Ch 7. Sufficiency

Ch 7.1 A sufficient statistic for a parameter, p433

- Example 7.1
 - Experiment A: Observe IID sample X_1 and X_2 from $b(1,\theta)$, $0<\theta<1$
 - Experiment B: Observe X_1 and $X_1 + X_2$ where $X_1, X_2 \overset{iid}{\sim} b(1, \theta)$
 - Experiment C

1st step: Observe $Y = X_1 + X_2$ 2nd step: Observe X_1 given Y = y Probability Structure of Experiment A

$$\begin{array}{c|ccccc} (x_1, x_2) & (0,0) & (0,1) & (1,0) & (1,1) \\ \hline P(x_1, x_2) & (1-\theta)^2 & (1-\theta)\theta & \theta(1-\theta) & \theta^2 \\ \end{array}$$

► Probability Structure of Experiment B

$$(x_1, x_2)$$
 $(0,0)$ $(0,1)$ $(1,1)$ $(1,2)$ $P(x_1, x_2)$ $(1-\theta)^2$ $(1-\theta)\theta$ $\theta(1-\theta)$ θ^2

Experiment C

1st step: Observe $Y=X_1+X_2$ 2nd step: Observe X_1 given Y=y

- Probability Structure of Experiment C
 - 1. $P((X_1, X_2) = (0, 0)|Y = 0) = 1$
 - 2. $P((X_1, X_2) = (0, 1)|Y = 1)) = P((X_1, X_2) = (1, 0)|Y = 1)) = 0.5$
 - 3. $P((X_1, X_2) = (1, 1)|Y = 2)) = 1$
- From this probability structure, we can see that the conditional probability of (X_1, X_2) given Y does not depend on θ . This implies that if Y is given, knowing (X_1, X_2) does not give any useful information for the inference of θ .

Definition

Let X_1, \ldots, X_n be a random sample from pdf $f(x; \theta)$, $\theta \in \Omega$.

 $T(\underline{X}) = T(X_1, \dots, X_n)$ is called <u>sufficient statistic</u> for $\theta \in \Omega$ if

- (i) Y is a statistic
- (ii) $P_{\theta}\left[(X_1,\ldots,X_n)\in A|T(\underline{X})=y\right]$ does not depend on θ for each y and all A.

- Example 7.2 (p.434)

For $X_1,\ldots,X_n\stackrel{iid}{\sim} b(1,\theta)$, $Y=X_1+\ldots+X_n$ is a sufficient statistic for θ .

Theorem (Factorization theorem, p436)

Let X_1, \ldots, X_n be a random sample from pdf $f(x; \theta)$, $\theta \in \Omega$. $Y = T(\underline{X})$ is a sufficient statistic if and only if we can find two nonnegative function k_1 and k_2 such that

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = k_1(y, \theta) k_2(\underline{x})$$

- Example 7.2 (revisited): $X_1,\dots,X_n \stackrel{iid}{\sim} b(1,\theta)$

- Example 7.3: $X_1,\ldots,X_n \stackrel{iid}{\sim} N(\mu,1)$

– Example 7.4 (p.438): $X_1,\dots,X_n \overset{iid}{\sim} Beta(\theta,1)$

- Example 7.5: $X_1,\ldots,X_n \overset{iid}{\sim} U[0,\theta]$

- Fact: one-to-one function of a sufficient statistic for θ is also a sufficient statistic for θ .

Ch 7.2 Properties of a sufficient statistic

Theorem (Rao-Blackwell, p.441)

Let X_1,\ldots,X_n be a random sample from pdf $f(x;\theta)$, $\theta\in\Omega$. If $Y=T(\underline{X})$ is a sufficient statistic for θ , and $\hat{\theta}_1$ is an unbiased estimator of θ , then $\hat{\theta}_2=E(\hat{\theta}_1|T(\underline{X}))=E(\hat{\theta}_1)=\theta$ with $V(\hat{\theta}_2)\leq V(\hat{\theta}_1)$.

Remarks

For any unbiased estimator $\hat{\theta}_1$ for θ , we can always find a better unbiased estimator $\hat{\theta}_2 = E(\hat{\theta}_1|u_1(\underline{\mathsf{X}}))$ whe a sufficient statistic $u_1(\underline{\mathsf{X}})$ is given.

Although SS is not unique, we can know that a desirable estimator should be at least a function of a sufficient statistic.

Theorem

If a unique MLE of $\hat{\theta}$ exists, $\hat{\theta}$ should be a function of SS.

Ch 7.3 Completeness and uniqueness

- Fact: MVUE with finite variance is unique when it exists.

Proof.

Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be MVUE's of θ . We will show that $\hat{\theta}_1=\hat{\theta}_2$ or $P(\hat{\theta}_1=\hat{\theta}_2)=1$. For this, define $\hat{\theta}_3=(\hat{\theta}_1+\hat{\theta}_2)/2$. Then $\hat{\theta}_3$ is unbiased and this means $V(\hat{\theta}_3)\geq V(\hat{\theta}_1)=V(\hat{\theta}_2)$. Hence, $Cov(\hat{\theta}_1,\hat{\theta}_2)\geq V(\hat{\theta}_1)$ and this implies $V(\hat{\theta}_1-\hat{\theta}_2)=0$.

Definition

 X_1, \ldots, X_n : random sample from pdf $f(x; \theta)$, $\theta \in \Omega$.

- (a) $Y = u(\underline{X})$ is a <u>complete</u> statistic for θ if and only if $E_{\theta}(g(Y)) = 0$ for all $\theta \in \Omega$ implies $P_{\theta}(g(Y)) = 0 = 1$ for all $\theta \in \Omega$
- (b) Y = u(X) is a complete sufficient statistic (CSS) for θ if Y is complete and sufficient for θ .

Theorem (Lehmann & Scheffe, p.446)

If T is CSS for θ and $E(\phi(T)) = \theta$, then $\phi(T)$ is the MVUE of θ .

- Why this theorem works?
 - From Rao-Blackwell, we know that a good estimator should be a function of SS.
 - If a given sufficient statistic T is also complete, we can say that h(T)=0 whenever $E_{\theta}(h(T))=0$ for all $\theta\in\Omega$.
 - ▶ When T is CSS for θ , suppose that there are two unbiased estimators for θ : $\phi(T)$ and $\psi(T)$. Then the completeness of T implies that $\phi(T) = \psi(T)$.
 - ► This means that there is only one unbiased estimator which is a function of CSS.
 - ▶ How to show the completeness? No general way exists..

- Example 7.5 (revisited): $X_1,\ldots,X_n \overset{iid}{\sim} U[0,\theta],\ \theta>0$
- \rightarrow From Example 7.5, we know that $Y_n = \max(X_1, \dots, X_n)$ is a sufficient statistic for θ .
 - 1. Y_n is also a complete statistic?
 - (i) Assume $E_{\theta}(g(Y_n)) = 0$ for all $\theta > 0$
 - (ii) Show that g(y) = 0

- Example 7.5 (revisited): $X_1, \ldots, X_n \stackrel{iid}{\sim} U[0, \theta], \ \theta > 0$
- \rightarrow From Example 7.5, we know that $Y_n = \max(X_1, \dots, X_n)$ is a sufficient statistic for θ .
 - 1. Y_n is also a complete statistic? Yes!
 - 2. What is the MVUE of θ ?

3. Is there any easy way to show completeness? For some family of distributions, we can show the completeness.

- Example 7.6: $X_1, \ldots, X_n \stackrel{iid}{\sim} Gamma(1, \theta), \ \theta > 0$

Definition (Laplace transform)

The Laplace transform of f(x) is

$$\mathcal{L}f(x) = \int_0^\infty f(t)e^{-tx}dt$$

provided with $\int_0^\infty f(t)e^{-tx}dt<\infty$

Theorem (Uniqueness of Laplace transform)

$$\mathcal{L}f(x) = \mathcal{L}g(x)$$
 if and only if $f(x) = g(x)$

- Example 7.6: $X_1,\ldots,X_n \overset{iid}{\sim} Gamma(1,\theta)$, $\theta>0$
- $\rightarrow \sum_{i=1}^{n} X_i$ is a complete and sufficient statistic

Definition (Exponential family of distributions, p. 449)

 $f(x;\theta)$ is said to be a member of the regular exponential family if

- (i) Support of $f(x;\theta)$ does not depend on θ .
- (ii) $f(x;\theta) = \exp(p(\theta)K(x) + H(x) + q(\theta))$, where $p(\theta)$ is a nontrivial continuous function of θ .
- (iii) $p(\theta)$ is a nontrivial continuous function of θ , and K(x) is a nontrivial function of x

- Examples
 - Binomial distributions
 - Gamma distributions
 - Normal distributions
 - Beta distributions
 - ► Uniform distributions → NOT exponential family!

Theorem (p. 450)

If $f(x;\theta)$ belongs to the exponential family

(i.e.
$$f(x;\theta) = \exp(p(\theta)K(x) + H(x) + q(\theta))$$
), then

(i)
$$q(\theta) = -\log(\int \exp(p(\theta)K(x) + H(x))dx)$$

(ii)
$$E(K(X)) = -q'(\theta)/p'(\theta)$$

(iii)

$$V(K(X)) = -\frac{p''(\theta)E(K(X)) + q''(\theta)}{(p'(\theta))^2} = \frac{p''(\theta)q'(\theta) - q''(\theta)p'(\theta)}{(p'(\theta))^3}$$

If
$$p(\theta) = \theta$$
, then $E(K(X)) = -q'(\theta)$ and $V(K(X)) = -q''(\theta)$

Proof.

Note that

$$\frac{d}{d\theta}f(x;\theta) = (p'(\theta)K(x) + q'(\theta))f(x;\theta)$$

$$\frac{d^2}{d\theta^2}f(x;\theta) = (p''(\theta)K(x) + q''(\theta))f(x;\theta) + (p'(\theta)K(x) + q'(\theta))^2 f(x;\theta)$$

- Example 7.7
- (i) $X \sim b(n, \theta)$

- Example 7.7
- (ii) X follows exponential distribution having mean λ .

Theorem (p.451)

For $X_1, \ldots, X_n \overset{iid}{\sim} f(x; \theta)$, if $f(x; \theta)$ is a member of exponential family, then $\sum K(X_i)$ is CSS

- Example 7.7 (revisited)
- (i) If $X_1, \ldots, X_n \stackrel{iid}{\sim} b(1, \theta)$, find the MVUE of θ .

- Example 7.7(revisited)
- (ii) If X_1, \ldots, X_n is a random sample from the exponential distribution having mean λ , find the MVUE of λ .

- Example 6.9 (revisited)

If $X_1, \ldots, X_n \overset{iid}{\sim} Beta(\theta, 1)$, find the MVUE of θ . In Example 6.12, the MLE of θ is $\hat{\theta}^{MLE} = -\frac{n}{\sum \log X_i}$ and $E(\hat{\theta}^{MLE}) = \frac{n\theta}{n+1}$. What is the MVUE of θ ?

▶ Rao-Blackwell+Lehmann-Scheffe If $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x; \theta)$, $\hat{\theta}_1$ is unbiased, and Y is CSS, then $\hat{\theta}_2 = E(\hat{\theta}_1 | Y)$ is the MVUE of θ .

Remark

- 1. If your estimator is a function of CSS and unbiased, then your estimator is the unique MVUE.
- 2. If you have an unbiased estimator $\hat{\theta}$ which is not a function of CSS, $\hat{\theta}^* = E(\hat{\theta}|Y)$ is the MVUE.

- Example 7.8

If $X_1, \ldots, X_n \stackrel{iid}{\sim} b(1,p)$, find the MVUE of p.

- Example 7.9

If X_1,\ldots,X_n is a random sample from the exponential distribution having mean θ , find the MVUE of $\eta=e^{-1/\theta}=P(X_1>1)$.