

Universidade Federal de Pelotas

Instituto de Física e Matemática

Departamento de Informática

Bacharelado em Ciência da Computação

Arquitetura e Organização de Computadores II

Aula 9

2. MIPS pipeline: construção do bloco operativo pipeline, visualização da execução das instruções no pipeline, o bloco de controle pipeline.

Prof. José Luís Güntzel

guntzel@ufpel.edu.br

www.ufpel.edu.br/~guntzel/AOC2/AOC2.html

Bloco Operativo dos MIPS Monociclo

É possível identificar 5 etapas na execução

Bloco Operativo em Pipeline (*Pipeline Datapath*)

É necessário separar a parte operativa em cinco partes, cada uma correspondendo a um estágio de execução de uma instrução:

- 1. BI: busca de instrução
- 2. DI: decodificação da instrução e leitura do banco de registradores
- 3. EX: execução ou cálculo de endereço
- 4. MEM: acesso à memória de dados
- 5. ER: escrita no banco de registradores

Até cinco instruções podem estar em execução durante um dado ciclo de clock

ComputaçãoUFPel

slide 9.4

Bloco Operativo em Pipeline

- □ Um modo de mostrar a execução em pipeline é imaginar que cada instrução executa em seu próprio bloco operativo
- Os blocos operativos são colocados deslocados uns em relação aos outros, a fim de mostrar a relação entre as instruções

Bloco Operativo em Pipeline

Execução das 3 instruções 1w pressupondo o uso de pipeline

Bloco Operativo em Pipeline

Bloco Operativo em Pipeline: executando lw

ComputaçãoUFPel

slide 9.8

Bloco Operativo em Pipeline: executando lw

decodificação da instrução

ComputaçãoUFPel

slide 9.9

Bloco Operativo em Pipeline: executando lw

ComputaçãoUFPel

slide 9.10

Bloco Operativo em Pipeline: executando lw

ComputaçãoUFPel

slide 9.11

Bloco Operativo em Pipeline: executando lw

ComputaçãoUFPel

slide 9.12

Bloco Operativo em Pipeline: executando sw

ComputaçãoUFPel

slide 9.13

Bloco Operativo em Pipeline: executando sw

decodificação da instrução

Idêntico ao 2º estágio do lw

ComputaçãoUFPel

slide 9.14

Bloco Operativo em Pipeline: executando sw

ComputaçãoUFPel

slide 9.15

Bloco Operativo em Pipeline: executando sw

ComputaçãoUFPel

slide 9.16

Bloco Operativo em Pipeline: executando sw

ComputaçãoUFPel

slide 9.17

Bloco Operativo em Pipeline

- Cada componente no bloco operativo só pode ser usado em um único estágio do pipeline
- **Componentes:**
 - Memória de instruções
 - Portas de leitura do banco de registradores
 - ULA
 - Memória de dados
 - Porta de escrita do banco de registradores

Bloco Operativo em Pipeline: executando lw

ComputaçãoUFPel

slide 9.19

Bloco Operativo Pipeline Corrigido

Bloco Operativo Pipeline Corrigido

Bloco Operativo Pipeline Corrigido executando lw

Bloco Operativo Pipeline Corrigido executando lw

decodificação da instrução 0 DI/EX EX/MEM MEM/ER BI/DI Desl. à esq. 2 bits [25-21] Reg a ser lido #1 Dado [20-16] Reg a ser **▶**PC lido #1 Zero Endereço lido #2 **ULA** Registradores Instrução 0 Reg a ser 0 Dado Endereco Resultado[†] escrito Dado lido #2 Dado de Memória Memória escrita X de dados de Instruções Dado a ser [15-0] escrito sinal [15-11] ComputaçãoUFPel slide 9.23 Prof. José Luís Güntzel

Bloco Operativo Pipeline Corrigido executando 1w

Bloco Operativo Pipeline Corrigido executando lw

Bloco Operativo Pipeline Corrigido executando lw

Executando uma Seqüência de Instruções

□ Considere a seguinte seqüência de instruções:

```
lw $10, 20($1)
sub $11, $2, $3
```

□ Representá-la usando diagrama de pipeline com múltiplos ciclos de *clock* (relógio)

Executando uma Seqüência de Instruções

Diagrama de Pipeline com Múltiplos Ciclos de Clock: versão 1

- □ Diagrama não-convencional
- □ Os recursos usados em cada estágio estão identificados

Executando uma Seqüência de Instruções

Diagrama de Pipeline com Múltiplos Ciclos de Clock: versão 2

- □ Diagrama tradicional
- □ Identifica cada estágio pelo nome

Executando uma Seqüência de Instruções

 □ Representar a seqüência de instruções abaixo usando diagrama de pipeline com um único ciclo de *clock* (relógio)

```
lw $10, 20($1)
sub $11, $2, $3
```

Executando uma Seqüência de Instruções

Bloco Operativo em Pipeline com Sinais de Controle

ComputaçãoUFPel

slide 9.37

Projeto do Bloco de Controle

- □ Iremos aproveitar ao máximo os sinais de controle do MIPS monociclo
- □ Isto inclui utilizar a mesma lógica de controle para:
 - A ULA
 - O desvio condicional
 - O multiplexador que controla a fonte do dado do registradordestino
 - E demais linhas de controle mostradas na transparência anterior...

Relembrando o Controle da ULA

Correspondência entre "funct" & "ULAOp" com "controle da ULA"

Instrução	ULAOp	Campo "funct"	Operação da ULA	Operação da ULA	
lw	00	XXXXX	adição	010	
sw	00	XXXXXX adição		010	
beq	01	XXXXXX	subtração	110	
add	10	100000	adição	010	
sub	10	100010	subtração	110	
and	10	100100	and	000	
or	10	100101	or	001	
slt	10	101010	set on less than	111	

Conclusões:

- Apenas algumas das 64 combinações possíveis a partir dos 6 bits do campo "funct" são de interesse
- O campo "funct" somente interessa quando ULAOp = 10

Projeto do Bloco de Controle

Reagrupando os Sinais de Controle do MIPS monociclo, a fim de reaproveitá-los...

	Sinais de Controle a serem usados no estágio de execução/cálculo do endereço				Sinais de Controle a serem usados no estágio de acesso à memória			Sinais de Controle a serem usados no estágio de escrita no banco de registradores	
instrução	RegDst	ULAOp1	ULAOp0	ULAFonte	DvC	LerMem	EscMem	EscReg	MemParaReg
Tipo R	1	1	0	0	0	0	0	1	0
lw	0	0	0	1	0	1	0	1	1
SW	X	0	0	1	0	0	1	0	X
beq	X	0	1	0	1	0	0	0	X

- □ Conforme pode-se perceber, os sinais de controle são essencialmente os mesmos do MIPS monociclo
- A única particularidade é que eles precisam "viajar" pelos estágios juntamente com a instrução

Projeto do Bloco de Controle

ComputaçãoUFPel

slide 9.41

Prof. José Luís Güntzel