PC 7 : Convergence en loi & Théorème central de limite

Les exercices 1 et 2 reprennent et détaillent des points vus en cours, et sont corrigés.

Exercice 1 (Convergence en loi vers une constante implique convergence en probabilité). On suppose $X_n \xrightarrow{\mathcal{L}} c$ pour des v.a. (X_n) à valeurs réelles et $c \in \mathbb{R}$. Soit $\phi : \mathbb{R}_+ \to \mathbb{R}$ définie par $\phi(x) = \min(x, 1)$.

- 1. Soit $\epsilon > 0$. Quelle est la limite de $\mathbb{E}[\phi(|X_n c|/\epsilon)]$ quand $n \to \infty$?
- 2. En déduire que $X_n \to c$ en probabilité quand $n \to \infty$.

Solution. 1. Pour $\epsilon > 0$ fixé, la fonction $x \mapsto \phi(|x-c|/\epsilon)$ est continue et bornée. Par la convergence en loi de X_n vers c, on a $\lim_{n\to\infty} \mathbb{E}[\phi(|X_n-c|/\epsilon)] = \mathbb{E}[\phi(|c-c|/\epsilon)] = 0$.

2. On a

$$\begin{split} \mathbb{E}\left[\phi\left(\frac{|X_n-c|}{\epsilon}\right)\right] &= \mathbb{E}\left[\phi\left(\frac{|X_n-c|}{\epsilon}\right)\mathbbm{1}_{\{|X_n-c|\leq \epsilon\}}\right] + \mathbb{E}\left[\mathbbm{1}_{\{|X_n-c|> \epsilon\}}\right] \\ &= \mathbb{E}\left[\phi\left(\frac{|X_n-c|}{\epsilon}\right)\mathbbm{1}_{\{|X_n-c|\leq \epsilon\}}\right] + \mathbb{P}\left(|X_n-c|> \epsilon\right). \end{split}$$

Dans la question 1, on a montré que le terme à gauche tend vers 0 pour tout $\epsilon > 0$ lorsque $n \to \infty$. Comme les deux termes à droite sont positifs, cela implique qu'ils tendent tous les deux vers 0 lorsque $n \to \infty$. La convergence de $\mathbb{P}(|X_n - c| > \epsilon)$ vers 0 quelque soit $\epsilon > 0$ implique la convergence en probabilité de X_n vers c.

Exercice 2. Soient $(X_n)_{n\geq 1}$, $(Y_n)_{n\geq 1}$ deux suites de variables aléatoires réelles, et X,Y deux variables aléatoires réelles que $X_n \xrightarrow{\mathcal{L}} X$ et $Y_n \xrightarrow{\mathcal{L}} Y$.

(**Lemme de Slutsky**) On suppose que Y = a est constante. Montrer que $(X_n, Y_n) \xrightarrow{\mathcal{L}} (X, a)$ en loi. Indications. On pourra utiliser le fait $Y_n \xrightarrow{\mathbb{P}} Y$ en probabilité (exercice 1) et écrire pour $\epsilon > 0$ fixé,

$$|\mathbb{E}F(X_n, Y_n) - \mathbb{E}F(X, a)| \le |\mathbb{E}F(X_n, a) - \mathbb{E}\left[F(X, a)\right]| + \mathbb{E}|F(X_n, Y_n) - F(X_n, a)| \mathbb{1}_{\{|Y_n - a| \ge \epsilon\}} + \mathbb{E}|F(X_n, Y_n) - F(X_n, a)| \mathbb{1}_{\{|Y_n - a| < \epsilon\}}.$$

On admettra également que si Z_n est une suite de variables aléatoires à valeurs dans \mathbb{R}^k , alors $Z_n \xrightarrow{\mathcal{L}} Z$ si et seulement si pour toute fonction lipschitzienne bornée $f: \mathbb{R}^k \to \mathbb{R}$, on a $\mathbb{E}f(Z_n) \to \mathbb{E}f(Z)$. Est-il toujours vrai que $(X_n, Y_n) \to (X, Y)$ en loi?

Solution. Il suffit de montrer que $\mathbb{E}[f(X_n,Y_n)] \to \mathbb{E}[f(X,Y)]$ pour une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ lipschitzienne borné. Supposons que $|f(x,y)-f(x',y')| \le L(|x-x'|+|y-y'|)$ pour tous $x,x',y,y' \in \mathbb{R}$. Pour $\epsilon > 0$ fixé, suivons l'indication en majorant $|\mathbb{E}[f(X_n,Y_n)] - \mathbb{E}[f(X,a)]|$ par

$$|\mathbb{E}[f(X_n, a)] - \mathbb{E}[f(X, a)]| + \mathbb{E}[|f(X_n, Y_n) - f(X_n, a)| \mathbb{1}_{\{|Y_n - a| \ge \epsilon\}}] + \mathbb{E}[|f(X_n, Y_n) - f(X_n, a)| \mathbb{1}_{\{|Y_n - a| < \epsilon\}}].$$

La fonction $x \mapsto f(x, a)$ est continue bornée donc le premier terme de cette somme tend vers 0 (car X_n converge en loi vers X). Le deuxième terme est majoré par $2\sup|f|\cdot\mathbb{P}\left(|Y_n-a|>\epsilon\right)$ qui tend vers 0 (car $Y_n\to a$ en probabilité). Pour le dernier terme, on remarque que

$$|f(X_n, Y_n) - f(X_n, a)| \mathbb{1}_{\{|Y_n - a| < \epsilon\}} \le L\epsilon.$$

Ainsi, pour n suffisamment grand,

$$|\mathbb{E}\left[f(X_n, Y_n)\right] - \mathbb{E}\left[f(X, a)\right]| \le 3L\epsilon.$$

Le résultat désiré en découle.

Il n'est pas vrai en général que $(X_n,Y_n) \to (X,Y)$ en loi. En effet, considérons les variables aléatoires $X_n = Z = Y_n$ pour tout $n \geq 1$, avec Z gaussienne centrée. La variable Z étant symétrique, on a $X_n \to -Z$ en loi. Si $(X_n,Y_n) \to (-Z,Z)$ en loi, alors $X_n + Y_n \to -Z + Z$ en loi (car la fonction $(x,y) \mapsto x + y$ est continue), c'est à dire 2Z = 0 en loi, ce qui n'est évidemment pas vrai.

Exercice 3. Soit X_n telle que $\mathbb{P}(X_n = 0) = p_n$ et $\mathbb{P}(X_n = n) = 1 - p_n$ pour tout $n \in \mathbb{N}$.

- 1. Donner une CNS sur la suite (p_n) pour que, quelle que soit la fonction $f: \mathbb{R} \to \mathbb{R}$ continue à support compact, $\mathbb{E}[f(X_n)]$ converge dans \mathbb{R} quand $n \to \infty$. On rappelle que si f est à support compact, il existe un compact $K \subset \mathbb{R}$ tel quel, pour tout $x \notin K$, f(x) = 0.
- 2. Donner une CNS sur (p_n) pour que X_n converge en loi et donner sa limite.

Exercice 4. Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. i.i.d. de carré intégrable, de moyenne m et de variance $\sigma^2>0$. En notant $\bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$ et $\hat{\sigma}_n^2=\frac{1}{n-1}\sum_{i=1}^n (X_i-\bar{X}_n)^2$, étudier la limite de $\hat{\sigma}_n^2$ puis montrer que

$$\sqrt{n}\frac{\bar{X}_n - m}{\hat{\sigma}_n} \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, 1).$$

Exercice 5. Soit X_n une v.a. de loi uniforme sur $\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$.

- 1. Trouver la limite en loi de la suite $(X_n)_{n\geq 1}$. On notera X une v.a. ayant cette loi.
- 2. Montrer que $\mathbb{P}(X_n \in \mathbb{Q})$ ne converge pas vers $\mathbb{P}(X \in \mathbb{Q})$. Comparer avec la définition de la convergence en loi.

Exercice 6 (CONVERGENCE EN LOI, CONVERGENCE DES DENSITÉS?). Pour tout $n \ge 1$, on définit une fonction F_n sur [0,1] par

$$F_n: x \mapsto x - \frac{\sin(2\pi nx)}{2\pi n}.$$

- 1. Montrer que pour tout $n \ge 1$, la fonction F_n (prolongée par 0 pour $x \le 0$ et par 1 pour $x \ge 1$) est la fonction de répartition d'une variable X_n à densité.
- 2. Montrer que X_n converge en loi vers une variable à densité X, mais que la densité de X_n ne converge pas au sens de la convergence simple.

Exercice 7 (LE TCL N'EST PAS UNE CONVERGENCE EN PROBABILITÉ). Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes de même loi. On suppose que $\mathbb{E}[X_1^2] < \infty$, et on note $m = \mathbb{E}[X_1]$, $\sigma^2 = \text{Var}(X_1)$ et $Z_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n (X_k - m)$.

- 1. Rappeler la convergence en loi de la suite $(Z_n)_{n\geq 1}$.
- 2. Montrer que la suite $(Z_{2n} Z_n)_{n \geq 1}$ converge en loi vers une limite qu'on identifiera. Indication. On pourra écrire $Z_{2n} - Z_n = aZ_n + bZ'_n$ pour $a, b \in \mathbb{R}$ choisis de sorte Z_n et Z'_n soient indépendantes et de même loi.
- 3. En déduire que si $\sigma^2 > 0$ alors la suite $(Z_n)_{n \ge 1}$ ne converge pas en probabilité.

Exercice 8 (Théorème de Cochran). Soit Z un vecteur gaussien de \mathbb{R}^n d'espérance nulle et de matrice de covariance I_n où I_n est la matrice identité de dimension n. Soit F un sous-espace vectoriel de \mathbb{R}^n de dimension p. On note Π_F (resp. $\Pi_{F^{\perp}}$) la matrice de projection orthogonale sur F (resp. F^{\perp}).

- 1. Introduire une base orthonormée adaptée à la décomposition $\mathbb{R}^n = F \oplus F^{\perp}$ et donner les expressions de Π_F et $\Pi_{F^{\perp}}$ dans cette nouvelle base. Si on note P la matrice de passage de la base canonique à cette nouvelle base, quelle est la loi de $Z' = P^T Z$?
- 2. Déterminer les lois des vecteurs $\Pi_F Z$ et $\Pi_{F^{\perp}} Z$, et montrer que ces vecteurs sont indépendants.

- 3. Donner les lois de $\|\Pi_F Z\|^2$ et $\|\Pi_{F^{\perp}} Z\|^2$.
- 4. Application. Soient X_i , i = 1, ..., n des variables aléatoires indépendantes de loi normale $\mathcal{N}(\mu, \sigma^2)$ avec $\mu \in \mathbb{R}$ et $\sigma > 0$. On pose $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ et $S_n^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X}_n)^2$. Déterminer la loi jointe du vecteur aléatoire (\bar{X}_n, S_n^2) .

Exercice 9. Soient a, b deux réels et $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires définie par $X_0 = 0$, et pour $n \geq 0$,

$$X_{n+1} = aX_n + b + \xi_{n+1}$$

où $(\xi_n)_{n\geq 1}$ est une suite i.i.d. de $\mathcal{N}(0,1)$ (en particulier, ξ_{n+1} est indépendante de X_n).

- 1. Montrer que pour tout $n \geq 1$, X_n suit une loi gaussienne de moyenne μ_n et de variance σ_n^2 à déterminer.
- 2. En déduire la fonction caractéristique de X_n , puis les valeurs de a et b pour lesquelles la suite $(X_n)_{n\geq 1}$ converge en loi. On précisera la limite.
- 3. On suppose maintenant que |a| < 1.
 - (a) Montrer que, pour tout $n \geq 1$, le vecteur $Y_n = (X_n, X_{n+1})$ est un vecteur gaussien dont on calculera la moyenne et la matrice de covariance. On pourra écrire Y_n comme l'image par une transformation affine d'un vecteur gaussien.
 - (b) Quelle est la fonction caractéristique de Y_n ? Montrer que $(X_n, X_{n+1})_{n \in \mathbb{N}}$ converge en loi vers un vecteur aléatoire admettant une densité sur \mathbb{R}^2 , que l'on précisera.
 - (c) En déduire que la suite $(X_n)_{n\in\mathbb{N}}$ ne peut pas converger en probabilité.

Exercice 10 (STABILITÉ GAUSSIENNE). Pour une constante $m \in \mathbb{R}$, on notera $\mathcal{N}(m,0)$ la masse de Dirac en m, que l'on verra comme une loi gaussienne dégénérée.

- 1. Soit X une v.a. gaussienne centrée réduite; rappeler sa fonction caractéristique $t \mapsto \phi_X(t) = \mathbb{E}[e^{itX}]$ et en donner le développement en série entière en 0; en déduire l'expression des moments de $X : \mathbb{E}[X^k]$ pour tout $k \ge 0$.
- 2. Soit $(X_n)_{n\geq 1}$ une suite de v.a. gaussiennes $\mathcal{N}(m_n, \sigma_n)$ qui converge en loi vers une v.a. X qui est finie presque sûrement. Montrer successivement que :
 - (a) la suite $(m_n)_{n\geq 1}$ est bornée; on pourra raisonner par l'absurde et considérer une suite extraite de $(m_n)_{n\geq 1}$ qui converge vers $+\infty$ ou vers $-\infty$;
 - (b) la suite $(\sigma_n)_{n>1}$ converge vers une limite $\sigma \in [0, \infty[$;
 - (c) la suite $(m_n)_{n\geq 1}$ converge vers une limite $m\in\mathbb{R}$;
 - (d) la variable X suit la loi $\mathcal{N}(m, \sigma)$.