Најдужи пут

Организатори ИОИ 2023 су у велико проблему! План екскурзије у Горњи Брестовац је украден од стране мрачног Милисава! Али можда још није касно...

Постоји N атракција у Горњем Брестовцу, и оне су индексиране од 0 до N-1. Неки парови атракција су повезани gвосмерним **путевима**. Сваки пар атракција је повезан највише једним путем. Организатори *не знају* које атракције су повезане путевима.

Кажемо да је **густина** мреже путева у Горњем Брестовцу **најмање** δ ако сваке 3 различите атракције имају барем δ путева између њих. Другим речима, за сваку тројку атракција (u,v,w) тако да је $0 \leq u < v < w < N$, међу паровима атракција (u,v),(v,w) и (u,w) барем δ парова су повезани путем.

Организатори *знају* природан број D такав да је густина мреже путева барем D. Приметимо да вредност D не може бити већа од 3.

Организатори могу да **зову** селоначелника Горњег Брестовца како би сазнали информације о повезаности између неких атракција. У сваком позиву, два непразна низа атракција $[A[0],\ldots,A[P-1]]$ и $[B[0],\ldots,B[R-1]]$ морају да буду достављена. Атракције морају да буду различите, то јест:

- ullet A[i]
 eq A[j] за свако i и j тако да је $0 \leq i < j < P$;
- B[i]
 eq B[j] за свако i и j тако да је $0 \le i < j < R$;
- A[i]
 eq B[j] за свако i и j тако да је $0 \le i < P$ и $0 \le j < R$.

За сваки позив, селоначелник одговара да ли постоји пут који повезује атракцију из A и атракцију из B. То јесте, селоначелник враћа true уколико постоје i и j такви да $0 \leq i < P$ и $0 \leq j < R$, и A[i] и B[j] су повезани путем. Ако не постоје, селоначелник враћа false.

Путовање дужине l је низ pазличи \bar{u} их атракција $t[0], t[1], \ldots, t[l-1]$, где за свако i од 0 до l-2, атракција t[i] и атракција t[i+1] су повезане путем. Путовање дужине l зовемо **најдужим путовањем** уколико не постоји ниједно путовање дужине барем l+1.

Ваш задатак је да помогнете организаторима да нађу најдуже путовање кроз Горњи Брестовац, користећи позиве ка селоначелнику.

Детаљи имплементације

Треба да имплементирате следећу процедуру:

```
int[] longest_trip(int N, int D)
```

- N: број атракција у Горњем Брестовцу.
- D: гарантовања минимална густина мреже путева.
- ullet Ова процедура треба да врати низ $t=[t[0],t[1],\ldots,t[l-1]]$, који представља најдуже путовање.
- Ова процедура може бити позвана више пута у сваком тест примеру.

Ова процедура може да позива следећу процедуру:

```
bool are_connected(int[] A, int[] B)
```

- A: непразан низ различитих атракција.
- B: непразан низ различитих атракција.
- A и B морају да буду дисјунктни.
- Ова процедура враћа true уколико постоји атракција из A и атракција из B које су повезане путем. У супротном, враћа false.
- Ова процедура може да буде позвана највише $32\,640$ пута при сваком позиву функције longest_trip, и највише $150\,000$ пута укупно.
- Укупна дужина низова A и B прослеђених овој функцији, по свим позивима, не може да премаши $1\,500\,000$.

Оцењивач (grader) **није адаптиван**. Вредности N и D, као и парови атракција који су повезани путем, су фиксирани пре него што се функција longest_trip позове.

Примери

Пример 1

Посматрајмо сценарио у ком је N=5, D=1, и путеви су као на следећој слици:

Процедура longest_trip је позвана на следећи начин:

Ова процедура може да позива процедуру are_connected на следећи начин.

Позив	Парови повезани путем	Повратна вредност
are_connected([0], [1, 2, 4, 3])	(0,1) и $(0,2)$	true
are_connected([2], [0])	(2,0)	true
are_connected([2], [3])	(2,3)	true
are_connected([1, 0], [4, 3])	ништа	false

После четвртом позива, испоставља се да nujegan од парова (1,4), (0,4), (1,3) и (0,3) није повезан путем. Како је густина мреже најмање D=1, можемо да приметимо да из тројке (0,3,4) пар (3,4) мора бити повезан путем. Слично, атракције 0 и 1 морају да буду повезане.

У том тренутку, можемо да закључимо да t=[1,0,2,3,4] је путовање дужине 5, и да не постоји путовање дужине преко 5. Дакле, процедура longest_trip може да врати [1,0,2,3,4]

Посматрајмо други сценарио у коме је N=4, D=1, и путеви између атракција су као на следећој слици:

Процедура longest_trip је позвана на следећи начин:

У овом сценарију, дужина најдужег путовања је 2. Дакле, након пар позива процедуре are_connected, процедура longest_trip може да врати нешто од [0,1], [1,0], [2,3] или [3,2].

Пример 2

Подзадатак 0 садржи додатни пример "са папира" са N=256 атракција. Овај тест пример је укључен у закачку која се може скинути са система за такмичење.

Ограничења

- 3 < N < 256
- Збир N-ова по свим позивима функције longest_trip не премашује $1\,024$.
- $1 \le D \le 3$

Подзадаци

- 1. (5 поена) D=3
- 2. (10 поена) D=2
- 3. (25 поена) D=1. Нека је l^{\star} дужина најдужег путовања. Процеура longest_trip не мора да врати путовање дужине l^{\star} . Уместо тога, треба да врати путовање дужине барем $\left\lceil \frac{l^{\star}}{2} \right\rceil$.
- 4. (60 поена) D=1

Ако, у било ком тест примеру, позиви ка процедури are_connected не одговарају условима описаним у детаљима имплементације, или ако је низ враћен од функције longest_trip нетачан, резултат вашег решења за тај подзадатак ће бити 0.

У подзадатку 4 ваш скор је одређем бројем позива процедуре are_connected по једном позиву процдуре longest_trip. Нека је q максималан број позива по свим инвокацијама процедуре longest_trip по сваком тест примеру у подзадатку. Ваш скор за тај подзадатак је израчунат по следећој табели:

Услов	Поени
$2750 < q \leq 32640$	20
$550 < q \leq 2750$	30
$400 < q \leq 550$	45
$q \leq 400$	60

Пример оцењивача (sample grader)

Нека је C број сцеарија, то јест, број позива longest_trip. Оцењивач чита улаз у следећем формату:

линија 1: С

Описи C сценарија следе.

Оцењивач чита опис сваког сценарија у следећем формату:

линија 1: N D

ullet линија 1+i ($1 \leq i < N$): $U_i[0] \; U_i[1] \; \dots \; U_i[i-1]$

Овде, свако U_i ($1 \leq i < N$) је низ дужине i, који описује који парови атракција су повезани путем. За свако i и j тако да важи $1 \leq i < N$ и $0 \leq j < i$:

- ако су атракције j и i повезане путем, онда вредност $U_i[j]$ треба да буде 1;
- ако не постоји пут који повезује атракције j и i, онда вредност $U_i[j]$ треба да буде 0.

У сваком сценарију, пре позива longest_trip, оцењивач проверава да ли је густина мреже путева најмање D. Ако овај услов није испуњен, оцењивач исписује Insufficient Density и завршава.

Ако оцењивач примети кршење протокола, испис оцењивача је: Protocol Violation: <MSG>, где је <MSG> једна од следећих ствари:

- ullet invalid array: у позиву are_connected, барем један од низова A и B
 - ∘ је празан, или
 - \circ садржи елемент који није број од 0 до N-1, или
 - садржи исти елемент најмање двапут.
- ullet non-disjoint arrays: у позиву are_connected, низови A и B нису дисјунктни.
- too many calls: број позива процедуре are_connected премашује $32\,640$ у тренутном позиву longest trip, или премашује $150\,000$ укупно.
- too many elements: укупан број атракција прослеђен процедури are_connected по свим позивима премашује $1\,500\,000$.

У супротном, нека су елементи низа враћени од стране longest_trip у сценарију $t[0], t[1], \dots, t[l-1]$ за неко ненегативно l. Оцењивач исписује три линије за сценарио, у следећем формату:

- линија 1: *l*
- линија $2:t[0]\;t[1]\;\ldots\;t[l-1]$
- линија 3: број позива процедуре are_connected у овом сценарију

На крају, оцењивач исписује:

• линија $1+3\cdot C$: максималан број позива процедуре are_connected по свим позивима процедуре longest_trip