11月5日 7-4

2024-11-05

目次

2 項分布	1
正担公布	1

2項分布

 $X \sim Bin(n,p)$ とする。

p の推定量 $\hat{p}=\frac{X}{n}$ は $E_p[\hat{p}]=\frac{E_p[X]}{n}=\frac{np}{n}=p$ より不偏推定量である。推定量の分散は $Var[\hat{p}]=\frac{Var[X]}{n^2}=\frac{p(1-p)}{n}$ である。

2 項分布の確率変数 $f(x,p)=p^x(1-p)^{n-x}\binom{n}{x}$ の対数をp で微分すると

$$\begin{split} \ell'(p,x) &= \frac{\partial}{\partial p} \bigg(x \log p + (n-x) \log (1-p) + \log {n \choose x} \bigg) \bigg) \\ &= \frac{x}{p} + \frac{-(n-x)}{1-p} = \frac{x-np}{p(1-p)} \end{split}$$

となる。従ってフィッシャー情報量は

$$I(p) = E\left[\ell'(p, X)^{2}\right] = \frac{E\left[\left(X - np\right)^{2}\right]}{\left(p(1 - p)\right)^{2}} = \frac{np(1 - p)}{\left(p(1 - p)\right)^{2}} = \frac{n}{p(1 - p)}$$

となり、これは $\frac{1}{Var_p[\hat{p}]}$ に一致する。したがって \hat{p} はUMVUであることが確かめられた。

正規分布

次に正規分布の母平均 μ の推定において標本平均X が UMVU であることを示す。 まず、 μ に関するフィッシャー情報量を求める。

$$\ell(\mu, x) = -\frac{(x - \mu)^2}{2\sigma^2} - \frac{1}{2}\log(2\pi\sigma^2)$$

 $\epsilon \mu \,$ で偏微分すると $\ell'(\mu,x) = rac{x-\mu}{\sigma^2} \,$ を得る。したがって、

$$I(\mu) = \frac{E\left[(X - \mu)^2\right]}{\sigma^4} = \frac{1}{\sigma^2}$$

となり、 X^- が UMVU であることが示された。