Ensemble k-nearest neighbors based on centroid displacement

Author: Alex X. Wang, Stefanka S. Chukova,

Binh P. Nguyen (New Zealand)

Journal: Information Science (Elsevier)

Volume 629, 2023

https://www.sciencedirect.com/science/article/pii/

50020025523001731

Prof. Wei-Mei Chen Student: Chang-En Lyu (M11202117)

Agenda

- Introduction
- Definition
- Algorithm
- Experiment
- My Experiment
- Conclusion

Introduction

k-NN classification

https://ithelp.ithome.com.tw/m/articles/10269826

Advantage

- Conceptual Simplicity
- Strong Generalization Performance on Different Datasets

Disadvantage

- Arbitrarily selecting neighborhood size k
- Computation Challenge of High-Dimension Data
- Simply Majority Voting Rule

k-NN Simply Majority Voting Rule

k-NN Simply Majority Voting Rule

k-NN Simply Majority Voting Rule

- Where does the problem occur
 - Varying Densities (heterogeneous)
 - More Complexity dataset
 - Boundary

Occurring Scene

Improvement Method

CDNN

- Solve the problem above
- Inspired by the <u>k-means</u> algorithm
- More time-consuming than original KNN

ECDNN (Proposed Algorithm)

- Less time-consuming than CDNN
- It considers the confidence between KNNs

Definition

- Centroid
 - Each cluster exists a **representative point**. a common choice being the **mean** (also called the **centroid**) of all points in the cluster, $\mu_i = \frac{1}{n_i} \sum_{x \in C} x_j$

• We need to find the **minimum displacement** within its k-NN clusters.

Blue Class

Yellow Class

Find the Minimum Displacement

Ensemble Condition

• In what situations would we need to use k-NN and CDNN?

- High Confidence?
- Low Confidence?

Confidence Sample

Fig. 1. Visual illustration of the proposed algorithm.

Algorithm

Input

- ◆ Training Dataset
- ◆ Test instance: *x*
- ♦ Number of nearest neighbors: *k*

- 1. Compute the Euclidean distance between instance x and every points in dataset.
- 2. Find the k-NNs of instance x by Euclidean distance.

3. Count the number of clusters in k-NN statistically.

4. Find centroid of every clusters which exists in k-NN.

Re-compute centroid of every clusters after adding instance x.

Re-compute centroid of every clusters after adding instance x.

Find the **minimum displacement** in clusters and assign instance x into that cluster.

Ensemble Centroid Displacementbased k-NN (ECDNN)

Ensemble Centroid Displacementbased k-NN (ECDNN)

- The same
- High Confidence
- *k*-NN

Time Complexity - $O(n^2)$

- 1. Compute the Euclidean distance between instance x and every points in dataset and Find their k-NNs $O(n^2)$
- 2. Count the number of clusters in k-NN statistically. O(k)
- 3. Find centroid of every clusters which exists in k-NN. O(k)
- 4. Re-compute the centroid of every clusters after adding instance x. O(k)
- 5. Find minimum displacement in clusters and assign instance x into that cluster. O(k)

Experiment

Comparing Algorithm

- ♦ k-NN Related Classification
 - $\square k$ -NN
 - WKNN (weighted KNN)
 - It takes the **weight of the feature** index into account, will contribute to the improvement of the classification performance.
 - Radius NN (RNN)
 - It finds its all the neighbors within a given radius r.
 - NC (Nearest Centroid neighbors)
 - NC assigns instance x to the class of training sample whose local mean is closet to it.
 - CDNN

Comparing Algorithm

- Parameter
 - $\mathbf{k} = [5, 25]$, increment by 2
 - Radius used the default parameters
- Experiment
 - Repeated 10 times, with each using 5-fold crossing validation per dataset
 - Total 50 results were collected and averaged.

Datasets Evaluation Indies

- #C is number of clusters
- ◆ *IR* is imbalance ratio
 - The ratio of the sample size of the largest majority class and that of the smallest minority class
- ◆ #S is sample size (number of points)
- \bullet #F is number of features (dimension)

Experiment Evaluation Index

Macro-F1

- □ [0, 1], the higher is the better
- It the computation of the **harmonic mean** of *Recall* and *Precision*

$$F1 - score_i = 2 * \frac{Precision * Recall}{Precision + Recall}$$

$$Macro-F1 = \frac{F1-score_1+F1-score_2+\cdots+F1-score_c}{c}$$

c is the number of classes

Datasets

(6 Synthetic + 16 Real-World)

Name	Source	#C	IR	#S	#F	#F/#S	$\#F_{PCA}/\#S$	$\#F/\#F_{PCA}$	Sparsity
iris	UCI	3	-	150	4	0.0267	0.0133	2.00	0.0000
wine	UCI	3	-	178	13	0.0356	0.0223	1.60	0.4971
breastcancer	UCI	2	1.7:1	569	30	0.0527	0.0176	3.00	0.0047
digits	UCI	10	-	1797	64	0.0730	0.0562	1.30	0.0000
olivetti	UCI	40	-	4096	400	10.2400	0.3075	33.30	0.0000
paris	UCI	2	1:1	5828	2200	2.6491	0.1314	20.17	0.0001
S1	Synthetic	2	1:1	100	2	0.0200	0.0200	1.00	0.0000
S2	Synthetic	2	1:1	1000	2	0.0020	0.002	1.00	0.0000
S3	Synthetic	3	-	1000	10	0.0100	0.0090	1.11	0.0000
S4	Synthetic	3	-	1000	50	0.0500	0.0420	1.19	0.0000
S5	Synthetic	10	-	5000	50	0.0100	0.0092	1.09	0.0000
S6	Synthetic	10	-	5000	100	0.0200	0.0182	1.10	0.0000
ecoli	UCI	2	8.6:1	336	7	0.0208	0.0179	1.17	0.0020
optical_digits	UCI	2	9.1:1	5620	64	0.0114	0.0075	1.52	0.4961
satimage	UCI	2	9.3:1	6435	36	0.0056	0.0009	6.00	0.0000
pen_digits	UCI	2	9.4:1	10992	16	0.0015	0.0009	1.60	0.1369
abalone	UCI	2	9.7:1	4177	10	0.0024	0.0010	2.50	0.2223
sick_euthyroid	UCI	2	9.8:1	3163	42	0.0133	0.0057	2.33	0.4467
spectrometer	UCI	2	11:1	531	93	0.1751	0.0075	23.25	0.0000
car_eval_34	UCI	2	12:1	1728	21	0.0122	0.0087	1.40	0.7500
isolet	UCI	2	12:1	7797	617	0.0791	0.0260	3.04	0.0036
us_crime	UCI	2	12:1	1994	100	0.0502	0.0176	2.86	0.0560

Result

dataset	k-NN	k-NN		WKNN		Radius NN		NC		CDNN		ECDNN	
	F1	rank	F1	rank	F1	rank	F1	rank	F1	rank	F1	rank	
iris	0.9513	4	0.9586	2	0.9406	5	0.8574	6	0.9599	1	0.9518	3	
wine	0.9681	3	0.9665	4	0.4705	6	0.9744	1	0.9721	2	0.9664	5	
breastcancer	0.9571	4	0.9609	3	0.6193	6	0.9246	5	0.9626	2	0.9659	1	
digits	0.9637	4	0.9669	3	0.1815	6	0.8889	5	0.9704	2	0.9763	1	
olivetti	0.6914	5	0.7089	4	0.0527	6	0.8775	1	0.8222	3	0.8771	2	
paris	0.5946	4	0.5881	5	0.5977	3	0.5181	6	0.5993	2	0.6049	1	
S1	0.8844	5	0.9019	3	0.9095	1	0.8243	6	0.9009	4	0.9074	2	
S2	0.8992	1	0.8943	2	0.8781	5	0.8408	6	0.8936	3	0.8899	4	
S3	0.979	4	0.9798	3	0.5319	6	0.8736	5	0.9814	2	0.9837	1	
S4	0.9642	4	0.9659	2	0.4655	6	0.7729	5	0.9686	1	0.9655	3	
S5	0.9026	4	0.9095	3	0.1802	6	0.5837	5	0.9181	1	0.9140	2	
S6	0.9075	4	0.9154	3	0.1802	6	0.5644	5	0.9252	1	0.9177	2	
Average	0.8886	4	0.8931	3	0.5006	6	0.7917	5	0.9062	2	0.9101	1	
ecoli	0.7892	2	0.7974	1	0.7754	5	0.6926	6	0.7881	3	0.7816	4	
optical_digits	0.9769	4	0.9773	3	0.4741	6	0.7652	5	0.9791	2	0.9823	1	
satimage	0.8127	4	0.8149	3	0.6901	5	0.4727	6	0.8222	2	0.8340	1	
pen_digits	0.9933	4	0.9939	3	0.9726	5	0.5860	6	0.9949	2	0.9964	1	
abalone	0.5304	4	0.5337	3	0.4754	6	0.5842	1	0.5271	5	0.5497	2	
sick_euthyroid	0.7134	4	0.7451	3	0.6123	5	0.5332	6	0.7583	2	0.7718	1	
spectrometer	0.8524	4	0.859	3	0.4804	6	0.6304	5	0.8692	2	0.8727	1	
car_eval_34	0.7099	5	0.7274	3	0.4798	6	0.7251	4	0.7547	2	0.7640	1	
isolet	0.9140	3	0.9140	3	0.4800	6	0.6018	5	0.9156	2	0.9173	1	
us_crime	0.6241	5	0.6302	4	0.4804	6	0.6862	1	0.6428	3	0.6548	2	
Average	0.7916	4	0.7993	3	0.5920	6	0.6277	5	0.8052	2	0.8125	1	

F1 Score

(Wine)

Complexity

Dataset	# <i>C</i>	IR	# <i>S</i>	# <i>F</i>	# <i>F</i>	$\#F_{PCA}$	_# <i>F</i>	Sparsity
					# <i>S</i>	# <i>S</i>	$\overline{\#F_{PCA}}$	
Wine	3	-	178	13	0.0356	0.0223	1.60	0.4971

F1	Rank
0.9681	3
0.9665	4
0.4705	6
0.9744	1
0.9721	2
0.9664	5
	0.9681 0.9665 0.4705 0.9744 0.9721

F1 Score

(Olivetti)

A lot of clusters

Dataset	# <i>C</i>	IR	# <i>S</i>	#F	# <i>F</i>	$\#F_{PCA}$	# <i>F</i>	Sparsity
					<u>#S</u>	# <i>S</i>	$\overline{\#F_{PCA}}$	
Olivetti	40	-	4096	400	10.24	0.3075	33.30	0.0000

F1	Rank
0.6914	5
0.7089	4
0.0527	6
0.8775	1
0.8222	3
0.8771	2
	0.6914 0.7089 0.0527 0.8775 0.8222

F1 Score

(car_eval_34)

Imbalance

Dataset	# <i>C</i>	IR	#\$	# <i>F</i>	# <i>F</i> # <i>S</i>	$\frac{\#F_{PCA}}{\#S}$	$\frac{\#F}{\#F_{PCA}}$	Sparsity
Car_eval_ 34	2	12:1	1728	21	0.0122	0.0087	1.40	0.7500

Algorithm	F1	Rank
K-NN	0.7099	4
WKNN	0.7274	3
Radius NN	0.4798	5
NC	0.7251	6
CDNN	0.7547	2
ECDNN	0.7640	1

Execution Time

ECDNN is always faster than CDNN

My Experiment

My Experiment

- Dataset (downloaded from UCI)
 - Iris
 - Breastcancer
 - Satimage
 - Abalone
- Comparing Algorithm
 - ECDNN
 - CDNN
 - KNN
 - RNN

Environment

- Specification
 - □ Intel Core I7-8700 @ 3.20GHz
 - RAM: DDR4 16GB
 - □ Ubuntu 20.04
- Programming Language
 - **C++** (ver. 9.4.0)

Parameter

- ◆ Let k set
 - □ [4, 26] increases by 1
- ◆ Let *r* set
 - □ [0.5, 30] increases by 0.5
- run 20 X 5 fold cross validation and take average

F1-Result

Iris

Algorithm	Paper	My result
ECDNN	0.9518	0.9710 (14)
CDNN	0.9599	09710 (14)
KNN	0.9513	0.9690 (11)
RNN	0.9406	0.9501 (1.0)

breastcancer

Algorithm	Paper	My result
ECDNN	0.9659	0.9331 (17)
CDNN	0.9626	0.9331 (17)
KNN	0.9571	0.9304 (10)
RNN	0.6193	0.9081 (30.0)

F1-Result

satimage

Algorithm	Paper	My result
ECDNN	0.8340	0.7698 (4)
CDNN	0.8222	0.7698 (4)
KNN	0.8127	0.7626 (5)
RNN	0.6901	0.7167 (2.0)

abalone

Algorithm	Paper	My result
ECDNN	0.5497	0.5331 (24)
CDNN	0.5271	0.5331 (24)
KNN	0.5304	0.5306 (5)
RNN	0.4754	0.4988 (0.5)

Time

Iris

Algorithm	My result (ms)	My F1-score
ECDNN	257	0.9710 (14)
CDNN	272	09710 (14)
KNN	237	0.9690 (11)
RNN	207	0.9501 (1.0)

breastcancer

Algorithm	My result (ms)	My F1-score
ECDNN	6453	0.9331 (17)
CDNN	6697	0.9331 (17)
KNN	6242	0.9304 (10)
RNN	6261	0.9081 (30.0)

Time

satimage

Algorithm	My result (ms)	My F1-score
ECDNN	759819	0.7698 (4)
CDNN	768572	0.7698 (4)
KNN	757313	0.7626 (5)
RNN	748977	0.7167 (2.0)

abalone

Algorithm	My result (ms)	My F1-score
ECDNN	134499	0.5331 (24)
CDNN	137200	0.5331 (24)
KNN	128028	0.5306 (5)
RNN	126160	0.4988 (0.5)

Varing k for ECDNN result

Varing k for ECDNN result

Conclusion

Conclusion

- CDNN is suitable for dataset with varying densities.
- lacktriangle CDNN is slower than k-NN, since we need to computer more information.
- ◆ ECDNN considers the confidence of every points in dataset, it avoids unnecessary computing for points with high confidence.
- lacktriangle ECDNN is faster than CDNN, it is more accuracy than k-NN.
- \bullet kNN-based classifications are sensitive for k-value.

Thank You for Your Time