# New Results Concerning Collective Motion in Triaxial Nuclei

### Robert POENARU<sup>1,2</sup>

<sup>1</sup>Dept. of Th. Phys. @ IFIN-HH Magurele, Romania

<sup>2</sup>Doctoral School of Physics Bucharest, Romania

UB Faculty of Physics Meeting June 21, 2022



### Table of Contents

Nuclear Shapes



### Nuclear Deformation

Most of the nuclei are either *spherical* or *axially symmetric* in their ground-state.

Deformation parameter  $\beta$  (Bohr, 1969): preserves axial symmetry



Figure 1: spherical:  $\beta = 0$  prolate:  $\beta > 0$  oblate:  $\beta < 0$ 

# **Nuclear Triaxiality**

#### Non-axial shape

Deviations from symmetric shapes can occur across the chart of nuclides  $\rightarrow$  **triaxial nuclei**.

The triaxiality parameter  $\gamma$  (Bohr, 1969): departure from axial symmetry





# Fingerprints for Triaxiality

- Experimentally, stable triaxial nuclei represent a real challenge
- Clear signatures for confirming stable triaxiality in nuclei
  - Chiral symmetry breaking (Frauendorf, 1997)
  - **Wobbling motion** (Bohr & Mottelson, 1975)

### Wobbling Motion (WM)

- Unique to non-axial nuclei
- Predicted 50 years ago for even-A nuclei
- First experimental evidence for <sup>163</sup>Lu (Ødegård, 2001)
- Currently: confirmed wobblers within the mass regions  $A \approx [100, 130, 160, 180]$ .



### Energy of Deformed Nuclei

#### Collective Motion

- A nucleus droplet can generate angular momentum from the rotation and vibration of the droplet itself
- Each individual nucleon contributes to the total angular momentum → collectiveness
- ARotation can occur only if the nuclear potential is deformed



# Triaxial Rotor Energy

- A triaxial nucleus can rotate about any of the three axes
- Rotation about the axis with **the largest moment of inertia** (MOI) is energetically the most favorable:  $E_{\rm rot} \propto \frac{\hbar^2}{2\mathcal{I}_{\rm max}}I(I+1)$
- MOI anisotropy  $\rightarrow$  the main rotation around  $\mathcal{J}_{\text{max}}$  is disturbed by the other two axes  $\rightarrow$  total motion of the rotating nucleus has an oscillating behavior



### Wobbling Motion

- Total angular momentum I disaligned w.r.t. body-fixed axes
- ullet The a.m. **precesses** and **wobbles** around the axis with  $\mathcal{J}_{\mathsf{max}}$
- The precession of I can increase by tilting
- Tilting by an energy quanta  $\sim$  *vibrational character*  $\rightarrow$  **wobbling phonon**  $n_w = 0, 1, 2...$



# Wobbling Spectrum

#### Even-A Nuclei

- Employing the Harmonic Approximation (Bohr, 1969)
- Ĥ composed of a rotational part and harmonic oscillation (i.e., wobbling) part:

$$\hat{H} = \frac{\hbar^2}{2\mathcal{J}_{\text{max}}}I(I+1) + \hbar\omega_{\text{wob}}\left(n_w + \frac{1}{2}\right), n = 0, 1, 2, \dots$$
 (1)



### New Results for A=130

#### Recent findings for even-even nuclei

- Two wobbling bands have been identified experimentally in <sup>130</sup>Ba (Petrache et al., 2019)
- DFT+PRM description of the wobbling motion described the excited spectra (Chen et al, 2019)
- ullet Stable triaxiality for eta=0.24 and  $\gamma=21.5^\circ$
- ullet Infer spin-dependence for  $\mathcal{J}_{1,2,3}$

### Harmonic Approximation

- Employed an energy spectrum of harmonic type as Eq. 1
- Reproduced the excited spectra {B1, B2}



Figure from Petrache et al., 2019

### New Results for A=130 II

#### Harmonic Approximation

• Employed an energy spectrum of harmonic type according to Eq. 1:

$$E_{I,n_w} = \frac{\hbar^2}{2\mathcal{J}_3}I(I+1) + \hbar\omega_{\text{wob}}(n_w + \frac{1}{2})$$
 (2)

• wobbling frequency is a function of the three MOI (fixed ordering  $\mathcal{J}_3 > \mathcal{J}_{1,2}$ )

$$\hbar\omega_{\mathsf{wob}} = 2I \times f(\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3)$$
 (3)



Figure from Petrache et al., 2019

# Experimental Evidence



Wobbling nuclei (up to date) *Poenaru, 2022, in progress*