$\mathbf{L}\!\!\!\!/ \mathbf{T}_{\!\mathbf{E}}\!\mathbf{X} \; \mathbf{TEMPLATE}$

XIAOXIANG ZHOU

Contents

2. Examples2.1. Theorem environment
References
1. Introduction
For $j: \mathbb{C} \longrightarrow \mathbb{CP}^1$, compute $j_* \underline{\mathbb{Q}}_{\mathbb{C}}$.
It is a constant sheaf on \mathbb{CP}^1 .
It is not a constant sheaf on \mathbb{CP}^1 , and $(j_*\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = \mathbb{Q}$.
It is not a constant sheaf on \mathbb{CP}^1 , and $(j_*\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = 0$.
All the above is wrong.
I don't know, but I don't want to make a wrong choice.
For $\pi : \mathbb{C} \longrightarrow \{*\}$, $U = B_1(0) \cup B_1(3)$, which one is correct: $(\pi^{*,\text{pre}}\underline{\mathbb{Q}}_{\{*\}})(U) = \mathbb{Q}$, $(\pi^*\underline{\mathbb{Q}}_{\{*\}})(U) = \mathbb{Q}$.
$ (\pi \xrightarrow{\Psi_{\{*\}}})(U) = \Psi, \qquad (\pi \xrightarrow{\Psi_{\{*\}}})(U) = \Psi. $ $ (\pi^*, \text{pre} \bigcirc)(U) = \bigcirc^2 \qquad (\pi^* \bigcirc)(U) = \bigcirc$
$(\pi^{*,\operatorname{pre}}\underline{\mathbb{Q}}_{\{*\}})(U) = \mathbb{Q}^{2}, \qquad (\pi^{*}\underline{\mathbb{Q}}_{\{*\}})(U) = \mathbb{Q}.$ $(\pi^{*,\operatorname{pre}}\underline{\mathbb{Q}}_{\{*\}})(U) = \mathbb{Q}, \qquad (\pi^{*}\underline{\mathbb{Q}}_{\{*\}})(U) = \mathbb{Q}^{2}.$
$(\pi^*, \operatorname{pre}_{\{*\}})(U) = \mathbb{Q}^2, \qquad (\pi^* \underline{\mathbb{Q}}_{\{*\}})(U) = \mathbb{Q}^2.$
For $j: \mathbb{C} \longrightarrow \mathbb{CP}^1$, what is true about $Rj_*\mathbb{Q}_{\mathbb{C}}$?
For $j: \mathbb{C} \longrightarrow \mathbb{CP}$, what is true about $Kj_*\underline{\mathbb{Q}}_{\mathbb{C}}$: $ (R^1j_*\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = 0, \qquad (R^2j_*\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = \mathbb{Q}. $
$(R j_* \underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = \emptyset, \qquad (R j_* \underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = \emptyset.$ $(R^2 j_* \underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = \emptyset.$ $(R^2 j_* \underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = 0.$
$(R^{1}j_{*}\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = 0, \qquad (R^{2}j_{*}\mathbb{Q}_{\mathbb{C}})_{\infty} = 0.$
$(R^{1}j_{*}\mathbb{Q}_{\mathbb{C}})_{\infty} = \mathbb{Q}, \qquad (R^{2}j_{*}\mathbb{Q}_{\mathbb{C}})_{\infty} = \mathbb{Q}.$
Do you know what is $\Gamma_c(\mathbb{C}, \mathbb{Q}_{\mathbb{C}})$ and $\Gamma_c(\mathbb{CP}^1, \mathbb{Q}_{\mathbb{CP}^1})$?
$\Gamma_c(\mathbb{C},\mathbb{Q}_c) = \mathbb{Q}, \qquad \Gamma_c(\mathbb{CP}^1,\mathbb{Q}_{cm1}) = \mathbb{Q}.$
$ \Gamma_c(\mathbb{C}, \underline{\mathbb{Q}}_{\mathbb{C}}) = \mathbb{Q}, \qquad \Gamma_c(\mathbb{CP}^1, \underline{\mathbb{Q}}_{\mathbb{CP}^1}) = \mathbb{Q}. \Gamma_c(\mathbb{C}, \underline{\mathbb{Q}}_{\mathbb{C}}) = \mathbb{Q}, \qquad \Gamma_c(\mathbb{CP}^1, \underline{\mathbb{Q}}_{\mathbb{CP}^1}) = 0. $
$\Gamma_c(\mathbb{C}, \mathbb{Q}_{\mathbb{C}}) = 0, \qquad \Gamma_c(\mathbb{CP}^1, \mathbb{Q}_{\mathbb{CP}^1}) = \mathbb{Q}.$
$\Gamma_c(\mathbb{C}, \overline{\mathbb{Q}}_{\mathbb{C}}) = 0, \qquad \Gamma_c(\mathbb{CP}^1, \overline{\mathbb{Q}}_{\mathbb{CP}^1}) = 0.$
Could you explain the notation again?
For $j: \mathbb{C} \longrightarrow \mathbb{CP}^1$, what is true about $Rj_!\underline{\mathbb{Q}}_{\mathbb{C}}$?
$(R^0 j_! \underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = 0, \qquad (R^1 j_! \underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = \mathbb{Q}.$
$(R^0 j_! \underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = \mathbb{Q}, \qquad (R^1 j_! \underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = 0.$
$(R^{0}j_{!}\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = 0, \qquad (R^{1}j_{!}\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = \mathbb{Q}.$ $(R^{0}j_{!}\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = \mathbb{Q}, \qquad (R^{1}j_{!}\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = 0.$ $(R^{0}j_{!}\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = 0, \qquad (R^{1}j_{!}\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = 0.$ $(R^{0}j_{!}\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = \mathbb{Q}, \qquad (R^{1}j_{!}\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = \mathbb{Q}.$
$(R^{\alpha}j_{!}\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = \mathbb{Q}, \qquad (R^{\alpha}j_{!}\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = \mathbb{Q}.$ This question is too easy for me. Ask more difficult questions next time!
This question is too easy for the. Ask more difficult questions flext time:

Date: December 2, 2023.

1. Introduction

2. Examples

2.1. Theorem environment. **Theorem 2.1** (see [2, Theorem 18.5.1]). ... Setting 2.2. ... Definition 2.3. ... Lemma 2.4. ... Proposition 2.5. ... Corollary 2.6. ... Conjecture 2.7. ... Claim 2.8. ... Example 2.9. ... Exercise 2.10. ... Fact 2.11. ... Question 2.12. ... Warning 2.13. ... Black box. ... Conventions and Notations. ... Remark 2.14. ... Remarks.1. ... 2. ...

References

- [1] Jens Niklas Eberhardt. K-motives and Koszul duality. Bulletin of the London Mathematical Society, 54(6):2232–2253, 2022.
- $[2]\,$ Ravi Vakil. The rising sea: Foundations of algebraic geometry. $preprint,\,2017.$

School of Mathematical Sciences, University of Bonn, Bonn, 53115, Germany, $Email\ address:$ email:xx352229@mail.ustc.edu.cn