Roll .	No.:		gnature :										
CS/B.TECH (ECE-N)/SEM-6/EC-601/2011													
			2011										
DIGITAL SIGNAL PROCESSING													
Time	Allo	tted :	3 Hours		Full Marks : 70								
The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.													
GROUP – A (Multiple Choice Type Questions)													
1.	Cho	ose tl	he correct alternatives f	or an	y ten of the following:								
					10 × 1 = 10								
	i)	The fundamental p riod of the sequence											
		$x(n) = \cos\left(\frac{2n\pi}{3}\right) $ is											
		a)	1	b)	2								
		c)	3	d)	6.								
ii) A signal is a power signal if													
		a)	E<∞, P=0	b)	$P<\infty$, E = 0								
		c)	$P<\infty$, $E=\infty$	d)	$P = \infty$, $E = 0$								
	iii)	The	Z-transform of δ (<i>n</i>) is										
		a)	0	b)	Z^{-1}								
		c)	$1/(1-Z^{-1})$	d)	1.								
6004	Į.				[Turn over								

- iv) The system described by y[n] = nx[n] is
 - Linear, time varying and stable a)
 - Non-linear, time invariant and unstable. b)
 - Non-linear, time varying and stable. c)
 - d) Linear, time varying and unstable.
- For an analog signal $x(t) = 3 \cos(50\pi t) + 10 \sin(300\pi t)$. v) The Nyquist sampling rate is
 - 150 Hz. a)
 - 300 Hz. b)
 - 25 Hz. c)
 - 50 Hz. d)
- Z-transform of u[n-1] is vi)
 - a) $\frac{1}{1-z^{-1}}$.
- b) $\frac{1}{1+z^{-1}}$.
 - c) $\frac{1}{z(1-z^{-1})}$
- d) $1 + z^{-1}$.
- vii) A discrete time LTI system is known as causal system if its,
 - a)
- h(n) = 0, n < 0 b) h(n) = 0, n > 0
 - h(n) is positive, n < 0 d) none of these. c)
- viii) If $h(n) = \{1, 0, 1\}$ and $y(n) = x(n)*h(n) = \{1, -2, 4, -2, 3\}$, then x(n) is
 - a) $x(n) = \{1, -2, 1\}$ b) $x(n) = \{1, -1, 3\}$

 - c) $x(n) = \{1, -2, 3\}$ d) $x(n) = \{1, -2, -3\}.$

6004

ix) If $x(n) = \{1, 0, 0, 1\}$, the DFT value X(0) is

a)

b) 1 + j

c) 0 1 - j.

Overlap save method is used to find x)

- a) circular convolution
- linear convolution b)
- c) DFT
- Z transform. d)

xi) The direct evaluation of DFT require

- N^2 multiplications and N^2 additions. a)
- N^2 multiplications and N(N-1) additions. b)
- N(N-1) multiplica ions and N^2 additions. c)
- N(N-1) multiplications and N(N-1) additions. d)

xii) The poles of the Chebyshev filter lie

- on an e lipse a)
- b) on a circle
- on par bola c)
- d) on a rectangle.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. Define energy and power signal.

Calculate the power of signal sequence given by

$$x[n] = \left(\frac{1}{3}\right)^n u[n].$$

2 + 3

6004

3

[Turn over

- 3. a) What is convolution sum?
 - b) Find the convolution sum of the signals:

$$x(n) = 1, n = -2, 0, 1$$

$$= 2, n = -1$$

= 0, elsewhere

$$h(n) = \delta(n) - \delta(n-1) + \delta(n-2) - \delta(n-3)$$

4. Find the inverse *Z* transform of

$$X(z) = z^2/(z^2 - 3z + 2)$$
; ROC: $|Z| > 2$

- 5. For the sequence $x(n) = \{1, 1, 0, -1, -1, 0, 0\}$, determine the 8-point DFT.
- 6. How do you take care of warping effect for designing an IIR filter using bilinear t ansformation?

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Find the system function and impulse response of the system described by the difference equation

$$Y(n) = X(n) + 2X(n-1) - 4X(n-2) + X(n-3)$$

6004 4

b) Find the linear convolution using circular convolution for the two sequences:

$$x(n) = \{1, 2, -1, 2, 3, -2, -3, -1, 1, 1, 2, -1\}$$

 $h(n) = \{1, 2\}$

c) What are the properties of ROC ? Find the Z transform and the ROC of the signal $X(n) = -b^n U(-n-1)$

$$5 + 5 + 5$$

8. a) Find the Z-transform of the discrete tim signal

$$x[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

b) Find the inverse *Z*-transform of

$$X(z) = \frac{z(z^2-4z+5)}{(z-3)(z-1)(z-2)}$$

for ROC

- i) 2 < |z| < 3
- ii) |z| > 3
- iii |z| < 1.
- 9. a) What is the need for FFT ? Explain the decimation in time FFT algorithm.
 - b) Evaluate 8-point for the sequence using DIT-FFT algorithm:

$$x(n) = 1, -3 \le n \le 3$$

= 0, elsewhere.

6004 5 [Turn over

www.makaut.com

CS/B.TECH (ECE-N)/SEM-6/EC-601/2011

- c) What is bit reversal?
- d) Differentiate between overlap-save method and overlapadd method. 1 + 5 + 6 + 1 + 2
- 10. a) Differentiate between FIR and IIR filters.
 - b) What is windowing?
 - c) Find the order and cut-off frequency of a digital filter with the following specifications:

$$0.89 \le |H(e^{jw})| \le 1, \quad 0 \le w \le 0.4\pi$$

 $|H(e^{jw})| \le 0.18, \quad 0.6\pi \le w \le \pi$

Use impulse invariance me hod.

- d) Write down the advantages of bilinear transformation over impulse invarian e. 3 + 2 + 8 + 2
- 11. a) Obtain the structures of cascade and parallel realization of the following transfer function :

$$H(z) = (1-z^{-1})^3/(1-\frac{1}{8}z^{-1})(1-\frac{1}{2}z^{-1})$$

- b) What is the difference between linear and circular convolutions?
- c) Compute the circular convolution of the following two sequences:

$$x_1 (n) = \{ 2, 1, 2, 1 \}$$
 \uparrow
 $x_2 (n) = \{ 1, 2, 3, 4 \}$

6004 6

www.makaut.com

CS/B.TECH (ECE-N)/SEM-6/EC-601/2011

12.	Write short notes	on any	three	of the	following:	3	×!	5

- a) Radix-2 DIF algorithm
- b) Chebyshev filter
- c) Causal & non-causal systems
- d) Bilinear transformation
- e) TMS 32OC 6713 architecture.

6004 7 [Turn over