DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat

(c) 2004 EPO. All rts. reserv.

10934285

Basic Patent (No, Kind, Date): JP 4357694 A2 921210 < No. of Patents: 001>

THIN ORGANIC FILM EL ELEMENT (English)
Patent Assignee: DENKI KAGAKU KOGYO KK

Author (Inventor): NAKANO TATSUO; YAMAZAKI SEIICHI; KATO KAZUO; ASAI

SHINICHIRO

IPC: *H05B-033/14; H05B-033/22 CA Abstract No: 118(18)180231N Derwent WPI Acc No: C 93-031086 JAPIO Reference No: 170223E000167 Language of Document: Japanese

Patent Family:

Patent No Kind Date

Applic No Kind Date

JP 4357694 A2 921210 JP 91157391 A 910603 (BASIC)

Priority Data (No,Kind,Date): JP 91157391 A 910603

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-357694

(43) Date of publication of application: 10.12.1992

(51)Int.CI.

H05B 33/14 H05B 33/22

(21)Application number: 03-157391

(71)Applicant: DENKI KAGAKU KOGYO KK

(22)Date of filing:

03.06.1991

(72)Inventor: NAKANO TATSUO

YAMAZAKI SEIICHI

KATO KAZUO

ASAI SHINICHIRO

(54) THIN ORGANIC FILM EL ELEMENT

()

(57) Abstract:

PURPOSE: To conduct low voltage drive and enhance durability by providing at least one inclined structure layer having a concentration gradient in a component between respective layers of an EL element provided with organic compound layers between two electrodes.

CONSTITUTION: A transparent positive electrode 2 comprising a vapor deposition thin film of a metal such as gold, platinum, palladium and the like or an oxide film of tin, indium-tin and the like is formed on a glass substrate 1. Between a compound layer 3 having an electron hole transport function and an electron transporting organic compound layer 4 having a light emission function both formed thereon, an inclined structure layer 8 having a concentration gradient wherein components of both the layers are continuously varied is provided. A negative electrode 7 is formed by vapor deposition of a metal having a little work

function or of this metal together with another stable metal. Between the layer 4 and the negative electrode 7 an inclined structure layer 9 of components of both layers can be provided.

(19)日本国特許庁 (JP) (12) 公開特許公報(A) (11)特許出願公開番号

特開平4-357694

(43)公開日 平成4年(1992)12月10日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

H05B 33/14

33/22

8815-3K

8815-3K

審査請求 未請求 請求項の数2(全 5 頁)

(21)出願番号

特願平3-157391

(22)出顧日

平成3年(1991)6月3日

(71)出願人 000003296

電気化学工業株式会社

東京都千代田区有楽町1丁目4番1号

(72)発明者 中野 辰夫

東京都町田市旭町3丁目5番1号 電気化

学工業株式会社総合研究所内

(72)発明者 山崎 清一

東京都町田市旭町3丁目5番1号 電気化

学工業株式会社総合研究所内

(72)発明者 加藤 和男

東京都町田市旭町3丁目5番1号 電気化

学工業株式会社総合研究所内

最終頁に続く

(54) 【発明の名称】 有機薄膜EL素子

(57)【要約】

【目的】 素子の発光及び輝度の低下がなく、駆動電圧 を低下させて素子としての耐久性を向上させる。

【構成】 少なくとも一方が金属電極である二つの電極 間に正孔輸送能を有する化合物層及び発光機能を有する 電子輸送性有機化合物層を積層した有機薄膜EL素子に おいて、前記EL素子を構成する各層間の少なくとも一 つに該層間を形成する各々の成分で濃度勾配を設けた傾 斜構造層を形成してなることを特徴とする有機薄膜EL 素子。

1

【特許請求の範囲】

【請求項1】 少なくとも一方が金属電極である二つの電極間に正孔輸送能を有する化合物層及び発光機能を有する電子輸送性有機化合物層を積層した有機薄膜EL素子において、前記EL素子を構成する各層間の少なくとも一つに該層間を形成する各々の成分で濃度勾配を設けた傾斜構造層を形成してなることを特徴とする有機薄膜EL素子。

【請求項2】 少なくとも一方が金属電極である二つの電極間に正孔輸送能を有する化合物層、発光機能を有す 10 る有機化合物層及び電子輸送能を有する有機化合物層を積層した有機薄膜EL素子において、前配EL素子を構成する各層間の少なくとも一つに該層間を形成する各々の成分で濃度勾配を設けた傾斜構造層を形成してなることを特徴とする有機薄膜EL素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は電気的な発光、即ちEL (エレクトロルミネセンス)を用いたEL素子に関し、 更に詳しくは二つの電極間に有機化合物層を設けたEL 20 素子の各層の層間に成分が濃度勾配を有する傾斜構造層 を少なくとも一つ設け、低電圧駆動と耐久性の向上を実 現した有機薄膜EL素子に関するものである。

[0002]

【従来の技術】EL素子はその発光機構の違いから(1) 発光層内での電子や正孔の局所的な移動により発光体を 励起し、交流電界でのみ発光する真性EL型発光素子 と、(2)電極からの電子と正孔の注入とその発光層内で の再結合により発光体を励起し発光するキャリヤ注入型 EL発光素子の2つに分けられる。 (1)の真性EL型発 30 光素子は一般に無機化合物を発光体とするものである が、駆動に100V以上の高い交流電界を必要とすること、 製造コストが高いこと、輝度や耐久性も不十分である等 多くの問題点を有している。(2)のキャリヤ注入型EL 発光素子は、発光層として薄膜状有機化合物を用いる技 術が開発されてから低電圧駆動で高輝度の発光素子が得 られるようになった。これらEL素子は、例えば、特開 昭 59-194393号公報、米国特許明細書4,720,43号、Jpn. Journal of Physics, vol. 27, p713~715 に開示されて おり、通常、正孔注入輸送層や電子注入層が発光層の片 40 側あるいは両側に設けられた素子であり50V 以下の直流 電界で高輝度に発光する。しかしながら、従来のキャリ ヤ注入型EL発光素子は、多層構造の各層を積層して形 成させるため、層間の物理的及び電気的接合性が悪く駆 動電圧の上昇や耐久性が劣る問題があった。(図2の A, B)

[0003]

【発明が解決しようとする課題】本発明は上記従来技術の実情に鑑みて成されたものであり、その目的は駆動電圧の低下と耐久性に優れた有機薄膜EL素子を提供する 50

ことにある。本発明者らは、上記目的を解決するために 層間の構造を鋭意検討した結果、層間を形成する各々の 成分が濃度勾配を持ち、層と層を簡単に積層したごとき 明瞭な界面を持たない、いわゆる傾斜構造とした場合に 上記課題が解決できることを見い出し、本発明を完成す るに至った。

2

[0004]

【課題を解決するための手段】すなわち、本発明は、

1. 少なくとも一方が金属電極である二つの電極間に正 孔輪送能を有する化合物層及び発光機能を有する電子輸送性有機化合物層を積層した有機薄膜EL素子において、前記EL素子を構成する各層間の少なくとも一つに該層間を形成する各々の成分で濃度勾配を設けた傾斜構造層を形成してなることを特徴とする有機薄膜EL素子 2. 少なくとも一方が金属電極である二つの電極間に正 孔輪送能を有する化合物層、発光機能を有する有機化合物層及び電子輸送能を有する有機化合物層を積層した有機薄膜EL素子において、前記EL素子を構成する各層間の少なくとも一つに該層間を形成する各々の成分で濃度勾配を設けた傾斜構造層を形成してなることを特徴とする有機薄膜EL素子である。

【0005】そして本発明の傾斜構造層は、前記素子の各有機化合物層および電極層を積層する際に、各々独立した電源回路を持つ蒸発用ボートを有する真空蒸着装置で蒸発速度を調整することにより、有機化合物層の各層間及び有機化合物層と金属電極との層間を傾斜構造層にしたことを特徴とする有機薄膜EL素子が提供される。本発明の有機薄膜EL素子は、以下に示す構成を有する素子において、該層間に各々の成分で濃度に勾配を設けた傾斜構造層を少なくとも一層積層したものであり、例えば

- (1) 陽極/正孔輸送能を有する化合物層/発光機能を 有する電子輸送性有機化合物層/陰極
- (2) 陽極/正孔輸送能を有する化合物層/発光機能を 有する有機化合物層/電子輸送能を有する有機化合物層 /陰極

が挙げられる。

【0006】さらに以下、図面に沿って本発明を詳細に 説明する。図1のA及びCは、本発明の有機薄膜EL素 子の断面図である。1はガラス基板であり、2は基板上 に形成された透明な陽極である。透明な陽極2は金、白 金、パラジウム等の金属の蒸着薄膜又はスズ、インジウ ムースズ等の酸化膜であり、発光を取り出すために可視 光線に対して透明であることが望ましい。3は正孔輸送 能を有する化合物層であり、4は発光機能を有する電子 輸送性有機化合物層である。8は層3の成分と層4の成 分が連続して変化する濃度勾配が設けられている、いわ ゆる傾斜構造層の部分である。また7は陰極であり、金 属の真空蒸着可能な固体の金属であればあらゆる金属 が使用され得るが、特に仕事関数の小さな金属又は仕事 関数の小さな金属と安定な金属との共蒸着が望ましい。 9は層4の成分と層7の成分との傾斜構造層の部分であ る。また図1のBおよびDは、本発明の他の有機薄膜E L素子の断面図であり、形成する層の1~3は、前記A 及びCに示すものと同様である。5は発光機能を有する 有機化合物層であり、10は層3の成分と層5の成分と の傾斜構造層の部分である。6は電子輸送能を有する有 機化合物層であり、11は層5の成分と層6の成分との 傾斜構造層の部分である。7は陰極であり、前記A及び 10 Cと同様の金属で構成され、12は層6の成分と層7の 成分との傾斜構造層の部分である。尚本発明のEL素子 は、いっそうの正孔輸送効率を向上させるためにはEL 素子陽板2と正孔輸送能を有する化合物層3の層間に傾 斜構造層を設けてもよい。

【0007】本発明に使用する正孔輸送能を有する化合 物としては、真空蒸着可能なポリビニルカルバゾールの オリゴマーやN.N-ジフェニルトルイジンとケトン類の縮 合物等のような正孔輸送能の優れた物質が挙げられる。 さらに単一有機化合物の例としては、トリフェニルアミ 20 ン誘導体、スチルベン誘導体類、オキサジアゾール誘導 体類等が挙げられるが、本発明に使用する有機化合物 は、これらに限定するものではない。更に、有機化合物 は、正孔輸送能や結晶化防止、安定性を改良する目的で 混合して使用しても良い。

【0008】一方、本発明に用いる発光機能を有する有 機化合物としては、例えばオキシン金属錯体やペリレン 誘導体、ポリフェニルシクロペンタジエン、フタロペリ ノン誘導体及びトリフェニルアミン誘導体等があり、そ の他多くの有機化合物が挙げられるが、本発明はこれら 30 に限定するものではない。

【0009】上述した正孔輸送能を有する化合物層3単 **独の厚さは、1000人未満、好ましくは10人~500 Åであ** り、1000人を越えると著しく駆動電圧が高くなり、本発 明の目的に反する。また正孔輸送能を有する化合物層3 と発光機能を有する電子輸送性有機化合物層4の層間で 形成される傾斜構造層8、又は正孔輸送を有する化合物 層3と発光機能を有する有機化合物層5の層間で形成さ れる傾斜構造層10部分の厚さは、5Å~1000Å、好ま しくは10A~500 Aである。厚さが5A未満では物理的 40 強度が乏しく、1000Aを越えると著しく駆動電圧が高く なり、本発明の目的に反する。

【0010】更に、発光機能を有する電子輸送性有機化 合物層4又は発光機能を有する有機化合物層5単独の厚 さは1000Å未満、好ましくは50Å~500 Åであり、1000 **人越えると著しく駆動電圧が高くなり、本発明の目的に** 反する。また本発明の電子輸送能を有する有機化合物層 6 は、1000A未満、好ましくは50A~500 Aである。厚 さが1000人を越えると著しく駆動電圧が高くなり、本発 明の目的に反する。そして発光機能を有する有機化合物 50 い、さらに陰極材料としてマグネシウムおよび銀を真空

層5と電子輸送能を有する有機化合物層6で形成される 傾斜構造層11部分の厚さは、物理的強度及び駆動電圧 の点から前記傾斜構造層8又は10と同様であることが 好ましい。尚電子輸送能を有する有機化合物層6の厚み が100 人以下の際には、傾斜構造層 1 1 部分の厚さが20 0 A~500 Aであることが好ましい。発光機能を有する 電子輸送性有機化合物層4と陰極7の層間で形成される 傾斜構造層9、又は電子輸送能を有する有機化合物層6 と陰極7の層間で形成される傾斜構造層12部分の厚さ は、5Å~500 Å、好ましくは10Å~100 Åである。そ して厚みが5Å未満では層間の密着効果が悪く、また50 0 Åを超える厚さであっても大きなメリットはない。

【0011】本発明の傾斜構造層とは、電極間に設けら れた各層間を形成する各々の成分が連続して変化した濃 度勾配を持ち、層と層とを単に積層したごとき明瞭な境 界を持たないものである。そして連続して変化した濃度 勾配とは、一方の層である成分濃度が一定で他方の層の 成分濃度が連続的に増加又は減少するか、又は双方の層 の中間を境に各層へ向かって成分濃度が増加又は減少す るものであってもよい。本発明の傾斜構造層を得る方法 としては、真空中で一方の層の成分を一定時間で蒸着さ せながら、他方の層の成分の蒸着時間を連続的に変化さ せる。又は双方の層の成分の蒸着時間を連続して変化さ せる方法で行うこともできる。

【0012】更に、各有機化合物層の厚さは、駆動電圧 に直接影響するので、出来る限り薄くした方が駆動電圧 が低くなるので好ましいが、反面絶縁破壊電圧も低下す る傾向があり、素子全体の有機化合物層の総厚さは、目 的に応じて選択してよく限定するものではない。次い で、本発明の陰極7は、真空蒸着することによって透明 な陰極が形成されることが好ましく、厚さは特に限定す るものではない。

【0013】本発明で得られたEL素子は、主にフラッ トパネル、液晶表示使用分野、その他LCD用パックラ イト、大画面ディスプレイ及びテレビジョンなどに用い られる。

[0014]

【実施例】以下、実施例により本発明を更に詳細に説明

実施例1

陽極として、インジウムースズ酸化物をコートしたガラ ス(松崎真空社製、以下ITO という)をアセトン中で10 分間超音波洗浄した。次いでエタノール中で5分間煮沸 後取り出し乾燥窒素ガスを吹き付けて乾燥した後、真空 装置内にセットした。つぎに正孔輸送能を有する有機化 合物としてN, N'- ジフェニル-N, N'-(3-メチルフェニ ル) -1,1'-ピフェニル-4,4'-ジアミン(以下TPDと いう) を、発光機能を有する電子輸送性有機化合物とし てオキシンのアルミニウム錯体(以下Alg³という)を用

装置内の各々独立した電源回路を有する抵抗加熱ポート にそれぞれ投入して、真空装置内の真空度を3×10⁶ to rrとした。まづITO の面にTPD のポートを加熱して1.0 A/Secの一定した蒸着速度でTPDを50A蒸着し、正孔輸 送能を有する有機化合物層を形成した。さらにTPD は、 1.0 A/Sec の一定した蒸着速度で蒸着を継続しながら Alq³の蒸着を開始した。Alq³の蒸着速度は、OA/Secか ら徐々に増加させTPD とAlq®の成分濃度に勾配を設けた 傾斜構造層の部分が190 Aの製膜時では、Alq3の蒸着速 度が10Å/Secであった。この時点でTPD の加熱を低下さ せて傾斜構造層の部分が 200人の製膜時でTPD の蒸着を 停止した。引続きAlaiは、単独で蒸着を継続して発光機 能を有する電子輸送性有機化合物層を 200Å形成した。 次いで、マグネシウムと銀を共蒸着して2000Aの陰極を 形成した。得られた素子は、ITO 側を陽極とし上述した 陰極に直流電圧をかけると緑色の発光を呈した。また駆 動電圧15V、電流密度110 mA/cm2では945cd/m2の発光輝 度を示した。また、この素子は大気中でも作動させるこ とが可能であった。更に、この素子を充分に乾燥した空 気中で電流密度 6 mA/cm² で輝度50cd/m² の条件で駆動さ 20 せたが、48時間経過後の輝度の低下は観測されなかっ た。

【0015】実施例2

実施例1と同様の材料を用いて、同様の操作を行い、IT 0 ガラス表面に正孔輸送能を有する有機化合物層を200 A、傾斜構造層を100 A、発光機能を有する電子輸送性 有機化合物層を200 人及び陰極を2000人を形成して、有 機薄膜EL素子とした。得られた素子は、ITO 側を陽極 とし上述した陰極に直流電圧をかけると緑色の発光を呈 した。また駆動電圧21V、電流密度100mA/cm² では1000 30 cd/m² の発光輝度を示した。また、この素子は大気中で、 も作動させることが可能であった。更に、この素子を充 分に乾燥した窒素中で電流密度5mA/cm2で輝度50cd/m2 の条件で駆動させたが、48時間経過後の輝度の低下は観 測されなかった。

【0016】比較例1

実施例1の装置で同様の材料を用いて、ITO ガラス表面 に正孔輸送能を有する有機化合物層を250 A、発光機能 を有する電子輸送性有機化合物層を250 Å及び陰極を20 00人真空蒸着して有機薄膜EL素子を作製した。この素 40 子は、13Vで緑色の発光を呈したが、数秒で電極が破壊 した。

【0017】比較例2

実施例1の装置で同様の材料を用いて、1TO ガラス表面 に正孔輸送能を有する有機化合物層500 Å、発光機能を 有する電子輸送性有機化合物層を800 Å及び陰極を2000 A真空蒸着して有機薄膜EL素子を作製した。この素子 は、駆動電圧46V、電流密度110 mA/cm2 で輝度925cd/m2 の緑色発光を呈した。しかし、21Vでは輝度 2 cd/m² 以 下の発光であった。また、陰極端子引出しのため、陰極 50 8 正孔輸送能を有する化合物層と発光機能を有する電

金属表面に銀ペーストを塗布し、陰極端子を接合する作 業中、蒸着した陰極金属が発光機能を有する電子輸送性 有機化合物層から簡単に剥離してしまった。

【0018】 実施例3

実施例1の装置で同様の材料を用い、ITO ガラス表面に 正孔輸送能を有する有機化合物層を400 Aと発光機能を 有する電子輸送性有機化合物層を600 Aを蒸着後、Alq³ と陰極金属の層間に100 人の傾斜構造層を形成し、次い で、陰極を2000人真空蒸着して有機薄膜EL素子を作製 した。この素子は、駆動電圧30V、電流密度100 mA/cm² で輝度950cd/m の緑色の発光を呈した。この素子は、陰 極金属表面にセロハンテープを貼り剥離すると、有機化 合物層部分が陰極金属に付着していた。更に、銀ペース ト接合にて陰極端子引出し時にも剥離しなかった。

【0019】 実施例4

実施例1と同様にして、ITO ガラス表面に正孔輸送能有 する有機化合物層を200 A、50Aの傾斜構造層を形成 し、さらに発光機能を有する電子輸送性有機化合物層20 O Aを蒸着後、Alq³と陰極金属の層間に50Aの傾斜構造 層を形成し、次いで、陰極金属2000Åを真空蒸着して有 機薄膜EL素子とした。得られた素子は、ITO 側を陽極 とし上述した陰極に直流電圧をかけると緑色の発光を呈 した。駆動電圧19V、電流密度100mA/cm² では1050cd/m 2 の発光輝度を示した。また、この素子は大気中でも作 動させることが可能であった。更に、この素子を充分に 乾燥した窒素中で電流密度 5 mA/cm² で輝度50cd/m² の条 件で駆動させたが、48時間経過後の輝度の低下は観測さ れなかった。またこの素子は、銀ペースト接合にて陰極 始子引出し時に陰極部分での剥離を起こさなかった。

[0020]

【発明の効果】本発明の有機薄膜EL素子は、その素子 を構成する多層の各層間の少なくとも一つにを明瞭な界 面を持たない、いわゆる傾斜構造層を設けたことから、 各層間の接合性が改良され、しかも接合面積の拡大によ り電子等キャリヤの注入性が改良され、さらに低電圧駆 動と耐久性の向上を実現し得るなどの利点を有する。

【図面の簡単な説明】

【図1】図1のA、B、C及びDは、本発明に係る有機 薄膜EL素子の一例を示す断面図である。

【図2】図2のA及Bは、従来の有機薄膜EL素子の一 例を示す断面図である。

【符号の説明】

- 1 ガラス基板
- 2 陽極
- 3 正孔輸送能を有する化合物層
- 4 発光機能を有する電子輸送性有機化合物層
- 5 発光機能有する有機化合物層
- 6 電子輸送能を有する有機化合物層
- 陰極

子輸送性有機化合物層の傾斜構造層

- 9 発光機能を有する電子輸送性有機化合物層と陰極の 傾斜構造層
- 10 正孔輸送能を有する化合物層と発光機能を有する 有機化合物層の傾斜構造層
- 11 発光機能を有する有機化合物層と電子輸送能を有 する有機化合物層の傾斜構造層
- 12 電子輸送能を有する有機化合物層と陰極の傾斜構造層

【図2】

【図1】

フロントページの続き

(72)発明者 浅井 新一郎 東京都町田市旭町3丁目5番1号 電気化 学工業株式会社総合研究所内