單元一(微積分與統計)的學習重點

備註:

- 1. 學習單位分成三個領域(「基礎知識」、「微積分」和「統計」)和一個進階學習單位。
- 2. 相關的學習重點歸於同一學習單位內。
- 3. 表中「注釋」欄的內容,可視為學習重點的補充資料。
- 4. 學習單位旁的教學時數旨在協助教師判斷課題的教學深度。教學時數僅作參考之用,教師可因應個別情況自行 調節。

學習單位	學習重點	時間	注釋
基礎知識			
1. 二項展式	1.1 認識展式 (a+b) ⁿ , 其中 n 為正整數	3	學生須認識求和記法(Σ)。 不包括以下內容: • 三項式的展開 • 最大係數、最大項和二項式 係數性質 • 求近似值的應用
2. 指數函數和對數函數	2.1 認識 e 的定義和指數級數 $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$	8	

學習單位	學習重點	時間	注釋
	2.2 理解指數函數和對數函數		須包括以下函數:
			$\bullet y = e^x$
			$\bullet y = \ln x$
	2.3 運用指數函數和對數函數解應用題		學生須解與複利息、人口增長 和放射性元素的衰變有關的
			應用題。
	2.4 將 $y = ka^x$ 和 $y = k[f(x)]^n$ 化為線性關係式,其中		當取得 x 及 y 的實驗資料
	$a \cdot n$ 和 k 為實數 $a > 0$ $a \ne 1$ $f(x) > 0$ 和 $f(x) \ne 1$		時,學生須描繪對應的直線圖
			像,並從圖像的斜率和截距來 確定未知常數的值。
	教學時數 小計	11	
	3X 11 3X 1 EL		
微積分			
3. 函數的導數	3.1 認識函數極限的直觀概念	5	學生須認識有關函數的和、
			差、積、商、純量乘法極限和 複合函數極限的定理(不須 證
			明)。
		I	

學習單位	學習重點	時間	注釋
	3.2 求代數函數、指數函數和對數函數的極限		須包括下列代數函數: 多項式函數 有理函數 幂函數 x^{α} 由上述各函數的加、減、乘、除和複合而成的其他函數,諸如 $\sqrt{x^2+1}$
	3.3 透過基本原理認識函數的導數的概念		學生 不須 運用基本原理求函數的導數。 學生須認識記法: y'、f'(x) 和 <u>dy</u> 。
	3.4 認識曲線 $y = f(x)$ 在點 $x = x_0$ 的切線的斜率		學生須認識記法: $f'(x_0)$ 和 $\frac{dy}{dx}\Big _{x=x_0}$ 。
4. 函數的求導法	4.1 理解求導法的加法法則、積法則、商法則和鏈式法則	8	法則包括: • $\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$

學習單位	學習重點	時間	注釋
			• $\frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx}$ • $\frac{d}{dx}(\frac{u}{v}) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ • $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
	4.2 求代數函數、指數函數和對數函數的導數		學生須運用的公式包括: • $(C)' = 0$ • $(x^n)' = nx^{n-1}$ • $(e^x)' = e^x$ • $(\ln x)' = \frac{1}{x}$ • $(\log_a x)' = \frac{1}{x \ln a}$ • $(a^x)' = a^x \ln a$ 不包括隱函數求導法和對數求導法。

學習單位	學習重點	時間	注釋
5. 二階導數	5.1 認識函數的二階導數的概念	2	學生須認識記法: $y'' \cdot f''(x)$ 和 $\frac{d^2y}{dx^2}$ 。 不包括三階及更高階的導數。
	5.2 求顯函數的二階導數		學生須認識二階導數判別法 及凹性。
6. 求導法的應用	6.1 運用求導法解涉及切線、變率、極大值和極小值 的應用題	10	須包括全域和局部的極值。
7. 不定積分法及其應用	7.1 認識不定積分法的概念	10	須介紹不定積分法為求導法 的逆過程。
	7.2 理解不定積分的基本性質及不定積分法的基本公式		學生須認識記法: $\int f(x)dx$ 。 性質包括: • $\int kf(x)dx = k\int f(x)dx$ • $\int [f(x)\pm g(x)]dx$ = $\int f(x)dx\pm\int g(x)dx$ 公式包括:

學習單位	學習重點	時間	注釋
			$\bullet \int k \ dx = kx + C$
			$\bullet \int x^n dx = \frac{x^{n+1}}{n+1} + C$
			$\bullet \int \frac{1}{x} dx = \ln x + C$
			$\bullet \int e^x dx = e^x + C$
			學生須理解積分常數 <i>C</i> 的意義。
	7.3 運用不定積分法的基本公式求代數函數和指數函數的不定積分	文	
	7.4 運用代換積分法求不定積分		不包括分部積分法。
	7.5 運用不定積分法解應用題		
8. 定積分法及其應用	8.1 認識定積分法的概念	12	須介紹定積分的定義為曲線 下矩形條的面積和的極限。
			學生須認識記法: $\int_a^b f(x)dx$ 。
			須包括啞變數的概念,例如:

學習單位	學習重點	時間	注釋
	8.2 認識微積分基本定理及理解定積分的性質		$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt$ 。 學生須認識的微積分基本定理為:
			$\int_{a}^{b} f(x)dx = F(b) - F(a) , 其 中$ $\frac{d}{dx}F(x) = f(x) $ 性質包括: $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$ $\int_{a}^{a} f(x)dx = 0$ $\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$ $\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$ $\int_{a}^{b} [f(x) \pm g(x)]dx$
	8.3 求代數函數和指數函數的定積分		$= \int_a^b f(x) dx \pm \int_a^b g(x) dx$

學習單位	學習重點	時間	注釋
	8.4 運用代換積分法求定積分		
	8.5 運用定積分法求平面圖形的面積		學生 不須 運用定積分法求曲 線與 y 軸之間的面積及兩條曲 線之間的面積。
	8.6 運用定積分法解應用題		
9. 運用梯形法則計	9.1 理解梯形法則及運用它計算定積分的近似值	4	不包括誤差估值。
算定積分的近似 值			學生須運用二階導數及凹性 判別估計值是過高還是過低。
	教學時數小計	51	
統計			
10. 條件概率和貝葉 斯定理	10.1 理解條件概率的概念	6	
	10.2 運用貝葉斯定理解簡單應用題		
11. 離散隨機變數	11.1 認識離散隨機變數的概念	1	
12. 概率分佈、期望 值和方差	12.1 認識離散概率分佈的概念及以表列、圖像和數 學公式表示離散概率分佈	7	

學習單位	學習重點	時間	注釋
	12.2 認識期望值 E[X] 和方差 Var(X) 的概念及 運用它們解簡單應用題		學生須運用的公式包括: • $E[X] = \sum xP(X = x)$ • $Var(X) = E[(X - \mu)^2]$ • $E[g(X)] = \sum g(x)P(X = x)$ • $E[aX + b] = aE[X] + b$ • $Var(X) = E[X^2] - (E[X])^2$ • $Var(aX + b) = a^2 Var(X)$
13. 二項分佈	13.1 認識二項分佈的概念及其性質 13.2 計算涉及二項分佈的概率	5	須介紹伯努利分佈。 須包括二項分佈的平均值及 方差 (不須證明)。 不包括二項分佈表的運用。
14. 泊松分佈	14.1 認識泊松分佈的概念及其性質	5	須包括泊松分佈的平均值及 方差 (不須 證明)。
	14.2 計算涉及泊松分佈的概率		不 包括泊松分佈表的運用。

學習單位	學習重點	時間	注釋
15. 二項分佈和泊松 分佈的應用	15.1 運用二項分佈和泊松分佈解應用題	5	
16. 正態分佈的基本 定義及其性質	16.1 透過正態分佈,認識連續隨機變數及連續概率 分佈的概念	3	不須推導正態分佈的平均值及方差。 學生須認識學習重點 12.2 的公式亦適用於連續隨機變數。
	16.2 認識正態分佈的概念及其性質		性質包括: •曲線為鐘形並對稱於平均值 •平均值、眾數和中位數均相等 •平坦度取決於σ值 •曲線下的面積為1
17. 正態變數的標準 化及標準正態分 佈表的運用	17.1 將正態變數標準化和運用標準正態分佈表求涉 及正態分佈的概率	2	

學習單位	學習重點	時間	注釋
18. 正態分佈的應用	18.1 在已知 x_1 、 x_2 、 μ 和 σ 的值的情况下,求 $P(X>x_1)$ 、 $P(X、P(x_1< X< x_2)及相關概率的值,其中 X\sim N(\mu,\sigma^2)$	7	
	18.2 在 已 知 $P(X>x)$ 、 $P(X 、 P(a< X 、 P(x< X 或相關概率的值的情況下,求 x 的值,其中 X\sim N(\mu,\sigma^2)$		
	18.3 運用正態分佈解應用題		
19. 抽樣分佈和點估計	19.1 認識樣本統計量和總體參數的概念	9	學生須認識: 若總體平均值為 μ 和總體大小 為 N ,則 總 體 方 差 為 $\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$ 。
	19.2 當隨機樣本大小為 n 時,認識樣本平均值 X 的抽樣分佈		學生須認識: •若總體平均值為 μ 和總體 方差為 σ^2 ,則 $E[\bar{X}] = \mu$

學習單位	學習重點	時間	注釋
			$\operatorname{All} \operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n} \circ$
			• 若 $X \sim N(\mu, \sigma^2)$,則
			$\bar{X} \sim N(\mu, \frac{\sigma^2}{n}) \circ (不須證明)$
	19.3 當隨機樣本大小 n 足夠大時,運用中心極限定理把 \overline{X} 的分佈當成正態分佈		
	19.4 認識點估計的概念,當中包括樣本平均值和樣本方差		學生須認識: 若樣本平均值為 \bar{x} 和樣本 大小為 n ,則樣本方差為
			$s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1} \circ$
			學生須認識無偏估計量的概念。
20. 總體平均值的置信區間	20.1 認識置信區間的概念	6	
	20.2 求總體平均值的置信區間		學生須認識: •一個正態總體,其方差為

學習單位	學習重點	時間	注釋
			σ^{2} , 總 體 平 均 值 μ 的 $100(1-\alpha)$ % 置 信 區 間 為 $(\bar{x}-z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}})$ 。 • 一個總體,不知其方差,但樣本大小 n 足夠大時,總體平均值 μ 的 $100(1-\alpha)$ % 置信 區間為 $(\bar{x}-z_{\frac{\alpha}{2}}\frac{s}{\sqrt{n}}, \bar{x}+z_{\frac{\alpha}{2}}\frac{s}{\sqrt{n}})$,其中 s 為樣本標準差。
	教學時數小計	56	
進階學習單位			
21. 探索與研究	通過不同的學習活動,發現及建構知識,進一步提高 探索、溝通、思考和形成數學概念的能力	7	此 非 一個獨立和割裂的學習單位。教師可運用建議的時間,讓學生參與不同學習單位內的活動。
	教學時數小計	7	

總教學時數: 125 小時

單元二(代數與微積分)學習重點

備註:

- 1. 學習單位分成三個領域(「基礎知識」、「代數」和「微積分」)和一個進階學習單位。
- 2. 相關的學習重點歸於同一學習單位內。
- 3. 表中「注釋」欄的內容,可視為學習重點的補充資料。
- 4. 學習單位旁的教學時數旨在協助教師判斷課題的教學深度。教學時數僅作參考之用,教師可因應個別情況自行 調節。

學習單位	學習重點	時間	注釋
基礎知識			
1. 奇函數和偶函數	1.1 認識奇函數和偶函數及它們的圖像	2	學生須認識絕對值函數為偶函數的一個例子。
2. 數學歸納法	2.1 理解數學歸納法原理	3	須包括數學歸納法的基本原理。 學生須證明與有限數列求和有關 的命題。 不須 證明與不等式有關的命題。
3. 二項式定理	3.1 以二項式定理展開指數為正整數的二項式	3	須包括二項式定理的證明。 學生須認識求和記法(Σ)。 不包括以下內容: • 三項式的展開

學習單位	學習重點	時間	注釋
			• 最大係數、最大項和二項式係 數性質
			• 求近似值的應用
4. 續三角函數	4.1 理解弧度法的概念	13	
	4.2 理解余割函數、正割函數和餘切函數		學生須運用的公式包括: $1+\tan^2\theta=\sec^2\theta 和$ $1+\cot^2\theta=\csc^2\theta$ 須以恒等式簡化三角數式。
	4.3 理解正弦、余弦、正切函數的複角公式及正弦、余弦函數的和積互化公式		公式包括:

學習單位	學習重點	時間	注釋
			• $\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$
			• $\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$
			• $\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
			• $\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$
5. e 的簡介	5.1 認識 e 和自然對數的定義及其記法	2	可考慮用以下兩種方式介紹 e : • $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$ (不須證明此極限的存在性) • $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ 這些定義可在學習重點 6.1 介紹。
	教學時數小計	23	
微積分		ı	

學習單位	學習重點	時間	注釋
6. 極限	6.1 理解函數極限的直觀概念	3	學生須認識有關函數的和、差、 積、商、純量乘法極限和複合函數 極限的定理(不須 證明)。
	6.2 求函數的極限		學生須運用的公式包括: • $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ • $\lim_{x \to 0} = \frac{e^x - 1}{x} = 1$ 須求當引數趨向無窮時,有理函數的極限。
7. 求導法	7.1 理解函數導數的概念	14	學生須從基本原理求包括 $C \cdot x^n$ $(n 為正整數) \cdot \sqrt{x} \cdot \sin x \cdot \cos x$ $\cdot e^x \cdot \ln x$ 等初等函數的導數。 學生須認識記法: $y' \cdot f'(x)$ 和 $\frac{dy}{dx}$ 。 不須判別函數的可導性。
	7.2 理解求導法的加法法則、積法則、商法則和鏈式法則		法則包括:

學習單位	學習重點	時間	注釋
			• $\frac{d}{dx} (\frac{u}{v}) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$ • $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$ 學生須運用的公式包括: • $(C)' = 0$ • $(x^n)' = nx^{n-1}$ • $(\sin x)' = \cos x$ • $(\cos x)' = -\sin x$ • $(\tan x)' = \sec^2 x$ • $(e^x)' = e^x$ • $(\ln x)' = \frac{1}{x}$ 須包括下列的代數函數: • 多項式函數

學習單位	學習重點	時間	注釋
			• 冪函數 x^{α} • 由上述各函數的加、減、乘、除和複合而成的其他函數,例如 $\sqrt{x^2+1}$
	7.4 以隱函數求導法求導數		須包括對數求導法。
	7.5 求顯函數的二階導數		學生須認識記法: $y'' \cdot f''(x)$ 和 $\frac{d^2y}{dx^2}$ 。
			學生須認識二階導數判別法及凹性。 不包括三階及更高階的導數。
8. 求導法的應用	8.1 求曲線的切線方程	14	
/ 13	8.2 求函數的極大值和極小值		須包括全域及局部極值。
	8.3 描繪多項式函數及有理函數的曲線		當描繪曲線時,須注意以下事項: • 曲線的對稱性

學習單位	學習重點	時間	注釋
			• x 值和 y 值的限制
			• 曲線與兩軸的截距
			● 極大點和極小點
			● 拐點
			• 曲線的垂直、水準和斜漸近線
			學生須運用除法推算有理函數曲 線的斜漸近線方程。
	8.4 解與變率、極大值和極小值有關的應用題		
9. 不定積分法及其應用	9.1 認識不定積分法的概念	16	須介紹不定積分法為求導法的逆 過程。
	9.2 理解不定積分的性質及運用代數函數積分公式、 三角函數積分公式和指數函數積分公式求不定積 分		公式包括: • $\int k \ dx = kx + C$
			$ \bullet \int x^n dx = \frac{x^{n+1}}{n+1} + C $
			$\bullet \int e^x dx = e^x + C$

學習單位	學習重點	時間	注釋
			$\bullet \int \sin x dx = -\cos x + C$
			$\bullet \int \cos x dx = \sin x + C$
			$ \bullet \int \sec^2 x dx = \tan x + C $
	9.3 理解不定積分在在數學情境的應用		須包括不定積分在諸如幾何學方 面的應用。
	9.4 運用代換積分法求不定積分		
	9.5 運用三角代換法求含有 $\sqrt{a^2 - x^2}$ 、 $\frac{1}{\sqrt{a^2 - x^2}}$ 或 $\frac{1}{x^2 + a^2}$ 形式的不定積分		學生須認識記法: $\sin^{-1}x \cdot \cos^{-1}x$ 和 $\tan^{-1}x$,以及有關主值的概念。
	9.6 運用分部積分法求不定積分		教師可引用 ∫ ln x dx 為例子說明分部積分法。 在求一個積分時最多運用分部積分法兩次。

學習單位	學習重點	時間	注釋
10. 定積分法	10.1 認識定積分法的概念	10	須介紹定積分作為和的極限,並由此定義求定積分。 須包括啞變數的概念,例如, $\int_a^b f(x)dx = \int_a^b f(t)dt$ 。 不包括以定積分法求無窮數列之和。
	10.2 理解定積分的性質		性質包括: • $\int_a^b f(x)dx = -\int_b^a f(x)dx$ • $\int_a^a f(x)dx = 0$ • $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$ • $\int_a^b kf(x)dx = k\int_a^b f(x)dx$ • $\int_a^b [f(x) \pm g(x)]dx$ • $\int_a^b [f(x) \pm g(x)]dx$ • $\int_a^b f(x)dx \pm \int_a^b g(x)dx$ • $\Xi f(x)$ 為奇函數,則 $\int_{-a}^a f(x)dx = 0$

學習單位	學習重點	時間	注釋
	10.3 求代數函數、三角函數和指數函數的定積分		• 若 $f(x)$ 為偶函數,則 $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ 學生須認識的微積分基本定理 為: $\int_{a}^{b} f(x) dx = F(b) - F(a)$,其中 $\frac{d}{dx} F(x) = f(x)$ 。
	10.4 運用代換積分法求定積分		
	10.5 運用分部積分法求定積分		在求一個積分時最多運用分部積分法兩次。
11. 定積分法的 應用	11.1 理解以定積分求平面圖形面積的應用	4	
	11.2 理解以定積分求沿坐標軸或平行於坐標軸的直線 旋轉而成的旋轉體體積的應用		須包括「圓盤法」。
	教學時數小計	61	

學習單位	學習重點	時間	注釋
代數			
12. 行列式	12.1 認識二階及三階行列式的概念	2	學生須認識記法: A 和 det A。
13. 矩陣	13.1 理解矩陣的概念、運算及其性質 13.2 理解二階及三階方陣逆矩陣的概念、運算及其性 質	10	運算須包括矩陣的加法、純量乘法和乘法。 性質包括: $A+B=B+A$ $A+(B+C)=(A+B)+C$ $(\lambda+\mu)A=\lambda A+\mu A$ $\lambda(A+B)=\lambda A+\lambda B$ $A(BC)=(AB)C$ $A(B+C)=AB+AC$ $(A+B)C=AC+BC$ $(\lambda A)(\mu B)=(\lambda \mu)AB$ $ AB = A B $ 性質包括: A 的逆矩陣是唯一的 $(A^{-1})^{-1}=A$

學習單位	學習重點	時間	注釋
			 (λA)⁻¹ = λ⁻¹A⁻¹ (Aⁿ)⁻¹ = (A⁻¹)ⁿ (A^T)⁻¹ = (A⁻¹)^T A⁻¹ = A ⁻¹ (AB)⁻¹ = B⁻¹A⁻¹ 其中 A 和 B 為可逆矩陣 , λ 為非零純量。
14. 線性方程組	14.1 以克萊瑪法則、逆矩陣和高斯消去法解二元和三 元線性方程組	6	須包括以下定理: 一個齊次線性方程組有非平凡解當且僅當它的係數矩陣為奇異矩陣
15. 向量的簡介	15.1 理解向量及純量的概念	5	須包括向量的模、零向量及單位向量的概念。 學生須認識印刷時採用的向量記法(包括 \mathbf{a} 和 \overrightarrow{AB})以及書寫時採用的記法(包括 \vec{a} 、 \overrightarrow{AB} 和 \underline{a})和表示向量的模的記法(包括 $ a $ 和 $ \vec{a} $)。
	15.2 理解向量的運算及其性質		須包括向量的加法、減法和純量 乘法。

學習單位	學習重點	時間	注釋
	15.3 理解向量在直角坐標系統的標記法		性質包括: • $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ • $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$ • $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$ • $\mathbf{a} + 0 = \mathbf{a}$ • $0\mathbf{a} = 0$ • $\lambda(\mu \mathbf{a}) = (\lambda \mu)\mathbf{a}$ • $(\lambda + \mu)\mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{a}$ • $\lambda(\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b}$ • $\frac{\partial}{\partial \mathbf{a}} = \frac{\partial}{\partial \mathbf{a}}$ • $\frac{\partial}{\partial \mathbf{a}} = \frac{\partial}{\partial \mathbf{a}} = $

學習單位	學習重點	時間	注釋
			注釋中所提及的性質。
			不包括方向余弦的概念。
16. 純量積與向	16.1 理解向量的純量積(點積)的定義及其性質	5	性質包括:
量積			$\bullet \qquad \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$
			$\bullet \qquad \mathbf{a} \cdot (\lambda \mathbf{b}) = \lambda (\mathbf{a} \cdot \mathbf{b})$
			$\bullet \qquad \mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$
			$\bullet \mathbf{a} \cdot \mathbf{a} = \left \mathbf{a} \right ^2 \ge 0$
			• a · a =0 當且僅當 a = 0
			$\bullet \qquad \mathbf{a} \mathbf{b} \ge \mathbf{a} \cdot \mathbf{b} $
			$ \mathbf{a} - \mathbf{b} ^2 = \mathbf{a} ^2 + \mathbf{b} ^2 - 2(\mathbf{a} \cdot \mathbf{b}) $
	16.2 理解在 №3 中向量的向量積(叉積)的定義及其性		性質包括:
	質		$\bullet \qquad \mathbf{a} \times \mathbf{a} = 0$
			$\bullet \qquad \mathbf{b} \times \mathbf{a} = -(\mathbf{a} \times \mathbf{b})$
			$\bullet \qquad (\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$
			$\bullet \qquad \mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$
			$\bullet \qquad (\lambda \mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (\lambda \mathbf{b}) = \lambda (\mathbf{a} \times \mathbf{b})$

學習單位	學習重點		注釋
			$ \mathbf{a} \times \mathbf{b} ^2 = \mathbf{a} ^2 \mathbf{b} ^2 - (\mathbf{a} \cdot \mathbf{b})^2 $
17. 向量的應用	17.1 理解向量的應用	6	須包括線段的分割、平行性和正 交性。
			須包括求兩向量間的夾角、向量 投射至另一向量的投影和三角形 的面積。
	教學時數小計	34	
進階學習單位			
18. 探索與研究	通過不同的學習活動,發現及建構知識,進一步提高 探索、溝通、思考和形成數學概念的能力		此 非 一個獨立和割裂的學習單位。教師可運用建議的時間,讓學生參與不同學習單位內的活動。
	教學時數小計	7	

總教學時數: 125 小時

學習階段 4 (S4 - S6) 的學習單位

進階數學(選修)

基礎知識	微積分	統計	代數
1. 奇函數和偶函數	6. 極限	11. 條件概率與貝葉斯定理	17. 行列式
2. 數學歸納法	7. 求導法及其應用	12. 離散隨機變量及概率分佈	18. 矩陣
3. 二項式定理	8. 不定積分法及其應用	13. 二項分佈、幾何分佈、泊松分佈及它們的應用	19. 線性方程組
4. 指數函數和對數函數	9. 定積分法及其應用	14. 正態分佈及其應用	20. 向量及其應用
5. 續三角函數	10. 梯形法則	15. 抽樣分佈和點估計	21. 複數
		16. 總體平均值的置信區間	

進階學習單位

22. 探索與研究

進階數學(選修)

學習單位	學習重點	時間	注釋
21. 複數	21.1 理解複數的共軛和模的概念和性質	22	性質包括:
			$\bullet \qquad z\overline{z} = \left z\right ^2$
			$\bullet \qquad \overline{\overline{z}} = z$
			$\bullet \qquad \overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$
			$\bullet \qquad \overline{z_1 z_2} = \overline{z_1} \overline{z_2}$
			$\bullet \qquad (\frac{\overline{z_1}}{z_2}) = \frac{\overline{z_1}}{\overline{z_2}}$
			$\bullet \qquad z_1 z_2 = z_1 z_2 $
			$\bullet \qquad \left \frac{z_1}{z_2} \right = \frac{ z_1 }{ z_2 }$
			压力长装
	21.2 理解複數的極式		類包括複數 z 的實部 ($\operatorname{Re} z$)、虛部 ($\operatorname{Im} z$)、輻角 ($\operatorname{arg} z$) 和輻角的主值 ($\operatorname{Arg} z$)。

學習單位	學習重點	時間	注釋
			須介紹 " r cis θ " 為複數 r (cos θ + i sin θ)的簡稱。
			學生須在阿根圖上表示複數。
			學生須將複數 z 的標準式 $x+yi$ 和極式 $r(\sin\theta+i\cos\theta)$ 互化。
	21.3 進行複數在極式的乘法和除法		學生須理解:
			$z_2 = r_2(\cos\theta_2 + i\sin\theta_2) $,則
			$z_1 z_2 = r_1 r_2 \left[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right]$
			$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right] \circ$
	21.4 描述及描繪在阿根圖上滿足某些已知條件的		條件包括:
	點之軌跡		$\bullet \qquad z-z_1 =k$

學習單位	學習重點	時間	注釋
			• $arg(z-z_1) = \theta$
			• $\arg(\frac{z-z_1}{z-z_2}) = \frac{\pi}{2} \vec{\boxtimes} \pi$
	21.5 理解棣莫弗定理及其應用		學生須:
			• 求 z ⁿ , 其中 n 是整數
			• 求 z 的 n 次 方根
			• 理解 1 的立方根: $1 \cdot \omega \cdot \omega^2$ 及其 性質 $\omega^3 = 1 \cdot 1 + \omega + \omega^2 = 0$
			• 解有關三角恆等式的問題