

Course > Unit 5: ... > Lec. 10:... > 9. Exer...

9. Exercise: Definition of independence

Exercises due Mar 13, 2020 05:29 IST Completed

Exercise: Definition of independence

1/1 point (graded)

Suppose that X and Y are independent, with a joint PDF that is uniform on a certain set S: $f_{X,Y}\left(x,y\right)$ is constant on S, and zero otherwise. The set S

_						
	must	I	_			
()	must	ne	а	รถ	пar	~
\ /	111456	\sim	u	- 4	aaı	٠.

	can	be	any	set.
\			,	

Solution:

Let A be the set of all x on which $f_X(x)$ is positive and let B be the set of all y on which $f_Y(y)$ is positive. Then, the set S, on which $f_{X,Y}(x,y) = f_X(x) f_Y(y) > 0$, will be the Cartesian product of A with B; it is not necessarily a square, but it cannot be an arbitrary set.

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 5: Continuous random variables:Lec. 10: Conditioning on a random variable; Independence; Bayes' rule / 9. Exercise: Definition of independence

© All Rights Reserved

