

ISTANBUL TECHNICAL UNIVERSITY

BLG354E - Recitation 2

11.06.2022

A continuous-time signal x(t) is said to be periodic with period T if there is a positive nonzero value of T for which

A discrete-time signal x[n] is said to be periodic with period N if there is a positive nonzero value of N for which

$$x[n+N]=x[n]$$
 for all n

Smallest value of T or N that satisfies the above condition is called fundamental period

Example:

x(t) is a CT signal given as $x(t)=\cos(15t)$. Find the fundamental period of the DT signal x[n]if x[n] is discretized by sampling x(t) at the sampling frequency $f_s = \frac{10}{\pi}$ Hz

$$x[n] = x(nT_s)$$

$$T_s=1/f_s=0.1\pi$$
 seconds

$$x[n] = x(nT_s)$$
 $T_s = 1/f_s = 0.1\pi$ seconds $x(t) = \cos(\omega t) = \cos(15t) \rightarrow \omega = 15$ rad/s

The fundamental period of x(t):
$$T_0 = \frac{2\pi}{\omega_0} = \frac{2\pi}{15}$$

x[n] is periodic if
$$\frac{T_s}{T_0} = \frac{T_s}{2\pi/15} = \frac{m}{N_0}$$

Since m and N₀ are positive integers
$$\Rightarrow T_s = \frac{m}{N_0} T_0 = \frac{m}{N_0} \frac{2\pi}{15} \Rightarrow \frac{T_s}{T_0} = \frac{\pi/10}{2\pi/15} = \frac{15}{20} = \frac{3}{4}$$

If x[n] is periodic then
$$N_0 = m \frac{T_0}{T_s} = m \frac{4}{3}$$

m=3 provides N_0 to be the smallest positive integer. Fundamental period of x[n] is N_0 =4

Example: (Case study for the signal having multiple periodic components)

Find the fundamental frequency of the signal
$$\ x[n]=e^{j\frac{2\pi}{3}n}+e^{j\frac{3\pi}{4}n}$$

$$\frac{\omega_0}{2\pi}=\frac{k}{N}$$

$$\frac{\frac{2\pi}{3}}{2\pi}=\frac{1}{3}$$

$$\frac{\frac{3\pi}{4}}{2\pi}=\frac{3}{8}$$

Fundamental period of the first exponential is 3

Fundamental period of the second exponential is 8

Since the least common multiple of the periods of the two signals is 24, x[n] is periodic with $N_0=24$

Example: Find the fundamental period of the DT signal $x[n] = sin(\frac{5\pi}{6}n) + cos(\frac{3\pi}{4}n) + sin(\frac{\pi}{3}n)$

The least common multiple of the denominators is 12 \Rightarrow $x[n] = sin(\frac{10\pi}{12}n) + cos(\frac{9\pi}{12}n) + sin(\frac{4\pi}{12}n)$

Fundamental frequency is $\omega_0 = \pi/12$ \rightarrow The fundamental period is T = $2\pi/\omega_0$ = 24 and the three terms are the 4th, 9th and 10th harmonic of ω_0

Example: Find the fundamental frequency of the CT signal $\mathbf{x}(t) = sin(\frac{5\pi}{6}t) + cos(\frac{3\pi}{4}t) + sin(\frac{\pi}{3}t)$ $\mathbf{x}(t) = \mathbf{x}_1(t) + \mathbf{x}_2(t) + \mathbf{x}_2(t)$

The frequencies and periods of $x_1(t)$, $x_2(t)$ and the $x_3(t)$ are:

$$\omega_{1} = \frac{5\pi}{6}, f_{1} = \frac{5}{12}, T_{1} = \frac{12}{5}$$

$$\omega_{2} = \frac{3\pi}{4}, f_{2} = \frac{3}{8}, T_{2} = \frac{8}{3}$$

$$\omega_{3} = \frac{\pi}{3}, f_{3} = \frac{1}{6}, T_{3} = 6$$

$$f_{0} = GCD(\frac{5}{12}, \frac{3}{8}, \frac{1}{6}) = GCD(\frac{10}{24}, \frac{9}{24}, \frac{4}{24}) = \frac{1}{24}$$

The fundamental angular frequency is $\omega_0 = \pi/12$ and the fundamental period is $T_0 = 2\pi/\omega = 24$ $f_0 = 1/24$

$$\Rightarrow x(t) = \sin(\frac{10\pi}{12}t) + \cos(\frac{9\pi}{12}t) + \sin(\frac{4\pi}{12}t)$$

Question 1 (2019 Final Exam)

1- Transfer function H(z) of a digital filter is given as,

$$H(z) = \frac{Y(z)}{X(z)} = \frac{0.1(z^2 + 2z + 1)}{z^2 - z + 0.5}$$

- a) Find the difference equation where the output sequence is denoted by y[n] and input sequence is denoted by x[n].
- b) Draw the block diagram of the system in terms of unit delays (z^{-1}) .
- c) Write a pseudo code for implementation of the given filter where the signal processing interrupt-subroutine is called at sampling period T_s. (Input and Output variables will be named as X and Y respectively. Internal variables will be assigned as A, B, C...).
- d) Find the impulse response h[n] of the filter by using inverse Fourier transform of its frequency response $H(\Omega)$.

Question 2 (2019 Final Exam)

- 2- Transfer function of a first order low pass filter is given as $H(s) = H(j\omega) = \frac{1}{1 + 0.005 \cdot j\omega}$
 - a) Sketch the Bode plot for the frequency response.
 - b) Find a difference equation that is equivalent of the defined filter by using bilinear transformation $s = 2f_s \cdot \left(\frac{1-z^{-1}}{1+z^{-1}}\right)$ for the case that input signal is sampled at f_s=500Hz

Question 3 (2019 Final Exam)

3- Two continuous time signals x(t) and h(t) are given as,

$$x(t)=u(t-1), h(t)=e^{-2t}u(t)$$

Find their convolution y(t)=x(t)*h(t).

Fourier Transform Pairs

x[n]	$X(\Omega)$
$\delta[n]$	$\frac{1}{e^{-j\Omega n_0}}$
$\delta[n-n_0]$	•
x[n] = 1	$2\pi\delta(\Omega), \Omega \leq \pi$
$e^{j\Omega_{0}n}$	$2\pi\delta(\Omega - \Omega_0), \Omega , \Omega_0 \le \pi$
$\cos \Omega_0 n$	$\pi[\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0)], \Omega , \Omega_0 \le \pi$
$\sin \Omega_0 n$	$-j\pi[\delta(\Omega-\Omega_0)-\delta(\Omega+\Omega_0)], \Omega , \Omega_0 \le \pi$
u[n]	$\pi\delta(\Omega) + \frac{1}{1 - e^{-j\Omega}}, \Omega \leq \pi$
-u[-n-1]	$-\pi\delta(\Omega)+\frac{1}{1-e^{-j\Omega}}, \Omega \leq \pi$
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\Omega}}$

Question 4

Find the inverse z transform of
$$X(z) = \frac{z}{(z-1)(z-2)^2}$$
 $|z| > 2$

Question 5

Calculate the convolution y[n] of the sequences

$$v[n]=\{v_n\} = \{a^n\}$$

 $w[n]=\{w_n\} = \{b^n\}$

Question 6

$$f(t) = 5 + 2\cos(2\pi t - 90^o) + 3\cos 4\pi t$$
 Find the 4 points DFT of this signal if it is sampled at 4Hz

Question 7 (from HW3)

1. Find 4-points DFT (Discrete Fourier Transform) of the periodic DT signal $x[n] = \{1, 2, 0, -1\}$ as $X[k] = DFT\{x[n]\}$ where

$$\mathbf{W}_{N} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W_{N} & W_{N}^{2} & \cdots & W_{N}^{N-1} \\ 1 & W_{N}^{2} & W_{N}^{4} & \cdots & W_{N}^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)(N-1)} \end{bmatrix} \qquad W_{N} = e^{-j(2\pi/N)}$$

$$W_N = e^{-j(2\pi/N)}$$

Question 8 (from HW3)

3. Transfer function of a discrete time system H(z) is given as

$$H(z) = \frac{Y(z)}{X(z)} = \frac{2z^{-1}}{(1 - 0.5z^{-1})^2}$$

where z^{-1} denotes the unit delay. Find the first 4 values of the output signal sequence $y[n] = \{y[0], y[1], y[2], y[3]\}$ if unit step signal x[n] = u[n] is applied to this system. (initial condition can be considered as zero)

Properties of Z Transform

Property	Sequence	Transform	ROC
	x[n]	X(z)	R
	$x_1[n]$	$X_{l}(z)$	R_1
	$x_2[n]$	$X_2(z)$	R_2
Linearity	$a_1x_1[n] + a_2x_2[n]$	$a_1 X_1(z) + a_2 X_2(z)$	$R' \supset R_1 \cap R_2$
Time shifting	$x[n-n_0]$	$z^{-n_0}X(z)$	$R'\supset R\cap\{0< z <\infty\}$
Multiplication by z_0^n	$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	$R' = z_0 R$
Multiplication by $e^{j\Omega_0 n}$	$e^{j\Omega_0 n}x[n]$	$X(e^{-j\Omega_0}z)$	R' = R
Time reversal	x[-n]	$X\left(\frac{1}{z}\right)$	$R'=\frac{1}{R}$
Multiplication by n	nx[n]	$-z\frac{dX(z)}{dz}$	R' = R
Accumulation	$\sum_{k=-\infty}^{n} x[n]$	$\frac{1}{1-z^{-1}}X(z)$	$R' \supset R \cap \{ z > 1\}$
Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	$R' \supset R_1 \cap R_2$

Common Z Transform Pairs

x[n]	X(z)	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}, \frac{z}{z-1}$	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}, \frac{z}{z-1}$	z < 1
$\delta[n-m]$	z -m	All z except 0 if $(m > 0)$ or ∞ if $(m < 0)$
$a^nu[n]$	$\frac{1}{1-az^{-1}}, \frac{z}{z-a}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}, \frac{z}{z-a}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}, \frac{az}{(z-a)^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}, \frac{az}{(z-a)^2}$	z < a
$(n+1)a^nu[n]$	$\frac{1}{\left(1-az^{-1}\right)^2}, \left[\frac{z}{z-a}\right]^2$	z > a
$(\cos \dot{\Omega}_0 n) u[n]$	$\frac{z^2 - (\cos \Omega_0) z}{z^2 - (2\cos \Omega_0) z + 1}$	z > 1
$(\sin \Omega_0 n)u[n]$	$\frac{(\sin \Omega_0) z}{z^2 - (2\cos \Omega_0) z + 1}$	z > 1
$(r^n\cos\Omega_0n)u[n]$	$\frac{z^2 - (r\cos\Omega_0)z}{z^2 - (2r\cos\Omega_0)z + r^2}$	z > r
$(r^n \sin \Omega_0 n) u[n]$	$\frac{(r\sin\Omega_0)z}{z^2 - (2r\cos\Omega_0)z + r^2}$	z > r
$\begin{cases} a^n & 0 \le n \le N - 1 \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z > 0

Fourier Transform Properties

Property	Sequence	Fourier Transform
	x[n]	$X(\Omega)$
	$x_1[n]$	$X_1(\Omega)$
	$x_2[n]$	$X_2(\Omega)$
Periodicity	x[n]	$X(\Omega+2\pi)=X(\Omega)$
Linearity	$a_1x_1[n] + a_2x_2[n]$	$a_1X_1(\Omega) + a_2X_2(\Omega)$
Time shifting	$x[n-n_0]$	$e^{-j\Omega n_0}X(\Omega)$
Frequency shifting	$e^{j\Omega_0 n}x[n]$	$X(\Omega-\Omega_0)$
Conjugation	x*[n]	$X^*(-\Omega)$
Time reversal	x[-n]	$X(-\Omega)$
Time scaling	$x_{(m)}[n] = \begin{cases} x[n/m] & \text{if } n = km \\ 0 & \text{if } n \neq km \end{cases}$	$X(m\Omega)$
Frequency differentiation	nx[n]	$j\frac{dX(\Omega)}{d\Omega}$
First difference	x[n]-x[n-1]	$(1-e^{-j\Omega})X(\Omega)$
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\pi X(0)\delta(\Omega) + \frac{1}{1 - e^{-j\Omega}}X(\Omega)$
		$ \Omega \leq \pi$
Convolution	$x_1[n] * x_2[n]$	$X_1(\Omega)X_2(\Omega)$
Multiplication	$x_1[n]x_2[n]$	$\frac{1}{2\pi}X_1(\Omega)\otimes X_2(\Omega)$
Real sequence	$x[n] = x_e[n] + x_o[n]$	$X(\Omega) = A(\Omega) + jB(\Omega)$
		$X(-\Omega) = X^*(\Omega)$
Even component	$x_e[n]$	$Re\{X(\Omega)\} = A(\Omega)$
Odd component	$x_o[n]$	$j \operatorname{Im}\{X(\Omega)\} = jB(\Omega)$

Common Fourier Transform Pairs

x[n]	X[Ω]
$\delta[n]$	1
$\delta[n-n_0]$	$e^{-j\Omega n_0}$
x[n] = 1	$2\pi\delta(\Omega), \Omega \leq \pi$
$e^{j\Omega_0n}$	$2\pi\delta(\Omega-\Omega_0), \Omega , \Omega_0 \leq \pi$
$\cos \Omega_0 n$	$\pi[\delta(\Omega-\Omega_0)+\delta(\Omega+\Omega_0)], \Omega , \Omega_0 \leq\pi$
$\sin \Omega_0 n$	$-j\pi[\delta(\Omega-\Omega_0)-\delta(\Omega+\Omega_0)], \Omega , \Omega_0 \leq \pi$
u[n]	$\pi\delta(\Omega) + \frac{1}{1 - e^{-j\Omega}}, \Omega \leq \pi$
-u[-n-1]	$-\pi\delta(\Omega)+\frac{1}{1-e^{-j\Omega}}, \Omega \leq\pi$
$a^n u[n], a < 1$	$\frac{1}{1 - ae^{-j\Omega}}$
$-a^nu[-n-1], a >1$	$\frac{1}{1 - ae^{-j\Omega}}$
$(n+1)a^nu[n], a <1$	$\frac{1}{\left(1-ae^{-j\Omega}\right)^2}$
$a^{ n }, a < 1$	$\frac{1-a^2}{1-2a\cos\Omega+a^2}$
$x[n] = \begin{cases} 1 & n \le N_1 \\ 0 & n > N_1 \end{cases}$	$\frac{\sin\left[\Omega\left(N_1+\frac{1}{2}\right)\right]}{\sin(\Omega/2)}$
$\frac{\sin Wn}{\pi n}, 0 < W < \pi$	$X(\Omega) = \begin{cases} 1 & 0 \le \Omega \le W \\ 0 & W < \Omega \le \pi \end{cases}$
$\sum_{k=-\infty}^{\infty} \delta[n-kN_0]$	$\Omega_0 \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_0), \Omega_0 = \frac{2\pi}{N_0}$