# Lab Plan

Year: 2023-24

| Lab Code: ADL402                                   | Year/ Semester: S.E.(AI and DS)/ Sem IV       |
|----------------------------------------------------|-----------------------------------------------|
| Name Of the Lab: Database Management<br>System Lab | Class: D6AD/A/B                               |
| Lab Teacher: Mrs. Bhavana Chaudhari, Mrs.          | Subject Teacher: Mrs. Bhavana Chaudhari, Mrs. |
| Himanshi Jiwatramani                               | Himanshi Jiwatramani                          |
| Email id: bhavana.chaudhari@ves.ac.in,             | Email id: bhavana.chaudhari@ves.ac.in,        |
| himanshi.jiwatramani@ves.ac.in                     | himanshi.jiwatramani@ves.ac.in                |
|                                                    |                                               |

Prerequisite: Discrete Structures

**Objectives:** 

# Lab Objectives:

|   | Description                                                          |
|---|----------------------------------------------------------------------|
| 1 | To explore design and develop of relational model                    |
| 2 | To present SQL and procedural interfaces to SQL comprehensively      |
| 3 | To introduce the concepts of transactions and transaction processing |

#### **Lab Outcome:**

| LO   | Description                                                                           |
|------|---------------------------------------------------------------------------------------|
| LO 1 | Design ER /EER diagram and convert to relational model for the realworld application. |
| LO 2 | Apply DDL, DML, DCL and TCL commands                                                  |
| LO 3 | Write simple and complex queries                                                      |
| LO 4 | UsePL / SQL Constructs.                                                               |
| LO 5 | Demonstrate the concept of concurrent transactions execution and frontend-backend     |

# Al and Data Science Department List of PO's are as follows:

| PO       | Description                                                                                                                                                                                                                                                                                            |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO1      | <b>Basic Engineering knowledge</b> : An ability to apply the fundamental knowledge in mathematics, science and engineering to solve problems in Computer engineering.                                                                                                                                  |
| PO2      | <b>Problem analysis</b> : Identify, formulate, research literature and analyze computer engineering problems reaching substantiated conclusions using first principles of                                                                                                                              |
|          | mathematics, natural sciences and computer engineering and sciences.                                                                                                                                                                                                                                   |
| PO3      | <b>Design/ Development of Solutions:</b> Design solutions for complex computer engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.              |
| PO4      | <b>Conduct investigations:</b> Conduct investigation of complex engineering problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.                               |
| PO5      | <b>Modern Tool Usage:</b> Create, select and apply appropriate techniques, resources and modern computer engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                        |
| PO6      | <b>The Engineer and Society:</b> Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to computer engineering practice.                                                                         |
| PO7      | <b>Environment and Sustainability:</b> Understand the impact of professional computer engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.                                                                                  |
| PO8      | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of computer engineering practice.                                                                                                                                                             |
| PO9      | <b>Individual and Team Work:</b> Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.                                                                                                                                                  |
| PO1<br>0 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions. |
| PO1      | Project Management and Finance: Demonstrate knowledge and understanding of                                                                                                                                                                                                                             |
| 1        | computer engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                                                                                                          |
| PO1 2    | <b>Life-long Learning:</b> Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.                                                                                                                 |



# List of PSO's are as Follows:

|     | <b>Professional Skills</b> - The ability to develop programs for computer based systems of varying complexity and domains using standard practices. |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO | Successful Career - The ability to adopt skills, languages, environment and platforms for                                                           |
| 2   | creating innovative career paths, being successful entrepreneurs or for pursuing higher studies.                                                    |

# **LO/PO Mapping:**

| LO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     |     |     |     |     |     |     |     |      |      |      |      |      |
| LO1 | 1   | 3   | 2   | 1   | 1   | 1   | 2   | 1    | 1    | 2    | 2    | 1    |
| LO2 | -   | 3   | 3   | 2   | 2   | 1   | 2   | 1    | 2    | 3    | 2    | 2    |
| LO3 | -   | 3   | 3   | 2   | 2   | 1   | 2   | 1    | 2    | 3    | 1    | 3    |
| LO4 | -   | 2   | 2   | 1   | 2   | -   | 1   | 1    | -    | 1    | -    | 2    |
| LO5 | 1   | 3   | 2   | 2   | 2   | 1   | 2   | 1    | 1    | 3    | 1    | 2    |

#### **Term Work & Practical Examination:**

| (15) Marks. |
|-------------|
| (05) Marks. |
| (05) Marks  |
| (25) Marks. |
| (25) Marks. |
|             |



# **List of Experiments:**

| Week | Lab Experiments                                                                                                                                     | CO's           | DOP | DOS | Grade |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|-----|-------|
| 1    | Identify the case study and detail statement of problem and draw Entity-Relationship (ER) / Extended Entity-Relationship (EER) Model Using Draw.io. | CO1            |     |     |       |
| 2    | Mapping ER/EER to the Relational schema model and creating a schema diagram for your system.                                                        | CO1            |     |     |       |
| 3    | Create a database using <b>Data Definition</b> Language ( <b>DDL</b> ) and apply required <b>Integrity</b> Constraints for the specified system.    | CO1,CO2        |     |     |       |
| 4    | Populate database using <b>DML Commands</b> for your specified System.                                                                              | CO2,CO3        |     |     |       |
| 5    | Perform Simple queries, string manipulation operations.                                                                                             | CO2,CO3        |     |     |       |
| 6    | Write Nested queries using (in, not in some any exist not exist, with clause)                                                                       | CO2,CO3,<br>O4 |     |     |       |
| 7    | Implement various types of Joins and Views.                                                                                                         | CO2,CO5        |     |     |       |
| 8    | Demonstrate <b>DCL</b> and <b>TCL</b> commands.                                                                                                     | CO1,CO3,       |     |     |       |
| 9    | Implementation of Functions and Stored Procedure in PL-SQL.                                                                                         | CO3,CO5        |     |     |       |
| 10   | Implement different types of triggers.                                                                                                              | CO5            |     |     |       |
|      | Assignments                                                                                                                                         |                |     |     |       |
| 1.   | Assignment 1                                                                                                                                        |                |     |     |       |

| 2. | Assignment 2                 |  |  |
|----|------------------------------|--|--|
| 3. | Presentation On Mini Project |  |  |
| 4. | Overall Grade                |  |  |

## Bloom's Taxonomy:-

| Level | Descriptor                                   | Level of Attainment                                                        |
|-------|----------------------------------------------|----------------------------------------------------------------------------|
| 1     | Remembering                                  | Recalling from memory of previously learned material                       |
| 2     | 2 Understanding Explaining ideas or concepts |                                                                            |
| 3     | Applying                                     | Using information in another familiar situation                            |
| 4     | Analyzing                                    | Breaking information into part to explore understandings and relationships |
| 5     | Evaluating                                   | Justifying decision or course of actions                                   |
| 6     | Creating                                     | Generating new ideas, products or new ways of viewing things               |

#### **Software Tools used:**

| Oracle,PHP/JAVA |  |
|-----------------|--|
|-----------------|--|

#### **Textbooks:**

| 1 | Korth, Slberchatz, Sudarshan, Database System Concepts, 6 <sup>th</sup> Edition, McGraw Hill |
|---|----------------------------------------------------------------------------------------------|
| 2 | Elmasri and Navathe, Fundamentals of Database Systems, 5th Edition, Pearson Education        |
| 3 | Raghu Ramkrishnan and Johannes Gehrke, Database Management Systems, TMH                      |

#### **Reference Books:**

| 1 | Peter Rob and Carlos Coronel, Database Systems Design, Implementation and Management I, Thomson Learning, 5 <sup>th</sup> Edition. |  |
|---|------------------------------------------------------------------------------------------------------------------------------------|--|
| 2 | Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press.                                                    |  |
| 3 | G. K. Gupta, Database Management Systems, McGraw Hill, 2012                                                                        |  |

## **Web Resources:**

| 1 | https://nptel.ac.in/courses/106/105/106105175/                             |
|---|----------------------------------------------------------------------------|
| 2 | https://swayam.gov.in/nd1_noc19_cs46/preview                               |
| 3 | https://www.classcentral.com/course/swayam-database-management-system-9914 |
| 4 | https://www.mooc-list.com/tags/dbms                                        |

## **Evaluation:**

- Experiments are evaluated based on viva taken on experiments.
- Evaluation is based on following table:-

| Range           | Grade           |
|-----------------|-----------------|
| 80 and above    | Outstanding (O) |
| 75.00 – 79.99   | Excellent (A)   |
| 70.00 – 74.99   | Very Good (B)   |
| 60.00 – 69.99   | Good (C)        |
| 50.00 – 59.99   | Fair (D)        |
| 45.00 – 49.99   | Average (E)     |
| 40.00 – 44.99   | Pass (P)        |
| Less than 40.00 | Fail (F)        |

| Program Execution      | 3  |
|------------------------|----|
| Documentation          | 3  |
| Timely Checked         | 2  |
| Viva                   | 2  |
| Total                  | 10 |
| Mini project Execution | 3  |
| Documentation          | 3  |
| Timely Checked         | 2  |
| Viva                   | 2  |
| Total                  | 10 |

Name Of Lab Teacher: Signature : Name of Subject Teacher: : Signature :