Kompresja stratna audio

Działanie obu metod

Metoda µ-law:

- Nieliniowa kwantyzacja odstęp pomiędzy poziomami nie jest stały, dla niskich i wysokich wartości amplitudy (wartości bliższe -1 i 1) odstęp pomiędzy poziomami jest większy, zmniejsza się precyzja.
- Lepsza jakość niż przy kwantyzacji liniowej (większy zakres dynamiki przy takiej samej liczbie bitów).
- Ograniczony szum kwantyzacji.

Metoda DPCM z predykcją:

Do predykcji wykorzystałem medianę z 6 elementów.

- Zmodyfikowana wersja zwykłej metody DPCM
- Kolejna próbka jest obliczana na podstawie kilku poprzednich elementów, za pomocą wybranej metody, np. średniej arytmetycznej lub mediany (w DPCM jest brana pod uwagę jedynie różnica między kolejnymi próbkami). Kodowane są różnice między kolejnymi próbkami a ich przewidywanymi wartościami.
- Kompresji ulegają różnice między kolejnymi próbkami sygnału dźwiękowego, a nie same próbki.
- Według mnie często słychać większy szum niż w metodzie µ-law ze względu na bardziej nieprzewidywalne zmiany wartości kolejnych próbek (amplituda z większą częstotliwością zmienia się z rosnącej na malejącą i na odwrót).

Mimo tego, że dla większej ilości bitów DPCM wygląda lepiej na wykresach niż μ -law (jest bardziej zbliżony do oryginału) to i tak dźwięk skompresowany metodą μ -law zdaje się brzmieć lepiej.

Przykładowe wykresy dla:

```
x = np.linspace(-1, 1, 1000)
y = 0.9 * np.sin(np.pi * x * 4)
```

Kwantyzacja:

2 bity

3 bity

4 bity

Wpływ metod kompresji na jakość plików dźwiękowych

Plik: sing_low1.wav

Metoda\Liczba	8	7	6	5	4	3	2
bitów							
μ-law	Brak większych różnic	Minimalny szum	Trochę mocniejszy szum, nadal słabszy niż dla DPCM, dźwięk stał się głośniejszy	Głośniejszy szum	Podobny szum + dźwięk jest bardziej zniekształcony	Oprócz większego szumu i zniekształcenia dźwięk jest znacznie głośniejszy	Mimo niskiej jakości dźwięk nadal da się zrozumieć
DPCM z predykcją	Słychać szum	Słychać podobny szum co dla 8 bitów	Mocniejszy szum, nadal treść jest wyraźnie słyszalna	Jeszcze większy szum + dodatkowo trzaski	Pojawiają się trzaski, dźwięk staje się nieprzyjemny dla ucha	Da się rozpoznać tylko sam początek, słychać pisk i trzaski	sam pisk, bardzo głośny, lepiej nie korzystać ze słuchawek

Plik: sing_medium2.wav

Metoda\Liczba bitów	8	7	6	5	4	3	2
μ-law	Słychać lekki szum	Trochę większy szum	Szum staje się wyraźny	Dalsze wzmocnienie się szumu	Mocniejszy szum, dźwięk trochę zbyt głośny	Mocniejszy szum + dźwięk bardziej zniekształcony	Mocny szum + trzaski. Nadal da się zrozumieć pierwotną treść.
DPCM z predykcją	Słychać szum choć mniejszy niż dla pliku gorszej jakości, mocniejszy nić dla µ-law	Większy szum	Szum nadal większy niż dla µ- law	Dalsze wzmocnienie się szumu	Dalsze wzmocnienie się szumu	Szum nadal mocniejszy niż dla µ-law, lecz zniekształcenie jest mniejsze	Bardzo głośny dźwięk + bardzo mocny szum. Nadal da się zrozumieć.

Plik: sing_high1.wav

Metoda\Liczba bitów	8	7	6	5	4	3	2
μ-law	Brak słyszalnej różnicy	Słychać lekki szum w tle	Dźwięk sprawia wrażenie jakby był "poszarpany"	Głośniejszy + zniekształcony dźwięk w niektórych momentach	To samo co dla 5 bitów tylko że mocniej	Bardzo głośny, zniekształcony dźwięk	Nadal słychać że to ten sam krzyk. Przebijający się dźwięk + trudny do określenia dźwięk w tle
DPCM z predykcją	lekki szum, znacznie mniejszy niż dla plików gorszej jakości	Minimalnie większy szum niż dla µ-law	W tle słychać ciche "piknięcia"	Głośniejszy + większy szum ale nadal nie jest tak mocny Jak w poprzednich plikach	To samo co dla 5 bitów + dźwięk trochę zniekształcony	Dźwięk jeszcze głośniejszy niż μ-law ale mniej zniekształcony	Dźwięk jest bardziej stały, brzmi jak równomierny krzyk, mocno różni się pod tym względem od oryginalnego nagrania

Kompresją metodą **µ-law** prawie zawsze daje lepsze wyniki niż **DPCM z predykcją,** wraz ze wzrostem jakości pliku różnice te się zacierają.

Dźwięk skompresowany za pomocą metody **μ-law** zwykle nadal jest zrozumiały, nawet mimo zniekształcenia i szumu powstałego w wyniku zmniejszenia ilości bitów.

Jakość dźwięku po działaniu domyślnym (kompresja do 8 bitów)

- Dla metody **µ-law** zwykle nie słychać znacznej różnicy, maksymalnie lekki szum
- Dla metody **DPCM z predykcją** zwykle od razu można usłyszeć co najmniej lekki szum, do jego wychwycenia nie trzeba już przykuwać większej uwagi.