MEU302 - Algèbre TD2

Rappel de cours

Definition 1. Bla bla

MEU302 - Algèbre TD2

Exercice 1

Exercice 1.1

Il faut trouver un espace de probabilité (Ω, \mathcal{F}, P) avec Ω un univers, \mathcal{F} un espace d'événements et P un espace de probabilité de $\mathcal{F} \to [0, 1]$. Pour $i \in 1, 2, 3$, on a $P(X = i) = P(\{\omega \in \Omega \text{ tq } X^{-1}(i) = \omega\}) = 1/3$. Prenons l'espace de probabilité $(\Omega, \mathcal{P}(\Omega), P)$ avec $P(\{\omega \in \Omega \text{ tq } X^{-1}(i) = \omega\}) = 1/3$.

Exercice 1.2

L'ensemble des sous-parties de Ω est une tribu d'un espace de probabilité (Ω, F, P) . On a $(X = i) = \{\omega \in \Omega \text{ tq } X^{-1}(i) = \omega\}$. L'ensemble contient au moins 3 éléments, donc $card(\Omega) \geq 3$ car il faut au moins une valeur de Ω pour chaque valeur de X. Donc, on a $card(\mathcal{P}(\Omega)) \geq 3^2 = 8$.

Exercice 2

Exercice 2.1

Soit E l'événement sur lequel $X = \pi X$. Si $\omega \in E$ alors

$$\lim_{n \to \infty} \cos(X(\omega))^n + \cos(2X(\omega))^{2n} = \lim_{n \to \infty} 1^n + 1^{2n} = 2$$

Si $\omega \notin E$ alors

$$\lim_{n \to \infty} \cos(X(\omega))^n + \cos(2X(\omega))^{2n} = \lim_{n \to \infty} [0, 1]^n + [0, 1]^{2n} = 0$$

Donc $\lim_{n\to\infty} \cos(X)^n + \cos(2X)^{2n} = 2.1_E$.

On a $\exists Z$ tq $\forall n, |X_n| \leq Z \implies Z = 2$ et $\exists X$ tq $X = \lim n \to \infty X_n \implies X = 2.1_E$. Donc on peut utiliser le théorème de convergence dominée.

$$\lim_{n \to \infty} \mathbb{E}[X_n] = \mathbb{E}[X] = \mathbb{E}[2.1_E] = 2P(E) = 2P(X \in \pi \mathbb{Z}) = 0$$

Exercice 2.2

même raisonnement

$$\lim_{n \to \infty} \mathbb{E}[X_n] = \mathbb{E}[X] = \mathbb{E}[2.1_E] = 2P(E) = 2P(X \in \pi \mathbb{Z}) = 2p_1$$