

IIoT Applications: Healthcare

Dr. Sudip Misra

Professor

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Email: smisra@sit.iitkgp.ernet.in

Website: http://cse.iitkgp.ac.in/~smisra/ Research Lab: cse.iitkgp.ac.in/~smisra/swan/

Introduction

- > Earlier so many people died due to lack of health care.
- > People forget about their health due to busy life.
- > IIoT makes the healthcare easier.
- ➤ IIoT based healthcare service is cheapest.
- ➤ ECG, blood pressure, glucose level, and temperature can be monitored from patient's home.
- > If any critical conditions are there, it sends alert.

Healthcare Challenges

- > Populations are ageing all over the world
- > Different diseases are increasing
- > Expenditure of hospitals and medical clinic are increasing

Largest Age Group

- ➤ Populations are growing older
 - ➤ Between 2017 to 2050, person's aged 60 years or over is expected to increase more than double.
 - ➤In 1980, there were 382 million older person all over the world.
 - ➤In 2050, it is expected to be 2.1 billion older person worldwide.
- Telecare applications, smart home or telemedicine helps older people to live safely.

Increase of Diseases

- ➤ Different diseases are increasing.
- Telecare applications, smart home or telemedicine helps older people to live safely.
- Continuous monitoring of patient's health reduces hospitalizing.
- Sensors collects blood pressure, respiration, pulse rate, heart rate, and weight. It triggers alarm, if any abnormal situation is there

Reduce the Expenditure

- > IIoT based healthcare device
 - ➤ Different wearable healthcare devices which reduce the cost of checkup.
- > Remote monitoring
 - ➤ Patient's health condition can be monitored by sensors, which reduce the cost.
- ➤ In hospitals, smart beds can send notification about patient's activity.

IIoT Healthcare Architecture

Storing

Processing

Sending

Sensing

Source: Nguyen et. all, "A Review on IoT Healthcare Monitoring Applications and a Vision for Transforming Sensor Data into Real-time Clinical Feedback", in Proc. 21st Comp. Supported Cooperative Work in Design, IEEE, 2017

Benefits of IIoT in Healthcare

- Monitor patient's health condition remotely.
- > Hospital staff can predict the arrival of a patient in PACU.
- Hygiene monitoring system can detect the cleanliness of hand.
- Medical staff can provide quality medical service with small budget using IIoT.

IIoT Based Electrocardiogram Monitor

- ➤ Wireless ECG monitor.
- ➤ Bio signals are collected by ECG sensors.
- > The collected data are sent to the cloud.
- ➤ Medical staffs can analyze the health related data in real time.
- ➤ QardioCore is an example of wireless ECG monitoring device.

IloT Based Glucose Level Monitor

- Diabetes is metabolic disease, glucose level is high.
- Monitoring the glucose level helps meal planning, physical activity, medication.
- ➤ Glucose sensor devices are used to check the glucose level.
- It notifies the doctors and patients if any abnormal situation occur.
- > Dexcom develops continuous glucose monitoring devices.

IIoT Based Blood Pressure Monitor

- ➤ Using IIoT device, the patient's blood pressure is measured and compared with the other blood pressure.
- > Doctors can monitor patient's blood pressure in real time.
- > Medicines can be prescribed based on this.
- ➤iHealth BP5 is IoT based blood monitoring system.

IIoT Based Body Temperature Monitor

- ➤ Wearable sensor to continuous monitoring human body temperature
- >It measures skin temperature
- The WBAN is used to connect to gateway
- ➤ Kinsa smart thermometer is IoT based body temperature monitoring devices

IIoT Based Oxygen Saturation Monitor

- ➤ Oxygen saturation= ratio of oxyhemoglobin to total hemoglobin
- > Pulse Oxiometry measures the oxygen saturation.
- ➤ IoT is integrated with Pulse Oxiometry.
- ➤ Bluetooth is used for connectivity.
- Low cost device to remotely monitor patient's health.

IIoT Based Contact Lenses

- The IIoT based smart contact lense support WiFi signal, conneted with smart phone.
- >It consists of micro camera, sensors.
- Sugar level can be measured by tears. Smart contact lenses can monitor the sugar level.
- > It can monitors human health conditions.
- >It can detect various diseases, if any abnormal situation is found.

IIoT Based Asthma Treatment

- Asthma is lifelong disease, can be controlled, not cured.
- ➤ Inhaler is commonly used to give proper dose of drugs.
- Smart Inhaler can keep track via GPS.
- ➤ ADAMM Intelligent Asthma Monitoring device.
- ➤ Wearable device, connected with Bluetooth or WiFi.
- From the body temperature, cough rate, heart rate, it predicts pre symptoms of asthma attack.

Smartphone : Healthcare Solution

- ➤ Electronic devices consist of sensors, which are supported by smartphone
- > Smartphone is used to monitor the health of user and detect diseases.
- Smartphone's healthcare app provides low cost healthcare service.
 - Diagnostic apps detect patient's health condition.
 - ➤ Medical communication apps connect patients with hospitals.
 - Medical education apps provide tutorials.

Smartphone Based Healthcare App

- ➤ Health Assistant: Keeps track of health condition
- ➤ Google Fit: Keeps track of different physical activity
- ➤ ECG Self Monitoring: Serves as ECG device, based on "ECG Self Check" software.
- ➤ Instant Heart Rate: Measures heart rate using smartphone's camera
- ➤ Fingerprint Thermometer: Determine body temperature from the fingure print

IIoT Healthcare Technology

- ➤ Cloud computing: Provide facilities to shared resources.
- ➤ Big data: Includes heath data generated from sensor nodes.
- Networks: WBAN, 6LoWPAN, WSN are part of IIoT based healthcare.
- Ambient intelligence: It involves continuous learning and analyze based on the learning.

IIoT Healthcare Security Requirement

- ➤ Confidentiality: It ensures medical data is not accessible by unauthorized users.
- ➤ Integrity: It ensures medical data is not altered by any third party.
- Authentication: It ensures the identity from which the data is coming.
- Availability: It ensures the accessibility of data to valid users

IoT Healthcare Challenges

- Less computational capability, not able to perform expensive operations.
- Less on device memory.
- Energy limitation, sensor has low power battery.
- Not static, mobile devices. Designing mobile enabled algorithms are challenge.
- Designing scalable algorithm without compromising security is challenge.

References

- [1] Hoa Hong Nguyen, Farhaan Mirza, M. Asif Naeem and Minh Nguyen, "A Review on IoT Healthcare Monitoring Applications and a Vision for Transforming Sensor Data into Real-time Clinical Feedback", in Proc. Of 21st International Conf. on Computer Supported Cooperative Work in Design, IEEE, 2017.
- [2] Internet of Things in Healthcare: applications, benefits, and challenges", IoT, Health & Fitness, peerbits.
- [3] Suwon Kim, Seongcheol Kim, "User preference for an IoT healthcare application for lifestyle disease management", Telecommunications Policy, Elsevier, vol. 42, no. 4, 2018.
- [4] Shareem Thahir, "6 Applications of IoT in the Healthcare Industry", CABOT, 2016.
- [5] Bryan A. Lubel, "Internet of Things healthcare applications, benefits and challenges", IoT World Today, 2017.
- [6] https://www.getqardio.com/qardiocore-wearable-ecg-ekg-monitor-iphone/
- [7] Fadi Al-Turjman, Sinem Alturjman, "Context-Sensitive Access in Industrial Internet of Things (IIoT) Healthcare Applications", IEEE Transactions of Information Informatics, 2018
- [8] Shang F, Zhu Y, Zhu Z, Liu L, Wan Y, "Validation of the iHealth BP5 wireless upper arm blood pressure monitor for self-measurement according to the European Society of Hypertension International Protocol revision 2010", Blood Press Monitor, doi: 10.1097/MBP.0b013e3283638f04, 2013.

Thank You!!

IIoT Applications: Power Plants

Dr. Sudip Misra

Professor

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Email: smisra@sit.iitkgp.ernet.in

Website: http://cse.iitkgp.ac.in/~smisra/ Research Lab: cse.iitkgp.ac.in/~smisra/swan/

Introduction

- ➤ Data collected from IIoT enabled devices increase productivity and efficiency.
- ➤ Using IIoT, the equipment can be monitored remotely.
- > Sensors collect data and sends to cloud.
- ➤ Different machine learning and artificial intelligence based algorithms are used to analyze the data.

Drivers of IIoT in Power Plant

- Low cost powerful chips
 - ➤ WiFi chip, cameras, sensors, accelerometers are used.
- > Standardization with IPV6
 - > 3G, 4G, 5G networks are used, the devices are standardized with TCP/IP and IPV6 protocol.
- Standardization with software technology
 - ➤ Use of artificial intelligence algorithms, and cloud computing software makes it easier.

Digital Power Plant Benefits

- > Increase efficiency
 - > Smart grid- automated devices increases efficiency and reduces manpower.
- > Reduce cost
 - > Automated devices- no need of money for manpower, fuel, maintenance.
- > Improves performance
 - > Turbine's performance improvement, remote monitoring.
- Reduce energy demands
 - > Helps users to learn how to use energy in real time.

Architecture

IIoT Maturity Model

Communication Network

- > Home area network
 - > Covers in-home IoT devices. Wireless: Zigbee, 6LowPan
- Neighborhood area network
 - Distribution domain networks. Data collected from smart devices and sent to gateways.
- > Field area network
 - ➤ Distribution domain networks. It includes controller, regulators, and data collector. Wireless: WiMAX, 3G, 4G. Wired: Eathernet.
- Wide area network

Smart Grid in Power System

IIoT in Power Plants Applications

- Digital twins
 - Considered as virtual power plant, reduce fuel and energy consumption by incorporating data.
- > Supply chain management
 - > Sensors monitor product condition and optimize delivery time.
- > Smart pumping
 - > Combined with sensors and software. Automated flow control.

IIoT in Power Plants Applications

- > Smart boiler
 - > Customer can control it by mobile application
 - > Energy efficient usage
 - > Automatically reports if any defects are there
- Smart water monitoring
 - > Detect flow of water and volume of water of a pipe in a time period.
 - > Sends data to cloud storage.
 - > Saves wastage of water.

IIoT in Power Plants Applications

- Smart metering
 - > Important element of smart grid
 - > IoT reduces operational costs as operations are remotely managed.
 - > Reduces the chance of energy loss.
- Building automation
 - Monitors the building remotely.
 - ➤ Elevators, lighting systems, and other electronic systems are connected through internet.

Supervisory Control And Data Acquisition (SCDA)

- > Software and hardware allows organization to process locally or remotely.
- > Sensors gather real time data.
- Programmable logic controller or remote terminal units communicate with different objects and route the data to SCDA software.
- > SCDA software processes the data. Then users analyze the data to make decision.

Advanced Metering Infrastructure(AMI)

- ➤ It comprises whole infrastructure- smart meters, communication networks.
- > Smart meters: collect information about energy, water etc. Transmits the data to network.
- Communication network: Broadband over PowerLine, Fixed radio frequency are used.
- Meter data acquisition system: gathers data from smart meters
- > Meter data management system: analyze the data.

IIoT in Electricity Sector

- > Efficient power grid system
 - > Collect data from sensors
 - Use the data to manage resources
 - Optimization, stakeholders take decision about power usage.
- Data collected from sensors can easily predict if any failure in grid.
- Predict earlier if any accident is going to happen.

IIoT in Water Sector

- > Saves water using smart sensors.
- > IoT sensors track water pressure, water quality etc.
- ➤ The gathered data is sent to utility company to analyze the data.
- ➤ It gives public useful information about how to stop wastage of water.
- > It also predicts the water leakage.

IIoT in Wind Energy Sector

- In wind energy sector, large turbines are used. The factories also locate at remote location, It is hard to maintain.
- ➤ With IoT, the local control system can adjust switches and software.
- > The remote location of farm is not an issue with IoT.
- ➤ IoT can predict any issues of turbines easily and it can be addressed earlier before any large scale damage.

IIoT in Solar Energy Sector

- ➤ In IoT based solar energy sector, sensors monitor their performances from the control panel.
- > The gathered data is sent to cloud server to analyze.
- ➤ IoT helps to understand the problem of device whether it is hardware related problem or network related problem.
- > IoT helps to detect any problem in real time.
- > IoT can manage the largest solar grid.

Challenges of IIoT in Power Plant

- Security issues
 - > Privacy issues, chances of denial of service attack.
- > Low power devices
 - ➤ IoT devices are resource constrained devices, battery powered devices.
- Scalability issues
 - > Number of devices are increasing, Increase of data bandwidth.

Challenges of IIoT in Power Plant

- > Determinism of network
 - > Using cloud makes the process delay about 200 msec or more.
- Poorly designed
 - Most of the devices are poorly designed as different protocols are used.
 - > It lacks of standard authentication for the edge devices.

References

- [1] "6 Ways IoT is Energizing Power Plants", Industrial Intelligence, Available at www.industrialintelligence.net
- [2] Arun Ramamurthy and Pramod Jain, "The Internet of Things in the Power Sector Opportunities in Asia and Pacific", ABS Sustainable Development Working Paper Series, no:\$*, 2017.
- [3] Rob Young, John McCue, Christian Grant, "The power is on: How IoT technology is driving energy innovation", The Internet of Things in the electric power industry, 2016.
- [4] "3 Major Challenges IoT is facing", 10 libros de ciencia para el verano, 2018.
- [5] Walters Nyambi, "The IoT Revolution: challenges and opportunities", genevabusiness news, 2016.
- [6] "Applications of IoT in Manufacturing Plants", The Manufacturer, 2018.
- [7] "Internet of Things(IoT): Transforming Energy \$ Utilities Sector", COGNITIVE TODAY.
- [8] Pat Kennedy, "Six big data challenges for the power industry", Power Engineering, 2018.
- [9] "Industrial Internet of Things (IIoT) for Power Plants", 2018, Available at: https://www.vdi-wissensforum.de/en/event/iiot-for-power-plants/
- [10] "IIoT in 2017: 3 Reasons to Make the Leap", 2017, Available at: https://www.ge.com/power/transform/article.transform.articles.2017.jun.iiot-in-2017-3-reasons-to-make#

Thank You!!

IIoT Applications: Inventory Management & Quality Control

Dr. Sudip Misra

Professor

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Email: smisra@sit.iitkgp.ernet.in

Website: http://cse.iitkgp.ac.in/~smisra/ Research Lab: cse.iitkgp.ac.in/~smisra/swan/

Inventory Management

> Inventory

"a usable but idle resource having some economic value"

[P. Vrat, Materials Management]

- Inventory Management
 - > Activities entailing management of inventory such as:
 - > Controlling, overseeing and ordering
 - > Storage
 - ➤ Determine supply for sale

Supply Chain and Inventory Management

Inventory Management and IIoT

Functions of Inventory Management

- Meet anticipated demand
- > Smoothen the production requirement procedure
- > Decouple components of the production-distribution system
- Protection against stock outs
- Proper order cycles
- Hedge against price increases or to take advantage of quantity discounts
- Smoothen the flow of operations

Requirements for Effective Inventory Management

- Keep track of the inventory
- > Forecast of demand
- Manage lead times and lead time variability
- Estimate inventory holding costs, ordering costs, and shortage costs
- Classification of inventories

Quality Control

- "system of routine technical activities, to measure and control the quality of the inventory as it is being developed"
 [IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories]
- ➤ Internally maintained by the management to provide product satisfaction to the customers

Objectives:

- > Routine and consistent checks
- > Ensure data integrity, correctness, and completeness
- Rectify errors and omissions
- Document and archive inventory material and record all QC activities

Radio Frequency Identification Devices (RFID) tags

- Used in an identification system
- Uses Radio waves for communication
- > RFID Tagging system consists of:
 - > The RFID tag
 - ➤ Read/write device
 - > Host System
- > Two types:
 - ➤ Active RFID tags
 - Passive RFID tags
- Finds scope in data collection, processing, and transmission applications

Passive RFID Tags

- ➤ No internal power source
- > Relies on backscattering
- ➤ Wait for a signal from an RFID reader
- Powered by electromagnetic energy from this signal
- ➤ Have shorter range than Active RFID tags
- > Small in size and thickness

Active RFID Tags

- Battery powered
- > Broadcasts information signal in the form of a *beacons*
- ➤ Have longer range and memory than passive RFID tags
- > Bulky and expensive as compared to passive RFID tags

Semi-Passive tags

- > Has an onboard battery to power the IC
- > But no active transmitter
- > Relies on backscattering
- Does not depend on signals from reader for power
- Does not create additional noise

RFID tags over Barcodes

- Barcodes are printed on paper and plastic which makes them vulnerable
- > Barcodes need to be on Line of Sight of the readers
- Only one barcode can be read at a time
- Barcodes have less security and hence can be forged
- > Barcodes cannot contain any added information

Applications

- Identification of products
- ➤ Added information along with ID
- Comprehensive visibility
- > Built in GPS
- Warehouse management

- > Added information along with ID:
 - > Current storage temperature
 - Weather condition
 - Damage (if any)
 - > etc

- Comprehensive Visibility
 - > Inventory levels
 - > Expiration dates
 - > Item location
 - > Forecast demand
 - > etc

- Warehouse management
 - Shrink, Shortage, Overstock of commodities
 - Identification of efficient areas based on demand

- > Similarly in transportation modes
 - > Track time and place of congestion
 - Compute delay and alternate routes
 - > Commute with efficient time and mode

Problems that can be eliminated

- Data inconsistency
- > Staff training expenses
- > Human errors
- Data scattering
- Lapse in security
- Slow operation
- > Other hidden costs

References

- [1] Vrat, P. (2014). Materials Management. Springer.
- [2] Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. (2000). 16th IPCC Plenary, Montreal.
- [3] Stevenson, W. J. (2001) Operations Management, 7th Edition. McGraw-Hill Irwin.

Thank You!!

IIoT Applications: Plant Security and Safety

Dr. Sudip Misra

Professor

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Email: smisra@sit.iitkgp.ernet.in

Website: http://cse.iitkgp.ac.in/~smisra/ Research Lab: cse.iitkgp.ac.in/~smisra/swan/

Plant Security and Safety

"freedom from risk or danger; safety"

[The American Heritage Dictionary]

Plant Safety

- ➤ Health and well being of the industry as a whole
- > Hazards in a plant are catastrophic
- ➤ Aim: Protection of human and plant resources

https://pixabay.com/en/helmet-engineer-hard-hat-hardhat-35053/

Plant Security and Safety

Need for Software Security

- > Steal valuable information
- > Unauthorized monitoring of sensitive content
- Corrupt behavior of software
- ➤ Denial of Service (DoS) attacks
- Overflows, Overrides and Overwrites
- Padding

Integrity

- > Assurance of an uncorrupted data
- > Correct functioning even under malicious attack
- Maintain consistency, accuracy, and trustworthiness of data over its entire life cycle
- > Assurance that data is not altered by unauthorized people

Authentication

- > Identification of user
- Verification of credentials entered (local or remote)
- > Access control based on these credentials
- Protection of resources

Availability

- > Ratio of time of functioning to the total time
- Extent to which the software continues functioning when a component or set of components fail
- > Strong relation between availability and reliability

Requirements

- Good programming techniques
- > Install good firewalls
- Detect intrusions
- Good preventive measures

Network Security

- Maintain usability and integrity of network and data
- Management of access to the network
- Both hardware and software
- Protection against variety of threats

Types of Network Security

- Access control
 - ➤ Provide access based on user identity
- > Antivirus and antimalware software
 - > Scan for malware detection and prevention
- Application security
 - > Protection of software after creation

Types of Network Security (contd.)

- Behavioral analytics
 - > Detection of abnormal behavior by the network
- Data loss prevention
 - > Prevention of unauthorized sharing of sensitive data
- Email security
 - Protection against phishing attacks

Types of Network Security (contd.)

- > Firewalls
 - > Barrier between trusted internal network and the external networks
- > Intrusion prevention systems
 - > Detection and blocking attacks
- Mobile device security
 - Device level security

Types of Network Security (contd.)

- Network segmentation
 - Divide the network into smaller parts and enforce security policies explicitly
- > Security information and event management
 - > Gather information for security staff to identify and respond to threats
- Virtual Private Network (VPN)
 - > Encrypt connection from an endpoint to a network

Device Security

- Protection of sensitive information stored on and transmitted by portable devices
- > Portable devices:
 - > Smart phones
 - > Tablets
 - Laptops
 - > Other mobile devices

Components

- Endpoint security
 - Monitoring of mobile devices (files and processes) that access a network
- Virtual Private Network (VPN)
 - > Encrypt connection from a mobile device to a network
- Secure web gateway
 - ➤ Identification of an attack on one location and prevention of the same at other locations (integration of security with the cloud)

Components (contd.)

- > Email security
 - Protection against phishing attacks
- Cloud access security broker
 - > Securing the tasks being performed on the cloud

Virtual Reality (VR)

- Computer generated interactive environment
- > Transpose the user
- > Isolate the user from the current world
- > Example: Oculus Rift, Samsung Gear VR, Google Cardboard

Augmented Reality (AR)

- > Enhanced reality (adds a digital layer over the real world)
- > Does not isolate the user to a different world
- Can add details to things a user tries to examine (can be used by retailers to sell their products)
- > Examples:
 - ➤ Bus stop prank by Pepsi Max
 - Pokémon Go

Risks (AR/VR)

- Prone to attacks by hackers
- > Compromised content on the screen
- ➤ Intellectual Property (IP) rights
- Privacy and Security issues
- Risks pertaining to user's health

Reference

- [1] Network Security Basics. (2013) Elsevier SciTech Connect.
- [2] Plant Safety Procedure, Swinburne University of Technology
- [3] Canavan, J. E. and House, A. (2001). Fundamentals of Network Security
- [4] What Is Network Security? Online. URL: https://www.cisco.com/c/en/us/products/security/what-is-network-security.html
- [5] What Is Mobile Device Security? Online. URL: https://www.cisco.com/c/en/us/solutions/small-business/resource-center/secure-my-business/mobile-device-security.html

Thank You!!

IIoT Applications: Facility Management

Dr. Sudip Misra

Professor

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Email: smisra@sit.iitkgp.ernet.in

Website: http://cse.iitkgp.ac.in/~smisra/ Research Lab: cse.iitkgp.ac.in/~smisra/swan/

Facility Management

"guiding and managing the operations and maintenance of buildings, precincts and community infrastructure on behalf of property owners"

[Facilities Management Good Practice Guide]

Facility Management

Facility Management

- Support services for organizations
- > Integrates people, place and process
- > Improve quality of working environment
- > Improve productivity

Closely related to the operations conducted in a building

Scope of IoT in Facility Management

- > Accessing new insights:
 - > Gather data, reduce power consumption
- > Implementing new technology:
 - Implementing new technology like Li-Fi (Light Fidelity) and data security
- > Addressing cost barrier:
 - > Increases operating efficiency and reduce maintenance cost

Support Services

- > Finance
 - > Planning and reviewing of budget
- Information Technology
 - > Improve the ability to co-ordinate among the installed devices
- > Human Resources
 - > Improve the quality of workforce and the environment

Support Services (contd.)

- Administrative Support
 - Monitoring, gathering, disseminating relevant information and take decisions
- Marketing
 - Research potential customers
- Knowledge
- Business Development
 - Overall growth of business

Key Idea

- > Comprehensive detail of every machine
 - > Faults, history, usage and modifications
- Data consistency
- Harmonized decisions

Real Power

- Predict events before they occur
- Measures to prevent predicted hazards

Need for Big Data and advanced analytics to analyze them

Optimization

- Optimized usage of resources:
 - Manpower
 - > Assets
 - > Technology
 - Cost-effectiveness

Challenges

- Cost management
 - > Balancing the quality of the facility and its budget
- Ageing inventory
 - > Need for proactive preventive and maintenance procedures
- Changing regulatory and compliance standards
 - > Need for improvement and new ways to stand out from competitors
- Security Management
 - > Security against breaches and threats

IoT Application in Facility Management

- Lighting
- Refrigeration
- Smart Meters
- > Fire Suppression Systems
- ➤ Appliances with Embedded Sensors/Software

IoT Application in Facility Management (Contd..)

- Security and Safety Alarms
 - Monitor alarms, smoke detector, other life safety systems remotely
 - > Real time information about emergency
- Central Heating Ventilation and Air-Conditioning (HVAC) "we will start to see an ecosystem of tools and services develop that will make the HVAC system more efficient and easier to operate," Dan McJacobson, McGuire Engineers

IoT Application in Facility Management (Contd..)

- > Room Reservation and Scheduling
 - > Checking real time status of meeting rooms and avoid double-booking
- ➤ Monitoring Stock and Usage of Supplies
 - ➤ Monitor usage of restrooms
 - > Efficient supply management
 - > Water management
 - Monitor transmission lines and pipes

Analytics in Facility Management (contd..)

- Managing Energy Consumption
- Data-driven Decision-making
- Operational Cost-optimization
- ➤ Remote Monitoring of Facilities
- > Determining the Exact Square-foot Utilization of Office Space

Benefits

- > Improve customer experience
- Prevent unauthorized access
- Real-time tracking
- > The ability to do more with less

References

- [1] Facilities Management Good Practice Guide. (2012). FMA Australia
- [2] Woon C. J., Ali A. S. & Rahim F. A. M. Facilities Management Practices for Office Building: The Case of Klang Valley, Malaysia
- [3] Bröchner, J. (1991). Information Technology and Facilities Management. Facilities. Vol. 9 Issue: 1/2, (pp. 28-33)
- [4] IoT and analytics: Changing the reality of facility management. Online. URL:
- https://www.softwebsolutions.com/resources/IoT-intlligent-building-for-facility-management.html
- [5] 4 Tasks in Facilities Management That IoT Could Take Over. Online. URL:
- https://www.aranca.com/knowledge-library/articles/business-research/4-tasks-in-facilities-management-that-iot-could-take-over
- [6] Improving Operations And Maintenance With IoT. Online. URL:
- https://facilityexecutive.com/2018/01/improving-operations-and-maintenance-with-iot/
- [7] Barker. I. C. (2013). A Practical Introduction to Facilities Management. Whittles Publishing
- [8] For Facility Managers, Internet of Things Changes the Game. Online. URL:
- https://www.facilitiesnet.com/facilitiesmanagement/article/For-Facility-Managers-Internet-of-Things-Changes-the-Game-Facilities-Management-Facilities-Management-Feature--16253

Thank You!!

