Hevelyn Sthefany Lima de Carvalho 170059031 hevelyn.sthefany@gmail.com

Igor Bispo de Moraes 170050432 igor.rabbit99@gmail.com

000

003

007

010

014

017

025

041

043

Departamento de Ciência da Comptutação Universidade de Brasília Campus Darcy Ribeiro, Asa Norte Brasília-DF, CEP 70910-900, Brazil,

Abstract

O reconhecimento de fala é uma tecnologia que procura identificar palavras faladas em um áudio e convertê-las em texto. Foi construído um modelo eficiente para reconhecimento de fala em tempo real usando a aquitetura MobileNetv2 [1]. Apresentaremos resultados obtidos pela rede treinada a partir de pesos aleatórios e a partir de pesos prétreinados na classificação de objetos com o dataset ImageNet.

1 Introdução

O Reconhecimento de Fala, também conhecido como: *automatic speech recognition* (ASR), *computer speech recognition* ou textitspeech to text (STT), é um subcampo de Processamento de Linguagem Natural que se concentra na capacidade e nas limitações de uma máquina em entender a linguagem dos seres humanos. O processo consiste em mapear um entrada de áudio para alguma palavra existente em um certo vocabulário.

Neste trabalho, transportamos o problema de reconhecimento de áudio para o âmbito de classificação de imagens, uma área muito explorada em Visão Computacional. A análise acústica tem a espectrografia do som como uma de suas principais ferramentas. O espectrograma pode ser definido como uma mostragem dinâmica da densidade de energia por meio do escurecimento ou coloração do traçado (as cores indicam a intensidade de volume), as faixas de frequência no eixo vertical e o tempo no eixo horizontal. Sua representação mostra estrias horizontais, denominadas harmônicos. Um exemplo de espectrograma pode ser vista na Figura 1. A classificação das imagens foram obtidas através de Rede Neural Convolucional (CNN), mais precisamente, a arquitetura MobileNetV2 [1].

^{© 2018.} The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms.

Figure 1: Espectrograma (fala de "backward")

O conjunto de dados usados para testar, Speech Commands Data Set - versão 0.01, tem um vocabulário relativamente pequeno de 30 [4]. O conjunto compõe-se de falas de 20 palavras de comando gravadas por uma variedade de falantes diferentes: "Yes", "No", "Up", "Down", "Left", "Right", "On", "Off", "Stop", "Go", "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", e "Nine". Para ajudar a distinguir palavras não reconhecidas, há também dez palavras auxiliares: "Bed", "Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", e "Wow".

Já o conjunto de dados usados para treinar, Speech Commands Data Set - versão 0.02 [1], alem das palavras presentes na versão 0.01, acrescenta as palavras "backward", "follow", "forward", "learn" e "visual".

Algumas das ferramentas auxiliares principais foram OpenCV [N] para tratamento de imagens e bibliotecas do Python: Numpy [3] para manipulação de tensores (imagens), a API Keras para desenvolvimento da rede [11] e o módulo signal do SciPy [15] para geração dos espectrogramas.

Metodologia

Pré-processamento

Para cada audio da base da dados, foram gerados espectrogramas, como visto na figura 1. 080 O tamanho de cada imagem foi redimensionada para 96x96 afim de diminuir a dimension-081 alidade do problema. O moedlo de rede usado requer imagem coloridas (RGB), portanto, 082 criamos, para cada imagem, criamos duas novas imagens iguais e as combinamos em uma 083 única imagem de três canais.

Arquitetura da Rede

A rede convolucional MobileNetV2 [4], proposta por pesquisadores da Google, foi a arquitetura para a CNN usada neste trabalho. Essa rede é conhecida por ser de alta eficiência e facilidade no treinamento e, além disso, usa convoluções separáveis em profundidade. São ao todo 88 camadas e 3,605,603 parâmetros.

054

047

057

061

066

067 069

072

074 075 076

077

Uma convolução separável em profundidade é composta por duas operações: uma convolução em profundidade e uma convolução pontual. A convolução em profundidade mapeia uma única convolução em cada canal de entrada separadamente, ou seja, aplica um único filtro a cada canal de entrada (camada separada para filtragem). Portanto, seu número de canais de saída é o mesmo do número de canais de entrada. Seu custo computacional é $Df^2 \cdot M \cdot Dk^2$, sendo Df a dimensão do recurso de entrada, M e N o número de canais de entrada e saída e Dk o tamanho do kernel. A Figura 2 (a) e (b) mostra a diferença entre a Convolução normal e a separável. Já a pontual, Figura 2 (b) é uma convolução com um tamanho de kernel de 1x1 que combina os recursos criados pela convolução em profundidade (camada separada para combinação), com custo computacional de $M \cdot N \cdot Df^2$.

Figure 2: Convolução padrão (a) e Convoluções separáveis em Profundidade (b) e (c)

Todas as camadas são seguidas por uma normalização em lote, batch normalization [\blacksquare], especificada na equação abaixo, onde z^k é a camada, E[x] e V[x] são o primeiro e segundo epoch de x respectivamente, e a função de ativação ReLU [\blacksquare], com exceção da camada final totalmente conectada que não possui não-linearidade e alimenta uma camada softmax para classificação.

$$\tilde{z}^k = \frac{z^k - E[z^k]}{\sqrt{V[z^k]}} \tag{1}$$

Os detalhes da arquiterura da rede são mostrados no arquivo Anexo.

Resultados

Conforme mostrado no relatório de classificação, o modelo apresenta excelente desempenho no conjunto de teste com apenas 10 épocas (totalizando aproximadamente 2h de treino) e tem uma acurácia média entre 96 e 97%.

Além disso, o modelo é capaz de classificar corretamente áudios extraídos em tempo real a partir de um microfone ligado ao computador, mesmo em casos de áudio com alto grau de ruído como mostrado no espectrograma a seguir 3.

Figure 3: Espectrograma classificado corretamente como "right" com 99% de confiança

Para fins de visualização, foram gerados espectrogramas que maximizassem a ativação dos filtros da primeira camada de convolução utilizando o algoritmo gradiente ascendente.

Conforme poder ser visto na comparação, os padrões formados são bastante diferentes dos vistos em filtros treinados para reconhecer objetos. Enquanto os filtros para objetos 5 apresentam um padrão mais orgânico e natural, os filtros para classificar espectrogramas são mais ruidosos e com padrões sintéticos 4.

Figure 4: Filtro aplicado na Convolução em Profundidade para espectrograma

Figure 5: Filtro aplicado na Convolução para reconhecimento de objetos

Comparação Pesos Aleatórios X Pesos Pré-Treinados com ImageNet

Como a MobileNetV2 é otimizada para reconhecimento de objetos, foram utilizados dois cenários de treinos distintos. O primeiro com pesos pré-treinados com o dataset ImageNet [2] e o outro com pesos iniciados aleatoriamente para comparação.

Apesar da base de dados do ImageNet não ter características semelhantes às imagens de espectrograma, tanto a acurácia inicial (na época 0) quanto acurácia final não apresentaram diferenças entre os dois cenários de treino.

Contudo, a convergência é mais rápida quando são utilizados os pesos da ImageNet, atingindo o resultado com 2 epochs a menos do que com pesos aleatórios.

1	8	4
1	8	5
1	8	6
1	8	7
1	8	8
1	8	9
1	9	0
1	9	1
1	9	2
1	9	3
1	9	4
1	9	5
1	9	6
1	9	7
1	9	8
1	9	9
2	0	0
2	0	1
2	0	2
	0	
	0	
	0	
2	0	6
	0	
2	0	8
	0	
2	1	0
2	1	1
2	1	2
2	1	3
2	1	4
2	1	5
2	1	6
2	1	7
2	1	8
2	1	9

	precision	recall	f1-score	support
bed	0.95	0.98	0.97	500
bird	0.96	0.99	0.98	500
cat	0.96	0.99	0.97	500
dog	0.97	0.96	0.97	500
down	0.95	0.93	0.94	500
eight	0.95	0.97	0.96	500
five	0.98	0.91	0.94	500
four	0.97	0.93	0.95	500
go	0.88	0.95	0.92	500
happy	1.00	0.99	0.99	500
house	0.99	0.99	0.99	500
left	0.99	0.95	0.97	500
marvin	0.99	0.98	0.99	500
nine	0.96	0.95	0.96	500
no	0.99	0.86	0.92	500
off	0.98	0.93	0.96	500
on	0.95	0.94	0.95	500
one	0.97	0.94	0.96	500
right	0.99	0.95	0.97	500
seven	0.95	0.98	0.96	500
sheila	0.99	0.98	0.98	500
six	0.94	0.98	0.96	500
stop	0.94	0.95	0.94	500
three	0.99	0.97	0.98	500
two	0.97	0.96	0.96	500
up	0.95	0.96	0.95	500
wow	0.98	0.98	0.98	500
yes	0.98	0.98	0.98	500
zero	0.97	0.95	0.96	500
micro avg	0.97	0.92	0.96	14500
weighted avg	0.97	0.96	0.96	14500

Table 1: Relatório de Classificação

Figure 6: Matriz de Confusão - 10 epochs

257258

270

271

275

3 Conclusão

Neste projeto foi abordado o problema de reconhecimento de fala aplicando o modelo MobileNetV2 em espectrogramas gerador a patir do banco de dados Speech Commands Data Set. O método foi implementado com sucesso, com 97% de acurácia e é rápido o suficiente para ser executado em tempo real. Além disso, destacamos a indiferença entre o método treinando os pesos e o método com os pesos pré treinados com ImageNet, apesar da aleatóriedade deste banco de imagens, no que se trata de acurácia. No entanto, neste segundo método, a convergência é mais rapida. Por fim, foi verificado que o uso de CNNs em reconhecimento de fala a partir de espectrogramas é bastante eficiente e, sem dúvida, está entre os métodos de maior taxa de acurácia da atualidade.

References

- [1] François Chollet et al. Keras. https://keras.io, 2015.
- [2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In *CVPR09*, 2009.
- [3] NumPy developers. Numpy, Aug 2018. URL http://www.numpy.org/.

- [4] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. *arXiv preprint arXiv:1704.04861*, 2017.
- [5] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. *arXiv preprint arXiv:1502.03167*, 2015.
- [6] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python, 2001–. URL http://www.scipy.org/. [Online; accessed <today>].
- [7] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In *Proceedings of the 27th International Conference on International Conference on Machine Learning*, ICML'10, pages 807–814, USA, 2010. Omnipress. ISBN 978-1-60558-907-7. URL http://dl.acm.org/citation.cfm?id=3104322.3104425.
- [8] OpenCV team. Opencv, Aug 2018. URL https://opencv.org/.
- [9] P. Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. *ArXiv e-prints*, April 2018. URL https://arxiv.org/abs/1804.03209.