Plant Disease Detection using Deep Learning

Nathan Abela

Institute of Information & Communication Technology

MCAST, Paola, Malta

MCAST

Problem Definition

• Plant diseases are responsible for 20-40% of global crop loss per year [1].

- Amounting to over \$220 billion annually [1].
- Detection systems aid in early disease identification.
- Led to the Precision Agriculture (PA) technology creation [2].

Literature - Datasets

Dataset	No. of Images	No. of Classes	Resolution
PlantVillage	54,303	38	256x256
PlantDoc	2,598	17	Various
PlantLeaves	4,503	17	6000x4000
PlantNet-300K	306,146	1,081	600x600

Table 1: Dataset Comparison

Literature – Key Papers

- Dataset PlantVillage all 38 classes
- Models EfficientNet VGG16

Study	Classifier	Accuracy
Atila et al. [3]	EfficientNet	99.97%
Mohameth et al. [4]	VGG16	97.82%

Table 2: Results Comparison between two key papers

Literature - Local Contributions

Aspect	Galdes [5]	Busutill [6]	Mercieca [7]	Xuereb [8]
Detection Type	Disease	Disease	Crop & Disease	Disease
Datasets	PlantVillage	PlantVillage	PlantVillage & Custom	PlantVillage
Plants	Tomato	Potato	Apples, Grapes & Potatoes	Various
Classes	10	3	11	15
Algorithm	XGBoost + VGG16	YOLOv5	VGG16	GoogLeNet & AlexNet
Accuracy	91%	98.5%	98.67%	95% & 78%

Table 3: Summary comparison of local research contribution

Methodology – Hypothesis

This research **hypothesises** that

recent advancements in deep

learning models, particularly

CNNs, permit a more **holistic** and

accurate detection and

classification of various plant

diseases.

Orange Healthy

Peach Bacterial Spot

Tomato Yellow Leaf

Tomato Bacterial Spot

Soybean Healthy

Tomato Late Blight

Methodology - Research Questions

- 1. How well can established deep learning methods for plant disease detection be replicated, and what strengths and weaknesses can be gained?
- 2. Can computer vision techniques differentiate between healthy and diseased plants?
- 3. How can an experimentation plan help advance plant disease detection?
- 4. How do variations in CNN architecture affect the efficiency of the model?

Methodology - Research Questions

5. What impact do different hyperparameters have on the performance of

deep-learning models for plant disease detection?

6. How does the **proposed solution** perform with key **local crops**?

Methodology - Novel Pipeline

Methodology - Experiments

Phase 1: Calibration

Replicating key
 methodologies from
 two key papers Atila
 et al. [3] and
 Mohameth et al. [4]

Phase 2: Novel

 Custom deeplearning algorithm using insights gained from calibration
 phase Phase 3:
Real-World Application

- Testing customdataset using customalgorithm
- Use of Grad-CAM to visualise model under real-world conditions

Results – Calibration Phase

Calibration Experiments – Replication of Methodologies from Key Papers [RQ 1]

Study	Atila et al. [3]	Atila et al. Replication	Mohameth et al. [4]	Mohameth et al. Replication
Accuracy	99.84%	95.86%	97.82%	95.64%
Precision	97.24%	96.33%	N/A	96.64%
Recall	96.82%	95.55%	N/A	94.71%
F1-Score	N/A	95.94%	96.42%	95.66%

Table 4: Results comparison of the replicated methodologies and the original studies using the PlantVillage dataset

Results - Novel Phase

Novel Experiments – Custom Algorithm [RQ 3, 4 & 5]

Study	Custom Algorithm	
Accuracy	81.01%	
Precision	85.21%	
Recall	78.27%	
F1-Score	81.59%	

Table 5: Results summary of the Custom model using the PlantVillage dataset

Results - Real-World Application Phase

Real-World Application Experiments – Custom Dataset [RQ 2, 3 & 6]

Study	Custom Dataset	
Accuracy	85.13%	
Precision	91.94%	
Recall	81.82%	
F1-Score	86.13%	

Table 6: Results summary of the Custom model using the Custom dataset

Custom Dataset Overview

Class	Plant	Healthy or Diseased	Disease Name	Type of Disease	No. of Images
C_1	Potato	Diseased	Late Blight	Fungal	80
C_2	Potato	Healthy	/	/	80
C_3	Strawberry	Diseased	Leaf Scorch	Fungal	80
C_4	Strawberry	Healthy	/	/	80
C_5	Tomato	Diseased	Yellow Leaf	Viral	80
C_6	Tomato	Healthy	1	1	80

Table 7: Class breakdown of the Custom dataset

Custom Dataset Evaluation

Original Image

Research Question Evaluation

- How well can established deep learning methods for plant disease detection be replicated, and what strengths and weaknesses can be gained?
 - Effective and Successful replication.
- Can computer vision techniques differentiate between healthy and diseased plants?
 - CV techniques can distinguish between healthy and diseased crops.
- How does the proposed solution perform with key local crops?
 - Despite lack of diversity in custom dataset, the outcome does address such.

Research Question Evaluation

- How can an experimentation plan help advance plant disease detection?
- How do variations in CNN architecture affect the efficiency of the model?
- What impact do different hyperparameters have on the performance of deep-learning models for plant disease detection?
 - With an experimentation plan insights were gathered on how hyperparameters and various
 CNN architecture contribute and their effect.

Conclusions - Limitations

- Absence of locally sourced images limits study validity
- Custom dataset sourced from online sources rather than local fields.
- Seasonal availability of the diseased leaves.

Conclusions - Recommendations

- Prioritise the development of a more representative local dataset.
- Collaboration with local farmers and agricultural organisations.
- More advanced neural network architectures that require less
 computational power to be used in real-time applications.

References

- [1] H. Canton, "Food and agriculture organization of the united nations-fao", in The Europa directory of international organizations 2021. Routledge, 2021, pp. 297–305.
- [2] S. Candiago, F. Remondino, M. De Giglio, M. Dubbini, and M. Gattelli, "Evaluating multispectral images and vegetation indices for precision farming applications from uav images," Remote Sensing, vol. 7, no. 4, pp. 4026–4047, 04 2015.
- [3] Umit Atila, Murat Uc, ar, Kemal Akyol, and Emine Uc, ar. Plant leaf disease classification using efficientnet deep learning model. Ecological Informatics, 61:101182, 03 2021.

References

- [4] Faye Mohameth, Chen Bingcai, and Kane Amath Sada. Plant disease detection with deep learning and feature extraction using plant village. Journal of Computer and Communications, 08:10–22, 01 2020.
- [5] Dylan Galdes. Comparing image classification methods for tomato plant disease detection. Bachelor of Science (Honours) in Software Development, 06 2021.
- [6] Jasmine Busuttil. Identifying plant diseases using yolov5.

 Bachelor of Science (Honours) in Software Development, 06 2022.

References

- [7] Robert Mercieca. Using convolutional neural networks to identify different plants and common diseases associated with them. Bachelor of Science (Honours) in Software Development, 05 2022.
- [8] Melchior Xuereb. Plant diseases: Investigating how they can be detected and identified using ai. Bachelor of Science (Honours) in Software Development, 06 2020.

Thank you

Nathan Abela

nathan.abela.e25765@mcast.edu.mt

