

**MODAL COUPLING PROCEDURES ADAPTED TO
NASTRAN ANALYSIS OF THE 1/8-SCALE SHUTTLE
STRUCTURAL DYNAMICS MODEL**

Volume I — Technical Report

by

J. Zalesak

July 1975

Final Report — Prepared Under Contract No. NAS 1-10635-21

by

Grumman Aerospace Corporation
Bethpage, New York 11714

Langley Research Center
Hampton, Virginia 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

**MODAL COUPLING PROCEDURES ADAPTED TO NASTRAN
ANALYSIS OF THE 1/8-SCALE SHUTTLE STRUCTURAL
DYNAMICS MODEL**

Volume I — Technical Report

Prepared Under Contract NAS 1-10635-21

for the

Langley Research Center
National Aeronautics and Space Administration
Hampton, Virginia 23665

by

J. Zalesak

Grumman Aerospace Corporation
Bethpage, New York 11714

July 1975

VOLUME I CONTENTS

	<u>Page</u>
Introduction	1
Orbiter Finite Element Model.	7
Substructuring Procedure	8
Results and Discussion	12
● Phase I Component Modes Results	
● Final System Orbiter Results (Symmetric Modes)	
Computing Time	47
Observations and Recommendations	50
References	53
<u>Appendices</u>	
A NASTRAN Component Modes Analysis General Theory	A-1
B1 NASTRAN Component Modes Analysis - Alters to Rigid Format 3, Phases 1, 2, and 3	B1-1
B2 Phase 1, 2 & 3 Alters to Rigid Format 3 - Component Modes, Sub- structuring Analysis Modified Subroutine GPWG	B2-1
B3 Input Bulk Data/Phase 1 Analysis: Model II Fuselage	B3-1

VOLUME I ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1	Assembled 1/8-Scale Shuttle Model (View Looking Down)	3
2	Assembled 1/8-Scale Shuttle Model (Side View)	4
3	Flow Diagram for Nastran Substructuring (Component Modes Method) to Obtain Orbiter Normal Modes	10
4	Fictitious Wing Mode Caused by Not Omitting Degrees of Freedom in Direction of Minimal Rod Line	13
5	Flaws in Model II Idealization (Bottom Wing Cover Shown) . .	15
6	Revised Wing (Mode 1)	16
7	Revised Wing (Mode 2)	17
8	Revised Wing (Mode 3)	18
9	Revised Wing (Mode 4)	19
10	Revised Wing (Mode 5)	20
11	Revised Wing (Mode 6)	21
12	Revised Wing (Mode 7)	22
13	Revised Wing (Mode 8)	23
14	Revised Wing (Mode 9)	24
15	Revised Wing (Mode 10)	25
16	Revised Cargo Door (Mode 1)	35
17	Revised Cargo Door (Mode 2)	36
18	Revised Cargo Door (Mode 3)	37
19	Revised Cargo Door (Mode 4)	38
20	Revised Cargo Door (Mode 5)	39
21	Revised Cargo Door (Mode 6)	40
22	Revised Cargo Door (Mode 7)	41
23	Revised Cargo Door (Mode 8)	42
24	Revised Cargo Door (Mode 9)	43
25	Revised Cargo Door (Mode 10)	44
26	Revised Cargo Door (Mode 11)	45
27	Revised Cargo Door (Mode 12)	46
28	Average Time Spent in READ Module Extracting 1 Mode	52

VOLUME I TABLES

<u>No.</u>		<u>Page</u>
1	Statistical Description of 1/8-Scale Orbiter-Model II-Symmetric Case Comparison between Modal Synthesis and Direct Elimination Approach	5
2	Wing Substructure Component Modes Comparison of Model II (Before and After Fix-Up)	26
3	Comparison of Analytical Results Between Substructuring Methods for Symmetrical Free-Free Normal Modes (1/8-Scale Model II).	29
4	Substructure Contribution to Generalized Stiffness and Mass of Orbiter for Symmetric Free-Free Modes (1/8-Scale Model II).	30
5	Contribution Factors (Generalized Modal Coordinate Values) of Substructure Component Modes to Orbiter Symmetrical Free-Free Modes (1/8-Scale Model II)	31
6	Substructure Component Modes (Symmetrical Case) 1/8-Scale Model II	32
7	Summation of Substructure Momentum Forces About Basic Origin for Orbiter Symmetric Free-Free Modes (1/8-Scale Model II)	33
8	Cargo Door Substructure Component Modes (Symmetrical Case) Comparison of Model II (Before and After Fix-Up)	34
9	Computing Time to Obtain Orbiter Symmetric Modes Comparison Between Modal Synthesis and Direct Elimination Method	49

VOLUME II CONTENTS

<u>Appendixes</u>		<u>Page</u>
B4	Plots of Symmetric Component Modes/Phase 1 Analysis: Model II Fuselage	B4-1
B5	Input Bulk Data/Phase 1 Analysis: Model II Wing	B5-1
B6	Plots of Component Modes/Phase 1 Analysis: Model II Wing	B6-1
B7	Input Bulk Data/Phase 1 Analysis: Model II Cargo Doors	B7-1
B8	Plots of Symmetric Component Modes/Phase 1 Analysis: Model II Cargo Doors	B8-1
B9	Input Bulk Data/Phase 1 Analysis: Model II Fin	B9-1
B10	Plots of Symmetric Component Modes/Phase 1 Analysis: Model II Fin	B10-1
B11	Input Bulk Data/Phase 1 Analysis: Model II Payload . .	B11-1
B12	Plots of Symmetric Component Modes/Phase 1 Analysis: Model II Payload	B12-1
B13	Input Bulk Data/Pre-Phase 2 Copy Run and Phase 2 Analysis: Model II Orbiter	B13-1
B14	Input and Plots/Phase 3 Analysis: Model II Fuselage - Symmetric Free-Free Orbiter Modes	B14-1
B15	Input and Plots/Phase 3 Analysis: Model II Wing - Symmetric Free-Free Orbiter Modes	B15-1
B16	Input and Plots/Phase 3 Analysis: Model II Cargo Doors - Symmetric Free-Free Orbiter Modes	B16-1
B17	Input and Plots/Phase 3 Analysis: Model II Fin - Symmetric Free-Free Orbiter Modes	B17-1
B18	Input and Plots/Phase 3 Analysis: Model II Payload - Symmetric Free-Free Orbiter Modes	B18-1

ABSTRACT

A dynamic substructuring analysis, utilizing the component modes technique, of the 1/8 scale Space Shuttle Orbiter finite element model is presented. The analysis was accomplished in 3 phases, using NASTRAN RIGID FORMAT 3 (Level 15.5.1), with appropriate Alters, on the IBM 360-370 (Model 165). The Orbiter was divided into 5 substructures, each of which was reduced to interface degrees of freedom and generalized normal modes. The reduced substructures were then coupled in Phase 2 to yield the first 23 symmetric free-free orbiter modes. The eigenvectors in the original grid point degree of freedom lineup were then recovered in Phase 3. A comparison is then made with an analysis which was performed with the same model using the direct coordinate elimination approach under NASA contract NAS 1-10635-12 (Reference 1). Eigenvalues were extracted using the inverse power method.

INTRODUCTION

This portion of task NAS 1-10635-21 was undertaken to develop a modal synthesis approach to the substructuring procedure for analyzing the elements of the NASTRAN finite element model previously generated for the 1/8-scale shuttle dynamic model. This model consists of an orbiter and two solid rocket boosters all attached to a central external tank. Photographs of the assembled model are shown in Figs. 1 and 2 (NASA Langley photos L73 6687 and L73 6688). The NASTRAN (NASA Structural Analysis) finite element representation of the orbiter model is described in Reference 1. The NASTRAN finite element representation for the external tank and solid rocket boosters are described in References 2 and 3, respectively. A statistical description of these finite element models is shown on Table 1, which lists the number of grid points used, the number and types of members, and the degrees of freedom (DOF) remaining after reducing the number of independent coordinates.

This reduction is accomplished by imposing single point constraints (SPC) or multiple point constraints (MPC), or by assuming certain coordinates have no forces applied to them. The latter approach is called Guyan, after its originator (Reference 4).

The overall analysis flow, in Fig. 3-1 in Volume II of Reference 1, represents the originally proposed analysis for the combined total vehicle. The Orbiter was divided into five substructures: fuselage, cargo doors, fin, wing, and payload. The external tank was divided into two substructures: the LOX tank and the aft portion of the external tank (consisting of the interbank skirt, LH₂ tank, and aft tank skirt). The SRB originally was to be handled as a single unit (consisting of the forward skirt, propellant cylinder

and propellant, and the aft skirt), however, after computer storage problems were encountered, it was divided into two substructures as shown in Figs. 16 and 17 of Reference 3.

Referring to Fig. 3-2 in Volume II of Reference 1, observe that each of the five Orbiter substructures was analyzed to produce reduced mass and stiffness matrices for selected dynamic degrees of freedom (DOF's) and interface attachment points. Modes for these substructures were then obtained with the interfaces held. An exception is the fuselage, which was analyzed in a free-free condition. This approach aided in checking and understanding the behavior of the combined Orbiter vehicle. Next, the five substructure stiffness and mass matrices were merged to form the total Orbiter mass and stiffness matrices. These matrices were again reduced to yield final stiffness and mass matrices that were used in the modal analysis. This procedure of first merging the mass and stiffness matrices, then obtaining the eigenvalues, is called the direct method in this report.

Several technical problems arose during the study which prevented the completion of the proposed overall analysis, namely:

- The Orbiter analysis was completed at the same time that initial test results were made available. A rather poor correlation was shown to exist for the Orbiter alone
- The computer time required to analyze the hydroelastic model for the External Tank proved to be excessive
- The computer time required to analyze the viscoelastic model for the Solid Rocket Booster as a single model was high.

Fig. 1 Assembled 1/8-Scale Shuttle Model (View Looking Down)

**Fig. 2 Assembled 1/8-Scale Shuttle Model
(Side View)**

Table 1 Statistical Description of 1/8-Scale Orbiter - Model II - Symmetric Case
Comparison Between Modal Synthesis and Direct Elimination Approach

COMPONENT	MODAL SYNTHESIS										DIRECT APPROACH			
	NO. GRID POINTS	NO. CBAR	NO. CCOMPONENT	NO. CSHEAR	NO. CGRID	NO. CTRIMEN	TOTAL NO. OF MEMBERS	NO. CELLAZ*	DOF AFTER SPC & MPC	DOF AFTER GUYAN	REDUCED SET	DOF AFTER SPC & MPC	DOF AFTER GUYAN (REDUCED SET)	
Fuselage	490	72	133	330	842	7	1	1385	1301	292	83	57	1301	238
Wing	83	--	-	104	133	-	-	237	245	214	35	28	245	155
Cargo Doors	134	13	28	64	92	-	-	197	320	224	26	35	320	26
Fin	62	--	24	22	65	-	3	114	102	84	11	7	99	23
Payload	14	8	-	-	-	-	2	10	26	26	3	12	24	24
Total 1/2 Orbiter	783	93	185	520	1132	7	6	1943	1994	840	158	139	1989	466
PHASE II														
Modal Synthesis	78	139 Scalar Points to Define Component Modes										223	223	
Direct Approach	192	125 Plotel Elements for Plotting										397	397	

NOTES: *In direct approach springs were included in coupling run.

The two major problems encountered (lack of correlation of analysis and test data for the orbiter; excessive computer time requirements for coupling the total vehicle) forced a decision to abandon the original overall analysis flow. Consequently, basic effort was redirected to rectifying the Orbiter analysis to obtain correlation with test results. The analytical and experimental investigations undertaken are described in References 1 and 5. These resulted in revised orbiter finite element representations which provided good agreement between analysis and test. In response to the problem of excessive computer time a two-pronged study was undertaken under task NAS1-10635-21 to find a means for improving the efficiency of the hydroelastic analysis and to develop procedures for using modal coupling for combining the NASTRAN substructure models. The latter effort is the subject of this report.

Much of the terminology describing the work done herein originates in the NASTRAN system and is described in detail in Reference 6.

ORBITER FINITE ELEMENT MODEL

The Orbiter finite element model used in the analysis was the Model II version developed in NASA contract NAS1-10635-12 (Reference 1). The Orbiter was divided into five substructures (fuselage, wing, cargo doors, fin and payload). The Model II statistics on number of GRID points and types of finite elements are listed on Table 1. Also in Table 1 are the degree of freedom statistics for the modal synthesis and direct approaches. The NASTRAN Bulk Data for the various substructures are listed in Volume II.

SUBSTRUCTURING PROCEDURE

The substructuring technique employed in the analysis of the Orbiter is known as the component modes or modal synthesis approach. The general theory is presented in Appendix A. The technique employed is essentially the same as presented by S. G. Cuthbertson in Reference 7, which is similar but not identical to Hurty's method described in Reference 8. The type of analysis chosen uses constraint and normal modes exclusively, and the eigenvectors need not be normalized in any particular manner. To provide for a more reliable analysis, procedures to assess the validity of the steps in assembling the model were incorporated in the Direct Matrix Abstraction Procedure (DMAP) alter statements. These checks are inserted to insure that the constraints applied by MPC's and SPC's (multipoint and single point constraints) do not induce spurious loads or reactions into the structural model. Steps are also incorporated to demonstrate that SPC's do not result in loss of mass in the modal. The transformation matrices, such as G_o , are checked to see if there is any deterioration in accuracy due to round-off or ill-conditioning. The reduced stiffness matrix (after reduction) is checked for equilibrium. The reduced mass is converted to a rigid body mass (or weight) matrix so that it could be compared to the original matrix (MO matrix which is output from module NASTRAN (Grid Point Weight Generator)) before reduction. A more detailed description of the checks is presented in Appendix A. The NASTRAN steps for these procedures are shown in Appendix B1.

The theory was incorporated into NASTRAN Rigid Format 3 via Alters. A detailed description of the Alters can be found in Appendix B1, while the actual IBM listing of Alters are in Volume II, Appendix B2. The analysis was performed

in three phases, as shown in Fig. 3, for the schematic diagram of the analysis flow. The three phases are similar to those proposed by R. Guyan in Reference 9. A brief description of the three phases is as follows:

- PHASE 1 - Component modes with interface fixed are calculated. The interface degrees of freedom are defined on SUPPORT cards (r-set). The interface supports can be determinate or indeterminate. Calculation of component generalized and reduced interface matrices (stiffness and mass) are performed and put on tape. Phase 1 is done for each substructure.
- PHASE 2 - In this phase all uncoupled interface points are defined on GRID cards. The same GRID cards from Phase 1 can be used. All degrees of freedom except at the interface are defined on SPC cards. All component modes found in Phase 1 are defined by unique scalar point numbers. Higher frequency modes not considered essential can be put on SPC cards. The generalized and reduced interface matrices from Phase 1 runs are then merged into an uncoupled pseudo-structure-g lineup. The g-set consists of (6 x GRID POINTS + ~~NUMBER OF ROWS~~) degrees of freedom. The common interface degrees of freedom are coupled using MPC cards. The coupled structure can now proceed through the normal reduction process to yield system normal modes. A tape is created for each substructure containing final eigenvectors in the substructure lineup which will be input to Phase 3.

Fig. 3 Flow Diagram for NASTRAN Substructuring (Component Modes Method) to Obtain Orbiter Normal Modes

- PHASE 3 - Retrieval of final detailed substructure mode shape (eigen-vectors) in original substructure GRID POINT designation.

Phase 3 is done for each substructure.

RESULTS AND DISCUSSION

Results of the analysis are presented and discussed in this section. Where possible, the results were compared to results obtained for the same model using the direct coordinate elimination approach, which was performed under NASA contract NAS 1-10635-12 (Reference 1).

PHASE I COMPONENT MODES RESULTS

Although component modes were obtained in the direct method for checking purposes, the modes for this phase were either free-free, or restrained but without including the effects of the interface springs. Therefore, the only substructure that could be compared was the wing, and here the difference in frequencies was less than 1%.

Initially, in the modal approach, all but the massless degrees of freedom were retained to obtain component modes. The wing, which was the first substructure analyzed with this approach, yielded modes considered spurious. For example, Fig. 4 shows a fictitious mode caused by retaining dynamic coordinates at grid point directions connected by the minimal rods. The minimal rods were provided to prevent singularities in the idealization, since they separated shear panels not capable of resisting direct stress. These modes disappeared when the appropriate degrees of freedom were omitted by GUYAN reduction.

Omitting only the massless and fictitious degrees of freedom worked well with all substructures, except the fuselage. Here, additional coordinates had to be omitted, since the number retained in the direct method was an upper limit, if excessive computer time was to be avoided.

PHASE I (ORBITER WINGS)
9/10/74 (COVERS 98 PERCENT EFF.)
FREE MODES FIXED AT INTERFACE
MODAL DEFOR. SUBCASE 4 MODE 4 FREQ. 280.3536

Fig. 4 Fictitious Wing Mode Caused by Not Omitting Degrees of Freedom in Direction of Minimal Rod Line

Component mode plots are presented in Volume II. They contain 57 fuselage modes, 20 wing modes, 35 cargo door modes, 7 fin modes and 12 payload modes. A closer examination of these plots uncovered some deficiencies in the Model II idealization of the wing.

The 6th wing component mode (404.5 Hz) in Appendix B6 demonstrated that this idealization had practically no lateral resistance at the interstage station. These flaws are shown in Fig. 5, which also indicates the fix-up to be taken. This error should not affect the total Orbiter system modes, but it would certainly affect a total Shuttle analysis, where the inclined interstage link would produce force components in the lateral direction.

The 10th and 11th wing component modes (599.4 and 613.6 Hz) in Appendix B6 revealed the other flaw indicated in Fig. 5. The above modes disappeared when the wing was rerun through Phase 1 with the indicated modifications. Table 2 contains comparison of frequencies before and after the modification. Figures 6 through 15 show plots of the modes of the revised wing. Comparison of the modal plots before and after modification show that the "kinks" have disappeared. The revised wing was not used in the Orbiter analysis, since comparison of results with the same model that was used in direct method analysis was the objective. The final orbiter results (first 23 modes) indicated that only the first 3 wing component modes played a significant part for most orbiter modes (Refer to Table 5). The small difference (3%) in frequencies for the first 3 modes (Table 2) would not have influenced the Orbiter results appreciably.

Fig. 5 Flaws in Model II Idealization (Bottom Wing Cover Shown)

Fig. 6 Revised Wing (Mode 1)

Fig. 7 Revised Wing (Mode 2)

Fig. 8 Revised Wing (Mode 3)

Fig. 9 Revised Wing (Mode 4)

Fig. 10 Revised Wing (Mode 5)

Fig. 11 Revised Wing (Mode 6)

PHASE I (ORBITER WING)
9/10/74 (COVERS 65 PERCENT EFF.)
FREE MODES FIXED AT INTERFACE
MODAL DEFOR. SUBCASE 7 MODE 7 FREQ. 664.1456

Fig. 12 Revised Wing (Mode 7)

Fig. 13 Revised Wing (Mode 8)

PHASE I (ORBITER WING)
9/10/74 (COVERS 85 PERCENT EFF.)
FREE MODES FIXED AT INTERFACE
MODAL DEFOR. SUBCASE 9 MODE 9 FREQ. 652.9264

Fig. 14 Revised Wing (Mode 9)

PHASE I (ORBITER WING)

9/10/74 (COVERS 88 PERCENT EFF.)

FREE MODES FIXED AT INTERFACE

MODAL DEFOR. SUBCASE 10 MODE 10 FREQ. 674.6212

Fig. 15 Revised Wing (Mode 10)

Table 2 Wing Substructure Component Modes Comparison
of Model II (Before and After Fix-up)

MODE	FREQ. BEFORE FIX-UP HZ	FREQ* AFTER FIX-UP HZ	COMPONENT MODE DESCRIPTION
1	74.5	74.8	1 st Vert. Bend.
2	148.5	153.3	1 st Torsion
3	254.9	259.7	1 st Lateral Bend.
4	298.4	304.0	2 nd Vert. Bend.
5	330.4	340.8	2 nd Torsion
6	404.5	-	Local Lateral at Interstage due to Idealization Error
7	517.0	526.9	Combined 2 nd Vert. Bend & Torsion
8	542.1	564.1	2 nd Lateral Bend.
9	568.9	584.4	Combined 2 nd Lateral Bend & Vert. Bend
10	599.4	-	Caused by Idealization Error at Triangular Cutouts
11	613.6	-	Caused by Idealization Error at Triangular Cutouts
12	648.2	652.9	3 rd Vert. Bend.
13	663.5	679.8	3 rd Lateral Bend.

*Fix-up version not used in overall analysis

FINAL SYSTEM ORBITER RESULTS (SYMMETRIC MODES)

Table 3 shows good correlation between the Modal Synthesis and direct method, and verifies the analytical eigenvalues for the 1/8-scale Model II Orbiter. The door modes which are apparent in the Modal approach were completely overlooked in the direct method because no dynamic degrees of freedom were included on the door. Although the door mass is small, the door Longerons, which is the only door structure working in the symmetric case was flexible enough in bending to cause lower frequency modes. Table 4 shows the contribution to the Orbiter System generalized stiffness and mass of each substructure. As can be seen, the door contribution is small for the overall Orbiter modes. Table 5 shows the contribution factors (generalized modal coordinate values) of the substructure component modes to the Orbiter Sym. free-free modes. Table 6 gives the major contributing component modes and an attempt to classify them. Plots of the final Orbiter modes were obtained from a Phase 3 run for each substructure. Therefore, plots of the total Orbiter on one sheet could not be obtained. Instead, individual substructure plots were obtained which were of different scale. The plots are shown in Appendixes B14 through B18. As a final check, Table 7 shows the summation of relative momentum forces of each substructure for each mode and should demonstrate momentum balance (Sum = 0 for the Orbiter).

Because the door motion was prominent in the combined Orbiter modes, it was decided to rectify the discontinuity between the door longeron and shell at the interior strap locations. This can also be seen in the Model II door component mode plots (Appendix B8). This was done by reverting back to a Model I door shell where a shell grid line was incorporated at the interior

strap stations. The subdivided panels were made of CQUAD2 elements. This revised door was run through Phase I to obtain component modes. The results of this run are presented in Table 8 and the modes plotted in Figs. 16 through 27. From Table 8 the sensitivity of the door can be seen, when some of the skin is made effective to resist the door longeron bending. The frequencies on the average were higher and the sequence of some of the modes was changed. This revised door was not incorporated into the overall analysis since, as previously stated, the purpose was to compare two methods for the same model.

Actually, the door should be idealized into a finer grid (station-wise) to correctly represent the skin contribution to the bending stiffness of the door longeron, which will materially affect the mode frequency. This would also help if an Orbiter anti-symmetric analysis were to be performed, where the shear in the door panels is transferred through the door longeron and straps to the fuselage. The anti-symmetric torsion test case (Reference 1) on the 1/8-scale Orbiter proved that the Model II door longeron was too flexible since the analysis gave twice the torsional influence coefficient.

Table 3 Comparison of Analytical Results Between Substructuring Methods
for Symmetrical Free-Free Normal Modes (1/8-Scale Model II)

MODE	COMPONENT MODES METHOD	DIRECT COORDINATE ELIMINATION METHOD	FREQ. (HZ)	FREQ. (HZ)	DESCRIPTION
1	0	0	0	0	Rigid Body Mode
2	0	0	0	0	Rigid Body Mode
3	0	0	0	0	Rigid Body Mode
4	44.1	44.2	-	-	1st Fuselage Bending
5	45.3	-	-	-	1st Cargo Door Component Mode
6	51.3	-	-	-	2nd Cargo Door Component Mode
7	54.4	54.4	-	-	1st Wing Bend vs. Payload Vert.
8	62.7	63.0	-	-	1st Wing Bend & Payload Vert. vs. Aft Fus. Vert.
9	66.9	-	-	-	3rd Cargo Door Component Mode
10	76.7	-	-	-	4th Cargo Door Component Mode
11	83.1	80.2	-	-	Fin Pitch & Payload 1st Bend vs. Fus. 1st Fus. Bending
12	104.7	103.4	-	-	Fuselage 2nd Bend vs. Payload Vert. + Fin Pitch
13	115.8	115.9	-	-	Fus. Nose Fore-Aft vs. Payload Fore-Aft
14	122.2	121.5	-	-	Fus. Aft End Pitch vs. Fus. Nose Fore-Aft + Wing Torsion & Fin Pitch
15	129.9	-	-	-	5th Cargo Door Component Mode
16	130.2	-	-	-	6th Cargo Door Component Mode
17	142.1	139.7	-	-	Wing 1st Torsion vs. Fus. 2nd Bend
18	159.8	-	-	-	7th Cargo Door Component Mode
19	166.3	-	-	-	8th Cargo Door Component Mode
20	171.7	170.9	-	-	Wing Torsion vs. Fus. 2nd Bending + Payload 1st Bend
21	186.4	185.0	-	-	Fus. 2nd Bend + Wing Fore-Aft vs. Payload Bending & Pitching
22	190.2	-	-	-	9th Cargo Door Component Mode
23	224.0	-	-	-	10th Cargo Door Component Mode

Table 4 Substructure Contribution to Generalized Stiffness and Mass
of Orbiter for Symmetric Free-Free Modes (1/8-Scale Model.
II)

ORBITER MODE	FUSELAGE			WING			CARGO DOORS			FIN			PAYLOAD			ORBITER	
	No.	FREQ. HZ	k/k_{or}	m/m_{or}	k/k_{or}	m/m_{or}	k/k_{or}	m/m_{or}	k/k_{or}	m/m_{or}	k/k_{or}	m/m_{or}	k/k_{or}	m/m_{or}	k/k_{or}	m/m_{or}	k/k_{or}
4	44.1	.75	.53	.06	.07	.07	.03	.09	.28	.03	.09	.09	.23	.18216	.2371		
5	45.3	.08	0	0	0	.92	1.00	0	0	0	0	0	0	519	.0064		
6	51.3	.09	0	0	0	.91	1.00	0	0	0	0	0	0	836	.0081		
7	54.4	.47	.12	.25	.45	.01	.01	.04	.09	.23	.33	.33	.9171	.0784			
8	62.7	.45	.17	.28	.41	.04	.07	.08	.12	.15	.23	.23	.7848	.0506			
9	66.9	.33	.04	.01	.01	.56	.81	.08	.11	.02	.03	.03	.2460	.0139			
10	76.7	.26	.02	0	0	.74	.98	0	0	0	0	0	0	17777	.0077		
11	83.1	.34	.34	.05	.14	.11	.10	.37	.32	.13	.10	.10	.7812	.0286			
12	104.7	.40	.38	.05	.02	.04	.05	.05	.03	.46	.51	.51	.50338	.1164			
13	115.8	.68	.47	.03	.04	.03	.02	0	0	.26	.47	.47	.112708	.2128			
14	122.2	.59	.52	.27	.34	.02	.01	.07	.05	.05	.08	.08	.38644	.0655			
15	129.9	.02	0	.02	0	.96	1.00	0	0	0	0	0	975	.0015			
16	130.2	.03	0	.01	0	.90	.90	0	0	.06	.10	.10	.1058	.0016			
17	142.1	.37	.37	.39	.38	.09	.09	.02	.02	.13	.13	.13	.14939	.0187			
18	159.8	.05	0	0	0	.94	1.00	0	0	.01	0	0	.2174	.0022			
19	166.3	.07	0	0	0	.93	1.00	0	0	0	0	0	.2781	.0025			
20	171.7	.53	.40	.26	.44	.03	.04	.01	0	.17	.12	.12	.110953	.0953			
21	186.4	.70	.59	.14	.26	.03	.05	0	.01	.13	.09	.09	.45506	.0332			
22	190.2	.01	0	0	0	.99	1.00	0	0	0	0	0	.3183	.0022			
23	224.0	.02	0	0	0	.98	1.00	0	0	0	0	0	.4727	.0024			

K = substructure generalized stiffness matrix = $\phi^T K \phi$

m = substructure generalized mass matrix = $\phi^T M \phi$

Table 5 Contribution Factors (Generalized Modal Coordinate Values) of Substructure Component Modes to Orbiter Symmetrical Free-Free Modes (1/8-Scale Model III)

SUBSTRUCTURE	COMPONENT MODE	*1 ORBITER SYSTEM MODE NO.																						
		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23			
Fuselage	1	.28	-	-	-.15	-.10	-.03	-	.06	-.54	-.57	-.07	-	.22	.03	-	-.51	1.00	-	.02	-	-	-	
	2	-	-.02	-	-	-	-	-	-.06	-.50	-.21	-	-.15	-	-	-.41	-.06	-	-	-	-	-	-	
	3	-.02	-	-	-	-	-	-	.05	-.18	.07	.05	-	-.05	-	-.31	-.08	-	-	-	-	-	-	
	4	.02	-	-	-	-	-	-	.03	.06	.02	-.13	-	-.02	-	-.09	.05	-	-	-	-	-	-	
	5	-	-	-	-	-	-	-	.06	-.07	-.03	-	-.02	-	-.02	-	-.21	.16	-	-	-	-	-	-
	6	-	-	-	-	-	-	-	.02	-.02	-.02	.11	-	-.05	-	-.05	-.10	-	-	-	-	-	-	-
	7	-	-	-	-	-	-	-	.02	-.08	-.02	-.11	-	-.05	-	-.05	-.07	-	-	-	-	-	-	-
	8	-	-	-	-	-	-	-	.02	-.04	-.02	-.02	-	-.04	-	-.08	-.03	-	-	-	-	-	-	-
	9	-	-	-	-	-	-	-	.02	-.04	-.02	-.02	-	-.04	-	-.08	-.03	-	-	-	-	-	-	-
	10	-	-	-	-	-	-	-	.02	-.04	-.02	-.02	-	-.04	-	-.08	-.03	-	-	-	-	-	-	-
	11	-	-	-	-	-	-	-	.02	-.04	-.02	-.02	-	-.04	-	-.08	-.03	-	-	-	-	-	-	-
	12	-	-	-	-	-	-	-	.02	-.04	-.02	-.02	-	-.04	-	-.08	-.03	-	-	-	-	-	-	-
	17	-	-	-	-	-	-	-	.02	-.04	-.02	-.02	-	-.04	-	-.08	-.03	-	-	-	-	-	-	-
	24	-	-	-	-	-	-	-	.02	-.04	-.02	-.02	-	-.04	-	-.08	-.03	-	-	-	-	-	-	-
Wing	1	.18	-	.03	1.0	-.10	-.09	-	.22	.36	-.45	-.38	-.02	.02	.34	-	.23	.10	-	-	-	-	-	-
	2	-.07	-	-.02	-	-	-	-	-.13	-.09	.41	.82	.04	-.03	-.62	-	.02	-1.0	.30	-	-	-	-	-
	3	-	-	-	-	-	-	-	.02	-	-	.03	-	-.04	-	-.04	-	-.55	.30	-	-	-	-	-
	4	-	-	-	-	-	-	-	.02	-	-	-	-	-.02	-	-.03	-.04	-.04	.04	-	-	-	-	-
	5	-	-	-	-	-	-	-	.02	-	-	-	-	-.02	-	-.03	-.04	-.04	.04	-	-	-	-	-
	8	-	-	-	-	-	-	-	.02	-	-	-	-	-.02	-	-.03	-.04	-.04	.04	-	-	-	-	-
Cargo Doors	1	-.19	-1.0	-	.39	.05	-.05	.05	.08	-.11	-.11	-.06	-	-.04	-	-.04	-	-.03	-.03	-.04	-	-.05	.02	-
	2	-.09	-	-.10	-.39	.05	-.05	.05	.20	.06	.21	-.09	.03	-	-.03	-.03	-.03	-.03	-.03	-.03	-	-	-	-
	3	-.29	-	-.04	-.07	-.07	-.03	-.03	-.21	1.0	-.05	.64	.17	-.37	-	-.31	-.17	-.27	-.12	-.03	-	-	-	-
	4	-.05	-	-.03	-.03	-.02	-.02	-.02	-.02	-.03	-.02	-.03	-.04	-.04	-.17	-.04	-.31	-.13	-.13	-.06	-.12	-	-	-
	5	-.03	-	-.03	-.03	-.02	-.02	-.02	-.02	-.03	-.02	-.03	-.04	-.04	-.10	-.23	-.17	-.10	-.27	-.17	-.22	-	-	-
	6	-.02	-	-.02	-.02	-.02	-.02	-.02	-.02	-.03	-.02	-.03	-.04	-.04	-.07	-.03	-.03	-.08	-.07	-.17	-.50	-.03	-	-
	7	-.02	-	-.02	-.02	-.02	-.02	-.02	-.02	-.03	-.02	-.03	-.04	-.04	-.07	-.03	-.03	-.08	-.04	-.10	-.16	-.44	-.11	-
	8	-	-	-	-	-	-	-	.04	-	-	-	-	-.04	-	-.04	-.04	-.04	-.04	-.04	-.04	-.04	-.04	-
	9	-	-	-	-	-	-	-	.06	-	-	-	-	-.06	-	-.06	-.06	-.06	-.06	-.06	-.06	-.06	-.06	-
	10	-	-	-	-	-	-	-	.06	-	-	-	-	-.06	-	-.06	-.06	-.06	-.06	-.06	-.06	-.06	-.06	-
	11	-	-	-	-	-	-	-	.06	-	-	-	-	-.06	-	-.06	-.06	-.06	-.06	-.06	-.06	-.06	-.06	-
	12	-	-	-	-	-	-	-	.06	-	-	-	-	-.06	-	-.06	-.06	-.06	-.06	-.06	-.06	-.06	-.06	-
Fin	1	-.75	-	-	-.37	-.45	-.26	-.05	1.0	.94	.15	-.1.0	-	-	-	-.28	-.02	.02	.69	.22	-	-	-	-
	2	-	-	-	-	-	-	-	-.37	-.45	-.26	-.05	1.0	.94	.15	-.1.0	-.03	-	-.02	-.02	.04	-	-	-
Payload	1	-.16	-	-	.32	.22	-.05	-	.21	-.70	-.36	-.11	-	-	-.06	-	-.11	-.02	-.11	-.04	-	-	-	-
	2	-.03	-	-	.07	.07	-.02	-	.05	.57	.30	.05	-	.03	.17	.02	-.12	-.12	-.12	-.12	.16	-	-	-
	3	-.02	-	-	-	-	-	-	-.14	.69	-.18	-.02	-	-.02	-.14	-.14	-.14	-.14	-.14	-.14	-.14	-.14	-.14	-
	4	-	-	-	-	-	-	-	-.02	-	-	-	-	-.02	-	-.02	-.02	-.02	-.02	-.02	-.02	-.02	-.02	-

*1. Orbiter Modes 1 to 3 are rigid body modes.

2. Factor of 0.01 or less are not listed.

Table 6 Substructure Component Modes (Symmetrical Case) 1/8-Scale Model II

SUBSTRUCT.	MODE NO	FREQ. HZ	MODE DESCRIPTION (FIXED AT INTERFACE)
Fuselage	1 2 3 4 5 6 7 8 9 10 11 12 17 24	86.9 162.5 245.6 270.6 280.8 333.8 339.9 378.9 391.6 439.8 448.2 498.0 633.8 839.0	Nose Pitching Mode Nose Fore-Aft Translation Mode Mid Section 1st Bending Component Mode Aft End Vert. Bend. Mid Section 2nd Bending Component Mode Nose Vert. Bend. Aft Frame Mode Mid Section 3rd Bending Component Mode Mid Section 4th Bending Component Mode Aft End Vertical Translation Mode Mid Section 5th Bending Component Mode Local Thrust Bar Translation Mode Nose & Mid Section Bending Mode Local Thrust Bar Axial Mode
Wing	1 2 3 4 5 8	74.5 148.5 254.9 298.4 330.4 542.1	1st Vert. Bending 1st Torsion 1st Lateral Bend. 2nd Vert. Bending 2nd Torsion 2nd Lateral Bend. } Cantilevered Modes
Cargo Drs.	1 2 3 4 5 6 7 8 9 10 11 12	47.5 53.5 79.7 89.9 130.5 131.0 163.6 174.1 190.8 226.0 314.9 477.7	1st Vert. Bend. 2nd Vert. Bend. 3rd Vert. Bend. 4th Vert. Bend. } Continuous Door Longeron Beam Modes on 6 Supports Local Aft Frame Mode Local Fwd Frame Mode 1st Lateral Bend. 2nd Lateral Bend. } Continuous Door Longeron Beam Modes on Flexible Frame Supports 3rd Lateral Bend. 4th Lateral Bend. Fore-Aft Translation Mode (Supported at strap interface) Fore-Aft Axial Mode
Fin	1 2	77.6 420.9	Pitching Mode Vertical Mode } NOTE: Fin on vert. interface springs
Payload	1 2 3 4	64.3 131.2 163.3 373.0	1st Vert. Bending Pitching (some 1st Vert. Bend.) Pitching & 2nd Vert. Bend. 2nd Vert. Bending } Simple supported modes on vertical interface springs

Table 7 Summation of Substructure Momentum Forces About Basic Origin
For Orbiter Symmetric Free-Free Modes (1/8-Scale Model III)

ORBITER MODE NO.	FREQ. HZ	FUSELAGE			WING			CARGO DOORS			FIN			PAYLOAD		
		ΣF_x	ΣF_y	ΣF_z	ΣF_x	ΣF_y	ΣF_z	ΣF_x	ΣF_y	ΣF_z	ΣF_x	ΣF_y	ΣF_z	ΣM_x	ΣM_y	ΣM_z
4	44.1	-.008	.374	-.785	.015	-.022	3.76	.002	-.006	.90	-.021	.014	-.31	.011	-.059	7.50
5	45.3	0	-.001	.05	0	-.02	0	0	-.04	0	0	.02	0	0	0	-.02
6	51.3	-.001	-.001	.04	0	-.001	.22	0	0	-.06	0	0	.01	.001	.003	-.20
7	54.4	-.018	-.019	-.47	.002	-.041	6.40	-.001	0	-.02	-.007	.003	-1.26	.024	.057	-4.66
8	62.7	-.025	-.039	4.05	-.004	.022	-3.63	0	-.006	.73	-.007	.002	-.94	.026	.021	-.21
9	66.9	.001	-.005	.76	0	.002	-.29	0	.009	-1.02	-.003	.001	-.55	.002	-.008	1.10
10	76.7	0	-.002	.28	0	0	-.04	.001	0	-.05	-.001	0	-.C7	0	.001	-.12
11	83.1	-.018	-.006	-.106	0	-.005	.42	-.001	.003	-.48	.007	-.004	1.44	.013	.012	-.32
12	104.7	-.033	.051	-.990	.004	.005	-.37	0	.001	-.05	.005	-.001	.60	.024	-.056	9.71
13	115.8	.093	-.024	7.15	.001	-.007	1.14	.006	.001	.40	0	-.001	.19	-.105	.031	-.8.88
14	122.2	.005	.002	.23	.013	-.009	1.53	-.001	.001	-.19	-.001	.005	-.57	-.015	.001	-.59
15	129.9	-.001	-.001	.06	0	0	+.06	0	.001	-.15	0	0	.C1	0	0	.01
16	130.2	.001	-.001	-.07	0	0	-.05	0	-.001	.04	0	0	-.02	-.001	0	.10
17	142.1	.011	-.006	.83	-.009	.003	-.73	-.001	.001	-.20	0	.002	-.30	-.001	0	.40
18	159.8	.001	-.001	.08	-.001	0	-.03	0	.001	-.10	0	0	-.02	0	0	.08
19	166.3	-.001	0	-.04	.001	0	.01	0	0	.02	0	0	.01	0	0	0
20	171.7	-.021	-.019	1.33	.042	.002	2.03	.006	.001	.32	-.002	.32	-.023	.017	-.023	-.11
21	186.4	-.011	-.006	-.05	.019	.006	.05	-.002	0	-.001	-.002	.002	.22	-.006	.003	-.23
22	190.2	0	.001	-.06	0	0	-.01	0	-.001	.06	0	0	0	0	0	0
23	224.0	-.001	0	-.05	0	0	-.03	.001	0	.08	0	0	0	0	0	0

*Note: All momenta, force vectors, and moment vectors are expressed in mass x normalized eisencees.

Table 8 Cargo Door Substructure Component Modes (Symmetrical Case) Comparison of Model II (Before and After Fix-up)

BEFORE FIX-UP		AFTER FIX-UP		DESCRIPTION
MODE	FREQ. HZ	MODE	FREQ. HZ	
1	47.5	1	50.2	1 st Vert. Bend Component Mode
2	53.5	2	58.5	2 nd Vert. Bend Component Mode
3	79.7	4	124.1	3 rd Vert. Bend Component Mode
4	89.9	3	116.1	4 th Vert. Bend Component Mode
5	130.5	5	131.0	Local Aft Frame Mode
6	131.0	6	131.2	Local Fwd Frame Mode
7	163.6	10	388.9	1 st Lat. Door Long. Bend.
8	174.1	11	450.2	2 nd Lat. Door Long. Bend.
9	190.8	7	200.4	3 rd Lat. Door Long. Bend.
10	226.0	8	228.0	4 th Lat. Door Long. Bend.
11	314.9	9	316.8	Fore-Aft Translation
12	477.7	12	487.6	Fore-Aft Axial

*Note: Fix-up version not used in overall analysis.

PHASE 1
CRAFT DOOR, GYM CASE (WITH STRAPS)
FREE MODES FIXED AT INTERFACE
MODAL DEFOR. SUBCASE 1 MODE 1 FREQ. 80.18632

Fig. 16 Revised Cargo Door (Mode 1)

PHASE 1
ORBITER DOORS, SYM CASE (WITH STRAPS)

FREE MODES FIXED AT INTERFACE
MODAL DEFOR. SUBCASE 2 MODE 2 FREQ. 58.47683

Fig. 17 Revised Cargo Door (Mode 2)

Fig. 18 Revised Cargo Door (Mode 3)

Fig. 19 Revised Cargo Door (Mode 4)

Fig. 20 Revised Cargo Door (Mode 5)

PHASE 1
ORBITER DOORS, BAY CASE (WITH STRAPS)
FREE MODES FIXED AT INTERFACE
MODAL DEFOR. SUBCASE 6 MODE 6 FREQ. 131.2474

Fig. 21 Revised Cargo Door (Mode 6)

Fig. 22 Revised Cargo Door (Mode 7)

PHASE 1
ORBITER DOORS,SYM CASE (WITH STRAPS)
FREE MODES FIXED AT INTERFACE
MODAL DEFOR. SUBCASE 6 MODE 8 FREQ. 227.0841

Fig. 23 Revised Cargo Door (Mode 8)

PHASE 1
ORBITER DOORS, GYM CABE (WITH STRAPS)
FREE MODES FIXED AT INTERFACE
MODAL DEFOR. SUBCASE 9 MODE 9 FREQ. 316.7636

Fig. 14. Rigidized Cargo Door (Mode 9)

PHASE 1
ORBITER DOORS, SYM CASE (WITH STRAPS)
FREE MODES FIXED AT INTERFACE
MODAL DEFOR. SUBCASE 10 MODE 10 FREQ. 388.1140

Fig. 25 Revised Cargo Door (Mode 10)

PHASE 1
ORBITER DOORS, STM CASE (WITH STRAPS)
FREE MODES FIXED AT INTERFACE
HOUD. DEFOR. SUBCASE 11 MODE 11 FREQ. 450.2087

Fig. 26 Revised Cargo Door (Mode 11)

Fig. 27 Revised Cargo Door (Mode 12)

COMPUTING TIME

It seems logical in the Modal Synthesis method to keep as many dynamic degrees of freedom as possible in obtaining component modes. Thus approximations brought about by GUYAN reduction are eliminated. This approach worked rather well with the smaller substructures, where only massless degrees of freedom and those along fictitious nodal lines were eliminated by GUYAN reduction. The large fuselage substructure could not be treated in the same way. It took 24 Central Processing Unit (CPU) minutes or 284 system minutes to obtain 1 mode with 614 degrees of freedom. Nine (9) (CPU) minutes or 115 system minutes were spent in the Real Eigenvalue Analysis (READ) module alone. It was therefore decided to keep approximately the same number of dynamic degrees of freedom that was used in the direct approach to compute component modes. Although there was no choice, this was compounding the lack of accuracy since in modal synthesis accuracy is lost by carrying only a reduced number of component modes into the coupling run. Table 9 shows a comparison of computing time to obtain Orbiter Symmetric modes for the two methods. The time spent in the READ module in system minutes per mode extraction as a function of the dynamic degrees of freedom is plotted in Fig. 28. As can be seen in the figure, there is a great need to incorporate into NASTRAN a more efficient eigenvalue extraction program, especially if one has to calculate higher modes for a large problem. For higher modes there should be more dynamic degrees of freedom (less Guyan reduction) in calculating component modes, and more component modes must be extracted in Phase 1.

From Table 9, the direct method is more economical, if one is to solve for only the lower modes of the Orbiter. The advantage of the component modes approach lies in the Phase 2 or coupling run, if more substructures were to be

coupled to the Orbiter (total Shuttle). For example, the Phase 2 results (Refer to Table 5) shows that only about 40 component modes were important in computing the first 23 system modes. The unimportant component modes in Phase 2 could be eliminated, thus reducing the dynamic degrees of freedom from 220 to 121. From Fig. 28, it is evident that eigenvalue solutions in relatively short time can be obtained up to about 360 degrees of freedom. This leaves approximately 250 degrees of freedom for the added reduced substructures (external tanks and SRB) to be solved within a reasonable time for the real lower modes.

Table 9 Computing Time to Obtain Orbiter Symmetric Modes
Comparison Between Modal Synthesis and Direct
Elimination Method

RUN	RUN DESCRIPTION	MODAL SYNTHESIS										DIRECT APPROACH					
		TCU TIME			TIME IN READ MODULE				TOT. TIME			TIME IN READ MODULE					
		SYS MIN	SYS MAX	NO. OF MODES	FREQ. RANGE (HZ)	SYS MIN	SYS MAX	CPU MIN	CPU MAX	NO. OF MODES	FREQ. RANGE (HZ)	CPU MIN	CPU MAX	SYS MIN	SYS MAX	MIN. FER MODE	
1	Fuselage - Phase 1 (Altered R.F. 3)	31	435	209	57	37 - 1571	61	212	3.7	18	102	235	8	0 - 246	6.5	28	3.5
2	Wing - Phase 1 (Altered R.F. 3)	12	55	179	28	74 - 1216	8	22	0.8	2	12	120	1	74 - 332	.7	4	1.0
3	Cargo Doors - Phase 1 (Altered R.F. 3)	9	45	198	35	48 - 2046	5	20	0.6	2	11	23	15	0 - 2006	.04	0.5	0.03
4	Fin - Phase 1 (Altered R.F. 3)	2	9	73	7	78 - 4226	.5	2	0.3	1.5	4	14	4	281 - 3348	.02	0.5	0.1
5	Payload - Phase 1 (Altered R.F. 3)	1	9	23	12	64 - 4622	.3	5	0.4	0.7	5	21	4	81 - 1021	.02	0.5	0.1
6	Copy Run - Consolidate Phase 1 Tapes onto 1 Tape (MAP)	.1	1	-	-	-	-	.1	1	-	-	-	-	-	-	-	-
7	Orbiter - Phase 2 (Altered R.F. 3)	19	109	220	23	0 - 224	17	60	2.6	22	145	362	13	0 - 185	15	96	7.4
8	Fuselage - Phase 3 (Altered R.F. 3)	6	35	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9	Wing - Phase 3 (Altered R.F. 3)	3	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	Cargo Doors - Phase 3 (Altered R.F. 3)	9	9	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11	Fin - Phase 3 (Altered R.F. 3)	2	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12	Payload - Phase 3 (Altered R.F. 3)	1	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Time - Phase 1, 2, 3		136	732	-	-	-	-	93	321	-	-	-	-	-	-	-	-
Total Time - Phase 1, 2		124	664	-	-	-	-	93	321	46	281	-	-	-	-	-	-
															22	130	

OBSERVATIONS AND RECOMMENDATIONS

The three phase modal coupling procedures adapted to NASTRAN may be summarized as follows:

- The finite element model is divided into convenient substructures. All interface degrees of freedom between elements are retained in the analysis
- Phase 1 consists of calculating modes for each substructure restrained at the interface points. This phase also includes a series of check calculations to guard against spurious forces, loss of mass, or ill-conditioning during the matrix reduction process
- Phase 2 consists of assembling the substructure models together. In this phase the interface points are merged and the modes considered unnecessary to represent the various substructures are eliminated. Check calculations are made to test the merged interface stiffness and mass matrices. The eigenvectors and eigenvalues for the combined system are calculated
- Phase 3 consists of retrieval of the final detailed mode shape for each substructure from individual tapes prepared during Phase 2.

This method was applied successfully to the 1/8-scale shuttle model orbiter. Comparison between results from modal coupling and those from the direct substructure merging method previously used indicated good agreement. Spurious modes of the cargo bay doors found here were probably also present in the other method but were not revealed since no dynamic degrees of freedom were assigned to them.

The method can be used to reduce the dynamic degrees of freedom for the orbiter, and to add the modes of the external tank and solid rocket booster while limiting the problem size to about 350 degrees of freedom, which should permit a real eigenvalue analysis of the combined shuttle.

Using Modal Synthesis and a harmonic reduction technique developed by Robert Coppolino (Reference 2) for the hydro-elastic tanks, it is possible to reduce the final dynamic degrees of freedom for that substructure down to approximately 350. Lower real eigenvalues could then be extracted within a reasonable time.

Regrettably, the total 1/8-scale model of the shuttle could not be analyzed because of limited time available, and only the Orbiter was analyzed to test the Modal Synthesis procedure developed in this report.

Damping was not included in the modal synthesis procedure, since it is only considered significantly large in the SRB substructure, which was not included in this analysis. This would necessitate incorporating modal synthesis procedures into Rigid Format 7, which uses the complex eigenvalue module CEAD. It is doubtful if the total Shuttle model could be reduced to only 150 meaningful dynamic degrees of freedom, as required, to have the complex eigenvalues extracted within a reasonable time. The 150 figure is based upon experience in analyzing the Solid Rocket Booster (SRB), Reference 3. Twelve (12) complex eigenvalues for 116 dynamic degrees of freedom were obtained, which took about 6.3 system minutes per mode in the CEAD (Complex Eigenvalue Analysis) module. This is about six times as long as a comparable problem required in the READ (Real Eigenvalue Analysis) module. Referring to Fig. 28, we can see the system minutes per mode for the CEAD module will rise rather sharply compared to the READ module as the number of dynamic degrees of freedom increases.

It is therefore strongly recommended that before a modal synthesis (sub-structuring) procedure is adopted to yield complex eigenvalues, a more efficient complex eigenvalue extraction program be developed.

Fig. 28 Average Time Spent in READ Module Extracting 1 Mode

REFERENCES

1. Mason, P.W., Harris, H., Zalesak, J., and Bernstein, M.: "Analytical and Experimental Investigation of a 1/8 -Scale Dynamic Model of the Shuttle Orbiter", Volume I, "Introduction" NASA CR132488, May 1974; Volume II, "Technical Report", NASA CR132489, July 1974; Volume IIIA, "Supporting Data", NASA CR132490, May 1974; Volume IIIB, "Supporting Data", NASA CR132491, May 1974.
2. Bernstein, M., Coppolino, R., Zalesak, J., Mason, P.W.: "Development of Technology for Fluid-Structure Interaction Modeling of a 1/8-Scale Dynamic Model of the Shuttle External Tank (ET)", NASA CR132549, August 1974.
3. Levy, A., Zalesak, J., Bernstein, M., Mason, P.W.: "Development of Technology for Modeling of a 1/8-Scale Dynamic Model of the Shuttle Solid Rocket Booster (SRB)", NASA CR132492, July 1974.
4. Guyan, R.J.: "Reduction of Stiffness and Mass Matrices", AIAA Journal, Volume 3, Number 2, February 1965.
5. Pinson, L.D., Coordinator: "Analytical and Experimental Vibration Studies of a 1/8-Scale Shuttle Orbiter", NASA TND-7964, 1975.
6. McCormick, C.W.: "The NASTRAN User's Manual Level 15.5", NASA-SP-222(01), April 1973.
7. Goldenberg, S., "A Study of Modal Coupling Procedures for the Space Shuttle", NASA CR-112252, 1973.

REFERENCES (Cont)

8. Hurty, W.C., "Dynamic Analysis of Structural Systems Using Component Modes", AIAA Journal, Volume 3, Number 4, April 1965.
9. Guyan, R.: "Component Modes Analysis Using NASTRAN", Notes from Rockwell Intl. Inc.
10. MacNeal, R.H., editor: "NASTRAN Theoretical Manual", NASA SP-221(01), December 1972.

**Appendix A
NASTRAN COMPONENT MODES ANALYSIS GENERAL THEORY**

APPENDIX A NASTRAN COMPONENT MODES ANALYSIS - GENERAL THEORY

Phase 1 - Representing Part of a Substructure by Normal Vibration Modes

The equations of motion for a substructure (after GUYAN reduction, if any) are

$$\{F_a\} = [M_{aa}] \{\ddot{u}_a\} + [K_{aa}] \{u_a\} \quad 1)$$

where $\{F_a\} = \{0\}$

Or, letting $\{P_a\}$ represent the vector of Inertia forces, then

$$[K_{aa}] \{u_a\} = \{P_a\} \quad 2)$$

where

$$\{P_a\} = - [M_{aa}] \{\ddot{u}_a\} \quad 3)$$

Partition eq. 2 into interior and interface degrees of freedom (l and r sets)

$$\begin{bmatrix} K_{\ell\ell} & | & K_{\ell r} \\ \hline K_{\ell r}^T & + & K_{rr} \end{bmatrix} \begin{Bmatrix} u_{\ell} \\ u_r \end{Bmatrix} = \begin{Bmatrix} P_{\ell} \\ P_r \end{Bmatrix} \quad 4)$$

The substructure displacements may be represented as the superposition of displacements relative to the interface and those due to interface motion, as follows:

$$\{u_a\} = \{\bar{u}_a\} + \{u_{a*}\} = \begin{bmatrix} \bar{u}_l \\ 0 \\ u_r \end{bmatrix} + \begin{bmatrix} u_{l*} \\ u_{r*} \end{bmatrix} \quad 5)$$

where $\{\bar{u}_l\}$ is the vector of displacements relative to u_r (i.e., with $\{u_r\} = \{0\}$), and $\{u_{l*}\}$ is the vector of displacements due to $\{u_r\}$. The $\{\bar{u}_l\}$ displacements are due to $\{P_l\}$ with $\{u_r\} = \{0\}$, while the $\{u_{l*}\}$ displacements are due to $\{u_r\}$ with $\{P_{l*}\} = \{0\}$.

The relationship between $\{u_{l*}\}$ and $\{u_r\}$ may be determined from the upper partition of Eq. 4 as

$$\{u_{l*}\} = [G_l] \{u_r\} \quad 6)$$

where

$$[G_l] = -[K_{ll}]^{-1} \times [K_{lr}] \quad 7)$$

combining eq. 5 and 6 gives

$$\begin{bmatrix} u_l \\ u_r \end{bmatrix} = \begin{bmatrix} I_l & | & G_l \\ 0 & | & I_r \end{bmatrix} \begin{bmatrix} \bar{u}_l \\ u_r \end{bmatrix} \quad 8)$$

where I_l and I_r are unit matrices.

Partitioning eq 1 into interior and interface degree of freedom, gives

$$\begin{bmatrix} F_l \\ F_r \end{bmatrix} = \begin{bmatrix} M_{ll} & | & M_{lr} \\ M_{lr}^T & | & M_{rr} \end{bmatrix} \begin{bmatrix} u_l \\ u_r \end{bmatrix} + \begin{bmatrix} K_{ll} & | & K_{lr} \\ K_{lr}^T & | & K_{rr} \end{bmatrix} \begin{bmatrix} u_l \\ u_r \end{bmatrix} \quad 9)$$

where $\begin{bmatrix} F_l \\ F_r \end{bmatrix} = \{0\}$

holding the interface fixed and writing the upper partition of eq. 9 for the relative displacements $\{\bar{u}_\ell\}$, gives

$$[M_{\ell\ell}] \{\ddot{u}_\ell\} + [K_{\ell\ell}] \{\bar{u}_\ell\} = \{0\} \quad 10)$$

The corresponding real eigenvalue problem is

$$[K_{\ell\ell}] \{\phi_\ell\}_i = \lambda_i \cdot [M_{\ell\ell}] \{\phi_\ell\}_i \quad 11)$$

letting

$$\{\bar{u}_\ell\} = [\phi_\ell] \{\xi_i\} \quad 12)$$

where

$$[\phi_\ell] = [\{\phi_\ell\}_1 \ \{\phi_\ell\}_2 \ \dots \ \{\phi_\ell\}_R]$$

and $\{\xi_i\}$ = vector of modal displacements, Eq. 8 may be rewritten as

$$\begin{bmatrix} u_\ell \\ u_r \end{bmatrix} = \begin{bmatrix} \phi_\ell & | & G_\ell \\ 0 & | & I_r \end{bmatrix} \begin{bmatrix} \xi_i \\ u_r \end{bmatrix} \quad 13)$$

It should be noted that $[\phi_\ell]$ contains a reduced number of modes, i.e., the number of columns of $[\phi_\ell]$ is less than ℓ , which is the number of degrees of freedom in eq. 10.

The generalized modal forces, as shown on page 14.1-3 of Reference 10, can be expressed as:

$$\begin{bmatrix} F_i \\ F_r \end{bmatrix} = \begin{bmatrix} \phi_\ell^T & | & 0 \\ G_\ell^T & | & I_r \end{bmatrix} \begin{bmatrix} F_\ell \\ F_r \end{bmatrix} \quad 14)$$

Substitution of first Eq. 14 then Eq. 13 into Eq. 9, and using Eq. 7, yields the following reduced matrix equation of motion in terms of the generalized modal and interface coordinates.

$$\begin{Bmatrix} F_i \\ F_r \end{Bmatrix} = \begin{bmatrix} M_{ii} & M_{ir} \\ M_{ir}^T & M_{rr} \end{bmatrix} \begin{Bmatrix} \ddot{\xi}_i \\ \ddot{u}_r \end{Bmatrix} + \begin{bmatrix} K_{ii} & 0 \\ 0 & K_{rr} \end{bmatrix} \begin{Bmatrix} \xi_i \\ u_r \end{Bmatrix} \quad 15)$$

where

$$[K_{ii}] = [\phi_\ell]^T [K_{\ell\ell}] [\phi_\ell] \quad 16)$$

$$[K_{rr}] = [K_{\ell r}]^T [G_\ell] + [K_{rr}] \quad 17)$$

$$[M_{ii}] = [\phi_\ell]^T [M_{\ell\ell}] [\phi_\ell] \quad 18)$$

$$[M_{ir}] = [\phi_\ell^T] \left([M_{\ell\ell}] [G_\ell] + [M_{\ell r}] \right) \quad 19)$$

$$[M_{rr}] = [G_\ell^T] \left([M_{\ell\ell}] [G_\ell] + [M_{\ell r}] \right) + [M_{\ell r}^T] [G_\ell] + [M_{rr}] \quad 20)$$

The resulting matrices from Eq. 16 to 20 will be input to Phase 2, to be coupled to other substructures.

K_{ii} and M_{ii} are the generalized modal stiffness and mass matrices and should be diagonal matrices. In the actual NASTRAN computations, small off-diagonal non-zero terms will occur. The following relationship should exist between the corresponding diagonal elements

$$k_{ii} = \lambda_i m_{ii} \quad 21)$$

K_{rr} and M_{rr} are the static reduced interface stiffness and mass matrices, when the interior degrees of freedom are released. $-[M_{ir}]\{\ddot{u}_r\}$ would represent the generalized modal forces, due to interface accelerations.

PHASE 1 - INCORPORATED CHECKS

The checks incorporated are all based on a matrix EQ_g , which can be extracted from the GPWG module. The NASTRAN module GPWG has been modified (Appendix B2) to output this matrix, which expresses the static load summations for each unit g-set load. This procedure is forced when the parameter WTMASS, in the general calling sequence of GPWG (NASTRAN Programmer's Manual (NPM) 4.29), is set to 0.0. For all other values of WTMASS, module GPWG performs as outlined in the NPM. EQ_g is a $6 \times g$ matrix, where g is equal to 6 times the number of grid points in the problem. It should be noted, that only grid points should be used in the problem when extracting this matrix, since scalar points have no geometry. Therefore, in Phase 1, only grid points are used. The 6 rows of EQ_g correspond to the ΣF_x , ΣF_y , ΣF_z , ΣM_x , ΣM_y , and ΣM_z load summations respectively about a reference point specified by the parameter GRDPNT. An example of extracting EQ_g from GPWG is as follows:

```
GPWG BGPDT,CSTM,EQEXIN,/EQg/V,Y,GRDPNT=-1/C,N,0.0 $
```

where

$$\{F_{REF}\} = \begin{bmatrix} EQ_g \\ 6xg \end{bmatrix} \{F_g\} \quad \text{STATIC EQUILIBRIUM} \quad 22)$$

As indicated for equations 13 and 14, the following transformation holds

$$\{u_g\} = \begin{bmatrix} D_g \\ gx6 \end{bmatrix} \{u_{REF}\} \quad \text{KINEMATIC CONTINUITY} \quad 23)$$

where

$$[D_g] = [EQ_g]^T \quad 24)$$

and $\{U_{REF}\}$ is the vector of 6 rigid body motions of the reference point and $\{u\}$ contains all g-set displacements.

Matrix D_g is equal to the D matrix discussed in the NASTRAN Programmers Manual, Section 4.29.

Matrix D_g can be partitioned into the various NASTRAN subsets by using column partitioning vectors generated by the VEC instruction. The subsets of D_g are as follows

$$\begin{Bmatrix} u_m \\ u_n \end{Bmatrix} = \begin{bmatrix} D_m \\ D_n \end{bmatrix} \leq [D_g]_{gx6} \{u_{REF}\} \quad 25)$$

$$\begin{Bmatrix} u_s \\ u_f \end{Bmatrix} = \begin{bmatrix} D_s \\ D_f \end{bmatrix} \leq [D_n]_{nx6} \{u_{REF}\} \quad 26)$$

$$\begin{Bmatrix} u_o \\ u_a \end{Bmatrix} = \begin{bmatrix} D_o \\ D_a \end{bmatrix} \leq [D_f]_{fx6} \{u_{REF}\} \quad 27)$$

$$\begin{Bmatrix} u_\ell \\ u_r \end{Bmatrix} = \begin{bmatrix} D_\ell \\ D_r \end{bmatrix} \leq [D_a]_{ax6} \{u_{REF}\} \quad 28)$$

MULTIPOINT CONSTRAINT CHECK

The NASTRAN program forms the matrix G_m from the MPC bulk input.

$$\{u_m\} = [G_m] \{u_n\} \quad 29)$$

The displacements $\{u_n\}$ can be related to rigid body motion at the reference point by D_n in Eq. 25.

$$\{u_m\} = [G_m] [D_n] \{u_{REF}\} \quad 30)$$

Equation 30 should be equal to

$$\{u_m\} = [D_m] \{u_{REF}\} \quad 31)$$

or

$$([G_m][D_n] - [D_m]) \{u_{REF}\} = \{0\}$$

or

$$[MPCCK] = [G_m][D_n] - [D_m] = [0] \quad 32)$$

mx6

When performing symmetrical or anti-symmetrical analyses, MPCCK may contain non-zero terms if the dependent degree of freedom is on the plane of symmetry and the independent degree of freedom is off the plane of symmetry. In this case, the non-zero term will be a difference in coordinates between the 2 points.

For example:

$$\begin{aligned}
 u_{iz} &= \begin{bmatrix} G_m \\ 1x1 \end{bmatrix} u_{zz} , & [G_m] &= [1] \\
 u_{zz} &= \begin{bmatrix} D_n \\ 1x6 \end{bmatrix} \{u_{REF}\} , & [D_n] &= [0\ 0\ 1\ y_2\ 0\ 0] \\
 u_{iz} &= \begin{bmatrix} D_m \\ 1x6 \end{bmatrix} \{u_{REF}\} & [D_m] &= [0\ 0\ 1\ 0\ 0\ 0] \\
 \therefore [MPCCK] &= [G_m][D_n] - [D_m] = [0\ 0\ 0\ y_2\ 0\ 0]
 \end{aligned}$$

Non-zero

The six columns pertain to rigid body motion at the reference point ($u_{ox}, u_{oy}, u_{oz}, \theta_{ox}, \theta_{oy}, \theta_{oz}$). The non-zero term is caused by an anti-symmetric motion θ_{ox} , which doesn't apply to the illustrative symmetrical case. The terms under the symmetrical motions u_{ox}, u_{oz} , & θ_{oy} in this case should always be zero.

The succeeding checks to be developed on the following pages will also follow the same rule. That is, when performing symmetric or anti-symmetrical analyses only the three related columns are appropriately looked at in the check matrix.

SINGLE-POINT CONSTRAINT (SPC) CHECK

An SPC check is developed which is based upon the following assumption. The only degrees of freedom to be included in this set will be those that have no stiffness and those that are symmetrical or anti-symmetrical boundary constraints at the plane of symmetry. Any other supports that a structure might have are included in the r-set (SUPPORT card). Appropriate ALTERS, to change the condition that the r-set by statically determinate, have been made to prevent a FATAL ERROR.

The following matrix is formed in NASTRAN

$$\{F_s\} = [K_{fs}]^T \{u_f\} \quad 33)$$

The displacements $\{u_f\}$ can be related to rigid body motion at the reference point by $[D_f]$ in eq. 26.

$$\{F_s\} = [SPCCK] \{u_{REF}\} \quad 34)$$

where

$$[SPCCK]_{5x6} = [K_{fs}]^T [D_f] \quad 35)$$

$[SPCCK]$ should be **null**. For symmetrical or antisymmetrical analyses only the appropriate three columns will be zero.

SINGLE-POINT CONSTRAINT MASS CHECK

When mass is generated from member densities, mass may inadvertently be assigned to SPC degrees of freedom. This mass will be lost in calculating vibration modes, unless they happen to be at sym. or anti boundary constraints. SPC inertia forces can be written as:

$$\{F_s\} = [M_{ss}] \{u_s\} \quad 36)$$

where $[M_{ss}]$ is a symmetrical partition of $[M_{nn}]$.

The accelerations $\{u_s\}$ can be related to rigid body accelerations at the reference point by $[D_s]$ in eq. 26.

$$\{F_s\} = [MSPC] \{u_{REF}\} \quad 37)$$

where

$$[MSPC]_{5x6} = [M_{ss}] [D_s] \quad 38)$$

$[MSPC]$ should be null. For symmetric or anti-symmetric analyses only the appropriate 3 columns will be zero. If they are not, the degree of freedom in question should be MPC'ed, to prevent loss of mass.

OTHER TRANSFORMATION CHECKS

Checks similar to the MPC check (eq. 32) are performed for the NASTRAN generated transformation matrices $[G_o]$ and $[G_\ell]$, where $[G_\ell] = -[K_{\ell\ell}]^{-1}[K_{\ell r}]$. This was done mainly to determine how far equilibrium has deteriorated due to ill-conditioning or round-off. The checks are:

$$[O] = [GOCHK] = [G_o][D_a] - [D_o] \quad 39)$$

$$[O] = [GLCHK] = [G_\ell][D_r] - [D_\ell] \quad 40)$$

For symmetric or anti-symmetric analyses only the appropriate 3 columns should be zero.

REDUCED INTERFACE STIFFNESS CHECK

The static interface stiffness from eq. 17 states

$$\{F_r\} = [K_{rr}] \{u_r\} \quad 41)$$

Relating $\{u_r\}$ to rigid body motion by $[D_r]$ (eq. 28).

$$\{0\} = \begin{bmatrix} K_{RRCK} \\ \underbrace{\quad}_{\text{Null}} \end{bmatrix} \{u_{REF}\} = [K_{rr}] [D_r] \{u_{REF}\} \quad 42)$$

For symmetric or anti-symmetric analyses only the appropriate 3 columns should be zero.

RIGID BODY MASS MATRIX CHECK

The reduced interface mass can be converted to a rigid body mass matrix. This can be compared with the $[M_0]$ matrix, which is printed output from the GPWG module. For symmetric or anti-symmetric analyses, only the symmetric or anti-symmetric terms should be compared. This check ensures that no mass has been lost in the reduction process. $[M_{rr}]$ is converted to a rigid body matrix as follows:

$$[M_{RR}]_{6x6} = [D_r]^T \times [M_{rr}] \times [D_r] \quad 43)$$

MATRICES GENERATED IN PHASE 1 NECESSARY FOR PHASE 2 CHECKS

In Phase 2, the basic matrix Eqg (eq. 22) cannot be extracted from the GPWG module, because the Phase 1 component modes (or generalized coordinates) will be defined in Phase 2 as scalar points. Therefore, it is necessary to generate matrices in Phase 1 which can be used for Phase 2 checks.

We already have a matrix $[D_r]$ (eq. 28) to define the interface motion due to rigid body motion at the reference point. This matrix will be input to Phase 2.

$$\{u_r\} = [D_r] \{u_{REF}\} \quad 44)$$

We must now find a similar matrix for the generalized modal coordinates, which will be written as

$$\{\xi_i\} = [D_i] \{u_{REF}\} \quad 45)$$

Inverting $[K_{ii}]$ in eq. 15 yields

$$\{\xi_i\} = [K_{ii}]^{-1} \{F_i\} \quad 46)$$

The generalized forces, $\{F_i\}$, is defined in eq. 14 as

$$\{F_i\} = [\phi_i]^{-T} \{F_\ell\} \quad 47)$$

The generated NASTRAN matrix $[K_{\ell\ell}]$ defines

$$\{F_\ell\} = [K_{\ell\ell}] \{u_\ell\} \quad 48)$$

Converting $\{U_\ell\}$ to rigid body motion by $[D_\ell]$ in eq. 28 gives

$$\{F_\ell\} = [K_{\ell\ell}] [D_\ell] \{u_{REF}\} \quad 49)$$

Since $[K_{\ell\ell}]$ is large $\{F_\ell\}$ can be defined another way by using the upper partition of the stiffness matrix in eq. 9)

$$\{F_\ell\} = [K_{\ell\ell}] \{u_\ell\} + [K_{\ell r}] \{u_r\} \quad 50)$$

Converting the displacements to rigid body displacements will set $\{F_l\} = \{0\}$

$$\{0\} = [K_{ll}] [D_l] \{u_{REF}\} + [K_{lr}] [D_r] \{u_{REF}\} \quad 51)$$

or

$$[K_{ll}] [D_l] = - [K_{lr}] [D_r] \quad 52)$$

Therefore, substituting 52 into 49 yields

$$\{F_l\} = - [K_{lr}] [D_r] \{u_{REF}\} \quad 53)$$

Combining eq. 46, 47 and 53 gives

$$\{\xi_i\} = - [K_{ii}]^{-1} [\phi_l]^T [K_{lr}] [D_r] \{u_{REF}\} \quad 54)$$

Equating 54 to 45 yields

$$[D_i] = - [K_{ii}]^{-1} [\phi_l]^T [K_{lr}] [D_r] \quad 55)$$

This matrix will be input to Phase 2.

The column partition vectors used for merging substructures in Phase 2 now seems to be the only unchecked hand data. These vectors are somewhat inconvenient to prepare and are subject to human errors. Certain matrices will now be generated in Phase 1 so that they can be compared with the merged matrices in Phase 2. They are:

$$\{F_{REF}\} = [D_i]^T [K_{ii}] \{\xi_i\} = [\sum_{6x1} K_{ii}] \{\xi_i\} \quad 56)$$

$$\{F_{REF}\} = [D_i]^T [M_{ii}] \{\ddot{\xi}_i\} = [SUMM_{ii}] \{\ddot{\xi}_i\} \quad 57)$$

$$\{F_{REF}\} = [D_r]^T [M_{ir}]^T \{\ddot{\xi}_i\} = [SUMM_{ri}] \{\ddot{\xi}_i\} \quad 58)$$

$[SUMK_{ii}]$ gives the summation of interior elastic forces about a reference point due to unit generalized modal displacements.

$[SUMM_{ii}]$ gives the summation of negative interior inertia forces about a reference point due to unit generalized modal accelerations.

$[SUMM_{ri}]$ gives the summation of negative interface inertia forces about a reference point due to unit generalized modal accelerations.

Phase 2 - Coupling Substructures' Reduced Dynamic Equations and Solving for Free-Free Modes

The equations of motion of the combined uncoupled substructures can now be written in the following form:

$$[M_{gg}] \{\ddot{u}_g\} + [K_{gg}] \{u_g\} = \{F_g\} \quad 59)$$

where $\{F_g\} = \{0\}$

or

$$\begin{bmatrix} MGG_r & | & MGG_{ri} \\ MGG_{ir} & | & MGG_i \end{bmatrix} \begin{bmatrix} \ddot{u} \\ \ddot{\xi} \end{bmatrix} + \begin{bmatrix} KGG_r & | & 0 \\ 0 & | & KGG_i \end{bmatrix} \begin{bmatrix} u \\ \xi \end{bmatrix} = \begin{bmatrix} F_u \\ F_\xi \end{bmatrix} \quad 60)$$

where $\begin{bmatrix} F_u \\ F_\xi \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$\{u\}$ represents all of the uncoupled interface or junction point degrees of freedom. The interface or junction points are defined by GRID cards, thereby creating 6 degrees of freedom at each junction point. The unwanted d.o.f. (those that have been eliminated in Phase 1) will be SPC'ed out subsequently in the reduction process. The lineup of $\{u\}$ is

$$\{u\} = \begin{Bmatrix} u^1 \\ u^2 \\ \vdots \\ u^N \end{Bmatrix} \quad \text{where } N = \text{no. of substructures}$$

$\{u^i\}$ would contain $6 \times (\text{number of substructure } i \text{ junction pts})$.

$\{\xi\}$ represents all of the uncoupled generalized modal coordinates obtained in Phase 1. These coordinates will be defined by scalar points. Any unwanted generalized coordinate (those representing higher modes) can be SPC'ed out subsequently in the reduction process. The lineup of $\{\xi\}$ is

$$\{\xi\} = \begin{Bmatrix} \xi^1 \\ \xi^2 \\ \vdots \\ \xi^N \end{Bmatrix}$$

The column partition vectors used to merge the substructures can be thought of as transformation matrices for the sake of presentation. For example:

$$[K_{gg}^j] = [T_{gr}^j] [K_{rr}^j] [T_{gr}^j]^T$$

will merge the j^{th} substructure interface stiffness from Phase 1 into the Phase 2 g-lineup. Therefore, the mass and stiffness matrices in eq. 59 are generated by

$$[M_{gg}] = \sum_{j=1}^N \left([T_{gi}^j] [M_{rr}^j] [T_{gr}^j]^T + [T_{gi}^j] [M_{ii}^j] [T_{gi}^j]^T + [T_{gi}^j] [M_{ir}^j] [T_{gi}^j]^T + [T_{gr}^j] [M_{ir}^j] [T_{gi}^j]^T \right)$$

$$[K_{gg}] = \sum_{j=1}^N \left([T_{gr}^j][K_{rr}^j][T_{gr}^j]^T + [T_{gi}^j][K_{ii}^j][T_{gi}^j]^T \right)$$

where N = number of substructures.

Similarly the kinematic matrix similar to eq. 23) can be generated

$$[D_g] = \sum_{j=1}^N \left([T_{gr}^j][D_r^j] + [T_{gi}^j][D_i^j] \right) \quad 61)$$

In order to partition the merged matrices of eq 59) into that of eq 60), we need a column partition vector defining the generalized coordinates in terms of the g-set lineup. This is obtained by adding up the substructures' partition vectors which merged the substructure generalized coordinates into the Phase 2 lineup.

$$\{CP_{gi}\} = \sum_{j=1}^N \{CP_{gi}^j\} \quad 62)$$

We can now perform some checks on the merged matrices in eq. 60) after first partitioning $[D_g]$

$$\{\xi\} = \begin{bmatrix} u \\ DG_r \\ DG_i \end{bmatrix} \{u_{REF}\} \leq [D_g] \{u_{REF}\} \quad 63)$$

MERGED INTERFACE STIFFNESS CHECK

$$[O] = [KGGRCK] = [KGG_r][DG_r] \quad 64)$$

For symmetric or anti-symmetric analyses only the 3 appropriate columns should be zero.

MERGED RIGID BODY MASS MATRIX CHECK

$$[\text{MOGG}_r] = [\text{DG}_r]^T [\text{MGG}_r] [\text{DG}_r] \quad 65)$$

this matrix should be equal to

$$[\text{MOGG}_r] = \sum_{j=1}^N [\text{MORR}^j] \quad 66)$$

or equal to the sum of the substructures' rigid body mass matrices given in eq. 43.

FORCE SUMMATION CHECKS ON MERGED MATRICES

$$\begin{aligned} [\text{SUMKGG}_i] &= [\underbrace{\text{DG}_i}_{6 \times 6}]^T [\text{KGG}_i] = [\underbrace{\text{SUMK}_{ii}^1}_{\text{Merged Matrices}} \mid \cdots \mid \text{SUMK}_{ii}^N] \\ [\text{SUMMGG}_i] &= [\underbrace{\text{DG}_i}_{6 \times 6}]^T [\text{MGG}_i] = [\underbrace{\text{SUMM}_{ii}^1}_{\text{Merged Matrices}} \mid \cdots \mid \text{SUMM}_{ii}^N] \\ [\text{SUMMG}_{ri}] &= [\underbrace{\text{DG}_r}_{6 \times 6}]^T [\text{MGG}_{ri}] = [\underbrace{\text{SUMM}_{ri}^1}_{\text{Merged Matrices}} \mid \cdots \mid \text{SUMM}_{ri}^N] \end{aligned}$$

Phase 1 Matrices
eq 56 → 58

PHASE 2 CONTINUATION

After the merging checks are performed, the dynamic problem stated in eq. 59) will be reduced in the normal RIGID FORMAT 3 fashion to obtain a real eigenvalue solution. Continuity at the interface between structures are described by MPC's and the rigid body supports described by a SUPPORT card. The checks incorporated in Phase 1 are incorporated in Phase 2 (Equations 25 thru 43 are still valid in Phase 2).

The system eigenvalues and eigenvectors are recovered in the original substructure lineups and put on individual substructure tapes so that grid point displacement can be obtained and plotted for the system modes in Phase 3.

The eigenvectors for a typical reduced substructure would be

$$\begin{Bmatrix} \xi_i \\ u_r \end{Bmatrix}^j = \begin{bmatrix} \phi_i^j \\ \phi_r^j \end{bmatrix} \{ \xi \} \quad 67)$$

Each substructures' system modal stiffness and mass is also calculated and printed out in this phase. This gives us the contribution of each substructure to the total modal stiffness and mass.

For more detailed description of all operations performed in all three phases, see Appendix B1.

**Appendix B1
NASTRAN COMPONENT MODES ANALYSIS ALTERS TO RIGID
FORMAT 3- PHASES 1, 2, & 3**

APPENDIX B1 NASTRAN COMPONENT MODES ANALYSIS - ALTERS TO RIGID
FORMAT 3, PHASES 1, 2, AND 3

REGULAR BULK PARAMETER USED - PHASE 1

GRDPNT - - - - This parameter should always be used. It causes the rigid body mass matrix MO to be printed out, which can be compared with the matrix MORR discussed in ALTER 75,84.

WTMASS - - - - Converts generated weight to mass. In the 1/8 scale model, the weight was in lbs., therefore WTMASS = .002588. The MO matrix was thus a rigid body weight matrix (see GRDPNT above). If mass was generated directly (densities in mass units), WTMASS would be 1.0 and the MO matrix would be a rigid body mass matrix.

NEW BULK PARAMETERS - PHASE 1

TPNAME - - - - Label name of INPT, where reduced substructure matrices are outputted for Phase 2.

MASSC - - - - Converts mass to weight. The default incorporated is MASSC = 386.4 #/in/sec², which converts mass to lbs., which is consistent with the parameter WTMASS = .002588. Therefore, the matrices MO and MORR will be in consistent units (see GRDPNT above). If WTMASS = 1.0, MASSC = 1.0. In order to have MO and MORR consistent MASSC should be the reciprocal of WTMASS.

PHASE 1 ASSUMPTIONS

1. Any zero-stiffness degrees of freedom and symmetrical or anti-symmetrical boundary constraints at the model plane of symmetry are included in the Single Point Constraint set (SPC). No other degrees of freedom are included in this set.
2. Each substructure should reference the same origin on the GRDPNT parameter card and also reference the same basic coordinate system.
3. No scalar points should be used in this phase.

4. Interface or junction point degrees of freedom are defined by SUPPORT cards (r-set).
5. The component modes obtained in this phase are with the interface fixed.
These modes can be plotted.

ALTERS INCORPORATED - PHASE 1 (GENERAL FLOW)

ALTER 54 - PHASE 1 (DETAILED FLOW)

ALTER 59 - PHASE 1 (DETAILED FLOW)

ALTER 73 - PHASE 1 (DETAILED FLOW)

ALTER 75, 84 - PHASE 1 (DETAILED FLOW)

ALTER 94 - PHASE 1 (DETAILED FLOW)

COPY ONTO TAPE (INPT) MATRICES NECESSARY TO COUPLE IN PHASE 2	
OUTPUT1	$K_{rr}, K_{ii}, M_{rr}, M_{ir}, M_{ii} // C, N, -1/C, N, O/V, Y, TPNAME$
OUTPUT1	$D_i, D_r, // C, N, O/C, N, O/V, Y, TPNAME$

EXPAND EIGENVECTORS ϕ_ℓ USING $\{CP_{\mathbf{r}}^\ell\}$

$$[\phi_a] \leftarrow \begin{bmatrix} \phi_\ell \\ 0 \end{bmatrix}$$

TPNAME is an input BULK Parameter

END OF ALTER 94

NEW BULK PARAMETERS - PHASE 2

NOSUB - - - - - Number of reduced substructures (on tape INPT) to be coupled.

TPNAME - - - - - Label name of INPT which contains the reduced substructure matrices plus column partition vectors for merging. It is also the common label name of INP1, INP2, etc., where the final substructures system eigenvalues and eigenvectors are outputted, which will be used for Phase 3.

MASSC - - - - - Same as in Phase 1.

PHASE 2 ASSUMPTIONS

1. Interface or junction point degrees of freedom are defined on GRID cards with the released DOF in Phase 1 SPC'd out.
2. Substructure component modes are defined as scalar points.
3. Continuity at junction points between substructures are accomplished with MPC's.
4. SUPORT card in this phase defines the usual rigid body statically determinate supports.
5. The Phase 1 tapes are assumed to have been consolidated onto 1 tape by a DMAP run, which will be input to this run. This tape also contains the column partition vectors necessary for merging.
6. Free-free modes are obtained in this phase. Plots are not obtained in this phase.

ALTERS INCORPORATED - PHASE 2 (GENERAL FLOW)

ALTER 46 - PHASE 2 (DETAILED FLOW)

NEW BULK PARAMETER - PHASE 3

TPNAME2 - - - - - Label name of INPT which contains final substructure system eigenvalues and eigenvectors from Phase 2.

PHASE 3 ASSUMPTIONS

1. Checkpoint tape from Phase 1 is used in this phase. Also, a tape from Phase 2 containing final reduced system eigenvectors.
2. The final full system eigenvectors are recovered in this phase and can be plotted.

ALTERS INCORPORATED - PHASE 3 (GENERAL FLOW)

NASTRAN EXECUTIVE CONTROL DECK ECHO

10 PHASE1 FUSSRIC
RSTART PHASE1 FUSSRIC 9/27/74. REEL 1. FILE = 7
1. XVP\$ 2. FLAGS = 0.
2. REENTER AT OMPL SEQUENCE NUMBER 2

\$ END OF CHECKPOINT DICTIONARY
APP DISP
SOL 3.0

CHKPNT YES
TIME 90

DIAG 7.8.13.14.19.21.22
\$ SUBSTRUCTURING BY COMPONENT NORMAL MODES ANALYSIS

\$ PHASE 1 ALTERS TO RIGID FORMAT 3
ALTER 49 \$ CHANGE MASS TO WEIGHT

ACD MGG./WGG/C.Y. MASSC=(38.4.0.0)

MATGPR GPL USET.SIL.WGG/C.N.G

CHKPNT WGG

ALTER 54 \$ GPWG HAS BEEN MODIFIED TO OUTPUT MATRIX EGG

\$ EGG BASIC RESULTS OF UNIT G-SET LOADS ABOUT CHOOSEN ORIGIN

\$ CHOOSEN ORIGIN DEFINED BY PARAMETER GEDPT IN BULK(DEFAULT=BASIC ORIGIN

GPAG HGDPT.CSTM.EGETIN.AE CG/V.Y.GDPTN=1/C.N.0.0

TNSP EGG/DG & DG= RIGID BODY DEF'L'S DUE TO ORIGIN DEF'L'S

PURGE CPGMN.DM.MPCKK/MFCK1

EQUIV EG.G.DG.DA.DN.CPGMN.MPCKK

ALTER 59 USET.CPGMH/C.N.G/C.N.M/C.N.N

VECT PARTN DG.CPGMN/DM.DN./C.N.1/C.N.2/C.N.2 \$ MPC CHECK

MPYAD GM.DN.DM/MPCKK/C.N.O/C.N.1/C.N.-1 \$

MATGPR GPL USET.SIL.MUCCK/C.N.H

CHKPNT CPGMN.DM.DN.MPCKK

ALTER 62 DN.DF/SINGLE

CPNSF.DS.S2CK.MSS.WSS.WSPC/SINGLE

CHKPNT CPNSF.DS.S2CK.MSS.WSS.WSPC.DF

ALTER 65 USET/CPNSF/C.N.N/C.N.S/C.N.F

PARTN DN.CPNMF/DS.DF./C.N.1/C.N.2/C.N.2 \$ SPC CHECK

SPC'S PRESERVED FOR ZFO STIFFNESS & SYM. OR ANTI-ROUNDARY D.O.F.

SPC F.S.O FOR SYM. UI. ANTI RIGID BODY ORIGIN DEF'L'S

MATGPR GPL USET.SIL.SPCK//C.H.S

UPARTN USET.MNN/MSS.0/C.N.N.S/C.N.F

ACD MSS./WSS/C.Y.MASSC=(38.4.0.0) \$ WEIGHT AT SPC'S

WSPC EQUIV TO S2C. INERTIA F'S DUE TO RIGID BODY ORIGIN DEF'L'S

SHOULD BE ZERO FOR SYM.DR ANTI ORIGIN DEF'L'S (OTHERWISE MASS IS LOST)

MATGPR GPL USET.SIL.WSPC//C.N.S
CHKPNT CPNSF.DS.DF.SPCK.MSS.WSS.WSPC
ALTER 66

Y
X
C
Z
A
B
T
R
N
S
U
C
P
R
O
C
O
N
T
R
A
T
O
R
U
X
C
H
O
E
C
H
O

```

EQUIV OF/DA/OMIT
PURGE CPOA,DO,GCHK/OMIT
CCHKPT CPOA,DO,GCHK,DA

ALTER 73 VFC0A/C,N,F/C,N,0/C,N,A
PARTN — DF,CPOA/0,DA,./C,N,1/C,N,2/C,N,2,$ GO CHECK
MPYAD GO,DA,DO,GCHK/C,N,0/C,N,1/C,N,-1$ CCHKPT CPOA,DO,DA,GCHK,DA

ALTER 751,84 FINIS,PEACT $ THLFE MUST SUPPORT CARD DEFINING INTERFACE D.O.F.
CNDP USET/CPOA/C,N,F/C,N,0/C,N,A
UPARTN USET,KAA/KLL,KL,KRFLV/C,N,A/C,N,L/C,N,R
SOLVE KLL,KLR/GL/C,N,1/C,N,-1$ INTERFACE STIFF.
MPYAD KLR,GL,KPR/KR/C,N,1$ USET,MAA/MLL,MKFRU/C,N,A/C,N,L/C,N,R
UPARTN MLL,GL,MLR/WL/KC,N,0$ MLL,ML,WL/KC,N,1$ MPYAD GL,MRR/WL/KC,N,1$ GL,MILR/MHF/C,N,1$ REDUCED INTERFACE MASS
USET,KLR,KRGF,MIL,MKFBL,GL,KRP,MIL,MRK,MRR
CCHKPT USET/CPALPC,C,N,A/C,N,L/C,N,R
VECT DA,OPAL/DL,DR,/C,N,1/C,N,2/C,N,2,$ GL CHECK
UPARTN DA,DR/DL,GLCHK/C,N,0/C,N,-1$ MATGR GPL,USFT,SIL,GLCKH/C,N,L
MPYAD KRP,DR/KRSL,KIFUK/C,N,C,N,0$ ADD DR/WHR/C,Y,MASSC=1386.4,0.01$ INTERFACE STIFF.CHECK
MATGR TNSP EOR,WR,DR,•/MCRF/C,N,3/C,N,1/C,N,0$ RIGID BODY WT. MATRIX
TNSP DR/EOK MORY,•/•/$ CCHKPT CP,ALR,DL,DL,TOR,GLCHK,KFRCK,WRR,WOR READ KLL,MLL,•/FEED,CASEFC/LAML,PHIL,MI,DEIGS/C,N,MODES/V,N,NEIGV
ALTER 89,99 CHPLT PHIL,LAML,DF2,LAML,OEIGS,,/V,N,CAFDNO
ALTER 91,92 CCHKPT PHIL,LAML,DF2,LAML,OEIGS,,/V,N,CAFDNO
ALTER 94 SUMMATION OF UNIT GENERALIZED FORCES ABOUT ORIGIN
TNSP $ GENERATE MODAL STIFF. & MASS MATRICES
TNSP PHIL/TPHIL PHIL•/K1/C,N,3/C,N,1/C,N,0$ MPYAD TPHIL,KL,PHIL•/M1/C,N,3/C,N,1/C,N,0$ S
SUMMAD TPHIL,MIL,PHIL•/M1/C,N,3/C,N,1/C,N,0$ S
WATPN K11,M11,•/•/$ MPYAD TPHIL,MIL,•/M1/C,N,0/C,N,1/C,N,0$ S
SUMMAD TPHIL,KLR,KIK/C,N,0/C,N,1/C,N,0$ S
READ KLL,KLR,•/FEED,CASEFC/LAML,PHIL,MI,DEIGS/C,N,MODES/V,N,NEIGV
ALTER 91,92 CCHKPT PHIL,LAML,DF2,LAML,OEIGS,,/V,N,CAFDNO
ALTER 94 SUMMATION MATRICES
TNSP EOR,KIT,•/SUMM11/C,N,0/C,N,1/C,N,0$ MPYAD EOR,KIT,•/SUMM11/C,N,0/C,N,1/C,N,0$ S

```

B2-2

NASTRAN EXECUTIVE CONTROL DECK ECHO

```

MPYAD MIR,DR./SUMMRI/C.N.0/C.N.1/C.N.0 S
TRNSP TUMMR1/SUMMR1
MATPN EOI*SUMK11*SUMMFL//S
S COPY NECESSARY MATRICES ON TAPE INPT FOR PHASE 2
OUTPUT1 KRP*K11*MRR*MIR*M11/C.N.-1/C.N.0/V.Y.TPNAME
OUTPUT1 D1,DR,999//C.N.0/C.N.0/V.Y.TPNAME
S EXPAND PRE-COUPLING EIGENVECTORS INTO A-SET
MERGE PHIL***CPALK/PHIA/C.N.1/C.N.2/C.N.2
ALTER 96,96
ALTR 105,105
SDR2 CASECC,CSTM,MPT,DIT,EQEXIN,SILIG,RGPD,P,LAML,OG,PHIG,EST,/.00G1,
ENDALTER
CEND

```


LARFL 163
DAGAN /C/N, NUNU/V, N-PASS/V, N-PASS/C, N-
DRAM /C/N, NUNU/V, N-PASS/V, N-PASS/C, N-
DAGAN /C/N, NUNU/V, N-PASS/V, N-PASS/C, N-
DAGAN /C/N, NUNU/V, N-PASS/V, N-PASS/C, N-

REDET LARFL CHKONT

ПРОСЕР СРСЧН, ДМ МРСК/МРСГ |
ПОЛІУАН ДСН, ДМ МРСГ |
СІМКОВ ДМ СН, СРСЧН, МРСК |
АЛЬБІСН, МРСК |

УЧЕБНИК
ЛІСЕТ/СОГНУ/С. Н./С/У/Н/М/С/Н/Н
ДАРТН.—ДС.—СОГНУ/С. Н./С/У/Н/М/С/Н/Н
МУРЯН/С/У/Н/М/С/Н/Н
МАЧКА/С/У/Н/М/С/Н/Н

PE 62
PREFACE
INTRODUCTION
THEORY
EXPERIMENTAL
RESULTS
DISCUSSION
REFERENCES
NOTES
ACKNOWLEDGEMENTS
APPENDIX
BIBLIOGRAPHY
INDEX

RECEIVED
FEB 22 1968
SPECIAL AGENT
IN CHARGE
FBI - BOSTON
ORIGIN AND
CHARACTER
OF THIS
REPORT
IS NOT
TO BE
DISCLOSED
BY THE
FEDERAL
BUREAU
OF INVESTIGATION
U. S. DEPARTMENT
OF JUSTICE

B2-5

NASTAN - F C C U T T E - C O N T R A C T - D E C K - F C H - 9

MPYAD	NIKFFI/FNFFI/FNFFI/C,N,0
MPYAD	PHI/FFR/MNFFK1/C,N,0
MPYAD	PHI/FFI/WNFFK1/MNFFK1/N,0
MATDN	FNEE/MNDFK1/C,N,0
MDYAN	WARK/PHI/FM1/C,N,0
MDYAN	WIRK/PHI/FM1/FM1/C,N,0
MDYAN	WIRK/DW1/FM1/C,N,0
MDYAN	WIRK/DW1/FM1/C,N,0
MDYAN	WIRK/DW1/FM1/C,N,0
MDYAN	WIRK/FUT/SINFM1/C,N,0
MDYAN	DOK/FMO/SINFM1/SINFM1/C,N,0
MDYAN	PHI/FM1/FM1/C,N,0
MDYAN	DH12/FAR/NNFM1/C,N,0
MATDRY	SINFM1/MNDFM1/C,N,0
MATDRY	SINFM1/MNDFM1/C,N,0
PARAW	/C,N,ANN/V,Y,INP/V,N,IND/C,N,0
PARAW	/C,N,CIN/V,N,SKLND/V,Y,IND/C,N,0
PARAW	LNLSKLND
PERT	LNLSKLND
LAFI	101
ALTER	114-116
FENDAI TFR	
CFV	

NASTRAN EXECUTIVE CONTROL DECK ECHO

```

148. MORR          *   FLAGS = 0.   REFL = 1.   FILE # 95
149. XVP\$          *   FLAGS # 0.   RFFL # 1.   FILE # 96
150. REENTER AT DMAP SEQUENCE NUMBER 89
151. FED           *   FLAGS = 0.   RFFL # 1.   FILE # 97
152. XVP\$          *   FLAGS = 0.   RFFL # 1.   FILE # 98
153. RFFNTR AT DMAP SSEQUENCE NUMBER Q3
154. PHIL          *   FLAGS = 0.   RFFL # 1.   FILE # 99
155. LAML          *   FLAGS # 0.   RFFL # 1.   FILE # 100
156. XVP\$          *   FLAGS # 0.   RFFL # 1.   FILE # 101
157. RTINTER AT DMAP SSEQUENCE NUMBER 100
158. SIL            *   FLAGS = 4.   RFFL # 1.   FILE # 13
159. SIP            *   FLAGS # 4.   RFFL # 1.   FILE # 13
160. RCDP          *   FLAGS = 4.   RFFL # 1.   FILE # 12
161. RCDP          *   FLAGS = 4.   RFFL # 1.   FILE # 12
162. XVP\$          *   FLAGS # 0.   RFFL # 1.   FILE # 102
$ END OF CHECKPOINT DICTIONARY
APP DISP
SOL 3.0
TIME 2.0
DIAG 7.8.13.14.19.621.22
$ SURSTRUCTURING BY COMPONENT NORMAL MODES ANALYSIS
$ PHASE 3 ALTERS TO RIGID FORMAT 3
ALTER 2.7
ALTER 1.9.94
INPUT1 /C.N.-3/C.N.0/V.Y.TPNAME2
INPUT1 /LAMA.PHII.PHIR./C.N.0/
MPYAD GL.PHIL1/PHLF1/C.N.0/C.N.1/C.N.0
MPYAD PHIL.PHII.PHLF1/PHLF1/C.N.0/S
MIRPF PHIL.PHII.PHLF1/OPALR/PHIA/C.N.1/C.N.2/C.N.?
CHKPT PHIA
$ SUMMATION OF ELASTIC FORCES ABOUT REFERENCE POINT
SUPYAD LA.KAA.PHIA./FOF/C.N.3/C.N.1/C.N.2/C.N.1 $ 
$ SUMMATION OF MUMNTUM FORCES, ABSUT, RFF, PT, IRRELATIVE TO EIGENVALUE#18
SUPYAD DA.MAA.PHIA./SUMM/C.N.3/C.N.1/C.N.1/C.N.2/C.N.1 $ 
MATPN FOF. SUMM.// $ 
ALTER 9.7.10.4
ALTER 1.14.11.0
ENDALTEK
CFND

```

PHASE 3

MODIFIED
SUBROUTINE GPWG

```
C   GRID POINT WEIGHT GENERATOR
C   INPUTS--RGPD1.CSTM, EOEXIN.MGG
C   OUTPUTS-- OGPWG
C   PARAMETERS -- POINT.WTMASS
C
C   INTEGER RGPD1.CSTM, EOEXIN.OGPWG, SCR1, SCR2, SCR3, SCR4,POINT
C   COMMON //POINT.WTMASS,EOEXIN.MGG/101•102•103•104 /
C   DATA RGPD1.CSTM / 0 /
C   DATA OGPWG /?01/
C   DATA SCR1,SCR2,SCR3,SCR4 / 301•302•303•304 /
C
C   FORM D MATRIX XTRANSPOSED
C   IP# POINT
C
C   COMMENT*** IF WTMASS#0.0 THFN OGPWG#DT*****
C   IFXWTMASS•NE.0.0 NGOTO 100
C   CALL GPWG1XPOINT.RGPD1.CSTM,EOEXIN.OGPWG, NOGOH
C   GOTO 10
100  CONTINUE
C   CALL GPWG1XPOINT.RGPD1.CSTM,EOEXIN.SCR3,NOGOH
C
C   CHECK FOR AN ALL SCALAR PROBLEM AND A STUPID USER
C
C   IFNNGO •EQ. 0H GO TO 10
C
C   COMPUTE MZEROH DT=NGGD*D
C
C   CALL TRAP1XSCR3•SCR1•2•SCR2•SCR4,0.0•0.0•0.0
C   CALL SSG2HXMGG,SCR1•0•SCR2•0•1•1•SCR3H
C   CALL SSG2R•SCR1•SCR2•0•SCR4•1•1•1•SCR3H
C
C   M-ZERO IS ON SCR4
C
C   FORM OUTPUT STUFF
C
C   IFPOINT •EO. 0H IP # 0
C   CALL GPWG1BXSCR4,OGPWG,WTMASS,IPH
10  RETURN
END
```

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS_HALF_EFF_LONG..85(EFF_TRANS_AT WING(G=2/3EFF.))

C A S E C O N T R O L _ D E C K _ E C H O

CARD COUNT

1 TITLE = PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
2 SUBTITLE = SKINS HALF EFF LONG..85(EFF_TRANS_AT WING(G=2/3EFF.))
3 MPC = 401
4 SPC = 301
5 METHOD = 1
6 MAXLINES = 50000
7 VECTOR = ALL
8 SUICASE 1 = ALL
9 LABEL = FREE MODES FIXED AT INTERFACE
10 MUDIS = 45
11 OUTPUT(PLOT)
SET 40 = INCLUDE 2200 THRU 2293,2630 THRU 2647,2656 THRU 2659.
12
13
14 SET 41 = INCLUDE 2600 THRU 2629,2648 THRU 2655,2700 THRU 2705
15 SET 42 = INCLUDE 2300 THRU 2432
16 PLOTER CALCOMP 765,105
17 AXES = MY*X*7
18 VIEW = 300,0,45,0,0,0
19 MAXIMUM (DEFINITION 5,0
20 FIND SCALE,ORIGIN 40,SET 40
21 PLUT MODAL DEFORMATION 1 THRU 45,SET 40,SHAPE,VECTOR XYZ
22 PLUT MODAL DEFORMATION 1 THRU 45,SET 42,SHAPE,VECTOR XYZ
23 BEGIN BULK

*** USER INFORMATION MESSAGE 207. BULK DATA NOT SORTED. XSOFT WILL RE-ORDER DECK.

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS HALF EFF.LONG.:105(EFF.TFANS.AT.WING(G=2/3EFF.))

OCTOBER 6, 1974 NASTRAN 2/173 PAGE 6

CARD COUNT	SORT E D BULK DATA ECHO	1	2	3	4	5	6	7	8	9	10
1-	ASE T1	1	1516	1800							
2-	ASE T1	1	1526								
3-	ASE T1	3	160	1505	1506	1613	1614				
4-	ASE T1	3	241	301	506	1701	1801	1833	1901		
5-	ASE T1	3	2001								
6-	ASE T1	3	101	111	131	151	166	201	219		
7-	ASE T1	3	242	501	601	701	801	901	911		
B-	ASE T1	13	1001	1011	1101	1111	1201	1221	1301		
8-	ASE T1	13	1321	1401	1406	1601	1606	1706	1821		
9-	ASE T1	13	2011	2026							
10-	ASE T1	23	229	232	235	238					
11-	ASE T1	23	1823	1827	1831	1835	156	158			
12-	ASE T1	23	110	115	127	129	1205	1205	206		
13-	ASE T1	123	224	230	236	305	318	505	605		
14-	ASE T1	123	618	705	718	805	816	905	923		
15-	ASE T1	123	1005	1023	1105	1115	1123				
16-	ASE T1	123	1220	1305	1312	1320	1405	1410	1418		
17-	ASE T1	123	1502	1510	1605	1610	1705	1710	1718		
18-	ASE T1	123	1806	1809	1812	1824	1836	1848	1905	1918	
19-	ASE T1	123	1922	2005	2010	2014	2029	2030	2041		
20-	ASE T1	123	2105	2106	2110	2114					
21-	ASE T1	123	2700	2701	2702	2703					
22-	ASE T1	1235	518	1618							
23-	ASE T1	123456	2200								
24-	ASE T1	181	181	151	152	166					
25-	CHAP	182	181	152	153	169					
26-	CBAP	182	181	153	154	168					
27-	CEAF	183	181	154	155	167					
28-	CHAR	184	181	155	156	168					
29-	CHAR	185	181	156	157	151					
30-	CHAR	186	181	157	158	166					
31-	CHAR	187	181	158	159	166					
32-	CHAR	188	181	159	160	166					
33-	CHAR	189	181	160	161	166					
34-	CBAP	190	181	161	161	162	166				
35-	CBAR	191	181	162	162	163	166				
36-	CBAR	192	181	163	163	164	166				
37-	CBAR	193	181	164	164	165	167				
38-	CLEAR	194	194	158	167	156					
39-	CBAR	195	194	167	168	154					
40-	CHAR	196	194	168	169	153					
41-	CHAR	197	194	169	166	152					
42-	CBAR	198	181	166	165	158					
43-	CBAR	199	181	165	151	157					
44-	CBAP	463	463	305	310	0	1.0	0.0	0.0	1	6463
45-	E463		0.0	0.0	0.0	0.0	0.0	0.0	0.0	1	6464
46-	CLEAR	464	464	310	312	0.0	1.0	0.0	0.0	1	6464
47-	E464		0.0	0.0	0.0	0.0	0.0	0.0	0.0	1	6464
48-	CUAR	465	465	312	314	0.0	1.0	0.0	0.0	1	6465
49-	E465		0.0	0.0	0.0	0.0	0.0	0.0	0.0	1	6466
50-	CBAR	466	466	314	316	0.0	1.0	0.0	0.0	1	6466

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS HALF EFF,LONG,1.85L,EFF,TRANS,AT WING(G=2/3EFF),

OCTOBER 6, 1974 NASTRAN 2/ 1/73 PAGE 7

CARD COUNT	1	2	3	4	5	6	7	8	9	10
51-	6466	•	•	•	•	•	•	•	•	•
52-	CBAR	467	467	316	575	0	0	0	0	0
53-	CAEF	0	0	0	0	0	0	0	0	0
54-	CEAR	1231	181	1221	1206	1212	0	0	0	0
55-	CBAR	1232	181	1206	1201	1210	0	0	0	0
56-	CHAN	1927	1927	1905	1918	0	0	0	0	0
57-	61927	•	•	0	0	0	0	0	0	0
58-	CAEF	1928	1928	1918	1919	0	0	0	0	0
59-	E1928	•	•	0	0	0	0	0	0	0
60-	CHAR	1929	1929	1919	1920	0	0	0	0	0
61-	E1929	•	•	0	0	0	0	0	0	0
62-	CHAR	1930	1930	1920	1921	0	0	0	0	0
63-	E1930	•	•	0	0	0	0	0	0	0
64-	CAEF	1931	1931	1921	1922	0	0	0	0	0
65-	E1931	•	•	0	0	0	0	0	0	0
66-	CBAR	2101	2101	2101	2102	2110	0	0	0	0
67-	CBAR	2102	2102	2102	2103	2103	0	0	0	0
68-	CBAR	2103	2103	2103	2104	2104	0	0	0	0
69-	CHAR	2104	2104	2104	2105	2105	0	0	0	0
70-	CHAR	2105	2105	2105	2106	2106	0	0	0	0
71-	CAEF	2106	2106	2106	2107	2107	0	0	0	0
72-	CHAR	2107	2107	2107	2108	2108	0	0	0	0
73-	CFAR	2108	2108	2108	2109	2109	0	0	0	0
74-	CAEF	2109	2109	2109	2110	2110	0	0	0	0
75-	CBAR	2110	2110	2110	2111	2111	0	0	0	0
76-	CHAR	2111	2111	2111	2112	2112	0	0	0	0
77-	CHAR	2112	2112	2112	2113	2113	0	0	0	0
78-	CAEF	2113	2113	2113	2114	2114	0	0	0	0
79-	CHAR	2114	2114	2114	2115	2115	0	0	0	0
80-	CAEF	2502	2502	243	316	316	0	0	0	0
81-	CHAR	2503	2502	318	518	518	0	0	0	0
82-	CBAR	2504	2502	518	618	618	0	0	0	0
83-	CAEF	2505	2502	618	718	718	0	0	0	0
84-	CBAR	2506	2502	718	760	760	0	0	0	0
85-	CHAR	2507	2502	760	818	818	0	0	0	0
86-	CAEF	2508	2502	818	923	923	0	0	0	0
87-	CHAR	2509	2502	923	1023	1023	0	0	0	0
88-	CBAR	2510	2502	1023	1123	1123	0	0	0	0
89-	CAEF	2511	2502	1123	1161	1161	0	0	0	0
90-	CBAR	2512	2502	1161	1220	1220	0	0	0	0
91-	CHAR	2513	2502	1220	1320	1320	0	0	0	0
92-	CAEF	2514	2502	1320	1418	1418	0	0	0	0
93-	CHAR	2515	2502	1418	1510	1510	0	0	0	0
94-	CBAR	2516	2502	1510	1618	1618	0	0	0	0
95-	CAEF	2517	2502	1618	1718	1718	0	0	0	0
96-	CBAR	2518	2502	1718	1824	1824	0	0	0	0
97-	CHAR	2713	2713	1824	1922	1922	0	0	0	0
98-	CAEF	2722	181	1821	1920	1920	0	0	0	0
99-	CBAR	2723	181	1930	1929	1929	0	0	0	0
100-	CBAR	2734	181	1930	1901	1901	0	0	0	0

B3-3

S O R T E D - B U L K - D A T A - E C H O									
CARD	COUNT	1	2	3	4	5	6	7	8
101-	CBAR	2725	181	1929	1922	1905	1905	1905	1905
102-	CRM2725	6	181	1927	1926	1925	1925	1925	1925
103-	CUAP	2726	181	1926	1926	1925	1925	1925	1925
104-	CHAP	2727	181	1926	1926	1925	1925	1925	1925
105-	CBAR	2728	181	1925	1925	1924	1924	1924	1924
106-	CBAR	2729	181	1924	1924	1923	1923	1923	1923
107-	CBAR	2730	181	1923	1923	1922	1922	1922	1922
108-	CRM2730	6	181	1923	1923	1922	1922	1922	1922
109-	CEL A52	20200	148000.	230	1	243	1	243	1
110-	CUNM2	400	301	0	0	39	0	39	0
111-	CUNM2	500	501	0	0	14	0	14	0
112-	CUNM2	900	919	0	0	16	0	16	0
113-	CUNM2	1000	1019	0	0	16	0	16	0
114-	CUNM2	1300	1316	0	0	16	0	16	0
115-	CUNM2	1400	1414	0	0	16	0	16	0
116-	CUNM2	1500	1506	0	0	16	0	16	0
117-	CUNM2	1600	1614	0	0	16	0	16	0
118-	CUNM2	1800	1800	0	0	26.25	0	26.25	0
119-	CUNM2	2000	2000	0	0	26.25	0	26.25	0
120-	EDHMS	44.4	232.2	0	0	219.5	0	219.5	0
121-	CUNM2	2031	2014	0	0	13	0	13	0
122-	CUNM2	2032	2014	0	0	13	0	13	0
123-	CUNM2	2033	2026	0	0	12	0	12	0
124-	CUNM2	2034	2029	0	0	12	0	12	0
125-	CONROD	101	101	102	102	102	102	102	102
126-	CONROD	102	102	103	103	103	103	103	103
127-	CONFORD	103	103	104	104	104	104	104	104
128-	CONFORD	104	104	105	105	105	105	105	105
129-	CUNPCD	105	105	110	110	110	110	110	110
130-	CUNKD	109	111	112	112	112	112	112	112
131-	CUNKD	110	111	113	113	113	113	113	113
132-	CUNKD	111	111	114	114	114	114	114	114
133-	CUNKD	112	112	115	115	115	115	115	115
134-	CUNKD	113	116	117	117	117	117	117	117
135-	CUNROR	114	117	118	118	118	118	118	118
136-	CUNROR	115	118	119	119	119	119	119	119
137-	CONFOR	116	119	120	120	120	120	120	120
138-	CONFOR	117	120	128	128	129	129	129	129
139-	CONFOR	118	122	130	130	131	131	131	131
140-	CONFOR	119	123	130	130	131	131	131	131
141-	CONFOR	120	124	130	130	131	131	131	131
142-	CONFOR	121	125	131	131	132	132	132	132
143-	CONFOR	122	126	132	132	133	133	133	133
144-	CONFOR	123	127	133	133	134	134	134	134
145-	CONFOR	124	128	134	134	135	135	135	135
146-	CONFOR	125	129	135	135	136	136	136	136
147-	CONFOR	126	130	136	136	137	137	137	137
148-	CONFOR	127	131	137	137	138	138	138	138
149-	CONFOR	128	132	138	138	139	139	139	139
150-	CONFOR	129	133	139	139	140	140	140	140

B3-4

S O R T E D - B U L K - D A T A E C H O									
COUNT	3	4	5	6	7	8	9	10	
151-	•202	203	204	•059200	•059200	•059200	•059200	•059200	•0233
152-	CONROD	204	205	206	207	208	209	210	0233
153-	CONFOD	205	206	207	208	209	210	211	0233
154-	CONFOD	216	217	218	219	220	221	222	0174
155-	CONFOD	217	218	219	220	221	222	223	0174
156-	CONFOD	218	219	220	221	222	223	224	0174
157-	CONFOD	219	220	221	222	223	224	225	0174
158-	CONFOD	220	221	222	223	224	225	226	0174
159-	CONFOD	221	222	223	224	225	226	227	0174
160-	CONFOD	222	223	224	225	226	227	228	0174
161-	CONFOD	223	224	225	226	227	228	229	0174
162-	CONFOD	224	225	226	227	228	229	230	0174
163-	CONFOD	225	226	227	228	229	230	231	0174
164-	CONFOD	226	227	228	229	230	231	232	0174
165-	CONFOD	227	228	229	230	231	232	233	0174
166-	CONFOD	228	229	230	231	232	233	234	0174
167-	CONFOD	229	230	231	232	233	234	235	0174
168-	CONFOD	230	231	232	233	234	235	236	0174
169-	CONFOD	231	232	233	234	235	236	237	0174
170-	CONFOD	232	233	234	235	236	237	238	0174
171-	CONFOD	233	234	235	236	237	238	239	0174
172-	CONFOD	234	235	236	237	238	239	240	0174
173-	CONFOD	235	236	237	238	239	240	241	0174
174-	CONFOD	236	237	238	239	240	241	242	0174
175-	CONFOD	237	238	239	240	241	242	243	0174
176-	CONFOD	238	239	240	241	242	243	244	0174
177-	CONFOD	239	240	241	242	243	244	245	0174
178-	CONFOD	240	241	242	243	244	245	246	0174
179-	CONFOD	241	242	243	244	245	246	247	0174
180-	CONFOD	242	243	244	245	246	247	248	0174
181-	CONFOD	243	244	245	246	247	248	249	0174
182-	CONFOD	244	245	246	247	248	249	250	0174
183-	CONFOD	245	246	247	248	249	250	251	0174
184-	CONFOD	246	247	248	249	250	251	252	0174
185-	CONFOD	247	248	249	250	251	252	253	0174
186-	CONFOD	248	249	250	251	252	253	254	0174
187-	CONFOD	249	250	251	252	253	254	255	0174
188-	CONFOD	250	251	252	253	254	255	256	0174
189-	CONFOD	251	252	253	254	255	256	257	0174
190-	CONFOD	252	253	254	255	256	257	258	0174
191-	CONFOD	253	254	255	256	257	258	259	0174
192-	CONFOD	254	255	256	257	258	259	260	0174
193-	CONFOD	255	256	257	258	259	260	261	0174
194-	CONFOD	256	257	258	259	260	261	262	0174
195-	CONFOD	257	258	259	260	261	262	263	0174
196-	CONFOD	258	259	260	261	262	263	264	0174
197-	CONFOD	259	260	261	262	263	264	265	0174
198-	CONFOD	260	261	262	263	264	265	266	0174
199-	CONFOD	261	262	263	264	265	266	267	0174
200-	CONFOD	262	263	264	265	266	267	268	0174
201-	CONFOD	263	264	265	266	267	268	269	0174
202-	CONFOD	264	265	266	267	268	269	270	0174
203-	CONFOD	265	266	267	268	269	270	271	0174
204-	CONFOD	266	267	268	269	270	271	272	0174
205-	CONFOD	267	268	269	270	271	272	273	0174

CARD	1	2	3	4	5	6	7	8	9	10
COUNT	CONFOD	310	313	314	315	316	317	318	319	310
201-	CONFOD	311	315	316	317	318	301	302	303	304
202-	CONFOD	312	317	318	301	302	303	304	305	306
203-	CONROD	313	317	318	301	302	303	304	305	306
204-	CONROD	314	317	318	301	302	303	304	305	306
205-	CONROD	315	317	318	301	302	303	304	305	306
206-	CONFOD	316	317	318	301	302	303	304	305	306
207-	CONROD	317	317	318	301	302	303	304	305	306
208-	CONROD	318	317	318	301	302	303	304	305	306
209-	CONROD	319	317	318	301	302	303	304	305	306
210-	CONROD	319	317	318	301	302	303	304	305	306
211-	CONROD	320	317	318	301	302	303	304	305	306
212-	CONFOD	321	317	318	301	302	303	304	305	306
213-	CONFOD	322	317	318	301	302	303	304	305	306
214-	CONROD	323	317	318	301	302	303	304	305	306
215-	CONFOD	324	317	318	301	302	303	304	305	306
216-	CONROD	325	317	318	301	302	303	304	305	306
217-	CONFOD	451	406	407	408	409	408	407	406	405
218-	CONROD	452	407	408	409	410	409	410	408	407
219-	CONFOD	453	407	408	409	410	409	410	408	407
220-	CONROD	454	407	408	409	410	409	410	408	407
221-	CONFOD	455	407	408	409	410	409	410	408	407
222-	CONROD	456	407	408	409	410	409	410	408	407
223-	CONROD	457	407	408	409	410	409	410	408	407
224-	CONROD	458	407	408	409	410	409	410	408	407
225-	CONROD	459	407	408	409	410	409	410	408	407
226-	CONROD	460	407	408	409	410	409	410	408	407
227-	CONROD	461	407	408	409	410	409	410	408	407
228-	CONFOD	462	407	408	409	410	409	410	408	407
229-	CONROD	501	501	502	503	504	505	506	507	508
230-	CONROD	502	501	502	503	504	505	506	507	508
231-	CONROD	503	501	502	503	504	505	506	507	508
232-	CONROD	504	501	502	503	504	505	506	507	508
233-	CONFOD	505	501	502	503	504	505	506	507	508
234-	CONFOD	506	501	502	503	504	505	506	507	508
235-	CONFOD	507	501	502	503	504	505	506	507	508
236-	CUNRIM	508	501	502	503	504	505	506	507	508
237-	CUNHOD	509	501	502	503	504	505	506	507	508
238-	CUNHOD	510	501	502	503	504	505	506	507	508
239-	CONFOD	511	501	502	503	504	505	506	507	508
240-	CONFOD	512	501	502	503	504	505	506	507	508
241-	CONFOD	513	501	502	503	504	505	506	507	508
242-	CONFOD	514	501	502	503	504	505	506	507	508
243-	CONFOD	515	501	502	503	504	505	506	507	508
244-	CONFOD	516	501	502	503	504	505	506	507	508
245-	CONFOD	517	501	502	503	504	505	506	507	508
246-	CONFOD	518	501	502	503	504	505	506	507	508
247-	CUNRIM	519	501	502	503	504	505	506	507	508
248-	CONFOD	520	501	502	503	504	505	506	507	508
249-	CONFOD	521	501	502	503	504	505	506	507	508
250-	CONFOD	522	501	502	503	504	505	506	507	508

S O R T E D _ B U L K _ D A T A _ E C H O									
CARD	1	2	3	4	5	6	7	8	9
COUNT	CONF0	523	514	516	517	092000	078000	078000	00363
251-	CONF0	524	515	516	518	078000	078000	078000	00285
252-	CONF0	525	516	516	602	072000	072000	072000	01140
253-	CONF0	602	602	603	603	072000	072000	072000	00687
254-	CONF0	603	603	604	604	072000	072000	072000	00618
255-	CONF0	604	604	605	605	072000	072000	072000	-
256-	CONF0	605	605	606	606	072000	072000	072000	-
257-	CONF0	606	607	607	608	072000	072000	072000	-
258-	CONF0	607	607	608	609	072000	072000	072000	-
259-	CONF0	608	608	609	610	072000	072000	072000	-
260-	CONF0	609	611	612	612	091000	091000	091000	-
261-	CONF0	610	613	614	614	091000	091000	091000	-
262-	CONF0	611	615	616	616	091000	091000	091000	-
263-	CONF0	612	617	618	618	091000	091000	091000	-
264-	CONF0	613	601	606	606	062500	062500	062500	-
265-	CONF0	614	602	607	607	125000	125000	125000	-
266-	CONF0	615	603	608	608	125000	125000	125000	-
267-	CONF0	616	604	609	609	126000	126000	126000	-
268-	CONF0	617	605	610	610	123000	123000	123000	-
269-	CONF0	618	609	611	611	115000	115000	115000	-
270-	CONF0	619	610	612	612	115000	115000	115000	-
271-	CONF0	620	611	613	613	104000	104000	104000	-
272-	CONF0	621	612	614	614	104000	104000	104000	-
273-	CONF0	622	613	615	615	092000	092000	092000	-
274-	CONF0	623	614	616	617	092000	092000	092000	-
275-	CONF0	624	615	615	617	078000	078000	078000	-
276-	CONF0	625	616	618	618	078000	078000	078000	-
277-	CONF0	7C2	702	703	703	172000	172000	172000	-
278-	CONF0	703	703	704	704	172000	172000	172000	-
279-	CONF0	704	704	705	705	172000	172000	172000	-
280-	CONF0	705	705	706	707	172000	172000	172000	-
281-	CONF0	706	707	708	708	172000	172000	172000	-
282-	CONF0	707	708	709	709	172000	172000	172000	-
283-	CONF0	708	709	710	710	172000	172000	172000	-
284-	CONF0	709	711	712	712	091000	091000	091000	-
285-	CONF0	710	713	714	714	061000	061000	061000	-
286-	CONF0	711	715	716	716	032000	032000	032000	-
287-	CONF0	712	717	718	718	062500	062500	062500	-
288-	CONF0	713	701	706	706	125000	125000	125000	-
289-	CONF0	714	702	707	707	125000	125000	125000	-
290-	CONF0	715	703	708	708	125000	125000	125000	-
291-	CONF0	716	704	709	709	129000	129000	129000	-
292-	CONF0	717	705	710	710	129000	129000	129000	-
293-	CONF0	718	709	711	711	116000	116000	116000	-
294-	CONF0	719	710	712	712	116000	116000	116000	-
295-	CONF0	720	711	713	713	104000	104000	104000	-
296-	CONF0	721	712	714	714	104000	104000	104000	-
297-	CONF0	722	713	715	715	062000	062000	062000	-
298-	CONF0	723	714	716	717	075000	075000	075000	-
299-	CONF0	724	715	717	717	-	-	-	-

CARD COUNT	S O R T E D B U L K - D A T A E C H O									
	1	2	3	4	5	6	7	8	9	10
301-	CONPOD	725	716	718	803	804	805	806	807	808
302-	CONFCD	802	802	803	803	804	804	805	805	806
303-	CONFCD	803	803	804	804	805	805	806	806	807
304-	CONFCD	804	804	805	805	806	806	807	807	808
305-	CONFCD	805	805	806	806	807	807	808	808	809
306-	CONFCD	806	806	807	807	808	808	809	809	810
307-	CONFCD	807	807	808	808	809	809	810	810	811
308-	CONFCD	808	808	809	809	810	810	811	811	812
309-	CUNLOC	809	809	810	810	811	811	812	812	813
310-	CONFDC	810	810	811	811	812	812	813	813	814
311-	CONFDC	811	811	812	812	813	813	814	814	815
312-	CONFCD	812	812	813	813	814	814	815	815	816
313-	CONFCD	813	813	814	814	815	815	816	816	817
314-	CONFCD	814	814	815	815	816	816	817	817	818
315-	CONFCD	815	815	816	816	817	817	818	818	819
316-	CONFCD	816	816	817	817	818	818	819	819	820
317-	CONFCD	817	817	818	818	819	819	820	820	821
318-	CONFCD	818	818	819	819	820	820	821	821	822
319-	CONFCD	819	819	820	820	821	821	822	822	823
320-	CONFCD	820	820	821	821	822	822	823	823	824
321-	CONFCD	821	821	822	822	823	823	824	824	825
322-	CONFCD	822	822	823	823	824	824	825	825	826
323-	CONFCD	823	823	824	824	825	825	826	826	827
324-	CONFCD	824	824	825	825	826	826	827	827	828
325-	CONFCD	825	825	826	826	827	827	828	828	829
326-	CONFCD	826	826	827	827	828	828	829	829	830
327-	CONFCD	827	827	828	828	829	829	830	830	831
328-	CONFCD	828	828	829	829	830	830	831	831	832
329-	CONFCD	829	829	830	830	831	831	832	832	833
330-	CONFCD	830	830	831	831	832	832	833	833	834
331-	CONFCD	831	831	832	832	833	833	834	834	835
332-	CONFCD	832	832	833	833	834	834	835	835	836
333-	CONFCD	833	833	834	834	835	835	836	836	837
334-	CONFCD	834	834	835	835	836	836	837	837	838
335-	CONFCD	835	835	836	836	837	837	838	838	839
336-	CONFCD	836	836	837	837	838	838	839	839	840
337-	CONFCD	837	837	838	838	839	839	840	840	841
338-	CONFCD	838	838	839	839	840	840	841	841	842
339-	CONFCD	839	839	840	840	841	841	842	842	843
340-	CONFCD	840	840	841	841	842	842	843	843	844
341-	CONFCD	841	841	842	842	843	843	844	844	845
342-	CONFCD	842	842	843	843	844	844	845	845	846
343-	CONFCD	843	843	844	844	845	845	846	846	847
344-	CONFCD	844	844	845	845	846	846	847	847	848
345-	CONFCD	845	845	846	846	847	847	848	848	849
346-	CONFCD	846	846	847	847	848	848	849	849	850
347-	CONFCD	847	847	848	848	849	849	850	850	851
348-	CONFCD	848	848	849	849	850	850	851	851	852
349-	CONFCD	849	849	850	850	851	851	852	852	853
350-	CONFCD	850	850	851	851	852	852	853	853	854

S O R T E D B U L K D A T A E C H O									
CARD	1	2	3	4	5	6	7	8	9
351-	CONF0	1002	1003	1004	1005	058000	058000	0265	
352-	CONRD	1003	1003	1004	1005	058000	058000	0265	
353-	CCNRD	1004	1004	1005	1005	058000	058000	0265	
354-	CUNRD	1005	1005	1005	1005	058000	058000	0265	
355-	CCNRD	1006	1012	1013	1013	058000	058000	0265	
356-	CONRD	1007	1013	1014	1014	058000	058000	0265	
357-	CONRD	1008	1014	1015	1015	058000	058000	0265	
358-	CONF0	1009	1016	1016	1017	090000	090000	0436	
359-	CCNRD	1C10	1018	1018	1019	090000	090000	0436	
360-	CONRD	1C11	1020	1020	1021	090000	090000	0436	
361-	CONF0	1012	1022	1022	1023	032000	032000	0427	
362-	CCNRD	1013	1023	1023	1024	019000	019000	0363	
363-	CONF0	1C14	1002	1002	1012	040000	040000	0493	
364-	CONRD	1C15	1003	1003	1013	040000	040000	0493	
365-	CONF0	1016	1004	1014	1014	040000	040000	0493	
366-	CCNRD	1C17	1005	1010	1015	040000	040000	0493	
367-	CONF0	1018	1C10	1015	1015	023000	023000	0427	
368-	CCNRD	1027	1014	1016	1016	015000	015000	0363	
369-	CONF0	1024	1015	1017	1017	014000	014000	0493	
370-	CCNRD	1C29	1016	1016	1018	012000	012000	0427	
371-	CONF0	1030	1017	1017	1019	015000	015000	0493	
372-	CCNRD	1031	1018	1018	1020	012000	012000	0427	
373-	CCNRD	1C32	1019	1019	1021	002000	002000	0427	
374-	CONF0	1033	1020	1020	1022	008000	008000	0292	
375-	CONRD	1034	1021	1023	1023	008000	008000	0462	
376-	CONF0	1102	1102	1103	1103	060000	060000	0272	
377-	CONF0	1103	1103	1104	1104	060000	060000	0452	
378-	CONF0	1104	1104	1105	1105	060000	060000	0452	
379-	CONF0	1105	1111	1112	1112	012000	012000	0452	
380-	CONF0	1106	1112	1113	1113	060000	060000	0452	
381-	CONF0	1107	1113	1114	1114	060000	060000	0452	
382-	CONF0	1108	1114	1115	1115	030000	030000	0452	
383-	CONF0	1109	1116	1117	1117	090000	090000	0452	
384-	CONF0	1110	1116	1116	1117	090000	090000	0452	
385-	CONF0	1111	1120	1120	1121	090000	090000	0452	
386-	CONRD	1112	1122	1123	1123	032000	032000	0452	
387-	CONF0	1114	1101	1111	1111	010000	010000	0452	
388-	CLNP00	1115	1102	1112	1112	040000	040000	0452	
389-	CONF0	1116	1103	1113	1113	040000	040000	0452	
390-	CONF0	1117	1104	1114	1114	035000	035000	0452	
391-	CONF0	1118	1105	1105	1105	035000	035000	0452	
392-	CONF0	1120	1110	1115	1115	023000	023000	0452	
393-	CONF0	1121	1114	1116	1116	015000	015000	0452	
394-	CONF0	1122	1115	1117	1117	015000	015000	0493	
395-	CONF0	1123	1116	1118	1118	013000	013000	0427	
396-	CONF0	1124	1117	1119	1119	013000	013000	0427	
397-	CONF0	1125	1118	1120	1120	092000	092000	0363	
398-	CONF0	1126	1119	1121	1121	080000	080000	0363	
399-	CONF0	1127	1120	1122	1122	0A0000	0A0000	0292	
400-	CONF0	1128	1121	1123	1123	0A0000	0A0000	0292	

S O R T E D _ B U L K _ D A T A _ E C H D										
COUNT	1	2	3	4	5	6	7	8	9	10
401	CONROD	1202	1203	1204	1205	172000	172000	1140	9	• 00
402	CONROD	1203	1203	1204	1205	172000	172000	1140	9	• 00
403	CONFOD	1204	1204	1205	1206	0.06	0.06	0.687	0.687	• 00
404	CUNFOD	1205	1205	1206	1207	0.06	0.06	0.687	0.687	• 00
405	CUNFOD	1206	1206	1207	1208	0.06	0.06	0.687	0.687	• 00
406	CONFOD	1207	1208	1209	1209	0.06	0.06	0.687	0.687	• 00
407	CONFOD	1208	1208	1209	1209	0.06	0.06	0.687	0.687	• 00
408	CONFOD	1209	1209	1210	1210	0.06	0.06	0.687	0.687	• 00
409	CONFOD	1210	1210	1211	1212	0.06	0.06	0.687	0.687	• 00
410	CONFOD	1211	1211	1212	1213	0.06	0.06	0.687	0.687	• 00
411	CONFOD	1212	1212	1213	1214	0.06	0.06	0.687	0.687	• 00
412	CUNFOD	1213	1213	1214	1214	0.06	0.06	0.687	0.687	• 00
413	CONFOD	1214	1214	1201	1206	1	1	109000	109000	• 00
414	CONFOD	1215	1202	1207	1207	1	1	125000	125000	• 00
415	CONFOD	1216	1203	1208	1208	1	1	125000	125000	• 00
416	CONFOD	1217	1204	1209	1209	1	1	135000	135000	• 00
417	CONROD	1218	1205	1210	1210	1	1	135000	135000	• 00
418	CCNROD	1219	1209	1211	1211	1	1	123000	123000	• 00
419	CCNROD	1220	1210	1212	1212	1	1	121000	121000	• 00
420	CONFOD	1221	1211	1213	1213	1	1	15000	15000	• 0550
421	CONFOD	1222	1212	1214	1214	1	1	15000	15000	• 0493
422	CCNPOD	1223	1213	1215	1215	1	1	102000	102000	• 0427
423	CONFOD	1224	1214	1214	1216	1	1	101000	101000	• 0427
424	CONFOD	1225	1215	1217	1217	1	1	092000	092000	• 0363
425	CONFOD	1226	1216	1218	1218	1	1	080000	080000	• 0363
426	CONFOD	1227	1217	1219	1219	1	1	080000	080000	• 0292
427	CONFOD	1228	1218	1220	1220	1	1	109	109	• 0292
428	CONFOD	1229	1206	1303	1303	1	1	172000	172000	• 1140
429	CCNPOD	1302	1302	1303	1303	1	1	172000	172000	• 1140
430	CONFOD	1303	1303	1304	1304	1	1	172000	172000	• 1140
431	CONFOD	1304	1304	1305	1305	1	1	0.66	0.66	• 0687
432	CUNFOD	1305	1305	1306	1306	1	1	0.600000	0.600000	• 0616
433	CONFOD	1306	1306	1307	1307	1	1	172000	172000	• 0616
434	CCNPOD	1307	1308	1309	1309	1	1	172000	172000	• 0616
435	CONFOD	1308	1309	1309	1309	1	1	0.96	0.96	• 0616
436	CUNFOD	1309	1311	1312	1312	1	1	0.900000	0.900000	• 0616
437	CONFOD	1310	1313	1314	1314	1	1	0.900000	0.900000	• 0616
438	CUNFOD	1311	1315	1316	1316	1	1	135000	135000	• 0616
439	CUNFOD	1312	1317	1318	1318	1	1	135000	135000	• 0616
440	CONFOD	1313	1319	1320	1320	1	1	123000	123000	• 0616
441	CONFOD	1314	1301	1307	1307	1	1	125000	125000	• 0616
442	CONFOD	1315	1302	1307	1307	1	1	125000	125000	• 0616
443	CCNROD	1316	1303	1308	1308	1	1	125000	125000	• 0616
444	CONFOD	1317	1304	1309	1309	1	1	135000	135000	• 0616
445	CONFOD	1318	1305	1310	1310	1	1	123000	123000	• 0616
446	CONFOD	1319	1309	1311	1311	1	1	123000	123000	• 0616
447	CONFOD	1320	1310	1312	1312	1	1	123000	123000	• 0616
448	CONFOD	1321	1311	1313	1313	1	1	123000	123000	• 0616
449	CONFOD	1322	1312	1314	1314	1	1	150000	150000	• 0616
450	CONFOD	1323	1313	1315	1315	1	1	103000	103000	• 0616

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS_HALF_EFF_LONG..0851_EFF.TFANS.AT WING(=2/3EFF.)

OCTOBER 6, 1974 NASTRAN 2/173 PAGE 15

CARD COUNT	1	2	3	4	5	6	7	8	9	10
451-	CONRD	1324	1314	1316	1317	103000	0427			
452-	CONRD	1325	1315	1316	1318	042000				
453-	CONFID	1326	1317	1318	1319	092000				
454-	CONRD	1327	1317	1319	1320	080000				
455-	CONRD	1328	1318	1320	1321	080000				
456-	CONRD	1329	1306	1307	1403	0109				
457-	CONFID	1402	1402	1403	1404	060000				
458-	CONRD	1403	1403	1405	1406	060000				
459-	CONFID	1404	1404	1407	1408	030				
460-	CONFID	1405	1405	1407	1408	060000				
461-	CONRD	1406	1406	1409	1409	060000				
462-	CONFID	1407	1407	1410	1410	030				
463-	CONFID	1408	1411	1412	1412	090000				
464-	CONRD	1409	1413	1414	1414	000000				
465-	CONFID	1410	1415	1416	1416	000000				
466-	CONRD	1411	1417	1418	1418	032000				
467-	CONFID	1412	1401	1406	1406	109000				
468-	CONFID	1413	1402	1407	1407	040000				
469-	CONRD	1414	1403	1408	1408	040000				
470-	CONFID	1415	1404	1409	1409	132000				
471-	CONFID	1416	1405	1410	1410	15000				
472-	CONFID	1417	1409	1411	1411	15000				
473-	CONFID	1418	1410	1412	1412	15000				
474-	CONFID	1419	1411	1413	1413	103000				
475-	CONRD	1420	1412	1414	1414	03000				
476-	CONFID	1421	1413	1415	1415	02000				
477-	CONFID	1422	1414	1416	1416	02000				
478-	CONFID	1423	1415	1417	1417	00000				
479-	CONFID	1424	1416	1418	1418	00000				
480-	CONFID	1501	1501	1502	1502	140000				
481-	CONFID	1502	1503	1504	1504	091000				
482-	CONFID	1503	1505	1506	1506	091000				
483-	CONFID	1504	1507	1508	1508	091000				
484-	CONRD	1505	1509	1510	1510	032000				
485-	CONFID	1506	1501	1503	1503	15000				
486-	CONFID	1507	1502	1504	1504	103000				
487-	CONFID	1508	1503	1505	1505	103000				
488-	CONFID	1509	1504	1506	1506	092000				
489-	CONFID	1510	1505	1507	1507	092000				
490-	CONFID	1511	1506	1508	1508	092000				
491-	CONFID	1512	1507	1509	1509	080000				
492-	CONFID	1513	1508	1510	1510	080000				
493-	CONFID	1602	1602	1603	1603	060000				
494-	CONFID	1603	1603	1604	1604	060000				
495-	CONFID	1604	1604	1605	1605	010				
496-	CONFID	1605	1607	1608	1608	060000				
497-	CONFID	1607	1608	1609	1609	060000				
498-	CONFID	1608	1609	1610	1610	030				
499-	CONFID	1609	1611	1612	1612	091000				
500-	CONFID	1610	1613	1614	1614	091000				

B3-11

S O R T E D _ B U L K _ D A T A _ E C H O									
CARD COUNT	1	2	3	4	5	6	7	8	9 .. 10 ..
501-	CONF00	1611	1615	1616	1617	1618	1619	1610	.091000
502-	CONF00	1612	1617	1617	1617	1618	1618	1610	.032000
503-	CONF00	1613	1601	1601	1606	1606	1607	1607	.010000
504-	CONF00	1614	1607	1607	1607	1607	1607	1607	.040000
505-	CONF00	1615	1603	1606	1606	1606	1606	1606	.040000
506-	CONF00	1616	1604	1609	1610	1610	1610	1610	.032000
507-	CONF00	1617	1605	1610	1611	1611	1611	1611	.0304
508-	CONF00	1618	1609	1611	1611	1611	1611	1611	.015000
509-	CONF00	1619	1610	1612	1612	1612	1612	1612	.0493
510-	CONF00	1620	1610	1613	1613	1613	1613	1613	.015000
511-	CONF00	1621	1612	1614	1614	1614	1614	1614	.013000
512-	CONF00	1622	1613	1615	1615	1615	1615	1615	.010000
513-	CONF00	1623	1614	1616	1617	1617	1617	1617	.020000
514-	CONF00	1624	1615	1617	1617	1617	1617	1617	.0363
515-	CONF00	1625	1616	1618	1618	1618	1618	1618	.000000
516-	CONF00	1626	1702	1702	1703	1703	1703	1703	.0292
517-	CONF00	1703	1703	1704	1704	1704	1704	1704	.0231
518-	CONF00	1704	1704	1705	1705	1705	1705	1705	.0427
519-	CONF00	1705	1706	1706	1707	1707	1707	1707	.0304
520-	CONF00	1706	1707	1707	1708	1708	1708	1708	.0139
521-	CONF00	1707	1708	1708	1709	1709	1709	1709	.0139
522-	CONF00	1708	1708	1709	1709	1709	1709	1709	.0139
523-	CONF00	1709	1710	1711	1712	1712	1712	1712	.0304
524-	CONF00	1710	1711	1713	1714	1714	1714	1714	.0139
525-	CONF00	1711	1715	1715	1716	1716	1716	1716	.020000
526-	CONF00	1712	1717	1717	1718	1718	1718	1718	.0139
527-	CONF00	1713	1701	1701	1706	1706	1706	1706	.0139
528-	CONF00	1714	1702	1702	1707	1707	1707	1707	.0139
529-	CONF00	1715	1703	1703	1708	1708	1708	1708	.040000
530-	CONF00	1716	1704	1704	1709	1709	1709	1709	.091000
531-	CONF00	1717	1705	1705	1710	1710	1710	1710	.0139
532-	CONF00	1718	1709	1709	1711	1711	1711	1711	.0304
533-	CONF00	1719	1710	1710	1712	1712	1712	1712	.0493
534-	CONF00	1720	1711	1711	1713	1713	1713	1713	.0292
535-	CONF00	1721	1712	1712	1714	1714	1714	1714	.0427
536-	CONF00	1722	1713	1713	1715	1715	1715	1715	.0363
537-	CONF00	1723	1714	1714	1716	1716	1716	1716	.0292
538-	CONF00	1724	1715	1715	1717	1717	1717	1717	.0139
539-	CONF00	1725	1716	1716	1718	1718	1718	1718	.0139
540-	CONF00	1726	1701	1701	1801	1801	1801	1801	.0139
541-	CONF00	1727	1802	1802	1803	1803	1803	1803	.0139
542-	CONF00	1728	1803	1803	1804	1804	1804	1804	.040000
543-	CONF00	1729	1804	1804	1805	1805	1805	1805	.0139
544-	CONF00	1730	1805	1805	1806	1806	1806	1806	.0139
545-	CONF00	1731	1806	1806	1807	1807	1807	1807	.014
546-	CONF00	1732	1807	1807	1808	1808	1808	1808	.040000
547-	CONF00	1733	1808	1808	1809	1809	1809	1809	.040000
548-	CONF00	1734	1809	1809	1810	1810	1810	1810	.020000
549-	CONF00	1735	1810	1810	1811	1811	1811	1811	.023000
550-	CONF00	1736	1811	1811	1806	1806	1806	1806	.0140

PHASE 1 (ORBITTER PULSEAGE-SYMM CASE) MODEL 2
SKINS HALF EFF,LONG,.085(EFF,TRANS,AT WING(G=2/3EFF.)

OCTOBER 6, 1974 NASTRAN 2/173 PAGE 17

S O R T E D - B U L K - D A T A E C H O									
CARD	COUNT	1	2	3	4	5	6	7	8
551-	CONFOD	1612	1807	1808	1809	1810	1811	1812	1813
552-	CONFOD	1613	1808	1809	1810	1811	1812	1813	1814
553-	CONFOD	1814	1809	1810	1811	1812	1813	1814	1815
554-	CONFOD	1815	1810	1811	1812	1813	1814	1815	1816
555-	CONFOD	1816	1811	1812	1813	1814	1815	1816	1817
556-	CONFOD	1817	1812	1813	1814	1815	1816	1817	1818
557-	CONFOD	1818	1812	1813	1814	1815	1816	1817	1818
558-	CLNRCD	1619	1813	1814	1815	1816	1817	1818	1819
559-	CLNFCD	1820	1813	1814	1815	1816	1817	1818	1819
560-	CLNFCD	1821	1814	1815	1816	1817	1818	1819	1820
561-	CLNRCD	1622	1815	1816	1817	1818	1819	1820	1821
562-	CLNFCD	1823	1815	1816	1817	1818	1819	1820	1821
563-	CLNFCD	1624	1817	1818	1819	1820	1821	1822	1823
564-	CONFOD	1825	1818	1819	1820	1821	1822	1823	1824
565-	CONFOD	1826	1819	1820	1821	1822	1823	1824	1825
566-	CONFOD	1627	1818	1819	1820	1821	1822	1823	1824
567-	CONFOD	1828	1819	1820	1821	1822	1823	1824	1825
568-	CONFOD	1829	1820	1821	1822	1823	1824	1825	1826
569-	CONFOD	1830	1821	1822	1823	1824	1825	1826	1827
570-	CONFOD	1831	1822	1823	1824	1825	1826	1827	1828
571-	CONFOD	1832	1823	1824	1825	1826	1827	1828	1829
572-	CONFOD	1833	1824	1825	1826	1827	1828	1829	1830
573-	CONFOD	1834	1825	1826	1827	1828	1829	1830	1831
574-	CONFOD	1835	1826	1827	1828	1829	1830	1831	1832
575-	CONFOD	1836	1827	1828	1829	1830	1831	1832	1833
576-	CONFOD	1837	1828	1829	1830	1831	1832	1833	1834
577-	CLNRCD	1838	1826	1827	1828	1829	1830	1831	1832
578-	CLNFCD	1839	1827	1828	1829	1830	1831	1832	1833
579-	CLNFCD	1840	1828	1829	1830	1831	1832	1833	1834
580-	CONFOD	1841	1827	1828	1829	1830	1831	1832	1833
581-	CONFOD	1842	1828	1829	1830	1831	1832	1833	1834
582-	CONFOD	1843	1829	1830	1831	1832	1833	1834	1835
583-	CONFOD	1844	1830	1831	1832	1833	1834	1835	1836
584-	CONFOD	1845	1831	1832	1833	1834	1835	1836	1837
585-	CONFOD	1846	1832	1833	1834	1835	1836	1837	1838
586-	CONFOD	1847	1833	1834	1835	1836	1837	1838	1839
587-	CONFOD	1848	1834	1835	1836	1837	1838	1839	1840
588-	CONFOD	1849	1835	1836	1837	1838	1839	1840	1841
589-	CONFOD	1850	1833	1834	1835	1836	1837	1838	1839
590-	CONFOD	1851	1834	1835	1836	1837	1838	1839	1840
591-	CONFOD	1852	1835	1836	1837	1838	1839	1840	1841
592-	CONFOD	1853	1834	1835	1836	1837	1838	1839	1840
593-	CONFOD	1854	1835	1836	1837	1838	1839	1840	1841
594-	CONFOD	1855	1837	1838	1839	1840	1841	1842	1843
595-	CONFOD	1856	1838	1839	1840	1841	1842	1843	1844
596-	CONFOD	1901	1901	1902	1903	1904	1905	1906	1907
597-	CONFOD	1902	1902	1903	1904	1905	1906	1907	1908
598-	CONFOD	1903	1903	1904	1905	1906	1907	1908	1909
599-	CONFOD	1904	1904	1905	1906	1907	1908	1909	1910
600-	CONFOD	1905	1905	1906	1907	1908	1909	1910	1911

B3-13

CARD COUNT	1	2	3	4	5	6	7	8	9	10
601-	CONFID	1906	1902	1907	1	037000				
602-	CONFID	1907	1903	1906	1	057000				
603-	CONFID	1908	1904	1909	1	040000				
604-	CONFID	1909	1906	1910	1	020000				
605-	CONFID	1910	1907	1911	1	037000				
606-	CONFID	1911	1908	1912	1	057000				
607-	CLNROD	1912	1909	1913	1	040000				
608-	CONFID	1913	1910	1911	1	032000				
609-	CONFID	1914	1911	1912	1	007000				
610-	CONFID	1915	1912	1913	1	015200				
611-	CONFID	1916	1913	1914	1	020000				
612-	CONFID	1917	1914	1915	1	037000				
613-	CONFID	1918	1912	1916	1	057000				
614-	CONFID	1919	1913	1917	1	040000				
615-	CONFID	1920	1914	1915	1	052000				
616-	CLNROD	1921	1915	1916	1	028000				
617-	CONFID	1922	1916	1917	1	060000				
618-	CONFID	1923	1917	1918	1	036000				
619-	CONFID	1924	1906	1907	1	012000				
620-	CONFID	1925	1907	1908	1	024000				
621-	CONFID	1926	1908	1909	1	018000				
622-	CONFID	2001	2001	2002	1	018000				
623-	CONFID	2002	2002	2003	1	018000				
624-	CONFID	2003	2003	2004	1	018000				
625-	CONFID	2004	2004	2005	1	018000				
626-	CONFID	2005	2005	2010	1	018000				
627-	CONFID	2006	2006	2015	1	018000				
628-	CONFID	2007	2011	2012	1	0145000				
629-	CONFID	2008	2012	2013	1	0145000				
630-	CLNROD	2009	2013	2014	1	0145000				
631-	CONFID	2010	2014	2015	1	0192000				
632-	CONFID	2011	2020	2020	1	018000				
633-	CONFID	2012	2014	2019	1	0033200				
634-	CONFID	2013	2011	2016	1	014600				
635-	CONFID	2014	2019	2024	1	080000				
636-	CONFID	2015	2019	2024	1	033200				
637-	CONFID	2016	2016	2030	1	014600				
638-	CONFID	2017	2025	2030	1	018000				
639-	CONFID	2018	2024	2029	1	033200				
640-	CONFID	2019	2021	2026	1	014600				
641-	CONFID	2020	2030	2029	1	080000				
642-	CONFID	2021	2029	2028	1	014600				
643-	CONFID	2022	2027	2026	1	07AC00				
644-	CONFID	2023	2024	2030	1	01A000				
645-	CONFID	2024	2035	2035	1	01A000				
646-	CONFID	2025	2035	2039	1	01A000				
647-	CONFID	2026	2039	2042	1	0120000				
648-	CONFID	2027	2042	2041	1	0120000				
649-	CONFID	2028	2041	2037	1	0120000				
650-	CONFID	2029	2037	2037	1	050000				

CARD COUNT	SORTED DATA ECHO
1	2 2030 2 2024 3 2025 4 00600 00600 00600 00600 00600 00600 00600 00600 00600 00600 00600
651-	CONF0 2500 120 160 111 111
652-	CONF0 2500 160 230 111 111
653-	CONROD 2501 1115 1212 1312 111
654-	CONROD 2551 1212 1312 111
655-	CONF0 2552 1212 1312 111
656-	CONF0 2553 1312 1410 111
657-	CONF0 2554 1410 1502 111
658-	CONF0 2555 1502 1610 111
659-	CONF0 2556 1610 1710 111
660-	CONF0 2558 1710 1812 111
661-	CONROD 2559 1812 1916 111
662-	CONROD 2560 1916 2010 111
663-	CONF0 2561 2010 151 111
664-	CONF0 2562 151 201 111
665-	CONF0 2565 501 601 111
666-	CONF0 2566 701 801 111
667-	CONF0 2567 701 801 111
668-	CONF0 2569 801 901 111
669-	CONF0 2570 901 1001 111
670-	CONROD 2571 1001 1101 111
671-	CONROD 2572 1101 1201 111
672-	CONF0 2574 1201 1301 111
673-	CONROD 2575 1301 1401 111
674-	CONF0 2576 1401 1601 111
675-	CONF0 2580 305 505 111
676-	CONF0 2581 505 605 111
677-	CONF0 2582 605 705 111
678-	CONF0 2583 705 805 111
679-	CONF0 2585 805 905 111
680-	CONROD 2586 905 1005 111
681-	CONF0 2587 1005 1105 111
682-	CONF0 2588 1105 1205 111
683-	CONF0 2590 1205 1305 111
684-	CONF0 2591 1305 1405 111
685-	CONF0 2592 1405 1505 111
686-	CONF0 2593 1505 1605 111
687-	CONF0 2594 1605 1705 111
688-	CONF0 2596 1705 1806 111
689-	CONF0 2597 1806 1905 111
690-	CONF0 2598 1905 2005 111
691-	CONF0 2599 2005 2105 111
692-	CONF0 2642 1721 1722 111
693-	CONF0 2643 1705 1722 111
694-	CONF0 2644 1722 1808 111
695-	CONF0 2647 1806 1906 111
696-	CONF0 2660 1906 150 111
697-	CONF0 2661 150 224 111
698-	CONF0 2662 224 166 111
699-	CONF0 2663 166 219 111
700-	CONF0 2696 219 1724 111
	CONF0 2696 1723 1724 111

S O R T E D - B U L K - D A T A - E C H O										
CARD	COUNT	1	2	3	4	5	6	7	8	9 .. 10 ..
701-	CONFCD	2.697	1.721	1.723	1.724	1.724	1.724	1.724	1.724	04 .. 04 ..
702-	CONFCD	2.698	1.721	1.723	1.724	1.724	1.724	1.724	1.724	04 .. 04 ..
703-	CONFCD	2.709	1.821	1.930	1.930	1.930	1.930	1.930	1.930	048500 .. 048500 ..
704-	CONFCD	2.710	1.930	1.934	1.934	1.934	1.934	1.934	1.934	048500 .. 048500 ..
705-	CONFCD	2.711	1.934	2.026	2.026	2.026	2.026	2.026	2.026	074500 .. 074500 ..
706-	CONFCD	2.712	1.933	2.029	2.029	2.029	2.029	2.029	2.029	045000 .. 045000 ..
707-	CONFCD	2.714	1.932	2.032	2.032	2.032	2.032	2.032	2.032	060100 .. 060100 ..
708-	CONFCD	2.715	1.932	2.030	2.030	2.030	2.030	2.030	2.030	047600 .. 047600 ..
709-	CONFCD	2.716	1.936	2.031	2.031	2.031	2.031	2.031	2.031	034000 .. 034000 ..
710-	CONFCD	2.717	1.937	2.035	2.035	2.035	2.035	2.035	2.035	128000 .. 128000 ..
711-	CONFCD	2.718	1.935	2.014	2.014	2.014	2.014	2.014	2.014	420000 .. 420000 ..
712-	CONFCD	2.719	1.936	1.935	1.935	1.935	1.935	1.935	1.935	033200 .. 033200 ..
713-	CONFCD	2.720	1.974	1.936	1.936	1.936	1.936	1.936	1.936	0146 .. 0146 ..
714-	CONFCD	2.721	1.933	1.935	1.935	1.935	1.935	1.935	1.935	0432 .. 0432 ..
715-	CONFCD	2.800	911	1011	1011	1011	1011	1011	1011	0875 .. 0875 ..
716-	CONFCD	2.801	1011	1111	1111	1111	1111	1111	1111	0875 .. 0875 ..
717-	CONFCD	2.802	1111	1221	1221	1221	1221	1221	1221	0875 .. 0875 ..
718-	CONFCD	2.804	1221	1321	1321	1321	1321	1321	1321	0875 .. 0875 ..
719-	CONFCD	2.805	1321	1406	1406	1406	1406	1406	1406	0875 .. 0875 ..
720-	CONFCD	2.806	1406	1516	1516	1516	1516	1516	1516	0875 .. 0875 ..
721-	CONFCD	2.807	1516	1606	1606	1606	1606	1606	1606	0875 .. 0875 ..
722-	CONFCD	2.808	1606	1706	1706	1706	1706	1706	1706	0875 .. 0875 ..
723-	CONFCD	2.810	206	305	305	305	305	305	305	072 .. 072 ..
724-	CONFCD	1.0001	243	318	318	318	318	318	318	046 .. 046 ..
725-	CONFCD	1.0002	318	518	518	518	518	518	518	047 .. 047 ..
726-	CONFCD	1.0003	518	618	618	618	618	618	618	049 .. 049 ..
727-	CONFCD	1.0004	618	718	718	718	718	718	718	051 .. 051 ..
728-	CONFCD	1.0005	718	760	760	760	760	760	760	053 .. 053 ..
729-	CONFCD	1.0006	760	818	818	818	818	818	818	054 .. 054 ..
730-	CONFCD	1.0007	818	923	923	923	923	923	923	056 .. 056 ..
731-	CONFCD	1.0008	923	1023	1023	1023	1023	1023	1023	058 .. 058 ..
732-	CONFCD	1.0009	1023	1123	1123	1123	1123	1123	1123	059 .. 059 ..
733-	CONFCD	1.0010	1123	1161	1161	1161	1161	1161	1161	061 .. 061 ..
734-	CONFCD	1.0011	1161	1220	1220	1220	1220	1220	1220	063 .. 063 ..
735-	CONFCD	1.0012	1220	1320	1320	1320	1320	1320	1320	068 .. 068 ..
736-	CONFCD	1.0013	1320	1418	1418	1418	1418	1418	1418	070 .. 070 ..
737-	CONFCD	1.0014	1418	1510	1510	1510	1510	1510	1510	070 .. 070 ..
738-	CONFCD	1.0015	1510	1610	1610	1610	1610	1610	1610	070 .. 070 ..
739-	CONFCD	1.0016	1610	1716	1716	1716	1716	1716	1716	070 .. 070 ..
740-	CONFCD	1.0017	1716	1824	1824	1824	1824	1824	1824	070 .. 070 ..
741-	CONFCD	1.0020	1116	1212	1212	1212	1212	1212	1212	020 .. 020 ..
742-	CONFCD	1.0021	1212	1312	1312	1312	1312	1312	1312	055 .. 055 ..
743-	CONFCD	1.0022	1312	1410	1410	1410	1410	1410	1410	070 .. 070 ..
744-	CONFCD	1.0023	1410	1502	1502	1502	1502	1502	1502	070 .. 070 ..
745-	CONFCD	1.0024	1502	1610	1610	1610	1610	1610	1610	070 .. 070 ..
746-	CONFCD	1.0025	1610	1710	1710	1710	1710	1710	1710	070 .. 070 ..
747-	CONFCD	1.0026	1710	1812	1812	1812	1812	1812	1812	070 .. 070 ..
748-	CONFCD	1.0030	206	305	305	305	305	305	305	120 .. 120 ..
749-	CONFCD	1.0031	305	505	505	505	505	505	505	120 .. 120 ..
750-	CONFCD	1.0032	505	605	605	605	605	605	605	120 .. 120 ..

S O R T E D B U L K D A T A E C H O		
CARD COUNT	COUNT	COUNT
1	1 0033	2
2	1 0034	1 0035
3	1 0036	1 0037
4	1 0038	1 0039
5	1 0040	1 0041
6	1 0042	1 0043
7	1 0044	1 0045
8	1 0046	1 0047
9	1 0048	1 0049
10	1 0050	1 0051
11	1 0052	1 0053
12	1 0054	1 0055
13	1 0056	1 0057
14	1 0058	1 0059
15	1 0060	1 0061
16	1 0062	1 0063
17	1 0064	1 0065
18	1 0066	1 0067
19	1 0068	1 0069
20	1 0070	1 0071
21	1 0072	1 0073
22	1 0074	1 0075
23	1 0076	1 0077
24	1 0078	1 0079
25	1 0080	1 0081
26	1 0082	1 0083
27	1 0084	1 0085
28	1 0086	1 0087
29	1 0088	1 0089
30	1 0090	1 0091
31	1 0092	1 0093
32	1 0094	1 0095
33	1 0101	1 0102
34	1 0103	1 0104
35	1 0111	1 0112
36	1 0113	1 0114
37	1 0115	1 0116
38	1 0117	1 0118
39	1 0119	1 0120
40	1 0121	1 0122
41	1 0123	1 0124
42	1 0125	1 0126
43	1 0127	1 0128
44	1 0129	1 0130
45	1 0131	1 0132
46	1 0133	1 0134
47	1 0135	1 0136
48	1 0137	1 0138
49	1 0139	1 0140
50	1 0141	1 0142
51	1 0143	1 0144
52	1 0145	1 0146
53	1 0147	1 0148
54	1 0149	1 0150
55	1 0151	1 0152
56	1 0153	1 0154
57	1 0155	1 0156
58	1 0157	1 0158
59	1 0159	1 0160
60	1 0161	1 0162
61	1 0163	1 0164
62	1 0165	1 0166
63	1 0167	1 0168
64	1 0169	1 0170
65	1 0171	1 0172
66	1 0173	1 0174
67	1 0175	1 0176
68	1 0177	1 0178
69	1 0179	1 0180
70	1 0181	1 0182
71	1 0183	1 0184
72	1 0185	1 0186
73	1 0187	1 0188
74	1 0189	1 0190
75	1 0191	1 0192
76	1 0193	1 0194
77	1 0195	1 0196
78	1 0197	1 0198
79	1 0199	1 0200
80	1 0201	1 0202

CARD	COUNT	SORTED BULK DATA ECHO
801-	1	10123 1804 1805 111 011 011 055
802-	1	10124 1804 1805 111 011 011 055
803-	1	10125 1805 1806 111 011 011 055
804-	1	10131 1901 1902 112 012 012 011
805-	1	10132 1902 1903 112 012 012 011
806-	1	10133 1903 1904 112 012 012 011
807-	1	10134 1904 1905 112 012 012 011
808-	1	10151 1406 1516 112 012 012 011
809-	1	10152 1407 1517 112 012 012 011
810-	1	10153 1517 1606 112 012 012 011
811-	1	10154 1607 1607 112 012 012 011
812-	1	10155 1606 1706 112 012 012 011
813-	1	10156 1607 1707 112 012 012 011
814-	1	10160 1811 1812 112 012 012 011
815-	1	10161 1914 1915 112 012 012 011
816-	1	10162 1915 1916 112 012 012 011
817-	1	10163 1916 1917 112 012 012 011
818-	1	10164 1917 1928 112 012 012 011
819-	1	10165 1928 1938 112 012 012 011
820-	1	10166 1807 1808 112 012 012 011
821-	1	10167 1808 1809 112 012 012 011
822-	1	10168 1810 1810 112 012 012 011
823-	1	10169 1810 1811 112 012 012 011
824-	1	10170 1709 1708 112 012 012 011
825-	1	10171 1708 1707 112 012 012 011
826-	1	10172 1707 1707 112 012 012 011
827-	1	10173 1606 1607 112 012 012 011
828-	1	10174 1607 1608 112 012 012 011
829-	1	10175 1608 1609 112 012 012 011
830-	1	10176 1406 1407 112 012 012 011
831-	1	10177 1407 1408 112 012 012 011
832-	1	10178 1408 1409 112 012 012 011
833-	1	10179 1609 1610 112 012 012 011
834-	1	10180 1403 1410 112 012 012 011
835-	1	10181 1709 1710 112 012 012 011
836-	1	20001 2102 310 011 001 001 001
837-	1	20002 2118 312 011 001 001 001
838-	1	20003 224 314 011 001 001 001
839-	1	20004 227 316 011 001 001 001
840-	1	20005 310 510 011 001 001 001
841-	1	20006 312 512 011 001 001 001
842-	1	20007 314 514 011 001 001 001
843-	1	20008 316 516 011 001 001 001
844-	1	20009 510 610 011 001 001 001
845-	1	20010 512 612 011 001 001 001
846-	1	20011 514 614 011 001 001 001
847-	1	20012 516 616 011 001 001 001
848-	1	20013 610 710 011 001 001 001
849-	1	20014 612 712 011 001 001 001
850-	1	20015 614 714 011 001 001 001

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS HALF EFF.LONG.,EFF.TFANS.AT WING(G=2/3EFF.)
OCTOBER 6, 1974 NASTRAN 2/173 PAGE 23

CARD	COUNT	SORTED	BULK	DATA	ECHO						
		1	2	3	4	5	6	7	8	9	10
A51-		CONF00	20016	616	616	716	810	812	814	816	818
A52-		CONF00	20017	710	710	810	812	814	816	818	820
A53-		CONF00	20018	712	712	810	812	814	816	818	820
A54-		CONF00	20019	714	714	810	812	814	816	818	820
A55-		CONF00	20020	716	716	810	812	814	816	818	820
A56-		CONF00	20025	810	810	910	912	914	916	918	920
A57-		CONF00	20026	812	812	910	912	914	916	918	920
A58-		CONF00	20027	814	814	910	912	914	916	918	920
A59-		CONF00	20028	816	816	910	912	914	916	918	920
A60-		CONF00	20029	910	910	1010	1012	1014	1016	1018	1020
A61-		CONF00	20030	915	915	1015	1017	1019	1021	1023	1025
A62-		CONF00	20031	917	917	1017	1019	1021	1023	1025	1027
A63-		CONF00	20032	919	919	1019	1021	1023	1025	1027	1029
A64-		CONF00	20033	921	921	1021	1023	1025	1027	1029	1031
A65-		CONF00	20034	1010	1010	1110	1112	1114	1116	1118	1120
A66-		CONF00	20035	1015	1015	1115	1117	1119	1121	1123	1125
A67-		CONF00	20036	1017	1017	1117	1119	1121	1123	1125	1127
A68-		CONF00	20037	1019	1019	1119	1119	1121	1123	1125	1127
A69-		CONF00	20038	1021	1021	1119	1121	1123	1125	1127	1129
A70-		CONF00	20039	1110	1110	1210	1212	1214	1216	1218	1220
A71-		CONF00	20040	1117	1117	1210	1212	1214	1216	1218	1220
A72-		CONF00	20041	1119	1119	1210	1212	1214	1216	1218	1220
A73-		CONF00	20042	1121	1121	1210	1212	1214	1216	1218	1220
A74-		CONF00	20043	1210	1210	1310	1312	1314	1316	1318	1320
A75-		CONF00	20044	1214	1214	1314	1316	1318	1320	1322	1324
A76-		CONF00	20045	1216	1216	1316	1318	1320	1322	1324	1326
A77-		CONF00	20050	1218	1218	1318	1320	1322	1324	1326	1328
A78-		CONF00	20051	1314	1314	1412	1414	1416	1418	1420	1422
A79-		CONF00	20052	1316	1316	1414	1416	1418	1420	1422	1424
A80-		CONF00	20053	1318	1318	1416	1418	1420	1422	1424	1426
A81-		CONF00	20054	1412	1412	1504	1506	1508	1510	1512	1514
A82-		CONF00	20055	1414	1414	1506	1508	1510	1512	1514	1516
A83-		CONF00	20056	1416	1416	1508	1510	1512	1514	1516	1518
A84-		CONF00	20057	1504	1504	1612	1614	1616	1618	1620	1622
A85-		CONF00	20058	1506	1506	1614	1616	1618	1620	1622	1624
A86-		CONF00	20059	1508	1508	1616	1618	1620	1622	1624	1626
A87-		CONF00	20060	1612	1612	1712	1714	1716	1718	1720	1722
A88-		CONF00	20061	1614	1614	1714	1716	1718	1720	1722	1724
A89-		CONF00	20062	1616	1616	1716	1718	1720	1722	1724	1726
A90-		CONF00	20063	1712	1712	1814	1816	1818	1820	1822	1824
A91-		CONF00	20067	1714	1714	1817	1819	1821	1823	1825	1827
A92-		CONF00	20068	1716	1716	1818	1820	1822	1824	1826	1828
A93-		CONF00	20069	1718	1718	1820	1822	1824	1826	1828	1830
A94-		CONF00	20070	203	203	303	304	305	306	307	308
A95-		CONF00	20071	204	204	302	303	304	305	306	307
A96-		CONF00	20072	303	303	503	504	505	506	507	508
A97-		CONF00	20073	304	304	504	505	506	507	508	509
A98-		CONF00	20074	304	304	504	505	506	507	508	509
A99-		CONF00	20075	602	602	603	604	605	606	607	608

B3-19

S O R T E D _ B U L K _ D A T A _ E C H O										
CARD	1	2	3	4	5	6	..	7	..	8
COUNT	1	• 200077	• 504	• 604	• 001	• 001	• 001	• 001	• 001	• 001
901-	CONROD	200078	602	702	001	001	001	001	001	001
902-	CONFOD	200079	603	703	001	001	001	001	001	001
903-	CUNPFD	200080	604	704	001	001	001	001	001	001
904-	CONFOD	200081	702	802	001	001	001	001	001	001
905-	CONROD	200082	703	803	001	001	001	001	001	001
906-	CONFOD	200083	704	804	001	001	001	001	001	001
907-	CONFOD	200084	201	301	001	001	001	001	001	001
908-	CONFOD	200085	301	501	001	001	001	001	001	001
909-	CONFOD	200086	602	902	001	001	001	001	001	001
910-	CUNKFD	200087	802	903	001	001	001	001	001	001
911-	CONFOD	200088	803	903	001	001	001	001	001	001
912-	CONFOD	200089	804	904	001	001	001	001	001	001
913-	CONFOD	200090	902	1202	001	001	001	001	001	001
914-	CUNPFD	200091	903	1003	001	001	001	001	001	001
915-	CUNKFD	200092	904	1004	001	001	001	001	001	001
916-	CONFOD	200093	1002	1102	001	001	001	001	001	001
917-	CONFOD	200094	1003	1103	001	001	001	001	001	001
918-	CONFOD	200095	1004	1104	001	001	001	001	001	001
919-	CONFOD	200096	1102	1202	001	001	001	001	001	001
920-	CONFOD	200097	1103	1203	001	001	001	001	001	001
921-	CONFOD	200098	1104	1204	001	001	001	001	001	001
922-	CONFOD	201002	1202	1302	001	001	001	001	001	001
923-	CONFOD	201003	1203	1303	001	001	001	001	001	001
924-	CONFOD	201004	1204	1304	001	001	001	001	001	001
925-	CONFOD	201005	1302	1402	001	001	001	001	001	001
926-	CONFOD	201006	1303	1403	001	001	001	001	001	001
927-	CONFOD	201007	1304	1404	001	001	001	001	001	001
928-	CONFOD	201008	1402	1602	001	001	001	001	001	001
929-	CONFOD	201009	1403	1603	001	001	001	001	001	001
930-	CONFOD	201010	1404	1604	001	001	001	001	001	001
931-	CONFOD	20114	1602	1702	001	001	001	001	001	001
932-	CONFOD	20115	1603	1703	001	001	001	001	001	001
933-	CONFOD	20116	1604	1704	001	001	001	001	001	001
934-	CONFOD	20120	1702	1802	001	001	001	001	001	001
935-	CONFOD	20121	1703	1803	001	001	001	001	001	001
936-	CONFOD	20122	1704	1804	001	001	001	001	001	001
937-	CONFOD	20124	1408	1608	001	001	001	001	001	001
938-	CONFOD	20125	1409	1501	001	001	001	001	001	001
939-	CONFOD	20126	1501	1609	001	001	001	001	001	001
940-	CONFOD	20127	1608	1708	001	001	001	001	001	001
941-	CONFOD	20128	1609	1709	001	001	001	001	001	001
942-	CONFOD	20129	1708	1809	001	001	001	001	001	001
943-	CONFOD	20130	1709	1810	001	001	001	001	001	001
944-	CONFOD	20131	1807	1914	001	001	001	001	001	001
945-	CONFOD	20132	1808	1915	001	001	001	001	001	001
946-	CONFOD	20133	1809	1916	001	001	001	001	001	001
947-	CONFOD	20134	1810	1917	001	001	001	001	001	001
948-	CONFOD	20135	1811	1928	001	001	001	001	001	001
949-	CONFOD	20136	1516	1517	020	020	020	020	020	020
950-	CONFOD	20151	602	602	015	015	015	015	015	015

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS HALF_EFF,LONG...85(EFF,Tfans,AT WING(G=2/JEFF.)

OCTOBER 6, 1974 NASTRAN 2/ 1,773 PAGE 25

CARD COUNT	SORTED	BULK	DATA	ECHO
1	2	3	4	5 • 6 • 7 • 8 • 9 • 10 •
951-	CONRD 20152	701	702	• 015
952-	CONRD 20153	801	802	• 015
953-	CONRD 20154	901	902	• 015
954-	CONRD 20155	1001	1002	• 015
955-	CONRD 20161	1801	1901	• 001
956-	CONRD 20162	1A02	1902	• 001
957-	CONRD 20163	1803	1903	• 001
958-	CONRD 20164	1804	1904	• 001
959-	CONRD 20165	1901	2001	• 001
960-	CONRD 20166	1902	2002	• 001
961-	CONFCC 20167	1903	2003	• 001
962-	CUNLON 20168	1904	2004	• 001
963-	CUNLON 20169	2001	2101	• 001
964-	CUNLON 20170	2002	2102	• 001
965-	CUNLON 20171	2003	2103	• 001
966-	CUNLON 20172	2004	2104	• 001
967-	CUD_DLF 2	2001	2101	-A1 5683.0
968-	CUD_DLF 1	0	46.432	35.5985 -80.2278.0 57.5136 6C1
969-	CDC1 68.25	0.0	46.432	102 107 106 0.0
970-	COD_MF M2 161	10161	10162	102 107 106 0.0
971-	COD_MF M2 162	10162	102	103 106 107 0.0
972-	COD_MF M2 163	10163	103	104 105 108 0.0
973-	COD_MF M2 164	10164	104	105 110 109 0.0
974-	COD_MF M2 165	10165	106	107 112 111 0.0
975-	COD_MF M2 166	10166	107	108 113 112 0.0
976-	COD_MF M2 167	10167	108	109 114 113 0.0
977-	COD_MF M2 168	10168	109	110 115 114 0.0
978-	COD_MF M2 169	10169	111	112 116 115 0.0
979-	COD_MF M2 170	10170	112	113 117 116 0.0
980-	COD_MF M2 171	10171	113	114 118 117 0.0
981-	COD_MF M2 172	10172	114	115 119 118 0.0
982-	COD_MF M2 173	10173	116	117 120 119 0.0
983-	COD_MF M2 174	10174	117	118 123 121 0.0
984-	COD_MF M2 175	10175	118	119 124 123 0.0
985-	COD_MF M2 176	10176	119	120 125 124 0.0
986-	COD_MF M2 177	10177	124	125 127 126 0.0
987-	COD_MF M2 270	10270	201	202 206 207 0.0
988-	COD_MF M2 271	10271	202	203 209 208 0.0
989-	COD_MF M2 272	10272	203	204 210 209 0.0
990-	COD_MF M2 273	10273	204	205 211 210 0.0
991-	COD_MF M2 274	10274	205	206 212 211 0.0
992-	COD_MF M2 275	10275	207	208 214 213 0.0
993-	COD_MF M2 276	10276	208	209 215 214 0.0
994-	COD_MF M2 277	10277	209	210 216 215 0.0
995-	COD_MF M2 278	10278	210	211 217 216 0.0
996-	COD_MF M2 279	10279	211	212 218 217 0.0
997-	COD_MF M2 280	10280	213	214 220 219 0.0
998-	COD_MF M2 281	10281	214	215 221 220 0.0
999-	COD_MF M2 282	10282	215	216 222 221 0.0
1000-	COD_MF M2 283	10283	216	217 223 222 0.0

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS HALF EFF., LONG., 85% T.PANS. AT WING(G=2/3EFF.)

OCTOBER 6, 1974 NASTRAN 2/1/73 PAGE 26

CARD COUNT	S O R T E D - B U L K - D A T A	E C H O
1001-	CODME M2 284 1 0284 3 217 4 218 6 224 7 225 8 226 9 227 10 228	0 0 0 0 0 0 0 0 0 0
1002-	CODMF M2 285 1 0285 3 222 4 223 6 224 7 225 8 226 9 227 10 228	0 0 0 0 0 0 0 0 0 0
1003-	CODMF M2 286 1 0286 3 222 4 223 6 224 7 225 8 226 9 227 10 228	0 0 0 0 0 0 0 0 0 0
1004-	CODMF M2 2040 1 2040 1 2001 2 2002 3 2003 4 2004 5 2005 6 2006 7 2007 8 2008 9 2009 10 2010	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1005-	CODMF M2 2041 1 2041 1 2002 3 2003 4 2004 5 2005 6 2006 7 2007 8 2008 9 2009 10 2010	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1006-	CODMF M2 2042 1 2042 1 2003 3 2004 4 2005 5 2006 6 2007 7 2008 8 2009 9 2010 10 2011	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1007-	CODMF M2 2043 1 2043 1 2004 3 2005 4 2006 5 2007 6 2008 7 2009 8 2010 9 2011 10 2012	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1008-	CODMF M2 2044 1 2044 1 2005 3 2006 4 2007 5 2008 6 2009 7 2010 8 2011 9 2012 10 2013	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1009-	CODNF M2 2045 1 2045 1 2006 3 2007 4 2008 5 2009 6 2010 7 2011 8 2012 9 2013 10 2014	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1010-	CODMF M2 2046 1 2046 1 2007 3 2008 4 2009 5 2010 6 2011 7 2012 8 2013 9 2014 10 2015	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1011-	CODMF M2 2047 1 2047 1 2008 3 2009 4 2010 5 2011 6 2012 7 2013 8 2014 9 2015 10 2016	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1012-	CODMF M2 2048 1 2048 1 2009 3 2010 4 2011 5 2012 6 2013 7 2014 8 2015 9 2016 10 2017	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1013-	CODMF M2 2049 1 2049 1 2010 3 2011 4 2012 5 2013 6 2014 7 2015 8 2016 9 2017 10 2018	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1014-	CODMF M2 2050 1 2050 1 2011 3 2012 4 2013 5 2014 6 2015 7 2016 8 2017 9 2018 10 2019	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1015-	CODMF M2 2051 1 2051 1 2012 3 2013 4 2014 5 2015 6 2016 7 2017 8 2018 9 2019 10 2020	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1016-	CODMF M2 2C52 1 2C52 1 2013 3 2014 4 2015 5 2016 6 2017 7 2018 8 2019 9 2020 10 2021	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1017-	CODMF M2 2053 1 2053 1 2014 3 2015 4 2016 5 2017 6 2018 7 2019 8 2020 9 2021 10 2022	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1018-	CODMF M2 2054 1 2054 1 2015 3 2016 4 2017 5 2018 6 2019 7 2020 8 2021 9 2022 10 2023	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1019-	CODMF M2 2055 1 2055 1 2016 3 2017 4 2018 5 2019 6 2020 7 2021 8 2022 9 2023 10 2024	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1020-	CODMF M2 2056 1 2056 1 2017 3 2018 4 2019 5 2020 6 2021 7 2022 8 2023 9 2024 10 2025	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1021-	CODMF M2 2C57 1 2C57 1 2018 3 2019 4 2020 5 2021 6 2022 7 2023 8 2024 9 2025 10 2026	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1022-	CODMF M2 2058 1 2058 1 2019 3 2020 4 2021 5 2022 6 2023 7 2024 8 2025 9 2026 10 2027	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1023-	CODMF M2 2059 1 2059 1 2020 3 2021 4 2022 5 2023 6 2024 7 2025 8 2026 9 2027 10 2028	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1024-	CODMF M2 2060 1 2060 1 2021 3 2022 4 2023 5 2024 6 2025 7 2026 8 2027 9 2028 10 2029	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1025-	CODMF M2 2061 1 2061 1 2022 3 2023 4 2024 5 2025 6 2026 7 2027 8 2028 9 2029 10 2030	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1026-	CODMF M2 2062 1 2062 1 2023 3 2024 4 2025 5 2026 6 2027 7 2028 8 2029 9 2030 10 2031	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1027-	CODMF M2 2063 1 2063 1 2024 3 2025 4 2026 5 2027 6 2028 7 2029 8 2030 9 2031 10 2032	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1028-	CODMF M2 2064 1 2064 1 2025 3 2026 4 2027 5 2028 6 2029 7 2030 8 2031 9 2032 10 2033	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1029-	CODMF M2 2065 1 2065 1 2026 3 2027 4 2028 5 2029 6 2030 7 2031 8 2032 9 2033 10 2034	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1030-	CODMF M2 2C66 1 2C66 1 2027 3 2028 4 2029 5 2030 6 2031 7 2032 8 2033 9 2034 10 2035	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1031-	CODMF M2 2066 1 2066 1 2028 3 2029 4 2030 5 2031 6 2032 7 2033 8 2034 9 2035 10 2036	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1032-	CODMF M2 2067 1 2067 1 2029 3 2030 4 2031 5 2032 6 2033 7 2034 8 2035 9 2036 10 2037	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1033-	CODMF M2 2200 1 2200 1 2030 3 2031 4 2032 5 2033 6 2034 7 2035 8 2036 9 2037 10 2038	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1034-	CODMF M2 2201 1 2201 1 2031 3 2032 4 2033 5 2034 6 2035 7 2036 8 2037 9 2038 10 2039	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1035-	CODMF M2 2202 1 2202 1 2032 3 2033 4 2034 5 2035 6 2036 7 2037 8 2038 9 2039 10 2040	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1036-	CODMF M2 2203 1 2203 1 2033 3 2034 4 2035 5 2036 6 2037 7 2038 8 2039 9 2040 10 2041	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1037-	CODMF M2 2204 1 2204 1 2034 3 2035 4 2036 5 2037 6 2038 7 2039 8 2040 9 2041 10 2042	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1038-	CODMF M2 2205 1 2205 1 2035 3 2036 4 2037 5 2038 6 2039 7 2040 8 2041 9 2042 10 2043	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1039-	CODMF M2 2206 1 2206 1 2036 3 2037 4 2038 5 2039 6 2040 7 2041 8 2042 9 2043 10 2044	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1040-	CODMF M2 2207 1 2207 1 2037 3 2038 4 2039 5 2040 6 2041 7 2042 8 2043 9 2044 10 2045	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1041-	CODMF M2 2208 1 2208 1 2038 3 2039 4 2040 5 2041 6 2042 7 2043 8 2044 9 2045 10 2046	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1042-	CODMF M2 2209 1 2209 1 2039 3 2040 4 2041 5 2042 6 2043 7 2044 8 2045 9 2046 10 2047	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1043-	CODMF M2 2300 1 2300 1 2040 3 2041 4 2042 5 2043 6 2044 7 2045 8 2046 9 2047 10 2048	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1044-	CODMF M2 2301 1 2301 1 2041 3 2042 4 2043 5 2044 6 2045 7 2046 8 2047 9 2048 10 2049	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1045-	CODMF M2 2302 1 2302 1 2042 3 2043 4 2044 5 2045 6 2046 7 2047 8 2048 9 2049 10 2050	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1046-	CODMF M2 2303 1 2303 1 2043 3 2044 4 2045 5 2046 6 2047 7 2048 8 2049 9 2050 10 2051	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1047-	CODMF M2 2304 1 2304 1 2044 3 2045 4 2046 5 2047 6 2048 7 2049 8 2050 9 2051 10 2052	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1048-	CODMF M2 2305 1 2305 1 2045 3 2046 4 2047 5 2048 6 2049 7 2050 8 2051 9 2052 10 2053	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1049-	CODMF M2 2306 1 2306 1 2046 3 2047 4 2048 5 2049 6 2050 7 2051 8 2052 9 2053 10 2054	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
1050-	CODMF M2 2307 1 2307 1 2047 3 2048 4 2049 5 2050 6 2051 7 2052 8 2053 9 2054 10 2055	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

PHASE 1 (ORBITER FUSÉLAGE-SYMM CASE) MODEL 2
SKINS_HALF_EFF_LONG...85(1.EFF.TRANS.AT WING(=2/3EFF.),

OCTOBER 6, 1974 NASTRAN 2/173 PAGE 27

CAPD	COUNT	S O R T E D - B U L K - D A T A	E C H O
		1	2
		2	3
1051-	CODME M2	12308	158
1052-	CODME M2	12309	159
1053-	CODME M2	12310	160
1054-	CODME M2	12311	161
1055-	CODME M2	12312	162
1056-	CODME M2	12313	163
1057-	CODMI M2	12403	1H1.2
1058-	CODME M2	12404	181.4
1059-	CODME M2	12405	181.7
1060-	CODMF M2	12406	182.0
1061-	CODNF M2	12407	182.4
1062-	CODME M2	12408	182.8
1063-	CODME M2	12409	183.2
1064-	CODNL M2	12410	183.6
1065-	CODME M2	12411	183.8
1066-	CODMF M2	12413	184.1
1067-	CODMF M2	12414	184.4
1068-	CODRH M2	12415	184.5
1069-	CODME M2	12416	184.6
1070-	CODME M2	12417	184.7
1071-	CODMF M2	12418	184.8
1072-	CODME M2	12419	184.9
1073-	CODMF M2	12420	185.2
1074-	CODME M2	12421	185.5
1075-	CODME M2	12422	185.6
1076-	CODME M2	12424	185.7
1077-	CODMF M2	12425	185.8
1078-	CODML M2	12426	186.0
1079-	CODMF M2	12427	186.2
1080-	CODML M2	12428	186.3
1081-	CODML M2	12429	186.5
1082-	CODME M2	12430	186.9
1083-	CODME M2	12431	187.2
1084-	CODML M2	12432	187.4
1085-	CODNL M2	12448	187.5
1086-	CODMF M2	12649	187.6
1087-	CODME M2	12650	187.7
1088-	CODMF M2	12651	187.8
1089-	CODMF M2	12652	187.9
1090-	CODMF M2	12653	188.0
1091-	CODNL M2	12654	188.1
1092-	CODMF M2	12655	188.2
1093-	CODMF M2	12656	188.3
1094-	CODMF M2	12657	188.4
1095-	CODMF M2	12658	188.5
1096-	CODSH M2	12659	188.6
1097-	CODMF M2	12700	188.7
1098-	CODMF M2	12701	188.8
1099-	CODMF M2	12702	188.9
1100-	CODMF M2	12703	189.0

PHASE 1 (CORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS_HALF.EFF.LONG.,BSI.EFF.TFANS.AT.WING(G=2/3EFF.)

OCTOBER 6, 1974 NASTRAN 2/173 PAGE .28

CARD	COUNT	1	2	3	4	5	6	7	8	9	10
101-	CODMEM2	2704	12704	1934	2026	2029	1933	000	000	000	000
102-	CDDMLM2	2705	12705	1933	2029	2030	1932	000	000	000	000
103-	CSHEAF	178	10178	126	127	129	129	129	129	129	129
104-	CSHEAF	179	10179	128	128	129	129	130	130	130	130
105-	CSHEAF	287	10287	225	226	226	226	229	229	229	229
106-	CSHEAF	288	10288	226	227	227	227	230	230	230	230
107-	CSHEAF	289	10289	228	229	229	229	232	232	232	232
108-	CSHFAF	290	10290	229	230	230	230	233	233	233	233
109-	CSHFAF	291	10291	231	232	232	232	235	235	235	235
110-	CSHFAF	292	10292	232	233	233	233	236	236	236	236
111-	CSHLAF	293	10293	234	235	235	235	238	238	238	238
112-	CSHEAF	294	10294	235	236	236	236	239	239	239	239
113-	CSHLAF	295	10295	237	238	238	238	241	241	241	241
114-	CSHLAF	296	10296	238	239	239	239	242	242	242	242
115-	CSHFAF	351	10351	301	302	302	302	303	303	303	303
116-	CSHLAF	352	10352	302	303	303	303	306	306	306	306
117-	CSHEAF	353	10353	303	304	304	304	309	309	309	309
118-	CSHEAF	354	10354	304	305	305	305	310	310	310	310
119-	CSHLAF	355	10355	309	310	310	310	312	312	312	312
120-	CSHLAF	356	10356	311	311	312	312	314	314	314	314
121-	CSHFAF	357	10357	313	313	314	314	316	316	316	316
122-	CSHLAF	358	10358	315	316	316	316	317	317	317	317
123-	CSHFAF	401	10401	301	302	302	302	407	407	407	407
124-	CSHFAF	402	10402	302	303	303	303	408	408	408	408
125-	CSHLAF	403	10403	303	304	304	304	409	409	409	409
126-	CSHFAF	404	10404	304	305	305	305	410	410	410	410
127-	CSHLAF	551	10551	501	501	502	502	503	503	503	503
128-	CSHLAF	552	10552	502	503	503	503	509	509	509	509
129-	CSHEAF	553	10553	503	504	504	504	510	510	510	510
130-	CSHEAF	554	10554	504	505	505	505	512	512	512	512
131-	CSHEAF	555	10555	509	511	511	511	514	514	514	514
132-	CSHEAF	556	10556	511	513	513	513	515	515	515	515
133-	CSHEAF	557	10557	513	513	514	514	516	516	516	516
134-	CSHEAF	558	10558	515	516	516	516	517	517	517	517
135-	CSHEAF	651	10651	601	602	602	602	607	607	607	607
136-	CSHEAF	652	10652	602	603	603	603	608	608	608	608
137-	CSHEAF	653	10653	603	604	604	604	609	609	609	609
138-	CSHEAF	654	10654	604	605	605	605	610	610	610	610
139-	CSHEAF	655	10655	609	610	610	610	612	612	612	612
140-	CSHEAF	656	10656	611	612	612	612	614	614	614	614
141-	CSHEAF	657	10657	613	614	614	614	615	615	615	615
142-	CSHLAF	658	10658	615	616	616	616	617	617	617	617
143-	CSHLAF	751	10751	701	702	702	702	707	707	707	707
144-	CSHEAF	752	10752	702	703	703	703	709	709	709	709
145-	CSHLAF	753	10753	703	704	704	704	710	710	710	710
146-	CSHEAF	754	10754	704	705	705	705	710	710	710	710
147-	CSHEAF	755	10755	709	710	710	710	712	712	712	712
148-	CSHEAF	756	10756	711	712	712	712	714	714	714	714
149-	CSHLAF	757	10757	713	714	714	714	716	716	716	716
150-	CSHEAF	758	10758	715	716	716	716	717	717	717	717

CAPD	COUNT	SORTED	BULK	DATA	ECHO
1	1440	1 1440	1 1401	1 1406	1 1407
2	1441	1 1441	1 1402	1 1407	1 1406
3	1442	1 1442	1 1403	1 1407	1 1406
4	1443	1 1443	1 1404	1 1407	1 1406
5	1444	1 1444	1 1409	1 1410	1 1410
6	1445	1 1445	1 1411	1 1412	1 1414
7	1446	1 1446	1 1413	1 1414	1 1416
8	1447	1 1447	1 1415	1 1416	1 1418
9	1540	1 1540	1 1501	1 1502	1 1504
10	1541	1 1541	1 1503	1 1504	1 1505
11	1542	1 1542	1 1505	1 1506	1 1504
12	1543	1 1543	1 1507	1 1508	1 1510
13	1644	1 1644	1 1609	1 1610	1 1612
14	1645	1 1645	1 1611	1 1612	1 1614
15	1646	1 1646	1 1613	1 1614	1 1615
16	1647	1 1647	1 1615	1 1616	1 1618
17	1648	1 1648	1 1602	1 1603	1 1606
18	1649	1 1649	1 1604	1 1604	1 1608
19	1650	1 1650	1 1605	1 1605	1 1610
20	1651	1 1651	1 1607	1 1607	1 1611
21	1652	1 1652	1 1608	1 1608	1 1613
22	1653	1 1653	1 1609	1 1609	1 1615
23	1654	1 1654	1 1610	1 1610	1 1617
24	1655	1 1655	1 1611	1 1611	1 1618
25	1656	1 1656	1 1612	1 1612	1 1620
26	1657	1 1657	1 1613	1 1613	1 1622
27	1658	1 1658	1 1614	1 1614	1 1624
28	1659	1 1659	1 1615	1 1615	1 1626
29	1660	1 1660	1 1616	1 1616	1 1628
30	1661	1 1661	1 1617	1 1617	1 1630
31	1662	1 1662	1 1618	1 1618	1 1632
32	1663	1 1663	1 1619	1 1619	1 1634
33	1664	1 1664	1 1605	1 1605	1 1610
34	1665	1 1665	1 1611	1 1611	1 1612
35	1666	1 1666	1 1613	1 1613	1 1614
36	1667	1 1667	1 1615	1 1615	1 1617
37	1668	1 1668	1 1616	1 1616	1 1618
38	1669	1 1669	1 1617	1 1617	1 1620
39	1670	1 1670	1 1621	1 1621	1 1623
40	1671	1 1671	1 1623	1 1623	1 1625
41	1672	1 1672	1 1625	1 1625	1 1626
42	1673	1 1673	1 1626	1 1626	1 1627
43	1674	1 1674	1 1627	1 1627	1 1628
44	1675	1 1675	1 1629	1 1629	1 1630
45	1676	1 1676	1 1630	1 1630	1 1632
46	1677	1 1677	1 1631	1 1631	1 1633
47	1678	1 1678	1 1633	1 1633	1 1635
48	1679	1 1679	1 1634	1 1634	1 1636
49	1940	1 1940	1 1901	1 1902	1 1907
50	1941	1 1941	1 1903	1 1903	1 1908

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS_HALF_EFF_LONG,,85(LEFF,TFANS,AT_WING(G=2/3EFF,))

OCTOBER 6, 1974 NASTRAN 2/173 PAGE 31

CARD COUNT	1	2	3	4	5	6	7	8	9	10
1251-	CSHEAF	1942	11942	11903	11904	11909	11906	11907	11908	11908
1252-	CSHEAF	1943	11943	11904	11907	11911	11910	11911	11912	11912
1253-	CSHEAF	1944	11944	11905	11908	11913	11912	11913	11914	11914
1254-	CSHEAP	1945	11945	11906	11908	11914	11913	11915	11915	11915
1255-	CSHFAF	1946	11946	11906	11910	11915	11914	11916	11916	11916
1256-	CSHEAF	1947	11947	11912	11913	11917	11916	11917	11916	11916
1257-	CSHEAF	1948	11948	11904	11905	11914	11915	11916	11917	11917
1258-	CSHFAF	2210	12210	202	302	301	301	301	301	301
1259-	CSHEAF	2211	12211	203	303	302	302	302	302	302
1260-	CSHEAF	2212	12212	204	304	303	303	303	303	303
1261-	CSHEAF	2213	12213	206	306	305	304	304	304	304
1262-	CSHEAF	2214	12214	302	502	601	601	601	601	601
1263-	CSHEAF	2215	12215	303	503	602	602	602	602	602
1264-	CSHEAF	2216	12216	304	504	603	603	603	603	603
1265-	CSHTAF	2217	12217	305	505	604	604	604	604	604
1266-	CSHFAF	2218	12218	502	602	601	601	601	601	601
1267-	CSHLAF	2219	12219	503	603	602	602	602	602	602
1268-	CSHFAF	2220	12220	504	604	603	603	603	603	603
1269-	CSHEAF	2221	12221	505	605	604	604	604	604	604
1270-	CSHEAF	2222	12222	602	702	701	701	701	701	701
1271-	CSHEAF	2223	12223	603	703	702	702	702	702	702
1272-	CSHEAF	2224	12224	604	704	703	703	703	703	703
1273-	CSHEAF	2225	12225	605	705	704	704	704	704	704
1274-	CSHFAF	2226	12226	702	802	801	801	801	801	801
1275-	CSHEAF	2227	12227	703	803	802	802	802	802	802
1276-	CSHEAF	2228	12228	704	804	803	803	803	803	803
1277-	CSHEAF	2229	12229	705	805	804	804	804	804	804
1278-	CSHEAF	2234	12234	802	902	901	901	901	901	901
1279-	CSHEAF	2235	12235	803	903	902	902	902	902	902
1280-	CSHFAF	2236	12236	804	904	903	903	903	903	903
1281-	CSHEAF	2237	12237	805	905	904	904	904	904	904
1282-	CSHEAF	2238	12238	902	1002	1001	1001	1001	1001	1001
1283-	CSHLAF	2239	12239	903	1003	1002	1002	1002	1002	1002
1284-	CSHEAF	2240	12240	904	1004	1003	1003	1003	1003	1003
1285-	CSHLAF	2241	12241	905	1005	1004	1004	1004	1004	1004
1286-	CSHFAF	2242	12242	1002	1102	1101	1101	1101	1101	1101
1287-	CSHFAF	2243	12243	1003	1103	1102	1102	1102	1102	1102
1288-	CSHTAF	2244	12244	1004	1104	1103	1103	1103	1103	1103
1289-	CSHEAF	2245	12245	1005	1105	1104	1104	1104	1104	1104
1290-	CSHFAF	2246	12246	1102	1202	1201	1201	1201	1201	1201
1291-	CSHEAF	2247	12247	1103	1203	1202	1202	1202	1202	1202
1292-	CSHFAF	2248	12248	1104	1204	1203	1203	1203	1203	1203
1293-	CSHFAF	2249	12249	1105	1205	1204	1204	1204	1204	1204
1294-	CSHEAF	2254	12254	1202	1302	1301	1301	1301	1301	1301
1295-	CSHFAF	2255	12255	1203	1303	1302	1302	1302	1302	1302
1296-	CSHEAF	2256	12256	1204	1304	1303	1303	1303	1303	1303
1297-	CSHEAF	2257	12257	1205	1305	1304	1304	1304	1304	1304
1298-	CSHEAF	2258	12258	1302	1402	1401	1401	1401	1401	1401
1299-	CSHEAF	2259	12259	1303	1403	1402	1402	1402	1402	1402
1300-	CSHEAF	2260	12260	1304	1404	1403	1403	1403	1403	1403

CARD COUNT	1	2	3	4	5	6	7	8	9	10
1301-	*CSHEAF	*2261	12210	1305	*1404	*1304				
1302-	CSHEAR	2262	12210	1402	1602	1601				
1303-	CSHEAF	2263	12210	1403	1603	1602				
1304-	CSHEAF	2264	12210	1404	1604	1603				
1305-	CSHEAF	2265	12210	1405	1605	1604				
1306-	CSHEAF	2270	12210	1602	1702	1701				
1307-	CSHEAF	2271	12210	1603	1703	1702				
1308-	CSHEAF	2272	12210	1604	1704	1703				
1309-	CSHEAF	2273	12210	1605	1705	1704				
1310-	CSHEAF	2279	12210	1703	1803	1802				
1311-	CSHEAF	2280	12210	1704	1804	1803				
1312-	CSHEAF	2281	12210	1705	1805	1804				
1313-	CSHEAF	2282	12210	1802	1902	1901				
1314-	CSHEAF	2283	12210	1803	1903	1902				
1315-	CSHEAF	2284	12210	1804	1904	1903				
1316-	CSHEAF	2285	12210	1806	1905	1904				
1317-	CSHEAF	2286	12210	1902	2002	2001				
1318-	CSHEAF	2287	12210	1903	2003	2002				
1319-	CSHEAF	2288	12210	1904	2004	2003				
1320-	CSHEAF	2289	12210	1905	2005	2004				
1321-	CSHEAF	2290	12210	2002	2102	2101				
1322-	CSHEAF	2291	12210	2003	2103	2102				
1323-	CSHEAF	2292	12210	2004	2104	2103				
1324-	CSHEAF	2293	12210	2005	2105	2104				
1325-	CSHEAF	2314	12320	2006	3105	3104				
1326-	CSHEAF	2315	12320	2112	310	312				
1327-	CSHEAF	2316	12320	2113	312	314				
1328-	CSHEAF	2317	12320	224	314	316				
1329-	CSHEAF	2318	12320	227	316	318				
1330-	CSHEAF	2319	12320	305	505	510				
1331-	CSHEAF	2320	12320	310	510	512				
1332-	CSHEAF	2321	12320	312	512	514				
1333-	CSHEAF	2322	12320	314	514	516				
1334-	CSHEAF	2323	12320	316	516	518				
1335-	CSHEAF	2324	12320	505	605	610				
1336-	CSHEAF	2325	12320	510	610	612				
1337-	CSHEAF	2326	12320	512	612	614				
1338-	CSHEAF	2327	12320	514	614	616				
1339-	CSHEAF	2328	12320	516	616	618				
1340-	CSHEAF	2329	12320	605	705	710				
1341-	CSHEAF	2330	12320	610	710	712				
1342-	CSHEAF	2331	12320	612	712	714				
1343-	CSHEAF	2332	12320	614	714	716				
1344-	CSHEAF	2333	12320	616	716	718				
1345-	CSHEAF	2334	12320	705	805	810				
1346-	CSHEAF	2335	12320	710	810	812				
1347-	CSHEAF	2336	12320	712	812	814				
1348-	CSHEAF	2337	12320	714	814	816				
1349-	CSHEAF	2338	12320	716	816	818				
1350-	CSHEAF	2344	12320	805	905	910				

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS HALF EFF,LONG,0.05(EFF,Tfans,AT WING(G=2/3EFF.)

OCTOBER 6, 1974 NASTRAN 2/173 PAGE 33

CARD	COUNT	SORTED	BULK	DATA	ECHO
		3	4	5	6
1351-	CSHEAF	2345	12320	810	812
1352-	CSHEAF	2346	12320	812	814
1353-	CSHEAF	2347	12320	814	919
1354-	CSHEAF	2348	12320	816	921
1355-	CSHEAF	2349	12320	905	923
1356-	CSHEAF	2350	12320	910	918
1357-	CSHEAF	2351	12320	915	910
1358-	CSHEAF	2352	12320	917	915
1359-	CSHEAF	2353	12320	919	917
1360-	CSHEAF	2354	12320	921	919
1361-	CSHFAR	2355	12320	1005	1010
1362-	CSHFAR	2356	12320	1010	1015
1363-	CSHFAR	2357	12320	1015	1110
1364-	CSHFAR	2358	12320	1015	1115
1365-	CSHFAR	2359	12320	1019	1117
1366-	CSHFAR	2360	12320	1021	1119
1367-	CSHFAR	2361	12320	1021	1121
1368-	CSHFAR	2362	12320	1110	1120
1369-	CSHFAR	2363	12320	1115	1120
1370-	CSHFAR	2364	12320	1117	1122
1371-	CSHEAF	2365	12120	1119	1119
1372-	CSHEAF	2366	12320	1121	1021
1373-	CSHEAF	2373	12320	1121	1123
1374-	CSHEAF	2374	12320	1120	1110
1375-	CSHEAF	2375	12320	1120	1115
1376-	CSHEAF	2376	12320	1212	1117
1377-	CSHEAF	2377	12320	1119	1119
1378-	CSHEAF	2378	12320	1216	1121
1379-	CSHEAF	2379	12320	1218	1123
1380-	CSHEAF	2380	12320	1205	1120
1381-	CSHEAF	2381	12320	1210	1115
1382-	CSHEAF	2382	12320	1212	1115
1383-	CSHEAF	2383	12320	1214	1117
1384-	CSHFAR	2384	12320	1216	1121
1385-	CSHFAR	2385	12320	1218	1123
1386-	CSHFAR	2386	12320	1312	1210
1387-	CSHFAR	2387	12320	1310	1312
1388-	CSHEAF	2388	12320	1212	1214
1389-	CSHEAF	2389	12320	1312	1314
1390-	CSHEAF	2390	12320	1314	1316
1391-	CSHEAF	2391	12320	1316	1318
1392-	CSHEAF	2392	12320	1318	1320
1393-	CSHEAF	2393	12320	1502	1504
1394-	CSHEAF	2394	12320	1504	1506
1395-	CSHFAR	2395	12320	1506	1508
1396-	CSHFAR	2396	12320	1508	1510
1397-	CSHEAF	2401	12320	1714	1416
1398-	CSHEAF	2402	12320	1716	1718
1399-	CSHEAF	2412	12412	1905	2010
1400-	CSHEAF	2423	12412	2005	2106

S O R T E D B U L K D A T A E C H O										
CARD	COUNT	1	2	3	4	5	6	7	8	9 . . . 10 . . .
14011	CSHFAF	2600	12600	1407	1516	1406	1407	1406	1407	
1402-	CSHEAF	2601	12600	1408	1608	1607	1608	1607	1608	
1403-	CSHEAF	2602	12600	1409	1609	1608	1609	1608	1608	
1404-	CSHEAF	2603	12600	1410	1502	1501	1501	1501	1501	
1405-	CSHEAF	2605	12600	1517	1607	1609	1609	1609	1609	
1406-	CSHEAF	2609	12600	1502	1607	1707	1706	1706	1706	
1407-	CSHEAF	2610	12600	1607	1708	1707	1707	1707	1707	
1408-	CSHFAF	2611	12600	1608	1709	1708	1708	1708	1708	
1409-	CSHEAF	2612	12600	1609	1709	1709	1709	1709	1709	
1410-	CSHEAF	2613	12600	1610	1710	1709	1709	1709	1709	
1411-	CSHLAF	2621	12600	1708	1609	1608	1608	1608	1608	
1412-	CSHLAF	2622	12600	1709	1610	1609	1609	1609	1609	
1413-	CSHEAF	2623	12600	1710	1812	1812	1812	1812	1812	
1414-	CSHLAF	2625	12600	1808	1915	1914	1914	1914	1914	
1415-	CSHEAF	2626	12600	1809	1916	1915	1915	1915	1915	
1416-	CSHEAF	2627	12600	1810	1917	1916	1916	1916	1916	
1417-	CSHEAF	2628	12600	1811	1918	1917	1917	1917	1917	
1418-	CSHEAF	2629	12600	1812	1918	1928	1928	1928	1928	
1419-	CSHEAF	2630	12630	901	1001	1001	1001	1001	1001	
1420-	CSHEAF	2631	12631	1001	1101	1101	1101	1101	1101	
1421-	CSHEAF	2632	12632	1101	1201	1201	1201	1201	1201	
1422-	CSHEAF	2634	12634	1201	1301	1301	1301	1301	1301	
1423-	CSHEAF	2635	12635	1301	1401	1401	1401	1401	1401	
1424-	CSHEAF	2636	12636	1401	1601	1601	1601	1601	1601	
1425-	CSHEAF	2638	12638	1601	1701	1701	1701	1701	1701	
1426-	CSHEAF	2640	12640	1701	1721	1721	1721	1721	1721	
1427-	CSHEAF	2641	12641	1741	1802	1802	1802	1802	1802	
1428-	CSHEAF	2646	12634	1206	1306	1306	1306	1306	1306	
1429-	CSHEAF	2649	12649	1721	1724	1724	1724	1724	1724	
1430-	CSHEAF	2706	12706	1934	2026	2026	2026	2026	2026	
1431-	CSHEAF	2707	12707	1933	2029	2029	2029	2029	2029	
1432-	CSHEAF	2708	12708	2011	2014	2014	2014	2014	2014	
1433-	CTRMEM	180	10180	123	124	124	124	124	124	
1434-	CTFMF M	297	1297	222	222	222	222	222	222	
1435-	CTFM M	2067	12067	2034	2035	2035	2035	2035	2035	
1436-	CTFMF M	2070	12070	2038	2039	2039	2039	2039	2039	
1437-	CTPM M	2278	12278	1701	1702	1702	1702	1702	1702	
1438-	CTFM M	2620	12620	1707	1808	1808	1808	1808	1808	
1439-	CTFM M	2645	12620	1321	1407	1407	1407	1407	1407	
1440-	EIGF	1	INV	1.0	1.0	1.0	1.0	1.0	1.0	
1441-	EEIG1	MAX								
1442-	GFI D	*101	0							
1443-	*15001		50.3000	0						
1444-	GFI D	*102	0							
1445-	*15002		50.3000	0						
1446-	GFI D	*103	0							
1447-	*15003		50.3000	0						
1448-	GFI D	*104	0							
1449-	*15004		50.3000	0						
1450-	GFI D	*105	0							

1.0-4 EIGI

46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

-1.6757 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

-4.2666 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

1.0503 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

1.0504 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

-7.4000 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

-9.8784 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS_HALF_EFF.LONG.,05(EFF.TPNS.AT WING(G=2/JEFF.))

OCTOBER 6. 1974 NASTRAN 2/ 173 PAGE 35

CARD COUNT	1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 .. 9 .. 10 ..	BULK DATA ECHO
1451-	*15.005 GF1D *106	51.2177 0 .0 .0 .0 .0 .0 .0 .0 .0 .0
1452-	*15.006 GF1D *107	53.4909 0 .0 .0 .0 .0 .0 .0 .0 .0
1453-	*15.007 GF1D *108	53.4987 0 .0 .0 .0 .0 .0 .0 .0 .0
1454-	*15.008 GF1D *109	53.5007 0 .0 .0 .0 .0 .0 .0 .0 .0
1455-	*15.009 GF1D *110	53.5114 0 .0 .0 .0 .0 .0 .0 .0 .0
1456-	*15.010 GF1D *111	53.5286 0 .0 .0 .0 .0 .0 .0 .0 .0
1457-	*15.011 GF1D *112	56.7000 0 .0 .0 .0 .0 .0 .0 .0 .0
1458-	*15.012 GF1D *113	56.7000 0 .0 .0 .0 .0 .0 .0 .0 .0
1459-	*15.013 GF1D *114	56.7000 0 .0 .0 .0 .0 .0 .0 .0 .0
1460-	*15.014 GF1D *115	56.7000 0 .0 .0 .0 .0 .0 .0 .0 .0
1461-	*15.015 GF1D *116	56.7000 0 .0 .0 .0 .0 .0 .0 .0 .0
1462-	*15.016 GF1D *117	59.6140 0 .0 .0 .0 .0 .0 .0 .0 .0
1463-	*15.017 GF1D *118	59.8012 0 .0 .0 .0 .0 .0 .0 .0 .0
1464-	*15.018 GF1D *119	59.8036 0 .0 .0 .0 .0 .0 .0 .0 .0
1465-	*15.019 GF1D *120	59.7947 0 .0 .0 .0 .0 .0 .0 .0 .0
1466-	*15.020 GF1D *121	59.7917 0 .0 .0 .0 .0 .0 .0 .0 .0
1467-	*15.021 GF1D *122	61.7486 0 .0 .0 .0 .0 .0 .0 .0 .0
1468-	*15.022 GF1D *123	61.9758 0 .0 .0 .0 .0 .0 .0 .0 .0
1469-	*15.023 GF1D *124	62.2045 0 .0 .0 .0 .0 .0 .0 .0 .0
1470-	*15.024 GF1D *125	62.7470 0 .0 .0 .0 .0 .0 .0 .0 .0
1471-	*15.025 GF1D *126	63.3500 0 .0 .0 .0 .0 .0 .0 .0 .0
1472-	*15.026 GF1D *127	64.7621 0 .0 .0 .0 .0 .0 .0 .0 .0
1473-	*15.027 GF1D *128	66.7757 0 .0 .0 .0 .0 .0 .0 .0 .0
1474-	*15.028 GF1D *129	67.3699 0 .0 .0 .0 .0 .0 .0 .0 .0
1475-	*15.029 GF1D *130	68.4550 0 .0 .0 .0 .0 .0 .0 .0 .0
1476-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1477-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1478-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1479-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1480-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1481-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1482-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1483-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1484-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1485-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1486-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1487-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1488-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1489-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1490-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1491-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1492-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1493-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1494-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1495-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1496-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1497-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1498-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1499-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0
1500-		46.7500 .0 .0 .0 .0 .0 .0 .0 .0 .0

CARD	1	2	3	4	5	6	7	8	9	10
COUNT	\$15030	00	67.7724	0	0	0	0	0	0	0
1501-	GR1D	*131	69.1287	0	0	46.7500	0	0	0	0
1502-		\$15031	0	0	0	0	0	0	0	0
1503-	GR1D	*151	49.4750	0	0	55.3750	0	0	0	0
1504-		\$15032	0	0	0	0	0	0	0	0
1505-	GR1D	*152	49.4750	0	0	55.3750	-1.7051	0	0	0
1506-		\$15033	0	0	0	0	0	0	0	0
1507-	GR1D	*153	49.4750	0	0	55.3750	-4.3000	0	0	0
1508-		\$15034	0	0	0	0	0	0	0	0
1509-	GR1D	*154	49.4750	0	0	55.3750	-7.4000	0	0	0
1510-		\$15035	0	0	0	0	0	0	0	0
1511-	GR1D	*155	49.4750	0	0	55.3750	-10.2000	0	0	0
1512-		\$15036	0	0	0	0	0	0	0	0
1513-	GR1D	*156	49.9250	0	0	55.3750	-11.7500	0	0	0
1514-		\$15037	0	0	0	0	0	0	0	0
1515-	GR1D	*157	51.0750	0	0	55.3750	-11.7500	0	0	0
1516-		\$15038	0	0	0	0	0	0	0	0
1517-	GR1D	*158	53.9960	0	0	55.3750	-11.7500	0	0	0
1518-		\$15039	0	0	0	0	0	0	0	0
1519-	GR1D	*159	56.7000	0	0	55.3750	-11.7500	0	0	0
1520-		\$15040	0	0	0	0	0	0	0	0
1521-	GR1D	*160	59.2465	0	0	55.3750	-11.7500	0	0	0
1522-		\$15041	0	0	0	0	0	0	0	0
1523-	GR1D	*161	61.1459	0	0	55.3750	-10.8742	0	0	0
1524-		\$15042	0	0	0	0	0	0	0	0
1525-	GR1D	*162	65.3167	0	0	55.3750	-7.9194	0	0	0
1526-		\$15043	0	0	0	0	0	0	0	0
1527-	GR1D	*163	69.0944	0	0	55.3750	-4.3917	0	0	0
1528-		\$15044	0	0	0	0	0	0	0	0
1529-	GR1D	*164	71.3092	0	0	55.3750	0	0	0	0
1530-		\$15045	0	0	0	0	0	0	0	0
1531-	GR1D	*165	72.1000	0	0	55.3750	0	0	0	0
1532-		\$15046	0	0	0	0	0	0	0	0
1533-	GR1D	*166	53.0750	0	0	55.3750	0	0	0	0
1534-		\$15047	0	0	0	0	0	0	0	0
1535-	GR1D	*167	56.7000	0	0	55.3750	-7.4000	0	0	0
1536-		\$15048	0	0	0	0	0	0	0	0
1537-	GR1D	*168	56.7000	0	0	55.3750	-4.3000	0	0	0
1538-		\$15049	0	0	0	0	0	0	0	0
1539-	GR1D	*169	0	0	0	0	0	0	0	0
1540-		\$15050	0	0	0	0	0	0	0	0
1541-	GR1D	*201	48.6500	0	0	64.0000	0	0	0	0
1542-		\$15050	0	0	0	0	0	0	0	0
1543-	GR1D	*202	48.6500	0	0	64.0000	-1.6829	0	0	0
1544-		\$15051	0	0	0	0	0	0	0	0
1545-	GR1D	*203	48.6500	0	0	64.0000	-4.2673	0	0	0
1546-		\$15052	0	0	0	0	0	0	0	0
1547-	GR1D	*204	48.6500	0	0	64.0000	-7.3920	0	0	0
1548-		\$15053	0	0	0	0	0	0	0	0
1549-	GR1D	*205	48.6500	0	0	64.0000	-10.4767	0	0	0
1550-		\$15054	0	0	0	0	0	0	0	0

CARD COUNT	1	2	3	4	5	6	7	8	9	10	ECHO
1551-	GRI D	*1206	48.6500	0	64.0000	0	7	-12.5000	0	615055	
1552-	GRI D	*15055	52.5961	0	64.0000	0	0	0	0	615056	
1553-	GRI D	*2207	52.5961	0	64.0000	0	0	0	0	615057	
1554-	GRI D	*15056	52.5961	0	64.0000	0	-1.6731	0	0	615058	
1555-	GRI D	*2208	52.6058	0	64.0000	0	-4.2771	0	0	615059	
1556-	GRI D	*15057	52.6058	0	64.0000	0	-7.3621	0	0	615060	
1557-	GRI D	*2209	52.6116	0	64.0000	0	-10.4669	0	0	615061	
1558-	GRI D	*15058	52.6116	0	64.0000	0	-12.5000	0	0	615062	
1559-	GRI D	*2210	52.6059	0	64.0000	0	-1.6698	0	0	615063	
1560-	GRI D	*15059	52.6059	0	64.0000	0	-4.2742	0	0	615064	
1561-	GRI D	*2211	52.6206	0	64.0000	0	-7.3789	0	0	615065	
1562-	GRI D	*15060	52.6206	0	64.0000	0	-10.4836	0	0	615066	
1563-	GRI D	*2212	52.5961	0	64.0000	0	-12.5000	0	0	615067	
1564-	GRI D	*15061	52.5961	0	64.0000	0	-1.6698	0	0	615068	
1565-	GRI D	*2213	53.8978	0	64.0000	0	-4.2742	0	0	615069	
1566-	GRI D	*15062	53.8978	0	64.0000	0	-7.3789	0	0	615070	
1567-	GRI D	*2214	53.9278	0	64.0000	0	-10.4836	0	0	615071	
1568-	GRI D	*15063	53.9278	0	64.0000	0	-12.5000	0	0	615072	
1569-	GRI D	*2215	53.9136	0	64.0000	0	-1.6698	0	0	615073	
1570-	GRI D	*15064	53.9136	0	64.0000	0	-4.2742	0	0	615074	
1571-	GRI D	*2216	53.9263	0	64.0000	0	-7.3789	0	0	615075	
1572-	GRI D	*15065	53.9263	0	64.0000	0	-10.4836	0	0	615076	
1573-	GRI D	*2217	53.9430	0	64.0000	0	-12.5000	0	0	615077	
1574-	GRI D	*15066	53.9430	0	64.0000	0	-1.6698	0	0	615078	
1575-	GRI D	*2218	53.9382	0	64.0000	0	-4.2742	0	0	615079	
1576-	GRI D	*15067	53.9382	0	64.0000	0	-7.3789	0	0	615080	
1577-	GRI D	*2219	56.7000	0	64.0000	0	-10.4836	0	0	615081	
1578-	GRI D	*15068	56.7000	0	64.0000	0	-1.6698	0	0	615082	
1579-	GRI D	*2220	56.7000	0	64.0000	0	-4.2742	0	0	615083	
1580-	GRI D	*15069	56.7000	0	64.0000	0	-7.3789	0	0	615084	
1581-	GRI D	*2221	56.7000	0	64.0000	0	-10.4836	0	0	615085	
1582-	GRI D	*15070	56.7000	0	64.0000	0	-12.5000	0	0	615086	
1583-	GRI D	*2222	56.7000	0	64.0000	0	-1.6698	0	0	615087	
1584-	GRI D	*15071	56.7000	0	64.0000	0	-4.2742	0	0	615088	
1585-	GRI D	*2223	59.2577	0	64.0000	0	-7.3789	0	0	615089	
1586-	GRI D	*15072	56.7000	0	64.0000	0	-10.4756	0	0	615090	
1587-	GRI D	*2224	56.7000	0	64.0000	0	-12.5000	0	0	615091	
1588-	GRI D	*15073	56.7000	0	64.0000	0	-1.6698	0	0	615092	
1589-	GRI D	*2225	59.2465	0	64.0000	0	-4.2742	0	0	615093	
1590-	GRI D	*15074	59.2465	0	64.0000	0	-7.3789	0	0	615094	
1591-	GRI D	*2226	62.4208	0	64.0000	0	-10.4705	0	0	615095	
1592-	GRI D	*15075	59.2312	0	64.0000	0	-12.5000	0	0	615096	
1593-	GRI D	*2227	62.5000	0	64.0000	0	-1.6698	0	0	615097	
1594-	GRI D	*15076	62.5000	0	64.0000	0	-4.2742	0	0	615098	
1595-	GRI D	*2228	62.4208	0	64.0000	0	-7.3789	0	0	615099	
1596-	GRI D	*15077	62.4208	0	64.0000	0	-10.4705	0	0	615100	
1597-	GRI D	*2229	62.5000	0	64.0000	0	-12.5000	0	0	615101	
1598-	GRI D	*15078	62.5000	0	64.0000	0	-1.6698	0	0	615102	
1599-	GRI D	*2230	62.5000	0	64.0000	0	-4.2742	0	0	615103	
1600-	GRI D	*15079	62.5000	0	64.0000	0	-7.3789	0	0	615104	

CARD	S O R T E D - B U L K - D A T A - E . C . H . O									
COUNT	1	2	..	3	..	4	..	5	..	6
1601-	GRID *231	0	0	0	0	0	0	0	0	0
1602-	\$15080	65.6948	0	0	0	0	0	0	0	0
1603-	GRID *232	0	0	0	0	0	0	0	0	0
1604-	*15081	66.5181	0	0	0	0	0	0	0	0
1605-	GFID *233	0	0	0	0	0	0	0	0	0
1606-	*15082	67.2835	0	0	0	0	0	0	0	0
1607-	GFID *234	0	0	0	0	0	0	0	0	0
1608-	*15083	68.4469	0	0	0	0	0	0	0	0
1609-	GRID *235	0	0	0	0	0	0	0	0	0
1610-	*15084	69.9247	0	0	0	0	0	0	0	0
1611-	GFID *236	0	0	0	0	0	0	0	0	0
1612-	*15085	71.3389	0	0	0	0	0	0	0	0
1613-	GFID *237	0	0	0	0	0	0	0	0	0
1614-	*15086	70.2620	0	0	0	0	0	0	0	0
1615-	GRID *238	0	0	0	0	0	0	0	0	0
1616-	*15087	72.2007	0	0	0	0	0	0	0	0
1617-	GFID *239	0	0	0	0	0	0	0	0	0
1618-	*15088	74.0485	0	0	0	0	0	0	0	0
1619-	GFID *240	0	0	0	0	0	0	0	0	0
1620-	*15089	70.9247	0	0	0	0	0	0	0	0
1621-	GRID *241	0	0	0	0	0	0	0	0	0
1622-	*15090	73.0000	0	0	0	0	0	0	0	0
1623-	GFID *242	0	0	0	0	0	0	0	0	0
1624-	*15091	75.0000	0	0	0	0	0	0	0	0
1625-	GFID *243	0	0	0	0	0	0	0	0	0
1626-	GRID *301	0	0	0	0	0	0	0	0	0
1627-	*15092	48.4320	1	0	0	0	0	0	0	0
1628-	GFID *302	0	0	0	0	0	0	0	0	0
1629-	*15093	48.4320	0	0	0	0	0	0	0	0
1630-	GRID *303	0	0	0	0	0	0	0	0	0
1631-	*15094	48.4320	0	0	0	0	0	0	0	0
1632-	GFID *304	0	0	0	0	0	0	0	0	0
1633-	*15095	48.4320	0	0	0	0	0	0	0	0
1634-	GFID *305	0	0	0	0	0	0	0	0	0
1635-	*15096	48.4320	0	0	0	0	0	0	0	0
1636-	GRID *306	0	0	0	0	0	0	0	0	0
1637-	*15097	52.4251	0	0	0	0	0	0	0	0
1638-	GFID *307	0	0	0	0	0	0	0	0	0
1639-	*15098	52.4267	0	0	0	0	0	0	0	0
1640-	GFID *308	0	0	0	0	0	0	0	0	0
1641-	*15099	52.4203	0	0	0	0	0	0	0	0
1642-	GRID *309	0	0	0	0	0	0	0	0	0
1643-	*15100	52.4086	0	0	0	0	0	0	0	0
1644-	GFID *310	0	0	0	0	0	0	0	0	0
1645-	*15101	52.4051	0	0	0	0	0	0	0	0
1646-	GFID *311	0	0	0	0	0	0	0	0	0
1647-	*15102	53.9993	0	0	0	0	0	0	0	0
1648-	GRID *312	0	0	0	0	0	0	0	0	0
1649-	*15103	53.9902	0	0	0	0	0	0	0	0
1650-	GRID *313	0	0	0	0	0	0	0	0	0

S O R T E D B U L K - D A T A E C H O										
CARD	1 ..	2 ..	3 ..	4 ..	5 ..	6 ..	7 ..	8 ..	9 ..	10 ..
COUNT	*15104	*314	56.71780							
1651-	GRID	0	68.2500							
1652-	*15105		56.69890							
1653-	GRID	*315	68.2500							
1654-	*15106		59.37540							
1655-	GRID	*316	68.2500							
1656-	*15107		59.36700							
1657-	GRID	*317	68.2500							
1658-	*15108		62.50000							
1659-	GRID	*318	68.2500							
1660-	*15109		62.50000							
1661-	GRID	*406	68.2500							
1662-	*15111		52.41860							
1663-	GRID	*407	68.2500							
1664-	*15112		52.39760							
1665-	GRID	*408	68.2500							
1666-	*15113		52.41510							
1667-	GRID	*409	68.2500							
1668-	*15114		52.39560							
1669-	GRID	*501	78.0000							
1670-	*15115		47.93300							
1671-	GRID	*502	78.0000							
1672-	*15116		47.93300							
1673-	GRID	*503	78.0000							
1674-	*15117		47.93300							
1675-	GRID	*504	78.0000							
1676-	*15118		47.93300							
1677-	GRID	*505	78.0000							
1678-	*15119		47.93300							
1679-	GRID	*506	78.0000							
1680-	*15120		51.93300							
1681-	GRID	*507	78.0000							
1682-	*15121		51.93360							
1683-	GRID	*508	78.0000							
1684-	*15122		51.92410							
1685-	GRID	*509	78.0000							
1686-	*15123		51.96330							
1687-	GRID	*510	78.0000							
1688-	*15124		51.93210							
1689-	GRID	*511	78.0000							
1690-	*15125		54.04700							
1691-	GRID	*512	78.0000							
1692-	*15126		54.02260							
1693-	GRID	*513	78.0000							
1694-	*15127		56.75170							
1695-	GRID	*514	78.0000							
1696-	*15128		56.75550							
1697-	GRID	*515	78.0000							
1698-	*15129		59.39650							
1699-	GRID	*516	78.0000							
1700-										

CARD COUNT	SORTED	BULK	DATA	ECHO
1701-	1 ..	2 ..	3 ..	4 ..
1702-	*15130	59.4285 0	59.4285 0	59.4285 0
1703-	GF1D *517	0	78.0000	-10.7751
1704-	*15131	62.5223 0	78.0000	-12.5000
1705-	GR1D *518	0	78.0000	615131
1706-	*15132	62.5000 0	87.5000	615132
1707-	GR1D *601	0	87.5000	615133
1708-	*15133	47.4460 0	87.5000	615134
1709-	GR1D *602	0	87.5000	615135
1710-	*15134	47.4460 0	87.5000	615136
1711-	GR1D *603	0	87.5000	615137
1712-	*15135	47.4460 0	87.5000	615138
1713-	GR1D *604	0	87.5000	615139
1714-	*15136	47.4460 0	87.5000	615140
1715-	GR1D *605	0	87.5000	615141
1716-	*15137	47.4460 0	87.5000	615142
1717-	GR1D *606	0	87.5000	615143
1718-	*15138	51.4458 0	87.5000	615144
1719-	GR1D *607	0	87.5000	615145
1720-	*15139	51.4364 0	87.5000	615146
1721-	GR1D *608	0	87.5000	615147
1722-	*15140	51.4415 0	87.5000	615148
1723-	GR1D *609	0	87.5000	615149
1724-	*15141	51.4431 0	87.5000	615150
1725-	GR1D *610	0	87.5000	615151
1726-	*15142	51.4458 0	87.5000	615152
1727-	GR1D *611	0	87.5000	615153
1728-	*15143	54.1956 0	87.5000	615154
1729-	GR1D *612	0	87.5000	615155
1730-	*15144	54.1856 0	87.5000	615156
1731-	GR1D *613	0	87.5000	615157
1732-	*15145	56.9085 0	87.5000	615158
1733-	GR1D *614	0	87.5000	615159
1734-	*15146	56.8858 0	87.5000	615160
1735-	GR1D *615	0	87.5000	615161
1736-	*15147	59.5410 0	87.5000	615162
1737-	GR1D *616	0	87.5000	615163
1738-	*15148	59.5657 0	87.5000	615164
1739-	GR1D *617	0	87.5000	615165
1740-	*15149	62.6759 0	87.5000	615166
1741-	GR1D *618	0	87.5000	615167
1742-	*15150	62.5000 0	97.0000	615168
1743-	GR1D *701	0	97.0000	615169
1744-	*15151	46.9600 0	97.0000	615170
1745-	GR1D *702	0	97.0000	615171
1746-	*15152	46.9600 0	97.0000	615172
1747-	GR1D *703	0	97.0000	615173
1748-	*15153	46.9600 0	97.0000	615174
1749-	GR1D *704	0	97.0000	615175
1750-	*15154	46.9600 0	97.0000	615176
	GR1D *705	0	97.0000	615177

S O R T E D - B U L K - D A T A E C H O

CARD COUNT	1	2	3	4	5	6	7	8	9	10
1751-	*15155	..	46.9600	0	..	5	..	6	..	7
1752-	GFID	*706	50.9729	0
1753-	*15156	..	97.0000	0
1754-	GRID	*707	50.9796	0
1755-	*15157	..	97.0000	0
1756-	GFID	*708	50.9985	0
1757-	*15158	..	97.0000	0
1758-	GFID	*709	51.0114	0
1759-	*15159	..	97.0000	0
1760-	GRID	*710	51.0130	0
1761-	*15160	..	97.0000	0
1762-	GFID	*711	54.0749	0
1763-	*15161	..	97.0000	0
1764-	GRID	*712	54.0103	0
1765-	*15162	..	97.0000	0
1766-	GRID	*713	56.8177	0
1767-	*15163	..	97.0000	0
1768-	GRID	*714	56.8116	0
1769-	*15164	..	97.0000	0
1770-	GRID	*715	59.4605	0
1771-	*15165	..	97.0000	0
1772-	GRID	*716	59.4802	0
1773-	*15166	..	97.0000	0
1774-	GRID	*717	62.5638	0
1775-	*15167	..	97.0000	0
1776-	GRID	*718	62.0	0
1777-	*15168	..	62.5000	0
1778-	GRID	*760	62.5000	0
1779-	*15178	..	102.1200	0
1780-	GRID	*801	62.5000	0
1781-	*15179	..	106.5000	0
1782-	GRID	*802	46.4730	0
1783-	*15180	..	106.5000	0
1784-	GRID	*803	46.4730	0
1785-	*15181	..	106.5000	0
1786-	GRID	*804	46.4730	0
1787-	*15182	..	106.5000	0
1788-	GRID	*805	46.4730	0
1789-	*15183	..	106.5000	0
1790-	GRID	*806	50.4730	0
1791-	*15184	..	106.5000	0
1792-	GRID	*807	50.4447	0
1793-	*15185	..	106.5000	0
1794-	GRID	*808	50.4523	0
1795-	*15186	..	106.5000	0
1796-	GRID	*809	50.4565	0
1797-	*15187	..	106.5000	0
1798-	GRID	*810	50.4530	0
1799-	*15188	..	106.5000	0
1800-	GRID	*811	50.4530	0

S O R T E D - B U L K - D A T A - E C H O

CARD COUNT	1 ..	2 ..	3 ..	4 ..	5 ..	6 ..	7 ..	8 ..	9 ..	10 ..
1801-	*15189	53.9918 0								
1802-	GR1D *812.	53.9929 0								
1803-	*15190	53.9929 0								
1804-	GR1D *813	56.7483 0								
1805-	*15191	56.7483 0								
1806-	GR1D *814	56.7328 0								
1807-	*15192	56.7328 0								
1808-	GR1D *815	59.3649 0								
1809-	*15193	59.3649 0								
1810-	GR1D *816	59.3527 0								
1811-	*15194	59.3527 0								
1812-	GR1D *817	62.4608 0								
1813-	*15195	62.4608 0								
1814-	GR1D *818	62.5000 0								
1815-	*15196	62.5000 0								
1816-	GR1D *901	45.9860 0								
1817-	*15197	45.9860 0								
1818-	GR1D *902	45.9860 0								
1819-	*15198	45.9860 0								
1820-	GR1D *903	45.9860 0								
1821-	*15199	45.9860 0								
1822-	GR1D *904	45.9860 0								
1823-	*15200	45.9860 0								
1824-	GR1D *905	45.9860 0								
1825-	*15201	45.9860 0								
1826-	GR1D *910	49.9860 0								
1827-	*15202	49.9860 0								
1828-	GR1D *911	51.5000 0								
1829-	*15203	51.5000 0								
1830-	GR1D *912	51.5000 0								
1831-	*15204	51.5000 0								
1832-	GR1D *913	51.5000 0								
1833-	*15205	51.5000 0								
1834-	GR1D *914	51.5000 0								
1835-	*15206	53.9659 0								
1836-	GR1D *915	56.7000 0								
1837-	*15207	56.7000 0								
1838-	GR1D *916	56.7000 0								
1839-	*15208	53.9786 0								
1840-	GR1D *917	53.9659 0								
1841-	*15209	53.9659 0								
1842-	GR1D *918	56.7000 0								
1843-	*15210	56.7000 0								
1844-	GR1D *919	56.7000 0								
1845-	*15211	56.7000 0								
1846-	GR1D *920	59.4539 0								
1847-	*15212	59.4539 0								
1848-	GR1D *921	59.4458 0								
1849-	*15213	59.4458 0								
1850-	GR1D *922	59.4458 0								

CAPD	COUNT	1	2	3	4	5	6	7	8	9	10
1851-	*15214	•	•	62.4512	0						
1852-	GF1D	*923		0							
1853-	*15215			62.5000	0						
1854-	GF1D	*1001		0							
1855-	*15216			45.8330	0						
1856-	GF1D	*1002		0							
1857-	*15217			45.8330	0						
1858-	GF1D	*1003		0							
1859-	*15218			45.8330	0						
1860-	GF1D	*1C04		0							
1861-	*15219			45.8330	0						
1862-	GF1D	*1005		0							
1863-	*15220			45.8330	0						
1864-	GF1D	*1010		0							
1865-	*15221			49.8330	0						
1866-	GF1D	*1011		0							
1867-	*15222			51.5000	0						
1868-	GF1D	*1012		0							
1869-	*15223			51.5000	0						
1870-	GF1D	*1013		0							
1871-	*15224			51.5000	0						
1872-	GF1D	*1014		0							
1873-	*15225			51.5000	0						
1874-	GF1D	*1015		0							
1875-	*15226			51.5000	0						
1876-	GF1D	*1016		0							
1877-	*15227			53.9523	0						
1878-	GF1D	*1017		0							
1879-	*15228			53.9459	0						
1880-	GF1D	*1018		0							
1881-	*15229			56.7000	0						
1882-	GF1D	*1019		0							
1883-	*15230			56.7000	0						
1884-	GF1D	*1020		0							
1885-	*15231			59.2985	0						
1886-	GF1D	*1021		0							
1887-	*15232			59.3145	0						
1888-	GF1D	*1022		0							
1889-	*15233			62.4221	0						
1890-	GF1D	*1023		0							
1891-	*15234			62.5000	0						
1892-	GF1D	*1101		0							
1893-	*15235			45.5000	0						
1894-	GF1D	*1102		0							
1895-	*15236			45.5000	0						
1896-	GF1D	*1103		0							
1897-	*15237			45.5000	0						
1898-	GF1D	*1104		0							
1899-	*15238			45.5000	0						
1900-	GF1D	*1105		0							

SORTED-BULK-DATA ECHO

CARD COUNT	1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 .. 9 .. 10 ..
1901-	*15239 45.50000
1902-	GFI D *1110 0
1903-	*15241 49.50000
1904-	GFI D *1111 0
1905-	*15242 51.50000
1906-	GFI D *1112 0
1907-	*15243 51.50000
1908-	GFI D *1113 0
1909-	*15244 51.50000
1910-	GFI D *1114 0
1911-	*15245 51.50000
1912-	GFI D *1115 0
1913-	*15246 51.50000
1914-	GFI D *1116 0
1915-	*15247 53.97150
1916-	GFI D *1117 0
1917-	*15248 53.96620
1918-	GFI D *1118 0
1919-	*15249 56.70240
1920-	GFI D *1119 0
1921-	*15250 56.68180
1922-	GFI D *1120 0
1923-	*15251 59.33350
1924-	GFI D *1121 0
1925-	*15252 59.31760
1926-	GFI D *1122 0
1927-	*15253 62.46300
1928-	GFI D *1123 0
1929-	*15254 62.50000
1930-	GFI D *1161 0
1931-	*15255 62.50000
1932-	GFI D *1201 0
1933-	*15267 45.50000
1934-	GFI D *1202 0
1935-	*15268 45.50000
1936-	GFI D *1203 0
1937-	*15269 45.50000
1938-	GFI D *1204 0
1939-	*15270 45.50000
1940-	GFI D *1205 0
1941-	*15271 45.50000
1942-	GFI D *1206 0
1943-	*15272 49.50000
1944-	GFI D *1207 0
1945-	*15273 49.50000
1946-	GFI D *1208 0
1947-	*15274 49.50000
1948-	GFI D *1209 0
1949-	*15275 49.50000
1950-	GFI D *1210 0

PHASE 1 (CORRITER FUSSELAGE-SYMM CASE) MODEL 2
SKINS_HALF_EFF, LONG., 85(, EFF, TFANS, AT WING(G=2/3EFF.)

OCTOBER 6, 1974 NASTRAN 2/1/73 PAGE 45

S O R T E D _ B U L K _ D A T A _ E C H O

CARD COUNT	1	2	3	4	5	6	7	8	9	10
1951-	*15276	0	49.50000	0	135.00000	-7.9193				615277
1952-	GF1D	*12111	51.50000	0	135.00000	-12.5000				615278
1953-	*15277	0	51.50000	0	135.00000	-12.5000				615279
1954-	GF1D	*12122	51.50000	0	135.00000	-8.5672				
1955-	*15278	0	51.50000	0	135.00000	-12.5000				
1956-	GF1D	*1213	53.99250	0	135.00000	-12.5000				615280
1957-	*15279	0	53.99250	0	135.00000	-12.5000				
1958-	GF1D	*1214	53.97990	0	135.00000	-9.2959				615281
1959-	*15280	0	53.97990	0	135.00000	-12.5000				615282
1960-	GF1D	*1215	56.71020	0	135.00000	-12.5000				615283
1961-	*15281	0	56.71020	0	135.00000	-10.0244				615284
1962-	GF1D	*1216	56.71980	0	135.00000	-12.5000				615285
1963-	*15282	0	56.71980	0	135.00000	-10.8543				615286
1964-	GF1D	*1217	59.36790	0	135.00000	-12.5000				615287
1965-	*15283	0	59.36790	0	135.00000	-12.5000				615288
1966-	GF1D	*1218	59.33980	0	135.00000	-12.5000				615289
1967-	*15284	0	59.33980	0	135.00000	-10.8543				615290
1968-	GF1D	*1219	62.48520	0	135.00000	-12.5000				615291
1969-	*15285	0	62.48520	0	135.00000	-12.5000				615292
1970-	GF1D	*1220	62.50000	0	135.00000	-12.5000				615293
1971-	*15286	0	62.50000	0	135.00000	-12.5000				615294
1972-	GF1D	*1221	51.50000	0	141.7500	-1.7201				615295
1973-	*15287	0	51.50000	0	141.7500	-4.2803				615296
1974-	GF1D	*1301	45.50000	0	141.7500	-6.2200				615297
1975-	*15288	0	45.50000	0	141.7500	-12.5000				615298
1976-	GF1D	*1302	45.50000	0	141.7500	-12.5000				615299
1977-	*15289	0	45.50000	0	141.7500	-0.0000				615300
1978-	GF1D	*1303	45.50000	0	141.7500	-4.2803				615301
1979-	*15290	0	45.50000	0	141.7500	-1.7173				
1980-	GF1D	*1304	45.50000	0	141.7500	-12.5000				
1981-	*15291	0	45.50000	0	141.7500	-12.5000				
1982-	GF1D	*1305	45.50000	0	141.7500	-12.5000				
1983-	*15292	0	45.50000	0	141.7500	-0.0000				
1984-	GF1D	*1306	49.50000	0	141.7500	-4.2803				
1985-	*15293	0	49.50000	0	141.7500	-1.7173				
1986-	GF1D	*1307	49.50000	0	141.7500	-12.5000				
1987-	*15294	0	49.50000	0	141.7500	-12.5000				
1988-	GF1D	*1308	49.50000	0	141.7500	-4.2971				
1989-	*15295	0	49.50000	0	141.7500	-7.3172				615301
1990-	GF1D	*1309	51.50000	0	141.7500	-12.5000				615302
1991-	*15296	0	51.50000	0	141.7500	-0.0000				615303
1992-	GF1D	*1310	51.50000	0	141.7500	-4.2971				615304
1993-	*15297	0	51.50000	0	141.7500	-12.5000				615305
1994-	GF1D	*1311	51.50000	0	141.7500	-7.8558				615306
1995-	*15298	0	51.50000	0	141.7500	-12.5000				615307
1996-	GF1D	*1312	51.50000	0	141.7500	-8.5435				615308
1997-	*15299	0	51.50000	0	141.7500	-12.5000				615309
1998-	GF1D	*1313	54.01600	0	141.7500	-12.5000				615310
1999-	*15300	0	54.01600	0	141.7500	-12.5000				615311
2000-	GF1D	*1314	54.01600	0	141.7500	-12.5000				615312

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS HALF_EFF.LONG..85(,EFF.TFANS.AT.WING(G=2/3EFF.)

OCTOBER 6, 1974 NASTRAN 2/173 PAGE 46

CARD COUNT	SORTED_BULK DATA ECHO									
	1 ..	2 ..	3 ..	4 ..	5 ..	6 ..	7 ..	8 ..	9 ..	10 ..
2001-	*15301	1	0	54.01950	0	0	0	0	0	0
2002-	GFID	*1315	0	0	0	141.7500	0	0	-9.2480	0
2003-	*15302	0	0	56.70000	0	0	0	0	0	615302
2004-	GFID	*1316	0	0	0	141.7500	0	0	-12.5000	0
2005-	*15303	0	0	56.70000	0	0	0	0	0	615303
2006-	GFID	*1317	0	0	0	141.7500	0	0	-9.9659	0
2007-	*15304	0	0	59.34860	0	0	0	0	0	615304
2008-	GFID	*1318	0	0	0	141.7500	0	0	-12.5000	0
2009-	*15305	0	0	59.35910	0	0	0	0	0	615305
2010-	GFID	*1319	0	0	0	141.7500	0	0	-10.8262	0
2011-	*15306	0	0	62.49210	0	0	0	0	0	615306
2012-	GFID	*1320	0	0	0	141.7500	0	0	-12.5000	0
2013-	*15307	0	0	62.50000	0	0	0	0	0	615307
2014-	GFID	*1321	0	0	0	141.7500	0	0	0	0
2015-	*15308	0	0	51.50000	0	0	0	0	0	615308
2016-	GFID	*1401	0	0	0	144.7500	0	0	0	0
2017-	*15309	0	0	45.50000	0	0	0	0	0	615309
2018-	GFID	*1402	0	0	0	144.7500	0	0	-1.7051	0
2019-	*15310	0	0	45.50000	0	0	0	0	0	615310
2020-	GFID	*1403	0	0	0	144.7500	0	0	-4.3000	0
2021-	*15311	0	0	45.50000	0	0	0	0	0	615311
2022-	GFID	*1404	0	0	0	144.7500	0	0	-6.2500	0
2023-	*15312	0	0	45.50000	0	0	0	0	0	615312
2024-	GFID	*1405	0	0	0	144.7500	0	0	-12.5000	0
2025-	*15313	0	0	45.50000	0	0	0	0	0	615313
2026-	GFID	*1406	0	0	0	144.7500	0	0	0	0
2027-	*15314	0	0	51.50000	0	0	0	0	0	615314
2028-	GFID	*1407	0	0	0	144.7500	0	0	-1.7051	0
2029-	*15315	0	0	51.50000	0	0	0	0	0	615315
2030-	GFID	*1408	0	0	0	144.7500	0	0	-4.3000	0
2031-	*15316	0	0	51.50000	0	0	0	0	0	615316
2032-	GFID	*1409	0	0	0	144.7500	0	0	-7.8560	0
2033-	*15317	0	0	51.50000	0	0	0	0	0	615317
2034-	GFID	*1410	0	0	0	144.7500	0	0	-12.5000	0
2035-	*15318	0	0	51.50000	0	0	0	0	0	615318
2036-	GFID	*1411	0	0	0	144.7500	0	0	-8.5506	0
2037-	*15319	0	0	54.05690	0	0	0	0	0	615319
2038-	GFID	*1412	0	0	0	144.7500	0	0	-12.5000	0
2039-	*15320	0	0	54.03370	0	0	0	0	0	615320
2040-	GFID	*1413	0	0	0	144.7500	0	0	-9.2480	0
2041-	*15321	0	0	56.70000	0	0	0	0	0	615321
2042-	GFID	*1414	0	0	0	144.7500	0	0	-12.5000	0
2043-	*15322	0	0	56.70000	0	0	0	0	0	615322
2044-	GFID	*1415	0	0	0	144.7500	0	0	-9.9791	0
2045-	*15323	0	0	59.44270	0	0	0	0	0	615323
2046-	GFID	*1416	0	0	0	144.7500	0	0	-12.5000	0
2047-	*15324	0	0	59.44260	0	0	0	0	0	615324
2048-	GFID	*1417	0	0	0	144.7500	0	0	-10.8098	0
2049-	*15325	0	0	62.53430	0	0	0	0	0	615325
2050-	GFID	*1418	0	0	0	144.7500	0	0	-12.5000	0

S O R T E D - B U L K - D A T A - E C H O

CARD COUNT	1	2	3	4	5	6	7	8	9	10
2051-	*15326	**62.50000								
2052-	GR1D *1501	51.50000								
2053-	*15328	**51.50000								
2054-	GR1D *1502	51.50000								
2055-	*15329	**51.50000								
2056-	GR1D *1503	51.50000								
2057-	*15330	**54.03370								
2058-	GR1D *1504	54.04390								
2059-	*15331	**56.70000								
2060-	GR1D *1505	56.70000								
2061-	*15332	**56.70000								
2062-	GR1D *1506	56.70000								
2063-	*15333	**56.70000								
2064-	GR1D *1507	59.39640								
2065-	*15334	**59.39640								
2066-	GR1D *1508	59.39440								
2067-	*15335	**59.39440								
2068-	GR1D *1509	59.39440								
2069-	*15336	**62.49440								
2070-	GR1D *1510	62.50000								
2071-	*15337	**62.50000								
2072-	GR1D *1516	51.50000								
2073-	*15343	**51.50000								
2074-	GR1D *1517	51.50000								
2075-	*15344	**51.50000								
2076-	GR1D *1601	45.50000								
2077-	*15347	**45.50000								
2078-	GR1D *1602	45.50000								
2079-	*15348	**45.50000								
2080-	GR1D *1603	45.50000								
2081-	*15349	**45.50000								
2082-	GR1D *1604	45.50000								
2083-	*15350	**45.50000								
2084-	GR1D *1605	45.50000								
2085-	*15351	**45.50000								
2086-	GR1D *1606	51.50000								
2087-	*15352	**51.50000								
2088-	GR1D *1607	51.50000								
2089-	*15353	**51.50000								
2090-	GR1D *1608	51.50000								
2091-	*15354	**51.50000								
2092-	GR1D *1609	51.50000								
2093-	*15355	**51.50000								
2094-	GR1D *1610	51.50000								
2095-	*15356	**51.50000								
2096-	GR1D *1611	53.99600								
2097-	*15357	**53.99600								
2098-	GR1D *1612	53.99600								
2099-	*15358	**53.99600								
2100-	GR1D *1613	53.99600								

S O R T E D B U L K D A T A E C H O

COUNT	1	2	3	4	5	6	7	8	9	10
2101-	*15359	•	•	56.7000 0		153.3750		-12.5000		215360
2102-	GR1D	*1614		56.7000 0		153.3750		-9.9410		215361
2103-	*15360			56.7000 0		153.3750				
2104-	GR1D	*1615								
2105-	*15361			59.3813 0		153.3750				
2106-	GR1D	*1616		59.3750 0		153.3750		-12.5000		215362
2107-	*15362			59.3750 0		153.3750				
2108-	GR1D	*1617		62.4747 0		153.3750		-10.7792		215363
2109-	*15363									
2110-	GR1D	*1618						-12.5000		215364
2111-	*15364			62.5000 0		162.0000				
2112-	GR1D	*1701		45.5000 0		162.0000				215362
2113-	*15365			45.5000 0		162.0000				
2114-	GR1D	*1702		45.5000 0		162.0000		-1.7051		215363
2115-	*15366			45.5000 0		162.0000				
2116-	GR1D	*1703		45.5000 0		162.0000		-4.3000		215364
2117-	*15367			45.5000 0		162.0000				
2118-	GR1D	*1704		45.5000 0		162.0000		-6.2500		215365
2119-	*15368			45.5000 0		162.0000				
2120-	GR1D	*1705		45.5000 0		162.0000		-12.5000		215366
2121-	*15369			45.5000 0		162.0000				
2122-	GR1D	*1706		51.5000 0		162.0000				215367
2123-	*15370			51.5000 0		162.0000				
2124-	GR1D	*1707		51.5000 0		162.0000		-1.7051		215368
2125-	*15371			51.5000 0		162.0000		-4.3000		215369
2126-	GR1D	*1708		51.5000 0		162.0000		-7.8560		215370
2127-	*15372			51.5000 0		162.0000				
2128-	GR1D	*1709		51.5000 0		162.0000		-12.5000		215371
2129-	*15373			51.5000 0		162.0000				
2130-	GR1D	*1710		51.5000 0		162.0000				215372
2131-	*15374			51.5000 0		162.0000		-8.5065		215373
2132-	GR1D	*1711		53.9960 0		162.0000				
2133-	*15375			53.9960 0		162.0000		-12.5000		
2134-	GR1D	*1712		53.9960 0		162.0000				
2135-	*15376			53.9960 0		162.0000		-9.2337		215374
2136-	GR1D	*1713		56.7570 0		162.0000				
2137-	*15377			56.7570 0		162.0000		-12.5000		215375
2138-	GR1D	*1714		56.7000 0		162.0000				
2139-	*15378			56.7000 0		162.0000		-9.9185		215376
2140-	GR1D	*1715		59.3983 0		162.0000				
2141-	*15379			59.3983 0		162.0000		-12.5000		215377
2142-	GR1D	*1716		59.3750 0		162.0000				
2143-	*15380			59.3750 0		162.0000		-10.7576		215378
2144-	GR1D	*1717		62.4953 0		162.0000				
2145-	*15381			62.4953 0		162.0000		-12.5000		215379
2146-	GR1D	*1718		62.5000 0		165.2500		-1.2315		215402
2147-	*15382			62.5000 0		165.2500				
2148-	GR1D	*1721		45.5000 0		165.2500		-1.2315		215403
2149-	*15402			45.5000 0		165.2500				
2150-	GR1D	*1722		0						

S O R T E D - B U L K - D A T A E C H O										
CARD COUNT	1	2	3	4	5	6	7	8	9	10
2151-	*15403	..	2	..	51.50000	0	..	5	..	0
2152-	GFI D	*1723			45.50000	0		165.2500		0
2153-		*15405			45.50000	0				615405
2154-	GFI D	*1724			51.50000	0		165.2500		0
2155-	*15404				51.50000	0				615404
2156-		GFI D	1800	0	165.25	0	45.5	1		
2157-		GFI D	*1801	0			166.5000	0		615406
2158-		*15406			45.50000	0		166.5000		0
2159-	GFI D	*1802			45.50000	0		166.5000		-1.7051
2160-		*15407			45.50000	0		166.5000		0
2161-	GFI D	*1803			45.50000	0		166.5000		-4.3000
2162-		*15408			45.50000	0		166.5000		0
2163-	GFI D	*1804			45.50000	0		166.5000		-6.2500
2164-		*15409			45.50000	0		166.5000		615409
2165-	GFI D	*1805			45.50000	0		166.5000		0
2166-		*15410			45.50000	0		166.5000		615410
2167-	GFI D	*1806			45.50000	0		166.5000		615411
2168-		*15411			45.50000	0		166.5000		0
2169-	GFI D	*1807			51.50000	0		166.5000		0
2170-		*15412			51.50000	0		166.5000		-1.7051
2171-	GFI D	*1808			51.50000	0		166.5000		0
2172-		*15413			51.50000	0		166.5000		-9.4000
2173-	GFI D	*1809			51.50000	0		166.5000		-12.5000
2174-		*15414			51.50000	0		166.5000		0
2175-	GFI D	*1810			51.50000	0		166.5000		0
2176-		*15415			51.50000	0		166.5000		-1.7051
2177-	GFI D	*1811			51.50000	0		166.5000		0
2178-		*15416			51.50000	0		166.5000		-4.3000
2179-	GFI D	*1812			51.50000	0		166.5000		0
2180-		*15417			51.50000	0		166.5000		-7.8560
2181-	GFI D	*1813			51.50000	0		166.5000		615415
2182-		*15418			53.99600	0		166.5000		0
2183-	GFI D	*1814			53.99600	0		166.5000		615416
2184-		*15419			53.99600	0		166.5000		0
2185-	GFI D	*1815			53.99600	0		166.5000		615417
2186-		*15420			56.70000	0		166.5000		0
2187-	GFI D	*1817			56.70000	0		166.5000		-8.6140
2188-		*15421			56.70000	0		166.5000		-12.5000
2189-	GFI D	*1818			59.37500	0		166.5000		0
2190-		*15422			59.37500	0		166.5000		-7.7630
2191-	GFI D	*1819			59.37500	0		166.5000		0
2192-		*15423			59.37500	0		166.5000		-12.5000
2193-	GFI D	*1820			59.37500	0		166.5000		615421
2194-		*15424			59.37500	0		166.5000		0
2195-	GFI D	*1821			62.50000	0		166.5000		615422
2196-		*15425			62.50000	0		166.5000		615423
2197-	GFI D	*1822			62.50000	0		166.5000		0
2198-		*15426			62.50000	0		166.5000		-5.9360
2199-	GFI D	*1823			62.50000	0		166.5000		-10.5010
2200-		*15427			62.50000	0		166.5000		615427

S O R T E D - B U L K - D A T A - E C H O

CARD	1	*1824	2	..	3	..	4	..	5	..	6	..	7	..	8	..	9	..	10
2201-	GRID	*1825	0		62.5000	0			166.5000	0			112.5000	0			112.5000	0	
2202-	GRID	*1826	0		64.9000	0			166.5000	0			154.29						
2203-	GRID	*1827	0		64.9000	0			166.5000	0			154.30						
2204-	GRID	*1828	0		66.5181	0			166.5000	0			154.31						
2205-	GRID	*1829	0		67.2835	0			166.5000	0			154.32						
2206-	GRID	*1830	0		69.9247	0			166.5000	0			154.33						
2207-	GRID	*1831	0		69.9247	0			166.5000	0			154.34						
2208-	GRID	*1832	0		69.9247	0			166.5000	0			154.35						
2209-	GRID	*1833	0		71.3389	0			166.5000	0			154.36						
2210-	GRID	*1834	0		73.0000	0			166.5000	0			154.37						
2211-	GRID	*1835	0		72.4000	0			166.5000	0			154.38						
2212-	GRID	*1836	0		72.2007	0			166.5000	0			154.39						
2213-	GRID	*1837	0		74.0485	0			166.5000	0			154.40						
2214-	GRID	*1838	0		75.0000	0			166.5000	0			154.41						
2215-	GRID	*1901	0		75.0000	0			170.7500	0			154.42						
2216-	GRID	*1902	0		45.5000	0			170.7500	0			154.43						
2217-	GRID	*1903	0		45.5000	0			170.7500	0			154.44						
2218-	GRID	*1904	0		45.5000	0			170.7500	0			154.45						
2219-	GRID	*1905	0		45.5000	0			170.7500	0			154.46						
2220-	GRID	*1906	0		45.5000	0			170.7500	0			154.47						
2221-	GRID	*1907	0		47.3300	0			170.7500	0			154.48						
2222-	GRID	*1908	0		47.3300	0			170.7500	0			154.49						
2223-	GRID	*1909	0		47.3300	0			170.7500	0			154.50						
2224-	GRID	*1910	0		47.3300	0			170.7500	0			154.51						
2225-	GRID	*1911	0		50.3300	0			170.7500	0			154.52						

PHASE I (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS HALF EFF,LONG,105% EFF,TRANS,AT WING(G=2/3EFF.)

OCTOBER 6, 1974 NASTRAN 2/173 PAGE 51

S O R T E D - B U L K - D A T A - E C H D									
CARD	COUNT	1	2	3	4	5	6	7	9
2251-	GRID	*1911	50.3300 0	170.7500	170.7500	170.7500	-1.7051	0.	*615454
2252-	GRID	*15454	50.3300 0	170.7500	170.7500	170.7500	-4.3000	0.	*615455
2253-	GRID	*1912	50.3300 0	170.7500	170.7500	170.7500	-7.5428	0.	*615456
2254-	GRID	*15455	50.3300 0	170.7500	170.7500	170.7500	-1.7051	0.	*615457
2255-	GRID	*1913	50.3300 0	170.7500	170.7500	170.7500	-4.3000	0.	*615458
2256-	GRID	*15456	50.3300 0	170.7500	170.7500	170.7500	-4.3000	0.	*615459
2257-	GRID	*1914	51.5000 0	170.7500	170.7500	170.7500	-7.5428	0.	*615460
2258-	GRID	*15457	51.5000 0	170.7500	170.7500	170.7500	-1.7051	0.	*615461
2259-	GRID	*1915	51.5000 0	170.7500	170.7500	170.7500	-4.3000	0.	*615462
2260-	GRID	*15458	51.5000 0	170.7500	170.7500	170.7500	-12.5000	0.	*615463
2261-	GRID	*1916	51.5000 0	170.7500	170.7500	170.7500	-12.5000	0.	*615464
2262-	GRID	*15459	51.5000 0	170.7500	170.7500	170.7500	-12.5000	0.	*615465
2263-	GRID	*1917	51.5000 0	170.7500	170.7500	170.7500	-7.5428	0.	*615466
2264-	GRID	*15460	51.5000 0	170.7500	170.7500	170.7500	-1.7051	0.	*615467
2265-	GRID	*1918	51.5000 0	170.7500	170.7500	170.7500	-4.3000	0.	*615468
2266-	GRID	*15461	51.5000 0	170.7500	170.7500	170.7500	-12.5000	0.	*615469
2267-	GRID	*1919	51.5000 0	170.7500	170.7500	170.7500	-12.5000	0.	*615470
2268-	GRID	*15462	53.9960 0	170.7500	170.7500	170.7500	-12.5000	0.	*615471
2269-	GRID	*1920	56.7000 0	170.7500	170.7500	170.7500	-12.5000	0.	*615472
2270-	GRID	*15463	56.7000 0	170.7500	170.7500	170.7500	-12.5000	0.	*615473
2271-	GRID	*1921	59.3750 0	170.7500	170.7500	170.7500	-12.5000	0.	*615474
2272-	GRID	*15464	59.3750 0	170.7500	170.7500	170.7500	-12.5000	0.	*615475
2273-	GRID	*1922	63.4400 0	170.7500	170.7500	170.7500	-12.5000	0.	*615476
2274-	GRID	*15465	63.4400 0	170.7500	170.7500	170.7500	-11.5485	0.	*615477
2275-	GRID	*1923	67.2635 0	170.7500	170.7500	170.7500	-8.8389	0.	*615478
2276-	GRID	*15466	67.2635 0	170.7500	170.7500	170.7500	-2.0000	0.	*615479
2277-	GRID	*1924	71.3389 0	170.7500	170.7500	170.7500	-4.7835	0.	*615480
2278-	GRID	*15467	71.3389 0	170.7500	170.7500	170.7500	-9.4000	0.	*615481
2279-	GRID	*1925	75.0000 0	170.7500	170.7500	170.7500	-12.5000	0.	*615482
2280-	GRID	*15468	74.0485 0	170.7500	170.7500	170.7500	-12.5000	0.	*615483
2281-	GRID	*1926	75.0000 0	170.7500	170.7500	170.7500	-2.0000	0.	*615484
2282-	GRID	*15469	75.0000 0	170.7500	170.7500	170.7500	-4.7835	0.	*615485
2283-	GRID	*1927	75.0000 0	170.7500	170.7500	170.7500	-9.4000	0.	*615486
2284-	GRID	*15470	75.0000 0	170.7500	170.7500	170.7500	-12.5000	0.	*615487
2285-	GRID	*1928	51.5000 0	170.7500	170.7500	170.7500	-12.5000	0.	*615488
2286-	GRID	*15471	51.5000 0	170.7500	170.7500	170.7500	-5.9360	0.	*615489
2287-	GRID	*1929	63.4400 0	170.7500	170.7500	170.7500	-12.5000	0.	*615490
2288-	GRID	*15472	63.4400 0	170.7500	170.7500	170.7500	-12.5000	0.	*615491
2289-	GRID	*1930	63.4400 0	170.7500	170.7500	170.7500	-12.5000	0.	*615492
2290-	GRID	*15473	63.4400 0	170.7500	170.7500	170.7500	-12.5000	0.	*615493
2291-	GRID	*1931	59.3750 0	170.7500	170.7500	170.7500	-12.5000	0.	*615494
2292-	GRID	*15474	59.3750 0	170.7500	170.7500	170.7500	-12.5000	0.	*615495
2293-	GRID	*1932	64.1434 0	170.7500	170.7500	170.7500	-12.5000	0.	*615496
2294-	GRID	*15475	64.1434 0	170.7500	170.7500	170.7500	-6.7057	0.	*615497
2295-	GRID	*1933	64.1434 0	170.7500	170.7500	170.7500	-12.5000	0.	*615498
2296-	GRID	*15476	64.1434 0	170.7500	170.7500	170.7500	-12.5000	0.	*615499
2297-	GRID	*1934	64.1434 0	170.7500	170.7500	170.7500	-12.5000	0.	*615500
2298-	GRID	*15477	64.1434 0	170.7500	170.7500	170.7500	-5.9360	0.	*615501
2299-	GRID	*1935	64.1434 0	170.7500	170.7500	170.7500	-12.5000	0.	*615502

S O R T E D B U L K D A T A E C H O

CARD COUNT	GRID	1 *1936 2 .. 3 .. 4 .. 5 ..	175.5633 .. 7 .. 8 .. 9 .. 10 ..
2301-	*15479	51.9237 0	0.0
2302-	GFID *2001	0	0.0
2303-	*15480	45.5000 0	0.0
2304-	GFID *2002	0	0.0
2305-	*15481	45.5000 0	-1.7051
2306-	GFID *2003	0	0.0
2307-	*15482	45.5000 0	-4.3000
2308-	GFID *2004	0	0.0
2309-	*15483	45.5000 0	-6.2500
2310-	GFID *2005	0	0.0
2311-	*15484	45.5000 0	-12.5000
2312-	GFID *2006	0	0.0
2313-	*15485	51.5000 2	179.219034
2314-	GFID *2007	0	179.219034
2315-	*15486	51.5000 2	-1.7051
2316-	GFID *2008	0	179.219034
2317-	*15487	51.5000 2	-4.3000
2318-	GFID *2009	0	179.219034
2319-	*15488	51.5000 2	-6.2500
2320-	GFID *2010	0	179.219034
2321-	*15489	51.5000 0	-12.5000
2322-	GFID *2011	0	0.0
2323-	*15490	53.9960 0	178.890408
2324-	GFID *2012	0	178.890408
2325-	*15491	53.9960 2	-1.7051
2326-	GFID *2013	0	178.890408
2327-	*15492	53.9960 2	-4.3000
2328-	GFID *2014	0	178.890408
2329-	*15493	53.9960 0	-6.4000
2330-	GFID *2015	0	178.890408
2331-	*15494	53.9960 0	-12.5000
2332-	GFID *2016	0	178.534397
2333-	*15495	56.7000 2	0
2334-	GFID *2017	0	178.534397
2335-	*15496	56.7000 2	-1.7051
2336-	GFID *2018	0	178.534397
2337-	*15497	56.7000 2	-4.3000
2338-	GFID *2019	0	178.534397
2339-	*15498	56.7000 2	-6.7460
2340-	GFID *2020	0	178.534397
2341-	*15499	56.7000 0	-12.5000
2342-	GFID *2021	0	178.182203
2343-	*15500	59.3750 2	0
2344-	GFID *2022	0	178.182203
2345-	*15501	59.3750 2	-1.7051
2346-	GFID *2023	0	178.182203
2347-	*15502	59.3750 2	-4.3000
2348-	GFID *2024	0	178.182203
2349-	*15503	59.3750 2	-7.0890
2350-			615503

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS HALF EFF, LONG, BSL, EFF, TRANSAT WING(G=2/3EFF.)

OCTOBER 6, 1974 NASTRAN 2/173 PAGE 53

SORTED BULK DATA ECHO

CARD COUNT	1	*2025	2	..	3	..	4	..	5	..	6	..	7	..	8	..	9	..	10	..
2351-		GRID	*15504		59.3750	0			178.1822	03	7	..	-12.5000	0						*615504
2352-		GRID	*2026		64.9220	0			177.4518	0										615505
2353-		GRID	*15505		64.9220	0			177.4518	0										615506
2354-		GRID	*2027		64.9220	0			177.4518	0										615507
2355-		GRID	*15506		64.9220	02			177.4518	0										
2356-		GRID	*2028		64.9220	02			177.4518	0										
2357-		GRID	*15507		64.9220	02			177.4518	0										
2358-		GRID	*2029		64.9220	0			177.4518	0										615508
2360-		GRID	*15508		64.9220	0			177.4518	0										615509
2361-		GRID	*2030		64.9220	0			177.4518	0										615510
2362-		GRID	*15509		64.9220	0			177.4518	0										615511
2363-		GRID	*2031		64.9220	0			177.4518	0										615512
2364-		GRID	*15510		67.2835	02			177.1409	62										615513
2365-		GRID	*2032		67.2835	0			177.1409	62										615514
2366-		GRID	*15511		67.2835	02			177.1409	62										615515
2367-		GRID	*2033		67.2835	0			177.1409	62										615516
2368-		GRID	*15512		67.2835	02			177.1409	62										615517
2369-		GRID	*2034		67.2835	0			177.1409	62										615518
2370-		GRID	*15513		67.2835	02			177.1409	62										615519
2371-		GRID	*2035		67.2835	0			177.1409	62										615520
2372-		GRID	*15514		67.2835	0			176.6070	24										615521
2373-		GRID	*2036		71.3369	02			176.6070	24										615522
2374-		GRID	*15515		71.3369	02			176.6070	24										615523
2375-		GRID	*2037		71.3369	0			176.6070	24										615524
2376-		GRID	*15516		71.3369	02			176.6070	24										615525
2377-		GRID	*2038		71.3369	0			176.6070	24										615526
2378-		GRID	*15517		71.3369	02			176.6070	24										615527
2379-		GRID	*2039		71.3369	0			176.6070	24										615528
2380-		GRID	*15518		71.3369	0			176.1250											
2381-		GRID	*2040		75.0000	0			176.1250											
2382-		GRID	*15519		75.0000	0			176.1250											
2383-		GRID	*2041		75.0000	0			176.1250											
2384-		GRID	*15520		75.0000	0			176.2502	76										615523
2385-		GRID	*2042		75.0000	0			176.2502	76										615524
2386-		GRID	*15521		74.0485	0			186.2500											615525
2387-		GRID	*2101		74.0485	0			186.2500											615526
2388-		GRID	*15522		45.5000	0			186.2500											615527
2389-		GRID	*2102		45.5000	0			186.2500											615528
2390-		GRID	*15523		45.5000	0			186.2500											615529
2391-		GRID	*2103		45.5000	0			186.2500											615530
2392-		GRID	*15524		45.5000	0			186.2500											615531
2393-		GRID	*2104		45.5000	0			186.2500											615532
2394-		GRID	*15525		45.5000	0			186.2500											615533
2395-		GRID	*2105		45.5000	0			186.2500											615534
2396-		GRID	*15526		45.5000	0			186.2500											615535
2397-		GRID	*2106		51.5000	0			185.4630											615536
2398-		GRID	*15527		51.5000	0			185.1320											615537
2399-		GRID	*2107		53.5960	0			185.1320											615538
2400-		GRID	*15528		53.5960	0			185.1320											

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS HALF EFF.LONG.,0.85(EFF.TPANS,AT.WING(G=2/3EFF.))

OCTOBER 6, 1974 NASTRAN 2/ 1/73 PAGE 54

S O R T E D - B U L K D A T A E C H 0									
CARD	1	*2108	2	..	3	..	4	..	5
COUNT	GFID	56.70000	0	..	164.67810	..	7	*12.5000	9
2401-	*15529	56.70000	0	..	164.67810	..	7	*12.5000	9
2402-	GFID	59.37500	0	..	163.6930	..	7	*12.5000	9
2403-	*15530	59.37500	0	..	163.6930	..	7	*12.5000	9
2404-	GFID	64.92200	0	..	163.3820	..	7	*11.5485	9
2405-	*15531	64.92200	0	..	163.3820	..	7	*11.5485	9
2406-	GFID	67.28350	0	..	162.8480	..	7	*8.8389	9
2407-	*15532	67.28350	0	..	162.8480	..	7	*8.8389	9
2408-	GFID	71.33890	0	..	162.4910	..	7	*4.7835	9
2409-	*15533	71.33890	0	..	162.4910	..	7	*4.7835	9
2410-	GFID	*2113	0	..	162.3660	..	7	-2.0000	9
2411-	*15534	74.04850	0	..	162.3660	..	7	-2.0000	9
2412-	GFID	*2114	0	..	162.3660	..	7	-2.0000	9
2413-	*15535	75.00000	0	..	162.3660	..	7	-2.0000	9
2414-	GFID	*2115	0	..	162.3660	..	7	-2.0000	9
2415-	*15536	75.00000	0	..	162.3660	..	7	-2.0000	9
2416-	GFID	0	..	171.687	-11.960670.4918	0
2417-	2200	0	..	171.687	-11.960670.4918	0
2418-	MAT1	1	1.0567	..	1
2419-	MAT1	2	1.0567	..	1
2420-	MAT1	4	1.0567	..	1
2421-	MAT1	6	1.0567	..	1
2422-	MAT1	8	1.0567	..	1
2423-	MAT1	11	1.0567	..	1
2424-	MAT1	12	1.0567	..	1
2425-	MAT1	16	1.0567	..	1
2426-	MAT1	18	3.0067	..	1
2427-	MAT1	26	7.066	..	1
2428-	MAT1	28	3.0067	..	1
2429-	MAT1	36	7.066	..	1
2430-	MAT1	46	7.066	..	1
2431-	MAT1	101	10.566	..	1
2432-	MAT1	102	10.566	..	1
2433-	MAT1	103	10.566	..	1
2434-	MAT1	104	10.566	..	1
2435-	MAT1	105	17.8766	..	1
2436-	MAT1	106	16.2966	..	1
2437-	MAT1	107	14.5066	..	1
2438-	MAT1	108	15.4366	..	1
2439-	MAT1	109	17.8766	..	1
2440-	MAT1	110	14.1966	..	1
2441-	MAT1	111	10.566	..	1
2442-	MAT1	112	15.4366	..	1
2443-	MAT1	113	10.566	..	1
2444-	MAT1	114	14.4066	..	1
2445-	MAT1	115	16.0766	..	1
2446-	MAT1	116	16.9566	..	1
2447-	MAT1	117	23.1066	..	1
2448-	MAT1	118	15.2266	..	1
2449-	MPC	100	213	1	1	4.1039	207
2450-	EM213X	219	1	1	1.3017	-2.0022
									CM213X

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS_HALF_EFF_LONG..B51_EFF_TFANS_AT WING(G=2/JEFF),)

OCTOBER 6, 1974 NASTRAN 2/173 PAGE 65

S O R T E D - B U L K - D A T A E C H O

CARD	1	2	3	4	5	6	7	8	9	10
24.51-	MPC	100	223	1	5.1087	222	6	1	2.0244	0.
24.52-	EM223X		243	2	3.0843	230	2		1.0	
24.53-	MPC	100		3	1.0	230	3		1.0	
24.54-	MPC	100		2	5.614	605	2		1.514	
24.55-	MPC	100		1	4.0					
24.56-	EM910Y		910	2	5.667	1005	2		1.667	
24.57-	MPC	100		1	4.0					
24.58-	EM1010Y		1010	2	6.000	1105	2		2.000	
24.59-	MPC	100		1	4.0					
24.60-	EM110Y		1100	2	6.25	1406	3		3.0	
24.61-	MPC	100		3	6.025	1406	3			
24.62-	EM1516Z		1516	3	5.625					
24.63-	MPC	100		3	6.025	1407	3		3.0	
24.64-	EM1517Z		1517	3	7.5625					
24.65-	MPC	100		1	6.25	1H04	1		3.1	
24.66-	EM1A05X		1A06	1	3.15					
24.67-	MPC	100		1	6.564	1P22	1		2.0	
24.68-	EM1B23X		1B24	1	4.564					
24.69-	MPC	100		1	4.0	1B23	3		5	
24.70-	EM1B24MX		1B24	3	1.0					
24.71-	MPC	100		1	0					
24.72-	MPC	100		1	0	2200	6		0.4121	
24.73-	MPC	100		2	0	2200	2		1.0	
24.74-	MPC	100		4	0	2083	6		5.187	
24.75-	MPC	100		3	1.0	2200	6		1.0	
24.76-	E50		2200	4	0	2083	5		5.187	
24.77-	MPC	100		1	0	2200	1		1.0	
24.78-	L45		2200	5	0	6471	6		3.1217	
24.79-	MPC	100		2	1.0	2200	2		1.0	
24.80-	E4C		2200	4	0	6471	6		5.187	
24.81-	MPC	100		3	1.0	2200	3		1.0	
24.82-	E47		2200	4	0	1217	5		5.187	
24.83-	MPC	100		3	4.64	1917	3		3.1	
24.84-	EM1928Z		1918	3	1.544					
24.85-	MPC	100		2	7.439	1921	2		-4.2351	
24.86-	EM1931FY		2025	2	3.2039					
24.87-	MPC	100		1	1.0	2200	1		1.0	
24.88-	E54		2200	5	3.2083	2200	6		0.4121	
24.89-	MPC	100		2	1.0	2200	2		1.0	
24.90-	E55		2200	4	3.2083	2200	6		5.454	
24.91-	MPC	100		3	1.0	2200	3		1.0	
24.92-	E56		2200	4	4.121	2200	5		5.454	
24.93-	MPC	100		1	1.0	2200	1		1.0	
24.94-	E51		2200	5	0.8471	2200	6		3.1217	
24.95-	MPC	100		2	1.0	2200	2		1.0	
24.96-	E52		2200	4	0.8471	2200	6		5.454	
24.97-	MPC	100		3	1.0	2200	3		1.0	
24.98-	E53		2200	4	3.1217	2200	5		4.920	
24.99-	MPC	100		1	1.0	1701	3		0.1699	
25.00-	EM1701XS		1701	1	-1.00167	1801	3		-0.04417	

CARD	1	2	3	4	5	6	7	8	9	10	ECHO
COUNT	MPC 101										
2501-	EM1721XS										
2502-	MPC 101										
2503-	EM17217S										
2504-	MPC 101										
2505-	EM18002S										
2506-	MPC 101										
2507-	EM1801XS										
2508-	MPC 101										
2509-	EM1802XS										
2510-	MPC 101										
2511-	EM1721YA										
2512-	MPC 102										
2513-	EM1802XA										
2514-	MPC 102										
2515-	EM1721YA										
2516-	MPC 102										
2517-	MPC 102										
2518-	EM1A01YA										
2519-	MPC 102										
2520-	EM1A02XA										
2521-	MPC 102										
2522-	EM1A02YA										
2523-	MPC ADD 401										
2524-	PARAM GFDPT										
2525-	TPNAM FUSSP1										
2526-	WTMASS 002588										
2527-	PARAM PEAR										
2528-	PBAR 181										
2529-	PBAR 194										
2530-	PBAR 463										
2531-	PBAR 464										
2532-	PBAR 465										
2533-	PBAR 466										
2534-	PBAR 467										
2535-	PBAR 1927										
2536-	PBAR 1928										
2537-	PBAR 1929										
2538-	PBAR 1930										
2539-	PBAR 1931										
2540-	PBAR 2101										
2541-	PBAR 2102										
2542-	PBAR 2103										
2543-	PBAR 2104										
2544-	PBAR 2105										
2545-	PBAR 2106										
2546-	PBAR 2107										
2547-	PBAR 2108										
2548-	PBAR 2109										
2549-	PBAR 2110										
2550-	PBAR 2111										

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS_HALF_EFF.,LONG.,.85(EFF.F.TRANS.AT_WING(G=2/3EFF.))

OCTOBER 6, 1974 NASTRAN 2/173 PAGE 57

CARD COUNT	1	2	3	4	5	6	7	8	9	10
2551-	PBAR	2111	• 048	• 0355	• 001	• 001	• 001	• 001	• 001	• 00
2552-	PBAR	2112	• 048	• 0355	• 001	• 001	• 001	• 001	• 001	• 00
2553-	PBAR	2113	• 048	• 0355	• 001	• 001	• 001	• 001	• 001	• 00
2554-	PBAR	2114	• 048	• 0355	• 001	• 001	• 001	• 001	• 001	• 00
2555-	PBAR	2502	• 048	• 0355	• 001	• 001	• 001	• 001	• 001	• 00
2556-	PBAR	2713	• 049	• 0465	• 002	• 00	• 00	• 00	• 00	• 00
2557-	PQDME M2	10161	• 049	• 0465	• 003	• 00	• 00	• 00	• 00	• 00
2558-	PQDNFM M2	10162	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2559-	PQDM M2	10163	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2560-	PQDME M2	10164	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2561-	PQDNFM M2	10165	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2562-	PQDINF M2	1C166	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2563-	PQDMF M2	10167	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2564-	PQDNFM M2	10168	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2565-	PQDME M2	10169	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2566-	PQDNFM M2	10170	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2567-	PQDM M2	10171	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2568-	PQDNFM M2	1C172	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2569-	PQDM M2	10173	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2570-	PQDMF M2	1C174	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2571-	PQDNFM M2	10175	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2572-	PQDNFM M2	10176	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2573-	PQDNFM M2	010177	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2574-	PQDM M2	10270	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2575-	PQDM M2	10271	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2576-	PQDNFM M2	10272	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2577-	PQDM M2	10273	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2578-	PQDNFM M2	1C274	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2579-	PQDNFM M2	10275	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2580-	PQDM M2	10276	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2581-	PQDN M2	10277	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2582-	PQDM M2	10278	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2583-	PQDNFM M2	1C279	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2584-	PQDM M2	10280	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2585-	PQDM M2	10281	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2586-	PQDM M2	10282	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2587-	PQDM M2	10283	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2588-	PQDM M2	10284	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2589-	PQDNFM M2	1C285	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2590-	PQDM M2	10286	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2591-	PQDM M2	12040	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2592-	PQDNFM M2	12041	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2593-	PQDM M2	12042	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2594-	PQDM M2	12043	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2595-	PQDNFM M2	12044	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2596-	PQD4EM2	12045	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2597-	PQDM M2	12046	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2598-	PQDN M2	12047	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2599-	PQDM M2	12048	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00
2600-	PQDM M2	12049	• 049	• 0465	• 000	• 000	• 000	• 000	• 000	• 00

CARD COUNT	1	2	3	4	5	6	7	8	9	00	10
2601-	POD ME M2	12050	6	03200							
2602-	POD MF M2	12051	6	03200							
2603-	PCD ME M2	12052	6	03200							
2604-	POD ME M2	12053	6	03200							
2605-	POD MF N2	12054	6	03200							
2606-	POD MF M2	12055	6	03200							
2607-	POD MF M2	12056	6	03200							
2608-	POD MF M2	12057	6	03200							
2609-	POD MC M2	12058	6	03200							
2610-	POD ML M2	12059	6	03200							
2611-	POD NL M2	12060	6	03200							
2612-	POD MF M2	12061	6	03200							
2613-	POD MF N2	12062	6	03200							
2614-	FLML M2	12063	6	03200							
2615-	POD ML M2	12064	6	03200							
2616-	POD MF M2	12065	6	03200							
2617-	POD MI M2	12066	6	03200							
2618-	POD MF N2	12068	6	03200							
2619-	POD MI N2	12069	6	02000							
2620-	POD MF M2	12200	8	02000							
2621-	PCD ML M2	12201	8	02000							
2622-	POD ME M2	12202	8	02000							
2623-	POD ME M2	12203	8	02000							
2624-	POD ME M2	12204	8	02000							
2625-	POD ME M2	12205	8	02000							
2626-	POD ME M2	12206	8	02000							
2627-	POUML M2	12207	8	02000							
2628-	POD ME M2	12208	8	02000							
2629-	POD ME M2	12209	8	02000							
2630-	PCDME M2	12300	8	02000							
2631-	POD MF M2	12301	8	02000							
2632-	POD MF M2	12302	8	02000							
2633-	POD MF M2	12303	8	02000							
2634-	POD MF M2	12304	8	02000							
2635-	POD MF M2	12305	8	02000							
2636-	PCDML M2	12306	8	02000							
2637-	POD ME M2	12307	8	02000							
2638-	POD MF M2	12308	8	02000							
2639-	POD MF M2	12309	8	02000							
2640-	POD ME M2	12310	8	02000							
2641-	POD ME M2	12311	8	02000							
2642-	POD MF M2	12312	8	02000							
2643-	POD MF M2	12313	8	02000							
2644-	POUML M2	12403	8	02000							
2645-	PCDML M2	12404	8	02000							
2646-	POD MF M2	12405	8	02000							
2647-	POD MF M2	12406	8	02000							
2648-	POD MF M2	12407	8	02000							
2649-	POD MF M2	12408	8	02000							
2650-	POD MF M2	12409	8	02000							

S O R T E D - B U L K - D A T A - E C H O									
CARD	COUNT	1	2	3	4	5	6	7	8
2651-	PQDMF M2	12410	8	02000					
2652-	PQDMF M2	12411	8	02000					
2653-	PQDMF M2	12413	8	02000					
2654-	PQDMF M2	12414	8	02000					
2655-	PQDMF M2	12415	8	02000					
2656-	PQDMF M2	12416	8	02000					
2657-	PQDMF M2	12417	8	02000					
2658-	PQDMF M2	12418	8	02000					
2659-	PQDMF M2	12419	8	02000					
2660-	PQDMF M2	12420	8	02000					
2661-	PQDMF M2	12421	8	02000					
2662-	PCDMF M2	12422	8	02000					
2663-	PUDMF N2	12424	8	02000					
2664-	PUDMF N2	12425	8	02000					
2665-	PUDMF N2	12426	8	02000					
2666-	PUDMF N2	12427	8	02000					
2667-	PUDMF N2	12428	8	02000					
2668-	PUDMF N2	12429	8	02000					
2669-	PUDMF N2	12430	8	02000					
2670-	PUDMF N2	12431	8	02000					
2671-	PUDMF N2	12432	8	02000					
2672-	PUDMF N2	12650	16	0175					
2673-	PUDMF N2	12651	16	0175					
2674-	PUDMF N2	12652	16	0175					
2675-	PUDMF N2	12653	16	0175					
2676-	PUDMF N2	12654	16	0175					
2677-	PUDMF N2	12655	16	0175					
2678-	PUDMF N2	12656	8	02000					
2679-	PUDMF N2	12657	8	02000					
2680-	PUDMF N2	12658	8	02000					
2681-	PUDMF N2	12659	8	02000					
2682-	PUDMF N2	12700	8	01600					
2683-	PUDMF N2	12701	8	01600					
2684-	PUDMF N2	12702	8	01600					
2685-	PUDMF N2	12703	8	01600					
2686-	PUDMF N2	12704	8	01600					
2687-	PUDMF N2	12705	8	01600					
2688-	PSHEAF	10178	6	04000					
2689-	PSHEAF	10179	6	04000					
2690-	PSHEAF	10287	6	04000					
2691-	PSHEAF	10288	6	04000					
2692-	PSHEAF	10289	6	04000					
2693-	PSHEAF	10290	6	04000					
2694-	PSHEAF	10291	6	04000					
2695-	PSHEAF	10292	6	04000					
2696-	PSHEAF	10293	6	04000					
2697-	PSHEAF	10294	6	04000					
2698-	PSHEAF	10295	6	04000					
2699-	PSHEAF	10296	6	04000					
2700-	PSHEAF	10351	6	12500					

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS HALF EFF LONG..05(EFF,TRANS,AT WING(G=2/JEFF.)

OCTORER 6, 1974 NASTRAN 2/ 1/73 PAGE 60

CARD COUNT	SORTED BULK DATA ECHO
2701-	*PSHEAF 1 0352 6 *12500
2702-	PSHEAP 1 0353 6 *12500
2703-	PSHEAF 1 0354 6 *21600
2704-	PSHEAF 1 0355 6 .09100
2705-	PSHLAF 1 0356 6 .09100
2706-	PSHEAF 1 0357 6 .09100
2707-	PSHEAF 1 0358 6 .09100
2708-	PSHLAR 1 0401 6 *12500
2709-	PSHEAF 1 C402 6 *12500
2710-	PSHEAF 1 0403 6 *12500
2711-	PSHEAF 1 0404 6 *12500
2712-	PSHLAF 1 0551 6 *12500
2713-	FSHLF 1 0552 6 *12500
2714-	PSHEAF 1 C553 6 *12500
2715-	PSHEAF 1 0554 6 *21600
2716-	PSHEAF 1 0555 6 .09100
2717-	PSHLAF 1 0556 6 .09100
2718-	PSHEAF 1 0557 6 .09100
2719-	PSHLAF 1 0558 6 .09100
2720-	PSHEAF 1 0651 6 *12500
2721-	PSHEAF 1 0652 6 *12500
2722-	PSHEAF 1 0653 6 *12500
2723-	PSHEAP 1 0654 6 *21600
2724-	PSHEAF 1 0655 6 .09100
2725-	PSHEAP 1 0656 6 .09100
2726-	PSHLAF 1 0657 6 .09100
2727-	PSHEAF 1 C658 6 .09100
2728-	PSHEAF 1 0751 6 *12500
2729-	PSHLAF 1 0752 6 *12500
2730-	PSHLAF 1 0753 6 *12500
2731-	PSHEAF 1 0754 6 *21600
2732-	PSHLAF 1 0755 6 .09100
2733-	PSHEAF 1 C756 6 .09100
2734-	PSHLAF 1 0757 6 .09100
2735-	PSHLAF 1 0758 6 .09100
2736-	PSHLAF 1 0851 6 *12500
2737-	PSHLAF 1 0852 6 *12500
2738-	PSHLAF 1 0853 6 *21600
2740-	PSHLAF 1 0854 6 .09100
2741-	PSHLAF 1 0855 6 .09100
2742-	PSHLAF 1 0856 6 .09100
2743-	PSHLAF 1 0857 6 .09100
2744-	PSHLAF 1 0858 6 .09100
2745-	PSHLAF 1 C951 6 .04000
2746-	PSHLAF 1 0952 6 .04000
2747-	PSHLAF 1 0953 6 .04000
2748-	PSHEAF 1 0954 6 .13100
2749-	PSHEAP 1 0959 6 .09100
2750-	PSHEAP 1 0960 6 .09100

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS HALF EFF.LONG.0.051.EPF.TPANS.AT WING(G=2/3EFF.).)

OCTOBER 6, 1974 NASTRAN SW 1/73 PAGE 61

CARD	COUNT	SORTED-BULK DATA ECHO
		3 . 4 . 0 . 0 . 5 . 0 . 0 . 6 . 0 . 0 . 7 . 0 . 0 . 8 . 0 . 0 . 9 . 0 . 0 . 10 . 0 .
2751-	1	PSHEAR 1062 6 . 09100
2752-		PSHEAF 1040 6 . 04000
2753-		PSHEAR 11041 6 . 04000
2754-		PSHEAF 11042 6 . 04000
2755-		PSHLAR 11043 6 . 13100
2756-		PSHEAF 11048 6 . 09100
2757-		PSHEAF 11049 6 . 09100
2758-		PSHEAF 11050 6 . 09100
2759-		PSHEAF 11051 6 . 09100
2760-		PSHEAF 11140 6 . 0AC00
2761-		PSHEAF 11141 6 . 04000
2762-		PSIFAF 11142 6 . 04000
2763-		PSIFAF 11143 6 . 13100
2764-		PSHEAF 11145 6 . 09100
2765-		PSHEAF 11146 6 . 09100
2766-		PSHEAF 11147 6 . 09100
2767-		PSHEAF 11148 6 . 09100
2768-		PSHEAF 11240 6 . 12500
2769-		PSHLAR 11241 6 . 12500
2770-		PSHEAF 11242 6 . 12500
2771-		PSHEAF 11243 6 . 21600
2772-		PSHEAF 11244 6 . 09100
2773-		PSHEAF 11245 6 . 09100
2774-		PSHEAF 11246 6 . 09100
2775-		PSHEAF 11247 6 . 09100
2776-		PSHEAF 11248 6 . 09100
2777-		PSHEAF 11340 6 . 12500
2778-		PSHEAF 11341 6 . 12500
2779-		PSHEAF 11342 6 . 12500
2780-		PSHEAF 11343 6 . 21600
2781-		PSHEAF 11344 6 . 09100
2782-		PSHEAP 11345 6 . 09100
2783-		PSHEAF 11346 6 . 09100
2784-		PSHEAF 11347 6 . 09100
2785-		PSHFAR 11348 6 . 09100
2786-		PSHFAR 11440 6 . 04000
2787-		PSHEAF 11441 6 . 04000
2788-		PSHEAR 11442 6 . 04000
2789-		PSHEAF 11443 6 . 13100
2790-		PSHEAF 11444 6 . 09100
2791-		PSHFAR 11445 6 . 09100
2792-		PSHEAF 11446 6 . 09100
2793-		PSHEAR 11447 6 . 09100
2794-		PSHEAF 11540 6 . 09100
2795-		PSHFAR 11541 6 . 09100
2796-		PSHEAF 11542 6 . 09100
2797-		PSHEAF 11543 6 . 09100
2798-		PSHLAR 11640 6 . 04000
2799-		PSHFAR 11641 6 . 04000
2800-		PSHEAF 11642 6 . 04000

PHASE 1 (ORBITER FUSSELAGE-SYMM CASE) MODEL 2
SKINS HALF EFF., LONG., 85% EFF. Tfans, AT WING(G=2/3EFF.)

OCTOBER 6, 1974 NASTRAN 2/173 PAGE 62

CARD COUNT	SORTED BULK DATA ECHO
2801-	1 11643 2 11643 3 11643 4 11643 5 11643 6 11643 7 11643 8 11643 9 11643 10 11643
2802-	PSHEAF
2803-	09100 09100 09100 09100 09100 09100 09100 09100 09100 09100
2804-	11645 11645 11645 11645 11645 11645 11645 11645 11645 11645
2805-	PSHEAF
2806-	09100 09100 09100 09100 09100 09100 09100 09100 09100 09100
2807-	11740 11740 11740 11740 11740 11740 11740 11740 11740 11740
2808-	PSHEAF
2809-	04000 04000 04000 04000 04000 04000 04000 04000 04000 04000
2810-	11742 11742 11742 11742 11742 11742 11742 11742 11742 11742
2811-	PSHEAF
2812-	09100 09100 09100 09100 09100 09100 09100 09100 09100 09100
2813-	11745 11745 11745 11745 11745 11745 11745 11745 11745 11745
2814-	PSHCAF
2815-	09100 09100 09100 09100 09100 09100 09100 09100 09100 09100
2816-	11661 11661 11661 11661 11661 11661 11661 11661 11661 11661
2817-	PSHEAF
2818-	04000 04000 04000 04000 04000 04000 04000 04000 04000 04000
2819-	11662 11662 11662 11662 11662 11662 11662 11662 11662 11662
2820-	PSHEAF
2821-	04000 04000 04000 04000 04000 04000 04000 04000 04000 04000
2822-	11663 11663 11663 11663 11663 11663 11663 11663 11663 11663
2823-	PSHCAF
2824-	04000 04000 04000 04000 04000 04000 04000 04000 04000 04000
2825-	11664 11664 11664 11664 11664 11664 11664 11664 11664 11664
2826-	PSHEAF
2827-	04000 04000 04000 04000 04000 04000 04000 04000 04000 04000
2828-	11665 11665 11665 11665 11665 11665 11665 11665 11665 11665
2829-	PSHCAF
2830-	04000 04000 04000 04000 04000 04000 04000 04000 04000 04000
2831-	11666 11666 11666 11666 11666 11666 11666 11666 11666 11666
2832-	PSHEAF
2833-	04000 04000 04000 04000 04000 04000 04000 04000 04000 04000
2834-	11667 11667 11667 11667 11667 11667 11667 11667 11667 11667
2835-	PSHCAF
2836-	04000 04000 04000 04000 04000 04000 04000 04000 04000 04000
2837-	11668 11668 11668 11668 11668 11668 11668 11668 11668 11668
2838-	PSHEAF
2839-	04000 04000 04000 04000 04000 04000 04000 04000 04000 04000
2840-	11669 11669 11669 11669 11669 11669 11669 11669 11669 11669
2841-	PSHCAF
2842-	04000 04000 04000 04000 04000 04000 04000 04000 04000 04000
2843-	11670 11670 11670 11670 11670 11670 11670 11670 11670 11670
2844-	PSHEAF
2845-	04000 04000 04000 04000 04000 04000 04000 04000 04000 04000
2846-	11671 11671 11671 11671 11671 11671 11671 11671 11671 11671
2847-	PSHCAF
2848-	025 025 025 025 025 025 025 025 025 025
2849-	11672 11672 11672 11672 11672 11672 11672 11672 11672 11672
2850-	PSHEAF
	020 020 020 020 020 020 020 020 020 020
	12600 12600 12600 12600 12600 12600 12600 12600 12600 12600
	02000 02000 02000 02000 02000 02000 02000 02000 02000 02000
	12630 12630 12630 12630 12630 12630 12630 12630 12630 12630
	12631 12631 12631 12631 12631 12631 12631 12631 12631 12631
	02000 02000 02000 02000 02000 02000 02000 02000 02000 02000
	12632 12632 12632 12632 12632 12632 12632 12632 12632 12632
	02000 02000 02000 02000 02000 02000 02000 02000 02000 02000
	12634 12634 12634 12634 12634 12634 12634 12634 12634 12634
	02000 02000 02000 02000 02000 02000 02000 02000 02000 02000

S O R T E D B U L K D A T A E C H O

CARD	1	2	3	4	5	6	7	8	9	10
COUNT	•	•	•	•	•	•	•	•	•	•
2851-	PSHEAR	12635	16	02000						
2852-	PSHEAF	12636	16	02000						
2853-	PSHEAF	12638	16	02000						
2854-	PSHFAF	12640	16	04000						
2855-	PSHEAR	12641	16	04000						
2856-	PSHEAF	12706	16	01600						
2857-	PSHEAF	12707	16	03200						
2858-	PSHEAF	12708	16	03200						
2859-	PTRMF M	10180	4	04000						
2860-	PTRWF M	10297	4	03200						
2861-	PTFWF M	12067	4	03200						
2862-	PTRWFM	12070	4	03200						
2863-	PTRMFM	12278	8	02500						
2864-	PTRMFM	12270	8	02500						
2865-	SPC 1	200	1	107	THRU	109				
2866-	SPC 1	200	1	116	THRU	119				
2867-	SPC 1	200	1	121	THRU	124				
2868-	SPC 1	200	1	126	THRU	130				
2869-	SPC 1	200	1	208	THRU	211				
2870-	SPC 1	200	1	214	THRU	217				
2871-	SPC 1	200	1	225	226	228				
2872-	SPC 1	200	1	234	237	238				
2873-	SPC 1	200	1	506	THRU	509				
2874-	SPC 1	200	1	511	513	515				
2875-	SPC 1	200	1	606	THRU	609				
2876-	SPC 1	200	1	611	613	615				
2877-	SPC 1	200	1	706	THFU	709				
2878-	SPC 1	200	1	711	713	715				
2879-	SPC 1	200	1	606	THFU	609				
2880-	SPC 1	200	1	811	813	815				
2881-	SPC 1	200	1	912	THFU	914				
2882-	SPC 1	200	1	916	918	920				
2883-	SPC 1	200	1	1012	THFU	1014				
2884-	SPC 1	200	1	1016	1018	1020				
2885-	SPC 1	200	1	1112	THFU	1114				
2886-	SPC 1	200	1	1116	1118	1120				
2887-	SPC 1	200	1	1207	THFU	1209				
2888-	SPC 1	200	1	1211	1213	1215				
2889-	SPC 1	200	1	1307	THFU	1309				
2890-	SPC 1	200	1	1311	1413	1415				
2891-	SPC 1	200	1	1503	1505	1507				
2892-	SPC 1	200	1	1611	1613	1615				
2893-	SPC 1	200	1	1711	1713	1715				
2894-	SPC 1	200	1	1813	1815	1818				
2895-	SPC 1	200	1	1825	1829	1831				
2896-	SPC 1	200	1	1829	THFU	1831				
2897-	SPC 1	200	1	1833	THFU	1835				
2898-	SPC 1	200	1	1906	THFU	1913				
2899-	SPC 1	200	1	2006	THFU	2009				
2900-	SPC 1	200	1							

CARD	COUNT	SPC 1	SPC 2	SPC 3	SPC 4	SPC 5	SPC 6	SPC 7	SPC 8	SPC 9	SPC 10
2901-	COUNT	SPC 1	200	200	200	200	2012	2013	2027	2028	2028
2902-		SPC 1	200	200	200	200	2016	2016	2019	2019	2019
2903-		SPC 1	200	200	200	200	2041	2041	2024	2024	2024
2904-		SPC 1	200	200	200	200	2031	2031	2034	2034	2034
2905-		SPC 1	200	200	200	200	2036	2036	2036	2036	2036
2906-		SPC 1	200	200	200	200	518	618	718	818	818
2907-		SPC 1	200	200	200	200	923	1023	1123	1220	1320
2908-		SPC 1	200	200	200	200	1418	1510	1618	1718	
2909-		SPC 1	200	200	200	200	922	1020	1120	1220	
2910-		SPC 1	200	200	200	200	6	1930	1930	1930	
2911-		SPC 1	200	200	200	200	46	1821	1934	1934	
2912-		SPC 1	200	200	200	200	56	151	178U	169	
2913-		SPC 1	200	200	200	200	56	305	310	312	
2914-		SPC 1	200	200	200	200	56	1201	1206	1221	
2915-		SPC 1	200	200	200	200	56	1905	1918	1920	
2916-		SPC 1	200	200	200	200	56	1923	1923	1927	
2917-		SPC 1	200	200	200	200	56	1929	1929	1929	
2918-		SPC 1	200	200	200	200	456	101	178U	131	
2919-		SPC 1	200	200	200	200	456	201	178U	230	
2920-		SPC 1	200	200	200	200	456	231	178U	242	
2921-		SPC 1	200	200	200	200	456	301	178U	304	
2922-		SPC 1	200	200	200	200	456	501	178U	517	
2923-		SPC 1	200	200	200	200	456	601	178U	617	
2924-		SPC 1	200	200	200	200	456	701	178U	717	
2925-		SPC 1	200	200	200	200	456	801	178U	817	
2926-		SPC 1	200	200	200	200	456	901	178U	905	
2927-		SPC 1	200	200	200	200	456	910	178U	922	
2928-		SPC 1	200	200	200	200	456	1001	178U	1005	
2929-		SPC 1	200	200	200	200	456	1010	178U	1022	
2930-		SPC 1	200	200	200	200	456	1101	178U	1105	
2931-		SPC 1	200	200	200	200	456	1110	178U	1122	
2932-		SPC 1	200	200	200	200	456	1202	178U	1205	
2933-		SPC 1	200	200	200	200	456	1301	178U	1219	
2934-		SPC 1	200	200	200	200	456	1321	178U	1319	
2935-		SPC 1	200	200	200	200	456	1401	178U	1517	
2936-		SPC 1	200	200	200	200	456	1501	178U	1417	
2937-		SPC 1	200	200	200	200	456	1601	178U	1509	
2938-		SPC 1	200	200	200	200	456	1701	178U	1617	
2939-		SPC 1	200	200	200	200	456	1721	178U	1717	
2940-		SPC 1	200	200	200	200	456	1800	178U	1724	
2941-		SPC 1	200	200	200	200	456	1801	178U	1815	
2942-		SPC 1	200	200	200	200	456	1817	178U	1820	
2943-		SPC 1	200	200	200	200	456	1822	178U	1823	
2944-		SPC 1	200	200	200	200	456	1825	178U	1838	
2945-		SPC 1	200	200	200	200	456	1901	178U	1904	
2946-		SPC 1	200	200	200	200	456	1906	178U	1917	
2947-		SPC 1	200	200	200	200	456	1928	178U	1936	
2948-		SPC 1	200	200	200	200	456	1951	178U	1933	
2950-		SPC 1	200	200	200	200	456	2001	178U	2042	

PHASE 1 (ORBITER FUSELAGE-SYMM CASE) MODEL 2
SKINS_HALF.EFF.LONG..085(EFF.TFANS.AT WING(G=2/3EFF.)

OCTOBER 6, 1974 NASTRAN 2/173 PAGE 65

CARD COUNT	1	2	3	4	5	6	7	8	9	10
SPC1	•200	•1456	•306	•THRU	315	317				
SPC1	200	1456	311	THRU	409					
SPC1	200	1456	406		101	116	121			130
SPC1	201	2			131	207	213	219		
SPC1	201	2			240	242				
SPC1	201	2			301	406				
SPC1	201	2			501	606	606	701	706	
SPC1	201	2			801	901	611	101	101	
SPC1	201	2			1101	1301	1401	1406		
SPC1	201	2			1111					
SFC1	201	2			1601	1606	1516			
SFC1	201	2			1701	1706	1723	1724	1800	
SPC1	201	2			1721	1802	1821	1825	1829	
SPC1	201	2			1801	1807	1906	1910	1914	
SPC1	201	2			1837	1901	1936	2001	2006	
SPC1	201	2			1934	1936	2001	2011	2016	
SPC1	201	2			2021	2026	2031	2040		
SPC1	201	2			2041	1646	166	165	1221	
SPC1	201	2			2111	2115	2139	213		
SPC1	201	2			2121	2129	506	606		
SPC1	202	3			306	406	1629	1633		
SPC1	202	3			316	406	1906	1910		
SPC1	202	3			306	2006	2016	2021	2031	
SPC1	202	3			313	101	106	111	115	
SPC1	202	3			3151	164	166	166	165	
SPC1	202	3			313	242	301	501	701	
SPC1	202	3			313	801	901	901	1011	
SPC1	202	3			313	1111	1401	1406	1516	
SPC1	202	3			313	1201	1206	1221	1301	
SPC1	202	3			313	1701	1706	1723	1724	
SPC1	202	3			313	1800	1801	1807	1837	
SPC1	202	3			313	1901	1914	1927	1936	
SPC1	202	3			313	2001	2011	2026	2040	
SPC1	202	3			313	1821	1930	1934		
SPC1	202	3			313	2101	2115			
SPCADD	301	—			200	201				
SPCADD	302	—			200	202	23	235	23	
SUPORT	229	—			23	232	506	518	518	
SUPORT	241	—			301	3	116	116	116	
SUPORT	760	—			135	1105	1115	1123	1123	
SUPORT	1205	—			123	123	1405	1410	1410	
SUPORT	1505	3			123	1506	1613	1614	1614	
SUPORT	1516	1			135	1605	1605	1610	1610	
SUPORT	1618	1			135	1705	1710	1710	1710	
SUPORT	1623	23			1427	23	1831	1835	1835	
SUPORT	1833	3			1905	1905	1918	1918	1918	
SUPORT	1926	1			2041	123	2114	2114	2114	
ENDATA										