Coalescent inference of HIV transmission history

Raymond Heil T-6: Theoretical Biology and Biophysics

Mentors
Emma Goldberg, Thomas Leitner, Ethan Romero-Severson

20 July 2022

Why this project?

- * HIV is globally widespread
- * Despite effective therapy, it is still spreading
- * How can we understand the way it spreads?

Setting up the problem

- * Tree tips represent invividual viral sequences
- * Three samples from each invididual
- * If one infected the other, when?

Coalescent modeling

Node times as a function of population size

Relationship between population and samples

Large N causes node times to be further apart, stretching the tree

Effect of changing population size

Predicting transmission time on a changing population

Results

Highest Density Interval of N with Constant Population Trees

Results

Population size of a tree with b fixed at 1100

Next steps

Immediately: Solve numerical issues with multi-parameter optimization
Immediately: Extend my current work to trees with multiple hosts

- * Split tree by host
- * Isolate hosts until a transmission occurs

Overall: Find the most likely time of transmission for phylogenetic trees under a range of conditions

Thank you!

