frac{1}{\mu^{2s}} \mathbf{V} \left[\sum_{i=1}^{Z_{s-1}} X_{i}^{(s-1)} | Z_{s-1} \right]$$

$$= \sum_{s=1}^{t} \frac{1}{\mu^{2s}} Z_{s-1} \cdot \mathbf{V} [X_{1}^{(1)}].$$

If
$$\mu > 1$$
 and $\mathbf{V}[X_1^{(1)}] =: \sigma^2 < \infty$, then

$$\sup_{t} \mathbf{V}[Y_t] = \sum_{s=1}^{\infty} \frac{1}{\mu^{2s}} \mathbf{E}[Z_s] \cdot \sigma^2 = k\sigma^2 \sum_{s=1}^{\infty} \frac{1}{\mu^s} < \infty.$$

Thus, there is Y_{∞} , so that $(Y_t)_{t=0,1,2,...,\infty}$ martingale.