Calculus II Summary of building block integrals

Todor Milev

2019

Building block integral summary

Type	а	b	Type a, lin. sub.	Type b, lin. sub
I	$\int \frac{1}{x} dx$	$\int \frac{1}{x^n} dx$	$\int \frac{A}{ax+b} dx$	$\int \frac{A}{(ax+b)^n} dx$
П	$\int \frac{x}{x^2+1} dx$	$\int \frac{x}{\left(x^2+1\right)^n} \mathrm{d}x$	$\int \frac{A(x+\frac{b}{2a})}{ax^2+bx+c} dx$	$\int \frac{A(x+\frac{b}{2a})}{(ax^2+bx+c)^n} dx$
III	$\int \frac{1}{x^2+1} dx$	$\int \frac{1}{\left(x^2+1\right)^n} \mathrm{d}x$	$\int \frac{B}{ax^2 + bx + c} dx$	$\int \frac{B}{\left(ax^2+bx+c\right)^n} dx$

where A, B are arbitrary constants and a, b, c are constants with $b^2 - 4ac < 0$. The quadratics in the denominators have no real roots.

- We solved building blocks I, II and III in almost complete detail.
- The types in the remaining columns can be transformed to building block ones:
 - Block I, linear substitutions: done in full detail.
 - Block IIa, IIIa, linear substitutions: done in full detail, by means of completing the square.
 - Block Ilb, IIlb, linear substitutions: done by means of completing the square; computations are analogous and we leave them for exercise.