计算机网络 第 2 次课程报告

1951112 林日中

2022年4月25日

目录

1	协议	4	2
	1.1	协议 4 的程序流程图	2
	1.2	协议 4 的效率分析	3
2	协议	5	3
	2.1	协议 5 的程序流程图	3
	2.2	协议 5 的效率分析	3
3	协议	6	5
	3.1	协议 6 的程序流程图	5
	3.2	协议 6 的效率分析	5
4	协议	4、5 和 6 的特性对比	7

1 协议 4

1.1 协议 4 的程序流程图

协议 4 的程序流程图如图 1 所示.

图 1: 协议 4 的程序流程图

1.2 协议 4 的效率分析

在协议 4 中,发送方发送数据包并等待数据包的 ACK(确认). 一旦 ACK 到达发送方,它就连续发送下一个数据包. 如果没有收到 ACK,它就再次重发前一个数据包.

记一个数据帧的发送时间为 t_f ,重传时间为 $t_{out} \approx 2t_p$,两个发送成功的数据帧之间最小的时间间隙 $t_T = t_f + t_{out} \approx t_f + 2t_p$.

对于 1-bit 滑动窗口协议,每个时间间隙只发送 1 帧数据,那么效率

$$\eta = \frac{t_f}{t_T} \approx \frac{t_f}{t_f + 2t_p} = \frac{1}{1 + 2a}$$

其中, $a = \frac{t_p}{t_f}$.

协议 4 的其他特性如下:

- 发送方窗口大小 $W_s = 1$
- 接收者窗口大小 $W_r = 1$
- 序列号 > 1+1
- 使用独立的确认
- 丢弃失序的数据包
- 数据包丢失时——超时后重发数据包
- 丢失 ACK 时——超时后重发数据包

2 协议 5

2.1 协议 5 的程序流程图

协议 5 的程序流程图如图 2 所示.

2.2 协议 5 的效率分析

在协议 5 中,发送方发送 N 个数据包,这等于窗口大小. 一旦整个窗口发送 完毕,发送方就会等待累积 ACK 来发送更多的数据包. 在接收方,它只接收符合 顺序的数据包,并丢弃不符合顺序的数据包. 如在丢包的情况下,整个窗口将被重 新传送.

对于回退 N 帧滑动窗口协议,每个时间间隙最多可发窗口大小的数据帧数.记发送窗口大小为 N,那么有效率

$$\eta = \frac{Nt_f}{t_T} = \frac{N}{1 + 2a}$$

图 2: 协议 5 的程序流程图

其中, $a = \frac{t_p}{t_f}$.

协议 5 的其他特性如下:

- 发送方窗口大小 $W_s = N$
- 接收方窗口大小 $W_r = 1$
- 序列号 > N+1
- 可以使用累积或独立的确认,这取决于确认定时器
- 丢弃无序的数据包
- 数据包丢失时——从窗口限制内的最后一个数据包到丢失的数据包,追踪 *N* 个大小的数据包,并重新传输它们
- 丢失 ACK 时——如果在超时前没有收到,则重新发送整个窗口的 N 大小的数据

3 协议 6

3.1 协议 6 的程序流程图

协议 6 的程序流程图如图 3 所示.

3.2 协议 6 的效率分析

在协议 6 中,发送方发送窗口大小为 N 的数据包,接收方确认所有数据包,无论它们是否按顺序收到. 在这种情况下,接收方保持一个缓冲区来容纳无序的数据包,并对它们进行排序. 发送方有选择地重传丢失的数据包,并将窗口向前移动.

对于选择重发滑动窗口协议,每个时间间隙最多可发窗口大小的数据帧数.记 发送窗口大小为 N,那么有效率

$$\eta = \frac{Nt_f}{t_T} = \frac{N}{1 + 2a}$$

其中, $a = \frac{t_p}{t_f}$.

协议 6 的其他特性如下:

- 发送方窗口大小 $W_s = N$
- 接收者窗口大小 $W_r = N$
- 序列号 ≥ N + N
- 只使用独立的确认
- 可以接受失序的数据包

图 3: 协议 6 的程序流程图

- 数据包丢失时——超时后只重发丢失的数据包
- 确认丢失时——如果在超时前没有收到,则重新发送

4 协议 4、5 和 6 的特性对比

协议 4、5 和 6 的特性对比如表 1 所示.

表 1: 协议 4、5 和 6 的特性对比

———————————— 特性	协议 4	协议 5	协议 6
发送方窗口大小	1	N	N
接收方窗口大小	1	1	N
最小序列数	2	N+1	2N
效率	$\frac{1}{1+2a}$	$\frac{N}{1+2a}$	$\frac{N}{1+2a}$
确认类型	独立	独立或累积	独立
丢包情况下的重传次数	1	N	1
传输类型	半双工	全双工	全双工
实现难度	低	中	高