Learning in Graphical Models

Prof. Alexander Ihler

$$\max_{q(x)} \mathbb{H}(q) \qquad s.t. \ \forall i \ \mathbb{E}_q[u_i(x)] = \hat{\mu}_i$$

Shorthand:

$$\mu_i(q) = \mathbb{E}_q[u_i(x)]$$

- Maximum Entropy Learning Principle
 - Identify some features $u_i(x)$, and their desired expectations
 - Find the most "agnostic" distribution that matches the data
 - q(x) can be any distribution, of any form

$$\max_{q(x)} \mathbb{H}(q) \qquad s.t. \ \forall i \ \mathbb{E}_q[u_i(x)] = \hat{\mu}_i$$

Shorthand:

$$\mu_i(q) = \mathbb{E}_q[u_i(x)]$$

Lagrangian:

$$\max_{q(x)} \min_{\theta} \ \mathbb{H}(q) + \theta \cdot (\mu(q) - \hat{\mu})$$

Dual:
$$\min_{\theta} \max_{q(x)} \mathbb{H}(q) + \theta \cdot (\mu(q) - \hat{\mu})$$

$$\Leftrightarrow \min_{\theta} \max_{q(x)} -D(q||p) + A(\theta) - \theta \cdot \hat{\mu}$$

$$\Rightarrow q^*(x) = p(x) \implies \min_{\theta} A(\theta) - \theta \cdot \hat{\mu}$$

Optimal q* is exponential family with features u(x)! Optimal parameters θ are the MLE estimates!

Define:

$$Z=\sum_x f(x)$$
 $p(x)=Z^{-1}f(x)$ then, $D(q\|p)$ $=\mathbb{E}_q[\log q-\log p]$ $=-\mathbb{H}(q)- heta\cdot\mu(q)+A(heta)$

 $f(x) = \exp(\theta \cdot u(x))$

- Example: Gaussian distribution
 - Exponential family with features x, x²
 - Has the highest entropy of any distribution with variance v

$$\mathbb{E}[(x - \mu)^2] = 1$$

$$\mathbb{H}[x] \approx 1.41$$

