中 国 科 学 技 术 大 学 2012 - 2013**学年第二学期期终考试试卷**(A)

考试科目: 线性代数(B1)		得分:
学生所在院系:	姓名:	学号:
一、【25分】填空题:		
(1) 设向量 $(1,6,\lambda)$ 落在由向量组则 $\lambda = $	组 $\{(1,2,3),(1,-2,3),($	(4,4,12)} 生成的线性子空间内,
(2) 设 $P_2[x]$ 是次数不超过二次多	多项式的全体构成的线	性空间,则从基 $\{(1-x)^2, 2(1-x)^2, 2(1-x)$
$x)x, x^{2}$ }到基 $\{1, x, x^{2}\}$ 的过程	度矩阵是	·
(3) 设 $\lambda_1, \cdots, \lambda_n$ 是 n 阶方阵 \mathbf{A} 的		$\overline{I} + A) = \underline{}$
(4) 设 n 阶实对称方阵 A 满足 A^2	$p^2 = 2\boldsymbol{A}, \operatorname{rank}(\boldsymbol{A}) = r, $	则 A 的相合规范形为
(5) 实二次型 $Q(x_1, x_2, x_3) = (x$ 参数 t 满足	, , ,	
二、【25分】判断下列命题是	否正确,并简要地给出	理由.
(1) 若向量 $oldsymbol{eta}$ 不能由向量组 $oldsymbol{lpha}_1, \cdot$	\cdots , $\boldsymbol{\alpha}_n$ 线性表示,则向	量组 $oldsymbol{lpha}_1,\cdots,oldsymbol{lpha}_n,oldsymbol{eta}$ 线性无关.
(2) 设 $F^{n\times n}$ 是所有 n 阶方阵全体 为零的 n 阶方阵全体,则 W		成的线性空间, W是所有行列式

- (4) 有限维欧氏空间的不同标准正交基之间的过渡矩阵是正交阵.
- (5) 设A为m阶实对称方阵, B为n阶实对称方阵, 且分块矩阵 $\begin{pmatrix} A & \\ & B \end{pmatrix}$ 正定, 则方阵A与B皆正定.
- 三、【10分】给定对角矩阵 $\mathbf{A} = \operatorname{diag}(1,1,2)$,令V是所有与 \mathbf{A} 都可以交换的三阶实对称方阵全体.
 - 1. 证明: 在矩阵通常的数乘与加法运算下, V构成实数域上的一个线性空间.
 - 2. 求V的维数与一组基.

四、【16分】设 γ 是n维欧氏空间V中的单位向量, 定义V上的线性变换 \mathscr{A} :

$$\mathscr{A}(\boldsymbol{\alpha}) = \boldsymbol{\alpha} - 2(\boldsymbol{\alpha}, \boldsymbol{\gamma})\boldsymbol{\gamma}.$$

- (1) 证明: 《是一个正交变换.
- (2) 设 β 是 \mathbf{R}^n 中一个单位列向量,证明:存在V的一组标准正交基,使得 \varnothing 在这组基下的矩阵为 $\mathbf{I} 2\beta\beta^{\mathrm{T}}$.
- (3) 求৶的特征值与特征向量.

五、【14分】给定二次曲面在直角坐标系下的方程

$$2x^{2} + 2y^{2} + 2z^{2} - 2xy - 2xz - 2yz - 4x + 6y - 2z + 3 = 0,$$

将它通过正交变换化为标准方程,并指出该二次曲面的类型.

六、【10分】设A, B均为n阶方阵, A有n个互异的特征值, 且AB = BA. 证明:

- (1) В相似于对角阵;
- (2) 存在唯一的次数不超过n-1的多项式f(x), 使得 $\boldsymbol{B}=f(\boldsymbol{A})$.