LECTURER: PROF. McDonald Scribe: Dmitrii Avdiukhin

Consider PAC-learning (probably approximate correct) – small generalization error with high probability. We see data $D_n = \{(X_i, Y_i)\}_{i=1}^n$, $X_i \in \mathcal{X}$, $Y_i \in \mathcal{Y}$. Assume that there is some joint distribution P(X, Y). We want to learn $f: \mathcal{X} \to \mathcal{Y}$ such that. In this course we start with "realizable" setting: Y = f(x), deterministic. Then we will consider "agnostic", "model-free" setting.

14.1 Realizable set

Consider set \mathcal{X} and \mathcal{P} – a set of distributions on \mathcal{X} . We have data D_n drawn from some $P \in \mathcal{P}$

14.1.1 Concept learning

- ullet We assume that there is some class $\mathcal C$ of subsets of $\mathcal X$. $\mathcal C$ concept classes.
- There exist a target $C^* \in \mathcal{C}$.
- We observe $Y_i = I(X_i \in C^*)$ whether X_i belongs to C^* .
- We want to determine C^* .
- We want some procedure (algorithm) to do this: $\mathcal{A} = \{A_n\}_{n=1}^{\infty}$. \mathcal{A} can depend on \mathcal{P} but not on P.

Similar to statistics, but different language. We will denote $Z_i = (X_i, Y_i) \in \mathcal{Z}$.

Given D_n we want to produce $\widehat{C}_n = A_n(D_n) = A_n(Z_1, \dots, Z_n) \in \mathcal{C}$. We evaluate \widehat{C}_n by examination, whether $X_{n+1} \in \widehat{C}_n$ for new X_{n+1} . Two types of errors:

- 1. $X_{n+1} \in C^*$ but not in \widehat{C}_n .
- 2. $X_{n+1} \in \widehat{C}_n$ but not in C^* .

In other words, $X_{n+1} \in C^*\Delta \widehat{C}_n$ – symmetric difference of sets. We wan to estimate $P[X_{n+1} \in C^*\Delta \widehat{C}_n]$ (essentially this is a conditional random variable, i.e. $P(\ldots | X_1, \ldots, X_n)$).

Definition 14.1.

- $L_P(C, C^*) = P[X_{n+1} \in C\Delta C^*]$. If $L_P(\widehat{C}_n, C^*) \to 0$ then \mathcal{A} is good.
- $r_{\mathcal{A}}(n, \epsilon, P) = \sup_{C \in \mathcal{C}} P(Z^n \in \mathcal{Z}^n \mid L_P(A_n(z^n), C) \ge \epsilon).$
- $R_{\mathcal{A}}(n, \epsilon, \mathcal{P}) = \sup_{P \in \mathbb{P}} r_{\mathcal{A}}(n, \epsilon, P).$

If P is fixed then r_A is a worst-case size of bad samples. We consider supremum over all C since we don't know C^* .

Definition 14.2.

- \mathcal{A} is PAC if $\lim_{n\to\infty} R_{\mathcal{A}}(n,\epsilon,\mathbb{P}) = 0$.
- C is PAC-learnable if $\exists A$ is PAC.

Goals

- Determine conditions for C to be PAC-learnable.
- Find PAC \mathcal{A} , determine sample complexity as function of C.

Equivalent definition of PAC:

$$\forall \epsilon, \delta > 0 \ \exists n_0(\epsilon, \delta) \ \forall n > n_0(\epsilon, \delta), C \in \mathcal{C}, P \in \mathcal{P} \quad P(D_n | L_P(A_n(D_n) \in C) \ge \delta) \le \delta.$$

$$\mathcal{C} = \{ X \in [0; 1] : \sin(\Theta X) > 0, \Theta \in \mathbb{R} \}$$

14.2 Function learning

- The same setup. \mathcal{F} class of functions.
- $Y \in f^*(X) \in [0;1]$.
- $\bullet \ \widehat{f}_n = A_n(D_n).$
- $L_P(f, f^*) = \mathbb{E}[|f(X) f^*(X)|_2^2] = \int_{\mathcal{X}} |f(x) f^*(x)|^2 P(dx) = ||f f^*||_{L_2(P)}^2$.

For example, $L_P(C, C^*) = ||I_C - I_{C^*}||^2_{L_2(P)}$.

Example 14.3. Take $\mathcal{X} = [0, 1]^2$, \mathbb{P} – all distributions on \mathcal{X} , C – set of all possible rectangles.

$$C = \{ [a_1; b_1] \times [a_2; b_2] \mid 0 \le a_1 \le b_1 \le 1, 0 \le a_2 \le b_2 \le 1 \}.$$

To prove learnability need A.

- $Z_i = (X_i, I(X_i \in C^*)).$
- $\widehat{C}_n = A_n(D_n)$ smallest $C \in \mathcal{C}$.

Theorem 14.4.

$$R_{\mathcal{A}}(n,\epsilon,\mathcal{P}) \le 4\left(1 - \frac{\epsilon}{4}\right)^n$$

Proof. Since we select the smallest rectangle $\widehat{C}^n \in C^* \implies \widehat{C}^n \Delta C^* = C^* \setminus \widehat{C}^n$. If $P(C^*) < \epsilon$ then $P[C^* \setminus \widehat{C}^n] \leq P[C^*] \leq \epsilon$.

Consider the case when $P(C^*) \ge \epsilon$. Then $C^* \setminus \widehat{C}^n = V_1 \cup V_2 \cup H_1 \cup H_2$, where V_1 is a strip between the left boundaries of the rectangles, with height bounded by largest rectangle, namely $V_1 = [a_1^*, \widehat{a}_1] \times [a_2^*, b_2^*]$. V_2 , H_1 and H_2 are similar strips corresponding to other boundaries (all derivations also will be the same). If P of each of these strips is less then $\frac{\epsilon}{4}$ then by union bound $P[V_1 \cup V_2 \cup H_1 \cup H_2] < \epsilon$.

Consider probability that $V_1 \geq \frac{\epsilon}{4}$. The probability that one sample is not in V_1 is at most $1 - \frac{\epsilon}{4}$. Therefore the probability that all n samples are not in V_1 is at most $\left(1 - \frac{\epsilon}{4}\right)^n$. By union bound probability that there exist a strip with no sample with it and $P \geq \frac{\epsilon}{4}$ is at most $4\left(1 - \frac{\epsilon}{4}\right)^n$.

$$n_0(\epsilon, \delta) \ge \frac{4\log\frac{4}{\delta}}{\epsilon}.$$