Math 470 Assignment 24

Arnold Jiadong Yu

April 10, 2018

10.2.1. Find all cluster points of each of the following sets.

$$a)E = \mathbf{R} \backslash \mathbf{Q}$$

proof: Let $\delta > 0$ and $x \in \mathbf{R}$. By the density of irrational, then there are infinitely many points in the $B_{\delta}(x) = (x - \delta, x + \delta) \cap \mathbf{R} \setminus \mathbf{Q}$. By definition, every $x \in \mathbf{R}$ is a cluster point of $\mathbf{R} \setminus \mathbf{Q}$.

b)
$$E = [a, b), a, b \in \mathbf{R}, a < b$$

proof: Let $\delta > 0$ and $x \in [a,b]$. Let $c = \max\{x - \delta, a\}$ and $d = \min\{x + \delta, b\}$. Therefore $(x - \delta, x + \delta) \cap [a,b) \subset (c,d)$ is itself a nondegenerate interval. Every point $x \in [a,b]$ is a cluster point of [a,b). If any point $x \notin [a,b]$, then x is not a cluster point of [a,b).

c)
$$E = \{(-1)^n n : n \in \mathbb{N}\}$$

proof: Let $\delta > 0$ and $x \in \mathbf{R}, E = \{-1, 2, -3, 4...\} \subset \mathbf{Z}$. Pick $\delta = 1$, then $B_1(x) \cap E$ has at most one point. Therefore, E has no cluster point by definition.

$$d)E = \{x_n : n \in \mathbf{N}\}, \text{ where } x_n \to x \text{ as } n \to \infty$$

proof: E has no cluster points when E is finite, same argument as part c), pick δ less than the distance between two closest point in E. Assume E is infinite, then let $\delta > 0$, there exists an $N \in \mathbb{N}$ such that for $n \geq N$ implies $x_n \in B_{\delta}(x)$. As a result $B_{\delta}(x) \cap E$ has infinitely many points, then x is a

cluster point of E. For another point $y \neq x$. $B_{\delta}(y) \cap E$ has finitely many points. Hence x is the only cluster point of E.

$$e)E = \{1, 1, 2, 1, 2, 3, 1, 2, 3, 4, ...\}$$

proof: E has no cluster point, pick $\delta = \frac{1}{2}$. Similar argument as part c).

- 10.2.2. a) A point a in a metric space X is said to be isolated if and only if there is an r > 0 so small that $B_r(a) = \{a\}$. Show that a point $a \in X$ is not a cluster point of X if and only if a is isolated.
- b) Prove that the discrete space has no cluster points.

proof:

- a) (\Rightarrow) Let $a \in X$, it is not a cluster point of X, then let $\delta > 0$. $B_{\delta}(x) \cap X$ contains finitely many points, denoted as $x_1, x_2, ..., x_N$ where $N \in \mathbb{N}$. Choose $r = \min\{\delta, d(x_1, a), ..., d(x_N, a)\}$, then $B_r(a) = \{a\}$. Hence it is isolated.
- (\Leftarrow) Suppose $a \in X$ is isolated, then let $\delta > 0$, $B_{\delta}(a) = \{a\}$, do not contain infinitely many points. Hence it is not a cluster point of X by definition.
- b)Let $a \in \mathbf{R}$. Pick r < 1, then $B_r(a) = \{a\}$. Hence by part a), a is not a cluster point. Every points in the discrete space are isolated.