Зміст

2.2.2	Теореми Фредгольма для інтегральних рівнянь з не-	
	перервним ядром	1
2.2.3	Альтернатива Фредгольма	3
2.2.4	Наслідки з теорем Фредгольма	5
2.2.5	Теореми Фредгольма для інтегральних рівнянь з по-	
	лярним ядром	3
Інтегр	альні рівняння з ермітовим ядром	

2.2.2 Теореми Фредгольма для інтегральних рівнянь з неперервним ядром

Будемо розглядати рівняння:

$$\varphi(x) = \lambda \int_{G} K(x, y)\varphi(y) \,dy + f(x), \qquad (2.2.29)$$

$$\psi(x) = \overline{\lambda} \int_{G} K^{\star}(x, y)\psi(y) \,dy + g(x), \qquad (2.2.30)$$

Ядро $K(x,y) \in C\left(\overline{G} \times \overline{G}\right)$, отже його можна наблизити поліномом (Теорема Вейєрштраса).

Тобто, для будь-якого $\varepsilon > 0$ існує

$$P_N(x,y) = \sum_{|\alpha+\beta| \le N} a_{\alpha\beta} x^{\alpha} y^{\beta}. \tag{2.2.31}$$

де $\alpha=(\alpha_1,\alpha_2,\ldots,\alpha_n),\ x^\alpha=x_1^{\alpha_1}\cdot x_2^{\alpha_2}\cdot\ldots\cdot x_n^{\alpha_n},$ такий що $|K(x,y)-P_N(x,y)|<\varepsilon,\ (x,y)\in\overline{G}\times\overline{G},$ тобто

$$K(x,y) = P_N(x,y) + Q_N(x,y),$$
 (2.2.32)

де $P_N(x,y)$ — вироджене ядро (поліном), $|Q_N(x,y)| < \varepsilon$, $(x,y) \in \overline{G} \times \overline{G}$.

Виходячи з останньої рівності, інтегральне рівняння Фредгольма приймає вигляд

$$\varphi = \lambda \mathbf{P}_N \varphi + \lambda \mathbf{Q}_N \varphi + f, \qquad (2.2.33)$$

де \mathbf{P}_N та \mathbf{Q}_N — інтегральні оператори з ядрами $P_N(x,y)$ та $Q_N(x,y)$ відповідно $(\mathbf{P}_N+\mathbf{Q}_N=\mathbf{K}).$

Для спряженого рівняння маємо:

i

$$K^{\star}(x,y) = P_N^{\star}(x,y) + Q_N^{\star}(x,y), \qquad (2.2.34)$$

 $\psi = \overline{\lambda} \mathbf{P}_N^* \psi + \overline{\lambda} \mathbf{Q}_N^* \psi + g. \tag{2.2.35}$

Твердження 2.2.2.1

В класі C(G) отримані рівняння

$$\varphi = \lambda \mathbf{P}_N \varphi + \lambda \mathbf{Q}_N \varphi + f, \qquad (2.2.36)$$

$$\psi = \overline{\lambda} \mathbf{P}_{N}^{\star} \psi + \overline{\lambda} \mathbf{Q}_{N}^{\star} \psi + q \tag{2.2.37}$$

еквівалентні рівнянням з виродженим ядром.

Доведення. Введемо нову функцію

$$\Phi = \varphi - \lambda \mathbf{Q}_N \varphi \tag{2.2.38}$$

З рівняння на φ випливає що $\Phi = \lambda \mathbf{P}_N + f$, а з однією із рівностей твердження 2.1.3.1 (перша лекція) випливає що $\forall \lambda$ такого що $|\lambda| < 1/(\varepsilon V)$:

$$(E - \lambda \mathbf{Q}_N)^{-1} = (E + \lambda \mathbf{R}_N), \qquad (2.2.39)$$

де \mathbf{R}_N — резольвента для \mathbf{Q}_N . Отже

$$\varphi = (E - \lambda \mathbf{Q}_N)^{-1} \Phi = (E + \lambda \mathbf{R}_N) \Phi. \tag{2.2.40}$$

Тобто, рівняння Фредгольма II роду перетворюється на

$$\Phi = \lambda \mathbf{P}_N (E + \lambda \mathbf{R}_N) \Phi. \tag{2.2.41}$$

Для спряженого рівняння маємо:

$$\psi = \overline{\lambda} \left(E + \overline{\lambda} \mathbf{R}_N^* \right) \mathbf{P}_N^* \psi + \left(E + \overline{\lambda} \mathbf{R}_N^* \right) g. \tag{2.2.42}$$

Позначимо $g_1 = \left(E + \overline{\lambda} \mathbf{R}_N^{\star}\right) g$. Маємо:

$$\psi = \overline{\lambda} \left(E + \overline{\lambda} \mathbf{R}_N^* \right) \mathbf{P}_N^* \psi + g_1. \tag{2.2.43}$$

Оскільки $(\mathbf{P}_N \mathbf{R}_N)^* = \mathbf{R}_N^* \mathbf{P}_N^*$, то отримані рівняння спряжені.

Позначимо нарешті

$$\mathbf{T}_N = \mathbf{P}_N(E + \lambda \mathbf{R}_N), \tag{2.2.44}$$

$$\mathbf{T}_{N}^{\star} = \left(E + \overline{\lambda} \mathbf{R}_{N}^{\star}\right) \mathbf{P}_{N}^{\star}. \tag{2.2.45}$$

Тоді рівняння Фредгольма з неперервним ядром можна записати у вигляді:

$$\Phi = \lambda \mathbf{T}_N \Phi + f, \tag{2.2.46}$$

$$\Psi = \overline{\lambda} \mathbf{T}_N^{\star} \Psi + q_1, \tag{2.2.47}$$

де

$$T_N(x,y,\lambda) = P_N(x,y) + \lambda \int_G P_N(x,\xi) R_N(\xi,y,\lambda) \,\mathrm{d}\xi \tag{2.2.48}$$

— вироджене, оскільки є сумою двох вироджених, поліному $P_N(x,y)$, та інтегрального доданку. Покажемо що другий доданок в T_N — вироджений. Дійсно:

$$\int_{G} \sum_{|\alpha+\beta| \le N} a_{\alpha\beta} x^{\alpha} \xi^{\beta} R_N(\xi, y) \, d\xi = \sum_{|\alpha+\beta| \le N} a_{\alpha\beta} x^{\alpha} \int_{G} \xi^{\beta} R_N(\xi, y) \, d\xi. \quad (2.2.49)$$

2.2.3 Альтернатива Фредгольма

Сукупність теорем Фредгольма для інтегральних рівнянь з неперервним ядром називається альтернативою Фредгольма.

Теорема 2.2.3.1 (Перша теорема Фредгольма для неперервних ядер) Якщо інтегральне рівняння Фредгольма II роду з неперервним ядром K(x,y) має розв'язок $\forall f \in C\left(\overline{G}\right)$ то і спряжене рівняння має розв'язок для $\forall g \in C(\overline{G})$ і ці роз'язки єдині.

Доведення. Нехай інтегральне рівняння Фредгольма II роду має розв'язок в $C(\overline{G})$ для \forall вільного члена f, тоді еквівалентне йому рівняння $\Phi = \lambda \mathbf{T}_N \Phi + F$ має такі ж властивості і згідно з першою теоремою Фредгольма для вироджених ядер $D(\lambda) \neq 0$, а спряжене до нього рівняння $\Psi = \overline{\lambda} \mathbf{T}_N^{\star} + g_1$ теж має єдиний розв'язок \forall вільного члена g_1 , еквівалентне до нього (і спряжене до початкового) рівняння має розв'язок $\forall g$.

Теорема 2.2.3.2 (Друга теорема Фредгольма для неперервних ядер)

Якщо інтегральне рівняння Фредгольма II роду має розв'язки не для будь-якого вільного члена f, то однорідні рівняння $\varphi = \lambda \mathbf{K} \varphi$ та $\psi = \overline{\lambda} \mathbf{K}^* \psi$ мають однакову скінчену кількість лінійно-незалежних розв'язків.

Доведення. Нехай інтегральне рівняння Фредгольма II роду має розв'язок не \forall вільного члена f, тоді еквівалентне йому рівняння з виродженим

ядром $\Phi = \lambda \mathbf{T}_N \Phi + F$ має таку ж властивість. Згідно з теоремами Фредгольма для вироджених ядер $D(\lambda) = 0$ (для виродженого ядра \mathbf{T}_N). Однорідні рівняння які їм відповідають мають однакову скінчену кількість лінійно-незалежних розв'язків, еквівалентні до них однорідні рівняння $\varphi = \lambda \mathbf{K} \varphi$ та $\psi = \overline{\lambda} \mathbf{K}^* \psi$ теж мають однакову скінчену кількість лінійно незалежних розв'язків.

Теорема 2.2.3.3 (Третя теорема Фредгольма для неперервних ядер)

Якщо інтегральне рівняння Фредгольма II роду має розв'язок не для довільного вільного члена f, то для існування розв'язку інтегрального рівняння в $C\left(\overline{G}\right)$ необхідно і достатньо, щоб вільний член f був ортогональним всім розв'язкам спряженого однорідного рівняння. Розв'язок не єдиний і визначається з точністю до лінійної оболонки, натягнутої на систему власних функцій оператора \mathbf{K} .

Доведення. Нехай неоднорідне рівняння Фредгольма II роду має розв'язок не для будь-якого вільного члена f, тоді еквівалентне рівняння з виродженим ядром має таку ж властивість, і за третьою теоремою Фредгольма для вироджених ядер $D(\lambda)=0$ (для виродженого ядра \mathbf{T}_N). Розв'язок цього еквівалентного рівняння існує тоді і тільки тоді коли f ортогональний до розв'язків спряженого однорідного рівняння. Але легко бачити, що вільний член початкового і еквівалентного рівнянь співпадають, так само співпадають розв'язки вихідного спряженого однорідного рівняння та еквівалентного.

Зауваження 2.2.3.1 — Для доведення теорем для будь-якого фіксованого значення λ вибиралося ε , таке щоби $|\lambda| < 1/(\varepsilon V)$.

Теорема 2.2.3.4 (Четверта теорема Фредгольма)

Для будь-якого як завгодно великого числа R > 0 в крузі $|\lambda| < R$ лежить лише скінчена кількість характеристичних чисел неперервного ядра K(x,y).

Вправа 2.2.3.1. Доведіть четверту теорему Фредгольма.

2.2.4 Наслідки з теорем Фредгольма

Наслідок 2.2.4.1

З четвертої теореми Фредгольма випливає, що множина характеристичних чисел неперервного ядра не має скінчених граничних точок і не більш ніж злічена $\lim_{n\to\infty} |\lambda_n| = \infty$.

Вправа 2.2.4.1. Доведіть цей наслідок.

Наслідок 2.2.4.2

З другої теореми Фредгольма випливає, що кратність кожного характеристичного числа скінчена, їх можна занумерувати у порядку зростання модулів $|\lambda_1| \leq |\lambda_2| \leq \ldots \leq |\lambda_k| \leq |\lambda_{k+1}| \leq \ldots$, кожне число зустрічається стільки разів, яка його кратність. Також можна занумерувати послідовність власних функцій ядра K(x,y): $\varphi_1, \varphi_2, \ldots, \varphi_k$, φ_{k+1}, \ldots і спряженого ядра $K^*(x,y)$: $\psi_1, \psi_2, \ldots, \psi_k, \psi_{k+1}, \ldots$

Вправа 2.2.4.2. Доведіть цей наслідок.

Наслідок 2.2.4.3

Власні функції неперервного ядра K(x, y) неперервні в області G.

Вправа 2.2.4.3. Доведіть цей наслідок.

Наслідок 2.2.4.4

Якщо $\lambda_k \neq \lambda_i$, то $(\varphi_k, \psi_i) = 0$.

Вправа 2.2.4.4. Доведіть цей наслідок.

2.2.5 Теореми Фредгольма для інтегральних рівнянь з полярним ядром

Розповсюдимо теореми Фредгольма для інтегральних рівнянь з полярним ядром:

$$K(x,y) = \frac{A(x,y)}{|x-y|^{\alpha}}, \quad \alpha < n.$$
(2.2.50)

Покажемо що $\forall \varepsilon > 0$ існує таке вироджене ядро $P_N(x,y)$ що,

$$\max_{x \in \overline{G}} \int_{G} |K(x, y) - P_N(x, y)| \, \mathrm{d}y < \varepsilon, \tag{2.2.51}$$

$$\max_{x \in \overline{G}} \int_{G} |K^{\star}(x, y) - P_{N}^{\star}(x, y)| \, \mathrm{d}y < \varepsilon. \tag{2.2.52}$$

Розглянемо неперервне ядро

$$L_M(x,y) = \begin{cases} K(x,y), & |x-y| \ge 1/M, \\ A(x,y)M^{\alpha}, & |x-y| < 1/M. \end{cases}$$
 (2.2.53)

Твердження 2.2.5.1

При достатньо великому M має місце оцінка

$$\int_{C} |K(x,y) - L_M(x,y)| \, \mathrm{d}y \le \varepsilon. \tag{2.2.54}$$

Доведення. Дійсно:

$$\int_{G} |K(x,y) - L_{M}(x,y)| \, \mathrm{d}y = \int_{|x-y|<1/M} \left| \frac{A(x,y)}{|x-y|^{\alpha}} - A(x,y)M^{\alpha} \right| \, \mathrm{d}y =$$

$$= \int_{|x-y|<1/M} |A(x,y)| \left| \frac{1}{|x-y|^{\alpha}} - M^{\alpha} \right| \, \mathrm{d}y \le$$

$$\leq A_{0} \int_{|x-y|<1/M} \left| \frac{1}{|x-y|^{\alpha}} - M^{\alpha} \right| \, \mathrm{d}y \le$$

$$\leq A_{0} \int_{|x-y|<1/M} \frac{\mathrm{d}y}{|x-y|^{\alpha}} =$$

$$= A_{0} \sigma_{n} \int_{0}^{1/M} \xi^{n-1-\alpha} \, \mathrm{d}\xi =$$

$$= A_{0} \sigma_{n} \frac{\xi^{n-\alpha}}{n-\alpha} \Big|_{0}^{1/M} =$$

$$= \frac{A_{0} \sigma_{n}}{(n-\alpha)M^{n-\alpha}} \le \frac{\varepsilon}{2}, \tag{2.2.55}$$

де σ_n — площа поверхні одиничної сфери.

Завжди можна підібрати вироджене ядро $P_N(x,y)$ таке що

$$|L_M(x,y) - P_N(x,y)| \le \frac{\varepsilon}{2V}, \tag{2.2.56}$$

де V — об'єм області G.

$$\int_{G} |K(x,y) - P_{N}(x,y)| \, \mathrm{d}y = \int_{G} |K(x,y) - L_{M}(x,y) +
+ L_{M}(x,y) - P_{N}(x,y)| \, \mathrm{d}y \leq
\leq \int_{G} |K(x,y) - L_{M}(x,y)| \, \mathrm{d}y +
+ \int_{G} |L_{M}(x,y) - P_{N}(x,y)| \, \mathrm{d}y \leq
\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2V} \int_{G} \mathrm{d}y = \varepsilon.$$
(2.2.57)

Використавши попередню техніку (для неперервного ядра) інтегральне рівняння з полярним ядром зводиться до еквівалентного рівняння з виродженим ядром. Тобто теореми Фредгольма залишаються вірними для інтегральних рівнянь з полярним ядром з тим же самим формулюванням.

Теореми Фредгольма залишаються вірними для інтегральних рівнянь з полярним ядром на обмеженій кусково-гладкій поверхні S та контурі C:

$$\varphi(x) = \lambda \int_{S} K(x, y)\varphi(y) \, dy + f(x), \quad \frac{A(x, y)}{|x - y|^{\alpha}}, \quad \alpha < \dim(S). \quad (2.2.58)$$

2.3 Інтегральні рівняння з ермітовим ядром

Розглядатимемо ядро $K(x,y) \in C\left(\overline{G} \times \overline{G}\right)$ таке що $K(x,y) = K^{\star}(x,y)$.

Визначення 2.3.0.1 (ермітового ядра). Неперервне ядро будемо називати *ермітовим*, якщо виконується

$$K(x,y) = K^*(x,y).$$
 (2.3.1)

Зауваження 2.3.0.1 — Ермітовому ядру відповідає ермітовий оператор тобто $\mathbf{K} = \mathbf{K}^{\star}$.

Лема 2.3.0.1

Для того, щоб лінійний оператор був ермітовим, необхідно і достатньо, щоб для довільної комплексно значної функції $f \in L_2(\overline{G})$ білінійна форма $(\mathbf{K}f, f)$ приймала лише дійсні значення.

Вправа 2.3.0.1. Доведіть цю лему.

Лема 2.3.0.2

Характеристичні числа ермітового оператора дійсні.

Вправа 2.3.0.2. Доведіть цю лему.

Визначення 2.3.0.2 (компактної в рівномірній метриці множини функцій). Множина функцій $M \subset C\left(\overline{G}\right)$ — компактна в рівномірній метриці, якщо з будь-якої нескінченної множини функцій з M можна виділити рівномірно збіжну підпослідовність.

Визначення 2.3.0.3 (рівномірно обмеженої множини функцій). Нескінченна множина $M \subset C\left(\overline{G}\right) - pівномірно обмежена, якщо для будь-якого елемента <math>f \in M$ має місце $\|f\|_{C(\overline{G})} \leq a$, де a єдина константа для M.

Визначення 2.3.0.4 (одностайно неперервної множини функцій). Множина $M \subset C\left(\overline{G}\right) - o\partial$ ностайно неперервна якщо $\forall \varepsilon > 0 \; \exists \delta(\varepsilon) : \forall f \in M, \forall x_1, x_2 : |f(x_1) - f(x_2)| < \varepsilon$ як тільки $|x_1 - x_2| < \delta(\varepsilon)$.

Теорема 2.3.0.1 (Арчела-Асколі, критерій компактності в рівномірній метриці)

Для того, щоб множина $M \subset C\left(\overline{G}\right)$ була компактною, необхідно і достатньо, щоб вона складалась з рівномірно-обмеженої і одностайно-неперервної множини функцій.

Задача 2.3.1*. Доведіть теорему Арчела-Асколі.

Визначення 2.3.0.5 (цілком неперервного оператора). Назвемо оператор **К** *цілком неперервним* з $L_2(G)$ у $C\left(\overline{G}\right)$, якщо він переводить обмежену множину в $L_2(G)$ у компактну множину в $C\left(\overline{G}\right)$ (в рівномірній метриці).

Лема 2.3.0.3 (про цілком неперервність інтегральногго оператора з неперервним ядром)

Інтегральний оператор ${\bf K}$ з неперервним ядром K(x,y) є цілком неперервний з $L_2(G)$ у $C\left(\overline{G}\right)$.

$$\mathcal{A}$$
оведення. Нехай $f \in M \subset L_2(G)$ та $\forall f \in M \colon \|f\|_{L_2(G)} \le A$. Але
$$\|\mathbf{K}f\|_{C(\overline{G})} \le M\sqrt{V}\|f\|_{L_2(G)} \le M\sqrt{V}A, \tag{2.3.2}$$

тобто множина функцій є рівномірно обмеженою.

Покажемо що множина $\{\mathbf{K}f(x)\}$ — одностайно неперервна.

Ядро $K \in C(\overline{G} \times \overline{G})$, а отже є рівномірно неперервним, бо неперервне на компакті, тобто

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x', x'' \in \overline{G} : ||x' - x''|| < \delta \implies |(\mathbf{K}f)(x') - (\mathbf{K}f)(x'')| \le \varepsilon.$$
(2.3.3)

Дійсно,

$$|(\mathbf{K}f)(x') - (\mathbf{K}f)(x'')| = \left| \int_{G} K(x', y)f(y) \, dy - \int_{G} K(x'', y)f(y) \, dy \right| \le$$

$$\le \int_{G} (|K(x', y) - K(x'', y)| \cdot |f(y)|) \, dy \le$$

$$\le \frac{\varepsilon \sqrt{V}}{A\sqrt{V}} \cdot ||f||_{L_{2}(\overline{G})} \le \varepsilon.$$

$$(2.3.4)$$

Приклад 2.3.0.1

Знайти характеристичні числа та власні функції інтегрального оператора

$$\varphi(x) = \lambda \int_{0}^{1} \left(\left(\frac{x}{t} \right)^{2/5} + \left(\frac{t}{x} \right)^{2/5} \right) \varphi(t) dt.$$

Розв'язок. Розділимо ядро наступним чином:

$$\varphi(x) = \lambda x^{2/5} \int_{0}^{1} t^{-2/5} \varphi(t) dt + \lambda x^{-2/5} \int_{0}^{1} t^{2/5} \varphi(t) dt.$$

Позначимо

$$c_1 = \int_0^1 t^{-2/5} \varphi(t) dt, \quad c_2 = \int_0^1 t^{2/5} \varphi(t) dt,$$

тоді

$$\varphi(x) = \lambda c_1 x^{2/5} + \lambda c_2 x^{-2/5}.$$

Підставляючи φ назад у c_i маємо СЛАР

$$\begin{cases} c_1 = \int_0^1 t^{-2/5} (\lambda c_1 t^{2/5} + \lambda c_2 t^{-2/5}) dt, \\ c_2 = \int_0^1 t^{2/5} (\lambda c_1 t^{2/5} + \lambda c_2 t^{-2/5}) dt. \end{cases}$$

Інтегруючи знаходимо

$$\begin{cases} (1-\lambda)c_1 - 5\lambda c_2 = 0, \\ -\frac{5\lambda}{9}c_1 + (1-\lambda)c_2 = 0. \end{cases}$$

Визначник цієї СЛАР

$$D(\lambda) = \begin{vmatrix} 1 - \lambda & -5\lambda \\ -\frac{5\lambda}{9} & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 - \frac{25\lambda^2}{9} = 0,$$

тобто власні числа

$$\lambda_1 = \frac{3}{8}, \quad \lambda_2 = -\frac{3}{2}.$$

З системи однорідних рівнянь при $\lambda = \lambda_1 = 3/8$ маємо $c_1 = 3c_2$. Тоді маємо власну функцію

$$\varphi_1(x) = 3x^{2/5} + x^{-2/5}.$$

При $\lambda=\lambda_2=-3/2$ маємо $c_1=-3c_2$. Маємо другу власну функцію

$$\varphi_2(x) = -3x^{2/5} + x^{-2/5}.$$

Приклад 2.3.0.2

Знайти розв'язок інтегрального рівняння при всіх значеннях параметрів λ , a, b, c:

$$\varphi(x) = \lambda \int_{-1}^{1} \left(\sqrt[3]{x} + \sqrt[3]{y}\right) \varphi(y) \, \mathrm{d}y + ax^2 + bx + c.$$

Розв'язок. Запишемо рівняння у вигляді:

$$\varphi(x) = \lambda \sqrt[3]{x} \int_{-1}^{1} \varphi(y) \, dy + \lambda \int_{-1}^{1} (\sqrt[3]{y} \cdot \varphi(y)) \, dy + ax^2 + bx + c.$$

Введемо позначення:

$$c_1 = \int_{-1}^{1} \varphi(y) \, \mathrm{d}y, \quad c_2 = \int_{-1}^{1} \sqrt[3]{y} \varphi(y) \, \mathrm{d}y,$$

та запишемо розв'язок у вигляді:

$$\varphi(x) = \lambda \sqrt[3]{x}c_1 + \lambda c_2 + ax^2 + bx + c$$

Для визначення констант отримаємо СЛАР:

$$\begin{cases} c_1 - 2\lambda c_2 = \frac{2a}{3} + 2c, \\ -\frac{6\lambda}{5}c_1 + c_2 = \frac{6b}{7}. \end{cases}$$

Визначник системи дорівнює

$$\begin{vmatrix} 1 & -2\lambda \\ -\frac{6\lambda}{5} & 1 \end{vmatrix} = 1 - \frac{12\lambda^2}{5}.$$

Характеристичні числа ядра

$$\lambda_1 = \frac{1}{2} \sqrt{\frac{5}{3}}, \quad \lambda_2 = -\frac{1}{2} \sqrt{\frac{5}{3}}.$$

Нехай $\lambda \neq \lambda_1$, $\lambda \neq \lambda_2$. Тоді розв'язок існує та єдиний для будь-якого вільного члена і має вигляд

$$\varphi(x) = \frac{5\lambda(14a + 30\lambda b + 42c)}{21(5 - 12\lambda^2)} \cdot \sqrt[3]{x} + \frac{28\lambda a + 84\lambda c + 30b}{7(5 - 12\lambda^2)} + ax^2 + bx + c.$$

Нехай

$$\lambda = \lambda_1 = \frac{1}{2} \cdot \sqrt{\frac{5}{3}}.$$

Тоді система рівнянь має вигляд:

$$\begin{cases} c_1 - \sqrt{\frac{5}{3}}c_2 = \frac{2a}{3} + 2c, \\ c_1 - \sqrt{\frac{5}{3}}c_2 = -\sqrt{\frac{5}{3}}\frac{6b}{7}. \end{cases}$$

Ранги розширеної і основної матриці співпадатимуть якщо має місце рівність

$$\frac{2a}{3} + 2c = -\sqrt{\frac{5}{3}} \cdot \frac{6}{7} \cdot b \quad (\star)$$

При виконанні цієї умови розв'язок існує

$$c_2 = c_2$$
, $c_1 = \sqrt{\frac{5}{3}}c_2 + \frac{2a}{3} + 2c$.

Таким чином розв'язок можна записати

$$\varphi(x) = \frac{1}{2} \sqrt{\frac{5}{3}} \sqrt[3]{x} \left(\sqrt{\frac{5}{3}} c_2 + \frac{2a}{3} + 2c \right) + \frac{1}{2} \sqrt{\frac{5}{3}} c_2 + ax^2 + bx + x.$$

Якщо

$$\lambda = \lambda_1 = \frac{1}{2} \cdot \sqrt{\frac{5}{3}}$$

а умова (\star) не виконується, то розв'язків не існує.

Нехай

$$\lambda = \lambda_2 = -\frac{1}{2}\sqrt{\frac{5}{3}}$$

Після підстановки цього значення отримаємо СЛАР

$$\begin{cases} c_1 + \sqrt{\frac{5}{3}}c_2 = \frac{2a}{3} + 2c, \\ c_1 + \sqrt{\frac{5}{3}}c_2 = \sqrt{\frac{5}{3}}\frac{6b}{7}. \end{cases}$$

Остання система має розв'язок при умові

$$\frac{2a}{3} + 2c = \sqrt{\frac{5}{3}} \cdot \frac{6}{7} \cdot b, \quad (\star\star)$$

При виконанні умови (⋆⋆), розв'язок існує

$$c_2 = c_2$$
, $c_1 = -\sqrt{\frac{5}{3}}c_2 + \frac{2a}{3} + 2c$.

Розв'язок інтегрального рівняння можна записати:

$$\varphi(x) = \frac{1}{2}\sqrt{\frac{5}{3}}\sqrt[3]{x}\left(-\sqrt{\frac{5}{3}}c_2 + \frac{2a}{3} + 2c\right) + \frac{1}{2}\sqrt{\frac{5}{3}}c_2 + ax^2 + bx + c.$$