4. Fields

4.1 Fields

 $(F,+,\cdot)$ is a field \iff

- 1. (F, +) = abelian group
- 2. (F^*,\cdot) = abelian group
- 3. $a(b+c) = ab + ac \ \forall a,b,c \in F$

4.2 Extension Fields

Definition -- Extension fields

A field E is an extension field of a field F if $F\subseteq E$ and the operations of F are those of E restricted to F.

Example: $\mathbb C$ is an extension of $\mathbb R$

Example

- 1. For the field $\mathbb Q$ the smallest extension field that contains $\sqrt{2}$ is $\mathbb Q(\sqrt{2})=\{a+b\sqrt{2}:a,b\in\mathbb Q\}$ $\mathbb Q(\sqrt{2})$ has the roots of $f(x)=x^2-2)\Rightarrow$ splitting field
- 2. For the field $\mathbb Q$ the smallest extension field that contains $i=\sqrt{-1}$ is $\mathbb Q(i)=\{a+bi:a,b\in\mathbb Q\}$
- 3. We can adjoin the fields $\Rightarrow \mathbb{Q}(\sqrt{2},i) = \mathbb{Q}(\sqrt{2})(i)$ An element $\underbrace{\alpha + \beta i}_{\alpha,\beta \in \mathbb{Q}(\sqrt{2})} = (a+b\sqrt{2}) + (c+d\sqrt{2})i$ with $a,b,c,d \in \mathbb{Q} \Rightarrow \{1,\sqrt{2},i,i\sqrt{2}\}$ is a **basis** for our extension field

4.2.1 Algebraic extensions

- https://en.wikipedia.org/wiki/Algebraic element
- · https://en.wikipedia.org/wiki/Algebraic extension

Let ${\cal E}$ be an extension field of a field ${\cal F}$

Algebraic element

Let $a \in E$.

We call a algebraic over F if a is the zero of some nonzero polynomial in F[x]

$$\exists g(x) \in F, g(x) \neq 0 \ s.t. \ g(a) = 0$$

If a is not algebraic over F, it is called **transcendental** over F.

Algebraic extension

An extension E of F is called an **algebraic extension** of F if every element of E is algebraic over F. If E is not an algebraic extension of F, it is called a **transcendental extension** of F.

An extension of F of the form F(a) is called a simple extension of F.

Ex: $\sqrt{2}$ is algebraic over $\mathbb Q$ since is the root of x^2-2

4.3 Field automorphisms

Let F be a field

A **field automorphism** is a bijection $f: F \to F$ s.t $\forall a, b \in F$

- f(a+b) = f(a) + f(b)
- f(ab) = f(a)f(b)

Property

If f is an automorphism of an extension field F of $\mathbb Q$ then $f(q)=q\ orall q\in\mathbb Q$

Intuition

The automorphism fixes everything in $\mathbb Q$

Proof

Suppose
$$f(1)=q$$

$$q=f(1)=f(1\cdot 1)=f(1)f(1)=q^2$$

$$q=f(1)=f(1\cdot 1\cdot 1)=f(1)f(1)f(1)=q^3$$
 ...
$$\Rightarrow q^n=q\Rightarrow q=1$$

Perfect fields

F is called perfect if char F=0 or char char F=p and $F^p=\{a^p:a\in F\}=F$

Theorem

Every finite field is perfect

Proof

Let $\phi(x)=x^p$ be a mapping. We want to prove ϕ is an automorphism

•
$$\phi(ab) = (ab)^p = a^p b^p = \phi(a)\phi(b)$$

•
$$\phi(a+b)=(a+b)^p=a^p+\binom{p}{1}a^{p-1}b+...+\binom{p}{p-1}ab^{p-1}+b^p=a^p+b^p$$
 (since $p|\binom{p}{i}$)

- Since $x^p
 eq 0$ when $x
 eq 0 => Ker \phi = \{0\} \Rightarrow \phi$ is injective
- F is finite => ϕ is surjective
- ϕ is bijective therefore an automorphism therefore $F^p=F$

Finite fields

For each prime p and n > 0 there is, a unique finite field of order p^n

Structure

As addition:
$$GF(p^n)pprox \underbrace{\mathbb{Z}_p\oplus\mathbb{Z}_p\oplus...\oplus\mathbb{Z}_p}_{n ext{ times}}$$
 As multiplication $GF(p^n)pprox \mathbb{Z}_{p^n-1}$

Subfields

For each divisor $m|n\ GF(p^n)$ has a unique subfield of order p^m These are the only subfields of $GF(p^n)$

Proof

•
$$p^n - 1 = (p^m - 1)(p^{n-m} + ... + p^m + 1) \Rightarrow p^m - 1|p^n - 1 \Rightarrow p^n - 1 = (p^m - 1)t$$

• Let
$$K=\{x\in GF(p^m): x^{p^m}=x\}$$

$$ullet$$
 $x^{p^m}-x$ has at most p^m zeros in $GF(p^n)\Rightarrow |K|\leq p^m$

• Let
$$\langle a \rangle = GF(p^n)^* \Rightarrow |a^t| = p^m - 1$$
 and $(a^t)^{p^m-1} = 1 => a^t \in K$

• So K is a subfield of $GF(p^n)$ of order p^m