3.2 Physical chemistry

3.2.1 Enthalpy changes

Definitions

Term	Definition
Enthalpy / H	Measure of heat energy in a chemical system
Chemical system	The atoms, molecules or ions making up the chemicals
Activation energy / E_a	The minimum energy required for a reaction to take place
Standard state	The physical state of a substance under standard conditions
Enthalpy change of reaction / $\Delta_{\rm r} H$	The enthalpy change associated with a stated equation in the molar quantities shown in a chemical equation
Enthalpy change of formation / $\Delta_{\rm f} H$	The enthalpy change that takes place when 1 mole of a compound is formed from its elements
Enthalpy change of combustion / $\Delta_c H$	The enthalpy change that takes place when 1 mole of a substance reacts completely with oxygen (complete combustion)
Enthalpy change of neutralisation / $\Delta_{neut}H$	The enthalpy change that accompanies the reaction of an acid by a base to form 1 mole of H₂O (I)
Enthalpy change of solution / dissolution	The enthalpy change when 1 mole of a substance is completely dissolved in water
Hess's Law	The enthalpy change in a chemical reaction is independent of the route it takes

- (standard ... = under standard conditions : 298 K & 100 kPa, with all reactants and products in their standard states)
- · Enthalpy change
 - $\Delta H = H(\text{products}) H(\text{reactants})$
 - Can be positive (endothermic) or negative (exothermic)
- Conservation of energy
 - When a chemical reaction involving an enthalpy change takes place beat energy is transferred between the system and the surroundings
 - System = chemicals
 - Surroundings = apparatus, lab, etc. (everything that is not the system)
 - o universe = system + surroundings
- Types of reactions
 - Exothermic reaction
 - o Energy transferred from the system to the surroundings
 - Endothermic reaction
 - Energy transferred from the surroundings to the system
- Enthalpy profile diagrams

- * The activation energy can normally be omitted when there are > 1 energy changes
- Standard conditions
 - Shown with symbol ⊖ /°
 - Standard pressure = 100 kPa / 1×10⁵ N m⁻² / 1 atm
 - Standard temperature = 298 K / 25 °C
 - Standard concentration = 1 mol dm⁻³ / 1 M
 - Substances will be in their normal physical states
- Measuring energy changes
 - Use the equation $q = mc\Delta T$
 - Energy change for the **system** = -q
- Determine enthalpy change of combustion
 - Measure certain volume of water, pour water into beaker
 - Record initial temperature of water using a thermometer
 - Add fuel to spirit burner + weigh spirit burner and fuel together
 - Place spirit burner under beaker + light the burner
 - Stir water with thermometer
 - Extinguish flame after about 3 mins
 - Immediately record water temperature
 - Re-weigh spirit burner
 - · Work out the mass of fuel burnt hence the amount of fuel burnt in moles
 - Work out energy change with $q = mc\Delta T$
 - Enthalpy change of combustion = $-\frac{q}{n}$
- Reasons for inaccuracies
 - Heat loss to surroundings → less exothermic than expected
 - Incomplete combustion fuel (black layer soot on calorimeter) → less exothermic than expected
 - Non-standard conditions → more or less exothermic than expected
 - Evaporation of fuel
 - Less exothermic
 - Seems to have used more fuel than actual
 - Weight the spirit burner before
 - o Extinguish the spirit burner ASAP after the experiment
- Determine enthalpy change of reaction
 - Carry out reaction in polystyrene cup with thermometer clamped so that it stands in it
 - Surroundings = the reaction solution (may assume density and specific are close to those of water)
 - Enthalpy change of neutralisation
 - o Make one reactant excess so the amount of water formed is fixed
 - In theory all acid and alkali should release the same amount of energy but in reality it isn't due to the different strengths of acid / alkali species

A SIMPLE CALORIMETER

- Cooling curve correction
 - Add one reactant to the polystyrene cup
 - Take temperature of the solution every 30s until temperature stays constant
 - Add the other reactant + stir
 - Measure temperature every 30s until temperature has fallen for several mins
 - Plot a graph of temperature against time
 - · Extrapolate cooling curve section back to when second reactant added
 - Find the theoretical ΔT at that point of time

- Average bond enthalpy
 - The enthalpy change when 1 mole of a bond is broken in the gas state
 - Limitations: actual bond enthalpy can vary depending on the chemical environment of the bond
- Endothermic / exothermic
 - Endothermic
 - Bond breaking is endothermic
 - o More energy required when breaking bonds than energy released when making bonds
 - $\circ \Delta H > 0$
 - Exothermic
 - o Bond formation is exotmermic
 - More energy released when making bonds than energy required when breaking bonds
 - $\circ \Delta H < 0$

The energy released when making bonds is *greater* than the energy required when breaking bonds.

The energy required when breaking bonds is *greater* than the energy released when making bonds.

- Calculating enthalpy change from average bond enthalpies
 - $\Delta_r H = \Sigma$ (bond enthalpies in reactants) Σ (bond enthalpies in products)
- Hess's Law
- · Working out enthalpy change using Hess's Law
 - Using enthalpy change of formation: $\Delta_r H = \Sigma \Delta_f H$ products $-\Sigma \Delta_f H$ reactants
 - Using enthalpy change of combustion: $\Delta_r H = \Sigma \Delta_c H$ reactants $-\Sigma \Delta_c H$ products

3.2.2 Reaction rates

Definitions

	Term	Definition
•	Intermediate	A species formed during a reaction that reacts further and is not present in the
		final products

- Rate of reaction
 - Measures how fast a reactant is being used up / a product is being formed
 - rate = $\frac{\text{change in concentration}}{\text{time}}$ (units = mol dm⁻³ s⁻¹)
- The collision theory
 - Two reacting particles must collide with the correct orientation and have sufficient energy to
 overcome the activation energy barrier of the reaction
 - Most collisions between particles are unsuccessful and do not result in a chemical reaction
- Effect of change in concentration / pressure on rate of reaction
 - Increase concentration / pressure = increase in rate of reaction

- Increases the number of particles in the same volume
- The particles are closer together and collide more frequently
- In a given period of time there will be more effective collisions
- (The proportion of collisions that are successful does not change)
- · Measuring rates of reaction by amount of gas produced
 - Reactant added to conical flask + bung replaced
 - · Initial volume of gas recorded
 - Catalyst added + bung replaced, start stopwatch
 - Volume of gas recorded at regular intervals until reaction is complete (no more gas produced)
 - · Graph of total volume of gas produced against time plotted
 - Gradient of tangent at t = 0 is the initial rate
- Measuring rates of reaction by mass loss
 - Add reactants to conical flask on a balance
 - Mass is recorded initially & at regular intervals until no more mass lost
 - Plot a graph of mass against time
 - Gradient of tangent at t = 0 is the initial rate
- Catalyst
 - Increases the rate of reaction without being used up by the overall reaction
 - Allowing a reaction to proceed via a different route with lower activation energy
 - May react with a reactant to form an intermediate or provide a surface on which the reaction can take place
- Types of catalysts
 - Homogenous
 - The catalyst is in the **same physical state** as the reactants
 - Heterogeneous
 - The catalyst is in a **different physical state** from the reactants
- Economic importance of catalysts
 - Obtain industrial products faster
 - Increase profit
 - Operate industrial processes at lower temperatures and pressures
 - Reduce the amount of energy needed
 - Less electricity / fossil fuels used
- Problems of catalysts
 - Catalysts do not last forever and need to be replaced periodically
 - Waste need to be disposed of responsibly
 - Many catalysts are toxic and need to be disposed of very carefully to prevent damage to the environment
- Boltzmann distribution
 - Not all molecules in a substance have the same amount of energy
 - Particles to the right of the E_a have enough energy to react
 - Distribution graph
 - Area under curve = total number of molecules
 - Peak = most probably energy of a molecule
 - No molecules have zero energy (graph starts at origin)
 - No maximum energy for a molecule (the curve does not meet the x-axis at high energy)
 - o The shape is **positively skewed**

- Effect of change in temperature on Boltzmann distribution
 - Graph: higher temperature = lower peak, peak shifted to the right
 - Larger area to the right of $E_a \rightarrow$ More molecules have energy $\geq E_a$ (major effect)
 - A greater proportion of collisions will lead to a reaction
 - More frequent collisions as the molecules gain more KE and are moving faster (minor effect)
 - Rate of reaction increases

- Effect of catalyst on Boltzmann distribution
 - Larger area to the right of $E_a \rightarrow$ a greater proportion of molecules now have an energy \geq the lower activation energy
 - A greater proportion of collisions will lead to a reaction
 - · Increases the rate of reaction

3.2.3 Chemical equilibrium

Definitions

	Term	Definition
•	Dynamic equilibrium	When the rates of forward and backward reactions are equal

- Dynamic equilibrium conditions
 - In a closed system for reversible reactions
 - The rate of the forward reaction is equal to the rate of the reverse reaction
 - The amount of reactants and products are constant

- Effect of concentration changes on position of equilibrium
 - Increase in concentration of reactants / decrease in concentration of products
 - Rate of forward reaction increases
 - Equilibrium shifts to the right, more products formed
 - Increase in concentration of products / decrease in concentration of reactants
 - Rate of backward reaction increases
 - Equilibrium shifts to the left, more reactants formed
- Effect of changes in temperature on position of equilibrium
 - Increase in temperature
 - o Favours the endothermic reaction
 - Decrease in temperature
 - o Favours the exothermic reaction
 - (Equilibrium shifts to ..., there are more ..., less ..., the yield ...)
 - * Forward and backward reactions have the same magnitude of enthalpy change but opposite signs
- · Effect of changes in pressure on position of equilibrium
 - Increasing the pressure
 - ... is favoured because it reduces the number of moles of gas in the mixture (fewer moles of gas on that side)
 - Shift the position of equilibrium to side with fewer moles of gas
 - Reduces the pressure of the system
 - Decreasing the pressure
 - ... is favoured because it increases the number of moles of gas in the mixture (more moles of gas on that side)
 - Shift the position of equilibrium to side with more moles of gas
 - o Increases the pressure of the system
- Effect of catalyst on equilibrium
 - Increases the rate of both forward and reverse reactions in an equilibrium by the same amount
 - Do not change the position of equilibrium
 - Allow equilibrium to be achieved faster
- Investigating changes in position of equilibrium
 - Observe colour change
 - Change in concentration
 - Add more reactants / products to the mixture
 - Change in temperature
 - Heat using boiling water bath
 - Cool using iced water
- Haber process
 - $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$ (Forward = exothermic)
 - Lower temperature
 - Higher yield of product
 - o Rate may be too slow that equilibrium may not be established
 - Not used
 - · High pressure
 - o Increases yield & forces molecules closer together
 - o Increases concentration + reaction rate
 - Requires very strong container + large quantity of energy → higher cost
 - Failure of steelwork / seals could lead to hot gases (including toxic ammonia) leaking → endangering the workforce and the surrounding area → safety concerns
 - Operate under compromise conditions of 400-500°C, 100-200 atm and iron catalysts
 - Gives a reasonable rate without shifting the equilibrium position too far away from ammonia and back to the reactants
 - Iron catalyst: increases the rate so lower temperatures can be used and operating cost is lowered
 - o Only about 15% of the reactants is converted to ammonia, but H2 and N2 are recycled

repeatedly so nearly all reactants are eventually converted

- Industrial process conditions
 - Lower temperature / pressure: rate might be too slow
 - Higher temperature / pressure: safety risk / high cost / high energy use
- The equilibrium constant / K_c
 - For reaction aA + bB ⇌ cC + dD
 - $\bullet \quad K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$
 - [] = concentration of ...
 - [A], [B], [C], [D] = equilibrium concentration of the reactants and products of this equilibrium
 - Only solutions should appear in the equation for K_c
 - o Include liquid if they have a similar amount to the solutions
- Value of K_c
 - < 1
 - o Position of equilibrium is towards the LHS
 - o Greater concentration for reactants
 - = 1
 - o Position of equilibrium is halfway between reactants and products
 - >1
 - o Position of equilibrium is towards the RHS
 - Greater concentration for products
- Effect of temperature change on K_c
 - Forward reaction is exothermic
 - \circ K_c decreases when temperature increases
 - Forward reaction is endothermic
 - \circ K_c increases when temperature increases
 - * If the direction of reaction is not specified take it as the forward reaction by default