Домашняя работа по курсу «Теория риска и стохастическая финансовая математика»

Артемий Сазонов

19 декабря 2022 г.

Д38

Виды и механизмы перестрахования. Пропорциональное перестрахование, квотный договор. Уравновешенность договора, экономические и финансовые условия

Задача 1.

Нарисовать кривую Лоренца для распределения Парето с $F(x)=1-(x/\sigma)^{-\alpha}, \, x \geq \sigma > 0$.

Решение

Задача 2.

Проверить, что если $X \prec_{Lor} Y$, то $CV(X) \leq CV(Y)$. Верно ли обратное утверждение?

Решение

Задача 3.

Пусть X и Z - независимые случайные величины, $X \sim \Gamma(1, \lambda^{-1})$, $Z \sim \Gamma(\alpha, 1)$. Проверить, что Y = X/Z имеет распределение Парето с функцией распределения $F(x) = 1 - (x/\sigma)^{-\alpha}, x \geq \sigma > 0$.

Решение

Задача 4.

Показать, что $X<_{st}Y\not\Rightarrow X<_kY$. (Указание: рассмотреть $X\sim U(0,2)$, $Y\sim U(1,2)$, где U(a,b) - равномерное распределение на (a,b).)

Решение

Задача 5.

Показать, что $X<_kY \not\Rightarrow X<_{st}Y$. (Указание: рассмотреть $X\sim Exp(1)$, $Y\sim Exp(2)$, где Exp(a) - показательное распределение с параметром a.)

Решение

Задача 6.

Проверить, что гамма-распределение с $\alpha \geq 1$ и равномерное имеют тип IFR.

Решение

Задача 7.

Показать, что если $X_i <_{mor} Y_i$, $i \ge 1$, то $\min_i X_i <_{mor} \min_i Y_i$.

Решение

ДЗ9

Непропорциональное страхование. Экцедент убытка по риску/катастрофе. Финансовые и экономические условия.

Задача 1.

Рассматривается договор эксцедента убытка по риску XL: $5\,xs\,2$. Предполагается, что возможны 4 возобновления. Добавочные премии за возобновление полосы: 25%, 50%, 100%, 200%. Произошло 8 убытков, их размеры: 5, 10, 7, 4, 6, 8, 3, 9. Первоначальная премия равна 4. Подсчитать размер добавочных премий. Все размеры в млн.

Решение

Пусть X_i – указанные убытки, $Y:=\min{\{5,(X_i-2)_+\}}$ – перестраховое покрытие, $L=5\cdot(4+1)=25$ – максимальное значение гарантий перестраховщика, $Y=\sum_{i=1}^8 Y_i$ – суммарные выплаты по обязательствам перестраховщика.

i	X_i	Y_i	Y	XL	добавочная премия
1	3	3	3	3	0.6
2	10	5	8	5	1.6
3	7	5	13	5	3.2
4	4	2	15	2	1.6
5	6	4	19	4	6.4
6	8	5	24	5	1.6
7	3	1	25	1	_
8	9	5	30	_	_

Добавочные премии закончились на 7-м убытке, т.к. мы достигли максимальных гарантий перестраховщика.

Задача 2.

Подсчитать, чему равна премия по договору $3\,xs\,2$ (млн.), если размеры последовательных убытков равнялись $3,\,3.4,\,3.2,\,4.8,\,4.4,\,7$. Предполагается, что применяется скользящая ставка премии от 2% до 5% (при коэффициенте надбавки 100/80 убытков на гарантии перестраховщика, уже оплаченных или еще не урегулированных). Премия прямого страховщика равна $200\cdot10^6$.

Решение

Пусть X_i – указанные убытки, $Y:=\min{\{3,(X_i-2)_+\}}$ – перестраховое покрытие, $Y=\sum_{i=1}^6 Y_i=11.8$.

$$r = \min\{\underbrace{r_{\text{max}}}_{5\%}, \max\{\underbrace{r_{\text{min}}}_{2\%}, \underbrace{\frac{dY}{A}}_{=\frac{100 \times 11.8}{8 \times 200} = 73.75\%}\}\} = 5\%.$$

$$(9.1)$$

Итого, $P = rA = .05 \times 200 = 10$.

Д3 10

Оптимальное перестрахование. Порядки рационального перестраховщика, эксцедента богатства и рассеивания.

Д3 11

Апостериорная тарификация. Теория ограниченных флуктуаций. Модель Бюлмана.

Задача 1.

Найти наилучшее приближение X_{t+1} с помощью неоднородной линейной комбинации X_1, \ldots, X_t .

Решение

Задача 2.

Найти наилучшее приближение $\mu(\Theta)$ с помощью однородной линейной комбинации X_1,\dots,X_t .

Решение

Задача 3.

Проверить, пользуясь тем, что X_{t+1} и X_1, \dots, X_t условно независимы при данной Θ , равенство

$$E(X_{t+1}|X_1,\ldots,X_t)=E(\mu(\Theta)|X_1,\ldots,X_t).$$

Решение