Lecture 20: Parallel performance

Thursday, March 15, 2018 10:05 AM

Outline

- Finish up parallel architectures
- Amdahl's Law
- Some reasons parallelism is hard
- Roofline model

Fire 1:2 in Welman 126 Extra office hours Mon. 4:30.6

image

Sensor

(CCD or CMOS)

Lens

5 x 5 stencil

Stercil -> Image conviction

Amdahl's Law (again)

Performance

Parallelism

50% parallelizable

Lectures Page 3

2 Slow that Load imbalance
Load imbalance
Solving imbalance
-> make sore all theds have equal partitions
Much worse up dynamic Derallelism Where you "create" work as you go
-> Work greene whre all processors gut new work to feeth work from lace when ide
-> Work Steeling (cille)
Scaling
-> Perform "sare" for equal work pur processor 1 user to as # processors and amount of work 1,000, users & each user has some perf -> Scaling throughput
Weak Scaling
Strong scaling
to for a constant problem size incr processors decr letercy
Speed > Operations per second -> FLOPS GFLOPS Trillions GFLOPS GFLOPS Trillions
4 2 (-1) (-2) (-1)
4 cons 3 SIMD SIMD 256-6:4 (8 floats) 46Hz
4.3.8.4.10° = 384 GFLOPS ~
Memory bandwilth for getting data infort > 34,163/s
Memory bandwidth for getting data infort > 34.163/s Arithmetic intensity byte of data 3075 3 1d/st 44 bytes/flow 12 bytes 7
byte of data 3022
389 Tobyts ybyks
28 floor 3468/5 [OOF Fire model
2 BHOST 37
1 by 16 off
(Atusin)
Top 500 supercomputers (https://www.top500.org/lists/2017/11/)

Roofline model of performance

