

# **EyeLytics**

# Main/Baseline Profile HD H264 Encoder FPGA/ASIC IP

Combines low cost and high quality

**April 20th, 2010** 

**EveLytics' Main/Baseline Profile High Definition H264 Encoder IP core has been** developed using an optimized heavily pipelined architecture. This architecture gives our encoder a 2x performance advantage over our competitors using a similar amount of logic. Our encoder is developed with the whole system in mind. This makes our interface system optimized and easy to use. The encoder is fully verified in the lab with a real life surveillance system and application.

#### **IP Features:**

- Supports image sizes from 176x144 up to 2000x2000 pixels.
- Multi-channel is supported by time sharing the encoder.
  - o Each channel can have **different** resolution, quality and frame
  - Main Profile and Baseline Profile dynamically switchable between channel
  - o There is no limit on the number of channels sharing an encoder.
- Constant quality. Scene complexity does not degrade the image quality. Instead, the frame rate is adjusted to achieve the best image quality. This feature is very important in surveillance applications which often prefer a clear image over smooth motion.
- Variable bit-rate with peak limit
- Low latency. Less than 32 lines of **delay** from the end of video input frame to the end of encoded bitstream.
- High compression
  - o CABAC / CAVLC

- o Deblock
- o all 13 Intra Luma modes
- o all 4 Intra Chroma modes
- o single slice operation
- o all 4 inter prediction macroblock partitions
- o all 4 inter prediction submacroblock partitions
- o skip macroblock
- o search window of 240x128 pixels
- o half pel and quarter pel search
- High performance
- Low Gate Count

| Tech.    | Altera<br>CycloneIII | Altera<br>Stratix III | 0.13um<br>standard |
|----------|----------------------|-----------------------|--------------------|
|          | -8 speed             | -2 speed              | cell               |
| Logic    | ~32K LC              | ~25K                  | ~300K gates        |
| Count    |                      | ALUT                  |                    |
| Memory   | ~1.3Mbit             | ~1.3Mbit              | ~1.3Mbit           |
| Count    | ~191 M9K             | ~154 M9K              |                    |
|          |                      | ~5 M144K              |                    |
| DSP      | 5 DSP                | 5 DSP                 | N/A                |
| Count    |                      |                       |                    |
| Perform. | 150MHz               | 300MHz                | 300MHz             |
|          | 720p30               | 720p60                | 720p60             |
|          | 1080p15              | 1080p30               | 1080p30            |



#### Contact:

- sales@eyelytics.com
- www.eyelytics.com

#### 1 Introduction



EyeLytics' Main/Baseline Profile High Definition H264 Encoder IP core is designed to receive video input and to send bit stream output thru a separate multi-port video frame buffer module. An EyeLytics multi-port video frame buffer IP core is available. Please contact sales@eyelytics.com. Besides the multi-port video frame buffer connections, the Encoder IP core only requires clocks, reset, some static signals potentially come from software programmable registers and a "StartFrame" pulse to start encode of an image frame. There are also status signals "FrameDone" and "BitStreamByteCount" to notify designers that the encode is finished and to report the byte count of the output bit stream.

## 2 Interface Signals

| Signal Name       | Direction      | Bit width  | Descriptions                                                                                                                                                                                                                                                                                                                      |  |
|-------------------|----------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | System Signals |            |                                                                                                                                                                                                                                                                                                                                   |  |
| clk               | in             |            | system clock                                                                                                                                                                                                                                                                                                                      |  |
| CabacClk          | in             |            | clock for the CABAC module. CABAC module runs slower than the rest of the system. To avoid slowing down the whole system by the CABAC module, CABAC module runs with this separate CabacClk. CabacClk should run at less than 2/3 of the system clock frequency. A high CabacClk frequency allows the encoder to support high bit |  |
| magat             | <u> </u>       |            | rate applications. Not used in CAVLC mode                                                                                                                                                                                                                                                                                         |  |
| reset             | in             | 4 1 7      | system reset                                                                                                                                                                                                                                                                                                                      |  |
|                   |                | ontrol Inp | Ö                                                                                                                                                                                                                                                                                                                                 |  |
| StartFrame        | in             |            | A single pulse of StartFrame starts the encoder engine                                                                                                                                                                                                                                                                            |  |
| StartSeq          | in             |            | Indicates the current frame is the first frame of a video sequence. This signal should be valid when StartFrame is asserted.                                                                                                                                                                                                      |  |
| CavlcMode         | in             |            | 1: current frame enables using CAVLC 0: current frame enables using CABAC                                                                                                                                                                                                                                                         |  |
| PFrame            | in             |            | 1: current frame is a P Frame 0: current frame is an I Frame This signal should be valid one cycle before StartFrame is asserted and remain static until FrameDone is asserted.                                                                                                                                                   |  |
| QP                | in             | 5:0        | Quantisation parameter. Setting it 0 to generate the highest quality video and higher bit rate. Setting it to larger values to generate lower quality video and lower bit rate. Valid range is 0 to 51.  This signal should be valid one cycle before StartFrame is asserted and remain static until FrameDone is asserted.       |  |
| HSizeInMBMinusOne | in             | 6:0        | Defines the width of the image. The value should be the width in pixel divided by 16 and minus one. For example, a SD image of 720x480 should have this input set to 720/16-1 = 44.  This signal should be valid one cycle before StartFrame is asserted and remain static until FrameDone is asserted.                           |  |

| VSizeInMBMinusOne     | in | 6:0  | Defines the height of the image. The value should be the height in pixel divided by 16 and minus one. For example, a SD image of 720x480 should have this input set to 480/16-1 = 29.  This signal should be valid one cycle before StartFrame is asserted and remain static until FrameDone is asserted.                                                                                                            |
|-----------------------|----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PicSizeIn128ByteWords | in | 13:0 | Defines the amount of data in the image. The value should be the width in pixel times the height in pixel times 1.5 divided by 128. The 1.5 factor is to calculate the number of bytes in a 4:2:0 video. For example, a SD image of 720x480 should hav this input set to 720x480x1.5/128 = 4050.  This signal should be valid one cycle before StartFrame is asserted and remain static until FrameDone is asserted. |
| frame_num             | in | 3:0  | This should be set to 0 for the first frame of a sequence. It should then be incremented by one for every frame in the same stream. When 15 is reached, the frame_num of the stream should wrap around and be 0 again.  This signal should be valid one cycle before StartFrame is asserted and remain static until FrameDone is asserted.                                                                           |
| flush_frame           | in |      | Set to 1 to flush the bitstream data at the end of encode. This should always be set to 1 for multistream encode. For single stream encode, user has the option to keep this 0 and only flushing the encoder at the very last frame of a sequence. This signal should be valid one cycle before StartFrame is asserted and remain static until FrameDone is asserted.                                                |
| BS_DmaAddr            | in | 24:0 | Set the external memory address where the bit-<br>stream should be written to. Each address<br>location is a 32-bit word.<br>This signal should be valid one cycle before<br>StartFrame is asserted and remain static until<br>FrameDone is asserted.                                                                                                                                                                |
| IN_BaseAddr           | in | 24:0 | Set the external memory address where the video input data should be read from. Each address location is a 32-bit word.  This signal should be valid one cycle before StartFrame is asserted and remain static until FrameDone is asserted.                                                                                                                                                                          |

| REF_BaseAddr          | in    | 24:0      | Set the external memory address where the video reference data should be read from. Each address location is a 32-bit word.  This signal should be valid one cycle before StartFrame is asserted and remain static until FrameDone is asserted            |
|-----------------------|-------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OUT_BaseAddr          | in    | 24:0      | Set the external memory address where the video decoded / reference data should be written to. Each address location is a 32-bit word. This signal should be valid one cycle before StartFrame is asserted and remain static until FrameDone is asserted. |
|                       | Bits  | stream Ou | tput Signals                                                                                                                                                                                                                                              |
| BSValid               | out   |           | BSData is valid                                                                                                                                                                                                                                           |
| BSData                | out   | 7:0       | Compressed bit stream output                                                                                                                                                                                                                              |
| Status Output Signals |       |           |                                                                                                                                                                                                                                                           |
| FrameDone             | out   | Î         | A signal indicates the encoder is ready for the start of the next encode.                                                                                                                                                                                 |
| BitStreamByteCount    | out   | 23:0      | This signal is incremented for every bit-stream byte sent out. When it reaches 0xFFFFFF, it will wrap around back to 0x000000.                                                                                                                            |
|                       | Frame | Buffer In | terface Signals                                                                                                                                                                                                                                           |
| IN_FB_read_req        | out   |           | Video input frame buffer read request.                                                                                                                                                                                                                    |
| IN_FB_ready           | in    |           | Video input frame buffer read ready                                                                                                                                                                                                                       |
| IN_FB_address         | out   | 24:0      | Video input frame buffer address. Each address location is a 32-bit word.                                                                                                                                                                                 |
| IN_FB_rdata           | in    | 63:0      | Video input frame buffer read data                                                                                                                                                                                                                        |
| IN_FB_rdata_valid     | in    |           | Video input frame buffer read data valid                                                                                                                                                                                                                  |
| IN_FB_rdata_ren       | out   |           | Video input frame buffer read data read enable                                                                                                                                                                                                            |
| ME_FB_read_req        | out   |           | Motion estimation frame buffer read request.                                                                                                                                                                                                              |
| ME_FB_ready           | in    |           | Motion estimation frame buffer read ready                                                                                                                                                                                                                 |
| ME_FB_address         | out   | 24:0      | Motion estimation frame buffer address. Each address location is a 32-bit word.                                                                                                                                                                           |
| ME_FB_rdata           | in    | 63:0      | Motion estimation frame buffer read data                                                                                                                                                                                                                  |
| ME_FB_rdata_valid     | in    |           | Motion estimation frame buffer read data valid                                                                                                                                                                                                            |
| MCC_FB_read_req       | out   |           | Motion compensation chroma frame buffer read request.                                                                                                                                                                                                     |
| MCC_FB_ready          | in    |           | Motion compensation chroma frame buffer read ready                                                                                                                                                                                                        |
| MCC_FB_address        | out   | 24:0      | Motion compensation chroma frame buffer address. Each address location is a 32-bit word.                                                                                                                                                                  |
| MCC_FB_rdata          | in    | 63:0      | Motion compensation chroma frame buffer read data                                                                                                                                                                                                         |
| MCC FB rdata valid    | in    |           | Motion compensation chroma frame buffer read                                                                                                                                                                                                              |

## **EyeLytics**

#### Main/Baseline Profile HD H264 Encoder

|                   |     |      | data valid                                      |
|-------------------|-----|------|-------------------------------------------------|
| MCC_FB_rdata_ren  | out |      | Motion compensation chroma frame buffer read    |
|                   |     |      | data read enable                                |
| DB_FB_write_req   | out |      | Deblock frame buffer write request              |
| DB_FB_ready       | in  |      | Deblock frame buffer read ready                 |
| DB_FB_address     | out | 24:0 | Deblock frame buffer address. Each address      |
|                   |     |      | location is a 32-bit word.                      |
| DB_FB_wdata       | out | 63:0 | Deblock frame buffer write data                 |
| DB_FB_be          | out | 7:0  | Deblock frame buffer write data byte enable     |
| DB_FB_wdata_req   | in  |      | Deblock frame buffer write data request         |
| BS_FB_write_req   | out |      | Bit stream frame buffer write request           |
| BS_FB_ready       | in  |      | Bit stream frame buffer read ready              |
| BS_FB_address     | out | 24:0 | Bit stream frame buffer address. Each address   |
|                   |     |      | location is a 32-bit word.                      |
| BS_FB_wdata       | out | 63:0 | Bit stream frame buffer write data              |
| BS_FB_be          | out | 7:0  | Bit stream frame buffer write data byte enable  |
| BS_FB_wdata_wr    | out |      | Bit stream frame buffer write data write        |
| BS_FB_wdata_wen   | in  |      | Bit stream frame buffer write data write enable |
| BS_FB_wdata_pause | in  |      | Bit stream frame buffer write data pause        |

### 3 External Frame Buffer Requirement

An external multi-port frame buffer is required to build the encoding system. The following sections describe the read / write operations.

#### 3.1 Frame Buffer Request Operation

- 1) Encoder sets the FB address with the target frame buffer address location.
- 2) Encoder then asserts the FB\_write\_req signal or the FB\_read\_req signal to request frame buffer write operation or read operation respectively.
- 3) Each frame buffer request is for eight bursts of 16 bytes or for a total of 128 bytes. Each burst can have a different burst starting address. As a result, there are eight FB\_ready pulses to latch eight starting addresses.
- 4) The first FB\_ready signal generated by the frame buffer is used as both a grant signal as well as an address advance signal. FB\_write\_req or FB\_read\_req should be deasserted after the first FB ready if there are no more requests afterward.
- 5) Encoder will change its address the next cycle after each FB ready pulse.
- 6) FB ready should never be asserted two consecutive cycles in a row.



#### 3.2 Standard Frame Buffer Data Write Operation

- 1) Frame buffer is expected to assert the FB\_wdata\_req signal one cycle for each 64-bit data. This means FB\_wdata\_req should be asserted for two cycles for each starting address to transfer 16 bytes.
- 2) Encoder presents valid data on FB\_wdata and FB\_be two cycles after each FB\_wdata\_req assertion.
- 3) Encoder also zeros out the FB\_wdata and FB\_be buses when there is no data being transferred. This is to make it easier for the frame buffer designer to meet timing. Simply use "or" logic to multiplex all the FB wdata and FB be buses together.



#### 3.3 Bitstream Frame Buffer Data Write Operation

The Bitstream frame buffer interface is different from the standard frame buffer interface. This is done to reduce memory usage for the whole system. **Designers are highly recommended to use the fb\_wrbuf\_share module to convert the Bitstream interface to the standard frame buffer interface.**The fb\_wrbuf\_share module can be downloaded from <a href="www.eyelytics.com/download/download.html">www.eyelytics.com/download/download.html</a>.

- 1) Frame buffer asserts BS\_FB\_wdata\_wen signal to allow data transfer. If Frame buffer can accept data all the time, BS\_FB\_wdata\_wen can be tied to high.
- 2) Encoder asserts BS\_FB\_wdata\_wr signal to send data to Frame Buffer.
- 3) The BS\_FB\_wdata and BS\_FB\_be are valid only when both BS\_FB\_wdata\_wen and BS\_FB wdata wr are asserted.
- 4) Unlike the standard frame buffer write operation, BS\_FB\_wdata and BS\_FB\_be won't be zeroed out by the encoder.
- 5) Frame buffer is expected to have an internal buffer of 64 64-bit words. When this internal buffer is filled more than half full, the frame buffer interface is expected to assert the BS FB wdata pause signal.



#### 3.4 Frame Buffer Data Read Operation

- 1) Frame buffer is expected to assert the FB\_rdata\_valid signal one cycle for each 64-bit data. This means FB\_rdata\_valid should be asserted for two cycles for each starting address to transfer 16 bytes.
- 2) Frame buffer should also present the FB\_rdata during the same cycle that FB\_rdata\_valid is asserted.
- 3) When FB\_rdata\_ren signal is present in the encoder interface, Frame Buffer should only assert FB\_rdata\_valid when FB\_rdata\_ren is asserted in the same cycle. This means Frame Buffer is required to have buffering for each port that uses FB\_rdata\_ren.



To simplify the user's design and to reduce memory usage, a fb\_rdbuf\_share module can be downloaded from <a href="https://www.eyelytics.com/download/download.html">www.eyelytics.com/download/download.html</a>. This fb\_rdbuf\_share module allows multiple clients (e.g. IN and MCC of the encoder) to share a single buffer. This reduces amount of memory needed in the whole system.

#### 3.5 Frame Buffer Performance Recommendations

Frame buffer performance directly affects the encoder performance. As a result, the frame buffer designer should pay careful attention to the following:

- 1) Allow multiple pending requests. This can be done by using a small FIFO to buffer up the requests.
- 2) Arbitration has to be as fair as possible.
- 3) Frame buffer should be optimized to do long bursts and random accesses. Low latency is not as important.
- 4) A well designed high efficiency Frame buffer with 32-bit 150MHz DDR2-SDRAM should have adequate memory bandwidth to support the encoder.

### 4 Video In Frame Buffer Storage Formats

Video input data is passed to the encoder through the frame buffer. Video input data should be stored inside the frame buffer with luma and chroma component separated. Chroma component should be stored 0x800000 bytes after the luma component counterpart. Both Luma and Chroma frames are partitioned into 128 byte columns. Each column has 2K lines. Each column is stored in frame buffer after the column from the left. If the frame has a horizontal size that is not multiple of 128 bytes or the frame has a vertical size that is less than 2K lines, the storage should be left unpacked. User can choose either not writing to those storage spaces, to fill them with any content, or to use the storage space for other applications.



Within each 128 bytes x 2K lines column, the Luma data should be stored in a linear raster scan order. However, the Chroma data is Cb/Cr component interleaved. Also, since the encoder uses 4:2:0 format, every other chroma line is not used.



## 5 Reference Frame Frame Buffer Storage Requirement

When doing a P frame encode, the previous decoded output is used as the current encode reference frame. The decoded output is stored to the frame buffer using the DB\_FB signals. The ME\_FB signals read the reference frame to perform motion estimation. The MCC\_FB signals read the reference frame to perform motion compensation.

The luma and chroma components of the reference frame are stored in separate locations. The luma frame is always stored with bit 23 of the FB\_address and base\_address set to zero. The chroma frame is always stored with bit 23 of the FB\_address and base\_address set to one. Since each address location is a 32-bit word, the chroma reference will be 0x2000000 byte away from the luma reference counter part.

Both luma and chroma reference data are built with 1Kbyte reference building blocks. Each 1K byte reference building block stores reference info for a 16x64 pixel region. The following shows how these reference building blocks are arranged in the Frame Buffer.

