

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_A and \mathbf{v}_A such that $T_A(\mathbf{v}_A) = T_A(\mathbf{v}_A)$

vectors
$$v_1$$
 and v_2 such that $T_A(v_1) = T_A(v_2)$.

a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 &$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

A= $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

A= $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

C) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 &$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A =$$

$$\begin{bmatrix} 7 \\ 65 \end{bmatrix} - \begin{bmatrix} 65 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 65 \end{bmatrix}$$

5. (20 points) For each matrix A given below determine—if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$

o) A

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

The matrix is not one-to-one, because the third column does not have a leading one.

$$T_A(V_1) = T_A(V_2)$$
 $T_A(V_1-V_2) = 0$

$$T_A(V_1) = T_A(V_2)$$

$$x_1 - 2x_3 = 0$$

 $x_2 + 2x_3 = 0$

$$x_1 = 2x_3$$

$$x_2 = -2x_3$$

$$x_3$$
 Nul A & Span $\left(\begin{bmatrix} 2\\ -2\\ 0 \end{bmatrix}\right)$

$$V_1 = \begin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix} \quad V_2 = \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix}$$

$$x^3 = x^3$$

11 12 13 14

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
a) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$
b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$
b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 4 \end{bmatrix}$
b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \\ 0 & 3 & 4 \\ 0 & 4 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \\ 0 & 4 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 1 & 0 \\$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A: \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors v_1 and v_2 such that $T_A(v_1) = T_A(v_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

a)
$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 3 & 4 & 4 & 0 \end{bmatrix}$$
 $\Rightarrow \begin{bmatrix} 2 & 3 & 4 & 0 \\ 0 & 2 & 4 & 0 \\ 3 & 4 & 4 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 2 & 3 & 4 & 0 \\ 0 & 2 & 4 & 0 \\ 3 & 4 & 4 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 3 & 4 & 4 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 2 & 4 & 4 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 1 & 2 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 2 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 2 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 1 & 2$

one to one

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

60 4

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

c) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

Solution is one to one as every run bead Column has

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A: \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

$$\mathbf{b)} \ A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

a) is one-to-one

$$\begin{cases} 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{cases} = \begin{cases} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{cases} - 2R3 \begin{cases} 10 \\ 0 & 00 \\ 0 & 12 \end{cases} = \begin{cases} 10 \\ 0 & 00 \\ 0 & 12 \end{cases}$$

B) is not one to one